多媒體資訊概論 (2012) 期末考題

請另以答案卷作答,總分100,考試時間120分鐘

1. (10%)下表為 A,B,C,D,E,F,G,H 八個符號出現的次數,如以固定長度編碼,各符號平均編碼長度為 3 bits,如使用 Huffman Coding,請問(1)各符號平均編碼長度為多少 bits? (2)此時壓縮率為多少? 兩小題皆計算至小數第二位即可。

Symbols	A	В	С	D	Е	F	G	Н
Counts	0	1	2	3	4	5	6	7

Ans:

Symbols	A	В	C	D	Е	F	G	Н
Counts	0	1	2	3	4	5	6	7
Code	5	5	4	3	3	3	2	2
#bits	5*0	5*1	4*2	3*3	3*4	3*5	2*6	2*7

- (1) (#bits) / (#symbols) = 75/28 = 2.68
- (2) 3 / (75/28) = 1.12
- 2. (30%) 使用 LZW 編碼法,已知字元集共有 $\{A,B,C,D\}$ 其對應代號為 $\{1,2,3,4\}$,試求接收訊號 2,1,5,6,5,9,3,10 解碼後的字串。

S	k	Entry/ Output	Code	String
			1	A
			2	В
			3	C
			4	D
NIL	2	В		
В	1	Α	5	ВА
Α	5	BA	6	AB
ВА	6	AB	7	BAA
AB	5	BA	8	ABB
ВА	9	BAB	9	BAB
BAB	3	С	10	BABC
С	10	BABC	11	СВ

Ans:

3. (15%) 進行 JPEG 壓縮時,影像將先轉換為 YUV 平面各自處理,這時 Y 平面被分割成 8 x 8 的小區塊,接著在各區塊中進行 DCT 轉換,其中兩個相鄰區塊之間的直流成份 DC=F(0,0) 將以 DPCM 方式進行差值編碼,請問(a)—個 (R,G,B)=(100,0,0)的區塊,其 Y 平面 DC 值為何?取整數;(b) 一個 (R,G,B)=(0,0,100)的區塊,其 Y 平面 DC 值為何?取整數;(c)若取量化級距為 Step=2,則在 DPCM 編碼過程中(Block-by-block),這二個相鄰區塊 Y 平面差值訊號的 VLI(Variable Length Integer)編碼為多少?使用公式如下:

$$F(u,v) = \frac{C(u)C(v)}{4} \sum_{i=0}^{7} \sum_{j=0}^{7} \cos(\frac{(2i+1)u\pi}{16}) \cos(\frac{(2j+1)v\pi}{16}) f(i,j)$$

$$C(k) = \begin{cases} \frac{\sqrt{2}}{2}, & \text{if k=0} \\ 1, & \text{otherwise} \end{cases} \qquad \begin{bmatrix} Y \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.229 & 0.587 & 0.114 \\ -0.147 & -0.286 & 0.436 \\ 0.615 & -0.515 & -0.100 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$(3)(91-183)/2 = -46 = (01001)_{\text{binary}}$$

4. (15%) 下列為 JPEG 編碼中 DC 及 AC 頻道 Entropy Coding 的對應表(只列出部分), 及第一個 8 x 8 Block 的循序位元流, 請據此計算左上角關於 DC, AC1~AC14 的數值。

DC Table

Size	Code
1	01
2	11
3	101

AC Table

(RL, Size)	Code
(0,2)	01
(0,3)	100
(2,2)	1110
(2,4)	110
(4,1)	1011

Bitstream:

010 100101 100010 0111 10110 110 1101 111010

DC	AC1				\times	
AC2	AC4			\times		
AC3			\times			
		\times				
	\times					
>						

$$f(7,7) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{8}\cos(\frac{(15)\pi}{16})F(0,1) + \frac{\sqrt{2}}{8}\cos(\frac{(15)\pi}{16})F(1,0) = 1$$

ANS

-1	5	0	0	2
-5	0	0	0	\times
3	-1	0	\times	
0	13	\times		
0	\times			

5. (10%)下左圖為前一張參考圖像(reference frame),中圖為移動補償編碼後的差值圖,右圖為移動向量 MV 的範例,(1) 如果標定的 MB 區塊 MV=(1,3),請還原這區塊的圖值;(2)如果擴大搜尋條件,令 P=7(即上下左右皆可位移 7 格),我們可以找到更好的移動補償效果,此時 MV=? MAD=?

