Supporting textbook chapters: §§ 9.3.3, 9.3.4

Lecture 9, topics:

- · Stability,
- Implicit and Crank-Nicolson methods,
- · Spectral methods.

Recall...

$$\alpha \frac{\partial^2 \phi}{\partial x^2} + \beta \frac{\partial^2 \phi}{\partial x \partial y} + \gamma \frac{\partial^2 \phi}{\partial y^2} + \delta \frac{\partial \phi}{\partial x} + \varepsilon \frac{\partial \phi}{\partial y} = f.$$

Classification based on

$$\Delta = \beta^2 - 4\alpha\gamma.$$

- 1. $\Delta = 0$: parabolic PDE,
- 2. $\Delta < 0$: elliptic PDE,
- 3. $\Delta > 0$: hyperbolic PDE.

- 1. Canonical parabolic PDE: the diffusion equation, $~\kappa \nabla^2 \phi \frac{\partial T}{\partial t} = 0,$
- 2. Canonical elliptic PDE: the Poisson equation, $\, \nabla^2 \phi = \rho, \,$
- 3. Canonical hyperbolic PDE: the wave equation, $c^2 \nabla^2 \phi \frac{\partial^2 T}{\partial t^2} = 0$.
- Discretize system spatially and temporally. Can use finite differences, spectral coefficients, etc.
- Elliptical equations (e.g., Poisson eqn.):
 - Jacobi relaxation (always stable),
 - Speed-up with overrelaxation (not always stable),
 - Gauss-Seidel (overrelaxed or not): replace on the fly; more stable than Jacobi when overrelaxing.
- Parabolic PDEs (e.g., heat eqn):
 - FTCS (Forward Time, Centred Space) scheme: centred finite-diff. in space, forward Euler in time
 - Stable if sufficient spatial resolution.
- Hyperbolic PDEs (e.g., wave eqn.):
 - Von Neumann analysis says FTCS never stable.
 - This week: better schemes for hyperbolic PDEs.
- Von Neumann stability analysis: plug a Fourier mode, see if it grows or not.

Today: stable and accurate schemes for Hyperbolic PDEs?

The implicit method

We have choices on how to discretize in time the set of ODEs

$$\frac{\partial \phi_m}{\partial t} = \psi_m$$
, and $\frac{\partial \psi_m}{\partial t} = \frac{c^2}{a^2} (\phi_{m+1} - 2\phi_m + \phi_{m-1})$

"Explicit" method we saw last time was

$$\begin{bmatrix} \phi_m^{n+1} \\ \psi_m^{n+1} \end{bmatrix} = \begin{bmatrix} 1 & +h \\ -\frac{2hc^2}{a^2} & 1 \end{bmatrix} \begin{bmatrix} \phi_m^n \\ \psi_m^n \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{c^2h}{a^2} (\phi_{m+1}^n + \phi_{m-1}^n) \end{bmatrix}$$

To compute with the "implicit method"

• first do $h \rightarrow -h$ (from the current time step, compute the *previous* one):

$$\phi_m^{n-1} = \phi_m^n - h\psi_m^n,$$

$$\psi_m^{n-1} = \psi_m^n - h\frac{c^2}{c^2}(\phi_{m-1}^n + \phi_{m+1}^n - 2\phi_m^n),$$

• Then, $n \rightarrow n + 1$ (one shift forward in time):

$$\begin{split} \phi_m^n &= \phi_m^{n+1} - h \psi_m^{n+1}, \\ \psi_m^n &= \psi_m^{n+1} - h \frac{c^2}{a^2} \left(\phi_{m-1}^{n+1} + \phi_{m+1}^{n+1} - 2 \phi_m^{n+1} \right), \end{split}$$

or

$$\begin{bmatrix} \phi_m^n \\ \psi_m^n \end{bmatrix} = \begin{bmatrix} 1 & -h \\ + \frac{2hc^2}{a^2} & 1 \end{bmatrix} \begin{bmatrix} \phi_m^{n+1} \\ \psi_m^{n+1} \end{bmatrix} - \begin{bmatrix} 0 \\ \frac{c^2h}{a^2} (\phi_{m+1}^{n+1} + \phi_{m-1}^{n+1}) \end{bmatrix}$$

"Implicit": we now have a set of simultaneous equations relating the values of ϕ , ψ at t to their values at t+h.

