Solução IoT para detecção de gases inflamáveis

Giovanni de Oliveira Madrignani¹

¹Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ)

Resumo. Este trabalho apresenta um sistema IoT de baixo custo para detectar vazamentos de gases inflamáveis e fumaça com sensor MQ-2, utilizando uma aplicação web para monitoramento e alertas em tempo real, visando aumentar a segurança residencial e comercial.

1. Introdução

A detecção precoce de vazamentos de gases inflamáveis e fumaça pode ser um fator determinante para a prevenção de acidentes domésticos e industriais, que podem causar prejuízos materiais significativos e, mais gravemente, colocar vidas humanas em risco. Em muitos ambientes, a ausência de sistemas automatizados de monitoramento de qualidade do ar dificulta a identificação imediata de situações perigosas, como o acúmulo de gases inflamáveis provenientes de vazamentos ou a presença de fumaça decorrente de princípios de incêndio. Essa lacuna revela a necessidade de soluções tecnológicas acessíveis e eficientes que possam atuar na identificação e sinalização desses riscos em tempo real.

A motivação para o desenvolvimento da presente proposta decorre da importância de promover ambientes mais seguros por meio do uso da tecnologia embarcada. Considerando o avanço das soluções de Internet das Coisas (IoT) e a disponibilidade de sensores de baixo custo, como o MQ-2, torna-se viável implementar sistemas de monitoramento contínuo dos níveis de gases como butano e propano no ar. O projeto é impulsionado pela possibilidade de contribuir para a redução de acidentes domésticos e industriais causados por inalação de gases tóxicos ou inflamáveis, bem como para o fortalecimento da cultura de prevenção e segurança, especialmente em locais onde há manuseio frequente de gás liquefeito de petróleo (GLP).

Neste contexto, a proposta consiste no desenvolvimento de um protótipo de sistema IoT baseado no sensor MQ-2, capaz de detectar a presença de gases como GLP, fumaça e metano no ambiente. O sistema será composto por uma unidade sensora conectada a uma plataforma de monitoramento que envia alertas em tempo real caso sejam detectados níveis críticos de concentração gasosa. A finalidade principal do projeto é oferecer uma solução de baixo custo, eficiente e escalável, que possa ser implementada tanto em residências quanto em pequenas instalações comerciais ou industriais, promovendo maior segurança e tranquilidade aos usuários.

Os objetivos a serem alcançados com este trabalho incluem: o desenvolvimento funcional do sistema de detecção de gases utilizando o sensor MQ-2; a integração do sensor a uma plataforma IoT para visualização dos dados coletados; a configuração de um mecanismo de alerta remoto diante da identificação de riscos; e a validação da eficácia do sistema em diferentes condições de operação. Com isso, espera-se demonstrar o potencial da tecnologia IoT para aplicações em segurança ambiental e incentivar novas propostas voltadas à proteção da vida e do patrimônio.

2. Estado da Arte

2.1. Automação Residencial de Monitoramento de Gás Por Meio da Plataforma Arduino e IoT

O trabalho de Alexandre e Martins [Alexandre and Martins 2020] propõe um sistema de detecção de vazamento de gás GLP utilizando um microcontrolador Arduino UNO, sensor MQ-5, módulo Bluetooth HC-05 e um aplicativo Android. O objetivo é fornecer uma solução de baixo custo para segurança residencial, alertando usuários sobre vazamentos por meio de notificações no celular e um buzzer sonoro. O sistema capta dados do sensor, envia-os via Bluetooth para o aplicativo e armazena eventos de vazamento em um servidor. O custo total do protótipo foi de R\$ 175,96, destacando-se como uma alternativa econômica comparada a muitos trabalhos similares.

As principais vantagens do trabalho são:

- Custo-benefício: Utiliza componentes acessíveis e evita tecnologias caras como módulos GSM, mantendo o custo abaixo de R\$ 200,00.
- Integração com aplicativo Android: Oferece uma interface intuitiva para visualização de dados em tempo real, notificações instantâneas e histórico de alertas.
- Calibração do sensor: Implementa cálculos matemáticos detalhados para ajustar a leitura do MQ-5, aumentando a precisão das medições.

