06 - Histogram Citra

IF4073 Interpretasi dan Pengolahan Citra

Oleh: Rinaldi Munir

Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung 2021

Histogram Citra

- Histogram citra (*image histogram*) merupakan informasi yang penting mengenai isi citra digital.
- Histogram citra adalah grafik yang menggambarkan penyebaran nilai-nilai intensitas *pixel* dari suatu citra atau bagian tertentu di dalam citra.

Cameraman image

• Dari sebuah histogram dapat diketahui frekuensi kemunculan nisbi (relative) dari intensitas pada citra tersebut.

• Histogram juga dapat menunjukkan banyak hal tentang kecerahan (brightness) dan kontas (contrast) dari sebuah gambar.

 Karena itu, histogram adalah alat bantu yang berharga dalam pekerjaan pengolahan citra baik secara kualitatif maupun kuantitatif

Menghitung histogram

• Misalkan sebuah citra mempunyai L level nilai keabuan, [0, L-1].

 Hitung frekuensi kemunculan setiap nilai keabuan j dengan cara menghitung jumlah pixel yang mempunyai nilai keabuan tersebut.

• Perhitungan ini dilakukan untuk j = 0, 1, 2, ..., L - 1.

Contoh:

2	3	3	2
4	2	4	3
3	2	3	5
2	4	2	4

4x4 image Grayscale = [0,9]

>> I = imread('boat.bmp');
>> imhist(I)

• Untuk citra berwarna dengan komponen R, G, dan B, histogram dibuat untuk setiap kanal warna.


```
>> J = imread('gedung-sate.jpg');
```

- >> imhist(J(:,:,1))
- >> figure; imhist(J(:,:,2))
- >> figure; imhist(J(:,:,3))

Citra Lena (grayscale):

Citra Lena (color):

Normalisasi Histogram

- Seringkali dibutuhkan histogram yang dinormalisasi dengan jumlah seluruh *pixel*.
- Dari sebuah histogram yang telah dinormalisasi dapat diketahui frekuensi kemunculan nisbi (relative) dari nilai-nilai intensitas di dalam citra tersebut.
- Misalkan citra digital memiliki L derajat keabuan, yaitu dari nilai 0 sampai L-1.
- Normalisasi histogram dihitung dengan rumus:

$$h_i = \frac{n_i}{n}$$
 $n_i = \text{jumlah } pixel \text{ yang memiliki derajat keabuan } i$ $n = \text{jumlah seluruh } pixel \text{ di dalam citra}$ $i = 0, 1, ..., L-1$

- Nilai n_i telah dinormalkan dengan membaginya dengan n.
- Nilai h_i berada di dalam selang 0 sampai 1.

• Contoh: Citra berukuran 8×8 pixel dengan 16 buah derajat keabuan.

[3	7	7	8	10	12	14	10
2	0	0	0	1	8	15	15
14	6	5	9	8	10	9	12
12	12	11	8	8	10	11	1
0	2	3	4	5	13	10	14
4	5	0	0	1	0	2	2
15	13	11	10	9	9	8	7
2	1	0	10	11	14	13	12

i	n_i	$h_i = n_i/n (n = 64)$
0	8	0.125
1	4	0.0625
2	5	0.078125
3	2	0.03125
4	2	0.03125
5	3	0.046875
6	1	0.015625
7	3	0.046875
8	6	0.09375
9	3	0.046875
10	7	0.109375
11	4	0.0625
12	5	0.078125
13	3	0.046875
14	4	0.0625
15	3	0.046875

```
void histogram(citra Image, int M, int N, float Hist[256])
/* Menghitung histogram untuk citra Image yang berukuran M \times N dengan 256
derajat keabuan (graylevel). Histogram disimpan di dalam tabel Hist yang
bertipe riil (float). */
{ int i, j, n;
 /* inisialisasi Hist[0..255] dengan 0 */
    for (i=0; i<=255; i++)
       Hist[i]=0;
    for (i=0; i \le M-1; i++)
       for (j=0; j \le N-1; j++)
          Hist[Image[i][j]]=Hist[Image[i][j]]+1;
     /*normalisasi Hist[i] dengan jumlah seluruh pixel*/
     n=M*N;
     for(i=0;i<=255;i++)
        Hist[i]=Hist[i]/(float)n;
```

