Analyse ascendante 1

Mirabelle Nebut

Bureau 223 - extension M3 mirabelle.nebut at lifl.fr

2009-2010

Introduction

Analyseurs LR(0)

Principes

Construction de l'automate LR-AFD

Tables d'analyse LR(0)

Analyseurs SLR(1)

Analyseurs LR(1)

Analyseur ascendant

- Effectue des lectures et des réductions;
- construit un arbre en ordre postfixe;
- en partant du mot à reconnaître;
- construction d'une dérivation droite;
- analyseurs LR(k) (from Left to rigth, Rigth derivation).

On parle aussi :

- d'analyse par décalage et réduction
- shift/reduce analysis.

Exemple

$$S \rightarrow AD \mid B$$

 $A \rightarrow aAb \mid b$
 $B \rightarrow aB \mid c$
 $D \rightarrow e$

Cette grammaire n'est pas LL(k) (pourquoi?)

On va la traiter en LR(k), avec k=0 pour commencer.

Exemple

Analyseur LR(0) basé sur une variante de l'automate des items.

(vous vous rappelez?)

- \Rightarrow nouvel axiome S'
- \Rightarrow production $S' \rightarrow S$

$$S' \rightarrow S$$

$$S \rightarrow AD \mid B$$

$$A \rightarrow aAb \mid b$$

$$B \rightarrow aB \mid c$$

$$D \rightarrow e$$

Exemple de reconnaissance

$$S' \rightarrow S$$

 $S \rightarrow AD \mid B$
 $A \rightarrow aAb \mid b$
 $B \rightarrow aB \mid c$
 $D \rightarrow e$

Reconnaître le mot abbe#?

On essaie intuitivement, avec une pile contenant des mots de $(V_T \cup V_N)_*$.

Exemple de reconnaissance

- Construction arbre ordre postfixe : lectures et réductions ;
- Dérivation droite.

Analyse ascendante : défis

Contenu de la pile :

- ▶ mot de $(V_N \cup V_T)^*$;
- début de la dérivation droite construite ;
- préfixe viable.

Comment choisir de manière déterministe :

- entre lecture et réduction ;
- quelle partie du sommet de pile réduire? (= le manche)
- par quelle production réduire.

Comment faire?

Analyse ascendante : solutions

On repart de l'automate des items.

On explicite l'automate fini sous-jacent :

- automate caractéristique (un état = un item);
- on comprend comment l'analyse ascendante fonctionne avec;
- mais cet automate est non déterministe.

On le déterminise.

Et c'est gagné! On a un analyseur LR(0).

Introduction

```
Analyseurs LR(0)
Principes
Construction de l'automate LR-AFD
Tables d'analyse LR(0)
```

Analyseurs SLR(1)

Analyseurs LR(1)

Retour à l'automate des items

Trois types de transitions :

▶ lecture de a :

$$([X \to \alpha \bullet a\beta], a) \to [X \to \alpha a \bullet \beta]$$

• expansion par $Y \rightarrow \gamma$:

$$([X \to \alpha \bullet Y\beta], \epsilon) \to [X \to \alpha \bullet Y\beta][Y \to \bullet \gamma]$$

▶ réduction par $Y \rightarrow \gamma$:

$$([X \to \alpha \bullet Y\beta][Y \to \gamma \bullet], \epsilon) \to [X \to \alpha Y \bullet \beta]$$

Retour à l'automate des items - exemple

Ex: abbe#? $[A \rightarrow \bullet aAb]$ $\begin{array}{c|c} & \left| \begin{array}{c} [S \to \bullet AD] \\ \hline [S' \to \bullet S] \end{array} \right| \begin{array}{c} \left[\begin{array}{c} [S \to \bullet AD] \\ \hline [S' \to \bullet S] \end{array} \right]$ [A o ullet b] $|A \rightarrow b \bullet|$ $[A \rightarrow a \bullet Ab]$ $[A \rightarrow a \bullet Ab]$ $[A \rightarrow a \bullet Ab]$ $[S \rightarrow \bullet AD]$ $[S \rightarrow \bullet AD]$ $[S \rightarrow \bullet AD]$ $[S' \rightarrow \bullet S] \mid E$ $[S' \rightarrow \bullet S]$ $[S' \rightarrow \bullet S]$ $|A \rightarrow aA \bullet b|$ $|A \rightarrow aAb \bullet|$ $[S \rightarrow \bullet AD]$ $[S \rightarrow \bullet AD]$ $[S' \rightarrow \bullet S]$ $[S' \rightarrow \bullet S]$ $R \mid [S' \rightarrow S \bullet] \mid$

Automate caractéristique - exemple

Automate caractéristique - généralités

Automate à nombre fini d'états :

- sous-jacent à l'automate des items;
- indique son état courant;
- ► = l'item en sommet de pile.

