Unravelling the contribution of financial and longevity risks to changes over time in life annuities

Jesús-Adrián Álvarez Andrés M. Villegas alvarez@sdu.dk

life annuities

interest or mortality?

$$\bar{a}_x(t) = \int_0^\infty {}_s p_x(t) v(s,t) ds$$

$$\underbrace{e^{-\int_0^s \mu(x+y,t)dy}}_{\text{mortality}}$$

$$\bar{a}_x(t) = \int_0^\infty p_x(t) v(s,t) ds$$

$$\underbrace{e^{-\int_0^s \mu(x+y,t)dy}}_{\text{mortality}} \underbrace{e^{-\int_0^s \delta(y,t)dy}}_{\text{interest}}$$

$$\bar{a}_x(t) = \int_0^\infty p_x(t) v(s,t) ds$$

$$\dot{\bar{a}}_x(t) = \frac{\partial \bar{a}_x(t)}{\partial t}$$

Duration

DURATION: SENSITIVITY OF $ar{a}_{\it x}(t)$ to constant changes in δ

$$D_x(t) = -\frac{\frac{\partial \bar{a}_X(t)}{\partial \delta}}{\bar{a}_x(t)}$$

DURATION: SENSITIVITY OF $ar{a}_{\it x}(t)$ to constant changes in δ

$$D_{x}(t) = -\frac{\frac{\partial \bar{a}_{x}(t)}{\partial \delta}}{\bar{a}_{x}(t)}$$

The **greater** $D_x(t)$, the **more sensitive** $\bar{a}_x(t)$ is to changes in the **force of** interest.

DURATION: SENSITIVITY OF $ar{a}_{\it x}(t)$ TO CONSTANT CHANGES IN δ

$$D_X(t) = -\frac{\frac{\partial \bar{a}_X(t)}{\partial \delta}}{\bar{a}_X(t)}$$

The **greater** $D_x(t)$, the **more sensitive** $\bar{a}_x(t)$ is to changes in the **force of** interest.

Interest rate immunization (Redington, 1951; Fisher, 1971; Shiu et al. 1991; Courtouis 2007):

DURATION: SENSITIVITY OF $ar{a}_{\it x}(t)$ TO CONSTANT CHANGES IN δ

$$D_{x}(t) = -\frac{\frac{\partial a_{x}(t)}{\partial \delta}}{\bar{a}_{x}(t)}$$

The **greater** $D_x(t)$, the **more sensitive** $\bar{a}_x(t)$ is to changes in the **force of** interest.

Interest rate immunization (Redington, 1951; Fisher, 1971; Shiu et al. 1991; Courtouis 2007):

• Modified Duration:
$$D_X(t) = -\frac{\int_0^\infty s_s \rho_X(t) v(s,t) ds}{\bar{a}_X(t)}$$

DURATION: SENSITIVITY OF $\bar{a}_{\rm x}(t)$ to constant changes in δ

$$D_X(t) = -\frac{\frac{\partial a_X(t)}{\partial \delta}}{\bar{a}_X(t)}$$

The **greater** $D_x(t)$, the **more sensitive** $\bar{a}_x(t)$ is to changes in the **force of** interest.

Interest rate immunization (Redington, 1951; Fisher, 1971; Shiu et al. 1991; Courtouis 2007):

- Modified Duration: $D_X(t) = -\frac{\int_0^\infty s_s p_X(t) v(s,t) ds}{\bar{a}_X(t)}$
- **Dollar Duration**: $D_x(t)\bar{a}_x(t)$.

DURATION: SENSITIVITY OF $\bar{a}_{x}(t)$ TO CONSTANT CHANGES IN δ

$$D_X(t) = -\frac{\frac{\partial a_X(t)}{\partial \delta}}{\bar{a}_X(t)}$$

The **greater** $D_x(t)$, the **more sensitive** $\bar{a}_x(t)$ is to changes in the **force of** interest.

