

Mark Scheme (Results)

October 2016

Pearson Edexcel International A-Level Statistics 2 (WST02)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2016
Publications Code WST02_01_1610_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively.
 Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

IAL Statistics 2 (WST02) - October 2016

Question Number	Scheme	Marks		
1. (a)	H_0 : $p = 0.05$ H_1 : $p > 0.05$	B1		
	$X \sim B(30, 0.05)$	B 1		
	$P(X \ge 4) = 1 - P(X \le 3)$ or $P(X \le 3) = 0.9392$	M1		
	$= 1 - 0.9392 P(X \ge 4) = 0.0608$			
	$= 0.0608$ CR $X \ge 4$	A1		
	Reject H ₀ or Significant or 4 lies in the Critical region.	dM1		
	The <u>claim is supported/true</u> or there is evidence that <u>percentage/%/number/rate</u> of customers who have had a mobile phone <u>stolen</u> is <u>more</u> than 5%.			
(b)	$Y \sim B(90, 0.05) \rightarrow Po(4.5)$	M1 A1 (6)		
	$P(Y \le 6) = 0.8311$ $P(Y \ge 7) = 0.1689 > 0.10$			
	$P(Y \le 7) = 0.9134$ $P(Y \ge 8) = 0.0866 < 0.10$	dM1		
	$CR: Y \ge 8$	A1		
		(4) [10 marks]		
(a)	Notes 1SI D1 both hymotheses correct (must use n or g)			
(a)	1st B1 both hypotheses correct (must use p or π)			
	2 nd B1 using B(30, 0.05) (may be implied) 1 st M1 for writing or using $1 - P(X \le 3)$ or giving $P(X \le 3) = 0.9392$ for CR method			
	1st A1 for 0.0608 or CR $X \ge 4$ 2nd dM1 dependent on 1st M1 for correct statement (i.e. Reject H ₀ /Significant/4 lies in the Critical region) (may be implied by a correct contextual statement). Do not allow contradictory statements e.g. 'significant, accept H ₀ ' 2nd A1cso for a correct contextual conclusion and no errors seen. [Two tailed test could score B0B1M1A1dM1 (if comparing p-value with 0.05 and accepting H ₀)A0]			
(b)	1st M1 writing or using a Poisson approximation 1st A1 for 4.5 2nd dM1 dependent on 1st M1for using Po('4.5') to find a relevant probability for determining the CR			
	$(P(Y \le 6) = 0.8311, P(Y \ge 7) = 0.1689, P(Y \le 7) = 0.9134, P(Y \ge 8) = 0.0866)$			
	2nd A1 for $Y \ge 8$ (allow any letter for Y).			

