

Kap. 1: Einleitung

Motivierende Beispiele

- 1. Internet Worm
 - Historischer Rückblick
 - Funktionsweise
 - Lessons Learned
- 2. SQL Slammer Wurm
 - Historischer Rückblick
 - Funktionsweise
 - Lessons Learned
- 3. Vergleich von Internet Worm und Slammer
- 4. Stuxnet
- 5. Causa Edward Snowden

Historischer Rückblick I

1988 Internet Worm

- Chronologie der Vorfälle an der University of Utah:
 - □ Mittwoch 2. November 1988
 - 17:01:59: Test oder Start des Wurms
 - 17:04: Maschine an der Cornell University "befallen"
 - 20:49: Wurm infiziert VAX 8600 an der Univ. Utah (cs.utah.edu)
 - 21:09: Wurm versucht von VAX aus andere Maschinen zu infizieren
 - 21:21: Load (Anzahl der rechenbereiten Prozesse) von 5
 - 21:41: Load von 7
 - 22:01: Load von 16
 - 22:06: Es können keine Prozesse mehr gestartet werden, Benutzer können sich nicht mehr anmelden
 - 22:20: Systemadministrator terminiert den Wurm Prozess
 - 22:41: Der Wurm ist zurück; Load 27
 - 22:49: System shutdown, reboot
 - 23:21: Der Wurm ist zurück; Load 37

Globale Sicht

- Mittwoch 2. Nov. 1988
 - 17:01:59: Wurm Test oder Start
 - □ 21:00: Stanford University; ca. 2500 Unix Maschinen infiziert
 - □ 21:30: MIT infiziert
 - 22:54: University of Maryland
 - 23:00: University of California, Berkeley
 - □ 24:00: SRI International
- Donnerstag, 3. Nov. 1988
 - □ 2:00: Lawrence Livermore National Laboratory
 - 2:28: E-mail Warnung; erreicht aber die meisten nicht vor Samstag 5. Nov. 5:00 Uhr
 - Wurm infiziert SUN und VAX
 - Beinhaltet DES Tabelle
 - Nutzt .rhosts und host.equiv
 - Speichert X* Dateien in /tmp

Globale Sicht (2)

- Donnerstag, 3. Nov. 1988
 - 5:58: Bug fix posting aus Berkeley:
 - Sendmail's debug Kommando deaktivieren
 - · C Compiler umbenennen
 - Linker umbenennen
 - 8:00: Berkely entdeckt finger Mechanismus
 - □ 10:30: TV Teams am MIT
 - · Ca. 10 % Infektionsrate am MIT (2000 Maschinen)
 - □ 11:00: Titel-Story in den Nachrichten:
 - Mehr als 6000 hosts im Internet infiziert (10 %)

"How it works"

- Wie befällt er neue Maschinen?
 - □ sendmail Bug (seit langem bekannt)
 - □ finger Bug; Buffer Overflow (nur VAX werden befallen)
 - □ Remote execution (rsh, rexec)
- Welche Accounts werden angegr.
 - Offensichtliche Passwörter
 - Leeres Passwort
 - Benutzername
 - Benutzername+Benutzername
 - Infos aus GECOS-String
 - Nachname
 - Nachname rückwärts
 - □ Build-In Wörterbuch (432 Wörter)
 - □ /usr/dict/words (24'474 Wörter)
 - □ Trusted Host Beziehung (.rhosts)

"How it works" (2)

- Welche hosts werden angegriffen?
 - □ Maschinen in /.rhosts und /etc/host.equiv
 - □ .forward Datei gebrochener Accounts
 - ☐ .rhosts Datei gebr. Accounts
 - □ Gateways aus der Routing-Tabelle
 - □ Endpunkte von Point to Point Verbindungen
 - □ Zufällig geratene Adressen
 - □ Nur Sun und VAX
- Was der Wurm NICHT tut:
 - □ Versuchen root access zu erhalten
 - □ Well-known Accounts angreifen
 - □ Daten zerstören
 - □ "Zeitbomben" zurücklassen