Entre as desvantagens, destacam-se:

- Limitação do Bluetooth: O alcance de 50 metros restringe o monitoramento a ambientes próximos, inviabilizando alertas remotos a grandes distâncias.
- **Dependência de tecnologia específica:** Exclui usuários de outros sistemas operacionais (iOS) e pressupõe que o celular esteja sempre próximo e conectado.
- Falta de redundância: Não há mecanismos alternativos de alerta (ex: SMS, email) caso o Bluetooth falhe ou o aplicativo trave.

O trabalho analisado acima e o projeto em desenvolvimento compartilham o objetivo central de monitorar vazamentos de GLP com Arduino e IoT, mas divergem em estratégias e escopo. Enquanto o projeto de Daniel e Paulo utiliza Bluetooth e notificações via aplicativo Android, a proposta atual prevê alertas via e-mail e integração com a Internet, o que amplia o alcance geográfico e a acessibilidade. A escolha do sensor MQ-2 nesta proposta também é relevante, pois ele é mais versátil (detecta múltiplos gases). Além disso, o projeto em questão viabiliza o uso do dispositivo também para pequenas indústrias, ampliando o público-alvo além do residencial, algo não explorado no trabalho analisado.

2.2. LPG Gas Level Monitoring and Leakage Detection System

O trabalho de Kumar et al. [Kumar et al. 2019] propõe um sistema integrado voltado para segurança local, para isso, utiliza um sensor MQ-2 responsável por identificar a presença de gás no ambiente, acionando alertas em caso de vazamento. A medição do nível de GLP no cilindro é realizada por uma load cell em conjunto com o módulo HX711, que converte o peso do recipiente em dados precisos, permitindo o cálculo da quantidade de gás restante. O processamento central é feito por um Arduino baseado no microcontrolador ATMEGA328, que coordena as entradas dos sensores e controla as saídas do sistema.

As informações são exibidas em um LCD, que mostra o nível de gás em tempo real e emite alertas visuais em situações críticas. Em caso de detecção de vazamento, além dos alertas visuais, o sistema ativa um buzzer para emitir sinais sonoros e um ventilador para promover a ventilação do ambiente, visando dissipar o gás e reduzir riscos de combustão.

Vantagens do sistema incluem:

- Precisão na medição: Uso de load cell e HX711 para cálculo preciso do nível de gás no cilindro.
- **Resposta física imediata:** Ventilador ativado automaticamente para dissipar vazamentos, reduzindo risco de explosão.
- Interface local intuitiva: Display LCD mostra nível de gás e alertas em tempo real.

Desvantagens incluem:

- Falta de conectividade IoT: Não há envio de alertas remotos (e-mail/SMS) ou integração com plataformas online.
- **Dependência de hardware adicional:** *load cell* e ventilador aumentam complexidade e também custo de implementação.
- **Alcance limitado:** Alertas restritos ao ambiente local (*buzzer* e LCD), sem monitoramento remoto.

O trabalho analisado e o projeto em desenvolvimento compartilham o uso do sensor MQ-2 e Arduino, mas apresentam diferenças significativas. Enquanto o sistema de Ranjith Kumar et al. prioriza a medição precisa do nível de gás no cilindro e ações locais como ventilação, a solução proposta se destaca pela integração com a IoT, incluindo alertas remotos via e-mail/SMS. Neste projeto, serão optados para utilização componentes de baixo custo, como o ESP8266 com Wi-Fi embutido, evitando equipamentos caros como células de carga.

