1 Definitions

1.1 Classifiers, Risk etc.

Definition 1. Bayes Risk is $R^* = \inf_f R(f) = \inf_f \mathbb{E}\left[l(f, X, Y)\right] \stackrel{0-1 loss}{=} \inf_f \mathbb{E}\left[\mathbb{1}_{f(X) \neq Y}\right] = \mathbb{P}\left\{f(X) \neq Y\right\}.$

Definition 2. Optimal Bayes Classifier is $f^{\star}(x) = 1$ if $\eta(x) \ge \frac{1}{2}$ and 0 otherwise; and equivalently $f^{\star}(x) = 1$ if $\frac{\eta(x)}{1 - \eta(x)} \ge 1$ and 0 otherwise; and equivalently $f^{\star}(x) = 1$ if $\frac{p(x|Y=1)p(Y=1)}{p(x|Y=0)p(Y=0)} \ge 1$ and 0 otherwise.

Definition 3. Log Likelihood Ratio: $\Lambda(x) = \log\left(\frac{p_1(x)}{p_0(x)}\right)$, where $p_j(x) = p(x|Y=j)$.

Definition 4. Bayes Cost: $C = \sum_{i,j=0}^{1} c_{i,j}\pi_j \mathbb{P}\{ \text{ decide } H_i|H_j\} = \sum_{i,j=0}^{1} c_{i,j}\pi_j \int_{R_i} p_j(x) dx, \text{ where } \pi_j = \mathbb{P}\{H_j\} \text{ and } R_j = \{x : \text{ decide } H_j\}.$

Definition 5. MLE Risk: $R_{MLE}\left(q,p_{\theta}\right) = \mathbb{E}\left[-\log p\left(x|\theta\right)\right]$, Excess Risk: $R_{MLE}\left(q,p_{\theta}\right) - R_{MLE}\left(q,q\right) = D\left(q\|p_{\theta}\right) \geqslant 0$.

1.2 Estimators

Definition 6. Empirical means and covariances: $\hat{\mu}_j = \frac{1}{\#\{y_i = j\}} \sum_{i:y_i = j} x_i \text{ and } \hat{\Sigma} = \frac{1}{n} \left(\sum_j \sum_{i:y_i = j} (x_i - \hat{\mu}_j) (x_i - \hat{\mu}_j)^T \right).$

Definition 7. Gaussian GLM: $p(y|x^Tw) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-1}{2}(y-x^Tw)^2\right)$, and $\hat{w} = (X^TX)^{-1}X^Ty$.

Definition 8. Binomial GLM: $p\left(y|x^Tw\right) = \exp\left(y\log\left(\frac{1}{1+e^{-x^Tw}}\right) + (1-y)\log\left(\frac{1}{1+e^{x^Tw}}\right)\right)$.

Definition 9. Multinomial GLM: $p(y|x^Tw) = \frac{\exp(x^Tw_l)}{\sum_{j=1}^k \exp(x^Tw_j)}$.

Definition 10. Max a Posterior: $\theta_{MAP} = \max_{\theta} p\left(\theta|y\right) \propto p\left(y|\theta\right) p\left(\theta\right)$ to minimize loss $L\left(\theta, \hat{\theta}\right) = \mathbb{1}_{\left\{\|\hat{\theta} - \theta\| > \varepsilon\right\}}$.

Definition 11. Bayesian minimum MSE estimator: $\hat{\theta} = \mathbb{E}\left[\theta|y\right]$ to minimize loss $L\left(\theta, \hat{\theta}\right) = \|\theta - \hat{\theta}\|^2$.

Definition 12. Bayesian minimum MAE estimator: $\hat{\theta} = \text{median } [\theta|y]$ to minimize loss $L(\theta, \hat{\theta}) = \|\theta - \hat{\theta}\|_1$.

Definition 13. Gaussian penalty function: $\min_{w} \log p(y|w^Tx) + \lambda ||w||^2$.

Definition 14. Laplacian penalty function: $\min_{w} \log p(y|w^Tx) + \lambda ||w||_1$.

Definition 15. Sparsity penalty function: $\min_{w} \log p\left(y|w^{T}x\right) + \lambda \|w\|_{0}$.

Definition 16. Minimax Optimal Estimator: $\hat{\theta} = \arg \min_{\hat{\theta}} \sup_{\theta} R(\hat{\theta}, \theta)$

1.3 Distributions

Definition 17. Multivariate Normal Distribution: $p(x) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(\frac{-1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$; equivalently, $\log p(x) \propto \log |\Sigma| - \frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)$.

