第二讲 经济周期: 定义、数据处理与特征事实

经济周期的定义

Burns and Mitchell(1946):"Measuring Business Cycles"中定义:"Business Cycles are a type of fluctuation found in the <u>aggregate economic activity</u> of nations that organize their work mainly in business enterprises. A cycle consists of <u>expansions</u> occurring at about the same time in many economic activities, followed by similarly general <u>recessions, contractions and revivals</u> which merge into the expansion phase of the next cycle; this sequence of changes is <u>recurrent but not periodic</u>, in <u>duration</u> business cycles vary from more than one year to ten or twelve years."

四个主要特征:

- (1) 经济周期是一个总体现象。涉及许多经济活动的波动,不仅仅是 GDP 的波动;许多经济活动的波动,并不是所有的经济活动,因此,经济中有些变量可能是顺周期、可能是逆周期。
- (2) 经济周期包括扩张和衰退两个状态。当经济处于收缩或衰退期,经济活动会下降,如图 2.1 所示。衰退期的最低点称为"低谷",低谷后,经济会进入扩张期,达到"高峰"。高峰之后,新的衰退期由开始,如此复发。

图 2.1 经济周期的扩张和衰退期

(3) 经济周期不断复发,但并不是定期发生。这意味着经济周期(衰退和扩张)会多次发生,但是发生的时间和持续长度不可预测。周期中定期复发的周期也有,那就是季节性周期。不会定期发生的周期使得预测更加困难,这才引起了我们分析的兴趣。

图 2.2 1992 年以来的季度名义 GDP 对数

(4) 持续期。扩张和衰退阶段持续期各不相同(从高峰到低谷的时间),且程度(总的经济活动相对于趋势上升和下降的程度)也各不相同。

识别经济周期

当我们观测到总的经济活动发生波动时,我们如何知道这是长期变动,还是周期波动?

几乎所有的时间序列模型(后面的课程详细讲这些模型)假设变量是平稳的(stationary)。但是,大部分的经济时间序列数据都是非平稳的,两种最重要的非平稳类型:

(1) 趋势(trend): 随着时间的推移, 经济变量呈现出一种持续的长期变动。

确定性趋势:时间的非随机函数随机趋势:随着时间随机的变化

(2) 断点 (break)

产生的原因: 1、政策变化; 2、经济结构变化; 3、创新引起的产业变化 要么来自于不同时点参数的变化, 要么是参数的时变性。

要特别注意上面两个问题。

- 图 2.2 呈现了总的 GDP 的对数。我们观测到的第一个特征应该是季节性周期。
 - (1) 去季节性
 - (2) 修正数据

(3) 分离周期和趋势。

1、消除时间序列趋势的目标:将数据转换成均值为 0,协方差平稳的随机过程(CSSPs)——时间不变的二阶矩。

平稳性是许多时间序列模型要求的前提,但是实际中大部分宏观经济数据都是非平稳的。这就要求我们在使用数据前,要对数据进行必要的处理,转化成平稳序列。 弱平稳的性质:均值、方差、自协方差都不随着时间变化而变化:

$$E[x_t] = \mu,$$

$$E[(x_t - E[x_t])^2] = Var(x_t) = \sigma^2,$$

$$cov(x_t, x_\tau) = cov(x_{t+s}, x_{\tau+s}).$$

中国的季度 GDP、消费、投资数据:序列之间的相关系数为,这么高的相关系数具有误导性,这是因为数据具有非平稳性。

欧元区数据,利用 call_dbnomics

```
% get data
mymatrix = call_dbnomics('Eurostat/namq_10_gdp/Q.CP_MEUR.SCA.B1GQ.EA12',...
                            'Eurostat/namq_10_gdp/Q.CP_MEUR.SCA.P31_S14_S15.EA12');
% statistics
T
muy
muc
% plot result
figure;
subplot(1,3,1) plot(mymatrix(:,1),mymatrix(:,2),mymatrix(:,1),ones(T,1)*muy,'r:')
title('Production')
datetick('x','yyyy','keeplimits')
subplot(1,3,2) plot(mymatrix(:,1),mymatrix(:,3),mymatrix(:,1),ones(T,1)*muc,'r:')
title('Consumption')
datetick('x','yyyy','keeplimits')
subplot(1,3,3) plot(mymatrix(:,1),mymatrix(:,2)-muy,mymatrix(:,1),mymatrix(:,3)-muc,'r:')
legend('y','c')
title('Gaps')
datetick('x','yyyy','keeplimits')
% compute correlation coefficient
```

varcov = corrcoef(mymatrix(:,2),mymatrix(:,3));
disp(['Correlation coef is ' num2str(varcov(1,2))]);

