1. Overview

Quantum physics

Theory of nature at small scales and low energies for atoms, light, electrons, ..., anything small.

Most precisely tested theory in the history of science!

Yet still has several puzzling aspects which still confound modern day physicists and philosophers.

Quantum physics

Actually this picture of the atom is wrong – it is classical!

Quantum physics

Objects are not particles!

Everything is actually a wave!

Schrodinger wrote down an equation that tells us how the waves change in time

$$i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x,t)\right) \Psi(x,t)$$

An object smashing into a wall

Classical physics

Quantum physics

Where is the shark? Where is the wave?

Particles can be in two places at once

© Tim Byrnes

Electron interference in real life (lab)

But it's a particle too!

Electrons create an interference pattern so its definitely a wave, but electrons arrive one by one.

Wave-particle duality: Everything is a wave and a particle at the same time!

Other quantum weirdness: Entanglement

Left and right detectors always give the same result, although randomly.

Quantum paradoxes: Schrodinger's cat

A cat is penned up in a steel chamber, along with the following device. In a <u>Geiger counter</u>, there is a tiny bit of radioactive substance, so small, that perhaps in the course of the hour one of the atoms decays, but also, with equal probability, perhaps none; if it happens, the counter tube discharges and through a relay releases a hammer that shatters a small flask of hydrocyanic acid. If one has left this entire system to itself for an hour, one would say that the cat still lives if meanwhile no atom has <u>decayed</u>. The first atomic decay would have poisoned it. The [quantum state] of the entire system would express this by having in it the living and dead cat smeared out in equal parts.

End of Moore's Law is upon us

Moore's Law – The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.

Moore's law: Number of transistors double every 18-24 months

Bob Colwell, former Chief architect Intel: "For planning horizons, I pick 2020 as the earliest date we could call [Moore's law] dead," (August 2013)

Jason Huang Nvidia CEO "Moore's Law isn't possible anymore." (Jan 2019)

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic

Dennard scaling: Power density stays constant per unit area as transistors get smaller

i.e. reduction in a transistor's linear size by 2, the power it used fell by 4

Dennard scaling finished in 2005

What are the barriers?

MIT, Dec 2018

http://news.mit.edu/2018/smallest-3-d-transistor-1207

Si atom diameter = 0.42 nm Ga,As atom diameter=0.36nm

New technology required to get to smaller scales to overcome quantum tunneling effects. Quantum effects also cause heating

Quantum technologies and the future

We have seen remarkable progress in technology in the last 200 years

Particularly computers have revolutionized the complexity of technologies through information processing

Inventions post-quantum theory

Fully quantum

Indirectly quantum

Classical Physics

While there have been several "quantum" based inventions, most are still based on classical physics

Quantum information technology

Types of quantum technologies

Quantum key distribution

Secure transmission of information

Quantum simulators

Simulation of complex materials

Quantum metrology

Precision measurements

Quantum computers

Beyond classical computer algorithms

Long distance quantum communication

Commercial QKD companies: ID Quantique, MagiQ Technologies, QuintessenceLabs, and SeQureNet

Quantum networks: DARPA (MA, USA), SECOQC (Vienna), SwissQuantum, Tokyo QKD, China

Major limitation: Optical fibers can only transmit photons for about 200km

X. Ma, A. Zeilinger. et al. (2012). *Nature* **489** (7415): 269

Quantum communication in China

Satellite-based entanglement distribution over 1200 kilometers

Yin et al., Science 356, 1140 (2017)

Ground-to-satellite quantum teleportation

Ren et al., Nature (2017)

Teleportation up to 1400 km!!!

Current key quantum technologies: quantum computing

Optics

Superconducting qubits

Ion traps

Quantum dots (semiconductors)

N-V centers (diamond)

Why is a quantum computer faster?

Parallel computation

A quantum computer can process many different inputs all at the same time

Quantum computers for sale!

IBM: 50 superconducting qubits

Rigetti: 128 superconducting qubit QC in development

Google: 72 superconducting qubits

D-wave: 2000 superconducting qubit quantum annealing machine

Microsoft: Topological qubits in nanowires

IonQ: Ion trap quantum computer

Aims of this course

• Starting from basic knowledge of calculus and vectors, have a working knowledge of what quantum theory is about and be able to calculate simple quantities.

• Become familiar with the basic aspects of quantum technologies, at a quantitative level.