

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Классификация методов построения индексов в базах данных

Студент: Маслова Марина Дмитриевна ИУ7-73Б

Руководитель: Оленев Антон Александрович

Цель и задачи

Цель: классификация методов построения индексов в базах данных.

Задачи:

- провести анализ предметной области: дать основные определение, описать свойства индексов и их типы;
- описать методы построения индексов в базах данных;
- предложить и обосновать критерии оценки качества описанных методов и сравнить методы по предложенным критериям оценки.

Основные определения

Индекс — это некоторая структура, обеспечивающая быстрый поиск записей в базе данных. Индекс:

- определяет соответствие ключа поиска конкретной записи с положением этой записи;
- строится в дополнение к существующим данным;
- описывается:
 - типом и временем доступа;
 - временем вставки и удаления;
 - дополнительной памятью, занимаемая индексной структурой.

Типы индексов

- кластеризованные и некластеризованные;
- плотные и разреженные;

Типы индексов

— одноуровневые и многоуровневые.

Типы индексов

- индексы на основе деревьев поиска;
- индексы на основе хеш-таблиц;
- индексы на основе битовых карт.

В-деревья

Построение В-деревьев

Построение В-деревьев

В+-деревья

Обученные индексы

Индекс на основе В-дерева

Обученный индекс

Рекурсивная модель

Хеш-индексы

Обученные хеш-индексы

Фильтр Блума и обученные индексы

Классификация методов построения индексов для поиска ключей, принадлежащих некоторому диапазону (поиск).

Метод	Сложность	Время, нс	Обращения к памяти
В-деревья	$O(\log N)$	237.94	57.0
Обученные индексы	$O(\log N)$	139.09	12.6
LIPP	$O(\log N)$	24.23	3.1

Классификация методов построения индексов для поиска ключей, принадлежащих некоторому диапазону (вставка)

Метод	Сложность	Время, нс	Обращения к памяти
В-деревья	$O(\log N)$	1114.19	57.8
Обученные индексы	_	_	_
LIPP	$O(\log^2 N)$	70.93	3.1

Классификация методов построения индексов для поиска единичных ключей

Метод	Сложность		Процент
Метод	Худший	Средний	коллизий
Хеш-индексы	O(N)	O(1)	35.3%
Обученные хеш-индексы	O(N)	O(1)	19.5%

Классификация методов построения индексов для проверки существования ключа в наборе данных

Метод	Сложность	Размер, МБ
Фильтр Блума	O(k)	2.04
Обученные индексы	O(1)	1.31

Заключение

В ходе данной работы:

- проведен анализ предметной области;
- описаны методы построения индексов в базах данных;
- предложены и обоснованы критерии оценки качества описанных методов и проведено сравние методов по предложенным критериям оценки.

Поставленная цель достигнута.