Program

Dostępna pamięć: 128 MB.

OI, etap II, dzień próbny, 7.02.2012

Tour de Bajtocja

W Bajtocji jest n miast. Niektóre pary miast są połączone dwukierunkowymi drogami. Drogi nie przecinają się poza końcami, w razie konieczności prowadzą tunelami lub estakadami.

Już wkrótce rozpocznie się znany wyścig kolarski **Tour de Bajtocja**. Wiadomo, że trasa wyścigu będzie przebiegała drogami Bajtocji, będzie miała początek i koniec w tym samym mieście oraz nie będzie prowadziła żadną drogą więcej niż raz.

Bajtazar jest słynnym bajtockim kibicem, szefem fanklubu drużyny piłkarskiej Bajtusie. Bajtazar i jego klubowi przyjaciele szczerze nienawidzą wyścigów kolarskich. Chcą oni uniemożliwić sytuację, w której trasa wyścigu przebiegałaby przez miasta, w których mieszkają. Aby temu zapobiec, są gotowi zablokować część dróg. Bajtazar wie, w których mieszkają poszczególni członkowie jego klubu. Chce on wyznaczyć minimalną liczbę dróg, jakie trzeba zablokować, tak aby wyścig kolarski nie mógł przebiegać przez żadne z miast, w których mieszka jakiś członek jego klubu (oczywiście, wliczając w to samego Bajtazara). Twoim zadaniem jest pomóc Bajtazarowi w wyznaczeniu takiego zbioru dróg.

Wejście

W pierwszym wierszu standardowego wejścia znajdują się trzy liczby całkowite n, m oraz k ($1 \le n \le 1~000~000$, $0 \le m \le 2~000~000$, $1 \le k \le n$), pooddzielane pojedynczymi odstępami, oznaczające odpowiednio: liczbę miast, liczbę dróg oraz liczbę miast, w których mieszkają członkowie klubu. Miasta są ponumerowane od 1 do n, przy czym miasta, w których mieszkają członkowie klubu, mają numery od 1 do k. W każdym z kolejnych m wierszy znajdują się dwie liczby całkowite oddzielone pojedynczym odstępem, a_i i b_i ($1 \le a_i < b_i \le n$), oznaczające, że miasta a_i i b_i są połączone dwukierunkową drogą. Każda para miast Bajtocji jest połączona co najwyżej jedną drogą.

W testach wartych łącznie 40% punktów zachodzą dodatkowe warunki $n \leq 1~000$ i $m \leq 5~000$.

Wyjście

Twój program powinien wypisać na standardowe wyjście zbiór dróg o minimalnej liczności, których blokada uniemożliwi zorganizowanie wyścigu kolarskiego przechodzącego przez jakiekolwiek miasto, w którym mieszkają członkowie klubu.

W pierwszym wierszu wyjścia należy wypisać minimalną liczbę dróg, jakie należy zablokować. W kolejnych wierszach powinien znaleźć się opis dróg, które należy zablokować, po jednej w wierszu. Każdą drogę reprezentujemy jako parę numerów miast połączonych przez tę drogę. Jako pierwsze należy wypisać miasto o mniejszym numerze. Numery miast należy oddzielić pojedynczym odstępem.

Jeśli istnieje więcej niż jedno rozwiązanie, Twój program powinien wypisać jedno, dowolne z nich.

94 Tour de Bajtocja

Przykład

Dla danych wejściowych:

jednym z poprawnych wyników jest:

3

2 3

8 9

3 5

Rozwiązanie

W zadaniu mamy dany graf nieskierowany G, reprezentujący mapę Bajtocji, w którym pewne wierzchołki są wyróżnione (te o numerach nie większych niż k). Cykl, który zawiera co najmniej jeden wyróżniony wierzchołek, będziemy nazywać wyróżnionym cyklem; podobnie krawędź, która zawiera co najmniej jeden wyróżniony koniec, będziemy nazywać wyróżnioną krawędzią. Celem zadania jest usunięcie jak najmniejszej liczby krawędzi z grafu, aby wyeliminować wszystkie wyróżnione cykle. Dowolny taki najmniej liczny zbiór usuwanych krawędzi będziemy nazywać rozwiązaniem.

Na początek zastanówmy się, jakie warunki musi spełniać graf, aby nie istniał w nim żaden wyróżniony cykl. Użyjemy tu pojęcia *mostu*, czyli krawędzi, przez którą nie przechodzi żaden cykl. Równoważna definicja określa most jako krawędź, której usunięcie powoduje zwiększenie się liczby spójnych składowych w grafie. Jako że każdy cykl przechodzący przez wyróżnioną krawędź jest wyróżniony i odwrotnie, każdy wyróżniony cykl przechodzi przez co najmniej jedną wyróżnioną krawędź, otrzymujemy poniższy lemat.

Lemat 1. Graf nie zawiera wyróżnionego cyklu wtedy i tylko wtedy, gdy każda wyróżniona krawedź jest mostem.

