

Instituto Federal de Educação, Ciência e Tecnologia do Ceará PPGER — PPGCC

Aula 11: Extração de atributos em Sinais de Eletrocardiograma (ECG)

Processamento Digital de Sinais Prof. Dr. Pedro Pedrosa

pedrosarf@ifce.edu.br

pedropedrosa.maracanav.ifce.edv.br

Objetivos

- Aprender o que é um Eletrocardiograma (ECG)
- Entender como classificar doenças cardíacas a partir do sinal ECG
- Conhecer abordagens de extração de características do sinal ECG

Eletrocardiograma

- O que é?
 - Exame que permite a avaliação elétrica da atividade cardíaca
- Para que serve?
 - Pode detectar arritmias, aumento de cavidades cardíacas, patologias coronarianas, infarto do miocárdio, entre outros diagnósticos

Captação do sinal ECG

Derivação periférica bipolar

Derivação periférica unipolar

Derivação pericordial

Eventos importantes do ECG

Etapas de classificação do ECG

Etapas da classificação de sinais em eletrocardiograma.

Extração de Atributos do ECG

- Informação: amplitudes, duração e local de ocorrência dos picos P, QRS e T
 - Nem sempre são evidentes

Atributos

- Frequência, tempo, morfologia, energia e intervalo RR

Técnicas

- Transformada Wavelet Discreta (YU; CHEN, 2007; SHUKLA, 2013)
- ICA (YE; COIMBRA; KUMAR, 2010)
- Análise de Discriminantes Lineares (SONG et al., 2005)
- Características de intervalo RR (YE; COIMBRA; KUMAR, 2010; YU;
 CHEN, 2007)

Expert Systems with Applications

Applications
An International Journal

journal homepage: www.elsevier.com/locate/eswa

ECG arrhythmia classification based on optimum-path forest

Eduardo José da S. Luz ^a, Thiago M. Nunes ^b, Victor Hugo C. de Albuquerque ^c, João P. Papa ^d, David Menotti ^{a,*}

Técnica de extração	Abordagem adotada
Chazal et al. (2004)	morfologia do sinal e intervalos RR
Güler and Übeyli (2005)	DWT
Song et al. (2005)	DWT
Yu and Chen (2007)	DWT, intervalo RR e energia do sinal
Yu and Chou (2008)	DWT, ICA e intervalo RR
Ye et al. (2010)	DWT, ICA, PCA e intervalo RR

Classificador
OPF
Bayes
MLP
SVM

Base de dados de arritmia MIT-BIH

- 48 trechos de 30 minutos (gravações de 24 horas)
- Derivação
 - DII (braço direito e a perna esquerda)
 - V1 (pericordial)
- Pacientes: 47
 - 23 e 89 anos (22 feminino e 25 masculino)

- Taxa de amostragem: 360Hz
- 4 registros de pacientes com marca-passo

Anotações e Classes para Arritmia Cardíaca

Classe AAMI	Classe MIT-BIH	Tipo de batimento MIT-BIH
	N	Batimento normal
	L	Bloqueio de ramo esquerdo
Normal (N)	R	Bloqueio de ramo direito
	e	Escape atrial
	j	Escape nodal
	A	Batimento atrial prematuro
Batimento supraventricular ectópico (SVEB)	a	Batimento atrial prematuro aberrado
	J	Batimento prematuro nodal
	S	Batimento supraventricular prematuro
Detiments contributes at the contribute (VED)	V	Contração ventricular prematura
Batimento ventricular ectópico (VEB)	E	Escape ventricular
Batimento de fusão (F)	F	Fusão de batimento ventricular e normal
	1	Batimento de marca-passo
Batimento desconhecido (Q)	\mathbf{f}	Fusão de batimentos normal e de marca-passo
	Q	Batimento inclassificável

Descrição das classes consideradas nas anotações da base MIT-BIH e na Norma AAMI.

Sinais de Batimento Cardíacos

Abordagem de Yu e Chen (2007)

- Wavelet Haar: coeficientes de detalhe 1o e 2o nível e o coeficiente de aproximação de segundo nível.
- Atributos dos coeficientes:
 - energia média (representada pela variância);
 - coerência do sinal (representada pela variância da autocorrelação);
 - morfologia do sinal (representada pela amplitude relativa do sinal).
- #atributos = 9

Abordagem de Yu e Chen (2007)

Outros

- variância QRS (variância calculada no sinal durante o complexo QRS);
- média dos intervalos RR em torno da amostra;
- RR posterior (duração do intervalo RR entre o batimento e o batimento posterior);
- RR anterior (duração do intervalo RR entre de batimento e o batimento anterior).
- 4 (sinal) + 9 (derivados da Haar) = 13.

