Game-theoretic strengthenings of Menger's property

AMS Sectional Meeting at UNCG

Steven Clontz http://stevenclontz.com

Department of Mathematics and Statistics
Auburn University

November 9, 2014

The Menger property

Definition

A space X is Menger if for every sequence $\langle \mathcal{U}_0, \mathcal{U}_1, \ldots \rangle$ of open covers of X there exists a sequence $\langle \mathcal{F}_0, \mathcal{F}_1, \ldots \rangle$ such that $\mathcal{F}_n \subseteq \mathcal{U}_n, \, |\mathcal{F}_n| < \omega$, and $\bigcup_{n < \omega} \mathcal{F}_n$ is a cover of X.

Proposition

X is σ -compact \Rightarrow *X* is Menger \Rightarrow *X* is Lindelöf.

The Menger property

Definition

A space X is Menger if for every sequence $\langle \mathcal{U}_0, \mathcal{U}_1, \ldots \rangle$ of open covers of X there exists a sequence $\langle \mathcal{F}_0, \mathcal{F}_1, \ldots \rangle$ such that $\mathcal{F}_n \subseteq \mathcal{U}_n, \, |\mathcal{F}_n| < \omega$, and $\bigcup_{n < \omega} \mathcal{F}_n$ is a cover of X.

Proposition

X is σ -compact \Rightarrow *X* is Menger \Rightarrow *X* is Lindelöf.

The Menger game

Game

Let $Men_{C,F}(X)$ denote the $Menger\ game$ with players \mathscr{C} , \mathscr{F} . In round n, \mathscr{C} chooses an open cover \mathscr{C}_n , followed by \mathscr{F} choosing a finite subcollection $\mathscr{F}_n \subseteq \mathscr{C}_n$.

 \mathscr{F} wins the game, that is, $\mathscr{F} \uparrow Men_{C,F}(X)$ if $\bigcup_{n<\omega} \mathcal{F}_n$ is a cover for the space X, and \mathscr{C} wins otherwise.

Theorem (Hurewicz 1926, effectively)

X is Menger if and only if $\mathscr{C} \not \upharpoonright Men_{C,F}(X)$.

The Menger game

Game

Let $Men_{C,F}(X)$ denote the $Menger\ game$ with players \mathscr{C} , \mathscr{F} . In round n, \mathscr{C} chooses an open cover \mathscr{C}_n , followed by \mathscr{F} choosing a finite subcollection $\mathscr{F}_n \subseteq \mathscr{C}_n$.

 \mathscr{F} wins the game, that is, $\mathscr{F} \uparrow Men_{C,F}(X)$ if $\bigcup_{n<\omega} \mathcal{F}_n$ is a cover for the space X, and \mathscr{C} wins otherwise.

Theorem (Hurewicz 1926, effectively)

X is Menger if and only if $\mathscr{C} \not \upharpoonright Men_{C,F}(X)$.

Menger suspected that the subsets of the real line with his property were exactly the σ -compact spaces; however:

Theorem (Fremlin, Miller 1988)

There are ZFC examples of non- σ -compact subsets of the real line which are Menger.

But metrizable non- σ -compact Menger spaces will be *undetermined* for the Menger game.

Theorem (Telgarsky 1984, Scheepers 1995)

Let X be metrizable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if X is σ -compact.

Menger suspected that the subsets of the real line with his property were exactly the σ -compact spaces; however:

Theorem (Fremlin, Miller 1988)

There are ZFC examples of non- σ -compact subsets of the real line which are Menger.

But metrizable non- σ -compact Menger spaces will be *undetermined* for the Menger game.

Theorem (Telgarsky 1984, Scheepers 1995)

Let X be metrizable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if X is σ -compact.

Menger suspected that the subsets of the real line with his property were exactly the σ -compact spaces; however:

Theorem (Fremlin, Miller 1988)

There are ZFC examples of non- σ -compact subsets of the real line which are Menger.

But metrizable non- σ -compact Menger spaces will be *undetermined* for the Menger game.

Theorem (Telgarsky 1984, Scheepers 1995)

Let X be metrizable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if X is σ -compact.

Note that for Lindelöf spaces, metrizability is characterized by regularity and secound countability.