Interest rate immunization (Redington, 1951; Fisher, 1971; Shiu et al. 1991; Courtouis 2007):

- Modified Duration: $D_X(t) = -\frac{\int_0^\infty s_s p_X(t) v(s,t) ds}{\bar{a}_X(t)}$
- Dollar Duration: $D_x(t)\bar{a}_x(t)$.

How annuities respond to **changes in interest rates?** (Milevsky, 2013; Charupat, Kamstra, Milevsky, 2015)

What about changes in mortality?

Entropy

ENTROPY OF LIFE ANNUITY

Haberman et al (2011) applied the concept of **entropy** to **life annuities**:

ENTROPY OF LIFE ANNUITY

Haberman et al (2011) applied the concept of **entropy** to **life annuities**:

$$H_X(t) = \frac{\frac{\partial \bar{a}_X(t)}{\partial \mu}}{\bar{a}_X(t)}$$

"Sensitivity of $\bar{a}_x(t)$ to proportional changes in the **force of mortality**"

ENTROPY OF LIFE ANNUITY

Haberman et al (2011) applied the concept of **entropy** to **life annuities**:

$$H_{x}(t) = \frac{\frac{\partial \bar{a}_{x}(t)}{\partial \mu}}{\bar{a}_{x}(t)}$$

"Sensitivity of $\bar{a}_x(t)$ to proportional changes in the **force of mortality**"

They showed that

$$H_x(t) = \frac{\int_0^\infty \mu(x+s,t)_s p_x(t) v(s,t) \bar{a}_x(t) ds}{\bar{a}_x(t)}.$$

CHANGES OVER TIME IN $\mu(\mathbf{x},t)$ AND $\delta(\mathbf{s},t)$

Rate of mortality improvement

$$\rho(\mathbf{x},t) = -\frac{\frac{\partial \mu(\mathbf{x},t)}{\partial t}}{\mu(\mathbf{x},t)}.$$

Change in the term-structure of interest rates

$$\varphi(s,t) = -\frac{\frac{\delta(s,t)}{\partial t}}{\delta(s,t)}.$$

Changes over time in $\bar{a}_x(t)$

CHANGES OVER TIME IN $\bar{a}_x(t)$

Derivative of $\bar{a}_x(t)$ with respect to time t:

$$\dot{\bar{a}}_x(t) = \frac{\partial \bar{a}_x(t)}{\partial t}$$

CHANGES OVER TIME IN $\bar{a}_x(t)$

Derivative of $\bar{a}_x(t)$ with respect to time t:

$$\dot{\bar{a}}_x(t) = \frac{\partial \bar{a}_x(t)}{\partial t}$$

Relative derivative of $\bar{a}_x(t)$:

$$\dot{\bar{a}}_x(t) = \frac{\dot{\bar{a}}_x(t)}{\bar{a}_x(t)}$$

Decomposing $\dot{\bar{a}}_{x}(t)$

$$\dot{\bar{a}}_{x}(t) = \underbrace{\bar{\phi}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\bar{\rho}(t)H_{x}(t)}_{\text{longevity component}}$$

$$\dot{\bar{a}}_{x}(t) = \underbrace{\bar{\phi}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\bar{\rho}(t)H_{x}(t)}_{\text{longevity component}}$$

where

• $\bar{\phi}(t)$: average change in the term-structure of interest rates,

$$\dot{\bar{a}}_{x}(t) = \underbrace{\bar{\phi}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\bar{\rho}(t)H_{x}(t)}_{\text{longevity component}}$$

- $\bar{\phi}(t)$: average change in the term-structure of interest rates,
- $D_x(t)$: duration,

$$\dot{\bar{a}}_{x}(t) = \underbrace{\bar{\phi}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\bar{\rho}(t)H_{x}(t)}_{\text{longevity component}}$$

