

ICNL9706 a-Si TFT Mobile Display Driver IC Specifications

ICNL9706

Specification Version

Model No: ICNL9706

Document Version: V0.7

Release Date : 2017/10/26

Index

1,	Features	- 8 -
2,	Description	10 -
3,	Device Overview	- 11 -
3	3.1、Block diagram	11 -
	3.2、Pin description	
	3.2.1 Power Input Pads	
	3.2.2 Power Output Pads	
	3.2.3 Digital Interface Output Pads	
	3.2.4 MIPI Interface Pads	
	3.2.5 Digital Interface Input Pads	- 14 -
	3.2.6 Test Pads	
4、	Electrical Characteristics	16 -
4	I.1、Absolute Maximum Ratings	16 -
_	I.2、DC CHARACTERISTICS	17 -
	I.3、MIPI DC Characteristics	
-	4.3.1 DC Characteristics for DSI LP Mode	
	4.3.2 DC Characteristics for DSI HS Mode	
	I.4 · AC Timings Characteristics	
_		
	4.4.1 Vertical Timings for DSI video mode	
4	I.5 · MIPI AC <mark>Char</mark> acteristics	
	4.5.1 High Speed Mode - Clock Timings	
	4.5.2 High Speed Mode - Clock / Data Timings	
	4.5.3 High Speed Mode - Rising and Falling Timings	
	4.5.4 Low Speed Mode - Bus Turn Around	
	4.5.5 Data Lanes from Low Power Mode to High Speed Mode	
	4.5.6 Data Lanes from High Speed Mode to Low Power Mode	
	4.5.7 DSI Clock Burst – High speed mode to /from Low Power Mode	- 27 -
4	I.6、Reset Input Timing	28 -
5、	Interface	29 -
Ę	5.1、Interface Level Communication	29 -
	5.1.1 General	- 29 -
	5.1.2 DSI CLK Lanes	- 30 -
	5.1.3 Low Power Mode (LPM)	- 31 -

5.1.4 Ultra- Low Power Mode (ULPM)	33 -
5.1.5 High- Speed Clock Mode (HSCM)	34 -
5.2、Interface Level Communication - DSI Data Lane	37 -
5.2.1 General	37 -
5.2.2 Escape Modes	37 -
5.2.3 Low- Power Data Transmission (LPDT)	39 -
5.2.4 Ultra- Low Power State (ULPS)	40 -
5.2.5 Remote Application Reset (RAR)	41 -
5.2.6 Acknowledge (ACK)	42 -
5.2.7 Entering High- Speed Data Transmission (TSOT of HSDT)	43 -
5.2.8 Leaving High- Speed Data Transmission (TEOP of HSDT)	44 -
5.2.9 Burst of the High- Speed Data Transmission (HSDT)	45 -
5.2.10 Bus Turnaround (BTA)	46 -
5.3、Packet Level Communication	47 -
5.3.1 Short Packet (SPa) and Long Packet (LPa) Structures	
5.3.2 Bit Order of the Byte on Packet	
5.3.3 Byte Order of the Multiple Byte Information on Packets	48 -
5.3.4 Packet Header (PH)	49 -
5.3.5 Data Identification (DI)	50 -
5.3.6 Virtual Channel (VC)	51 -
5.3.7 Data Type (DT)	52 -
5.3.8 Packet Data (PD) in a Short Packet (SPa)	54 -
5.3.9 Word Count (WC) in a Long Packet (LPa)	55 -
5.3.10 Error Correction Code (ECC)	56 -
5.3.11 Packet Data (PD) in a Long Packet (LPa)	60 -
5.3.12 Packet Footer (PF) in a Long Packet (LPa)	60 -
5.4、Packet Transmissions	62 -
5.4.1 Display Command Set (DCS)	62 -
5.4.2 Display Command Set (DCS) Write, No Parameter (DSCWN-S)	63 -
5.4.3 Display Command Set (DCS) Write, 1 Parameter (DSCW1-S)	64 -
5.4.4 Display Command Set (DCS) Write, Long (DCSW-L)	65 -
5.4.5 Display Command Set (DCS) Read, No Parameter (DCSRN-S)	69 -
5.4.6 Null Packet, No Data (NP-L)	71 -
5.4.7 End of Transmission Packet (EoTP)	72 -
5.4.8 Acknowledge with Error Report (AwER)	74 -
5.4.9 DCS Read Long Response (DCSRR-L)	77 -
5.4.10 DCS Read Short Response, 1 Byte Returned (DCSRR1-S)	79 -
5.4.11 DCS Read Short Response, 2 Byte Returned (DCSRR2-S)	80 -
5.5、Communication Sequences	81 -
5.5.1 General	81 -
5.5.2 Sequences –DCS Write, 1 Parameter Sequence	82 -
5.5.3 Sequences –DCS Write, No Parameter Sequence	83 -

	5.5.4 Sequences –DCS Write, Long Sequence	84 -
	5.5.5 Sequences –DCS Read, No Parameter Sequence	85 -
	5.5.6 Sequences –Null Packet, No Data Sequence	86 -
	5.5.7 Sequences –End of Transmission Packet	87 -
ţ	5.6、Video Mode Communication	88 -
	5.6.1 Transmission Packet Sequences	88 -
	5.6.2 Non-Burst Mode with Sync Pulses	90 -
	5.6.3 Burst Mode	91 -
ţ	5.7、Display Data Format	92 -
	5.7.1 16-bit per Pixel, Long Packet, Data Type 001110 (0Eh)	
	5.7.2 18-bit per Pixel, Long Packet, Data Type 011110 (1Eh)	
	5.7.3 18-bit per Pixel, Long Packet, Data Type 101110 (2Eh)	
	5.7.4 24-bit per Pixel, Long Packet, Data Type 111110 (3Eh)	97 -
	Functions	
(6.1、Oscillator	98 -
	6.2、Content Adaptive Brightness Control (CABC)	99 -
	6.3、Gamma Function	
	6.4、OTP Programing Flow	
•	6.4.1 Level 2 OTP Programing flow	
	6.4.2 ID code and VCOM OTP Programing flow	
	6.5、Tearing Effect	
•	6.5.1 Tearing effect output line	
	6.5.2 Tearing effect line timing	
(6.6、Sleep Out – Command	
	6.6.1 Register loading detection	
	6.6.2 Functionality detection	- 106 -
7,	Power On/ OFF Sequence	- 107 -
	7.1、Power ON Sequence	- 107 -
	7.1.1 Power ON-PCCS[1:0]=L,L Mode Sequence	- 108 -
	7.1.2 Power ON- PCCS[1:0] =H,L Mode Sequence	- 109 -
	7.1.3 Power ON- PCCS[1:0]= H,H Mode Sequence	- 110 -
-	7.2、Power OFF Sequence	- 111 -
	7.2.1 Power OFF-PCCS[1:0]=L,L Mode Sequence	- 112 -
	7.2.2 Power OFF- PCCS[1:0] =H,L Mode Sequence	- 113 -
	7.2.3 Power OFF- PCCS[1:0]= H,H Mode Sequence	- 114 -
8,	Command	- 115 -
8	8.1、Instruction Code Table	- 115 -
	8.1.1 Instruction Code Table → Level 1	- 115 -

8.1.2 Instruction Code Table → Level 2	117 -
8.2、Level 1 Command Description	- 127 -
8.2.1 NOP: NOP (00h)	127 -
8.2.2 SWRESET: Software Reset (01h)	128 -
8.2.3 RDDID: Read Display ID (04h)	129 -
8.2.4 RDNUMED: Read Number of Errors on DSI (05h)	131 -
8.2.5 RDDST: Read Display Status (09h)	132 -
8.2.6 RDDPM: Read Display Power Mode (0Ah)	134 -
8.2.7 RDDMADCTR: Read Display MADCTR (0Bh)	135 -
8.2.8 RDDCOLMOD: Read Display Pixel Format (0Ch)	136 -
8.2.9 RDDIM: Read Display Image Mode (0Dh)	137 -
8.2.10 RDDIM: Read Display Signal Mode (0Eh)	
8.2.11 RDDSDR: Read Display Self-Diagnostic Result (0Fh)	139 -
8.2.12 SLPIN: Sleep In (10h)	
8.2.13 SLPOUT: Sleep Out (11h)	
8.2.14 NORON: Normal Display Mode ON (13h)	144 -
8.2.15 INVOFF: Display Inversion OFF (20h)	
8.2.16 INVON: Display Inversion ON (21h)	146 -
8.2.17 ALLPOFF: All Pixel OFF (22h)	147 -
8.2.18 ALLPON: All Pixel ON (23h)	
8.2.19 GAMSET: Gamma Set (26h)	149 -
8.2.20 DISPOFF: Display OFF (28h)	
8.2.21 DISPON: Display ON (29h)	
8.2.22 TEOFF: Tearing Effect Line OFF (34h)	
8.2.23 TEON: Tearing Effect Line ON (35h)	153 -
8.2.24 MADCTL: Memory Data Access Control (36h)	154 -
8.2.25 IDMOFF: Idle mode OFF (38h)	155 -
8.2.26 IDMON: Idle mode ON (39h)	156 -
8.2.27 COLM <mark>OD: In</mark> terface Pixel Format (3Ah)	157 -
8.2.28 STESL: Set Tearing Effect Scan Line (44h)	158 -
8.2.29 GSL: Get Scan Line (45h)	159 -
8.2.30 WRDISBV: Write Display Brightness (51h)	
8.2.31 RDDISBV: Read Display Brightness (52h)	
8.2.32 WRCTRLD: Write CTRL Display (53h)	
8.2.33 RDCTRLD: Read CTRL Display (54h)	
8.2.34 WRCABC: Write Content Adaptive Brightness Control (55h)	
8.2.35 RDCABC: Read Content Adaptive Brightness Control (56h)	
8.2.36 WRCABCMB: Write CABC minimum brightness (5Eh)	
8.2.37 RDCABCMB: Read CABC minimum brightness (5Fh)	
8.2.38 RDID1: Read ID1 Value (DAh)	
8.2.39 RDID2: Read ID2 Value (DBh)	
8.2.40 RDID3: Read ID3 Value (DCh)	170 -
8.3、Level 2 Command Description	- 171 -

	8.3.1 CGOUTL Control	171 -
	8.3.2 CGOUTR Control	172 -
	8.3.3 SETID	174 -
	8.3.4 PWRCON_VCOM	175 -
	8.3.5 PWRCON_SEQ	176 -
	8.3.6 PWRCON_CLK	179 -
	8.3.7 PWRCON_BAT	183 -
	8.3.8 PWRCON_MODE	185 -
	8.3.9 PWRCON_REG	186 -
	8.3.10 BIST	192 -
	8.3.11 TCON	193 -
	8.3.12 TCON2	
	8.3.13 TCON3	
	8.3.14 DSTB	
	8.3.15 SRC_TIM	
	8.3.16 SRCCON	
	8.3.17 SET_GAMMA	
	8.3.18 CE_CTR	
	8.3.19 OTP_AUTO_PROG	209 -
	8.3.20 ABNO_CTR	
	8.3.21 PWM_CTR	
	8.3.22 DGC_CTR	
	8.3.23 DGC_R	
	8.3.24 DGC_G	
	8.3.25 DGC_B	
	8.3.26 DGC_R_L	218 -
	8.3.27 DGC_G_L	
	8.3.28 DGC_B_L	
	8.3.29 PASSWORD1	
	8.3.30 PASSWORD2	220 -
9,	Application	- 221 -
9	0.1、PCCS [1:0] = 0,0 Mode	- 221 -
9	0.2、PCCS [1:0] = 1,0 Mode	- 222 -
9	0.3、PCCS [1:0] = 1,1 Mode	- 223 -
9	0.4 External Components Connection	- 224 -
	9.4.1 PCCS[1:0] = 0,0 Mode	224 -
	9.4.1 PCCS[1:0] = 1,0 Mode	225 -
	9.4.1 PCCS[1:0] = 1,1 Mode	227 -
9	0.5、Maximum Layout Resistance	- 228 -
10	、Pad Location Information	- 231 -

10.1、Chip Information	231 -
10.1.1 Pad Location	231 -
10.1.2 Chip Size	231 -
10.1.3 Alignment Mark	232 -
10.2、Input Pad Location	233 -
10.3、Output Pad Location	241 -
11. Important Notice	- 273 -

1. Features

- 1. Single chip WXGA a-Si TFT LCD Controller/driver without Display RAM.
- 2. Panel driving:
 - > 2402 source pads.
 - ➤ CGOUTL 1~22 and CGOUTR 1~22 pads for GIP timings control.
 - 1-dot / 2-dot / 4-dot / 8-dot / Zig-Zag / Column inversion. JE NITIAL
 - DC **VCOM** voltage generator and adjustment.
- 3. Display resolution:
 - > 800RGB x (480+4 x NL)
 - > 720RGB x (480+4 x NL)
- 4. Display color modes
 - > Full color mode 16.7M colors
 - Reduce color mode : 262K colors
- 5. Output voltage level
 - Positive gate driver voltage range for VGH: 10V to 20V
 - Negative gate driver voltage range for VGL: -7.0V to -16V
 - Positive gamma high voltage range for **VSPR**: 3.0V to 6.0V
 - Negative gamma low voltage range for **VSNR**: -3.0V to -6.0V
 - > GIP timings control voltage range for VGH to VGL.
 - Common electrode voltage range for **VCOM**: -0.3V to -2.2V.
 - Negative level shift voltage range for VCL: -1xVCI
- 6. Input voltage level
 - Logic and interface power supply (IOVCC): 1.65V to 3.3V.
 - Analog power supply (VCI): 2.5V to 3.3V
 - Positive source driver power supply (VSP): 4.5V to 6.5V
 - ➤ Negative source driver power supply (VSN) : -4.5V to -6.5V
 - > OTP programming voltage (**VPP**): 8.5V
- 7. Interface
 - ➤ MIPI Display Serial Interface (DSI V1.01 r11 and D-PHY V1.0)

8. On-chip functions.

- Oscillator for display clock generation
- **CABC** (Content Adaptive Brightness Control) function
- Support **CE** (Color Enhancement) function
- Support **DGC** (Digital Gamma Correction) function

- ..ion register settings

2. Description

This document describes Chipone's ICNL9706 supports WXGA resolution driving controller. It includes a timing controller with glass interface level-shifters and a glass power supply circuit to drive a dot-matrix TFT LCD with 800 (RGB) x1280 dots at maximum.

The ICNL9706 supports MIPI DSI (Display Serial Interface) interface mode.

Four data lanes support up to 500Mbps on the MIPI DSI.

The ICNL9706 also supports various functions to reduce the power consumption of a LCD system via software control.

- > Sleep In mode
- > Deep standby mode

The ICNL9706 is suitable for any small portable battery-driven and long-term driving products, such as digital cellular phones, smart phones.

3. Device Overview

3.1、Block diagram

Figure 3-1: Block diagram

3.2 Pin description

3.2.1 Power Input Pads

Symbol	Pad Type	Voltage Range	Description					
VCI	Power Supply	2.6V ~ 6.5V	Power supply to the analog circuit.					
IOVCC	Power Supply	1.65V ~ 3.3V.	Power supply for the logic power and I/O circuit.					
HS_VCC	Power Supply	Supply 1.65V ~ 3.3V Power supply for MIPI D-PHY power.						
VSP	Power Supply	4V ~ 6.5V	Power supply for Charge pump circuit.					
VSN	Power Supply	-4V ~ -6.5V	Power supply for Charge pump circuit.					
VPP	Power Supply	8.3V ~8.7V	Power supply for OTP.					
VSSP	Power Supply	0V	Charge Pump circuit ground.					
VSSD	Power Supply	0V	Logic power and I/O circuit ground.					
VSSAC	Power Supply	0V	Analog circuit ground.					
HS_VSS	Power Supply	0V	MIPI High speed circuit ground.					
VSSA	Power Supply	0V	Analog circuit ground.					

3.2.2 Power Output Pads

Symbol	Pad Type	Voltage Range	Description
HS_LDO	HS LDO Analog output 1.2V ~ 1.3V		LDO output for MIPI. It must be connected a stabilizing capacitor 1.0uF to VSS.
VDDD	Analog output	1.5V ~ 1.6V	LDO output for Digital circuit. It must be connected a stabilizing capacitor 1.0uF to VSS.
VCL	Analog pump	-1xVCI	Charge pump circuit for Level shift and VCOM It must be connected a stabilizing capacitor 1.0uF to VSS.
VGH	Analog pump	10V ~ 20V	Charge pump circuit for Panel TFT. It must be connected a stabilizing capacitor 1.0uF to VSS.
VGL	Analog pump	-7V ~ -16V	Charge pump circuit for Panel TFT. It must be connected a stabilizing capacitor 1.0uF to VSS.
VGL_REG	Analog output	-6.5V ~ -15.5V	LDO output for Panel TFT. It must be connected a stabilizing capacitor 1.0uF to

			* *
			VSS.
VSPR	Analog output	3.0V ~ 6.0V	LDO output for Positive Gamma. It must be connected a stabilizing capacitor 1.0uF to VSS.
VSNR	Analog output	-3.0V ~ -6.0V	LDO output for Negative Gamma. It must be connected a stabilizing capacitor 1.0uF to VSS.
VCOM	Analog output	0V ~ -2.2V	LDO output for Panel common. It must be connected a stabilizing capacitor 1.0uF to VSS.
VREF	Analog output	0V ~ VCI	Analog refer power. It must be connected a stabilizing capacitor 1.0uF to VSS.
C21P / N	Charge pump	VCI ~ VGH	Connect to the step-up capacitors for generating VGH voltage.
C22P / N	Charge pump	VCI ~ VGH	Connect to the step-up capacitors for VGH voltage.
C31P / N	Charge pump	VCL ~ VGL	Connect to the step-up capacitors for VGL voltage.
C32P / N	Charge pump	VCL ~ VGL Or Open	Connect to the step-up capacitors for VGL voltage. It can be Open or connector to the step-up capacitors.
C41P / N	Charge pump	VCI ~ VCL	Connect to the step-up capacitors for VCL voltage.
C42P /N	Charge pump	VCI ~ VCL	Test pad for VCL. Connect to the step-up capacitors for VCL or Floating.
VCSW1/2	Analog output	0V ~ VCI	Analog clock phase output for PMIC
CgoutL 1~22 CgoutR 1~22	Analog output	VGH ~ VGL	GOA circuit output for Panel TFT.
S1~S2400	Analog output	VSPR ~ VSNR	Analog output for Panel TFT source
SL1, SR1	Analog output	VSPR ~ VSNR	Analog output for Panel TFT ZigZag source

3.2.3 Digital Interface Output Pads

Symbol	Voltage Range	Description
CABC_PWM_OUT	0V ~ IOVCC	Backlight on/off control pin. This pin can connect to external LED driver IC.
TE	0V ~ IOVCC	Tearing Effect pin.
TE_TOUCH	0V ~ IOVCC	Tearing Effect pin. (Each scan line).

3.2.4 MIPI Interface Pads

Symbol	Pad Type	Description						
HS_D0N/P	I/O	MIPI-DSI Data differential signal input / Output pins.						
HS_D1N/P	I	MIPI-DSI Data differential signal input pins.						
HS_D2N/P	I	MIPI-DSI Data differential signal input pins.						
HS_D3N/P	I	MIPI-DSI Data differential signal input pins.						
HS_CN/P	I	MIPI-DSI Clock differential signal input pins.						