Sketch of Scheeper's proof:

- Using second-countability and the winning strategy for \mathscr{F} , construct certain subsets K_s for $s \in \omega^{<\omega}$ such that $X = \bigcup_{s \in \omega^{<\omega}} K_s$.
- Using regularity, show that each K_s is compact.

By considering winning *limited-information strategies*, we'll be able to factor out this proof a bit.

Note that for Lindelöf spaces, metrizability is characterized by regularity and secound countability.

Sketch of Scheeper's proof:

- Using second-countability and the winning strategy for \mathscr{F} , construct certain subsets K_s for $s \in \omega^{<\omega}$ such that $X = \bigcup_{s \in \omega^{<\omega}} K_s$.
- Using regularity, show that each K_s is compact.

By considering winning *limited-information strategies*, we'll be able to factor out this proof a bit.

Note that for Lindelöf spaces, metrizability is characterized by regularity and secound countability.

Sketch of Scheeper's proof:

- Using second-countability and the winning strategy for \mathscr{F} , construct certain subsets K_s for $s \in \omega^{<\omega}$ such that $X = \bigcup_{s \in \omega^{<\omega}} K_s$.
- Using regularity, show that each K_s is compact.

By considering winning *limited-information strategies*, we'll be able to factor out this proof a bit.

Limited information strategies

Definition

A *(perfect information) strategy* has knowledge of all the past moves of the opponent.

Definition

A *k-tactical strategy* has knowledge of only the past *k* moves of the opponent.

Definition

A *k-Markov strategy* has knowledge of only the past *k* moves of the opponent and the round number.

Limited information strategies

Definition

A *(perfect information) strategy* has knowledge of all the past moves of the opponent.

Definition

A *k-tactical strategy* has knowledge of only the past *k* moves of the opponent.

Definition

A *k-Markov strategy* has knowledge of only the past *k* moves of the opponent and the round number.

Limited information strategies

Definition

A (perfect information) strategy has knowledge of all the past moves of the opponent.

Definition

A *k-tactical strategy* has knowledge of only the past *k* moves of the opponent.

Definition

A *k-Markov strategy* has knowledge of only the past *k* moves of the opponent and the round number.

Obviously,

$$\mathscr{A} \underset{k\text{-tact}}{\uparrow} G \Rightarrow \mathscr{A} \underset{k\text{-mark}}{\uparrow} G \Rightarrow \mathscr{A} \underset{\text{(perfect)}}{\uparrow} G$$

Quesitons

But tactical strategies aren't interesting for the Menger game.

Proposition

For any
$$k < \omega$$
, $\mathscr{F} \uparrow \underset{k\text{-tact}}{\mathsf{Men}_{C,F}(X)}$ if and only if X is compact.

Effectively, \mathscr{F} needs some sort of seed to prevent from being stuck in a loop: there's nothing stopping \mathscr{C} from playing the same open cover during every round of the game.

Obviously,

$$\mathscr{A} \underset{k\text{-tact}}{\uparrow} G \Rightarrow \mathscr{A} \underset{k\text{-mark}}{\uparrow} G \Rightarrow \mathscr{A} \underset{\text{(perfect)}}{\uparrow} G$$

But tactical strategies aren't interesting for the Menger game.

Proposition

For any
$$k < \omega$$
, $\mathscr{F} \underset{k\text{-tact}}{\uparrow} \mathsf{Men}_{C,F}(X)$ if and only if X is compact.

Effectively, \mathscr{F} needs some sort of seed to prevent from being stuck in a loop: there's nothing stopping \mathscr{C} from playing the same open cover during every round of the game.

Comparitively, Markov strategies are very powerful.

Proposition

If X is
$$\sigma$$
-compact, then $\mathscr{F} \uparrow \underset{1-mark}{\wedge} \mathsf{Men}_{C,F}(X)$.

Proof.

Let $X = \bigcup_{n < \omega} K_n$. During round n, \mathscr{F} picks a finite subcollection of the last open cover played by \mathscr{C} (the only one \mathscr{F} remembers) which covers K_n .

Without assuming regularity, we can't quite reverse the implication, but we can get close.

Definition

A subset *Y* of *X* is *relatively compact* if for every open cover for *X*, there exists a finite subcollection which covers *Y*.

