Indian Institute of Technology Roorkee

CSN-353 Theory of Computation

End Semester Exam

Total Marks: 50

Time: 3 Hours

True/False Questions (10 Marks)

- 1. $L = \{\alpha\beta\alpha\gamma \mid \alpha, \beta, \gamma \in \Sigma^*, \alpha = \epsilon, |\beta| = |\gamma|\}$ is a Context-Free Language.
- 2. Let L be a context-free language (CFL), $x \in L$, and a proper prefix of x is also in L. L cannot be accepted by a deterministic pushdown automaton (DPDA) in empty stack mode.
- 3. If L is a context-free language (CFL) and $x \in L$ with $|x| \ge p$, where p is the pumping constant, then the number of strings in L is infinite.
- 4. If L_1 and L_2 are recognized by Turing machines (TMs) M_1 and M_2 , then there exists a TM that recognizes L_1L_2 .
- 5. Given a grammar G of length n, we can find an equivalent Chomsky-Normal-Form grammar for G in time O(n) and the resulting grammar has length O(n).
- 6. Neither the language TOTAL = $\{M \mid M \text{ halts on all inputs}\}\$ nor its complement is recursively enumerable.
- 7. The class of recursively enumerable sets is closed under union and intersection.
- 8. A multi-tape Turing Machine can recognize a language that no single tape TM can recognize.
- 9. There exists a Language L for which there is an NDTM M to accept it, but there is no DTM to accept the same language L.
- 10. A context-free grammar is said to be linear if, in each production rule, at most, one non-terminal occurs on the right-hand side.

If you find any MCQ to be incorrect, explicitly mention it in your answer.

Multiple Choice Questions (20 Marks)

- 1. Consider the symmetric difference of two languages A and B (over the same alphabet), denoted by $A \triangle B$. Which of the following statements is/are **TRUE**?
 - (a) If A and B are both context-free languages (CFLs), then $A\triangle B$ must be a CFL.
 - (b) If A is a CFL and B is not a CFL, then $A\triangle B$ must be a CFL.
 - (c) If A is a CFL and B is regular, then $A\triangle B$ must be a CFL.

- (d) If A and B are regular languages, then $A\triangle B$ is always context-free.
- 2. Consider the languages:

$$L_1 = \{a^m b^m c^{m+n} \mid m, n > 1\},$$

$$L_2 = \{a^m b^n c^{m+n} \mid m, n > 1\}.$$

Which of the following statements is TRUE?

- (a) Both L_1 and L_2 are context-free languages (CFLs).
- (b) Neither L_1 nor L_2 is a context-free language.
- (c) L_1 is not a CFL, but L_2 is a CFL.
- (d) L_1 is a CFL, but L_2 is not a CFL.
- 3. Consider the two grammars G and G' with the start symbols S and S', and with the following productions:
 - Productions of G:

$$S \rightarrow aS \mid B_i \mid B \rightarrow bB \mid b$$
.

• Productions of G':

$$S'
ightarrow aA' \mid bB', \quad A'
ightarrow aA' \mid B', \quad B'
ightarrow bB' \mid \epsilon.$$

Which of the following statements is TRUE?

- (a) L(G) = L(G').
- (b) L(G) is strictly contained in L(G').
- (c) L(G') is strictly contained in L(G).
 - (d) Neither L(G) is contained in L(G') nor L(G') is contained in L(G).
- 4. What is the language over the alphabet $\{a,b\}$ that is accepted by the following PDA? The PDA accepts by empty stack. Here, \bot is the initial bottom marker for the stack.

- (a) $\{a^n b^n \mid n > 0\}$
- (b) $\{a^m b^n \mid m, n \ge 0\}$
- (c) $\{a^m b^n \mid m, n \ge 1\}$
- (d) $L\{(a+b)^*b\}$
- 5. Let Σ_1 and Σ_2 be disjoint alphabets, $\Sigma = \Sigma_1 \cup \Sigma_2$, and $L \subseteq \Sigma^*$. Denote by L_1 the language over Σ_1 obtained by deleting all symbols of Σ_2 from the strings in L. Likewise, let L_2 denote the language over Σ_2 obtained by deleting all symbols of Σ_1 from the strings in L.

