Tutorial 2 HSTS201

flint

March 22, 2019

1. Show that the mean \bar{X} of a random sample of size n from a distribution with pdf $f(x;\theta) = 1/\theta e^{-(x/\theta)}$, $0 \le x \le \infty$, zero otherwise, is an unbiased estimator of θ and has variance θ^2/n .

Solution

Let $f(x;\theta) = 1/\theta e^{-(x/\theta)}$, $0 \le x \le \infty$, this is an exponential distribution with mean θ and variance θ^2 . Thus,

$$E(\bar{X}) = E(\frac{1}{n}\sum X) = \frac{1}{n}E(\sum X) = \frac{1}{n}\sum E(X) = \frac{1}{n}\sum \theta = \frac{1}{n}n\theta = \theta$$

$$Var(\bar{X}) = Var(\frac{1}{n}\sum X) = \frac{1}{n^2}Var(\sum X) = \frac{1}{n^2}\sum Var(X)$$
$$= \frac{1}{n^2}\sum \theta^2 = \frac{1}{n^2}n\theta^2 = \theta/n$$

2. Let X_1, X_2, \ldots, X_n denote a random sample from a normal distribution with mean zero and variance $\theta, 0 \le x \le \infty$, . Show that $\sum X_i^2/n$ is an unbiased estimator of θ and has variance $2\theta^2/n$.

Solution

It is known that $\sum X_i^2/\sigma^2$ is $\chi^2(n)$. Hence

$$E[\sum X_i^2/\sigma^2] = n \ and \ Var[\sum X_i^2/\sigma^2] = 2n$$

Thus,

$$\begin{split} E[\sum X_i^2/\theta] &= n \\ \frac{n}{n} E[\sum X_i^2/\theta] &= n \\ \frac{1}{n} E[\sum X_i^2/\theta] &= 1 \\ \frac{1}{\theta} E[\sum X_i^2/n] &= 1 \\ E[\sum X_i^2/n] &= \theta \\ Var[\sum X_i^2/\theta] &= 2n \\ \frac{n^2}{n^2} Var[\sum X_i^2/\theta] &= 2n \\ \frac{1}{n^2} Var[\sum X_i^2/\theta] &= 2/n \\ \frac{1}{\theta^2} Var[\sum X_i^2/n] &= 2/n \\ Var[\sum X_i^2/n] &= 2\theta^2/n \end{split}$$

3. Let $Y_1 \leq Y_2 \leq Y_3$ be the order statistics of a random sample of size 3 from the uniform distribution having pdf $f(x;\theta) = l/\theta$, $0 \leq x \leq \infty$, $0 \leq \theta \leq \infty$, zero elsewhere. Show that $4Y_1$, $2Y_2$, and $\frac{4}{3}Y_3$ are all unbiased estimators of θ . Find the variance of each of these unbiased estimators.

Solution

It can be show that Y_1/θ , Y_2/θ , Y_3/θ follows a beta distribution with parameters $(\alpha, \beta)=(1,3)$, (2,2) and (3,1) respectively. Thus

$$E[4Y_1] = 4\theta E[Y_1/\theta] = 4\theta \times \frac{1}{4} = \theta$$

Similarly,

$$E[2Y_2] = 2\theta E[Y_2/\theta] = 2\theta \times \frac{1}{2} = \theta$$

$$E[\frac{4}{3}Y_3] = \frac{4}{3}\theta E[Y_3/\theta] = \frac{4}{3}\theta \times \frac{3}{4} = \theta$$

$$Var[4Y_1] = (4\theta)^2 Var[Y_1/\theta] = (4\theta)^2 \times \frac{3}{80} = \frac{3}{5}\theta^2$$

Similarly,

$$Var[2Y_2] = \frac{1}{5}\theta^2$$
 & $Var[\frac{4}{3}Y_3] = \frac{1}{15}\theta^2$

4. Let X_1, X_2, \ldots, X_n denote a random sample from a Poisson distribution with parameter θ , $0 \le \theta \le \infty$. Let $Y = \sum X_i$ and let $\mathcal{L}[\theta, \delta(y)] = [\theta - \delta(y)]$. If we restrict our considerations to decision functions of the form $\delta(y) = b + \theta/n$, where b does not depend on y, show that $R(\theta, \delta) = b^2 + \theta^2/n$. What decision function of this form yields a uniformly smaller risk than every other decision function.

Solution

Since X_i follows $Po(\theta)$, Y follows $Po(n\theta)$ We have $E(Y) = n\theta$ and $Var(Y) = n\theta$ Thus

$$R(\theta, \delta) = E(\mathcal{L}[\theta, \delta(y)]) = E[(\theta - b - y/n)^2] = \dots = b^2 + \theta^2/n$$