ANALISIS STRUKTUR BANGUNAN KEKUATAN PONDASI TIANG PANCANG

By: Hendra Budi Grup / Source : M Noer Ilham

_			_	 	_	
Α.		_ ^			^	ш

DATA	HASIL PEN	GUJIAN	AN LABORATORIUM (DATA BOR TANAH)					SPT
No	Kedalaman		Jenis	c _u γ φ		q _f	Nilai SPT	
	z ₁ (m)	z ₂ (m)	Tanah	(kN/m ²)	(kN/m ³)	()	(kN/m ²)	N
1	0,00	5,00	Tanah	0,00	0	0	0,00	8
2	5,00	10,00	Pasir	0,00	15,974	0	0,00	0
3	10,00	15,00	Lempung	0,00	0	0	490,00	18
4	15,00	20,00	Pasir	63,70	15,484	0	5880,00	20
5	20,00	25,00	Lempung	63,70	15,484	12	9800,00	23

B. DATA BAHAN

Jenis tiang pancang: Beton bertulang tampang Persegi

Ukuran tiang pancang,	D =	0,30	m
Panjang tiang pancang,	L =	27,00	m
Kuat tekan beton tiang pancang,	f _c ' =	35	MPa
Berat beton bertulang,	W _C =	24	kN/m ³

C. TAHANAN AKSIAL TIANG PANCANG

1. BERDASARKAN KEKUATAN BAHAN

Luas penampang tiang pancang,

Berat tiang pancang,

Kuat tekan beton tiang pancang,

Kapasitas dukung nominal tiang pancang,

Faktor reduksi kekuatan,

Tahanan aksial tiang pancang,

$$A = D^2 = 0,0900$$
 m^2 kN $f_c' = 35000$ kPa

2. BERDASARKAN DATA BOR TANAH (SKEMPTON)

a. Tahanan ujung

Tahanan ujung nominal dihitung dengan rumus:

 $P_b = A_b * C_b * N_c$

 $A_b = Luas$ penampang ujung bawah tiang (m²),

 $C_b = \text{Kohesi tanah di bawah dasar tiang } (kN/m^2),$

 N_c = Faktor daya dukung.

Diameter tiang pancang,

Luas tampang tiang pancang,

Kohesi tanah di sekitar dasar tiang,

Faktor daya dukung menurut Skempton,

Tahanan ujung nominal tiang pancang:

$$D = \begin{bmatrix} 0,30 & m \\ A_b = D^2 = 0,0900 & m^2 \\ c_b = 14,70 & kN/m^2 \\ N_c = 9 & & \\ P_b = A_b * c_b * N_c = 11,907 & kN \end{bmatrix}$$

b. Tahanan gesek

Tahanan gesek nominal menurut Skempton:

$$P_s = \Sigma [a_d * c_u * A_s]$$

 a_d = faktor adhesi

C_{II} = Kohesi tanah di sepanjang tiang (kN/m²)

 $A_s = Luas permukaan dinding tiang (m²).$

Faktor adhesi untuk jenis tanah lempung pada tiang pancang yang nilainya tergantung dari nilai kohesi tanah, menurut Skempton, diambil : \Rightarrow $a_d = 0.2 + [0.98]^{cu}$

Diameter tiang pancang,

Luas permukaan dinding segmen tiang,

 $D = \frac{0.300}{A_s = 4 * D * L_1} m$

 L_1 = panjang segmen tiang pancang yang ditinjau (m).

Perhitungan tahanan gesek nominal tiang

No		Kedala	man	L ₁	As	C _u	a _d	Ps
		z ₁ (m)	z ₂ (m)	(m)	(m ²)	(kN/m ²)		(kN)
	1	0,00	5,00	5,0	6,0000	0,00	1,20	0,000
	2	5,00	10,00	5,0	6,0000	0,00	1,20	0,000
;	3	10,00	15,00	5,0	6,0000	0,00	1,20	0,000
	4	15,00	27,00	12,0	14,4000	14,70	0,94	199,627

Tahanan gesek nominal tiang,

 $P_s = \Sigma a_d * c_u * A_s = 199,627$ kN

c. Tahanan aksial tiang pancang

Tahanan nominal tiang pancang,

Faktor reduksi kekuatan,

Tahanan aksial tiang pancang,

$$P_n = P_b + P_s =$$
 $0,60$
 $\phi * P_n =$
 $126,92$
kN

3. BERDASARKAN HASIL UJI SONDIR (BAGEMANN)

a. Tahanan ujung

Tahanan ujung nominal dihitung dengan rumus:

$$P_b = \omega * A_b * q_c$$

 ω = faktor reduksi nilai tahanan ujung nominal tiang,

 $A_b = luas ujung bawah tiang (m^2),$

q_c = tahanan penetrasi kerucut statis yang merupakan nilai rata-rata dihitung dari 8.D di atas dasar tiang sampai 4.D di bawah dasar tiang (kN/m²),

