

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer : **0 485 483 B1**

(12)

EUROPÄISCHE PATENTSCHRIFT

(45) Veröffentlichungstag der Patentschrift :
26.01.94 Patentblatt 94/04

(51) Int. Cl.⁵ : **A47C 7/46, E04G 11/36,
A43D 3/14**

(21) Anmeldenummer : **90912337.4**

(22) Anmeldetag : **06.08.90**

(86) Internationale Anmeldenummer :
PCT/AT90/00078

(87) Internationale Veröffentlichungsnummer :
WO 91/01666 21.02.91 Gazette 91/05

(54) WÖLBMECHANIK.

(30) Priorität : **04.08.89 AT 1882/89
12.09.89 AT 2133/89**

(73) Patentinhaber : **Schuster, Wilhelm, Ing.
Neubauzeile 57
A-4030 Linz (AT)**

(43) Veröffentlichungstag der Anmeldung :
20.05.92 Patentblatt 92/21

(72) Erfinder : **SCHUSTER, Wilhelm
Neubauzeile 87
A-4030 Linz (AT)**
Erfinder : **SCHUSTER, Wilhelm
Zlninglessing 3
A-4210 Gallneukirchen (AT)**

(45) Bekanntmachung des Hinweises auf die
Patenterteilung :
26.01.94 Patentblatt 94/04

(74) Vertreter : **Piso, Eberhard, Dr.
Patentanwälte Barger, Piso & Partner
Postfach 333
A-1011 Wien (AT)**

(84) Benannte Vertragsstaaten :
AT BE CH DE DK ES FR GB IT LI LU NL SE

(56) Entgegenhaltungen :
**EP-A- 0 006 840
EP-A- 0 169 293**

EP 0 485 483 B1

Anmerkung : Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelebt, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

Die Erfindung betrifft eine Wölbmechanik mit einem Druckelement und mehrere Querverbindungsorgane umfassenden oder aus einem Stück bestehenden Gesamtdruckelement sowie wenigstens einem an diesem angreifenden Zugelement und einer zugeordneten Spannvorrichtung dafür. Die Wölbmechanik wird für Rückenlehnen bei Fahrzeug-, Büro- oder Wohnmöbelsitzen bzw. Sitzen aller Art, sowie für den Einsatz insbesonders bei medizinischen bzw. orthopädischen Geräten oder Vorrichtungen, z.B. Mieder oder Schuheinlagen, bei Baugerüsten oder Verschalungen, zur Herstellung von Bootskörpern usw. verwendet.

Beim Verstellen der Wölbung, z.B. einer Rückenlehne wandert der Wölscheitel herkömmlicherweise je nach Konstruktion der Wölbmechanik immer gleichbleibend über die Höhe der Lehne. Er paßt sich nicht ausreichend den wandernden Scheiteln einer sich mehr oder weniger krümmenden Wirbelsäule bzw. einer ärztlich empfohlenen bzw. vom Benutzer gewünschten Streckung der Wirbelsäule an. Bei Konstruktionen mit Sitzschalen geht bei zunehmender Wölbung üblicherweise auch der notwendige Seitenhalt verloren. Die EP-A 169 293 zeigt eine Rückenlehne für einen Automobilsitz mit einem zwingenden Rahmen, in den ein Stützteil federnd eingehängt ist. Der Stützteil besteht aus zwei über die Federn mit dem Rahmen verbundenen Seitenteilen und diese verbindenden Querelementen. Mittig ist eine über ein Handrad betätigbare Einstellwelle angeordnet, die sogenannten Eingreifeinrichtungen durchläuft, welche wiederum über biegsame Verbindungsorgane mit den äußersten Punkten der Seitenteile verbunden sind. Bei Verdrehen des Handrades soll eine Wölbung des Stützteiles erfolgen, wobei jedoch anfangs grundsätzlich bloß eine Dehnung der Federn eintreten wird. Diese Konstruktion unterstützt lediglich wenige Wirbel; die darunter oder darüber liegenden Wirbel haben keine gleich starke Stützung. Ein frei hängender oder in der Polsterung schwebender Einbau des Stützteiles in eine Lehne ist nicht möglich. Die DE-OS-2804703 zeigt eine Rückenlehne, bei welcher eine mit einander gegenüberliegend angeordneten Laschen versehene Platte über miteinander in Eingriff stehende Führungsschienen gewölbt werden kann. Die gesamte Platte kann über einen Kipphebel höhenverstellt werden.

Die EU-A1-322535 zeigt eine Rückenstütze mit einem oberen und einem unteren Stützband, die über ein vertikales flexibles Band und eine zwischen diesen gespannte Feder verbunden sind, wobei am unteren Stützband eine Verstellwelle über ein Getriebe angreift, um durch Biegen des flexiblen Bandes eine Wölbung der Rückenlehne zu erzielen.

Weiters sind auch Rückenlehnen aus geschäumtem Material bekannt, die sich der Form des Rückgrats

anpassen sollen.

Ein anderes Beispiel zeigt die DE-OS-3440846 mit einem Fahrzeugsitz, dessen Rückenlehne einen Rahmen und eine in diesen eingesetzte Platte umfaßt. In der Platte sind vertikal verlaufende Längsschlitzte eingearbeitet, in welchen eine Lendenstützvorrichtung bewegbar angeordnet ist. Die Lendenstützvorrichtung kann über ein Handrad mittels einer am Rahmen angelenkten Welle in ihrer Steifigkeit verstellt und vertikal eingestellt werden. Die Lendenstützvorrichtung steht in direkter Verbindung mit dem Rahmen. Dadurch werden alle Schwingungen des Fahrzeugs von der Straße voll auf den Rücken des Fahrers weitergeleitet.

Die bekannten Mechanismen lassen keine Anpassung an veränderte bzw. sich verändernde Wirbelsäulenkurven zu. So ändert sich z.B. bei stundenlangen Autofahrten die Wirbelsäulenkrümmung durch die notwendige Haltearbeit stark, wenn das gesamte Gewicht des Oberkörpers auf Grund der ungünstigen Stellung (zum Lenkrad ausgestreckte Hände) gehalten werden muß. Diese Muskel- bzw. Haltearbeit muß für das Aufrechthalten des Körpers bei falscher oder nicht vorhandener Stützung voll von Muskulatur und Skelett geleistet werden und führt logischerweise zu starken Ermüdungserscheinungen sowie Muskelverspannungen. Die eingesetzten Muskeln benötigen für diese Arbeit bis zu 40 mal mehr Blut bzw. die 40-fache Energie gegenüber einem anatomisch gestützten Oberkörper (dessen Muskeln keine Haltearbeit leisten müssen).

Die Stütz- bzw. Haltearbeit soll daher voll von der Wölbmechanik geleistet werden können, und zwar bei allen Wirbelsäulen (deren Kurven so verschieden sind wie die Gesichter der Menschen und die sich außerdem von Stunde zu Stunde je nach Müdigkeit, Anstrengung und zu leistender Haltearbeit verändern - die Körpergröße des Menschen nimmt von morgens bis abends um etwa 2 - 4 cm ab, und die Rückenwölbung verändert sich in diesem Zeitraum um bis zu 10 cm). Eine optimale Wölbmechanik muß daher in einer Weise differenziert wirken, daß sie z. B. bei Verwendung in einer Rückenlehne jede Rückenform geeignet abstützt, d.h. mindestens dreifach und verschieden stark wie folgt: 1. sehr stark und fest im Beckenbereich nach vorne (gegen das Rückwärtsskippen des Beckens), 2. etwas sanfter aber gleich fest radial und senkrecht jeden Wirbel im Lenden-(Lordose)-bereich einzeln und 3. wesentlich fester und senkrecht nach oben im Brustbereich unter den Schultern gegen das Gewicht des Oberkörpers. Die zusätzliche Stützung des Nackenbereiches kann eine weitere Forderung sein.

Eine einmal eingestellte und an die Wirbelsäulenform angepaßte Wölbung darf natürlich auch bei vollem Andruck ihre eingestellte Form nicht mehr ändern, um eine vollständige Stützung unabhängig von der augenblicklichen Krümmung der Wirbelsäule des Be-

nutzers zu garantieren.

Die für eine ergonomisch optimale Rückenlehne mindestens notwendige Dreifachstützung wird von den bekannten Einrichtungen nicht oder unvollständig erfüllt.

Aufgabe der Erfindung ist es daher, die oben genannten Nachteile zu beseitigen und eine ergonomisch wölbbare und höhenverstellbare Wölbmechanik zu schaffen, welche ein breites Anwendungsspektrum zuläßt und bei Verwendung als Lordosenstütze eine Mehrfach-, zumindest aber eine Dreifachstützung, garantiert.

Die Erfindung löst die Aufgabe dadurch, daß im oberen und unteren Bereich, vorzugsweise an einem Querverbindungsorgan, des zu wölbenden Abschnittes des Gesamtdruckelementes ein oder mehrere in der und/oder parallel zur Mittelachse des Gesamtdruckelementes verlaufende vertikale Zug- oder Druckelemente, vorzugsweise Stab oder Seil, angefahren.

Bei Betätigung der Spannvorrichtung bzw. des Druckmechanismus erfolgt die Wölbung der Mechanik daher derart, daß der Wölbscheitel, bezogen auf seine relative Höhenlage, erhalten bleibt oder sich verschiebt.

Die Relativlage des Wölbscheitels bezieht sich dabei entweder auf einen verwendeten Rahmen oder eine Sitzfläche oder auch relativ zum Lordosenscheitel des Menschen, d.h. wenn sich dieser im Sitz bewegt und seine Lordose dabei eine Veränderung erfährt, soll der Wölbscheitel der Mechanik trotzdem stets an diese angepaßt bleiben.

Ein andere Ausführungsform der Erfindung sieht vor, daß sie einen Rahmen und in den Rahmen eingesetzte, von mindestens einer Verstellvorrichtung betätigbare Druckelemente, vorzugsweise Druckbänder oder -flächen, umfaßt, und daß die vertikal verlaufenden Abschnitte des Rahmens über mindestens eine Verstellvorrichtung längenvariable Druckelemente sind.

Bei einer weiteren Ausführungsvariante der Erfindung ist vorgesehen, daß die Wölbmechanik einen an mehreren Stellen geschlitzten, überlappenden oder faltenbalgähnlichen Wölkörper umfaßt und daß zumindest an diesen Stellen mit einem oder mehreren Spannmechanismen versehene Zugelemente zum Schließen bzw. Öffnen dieser Bereiche angreifen, wodurch eine Krümmung des Wölkörpers in jede beliebige, vorbestimmbare Richtung erzielbar ist.

Weitere Merkmale der Erfindung sind den Unteransprüchen, der Beschreibung und der angeschlossenen Zeichnung zu entnehmen.

Es zeigen Fig. 1 bis 24 unterschiedliche Ausführungsformen der erfundungsgemäßen Wölbmechanik.

In Fig. 1 sind zwei vertikal verlaufende, im Abstand voneinander zugeordnete Druckstäbe 1, 1' mit senkrecht dazu verlaufenden Querrippen 13, 13' ver-

bunden. Den oberen Abschluß der Reihe von Querrippen bildet ein Abschluß- oder Gleitband 14, den unteren Abschluß eine Stützplatte 8 für den Beckenrand. Sowohl das Abschlußband 14 als auch die Stützplatte 8 ist an ihren äußeren Ecken mit Bohrungen versehen, in welche Federn 16, 16' eingehängt sind, die wiederum in einen nicht gezeigten Rahmen der Rückenlehne eingreifen. Zwischen und parallel zu den beiden Druckstäben 1, 1' verläuft vom Abschlußband 14 weg bis in den Mittelbereich der Wölbmechanik ein Sperr- oder Zughilfsband 9, in dessen oberen Bereich ein als Stange ausgebildetes Zugelement 2, z.B. eine Fahrradspeiche, eingehängt ist. A' ist der obere Angriffspunkt der Zugkraft. Ein weiteres Zugelement 2' ist in der Stützplatte 8 bei B', welche den unteren Angriffspunkt der Zugkraft bildet, eingehängt. Die beiden Zugelemente 2, 2' sind weiteres mit einem im mittleren Bereich der Wölbmechanik angeordneten Spannschloß 3 verbunden, welches über eine aus der Wölbmechanik führende Welle, an deren Ende ein Handrad angeordnet ist, betätigbar ist.