Definition 18. Binomial Distribution: $p(x) = \binom{n}{x} p^x (1-p)^{n-x}$.

Definition 19. Hypergeometric Distribution: $p(x) = \frac{\binom{b}{x}\binom{N-b}{n-x}}{\binom{N}{n}}$.

Definition 20. Multinomial Distribution: $p(x) = \binom{n}{x_1 x_2 ... x_k} \prod_{i=1}^k p_i^{x_i}$.

Definition 21. Exponential Distribution: $p(x) = \lambda e^{-\lambda x}$.

Definition 22. Gamma Distribution: $p(x) = \frac{x^{a-1}e^{-\frac{x}{b}}}{\Gamma(a)b^a}$

Definition 23. Beta Distribution: $p(x) = \frac{x^{a-1} (1-x)^{b-1}}{Beta(a,b)}$, where Beta(a, b) = $\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}$.

Definition 24. Exponential Family: $p\left(y|\theta\right) = b\left(y\right) \exp\left(\theta^T T\left(y\right) - \alpha\left(\theta\right)\right)$, θ is the natural parameter and $T\left(y\right)$ is the sufficient statistic. Canonical form is when $T\left(y\right) = y$, and $\log p\left(y|\theta\right) = \sum_{i=1}^{n} \left(w^T x_i y_i - \alpha\left(w^T x_i\right)\right) + \log b\left(y_i\right)$.

1.4 Other Statistics, Algebra etc.

Definition 25. Kullback-Leibler Divergence: $D\left(p_1\|p_0\right) = \mathbb{E}_{1[\Lambda(X)]} = \int p_1\left(x\right)\log\frac{p_1\left(x\right)}{p_0\left(x\right)}dx$.

Definition 26. Mahanalobis Distance: $(\mathbf{x} - \mu)^T \Sigma^{-1} (x - \mu)$.

Definition 27. Sufficiency: t(X) is sufficient if $p(x|t,\theta) = p(x|t)$.

Definition 28. Rao-Blackwellization: If f is an estimator and t is a sufficient statistic, then $\mathbb{E}[f(X)|t(X)]$ is the improved Rao-Blackwell estimator (in terms of MSE).

Definition 29. Characteristic Equation of X is $\det(\lambda I - X) = 0$, where λ are the eigenvalues.

Definition 30. Binomial Conjugate prior: Binomial(n,p) + Beta (α,β) = Beta $\left(\alpha + \sum_{i=1}^{n} x_i, \beta + n - \sum_{i=1}^{n} x_i\right)$, and Neg Binomal(r,p) +

Beta (α, β) = Beta $\left(\alpha + \sum_{i=1}^{n} x_i, \beta + rn\right)$.

Definition 31. Possion Conjugate prior: Poisson(λ) + $\Gamma(k,\beta)$ = Neg Binomial $\left(k + \sum_{i=1}^{n} x_i, \beta + n\right)$.

 $\mathbf{Definition 32. \ Normal \ Conjugate \ prior: \ Normal}(\mu_0, \sigma_0) = \mathrm{Normal}\left(\frac{1}{\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}}\left(\frac{n}{\sigma^2}\bar{x} + \frac{\mu}{\sigma_0^2}\right), \frac{1}{\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}}\right) \text{ and } \mathrm{Normal}(\mu, \Sigma) \\ + \mathrm{Normal}(\mu_0, \Sigma_0) = \mathrm{Normal}\left(\left(\Sigma_{0^{-1}} + n\Sigma^{-1}\right)^{-1}\left(\Sigma_{0^{-1}}\mu_0 + n\Sigma^{-1}\bar{x}\right), \left(\Sigma_{0^{-1}} + n\Sigma^{-1}\right)^{-1}\right).$

Definition 33. Uniform Conjugate prior: Uniform $(0, \theta) + Pareto(x_m, k) = Pareto(max\{x_1, ..., x_n, x_m\}, k + n)$.

Definition 34. Gamma Conjugate prior: Gamma (α, β) + Gamma (α_0, β_0) = Gamma $\left(\alpha_0 + n\alpha, \beta_0 + \sum_{i=1}^n x_i\right)$.

2 Theorems

2.1 Inequalities, Bounds etc.

Theorem 1. Cauchy-Schwarz Inequality: $|\mathbb{E}[XY]| \leq \sqrt{\mathbb{E}[X^2]\mathbb{E}[Y^2]}$.