Question Number	Scheme	Marks		
2. (a)	F(8) = 0 or $F(12) = 1$ or using $k = -432$ to verify $F(8) = 0$ or $F(12) = 1$	M1		
	$\frac{1}{96}(74(8) - \frac{5}{2}(8^2) + k) = 0$ $F(8) = \frac{1}{96}(74(8) - \frac{5}{2}(8^2) - 432)$			
	$\begin{vmatrix} 432+k=0 \\ k=-432 \end{vmatrix} = 0$ $\therefore k=-432$	A1cso		
	λ – -4 32		(2)	
(b)		M1	(2)	
	$f(t) = \frac{d}{dt}F(t)$			
	$f(t) = \frac{d}{dt}F(t)$ $[f(t) =] \begin{cases} \frac{1}{96}(74 - 5t) & 8 \le t \le 12\\ 0 & \text{otherwise} \end{cases}$			
	$\begin{cases} [f(t)] = \begin{cases} 96 \\ 0 \end{cases} \text{ otherwise}$	A1		
			(2)	
(c)	8	B 1	(1)	
(d)	m C		(1)	
	$F(m) = 0.5 \text{or } \int_{8}^{m} \frac{1}{96} (74 - 5t) dt = 0.5 \text{ or } \frac{1}{2} \times (m - 8) \frac{1}{96} (34 + (74 - 5m)) = 0.5 \text{ oe}$	M1		
		dM1		
	$5m^2 - 148m + 960 = 0 \qquad \rightarrow \qquad m = \frac{148 \pm \sqrt{148^2 - 4(5)(960)}}{10}$			
	m = 9.6	A1		
			(3)	
(e)	F(9) or $\int_{9}^{9} \frac{1}{96} (74 - 5t) dt = \frac{21}{64}$ $\frac{21}{64}$ or awrt 0.328	M1 A1		
	64		(2)	
(f)	F(11) - 'F(9)' or $\int_{9}^{11} \frac{1}{96} (74 - 5t) dt = \frac{1}{2}$			
	P(T < 11 T > 0) = P(9 < T < 11) - F(11) - F(9)'			
	$[P(T<11 T>9)=]\frac{P(9< T<11)}{P(T>9)} = \frac{F(11) - F(9)'}{1 - F(9)'}$	M1		
	$= \frac{\frac{1}{2}}{1 - \frac{1}{24}} = \frac{32}{43} \text{or awrt } \underline{0.744}$	A1	(4)	
	$1 - \frac{1}{64}$ 43 $\frac{43}{1}$	[14 marl		
	Notes			
(a)	M1 writing or using $F(8)=0$ or $F(12)=1$			
(b)	A1cso correct solution with at least one intermediate line of working. M1. attempting to differentiate $\Gamma(t)$ (et least one $t^n = t^{n-1}$)			
	M1 attempting to differentiate $F(t)$ (at least one $t^n \to t^{n-1}$) A1 for both lines of $f(t)$ with correct limits			
(d)	1st M1 use of $F(m) = 0.5$ or correct integral = 0.5			
	2 nd M1 arranging to form a quadratic equation <u>and</u> attempt to solve (dependent on 1 st M1)			
(5)	A1 for 9.6 only (must reject other root ($m = 20$) if stated)			
(e) (f)	M1 writing or using F(9) or correct integral 1st M1 F(11) – F(9) or correct integral with limits 9 and 11			
	1 st A1ft 0.5 allow follow through F(11) – their answer to (e)			
	2 nd M1 attempting correct ratio of probabilities (ft their values- but must have num <den< th=""><th></th><th></th></den<>			
Alt	$1 - \frac{P(T > 11)}{P(T > 9)} \text{ can score M1A1 when } 1 - F(11) \text{ or } \int_{11}^{12} \frac{1}{96} (74 - 5t) dt = \frac{11}{64} \text{ and M1A1 for } 1 - \frac{1}{12} \frac{1}{96} (74 - 5t) dt = \frac{11}{64} \text{ and M1A1 for } 1 - \frac{1}{12} \frac{1}{96} (74 - 5t) dt = \frac{11}{64} \text{ and M1A1 for } 1 - \frac{1}{12} \frac{1}{96} (74 - 5t) dt = \frac{11}{64} \text{ and M1A1 for } 1 - \frac{1}{12} \frac{1}{96} (74 - 5t) dt = \frac{11}{64} \text{ and M1A1 for } 1 - \frac{1}{12} \frac{1}{96} (74 - 5t) dt = \frac{11}{64} \text{ and M1A1 for } 1 - \frac{1}{12} \frac{1}{96} (74 - 5t) dt = \frac{11}{64} \text{ and M1A1 for } 1 - \frac{1}{12} \frac{1}{96} (74 - 5t) dt = \frac{11}{64} \text{ and M1A1 for } 1 - \frac{1}{12} \frac{1}{96} (74 - 5t) dt = \frac{11}{64} \text{ and M1A1 for } 1 - \frac{1}{12} \frac{1}{96} (74 - 5t) dt = \frac{11}{64} \text{ and M1A1 for } 1 - \frac{1}{12} \frac{1}{96} (74 - 5t) dt = \frac{11}{64} \text{ and M1A1 for } 1 - \frac{1}{12} \frac{1}{96} (74 - 5t) dt = \frac{1}{64} \frac{1}{96} (74 - 5t) dt = \frac{1}{64} \frac{1}{96} (74 - 5t) dt = \frac{1}{64} \frac{1}{96} (74 - 5t) dt = \frac{1}{96} \frac{1}{96} \frac{1}{96} (74 - 5t) dt = \frac{1}{96} \frac{1}{$	$\frac{\frac{11}{64}}{1 - \frac{21}{64}} = \frac{32}{43}$		

