Predicción de Temperaturas por interpolación con Lagrange

Presentado por: González Robles Sofia Quetzalli Pérez Priego Diego

Objetivo

Método

Datos

Objetivo

Predecir la temperatura de cualquier día dentro de un período específico, utilizando la interpolación como nuestra herramienta matemática principal.

Nos centraremos en el periodo 1ro de abril al 12 de mayo de 2024 porque han sido las temperaturas más altas registradas en la CDMX

La interpolación es una herramienta matemática poderosa y versátil que nos permite estimar valores dentro de un rango específico basándonos en datos conocidos.

Utilizamos la Interpolación de Lagrange, un método que nos permite encontrar un polinomio que pasa exactamente por un conjunto dado de puntos.

Nuestros datos consisten en temperaturas registradas semanalmente desde el 1ro de abril hasta el 12 de mayo.

semana	prom. T. max
1	29
2	28.85714286
3	30.42857143
4	26.85714286
5	30.57142857
6	31.71428571

Datos reales

Procedimiento

Resultados

DÍA del mes

T. MÁX

_		
	21	28
2	22	24
3	23	26
ļ	24	28
5	25	27
)	26	26
7	27	28
3	28	29
)	29	30
)	30	29
L	1	30
2	2	30
3	3	33
ŀ	4	31
5	5	31
ò	6	30
7	7	32
}	8	31
)	9	33
)	10	32
<u>-</u>	11	33
)	12	31

A partir de nuestros datos, generamos un polinomio interpolador. Usamos este polinomio para estimar la temperatura máxima de cualquier día dentro de nuestro rango.

Procedimiento:

- Determinamos el rango.
- Calculamos la fracción del rango que representa
- Obtenemos un valor fraccionario para el día.
- Evaluamos el polinomio

$$P(x) = -0.346428571190478x5 + 5.99999999583336x4 - 38.6249999726192x3 +$$

 $113.\,785714202024x2 - 150.\,385714168334x + 98.\,571428514286$


```
# Definimos los valores de x e y
x_values = [1, 2, 3, 4, 5, 6] #Semanas que tenemos
y_values = [29, 28.85714286, 30.42857143, 26.85714286, 30.5714285714286, 31.7142857142857] #Temperatura pro
# Creamos un objeto interpolador y calculamos el polinomio de interpolación
interpolator = LagrangeInterpolator(x_values, y_values)
polynomial = interpolator.interpolate()
print(polynomial)
```



```
# Calculamos el valor de x basado en el rango y los límites
valor_de_x = rango+ ((valor-limite_inferior)/(limite_superior-limite_inferior))
# Sustituimos el valor de x en el polinomio para obtener la temperatura
valor_en_x = polynomial.subs(interpolator.x, valor_de_x)
```


Después calculamos las diferencias de los valores que obtuvimos con los reales.

```
#Ahora calcularemos las diferencias con nuestros datos reales

valores_reales = [30, 30, 30, 27, 28, 29, 29, 28, 28, 28, 27, 30, 31, 30, 32, 33, 32, 31, 30, 27, 28, 24, 26,

#Para esto simplemente a nuestros resultados le restamos los valores reales, as diferencias serán en valor ab
```

#Para esto simplemente a nuestros resultados le restamos los valores reales, as diferencias serán en valor ab diferencias = np.abs(resultados-valores_reales).tolist()

Después calculamos las diferencias de los valores que obtuvimos con los reales.

Día de la semana	Num. Día totales	DÍA del mes	T. MÁX	T. Máx obtenida	Diferencia
lunes	1	1	30	29.0000000	1.0000000
martes	2	2	30	27.2244558	2.7755442
miércoles	3	3	30	26.39945941	3.6005406
jueves	4	4	27	26.26947956	0.7305204
viernes	5	5	28	26.61669883	1.3833012
sábado	6	6	29	27.25854024	1.7414598
domingo	7	7	29	28.04519376	0.9548062
Lunes	8	8	28	28.85714286	0.8571429
Martes	9	9	28	29.60269106	1.6026911
Miércoles	10	10	28	30.21548845	2.2154884
Jueves	11	11	27	30.65205824	3.6520582
Viernes	12	12	30	30.88932333	0.8893233
Sábado	13	13	31	30.92213279	0.0778672
Domingo	14	14	30	30.76078845	0.7607884
Lunes	15	15	32	30.42857143	1.5714286
Martes	16	16	33	29.95926867	3.0407313
Miércoles	17	17	32	29.39469949	2.6053005
Jueves	18	18	31	28.7822421	2.2177579
Viernes	19	19	30	28.17236016	1.8276398
Sábado	20	20	27	27.61612934	0.6161293

Lunes	22	22	24	26.85714286	2.8571429
Martes	23	23	26	26.73733734	0.7373373
Miércoles	24	24	28	26.83213627	1.1678637
Jueves	25	25	27	27.15857339	0.1585734
Viernes	26	26	26	27.71945363	1.7194536
Sábado	27	27	28	28.50087974	0.5008797
Domingo	28	28	29	29.46977875	0.4697787
Lunes	29	29	30	30.57142857	0.5714286
Martes	30	30	29	31.7269845	2.7269845
Miércoles	31	1	30	32.83100579	2.8310058
Jueves	32	2	30	33.74898214	3.7489821
Viernes	33	3	33	34.3148603	1.3148603
Sábado	34	4	31	34.32857058	3.3285706
Domingo	35	5	31	33.55355336	2.5535534
Lunes	36	6	30	30.57142857	0.5714286
Martes	37	7	32	31.91782637	0.0821736
Miércoles	38	8	31	33.16519694	2.1651969
Jueves	39	9	33	34.08761161	1.0876116
Viernes	40	10	32	34.39917695	2.3991770
Sábado	41	11	33	33.74868873	0.7486887
Domingo	42	12	31	31.71428571	0.7142857

Aunque los polinomios de Lagrange proporcionan una buena aproximación, siempre existe un error asociado. Las predicciones no fueron exactas por las limitaciones inherentes a la interpolación y al tamaño relativamente pequeño de nuestra muestra de datos