Pour chaque transition de l'aut des items, l'aut caractéristique :

- effectue une transition;
- ou, depuis un état puit, «revient en arrière».

Comment se comporte l'automate caractéristique?

Automate caractéristique et lecture

Idem automate des items.

 V_T -transition sur le terminal lu :

$$[X \to \alpha \bullet a\beta] \stackrel{a}{\longrightarrow} [X \to \alpha a \bullet \beta]$$

Ex lecture de a :

$$[A \to \bullet aAb] \quad \stackrel{a}{\longrightarrow} \quad [A \to a \bullet Ab]$$

Automate caractéristique et expansion

Idem automate des items.

Expansion par $Y \to \gamma$: ϵ -transition

$$[X \to \alpha \bullet Y \beta]) \xrightarrow{\epsilon} [Y \to \bullet \gamma]$$

Ex expansion par $A \rightarrow b$:

$$[A \to a \bullet Ab] \quad \stackrel{\epsilon}{\longrightarrow} \quad [A \to \bullet b]$$

Automate caractéristique et réduction

Différent de l'automate des items (ϵ -production).

Conséquence d'une réduction par $A \in V_N : V_N$ -transition sur A

Ex : on réduit par $A \rightarrow aAb$:

- quand on est dans l'état puit [A → aAb•];
- alors on rebrousse chemin des 4 transitions qui ont amené dans cet état :
 - les 3 transitions qui correspondent à aAb;
 - ▶ l' ϵ -transition qui correspond à l'expansion par $A \rightarrow aAb$;
- ightharpoonup et on transite sur A (A-transition, on a reconnu un A).

Automate caractéristique et réduction par une production vide

Cas particulier, on réduit par $X \to \epsilon$:

- ▶ dans l'état puit X → •;
- lacktriangle on rebrousse chemin d'une transition $(|\epsilon|+1=1)$;
- et on transite sur X.

Déterminiser l'automate caractéristique

L'automate caractéristique :

- est non déterministe (des ε-transitions);
- \triangleright contient des expansions (justement les ϵ -transitions).

On veut un analyseur ascendant :

- déterministe;
- sans expansions explicites (lectures et réductions).
- ⇒ on déterminise l'automate caractéristique.
- ⇒ on obtient un automate dit LR-AFD.

Automate LR-AFD, exemple

Automate LR(0)

L'automate LR-AFD décrit un automate à pile déterministe appelé automate LR(0) effectuant 2 types d'actions :

- lecture
- réduction

Lecture de a: dans un état contenant $X \rightarrow \cdots \bullet a \dots$

Réduction par $X \to \alpha \bullet$: dans un état contenant $X \to \alpha \bullet$.

La pile permet de mémoriser les états parcourus lors des lectures et des réductions.

Exemple de fonctionnement

abbe#?

On a ce qu'on voulait :

- l'arbre en ordre postfixe, et la dérivation droite;
- avec des lectures et des réductions.

Reste à formaliser.

Définition de l'automate LR(0)

Un état est un ensemble d'item : si Q est l'ensemble des états

$$Q \subseteq \mathcal{P}(It_G)$$

L'alphabet de pile est Q.

L'état initial q₀ :

- ▶ contient l'item initial de la forme $[S' \to \bullet S]$;
- sert à initialiser la pile.

L'état final q_f contient l'item final, de la forme $[S' \to S \bullet]$.

Définition de l'automate LR(0) : relation de transition

On note δ la relation de transition de l'AF LR-AFD.

$$\delta(q,X)=q'$$
 signifie :

- si l'état courant est q;
- ▶ et que $X \in V_T \cup V_N$ est le symbole courant à traiter;
- alors l'état courant devient q'.

Exemple:

Définition de l'automate LR(0) : relation de transition

Relation de transition de l'automate LR(0) pour une lecture :

$$(q,a) \rightarrow q\delta(q,a)$$

- ▶ si q est en sommet de pile
- si a est sous la tête de lecture
- ▶ et l'un des items de q est de la forme $[X \rightarrow \cdots \bullet a \dots]$;
- ▶ alors on empile l'état successeur de q pour a dans δ .