Question Number	Scheme	Marks
3. (a)	<i>X</i> ~B(20,0.4)	B1 (1)
(b)	$P(4 \le X < 9) = P(X \le 8) - P(X \le 3) = 0.5796$ awrt 0.58(0)	M1 A1
(c)	7X - 3(20 - X) > 0 X > 6 $1 - P(X \le 6) = 1 - 0.2500 = 0.7500$ awrt 0.75(0)	(2) M1 A1 M1 A1
(d)	Var $(X) = 20 \times 0.4 \times 0.6$ [= 4.8] Var $(7X - 3(20 - X)) = \text{Var} (10X - 60)$ $10^2 \text{Var} (X) = 480$	M1 M1 A1
		(3) [10 marks]
(a)	B1 B(inomial), 20 and 0.4 all required in part (a)	
(b)	M1 for writing or using $P(X \le 8) - P(X \le 3)$ (may be implied by $0.5796 - 0.01$	60)
(c)	1 st M1 using $7X - 3(20 - X)$ and comparing with 0 This may be seen in a table $ \begin{array}{c cccc} \hline x & 7x - 3(20 - x) \\ \hline 5 & -10 \\ \hline 6 & 0 \\ \hline 7 & 10 \end{array} $	
	$1^{\text{st}} \text{ A1} X > 6$ $2^{\text{nd}} \text{ M1} 1 - P(X \le '6') \text{ (must be consistent with their '} X > 6')$	
(d)	1^{st} M1 use of Var $(X) = np(1-p)$ with $p = 0.4$ (or ft their p from part (a)) 2^{nd} M1 use of 10^2 Var (X)	
	ALT: 1 st M1 $Var(10X - 60) = E(10X - 60)^2 - [E(10X - 60)]^2$ 2 nd M1 $Var(10X - 60) = 880 - 400$	

Question Number	Scheme			
4. (a)(i)	$\frac{5 \times k}{2} + (10.5 - 5) \times k = 1$ $8k = 1$ $\int_{0}^{5} (mx) dx + \int_{5}^{10.5} k dx = 1 \text{ and } 5m = k$	M1		
	or $\left[\frac{mx^2}{2}\right]_0^3 + \left[(5m)x\right]_5^{10.5} = 1$ $40m = 1$			
	$k = \frac{1}{8}$ *	A1cso		
(a)(ii)	$k = \frac{1}{8}$ $m = \frac{1}{40}$	B1		
(b)	$E(X) = \int_{[0]}^{[5]} (\frac{1}{40}x^2) dx + \int_{[5]}^{[10.5]} x dx$	M1 (3)		
	$\left[\frac{1}{40} \left(\frac{x^3}{3} \right) \right]_0^5 + \left[\frac{1}{8} \left(\frac{x^2}{2} \right) \right]_5^{10.5} = \frac{1223}{192}$ awrt 6.37	A1ft A1 (3)		
(c)	LQ: Using areas $\frac{x \times \frac{1}{40} x}{2} = 0.25$ or $\int_{0}^{lq} \frac{1}{40} x dx = 0.25$	M1		
	UQ: Using areas $\frac{5 \times \frac{1}{8}}{2} + (uq - 5) \times \frac{1}{8} = 0.75$ or $\int_{0}^{5} \frac{1}{40} x dx + \int_{5}^{uq} dx = 0.75$ or $(10.5 - uq) \times \frac{1}{8} = 0.25$ or $\int_{8}^{10.5} dx = 0.25$	M1		
	either $LQ = \sqrt{20}$ (awrt 4.47) or $UQ = 8.5$, $IQR = 8.5 - \sqrt{20} = 4.02786$ awrt <u>4.03</u>	A1 A1 (4)		
		[10 marks]		
	Notes			
(a)	M1 using sum of area of the triangle and area of the rectangle=1 or using integration and $5m = k$			
(b)	A1 for correct solution or for finding m and verifying that $k = \frac{1}{8}$ M1 $xf(x)$ for both parts of pdf and attempt to integrate and add (at least one $x^n \to x^{n+1}$) 1 st A1ft correct integration with limits (allow ft on their m)			
ALT (b)	May see use of moments: $(\triangle)\frac{1}{2} \times 5k \times \frac{10}{3} + (\Box)5.5k \times 7.75 = E(X)$ for M1A1			
(c)	1 st M1 for correct method using areas or integration to find the LQ 2 nd M1 for correct method using areas or integration to find the UQ 1 st A1 for either LQ = awrt 4.47 or UQ = 8.5 2 nd A1 for IQR = awrt 4.03			