3.2.5 Digital Interface Input Pads

Symbol	Voltage Range	Description												
RESX	0V ~ IOVCC	This signal will reset the device and must be applied to properly initialize the chip. Signal is active low.												
		Select the power mode method as listed below.									N.			
D0004/D0000	01/ 101/00			CCS :0]	IC	VCC	VC	CI	VSP		VSN	VGH	H/VGL	
PCCS1/PCCS0	0V ~ IOVCC		(00	Ex	ternal	Х		Extern	al E	xterna	I Ext	ernal	
		ø	0.4	10	Ex	ternal	Exte	rnal	PMIC		PMIC	Inte	ernal	
		Ò	1	11	Ex	ternal	Х		Extern	al E	xterna	I Inte	ernal	
	ell kin	la	ane sv	vap o	f DSI	Input	mode	met	ntion of hod as	listed	below	· '.	d data	
			000	CN	CP	D3N	D3P	D2N		D1N	D1P	DON	D0P	
.0		-	000	CP	CN	D3P	D3N	D2P		D1P	D1N	D0P	D0N	
D00/D04/D00		-	010	CN	CP	D0N	D0P	D1N		D2N	D2P	D3N	D3P	
BS2/BS1/BS0		0V ~ 10VCC	-	010	CP	CN	D0N D0P	D0P	D1N D1P	 	D2N D2P	D2P D2N	D3N D3P	D3N
0		-			CP						D2N D0P		D3P	
		-	100	CN		D2N	D2P	D1N	 	D0N		D3N		
			101	СР	CN	D2P	D2N	D1P		D0P	D0N	D3P	D3N	
			110	CN	СР	D3N	D3P	D0N	D0P	D1N	D1P	D2N	D2P	
			111	CP	CN	D3P	D3N	D0P	D0N	D1P	D1N	D2P	D2N	

3.2.6 Test Pads

		Description
VTESTOUTN	Open	Test mode for Gamma voltage output.
VTSETOUTP	Open	Test mode for Gamma voltage output.
TS[7:0]	Open	Test mode for Internal Logic function test.
TEST_OSC	Open or VSSD	Test mode for Oscillator input for test purpose.
DB[23:0]	Open	Test mode for Data Bus signals.
BIST	Open	Internal Logic function test.
HSYNC	IOVCC or VSSD	Test mode for Line synchronizing signal.
VSYNC	IOVCC or VSSD	Test mode for Frame synchronizing signal.
DE	IOVCC or VSSD	Test mode for Data enable signal.
PCLK	IOVCC or VSSD	Test mode for Dot clock input.
DCX	IOVCC or VSSD	Test mode for Select Command / Data.
CSX	IOVCC	Test mode for Chip select.
SCL	IOVCC	Test mode for Serial clock input.
SDI	Open	Test mode for Serial data input.
SDO	Open	Test mode for Serial data output.
TEST[2:0]	Open or VSSD	Test mode for Internal Logic function test.
	NEC	

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

The absolute maximum rating is listed in below table. When the ICNL9706 is used out of the absolute maximum ratings, it may be permanently damaged.

To use the ICNL9706 within the following electrical characteristics limit is strongly recommended for normal operation. If these electrical characteristic conditions are exceeded during normal operation, the ICNL9706 will malfunction and cause poor reliability.

140.00	Cumbal		Rating	3	Unit	
ltem	Symbol	Min.	Typ.	Max.	Oilit	
Supply voltage	IOVCC ~ VSSD	-0.3	700	+3.6	V	
Supply voltage	VCI ~ VSSA	-0.3	- T	+6.6	V	
Supply voltage	HS_VCC ~ HS_VSS	-0.3	-	+3.6	V	
Supply voltage	VSP ~ VSSA	-0.3	P -	+6.6	V	
Supply voltage	VSSA ~ VSN	-6.6	-	0	V	
Supply voltage	VGH ~ VGL		VGH-VGL	≦30	V	
Operating temperature	Topr	-40		+85	$^{\circ}\mathbb{C}$	
Storage temperature	Tstg	-55		+110	$^{\circ}\!\mathbb{C}$	
Input voltage	Vin	-0.3		IOVCC+0.3	V	
HS input voltage	Vhsin	-0.3		+2	V	

4.2 DC CHARACTERISTICS

Condition : Ta =25°C

			S	pecification	on		
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit	Notes
	<u>.</u>	Power & Operation Vo	Itage	_			
Analog Operating voltage	VCI	Operating Voltage	2.6	3.0	3.6	V	1
Analog Operating voltage	VCI	Operating Voltage	4	5.5	6.5	V	2
Analog Operating voltage	VSP	Operating Voltage	4.5	5.5	6.5	V	
Analog Operating voltage	VSN	Operating Voltage	-6.5	-5.5	-4.5	V	
Analog Operating voltage	VCOM	Operating Voltage	-2.2		0.3	V	
Analog Operating voltage	VSPR	Operating Voltage	3	4.5	6	V	
Analog Operating voltage	VSNR	Operating Voltage	-6	-4.5	-3	V	
Analog Operating voltage	VGH-VGL	Operating Voltage	ĮVG	H-VGL ≦	≦30	V	
I/O operating voltage	IOVCC	I/O supply voltage	1.6	1.8	3.6	V	
MIPI Operating voltage	HS_VCC	HS_VCC supply voltage	1.1	1.2	1.3	٧	
Digital Operating voltage	VDDD	Digital supply voltage	1.5	1.6	1.7	V	
		LOGIC INPUT/ OUTP	TUT				
Logic High level input voltage	VIH		0.7*IOV CC	69.	IOVCC	V	3
Logic Low level input voltage	VIL	-	VSS	-	0.3*IOV CC	V	3
Logic High level output voltage	VOH	IOH = -0.1mA	0.8*IOV CC	-	IOVCC	٧	4
Logic Low level output voltage	VOL	IOL = +0.1mA	VSS	-	0.2*IOV CC	V	4
Logic High level leakage	ILIH1	Vin = 0 to IOVCC			1	μΑ	3,4
Logic Low level leakage	ILIL1	Vin = 0 to IOVCC	-1			μA	3,4
VCSW High level leakage	ILIH2	Vin = 0 to VCI			1	μΑ	5
VCSW Low level leakage	ILIL2	Vin = 0 to <i>VCI</i>	-1			μΑ	5
		Source OPa Outpu	ıt				
Output deviation voltage	V,dev	Sout>=4.2V,Sout<=0. 8V			30	mV	6
Output deviation voltage	V,dev	4.2V>Sout>0.8V			20	mV	
Output offset voltage	VOFSET				40	mv	6
		Standby Current					
	Istlp	DSI LP mode IOVCC Current			TBD	uA	
	isup	DSI LP mode VCI Current			TBD	uA	1
Sleep In mode		DSI Ultra Low power IOVCC Current			TBD	uA	
	Istul	DSI Ultra Low power VCI Current			TBD	uA	1
		DSTB mode IOVCC			1	uA	
DSTB	ldstb	DSTB mode VCI			1	uA	1
	1	Oscillator Output	<u> </u>		<u> </u>	I	
Oscillator tolerance	∆osc	Ta =25°C	-5	-	+5	%	7

Note 1: PCCS[1:0] pin = 10 mode Note2: PCCS[1:0] pin =00, 11 mode

Note3: RESET,PCCS[1:0],BS[2:0],TEST_OSC,BIST,HSYNC,VSYNC,DE,PCLK,DCX,CSX,SCL,TEST[2:0] pin

Note4: CABC_PWM_OUT,TE,TE_TOUCH pin

Note5: VCSW1, VSCW2 pin

Note6: SAP =0110 Note7: Oscillator =45MHz

4.3 MIPI DC Characteristics

4.3.1 DC Characteristics for DSI LP Mode

Condition: Ta =25°C,IOVCC =1.6V~3.6V, VCI =2.6V~6.5V.

Parameter	Cymphol	Conditions	Specification			Unit	Note
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit	S
Logic high level input voltage	VIHLPCD	LP-CD	450		1350	mV	
Logic Low level input voltage	VILLPCD	LP-CD	0		200	mV	
Logic high level input voltage	VIHLPRX	LP-RX (CLK,D0)	880		1350	mV	
Logic Low level input voltage	VILLPRX	LP-RX (CLK,D0)	0		550	mV	
Logic Low level input voltage	VILLPRXULP	LP-RX(CLK ULP mode)	0		300	mV	
Logic high level input voltage	VOHLPTX	LP-TX(D0)	1.1		1.3	V	
Logic Low level input voltage	VOLLPTX	LP-TX(D0)	-50		50	mV	
Logic high level input voltage	Iн	LP-RX,Vin =0~1.3V		- 4	10	uA	
Logic Low level input voltage	lıL	LP-RX,Vin =0~1.3V	-10	4	V 10	uA	
Input pulse rejection	SGD	DSI-CLK+/-,DSI Dn+/-		100	300	Vps	1

Note 1: Peak interference amplitude max. 200mV and interferene frequency min. 450MHz

Figure 4.3.1-1: Spike/Glitch Rejection

4.3.2 DC Characteristics for DSI HS Mode

Condition: Ta =25°C, IOVCC =1.6V~3.6V, VCI =2.6V~6.5V.

Dovometer	Cumbal	Conditions	Sp	ecificati	on	Unit	Not
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit	es
Input voltage common mode range	VCMCLK VCMDATA	CLK+/-, Dn+/-	70		330	mV	1,2
Input voltage common mode variation(≦450MHz)	VCMRCLKL VCMRDATAL	CLK+/-, Dn+/-	-50		50	mV	3
Input voltage common mode variation(≧450MHz)	VCMRCLKM VCMRDATAM	CLK+/-, Dn+/-			100	mV	
Low-level differential input voltage threshold	VTHLCLK VTHLDATA	CLK+/-, Dn+/-	-70		1	mV	
High-level differential input voltage threshold	VTHHCLK VTHHDATA	CLK+/-, Dn+/-		15	70	mV	
Single-ended input low voltage	VILHS	CLK+/-, Dn+/-	-40	M.	1	mV	2
Single-ended input high voltage	Vihhs	CLK+/-, Dn+/-			460	mV	2
Differential input termination resistor	RTERM	CLK+/-, Dn+/-	80	100	125	Ω	
Single-ended threshold voltage for termination enable	VTERM_EN	CLK+/-, Dn+/-	Car		450	mV	
Termination capacitor	Стекм	CLK+/-, Dn+/-			14	pF	

Note 1: Includes 50mV (-50mV to 50mV) ground difference

Note 2: Without VCMRCLKM / VCMRDATAM

Note3: Without 50mV (-50mV to 50mV) ground difference

Note4: Dn =D0,D1,D2 and D3

Figure 4.3.2-1: Differential voltage range, termination resistor and Common mode voltage

4.4 AC Timings Characteristics

4.4.1 Vertical Timings for DSI video mode

Figure 4.4.1-1: Vertical timings for DSI interface

Condition : Ta =25°C, Resolution = 800(RGB)* 1280

Downwater	Currele el	Conditions	Spe	ecificatio	n	l lmi4	Natas
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit	Notes
Vertical Total	VTOTAL	- Ra	1286			Line	
Vertical low pulse width	VSW	O 4	2			Line	1
Vertical front porch	VFP		2			Line	
Vertical back porch	VBP	9	2			Line	1
Vertical data start point	1	VSW+VBP	4			Line	1
Vertical blanking period	VPT	VSW+VBP+VFP	6			Line	
Vertical active area	The same of the sa	VDISP		1280		Line	
Vertical Frame rate	VFR			60		Hz	

Note 1: The VSW and VBP pulse width are related to GSP and GCK timing. The GSP and GCK must be set at corresponding position for LCM normal display.

4.4.2 Horizontal Timings for DSI video mode

Figure 4.4.2-1: Horizontal timings for DSI video mode

Condition : Ta =25°C, Resolution = 800(RGB)* 1280

Doromotor	Symbol	Conditions	S	pecificat	Unit	Notes	
Parameter	Symbol	Conditions	MIN	TYP	MAX	Ollit	Notes
HS low pulse width	HSW		0.2			uS	
Horizontal back porch	HBP		1.0			uS	
Horizontal front porch	HFP		1.0			uS	
Horizontal data start point		HSW+HBP	1.2			uS	
Horizontal blanking period	HBLK	HSW+HBP+HFP	2.2			uS	
Horizontal active area	HDISP			800		DC K	

4.5 MIPI AC Characteristics

4.5.1 High Speed Mode - Clock Timings

Figure 4.5.1-1: Clock Timing

	Signal	Symbol	Parameter	Sp	ecificati	on	Unit	Notes
			Parameter	MIN	TYP	MAX		
	CLK P/N	2xUI _{INST}	Double UI instantaneous	4	20	25	nS	
	CLK P/N	Ulinsta, Ulinstb	UI instantaneous Half	2		12.5	nS	1

Note 1: UI = UIINSTA = UIINSTB

4.5.2 High Speed Mode - Clock / Data Timings

Figure 4.5.2-1: DSI Clock / Data Timings

Signal	Symbol	Symbol Parameter	Spe	cificati	on	Unit	Notes
	Syllibol	Parameter	MIN	TYP	MAX		Notes
Dn P/N	tDS	Data to Clock Setup time	0.15*UI			UI	
(n=0,1,2 and 3)	tDH	Clock to Data Hold time	0.15*UI			UI	

4.5.3 High Speed Mode - Rising and Falling Timings

Figure 4.5.3-1: Rising and Falling Timings

Parameter	Symbol	Conditions	Spe	ecificat	Unit	Notes	
Parameter	Syllibol	Conditions	MIN	TYP	MAX	Ollit	Notes
Differential Rise Time for Clock	t DRTCLK	CLKP/N	150pS	100	0.3*UI		2,3
Differential Rise Time for Data	t drtdata	DnP/N	150pS		0.3*UI		1,2,3
Differential Fall Time for Clock	t DFTCLK	CLKP/N	150pS	1	0.3*UI		2,3
Differential Fall Time for Data	t DFTDATA	DnP/N	150pS	4	0.3*UI		1,23

Note 1: Dn =0,1,2 and 3

Note2: The display module has to meet timing requriements, which are defined for the transmitter (MCU) on MIPI

D-PHY standard.

Note3: DSI-CLK+ = CLKP DSI-CLK- =CLKN DSI-D0+ =D0P DSI-D0- =D0N

4.5.4 Low Speed Mode - Bus Turn Around

Figure 4.5.4-1: Bus Turnaround (BTA) from MCU to display module Timing

Figure 4.5.4-2: Bus Turnaround (BTA) from Display module to MCU Timing

Signal	Symbol	Parameter	Spe	ecificat	ion	Unit	Notes
Sigilal	Syllibol	Farailletei	MIN	TYP	MAX	Oilit	Notes
D0P/N	Тьрхм	Length of LP-00,LP-01,LP-10 or LP11	50	R	75	nS	1
	periods MCU to Display Module	- 4					
D0P/N	TLPXD	Length of LP-00,LP-01,LP-10 or LP11	50	1	75	nS	1
DOI /IN	ILPXD	periods Display Module to MCU	30		7 3	110	Į.
D0P/N	Tta_sured	Time-out before the Display Module starts driving	TLPXD		2* TLPXD	nS	1
D0P/N	Tta_getd	Time to drive LP-00 by Display Module	5* TLPXD			nS	1
D0P/N	Tta_god	Time to drive LP-00 after turnaround request -MCU	4 * TLPXD			nS	1

Note 1: D0P = DSI-D0+, D0N = DSI-D0-

4.5.5 Data Lanes from Low Power Mode to High Speed Mode

Figure 4.5.5-1: Data Lanes from Low Power Mode to High Speed Mode Timing

Cianal	Cumbal	Parameter	Specification			Unit	Notes
Signal Symbol	Parameter	MIN	TYP	MAX	Unit	notes	
D0P/N	TLPX	Length of any Low Power State Period	50			nS	1
D0P/N	Ths-prepare	Time to drive LP-00 to prepare for HS Transmission	40+4*UI		85+6*UI	nS	1
D0P/N	Ths-trem-en	Time to enable Data lane Receiver line termination measured from when Dn crosses VILMAX			35+4*UI	nS	1

Note 1: Dn =0,1,2 and 3

4.5.6 Data Lanes from High Speed Mode to Low Power Mode

Figure 4.5.6-1: Data Lanes from High Speed Mode to Low Power Mode Timing

Cianal	Cumphal	Parameter	Specification			Unit	Notes
Signal	Symbol		MIN	TYP	MAX	Onit	Notes
D0P/N	Ths-skip	Time-Out at Display Module to ignore transition period of EoT	40		55+4*UI	nS	1
D0P/N	THS-EXIT	Time to drive LP-11 after HS burst	100			nS	1

Note 1: Dn =0,1,2 and 3

4.5.7 DSI Clock Burst - High speed mode to /from Low Power Mode

Figure 4.5.7-1: Clock Lane -High speed mode to / from Low Power Mode Timing

Cianal	Cumbal	Parameter	Specification			Unit	Notes
Signal	Symbol	Parameter	MIN	TYP MAX		Unit	Notes
		Time that the MCU shall continue sending HS	9 1				
CKP/N	Тск-роѕт	clock after the last associated Data Lanes	60+52*UI			nS	
		has transitioned to LP mode					
CKP/N	Tclk-trail	Time to drive HS differential state after last	60			nS	
		payload clock bit of a HS transmission burst	60				
CKP/N	THS-EXIT	Time to drive LP-11 after HS burst	100			nS	
CKP/N	TCLK-PREP	Time to drive LP-00 to prepare for HS	38		95 nS	nS	
01 ///	ARE	transmission					
CKP/N	TCLK-TERM-	Time-out at Clock Lane to enable HS			38	nS	
	EN	termination					
	TCLK-PREP	Minimum lead HS-0 drive period before	300			_	
CKP/N	ARE+TCLK-	starting Clock			nS		
	ZERO						
CKP/N	TCLK-PRE	Time that the HS clock shall be driven prior to					
		any associated Data Lane beginning the	8*UI			nS	
		transition from LP to HS mode					

4.6 Reset Input Timing

Figure 4.6-1: Reset Input Timing

Condition : Ta =25°C

Cianal	Symbol	Parameter	Description	Specification			11	Notes
Signal			Description	MIN	TYP	MAX	Unit	Notes
	tresw	Reset "L" pulse width	//	10			uS	1
RESET	treset	Reset complete time	When reset applied during Sleep in mode	1		5	mS	2
			When reset applied during Sleep Out mode			120	mS	5

Note 1: Spike due to an electrostatic discharge on RESET line does not cause irregular system reset according to the table below.

RESET Pulse	Action		
Short than 5us	Reset Rejected		
Long than 10uS	Reset		
Between 5us and 10uS	Reset Start		

Note 2: During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120ms, when Reset Starts in sleep out mode. The display remains the blank state in sleep in mode) and then return to Default condition for H/W RESET.

Note3: During Reset Complete Time, values in OTP memory will be latched to internal register during this period.

This loading is done every time when there is H/W RESET complete time(tRESET) within 5ms after a rising edge of RESET.

Note4: Spike Rejection also applies during a valid reset pulse as shown below:

Note5: It is necessary to wait 5msec after releasing RESET before sending commands. Also Sleep Out command can not be sent for 120msec.

