HIGH THROUGHPUT ULTRASONIC CLEANER FOR IRRADIATED NUCLEAR FUEL ASSEMBLIES

CROSS REFERENCE TO RELATED APPLICATION

[0001] This application relates to and claims priority to US Provisional Patent Application No. 60/398,726, entitled "High Throughput Ultrasonic Cleaner For Irradiated Nuclear Fuel Assemblies," filed on July 29, 2002, which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0002] The present invention relates to improvements on previous systems for ultrasonically cleaning irradiated nuclear fuel assemblies.

2. Description of Related Art

[0003] Ultrasonic energy cleaning has been successfully employed to remove crud deposits from irradiated nuclear fuel assemblies. The initial commercial motivation for removing these deposits from pressurized water reactor (PWR) fuel has been to mitigate crud induced power shift (CIPS), also sometimes referred to as axial offset (AO) or axial offset anomaly (AOA). CIPS is a phenomenon in which deposits form on the fuel rod cladding due to the combination of local thermal and hydraulic conditions and primary side fluid impurities characteristic of the reactor and primary system. Certain compounds residing in these deposits act as a poison to the nuclear reaction and, because the deposits are typically thicker in the top portion of the core, cause an abnormal power distribution along the axis of the core, reducing available margin for certain types of operating conditions. As a result of CIPS, some power plants have been forced to reduce their reactor power level and hence electrical output for extended periods, which has been expensive for the operating utilities.

[0004] In addition to mitigating CIPS, removal of crud deposits from irradiated fuel assemblies produces some other favorable results in nuclear plants of any design, including

but not limited to (1) reducing the total crud inventory ("source term reduction") of plant primary systems, which leads to lower radiation dose rates for plant personnel (ALARA), (2) improving fuel inspectability, and (3) reducing potential for spread of radioactive contamination during fuel transport, storage, and reprocessing.

[0005] Electrical generation at power plants is routinely interrupted to perform certain tasks that cannot be performed online, such as certain maintenance tasks, inspections, and reactor refueling. During the refueling of a main reactor, the fuel assemblies are removed from the reactor core and stored underwater near the reactor or in the plant's spent fuel pool. Later in the outage, some of the irradiated fuel assemblies are put back into the reactor core, while others are left in the spent fuel pool so that fresh assemblies can be loaded in their place. Existing ultrasonic fuel cleaning systems operate in the window when the fuel assemblies are in the spent fuel pool and available for cleaning. Because fuel offload is generally performed during critical path outage time, it has been more economical to offload fuel first, then go back and clean it after the offload is complete.

[0006] Efforts by owners and operators of power plants to reduce outage lengths are resulting in a reduced amount of time available for cleaning fuel assemblies for those plants which perform a full core offload as part of refueling. Furthermore, it has become standard practice in the boiling water reactor (BWR) community to keep a significant percentage of the fuel in the reactor vessel throughout the refueling outage, in practice known as "fuel shuffling." It would be beneficial if a fuel cleaning system were capable of cleaning fuel assemblies during the fuel movements without a significant impact on the time required to move (shuffle or offload) fuel. Such is the case with the invention presented herein.

OBJECTS OF THE INVENTION

[0007] It is an object of the present invention to provide a passive system for operating two or more cleaning chambers using a single filtration system.

30390359v1 - 2 -

[0008] It is another object of the present invention to provide a passive system having a simple flow diverter assembly for switching filtration and cooling flow between cleaners without the need for underwater actuators.

[0009] It is another object of the present invention to provide a system having a flow diverter assembly that requires no user intervention and that is completely passive.

[0010] It is another object of the present invention to provide a passive system having a flow diverter assembly that protects the suction pumps from cavitating.

[0011] It is another object of the present invention to provide a passive system having a flow diverter assembly that opens slightly to allow some bypass flow when both cleaners are empty.

[0012] It is yet another object of the present invention to provide a passive system having a flow diverter assembly that permits fast insertion and removal of fuel assemblies.

[0013] It is another object of the present invention to provide a passive system having a flow diverter assembly whereby pistoning forces are reduced by providing a flow path from the bottom of the cleaner to the pool during fuel assembly insertion and removal.

[0014] It is another object of the present invention to provide a passive system having a flow diverter assembly that is designed to be field removable/replaceable.

[0015] It is yet another object of the present invention to provide a flow diverter assembly using materials that minimize the possibility of galling on sliding parts.

