Reliability of stock-recruitment function estimation in state space assessment models

Gregory L. Britten¹, Elizabeth Brooks², and Timothy Miller²

¹Woods Hole Oceanographic Institution ²Northeast Fisheries Science Center

September 2023

1 Abstract

- 2 Stock-recruitment functions are important but difficult to estimate.
- 3 Many assessment models do not estimate stock-recruitment functions.
- 4 Maybe state space models help.
- 5 Here we ...
- 6 We find ...
- 7 This has implications for ...

8 Introduction

9 Methods

- We used the WHAM package (ref, commit 77bbd94)
- We performed a simulation study with 96 operating models that differed in the stock recruitment function
- used to simulate the population and a variety of additional variance parameter settings. Variance parameter
- 13 settings were determined by a review of the range of estimates from recent applications of WHAM in
- management of stocks of haddock, butterfish, and American plaice in the NE US.
- 15 We simulated 100 data sets for each operating model.
- ¹⁶ For each simulated data set we fit a set of 4 estimating models.

17 Operating Models

- 18 The general operating model structure follows that of Project 0, reviewed briefly here. The population
- model tracks 10 age classes: ages 1 to 10+, assuming spawning occurs 1/4 of the way through the year.
- The maturity at age was a logistic curve with a50 = 2.89 and slope = 0.88, assumed known in all estimation
- 21 models.
- Weight at age was generated with a LVB growth function

$$L_a = L_{\inf} \left(1 - e^{-k(a - t_0)} \right)$$

with $t_0 = 0$, $L_{\text{inf}} = 85$, and k = 0.3. The length-weight relationship is

$$W_a = \theta_1 L_a^{\theta_2}$$

- with $\theta_1 = e^{-12.1}$ and $\theta_2 = 3.2$.
- We assume a Beverton-Holt stock-recruitment of the form

$$N_{1,y} = \frac{\alpha SSB_{y-1}}{1 + \beta SSB_{y-1}}$$

- where α is referred to as the density-independent recruitment and β sets the strength of density-dependence.
- We specified unfished recruitment at $R_0 = e^{19}$ and $F_{MSY} = F_{\%40} = 0.348$ which corresponds to a steepness of 0.69, $\alpha = 0.60$, and $\beta = 2.4 * 10^{-5}$. 27

Estimating Models

- Analysis
- Metrics of interest: 31
- 1. Ability to correctly identify a stock recruitment relationship 32
- 2. Ability correctly identify the functional form of the stock recruitment relationship 33
- 3. Differences in estimation error (SSB, R) when SR relationships are correctly/incorrectly identified 34
- Generalized linear models
- Generalized linear mixed models
- Classification trees
- Results
- Discussion
- Appendix A
- References

Figure 1: Sensitivity of recruitment to environmental covariates for the three functional forms considered in this study.

Figure 2: Model selection results for whether a stock recruitment relationship was correctly identified, expressed as marginal proportions against individual covariates.

Figure 3: Model selection results for whether the correct stock recruitment functional form was identified, expressed as marginal proportions against individual covariates.

Figure 4: Effect sizes for predicting estimated via a binomial generalized linear model and a binomial generalized linear mixed model with simulation random number seed as a random intercept.

Figure 5: Classification tree analysis of model selection results. R package 'rpart' was used for the model fit and visualization. Following default settings in rpart, the complexity parameter is set at $c_p = 0.01$ which represents the minimum classification improvement required for any split.