Proposition

If X is σ -relatively-compact, then $\mathscr{F} \ \uparrow \ \mathsf{Men}_{C,F}(X)$.

Proposition

For regular spaces, $Y \subseteq X$ is relatively compact if and only if \overline{Y} is compact. So σ -relatively-compact regular spaces are exactly the σ -compact regular spaces.

Without assuming regularity, we can't quite reverse the implication, but we can get close.

Definition

A subset Y of X is *relatively compact* if for every open cover for X, there exists a finite subcollection which covers Y.

Proposition

If X is σ -relatively-compact, then $\mathscr{F} \underset{1-mark}{\uparrow} \mathsf{Men}_{C,F}(X)$.

Proposition

For regular spaces, $Y \subseteq X$ is relatively compact if and only if \overline{Y} is compact. So σ -relatively-compact regular spaces are exactly the σ -compact regular spaces.

Without assuming regularity, we can't quite reverse the implication, but we can get close.

Definition

A subset Y of X is *relatively compact* if for every open cover for X, there exists a finite subcollection which covers Y.

Proposition

If X is σ -relatively-compact, then $\mathscr{F} \underset{1-mark}{\uparrow} \mathsf{Men}_{C,F}(X)$.

Proposition

For regular spaces, $Y \subseteq X$ is relatively compact if and only if \overline{Y} is compact. So σ -relatively-compact regular spaces are exactly the σ -compact regular spaces.

Theorem

 $\mathscr{F} \uparrow_{1-mark} \mathsf{Men}_{C,F}(X)$ if and only if X is σ -relatively-compact.

Proof

Let $\sigma(\mathcal{U}, n)$ represent a 1-Markov strategy. For every open cover $\mathcal{U} \in \mathfrak{C}$, $\sigma(\mathcal{U}, n)$ witnesses relative compactness for the set

$$R_n = \bigcap_{\mathcal{U} \in \mathfrak{C}} \bigcup \sigma(\mathcal{U}, n)$$

If X is not σ -relatively compact, fix $x \notin R_n$ for any $n < \omega$. Then $\mathscr C$ can beat σ by choosing $\mathcal U_n \in \mathfrak C$ during each round such that $x \notin \bigcup \sigma(\mathcal U_n, n)$.

Theorem

F

 \uparrow Men_{C,F}(X) if and only if X is σ -relatively-compact.

Proof.

Let $\sigma(\mathcal{U}, n)$ represent a 1-Markov strategy. For every open cover $\mathcal{U} \in \mathfrak{C}$, $\sigma(\mathcal{U}, n)$ witnesses relative compactness for the set

$$R_n = \bigcap_{\mathcal{U} \in \mathfrak{C}} \bigcup \sigma(\mathcal{U}, n)$$

If X is not σ -relatively compact, fix $x \notin R_n$ for any $n < \omega$. Then $\mathscr C$ can beat σ by choosing $\mathcal U_n \in \mathfrak C$ during each round such that $x \notin \bigcup \sigma(\mathcal U_n, n)$.

Theorem

 $\mathscr{F} \uparrow_{1-mark} \mathsf{Men}_{C,F}(X)$ if and only if X is σ -relatively-compact.

Proof.

Let $\sigma(\mathcal{U}, n)$ represent a 1-Markov strategy. For every open cover $\mathcal{U} \in \mathfrak{C}$, $\sigma(\mathcal{U}, n)$ witnesses relative compactness for the set

$$R_n = \bigcap_{\mathcal{U} \in \mathfrak{C}} \bigcup \sigma(\mathcal{U}, n)$$

If X is not σ -relatively compact, fix $x \notin R_n$ for any $n < \omega$. Then $\mathscr C$ can beat σ by choosing $\mathcal U_n \in \mathfrak C$ during each round such that $x \notin \bigcup \sigma(\mathcal U_n, n)$.

Corollary

For regular spaces X, $\mathscr{F} \underset{1-mark}{\uparrow} Men_{C,F}(X)$ if and only if X is σ -compact.

We can complete Telgarsky's/Scheeper's result by showing the following:

Theorem

For second countable spaces X, $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if $\mathscr{F} \uparrow Men_{C,F}(X)$.

Corollary

For regular spaces X, $\mathscr{F} \underset{1-mark}{\uparrow} Men_{C,F}(X)$ if and only if X is σ -compact.