5. Interface

5.1 Interface Level Communication

5.1.1 General

The display module uses data and clock lane differential pairs for DSI (DSI-1M). Both differential lane pairs can be driven to Low Power (LP) or High Speed (HS) mode. Low Power mode means that each line of the differential pair is used in the single ended mode, a differential receiver is disable (a termination resistor of the receiver is disable), and it can be driven into a low power mode.

High Speed mode means that differential pairs (the termination resistor of the receiver is enable) are not used in the single ended mode.

Different modes and protocols are used in each mode when transferring information from the MCU to the display module and vice versa.

The State Codes of the High Speed (HS) and Low Power (LP) lane pair are defined below.

Lane Pair State Code	Line DC Voltage Levels		High Speed (HS)	Low Power			
Lane Pair State Code	DATA_P	DATA_N	Burst Mode	Control Mode	Escape Mode		
HS-0	Low (HS)	High (HS)	Differential - 0	Note1	Note1		
HS-1	High (HS)	Low (HS)	Differential – 1	Note1	Note1		
LP-00	Low (LP)	Low (LP)	Not Defined	Bridge	Space		
LP-01	Low (LP)	High (LP)	Not Defined	HS-Request	Mark-0		
LP-10	High (LP)	Low (LP)	Not Defined	LP-Request	Mark-1		
LP-11	High (LP)	High (LP)	Not Defined	Stop	Note 2		

Note 1: Low-Power Receivers (LP-Rx) of the lane pair will check the LP-00 state code when the Lane Pair is in the High Speed (HS) mode.

Note2: If Low-Power Receivers (LP-Rx) of the lane pair recognizes the LP-11 state code, then the lane pair will return to LP-11 of the Control Mode.

Note3: n = 0, 1, 2 and 3 (D1P/N, D2 P/N and D3 P/N lanes only for HS-0 and HS-1)

5.1.2 DSI CLK Lanes

CLKP/N lanes can be driven into three different power modes: Low Power Mode (LPM), Ultra-Low Power Mode (ULPM) and High Speed Clock Mode (HSCM). Clock lane are in the single ended mode (LP = Low Power) when entering or leaving Low Power Mode (LPM) or Ultra-Low Power Mode (ULPM). Clock lane is in the single ended mode (LP = Low Power) when entering in or leaving High Speed Clock Mode (HSCM). These entering and leaving protocols use Clock lane in the single ended mode to generate an entering or leaving sequence. The principal flow chart of the different Clock lane power modes is illustrated below.

Figure 5.1.2-1: Clock Lane Power Modes

5.1.3 Low Power Mode (LPM)

CLKP/N lanes can be driven to the Low Power Mode (LPM), when CLKP/N lanes enter LP-11 State Code, in three different ways:

- 1) After SW Reset, HW Reset or Power On Sequence => LP-11
- 2) After CLKP/N lanes leave Ultra-Low Power Mode (ULPM, LP-00 State Code) => LP-10 => LP-11 (LPM).

This sequence is illustrated below.

Figure 5.1.3-1: From ULPM to LPM

3) After CLKP/N lanes leave High Speed Clock Mode (HSCM, HS-0 or HS-1 State Code) => HS-0=> LP-11 (LPM).

This sequence is illustrated below.

Figure 5.1.3-2: From High Speed Clock Mode (HSCM) to LPM

The changes of all the three modes are illustrated in the flow chart below.

Figure 5.1.3-3: All Three Mode Changes to LPM

5.1.4 Ultra- Low Power Mode (ULPM)

CLKP/N lanes can be driven to the Low Power Mode (LPM), when CLKP/N lanes enter LP-11 State Code, in three different ways:

- 1) After SW Reset, HW Reset or Power On Sequence => LP-11
- 2) After CLKP/N lanes leave Ultra-Low Power Mode (ULPM, LP-00 State Code) => LP-10 => LP-11 (LPM).

This sequence is illustrated below.

Figure 5.1.4-1: From LPM to ULPM

SHIP ONE

The mode change is also illustrated below.

Figure 5.1.4-2: Mode Change from LPM to ULPM

5.1.5 High- Speed Clock Mode (HSCM)

CLKP/N lanes can be driven to the High Speed Clock Mode (HSCM) when CLK lanes start to function between HS-0 and HS-1 State Codes. The only entering possibility is from the Low Power Mode (LPM, LP-11 State Code) => LP-01 => LP-00 => HS-0 => HS-0/1 (HSCM).

This sequence is illustrated below.

Figure 5.1.5-1: From LPM to HSCM

The mode change is also illustrated below.

Figure 5.1.5-2: Mode Change from LPM to HSCM

The high speed clock (CLKP/N) starts before high speed data is sent via data lanes. The high speed clock continues clocking after the high speed data sending is stopped. The burst of the high speed clock consists of:

- Even number of transitions
- Start state is HS- 0
- End state is HS- 0

Figure 5.1.5-3: High Speed Clock Burst

5.2 Interface Level Communication - DSI Data Lane

5.2.1 General

D3P/N, D2P/N, D1P/N, and D0P/N Data lanes can be driven into different modes:

- Escape Mode (Only D0P/N data lane is used)
- High- Speed Data Transmission (all data lanes are used)
- Bus Turnaround Request (Only D0P/N data lane are used)

These modes and their entering codes are defined in the following table.

Mode	Entering Mode Sequence	Leaving Mode Sequence
Escape Mode	LP- 11→ LP- 10→ LP- 00 → LP- 01 → LP- 00	LP- 00→ LP- 10→ LP- 11 (Mark-1)
High- Speed Data Transmission	LP- 11→ LP- 01 → LP- 00 → HS- 0	(HS- 0 or HS- 1)→ LP11
Bus Turnaround Request	LP- 11→ LP- 10→ LP- 00 → LP- 10→ LP- 00	Hi- Z

5.2.2 Escape Modes

D0P/N data lanes can be used in different Escape Modes when data lanes are in the Low Power (LP) mode. These Escape Modes are used to:

- Send "Low-Power Data Transmission" (LPDT) from the MCU to the display module.
- Drive data lanes to "Ultra-Low Power State" (ULPS).
- Indicate "Remote Application Reset" (RAR), which can reset the display module.
 Indicate "Acknowledge" (ACK), which is used to transmit a non-error event from the display module to the MCU.

The basic sequence of the Escape Mode is as follows:

- Start: LP-11
- Escape Mode Entry (EME): LP-11 => LP-10 => LP-00 => LP-01 => LP-00
- Escape Command (EC), which is coded, when one of the data lanes changes from low-to-high-to-low then this changed data lane presents the value of the current data bit (D0P = 1, D0N= 0). When DSI-D0 changes from low-to-high-to-low, the receiver will latch a data bit, which value is logical 0. The receiver will use this low-to-high-to-low transition as its internal clock.
- A load if it is needed
- Exit Escape (Mark-1) LP-00 => LP-10 => LP-11
- End: LP-11

This basic construction is illustrated below:

Figure 5.2.2-1: General Escape Mode Sequence

A total of eight Escape Commands (EC) are divided into two types: Mode and Trigger, as shown in below Table.

An example of the Mode type Escape Command is "Ultra-Low Power Mode", where the MCU instructs the display module to enter its Ultra-Low Power Mode. Escape commands are defined in the following table.

Escape Command	Command Type Mode / Trigger	Entry command Pattern (First Bit→ Last Bit Transmitted)	Dn	D0
Low- Power Data Transmission	Mode	1110 0001 bin		Х
Ultra- Low Power Mode	Mode	0001 1110 bin	х	Х
Underfined- 1, Note1	Mode	1001 1111 bin		
Underfined- 2, Note1	Mode	1101 1110 bin		
Remote Application Reset	Trigger	0110 0010 bin		Х
Acknowledge	Trigger	0010 0001 bin		Х
UnKnow- 5, Note1	Trigger	1010 0000 bin		

Note 1: This Escape command support is not implemented on the display module.

Note2: n=1

Note3: x= supported

5.2.3 Low- Power Data Transmission (LPDT)

The MCU can send data to the display module in the Low-Power Data Transmission (LPDT) mode when data lanes enter the Escape Mode and Low-Power Data Transmission (LPDT) command is sent to the display module.

The display module also uses the same sequence when it sends data to the MCU. The Low Power Data

Transmission (LPDT) uses the following sequence:

- Start: LP-11
- Escape Mode Entry (EME): LP-11 => LP-10 => LP-00 => LP-01 => LP-00
- Low-Power Data Transmission (LPDT) command in the Escape Mode: 1110 0001 (first to last bit)
- Load (Data):
- One or more bytes (one byte = 8 bit)
- Data lanes are in pause mode when data lanes are stopped (both lanes are low) between bytes
- Mark-1: LP-00 => LP-10 => LP-11
- End: LP-11

This sequence is illustrated for reference purposes below:

Figure 5.2.3-1: Low- Power Data Transmission (LPDT)

Note: Load (Data) presents that the first bit is the logical 1 in this example.

Figure 5.2.3-2: Pause (Example)

5.2.4 Ultra- Low Power State (ULPS)

The MCU can force data lanes get into the Ultra-Low Power State (ULPS) mode when data lanes enter the Escape Mode. The Ultra-Low Power State (ULPS) uses the following sequence:

- Start: LP-11
- Escape Mode Entry (EME): LP-11 => LP-10 => LP-00 => LP-01 => LP-00
- Ultra-Low Power State (ULPS) command in the Escape Mode: 0001 1110 (first to last bit)
- Ultra-Low Power State (ULPS) when the MCU keeps data lanes low
- Mark-1: LP-00 => LP-10 => LP-11
- End: LP-11 (Next command must wait 100us after data lanes leave ULPS)

This sequence is illustrated for reference purposes below:

Figure 5.2.4-1: Ultra- Low Power State (ULPS)

5.2.5 Remote Application Reset (RAR)

The MCU can inform the display module that it should be reset in Remote Application Reset (RAR) trigger when data lanes enter the Escape Mode. The Remote Application Reset (RAR) uses the following sequence:

- Start: LP-11
- Escape Mode Entry (EME): LP-11 => LP-10 => LP-00 => LP-01 => LP-00
- Remote Application Reset (RAR) command in Escape Mode: 0110 0010 (first to last bit)
- Mark-1: LP-00 => LP-10 => LP-11
- End: LP-11

This sequence is illustrated for reference purposes below:

Figure 5.2.5-1: Remote Application Reset (RAR)

5.2.6 Acknowledge (ACK)

The display module can inform the MCU an error is not recognized by Acknowledge (ACK). The display module sends the Acknowledge (ACK) with the following sequence:

- Start: LP-11
- Escape Mode Entry (EME): LP-11 => LP-10 => LP-00 => LP-01 => LP-00
- Acknowledge (ACK) command in the Escape Mode: 0010 0001 (first to last bit)
- Mark-1: LP-00 => LP-10 => LP-11
- End: LP-11

This sequence is illustrated for reference purposes below:

Figure 5.2.6-1: Acknowledge (ACK)

5.2.7 Entering High- Speed Data Transmission (TSOT of HSDT)

The display module enters High-Speed Data Transmission (HSDT) when Clock lane CLKP/N have already entered the High-Speed Clock Mode (HSCM) by the MCU. See more information in the section "High-Speed Clock Mode (HSCM)". Data lanes D3P/N, D2P/N, D1P/N and D0P/N of the display module enter the High-Speed Data Transmission (TSOT of HSDT) as follows:

- Start: LP-11
- HS-Request: LP-01
- HS-Settle: LP-00 => HS-0 (Rx: Lane Termination Enable)
- Rx Synchronization: 011101 (Tx (= MCU) Synchronization: 0001 1101)
- End: High-Speed Data Transmission (HSDT) Ready to receive High-Speed Data
 Load

The sequence of entering High-Speed Data Transmission (TSOT of HSDT) is illustrated below:

Figure 5.2.7-1: Entering High- Speed Data Transmission (TSOT of HSDT)

5.2.8 Leaving High- Speed Data Transmission (TEOP of HSDT)

The display module leaves the High-Speed Data Transmission (TEOT of HSDT) when Clock lane DSICLK+/- are in the High-Speed Clock Mode (HSCM) by the MCU, and this HSCM is kept until data lanes D3P/N, D2P/N, D1P/N and D0P/N are in the LP-11 mode. See more information in the section "High-Speed Clock Mode (HSCM)". Data lanes D3P/N, D2P/N, D1P/N and D0P/N of the display module leave the High-Speed Data Transmission (TEOT of HSDT) as follows:

- Start: High-Speed Data Transmission (HSDT)
- Stops High-Speed Data Transmission
- MCU changes to HS-1, if the last load bit is HS-0
- MCU changes to HS-0, if the last load bit is HS-1
- End: LP-11 (Rx: Lane Termination Disable)

The sequence of leaving High-Speed Data Transmission (TEOT of HSDT) is illustrated below:

Note: If the last load bit is HS- 0, the transmitter changes from HS- 0 to HS- 1. If the last load bit is HS- 1, the transmitter changes from HS- 1 to HS- 0

Figure 5.2.8-1: Leaving High- Speed Data Transmission (TEOT of HSDT)

5.2.9 Burst of the High- Speed Data Transmission (HSDT)

The burst of the "High-Speed Data Transmission" (HSDT) can consist of one or several data packet(s). These data packets can be Long (LPa) or Short (SPa) packets. These packets are defined in the section "Short Packet (SPa) and Long Packet (LPa) Structures". These different burst of the High-Speed Data Transmission (HSDT) cases are illustrated for reference purposes below.

Figure 5.2.9-1: Single Packet in High-Speed Data Transmissions

The multiple packets in High-Speed Data Transmission are illustrated for reference purposes below:

Figure 5.2.9-2: Multiple Packets in High- Speed Data Transmission – Example

Abbreviation	Explanation
EOT	End of the Transmission
LPa	Long Packet
LP-11	Low Power Mode, Both of Data lanes are "1"s (Stop Mode)
SPa	Short Packet
SOT	Start of the Transmission

5.2.10 Bus Turnaround (BTA)

The MCU or display module, which controls D0P/N Data Lanes, can start a bus turnaround procedure when it requires information from a receiver, which can be the MCU or display module. The MCU and display module use the same sequence when this bus turnaround procedure is used. The sequence, when the MCU wants to do the bus turnaround procedure to the display module, is described for reference purposes as follows:

- Start (MCU): LP-11
- Turnaround Request (MCU): LP-11 => LP-10 => LP-00 => LP-10 => LP-00
- The MCU waits until the display module starts to control D0P/N data lanes and the MCU stops to control D0P/N data lanes (= High-Z)
- The display module changes to the stop mode: LP-00 => LP-10 => LP-11 The bus turnaround procedure (from the MCU to the display module) is illustrated below:

Figure 5.2.10-1: Bus Turnaround Procedure

MCU and display module terms can be switched in Figure 5.2.10-1 if the Bus Turnaround (BTA) is from the display module to the MCU.

5.3 Packet Level Communication

5.3.1 Short Packet (SPa) and Long Packet (LPa) Structures

Short Packet (SPa) and Long Packet (LPa) are always used when data transmission is done in Low Power Data Transmission (LPDT) or High-Speed Data Transmission (HSDT) modes. The lengths of the packets are:

- Short Packet (SPa): 4 bytes
- Long Packet (LPa): 6 to 65,541 bytes

The type (SPa or LPa) of the packet can be recognized from their package headers (PH).

Figure 5.3.1-1: Short Packet (SPa) Structure

Figure 5.3.1-2: Long Packet (LPa) Structure

Notes:

- 1. Figure 5.4.1-1 and Figure 5.4.1-2 present a single packet sending (= Includes LP-11, SoT and EoT for each packet sending).
- 2. The other possibility is that SoT, EoT and LP-11 are not needed between packets if packets are sent in multiple packet format, e.g.

```
LP-11 => SoT => SPa => LPa => SPa => EoT => LP-11

LP-11 => SoT => SPa => SPa => EoT => LP-11

LP-11 => SoT => LPa => LPa => LPa => EoT => LP-11
```


5.3.2 Bit Order of the Byte on Packet

The bit order of the byte, what is used in packets, is that the Least Significant Bit (LSB) of the byte is sent first, and the Most Significant Bit (MSB) is sent last. The order is illustrated for reference purposes below.

	(Da	ıta I		-		on)			(Wo	ord	/C - Cou	ınt	– L	SB)			(Wc	ord	Cou 8'b (ınt -	- M	SB)		(E	rro			CC ectio		ode	e)
1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L							М	L	75	79	F				М
S							S	S							S	S							S	S	, V						S
В							В	В							В	В						. 4	В	В	P						В
															Т	ime	9														

Figure 5.3.2-1: Bit order of the byte on packet

5.3.3 Byte Order of the Multiple Byte Information on Packets

Byte order of the multiple bytes information, what is used in packets, is that the Least Significant (LS) Byte of the information is sent first and the Most Significant (MS) Byte is sent last. For example, Word Count (WC) consists of 2 bytes (= 16 bits); while the LS byte is sent first and the MS byte is sent last. The order is illustrated for reference purposes below.

	(We	-		LS unt		SB)			(Wo			MS int	В - М:	SB)	
	,			01H		<u>,</u>			,			00H		<u> , </u>	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М
S							S	S							S
В							В	В							В
							T	ime						•	

Figure 5.3.3-1: Byte order of the multiple byte information on packets

5.3.4 Packet Header (PH)

The packet header always consists of 4 bytes. The content of these 4 bytes are different for Short Packet (SPa) and Long Packet (LPa).

- Short Packet (SPa)
- 1st byte: Data Identification (DI) => Identify that this is a Short Packet (SPa)
- 2nd and 3rd bytes: Packet Data (PD), Data 0 and 1
- 4th byte: Error Correction Code (ECC)

			D	-							Dat								Dat									CC			
	(Da	ıta I	den	tific	cati	on)				(Pa	cke	t Da	ata)					(Pa	cke	t Da	ata)			(E	Erro	r Co	orre	ectio	on C	cod	e)
		8	3'b <i>'</i>	15H							8'b :	3AH	1						8'b	07H		ΛÝ			Υ.		8'b	18H			
1	0	1	0	1	0	0	0	0	1	0	1	1	1	0	0	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L		d	4	P	7		М	L							М
S							S	S							S	S	4						S	S							S
В							В	В							В	В	. 7						В	В							В
						•			-						Т	ime	e								-						

Figure 5.3.4-1: Packet Header (PH) in a Short Packet (SPa)

- Long Packet (LPa)
- 1st byte: Data Identification (DI) => Identify that this is a Long Packet (LPa)
- 2nd and 3rd bytes: Word Count (WC)
- 4th byte: Error Correction Code (ECC)

			4																												
			D) l						V	/C -	LS	В					W	'C –	MS	В						EC	C			
	(Da	ata I	den	itific	cati	on)			(Wo	ord	Cou	ınt	– LS	SB)			(Wo	ord	Cou	ınt ·	- M	SB)		(E	rro	r Co	orre	ctio	n C	ode	e)
		1	8'b 2	29H							8'b (01H							8'b (00H						:	3'b (06H			
1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L							М	L							М
S							S	S							S	S							S	S							S
В							В	В							В	В							В	В							В
	•					ı			•					,	-							,			•						
																ime	е														

Figure 5.3.4-2: Packet Header (PH) in a Long Packet (LPa)

5.3.5 Data Identification (DI)

Data Identification (DI) is a part of the Packet Header (PH), and it consists of 2 parts:

- Virtual Channel (VC), 2 bits, DI [7...6]
- Data Type (DT), 6 bits, DI [5...0]

The Data Identification (DI) structure is illustrated, see the figure below.