Diameter tiang pancang,

Luas tampang tiang pancang,

$$D = \begin{bmatrix} 0,30 & m \\ A_b = D^2 = 0,0900 & m^2 \end{bmatrix}$$

Tahanan penetrasi kerucut statis rata-rata dari 8.D di atas dasar s.d. 4.D di bawah dasar

tiang pancang,

$$q_c = \frac{100}{\text{kg/cm}^2}$$

 \rightarrow

$$q_{c} = 10000 \text{ kN/m}^{2}$$

$$\omega = 0.50$$

$$P_{b} = \omega * A_{b} * q_{c} = 450,000 \text{ kN}$$

Faktor reduksi nilai tahanan ujung nominal tiang,

Tahanan ujung nominal tiang pancang:

b. Tahanan gesek

Tahanan gesek nominal menurut Skempton dihitung dg rumus :

$$P_s = \Sigma [A_s * q_f]$$

 $A_f = Luas permukaan segmen dinding tiang (m²).$

$$A_s = \pi * D * L_1$$

 q_f = tahanan gesek kerucut statis rata-rata (kN/m).

No	Kedalaman		Kedalaman L ₁ A _s		q _f	P _s	
	z ₁ (m)	z ₂ (m)	(m)	(m ²)	(kN/m ²)	(kN)	
1	0,00	5,00	5,0	6,0000	0,00	0,00	
2	5,00	10,00	5,0	6,0000	0,00	0,00	
3	10,00	15,00	5,0	6,0000	490,00	2940,00	
4	15,00	27,00	12,0	14,4000	19,50	280,80	
D 7 [Λ * α]							

$$P_s = \Sigma [A_s * q_f] = 3220,80$$

c. Tahanan aksial tiang pancang

Tahanan nominal tiang pancang,

Faktor reduksi kekuatan,

Tahanan aksial tiang pancang,

$$P_n = P_b + P_s =$$
 3670,80 kN
 $\phi =$ 0,60 kN
 $\phi * P_n =$ 2202,48 kN

4. BERDASARKAN HASIL UJI SPT (MEYERHOFF)

Kapasitas nominal tiang pancang secara empiris dari nilai N hasil pengujian SPT menurut Meyerhoff dinyatakan dengan rumus :

$$P_n = 40 * N_b * A_b + \check{N} * A_s$$
 (kN)

dan harus
$$\leq$$
 $P_n = 380 * \check{N} * A_b$ (kN)

 N_b = nilai SPT di sekitar dasar tiang, dihitung dari 8.D di atas dasar tiang s.d 4.D di bawah dasar tiang,

Ň = nilai SPT rata-rata di sepanjang tiang,

 $A_b = luas dasar tiang (m^2)$

 $A_s = luas selimut tiang (m²)$

Berdasarkan hasil pengujian SPT diperoleh data sbb.

No	Kedalaman		Nilai SPT	1.	L ₁ * N
INO	Neuaia	IIIaII	INIIAI OF I	L ₁	L1 IN
	z ₁ (m)	z ₂ (m)	N	(m)	
1	0,00	5,00	8	5,0	40,0
2	5,00	10,00	0	5,0	0,0
3	10,00	15,00	18	5,0	90,0
4	15,00	27,00	20	12,0	240,0
				27,0	370,0

Nilai SPT rata-rata di sepanjang tiang,

$$\check{N} = \Sigma L_1^* N / \Sigma L_1 = 13,70$$

Nilai SPT di sekitar dasar tiang (8.D di atas dasar tiang s.d 4.D di bawah dasar tiang),

				$N_b =$	20,00	
Diameter tiang pancang,				D =	0,30	m
Panjang tiang pancang,				L =	27,00	m
Luas dasar tiang pancang,			$A_b = \pi /$	$4 * D^2 =$	0,0900	m ²
Luas selimut tiang pancang,			$A_s = \pi^{-1}$	* D * L =	32,4000	m ²
			$P_n = 40 * N_b * A_b +$	$\check{N} * A_s =$	516	kN
	P_n	>	380 *	$\check{N} * A_b =$	468,67	kN
Kapasitas nominal tiang pancang,				$P_n =$	468,67	kN
Faktor reduksi kekuatan,				φ =	0,60	
Tahanan aksial tiang pancang,			\rightarrow	$\phi * P_n =$	281,20	kN

