AIX-MARSEILLE UNIVERSITÉ

MÉMOIRE DE MASTER

Optimisation de la vision artificielle bio-inspirée par exploration saccadique de l'environnement

Auteur: Superviseur:

Pierre Albigès Laurent Perrinet

Un mémoire présenté à

ECOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ

en vue de l'obtention du diplôme de

Master de Neurosciences, spécialité Intégratives et Cognitives

et réalisée au sein de

Institut de Neurosciences de la Timone

Durant la période : 12/03/2018 - 08/06/2018

AIX-MARSEILLE UNIVERSITÉ

Résumé

Faculté des Sciences, département de Biologie Master de Neurosciences

Master de Neurosciences, spécialité Intégratives et Cognitives

Optimisation de la vision artificielle bio-inspirée par exploration saccadique de l'environnement

by Pierre Albigès

Contents

1	Introduction	1
2	Matériel et méthodes	4
3	Résultats	5
4	Discussion et perspectives	6
Bi	bliography	7
A	Figures	8
В	Code source et documents complémentaires	10

1 Introduction

Au cours de l'histoire évolutive et sous la pression de la sélection naturelle, tous nos systèmes perceptifs ont tendu (et tendent encore) vers une optimisation de leur fonctionnement, dépendamment nos besoins et nos ressources. L'ensemble de notre système visuel, de la rétine jusqu'aux aires corticales les plus associatives, a ainsi évolué pour pouvoir réaliser une description robuste et rapide de notre environnement, nous permettant d'intéragir efficacement avec lui et d'en appréhender les dangers. ⁴ Cette pression évolutive a notamment mené au développement de deux caractéristiques du système visuel qui vont plus particulièrement nous intéresser : l'acuité visuelle variable et l'exploration saccadique. ⁴

L'acuité visuelle peut être définie comme la précision avec laquelle les stimuli visuels peuvent être analysés. Celle-ci varie au sein de notre champs visuel, qui est la portion de l'espace observée par un oeil immobile. Il est ainsi possible de séparer le champs visuel en deux parties : la vision centrale et la vision périphérique.⁴

La vision centrale est soutenue anatomiquement par la fovéa, une région rétinienne comprenant exclusivement des cônes. Cette composition, couplée à une forte densité de photorécepteurs permet à cette région de présenter l'acuité visuelle la plus importante du système visuel, ainsi qu'une bonne perception des couleurs.⁴

La composition et la densité en photorécépteurs de la rétine soutenant la vision périphérique change avec son excentricité par rapport à la fovéa, mais elle comprends majoritairement des batônnets. En conséquence, l'acuité visuelle et la perception des couleurs dans la vision périphérique diminuent avec la distance de la fovéa, mais on peut y observer une importante sensibilité aux variations de luminance et de fréquence spatiale.⁴

Cette variabilité des caractéristiques de notre système visuel, et notamment de son acuité, permet de fortement réduire la quantité d'informations à traiter par les réseaux nerveux en aval de la rétine, celleci recevant quasi-continuellement un flux d'information estimé à 10^8 bits/s, qui subit une réduction de plus de 99% pour engendrer une sortie par le nerf optique estimée à 10^2 bits/s.^{2,4,5}

La variabilité de l'acuité visuelle en fonction de l'excentricité à la rétine, ainsi que l'organisation spatiale des stimuli sur celle-ci sont d'ailleurs conservées tout au long des réseaux nerveux réalisant leur traitement, formant ce que l'on nomme l'organisation rétinotopique des régions cérébrales visuelles.⁴

Mais cette optimisation du flux d'informations présente un inconvénient majeur: une description précise d'un stimulus visuel ne peut être réalisée avec une certitude élevée que dans une partie très réduite du champs visuel (environ 2 degrés chez l'Humain).

Pour palier à cela un agent va devoir réaliser, lors de l'exploration visuelle de son environnement, une suite de mouvements oculaires brefs (les saccades oculaires) afin de placer les régions visuelles d'intérêt dans sa vision centrale et ainsi pouvoir en réaliser des descriptions précises. Par exemple, l'observation passive d'une scène (sans consigne ou recherche précise d'une cible) va impliquer la réalisation de 2-4 saccades par seconde.^{3,4}

La sélection attentionnelle et motrice de la cible à décrire fait intervenir un réseau complexe d'aires cérébrales et corticales et nécessite l'intégration de signaux *top-down* comme *bottom-up*.⁴

Depuis les débuts de l'intelligence artificielle dans les années 60, l'un des domaines phares de son développement a été la vision artificielle. L'objectif est de s'inspirer, voir de mimer le fonctionnement des systèmes biologiques afin de permettre aux systèmes informatisés d'accéder à la compréhension de leur environnement. La modélisation de l'activité du système visuel a ainsi connu l'application de nombreuses méthodes, à diverses échelles et niveaux de complexité.⁴

