Last Name $=$	_, First Name =
ONID $login = =$	@oregonstate.edu

- 1. (3 pts) Prove the following languages over $\Sigma = \{a, b\}$ are **not** regular, and write context-free grammars for them if possible, otherwise explain:
 - (a) $A = \{a^n b^m \mid n \ge 2m, \text{ and } m \ge 0\}.$

Proof: Assume A is regular, then there exists a pumping length p such that all strings $s \in A$ where $|s| \ge p$ can be decomposed into xyz where $|xy| \le p$ and |y| > 0 so that $xy^iz \in A$ for all $i \ge 0$.

Now pick s =

context-free grammar or explain if impossible:

(b) $B = \{w \in \{a, b\}^* \mid w \text{ has twice as many } a\text{'s as } b\text{'s}\}.$

context-free grammar or explain if impossible:

- 2. (2 pts) Write context-free grammars (you only need to write rules) for
 - (a) $\{a^{2n}b^nc^md^{3m} \mid n \ge 0, m \ge 0\}$
- (b) palindrome bitstrings (e.g., 010, 11, 1001, 0); not the same as ww^R !