Définition de l'automate LR(0) : relation de transition

Relation de transition de l'automate LR(0) pour une réduction :

$$(qq_1 \ldots q_n, \epsilon) \rightarrow q\delta(q, X)$$

- ▶ si q_n est en sommet de pile;
- ▶ si l'un des items de q_n est de la forme $[X \to \alpha \bullet]$, $|\alpha| = n$;
- alors on dépile n états;
- ▶ puis on empile $\delta(q, X)$ le successeur par X de l'état q en sommet de pile.

Et les expansions?

Les ϵ -transition d'expansion ont disparu avec la déterminisation.

Elles se font implicitement à l'intérieur des états.

lecture de c possible après expansions successives par :

$$\blacktriangleright S \to B \leadsto [S \to \bullet B] \in E1$$

$$B \to c \leadsto [B \to \bullet c] \in E1$$

Introduction

Analyseurs LR(0)

Principes

Construction de l'automate LR-AFD

Tables d'analyse LR(0)

Analyseurs SLR(1)

Analyseurs LR(1)

Construction de LR-AFD - en première approche

On construit Q (les états) et δ (les transitions) de l'automate caractéristique à partir de la grammaire.

On le déterminise, on obtient LR-AFD.

En fait, on peut construire directement LR-AFD (ouf!).

Construction algorithmique directe de LR-AFD

Principe:

- on sature les états par expansion;
- ▶ on transite sur chaque symbole Y tel que $[\cdots \rightarrow \cdots \bullet Y \dots]$.

Saturation des états par expansion

```
Un ensemble d'items E est saturé si :
```

- ▶ pour tout item $[X \to \alpha \bullet Y\beta]$ de $E, Y \in V_N$;
- ▶ pour toute production $Y \rightarrow \gamma$ de G de membre gauche Y;
- ▶ l'item $[Y \rightarrow \bullet \gamma]$ appartient aussi à E.

On en déduit la fonction Saturation pour une grammaire G:

Algorithme de construction de Q et δ

L'état initial est Saturation($[S' \rightarrow \bullet S]$).

Ensuite, pour chaque état saturé E et chaque symbole $Y \in V_T \cup V_N$ (lecture pour V_T , réduction pour V_N) :

▶ si E contient un ensemble de n items de la forme «•Y» :

$$\{ [X \to \alpha_i \bullet Y\beta_i] \mid 1 \le i \le n \}$$

alors on calcule

$$E' = \text{Saturation}(\{[X \to \alpha_i Y \bullet \beta_i] \mid 1 \le i \le n\})$$

- ▶ si cet état E' n'existe pas, on l'ajoute à Q;
- et on définit $\delta(E, Y) = E'$.

Exemple et remarque

Pour ne pas manquer de place sur sa feuille : séparer le contenu des états et la relation de transition.

Conflits LR(0), grammaire LR(0)

L'automate LR(0) construit peut ne pas être déterministe (2 cas).

État autorisant 2 réductions (ou plus) :

conflit LR(0) reduce/reduce

Ex:
$$\begin{bmatrix}
 A \to b \bullet \\
 B \to b \bullet
 \end{bmatrix}$$

État autorisant 1 réduction et 1 lecture (ou plus) :

Ex:
$$\begin{bmatrix}
 A \to \bullet b \\
 B \to c \bullet
 \end{bmatrix}$$

Conflits LR(0), grammaire LR(0)

Une grammaire est dite LR(0) si aucun de ses états ne contient de conflit LR(0) :

- ni shift-reduce
- ▶ ni reduce-reduce

Les conflits shift/shift n'existent pas (aucun sens).

Remarque - CUP

On comprend mieux les messages d'erreurs de CUP , notamment en cas de grammaire ambiguë.

```
[java] Warning : *** Shift/Reduce conflict found
[java] in state #60
[java] between expr ::= expr MOINS expr (*)
[java] and expr ::= expr (*) MOINS expr
[java] under symbol MOINS
[java] Resolved in favor of shifting.
```

Introduction

Analyseurs LR(0)

Principes

Construction de l'automate LR-AFD

Tables d'analyse LR(0)

Analyseurs SLR(1)

Analyseurs LR(1)

Tables d'un analyseur LR(0)

Un analyseur LR(0) est défini par 2 tables :

- la table des successeurs;
- la table des actions.

