Matter and Minerals (Part 3)

- Physical Properties
- Color
- Streak
- Hardness
- TenacityCleavage
- Fracture
- Specific Gravity
- Luster
- Form

1

The Physical Properties of Minerals

Unique Sets Of Physical And Chemical Characteristics That Are Used To Identify Minerals

Table of Physical Properties Multi-form Cherry red Multi-torm Granule, massive form, threadiness, stalactitic form, soil state Emulsions, massive, incrusting, concretion forms or threadiness Granule, stalactitic, incrusting, soil state Colorless or white Calcite White Translucent Glassy luster Navy blue Pale blue Glassy luster Opaque White Transparent Cluster form Glassy luster Black Metallic luster Gray Metallic luster Molybdenite Light gray Opaque Gray Dark gray Strong metallic luster Adamantine luster, sub adamantine luster Glassy luster, nacreous luster White, pale brown Irregular granule Clintheriform, massive, threadiness

Physical Properties: Color

The color of a mineral can be used as a means of identification

3

5

9 10

11 12

mineral	composition	hardness
quartz	SiO ₂	7
cristobalite	SiO_2	6.5
pyrite	FeS ₂	6.3
anorthite	CaAl ₂ Si ₂ O ₈	6.3
rutile	TiO_2	6.2
diopside	CaMgSi ₂ O ₆	6
anatase	TiO_2	5.8
dolomite	CaMg(CO ₃) ₂	3.5
calcite	CaCO ₃	3
kaolinite	$Al_2Si_2O_5(OH)_4$	2.3
illite	KAl ₄ [Si ₇ AlO ₂₀](OH) ₄	1.5
mullite	$Al_6Si_2O_{13}$	6-7

15 16

Physical Properties: Cleavage

Cleavage is the tendency of a crystal to break along flat planar surfaces:

- Covalent bonds are generally strong and have poor cleavage (e.g. quartz)
- Ionic bonds are relatively weak and yield good cleavage (e.g. halite and calcite)

17 18

5/29/2024

27 28

29 30

5/29/2024

37 38

39 40

41