Section 1.2 – Separable Equations

Separable Equation

Separable equation is an equation that can be written with its variables separated and then easily solved.

If f is independent of $y \Rightarrow y' = \frac{dy}{dx} = f(x, y)$ is separable equation if f has the form

$$f(x, y) = g(x)h(y)$$

Definition

A 1st order differential equation of the form $\frac{dy}{dx} = g(x)h(y)$ is said to be separable or to have separable variables.

$$\frac{dy}{h(y)} = g(x)dx$$

$$\frac{dy}{dx} = y^2 x e^{3x+4y} = \left(xe^{3x}\right) \left(y^2 e^{4y}\right)$$

$$\frac{dy}{dx} = y + \sin x$$
 not separable

Example

At time t the sample contains N(t) radioactive nuclei and is given by the differential equation:

$$N' = -\lambda N$$

This is called the *exponential equation*.

$$N' = -\lambda N$$

$$\frac{dN}{dt} = -\lambda N$$

 $\frac{dN}{dt} = -\lambda N$ Separable equation

$$\frac{dN}{N} = -\lambda dt$$

$$\int \frac{dN}{N} = -\int \lambda dt$$

$$\ln |N| = -\lambda t + C$$

$$|N(t)| = e^{-\lambda t + C}$$

$$=e^{C}e^{-\lambda t}$$

$$N(t) = \begin{cases} e^{C} e^{-\lambda t} & \text{if } N > 0\\ -e^{C} e^{-\lambda t} & \text{if } N < 0 \end{cases}$$

$$N(t) = Ae^{-\lambda t} \qquad A = \begin{cases} e^{C} & \text{if } N > 0\\ -e^{C} & \text{if } N < 0 \end{cases}$$

Example

Solve the differential equation $y' = ty^2$

Solution

$$\frac{dy}{dt} = ty^2$$

$$\frac{dy}{v^2} = tdt$$

$$\int y^{-2} dy = \int t dt$$

$$-y^{-1} = \frac{1}{2}t^2 + C$$

$$-\frac{1}{y} = \frac{t^2 + 2C}{2}$$

Cross multiplication

$$-\frac{2}{t^2 + 2C} = y$$

$$y(t) = -\frac{2}{t^2 + 2C}$$

General Method

Step 1: Establish that the equation is separate $\frac{dy}{dx} = g(x)h(y)$

Step 2: Divide both sides by h(y) to separate the variables $\frac{dy}{h(y)} = g(x)dx$

Step 3: Integrate both sides $\int \frac{dy}{h(y)} = \int g(x)dx$

Step 4: Solve for the solution y(t), if possible

Losing a solution

When we use separate variables, the variable divisors could be zero at a point.

Example

Find a general solution to $\frac{dy}{dx} = y^2 - 4$

Solution

$$\frac{dy}{y^2 - 4} = dx$$

$$\left(\frac{1/4}{y - 2} - \frac{1/4}{y + 2}\right) dy = dx \qquad y = \pm 2 \text{ Critical points}$$

$$\frac{1}{4} \left(\int \frac{dy}{y - 2} - \int \frac{dy}{y + 2} \right) = \int dx$$

$$\frac{1}{4} \left[\ln|y - 2| - \ln|y + 2| \right] = x + c_1$$

$$\ln\left|\frac{y - 2}{y + 2}\right| = 4x + c_2$$

$$\left|\frac{y - 2}{y + 2}\right| = e^{4x + c_2}$$

$$\frac{y - 2}{y + 2} = \pm e^{c_2} e^{4x}$$

$$y - 2 = Ce^{4x} (y + 2)$$

$$y - Ce^{4x} y = 2Ce^{4x} + 2$$

$$\left(1 - Ce^{4x}\right) y = 2\left(Ce^{4x} + 1\right)$$

$$y = 2\frac{1 + Ce^{4x}}{1 - Ce^{4x}}$$

$$-1 = \frac{1 + Ce^{4x}}{1 - Ce^{4x}}$$

$$-1 + Ce^{4x} = 1 + Ce^{4x} \implies -1 = 1 \text{ impossible}$$
If $y = 2$

$$\Rightarrow 2 = 2\frac{1 + Ce^{4x}}{1 - Ce^{4x}}$$

$$1 - Ce^{4x} = 1 + Ce^{4x}$$

$$-Ce^{4x} = Ce^{4x} \implies -C = C$$

$$y = 2 \Rightarrow C = 0$$

Implicitly Defined Solutions

Example

Find the solutions of the equation $y' = \frac{e^x}{1+y}$, having initial conditions y(0) = 1 and y(0) = -4

