CS 581

Advanced Artificial Intelligence

April 3, 2024

Announcements / Reminders

 Please follow the Week 11/12 To Do List instructions (if you haven't already)

 Programming Assignment #02 due on Sunday (04/07) at 11:59 PM CST

Plan for Today

- Attention Mechanism
- Transformer Basics
- Generative Al Models: Introduction

Sequence to Sequence Networks (seq2seq) With Attention

RNN Encoder-Decoder Architecture

RNN Encoder-Decoder: Context

Fixed Length Context

RNN Encoder-Decoder Architecture

Attention Mechanism

- Given a set of vector values, and a vector query, attention is a technique to compute a weighted sum of the values, dependent on the query
- Attention mechanism "amplifies" important aspects of the signal from the encoder based on the decoder query
- In seq2seq models with attention, each decoder hidden state (query) attends to all the encoder hidden states (values)

Illinois Institute of Technology

Illinois Institute of Technology

14

TIME

RNN Attention Decoder

TIME

What is inside the RNN Decoder Attention?

What is RNN Decoder Attention doing?

Summary / Intuition

- Attention mechanism creates context dynamically
- "Attended" values "dominate" context
 - this allows the decoder to dynamically focus on most relevant aspects of the encoder output
- The query represents/summarizes the "current task" of the decoder
 - the input it is processing within the current context
- Scoring for values estimates similarity (between a query and specific value) values:
 - dot product
 - scaled dot product
 - etc.

Score: Dot Product

Score: Scaled Dot Product

Softmax

Benefits of the Attention Structure

- Significantly improves performance (in many applications)
 - it's very useful to allow the decoder to focus on certain parts of the source
- Solves the bottleneck issue
 - attention allows decoder to look directly at the source (and "bypass" the bottleneck)
- Helps with vanishing gradient problem
 - provides shortcut to far away states
- Provides some interpretability
 - inspecting attention distribution we can see what the decoder was focusing on

Deep RNN Enc-Dec with Attention

Deep RNN Enc-Dec with Attention

target output sequence Softmax **Fully Connected Layer** Deep Attention **RNN** Decoder **Deep RNN Encoder** Top Recurrent Layer Top Recurrent Layer Hidden Recurrent Layer(s) Hidden Recurrent Layer(s) **Embedding Layer Embedding Layer** <GO> + target_sequence source_sequence

Deep RNN Enc-Dec with Attention

Transformers - Basics

Generative Pre-trained Transformer 3

What is it?

Generative Pre-trained Transformer 3 (GPT-3) is an autoregressive language model that uses deep learning to produce human-like text. It is the third-generation language prediction model in the GPT-n series (and the successor to GPT-2) created by OpenAI, a San Francisco-based artificial intelligence research laboratory.

Size:

175 billion machine learning parameters

~45 GB

Source: Wikipedia

Parameters? What Are Those?

Transformer Architecture

Transformer Architecture

Self-Attention

In artificial neural networks, attention is a technique that is meant to mimic cognitive attention. The effect enhances some parts of the input data while diminishing other parts — the motivation being that the network should devote more focus to the important parts of the data, even though they may be small. Learning which part of the data is more important than another depends on the context, and this is trained by gradient descent.

Source: Park et al. – "SANVis: Visual Analytics for Understanding Self-Attention Networks"

q_i, k_i, v_i – query_i, key_i, value_i | W_q, W_k, W_v - query, key, value weight matrices [trained: backpropagation]

q_i, k_i, v_i – query_i, key_i, value_i | W_q, W_k, W_v - query, key, value weight matrices [trained: backpropagation]

source: https://jalammar.github.io/illustrated-transformer/

source: https://jalammar.github.io/illustrated-transformer/

Alignment Matrix

source: https://arxiv.org/pdf/1409.0473.pdf

Multi-Head Self-Attention

 $\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$

- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

source: https://jalammar.github.io/illustrated-transformer/

Transformer Architecture

Generative Pre-trained Transformer 4

What is it?

Generative Pre-trained Transformer 4 (GPT-4) is a multimodal large language model created by OpenAl. As a transformer, GPT-4 was pretrained to predict the next token (using both public data and "data licensed from third-party providers"), and was then fine-tuned with reinforcement learning from human and Al feedback for human alignment and policy compliance.

