Lab Exercise #2 -- Combinational Circuits

A. The "sim" Software Package

In this course, you will use a software package named "sim" (available only on "north") to study circuits. A brief introduction to "sim" is available as:

~cse320/General/intro.sim

If you have not already done so, modify your ".personal" file as follows:

1. Add the following line to your ".personal" file, after any existing "setenv PATH" statements:

setenv PATH {\$PATH}:/user/csearch/bin

2. Execute the following command:

ompt> source .personal

You won't need to repeat these two steps during subsequent sessions.

- B. Boolean Functions and Combinational Circuits
- 1. The file "~cse320/Labs/lab02.circuit.c" contains a C++ module which simulates a four-variable, one-output Boolean function.
- a) Bring the function into simulation using the UNIX command:

ompt> sim ~cse320/Labs/lab02.circuit.c

b) Experiment with the switches and fill in the following table which describes the behavior of the function.

Ir a	Inputs a b c d			Output (0 or 1)
0 0 0 0 0	0 0 0 0 1 1	0 0 1 1 0	0 1 0 1 0	
0	1	1	0	
1	1	1	1	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	-
1	1	1	1	

c) Give an algebraic expression for the function:

F(a,b,c,d) =

- d) Is the function minimized? Explain.
- e) Complete the following table to show the Karnaugh map for function F.

F	c'd'	c'd	cd	cd'	
a'b'					
a'b				+	
ab					
ab′	++				
	T+			+	

f) Give a minimized expression for the function.

$$F(a,b,c,d) =$$

2. Consider the Boolean functions F1 and F2 below:

$$F1 = a + b'$$
 /* a or not b */
 $F2 = a + a'b'$ /* a or (not a and not b) */

Each function has two inputs and one output.

- a) Develop a "sim" module that simulates F1 and F2 simultaneously. Each function must have its own output Probe but they must share input Switches.
- b) Execute the "sim" package to test your implementation of F1 and F2, then complete the following table:

a	b	F1	F2
0	0		
0	1		
1	0		
1	1		

c) In a few words, what do you notice when you compare functions F1 and F2?