Why bother solving these simultaneous equations, rather than using an "explicit" expression for the values of ϕ , ψ at t+h given their values at t?

Because of stability.

Stability

Examine implicit step

$$\begin{bmatrix} \phi_m^n \\ \psi_m^n \end{bmatrix} = \begin{bmatrix} 1 & -h \\ +\frac{2hc^2}{a^2} & 1 \end{bmatrix} \begin{bmatrix} \phi_m^{n+1} \\ \psi_m^{n+1} \end{bmatrix} - \begin{bmatrix} 0 \\ \frac{c^2h}{a^2} \left(\phi_{m+1}^{n+1} + \phi_{m-1}^{n+1}\right) \end{bmatrix}$$

If we do the Von Neumann substitution, $(\phi_m^n, \psi_m^n) = (\widehat{\phi}_k^n, \widehat{\psi}_k^n) \exp(ikma)$, we get

$$\mathbf{B}\left[\begin{array}{c} \widehat{\boldsymbol{\phi}}_{k}^{n+1} \\ \widehat{\boldsymbol{\psi}}_{k}^{n+1} \end{array}\right] = \left[\begin{array}{c} \widehat{\boldsymbol{\phi}}_{k}^{n} \\ \widehat{\boldsymbol{\psi}}_{k}^{n} \end{array}\right] \Rightarrow \left[\begin{array}{c} \widehat{\boldsymbol{\phi}}_{k}^{n+1} \\ \widehat{\boldsymbol{\psi}}_{k}^{n+1} \end{array}\right] = \mathbf{B}^{-1}\left[\begin{array}{c} \widehat{\boldsymbol{\phi}}_{k}^{n} \\ \widehat{\boldsymbol{\psi}}_{k}^{n} \end{array}\right].$$

with:

$$\mathbf{B} = \begin{bmatrix} 1 & -h \\ hr^2 & 1 \end{bmatrix}, r = \frac{2c}{a} \sin \frac{ka}{2}$$

```
In [14]: from sympy import *
   init_printing()
   h, r = symbols('h, r', positive=True)
   B = Matrix([[1, -h], [h*r**2, 1]])
   B
```

Out[14]: $\begin{bmatrix} 1 & -h \\ hr^2 & 1 \end{bmatrix}$

In [15]: # inverse of B

B**-1

Out[15]:
$$\begin{bmatrix} \frac{1}{h^2r^2+1} & \frac{h}{h^2r^2+1} \\ -\frac{hr^2}{t^2+1} & \frac{1}{t^2+1} \end{bmatrix}$$

In [16]: # eigenvalues as a list

L = list((B**-1).eigenvals().keys())

In [17]: # First eigenvalue

Out[17]: $\frac{i(hr+i)}{h^2r^2+1}$

In [18]: # Magnitude of first eigenvalue
abs(L[0].factor())

Out[18]: $\frac{1}{\sqrt{h^2r^2+1}}$

In [19]: # Magnitude of 2nd eigenvalue
abs(L[1].factor())

Out[19]: $\frac{1}{\sqrt{h^2r^2+1}}$

$$\text{Recall} \quad \left[\begin{array}{c} \widehat{\boldsymbol{\phi}}_k^{m+1} \\ \widehat{\boldsymbol{\psi}}_k^{m+1} \end{array} \right] = \mathbf{B}^{-1} \left[\begin{array}{c} \widehat{\boldsymbol{\phi}}_k^m \\ \widehat{\boldsymbol{\psi}}_k^m \end{array} \right].$$