Size:

1 trillion machine learning parameters

~45 GB

Source: Wikipedia

GPT-4 Architecture

Source: TheAiEdge.io

Large Language Models Data Sources

Source: Zhao et al. – "A Survey of Large Language Models" [2023]

LLM Data Pre-Processing Pipeline

Quality Filtering

- · Language Filtering
- · Metric Filtering
- Statistic Filtering
- Keyword Filtering

Alice is writing a paper about LLMs. #\$^& Alice is writing a paper about LLMs.

De-duplication

- Sentence-level
- · Document-level
- · Set-level

Alice is writing a paper about LLMs. Alice is writing a paper about LLMs.

Privacy Reduction

- Detect Personality Identifiable Information (PII)
- Remove PII

Replace ('Alice') is writing a paper about LLMs.

Tokenization

- Reuse Existing Tokenizer
- SentencePiece
- Byte-level BPE

Encode ('[Somebody] is writing a paper about LLMs.')

Source: Zhao et al. — "A Survey of Large Language Models" [2023]

ChatGPT

What is it?

ChatGPT is a chatbot developed by OpenAI and released in November 2022. It is built on top of OpenAI's GPT-3.5 and GPT-4 families of large language models (LLMs) and has been fine-tuned (an approach to transfer learning) using both supervised and reinforcement learning techniques.

Source: Wikipedia

Transfer Learning

In transfer learning, experience with one learning task helps an agent learn better on another task.

Pre-trained models can be used as a starting point for developing new models.

ChatGPT: Learning From Feedback

From GPT-3 to ChatGPT: Reinforcement Learning from Human Feedback (RLHF)

Step 1: Rank model outputs with human labeler TheAiEdge.io

Step 2: Train Reward model to learn to rank output

Step 3: Use Reward model to update model with RL

Source: TheAiEdge.io

Generative Models

Generative vs Discriminative Models

Discriminative

Generative model models actual distributions for EACH CLASS / LABEL / TAG

to

make a P(class | sample) prediction

Discriminative model models the decision boundary between CLASSES / LABELS / TAGS

to

make a P(class | sample) prediction

Generative vs Discriminative Models

Discriminative

Generative model uses training data to learn P(sample, class) joint probabilities

and then

uses Bayes Theorem to get the P(class | sample) prediction

Discriminative model uses training data to learn P(class | sample) conditional probability

and then

uses it to make a prediction

Generative vs Discriminative Classifier

Discriminative

Generative classifiers:

- Assume some form of P(class),P(sample | class)
- Estimate P(class), P(sample | class)using training data
- Use Bayes Theorem to calculateP(class | sample)

Discriminative classifiers:

- Assume some form of P(class | sample)
- Estimate P(class | sample) using training data

Generative vs Discriminative Classifier

Discriminative

Generative classifiers:

- Naive Bayes
- Bayesian networks
- Markov random fields
- Hidden Markov Models (HMM)

Discriminative classifiers:

- Logistic regression
- Support Vector Machines
- Traditional neural networks
- k-Nearest Neighbors
- Conditional Random Fields (CRF)s

Generative Al Model: the Idea

Generative AI Model: the Idea

Taxonomy of Generative AI Models

Explicit Density

Implicit Density

Tractable vs. Approximate Density

Tractable density models place constraints on the model architecture so that the density function has a form that makes it easy to calculate.

Approximate density models use variety of techniques to approximate the density function:

- latent vectors
- denoising

Autoencoder Model

Source: https://lilianweng.github.io/posts/2018-08-12-vae/

Latent Space

Source: https://synthesis.ai/2023/03/21/generative-ai-ii-discrete-latent-spaces/

Variational Autoencoder Model

Source: https://lilianweng.github.io/posts/2018-08-12-vae/

Autoregressive Model (GPT-3)

What is it?

Generative Pre-trained Transformer 3 (GPT-3) is an autoregressive language model that uses deep learning to produce human-like text. It is the third-generation language prediction model in the GPT-n series (and the successor to GPT-2) created by OpenAI, a San Francisco-based artificial intelligence research laboratory.

Size:

175 billion machine learning parameters

~45 GB

Source: Wikipedia

Diffusion Model

Forward Diffusion Process

Source: https://medium.com/@steinsfu/stable-diffusion-clearly-explained-ed008044e07e

Generative Adversarial Network

Source: https://www.toptal.com/machine-learning/generative-adversarial-networks