Solution

$$\frac{dy}{dx} = \frac{e^x}{1+y}$$

$$(1+y)dy = e^x dx$$

$$\int (1+y)dy = \int e^x dx$$

$$y + \frac{1}{2}y^2 = e^x + c$$

$$y^2 + 2y - 2(e^x + c) = 0$$

$$y(x) = \frac{1}{2}(-2 \pm \sqrt{4 + 8(e^x + c)})$$
Quadratic Formula
$$= -1 \pm \sqrt{1 + 2(e^x + c)}$$
Implicit
$$y(0) = -1 + \sqrt{1 + 2(e^0 + c)} = 1$$

$$\sqrt{1 + 2(1 + c)} = 2$$

$$1 + 2 + 2c = 4$$

$$2c = 1$$

$$c = \frac{1}{2}$$

$$y(0) = -1 - \sqrt{1 + 2(e^0 + c)} = -4$$

$$y(0) = -1 - \sqrt{1 + 2(e^{0} + c)} = -4$$
$$-\sqrt{1 + 2 + 2c} = -3$$
$$1 + 2 + 2c = 9$$
$$2c = 6$$
$$c = 3$$

$$\begin{cases} y(t) = -1 + \sqrt{2 + 2e^x} \\ y(t) = -1 - \sqrt{7 + 2e^x} \end{cases}$$

 $\therefore y \neq -1$

from y', but it never it will be.

Explicit Solutions: $y = -1 + \sqrt{ }$

Notes

- 1. Q(y) = P(x) + C is the general solution. Typically, this is an *implicit* relation; we may or may not be able to solve it for y.
- 2. h(y) = 0 is a source of singular solutions:

If k is a number such that h(k) = 0, then y = k

Might be a singular solution.

Example

Find the general solution and any singular solutions: $y' - xy^2 = x$

Solution

$$y' = x + xy^{2}$$

$$\frac{dy}{dx} = x(1 + y^{2})$$

$$\frac{dy}{1 + y^{2}} = xdx$$

$$\int \frac{dy}{1 + y^{2}} = \int xdx \qquad 1 + y^{2} \neq 0$$

$$\tan^{-1} y = \frac{1}{2}x^{2} + C$$

$$y = \tan\left(\frac{1}{2}x^{2} + C\right)$$
No singular solutions

Example

Find the general solution and any singular solutions: $\frac{1}{x}y' = e^x \sqrt{y+1}$

Solution

$$\int \frac{dy}{\sqrt{y+1}} = \int xe^x dx$$

$$\int \frac{d(y+1)}{\sqrt{y+1}} = xe^x + e^x + C$$

$$2\sqrt{y+1} = xe^x + e^x + C$$

$$h(y) = y + 1 = 0 \implies y = -1 \text{ is a singular solution}$$

$$\int e^{x}$$

$$x \qquad e^{x}$$

$$1 \qquad e^{x}$$

Example

Find the general solution and any singular solutions: $y' = \frac{xy^2 - x}{y}$

Solution

$$\frac{dy}{dx} = \frac{x(y^2 - 1)}{y}$$

$$\frac{y}{y^2 - 1}dy = xdx$$

$$\frac{1}{2}\int \frac{1}{y^2 - 1}d(y^2 - 1) = \int xdx$$

$$\frac{1}{2}\ln|y^2 - 1| = \frac{1}{2}x^2 + \frac{1}{2}\ln C$$

$$\ln|y^2 - 1| - \ln C = x^2$$

$$\ln\frac{|y^2 - 1|}{C} = x^2$$

$$\frac{|y^2 - 1|}{C} = e^{x^2}$$

$$y^2 - 1 = Ce^{x^2}$$

$$y^2 = Ce^{x^2} + 1$$

Singular Solutions:

$$\frac{y^2 - 1}{y} = 0 \implies y = \pm 1$$
For $y = 1$: if $C = 0$ $y = 1$
For $y = -1$: No C

No singular solution.