Resultados com 5 classes

Features	Classifiers SVM							
	Acc	N Se/Sp/HM	S Se/Sp/HM	V Se/Sp/HM	F HMSe/Sp/HM	Q Se/Sp/HM		
Chazal et al. (2004) Güler and Übeyli (2005)	922 894	0996 345 512 0999 048 092	0 1000 0 0 1000 0	480 0995 648 080 0999 148	487 0998 655 000 1000 000	0 1000 0 0 1000 0		
Song et al. (2005) Yu and Chen (2007) Yu and Chou (2008) Ye et al. (2010)	893 890 915 919	1000 030 057 1000 000 000 0998 254 405 0998 336 503	0 1000 0 0 1000 0 0 1000 0 0 1000 0	048 1000 092 000 1000 000 401 0996 572 476 0992 643	000 1000 000 000 1000 000 000 1000 000 000 1000 000	0 1000 0 0 1000 0 0 1000 0 0 1000 0		
	Baye	Bayesian						
Chazal et al. (2004) Güler and Übeyli (2005)	807 795	845 537 657 862 350 498	11 971 022 023 972 046	778 905 837 409 902 562	384 974 551 005 985 010	0 1000 0 0 1000 0		
Song et al. (2005) Yu and Chen (2007) Yu and Chou (2008) Ye et al. (2010)	814 868 910 891	849 659 742 928 494 645 959 592 732 932 619 744	183 955 306 027 978 053 171 989 291 120 994 214	781 914 843 621 975 759 757 972 851 859 968 910	072 975 134 157 968 270 039 992 074 183 969 308	0 1000 0 0 1000 0 0 1000 0 0 1000 0		

OPF					
Acc Se/Sp/HM	N Se/Sp/HM	S Se/Sp/HM	V Se/Sp/HM	F HMSe/Sp/HM	Q
807	845 537 656	010 971 020	777 905 836	384 974 551	0 1000 0
796	864 349 497	023 971 046	408 905 563	005 985 010	0 1000 0
812	848 658 741	183 954 306	778 914 841	075 975 139	0 1000 0
865	925 497 646	030 978 059	618 974 756	168 967 286	0 1000 0
907	957 593 732	177 988 300	747 971 845	039 991 074	0 1000 0
891	932 618 743	121 994 216	855 968 908	183 969 308	0 1000 0
MLP					
821	883 386 537	000 0999 000	522 881 656	000 1000 000	0 1000 0
868	950 230 370	001 1000 002	349 950 510	000 1000 000	0 1000 0
866	908 618 735	077 0966 143	830 962 891	126 0976 224	0 1000 0
890	953 412 575	000 1000 000	643 952 768	000 1000 000	0 1000 0
920	971 552 703	038 0995 073	830 982 899	049 0991 093	0 1000 0
901	971 366 532	000 1000 000	543 996 702	162 0974 278	0 1000 0

Resultados com 3 classes

Features	Classifiers							
	SVM				OPF			
	Acc	N Se/Sp/HM	S Se/Sp/HM	V' Se/Sp/HM	Acc	N Se/Sp/HM	S Se/Sp/HM	V′ Se/Sp/HM
Chazal et al. (2004)	910	0979 360 526	0 1000 0	517 0978 677	810	845 537 657	010 971 020	773 880 823
Güler and Übeyli (2005)	895	0999 053 100	0 1000 0	080 0999 147	804	864 349 497	023 971 046	469 896 616
Song et al. (2005)	894	1000 031 060	0 1000 0	046 1000 087	814	848 658 741	183 954 306	722 888 796
Yu and Chen (2007)	890	1000 000 000	0 1000 0	000 1000 000	868	925 497 646	030 978 059	605 941 736
Yu and Chou (2008)	916	0998 257 409	0 1000 0	371 0997 541	909	957 593 732	177 988 300	700 963 811
Ye et al. (2010)	921	0998 329 495	0 1000 0	447 0994 617	895	932 618 743	121 994 216	824 938 877
	Bayesia	n			MLP			
Chazal et al. (2004)	810	845 538 657	011 971 022	774 879 823	903	948 775 853	014 0993 028	792 929 855
Güler and Übeyli (2005)	803	863 350 498	023 972 046	471 894 617	893	981 184 310	001 0999 001	273 982 427
Song et al. (2005)	815	849 658 742	183 955 306	724 888 798	864	906 641 751	035 0985 067	768 911 834
Yu and Chen (2007)	871	928 495 645	027 978 053	605 943 737	887	957 332 493	002 1 000 003	484 958 643
Yu and Chou (2008)	912	959 592 732	171 989 291	708 965 817	927	972 585 730	056 0993 106	819 977 891
Ye et al. (2010)	895	932 620 744	120 994 214	827 938 879	893	998 035 67	000 1000 000	053 998 100

Encaminhamentos

- Dúvidas?
- Próximo assunto
 - Extração de atributos usando Transf. Fourier Discreta