

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C07D 231/12, 263/32, A61K 31/42, 31/415		A1	(11) International Publication Number: WO 96/38418 (43) International Publication Date: 5 December 1996 (05.12.96)
(21) International Application Number: PCT/US96/08314 (22) International Filing Date: 31 May 1996 (31.05.96)		(US). DEVADAS, Balaknudu [IN/US]; 2175 Parasol Drive, Chesterfield, MO 63017 (US). LU, Hwang-Fun [-US]; 1723 Rossaire Court, Ballwin, MO 63021 (US).	
(30) Priority Data: 08/458,545 2 June 1995 (02.06.95) US		(74) Agents: BULOCK, Joseph, W. et al.; G.D. Searle & Co., Corporate Patent Dept., P.O. Box 5110, Chicago, IL 60680-5110 (US).	
(60) Parent Application or Grant (63) Related by Continuation US Filed on 08/458,545 (CIP) 2 June 1995 (02.06.95)		(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(71) Applicant (for all designated States except US): G.D. SEARLE & CO. [US/US]; Corporate Patent Dept., P.O. Box 5110, Chicago, IL 60680-5110 (US).		Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.	
(72) Inventors; and (75) Inventors/Applicants (for US only): TALLEY, John, J. [US/US]; 8772 Pine Avenue, Brentwood, MO 63144 (US). SIKORSKI, James, A. [US/US]; 2313 East Royal Court, Des Peres, MO 63131 (US). GRANETO, Matthew, J. [US/US]; 1510 Voltaire Drive, St. Louis, MO 63146 (US). CARTER, Jeffery, S. [US/US]; 15321 Grantley Drive, Chesterfield, MO 63017 (US). NORMAN, Bryan, H. [US/US]; 8648 Admiral Bay Drive, Indianapolis, IN 45236		(54) Title: HETEROCYCLO SUBSTITUTED HYDROXAMIC ACID DERIVATIVES AS CYCLOOXYGENASE-2 AND 5-LIPOXYGENASE INHIBITORS	

(57) Abstract

This invention is in the field of antiinflammatory pharmaceutical agents and specifically relates to compounds of formula (I), compositions and methods for treating disorders mediated by cyclooxygenase-2 or 5-lipoxygenase such as inflammation.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
RJ	Burundi	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

HETEROCYCLO SUBSTITUTED HYDROXAMIC ACID
DERIVATIVES AS CYCLOOXYGENASE-2 AND 5-
LIPOXYGENASE INHIBITORS

FIELD OF THE INVENTION

5

This invention is in the field of antiinflammatory pharmaceutical agents and specifically relates to compounds, compositions and methods for treating disorders mediated by cyclooxygenase-2 or 10 5-lipoxygenase, such as inflammation and allergic conditions such as asthma.

BACKGROUND OF THE INVENTION

15 Prostaglandins play a major role in the inflammation process, and the inhibition of prostaglandin production, especially production of PGG₂, PGH₂ and PGE₂, has been a common target of antiinflammatory drug discovery. However, common non-20 steroidal antiinflammatory drugs (NSAIDs) that are active in reducing the prostaglandin-induced pain and swelling associated with the inflammation process are also active in affecting other prostaglandin-regulated processes not associated with the inflammation process. 25 Thus, use of high doses of most common NSAIDs can produce severe side effects, including life threatening ulcers, that limit their therapeutic potential. An alternative to NSAIDs is the use of corticosteroids, which have even more drastic side effects, especially 30 when long term therapy is involved.

Previous NSAIDs have been found to prevent the production of prostaglandins by inhibiting enzymes in the human arachidonic acid/prostaglandin pathway including the enzyme cyclooxygenase (COX). The recent 35 discovery of an inducible enzyme associated with inflammation (named "cyclooxygenase-2 (COX-2)" or "prostaglandin G/H synthase II") provides a viable target of inhibition which more effectively reduces

inflammation and produces fewer and less drastic side effects.

In another portion of the arachidonic acid pathway, physiologically active leukotrienes, such as 5 leukotriene B₄ (LTB₄), leukotriene C₄ (LTC₄) and leukotriene D₄ (LTD₄) and other metabolites, are produced by the 5-lipoxygenase-mediated (5-LO) oxidation of arachidonic acid. These leukotrienes have been implicated in various inflammation-related 10 disorders and allergic diseases, and thus compounds which inhibit 5-lipoxygenase are useful in the treatment of disease states in which leukotrienes play an important role.

It is believed that selective dual inhibitors of 15 both cyclooxygenase-2 and 5-lipoxygenase, which affect the two enzymes at low concentrations, will more completely and permanently affect the damage caused by the various diseases and disorders mediated by cyclooxygenase-2 and 5-lipoxygenase but without the 20 gastrointestinal side effects associated with traditional NSAIDs.

The references below that disclose 25 antiinflammatory activity, show continuing efforts to find a safe and effective antiinflammatory agent. The novel compounds disclosed herein are such safe and also effective antiinflammatory agents furthering such efforts. The compounds disclosed herein preferably selectively inhibit cyclooxygenase-2 over cyclooxygenase-1.

30 Compounds which selectively inhibit cyclooxygenase-2 have been described in U.S. patents 5,380,738, 5,344,991, 5,393,790 and WO documents WO94/15932, WO94/27980, WO95/00501, WO94/13635, WO94/20480, and WO94/26731.

35 Compounds which inhibit 5-lipoxygenase have been described in U.S. patents 5,364,877, 5,302,603, 5,234,950, 5,098,932 and 5,354,865, among others.

Compounds which inhibit both cyclooxygenase and 5-lipoxygenase have been described in U.S. Patent Nos. 5,051,518, 5,298,521, 5,242,940, 5,234,939, and 5,356,898, among others. However, these previous mixed 5 inhibitors do not selectively inhibit cyclooxygenase-2 and therefore still cause the gastrointestinal side effects which substantially reduce their usage and effectiveness.

The invention's compounds are found to show 10 usefulness as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase with minimal side effects.

DESCRIPTION OF THE INVENTION

15 A class of compounds useful in treating cyclooxygenase-2 and 5-lipoxygenase-mediated disorders is defined by Formula I:

20

wherein A is a 5- or 6-member ring substituent selected from partially unsaturated or unsaturated heterocyclo and carbocyclic rings, wherein A is optionally substituted with a radical selected from acyl, halo, alkyl, 25 haloalkyl, cyano, nitro, carboxyl, alkoxy, oxo, aminocarbonyl, alkoxycarbonyl, carboxyalkyl, cyanoalkyl, and hydroxyalkyl;

wherein Y is one or more radicals selected from alkyl, alkynyl, alkenyl, hydroxyalkyl, aminoalkyl, 30 alkylaminoalkyl, arylaminoalkyl, acyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclo and heterocycloalkyl;

wherein R¹ is one or more substituents selected from heterocyclo, cycloalkyl, cycloalkenyl and aryl, wherein R¹ 35 is optionally substituted at a substitutable position with one or more radicals selected from alkyl, haloalkyl, cyano,

carboxyl, alkoxy carbonyl, hydroxyl, hydroxyalkyl,
 haloalkoxy, amino, alkylamino, arylamino, nitro,
 alkoxyalkyl, alkylsulfinyl, halo, alkoxy and alkylthio;
 wherein R² is selected from alkyl and amino;
 5 wherein R³ is a direct bond or a radical selected from

wherein R⁴ is selected from hydrido, hydroxyl, alkyl,
 10 aryl, heterocyclo and cycloalkyl;
 wherein R⁵ is selected from hydrido, alkyl, aryl,
 heterocyclo and cycloalkyl; and
 wherein R⁶ is selected from hydrido and hydroxyl;
 provided R² is amino when A is pyrazolyl;

15 or a pharmaceutically-acceptable salt thereof.

Compounds of Formula I would be useful for, but not limited to, the treatment of inflammation in a subject, and for treatment of other inflammation-associated disorders, such as, as an analgesic in the treatment of pain and headaches, or as an antipyretic for the treatment of fever. For example, compounds of the invention would be useful to treat arthritis, including but not limited to rheumatoid arthritis, spondyloarthropathies, gouty arthritis, osteoarthritis, systemic lupus erythematosus and juvenile arthritis. Such compounds of the invention would be useful in the treatment of asthma, bronchitis, menstrual cramps, tendinitis, bursitis, skin-related conditions such as psoriasis, eczema, burns and dermatitis, and from post-operative inflammation including from ophthalmic surgery such as cataract surgery and refractive surgery. Compounds of the invention also would be useful to treat gastrointestinal conditions such as inflammatory bowel disease, Crohn's disease, gastritis, irritable bowel syndrome and ulcerative colitis, and for the prevention or treatment of cancer, such as

colorectal cancer. Compounds of the invention would be useful in treating inflammation in such diseases as vascular diseases, migraine headaches, periarteritis nodosa, thyroiditis, aplastic anemia, Hodgkin's disease, sclerodoma, rheumatic fever, type I diabetes, neuromuscular junction disease including myasthenia gravis, white matter disease including multiple sclerosis, sarcoidosis, nephrotic syndrome, Behcet's syndrome, polymyositis, gingivitis, nephritis, hypersensitivity, swelling occurring after injury, myocardial ischemia, and the like. The compounds would also be useful in the treatment of ophthalmic diseases, such as retinitis, retinopathies, uveitis, ocular photophobia, and of acute injury to the eye tissue.

The compounds would also be useful in the treatment of pulmonary inflammation, such as that associated with viral infections and cystic fibrosis. The compounds would also be useful for the treatment of certain central nervous system disorders such as cortical dementias including Alzheimer's disease. The compounds of the invention are useful as anti-inflammatory agents, such as for the treatment of arthritis, with the additional benefit of having significantly less harmful side effects. These compounds would also be useful in the treatment of allergic rhinitis, respiratory distress syndrome, endotoxin shock syndrome, atherosclerosis and central nervous system damage resulting from stroke, ischemia and trauma. The compounds would also be useful in the treatment of pain, but not limited to postoperative pain, dental pain, muscular pain, and pain resulting from cancer.

Besides being useful for human treatment, these compounds are also useful for treatment of mammals, including horses, dogs, cats, rats, mice, sheep, pigs, etc.

The present compounds may also be used in co-therapies, partially or completely, in place of other

conventional antiinflammatories, such as together with steroids, NSAIDs, LTB₄ antagonists and LTA₄ hydrolase inhibitors.

Suitable LTB₄ inhibitors include, among others, 5 ebselen, Bayer Bay-x-1005, Ciba Geigy compound CGS- 25019C, Leo Denmark compound ETH-615, Lilly compound LY- 293111, Ono compound ONO-4057, Terumo compound TMK-688, Lilly compounds LY-213024, 264086 and 292728, Ono compound ONO-LB457, Searle compound SC-53228, calcitrol, 10 Lilly compounds LY-210073, LY223982, LY233469, and LY255283, ONO compound ONO-LB-448, Searle compounds SC- 41930, SC-50605 and SC-51146, and SK&F compound SKF- 104493. Preferably, the LTB₄ inhibitors are selected from 15 ebselen, Bayer Bay-x-1005, Ciba Geigy compound CGS- 25019C, Leo Denmark compound ETH-615, Lilly compound LY- 293111, Ono compound ONO-4057, and Terumo compound TMK- 688.

Suitable 5-LO inhibitors include, among others, masoprocol, tenidap, zileuton, pranlukast, tepxalin, 20 rilopirox, flezelastine hydrochloride, enazadrem phosphate, and bunaprolast.

The present invention preferably includes compounds which selectively inhibit cyclooxygenase-2 over cyclooxygenase-1 as well as inhibit the 5- 25 lipoxygenase enzyme. Preferably, the compounds have a cyclooxygenase-2 IC₅₀ of less than about 10 μM, and also have a selectivity ratio of cyclooxygenase-2 inhibition over cyclooxygenase-1 inhibition of at least 10, and more preferably of at least 100, and inhibit 5- 30 lipoxygenase at less than about 10 μM. Even more preferably, the compounds have a cyclooxygenase-1 IC₅₀ of greater than about 10 μM, and more preferably of greater than 20 μM and have a 5-lipoxygenase IC₅₀ of less than about 1 μM. Such preferred selectivity may 35 indicate an ability to reduce the incidence of common NSAID-induced side effects.

A preferred class of compounds consists of those

compounds of Formula I wherein A is selected from thienyl, oxazolyl, furyl, pyrrolyl, thiazolyl, imidazolyl, isothiazolyl, isoxazolyl, pyrazolyl, cyclopentenyl, phenyl, and pyridyl, wherein A is optionally substituted with a radical selected from acyl, halo, lower alkyl, lower haloalkyl, oxo, cyano, nitro, carboxyl, lower alkoxy, aminocarbonyl, lower alkoxycarbonyl, lower carboxyalkyl, lower cyanoalkyl, and lower hydroxyalkyl; wherein Y is a radical selected from lower alkyl, lower alkynyl, lower alkenyl, lower hydroxyalkyl, lower aminoalkyl, lower alkylaminoalkyl, lower arylaminoalkyl, lower acyl, aryl, lower aralkyl, lower cycloalkyl, lower cycloalkylalkyl, 5- or 6-membered heterocyclo and lower heterocycloalkyl; wherein R¹ is one or more substituents selected from 5- and 6-membered heterocyclo, lower cycloalkyl, lower cycloalkenyl and aryl selected from phenyl, biphenyl and naphthyl, where R¹ is optionally substituted at a substitutable position with one or more radicals selected from lower alkyl, lower haloalkyl, cyano, carboxyl, lower alkoxycarbonyl, hydroxyl, lower hydroxyalkyl, lower haloalkoxy, amino, lower alkylamino, phenylamino, nitro, lower alkoxyalkyl, lower alkylsulfinyl, halo, lower alkoxy and lower alkylthio; wherein R² is selected from lower alkyl and amino; wherein R³ is a direct bond or a radical selected from

wherein R⁴ is selected from hydrido, hydroxyl, lower alkyl, phenyl, 5- and 6-membered heterocyclo and lower cycloalkyl; wherein R⁵ is selected from hydrido, lower alkyl, phenyl, 5- and 6-membered heterocyclo and lower cycloalkyl; and wherein R⁶ is selected from hydrido and hydroxyl; or a pharmaceutically-acceptable salt thereof.

35 A class of compounds of particular interest

consists of those compounds of Formula I wherein A is a radical selected from thiienyl, oxazolyl, furyl, pyrrolyl, thiazolyl, imidazolyl, isoxazolyl, pyrazolyl, cyclopentenyl, phenyl, and pyridyl, wherein A is

5 optionally substituted with a radical selected from formyl, fluoro, chloro, bromo, methyl, trifluoromethyl, oxo, cyano, carboxyl, methoxy, aminocarbonyl, methoxycarbonyl, ethoxycarbonyl, acetyl, carboxypropyl, and hydroxymethyl; wherein Y is a radical selected

10 from ethyl, propyl, isopropyl, butyl, 1-propynyl, 2-propynyl, 1-butyn-3-yl, 1-propenyl, 2-propenyl, acetyl, dihydroxypropyl, hydroxyethyl, 1-amino-ethyl, 1-amino-propyl, 1-(N-methylamino)propyl, 1-(N,N-dimethylamino)propyl, 1-(N-phenylamino)propyl,

15 triazolyl, thiienyl, benzyl, phenylethyl, cyclohexylmethyl, cyclopentylethyl, triazolylmethyl, thiienylmethyl and phenyl optionally substituted at a substitutable position with one or more radicals selected from fluoro, chloro, bromo, hydroxyl, methyl, and methoxy; wherein R¹ is a substituent selected from thiienyl, oxazolyl, furyl, pyrrolyl, thiazolyl, imidazolyl, isoxazolyl, pyrazolyl, pyridyl, and phenyl, where R¹ is optionally substituted at a substitutable position with one or more radicals selected from

20 methyl, trifluoromethyl, hydroxyl, hydroxymethyl, trifluoromethoxy, nitro, methoxymethyl, fluoro, chloro, bromo, methoxy and methylthio; wherein R² is methyl or amino; wherein R³ is a direct bond or a radical selected from

25 methyl, trifluoromethyl, hydroxyl, hydroxymethyl, trifluoromethoxy, nitro, methoxymethyl, fluoro, chloro, bromo, methoxy and methylthio; wherein R² is methyl or amino; wherein R³ is a direct bond or a radical selected from

30

wherein R⁴ is selected from hydrido, hydroxyl, methyl, and phenyl; wherein R⁵ is selected from hydrido, methyl, and phenyl; and wherein R⁶ is selected from hydrido and hydroxyl; or a pharmaceutically-acceptable salt thereof.

35

Within Formula I there is a subclass of compounds

of high interest represented by Formula II:

II

5 wherein A is a ring substituent selected from thiienyl, oxazolyl, furyl, pyrrolyl, thiazolyl, imidazolyl, isothiazolyl, isoxazolyl, pyrazolyl, cyclopentenyl, phenyl, and pyridyl; wherein A is optionally substituted with a radical selected from acyl, halo, hydroxyl, lower alkyl, lower haloalkyl, oxo, cyano, nitro, carboxyl, lower alkoxy, aminocarbonyl, lower alkoxy carbonyl, lower carboxyalkyl, lower cyanoalkyl, and lower hydroxyalkyl; wherein Y is selected from lower alkyl, lower alkenyl and lower alkynyl; wherein R¹ is selected from 5- and 6-membered heterocyclo, lower cycloalkyl, lower cycloalkenyl and aryl selected from phenyl, biphenyl and naphthyl, wherein R¹ is optionally substituted at a substitutable position with one or more radicals selected from lower alkyl, lower haloalkyl, cyano, carboxyl, lower alkoxy carbonyl, hydroxyl, lower hydroxyalkyl, lower haloalkoxy, amino, lower alkylamino, phenylamino, nitro, lower alkoxyalkyl, lower alkylsulfinyl, halo, lower alkoxy and lower alkylthio; wherein R² is selected from lower alkyl and amino; and

10 25 wherein R⁵ is selected from hydrido, lower alkyl, phenyl, 5- and 6-membered heterocyclo and lower cycloalkyl; provided R² is amino when A is pyrazolyl; or a pharmaceutically-acceptable salt thereof.

A class of compounds of particular interest

30 consists of those compounds of Formula II wherein A is selected from thiienyl, oxazolyl, furyl, pyrrolyl, thiazolyl, imidazolyl, isoxazolyl, pyrazolyl, cyclopentenyl, phenyl, and pyridyl, wherein A is optionally substituted with a radical selected from formyl, fluoro, chloro, bromo, methyl, trifluoromethyl,

oxo, cyano, carboxyl, methoxy, aminocarbonyl, methoxycarbonyl, ethoxycarbonyl, acetyl, carboxypropyl, and hydroxymethyl; wherein Y is a radical selected from methyl, ethyl, isopropyl, propyl, butyl, propenyl, 5 butenyl, propynyl and butynyl; wherein R¹ is selected from thienyl, oxazolyl, furyl, pyrrolyl, thiazolyl, imidazolyl, isoxazolyl, pyrazolyl, pyridyl, and phenyl, where R¹ is optionally substituted at a substitutable position with one or more radicals selected from methyl, 10 trifluoromethyl, hydroxyl, hydroxymethyl, trifluoromethoxy, methoxymethyl, fluoro, chloro, bromo, methoxy and methylthio; wherein R² is methyl or amino; and wherein R⁵ is selected from hydrido, methyl, and phenyl; or a pharmaceutically-acceptable salt thereof.

15 Within Formula I there is a second subclass of compounds of high interest represented by Formula III:

III

20 wherein A is a ring substituent selected from thienyl, oxazolyl, furyl, pyrrolyl, thiazolyl, imidazolyl, isothiazolyl, isoxazolyl, pyrazolyl, cyclopentenyl, phenyl, and pyridyl; wherein A is optionally substituted with a radical selected from acyl, halo, hydroxyl, lower 25 alkyl, lower haloalkyl, oxo, cyano, nitro, carboxyl, lower alkoxy, aminocarbonyl, lower alkoxycarbonyl, lower carboxyalkyl, lower cyanoalkyl, and lower hydroxyalkyl; wherein Y is selected from lower alkyl, lower alkenyl and lower alkynyl; wherein R¹ is selected from 5- and 6- 30 membered heterocyclo, lower cycloalkyl, lower cycloalkenyl and aryl selected from phenyl, biphenyl and naphthyl, wherein R¹ is optionally substituted at a substitutable position with one or more radicals selected from lower alkyl, lower haloalkyl, cyano, 35 carboxyl, lower alkoxycarbonyl, hydroxyl, lower

hydroxyalkyl, lower haloalkoxy, amino, lower alkylamino, phenylamino, nitro, lower alkoxyalkyl, lower alkylsulfinyl, halo, lower alkoxy and lower alkylthio; wherein R² is selected from lower alkyl and amino; and 5 wherein R⁵ is selected from hydrido and alkyl; or a pharmaceutically-acceptable salt thereof.

A class of compounds of particular interest consists of those compounds of Formula III wherein A is selected from thiaryl, oxazolyl, furyl, pyrrolyl, 10 thiazolyl, imidazolyl, isoxazolyl, pyrazolyl, cyclopentenyl, phenyl, and pyridyl, wherein A is optionally substituted with a radical selected from formyl, fluoro, chloro, bromo, methyl, trifluoromethyl, oxo, cyano, carboxyl, methoxy, aminocarbonyl, 15 methoxycarbonyl, ethoxycarbonyl, acetyl, carboxypropyl, and hydroxymethyl; wherein Y is selected from methyl, ethyl, isopropyl, propyl, butyl, propenyl, butenyl, propynyl and butynyl; wherein R¹ is selected from thiaryl, oxazolyl, furyl, pyrrolyl, thiazolyl, imidazolyl, isoxazolyl, pyrazolyl, pyridyl, and phenyl, 20 where R¹ is optionally substituted at a substitutable position with one or more radicals selected from methyl, trifluoromethyl, hydroxyl, hydroxymethyl, trifluoromethoxy, methoxymethyl, fluoro, chloro, bromo, 25 methoxy and methylthio; wherein R² is methyl or amino; and wherein R⁵ is selected from hydrido, and methyl; or a pharmaceutically-acceptable salt thereof.

