131

Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.15 (2024 rev) <C5> <14.10.2024>

CONTINUOUS INTERNAL EVALUATION - 1

Dept: AI/ CD/ CS	AI/ CD/ CS A	Sub: Digital Design and Computer Organization	S Code: BCS302
Date: 18.10.2024	Time: 2:30-4:00	Max Marks: 50	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

QN		Questions	Marks	RBT	CO's			
	PART A							
1 a	implicants of (i) F (A, B,	the prime implicants and essential prime of the following functions: $(C, D) = \sum m(1, 3, 4, 5, 10, 11, 12, 13, 14, 15)$ $(C, Y, Z) = \sum m(0, 1, 2, 5, 7, 8, 10, 15)$		L3	CO1			
ł	1	iagram, explain the basic operational concepts occessor and memory	9	L2	CO3			
(1 -	and implement the following Boolean function D Gates: $F(x, y, z) = \sum m(1, 2, 3, 4, 5, 7)$	6	L3	CO1			
OR								
2	Map and di (i) $F = A'B$	the minimum SOP form from using Karnaugh raw the circuit diagram: A'C' + B'CD' + A'BCD' + AB'C' A''z' + wyz + w'y'z' + x'y + wxy'z' + w'xyz	10	L3	CO1			
	(ii) Basic p	e following: or time & Processor cache performance equation mance measurement	9	L2	CO3			

Page: 1 / 2

		Using gate-level description & continuous assignment statements (data flow description), write a Verilog description of the circuit shown in the following Figure: Figure Q2c Figure Q2c Figure Q2c Figure PADTER	1	L3	CO1				
PART B									
3	a	Implement the design of combinational circuit — BCD to Excess-3 Code Converter	10	L2	CO2				
	b Realize the following Boolean functions using 8:1 MU with A, B, C as Select lines and 4:1 MUX with A, B select lines: $Y(A, B, C, D) = \sum m(0, 1, 5, 6, 7, 11, 15)$			L3	CO2				
	С	Write Verilog descriptions for D flip-flop and JK flip-flop $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	L3	CO2				
		OR							
4	a	Design and explain four-bit adder	10	L2	CO2				
		Define decoder. Describe the working principle of a 3:8 decoder. Draw the logic diagram of the 3:8 decoder with enable input. Realize the following Boolean expressions using a 3:8 decoder and multi-input OR gates: $F1 (A, B, C) = \sum m (1, 3, 7) F2 (A, B, C) = \sum m (2, 3, 5)$	9	L3	CO2				
		What is a Latch? With neat diagram, explain SR latch using NOR Gate.	6	L3	CO2				
		() ()		4 . 1	0				

Prepared by: Dr. Mahesh Prasaniak

HOD Page: 2/2