- $\bar{\phi}(t)$: average change in the term-structure of interest rates,
- $D_x(t)$: duration,
- $\bar{\rho}(t)$ average mortality improvement at all ages above x,

$$\dot{\bar{a}}_{x}(t) = \underbrace{\bar{\phi}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\bar{\rho}(t)H_{x}(t)}_{\text{longevity component}}$$

- $\bar{\phi}(t)$: average change in the term-structure of interest rates,
- $D_x(t)$: duration,
- $\bar{\rho}(t)$ average mortality improvement at all ages above x,
- $H_x(t)$: entropy.

$$\dot{\bar{a}}_{x}(t) = \underbrace{\bar{\phi}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\bar{\rho}(t)H_{x}(t)}_{\text{longevity component}}$$

where

- $\bar{\phi}(t)$: average change in the term-structure of interest rates,
- $D_x(t)$: duration,
- $\bar{\rho}(t)$ average mortality improvement at all ages above x,
- $H_x(t)$: entropy.

Changes over time in $\bar{a}_x(t)$ are driven by $\bar{\phi}(t)$ and $\bar{\rho}(t)$, which are modulated by $D_x(t)$ and $H_x(t)$.

Age and term attribution

$$\dot{\bar{a}}_{x}(t) = \underbrace{\sum_{j=1}^{m} \bar{\phi}(t; t_{j-1}, t_{j}) D_{x}(t; t_{j-1}, t_{j})}_{\text{financial component}} + \underbrace{\sum_{i=1}^{n} \bar{\rho}_{x}(t; x_{i-1}, x_{i}) H_{x}(t; x_{i-1}, x_{i})}_{\text{longevity component}}$$

$$\tilde{a}_{x}(t) = \underbrace{\sum_{j=1}^{m} \bar{\phi}(t; t_{j-1}, t_{j}) D_{x}(t; t_{j-1}, t_{j})}_{\text{financial component}} + \underbrace{\sum_{j=1}^{n} \bar{\rho}_{x}(t; x_{i-1}, x_{i}) H_{x}(t; x_{i-1}, x_{i})}_{\text{longevity component}},$$

- $\bar{\rho}_x(t; x_{i-1}, x_i)$: weighted average improvement in the age group $[x_{i-1}, x_i)$,
- $\bar{\varphi}(t; t_{j-1}, t_j)$: weighted average change in the forward force of interest for the term group $[t_{j-1}, t_j)$,

$$\tilde{a}_{x}(t) = \underbrace{\sum_{j=1}^{m} \bar{\phi}(t; t_{j-1}, t_{j}) D_{x}(t; t_{j-1}, t_{j})}_{\text{financial component}} + \underbrace{\sum_{i=1}^{n} \bar{\rho}_{x}(t; x_{i-1}, x_{i}) H_{x}(t; x_{i-1}, x_{i})}_{\text{longevity component}},$$

- $\bar{\rho}_X(t; x_{i-1}, x_i)$: weighted average improvement in the age group $[x_{i-1}, x_i)$,
- $\bar{\varphi}(t; t_{j-1}, t_j)$: weighted average change in the forward force of interest for the term group $[t_{j-1}, t_j)$,
- $H_x(t; x_{i-1}, x_i)$: age-specific entropy,
- $D_x(t; t_{i-1}, t_i)$: term-specific duration.

$$\tilde{a}_{x}(t) = \underbrace{\sum_{j=1}^{m} \bar{\phi}(t; t_{j-1}, t_{j}) D_{x}(t; t_{j-1}, t_{j})}_{\text{financial component}} + \underbrace{\sum_{i=1}^{n} \bar{\rho}_{x}(t; x_{i-1}, x_{i}) H_{x}(t; x_{i-1}, x_{i})}_{\text{longevity component}},$$

where

- $\bar{\rho}_x(t; x_{i-1}, x_i)$: weighted average improvement in the age group $[x_{i-1}, x_i)$,
- $\bar{\varphi}(t; t_{j-1}, t_j)$: weighted average change in the forward force of interest for the term group $[t_{j-1}, t_j)$,
- $H_x(t; x_{i-1}, x_i)$: age-specific entropy,
- $D_x(t; t_{j-1}, t_j)$: term-specific duration.