Programm Struktur


```
main Routine
   argv[0] := "sh"; /* rename process */
   Is there already a worm? /* faults here causes mass infection */
   Initialize clock:
   while (true) {
      cracksome(); /* attack accounts, try to find hosts */
      sleep(30); /* hide the worm */
      Listen for other worms /* faults here causes mass infection */
      create a new process, kill the old /* Camouflage */
      try to attack some machines;
      sleep(120); /* hide the worm */
      if (running > 12 hours)
        cleaning host List; /* reduce memory consumption */
      if (pleasequit && wordcheck > 10)
        exit
```

Attacking Engine

10

Lessons Learned

- Verursacher und rechtliche Folgen
 - □ Robert T. Morris, 23, Cornell Student (Sohn des NSA Chief Scientist)
 - Suspendierung von der Cornell University
 - □ Verurteilt zu \$ 10.000 und 400 Stunden gemeinnütziger Arbeit
- Lessons Learned
 - ☐ (lange) bekannte Bugs fixen
 - Starke Passwörter benutzen
 - Least privilege Prinzip (sowenig Rechte wie nötig), strenge Zugriffskontrolle
 - Logging und Auditing
 - Keine reflexartigen Reaktionen
 - Kontinuierliche Information von sich und anderen
 - "Zentrales" Security Repository
 CERT (Computer Emergency Response Team) wurde gegründet
 www.cert.org

Historischer Rückblick II

2003 Slammer Wurm

- Chronologie
 - □ Samstag, 25. Januar 2003: Kurz vor 5:30 Uhr (UTC), d.h. 6:30 Uhr (MEZ) taucht der Wurm auf
 - □ Verbreitung des Wurm um 6:00 Uhr (UTC):

Quelle: MPSS 03

Kreisdurchmesser entspricht Anzahl infizierter Hosts (logarithmische Darstellung)

SQL Slammer im Münchner Wissenschaftsnetz

- Münchner Wissenschaftsnetz (MWN), verbindet u.a. alle Standorte der Münchner Universitäten, der FH und der Bayerischen Akademie der Wissenschaften: Massive Störungen von Samstag 25.01.03 6:30 Uhr bis 26.01.03 11:30 Uhr
- Verkehrsstatistik am zentralen Router des MWN (1 Woche)

Legende

- Grün: eingehender Verkehr
- Blau: ausgehenderVerkehr
- Dunkelgrün: Max. Peak im 5 Minuten Intervall (eingehend)
- Magenta: Max. Peak im 5Minuten Intervall (ausgehend)

Verbreitung und Folgen

- Schnellster Wurm in der Geschichte
 - 1. Minute: Verdopplung der Population alle 8,5 Sekunden (± 1 s)
 - > 3 Minuten: etwas verringerte Verbreitungsrate; Netzbandbreite wird zum beschränkenden Faktor
 - 10 Minuten: ca. 90 % aller anfälligen Hosts sind infiziert
- Folgen:
 - Große Teile des Internets nicht mehr erreichbar
 - Steuerungssysteme f
 ür die Stromversorgung gest
 ört
 - □ Funktionsstörungen bei Geldautomaten
 - Steuerrechner von zwei Atomkraftwerken in den USA betroffen
 - **u**

Voraussetzungen

- SQL Server; Client Verbindungen über
 - □ NetBios (TCP Port 139/445)
 - □ Sockets (TCP Port 1433)
 - Monitor Port (UDP 1434) zur Ermittlung der Verbindungsart; Client schickt 0x02 an den Port; Server schickt Verbindungsinformationen
- Buffer Overflow Bug im SQL Server
 - □ Client setzt erstes Bit auf 0x04 im Bsp. $\x04\x41\x41\x41\x41$ ($\x41 = \xappa$ ")
 - □ SQL Monitor nimmt Rest der Daten und öffnet damit Registry
 HKLM\Software\Microsoft\Microsoft SQL
 Server\AAAA\MSSQLServer\CurrentVersion
 - □ Über geeignet formatierte Daten kann hier ein Buffer Overflow herbeigeführt werden
- Problem:
 - SW von Drittanbietern beinhaltet SQL-Server
 - Dies ist nicht allgemein bekannt

