Grasping

So far...

- We've talked about how to move robots so they don't collide
- But how do we get robots to move objects in the world?
 - Grasping studies how to stably make contact with objects and move them

- Now we want to make contact with objects
- But how do we know if a given grasp is stable or not?

Outline

- Definitions
- Form Closure
- Force Closure
- Searching for Grasps

Start Simple

Real World

- Complex mechanism
- Soft contacts
- Soft objects
- Bounded force
- Object is free-floating

Simplified Problem

- Ignore hand mechanism
- Assume *n* point contacts
- Assume rigid object
- Assume unlimited force
- Assume object is fixed

Definitions

- A point contact is sometimes called a finger
- A wrench is a combination of the force and torque applied to the object

$$g = [f^{\top}m^{\top}]^{\top}$$

- Wrench space is space of wrenches applied to the object
 - 2D object: 3 dimensional wrench space (2 force, 1 torque)
 - 3D object: 6 dimensional wrench space (3 force, 3 torque)
- A grasp immobilizes an object if it can counter any wrench applied to the object
 - Immobilizing an object guarantees the stability of the grasp

Definitions

- A friction cone is the set of forces that can be applied at a contact point without sliding on the object
- Friction cone for the *i*th contact point is the set:

$$\mathcal{F}_i = \left\{ (f_{in}, f_{it}, f_{io}) | \sqrt{f_{it}^2 + f_{io}^2} \le \mu_i f_{in} \right\}$$

 f_{in} is the force applied normal to the surface f_{io} and f_{it} are the forces applied along the surface

- Assume Coulomb friction
- Depends on coefficient of friction between hand and object (μ)
- Bigger μ implies wider friction cone

Computationally, it's easier to represent the friction cone with a discrete set of vectors on its boundary

Form Closure

 A form closure grasp is when the object cannot move regardless of surface friction

• Which of these is in form closure?

Form Closure

 You need at least N+1 contacts to achieve first-order form closure, where N is the number of DOF of the object

[K. Lakshminarayana: Mechanics of form closure, Amer. Soc. Mech. Eng. Tech. Rep. **78-DET-32** (1978)]

Dimension of Object	Minimum Number of Contacts for First-Order Form Closure
2D (3 DOF)	4
3D (6 DOF)	7

Force Closure

- Frictional properties of the object can be used to immobilize it
- Stability of a grasp depends on friction (μ) between contacts and object:

If a grasp achieves form closure, does it also achieve force closure?

Testing for Force Closure

Many algorithms exist to test for force closure, here is one:

Input: Contact locations

Output: Is the grasp in Force-Closure? (Yes or No)

- Approximate the friction cone at each contact with a set of wrenches
- 2. Combine wrenches from all cones into a set of points S in wrench space
- 3. Compute the *convex hull* of *S*
- 4. If the origin is inside the convex hull, return YES. If not, return NO.

Testing for Force Closure

- Why does this algorithm work?
 - Hint: The convex hull represents the positive linear combination of all the wrenches you can apply at the given contact points

Force Closure

 Which grasp do you think is more sensitive to error in contact position?

Note: wrench space is 6-dimensional, these are only cartoons

Yes-or-no answer isn't enough to choose between grasps

Force Closure Metrics

 A popular metric: Radius of largest hyper-sphere you can fit in convex hull (centered at origin)

Wrench space

Wrench space

- Task-specific metric of Li and Sastry
 - Use task-specific ellipsoid instead of hyper-sphere
 - Does not make the infinite-force assumption

Force Closure

- For a 3D object, minimum number of contacts to achieve force closure is 3 (compare to 7 for form closure)
- Not surprisingly, 3-finger grippers are very popular

Stanford/JPL Hand

Barrett Hand

Robotiq Hand

Schunk SDH Hand

Break

Searching for Force Closure Grasps

• In the 90s: Search for a set of *n* point contacts on the surface of an object, where *n* is the number of fingers of your hand

 Search is in 2n dimensional space (since surface of object is 2dimensional)

Disadvantage

- Ignores hand kinematics: probability that these contacts are reachable while obeying hand kinematics is low
- Search space scales poorly with number of fingers

Searching for Force Closure Grasps

- In the 2000s (Peter Allen et al.):
 - 1. Sample pose of hand relative to object with fingers in a *pre-shape*
 - 2. Approach object until contact and close the fingers
 - 3. Get contact points between fingers and object
 - 4. Test these contact points for force closure
- Search space is only 6-dimensional (pose of hand) + set of pre-shapes
- Search can be arranged so hand always approaches parallel to surface of object

Pre-computing grasp sets

- Searching for grasps is slow!
 - Especially with dynamics
 (i.e. if you don't assume object is fixed)

• But, we can **pre-compute** a set of stable grasps for a given object

Pre-computing grasp sets is not new!