Beim Drehen des Handrades beginnt sich die Mechanik zu wölben, da die beiden Zugelemente (2, 2') zusammengezogen werden.

In Fig. 3 ist der Weg (h) zwischen X₁ und X₂ bei Wölbung der Mechanik dargestellt, den der aus seiner ursprünglichen Ebene unverrückte Wölbungsscheitel zurücklegt.

Bei der Ausführung nach Fig. 2 ist die Spannvorrichtung ein Bowdenzug, wobei des Zugelement 2' ein in einer Hülse verlaufender Draht ist. Der obere und untere Angriffspunkt der Spannvorrichtung am Wölkörper ist wieder mit A' und B' gekennzeichnet.

Auch bei der Ausführung nach Fig. 4 ist die Spannvorrichtung durch einen Bowdenzug 10 realisiert. Das über einen Gewindeantrieb bzw. ein Schneckengetriebe 22, 23 in seiner Hülse verschiebbare Zugelement 2'' ist ein Draht bzw. ein Bowdenzug, der an der rechten Seite der Stützplatte 8 angreift. Die Hülse ist im Bereich des Drahtaustritts mit einem weiteren Zugelement verbunden. Dieses Zugelement ist eine Stange 2''', die im rechten Bereich eines Hebels 7 angelenkt ist, der wieder über ein kurzes Zugelement mit dem Sperrhilfsband verbunden ist. Vom linken Rand des Hebels 7 führt eine Zugstange zum linken Bereich der Stützplatte 8. Durch diese Konstruktion der Spannvorrichtung ist wieder eine Wölbung der gesamten Mechanik bei stillstehendem Wölbungsscheitel erzielbar, da bei Betätigung des Seilzuges die links außen verlaufende Zugstange mitgenommen wird.

Die in Fig. 6 dargestellte Ausführungsform basiert im wesentlichen auf der in Fig. 4 gezeigten, allerdings ist zwischen dem Hebel 7 und dem Abschlußband noch eine Zugfeder 4 und in Verlängerung dieser Feder zwischen dem Hebel 7 und der Stützplatte 8 eine Druckfeder 5 vorgesehen, wobei zwischen der Druckfeder 5 und der Stützplatte 8 eine Spannstell-

schraube 6 vorgesehen ist.

Die Funktion des Hebels kann durch eine in der Stützplatte 8 angeordnete Umlenkrolle ersetzt werden, wobei das als Seil ausgebildete Zugelement aus der Hülse des Bowdenzuges kommend über die Rille läuft, umgelenkt wird und bis zum Abschlußband läuft, an welchem es einen Fixpunkt hat. (Fig. 6a)

Ensprachend Fig. 4 verläuft vom Austritt des Drahtes aus der Hülse 10 parallel zu diesem eine Zugstange.

Fig. 7 zeigt eine Ausführung der Wölbmechanik, bei der sich die Druckstäbe 1" am äußersten Rand der Konstruktion befinden und die lotrechten Abschnitte eines Rahmens bilden. Die Stützplatte für den Beckenrand ist über einen Zugstab mit einem Hebel verbunden, der wiederum, ausgehend von seinen beiden Enden, einerseits mit einem ersten Zughilfsband und andererseits mit der Hülse des Zugkabels eines Bowdenzuges verbunden ist, wobei das Kabel an einem zum ersten Hilfsband um die Mittellinie der Konstruktion spiegelbildlich angeordneten zweiten Hilfsband angreift.

Fig. 8 zeigt eine Ausführung der Wölbmechanik mit zwei parallelen, lotrechten Druckstäben, senkrecht dazu angeordneter Querrippe und einem in der senkrechten Mittelachse der Konstruktion liegenden Zughilfsband. An diesem Zughilfsband ist ein Zugelement 2" angeordnet, welches mit einem über ein Handrad betätigbar Spannschloß 3' verbunden ist. Die äußersten Bereiche der Wölbmechanik sind mit zwei zu den Druckstäben parallelen und außerhalb dieser angeordneten Zugfedern 4, 4' verbunden. Die strichliert dargestellten Teile zeigen die Stellung der Konstruktion nach einer Wölbung. Die Betätigung kann statt über das Spannschloß 3' auch über einen Fixierexzenter 17', 17" erfolgen (Fig. 8c, 8c').

Nach einem weiteren Erfindungsgedanken umfaßt die Wölbmechanik einen Rahmen, dessen senkrechte Holme die Druckelemente bilden. Der Rahmen ist horizontal zweigeteilt. Wie in Fig. 9, 9a, 9b, 9c, 9d, 9e dargestellt, sind die mit Abstand zueinander angeordneten Enden des Rahmens jeweils mit einem Hebelarm verbunden, wobei die jeweils benachbarten Hebel miteinander verbunden und an Zugelemente angelenkt sind. Darüber hinaus sind die offene Bereiche im Rahmen bildenden Enden mit je einer Hülse an jeder Seite des Rahmens versehen.

Wie in Fig. 9a dargestellt, sind jeweils zwei benachbarte Hebel zentral miteinander verbunden, wobei jeweils der unten angeordnete Hebel mit dem oberen Querholm des Rahmens durch ein Zugelement verbunden ist und die beiden oben angeordneten Hebel eine Verbindung mit dem unteren Querholm aufweisen, in deren Verlauf eine nicht dargestellte Verstelleinrichtung zwischengeschaltet ist.

Bei Betätigung dieser Verstelleinrichtung wölben die Zugelemente primär die Wölbung an den äußeren Rändern einer beispielsweise schalenförmig ausge-

bildeten Rückenlehne, indem die Druckelemente eine Verlängerung erfahren. An Stelle von Druckstäben können auch Druckflächen verwendet werden.

Es entsteht also primär eine Aktivwölbung des Schalenrandes, wobei nach innen gewölbte Querrippen (-drähte, -bänder, -netze) in jenem Bereich, in welchem ebenfalls eine Wölbung aus der Schale erfolgen soll, dadurch aktiv mitgewölbt werden, daß sie ihrerseits fix oder federnd mit den beiden (oder auch mehreren) aktiven Wölbrändern der Schale mitgenommen werden. Die Schalenform einer Fläche bleibt auch unabhängig von der Intensität der Wölbung erhalten; die Schalenform kann sogar noch intensiviert werden. Beispielsweise kann so die Wölbung einer Sitzfläche gesteigert werden, ohne daß sich dabei die Tiefe der Schale verringert.

Fig. 10a, b zeigen eine Konstruktion, bei der ebenfalls die an den Enden des geteilten Rahmens angreifenden Hebel über ein Zugelement zu einer Betätigungs vorrichtung führen. Diese Vorrichtung umfaßt eine auf die senkrechte Mittellinie der Konstruktion zentriert angeordnete Scheibe, die über einen Handgriff verdreht werden kann. Der Handgriff wiederum ist in Rasten fixierbar (Fig. 10b). Die Scheibe hat zwei dezentral gegeneinander versetzte, annähernd kreisbogenförmige Ausnehmungen, in welchen je ein zum oberen und ein zum unteren Bereich des Rahmens führendes Zugelement angeordnet ist, und bildet so einen Doppelzentrum. Fig. 10' bzw. 10" zeigen die Form der Konstruktion vor und nach dem Wölbvorgang. Die in Fig. 10 beschriebene Vorrichtung zum Wölben der Konstruktion findet auch in Fig. 11 Verwendung, wird hier allerdings zentral in der Wölbmechanik eingesetzt, wobei sich von jeweils einer Ausnehmung des Exzentrums zwei Zugelemente zu den äußeren Bereichen des Rahmens, symmetrisch zur senkrechten Mittellinie, erstrecken.

Die nach Betätigung der Wölbvorrichtung erzielte Form ist in Fig. 11" dargestellt.

Die Fig. 13, 14 zeigen beispielsweise über einen Seilzug oder eine Zahnrad-Ritzel-Kombination, wobei die Scheibe selbst als Zahnrad ausgebildet ist, betätigbare Exzenter scheiben.

Fig. 12a, b zeigt einen über eine Feder an der unteren Stützplatte angeschlossenen Hebel, der seinerseits über Zugelemente mit dem oberen bzw. unteren Bereich der Wölbmechanik verbunden ist und nach entsprechender Wölbung des Rückenteils in Rasten fixiert werden kann (strichlierte Darstellung).

Fig. 15 zeigt eine Kombinationskonstruktion, bei der sowohl die Höhe als auch die Wölbung einfach verstellt werden kann, wobei die mit "W" bezeichneten Zugelemente für die Wölbung und das mit "HV" bezeichnete Zugelement für die Höhenverstellung verantwortlich sind.

Fig. 16 zeigt eine im wesentlichen der Fig. 1 identische Ausführung der Wölbmechanik, wobei allerdings die gesamte Mechanik beim Wölben entlang

zweier um die senkrechte Mittelachse symmetrisch angeordneter Stäbe gleitet.

Die in Fig. 1 bis 24 dargestellte Wölbmechanik kann weiters Druckelemente (Stäbe, Flächen, Gitter usw.) aufweisen, die eine Wölbung in mehreren Richtungen erfahren können, indem sie beispielsweise an einer oder mehreren Stellen Unterbrechungen (offene Stellen, Überlappungen), Sperrbänder oder faltenbalgähnliche Bereiche haben (Fig. 18).

Die für derartige Konstruktionen verwendeten, die Druckelemente durchsetzenden bzw. an ihren vorbeiführenden (eventuell mit Abstandhaltern) Zugelemente schließen beim Spannen durch einen oder mehrere Spannmechanismen die offenen bzw. überlappten Zwischenräume bzw. faltenbalgähnlichen Bereiche in den Druckelementen stufig oder stufenlos. Bei Verwendung von Sperrbändern oder durch andere geeignete Mittel verstiefe Bereiche unterliegen jedenfalls einer reduzierten oder intensivierten Wölbung. Durch dieses zuvor genannte teilweise oder vollständige Schließen der offenen Stellen bzw. Falten entsteht gegenüber den nicht unterbrochenen bzw. nicht faltenbalgähnlichen Bereichen der Druckelemente, auch in der Querrichtung zu den Zugelementen, eine Wölbung. Herkömmlicherweise kann sich eine Wölbfläche nur etwa parallel zu den bzw. in Richtung der Zugelemente(n) wölben. Durch diese "mehrdimensional" wölbbare Konstruktion kann durch das Schließen einander gegenüberliegender offener Enden einer flachen oder leicht gewölbten Fläche beispielsweise auch eine Kugel oder kugelähnliche Flächen realisiert werden.

Eine derartige Konstruktion kann beispielsweise im Bauwesen bei Schalungselementen oder im Schiffsbau Verwendung finden. Die Wölbfläche kann bereits beispielsweise durch Federkraft vorgewölbt sein und durch leichte Betätigung der Spannvorrichtung in eine andere gleichartige oder entgegengesetzt gerichtete Wölbung gebracht werden. Als Spannvorrichtung für die erfindungsgemäße Wölbmechanik kann auch eine einfache Seilwinde, Spule oder Spindel Verwendung finden, mit welcher auch größere Längenänderungen am Zug- bzw. Druckelement vorgenommen werden können.

