Distributed Information Systems: Spring Semester 2017 - Quiz 5

Stude	ent Name:
Date:	May 18 2017
Stude	ent ID:
Total	number of questions: 8
	question has a single answer!
Lacii	question has a single answer:
	
1.	When you have a small corpus, what is the best practice for Document Classification
	using Word Embeddings (WE):
	a. Train WE using the <i>test set</i> in order to cover every word in the vocabulary
	of the test documents
	b. Train WE using the <i>train set</i> in order to cover every word in the vocabulary
	of the train documents
	☐ c.Train WE using samples from both the train and the test set
	☐ d. Use pre-trained WE which may not cover the full vocabulary of the
	train and the test set
2.	In User-Based Collaborative Filtering, which of the following is true :
	a. Pearson Correlation Coefficient and Cosine Similarity have different value
	range, but return the same similarity ranking for the users no, due to scaling
	b. If the variance of the ratings of two dissimilar users is 0, then their
	 b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized
	 b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized c.Pearson Correlation Coefficient and Cosine Similarity have the same value
	 b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized c.Pearson Correlation Coefficient and Cosine Similarity have the same value range, but can return different similarity ranking for the users
	 b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized c.Pearson Correlation Coefficient and Cosine Similarity have the same value range, but can return different similarity ranking for the users d. If the variance of the ratings of one of the users is 0, then their Cosine
	 b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized c.Pearson Correlation Coefficient and Cosine Similarity have the same value range, but can return different similarity ranking for the users
3	 b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized c.Pearson Correlation Coefficient and Cosine Similarity have the same value range, but can return different similarity ranking for the users d. If the variance of the ratings of one of the users is 0, then their Cosine Similarity is not computable
3.	 □ b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized □ c.Pearson Correlation Coefficient and Cosine Similarity have the same value range, but can return different similarity ranking for the users □ d. If the variance of the ratings of one of the users is 0, then their Cosine Similarity is not computable Which of the following is true for the Recommender Systems (RS):
3.	 □ b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized □ c.Pearson Correlation Coefficient and Cosine Similarity have the same value range, but can return different similarity ranking for the users □ d. If the variance of the ratings of one of the users is 0, then their Cosine Similarity is not computable Which of the following is true for the Recommender Systems (RS): □ a. In Matrix Factorization we can decompose the user-item matrix using SVD
3.	 □ b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized □ c.Pearson Correlation Coefficient and Cosine Similarity have the same value range, but can return different similarity ranking for the users □ d. If the variance of the ratings of one of the users is 0, then their Cosine Similarity is not computable Which of the following is true for the Recommender Systems (RS): □ a. In Matrix Factorization we can decompose the user-item matrix using SVD □ b. The complexity of the Content-based RS does not depend on the
3.	 □ b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized □ c.Pearson Correlation Coefficient and Cosine Similarity have the same value range, but can return different similarity ranking for the users □ d. If the variance of the ratings of one of the users is 0, then their Cosine Similarity is not computable Which of the following is true for the Recommender Systems (RS): □ a. In Matrix Factorization we can decompose the user-item matrix using SVD □ b. The complexity of the Content-based RS does not depend on the number of users □ uses tf-idf
3.	 b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized □ c.Pearson Correlation Coefficient and Cosine Similarity have the same value range, but can return different similarity ranking for the users □ d. If the variance of the ratings of one of the users is 0, then their Cosine Similarity is not computable Which of the following is true for the Recommender Systems (RS): □ a. In Matrix Factorization we can decompose the user-item matrix using SVD □ b. The complexity of the Content-based RS does not depend on the number of users uses tf-idf □ c.Item-based RS need not only the ratings but also the item features
3.	 □ b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized □ c.Pearson Correlation Coefficient and Cosine Similarity have the same value range, but can return different similarity ranking for the users □ d. If the variance of the ratings of one of the users is 0, then their Cosine Similarity is not computable Which of the following is true for the Recommender Systems (RS): □ a. In Matrix Factorization we can decompose the user-item matrix using SVD □ b. The complexity of the Content-based RS does not depend on the number of users □ uses tf-idf
	 b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized □ c.Pearson Correlation Coefficient and Cosine Similarity have the same value range, but can return different similarity ranking for the users □ d. If the variance of the ratings of one of the users is 0, then their Cosine Similarity is not computable Which of the following is true for the Recommender Systems (RS): □ a. In Matrix Factorization we can decompose the user-item matrix using SVD □ b. The complexity of the Content-based RS does not depend on the number of users uses tf-idf □ c.Item-based RS need not only the ratings but also the item features □ d. User's age can be a useful feature in User-based RS
