Feuille d'exercices 15 : Matrices

1 Ensemble de matrices

Exercice 1. Montrer que :

$$\forall u, v, s, t \in [1, n], \ E_{u,s} \times E_{v,t} = \delta_{s,v} E_{u,t}$$

où $\delta_{s,v}$ est le symbole de Kronecker : $\delta_{s,v} = \begin{cases} 1 & \text{si } s = v \\ 0 & \text{si } s \neq v \end{cases}$

Exercice 2. Résoudre l'équation $X^2 - 2X = \begin{pmatrix} -1 & 0 \\ 6 & 3 \end{pmatrix}$ d'inconnue $X \in \mathcal{M}_2(\mathbb{R})$.

Exercice 3. Soit D une matrice diagonale de $\mathcal{M}_n(\mathbb{K})$ dont les termes diagonaux sont deux à deux distincts. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Montrer que si AD = DA alors A est diagonale.

Exercice 4. Soient $n \in \mathbb{N}^*$ et E une partie de $\mathcal{M}_n(\mathbb{K})$.

On appelle commutant de E l'ensemble $\{A \in \mathcal{M}_n(\mathbb{K}) ; \forall B \in E, AB = BA\}.$

- 1. Déterminer le commutant de $E = \mathcal{M}_n(\mathbb{K})$.
- 2. Déterminer le commutant de $E = \mathcal{D}_n(\mathbb{K})$.
- 3. Déterminer le commutant de $E = \mathcal{TS}_n(\mathbb{K})$.

Exercice 5. Soit $n \in \mathbb{N}^*$. On pose : $U = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$.

Calculer U^k pour $k \in \mathbb{N}^*$.

Exercice 6. Calculer M^n pour $n \in \mathbb{N}$ avec : $M = \begin{pmatrix} 1 & 2 & 6 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$

Exercice 7. Soit $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.

- 1. Soient $a, a', b, b' \in \mathbb{R}$. Montrer que si aA + bI = a'A + b'I alors a = a' et b = b'.
- 2. Montrer que $A^2 = 5A 4I_3$.
- 3. Montrer que pour tout $p \in \mathbb{N}$, il existe $(\alpha_p, \beta_p) \in \mathbb{R}^2$ tels que $A^p = \alpha_p A + \beta_p I_3$ et déterminer une relation de récurrence satisfaite par α_p et β_p . En déduire α_p et β_p en fonction de p.
- 4. En déduire A^p pour tout $p \in \mathbb{N}$.

Exercice 8. Calculer A^n pour $n \in \mathbb{N}$ avec :

1.
$$A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, a, b \in \mathbb{R};$$
 2. $A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix};$ 3. $A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \theta \in \mathbb{R}$

Exercice 9. Soit $A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$. Calculer A^2 en fonction de A et en déduire A^n , pour $n \in \mathbb{N}^*$.

Exercice 10. Calculer M^n pour $n \in \mathbb{N}$ avec : $M = \begin{pmatrix} 3 & 2 & 3 \\ 0 & 3 & 4 \\ 0 & 0 & 3 \end{pmatrix}$

Exercice 11. Soient $n \in \mathbb{N}^*$, $(a,b) \in \mathbb{C}^2$ et soit :

$$M_{a,b} = \begin{pmatrix} a & b & \dots & b \\ b & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \dots & b & a \end{pmatrix} \in \mathcal{M}_n(\mathbb{C}).$$

Soit $k \in \mathbb{N}^*$, calculer $M_{a,b}^k$.

Exercice 12. Soient (x_n) , (y_n) et (z_n) définies par $(x_0, y_0, z_0) \in \mathbb{R}^3$ et :

$$\forall n \in \mathbb{N}, \begin{cases} x_{n+1} = \frac{2}{3}x_n + \frac{1}{6}y_n + \frac{1}{6}z_n \\ y_{n+1} = \frac{1}{6}x_n + \frac{2}{3}y_n + \frac{1}{6}z_n \\ z_{n+1} = \frac{1}{6}x_n + \frac{1}{6}y_n + \frac{2}{3}z_n \end{cases}.$$

Etudier la convergence de ces trois suites.

2 Opérations élémentaires sur une matrice

Exercice 13. On considère la matrice :

$$A = \left(\begin{array}{ccccc} 1 & -4 & -3 & -2 & -2 \\ 2 & -6 & -6 & -4 & -2 \\ -3 & 12 & 12 & 6 & 3 \\ 0 & 1 & 2 & 0 & -1 \end{array}\right).$$

Montrer qu'on peut, en effectuant des opérations élémentaires sur les lignes et les colonnes de A, obtenir la matrice :

$$J = \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right).$$

3 Matrices carrées inversibles

Exercice 14. Soit $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.

- 1. Prouver qu'il existe $a, b \in \mathbb{R}$ tels que $A^2 = aA + bI$.
- 2. En déduire que A est inversible et déterminer A^{-1} .