A class of compounds of particular interest consists of those compounds of Formula I 30 [4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl]methyl-N-hydroxy-N-methyl-dithiocarbamate; [4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-oxazolyl]methyl-N-hydroxy-N-methyl-dithiocarbamate; [5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]methyl-N-hydroxy-N-methyl-dithiocarbamate; 35 [5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]methyl-N-hydroxy-N-methyl-dithiocarbamate;

[5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-oxazolyl]methyl-N-hydroxy-N-methyl-dithiocarbamate;

[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-oxazolyl]methyl-N-hydroxy-N-methyl-dithiocarbamate;

5 [5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-methoxyphenyl)-2-oxazolyl]methyl-N-hydroxy-N-methyl-dithiocarbamate;

[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-oxazolyl]methyl-N-hydroxy-N-methyl-dithiocarbamate;

10 [5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-2-oxazolyl]methyl-N-hydroxy-N-methyl-dithiocarbamate;

[4-[(4-methylsulfonyl)phenyl]-5-phenyl-2-oxazolyl]methyl-N-hydroxy-N-methyl-dithiocarbamate;

15 [5-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-oxazolyl]methyl-N-hydroxy-N-methyl-dithiocarbamate;

[5-[(4-methylsulfonyl)phenyl]-4-phenyl-2-oxazolyl]methyl-N-hydroxy-N-methyl-dithiocarbamate;

20 [4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-oxazolyl]methyl-N-hydroxy-N-methyl-dithiocarbamate;

[4-[(4-aminosulfonyl)phenyl]-3-phenyl-5-isoxazolyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

25 [4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-5-isoxazolyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-5-isoxazolyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

30 [4-[(4-aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-5-isoxazolyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-methoxyphenyl)-5-isoxazolyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

35 [4-[(4-aminosulfonyl)phenyl]-3-(3-fluoro-4-

methoxyphenyl)-5-isoxazolyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-fluorophenyl)-5-isoxazolyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[4-[(4-methylsulfonyl)phenyl]-3-phenyl-5-isoxazolyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[3-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-5-isoxazolyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[4-[(4-aminosulfonyl)phenyl]-3-phenyl-2-thienyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-2-thienyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-2-thienyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[4-[(4-aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-2-thienyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-methoxyphenyl)-2-thienyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[4-[(4-aminosulfonyl)phenyl]-3-(3-fluoro-4-methoxyphenyl)-2-thienyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-fluorophenyl)-2-thienyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[3-[(4-methylsulfonyl)phenyl]-4-phenyl-5-thienyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[4-(4-chlorophenyl)-3-[(4-methylsulfonyl)phenyl]-5-thienyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[5-[(4-aminosulfonyl)phenyl]-6-phenyl-3-pyridyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[5-[(4-aminosulfonyl)phenyl]-6-(4-chlorophenyl)-3-pyridyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[5-[(4-aminosulfonyl)phenyl]-6-(4-fluorophenyl)-3-

pyridyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;
[5-[(4-aminosulfonyl)phenyl]-6-(4-methoxyphenyl)-3-
pyridyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;
[6-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-
5 methoxyphenyl)-3-pyridyl]propyl-N-hydroxy-N-methyl-
dithiocarbamate;
[6-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-
methoxyphenyl)-3-pyridyl]propyl-N-hydroxy-N-methyl-
dithiocarbamate;
10 [5-[(4-aminosulfonyl)phenyl]-6-(3-chloro-4-
fluorophenyl)-3-pyridyl]propyl-N-hydroxy-N-methyl-
dithiocarbamate;
[5-[(4-methylsulfonyl)phenyl]-6-phenyl-3-
pyridyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;
15 [5-(4-chlorophenyl)-6-[(4-methylsulfonyl)phenyl]-3-
pyridyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;
[4-[(4-aminosulfonyl)phenyl]-3-phenyl-2-furyl]propyl-
N-hydroxy-N-methyl-dithiocarbamate;
[4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-2-
20 furyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;
[4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-2-
furyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;
[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-
furyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;
25 [4-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-
methoxyphenyl)-2-furyl]propyl-N-hydroxy-N-methyl-
dithiocarbamate;
[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-
methoxyphenyl)-2-furyl]propyl-N-hydroxy-N-methyl-
30 dithiocarbamate;
[4-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-
fluorophenyl)-2-furyl]propyl-N-hydroxy-N-methyl-
dithiocarbamate;
[4-[(4-methylsulfonyl)phenyl]-3-phenyl-2-furyl]propyl-
N-hydroxy-N-methyl-dithiocarbamate;
35 [4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-
furyl]propyl-N-hydroxy-N-methyl-dithiocarbamate;

[4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl]-1-propyl-N-hydroxy-N-methyl-dithiocarbamate;

[4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-oxazolyl]-1-propyl-N-hydroxy-N-methyl-

5 dithiocarbamate;

[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]-1-propyl-N-hydroxy-N-methyl-dithiocarbamate;

[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]-1-propyl-N-hydroxy-N-methyl-

10 dithiocarbamate;

[5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-oxazolyl]-1-propyl-N-hydroxy-N-methyl-dithiocarbamate;

[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-oxazolyl]-1-propyl-N-hydroxy-N-methyl-

15 dithiocarbamate;

[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-methoxyphenyl)-2-oxazolyl]-1-propyl-N-hydroxy-N-methyl-dithiocarbamate;

20 [5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-oxazolyl]-1-propyl-N-hydroxy-N-methyl-dithiocarbamate;

[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-2-oxazolyl]-1-propyl-N-hydroxy-N-methyl-

25 dithiocarbamate;

[4-[(4-methylsulfonyl)phenyl]-4-phenyl-2-oxazolyl]-1-propyl-N-hydroxy-N-methyl-dithiocarbamate;

[5-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-1-propyl-N-hydroxy-N-methyl-

30 dithiocarbamate;

[5-[(4-methylsulfonyl)phenyl]-4-phenyl-2-oxazolyl]-1-propyl-N-hydroxy-N-methyl-dithiocarbamate;

[4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-1-propyl-N-hydroxy-N-methyl-

35 dithiocarbamate;

3-[4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-oxazolyl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

1-[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]-2-
5 propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-
10 oxazolyl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-oxazolyl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

15 3-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-methoxyphenyl)-2-oxazolyl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-
20 methoxyphenyl)-2-oxazolyl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-
fluorophenyl)-2-oxazolyl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[4-[(4-methylsulfonyl)phenyl]-5-phenyl-2-oxazolyl]-
25 2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[5-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[5-[(4-methylsulfonyl)phenyl]-4-phenyl-2-oxazolyl]-
30 2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[1-[(4-aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-
35 yl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[1-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl]-2-propenyl-N-hydroxy-N-methyl-

dithiocarbamate;

3-[3-[(4-aminosulfonyl)phenyl]-4-phenyl-1H-pyrazol-1-yl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[3-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-1H-pyrazol-1-yl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

5 3-[1-[(4-aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1H-pyrazol-3-yl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

10 3-[1-[(4-aminosulfonyl)phenyl]-5-(4-methoxyphenyl)-1H-pyrazol-3-yl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-1H-pyrazol-3-yl]-2-propenyl-N-

15 hydroxy-N-methyl-dithiocarbamate;

3-[1-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-3-yl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-fluorophenyl)-1H-pyrazol-3-yl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

20 3-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-fluorophenyl)-1H-pyrazol-3-yl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[1-[(4-methylsulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[5-(4-chlorophenyl)-1-[(4-methylsulfonyl)phenyl]-1H-pyrazol-3-yl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

25 3-[4-[(4-methylsulfonyl)phenyl]-3-phenyl-1H-pyrazol-1-yl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[4-(4-chlorophenyl)-3-[(4-methylsulfonyl)phenyl]-1H-pyrazol-1-yl]-2-propenyl-N-hydroxy-N-methyl-dithiocarbamate;

30 3-[4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-oxazolyl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

35 3-[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]-2-

3-[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]-2-

propynyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

5 3-[5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-oxazolyl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-oxazolyl]-2-propynyl-N-hydroxy-N-methyl-

10 dithiocarbamate;

3-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-methoxyphenyl)-2-oxazolyl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-oxazolyl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

15 3-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-2-oxazolyl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-

20 2-oxazolyl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[4-[(4-methylsulfonyl)phenyl]-5-phenyl-2-oxazolyl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[5-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

25 3-[5-[(4-methylsulfonyl)phenyl]-4-phenyl-2-oxazolyl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

30 3-[1-[(4-aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[1-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

35 3-[3-[(4-aminosulfonyl)phenyl]-4-phenyl-1H-pyrazol-1-yl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[3-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-1H-

pyrazol-1-yl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[1-[(4-aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1H-pyrazol-3-yl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

5 3-[1-[(4-aminosulfonyl)phenyl]-5-(4-methoxyphenyl)-1H-pyrazol-3-yl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

10 3-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-1H-pyrazol-3-yl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

15 3-[1-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-3-yl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

20 3-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-fluorophenyl)-1H-pyrazol-3-yl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

25 3-[1-[(4-methylsulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

30 3-[5-(4-chlorophenyl)-1-[(4-methylsulfonyl)phenyl]-1H-pyrazol-3-yl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

35 3-[4-[(4-methylsulfonyl)phenyl]-3-phenyl-1H-pyrazol-1-yl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

40 3-[4-(4-chlorophenyl)-3-[(4-methylsulfonyl)phenyl]-1H-pyrazol-1-yl]-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

45 3-[1-[(4-aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-1-methyl-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

50 3-[1-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl]-1-methyl-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

55 3-[3-[(4-aminosulfonyl)phenyl]-4-phenyl-1H-pyrazol-1-yl]-1-methyl-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

60 3-[3-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-1H-

pyrazol-1-yl]-1-methyl-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[1-[(4-aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1H-pyrazol-3-yl]-1-methyl-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

5 3-[1-[(4-aminosulfonyl)phenyl]-5-(4-methoxyphenyl)-1H-pyrazol-3-yl]-1-methyl-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

10 3-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-1H-pyrazol-3-yl]-1-methyl-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

15 3-[1-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-3-yl]-1-methyl-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

20 15 3-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-fluorophenyl)-1H-pyrazol-3-yl]-1-methyl-2-propynyl-N-hydroxy-N-ethyl-dithiocarbamate;

3-[1-[(4-methylsulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-1-methyl-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

25 20 3-[5-(4-chlorophenyl)-1-[(4-methylsulfonyl)phenyl]-1H-pyrazol-3-yl]-1-methyl-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[4-[(4-methylsulfonyl)phenyl]-3-phenyl-1H-pyrazol-1-yl]-1-methyl-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

30 35 3-[4-(4-chlorophenyl)-3-[(4-methylsulfonyl)phenyl]-1H-pyrazol-1-yl]-1-methyl-2-propynyl-N-hydroxy-N-methyl-dithiocarbamate;

30 30 [[4-[(4-aminosulfonyl)phenyl]-3-phenyl-5-isoxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-5-isoxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

35 35 3-[[4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-5-isoxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-

dithiocarbamate;

3-[[4-[(4-aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-5-isoxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

5 3-[[4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-methoxyphenyl)-5-isoxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[4-[(4-aminosulfonyl)phenyl]-3-(3-fluoro-4-methoxyphenyl)-5-isoxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

10 3-[[4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-fluorophenyl)-5-isoxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[4-[(4-methylsulfonyl)phenyl]-3-phenyl-5-isoxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

15 3-[[3-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-5-isoxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

20 3-[[4-[(4-aminosulfonyl)phenyl]-3-phenyl-2-thienyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-2-thienyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

25 3-[[4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-2-thienyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[4-[(4-aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-2-thienyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

30 3-[[4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-methoxyphenyl)-2-thienyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-methoxyphenyl)-2-thienyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

35 3-[[4-[(4-aminosulfonyl)phenyl]-3-(3-fluoro-4-methoxyphenyl)-2-thienyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-fluorophenyl)-2-thienyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[3-[(4-methylsulfonyl)phenyl]-4-phenyl-5-thienyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[4-(4-chlorophenyl)-3-[(4-methylsulfonyl)phenyl]-5-thienyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

10 3-[[5-[(4-aminosulfonyl)phenyl]-6-phenyl-3-pyridyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[5-[(4-aminosulfonyl)phenyl]-6-(4-chlorophenyl)-3-pyridyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

15 3-[[5-[(4-aminosulfonyl)phenyl]-6-(4-fluorophenyl)-3-pyridyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[5-[(4-aminosulfonyl)phenyl]-6-(4-methoxyphenyl)-3-pyridyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

20 3-[[6-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-3-pyridyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[6-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-methoxyphenyl)-3-pyridyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

25 3-[[5-[(4-aminosulfonyl)phenyl]-6-(3-chloro-4-fluorophenyl)-3-pyridyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[5-[(4-aminosulfonyl)phenyl]-6-(3-chloro-4-fluorophenyl)-3-pyridyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

30 3-[[5-[(4-methylsulfonyl)phenyl]-6-phenyl-3-pyridyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[5-[(4-methylsulfonyl)phenyl]-6-phenyl-3-pyridyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

35 3-[[5-[(4-chlorophenyl)-6-[(4-methylsulfonyl)phenyl]-3-pyridyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[4-[(4-aminosulfonyl)phenyl]-3-phenyl-2-furyl]-1-

methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-2-furyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

5 3-[[4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-2-furyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

10 3-[[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-furyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

15 3-[[4-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-2-furyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

20 3-[[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-furyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

25 3-[[4-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-fluorophenyl)-2-furyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[4-[(4-methylsulfonyl)phenyl]-3-phenyl-2-furyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

25 3-[[4-[(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-furyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

30 3-[[4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-oxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

35 3-[[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-

3-[[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-

dithiocarbamate;

3-[[5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-oxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

5 3-[[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-oxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-methoxyphenyl)-2-oxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

10 3-[[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-oxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-2-oxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

15 3-[[4-[(4-methylsulfonyl)phenyl]-4-phenyl-2-oxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[5-[(4-methylsulfonyl)phenyl]-4-phenyl-2-oxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

20 3-[[5-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[5-[(4-methylsulfonyl)phenyl]-4-phenyl-2-oxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

25 3-[[4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-1-methyl-2-propenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl]phenyl]-N-hydroxy-N-methyl-dithiocarbamate;

30 3-[[4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-oxazolyl]phenyl]-N-hydroxy-N-methyl-dithiocarbamate;

3-[[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]phenyl]-N-hydroxy-N-methyl-dithiocarbamate;

35 4-[[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]phenyl]-N-hydroxy-N-methyl-dithiocarbamate;

4-[[5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-

oxazolyl]phenyl-N-hydroxy-N-methyl-dithiocarbamate;
4-[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-
oxazolyl]phenyl-N-hydroxy-N-methyl-dithiocarbamate;
4-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-
5 methoxyphenyl)-2-oxazolyl]phenyl-N-hydroxy-N-methyl-
dithiocarbamate;
4-[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-
methoxyphenyl)-2-oxazolyl]phenyl-N-hydroxy-N-methyl-
dithiocarbamate;
10 4-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-
fluorophenyl)-2-oxazolyl]phenyl-N-hydroxy-N-methyl-
dithiocarbamate;
4-[4-[(4-methylsulfonyl)phenyl]-5-phenyl-2-
oxazolyl]phenyl-N-hydroxy-N-methyl-dithiocarbamate;
15 4-[5-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-
oxazolyl]phenyl-N-hydroxy-N-methyl-dithiocarbamate;
3-[5-[(4-methylsulfonyl)phenyl]-4-phenyl-2-
oxazolyl]phenyl-N-hydroxy-N-methyl-dithiocarbamate;
3-[4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-
20 oxazolyl]phenyl-N-hydroxy-N-methyl-dithiocarbamate;
4-[1-[(4-aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-
yl]phenyl-N-hydroxy-N-methyl-dithiocarbamate;
4-[1-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-
pyrazol-3-yl]phenyl-N-hydroxy-N-methyl-
25 dithiocarbamate;
4-[3-[(4-aminosulfonyl)phenyl]-4-phenyl-1H-pyrazol-1-
yl]phenyl-N-hydroxy-N-methyl-dithiocarbamate;
3-[3-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-1H-
pyrazol-1-yl]phenyl-N-hydroxy-N-methyl-
30 dithiocarbamate;
3-[1-[(4-aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1H-
pyrazol-3-yl]phenyl-N-hydroxy-N-methyl-
dithiocarbamate;
4-[1-[(4-aminosulfonyl)phenyl]-5-(4-methoxyphenyl)-1H-
35 pyrazol-3-yl]phenyl-N-hydroxy-N-methyl-
dithiocarbamate;
4-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-

methoxyphenyl)-1H-pyrazol-3-yl]phenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[1-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-3-yl]phenyl-N-hydroxy-N-methyl-dithiocarbamate;

5 4-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-fluorophenyl)-1H-pyrazol-3-yl]phenyl-N-hydroxy-N-methyl-dithiocarbamate;

10 4-[1-[(4-methylsulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]phenyl-N-hydroxy-N-methyl-dithiocarbamate;

4-[5-(4-chlorophenyl)-1-[(4-methylsulfonyl)phenyl]-1H-pyrazol-3-yl]phenyl-N-hydroxy-N-methyl-dithiocarbamate;

15 3-[4-[(4-methylsulfonyl)phenyl]-3-phenyl-1H-pyrazol-1-yl]phenyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[4-(4-chlorophenyl)-3-[(4-methylsulfonyl)phenyl]-1H-pyrazol-1-yl]phenyl-N-hydroxy-N-methyl-dithiocarbamate;

20 5-[4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl]1,2,3-triazol-4-ylmethyl-N-hydroxy-N-methyl-dithiocarbamate;

5-[4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-oxazolyl]1,2,3-triazol-4-ylmethyl-N-hydroxy-N-methyl-dithiocarbamate;

25 5-[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]1,2,3-triazol-4-ylmethyl-N-hydroxy-N-methyl-dithiocarbamate;

5-[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]1,2,3-triazol-4-ylmethyl-N-hydroxy-N-methyl-dithiocarbamate;

30 5-[5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-oxazolyl]1,2,3-triazol-4-ylmethyl-N-hydroxy-N-methyl-dithiocarbamate;

5-[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-oxazolyl]1,2,3-triazol-4-ylmethyl-N-hydroxy-N-methyl-dithiocarbamate;

35 5-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-

methoxyphenyl)-2-oxazolyl]1,2,3-triazol-4-ylmethyl-N-hydroxy-N-methyl-dithiocarbamate;

5-[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-oxazolyl]1,2,3-triazol-4-ylmethyl-N-hydroxy-N-methyl-dithiocarbamate;

5-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-2-oxazolyl]1,2,3-triazol-4-ylmethyl-N-hydroxy-N-methyl-dithiocarbamate;

5-[4-[(4-methylsulfonyl)phenyl]-5-cyclohexyl-2-oxazolyl]1,2,3-triazol-4-ylmethyl-N-hydroxy-N-methyl-dithiocarbamate;

5-[5-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-oxazolyl]1,2,3-triazol-4-ylmethyl-N-hydroxy-N-methyl-dithiocarbamate;

15 5-[5-[(4-methylsulfonyl)phenyl]-4-cyclohexenyl-2-oxazolyl]1,2,3-triazol-4-ylmethyl-N-hydroxy-N-methyl-dithiocarbamate;

5-[4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-oxazolyl]1,2,3-triazol-4-ylmethyl-N-hydroxy-N-methyl-dithiocarbamate;

20 3-[4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl]cyclohexyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-oxazolyl]cyclohexyl-N-hydroxy-N-methyl-dithiocarbamate;

25 3-[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]cyclohexyl-N-hydroxy-N-methyl-dithiocarbamate;

3-[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]cyclohexyl-N-hydroxy-N-methyl-dithiocarbamate;

30 4-[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]cyclohexyl-N-hydroxy-N-methyl-dithiocarbamate;

4-[5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-oxazolyl]cyclohexyl-N-hydroxy-N-methyl-dithiocarbamate;

35 4-[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-oxazolyl]cyclohexyl-N-hydroxy-N-methyl-

4-[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-

dithiocarbamate;

4-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-methoxyphenyl)-2-oxazolyl]cyclohexyl-N-hydroxy-N-methyl-dithiocarbamate;

5 4-[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-oxazolyl]cyclohexyl-N-hydroxy-N-methyl-dithiocarbamate;

4-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-2-oxazolyl]cyclohexyl-N-hydroxy-N-methyl-dithiocarbamate;

10 4-[4-[(4-methylsulfonyl)phenyl]-5-cyclohexyl-2-oxazolyl]cyclohexyl-N-hydroxy-N-methyl-dithiocarbamate;

4-[5-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-oxazolyl]cyclohexyl-N-hydroxy-N-methyl-dithiocarbamate;

15 3-[5-[(4-methylsulfonyl)phenyl]-4-cyclohexenyl-2-oxazolyl]cyclohexyl-N-hydroxy-N-methyl-dithiocarbamate;

20 3-[4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-oxazolyl]cyclohexyl-N-hydroxy-N-methyl-dithiocarbamate;

4-[(4-aminosulfonyl)phenyl]-5-(3,4-dichlorophenyl)-N-hydroxy-2-oxazolebutanamide;

25 4-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-5-phenyl-2-oxazolebutanamide;

4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-N-hydroxy-2-oxazolebutanamide;

30 5-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-4-phenyl-2-oxazolebutanamide;

5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-N-hydroxy-2-oxazolebutanamide;

5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-N-hydroxy-N-methyl-2-oxazolebutanamide;

35 5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-N-hydroxy-2-oxazolebutanamide;

5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-methoxyphenyl)-N-hydroxy-2-oxazolebutanamide;

5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-N-hydroxy-N-methyl-2-oxazolebutanamide;

5 5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-N-hydroxy-2-oxazolebutanamide; N-hydroxy-N-methyl-4-[(4-methylsulfonyl)phenyl]-5-phenyl-2-oxazolebutanamide;

10 5-(4-chlorophenyl)-N-hydroxy-N-methyl-4-[(4-methylsulfonyl)phenyl]-2-oxazolebutanamide; 5-[(4-methylsulfonyl)phenyl]-N-hydroxy-N-methyl-4-phenyl-2-oxazolebutanamide;

15 4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-N-hydroxy-2-oxazolebutanamide; 1-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-5-phenyl-3-pyrazolebutanamide;

20 1-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-N-hydroxy-N-methyl-3-pyrazolebutanamide; 1-[(4-aminosulfonyl)phenyl]-5-(4-fluorophenyl)-N-hydroxy-N-methyl-3-pyrazolebutanamide;

25 1-[(4-aminosulfonyl)phenyl]-5-(4-methylphenyl)-N-hydroxy-N-methyl-3-pyrazolebutanamide; 1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methylphenyl)-N-hydroxy-3-pyrazolebutanamide;

30 1-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-methylphenyl)-N-hydroxy-3-pyrazolebutanamide; 1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-fluorophenyl)-N-hydroxy-3-pyrazolebutanamide;

35 4-[(4-aminosulfonyl)phenyl]-N-hydroxy-3-phenyl-5-isoxazole-N-methyl-butanamide; 4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-N-hydroxy-5-isoxazole-N-methyl-butanamide; 4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-N-hydroxy-5-isoxazole-N-methyl-butanamide;

4-[(4-aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-N-hydroxy-5-isoxazole-butanamide;

4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-methoxyphenyl)-N-hydroxy-5-isoxazole-butanamide;
4-[(4-aminosulfonyl)phenyl]-3-(3-fluoro-4-methoxyphenyl)-N-hydroxy-5-isoxazole-butanamide;

5 4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-fluorophenyl)-N-hydroxy-5-isoxazole-butanamide;
4-[(4-methylsulfonyl)phenyl]-N-hydroxy-3-phenyl-5-isoxazole-N-methyl-butanamide;
3-(4-chlorophenyl)-N-hydroxy-N-methyl-4-[(4-methylsulfonyl)phenyl]-5-isoxazolebutanamide;
10 4-[(4-aminosulfonyl)phenyl]-3-(3,4-dichlorophenyl)-N-hydroxy-5-isoxazole-N-methyl-butanamide;
4-[(4-aminosulfonyl)phenyl]-3-(3-fluorophenyl)-N-hydroxy-5-isoxazole-N-methyl-butanamide;
15 4-[(4-aminosulfonyl)phenyl]-3-(3-fluorophenyl)-N-hydroxy-5-isoxazole-butanamide;
4-[(4-aminosulfonyl)phenyl]-3-(3,4-dichlorophenyl)-N-hydroxy-5-isoxazole-butanamide;
3-(3-fluorophenyl)-4-[(4-methylsulfonyl)phenyl]-N-hydroxy-5-isoxazole-N-methyl-butanamide;
20 3-(3,4-dichlorophenyl)-N-hydroxy-4-[(4-methylsulfonyl)phenyl]-5-isoxazolebutanamide;
4-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-3-phenyl-2-thiophenebutanamide;
25 4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-N-hydroxy-N-methyl-2-thiophenebutanamide;
4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-N-hydroxy-N-methyl-2-thiophenebutanamide;
[4-[(4-aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-N-hydroxy-N-methyl-2-thiophenebutanamide;
30 [4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-methoxyphenyl)-N-hydroxy-2-thiophenebutanamide;
[4-[(4-aminosulfonyl)phenyl]-3-(3-fluoro-4-methoxyphenyl)-N-hydroxy-2-thiophenebutanamide;
35 [4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-fluorophenyl)-N-hydroxy-2-thiophenebutanamide;
[3-[(4-methylsulfonyl)phenyl]-N-hydroxy-N-methyl-4-

phenyl-5-thiophenebutanamide;
[4-(4-chlorophenyl)-N-hydroxy-N-methyl-3-[(4-methylsulfonyl)phenyl]-5-thiophenebutanamide;
[5-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-6-
5 phenyl-3-pyridinebutanamide;
[5-[(4-aminosulfonyl)phenyl]-6-(4-chlorophenyl)-N-hydroxy-3-pyridinebutanamide;
[5-[(4-aminosulfonyl)phenyl]-6-(4-fluorophenyl)-N-hydroxy-N-methyl-3-pyridinebutanamide;
10 [5-[(4-aminosulfonyl)phenyl]-6-(4-methoxyphenyl)-N-hydroxy-N-methyl-3-pyridinebutanamide;
[6-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-N-hydroxy-3-pyridinebutanamide;
[6-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-3-fluoro-4-
15 methoxyphenyl)-N-hydroxy-3-pyridinebutanamide;
[5-[(4-aminosulfonyl)phenyl]-6-(3-chloro-4-fluorophenyl)-N-hydroxy-N-methyl-3-pyridinebutanamide;
[5-[(4-methylsulfonyl)phenyl]-N-hydroxy-N-methyl-6-
20 phenyl-3-pyridinebutanamide;
[5-(4-chlorophenyl)-N-hydroxy-6-[(4-methylsulfonyl)phenyl]-3-pyridinebutanamide;
[4-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-3-
phenyl-2-furanbutanamide;
25 [4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-N-hydroxy-2-furanbutanamide;
[4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-N-hydroxy-N-methyl-2-furanbutanamide;
[5-[(4-aminosulfonyl)phenyl]-N-hydroxy-4-(4-
30 methoxyphenyl)-2-furanbutanamide;
[4-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-N-hydroxy-2-furanbutanamide;
[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-N-hydroxy-2-furanbutanamide;
35 [4-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-fluorophenyl)-N-hydroxy-N-methyl-2-furanbutanamide;
[4-[(4-methylsulfonyl)phenyl]-N-hydroxy-3-phenyl-2-

furanbutanamide;
[4-(4-chlorophenyl)-N-hydroxy-N-methyl-5-[(4-methylsulfonyl)phenyl]-2-furanbutanamide;
4-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-5-
5 phenyl-2-oxazolepropanamide;
4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-N-
hydroxy-N-methyl-2-oxazolepropanamide;
5-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-4-
phenyl-2-oxazolepropanamide;
10 5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-N-
hydroxy-N-methyl-2-oxazolepropanamide;
5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-N-
hydroxy-N-methyl-2-oxazolepropanamide;
5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-N-
15 hydroxy-N-methyl-2-oxazolepropanamide;
5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-
methoxyphenyl)-N-hydroxy-N-methyl-2-
oxazolepropanamide;
5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-
20 methoxyphenyl)-N-hydroxy-N-methyl-2-
oxazolepropanamide;
5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-
fluorophenyl)-N-hydroxy-N-methyl-2-
oxazolepropanamide;
25 N-hydroxy-N-methyl-4-[(4-methylsulfonyl)phenyl]-5-
phenyl-2-oxazolepropanamide;
5-(4-chlorophenyl)-N-hydroxy-N-methyl-4-[(4-
methylsulfonyl)phenyl]-2-oxazolepropanamide;
5-[(4-methylsulfonyl)phenyl]-N-hydroxy-N-methyl-4-
30 phenyl-2-oxazolepropanamide;
4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-N-
hydroxy-N-methyl-2-oxazolepropanamide;
1-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-5-
phenyl-3-pyrazolepropanamide;
35 1-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-N-
hydroxy-N-methyl-3-pyrazolepropanamide;
1-[(4-aminosulfonyl)phenyl]-5-(4-fluorophenyl)-N-

hydroxy-N-methyl-3-pyrazolepropanamide;
1-[(4-aminosulfonyl)phenyl]-5-(4-methylphenyl)-N-
hydroxy-N-methyl-3-pyrazolepropanamide;
1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-
5 methylphenyl)-N-hydroxy-N-methyl-3-
pyrazolepropanamide;
1-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-
methylphenyl)-N-hydroxy-N-methyl-3-
pyrazolepropanamide;
10 1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-
fluorophenyl)-N-hydroxy-N-methyl-3-
pyrazolepropanamide;
4-[(4-aminosulfonyl)phenyl]-N-hydroxy-3-phenyl-5-
isoxazole-N-methyl-propanamide;
15 4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-N-
hydroxy-5-isoxazole-N-methyl-propanamide;
4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-N-
hydroxy-5-isoxazole-N-methyl-propanamide;
4-[(4-aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-N-
20 hydroxy-5-isoxazole-N-methyl-propanamide;
4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-
methoxyphenyl)-N-hydroxy-5-isoxazole-N-methyl-
propanamide;
4-[(4-aminosulfonyl)phenyl]-3-(3-fluoro-4-
25 methoxyphenyl)-N-hydroxy-5-isoxazole-N-methyl-
propanamide;
4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-
fluorophenyl)-N-hydroxy-5-isoxazole-N-methyl-
propanamide;
30 4-[(4-methylsulfonyl)phenyl]-N-hydroxy-3-phenyl-5-
isoxazole-N-methyl-propanamide;
3-(4-chlorophenyl)-N-hydroxy-N-methyl-4-[(4-
methylsulfonyl)phenyl]-5-isoxazolepropanamide;
4-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-3-
35 phenyl-2-thiophenepropanamide;
4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-N-
hydroxy-N-methyl-2-thiophenepropanamide;

