Centro Universitário São Miguel

Hematologia

Eritropoese

Prof. Me. Yuri Albuquerque

Células sanguíneas

Todas as células circulantes derivam de células-tronco pluripotentes na medula óssea. Elas se dividem em três tipos principais.

- Os leucócitos (glóbulos brancos);
- As plaquetas; e
- As mais numerosas são os **eritrócitos** (**glóbulos vermelhos**), que são especializados no transporte de oxigênio dos pulmões aos tecidos e do dióxido de carbono no sentido inverso Os eritrócitos têm uma sobrevida periférica de 4 meses, ao passo que as menores células do sangue, as plaquetas, envolvidas na hemostasia, circulam por apenas 10 dias. A cada dia, são produzidos em torno de 10¹² novos eritrócitos por meio de um processo complexo e finamente regulado, a eritropoese.

Células sanguíneas

Célula	Diâmetro (μm)	Sobrevida no sangue	Número	Função
Eritrócitos	6-8	120 dias	Homens: 4,5-6,5 × 10 ⁶ /μL Mulheres: 3,9-5,6 × 10 ⁶ /μL	Transporte de oxigênio e dióxido de carbono
Plaquetas	0,5-3,0	10 dias	140-400 × 10 ³ /μL	Hemostasia
Fagócitos				
Neutrófilos	12-15	6-10 horas	1,8-7,5 × 10³/μL	Proteção contra bactérias e fungos
Monócitos	12-20	20-40 horas	$0.2-0.8 \times 10^3 / \mu L$	Proteção contra bactérias e fungos
Eosinófilos	12-15	Dias	$0.04-0.44 \times 10^3/\mu$ L	Proteção contra parasitas
Basófilos	12-15	Dias	0,01-0,1 × 110 ³ /μL	
Linfócitos B T	7-9 (em repouso) 12-20 (ativos)	De semanas a anos	1,5-3,5 × 10³/μL	Células B: síntese de imunogloblinas Células T: proteção contra vírus; funções imunes.

Diagrama mostrando a célula-tronco pluripotente da medula óssea e as linhagens celulares que dela se originam

Células sanguíneas

A partir da **célula-tronco**, a eritropoese passa pelas células progenitoras, unidade formadora de colônias granulocíticas, eritroides, monocíticas e megacariocíticas (CFU GEMM), unidade de formação explosiva eritroide (BFU) e CFU eritroide (CFU), até o primeiro precursor eritroide com estrutura identificável na medula óssea, o proeritroblasto. Esse processo ocorre em um nicho eritroide, no qual cerca de 30 células eritroides em vários estágios de desenvolvimento cercam um macrófago central.

Células sanguíneas

O proeritroblasto é uma célula grande, com citoplasma azul-escuro, núcleo central com nucléolo e cromatina um pouco conglomerada. O proeritroblasto, por meio de várias divisões celulares, origina uma série de eritroblastos (ou normoblastos) progressivamente menores, mas com conteúdo hemoglobínico gradualmente maior no citoplasma (que se cora em cor-de-rosa); o citoplasma vai perdendo sua tonalidade azul-clara à medida que perde seu RNA e o aparelhamento de síntese proteica, ao passo que a cromatina nuclear se torna mais condensada.

Sequência de amplificação e maturação no desenvolvimento de eritrócitos maduros a partir do proeritroblasto

Comparação do conteúdo de DNA e RNA e da distribuição na medula e no sangue periférico de eritroblastos, reticulócitos e eritrócitos maduros (ERT)

Eritropoetina

- É o processo pelo qual as células vermelhas originam-se na medula óssea pela proliferação e maturação dos eritroblastos;
- A eritropoese é regulada pelo hormônio eritropoetina;
- Eritropoetina é um polipeptídio pesadamente glicosilado. Normalmente, 90% do hormônio é produzido nas células intersticiais peritubulares renais, e 10%, no fígado e em outros locais;
- Não há reservas pré-formadas, e o estímulo para produção de eritropoetina é a tensão de oxigênio (O_2) nos tecidos do rim.
- A hipoxia induz fatores (HIF-2α e β) que estimulam a produção de eritropoetina, neoformação vascular e síntese de receptores de transferrina, e também reduz a síntese hepática de hepcidina, aumentando a absorção de ferro.