Es können auch mehrere Wölbmechaniken verwendet werden, wobei sich deren Wirkungen summieren oder aufheben können, wodurch beispielsweise eine oder mehrere zusätzliche Wölbungen in einer bereits vorhandenen Wölbung realisierbar sind.

So ist es durch diese Konstruktion möglich, daß, egal wie und welche der zusammengeschalteten Wölbmechaniken einzeln eingestellt sind, bei Entspannung des Hauptzuges auf jeden Fall alle zusammen-, gegeneinander oder überlappend geschalteten Einzel-Wölbmechaniken und die Gesamt-Wölbmechanik sich auf Null oder einen z.B. gewünschten Zwischen- oder Endwert einstellen lassen und sich beim Wiederwölben nur jener Wölbmechanik-Teil wölbt,

der laut eingestellten Schlitten, Steuerhebeln, Exzenter usw. und deren Totgängen (Schlitzen oder sonstigen Freiräumen der Zug- oder Druckelemente oder deren Gelenke, Anschlüsse etc.) aktiv wölben soll (z.B. Fig. 19).

Bei der in dieser Figur dargestellten Ausführung der Wölbmechanik ist je nach Stellung des Hebels H (strichlierte oder stark ausgezogene Stellung) von einer minimalen bis zu einer maximalen Wölbung jede gewünschte Form erzielbar. Je nach Positionierung des Hebels H entlang der mit Richtungspfeilen versehenen Linie IHV kann eine interne Höhenverschiebung des Wölscheitels (Stellungen S₁, S₂, S₃) erfolgen.

Die Fig. 20 zeigt eine ähnliche Ausführung, bei welcher die variable Wölbmöglichkeit der Mechanik und die interne Höhenverstellung über einen Bowdenzug, Linearmotor und Modulsystem erfolgt.

Die in der Beschreibung genannten Wölbmechaniken oder auch einzelne Elemente derselben können in Baukasten- bzw. Modulbauweise hergestellt und unter Verwendung geeigneter Verbindungselemente, z.B. fahrradspeichenartiger Elemente mit Köpfen, die in entsprechend gestaltete Bajonetschlüsse od.dgl. einsetzbar sind, oder anderer Steck-, Clips-, Klemmverbindungen usw. jederzeit schnellstens montiert, ausgetauscht, repariert, variiert bzw. mit allen bisherigen oder künftigen beliebigen Bau- oder Konstruktionselementen kombiniert werden. Diese Modulbauweise ermöglicht eine individuelle Herstellung der Mechanik, da alle erfindungsgemäßen Elemente wahlweise untereinander austauschbar oder auch durch bereits vorgegebene (z.B. bei Einbau der Mechanik in einen bereits fertigen Sitz oder ein anderes Konstruktionselement) bzw. fremde Elemente ergänzbar sind. Erfindungsgemäße Wölbmechaniken können bisher verwendete Wölbmechaniken ersetzen oder zusätzlich zu diesen in beliebigen Winkellagen oder parallel in beliebigen Kombinationen angeordnet werden.

Die Wölbung kann mechanisch, elektrisch, pneumatisch usw., direkt oder durch Fernübertragung erfolgen, und zwar derart, daß der Wölscheitel nach Wunsch in seiner Höhe eingestellt werden kann oder innerhalb der Konstruktion nach Wunsch hervortritt.

Fig. 21 zeigt eine Ausführung, bei der die Wölbmechanik in eine Rückenlehne integriert ist.

Die Rückenlehne wird beispielsweise von einem U-förmigen, nach unten zu offenen Rahmen 27 und einem Rahmenbügel 28 gebildet. Innerhalb dieses U-förmigen Rahmens sind zwei senkrecht verlaufende, am Rahmen befestigte Spanndrähte 29 angeordnet. Diese Spanndrähte können in ihrem oberen Bereich, wie in Fig. 21 dargestellt, beispielsweise mäanderförmig ausgebildet sind. Ebenfalls im oberen Bereich der Spanndrähte durchläuft ein weiterer Spanndraht 29' die Rückenlehne horizontal. Im unteren, im wesentlich geradlinigen (für die Aufnahme der Getriebe

zweier um die senkrechte Mittelachse symmetrisch angeordneter Stäbe gleitet.

Die in Fig. 1 bis 24 dargestellte Wölbmechanik kann weiters Druckelemente (Stäbe, Flächen, Gitter usw.) aufweisen, die eine Wölbung in mehreren Richtungen erfahren können, indem sie beispielsweise an einer oder mehreren Stellen Unterbrechungen (offene Stellen, Überlappungen), Sperrbänder oder faltenbalgähnliche Bereiche haben (Fig. 18).

Die für derartige Konstruktionen verwendeten, die Druckelemente durchsetzenden bzw. an ihren vorbeiführenden (eventuell mit Abstandhaltern) Zugelemente schließen beim Spannen durch einen oder mehrere Spannmechanismen die offenen bzw. überlappten Zwischenräume bzw. faltenbalgähnlichen Bereiche in den Druckelementen stufig oder stufenlos. Bei Verwendung von Sperrbändern oder durch andere geeignete Mittel verstiefe Bereiche unterliegen jedenfalls einer reduzierten oder intensivierten Wölbung. Durch dieses zuvor genannte teilweise oder vollständige Schließen der offenen Stellen bzw. Falten entsteht gegenüber den nicht unterbrochenen bzw. nicht faltenbalgähnlichen Bereichen der Druckelemente, auch in der Querrichtung zu den Zugelementen, eine Wölbung. Herkömmlicherweise kann sich eine Wölbfläche nur etwa parallel zu den bzw. in Richtung der Zugelemente(n) wölben. Durch diese "mehrdimensional" wölbbare Konstruktion kann durch das Schließen einander gegenüberliegender offener Enden einer flachen oder leicht gewölbten Fläche beispielsweise auch eine Kugel oder kugelähnliche Flächen realisiert werden.

Eine derartige Konstruktion kann beispielsweise im Bauwesen bei Schalungselementen oder im Schiffsbau Verwendung finden. Die Wölbfläche kann bereits beispielsweise durch Federkraft vorgewölbt sein und durch leichte Betätigung der Spannvorrichtung in eine andere gleichartige oder entgegengesetzt gerichtete Wölbung gebracht werden. Als Spannvorrichtung für die erfindungsgemäße Wölbmechanik kann auch eine einfache Seilwinde, Spule oder Spindel Verwendung finden, mit welcher auch größere Längenänderungen am Zug- bzw. Druckelement vorgenommen werden können.

Es können auch mehrere Wölbmechaniken verwendet werden, wobei sich deren Wirkungen summieren oder aufheben können, wodurch beispielsweise eine oder mehrere zusätzliche Wölbungen in einer bereits vorhandenen Wölbung realisierbar sind.

So ist es durch diese Konstruktion möglich, daß, egal wie und welche der zusammengeschalteten Wölbmechaniken einzeln eingestellt sind, bei Entspannung des Hauptzuges auf jeden Fall alle zusammen-, gegeneinander oder überlappend geschalteten Einzel-Wölbmechaniken und die Gesamt-Wölbmechanik sich auf Null oder einen z.B. gewünschten Zwischen- oder Endwert einstellen lassen und sich beim Wiederwölben nur jener Wölbmechanik-Teil wölbt,

der laut eingestellten Schlitten, Steuerhebeln, Exzenter usw. und deren Totgängen (Schlitzen oder sonstigen Freiräumen der Zug- oder Druckelemente oder deren Gelenke, Anschläge etc.) aktiv wölben soll (z.B. Fig. 19).

Bei der in dieser Figur dargestellten Ausführung der Wölbmechanik ist je nach Stellung des Hebels H (strichlierte oder stark ausgezogene Stellung) von einer minimalen bis zu einer maximalen Wölbung jede gewünschte Form erzielbar. Je nach Positionierung des Hebels H entlang der mit Richtungspfeilen versehenen Linie IHV kann eine interne Höhenverschiebung des Wölscheitels (Stellungen S₁, S₂, S₃) erfolgen.

Die Fig. 20 zeigt eine ähnliche Ausführung, bei welcher die variable Wölbmöglichkeit der Mechanik und die interne Höhenverstellung über einen Bowdenzug, Linearmotor und Modulsystem erfolgt.

Die in der Beschreibung genannten Wölbmechaniken oder auch einzelne Elemente derselben können in Baukasten- bzw. Modulbauweise hergestellt und unter Verwendung geeigneter Verbindungselemente, z.B. fahrradspeichenartiger Elemente mit Köpfen, die in entsprechend gestaltete Bajonettsschlüsse od.dgl. einsetzbar sind, oder anderer Steck-, Clips-, Klemmverbindungen usw. jederzeit schnellstens montiert, ausgetauscht, repariert, variiert bzw. mit allen bisherigen oder künftigen beliebigen Bau- oder Konstruktionselementen kombiniert werden. Diese Modulbauweise ermöglicht eine individuelle Herstellung der Mechanik, da alle erfindungsgemäßen Elemente wahlweise untereinander austauschbar oder auch durch bereits vorgegebene (z.B. bei Einbau der Mechanik in einen bereits fertigen Sitz oder ein anderes Konstruktionselement) bzw. fremde Elemente ergänzbar sind. Erfindungsgemäße Wölbmechaniken können bisher verwendete Wölbmechaniken ersetzen oder zusätzlich zu diesen in beliebigen Winkellagen oder parallel in beliebigen Kombinationen angeordnet werden.

Die Wölbung kann mechanisch, elektrisch, pneumatisch usw., direkt oder durch Fernübertragung erfolgen, und zwar derart, daß der Wölscheitel nach Wunsch in seiner Höhe eingestellt werden kann oder innerhalb der Konstruktion nach Wunsch hervortritt.

Fig. 21 zeigt eine Ausführung, bei der die Wölbmechanik in eine Rückenlehne integriert ist.

Die Rückenlehne wird beispielsweise von einem U-förmigen, nach unten zu offenen Rahmen 27 und einem Rahmenbügel 28 gebildet. Innerhalb dieses U-förmigen Rahmens sind zwei senkrecht verlaufende, am Rahmen befestigte Spanndrähte 29 angeordnet. Diese Spanndrähte können in ihrem oberen Bereich, wie in Fig. 21 dargestellt, beispielsweise mäanderförmig ausgebildet sind. Ebenfalls im oberen Bereich der Spanndrähte durchläuft ein weiterer Spanndraht 29' die Rückenlehne horizontal. Im unteren, im wesentlich geradlinigen (für die Aufnahme der Getriebe

eventuell gekröpften) Bereich der beiden Spanndrähte 29 ist ein erstes Getriebe 30 mittels Klemmelementen 31 fixierbar an ihnen angeordnet. Das erste Getriebe 30 steht über eine Schnecke, ein Schneckenrad und ein Ritzel (alle nicht dargestellt) mit einer ersten Zahnstange 32 in Wirkverbindung. Die Zahnstange 32 ist in ihrem unteren Bereich von einer Querwelle 33 durchsetzt. Das Getriebe weist eine große Übersetzung auf, die Verstellung der Stütze kann daher mit geringen Kräften und kleinen Drehmomenten erfolgen. Das Druckelement wird von den Spanndrähten 29, welche auch als Gleiträhte dienen, aufgenommen, d.h., das Druckelement ist auf ihnen verschiebbar angeordnet.

Das Gesamtdruckelement setzt sich vorteilhaftweise aus einem oberen Abschlußband 34, in Abstand zueinander angeordneten Querrippen 35, 36, 37 und vorzugsweise einem im unteren Bereich der Rückenlehne angeordneten Stützblech 38 für den Beckenrand der Wirbelsäule, in dieser Reihenfolge, zusammen. Diese Elemente sind mittels wenigstens zweier, im wesentlichen zu den Spanndrähten parallel verlaufender Druckbänder 39 verbunden. Das Abschlußband und das Stützblech sind über je zwei Gleitösen 40, 40' und 41, 41' an den Spanndrähten verschiebbar angeordnet.

