IMPLEMENTAÇÃO DE CONTROLE MODULAR LOCAL EM UMA LINHA DE PRODUÇÃO PARALELA COM ESTAÇÃO OCIOSA

Henrique J. Pinheiro* Giovani B. Merlin* Alex Treviso*

*Departamento de Sistemas Elétricos de Automação e Energia Universidade Federal do Rio Grande do Sul Av. Osvaldo Aranha, 99 - Centro Histórico, Porto Alegre - RS, CEP: 90035-190

Email: henriquejpo@hotmail.com, giovani.merlin@ufrgs.br, alex.treviso@ufrgs.br

Abstract— This work aims to implement a production line optimization through the use of the line's idle time for transport of non-priority parts. The modeling system consists of several automata representing the various elements of a production line. The supervisory control and automation of the system will also done through automata, using local module control approach.

Keywords— supervisory control, local module, automata.

Resumo— Este trabalho visa implementar uma otimização de linha de produção através do aproveitamento de tempo ocioso da linha para transportes de peças não prioritárias. O sistema modelado consiste em diversos autômatos que representam os diversos elementos de uma linha de produção. O controle supervisório e a automatização do sistema também foram feitos através de autômatos, utilizado a abordagem de controle modular local.

Palavras-chave— Controle Supervisório, modular local, autômatos

1 Introdução

A planta e o sistema de controle descritos neste estudo serão modelados utilizando-se a teoria de controle supervisório modular local e a teoria de autômatos de estados finitos aplicado a um Sistema a Eventos Discretos (SED). A planta consiste de duas linhas de produção que devem ter os seus produtos escoados através de uma única esteira transportadora. O controlador deve funcionar seguindo um modelo de priorização de linha de produção, garantindo que a linha primária nunca seja interrompida, e que a secundária possa escoar a sua produção somente quando não houverem peças peças sendo transportadas na primária ou quando esta não possuir nenhuma peça processada ou com o processo em andamento. O sistema deve também ser capaz de rearranjar automaticamente as suas esteiras de modo a permitir que as peças de ambas as linhas sejam enviadas para fora do sistema pela rampa de saída. Como funções secundárias, o sistema deve eliminar colisões ou tentativas de movimentação de peças quando os elementos móveis não estiverem posicionados para tanto.

1.1 Autômatos, Supervisório e Linguagens^{1,2}

A modelagem de um SED é realizada por intermédio de um autômato dotado de alguma linguagem \mathcal{L} . A linguagem caracteriza todos os eventos envolvidos em um determinado processo. Por sua vez, o autômato é um dispositivo utilizado para representar graficamente a linguagem através de regras bem definidas, isto é, os eventos que podem ocorrer em determinada ordem através de estados, sendo esses marcados (represen-

tando uma operação finalizada, sendo que a linguagem que determina um estado marcado é chamada de \mathcal{L}_m) ou não. Ainda, tais eventos podem ser controláveis (podendo ser restritos no supervisório) ou não controláveis. A abordagem de controle modular local consiste no desenvolvimento de um autômato, supervisório, restritivo para cada G_i^l , i=1,...,n sendo n o número de subsistemas da planta (tais subsistemas ficarão mais claros no desenvolver do trabaho) que supervisiona o processo de modo a desabilitar certos eventos dentre os possíveis para o estado em que a planta G_i^l se encontra naquele momento.

2 Planta a ser Controlada

O sistema a ser tratado foi simulado por meio do software *FlexFact*, o qual reproduz o comportamento dinâmico de vários componentes comuns em fábricas, junto com seus sensores e atuadores, representados por eventos. O sistema pode ser visualizado na Figura 1.

Tal sistema consiste de duas linhas de produção. A primeira é representada por um alimentador Stack Feeder 1 (SF1), uma máquina de processamento Processing Machine 1 (PM1), uma esteira transportadora Conveyor Belt (CB1) e um elemento que transfere peças de uma esteira para outra Distribution System (DS). A segunda é representada por um alimentador Stack Feeder 2 (SF2), uma máquina de processameto Processing Machine 2 (PM2), uma esteira rotatória Rotary Table (RB) que funcionado como elemento de transporte entre múltiplas linhas e, por fim, uma rampa de saída do sistema Exit Slide (XS). Os componentes citados são descritos na Tabela 1. O funciona-

mento normal do sistema consiste na movimentação simples da linha de produção inferior, desde o alimentador até a rampa de saída. Neste caso a linha de produção superior não tem por onde escoar a sua produção. A concepção do controle explanado posteriormente visa, justamente, permitir que a produção da linha superior seja movida para fora do sistema pela esteira transportadora existente na linha inferior quando não houverem peças processadas na linha inferior, a qual deve ter prioridade no momento da fusão das duas linhas de produção.

