

localhost:8501 1/2

	timestamp	valor	tipo
	2025-06-07 14:10:00	29.01	Valor acima do threshold
	2025-06-07 14:05:00	29.25	Valor acima do threshold
2	2025-06-07 14:00:00	29.42	Valor acima do threshold
	2025-06-07 13:55:00	29.45	Valor acima do threshold
4	2025-06-07 13:50:00	29.47	Valor acima do threshold
	2025-06-07 13:45:00	29.93	Valor acima do threshold
	2025-06-07 13:40:00	29.94	Valor acima do threshold
	2025-06-07 13:35:00	29.5	Valor acima do threshold
8	2025-06-07 13:30:00	29.38	Valor acima do threshold
	2025-06-07 13:25:00	29.97	Valor acima do threshold

Baixar log de alertas (CSV)

✓ Instruções rápidas (README)

Como rodar

- 1. Coloque seu CSV em dashboard/data/dataset_teste.csv (ou data/dataset_teste.csv).
- 2. Instale dependências: pip install streamlit pandas plotly.
- 3. Execute: streamlit run dashboard/app.py.

Formato esperado

- Deve haver uma coluna timestamp (ISO ou parseable por pandas).
- Uma coluna numérica para sensor (ex: sensor_value ou temperatura).
- Opcional: predicted_value para comparar previsão x real.

O que foi implementado

- Seleção de variável/sensor automática.
- Filtro por intervalo de datas.
- KPIs atualizados com o intervalo.
- Threshold para gerar banner + log de alertas (com download CSV).
- Suavização (média móvel) opcional para o gráfico.

Dashboard gerado automaticamente — para próximos passos podemos: 1) destacar somente pontos com erro alto, 2) adicionar faixa de confiança, 3) salvar logs históricos em arquivo ou DB. Diga qual parte quer fazer agora.

localhost:8501 2/2