Modeling and estimating generation intervals

Tachikawa infectious boot camp, 2019 Jonathan Dushoff, McMaster University https://github.com/dushoff/Generation_talks

1 Introduction

- I talk too fast
- I have too much to tell you
- Interrupt me!

How long is a disease generation?

- Introduced by Prof. Nakaoka
- If I am infected on day 0, when do I infect you?
- When do you infect Dr. Akhmetzhanov?

Goals

- Introduce a generation-based framework for modeling
- Discuss importance of generation intervals
- Discuss how generation intervals are defined and measured

2 Linking strength and speed

Speed

- We measure epidemic speed using little r:
 - The ratio of the *change* in disease impact to the *amount* of disease impact
 - Units: [1/time]
 - Disease increases like e^{rt}
- Time scale is C = 1/r

Ebola outbreak

 $C \approx 1$ month. Sort-of fast.

Mexican flu

 $C \approx 1$ week. Sort-of fast.

HIV in sub-Saharan Africa

 $C \approx 18 \, \text{month}$. Horrifyingly fast.

\mathcal{R} and control

- We describe epidemic strength with big \mathcal{R}
- Number of potential new cases per case
 - Not accounting for proportion susceptible
- To eliminate disease, we must:
 - Reduce effective reproduction by a factor of \mathcal{R}

\mathcal{R} and equilibrium

- If we have \mathcal{R} new cases per case when everyone is susceptible
- And 1 case per case (on average) at equilibrium:
 - Proportion susceptible at equilibrium is $S = 1/\mathcal{R}$
 - Proportion affected at equilibrium is $V=1-1/\mathcal{R}$

3 The link

- The generation distribution measures generations of the disease
 - Interval between "index" infection and resulting infection
- Do fast disease generations mean more danger or less danger?

Conditional effect of generation time

- Given the reproductive number \mathcal{R}
 - faster generation time G means faster growth rate r
 - More danger
- Given the growth rate r
 - faster generation time G means $smaller \mathcal{R}$
 - Less danger

Generations and \mathcal{R}

Ebola outbreak

 $C \approx 1 \, \text{month}, \, G \approx 2 \, \text{week}$

Mexican flu

 $C \approx 1$ week, $G \approx 3$ day

HIV in sub-Saharan Africa

 $C \approx 18 \, \text{month}, \, G \approx 4 \, \text{years}$

Linking framework

- ullet Epidemic speed (r) is a product:
 - (something to do with) generation speed \times
 - (something to do with) epidemic strength

3.1 Renewal-equation models

Box models

Renewal equation

- A broad framework that covers a wide range of underlying models
- $i(t) = S(t) \int k(\tau)i(t-\tau) d\tau$
 - -i(t) is the rate of new infections (per-capita incidence)
 - -S(t) is the proportion of the population susceptible
 - $-k(\tau)$ measures how infectious a person is (on average) at time τ after becoming infected
- \bullet For invasion, treat S as constant

Infection kernel

- $k(\tau)$ is the expected rate at which you infect at time τ after being infected
- $\int_{\tau} k(\tau) d\tau$ is the expected number of people infected:

- $-\mathcal{R}$ the effective reproductive number
- $k(\tau)/\mathcal{R}$ is a distribution:
 - $-g(\tau)$, the *intrinsic* generation distribution

Renewal equations

- More flexible than ODEs
 - Non-exponential distributions, variation in infectiousness through time
 - The ODEs we've seen can be rewritten as renewal equations!
- Can be parameterized by observing generation intervals
 - Contact tracing (realized intervals)
 - infectiousness of studied individuals (intrinsic distribution)

4 Estimating \mathcal{R}

Euler-Lotka equation

• Model

$$i(t) = S \int k(\tau)i(t-\tau) d\tau$$

- If we neglect changes in S, we expect exponential growth

- Exponential phase
 - Disease grows with characteristic time C = 1/r

 $i(t) = i(0) \exp(rt)$

Euler-Lotka equation

•

$$i(t) = S \int k(\tau)i(t - \tau) d\tau$$

• Substitute:

$$i(t) = i(0) \exp(rt)$$

• $1 = \int k(\tau) \exp(-r\tau) d\tau$

- i.e., the total of discounted contributions is 1

• $1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$

Interpretation: generating functions

• $1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$

 $\bullet \ \ J \ Wallinga, \ M \ Lipsitch; \ DOI: \ 10.1098/rspb.2006.3754$

4.1 Effective generation times

Interpretation: "effective" generation times

• Define the effective generation time so that

$$\mathcal{R} = \exp(r\hat{G})$$

• Then:

$$1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$$

 $\exp(-r\hat{G}) = \langle \exp(-r\tau) \rangle_g.$

- A filtered mean:
 - * The discounted value of \hat{G} is the expectation of the discounted values across the distribution