"How it works"

- Slammer passt in ein UDP Packet
 - □ 376 Byte groß, geschrieben in Assembler
 - Mit Header Informationen 404 Byte
- Slammer nutzt Buffer-Overflow an UDP Port 1434
- Nach Infektion:
 - "Raten" zufälliger IP-Adressen
 - Angriff über UDP
- Keine Schadfunktionalität im eigentlichen Sinn
- Charakteristika:
 - UDP verbindungsloses Protokoll; wird nur durch Bandbreite beschränkt
 - □ Höchste beobachtete "Probing"-Rate: 26.000 Scans pro Sekunde
 - Aggressive Verbreitungsstrategie führt dazu, dass der Wurm mit anderen Würmern um Netzbandbreite konkurriert

Slammer im MWN (Forts.)

Monatsstatistik

- Mind. 8 SQL-Server betroffen
- Maßnahmen:
 - Zugang zum MWN für diese Server gesperrt
 - □ Port 1434 gesperrt

Lessons Learned

- Grundproblematik:
 Nicht behobene Bugs in Anwendungen (kein Einspielen von Patches)
- Bundling von Software; Anwender weiß u.U. nichts von Sicherheitsproblemen und notwendigen Patches
- Angriffe über UDP können zu extrem schneller Verbreitung führen
- Gegenmaßnahmen:
 - ☐ Filtern des entsprechenden Verkehrs (UDP Port 1434) über Firewall
 - □ Fehler und Schwächen beheben
 - Nicht notwendige Dienste abschalten

Vergleich

Internet Wurm und SQL-Slammer

	Internet Worm	Slammer	
Angegriffene Hosts/OS	SUN und VAX / UNIX	Microsoft Windows/SQL Server	
Angriffsstrategie	Ziemlich komplex Nutzt eine Vielzahl von Bugs und fortschrittliche Strategien	Einfaches Assembler Programm nutzt Buffer Overflow	
Schadfunktion	Verursacht große Load und viel Netzverkehr	Verursacht extremste Load und Netzverkehr	
Verbreitung	~ 6.000 Systeme Ziemlich schnell	Extrem schnell 90 % aller verwundbaren Systeme nach 10 Minuten infiziert	

Kap. 1: Einleitung

Motivierende Beispiele

- 1. Internet Worm
 - Historischer Rückblick
 - Funktionsweise
 - Lessons Learned
- 2. SQL Slammer Wurm
 - Historischer Rückblick
 - Funktionsweise
 - Lessons Learned
- 3. Vergleich von Internet Worm und Slammer
- 4. Stuxnet
- 5. Causa Edward Snowden

Kap. 1: Einleitung

Motivierende Beispiele

- 1. Internet Worm
 - Historischer Rückblick
 - Funktionsweise
 - Lessons Learned
- 2. SQL Slammer Wurm
 - Historischer Rückblick
 - Funktionsweise
 - Lessons Learned
- 3. Vergleich von Internet Worm und Slammer
- 4. Stuxnet
- 5. Causa Edward Snowden

Presse-Echo

- New spy rootkit targets industrial secrets Windows virus takes aim at Siemens SCADA management systems (techworld.com, 19.07.10)
- □ Trojaner per USB-Stick Siemens und der digitale Industrie-Spion (Sueddeutsche.de, 21.07.10)
- □ Stuxnet-Wurm kann Industrieanlagen steuern (heise.de, 16.09.10)
- □ Computervirus Stuxnet Der Wurm, der aus dem Nichts kam (Spiegel Online 22.09.10)
- □ Der digitale Erstschlag ist erfolgt (FAZ, 22.09.10)
- □ A Silent Attack, but Not a Subtle One (New York Times, 26.09.10)
- Computervirus Stuxnet traf auch deutsch Industrie (Sueddeutsche.de, 02.10.10)
- □ Stuxnet breitet sich weiter aus (Financial Times Deutschland, 4.10.10)
- Stuxnet: Vorgeschmack auf den Cyber-Krieg? (Deutsche Welle, 5.10.10)