Analogous to term-attribution (Daul, Sharp and Sørensen, 2012) and key-durations (Ho, 1992) in fixed income.

Cause of death decomposition

CAUSE OF DEATH DECOMPOSITION

Assuming i = 1, ..., n independent causes of death, then ${}_{s}p_{x}(t) = \prod_{i=1}^{n} {}_{s}p_{x}^{i}(t)$:

CAUSE OF DEATH DECOMPOSITION

Assuming i = 1, ..., n independent causes of death, then ${}_{s}p_{x}(t) = \prod_{i=1}^{n} {}_{s}p_{x}^{i}(t)$:

$$\dot{\bar{a}}_{x}(t) = \underbrace{\bar{\phi}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\sum_{i=1}^{m} \bar{\rho}_{x}^{i}(t)H_{x}^{i}(t)}_{\text{longevity component}},$$

CAUSE OF DEATH DECOMPOSITION

Assuming i = 1, ..., n independent causes of death, then ${}_{s}p_{x}(t) = \prod_{i=1}^{n} {}_{s}p_{x}^{i}(t)$:

$$\dot{\bar{a}}_{x}(t) = \underbrace{\bar{\phi}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\sum_{i=1}^{n} \bar{\rho}_{x}^{i}(t)H_{x}^{i}(t)}_{\text{longevity component}},$$

where,

- $H_x^i(t)$:the cause-specific entropy,
- $\bar{\rho}_{x}^{i}(t)$: average rate of mortality improvement of cause *i*.

Assuming a single interest rate $\delta(t)$

Assuming
$$v(s, t) = e^{-\delta(t)s}$$

Assuming
$$v(s, t) = e^{-\delta(t)s}$$

$$\dot{\bar{a}}_{x}(t) = \underbrace{\dot{\delta}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\bar{\rho}(t)H_{x}(t)}_{\text{longevity component}}$$

Assuming $v(s, t) = e^{-\delta(t)s}$

$$\dot{\bar{a}}_{x}(t) = \underbrace{\dot{\delta}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\bar{\rho}(t)H_{x}(t)}_{\text{longevity component}}$$

where

•
$$\dot{\delta}(t) = \frac{\partial \delta(t)}{\partial t}$$
: change over time in interest rates x ,

Assuming $v(s, t) = e^{-\delta(t)s}$

$$\dot{\bar{a}}_{x}(t) = \underbrace{\dot{\delta}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\bar{\rho}(t)H_{x}(t)}_{\text{longevity component}}$$

where

- $\dot{\delta}(t) = \frac{\partial \delta(t)}{\partial t}$: change over time in interest rates x,
- $D_x(t)$: modified duration,

Assuming $v(s, t) = e^{-\delta(t)s}$

$$\dot{\bar{a}}_{x}(t) = \underbrace{\dot{\delta}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\bar{\rho}(t)H_{x}(t)}_{\text{longevity component}}$$

where

- $\dot{\delta}(t) = \frac{\partial \delta(t)}{\partial t}$: change over time in interest rates x,
- $D_x(t)$: modified duration,
- $\bar{\rho}(t)$: average mortality improvement at all ages above x,
- $H_x(t)$: entropy

Assuming $v(s, t) = e^{-\delta(t)s}$

$$\dot{\bar{a}}_{x}(t) = \underbrace{\dot{\delta}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\bar{\rho}(t)H_{x}(t)}_{\text{longevity component}}$$

where

- $\dot{\delta}(t) = \frac{\partial \delta(t)}{\partial t}$: change over time in interest rates x,
- $D_x(t)$: modified duration,
- $\bar{\rho}(t)$: average mortality improvement at all ages above x,
- $H_x(t)$: entropy

It suffices to use the **modified duration** $(D_X(t))$ and **entropy** $(H_X(t))$ together with $\dot{\delta}(t)$ and $\bar{\rho}(t)$ to determine the contribution of **financial and longevity risks** to changes over time in **life annuities**.

