Guanyu Qian

gyqian@ucla.edu | LinkedIn | GitHub | +1 (530) 407-7839 | Los Angeles, CA

EDUCATION

University of California, Los Angeles (UCLA)

Doctor of Philosophy in Electrical & Computer Engineering | GPA 3.80/4.0

2022 - Present

- Related Courses: Advanced Analog and Digital IC design, VLSI System, Machine learning and large-scale data mining, Human-Al Interface, Neural Network, Linear Programming, MEMS Design, Embedded System, Power Electronic
- Research Areas: Efficient & Stable Power Delivery and Regulation, Power Electronic Design for GPUs and Data Center Power Supply Units.
- Progress: Master's degree earned in June 2024

University of California, Davis (UC Davis)

Bachelor of Arts and Science (Double Major) in Applied Physics and Economics | GPA 3.72/4.0

2018 - 2022

• Related Courses: Electronic Circuits, Device Physics, Electromagnetic, Classical, Computational, Mathematical, Particle, Quantum, Thermal, Statistical and Solid-State Physics. Micro & Macroeconomics, Econ of Uncertainty, Analysis of Econ Data, Econometrics.

SKILLS & PROFICIENCIES

Programming Skills: Python, C++, C, JavaScript, Verilog, MATLAB

Professional Software: Altium, Cadence Virtuoso, OrCAD, Modelsim, COMSOL, LTSPICE, PLECS, Synopsys RTL synthesis, STATA, Microsoft Office

Hardware Development: XEM7010, Raspberry Pi, ESP32

Languages: Chinese (Native), English (Proficient), Japanese (Elementary)

PUBLICATIONS

- Overcoming High Frequency Limitations of Current-Mode Control Using a Control Conditioning Approach. (Tentative title; submission to IEEE Transactions on Power Electronics planned for late Nov. 2024)
- Deng, T., Qian, G., An, W., Dong, C., & Liu, G. (2023). **Dynamic Modulation transmission Policy for wireless communication network with energy harvesting**. https://doi.org/10.1109/icece59822.2023.10462294
- Qian, G., Liu, W., Hao, D., & Li, W. (2021). **Key Technologies for beamforming in millimeter wave communication system.** Journal of Physics: Conference Series, 2031(1), 012029. https://doi.org/10.1088/1742-6596/2031/1/012029

RESEARCH EXPERIENCES

Power Electronics and Energy Control (PEEC) Laboratory | UCLA

Graduate Student Researcher

Advisor: Xiaofan Cui

11/2023 - Present

"With one goal in mind at PEEC Laboratory: to create the finest DC-DC converter with robust control."

- A High Frequency COT Buck Converter for CPU Voltage Regulation:

11/2023 - Present

Addressing Stability Issues in Dynamic Voltage Scaling (DVS)

- Developed a Current Mode Control Constant-On-Time (COT) Buck Converter for CPU power supplies under light load conditions, successfully addressing stability issues in Dynamic Voltage Scaling (DVS) from 12V to 1V and 12V to 2V.
- Designed and implemented three stability solutions in sampled state space domain, including slope compensation and filters, with a
 novel analog-based approach involving comparator modeling and overdrive conditioning.
- Independently managed the full development cycle, starting from simulations (MATLAB, PLECS), PCB design (Altium), and component selection, to hands-on soldering and final validation/testing, while developing control logic in Verilog for FPGA implementation.
- Preparing submission to IEEE Transactions on Power Electronics, targeting late Nov. 2024.

