In []: In []:	<pre>from google.colab import drive drive.mount('/content/drive') Mounted at /content/drive</pre>
	Clasificacion df = pd.read_csv('/content/drive/MyDrive/Inteligencia Artificial Avanzada/car_data.org) df.head() User ID Gender Age AnnualSalary Purchased 0 385 Male 35 20000 0
In []:	<pre>1 681 Male 40 43500 0 2 353 Male 49 74000 0 3 895 Male 40 107500 1 4 661 Male 25 79000 0 from sklearn import preprocessing gender = preprocessing.LabelEncoder() gender.fit(df['Gender'].unique().tolist()) df['Gender'] = gender.transform(df['Gender'])</pre>
In []: Out[]:	User ID Gender Age AnnualSalary Purchased 0 385 1 35 20000 0 1 681 1 40 43500 0 2 353 1 49 74000 0 3 895 1 40 107500 1
	Separación de datos en sets de entrenamiento, validación y prueba Es una técnica utilizada para construir modelos confiables que no caigan en resultados con bias que den una falsa impresión sobre la precisión de estos. En este caso se van a utilizar un 80% de los datos para entrenar los modelos, un 10% para ir validando con pruebas y al final el 10% restante para probar el
In []:	<pre>modelo. from sklearn.model_selection import train_test_split X = df.drop(['Purchased','User ID'], axis = 1) y = df['Purchased'] X_train, X_rem, y_train, y_rem = train_test_split(X, y, test_size=0.20,random_state= X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5,random_state=0.5)</pre>
	Modelo Inicial Este modelo inicial se realiza con los parámetros que tiene por default la librería, entre los que destacan que no tienen límites los árboles generados por lo que se pueden extender hasta donde sean tomando una hoja por cada variable. Esto puede contribuir a un overfitting, por lo que no debería de ser la primera opción el dejarla así. Para comprender el overfitting primero se tienen que explicar los conceptos de bias y varianza. El bias es la diferencia entre la predicción promedio que calcula el modelo y el valor real. Y la varianza es la variabilidad de la predicción del modelo contra el valor real. Esto quiere decir que un modelo con un bias alto no
In []:	aprende bien los datos y por lo tanto va a presentar underfitting. Mientras que un modelo con alta varianza aprendió completamente los datos y por lo tanto presenta overfitting. El objetivo de estas pruebas para optimizar los parámetros es encontrar un equilibrio entre estos dos conceptos para que sea un modelo que haga predicciones correctas. from sklearn import metrics from sklearn.ensemble import RandomForestClassifier clf=RandomForestClassifier() clf.fit(X train,y train)
	y_pred=clf.predict(X_valid) y_pred_1 = clf.predict(X_train) print("Precisión Entrenamiento:", metrics.accuracy_score(y_train, y_pred_1)) print("Precisión Validación:", metrics.accuracy_score(y_valid, y_pred)) Precisión Entrenamiento: 0.9975 Precisión Validación: 0.87 A pesar de ser un modelo sin optimizar, se obtuvieron muy buenos resultados en cuanto a la precisión con el set de validación.
In []:	false_positive_rate, true_positive_rate, thresholds = roc_curve(y_valid, y_pred) roc_auc = auc(false_positive_rate, true_positive_rate)
Out[]:	<pre>coc_auc 0.8696943972835314 Es bueno el puntaje de roc_auc que se utiliza para clasificaciones binarias como en este caso, ya que el máximo valor es de 1. from sklearn.model_selection import cross_val_score scores = cross_val_score(clf, X, y, cv=5) print("%0.2f accuracy with a standard deviation of %0.2f" % (scores.mean(), scores.</pre>
In []:	<pre>0.90 accuracy with a standard deviation of 0.02 La validación cruzada es una alternativa a la técnica de separar en sets de entrenamiento, validación y prueba. Con la librería de sklearn se puede simular el modelo previo con todo el conjunto de datos y obtener otra métrica con la cual evaluar si el modelo es bueno sin obtener overfitting o underfitting. from sklearn.metrics import mean_squared_error from matplotlib.legend_handler import HandlerLine2D train_results = [] test_results = []</pre>
	<pre>validation_results = [] list_nb_trees = [5, 10, 15, 30,50,75,100,150,200] for nb_trees in list_nb_trees: clf=RandomForestClassifier(n_estimators=nb_trees) clf.fit(X_train, y_train) train_results.append(mean_squared_error(y_train, clf.predict(X_train))) test_results.append(mean_squared_error(y_test, clf.predict(X_test))) validation_results.append(mean_squared_error(y_valid, clf.predict(X_valid))) line1, = plt.plot(list_nb_trees, train_results, color="r", label="Training Score") line2, = plt.plot(list_nb_trees, test_results, color="g", label="Testing Score")</pre>
	<pre>line3, = plt.plot(list_nb_trees, validation_results, color="b", label="Validation S plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)}) plt.ylabel('MSE') plt.xlabel('n_estimators') plt.show()</pre>
