

Sinais e Sistemas Electrónicos

Problemas resolvidos V

Sinais e Sistemas Electrónicos - 2021/2022

Circuitos em regime sinusoidal

- 1 Para o circuito representado, calcule
- a) a frequência para a qual a tensão sinusoidal v(t) está em fase com i(t);
- b) a impedância total *vista* pela fonte *v(t)* a essa frequência.

V-3

Sinais e Sistemas Electrónicos - 2021/2022

Com fasores:

I e V relacionam-se por

$$I = \frac{V}{Z_{eq}}$$

Para que os fasores I e V tenham o mesmo angulo (de forma a ter v(t) e i(t) em fase) é preciso que Zeq seja um numero real.

Zeq tem de ser, portanto, uma impedância resistiva.

$$Z_{eq} = Z_L + (R//Z_C) = j\omega L + \frac{R(1/j\omega C)}{R + (1/j\omega C)}$$

Multiplicando a fracção pelo complexo conjugado do denominador e simplificando, obtemos

$$Z_{eq} = \frac{R + j\omega \left[(\omega^{2}R^{2}C^{2} + 1)L - R^{2}C \right]}{\omega^{2}R^{2}C^{2} + 1}$$

V-5

Sinais e Sistemas Electrónicos - 2021/2022

$$Z_{eq} = \frac{R + j\omega \left[(\omega^{2}R^{2}C^{2} + 1)L - R^{2}C \right]}{\omega^{2}R^{2}C^{2} + 1}$$

Para que \mathbf{Z}_{eq} seja real, é preciso que a parte imaginária seja nula, donde

$$\omega \left[\left(\omega^2 R^2 C^2 + 1 \right) L - R^2 C \right] = 0$$

portanto

$$\omega = 0 \quad \lor \quad \left[\left(\omega^2 R^2 C^2 + 1 \right) L - R^2 C \right] = 0$$

Resolvendo a segunda igualdade em ordem a o...

$$\omega = \sqrt{\frac{1}{LC} - \frac{1}{R^2C^2}} \longrightarrow \begin{array}{c} L = 160\mu H, \\ R = 100\Omega \\ C = 25nF \end{array} \longrightarrow \begin{array}{c} \omega = 300Krad/s \\ f = 47.7KHz \end{array}$$

b) impedância à frequência o calculada?

$$Z_{eq} = \frac{R + j\omega \left[(\omega^{2}R^{2}C^{2} + 1)L - R^{2}C \right]}{\omega^{2}R^{2}C^{2} + 1}$$

A 300krad/s a parte imaginária da impedância é nula pelo que fica

$$Z_{eq(300Krad/s)} = \frac{R}{(0.3x10^6)^2 R^2 C^2 + 1}$$

Substituindo valores obtemos

$$Z_{eq(300Krad/s)} = 64\Omega$$

V-7

Sinais e Sistemas Electrónicos - 2021/2022

- 2 Considere o circuito representado na figura.
- a) De que tipo (resistência, condensador ou bobina) é o elemento \mathbb{Z}_1 .
- b) Determine o seu valor.
- c) Calcule o valor de \mathbb{Z}_2 .

Ficha "Circuitos em regime sinusoidal", prob. 2.

a) Tipo de \mathbb{Z}_1 ?

$$\mathbf{Z}_1 = \frac{\mathbf{V}}{\mathbf{I}} = \frac{40 \angle 132^{\circ}}{2 \angle 42^{\circ}} = 20 \angle 90^{\circ} \Omega$$
 Com uma fase de 90° , \mathbf{Z}_1 tem de ser uma bobina

b) Valor de
$$\mathbb{Z}_1$$
? $\mathbb{Z}_1 = 20 \angle 90^{\circ} \Omega = j20\Omega = j\omega L$

Com $\omega = 1Krad/s$, vem L = 20mH

V-9

Sinais e Sistemas Electrónicos - 2021/2022

Antes de resolver a alínea c) recordemos a...

Fórmula de Euler:

$$e^{jx} = \cos x + j\sin x$$

... que iremos usar para converter fasores da forma polar para a representação algébrica.

c) Valor de Z₂?

