$$\frac{d^2\varphi}{dx^2} = \sin(k\pi x) \quad 0 \le x \le 1 \quad \varphi(0) = \varphi(1) = 0$$

Multigrid Methods

• Let
$$k=k_m$$
 with $1 \le \frac{k_m}{2\pi} \le \frac{M}{4}$ $\Rightarrow \frac{k_{\max}}{2\pi} = \frac{M}{2}$

- need 2 points/wavelength minimum

$$\Rightarrow \frac{k_{\text{max}}}{2\pi} = \frac{M}{2}$$

- lower half of allowed wavenumbers ⇒ slowly varying
- Let's evaluate $\sin(k_m x_i)$ at even index points only: $x_i = 2i \frac{L}{M} = \frac{2i}{M}$

$$\Rightarrow$$
 $\sin(k_m x_i) = \sin\left(\frac{k_m 2i}{M}\right) = \sin\left(\frac{k_m i}{\frac{M}{2}}\right)$

- same as function evaluated at every point of mesh with spacing

- on mesh with M/2+1 mesh points, function goes up to the maximum allowed wavenumber ⇒ rapidly varying
- Can turn slowly varying function into rapidly varying function by coarsening mesh ('skipping' mesh points)

Multigrid Methods

- Ideas behind Multigrid Methods
 - reduce slowly varying parts of residual on coarser grids, since they are rapidly varying there
 - transfer improved solution from coarse grid back to fine grid
- This will require transfer operations between grids
 - fine → coarse: restriction
 - coarse → fine: prolongation

Restriction

$$M^h + 1$$
 points

$$M^{2h}+1$$
 points

$$M^{2h} = \frac{M^h}{2}$$

- Option #1:
 - take every 2nd point

$$r_i^{h \to 2h} = r_{2i}^h$$

$$i=1,2,\ldots,M^{2h}-1$$
 (all interior points)

- Option #2:
 - average (usually better)

$$r_i^{h\to 2h} = \frac{1}{4} \left(r_{2i-1}^h + 2r_{2i}^h + r_{2i+1}^h \right)$$

$$i = 1, 2, \dots, M^{2h} - 1$$

Prolongation

 $M^h + 1$ points

 $M^{2h}+1$ points

$$M^{2h} = \frac{M^h}{2}$$

- simple copy of aligned mesh points

$$\epsilon_{2i}^{2h \to h} = \epsilon_i^{2h}$$

$$\epsilon_{2i}^{2h \to h} = \epsilon_i^{2h} \qquad i = 0, 1, \dots, M^{2h}$$

- average non-aligned mesh points

$$\epsilon_{2i+1}^{2h\to h} = \frac{1}{2} \left(\epsilon_i^{2h} + \epsilon_{i+1}^{2h} \right)$$

$$i = 0, 1, \dots, M^{2h} - 1$$

Dual Grid Multigrid

- a) on fine gird, perform a few iterations for $A \vec{\varphi} = \vec{f}$ with $\vec{\varphi}^{\,h^{(0)}}$ as initial guess
- b) calculate residual: $\vec{r}^h = \vec{f} A \vec{\varphi}^{h^{(k)}}$
- c) restrict residual to coarse grid: $\vec{r}^{h\to 2h}$
- d) on coarse grid, perform a few iterations for $A\vec{\epsilon}^{2h}=\vec{r}^{h\to 2h}$ with $\vec{\epsilon}^{2h^{(0)}}=0$
- e) prolong error to fine grid: $\vec{\epsilon}^{2h \to h}$
- f) apply correction to fine grid solution: $\vec{\varphi}^{h^{(0)}} = \vec{\varphi}^{h^{(k)}} + \vec{\epsilon}^{2h \to h}$
- g) goto step a) until norm of residual drops below acceptable threshold

reminder: never code matrices, use loops with index form instead

Spring 2015

AEE471/MAE561 Computational Fluid Dynamics

Multigrid

- Why stop at 2 grids?
 - go all the way to coarsest possible mesh
 - possible if ${\cal M}^h=2^p$

Multigrid

- a) on fine gird, perform a few iterations for $A\vec{\varphi}=\vec{f}$ with $\vec{\varphi}^{\,h^{(0)}}$ as initial guess
- b) calculate residual: $\vec{r}^h = \vec{f} A \vec{\varphi}^{h^{(k)}}$
- c) restrict residual to coarse grid: $\vec{r}^{h \to 2h}$
- d) on coarse grid, perform a few iterations for $A\vec{\epsilon}^{2h}=\vec{r}^{h\to 2h}$ with $\vec{\epsilon}^{2h^{(0)}}=0$
 - d.b) calculate residual to error equation: $\vec{r}^{2h} = \vec{r}^{h \to 2h} A \vec{\epsilon}^{2h^{(k)}}$
 - d.c) restrict residual to next coarser grid: $\vec{r}^{2h o 4h}$
 - d.d) on next coarser grid, perform a few iterations for $A\vec{\epsilon}^{4h}=\vec{r}^{2h\to4h}$ with $\vec{\epsilon}^{4h^{(0)}}=0$
 - d.d.b-d) continue with ...b) ...d) on next coarser mesh 4h all the way to ph mesh
 - d.d.e-g) do steps ...e) ...g) from coarsest mesh ph all the way to 4h mesh
 - d.e) prolong error to next finer grid: $\vec{\epsilon}^{4h\to 2h}$
 - d.f) apply correction to next finer grid solution (error): $\vec{\epsilon}^{2h^{(0)}} = \vec{\epsilon}^{2h^{(k)}} + \vec{\epsilon}^{4h o 2h}$
 - d.g) on next finer grid, perform a few iterations for $A\vec{\epsilon}^{2h}=\vec{r}^{h\to 2h}$
- e) prolong error to fine grid: $\vec{\epsilon}^{2h \to h}$
- f) apply correction to coarse grid solution: $\vec{\varphi}^{h^{(0)}} = \vec{\varphi}^{h^{(k)}} + \vec{\epsilon}^{2h \to h}$
- g) goto step a) until norm of residual drops below acceptable threshold

Recursive algorithm (but we know the number of levels beforehand)

Multigrid

- How to code this?
 - write iteration, prolongation, restriction as subroutines/functions
 - could use recursive calls with dynamic memory allocations

OR

- pre-compute and store grid level support data for all grid levels in vectors M(1:p), N(1:p), h(1:p)
- do not make new arrays/variables for each grid level, instead use

- this wastes some memory but makes coding easier

Multigrid: V-cycle

- How to traverse the different grid levels?
 - Many options!

Multigrid

How to code single V-cycle iteration?


```
phi = GaussSeidel (phi,rhs(:,1),h(1),M(1))
r(:,1) = calcResidual(phi,rhs(:,1),h(1),M(1))
```

```
epsc(:,1) = prolong(eps(:,2),M(1))
phi = correct(phi,epsc(:,1),M(1))
```

comment: rhs(:,1) must contain PDE right hand side

Multigrid: W-Cycle

How to traverse the different grid levels?

Multigrid: FMC

- Full Multi Grid cycle:
 - start at coarsest grid level

