

دانشگاه صنعتی شریف

دانشکده مهندسی برق

تمرین سری اول

۱ به هم چسبیدگی!

اگر $(\mathcal{S}_n,\mathcal{F}_n)$ فضا های اندازه باشند، و $\mathbb{P}=\{\mathcal{Q}_n\}_{n=1}^\infty,\mathbb{Q}=\{\mathcal{Q}_n\}_{n=1}^\infty,\mathbb{Q}=\{\mathcal{Q}_n\}_{n=1}^\infty$ ونباله ای از اندازه های احتمال روی این فضا ها باشند، می گوییم $\mathbb{P}=\{\mathcal{Q}_n\}_{n=1}^\infty,\mathbb{Q}=\{\mathcal{Q}_n\}_n\}_{n=1}^\infty,\mathbb{Q}=\{\mathcal{Q}_n\}_{n$

(۱) ثابت کنید اگر $\mathbb{Q} \triangleright \mathbb{P}$ و یا $\mathbb{Q} \triangleright \mathbb{Q}$ در یک تست برای تشخیص بین فرضیه ی اول با توزیع \mathcal{P}_n و فرضیه دوم با توزیع \mathbb{Q}_n مجموع احتمال خطای نوع اول و دوم نمی تواند به صفر همگرا شود(وقتی $n \to \infty$).

برای فضای توابع $\mathbb{R} o f: \mathcal{S}_n o \mathbb{R}$ ضرب داخلی زیر را تعریف می کنیم:

$$\langle f, g \rangle = \mathbb{E}_{X \sim \mathcal{Q}_n} [f(X)g(X)]$$

(۲) ثابت کنید اگر تحت این ضرب داخلی داشته باشیم: $\infty < \infty$ $\|L_n\|^2 < \infty$ همان نسبت Likelihood است.) در این صورت داریم: $\mathbb{Q} \setminus \mathbb{Q}$.

۲ انحراف بزرگ برای Log-Likelihood

فرض کنید $\mathcal P$ و $\mathcal Q$ دو توزیع احتمال باشند که $\mathcal P \ll \mathcal Q$ ، همینطور X_i ها متغیر های تصادفی i.i.d. از $\frac{\mathcal P}{\mathcal Q}$ تحت توزیع $\mathcal P$ باشند و Y_i همینطور می خواهیم رابطه ی زیر را ثابت کنیم:

$$\forall x \ge 0, n \in \mathbb{N} \quad \mathbb{P}\left[\sum_{i=1}^{n} (Y_i - X_i) \ge nx\right] \le exp(-n(\alpha + \frac{x}{2}))$$

$$\mathcal{B}(\mathcal{P},\mathcal{Q})=\mathbb{E}_{\mathcal{Q}}[\sqrt{rac{d\mathcal{P}}{d\mathcal{Q}}}]$$
 که در اّن $lpha=-2log\mathcal{B}(\mathcal{P},\mathcal{Q})$ که در اّن

(۱) ابتدا ثابت کنید:

$$\mathbb{P}\left[\sum_{i=1}^{n} (Y_i - X_i) \ge nx\right] \le exp(-nF(x))$$

 $.\psi_{\mathcal{P}}(\theta) = log\mathbb{E}[e^{\theta X_1}], \psi_{\mathcal{Q}}(\theta) = log\mathbb{E}[e^{\theta Y_1}] \, \text{.} \\ f(x) = \sup_{\theta \geq 0} \{\theta x - \psi_{\mathcal{P}}(-\theta) - \psi_{\mathcal{Q}}(\theta)\} \, \text{.}$ که در آن

¹Contiguous

$$F(0) = -\psi_{\mathcal{P}}(-\frac{1}{2}) - \psi_{\mathcal{Q}}(\frac{1}{2}) = \alpha$$
 ثابت کنید: (۲)

. شپس حکم را نتیجه بگیرید.
$$F(x) \geq F(0) + \frac{x}{2}$$
 تابت کنید: (۳)

۳ انحراف بزرگ برای توزیع ارلانگ

متغير تصادفي $X \sim Eralng(n,\lambda)$ با توزيع $X \sim Eralng(n,\lambda)$ است.

ابت کنید تابع چگالی احتمال متغیر تصادفی $X \sim Eralng(n,\lambda)$ برابر است با:

$$f(x) = \frac{\lambda^n x^{n-1} e^{-\lambda x}}{(n-1)!}$$

:اگر $X_i \overset{i.i.d.}{\sim} exp(1)$ ثابت کنید (۲)

$$\forall \xi > 1 \quad \mathbb{P}\left[\sum_{i=1}^{n} X_i \ge n\xi\right] \le \exp(-n(\xi - \log \xi - 1))$$

(٣) با فرض قسمت قبل ثابت كنيد:

$$\forall \xi < 1 \quad \mathbb{P}\left[\sum_{i=1}^{n} X_i \le n\xi\right] \le \exp(-n(\xi - \log \xi - 1))$$

۴ انحراف چرنف

آزمون فرض زیر را درنظر بگیرید:

$$H_0: X_1, ..., X_n \overset{i.i.d.}{\sim} \mathcal{P}$$

 $H_1: X_1, ..., X_n \overset{i.i.d.}{\sim} \mathcal{Q}$

حالت بیزی با تویزیع یکنواخت روی فرض ها درنظر بگیرید. فرض کنید I اندیس فرض انتخاب شده و \hat{I} تخمین ما از I با توجه به نمونه هاست. نشان دهید درحالت کلی نرخ بهینه کاهش خطا از رابطه زیر بدست می آید:

$$-\lim_{n\to\infty}\frac{1}{n}\log\mathbb{P}[I\neq\hat{I}]=\max_{0\leq s\leq 1}\{-\log\mathbb{E}_{\mathcal{Q}}[(\frac{\mathcal{P}(X)}{\mathcal{Q}(X)})^s]\}$$

عبارت سمت راست تساوي به انحراف چرنف معروف است.