Theorem 2. Holder's Inequality: For $\frac{1}{p} + \frac{1}{q} = 1$, $\mathbb{E}[|XY|] \leq (E[|X^p|])^{\frac{1}{p}} (E[|X^q|])^{\frac{1}{q}}$.

Theorem 3. Markov's Inequality: For $X \ge 0$ and $a > 0, \mathbb{P}\{X > a\} \le \frac{\mathbb{E}[X]}{a}$.

Theorem 4. Chebyshev's Inequality: For t > 0, $\mathbb{P}\{|X - \mathbb{E}[X]| \ge t\} \le \frac{Var[X]}{t^2}$.

Theorem 5. Chebyshev-Cantelli Inequality: For $t \ge 0$, $\mathbb{P}\{X - \mathbb{E}[X] > t\} \le \frac{Var[X]}{Var[X] + t^2}$.

Theorem 6. Jensen's Inequality: if f is convex, $\lambda f(x) + (1 - \lambda) f(y) \ge f(\lambda x + (1 - \lambda) y)$, then $\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])$.

Theorem 7. Association Inequality: if f and g are increasing, $\mathbb{E}[f(X)g(X)] \geqslant \mathbb{E}[f(X)]\mathbb{E}[g(X)]$, and if f is increasing, g is decreasing, $\mathbb{E}[f(X)g(X)] \leqslant \mathbb{E}[f(X)]\mathbb{E}[g(X)]$.

Lemma 1. Fourth Moment: $\mathbb{E}[|X|] \leq (\mathbb{E}[X^2])^{1.5} (\mathbb{E}[X^4])^{-0.5}$.

Lemma 2. Chernoff bound $(1 - \delta)$ confidence intervals for mean of $x_i \in [0, 1]$ in k dimensions: $\pm \sqrt{\frac{\log(2k\delta^{-1})}{2n}}$, and for standard deviation: $\sigma = \frac{1}{\sqrt{n}}$. The minimum number of data to ensure ε error with δ probability is $n \ge \frac{1}{2\varepsilon^2} \log\left(\frac{2k}{\delta}\right)$.

Lemma 3. Popoviciu's Inequality: If $\mathbb{P}\{m \leq z \leq M\} = 1$, then $Var[Z] \leq \frac{1}{2}(M-m)^2$.

Theorem 8. Hoeffding's Inequality:
$$X_i \in [a_i, b_i]$$
, $S_n = \sum_{i=1}^n X_i$, for each $t > 0$, $\mathbb{P}\{|S_n - E[S_n]| \ge t\} \le 2 \exp\left(-2t^2\left(\sum_{i=1}^n (b_i - a_i)^2\right)^{-1}\right)$.

Corollary 1. Corollary to Hoeffding's Inequality: $X_i \in [a,b]$, $c = (b-a)^2$, $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n X_i$, then $\mathbb{P}\{|\hat{\mu} - \mu| \ge t\} \le 2 \exp\left(-\frac{2nt^2}{c}\right)$.

Lemma 4. Lemma to proof Hoeffding's Inequality: $\mathbb{E}[Z] = 0, Z \in [a, b], \text{ then } \mathbb{E}[e^{sZ}] \leq \exp\left(\frac{1}{8}\left(s^2(b-1)^2\right)\right)$.

Theorem 9. Sub Gaussian Tail Bound: if $\{Z_i\}_{i=1}^n$ are independent and $\mathbb{P}\{|Z_i - \mathbb{E}[Z_i]| \ge t\} \le ae^{-b\frac{t^2}{2}}$, then $\mathbb{P}\left\{\frac{1}{n}\sum_i Z_i - \mathbb{E}[Z] > \varepsilon\right\} \le e^{-cn\varepsilon^2}$ and $\mathbb{P}\left\{\mathbb{E}[Z] - \frac{1}{n}\sum_i Z_i > \varepsilon\right\} \le e^{-cn\varepsilon^2}$ with $c = \frac{b}{16a}$.

2.2 Linear Algebra

Theorem 10. Singular Value Decomposition: $A = U\Sigma V^T$ satisfy $Av_i = \sigma_i u_i, A^T u_i = \sigma_i v_i$.

$$\begin{array}{ll} \textbf{Theorem 11.} \ \textit{Schur Complements:} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & 0 \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & D - CA^{-1}B \end{bmatrix} \begin{bmatrix} I & A^{-1}B \\ 0 & I \end{bmatrix} = \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix}$$

Theorem 12. Matrix Inversion Lemma: $(A - BD^{-1}C)^{-1} = A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1}$.

