



UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE  
United States Patent and Trademark Office  
Address: COMMISSIONER FOR PATENTS  
P.O. Box 1450  
Alexandria, Virginia 22313-1450  
[www.uspto.gov](http://www.uspto.gov)

dw

| APPLICATION NO.         | FILING DATE | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. | CONFIRMATION NO. |
|-------------------------|-------------|----------------------|---------------------|------------------|
| 10/074,732              | 02/13/2002  | Leo Mathew           | SC11805TP           | 6370             |
| 23125                   | 7590        | 04/20/2004           |                     |                  |
|                         |             |                      | EXAMINER            |                  |
|                         |             |                      | BROCK II, PAUL E    |                  |
|                         |             |                      | ART UNIT            | PAPER NUMBER     |
|                         |             |                      | 2815                |                  |
| DATE MAILED: 04/20/2004 |             |                      |                     |                  |

Please find below and/or attached an Office communication concerning this application or proceeding.

|                              |                                    |                                     |
|------------------------------|------------------------------------|-------------------------------------|
| <b>Office Action Summary</b> | <b>Application No.</b>             | <b>Applicant(s)</b>                 |
|                              | 10/074,732                         | MATHEW ET AL.<br><i>[Signature]</i> |
|                              | <b>Examiner</b><br>Paul E Brock II | <b>Art Unit</b><br>2815             |

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

#### Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

#### Status

- 1) Responsive to communication(s) filed on 16 December 2003.
- 2a) This action is FINAL.                    2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

#### Disposition of Claims

- 4) Claim(s) 1,2,4,5,7-25 and 34 is/are pending in the application.
- 4a) Of the above claim(s) \_\_\_\_\_ is/are withdrawn from consideration.
- 5) Claim(s) \_\_\_\_\_ is/are allowed.
- 6) Claim(s) 1,2,4,5,7-25 and 34 is/are rejected.
- 7) Claim(s) \_\_\_\_\_ is/are objected to.
- 8) Claim(s) \_\_\_\_\_ are subject to restriction and/or election requirement.

#### Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on 13 February 2002 is/are: a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

#### Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
  - a) All    b) Some \* c) None of:
    1. Certified copies of the priority documents have been received.
    2. Certified copies of the priority documents have been received in Application No. \_\_\_\_\_.
    3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

\* See the attached detailed Office action for a list of the certified copies not received.

#### Attachment(s)

- 1) Notice of References Cited (PTO-892)
- 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
- 3) Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)  
Paper No(s)/Mail Date \_\_\_\_\_.

- 4) Interview Summary (PTO-413)  
Paper No(s)/Mail Date. \_\_\_\_\_.
- 5) Notice of Informal Patent Application (PTO-152)
- 6) Other: \_\_\_\_\_.

## **DETAILED ACTION**

### ***Claim Rejections - 35 USC § 112***

1. The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

2. Claims 1, 4, 5, 7 – 16 are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention.

With specific regard to claim 1, it is not clear where in the originally filed specification where support for “removing a portion of the conductive layer and the second semiconductor layer to physically separate a first gate region and a second gate region,” can be found. While two different removing steps (i.e. one for removing portions of the second semiconductor and a second for removing portions of a conductive layer) are defined in the originally filed specification, there is no disclosure of one removing step that removes both the second semiconductor and the conductive layers.

With further regard to claim 10, it is not clear where in the originally filed specification support for “electrically coupling the first gate region and the second gate region” can be found.

3. Claim 15 recites the limitation "the first electrode region and the second electrode region" in the first and second lines of the claim. There is insufficient antecedent basis for this limitation

in the claim. For purposes of this office action "the first electrode region and the second electrode region" will be considered --the first gate region and the second gate region--.

4. The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

5. Claims 9 and 13 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

It is not clear in claim 9 if "doping... with a first species" is the same as "performing a first directional implant." For purposes of this office action "after doping the second semiconductor layer in a first area adjacent the semiconductor structure with a first species" will be considered --after performing the first directional implant--.

With regard to claim 13, it is not clear if "removing a portion of the conductive layer" is repeating the step of "removing a portion of the conductive layer" as recited in claim 1. For purposes of this office action these steps will be treated as repetitive limitations.

*Claim Rejections - 35 USC § 103*

6. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

7. Claims 1 – 2, 4, 5, 7 – 14, 16 – 25, and 34 are rejected under 35 U.S.C. 103(a) as being unpatentable over Adkisson et al. (USPAT 6472258, Adkisson) in view of Fried et al. (USPUB 2003/0113970, Fried).