			DI (Data Ide	ntification)			
'	/C			D	Т		
(Virtual Cha	nnel Identifier)			(Data	Type)		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

Figure 5.3.5-1: Data Identification (DI) Structure

Data Identification (DI) in the Packet Header (PH) is illustrated for reference purposes below.

	(Da	ıta I	D den	-	catio	on)			(Wo		/C - Coi	_		SB)			(Wc		C –		В – М:	SB)		(E	rro	r Co	EC		n C	ode	e)
	•		3'b :			,					8'b (á	N		8'b (,		•		;	8'b ()6H			,
1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L				-1		ø	М	L							М	L							М
S							S	S						p	S	S							S	S							S
В							В	В							В	В							В	В							В

Figure 5.3.5-2: Data Identification (DI) on the Packet Header (PH)

Time

5.3.6 Virtual Channel (VC)

Virtual Channel (VC) is a part of Data Identification (DI [7:6]) structure, and it is used to address where a packet is to be sent from the MCU. Bits of the Virtual Channel (VC) are illustrated for reference purposes below.

	•				•		-			٦ ٢	٠ ١																				
	(Da	ata I	D den	-	catio	on)			(We		VC - Coi	_		SB)	·		(Wc		Cou		В – М:	SB)		(E	Erro	r Co	EC	CC ectio	on C	ode	e)
	(29H		<u>,</u>			,		8'b			<u>,</u>			,		8'b			,						06H			-/
1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L							М	L	-	. 1	S.	Ø.			М
S							S	S							S	S							S	S	8						S
В							В	В							В	В							В	В	J.						В
	-					•			=					'-	Т	ime	9													-	

Figure 5.3.6-1: Virtual Channel (VC) on the Packet Header (PH)

Virtual Channel (VC) can assign 4 different channels for 4 different display modules. Devices will use the same virtual channel as which the MCU uses to send packets to them, e.g.

- The MCU uses the virtual channel 0 when it sends packets to the ICNL9706.
- The ICNL9706 also uses the virtual channel 0 when it sends packets to the MCU

This functionality is illustrated below.

Virtual Channel (VC) is always 0 (DI [7:6] = VC [1:0] = 00b) when the MCU sends "End of Transmission Packet" to the display module. See the section "End of Transmission Packet (EoTP)". This display module does not support the virtual channel selector for other devices (1 to 3) when the only possible virtual channel (VC [1:0]) is 00b for the ICNL9706.

5.3.7 Data Type (DT)

Data Type (DT) is a part of Data Identification (DI [5...0]) structure, and it is used to define the type of the used data in a packet. Bits of the Data Type (DT) are illustrated for reference purposes below.

	(Da	ıta I	D den	-	catio	on)			(We		/C - Cou	_		SB)			(Wc		C –		_	SB)		(E	Erro	r Co	EC orre	CC ectio	on C	ode	e)
		1	8'b 2	29H							8'b (01H							8'b (HOC						8	3'b (06H			
1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L							М	L	A.	70	Þ.				М
S							S	S							S	S							S	S	, V						S
В							В	В							В	В						_4	В	В	P						В
						,								•	Т	ime									•					•	

Figure 5.3.7-1: Data Type (DT) on the Packet Header (PH)

This Data Type (DT) also defines the used packet is a Short Packet (SPa) or a Long Packet (LPa). Data Types (DT) are different from the MCU to the display module (or other devices) and vice versa. These Data Types (DT) are defined in the tables below.

	From the MCU to the Display Mo	dule
Hex	Description	Short / Long Packet
01	Sync Even, V Sync Start	SPa (Short Packet)
11	Sync Even, V Sync End	SPa (Short Packet)
21	Sync Even, H Sync Start	SPa (Short Packet)
31	Sync Even, H Sync End	SPa (Short Packet)
08	End of Transmission Packet (EOTP) Note1	SPa (Short Packet)
02	Color Mode Off Command	SPa (Short Packet)
12	Color Mode On Command	SPa (Short Packet)
22	Shut Down Peripheral Command	SPa (Short Packet)
32	Turn On Peripheral Command	SPa (Short Packet)
03	Generic Short WRITE, no parameters	SPa (Short Packet)
13	Generic Short WRITE, 1 parameters	SPa (Short Packet)
23	Generic Short WRITE, 2 parameters	SPa (Short Packet)
04	Generic Short READ, no parameters	SPa (Short Packet)
14	Generic Short READ, 1 parameters	SPa (Short Packet)
24	Generic Short READ, 2 parameters	SPa (Short Packet)
05	DCS Write, No Parameter	SPa (Short Packet)
15	DCS Write, 1 Parameter	SPa (Short Packet)
06	DCS Read, No Parameter	SPa (Short Packet)
37	Set Maximum Return Packet Size	SPa (Short Packet)
09	Null Packet, No Data, Note2	LPa (Long Packet)
19	Blanking Packet, no data	LPa (Long Packet)
29	Generic Long Write	LPa (Long Packet)

39	DCS Write Long	LPa (Long Packet)
1E	Packed Pixel Stream, 18-bit RGB, 6-6-6 Format	LPa (Long Packet)
2E	Loosely Packed Pixel Stream, 18-bit RGB, 6-6-6 Format	LPa (Long Packet)
3E	Packed Pixel Stream, 24-bit RGB, 8-8-8 Format	LPa (Long Packet)
X0	DO NOT USE	
хF	All unspecified codes are reserved	

Notes:

- 1. This can be used when the MCU wants to make sure that it is the end of the transmission in High Speed Data Transferring (HSDT) mode.
- 2. This can be used when data lanes are to be kept in High Speed Data Transferring (HSDT) Mode.

Data Type (DT) from the Display Module (or Other Devices) to the MCU

<u>, , , , , , , , , , , , , , , , , , , </u>	, ,	,
	From the Display Module to the	MCU
Hex	Description	Short / Long Packet
02h	Acknowledge with Error Report	SPa (Short Packet)
1Ch	DCS Read Long Response	LPa (Long Packet)
21h	DCS Read Short Response, 1 byte returned	SPa (Short Packet)
22h	DCS Read Short Response, 2 byte returned	SPa (Short Packet)
1Ah	Generic Read Long Response	LPa (Long Packet)
11h	Generic Read Short Response, 1 byte returned	SPa (Short Packet)
12h	Generic Read Short Response, 2 byte returned	SPa (Short Packet)

The receiver will ignore other Data Type (DT) if they are not defined on tables: "Data Type (DT) from the MCU to the Display Module (or Other Devices)" or "Data Type (DT) from the Display Module (or Other Devices) to the MCU".

Note: The data type for Generic write/read: 1Ah, 11h, 12 will be disable (ignored packet) if bit DSIG is set to "0".

5.3.8 Packet Data (PD) in a Short Packet (SPa)

Packet Data (PD) of the Short Packet (SPa) is placed after Data Type (DT) of the Data Identification (DI) and indicates a Short Packet (SPa) is to be sent. Packet Data (PD) of a Short Packet (SPa) consists of 2 data bytes: Data 0 and Data 1. The sending order of the Packet Data (PD) is that Data 0 is sent first and the Data 1 is sent last. Bits of Data 1 are set to 0 if the information length is 1 byte. Packet Data (PD) of a Short Packet (SPa), when the length of the information is 1 or 2 bytes and Virtual Channel (VC) is 0, are illustrated for reference purposes below.

- Packet Data (PD) information:
- Data 0: 26Hex (Display Command Set (DCS) with 1 Parameter => DI (Data Type (DT)) = 15Hex)
- Data 1: 01Hex (DCS's Parameter)

	1 2 3 4 5							_	_																_						
)							Dat	a 0							Dat	a 1							EC	C			
	(D	ata	lder	itific	cati	on)				(Pa	cke	t Da	ata)					(Pa	cke	t Da	ata)			(E	rro	r Co	orre	ctic	n C	ode	e)
			8'b	15H							8'b	26H	l					1	8'b	01H	P					;	8'b 3	3EH			
•	0	1	0	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0
E	3 B	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
(1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L	_						М	L						5	М	L	-						М	L							М
3	S						S	S							S	S							S	S							S
E	3						В	В				-1		8	В	В							В	В							В

Time

Figure 5.3.8-1: Packet Data (PD) for Short Packet (SPa), 2 Bytes Information

- Packet Data (PD) information:
- Data 0: 10Hex (DCS without Parameter => DI (Data Type (DT)) = 05Hex)
- Data 1: 00Hex (Null)

W. A.

	(D	ata I) Itific	catio	on)				(Pa	Dat cke								Dat cke		ata)			(E	Erro	r Co	EC orre		n C	ode	e)
	(Data Identification 8'b 05H									8'b	10H							8'b (00H						3	3'b 2	2CH				
1	0 1 0 0 0 0		0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0			
Е	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
C	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L							М	L							М
5	3						S	S							S	S							S	S							S
E	3						В	В							В	В							В	В							В

Figure 5.3.8-2: Packet Data (PD) for Short Packet (SPa), 1 Byte Information

Time

Chipone Technology (Beijing) Co., Ltd.

www.chiponeic.com

5.3.9 Word Count (WC) in a Long Packet (LPa)

Word Count (WC) of the Long Packet (LPa) is placed after Data Type (DT) of the Data Identification (DI) and indicates that a Long Packet (LPa) is to be sent. Word Count (WC) indicates the amount of data bytes of the Packet Data (PD) that is to be sent after the Packet Header (PH). The location of the Word Count (WC) in a Long Packet is the same as which of the Packet Data (PD) in a Short Packet (SPa), as shown in Figure 5.4.9-2. Word Count (WC) of the Long Packet (LPa) consists of 2 bytes. The sending order of these 2 bytes of the Word Count (WC) is that the Least Significant (LS) Byte is sent first, and the Most Significant (MS) Byte is sent last. Word Count (WC) of a Long Packet (LPa) is illustrated for reference purposes below.

					_				`																						
	(Da	ata I	D den	-	cati	on)			(W		/C - Coi	_		SB)			(Wo		Cou			SB)		(E	Frro	r Co	EC		on C	ode	e)
	(=0		8'b						(8'b						(,,,,		8'b			<u></u>						06H			-,
1	0 0 1 0 1 0						0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
В	+ - + - + - + - + -					В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L		d.	9	V	7		М	L							М
S							S	S							S	S	4						S	S							S
В							В	В							В	В							В	В							В
									•					•	Т	ime	9								•						

Figure 5.3.9-1: Word Count (WC) in a Long Packet (LPa)

Figure 5.3.9-2: Packet Data in Short and Long Packets

5.3.10 Error Correction Code (ECC)

The Error Correction Code (ECC) is a part of Packet Header (PH) and its purpose is to identify an error or errors.

The ECC protects the following fields:

- Short Packet (SPa): Data Identification (DI) byte (8 bits: D [0...7]), Packet Data (PD) bytes (16 bits: D [8...23]) and ECC (8 bits: P [0...7])
- Long Packet (LPa): Data Identification (DI) byte (8 bits: D [0...7]), Word Count (WC) bytes (16 bits: D [8...23]) and ECC (8 bits: P [0...7]) D [23...0] and P [7...0] are illustrated for reference purposes below.

				_							_								_												
			D)							Dat	ta 0							Dat	a 1							EC	CC			
	(Da	ıta I	den	tific	cati	on)				(Pa	cke	t Da	ata)					(Pa	cke	t Da	ata)			(E	Erro	r Co	orre	ctic	on C	ode	e)
	Columbia Columbia														8'b (00H		A. 9			Y.	8	3'b 2	2CH	ł						
1	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L		d	9	P	7		М	L							М
S							S	S							S	S	4						S	S							S
В							В	В							В	В		Р.,	7				В	В							В

Time

Figure 5.3.10-1: D [23:0] and D 7:0] in a Short Packet (SPa)

	DI (Data Identification 8'b 29H 0 0 1 0 1									V	/C -	LS	В					W	C –	MS	В						EC	C			
	(Da	ita I	den	tific	cati	on)			(Wo	ord	Cou	unt	<u> </u>	SB)			(Wc	ord	Cou	ınt -	- M	SB)		(E	Erro	r Co	orre	ctic	n C	ode	∍)
			8'b 2	29H				1	\forall		8'b (01H							8'b (ООН						;	8'b (06H			
1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L			- 5	1			М	L							М	L							М	Г							М
S							S	S							S	S							S	S							S
В		0	2		>		В	В							В	В							В	В							В

Figure 5.3.10-2: D [23:0] and D 7:0] in a Long Packet (LPa)

Time

Error Correction Code (ECC) can recognize one or several error(s) and can only correct one-bit error. Bits (P [7...0]) of the Error Correction Code (ECC) are defined, where the symbol "^" presents the XOR function (Pn is 1 if there is odd number of 1, and Pn is 0 if there is even number of 1), as follows.

Version: 0.7 2017-10

- P7 = 0
- P6 = 0
- P5 = D10^D11^D12^D13^D14^D15^D16^D17^D18^D19^D21^D22^D23
- P4 = D4^D5^D6^D7^D8^D9^D16^D17^D18^D19^D20^D22^D23
- P3 = D1^D2^D3^D7^D8^D9^D13^D14^D15^D19^D20^D21^D23
- P2 = D0^D2^D3^D5^D6^D9^D11^D12^D15^D18^D20^D21^D22
- P1 = D0^D1^D3^D4^D6^D8^D10^D12^D14^D17^D20^D21^D22^D23
- P0 = D0^D1^D2^D4^D5^D7^D10^D11^D13^D16^D20^D21^D22^D23

P7 and P6 are set to 0 because Error Correction Code (ECC) is based on 64 bit value (D [63...0]), but this implementation is based on 24 bit value (D [23...0]). Therefore, only 6 bits are needed (P [5...0]) for Error Correction Code (ECC).

				_																						_					
	(Da	ıta I	D den	-	catio	on)					Dat	a 0							Dat	ta 1				(E	Erro	r C	E0 orre	CC ectio	on C	ode	e)
			8'b	05H							8'b	10H							8'b	00H	_ '	D.	,			;	8'b 2	2CH	1		
1	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0
D	D	D		D	D		D			D	D		D			D			4	D	D	D	D	Р							
0	1	2		4	5		7			1	1		1			1		1		2	2	2	2	0							
Ů		_					•			0	1		3			6	Δ			0	1	2	3	Ů							
D	D		D	D		D		D		D		D		D		1	D	Μ,		D	D	D	D		Р						
0	1		3	4		6		8		1		1		1	4	4	1			2	2	2	2		1						
										0	7	2 D		4	D		7	7		0	1 D	2 D	3								
D		D	D		D	D			D		D 1	1	A		ט 1			D 1		D 2	2	2				Р					
0		2	3		5	6			9		1	2	L.	D	5			8		0	1	2				2					
	_											_	D	D	D				D	D	D		D								
	D	D	D				D	D	D		10		1	1	1				1	2	2		2				Р				
	1	2	3				7	8	9				3	4	5				9	0	1		3				3				
				D	D	D	D	D	D	B						D	D	D	D	D		D	D					Р			
				4	5	6	7	8	9							1	1	1	1	2		2	2					4			
				•	Ŭ				Ŭ							6	7	8	9	0		2	3								
						١.,				D	D	D	D	D	D	D	D	D	D		D	D	D						Р		
			7		e					1	1	1	1	1	1	1	1	1	1		2	2	2						5		
Р	В	В	В	В	В	В	В	Г	В	0	1	2	3	4	5	6	7	8	9	В	1	2	3	В	В	В	В	Ъ	Р	В	В
В 0	B 1	B 2	B 3	B 4	В 5	В 6	В 7	В 0	В 1	B 2	B 3	В 4	B 5	B 6	В 7	B 0	B 1	B 2	B 3	В 4	В 5	B 6	В 7	В 0	В 1	В 2	B 3	B 4	В 5	В 6	В 7
			J	-	J	U	M	_	-	_	J	7	J	U	M	-	-	_	J	7	J	U	M		_	_	J	7	J	U	M
S							S	S							S	S							S	S							S
В							В	В							В	В							В	В							В

Time

Figure 5.3.10-3: XOR Function on Short Packet (SPa)

	(D)	4	. D	-								LS		201			041		_	MS	_	٥٥,		/-		_	EC				
	(Da			29H	catio	on)			(VV	ord		u nt 01H		2B)			(Wc			unt - 00H		SB)		(E	rro		orre 8'b			oa	e)
1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0011	0	0	0	0	1	1	0	0	0	0	0
D 0	D 1	D 2		D 4	D 5	0	D 7		0	D 1 0	D 1	0	D 1 3	0	0	D 1 6	0	0	0	D 2 0	D 2 1	D 2 2	D 2 3	P 0			J	0	0	0	<u> </u>
D 0	D 1		D 3	D 4		D 6		D 8		D 1 0		D 1 2		D 1 4			D 1 7			D 2 0	D 2 1	D 2 2	D 2 3		P 1						
D 0		D 2	D 3		D 5	D 6			D 9		D 1 1	D 1 2			D 1 5			D 1 8		D 2 0	D 2 1	D 2 2				P 2					
	D 1	D 2	D 3				D 7	D 8	D 9				D 1 3	D 1 4	D 1 5				D 1 9	D 2 0	D 2 1		D 2 3		- 6	91	P 3	6			
				D 4	D 5	D 6	D 7	D 8	D 9							D 1 6	D 1 7	D 1 8	D 1 9	D 2 0		D 2 2	D 2 3	9				P 4			
										D 1	D 1	D 1 2	D 1 3	D 1 4	D 1 5	D 1 6	D 1 7	D 1 8	D 1 9		D 2 1	D 2 2	D 2 3						P 5		
B 0	B 1	B 2	B 3	B 4	B 5	B 6	B 7	B 0	B 1	B 2	B 3	B 4	B 5	B 6	В 7	B 0	B 1	B 2	B 3	B 4	B 5	B 6	B 7	B 0	B 1	B 2	B 3	B 4	B 5	B 6	B 7
L S B							M S B	L S B		'				-	M S B	L S B	24	P.					M S B	L S B							M S B

Figure 5.3.10-4: XOR Function on Long Packet (LPa)

Time

The transmitter (= the MCU or the Display Module) will send data bits D [23...0] and Error Correction Code (ECC) P [7...0]. The receiver (= the Display module or the MCU) will calculate the Internal Error Correction Code (IECC) and compare the received Error Correction Code (ECC) and the Internal Error Correction Code (IECC). This comparison is done when each power bit of ECC and IECC have performed the XOR function. The result of this function is PO [7...0]. This functionality, where the transmitter is the MCU and the receiver is the display module, is illustrated for reference purposes below.

Figure 5.3.10-5: Internal Error Correction Code (IECC) on the Display Module (= the Receiver)

The sent data bits (D [23...0]) and ECC (P [7...0]) are correctly received if the value of the PO [7...0]) is 00h.

The sent data bits (D [23...0]) and ECC (P [7...0]) are not correctly received if the value of the PO [7...0]) is not 00h.