4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-N-hydroxy-N-methyl-2-thiophenepropanamide;

[4-[(4-aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-N-hydroxy-N-methyl-2-thiophenepropanamide;

5 [4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-methoxyphenyl)-N-hydroxy-N-methyl-2-thiophenepropanamide;

[4-[(4-aminosulfonyl)phenyl]-3-(3-fluoro-4-methoxyphenyl)-N-hydroxy-N-methyl-2-thiophenepropanamide;

10 [4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-fluorophenyl)-N-hydroxy-N-methyl-2-thiophenepropanamide;

[3-[(4-methylsulfonyl)phenyl]-N-hydroxy-N-methyl-4-phenyl-5-thiophenepropanamide;

15 [4-(4-chlorophenyl)-N-hydroxy-N-methyl-3-[(4-methylsulfonyl)phenyl]-5-thiophenepropanamide;

[5-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-6-phenyl-3-pyridinepropanamide;

20 [5-[(4-aminosulfonyl)phenyl]-6-(4-chlorophenyl)-N-hydroxy-N-methyl-3-pyridinepropanamide;

[5-[(4-aminosulfonyl)phenyl]-6-(4-fluorophenyl)-N-hydroxy-N-methyl-3-pyridinepropanamide;

[5-[(4-aminosulfonyl)phenyl]-6-(4-methoxyphenyl)-N-hydroxy-N-methyl-3-pyridinepropanamide;

25 [6-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-N-hydroxy-N-methyl-3-pyridinepropanamide;

[6-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-3-fluoro-4-methoxyphenyl)-N-hydroxy-N-methyl-3-pyridinepropanamide;

[5-[(4-aminosulfonyl)phenyl]-6-(3-chloro-4-fluorophenyl)-N-hydroxy-N-methyl-3-pyridinepropanamide;

30 [5-[(4-aminosulfonyl)phenyl]-6-(3-chloro-4-fluorophenyl)-N-hydroxy-N-methyl-3-pyridinepropanamide;

35 [5-[(4-methylsulfonyl)phenyl]-N-hydroxy-N-methyl-6-phenyl-3-pyridinepropanamide;

[5-(4-chlorophenyl)-N-hydroxy-N-methyl-6-[(4-

methylsulfonyl)phenyl]-3-pyridinepropanamide;
[4-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-3-
phenyl-2-furanpropanamide;
[4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-N-
5 hydroxy-N-methyl-2-furanpropanamide;
[4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-N-
hydroxy-N-methyl-2-furanpropanamide;
[5-[(4-aminosulfonyl)phenyl]-N-hydroxy-4-(4-
methoxyphenyl)-N-methyl-2-furanpropanamide;
10 [4-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-
methoxyphenyl)-N-hydroxy-N-methyl-2-
furanpropanamide;
[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-
methoxyphenyl)-N-hydroxy-N-methyl-2-
15 furanpropanamide;
[4-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-
fluorophenyl)-N-hydroxy-N-methyl-2-furanpropanamide;
[4-[(4-methylsulfonyl)phenyl]-N-hydroxy-N-methyl-3-
phenyl-2-furanpropanamide;
20 [4-(4-chlorophenyl)-N-hydroxy-N-methyl-5-[(4-
methylsulfonyl)phenyl]-2-furanpropanamide;
4-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-5-
phenyl-2-oxazole-ethanamide;
4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-N-
25 hydroxy-N-methyl-2-oxazole-ethanamide;
5-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-4-
phenyl-2-oxazole-ethanamide;
5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-N-
hydroxy-N-methyl-2-oxazole-ethanamide;
30 5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-N-
hydroxy-N-methyl-2-oxazole-ethanamide;
5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-N-
hydroxy-N-methyl-2-oxazole-ethanamide;
5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-
35 methoxyphenyl)-N-hydroxy-N-methyl-2-oxazole-
ethanamide;
5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-

methoxyphenyl)-N-hydroxy-N-methyl-2-oxazole-ethanamide;

5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-N-hydroxy-N-methyl-2-oxazole-ethanamide;

5-[(4-methylsulfonyl)phenyl]-N-hydroxy-N-methyl-5-phenyl-2-oxazole-ethanamide;

5-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-N-hydroxy-N-methyl-2-oxazole-ethanamide;

10 5-[(4-methylsulfonyl)phenyl]-N-hydroxy-N-methyl-4-phenyl-2-oxazole-ethanamide;

4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-N-hydroxy-N-methyl-2-oxazole-ethanamide;

[1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-15 pyrazol-3-yl]-N-hydroxy-N-methyl-ethanamide;

1-[4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl]-N-hydroxy-N-methyl-2-propenamide;

1-[4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-propenamide;

20 1-[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]-N-hydroxy-N-methyl-2-propenamide;

1-[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-propenamide;

1-[5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-propenamide;

25 1-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-methoxyphenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-propenamide;

1-[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-propenamide;

30 1-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-methoxyphenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-propenamide;

1-[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-propenamide;

35 1-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-propenamide;

1-[4-[(4-methylsulfonyl)phenyl]-5-phenyl-2-oxazolyl]-

N-hydroxy-N-methyl-2-propenamide;

1-[5-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-N-hydroxy-N-methyl-2-propenamide;

1-[5-[(4-methylsulfonyl)phenyl]-4-phenyl-2-oxazolyl]-
5 N-hydroxy-N-methyl-2-propenamide;

1-[4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-N-hydroxy-N-methyl-2-propenamide;

1-[1-[(4-aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-N-hydroxy-N-methyl-2-propenamide;

10 1-[1-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl]-N-hydroxy-N-methyl-2-propenamide;

1-[3-[(4-aminosulfonyl)phenyl]-4-phenyl-1H-pyrazol-1-
15 yl]-N-hydroxy-N-methyl-2-propenamide;

1-[3-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-1H-
pyrazol-1-yl]-N-hydroxy-N-methyl-2-propenamide;

1-[1-[(4-aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1H-
pyrazol-3-yl]-N-hydroxy-N-methyl-2-propenamide;

1-[1-[(4-aminosulfonyl)phenyl]-5-(4-methoxyphenyl)-1H-
pyrazol-3-yl]-N-hydroxy-N-methyl-2-propenamide;

20 1-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-
methoxyphenyl)-1H-pyrazol-3-yl]-N-hydroxy-N-methyl-
2-propenamide;

1-[1-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-
methoxyphenyl)-1H-pyrazol-3-yl]-N-hydroxy-N-methyl-
25 2-propenamide;

1-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-
fluorophenyl)-1H-pyrazol-3-yl]-N-hydroxy-N-methyl-2-
propenamide;

1-[1-[(4-methylsulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-
30 yl]-N-hydroxy-N-methyl-2-propenamide;

1-[5-(4-chlorophenyl)-1-[(4-methylsulfonyl)phenyl]-1H-
pyrazol-3-yl]-N-hydroxy-N-methyl-2-propenamide;

1-[4-[(4-methylsulfonyl)phenyl]-3-phenyl-1H-pyrazol-1-
35 yl]-N-hydroxy-N-methyl-2-propenamide;

1-[4-(4-chlorophenyl)-3-[(4-methylsulfonyl)phenyl]-1H-
pyrazol-1-yl]-N-hydroxy-N-methyl-2-propenamide;

1-[4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl]-N-

hydroxy-N-methyl-2-propynamide;

1-[4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-propynamide;

1-[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]-N-

5 hydroxy-N-methyl-2-propynamide;

1-[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-propynamide;

1-[5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-propynamide;

10 1-[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-propynamide;

1-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-methoxyphenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-propynamide;

15 1-[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-propynamide;

1-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-

20 propynamide;

1-[4-[(4-methylsulfonyl)phenyl]-5-phenyl-2-oxazolyl]-N-hydroxy-N-methyl-2-propynamide;

1-[5-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-N-hydroxy-N-methyl-2-propynamide;

25 1-[5-[(4-methylsulfonyl)phenyl]-4-phenyl-2-oxazolyl]-N-hydroxy-N-methyl-2-propynamide;

1-[4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-N-hydroxy-N-methyl-2-propynamide;

1-[1-[(4-aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-N-hydroxy-N-methyl-2-propynamide;

30 1-[1-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl]-N-hydroxy-N-methyl-2-propynamide;

1-[3-[(4-aminosulfonyl)phenyl]-4-phenyl-1H-pyrazol-1-yl]-N-hydroxy-N-methyl-2-propynamide;

35 1-[3-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-1H-pyrazol-1-yl]-N-hydroxy-N-methyl-2-propynamide;

1-[1-[(4-aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1H-

pyrazol-3-yl]-N-hydroxy-N-methyl-2-propynamide;
1-[1-[(4-aminosulfonyl)phenyl]-5-(4-methoxyphenyl)-1H-pyrazol-3-yl]-N-hydroxy-N-methyl-2-propynamide;
1-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-1H-pyrazol-3-yl]-N-hydroxy-N-methyl-2-propynamide;
1-[1-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-3-yl]-N-hydroxy-N-methyl-2-propynamide;
10 1-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-fluorophenyl)-1H-pyrazol-3-yl]-N-hydroxy-N-methyl-2-propynamide;
1-[1-[(4-methylsulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-N-hydroxy-N-methyl-2-propynamide;
15 1-[5-(4-chlorophenyl)-1-[(4-methylsulfonyl)phenyl]-1H-pyrazol-3-yl]-N-hydroxy-N-methyl-2-propynamide;
1-[4-[(4-methylsulfonyl)phenyl]-3-phenyl-1H-pyrazol-1-yl]-N-hydroxy-N-methyl-2-propynamide;
1-[4-(4-chlorophenyl)-3-[(4-methylsulfonyl)phenyl]-1H-pyrazol-1-yl]-N-hydroxy-N-methyl-2-propynamide;
20 2-methyl-3-[4-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-5-phenyl-2-oxazolyl]-2-propynamide;
2-methyl-3-[4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-N-hydroxy-N-methyl-2-oxazolyl]-2-
propynamide;
25 2-methyl-3-[5-['4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-4-phenyl-2-oxazolyl]-2-propynamide;
2-methyl-3-[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-N-hydroxy-N-methyl-2-oxazolyl]-2-
propynamide;
30 2-methyl-3-[5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-N-hydroxy-N-methyl-2-oxazolyl]-2-
propynamide;
2-methyl-3-[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-N-hydroxy-N-methyl-2-oxazolyl]-2-
propynamide;
35 2-methyl-3-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-

methoxyphenyl)-N-hydroxy-N-methyl-2-oxazolyl]-2-propynamide;

2-methyl-3-[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-N-hydroxy-N-methyl-2-oxazolyl]-2-propynamide;

5 2-methyl-3-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-N-hydroxy-N-methyl-2-oxazolyl]-2-propynamide;

2-methyl-3-[N-hydroxy-N-methyl-4-[(4-

10 methylsulfonyl)phenyl]-5-phenyl-2-oxazolyl]-2-propynamide;

2-methyl-3-[5-(4-chlorophenyl)-N-hydroxy-N-methyl-4-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-2-propynamide;

15 2-methyl-3-[5-[(4-methylsulfonyl)phenyl]-N-hydroxy-N-methyl-4-phenyl-2-oxazolyl]-2-propynamide;

2-methyl-3-[4-((4-chlorophenyl)-5-[(4-

methylsulfonyl)phenyl]-N-hydroxy-N-methyl-2-oxazolyl]-2-propynamide;

20 2-methyl-3-[1-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-5-phenyl-1H-pyrazol-3-yl]-2-propynamide;

2-methyl-3-[1-[(4-aminosulfonyl)phenyl]-5-(4-

chlorophenyl)-N-hydroxy-N-methyl-1H-pyrazol-3-yl]-2-propynamide;

25 2-methyl-3-[1-[(4-aminosulfonyl)phenyl]-5-(4-fluorophenyl)-N-hydroxy-N-methyl-1H-pyrazol-3-yl]-2-propynamide;

2-methyl-3-[1-[(4-aminosulfonyl)phenyl]-5-(4-

methylphenyl)-N-hydroxy-N-methyl-1H-pyrazol-3-yl]-2-

30 propynamide;

2-methyl-3-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methylphenyl)-N-hydroxy-N-methyl-1H-pyrazol-3-yl]-2-propynamide;

2-methyl-3-[1-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-

35 methylphenyl)-N-hydroxy-N-methyl-1H-pyrazol-3-yl]-2-propynamide;

2-methyl-3-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-

fluorophenyl)-N-hydroxy-N-methyl-1H-pyrazol-3-yl]-2-propynamide;

2-methyl-3-[4-[(4-aminosulfonyl)phenyl]-N-hydroxy-3-phenyl-5-isoxazolyl]-N-methyl-2-propynamide;

5 2-methyl-3-[4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-N-hydroxy-5-isoxazolyl]-N-methyl-2-propynamide;

2-methyl-3-[4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-N-hydroxy-5-isoxazolyl]-N-methyl-2-propynamide;

10 2-methyl-3-[4-[(4-aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-N-hydroxy-5-isoxazolyl]-N-methyl-2-propynamide;

2-methyl-3-[4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-methoxyphenyl)-N-hydroxy-5-isoxazolyl]-N-methyl-2-propynamide;

15 2-methyl-3-[4-[(4-aminosulfonyl)phenyl]-3-(3-fluoro-4-methoxyphenyl)-N-hydroxy-5-isoxazolyl]-N-methyl-2-propynamide;

20 2-methyl-3-[4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-fluorophenyl)-N-hydroxy-5-isoxazolyl]-N-methyl-2-propynamide;

2-methyl-3-[4-[(4-methylsulfonyl)phenyl]-N-hydroxy-3-phenyl-5-isoxazolyl]-N-methyl-2-propynamide;

25 2-methyl-3-[3-(4-chlorophenyl)-N-hydroxy-N-methyl-4-[(4-methylsulfonyl)phenyl]-5-isoxazolyl]-2-propynamide;

2-methyl-3-[4-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-3-phenyl-2-thienyl]-2-propynamide;

30 2-methyl-3-[4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-N-hydroxy-N-methyl-2-thienyl]-2-propynamide;

2-methyl-3-[4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-N-hydroxy-N-methyl-2-thienyl]-2-

35 propynamide;

2-methyl-3-[[4-[(4-aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-N-hydroxy-N-methyl-2-thienyl]-2-

propynamide;

2-methyl-3-[[4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-methoxyphenyl)-N-hydroxy-N-methyl-2-thienyl]-2-propynamide;

5 2-methyl-3-[[4-[(4-aminosulfonyl)phenyl]-3-(3-fluoro-4-methoxyphenyl)-N-hydroxy-N-methyl-2-thienyl]-2-propynamide;

2-methyl-3-[[4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-fluorophenyl)-N-hydroxy-N-methyl-2-thienyl]-2-propynamide;

10 2-methyl-3-[[3-[(4-methylsulfonyl)phenyl]-N-hydroxy-N-methyl-4-phenyl-5-thienyl]-2-propynamide;

2-methyl-3-[[4-(4-chlorophenyl)-N-hydroxy-N-methyl-3-[(4-methylsulfonyl)phenyl]-5-thienyl]-2-propynamide;

15 2-methyl-3-[[5-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-6-phenyl-3-pyridyl]-2-propynamide;

2-methyl-3-[[5-[(4-aminosulfonyl)phenyl]-6-(4-chlorophenyl)-N-hydroxy-N-methyl-3-pyridyl]-2-propynamide;

20 2-methyl-3-[[5-[(4-aminosulfonyl)phenyl]-6-(4-fluorophenyl)-N-hydroxy-N-methyl-3-pyridyl]-2-propynamide;

2-methyl-3-[[5-[(4-aminosulfonyl)phenyl]-6-(4-methoxyphenyl)-N-hydroxy-N-methyl-3-pyridyl]-2-

25 propynamide;

2-methyl-3-[[6-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-N-hydroxy-N-methyl-3-pyridyl]-2-propynamide;

2-methyl-3-[[6-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-3-fluoro-4-methoxyphenyl)-N-hydroxy-N-methyl-3-pyridyl]-2-propynamide;

30 2-methyl-3-[[5-[(4-aminosulfonyl)phenyl]-6-(3-chloro-4-fluorophenyl)-N-hydroxy-N-methyl-3-pyridyl]-2-propynamide;

2-methyl-3-[[5-[(4-aminosulfonyl)phenyl]-6-(3-chloro-4-fluorophenyl)-N-hydroxy-N-methyl-3-pyridyl]-2-

35 propynamide;

2-methyl-3-[[5-[(4-methylsulfonyl)phenyl]-N-hydroxy-N-methyl-6-phenyl-3-pyridyl]-2-propynamide;

2-methyl-3-[[5-(4-chlorophenyl)-N-hydroxy-N-methyl-6-

[(4-methylsulfonyl)phenyl]-3-pyridyl]-2-propynamide;
2-methyl-3-[[4-[(4-aminosulfonyl)phenyl]-N-hydroxy-N-methyl-3-phenyl-2-furyl]-2-propynamide;
2-methyl-3-[[4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-N-hydroxy-N-methyl-2-furyl]-2-propynamide;

5 2-methyl-3-[[4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-N-hydroxy-N-methyl-2-furyl]-2-propynamide;

10 2-methyl-3-[[5-[(4-aminosulfonyl)phenyl]-N-hydroxy-4-(4-methoxyphenyl)-N-methyl-2-furyl]-2-propynamide;
2-methyl-3-[[4-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-N-hydroxy-N-methyl-2-furyl]-2-propynamide;

15 2-methyl-3-[[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-N-hydroxy-N-methyl-2-furyl]-2-propynamide;
2-methyl-3-[[4-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-fluorophenyl)-N-hydroxy-N-methyl-2-furyl]-2-

20 propynamide;
2-methyl-3-[[4-[(4-methylsulfonyl)phenyl]-N-hydroxy-N-methyl-3-phenyl-2-furyl]-2-propynamide;
2-methyl-3-[[4-(4-chlorophenyl)-N-hydroxy-N-methyl-5-[(4-methylsulfonyl)phenyl]-2-furyl]-2-propynamide;

25 [4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl]-N-hydroxy-N-methyl-2-benzamide;
[4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-benzamide;
[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]-N-

30 hydroxy-N-methyl-2-benzamide;
[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-benzamide;
[5-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-benzamide;

35 [5-[(4-aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-benzamide;
[5-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-methoxy-

phenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-benzamide;
[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-
methoxyphenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-
benzamide;

5 [5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-
fluorophenyl)-2-oxazolyl]-N-hydroxy-N-methyl-2-
benzamide;
[4-[(4-methylsulfonyl)phenyl]-5-phenyl-2-oxazolyl]-N-
hydroxy-N-methyl-2-benzamide;

10 [5-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-
oxazolyl]-N-hydroxy-N-methyl-3-benzamide;
[5-[(4-methylsulfonyl)phenyl]-4-phenyl-2-oxazolyl]-N-
hydroxy-N-methyl-3-benzamide;
[4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-
15 oxazolyl]-N-hydroxy-N-methyl-2-benzamide;
[1-[(4-aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-
yl]-N-hydroxy-N-methyl-2-benzamide;
[1-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-
pyrazol-3-yl]-N-hydroxy-N-methyl-2-benzamide;

20 [3-[(4-aminosulfonyl)phenyl]-4-phenyl-1H-pyrazol-1-
yl]-N-hydroxy-N-methyl-2-benzamide;
[3-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-1H-
pyrazol-1-yl]-N-hydroxy-N-methyl-3-benzamide;
[1-[(4-aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1H-
25 pyrazol-3-yl]-N-hydroxy-N-methyl-3-benzamide;
[1-[(4-aminosulfonyl)phenyl]-5-(4-methoxyphenyl)-1H-
pyrazol-3-yl]-N-hydroxy-N-methyl-4-benzamide;
[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-
methoxyphenyl)-1H-pyrazol-3-yl]-N-hydroxy-N-methyl-
30 2-benzamide;

[1-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-
methoxyphenyl)-1H-pyrazol-3-yl]-N-hydroxy-N-methyl-
2-benzamide;

[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-
35 fluorophenyl)-1H-pyrazol-3-yl]-N-hydroxy-N-methyl-2-
benzamide;
[1-[(4-methylsulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-

yl]-N-hydroxy-N-methyl-2-benzamide;
[5-(4-chlorophenyl)-1-[(4-methylsulfonyl)phenyl]-1H-pyrazol-3-yl]-N-hydroxy-N-methyl-2-benzamide;
[4-[(4-methylsulfonyl)phenyl]-3-phenyl-1H-pyrazol-1-
5 yl]-N-hydroxy-N-methyl-2-benzamide;
[4-(4-chlorophenyl)-3-[(4-methylsulfonyl)phenyl]-1H-pyrazol-1-yl]-N-hydroxy-N-methyl-4-benzamide;
5-[4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl]-N-
hydroxy-N-methyl-1,2,3-triazol-4-ylethanamide;
10 5-[4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-
oxazolyl]-N-hydroxy-N-methyl-1,2,3-triazol-4-
ylethanamide;
5-[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]-N-
hydroxy-N-methyl-1,2,3-triazol-4-ylethanamide;
15 5-[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-
oxazolyl]-N-hydroxy-N-methyl-1,2,3-triazol-4-
ylethanamide;
5-[5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-
oxazolyl]-N-hydroxy-N-methyl-1,2,3-triazol-4-
20 ylethanamide;
5-[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-
oxazolyl]-N-hydroxy-N-methyl-1,2,3-triazol-4-
ylethanamide;
5-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-
25 methoxyphenyl)-2-oxazolyl]-N-hydroxy-N-methyl-1,2,3-
triazol-4-ylethanamide;
5-[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-
methoxyphenyl)-2-oxazolyl]-N-hydroxy-N-methyl-1,2,3-
triazol-4-ylethanamide;
30 5-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-
fluorophenyl)-2-oxazolyl]-N-hydroxy-N-methyl-1,2,3-
triazol-4-ylethanamide;
5-[4-[(4-methylsulfonyl)phenyl]-5-cyclohexyl-2-
oxazolyl]-N-hydroxy-N-methyl-1,2,3-triazol-4-
35 ylethanamide;
5-[5-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-
oxazolyl]-N-hydroxy-N-methyl-1,2,3-triazol-4-

ylethanamide;