With regard to claim 1, Adkisson discloses in figures 1 – 5 a method of forming a vertical double gate semiconductor device. Adkisson discloses in figure 1 providing a semiconductor substrate (10). Adkisson discloses in figure 1 providing a first insulating layer (12) over the semiconductor substrate. Adkisson discloses in figure 1 providing a first semiconductor layer (14) over the first insulating layer. Adkisson discloses in figures 1 and 2, and column 3, lines 3 – 37 removing portions of a first semiconductor layer to form the semiconductor structure having a first sidewall (left side of the middle Si region) and a second sidewall (right side of the middle Si region), wherein the first sidewall is opposite the second sidewall. Adkisson discloses in figure 2 forming a second insulating layer (gate oxide) adjacent the first sidewall and the second sidewall. Adkisson discloses in figure 2 and column 3, lines 41 – 48 providing a second semiconductor layer (20) over and adjacent the semiconductor structure. Adkisson discloses in figure 2 and column 3, lines 41 – 48 wherein the second semiconductor layer is conductive. Adkisson does not teach implanting the second semiconductor layer in a first area adjacent the semiconductor structure with a first species and implanting the second semiconductor layer in a second area with a second species. Fried teaches in figure 2b, figure 3b, and paragraph 0031 performing a first directional implant (20) of a first conductivity type (n-type) of a second semiconductor layer (18) from a first predetermined direction. Fried further teaches in figure 3b and paragraph 0031

performing a second directional implant (22) of a second conductivity type (p-type) opposite the first conductivity type of the second semiconductor layer from a second predetermined direction. It would have been obvious to one of ordinary skill in the art at the time of the present invention to use the double doping process of Fried in the method of Adkisson in order to make the second semiconductor layer conductive and shift the threshold voltage of the device to be compatible with current state of the art CMOS technology as stated by Fried in paragraph 0007. Adkisson discloses in figure 3, figure 3a, figure 5, figure 5a, column 3, line 61 – column 4, line 24, and column 4, line 65 – column 5, line 12 forming a conductive layer (42 and 50) over the semiconductor structure and the second insulating layer. Adkisson discloses in figure 2 and column 3, lines 40 – 49 removing a portion of the second semiconductor layer to physically separate a first gate region (the region to the right of the first semiconductor) and a second gate region (the region to the left of the first semiconductor). Adkisson discloses in figure 3, figure 3a, figure 5, figure 5a, column 3, line 61 – column 4, line 24, and column 4, line 65 – column 5, line 12 removing a portion of the conductive layer. Adkisson discloses in figure 2 wherein the first gate region is adjacent the first sidewall of the semiconductor structure, and it would have been further obvious in view of Fried that the first gate region would have the first conductivity type. Adkisson discloses in figure 2 wherein the second gate region is adjacent the second sidewall of the semiconductor structure, and it would have been further obvious in view of Fried that the second gate region would have the second conductivity type. It should be noted that the claim limitation “the semiconductor structure preventing migration of doping species between the first gate region and the second gate region” is an intended use recitation that is met by the method of Adkisson and Field.

With regard to claim 2, Adkisson discloses in figure 2 and column 3, lines 30 – 36 wherein the semiconductor structure is a channel region of the vertical double gate semiconductor device.

With regard to claim 4, Adkisson discloses in figure 2 and column 3, lines 40 – 49 wherein removing the portions of the second semiconductor layer comprises planarizing the conductive layer. Adkisson discloses in figure 5, and column 4, line 65 – column 5, line 12 wherein removing the portions of the conductive layer comprises planarizing the conductive layer.

With regard to claim 5, Adkisson discloses in figure 3a further comprising forming a first current electrode region (right end of first semiconductor layer as seen in the shape resembling an “H”) and a second current electrode region (left end of first semiconductor layer) in the semiconductor substrate to implement the vertical double gate semiconductor device as a transistor.

With regard to claim 7, Fried teaches in figure 3b and paragraph 0031 each of the first directional implant and the second directional implant is performed by ion implantation at symmetric opposing angles relative to a top surface of the semiconductor substrate.

With regard to claim 8, Fried teaches in paragraph 0032 further comprising annealing the first gate region and the second gate region after the first directional implant and the second directional implant.

With regard to claim 9, Adkisson teaches in figure 2 and column 3, lines 41 – 49 removing a portion of the conductive layer. It is not clear if Adkisson and Fried teach wherein removing a portion of the conductive layer is performed after performing the first directional

implant. It would have been obvious in the method of Adkisson and Fried that the conductive layer would be removed only after performing the first directional implant because the second semiconductor of Adkisson is only referred to as gate material. An intrinsically deposited polysilicon would not be sufficient to act as a gate material of the device in Adkisson, and therefore must be made conductive by implanting and doping through the method of Fried.

With regard to claim 10, as far as the examiner can ascertain, Adkisson and Fried teach further comprising electrically coupling the first gate region and the second gate region.

