Datenkommunikation und Informationssysteme, Übung 5

Domenic Quirl 354437

Julian Schakib 353889 Daniel Schleiz 356092

Übungsgruppe 14

Aufgabe 1

- (a)
- (b)
- (c)

A1: / 4

Aufgabe 2

(a) Berechne zunächst die Latenzen (Länge geteilt durch die Ausbreitungsgeschwindigkeit) und die maximalen Datenraten zwischen den Zwischenknoten:

	Latenz	max. Datenrate
$S \to R_1$	$2,5\mu s$	1 Mbit/s
$R_1 \to R_2$	$25\mu s$	1000 Mbit/s
$R_2 \to D$	$5\mu s$	10 Mbit/s

(Bei NRZ wird pro Schritt ein Bit kodiert, also in dem Fall entspricht 1 MBaud gerade 1 Mbit/s. Bei 4B/5B werden 4 Bits in 5 Schritten übertragen, d.h. $1250\cdot0, 8$ Mbit/s. Für den Manchester Leitungscode werden zwei Schritte benötigt, um ein Bit zu übertragen, also $20\cdot0, 5$ Mbit/s.)

(i) Für $P=75\cdot 8=600$ Bit benötigt das Paket (inklusive Header von 160 Bit)

$$\frac{760 Bit}{10^6 Bit/s} + \frac{760 Bit}{1000 \cdot 10^6 Bit/s} + \frac{760 Bit}{10 \cdot 10^6 Bit/s} + \frac{760 Bit}{10 \cdot 10^6 Bit/s} + 32, \\ 5 \cdot 10^{-6} s + 2 \cdot 10^{-6} s = 0, \\ 87126 \cdot 10^{-3} s = 0.$$

(Benötigte Zeit zur Übertragung der jeweiligen Leitungen plus die summierten Latenzen plus die Verarbeitungszeiten der Zwischenstationen R_i .)

(ii) Für $P = 1500 \cdot 8 = 12000$ Bit benötigt das Paket (inklusive Header von 160 Bit)

$$\frac{12160 Bit}{10^6 Bit/s} + \frac{12160 Bit}{1000 \cdot 10^6 Bit/s} + \frac{12160 Bit}{10 \cdot 10^6 Bit/s} + \frac{12160 Bit}{10 \cdot 10^6 Bit/s} + 32, \dots \\ 5 \cdot 10^{-6} s + 2 \cdot 10^{-6} s = 13,42266 \cdot 10^{-3} s = 13,42266 \cdot 10^{-$$

(iii) Für $P = 30000 \cdot 8 = 240000$ Bit benötigt das Paket (inklusive Header von 160 Bit)

$$\frac{240160 Bit}{10^6 Bit/s} + \frac{240160 Bit}{1000 \cdot 10^6 Bit/s} + \frac{240160 Bit}{10 \cdot 10^6 Bit/s} + 32, 5 \cdot 10^{-6} s + 2 \cdot 10^{-6} s = 264,45066 \cdot 10^{-3} s$$

- (b) (i) Die Nachricht wird in $\frac{30000}{75} = 400$ Paketen verschickt und die Versendung benötigt demnach $400 \cdot 0.87126 \cdot 10^{-3} \text{s} = 348,504 \text{ms}$.
 - (ii) Die Nachricht wird in $\frac{30000}{1500} = 20$ Paketen verschickt und die Versendung benötigt demnach $20 \cdot 13,42266 \cdot 10^{-3}$ s = 268,4532ms.
 - (iii) Die Nachricht wird in einem Paket verschickt und die Versendung benötigt demnach 264, 45066ms.

A2: / 5

Aufgabe 3

Damit die Adressen nicht zu lang werden, wird im Folgenden, wenn die Betrachtung der Binärdarstellung eines gewissen Teils notwendig ist, nur der relevante Teil binär dargestellt.