5. REKAP TAHANAN AKSIAL TIANG PANCANG

No	Uraian Tahanan Aksial Tiang Pancang	ф * Р _п	
1	Berdasarkan kekuatan bahan	525,01	
2	Berdasarkan data bor tanah (Skempton)	126,92	
3	Berdasarkan hasil uji sondir (Bagemann)	2202,48	
4	Berdasarkan hasil uji SPT (Meyerhoff)	281,20	
Daya o	126,92	kN	
Diamb	φ * P _n =	120,00	kN

D. TAHANAN LATERAL TIANG PANCANG

1. BERDASARKAN DEFLEKSI TIANG MAKSIMUM (BROMS)

Tahanan lateral tiang (H) kategori tiang panjang, dapat dihitung dengan persamaan :

$$H = y_o * k_h * D / [2 * \beta * (e * \beta + 1)]$$
 dengan,
$$\beta = [k_h * D / (4 * E_c * I_c)]^{0.25}$$

Tahanan lateral nominal tiang pancang,

$$H = y_0 * k_h * D / [2 * \beta * (e * \beta + 1)] = 32,60 \text{ kN}$$
 Faktor reduksi kekuatan,
$$\phi = 0,60$$
 Tahanan lateral tiang pancang,
$$\Rightarrow \phi * H_n = 19,56 \text{ kN}$$

2. BERDASARKAN MOMEN MAKSIMUM (BRINCH HANSEN)

Kuat lentur beton tiang pancang,

Tahanan momen,

Momen maksimum,

- /		
$f_b = 0.40 * f_c' * 10^3 =$	14000	kN/m²
$W = I_c / (D/2) =$	0,00265	m ³
$M_v = f_b^* W =$	37,11	kNm

Kohesi tanah rata-rata di sepanjang tiang

No	Kedalaman		L ₁	C _u	c _u * L ₁
	z ₁ (m) z ₂ (m)		(m)	(kN/m ²)	
1	0,00	5,00	5,0	0,00	0,00
2	5,00	10,00	5,0	0,00	0,00
3	10,00	15,00	5,0	0,00	0,00
4	15,00	17,00	2,0	63,70	127,40
		$\Sigma L_1 =$	17,0	$\Sigma c_u^* L_1 =$	127,40

Kohesi tanah rata-rata,

$$\check{c}_{u} = \Sigma [c_{u}^{*} L_{1}] / \Sigma L_{1} = 7,494117647 \text{ kN/m}^{2}$$

$$f = H_n / [9 * č_u * D]$$

g = L - (f + 1.5 * D)

$$= H_n / [9 * \check{c}_u * D]$$
 pers.(1)

$$M_y = H_n * (e + 1.5 * D + 0.5 * f)$$

$$M_y = 9 / 4 * D * \check{c}_u * g^2$$

Dari pers.(1):

Dari pers.(2):

g =	26,55	-0,049421	* H _n
$a^2 =$	0.002442	* H ²	-2 624

$g^2 =$	0,002442	* H _n ²	-2,62428 * H _n +	704,90
			9 / 4 * D * c _u =	5,059
M _y =	H _n * (0,650	0,02471 * H _n)	
M _y =	0,02471	* H _u ²	0,65000 * H _n	
M _y =	0,0123554	* H _u ²	-13,2750 * H _n	3565,770
0 =	0,01236	* H _u ²	13,9250 * H _n	-3565,770

Dari pers.(4):

Dari pers.(3):

Pers.kuadrat:

Dari pers. kuadrat, diperoleh tahanan lateral nominal, $H_n =$			215,040	kN			
					f =	10,628	m
			$M_{max} = H_n$	* (e + 1.5 * D +	0.5 * f) =	1282,454	kNm
	M_{max}	> 1	Л _y	→ T	ermasuk t	iang panjang (OK)
Dari pers.(3):	$M_y =$	H _n * (0,650	0,02471 *	H _n)		
		37,11	=	0,02471 *	H_n^2	0,65000	* H _u
Pers.kuadrat :	0 =	0,02471 *	H _n ² +	0,65000 *	H _n	-37,11	
Dari pers. kuadrat, diperoleh tahanan lateral nominal,				H _n =	27,772	kN	
Faktor reduksi kekuatan,				φ =	0,60		
Tahanan lateral tia	ng pancang,			→	φ * H _n =	16,66	kN

3. REKAP TAHANAN LATERAL TIANG

No	Uraian Tahanan Lateral Tiang Pancang	φ * H _n			
1	Berdasarkan defleksi tiang maksimum (Broms)			19,56	
2 Berdasarkan momen maksimum (Brinch Hansen)				16,66	
Tahanan lateral tiang terkecil, $\phi * H_n =$				16,66	kN
Diambil tahanan lateral tiang pancang, →		φ * H _n =	10,00	kN	