5-[5-[(4-methylsulfonyl)phenyl]-4-cyclohexenyl-2-oxazolyl]-N-hydroxy-N-methyl-1,2,3-triazol-4-ylethanamide;

5 5-[4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-N-hydroxy-N-methyl-1,2,3-triazol-4-ylethanamide;

3-[4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl]-N-hydroxy-N-methyl-3-cyclohexanamide;

10 3-[4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-oxazolyl]-N-hydroxy-N-methyl-3-cyclohexanamide;

3-[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]-N-hydroxy-N-methyl-3-cyclohexanamide;

4-[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]-N-hydroxy-N-methyl-3-cyclohexanamide;

15 4-[5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-oxazolyl]-N-hydroxy-N-methyl-3-cyclohexanamide;

4-[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-oxazolyl]-N-hydroxy-N-methyl-3-cyclohexanamide;

20 4-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-methoxyphenyl)-2-oxazolyl]-N-hydroxy-N-methyl-3-cyclohexanamide;

4-[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-oxazolyl]-N-hydroxy-N-methyl-3-

25 cyclohexanamide;

4-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-2-oxazolyl]-N-hydroxy-N-methyl-3-cyclohexanamide;

4-[5-cyclohexyl-4-[(4-methylsulfonyl)phenyl]-2-

30 oxazolyl]-N-hydroxy-N-methyl-3-cyclohexanamide;

4-[5-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-N-hydroxy-N-methyl-3-cyclohexanamide;

3-[4-cyclohexenyl-5-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-N-hydroxy-N-methyl-3-cyclohexanamide;

35 3-[4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-N-hydroxy-N-methyl-3-cyclohexanamide;

N'-[4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-

oxazolyl]methyl-N'-hydroxyurea;
N'-(4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-
oxazolyl)methyl-N'-hydroxyurea;
N'-(5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-
5 oxazolyl)methyl-N'-hydroxyurea;
N'-(5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-
oxazolyl)methyl-N'-hydroxyurea;
N'-(5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-
oxazolyl)methyl-N'-hydroxyurea;
10 N'-(5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-
oxazolyl)methyl-N'-hydroxyurea;
N'-(5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-
methoxyphenyl)-2-oxazolyl)methyl-N'-hydroxyurea;
N'-(5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-
15 methoxyphenyl)-2-oxazolyl)methyl-N'-hydroxyurea;
N'-(5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-
fluorophenyl)-2-oxazolyl)methyl-N'-hydroxyurea;
N'-(4-[(4-methylsulfonyl)phenyl]-5-phenyl-2-
oxazolyl)methyl-N'-hydroxyurea;
20 N'-(5-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-
oxazolyl)methyl-N'-hydroxyurea;
N'-(5-[(4-methyisulfonyl)phenyl]-4-phenyl-2-
oxazolyl)methyl-N'-hydroxyurea;
N'-(4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-
25 oxazolyl)methyl-N'-hydroxyurea;
N'-(4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-
oxazolyl)ethyl-N'-hydroxyurea;
N'-(4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-
oxazolyl)ethyl-N'-hydroxyurea;
30 N'-(5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-
oxazolyl)ethyl-N'-hydroxyurea;
N'-(5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-
oxazolyl)ethyl-N'-hydroxyurea;
N'-(5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-
35 oxazolyl)ethyl-N'-hydroxyurea;
N'-(5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-
oxazolyl)ethyl-N'-hydroxyurea;

N'-(5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-methoxyphenyl)-2-oxazolyl]ethyl-N'-hydroxyurea;

N'-(5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-oxazolyl]ethyl-N'-hydroxyurea;

5 N'-(5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-2-oxazolyl]ethyl-N'-hydroxyurea;

N'-(4-[(4-methylsulfonyl)phenyl]-5-phenyl-2-oxazolyl)ethyl-N'-hydroxyurea;

N'-(5-[(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-oxazolyl]ethyl-N'-hydroxyurea;

10 N'-(5-[(4-methylsulfonyl)phenyl]-4-phenyl-2-oxazolyl)ethyl-N'-hydroxyurea;

N'-(4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-oxazolyl)ethyl-N'-hydroxyurea;

15 N'-(4-[(4-aminosulfonyl)phenyl]-3-phenyl-5-isoxazolyl)methyl-N'-hydroxyurea;

N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-5-isoxazolyl)methyl-N'-hydroxyurea;

N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-5-
20 isoxazolyl)methyl-N'-hydroxyurea;

N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-5-isoxazolyl)methyl-N'-hydroxyurea;

N'-(4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-methoxyphenyl)-5-isoxazolyl)methyl-N'-hydroxyurea;

25 N'-(4-[(4-aminosulfonyl)phenyl]-3-(3-fluoro-4-methoxyphenyl)-5-isoxazolyl)methyl-N'-hydroxyurea;

N'-(4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-fluorophenyl)-5-isoxazolyl)methyl-N'-hydroxyurea;

N'-(4-[(4-methylsulfonyl)phenyl]-3-phenyl-5-
30 isoxazolyl)methyl-N'-hydroxyurea;

N'-(3-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-5-isoxazolyl)methyl-N'-hydroxyurea;

N'-(4-[(4-aminosulfonyl)phenyl]-3-phenyl-2-thienyl)methyl-N'-hydroxyurea;

35 N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-2-thienyl)methyl-N'-hydroxyurea;

N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-2-

thienyl]methyl-N'-hydroxyurea;
N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-2-thienyl)methyl-N'-hydroxyurea;
N'-(4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-methoxyphenyl)-2-thienyl)methyl-N'-hydroxyurea;
5 N'-(4-[(4-aminosulfonyl)phenyl]-3-(3-fluoro-4-methoxyphenyl)-2-thienyl)methyl-N'-hydroxyurea;
N'-(4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-fluorophenyl)-2-thienyl)methyl-N'-hydroxyurea;
10 N'-(3-[(4-methylsulfonyl)phenyl]-4-phenyl-5-thienyl)methyl-N'-hydroxyurea;
N'-(4-(4-chlorophenyl)-3-[(4-methylsulfonyl)phenyl]-5-thienyl)methyl-N'-hydroxyurea;
N'-(5-[(4-aminosulfonyl)phenyl]-6-phenyl-3-pyridyl)methyl-N'-hydroxyurea;
15 N'-(5-[(4-aminosulfonyl)phenyl]-6-(4-chlorophenyl)-3-pyridyl)methyl-N'-hydroxyurea;
N'-(5-[(4-aminosulfonyl)phenyl]-6-(4-fluorophenyl)-3-pyridyl)methyl-N'-hydroxyurea;
20 N'-(5-[(4-aminosulfonyl)phenyl]-6-(4-methoxyphenyl)-3-pyridyl)methyl-N'-hydroxyurea;
N'-(6-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-3-pyridyl)methyl-N'-hydroxyurea;
N'-(6-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-methoxyphenyl)-3-pyridyl)methyl-N'-hydroxyurea;
25 N'-(5-[(4-aminosulfonyl)phenyl]-6-(3-chloro-4-fluorophenyl)-3-pyridyl)methyl-N'-hydroxyurea;
N'-(5-[(4-aminosulfonyl)phenyl]-6-(3-chloro-4-fluorophenyl)-3-pyridyl)methyl-N'-hydroxyurea;
N'-(5-[(4-methylsulfonyl)phenyl]-6-phenyl-3-pyridyl)methyl-N'-hydroxyurea;
30 N'-(5-(4-chlorophenyl)-6-[(4-methylsulfonyl)phenyl]-3-pyridyl)methyl-N'-hydroxyurea;
N'-(4-[(4-aminosulfonyl)phenyl]-3-phenyl-2-furyl)methyl-N'-hydroxyurea;
N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-2-furyl)methyl-N'-hydroxyurea;
35 N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-2-furyl)methyl-N'-hydroxyurea;

N'-(5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-furyl)methyl-N'-hydroxyurea;

N'-(4-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-2-furyl)methyl-N'-hydroxyurea;

5 N'-(5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-furyl)methyl-N'-hydroxyurea;

N'-(4-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-fluorophenyl)-2-furyl)methyl-N'-hydroxyurea;

N'-(4-[(4-methylsulfonyl)phenyl]-3-phenyl-2-

10 furyl)methyl-N'-hydroxyurea;

N'-(4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-furyl)methyl-N'-hydroxyurea;

N'-(4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl)methyl-N'-hydroxyurea;

15 N'-(4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-oxazolyl)methyl-N'-hydroxyurea;

N'-(5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl)methyl-N'-hydroxyurea;

N'-(5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-

20 oxazolyl)methyl-N'-hydroxyurea;

N'-(5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-oxazolyl)methyl-N'-hydroxyurea;

N'-(5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-

25 oxazolyl)methyl-N'-hydroxyurea;

N'-(5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-methoxyphenyl)-2-oxazolyl)methyl-N'-hydroxyurea;

N'-(5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-oxazolyl)methyl-N'-hydroxyurea;

N'-(5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-

30 flucrophenyl)-2-oxazolyl)methyl-N'-hydroxyurea;

N'-(4-[(4-methylsulfonyl)phenyl]-4-phenyl-2-oxazolyl)methyl-N'-hydroxyurea;

N'-(5-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-

35 oxazolyl)methyl-N'-hydroxyurea;

N'-(5-[(4-methylsulfonyl)phenyl]-4-phenyl-2-oxazolyl)methyl-N'-hydroxyurea;

N'-(4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-

oxazolyl]methyl-N'-hydroxyurea;

3-[N'-(1-[4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl]-2-propenyl)-N'-hydroxyurea;

3-[N'-(1-N'-(4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-oxazolyl]-2-propenyl)-N'-hydroxyurea;

3-[N'-(1-[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]-2-propenyl)-N'-hydroxyurea;

3-[N'-(1-[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]-2-propenyl)-N'-hydroxyurea;

3-[N'-(1-[5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-oxazolyl]-2-propenyl)-N'-hydroxyurea;

15 3-[N'-(1-[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-oxazolyl]-2-propenyl)-N'-hydroxyurea;

3-[N'-(1-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-methoxyphenyl)-2-oxazolyl]-2-propenyl)-N'-hydroxyurea;

20 3-[N'-(1-[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-oxazolyl]-2-propenyl)-N'-hydroxyurea;

3-[N'-(1-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-2-oxazolyl]-2-propenyl)-N'-hydroxyurea;

25 3-[N'-(1-[4-[(4-methylsulfonyl)phenyl]-5-phenyl-2-oxazolyl]-2-propenyl)-N'-hydroxyurea;

3-[N'-(1-[5-(4-chlorophenyl)-4-(4-methylsulfonyl)phenyl]-2-oxazolyl)-2-propenyl)-N'-hydroxyurea;

30 3-[N'-(1-[4-(4-chlorophenyl)-5-(4-methylsulfonyl)phenyl]-2-oxazolyl)-2-propenyl)-N'-hydroxyurea;

3-[N'-(1-[5-[(4-methylsulfonyl)phenyl]-4-phenyl-2-oxazolyl]-2-propenyl)-N'-hydroxyurea;

3-[N'-(1-[4-(4-chlorophenyl)-5-(4-methylsulfonyl)phenyl]-2-oxazolyl)-2-propenyl)-N'-hydroxyurea;

35 3-[N'-(1-[1-[(4-aminosulfonyl)phenyl]-5-phenyl-1H-

pyrazol-3-yl]-2-propenyl]-N'-hydroxyurea;

3-[N'-(1-[1-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl]-2-propenyl]-N'-hydroxyurea;

5 3-[N'-(1-[3-[(4-aminosulfonyl)phenyl]-4-phenyl-1H-pyrazol-1-yl]-2-propenyl]-N'-hydroxyurea;

3-[N'-(1-[3-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-1H-pyrazol-1-yl]-2-propenyl]-N'-hydroxyurea;

10 3-[N'-(1-[1-[(4-aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1H-pyrazol-3-yl]-2-propenyl]-N'-hydroxyurea;

3-[N'-(1-[(4-aminosulfonyl)phenyl]-5-(4-methoxyphenyl)-1H-pyrazol-3-yl]-2-propenyl]-N'-hydroxyurea;

15 3-[N'-(1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-1H-pyrazol-3-yl]-2-propenyl]-N'-hydroxyurea;

3-[N'-(1-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-3-yl]-2-propenyl]-N'-hydroxyurea;

20 3-[N'-(1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-fluorophenyl)-1H-pyrazol-3-yl]-2-propenyl]-N'-hydroxyurea;

3-[N'-(1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methylsulfonyl)phenyl)-1H-pyrazol-3-yl]-2-propenyl]-N'-hydroxyurea;

25 3-[N'-(1-[(4-methylsulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-2-propenyl]-N'-hydroxyurea;

3-[N'-(1-[5-(4-chlorophenyl)-1-[(4-methylsulfonyl)phenyl]-1H-pyrazol-3-yl]-2-propenyl]-N'-hydroxyurea;

30 3-[N'-(1-[4-[(4-methylsulfonyl)phenyl]-3-phenyl-1H-pyrazol-1-yl]-2-propenyl]-N'-hydroxyurea;

3-[N'-(1-[4-(4-chlorophenyl)-3-[(4-methylsulfonyl)phenyl]-1H-pyrazol-1-yl]-2-propenyl]-N'-hydroxyurea;

35 3-[N'-(1-[4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl]-2-propenyl]-N'-hydroxyurea;

3-[N'-(1-[4-[(4-aminosulfonyl)phenyl]-5-(4-

chlorophenyl)-2-oxazolyl]-2-propynyl]-N'-hydroxyurea;

3-[N'-(1-[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]-2-propynyl]-N'-hydroxyurea;

5 3-[N'-(1-[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]-2-propynyl]-N'-hydroxyurea;

10 3-[N'-(1-[5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-oxazolyl]-2-propynyl]-N'-hydroxyurea;

15 3-[N'-(1-[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-oxazolyl]-2-propynyl]-N'-hydroxyurea;

20 3-[N'-(1-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-methoxyphenyl)-2-oxazolyl]-2-propynyl]-N'-hydroxyurea;

25 3-[N'-(1-[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-oxazolyl]-2-propynyl]-N'-hydroxyurea;

30 3-[N'-(1-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-2-oxazolyl]-2-propynyl]-N'-hydroxyurea;

35 3-[N'-(1-[4-[(4-methylsulfonyl)phenyl]-5-phenyl-2-oxazolyl]-2-propynyl]-N'-hydroxyurea;

25 3-[N'-(1-[5-[(4-methylsulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]-2-propynyl]-N'-hydroxyurea;

30 3-[N'-(1-[5-[(4-methylsulfonyl)phenyl]-4-phenyl-2-oxazolyl]-2-propynyl]-N'-hydroxyurea;

35 3-[N'-(1-[4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-2-propynyl]-N'-hydroxyurea;

30 3-[N'-(1-[1-[(4-aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-2-propynyl]-N'-hydroxyurea;

35 3-[N'-(1-[1-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl]-2-propynyl]-N'-hydroxyurea;

3-[N'-(1-[3-[(4-aminosulfonyl)phenyl]-4-phenyl-1H-pyrazol-1-yl]-2-propynyl)-N'-hydroxyurea;

3-[N'-(1-[3-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-1H-pyrazol-1-yl]-2-propynyl)-N'-hydroxyurea;

5 3-[N'-(1-[1-[(4-aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1H-pyrazol-3-yl]-2-propynyl)-N'-hydroxyurea;

10 3-[N'-(1-[1-[(4-aminosulfonyl)phenyl]-5-(4-methoxyphenyl)-1H-pyrazol-3-yl]-2-propynyl)-N'-hydroxyurea;

15 3-[N'-(1-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-1H-pyrazol-3-yl]-2-propynyl)-N'-hydroxyurea;

20 3-[N'-(1-[1-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-3-yl]-2-propynyl)-N'-hydroxyurea;

25 3-[N'-(1-[1-[(4-methylsulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-2-propynyl)-N'-hydroxyurea;

3-[N'-(1-[5-(4-chlorophenyl)-1-[(4-methylsulfonyl)phenyl]-1H-pyrazol-3-yl]-2-propynyl)-N'-hydroxyurea;

25 3-[N'-(1-[4-(4-chlorophenyl)-3-[(4-methylsulfonyl)phenyl]-1H-pyrazol-3-yl]-2-propynyl)-N'-hydroxyurea;

30 3-[N'-(1-[4-(4-chlorophenyl)-3-[(4-methylsulfonyl)phenyl]-1H-pyrazol-1-yl]-2-propynyl)-N'-hydroxyurea;

3-[N'-(1-[1-[(4-aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-1-methyl-2-propynyl)-N'-hydroxyurea;

35 3-[N'-(1-[1-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl]-1-methyl-2-propynyl)-N'-hydroxyurea;

3-[N'-(1-[3-[(4-aminosulfonyl)phenyl]-4-phenyl-1H-pyrazol-1-yl]-1-methyl-2-propynyl)-N'-hydroxyurea;

3-[N'-(1-[3-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-1H-pyrazol-1-yl]-1-methyl-2-propynyl)-N'-hydroxyurea;

3-[N'-(1-[1-[(4-aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1H-pyrazol-3-yl]-1-methyl-2-propynyl)-N'-hydroxyurea;

3-[N'-(1-[1-[(4-aminosulfonyl)phenyl]-5-(4-methoxyphenyl)-1H-pyrazol-3-yl]-1-methyl-2-propynyl)-N'-hydroxyurea;

3-[N'-(1-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-1H-pyrazol-3-yl]-1-methyl-2-propynyl)-N'-hydroxyurea;

3-[N'-(1-[1-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-3-yl]-1-methyl-2-propynyl)-N'-hydroxyurea;

3-[N'-(1-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-fluorophenyl)-1H-pyrazol-3-yl]-1-methyl-2-propynyl)-N'-hydroxyurea;

3-[N'-(1-[1-[(4-methylsulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-1-methyl-2-propynyl)-N'-hydroxyurea;

3-[N'-(1-[5-(4-chlorophenyl)-1-[(4-methylsulfonyl)phenyl]-1H-pyrazol-3-yl]-1-methyl-2-propynyl)-N'-hydroxyurea;

3-[N'-(1-[4-[(4-methylsulfonyl)phenyl]-3-phenyl-1H-pyrazol-1-yl]-1-methyl-2-propynyl)-N'-hydroxyurea;

3-[N'-(1-[4-(4-chlorophenyl)-3-[(4-methylsulfonyl)phenyl]-1H-pyrazol-1-yl]-1-methyl-2-propynyl)-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl)-1-methyl-2-propynyl)-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-oxazolyl)-1-methyl-2-propynyl)-N'-hydroxyurea;

3-[N'-(5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl)-1-methyl-2-propynyl)-N'-hydroxyurea;

3-[N'-(5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl)-1-methyl-2-propynyl)-N'-hydroxyurea;

3-[N'-(5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-oxazolyl)-1-methyl-2-propynyl)-N'-hydroxyurea;

2-oxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-oxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

5 3-[N'-(5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-methoxyphenyl)-2-oxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-oxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

10 3-[N'-(5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-2-oxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-methylsulfonyl)phenyl]-5-phenyl-2-oxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

15 3-[N'-(5-[(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-oxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

20 3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-phenyl-5-isoxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-5-isoxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-5-isoxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

25 3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-5-isoxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-methoxyphenyl)-5-isoxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

30 3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(3-fluoro-4-methoxyphenyl)-5-isoxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-methoxyphenyl)-5-isoxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

35 3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(3-fluoro-4-methoxyphenyl)-5-isoxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-fluorophenyl)-5-isoxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

5 3-[N'-(4-[(4-methylsulfonyl)phenyl]-3-phenyl-5-isoxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(3-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-5-isoxazolyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

10 3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-phenyl-2-thienyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-2-thienyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-2-thienyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

15 3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-2-thienyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-2-thienyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-methoxyphenyl)-2-thienyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

20 3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(3-fluoro-4-methoxyphenyl)-2-thienyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-fluorophenyl)-2-thienyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

25 3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(3-chloro-4-fluorophenyl)-2-thienyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(3-[(4-methylsulfonyl)phenyl]-4-phenyl-5-thienyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

30 3-[N'-(3-(4-chlorophenyl)-3-[(4-methylsulfonyl)phenyl]-5-thienyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(3-[(4-aminosulfonyl)phenyl]-6-phenyl-3-pyridyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

35 3-[N'-(3-[(4-aminosulfonyl)phenyl]-6-(4-chlorophenyl)-3-pyridyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(3-[(4-aminosulfonyl)phenyl]-6-(4-fluorophenyl)-

3-pyridyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(5-[(4-aminosulfonyl)phenyl]-6-(4-methoxyphenyl)-3-pyridyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

5 3-[N'-(6-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-3-pyridyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(6-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-methoxyphenyl)-3-pyridyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

10 3-[N'-(5-[(4-aminosulfonyl)phenyl]-6-(3-chloro-4-fluorophenyl)-3-pyridyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(5-[(4-methylsulfonyl)phenyl]-6-phenyl-3-pyridyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

15 3-[N'-(5-[(4-chlorophenyl)-6-[(4-methylsulfonyl)phenyl]-3-pyridyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-phenyl-2-furyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

20 3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-2-furyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-2-furyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

25 3-[N'-(5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-furyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-2-furyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

30 3-[N'-(5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-furyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-fluorophenyl)-2-furyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

35 3-[N'-(4-[(4-methylsulfonyl)phenyl]-3-phenyl-2-furyl]-

1-methyl-2-propynyl]-N'-hydroxyurea;
3-[N'-(4-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-furyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

5 N'-3-[4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl]phenyl]-N'-hydroxyurea;
N'-[3-[4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-oxazolyl]phenyl]-N'-hydroxyurea;
N'-[3-[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]phenyl]-N'-hydroxyurea;

10 N'-[4-[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]phenyl]-N'-hydroxyurea;
N'-[4-[5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-oxazolyl]phenyl]-N'-hydroxyurea;

15 N'-[4-[5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-oxazolyl]phenyl]-N'-hydroxyurea;
N'-[4-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-methoxyphenyl)-2-oxazolyl]phenyl]-N'-hydroxyurea;

20 N'-[4-[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-oxazolyl]phenyl]-N'-hydroxyurea;
N'-[4-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-2-oxazolyl]phenyl]-N'-hydroxyurea;

N'-[4-[4-[(4-methylsulfonyl)phenyl]-5-phenyl-2-oxazolyl]phenyl]-N'-hydroxyurea;

25 N'-[4-[5-(4-chlorophenyl)-4-[(4-methylsulfonyl)phenyl]-2-oxazolyl]phenyl]-N'-hydroxyurea;
N'-[3-[5-(4-methylsulfonyl)phenyl]-4-phenyl-2-oxazolyl]phenyl]-N'-hydroxyurea;

30 N'-[3-[5-(4-chlorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-oxazolyl]phenyl]-N'-hydroxyurea;
N'-[3-[1-[(4-aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]phenyl]-N'-hydroxyurea;

35 N'-[2-[1-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl]phenyl]-N'-hydroxyurea;
N'-[2-[1-[(4-aminosulfonyl)phenyl]-5-(4-fluorophenyl)-

1H-pyrazol-3-yl]phenyl]-N'-hydroxyurea;
N'-[4-[1-[(4-aminosulfonyl)phenyl]-5-(4-methoxyphenyl)-1H-pyrazol-3-yl]phenyl]-N'-hydroxyurea;

5 N'-[4-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-1H-pyrazol-3-yl]phenyl]-N'-hydroxyurea;
N'-[3-[1-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-3-yl]phenyl]-N'-hydroxyurea;

10 N'-[4-[1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-fluorophenyl)-1H-pyrazol-3-yl]phenyl]-N'-hydroxyurea;
N'-[4-[1-[(4-methylsulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]phenyl]-N'-hydroxyurea;

