

Meetup 11 décembre 2019 - Strasbourg

Ouverture du Club Power Bl à

Strasbourg

Soyez les bienvenus

Jean-Pierre Riehl

Les nouveautés

Nouveaux visuels

ArcGIS Maps for Power BI update
New xViz visuals (Advanced Gauge, Hierarchical Filter)
ZoomCharts Drill-Down Waterfall Visual
Financial Reporting Matrix by Profitbase
Distribution
Tree

Nouvelles connectivités

LinkedIn Sales Navigator connector
Edit SAP variables experience now generally available
Vena connector
SiteImprove connector
Product Insights connector
Web By Example connector – support for extracting links

Préparation des données

Fonctions d'IA dans Power Query (Preview)

Nouveau ruban (preview)

Decomposition tree (preview)

Formatage conditionnel des boutons

DEMO

Les bonnes pratiques à respecter pour tous bons rapports Power Bl

Agenda

REQUÊTES (POWER QUERY)

MODÈLE (POWER PIVOT)

VISUELS (DATA VIZ)

Requêtes (Power Query)

Power Query = Scripts

Agencer dans l'ordre

▲ ÉTAPES APPLIQUÉES

Source	#
Colonnes renommées	
Valeur remplacée	-35-
Valeur remplacée1	-35-
Valeur remplacée2	-35-
Valeur remplacée3	-35-
Valeur remplacée4	-35-
Valeur remplacée5	-35-
Valeur remplacée6	-35-
Valeur remplacée7	-35-
Valeur remplacée8	-35-
Valeur remplacée9	-35-
Valeur remplacée10	-35-
Valeur remplacée11	-35-
Valeur remplacée12	- 85
Valeur remplacée13	-35-
Valeur remplacée14	- 85
Valeur remplacée15	-35-

Valeur remplacée15	#
Valeur remplacée16	#
Valeur remplacée17	-15-
Valeur remplacée18	#
Valeur remplacée19	-#F
Valeur remplacée20	#
Type modifié	
Personnalisée ajoutée	-#E
Type modifié1	
Personnalisée ajoutée1	-#E
Type modifié2	
Personnalisée ajoutée2	#F
Personnalisée ajoutée3	#
Colonne conditionnelle ajoutée	#F
Colonnes supprimées	
Type modifié3	
X Colonnes renommées1	

Supprimer très tôt les données inutiles

Query Folding

DEMO

Power Query = Scripts

Modèle (Power Pivot)

Définir les relations

Masquer les données inutiles

Les hiérarchies

Sémantique

Mesures

Business intelligence with Microsoft Power BI, SQL Server Analysis Services, and Excel

L'utilisateur ne doit fournir aucun effort

Visuels (DataViz)

Present Value and Future Value Tables

Table A-1 Future Value Interest Factors for One Dollar Compounded at k Percent for n Periods: $FVIF_{k,n} = (1+k)^n$

