

EEE 51: Second Semester 2017 - 2018 Lecture 24

Oscillators

Crystal Oscillators

- Crystals are materials that exhibits the piezoelectric effect
 - When stress is applied, voltage is generated between opposite faces of the crystal
 - When a voltage is applied, the crystal deforms at the frequency of the applied voltage
- Mechanical to electrical energy conversion
- Provides stable frequency of oscillation
 - Resonant frequency dependent on physical crystal size
 - 1 ppm/°C or 0.0001%/°C
 - Compare with LC oscillator: ~1% drift

Crystal Strain

Natural Crystal Frequency

Proportional to crystal thickness

Typical natural frequencies below 20-30 MHz

• For 100 MHz, thickness ~ 17μm thick

The Parallel Resonant Mode

The Series Resonant Mode

Electrical Equivalent Circuit

 C_0 = parallel capacitances due to contacts and wires

 $L_i, C_i =$ mechanical energy storage (mass & spring effects)

 R_i = electrical losses due to mechanical effects (e.g. friction)

Crystal Equivalent Circuit

$$Y(s) = sC_0 + \frac{1}{sL + \frac{1}{sC} + R} = sC_0 + \frac{sC}{s^2LC + sRC + 1}$$

$$= \frac{sC_0 \left[s^2 + s\frac{R}{L} + \left(\frac{C}{C_0} + 1 \right) \omega_0^2 \right]}{s^2 + s\frac{R}{L} + \omega_0^2}$$
p-z plot:

Crystal Equivalent Circuit

$$Z(s) = \frac{s^2 + s\frac{R}{L} + \omega_0^2}{sC_0 \left[s^2 + s\frac{R}{L} + \left(\frac{C}{C_0} + 1\right)\omega_0^2\right]}$$

How can we use this to create an oscillator?

Crystal Equivalent Circuit

How can we use this to create an oscillator?

Direct Application: A Colpitts Crystal Oscillator

- The crystal is used to close the feedback loop only at the desired frequency
- The parallel inductance is used to cancel out the crystal parallel capacitance C₀
 - Only the series RLC branch controls the feedback path

Another Colpitts Crystal Oscillator

- The crystal is used as an inductance
- The oscillation frequency is set to be a little above series resonance
 - The crystal impedance is inductive
- Note that the crystal series resonant frequency is not the same as the output oscillation frequency
 - Crystal is cut to oscillate at a specified load capacitance

Negative Resistance Oscillators

What happens in an ideal LC circuit?

The circuit will oscillate at

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

This circuit will also oscillate but the oscillations will die out due to the resistance R

Example:

$$v_o = v_t + i \cdot R(A - 1) = v_t + \frac{v_t}{R} \cdot R(A - 1) = v_t \cdot A$$

Thus,

$$i_t = \frac{v_t - A \cdot v_t}{Z_E}$$

$$Z_i = \frac{v_t}{i_t} = \frac{Z_F}{1 - A}$$

For
$$A = 2$$
:

$$Z_i = -Z_F$$

Negative Resistance Oscillators

$$R_T > R_F$$

$$\frac{1}{R_{eff}} = \frac{1}{R_T} - \frac{1}{R_F}$$

The effective resistance seen by the LC circuit is negative

Differential Negative Resistance Oscillator

How do we analyze this?

- Get the small signal impedance between v1 and v2 without the LC network
- Convert to the single ended equivalent

MOS Differential Cross-Coupled Pair

MOS Differential Cross-Coupled Pair

Since
$$v_1 = -v_2$$
 and $v = v_1 - v_2 = 2v_1$

$$i = -g_m v_1 + \frac{v_1}{r_o} = v_1 \left(-g_m + \frac{1}{r_o} \right)$$
$$= \frac{v}{2} \left(-g_m + \frac{1}{r_o} \right)$$

$$Z_i = \frac{v}{i} = \frac{2}{-g_m + \frac{1}{r_o}} \approx -\frac{2}{g_m}$$

Differential Negative Resistance Oscillator

The differential half circuit:

Reminder

- Final Exam:
 - May 24, 2018 (THURSDAY)
 - -1-4 pm
 - Bring: pen, calculator