15 N'-[4-[5-(4-chlorophenyl)-1-[(4-methylsulfonyl)phenyl]-1H-pyrazol-3-yl]phenyl]-N'-hydroxyurea;
N'-[3-[4-(4-chlorophenyl)-3-[(4-methylsulfonyl)phenyl]-1H-pyrazol-1-yl]phenyl]-N'-hydroxyurea;

20 N'-[3-[4-(4-chlorophenyl)-3-[(4-methylsulfonyl)phenyl]-1H-pyrazol-1-yl]phenyl]-N'-hydroxyurea;

N'-[5-[4-(4-aminosulfonyl)phenyl]-5-phenyl-2-oxazolyl]1,2,3-triazol-4-ylmethyl]-N'-hydroxyurea;

25 N'-[5-[4-(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-2-oxazolyl]1,2,3-triazol-4-ylmethyl]-N'-hydroxyurea;
N'-[5-[5-(4-aminosulfonyl)phenyl]-4-phenyl-2-oxazolyl]1,2,3-triazol-4-ylmethyl]-N'-hydroxyurea;

30 N'-[5-[5-(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-2-oxazolyl]1,2,3-triazol-4-ylmethyl]-N'-hydroxyurea;
N'-[5-[5-(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-2-oxazolyl]1,2,3-triazol-4-ylmethyl]-N'-hydroxyurea;

35 N'-[5-[5-(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-oxazolyl]1,2,3-triazol-4-ylmethyl]-N'-hydroxyurea;
N'-[5-[5-(4-aminosulfonyl)phenyl]-4-(3-chloro-4-

methoxyphenyl)-2-oxazolyl]1,2,3-triazol-4-ylmethyl]-
N'-hydroxyurea;

N'-[5-[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-
methoxyphenyl)-2-oxazolyl]1,2,3-triazol-4-ylmethyl]-
5 N'-hydroxyurea;

N'-[5-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-
fluorophenyl)-2-oxazolyl]1,2,3-triazol-4-ylmethyl]-
N'-hydroxyurea;

N'-[5-[4-[(4-methylsulfonyl)phenyl]-5-cyclohexyl-2-
10 oxazolyl]1,2,3-triazol-4-ylmethyl]-N'-hydroxyurea;

N'-[5-[5-(4-chlorophenyl)-4-[(4-
methylsulfonyl)phenyl]-2-oxazolyl]1,2,3-triazol-4-
ylmethyl]-N'-hydroxyurea;

N'-[5-[5-[(4-methylsulfonyl)phenyl]-4-cyclohexenyl-2-
15 oxazolyl]1,2,3-triazol-4-ylmethyl]-N'-hydroxyurea;

N'-[5-[4-(4-chlorophenyl)-5-[(4-
methylsulfonyl)phenyl]-2-oxazolyl]1,2,3-triazol-4-
ylmethyl]-N'-hydroxyurea;

N'-[3-[4-[(4-aminosulfonyl)phenyl]-5-phenyl-2-
20 oxazolyl]cyclohexyl]-N'-hydroxyurea;

N'-[3-[4-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-
2-oxazolyl]cyclohexyl]-N'-hydroxyurea;

N'-[3-[5-[(4-aminosulfonyl)phenyl]-4-phenyl-2-
oxazolyl]cyclohexyl]-N'-hydroxyurea;

N'-[4-[5-[(4-aminosulfonyl)phenyl]-4-(4-chlorophenyl)-
25 2-oxazolyl]cyclohexyl]-N'-hydroxyurea;

N'-[4-[5-[(4-aminosulfonyl)phenyl]-4-(4-fluorophenyl)-
2-oxazolyl]cyclohexyl]-N'-hydroxyurea;

N'-[4-[5-[(4-aminosulfonyl)phenyl]-4-(4-
30 methoxyphenyl)-2-oxazolyl]cyclohexyl]-N'-
hydroxyurea;

N'-[4-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-
methoxyphenyl)-2-oxazolyl]cyclohexyl]-N'-
hydroxyurea;

35 N'-[4-[5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-
methoxyphenyl)-2-oxazolyl]cyclohexyl]-N'-
hydroxyurea;

N'-(4-[5-[(4-aminosulfonyl)phenyl]-4-(3-chloro-4-fluorophenyl)-2-oxazolyl]cyclohexyl)-N'-hydroxyurea;

N'-(4-[4-[(4-methylsulfonyl)phenyl]-5-cyclohexyl-2-oxazolyl]cyclohexyl)-N'-hydroxyurea;

5 N'-(4-[5-(4-chlorophenyl)-4-(4-methylsulfonyl)phenyl]-2-oxazolyl)cyclohexyl)-N'-hydroxyurea;

N'-(3-[5-(4-methylsulfonyl)phenyl]-4-cyclohexenyl-2-oxazolyl)cyclohexyl)-N'-hydroxyurea;

10 N'-(3-[4-(4-chlorophenyl)-5-(4-methylsulfonyl)phenyl]-2-oxazolyl)cyclohexyl)-N'-hydroxyurea;

N'-(1-[(4-aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl)methyl)-N'-hydroxyurea;

15 N'-(1-[(4-aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1H-pyrazol-3-yl)methyl)-N'-hydroxyurea;

N'-(1-[(4-aminosulfonyl)phenyl]-5-(4-methoxyphenyl)-1H-pyrazol-3-yl)methyl)-N'-hydroxyurea;

N'-(1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-1H-pyrazol-3-yl)methyl)-N'-hydroxyurea;

20 N'-(1-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-3-yl)methyl)-N'-hydroxyurea;

N'-(1-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-fluorophenyl)-1H-pyrazol-3-yl)methyl)-N'-hydroxyurea;

25 N'-(1-[(4-aminosulfonyl)phenyl]-5-(4-methylphenyl)-1H-pyrazol-3-yl)methyl)-N'-hydroxyurea;

N'-(1-[(4-aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl)methyl)-N'-hydroxyurea;

30 N'-(1-[(4-aminosulfonyl)phenyl]-5-(4-methyl-3-chlorophenyl)-1H-pyrazol-3-yl)methyl)-N'-hydroxyurea;

N'-(3-[(4-aminosulfonyl)phenyl]-5-(4-methylphenyl)-1H-pyrazol-3-yl)methyl)-N'-hydroxyurea;

35 N'-(5-[(4-aminosulfonyl)phenyl]-5-(4-methylphenyl)-1H-pyrazol-3-yl)methyl)-N'-hydroxyurea;

chlorophenyl)-1H-pyrazol-3-yl]-2-thienyl]-N'-hydroxyurea;
N'-[[1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl]methyl]-N'-hydroxyurea; and
5 4-(4-fluorophenyl)-N-hydroxy-N-methyl-5-[(4-methylsulfonyl)phenyl]-2-oxazolepropanamide.

The term "hydrido" denotes a single hydrogen atom (H). This hydrido radical may be attached, for example, to an oxygen atom to form a hydroxyl radical or two hydrido radicals may be attached to a carbon atom to form a methylene (-CH₂-) radical. Where used, either alone or within other terms such as "haloalkyl", "alkylsulfonyl", "alkoxyalkyl", "aminoalkyl" and 15 "hydroxyalkyl", the term "alkyl" embraces linear or branched radicals having one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkyl radicals are "lower alkyl" radicals having one to about ten carbon atoms. Most 20 preferred are lower alkyl radicals having one to about six carbon atoms. Examples of such radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl and the like. The term "alkenyl" embraces linear or branched 25 radicals having at least one carbon-carbon double bond of two to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkenyl radicals are "lower alkenyl" radicals having two to about six carbon atoms. Examples of alkenyl radicals 30 include ethenyl, propenyl, allyl, propenyl, butenyl and 4-methylbutenyl. The term "alkynyl" denotes linear or branched radicals having two to about twenty carbon atoms or, preferably, two to about twelve carbon atoms. More preferred alkynyl radicals are "lower alkynyl" 35 radicals having two to about ten carbon atoms. Most preferred are lower alkynyl radicals having two to about six carbon atoms. Examples of such radicals

include propynyl, propargyl, butynyl, and the like. The terms "alkenyl", and "lower alkenyl" embrace radicals having "cis" and "trans" orientations, or alternatively, "E" and "Z" orientations. The term 5 "cycloalkyl" embraces saturated carbocyclic radicals having three to twelve carbon atoms. More preferred cycloalkyl radicals are "lower cycloalkyl" radicals having four to about eight carbon atoms. Examples of such radicals include cyclopropyl, cyclobutyl, 10 cyclopentyl and cyclohexyl. The term "cycloalkenyl" embraces partially unsaturated carbocyclic radicals having three to twelve carbon atoms. More preferred cycloalkenyl radicals are "lower cycloalkenyl" radicals having four to about eight carbon atoms. Examples of 15 such radicals include cyclobutenyl, cyclopentenyl and cyclohexenyl. The term "halo" means halogens such as fluorine, chlorine, bromine or iodine. The term "haloalkyl" embraces radicals wherein any one or more of the alkyl carbon atoms is substituted with halo as defined above. Specifically embraced are monohaloalkyl, dihaloalkyl and polyhaloalkyl radicals. A monohaloalkyl radical, for one example, may have either an iodo, bromo, chloro or fluoro atom within the radical. Dihalo and polyhaloalkyl radicals may have 25 two or more of the same halo atoms or a combination of different halo radicals. "Lower haloalkyl" embraces radicals having 1-6 carbon atoms. Examples of haloalkyl radicals include fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, 30 dichloromethyl, trichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl and dichloropropyl. The term "cyanoalkyl" embraces linear 35 or branched alkyl radicals having one to about ten carbon atoms any one of which may be substituted with one or more cyano radicals. More preferred cyanoalkyl

radicals are "lower cyanoalkyl" radicals having one to six carbon atoms and one or more cyano radicals. Examples of such radicals include cyanomethyl, cyanoethyl, cyanopropyl, cyanobutyl and cyanohexyl.

5 The term "hydroxyalkyl" embraces linear or branched alkyl radicals having one to about ten carbon atoms any one of which may be substituted with one or more hydroxyl radicals. More preferred hydroxyalkyl radicals are "lower hydroxyalkyl" radicals having one

10 to six carbon atoms and one or more hydroxyl radicals. Examples of such radicals include hydroxymethyl, hydroxyethyl, hydroxypropyl, hydroxybutyl and hydroxyhexyl. The terms "alkoxy" and "alkoxyalkyl" embrace linear or branched oxy-containing radicals each

15 having alkyl portions of one to about ten carbon atoms. More preferred alkoxy radicals are "lower alkoxy" radicals having one to six carbon atoms. Examples of such radicals include methoxy, ethoxy, propoxy, butoxy and tert-butoxy. The term "alkoxyalkyl" embraces alkyl

20 radicals having one or more alkoxy radicals attached to the alkyl radical, that is, to form monoalkoxyalkyl and dialkoxyalkyl radicals. The "alkoxy" radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide haloalkoxy

25 radicals. More preferred haloalkoxy radicals are "lower haloalkoxy" radicals having one to six carbon atoms and one or more halo radicals. Examples of such radicals include fluoromethoxy, chloromethoxy, trifluoromethoxy, trifluoroethoxy, fluoroethoxy and

30 fluoropropoxy. The term "aryl", alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such rings may be attached together in a pendent manner or may be fused. The term "aryl" embraces aromatic radicals such

35 as phenyl, naphthyl, tetrahydronaphthyl, indane and biphenyl. Aryl moieties may also be substituted at a substitutable position with one or more substituents

selected independently from alkyl, alkoxyalkyl, alkylaminoalkyl, carboxyalkyl, alkoxycarbonylalkyl, aminocarbonylalkyl, alkoxy, aralkoxy, amino, halo, nitro, alkylamino, acyl, cyano, carboxy, aminocarbonyl, 5 alkoxycarbonyl and aralkoxycarbonyl. The terms "heterocyclyl" and "heterocyclo" embrace saturated, partially unsaturated and unsaturated heteroatom-containing ring-shaped radicals, where the heteroatoms may be selected from nitrogen, sulfur and oxygen.

10 Examples of saturated heterocyclo radicals include saturated 3 to 6-membered heteromonocyclic group containing 1 to 4 nitrogen atoms (e.g. pyrrolidinyl, imidazolidinyl, piperidino, piperazinyl, etc.); saturated 3 to 6-membered heteromonocyclic group 15 containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms (e.g. morpholinyl, etc.); saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms (e.g., thiazolidinyl, etc.). Examples of partially 20 unsaturated heterocyclo radicals include dihydrothiophene, dihydropyran, dihydrofuran and dihydrothiazole. The term "heteroaryl" embraces unsaturated heterocyclo radicals. Examples of unsaturated heterocyclo radicals, also termed 25 "heteroaryl" radicals include unsaturated 3 to 6 membered heteromonocyclic group containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl (e.g., 4H-1,2,4-triazolyl, 1H- 30 1,2,3-triazolyl, 2H-1,2,3-triazolyl, etc.) tetrazolyl (e.g. 1H-tetrazolyl, 2H-tetrazolyl, etc.), etc.; unsaturated condensed heterocyclo group containing 1 to 5 nitrogen atoms, for example, indolyl, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, 35 indazolyl, benzotriazolyl, tetrazolopyridazinyl (e.g., tetrazolo[1,5-b]pyridazinyl, etc.), etc.; unsaturated 3 to 6-membered heteromonocyclic group containing an

oxygen atom, for example, pyranyl, furyl, etc.; unsaturated 3 to 6-membered heteromonocyclic group containing a sulfur atom, for example, thietyl, etc.; unsaturated 3- to 6-membered heteromonocyclic group

5 containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, for example, oxazolyl, isoxazolyl, oxadiazolyl (e.g., 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl, etc.) etc.; unsaturated condensed

10 heterocyclo group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms (e.g. benzoxazolyl, benzoxadiazolyl, etc.); unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl (e.g., 1,2,4-thiadiazolyl, 1,3,4-

15 thiadiazolyl, 1,2,5-thiadiazolyl, etc.) etc.; unsaturated condensed heterocyclo group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms (e.g., benzothiazolyl, benzothiadiazolyl, etc.) and the like.

The term also embraces radicals where heterocyclo

20 radicals are fused with aryl radicals. Examples of such fused bicyclic radicals include benzofuran, benzothiophene, and the like. Said "heterocyclo group" may also be substituted at a substitutable position with one or more substituents selected independently

25 from alkyl, alkylaminoalkyl, carboxyalkyl, alkoxy carbonylalkyl, aminocarbonylalkyl, hydroxyl, alkoxy, aralkoxy, alkylaminoalkoxy, amino, halo, nitro, alkylamino, acyl, cyano, carboxy, aminocarbonyl, alkoxy carbonyl and aralkoxy carbonyl. The term

30 "alkylthio" embraces radicals containing a linear or branched alkyl radical, of one to about ten carbon atoms attached to a divalent sulfur atom. More preferred alkylthio radicals are "lower alkylthio" radicals having alkyl radicals of one to six carbon atoms. Examples of such lower alkylthio radicals are methylthio, ethylthio, propylthio, butylthio and

35 hexylthio. The term "alkylsulfanyl" embraces radicals

containing a linear or branched alkyl radical, of one to ten carbon atoms, attached to a divalent $-S(=O)-$ radical. More preferred alkylsulfinyl radicals are "lower alkylsulfinyl" radicals having alkyl radicals of 5 one to six carbon atoms. Examples of such lower alkylsulfinyl radicals include methylsulfinyl, ethylsulfinyl, butylsulfinyl and hexylsulfinyl. The term "sulfonyl", whether used alone or linked to other terms such as alkylsulfonyl, denotes respectively 10 divalent radicals $-SO_2-$. "Alkylsulfonyl" embraces alkyl radicals attached to a sulfonyl radical, where alkyl is defined as above. More preferred alkylsulfonyl radicals are "lower alkylsulfonyl" radicals having one to six carbon atoms. Examples of 15 such lower alkylsulfonyl radicals include methylsulfonyl, ethylsulfonyl and propylsulfonyl. The "alkylsulfonyl" radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide haloalkylsulfonyl radicals. The 20 terms "sulfamyl", "aminosulfonyl" and "sulfonamidyl" denote NH_2O_2S- . The term "aralkyl" embraces aryl-substituted alkyl radicals. Preferred aralkyl radicals are "lower aralkyl" radicals where the alkyl radicals are of 1-6 carbons. Examples of such lower aralkyl 25 radiclas include benzyl, diphenylmethyl, triphenylmethyl, phenylethyl, and diphenylethyl. The aryl in said aralkyl may be additionally substituted with halo, alkyl, alkoxy, haloalkyl and haloalkoxy. The terms benzyl and phenylmethyl are interchangeable. 30 The term "cycloalkylalkyl" embraces cycloalkyl-substituted alkyl radicals. Preferred cycloalkylalkyl radicals are "lower cycloalkylalkyl" radicals where the alkyl radicals are of 1-6 carbons. Examples of such radicals include cyclohexylmethyl, cyclopentylmethyl, cyclooctylmethyl, cyclohexylethyl, and cyclopentylpropyl. The term "heterocycloalkyl" 35 embraces heterocyclo-substituted alkyl radicals.

Preferred heterocycloalkyl radicals are "lower heterocycloalkyl" radicals where the alkyl radicals are of 1-6 carbons and the heterocyclo radicals have 5- or 6-members. Examples of such radicals include

5 triazolylmethyl, triazolylethyl, thienylmethyl, furylethyl, and piperidinomethyl. The heterocyclo in said heterocycloalkyl may be additionally substituted with halo, alkyl, alkoxy, haloalkyl and haloalkoxy. The term "acyl" denotes a radical provided by the

10 residue after removal of hydroxyl from an organic acid. Examples of such acyl radicals include alkanoyl and aroyl radicals. The alkanoyl radicals may be substituted or unsubstituted, such as formyl, acetyl, propionyl (propanoyl), butanoyl (butyryl), isobutanoyl

15 (isobutyryl), valeryl (pentanoyl), isovaleryl, pivaloyl, hexanoyl or the like. The terms "carboxy" or "carboxyl", whether used alone or with other terms, such as "carboxyalkyl", denotes $-CO_2H$. The terms "carboxyalkyl" embrace radicals having a carboxy

20 radical as defined above, attached to an alkyl radical. More preferred carboxyalkyl radicals are "lower carboxyalkyl" radicals having alkyl portions of 1-6 carbons. The term "carbonyl", whether used alone or with other terms, such as "alkoxycarbonyl", denotes

25 $-(C=O)-$. The term "alkoxycarbonyl" means a radical containing an alkoxy radical, as defined above, attached via an oxygen atom to a carbonyl radical. Examples of such "alkoxycarbonyl" ester radicals include substituted or unsubstituted methoxycarbonyl,

30 ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl and hexyloxycarbonyl. The terms "alkylcarbonyl", "arylcarbonyl" and "aralkylcarbonyl" include radicals having alkyl, aryl and aralkyl radicals, as defined above, attached via an oxygen atom to a carbonyl

35 radical. Examples of such radicals include substituted or unsubstituted methylcarbonyl, ethylcarbonyl, phenylcarbonyl and benzylcarbonyl. The term

"aminoalkyl" embraces alkyl radicals substituted with amino radicals. More preferred are "lower aminoalkyl" radicals. Examples of such radicals include aminomethyl, aminoethyl, and the like. The term

5 "alkylamino" denotes amino groups which have been substituted with one or two alkyl radicals. More preferred are "lower N-alkylamino" and "lower N,N-dialkylamino". Examples of such radicals include N-methylamino, N-ethylamino, N,N-dimethylamino, N,N-

10 diethylamino and the like. The term "arylamino" denotes amino groups which have been substituted with one or more aryl radicals. Examples of such radicals include N-phenylamino and N-naphthylamino. The "arylamino" radicals may be further substituted on the

15 aryl ring portion of the radical. The term "alkylaminoalkyl" denotes aminoalkyl groups which have been substituted with one or two alkyl radicals, as defined above. More preferred are "lower N-alkylaminoalkyl" and "lower N,N-dialkylaminoalkyl",

20 where lower alkyl is defined above. Examples of such radicals include N-methylaminoethyl, N-ethylaminopropyl, N,N-dimethylaminoethyl, N,N-diethylaminomethyl, and the like. The term "arylaminoalkyl" denotes aminoalkyl groups which have

25 been substituted with one or more aryl radicals, as defined above. More preferred is "lower N-arylaminoalkyl", where lower aminoalkyl is defined above. Examples of such radicals include N-phenylaminoethyl and N-phenylaminopropyl. The

30 "arylaminoalkyl" radicals may be further substituted on the aryl ring portion of the radical. The term "aminocarbonyl" denotes an amide group of the formula $-C(=O)NH_2$.

When the above radicals are included as linker

35 moiety "Y" in Formulas I-III, such radicals are divalent radicals. For terms such as aralkyl, and heterocycloalkyl, the moiety may be linked to "A" and

"R³" through a divalent alkyl radical, or through the alkyl radical at one end and the aryl or heteroaryl portion at the other. The use of heterocyclo and aryl moieties includes divalent attachment at substitutable sites.

The present invention comprises a pharmaceutical composition comprising a therapeutically-effective amount of a compound of Formulas I-III in association with at least one pharmaceutically-acceptable carrier, adjuvant or diluent.

The present invention also comprises a method of treating inflammation or inflammation-associated disorders in a subject, the method comprising treating the subject having or susceptible to such inflammation or disorder, with a therapeutically-effective amount of a compound of Formulas I-III. The method includes prophylactic or chronic treatment, especially in the case of arthritis and other inflammatory conditions which can lead to deterioration in the joints.

Also included in the family of compounds of Formula I are the stereoisomers and tautomers thereof. Compounds of the present invention can possess one or more asymmetric carbon atoms and are thus capable of existing in the form of optical isomers as well as in the form of racemic or nonracemic mixtures thereof. Accordingly, some of the compounds of this invention may be present in racemic mixtures which are also included in this invention. The optical isomers can be obtained by resolution of the racemic mixtures according to conventional processes, for example by formation of diastereoisomeric salts by treatment with an optically active acid or base. Examples of appropriate acids are tartaric, diacetyl tartaric, dibenzyl tartaric, ditoluoyl tartaric and camphorsulfonic acid and then separation of the mixture of diastereoisomers by crystallization followed by liberation of the optically active bases from these

salts. A different process for separation of optical isomers involves the use of a chiral chromatography column optimally chosen to maximize the separation of the enantiomers. Still another available method 5 involves synthesis of covalent diastereoisomeric molecules by reacting an amine functionality of precursors to compounds of Formula I with an optically pure acid in an activated form or an optically pure isocyanate. Alternatively, diastereomeric derivatives 10 can be prepared by reacting a carboxyl functionality of precursors to compounds of Formula I with an optically pure amine base. The synthesized diastereoisomers can be separated by conventional means such as chromatography, distillation, crystallization or 15 sublimation, and then hydrolyzed to deliver the enantiomerically pure compound. The optically active compounds of Formula I can likewise be obtained by utilizing optically active starting materials. These isomers may be in the form of a free acid, a free base, 20 an ester or a salt.

Also included in the family of compounds of Formula I are the pharmaceutically-acceptable salts thereof. The term "pharmaceutically-acceptable salts" embraces salts commonly used to form alkali metal salts and to form addition salts of free acids or free bases. The nature of the salt is not critical, provided that it is pharmaceutically-acceptable. Suitable pharmaceutically-acceptable acid addition salts of compounds of Formula I may be prepared from an inorganic acid or from an organic acid. Examples of such inorganic acids are hydrochloric, hydrobromic, hydroiodic, nitric, carbonic, sulfuric and phosphoric acid. Appropriate organic acids may be selected from aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclo, carboxylic and sulfonic classes of organic acids, example of which are formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesylic, salicylic, *p*-hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, benzenesulfonic, pantothenic, toluenesulfonic, 2-hydroxyethanesulfonic, sulfanilic, stearic, cyclohexylaminosulfonic, algenic, β -hydroxybutyric, salicylic, galactaric and galacturonic acid. Suitable pharmaceutically-acceptable base addition salts of compounds of Formula I include metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. All of these salts may be prepared by conventional means from the corresponding compound of Formula I by reacting, for example, the appropriate acid or base with the compound of Formula I.

GENERAL SYNTHETIC PROCEDURES

The compounds of the invention can be synthesized according to the following procedures of Schemes I-XXIV, wherein the R^1-R^6 substituents are as defined for 5 Formula I-III, above, except where further noted.