	Training Score Testing Score Validation Score Validation Score Validation Score Testing Score Validation Score
In []:	el número de árboles en el bosque. Se puede observar como el set de entrenamiento tiene el valor más bajo de error, y que este se estabiliza después de un gran número de iteraciones. Los otros dos sets tienen que from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import seaborn as sns cf_matrix = confusion_matrix(y_valid, y_pred) ax = sns.heatmap(cf_matrix/np.sum(cf_matrix), annot=True, fmt='.2%', cmap='Blues')
	<pre>ax.set_title('Matriz de Confusión\n\n'); ax.set_xlabel('\nValores Predecidos') ax.set_ylabel('Valores Actuales '); ax.xaxis.set_ticklabels(['False','True']) ax.yaxis.set_ticklabels(['False','True']) plt.show() Matriz de Confusión</pre>
	-0.5 -0.4 -0.3 -0.2 -0.1
In []:	Valores Predecidos Se puede observar con la matriz de confusión que los errores de clasificación son mínimos y que más que nada hay falsos positivos. Busqueda para encontrar los mejores parámetros
	<pre>n_estimators = [1, 2, 4, 8, 16, 32, 64, 100, 200] train_results = [] test_results = [] for estimator in n_estimators: rf = RandomForestClassifier(n_estimators=estimator, n_jobs=-1) rf.fit(X_train, y_train) train_pred = rf.predict(X_train) false_positive_rate, true_positive_rate, thresholds = roc_curve(y_train, train_proc_auc = auc(false_positive_rate, true_positive_rate) train_results.append(roc_auc) y_pred = rf.predict(X_valid) false_positive_rate, true_positive_rate, thresholds = roc_curve(y_valid, y_pred) roc_auc = auc(false_positive_rate, true_positive_rate) test_results.append(roc_auc) </pre>
	<pre>from matplotlib.legend_handler import HandlerLine2D print(max(train_results)) print(max(test_results)) line1, = plt.plot(n_estimators, train_results, 'b', label='Train AUC') line2, = plt.plot(n_estimators, test_results, 'r', label='Validation AUC') plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)}) plt.ylabel('AUC score') plt.xlabel('n_estimators') plt.show()</pre> 0.997907949790795 0.9040747028862478
	0.98 - 0.96 - 0.994 - 0.992 - 0.990 - 0.88 - 0.86 - 0.86 - 0.86 - 0.84 - 0.84
In []:	De este gráfica se puede rescatar el número de estimadores que son necesarios, donde se puede observar que llega un momento en el que los dos sets se estabilizan que es a partir del 100. max_depths = np.linspace(1, 32, 32, endpoint=True) train_results = [] test_results = [] for max_depth in max_depths: rf = RandomForestClassifier (max_depth=max_depth, n_jobs=-1) rf.fit(X_train, y_train) train_pred = rf.predict(X_train) false positive rate, true positive rate, thresholds = roc curve(y train, train p
	<pre>roc_auc = auc(false_positive_rate, true_positive_rate) train_results.append(roc_auc) y_pred = rf.predict(X_valid) false_positive_rate, true_positive_rate, thresholds = roc_curve(y_valid, y_pred) roc_auc = auc(false_positive_rate, true_positive_rate) test_results.append(roc_auc) from matplotlib.legend_handler import HandlerLine2D line1, = plt.plot(max_depths, train_results, 'b', label='Train AUC') line2, = plt.plot(max_depths, test_results, 'r', label='Validation AUC') plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)}) plt.ylabel('AUC score') plt.xlabel('Tree depth')</pre>
	1000 0.975 0.950 0.900 0.875 0.850
In []:	In esta se puede observar que hay un punto en el que está subiendo el puntaje con el set de validación y llega a ser el mismo que con el set de entrenamiento. Después de esto al seguir subiendo el nivel de profundidad se genera overfitting, ya que mejora el set de entrenamiento y varía el de validación. min_samples_splits = np.linspace(0.1, 1.0, 10, endpoint=True) train_results = [] test_results = []
	<pre>test_results = [] for min_samples_split in min_samples_splits: rf = RandomForestClassifier(min_samples_split=min_samples_split) rf.fit(X_train, y_train) train_pred = rf.predict(X_train) false_positive_rate, true_positive_rate, thresholds = roc_curve(y_train, train_proc_auc = auc(false_positive_rate, true_positive_rate) train_results.append(roc_auc) y_pred = rf.predict(X_valid) false_positive_rate, true_positive_rate, thresholds = roc_curve(y_valid, y_pred) roc_auc = auc(false_positive_rate, true_positive_rate) test_results.append(roc_auc) from matplotlib.legend_handler import HandlerLine2D linel = plt_plot(min_samples_splits_train_results_lbt_label=ltrain_AUC!)</pre>
	<pre>line1, = plt.plot(min_samples_splits, train_results, 'b', label='Train AUC') line2, = plt.plot(min_samples_splits, test_results, 'r', label='Validation AUC') plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)}) plt.ylabel('AUC score') plt.xlabel('min samples split') plt.show()</pre> Train AUC Validation AUC
	Los puntajes son cada iguales, por lo que este parámetro no contribuye al overfitting, y se puede observar de la importancia de que este valor sea bajo.