Zauważmy, że gdyby wszystkie krawędzie grafu były wyróżnione, to wyeliminowanie wyróżnionych cykli byłoby równoważne usunięciu wszystkich cykli. Wówczas

wystarczyłoby znaleźć dowolny maksymalny zbiór krawędzi, który jest lasem, i jako rozwiązanie wypisać jego dopełnienie. Przypadek, w którym wszystkie krawędzie są wyróżnione, wydaje się być przypadkiem wyjątkowo szczególnym. W dalszej części opisu pokażemy jednak, że przypadek ogólny można zredukować do omawianego przypadku szczególnego. Zacznijmy od udowodnienia poniższego, kluczowego lematu.

Lemat 2. Istnieje rozwiązanie, które zawiera jedynie wyróżnione krawędzie.

Dowód: Przez X oznaczmy rozwiązanie, które zawiera najmniejszą liczbę niewyróżnionych krawędzi. Załóżmy, że X zawiera jakąś krawędź uv, która nie jest wyróżniona (w przeciwnym przypadku lemat w oczywisty sposób zachodzi). Z metody wyboru zbioru X wynika, że w grafie G istnieje wyróżniony cykl C_0 , który zawiera dokładnie jedną krawędź ze zbioru X i jest to krawędź uv; w przeciwnym przypadku zbiór $X \setminus \{uv\}$ również byłby rozwiązaniem. Niech ab będzie dowolną wyróżnioną krawędzią należącą do cyklu C_0 . Wykażemy, że zbiór $X' = (X \setminus \{uv\}) \cup \{ab\}$ również jest rozwiązaniem, co będzie stanowiło sprzeczność wobec faktu, że |X'| = |X| i X' zawiera mniej niewyróżnionych krawędzi niż X.

Rozważmy dowolny wyróżniony cykl C' w grafie G. Jeśli cykl C' zawiera jakąś krawędź ze zbioru $X \setminus \{uv\}$, to zawiera on co najmniej jedną krawędź ze zbioru X'. Wystarczy zatem rozważyć cykle w grafie G, których jedyną krawędzią ze zbioru X jest krawędź uv. Dlatego też aby wykazać, że graf $G \setminus X'$ nie zawiera wyróżnionych cykli, wystarczy wykazać, że w grafie $G \setminus X'$ krawędź uv jest mostem, gdyż wtedy w grafie $G \setminus X'$ nie istnieje żaden cykl (nawet niewyróżniony), który przechodziłby przez krawędź uv.

Z lematu 1 wiemy, że w grafie $G \setminus X$ krawędź ab jest mostem. Jednocześnie cykl C_0 implikuje, że krawędź ab nie jest mostem w grafie $G \setminus (X \setminus \{uv\})$. Z tego wynika, że wierzchołki u oraz v znajdują się po przeciwnych stronach mostu ab w grafie $G \setminus X$, co zostało przedstawione na rysunku 1. Zatem w grafie $G \setminus (X \cup \{ab\})$ wierzchołki u oraz v znajdują w różnych spójnych składowych, stąd krawędź uv jest mostem w grafie $G \setminus X'$. To kończy dowód lematu.

Rys. 1: Przerywane okręgi oznaczają dwie spójne składowe będące po różnych stronach mostu ab w grafie $G\setminus X$.

¹Przez $G \setminus X'$ oznaczamy graf G po usunięciu krawędzi ze zbioru X'.

96 Tour de Bajtocja

W dalszym opisie przydatna nam będzie operacja ściągnięcia krawędzi polegająca na zredukowaniu jej do jednego wierzchołka. Formalnie, jako operację ściągnięcia krawędzi e łączącej wierzchołki u i v określamy następujący ciąg operacji:

- \bullet do grafu dodajemy nowy wierzchołek x;
- \bullet usuwamy krawędź e;
- każdą krawędź ab mającą co najmniej jeden koniec w zbiorze $\{u, v\}$ zastępujemy krawędzią a'b', gdzie a'=x jeśli $a\in\{u,v\}$ oraz a'=a w przeciwnym przypadku, podobnie b'=x jeśli $b\in\{u,v\}$ oraz b'=b w przeciwnym przypadku;
- \bullet usuwamy wierzchołki u oraz v.

Zauważmy, że operacja ściągnięcia krawędzi może spowodować, że w grafie pojawią się krawędzie wielokrotne lub pętle, nawet pomimo założenia, że wejściowy graf nie zawiera takich krawędzi, co zostało zilustrowane na rysunku 2.

Rys. 2: Sklejenie krawędzi uv.

Zauważmy, że każde rozwiązanie w grafie G' powstałym przez ściągnięcie krawędzi uv w grafie G jest też rozwiązaniem w grafie G (o ile wystąpienia wierzchołka x w tym rozwiązaniu podmienimy na odpowiednie wystąpienia wierzchołka u lub v). I odwrotnie, jeśli w grafie G istnieje rozwiązanie niezawierające krawędzi uv, to rozwiązanie to możemy zinterpretować jako rozwiązanie w grafie G'. Stąd oraz na podstawie dwóch przedstawionych powyżej lematów wynika, że poprzez ściągnięcie kolejno wszystkich niewyróżnionych krawędzi problem postawiony w zadaniu możemy zredukować do szczególnego przypadku, w którym wszystkie krawędzie są wyróżnione, a ten szczególny przypadek omówiliśmy na początku opracowania. Formalny dowód ostatniej obserwacji pozostawiamy Czytelnikowi jako ćwiczenie.