Table des successeurs LR(0)

Encode la relation de transition δ de LR-AFD :

$$Q \times (V_T \cup V_N) \rightarrow Q$$

Exemple, table des successeurs

Pour tout $q \in Q$ et $X \in V_T \cup V_N$:

si
$$\delta(q,X)=q'$$
 alors mettre q' dans la case (q,X)

	E_1	E_2	<i>E</i> ₃	E ₄	E_5	<i>E</i> ₆	E ₇	<i>E</i> ₈	E ₉	E ₁₀	E_{11}	E ₁₂
а	E ₃		E ₃									
b	E_4		E_4		E_6							
С	E_{12}		E_{12}									
e								E ₁₀				
S'												
S	E_2											
Α	E ₈		E_5									
В	E_{11}		E ₇									
D								E ₉				

Table des actions LR(0)

Indique quelle action effectuer :

- ▶ dans un état $q \in Q$;
- ▶ si $x \in V_T \cup \{\#\}$ est sous la tête de lecture.

$$Q \times (V_T \cup \{\#\}) \rightarrow$$
 ensemble d'actions

Une action peut être :

- la lecture du terminal x (decale);
- ▶ la réduction par une production p (red par p);
- ▶ l'acceptation (acc).

Exemple, table des actions

	E_1	E_2	E_3	E_4	E_5	E_6	E ₇	E ₈	E_9	E ₁₀	E ₁₁	E ₁₂
а	d	е	d	red	е	red	red	е	red	red	red	red
				$A \rightarrow b$		${\sf A} o {\sf aBb}$	B o aB		$S \rightarrow AD$	$D o \epsilon$	$S \rightarrow B$	$B \rightarrow c$
b	d	е	d	red	d	red	red	е	red	red	red	red
				$A \rightarrow b$		${\sf A} ightarrow {\sf aBb}$	B o aB		$S \rightarrow AD$	$D \rightarrow e$	$S \rightarrow B$	$B \rightarrow c$
С	d	е	d	red	е	red	red	е	red	red	red	red
				$A \rightarrow b$		${\sf A} ightarrow {\sf aBb}$	B o aB		$S \rightarrow AD$	$D \rightarrow e$	$S \rightarrow B$	$B \rightarrow c$
е	е	е	е	red	е	red	red	d	red	red	red	red
				$A \rightarrow b$		${\sf A} ightarrow {\sf aBb}$	B o aB		$S \rightarrow AD$	$D \rightarrow e$	$S \rightarrow B$	$B \rightarrow c$
#	е	a	е	red	е	red	red	е	red	red	red	red
				$A \rightarrow b$		A o aBb	B o aB		$S \rightarrow AD$	$D o \epsilon$	$S \rightarrow B$	$B \rightarrow c$

a : acceptation, d : décale, e : erreur, red : réduction par p

Table des actions, remplissage

```
Pour tout a \in V_T et q \in Q:
si q contient un item de la forme [X \to \cdots \bullet a \dots]
alors mettre decale dans la case (q,a)
```

Pour tout $q \in Q$, $Q \neq q_f$:

- ▶ si q contient un item terminal de la forme $[X \to \alpha \bullet]$;
- ▶ alors, pour tout $a \in V_T \cup \{\#\}$, mettre réduction $X \to \alpha$ dans la case (q, a).

Mettre acceptation dans la case $(q_f, \#)$.

Mettre erreur dans les cases encore vides.

Table des actions, remarque

Pour un automate LR(0), cas dégénéré pour le remplissage de la table par une réduction.

k=0 : aucun symbole de prédiction (pas de *Premier*, *Suivant*).

Une réduction est effectuée quelque soit la tête de lecture.

⇒ colonnes remplies de la même réduction.

Le cas général est : pour tout $a \in V_T \cup \{\#\}$ et $q \in Q$:

- si q contient un item terminal de la forme X → α• et que la réduction peut se faire avec a sous la tête de lecture;
- ▶ alors, mettre réduction $X \to \alpha$ dans la case (q, a).

Caractérisation d'une grammaire LR(0)

Une grammaire est LR(0) si sa table des actions contient pour chaque case :

- une seule action
- ou erreur.

Exemple, table des actions et conflits

Ε

$$\begin{bmatrix} A \to b \bullet \end{bmatrix} \\ \begin{bmatrix} B \to b \bullet \end{bmatrix}$$

Ε

$$\begin{bmatrix} A \to \bullet b \end{bmatrix} \\ \begin{bmatrix} B \to c \bullet \end{bmatrix}$$

	E	
С	$red\ A \to b$	
	$red\ B \to b$	
b	$red\ A \to b$	
	$red\ B \to b$	
	Е	

	E	
С	$red\ B \to c$	
b	$red\ B\to c$	
	decale	

Quand une grammaire n'est pas LR(0)

C'est peut-être à cause du 0.