SUMMARY OF THE INVENTION

[0016] In response to the foregoing challenges, applicants have developed a series of improvements to existing ultrasonic fuel cleaning technology that increase throughput, usability, serviceability, and speed of mobilization and demobilization, thereby making it possible to clean fuel concurrently with fuel offload or fuel shuffle without significant impact to critical path.

30390359vI - 3 -

[0017] Previously, to increase fuel cleaning throughput, a power plant could install additional ultrasonic cleaning systems. Each of the cleaners would be designed such that the fuel assembly could be fully supported by the cleaner, freeing the fuel handling devices to retrieve additional fuel assemblies rather than waiting for the cleaner to finish before retrieving the next fuel assembly. Alternatively, a plant could avoid the added expense of multiple filtration systems by installing two cleaners and a single filtration system that is switched between the cleaners as necessary. Pneumatic or electronically actuated valves would control suction from the filtration system ensuring that each, cleaner received sufficient flow to flush the loosened crud from the fuel assemblies. Such a solution is less than desirable because it requires underwater actuators and active control of the valves.

[0018] This invention provides a passive means for operating two or more cleaning chambers connected via a common header hose to a single filtration system. Each cleaning chamber has a flow diverter assembly upstream of the header hose. The flow diverter assembly is actuated by a fuel assembly when a fuel assembly is inserted into the cleaning chamber. The flow diverter acts so that each cleaning chamber is supplied with flow whenever there is a fuel assembly in the cleaning chamber. When a cleaning chamber is empty, the flow diverter acts to block the suction flow from the filtration system, forcing suction flow through the opposite cleaning chamber. When both cleaning chambers are empty, suction pressure from the pump increases to the point that the flow diverters in both chambers open sufficiently to maintain flow through the pumps and prevent the pumps from cavitating.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] The invention will be described in conjunction with the following drawings in which like reference numerals designate like elements and wherein:

[0020] Fig. 1 is a schematic view of a flow diverter assembly located within an ultrasonic cleaning chamber in accordance with the present invention, wherein the flow diverter assembly is in a bypass position such that the filter pumps are isolated from the ultrasonic

30390359v1 - 4 -

cleaning chamber, in such a bypass position any hydraulically induced flow in the cleaning chamber is bypassed to and from the fuel pool;

[0021] Fig. 2 is a schematic view of the flow diverter assembly of Fig. 1 located in an ultrasonic cleaning chamber, wherein the flow diverter assembly is in an engaged position such that the filter pumps are aligned with the ultrasonic cleaning chamber in such an engaged position, the bypass to the pool is closed;

[0022] Fig. 3 is an exploded schematic view of the flow diverter assembly of the present invention;

[0023] Fig. 4 is a schematic view of the flow diverter assembly of the present invention in the engaged position, whereby the flow through the suction windows is open and the flow through the pool windows is closed;

[0024] Fig. 5 is a schematic view of the flow diverter assembly of the present invention in the bypass position, whereby the flow through the pool windows is open and the flow through the suction windows is closed; and

[0025] Fig. 6 is a schematic view of an ultrasonic cleaning assembly with two ultrasonic cleaning chambers.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0026] A flow diverter assembly 10 in accordance with the present invention is illustrated in Figs. 3-5. The flow diverter assembly 10 is located within an ultrasonic cleaning assembly 1. The flow diverter assembly 10 includes an inner movable piece 11 having a plurality of windows 111 formed thereon. The inner movable piece 11 is preferably formed from steel, such as 304 Stainless Steel. The windows 111 form a flow path. The movable piece 11 is supported by a spring assembly 12. The spring assembly 12 is capable of providing between 100-150 pounds of upward force on the movable piece 11. (It is contemplated that this force may be selected to be as high as practical while staying below the load cell trip points, typically about 10% of the weight of a fuel assembly, on the fuel handling equipment.) The

30390359v1 - 5 -

flow diverter 10 further includes a fixed outer member 13. The fixed outer member 13 is preferably formed from Nitronic 60. The fixed outer member 13 includes a plurality of suction windows 131 and a plurality of pool windows 132. When in an engaged position, the suction windows 131 connect the ultrasonic cleaning chamber assembly 1 to the filter pumps (not shown), which are isolated from the cleaning chamber assembly 1. When in a bypass position, the pool windows 132 connect the ultrasonic cleaning chamber assembly 1 to a fuel pool (not shown). The movable piece 11 and the fixed outer piece 13 are made of materials specifically selected to prevent galling while the parts slide against each other.