۵ برخی از خواص Total Variation

(۱) ثابت کنید

$$d_{TV}(\prod_{i=1}^{N} P_i, \prod_{i=1}^{N} Q_i) \le \sum_{i=1}^{N} d_{TV}(P_i, Q_i)$$

(۲) ثابت کنید

$$d_{TV}(P_X, Q_X) = d_{TV}(P_{q(X)}, Q_{q(X)})$$

که در آن g(x) تابعی یک به یک است.

(۳) ثابت کنید

$$d_{TV}(P_0, P_1) = d_{TV}(P_0 \otimes Q, P_1 \otimes Q)$$

نظریه اطلاعات، آمار و یادگیری

(۴) ثابت کنید

$$d_{TV}(\mathcal{N}(0,\Sigma), \mathcal{N}(\theta,\Sigma)) = 1 - 2\Phi(||\theta\Sigma^{-1/2}||_2/2), \Phi(a) = \int_a^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

(راهنمایی: ابتدا مسئله را برای یک بعد حل کنید سپس با استفاده از عملیات سفید کردن و روابطی که در قسمت (۲) و (۳) ثابت کردید، جواب یک بعد را به تعداد بعد دلخواه تعمیم دهید. دقت کنید ماتریس ∑ ماتریس مثبت معین هست.)

$\mathcal{R}(\mathcal{P},\mathcal{Q})$ نگاه بیزی و خواص

در درس، روش کاهش خطای eta به ازای حداقل احتمال موفقیت lpha به عنوان یک معیار برای به دست آوردن یک روش تصمیم گیری در مسئله آزمون فرض به صورت زیر است فرض مشاهده کردیم. یک روش دیگری برای به دست آوردن یک روش تصمیم گیری در مسئله آزمون فرض به صورت زیر است

$$\min_{P(Z|X)} \pi_0 \pi_{1|0} + \pi_1 \pi_{0|1} \tag{1}$$

که در آن π_0 , به ترتیب احتمال اولیه فرض $\mathcal{P} \sim \mathcal{Q}$, $H_0, X \sim \mathcal{Q}$ است. به این معیار, معیار بیزی می گویند. حال فرض کنید π_1 , π_0 ناحیه π_1 , π_0 برابر π_0 برابر ورسم المربر ورسم برابر ورسم براب

- مقدار τ را بر حسب مقدار π_1 ، π_0 به دست آورید.
- (۲) برای روش تصمیم گیری LLR که با معیار بیزی و توزیع اولیه فوق بهینه است، مقدار β ، را برحسب مقدار احتمال های اولیه π_1 به دست آورید.
 - برای اینکه جواب بهینه معیاری بیزی به فرمت LLR، بتواند بیان شود، چه شرایط روی احتمال های اولیه π_1 ، π_0 باید برقرار باشد؟

۷ زوج نرخ های قابل دسترس

در درس، دیدیم یک روش بررسی رفتار حدی خطا های مسئله آزمون فرض آن است که که خطای $\pi_{1|0}$ را کوچک نگه داریم و نرخ های همگرایی قابل دسترس برای خطای $\pi_{0|1}$ را به دست آوریم. حال در این مسئله می خواهیم برای هر دو عبارت خطا نرخ همگرایی به دست آوریم. منحنی مرزی ناحیه زوج نرخ های همگرایی قابل دسترس یعنی زوج نرخ هایی E_0 و E_1 که برای آن ها روش تصمیم گیری وجود دارد که در آن داریم

$$\pi_{1|0} \le 2^{-nE_0}, \pi_{0|1} \le 2^{-nE_1}$$

- (۱) ابتدا استدلال کنید که چرا ناحیه زوج نرخ های قابل دسترس باید یک ناحیه محدب باشد؟
- با استفاده از قضیه Neyman-Pearson و قرار دادن پارامتر au=n ، که au پارامتر روش تصمیم گیری LLR هست، نشان دهید

$$\pi^n_{1|0} \leq 2^{-n\phi_P^*(\theta)}, \pi^n_{1|0} \leq 2^{-n(\phi_Q^*(\theta))}, -D(P||Q) \leq \theta \leq D(Q||P)$$

 $\phi_P(\lambda) = log E_P(e^{(\lambda log \frac{dP(X)}{dQ(X)})})$ ، $\phi_P^*(\theta) = \sup_{\lambda \in R} \lambda \theta - \phi_P(\lambda)$ که در رابطه فوق داریم

(۳) با استفاده از نامساوی های فوق نشان دهید که زوج نرخ زیر قابل دسترس هستند.

$$E_0(\theta) = \phi_P^*(\theta), E_1(\theta) = \phi_P^*(\theta) + \theta$$

- . حال نشان دهید که منحنی پارامتری $\Phi_P^*(\theta)$ بارامتری $\Phi_P^*(\theta)$ دسترس است. حال نشان دهید که منحنی پارامتری $\Phi_P^*(\theta)$ بارامتری $\Phi_P^*(\theta)$ دسترس است.
- (۵) حال با استفاده از خط مرزی که برای ناحیه ی زوج نرخ های همگرایی قابل دسترس به دست آوردیم، مسئله به دست آوردن نرخ بهینه همگرایی عبارت

$$\min_{P(Z|X^n)} \pi_0 \pi_{1|0} + \pi_1 \pi_{0|1}$$

 $\phi_P^*(0)$ به ازای مقادیر ثابت احتمال های اولیه، به صورت یک مسئله maxmin به دست آورده و نشان دهید نرخ بهینه برابر است با