 Table 1: Distinguishing characteristics of the operating models

	Model	NAA_re	Ecov_obs_sig	Ecov_re_sig	obs_error	R_sig	Fhist	NAA_cor	Ecov_re_cor	Ecov_effect	Ecov_how 1
1 2	om_1 om_2	rec rec	0.10 0.10	0.10 0.10	L L	0.10 1.00	H-MSY H-MSY	0.20 0.20	0.20 0.20	0.10 0.10	1
3	om_3	rec	0.10	0.10	L	0.10	MSY	0.20	0.20	0.10	1
4	om_4	rec	0.10	0.10	L	1.00	MSY	0.20	0.20	0.10	1
5	om_5	rec	0.10	0.10	L	0.10	H-MSY	0.80	0.20	0.10	1
6	om_6	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.20	0.10	1
7	om_7	rec	0.10	0.10	L	0.10	MSY	0.80	0.20	0.10	1
8 9	om_8 om_9	rec	0.10 0.10	0.10 0.10	L L	1.00 0.10	MSY H-MSY	0.80 0.20	0.20 0.80	0.10 0.10	1 1
10	om_10	rec	0.10	0.10	L	1.00	H-MSY	0.20	0.80	0.10	1
11	om_11	rec	0.10	0.10	L	0.10	MSY	0.20	0.80	0.10	1
12	om_12	rec	0.10	0.10	L	1.00	MSY	0.20	0.80	0.10	1
13	om_13	rec	0.10	0.10	L	0.10	H-MSY	0.80	0.80	0.10	1
14	om_14	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.80	0.10	1
15	om_15	rec	0.10	0.10	L	0.10	MSY	0.80	0.80	0.10	1
16	om_16	rec	0.10	0.10	L L	1.00	MSY	0.80	0.80	0.10	1 1
17 18	om_17 om_18	rec rec	0.10 0.10	0.10 0.10	L	0.10 1.00	H-MSY H-MSY	0.20 0.20	0.20 0.20	1.00 1.00	1
19	om_19	rec	0.10	0.10	L	0.10	MSY	0.20	0.20	1.00	1
20	om_20	rec	0.10	0.10	L	1.00	MSY	0.20	0.20	1.00	1
21	om_21	rec	0.10	0.10	L	0.10	H-MSY	0.80	0.20	1.00	1
22	om_22	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.20	1.00	1
23	om_23	rec	0.10	0.10	L	0.10	MSY	0.80	0.20	1.00	1
24 25	om_24 om_25	rec	0.10	0.10	L	1.00	MSY H-MSY	0.80	0.20	1.00	1 1
26	om_26	rec	0.10 0.10	0.10 0.10	L L	0.10 1.00	H-MSY	0.20 0.20	0.80 0.80	1.00 1.00	1
27	om_27	rec	0.10	0.10	L	0.10	MSY	0.20	0.80	1.00	1
28	om_28	rec	0.10	0.10	L	1.00	MSY	0.20	0.80	1.00	1
29	om_29	rec	0.10	0.10	L	0.10	$\operatorname{H-MSY}$	0.80	0.80	1.00	1
30	om_30	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.80	1.00	1
31	om_31	rec	0.10	0.10	L	0.10	MSY	0.80	0.80	1.00	1
32 33	om_32 om_33	rec	0.10	0.10	L L	0.10	MSY H-MSV	0.80	0.80	1.00	1 2
33 34	om_33	rec rec	0.10 0.10	0.10 0.10	L L	0.10 1.00	H-MSY H-MSY	0.20 0.20	0.20 0.20	0.10 0.10	2
35	om_35	rec	0.10	0.10	L	0.10	MSY	0.20	0.20	0.10	2
36	om_36	rec	0.10	0.10	L	1.00	MSY	0.20	0.20	0.10	2
37	om_37	rec	0.10	0.10	L	0.10	H-MSY	0.80	0.20	0.10	2
38	om_ 38	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.20	0.10	2
39	om_39	rec	0.10	0.10	L	0.10	MSY	0.80	0.20	0.10	2
40	om_40	rec	0.10	0.10	L	1.00	MSY	0.80	0.20	0.10	2 2
41 42	om_41 om_42	rec rec	0.10 0.10	0.10 0.10	L L	0.10 1.00	H-MSY H-MSY	0.20 0.20	0.80 0.80	0.10 0.10	2
43	om_42	rec	0.10	0.10	L	0.10	MSY	0.20	0.80	0.10	2
44	om_44	rec	0.10	0.10	L	1.00	MSY	0.20	0.80	0.10	2
45	om_45	rec	0.10	0.10	L	0.10	H-MSY	0.80	0.80	0.10	2
46	om_46	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.80	0.10	2
47	om_47	rec	0.10	0.10	L	0.10	MSY	0.80	0.80	0.10	2
48	om_48	rec	0.10	0.10	L	1.00	MSY	0.80	0.80	0.10	2