The eigenvalues of \mathbf{B}^{-1} are

$$\lambda_{\pm} = \frac{1 \pm ihr}{1 + h^2r^2}, \qquad |\lambda_{\pm}| = \frac{1}{\sqrt{1 + h^2r^2}} \le 1.$$

- The eigenvalues are the growth factors and these are less than one.
- · So the implicit method is unconditionally stable.
- But solutions decay exponentially! This is a big problem e.g. for the wave equation (all Fourier components of our solution, except k=0, die away... meaning a wave cannot propagate)

Crank-Nicolson

Crank-Nicolson: average of explicit (fwd Euler) and implicit methods.

Forward Euler, Explicit:

$$\phi_m^{n+1} = \phi_m^n + h\psi_m^n, \qquad \psi_m^{n+1} = \psi_m^n + h\frac{c^2}{c^2} \left(\phi_{m-1}^n + \phi_{m+1}^n - 2\phi_m^n\right).$$

Backward Euler, Implicit:

$$\phi_m^{n+1} - h \psi_m^{n+1} = \phi_m^n, \qquad \psi_m^n = \psi_m^{n+1} - h \frac{c^2}{\sigma^2} \left(\phi_{m-1}^{n+1} + \phi_{m+1}^{n+1} - 2 \phi_m^{n+1} \right).$$

Crank-Nicholson (C-N):

$$\begin{split} \phi_m^{n+1} - \frac{h}{2} \psi_m^{n+1} &= \phi_m^n + \frac{h}{2} \psi_m^n \\ \psi_m^{n+1} - \frac{h}{2} \frac{c^2}{a^2} \left(\phi_{m-1}^{n+1} + \phi_{m+1}^{n+1} - 2 \phi_m^{n+1} \right) &= \psi_m^n + \frac{h}{2} \frac{c^2}{a^2} \left(\phi_{m-1}^n + \phi_{m+1}^n - 2 \phi_m^n \right). \end{split}$$

If we do the Von Neumann substitution, $(\phi_m^n,\psi_m^n)=\left(\widehat{\phi}_k^n,\widehat{\psi}_k^n\right)\exp(ikma)$, we get

$$\mathbf{B}' \left[\begin{array}{c} \widehat{\boldsymbol{\phi}}_m^{n+1} \\ \widehat{\boldsymbol{\psi}}_m^{n+1} \end{array} \right] = \mathbf{A}' \left[\begin{array}{c} \widehat{\boldsymbol{\phi}}_m^n \\ \widehat{\boldsymbol{\psi}}_m^n \end{array} \right],$$

or

$$\begin{bmatrix} \widehat{\boldsymbol{\phi}}_{m}^{n+1} \\ \widehat{\boldsymbol{\psi}}_{m}^{n+1} \end{bmatrix} = \mathbf{B}'^{-1} \mathbf{A}' \begin{bmatrix} \widehat{\boldsymbol{\phi}}_{m}^{n} \\ \widehat{\boldsymbol{\psi}}_{m}^{n}, \end{bmatrix}$$

with

$$\mathbf{B}^{\prime - 1} \mathbf{A}^{\prime} = \frac{a}{1 + h^2 r^{\prime 2}} \begin{bmatrix} 1 - h^2 r^{\prime 2} & 2h \\ -2hr^{\prime 2} & 1 - h^2 r^{\prime 2} \end{bmatrix}, \quad r^{\prime} = \frac{c}{a} \sin \frac{ka}{2}$$

Growth factors of Crank-Nicolson are eigenvalues of ${\bf B}^{-1}{\bf A}$

$$\lambda_{\pm} = \frac{1 \pm 2ihr' - h^2r'^2}{1 + h^2r'^2}, \quad [|\lambda_{\pm}| = 1].$$

- For Forward-Euler (Explicit), the growth factors are greater than one and the solution diverges.
- For Backward-Euler (Implicit), the growth factors are less than one and the solution decays to zero.
- For CN, the growth factors are one so the solution neither grows nor decays.
- It is also 2nd-order accurate in time, while both explicit and implicit methods are 1st-order accurate (I won't show it but it is true).

