Machine Learning Assignment 4

Shivangi Aneja

20-November-2017

04_homework_linear_regression

November 19, 2017

1 Programming assignment 4: Linear regression

1.1 Your task

In this notebook code skeleton for performing linear regression is given. Your task is to complete the functions where required. You are only allowed to use built-in Python functions, as well as any numpy functions. No other libraries / imports are allowed.

1.2 Load and preprocess the data

I this assignment we will work with the Boston Housing Dataset. The data consists of 506 samples. Each sample represents a district in the city of Boston and has 13 features, such as crime rate or taxation level. The regression target is the median house price in the given district (in \$1000's).

More details can be found here: http://lib.stat.cmu.edu/datasets/boston

```
In [181]: X , y = load_boston(return_X_y=True)

# Add a vector of ones to the data matrix to absorb the bias term
# (Recall slide #7 from the lecture)
X = np.hstack([np.ones([X.shape[0], 1]), X])
# From now on, D refers to the number of features in the AUGMENTED dataset (i.e. included)
# Split into train and test
test_size = 0.2
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
```

1.3 Task 1: Fit standard linear regression

```
X : array, shape [N, D]
                  (Augmented) feature matrix.
              y : array, shape [N]
                  Regression targets.
              Returns
              _____
              w : array, shape [D]
                  Optimal regression coefficients (w[0] is the bias term).
              HHHH
              # TODO
              X_trans = np.transpose(X)
              X_trans_X_inv = np.linalg.inv(np.dot(X_trans,X))
              X_trans_y = np.dot(X_trans,y)
              weight_array = np.dot(X_trans_X_inv,X_trans_y)
              return weight_array
1.4 Task 2: Fit ridge regression
In [196]: def fit_ridge(X, y, reg_strength):
              """Fit ridge regression model to the data.
              Parameters
              _____
              X : array, shape [N, D]
                  (Augmented) feature matrix.
              y : array, shape [N]
                  Regression targets.
              reg\_strength : float
                  L2 regularization strength (denoted by lambda in the lecture)
              Returns
              _____
              w : array, shape [D]
                  Optimal regression coefficients (w[0] is the bias term).
              n n n
              # TODO
              X_trans = np.transpose(X)
              X_trans_X = np.dot(X_trans,X)
              iden = np.identity(X_trans_X.shape[0])
              iden_rg = np.multiply(iden,reg_strength)
              inv = np.linalg.inv(np.add(X_trans_X,iden_rg))
              X_trans_y = np.dot(X_trans,y)
```

```
weight_array = np.dot(inv,X_trans_y)
return weight_array
```

1.5 Task 3: Generate predictions for new data

```
In [172]: def predict_linear_model(X, w):
              """Generate predictions for the given samples.
              Parameters
              _____
              X : array, shape [N, D]
                  (Augmented) feature matrix.
              w : array, shape [D]
                  Regression coefficients.
              Returns
              _____
              y_pred : array, shape [N]
                  Predicted regression targets for the input data.
              11 11 11
              # TODO
              X_{weighted} = X * w
              Y_predicted = X_weighted.sum(axis=1)
              return Y_predicted
```

1.6 Task 4: Mean squared error

```
# TODO
size = y_true.shape[0]
y_diff_sqr = np.square(np.subtract(y_true,y_pred))
y_sum_diff_sqr = np.sum(y_diff_sqr,axis=0)
return np.divide(y_sum_diff_sqr,size)
```

1.7 Compare the two models

The reference implementation produces

- * MSE for Least squares \approx 23.98
- * MSE for Ridge regression \approx **21.05**

You results might be slightly (i.e. $\pm 1\%$) different from the reference soultion due to numerical reasons.

```
In [197]: # Load the data
          np.random.seed(1234)
          X , y = load_boston(return_X_y=True)
          X = np.hstack([np.ones([X.shape[0], 1]), X])
          test_size = 0.2
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
          # Ordinary least squares regression
          w_ls = fit_least_squares(X_train, y_train)
          y_pred_ls = predict_linear_model(X_test, w_ls)
          mse_ls = mean_squared_error(y_test, y_pred_ls)
          print('MSE for Least squares = {0}'.format(mse_ls))
          # Ridge regression
          reg_strength = 1
          w_ridge = fit_ridge(X_train, y_train, reg_strength)
          y_pred_ridge = predict_linear_model(X_test, w_ridge)
          mse_ridge = mean_squared_error(y_test, y_pred_ridge)
          print('MSE for Ridge regression = {0}'.format(mse_ridge))
MSE for Least squares = 23.9843076118
MSE for Ridge regression = 21.0514870338
```

Problem 2

Datapoint x_i, y_i weighted by a scalar $t_i > 0$

$$E_{weighted}(w) = \frac{1}{2} \sum_{i=1}^{N} t_i [w^T \phi(x_i) - y_i]^2 = \frac{1}{2} \sum_{i=1}^{N} [\sqrt{t_i} (w^T \phi(x_i) - y_i)]^2$$

Converting to vector form , we have

Converting to vector form, we have
$$\Rightarrow \frac{1}{2}(\phi w - y)^T t(\phi w - y) = \frac{1}{2}(w^T \phi^T - y^T) t(\phi w - y) = \frac{1}{2}(w^T \phi^T t - y^T t)(\phi w - y)$$
$$\Rightarrow \frac{1}{2}[w^T \phi^T t \phi w - y^T t \phi w - w^T \phi^T t y + y^T t y]$$
$$\nabla_w = \phi^T t \phi w - \phi^T t y$$

To find the minimum value, put $\nabla_w = 0$, we have,

$$w^* = (\phi^T t \phi)^{-1} \phi^T t y$$

if
$$t = I$$
, then we have, $w_{ML} = (\phi^T \phi)^{-1} \phi^T y$

- (1) When we compare w^* to w_{ML} as discusses in the likelihood function of the lecture, then t acts as a precision / inverse Variance for the data point (x_i, y_i)
- (2) If t > 0 and takes positive Integral values, then more priority to data point with high scaling factor is given for duplicate / replicated data point.

