8 cardinalidade

- 184. Em cada caso, diga, justificando, se os conjuntos indicados são equipotentes:
 - (a) $\{1,2,5,8\}$ e $\{azul, verde, vermelho\}$;

Resolução

Os conjuntos não são equipotentes pois qualquer aplicação de $\{1, 2, 5, 8\}$ em $\{azul, verde, vermelho\}$ é não injetiva.

(b) $\{1, 2, 5, 7\}$ e $\{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$;

Resolução

Os conjuntos são equipotentes. A aplicação $f:\{1,2,5,7\}\to\{\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R}\}$ definida por $f(1)=\mathbb{N},\,f(2)=\mathbb{Z},\,f(5)=\mathbb{Q},\,f(7)=\mathbb{R}$ é uma aplicação bijetiva.

- (c) \mathbb{N} e \mathbb{N}_0 ;
- (d) \mathbb{N} e \mathbb{Z} ;
- (e) $2\mathbb{N}$ e $3\mathbb{Z}$;
- (f)]0,1] e [0,1[;
- (g)]0,1] e [0,1];
- (h) Dados $a, b \in \mathbb{R}$, com a < b, $a, b \in \mathbb{R}$;
- (i) $]0,1[\cup\{2\} \in \mathbb{R};$
- (j) $\mathbb{R} \setminus \mathbb{N} \in \mathbb{R}$.
- 185. Sejam A, B, C e D conjuntos. Prove que:
 - (a) se $A \sim B$ então $\mathcal{P}(A) \sim \mathcal{P}(B)$;
 - (b) $A \times B \sim B \times A$;
 - (c) se $A \sim C$ e $B \sim D$ então $A \times B \sim C \times D$;
 - (d) $(A \times B) \times C \sim A \times (B \times C)$.
- 186. Sejam A, B e C conjuntos. Diga, justificando, se é verdadeira ou falsa cada uma das seguintes afirmações:
 - (a) se $A \sim B$ então $A \setminus B \sim B \setminus A$;

Resolução

A afirmação é falsa. Considere-se o seguinte contraexemplo: Para $A=\mathbb{N}$ e $B=\mathbb{N}_0$, tem-se $A\sim B$ e $A\backslash B=\emptyset\not\sim\{0\}=B\backslash A$.

- (b) se $A \setminus B \sim B \setminus A$ então $A \sim B$;
- (c) se $A \sim B$ então $A \cup C \sim B \cup C$;
- (d) se $A \sim B$ então $A \cap C \sim B \cap C$;
- (e) se $A \sim B$ e $A \cap C = B \cap C = \emptyset$ então $A \cup C \sim B \cup C$;

Resolução

A afirmação é verdadeira. Se $A\sim B$, existe uma função bijetiva de A em B. Seja $f:A\to B$ essa função. Considere-se a relação

$$g = \{(a, f(a)) : a \in A\} \cup \{(c, c) : c \in C\}.$$

Então, $g\subseteq (A\cup C)\times (B\cup C)$ é tal que

$$D_q = A \cup C$$

e, porque $A \cap C = B \cap C = \emptyset$, para todos $x \in A \cup C$ e $y_1, y_2 \in B \cup C$,

$$(x, y_1), (x, y_2) \in g \Rightarrow y_1 = y_2$$

Logo, g é uma função de $A \cup C$ em $B \cup C$. Mais ainda,

$$D'_a = B \cup C$$

e, para $x_1, x_2 \in A \cup C$ e $y \in B \cup C$,

$$(x_1, y), (x_2, y) \in g \Rightarrow x_1 = x_2.$$

Assim, a função g é bijetiva e, portanto, $A \cup C \sim B \cup C$.

- (f) se $A \cap C \sim B \cap C$ e $C \neq \emptyset$ então $A \sim B$;
- (g) Sejam $A, B \in C$ conjuntos. Se $A \cup C \sim B \cup C$ então $A \sim B$.

Resolução

A afirmação é falsa. Considere-se o seguinte contraexemplo: Se $A=\{1,2\},\ B=\{3\}$ e $C=\{1,2,3\},$ então, $A\cup C=\{1,2,3\}=B\cup C$ e, portanto, $A\cup C\sim B\cup C$ e, no entanto, $A\not\sim B$, já que são conjuntos finitos com diferentes cardinais.

187. Dê exemplos de conjuntos A, B, C e D tais que $A \sim C$ e $B \sim D$ mas

(a)
$$A \cup B \nsim C \cup D$$
;

(b)
$$A \cap B \nsim C \cap D$$
.

- 188. Sejam A, A', B e B' conjuntos tais que $A \sim A'$, $B \sim B'$ e seja $f: A \to B$ é uma aplicação injetiva. Mostre que existe uma aplicação injetiva de A' em B'.
- 189. Sejam A e B conjuntos finitos equipotentes e $g:A\to B$ uma aplicação. Mostre que as seguintes proposições são equivalentes:
 - (a) q é injetiva;
- (b) q é sobrejetiva;
- (c) q é bijetiva.

- 190. Sejam A e B conjuntos. Mostre que:
 - (a) Se A é infinito e $A \subseteq B$, então B é infinito;

Resolução

Como A é infinito, sabemos que existe $X\subset A$ para o qual existe $f:X\to A$ bijetiva. Sejam $Y=X\cup B\backslash A$ e $g:Y\to B$ a aplicação definida por

$$f(y) = \begin{cases} y & se \ y \in B \backslash A \\ f(y) & se \ y \in X \end{cases}$$

Então, $Y\subset B$ e g é uma aplicação bijetiva: g é sobrejetiva pois

$$y \in B \Leftrightarrow y \in B \setminus A \text{ ou } y \in A$$

 $\Rightarrow y \in B \setminus A \text{ ou } \exists x \in X : y = f(x)$
 $\Leftrightarrow \exists x \in Y : y = g(x)$

e g é injetiva, uma vez que

$$g(a) = g(b) \Leftrightarrow \begin{cases} a = b & \text{se } a, b \in B \backslash A \\ f(a) = f(b) & \text{se } a, b \in X \end{cases}$$

 $\Rightarrow a = b,$

uma vez que f é injetiva. Logo, como B é equipotente a um seu subconjunto próprio, concluímos que b é infinito.

- (b) Se B é finito e $A \subseteq B$, então A é finito.
- (c) se A e B são finitos, então $A \cup B$ é finito;
- 191. Mostre que um subconjunto infinito de um conjunto numerável é numerável.
- 192. Sejam A e B conjuntos. Prove que:
 - (a) se A é finito e B é numerável então $A \cup B$ é numerável;

Resolução

Se A é finito então existe $n \in \mathbb{N}$ e existe $f: \{1,2,...,n\} \to A$ bijetiva. Se B é numerável então existe $g: \mathbb{N} \to B$ bijetiva. Seja $h: \mathbb{N} \to A \cup B$ definida por

$$h(x) = \begin{cases} f(x) & \text{se } x \le n \\ g(x-n) & \text{se } x > n \end{cases}.$$

Então, h é obviamente bijetiva e, portanto, $\mathbb{N} \sim A \cup B$, i.e., $A \cup B$ é numerável.

- (b) se A é finito e B é numerável então $B \setminus A$ é numerável;
- (c) se A e B são numeráveis então $A \cup B$ é numerável.