ECC P [7:0]	1	1	0	0	0	0	0	0	03h
IECC PI [7:0]	1	1	0	0	0	0	0	0	03h
XOR (ECC, IECC) => PO[7:0]	0	0	0	0	0	0	0		= 00h => No Error
	S B							S B	

Figure 5.3.10-6: Internal XOR Calculation between ECC and IECC Values - No Error

ECC P [7:0]	1	1	0	0	0	0	0	0	03h
IECC PI [7:0]	1	1	1	1	0	0	0	0	0Fh
XOR (ECC, IECC) => PO[7:0]	0	0	1	1	0	0	0	0	= 0Ch => Error
	L S B							M S B	

Figure 5.3.10-7: Internal XOR Calculation between ECC and IECC Values – Error

The received Error Correction Code (ECC) can be 00h when the Error Correction Code (ECC) function is not used for data values D [23...0] on the transmitter side. The number of the errors (one or more) can be defined when the value of the PO [7...0] is compared to the values in the following table.

Data Bit	P07	PO6	PO5	PO4	PO3	PO2	PO1	PO0	Hex
D [0]	0	0	0	0	0	1	1	1	07h
D [1]	0	0	0	0	1	0	1	1	0Bh
D [2]	0	0	0	0	1	1	0	1	0Dh
D [3]	0	0	0	0	1	1	1	0	0Eh
D [4]	0	0	0	1	0	0	1	1	13h
D [5]	0	0	0	1	0	1	0	1	15h
D [6]	0	0	0	1	0	1	1	0	16h
D [7]	0	0	0	1	1	0	0	1	19h
D [8]	0	0	0	1	1	0	1	0	1Ah
D [9]	0	0	0	1	1	1	0	0	1Ch
D [10]	0	0	1	0	0	0	1	1	23h
D [11]	0	0	1	0	0	1	0	1	25h

Mobile Display Driver

D [12]	0	0	1	0	0	1	1	0	26h
D [13]	0	0	1	0	1	0	0	1	29h
D [14]	0	0	1	0	1	0	1	0	2Ah
D [15]	0	0	1	0	1	1	0	0	2Ch
D [16]	0	0	1	1	0	0	0	1	31h
D [17]	0	0	1	1	0	0	1	0	32h
D [18]	0	0	1	1	0	1	0	0	34h
D [19]	0	0	1	1	1	0	0	0	38h
D [20]	0	0	0	1	1	1	1	1	1Fh
D [21]	0	0	1	0	1	1	1	1	2Fh
D [22]	0	0	1	1	0	1	1	1	37h
D [23]	0	0	1	1	1	0	1	1	3Bh

An error is detected if the value of the PO [7...0] is in Table, and the receiver can correct this one bit error because this found value also defines the location of the corrupt bit, e.g.

- PO [7...0] = 0Eh
- The bit of the data (D [23...0]), that is not correct, is D [3] More than one error is detected if the value of the PO [7...0] is not in Table for example, PO [7...0] = 0Ch.

5.3.11 Packet Data (PD) in a Long Packet (LPa)

Packet Data (PD) of a Long Packet (LPa) is placed after the Packet Header (PH) of a Long Packet (LPa). The amount of the data bytes is defined in the section "Word Count (WC) in a Long Packet (LPa)".

5.3.12 Packet Footer (PF) in a Long Packet (LPa)

Packet Footer (PF) of a Long Packet (LPa) is placed after the Packet Data (PD) of a Long Packet (LPa). The Packet Footer (PF) is a checksum value that is calculated from the Packet Data of the Long Packet (LPa). The checksum uses a 16-bit Cyclic Redundancy Check (CRC) value which is generated by a polynomial X16+X12+X5+X0, as illustrated below.

Figure 5.3.12-1: 16-bit Cyclic Redundancy Check (CRC) Calculation

The 16-bit Cyclic Redundancy Check (CRC) generator is initialized to FFFFh before calculations. The Most Significant Bit (MSB) of the data byte of the Packet Data (PD) is the first bit which is inputted into the 16-bit Cyclic Redundancy Check (CRC). An example of the 16-bit Cyclic Redundancy Check (CRC), where the Packet Data (PD)

of a Long Packet (LPa) is 01h, is illustrated (step-by-step) below.

Figure 5.3.12-2: CRC Calculation - Packet Data (PD) is 01h

The value of the Packet Footer (PF) is 1E0Eh in this example (Command 01h has been sent), and is illustrated below

			_	-,,	-																										
			D	l						V	/C -	LS	В					W	/C –	MS	В						EC	C			
	(Da	ata I	der	tific	cati	on)			(We	ord	Co	unt	<u> </u>	SB)			(Wo	ord	Cou	ınt ·	- M	SB)		(E	Erro	r Co	orre	ctic	n C	ode	e)
			8'b	39H							8'b	01H	I						8'b	00H	V	9					8'b	15H			
1	1 0 0 1 1 1 0 0 1 0 0										0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0
В										В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L	L							Г							М	L	7	Р.	~				М	Г							М
S	S														S	S							S	S							S
В	В														В	В	-						В	В							В

Time

		(Pa		ta 0 t Da	ata)					С	RC-	· LS	В					C	RC-	MS	В		
			8'b	00H		۵.				8	8'b (DEH						:	8'b '	1EH			
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	1	1	1	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L		7					М	L							М	L							М
S	φ						S	S							S	S							S
В	P						В	В							В	В							В

Figure 5.3.12-3: Packet Footer (PF) Example

Time

The receiver calculates its checksum value from the received Packet Data (PD). The receiver compares its checksum and the Packet Footer (PF) that the transmitter has sent. The received Packet Data (PD) and Packet Footer (PF) are correct if the checksum of the receiver and Packet Footer (PF) are equal. The received Packet Data (PD) and Packet Footer (PF) are not correct if the checksum of the receiver and Packet Footer (PF) are not equal.

5.4 Packet Transmissions

5.4.1 Display Command Set (DCS)

Display Command Set (DCS), defined in the section "Level1 Command Description", is used from the MCU to the display module. This Display Command Set (DCS) is always defined in the Data 0 of the Packet Data (PD), and is included in Short Packet (SPa) and Long packet (LPa), as illustrated below.

Figure 5.4.1-1: Display Command Set (DCS) in Short Packet (SPa) and Long Packet (LPa)

5.4.2 Display Command Set (DCS) Write, No Parameter (DSCWN-S)

"Display Command Set (DCS) Write, No Parameter", which is defined in Data Type (DT, 00 0101b), is always used in a Short Packet (SPa) from the MCU to the display module. These commands are defined in a table below.

Command	
NOP (00h)	
Software Reset (01h)	
Sleep In (10h)	
Sleep Out (11h)	
Normal Display Mode On (13h)	
INVOff (20h)	
INVOn (21h)	
All Pixel Off (22h)	- 27
All Pixel On (23h)	1
Display Off (28h)	1. 1
Display On (29h)	
Tearing Effect Line Off (34h)	Ch.
Idle Mode Off (38h)	
Idle Mode On (39h)	

A Short Packet (SPa) is defined as:

- Data Identification (DI)
 - Virtual Channel (VC, DI [7...6]): 00b
 - Data Type (DT, DI [5...0]): 00 0101b
- Packet Data (PD)
 - Data 0: "Sleep In (10h)", Display Command Set (DCS)
 - Data 1: Always 00hex

Error Correction Code (ECC)

_							, 00																								
			D	l							Dat	ta 0							Dat	a 1							EC	C			
	(Da	ata I	den	tific	cati	on)				(Pa	cke	t Da	ata)					(Pa	cke	t Da	ata)			(E	Erro	r Co	orre	ctic	n C	ode	e)
			8'b (05H		7					8'b	10H							8'b (ООН						8	3'b 2	2CH			
1	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L	L														М	L							М	Г							М
S							S	S							S	S							S	S							S
В							В	В							В	В							В	В							В

Time

Figure 5.4.2-1: Display Command Set (DCS) Write, No Parameter (DCSWN-S) – Example

5.4.3 Display Command Set (DCS) Write, 1 Parameter (DSCW1-S)

"Display Command Set (DCS) Write, 1 Parameter" (DCSW1-S), which is defined in Data Type (DT, 01 0101b), is always used in a Short Packet (SPa) from the MCU to the display module. These commands are defined in the table below.

Command	
Gamma Curve Set (26h)	
TEON (35h)	
MADCTR (36h)	
COLMOD (3Ah)	
WRDISBV (51h)	
WRCTRLD (53h)	V 100
WRCABC (55h)	7 1 1
WRCABCMB (5Eh)	- A -
ed e.g.	1 1
3	
DI[76]): 00b	

Short Packet (SPa) is defined e.g.

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 01 0101b
- Packet Data (PD)
 - Data 0: "PMCSET (3Ah)", Display Command Set (DCS)
 - Data 1: 01hex, Parameter of the DCS
- Error Correction Code (ECC)

This is defined on the Short Packet (SPa) as follows.

	(Da	ıta I	D den		atio	on)				(Pa		ta 0 t Da	ata)						Dat cke		ata)			(E	rro	r Co	EC orre		n C	ode	e)
			8'b	15H				6	W		8'b :	3AF							8'b (01H						;	3'b '	1EH			
1	0	1	0	1	0	0	0	1	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L	L														М	L							М	Г							М
S	S														S	S							S	S							S
В		0	d		۲.		В	В							В	В							В	В							В

Time

Figure 5.4.3-1: Display Command Set (DCS) Write, 1 Parameter (DCSW1-S) - Example

5.4.4 Display Command Set (DCS) Write, Long (DCSW-L)

"Display Command Set (DCS) Write Long" (DCSW-L), which is defined in Data Type (DT, 11 1001b), is always used in a Long Packet (LPa) from the MCU to the display module. Command (No Parameters) and Write (1 or more parameters) are defined in a table below.

Command	
NOP (00h) Note 1	
Software Reset (01h), Note 1	
Sleep In (10h), Note 1	
Sleep Out (11h), Note 1	- 0
Normal Display Mode On (13h), Note 1	
INVOff (21h), Note 1	V 100
INVOn (22h), Note 1	100
All Pixel Off (22h), Note 1	4
All Pixel On (23h), Note 1	
GAMSET (26h), Note 2	
Display Off (28h), Note 1	
Display On (29h), Note 1	
Tearing Effect Line Off (34h) , Note 1	
Tearing Effect Line On (35h), Note 2	
MADCTR (36h)	
Idle Mode Off (38h), Note 1	
Idle Mode On (39h), Note 1	
COLMOD (3Ah), Note 2	
Tearline (44h)	
WRDISBV (51h), Note 2	
WRCTRLD (53h)	
WRCABC (55h), Note 2	
WRCABCMB (5Eh)	

Notes:

- 1. Also Short Packet (SPa) can be used; See Display Command Set (DCS) Write, No Parameter.
- 2. Also Short Packet (SPa) can be used; See Display Command Set (DCS) Write, 1 Parameter.

Long Packet (LPa), when a command (No Parameter) was sent, is defined e.g.

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 11 1001b
- Word Count (WC)
 - Word Count (WC): 0001h
- Error Correction Code (ECC)
- Packet Data (PD): Data 0: "Sleep In (10h)", Display Command Set (DCS)
- Packet Footer (PF)

This is defined on the Short Packet (SPa) as follows.

	(Da	nta I	D den		catio	on)			(Wo	V ord	/C - Coi	_		SB)			(Wc		Cou			SB)		(E	Erro	r Co	EC		on C	od	e)
			8'b :	39H							8'b	01H							8'b (00H							8'b	15H			
1	0	0	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0
В											В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L	L														М	L							М	L							М
S	S														S	S							S	S							S
В							В	В							В	В							В	В							В

Time

			Dat cke	ta 0 t Da	ata)					С	RC-	· LS	В					C	RC-	MS	В		
			8'b	10H							8'b	06H							8'b	1FH		1	
0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	1	1	1	1	1	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L		v.b	, de		7		М
S							S	S							S	S							S
В							В	В							В	В	1						В

Time

Figure 5.4.4-1: Display Command Set (DCS) Write, Long (DCSWL-S) with DCS Only- Example

A Long Packet (LPa) with one Write (1 parameter) is defined as:

- Data Identification (DI)
 - Virtual Channel (VC, DI [7...6]): 00b
 - Data Type (DT, DI [5...0]): 11 1001b
- Word Count (WC)
 - Word Count (WC): 0002h
- Error Correction Code (ECC)
- Packet Data (PD):
 - Data 0: "Gamma Set (26h)", Display Command Set (DCS)
 - Data 1: 01hex, Parameter of the DCS
- Packet Footer (PF)

	(Da	nta I	D den	-	catio	on)			(Wo		/C - Coi	_		SB)			(Wo		Cou			SB)		(E	rro	r Co	E0 orre		on C	ode	e)
		i	8'b (39H							8'b	02H	I					i	8'b (00H							8'b	13H			
1	0	0	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0
В	B B B B B B B B B B										В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L	L														М	L							М	L							М
S	S														S	S							S	S							S
В							В	В							В	В							В	В							В

Time

			Dat (DC								Dat arar		er)					С	RC	-LS	В					С	RC-	MS	В		
			8'b :	26H							8'b (01H						8	3'b [D2H					- (2)		8'b !	96H			
0	0 1 1 0 0 1 0 0 1 0 0												0	0	0	0	1	0	0	1	1	0	1	0	1	1	0	1	0	0	1
В	B B B B B B B B B B B B B B B												В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L	L														М	L				- 0		16	М	L							М
S	S														S	S						_	S	S							S
В							В	В							В	В					di		В	В							В

Time

Figure 5.4.4-2: Display Command Set (DCS) Write, Long with DCS and 1 Parameter - Example

A Long Packet (LPa) with one Write (4 parameters) is defined as:

- Data Identification (DI)
 - Virtual Channel (VC, DI [7...6]): 00b
 - Data Type (DT, DI [5...0]): 11 1001b
- Word Count (WC)
 - Word Count (WC): 0005h
- Error Correction Code (ECC)
- Packet Data (PD):
 - Data 0: "Column Address Set (2Ah)" (For example only), Display Command Set (DCS)
 - Data 1: 00hex, 1st Parameter of the DCS, Start Column SC [15...8]
 - Data 2: 12hex, 2nd Parameter of the DCS, Start Column SC [7...0]
 - Data 3: 01hex, 3rd Parameter of the DCS, End Column EC [15...8]
 - Data 4: EFhex, 4th Parameter of the DCS, End Column EC [7...0]
- Packet Footer (PF)

	(Da	nta I	D den		catio	on)			(Wo	W ord	/C - Coi	_		SB)			(Wo		C –			SB)		(E	Erro	r Co	EC		on C	ode	e)
			8'b :	39H							8'b	05H							8'b (00H							8'b :	36H			
1	0	0	1	1	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L							М	L							М
S							S	S							S	S							S	S							S
В							В	В							В	В							В	В							В

Time

			Dat (D0	ta 0 CS)					((1 st	Dat Par		eter)			(Dat Par)			((3 rd	Dat Para		eter)	
		- 1	8'b 2	2AH							8'b (00H							8'b	12H						1	8'b (01H			
0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	0	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L						V.d	М	L							М
S							S	S							S	S						3	S	S							S
В							В	В							В	В				d	7		В	В							В

Time

	(ta 4 ame	eter)				CI	RC -	- LS	В					CF	RC -	- MS	ВB		
		- 1	3'b l	EFH	1						3'b I	3DH	1					- 1	8'b 2	2AH			
1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	0	1	0	1	0	1	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L							М
S							S	S							S	S							S
В				3		٥.	В	В							В	В							В

Time

Figure 5.4.4-3: Display Command Set (DCS) Write, Long with DCS and 4 Parameter – Example

5.4.5 Display Command Set (DCS) Read, No Parameter (DCSRN-S)

"Display Command Set (DCS) Read, No Parameter" (DCSRN-S), which is defined in Data Type (DT, 00 0110b), is always used in a Short Packet (SPa) from the MCU to the display module. These commands are defined in the table below.

Command	
RDDID (04h)	
RDDPM (0Ah)	
RDDMADCTR (0Bh)	
RDDCOLMOD (0Ch)	
RDDIM (0Dh)	
RDDSM (0Eh)	A Day
RDDSDR (0Fh)	7/1/
GSL (45h)	4
RDDISBV (52h)	
RDCTRLD (54h)	
RDCABC (56h)	
RDCABCMB (5Fh)	
RDID1 (DAh)	
RDID2 (DBh)	
RDID3 (DCh)	

The MCU has to define to the display module the maximum size of the returned packet. The command, which is used for this purpose, is "Set Maximum Return Packet Size" (SMRPS-S), which Data Type (DT) is 11 0111b and is used in a Short Packet (SPa) before the MCU can send "Display Command Set (DCS) Read, No Parameter" to the display module. This sequence is illustrated for reference purposes below.

Step1

The MCU sends "Set Maximum Return Packet Size" (Short Packet (SPa)) (SMRPS-S) to the display module when it wants to return one byte from the display module.

- Data Identification (DI)
 - Virtual Channel (VC, DI [7...6]): 00b
 - Data Type (DT, DI [5...0]): 11 0111b
- Maximum Return Packet Size (MRPS)
 - Data 0: 01hex
 - Data 1: 00hex
- Error Correction Code (ECC)

	(Da	ata I		tific		on)					RPS								PS					(E	Erro			ctic		ode	e)
			8'b :	37H							8'b	01F	l						8'b (00H							3'b <i>1</i>	1DH	ł		
1	1	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L							М	L							М
S							S	S							S	S							S	S							S
В							В	В							В	В							В	В							В

Time

Figure 5.4.5-1: Set Maximum Return Packet Size (SMRPS-S) - Example

Step 2

The MCU wants to receive the value of the "Read ID1 (DAh)" from the display module when the MCU sends "Display Command Set (DCS) Read, No Parameter" to the display module.

- Data Identification (DI)
 - Virtual Channel (VC, DI [7...6]): 00b
 - Data Type (DT, DI [5...0]): 00 0110b
- Packet Data (PD)
 - Data 0: "Read ID1 (DAh)", Display Command Set (DCS)
 - Data 1: Always 00hex
- Error Correction Code (ECC)

			D)I							Dat	ta 0							Dat	ta 1							EC	CC			
	(Da	ata I	den	tific	cati	on)					(DC	CS)					(A	llwa	ays	8'b	00H	ł)		(E	rro	r Co	orre	ctic	n C	ode	e)
			8'b	06H				٧,	7	8	3'b [DAH	1						8'b (00H							8'b	1FH			
0	1	1	0	0	0	0	0	0	1	0	1	1	0	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L				1			М	L							М	L							М	L							М
S							S	S							S	S							S	S							S
В							В	В							В	В							В	В							В

Time

Figure 5.4.5-2: Display Command Set (DCS) Read, No Parameter (DCSRN - S) - Example

- Step 3

The display module can send 2 different information to the MCU after Bus Turnaround (BTA):

- 1. An acknowledge with Error Report (AwER), which is used in a Short Packet (SPa), if there is an error when receiving a command. See the section "Acknowledge with Error Report (AwER)".
- Information of the received command, which can be a Short Packet (SPa) or a Long Packet (LPa).

- 70 -

5.4.6 Null Packet, No Data (NP-L)

"Null Packet, No Data" (NP-L), which is defined in Data Type (DT, 001001b), is always used in a Long Packet (LPa) from the MCU to the display module. The purpose of this command is to keep data lanes in the high speed mode (HSDT) if necessary. The display module can ignore the Packet Data (PD) that the MCU sends.

