×

Relating Velocity, Acceleration and Displacement

2/2 points earned (100%)

Excellent!

Retake

Next

1/1 points

[#231] Accelerating vehicle

You're travelling in a straight line. With a constant acceleration of $0.50~\mathrm{m}\cdot s^{-2}$, how long does it take to accelerate from $13~\mathrm{m}\cdot s^{-1}$ to $18~\mathrm{m}\cdot s^{-1}$, and how far do you travel while doing so?

Time = ____ seconds

Distance = ____ metres.

Separate your answers with a comma (ex: a,b)

10, 160

Correct Response

We have constant acceleration. $v=v_0+at$, so

$$t=(v-v_0)/a=(18~{
m m\cdot s^{-1}}-13~{
m m\cdot s^{-1}})/(0.50~{
m m\cdot s^{-2}})=10~{
m s}~$$
 (to either 1 or 2 sig figs).

To find the distance travelled, we use:

$$v^2 - v_0^2 = 2a(x - x_0)$$
 , so

$$(x-x_0)=(v^2-v_0^2)/(2a)=[(18~{
m m\cdot s^{-1}})^2-(13~{
m m\cdot s^{-1}})^2]/[2(0.50~{
m m\cdot s^{-2}})]=160~{
m m}$$
 (to 2 sig figs).

The correct answer is: 10, 160 (or 10, 200 to one significant figure)

And no, the cyclist in the picture was not travelling at $18~m\cdot s^{-1}!$

Show other acceptable responses

1/1 points

2

[#232] Stopping distance

A value commonly taken for the perception-reaction time of motorists is $\Delta t=1.5~\mathrm{s}$. Using this value, determine the total stopping distance for a car travelling at $30~\mathrm{m\cdot s^{-1}}$ (two significant figures). In calculating the stopping distance, let's assume that the vehicle continues at its initial speed for Δt , then decelerates to rest. A reasonable value for the deceleration in braking is (constant) $8.0~\mathrm{m\cdot s^{-2}}$.

Stopping distance = ____ metres. (Hint: How many significant figures?)

100

Correct Response

During the constant deceleration, $a=-8.0~{
m m\cdot s^{-2}}$, $v_0=30~{
m m\cdot s^{-1}}$, and v=0.

$$v^2 - v_0^2 = 2a(x - x_0)$$

$$(x-x_0) = -v_0^2/2a = -(30~{
m m\cdot s^{-1}})^2/(-16.0~{
m m\cdot s^{-2}}) = 56~{
m m}$$
 .

To this we must add the distance the car travels during Δt . During reaction time, the car travels $\Delta x = v \Delta t = 45 \text{ m}$, so the total stopping distance, to 2 sig figs, is 100 m.

Important note. For an alert driver, perception-reaction times may be shorter, and they may be longer for a drowsy one. Under good conditions (clean, dry road), deceleration may be greater, but on a wet road it may be smaller. In any case, it's a long distance, so be careful on the highway.