On peut essayer une analyse LR(1): beaucoup plus puissante.

C'est plus facile d'expliquer d'abord les grammaires SLR(1) : Simple LR(1).

Exemple

Soit la grammaire S' o S, $S o a \,|\, \epsilon$.

Conflit shift/reduce dans l'état initial (lire a, réduire par $S \to \epsilon$) :

$$S' \rightarrow ullet S \ S \rightarrow ullet a \ S \rightarrow ullet$$

Mais si la tête de lecture est :

- ▶ dans {a}, alors lire a;
- ▶ dans $\{\#\} = Suivant(S)$ alors réduire par $S \rightarrow \epsilon$.

Un automate SLR(1) exploite cette information.

Introduction

Analyseurs LR(0)
Principes
Construction de l'automate LR-AFE
Tables d'analyse LR(0)

Analyseurs SLR(1)

Analyseurs LR(1)

Principe : k=1 et exploitation des *Suivant*

Un analyseur SLR(1) prend en compte le symbole sous la tête de lecture (k=1, cf LL(1)) pour décider d'une réduction :

Réduction par $X \to \alpha$ seulement si tête lecture \in Suivant(X)

Repose comme l'analyse LR(0) sur l'automate LR-AFD.

Permet d'arbitrer certains conflits LR(0) S/R et R/R.

Conflits shift/reduce au sens SLR(1)

Un état de LR-AFD provoque un conflit S/R au sens SLR(1) s'il contient à la fois :

- ▶ un item de la forme $[Y \rightarrow \cdots \bullet a \dots]$
- ▶ un item de la forme $[X \to \alpha \bullet]$ avec $a \in Suivant(X)$

Comparer avec LR(0) : conflit S/R au sens LR(0) si l'état contient les items $[Y \to \cdots \bullet a \dots]$ et $[X \to \alpha \bullet]$

Conflits reduce/reduce au sens SLR(1)

Un état de LR-AFD provoque un conflit R/R au sens SLR(1) s'il contient à la fois :

- ▶ un item de la forme $[Y \to \beta \bullet]$
- ▶ un item de la forme $[X \to \alpha \bullet]$
- ▶ avec $Suivant(X) \cap Suivant(Y) \neq \emptyset$

Comparer avec LR(0) : conflit R/R au sens LR(0) si l'état contient les items $[Y \to \beta \bullet]$ et $[X \to \alpha \bullet]$

Grammaire SLR(1)

Une grammaire est dite SLR(1) si l'automate LR-AFD ne contient pas de conflits au sens SLR(1).

Grammaire SLR(1), exemple

Listes de \boldsymbol{x} séparés par , et à trou

$$L \to E \mid E, L$$
$$E \to \epsilon \mid \mathbf{x}$$

$$S \rightarrow L$$

Exemple: automate LR-AFD

Exemple : conflits au sens LR(0)

- ▶ E0 : conflit S/R entre lire x et réduire par $E \rightarrow \epsilon$;
- ▶ E2 : conflit S/R entre lire "," et réduire par $L \rightarrow E$;
- ▶ E4 : conflit S/R entre lire x et réduire par $E \rightarrow \epsilon$.

La grammaire n'est donc pas LR(0).

Pour savoir si ce sont des conflits au sens SLR(1) : calcul des *Suivant*.

- Suivant(S) = {#};
- Suivant(L) = Suivant(S) = {#};
- ▶ $Suivant(E) = Suivant(L) \cup \{","\} = \{",",\#\}.$

Exemple : conflits au sens SLR(1)

- ▶ $E0 : x \notin Suivant(E)$ donc pas de conflit entre lire x et réduire par $E \rightarrow \epsilon$;
- E2: "," ∉ Suivant(L) donc pas de conflit entre lire , et réduire par L → E;
- ► E4 : idem E0.

La grammaire est donc SLR(1).

Construction de la table des actions SLR(1)

```
Pour tout a \in V_T et q \in Q:
si q contient un item de la forme [X \to \cdots \bullet a \dots]
alors mettre decale dans la case (q,a)
```

Pour tout $q \in Q$, $q \neq q_f$ et tout $a \in V_T \cup \{\#\}$:

- ▶ si q contient un item terminal de la forme $X \to \alpha \bullet$;
- ▶ alors, si $a \in Suivant(X)$, mettre réduction $X \to \alpha$ dans la case (q, a).

Mettre acceptation dans la case $(q_f, \#)$.