Scheme I

10

Synthetic Scheme I shows the preparation of amide derivatives 3, where one of Z or W is a leaving group. A substituted hydroxylamine or equivalent 2, is dissolved in anhydrous solvent such as THF or methylene 15 chloride. A solution of sulfonylphenyl derivative 1 in anhydrous DMF is added and stirred at about 0 °C to provide the sulfonylphenyl amide derivatives 3. In addition, hydroxydithiocarbamates can be prepared by the methods described in U.S. patent No. 5,298,521, and 20 N-hydroxyamides can be prepared by the procedures described in U.S. patent No. 5,051,518, both of which are incorporated by reference.

Scheme II

Synthetic Scheme II shows the preparation of pyrazole compounds embraced by Formula I where R is Z, (as defined in Scheme I) and R^a is a radical defined above for the substituents optionally substituted on A.

In step 1, ketone 4 is treated with a base, preferably NaOMe or NaH, and an ester, or ester equivalent, to form the intermediate diketone 5 (in the enol form) which is used without further purification. In step 2, diketone 5 in an anhydrous protic solvent, such as absolute ethanol or acetic acid, is treated with the hydrochloride salt or the free base of a substituted hydrazine at reflux to afford a mixture of pyrazoles 6 and 7. Recrystallization from diethyl ether/hexane or chromatography affords 6 usually as a solid. Similar pyrazoles can be prepared by methods described in U.S.

Pat. Nos. 4,146,721, 5,051,518, 5,134,142 and 4,914,121
which are incorporated by reference.

Scheme III

5

Scheme III shows the four step procedure for forming pyrazoles 11 of the present invention (where R^b is alkyl) from ketones 8. In step 1, ketone 8 is reacted with a base, such as lithium bis(trimethylsilyl)amide or lithium diisopropylamide (LDA) to form the anion. In step 2, the anion is reacted with an acetylating reagent to provide diketone 9. In step 3, the reaction of diketone 9 with hydrazine or a substituted hydrazine, gives pyrazole 10. In step 4, the pyrazole 10 is oxidized with an oxidizing reagent, such as Oxone® (potassium peroxyxonosulfate), 3-chloroperbenzic acid (MCPBA) or hydrogen peroxide, to give a mixture of the desired 3-(alkylsulfonyl)phenyl-pyrazole 11 and the 5-(alkylsulfonyl)phenyl-pyrazole isomer. The desired pyrazole 11, usually a white or pale yellow solid, is obtained in pure form either by chromatography or recrystallization.

Alternatively, diketone 9 can be formed from ketone 8 by treatment with a base, such as sodium hydride, in a

solvent, such as dimethylformamide, and further reacting with a nitrile to form an aminoketone. Treatment of the aminoketone with acid forms the diketone 9. Similar pyrazoles can be prepared by methods described in U.S. Pat. 5 No. 3,984,431 which is incorporated by reference.

Scheme IV

Diaryl/heteroaryl thiophenes (where T is S, and R^{b} is alkyl) can be prepared by the methods described in

U.S. Patent Nos. 4,427,693, 4,302,461, 4,381,311,
 4,590,205, and 4,820,827, and PCT documents WO 95/00501
 and WO94/15932, which are incorporated by reference.
 Similar pyrroles (where T is N), furanones and furans
 5 (where T is O) can be prepared by methods described in
 PCT documents WO 95/00501 and WO94/15932.

Scheme V

10

15

Diaryl/heteroaryl oxazoles can be prepared by the
 methods described in U.S. Patent Nos. 3,743,656,
 3,644,499 and 3,647,858, and PCT documents WO 95/00501
 and WO94/15932, which are incorporated by reference.

Scheme VI

5

Diaryl/heteroaryl isoxazoles can be prepared by the methods described in PCT documents WO92/05162, and WO92/19604, and European Publication EP 26928 which are incorporated by reference.

10 formed from the hydrated isoxazole 26 in a two step procedure. First, hydrated isoxazole 26 is treated at about 0 °C with two or three equivalents of chlorosulfonic acid to form the corresponding sulfonyl chloride. In step two, the sulfonyl chloride thus

15 formed is treated with concentrated ammonia to provide the sulfonamide derivative 27.

Scheme VII

Scheme VII shows the three step preparation of the substituted imidazoles 32 of the present invention. In step 1, the reaction of substituted nitriles (R^1CN) 28 with primary phenylamines 29 in the presence of alkylaluminum reagents such as trimethylaluminum, triethylaluminum, dimethylaluminum chloride, diethylaluminum chloride in the presence of inert solvents such as toluene, benzene, and xylene, gives amidines 30. In step 2, the reaction of amidine 30 with 2-haloketones (where X is Br or Cl) in the presence of bases, such as sodium bicarbonate, potassium carbonate, sodium carbonate, potassium bicarbonate or hindered tertiary amines such as *N,N'*-diisopropylethylamine, gives the 4,5-dihydroimidazoles 31 (where R^C is hydroxyl, R^d is hydroido and R^e is

alkyl, halo or hydrido). Some of the suitable solvents for this reaction are isopropanol, acetone and dimethylformamide. The reaction may be carried out at temperatures of about 20°C to about 90°C. In step 3,

5 the 4,5-dihydroimidazoles 31 may be dehydrated in the presence of an acid catalyst such as 4-toluenesulfonic acid or mineral acids to form the 1,2-disubstituted imidazoles 32 of the invention. Suitable solvents for this dehydration step are e.g., toluene, xylene and

10 benzene. Trifluoroacetic acid can be used as solvent and catalyst for this dehydration step.

In some cases (e.g., where YR = methyl or phenyl) the intermediate 31 may not be readily isolable. The reaction, under the conditions described above,

15 proceeds to give the targeted imidazoles directly.

Similarly, imidazoles can be prepared having the sulfonylphenyl moiety attached at position 2 and R¹ attached at the nitrogen atom at position 1. Diaryl/heteroaryl imidazoles can be prepared by the

20 methods described in U.S. Patent Nos. 4,822,805, and PCT document WO 93/14082, which are incorporated by reference.

Scheme VIII

5 The subject imidazole compounds 39 of this
invention may be synthesized according to the sequence
outlined in Scheme VIII. Aldehyde 33 may be converted
to the protected cyanohydrin 34 by reaction with a
trialkylsilyl cyanide, such as trimethylsilyl cyanide
10 (TMSCN) in the presence of a catalyst such as zinc

iodide (ZnI_2) or potassium cyanide (KCN). Reaction of cyanohydrin 34 with a strong base followed by treatment with benzaldehyde 35 (where R^2 is alkyl) and using both acid and base treatments, in that order, on workup 5 gives benzoin 36. Examples of strong bases suitable for this reaction are lithium diisopropylamide (LDA) and lithium hexamethyldisilazane. Benzoin 36 may be converted to benzil 37 by reaction with a suitable oxidizing agent, such as bismuth oxide or manganese 10 dioxide, or by a Swern oxidation using dimethyl sulfoxide (DMSO) and trifluoroacetic anhydride. Benzil 37 may be obtained directly by reaction of the anion of cyanohydrin 34 with a substituted benzoic acid halide. Any of compounds 36 and 37 may be used as intermediates 15 for conversion to imidazoles 38 (where R^2 is alkyl) according to chemical procedures known by those skilled in the art and described by M. R. Grimmett, "Advances in Imidazole Chemistry" in *Advances in Heterocyclic Chemistry*, 12, 104 (1970). The conversion of 37 to 20 imidazoles 38 is carried out by reaction with ammonium acetate and an appropriate aldehyde (RYCHO) in acetic acid. Benzoin 36 may be converted to imidazoles 38 by reaction with formamide. In addition, benzoin 36 may be converted to imidazoles by first acylating with an 25 appropriate acyl group (RYCO-) and then treating with ammonium hydroxide. Those skilled in the art will recognize that the oxidation of the sulfide (where R^2 is methyl) to the sulfone may be carried out at any point along the way beginning with compounds 35, and 30 including oxidation of imidazoles 38, using, for examples, reagents such as hydrogen peroxide in acetic acid, π -chloroperoxybenzoic acid (MCPBA) and potassium peroxyxonosulfate (OXONE[®]).

35 Diaryl/heteroaryl imidazoles can be prepared by the methods described in U.S. Patent Nos. 3,707,475, 4,686,231, 4,503,065, 4,472,422, 4,372,964, 4,576,958,

3,901,908, European publication EP 372,445, and PCT document WO 95/00501, which are incorporated by reference.

5

Scheme IX

Diaryl/heteroaryl cyclopentenes can be prepared by
10 the methods described in U.S. Patent No. 5,344,991, and
PCT document WO 95/00501, which are incorporated by
reference.

Scheme X

5 Similarly, Synthetic Scheme X shows the procedure
 for the preparation of 1,2-diarylbiphenyl
 antiinflammatory agents 47 from 2-bromo-biphenyl
 intermediates 46 (prepared similar to that described in
 Synthetic Scheme IX) and the appropriate substituted
 10 phenylboronic acids. Using a coupling procedure
 similar to the one developed by Suzuki et al. [Synth.
 Commun., 11, 513 (1981)], intermediates 46 are reacted
 with the boronic acids in toluene/ethanol at reflux in
 the presence of a Pd^0 catalyst, e.g.,
 15 tetrakis(triphenylphosphine)palladium(0), and 2M sodium
 carbonate to give the corresponding 1,2-diarylbiphenyl
 antiinflammatory agents 47 of this invention.

Scheme XI

20

Diaryl/heteroaryl thiazoles can be prepared by the
 methods described in U.S. Patent No. 4,051,250,
 4,632,330, European Application EP 592,664, and PCT
 document WO 95/00501, which are incorporated by
 25 reference.

reference. Isothiazoles can be prepared as described in PCT document WO 95/00501.

Scheme XII

5

Diaryl/heteroaryl pyridines can be prepared by the methods described in U.S. Patent Nos. 5,169,857, 4,011,328, and 4,533,666, which are incorporated by reference. For example, Synthetic Scheme XII shows the procedure used to prepare 3-alkylcarbonylaminoalkyl pyridine antiinflammatory agents 53, 3-haloalkyl pyridine antiinflammatory agents 55, 3-hydroxyalkyl pyridine antiinflammatory agents 56, heteroatom substituted 3-alkyl pyridine antiinflammatory agents 58

and 3-aryloxyalkyl pyridine antiinflammatory agents 59 from the corresponding carbonitriles 51 (where R^f is hydrido, halo, alkoxy, haloalkoxy, aryl, alkylthio, alkylamino, aralkoxy, azido or allyloxy). The 3-
5 alkylcarbonylaminoalkyl pyridine antiinflammatory agents 53 (where R' is alkyl) are prepared in a two step procedure from the carbonitriles 51. In step one, the carbonitrile 51 is reduced using reducing agents, such as diisobutyl aluminum hydride (DIBAL) in a
10 solvent such as toluene or boranes in a solvent such as tetrahydrofuran at room temperature or reflux to form the aminoalkyl pyridines 52. Additional reducing reagent may be added to the solution. In step two, an acid chloride is added to the aminoalkyl pyridines 52
15 in a solvent such as ethyl ether or tetrahydrofuran and stirred to form the alkylcarbonylaminoalkyl pyridines 53. The 3-haloalkyl pyridine antiinflammatory agents 55 are prepared in a two step procedure from the carbonitriles 51. In step one, the carbonitriles 51
20 are reduced using agents, such as diisobutyl aluminum hydride (DIBAL) in a solvent such as toluene, at room temperature to form the aldehydes 54. The 3-hydroxyalkyl pyridines 56 also can be isolated from this reaction. In step two, a halogenating agent, such
25 as diethylamino sulfur trifluoride (DAST) is added to the aldehyde 54 to form the haloalkyl pyridines 55. Reduction of aldehydes 54 with agents such as diisobutyl aluminum hydride (DIBAL) followed by methanol and water in methanol to yield the 3-
30 hydroxyalkyl pyridines 56. Compound 56 is convertible to alkoxalkyl and aralkoxyalkyl compounds 59 by sequential treatment first with a base and then with an alkyl or aralkyl halide. An example of a suitable base is sodium hydride. Examples of alkyl and aralkyl

halides are methyl iodide and benzyl chloride. Alternatively, compound 56 may be converted to the haloalkyl compound 57 using a suitable halogenating agent, such as thionyl chloride. Under such 5 circumstances, the hydrochloride salt may be isolated. This in turn may be converted to compounds 58 by reaction with the appropriate alcohol, thiol, or amine. It may be advantageous to carry out this reaction in the presence of a base. Examples of 10 suitable alcohols are methanol, ethanol, benzyl alcohol and phenol. Examples of suitable thiols are n-butyl mercaptan, benzylthiol and thiophenol. Examples of suitable amines are dimethylamine, benzylamine, N-methylbenzylamine, aniline, N-methylaniline and 15 diphenylamine. Examples of suitable bases are sodium hydride and potassium carbonate. Alternatively, amines are accessible by reaction of aldehyde 54 with a primary or secondary amine in the presence of a reducing agent. Examples of suitable primary amines 20 are methyl amine and ethylamine. An example of a suitable secondary amine is dimethylamine. Suitable reducing agents include sodium cyanoborohydride and sodium borohydride.

25

Scheme XIII

Scheme XIII shows a method to form the 30 alkylsulfonylphenyl substituted compounds 61 of the current invention by oxidation of alkylthio or alkylsulfinyl derivatives 60. Aqueous hydrogen peroxide (30%) is added to a suspension of a

(methylthio)phenyl substituted compound 60 in acetic acid. The mixture is stirred while heating to about 100°C for about 2 hours. Alternatively, m-chloroperoxybenzoic acid (MCPBA), and other oxidizing agents [potassium peroxyomonosulfate (OXONE®)] can be used to form the sulfonyl radicals 61.

Scheme XIV

10

64

Synthetic Scheme XIV shows the three step procedure used to prepare sulfonamide antiinflammatory agents 63 and the two step procedure used to prepare 15 fluoromethyl sulfone antiinflammatory agents 64 from their corresponding methyl sulfones 62. In step one, THF solutions of the methyl sulfones 62 at -78°C are treated with an alkyl lithium reagent, e.g., methyl lithium, n-butyllithium, etc. In step two, the anions generated in step one are treated with an organochalcane, e.g., triethylborane, tributylborane, etc., at -78°C then allowed to warm to ambient 20

temperature prior to stirring at reflux. In step three, an aqueous solution of sodium acetate and hydroxylamine-O-sulfonic acid is added to provide the corresponding sulfonamide antiinflammatory agents 63 of 5 this invention. As an alternative to the borane chemistry found in step two above, the base treated sulfone is reacted with an alkylsilane, such as (iodomethyl)trimethylsilane or (chloromethyl)trimethylsilane, at room temperature to 10 give a silylalkylsulfone. The silylalkylsulfone is converted to a sulfinic acid salt by heating to about 90°C with tetrabutylammoniumfluoride. Treatment proceeds as in step three above to produce the sulfonamide.

15 Alternatively, the anion solutions generated in step one may be warmed to 0°C and treated with N-fluorodibenzenesulfonamide to provide the corresponding fluoromethyl sulfone antiinflammatory agents 64 of this invention.

Scheme XV

Synthetic Scheme XV shows a method of making the pyrazole ureas 69 of the present invention. In step 1, 5 the dione 66 is formed from ketone 65 through the addition of a base, such as lithium bis(trimethylsilyl)amide or lithium diisopropylamide (LDA), followed by reacting with an appropriate acetylating reagent, such as $(\text{CO}_2\text{CH}_3)_2$. Treatment of the dione 66 with a phenylhydrazide yields 10 the pyrazole ester 67. The pyrazole ester 67 is reduced to the alcohol 68 by treatment with base and borane in THF. In step four, the alcohol 68 is reacted with triphenylphosphine, an alkyl azodicarboxylate (e.g.

diisopropyl azodicarboxylate (DIAD) and diethyl azodicarboxylate (DEAD)), and bis(phenoxy carbonyl) hydroxylamine [prepared by the method of Stewart and Brooks, *J.Org.Chem.*, 57, 5020-23 (1992)] in a solvent such as tetrahydrofuran (THF) at about 0 °C to room temperature. Aminolysis with ammonium hydroxide yields the anti-inflammatory ureas 69 of the present invention.

Scheme XVI

10

3-pyridyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(5-[(4-aminosulfonyl)phenyl]-6-(4-methoxyphenyl)-3-pyridyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

5 3-[N'-(6-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-3-pyridyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(6-[(4-aminosulfonyl)phenyl]-5-(3-fluoro-4-methoxyphenyl)-3-pyridyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

10 3-[N'-(5-[(4-aminosulfonyl)phenyl]-6-(3-chloro-4-fluorophenyl)-3-pyridyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(5-[(4-methylsulfonyl)phenyl]-6-phenyl-3-pyridyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

15 3-[N'-(5-[(4-chlorophenyl)-6-[(4-methylsulfonyl)phenyl]-3-pyridyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-phenyl-2-furyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

20 3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-chlorophenyl)-2-furyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-3-(4-fluorophenyl)-2-furyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

25 3-[N'-(5-[(4-aminosulfonyl)phenyl]-4-(4-methoxyphenyl)-2-furyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-methoxyphenyl)-2-furyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

30 3-[N'-(5-[(4-aminosulfonyl)phenyl]-4-(3-fluoro-4-methoxyphenyl)-2-furyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

3-[N'-(4-[(4-aminosulfonyl)phenyl]-5-(3-chloro-4-fluorophenyl)-2-furyl]-1-methyl-2-propynyl]-N'-hydroxyurea;

35 3-[N'-(4-[(4-methylsulfonyl)phenyl]-3-phenyl-2-furyl]-

Scheme XVI shows a procedure for forming an alkynyl oxazole 74 (where R² is amino), similar to that shown in Scheme V above. The ketone sulfonamide 71 is formed from ketone 70 through chlorosulfonation and 5 ammonolysis with ammonium hydroxide in a solvent such as acetone. The ketone sulfonamide 71 is halogenated, such as with HBr in acetic acid and bromine, to form the haloketone sulfonamide 72. Substitution with butynoic acid in the presence of K₂CO₃, a crown ether 10 such as 18-Crown-6 and dimethylacetamide (DMA) yields the alkynyl ketoester 73. Conversion of the alkynyl ester 73 to the alkynyl oxazole 74 proceeds as previously described in Scheme V.

Scheme XVII

5 Synthetic Scheme XVII shows the procedures for
forming heterocycloalkynyl ureas 76,
heterocyclotriazole ureas 77 and heterocycloalkyl ureas
78, from the corresponding alkynes 74. The alkynes
74, such as formed in Scheme XVI, are halogenated, such
10 as with N-bromosuccinimide (NBS) and 2,2'-azobis(2-
methoxypropionitrile (AIBN), to form the haloalkynes 75.
The alkynyl halide 75 can be converted into the ureas by
a three step procedure. In the first step, the halide
75 is treated with bis(phenoxy carbonyl) hydroxylamine.
15 Aminolysis with ammonium hydroxide yields the ureas 76
of the present invention. The alkynyl ureas 76 can be
converted to heterocyclo-containing ureas 77, such as [

by treatment with azidotrimethylsilane, followed by acid. Alternatively, the alkynyl ureas 76 can be reduced, such as with hydrogen in the presence of catalyst (e.g., palladium) to yield the 5 heterocycloalkyl ureas 78.

Scheme XVIII

10

Scheme XVIII shows a method of forming the alkenyl ureas 79, and diols 80 of the present invention from the appropriate alkynyl ureas 76. In Step one, treatment with diimide reduces the alkynyl ureas 77 to 15 the alkenyl ureas 79. Oxidation of the alkenyl urea 79, such as with osmium tetroxide and hydrogen peroxide, yields the diols 80 of the present invention.

Scheme XIX

5 Scheme XIX shows the preparation of ureas 83 and
amides 85 antiinflammatory agents of the present
invention. Esters 81 (where R^1 is alkyl, as provided
for in WO94/27980) can be converted to the alcohols 82
by treatment with a reducing agent, such as DIBAL-H.

10 Alcohols 82 can be directly converted to the protected
urea by treating with triphenylphosphine, diethyl
azodicarboxylate (DEAD), and N,O-
bis(phenoxy carbonyl)hydroxylamine. Aminolysis with
ammonium hydroxide yields the urea 83. Alternatively,
15 the esters 81 can be hydrolyzed to the acids 84 with
base such as LiOH. Amides 85 are formed from the acid
84 by treatment with oxalyl chloride to form the
corresponding acid chlorides, followed by substitution
with the hydroxylamines.

Scheme XX

5 Scheme XX shows the preparation of the antiinflammatory amides 88 of the present invention. Base treatment of ester 86, such as with sodium hydride, followed by addition of an aralkyl halide or heteroaralkyl halide forms the ester 87. Formation of 10 the amide 88 from the esters 87 occurs in a three step procedure. Treatment with base, such as lithium hydroxide, and thionyl chloride yields the acid chloride. Addition of a hydroxylamine yields the amide 88.

Scheme XXI

5 Scheme XXI shows an alternative preparation of the
 alkynyl alcohol **90** and alkynyl halides **91** previously
 described in Scheme XVII. Cyclic halides **89** can be
 converted to the substituted alkynyl alcohols **90** by
 reacting an alkynyl alcohol with the halides **89** in the
 10 presence of base and
 bis(triphenylphosphine)palladium(II)chloride. The
 alkynyl alcohol **90** can be converted to the alkynyl
 halide **91** by treatment with triphenoxyphosphonium
 methyliodide.

Scheme XXII

5 Additional antiinflammatory agents containing various substituted alkyl spacer radicals including hydroxyalkylureas 96 and aminoalkylureas 98, can be prepared from ketones 92, by the procedures shown in Scheme XXII. The ketones 92 are halogenated to form
 10 haloketones 93, such as by treatment with NBS in the presence of AIBN. Treatment of the halides 93 with bis(phenoxy carbonyl)hydroxylamine in the presence of base, such as sodium hydride, generates the protected

100

(ketoalkyl)hydroxylamines 94. The protected (ketoalkyl)hydroxylamines 94 can be converted to the protected (hydroxyalkyl)hydroxylamines 95 by reducing the carbonyl, such as with sodium borohydride.

5 Deprotection, such as with ammonium hydroxide, yields the hydroxyalkylureas 96. Amination of the protected (ketoalkyl)hydroxylamines 94 by reaction with ammonium acetate and sodium cyanoborohydride in the presence of acetic acid generates the protected 10
10 (aminoalkyl)hydroxylamines 97. Deprotection, such as with ammonium hydroxide, yields the aminoalkylureas 98.

Scheme XXIII

15

Scheme XXIII shows a method for preparing oxazoles 103. A solution of aldehyde 99 and zinc iodide in an organic solvent such as dichloromethane is treated with trimethylsilylcyanide to give the trimethylsilyl cyanohydrin. 20 The trimethylsilyl cyanohydrin is added to a solution of R¹-magnesium bromide in diethyl ether while maintaining the temperature between 25-35 °C to give the benzoin 100. The benzoin 100, pyridine, and acid chloride are reacted at room

101

temperature to yield the benzoin ester 101. Addition of ammonium acetate to the benzoin ester 101 yields the oxazole 103. Alternatively, the hydroxy-oxazoline 102 is isolated. Dehydration of the hydroxy-oxazoline 102 yields the oxazoles 5 103. By reversing the positions of R¹ and the phenyl group in benzoin 100, oxazoles can be prepared where R¹ is at position 4.

Scheme XXIV

10

Scheme XXIV shows a method of preparing oxazolylbenzenesulfonamides 106 of the present invention. The oxazole 104 is stirred with chlorosulfonic acid at about 15 5 °C to give the sulfonyl chlorides 105. The sulfonyl chloride 105 is reacted at about 5 °C with ammonium hydroxide to give the sulfonamides 106 of the current invention.

The following examples contain detailed descriptions of the methods of preparation of compounds 20 of Formulas I-III. These detailed descriptions fall within the scope, and serve to exemplify, the above described General Synthetic Procedures which form part of the invention. These detailed descriptions are presented for illustrative purposes only and are not 25 intended as a restriction on the scope of the

invention. All parts are by weight and temperatures are in Degrees centigrade unless otherwise indicated. All compounds showed NMR spectra consistent with their assigned structures.

5

Example 1

10 **N'-(1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl)methyl-N'-hydroxyurea**

15 Step 1. Preparation of methyl-4-(4-chlorophenyl)-2,4-dioxobutanoate.

Dimethyl oxalate (15.27 g, 0.129 mol) and 4'-chloroacetophenone (20.0 g, 0.129 mol) were diluted with methanol (300 mL) and sodium methoxide (25 wt% in methanol, 70 mL) was added in one portion. The reaction was stirred at room temperature for 16 hours (the reaction became an insoluble mass during this time). The solid was mechanically broken up, hydrochloric acid (conc. 70 mL) was added, and the white suspension was stirred vigorously at room temperature for 1 hour. The suspension was cooled to 0 °C and held for 0.5 hour. The solid was filtered, and the filter cake was washed with cold water (100 mL). Upon drying, methyl-4-(4-chlorophenyl)-2,4-dioxobutanoate was obtained (16.94 g, 54.4%) as the enol: mp 108.5-110.5 °C. ¹H NMR ($\text{CDCl}_3/300$ MHz) δ

7.94 (d, J=8.66 Hz, 2H), 7.48 (d, J=8.66 Hz, 2H), 7.04 (s, 1H), 3.95 (s, 3H), 3.48 (s, 1H).