Das erste Getriebe 30 ist über eine biegsame Welle 42 mit einem beispielsweise im unteren Bereich der Rückenlehne angeordneten Elektromotor 43 verbunden. Bei Betätigung des ersten Getriebes 30 erfolgt eine Höhenverstellung des gesamten Druckelements. Am oberen Abschlußband 34 ist ein zweites Getriebe 44 angeordnet, welches äquivalent dem ersten Getriebe 30 über eine große Übersetzung mit einer zweiten Zahnstange 45 in Wirkverbindung steht. Auch dieses Getriebe wird über eine von einem Elektromotor 43' betriebene biegsame Welle 42' angetrieben. Dieses zweite Getriebe ist starr am oberen Teil des Gesamtdruckelements angeordnet. Vorzugsweise sind die beiden Getriebe baugleich und können zufolge verringerter Kräfte aus Kunststoff sein. Vorteilhafterweise können die beiden über Klemmelemente 31 an den Spanndrähten 29 angeordneten Getriebe einfach abgenommen sowie aufgesteckt werden. Die beiden Getriebe sind vorteilhafter Weise aus Kunststoff, Preßstoff, Metall-Druckguß oder Blech.

Das Gesamtdruckelement muß nicht notwendigerweise wie oben beschrieben aufgebaut sein, beispielsweise kann es auch aus einer einzigen oder mehreren Wölbplatten aus einem beliebigen, druckfesten, aber biegsamen Material bestehen, welche wiederum geschlossen, perforiert oder gitterförmig oder in Materialdicke und -festigkeit an einzelnen Stellen unterschiedlich ausgeführt sein kann (können), um die Erzielung verschiedener oder gleicher Kurvenformen in unterschiedlichen Bereich zu ermöglichen.

An der zweiten Zahnstange 45 ist über einen Ge-

lenkbolzen 46 ein in diesem Ausführungsbeispiel dreieckförmiger Waagebalken 47 angelenkt. Der Waagebalken weist zwei Bohrungen, beispielsweise eine in seiner Mitte und eine in seinem dem Gelenkbolzen gegenüberliegenden Ende, auf. Die in Fig. 21 dargestellte linke Bohrung des Waagebalkens ist über eine starre Speiche 48 mit dem oberen Abschlußband 34 und über eine weitere Speiche 49 mit dem Stützblech 38 verbunden.

Bei Betätigung der zweiten Zahnstange erfolgt eine Krümmung des Druckelementes, da sich der Abstand zwischen Stützblech und Abschlußband verändern muß, die Speichen jedoch starr sind. Je nach Krümmung wandert der Scheitelpunkt nach oben oder nach unten. Die Stellung des Waagebalkens (von leicht schräg nach oben bis leicht schräg nach unten) hängt von der Stärke der eingestellten Wölbung der Stütze ab. Je nach Anordnung der mittleren Bohrung des Waagebalkens 47 kann ein unterschiedliches Übersetzungsverhältnis geschaffen werden. Durch die Längenänderung der zweiten Zahnstange wird der vom Gelenkbolzen gebildete Drehpunkt mitgenommen. Ist beispielsweise der Abstand der Bohrungen gleich groß, wird die Speiche einen nur halb so großen Weg wie die zweite Zahnstange machen (halbe Kraft - doppelter Weg).

Da die Wölbmechanik mittels der vier Ösen, welche auch durch Gleitsteine ersetzt werden können, über die Spanndrähte gleitet, erweist es sich als besonders vorteilhaft, diese als Einschnappmechanismen auszubilden, beispielsweise als offene, insbesondere U-förmige, sich zur Öffnung hin wieder verengende Elemente.

Dadurch läßt sich die gesamte Konstruktion wie ein Modul behandeln und bei Montage oder notwendiger Reparatur sekundenschnell auswechseln bzw. montieren. Die Motoren 43, 43' sind vorteilhafterweise über je ein Befestigungsblech 50 am Rahmen angeordnet.

Wahlweise alle oder einzelne der "Zug"-bedingten Elemente der Konstruktion sind entweder beispielsweise durch die gekröpften Enden (51, 52) des Gesamtdruckelementes, wie aus Fig. 22 ersichtlich, welche einen Schnitt entlang der Linie A-A in Fig. 21 darstellt, oder durch separate Abstandhalter bzw. Konstruktionselemente oder durch eine leichte Vorspannung der Zugelemente usw., in einem Abstand zum Gesamtdruckelement (oder Teilen davon) gehalten, wodurch die Wölbrichtung bestimmt ist. Weiters ist auch eine Ausführung mit einem gemeinsamen Antrieb denkbar.

Eine allgemeine Darstellung dieser Variante zeigt Fig. 23.

Eine weitere, der Ausbildung nach Fig. 21 ähnliche Ausführung zeigt Fig. 24. Der Antrieb der Wölbmechanik erfolgt hier über Bowdenzüge 53 und zwei Linearmotoren 54, 54'. Der in der Figur rechts angeordnete Linearmotor 54 dient der direkten bzw. indi-

rekten Regelung der Wölbung.

Eine direkte Wölbungssteuerung erfolgt dann, wenn der Bowdenzug direkt an der Wölbmechanik angreift. Die in der Figur dargestellte Steuerung über einen Übersetzungs-Waagebalken 55 ist eine indirekte Steuerung. Diese kann auch über Umlenkrollen, Bögen usw. erfolgen.

Die in der Figur links dargestellte Steuerung zeigt einen doppeltwirkenden Linearantrieb 54', der auf der einen Seite das Bowdenzug-Seil 53' einzieht und an der gegenüberliegenden Seite eben dieses Seil nachlässt. Damit kann beispielsweise die Höhenverschiebung des Druckelements entlang der Spann- oder Gleiträhte, aber auch in oder auf Gleitschienen, in oder auf Gleitflächen, in Schalenkörpern oder frei im Raum direkt, auf ein oder mehreren Bowdenzug-Seilen schwebend oder hängend, durchgeführt werden.

Die das Bowdenzug-Seil 53' führende Bowdenzughülle 56 wird beispielsweise am Führungsdrähten oben und unten mit einer eingehängten ÖSENSPEICHE oder direkt am Rahmen (bei den Punkten D, E, F, G) eingehängt. Das bewegliche Bowdenzug-, aber auch jedes beliebige Zug- oder Steuerseil kann nun an beliebigen Punkten über eine oder mehrere Quetsch- oder Schraubverbindungen angeklemmt werden und beliebig über einen Steuerhebel, aber auch über ein beliebiges Gestänge, einen Seilzug oder eine Schubverbindung an einem beliebig vorwählbaren Punkt (in dieser Figur als Möglichkeiten mit A, B und C gekennzeichnet) befestigt werden, wodurch bei Verschieben des Seiles innerhalb des Bowdenzuges oder einer der vorgenannten Einrichtungen die Wölbmechanik synchron mit der Seilverchiebung mitbewegt wird. Erfolgt die Verbindung nun am obersten Punkt der Wölbmechanik (A), so wandert beim Wölben, durch die Verkürzung der gesamten Wölbfläche auch der Scheitel im Verhältnis der Längen zwischen Oberkante und Scheitel sowie Scheitel und Unterkante exakt im selben Prozentsatz nach oben.

Das kann vor allem vom medizinischen Standpunkt aus gesehen sehr wichtig sein, da bei einer Wölbung der Wölbmechanik für "Kreuzhohl-Stellung" der Mensch gleichzeitig auch etwas gestreckt wird.

Erfolgt die Befestigung im Scheitel, so bleibt der Wölscheitel, bezogen beispielsweise auf die Sitzfläche, konstant. Bei einer Verbindung am untersten Punkt der Mechanik (C), wird beim Wölben die gesamte Längenverkürzung durch das Wölben nur am obersten Ende der Wölbmechanik wirksam und alle anderen Punkte wie auch der Wölscheitel verlagern sich nur in einem prozentuellen Verhältnis der verschiedenen Längen der einzelnen Wölbmechanikhälften zueinander nach unten.

Der Wölscheitel bleibt hier natürlich auch relativ zum Menschen gesehen erhalten, da der Mensch beim Krümmen der Wirbelsäule (die zuletzt genannte Ausführungsform paßt für diesen Fall) etwa kleiner

wird und die Lordose damit leicht nach unten sinkt.

Die jeweilige Fixierung hängt also vorderhand davon ab, ob man mit dem Menschen synchron mitgehen will. Bei einer aktiven Stützung des Rückens muß man den Scheitel fixieren. Dann kann sich der Mensch beim Kleinerwerden durch Kreuzhohl-Wölben an dem, bezogen auf die Höhe, ruhenden Scheitel voll abstützen. Dadurch trägt die Wölbmechanik und nicht die Wirbelsäule das Oberkörpergewicht.

Weiteres ist eine Einstellung einer nacheilenden oder voreilenden Phasenverschiebung zwischen dem fixen Scheitel der Lordose und dem Scheitel der Wölbmechanik denkbar, d.h., es erfolgt ein Über- bzw. Untercompensieren des Scheitels.

Die Wölbmechanik kann selbstverständlich auch als Zusatz zu anderen Konstruktionen angewendet oder in solche integriert werden (beispielsweise Aufstecken der Mechanik auf eine bereits vorhandene Lehne). Weiters sei noch darauf verwiesen, daß die Mechanik oder Elemente davon in Wirkverbindung mit einer Memory-Einrichtung stehen können, wobei Wölbung und Scheitelstellung programmiert werden und sich unter Verwendung von Chip, Magnetkarte, Tastendruck usw. selbsttätig in die programmierte Stellung bringen oder sich mechanisch, z.B. mit Hilfe eines Vierweg-(Taumel-)schalters die gewünschte (benötigte) Wölbungshöhe bzw. Scheitelpunkt-Verlagerung einstellen lassen.

Zufolge dieser Ausführung der Wölbmechanik, bei der die Steuereinrichtung mit dem Bowdenzug geklemmt wird und die Einrichtung ihren Angriffspunkt beliebig wählbar an der Mechanik haben kann, können beispielsweise vorgegebene Randbedingungen wie harte oder weiche Polsterung, verschieden gewünschte Aufhängung der Mechanik in einem vorgegebenen Rahmen usw. einfach und auf jede gewünschte Art berücksichtigt werden, ohne die Funktion der Wölbmechanik in Frage zu stellen.

Es können also nicht nur die Bewegungen beispielsweise über- oder unterkompensiert werden, sondern auch die jeweiligen Sitzkonstruktionen, Polstermaterialien, Überzüge, Aufhängungen usw. voll berücksichtigt werden.

Die oben an Hand von Sitzlehnen beispielsweise beschriebene erfundungsgemäße Wölbmechanik kann selbstverständlich auch auf vielen anderen Gebieten eingesetzt werden, z.B. bei medizinischen oder Sportgeräten, Spielzeug, Rettungsgeräten, für die verschiedensten Stütz- und Tragkonstruktionen usw.

55 Patentansprüche

1. Wölbmechanik mit einem Druckelement und mehrere Querverbindungsorgane umfassenden oder aus einem Stück bestehenden Gesamt-

druckelement sowie wenigstens einem an diesem angreifenden Zugelement und einer zugeordneten Spannvorrichtung dafür, dadurch gekennzeichnet, daß im oberen und unteren Bereich, vorzugsweise an einem Querverbindungsorgan (13,13') des zu wölbenden Abschnittes des Gesamtdruckelementes ein oder mehrere in der und/oder parallel zur Mittelachse des Gesamtdruckelementes verlaufende vertikale Zug- oder Druckelemente (1,1',2,2'), vorzugsweise Stab oder Seil, angreifen.

