Frühjahr 15 Themennummer 1 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

(a) Bestimmen Sie die allgemeine reelle Lösung der Differentialgleichung

$$x''(t) + 2x'(t) + x(t) = \cos(2t), \quad t \in \mathbb{R}.$$

Für welche $(a; b) \in \mathbb{R}^2$ ist die maximale Lösung des zugehörigen Anfangswertproblems x(0) = a, x'(0) = b beschränkt? Begründen Sie Ihre Antworten.

(b) Geben Sie (mit Begründung) alle Paare $(c;d) \in \mathbb{R}^2$ an, für welche die zugehörige Differentialgleichung

$$x''(t) + cx'(t) + dx(t) = \cos(2t), \quad t \in \mathbb{R},$$

keine beschränkte reelle maximale Lösung besitzt.

Lösungsvorschlag:

- (a) Wir betrachten zunächst die homogene Gleichung, deren Lösung wir durch Betrachtung des charakteristischen Polynoms finden können. Das charakteristische Polynom hat die Form $x^2+2x+1=0$, was die doppelte Nullstelle x=-1 besitzt. Die Funktionen $t\mapsto e^{-t}, t\mapsto te^{-t}$ bilden also ein Fundamentalsystem. Wir suchen eine Lösung der inhomogenen Gleichung mit dem Ansatz $t\mapsto c\sin(2t)+d\cos(2t)$ und stellen fest, dass wir für $c=\frac{4}{25}, d=-\frac{3}{25}$ eine partikuläre Lösung erhalten. Die allgemeine Lösung hat also die Form $\frac{4}{25}\sin(2t)-\frac{3}{25}\cos(2t)+ke^{-t}+lte^{-t}$ mit $k,l\in\mathbb{R}$. Falls $k\neq 0$ oder $l\neq 0$ gilt, ist die Lösung für $t\to -\infty$ unbeschränkt, die einzig mögliche Wahl um die Beschränktheit der Maximallösung zu gewährleisten ist also k=0=l. In diesem Fall erhalten wir die partikuläre Lösung mit $x(0)=-\frac{3}{25}$ und $x'(0)=\frac{8}{25}$. Das einzige Paar mit der gewünschten Eigenschaft ist also $(a;b)=(-\frac{3}{25},\frac{8}{25})$.
- (b) Wir bestimmen zunächst eine partikuläre Lösung mit dem Ansatz $t \mapsto a \sin(2t) + b \cos(2t)$. Einsetzen in die Differentialgleichung führt durch Koeffizientenvergleich auf das lineare Gleichungssystem

$$\begin{pmatrix} d-4 & -2c \\ 2c & d-4 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Die Determinante der Matrix ist $(d-4)^2+(2c)^2$, was für $(c;d)\neq (0,4)$ positiv ist. In diesem Fall ist die Matrix invertierbar und wir finden mit unserem Ansatz eine Lösung der Differentialgleichung, d. h. $a,b\in\mathbb{R}$, sodass $x(t)=a\sin(2t)+b\cos(2t)$ eine Lösung ist. Für diese ist $|x(t)|\leq |a|+|b|$ für alle $t\in\mathbb{R}$, die Maximallösung ist also beschränkt. Damit ist das einzige Paar, das die gewünschten Eigenschaften haben könnte, das Paar (c;d)=(0,4), was der Gleichung $x''(t)+4x(t)=\cos(2t)$ entspricht. Diese müssen wir genauer untersuchen.

Die allgemeine homogene Lösung ist nun von der Form $a\sin(2t) + b\cos(2t)$, was unserem obigen Ansatz entspricht. Wir müssen eine andere partikuläre Lösung erraten.

Wir probieren den Ansatz $t \mapsto mt \cos(2t) + nt \sin(2t)$. Einsetzen und Koeffizientenvergleich liefert $m = 0, n = \frac{1}{4}$ und führt zur speziellen Lösung $x(t) = \frac{t}{4}\sin(2t)$. Die allgemeine Lösung hat nun die Form $x(t) = (a + \frac{t}{4})\sin(2t) + b\cos(2t)$. Es gilt $x(\frac{\pi}{4} + k\pi) = a + \frac{\pi}{16} + k\frac{\pi}{4}$ für alle $k \in \mathbb{Z}$, was für $k \to \infty$ gegen ∞ divergiert, unabhängig von $a, b \in \mathbb{R}$, weswegen jede Lösung der Differentialgleichung also unbeschränkt ist. Das einzige Paar mit den gewünschten Eigenschaften ist demnach (c; d) = (0,4).

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$