Period	1%	2%	3%	4%	5%	8%	7%	8%	9%	10%	11%	12%	13%	14%	19%	16%	20%	24%	25%	30%
1	1.0100	1.0200	1.0300	1.0400	1.0500	1.0600	1.0700	1.0800	1.0900	1.1000	1.1100	1.1200	1.1300	1.1400	1.1500	1.1600	1.2000	12400	1.2500	1.3000
2	1.0201	1.0404	1.0609	1.0816	1.1025	1.1236	1.1449	1.1664	1.1881	1.2100	1.2321	1.2544	1.2769	1.2996	1.3225	1.3456	1.4400	1.5376	1.5625	1.6900
3	1,0303	1.0612	1.0927	1.1249	1.1576	1.1910	1.2250	1.2597	1.2950	1.3310	1.3676	1.4049	1.4429	1.4815	1.5209	1.5609	1.7280	1.9066	1.9531	2.1970
4	1.0406	1.0824	1.1255	1.1699	1.2155	1.2625	1.3108	1.3605	1.4116	1.4641	1.5181	1.5735	1.6305	1.6890	1.7490	1.8106	2.0736	23642	2.4414	2.8561
.5	1.0510	1.1041	1.1593	1.2167	1.2763	1.3382	1.4026	1.4693	1.5386	1.6105	1.6851	1.7623	1.8424	1.9254	2.0114	2.1003	2.4883	2.9316	3.0518	3.7129
6	1.0615	1.1262	1.1941	1.2653	1.3401	1.4185	1.5007	1.5869	1.6771	1.7716	1.8704	1.9738	2.0820	2.1950	2.3131	2.4364	29860	3.6352	3.8147	4.8268
7	1.0721	1.1487	1,2299	1.3159	1.4071	1.5036	1.6058	1.7138	1.8280	1.9487	2.0762	2.2107	23526	2.5023	2,6600	28262	3.5832	4.5077	4.7684	6.2749
8	1.0829	1.1717	1.2668	1.3686	1.4775	1.9938	1.7182	1.8509	1.9926	2.1436	23045	2.4760	2.6584	2.8526	3.0590	3.2784	4.2998	5.5895	5.9605	8.1573
9	1.0937	1.1951	1.3048	1.4233	1.5513	1.6895	1.8385	1.9990	21719	2.3579	2.5580	2.7731	3.0040	3.2519	3.5179	3.8030	5.1998	6.9310	7.4506	10.604
10	1.1046	1.2190	1.3439	1,4802	1,6289	1,7908	1.9672	2.1589	23674	2.5937	2.8394	3,1058	3.3946	3.7072	4.0456	4.4114	6.1917	85944	9.3132	13,786
							1	-		1	7		-							
11	1.1157	1.2434	1.3842	1.5395	1.7103	1.8983	2.1049	2.3316	2.5804	2.8531	3.1518	3.4785	3.8359	4.2262	4.6524	5.1173	7.4301	10.657	11.642	17.922
12	1.1268	1.2682	1.4258	1.6010	1.7959	2.0122	2.2522	2.5182	28127	3.1384	3.4985	3.8960	4.3345	4.8179	5.3503	5.9360	8.9161	13.215	14.552	23.298
13	1.1381	1.2936	1.4685	1.6651	1.8856	2.1329	2.4098	2.7196	3.0658	3.4523	3.8833	4.3635	4.8980	5.4924	6.1528	6.8858	10.699	16.386	18.190	30.288
14	1.1495	1.3195	1.5126	1.7317	1.9799	2.2609	2.5785	2.9372	3.3417	3.7975	4.3104	4.8871	5.5348	6.2613	7.0757	7.9875	12.839	20.319	22.737	39.374
15	1.1610	1.3459	1.5580	1.8009	2.0789	2.3966	2.7590	3.1722	3.6425	4.1772	4.7846	5.4736	6.2543	7.1379	8.1371	9.2655	15.407	25.196	28.422	51.186