We can complete Telgarsky's/Scheeper's result by showing the following:

Theorem

For second countable spaces X, $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if $\mathscr{F} \uparrow_{1-mark} Men_{C,F}(X)$.

Proof

It's sufficient to assume all covers contain only basic open sets, and since X is a second-countable space, there are only countably many finite collections of basic open sets.

Let σ be a perfect information strategy, and suppose we've defined open covers $\mathcal{U}_{s'}$ for $s' \leq s \in \omega^{<\omega}$. If \mathcal{U} is an arbitrary open cover, then there are only countably many choices for the finite subcollection

$$\sigma(\mathcal{U}_{s \upharpoonright 1}, \ldots, \mathcal{U}_{s}, \mathcal{U}) \subseteq \mathcal{U}$$

Proof

It's sufficient to assume all covers contain only basic open sets, and since X is a second-countable space, there are only countably many finite collections of basic open sets.

Let σ be a perfect information strategy, and suppose we've defined open covers $\mathcal{U}_{s'}$ for $s' \leq s \in \omega^{<\omega}$. If \mathcal{U} is an arbitrary open cover, then there are only countably many choices for the finite subcollection

$$\sigma(\mathcal{U}_{s \upharpoonright 1}, \ldots, \mathcal{U}_{s}, \mathcal{U}) \subseteq \mathcal{U}$$

Thus we may define open covers $\mathcal{U}_{s^{\frown}\langle n\rangle}$ for each $n < \omega$ such that for an arbitrary open cover \mathcal{U} ,

$$\sigma(\mathcal{U}_{s \upharpoonright 1}, \dots, \mathcal{U}_{s}, \mathcal{U}) = \sigma(\mathcal{U}_{s \upharpoonright 1}, \dots, \mathcal{U}_{s}, \mathcal{U}_{s \frown \langle n \rangle})$$

for some $n < \omega$.

Let $t:\omega\to\omega^{<\omega}$ be a bijection. During round n and seeing only the latest open cover \mathcal{U},\mathscr{F} may use the following 1-Markov strategy:

$$\tau(\mathcal{U}, n) = \sigma(\mathcal{U}_{t(n)}), \ldots, \mathcal{U}_{t(n)}, \mathcal{U}$$

Thus we may define open covers $\mathcal{U}_{\mathbf{s}^{\frown}\langle n\rangle}$ for each $n < \omega$ such that for an arbitrary open cover \mathcal{U} ,

$$\sigma(\mathcal{U}_{\mathsf{S}\upharpoonright \mathsf{1}},\ldots,\mathcal{U}_{\mathsf{S}},\mathcal{U}) = \sigma(\mathcal{U}_{\mathsf{S}\upharpoonright \mathsf{1}},\ldots,\mathcal{U}_{\mathsf{S}},\mathcal{U}_{\mathsf{S}^\frown \langle n \rangle})$$

for some $n < \omega$.

Let $t: \omega \to \omega^{<\omega}$ be a bijection. During round n and seeing only the latest open cover \mathcal{U} , \mathscr{F} may use the following 1-Markov strategy:

$$\tau(\mathcal{U}, \mathbf{n}) = \sigma(\mathcal{U}_{t(\mathbf{n}) \upharpoonright 1}, \dots, \mathcal{U}_{t(\mathbf{n})}, \mathcal{U})$$

Suppose there exists a counter-attack $\langle \mathcal{V}_0, \mathcal{V}_1, \ldots \rangle$ which defeats the 1-Markov strategy τ . Then there exists $f: \omega \to \omega$ such that, if $\mathcal{V}^n = \mathcal{V}_{t^{-1}(f \upharpoonright n)}$

$$\begin{array}{ll}
x & \notin & \bigcup \tau(\mathcal{V}^n, t^{-1}(f \upharpoonright n)) \\
&= & \bigcup \sigma(\mathcal{U}_{f \upharpoonright 1}, \dots, \mathcal{U}_{f \upharpoonright n}, \mathcal{V}^n) \\
&= & \bigcup \sigma(\mathcal{U}_{f \upharpoonright 1}, \dots, \mathcal{U}_{f \upharpoonright n}, \mathcal{U}_{f \upharpoonright (n+1)})
\end{array}$$

Thus $\langle \mathcal{U}_{f|1}, \mathcal{U}_{f|2}, \ldots \rangle$ is a successful counter-attack by \mathscr{C} against the perfect information strategy σ , showing $\mathscr{O} \uparrow \mathit{Men}_{G_{\sigma}}(X) \Rightarrow \mathscr{O} \uparrow \mathit{Men}_{G_{\sigma}}(X)$.

