## Big O and timing analysis of sorting algorithms

The time complexity of 4 different sorting algorithms is listed below along with a graph of the time it takes to sort an array as the number of elements in that array increases.

- Bubble Sort is  $O(n^2)$  and this is a result of the nested for loop inside of the algorithm
- Selection Sort is  $O(n^2)$  and is a result of for loops inside of a while loop but the perfomance of this algorithm is better than that of Bubble Sort.
- Insertion Sort is also  $O(n^2)$  because of the nested for loops in the algorithm but this algorithm is more efficient than both Selection and Bubble Sort.
- QuickSort has a time complexity of O(n \* log n) and is much more efficient than the other sorting algorithms.



The average time to run each of these algorithms can be seen in the table below.

| Algorithm | Average Time (s) |
|-----------|------------------|
| Bubble    | 1.429713         |
| Selection | 0.564492         |
| Insertion | 0.389414         |
| Quick     | 0.002406         |