49 50	om_49 om_50	rec	0.10 0.10	0.10 0.10	L L	0.10 1.00	H-MSY H-MSY	0.20 0.20	0.20 0.20	1.00 1.00	2 2
51	om_51	rec	0.10	0.10	L	0.10	MSY	0.20	0.20	1.00	2
52	om_52	rec	0.10	0.10	L	1.00	MSY	0.20	0.20	1.00	2
53	om_53	rec	0.10	0.10	L	0.10	H-MSY	0.80	0.20	1.00	2
54	om_54	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.20	1.00	2
55	om_55	rec	0.10	0.10	L	0.10	MSY	0.80	0.20	1.00	2
56	om_56	rec	0.10	0.10	L	1.00	MSY	0.80	0.20	1.00	2
57 58	om_57	rec	0.10	0.10	L L	0.10	H-MSY	0.20	0.80	1.00	2 2
59	om_58 om_59	rec rec	0.10 0.10	0.10 0.10	L	1.00 0.10	H-MSY MSY	0.20 0.20	0.80 0.80	1.00 1.00	2
60	om_60	rec	0.10	0.10	L	1.00	MSY	0.20	0.80	1.00	2
61	om_61	rec	0.10	0.10	L	0.10	H-MSY	0.80	0.80	1.00	2
62	om_62	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.80	1.00	2
63	om_63	rec	0.10	0.10	L	0.10	MSY	0.80	0.80	1.00	2
64	om_64	rec	0.10	0.10	L	1.00	MSY	0.80	0.80	1.00	2
65 66	om_65 om_66	rec rec	0.10 0.10	0.10 0.10	L L	0.10 1.00	H-MSY H-MSY	0.20 0.20	0.20 0.20	0.10 0.10	4 4
67	om_67	rec	0.10	0.10	L	0.10	MSY	0.20	0.20	0.10	4
68	om_68	rec	0.10	0.10	L	1.00	MSY	0.20	0.20	0.10	4
69	om_69	rec	0.10	0.10	L	0.10	H-MSY	0.80	0.20	0.10	4
70	om_70	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.20	0.10	4
71	om_71	rec	0.10	0.10	L	0.10	MSY	0.80	0.20	0.10	4
72 73	om_72 om_73	rec	0.10 0.10	0.10 0.10	L L	1.00 0.10	MSY H-MSY	0.80 0.20	0.20 0.80	0.10 0.10	4 4
74	om_73	rec rec	0.10	0.10	L L	1.00	H-MSY	0.20	0.80	0.10	4
75	om_75	rec	0.10	0.10	L	0.10	MSY	0.20	0.80	0.10	4
76	om_76	rec	0.10	0.10	L	1.00	MSY	0.20	0.80	0.10	4
77	om_ 77	rec	0.10	0.10	L	0.10	$\operatorname{H-MSY}$	0.80	0.80	0.10	4
78	om_78	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.80	0.10	4
79	om_79	rec	0.10	0.10	L	0.10	MSY	0.80	0.80	0.10	4
80	om_80	rec	0.10	0.10	L	1.00	MSY H MSV	0.80	0.80	0.10	4
81 82	om_81 om_82	rec rec	0.10 0.10	0.10 0.10	L L	0.10 1.00	H-MSY H-MSY	0.20 0.20	0.20 0.20	1.00 1.00	4 4
83	om_83	rec	0.10	0.10	L	0.10	MSY	0.20	0.20	1.00	4
84	om_84	rec	0.10	0.10	L	1.00	MSY	0.20	0.20	1.00	4
85	om_85	rec	0.10	0.10	L	0.10	H-MSY	0.80	0.20	1.00	4
86	om86	rec	0.10	0.10	L	1.00	$\operatorname{H-MSY}$	0.80	0.20	1.00	4
87	om_87	rec	0.10	0.10	L	0.10	MSY	0.80	0.20	1.00	4
88	om_88	rec	0.10	0.10	L	1.00	MSY	0.80	0.20	1.00	4
89 90	om_89 om_90	rec rec	0.10 0.10	0.10 0.10	L L	0.10 1.00	H-MSY H-MSY	0.20 0.20	0.80 0.80	1.00 1.00	4 4
91	om_91	rec	0.10	0.10	L	0.10	MSY	0.20	0.80	1.00	4
92	om_92	rec	0.10	0.10	L	1.00	MSY	0.20	0.80	1.00	4
93	om_93	rec	0.10	0.10	L	0.10	$\operatorname{H-MSY}$	0.80	0.80	1.00	4
94	om_94	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.80	1.00	4
95	om_95	rec	0.10	0.10	L	0.10	MSY	0.80	0.80	1.00	4
96	om_96	rec	0.10	0.10	L	1.00	MSY	0.80	0.80	1.00	4

Table 2: Distinguishing characteristics of the estimating models

	ecov_how	r_mod
1	0	BH
2	1	BH
3	2	BH
4	4	BH