5

20

30

WHAT IS CLAIMED IS:

- 1. A method for treating disorders associated with radical depolarization of excitable membranes by activating a K_{ATP} channel which comprises administering to an individual in need thereof an effective amount of an active agent selected from the group consisting of:
 - (a) a compound of the following formula

Cys-Xaa₁-Ile-Xaa₂-Asn-Gln-Xaa₃-Cys-Xaa₄-Gln-Xaa₅-Leu-Asp-Asp-Cys-Cys-Ser-Xaa₁-Xaa₃-Cys-Asn-Xaa₁-Xaa₄-Asn-Xaa₃-Cys-Val (SEQ ID NO:1),wherein Xaa₁ and Xaa₃ are independently Arg, homoarginine, ornithine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N-trimethyl-Lys, any synthetic basic amino acid, His or halo-His; Xaa₂ is Pro or hydroxy-Pro (Hyp); Xaa₄ is Phe, Tyr, meta-Tyr, ortho-Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr, Trp (D or L), neo-Trp, halo-Trp (D or L) or any synthetic aromatic amino acid; and Xaa₅ is His or halo-His,

(b) an analog of the compound of (a), said analog selected from the group consisting of:

. κ-PVIIA[R18A]: Cys-Arg-Ile-Hyp-Asn-Gln-Lys-Cys-Phe-Gln-His-Leu-Asp-Asp-Cys-Cys-Ser-Ala-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:2);

κ-PVIIA[R22A]: Cys-Arg-Ile-Hyp-Asn-Gln-Lys-Cys-Phe-Gln-His-Leu-Asp-

Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Ala-Phe-Asn-Lys-Cys-Val (SEQ ID NO:3);

κ-PVIIA[I3A]: Cys-Arg-Ala-Hyp-Asn-Gln-Lys-Cys-Phe-Gln-His-Leu-Asp-

Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:4);

κ-PVIIA[K19A]: Cys-Arg-Ile-Hyp-Asn-Gln-Lys-Cys-Phe-Gln-His-Leu-Asp-

Asp-Cys-Cys-Ser-Arg-Ala-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:5);

 $\kappa\text{-PVIIA}[R2A]: \qquad \text{Cys-Ala-Ile-Hyp-Asn-Gln-Lys-Cys-Phe-Gln-His-Leu-Asp-}$

Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:6);

 κ -PVIIA[F9A]: Cys-Arg-Ile-Hyp-Asn-Gln-Lys-Cys-Ala-Gln-His-Leu-Asp-

Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:7);

κ-PVIIA[K25A]: Cys-Arg-Ile-Hyp-Asn-Gln-Lys-Cys-Phe-Gln-His-Leu-Asp-

Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Ala-Cys-Val (SEQ ID NO:8);

κ-PVIIA[R2K]: Cys-Lys-Ile-Hyp-Asn-Gln-Lys-Cys-Phe-Gln-His-Leu-Asp-

Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:9);