2. Wölbmechanik nach Anspruch 1, dadurch gekennzeichnet, daß sie einen Rahmen (1',1'') und in den Rahmen eingesetzte, von mindestens einer Verstellvorrichtung (19') betätigbare Druckelemente, vorzugsweise Druckbänder oder -flächen, umfaßt, und daß die vertikal verlaufenden Abschnitte des Rahmens über mindestens eine Verstellvorrichtung (18) längsvariable Druckelemente sind.

3. Wölbmechanik nach Anspruch 1, dadurch gekennzeichnet, daß sie einen an mehreren Stellen geschlitzten, überlappenden oder faltenbalgähnlichen Wölkörper umfaßt und daß zumindest an diesen Stellen mit einem oder mehreren Spannmechanismen versehene Zugelemente zum Schließen bzw. öffnen dieser Bereiche angreifen, wodurch eine Krümmung des Wölkörpers in jede beliebige, vorbestimmbare Richtung erzielbar ist (Fig.18).

4. Wölbmechanik nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß das Gesamtdruckelement mindestens zwei vertikal verlaufende Druckelemente (1,1') und senkrecht oder in einem anderen Winkel zu diesen angeordnete und mit ihnen verbundene oder aus einem Stück gefertigte Querrippen (13,13') umfaßt, welche ein oberes (14) und ein unteres (8) oder ein dazwischenliegendes Abschlußband aufweisen.

5. Wölbmechanik nach Anspruch 4, dadurch gekennzeichnet, daß die vertikal verlaufenden Druckelemente Druckstäbe und Druckflächen sind.

6. Wölbmechanik nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie eine Versteifungs- oder Stützplatte (8), z.B. im unteren Bereich aufweist.

7. Wölbmechanik nach Anspruch 4, dadurch gekennzeichnet, daß zwischen und parallel zu den Druckelementen ein Zug- oder Drughilfsband (9) bzw Sperrband angeordnet ist.

8. Wölbmechanik nach Anspruch 1 oder 6, dadurch gekennzeichnet, daß das Gesamtdruckelement eine Wölbplatte ist (Fig.23).

9. Wölbmechanik nach Anspruch 8, dadurch gekennzeichnet, daß die Wölbplatte geschlossen und gleichmäßig dick oder an verschiedenen Stellen ungleich dick, steif, perforiert oder derart gitterförmig ist, daß beim Wölben ein Kreisbogen oder eine bestimmte andere Kurvenform erzielbar ist, oder daß äußere oder innere Kräfte an einzelnen Stellen gleich oder verschieden stark, bzw. hart oder elastisch aufgenommen bzw. abgestützt werden können.

10. Wölbmechanik nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Spannvorrichtung aus mindestens einem Spannschloß (3) besteht.

11. Wölbmechanik nach Anspruch 10, dadurch gekennzeichnet, daß das Spannschloß (3,3',17) über ein Handrad, einen Hebel, Schieber oder dgl. betätigbar ist und selbstsperrend, einrastbar oder mit Eigenfederkraft usw. ausgerüstet ist (Fig.8a; Fig.8').

12. Wölbmechanik nach Anspruch 10, dadurch gekennzeichnet, daß die Zugelemente ein oder mehrere mit dem Spannschloß verbundene Seile oder Zugstangen oder Speichen (2,2'), wobei ein oder mehrere Zugelemente im Abschluß-, Druck-, Zug- oder Zughilfsband (9) und (das) andere Zugelement(e) in der Stützplatte (8) oder einem anderen Abschluß-, Quer-, Druck- oder Zughilfsband eingehängt sind (Fig.1).

13. Wölbmechanik nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Wölbmechanik, wie an sich bekannt, in ihren Eckbereichen Federn (16,16'), Haken, Seile, Bänder zum Einhängen in den Rahmen oder eine Schale oder Fläche einer Rückenlehne oder sonstigen Konstruktion aufweist.

14. Wölbmechanik nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß innerhalb des von einem starren oder längenvariablen Rahmen bzw. der Schale oder Fläche gebildeten Bereiches zwei oder mehrere im wesentlichen senkrecht verlaufende, mit dem Rahmen, der Schale od. dgl. elastisch oder fest verbundene Spanndrähte, Bänder, Schienen od. dgl. angeordnet sind, und daß das Druckelement über Gleitelemente an diesen Spanndrähten, Bändern, Schienen od. dgl. bewegbar angeordnet ist (Fig.23).

15. Wölbmechanik nach Anspruch 14, dadurch gekennzeichnet, daß die Spannvorrichtung mit einem sich innerhalb des Rahmenbereiches im wesentlichen horizontal erstreckenden Waagebalken (7) in dessen einem äußeren Bereich verbunden ist und der Waagebalken (7) in seinem mittleren und seinem anderen äußeren Bereich mit Druck-, Sperr-, Quer-, Abschluß-, Hilfs- oder Zugelementen (2,2',2'') verbunden ist, welche alternierend am oberen und unteren Bereich des Gesamtdruckelementes angreifen (Fig.4).
5

16. Wölbmechanik nach den Ansprüchen 14 oder 15, dadurch gekennzeichnet, daß die Spannvorrichtung -mindestens ein vorzugsweise von einem Linearmotor bzw. -antrieb oder Hebel, Schrauben (22), Schnecke (23), Trommel, Winde angetriebener Bowdenzug (2'',10) oder Seil- oder Schlauch- oder Band- oder Kettenzug ist, der direkt am Gesamtdruck- oder Zugelement oder am Waagebalken (7) oder einem oder mehreren Querbändern, Hilfsbändern, Stütz- oder Querbändern angreift (Fig.4).
10

17. Wölbmechanik nach Anspruch 15, dadurch gekennzeichnet, daß die Spannvorrichtung eine Zahnstange (24,24') umfaßt, welche über einen Gelenkbolzen mit dem Waagebalken in Verbindung steht, wobei durch die Anordnung der Zugelemente eine Bewegung der Zahnstange eine Krümmung des Druckelementes bewirkt (Fig.23).
15

18. Wölbmechanik nach den Ansprüchen 15 und 17, dadurch gekennzeichnet, daß im unteren Bereich des Rahmens (27) ein Getriebe (30) an den Spanndrähten (29) fix angeordnet ist, welches eine mit dem Druckelement verbundene Zahnstange (32) umfaßt, wobei eine Bewegung der Zahnstange (32) eine Höhenverstellung des Gesamtdruckelementes als solches entlang der Spanndrähte (29) oder auf Gleitschienen, Bändern, in Schalen od. dgl. bewirkt (Fig.21).
20

19. Wölbmechanik nach den Ansprüchen 14 und 15, dadurch gekennzeichnet, daß das mit dem Linearantrieb (54') verbundene Bowdenzugseil (53') von zwei Bowdenzughüllen (56) geführt ist, wobei die eine im oberen und die andere im unteren Bereich der Spanndrähte, des Rahmens od. dgl. fix angeordnet ist, und daß das im Bereich des Gesamtdruckelementes frei laufende, zwischen den Hüllen (56) bewegbare Bowdenzugseil (53') mit einem Steuerhebel, einem Gestänge oder einer Seilzug- oder Schubverbindung verbunden ist, welche an einem beliebig wählbaren Punkt (A,B,C) der Wölbmechanik angreifen bzw. befestigt sein können (Fig. 20, 24).
25

20. Wölbmechanik nach den Ansprüchen 14 bis 18, dadurch gekennzeichnet, daß der Waagebalken die Kräfte reduziert.
30

21. Wölbmechanik nach den Ansprüchen 14 bis 18, dadurch gekennzeichnet, daß das Getriebe und die Spannvorrichtung durch Klemmelemente abnehmbar sowie aufsteckbar sind (Fig. 24).
35

22. Wölbmechanik nach Anspruch 14, dadurch gekennzeichnet, daß die Gleitelemente Ösen sind.
40

23. Wölbmechanik nach Anspruch 22, dadurch gekennzeichnet, daß die ösen als offene, sich zur Öffnung hin verengende Schnappelemente ausgebildet sind.
45

24. Wölbmechanik nach den Ansprüchen 14 bis 18, dadurch gekennzeichnet, daß das Getriebe und die Spannvorrichtung je eine Schnecke, ein Schneckenrad und ein Ritzel umfassen und über je eine flexible Welle (42,42') von je einem Motor (43,43') angetrieben werden (Fig.21).
50

25. Wölbmechanik nach Anspruch 24, dadurch gekennzeichnet, daß die beiden Motoren in der die Wölbmechanik aufnehmenden Konstruktion, z.B. der Rückenlehne angeordnet sind (Fig.21).
55

26. Wölbmechanik nach Anspruch 24, dadurch gekennzeichnet, daß das Getriebe und die Spannvorrichtung aus Kunststoff, Preßstoff, Metall-Druckguß oder Blech sind.
60

27. Wölbmechanik nach Anspruch 26, dadurch gekennzeichnet, daß das Gesamtdruckelement oder Teile davon aus Metall, Kunststoff oder Holz sind.
65

28. Wölbmechanik nach zumindest einem der Ansprüche 1 bis 9, 13, dadurch gekennzeichnet, daß die Spannvorrichtung ein in den Zugelementen frei hängender Doppelzentrum ist (Fig.11).
70

29. Wölbmechanik nach zumindest einem der Ansprüche 1 bis 9, 13, dadurch gekennzeichnet, daß die Spannvorrichtung ein mit einem selbstsperrenden oder fixierbaren Umlenk- oder Übersetzungshebel verbundenes Schneckengetriebe ist.
75

30. Wölbmechanik nach zumindest einem der Ansprüche 1 bis 9, 13, dadurch gekennzeichnet, daß die Spannvorrichtung ein Doppelgelenkspannhebel ist (Fig. 10).
80

31. Wölbmechanik nach zumindest einem der Ansprüche 1 bis 9, 13, dadurch gekennzeichnet,
85

daß die Spannvorrichtung aus Zahnstangen, Bowdenzug und Seilspulen besteht (Fig. 6, 16).

32. Wölbmechanik nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Angriffspunkt oder der Durchtrittspunkt eines flexiblen oder starren Zugelementes am oder durch das Druckelement gelenkig gelagert ist.

33. Wölbmechanik nach zumindest einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, daß das Zugelement bzw. das Druckelement mit einer Zug- (4) oder Druckfeder (5) oder einem dehnbaren Material, z.B. Gummi, welches an frei wählbaren Punkten des Druckelementes oder an einem Sperrmechanismus angreift, versehen sind, um die Zug- bzw. Druckkräfte möglichst klein zu halten (Fig. 6).

34. Wölbmechanik nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie ein(en) Doppelspannschloß (18) oder -spannhebel oder Doppelgelenkspannhebel (7') oder einen oder mehrere beliebige Zug- und/oder Druckmechanismen sowohl innerhalb der Druck- als auch Zugelemente umfaßt, der bzw. die gleichzeitig oder separat sowohl Zug als auch Druck auf die Zug- oder Druckelemente der Wölbmechanik(en) ausübt (ausüben) (Fig.9, 10).

35. Wölbmechanik nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mehrere Wölbmechaniken gegeneinander oder summierend oder überlappend geschaltet und die Zugelemente so angeordnet sind, daß sich ihre Wirkung summiert oder aufhebt, und daß wahlweise eines der Zug- oder Druckelemente für sich allein schaltbar ist, wodurch mehrere Wölbungen innerhalb einer Wölbmechanik ausführbar sind (Fig.19).

36. Wölbmechanik nach Anspruch 2, dadurch gekennzeichnet, daß der als Druckelement ausgebildete Rahmen mehrmals unterbrochen ist und an diesen Unterbrechungen in seiner Länge variierbar ist (Fig. 10, 15).

