Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Quiz 1 Grading Scheme (August 17, 2013) Introduction To Complex Analysis

Roll No.: Section:		Time: 40 Minutes	
		Marks: 40	
Name:			
Note: Give	e only answers (no details of workout) for Problems 1 to 8 at dotted lines. Each of t	hese problems is of 5 marks.	

- Put a cross mark at the wrong answer and tick mark at the correct answer.
- Where part marks are awarded, indicate the missing/wrong part of the answer.

1. If
$$(-3)^{i\sqrt{2}} = a + ib$$
; $a, b \ real$, then

$$(i) a = \dots \qquad (ii) b = \dots$$

Solution:

$$(-3)^{i\sqrt{2}} = \exp(i\sqrt{2}\log(-3))$$

$$= \exp\{\sqrt{2}(i\ln 3 - (2n+1)\pi)\}$$

$$= \exp(-\sqrt{2}(2n+1)\pi)\{\cos(\sqrt{2}\ln 3) + i\sin(\sqrt{2}\ln 3)\}$$

$$\Rightarrow (i) \ a = \exp(-\sqrt{2}(2n+1)\pi)\cos(\sqrt{2}\ln 3) \qquad (ii) \ b = \exp(-\sqrt{2}(2n+1)\pi)\sin(\sqrt{2}\ln 3)$$

(3 marks for one correct, 5 marks for both correct)

2. Let complex numbers z_k , $1 \le k \le 5$, be the roots of the equation $z^5 = 32i$. Then, values of $Arg z_k$ in the interval $[0, 2\pi]$ are given by

(i)
$$Arg \ z_1 = \dots$$
 (ii) $Arg \ z_2 = \dots$ (iii) $Arg \ z_3 = \dots$ (iv) $Arg \ z_4 = \dots$ (v) $Arg \ z_5 = \dots$

Solution:

$$\begin{split} z_k &= 2e^{i(\frac{\pi}{2} + 2k\pi)/5} = 2e^{i(\frac{\pi}{10} + \frac{2k\pi}{5})} \\ \Rightarrow & Arg \ z_1 = \frac{\pi}{10}, Arg \ z_2 = \frac{\pi}{10} + \frac{2\pi}{5}, Arg \ z_3 = \frac{\pi}{10} + \frac{4\pi}{5}, Arg \ z_4 = \frac{\pi}{10} + \frac{6\pi}{5}, \ Arg \ z_4 = \frac{\pi}{10} + \frac{8\pi}{5}. \end{split}$$

(5 marks, deduct 1 mark for each wrong/missing answer)

3. The Cartesian equation of boundary curve of the region $\{z : \text{Re}\{\frac{z(2z+i)}{2z-i}\} > 0, \text{ Re } z < 0\}$ is

Solution: Re
$$\{\frac{z(2z+i)}{2z-i}\}$$
 > 0 \Leftrightarrow Re $\{\frac{z(2z+i)(2\overline{z}+i)}{|2z-i|^2}\}$ \Leftrightarrow Re $\{z(4|z|^2+4ix-1)\}$ > 0 $\Leftrightarrow x(4x^2+4y^2-4y-1)\}$ > 0

 \Rightarrow For z = x + iy, x < 0, the region is $4x^2 + 4y^2 - 4y - 1 < 0$. Therefore, the required boundary is the semicircle $4x^2 + 4y^2 - 4y - 1 = 0$, x < 0

(5 marks, deduct 1 marks if the condition x < 0 is not mentioned in the answer)

4. The region in which the function

$$f(z) = \left| \text{Re} \ z^2 \right| + i \left| \text{Im} \ z^2 \right|$$
 is analytic, is $D_1 \cup D_2 \cup D_3 \cup D_4$. Then,

(i)
$$D_1 = \{z = re^{i\theta} : \dots \}$$

(i)
$$D_2 = \{z = re^{i\theta} : \dots \}$$

(i)
$$D_3 = \{z = re^{i\theta} : \dots \}$$

(i)
$$D_4 = \{z = re^{i\theta} : \dots \}$$

Solution: Observe that $f(z) = |x^2 - y^2| + 2i |xy|$ can be written as

$$f(z) = z^2$$
 for $0 < \theta < \pi/4$ and $\pi < \theta < 5\pi/4$,

$$f(z) = -\overline{z}^2$$
 for $\pi/4 < \theta < \pi/2$ and $5\pi/4 < \theta < 3\pi/2$,

$$f(z) = -z^2$$
 for $\pi/2 < \theta < 3\pi/4$ and $3\pi/2 < \theta < 7\pi/4$,

$$f(z) = \overline{z}^2$$
 for $3\pi/4 < \theta < \pi$ and $7\pi/4 < \theta < 2\pi$.