Figura 1: Sistema implementado em ambiente de simulação.

Tabela 1: Componentes do sistema e suas funções.

Componente	Nome	Função
		Alimentar a linha de produção
Stack Feeder 1	SF1	superior com uma nova peça
		para processamento
		Alimentar a linha de produção
Stack Feeder 2	SF2	inferior com uma nova peça
		para processamento
Processing Machine 1	PM1	Realizar um processo sobre a
1 Tocessing Machine 1	1 1/11	peça em questão
Drassasina Mashina 0	PM2	Realizar um processo sobre a
Processing Machine 2	PMZ	peça em questão
		Transportar peças entre os
Conveyor Belt	CB	componentes funcionando como
		um buffer
Distribution Costom	DS	Mover uma peça da linha de
Distribution System		produção superior para a saída
		Fazer o direcionamento das
Rotary Table	RB	peças de ambas as linhas
		para a rampa de saída
D :: 01: 1	XS	Permitir a saída das peças
Exit Slide		produzidas nas linhas

3 Modelagem da planta

A planta analisada é composta por oito elementos modelados separadamente com o software *DESTool*. Tal software implementa a biblioteca libFAUDES que possibilita o projeto de autômatos graficamente, além de poder realizar variadas operações sobre linguagens e a simulação do comportamento da planta do *FlexFact* sob atuação das restrições aqui formuladas. Nesta seção é apresentada a modelagem de cada componente, bem

como seus respectivos autômatos e uma tabela in² dicando os eventos de cada sistema.

3.1 Stack Feeder 1

Como citado na seção anterior, o Stack Feeder 1 (SF1) tem como função alimentar a linha de produção superior com peças. O autômato que representa o funcionamento do mesmo é demonstrado na Figura 2. O autômato possui como estado inicial A, sendo este também o estado marcado do autômato, onde o motor de acionamento encontra-se desligado. Assim que o sistema é iniciado o motor também é acionado através do evento controlável sf1_fdon e a esteira ligada, ocorrendo a transição para o estado B. Após a adição de uma peça no sistema, a borda de descida do sensor indica que a peça foi direcionada para a linha de produção através do evento sf1_wplv, ocorrendo uma nova transição de estado no autômato, indo para o estado C. Na sequência, após o retorno do atuador para posição de origem, um novo sinal é recebido indicando que um ciclo foi completado através do evento sf1_fdhome, onde ocorre a mudança para o estado D. Após o ciclo completo, o motor do SF1 pode então ser desligado através do evento sd1_fdoff, sendo este o responsável pela transição final e retorno ao etado marcado A. A Tabela 2 apresenta os eventos aqui citados e uma breve descrição dos mesmos.

Figura 2: Planta SF1.

Tabela 2: Eventos de SF1 e suas descrições.

Evento	Controlabilidade	Descrição
sf1_fdon	Controlável	Acionamento do motor do Stack Feeder 1
sf1_fdoff	Controlável	Desligamento do motor do Stack Feeder 1
sf1_fdhome	Não-Controlável	Sinal do sensor que indica que o atuador encontra-se na posição de origem
sf1_wpar	Não-Controlável	Sinal do sensor que indica chegada de uma peça
sf1_wplv	Não-Controlável	Sinal do sensor que indica que a peça foi direcionada para a linha de produção

3.2 Stack Feeder 2

O mesmo processo descrito para o Stack Feeder 1 (SF1) ocorre para o Stack Feeder 2 (SF2). O autômato possui como estado inicial A, sendo este também o estado marcado do autômato, onde o motor de acionamento encontra-se desligado. Assim que o sistema é iniciado o motor também é acionado através do evento controlável sf2_fdon e

a esteira ligada, ocorrendo a transição para o estado B. Após a adição de uma peça no sistema, a borda de descida do sensor indica que a peça foi direcionada para a linha de produção através do evento sf2_wplv, ocorrendo uma nova transição de estado no autômato, indo para o estado C. Na sequência, após o retorno do atuador para posição de origem, um novo sinal é recebido indicando que um ciclo foi completado através do evento sf2_fdhome, onde ocorre a mudança para o estado D. Após o ciclo completo, o motor do SF1 pode então ser desligado através do evento sd2_fdoff, sendo este o responsável pela transição final e retorno ao etado marcado A. O autômato que representa o funcionamento do mesmo é demonstrado na Figura 3 e os eventos descritos na Tabela 3.