Figure 6. The different groups of approach directions and grasp classes for a particular orientation of an L-shaped object, heuristically ranked by desirability.

5.1 Choosing a grasp

Before attempting a detailed plan of the grasp, Handey examines different classes of candidate grasps and evaluates their feasibility both at the pickup point and the putdown point. A grasp class is characterized by a choice of object surfaces. Within a

[Handey: A robot system that recognizes, plans, and manipulates, Lozano-Perez, T., Jones, J., Mazer, E., O'Donnell, P., Grimson, W., Tournassoud, P., Lanusse, A., ICRA 1987]

Columbia Grasp Database

http://grasping.cs.columbia.edu/

- We reused the 3D models from the Princeton Shape Benchmark*
 - Well known academic dataset of 1,814 models
 - All models resized to "graspable" sizes
- We provide grasps at 4 scales
 - ...because grasping is scale dependent
 - .75, 1.0, 1.25 and 1.5 times the size of each model
 - 7,256 3D models in all

^{*}Shilane et al., SMI 2004

Integrating Grasping and Motion Planning

- So far, we only test for collision with obstacles online (ignore them when computing grasp set)
- We wanted to integrate grasp planning and motion planning (consider obstacles and reachability, too)
- Approach:
 - 1. Pre-compute grasp set offline, get force-closure score
 - 2. Online, compute 2 scores for each grasp
 - Environment Clearance Score
 - Reachability Score

Computing Environment Clearance Score

2 (more detail). Compute clearance from points on object to

nearest obstacle

Integrating Grasping and Motion Planning

3. Combine scores to create grasp ranking

- Test grasps in order of ranking
 - We showed this is much faster than testing in random order

Grasp Planning in Complex Scenes

Dmitry Berenson Rosen Diankov Koichi Nishiwaki Satoshi Kagami James Kuffner

Carnegie Mellon Robotics Institute Digital Human Research Center (AIST) Pittsburgh, PA, USA Tokyo, Japan

Integrating Grasping and Motion Planning

- But this method is still limited to a fixed set of grasps
- Next, we tried searching for grasps online using similar scoring
 - Search was based on a genetic algorithm

Recent work in grasping

- Deep Learning methods have taken over the grasping field
- General Idea:
 - 1. Generate many grasp candidates
 - 2. Learn a quality metric that uses the point cloud data directly
 - 3. Output highest quality grasp

Grasp Pose Detection [ten Pas and Platt, 2015]

DexNet 2.0 [Mahler et al. 2017]

Summary

- Grasping is the study of how to immobilize objects through contact
- We make simplifying assumptions so we can compute form/force closure for grasps
- Force closure can be evaluated by checking if the origin is within the convex hull of the contact wrenches
- Much recent work has focused on how to search for grasps
 - Search for points on object surface
 - Search in the space of hand pose and pre-shapes
- Our work sought to integrate motion planning and grasping more closely by considering collision and reachability in grasp planning
- Recent work uses deep learning to estimate grasp quality

Recent Work: Fast Grasp Detection

 "Volumetric Grasping Network: Real-time 6 DOF Grasp Detection in Clutter," Michel Breyer, Jen Jen Chung, Lionel Ott, Roland Siegwart, Juan Nieto, Conference on Robot Learning (CoRL), 2020

https://www.youtube.com/watch?v=BFjsTX3vEH8

Recent Work: Task-Oriented Grasping

- "Same Object, Different Grasps: Data and Semantic Knowledge for Task-Oriented Grasping," Adithyavairavan Murali, Weiyu Liu, Kenneth Marino, Sonia Chernova, Abhinav Gupta, Conference on Robot Learning (CoRL), 2020
- https://www.youtube.com/watch?v=eV-KyT6OK14

Homework

- Read <u>PCA tutorial</u>
- HW3 due on Monday!