Filtered means

- Many things we know about are examples of filtered means
 - Geometric mean (log function)
 - Harmonic mean (reciprocal function)
 - Root mean square (square)

Linking framework

- Epidemic speed (r) is a product:
 - (something to do with) generation speed \times
 - (something to do with) epidemic strength
- In particular:
 - $-r = (1/\hat{G}) \times \log(\mathcal{R})$
 - \hat{G} is the effective mean generation time

$$C = 1/r = 10d$$

$$C = 1/r = 30d$$

Filtered means have intuitive properties

- Shifts in distribution shift the mean about how you would expect
 - More late transmission means longer \hat{G}
 - Longer \hat{G} means higher \mathcal{R} for a given r
- As distribution gets narrower, \hat{G} increases toward the mean \bar{G}
- \bullet As distribution gets wider, \hat{G} decreases
 - Scientific interpretation?

The filtering function

- $\exp(-r\hat{G}) = \langle \exp(-r\tau) \rangle_g$,
- \hat{G} is the mean of the generation distribution $g(\tau)$...
- Filtered by the discount function associated with the rate of exponential growth of the epidemic
 - i.e., the relative importance of a contribution at that time

4.2 Moment approximations

Problems

- The filtered mean has drawbacks
- \hat{G} depends on r as well as G
- How is

$$- \mathcal{R} = \exp(r\hat{G})$$

• Consistent with the result from ODEs

$$- \mathcal{R} = 1 + r\bar{G}?$$

Infectious times and waiting times

- If the average infectious time is 5 days, what is the average generation time?
 - The average latent period plus the infectious-waiting period
- What is the average infectious-waiting period?

$$-5d(1+\kappa)/2$$

- * κ measures the relative variation of the infectious period
- The waiting period is not the infectious period
 - $\ast\,$ The exponential distribution is trying to trick you!

Infectious and waiting periods

Infectious and waiting periods

An approximation

- We make the $r\mathcal{R}$ link with a moment approximation
- Define $\kappa = \sigma_G^2/\mu_G^2$ the squared coefficient of variation of the generation distribution
- $\mathcal{R} \approx (1 + r\kappa \bar{G})^{1/\kappa}$
 - Equal when $g(\tau)$ has a gamma distribution
 - Simple and straightforward
 - When is it a useful approximation?

Compound-interest interpretation

- Define $\mathcal{R} \approx (1 + r\kappa \bar{G})^{1/\kappa} \equiv X(r\bar{G}; 1/\kappa)$
- ullet X is the compound-interest approximation to the exponential
 - Linear when $\kappa = 1$ (i.e., when g is exponential)
 - Approaches exponential as $\kappa \to 0$

Moment approximation

Approximate generation intervals

Qualitative response

- For a given value of \bar{G} , smaller values of κ mean:
 - less variation in generation interval
 - less compounding of growth
 - greater \mathcal{R} required for a given r

Fitting to Ebola

- Simulate generation intervals based on data and approach from WHO report
- Use both lognormals and gammas
 - WHO used gammas
 - Lognormals should be more challenging

Approximating the distribution

Lognormal SEIR

Single-gamma approximation

Approximating the curve

Linking framework

- ullet Epidemic speed (r) is a product:
 - (something to do with) generation speed \times
 - (something to do with) epidemic strength
- In particular:

- $r \approx (1/\bar{G}) \times \ell(\mathcal{R}; \kappa_q)$
- $-\ell$ is the inverse of X

Other diseases

- This approximation works suspiciously well for measles parameters
- Noticeably less well for rabies parameters
 - Can be improved using gamma-based estimates of the moments

Summary

- For many practical applications:
 - Estimating the mean generation interval is not enough
 - But estimating the mean and CV may be enough
 - * This can also allow us to address our uncertainty
- Filtered mean is useful for qualitative explanations
 - e.g., Ebola burial

5 Generation intervals through time

- Generation intervals can be estimated by:
 - Observing patients:
 - * How long does it take to become infectious?
 - * How long does it take to recover?
 - * What is the time profile of infectiousness/activity?
 - Contact tracing
 - * Who (probably) infected whom?
 - * When did each become ill (serial interval)?

