Transformers

CS 229 SUMMER 2022
GRIFFIN YOUNG

Outline

Motivation

Architecture

Training

Results

Strengths and Limitations

Motivation

Sequence Problems

Sequence Problems

So far...

Sequence Problems

Today

The Task: Machine Translation

The Paradigm: Encoder/Decoder

Recurrent Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks

h₀

h₀

Problems:

Fundamental dependence of training time on length of sequence

Problems:

- Fundamental dependence of training time on length of sequence
- Vanishing/Exploding Gradients

Problems:

- Fundamental dependence of training time on length of sequence
- Vanishing/Exploding Gradients
- O(n) for words to 'interact'

1. Low computational complexity per layer

- 1. Low computational complexity per layer
- 2. Parallelizability

- Low computational complexity per layer
- 2. Parallelizability
- 3. Low path length between tokens

A sneak peak

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$

A sneak peak

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	8(1)	$O(log_k(n))$

Architecture

Highest Level of Abstraction: Encoder/Decoder

Encoder

Attention Head Attention Head

Attention Head, POV a single embedding

Similarity Scores Visualized

Attention Head Attention Head

What do the Residual Layers do?

Residuals carry positional information to higher layers, among other information.

With residuals

Without residuals

Without residuals, with timing signals

Highest Level of Abstraction: Encoder/Decoder

Decoder Ich bin Decoder ein Berliner

Clamp attention to word embeddings after you to zero

- Clamp attention to word embeddings after you to zero
 - Add large negative numbers to similarity scores before softmax

- Clamp attention to word embeddings after you to zero
 - Add large negative numbers to similarity scores before softmax
- Didn't have to worry about this with RNN because sequential

Finally use encoder representation

- Finally use encoder representation
 - > Keys and values from encoder embeddings

- Finally use encoder representation
 - > Keys and values from encoder embeddings
 - > Query from decoder embeddings

Highest Level of Abstraction: Encoder/Decoder

Decoder (Test Time)

Decoding time step: 1 2 3 4 5 6 OUTPUT Kencdec Vencdec Linear + Softmax **ENCODERS DECODERS EMBEDDING** WITH TIME **SIGNAL EMBEDDINGS PREVIOUS** suis étudiant **INPUT OUTPUTS**

Training

Self-Supervised Pre-training

 Idea: create tasks using the AMPLE unlabeled English text data we have available

Decoder Pre-training: Next Word Prediction

Encoder Pre-training: Masked Language Modeling

Encoder Pre-training: Masked Language Modeling

Encoder Pre-training: Masked Language Modeling

Results

A New SOTA

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.8	$2.3 \cdot 10^{19}$	

A New SOTA

Machine Translation on WMT2014 English-Germa

Machine Translation on WMT2014 English-Frenc

Strengths and **Limitations**

1. Low computational complexity per layer

- 1. Low computational complexity per layer
 - a. $o(n^2 d)$

- 1. Low computational complexity per layer
 - a. $o(n^2 d)$

- 1. Low computational complexity per layer
 - a. $o(n^2 d)$
- 2. Parallelizability

- 1. Low computational complexity per layer
 - a. $o(n^2 d)$
- 2. Parallelizability
 - Don't have to wait for previous tokens to be processed = BIG
 DATA

- Low computational complexity per layer
 - a. $o(n^2 d)$
- 2. Parallelizability
 - a. Don't have to wait for previous tokens to be processed = BIG
 DATA
- 3. Low path length between tokens

- Low computational complexity per layer
 - a. $o(n^2 d)$
- 2. Parallelizability
 - Don't have to wait for previous tokens to be processed = BIG
 DATA
- 3. Low path length between tokens
 - a. O(1)

Limitations

1. Fixed window size

Limitations

- 1. Fixed window size
- 2. Computation scales quadratically with window size