Automata

2-14-20

Homework 8

- 1. L1 = $\{0^a1^b0^c \mid a+b > c\}$
 - a. Let's suppose L1 is accepted by some FA. choosing some string $x = 0^a 1^b 0^c$ such that $x \in L1$. Then, by pumping lemma, x = uvw such that, $|uv| \le n$, |v| > 0 and $\forall i \ge 0$, $uv^i w \in L1$. So all the symbols in u and v are 0's. So we know that $v = 0^k$ for some k > 0. By the pumping lemma, $uvvw \in L1$ as well. This would make a string y with $0^{a+k} 1^b 0^c$. Since this string $y \in L1$, because a+b+k>c is still true, we can be confident that L1 is a regular language.
- 2. L2 = { $0^a1^b0^c$ | a+b+c > 3 }
 - a. Let's suppose L2 is accepted by some FA. choosing some string $x = 0^a 1^b 0^c$ such that $x \in L2$. Then, by pumping lemma, x = uvw such that, $|uv| \le n$, |v| > 0 and $\forall i \ge 0$, $uv^i w \in L2$. So all the symbols in u and v are 0's. So we know that $v = 0^k$ for some k > 0. By the pumping lemma, $uvv w \in L2$ as well. This would make a string y with $0^{a+k} 1^b 0^c$. Since this string $y \in L2$, because if a+b+c>3 is true, then a+b+k+c>3, we can be confident that L2 is a regular language.
- 3. L3 = { $ww^R \mid w \in \{0,1\}^*$ }
 - a. Let's suppose L3 is accepted by some FA. choosing some string $x = ww^R$ such that $x \in L3$. Then, by pumping lemma, x = uvw such that, $|uv| \le n$, |v| > 0 and $\forall i \ge 0$, $uv^iw \in L3$. So u = w and v is some non-zero amount of ws. So we know that $v = w^k$ for some k > 0. By the pumping lemma, $uvvw \in L3$ as well. This would make a string y with ww^{2k} . Since this string $y \in L3$, because $ww^R \mid w \in \{0,1\}^*$, where v = 2k is true. We can be confident that L3 is a regular language.

- L4 = { w | w ∈ X, wR ∈ Y }, given any two regular languages X and Y (that share an alphabet)
 - a. Since R is not actually used in the string which is being defined in the string, it should hold no relevance in the definition of L4. Thus a more concise statement of it is L4 = { w | w ∈ X} and we can assume this is a regular language given that X is already defined as a regular language.