In []:	<pre>min_samples_leafs = np.linspace(0.1, 0.5, 5, endpoint=True) train_results = [] test_results = [] for min_samples_leaf in min_samples_leafs: rf = RandomForestClassifier(min_samples_leaf=min_samples_leaf) rf.fit(X_train, y_train) train_pred = rf.predict(X_train) false_positive_rate, true_positive_rate, thresholds = roc_curve(y_train, train_proc_auc = auc(false_positive_rate, true_positive_rate) train_results.append(roc_auc) y_pred = rf.predict(X_valid) false_positive_rate, true_positive_rate, thresholds = roc_curve(y_valid, y_pred)</pre>
	roc_auc = auc(false_positive_rate, true_positive_rate) test_results.append(roc_auc) from matplotlib.legend_handler import HandlerLine2D line1, = plt.plot(min_samples_leafs, train_results, 'b', label='Train AUC') line2, = plt.plot(min_samples_leafs, test_results, 'r', label='Validation AUC') plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)}) plt.ylabel('AUC score') plt.xlabel('min_samples_leaf') plt.show()
	0.8 - 0.7 - 0.6 - 0.5 - 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 min samples leaf
In []:	Algo parecido al parámetro anterior, no cambian mucho entre los dos sets, y hay que cuidar que sea bajo. max_features = [1,2,3] train_results = [] test_results = [] for max_feature in max_features: rf = RandomForestClassifier(max_features=max_feature) rf.fit(X_train, y_train) train_pred = rf.predict(X_train) false_positive_rate, true_positive_rate, thresholds = roc_curve(y_train, train_proc_auc = auc(false_positive_rate, true_positive_rate) train_results.append(roc_auc)
	<pre>y_pred = rf.predict(X_valid) false_positive_rate, true_positive_rate, thresholds = roc_curve(y_valid, y_pred) roc_auc = auc(false_positive_rate, true_positive_rate) test_results.append(roc_auc) from matplotlib.legend_handler import HandlerLine2D line1, = plt.plot(max_features, train_results, 'b', label='Train AUC') line2, = plt.plot(max_features, test_results, 'r', label='Validation AUC') plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)}) plt.ylabel('AUC score') plt.xlabel('max_features') plt.show()</pre>
	0.98 - 0.96 - 0.94 - 0.92 - 0.92 - 0.90 - 0.88 - 0.