Suppose there exists a counter-attack $\langle \mathcal{V}_0, \mathcal{V}_1, \ldots \rangle$ which defeats the 1-Markov strategy τ . Then there exists $f: \omega \to \omega$ such that, if $\mathcal{V}^n = \mathcal{V}_{t^{-1}(f \upharpoonright n)}$

$$\begin{array}{ll}
x & \notin & \bigcup \tau(\mathcal{V}^n, t^{-1}(f \upharpoonright n)) \\
& = & \bigcup \sigma(\mathcal{U}_{f \upharpoonright 1}, \dots, \mathcal{U}_{f \upharpoonright n}, \mathcal{V}^n) \\
& = & \bigcup \sigma(\mathcal{U}_{f \upharpoonright 1}, \dots, \mathcal{U}_{f \upharpoonright n}, \mathcal{U}_{f \upharpoonright (n+1)})
\end{array}$$

Thus $\langle \mathcal{U}_{f \mid 1}, \mathcal{U}_{f \mid 2}, \ldots \rangle$ is a successful counter-attack by \mathscr{C} against the perfect information strategy σ , showing

$$\mathscr{O}\uparrow \mathit{Men}_{C,F}(X)\Rightarrow \mathscr{O}\uparrow_{1,\mathit{mark}} \mathit{Men}_{C,F}(X).$$

It's speculated that there are spaces X_k such that for the Banach-Mazur game, \mathcal{N} \uparrow $BM_{E,N}(X_k)$ but

 $\mathcal{N} \underset{k\text{-tact}}{\uparrow} BM_{E,N}(X_k)$. (This is true for k=1.)

Theorem

 $\mathscr{F} \underset{k+2\text{-mark}}{\uparrow} \underset{\mathsf{Men}_{C,F}(X)}{\mathsf{Men}_{C,F}(X)}$ if and only if $\mathscr{F} \underset{2\text{-mark}}{\uparrow} \underset{\mathsf{Men}_{C,F}(X)}{\mathsf{Men}_{C,F}(X)}$.

Proof.

$$\tau(\langle \mathcal{U}, \mathcal{V} \rangle, n+1) = \bigcup_{m < k+2} \sigma(\langle \underbrace{\mathcal{U}, \dots, \mathcal{U}}_{k+1-m}, \underbrace{\mathcal{V}, \dots, \mathcal{V}}_{m+1} \rangle, (n+1)(k+2) + m)$$

It's speculated that there are spaces X_k such that for the Banach-Mazur game, $\mathcal{N} \uparrow BM_{E,N}(X_k)$ but

 \mathcal{N} $\underset{k\text{-tact}}{\uparrow}$ $BM_{E,N}(X_k)$. (This is true for k=1.)

Theorem

 $\mathscr{F} \underset{k+2\text{-mark}}{\uparrow} Men_{C,F}(X)$ if and only if $\mathscr{F} \underset{2\text{-mark}}{\uparrow} Men_{C,F}(X)$.

Proof.

$$\tau(\langle \mathcal{U}, \mathcal{V} \rangle, n+1) = \bigcup_{m < k+2} \sigma(\langle \underbrace{\mathcal{U}, \dots, \mathcal{U}}_{k+1-m}, \underbrace{\mathcal{V}, \dots, \mathcal{V}}_{m+1} \rangle, (n+1)(k+2) + m)$$

Having knowledge of *two* of an opponent's moves allows a player to react when the opponent changes her moves, something impossible to do using a 1-tactical or 1-Markov strategy.

Definition

Let $\kappa^\dagger = \kappa \cup \{\infty\}$ be the *one point Lindelöf-ication* of discrete κ : neighborhoods of ∞ are exactly the co-countable sets containing it.