Assuming $v(s, t) = e^{-\delta(t)s}$

$$\dot{\bar{a}}_{x}(t) = \underbrace{\dot{\delta}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\bar{\rho}(t)H_{x}(t)}_{\text{longevity component}}$$

where

- $\dot{\delta}(t) = \frac{\partial \delta(t)}{\partial t}$: change over time in interest rates x,
- $D_x(t)$: modified duration,
- $\bar{\rho}(t)$: average mortality improvement at all ages above x,
- $H_x(t)$: entropy

It suffices to use the **modified duration** $(D_X(t))$ and **entropy** $(H_X(t))$ together with $\dot{\delta}(t)$ and $\bar{\rho}(t)$ to determine the contribution of **financial and longevity risks** to changes over time in **life annuities**.

No assumptions about the functional form of δ and μ (entirely data-driven).

DECOMPOSITION OF $\dot{\tilde{a}}_{\scriptscriptstyle X}(t)$

Decomposition	Financial component	Longevity component
General	$\bar{\varphi}(t)D_{x}(t)$	$\bar{\rho}(t)H_{x}(t)$
Age-Term	$\sum_{j=1}^{m} \bar{\varphi}(t; t_{j-1}, t_{j}) D_{x}(t; t_{j-1}, t_{j})$	$\sum_{i=1}^n \bar{\rho}_X^i(t) H_X^i(t)$
Cause of death	$\bar{\varphi}(t)D_{x}(t)$	$\sum_{i=1}^{n} \bar{\rho}_{x}(t; x_{i-1}, x_{i}) H_{x}^{p}(t; x_{i-1}, x_{i})$
Single δ	$\dot{\delta}(t)D_{x}(t)$	$\bar{ ho}(t)H_{x}(t)$

Historical data

• Long-term interest rates: the yield on 2.5% Consols up to 2015, then by 20 year maturity bills (Bank of England, 2021),

Historical data

- Long-term interest rates: the yield on 2.5% Consols up to 2015, then by 20 year maturity bills (Bank of England, 2021),
- Mortality rates: Human Mortality Database (2021),

Historical data

- Long-term interest rates: the yield on 2.5% Consols up to 2015, then by 20 year maturity bills (Bank of England, 2021),
- · Mortality rates: Human Mortality Database (2021),
- 1841-2018.

Historical data

- Long-term interest rates: the yield on 2.5% Consols up to 2015, then by 20 year maturity bills (Bank of England, 2021),
- · Mortality rates: Human Mortality Database (2021),
- 1841-2018.

Yield curve

- UK government bonds, also known as Gilts (Bank of England, 2021),
- 1970-2020.

Historical data

- Long-term interest rates: the yield on 2.5% Consols up to 2015, then by 20 year maturity bills (Bank of England, 2021),
- · Mortality rates: Human Mortality Database (2021),
- 1841-2018.

Yield curve

- UK government bonds, also known as Gilts (Bank of England, 2021),
- · 1970-2020.

Causes of death

· Human Cause of Death (2021),

Historical data

- Long-term interest rates: the yield on 2.5% Consols up to 2015, then by 20 year maturity bills (Bank of England, 2021),
- · Mortality rates: Human Mortality Database (2021),
- 1841-2018.

Yield curve

- UK government bonds, also known as Gilts (Bank of England, 2021),
- · 1970-2020.

Causes of death

- · Human Cause of Death (2021),
- · ICD 10 Classification of Diseases,

Historical data

- Long-term interest rates: the yield on 2.5% Consols up to 2015, then by 20 year maturity bills (Bank of England, 2021),
- · Mortality rates: Human Mortality Database (2021),
- 1841-2018.