Figura 3: Planta SF2.

Tabela 3: Eventos de SF2 e suas descrições.

Evento	Controlabilidade	Descrição
sf2_fdon	Controlável	Acionamento do motor do Stack Feeder 2
sf2_fdoff	Controlável	Desligamento do motor do Stack Feeder 2
sf2_fdhome	Não-Controlável	Sinal do sensor que indica que o atuador encontra-se na posição de origem
sf2_wpar	Não-Controlável	Sinal do sensor que indica chegada de uma peça

3.3 Processing Machine 1

A modelagem da Processing Machine 1 (PM1) foi desenvolvida visando descrever um ciclo de trabalho completo da mesma, desde a entrada da peça e saída da mesma após seu processamento. O autômato que descreve este ciclo de funcionamento é apresentado na Figura 4 e possui como estado inicial A, onde a a esteira de PM1 encontra-se desligada. A primeira transição de estado ocorre a partir do acionamento do motor que liga a esteira da máquina, através do evento pm1_bm+, migrando para o estado B. Um novo evento, pm1_wpar, indica a chegada da peça até a estação de trabalho, acarretando em uma nova troca de estado e indo para C. A esteira é então desligada pelo evento pm1_boff, indo para o estado D. O avanço da ferramenta para posição de trabalho é feito através do evento pm1_pm+ e resulta na troca para o estado E e após o recebimento do sinal do sensor pm1_mrqu que indica que a máquina está pronta para iniciar o processo para o estado F. O estado G indicada que a máquina iniciou o

processo e está em operação, sendo o evento con³ trolável pm1_mon responsável por esta transição. Após finalizado o processo, a máquina recebe um sinal do sensor indicando que o processo foi finalizado através do evento pm1_mack, acarretando em um novo estado H. A ferramenta então é recuada para a posição de origem através do evento pm1_pm-, sendo o sinal do sensor pm1_ps- o indicativo de que a mesma encontra-se de volta na posição de origem. Os estados que representam a ferramenta recuando e a ferramenta na posição de origem são I e A, respectivamente. Após retornar a posição original, a esteira pode ser novamente ligada (pm1_bm+) enviando a peça para o componente da sequência, fazendo com que o autômato retorne para o estado B, sendo este o estado marcado do sistema. Todos os eventos aqui citados são descritos na Tabela 4.

Figura 4: Planta PM1.

Tabela 4: Eventos de PM1 e suas descrições.

Evento	Controlabilidade	Descrição
pm1_bm+	Controlável	Liga a esteira da máquina no sentido oeste-leste
pm1_boff	Controlável	Desliga a esteira da máquina
pm1_wpar	Não-Controlável	Sinal do sensor que indica chegada de uma peça
pm1_pm+	Controlável	Avanço da ferramenta para posição de trabalho
pm1_pm-	Controlável	Recuo da ferramenta para posição de origem
pm1_ps-	Não-Controlável	Sinal do sensor que indica que a ferramenta retornou a posição de origem
pm1_mrqu	Não-Controlável	Sinal do sensor que indica que a máquina está pronta para iniciar o processo
pm1_mack	Não-Controlável	Sinal do sensor que indica que o processo foi finalizado
pm1_mon	Controlável	Acionamento da máquina dando início ao processo

3.4 Processing Machine 2

Analogamente a Processing Machine 1 (PM1), a Processing Machine 2 (PM2) foi modelada visando representar um ciclo completo de produção. Visto que PM2 encontra-se inversa a PM1, o acionamento da esteira que direciona as peças é feito no sentido contrário. O autômato que descreve este ciclo de funcionamento é apresentado na Figura 5 e possui como estado inicial A, onde a a esteira de PM2 encontra-se desligada. A primeira transição de estado ocorre a partir do acionamento do motor que liga a esteira da máquina, através do evento pm2_bm-, migrando para o estado B. Um novo evento,