Question Number	Scheme	Marks		
	$L \sim U[20,40] \text{or} f(l) = \begin{cases} \frac{1}{20} & 20 \le l \le 40 \\ 0 & \text{otherwise} \end{cases}$	B1 B1		
(b)	$P(27.5 < L < 28.5) = \frac{28.5 - 27.5}{40 - 20} = \frac{1}{20}$	M1 A1 (2)		
(c)	$\left \left(\frac{L}{4} \right)^2 < 64 = \left(\frac{L}{4} \right) < 8 \right $	M1		
	$P(27.5 < L < 28.5) = \frac{28.5 - 27.5}{40 - 20} = \frac{1}{20}$ $\left(\frac{L}{4}\right)^2 < 64 = \left(\frac{L}{4}\right) < 8$ $P(L < 32) = \frac{32 - 20}{40 - 20} = 0.6$ $\left(\frac{L}{4}\right)^2 - \left(\frac{40 - L}{4}\right)^2 > 81$	M1 A10e (3)		
(d)	$\left \left(\frac{L}{4} \right)^2 - \left(\frac{40 - L}{4} \right)^2 > 81 \right $	M1		
	$\left(\frac{-1600 + 80L}{16}\right) > 81$ $L > 36.2$	A1oe		
	$P(L > 36.2) = \frac{40 - 36.2}{40 - 20} = 0.19$	M1 A1oe		
		(4) [11 marks]		
(a)	Notes 1st B1 for Uniform or rectangular or $f(l) = \frac{1}{20}$ 2nd B1 for [20, 40] or correct pdf fully specified			
(b)	M1 for finding P(27.5 $<$ L $<$ 28.5) from their uniform distribution			
(c)	1 st M1 for a correct expression for the area and comparison with 64 (allow equation or inequality) (may be implied by $L < 32$ or $L = 32$) 2 nd M1 using $P(L < 32)$ with their uniform distribution			
(d)	$1^{\rm st}$ M1 a correct expression to find the difference between the two areas and cowith 81 (allow equation or inequality) (may be implied) $1^{\rm st}$ A1 for 36.2 oe $2^{\rm nd}$ M1 using P($L>'36.2'$) with their uniform distribution	omparison		