Exercice 15. Soit $A = (a_{i,j})_{1 \le i,j \le n}$ la matrice carrée d'ordre $n \ge 2$ définie par $a_{i,i} = 0$ et $a_{i,j} = 1$ si $i \ne j$. Montrer que A est inversible et calculer son inverse. On pourra calculer $(A + I_n)^2$.

Exercice 16. Soit $M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{K})$. On appelle trace de M et on note $\mathrm{tr}(M)$ le nombre :

$$\operatorname{tr}(M) = \sum_{i=1}^{n} m_{i,i}.$$

1. Soient $A, B \in \mathcal{M}_n(\mathbb{K}), \lambda, \mu \in \mathbb{R}$, montrer que :

$$tr(\lambda A + \mu B) = \lambda tr(A) + \mu tr(B).$$

2. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$, montrer que :

$$\operatorname{tr}(AB) = \operatorname{tr}(BA).$$

3. Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $P \in GL_n(\mathbb{K})$, montrer que :

$$\operatorname{tr}(PAP^{-1}) = \operatorname{tr}(A).$$

Exercice 17. Soit $t \in \mathbb{K}$, on considère les matrices $A = (a_{i,j}), B = (b_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ définies par :

$$\forall i, j \in [1, n], \ a_{i,j} = \left\{ \begin{array}{ll} t^{j-i} \binom{j}{i} & \text{ si } i \leq j \\ 0 & \text{ si } i > j, \end{array} \right.$$

$$\forall i, j \in [1, n], b_{i,j} = \begin{cases} (-1)^{i+j} t^{j-i} \binom{j}{i} & \text{si } i \leq j \\ 0 & \text{si } i > j, \end{cases}$$

Montrer que A et B sont inverses l'une de l'autre.

Exercice 18. Calculer l'inverse de la matrice
$$A = \begin{pmatrix} 3 & 2 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{pmatrix}$$
.

Exercice 19. Calculer les inverses des matrices suivantes

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 0 & 2 \end{pmatrix} \qquad B \begin{pmatrix} -1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & -1 & 2 & 1 \\ -1 & 3 & 1 & 0 \\ 2 & 0 & -1 & 1 \\ -2 & 1 & 0 & -1 \end{pmatrix}$$

Exercice 20. Soit $A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 1 & 4 \\ 1 & -2 & 1 \end{pmatrix}$

- 1. Calculer $A^3 4A^2 + 8A$. Montrer que A est inversible et exprimer A^{-1} en fonction de A^2 , A et I_3 .
- 2. Vérifier que A est inversible et calculer son inverse en résolvant un système linéaire.
- 3. Vérifier que A est inversible et calculer son inverse à l'aide de l'algorithme de Gauss-Jordan.

Exercice 21. On considère les matrices :

$$A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -3 \\ 1 & 1 & -2 \end{pmatrix} \text{ et } P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

- 1. Montrer que P est inversible et calculer P^{-1} .
- 2. Calculer la matrice :

$$D = P^{-1}AP$$

ainsi que ses puissances $n, n \in \mathbb{N}^*$.

3. En déduire A^n , pour $n \in \mathbb{N}^*$.

Exercice 22. On pose:

$$P = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ et } A = \begin{pmatrix} 3 & 4 & -4 \\ -2 & -1 & 2 \\ -2 & 0 & 1 \end{pmatrix}.$$

- 1. Montrer que P est inversible et calculer P^{-1} .
- 2. Calculer la matrice $D = P^{-1}AP$ ainsi que D^n pour $n \in \mathbb{N}$.
- 3. Calculer A^n pour $n \in \mathbb{N}$.

Exercice 23. Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$. On suppose que pour tout $i \in [1,n], |a_{i,i}| > \sum_{j \in [1,n] \setminus \{i\}} |a_{j,i}|$.

Montrer que A est inversible. (On pourra raisonner par l'absurde et considérer $X \in \mathcal{M}_{n,1}(\mathbb{K}) - \{0\}$ tel que MX = 0).

4 Transposition et matrices Symétriques

Exercice 24. Montrer que toute matrice carrée se décompose de façon unique comme la somme d'une matrice symétrique et d'une matrice antisymétrique.

Exercice 25. Soient $A \in \mathcal{M}_n(K)$ et $f : \mathcal{M}_n(K) \to \mathcal{M}_n(K)$, $X \mapsto {}^t AX + XA$.

- 1. Montrer que si X est symétrique, f(X) est symétrique.
- 2. Montrer que si X est antisymétrique, f(X) est antisymétrique.

Exercice 26. On dit qu'une matrice $S \in \mathcal{S}_n(\mathbb{R})$ est positive si :

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \ ^t XSX \geq 0.$$

On se donne dans la suite une matrice D diagonale.

- 1. Calculer tXDX pour $X \in \mathcal{M}_{n,1}(\mathbb{R})$.
- 2. En déduire une condition nécessaire et suffisante (CNS) pour que D soit positive.

Exercice 27. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice triangulaire supérieure.

Montrer que ${}^{t}AA = A^{t}A$ si et seulement si A est diagonale.