pm2_wpar, indica a chegada da peça até a estação de trabalho, acarretando em uma nova troca de estado e indo para C. A esteira é então desligada pelo evento pm2_boff, indo para o estado D. O avanço da ferramenta para posição de trabalho é feito através do evento pm2_pm+ e resulta na troca para o estado E e após o recebimento do sinal do sensor pm2_mrqu que indica que a máquina está pronta para iniciar o processo para o estado F. O estado G indicada que a máquina iniciou o processo e está em operação, sendo o evento controlável pm2_mon responsável por esta transição. Após finalizado o processo, a máquina recebe um sinal do sensor indicando que o processo foi finalizado através do evento pm2_mack, acarretando em um novo estado H. A ferramenta então é recuada para a posição de origem através do evento pm2_pm-, sendo o sinal do sensor pm2_ps- o indicativo de que a mesma encontra-se de volta na posição de origem. Os estados que representam a ferramenta recuando e a ferramenta na posição de origem são I e A, respectivamente. Após retornar a posição original, a esteira pode ser novamente ligada (pm2_bm-) enviando a peça para o buffer que encontra-se na sequência, representado por CB, fazendo com que o autômato retorne para o estado B, sendo este o estado marcado do sistema. Todos os eventos agui citados são descritos na Tabela 5.

Figura 5: Planta PM2

Tabela 5: Eventos de PM2 e suas descrições.

Evento	Controlabilidade	Descrição
pm2_bm-	Controlável	Liga a esteira da máquina no
pinz_om-	0.0000000000000000000000000000000000000	sentido leste-oeste
pm2_boff	Controlável	Desliga a esteira da máquina
pm2_wpar	Não-Controlável	Sinal do sensor que indica chegada
pinz_wpar	ivao-Controlavei	de uma peça
pm2_pm+	Controlável	Avanço da ferramenta para posição
pinz_pin+	Controlavei	de trabalho
pm2_pm-	Controlável	Recuo da ferramenta para posição
pinz_pin-		de origem
	Não-Controlável	Sinal do sensor que indica
pm2_ps-		que a ferramenta retornou a
		posição de origem
	Não-Controlável	Sinal do sensor que indica que a
pm2_mrqu		máquina está pronta para iniciar
		o processo
pm2_mack	Não-Controlável	Sinal do sensor que indica que o
		processo foi finalizado
pm2_mon	Controlável	Acionamento da máquina dando
	Controlavei	início ao processo

3.5 Conveyor Belt

O Conveyor Belt (CB) encontra-se disposto sequencialmente após PM1, sendo responsável

pela inter-ligação de PM1 e DS, funcionando comô um buffer. O autômato que representa o funcionamento do mesmo pode ser observado na Figura 6. O autômato possui como estado inicial A, representando a esteira desligada. Já o estado B representa a esteira ligada. Os eventos cb_bm+ e cb_boff marcam a transição entre os respectivos estados, enquanto os sinais de chegada e partida de peças cb_wpar e cb_wplv ocorrem durante o estado B, em que a esteira encontra-se ligada. A Tabela 6 apresenta os eventos e suas descrições.

Figura 6: Planta CB.

Tabela 6: Eventos de CB e suas descrições.

Evento	Controlabilidade	Descrição
cb_bm+	cb_bm+ Controlável	Acionamento da esteira no sentido
CD_DIII	Controlavei	oeste-leste
cb_boff	Controlável	Desligamento da esteira
ab uman	cb_wpar Não-Controlável	Borda de subida do sinal do sensor
CD_wpai		indicando chegada de peça
cb_wplv	v Não-Controlável	Borda de descida do sinal do sensor
CD_WDIV N	Nao-Controlavel	indicando partida de peça