5

25

30

 κ -PVIIA[K7A]: Cys-Arg-Ile-Hyp-Asn-Gln-Ala-Cys-Phe-Gln-His-Leu-Asp-Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:10); κ-PVIIA[F9M]: Cys-Arg-Ile-Hyp-Asn-Gln-Lys-Cys-Met-Gln-His-Leu-Asp-Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:11); κ-PVIIA[F9Y]: Cys-Arg-Ile-Hyp-Asn-Gln-Lys-Cys-Tyr-Gln-His-Leu-Asp-Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:12); κ-PVIIA[R2Q]: Cys-Gln-Ile-Hyp-Asn-Gln-Lys-Cys-Phe-Gln-His-Leu-Asp-Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:13); κ-PVIIA[H11A]: Cys-Arg-Ile-Hyp-Asn-Gln-Lys-Cys-Phe-Gln-Ala-Leu-Asp-Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:14); κ-PVIIA[D14A]: Cys-Arg-Ile-Hyp-Asn-Gln-Lys-Cys-Phe-Gln-His-Leu-Asp-Ala-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:15); κ-PVIIA[Q6A]: Cys-Arg-Ile-Hyp-Asn-Ala-Lys-Cys-Phe-Gln-His-Leu-Asp-Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:16); κ-PVIIA[N21A]: Cys-Arg-Ile-Hyp-Asn-Gln-Lys-Cys-Phe-Gln-His-Leu-Asp-Asp-Cys-Cys-Ser-Arg-Lys-Cys-Ala-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:17); κ-PVIIA[S17A]: Cys-Arg-Ile-Hyp-Asn-Gln-Lys-Cys-Phe-Gln-His-Leu-Asp-Asp-Cys-Cys-Ala-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:18); κ-PVIIA[N24A]: Cys-Arg-Ile-Hyp-Asn-Gln-Lys-Cys-Phe-Gln-His-Leu-Asp-Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Ala-Lys-Cys-Val (SEQ ID NO:19); κ-PVIIA[L12A]: Cys-Arg-Ile-Hyp-Asn-Gln-Lys-Cys-Phe-Gln-His-Ala-Asp-Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:20); κ-PVIIA[D13A]: Cys-Arg-Ile-Hyp-Asn-Gln-Lys-Cys-Phe-Gln-His-Leu-Ala-Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:21); κ-PVIIA[Q10A]: Cys-Arg-Ile-Hyp-Asn-Gln-Lys-Cys-Phe-Ala-His-Leu-Asp-Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:22); Cys-Arg-Ile-Hyp-Asn-Gln-Lys-Cys-Phe-Gln-His-Leu-Aspκ-PVIIA[V27A]: Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Ala (SEQ ID NO:23); κ-PVIIA[O4A]: Cys-Arg-Ile-Ala-Asn-Gln-Lys-Cys-Phe-Gln-His-Leu-Asp-Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:24); and κ-PVIIA[N5A]: Cys-Arg-Ile-Hyp-Ala-Gln-Lys-Cys-Phe-Gln-His-Leu-Asp-Asp-Cys-Cys-Ser-Arg-Lys-Cys-Asn-Arg-Phe-Asn-Lys-Cys-Val (SEQ ID NO:25);

9.

15

- (c) a derivative of (a) or (b); and
- (d) a physiologically acceptable salt thereof.
- 2. The method of claim 1, wherein Xaa₂ is hydroxy-Pro.
- 3. The method of claim 1, wherein Xaa₁ is Arg, Xaa₃ is Lys, Xaa₄ is Phe and Xaa₅ is His.
- 5 4. The method of claim 3, wherein Xaa₂ is hydroxy-Pro.
 - 5. The method of claim 1, wherein said disorder is cardiac ischemia.
 - 6. The method of claim 1, wherein said disorder is cerebral ischemia.
 - 7. The method of claim 1, wherein said disorder is asthma.
 - 8. The method of claim 1, wherein said disorder is ocular ischemia.
 - The method of claim 1, wherein the derivative is peptide of (a) or (b) in which the Arg residues may be substituted by Lys, ornithine, homoargine, nor-Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N-dimethyl-Lys, N,N-n-trimethyl-Lys or any synthetic basic amino acid; the Lys residues may be substituted by Arg, ornithine, homoargine, nor-Lys, or any synthetic basic amino acid; the Tyr residues may be substituted with any synthetic hydroxy containing amino acid; the Ser residues may be substituted with Thr or any synthetic hydroxylated amino acid; the Thr residues may be substituted with Ser or any synthetic hydroxylated amino acid; the Phe and Trp residues may be substituted with any synthetic aromatic amino acid; the Asn, Ser, Thr or Hyp residues may be glycosylated (contain an N-glycan or an O-glycan); the Cys residues may be in D or L configuration and may optionally be substituted with homocysteine (D or L); the Tyr residues may also be substituted with the 3-hydroxyl or 2-hydroxyl isomers (meta-Tyr or ortho-Tyr, respectively) and corresponding O-sulpho- and O-phosphoderivatives; the acidic amino acid residues may be substituted with any synthetic acidic amino acid, e.g., tetrazolyl derivatives of Gly and Ala; the aliphatic amino acids may be substituted by synthetic derivatives bearing non-natural aliphatic branched or linear side

chains C_nH_{2n+2} up to and including n=8; and pairs of Cys residues may be replaced pairwise with isoteric lactam or ester-thioether replacements, such as Ser/(Glu or Asp), Lys/(Glu or Asp) or Cys/Ala combinations.

