Algebra per Informatica

Esame 24 gennaio 2024: soluzioni

Svolgere i seguenti esercizi motivando chiaramente le risposte.

Esercizio 1. Si consideri la seguente funzione

$$f: \mathbb{C} \longrightarrow \mathbb{C}$$
$$x \mapsto x^4 + 1$$

- 1. Determinare se f è iniettiva e/o suriettiva.
- 2. Determinare $f^{-1}(1)$ e $f^{-1}(2)$.
- **Soluzione.** 1. La funzione f non è iniettiva in quanto f(1) = 2 = f(-1). La funzione f è surgettiva. Infatti, dato un qualunque $c \in \mathbb{C}$ esiste sempre un valore $x_0 \in \mathbb{C}$ tale che $f(x_0) = c$ perché per il teorema fondamentale dell'algebra, l'equazione $x^4 + 1 c = 0$ ha sempre soluzioni in \mathbb{C} .
 - 2. Si ha che

$$f^{-1}(1) = \{x \in \mathbb{C} \mid f(x) = 1\} = \{x \in \mathbb{C} \mid x^4 + 1 = 1\} = \{x \in \mathbb{C} \mid x^4 = 0\} = \{0\}.$$

Analogamente, abbiamo

$$f^{-1}(2) = \{x \in \mathbb{C} \mid f(x) = 2\} = \{x \in \mathbb{C} \mid x^4 + 1 = 2\} = \{x \in \mathbb{C} \mid x^4 = 1\}.$$

Pertanto, l'insieme $f^{-1}(2)$ ha come elementi le 4 radici quarte dell'unità, cioè $f^{-1}(2) = \{1, -1, i, -i\}.$

Esercizio 2. Sia dato l'insieme $A = \{(1, 1, 1), (3, 1, 3), (1, 3, 2), (2, 4, 5), (3, 2, 1)\}.$

- 1. Si consideri A come sottoinsieme del poset (\mathbb{Z}^3 , $\leq \times \leq \times \leq$) e si determinino (se esistono) massimo, minimo, estremo inferiore, ed estremo superiore di A.
- 2. Si consideri A come sottoinsieme del poset (\mathbb{Z}^3 , LEX) e si determinino (se esistono) massimo, minimo, estremo inferiore, ed estremo superiore di A.

Soluzione. 1. Abbiamo il seguente diagramma di Hasse che rappresenta la struttura del poset A (dove l'ordine $\leq \times \leq \times \leq$ procede dal basso verso l'alto):

Si vede che A ha tre elementi massimali (2,4,5), (3,1,3), e (3,2,1) che non sono confrontabili. Quindi A non ammette massimo. Il minimo di A è (1,1,1), che quindi è anche l'estremo inferiore. Per determinare l'estremo superiore, cerchiamo l'insieme dei maggioranti di A. Esso è dato da

$$\{(x, y, z) \in \mathbb{Z}^3 : x \ge 3 \text{ AND } y \ge 4 \text{ AND } z \ge 5\},$$

che ha minimo (3,4,5). Pertanto sup A=(3,4,5).

2. Sappiamo che (\mathbb{Z}, \leq) è totalmente ordinato, e quindi anche (\mathbb{Z}^3, LEX) è totalmente ordinato. Pertanto anche A è totalmente ordinato. Più precisamente, A è la catena seguente:

$$(1,1,1) \le (1,3,2) \le (2,4,5) \le (3,1,3) \le (3,2,1).$$

Quindi abbiamo min $A = \inf A = (1, 1, 1)$ e max $A = \sup A = (3, 2, 1)$.

Esercizio 3. 1. Calcolare MCD(76, 32) con l'algoritmo euclideo.

- 2. Scrivere l'identità di Bézout per 76 e 32.
- 3. Stabilire se l'equazione 76x + 32y = 8 ammette soluzioni intere e in tal caso determinarne una.
- 4. Stabilire se l'equazione 76x + 32y = 2 ammette soluzioni intere e in tal caso determinarne una.

Soluzione. 1. Nel seguito sono sottolineati i due numeri tra cui facciamo la divisione euclidea.

$$\frac{76}{32} = 2 \cdot 32 + 12
 32 = 2 \cdot 12 + 8
 12 = 1 \cdot 8 + 4
 8 = 2 \cdot 4 + 0$$

Il massimo comun divisore è l'ultimo resto non nullo, quindi MCD(76, 32) = 4.