In []:	<pre>max features De aquí se puede rescatar que son necesarios todos los features posibles. names = list(X_test.columns) feature_imp = pd.Series(clf.feature_importances_,index=names).sort_values(ascending sns.barplot(x=feature_imp, y=feature_imp.index) plt.xlabel('Feature Importance Score') plt.ylabel('Features') plt.title("Visualizing Important Features") plt.legend() plt.show()</pre>
	WARNING:matplotlib.legend:No handles with labels found to put in legend. Visualizing Important Features AnnualSalary - Age -
	En el análisis de la importancia de cada variable para el modelo se puede observar que la variable de género no aporta al modelo. Modelos conforme a las pruebas realizadas
In []:	<pre>X_train_1 = X_train.drop(['Gender'],axis=1) X_valid_1 = X_valid.drop(['Gender'],axis=1) X_test_1 = X_test.drop(['Gender'],axis=1) Modelo 1 clf_1=RandomForestClassifier(n_estimators = 100,max_depth=6,random_state=0) clf_1.fit(X_train_1,y_train) y_pred=clf_1.predict(X_valid_1)</pre>
	y_pred_1 = clf_1.predict(X_train_1) y_pred_3 = clf_1.predict(X_test_1) print("Precisión Entrenamiento:", metrics.accuracy_score(y_train, y_pred_1)) print("Precisión Validación:", metrics.accuracy_score(y_valid, y_pred)) print("Precisión Testeo:", metrics.accuracy_score(y_test, y_pred_3)) Precisión Entrenamiento: 0.94125 Precisión Validación: 0.91 Precisión Testeo: 0.93 El modelo sin la variable previamente mencionada y tomando en cuenta los dos parámetros más significativos en las pruebas arrojó muy buenos resultados. Se observa que hay menor overfitting que en el
In []:	modelo original, y que existe una una buena combinación entre el nivel de varianza y el de bias, los cuales se podrían decir que están en un nivel bajo. Modelo 2 from sklearn import metrics from sklearn.ensemble import RandomForestClassifier clf=RandomForestClassifier (max_depth=6, n_estimators=150, min_samples_leaf=0.1, randometric) clf.fit (X train, y train)
	y_pred=clf.predict(X_valid) y_pred_1 = clf.predict(X_train) y_pred_2 = clf.predict(X_test) print("Precisión Entrenamiento:",metrics.accuracy_score(y_train, y_pred_1)) print("Precisión Validación:",metrics.accuracy_score(y_valid, y_pred)) print("Precisión Testeo:",metrics.accuracy_score(y_test, y_pred_2)) Precisión Entrenamiento: 0.89375 Precisión Validación: 0.89 Precisión Testeo: 0.87
In []:	Al poner los parámetros que más aumentaran la precisión con el set de validación se benefició unicamente este y bajaron las precisiones con los otros dos sets, por lo que no es el modelo correcto. Modelo 3 clf=RandomForestClassifier (max_depth=6, random_state=0) clf.fit (X_train, y_train) y_pred=clf.predict (X_valid) y_pred_1 = clf.predict (X_train)
	y_pred_1 = clf.predict(X_train) y_pred_2 = clf.predict(X_test) print("Precisión Entrenamiento:", metrics.accuracy_score(y_train, y_pred_1)) print("Precisión Validación:", metrics.accuracy_score(y_valid, y_pred)) print("Precisión Testeo:", metrics.accuracy_score(y_test, y_pred_2)) Precisión Entrenamiento: 0.9325 Precisión Validación: 0.91 Precisión Testeo: 0.89 Un modelo bastante simple que tiene buen equilibrio entre la varianza y bias, por lo cual no tiene overfitting o underfitting. Este modelo se realizó debido a que es de los parámetros que mayor precisión
In []:	overfitting o underfitting. Este modelo se realizó debido a que es de los parámetros que mayor precisión proporcionaban en las pruebas. Métricas de Desempeño A partir de los resultados de los modelos, se puede observar que el mejor fue el primero, el cual tuvo la mejor precisión en todos los sets. train_results = [] test_results = [] validation_results = [] list_nb_trees = [5, 10, 15, 30,50,75,100,150]
	-
	plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)}) plt.ylabel('MSE') plt.xlabel('n_estimators') plt.show() O.11
In []:	from sklearn.model_selection import cross_val_score
In []:	<pre>scores = cross_val_score(clf_1, X, y, cv=5) print("%0.2f accuracy with a standard deviation of %0.2f" % (scores.mean(), scores. 0.91 accuracy with a standard deviation of 0.01 Con la cross validation se pudo obtener una precisión bastante alta que refleja el equilibrio entre las precisiones obtenidas con los sets diferentes. from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import seaborn as sns</pre>
	Seaborn Confusion Matrix with labels -0.4 -0.3 -0.2
	False True Predicted Values Conclusión del modelo de clasificación: Al principio presentaba unos cuantos errores de overfitting, entonces la idea era optimizar los parámetros para encontrar un modelo que tuviera un balance con todos
In []: In []: Out[]:	los sets de entrenamiento. En el modelo elegido se puede considerar que se logró el balance entre el bias y la varianza, por lo cual se obtuvo un modelo con la capacidad de predecir muy buena. Regresion df_1 = pd.read_csv('/content/drive/MyDrive/Inteligencia Artificial Avanzada/insuran df_1.head() age sex bmi children smoker region charges