 κ^{\dagger} is a simple space which is a regular and Lindelöf, but not second-countable or σ -compact. Thus \mathscr{F} γ $Men_{C,F}(\kappa^{\dagger})$, but

it's easy to see that $\mathscr{F}\uparrow Men_{C,F}(\kappa^{\dagger})$. What about 2-Markov strategies?

Having knowledge of *two* of an opponent's moves allows a player to react when the opponent changes her moves, something impossible to do using a 1-tactical or 1-Markov strategy.

Definition

Let $\kappa^\dagger=\kappa\cup\{\infty\}$ be the *one point Lindelöf-ication* of discrete κ : neighborhoods of ∞ are exactly the co-countable sets containing it.

 κ^{\dagger} is a simple space which is a regular and Lindelöf, but not second-countable or σ -compact. Thus \mathscr{F} $\begin{picture}(\gamma \\ 1-\text{mark} \end{picture} \end{picture}$

it's easy to see that $\mathscr{F} \uparrow Men_{C,F}(\kappa^{\dagger})$. What about 2-Markov strategies?

Having knowledge of *two* of an opponent's moves allows a player to react when the opponent changes her moves, something impossible to do using a 1-tactical or 1-Markov strategy.

Definition

Let $\kappa^\dagger=\kappa\cup\{\infty\}$ be the *one point Lindelöf-ication* of discrete κ : neighborhoods of ∞ are exactly the co-countable sets containing it.

 κ^\dagger is a simple space which is a regular and Lindelöf, but not second-countable or σ -compact. Thus \mathscr{F} $\begin{picture} γ Men_{C,F}(\kappa^\dagger)$, but \\ $^{1-\text{mark}}$ \end{picture}$

it's easy to see that $\mathscr{F}\uparrow Men_{C,F}(\kappa^{\dagger})$. What about 2-Markov strategies?

The game $Men_{C,F}(\kappa^{\dagger})$ essentially involves choosing countable and finite subsets of κ . Conveniently, there already exists an infinite game also involving the countable and finite subsets of κ in the literature.

Game (Scheepers 1991)

Let $Fill_{C,F}^{\cup,\subset}(\kappa)$ denote the *strict union filling game* with two players \mathscr{C},\mathscr{F} . In round 0, \mathscr{C} chooses $C_0\in [\kappa]^{\leq \omega}$, followed by \mathscr{F} choosing $F_0\in [\kappa]^{<\omega}$. In round n+1, \mathscr{C} chooses $C_{n+1}\in [\kappa]^{\leq \omega}$ such that $C_{n+1}\supset C_n$, followed by \mathscr{F} choosing $F_{n+1}\in [\kappa]^{<\omega}$. \mathscr{F} wins the game if $\bigcup_{n<\omega}F_n\supseteq\bigcup_{n<\omega}C_n$; otherwise, \mathscr{C} wins.

The game $Men_{C,F}(\kappa^{\dagger})$ essentially involves choosing countable and finite subsets of κ . Conveniently, there already exists an infinite game also involving the countable and finite subsets of κ in the literature.

Game (Scheepers 1991)

Let $Fill_{C,F}^{\cup,\subset}(\kappa)$ denote the *strict union filling game* with two players \mathscr{C} , \mathscr{F} . In round 0, \mathscr{C} chooses $C_0 \in [\kappa]^{\leq \omega}$, followed by \mathscr{F} choosing $F_0 \in [\kappa]^{<\omega}$. In round n+1, \mathscr{C} chooses $C_{n+1} \in [\kappa]^{\leq \omega}$ such that $C_{n+1} \supset C_n$, followed by \mathscr{F} choosing $F_{n+1} \in [\kappa]^{<\omega}$. \mathscr{F} wins the game if $\bigcup_{n<\omega} F_n \supseteq \bigcup_{n<\omega} C_n$; otherwise, \mathscr{C} wins.

Definition

For two functions f, g we say f is almost compatible with g $(f \wr g)$ if $|\{x \in \text{dom}(f) \cap \text{dom}(g) : f(x) \neq g(x)\}| < \omega$.

Definition

 $S(\kappa)$ states that there exist functions $f_A:A\to\omega$ for each $A\in [\kappa]^{\leq \omega}$ such that $|f_A^{-1}(n)|<\omega$ for all $n<\omega$ and $f_A\wr f_B$ for all $A,B\in [\kappa]^\omega$.