With regard to claim 11, Adkisson discloses in figure 3, figure 3a, figure 5, figure 5a, column 3, line 61 – column 4, line 24, and column 4, line 65 – column 5, line 12 further comprising forming a metal layer as the conductive layer.

With regard to claim 12, Adkisson discloses in figure 5, and column 4, lines 14 – 23 wherein forming the conductive layer comprises forming a silicon layer (layer of polysilicon in column 4, lines 20 – 21) over the first electrode region, the second electrode region, and the semiconductor structure. Adkisson discloses in figure 5, and column 4, lines 14 – 23 forming a first metal layer (silicide of column 4, line 14) over the silicon layer. Adkisson does not teach heating the semiconductor substrate so that the silicon layer and the first metal layer form a silicide. Salicide processing is a well known technique to form silicide layers. Fried teaches in figures 3b, figure 4b, and paragraph 0032 a salicide technique for forming silicide layers. Fried teaches in figures 3b, figure 4b, and paragraph 0032 wherein forming the forming a first metal layer over a silicon layer (28). Fried teaches in figures 3b, figure 4b, and paragraph 0032 heating the semiconductor substrate (10b) so that the silicon layer and the first metal layer form a silicide. It would have been obvious to one of ordinary skill in the art at the time of the present

invention to use the salicide process of Fried in the method of forming a silicide of Adkisson in order to create a contact that has no abrupt electrical barrier between it and the electrode. Such a contact provides superior electrical connection as is well known in the art.

With regard to claim 13, Adkisson discloses in figure 3, figure 3b, and column 4, lines 16 – 17 removing a portion of the conductive layer to form a first contact for the first electrode region and a second contact for the second electrode region, wherein the first contact and the second contact are electrically isolated from each other.

With regard to claim 14, Adkisson discloses in figures 5 and 5a and column 4, lines 65 – column 5, line 12 wherein removing a portion of the conductive layer comprises planarizing (damascene and conventional contacts) the conductive layer.

With regard to claim 16, Adkisson discloses in figure 3, and column 4, lines 20 – 24 wherein the metal layer further comprises a stack of metal layers (42 and 50).

With regard to claim 17, Adkisson discloses in figures 1 – 5 a method of forming a vertical double gate semiconductor device. Adkisson discloses in figure 1 providing a semiconductor substrate (10). Adkisson discloses in figure 1 forming a first insulating layer (12) over the semiconductor substrate. Adkisson discloses in figure 1 forming a first semiconductor layer (14) on the first insulating layer. Adkisson discloses in figures 1 and 2 etching portions of the first semiconductor layer to form a semiconductor structure (Si) having a first sidewall and a second sidewall, wherein the first sidewall is opposite the second sidewall in a first direction. Adkisson discloses in figures 1 – 3a and column 2, lines 48 – 57 forming a source region and a drain region in the semiconductor substrate in a second direction, wherein the first direction is substantially perpendicular the second direction. Adkisson discloses in figure 2 forming a

second insulating layer on the first sidewall and the second sidewall. Adkisson discloses in figure 2 and column 3, lines 40 – 49 forming a second semiconductor layer (20) over the semiconductor structure and the second insulating layer. Adkisson discloses in figure 2 and column 3, lines 41 – 49 wherein the second semiconductor layer comprises (before polishing and recessing steps disclosed in figure 3, lines 41 – 42) a first semiconductor portion which is adjacent the first sidewall, a second semiconductor portion which is over the semiconductor structure, and a third semiconductor portion which is adjacent the second sidewall. Adkisson discloses in figure 2, and column 3, lines 40 – 49 that the gate polysilicon is conductive in order for the device to be capable of working as a semiconductor device. Adkisson does not teach doping by an angular implant the first semiconductor portion and the third semiconductor portion. Fried discloses in figure 3b, and paragraph 0031 doping by an angular implant (20 and 22) a first semiconductor portion (24) and a third semiconductor (26) portion. It would have been obvious to one of ordinary skill in the art at the time of the present invention to use the doping of Fried in the method of Adkisson in order to make the second semiconductor layer conductive and shift the threshold voltage of the device to be compatible with current state of the art CMOS technology as stated by Fried in paragraph 0007. Adkisson discloses in figure 2, and column 3, lines 40 – 49 removing the second semiconductor portion. It would have been further obvious in the method of Adkisson and Fried the removing the second semiconductor portion would serve to physically separate the first semiconductor portion and the third semiconductor portion via the semiconductor structure to substantially eliminate migration of doping species between the first semiconductor portion and the third semiconductor portion, the semiconductor structure

comprising differing material composition than the first semiconductor portion and the third semiconductor portion at all adjoining surfaces.