Yield curve

- UK government bonds, also known as Gilts (Bank of England, 2021),
- 1970-2020.

Causes of death

- · Human Cause of Death (2021),
- · ICD 10 Classification of Diseases,
- 2001-2016.

Life annuity factors

LIFE ANNUITY FACTORS AT AGE 65. MALES, 1841-2018

LIFE ANNUITY FACTORS AT AGE 65. MALES, 1841-2018

Changes over time and sensitivities

CHANGES OVER TIME AND SENSITIVITIES. MALES, 1841-2018

Assuming a single $\delta(t)$

DECOMPOSITION OF $\hat{a}_x(t)$ AT AGE 65. MALES, 1841-2018

DECOMPOSITION OF $\hat{a}_{\scriptscriptstyle X}(t)$ AT AGE 65. MALES, 1841-2018

Age and term attribution

AGE AND TERM ATTRIBUTION. MALES, 1970-2018

Causes of death

CAUSE OF DEATH ATTRIBUTION

To sum up

TO SUM UP

Bringing both perspectives together

Bringing both perspectives together

$$\dot{\bar{a}}_{x}(t) = \underbrace{\bar{\phi}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\bar{\rho}(t)H_{x}(t)}_{\text{longevity component}}$$

Bringing both perspectives together

$$\dot{\bar{a}}_{x}(t) = \underbrace{\bar{\phi}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\bar{\rho}(t)H_{x}(t)}_{\text{longevity component}}$$

Changes over time in $\bar{a}_x(t)$ are driven by $\dot{\delta}(t)$ and $\bar{\rho}(t)$, which are **modulated** by $D_x(t)$ and $H_x(t)$.

Bringing both perspectives together

$$\dot{\bar{a}}_{x}(t) = \underbrace{\bar{\phi}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\bar{\rho}(t)H_{x}(t)}_{\text{longevity component}}$$

Changes over time in $\bar{a}_x(t)$ are driven by $\dot{\delta}(t)$ and $\bar{\rho}(t)$, which are **modulated** by $D_x(t)$ and $H_x(t)$.

Thorough risk assessment: sources of change

ightarrow Age-term attribution, causes of death, single $\delta(t)$,

Bringing both perspectives together

$$\dot{\bar{a}}_{x}(t) = \underbrace{\bar{\phi}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\bar{\rho}(t)H_{x}(t)}_{\text{longevity component}}$$

Changes over time in $\bar{a}_x(t)$ are driven by $\dot{\delta}(t)$ and $\bar{\rho}(t)$, which are **modulated** by $D_x(t)$ and $H_x(t)$.

Thorough risk assessment: sources of change

- ightarrow Age-term attribution, causes of death, single $\delta(t)$,
- \rightarrow better **hedging strategies**.

Bringing both perspectives together

$$\dot{\bar{a}}_{x}(t) = \underbrace{\bar{\phi}(t)D_{x}(t)}_{\text{financial component}} + \underbrace{\bar{\rho}(t)H_{x}(t)}_{\text{longevity component}}$$

Changes over time in $\bar{a}_x(t)$ are driven by $\dot{\delta}(t)$ and $\bar{\rho}(t)$, which are **modulated** by $D_x(t)$ and $H_x(t)$.

Thorough risk assessment: sources of change

- ightarrow Age-term attribution, causes of death, single $\delta(t)$,
- ightarrow better hedging strategies.

No assumptions about the functional form of δ and μ (data-driven).

TO SUM UP

Historical developments in the UK

• Longevity risk has, most of the time, contributed to increase in $\bar{a}_x(t)$, but during some periods it has been masked by high financial risk.

TO SUM UP

- Longevity risk has, most of the time, contributed to increase in $\bar{a}_x(t)$, but during some periods it has been masked by high financial risk.
- Since the 1980s, **longevity risk contributes** to most of the increases in $\bar{a}_x(t)$.