[0027] As illustrated in Figs. 1 and 2, the flow diverter assembly 10 is located within the ultrasonic cleaning chamber assembly 1. As a fuel assembly 3 is lowered into the cleaning chamber 1, the fuel assembly 3 engages the movable piece 11 of the flow diverter assembly 10. The fuel assembly 3 applies a downward force on the movable piece 11 such that movable piece 11 moves in a downward direction against the bias of the spring assembly 12 from a bypass position, shown in Fig. 1, to an engaged position, shown in Fig. 2. Each cleaning chamber 1 includes at least one bank of ultrasonic transducers (not shown). The cleaning chamber 1 and a filtration system 15 may be portable so that it can be located in the field in the spent fuel pool or in the reactor near the fuel assemblies.

[0028] When the movable piece 11 is in the bypass position, the windows 111 are aligned with the pool windows 132 on the fixed outer piece 13. A flow path is created between the ultrasonic cleaning chamber 1 and the fuel pool, as shown in Fig. 1. The movable piece 11 includes a solid lower portion 112, which blocks a flow path to the suction windows 131. In the bypass position, there is no flow path to the suction line 14 and the filtration system 15. [0029] Once the movable piece 11 is pushed to the engaged position by the fuel assembly 3, the windows 111 on the movable piece are aligned with the suction windows 132 on the fixed outer piece 13. The flow path to the pool is closed off and a new flow path to the suction line 14 opens, as shown in Fig. 2, such that a flow path to the filtration system 15 is opened. The

30390359v1 - 6 -

filtration system 15 may include a pump 151 and one or more filters 152 having replaceable filter cartridges. When a fuel assembly 3 is positioned within the cleaning chamber 1 such that the flow path to the filtration system 15 is open, as shown in Fig. 2, the pump 151 withdraws water from the chamber 1 through the suction windows 131. The water flows into the filters 152 whereby the crud deposits are separated from the water.

[0030] Figure 6 shows an assembly with two cleaning chambers 21 and 22. Each chamber 21 and 22 has a suction line 14 operatively connected to the diverter assembly 10, as shown in Figs. 1 and 2. The suction lines 14 are connected such that a single suction line 141 extends from the chambers 21 and 22 to the filtration assembly 15. It is contemplated that two or more cleaning chambers can be operatively connected to the suction line 141 and the single filtration system 15. In the event that the flow diverters in both cleaning chambers are in the bypass configuration (i.e., both cleaning chambers are empty (e.g., Figs. 1 and 5)), the pressure difference between the common suction line and the pool will become great enough to overcome the spring force of the spring assembly 12 for keeping the movable piece 11 of at least one of the cleaning chambers in the bypass position. In that case, the corresponding flow diverter 10 will move down, allowing some flow to the common suction line 141. The suction line 141 is preferably a flexible hose, but rigid piping is considered to be well within the scope of the present invention. This maintains a safe minimum net positive suction head (NPSH) that prevents the suction pumps from cavitating.

[0031] In accordance with the present invention, it is contemplated that one or more ultrasonic cleaning chambers 1 having a diverter assembly 10 may be employed, such as a pair of cleaning chambers 21 and 22 shown in Fig. 6. The chambers 21 and 22 have the same construction as the chamber 1 illustrated in Figs. 1 and 2. The chambers 21 and 22 are mounted on a base plate 23 that may be located in the fuel pool when cleaning is desired. When a cleaning chamber 21 is empty, the flow diverter assembly 10 acts to block the suction flow from the filtration system 15, forcing suction flow through the opposite cleaning

30390359v1 - 7 -

chamber 22. The flow diverter assembly 10 only provides suction to a cleaning chamber 21 or 22 when there is a fuel assembly 3 in the cleaning chamber, as shown in Fig. 2. [0032] While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments and elements, but, to the contrary, is intended to cover various modifications, combinations of features, equivalent arrangements, and equivalent elements included within the spirit and scope of the appended claims. While the diverter assembly 10 has been described in connection with an ultrasonic cleaner, it is contemplated that the diverter assembly 10 can be used in other cleaning devices. Furthermore, it is contemplated that the diverter assembly 10 may be used in other applications outside of cleaning, where it is desirable to provide passive flow control. Furthermore, the dimensions of features of various components that may appear on the drawings are not meant to be limiting, and the size of the components therein can vary from the size that may be portrayed in the figures herein. Thus, it is intended that the present invention covers the modifications and variations of the invention, provided they come within the scope of the appended claims and their equivalents.

30390359vl - 8 -