Eritropoetina

- A produção de eritropoetina, portanto, aumenta na anemia e também quando a hemoglobina é incapaz de liberar O₂ normalmente por motivo metabólico ou estrutural, quando o O₂ atmosférico está baixo ou quando há disfunção cardíaca, pulmonar ou lesão na circulação renal que afete a entrega de O2 ao rim.
- A eritropoetina estimula a eritropoese pelo aumento do número de células progenitoras comprometidas com a eritropoese. O fator de transcrição GATA-2 está envolvido no estímulo inicial à diferenciação eritroide a partir das células pluripotentes. Subsequentemente, os fatores de transcrição GATA-1 e FOG-1 são ativados pelo estímulo ao receptor de eritropoetina e são importantes por intensificarem a expressão de genes eritroides específicos (p. ex., da biossíntese de heme, globina e proteínas da membrana) e também por intensificarem a expressão de genes antiapoptóticos e do receptor da transferrina (CD71).

Eritropoetina

- BFU_E e CFU tardias, que já têm receptores de eritropoetina, são estimuladas a proliferar, diferenciar-se e produzir hemoglobina. A proporção de células eritroides na medula óssea aumenta e, em estados de estímulo eritropoetínico crônico, há expansão anatômica da eritropoese na medula gordurosa e, às vezes, em sítios extra- medulares. Em lactentes, a cavidade da medula pode expandir-se até o osso cortical, causando deformidades com bossa frontal e protrusão dos maxilares.
- Em contrapartida, o aumento de fornecimento de O₂ aos tecidos (por aumento de massa eritroide ou porque a hemoglobina é capaz de liberar O₂, mais prontamente que o normal) diminui o estímulo para a produção de eritropoetina. O nível plasmático de eritropoetina pode ter utilidade diagnóstica e está aumentado na anemia, a menos que está se deva à insuficiência renal e se houver um tumor secretor de eritropoetina, e baixa em nefropatia grave e na policitemia vera.

Produção de eritropoetina pelo rim em resposta a seu suprimento de oxigênio (O₂). A eritropoetina estimula a eritropoese e, assim, aumenta o aporte de O₂. BFU_F, unidade de formação expansiva eritroide; **CFU_F**, unidade formadora de colônias eritroides. A hipoxia induz fatores HIF (α e β) que estimulam a produção de eritropoetina. A proteína von-Hippel-Lindau (VHL) destrói HIFs. A PHD2 (propil-hidroxilase) hidroxila o HIF-2α, permitindo ligação de VHL aos HIFs. Mutações em VHL, PHD2 ou HIF-2a são causas de poliglobulia congênita

Medula óssea Células-tronco BFU precoce BFU tardia CFU Proeritroblasto Reticulócitos Eritrócitos Eritropoetina circulantes Células intersticiais peritubulares do córtex externo Entrega de O. Sensor de O $(HIF\alpha e \beta)$ O, atmosférico Curva de dissociação de O. Função cardiopulmonar Rim Concentração de hemoglobina Circulação renal

Relação entre dosagens de eritropoetina (EPO) no plasma e concentração de hemoglobina. As anemias (pontos em cor de laranja) excluem doenças associadas à diminuição de produção de EPO. (Fonte: modificada de M. Pippard et al., (1992) B J Haematol 82: 445. Reproduzida, com permissão, de John Wiley & Sons.)

Indicações para tratamento com eritropoetina

A eritropoetina recombinante é necessária para o tratamento de anemia causada por nefropatia e por várias outras causas. É administrada por via subcutânea 3 vezes por semana, ou 1 vez a cada 1 ou 2 semanas, ou a cada 4 semanas, dependendo da indicação e da preparação utilizada:

- Eritropoetina Alfa α;
- Eritropoetina Beta β;
- Darbepoetina alfa (uma forma muito glicosilada, de ação mais longa), ou Micera (a preparação de ação mais longa de todas).