- Longevity risk has, most of the time, contributed to increase in $\bar{a}_x(t)$, but during some periods it has been masked by high financial risk.
- Since the 1980s, **longevity risk contributes** to most of the increases in $\bar{a}_x(t)$.
- At higher ages (i.e. age 75 or older ages):

- Longevity risk has, most of the time, contributed to increase in $\bar{a}_x(t)$, but during some periods it has been masked by high financial risk.
- Since the 1980s, **longevity risk contributes** to most of the increases in $\bar{a}_x(t)$.
- At higher ages (i.e. age 75 or older ages):
 - The sensitivity of $\bar{a}_x(t)$ to μ is higher,

- Longevity risk has, most of the time, contributed to increase in $\bar{a}_x(t)$, but during some periods it has been masked by high financial risk.
- Since the 1980s, **longevity risk contributes** to most of the increases in $\bar{a}_x(t)$.
- At higher ages (i.e. age 75 or older ages):
 - The sensitivity of $\bar{a}_x(t)$ to μ is higher,
 - Policies aiming at increasing retirement ages entail higher longevity risk (e.g. Denmark, Alvarez et al (2021)).

Next steps

What about the future?

• Forecasting financial and longevity contributions under different models

What about the future?

- Forecasting financial and longevity contributions under different models
 - + $\bar{
 ho}(t)$ and $\bar{\phi}(t)$ can be modelled as **stochastic processes**,

What about the future?

- Forecasting financial and longevity contributions under different models
 - $\bar{\rho}(t)$ and $\bar{\phi}(t)$ can be modelled as **stochastic processes**,
 - Interest rates: Cox-Ingersol-Ross (CIR), Vasicek,

What about the future?

- Forecasting financial and longevity contributions under different models
 - $\bar{\rho}(t)$ and $\bar{\phi}(t)$ can be modelled as **stochastic processes**,
 - Interest rates: Cox-Ingersol-Ross (CIR), Vasicek,
 - Mortality rates: CBD, APC, Lee-Carter, SAINT (ATP), or other models with varying mortality improvements.

What about the future?

- Forecasting financial and longevity contributions under different models
 - $\bar{\rho}(t)$ and $\bar{\phi}(t)$ can be modelled as **stochastic processes**,
 - Interest rates: Cox-Ingersol-Ross (CIR), Vasicek,
 - Mortality rates: CBD, APC, Lee-Carter, SAINT (ATP), or other models with varying mortality improvements.

What about the future?

- Forecasting financial and longevity contributions under different models
 - $\bar{\rho}(t)$ and $\bar{\phi}(t)$ can be modelled as **stochastic processes**,
 - Interest rates: Cox-Ingersol-Ross (CIR), Vasicek,
 - Mortality rates: CBD, APC, Lee-Carter, SAINT (ATP), or other models with varying mortality improvements.

Extensions and applications

Other life contingent products,

What about the future?

- Forecasting financial and longevity contributions under different models
 - $\bar{\rho}(t)$ and $\bar{\phi}(t)$ can be modelled as **stochastic processes**,
 - · Interest rates: Cox-Ingersol-Ross (CIR), Vasicek,
 - Mortality rates: CBD, APC, Lee-Carter, SAINT (ATP), or other models with varying mortality improvements.

- Other life contingent products,
- Guarantees; rolling annuities (Jarner and Preisel, 2017)
- Natural hedges; negative correlation between \bar{a}_x and \bar{A}_x (Lin and Tsai, 2014, 2020),

What about the future?

- Forecasting financial and longevity contributions under different models
 - $\bar{\rho}(t)$ and $\bar{\phi}(t)$ can be modelled as **stochastic processes**,
 - · Interest rates: Cox-Ingersol-Ross (CIR), Vasicek,
 - Mortality rates: CBD, APC, Lee-Carter, SAINT (ATP), or other models with varying mortality improvements.

