A Bit-Level Alteration Approach in Image Steganography

Niloy Roy

Email: niloy.roy@tu-ilmenau.de Technische Universität Ilmenau

Introduction

Steganography deals with concealing data into digital RGB images.

The hiding techniques maintain the secrecy of the data while encryption ensures it's integrity against intruders.

Figure 1: Basic combination diagram for steganography and cryptography from [1]

This work describes the development and assesment of one such steganography technique for providing increased confidentiality with less computational cost.

Hiding Technique

For encryption: AES-128 algorithm

For hiding: A variant based on LSB technique

	j=	1	2	3	4	5	6	7	8
i =	1	10110111	00111001	10101010	11110000	10101010	01010101	11100111	10110100
i =	2	10111101	01111000	10011001	00010101	10110101	01010101	10111001	10001010
i =	3	11010111	10110101	10110001	10101010	10110001	11010011	10110011	11101001
i =	4	10010010	10010010	10110110	10110010	11010010	10010101	01011001	01001010
i =	5	10101010	11010101	10101011	11010101	10110110	10001001	10101010	01001100
i =	6	01010011	10100101	01010100	00000010	00000000	10010101	00011110	00101001
i =	7	10101111	10101110	10101011	00111101	10101001	10111010	10001010	10100001
i =	8	00110101	01010111	11010111	01010010	11111111	01011111	00010101	10100100

Figure 2: Byte array of an 8 by 8 image [2]

Two sets of pseudo-random natural numbers and the most significant bits (MSB) of the pixel being traversed are used to find out the bits to be altered.

Iteration	i	j	Byte jump- ing se- ries value	MSB	Zero case se- ries value	n	m = j + n
1	1	1	2	10	7(No need)	2	$3 \le 8$
2	1	3	3	101	-	5	8 = 8
3	1	8	2	10		2	$10 \ge 8$
4	2	2	3	011	-	3	$5 \le 8$
5	2	5	3	101	-	5	$10 \ge 8$
6	3	5	3	101	-	5	$10 \ge 8$
7	4	5	2	11	-	3	8 = 8
8	4	8	2	01		1	$9 \ge 8$
9	5	1	2	10	-	2	$3 \leq 8$

Figure 3: Iteration to hide the cipher bit stream [2]

Byte jumping series: [2 3 2 3 3 3 2 2] Zero case series: [7 3 5 4 2 6 1]

Results

The tool showed lower Mean Square Error and higher signal to noise ratio.

Tool Name	Output file type	Output file size	MSE value	PSNR value
ZSteg	.bmp/.tiff	473 KB	0.00042	81.911
OpenStego	.bmp	70.3 FB	0.01244	67.184
QuickStego	.bmp	147 KB	0.03177	63.111

Table 1: MSE and PSNR of different tools. OpenStego, QuickStego data from [3]

However, the payload capacity is only 1.6%.

Beneficial in terms of detectability but expensive from a space complexity point of view.

Figure 4: X axis for output file size and Y axis for MSE values . [2]

Conclusion and Future Work

<u>Prime contribution</u>: Minimizing detectability in RGB image steganography.

Future work:

- 1. To improve the payload capacity,
- 2. To make the tool compatible with image formats like JPEG, PNG etc.

References

[1]Sarjiyus, Omega & Baha, Benson & Garba, Etemi. (2021). Enhanced Security Framework for Internet Banking Services. Journal of Information Technology and Computing. 2. 9-29. 10.48185/jitc.v2i1.162.

[2] Z. Sultana, F. Jannat, S. S. Saumik, N. Roy, N. K. Datta and M. N.Islam,"A new approach to hide data in color image using LSB steganography technique, "Proceedings of the 3rd International Conference on Electrical Information and Communication Technology (EICT), Khulna, pp.1–6, 2017.

[3] V, V. and Sebastian, S., "Comparative Study Of Steganography Tools." in International Journal of Innovations & Advancement in Computer Science IJIACS, ISSN 2347 - 8616, Volume 2, Issue2, February 2015.

