HAI816I Logique pour le génie logiciel et l'intelligence artificielle Épreuve de contrôle continu du mercredi 15 février 2023 14:45 durée 1h (tiers temps: 1h30)

Vous trouverez des rappels de cours à la fin du sujet : en particulier uen formule G est valide dans un modèle de Kripke lorsqu'elle est vraie en chacun des mondes possibles : $\forall m_i \in \mathcal{M} \ m_i \models G$.

Exercice 1 Vérification de formule dans un modèle de Kripke donné Soit le modèle de Kripke défini par :

1. Mondes possibles : $\mathcal{M} = \{\mathfrak{m}_0, \mathfrak{m}_1\}$ 2. Accessibilité: $\mathfrak{m}_0 R \mathfrak{m}_1$ et $\mathfrak{m}_1 R \mathfrak{m}_1$. 3. Forcing atomique : $\mathfrak{m}_1 \vDash p$ (et $\mathfrak{m}_0 \not\vDash p$). Question 1.a Dessinez ce modèle de Kripke. Question 1.b Montrez que p n'est pas valide dans ce modèle. **Question 1.c** Montrez que $\Box p$ est valide dans ce modèle. **Question 1.d** Montrez que $\Diamond p$ est valide dans ce modèle. Question 1.e Montrez que tout formule $\square \cdots \square p$ $(n \ge 1)$ fois la modalité \square) est valide dans ce modèle.

Question 1.g Montrez que tout formule $\circ \cdots \circ p$ ($n \ge 1$ fois une modalité qui est \lozenge ou \square c'est-à-dire $\circ = \square$ ou $\circ = \lozenge$) est valide dans ce modèle.

Exercice 2 Construction de modèles de Kripke Pour donner un modèle de Kripke, un dessin clair suffit.

Question 2.a Construire un modèle de Kripke où $\Box p \rightarrow \Box \Box p$ est fausse en au moins un monde possible — on précisera lequel.

Question 2.b Construire un modèle de Kripke où $\Box\Box p \rightarrow \Box p$ est fausse en au moins un monde possible — on précisera lequel.

Question 2.c Construire un modèle de Kripke où $\Diamond p \land \Diamond \neg p$ est vraie en au moins un monde possible — on précisera lequel.

Question 2.d Construire un modèle de Kripke où $\Diamond p \land \Diamond \neg p$ est vraie en chacun des mondes possibles.

Exercice 3 Bissimulation Etant donnés deux modèles de Kripke

 $\mathscr{M}^a=\langle \mathfrak{m}_i^a,R^a,\vDash_0^b\rangle \text{ et } \mathscr{M}^b=\langle \mathfrak{m}_i^a,R^a,\vDash_0^b\rangle$

et une relation de bissimulation B entre les deux (définition dans les rappels), montrez par induction sur la formule G que

Biss(G): pour toute paire de mondes possibles bissimilaires,

c'est-à-dire pour tous $\mathfrak{m}_i^a \in \mathcal{M}^a$ et $\mathfrak{m}_j^b \in \mathcal{M}^b$ avec $\mathfrak{m}_i^a B \mathfrak{m}_j^b$

on a $\mathfrak{m}_i^a \models G$ si et seulement si $\mathfrak{m}_j^b \models G$.

On procèdera par induction sur la formule G.

Question 3.a On commencera par montrer que Biss(p) pour p une variable propositionnelle.

On montrera ensuite que

Question 3.b $Biss(G_1)$ entraı̂ne $Biss(\neg G_1)$,

Question 3.c $Biss(G_1)$ et $Biss(G_2)$ entraı̂nent $Biss(G_1 \& G_2)$.

Question 3.d $Biss(G_1)$ entraı̂ne $Biss(\lozenge G_1)$,

Question 3.e On concluera en explicitant le type d'induction utilisé.

Rappels: définitions Modèles de Kripke, bissimulation Les formules modales sont définies à partir d'un ensemble de propositions $\mathscr P$ par les connecteurs unaires \neg, \Box, \Diamond et les connecteurs binaires $\lor, \&, \rightarrow$. En raison des identités :

$$A \rightarrow B \equiv \neg A \lor B$$

$$\neg (A \lor B) \equiv \neg A \& \neg B$$

$$\neg (A \& B) \equiv \neg A \lor \neg B$$

$$\neg \Diamond A \equiv \Box \neg A$$

$$\neg \Box A \equiv \Diamond \neg A$$

$$\neg \Box A \equiv A$$

On peut n'utiliser que de la négation et un symbole binaire et d'une modalité pour exprimer toutes les formules (dans les définitions ci-après ne changent pas en remplaçant une formule par une formule équivalente).

Afin de définir l'interprétation d'une formule modale, nous supposerons donné un langage modal \mathcal{L} défini à partir d'un ensemble de propositions \mathcal{P} , du connecteur unaire négation \neg , des connecteurs logiques binaires $\wedge, \vee, \rightarrow$ et des modalités \square, \diamondsuit .

La première notion nécessaire est celle de cadre.

