- 1. A bitstring $x \in \{0,1\}^5$ is stored in vulnerable memory, subject to corruption for example, on a spacecraft. An α -ray strikes the memory and resets one bit to a random value (both the new value and which bit is affected are chosen uniformly at random). A second α -ray strikes the memory and resets one bit (again chosen uniformly at random). What is the probability that the resulting bitstring is identical to x?
- 2. Two teams, A and B, play a best-of-five series of football games. Team A wins each game with probability 60%. Compute the probability that Team A wins the series.
- 3. Let A and B be arbitrary events in a finite sample space. Prove that if Pr[B] = 0, then A and B are independent.
- 4. [4 marks] Let A and B be arbitrary events in a finite sample space. Prove that A and B are independent if and only if A and \overline{B} are independent.
- 5. Suppose A and B are mutually exclusive events i.e., $A \cap B = \emptyset$. Prove or disprove the following claim: A and B cannot be independent.
- 6. Let A and B be two events such that $Pr[A \mid B] = Pr[B \mid A]$. Which of the following is true? Justify your answer briefly.
 - (a) A and B must be independent.
 - (b) A and B must not be independent.
 - (c) A and B may or may not be independent (there's not enough information to tell).
- 7. Alice wishes to send a 3-bit message 011 to Bob, over a noisy channel that corrupts (flips) each transmitted bit independently with same probability. To combat the possibility of her transmitted message differing from the received message, she adds a parity bit to the end of her message (so that the transmitted message is 0110). Bob checks that he receives a message with an even number of ones, and if so interprets the first three received bits as the message.
 - (a) Assume that each bit is flipped with probability 1%. Conditioned on receiving a message with an even number of ones, what is the probability that the message Bob received is the message that Alice sent?
 - (b) What if the probability of error is 10% per bit?
- 8. Suppose you have two coins one fair and one *p*-biased. You choose one of them uniformly at random and flip it. What is Pr[you chose the biased coin | observed result sequence], in each of the following cases.
 - (a) p = 2/3, observed result sequence = H
 - (b) p = 3/4, observed result sequence = HHHT
 - (c) p = 3/4, observed result sequence = HTTTHT
- 9. We have shown linearity of expectation the expectation of a sum equals the sum of the expectations even when the random variables in question aren't independent. It turns out that the expectation of a product equals the product of the expectations when the random variables are independent, but not in general when they are dependent.
 - (a) Let X and Y be independent random variables. Prove that $E[X \cdot Y] = E[X] \cdot E[Y]$.

- (b) When X and Y are dependent random variables, prove that $\mathtt{E}[X \cdot Y]$ is not necessarily equal to $\mathtt{E}[X] \cdot \mathtt{E}[Y]$.
- (c) When X and Y are dependent random variables, prove that $\mathtt{E}[X\cdot Y]$ is also not necessarily unequal to $\mathtt{E}[X]\cdot \mathtt{E}[Y]$.