7.5		1000000		7.00	1000			10000											-	
16	1.1726	1.3728	1.6047	1.8730	2.1829	2.5104	29522	3.4259	3.9703	4.5950	5.3109	6.1304	7.0673	8.1372	9.3576	10.748	18.438	31.243	35.527	66.542
17	1.1843	1.4002	1.6528	1.9479	2.2920	2.6928	3.1588	3.7000	43276	5.0545	5.8951	6.8660	7.9861	9.2765	10.761	12.468	22.186	38.741	44.409	86.504
18	1.1961	1.4282	1.7024	2.0258	2.4066	2.8543	3.3799	3.9960	47171	5.5599	6.5436	7.6900	9.0243	10.575	12.375	14.463	26.623	48.039	55.511	112.455
19	1.2081	1.4568	1.7535	2.1068	25270	3.0256	3.6165	4.3157	5.1417	6.1159	7.2633	8.6128	10.197	12.056	14.232	16.777	31.948	59.568	69.389	146.192
20	1.2202	1.4859	1.8061	2.1911	26533	3.2071	3.8697	4.6610	5.6044	6.7275	8.0623	9.6463	11.523	13.743	16.367	19.461	38.338	73.864	86.736	190.050
							1		17	7										
21	1.2324	1.5157	1.8603	2.2788	27860	3.3996	4.1406	5.0338	6.1088	7.4002	8.9492	10.804	13.021	15.668	18.822	22.574	46.005	91.592	108.420	247.065
22	1.2447	1.5460	1.9161	2.3699	2,9253	3.6035	4.4304	5.4365	6.6586	8.1403	9.9336	12.100	14.714	17.861	21.645	26.186	55.206	113.574	135.525	321.184
23	1.2572	1.5769	1.9736	2.4647	3.0715	3.8197	4.7405	5.8715	7.2579	8.9543	11.026	13.552	16.627	20.362	24.891	30.376	66.247	140.831	169.407	417.539
24	1.2697	1.6084	2.0328	2.5633	3.2251	4.0489	5.0724	6.3412	7.9111	9.8497	12.239	15.179	18.788	23.212	28.625	35.236	79.497	174.631	211.758	542.801
25	1.2824	1.6406	2,0938	2.6658	3.3864	4.2919	5.4274	6.8485	8.6231	10.835	13.585	17.000	21.231	26.462	32,919	40.874	95,396	216.542	264.698	705.641
	-				-				-							-	-	-	-	-
30	1.3478	1.8114	2.4273	3.2434	4.3219	5.7435	7.6123	10.063	13.268	17.449	22.892	29.960	39.116	50.950	66.212	85.850	237.376	634.820	807.794	
36	1,4166	1.9999	2.8139	3.9461	5.5160	7.6861	10.677	14.785	20.414	28.102	38.575	52.800	72.069	98.100	133.176	180.314	990.668			
36	1.4308	2.0399	2.8983	4.1039	5.7918	8.1473	11.424	15.968	22.251	30.913	42.818	59.136	81.437	111.834	153,152	209.164	708.802			
40	1.4889	2.2080	3.2620	4.8010	7.0400	10.286	14.974	21.725	31.409	45.259	65.001	93.051	132.782	188.884	267.864	378.721				
50	1.8446	2.6916	4.3839	7.1067	11.467	18,420	29.457	46.902	74.358	117.391	184.565	289.002	450.736	700.233					.+	