A Long Packet (LPa) with 5 random data bytes of the Packet Data (PD) is defined as:

- Data Identification (DI)
 - Virtual Channel (VC, DI [7...6]): 00b
 - Data Type (DT, DI [5...0]): 00 1001b
- Word Count (WC)
 - Word Count (WC): 0005hex
- Error Correction Code (ECC)
- Packet Data (PD):
 - Data 0: 89hex (Random data)
 - Data 1: 23hex (Random data)
 - Data 2: 12hex (Random data)
 - Data 3: A2hex (Random data)
 - Data 4: E2hex (Random data)
- Packet Footer (PF)

	(Da	ata I	C den	-	catio	on)			(We		/C - Coi	_	B - L:	SB)			(Wc		Cou		_	SB)		(E	Erro	r Co	EC orre	CC ectio	on C	ode	e)
			8'b	09H					_		8'b	05H					-		8'b (00H							8'b :	30H			
1	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L						65	М	L							М	L							М	L							М
S							S	S							S	S							S	S							S
В						В	В							В	В							В	В							В	

Time

			Dat	a 0							Dat	ta 1							Dat	a 2							Dat	a 3			
			8'b 8	89H							8'b :	23H							8'b	12H						8	3'b /	42H			
1	0	0	1	0	0	0	1	1	1	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	1
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L							М	L							М
S							S	S							S	S							S	S							S
В							В	В							В	В							В	В							В

Time

			Dat	a 4						CI	۲C -	- LS	В					CF	₹C -	- М	SB		
			8'b l	E2H	I						8'b	59H							8'b :	29H			
0	1	0	0	0	1	1	1	1	0	0	1	1	0	1	0	1	0	0	1	0	1	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L							М
S							S	S							S	S							S
В							В	В							В	В							В

Time

Figure 5.4.6-1: Null Packet, No Data (NP- L) - Example

5.4.7 End of Transmission Packet (EoTP)

"End of Transmission Packet" (EoTP), which is an interface level function and defined in Data Type (DT, 00 1000b), is always used in a Short Packet (SPa) from the MCU to the display module. The purpose of this command is to terminate the high Speed Data Transmission (HSDT) mode properly when EoTP is added after the last payload packet before "End of Transmission" (EoT). The MCU can decide if it wants to use the "End of Transmission Packet" (EoTP) or not. The display shall have the capability to support both. That is, if the MCU applies the EoTP, it shall report the "DSI Protocol Violation Error" when the EoTP is not detected in the High-Speed (HS). The display module error reporting shall be enabled/disabled statistically, according to the module application. The display module does or does not receive "End of Transmission (LPDT) mode before "Mark-1" (= leaving the Escape mode) which ends the Low Power Data Transmission (LPDT) mode. The display module is not allowed to send "End of Transmission Packet" (EoTP) to the MCU during the Low Power Data Transmission (LPDT) mode. The summary of the receiving and transmitting EoTP is listed below.

Direction	Display Module (DM) in High Speed Data Transmission (HSDT)	Display Module (DM) in Low Power Data Transmission (LPDT)
MCU=> Display Module	Support with and without EoTP	Support with and without EoTP
Display Module => MCU	HS mode is not available (EoTP is not available)	EoTP cannot be sent by the Display Module (DM)

A Short Packet (SPa) using a fixed format is as follows:

- Data Identification (DI)
 - Virtual Channel (VC, DI [7...6]): 00b
 - Data Type (DT, DI [5...0]): 00 1000b
- Packet Data (PD)
 - Data 0: 0Fhex
 - Data 1: 0Fhex
- Error Correction Code

	(Da	ata I	D den		cati	on)					Dat	a 0							Dat	a 1				(E	rro	r Co	EC orre		n C	ode	e)
			8'b (H8C							8'b (0FH							8'b ()FH							8'b (01H			
0	0	0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L							М	L	, N	۲.					М
S							S	S							S	S						1	S	S	Ρ,						S
В							В	В							В	В						ω ^γ	В	В							В

Time

Figure 5.4.7-1: End of Transmission Packet (EoTP)

Some examples of the "End of Transmission Packet" (EoTP) are illustrated for reference purposes below.

Figure 5.4.7-2: End of Transmission Packet (EoTP) - Example

5.4.8 Acknowledge with Error Report (AwER)

"Acknowledge with Error Report" (AwER), which is defined in Data Type (DT, 00 0010b), is always used in a Short Packet (SPa) from the display module to the MCU. The Packet Data (PD) can include bits, which define the current error, when the corresponding bit is set to 1, as defined in the following table.

Bit	Description
0	SoT Error
1	SoT Sync Error
2	EoT Sync Error
3	Escape Mode Entry Command Error
4	Low-Power Transmit Sync Error
5	Any Protocol Timer Time-Out
6	False Control Error
7	Contention is Detected on the Display Module
8	ECC Error, single-bit (detected and corrected)
9	ECC Error, multi-bit (detected, not corrected)
10	Checksum Error (Long Packet only)
11	DSI Data Type (DT) Not Recognized
12	DSI Virtual Channel (VC) ID Invalid
13	Invalid Transmission Length
14	Reserved, Set to 0 internally
15	DSI Protocol Violation

These errors are included in all packages that have been received from the MCU to the display module before the Bus Turnaround (BTA). The display module ignores the received packet which includes error or errors.

Acknowledge with Error Report (AwER) of a Short Packet (SPa) is defined as:

- Data Identification (DI)
 - Virtual Channel (VC, DI [7...6]): 00b
 - Data Type (DT, DI [5...0]): 00 0010b
- Packet Data (PD)
 - Bit 8: ECC Error, single-bit (detected and corrected)
 - AwER: 0100h
- Error Correction Code (ECC)

	(Da	ata I	C der	-	cati	on)				Aw	ΈR	- L	SB					Aw	ER	– M	SB			(E	rro	r Co	EC orre		n C	ode	e)
			8'b	02H							8'b	00H						1	8'b (01H						8	3'b 3	3AH			
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L							М	L							М
S							S	S							S	S							S	S							S
В							В	В							В	В							В	В							В

Time

Figure 5.4.8-1: Acknowledge with Error Report (AwER) – Example

It is possible that the display module receives several packets, which include errors, from the MCU before the MCU performs the Bus Turnaround (BTA). Some examples are illustrated for reference purposes below.

Figure 5.4.8-2: Error Packets

Therefore, a method is needed to check if there are errors in the previous packets. These errors of the previous packets can be detected by "Read Display Signal Mode (0Eh)" and "Read Number of the Errors on DSI (05h)" commands. The bit D0 of the "Read Display Signal Mode (0Eh)" command will be set to 1 if a received packet includes an error. The amount of packets, which include an *ECC or CRC* error, is calculated in the RDNUMED register, which can read "Read Number of the Errors on DSI (05h)" command. This command also sets the RDNUMED register to 00h and set the bit D0 of the "Read Display Signal Mode (0Eh)" command to 0 after the MCU has read the RDNUMED register from the display module. The functionality of the RDNUMED register is illustrated for reference purposes below.

Figure 5.4.8-2: Flow Chart for Errors on DSI

Notes:

- 1. This information can be Interface or Packet Level Communication, but it is always from the MCU to the display module.
- 2. CRC or ECC error

5.4.9 DCS Read Long Response (DCSRR-L)

"DCS Read Long Response" (DCSRR-L), which is defined in Data Type (DT, 011100b), is always used in a Long Packet (LPa) from the display module to the MCU. "DCS Read Long Response" (DCSRR-L) is used when the display module wants to respond to a DCS Read command, which the MCU has sent to the display module. A Long Packet (LPa), which includes 5 data bytes of the Packet Data (PD), is defined as:

- Data Identification (DI)
- Virtual Channel (VC, DI [7...6]): 00b
- Data Type (DT, DI [5...0]): 01 1100b
- Word Count (WC)
- Word Count (WC): 0005hex
- Error Correction Code (ECC)
- Packet Data (PD):
- Data 0: 89hex
- Data 1: 23hex
- Data 2: 12hex
- Data 3: A2hex
- Data 4: E2hex
- Packet Footer (PF)

as	S:																													
-		Dat	a l	de	ntif	ica	tio) n	OI)																					
-	\	∕irt	ua	l C	haı	nne	el ('	۷C	, D	l [7	. 6]	: 0	0b																	
-		Dat	a -	Гур	e ((DT	Γ, Ε)] [(5	0])	: 01	110	0b																	
-	١	Νo	rd	Со	un	t (V	۷C)																	70					
-	١	Νo	rd	Со	un	t (V	۷C): (00	5h	ex																			
-	E	Erro	or (Co	rre	ctic	on (Cod	de	(E(CC)																			
-	F	⊃a(cke	t D	ata	a (F	PD)):																						
-		Dat	a (): 8	9h	ex														7										
-		Dat	a 1	1: 2	23h	ex																								
-		Dat	a 2	2: 1	2h	ex																								
-		Dat	a 3	3: <i>F</i>	\2h	ex																								
-		Dat	a 4	4: E	E2h	ex																								
-	F	⊃a(cke	t F	00	ter	(P	F)																						
_																														_
			_)I							/C – LS							C –		_						EC				
((Da				atio	on)			(Wo		Count		SB)			(Wc		Cou			SB)	4	(E	rro	r Co				ode	∍)
0	0	1	າ 1	1C⊦ 1	0	0	0	1	0	1	8'b 05F 0 0	0	0	0	0	0	0	3'b C	0	0	0)	1	0	0	1	29H 0	1	0	0
В	В	В	В	В	В	В	В	В	В	В	ВВ	В	В	В	В	В	В	В	В	В		_	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3 4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L						1	M	L						M	L							M	L							M
S							S B	S B						S B	S B							S	S B							S B
																							_							

Time

			Dat	a 0							Da	ta1							Da	ta2							Da	ta3			
			8'b	89H							8'b :	23H							8'b	12H							3'b /	42H			
1	0	0	1	0	0	0	1	1	1	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	1
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L							М	L							М
S							S	S							S	S							S	S							S
В							В	В							В	В							В	В							В

Time

			Dat	a 4						CI	۲C -	- LS	В					CF	RC -	- MS	SB		
			8'b	E2H	l						8'b	59H							8'b :	29H			
0	1	0	0	0	1	1	1	1	0	0	1	1	0	1	0	1	0	0	1	0	1	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L							М
S							S	S							S	S							S
В							В	В							В	В							В

5.4.10 DCS Read Short Response, 1 Byte Returned (DCSRR1-S)

"DCS Read Short Response, 1 Byte Returned" (DCSRR1-S), which is defined in Data Type (DT, 10 0001b), is always used in a Short Packet (SPa) from the display module to the MCU. "DCS Read Short Response, 1 Byte Returned (DCSRR1-S) is used when the display module wants to respond to a DCS Read command, which the MCU has sent to the display module.

A Short Packet (SPa) is defined as:

- Data Identification (DI)
- Virtual Channel (VC, DI [7...6]): 00b
- Data Type (DT, DI [5...0]): 10 0001b
- Packet Data (PD)
- Data 0: 45hex
- Data 1: 00hex (Always)
- Error Correction Code (ECC)

	L	Jai	a I	dei	ntif	ica	tio	n ([OI)																						
-	\	/irt	ua	l C	hai	nne	el (\	۷C	, D	l [7	7	6])	00)b																	
-		Dat	a 7	Гур	e (DT	¯, C)] [{	5	.0])	: 1	0 0	00	1b																	
-	F	ac	cke	t D	ata	a (F	PD))																							
-		Dat	a (): 4	5h	ex																									
-		Dat	a 1	1: 0	0h	ex	(Al	lwa	ıys)																					
-	Е	Erro	or (Coi	rre	ctic	n (Cod	de	(E(CC)																			
																					A										
			D)I							Da	ta0							Da	ta1	-						E	CC			
	(Da	ta I	_) Itific	catio	on)				(Pa	Da [·] cke		ata)				(A	Alwa		ta1 8'b	00l	1)		(E	Erro	r Co			on C	ode))
	(Da		den	-		on)				•		t Da					(A		ays			1)		(E	rro		orre			ode	e)
1	(Da		den	tific		on)	0	1	0	•	cke	t Da		1	0	0	(<i>F</i>		ays	8'b		1)	0	(E	rro		orre	ctic		ode 0	e) 0
1 B		3	den 8'b	tific 21H		•	0 B	1 B	0 B	•	cke 8'b	t D a		1 B	0 B	0 B	6	0	ays 8'b	8'b 00H			0 B	(E			orre 8'b	otic 01H			
1 B 0	0	0	den 8'b :	tific 21H 0	1	0		-		1	cke 8'b 4 0	t D a 45H 0	0	1			0	0	8'b	8'b 00H 0	0	0		1	0	0	orre 8'b 0	otic 01H 0	0	0	0
	0	0 B	den 8'b : 0 B	21H 0 B	1 B	0 B		В		1 B	cke 8'b 4 0 B	t D a 45H 0 B	0 B	1 B		В	0	0 B	8'b 0 B	8'b 00H 0 B	0 B	0 B		1	0	0 B	orre 8'b 0	01H 0 B	0 B	0 B	0
	0	0 B	den 8'b : 0 B	21H 0 B	1 B	0 B	B 7	В		1 B	cke 8'b 4 0 B	t D a 45H 0 B	0 B	1 B	B 7	В	0	0 B	8'b 0 B	8'b 00H 0 B	0 B	0 B	B 7	1	0	0 B	orre 8'b 0	01H 0 B	0 B	0 B	0 B 7

Time

Figure 5.4.10-1: DCS Read Short Response, 1Byte Return (DCSRR1-S) - Example

5.4.11 DCS Read Short Response, 2 Byte Returned (DCSRR2-S)

"DCS Read Short Response, 2 Bytes Returned" (DCSRR2-S), which is defined in Data Type (DT, 10 0010b), is always used in a Short Packet (SPa) from the display module to the MCU. "DCS Read Short Response, 2 Bytes Returned" (DCSRR2-S) is used when the display module wants to respond to a DCS Read command, which the MCU has sent to the display module.

A Short Packet (SPa) is defined as:

- Data Identification (DI)
- Virtual Channel (VC, DI [7...6]): 00b
- Data Type (DT, DI [5...0]): 10 0010b
- Packet Data (PD)
- Data 0: 45hex
- Data 1: 32hex
- Error Correction Code (ECC)

-	\/irtual Ch			`	OI)																						
	Virtual Ch	ann	el ('	VC,	, Di	I [7	,	6])	00)b																	
-	Data Type	e (D	Γ, Ε) [5	5	0])	: 1	0 0	01	0b														ø			
-	Packet Da	ata (I	D))																							
-	Data 0: 45	5hex																									
-	Data 1: 32	2hex																									
_	Error Corr	rection	on (Coc	de ((EC	CC)																			
						`		,									Ž										
	DI						Dat	a 0							Da	404							EC	СС			
	DI (Data Identifica	ation)							ata)						Da	ta1				(E	rro	r Co			on C	ode	e)
		ation)				(Pa		t Da				e.				ta1 32H				(E	Erro		orre			ode	e)
0	(Data Identifica 8'b 22H	ation)	0	1	0	(Pa	cke	t Da		1	0	0	1	0			1	0	0	(E	Erro 1		orre	ctic		ode	e)
0 B	(Data Identifica 8'b 22H 1 0 0 0		1	1 B	1	(Pa	cke 8'b	t D a		1 B	0 B	0 B	1 B		8'b		1 B	0 B	0 B		1 B		orre	of H			
Ě	Columbia Columbia	1 0	0	-	0	(Pa	cke 8'b 4	t D a	0	1 B 6			1 B 1	0	8'b	32H 1	1	_		1	1	1	orre 8'b (of the office of	0	0	0
В	Columbia Columbia	1 0 B B	0	В	0	(Pa 1 B	cke 8'b 4 0 B	t D : 45H 0 B	0 B	_		В	1 B 1	0 B	8'b 0 B	32H 1 B	1 B	В		1 B 0	1	1	B'b (OFH 0 B	0 B	0 B	0
В	Columbia Columbia	1 0 B B	0 B 7	В	0	(Pa 1 B	cke 8'b 4 0 B	t D : 45H 0 B	0 B	_	B 7	В	1 B 1	0 B	8'b 0 B	32H 1 B	1 B	В	B 7	1 B 0	1	1	B'b (OFH 0 B	0 B	0 B	0 B 7

Time

Figure 5.4.11-1: DCS Read Short Response, 2Byte Returned (DCSRR2-S) - Example

5.5. Communication Sequences

5.5.1 General

The communication sequences can be done on interface or packet levels between the MCU and the display module. See sections "Interface Level Communication" and "Packet Level Communication". This communication sequence description is for DSI data lanes (D3P/N, D2P/N, D1P/N and D0P/N), and it is assumed that the needed low level communication is done on DSI Clock lane (CLKP/N) automatically. See the section "DSI CLK Lanes". Functions of the interface level communication are described in the following table.

5.5.1 Table 1: Interface Level Communication

Interface Mode	Abbreviation	Interface Action Description
	LP-11	Stop state
	LPDT	Low power data transmission
	ULPS	Ultra- Low power state
Low Power	RAR	Remote application reset
	TEE	Tearing effect event (Not supported)
	ACK	Acknowledge (No error)
	BTA	Bus turnaround
High Speed	HSDT	High speed data transmission

Functions of the packet level communication are described on the following table.

5.5.1 Table 2: Packet level communication

Packet Sender	Abbreviation	Packet Size	Packet Description
	DCSW1-S	SPa	DCS Write, 1 Parameter
_	DCSWN-S	SPa	DCS Write, No Parameter
MCH	DCSW-L	LPa	DCS Write, Long
MCU	DCSRN-S	SPa	DCS Read, No Parameter
- CAR V	SMRPS-S	SPa	Set maximum return packet size
	NP-L	LPa	Null packet, No data
4 11 11/2	AwER	SPa	Acknowledge with error report
Diamlay Madula	DCSRR-L	LPa	DCS Read, Long Response
Display Module	DCSRR1-S	SPa	DCS Read, Short Response
-	DCSRR2-S	SPa	DCS Read, Short Response

5.5.2 Sequences -DCS Write, 1 Parameter Sequence

A Short Packet (SPa) of "Display Command Set (DCS) Write, 1 Parameter (DCSW1-S)" is defined on chapter "Display Command Set (DCS) Write, 1 Parameter (DCSW1-S)" and example sequences, how this packet is used is described on following tables.

Table 5.5.2-1 DCS Write,1 parameter Sequence – Example 1

	МС	U		Display	Module	
Line	Packet Sender	Interface Mode Control	Interface Direction	Interface Mode Control	Packet Sender	Comment
1	-	LP-11	=>	-	1	Start
2	DCSW1-S	LPDT	=>	-	-	- N. W.
3	-	LP-11	=>	-	-	End

Table 5.5.2-2 DCS Write, 1 parameter Sequence – Example 2

	МС	U		Display	Module	
1 !	Daalast	Interface	Interface	Interface	Davidad	0
Line	Packet Sender	Mode	Direction	Mode	Packet Sender	Comment
		Control		Control		
1	-	LP-11	=>	4	-	Start
2	DCSW1-S	HSDT	=>		-	
3	EoTP	HSDT	=>		-	End of Transmission Packet
4	ı	LP-11	^	-	-	End

Table 5.5.2-3 DCS Write,1 parameter Sequence – Example 3

	MC	U		Display	Module	
Lina	Danket	Interface	Interface	Interface	Daalaat	Comment
Line	Packet Sender	Mode	Direction	Mode	Packet Sender	Comment
		Control		Control		
1	111111111111111111111111111111111111111	LP-11	=>	-	-	Start
2	DCSW1-S	HSDT	=>	-	-	
3	EoTP	HSDT	=>	-	-	End of Transmission Packet
4		LP-11	=>			
5		ВТА	<=>	ВТА		Interface control change from
5		ын)	ын		the MCU to the display module
6		_	<=	LP-11		If no error => goto line 8
I "		_	_	L1 -11		If error => goto line 13
7						
8		-	<=	ACK		No error
9		1	\=	LP-11		
40		DTA	4-5	DTA		Interface control change from
10		BTA	<=>	BTA		the display module to the MCU
11		LP-11	=>	-		End
12		_				

13		-	<=	LPDT	AwER	Error report
14		ı	\ =	LP-11		
15		BTA	<=>	BTA		
16	-	LP-11	=>	-	-	End

5.5.3 Sequences -DCS Write, No Parameter Sequence

A Short Packet (SPa) of "Display Command Set (DCS) Write, No Parameter (DCSWN-S)" is defined on chapter "Display Command Set (DCS) Write, No Parameter (DCSWN-S)" and example sequences, how this packet is used, is described on following tables.

