Problem Set 1

Evan Hataishi ICS 621: Analysis of Algorithms Prof. N. Sitchinava

September 6, 2019

1 Dynamic Arrays (40 pts)

Using the potential method, prove that insertion into the dynamic array has amortized cost of O(1).

Let D_i be a dynamic array, n be the number of items in D_i , and s be the size of D_i after i insertions. At any given time, D_i will have $n - \frac{s}{2}$ more items since the most recent resize. Each of these item's insertions must add enough "potential" to "pay" for a future resize. The potential must be enough to copy each item and a counterpart (in the first half of D_i). Thus, we can define our potential function to be

$$\Phi(D_i) = 2(n - \frac{s}{2}),$$
$$= 2n - s.$$

 D_0 is initially an array of size 0 with no elements. Items are only inserted and never removed, so the number of items n is guaranteed to be at least $\frac{s}{2}$. Therefore, this potential function is always greater than or equal to zero, and the amortized cost is an upper bound on the actual cost:

$$\Phi(D_i) > \Phi(D_0)$$
.

Suppose at the i-th insertion, the array is already full. A new array of size 2s is allocated, all n elements are copied over, and then the new element is finally inserted. n has increased by 1, and the array size has doubled. We obtain potential functions

$$\Phi(D_i) = 2(n+1) - 2s, \Phi(D_{i-1}) = 2n - s.$$

The actual cost c_i is the sum of the cost to copy s elements and insert the new element i.e. $c_i = s+1$. By equation (17.2), the amortized cost of this insertion is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}),$$

$$= (s+1) + (2(n+1) - 2s) - (2n-s),$$

$$= 3,$$

$$= O(1).$$

In the simpler and cheaper case, where the i-th insertion is into a non-full array, we only need to insert without resizing. The potential functions become

$$\Phi(D_i) = 2(n+1) - s, \Phi(D_{i-1}) = 2n - s.$$

The actual cost c_i is simply the cost of inserting a new item i.e. $c_i = 1$. By equation (17.2), the amortized cost of this insertion is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}),$$

= 1 + (2(n + 1) - s) - (2n - s),
= 3,
= $O(1)$.

As we can see, both the cheap and expensive cases for insertion yield an amortized cost of O(1).

2 Binomial Trees (60 pts)

Prove that for the binomial tree B_k ,

1. there are 2^k nodes

Base Case: If k = 0, $2^0 = 1$ node. B_0 is a binomial tree with only 1 node, so k = 1 holds.

Inductive Hypothesis: For any $k \ge 0$, a binomial tree B_k has 2^k nodes.

Induction Step: Prove that binomial tree B_{k+1} has 2^{k+1} nodes.

 B_{k+1} is a binomial tree made up of 2 binomial trees B_k . Therefore, the total number of nodes in B_{k+1} is the sum of the nodes in both B_k subtrees. By our inductive hypothesis:

nodes =
$$2^k + 2^k$$
,
= $2(2^k)$,
= 2^{k+1} . \checkmark

2. the height of the tree is k

Base Case: If k = 0, height is also zero. B_0 is a binomial tree with only 1 node, so its height is 0

Inductive Hypothesis: For any $k \geq 0$, a binomial tree B_k has height k.

Induction Step: Prove that binomial tree B_{k+1} has height k+1.

 B_{k+1} is a binomial tree made up of 2 binomial trees B_k with the root of one raised as the root of the other. Therefore, the height of B_{k+1} is the height of $B_k + 1$. By our inductive hypothesis:

height =
$$k + (1)$$
,
= $k + 1$. \checkmark

3. there are exactly $\binom{k}{i}$ nodes at depth i for i = 0, 1, ..., k

Base Case: If k = 0, depth can only be i = 0 (single root node). $\binom{0}{0}$ gives 1 node. B_0 is a binomial tree with only 1 node, so its depth is 0, and the root is its only node.

Inductive Hypothesis: For any $k \geq i$, a binomial tree B_k has $\binom{k}{i}$ nodes at depth i.

Induction Step: Prove that binomial tree B_{k+1} has $\binom{k+1}{i}$ nodes.

 B_{k+1} is a binomial tree made up of 2 binomial trees B_k with the root of one raised as the root of the other. The tree B_k that became the leftmost child of the now root tree B_k has the same group of nodes at depth-1 of B_{k+1} now. Therefore, the number of nodes at depth

i is the sum of the number of nodes in B_k at depth i + the number of nodes in B_k at depth i - 1. By our inductive hypothesis:

$$\binom{k+1}{i} = \frac{(k+1)!}{i!(k+1-i)!} = \binom{k}{i} + \binom{k}{i-1}.$$

Expand:

$$\binom{k}{i} + \binom{k}{i-1} = \frac{k!}{i!(k-i)!} + \frac{k!}{(i-1)!(k-i+1)!},$$

$$= \frac{k!}{i(i-1)!(k-i)!} + \frac{k!}{(i-1)!(k-i+1)(k-i)!},$$

$$= \frac{k!(k-i+1)}{i(i-1)!(k-i)!(k-i+1)} + \frac{k!(i)}{i(i-1)!(k-i)!(k-i+1)},$$

$$= \frac{k!(k-i+1) + k!(i)}{i(i-1)!(k-i)!(k-i+1)},$$

$$= \frac{k!(k-i+1+i)}{i(i-1)!(k-i)!(k-i+1)},$$

$$= \frac{k!(k-i+1+i)}{i(i-1)!(k-i)!(k-i+1)},$$

$$= \frac{k!(k+1)}{i!(k-i)!(k-i+1)},$$

$$= \frac{(k+1)!}{i!(k+1-i)!}.$$

4. the root has degree k, which is greater than that of any other node; moreover, as the Figure below shows, if we number the children of the root from left to right by k-1, k-2, ..., 2, 1, 0, then child i is the root of a subtree B_i

Proof. By the binomial tree's recursive definition, B_k is comprised of two binomial trees B_{k-1} , and each tree B_{k-1} is comprised of two more trees B_{k-2} , and so on. Therefore, by this recursive definition, B_k has higher degree than B_{k-1} , B_{k-1} has higher degree than B_{k-2} , etc.. *Proof.* By the binomial tree's recursive definition, to create a tree B_k , subtrees B_{k-1} are created, then B_{k-2} , and so on until B_0 . The leftmost subtree will then be B_0 . Ordering the children of the root by k-1, k-2, ..., 2, 1, 0 causes B_0 to become the 0-th child. B_1 becomes the 1-st child, and so on.