

MA1014 CALCULUS AND ANALYSIS TUTORIAL 9

Dr. Andrew Tonks: apt12@le.ac.uk

Ben Smith: bjs30@le.ac.uk

ANNOUNCEMENTS

- Consolidation Week
- Coursework coming soon!

LIMITS

Let $f(x) = e^x$, what would happen if I let x get very large?

Try different values for x. What happens?

Now, what would happen if you let x get large but imposed that x < 0?

It should be clear that the following seem to happen,

$$\lim_{x \to \infty} f(x) = \infty \& \lim_{x \to -\infty} f(x) = 0$$

FORMAL DEFINITION OF THE LIMIT

A function, f, has a limit, L, at $x = c \in (a, b) \subset \mathbb{R}$, if

$$\forall \varepsilon > 0, \exists \delta : |f(x) - L| < \varepsilon, \forall |x - c| < \delta$$

and f(x) is well defined on $x \in (a, b) \setminus \{c\}$

EXERCISE

Let
$$f(x) = -2x - 5$$
.

- a) Find A > 0 such that if 0 < |x + 2| < A then $|f(x) + 1| < \frac{1}{200}$
- b) Given $\varepsilon > 0$ find $\delta > 0$ so that if $0 < |x + 2| < \delta$ then $|f(x) + 1| < \varepsilon$.
- c) Hence, prove $\lim_{x \to -2} f(x) = -1$.

EXERCISE

Let $f(x) = x^2 - 4x + 5$. Show that $\lim_{x \to 2} f(x) = 1$ by using an $\varepsilon - \delta$ argument.

LIMIT LAWS

If
$$\lim_{x\to c} f(x) = L$$
 and $\lim_{x\to c} g(x) = M$, then

i.
$$\lim_{x \to c} [f(x) + g(x)] = L + M$$

ii.
$$\lim_{x \to c} [\alpha f(x)] = \alpha L \text{ for } \alpha \in \mathbb{R}$$

iii.
$$\lim_{x \to c} [f(x)g(x)] = LM$$

PINCHING THEOREM

Suppose that

$$\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L,$$

and
$$f(x) \le g(x) \le h(x) \ \forall x \ne c$$
. Then,

$$\lim_{x\to c}g(x)=L.$$

EXERCISE:

Use the Pinching Theorem to determine:

$$\lim_{x \to 0} x^2 \cos\left(\frac{1}{x}\right)$$

Let f(x) be defined on (a, b). Then f(x) is **continuous** at $c \in (a, b)$ if

$$\lim_{x \to c} f(x) = f(c).$$

EXERCISE

Let $f(x) = x^2 - 4x + 5$. Show that $\lim_{x \to 2} f(x) = 1$ by using an $\varepsilon - \delta$ argument. Hence, conclude that f(x) is continuous at x = 2.

If a function, f, is continuous on [a, b] and f(a) < f(b). Then

$$\forall \, f(a) < s < f(b), \exists c \in (a,b) : f(c) = s$$

Prove that $f(x) = x^3 - 3x^2 + 12x - 25$ has at least one real root.

$$rac{d}{dx}\int_a^x f(t)\,dt = f(x)$$

$$\int_a^b \! f(x) dx = F(b) \! - \! F(a)$$

ANY QUESTIONS?

$$m\frac{d^2x}{dt^2} = -kx$$

$$\int \frac{dx}{1+x^2} = \tan^{-1}(x) + C$$

