Polarization entanglementenabled quantum holography

Chen Huang chen_huang@hust.edu.cn

- Intensity correlation measurement
- Spatial and polarization entanglement of the source

Intensity correlation measurement

intensity distribution
$$I(\mathbf{k}) = \frac{1}{N} \sum_{l=1}^{N} I_l(\mathbf{k})$$

intensity correlation distribution

$$\Gamma(\mathbf{k}_1, \mathbf{k}_2) = \frac{1}{N} \sum_{l=1}^{N} I_l(\mathbf{k}_1) I_l(\mathbf{k}_2) - \frac{1}{N-1} \sum_{l=1}^{N-1} I_l(\mathbf{k}_1) I_{l+1}(\mathbf{k}_2)$$
Real coincidence

Accidental coincidence

 \mathbf{k} , \mathbf{k}_1 and \mathbf{k}_2 correspond to positions of camera pixels.

Intensity and intensity correlation measurements between photon pairs with an EMCCD camera

The quantum state of the photo pair after the SLMs

$$\sum_{\mathbf{k}} \left[|V\rangle_{\mathbf{k}} |V\rangle_{-\mathbf{k}} + e^{i\psi(\mathbf{k})} |H\rangle_{\mathbf{k}} |H\rangle_{-\mathbf{k}} \right]$$

$$\rightarrow$$
 $R(\mathbf{k}) \propto 1 + \cos \psi(\mathbf{k})$

Spatial and polarization entanglement of the source

(a) Spatial entanglement

$$\sigma_r^{(c)} = 26.20 \pm 0.02 \mu m$$
 $\sigma_k^{(r)} = 17.00 \pm 0.01 \mu m$ $\approx 1.6 \text{ pixel}$

 $X_1 - X_2$

$$\sigma_k^{(r)} = 17.00 \pm 0.01 \mu m$$

 kx_1+kx_2

(b) Polarisation entanglement

$$E_{\theta_{A},\theta_{B}} = \frac{R_{\theta_{A},\theta_{B}} - R_{\theta_{A},\theta_{B+\pi}} - R_{\theta_{A+\theta},\theta_{B}} + R_{\theta_{A+\pi},\theta_{B+\pi}}}{R_{\theta_{A},\theta_{B}} + R_{\theta_{A},\theta_{B+\pi}} + R_{\theta_{A+\theta},\theta_{B}} + R_{\theta_{A+\pi},\theta_{B+\pi}}}$$

$$S = |E_{\pi/2,\pi/4} - E_{\pi/2,5\pi/4}| + |E_{0,\pi/4} + E_{0,5\pi/4}|$$

Violation of the CHSH inequality