Spectral methods

General idea (for linear PDEs):

- Find yourself a set of orthogonal functions forming a basis of your function space
- Use transforms to express trial solution and its derivative(s) in this basis, with unknown coefficients
 - Remember, any linear combination of solutions is also itself a solution
- Use transforms to project initial conditions onto that basis, and use them to determine the coefficients
- Use inverse transforms to directly obtain the solution at any specified coordinates (e.g. at any time t, without stepping through all the previous time-steps)

Examples of "set of orthogonal functions forming a basis of your function space":

- $\sin(n\pi x/L)$, $n \in \mathbb{N}$ if quantity is zero at boundaries (assuming x = 0, L are the boundaries) or function is odd w.r.t. midline of domain (assuming x = 0 at midline)
- $\cos(n\pi x/L)$, $n \in \mathbb{N}$ if quantity has zero derivatives at boundaries (assuming x = 0, L are the boundaries) or function is even w.r.t. midline of domain (assuming x = 0 at midline),
- $\exp(in\pi x/L)$, $n \in \mathbb{N}$ if quantity is periodic,
- Chebyshev polynomials for more flexible combinations of boundary conditions or non-periodic, closed domains,
- Hermite polynomials on the $(-\infty, \infty)$ real line,
- Laguerre polynomials on the $(0,\infty)$ real half-line

We focus on sin/cos/exp bases, sometimes called "Fourier spectral methods"

- → large down-payment cost of computing FFTs
- \oplus large return on investment: gives you the solution at any times without stepping through previous times
 - e.g. elliptic PDEs can be solved without the need of an iterative solver like relaxation method
- \oplus numerical stability
- \ominus difficult or impossible to implement in complicated geometries.
- \ominus problematic for non-linear equations

e.g. for elliptic PDEs:

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = \rho;$$

$$\begin{pmatrix} \phi \\ \rho \end{pmatrix} = \sum_i \sum_j \begin{pmatrix} \widehat{\phi}_{ij} \\ \widehat{\rho}_{ij} \end{pmatrix} \exp(i(k_i x + \ell_j y)),$$
Use orthogonality to project $\Rightarrow \widehat{\phi}_{ij} = -\frac{\widehat{\rho}_{ij}}{k_i^2 + \ell_i^2}$

and you are just one iFFT away from getting the solution \Rightarrow no need to use an iterative solver!

This is particularly useful with large sets of coupled PDEs, for which just one elliptic PDE can be the main bottleneck of a non-spectral implementation.

Practical implementation of spectral methods

$$f = \sum_{n = -\infty}^{\infty} \hat{f}_n \exp(ik_n x) \Rightarrow \frac{\partial f}{\partial x} = \sum_{n = -\infty}^{\infty} ik_n \hat{f}_n \exp(ik_n x),$$

or, in shorthand.

$$\frac{\partial f}{\partial x} \to ik_n \hat{f}_n, \quad \frac{\partial^2 f}{\partial x^2} \to -k_n^2 \hat{f}_n$$

Next are a couple of examples of how to express functions and their derivatives in function space.