Step 2. Preparation of methyl 1-(4-aminosulfonylphenyl)-5-(4-chlorophenyl)-1H-pyrazole-3-carboxylate

Methyl-4-[4-(chlorophenyl)-2,4-dioxobutanoate from Step 1 (5.0 g, 20.78 mmol) was added to 4-sulfonamidylphenyl hydrazine hydrochloride (5.11 g, 22.86 mmol) and methanol (50 mL). The reaction vessel 10 was heated to reflux and held for 16 hours. A precipitate formed overnight. The suspension was cooled to 0 °C, held for 0.5 hour, filtered and washed with cold water to provide, after air drying, 7.91 g, 91% of crude pyrazole. Recrystallization of 3.50 g 15 from boiling ethanol yielded 3.14 g (90%) of pure methyl 1-(4-aminosulfonylphenyl)-5-(4-chlorophenyl)-1H-pyrazole-3-carboxylate: mp 227 °C; ¹H NMR (CDCl₃/300 MHz) δ 7.91 (d, J=8.86 Hz, 2H), 7.44 (d, J=8.86 Hz, 2H), 7.33 (d, J=8.66 Hz, 2H), 7.14 (d, J=8.66 Hz, 2H), 7.03 (s, 1H), 3.96 (s, 3H). Mass Spectrum, MH⁺ = 392. Anal. Calc'd for C₁₇H₁₄N₃O₄ClS: C, 52.11; H, 3.60; N, 10.72; Cl, 9.05; S, 8.18. Found: C, 52.07; H, 3.57; N, 10.76; Cl, 9.11; S, 8.27.

25

Step 3. Preparation of 1-(4-aminosulfonylphenyl)-5-(4-chlorophenyl)-1H-pyrazole-3-carboxylic acid

Methyl 1-(4-aminosulfonylphenyl)-5-(4-chlorophenyl)-1H-pyrazole-3-carboxylate from Step 2 30 (1.0 g, 2.66 mmol) was added to tetrahydrofuran (20 mL). Aqueous sodium hydroxide (2.5 N, 2.7 mL) and water (2.5 mL) were added, and the suspension was heated to reflux and held for 16 hours. The solids dissolved during this time. The reaction was cooled 35 to room temperature, and hydrochloric acid solution (1 N, 11 mL) was added. The aqueous suspension was extracted with methylene chloride (2x20 mL). The

combined organic solution was dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo to an oil. Trituration with 30 mL of dichloromethane yielded, upon filtration and drying, 1-(4-aminosulfonylphenyl)-5-(4-chlorophenyl)-1H-pyrazole-3-carboxylic acid (0.90 g (94%)) as a white solid: mp 126-128 °C.

Step 4. Preparation of 4-[5-(4-chlorophenyl)-3-hydroxymethyl-1H-pyrazol-1-yl]benzenesulfonamide.

4-[4-(Aminosulfonyl)phenyl-5-(4-chlorophenyl)-1H-pyrazole-3-carboxylic acid from Step 3 (3.8 g, 10 mmol) and tetrahydrofuran (100 mL) was stirred at room temperature during the dropwise addition of 1.0 M borane-tetrahydrofuran complex (30 mL, 30 mmol). The mixture was heated to reflux for 16 hours. The solution was cooled and methanol was added dropwise until gas evolution ceased. Ethyl acetate (100 mL) was added and the solution was washed with 1N hydrochloric acid, brine, and sat. aq. sodium bicarbonate solution, dried over magnesium sulfate, filtered and concentrated. The resultant material was recrystallized from ethanol:water to yield 4-[5-(4-chlorophenyl)-3-hydroxymethyl-1H-pyrazol-1-yl]benzenesulfonamide (2.6 g, 71%) as a white solid: mp 192-194 °C; ¹H NMR (DMSO-d₆/300 MHz) δ 7.81 (d, J=8.7 Hz, 2H), 7.46 (d, J=8.4 Hz, 2H), 7.42 (brs, 2H), 7.40 (d, J=8.7 Hz, 2H), 7.26 (d, J=8.4 Hz, 2H), 6.63 (s, 1H), 5.35 (t, J=8.0 Hz, 1H), 4.50 (d, J=8.0 Hz, 2H). Anal. Calc'd for C₁₆H₁₄N₃SO₂Cl: C, 52.82; H, 3.88; N, 11.55. Found: C, 52.91; H, 3.88; N, 11.50.

Step 5. Preparation of [1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl]methyl-N,N-bis(phenoxy carbonyl)hydroxylamine.

A solution of 4-[5-(4-chlorophenyl)-3-hydroxymethyl-1H-pyrazol-1-yl]benzenesulfonamide from

Step 4 (7.28 g, 0.02 mol), triphenylphosphine (6.29 g, 0.024 mol) and N,O-bis(phenoxy carbonyl)hydroxylamine prepared as described by A. O. Stewart and D. W. Brooks, [J. Org. Chem., 57, 5020-5023 (1992)] (6.01 g, 0.022 mol) in 250 mL of anhydrous tetrahydrofuran (THF) was cooled to 0 °C and treated with diisopropylazo-dicarboxylate (3.75 g, 0.024 mol) dissolved in 25 mL of THF. The solution was stirred at room temperature for 3 hours, concentrated *in vacuo* and the residue purified by flash chromatography on silica gel eluting with ethyl acetate/hexane (2:3) to afford 9.30 g, 75% of the protected hydroxylamine as a thick clear oil that was used directly in the next step.

15 Step 6. Preparation of N'-[[1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl]methyl]-N'-hydroxyurea.

The compound from Step 5 (6.0 g, 9.7 mmol) was dissolved in 150 mL of ethanol and the solution was saturated with ammonia. The solution was let stand undisturbed overnight and then concentrated *in vacuo*. The residue was dissolved in ethyl acetate, washed with 1 N HCl and brine, dried over anhyd. MgSO₄, filtered and concentrated *in vacuo* to afford N'-[[1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl]methyl]-N'-hydroxyurea as a white solid that was crystallized from a mixture of ethyl acetate and hexane: mp 216-218 °C.

Example 2

4-(4-Fluorophenyl)-N-hydroxy-N-methyl-5-[(4-methylsulfonyl)phenyl]-2-oxazolepropanamide

5

A solution of 4-(4-fluorophenyl)-5-[(4-methylsulfonyl)phenyl]-2-oxazoleproprionic acid (U. S. Patent 5,380,738) (500 mg, 1.28 mmol) was dissolved in 20 mL of dichloromethane containing 50 μ L of dimethylformamide (DMF). This solution was cooled to 0 °C and treated with oxalyl chloride (130 μ L, 1.54 mmol, 1.2 equivalents). The solution was warmed to room temperature and stirred for 3 hours, and concentrated *in vacuo*. The residue was taken back up in dichloromethane and added dropwise to a solution of N-methyl hydroxylamine hydrochloride (129 mg, 1.54 mmol, 1.2 equivalents) and triethylamine (390 μ L, 2.82 mmol, 2.2 equivalents) in 20 mL of dichloromethane at 0 °C. The solution was stirred at room temperature for 1 hour and diluted with water. The phases were separated and the dichloromethane layer was washed with 1 N HCl, brine, dried over anhydrous $MgSO_4$, filtered and concentrated *in vacuo* to provide a yellow solid that was recrystallized from a mixture of ethyl acetate and isooctane to provide 4-(4-fluorophenyl)-N-hydroxy-N-methyl-5-[(4-methylsulfonyl)phenyl]-2-oxazolepropanamide (455 mg, 85%): 1H -NMR ($CDCl_3$, 300 MHz) - 3.12 (s, 3H), 3.15 (t, 2H, $J=6.6$ Hz), 3.28 (s, 3H), 3.41 (t, 2H, $J=6.6$ Hz), 7.20 (t, 2H, $J=8.5$ Hz), 7.54 (m, 2H), 7.75 (d, 2H, $J=8.5$ Hz) and 7.97 (d, 2H, $J=8.5$ Hz). LRMS m/z 418 M+. HRMS calc'd. for $C_{20}H_{19}N_2O_5FS$: 418.0999. Found: 418.0987. Anal. calc'd. for $C_{20}H_{19}N_2O_5FS$: C, 57.41; H, 4.58; N, 6.69. Found: C, 56.84; H, 4.50; N, 6.59.

Example 3

5 [1-[4-(Aminosulfonyl)phenyl]-5-(4-
chlorophenyl)-1H-pyrazol-3-yl]-N-hydroxy-N-
methyl-ethanamide

Step 1. Preparation of 4-[5-(4-chlorophenyl)-3-
10 chloromethyl-1H-pyrazol-1-yl]benzenesulfonamide.

4-[5-(4-Chlorophenyl)-3-(hydroxymethyl)-1H-pyrazol-1-yl]benzenesulfonamide (Example 1 Step 4) (3.0 g, 8.2 mmol) was dissolved in 100 mL of dry tetrahydrofuran and treated with para-toluenesulfonyl chloride (1.56 g, 8.2 mmol), lithium chloride (350 mg, 8.2 mmol), and triethylamine (830 mg, 8.2 mmol). The solution was warmed to reflux for 16 hours and diluted with 100 mL of ethyl acetate. The solution was washed with 1 N hydrochloric acid, saturated aqueous NaHCO₃, and water, dried over anhydrous MgSO₄, filtered and concentrated in vacuo. The residue was purified by flash chromatography over silica gel eluting with 1:1 (v:v) hexane/ethyl acetate. The appropriate fractions were combined and concentrated and the residue crystallized from ethanol/water to give pure 4-[5-(4-chlorophenyl)-3-chloromethyl-1H-pyrazol-1-yl]benzenesulfonamide as a white solid (2.51 g, 80%): mp 198-201 °C. Anal. Calc'd. for

$C_{16}H_{13}N_3S_1O_2Cl_2$: C, 50.27; H, 3.43; N, 10.99.

Found: C, 50.34; H, 3.43; N, 10.96.

5 Step 2. Preparation of 4-[5-(4-chlorophenyl)-3-
cyanomethyl-1H-pyrazol-1-yl]benzenesulfonamide.

A solution of 4-[5-(4-chlorophenyl)-3-chloromethyl-1H-pyrazol-1-yl]benzenesulfonamide from step 1 (350 mg, 0.9 mmol) and sodium cyanide (200 mg), dissolved in 15 mL of dimethylsulfoxide, was 10 warmed to 100 °C for 4 hours. The solution was cooled to room temperature, diluted with water and extracted with ethyl acetate. The ethyl acetate extracts were combined and washed with water, dried over anhydrous $MgSO_4$, filtered and concentrated in 15 vacuo. The residue was purified by flash chromatography over silica gel eluting with 1:1 (v:v) hexane/ethyl acetate. The appropriate fractions were combined and concentrated, and the residue crystallized from ethanol/water to give 4- 20 [5-(4-chlorophenyl)-3-cyanomethyl-1H-pyrazol-1-yl]benzenesulfonamide as a white solid (251 mg, 75%): mp 212-214 °C. Anal. Calc'd. for $C_{17}H_{13}ClN_4O_2S_1$: C, 54.77; H, 3.51; N, 15.03. Found: C, 54.94; H, 3.61; N, 14.88.

25

Step 3. Preparation of [[1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl]acetic acid.

To a solution of 4-[5-(4-chlorophenyl)-3-(cyanomethyl)-1H-pyrazol-1-yl]benzenesulfonamide 30 from step 2 (0.340 g, 3.594 mmol) in ethanol (250 mL) at -10 °C, HCl gas was added via a fritted gas inlet tube over 6 hours. The reaction mixture was concentrated in vacuo yielding an oil. The oil was 35 dissolved in 50 mL of ethanol and 15 mL of water, treated with LiOH until the pH was 12, and stirred at room temperature overnight. The reaction was

concentrated in vacuo, diluted with water, acidified with dil HCl, and extracted with ethyl acetate. The ethyl acetate phase was dried over anhydrous MgSO₄, filtered and concentrated yielding [[1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl]acetic acid as a brown solid (1.072 g, 76%): mp 120-122 °C. High resolution mass spectrum Calc'd. for C₁₇H₁₅ClN₃O₄S (M+H): 392.0472. Found: 392.0467. ¹H NMR (CDCl₃ and CD₃CO₂D) 7.84 (d, J = 8.66 Hz, 2 H), 7.37 (d, J = 8.66 Hz, 2 H), 7.31 (d, J = 8.66 Hz, 2 H), 7.15 (d, J = 8.66 Hz, 2 H), 6.54 (s, 1H), 3.84 (s, 2E).

Step 4. Preparation of [[1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl]-N-hydroxy-N-methylacetamide.

To a stirred solution of the 1-(4-aminosulfonylphenyl)-4-(4-chlorophenyl)pyrazole-3-acetic acid from step 3 (0.240 g, 0.613 mmol) in dioxane (6 mL) was added N-hydroxysuccinimide (0.085 g, 0.735 mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) (0.129 g, 0.674 mmol). After stirring overnight, the reaction mixture was concentrated in vacuo and diluted with ethyl acetate. The ethyl acetate phase was washed with KHSO₄, NaHCO₃, and brine, dried over MgSO₄, filtered and concentrated in vacuo yielding the crude N-hydroxysuccinimide ester. This ester and N-methylhydroxylamide HCl (0.056 g, 0.674 mmol) were dissolved in dimethylformamide, (4 mL) and triethylamine (94 μL, 0.068 g, 0.674 mmol) was added. The reaction was stirred at room temperature for 56 hours, diluted with ethyl acetate, washed with KHSO₄, dried over anhydrous MgSO₄, filtered and concentrated in vacuo yielding a semi-solid. This solid was treated with isooctane and ethyl acetate yielding [[1-[4-(aminosulfonyl)phenyl]-5-(4-

chlorophenyl)-1H-pyrazol-3-yl]-N-hydroxy-N-methyl acetamide as an off-white powder (0.083 g, 32%): mp 110-135 °C (dec). ¹H NMR (CDCl₃ and DMSO d₆) 9.45 (s, 1 H exch), 7.86 (d, J = 8.86 Hz, 2 H), 7.27-7.40 (m, 4 H), 7.12 (d, J = 8.46 Hz, 2 H), 6.49, s, 1 H), 5.98 (s, 2H), 3.89 (s, 2 H), 3.25 (s, 3 H). LRMS: M⁺ obs at 421.

Example 4

10

15

4-[(4-Aminosulfonyl)phenyl]-5-(3,4-dichlorophenyl)-N-hydroxy-2-oxazole-butanamide

Step 1. Preparation of 2-(3,4-dichlorophenyl)-2-hydroxy-1-phenylethanone.

Trimethylsilyl cyanide (14.6 g, 0.147 mol) was dissolved in 30 mL of methylene chloride and added to a solution of 3,4-dichlorobenzaldehyde (25 g, 0.143 mol) and zinc iodide (0.41 g, 1.28 mmol) in 100 mL of methylene chloride. The reaction mixture was stirred at room temperature for 1 h and diluted with 200 mL of methylene chloride. The organic layer was washed with saturated sodium bicarbonate (2 x 150 mL), saturated brine (2 x 150 mL), dried over magnesium sulfate, filtered and concentrated to give 38.4 g (98%) of a brown oil, which was used in the next reaction without further purification. This trimethylsilyl cyanohydrin (15 g, 0.0547 mol) was dissolved in 20 mL of diethyl ether and added to phenylmagnesium bromide (19.5 mL of 3.0 M in ether solution, 0.0585 mol) in 250 mL of ether. The

reaction mixture was stirred for 1.5 h at room temperature, then slowly quenched with 100 mL of 3 N HCl. The organic layer was separated and washed with saturated sodium bicarbonate (1 x 150 mL), saturated brine (1 x 150 mL), dried over magnesium sulfate, filtered and concentrated to give 13.0 g of a brown oil. A solution of 9:1 trifluoroacetic acid in water (50 mL) was added to the concentrated residue, and the mixture was stirred for 1.5 h at room temperature. The reaction mixture was neutralized by adding solid sodium carbonate. The resulting residue was partitioned between water (200 mL) and ethyl acetate (300 mL). The organic layer was separated and washed with saturated sodium bicarbonate (1 x 150 mL), saturated brine (1 x 150 mL), dried over magnesium sulfate, filtered and concentrated. The concentrated residue was crystallized from ethyl acetate and hexane to give 7.37 g (48%) of 2-(3,4-dichlorophenyl)-2-hydroxy-1-(phenyl)ethanone as a yellow solid: HRMS calcd. for C₁₄H₁₀O₂Cl₂ 281.0136, found 281.0112.

20

Step 2. Preparation of methyl [(4-phenyl)-5-(3,4-dichlorophenyl)oxazole]-2-butanoate.

5-(Methoxycarbonyl)pentanoyl chloride (2.82 g, 0.017 mol) and triethylamine (3.47 g, 0.034 mol) were added to a solution of 2-(3,4-dichlorophenyl)-2-hydroxy-1-(phenyl)ethanone (Step 1) (4.77 g, 0.017 mmol) in 40 mL of methylene chloride. The resulting mixture was stirred overnight at room temperature. The reaction mixture was diluted with 100 mL of methylene chloride. The organic solution was washed with water (1 x 100 mL), saturated brine (1 x 100 mL), dried over magnesium sulfate, filtered and concentrated. The concentrated residue was dried under high vacuum, then ammonium acetate (4.6 g, 0.06 mol) and 30 mL of acetic acid were added. The reaction mixture was heated at 100 °C for 2.5 h. The reaction mixture was cooled to room temperature, and the excess acetic acid was removed under vacuum. The resulting residue was

partitioned between water (100 mL) and ethyl acetate (200 mL). The organic layer was separated, washed with saturated aqueous sodium bicarbonate (2 x 100 mL), saturated brine (1 x 100 mL), dried over magnesium sulfate, filtered and concentrated. The concentrated residue was purified by flash chromatography on silica gel (eluting with 1:9 ethyl acetate:hexane) to give 2.82 g (42.6%) of methyl [(4-phenyl)-5-(3,4-dichlorophenyl)oxazole]-2-butanoate as a yellow oil: HRMS calcd. for C₂₀H₁₇N₁O₃Cl₂ 390.0664. Found 390.0648.

Step 3. Preparation of methyl 4-[(4-aminosulfonyl)phenyl]-5-(3,4-dichloro-phenyl)oxazole-2-butanoate.

Chlorosulfonic acid (28 g, 0.24 mol) was added to methyl [(4-phenyl)-5-(3,4-dichlorophenyl)oxazole]-2-butanoate (Step 2) (3.74 g, 9.58 mmol) at 5 °C. The ice bath was removed, and the reaction was stirred for 3 h at room temperature. The reaction mixture was diluted with 100 mL of methylene chloride and slowly poured into ice. The organic layer was separated and washed with saturated brine (1 x 100 mL). The organic layer was separated and poured into 50 mL of concentrated ammonium hydroxide. The reaction mixture was stirred for 30 minutes at room temperature. The organic layer was separated and washed with water (1 x 100 mL), saturated brine (1 x 100 mL), dried over magnesium sulfate, filtered and concentrated. The crude ester was crystallized from methanol and water to give 1.7 g (38%) of methyl 4-[(4-aminosulfonyl)phenyl]-5-(3,4-dichloro-phenyl)oxazole-2-butanoate as a yellow solid: m.p. 130.7-131.8 °C. HRMS calcd. for C₂₀H₁₈N₂O₅SCl₂ 469.0392. Found 469.0413.

Step 4. Preparation of 4-[(4-aminosulfonyl)phenyl]-5-(3,4-dichlorophenyl)-N-hydroxy-2-oxazolebutanamide.

An aqueous solution of 50% N-hydroxylamine (1 g) was added to methyl 4-[(4-aminosulfonyl)phenyl]-5-(3,4-dichlorophenyl)oxazole-2-butanoate (Step 3) (0.3 g, 0.64

mmol) in 10 mL of THF:methanol (1:1). The resulting solution was stirred for 18 h at room temperature. An additional amount of aqueous 50% N-hydroxylamine (2.7 g) was added, and the resulting solution was stirred for 48 h 5 at room temperature. The solvents were removed under vacuum. Water (50 mL) and ethyl acetate (50 mL) were added to the concentrated residue. The resulting solid was collected by filtration, washed with water and ether, and air-dried to give 0.14 g (46.5%) of 4-[(4- 10 aminosulfonyl)phenyl]-5-(3,4-dichlorophenyl)-N-hydroxy-2-oxazolebutanamide as a white solid: m.p. 165.0-169.7 °C. ^1H NMR ($\text{CD}_3\text{OD}/300 \text{ MHz}$) δ 2.15-2.27 (m, 4H), 2.94 (t, 2H, J = 7.05 Hz), 7.44-7.48 (m, 1H), 7.56-7.58 (m, 1H), 7.72-7.78 (m, 3H), 7.94-7.96 (m, 2H). HRMS: calcd for 15 $\text{C}_{19}\text{H}_{17}\text{N}_3\text{O}_5\text{SCl}_2$ 470.0344. Found 470.0340.

BIOLOGICAL EVALUATION

Rat Carrageenan Foot Pad Edema Test

20

The carrageenan foot edema test was performed with materials, reagents and procedures essentially as described by Winter, et al., (*Proc. Soc. Exp. Biol. Med.*, 111, 544 (1962)). Male Sprague-Dawley rats 25 were selected in each group so that the average body weight was as close as possible. Rats were fasted with free access to water for over sixteen hours prior to the test. The rats were dosed orally (1 mL) with compounds suspended in vehicle containing 0.5% 30 methylcellulose and 0.025% surfactant, or with vehicle alone. One hour later a subplantar injection of 0.1 mL of 1% solution of carrageenan/sterile 0.9% saline was administered and the volume of the injected foot was measured with a displacement plethysmometer 35 connected to a pressure transducer with a digital indicator. Three hours after the injection of the carrageenan, the volume of the foot was again

measured. The average foot swelling in a group of drug-treated animals was compared with that of a group of placebo-treated animals and the percentage inhibition of edema was determined (Otterness and 5 Bliven, Laboratory Models for Testing NSAIDs, in Non-steroidal Anti-Inflammatory Drugs, (J. Lombardino, ed. 1985)). The % inhibition shows the % decrease from control paw volume determined in this procedure and the data for selected compounds in this invention are 10 summarized in Table I.

TABLE I.

RAT PAW EDEMA

% Inhibition

15 @ 10mg/kg body weight

Example

2 2

20 Evaluation of COX-1 and COX-2 activity *in vitro*

The compounds of this invention exhibited inhibition *in vitro* of COX-2. The COX-2 inhibition activity of the compounds of this invention 25 illustrated in the Examples was determined by the following methods.

a. Preparation of recombinant COX baculoviruses

30 Recombinant COX-1 and COX-2 were prepared as described by Gierse et al, [J. Biochem., 305, 479-84 (1995)]. A 2.0 kb fragment containing the coding region of either human or murine COX-1 or human or murine COX-2 was cloned into a BamH1 site of the 35 baculovirus transfer vector pVL1393 (Invitrogen) to generate the baculovirus transfer vectors for COX-1 and COX-2 in a manner similar to the method of D.R.

O'Reilly et al (*Baculovirus Expression Vectors: A Laboratory Manual* (1992)). Recombinant baculoviruses were isolated by transfecting 4 µg of baculovirus transfer vector DNA into SF9 insect cells (2x10⁸) along with 200 ng of linearized baculovirus plasmid DNA by the calcium phosphate method. See M.D. Summers and G.E. Smith, *A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures*, Texas Agric. Exp. Station Bull. 1555 (1987). Recombinant viruses were purified by three rounds of plaque purification and high titer (10⁷ - 10⁸ pfu/ml) stocks of virus were prepared. For large scale production, SF9 insect cells were infected in 10 liter fermentors (0.5 x 10⁶/ml) with the recombinant baculovirus stock such that the multiplicity of infection was 0.1. After 72 hours the cells were centrifuged and the cell pellet homogenized in Tris/Sucrose (50 mM: 25%, pH 8.0) containing 1% 3-[β -cholamidopropyl]dimethylammonio]-1-propanesulfonate (CHAPS). The homogenate was centrifuged at 10,000xG for 30 minutes, and the resultant supernatant was stored at -80°C before being assayed for COX activity.

b. Assay for COX-1 and COX-2 activity

25

COX activity was assayed as PGE₂ formed/µg protein/time using an ELISA to detect the prostaglandin released. CHAPS-solubilized insect cell membranes containing the appropriate COX enzyme were incubated in a potassium phosphate buffer (50 mM, pH 8.0) containing epinephrine, phenol, and heme with the addition of arachidonic acid (10 µM). Compounds were pre-incubated with the enzyme for 10-20 minutes prior to the addition of arachidonic acid. Any reaction between the arachidonic acid and the enzyme was stopped after ten minutes at 37°C/room temperature by transferring 40 µl of reaction mix into 160 µl ELISA

buffer and 25 μ M indomethacin. The PGE₂ formed was measured by standard ELISA technology (Cayman Chemical). Results are shown in Table II.