Définition 1 (Cadre). Un cadre $\langle \mathcal{M}, R \rangle$ est constitué

- d'un ensemble non vide $\mathcal{M} = \{\mathfrak{m}_i | i \in I\}$ dont les membres sont généralement appelés mondes possibles ou situations,
- d'une relation binaire R sur \mathcal{M} , c'est-à-dire un sous ensemble R de $\mathcal{M} \times \mathcal{M}$ appelée accessibilité.

On notera que R est une relation binaire quelconque. Il est tout à fait possible que $m_i R m_i$, que R ait des points sans successeur, des points sans prédécesseur, etc.

Lorsque $m_i R m_j$ nous dirons que le monde m_j est accessible depuis le monde m_i .

Définition 2. [Modèle de Kripke] Étant donné un cadre $\langle \mathcal{M}, R \rangle$ un modèle de Kripke de cadre $\langle \mathcal{M}, R \rangle$ s'obtient par la donnée d'une relation binaire \Vdash_0 appelée forcing atomique, entre mondes possibles et atomes (on dit aussi variables propositionnelles, lettres) de $\mathcal{P}: \vDash_0$ est un sous ensemble de $\mathcal{M} \times \mathcal{P}$. Comme souvent pour une relation binaire, on notera $\mathfrak{m}_i \vDash p_k$ pour (\mathfrak{m}_i, p_k) appartient à \vDash_0 .

Définition 3 (Vérité en un monde possible dans un modèle). Soit $< \mathcal{M}, R, \models_0 > un$ modèle de Kripke. Nous étendons la relation \models_0 à toutes les formules du langage, en définissant $\mathfrak{m}_i \models A$ par induction sur la formule A.

- lorsque p ∈ P est une variable propositionnelle m_i ⊨ p si et seulement si m_i ⊨₀ p;
- m_i ⊨ ¬A si et seulement si m_i ∀ A;
- 3. $\mathfrak{m}_i \models A \land B$ si et seulement si $(\mathfrak{m}_i \models A \text{ et } \mathfrak{m}_i \models B)$;
- 4. $\mathfrak{m}_i \models A \rightarrow B$ si et seulement si $(\mathfrak{m}_i \models A \text{ implique } \mathfrak{m}_i \models B)$;
- 5. $\mathfrak{m}_i \models A \lor B$ si et seulement si $(\mathfrak{m}_i \models A \text{ ou } \mathfrak{m}_i \models B)$;
- 6. $m_i \models \Box A \text{ si et seulement si } m_j \models A \text{ pour tout } j \text{ tel que } m_i R m_j$;
- 7. $\mathfrak{m}_i \models \Diamond A$ si et seulement si $\mathfrak{m}_i \models A$ pour au moins un j tel que $\mathfrak{m}_i R\mathfrak{m}_j$.

Définition 4. Une formlule G est dite valide dans un modèle de Kripke \mathcal{M} lorsque $\mathfrak{m}_i \models G$ pour tout \mathfrak{m}_i de \mathcal{M} .

Définition 5. Soient $\mathcal{M}^a = \langle \mathfrak{m}_i^a, R^a, \models_0^b \rangle$ et $\mathcal{M}^b = \langle \mathfrak{m}_i^a, R^a, \models_0^b \rangle$ deux modèles de Kripke. Une relation binaire B entre $(\mathfrak{m}_i^a)_{i \in I}$ et $(\mathfrak{m}_j^b)_{j \in J}$ est une bissimulation lorsque :

- Pour toute variable propositionnelle p, pour tous mondes \mathfrak{m}_i^a et \mathfrak{m}_j^b tels que $\mathfrak{m}_i^a B \mathfrak{m}_j^b$, $\mathfrak{m}_i^a \models_0^a p$ si et seulement si $\mathfrak{m}_j^b \models_0^b p$.
- Pour tous mondes \mathfrak{m}_{i}^{a} et \mathfrak{m}_{j}^{b} tels que $\mathfrak{m}_{i}^{a}B\mathfrak{m}_{j}^{b}$, s'il existe un monde $\mathfrak{m}_{i'}^{a}$ de \mathscr{M}^{a} tel que $\mathfrak{m}_{i}^{a}R^{a}\mathfrak{m}_{i'}^{a}$ alors il existe un monde $\mathfrak{m}_{j'}^{b}$ de \mathscr{M}^{b} tel que $\mathfrak{m}_{i'}^{a}B\mathfrak{m}_{j'}^{b}$ et $\mathfrak{m}_{j}^{b}R^{b}\mathfrak{m}_{j'}^{b}$.
- Pour tous mondes \mathfrak{m}_{i}^{a} et \mathfrak{m}_{j}^{b} tels que $\mathfrak{m}_{i}^{a}B\mathfrak{m}_{j}^{b}$, s'il existe un monde $\mathfrak{m}_{j'}^{b}$ de \mathscr{M}^{b} tel que $\mathfrak{m}_{j}^{b}R^{b}\mathfrak{m}_{j'}^{b}$ alors il existe un monde $\mathfrak{m}_{i'}^{a}$ de \mathscr{M}^{a} tel que $\mathfrak{m}_{i'}^{a}B\mathfrak{m}_{j'}^{b}$ et $\mathfrak{m}_{i}^{a}R^{a}\mathfrak{m}_{i'}^{a}$.