2.3. Internet of Things (IoT) Based Gas Leakage Monitoring and Alerting System with MQ-2 Sensor

Pandey et al. [Pandey et al. 2018] propõem um sistema de monitoramento de vazamentos de gases tóxicos usando sensor MQ-2, Raspberry Pi 3 e ARM Cortex-M4. O objetivo é detectar concentrações perigosas de gás em tempo real, exibir os dados em um LCD e enviar alertas por e-mail para autoridades responsáveis. O sistema utiliza uma plataforma IoT para integração com uma página web personalizada, permitindo monitoramento remoto via internet. A Raspberry Pi 3 atua como núcleo de processamento, executando comandos em Python.

Vantagens incluem:

- Monitoramento em tempo real: Integração com uma página web para visualização contínua dos níveis de gás, aumentando a transparência do sistema.
- Alertas automáticos: Envio de e-mails diretamente para responsáveis, garantindo resposta imediata em emergências.
- **Versatilidade e escalabilidade:** Raspberry Pi permite execuções complexas e integração com outros sistemas.

Desvantagens:

- Custo elevado: A Raspberry Pi 3 e o módulo ARM Cortex-M4 são mais caros que soluções baseadas em Arduino ou ESP8266, limitando a acessibilidade.
- Complexidade técnica: Configurar a Raspberry Pi e desenvolver uma página web exige conhecimentos avançados em programação e redes, o que pode ser uma barreira para usuários com menos preparo.

O trabalho analisado e a proposta atual apresentam similaridades ao empregarem o sensor MQ-2 e o envio de alertas por e-mail, contudo, distinguem-se em sua arquitetura e escopo. Em contraste com o sistema de Pandey et al., que se fundamenta no uso do Raspberry Pi 3 e de uma página web personalizada, a presente proposta adota o Arduino e plataforma MQTT, visando a redução de custos e a simplificação da implementação. Adicionalmente, o trabalho referenciado carece de funcionalidades de gestão de histórico e análise de dados, estatísticas e outras ferramentas similares, as quais estão contempladas no projeto em desenvolvimento.

2.4. Smart LPG Leak Detection System

O trabalho de Thamizhselvi et al. [Thamizhselvi et al. 2021] propõe um sistema integrado de monitoramento de vazamentos de GLP e gestão de cilindros residenciais. O sistema utiliza um sensor MQ-2 para detecção de vazamentos, uma load cell para medir o peso do cilindro e estimar o tempo restante de uso, e um ESP8266 para transmissão de dados via Wi-Fi. Os dados são enviados para um aplicativo Android desenvolvido em Java, que exibe o nível de gás em tempo real e envia alertas de vazamento. O sistema também integra o Firebase para armazenamento em nuvem e notifica serviços de emergência em caso de vazamentos críticos. O objetivo é melhorar a segurança e conveniência no uso doméstico de GLP.

Vantagens do sistema:

- **Monitoramento duplo:** Combina detecção de vazamentos e gestão de nível de gás, oferecendo funcionalidades completas.
- **Armazenamento em nuvem:** Uso do Firebase permite análise histórica e acesso remoto aos dados.
- **Notificação de emergência:** Notifica bombeiros em caso de vazamentos graves, aumentando a segurança proativa.

Desvantagens:

- Dependência de aplicativo móvel: Exclui usuários sem smartphones ou familiaridade com tecnologia.
- Custo e complexidade: Integração de diversos módulos exige conhecimento técnico e major investimento.

O trabalho analisado e a proposta atual compartilham o uso do sensor MQ-2, mas divergem em foco e alcance. Enquanto o sistema de Thamizhseivi et al. prioriza gestão da quantidade de gás no cilindro, a proposta atual enfatiza alertas multinível para o usuário (e-mail, SMS, buzzer) e a integração com plataformas IoT, garantindo redundância e independência de aplicativos específicos.

3. Apresentação da Proposta

Este trabalho propõe o desenvolvimento de um sistema de monitoramento de vazamentos de gás inflamável e fumaça utilizando tecnologias de Internet das Coisas (IoT), com foco na segurança residencial. A solução será composta por um conjunto de hardware baseado no sensor MQ-2 e no Arduino Uno, integrados a uma aplicação web, que permitirá o acompanhamento remoto e em tempo real das condições do ambiente monitorado.