2. Per calcolare l'identità di Bézout dobbiamo ripercorrere a ritroso l'algoritmo euclideo, partendo dalla penultima uguaglianza sostituiamo la terzultima e così via fino alla prima; ricordiamoci di trattare i numeri sottolineati come fossero delle variabili, quindi non dobbiamo mai sommarli o moltiplicarli.

$$4 = \underline{12} - \underline{8} = \underline{12} - (\underline{32} - 2 \cdot \underline{12}) = -\underline{32} + 3 \cdot \underline{12}$$

= $-32 + 3 \cdot (76 - 2 \cdot 32) = 3 \cdot 76 - 7 \cdot 32$.

Dunque abbiamo ottenuto che $3 \cdot \underline{76} - 7 \cdot \underline{32} = 4$, che è l'identità di Bézout che cercavamo.

3. Moltiplicando per 2 l'identità di Bézout $4 = 3 \cdot \underline{76} - 7 \cdot \underline{32}$ ottenuta al punto precedente otteniamo

$$2 \cdot 4 = 2 \cdot (3 \cdot \underline{76} - 7 \cdot \underline{32}) = 6 \cdot \underline{76} - 14 \cdot \underline{32},$$

cioè l'uguaglianza $8 = 6 \cdot \underline{76} - 14 \cdot \underline{32}$. Ciò mostra che (x, y) = (6, -14) è una soluzione dell'equazione 76x + 32y = 8.

4. Ricordiamo che l'equazione diofantea ax + by = c ha soluzioni intere se e soltanto se $MCD(a, b) \mid c$. In questo caso, abbiamo $MCD(76, 32) = 4 \nmid 2$, pertanto l'equazione 76x + 32y = 2 non ammette soluzioni intere.

Esercizio 4. Si consideri il gruppo $(U(\mathbb{Z}_{42}), \cdot, \overline{1})$.

- 1. Calcolare la cardinalità di $U(\mathbb{Z}_{42})$.
- 2. Stabilire quali dei seguenti insiemi sono sottogruppi di $U(\mathbb{Z}_{42})$:

$$A = {\overline{0}, \overline{21}},$$

$$B = {\overline{1}, \overline{5}, \overline{25}, \overline{31}, \overline{41}},$$

$$C = {\overline{1}, \overline{13}}.$$

Soluzione. 1. La cardinalità di $U(\mathbb{Z}_{42})$ è $|U(\mathbb{Z}_{42})| = \varphi(42)$, dove φ denota la funzione di Eulero. Siccome $42 = 2 \cdot 3 \cdot 7$, con 2, 3, 7 numeri primi, abbiamo che

$$\varphi(42) = 42\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{7}\right) = 12.$$

Quindi $U(\mathbb{Z}_{42})$ ha 12 elementi.

2. Ricordiamo che per il Teorema di Lagrange, l'ordine di un sottogruppo divide l'ordine del gruppo. Quindi il sottoinsieme B che ha cardinalità $5 \nmid 12 = |U(\mathbb{Z}_{42})|$ non è un sottogruppo. Inoltre, un sottogruppo deve sempre contenere l'elemento neutro del gruppo, in questo caso $\overline{1}$. Pertanto A non è un sottogruppo perché $\overline{1} \notin A$. Infine, dimostriamo invece che il sottoinsieme C è un sottogruppo. Per provare che è un sottogruppo, dobbiamo verificare che contiene l'elemento neutro (che è vero in quanto $\overline{1} \in C$), che è chiuso rispetto all'operazione del gruppo e che contiene

gli inversi dei suoi elementi. Siccome C ha soltanto due elementi, e $\overline{1}$ è l'elemento neutro, ci basta controllare il risultato dell'operazione

$$\overline{13} \cdot \overline{13} = \overline{169} = \overline{4 \cdot 42 + 1} = \overline{1}.$$

Questo ci dice che C è chiuso rispetto all'operazione e che $\overline{13}^{-1} = \overline{13}$. Pertanto C è un sottogruppo di $(U(\mathbb{Z}_{42}), \cdot, \overline{1})$.