u

- Befällt Windows-Rechner (z.T. über Zero-Day-Exploits)
 - autorun.inf-Dateien können von Windows auch als EXE-Datei intepretiert werden
 - Windows Server Service RPC Handling vulnerability, aka. Conficker Bug (CVE-2008-4250, bekannt seit 25.09.08, Patch 26.10.08)
 - □ LNK / CLINK: LNK-Datei auf USB Stick; Beim Lesen des Icons einer LNK-Datei wird Code ausgeführt (CVE-2010-2568, bekannt seit 30.06.10, Patch 2.08.10)
 - □ Payload-Dateien; Treiber (MrxCls.sys, MrxNet.sys) sind digital signiert mit Zertifikaten von Realtek bzw. JMicron
 - Treiber stellen Verbreitung auch nach Neustart sicher
 - □ Print Spooler Bug: Fehler in Druckerwarteschlange erlaubt Schreiben in Systemverzeichnis (CVE-2010-2729 bekannt seit 14.07.10, Patch 14.09.)
 - □ Privilege escalation über Keyboard layout file (Patch 12.10.)
 - □ Privilege escalation über Task Scheduler (Patch 14.12.10)

- Infektion des Windows-Rechner
 - Versucht sich über LAN zu verbreiten, in dem nur eingeschränkte oder keine Internet-Konnektivität besteht
 - □ Installation von RPC-Server und Client
 - Peer-to-Peer Kommunikation zwischen infizierten Rechnern
 - Damit Update-Möglichkeit für neuere Versionen
 - Versuch Datei-Freigaben für Weiterverbreitung zu nutzen
 - Installation eines Windows-Rootkit
- eigentliches Ziel: WinCC Software zum Management speicherprogrammierbarer
 Steuerungen (SPS) (engl. SCADA [supervisory control and data acquisition]) von Industrieanlagen

Siemens SCADA System SIMATIC WinCC

- "Process visualization with Plant Intelligence"
- Universell einsetzbare Software zur Steuerung und Automatisierung von Industrieanlagen:
 - Automobilproduktion und Zulieferindustrie
 - Chemische und pharmazeutische Industrie
 - □ Ernährungs-, Getränke- und Tabakindustrie
 - Maschinenbau
 - Energieerzeugung und Verteilung
 - Handel- und Dienstleistungsgewerbe
 - □ Kunststoffverarbeitende Industrie
 - Metallverarbeitende Industrie und Stahlindustrie
 - □ Papierverarbeitung und Druckindustrie
 - Verkehr, Transportgewerbe und Logistik
 - Wasserversorgung und Müllentsorgung

Beispiel

Prozessabbild für Kohletransport

Quelle: www.automation.siemens.com

Beispiel

Prozessablauf Wasserversorgung

Quelle: <u>www.automation.siemens.com</u>

Beispiel

Kühlungsinfrastruktur (Teil) im LRZ

IT-Sicherheit | WS 24/25 | © Helmut Reiser

28

Angriff auf WinCC bzw. SCADA

- Infizierter Windows Rechner
- Suche nach WinCC oder Siemens Step7 Software in Registry
- Verbindung zum WinCC Datenbank-Server mit
 - fest-kodiertem Account und Passwort
 - □ uid= WinCCConnec pwd= 2WSXcder
- Siemens empfiehlt, wegen Stabilität der Steuerung, diesen Account nicht zu verändern
- Malicious SQL-Statement
 - Transfer von Stuxnet-Code auf Rechner mit WinCC
 - Stuxnet schreibt sich in Step7 Datenbank
 - Modifikation von WinCC Views führen zur Ausführung von Schadcode