Theorem 13. Sherman-Morrison Formula: $(A^{-1}uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1 + v^TA^{-1}u^T}$

Lemma 5. Vector derivatives: $\frac{dc^Tx}{dx} = c$, $\frac{dx^Tx}{dx} = 2x$, $\frac{dx^TAx}{dx} = (A + A^T)x$.

2.3 Statistics

Theorem 14. weak Law of Large Numbers: $\mathbb{E}[|X_i|] < \infty \Rightarrow \frac{1}{n} \sum_{i=1}^{n} X_i \to^p \mathbb{E}[X_i].$

Theorem 15. strong Law of Large Numbers: $\mathbb{E}[|X_i|] < \infty \Rightarrow \frac{1}{n} \sum_{i=1}^n X_i \to \mathbb{E}[X_i]$ as .

Theorem 16. Central Limit Theorem: $\mathbb{E}[Z_i] = 0$, $Var[Z_i] = \sigma^2$, $\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^n Z_i\right) \to^d N(0, \sigma^2)$.

Theorem 17. Fisher-Neyman Factorization: t(X) is sufficient iff $p(x|\theta) = a(x)b(t,\theta)$.

Theorem 18. Rao-Blackwell Theorem: let t(X) be a sufficient statistic and define $g(t(X)) = \mathbb{E}[f(X)|t(X)]$, then $\mathbb{E}[g(t(X)) - \theta)^2] \leq \mathbb{E}[f(X) - \theta)^2$, equal iff f(X) = g(t(X)).

Lemma 6. Convergence of Log-Likelihood to KL: $\hat{\theta}_n = \arg\max_{\theta} p\left(x|\theta\right) = \arg\min_{\theta} \sum_{i=1}^n \log \frac{q\left(x_i\right)}{p\left(x_i|\theta\right)} \to \arg\min_{\theta} D\left(q\|p_{\theta}\right).$

Theorem 19. Asyptotic Distribution of MLE: Let $\hat{\theta}_n = \arg\max_{\theta} p(x|\theta)$, and $\mathbb{E}\left[\frac{\partial \log p(x|\theta)}{\partial \theta}\right] = 0$, then $\hat{\theta}_n \stackrel{asymp}{\sim} N\left(\theta, n^{-1}I^{-1}\left(\theta^{\star}\right)\right)$ where $\left[I\left(\theta^{\star}\right)\right]_{j,k} = -\mathbb{E}\left[\frac{\partial \log p(x|\theta)}{\partial \theta_i \partial \theta_k}\Big|_{\theta=\theta^{\star}}\right]$.

Lemma 7. KL-Divergence Information Matrix identity: if $x|\theta \sim N\left(\theta,\sigma\right)$, then $\left.\frac{\partial^{2}D\left(p\left(x|\theta\right)\|p\left(x|\theta^{\star}\right)\right)}{\partial\theta^{2}}\right|_{\theta=\theta^{\star}}=I\left(\theta^{\star}\right)$.

Theorem 20. Gauss-Markov Theorem: $\begin{bmatrix} x \\ y \end{bmatrix} \sim N\left(\begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{bmatrix}\right)$, then $y|x \sim N\left(\mu_y + \Sigma_{yx}\Sigma_{xx}^{-1}\left(x - \mu_x\right), \Sigma_{yy} - \Sigma_{yx}\Sigma_{xx}^{-1}\Sigma_{xy}\right)$.

Theorem 21. Direct Observation Model: $y = W + \varepsilon, \varepsilon \sim N\left(0, \sigma^2 I\right)$, and the soft-thresholding estimator $\hat{w}_i = sign\left(y_i\right) \max\left\{|y_i| - \lambda, 0\right\}$, oracle estimator $\hat{w}_i = y_i \mathbb{1}_{\{|w_i|^2 \geqslant \sigma^2\}}$, with $\lambda = \sqrt{2\sigma^2 \log n}$, then $\mathbb{E}\left[\|\hat{w} - w\|^2\right] \leqslant (2\log n + 1)\left(\sigma^2 + \sum_{i=1}^n \min\left\{|w_i|^2, \sigma^2\right\}\right)$.

