Digital Audio

Issues to be covered (Over next few lectures):

- Digital Audio
 - Sampling TheoremDigital Audio Signal Processing
 - Digital Audia Effects
 - Digital Audio Effects

GRAPHICS

157

Back Close

Digital Audio Applications

Application of Digital Audio — Selected Examples

Hard Disk Recording

Music Production

- Sound Synthesis
- Samplers
- Effects Processing

Video – Audio Important Element: Music and EffectsWeb — Many uses on Web

- Spice up Web Pages
- Listen to Cds
- Listen to Web Radio

MATLAB DSP GRAPHIC

44

→

Back

What is Sound?

- Source Generates Sound
 - Air Pressure changes
 - Electrical Loud Speaker
 - Acoustic Direct Pressure Variations
- Destination Receives Sound
 - Electrical Microphone produces electric signal
 - Ears Responds to pressure hear sound (MPEG Audio exploits this fact)

159

Digitising Sound

- Microphone produces analog signal
- Computer like discrete entities

Need to convert Analog-to-Digital — Specialised Hardware

Also known as Sampling

160

DSP GRAPHICS

Digital Sampling

Sampling basically involves:

- Measuring the analog signal at regular discrete intervals
- Recording the value at these points

Computer Manipulation of Sound

Writing Digital Signal Processing routines range from being trivial to highly complex:

- Volume
- Cross-Fading
- Looping
- Echo/Reverb/Delay
- Filtering
- Signal Analysis

CAFRDYD

162

GRAPHICS

44 →

∢ ▶ Back

CARDIFF **Sound Demos** Volume CM0268 MATLAB DSP GRAPHICS • Cross-Fading 163 Looping • Echo/Reverb/Delay • Filtering Back Close

Sample Rates and Bit Size

GRAPHICS 164

8 Bit Value (0-255)

How many Samples to take?

16 Bit Value (Integer) (0-65535)

11.025 KHz — Speech (Telephone 8 KHz) 22.05 KHz — Low Grade Audio

How do we store each sample value (*Quantisation*)?

(WWW Audio, AM Radio)

44.1 KHz — CD Quality Back Close

Nyquist's Sampling Theorem

reproduce a digital version of an Analog Waveform

Nyquist's Theorem:

The Sampling frequency for a signal must be at least twice the highest frequency component in the signal.

Sampling Frequency is Very Important in order to accurately

OSP GRAPHICS

165

Implications of Sample Rate and Bit Size

Affects Quality of Audio

- Ears do not respond to sound in a linear fashion ((more later (MPEG Audio))
- Decibel (dB) a logarithmic measurement of sound
- 16-Bit has a signal-to-noise ratio of 98 dB virtually inaudible
- 8-bit has a signal-to-noise ratio of 50 dB
- Therefore, 8-bit is roughly 8 times as noisy
 - 6 dB increment is twice as loud
- Click Here to Hear Sound Examples

DSP GRAPHIC

169

Implications of Sample Rate and Bit Size (cont)

DSP GRAPHICS

170

Affects Size of Data

File Type	44.1 KHz	22.05 KHz	11.025 KHz
16 Bit Stereo	10.1 Mb	5.05 Mb	2.52 Mb
16 Bit Mono	5.05 Mb	2.52 Mb	1.26 Mb
8 Bit Mono	2.52 Mb	1.26 Mb	630 Kb

Figure 4: Memory Required for 1 Minute of Digital Audio

Practical Implications of Nyquist Sampling Theory

Must (low pass) filter signal before sampling:

 Otherwise strange artifacts from high frequency signals appear.

171

CM0268

MATLAB

DSP GRAPHICS