3.6 Distribution System

O componente Distribution System (DS) é responsável por enviar peças da linha de produção superior caso a linha principal (inferior) esteja ociosa, ou seja, caso não haja peça produzida e pronta para ser enviada para a saída XS. Deste modo, ele tem como função mover as peças da linha superior para a a saída por meio da Rotary Table (RB). O autômato que representa DS pode ser visualizado na Figura 7. O estado inicial A representa a esteira desligada, sendo o estado B a representação da esteira ligada, o que ocorre após o evento ds_bm+. Uma nova transição de estados ocorre quando o sinal do sensor indica que o componente recebeu uma peça, através do evento ds_p1wpar, resultando no estado C. Assim que o sensor detecta o recebimento de uma peça, a esteira é desligada pelo evento ds_boff e um novo estado é gerado, D. Satisfazendo as restrições que serão citadas na Seção 4, DS pode realizar o evento ds_p1m+ que representa o avanço da ferramenta de deslocamento da peça até RB, indo para o estado E. A ação de deslocamento da peça até RB é concluída através da emissão do sinal do sensor ds_p1s+, que indica que a ferramenta encontra-se na posição de fim de curso. Quando a ferramenta esta posição, temos a transição para o estado F, e significa que a mesma já concluiu sua tarefa e pode retornar para a posição de origem. O evento ds_p1m- indica a ação de recuo da ferramenta para a posição de origem, o que resulta no estado G. Assim como o sensor que detecta a posição de avanço, existe um sensor que detecta o retorno a posição de origem indicando que a mesma retorno com sucesso, ds_pls-. Temos então o retorno ao estado A e novamente a esteira pode ser ligada a fim de receber uma nova peça. A Tabela 7 apresenta os eventos de DS e suas descrições.

Figura 7: Planta DS.

Tabela 7: Eventos de DS e suas descrições.

Evento	Controlabilidade	Descrição
ds_bm+	Controlável	Acionamento da esteira no sentido oeste-leste
ds_boff	Controlável	Desligamento da esteira
ds_p1wpar	Não-Controlável	Borda de subida do sinal do sensor indicando chegada de peça
ds_p1m+	Controlável	Avanço da ferramenta para deslocamento da peça
ds_p1m-	Controlável	Recuo da ferramenta para posição de origem
ds_p1s+	Não-Controlável	Sinal do sensor que indica que a ferramenta encontra-se em posição de avanço
ds_p1s-	Não-Controlável	Sinal do sensor que indica que a ferramenta encontra-se na posição de origem

3.7 Rotary Table

O componente Rotary Table (RB) desempenha papel fundamental no funcionamento de nossa planta, sendo o responsável pelo direcionamento de peças de ambas as linhas de produção para a saída XS. Seu autômato é demonstrado na Figura 8 e apresenta a transição de estados entre A e J, de acordo com distintos eventos. O estado marcado A representa a esteira desligada e tem como início de seu funcionamento o acionamento do motor da esteira, ligando-a. Esta é a primeira transição de estados e tem o evento rb_bm+ como responsável pela sua ocorrência. Após acionada a esteira de RB, a transição de possíveis estados representa o movimento de giro horário, resultando na posição vertical, recebimento de uma nova peça da linha de produção superior, desligamento da esteira, giro no sentido anti-horário para retorno a posição de origem (horizontal) e acionamento da esteira novamente para envio da peça à saída XS. Os estados citados são representados pelo intervalo de letras C-J, em ordem alfabética, respectivamente. Os eventos rb_rcw e rb_scw indicam o giro horário e o sinal de que a esteira encontra-se na posição vertical, respectivamente. De forma análoga, rb_rccw e sc_sccw indicam o giro anti-horário e o sinal do sensor de

que a esteira encontra-se na posição horizonta! O sinal rb_wpar indica recebimento de uma peça enquanto rb_roff e rb_boff são responsáveis pelo desligamento do movimento de rotação e desligamento da esteira, respectivamente. O estado B tem sua representação como sendo o estado marcado do autômato. A Tabela 8 apresenta os eventos da esteira RB e suas descrições.

Figura 8: Planta RT.

Tabela 8: Eventos de RT e suas descrições.

Evento	Controlabilidade	Descrição
rb_bm+	Controlável	Acionamento da esteira no sentido oeste-leste
rb_boff	Controlável	Desligamento da esteira
rb_rcw	Controlável	Acionamento de giro no sentido horário
rb_rccw	Controlável	Acionamento de giro no sentido anti-horário
rb_roff	Controlável	Desligamento do giro da esteira
rb_scw	Não-Controlável	Sinal do sensor que indica que a esteira encontra-se na posição vertical
rb_sscw	Não-Controlável	Sinal do sensor que indica que a esteira encontra-se na posição horizontal
rb_wpar	Não-Controlável	Borda de subida do sinal do sensor indicando chegada de peça

3.8 Exit Slide

Por fim, o componente Exit Slide (XS) permite a saída deslizante do produto finalizado. Possui como eventos apenas dois sinais de um mesmo sensor, que detecta através da borda de subida xs_wpar a chegada de uma peça e através da borda de descida xs_wplv a partida de uma peça. O autômato foi modelado através de dois estados A e B, e suas transições ocorrem de acordo com os eventos citados anteriormente. O autômato que representa XS pode ser observado na Figura 9 e os eventos bem como suas descrições na Tabela 9.