Eigentliches Ziel

- Infektion von programmable logic device contollern (PLCs)
- Ersatz einer zentralen DLL (s7otbxdx.dll), damit:
 - Monitoring aller Lese- und Schreibzugriffe auf PLC
 - Infektion eines PLC mit eigenen Code Blöcken
 - Masquerading einer PLC Infektion (PLC-Rootkit)
- Infizierter PLC arbeitet auch ohne Verbindung zum Steuerrechner "weiter"

Angriff auf PLC

- Drei Stuxnet-Varianten (A,B,C) abhängig von verwendeter CPU
- Funktionsweise von A und B konnte geklärt werden:
 - Infektion erfolgt wenn Programm-Baustein FC1869 definiert und ein bestimmtes Kommunikationsmodul (CP-342-5) registriert sind
 - □ Kommunikationsmodule (bis zu 6) steuern je 31 Frequenzumformer, die Drehgeschwindigkeit von Elektromotoren steuern
 - Endlicher Automat in Stuxnet verändert in unregelmäßigem Abstand (13 Tage bis 3 Monate) die Frequenz
 - Variante A für Frequenzumformer der Firma Vacon (Finnland)
 - Variante B für Umformer der Fa. Fararo Paya (Teheran)
- C deaktiviert oder nur teilweise fertig

Verbreitung

- Infektion von Wechselmedien
- Kopiert sich selbst in Siemens Step7 Projekte
 - Ausführung des Schad-Codes beim Öffnen des Projekts
- Verbreitung über das Netz:
 - Infizierte Systeme bilden Peer-to-Peer Netz z.B. für Updates
 - □ Infektion von WinCC Maschinen über "Well-Know" Datenbank Passwort
 - Weiterverbreitung über Windows Netz-Shares
 - Weiterverbreitung über Wechselmedien (z.B. USB-Sticks)
 - Verbreitung über Print Spooler Bug
 - Windows Server Service RPC Vulnerability
- Verbreitung auf PCs sehr viel größer als auf Anlagensteuerungen (Baustein FC1896 erforderlich)

Lokale Verbreitung

Symantec: w32_stuxnet_dossier.pdf

33

www.eset.com: Stuxnet_UNDER-theMicrosope.pdf

Table 1.4.1 – The Percentage Distribution of Infections by Region

Iran	Indonesia	India	Pakistan	Uzbekistan	Russia	Kazakhstan	Belarus
52,2%	17,4%	11,3%	3,6%	2,6%	2,1%	1,3%	1,1%
Kyrgyzstan	Azerbaijan	United States	Cuba	Tajikistan	Afghanistan	Rest of the world	
1,0%	0,7%	0,6%	0,6%	0,5%	0,3%	4,6%	

Analyse

- Viele verschiedene Exploits um Hostrechner anzugreifen
- Mehrere Zero-Day Vulnerabilities
- "Maskierung als Treiber mit "legaler" Signatur
- Verschlüsselte Konfigurationen
- "Infektion" von Dynamischen Bibliotheken (dll)
 - □ Systembibliotheken (Ntsys.dll)
 - □ ca. 10 Anti-Viren Programme (Kaspersky, McAffee, F-Secure,....)
- Komplexer Angriffs- und Installationsvektor
- Installation einer Backdoor; Command and Control Server:
 - www.mypremierfutbol.com
 - www.tudaysfutbol.com
- Funktion eines Windows Rootkits
- Injektion von Code in PLC Systeme
- Masquerading der Infektion auch auch PLCs (PLC-Rootkit)

Analyse (2)

- Ungewöhnlich großes Binary für einen Wurm
- Extrem große Komplexität
- "Only few attackers will be cabable of producing a similar attack"
- Damit Angriffe auf "kritische Infrastukturen" möglich
- "We conducted a detailed technical analysis of the worm Win32/Stuxnet, which currently is perhaps the most technologically sophisticated malicious program developed for a targeted attack to date." (eset)
- "Stuxnet is the type of threat we hope to never see again."(Symantec)

