Deep Learning Challenge - Alphabet Soup Foundation

Overview

The non-profit foundation Alphabet Soup wants a tool that can help it select the applicants for funding with the best chance of success in their ventures. With your knowledge of machine learning and neural networks, you'll use the features in the provided dataset to create a binary classifier that can predict whether applicants will be successful if funded by Alphabet Soup.

Results

Data Preprocessing

- o What variable(s) are the target(s) for your model?
 - IS_SUCCESSFUL
- o What variable(s) are the features for your model?
 - APPLICATION_TYPE
 - AFFILIATION
 - CLASSIFICATION
 - USE_CASE
 - ORGANIZATION
 - STATUS
 - INCOME_AMT
 - SPECIAL_CONSIDERATIONS
 - ASK_AMT
- What variable(s) should be removed from the input data because they are neither targets nor features?
 - EIN
 - Name

Compiling, Training, and Evaluating the Model

In this challenge, only 2 approaches were used to reach the 75% accuracy goal.

In the first model I built:

Layer	(type)	Output	Shape	Param #
dense	(Dense)	(None,	10)	480
dense	_1 (Dense)	(None,	10)	110
dense	_2 (Dense)	(None,	1)	11

 10 neurons, 2 hidden layers and relu activation were selected as this is the first attempt to the first model.

```
# Train the model
fit_model = nn_model.fit(X_train_scaled, y_train, epochs=50)
```

 50 epochs were selected as to observe how the model is performing.

```
268/268 - 1s - loss: 0.5586 - accuracy: 0.7230 - 536ms/epoch - 2ms/step Loss: 0.5585763454437256, Accuracy: 0.7230320572853088
```

 The target model performance (75%) was not achieved, the model only has 72.30% of accuracy.

Optimization

In this model, the name column was kept.

Other	21022
PARENT BOOSTER USA INC	1260
TOPS CLUB INC	765
UNITED STATES BOWLING CONGRESS INC	700
WASHINGTON STATE UNIVERSITY	492
CASCADE 4-H FOUNDATION	10
FREE & ACCEPTED MASONS OF WASHINGTON	10
NEW MEXICO GARDEN CLUBS INC	10
NATIONAL ASSOCIATION OF HISPANIC NURSES	10
UNION OF CALIFORNIA STATE WORKERS	10
Name: NAME, Length: 223, dtype: int64	

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 10)	2770
dense_1 (Dense)	(None, 10)	110
dense_2 (Dense)	(None, 10)	110
dense_3 (Dense)	(None, 10)	110
dense_4 (Dense)	(None, 1)	11
Total params: 3,111 Trainable params: 3,111 Non-trainable params: 0		

 10 neurons, 4 hidden layers and relu activation were selected as this is the first attempt to the first model.

```
# Train the model
fit_model = nn_model.fit(X_train_scaled, y_train, validation_split=0.15, epochs=100)
```

100 epochs were selected to increase the accuracy.

```
268/268 - 0s - loss: 0.4719 - accuracy: 0.7766 - 363ms/epoch - 1ms/step
Loss: 0.4718588590621948, Accuracy: 0.7765597701072693
```

• The target model performance (75%) was achieved.

Summary

The Keeping the Name column was the important procedure which shows the importance of the dataset shape before you preprocessing.

In the optimization, I tried to keep increase the hidden layers from 2 to 4, increase the epochs and added a neurons split to observe if the Name column is essential in building the model or it will reach oversampling stage.