37. Wölbmechanik nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß die Zug- und Druckelemente gegengleich oder differenziert in der Zug- oder Druckzone verlängerbar oder verkürzbar sind (Fig.9 - 9e).

38. Wölbmechanik nach Anspruch 10, dadurch gekennzeichnet, daß das Spannschloß (11) mit verschiedenen langen Zug- und Druckstäben versehen ist und die Betätigungsseinrichtung für das

5
10
15
20
25
30
35
40
45
50
55

Spannschloß dadurch an beliebigen Punkten einer mit der Wölbmechanik versehenen Konstruktion, z.B. einer Sitzkonstruktion herausführbar ist (Fig.6).

39. Wölbmechanik nach Anspruch 10, dadurch gekennzeichnet, daß das Spannschloß (11) stufenlos verstellbar, selbsthemmend und mit definierbarer Minimum - Maximimeinstellung versehen ist.

40. Wölbmechanik nach Anspruch 10, dadurch gekennzeichnet, daß das Spannschloß (22,23;11) an jedem beliebigem Punkt einer Konstruktion, z.B. einer Sitzkonstruktion, insbesondere auch außerhalb der Wölbkonstruktion anordnenbar ist (Fig.4,6).

41. Wölbmechanik nach den Ansprüchen 1, 2 oder 3, dadurch gekennzeichnet, daß die wirksamen Druckstäbe oder -bänder in den seitlichen äußeren Randzonen des Gesamtdruckelementes angreifen und somit die Wölbmechanik in den äußeren Randzonen einer Schalenform die Hauptwölbkräfte entwickelt (Fig.6).

42. Wölbmechanik nach Anspruch 41, dadurch gekennzeichnet, daß die Wölbfläche in Querrichtung gesehen Schalenform hat und die Druckzonen im äußeren Randbereich oder dessen Nähe angeordnet sind (Fig. 7').

43. Wölbmechanik nach Anspruch 42, dadurch gekennzeichnet, daß die Elemente der Wölbfläche ein- oder mehrteilig sind.

44. Wölbmechanik nach Anspruch 42, dadurch gekennzeichnet, daß die beiden Enden der Wölbfläche oder die Druckelemente Ausnehmungen zum Aufnehmen von Spanndrähten aufweisen, wobei die gesamte Wölbmechanik entlang dieser Spanndrähte verschiebbar und einfach anordnbar und nach eingestellter Wölbung, zentrisch oder exzentrisch zum Wölscheitel, frei bewegbar ist (Fig.16).

45. Wölbmechanik nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß innerhalb des vom Rahmen einer Rückenlehne gebildeten Bereiches zwei oder mehrere senkrecht verlaufende, am Rahmen fest angeordnete Spanndrähte (29) vorgesehen sind, daß die Spanndrähte (29) ein auf ihnen über Gleitelemente (40, 40' bzw 41, 41') bewegbar angeordnetes Gesamt-Lordose-Druckelement aufnehmen, daß an den Spanndrähten im unteren Bereich der Rückenlehne ein erstes Getriebe (30) mittels Klemmelementen (31) unverschiebbar fest ange-

ordnet ist, welches über eine Schnecke, ein Schneckenrad und ein Ritzel mit einer ersten Zahnstange (32) in Verbindung steht und über eine flexible Welle (42) von einem Motor (43) angetrieben wird, wobei eine Bewegung der ersten Zahnstange (32) eine Höhenverstellung des Gesamt-Lordose-Druckelementes als solches entlang der Spanndrähte (29) bewirkt, daß die erste Zahnstange an ihrem unteren Ende von einem Querbolzen durchsetzt ist, daß das Gesamt-Lordose-Druckelement vorzugsweise aus einem oberen Abschlußband (34), einem im unteren Bereich der Rückenlehne angeordneten Stützblech (38) für den Beckenrand der Wirbelsäule, zwischen diesen beiden Elementen sowie im Abstand voneinander angeordneten, an sich bekannten Querrippen (34; 35, 36) und wenigstens zwei, im wesentlichen zu den Spanndrähten parallel angeordneten, das Abschlußband, die Querrippen und das Stützblech verbindenden biegsamen Druckbändern (39) besteht, wobei das Abschlußband den oberen und das Stützblech den unteren Bereich des Gesamt-Lordose-Druckelementes bilden, das im oberen Bereich des Gesamt-Lordose-Druckelementes, vorzugsweise am Abschlußband (34), ein zweites Getriebe (44) fest angeordnet ist, welches über eine Schnecke, ein Schneckenrad und ein Ritzel mit einer zweiten Zahnstange (45) in Verbindung steht und über eine flexible Welle (42') von einem Motor (43') angetrieben wird, daß im unteren Bereich der zweiten Zahnstange (45) über einen Gelenkbolzen ein sich im wesentlichen waagrecht erstreckender Waagebalken (47) angeordnet ist, der an seinem dem Gelenkbolzen entgegengesetzten Ende mit einer mit einer starren Speiche (48) im oberen Bereich des Druckelementes, vorzugsweise am oberen Abschlußband (34), und in seinem mittleren Bereich über eine weitere starre Speiche (49) am unteren Bereich des Druckelementes, vorzugsweise am Abstützblech, angeordnet ist, wobei eine Bewegung der zweiten Zahnstange (45) eine Krümmung des Druckelementes hervorruft (Fig.21).

46. Wölbmechanik nach den vorhergehenden Ansprüchen, dadurch gekennzeichnet, daß sie in Baukasten- bzw. Modulbauweise aufgebaut ist.

47. Wölbmechanik nach Anspruch 46, dadurch gekennzeichnet, daß Elemente zur Verbindung von Modulen miteinander bzw. mit anderen Konstruktionsteilen in Form von Fahrradspeichen mit Köpfen, die in entsprechende Ausnehmungen, z.B. Bajonetschlüsse oder -löcher eingreifen, vorgesehen sind.

48. Vorrichtung dadurch gekennzeichnet, daß sie mit

zumindest einer Wölbmechanik nach einem der Ansprüche 1 bis 47 ausgerüstet ist.

5

Claims

1. Arching mechanism with a general pressure element comprising a pressure element and several transverse connection members or made in one piece, as well as at least one therein engaging traction element with a thereto assigned tension lock, characterized in that in the upper and lower region, preferably at a transverse connection member (13, 13') of the segment to be arched of the general pressure element, engage one or more vertical traction or pressure elements (1, 1', 2, 2'), preferably rods or wires, running in and/or parallelly to the median axis of the general pressure element.
2. Arching mechanism according to Claim 1, characterized in that it comprises a frame (1', 1'') and therein inserted pressure elements, preferably pressure strips or surfaces actuatable by at least one adjusting device (19'), and that the vertically running segments of the frame are pressure elements whose length can be varied by at least one adjusting device (18).
3. Arching mechanism according to claim 1, characterized in that it comprises a bulging body slotted on several places, overlapping, or designed like bellows and that at least these places acted upon by traction elements are provided with one or more tensioning mechanisms, for opening respectively closing these areas, whereby a curving of the bulging body in any desired, preselected direction can take place (Fig. 18).
4. Arching mechanism according to Claim 1 and 2, characterized in that the general pressure element has at least two vertically running pressure elements (1, 1') and transverse ribs running at a right or any other angle to the vertical elements and connected thereto or made in one piece, which have an upper (14) and lower (8) or an intermediate strip.
5. Arching mechanism according to Claim 4, characterized in that the vertically running pressure elements are pressure rods or pressure surfaces.
6. Arching mechanism according to at least one of the preceding claims, characterized in that it has a bracing or support plate (8), e.g. in the lower area.
7. Arching mechanism according to claim 4, charac-

terized in that in between and parallelly to the pressure elements a traction or pressure-assisting strip (9), respectively locking strip is provided.

8. Arching mechanism according to claim 1 or 6, characterized in that the general pressure element is a bulging plate (Fig. 23).

9. Arching mechanism according to Claim 8, characterized in that the bulging plate is closed and evenly thick or in certain places unevenly thick, stiff, perforated or grid-like, so that during arching a circular or any other selected curved shape can be obtained, or that external or internal forces can be absorbed or supported at individual points with equal or different strength, rigidly or elastically.

10. Arching mechanism according to at least one of the preceding claims, characterized in that the tensioning mechanism consists of at least one tension lock (3).

11. Arching mechanism according to claim 10, characterized in that the tension lock (3, 3', 17) is actuated by means of a handwheel, a lever, slider or the like and is equipped to be self-locking, to snap shut or with its own spring force, etc. (Fig. 8a; Fig. 8').

12. Arching mechanism according to claim 10, characterized in that the traction elements are one or several wires, traction rods or spokes (2, 2') connected with the tension lock, whereby one or several traction elements are suspended in the end strip, pressure strip, traction or traction-assisting strip (9) and that (the) other traction element(s) are suspended in the support plate (8) or in another end strip, cross strip, pressure or pressure-assisting strip (Fig. 1).

13. Arching mechanism according to at least one of the preceding claims, characterized in that the arching mechanism as known per se has in its corner areas springs (16, 16'), hooks, wires, strips by means of which it is suspended within the frame, or in a shell, or the surface of backrest or any other construction.

14. Arching mechanism according to at least one of the preceding claims, characterized in that within the area defined by a rigid or length-variable frame of a shell or surface, two or more basically vertically running tension wires, strips, rails or the like are arranged, which are elastically or rigidly connected to the frame, the shell or the like and that the pressure element is movably arranged on these tension wires, strips, rails or the like by

5 means of sliding elements (Fig. 23).

15. Arching mechanism according to Claim 14, characterized in that the tensioning mechanism is connected to a rocker lever (7) extending basically horizontally within the frame area, in the one outer area of this rocker lever and that the rocker lever (7) in its median and its other outer area is connected with pressure, locking, transverse, end, assisting or traction elements (2, 2', 2''), which engage alternately at the upper and lower regions of the general pressure element (Fig. 4).

10

16. Arching mechanism according to Claim 14 or 15, characterized in that the tensioning mechanism is at least one bowden wire (2'', 10), or a cable or hose or strip or chain winch, driven preferably by a linear motor, respectively linear drive or lever, screws (22), worm (23), drum, winch, engaging directly at the general pressure elements, or on the rocker lever (7) or at one or more transverse strips, assisting strips, support or locking strips (Fig. 4).

15

17. Arching mechanism according to Claim 15, characterized in that the tensioning mechanism comprises a toothed rack (24, 24') which is connected via a pivot pin with the rocker lever, whereby due to the arrangement of the traction element, a movement of the toothed rack results in the curving of the pressure element (Fig.23).

20

18. Arching mechanism according to Claims 15 and 17, characterized in that in the lower area of the frame (27) a gearing (30) is affixed to the tension wires (29), which comprises a toothed rack (32) connected with the pressure element, whereby a movement of the toothed rack (32) produces a height-adjustment of the general pressure element itself along the tension wires (29) or on slide rails, strips, in shells or the like (Fig. 21).

25

19. Arching mechanism according to Claims 14 and 15, characterized in that bowden control wire (53') connected with the linear drive (54') is guided by two bowden-wire sleeves (56), whereby one is affixed to the upper and the other at the lower area of the tension wires, the frame or the like, that the bowden wire (53') running freely between the sleeves (56) in the area of the general pressure element is connected with control lever, rods, or a cable winch or thrust connection, which can engage, respectively be fastened at any selected point (A, B, C) of the arching mechanism (Fig. 20, 24).

30

20. Arching mechanism according to Claims 14 to 18, characterized in that the rocker lever reduces the

35

40

45

50

55

forces.

