FONCTION INVERSE

Résumé

L'année dernière, la théorie de la dérivation a été présentée ainsi que l'étude de fonctions polynomiales. Ce chapitre va consister en l'étude de la fonction inverse à partir de la théorie de la dérivation afin d'élargir notre catalogue de fonctions usuelles.

1 Rappels

1.1 Fonction dérivée

Définition | Nombre dérivé

Soit f une fonction définie sur un intervalle I et $a \in I$ un nombre **fixé**. Considérons, pour $h \neq 0$, le taux d'accroissement $\tau(h)$ de f entre a et a + h:

$$\tau(h) = \frac{f(a+h) - f(a)}{h}.$$

Si, quand h prend des valeurs infiniment proches de 0 ($h \to 0$), $\tau(h)$ se stabilise autour d'une valeur limite, alors on dira que f est **dérivable en** a. La valeur limite est appelée **nombre dérivé** de f en a, notée f'(a).

On note:

$$\lim_{h\to 0}\tau(h)=f'(a).$$

Exemple Soit f définie sur \mathbb{R} par $f(x) = 2x^2 - 7x + 1$. Calculons f'(3).

Soit $h \neq 0$. On a:

$$\tau(h) = \frac{f(3+h) - f(3)}{h} = \frac{\left(2 \times (3+h)^2 - 7 \times (3+h) + 1\right) - \left(2 \times 3^2 - 7 \times 3 + 1\right)}{h}$$

On développe et on réduit au numérateur, puis on simplifie par h qui est non nul.

$$\tau(h) = \frac{2h^2 + 5h}{h}$$
$$= 2h + 5$$

Quand h tend vers 0, alors les valeurs de 2h+5 tendent vers 5. Ainsi, f'(3)=5 car $\lim_{h\to 0} \tau(h)=5$.

Propriété | Fonction dérivée

f' est appelée la **fonction dérivée** de f.

On a les dérivées de fonctions polynômiales :

f(x)	f'(x)
c	0
х	1
x^2	2 <i>x</i>
x^3	$3x^2$
x^n	nx^{n-1}

1.2 Propriétés et applications

Théorème | Linéarité

La dérivation est **linéaire**. C'est-à-dire que si $\lambda, \mu \in \mathbb{R}$, on a :

$$(\lambda f + \mu g)' = \lambda f' + \mu g'$$

Propriétés | Lien dérivée/variations

- ▶ $f' \ge 0$ sur $I \Leftrightarrow f$ est croissante sur I.
- ▶ f' = 0 sur $I \Leftrightarrow f$ est constante sur I.
- ▶ $f' \le 0$ sur $I \Leftrightarrow f$ est décroissante sur I.

Définition

Si la courbe \mathscr{C}_f d'une fonction f est bien "lisse" au voisinage d'un point A(a; f(a)), on appelle **tangente** à \mathcal{C}_f en A la droite qui épouse localement la direction de cette courbe.

Autrement dit, en se rapprochant du point *A*, la courbe va finir par se confondre avec sa tangente en ce point.

Propriété | Équation de la tangente

f'(a) est le **coefficient directeur** de $T_a(f)$, la tangente à \mathscr{C}_f au point d'abscisse

Cette tangente admet pour **équation** :

$$y = f'(a) \times (x - a) + f(a).$$

Exemple Soit $f(x) = 4x^2 - 10x + 2$.

Déterminons l'équation réduite de la tangente $T_2(f)$.

Tout d'abord, $f'(x) = 4 \times 2x - 10 \times 1 + 0 = 8x - 10$ donc $f'(2) = 8 \times 2 - 10 = 6$.

Enfin,
$$f(2) = 4 \times 2^2 - 10 \times 2 = 2 = -2$$
.

L'équation attendue est

$$y = f'(2)(x-2) + f(2)$$

$$y = 6(x-2) - 2$$

$$y = 6x - 14$$
.

2 Fonction inverse

Définition

La **fonction inverse** est la fonction f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$. Sa courbe représentative s'appelle une **hyperbole**.

Propriété | Dérivée de la fonction inverse

Pour tout $x \neq 0$, $f'(x) = -\frac{1}{x^2}$.

Exercice

Donner la dérivée des expressions suivantes.

1.
$$f(x) = 3x - \frac{1}{x}$$

3.
$$h(x) = \frac{12}{x}$$

2.
$$g(x) = x^3 - 2x^2 + 12x + \frac{1}{x}$$
 4. $k(x) = (5x + 2x^3) \times \frac{1}{x^2}$

4.
$$k(x) = (5x + 2x^3) \times \frac{1}{x^2}$$

Cela nous permet donc d'énoncer le résultat suivant.

Propriétés | Variations de la fonction inverse

► La fonction inverse est **décroissante** sur] $-\infty$;0[:

Pour tout
$$x \le y < 0$$
, on a $\frac{1}{x} \ge \frac{1}{y}$.

▶ La fonction inverse est **décroissante** sur $]0; +\infty[$:

Pour tout
$$0 < x \le y$$
, on a $\frac{1}{x} \ge \frac{1}{y}$.

Le tableau de variations de la fonction inverse est le suivant :

A Attention

Si
$$x < 0 < y$$
, alors $\frac{1}{y} \geqslant \frac{1}{x}$.

Exercice

Construire le tableau de variations des fonctions suivantes. Donner aussi l'équation de la tangente au point d'abscisse 1.

$$f: x \mapsto -\frac{1}{x}$$

$$g: x \mapsto \frac{12}{x} - 4$$

Théorème | Asymptotes et limites

▶ La droite horizontale d'équation y = 0 est une *asymptote horizontale* à \mathcal{C}_f .

On a:
$$\lim_{x \to -\infty} \frac{1}{x} = 0$$
 et $\lim_{x \to +\infty} \frac{1}{x} = 0$.

▶ La droite verticale d'équation x = 0 est une *asymptote verticale* à \mathcal{C}_f .

On a:
$$\lim_{x\to 0^-} \frac{1}{x} = -\infty$$
 et $\lim_{x\to 0^+} \frac{1}{x} = +\infty$.

