Demodulação ASK implementado em FPGA para sistemas SWIPT

1st Julia Borges Silva Faculdade do Gama Universidade de Brasília Brasília, Brasil 170014355@aluno.unb.br 2nd Gabriel Vieira da Silva Leite Faculdade do Gama Universidade de Brasília Brasília, Brasil 180113381@aluno.unb.br

I. PROBLEMA E JUSTIFICATIVA

Informações sem fio simultâneas e transferência de energia são muito úteis em aplicativos de IoT para evitar muitas baterias grandes, além disso, a transferência de informações possibilita projetos de modelos de sistemas com restrições de orçamento de energia. [7]

Com isso, busca-se meios de transmitir energia sem a utilização de cabos por causa da grande quantidades de dispositivos conectados em uma rede. [3] Essa técnica tem diversas aplicabilidades dentro da área de biomédica, telecomunicações, sensoriamento, entre outras funções. [4]

Entretanto, o envio de informações ou energia sem a utilização de cabos ocasiona um aumento no risco da perda de mensagem e do atraso na mensagem. [5] E uma forma de tornar essa tecnologia aplicável é necessário enviar a energia através de um canal, ou seja, utilizar uma técnica de modulação e no receptor utilizar uma forma de demodulação para decodificar essa energia recebida.

Esse projeto apresenta uma forma de demodulação ASK a ser utilizada em um receptor para interpretar a mensagem que foi enviada através de uma modulação ASK. Será implementado essa técnica de demodulação em uma Field Programmable Gate Array (FPGA) com o intuito de acelerar os algoritmos para o processamento de sinal e trabalhar com uma velocidade maior.

II. OBJETIVOS

Implementar a técnica de Demodulação ASK em uma Field Programmable Gate Array (FPGA) a partir da descrição e integração dos blocos: filtrp FIR, média móvel e detector de envelope.

III. REQUISITOS TÉCNICOS

O sistema terá o menor consumo possível, uma vez que sua aplicação busca o baixo consumo, frequência de 10 KHz, amostragem de 150 KHz, 1 bit de sinal, 3 bits para representação de inteiros e 8 decimais, sendo a representação em ponto fixo, janelamento de Blackmann e 32 taps para o filtro FIR

IV. MODELO DE REFERÊNCIA

O modelo de referência foi desenvolvido utilizando Matlab. O código gera um sinal aleatório a partir da frequência da portadora e número de bits e constrói o sinal modulado. Em seguida esse sinal é demodulado, sem a presença de ruído na transmissão, passando por um integrador e um módulo de decisão, que define se o sinal recebido é '1' ou '0', como exemplificado na Figura 8.

Fig. 1. Resultado do modelo de referência

V. METODOLOGIA

O projeto foi separado em 3 metas: implementação em VHDL, integração e *debug*. Nos tópicos a seguir, serão descritas as atividades de cada meta.

A. Implementação em VHDL

A Figura 8 ilustra o sistema de recepção, em que o sinal é captado pela antena, passa por um módulo de circuitos analógicos e conversão digital antes do sistema proposto em hardware para recuperação da mensagem.

B. Integração

Para completar essa meta, os blocos instanciados serão conectados.

Fig. 2. Diagrama do sistema completo

C. Debug

Por ultimo, a meta de debug se refere ao desenvolvimento da simulação automática e correção de erros na instanciação dos blocos.

VI. CRONOGRAMA DE ATIVIDADES

A Figura 3 demonstra a organização cronológica do projeto, com as últimas semanas dedicadas à documentação e preparação para apresentação do mesmo.

Fig. 3. Cronograma do projeto

Ao final, busca-se a construção de um arquivo com diagrama de blocos como exemplificado na Figura 4, com a utilização do Vio Core e ILA-Core para comunicação com o laboratório remoto e captura de dados da FPGA, além dos blocos de FIR, média móvel e detector de envelope e as entradas a serem demoduladas salvas em uma memória ROM.