Mettre erreur dans les cases encore vides.

Exemple: table des actions SLR(1)

$$Suivant(S) = \{\#\}$$
 $Suivant(L) = \{\#\}$
 $Suivant(E) = \{",",\#\}$

	<i>E</i> 0	<i>E</i> 1	E2	<i>E</i> 3	E4	<i>E</i> 5
X	decale	erreur	erreur	erreur	decale	erreur
,	$egin{array}{c} red \ \mathcal{E} ightarrow \epsilon \end{array}$	erreur	decale	$F \to X$	$F \to \epsilon$	erreur
#	$F \to \epsilon$	accepte	$\begin{matrix} red \\ L \to E \end{matrix}$	$F \to X$	$F \to \epsilon$	$\begin{matrix} red \\ L \to E, L \end{matrix}$

Caractérisation d'une grammaire SLR(1)

La grammaire est SLR(1) si sa table des actions contient pour chaque case :

- une seule action
- ou erreur.

Remarques

Une grammaire LR(0) ou SLR(1) n'est pas ambiguë.

Une grammaire ambiguë n'est ni LR(0) ni SLR(1).

Comparaison SLR(1) - LR(0)

Méthode SLR(1) basée comme LR(0) sur l'automate LR-AFD:

- ▶ les tables des successeurs LR(0) et SLR(1) sont identiques;
- ▶ les tables LR(0) et SLR(1) ont le même encombrement mémoire.

Comparaison SLR(1) - LR(0)

Grâce au k=1:

- ► l'analyse SLR(1) est strictement plus puissante que l'analyse LR(0);
- = elle engendre moins de conflits.

$$LR(0) \subset SLR(1)$$

Néanmoins beaucoup de grammaires (non ambiguës) ne sont pas SLR(1).

Exemple $1: G_1$

$$S \rightarrow A \mid xb$$

 $A \rightarrow aAb \mid x$

 G_1 grammaire non ambiguë (mais non LL(1)):

- ▶ si $xb : S \Rightarrow xb$;
- ightharpoonup si $a^n x b^n : S \Rightarrow A \Rightarrow^n a^n A b^n \Rightarrow a^n x b^n$.

Automate LR-AFD de G₁

Conflit pour *G*₁

L'automate LR-AFD contient un conflit S/R au sens LR(0) dans l'état E3 :

$$[S \to x \bullet b]$$
$$[A \to x \bullet]$$

Pour savoir si c'est un conflit au sens SLR(1), calcul des Suivant :

- Suivant(S') = Suivant(S) = {#};
- ► $Suivant(A) = Suivant(S) \cup \{b\} = \{\#, b\}$;

 $b \in Suivant(A)$ donc E3 contient un conflit S/R au sens SLR(1).

Conflit SLR(1) pour G_1 : origine

Conflit dans E3 car $b \in Suivant(A)$. Et pourtant...

... la lecture de b impose la dérivation $S' \Rightarrow S \Rightarrow xb$.

... mais *Suivant* trop imprécis pour le voir.

Comment être plus précis?

Conflit SLR(1) pour G_1 : solution

Les A de E1 et E3 ne peuvent être suivis que d'un #, pas d'un b.

Ce A (suivi par b) n'est pas expansé dans E1 et E3, mais dans E6.

Si on considère les symboles de $V_T \cup \{\#\}$ qui peuvent suivre A dans E3, on fait sauter le conflit.

Restriction des symboles de look-ahead

L'analyse LR(1) ne considère pas tous l'ensemble Suivant(X) pour réduire par $X \to \dots$

Elle calcule:

- ▶ pour chaque item $[X \rightarrow \alpha]$ d'un état E;
- ▶ un ensemble $L \subseteq Suivant(X)$;
- contenant les symboles qui peuvent suivre X dans E.

L peut parfois être égal à Suivant(X).

Exemple 2 : G_2

$$S \to G = D \mid D$$

 $G \to *D \mid i$
 $D \to G$

Grammaire G_2 non ambiguë :

- ▶ la présence ou l'absence du = indique s'il faut choisir $S \rightarrow G = D$ ou $S \rightarrow D$:
- ▶ la grammaire de productions $\{G \rightarrow *D \mid i, D \rightarrow G\}$ est LL(1).