2.4 Optimization

Lemma 8. Stepsize choice: if $v_t = w_t - w^* = (I - \gamma X^T X) v_1$, then $v_t \to 0$ if the eigenvalues of $(I - \gamma X^T X) < 1 \Rightarrow \gamma < \frac{2}{\lambda_{\max}(X^T X)}$

Theorem 22. Constant stepsize: If $\|\nabla f_t(w)\| \leq G$ and $w^* = \arg\min_{w} \sum_{t=1}^{T} f_t(w)$, then gradient descent with $\gamma_t = \gamma$ starting at w_1 satisfies: $\frac{1}{T} \sum_{t=1}^{T} (f_t(w_t) - f_t(w^*)) \leq \frac{\|w_1 - w^*\|^2}{2\gamma T} + \frac{\gamma}{2} G^2.$

Theorem 23. Diminishing stepsize: If $\|\nabla f_t(w)\| \leq G$, $\|w^*\| \leq B$ and $w^* = \arg\min_{w} \sum_{t=1}^{T} f_t(w)$, then gradient descent with $\gamma_t = \frac{1}{\sqrt{t}}$ starting at w_1 satisfies: $\frac{1}{T} \sum_{t=1}^{T} (f_t(w_t) - f_t(w^*)) \leq \frac{2B^2 + G^2}{\sqrt{T}}$.

Lemma 9. The inequality holds: $\sum_{t=1}^{T} \frac{1}{\sqrt{t}} \leq 2\sqrt{T}.$

2.5 Other results, formulas etc.

Lemma 10. Empirical Classifier Error: $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{\hat{y}_i \neq y_i\}}$ with mean $\mathbb{E}[\hat{p}] = p$ and $Var[\hat{p}] = \frac{p(1-p)}{n}$, where $p = \mathbb{P}\{\hat{y} \neq y\} = \mathbb{E}[\mathbb{1}_{\{\hat{y} \neq y\}}]$ is the actual classifier error.

Lemma 11. KL-Divergence of Normal Distribution: With same variance: $X|Y \sim N\left(\mu_j, \Sigma\right)$ with common covariance is $D\left(p_0\|p_1\right) = D\left(p_1\|p_0\right) = \frac{1}{2}\left(\mu_1 - \mu_0\right)^T \Sigma^{-1}\left(\mu_1 - \mu_0\right)$. With different variances: $D\left(N\left(\mu_0, \Sigma_0\right)\|N\left(\mu_1, \Sigma_1\right)\right)$ is $\frac{1}{2}tr\left(\Sigma_1^{-1}\Sigma_0\right) + \frac{1}{2}\left(\mu_1 - \mu_0\right)^T \Sigma_1^{-1}\left(\mu_1 - \mu_0\right) - d + \log\left(\frac{|\Sigma_1|}{|\Sigma_0|}\right)$.

Lemma 12. Optimal Bayes binary Classifier with common covariances and equal prior is $\hat{y}(x) = 1$ if $2(\mu_1 - \mu_0)^T \Sigma^{-1} x \geqslant \mu_0^T \Sigma \mu_0 - \mu_1^T \Sigma \mu_1$ is linear in x.

Lemma 13. Non-negative Expected Value: If $Y \ge 0$, then $\mathbb{E}[Y] = \sum_{i=1}^{\infty} \mathbb{P}\{Y \ge i\}$.

Lemma 14. Sum formulas: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$; $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(n+2)}{6}$.

Lemma 15. Bayesian Linear Regression with prior $w \sim N\left(0, \sigma_w^2 I\right)$ has $\hat{w} = \left(X^T X + \lambda I\right)^{-1} X^T y$, where $\lambda = \frac{\sigma^2}{\sigma_{\cdots}^2}$.

Lemma 16. Minimax Optimal Estimator: if $\hat{\theta}_p = \arg\min_{\hat{\theta}} \int R\left(\hat{\theta}, \theta\right) p\left(\theta\right) d\theta$, and $\int R\left(\hat{\theta}_p, \theta\right) p\left(\theta\right) d\theta = \sup_{\theta} R\left(\hat{\theta}_p, \theta\right)$, then $\hat{\theta}_p$ is minimax optimal. In particular, if $R\left(\hat{\theta}_p, \theta\right)$ is constant, then it is minimax.

Lemma 17. Subgradients: for $||w||_1$ is sign(w); for $max\{0, x^Tw\}$ is $x\mathbb{1}_{x^Tw>0}$.