Les modèles à carte de saillance permettent par exemple de reconstruire l'influence qu'ont les signaux bottom-up sur l'orientation du regard. Ces modèles décrivant chaque point de l'espace visuel par une valeur, ceux qui ressortent le plus de l'envrionnement sont considérés comme portant l'intérêt le plus grand pour le système et attirent le regard. Après avoir été explorée, une région voit sa saillance devenir nulle, car elle ne peut alors fournir plus d'informations à l'agent. Les prédictions de ces modèles sont meilleures que le hasard sans être exactes car elles ne prennent pas en compte certains paramètres de l'orientation du regard, notamment la recherche de cible. De plus, la plupart de ces modèles considèrent l'ensemble de l'environnement visuel à la fois et de façon équivalente, ce qui est loin de ce qui se déroule dans les systèmes biologiques.⁴

L'étude et le développement de ces modèles permettent non seulement d'améliorer les performances des systèmes informatisés, mais aussi de mieux appréhender les zones d'ombre dans nos connaissances du fonctionnement du système visuel.⁴

Dans ce travail nous avons tenté, en nous inspirant des caractèristiques du système visuel que nous venons d'introduire et en les appliquant sur des réseaux de *deep learning*, de construire un modèle pouvant réaliser de façon autonome une recherche de cible dans son environnement visuel. L'objectif est double: d'une part aider à l'optimisation des systèmes de vision par ordinateur (notamment dans des systèmes embarqués) en proposant une méthode neuromimétique de la recherche de cible, et d'autre part d'explorer les connaissances neuroscientifiques sur le sujet afin d'offrir un point de départ dans l'identification de zones d'ombre dans celles-ci.

2 Matériel et méthodes

L'ensemble des simulations (comprenant apprentissage et évaluation) ont été réalisées sur une machine connectée à distance via un protocole ssh et dont les caractéristiques sont visibles dans le tableau Table A.1.

Afin de modéliser la variabilité de l'acuité visuelle, nous avons utilisé un filtre LogPolaire (A.1). Ce filtre, construit avec une approche neuromimétique, est constitué d'un ensemble de filtres Gabor et vise à reproduire la forme et l'organisation réelle des champs récepteurs présents dans les régions visuelles des systèmes nerveux biologiques. De précédentes études ont montré qu'il présente un certain nombre d'avantages pour la simulation des systèmes biologiques, notamment car il est aisément modifiable pour modéliser les champs récepteurs de réseaux visuels à différentes profondeurs : rétine, corps genouillé latéral, colliculis supérieur, V1 puis aires associatives. Le filtre LogPolaire correspond à une matrice de valeurs qui, lorsque appliquée à une image (par multiplication matricielle) permet une décroissante de la résolution en fonction de l'excentricité (la distance par rapport au centre de l'image).

3 Résultats

4 Discussion et perspectives

Bibliography

- [1] Jeremy Freeman and Eero P. Simoncelli. "Metamers of the ventral stream". In: *Nature Neuroscience* 14.9 (2011), pp. 1195–1204. ISSN: 10976256. DOI: 10.1038/nn.2889.
- [2] Philip Kortum and Wilson S. Geisler. "Implementation of a foveated image coding system for image bandwidth reduction". In: SPIE Proceedings 2657 (1996), pp. 350–360. ISSN: 0277786X. DOI: 10.1117/12.238732.
- [3] Richard J. Krauzlis, Laurent Goffart, and Ziad M. Hafed. "Neuronal control of fixation and fixational eye movements". In: *Philosophical Transactions of the Royal Society B: Biological Sciences* 372.1718 (2017), p. 20160205. ISSN: 0962-8436. DOI: 10.1098/rstb.2016.0205. URL: http://rstb.royalsocietypuorg/lookup/doi/10.1098/rstb.2016.0205.
- [4] John S. Werner and Leo M. Chalupa, eds. *The new visual neurosciences*. MIT Press. 2014, p. 1675. ISBN: 9780262019163.
- [5] Li Zhaoping. *Understanding vision : theory, models and data*. Oxford Uni. 2014, p. 383. ISBN: 9780199564668.

A Figures

Système	Processeur	Mémoire vive	Carte graphique
d'explotation			
Ubuntu 16.04.4	Intel Xeon E5-1607 (3,1GHz)	39 GB	NVIDIA GeForce GTX1060

TABLE A.1: Matériel utilisé pour réaliser les modélisations

FIGURE A.1: Schéma simplifié

FIGURE A.2: Schéma simplifié

B Code source et documents complémentaires

L'ensemble du code source du modèle sous forme de ipython notebooks, de ce rapport au format LATEX ainsi que de l'ensemble des autres documents issus de ce travail (dont les notes personnelles) sont entièrement disponibles en ligne ou en contactant directement l'auteur.