Take Home Quiz 2 (Dr. Winslow's Lectures): Classification Trees Due THURSDAY, October 17th, 11:59 pm. Extended to FRIDAY, October 18th, 11:59 pm.

Please submit a typeset PDF (compiled LaTeX, exported Word Doc, etc.). BUT if you choose to draw a tree, it is okay to import a image drawn by hand.

To reduce my email load, I want to implement a machine learning algorithm to decide whether or not I should read an email, or simply file it away instead. To train my model, I obtain the following data set of binary-valued features about each email, including:

- whether or not I know the author
- whether the email is long or short
- whether it has any of several key words

and my final decision about whether to read it (y = +1 for "read", y = -1 for "discard").

x_1	x_2	x_3	x_4	x_5	y
know author?	is long?	has 'research'	has 'grade'	has 'lottery'	\Rightarrow read?
0	0	1	1	0	-1
1	1	0	1	0	-1
0	1	1	1	1	-1
1	1	1	1	0	-1
0	1	0	0	0	-1
1	0	1	1	1	1
0	0	1	0	0	1
1	0	0	0	0	1
1	0	1	1	0	1
1	1	1	1	1	-1

In the case of ties where both classes have equal probability, predict class +1.

- 1. Calculate the entropy H(y) of the binary class variable y
- 2. Calculate the information gain for each feature xi. Which feature should I split on for the root node of the decision tree?
- 3. Determine the complete decision tree that will be learned from these data. (The tree should perfectly classify all training data). Specify the tree by drawing it, or with a set of nested if-then-else statements.