5 **Assay for 5-Lipoxygenase activity**

The 5-lipoxygenase (5-LO) activity of the compounds were determined by the calcium ionophore-induced Leukotriene B4 (LTB4) production in human whole blood. Venous blood was collected from healthy human donors using heparin as an anti-coagulant. Human blood samples (0.2 ml of a 1:4 dilution in RPMI 1640 medium) were incubated in 96-well culture plates for 15 minutes at 37°C with test compounds dissolved in ethanol (EtOH; final concentration <1%), or vehicle. Typically 7 concentrations of test compounds were examined in duplicate. A-23187 [Sigma] was added to the blood to a final concentration of 20 μ g/ml, and the mixtures were incubated for 10 minutes at 37°C. The reaction was stopped by placing the samples on ice. The samples were then centrifuged at 800 x g at 4°C for 10 minutes to pellet the cells, and the supernatants were recovered for quantitation of LTB4 by ELISA (Cayman Chemical Co.; sensitivity 3 pg/ml). IC₅₀'s were estimated from a four parameter logistic model with two parameters fixed, the minimum (0% inhibition) and maximum (100% inhibition). The IC₅₀ value is the concentration that produces 50% inhibition between the fixed values of the minimum and maximum. Data is reported as the mean IC₅₀ for each compound. Results are shown in Table II.

TABLE II.

	Example COX-2 <u>IC₅₀ (μM)</u>	COX-1 <u>IC₅₀ (μM)</u>	5-LO <u>IC₅₀ (μM)</u>
5	1 6.6	53.5	12.3
	2 5.1	>100	0.05
	4 0.3	12.5	
10			

Also embraced within this invention is a class of pharmaceutical compositions comprising the active compounds of this combination therapy in association with one or more non-toxic, pharmaceutically-acceptable carriers and/or diluents and/or adjuvants (collectively referred to herein as "carrier" materials) and, if desired, other active ingredients. The active compounds of the present invention may be administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended. The active compounds and composition may, for example, be administered orally, intravascularly (IV), intraperitoneally, subcutaneously, intramuscularly (IM) or topically.

For oral administration, the pharmaceutical composition may be in the form of, for example, a tablet, hard or soft capsule, lozenges, dispensable powders, suspension or liquid. The pharmaceutical composition is preferably made in the form of a dosage unit containing a particular amount of the active ingredient. Examples of such dosage units are tablets or capsules.

The active ingredient may also be administered by injection (IV, IM, subcutaneous or jet) as a composition wherein, for example, saline, dextrose, or water may be used as a suitable carrier. The pH of the composition

may be adjusted, if necessary, with suitable acid, base, or buffer. Suitable bulking, dispersing, wetting or suspending agents, including mannitol and PEG 400, may also be included in the composition. A suitable

5 parenteral composition can also include a compound formulated as a sterile solid substance, including lyophilized powder, in injection vials. Aqueous solution can be added to dissolve the compound prior to injection.

10 The amount of therapeutically active compounds that are administered and the dosage regimen for treating a disease condition with the compounds and/or compositions of this invention depends on a variety of factors, including the age, weight, sex and medical condition of
15 the subject, the severity of the inflammation or inflammation related disorder, the route and frequency of administration, and the particular compound employed, and thus may vary widely. The prodrug compositions should include similar dosages as for the parent
20 compounds. The pharmaceutical compositions may contain active ingredients in the range of about 0.1 to 1000 mg, preferably in the range of about 0.5 to 250 mg and most preferably between about 1 and 60 mg. A daily dose of about 0.01 to 100 mg/kg body weight, preferably between
25 about 0.05 and about 20 mg/kg body weight and most preferably between about 0.1 to 10 mg/kg body weight, may be appropriate. The daily dose can be administered in one to four doses per day.

In the case of skin conditions, it may be
30 preferable to apply a topical preparation of compounds of this invention to the affected area two to four times a day.

For disorders of the eye or other external tissues, e.g., mouth and skin, the formulations are preferably
35 applied as a topical gel, spray, ointment or cream, or as a suppository, containing the active ingredients in a total amount of, for example, 0.075 to 30% w/w,

preferably 0.2 to 20% w/w and most preferably 0.4 to 15% w/w. When formulated in an ointment, the active ingredients may be employed with either paraffinic or a water-miscible ointment base. Alternatively, the active 5 ingredients may be formulated in a cream with an oil-in-water cream base. If desired, the aqueous phase of the cream base may include, for example at least 30% w/w of a polyhydric alcohol such as propylene glycol, butane-1,3-diol, mannitol, sorbitol, glycerol, polyethylene glycol and mixtures thereof. The topical formulation 10 may desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of such dermal penetration enhancers include 15 dimethylsulfoxide and related analogs. The compounds of this invention can also be administered by a transdermal device. Preferably topical administration will be accomplished using a patch either of the reservoir and porous membrane type or of a solid matrix variety. In 20 either case, the active agent is delivered continuously from the reservoir or microcapsules through a membrane into the active agent permeable adhesive, which is in contact with the skin or mucosa of the recipient. If the active agent is absorbed through the skin, a 25 controlled and predetermined flow of the active agent is administered to the recipient. In the case of microcapsules, the encapsulating agent may also function as the membrane. The transdermal patch may include the compound in a suitable solvent system with an adhesive 30 system, such as an acrylic emulsion, and a polyester patch.

The oily phase of the emulsions of this invention may be constituted from known ingredients in a known manner. While the phase may comprise merely an 35 emulsifier, it may comprise a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Preferably, a hydrophilic emulsifier is

included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat. Together, the emulsifier(s) with or without stabilizer(s) make-up the so-called
5 emulsifying wax, and the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations. Emulsifiers and emulsion stabilizers suitable for use in the formulation of the present
10 invention include Tween 60, Span 80, cetostearyl alcohol, myristyl alcohol, glyceryl monostearate, and sodium lauryl sulfate, among others.

The choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic
15 properties, since the solubility of the active compound in most oils likely to be used in pharmaceutical emulsion formulations is very low. Thus, the cream should preferably be a non-greasy, non-staining and washable product with suitable consistency to avoid
20 leakage from tubes or other containers. Straight or branched chain, mono- or dibasic alkyl esters such as di-isoadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-
25 ethylhexyl palmitate or a blend of branched chain esters may be used. These may be used alone or in combination depending on the properties required. Alternatively, high melting point lipids such as white soft paraffin and/or liquid paraffin or other mineral oils can be
30 used.

Formulations suitable for topical administration to the eye also include eye drops wherein the active ingredients are dissolved or suspended in suitable carrier, especially an aqueous solvent for the active
35 ingredients. The antiinflammatory active ingredients are preferably present in such formulations in a

concentration of 0.5 to 20%, advantageously 0.5 to 10% and particularly about 1.5% w/w.

For therapeutic purposes, the active compounds of this combination invention are ordinarily combined with

5 one or more adjuvants appropriate to the indicated route of administration. If administered *per os*, the compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate,

10 magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration. Such capsules or tablets may

15 contain a controlled-release formulation as may be provided in a dispersion of active compound in hydroxypropylmethyl cellulose. Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic sterile injection solutions or

20 suspensions. These solutions and suspensions may be prepared from sterile powders or granules having one or more of the carriers or diluents mentioned for use in the formulations for oral administration. The compounds may be dissolved in water, polyethylene glycol,

25 propylene glycol, ethanol, corn oil, cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride, and/or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art.

30 Although this invention has been described with respect to specific embodiments, the details of these embodiments are not to be construed as limitations.

What is claimed is :

1. A compound of Formula I

5

I

wherein A is a 5- or 6-member ring substituent selected from partially unsaturated or unsaturated heterocyclo and carbocyclic rings, wherein A is optionally substituted, if possible, with a radical selected from 10 acyl, halo, alkyl, haloalkyl, cyano, nitro, carboxyl, alkoxy, oxo, aminocarbonyl, alkoxy carbonyl, carboxyalkyl, cyanoalkyl, and hydroxyalkyl;

wherein Y is one or more radicals selected from alkyl, alkynyl, alkenyl, aryl, aralkyl, cycloalkyl, acyl, 15 hydroxyalkyl, aminoalkyl, alkylaminoalkyl, arylaminoalkyl, cycloalkylalkyl, heterocyclo and heterocycloalkyl;

wherein R¹ is one or more substituents selected from heterocyclo, cycloalkyl, cycloalkenyl and aryl, wherein R¹ is optionally substituted at a substitutable position with 20 one or more radicals selected from alkyl, haloalkyl, cyano, carboxyl, alkoxy carbonyl, hydroxyl, hydroxyalkyl, haloalkoxy, amino, alkylamino, arylamino, nitro, alkoxyalkyl, alkylsulfinyl, halo, alkoxy and alkylthio;

wherein R² is selected from alkyl and amino;

wherein R³ is a direct bond or a radical selected from

wherein R⁴ is selected from hydrido, hydroxyl, alkyl, aryl, heterocyclo and cycloalkyl;

30 wherein R⁵ is selected from hydrido, alkyl, aryl, heterocyclo and cycloalkyl; and

wherein R⁶ is selected from hydrido and hydroxyl; provided R² is amino when A is pyrazolyl;

or a pharmaceutically-acceptable salt thereof.

2. Compound of Claim 1 wherein A is selected from thiaryl, oxazolyl, furyl, pyrrolyl, thiazolyl, imidazolyl, isothiazolyl, isoxazolyl, pyrazolyl, cyclopentenyl, phenyl, and pyridyl, wherein A is optionally substituted with a radical selected from acyl, halo, lower alkyl, lower haloalkyl, oxo, cyano, nitro, carboxyl, lower alkoxy, aminocarbonyl, lower alkoxycarbonyl, lower carboxyalkyl, lower cyanoalkyl, and lower hydroxyalkyl; wherein Y is a radical selected from lower alkyl, lower alkynyl, lower alkenyl, lower hydroxyalkyl, lower aminoalkyl, lower alkylaminoalkyl, lower arylaminoalkyl, aryl, lower aralkyl, lower cycloalkyl, lower acyl, lower cycloalkylalkyl, 5- or 6-membered heterocyclo and lower heterocycloalkyl; wherein R¹ is one or more substituents selected from 5- and 6-membered heterocyclo, lower cycloalkyl, lower cycloalkenyl and aryl selected from phenyl, biphenyl and naphthyl, where R¹ is optionally substituted at a substitutable position with one or more radicals selected from lower alkyl, lower haloalkyl, cyano, carboxyl, lower alkoxycarbonyl, hydroxyl, lower hydroxyalkyl, lower haloalkoxy, amino, lower alkylamino, phenylamino, nitro, lower alkoxyalkyl, lower alkylsulfinyl, halo, lower alkoxy and lower alkylthio; wherein R² is selected from lower alkyl and amino; wherein R³ is a direct bond or a radical selected from

wherein R⁴ is selected from hydrido, hydroxyl, lower alkyl, phenyl, 5- and 6-membered heterocyclo and lower cycloalkyl; wherein R⁵ is selected from hydrido, lower alkyl, phenyl, 5- and 6-membered heterocyclo and lower cycloalkyl; and wherein R⁶ is selected from hydrido and hydroxyl; or a pharmaceutically-acceptable salt thereof.

3. Compound of Claim 2 wherein A is a radical selected from thieryl, oxazolyl, furyl, pyrrolyl, thiazolyl, imidazolyl, isoxazolyl, pyrazolyl, cyclopentenyl, phenyl, and pyridyl, wherein A is

5 optionally substituted with a radical selected from formyl, fluoro, chloro, bromo, methyl, trifluoromethyl, oxo, cyano, carboxyl, methoxy, aminocarbonyl, methoxycarbonyl, ethoxycarbonyl, acetyl, carboxypropyl, and hydroxymethyl; wherein Y is a radical selected

10 from ethyl, propyl, isopropyl, butyl, 1-propynyl, 2-propynyl, 1-butyn-3-yl, 1-propenyl, 2-propenyl, acetyl, dihydroxypropyl, hydroxyethyl, 1-amino-ethyl, 1-amino-propyl, 1-(N-methylamino)propyl, 1-(N,N-dimethylamino)propyl, 1-(N-phenylamino)propyl,

15 triazolyl, thieryl, benzyl, phenylethyl, cyclohexylmethyl, cyclopentylethyl, triazolylmethyl, thierylmethy1 and phenyl optionally substituted at a substitutable position with one or more radicals selected from fluoro, chloro, bromo, hydroxyl, methyl, and methoxy; wherein R¹ is a substituent selected from thieryl, oxazolyl, furyl, pyrrolyl, thiazolyl, imidazolyl, isoxazolyl, pyrazolyl, pyridyl, and phenyl, where R¹ is optionally substituted at a substitutable position with one or more radicals selected from

20 methyl, trifluoromethyl, hydroxyl, hydroxymethyl, trifluoromethoxy, nitro, methoxymethyl, fluoro, chloro, bromo, methoxy and methylthio; wherein R² is methyl or amino; wherein R³ is a direct bond or a radical selected from

25

30 wherein R⁴ is selected from hydrido, hydroxyl, methyl, and phenyl; wherein R⁵ is selected from hydrido, methyl, and phenyl; and wherein R⁶ is selected from hydrido and hydroxyl; or a pharmaceutically-acceptable salt thereof.

4. Compound of Claim 3 selected from compounds and their pharmaceutically-acceptable salts, of the group consisting of

5

$N' - [[1 - [4 - (\text{aminosulfonyl})\text{phenyl}] - 5 - (\text{4-chlorophenyl}) - 1\text{H-pyrazol-3-yl}] \text{methyl}] - N' - \text{hydroxyurea}$;

$[1 - [4 - (\text{aminosulfonyl})\text{phenyl}] - 5 - (\text{4-chlorophenyl}) - 1\text{H-pyrazol-3-yl}] - N - \text{hydroxy-N-methyl-ethanamide}$;

10 $4 - [(\text{4-aminosulfonyl})\text{phenyl}] - 5 - (\text{3,4-dichlorophenyl}) - N - \text{hydroxy-2-oxazolebutanamide}$; and

4 - (4-fluorophenyl) - $N - \text{hydroxy-N-methyl-5 - [(4 - methylsulfonyl)phenyl] - 2-oxazolepropanamide}$.

15

5. A compound of Formula II

II

wherein A is a ring substituent selected from thienyl, 20 oxazolyl, furyl, pyrrolyl, thiazolyl, imidazolyl, isothiazolyl, isoxazolyl, pyrazolyl, cyclopentenyl, phenyl, and pyridyl; wherein A is optionally substituted with a radical selected from acyl, halo, hydroxyl, lower alkyl, lower haloalkyl, oxo, cyano, nitro, carboxyl, 25 lower alkoxy, aminocarbonyl, lower alkoxy carbonyl, lower carboxyalkyl, lower cyanoalkyl, and lower hydroxyalkyl; wherein Y is selected from lower alkyl, lower alkenyl and lower alkynyl; wherein R¹ is selected from 5- and 6-membered heterocyclo, lower cycloalkyl, lower 30 cycloalkenyl and aryl selected from phenyl, biphenyl and naphthyl, wherein R¹ is optionally substituted at a substitutable position with one or more radicals selected from lower alkyl, lower haloalkyl, cyano, carboxyl, lower alkoxy carbonyl, hydroxyl, lower hydroxyalkyl, lower haloalkoxy, amino, lower alkylamino, phenylamino, nitro, lower alkoxyalkyl, lower 35

alkylsulfinyl, halc, lower alkoxy and lower alkylthio; wherein R² is selected from lower alkyl and amino; and wherein R⁵ is selected from hydrido, lower alkyl, phenyl, 5- and 6-membered heterocyclo and lower 5 cycloalkyl; provided R² is amino when A is pyrazolyl; or a pharmaceutically-acceptable salt thereof.

6. Compound of Claim 5 wherein A is selected from thienyl, oxazolyl, furyl, pyrrolyl, thiazolyl, 10 imidazolyl, isoxazolyl, pyrazolyl, cyclopentenyl, phenyl, and pyridyl, wherein A is optionally substituted with a radical selected from formyl, fluoro, chloro, bromo, methyl, trifluoromethyl, oxo, cyano, carboxyl, methoxy, aminocarbonyl, methoxycarbonyl, ethoxycarbonyl, 15 acetyl, carboxypropyl, and hydroxymethyl; wherein Y is a radical selected from methyl, ethyl, isopropyl, propyl, butyl, propenyl, butenyl, propynyl and butynyl; wherein R¹ is selected from thienyl, oxazolyl, furyl, pyrrolyl, thiazolyl, imidazolyl, isoxazolyl, pyrazolyl, 20 pyridyl, and phenyl, where R¹ is optionally substituted at a substitutable position with one or more radicals selected from methyl, trifluoromethyl, hydroxyl, hydroxymethyl, trifluoromethoxy, methoxymethyl, fluoro, chloro, bromo, methoxy and methylthio; wherein R² is 25 methyl or amino; and wherein R⁵ is selected from hydrido, methyl, and phenyl; or a pharmaceutically- acceptable salt thereof.

7. A compound of Formula III
30

wherein A is a ring substituent selected from thienyl, oxazolyl, furyl, pyrrolyl, thiazolyl, imidazolyl, 35 isothiazolyl, isoxazolyl, pyrazolyl, cyclopentenyl, phenyl, and pyridyl; wherein A is optionally substituted

with a radical selected from acyl, halo, hydroxyl, lower alkyl, lower haloalkyl, oxo, cyano, nitro, carboxyl, lower alkoxy, aminocarbonyl, lower alkoxycarbonyl, lower carboxyalkyl, lower cyanoalkyl, and lower hydroxyalkyl;

5 wherein Y is selected from lower alkyl, lower alkenyl and lower alkynyl; wherein R¹ is selected from 5- and 6-membered heterocyclo, lower cycloalkyl, lower cycloalkenyl and aryl selected from phenyl, biphenyl and naphthyl, wherein R¹ is optionally substituted at a

10 substitutable position with one or more radicals selected from lower alkyl, lower haloalkyl, cyano, carboxyl, lower alkoxycarbonyl, hydroxyl, lower hydroxyalkyl, lower haloalkoxy, amino, lower alkylamino, phenylamino, nitro, lower alkoxyalkyl, lower

15 alkylsulfinyl, halo, lower alkoxy and lower alkylthio; wherein R² is selected from lower alkyl and amino; and wherein R⁵ is selected from hydrido and alkyl; or a pharmaceutically-acceptable salt thereof.

20 8. Compound of Claim 7 wherein A is selected from thienyl, oxazolyl, furyl, pyrrolyl, thiazolyl, imidazolyl, isoxazolyl, pyrazolyl, cyclopentenyl, phenyl, and pyridyl, wherein A is optionally substituted with a radical selected from formyl, fluoro, chloro, bromo, methyl, trifluoromethyl, oxo, cyano, carboxyl, methoxy, aminocarbonyl, methoxycarbonyl, ethoxycarbonyl, acetyl, carboxypropyl, and hydroxymethyl; wherein Y is selected from methyl, ethyl, isopropyl, propyl, butyl, propenyl, butenyl, propynyl and butynyl; wherein R¹ is

25 selected from thienyl, oxazolyl, furyl, pyrrolyl, thiazolyl, imidazolyl, isoxazolyl, pyrazolyl, pyridyl, and phenyl, where R¹ is optionally substituted at a substitutable position with one or more radicals selected from methyl, trifluoromethyl, hydroxyl, hydroxymethyl, trifluoromethoxy, methoxymethyl, fluoro, chloro, bromo, methoxy and methylthio; wherein R² is

30 methyl or amino; and wherein R⁵ is selected from

hydrido, and methyl; or a pharmaceutically-acceptable salt thereof.

9. A pharmaceutical composition comprising a
5 therapeutically-effective amount of a compound of Claim
1-8, or a pharmaceutically-acceptable salt thereof.

10. A method of treating a condition benefited by
the inhibition of 5-lipoxygenase, cyclooxygenase-2 or
10 both 5-lipoxygenase and cyclooxygenase-2, said method
comprising treating the subject having or susceptible to
such inflammation or inflammation-associated disorder,
with a therapeutically-effective amount of a compound of
Claim 1-8, or a pharmaceutically-acceptable salt
15 thereof.

11. The method of Claim 10 wherein the condition is
inflammation or an inflammation-associated disorder.

20 12. The method of Claim 11 wherein the condition is
inflammation.

13. The method of Claim 11 wherein the condition
is an inflammation-associated disorder.
25

14. The method of Claim 13 wherein the
inflammation-associated disorder is arthritis.

30 15. The method of Claim 13 wherein the
inflammation-associated disorder is pain.

16. The method of Claim 13 wherein the
inflammation-associated disorder is fever.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 96/08314

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07D231/12 C07D263/32 A61K31/42 A61K31/415

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO,A,91 19708 (FUJISAWA PHARMACEUTICAL CO) 26 December 1991 see claims; examples 13,26,41,44 ---	1-16
X	WO,A,94 27980 (SEARLE & CO ;NORMAN BRYAN H (US); LEE LEN F (US); MASFERRE JAIME) 8 December 1994 cited in the application see claims; example 21 ---	1-16
X	EP,A,0 248 594 (ORTHO PHARMA CORP) 9 December 1987 see claim 1; examples ---	1-16
A	EP,A,0 517 598 (BELLON LABOR SA ROGER) 9 December 1992 see the whole document ---	1-16
	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search

11 September 1996

Date of mailing of the international search report

27.09.96

Name and mailing address of the ISA

European Patent Office, P.O. Box 5818 Patentiaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+ 31-70) 340-3016

Authorized officer

De Jong, B

C(Continuation) DOCUMENT

Category Citation of

P,X WO,A
(US)
June
see

P,X US,A
Janu
see

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US96/08314

Box I Observations where certain claims were found unsearchable (Continuation of item I of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claims 10-16 are directed to a method of treatment of (diagnostic method practised on) the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Claims 1-3 are so broad that a complete search was not possible for economical reasons.
Claims searched incompletely: 1-3, 9-16
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: _____
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: _____

Comment on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/US 96/08314

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9119708	26-12-91	AU-A-	7973191	07-01-92
		CN-A-	1059142	04-03-92
		EP-A-	0593761	27-04-94
		JP-T-	6501919	03-03-94
-----	-----	-----	-----	-----
WO-A-9427980	08-12-94	US-A-	5380738	10-01-95
		AU-A-	6949594	20-12-94
		EP-A-	0699192	06-03-96
-----	-----	-----	-----	-----
EP-A-0248594	09-12-87	US-A-	4826868	02-05-89
		AU-B-	596844	17-05-90
		AU-A-	7360887	10-12-87
		CA-A-	1337122	26-09-95
		CN-B-	1028227	19-04-95
		DE-D-	3788244	05-01-94
		DE-T-	3788244	14-04-94
		DK-B-	170202	12-06-95
		ES-T-	2059377	16-11-94
		FI-B-	94340	15-05-95
		HK-A-	14094	04-03-94
		HU-A-	68247	28-06-95
		IE-B-	63856	14-06-95
		JP-B-	2512751	03-07-96
		JP-A-	63022080	29-01-88
		SG-A-	3294	15-04-94
		US-A-	5164381	17-11-92
-----	-----	-----	-----	-----
EP-A-0517590	09-12-92	FR-A-	2677355	11-12-92
		AU-A-	1899192	08-01-93
		WO-A-	9221664	10-12-92
-----	-----	-----	-----	-----
WO-A-9515316	08-06-95	US-A-	5466823	14-11-95
		US-A-	5521207	28-05-96
		AU-A-	1171495	19-06-95
		CA-A-	2177576	08-06-95
		NO-A-	962184	29-05-96
		US-A-	5510496	23-04-96
		US-A-	5508426	16-04-96
		US-A-	5516907	14-05-96
		US-A-	5504215	02-04-96

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No.
PCT/US 96/08516

Patent document cited in search report	Publication date	Patent family member(s)
US-A-5486534	23-01-96	AU-A- 312- WO-A- 96-08516 - 86-02-56