For example, if $\Sigma_1 = \{a\}$, $\Sigma_2 = \{b\}$, and $L = \{abab^2ab^3...ab^n, | n \ge 1\}$, then we have:

$$L_1 = \{a^n \mid n \ge 1\}, \quad L_2 = \{b^{n(n+1)/2} \mid n \ge 1\}.$$

Which of the following statements is/are FALSE?

- (a) If L is a DCFL, then both L_1 and L_2 must be DCFL.
- (b) If both L_1 and L_2 are DCFL, then L must be a DCFL.
- (c) If L_1 is a regular language and L_2 is a DCFL, then L must be a DCFL.
- (d) If L is a regular language, then both L_1 and L_2 must be regular languages.
- 6. Let M be a Turing machine over the alphabet Σ with L(M) = L. Let M' be the Turing machine obtained from M by swapping the roles played by the accept and reject states of M. Finally, let L' = L(M'), and $\sim L$ denote the complement of L (in Σ^*).

Which of the following statements is/are always TRUE?

- (a) $L' = \sim L$
- (b) $L' \neq \sim L$
- (c) $L' \subseteq \sim L$
- (d) $\sim L \subseteq L'$
- 7. Which of the following statements about multi-tape Turing machines is TRUE?
 - (a) Multi-tape Turing machines can recognize a strictly larger class of languages than single-tape Turing machines.
 - (b) Every multi-tape Turing machine can be simulated by a single-tape Turing machine with only a quadratic increase in time complexity.
 - (c) Multi-tape Turing machines require exponentially more states than single-tape Turing machines to recognize the same language.
 - (d) The language classes recognized by single-tape and multi-tape Turing machines are fundamentally different.

- 8. Which of the following statements is/are FALSE?
 - (a) For every non-deterministic Turing machine, there exists an equivalent deterministic Turing machine.
 - (b) Turing recognizable languages are closed under union and complementation.
 - (c) Turing decidable languages are closed under intersection and complementation.
 - (d) Turing recognizable languages are closed under union and intersection.
- 9. The graph below shows the value #a-#b plotted against prefixes of a word $x \in \{a,b\}^*$. Analyze the graph carefully and identify the language represented by it.

- (a) $L = \{x \in \{a, b\}^* \mid \#a(x) > \#b(x)\}$
- (b) $L = \{x \in \{a, b\}^* \mid \#a(x) < \#b(x)\}$
- (c) $L = \{x \in \{a, b\}^* \mid \#a(x) = \#b(x)\}$
- (d) $L = \{x \in \{a, b\}^* \mid \#a(x) + \#b(x) \text{ is even}\}\$
- 10. What language is generated by the unrestricted grammar $G = (\{S, B, a, b, c\}, \{a, b, c\}, R, S)$, where R consists of the following productions?

$$S
ightarrow aBSccc \mid aBccc$$
 $Ba
ightarrow aB, \quad Bc
ightarrow bbc, \quad Bb
ightarrow bbb$

- (a) $\{a^n b^{3n} c^{3n} \mid n \ge 0\}$
- (b) $\{a^nb^{2n}c^{3n} \mid n \ge 0\}$
 - (c) $\{a^n b^n c^n \mid n > 0\}$
 - (d) $\{a^nb^{2n}c^{3n} \mid n>0\}$

Mame: Anuit appla Endolls 22114009

Descriptive Answer Type (20 Marks)

1. (a) Define a Turing Machine formally.

[2]

- (b) Explain how a multitape Turing Machine can be simulated using a single-tape Turing Machine. [3]
- 2. Consider the language $L = \{a^n b^{n^2} \mid n \ge 0\}$. Use the Pumping Lemma for CFLs to determine whether L is a context-free language or not. Clearly explain your assumptions. [5]
- 3. Design a Turing Machine (TM) M that decides the language:

$$L = \{0^{2^n} \mid n \ge 0\}.$$

Clearly explain the steps your Turing Machine takes to decide if the given string belongs to L. [5]

4. Consider the following language over $\Sigma = \{a, b, c\}$:

$$L_1 = \{a^i(bc)^j \mid i, j > 0 \text{ and } i > j\}.$$

- (a) Design a PDA $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ to accept L_1 . M must contain at most two states and clearly mention whether it accepts by final state, empty stack, or both.
- (b) Provide a detailed explanation of the transition function δ of your PDA, and describe how it ensures that i > j. [2]