Rozwiązanie wzorcowe jest implementacją powyższego rozumowania przy pomocy przeszukiwania wszerz (algorytm BFS). Początkowo ściągamy wszystkie niewyróżnione krawędzie, a następnie z użyciem algorytmu BFS w każdej spójnej składowej wyznaczamy drzewo rozpinające. Do usunięcia przeznaczamy wszystkie wyróżnione krawędzie nienależące do znalezionego lasu rozpinającego. Złożoność czasowa i pamięciowa tego rozwiązania wynosi O(n+m). Zostało ono zaimplementowane w plikach tou.cpp i tou1.pas.

W rozwiązaniu alternatywnym wykorzystujemy strukturę Find-Union działającą na zbiorze wierzchołków grafu. Pomimo iż asymptotycznie rozwiązanie to nie jest liniowe, jest ono bardzo efektywne w praktyce oraz proste w implementacji, gdyż zarówno ściąganie krawędzi grafu, jak i budowanie lasu rozpinającego może zostać zrealizowane za pomocą tej samej operacji union, patrz następujący pseudokod.

```
1: foreach ab \in E(G) do begin
     if a > k then { krawędź niewyróżniona: ściągamy }
2:
        union(a, b)
3:
     else { krawędź wyróżniona: do rozważenia dalej }
4:
        Wyr.insert(ab);
5:
6: end
7: foreach ab \in Wyr do begin
     if find(a) \neq find(b) then
8:
        union(a, b) { krawędź należy do drzewa rozpinającego }
9:
     else
10:
        wypisz(ab); { krawędź należy do rozwiązania }
11:
12: end
```

Złożoność rozwiązania alternatywnego wynosi $O((n+m)\log^* n)$. Jego implementacje można znaleźć w plikach tou2.cpp oraz tou3.pas.

Testy

Rozwiązania zawodników były sprawdzane za pomocą 10 zestawów danych testowych, z których każdy składał się z od 2 do 4 pojedynczych testów. W poniższej tabeli przyjęto oznaczenia $n,\ m,\ k$ zgodnie z treścią zadania, natomiast przez r oznaczono rozmiar rozwiązania, czyli liczbę krawędzi, które należy usunąć z grafu.

Nazwa	n	m	k	r	Opis
tou1a.in	10	15	5	5	graf Petersena z wyróż- nionymi wierzchołkami wewnętrznymi
tou1b.in	8	12	4	5	mały test poprawnościowy
tou1c.in	1	0	1	0	test minimalny z jednym wyróżnionym wierzchoł- kiem
tou1d.in	6	9	2	1	mały test poprawnościowy
tou2a.in	12	26	5	14	mały test poprawno- ściowy
tou2b.in	40	100	10	28	mały test losowy
tou2c.in	70	300	23	133	mały test losowy
tou 3a.in	300	389	30	27	losowy graf z długimi cyklami
tou3b.in	400	600	40	43	test losowy
tou3c.in	500	800	30	56	test losowy

Nazwa	n	m	k	r	Opis
tou4a.in	999	1 332	333	333	trójkąty połączone w cykl
tou4b.in	1 000	5 000	30	213	test losowy, wierzchołki o dużym stopniu
tou5a.in	15 000	19 517	6 000	4 294	trójkąty podłączone do dwóch cykli
tou5b.in	10 000	100 000	846	14 749	duża liczba spójnych skła- dowych
tou5c.in	1 000	499 500	333	277 056	klika o 1000 wierzchoł- kach
tou6a.in	100 000	800 990	10 000	142 256	losowe grafy połączone mostami
tou6b.in	100 000	400 000	5 000	33 831	test losowy
tou7a.in	300 000	343 091	10 000	6 705	suma krótkich cykli
tou7b.in	300 000	900 000	37 504	138 466	losowy graf z dużą liczbą wierzchołków wyróżnionych
tou8a.in	500 000	1 799 335	1 000	799 837	graf wyróżniony podłą- czony do grafów niewy- różnionych
tou8b.in	500 000	666 666	1 158	166 667	wierzchołki wyróżnione mają duży stopień
tou 9a.in	1 000 000	1 999 998	500 000	750 000	test wydajnościowy, cykl niewyróżniony z podłą- czonymi wyróżnionymi wierzchołkami
tou9b.in	1 000 000	2 000 000	507 087	685 209	test z dużą liczbą lo- sowych spójnych składo- wych
tou9c.in	1 000 000	1 999 998	1	999 998	jeden centralny wierzchołek jest wyróżniony, a pozostałe tworzą cykl
tou10a.in	999 999	999 999	333 333	444 444	nieregularna siatka
tou10b.in	1 000 000	1 350 223	2 377	350 224	losowy graf maksymalny z długimi cyklami
tou10c.in	1 000 000	2 000 000	25 000	71 510	test losowy o maksymalnych rozmiarach grafu