Question Number	Scheme	Marks
	Ρο (λ)	M1
	$e^{-\lambda} + \lambda e^{-\lambda}$	A1oe
		(2)
(b)	$Po(\frac{\lambda}{2})$	M1
	$ \begin{array}{c} \operatorname{Po}\left(\frac{\lambda}{2}\right) \\ \frac{\lambda}{2} e^{-\lambda/2} \end{array} $	A1oe
	<u>~</u> e	(2)
(c)(i)	Mean is large, so a normal approximation is used.	B 1
(ii)	$Y \sim N (10 \lambda, 10 \lambda)$	M1
(11)	$P(Y < 15) = P\left(Z < \frac{14.5 - 10\lambda}{\sqrt{10\lambda}}\right)$	
	$\frac{14.5 - 10\lambda}{\sqrt{10\lambda}} = -2.1(0)$	M1 M1 A1
	$10\lambda - 2.10\sqrt{10\lambda} - 14.5 = 0 \rightarrow \sqrt{10\lambda} = \frac{2.10 \pm \sqrt{2.10^2 - 4(-14.5)}}{2} = 5$	dM1 A1
	or $100\lambda^2 - 334.1\lambda + 210.25 = 0 \rightarrow \lambda = \frac{334.1 \pm \sqrt{334.1^2 - 4(100)(210.25)}}{200} = 2.5 \text{ or } 0.841$	
	$\lambda = 2.5$	A1
	7. 2.3	(8)
		` '
		[12 marks]
	Notes	
(a) (b)	M1 writing or using Po (λ) A1oe for any correct equivalent expression (need not be simplified) M1 writing or using Po($\lambda/2$)	
(c)(i) (ii)	Allow 'since mean/10 λ is large' [Note: λ is large on its own is B0] 1 st M1 for mean = variance [=10 λ]	
	2^{nd} M1 continuity correction 15.5 or 14.5 3^{rd} M1 standardising with 14.5, 15 or 15.5 and s.d.= $\sqrt{\text{mean}}$ and equating to a	z-value z >1
	1st A1 $\frac{14.5 - \mu}{\sqrt{\mu}}$ = awrt -2.10 (correct standardisation with compatible signs)	ζ-vaiuc, _ζ > i
	$\sqrt{\mu}$ 4 th dM1 attempt at solving their 3TQ $\frac{-b\pm\sqrt{+\nu e}}{2a}$ dependent on 3 rd M1 (may be im	nlied by one
	correct answer for $\sqrt{\mu}$, μ or $\sqrt{\lambda}$)	piiod by one
	• • • • • • • • • • • • • • • • • • • •	
	2^{nd} A1 dep on 1 st A1 $\sqrt{\mu}$ = awrt 5.00 or μ = awrt 25.0 or $\sqrt{\lambda} = \frac{5}{\sqrt{10}}$ = awrt 1	58
	3^{rd} A1 dep on 1^{st} A1 $\lambda = \text{awrt } 2.5(0)$ (must reject other solutions if found)	

Question Number	Scheme	Marks			
7. (a)	Possible values of $S = 2, 3, 4, 5, 6$	B1			
	$P(S=2) = \frac{5}{8} \times \frac{5}{8}$ $P(S=6) = \frac{1}{8} \times \frac{1}{8}$	M1 A1			
	$P(S=3) = 2 \times \frac{5}{8} \times \frac{2}{8} \qquad P(S=4) = \frac{2}{8} \times \frac{2}{8} + 2 \times \frac{5}{8} \times \frac{1}{8} \qquad P(S=5) = 2 \times \frac{1}{8} \times \frac{2}{8}$				
	s 2 3 4 5 6				
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A1 (5)			
	[0.390625] [0.3125] [0.21875] [0.0625] [0.015625]				
(b)	Let $X =$ number of scoops ordered by n customers				
	$P(X=n) = \left(\frac{5}{8}\right)^n$				
	$P(X > n) = 1 - \left(\frac{5}{8}\right)^n$	M1			
	$1 - \left(\frac{5}{8}\right)^n > 0.99$				
	$P(X > n) = 1 - \left(\frac{5}{8}\right)^{n}$ $1 - \left(\frac{5}{8}\right)^{n} > 0.99$ $\left(\frac{5}{8}\right)^{n} < 0.01$				
	<i>n</i> > 9.798				
	n=10	A1cao			
		(3)			
		[8 marks]			
	Notes	1			
(a)	B1 for the 5 values of S				
	$1^{\text{st}} \text{ M1} \text{for } p^2 \text{for P}(S=2) \text{ or P}(S=6)$				
	1st A1 $\frac{25}{64}$ and $\frac{1}{64}$ (allow awrt 0.391 and awrt 0.0156)				
	2^{nd} M1 for $2pq$ for P(S=3) or P(S=5) or $p^2 + 2pq$ or P(S=4)				
	2 nd A1 for the complete probability distribution (allow awrt 3sf)				
	[Note: If the 5 values of S are not found, then can score B0M1A1M1A0]				
(b)	1^{st} M1 $1 - p^n > 0.99$ (allow equation) or equivalent (e.g. $p^n < 0.01$)				
	2^{nd} dM1 dependent on 1^{st} M1 for correct use of a valid method to solve to $n \ge k$ (allow equation)				
	A1 for 10 cao				