Consequently, the function is analytic in the regions

$$0 < \theta < \pi/4, \ \pi < \theta < 5\pi/4, \ \pi/2 < \theta < 3\pi/4, \ 3\pi/2 < \theta < 7\pi/4.$$

Further, along the rays $\theta = 0, \pi/4, \pi/2, 3\pi/4, \pi, 5\pi/4, 3\pi/2, 7\pi/4$, either the real part or the imaginary part of f(z) is zero, so it is not analytic on these rays.

(5 marks, deduct 2 marks if rays are also included in the region of analyticity)

5. Let the function f(z) = u(x, y) + iv(x, y) be defined by

$$f(z) = \begin{cases} \frac{(1 + \frac{i}{2})z^5}{|z|^4}, & \text{if } z \neq 0\\ 0, & \text{if } z = 0. \end{cases}$$

Then,

(i)
$$u_x(0,0) = \dots$$
 (ii) $u_y(0,0) = \dots$ (iii) $v_x(0,0) = \dots$ (iv) $v_y(0,0) = \dots$

Solution: Note that
$$f(s,0) = \frac{(1+\frac{i}{2})s^5}{|s|^4}$$
, $f(0,t) = \frac{(1+\frac{i}{2})i\ t^5}{|t|^4}$

$$\Rightarrow u(s,0) = \frac{s^5}{|s|^4}, v(s,0) = \frac{s^5}{2|s|^4}, u(0,t) = -\frac{t^5}{2|t|^4}, v(0,t) = \frac{t^5}{|t|^4}$$

$$\Rightarrow u_x(0,0) = 1, v_x(0,0) = \frac{1}{2}, u_y(0,0) = -\frac{1}{2}, v_y(0,0) = 1$$

(5 mark for all correct, deduct 2 marks for each incorrect, no negative marks)

6. The image in w - plane of rectangle $\{z = x + iy : -1 < x < 1, 0 < y < \pi\}$, under the mapping $w = e^z$, is the set

ſ .		
(<i>W</i>	 	

Solution: w = u + iv; $u = e^x \cos y$, $v = e^x \sin y$ imply $|w| = e^x$ so that the desired set is $\{w : \frac{1}{e} < |w| < e, \text{ Im } w > 0\}$.

(5 marks, deduct 3 marks if any of the two conditions on w is not included in the answer)

7. For the harmonic function $v(x, y) = 2xy - e^{-2x} \sin 2y$, let h(z) be a function analytic in the whole complex plane, such that Im h(z) = v(x, y). Then, h(z), expressed as a function of z alone (not as a function of x, y), is

$$h(z) = \dots$$

Solution:
$$u_x = v_y \Rightarrow u_x = 2x - e^{-2x} \ 2\cos 2y \Rightarrow u = x^2 + e^{-2x} \cos 2y + g(y)$$

 $\Rightarrow u_y = -e^{-2x} \ 2\sin 2y + g'(y)$.
Now, $-v_x = u_y \Rightarrow -(2y + e^{-2x} \ 2\sin 2y) = -e^{-2x} \ 2\sin 2y + g'(y) \Rightarrow g(y) = -y^2 \Rightarrow u = x^2 + e^{-2x} \cos 2y - y^2$.
Therefore,
 $f(z) = x^2 + e^{-2x} \cos 2y - y^2 + i \ (2xy - e^{-2x} \sin 2y)$
 $= z^2 + e^{-2z}$ (5 marks, only 2 mark if answer is correctly expressed in terms of x, y)

8. The radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^{n^2}}{(2n)!} z^{n^2}$ is

.....

Solution:

$$R = \lim_{n \to \infty} \left| \frac{a_{n-1}}{a_n} \right|^{1/(\lambda_n - \lambda_{n-1})} = \lim_{n \to \infty} \left| \frac{2^{(n-1)^2}}{(2n-2)!} \frac{(2n)!}{2^{n^2}} \right|^{1/(n^2 - (n-1)^2)}$$

$$\lim_{n \to \infty} \left| \frac{2n(2n-1)}{2^{2n-1}} \right|^{1/(2n-1)} = \frac{1}{2}.$$
(5 marks)