## 1 19 January 2023

Working on understanding Majorana polarization. So we want to find two Hermitian Majoranas  $\gamma^+$  and  $\gamma^-$  (left/right Majorana) and form a non-local fermion

 $f = \frac{1}{2}(\gamma^+ + i\gamma^-),\tag{1}$ 

such that  $f^{\dagger}|o\rangle=|e\rangle$ . Then we get  $|e\rangle=\gamma^{+}|o\rangle$  and  $|e\rangle=-i\gamma^{-}|o\rangle$ . We can expand these Majoranas in the Hermitian site-Majoranas  $\gamma_{j}^{+}=d_{j}^{\dagger}+d_{j}$  and  $\gamma_{j}^{-}=i(d_{j}^{\dagger}-d_{j})$ 

$$\gamma^{+} = \sum_{j,s} a_j^s \gamma_j^s$$

$$\gamma^{-} = \sum_{j,s} b_j^s \gamma_j^s.$$
(2)

We then calculate e.g.,

$$\langle o|\gamma_{j}^{+}|e\rangle = \langle o|\gamma_{j}^{+}\gamma^{+}|o\rangle = \langle o|\gamma_{j}^{+}\sum_{k,s}a_{k}^{s}\gamma_{k}^{s}|o\rangle = \langle o|a_{j}^{+} + \sum_{(k,s)\neq(j,+)}a_{k}^{s}\gamma_{j}^{+}\gamma_{k}^{s}|o\rangle$$

$$= a_{j}^{+} + \sum_{(k,s)\neq(j,+)}a_{k}^{s}\langle o|\gamma_{j}^{+}\gamma_{k}^{s}|o\rangle$$

$$(3)$$

but  $\langle o|\gamma_j^+\gamma_k^s|o\rangle^*=\langle o|\gamma_k^s\gamma_j^+|o\rangle=-\langle o|\gamma_j^+\gamma_k^s|o\rangle$  (by using anti-commutation). Hence the second term is purely imaginary and we can write (analogously for the other coefficients)

$$a_{j}^{+} = \operatorname{Re}\{\langle o|\gamma_{j}^{+}|e\rangle\}$$

$$a_{j}^{-} = -\operatorname{Im}\{\langle o|\gamma_{j}^{-}|e\rangle\}$$

$$b_{j}^{+} = -\operatorname{Im}\{\langle o|\gamma_{j}^{+}|e\rangle\}$$

$$b_{j}^{-} = \operatorname{Re}\{\langle o|\gamma_{j}^{-}|e\rangle\}$$

$$(4)$$

since the a, b coefficients are real ( $\gamma^+$  and  $\gamma^-$  are Hermitian). If the Hamiltonian is real (?),  $a_j^- = b_j^+ = 0$  and we can skip taking the real part.

1. What have we assumed when doing this? Have we assumed that we have good left/right majoranas and then derived their expansion?

## 2 20 January 2023

The Majorana polarization is defined in e.g., Aksenov 2020 as roughly (though not taking into account taking the real part as above)

$$MP = \frac{\sum_{j}' a_{j}^{+2} - b_{j}^{-2}}{\sum_{j}' a_{j}^{+2} + b_{j}^{-2}}$$
 (5)

where the prime means to sum over half of the chain. This seems to depend on how much of  $\gamma^-$  has leaked into the left side.

- 1. What is the meaning of the MP? Relation to original paper?
- 2. Is it reasonably defined? What if we have an imaginary part? Spin?
- 3. What if one Majoranas leaks to the opposite half but the other does not?
- 4. Could you do a normal scalar product to calculate overlap?
- 5. If no overlap, the denominator is not necessary since the sum of the coefficients squared is unity (see below).

Proved that  $\sum_k {a_k^+}^2 = 1$  by induction, anti-commutation relations and that the majoranas square to one, assuming that we only get the + coefficients. Also tried out the MP on the Poor mans geometry.