- Other life contingent products,
- Guarantees; rolling annuities (Jarner and Preisel, 2017)
- Natural hedges; negative correlation between \bar{a}_x and \bar{A}_x (Lin and Tsai, 2014, 2020),
- Cashflow, state-dependent H(t) and D(t) (Buchardt and Møller 2015),

What about the future?

- Forecasting financial and longevity contributions under different models
 - $\bar{\rho}(t)$ and $\bar{\phi}(t)$ can be modelled as **stochastic processes**,
 - Interest rates: Cox-Ingersol-Ross (CIR), Vasicek,
 - Mortality rates: CBD, APC, Lee-Carter, SAINT (ATP), or other models with varying mortality improvements.

- Other life contingent products,
- Guarantees; rolling annuities (Jarner and Preisel, 2017)
- Natural hedges; negative correlation between \bar{a}_x and \bar{A}_x (Lin and Tsai, 2014, 2020),
- Cashflow, state-dependent H(t) and D(t) (Buchardt and Møller 2015),
- Sources of change in the reserve V(t) in a market-consistent framework (Møller and Steffensen, 2007).

Unravelling the contribution of financial and longevity risks to changes over time in life annuities

Jesús-Adrián Álvarez Andrés M. Villegas alvarez@sdu.dk

Rate of mortality improvement

$$\rho(\mathbf{x},t) = -\frac{\frac{\mu(\mathbf{x},t)}{\partial t}}{\mu(\mathbf{x},t)} = -\frac{\dot{\mu}(\mathbf{x},t)}{\mu(\mathbf{x},t)}.$$
 (1)

Change in interest rates over time

$$\varphi(s,t) = -\frac{\frac{\delta(s,t)}{\partial t}}{\delta(s,t)} = -\frac{\dot{\delta}(s,t)}{\delta(s,t)}.$$
 (2)

Entropy

$$H_{\chi}^{p}(t) = \frac{\int_{0}^{\infty} \mu(x+s,t)_{s} |\bar{a}_{\chi}(t)ds}{\bar{a}_{\chi}(t)}$$
(3)

Duration

$$D_x^p(t) = \frac{\int_0^\infty \delta(s,t)_s |\bar{a}_x(t)ds}{\bar{a}_x(t)}$$
 (4)

Time derivative of $\bar{a}_x(t)$

$$\begin{split} \dot{\bar{a}}_x(t) &= \int_0^\infty \rho(s,t) \mu(s,t)_s |\bar{a}_x(t) ds + \int_0^\infty \varphi(s,t) \delta(s,t)_s |\bar{a}_x(t) ds \\ &= \int_0^\infty \rho(s,t)_s M_x(t) ds + \int_0^\infty \varphi(s,t)_s W_x(t) ds, \end{split}$$

where $_sM_x(t) = \mu(s,t)_s|\bar{a}_x(t)$ and $_sW_x(t) = \delta(s,t)_s|\bar{a}_x(t)$.

Relative derivative of $\bar{a}_x(t)$

$$\dot{\bar{a}}_{x}(t) = \frac{\dot{\bar{a}}_{x}(t)}{\bar{a}_{x}(t)} = \underbrace{\bar{\rho}(t)H_{x}^{p}(t)}_{\text{longevity component}} + \underbrace{\bar{\phi}(t)D_{x}^{p}(t)}_{\text{financial component}},$$

where
$$\bar{\rho}_X(t) = \frac{\int_0^\infty \rho(x+s,t)_s M_X(t) ds}{\int_0^\infty {}_s M_X(t) ds}$$
 and $\bar{\phi}(t) = \frac{\int_0^\infty \phi(s,t)_s W_X(t) ds}{\int_0^\infty {}_s W_X(t) ds}$

INTEREST AND MORTALITY RATES FOR MALES IN THE UK, 1841-2018

AGE AND TERM ATTRIBUTION. MALES, 1970-2018

