2019年 秋 國立交通大學

5457 最佳化理論與應用 總成績加分程式題

2020/01/04

一、主旨:期末總成績加分程式題。

二、說明:學期期末成績已公佈,老師提供期末加分題。參考第二頁投影片的方塊圖,嘗試運用這學期所學到的基因演算法,Levenberg-Marquardt演算法,以及第十三章的類神經網路(如 hamming net、K mean、或其他類神經網路)實現一個具有"思考與判斷能力"的混合式程式,用以求解最佳化問題。第二頁簡報提供的是一個想法,同學可依此想法自行發揮。

三、辦法:測試題以上課講過的第三頁投影片範例為基本,但不限於此,繳交時得測試複雜例子(助教另行公佈)。測試基本要求為如類似第四頁投影片所示表格。以實現系統為主,不限定程式語言,各模組的程式可用現有程式或自行開發。即日起至截止期限前皆可繳交。採榮譽制度,可一起討論,但要自行完成此加分程式,抄與被抄一律當掉。程式實現後,Demo前三天事先跟助教確認結果並約訂向老師Demo程式的時間。通過Demo後,寫一份報告寄給老師存查。老師依Demo與報告評分,加總成績至多20分。鼓勵學期期末分數不及格者爭取加分機會,學期成績最高分為99分。給分參考如下表所示:

實現的程度	分數x給分範圍	Demo截止日	
完成部份功能。(如僅完成GA+LM, GA+NN, LM+NN,…但僅完成GA或LM不計。)	$0 < x \le 3$	0000/4/00	
完成基本要求。 (完成GA+LM+NN)	$3 < x \le 5$	2020/1/20 17:00前	
完成基本要求,並可測試複雜範例。	$5 < x \le 10$	17.00 AJ	
完成基本要求,並可測試複雜範例,同時有加以推廣;如可解	$10 < x \le 20$	2020/1/24	
多目標,或其他進階與顯著之改良。		17:00前	

可用以求解最佳化問題的Hybrid approach-具有思 考與判斷能力的混合式程式; {LM + NN +GA+...}

NN for feature

此觀念可改良,如: 採用多目標演化計算、 啟發式演算法、代理人 系統、機器學習、統計 實驗設計、平行運算 (GPU、分散式、雲端、 edge運算等)、視窗運算 等等。(但不限上述)

總成績加分程式題基本測試範例

對以下的兩變數的目標函數,在其變數範圍內,找尋其最小函數值。

minimize $f(x_1, x_2) = 21.5 + x_1 \sin(4\pi x_1) + x_2 \sin(20\pi x_2)$ subject to $-3.5 \le x_1 \le 12.1$, $4.1 \le x_2 \le 5.8$

參考答案: 當

$$x_1 = 11.8759$$
 以及

$$x_2 = 5.7745$$
 時,

$$f(x_1, x_2) = 3.8532$$
 \circ

總成績加分程式題基本測試範例結果

Methods # of Iterations	LM	GA	GA+NN	Hybrid approach = LM + NN +GA
1	11.54	11.54	11.54	11.54
10	9.48	10.99	10.61	9.850
20	8.72	9.946	9.483	8.103
40	8.72	8.054	7.481	6.944
60	8.72	5.984	5.324	3.853
100	8.72	4.015	3.923	

Min $f(x_1, x_2) = 3.8532$

說明:表中第二到第五列為使用不同演算法所算得的目標函數下降值。 第一列為迭代或者演化的代數