EE3315 Internet Technology

Lecturer

Name: Dr. Eric Wong

Office: G6416

Office Hour: 1pm - 2pm every Tuesday

Phone: 3442-7706

Email: eeewong@cityu.edu.hk

URL: http://www.ee.cityu.edu.hk/~ewong

Timetable

- Lecture: Tuesday (3:00pm 4:50am) face to face + on-line
- Laboratory:
 - Location: Computer Networking Laboratory (YEUNG P1806)
 - Time: (Starting from Week 5/6) face to face
 - Monday (3:00pm 5:50pm): L01 (Week 5,7,9,11)
 - Monday (9:00am 11:50am): L02 (Week 5,7,9,11)
 - Monday (3:00pm 5:50pm): L03 (Week 6,8,10,12)
 - Monday (9:00am 11:50am): L04 (Week 6,8,10,12)
- Tutorial: face to face
 - Tuesday (7:00pm − 7:50pm), T01, YEUNG LT-7
 - Tuesday (6:00am − 6:50am), T02, YEUNG LT-7
 - Tuesday (12:00pm − 12:50pm), T03, LI 1614
 - * Before attending tutorial sessions, please read tutorial questions and try to do them yourself first.

Course Aim

- This course aims to provide students with the knowledge of key protocols in the TCP/IP protocol suite.
- It will look at technologies which transform the Internet from its data-only roots to a true multi-service network that can handle voice, video and multimedia with comparable quality and reliability.

Course Intended Learning Outcomes

- CILO1: Recognize the design principles and the implementation issues of IP routing protocols and SDN (software-defined networking) control plane
- CILO2: Demonstrate the understanding of the principles for TCP and apply them to solve problems analytically
- CILO3: Recognize the design principles for multimedia networking, e.g., audio and video streaming
- CILO4: Demonstrate the understanding of the principles for various application protocols
- CILO5: Demonstrate the understanding of IP routing protocols through hands-on tasks in laboratory exercise

Assessment

Course Work 50%

- Tests 30~40% (Test 1: Week 6-8; Test 2: Week 11-13)
- Laboratory 5~10% (at least 75% laboratory attendance to be eligible for a pass)
- Assignments 5~10%
 - for submitting assignments

• Examination 50%

 For a student to pass the course, at least 30% of the maximum mark for **both** course work and examination must be obtained

Lab Regulations

- Attendance >= 75%
- Sign in when arrive the lab.
- Late for more than one hour is regarded as absence and no marks counted for that lab session.
- Late for less than an hour will be accumulated. Accumulated late for one hour is also counted as one session absence.
- Download and print the lab manual before lab session.
- Check sheet (per group) submitted at the end of that session. Later submission is not accepted.
- Grouping normally 2~3 students in a group.

Mitigation Requests

• For course assessment (such as test, assignment, etc.) make-up assessment for illness or other circumstances will not be provided to students. The students will score "zero" for the assessment work concerned.

* Further information about academic regulations pertaining to students' mitigation requests due to illness or other circumstances affecting assessment can be referred to ARRO website or SGS website.

Academic Honesty

- Cheating in Test / Exam:
 - receive zero mark in Test / Exam
 - report to the Department (may cause to fail in the course)
- Be honest!
- Don't copy your classmates' work!
- Don't let your classmates to copy your work!

Syllabus

- Internet Routing Protocols and SDN control plane
- Transport Protocols
- Application Protocols
- Multimedia Networking

Tentative Teaching Schedule

- Week 1: Introduction of the Course + IP Routing
- Week 2: IP Routing
- Week 3 IP Routing
- Week 4: IP Routing + SDN
- Week 5: Transport Protocols
- Week 6: Test 1 (or in Week 7/8: TBC)
- Week 7: Transport Protocols
- Week 8: Transport Protocols
- Week 9: Application protocols
- Week 10: Application protocols
- Week 11: Test 2 (or in Week 12/13: TBC)
- Week 12: Multimedia Networking
- Week 13: Multimedia Networking + Review

Textbook

 James F. Kurose and Keith W. Ross
Computer Networking: A Top-Down Approach
7th edition, Pearson,
2017.

Reference book

 Alberto Leon-Garcia and Indra Widjaja,
Communication
Networks, 2nd edition,
McGraw-Hill, 2004.

Reference book

Douglas E. Comer,
Computer Networks
and Internets,
5th edition, Prentice
Hall, 2008.

DOUGLAS E. COMER

Reference book

William Stallings,
Data and Computer
Communications,
8th edition, Prentice
Hall, 2007.

EE3315 vs. EE3009 (Data Communications and Networking)

EE3009:

- 1. Focus on fundamentals of computer networks (mainly covering physical and data link layers)
- 2. Describe how internetworking works and explain the principles of packet forwarding by routers

EE3315:

- 1. Focus on IP/TCP technologies and protocols (mainly covering network and transport layers) and related advanced topics (e.g., SDN and QoS for multimedia networking)
- 2. Describe how and why the way IP routing works on the Internet.
- 3. Explain the principles of transport layer protocols (e.g., flow control and congestion control) and why they work the ways they are now
- 4. Explain the principles of application layer protocols (e.g., HTTP, FTP)
- 5. Provide hands-on experience in IP routing protocols

Q & A