	(i=0; ic=n; in	55 i 554=2)
		ent block;
	1-4-60	2nd for
n= 0	A	0
>=L	2	0+1
n=2	3	0+1+2
n-3	4	0 4142+2
N= 4	4	0+1+2+2+3)
		D+(0+ 3-0+3)+3+3+3+3+
	0	
	5	(105 h +1)
		[[05]] +]]

Calculate the approximate value of the variable sum after the following code fragment, in terms of variable n. Use summation notation to compute a closed-form solution (ignore small errors caused by $\mathbb{1}$ not being evenly divisible by 2). Then use this value to give a tightly bounded Big-Oh analysis of the runtime of the code fragment.

```
int sum = 0;
for (int i = 1; i <= 10; i++) {
    for (int j = n; j <= n + i + 2; j++) {
        sum++;
        sum++;
    }
}
for (int i = 0; i < n; i += 2) {
    sum++;
}</pre>
```

$$\left(\sum_{i=1}^{10} \sum_{j=n}^{n+i+2} 2\right) + \sum_{i=1}^{\frac{n}{2}} 1$$

$$\left(\sum_{i=1}^{10} 2(n+i+2-n+1)\right) + \frac{n}{2}$$

$$\left(\sum_{i=1}^{10} 2 \cdot (i+3)\right) + \frac{n}{2}$$

$$\sum_{i=1}^{10} (2 \cdot i+6) + \frac{n}{2}$$

$$\sum_{i=1}^{10} 2 \cdot i + \sum_{i=1}^{10} 6 + \frac{n}{2}$$

$$2\sum_{i=1}^{10} i+60 + \frac{n}{2}$$

$$2\frac{10(11)}{2} + 60 + \frac{n}{2}$$

$$110 + 60 + \frac{n}{2}$$

$$170 + \frac{n}{2}$$

	int count = 0 for (int i=0; 1cn*n; 1++)s for (int 5 =0; 5 cn; 5+1) 5
	3 Court Lt,
<u>n</u>	1st for 2nd for
1	1 \ 1
2 3	4 · 2 9 · 3
3	$n^2 \times n = (n^3) = O(n^3)$

	icen, it sa; is = 1,5 c=n; stobron	· += 2)
01234.789	1 1 1 2 2 2 2 2 3 1 1 083 9 +1	2 nd loop 0 1 2 2 3 3 4 X ([[052]]]

' count	0 /1=	1,	
. 90 E			
4	or (5= 1);	14=n; 14=2)	
	(ONV	1+=5;	
2	++,		
uble	(14n),		
plint	("(ount.	26 d" (ount);	
300	oh 0	0	
	while	for	
丁	1	1	al mar
2	2	2	
3	3	2	
1	4		
			1
À		x (llosen)	+1