NATIONAL UNIVERSITY OF SINGAPORE Department of Electrical & Computer Engineering

EXAMINATION FOR

(Semester II, 2013/14)

EE2012 ANALYTICAL TECHNIQUES FOR ECE

April/May 2014 Time Allowed: 2.5 hours

INSTRUCTIONS FOR CANDIDATES:

- This is a CLOSED BOOK exam.
- This paper contains five (5) questions and one formula sheet, printed on four (4) pages.
- Answer ALL questions.
- A non-programmable calculator may be used.

Examiner: Professor Lim Teng Joon

Q1. Answer the following short questions.

- (a) Let T be exponentially distributed with E[T] = 2. Find P[T > 2]. (2 marks)
- (b) Consider a probability space (Ω, \mathcal{F}, P) , and two independent events A and B in \mathcal{F} . What is $P[A \cup B]$ in terms of P[A] and P[B]? (2 marks)
- (c) If the CDF of X is

$$F_X(x) = 0.1u(x) + 0.3u(x-2) + 0.6u(x-5),$$

where u(x) is the unit step function, write down the range of X, and the PDF of X. (2 marks)

- (d) Two zero-mean unit-variance random variables X and Y have a correlation coefficient of 0.4. Find E[XY]. (2 marks)
- (e) If X is Gaussian with E[X] = 1 and var(X) = 4, find P[X > 2] in terms of the Q function. (2 marks)
- (f) The joint PMF of (X, Y) is given as follows:

$$p_{X,Y}(0,0) = 0.1$$
 $p_{X,Y}(2,0) = 0.1$
 $p_{X,Y}(1,1) = 0.2$ $p_{X,Y}(0,1) = 0.2$
 $p_{X,Y}(2,1) = 0.25$ $p_{X,Y}(1,2) = 0.15$

Find the marginal PMF of X and of Y.

(4 marks)

- (g) The random variable X is uniform in $\{1, 2, 3\}$, and Y is Bernoulli with p = 0.2. If X and Y are independent, find E[XY].
- (h) If Y = 2X + 3, and $X \sim \mathcal{N}(0, 1)$, find the mean and variance of Y, and write down the PDF of Y. (3 marks)

Q2. A random variable X has the PDF

$$f_X(x) = \frac{5}{4}(1 - x^4), \quad 0 < x \le 1.$$

(a) Find the CDF of X. (5 marks)

(b) Find E[X] and var(X). (5 marks)

(c) Find $f_X(x|X > 0.5)$. (5 marks)

- Q3. Let the discrete random variable X be uniformly distributed in $\{-3, -1, 1, 3\}$, and let N be a Gaussian random variable with mean 0 and variance σ_n^2 . X and N are independent.
 - (a) If Y = X + N, find the conditional PDF $f_{Y|X}(y|x)$. (3 marks)
 - (b) Find P[Y > 2|X = 1] in terms of the Q function. (3 marks)
 - (c) Given that Y > 2, what is the most likely value of X? (6 marks)
 - (d) Define Z as the indicator function of the event $\{Y > 2\}$. Find the PMF of Z, in terms of the Q function. (3 marks)

- Q4. Consider two i.i.d. exponential random variables X and Y, with E[X] = E[Y] = 2.
 - (a) Find the PDF of Z = X + Y using convolution. (5 marks)
 - (b) Find and sketch the CDF of V = X/Y. (7 marks)
 - (c) Find and sketch the PDF of V = X/Y. (3 marks)

- Q5. Consider a Poisson arrival process with average rate λ arrivals per minute. The number of arrivals in t minutes is denoted N(t).
 - (a) Find the probability mass function of N(t). (2 marks)
 - (b) Suppose that each arrival is independently tagged, with probability p. Find the PMF of M(t), the number of tagged arrivals in t minutes. (7 marks)
 - (c) Let T_i be the waiting time until the *i*-th arrival, i = 1, 2, ... Derive the CDF of T_i . (*Hint:* What is the event $\{T_i > t\}$ equivalent to?) (6 marks)

List of Formulae and Notation

Definitions

Indicator Function: $I_A = 1$ if A occurs, 0 otherwise.

Marginal PMF/PDF:
$$p_X(x_j) = \sum_k p_{X,Y}(x_j, y_k); \quad f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy.$$

Marginal CDF:
$$F_X(x) = F_{X,Y}(x, \infty)$$
.

Joint Moments:
$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}, \text{ cov}(X,Y) = E[XY] - E[X]E[Y].$$

Discrete Random Variables

Bernoulli:
$$p_X(1) = p = 1 - p_X(0), E[X] = p, var[X] = p(1 - p)$$

Binomial:
$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, ..., n. \quad E[X] = np, \text{var}[X] = np(1-p)$$

Geometric:
$$p_X(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$
 $E[X] = \frac{1}{p}, \text{var}[X] = \frac{1-p}{p^2}$

Poisson:
$$p_X(k) = \frac{\alpha^k}{k!} e^{-\alpha}, \quad k = 0, 1, \dots \quad E[X] = \alpha = \text{var}[X]$$

Continuous Random Variables

Uniform:
$$f_X(x) = \frac{1}{b-a}$$
, $a < x < b$. $E[X] = \frac{a+b}{2}$, $var[X] = \frac{(b-a)^2}{12}$

Exponential:
$$f_X(x) = \lambda e^{-\lambda x}, \ x \ge 0. \ E[X] = \frac{1}{\lambda}, \text{var}[X] = \frac{1}{\lambda^2}$$

Gaussian:
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \ x \in \mathbb{R}. \ E[X] = \mu, \text{var}[X] = \sigma^2$$

Gaussianity

Q fn.:
$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-t^2/2} dt$$
, $Q(x) = 1 - Q(-x)$

CDF:
$$X \sim \mathcal{N}(\mu, \sigma^2) \Rightarrow P[X > t] = Q\left(\frac{t - \mu}{\sigma}\right)$$

Joint PDF:
$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{2\pi\sqrt{\det(\mathbf{C})}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{C}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right], \ \mathbf{x} \in \mathbb{R}^2$$

where
$$\mathbf{C} = E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T]$$

Result 1: If X is jointly Gaussian, then Y = AX + b is jointly Gaussian.

Result 2: If X is jointly Gaussian, then its components are marginally Gaussian.

Other Useful Results

Bayes:
$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{k=1}^n P(A|B_k)P(B_k)}$$
, where $\{B_k\}_{k=1}^n$ is a partition of \mathcal{S} .

Total Prob.:
$$P(A) = \sum_{k=1}^{n} P(A|B_k)P(B_k)$$
, where $\{B_k\}_{k=1}^{n}$ is a partition of \mathcal{S} .

$$E[X] = \sum_{k=1}^{n} E[X|B_k]P[B_k]; \quad f_X(x) = \sum_{k=1}^{n} f_X(x|B_k)P[B_k].$$

Functions of X:
$$Y = aX + b \Rightarrow f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

$$Y = g(X) \Rightarrow f_Y(y) = \sum_{k=1}^n f_X(x_k) \left| \frac{dx_k}{dy} \right|$$
, where $g(x_k) = y$, $k = 1, \dots, n$.

Independence (rv's):
$$X, Y$$
 independent $\Leftrightarrow F_{X,Y}(x,y) = F_X(x)F_Y(y)$,

$$f_{X,Y}(x,y) = f_X(x)f_Y(y), \ p_{X,Y}(x,y) = p_X(x)p_Y(y).$$

Sum of rv's:
$$X, Y$$
 independent $\Rightarrow f_{X+Y}(z) = f_X(z) * f_Y(z)$.