- (a) Der IP-Adressbereich 137.226.40.0/21 impliziert eine Subnetzmaske mit 21 Einsen, d.h. die Subnetzmaske 255.255.248.0 = 255.255.11111000.0 (und 137.226.40.0 = 137.226.00101000.0).
 - Verundet man IP 1 mit der Subnetzmaske, so erhält man die Adresse 137.226.48.0 = 137.226.00110000.0. Die Adresse liegt also nicht im gegebenen Adressbereich, da 00110 ≠ 00101.
 - Man sieht direkt, dass IP 2 nicht im Adressbereich liegt, weil schon im ersten 8 Bit Teil der Adresse ein Unterschied vorliegt und dieser Teil offensichtlich bei der Subnetzmaske verundet wird. (136 ≠ 137).
- (b) Um 900 Rechner in LAN 1 zu adressieren, benötigt man 10 Bit (2⁹-2 = 510 < 900 < 1022 = 2¹⁰-2). Somit kriegt LAN 1 den Adressbereich 137.226.40.0/22 mit Subnetzmaske 255.255.252.0. (So klein wie möglich, da 11 Bit zur Verfügung standen.) Das Subnetz erhält als Netz-ID die niedrigste Adresse des Subnetzes, also 137.226.40.0. (Hosts: 137.226.001010xx.xxxxxxxx)
 Der restliche Adressbereich umfasst 137.226.44.0/22.
 - Um 200 Rechner in LAN 2 zu adressieren, benötigt man 8 Bit $(2^7 2 = 126 < 200 < 254 = 2^8 2)$. Der kleinstmögliche Adressbereich für LAN 2 wäre dann 137.226.44.0/24 mit Subnetzmaske 255.255.255.0 und Netz-ID 137.226.44.0. (Hosts: 137.226.00101100.xxxxxxxx)
 - Um 500 Rechner in LAN 3 zu adressieren, benötigt man 9 Bit $(2^8 2 = 254 < 500 < 510 = 2^9 2)$. Der kleinstmögliche Adressbereich für LAN 3 wäre dann 137.226.46.0/23 mit Subnetzmaske 255.255.254.0 und Netz-ID 137.226.46.0. (Hosts: 137.226.0010101x.xxxxxxxx)
 - Um 75 Rechner adressieren zu können benötigt man 7 Bit. Der kleinst mögliche Adressbereich für LAN 4 wäre dann 137.226.45.0/25 mit Subnetzmaske 255.255.255.128 und Netz-ID 137.226.45.0. (Hosts: 137.226.00101001.0xxxxxxx).

Nach der Einteilung ist noch der Adressbereich 137.226.45.128/25 frei.

- (c) Die höchste Adresse eines Subnetzes ist für Broadcast reserviert, weshalb diese nicht vergeben wird. Nach den Vergaberegeln der Aufgabenstellung ergebt sich folgende Verteilung von IP-Adressen:
 - In LAN 1 erhält A.if1 137.226.40.1, h1 kriegt 137.226.43.254 und h2 kriegt 137.226.43.253
 - A.if2: 137.226.44.1, B.if1: 137.226.44.2, h3: 137.226.44.254
 - B.if2: 137.226.46.1, h4: 137.226.47.254
 - B.if3: 137.226.45.1, h5: 137.226.45.126

A3: / 4

Aufgabe 4

(a)	Protokoll	lokal		global		Ziel	
	Protokon	IP-Adresse	Port	IP-Adresse	Port	IP-Adresse	Port
	TCP	10.0.0.1	8051	137.226.12.228	8051	137.226.13.142	443
	UDP	10.0.0.3	4711	137.226.12.228	4711	8.8.8.8	53
	UDP	10.0.0.4	4711	137.226.12.228	4712	8.8.8.8	53

(b) Die Tabelle müsste um einen Eintrag ergänzt werden, welcher eingehende Anfragen auf Port 80 an Port 8888 des Rechners B weiterleitet, also ein Eintrag der Form

Ductoball	lokal		global		Ziel		
Protokon	IP-Adresse	Port	IP-Adresse	Port	IP-Adresse	Port	
TCP	10.0.0.2	8888	137.226.12.228	80	-	-	
						A4:	/ 2