MapReduce

Knowledge Objectives

- Explain the main design assumptions behind MapReduce
- 2. Enumerate the main declarative languages proposed as alternatives to MapReduce
- Identify when the combine function is really useful

Understanding Objectives

- Simulate the internal MapReduce algorithm
- 2. Elaborate on 6 improvements for MapReduce
- Explain the 4 main drawbacks of MapReduce

Application Objectives

 Write a simple program (less than a hundred lines) benefitting from MapReduce and HBase libraries

MAPREDUCE

USAGES

Typical Uses

- Find which source pages link to a target page
- Count the number of accesses to each Web page
- Count the number of accesses to each domain
- Create an index structure that maps search terms to document IDs
- Retrieve introductory paragraph of all Web pages so that "x"
- Find all pairs of users accessing the same URL
- Find the average age of users accessing a given URL
- □ Find all friends of a given user
- Find all friends of friends of a given user
- □ Find all women friends of men friends of a given user
- Grouping different manifestations of the same real world object

Not So Typical Uses

- Mobile Commerce
- Electricity
- Agricultural Planning
- Fuel Conservation
- National Intelligence
- Drug Development and Personalization
- Financial Service Security

MAPREDUCE

THE ALGORITHM UNDERNEATH

MapReduce

- Apache MapReduce
 - Based on Google File System (GFS)
 - http://hadoop.apache.org/docs/r1.0.4/mapred_tutorial.html
- Designed to meet the following requirements
 - Exploit distributed systems and provide <u>full distributed-</u> <u>transparency</u> for the end-user
 - Send the queries to data (i.e., <u>query-shipping</u> instead of datashipping for exploiting the <u>data locality</u> principle)
 - Support parallelism and hide its complexity
 - Independent data (typically collected from the web)
 - Without references to other pieces of data
 - No joins
 - Exploit petabytes of data in batch mode
 - No transactions
 - Failure resilience
 - Cope with failures without aborting
- Inspired in functional programming
 - On top of Hadoop

MapReduce Basics

- Simple model to express relatively sophisticated distributed programs
 - Processes pairs [key, value]
 - Signature:

$$map(key k, value v) \mapsto [(ik_1, iv_1), \dots, (ik_{m(k,v)}, iv_{m(k,v)})]$$

$$reduce(key ik, vset ivs) \mapsto [ov_1, .., ov_{r(ik,ivs)}]$$

WordCount Execution Example

WordCount Code Example

```
public void map(
                                        Value
                        Key
                            Blackbox
                                                         Value
                        Key
public void reduce(
                      Key
                                          Value<u>s</u>
                            Blackbox
     Key
                       Value
```

MapReduce Algorithm: Data Load

- 1. The input data is partitioned into blocks
 - It can be done by using HDFS or any other storage (e.g., HadoopDB, MongoDB, Cassandra, CouchDB, etc.)
- 2. Replicate them in different nodes

MapReduce Algorithm: Map Phase (I)

- 3. Each map subplan reads a subset of blocks (i.e., split)
 - Ideally, to exploit data locality, 10 to 100 mappers per node
- 4. Divides it into records
- 5. Executes the map for each record and leaves them in memory divided into spills

MapReduce Algorithm: Map Phase (II)

- 6. Each spill is then partitioned per reducers
 - Using a hash function f over the key, according to the number of reducers R
 Both can be parametrized
- 7. Each spill partition is sorted independently
 - If a combine is defined, it is executed locally after sorting
- 8. Store the spill partitions into disk (massive writing)

Algorithm: Map phase (III)

- Spill partitions are merged and sorted independently
 - Combine function is applied to the merges
- 10. Store the result into disk

MapReduce algorithm: Shuffle and Reduce

- 11. Reducers fetch data from mappers (massive data transfer!)
- 12. Mappers output is merged and sorted
- 13. Reduce function is executed per key
- 14. Store the result into disk

MapReduce objects

Record=Key-Value pair

Local-Global Aggregation: Combine

- Combine is executed locally
 - Assumes uniform random distribution of input
 - Reduces the number of tuples sent to reducers
- Only possible when the reducer function is:
 - Commutative
 - Associative
- Only makes sense if |I|/|O|>>#CPU

Activity: MapReduce

- Objective: Understand the algorithm underneath MapReduce
- □ Tasks:
 - 1. (40') Reproduce step by step the MapReduce execution
 - Consider the following data set:
 - Block0: "abbac|cdcae"
 - Block1: "a b d d a | b b c c f"
 - Simulate the execution of the MapReduce code given the following configuration:
 - The map and reduce functions are those of the wordcount
 - The combine function shares the implementation of the reduce
 - There is one block per split
 - The "|" divides the records inside each block
 - We have two records per block
 - We can keep four pairs [key,value] per spill
 - We have two mappers and two reducers
 - Machine0, contains block0, runs mapper0 and reducer0
 - Machine1, contains block1, runs mapper1 and reducer1
 - The hash function used to shuffle data to the reducers uses the correspondence:
 - $\{b,d,f\}->0$
 - {a,c,e}->1

MAPREDUCE

DRAWBACKS

High Level Languages

- MapReduce is the de facto standard for robust execution of large data-oriented tasks
 - Support in HBase, MongoDB, CouchDB, etc.
- MapReduce has been massively criticized for being too low-level
- However, other NOSQL databases do not provide better solutions
 - APIs for Ruby, Python, Java, C++, etc.
- But something is changing...
 - Attempts to build declarative languages on top of MapReduce
 - Hive
 - Pig Latin
 - Cassandra Query Language (CQL)
 - Resembles SQL

MapReduce at First Sight

- The MapReduce paradigm program is computationally complete and <u>ANY</u> program can be adapted to it
- Furthermore, MapReduce's signature is closed
 - For example, map-reduce iterations can be nested
- However, some tasks better adapt to it than others
 - Easily adaptable:
 - Aggregations
 - Selections
 - Projections
 - Set operators
 - Sorting
 - Difficult for:
 - Joins
 - Any other operation referring to other data

MapReduce: Tasks and Data Flows

Contributions of Spark

- Immutable storage of arbitrary records across a cluster
- Low latency
 - Prioritizes in-memory processing
- Palette of coarse-grained operators
 - ... beyond map and reduce
- Control over data partitioning

Summary

- MapReduce phases
 - Combine function
- MapReduce drawbacks

Bibliography

- □ S. Abiteboul et al. Web Data Management, 2012
- J. Dittrich et al. Hadoop++: Making a yellow elefant run like a cheetah (without it even noticing)
- D. Jiang et al. The performance of MapReduce: An In-depth Study. VLDB'10
- E. Brewer, "Towards Robust Distributed Systems," *Proc.* 19th Ann. ACM Symp.Principles of Distributed Computing (PODC 00), ACM, 2000, pp. 7-10.
- □ F. Chang et all. Bigtable: A Distributed Storage System for Structured Data. OSDI'06
- □ Sanjay Ghemawat et al. *The Google File System*. OSDI'03
- Jeffrey Dean et al. *MapReduce: Simplified Data Processing on Large Clusters*. OSDI'04
- D. Battre et al. Nephele/PACTs: A Programming Model andExecution Framework forWebScale Analytical Processing. SoCC'10
- L. Liu and M.T. Özsu (Eds.). Encyclopedia of Database Systems. Springer, 2009