

Special Topics: MODERN METHODS

PHYS 453

Dr Daugherity

Modern Methods

- A very brief survey of some recent hot topics in ML
- No particular order

GANS

NONE OF THESE PEOPLE ARE REAL

Generative Adversarial Networks

- Very clever trick to generate realistic data
- Proposed in 2014 https://arxiv.org/abs/1406.2661
- Create a generator and a discriminator that learn from each other and improve together

Generative Adversarial Networks

Resources

- https://arxiv.org/abs/1406.2661
- https://en.wikipedia.org/wiki/Generative adversarial network
- https://machinelearningmastery.com/what-are-generative-adversarialnetworks-gans/
- https://github.com/rasbt/machine-learningbook/blob/main/ch17/ch17 part1.ipynb

DEEP NEURAL NETWORKS

1.17. Neural network models (supervised)

Warning: This implementation is not intended for large-scale applications. In particular, scikit-learn offers no GPU support. For much faster, GPU-based implementations, as well as frameworks offering much more flexibility to build deep learning architectures, see Related Projects.

What to use instead:

- https://pytorch.org/ optionally with https://github.com/skorch-dev/skorch
- https://www.tensorflow.org/ optionally with https://keras.io/

Advantages

- Designed to run on GPU farms
- Flexible deep NNs with ever-growing list of tools

Example: CNN

- Convolution: imagine a sliding window that moves across pixels
- Main application is computer vision, need model to match symmetries of our problem. For a picture of a bird, the bird can be anywhere in the picture, so a convolution gives a direct way to handle images
- Pooling: reduce dimension by combining inputs from previous layer

https://colab.research.google.com/github/tensorflow/models/blob/master/research/nst_blogpost/4
Neural Style Transfer with Eager Execution.ipynb

Recurrent Neural Network

- Adds limited "short term memory" to NN
- Allows for context in classifiers
- https://en.wikipedia.org/wiki/Rec urrent neural network

Deep Learning

Resources

- https://en.wikipedia.org/wiki/Deep learning
- https://keras.io/
- https://github.com/skorch-dev/skorch

Suggestion

If you want to continue learning about machine learning, playing with pytorch or keras is the next step

Large Language Models

Such as Chat-GPT

http://jalammar.github.io/illustrated-transformer/

LLM

- https://en.wikipedia.org/wiki/Large language model
- http://jalammar.github.io/illustrated-transformer/
- https://sebastianraschka.com/blog/2023/llm-reading-list.html