2、预处理:取对数——增长率

对时间序列 yt 取对数 logyt, 然后对时间求导

$$\frac{\partial}{\partial t} log y_t = \frac{\frac{\partial}{\partial t} y_t}{y_t} \equiv \frac{\dot{y}_t}{y_t} = g_{t^{*'}}$$

其中,gt为yt的增长率。

3、数据去趋势有三种类型的方法:

前两种是去趋势和差分——这两种方法的假设前提是增长率为常数。

(1) 去线性趋势

假设时间序列 yt 为

$$y_t = y_0 (1 + g_y)^t e^{u_t}, u_t \sim CSSPs_{\leftarrow}$$

取对数

$$log y_t = log y_0 + tlog(1 + g_y) + u_{t^{\psi}}$$

利用 log (1+x) =x 近似,

$$log y_t = log y_0 + t g_y + u_{t^{\downarrow}}$$

利用 OLS 得到

$$\hat{y}_t = \hat{u}_t = log y_t - \hat{\alpha}_0 - \hat{\alpha}_1 t_{\leftarrow}$$

% get data

mymatrix = call_dbnomics('Eurostat/namq_10_gdp/Q.CP_MEUR.SCA.B1GQ.EA12',...

```
'Eurostat/namq_10_gdp/Q.CP_MEUR.SCA.P31_S14_S15.EA12'); % express in deviation from
linear trend
% get the trend
      = log(mymatrix(:,2));
      = \log(mymatrix(:,3));
ytild = detrend(ly);
ctild = detrend(lc);
ybar = ly-ytild;
cbar = lc-ctild;
T = length(mymatrix(:,2));
% plot result
figure;
subplot(1,3,1) plot(mymatrix(:,1),ly,mymatrix(:,1),ybar,'r--') title('Production')
datetick('x','yyyy','keeplimits')
subplot(1,3,2) plot(mymatrix(:,1),lc,mymatrix(:,1),cbar,'r--') title('Consumption')
datetick('x','yyyy','keeplimits')
subplot(1,3,3) plot(mymatrix(:,1),ytild,mymatrix(:,1),ctild,'r') title('Gaps')
datetick('x','yyyy','keeplimits')
legend('y','c')
% compute correlation coefficient
varcov = corrcoef(ytild,ctild);
disp(['Correlation coef is ' num2str(varcov(1,2)) ]);
```

(2) 差分

$$y_t = y_0 e^{\epsilon_{t_\psi}}$$

$$\epsilon_t = \gamma + \epsilon_{t-1} + u_t, \ u_t \sim \textit{CSSPs}_\psi$$

迭代替换

$$\epsilon_t = \gamma t + \sum_{j=0}^{t-1} u_{t-j} + \epsilon_{0}$$

$$\log y_t = \log y_0 + \epsilon_{t}$$

$$logy_t - logy_{t-1} \equiv (1-L)logy_t = \epsilon_t - \epsilon_{t-1} = \gamma + u_{t^{-1}}$$

L是滞后算子。因此,

$$\hat{y}_t = \hat{u}_t = log y_t - log y_{t-1} - \hat{\gamma}_{\psi}$$

```
% get data
mymatrix = call_dbnomics('Eurostat/namq_10_gdp/Q.CP_MEUR.SCA.B1GQ.EA12',...
% apply first differencing
dy = diff(log(mymatrix(:,2))); dc = diff(log(mymatrix(:,3))); % statistics
'Eurostat/namq_10_gdp/Q.CP_MEUR.SCA.P31_S14_S15.EA12');
T=
       diff(log(mymatrix(:,2)));
muy=
             mean(dy)
muc=
              mean(dc)
% plot result
figure;
subplot(1,3,1) plot(mymatrix(2:end,1),dy,mymatrix(2:end,1),ones(T-1,1)*muy,'r:')
title('Production')
datetick('x','yyyy','keeplimits')
subplot(1,3,2) plot(mymatrix(2:end,1),dc,mymatrix(2:end,1),ones(T-1,1)*muc,'r:')
title('Consumption')
datetick('x','yyyy','keeplimits')
subplot(1,3,3) plot(mymatrix(2:end,1),dy-muy,mymatrix(2:end,1),dc-muc,'r:')
legend('y','c')
title('Gaps')
datetick('x','yyyy','keeplimits')
% compute correlation coefficient
varcov = corrcoef(dy,dc);
disp(['Correlation coef is ' num2str(varcov(1,2)) ]);
```