- Battery Aging prediction with LSTM model and Transfer Learning:

03/2024 - 05/2024

Improving Prediction Accuracy for Battery Lifespan Under Varying Conditions

- Developed an LSTM model using PyTorch to predict battery aging curves based on data from 8 manufacturers, capturing variations in state-of-charge (SOC) and temperature conditions.
- Optimized model through hyperparameter tuning to improve predictions across diverse chemistries and temperature profiles
- Identified areas for future development, focusing on **transfer learning** strategies to enhance model robustness and accuracy. (Preparing findings for publication)

Muon Lifetime & Cosmic Background Radiation Detection | UC Davis

Distinguished undergraduate student in advanced physics Lab course

04/2022 - 06/2022

Advisor: J. Anthony Tyson

- Conducted hands-on experiments to measure muon mean lifetime using a custom-built detection system with **plastic scintillators** and **photomultiplier tubes**, while designing and implementing **logic circuits** for real-time muon counting.
- Engaged in the design and construction of a high-frequency RF system, incorporating a radiometer, low-noise amplifier (LNA), mixers, and passive filters, to investigate cosmic microwave background radiation at 19 GHz.
- Performed detailed data collection, applying scientific analysis techniques to simulate the decay curve of muons, and successfully
 extrapolated the cosmic background temperature through precise instrumentation and experimental procedures.

INTERNSHIP EXPERIENCES

Smart Shine Beijing, China

Research Intern at Terminal Module Department

07/2021 - 09/2021

- AR Smart Glasses Project R&D: Acquired proficiency in PADS software for circuit design on PCBs; performed tests on power-up timing, power supply ripple, and MIPI signal integrity using oscilloscopes; validated performance indicators of primary and secondary camera ports and display screen.
- **5G Millimeter Wave Research**: Co-authored a comprehensive literature review from WCNC and ACC conference papers, engaged in scholarly discussions with team members, and projected future development trajectories and potential enhancements for **millimeter wave technology**, published in the Journal of Physics: Conference Series (ISSN: 1742-6588).

Xiaomi Beijing, China

Project Manager Intern

08/2020 - 09/2020

- Conducted user surveys on emerging UI trends and developed project timelines, providing insights that drove a successful UI update.
- Analyzed and reviewed regulatory compliance for new UI launches, ensuring adherence to different government regulations across various markets.
- Coordinated cross-departmental efforts to implement updates in product specifications and compliance provisions, facilitating communication between engineering, legal, and marketing teams.

TEACHING EXPERIENCES

Circuit Theory II (ECE110) | UCLA

04/2024 - 06/2024

Teaching Assistant

Overall Evaluation Score: 8.0/9.0

- Led three weekly in-person discussion sessions for 130 students, teaching critical concepts such as Laplace Transforms, circuit analysis for RLC networks, frequency response, and two-port network.
- Developed and authored discussion materials and practice exams aligned with course content to support student learning and success.
- Held regular office hours, communicated effectively with students, graded exams, and provided comprehensive feedback to enhance their understanding.

Electronic Circuit II (EEC100) | UC Davis

10/2020 - 12/2020

Undergraduate Student Lab Assistant

- Volunteered as a lab assistant for an upper-division Electronic Circuit course, assisting over 30 students in weekly lab sessions and providing constructive feedback on their reports.
- Guided students in circuit assembly and troubleshooting with the **ADALM2000** module, ensuring circuits met expected functional requirements and helping students understand core concepts in circuit design.

PROJECT EXPERIENCES

FPGA Wiring and Switching Channel Optimization | UCLA

04/2023 - 06/2023

- Undertook research to enhance wiring channels in Field Programmable Gate Arrays (FPGAs) using 14nm FinFet technology, resulting in a 10-20% decrease in delay times for different routing segment lengths.
- Developed and simulated two distinct switch blocks for different signal segment lengths, integrating design with key metrics such as
 Power-Delay Product to evaluate performance.
- Implemented project specifications into logic block output designs, ensuring transistor size adherence and devising effective strategies to accommodate device mismatch factors.

High-Performance Differential Amplifier Design | UCLA

10/2022 - 10/2022

- Employed Candence Virtuoso tools for high-performance amplifier design, strictly adhering to design specifications.
- Configured a two-staged OTA with a closed-loop gain of 8 with a differential output swing of 1.8 V, maintaining gain error within 1%.
- Improved circuit performance, achieving a large signal settling time of only 40 nanoseconds with a 0.5% error while guaranteeing low power consumption.