21. Arching mechanism according to Claims 14-18, characterized in that the gearing and the tensioning mechanism can be removed and fastened by means of clamping elements (Fig. 24). 5

22. Arching mechanism according to Claim 14, characterized in that the sliding elements are eyes. 10

23. Arching mechanism according to Claim 22, characterized in that the eyes are open snap elements, narrowing down towards the opening. 15

24. Arching mechanism according to Claims 14 to 18, characterized in that the gearing and the tensioning device each comprise a worm, a wormwheel and a pinion and are each driven by a motor (43, 43') via a flexible shaft (42, 42') (Fig. 21). 20

25. Arching mechanism according to Claim 24, characterized in that both motors are arranged in the construction containing the arching mechanism, for instance the backrest (Fig. 21). 25

26. Arching mechanism according to Claim 24, characterized in that the gearing and the tensioning device are made of plastic material, molded material, diecast metal or sheet metal. 30

27. Arching mechanism according to Claim 26, characterized in that the general pressure element or parts thereof are made of metal, plastic material or wood. 35

28. Arching mechanism according to at least one of the Claims 1 to 9, 13, characterized in that the tensioning mechanism is double eccentric freely hanging in the traction elements (Fig. 11). 40

29. Arching mechanism according to at least one of the Claims 1 to 9, 13, characterized in that the tensioning mechanism is a worm gear connected with a self-locking or fixable shift or transmission lever. 45

30. Arching mechanism according to at least one of the Claims 1 to 9, 13, characterized in that the tensioning device is a double-jointed tensioning lever (Fig. 10). 50

31. Arching mechanism according to at least one of the Claims 1 to 9, 13, characterized in that the tensioning device consists of toothed racks, bowden wire and wire coils (Fig. 16, 16). 55

32. Arching mechanism according to at least one of the preceding claims, characterized in that the application point or penetration point of a flexible or rigid traction element is articulatedly supported. 5

33. Arching mechanism according to at least one of the preceding claims, characterized in that the traction element, respectively the pressure element is provided with a traction spring (4) or compression spring (5) or with a stretchable material, e.g. rubber, which engages at selectable points of the pressure element or the locking mechanism, in order to keep the traction, respectively compression forces as small as possible (Fig. 6). 10

34. Arching mechanism according to at least one of the preceding claims, characterized in that it comprises a double tension lock (18) or tensioning lever or double-jointed tensioning lever (7') or one or more of any desired traction and/or pressure mechanisms, inside the pressure as well as traction elements, which exerts (exert) simultaneously or separately traction as well as pressure on the traction or pressure elements of the arching mechanism(s) (Figs. 9, 10). 15

35. Arching mechanism according to at least one of the preceding claims, characterized in that several arching mechanisms are connected against each other, or to compound their action, or overlappingly and that the traction elements are arranged so that their actions can be compounded or cancel each other, and that selectively one of the traction or pressure elements can be separately engaged, which makes possible to create several bulges within one arching mechanism (Fig. 19). 20

36. Arching mechanism according to Claim 2, characterized in that the pressure element built as a frame is multiply interrupted and its length can be varied at this interruption points (Figs. 10, 15). 25

37. Arching mechanism according to Claims 1 or 2, characterized in that the traction and pressure elements can be lengthened or shortened in the traction or pressure zone, in an either counterbalanced or differentiated manner (Figs. 9 - 9e). 30

38. Arching mechanism according to Claim 10, characterized in that the tension lock (11) is provided with traction and pressure rods of various length and as a result the actuation device for the tension lock can be moved outside at any desired point of a construction provided with an arching mechanism, e.g. a seat construction (Fig. 6). 35

39. Arching mechanism according to Claim 10, characterized in that the tension lock (11) is steplessly 40

adjustable, self-inhibiting and provided with a definable minimum and maximum setting.

40. Arching mechanism according to Claim 10, characterized in that the tension lock (22, 23; 11) can be arranged at any desired point of a construction, e.g. a seat construction, particularly also outside the arching mechanism (Figs. 4, 6). 5

41. Arching mechanism according to Claims 1, 2 or 3, characterized in that the effective pressure rods or strips engage in the lateral, outer edge zones of the general pressure element and thereby the arching mechanism develops the main bulging forces in the outer edge zones of a shell shape (Fig. 6). 10

42. Arching mechanism according to Claim 41, characterized in that the bulging surface, when seen in transverse direction, has a shell shape and the pressure zones are arranged in the outer edge zone or in its proximity (Fig. 7'). 15

43. Arching mechanism according to Claim 42, characterized in that the elements of the bulging surface are made of one or several parts. 20

44. Arching mechanism according to Claim 42, characterized in that both ends of the bulging surface or the pressure element have recesses to accommodate the tension wires, whereby the entire arching mechanism is slidable and easily mountable along these tension wires and is freely movable centrally or eccentrically with respect to the apex of convexity, after the bulging has been completed (Fig. 16). 25

45. Arching mechanism according to one of the preceding claims, characterized in that within the area defined by the frame of a backrest, two or more vertically running tension wires (29) are provided which are rigidly affixed to the frame, that the tension wires (29) receive a general lordosis pressure element movable on the tension wires via sliding elements (40, 40' and respectively 41, 41'), that on the tension wires in the lower region of the backrest a first gearing (30) is unslidably and fixedly mounted by means of clamping elements (31), this gearing being in connection with a first toothed rack (32) via a worm, a wormwheel and a pinion and is driven via a flexible shaft (42) by a motor (43), whereby a movement of the first toothed rack (32) effectuates a height adjustment of the general lordosis pressure element itself along the tension wires (29), that the first toothed rack is traversed at its lower end by a crosstie, that the general lordosis pressure element consists preferably of an upper end 30

strip (34), a support plate (38) arranged at the lower region of the backrest, for the support of the pelvic edge of the spinal column, of transverse ribs (34; 35, 36) known *per se*, arranged between these two elements as well as at a distance from each other, of at least two flexible pressure strips (39) basically parallel to the tension wires, connecting the end strip, the transverse ribs and the support plate, whereby the end strip forms the upper region and the support plate form the lower region of the general lordosis pressure element, that in the upper region of the general lordosis pressure element, preferably on the end strip (34) a second gearing (44) is rigidly connected, which via a worm, a wormwheel and a pinion is in working connection with a second toothed rack (45) and is driven via a flexible shaft (42') by a motor (43'), that in the lower area of the second toothed rack (45) a basically horizontally extending rocker lever (47) is mounted via a pivot pin, and at its end remote from the pivot pin, this rocker lever is connected to the upper region of the pressure element, preferably the support plate, via a further rigid spoke (49), whereby a movement of the second toothed rack (45) produces a curving of the pressure element (Fig. 21). 35

46. Arching mechanism according to one of the preceding claims, characterized in that it is designed in the manner of building blocks or modules. 40

47. Arching mechanism according to Claim 46, characterized in that elements such as bicycle spokes with heads which for instance can engage in corresponding recesses, e.g. bayonet-type slits or holes, are provided for the connection of the modules with each other and with other construction components. 45

48. Device, characterized in that it is equipped with at least one arching mechanism as defined in Claims 1 to 47. 50

Revendications

1. Mécanisme destiné à réaliser une courbure, comprenant un élément de poussée globale qui englobe des éléments de poussée et plusieurs organes de liaison transversale ou qui est constitué d'un seul tenant, ainsi qu'au moins un élément de traction en prise avec lui et un élément tendeur associé à cette fin, caractérisé par le fait qu'un ou plusieurs éléments de traction ou de pression verticaux (1, 1', 2, 2'), lesquels s'étendent selon l'axe médian de l'élément de poussée globale, et/ou parallèlement à celui-ci, en étant de préférence constitués par des tiges ou par des câbles,

viennent en prise dans les régions supérieure et inférieure, et de préférence sur un organe de liaison transversale (13, 13') de la partie de l'élément de poussée globale qu'il s'agit de courber.

2. Mécanisme destiné à réaliser une courbure selon la revendication 1, caractérisé par le fait qu'il comprend un cadre (1', 1'') et des éléments de poussée qui sont de préférence des bandes de poussée ou des surfaces de poussée, qui sont montés dans le cadre et qui peuvent être actionnés par au moins un dispositif de réglage (19'), et par le fait que les parties du cadre qui s'étendent verticalement sont des éléments de pression dont la longueur peut varier par l'intermédiaire d'au moins un dispositif de réglage (18).

3. Mécanisme destiné à réaliser une courbure selon la revendication 1, caractérisé par le fait qu'il comprend un corps destiné à réaliser une courbure qui est fendu en plusieurs endroits, qui présente une disposition imbriquée ou qui est analogue à un soufflet, et par le fait que des éléments de traction munis d'un ou plusieurs mécanismes tendeurs sont en prise, du moins en ces endroits, pour ouvrir ces régions ou pour les fermer, respectivement, ce qui permet d'obtenir que le corps destiné à réaliser une courbure se courbe dans toute direction prédéterminée quelconque (figure 18).

4. Mécanisme destiné à réaliser une courbure selon les revendications 1 et 2, caractérisé par le fait que l'élément de poussée globale comprend au moins deux éléments de poussée (1, 1') qui s'étendent verticalement, ainsi que des ailettes transversales (13, 13') qui sont disposées perpendiculairement à ceux-ci ou sous un autre angle par rapport à ceux-ci, qui leur sont reliées ou qui sont fabriquées d'un seul tenant avec eux, et qui comprennent une bande terminale supérieure (14) et une bande terminale inférieure (8), ou une bande terminale située entre celles-ci.

5. Mécanisme destiné à réaliser une courbure selon la revendication 4, caractérisé par le fait que les éléments de poussée qui s'étendent verticalement sont des tiges de poussée et des surfaces de poussée.

6. Mécanisme destiné à réaliser une courbure selon l'une au moins des revendications précédentes, caractérisé par le fait qu'il comporte une plaque de raidissement ou d'appui (8), par exemple dans la région inférieure.

7. Mécanisme destiné à réaliser une courbure selon la revendication 4, caractérisé par le fait qu'une

5 bande supplémentaire de traction ou de pression (9) ou une bande de blocage, respectivement, est disposée entre les éléments de poussée et parallèlement à ceux-ci.

8. Mécanisme destiné à réaliser une courbure selon la revendication 1 ou 6, caractérisé par le fait que l'élément de poussée globale est une plaque destinée à réaliser une courbure (figure 23).

10 9. Mécanisme destiné à réaliser une courbure selon la revendication 8, caractérisé par le fait que la plaque destinée à réaliser une courbure est fermée, d'une épaisseur régulière ou d'une épaisseur irrégulière en divers endroits, rigide, perforée ou réalisée en forme de grille d'une manière telle que l'on puisse obtenir lors de la courbure un arc de cercle ou une autre forme courbe déterminée, ou que des forces extérieures ou intérieures puissent être reçues ou supportées, respectivement, avec une intensité égale ou différente en divers endroits ou, respectivement, qu'elles puissent l'être d'une manière rigide ou élastique.