Types of interval

- Contact-tracing intervals look systematically different, depending on when you observe them.
- Define:
 - Intrinsic interval: How infectious is a patient at time τ after infection?
 - Forward interval: When do people infected at a particular time infect others?
 - Backward interval: When were the people who infect at a particular time infected?

Growing epidemics

- ullet Generation intervals look *shorter* at the beginning of an epidemic
 - A disproportionate number of people are infectious right now
 - They haven't finished all of their transmitting
 - We are biased towards observing faster events

Forward and backward intervals

Correcting

ullet Infection events: someone infected at time s is infecting someone at time t

$$-i_s(t) = S(t)k(t-s)i(s)$$

- Backward intervals
 - Who infected the people infected at time t?

$$* \propto k(t-s)i(s)$$

- Depends on k, but also on changes in i(s)
- Forward intervals
 - Who did the people infected at time s infect?

*
$$\propto S(t)k(t-s)$$

– Depends on k, but also on changes in S(t)

Theory and simulation

Champredon and Dushoff, 2015. DOI:10.1098/rspb.2015.2026

Conclusion

- Backward intervals change if the number of infectious individuals is changing as you look back
- Forward intervals change if the number of *susceptible* individuals is changing as you look forward
- Lack of care in defining generation intervals can lead to bias
 - In particular, generation intervals look short during an epidemic outbreak
 - * Makes diseases look less dangerous!
 - These biases can be corrected

6 Conclusion

Spatial struture

Individual-level heterogeneity

Summary

- Generation intervals are often taken for granted
- We need better methods for defining different measures of disease generations
 - We need to consider our *uncertainty* about generations when making conclusions
- Generation intervals are fun conceptually, mathematically and practically

7 Renewal math (extra)

Compartments vs. cohorts

- We have a some simplified biological assumptions about how a disease spreads
- We can implement these assumptions into a model:
 - Track compartments: S, I, R, \dots
 - or track **cohorts**: a group of people infected at the same time

Cohort approach

• Model

$$\frac{dS}{dt} = \mu S - \beta SI/N$$

$$\frac{dI}{dt} = \beta SI/N - \gamma I$$

• What happens to a cohort infected at time 0?

$$\frac{dI}{d\tau} = -\gamma I$$

$$I(\tau) = I(0) \exp(-\gamma \tau)$$

• We can write cohort equations for more complicated models as well

Another view of the model

• Model incidence i:

$$\frac{dS}{dt} = \mu S - i(t)$$

$$\frac{dI}{dt} = i(t) - \gamma I$$

$$i(t) = \beta SI/N$$

Cohort approach

• We can use standard methods for the differential equation:

 $\frac{dI}{dt} = i(t) - \gamma I$

• or we can just write down the answer using a cohort approach:

 $I(t) = \int I(t - \tau, \tau) d\tau$ $= \int i(t - \tau) \exp(-\gamma \tau) d\tau$

• This answer makes biological sense

Cohort-based equation

 \bullet We can eliminate I and write:

 $\frac{dS}{dt} = \mu S - i(t)$ $i(t) = \frac{S}{N} \int \beta i(t - \tau) \exp(-\gamma \tau) d\tau$

- This is the same model
 - Same assumptions, same dynamics
- We can generalize our compartmental assumptions:

 $i(t) = \frac{S}{N} \int i(t - \tau)k(\tau)d\tau$

Renewal equation

• $i(t) = \frac{S}{N} \int i(t-\tau)k(\tau)d\tau$

- $k(\tau)$ is the infection "kernel" it describes how an incident (new, occurring) case tends to cause other incident cases over time
 - As a function of time since infection
- What are the advantages or disadvantages of this cohort-based approach, compared to a general compartmental model?
- How would you estimate an infection kernel?