Problem 3

$$E_{ridge}(w) = \frac{1}{2} \sum_{i=1}^{N} [w^{T} \phi(x_i) - y_i]^2 + \frac{\lambda}{2} ||w||_2^2$$

$$\phi \in R^{N \times M} \Rightarrow \phi'_{(N+M) \times M} = \begin{bmatrix} \phi \\ \sqrt{\lambda} I_{M \times M} \end{bmatrix}$$

Similarly,

$$y' = \begin{bmatrix} y \\ 0_{M \times 1} \end{bmatrix}$$

We know,

$$w^* = (\phi'^T \underline{\phi}')^{-1} \phi'^T y \dots (1)$$

$$\phi'^T \phi' = \phi^T \phi + \lambda I.....(2)$$

$$\phi'^T y' = \phi^T y....(3)$$

$$\phi'^T y' = \phi^T y \dots (3)$$

Using (1),(2) and (3) we have,

$$E_{ridge} = (\phi^T \phi + \lambda I)^{-1} \phi^T y$$

Hence Proved

Problem 4

We have,

$$p(y|\phi, w, \beta) = \prod_{i=1}^{N} \mathcal{N}(y_i|w^T\phi(x_i), \beta^{-1})$$

$$p(w,\beta) = \mathcal{N}(w|m_0, \beta^{-1}S_0)Gamma(\beta|a_0, b_0)$$

Posterior \propto Prior \times likelihood

$$p(w, \beta|y) \propto p(y|\phi, w, \beta)p(w|\beta)$$

Taking log on both sides, we have , $\ln p(w,\beta|y) = \ln[p(y|\phi,w,\beta) + \ln[p(w|\beta)]$ $\Rightarrow \ln[\prod_{i=1}^{N} \mathcal{N}(y_i|w^T\phi(x_i),\beta^{-1})] + \ln[\mathcal{N}(w|m_0,\beta^{-1}S_0)Gamma(\beta|a_0,b_0)]$ $\Rightarrow \sum_{i=1}^{N} \ln[\frac{1}{\sqrt{2\pi\beta^{-1}}}e^{-\frac{(y_i-w^T\phi(x_i))^2}{2\beta^{-1}}}] + \ln[\frac{1}{\sqrt{2\pi\beta^{-1}S_0}}e^{-\frac{(w-m_0)^2}{2\beta^{-1}S_0}}] + \log[\frac{b^{a_0}\beta^{a_0-1}e^{-b_0\beta}}{\Gamma(a_0)}]$ $\Rightarrow \sum_{i=1}^{N} (\frac{-1}{2}\ln(2\pi\beta^{-1}) - \frac{(w^T\phi(x_i)-y_i)^2}{x\beta^{-1}}) - \frac{1}{2}\ln(2\pi\beta^{-1}S_0) - \frac{(w-m_0)^2}{2\beta^{-1}S_0} + (a_0-1)\ln(\beta) - b_0\beta$ $\Rightarrow \frac{N}{2}\ln(\beta) - \frac{\beta}{2}\sum_{i=1}^{N} (w^T\phi(x_i) - y_i)^2 + (a_0-1)\ln(\beta) - -b_0\beta - \frac{\beta}{2}(w-m_0)^TS_0^{-1}(w-m_0) - \frac{1}{2}\ln|S_0| + \frac{m}{2}\ln(\beta)$

Using Product Rule, we have,

$$p(w, \beta|y) = p(w|\beta, y)p(\beta|y)$$

$$ln(p(w|\beta, y)) = \frac{-\beta}{2} w^T (\phi^T \phi + S_0^{-1}) w + w^T [\beta S_0^{-1} m_0 + \beta \phi^T y] + constt.$$

Thus $p(w|\beta,y)$ is a Gaussian distribution with following mean and covariance $m_N=S_N[S_0^{-1}m_0+\phi^Ty]$ $S_N^{-1}=\beta(S_0^{-1}+\phi^T\phi)$

To find $p(\beta|y)$ we need all the terms involvig β and discard terms independent of β

$$ln(p(\beta|y)) = \frac{-\beta}{2} m_0^T S_0^{-1} m_0 + \frac{\beta}{2} m_N^T S_N^{-1} m_N + \frac{N}{2} ln(\beta) - b_0 \beta + (a_0 - 1) ln(\beta) - \frac{\beta}{2} \sum_{i=1}^N y_i^2 + constt.$$
 Thus $p(\beta|y)$ is a Gamma distribution with following parameters $a_N = a_0 + \frac{N}{2}$

$$b_N = b_0 + \frac{1}{2} (m_0^T S_0^{-1} m_0 - m_N^T S_N^{-1} m_N + \sum_{i=1}^N y_i^2)$$