3.2.13.3

Considera o circuito

o qual se encontra ressonante para a frequência do gerador com o interruptor S aberto. Ao fecharmos S, podemos afirmar que:

а,	a	Colleging & a fewago iftem on (asertititititititititititititititititititi	نــا
ь)	2	impedancia total do circuito baixa	\boxtimes
۲)	8	potância activa do circuito aumenta	
d)	8	potência reactiva do circuito baixa	Ī'''

- Nota: a) Ao ligar-se o interruptor S, a capacidade do circuito aumenta, pelo que deixa de estar em ressonância com a frequência do gerador.

 O circuito deixa de se comportar como uma resistência e, portanto, a corrente e a tensão deixam de estar em fase.
 - b) V\$-sa pala curva que dá a impedância Z do circuito que a impedância diminui para qualquer frequência diferente da frequência de ressonância (f_r) .

- c) a potência activa é a potência que se dissipa em R; como R não varia, a potência activa tembém não varia
- d) a frequência de resmonância, como o circulto se comporta como uma fesi tência, a potência reactiva é igual a zero.

A qualquer outra frequência diferente de $f_{\mathbf{r}}$ haverá potência resotiva.