1. X_1, X_2, \cdots, X_n 是来自概率密度函数为

$$f(x,\theta) = \begin{cases} \frac{1}{2}\theta^3 x^2 e^{-\theta x}, & x \ge 0; \\ 0, & x < 0 \end{cases}$$

的总体的简单随机样本, 其中 $\theta > 0$.

- 1). 求 θ 的矩估计 $\hat{\theta}_{ML}$;
- 2). 求 θ 的 MLE (极大似然估计) $\hat{\theta}_L$;
- 3). $\hat{\theta}_L$ 是 θ 的无偏估计吗? 为什么?
- 4). $\hat{\theta}_{ML}$ 是 θ 的相合估计吗? 为什么?
- 2. X_1, X_2, \dots, X_n 和 Y_1, Y_2, \dots, Y_m 分别来自正态总体 $N(\mu_1, \sigma^2)$ 和 $N(\mu_2, \sigma^2)$ 的 简单随机样本, 且全样本独立.
 - 1). 设 $Z = \frac{a(\bar{X} \mu_1) + b(\bar{Y} \mu_2)}{\sqrt{(n-1)S_{1n}^2 + (m-1)S_{2m}^2}}$. 求常数 a 和 b 使得 Z 是 t 分布并给出自由度.
 - 2). 设 σ^2 未知,求假设检验

$$H_0: \mu_1 \leq \mu_2 \longleftrightarrow H_1: \mu_1 > \mu_2$$

的显著性水平为 α 的显著性检验.

3). 设 σ^2 已知, 求假设:

$$H_0: \mu_1 = \mu_0 = 0, \quad H_1: \mu_1^2 + \mu_2^2 > 0$$

显著性水平为 α 的似然比检验.

- 3. X_1, X_2, \dots, X_n 来自均匀分布总体 $U(0, \theta)$ 的简单随机样本, $\theta > 0$ 为未知参数.
 - 1). 求 θ 的 UMVUE(一致最小方差无偏估计).
 - 2). 求 θ 的置信水平为 $1-\alpha$ 的置信区间.