第三种方法就是滤波,最为常用的是 HP 滤波

(3) HP 滤波

$$log y_t = g_t + c_{t^{\psi}}$$

gt 和 ct 分别是趋势项和周期项。

```
% get data
mymatrix = call_dbnomics('Eurostat/namq_10_gdp/Q.CP_MEUR.SCA.B1GQ.EA12',...
                             'Eurostat/namq_10_gdp/Q.CP_MEUR.SCA.P31_S14_S15.EA12');
% apply HP filter
ly
      = log(mymatrix(:,2));
      = \log(\text{mymatrix}(:,3));
ybar = hpfilter(ly,1600);
cbar = hpfilter(lc,1600);
ytild = ly-ybar;
ctild = lc-cbar;
T = length(mymatrix(:,2));
% plot result
figure;
subplot(1,3,1) plot(mymatrix(:,1),ly,mymatrix(:,1),ybar,'r--') title('Production')
datetick('x','yyyy','keeplimits')
subplot(1,3,2) plot(mymatrix(:,1),lc,mymatrix(:,1),cbar,'r--') title('Consumption')
datetick('x','yyyy','keeplimits')
subplot(1,3,3) plot(mymatrix(:,1),ytild,mymatrix(:,1),ctild,'r') title('Gaps')
datetick('x','yyyy','keeplimits')
legend('y','c')
% compute correlation coefficient
varcov = corrcoef(ytild,ctild);
disp(['Correlation coef is ' num2str(varcov(1,2)) ]);
```

宏观经济学中的平稳性

变量的转换要根据下列的变量类型:

- (1) 名义变量: 用对数差分, 然后使用变化率。例如, 价格指数, 平减指数、CPI
- (2) 数量型变量: 取实际值(除以价格水平), 取人均值, 用对数差分, 使用变化率。例如, 实际人均 GDP、投资、消费、信贷等
- (3) 率 (rates) 类型变量:不用滤波,除非我们观察到明显的向上或向下趋势。例如,失业率、名义利率等

描述经济周期

一旦我们分离出了周期成分,我们就可以划分周期中的衰退和扩张两个阶段。

可惜地是,中国并没有任何一家机构发布中国的比较公认经济周期阶段。

对于美国, NBER 有个委员会研究、划分美国的经济周期日期。NBER 并不是根据两个紧邻时期的实际 GNP 下降来定义一次衰退(该定义是 Okun 对衰退的定义)。相反,当总产出、收入、就业、贸易等持续出现下降时(一般持续六个月到一年),且经济中许多部门都出现显著的经济活动收缩、NBER 就认定衰退发生。这可以用 3D 标准来判别:

- (1) **持续性(Duration**, 至少6个月)
- (2) **深度 (Depth**, 显著)
- (3) 扩散性(Diffusion, 收缩扩散到许多经济部门)

NBER 对美国经济周期的判断: https://www.nber.org/research/business-cycle-dating-committee-announcements

与 GDP 同向变动的变量称为**顺周期**,反向变动称为**逆周期**,如果没有清晰的模式称为**非周期性**变量。

高峰出现在 GDP 之前的称为**领先变量**,与 GDP 同时出现称为**一致变量**,在 GDP 高峰之后的称为**滞后变量**。

下表 2.1 呈现了一些最重要的变量的周期特征:

Industrial production	Direction ProCyclical	Timing Coincident
Consumption Business Fixed Investment Residential Investment Inventories Government Spending Imports Exports Net Exports	ProCyclical ProCyclical ProCyclical ProCyclical ProCyclical ProCyclical ProCyclical Countercyclical	Coincident Coincident Leading Leading Leading Lagging Leading
Employment Unemployment Labor Productivity Real Wage	Pro Cyclical CounterCyclical ProCyclical ProCyclical	Coincident Lagging Leading —
Money growth Inflation	ProCyclical ProCyclical	Leading Lagging
Stock prices Nominal Interest rates Real interest rates	ProCyclical ProCyclical Acyclical	Leading Lagging

中国的经济周期

冬

发达国家的经济周期

冬

新兴市场国家的经济周期

冬