2010/2011

Vermutungen über Verursacher und Ziele

- Experten vermuten größten Aufwand und teuerste Entwicklung von Malware in der Geschichte
- Fachleute aus unterschiedlichen Bereichen notwendig
- Nicht bestätigte/belegte Vermutungen:
 - □ Israelischer Geheimdienst mit Unterstützung der USA
- Vermutete Ziele:
 - Atomkraftwerk Bushehr im Iran
 - Iranische Urananreicherungsanlage in Natanz
 - Maniputation der Geschwindigkeit der Zentrifugen:
 - Normalwert 1064 Hz
 - Stuxnet erhöht die Frequenz für 15 Min. auf 1.410 Hz
 - Nach 27 Tagen Reduzierung auf wenige hundert Herz
 - Folge: Zerstörung der Zentrifugen
 - Wiki-Leaks meldet nuklearen Störfall in Natans (17.07.2009)
 - Von 4.700 Zentrifugen arbeiten zu der Zeit nur 3.900

New York Times

June 1st 2012

- Obama Order Sped Up Wave of Cyberattacks Against Iran
 - Bush startete Programm mit Code-Namen "Olympic Games" (2006)
 - Obama entscheidet über Fortsetzung und beschleunigt Aktion
 - "Cyberattacks should proceed"
 - Angriffsziel: Zentrifugen in der Anreicherungsanlage Natanz
 - Amerikaner, Europäer und Israelis sind beteiligt
 - Wurm wurde von "secret Israeli unit" und "American intelligence officials" programmiert

IT-Sicherheit | WS 24/25 | © Helmut Reiser

Kap. 1: Einleitung

Motivierende Beispiele

- 1. Internet Worm
 - Historischer Rückblick
 - Funktionsweise
 - Lessons Learned
- 2. SQL Slammer Wurm
 - Historischer Rückblick
 - Funktionsweise
 - Lessons Learned
- 3. Vergleich von Internet Worm und Slammer
- 4. Stuxnet
- 5. Causa Edward Snowden

Enthüllungen

Edward Snowden

- Beschäftigt als SysAdmin im KRSOC (Kunia Regional SIGINT Operations Center; NSA-Abhör-Station auf Oahu, Hawaii)
- Zugang zu "Top Secret" Dokumenten
- Kontakt zu Glenn Greenwald; 20. Mai 2013 Abreise nach Honkong
- 7. Juni 13: Veröffentlichung in Washington Post und Guardian: NSA Prism program taps in to user data of Apple, Google and others
- 9. Juni: Edward Snowden outet sich in Honkong als Quelle
- 14. Juni: Strafanzeige des FBI
- Asyl-Anträge in mind. 21 Ländern
- 23. Juni: Abflug nach Moskau
- 1. August: vorläufiges Asyl in Russland

Überwachung, Späh-Angriff, Datenspionage

- NSA (National Security Agency, USA)
- GCHQ (Government Communications Headquarters, GB)
- Verschiedenste Systeme und Programme zur Überwachung
 - Aufzeichnung von Telefonverbindungsdaten
 - PRISM (Überwachung des Internet-Verkehrs)
 - □ Tempora (Überwachung des Internet-Verkehrs, Anzapfen von Glasfasern)
 - □ XKeyScore (Werkzeug zur Datenanalyse)
 - □ Boundless Informant (Datenanalyse)
 - Mail Isolation Control and Tracking (Fotografieren aller Postsendungen)
 - □ FAIRVIEW (Zugriff auf große Datenmengen außerhalb der USA)
 - □ Bullrun (Knacken oder umgehen von Verschlüsselungstechniken)
 - □ Genie (NSA-Trojaner und Botnet kontrolliert von der NSA)
 - **-** ?

