Compiler Design Midterm

NAME:

Directio	ne				
Read carefully. Work individually. Write legibly. Check work. Complete in 1 hour.					
Beforehand	Beforehand Visit the restroom if necessary. Close your laptop. Clear your desk. Silence your phone.				
DO	Use pencil, eraser, pen, or scratch paper to complete this exam.				
DO NOT	Distract others, talk, use electronic devices, notes, smoke signals, gestures, Morse code, \dots				
Confused?	onfused? Let me come to you. I will clarify questions. I won't answer: "Is this right or wrong?"				
1 De	efinitions and Examples				
A. Nonde	ese terms to their definition or exemplars. eterminism B. Ambiguity C. First set D. Follow set E. Compile	er F. In	terpreter		
		(a)	E		
(b) Exec	cutes a source language	,			
		(b)	\mathbf{F}		
(c) Havi	ing more than one option about which state to transition to	(*)			
		(c)	A		
(d) More	e than one parse tree is possible	(c)			
()		(4)	В		
(e) The	set of terminals appearing first in any string while deriving a nontermina	` /			
(6) 1116	see of terminal appearing mee in any evine with a serving a newtonian		C		
(f) The	set of terminals appearing first in any string after deriving a nonterminal	` /	<u>C</u>		
		(f)	D		
(g) Exa	mples: gcc, javac	(1)			
(3)		(g)	E		
(h) Exa	mples: sh, bash, cmd	,			
		(h)	F		

2 Chomsky Hierarchy

2. Match these languages to their constraints on productions, or equivalent autom A. Context-free B. Context-sensitive C. $LL(k)$ D. $LR(k)$ E. F. Regular	naton or parsing strategy. ¹ Recursively-enumerable
(a) No constraints on productions.	
(b) Productions are constrained to: $A \to a$ or $A \to aB$, where a is a terminal a	(a) $\underline{\mathbf{E}}$ and A, B are nonterminals.
(c) Finite automata.	(b) F
(d) Recursive-descent parsing.	(c) F
	(d)C
(e) Shift-reduce parsing.	(e) D
(f) Unambiguous.	(f) D
(g) Nonterminals derive sequences of terminals and nonterminals.	(g) A
(h) Equivalent to Brainfuck (linearly-bounded Turing machines).	,
(i) Pushdown automata (finite state machine with a stack).	(h)B
(j) Turing machines.	(i) A
(k) No common prefixes are allowed in productions.	(j) E
	(k) C
(l) No left recursion is allowed in productions.	(l) C

¹If multiple languages match, choose the most inclusive (least constrained) language that matches.

3 Regular languages

Refer to this finite automaton to answer questions in this section.

- 3. Which of these strings does this finite automaton accept?
 - A. O. B. -.5 C. 007 D. 1. E. 1

3. ____**E**____

- 4. Which regular expression matches the same language as the finite automaton?
 - A. $[-]?(0|[1-9][0-9]*)\.[0-9]+$
 - B. $[-]?0|[1-9][0-9]*\.[0-9]+$
 - C. [-]? $(0|[1-9][0-9]*)(\.[0-9]+)?$
 - D. $[-]?(0|[1-9][0-9]*)\.[0-9]+?$
 - E. [-]?0|[1-9][0-9]*\.[0-9]+?
 - F. None of the above

4. ____**C**

- 5. Let L be the language the finite automaton matches. What is the derivative of L, with respect to 3?
 - A. $[0-9]*\.[0-9]+$
 - B. $[0-9]*(\.[0-9]+)?$
 - C. [0-9]*\.[0-9]+?
 - D. [1-9][0-9]*\.[0-9]*
 - E. ∅

5. <u>B</u>

- 6. Let L be the language the finite automaton matches. What is the derivative of L, with respect to a?
 - A. $-?(0|[1-9][0-9]*) \setminus .[0-9]+$
 - B. $-?0|[1-9][0-9]*\.[0-9]+$
 - C. [0-9]+
 - D. $\. [0-9] +$
 - E. 0|[1-9][0-9]*\.[0-9]+
 - F. Ø

 \mathbf{F}

7. This finite automaton is: A. deterministic B. non-deterministic

7. ____**B**____

4 Grammars and parsing

Refer to this grammar to answer questions in this section.

$$Start
ightarrow Stmt$$
 $Stmt
ightarrow id = Expr$ $|$ if $Expr$ then $Stmts$ end $|$ if $Expr$ then $Stmts$ else $Stmts$ end $|$ while $Expr$ do $Stmts$ end $|$ begin $Stmts$ end $Stmts
ightarrow Stmts$; $Stmt$ $|$ $Stmt$ $Expr
ightarrow Expr + T$ $|$ T $T
ightarrow id$ $|$ num $id
ightarrow [a - zA - Z] + num
ightarrow [0 - 9] +$

- 8. This grammar is:
 - A. Regular B. LL(k) C. Context-free D. Context-sensitive E. Context-free, Context-sensitive

8. ____**E**

- 9. What is First(Stmt)?
 - A. id, num if, while, begin, +, ;, =
 - B. id, if, while, begin, +, ;, =
 - C. id, if, while, begin, +, ;
 - D. id, if, while, begin, +
 - E. id, if, while, begin

9. **E**

- 10. What is Follow(Stmt)?
 - A. end
 - B.;, end
 - C. ;, end, +
 - D. ;, end, +, *num*
 - E. ;, end, else, end of string

10. **E**

- 11. Which sequence of shifts and reductions will eventually parse x = 2?
 - A. shift $id \mathbf{x}$, shift =, shift $num \mathbf{2}$, reduce $num \rightarrow T$, ...
 - B. shift $id \mathbf{x}$, reduce $id \to T$, reduce $T \to Expr$, shift $=, \dots$
 - C. shift $id \mathbf{x}$, shift =, reduce $id \to T$, shift $num \mathbf{2}, \dots$
 - D. shift $id \mathbf{x}$, shift =, shift $num \mathbf{2}$, reduce $num \rightarrow Expr$, ...

11. **A**

Compiler phases **5**

12. Which compiler phase is typically implemented as a list of regular expression	ns?	
A. Scanner/Lexer/Tokenizer B. Parser C. Type checker D. Optimize	er E. Cod	e generator
	12	A
13. Which compiler phase(s) is/are typically implemented as visitor?		
A. Scanner/Lexer/Tokenizer		
B. Parser		
C. Type checker		
D. Optimizer		
E. Code generator		
F. Type checker, optimizer, code generator		
	13	F
14. From source to machine code, what are the compiler phases, in order?		
A. Scanning, Parsing, Optimization, Type checking, Code generation		
B. Parsing, Scanning, Optimization, Type checking, Code generation		
C. Scanning, Parsing, Type checking, Optimization, Code generation		
D. Optimization, Scanning, Parsing, Type checking, Code generation		
	14	C
This exam has 33 answers total (including a blank for your name), so each a	answer is wo	rth ≈ 3 points

Check your work. See you tomorrow!