Theorem (Scheepers 1991

$$S(\omega_1)$$
; $\neg S(\kappa)$ for $\kappa > 2^{\omega}$; $Con(S(2^{\omega}) + \neg CH)$.

Definition

For two functions f, g we say f is almost compatible with g $(f \wr g)$ if $|\{x \in \text{dom}(f) \cap \text{dom}(g) : f(x) \neq g(x)\}| < \omega$.

Definition

 $S(\kappa)$ states that there exist functions $f_A:A\to\omega$ for each $A\in [\kappa]^{\leq\omega}$ such that $|f_A^{-1}(n)|<\omega$ for all $n<\omega$ and $f_A\wr f_B$ for all $A,B\in [\kappa]^\omega$.

Theorem (Scheepers 1991)

$$S(\omega_1)$$
; $\neg S(\kappa)$ for $\kappa > 2^{\omega}$; $Con(S(2^{\omega}) + \neg CH)$.

Definition

For two functions f, g we say f is almost compatible with g $(f \wr g)$ if $|\{x \in \text{dom}(f) \cap \text{dom}(g) : f(x) \neq g(x)\}| < \omega$.

Definition

 $S(\kappa)$ states that there exist functions $f_A:A\to\omega$ for each $A\in [\kappa]^{\leq\omega}$ such that $|f_A^{-1}(n)|<\omega$ for all $n<\omega$ and $f_A\wr f_B$ for all $A,B\in [\kappa]^\omega$.

Theorem (Scheepers 1991)

$$S(\omega_1)$$
; $\neg S(\kappa)$ for $\kappa > 2^{\omega}$; $Con(S(2^{\omega}) + \neg CH)$.

Theorem (Scheepers 1991)

If
$$S(\kappa)$$
, then $\mathscr{F} \underset{\text{2-tact}}{\uparrow} \text{Fill}_{C,F}^{\cup,\subset}(\kappa)$.

We slightly adapt Scheeper's game to characterize $Men_{C,F}(\kappa^{\dagger})$ purely combinatorially.

Quesitons

Definition

Let $Fill_{C,F}^{\cap}(\kappa)$ denote the *intersection filling game* analogous to $Fill_{C,F}^{\cup,\subset}(\kappa)$, except that $\mathscr C$ has no restriction on the countable sets she chooses, but $\mathscr F$ need only ensure that $\bigcup_{n<\omega}F_n\supseteq\bigcap_{n<\omega}C_n$ to win the game.

Theorem (Scheepers 1991)

If
$$S(\kappa)$$
, then $\mathscr{F} \underset{\text{2-tact}}{\uparrow} Fill_{C,F}^{\cup,\subset}(\kappa)$.

We slightly adapt Scheeper's game to characterize $Men_{C,F}(\kappa^{\dagger})$ purely combinatorially.

Definition

Let $Fill_{C,F}^{\cup,\subset}(\kappa)$ denote the *intersection filling game* analogous to $Fill_{C,F}^{\cup,\subset}(\kappa)$, except that $\mathscr C$ has no restriction on the countable sets she chooses, but $\mathscr F$ need only ensure that $\bigcup_{n<\omega}F_n\supseteq\bigcap_{n<\omega}C_n$ to win the game.

$$\mathscr{F} \ \underset{k\text{-mark}}{\uparrow} \ \mathsf{Men}_{\mathcal{C},\mathcal{F}}(\kappa^\dagger) \ \textit{if and only if} \ \mathscr{F} \ \underset{k\text{-mark}}{\uparrow} \ \mathsf{Fill}_{\mathcal{C},\mathcal{F}}^\cap(\kappa).$$

Theorem

If
$$S(\kappa)$$
, then $\mathscr{F} \uparrow_{2-mark} Fill_{C,F}^{\cap}(\kappa)$.

$$\mathscr{F} \ \underset{k\text{-mark}}{\uparrow} \ \mathsf{Men}_{C,F}(\kappa^\dagger) \ \textit{if and only if} \ \mathscr{F} \ \underset{k\text{-mark}}{\uparrow} \ \mathsf{Fill}_{C,F}^\cap(\kappa).$$

Theorem

If
$$S(\kappa)$$
, then $\mathscr{F} \uparrow_{2-mark} Fill_{C,F}^{\cap}(\kappa)$.