Usando KCL:
$$I_{25} = 2\angle 42^{\circ} - 1.56\angle 80.66^{\circ}$$

= $2(\cos 42^{\circ} + j \sin 42^{\circ}) - 1.56(\cos 80.66^{\circ} + j \sin 80.66^{\circ})$
= $1.233 - j0.2$ [mA]

$$\mathbf{V}_{25} = 25\mathbf{I}_{25} = 30.83 - j5 \ [mV]$$

V-11

Sinais e Sistemas Electrónicos - 2021/2022

$$\mathbf{V}_{25} = 30.83 - j5 \ [mV]$$

$$\mathbf{V}_{25} = \sqrt{30.83^2 + (-5)^2} \angle arctg(-5/30.83) = 31.23 \angle -9.21^{\circ} [mV]$$

$$\mathbf{Z}_2 = \frac{\mathbf{V}_{25}}{1.56 \angle 80.66^{\circ}} = 20 \angle -90^{\circ} \Omega$$
 Com uma fase de -90°, \mathbf{Z}_2 tem de ser um condensador

$$\mathbf{Z}_2 = -j20\Omega = 1/j\omega C$$
 Com $\omega = 1Krad/s$, vem $C = 50\mu F$

3 – Calcule o equivalente de Norton entre os terminais A e B, considerando $\omega = 1 rad/s$.

Ficha "Circuitos em regime sinusoidal", prob. 6.

V-13

Sinais e Sistemas Electrónicos - 2021/2022

Calculamos primeiro as impedâncias do condensador e da bobina

$$\frac{1}{\omega = 1 rad / s} = -j \frac{1}{1 x 1} = -j 1 \Omega$$

$$j \omega L = j 1 x 2 = j 2 \Omega$$

Calculamos agora o equivalente de Thévenin pelo método

universal

Usando KCL no nó V₁:
$$I_1 + I = 0.25V_L \Leftrightarrow \frac{1 - V_1}{-j} + I = 0.25V_L$$

Sabendo que
$$V_1 = V + V_L$$
 e $V_L = -j2I$

Substituindo estas igualdades em cima

$$j[1-(V-j2I)]+I=0.25(-j2I)$$

V-15

Sinais e Sistemas Electrónicos - 2021/2022

De onde se obtém $\mathbf{V} = (0.5 + j)\mathbf{I} + 1$

Dos coeficientes da equação tiramos

$$\mathbf{Z}_{\mathbf{T}} = (0.5 + j)\Omega$$
 e $\mathbf{V}_{\mathbf{T}} = 1V$

ou
$$Z_T = 1.12 \angle 63.4^{\circ} \Omega$$
 e $V_T = 1 \angle 0^{\circ} V$

Equivalente de Thévenin

A corrente do equivalente de Norton obtém-se por:

$$\mathbf{I}_{\mathbf{N}} = \frac{\mathbf{V}_{\mathbf{T}}}{\mathbf{Z}_{\mathbf{T}}}$$

V-17

Sinais e Sistemas Electrónicos - 2021/2022

- 4 Relativamente ao circuito abaixo, calcule as potências médias...
- a) ... dissipadas em \mathbb{Z}_1 e \mathbb{Z}_2 ;
- b) ... fornecidas pelas fontes.

Usando análise nodal, começamos por determinar a tensão V no circuito

$$\mathbf{I}_1 + \mathbf{I}_2 = 10 + j10 \iff \frac{\mathbf{V}}{5 \angle 50^{\circ}} + \frac{\mathbf{V}}{8 \angle -20^{\circ}} = 10(1+j)$$

$$\Leftrightarrow \frac{8/5\angle -70^{\circ} V}{8\angle -20^{\circ}} + \frac{V}{8\angle -20^{\circ}} = 10\sqrt{2}\angle 45^{\circ}$$

$$\Leftrightarrow$$
 V(1+8/5\(\angle -70^\circ\) = $80\sqrt{2}$ \(\angle 25^\circ\)

V-19

Sinais e Sistemas Electrónicos - 2021/2022

$$\Leftrightarrow \mathbf{V}(1+8/5\angle -70^{\circ}) = 80\sqrt{2}\angle 25^{\circ}$$

$$\Leftrightarrow \mathbf{V}[1+(8/5)(\cos(-70^{\circ})+j\sin(-70^{\circ}))] = 80\sqrt{2}\angle 25^{\circ}$$

$$\Leftrightarrow \mathbf{V}(1.55-j1.5) = 80\sqrt{2}\angle 25^{\circ}$$

$$\Leftrightarrow \mathbf{V} = \frac{80\sqrt{2}\angle 25^{\circ}}{2.16\angle -44.1^{\circ}} = 52.5\angle 69.1^{\circ}V$$

A potência média num elemento de circuito é dada por

$$P = \frac{1}{2} V_m I_m \cos(\theta - \phi)$$

Sendo θ e ϕ as fases da tensão e corrente, respectivamente.

Note-se que para obter as potência em \mathbb{Z}_1 e \mathbb{Z}_2 não precisamos de calcular as correntes respectivas, dado que:

$$\Leftrightarrow \mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} \Leftrightarrow |\mathbf{Z}| \angle \mathbf{Z} = \frac{V_m}{I_m} \angle (\theta - \phi)$$

Pelo que

$$I_m = \frac{V_m}{|Z|}$$
 e $(\theta - \phi) = \angle Z$

e portanto

$$P = \frac{1}{2} V_m I_m \cos(\theta - \phi) = \frac{1}{2} \frac{V_m^2}{|Z|} \cos(\angle Z)$$

V-21

5 – Determine os valores médio e eficaz da tensão periódica representada na figura abaixo.

