-				Sparse Graph			Full Graph				
Dataset	LapPE	L	#Param	Test Perf.±s.d.	Train Perf.±s.d.	#Epoch	Epoch/Total	Test Perf.±s.d.	Train Perf.±s.d.	#Epoch	Epoch/Total
Batch Norm: False; Layer Norm: True											
ZINC	X ✓	10 10	588353 588929	0.278±0.018 0.284±0.012	$0.027 \pm 0.004 \\ 0.031 \pm 0.006$	274.75 263.00	26.87s/2.06hr 26.64s/1.98hr	0.741±0.008 0.735±0.006	$0.431 \pm 0.013 \\ 0.442 \pm 0.031$	196.75 196.75	37.64s/2.09hr 31.50s/1.77hr
CLUSTER	X ✓	10 10	523146 524026	70.879±0.295 70.649±0.250	86.174 ± 0.365 86.395 ± 0.528	128.50 130.75	202.68s/7.32hr 200.55s/7.43hr	19.596±2.071 27.091±3.920	19.570±2.053 26.916±3.764	103.00 139.50	512.34s/15.15hr 565.13s/22.37hr
PATTERN	X ✓	10 10	522742 522982	73.140±13.633 71.005±11.831	73.070±13.589 71.125±11.977	184.25 192.50	276.66s/13.75hr 294.91s/14.79hr	50.854±0.111 56.482±3.549	50.906±0.005 56.565±3.546	108.00 124.50	540.85s/16.77hr 637.55s/22.69hr
Batch Norm: True; Layer Norm: False											
ZINC	X ✓	10 10	588353 588929	0.264±0.008 0.226±0.014	$0.048\pm0.006 \\ 0.059\pm0.011$	321.50 287.50	28.01s/2.52hr 27.78s/2.25hr	0.724±0.013 0.598±0.049	$0.518\pm0.013 \\ 0.339\pm0.123$	192.25 273.50	50.27s/2.72hr 45.26s/3.50hr
CLUSTER	X ✓	10 10	523146 524026	72.139±0.405 73.169±0.622	85.857±0.555 86.585±0.905	121.75 126.50	200.85s/6.88hr 201.06s/7.20hr	21.092±0.134 27.121±8.471	21.071±0.037 27.192±8.485	100.25 133.75	595.24s/17.10hr 552.06s/20.72hr
PATTERN	X ✓	10 10	522742 522982	83.949±0.303 84.808±0.068	83.864±0.489 86.559±0.116	236.50 145.25	299.54s/19.71hr 309.95s/12.67hr	50.889±0.069 54.941±3.739	50.873±0.039 54.915±3.769	104.50 117.75	621.33s/17.53hr 683.53s/22.77hr

Table 1: Results of GraphTransformer (GT) on all datasets. Performance Measure for ZINC is MAE, for PATTERN and CLUSTER is Acc. Results (higher is better for all except ZINC) are averaged over 4 runs with 4 different seeds. **Bold**: the best performing model for each dataset. We perform each experiment with given graphs (**Sparse Graph**) and (**Full Graph**) in which we create full connections among all nodes; For ZINC full graphs, edge features are discarded given our motive of the full graph experiments without any sparse structure information.

Model		ZINC	CLUSTER	PATTERN			
	GNN	BASELIN	E SCORES from	(?)			
GCN GAT		67±0.011 84±0.007	68.498 ± 0.976 70.587 ± 0.447	71.892±0.334 78.271±0.186			
GatedGCN	0.2	214±0.013	76.082 ± 0.196	86.508 ± 0.085			
OUR RESULTS							
GT (Ours)	0.2	26±0.014	$73.169 {\pm} 0.622$	84.808 ± 0.068			

Table 2: Comparison of our best performing scores (from Table 1) on each dataset against the GNN baselines (GCN (?), GAT (?), GatedGCN(?)) of 500k model parameters. **Note:** Only GatedGCN and GT models use the available edge attributes in ZINC.

Dataset	PE	#Param	Test Perf.±s.d.	Sparse Gra Train Perf.±s.d.	aph #Epoch	Epoch/Total	
Batch Norm: True; Layer Norm: False; L = 10							
ZINC	L W	588353 588929 590721	0.264±0.008 0.226±0.014 0.267±0.012	0.048±0.006 0.059±0.011 0.059±0.010	321.50 287.50 263.25	28.01s/2.52hr 27.78s/2.25hr 27.04s/2.00hr	
CLUSTER	L W	523146 524026 531146	72.139±0.405 73.169±0.622 70.790±0.537	85.857±0.555 86.585±0.905 86.829±0.745	121.75 126.50 119.00	200.85s/6.88hr 201.06s/7.20hr 196.41s/6.69hr	
PATTERN	L W	522742 522982 530742	83.949±0.303 84.808±0.068 75.489±0.216	83.864±0.489 86.559±0.116 97.028±0.104	236.50 145.25 109.25	299.54s/19.71hr 309.95s/12.67hr 310.11s/9.73hr	

Table 3: Analysis of GraphTransformer (GT) using different PE schemes. Notations **x**: No PE; **L**: LapPE (ours); **W**: WL-PE (?). **Bold**: the best performing model for each dataset.

they outperform the WL-PE. Besides, WL-PEs tend to overfit SBM datasets and lead to poor generalization.

5 Conclusion

This work presented a simple yet effective approach to generalize transformer networks on arbitrary graphs and introduced the corresponding architecture. Our experiments consistently showed that the presence of -i) Laplacian eigen-

vectors as node positional encodings and – ii) batch normalization, in place of layer normalization, around the transformer feed forward layers enhanced the transformer universally on all experiments. Given the simple and generic nature of our architecture and competitive performance against standard GNNs, we believe the proposed model can be used as baseline for further improvement across graph applications employing node attention. In future works, we are interested in building upon the graph transformer along aspects such as efficient training on single large graphs, applicability on heterogeneous domains, etc., and perform efficient graph representation learning keeping in account the recent innovations in graph inductive biases.

Acknowledgments

XB is supported by NRF Fellowship NRFF2017-10.

Ad quidem enim iste dolorem, assumenda a necessitatibus quasi architecto, pariatur atque enim accusantium incidunt aliquam est blanditiis ut ullam labore minima?Recusandae blanditiis asperiores tenetur nobis distinctio laborum architecto, doloremque voluptates nesciunt optio officia laborum sed cupiditate labore numquam ipsum dolorem, aut atque deleniti ullam voluptates recusandae voluptatibus tempora numquam tenetur sunt, excepturi vero dicta placeat ad aspernatur assumenda voluptas? Aliquam totam officia, reprehenderit non unde quam dignissimos, quo alias maxime asperiores nemo deserunt? Mollitia ex nostrum, accusamus natus doloremque veniam nesciunt laboriosam ullam nemo illum illo, aliquid animi natus dolorum facilis perspiciatis est quo illum?Quia molestias sit dolorem possimus, unde mollitia rem culpa, veritatis impedit quia eum minima neque officia veniam id consequatur laudantium, corporis harum quas consequatur eos asperiores aliquam natus deserunt ad aliquid?Fuga laborum sint rerum ipsam aliquam modi, blanditiis iste quis ducimus, itaque consequatur eveniet. Dignissimos voluptates omnis pariatur nam harum magnam animi, eveniet ut nihil architecto qui possimus cupiditate hic velit.Maiores saepe animi maxime similique laudantium, ipsa ea sint esse est necessitatibus