With regard to claim 18, Adkisson discloses in column 3, lines 37 - 40 wherein the second insulating layer is deposited conformally (deposited).

With regard to claim 19, Fried teaches in paragraph 0032 further comprising annealing the second semiconductor layer.

With regard to claim 20, Adkisson teaches in figure 2 and column 3, lines 41 – 49 removing the second semiconductor portion. It is not clear if Adkisson and Fried teach wherein removing the second semiconductor portion is performed after doping the second semiconductor layer. It would have been obvious in the method of Adkisson and Fried that the second semiconductor portion would be removed only after the annealing because the second semiconductor of Adkisson is only referred to as gate material. The deposited polysilicon of Fried would not be sufficient to act as a gate material of the device in Adkisson until the layer is conductive enough to be a gate polysilicon. Therefore, the gate polysilicon must be annealed in the method of Adkisson and Fried before removal of the second semiconductor portion because the annealing is part of forming the gate polysilicon.

With regard to claim 21, Adkisson discloses in column 3, lines 40 – 49 wherein removing the second portion is performed by planarization (polished).

With regard to claim 22, Fried teaches in figure 3b and paragraph 0031 wherein doping the first semiconductor portion and the third semiconductor portion further comprises doping the first semiconductor portion with a first species and doping the third semiconductor portion with a second species, wherein the first species and the second species are different in conductivity.

With regard to claim 23, Fried teaches in figure 3b and paragraph 0031 wherein doping the first semiconductor portion and the third semiconductor portion is performed by ion implanting species at an angle relative to a top surface of the semiconductor substrate.

With regard to claim 24, Fried teaches in figure 3b and paragraph 0031 wherein doping the first semiconductor portion and the third semiconductor portion further includes forming a patterned layer (14) over the semiconductor substrate.

With regard to claim 25, Adkisson discloses in figures 1 and 2; and column 3, lines 20 – 30 wherein etching portions of the first semiconductor layer to form the semiconductor structure further comprises: forming a third insulating layer (thin oxide) over the first semiconductor layer; forming a nitride layer (SiN) over the third insulating layer; patterning the nitride layer and the third insulating layer; and etching the first semiconductor layer using the nitride layer and the third insulating layer as a mask.

The rejection of claim 34 is similar to the rejection of claims 1 and 17 above using Adkisson in view of Fried.

8. Claim 15 is rejected under 35 U.S.C. 103(a) as being unpatentable over Adkisson and Fried as applied to claims 1 and 11 above, and further in view of Forbes et al. (USPAT 6414356, Forbes).

With regard to claim 15, Adkisson discloses in figures 2 – 3 forming first and second gate regions before forming the metal. Adkisson does not teach further comprising annealing the first gate region and the second gate region before forming the metal. Forbes teaches in figure 4L, figure 4M, figure 5a, column 12, lines 29 – 55, and column 13, lines 16 – 61 annealing a first

gate region (463a) and a second electrode region (463b) before forming a metal (560). It would have been obvious to one of ordinary skill in the art at the time of the present invention to use the annealing of Forbes in the method of Adkisson and Fried in order to activate dopant species in the gate layer as stated by Forbes in column 12, lines 35 – 55.

***Response to Arguments***

9. Applicant's arguments filed December 16, 2003 have been fully considered but they are not persuasive.

10. With regard to applicant's argument that "no incentive to combine Adkisson et al. and Fried et al.," it should be noted that the "incentive to combine" Adkisson and Fried is found in above paragraph 9 as "in order to make the second semiconductor layer conductive and shift the threshold voltage of the device to be compatible with current state of the art CMOS technology as stated by Fried in paragraph 0007." Applicant has not argued why this motivation fails. Therefore, applicant's arguments are not persuasive, and the rejection is proper.

11. In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., "the recited gate structure has oxide and nitride, such as silicon nitride, or one of these two materials separating the two doped gate regions in a more efficient layout") are not recited in the rejected claim(s). Although the claims are interpreted in light of the specification, limitations from the

specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993).

12. In response to applicant's arguments against the references individually, one cannot show nonobviousness by attacking references individually where the rejections are based on combinations of references. See *In re Keller*, 642 F.2d 413, 208 USPQ 871 (CCPA 1981); *In re Merck & Co.*, 800 F.2d 1091, 231 USPQ 375 (Fed. Cir. 1986).

### ***Conclusion***

13. **THIS ACTION IS MADE FINAL.** Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Paul E Brock II whose telephone number is (571) 272-2723. The examiner can normally be reached on 8:30 AM - 5:30 PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Tom Thomas can be reached on (571) 272-1164. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Paul E Brock II



JEROME JACKSON  
PRIMARY EXAMINER