Table 5.5.3-1 DCS Write, No parameter Sequence – Example 1

	МС	U		Display	Module	
Line	Packet Sender	Interface Mode Control	Interface Direction	Interface Mode Control	Packet Sender	Comment
1	-	LP-11	=>	-	- 10	Start
2	DCSWN-S	LPDT	=>	-	-60	
3	-	LP-11	=>	-		End

Table 5.5.3-2 DCS Write, No parameter Sequence – Example 2

				•		
	МС	U		Display	Module	
Line	Packet Sender	Interface Mode Control	Interface Direction	Interface Mode Control	Packet Sender	Comment
1	-	LP-11	=>	-	ı	Start
2	DCSWN-S	HSDT	^	-	1	
3	EoTP	HSDT	=>	-	-	End of Transmission Packet
4	- 3	LP-11	=>	-	-	End

Table 5.5.3-3 DCS Write, No parameter Sequence – Example 3

	МС	U		Display	Module	
Line	Packet Sender	Interface Mode Control	Interface Direction	Interface Mode Control	Packet Sender	Comment
1	-	LP-11	=>	-	-	Start
2	DCSWN-S	HSDT	=>	1	-	
3	EoTP	HSDT	=>	1	-	End of Transmission Packet
4		LP-11	=>			
5		ВТА	<=>	ВТА		Interface control change from the MCU to the display module
6		-	<=	LP-11		If no error => goto line 8 If error => goto line 13
7						
8		-	<=	ACK		No error
9		-	<=	LP-11		

10		ВТА	<=>	ВТА		Interface control change from the display module to the MCU
11		LP-11	=>	-		End
12						
13		1	\ =	LPDT	AwER	Error report
14		1	<=	LP-11		
15		BTA	<=>	BTA		
16	-	LP-11	=>	1	ı	End

5.5.4 Sequences –DCS Write, Long Sequence

A Long Packet (LPa) of "Display Command Set (DCS) Write Long (DCSW-L)" is defined on chapter "Display Command Set (DCS) Write Long (DCSW-L)" and example sequences, how this packet is used, is described on following tables.

Table 5.5.4-1 DCS Write, Long Sequence – Example 1

_					<u>, </u>		
		MC	U		Display	Module	
	Line	Packet Sender	Interface Mode Control	Interface Direction	Interface Mode Control	Packet Sender	Comment
	1	1	LP-11	=>			Start
	2	DCSW-L	LPDT	=>	60	0.	
	3	-	LP-11	=>	10-10	-	End

Table 5.5.4-2 DCS Write, Long Sequence – Example 2

	MCU			Display	Module	
Line	Packet Sender	Interface Mode Control	Interface Direction	Interface Mode Control	Packet Sender	Comment
1	-	LP-11	=>	-	-	Start
2	DCSW-L	HSDT	=>	1	1	
3	EoTP	HSDT	=>	-	-	End of Transmission Packet
4		LP-11	=>	-	-	End

Table 5.5.4-3 DCS Write, Long Sequence – Example 3

	МС	U		Display	Module	
Line	Packet	Interface	Interface	Interface	Packet	Comment
Lille	Sender	Mode	Direction	n Mode Sender	Comment	
		Control		Control		
1	1	LP-11	=>	-	-	Start
2	DCSW-L	HSDT	^	-	1	
3	EoTP	HSDT	^	-	1	End of Transmission Packet
4		LP-11	^			
5		ВТА	<=>	ВТА		Interface control change from
3		סוא	\	ык		the MCU to the display module
6		_	<=	LP-11		If no error => goto line 8
			`-	L1 *11		If error => goto line 13

7							
8			-	<=	ACK		No error
9			-	<=	LP-11		
10			ВТА	<=>	ВТА		Interface control change from
			DIA	\ <u>-</u> >	DIA		the display module to the MCU
11			LP-11	=>	-		End
12							
13	1		-	<=	LPDT	AwER	Error report
14			_	<=	LP-11		
15			BTA	<=>	BTA		
16	;	-	LP-11	=>	-	-	End

5.5.5 Sequences –DCS Read, No Parameter Sequence

A Short Packet (SPa) of "Display Command Set (DCS) Read, No Parameter (DCSRN-S)" is defined on chapter "Display Command Set (DCS) Read, No Parameter (DCSRN-S)" and example sequences, how this packet is used, is described on following tables.

Table 5.5.5-1 DCS Read, No Parameter Sequence – Example 1

	MC	U		Display	Module	
Line	Packet Sender	Interface Mode Control	Interface Direction	Interface Mode Control	Packet Sender	Comment
1	-	LP-11	=>	10	-	Start
2	SMRPS-S	HSDT	=>	-	-	Define how many data byte is wanted to read: 1 byte
3	DCSRN-S	HSDT	=>	-	-	wanted to get a response ID1 (DAh)
4	EoTP	HSDT	=>	-	-	End of Transmission Packet
5	- 207	LP-11	=>	-	-	
						Interface control change from
6	10	ВТА	<=>	ВТА	-	the MCU to the display module
7	1112	-	<=	LP-11	-	If no error => goto line 9 If error => goto line 14
0						If error is corrected by ECC => go to line 19
8						_
9	-	-	<=	LPDT	DCSRR1 -S	Responded 1 byte return
10	-	-	<=	LP-11	-	
11	-	ВТА	<=>	вта	-	Interface control change from the display module to the MCU
12	-	LP-11	=>	-	-	End
13						
14	-	-	<=	LPDT	AwER	Error report
15	-	-	<=	LP-11	-	

16	-	ВТА	<=>	ВТА	-	Interface control change from the display module to the MCU
17	-	LP-11	=>	-	-	End
18						
19	-	-	<=	LPDT	DCSRR1 -S	Responded 1 byte return
20	-	-	<=	LPDT	AwER	Error Report (Error is Corrected by ECC)
21	-	-	<=	LP-11	-	
22	-	ВТА	<=>	ВТА	-	Interface control change from the display module to the MCU
23	-	LP-11	=>		-	End

5.5.6 Sequences -Null Packet, No Data Sequence

A Long Packet (LPa) of "Null Packet, No Data (NP-L)" is defined on chapter "Null Packet, No Data (NP-L)" and example sequences, how this packet is used, is described on following tables.

Table 5.5.6-1 Null Packet, No Data Sequence – Example

	MCU			Display Module				
Line	Packet Sender	Interface Mode Control	Interface Direction	Interface Mode Control	Packet Sender	Comment		
1	-	LP-11	=>	-	-	Start		
2	NP-L	HSDT	=>	-	-	Only high speed data transmission is used.		
3	EoTP	HSDT	=>			End of transmission Packet		
4	-	LP-11	=>	-	_	End		

5.5.7 Sequences -End of Transmission Packet

A Short Packet (SPa) of "End of Transmission (EoT)" is defined on chapter "End of Transmission Packet (EoT)" and an example sequences, how this packet is used, is described on following tables.

Table 5.5.7-1 End of Transmission Packet – Example

	MCU			Display Module		I ₂ -	
Line	Packet Sender	Interface Mode Control	Interface Direction	Interface Mode Control	Packet Sender	Comment	
1	-	LP-11	=>	-	-	Start	
2	NP-L	HSDT	=>	-	-	Only high speed data transmission is used.	
3	EoTP	HSDT	=>			End of transmission Packet	
4	-	LP-11	=>	-	1.00	End	
CHIP 6 NE							

5.6 Video Mode Communication

Video Mode peripherals require pixel data delivered in real time. This section specifies the format and timing of DSI traffic for this type of display module.

5.6.1 Transmission Packet Sequences

DSI supports several formats, or packet sequences, for Video Mode data transmission. The peripheral's timing requirements dictate which format is appropriate. In the following sections, *Burst Mode* refers to time-compression of the RGB pixel (active video) portion of the transmission. In addition, these terms are used throughout the following sections:

- Non-Burst Mode with Sync Pulses enables the peripheral to accurately reconstruct original video timing, including sync pulse widths.
- Non-Burst Mode with Sync Events similar to above, but accurate reconstruction
 of sync pulse widths is not required, so a single Sync Event is substituted.
- Burst mode RGB pixel packets are time-compressed, leaving more time during a scan line for LP mode (saving power) or for multiplexing other transmissions onto the DSI link.

In the following figures the Blanking or Low-Power Interval (BLLP) is defined as a period during which video packets such as pixel-stream and sync event packets are not actively transmitted to the peripheral. To enable PHY synchronization the host processor should periodically end HS transmission and drive the Data Lanes to the LP state. This transition should take place at least once per frame; shown as LPM in the figures in this section. It is recommended to return to LP state once per scan-line during the horizontal blanking time. Regardless of the frequency of BLLP periods, the host processor is responsible for meeting all documented peripheral timing requirements. Note, at lower frequencies BLLP periods will approach, or become, zero, and burst mode will be indistinguishable from non-burst mode.

During the BLLP the DSI Link may do any of the following:

- Remain in Idle Mode with the host processor in LP-11 state and the peripheral in LP-RX
- Transmit one or more non-video packets from the host processor to the peripheral using Escape Mode
- Transmit one or more non-video packets from the host processor to the peripheral using HS Mode
- If the previous processor-to-peripheral transmission ended with BTA, transmit one or more packets from the peripheral to the host processor using Escape Mode
- Transmit one or more packets from the host processor to a different peripheral using a different Virtual Channel ID

The sequence of packets within the BLLP or RGB portion of a HS transmission is arbitrary. The host processor may compose any sequence of packets, including iterations, within the limits of the packet format definitions. For all timing cases, the

first line of a frame shall start with VS; all other lines shall start with HS. This is also true in the special case when VSA+VBP=0. Note that the position of synchronization packets, such as VS and HS, in time is of utmost importance since this has a direct impact on the visual performance of the display panel.

Normally, RGB pixel data is sent with one full scan line of pixels in a single packet. If necessary, a horizontal scan-line of active pixels may be divided into two or more packets. However, individual pixels shall not be split across packets.

Transmission packet components used in the figures in this section are defined in Figure below unless otherwise specified.

Figure 5.6.1-1: DSI Video Mode Interface Timing Legend

If a peripheral timing specification for HBP or HFP minimum period is zero, the corresponding Blanking Packet may be omitted. If the HBP or HFP maximum period is zero, the corresponding blanking packet shall be omitted.

5.6.2 Non-Burst Mode with Sync Pulses

With this format, the goal is to accurately convey DPI-type timing over the DSI serial Link. This includes matching DPI pixel-transmission rates, and widths of timing events like sync pulses. Accordingly, synchronization periods are defined using packets transmitting both start and end of sync pulses. An example of this mode is shown in Figure below.

Figure 5.6.2-1: DSI Video Mode Interface Timing: Non-Burst Transmission with Sync Start and End

Normally, periods shown as HSA (Horizontal Sync Active), HBP (Horizontal Back Porch) and HFP (Horizontal Front Porch) are filled by Blanking Packets, with lengths (including packet overhead) calculated to match the period specified by the peripheral's data sheet. Alternatively, if there is sufficient time to transition from HS to LP mode and back again, a timed interval in LP mode may substitute for a Blanking Packet, thus saving power.

5.6.3 Burst Mode

In this mode, blocks of pixel data can be transferred in a shorter time using a time-compressed burst format. This is a good strategy to reduce overall DSI power consumption, as well as enabling larger blocks of time for other data transmissions over the Link in either direction. There may be a line buffer or similar memory on the peripheral to accommodate incoming data at high speed. Following HS pixel data transmission, the bus goes to Low Power Mode, during which it may remain idle, i.e. the host processor remains in LP-11 state, or LP transmission may take place in either direction. If the peripheral takes control of the bus for sending data to the host processor, its transmission time shall be limited to ensure data underflow does not occur from its internal buffer memory to the display device. An example of this mode is shown in Figure below.

Figure 5.6.2-1: DSI Video Mode Interface Timing: Burst Transmission

Similar to the Non-Burst Mode scenario, if there is sufficient time to transition from HS to LP mode and back again, a timed interval in LP mode may substitute for a Blanking Packet, thus saving power.

5.7 Display Data Format

5.7.1 16-bit per Pixel, Long Packet, Data Type 001110 (0Eh)

Figure 5.7.1-1: 16-bit per Pixel - RGB Color Format, Long Packet

Packed Pixel Stream 16-Bit Format is a Long packet used to transmit image data formatted as 16-bit pixels to a Video Mode display module. The packet consists of the DI byte, a two-byte WC, an ECC byte, a payload of length WC bytes and a two-byte checksum. Pixel format is five bits red, six bits green, five bits blue, in that order. Note that the "Green" component is split across two bytes. Within a color component, the LSB is sent first, the MSB last. With this format, pixel boundaries align with byte boundaries every two bytes. The total line width (displayed plus non-displayed pixels) should be a multiple of two bytes.

Normally, the display module has no frame buffer of its own, so all image data shall be supplied by the host processor at a sufficiently high rate to avoid flicker or other visible artifacts.

5.7.2 18-bit per Pixel, Long Packet, Data Type 011110 (1Eh)

Figure 5.7.2-1: 18-bit per Pixel – RGB Color Format, Long Packet

Packed Pixel Stream 18-Bit Format (Packed) is a Long packet. It is used to transmit RGB image data formatted as pixels to a Video Mode display module that displays 18-bit pixels The packet consists of the DI byte, a two-byte WC, an ECC byte, a payload of length WC bytes and a two-byte Checksum. Pixel format is red (6 bits), green (6 bits) and blue (6 bits), in that order. Within a color component, the LSB is sent first, the MSB last. Note that pixel boundaries only align with byte boundaries every four pixels (nine bytes). Preferably, display modules employing this format have a horizontal extent (width in pixels) evenly divisible by four, so no partial bytes remain at the end of the display line data. If the active (displayed) horizontal width is not a multiple of four pixels, the transmitter shall send additional fill pixels at the end of the

display line to make the transmitted width a multiple of four pixels. The receiving peripheral shall not display the fill pixels when refreshing the display device. For example, if a display device has an active display width of 399 pixels, the transmitter should send 400 pixels in one or more packets. The receiver should display the first 399 pixels and discard the last pixel of the transmission. With this format, the total line width (displayed plus non-displayed pixels) should be a multiple of four pixels (nine bytes).

5.7.3 18-bit per Pixel, Long Packet, Data Type 101110 (2Eh)

Figure 5.7.3-1: 18-bit per Pixel (Loosely Packed) - RGB Color Format, Long Packet

In the 18-bit Pixel Loosely Packed format, each R, G, or B color component is six bits but is shifted to the upper bits of the byte, such that the valid pixel bits occupy bits [7:2] of each byte. Bits [1:0] of each payload byte representing active pixels are ignored. As a result, each pixel requires three bytes as it is transmitted across the Link. This requires more bandwidth than the "packed" format, but requires less shifting and multiplexing logic in the packing and unpacking functions on each end of the Link. This format is used to transmit RGB image data formatted as pixels to a Video Mode display module that displays 18-bit pixels. The packet consists of the DI byte, a two-byte WC, an ECC byte, a payload of length WC bytes and a two-byte Checksum.

The pixel format is red (6 bits), green (6 bits) and blue (6 bits) in that order. Within a color component, the LSB is sent first, the MSB last. With this format, pixel boundaries align with byte boundaries every three bytes. The total line width (displayed plus non-displayed pixels) should be a multiple of three bytes.

5.7.4 24-bit per Pixel, Long Packet, Data Type 111110 (3Eh)

Figure 5.7.4-1: 24-bit per Pixel - RGB Color Format, Long Packet

Packed Pixel Stream 24-Bit Format is a Long packet. It is used to transmit image data formatted as 24-bit pixels to a Video Mode display module. The packet consists of the DI byte, a two-byte WC, an ECC byte, a payload of length WC bytes and a two-byte Checksum. The pixel format is red (8 bits), green (8 bits) and blue (8 bits), in that order. Each color component occupies one byte in the pixel stream; no components are split across byte boundaries. Within a color component, the LSB is sent first, the MSB last.With this format, pixel boundaries align with byte boundaries every three bytes. The total line width (displayed plus non-displayed pixels) should be a multiple of three bytes.

6 Functions

6.1. Oscillator

The ICNL9706 can oscillate an internal R-C oscillator with an internal oscillation resistor. The oscillation frequency is changed according to the internal register if needed. The default frequency is 45MHz. The oscillation frequency tolerance is ±5%.

Figure 6.1-1: Oscillator architecture

SHIPSINE

6.2 Content Adaptive Brightness Control (CABC)

The CABC, a dynamic backlight control function, drastically reduces the power consumption of the luminance source. The ICNL9706 will refer the gray scale content of the display image to output in PWM waveform then to the LED driver for backlight brightness control. The content of gray scale can be increased while simultaneously lowering the brightness of the backlight to achieve the same perceived brightness. The adjusted gray level scale and the power consumption reduction depend on the content of the image.

Figure 6.2-1: CABC Block Diagram

The ICNL9706 can calculate the backlight brightness level and send a CABC_PWM_OUT pulse to the LED driver via CABC_PWM_OUT pin for backlight brightness control purposes. The PWM frequency can be adjusted by PWM_DIV parameters, and the calculating equation is shown below:

$$f_{CABC_PWM_OUT} = \frac{32MHz}{(PWM_DIV[7:0]+1)x255}$$

The basic timing diagram which is applied from the ICNL9706 in order to control the LED driver

Figure 6.2-2: CABC_PWM_OUT On/Off Period

6.3 Gamma Function

The structure of grayscale amplifier is shown as below. The 19 voltage levels between VSPR and VSNR are determined by the gradient adjustment register, the reference adjustment register, the amplitude adjustment resister and the micro- adjustment register.