1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	2	2	2	2	2	2	2	2	2
1	2	3	3	3	3	3	3	3	3
1	2	3	4	4	4	4	4	4	4
1	2	3	4	5	5	5	5	5	5
1	2	3	4	5	6	6	6	6	6
1	2	3	4	5	6	7	7	7	7
1	2	3	4	5	6	7	8	8	8

0	1	1	0	0	-1	1	0	0	-1
0	1	0	0	0	1	1	0	0	1
0	0	1	0	1	1	1	0	0	-1
0	1	1	0	0	1	0	0	1	1
0	1	1	0	0	1	1	0	0	-1
0	1	1	0	1	0	1	0	0	1
0	1	0	0	-1	1	1	0	0	1
0	1	1	0	0	0	1	0	0	1

範例: MV-(-1 -?

Ans:

(2)
$$MV = (2,4)$$
 $MAD = 1/4 \implies 0.25$

6. (20%) 使用頻譜選擇的漸進模式顯示一個 JPEG 圖像檔,並查量化表暫時還原出某個 8×8 Block 其 DC, AC1, AC2, 三個頻譜值各為 200, 100, -100, 此時所顯示各圖點之中,主對角線前半段($f_{0,0}$, $f_{1,1}$, $f_{2,2}$, $f_{3,3}$, $f_{4,4}$)的數值如何? 參照以下 Cosine 函數

表,可取 $\sqrt{2}=1.4$,計算結果取到小數第一位,誤差 ± 0.5 之內皆可。

k	1	3	5	7	9	11	13	15
cos(kπ/16)	0.9	0.8	0.5	0.2	-0.2	-0.5	-0.8	-0.9

$$f(i,j) = \sum_{u=0}^{7} \sum_{v=0}^{7} \frac{C(u)C(v)}{4} \cos(\frac{(2i+1)u\pi}{16}) \cos(\frac{(2j+1)v\pi}{16}) F(u,v)$$

$$f(0,0) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{2}\cos(\frac{(1)0\pi}{16})\cos(\frac{(1)1\pi}{16})F(0,1) + \frac{\sqrt{2}}{2}\cos(\frac{(1)1\pi}{16})\cos(\frac{(1)0\pi}{16})F(1,0)$$

$$f(0,0) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{8}\cos(\frac{(1)\pi}{16})F(0,1) + \frac{\sqrt{2}}{8}\cos(\frac{(1)\pi}{16})F(1,0) = 25$$

$$f(1,1) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{8}\cos(\frac{(3)\pi}{16})F(0,1) + \frac{\sqrt{2}}{8}\cos(\frac{(3)\pi}{16})F(1,0) = 25$$

$$f(2,2) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{8}\cos(\frac{(5)\pi}{16})F(0,1) + \frac{\sqrt{2}}{8}\cos(\frac{(5)\pi}{16})F(1,0) = 25$$

$$f(3,3) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{8}\cos(\frac{(7)\pi}{16})F(0,1) + \frac{\sqrt{2}}{8}\cos(\frac{(7)\pi}{16})F(1,0) = 25$$

$$f(4,4) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{8}\cos(\frac{(9)\pi}{16})F(0,1) + \frac{\sqrt{2}}{8}\cos(\frac{(9)\pi}{16})F(1,0) = 25$$

$$f(5,5) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{8}\cos(\frac{(11)\pi}{16})F(0,1) + \frac{\sqrt{2}}{8}\cos(\frac{(11)\pi}{16})F(1,0) = 25$$

$$f(6,6) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{8}\cos(\frac{(13)\pi}{16})F(0,1) + \frac{\sqrt{2}}{8}\cos(\frac{(13)\pi}{16})F(1,0) = 25$$

$$f(7,7) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{8}\cos(\frac{(15)\pi}{16})F(0,1) + \frac{\sqrt{2}}{8}\cos(\frac{(15)\pi}{16})F(1,0) = 25$$