First derivative

$$f(x) = \exp\left(\frac{-(x - L/2)^2}{\Delta^2}\right)$$

```
In [1]: # Based on derivative_fft.py
import numpy as np
import matplotlib.pyplot as plt
from numpy.fft import rfft, irfft

#define function and its derivative
def f(x):
    return np.exp(-(x-L/2)**2/Delta**2)
def dfdx(x):
    return -2*(x-L/2)/Delta**2*np.exp(-(x-L/2)**2/Delta**2)

# define problem parameters
L = 2.0
Delta = 0.1
nx = 200

# define x, f(x), f'(x)
x = np.arange(0, L, L/nx)
farr = f(x)
farr_derivative = dfdx(x)
```

```
In [3]: # now do the same thing spectrally:
    fhat = rfft(farr) # fourier transform
    karray = np.arange(nx/2+1)*2*np.pi/L # define k
    fhat_derivative = complex(0, 1)*karray*fhat # define ik*fhat
    f_derivative_fft = irfft(fhat_derivative) # and transform back
```

```
In [5]: plt.figure(dpi=100)
   plt.plot(x, farr, label='$f$')
   plt.plot(x, farr_derivative, label='$df/dx$, analytic')
   plt.plot(x, f_derivative_fft, '--', label='$df/dx$ with FFT')
   plt.legend(loc=3)
   plt.xlabel('x')
   plt.grid()
   plt.tight_layout()
   plt.show()
```



```
In [6]: plt.figure(dpi=100)
    plt.plot(x, abs(farr_derivative_fft))
    plt.xlabel('x')
    plt.ylabel('abs(analytic - FFT)')
    plt.grid()
    plt.tight_layout()
    plt.show()
```


Second derivative

```
In [7]: from dcst import dst, idst, dct, idct # From Newman's dcst.py
          N = 256
          x = \text{np.arange(N)*np.pi/N} \quad \# x = pi*n/N
farr = \text{np.sin(x)} - 2*\text{np.sin(4*x)} + 3*\text{np.sin(5*x)} - 4*\text{np.sin(6*x)} \quad \# \text{ function is a sine series}
          fCoeffs = dst(farr) # do fourier sine series
          print('Original series: f = \sin(x) - 2\sin(4x) + 3\sin(5x) - 4\sin(6x)')
          for j in range(7):
              print('Coefficient of sin({0}x): {1:.2e}'.format(j, fCoeffs[j]/N))
          Original series: f = \sin(x) - 2\sin(4x) + 3\sin(5x) - 4\sin(6x)
          Coefficient of sin(0x): 0.00e+00
          Coefficient of sin(1x): 1.00e+00
          Coefficient of sin(2x): -4.58e-17
          Coefficient of sin(3x): -5.64e-16
          Coefficient of sin(4x): -2.00e+00
          Coefficient of sin(5x): 3.00e+00
          Coefficient of sin(6x): -4.00e+00
 In [9]: # Below: 2nd derivative also a sine series
          d2f_dx2_a = -np.sin(x) + 32*np.sin(4*x) - 75*np.sin(5*x) + 144*np.sin(6*x)
          # 2nd derivative using Fourier transform
          DerivativeCoeffs = -np.arange(N)**2*fCoeffs
          d2f_dx2_b = idst(DerivativeCoeffs)
In [12]: plt.figure(dpi=100)
          plt.plot(x, d2f_dx2_a, label='analytic')
plt.plot(x, d2f_dx2_b, '--', label='with DST')
          plt.xlabel('x')
          plt.legend()
          plt.grid()
          plt.show()
```



```
In [13]: plt.figure(dpi=100)
    plt.plot(x, abs(d2f_dx2_a - d2f_dx2_b))
    plt.xlabel('x')
    plt.ylabel('abs(analytic - dst)')
    plt.tight_layout()
    plt.grid()
    plt.show()
```


Summary

- · Last week: FTCS was
 - an explicit scheme,
 - unstable for hyperbolic PDEs (wave eqn.)
- · This week, FTCS with implicit time stepping:
 - infers what RHS of next step is based on present step, and inverts.
 - stable for hyperbolic PDEs, but decays (bad accuracy)
- Crank-Nicolson:
 - average of implicit and explicit, also requires matrix inversion,
 - neither grows nor decays
- Spectral methods:
 - leverage $\partial_x f \to i k \hat{f}$ and powerful FFT methods,
 - a can be much faster than grid-based schemes (though it depends),
 - Very accurate
 - Not too flexible when it comes to domain shape.