Fig. 4. Resultado do modelo de referência

VII. RESULTADOS

A. Erro

O erro quadrático cálculado foi de 3.4 e o gráfico de erro por amostra pode ser observado na Figura 5, estando relacionado com o número de entradas testadas serem poucas e possíveis melhorias a ser desenvolvidas na lógica do projeto, além de erros encontrados no detector de envelope que não puderam ser validados até a entrega do presente trabalho.

Fig. 5. Erro do resultado

B. Utilização

Como pode ser visto nas Figuras 6 e 7, são utilizados vários recursos da FPGA, principalmente DSP. Como os filtros utilizam muitos multiplicadores, é esperado que sejam gastos muitos recursos da placa.

Fig. 6. Utilização da FPGA

Resource	Utilization	Available	Utilization %		
LUT	1954	20800	9.39		
LUTRAM	120	9600	1.25		
FF	3377	41600	8.12		
BRAM	3.50	50	7.00		
DSP	16	90	17.78		
Ю	1	106	0.94		
BUFG	2	32	6.25		

Fig. 7. Recursos utilizados

Name ^1	Slice LUTs (20800)	Block RAM Tile (50)	DSPs (90)	Bonded IOB (106)	BUFGCTRL (32)	BSCANE2 (4)	Slice Registers (41600)	F7 Muxes (16300)	Slice (8150)	LUT as Logic (20800)	LUT as Memory (9600)
∨ top	1954	3.5	16	1	2	1	3377	3	1025	1834	120
> dbg_hub (dbg_hub)	485	0	0	0	1	1		0	252	461	24
> ut (ROM)	0	0.5	0	0	0	0		0	0	0	0
> uut1 (top_module)	750	0	16	0	0	0		0	362	726	24
> uut2 (ila_0)	595	3	0	0	0	0		3	352	523	72
> uut3 (vio_0)	100	0	0	0	0	0		0	69	100	0

Fig. 8. Recursos utilizados por blocos de operação

C. Consumo

São consumidos aproximadamente 101mW, de acordo com o gráfico da Figura 9, um consumo relativamente considerando que se espera um consumo de 100 mW para o sistema SWIPT completo.

Fig. 9. Potência utilizada

VIII. CONCLUSÃO

O objetivo primário é alcançado com a realização da Demodulação ASK com a FPGA, contudo, deve-se observar que os resultados comparados ainda possuem um erro maior que o esperado e os consumo de recursos e potência está elevado para a aplicação do Demodulador em um projeto.

Como a FPGA Basys3 utilizada consome muita potência, é necessário aplicar a demodulação em uma FPGA que não consuma tanto recursos como também otimizar os cálculos com o intuito de encontrar um resultado mais preciso.

REFERENCES

- Vahid, Frank. Sistemas Digitais. Disponível em: Minha Biblioteca, Grupo A. 2011.
- [2] "Business insider. how the internet of things will transform consumerism, enterprises, and governments over the next five years." Abn-TeX. [Online]. Available: https://www.businessinsider.com/iot-forecast-book-2018-7;
- [3] M. S. Masouleh, A. Kaddour, and S. Georgakopoulos, "Recent advances in wireless systems for simultaneous power and data transfer," in 2019 International Applied Computational Electromagnetics Society Symposium (ACES), April 2019, pp. 1–2.
- [4] X. Zhang, X. Zhang, and L. Han, "An energy efficient internet of things network using restart artificial bee colony and wireless power transfer," IEEE Access, vol. 7, pp. 12 686–12 695, 2019.
- [5] T. D. Ponnimbaduge Perera, D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas, and J. Li, "Simultaneous wireless information and power transfer (swipt): Recent advances and future challenges," IEEE Communications Surveys Tutorials, vol. 20, no. 1, pp. 264–302, Firstquarter 2018
- [6] Amplitude Shift Keying inttps://www.tutorialspoint.com/digital communication/digital communication amplitude shift keying.htm,
- [7] Steven Claessens, Dominique Schreurs, and Sofie Pollin. "SWIPT with Biased ASK Modulation and Dual-Purpose Hardware". Department of Electrical Engineering, University of Leuven, Leuven, 3000, Belgium