Table A-2 Future Value Interest Factors for a One-Dollar Annuity Compouned at k Percent for n Periods: FVIFA k,n = [(1 + k)^n + 1] / k

Period	1%	2%	3%	4%	5%	8%	.7%	8%	9%	10%	11%	12%	13%	14%	19%	16%	20%	24%	25%	30%
1	1.0000	1.0200	1.0300	1.0400	1.0500	1.0600	1.0700	1.0860	1.0900	1.1000	1.1100	1.1200	1.1300	1.1400	1.1500	1.1600	1.2000	12400	1.2500	1.3000
2	2.0100	2.0200	2.0300	2.0400	2.0500	2.0600	2.0700	2.0800	2.0900	2.1000	21100	2.1200	2.1300	2.1400	21500	2.1600	2.2000	22400	2.2500	2,3000
3	3.0301	3.0604	3.0909	3.1216	3.1525	3.1836	3.2149	3.2464	3.2781	3.3100	3.3421	3.3744	3.4069	3.4396	3.4725	3.5056	3.6400	3.7776	3.8125	3.9900
4	4.0604	4.1216	4.1836	4.2465	4.3101	4.3746	4.4399	4.5061	4.5731	4.6410	4.7097	4.7793	4.8498	4.9211	4.9934	5.0665	5.3680	5.5842	5.7656	6.1870
5	5.1010	5.2040	5.3091	5.4163	5.5256	5.6371	5.7507	5.8666	5.9847	6.1051	6.2278	6.3528	6.4803	6.6101	6.7424	6.8771	7.4416	8.0484	8.2070	9.043
6	6.1520	6.3081	6.4684	6.6330	6.8019	6.9753	7.1533	7.3359	7.5233	7.7196	7.9129	8.1152	8.3227	8.5355	8.7537	8.9775	9.9299	10.980	11.259	1279
7	7.2135	7.4343	7.6625	7.8983	8.1420	8.3938	8.6540	8.9228	9.2004	9.4872	9.7833	10.089	10.405	10.730	11.067	11,414	12.916	14.615	15.073	17.58
8	8.2857	8.5830	8.8923	9.2142	9.5491	9.8975	10.250	10.637	11.028	11.436	11.859	12.300	12.757	13.233	13.727	14.240	16.499	19.123	19.842	23.858
9	9.3685	9.7546	10.159	10.583	11.027	11.491	11.978	12.488	13.021	13.579	14.164	14.776	15.416	16.085	16.786	17.519	20.799	24.712	25.802	32.019
10	10.462	10.950	11.464	12.006	12.578	13.181	13.816	14.487	15.193	15.937	16.722	17.549	18.420	19.337	20.304	21.321	25.959	31.643	33.253	42.619
11	11.567	12.169	12.808	13,486	14.207	14972	15.784	16.645	17.560	18.531	19.561	20.655	21.814	23.045	24.349	25.733	32.150	40.238	42.566	56.400
12	12.683	13.412	14.192	15.026	15.917	16.870	17.888	18.977	20.141	21.384	22.713	24.133	25.650	27.271	29.002	30.850	39.581	50.895	54.208	74.32
13	13.809	14.680	15.618	16.627	17.713	18.882	20.141	21.495	22.953	24.523	26.212	28.029	29.985	32.089	34.352	36.786	48.497	64.110	68.760	97.62
14	14.947	15.974	17.086	18.292	19.599	21.015	22.550	24215	26.019	27.975	30.095	32.393	34.883	37.581	40.505	43.672	59.196	80.496	86.949	127.91
15	16.097	17293	18.599	20.024	21.579	23.276	25.129	27.152	29.361	31.772	34.405	37.280	40.417	43.842	47.580	51.660	72.035	100.815	109.687	167.28
16	17.258	18.539	20.157	21.825	23.657	25.673	27.888	30324	33.003	35.950	39.190	42.753	46.672	50.980	55.717	60.925	87.442	126.011	138.109	218.47
17	18.430	20.012	21.762	23.698	25.840	28.213	30.840	33.750	36.974	40.545	44.501	48.884	53.739	59.118	65.075	71.673	105.931	157.253	173.636	285.01
18	19.615	21.412	23.414	25.645	28.132	30.906	33.999	37.450	41.301	45.599	50.396	55.750	61.725	68.394	75.836	84.141	128.117	195.994	218.045	371.51
19	20.811	22.841	25.117	27.671	30.539	33.760	37.379	41.446	45.018	51.159	56.939	63,440	70.749	78.969	88.212	98.603	154.740	244.033	273.556	483.97
20	22.019	24297	26.870	29.778	33.066	36.786	40.995	45.762	51.160	57.275	64.203	72.052	80.947	91.025	102.444	115.380	186,688	303.601	342.945	630.16
21	23.239	25.783	28.676	31,969	35.719	39.993	44.865	50A23	96.765	64.002	72.265	81.699	92.470	104.768	118.810	134.841	225.026	377.465	429.681	820.21
22	24.472	27299	30.537	34248	38.505	43.392	49.006	55A57	62.873	71.403	81.214	92.503	105.491	120.436	137.632	157.415	271.031	469.056	538.101	
23	25.716	28.845	32.453	36.618	41.430	46.996	53.436	60.893	69.532	79.543	91.148	104.603	120.205	138.297	159.276	183.601	326.237	582.630	673.626	
24	26.973	30.422	34.426	39.083	44.502	50.816	58.177	66.765	76.790	88.497	102.174	118.155	136.831	158.659	184.168	213.978	392.484	723.461	843.033	
25	28.243	32.030	36.459	41.646	47.727	54865	63.249	73.106	84.701	98.347	114.413	133.334	155.620	181.871	212.793	249.214	471.981	898.092		
30	34.785	40.568	47.575	56,085	66.439	79.058	94.461	113.283	136.308	164.494	199.021	241.333	293.199	356.787	434.745	530.312				
35	41.660	49.994	60.462	73.652	90.320	111.435	138.237	172317	215.711	271.024	341.590	431.663	546.681	693.573	881.170		*			
36	43.077	51.994	63.276	77.598	95.836	119.121	148.913	187.102	236.125	299.127	380.164	484.463	618.749	791.673	175	125		2		
40	48.886	60.402	75.401	95.026	120.800	154.762	199.635	259.057	337.882	442.593	581.826	767.091	- 83	32.0						
50	64.463	84579	112.797	152.667	209.348	290.336	406.529	573.770	815.084				0.8	0.0						

HISTOGRAM

Chart used by responsible

analysts who understand

the power of segmentation

and the sadness that comes

from aggregating data.

Extremely useful when creating a well designed document that is intended to people that will not read the data (e.g. management)

Useful to show trends, especially upwards (for downwards trends people tend to use more obscure charts, like the waterfall chart, see below)

BAR CHART

Safe choice. But make sure you read Stephen Few before you show the chart to your boss, it will increase the probability of getting a raise.

AREA CHART

Please don't use this chart, I beg you! And please buy one of Tufte books.

BUBBLE CHART

If you manage to extract insights from this graph your name is Hans Rosling.

RADAR CHART

If you want to build a complex model around which you have done a ton of research, that's your choice (but only PhDs will understand you).