Figura 9: Planta Exit Slide.

Tabela 9: Eventos de ES e suas descrições.

Evento	Controlabilidade	Descrição
xs_wpar	Não-Controlável	Borda de subida do sinal do sensor indicando chegada de peça
xs_wplv	Não-Controlável	Borda de descida do sinal do sensor indicando partida de peça

4 Restrições e implementação do Controle Supervisório

Nesta seção serão apresentadas as restrições impostas ao funcionamento do sistema bem como a implementação do controle supervisório. Na Tabela 10 estão listadas todas as restrições utilizadas e suas funções. As mesmas serão discutidas e melhor apresentadas na sequência, bem como seus respectivos autômatos.

Tabela 10: Restrições e suas funções.

Nome	Planta	Função da Restrição
H SEIIIPMI	H_SF1 PM1 SF1 PM1	Garantir que SF1 não ligue
11_51 1 1 1111	SF I I MI	enquanto PM1 estiver lotada
H_SF2 PM2	SF2 PM2	Garantir que SF2 não ligue
11201 2 1 1/12	01 2 1 1/12	enquanto PM2 estiver lotada
H_PM1 CB	PM1 CB	Garantir que PM1 não enviará
		uma peça se CB estiver lotada
H_CB DS	CB DS	Garantir que CB não enviará uma
	0=11=0	peça se DS estiver lotado
		Garantir que a PM2 não
H_PM2 RB	PM2 RB	envie uma peça enquanto
		RB estiver na posição vertical
H ₁ _DS RB	DS RB	Garantir que RB só irá girar
		caso DS tenha recebido uma peça
		Garantir que DS só empurre a
H_2 _DS RB	DS RB	peça caso RB esteja na posição
		vertical
		Garantir que se PM2 enviou uma
H_1 _PM2 RB XS	PM2 RB XS	peça RB não irá girar até que a
		mesma passe por XS
	PM2 RB XS	Garantir que PM2 não ligue
H_2 -PM2 RB XS		até que a peça enviada por DS
		passe po XS
		Garantir que RB não gire caso
H_3 _PM2 RB XS	PM2 RB XS	PM2 tenha começado a produção
		de uma peça

A primeira restrição (H_SF1||PM1) relaciona o *Stack Feeder* 1 (SF1) com a *Processing Machine* 1 (PM1), desabilitando o evento de acionamento do motor de SF1 (sf1_don) enquanto PM1 estiver ocupada com outra peça.

Do mesmo modo, a restrição H_SF2||PM2 relaciona o *Stack Feeder* 2 (SF2) com a *Processing Machine* 2 (PM2), desabilitando o evento de acionamento do motor de SF2 (sf2_don) enquanto PM2 estiver ocupada com outra peça.

Figura 10: Restrição H_SF1||PM1.

Tendo restringido o envio de peças para as linhas de produção, a análise de restrições passa para a garantia de que não haverá colisão entre peças na mesma linha de produção. A restrição H_PM1||CB relaciona a *Processing Machine* 1 (PM2) e a *Conveyor Belt* (CB), desabilitando o acionamento da esteira da PM1 (pm1_bm+) caso CB esteja desligada (cb_boff), garantindo assim

Figura 11: Restrição H_SF2||PM2.

que PM1 não envie uma nova peça enquanto houver outra no $\it buffer$.

Figura 12: Restrição H_PM1||CB.

Seguindo a mesma linha de raciocínio, aplicou-se a restrição H_CB||DS, que relaciona a Conveyor Belt (CB) e o *Distribution System* (DS), desabilitando o acionamento da esteira de CB (cb_bm+) caso a mesma receba uma nova peça enquanto DS possuir uma peça aguardando para ser direcionada para a saída.

Figura 13: Restrição H_CB||DS.

A fim de garantir que a Processing Machine 2 (PM2) também não envie uma peça de forma errônea, ou seja, enquanto a Rotary Table (RB) estiver na posição vertical, aplicou-se a restrição H_PM2||RB. Esta restrição têm como função desabilitar o acionamento da esteira de PM2 (pm2_bm-) enquanto RB encontrar-se na posição vertical.