O sensor MQ-2, sensível a gases como GLP, propano, metano e fumaça, será responsável pela detecção da concentração desses elementos no ar. Ele estará conectado ao Arduino Uno, que realizará a leitura contínua dos dados analógicos gerados pelo sensor. A partir de um limiar de concentração configurável, o sistema poderá identificar situações de risco — como um vazamento de gás — e acionar sinalizações ao usuário.

Para possibilitar a comunicação com a aplicação web, o Arduino Uno será conectado a um módulo de rede Ethernet (Ethernet Shield W5100), que permitirá o envio dos dados para a internet por meio de uma conexão cabeada. A transmissão das informações será feita utilizando o protocolo MQTT (Message Queuing Telemetry Transport), amplamente utilizado em aplicações IoT devido à sua leveza e eficiência em redes com baixa largura de banda. Um broker MQTT será responsável por gerenciar a troca de mensagens entre o dispositivo físico (Arduino + sensor) e a aplicação web, conforme exibe o diagrama. (Figure 1)

Figure 1. Arquitetura da proposta

Do lado do servidor, a aplicação irá consumir as mensagens enviadas via MQTT, processá-las e armazená-las em um banco de dados relacional. A interface web permitirá a visualização dos dados em tempo real, através de gráficos e indicadores, além de possibilitar a configuração de parâmetros como o valor limite de concentração de gás que deve disparar alertas e-mail. Embora outras soluções similares utilizem aplicativos móveis e envio de SMS, esta proposta adota uma abordagem centrada em aplicação web, acessível via navegador em qualquer dispositivo com conexão à internet. Isso elimina a necessidade de instalar aplicativos dedicados, mantendo a solução mais leve, multiplataforma e de fácil manutenção.

Em resumo, a proposta contempla um sistema completo de detecção e resposta a vazamentos de gás, combinando sensores de baixo custo, microcontroladores acessíveis, conectividade estável com fio e interface web moderna. O projeto busca oferecer uma solução escalável, eficiente e de fácil replicação, contribuindo significativamente para a prevenção de acidentes domésticos relacionados à inalação de gases inflamáveis e à ocorrência de incêndios.

3.1. Exposição da Aplicação

A seguir, são apresentadas quatro imagens (Figure 2), (Figure 3), (Figure 4), (Figure 5) que ilustram o funcionamento da aplicação. As principais funcionalidades incluem: detecção da presença de gás GLP, identificação de níveis considerados perigosos e, quando necessário, o envio automático de alertas por e-mail ao usuário. A aplicação pode ser encontrada no GitLab, através da URL https://gitlab.com/giovanni_madrignani/monitorglp.

Figure 2. Antes de iniciar a verificação dos níveis

Figure 3. Após iniciar a verificação dos níveis

Figure 4. Quando se detecta níveis de gás perigosos

Figure 5. Alerta enviado

4. Resultados dos Testes

4.1. Cenário de uso do protótipo implementado

Para validação do protótipo, foi definido um cenário simulado representando uma situação de vazamento de gás em ambiente doméstico. O sensor MQ-2, conectado ao Arduino Uno com módulo Ethernet Shield W5100, foi posicionado em local fixo e alimentado de forma contínua. A aplicação foi configurada para monitorar em tempo real a concentração de gás GLP, e emitir alertas em caso de níveis críticos. O objetivo principal do cenário foi verificar se o sistema é capaz de detectar variações abruptas na qualidade do ar e responder de forma autônoma.

4.2. Testes realizados

O teste consistiu na exposição direta do sensor MQ-2 a uma fonte de gás, simulada com o uso de um isqueiro contendo gás butano, sem acendimento da chama. O botão de liberação do gás foi acionado a curta distância do sensor, permitindo que o mesmo detectasse rapidamente a presença de um nível elevado de gás inflamável. Durante o experimento, foram observados os dados transmitidos via protocolo MQTT e o comportamento da aplicação web integrada ao sistema.

