SEMINARSKA NALOGA (geostatistični del)

V datoteki **Šempas merilna shema. PDF** je načrt meritev več različnih spremenljivk na izbrani njivi v Šempasu. Podatki tal so pridobljeni 18. 7. 2023 iz globine tal 20 cm:

- swc je gravimetrična vsebnost vode v tleh (vol. %)
- gostota je gostota tal (g/cm³)
- pF2 je vsebnost vode pri matričnem potencialu vode pF 2.0
- pF4.2 je vsebnost vode pri matričnem potencialu vode pF 4.2
- aw je rastlinam razpoložljiva voda v tleh (available water) (pF 2.0 pF 4.2)

Podatki rastlin zajemajo indeks listne površine (ALI), ki je bil izmerjen na njivi in 3 vegetacijske indekse. Točkovni izračuni indeksov so narejeni iz območja 2 m okoli vsake točke. Meritve LAI in indeksov so bile izvedene v juliju in avgustu:

- LAI_jul
- LAI_avg
- NDVI jul
- GNDVI_jul
- NDRE_jul
- NDVI_avg
- GNDVI avg
- NDRE avg

Podatki s prostorskimi koordinatami (X, Y) so v datoteki **space_sempas.txt**. Dodeljene prostorske spremenljivke za analizo v seminarski nalogi za pare študentov/študentk:

Študent/študentka	Prostorski podatki Šempas
Neža Nograšek, Zarja Fabjan	NDVI_jul
Grega Guld, Gaber Kokovnik	gostota
Tom Rupnik, Neža Kržan	NDRE_jul
Matej Gregorc	NDVI_avg
Urška Komatar, Patricija Jaklič	SWC
Jasna Puh, Valentina Vavdi	aw
Nikolina Rizanovska	LAI_jul
Vipotnik Živa	LAI_avg

Prostorska statistična analiza:

- Grafični prikazi prostorske spremenljivke.
- Analiza morebitne nestacionarnosti (modeliranje prostorskega trenda, morebitna transformacija podatkov zaradi nekonstantne variance v prostoru).
- Analiza prostorske korelacije na podlagi oblaka semivariagrama, vzorčnega semivariograma, bootstrap ovojnice za vzorčni semivariogram;
- Izbira vsaj dveh različnih modelov semivariograma za dane podatke. Obrazložite svojo izbiro in lastnosti tako modelirane prostorske kovariančne funkcije.
- Izbira ustreznega modela za napovedovanja prostorskega procesa (osnovni ali splošni kriging). Za izbrani model naredite napoved v izbrano pravilno mrežo točk, ki pokriva celo njivo, na kateri je bilo izvedeno vzorčenje. Obrazložite standardne napake napovedi, od česa so odvisne?
- Vse korake in rezultate statistične analize na kratko obrazložite.