A restrição H₁_DS||RB foi aplicada de modo a garantir que a *Rotary Table* (RB) só gire para a posição vertical caso exista uma peça em espera na *Distribution System* (DS). Esta restrição tem como função habilitar o giro horário de RB (rb_rcw) somente caso o sensor de DS tenha acusado o recebimento de uma nova peça

Figura 14: Restrição H_PM2||RB.

(ds_p1wpar). Por outro lado, deve-se garantir que DS, após o recebimento de uma nova peça, não avance a ferramenta para deslocamento da peça (ds_p1m+) enquanto a esteira não estiver na posição vertical (rb_scw). Para isso, implementou-se a restrição H_2 _DS||RB, que nos dá essa garantia.

Figura 15: Restrição H₁_DS||RB.

Figura 16: Restrição H₂_DS||RB.

Como já citado na Seção 2, a linha de produção inferior deve possuir prioridade de envio de peças para a saída (XS). Sendo assim, implementaram-se as restrições H₁_PM2||RB||XS e H₂-PM2||RB||XS que relacionam a Processing Machine 2 (PM2), a Rotary Table (RB) e a Exit Slide (XS), mostradas nas figuras 17 e 19, respectivamente. A restrição H₁-PM2||RB||XS desabilita o giro horário de RB (rb_rcw) caso PM2 tenha enviado uma peça (pm2_wplv) e a mesma ainda não tenha ultrapassado a saída (xs_wplv). Já a restrição H₂-PM2||RB||XS impede que a RB realize o giro no sentido horário (rb_rcw) caso a PM2 tenha iniciado o processamento de uma nova peça (pm2_mon) e a mesma não tenha ultrapassado a saída (xs_wplv).

Porém, caso a linha de produção superior tenha enviado uma peça para saída a partir do acionamento da ferramenta de distribuição (ds_pm+),

Figura 17: Restrição H₁_PM2||RB||XS.

Figura 18: Restrição H₃_PM2||RB||XS.

a PM2 somente poderá enviar uma nova peça para a saída caso a peça vinda de DS tenha ultrapassado a saída (xs_wplv). Essa restrição, denominada H_2 _PM2||RB||XS, é apresentada na Figura 19.

Figura 19: Restrição H_2 -PM2||RB||XS.

Para a implementação do controle modular local, se faz necessário calcular o paralelo de cada especificação local com a planta local a ser controlada formando assim um subsistema local. Isto é,

$$HF_j = H_j || G_j^l; L_{am,j} = \mathcal{L}(H_j)$$
 (1)

Onde HF_j representa o subsistema local. Em seguida é necessário aplicar $supC(L_{am,j})$, formando o supervisorio local R_j .

Utilizando da ferramenta DESTool o processo é realizado com o seguinte algoritmo :

- 1. Parallel($G_i = G1, G_k = G2, G_i^l = GRes$)
- 2. AlphabetExtract (G_i^l, E_j)
- 3. $InvProject(H_i, E_i, HI_i)$
- 4. SupCoNB (G_i^l, HI_j, R_j)

Sendo que os passos (2) e (3) são necessários pois para aplicar SupConNB (que representa $supC(L_{am,j})$) é necessário que H_j tenha a mesma linguagem que G_j^l , o que é realizado aplicando a linguagem extraída no passo (2) no supervisório H_j por meio da projeção inversa no passo (3).

5 Conclusão

Devido a quantidade de componentes, as especificidades de funcionamento de cada um, os comportamentos síncronos impostos e as restrições definidas, espera-se que o projeto de um controlador para uma planta destas seja extremamente complexo e intricado em seu funcionamento. No entanto, utilizando-se a teoria de autômatos para visualização intuitiva do funcionamento de cada componente bem como a teoria de controle supervisório modular local, que permite destrinchar as restrições do sistema em componentes de entendimento intuitivo, fica evidente a praticidade e facilidade que estas ferramentas possibilitam no projeto e controle de sistemas complexos. Auxiliado por ferramentas computacionais que permitem a análise de diversos comportamentos dos sistemas, bem como a sua simulação, a concepção de sistemas de controle a eventos discretos para múltiplos componentes interligados se torna tão fácil quanto a de casos de menor escala.

Referências

- [1] Marcelo Götz. Apostila de Sistemas a Eventos Discretos - Autômatos & Teoria do Controle Supervisório, 2018.
- [2] Christos G. Cassandras and Stéphane Lafortune. Introduction to Discrete Event Systems, 2nd, 2009.