Example

Find the solutions to the differential equation $x' = \frac{2tx}{1+x}$, having x(0) = 1, -2, 0

Solution

$$\frac{dx}{dt} = \frac{2tx}{1+x}$$

$$\frac{1+x}{x}dx = 2tdt$$

$$\left(\frac{1}{x}+1\right)dx = 2tdt$$

$$\int \left(\frac{1}{x}+1\right)dx = \int 2tdt$$

$$\ln|x|+x=t^2+c$$

For
$$x(0) = 1$$

 $1 = 0^2 + c$
 $c = 1$
 $\ln |x| + x = t^2 + c$ $x > 0$

We can't solve for x(t)

 \Rightarrow This solution is defined as implicit.

For
$$x(0) = -2$$

$$\ln |-2| + (-2) = 0^2 + c$$

$$c = -2 + \ln 2$$

$$\ln |x| + x = t^2 - 2 + \ln 2$$
Since the initial condition < 0, then:

$$x + \ln(-x) = t^2 - 2 + \ln 2$$

For
$$x(0) = 0$$

 $0 = 0^2 + c$ True statement
 $y' = 0 \implies x(t) = 0$ is a solution

Exercises Section 1.2 – Separable Equations

Find the general solution of the differential equation.

$$1. \qquad y' = xy$$

2.
$$xy' = 2y$$

3.
$$y' = e^{x-y}$$

4.
$$y' = (1 + y^2)e^x$$

$$5. y' = xy + y$$

6.
$$y' = ye^x - 2e^x + y - 2e^x$$

$$7. y' = \frac{x}{y+2}$$

$$8. \qquad y' = \frac{xy}{x-1}$$

9.
$$y' = \frac{y^2 + ty + t^2}{t^2}$$

10.
$$\frac{dy}{dx} = \frac{4x - x^3}{4 + y^3}$$

11.
$$y' = \frac{2xy + 2x}{x^2 - 1}$$

$$12. \quad \frac{dy}{dx} = \sin 5x$$

13.
$$\frac{dy}{dx} = (x+1)^2$$

14.
$$dx + e^{3x} dy = 0$$

15.
$$dy - (y-1)^2 dx = 0$$

$$16. \quad x\frac{dy}{dx} = 4y$$

$$17. \quad \frac{dx}{dy} = y^2 - 1$$

$$18. \quad \frac{dy}{dx} = e^{2y}$$

19.
$$\frac{dy}{dx} + 2xy^2 = 0$$

20.
$$\frac{dy}{dx} = e^{3x+2y}$$

21.
$$e^x y \frac{dy}{dx} = e^{-y} + e^{-2x-y}$$

$$22. \quad y \ln x \frac{dx}{dy} = \left(\frac{y+1}{x}\right)^2$$

$$23. \qquad \frac{dy}{dx} = \left(\frac{2y+3}{4x+5}\right)^2$$

$$24. \quad \csc y dx + \sec^2 x dy = 0$$

25.
$$\sin 3x dx + 2y \cos^3 3x dy = 0$$

26.
$$(e^y + 1)^2 e^{-y} dx + (e^x + 1)^3 e^{-x} dy = 0$$

27.
$$x(1+y^2)^{1/2} dx = y(1+x^2)^{1/2} dy$$

28.
$$\frac{dy}{dx} = y \sin x$$

$$29. \quad (1+x)\frac{dy}{dx} = 4y$$

30.
$$2\sqrt{x} \frac{dy}{dx} = \sqrt{1 - y^2}$$

31.
$$\frac{dy}{dx} = 3\sqrt{xy}$$

32.
$$\frac{dy}{dx} = (64xy)^{1/3}$$

33.
$$\frac{dy}{dx} = 2x \sec y$$

$$34. \quad \left(1 - x^2\right) \frac{dy}{dx} = 2y$$

35.
$$(1+x)^2 \frac{dy}{dx} = (1+y)^2$$

36.
$$\frac{dy}{dx} = xy^3$$

$$37. \quad y\frac{dy}{dx} = x\left(y^2 + 1\right)$$