If
$$S(\kappa)$$
, then $\mathscr{F} \underset{\text{2-mark}}{\uparrow} \text{Fill}_{C,F}^{\cap}(\kappa)$.

Proof.

Let $f_A: A \to \omega$ witness $S(\kappa)$. Then we define the winning 2-Markov strategy σ as follows:

$$\sigma(\langle A \rangle, 0) = \{ \alpha \in A : f_A(\alpha) = 0 \}$$

$$\sigma(\langle A,B\rangle,n+1)=\{\alpha\in A\cap B:f_B(\alpha)\leq n+1 \text{ or } f_A(\alpha)\neq f_B(\alpha)\}$$

Corollary

$$\mathscr{F} \underset{2-mark}{\uparrow} Men_{C,F}(\omega_1^{\dagger}), \ but \ \mathscr{F} \underset{1-mark}{\not\uparrow} Men_{C,F}(\omega_1^{\dagger}).$$

If
$$S(\kappa)$$
, then $\mathscr{F} \underset{\text{2-mark}}{\uparrow} \text{Fill}_{C,F}^{\cap}(\kappa)$.

Proof.

Let $f_A: A \to \omega$ witness $S(\kappa)$. Then we define the winning 2-Markov strategy σ as follows:

Quesitons

$$\sigma(\langle A \rangle, 0) = \{ \alpha \in A : f_A(\alpha) = 0 \}$$

$$\sigma(\langle A,B\rangle,n+1)=\{\alpha\in A\cap B:f_B(\alpha)\leq n+1 \text{ or } f_A(\alpha)\neq f_B(\alpha)\}$$

Corollary

$$\mathscr{F} \uparrow \operatorname{Men}_{C,F}(\omega_1^{\dagger}), \ \operatorname{but} \mathscr{F} \uparrow \operatorname{Men}_{C,F}(\omega_1^{\dagger}).$$

Does
$$\mathscr{F} \underset{2\text{-mark}}{\uparrow} \mathsf{Fill}_{C,F}^{\cap}(\kappa) \text{ imply } S(\kappa)$$
?

Question

Are
$$\mathscr{F} \uparrow Men_{C,F}(X)$$
 and $\mathscr{F} \uparrow Men_{C,F}(X)$ distinct?

A "yes" for the first is a "yes" for the second, since $\neg S(\kappa)$ for $\kappa > 2^{\omega}$ but $\mathscr{F} \uparrow Men_{C,F}(\kappa^{\dagger})$ for all κ .

Does
$$\mathscr{F} \uparrow_{2\text{-mark}} Fill_{C,F}^{\cap}(\kappa) \text{ imply } S(\kappa)$$
?

Question

Are
$$\mathscr{F} \uparrow Men_{C,F}(X)$$
 and $\mathscr{F} \uparrow Men_{C,F}(X)$ distinct?

A "yes" for the first is a "yes" for the second, since $\neg S(\kappa)$ for $\kappa > 2^{\omega}$ but $\mathscr{F} \uparrow Men_{C,F}(\kappa^{\dagger})$ for all κ .

Does
$$\mathscr{F} \uparrow_{2\text{-mark}} Fill_{C,F}^{\cap}(\kappa) \text{ imply } S(\kappa)$$
?

Question

Are
$$\mathscr{F} \uparrow Men_{C,F}(X)$$
 and $\mathscr{F} \uparrow Men_{C,F}(X)$ distinct?

A "yes" for the first is a "yes" for the second, since $\neg S(\kappa)$ for $\kappa > 2^{\omega}$ but $\mathscr{F} \uparrow Men_{C,F}(\kappa^{\dagger})$ for all κ .

Where does $\mathscr{F} \uparrow \underset{2\text{-mark}}{\uparrow} Men_{C,F}(X)$ fit in with other properties between σ -(relatively-)compact and Menger?

Assuming T_3 , properties which come to mind from the literature are implied by $\mathscr{F} \uparrow Men_{C,F}(X)$: e.g. Alster (Aurichi, Tall 2013), and thus productively Lindelöf (Alster 1988) and Hurewicz (Tall 2009).

Menger Spaces and the Menger Game 1-Markov Strategies k-Markov strategies for $k \geq 2$

Questions? Thanks for listening!