WATERFALL CHART

Perfect if you want to hide information or misguide other people. Seriously, can you trust a chart that is also known as a "Flying Bricks Chart" or "Mario Chart"? No.

TREE MAP

I have seen trees and I have seen maps, but how exactly this map is a combination of both? If you use it, good for you.

SCATTERPLOT

Very useful to find outliers, just like the people that commonly create them: human beings that finished their PhD in math by the age of 16.

BOX PLOT

This one is for pros. If you use it successfully, you will get a seat in heaven between Ronald Fisher and Johann Carl Friedrich Gauss.

« Le secteur du numérique consomme cinq fois plus de ressources naturelles que toutes les voitures françaises réunies »

« D'après une étude dévoilée lundi 21 octobre [2019], nos smartphones, tablettes et autres ordinateurs à travers le monde consomment cinq fois plus de ressources naturelles que l'ensemble des voitures immatriculées en France. »

La part du charbon dans la production d'énergie primaire en Afrique du Sud a augmenté de 1,4 % entre 1990 et 2016.

Production d'énergie primaire en Afrique du Sud par source (Mtep)

Source	1990	%	2000	%	2010	%	2015	2016	% 2016	var. 2016/1990
Charbon	100,2	87,5	126,9	87,2	143,9	87,8	144,5	144,6	88,7 %	+44 %
Pétrole 📐	0		0,9	0,6	0,5	0,3	0,3	0,3	0,2 %	ns
Gaz naturel	1,5	1,3	1,4	1,0	1,3	0,8	1,0	0,9	0,6 %	-39 %
Total fossiles	101,7	88,8	129,3	88,8	145,9	88,9	147,6	145,7	89,5 %	+43 %
Nucléaire	2,2	1,9	3,4	2,3	3,2	1,9	3,2	3,9	2,4 %	+78 %
Hydraulique	0,09	0,08	0,1	0,07	0,18	0,11	0,07	0,06	0,04 %	-31 %
Biomasse-déchets	10,6	9,2	12,4	8,5	12,3	7,6	12,4	12,4	7,6 %	+17 %
Solaire, éolien, géoth.	0		0,1	0,07	0,07	0,04	0,6	0,8	0,5 %	ns
Total EnR	10,7	9,3	12,5	8,6	12,5	7,8	13,0	13,2	8,1 %	+24 %
Total	114,5	100	145,1	100	161,4	100	162,0	162,9	100 %	+42 %
Course des deppées : Ages	ann intern	otionala	do l'ánor	1						

Source des données : Agence internationale de l'énergie

Produc	tion d'é	ne	rgic	e primai	ire en	Afrique	du Sı	ud par s	source	(Mtep)	
Source	1990 %		% 20	2000	%	2010	%	2015	2016	% 2016	var. 2016/1990
Charbon	100,2	87	7,5	126,9	87,2	143,9	87,8	144,5	144,6	88,7 %	+44 %
Pétrole 🖟	0			0,9	0,6	0,5	0,3	0,3	0,3	0, %	ns
Gaz naturel	1,5		,3	1,4	1,0	1,3	0,8	1,0	0,9	0 5 %	-39 %
Total fossiles	101,7	8	,8	129,3	88,8	145,9	88,9	147,6	145,7	8: ,5 %	+43 %
Nucléaire	2,2		,9	3,4	2,3	3,2	1,9	3,2	3,9	2,4 %	+78 %
Hydraulique	0,09	Ò,	8	0,1	0,07	0,18	0,11	0,07	0,06	0,04 %	-31 %
Biomasse-déchets				1	8,5	12,3	7,6	12,			+17 %
Solaire, éolien, géoth.	18	7	7	51	0,07	0,07	0,04	0,	88	,7 9	o ns
Total EnR		•	7	5	8,6	12,5	7,8	13,υ	13,2	8,7 %	+24 %
Total	114,5	1	100	145,1	100	161,4	100	162,0	162,9	100 %	+42 %

Chart Suggestions—A Thought-Starter

Table ronde

Data vizualisation : décider avec des images, estce possible et souhaitable ? Quels sont les gardefous et les compléments indispensables d'aide à la décision ?

VanArsdel - Market Share

49 832
Total Category Volume

32,86 %

obviEnce ©

10 informations 2 secondes Un visuel = Un objectif

Un dernier point

Faire du story-telling

Merci Strasbourg Merci de votre participation

