Is it possible to predict extreme yield loss using climate indicators?

Tamara Ben-Ari (INRA Grignon)

David Makowski (INRA Grignon)

Juliette Adrian (INRA Grignon)

Tommy Klein (Agroscope)

Pierluigi Calanca (Agroscope)

Marijn Van der Velde (JRC)

<u>Tamara.Ben-Ari@grignon.inra.fr</u> <u>makowski@grignon.inra.fr</u>

Our objective

Investigate the usefulness of a large range of climate-based indicators to predict the occurrence of extreme yield loss

Yield data

Winter wheat

France: 93 départements, 1975-2014

Spain: 48 *provincias*, 1975-2014

Non-irrigated maize

France: 93 départements, 1989-2013

Spain: 48 *provincias*, 1975-2014

2013 Wheat yield (t ha⁻¹)

Yield time series decomposition

Yield (year t) = Trend (year t) + Residual (year t)

Two detrending methods:

- Polynomial regression,
- loess regression

Pyrenees-Atlantique

Yield data

Extreme yield losses were defined using

- two detrending methods (polynomial reg., loess)
- two percentiles (10th, 5th)

for two crops (wheat, maize) and all NUTS3 units in France and Spain.

Climate data

- Weather data provided by the Joint Research Centre (Ispra, IT)
- Spatial resolution: 25km grid in France and Spain
- 1975-2014

Climate indicators

- Basic averaged climate variables
- Agroclimatic indices
- Crop model (WOFOST) outputs

Basic averaged climate variables

- Angot radiation (Radiation in MJ/m²),
- Maximum and minimum temperatures (Tmax and Tmin in °C),
- Rainfall (precipitation in mm),
- Vapour pressure deficit (VPD in hPa),
- Evapotranspiration (ET_o mm/day) from a free water surface.

Averaged over

- Monthly periods
- One third of the growing season
- The totality of the growing season

Agroclimatic indices

- ARID (Agricultural Reference Index for Drought, Wolli et al, 2012)
- FU drought index (Fu, 1981; Zhang et al, 2008)
- Critical minimum temperature (Tmin.cr)
- Maximum temperature (Tmax.cr)
- Critical ARID (ARID.cr).
- North Atlantic Oscillation index

WOFOST outputs

- Potential and water-limited yields for maize and wheat
- Maize: July August –September
- Wheat: April, May, June, July
- Yearly averages

NUTS3	Year	Climate indicator (Tmax)	Yield	Yield trend	Residual	Extreme
1	1989	20.5	5.2	5	+0.2	No
1	1990	28.1	3.1	5.5	-2.4	Yes
2	1989	22.7	5.4	5.8	-0.4	No

NUTS3	Year	Climate indicator (Tmax)	Yield	Yield trend	Residual	Extreme
1	1989	20.5	5.2	5	+0.2	No
1	1990	28.1	3.1	5.5	-2.4	Yes
•••						
2	1989	22.7	5.4	5.8	-0.4	No

NUTS3	Climate indicator (Tmax)	Extreme
1	28.1	Yes
1	26.5	Yes
2	27.8	Yes

NUTS3	Climate indicator (Tmax)	Extreme
1	23.1	No
1	21.5	No
2	22.7	No

Distributions of Tmax (June-July) in NUTS3 units in France for

- non-extreme wheat yield years
- extreme wheat yield years

Distributions of evapotranspiration (autumn) in NUTS3 units in Spain for

- non-extreme wheat yield years
- extreme wheat yield years

Comparison of the indicators by ROC analysis

NUTS3	Climate indicator (Tmax)	Extreme
1	28.1	Yes
1	26.5	Yes
•••		
2	27.8	Yes

NUTS3	Climate indicator (Tmax)	Extreme
1	23.1	No
1	21.5	No
2	22.7	No

Comparison of the indicators by ROC analysis

NUTS3	Climate indicator (Tmax)	Extreme
1	28.1	Yes
1	26.5	Yes
2	27.8	Yes

Rate of true positive (sensitivity)

 $Prob(T_{max} > T \mid Extreme loss)$

Rate of true negative (specificity)

 $Prob(T_{max} < T \mid Non-extreme loss)$

Indicator 1: The classification rule is much better than random classification

Indicator 2: The classification rule is not much better than random classification

Maximum temperature (April)

Wheat in Spain

Non-irrigated maize in France

Posterior probability of extreme yield loss occurence

 $Pr(Extreme\ loss/\ Climate\ indicator > T)$

 $Sensitivity(T) \times Pr(Extreme\ loss)$

 $\overline{Sensitivity(T) \times Pr(Extreme\ loss) + (1 - Specificity(T)) \times (1 - Pr\ (Extreme\ loss))}$

Probability of extreme yield loss

 T_{max} in June for non-irrigated maize in France (°C)

Conclusions

- No single indicator performs systematically well but several show acceptable scores.
- There is no obvious relationship between the level of complexity of a given indicator and its accuracy.
- Basic climatic variables often outperform mechanistic models
- Maximum temperatures and, later in the growing season, potential yield simulations rank highest for both crop species in France.
- Drought indices perform well in Spain for wheat and maize.
- We provide a relation linking the most accurate indicator threshold values to the probability of extreme yield loss