4.3. Resultados obtidos

Assim que o sensor identificou uma concentração acima do limite pré-estabelecido como seguro, o sistema classificou o nível como perigoso e acionou o mecanismo de alerta por e-mail. O aviso foi enviado com sucesso ao endereço de e-mail previamente cadastrado, contendo informações sobre a detecção de gás e a recomendação de providências. Além disso, o nível de gás foi atualizado corretamente na interface da aplicação web, confirmando a integridade da comunicação entre os módulos do sistema.

4.4. Análise dos resultados

Os resultados obtidos demonstram que o sistema é funcional e cumpre com eficácia os objetivos propostos. A detecção foi feita de maneira quase instantânea após a exposição ao gás, e o alerta por e-mail foi gerado sem atrasos perceptíveis. Esse comportamento é coerente com a lógica de programação aplicada e com a sensibilidade do sensor MQ-2 ao tipo de gás utilizado no teste. A utilização do protocolo MQTT contribuiu para a leveza e agilidade na transmissão dos dados, enquanto a conexão via Ethernet demonstrou estabilidade durante todo o processo. Esses fatores combinados validam o uso do sistema em cenários reais de monitoramento de gás.

5. Conclusão e Trabalhos Futuros

O desenvolvimento do sistema MonitorGLP permitiu a criação de uma solução funcional para o monitoramento de níveis de gás GLP em ambientes residenciais ou laboratoriais, com foco na segurança do usuário. A aplicação integrou com êxito hardware e software, utilizando um Arduino Uno R3 com módulo Ethernet Shield W5100, um sensor de gás MQ-2, e um servidor MQTT para transmissão dos dados. A interface web possibilitou a visualização em tempo real das leituras do sensor, além da emissão automática de alertas por e-mail quando os níveis de gás ultrapassaram o limite pré-configurado.

Os testes realizados demonstraram que o sistema é capaz de detectar com precisão a presença de gás, acionar notificações e manter a comunicação de forma estável por meio da rede cabeada. A escolha do protocolo MQTT mostrou-se adequada, fornecendo leveza e eficiência no transporte dos dados, características fundamentais em aplicações de Internet das Coisas. A arquitetura modular adotada também facilitou a integração dos diferentes componentes da solução, garantindo escalabilidade e manutenibilidade do sistema.

Como possíveis trabalhos futuros, destaca-se a implementação de um sistema de autenticação para acesso à aplicação web, bem como o uso de banco de dados para armazenar o histórico das leituras do sensor. Além disso, a adaptação do sistema para conexão sem fio, com o uso de módulos Wi-Fi, pode ampliar a flexibilidade de instalação. Outras possibilidades incluem o envio de alertas via SMS ou aplicativos de mensagens, integração com assistentes virtuais e a implementação de um painel administrativo mais completo com gráficos históricos e relatórios exportáveis.

Com essas evoluções, o MonitorGLP poderá ser ampliado para contextos mais complexos e integrados, contribuindo com soluções reais de monitoramento ambiental e prevenção de acidentes domésticos.

Referências

- [Alexandre and Martins 2020] Alexandre, D. L. and Martins, P. J. (2020). Automação residencial de monitoramento de gás por meio da plataforma arduino e iot. In *Anais do Congresso Brasileiro de Informática*.
- [Kumar et al. 2019] Kumar, R. R., Pradeep, V., and Namachivayam, M. (2019). Lpg gas level monitoring and leakage detection system. *International Journal of Scientific & Technology Research*.
- [Pandey et al. 2018] Pandey, R. C. et al. (2018). Internet of things (iot) based gas leakage monitoring and alerting system with mq-2 sensor. In *Proceedings of the International Conference on IoT*.
- [Thamizhselvi et al. 2021] Thamizhselvi, D. et al. (2021). Smart lpg leak detection system. Sri Sairam Engineering College, Department of Information Technology.