A hemoglobina (Hb) é uma proteína normalmente presente nas hemácias (glóbulos vermelhos do sangue), cuja função é transportar O_2 para os tecidos. Hemoglobina glicosilada ou glicada (HbA1c) é a fração da hemoglobina que se liga à glicose que ela incorpora a partir do sangue. Assim, quanto mais altas as taxas de glicose livre no sangue, maiores os valores da hemoglobina glicosilada.

Indicações para tratamento com eritropoetina

A principal indicação é a nefropatia em estágio final (com ou sem diálise). Os pacientes geralmente necessitam de uso simultâneo de ferro oral ou intravenoso.

Outros usos estão listados na tabela abaixo:

Usos clínicos da eritropoetina			
Anemia de doença renal crônica			
Síndromes mielodisplásicas			
Anemia associada a câncer e quimioterapia			
Anemia das doenças crônicas (p. ex., artrite reumatoide)			
Anemia da prematuridade			
Usos perioperatórios			

Indicações para tratamento com eritropoetina

A medula óssea necessita de muitos outros precursores para uma eritropoese eficaz, incluindo metais, como **ferro** e **cobalto**, **vitaminas** (principalmente B₁₂, folato, C, E, B6, tiamina e riboflavina) e **hormônios**, como androgênios e tiroxina.

A deficiência de qualquer um desses pode estar associada à anemia.

Eritropoese

Produção de hemácias – manutenção da massa eritrocitária do organismo

- 200 bilhões de eritrócitos são produzidas por dia substituindo aquelas que foram destruídas (0,83% do total);
- Tempo de vida médio entre 90 à 120 dias;
- Formato de disco bicôncavo, flexível, capaz de atravessar a pequena circulação;
- Regulada pela eritropoetina;
- 90% produzida no tecido renal; e
- Altamente sensível à hipóxia.

Eritropoese

Locais da eritropoese

Pró-eritroblasto

Núcleo: cromatina avermelhada, homogenia, frouxa

• **Relação**: N/C 8:1

Citoplasma: azul por causa da concentração de organelas

Aspirado de MO

Eritroblasto basófilo

Núcleo: cromatina começa a condensação

• **Relação**: N/C 6:1

Citoplasma: mais azulado que estágio anterior, por isso o nome basófilo

Aspirado de MO

Eritroblasto policromático

Núcleo: condensação reduz tamanho do núcleo

• **Relação**: N/C 4:1

• Citoplasma: evidente vermelho associado com a Hb.

Aspirado de MO

Eritroblasto ortocromático

Núcleo: completamente condensado

• **Relação**: N/C 1:2

Citoplasma: reflete a produção quase completamente de Hb.

Perde núcleo num processo ativo de extrusão

Aspirado de MO

Hemácia policromatófila

Não há núcleo

Citoplasma: característico da presença de Hb.

Localização: reside na MO por 1 dia e move-se para a circulação periférica (1 dia)

Reticulócito

Restos de material reticular que não apresentam afinidade por corante comum

Corante supra-vital (Azul de Cresil Brilhante)

Eritrócito

- Disco bicôncavo, flexível, capaz de atravessar a pequena circulação
- Não há núcleo
- Tempo de vida médio: 90-120 dias

Sangue periférico

Precursores eritróides

Precursores eritróides

Eritroblasto Policromático

Eritroblasto Ortocromático

Eritrócito Policromático

Reticulócito

Eritrócito

REFERÊNCIAS

Hoffbrand, A. V.; Moss, P. A. H. Fundamentos da Hematologia de Hoffbrand. 7ª Ed. Porto Alegre: Artmed, 2017.

CONTEÚDO DA AULA CONTEÚ

CONTATOS