Ficha "Circuitos em regime sinusoidal", prob. 10-b).

V-23

Sinais e Sistemas Electrónicos - 2021/2022

algebricamente por:

No período que vai de
$$\theta$$
 a 4ms, a tensão $v(t)$ é dada $v(t) = \begin{cases} 5000t \left[V\right] & 0 < t < 1ms \\ 0V & 1 < t < 4ms \end{cases}$

Valor médio de v(t):

$$\overline{v(t)} = \frac{1}{T} \int_0^T v(t)dt = \frac{1}{4x10^{-3}} \int_0^{1ms} (5000t)dt$$

$$\overline{v(t)} = \frac{1}{4x10^{-3}} 5000 \frac{t^2}{2} \Big|_0^{1ms} = 625mV$$

Valor eficaz de v(t):

$$v_{eff} = \sqrt{\frac{1}{T} \int_0^T v(t)^2 dt} = \sqrt{\frac{1}{4x \cdot 10^{-3}} \int_0^{1ms} (5000t)^2 dt}$$
$$= \sqrt{\frac{1}{4x \cdot 10^{-3}} \left(25x \cdot 10^6\right) \frac{t^3}{3} \Big|_0^{1ms}} = \sqrt{\frac{6.25}{3}}$$
$$v_{eff} = 1.44V$$

V-25

Sinais e Sistemas Electrónicos - 2021/2022

6 – Considere o circuito representado na figura e as correntes indicadas com os respectivos valores eficazes. Calcule *R* e o valor da impedância de *L*.

Ficha "Circuitos em regime sinusoidal 2", prob. 7.

Este problema resolve-se melhor começando por traçar um diagrama fasorial. Para o fazer, note-se que:

- ➤ O fasor I₂ tem de estar em fase com V_S;
- ➤ Como o paralelo de R e L é indutivo, o fasor I₁ tem de estar em atraso relativamente a V₅;
- \triangleright Finalmente, $I_S = I_1 + I_2$.

V-27

Sinais e Sistemas Electrónicos - 2021/2022

O diagrama fasorial deverá ser portanto

O angulo α pode ser determinado pelo teorema do coseno, partindo do módulo dos vectores:

$$\mathbf{I}_1^2 = \mathbf{I}_2^2 + \mathbf{I}_S^2 - 2\mathbf{I}_2\mathbf{I}_S \cos\alpha$$

$$\alpha = \arccos \frac{15^2 + 30^2 - 18^2}{2x15x30}$$

$$\alpha = 27.13^{\circ}$$

O angulo β é calculado da mesma maneira:

$$\mathbf{I}_{2}^{2} = \mathbf{I}_{1}^{2} + \mathbf{I}_{S}^{2} - 2\mathbf{I}_{1}\mathbf{I}_{S}\cos\beta$$
 \Rightarrow $\beta = \arccos\frac{30^{2} + 18^{2} - 15^{2}}{2x18x30} = 22.33^{\circ}$

Sinais e Sistemas Electrónicos - 2021/2022

Os fasores I₁ e V_S são

$$I_1 = 18\sqrt{2} \angle -49.5^{\circ} A$$

$$\mathbf{V_S} = (4\Omega)\mathbf{I_2} = 60\sqrt{2}\angle 0^{\circ}V$$

 $\phi = \alpha + \beta = 49.5^{\circ}$

V-29

Sinais e Sistemas Electrónicos - 2021/2022

$$\frac{\mathbf{I}_{1}}{\mathbf{V}_{S}} = \mathbf{Y}_{T}$$

$$\mathbf{Y}_{T} = \frac{1}{R} + \frac{1}{j\omega L}$$

$$\mathbf{V}_{S} = \frac{18\sqrt{2}\angle -49.5^{\circ}}{60\sqrt{2}\angle 0^{\circ}}$$

$$\mathbf{V}_{S} = \frac{18\sqrt{2}\angle -49.5^{\circ}}{60\sqrt{2}\angle 0^{\circ}}$$

$$=0.3\angle -49.5^{\circ}$$

$$= (0.195 - j0.228)\Omega^{-1}$$

igualando...

$$\mathbf{Y}_{\mathrm{T}} = \frac{1}{R} + \frac{1}{i\omega L} = 0.195 - j0.228$$

$$R = \frac{1}{0.195} = 5.13\Omega$$
 $X_L = \frac{1}{0.228} = 4.39\Omega$