	 b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized □ c.Pearson Correlation Coefficient and Cosine Similarity have the same value range, but can return different similarity ranking for the users □ d. If the variance of the ratings of one of the users is 0, then their Cosine Similarity is not computable Which of the following is true for the Recommender Systems (RS): □ a. In Matrix Factorization we can decompose the user-item matrix using SVD □ b. The complexity of the Content-based RS does not depend on the number of users □ c.Item-based RS need not only the ratings but also the item features □ d. User's age can be a useful feature in User-based RS
	 b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized □ c.Pearson Correlation Coefficient and Cosine Similarity have the same value range, but can return different similarity ranking for the users □ d. If the variance of the ratings of one of the users is 0, then their Cosine Similarity is not computable Which of the following is true for the Recommender Systems (RS): □ a. In Matrix Factorization we can decompose the user-item matrix using SVD □ b. The complexity of the Content-based RS does not depend on the number of users □ uses tf-idf □ c.Item-based RS need not only the ratings but also the item features □ d. User's age can be a useful feature in User-based RS Which of the following is true for the Fastext classifier. □ a. It uses word n-grams in order to create feature vectors for unseen words
	 b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized □ c.Pearson Correlation Coefficient and Cosine Similarity have the same value range, but can return different similarity ranking for the users □ d. If the variance of the ratings of one of the users is 0, then their Cosine Similarity is not computable Which of the following is true for the Recommender Systems (RS): □ a. In Matrix Factorization we can decompose the user-item matrix using SVD □ b. The complexity of the Content-based RS does not depend on the number of users □ c.Item-based RS need not only the ratings but also the item features □ d. User's age can be a useful feature in User-based RS Which of the following is true for the Fastext classifier: □ a. It uses word n-grams in order to create feature vectors for unseen words □ b. It can create feature vectors only for the words of its vocabulary
	 b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized □ c.Pearson Correlation Coefficient and Cosine Similarity have the same value range, but can return different similarity ranking for the users □ d. If the variance of the ratings of one of the users is 0, then their Cosine Similarity is not computable Which of the following is true for the Recommender Systems (RS): □ a. In Matrix Factorization we can decompose the user-item matrix using SVD □ b. The complexity of the Content-based RS does not depend on the number of users □ uses tf-idf □ c.Item-based RS need not only the ratings but also the item features □ d. User's age can be a useful feature in User-based RS Which of the following is true for the Fastext classifier. □ a. It uses word n-grams in order to create feature vectors for unseen words
	 b. If the variance of the ratings of two dissimilar users is 0, then their Cosine Similarity is maximized □ c.Pearson Correlation Coefficient and Cosine Similarity have the same value range, but can return different similarity ranking for the users □ d. If the variance of the ratings of one of the users is 0, then their Cosine Similarity is not computable Which of the following is true for the Recommender Systems (RS): □ a. In Matrix Factorization we can decompose the user-item matrix using SVD □ b. The complexity of the Content-based RS does not depend on the number of users □ c.Item-based RS need not only the ratings but also the item features □ d. User's age can be a useful feature in User-based RS Which of the following is true for the Fastext classifier: □ a. It uses word n-grams in order to create feature vectors for unseen words □ b. It can create feature vectors only for the words of its vocabulary

```
<?xml version="1.0" encoding="UTF-8"?>
     <people>
         <person>
           <name>Bryan Mills</name>
           <br/>
<br/>
date>June 15, 1957</br>
<br/>
/birthdate>
         </person>
         <person>
     <name>Kimberly Mills</name>
         </person>
     </people>
5.
   This XML document is:
     □ а.
              well-formed
              not well-formed
     c.well-formed but not valid
     ☐ d.
              unstructured
6. Which of the following is true for Ontologies:
     П а.
              They help in the integration of data expressed in different encodings
              They help in the integration of data expressed in different models
     c. They do not support domain-specific vocabularies
     □ d.
              They dictate how semi-structured data are serialized
7. "John said that Liam Neeson stars in Taken". With how many statements we can
   express this sentence using RDF Reification:
              We cannot
     □ a.
     □ b.
     C.3

  □ d.

              5
         Dog
                                  Animal
8.
   What is the appropriate property to connect these two classes:
              partOf
        a.
              superClassOf
        b.
              subClassOf
        C.
        d.
              domainOf
```