$$38. \quad y^3 \frac{dy}{dx} = \left(y^4 + 1\right) \cos x$$

$$39. \quad \frac{dy}{dx} = \frac{1+\sqrt{x}}{1+\sqrt{y}}$$

40.
$$\frac{dy}{dx} = \frac{(x-1)y^5}{x^2(2y^3 - y)}$$

41.
$$(x^2 + 1)(\tan y)y' = x$$

42.
$$x^2y' = 1 - x^2 + y^2 - x^2y^2$$

43.
$$xy' + 4y = 0$$

44.
$$(x^2+1)y'+2xy=0$$

45.
$$\frac{y'}{(x^2+1)y} = 3$$

46.
$$y + e^{x}y' = 0$$

$$47. \quad \frac{dx}{dt} = 3xt^2$$

$$48. \quad x\frac{dy}{dx} = \frac{1}{v^3}$$

$$49. \quad \frac{dy}{dx} = \frac{x}{y^2 \sqrt{x+1}}$$

$$50. \quad \frac{dx}{dt} - x^3 = x$$

$$51. \quad \frac{dy}{dx} = \frac{x}{ye^{x+2y}}$$

$$52. \quad \frac{dy}{dx} = \frac{\sec^2 y}{1+x^2}$$

53.
$$x \frac{dv}{dx} = \frac{1 - 4v^2}{3v}$$

54.
$$\frac{dy}{dx} = 3x^2 \left(1 + y^2\right)^{3/2}$$

$$55. \quad \frac{1}{y}dy + ye^{\cos x}\sin xdx = 0$$

56.
$$(x + xy^2)dx + e^{x^2}ydy = 0$$

Find the exact solution of the initial value problem. Indicate the interval of existence.

57.
$$y' = \frac{y}{x}$$
, $y(1) = -2$

58.
$$y' = -\frac{2t(1+y^2)}{y}, \quad y(0) = 1$$

59.
$$y' = \frac{\sin x}{y}, \quad y(\frac{\pi}{2}) = 1$$

60.
$$4tdy = (y^2 + ty^2)dt$$
, $y(1) = 1$

61.
$$y' = \frac{1-2t}{y}$$
, $y(1) = -2$

62.
$$y' = y^2 - 4$$
, $y(0) = 0$

63.
$$\frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y-1)}, \quad y(0) = -1$$

64.
$$y' = \frac{x}{1+2y}, \quad y(-1) = 0$$

65.
$$(e^{2y} - y)\cos x \frac{dy}{dx} = e^y \sin 2x, \quad y(0) = 0$$

66.
$$\frac{dy}{dx} = e^{-x^2}, \quad y(3) = 5$$

67.
$$\frac{dy}{dx} + 2y = 1$$
, $y(0) = \frac{5}{2}$

68.
$$\sqrt{1-y^2} dx - \sqrt{1-x^2} dy = 0$$
, $y(0) = \frac{\sqrt{3}}{2}$

69.
$$(1+x^4)dy + x(1+4y^2)dx = 0$$
, $y(1) = 0$

70.
$$\frac{1}{t^2} \frac{dy}{dt} = y$$
, $y(0) = 1$

71.
$$\frac{dy}{dt} = -y^2 e^{2t}$$
; $y(0) = 1$

72.
$$\frac{dy}{dt} - (2t+1)y = 0; \quad y(0) = 2$$

73.
$$\frac{dy}{dt} + 4ty^2 = 0; \quad y(0) = 1$$

74.
$$\frac{dy}{dx} = ye^x; \quad y(0) = 2e$$

75.
$$\frac{dy}{dx} = 3x^2(y^2 + 1); \quad y(0) = 1$$

76.
$$2y \frac{dy}{dx} = \frac{x}{\sqrt{x^2 - 16}}; \quad y(5) = 2$$

77.
$$\frac{dy}{dx} = 4x^3y - y$$
; $y(1) = -3$

78.
$$\frac{dy}{dx} + 1 = 2y$$
; $y(1) = 1$

79.
$$(\tan x)\frac{dy}{dx} = y; \quad y\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$$