Automate LR-AFD pour G_2

Conflit pour G₂

L'automate LR-AFD contient un conflit S/R au sens LR(0) dans l'état S:

$$\begin{bmatrix}
E5 \\
[S \to G \bullet = D] \\
[D \to G \bullet]
\end{bmatrix}$$

Pour savoir si c'est un conflit au sens SLR(1), calcul des *Suivant* :

- Suivant(S') = Suivant(S) = {#};
- $Suivant(G) = \{=\} \cup Suivant(D);$
- ▶ $Suivant(D) = Suivant(S) \cup Suivant(G)$;

D'où
$$Suivant(G) = Suivant(D) = \{\#, =\}.$$

 $=\in Suivant(D)$ donc E_5 contient un conflit S/R au sens SLR(1).

Conflit SLR(1) pour G_2 : origine

Conflit car $"=" \in Suivant(D)$.

Pourtant il n'existe pas de dérivation t.q. $S \Rightarrow^* w_1 D = w_2$

Suivant(D) contient ici un "=" jamais rencontré comme look-ahead dans une analyse effective.

Restriction des symboles de look-ahead

Si on particularise les symboles de look-ahead aux états E0 et E5 :

En E0 et E5, D ne peut être suivi que par # : levée du conflit.

Introduction

Analyseurs LR(0)
Principes
Construction de l'automate LR-AFD
Tables d'analyse LR(0)

Analyseurs SLR(1)

Analyseurs LR(1)

Principe

Enrichissement des items : items généralisés de la forme

$$[X \to \alpha \bullet, L]$$
, avec $L \subseteq V_T \cup \{\#\}$

Dans $[X \to \alpha_1 \bullet \alpha_2, L]$, L contient les symboles qui peuvent suivre X à ce stade de l'analyse.

Un analyseur LR(1) réduit par $X \to \alpha$ dans un état E contenant $[X \to \alpha \bullet, L]$ seulement si le symbole sous la tête de lecture appartient à L.

Remarque : pour $[X \to \alpha \bullet, L]$, $L \subseteq Suivant(X)$

Automate LR(1)

La méthode LR(1) ne repose pas sur l'automate LR-AFD.

Deux items $[X \to \alpha \bullet \beta, L]$ et $[X \to \alpha \bullet \beta, L']$ sont considérés comme différents si $L \neq L'$.

L'automate fini caractéristique d'un analyseur LR(1) (dit automate LR(1)) est donc beaucoup plus gros que l'automate LR-AFD, ce qui explique sa plus grande puissance.

Algorithme de construction de l'automate LR(1)

On procède comme pour l'automate LR-AFD :

- on sature les états par expansion;
- ▶ on transite sur chaque symbole Y tel que $[\cdots \rightarrow \cdots \bullet Y \dots]$

Mais on modifie la saturation pour calculer *L*.

Plus facile à expliquer si on décompose $[X \to \alpha, \{x_1, \dots, x_n\}]$ en un ensemble d'items généralisés unitaires :

$$[X \to \alpha, x_1], \ldots, [X \to \alpha, x_n]$$

Saturation des états LR(1): intuition

On considère l'item généralisé unitaire $[X \to \alpha \bullet Y\beta, a]$;

- ▶ on cherche à saturer pour Y : qui peut suivre Y?
- ▶ au moins les $Premier(\beta)$;
- ▶ mais si $\beta \Rightarrow^* \epsilon$, alors a, qui peut suivre X, peut aussi suivre Y.
- ▶ Donc Y peut être suivi par $Premier(\beta a)$.

Saturation des états LR(1): définition

Un ensemble d'items généralisés unitaires *E* est saturé si :

- ▶ s'il contient l'item généralisé unitaire $[X \to \alpha \bullet Y\beta, a]$;
- ▶ alors pour toutes les productions $Y \rightarrow \gamma \in P$,
- ▶ et pour tout $b \in Premier(\beta a)$,
- ▶ on a $[Y \rightarrow \bullet \gamma, b] \in E$.

En fin de saturation on reconstruit les items généralisés.

Algorithme de construction de Q et δ

L'état initial est Saturation($[S' \rightarrow \bullet S, \{\#\}]$).

Ensuite, pour chaque état saturé E et chaque symbole $Y \in V_T \cup V_N$ (lecture pour V_T , réduction pour V_N) :

si E contient un ensemble de n items enrichis de la forme
 «●Y»:

$$\{ [X \rightarrow \alpha_i \bullet Y\beta_i, \underline{L_i}] \mid 1 \leq i \leq n \}$$

alors on calcule

$$E' = \text{Saturation}(\{[X \to \alpha_i Y \bullet \beta_i, L_i] \mid 1 \le i \le n\})$$

- ▶ si cet état E' n'existe pas, on l'ajoute à Q;
- et on définit $\delta(E, Y) = E'$.