Informasi penting dari histogram ternormalisasi

Histogram citra yang telah ternormalisasi memberikan banyak informasi penting tentang citra. Informasi penting tersebu adalah sebagai berikut:

- 1. Nilai h_i menyatakan peluang (*probability*) *pixel* dengan nilai keabuan *i*, atau p(i).
- 2. Jumlah seluruh nilai h_i sama dengan 1,

$$\sum_{i=0}^{L-1} h_i = 1$$

3. Peluang suatu *pixel* memiliki derajat keabuan lebih kecil atau sama dengan derajat keabuan tertentu adalah jumlah h_i untuk $0 \le i \le j$,

$$P(i \le j) = \sum_{i=0}^{j} h_i$$
 , $0 \le j \le L - 1$

4. Puncak histogram menunjukkan intensitas *pixel* yang menonjol. Lebar dari puncak menunjukkan rentang kontras dari gambar.

Citra yang mempunyai kontras terlalu terang (overexposed) atau terlalu gelap (underexposed) memiliki histogram yang sempit. Histogramnya terlihat hanya menggunakan setengah dari daerah derajat keabuan.

Citra yang baik memiliki histogram yang mengisi daerah derajat keabuan secara penuh dengan distribusi yang merata pada setiap nilai intensitas *pixel*

Gambar (a) citra underexposed (b) citra overexposed, (c) citra normal (normal brightness), (d) normal brightness dan high contrast

Empat tipe citra berdasarkan kekontrasannya:

- 1. Citra gelap (under exposed)
- 2. Citra terang (over exposed)
- 3. Citra kontras rendah (low contrast)
- 4. Citra kontras tinggi (*high contrast*)

Kontras menyatakan sebaran terang (*lightness*) dan gelap (*darkness*) di dalam sebuah citra.

Citra gelap

Komponen histogram terkonsentrasi pada nilai-nilai *grayscale* yang rendah (menumpuk pada sisi histogram sebelah kiri)

Sumber: Image Processing By Dr. Jagadish Nayak ,BITS Pilani, Dubai Campus

Citra terang

Komponen histogram terkonsentrasi pada nilai-nilai *grayscale* yang tinggi (menumpuk pada sisi histogram sebelah kanan)

Citra kontras-rendah

Histogramnya sempit dan terpusat di pertengahan nilai-nilai grayscale

Citra kontras-tinggi

Histogramnya tersebar merata di seluruh nilai-nilai *grayscale* dan distribusi *pixel-pixel* tidak terlalu jauh dari *uniform,* dan garis-garis vertikal tidak banyak yang lebih tinggi dari garis yang lain

Citra Lena yang terlalu gelap

Citra Lena yang terlalu terang

Citra Lena normal (kontras bagus)

Contoh lain:

5. Nilai rata-rata (*mean value*) derajat keabuan

$$u = \Sigma_k \, k \cdot h(k)$$

Nilai rata-rata menunjukkan rata-rata nilai keabuan dari seluruh *pixel* di dalam citra

6. Variansi dan standard deviasi

 Variansi memberikan ukuran distribusi nilai histogram di sekitar nilai rata-rata

$$V = \Sigma_k (k - u)^2 h(k)$$

Sumber gambar: Dr. Rolf Lakaemper, CIS 601 Image ENHANCEMENT in the SPATIAL DOMAIN

• Standard deviasi adalah nilai pada sumbu nilai keabuan, yang memperlihatkan jarak rata-rata semua *pixel* ke nilai rata-rata

Sumber gambar: Dr. Rolf Lakaemper, CIS 601 Image ENHANCEMENT in the SPATIAL DOMAIN

 Variansi dan standard deviasi dari histogram citra memberikan informasi tentang rata-rata kontras citra.

 Makin tinggi nilai variansi (=makin tinggi standard deviasi), makin tinggi kontras citra.

Contoh: citra (normal) dan citra versi blur

u=0.73 d=0.32

u=0.71 d=0.27

Sumber gambar: Dr. Rolf Lakaemper, CIS 601 Image ENHANCEMENT in the SPATIAL DOMAIN