Out[]:	age sex bmi children smoker region charges 0 19 female 27.900 0 yes southwest 16884.92400 1 18 male 33.770 1 no southeast 1725.55230 2 28 male 33.000 3 no southeast 4449.46200 3 33 male 22.705 0 no northwest 21984.47061 4 32 male 28.880 0 no northwest 3866.85520 Variables Categóricas a númericas
In []:	<pre>sex = preprocessing.LabelEncoder() sex.fit(df_1['sex'].unique().tolist()) df_1['sex'] = sex.transform(df_1['sex']) smoker = preprocessing.LabelEncoder() smoker.fit(df_1['smoker'].unique().tolist()) df_1['smoker'] = smoker.transform(df_1['smoker'])</pre> region = preprocessing.LabelEncoder()
	<pre>region = preprocessing.LabelEncoder() region.fit(df_1['region'].unique().tolist()) df_1['region'] = region.transform(df_1['region']) df_1.head() age sex bmi children smoker region charges 0 19 0 27.900 0 1 3 16884.92400 1 18 1 33.770 1 0 2 1725.55230</pre>
In []: In []:	2 28 1 33.000 3 0 2 4449.46200
In []: In []: Out[]:	3 33 1 22.705 0 0 1 21984.47061 4 32 1 28.880 0 0 1 3866.85520 Separación de datos X = df_1.drop(['charges'], axis = 1) y = df_1['charges']
In []: In []:	<pre>3 33 1 22.705 0 0</pre>
In []: In []: In []:	3 33 1 22.705 0 0 1 21984.47061 4 32 1 28.880 0 0 1 3866.85520 X = df_1.drop(['charges'], axis = 1) y = df_1['charges'] X_train, X_rem, y_train, y_rem = train_test_split(X, y, test_size=0.20,random_state X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5,rand) Modelo simple Al igual que con clasificación se utilizan los parámetros por default que contiene la librería de bosques aleatorios, pero ahora de tipo regresión. from sklearn.ensemble import RandomForestRegressor forest=RandomForestRegressor() forest.fit(X_train,y_train) y_prediction = forest.predict(X_valid) y_prediction_2 = forest.predict(X_train)
In []: In []: In []:	<pre>3 33 1 22.705 0 0 1 2198447061 4 32 1 28.880 0 0 1 3866.85520 Separación de datos X = df_l.drop(['charges'], axis = 1) y = df_l'charges'] X_train, X_rem, y_train, y_rem = train_test_split(X, y, test_size=0.20,random_state X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5,rand) Modelo simple Al igual que con clasificación se utilizan los parámetros por default que contiene la librería de bosques aleatorios, pero ahora de tipo regresión. from sklearn.ensemble import RandomForestRegressor forest=RandomForestRegressor() forest.fit(X_train,y_train) y_prediction = forest.predict(X_valid) y_prediction_2 = forest.predict(X_train) from sklearn.metrics import r2_score from sklearn.metrics import rean_squared_error score = r2_score(y_valid,y_prediction_2) print('r3 score del set de entrenamiento ',score_2) print('r3 score del set de entrenamiento ',score) print('rac_mean_squared_error es=', mean_squared_error(y_valid,y_prediction)) print('root_mean_squared_error of_es=', np.sqrt(mean_squared_error(y_valid,y_prediction)) r2 score del set de entrenamiento 0.9754415351267735 r2 score del set de entrenamiento 0.9233724450483041</pre>
In []: In []: In []:	3 33 1 22.705 0 0 1 2198447061 4 32 1 28.880 0 0 1 3866.85520 Separación de datos X = df 1.drop(['charges'], axis = 1) y = df 1.('charges') X_train, X_rem, y_train, y_rem = train_test_split(X, y, test_size=0.20, random_state X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5, rand Modelo simple Al igual que con clasificación se utilizan los parámetros por default que contiene la libreria de bosques aleatorios, pero ahora de tipo regresión. from sklearn.ensemble import RandomForestRegressor forest=RandomForestRegressor() forest.fit(X_train,y_train) y_prediction = forest.predict(X_valid) y_prediction = forest.predict(X_train) from sklearn.metrics import r2 score from sklearn.metrics import mean_squared_error soore = c2_score(y_train,y_prediction) soore 2 = c2_score(y_train,y_prediction) print('r2 score del set de entrenamiento '.score_2) print('r2 score del set de validacion '.score_2) print('r2 score del set de validacion '.score_2) print('r2 score del set de validacion '.score_2) print('r0en_agrd_error ea=-'.mean_squared_error(y_valid,y_prediction)) print('roet_mean_squared_error of es== \$\frac{3}{2}\$.3724459483341 mean_squared_error of es=- \$\frac{3}{2}\$.3724459483341 mean_squared_error of es=- \$\frac{3}{2}\$.3724459483341 mean_squared_error of es=- \$\frac{3}{2}\$.3724459483341 mean_squared_error of es=- \$\frac{3}{2}\$.3724595272 Se obtiene un r2 bastante bueno para el set de entrenamiento, pero con el de validación se puede interpretar que hay overfitting debido a la gran diferencia entre puntajes. Podemos decir que este modelo tiene una alta varianza con un bias bajo. scores = cross_val_score(forest, x, y, cv=5) print("\frac{3}{2}\$.25 ccores del set de entrenamiento of \frac{3}{2}\$.25 (scores.mean(), scores. 0.84 accuracy with a standard deviation of \frac{3}{2}\$.26 (scores.mean(), scores.