PRISM/US-984XN Overview

OR

The SIGAD Used Most in NSA Reporting Overview

April 2013

Derived From: NSA/CSSM 1-52 Dated: 20070108 Declassify On: 20360901 TOP SECRET//SI//ORCON//NOFORN

(TS//SI//NF) PRISM Collection Details

Current Providers

What Will You Receive in Collection (Surveillance and Stored Comms)? It varies by provider. In general:

- · Microsoft (Hotmail, etc.)
- · Google
- · Yahoo!
- · Facebook
- · PalTalk
- · YouTube
- Skype
- · AOL
- Apple

- · E-mail
- · Chat video, voice
- · Videos
- · Photos
- · Stored data
- · VoIP
- · File transfers
- · Video Conferencing
- · Notifications of target activity logins, etc.
- · Online Social Networking details
- Special Requests

Complete list and details on PRISM web page: Go PRISMFAA

TOP SECRET//SI//ORCON//NOFORN

TOP SECRET//SI//ORCON//NOFORN

GMail

(TS//SI//NF) Introduction

U.S. as World's Telecommunications Backbone

- · Much of the world's communications flow through the U.S.
- A target's phone call, e-mail or chat will take the cheapest path, not the physically most direct path - you can't always predict the path.
- · Your target's communications could easily be flowing into and through the U.S.

International Internet Regional Bandwidth Capacity in 2011 Source: Telegeography Research

TOP SECRET//SI//ORCON//NOFORN

Tempora

- GCHQ Programm zur weltweiten Überwachung von TK- und Internet-Verkehr, zwei Teilprojekte
 - Mastering the Internet
 - □ Global Telecoms Exploitation
- Umfangreicher als Prism
- Abhören von Verkehr an
 - Internet-Knotenpunkten
 - Transatlantischen Datenleitungen siehe https://www.networkatlas.org/
- Speicherung der Daten für 30 Tage
- Automatische Auswertung
- 200 Glasfasern wurden angezapft
- 500 Mitarbeiter im Programm

Beispiel für transatlantische LWL: TAT-14

IT-Sicherheit | WS 23/24 | © Helmut Reiser

Boundless Informant

- Tool zur Aufzeichnung und Analyse von Daten
- Farbe kodiert Anzahl der Überwachungen

IT-Sicherheit | WS 24/25 | © Helmut Reiser

XKeyscore

- Datenanalysewerkzeug und Suchmaschine für Daten
- Weltweit verteiltes System
- Echtzeit-Überwachung von Zielpersonen
- Auswahl der Zielperson über
 - Name, Email Adresse, Nickname, Kontaktlisten in Instant Messenger
 - □ Browser-Merkmale, Cookies
 - Telefonnummer, IP-Adresse
 - **...**
- Guardian veröffentlicht Präsentation aus dem Jahr 2008:
 http://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data
- BND testet XKeyscore

NSA beeinflusst Standardisierung

- Standardisierungsgremium National Institute of Standards and Technology (NIST)
- Warnt vor Verwendung des Dual_EC_DRBG-Standard eines Pseudo-Zufallszahlengenerators
- Enthält Backdoor der NSA
- Zufallszahlengeneratoren sind Basis für die Qualität von Verschlüsselungs-, Signaturund Hash-Verfahren
- Erneute öffentliche Prüfungsphase des Standards
- 21.04.14 NIST widerruft die Empfehlung zur Verwendung von Dual_EC_DRBG

[Thomas. C. Hales: The NSA Back Door to NIST, Notices of the AMS, Vol 61, No. 2, p 190-192]

Ermittlungen in der NSA-Affäre eingestellt

- Nachricht vom 5.10.17
- Bundesanwaltschaft stellt Vorermittlungen wegen feindlicher Spionage ein
 - □ Filtern von Internet- und Telefonverkehr durch NSA und GCHQ
 - □ Belegt durch den NSA Untersuchungsausschuss des Bundestags
 - □ ABER: "keine Belege dafür, dass diese Techniken zielgerichtet gegen Deutschland eingesetzt worden sind" nach § 99 StGB: Geheimdienstliche Agententätigkeit
- Hans-Georg Maaßen, Präsident BfV im Bundestag:
 - "Geben und Nehmen" mit Partnern "vor allem jenseits des Atlantik"

IT-Sicherheit | WS 24/25 | © Helmut Reiser