Exemple de G_1

$$S' \rightarrow S$$

 $S \rightarrow A \mid xb$
 $A \rightarrow aAb \mid x$

$$Premier(S) = Premier(A) \cup \{x\} = \{a, x\}$$
$$Premier(A) = \{a, x\}$$

État initial de G1

$$E0$$

$$[S' \rightarrow \bullet S, \#]$$

$$[S \rightarrow \bullet A, \#]$$

$$[S \rightarrow \bullet xb, \#]$$

$$[A \rightarrow \bullet aAb, \#]$$

$$[A \rightarrow \bullet x, \#]$$

Transition par x vers $E3 = Saturation(\begin{vmatrix} [S \rightarrow x \bullet b, \{\#\}] \\ [A \rightarrow x \bullet, \{\#\}] \end{vmatrix})$

$$\begin{bmatrix} S \to x \bullet b, \{\#\} \\ [A \to x \bullet, \{\#\}] \end{bmatrix})$$

E3
$$[S \rightarrow x \bullet b, \{\#\}]$$

$$[A \rightarrow x \bullet, \{\#\}]$$

Conflit au sens LR(1)?

Conflits au sens LR(1)

Un ensemble d'items généralisés provoque un conflit S/R s'il contient à la fois :

- ▶ un item de la forme $[Y \rightarrow \cdots \bullet a \dots, L]$, avec $a \in V_T$;
- ▶ un item de la forme $[X \to \alpha \bullet, L']$ avec $a \in L'$

Un ensemble d'items généralisés provoque un conflit R/R s'il contient à la fois :

- ▶ un item de la forme [$X \rightarrow \alpha \bullet, L$];
- ▶ un item de la forme $[Y \to \beta \bullet, L']$ avec $L \cap L' \neq \emptyset$.
- \Rightarrow pas de conflit au sens LR(1) en E3 : G_1 est LR(1).

Automate LR(1) pour G_1 , suite

Automate LR(1) pour G_1 , remarque

a éclaté en deux états LR(1) :

 \Rightarrow automate LR(1) plus gros que LR-AFD.

Exemple de G₂

$$S' \to S$$

$$S \to G = D \mid D$$

$$G \to *D \mid i$$

$$D \to G$$

État initial LR(1) pour G_2

$$\begin{split} & [S' \rightarrow \bullet S, \#] \\ & [S \rightarrow \bullet G = D, \#] \\ & [S \rightarrow \bullet D, \#] \\ & [G \rightarrow \bullet *D, =] \\ & [G \rightarrow \bullet i, =] \\ & [D \rightarrow \bullet G, \#] \\ & [G \rightarrow \bullet *D, \#] \\ & [G \rightarrow \bullet i, \#] \end{split}$$

ou

Automate LR(1) pour G_2

Transition $E0 \xrightarrow{G} E5$:

$$\begin{bmatrix}
E5 \\
[S \to G \bullet = D, \{\#\}] \\
[D \to G \bullet, \{\#\}]
\end{bmatrix}$$

Conflit S/R levé au sens LR(1) : G_2 est LR(1).

L'automate LR(1) comporte 14 états, contre 10 pour l'automate LR-AFD.

Construction de la table des actions LR(1)

```
Pour tout a \in V_T et q \in Q:
si q contient un item de la forme [X \to \cdots \bullet a \dots]
alors mettre decale dans la case (q,a)
```

Pour tout $q \in Q$, $q \neq q_f$ et tout $a \in V_T \cup \{\#\}$:

- ▶ si q contient un item terminal de la forme $[X \to \alpha \bullet, L]$;
- ▶ alors, si $a \in L$, mettre réduction $X \to \alpha$ dans la case (q, a).

Mettre acceptation dans la case $(q_f, \#)$.

Mettre erreur dans les cases encore vides.

Caractérisation d'une grammaire LR(1)

Une grammaire est LR(1) si sa table des actions contient pour chaque case :

- une seule action
- ou erreur.

Au delà des grammaires LR(1)

Beaucoup de grammaires sont LR(1).

Mais les tables sont rapidement trop grosses pour tenir en mémoire.

L'analyse utilisée en pratique est l'analyse LALR(1) (Look-Ahead LR(1)), avec :

$$LR(0) \subseteq SLR(1) \subseteq LALR(1) \subseteq LR(1)$$

L'analyse LALR(1) est un bon compromis entre puissance et encombrement mémoire.

CUP est un analyseur LALR(1).