In []: In []:	Separación de datos X = df_l.drop(['charges'], axis = 1) y = df_l'charges'] X_trsin, X_rem, y_trsin, y_ren = train_test_split(X, y, test_size=0.20,random_state X_valid, x_test, y_valid, y_test = train_test_split(X, rem,y_rem, test_size=0.5,rand Modelo simple Al igual que con dasificación se utilizan los parámetros por default que contiene la librería de bosques aleatorios, pero ahora de tipo regresión. from sklearn.ensemble import RandomForestRegressor forest=RandomForestRegressor() forest_RandomForestRegressor() forest_RandomForestRegressor() forest_Sit(X_train,y_train) y_pradiction = forest_predict(X_valid) y_prediction = z = forest_predict(X_valid) y_prediction = z = corest_predict(X_valid) y_prediction = forest_predict(X_valid) y_prediction = z = corest_predict(X_valid) y_prediction = z = z = z = z = z = z = z = z = z =
In []: In []: In []:	3 3 1 22705 0 0 1 2798447061 4 32 1 28880 0 0 1 386685520 Separación de datos X = df. Lufrup(['charqee'], axiv = 1) y = df_['charqee'] X_train, X_tea, y_train, y_rem = train_test_split(X, y, test_size=0.20, random_state X_valid, X_teat, y_valid, y_teat = train_test_split(X_rem,y_rem, test_size=0.5, rand Modelo simple Al igual que con clasificación se utilizan los parámetros por default que contiene la librería de bosques aleatorios, pero ahora de tipo regresión. from sklearn.ensemble import RandomForeatRegressor forest_sflaction_set_legressor() forest_sflaction_set_legressor() from sklearn.metrics import r2_score from sklearn.metrics import r2_score from sklearn.metrics import rand_squared_error score = r2_score(y_train,y_prediction) score_2 = c2_score(y_train,y_prediction) score_1 = c1 score del set de validacion (,score) print('tean_sund_score_case-',cean_squared_error(y_valid,y_prediction) print('tean_sund_score_case-',cean_squared_error(y_valid,y_prediction) score_acce del set de entremamiento 0.09734133812677235 score del set de entremamiento 0.09734133812677235 score del set de entremamiento 0.09734133812677235 score del set de entremamiento 0.09734133812677235 scotiene un c2 bastante bueno para el set de entremamiento, pero con el de validación se puede interportar que hay overfitting debido a la gran diferencia entre puntajes. Podemos decir que este modelo tiene una alta varianza con un bias bajo. scores = cross_val_score(forest, X, y, oves) print("80.21 accuracy with a standard deviation of 0.03 Con el cross validation se puede dar una idea de la realidad del modelo, siendo que es una predición buena más no excelente como ocuría con el set de entremamiento. Gráfica de error
In []: In []: In []:	Separación de datos X = of_l.arge(:charges*), avia = 11 y = of_l.arge(:charge*), avia = 11 y = of_l.arge
In []: In []: In []:	Separación de datos X = dr_1decop(('charges'), exis = 11 - dr_1decop('charges'), exis = 11 - dr_1decop('charges') X Jeain, X Jean, Y Leain, Y Leain, Y Jean = Leain Lea Split X, y, Leat Leaen