80.
$$e^{-2t} \frac{dy}{dt} = \frac{1 + e^{-2t}}{y}, \quad y(0) = 0$$

81.
$$\frac{dy}{dt} = y\cos t + y, \quad y(0) = 2$$

82.
$$\frac{dy}{dt} = \frac{t+2}{y}, \quad y(0) = 2$$

83.
$$x \frac{dy}{dx} - y = 2x^2y$$
; $y(1) = 1$

84.
$$\frac{dy}{dx} = 2xy^2 + 3x^2y^2$$
; $y(1) = -1$

85.
$$\frac{dy}{dx} = 6e^{2x-y}$$
; $y(0) = 0$

86.
$$2\sqrt{x} \frac{dy}{dx} = \cos^2 y; \quad y(4) = \frac{\pi}{4}$$

87.
$$y' + 3y = 0$$
; $y(0) = -3$

88.
$$2y' - y = 0; \quad y(-1) = 2$$

89.
$$2xy - y' = 0$$
; $y(1) = 3$

90.
$$y \frac{dy}{dx} - \sin x = 0; \quad y\left(\frac{\pi}{2}\right) = -2$$

91.
$$\frac{dy}{dt} = \frac{1}{v^2}$$
; $y(1) = 2$

92.
$$y' + \frac{1}{y+1} = 0; \quad y(1) = 0$$

93.
$$y' + e^y t = e^y \sin t$$
; $y(0) = 0$

94.
$$y' - 2ty^2 = 0$$
; $y(0) = -1$

95.
$$\frac{dy}{dx} = 1 + y^2; \quad y\left(\frac{\pi}{4}\right) = -1$$

96.
$$\frac{dy}{dt} = t - ty^2; \quad y(0) = \frac{1}{2}$$

97.
$$3y^2 \frac{dy}{dt} + 2t = 1$$
; $y(-1) = -1$

98.
$$e^x y' + (\cos y)^2 = 0$$
; $y(0) = \frac{\pi}{4}$

99.
$$(2y - \sin y)y' + x = \sin x; \quad y(0) = 0$$

100.
$$e^y y' + \frac{x}{y+1} = \frac{2}{y+1}$$
; $y(1) = 2$

101.
$$(\ln y) y' + x = 1; \quad y(3) = e$$

102.
$$y' = x^3 (1 - y); \quad y(0) = 3$$

103.
$$y' = (1 + y^2) \tan x$$
; $y(0) = \sqrt{3}$

104.
$$\frac{1}{2} \frac{dy}{dx} = \sqrt{1+y} \cos x$$
; $y(\pi) = 0$

105.
$$x^2 \frac{dy}{dx} = \frac{4x^2 - x - 2}{(x+1)(y+1)}$$
; $y(1) = 1$

106.
$$\frac{1}{\theta} \frac{dy}{d\theta} = \frac{y \sin \theta}{v^2 + 1} \quad y(\pi) = 1$$

107.
$$x^2 dx + 2y dy = 0$$
; $y(0) = 2$

108.
$$\frac{1}{t} \frac{dy}{dt} = 2\cos^2 y; \quad y(0) = \frac{\pi}{4}$$

109.
$$\frac{dy}{dx} = 8x^3 e^{-2y}$$
; $y(1) = 0$

110.
$$\frac{dy}{dx} = x^2 (1+y); \quad y(0) = 3$$

111.
$$\sqrt{y}dx + (1+x)dy = 0$$
; $y(0) = 1$

112.
$$\frac{dy}{dx} = 6y^2x$$
, $y(1) = \frac{1}{25}$

113.
$$\frac{dy}{dx} = \frac{3x^2 + 4x - 4}{2y - 4}, \quad y(1) = 3$$

114.
$$y' = e^{-y} (2x - 4)$$
 $y(5) = 0$

115.
$$\frac{dr}{d\theta} = \frac{r^2}{\theta}, \quad r(1) = 2$$

116.
$$\frac{dy}{dt} = e^{y-t} (1+t^2) \sec y$$
, $y(0) = 0$