Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3213</u>	К работе допущен _	
Студент Султанов Артур Радикович	Работа выполнена _	
Преподаватель Хвастунов Н.Н.	Отчет принят	

Отчет по лабораторной работе №1.05

Исследование колебаний физического маятника

1. Цели работы

1. Изучение характеристик затухающих колебаний физического маятника.

2. Задачи

- 1. Измерение периода затухающих колебаний.
- 2. Определение зависимости амплитуды затухающих колебаний физического маятника от времени.
- 3. Определение зависимости периода колебаний от момента инерции физического маятника.
- 4. Определение преобладающего типа трения.
- 5. Определение экспериментальной и теоретической приведенных длин маятника при его разных конфигурациях.

3. Схема установки

Рис. 1. Схема установки

- 1. Шкала
- 2. Груз
- 3. Рукоятка сцепления
- 4. Передняя крестовина

4. Измерительные приборы

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Шкала	Измеритель градусной меры	0 - 25 °	1 °
2	Секундомер	Измеритель времени	0 — 3600, c	0.0005, c

5. Ход работы

Таблица 1

Амплитуда отклонения Время	25	20	15	10	5
<i>t</i> ₁ , c	37,34	61,57	103,77	173,19	243,25
t ₂ , c	32,38	70,76	118,79	173,75	243,55
t ₃ , с	34,21	67,12	109,34	170,07	243,48
t, c	34,64	66,48	110,63	172,34	243,43

Таблица 2

Положение боковых грузов	t_{1}	$t_2^{}$	t_3	t	Т
1 риска	16,56	16,29	16,37	16,41	1,64
2 риски	17,43	17,22	17,26	17,3	1,73
3 риски	18,24	18,33	18,3	18,29	1,83
4 риски	19,5	19,93	19,72	19,72	1,97
5 рисок	20,94	20,92	20,87	20,91	2,09
6 рисок	22,43	22,3	22,29	22,34	2,23

Рисунок 1. График зависимости амплитуды колебаний от времени A(t)

Судя по графику, сухое трение играет главную роль в затухании колебаний.

С помощью метода наименьших квадратов найдем коэффициенты зависимости $A(t) = A_0 + kt$:

$$k = -0,0933$$

 $A_0 = 26,7053$

Далее, по следующей формуле:

$$A(t=nT)=A_0-4n\Delta\phi_3, \Delta\phi_3$$
 - ширина зоны застоя

$$\Delta \phi_3 = \frac{A_0 - A(nT)}{4n} = 0,023$$

Таблица 3

Риски	1	2	3	4	5	6
$R_{_{ m HUЖ}}$	0,077					
$R_{_{ m Bepx}}$	0,202					
$R_{_{ m for}}$	0,077	0,102	0,127	0,152	0,177	0,202
$I_{ m rp}$	0,096	0,110	0,129	0,152	0,179	0,209
I	0,104	0,118	0,137	0,160	0,187	0,217
$I_{ m пр}$ эксп	0,668	0,744	0,832	0,964	1,085	1,236
$I_{ m пр}$ теор	0,717	0,799	0,911	1,047	1,206	1,383

Далее, для каждого положения грузов вычислим расстояния центров верхнего, нижнего и боковых грузов от оси вращения по формуле:

$$R = l_1 + (n - 1)l_0 + b/2$$

Пример расчета для $R_{\text{ниж}}$:

$$R_{_{\text{HMW}}} = 0,057 + (1-1) * 0,025 + 0,04/2 = 0,202 \text{ M}$$

После найдем моменты инерции грузов:

$$I_{\rm rp} = m_{\rm rp} (R_{\rm Bepx}^2 + R_{\rm HWW}^2 + 2R_{\rm 60K}^2)$$

И полный момент инерции физического маятника:

$$I = I_{_{\Gamma \mathrm{p}}} + I_{_{0}}$$
, где $I_{_{0}}$ - момент инерции ступицы и крестовины (8 * 10 $^{-3}$)

Пример расчета для первой риски:

$$I_{\rm rp} = 1,632(0,077^2 + 0,202^2 + 2*0,077^2) = 0,096 \,\mathrm{kr}*\mathrm{m}^2$$
 $I = I_{\rm rp} + I_0 = 0,104$

Рисунок 2. График зависимости квадрата периода от момента инерции

Далее, найдем ml:

$$ml = \frac{4\pi I}{gT^2} = 0,156$$

Теперь вычислим $l_{\rm пр \ эксп}$ и $l_{\rm пр \ теор}$ (пример для 1 риски):

$$l_{\text{пр эксп}} = \frac{T^2 g}{4\pi^2} = \frac{2,690^*9,81}{4\pi^2} = 0,668$$

$$l_{\text{пр теор}} = l_{\text{теор}} + \frac{l}{l_{\text{теор}} m_{\text{гр}}} = 0,104 + \frac{0,104}{0,104^*4^*0,408} = 0,717$$

6. Выводы

В рамках данной лабораторной работы были произведены измерения периода затухающих колебаний для разных амплитуд. В эксперименте преобладает сухое трение, что было выяснено в ходе работы. Помимо этого, график зависимости квадрата периода от момента инерции носит линейный характер, что подтверждает определение периода колебания маятника (формулу). Помимо этого, разница между теоретическими и экспериментальными значениями приведенной длины маятника при разных конфигурациях (расположениях грузов) минимальна.