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 10000 10005 10010 10015 10020 10025 10030 10035 10040 10045 10050 10055 10060 10065 10070 10075 10080 10085 10090 10095 10100 10105 10110 10115 10120 10125 10130 10135 10140 10145 10150 10155 10160 10165 10170 10175 10180 10185 10190 10195 10200 10205 10210 10215 10220 10225 10230 10235 10240 10245 10250 10255 10260 10265 10270 10275 10280 10285 10290 10295 10300 10305 10310 10315 10320 10325 10330 10335 10340 10345 10350 10355 10360 10365 10370 10375 10380 10385 10390 10395 10400 10405 10410 10415 10420 10425 10430 10435 10440 10445 10450 10455 10460 10465 10470 10475 10480 10485 10490 10495 10500 10505 10510 10515 10520 10525 10530 10535 10540 10545 10550 10555 10560 10565 10570 10575 10580 10585 10590 10595 10600 10605 10610 10615 10620 10625 10630 10635 10640 10645 10650 10655 10660 10665 10670 10675 10680 10685 10690 10695 10700 10705 10710 10715 10720 10725 10730 10735 10740 10745 10750 10755 10760 10765 10770 10775 10780 10785 10790 10795 10800 10805 10810 10815 10820 10825 10830 10835 10840 10845 10850 10855 10860 10865 10870 10875 10880 10885 10890 10895 10900 10905 10910 10915 10920 10925 10930 10935 10940 10945 10950 10955 10960 10965 10970 10975 10980 10985 10990 10995 11000 11005 11010 11015 11020 11025 11030 11035 11040 11045 11050 11055 11060 11065 11070 11075 11080 11085 11090 11095 11100 11105 11110 11115 11120 11125 11130 11135 11140 11145 11150 11155 11160 11165 11170 11175 11180 11185 11190 11195 11200 11205 11210 11215 11220 11225 11230 11235 11240 11245 11250 11255 11260 11265 11270 11275 11280 11285 11290 11295 11300 11305 11310 11

reçoit le mécanisme destiné à réaliser une courbure, et par exemple dans le dossier (figure 21).

26. Mécanisme destiné à réaliser une courbure selon la revendication 24, caractérisé par le fait que la transmission et le dispositif tendeur sont en matière plastique, en une matière comprimée, en métal moulé sous pression ou en tôle.

27. Mécanisme destiné à réaliser une courbure selon la revendication 26, caractérisé par le fait que l'élément de poussée globale ou des parties de celui-ci sont en métal, en matière plastique ou en bois.

28. Mécanisme destiné à réaliser une courbure selon l'une au moins des revendications 1 à 9 et 13, caractérisé par le fait que le dispositif tendeur est un excentrique double qui est suspendu librement en étant accroché aux éléments de traction (figure 11).

29. Mécanisme destiné à réaliser une courbure selon l'une au moins des revendications 1 à 9 et 13, caractérisé par le fait que le dispositif tendeur est une transmission à vis sans fin reliée à un levier de déviation ou de transmission, respectivement, qui est à blocage automatique ou qui peut être fixé.

30. Mécanisme destiné à réaliser une courbure selon l'une au moins des revendications 1 à 9 et 13, caractérisé par le fait que le dispositif tendeur est un levier tendeur à double articulation (figure 10).

31. Mécanisme destiné à réaliser une courbure selon l'une au moins des revendications 1 à 9 et 13, caractérisé par le fait que le dispositif tendeur est constitué par des crémaillères, par un câble sous gaine et par des tambours destinés au câble (figures 6 et 16).

32. Mécanisme destiné à réaliser une courbure selon l'une au moins des revendications précédentes, caractérisé par le fait que le point d'attaque ou le point de passage d'un élément de traction flexible ou rigide est monté d'une manière articulée sur l'élément de poussée ou à travers celui-ci.

33. Mécanisme destiné à réaliser une courbure selon l'une au moins des revendications précédentes, caractérisé par le fait que l'élément de traction ou l'élément de pression, respectivement, est muni d'un ressort de traction (4) ou de compression (5) ou d'un matériau extensible, comme par exemple du caoutchouc, qui vient en prise en des points de l'élément de poussée que l'on peut choisir librement ou avec un mécanisme de blocage, afin de maintenir aussi faibles que possible les forces de traction ou de pression, respectivement (figure 6).

34. Mécanisme destiné à réaliser une courbure selon l'une au moins des revendications précédentes, caractérisé par le fait qu'il comprend un ridoir double (18) ou un levier tendeur double ou un levier tendeur à double articulation (7') ou un ou plusieurs mécanismes de traction et/ou de pression quelconques, tant à l'intérieur des éléments de pression qu'à l'intérieur des éléments de traction, lequel ou lesquels, respectivement, exerce(nt) simultanément ou séparément tant une traction qu'une pression sur les éléments de traction ou de pression du ou des mécanismes destinés à réaliser une courbure (figures 9 et 10).

35. Mécanisme destiné à réaliser une courbure selon l'une au moins des revendications précédentes, caractérisé par le fait que plusieurs mécanismes destinés à réaliser une courbure sont montés en opposition ou en additionnant leurs effets ou en se chevauchant, et que les éléments de traction sont disposés d'une manière telle que leurs effets s'additionnent ou s'annulent, et par le fait que l'un des éléments de traction ou de pression peut être actionné au choix à lui seul, ce qui permet de réaliser plusieurs courbures à l'intérieur d'un mécanisme destiné à réaliser une courbure (figure 19).

36. Mécanisme destiné à réaliser une courbure selon la revendication 2, caractérisé par le fait que le cadre qui est réalisé sous la forme d'un élément de pression est interrompu en plusieurs endroits, et que sa longueur peut être modifiée aux endroits d'interruption (figures 10 et 15).

37. Mécanisme destiné à réaliser une courbure selon la revendication 1 ou 2, caractérisé par le fait que les éléments de traction et de pression peuvent être allongés ou raccourcis dans la zone de traction ou de pression d'une manière opposée ou différenciée (figures 9 à 9e).

38. Mécanisme destiné à réaliser une courbure selon la revendication 10, caractérisé par le fait que le ridoir (11) est pourvu de tiges de traction et de pression de longueurs différentes, et que le dispositif d'actionnement du ridoir peut être prévu de ce fait en des points quelconques d'une structure qui est pourvue du mécanisme destiné à réaliser une courbure et qui est par exemple une structure de siège (figure 6).

39. Mécanisme destiné à réaliser une courbure selon la revendication 10, caractérisé par le fait que le ridoir (11) peut être réglé continûment, qu'il est à

blocage automatique et qu'il est pourvu d'un réglage minimum/maximum qui peut être défini.

40. Mécanisme destiné à réaliser une courbure selon la revendication 10, caractérisé par le fait que le ridoir (22, 23 ; 11) peut être disposé en un point quelconque d'une structure qui est par exemple une structure de siège, et en particulier aussi à l'extérieur de la structure destinée à être courbée (figures 4 et 6). 5

41. Mécanisme destiné à réaliser une courbure selon la revendication 1, 2 ou 3, caractérisé par le fait que les tiges ou les bandes de poussée actives viennent en prise dans les zones de bord latérales extérieures de l'élément de poussée globale, le mécanisme destiné à réaliser une courbure développant ainsi les forces de courbure principales dans les zones de bord extérieures d'un dispositif en forme de coque (figure 6). 10

42. Mécanisme destiné à réaliser une courbure selon la revendication 41, caractérisé par le fait que la surface de courbure présente la forme d'une coque lorsqu'elle est vue dans la direction transversale, et que les zones de poussée sont disposées dans la région des bords extérieurs ou à proximité de ceux-ci (figure 7'). 15

43. Mécanisme destiné à réaliser une courbure selon la revendication 42, caractérisé par le fait que les éléments de la surface de courbure sont réalisés en une partie ou en plusieurs parties. 20

44. Mécanisme destiné à réaliser une courbure selon la revendication 42, caractérisé par le fait que les deux extrémités de la surface de courbure ou les éléments de poussée présentent des évidements destinés à recevoir des fils tendeurs, l'ensemble du mécanisme destiné à réaliser une courbure pouvant être déplacé le long de ces fils tendeurs et installé d'une manière simple, et pouvant être déplacé librement après que la courbure a été réglée, d'une manière centrée ou excentrée par rapport au sommet de la courbure (figure 16). 25

45. Mécanisme destiné à réaliser une courbure selon l'une au moins des revendications précédentes, caractérisé par le fait qu'à l'intérieur de la zone formée par le cadre d'un dossier, il est prévu deux ou plusieurs fils tendeurs (29) qui s'étendent perpendiculairement et qui sont montés fixes sur le cadre, par le fait que les fils tendeurs (29) reçoivent un élément de poussée globale de la région lombaire qui est disposé sur eux de manière mobile par l'intermédiaire d'éléments de glissement (40, 40', respectivement 41, 41'), par le fait qu'une première transmission (30) est montée 30

fixe et sans pouvoir coulisser sur les fils tendeurs au moyen d'éléments de serrage (31), dans la région inférieure du dossier, en étant reliée à une première crémaillère (32) par l'intermédiaire d'une vis sans fin, d'une vis tangente et d'un pignon, et en étant entraînée par un moteur (43) par l'intermédiaire d'un arbre flexible (42), un déplacement de la première crémaillère (32) produisant un déplacement en hauteur de l'élément de poussée globale de la région lombaire en tant que tel le long des fils tendeurs (29), par le fait que la première crémaillère est traversée par une tige transversale à son extrémité inférieure, par le fait que l'élément de poussée globale de la région lombaire est constitué de préférence par une bande terminale supérieure (34), par une tôle d'appui (38) disposée dans la région inférieure du dossier et destinée à la partie de la colonne vertébrale qui est voisine du bassin, par des ailettes transversales (34 ; 35, 36), connues en elles-mêmes, qui sont disposées entre ces deux éléments et à distance les unes des autres, et par au moins deux bandes de poussée flexibles (39) qui sont disposées parallèlement aux fils tendeurs, pour l'essentiel, et qui relient entre elles la bande terminale, les ailettes transversales et la tôle d'appui, la bande terminale constituant la région supérieure de l'élément de poussée globale de la région lombaire et la tôle d'appui constituant sa région inférieure, par le fait qu'une deuxième transmission (44) est montée fixe dans la région supérieure de l'élément de poussée globale de la région lombaire, de préférence sur la bande terminale (34), en étant reliée à une deuxième crémaillère (45) par l'intermédiaire d'une vis sans fin, d'une vis tangente et d'un pignon, et en étant entraînée par un moteur (43') par l'intermédiaire d'un arbre flexible (42'), et par le fait qu'un levier (47) qui s'étend horizontalement, pour l'essentiel, est monté dans la région inférieure de la deuxième crémaillère (45) par l'intermédiaire d'un pivot, son extrémité opposée au pivot étant reliée par une tige rigide (48) à la région supérieure de l'élément de poussée, et de préférence à la bande terminale supérieure (34), et sa région centrale étant reliée par une autre tige rigide (49) à la région inférieure de l'élément de poussée, et de préférence à la tôle d'appui, un déplacement de la deuxième crémaillère (45) produisant une courbure de l'élément de poussée (figure 21). 35

46. Mécanisme destiné à réaliser une courbure selon les revendications précédentes, caractérisé par le fait qu'il est construit sous la forme d'éléments démontables ou sous forme modulaire, respectivement. 50

47. Mécanisme destiné à réaliser une courbure selon 55

la revendication 46, caractérisé par le fait que des éléments destinés à relier des modules entre eux ou, respectivement, à d'autres parties de la construction sont prévus sous la forme de rayons de bicyclette pourvus de têtes qui pénètrent dans des évidements correspondants, et par exemple dans des fentes ou des trous à baïonnette.

5

48. Dispositif caractérisé par le fait qu'il est équipé d'au moins un mécanisme destiné à réaliser une courbure selon l'une des revendications 1 à 47.

10

15

20

25

30

35

40

45

50

55

19

Fig. 5

Fig. 4

Alternativ-
-Lösung-

FIG. 6a

FIG. 7"

FIG. 7

FIG. 7'

FIG. 8a

FIG. 8b

Fig. 8c

Fig. 8c

FIG. 9b

FIG. 9e

FIG. 9a

FIG. 9d

FIG. 9

FIG. 9c

Fig. 10"

Fig. 10

Fig. 10'

FIG. 11

FIG. 12a

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17"

FIG. 17'''

FIG. 17"

FIG. 17'

FIG. 17

FIG. 18

FIG. 19

FIG. 20

FIG. 21

A

A-A

FIG. 22

FIG.23

FIG. 24