Figure 6.3-1: Gamma register stream and Gamma reference voltage

6.4. OTP Programing Flow

6.4.1 Level 2 OTP Programing flow

Figure 6.4.1-1: Level 2 OTP Programing Flow

6.4.2 ID code and VCOM OTP Programing flow

Figure 6.4.2-1: ID code and VCOM OTP Programing Flow

6.5 Tearing Effect

6.5.1 Tearing effect output line

The Tearing Effect output line supplies a panel synchronization signal. This signal can be enabled or disabled by the Tearing Effect Line Off & On commands. The mode of the Tearing Effect signal is defined by the parameter of the Tearing Effect Line On command. The signal can be used by the MPU to synchronize frame memory writing when displaying video images. Tearing Effect Line Modes

Mode 1, the Tearing Effect Output signal consists of V-Blanking Information only:

Figure 6.5-1: Tearing effect output signal mode 1

t_{vdh}= The LCD display is not updated from the Frame Memory t_{vdl}= The LCD display is updated from the Frame Memory

6.5.2 Tearing effect line timing

The Tearing Effect signal is described below:

Figure 6.5.2-1: Tearing effect output line – tearing effect line timing

Condition: Idle mode off, Frame Rate =60Hz, Resolution: 800(RGB) *1280

Signal	Cumbal	Parameter	Specification			Unit	Notes
Signal	Symbol	Parameter	MIN	TYP	MAX	Ullit	Notes
TE	tvdl	Vertical Timing Low Duration	15			mS	
TE	tvdh	Vertical Timing High Duration	VFP+VBP+VHP			nS	
TE	Tr	Rise Time			15	nS	
TE	Tf	Fall Time			15	nS	

Note MADCTL ML=0 and ML=1

The signal's rise and fall times (Tr, Tf) are stipulated to be equal to or less than 15nS.

Figure 6.5.2-2: Tearing effect output line -definition of Tr,Tf

6.6 Sleep Out - Command

6.6.1 Register loading detection

Sleep Out-command (See "Sleep Out (11h)") is a trigger for an internal function of the display module, which indicates, if the display module loading function of factory default values from OTP (or similar device) to registers of the display controller is working properly. There are compared factory values of the OTP and register values of the display controller by the display controller. If those both values (OTP and register values) are same, there is inverted (=increased by 1) a bit, which is defined in command "Read Display Self-Diagnostic Result (0Fh)" (=RDDSDR) (The used bit of this command is D7). If those both values are not same, this bit (D7) is not inverted (=increased by 1). The flow chart for this internal function is following:

Figure 6.6-1: Sleep out flow chart-command and self-diagnostic functions

6.6.2 Functionality detection

Sleep Out-command (See "Sleep Out (11h)") is a trigger for an internal function of the display module, which indicates, if the display module is still running and meets functionality requirements. The internal function (=the display controller) is comparing, if the display module still meets functionality requirements (e.g. booster voltage levels, timings, etc.). If functionality requirement is met, 1 bit will be inverted (=increased by 1), which is defined in command "Read Display Self- Diagnostic Result (0Fh)" (=RDDSDR) (The used bit of this command is D6). If functionality requirement is not the same, this bit (D6) is not inverted (=increased by 1). The flow chart for this internal function is shown as below.

Figure 6.6.2-1: Sleep out flow chart internal function detection

Note: There is needed 120msec. After Sleep Out –command, when there is changing from sleep In –mode to Sleep Out –mode, before there is possible to check if Customer's functionality requirements are met and a value of RDDSDR's D6 is valid. Otherwise, there is 5msec delay for D6's value, when Sleep Out –command is sent in Sleep Out –mode.

7. Power On/ OFF Sequence

7.1. Power ON Sequence

If RESX line is held high or unstable by the host during Power On, then a Hardware Reset must be applied after both VCI and IOVCC have been applied – otherwise correct functionality is not guaranteed. There is no timing restriction upon this hardware reset.

If RESX line is held Low (and stable) by the host during Power On, then the RESX must be held low for minimum 10µsec after both VCI and IOVCC have been applied. The power on sequence for different power input modes are shown below figures.

Table 7.1-1 Power On Sequence Timing

Symbol	Value			Unit	Remark			
Symbol	Min.	Тур.	Max.	Unit	Remain			
TOn1	0			mS				
TOn2	0			mS				
TOn3	0		78	mS				
TOn4	0		67 A	mS				
T2		No limit	10	uS				
T3	0	6	P	mS				
T4	10			mS				
T5	20			mS				
T6	0		T4	mS				
T7	10			uS				
T8	120			mS				

7.1.1 Power ON-PCCS[1:0]=L,L Mode Sequence

Application Power: IOVCC, VSP, VSN, VGH, VGL

Figure 7.1.1-1: Power On-PCCS[1:0]= L,L mode sequence

Note1: Unless otherwise specified, timings herein show cross point at 50% of signal/power level.

Note2: This power-on sequence is based on adding schottky diode on VGL pin to ground.

Note3: Keep VGH is equal to or larger than VSP during power on sequence.

7.1.2 Power ON- PCCS[1:0] =H,L Mode Sequence

Application Power: IOVCC, VCI

Figure 7.1.2-1: Power On-PCCS[1:0]= H,L mode sequence

Note1: Unless otherwise specified, timings herein show cross point at 50% of signal/power level.

Note2: This power-on sequence is based on adding schottky diode on VGL pin to ground.

7.1.3 Power ON- PCCS[1:0]= H,H Mode Sequence

Application Power: IOVCC, VSP, VSN

Figure 7.1.3-1: Power On-PCCS[1:0]= H,H mode sequence

Note1: Unless otherwise specified, timings herein show cross point at 50% of signal/power level.

Note2: This power-on sequence is based on adding schottky diode on VGL pin to ground.

7.2 Power OFF Sequence

The power off sequence for different power input modes are shown below figures.

Table 7.2-1 Power Off Sequence Timing

	Value			Unit	Remark
Symbol	Min.	Тур.	Max.	Unit	Remark
Toff1	0			mS	
Toff2	0			mS	
Toff3	0			mS	
Toff4	0			mS	
T9	150			uS	
T12	0			mS	
T13	0			mS	1 /20
T14	100			mS	V 11.

7.2.1 Power OFF-PCCS[1:0]=L,L Mode Sequence

Figure 7.2.1-1: Power OFF- PCCS[1:0]= L,L mode sequence

Note1: Unless otherwise specified, timings herein show cross point at 50% of signal/power level.

Note2: Keep VGH is equal to or larger than VSP during power off sequence.

7.2.2 Power OFF- PCCS[1:0] =H,L Mode Sequence

Application Power: IOVCC, VCI

Figure 7.2.2-1: Power OFF- PCCS[1:0]= H,L mode sequence

Note1: Unless otherwise specified, timings herein show cross point at 50% of signal/power level.

7.2.3 Power OFF- PCCS[1:0]= H,H Mode Sequence

Application Power: IOVCC, VSP, VSN

Figure 7.2.3-1: Power OFF- PCCS[1:0]= H,H mode sequence

Note1: Unless otherwise specified, timings herein show cross point at 50% of signal/power level.

8. Command

8.1. Instruction Code Table

8.1.1 Instruction Code Table → Level 1

Name	CMD	Para	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Initial Hex
NOP	00h	0	W	No Para	ımeter					D	A-Y	-
SWRESET	01h	0	W	No Para	meter				1	64		-
		1	R	ID1[7:0]				. 0	1			00H
RDDID	04h	2	R	ID2[7:0]			- 1	1				00H
		3	R	ID3[7:0]			8-	C .				00H
RDNUMED	05h	1	R	P[7:0]		~4	O)	97				00H
		1	R	ST[31:2	4]	27						00H
DDDCT	0011	2	R	ST[23:1	6]	6						71H
RDDST	09H	3	R	ST[15:8]): T						00H
		4	R	ST[7:0]) ~							00H
RDDPM	0Ah	1	R	D[7:0]								08H
RDDMADCTR	0Bh	1	R	D[7:0]								00H
RDDCOLMOD	0Ch	1	R	D[7:0]								00H
RDDIM	0Dh	1	R	D[7:0]								00H
RDDSM	0Eh	1	R	D[7:0]								00H
RDDSDR	0Fh	1	R	D[7:0]								00H
SLPIN	10h	0	W	No Para	meter							-
SLPOUT	11h	0	W	No Para	meter							-
NORN	13h	0	W	No Para	meter							-
INVOFF	20h	0	W	No Para	meter							-
INVON	21h	0	W	No Para	meter							-
ALLPOFF	22h	0	W	No Para	meter							-
ALLPON	23h	0	W	No Para	meter							-
GAMSET	26h	1	W	0	0	0	0		GC	[3:0]		01H
DISPOFF	28h	0	W	No Para	meter							-
DISPON	29h	0	W	No Para	meter							-
TEOFF	34h	0	W	No Para	meter							-

Mobile Display Driver

TEON	35h	1	W	0	0	0	0	0	0	0	М	00H
MADCTR	36h	1	W	0	0	0	ML	RGB	МН	0	0	00H
IDMOFF	38h	0	W	No Para	meter	l		I		l		-
IDMON	39h	0	W	No Para	meter							-
COLMOD	3Ah	1	W	0		VPF[2:0]		0	0	0	0	70H
OTFOL	4.41-	1	W	N[15:8]						•	•	00H
STESL	44h	2	W	N[7:0]								00H
RDSCL	4Eb	1	R	SLN[15:	8]							00H
RDSCL	45h	2	R	SLN[7:0]							00H
WRDISBV	51h	1	W	DBV[7:0]							00H
RDDISBV	52h	1	R	DBV[7:0]							00H
WRCTRLD	53h	1	W	0	0	BCTL	0	DD	BL	0	0	00H
RDCTRLD	54h	1	R	0	0	BCTL	0	DD	BL	0	0	00H
WRCABC	55h	1	W	0	0	0	0	0	0	CAB	C [1:0]	00H
RDCABC	56h	1	R	0	0	0	0	0	0	CAB	C [1:0]	00H
WRCABCMB	5Eh	1	W	CMB[7:0	0]		1	1	0			00H
RDCABCMB	5Fh	1	R	CMB[7:0	0]		8	6				00H
RDID1	DAh	1	R	ID1[7:0]		- 43	O)	95.				00H
RDID2	DBh	1	R	ID2[7:0]	- 4	6.7						00H
RDID3	DCh	1	R	ID3[7:0]	0	1						00H
		1		ID3[7:0]	1							

8.1.2 Instruction Code Table → Level 2

Name	CMD	Para	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Initial (Hex)
		1	W	0	0			GOUTL_	SEL1[5:0]			03
		2	W	0	0			GOUTL_	SEL2[5:0]			03
		3	W	0	0			GOUTL_	SEL3[5:0]			03
		4	W	0	0			GOUTL_	SEL4[5:0]			03
		5	W	0	0			GOUTL_	SEL5[5:0]	2		03
		6	W	0	0			GOUTL_	SEL6[5:0]	(K.		03
		7	W	0	0			GOUTL_	SEL7[5:0]	~		03
		8	W	0	0			GOUTL_	SEL8[5:0]			03
		9	W	0	0		- 4	GOUTL_	SEL9[5:0]			03
		10	W	0	0		18	GOUTL_9	SEL10[5:0]			03
001171	-	11	W	0	0	1	A.	GOUTL_9	SEL11[5:0]			03
GOUTL	В3	12	W	0	0	26		GOUTL_S	SEL12[5:0]			03
		13	W	0	0)		GOUTL_9	SEL13[5:0]			03
		14	W	0	0			GOUTL_9	SEL14[5:0]			03
		15	W	0	0			GOUTL_S	SEL15[5:0]			03
		16	W	0	0			GOUTL_S	SEL16[5:0]			03
	4	17	W	0	0			GOUTL_S	SEL17[5:0]			03
0	X	18	W	0	0			GOUTL_S	SEL18[5:0]			03
C	6	19	W	0	0			GOUTL_S	SEL19[5:0]			03
		20	W	0	0			GOUTL_S	SEL20[5:0]			03
		21	W	0	0			GOUTL_S	SEL21[5:0]			03
		22	W	0	0			GOUTL_S	SEL22[5:0]			03
		1	W	0	0			GOUTR_	SEL1[5:0]			03
00/175		2	W	0	0			GOUTR_	SEL2[5:0]			03
GOUTR	B4	3	W	0	0			GOUTR_	SEL3[5:0]			03
		4	W	0	0			GOUTR_	SEL4[5:0]			03

A. C.	JC 7.					Widolic Display Di						
		5	W	0	0			GOUTR_	SEL5[5:0]	03		
		6	W	0	0			GOUTR_	SEL6[5:0]	03		
		7	W	0	0			GOUTR_	SEL7[5:0]	03		
		8	W	0	0			GOUTR_	SEL8[5:0]	03		
		9	W	0	0			GOUTR_	SEL9[5:0]	03		
		10	W	0	0			GOUTR_S	SEL10[5:0]	03		
		11	W	0	0			GOUTR_S	SEL11[5:0]	03		
		12	W	0	0			GOUTR_S	SEL12[5:0]	03		
		13	W	0	0			GOUTR_S	SEL13[5:0]	03		
		14	W	0	0			GOUTR_S	SEL14[5:0]	03		
		15	W	0	0			GOUTR_S	SEL15[5:0]	03		
		16	W	0	0			GOUTR_S	SEL16[5:0]	03		
		17	W	0	0			GOUTR_S	SEL17[5:0]	03		
		18	W	0	0		. <	GOUTR_S	SEL18[5:0]	03		
		19	W	0	0		GOUTR_SEL19[5:0]					
		20	W	0	0	9	100	GOUTR_S	SEL20[5:0]	03		
		21	W	0	0	20		GOUTR_S	SEL21[5:0]	03		
		22	W	0	0			GOUTR_S	SEL22[5:0]	03		
		1	RW	· Co			ID1	[7:0]		00		
		2	RW	91			ID2	[7:0]		00		
SETID	B5	3	RW	10			ID3	[7:0]		00		
	1	4	R	0	0	0	0	0	OTP_ID_TIMES[2:0]	00		
PWRCO		1	RW				VCOM_F	WS[7:0]		2F		
N_VCO	В6	2	RW				VCOM_E	BWS[7:0]		2F		
М		3	R	0	0	0 0 0 OTP_VCOM_TIMES[2:0]						
		1	W	0	0	VSP_DC_H[5:0]						
		2	W	0	0	VSN_DC_H[5:0]						
PWRCO	В7	3	W	0	0	VCL_DC_H[5:0]						
N_SEQ		4	W	0	0	VGH_DC_H[5:0]						
		5	W	0	0			VGL_D	C_H[5:0]	0D		
						VGL_DC_H[5:0]						

Parison	集创	JL J.	J			Mobile Display Drive						iver		
			6	W	0	0	0 GAM_DC_H[5:0]						15	
PWRCC			7	W	0	0			VCOM_D	C_H[5:0]			19	
			8	W	0	0	0	1	1	1	0	1	1D	
			9	W	0	0	1	0	0	0	0	1	21	
			10	W	0	0	0	1	1	1	0	1	1D	
			11	W		VCL_D	C_L[3:0]			VSP_D	C_L[3:0]		00	
			12	W		VCOM_D	DC_L[3:0]			VGL_D	C_L[3:0]		00	
PWRCO			13	W		VGH_D	C_L[3:0]		VSN_DC_L[3:0]				20	
PWRCO			14	W	0	0	0	0		GAM_D	C_L[3:0]		00	
PWRCO N_CLK 2			15	W	0	0	0	0		DISCH	I_L[3:0]		02	
PWRCO N_CICK			1	W	0	١	/GL_RT[2:0]		VGH_I	RT[3:0]		24	
N_CLK B8 3 W VCOM_EN_S[1:0] DCDCM[1:0] SHT 0 VSP_PMIC[1:0] 30 4 W 0 VGL_CLK_S[2:0] 0 VCL_CLK_S[2:0] 34 5 W 0 PWRIC_CLK_S[2:0] 0 VGH_CLK_S[2:0] 53 PWRCO N_BTA B9 2 W 0 0 1 0 0 0 0 0 1 A1 2 W 0 0 0 1 0 0 0 0 0 0 0 20 3 W 1 1 1 1 1 1 1 1 1 1 1 FF 4 W GAS_EN GAS_IO_S[2:0] GAS_VCI_S[3:0] C4 PWRCO N_MOD E			2	W	0	0	0	0	. 4	OTP_VGI	H_RT[3:0]		01	
For the bound of		B8	3	W	VCOM_E	EN_S[1:0]	DCDC	M[1:0]	100 OF A	0	VSP_PI	MIC[1:0]	30	
PWRCO N_BTA PWRCO N_MOD R			4	W	0	VO	GL_CLK_S[2	2:0]	0	VC	CL_CLK_S[2	:0]	34	
PWRCO N_BTA 2 W 0 0 1 0 0 0 0 0 20 3 W 1			5	W	0	PWI	RIC_CLK_S	[2:0]	0	VG	GH_CLK_S[2	2:0]	53	
N_BTA PWRCO N_BTA N			1	W	1	0	1	0	0	0	0	1	A1	
N_BTA	PWRCO	DO	2	W	0	0	1	0	0	0	0	0	20	
PWRCO N_MOD E BA 1 W VCSW2_H Z VCSW2_S[2:0] VCSW1_H Z VCSW1_S[2:0] 27 2 W 0 1 1 0 0 0 1 1 63 4 W 0 1 0 VSP_S[4:0] 4B 4B 9WRCO N_REG 4 W 0 0 VGMP_S[7:0] 4B 4 W 0 0 VGMN_S[7:0] 4B 5 W 0 0 VGH_S[5:0] 20 6 W 0 0 OTP_VGH_S[5:0] 14 7 W 0 0 OTP_VGH_S[5:0] 00	N_BTA	В9	3	W	1	1	1	1	1	1	1	1	FF	
N_MOD BA 1			4	W	GAS_EN	G	AS_IO_S[2:	0]		GAS_V	CI_S[3:0]		C4	
PWRCO N_REG PWRCO			1	W	9	V	CSW2_S[2:	0]		V	CSW1_S[2:	0]	27	
PWRCO N_REG 2	Е	1	2	W	0	1	1	0	0	0	1	1	63	
PWRCO N_REG PWRCO N_REG BD 3 W VGMP_S[7:0] 4B VGMN_S[7:0] 4B VGMN_S[7:0] 20 6 W 0 0 0 VGH_S[5:0] 20 7 W 0 0 0 OTP_VGH_S[5:0] 00			1	W	0	1	0			VSP_S[4:0]			4E	
PWRCO N_REG	V		2	W		VCL_S[2:0]				VSN_S[4:0]			0E	
N_REG			3	W				VGMP	_S[7:0]				4B	
N_REG 5 W 0 0 VGH_S[5:0] 20 6 W 0 0 VGL_S[5:0] 14 7 W 0 0 OTP_VGH_S[5:0] 00	PWRCO	RD	4	W				VGMN	_S[7:0]				4B	
7 W 0 0 OTP_VGH_S[5:0] 00	N_REG	טט	5	W	0	0			VGH_	S[5:0]			20	
			6	W	0	0	0 VGL_				VGL_S[5:0]			
8 W 0 0 VGL_REG_S[5:0] 14			7	W	0	0 OTP_VGH_S[5:0]					00			
			8	W	0	0			VGL_RE	G_S[5:0]			14	

Mobile Display Driver

集创	JL J.	,		Mobile Display Driver							VCI	
		9	W	0	1	0	0	0	0	1	1	43
		10	W	0	0	0	0	0	0	1	1	03
		1	W	0	0	0	1	0	0	0	BIST_ON	10
BIST	C0	2	W	1	1	1	1	1	1	1	1	FF
		3	W	1	1	1	1	1	1	1	1	FF
		1	W				VBP	[7:0]				0C
		2	W				VFP	[7:0]				10
TCON	C1	3	W				VSA	[7:0]				04
TCON	C1	4	W				НВР	[7:0]		-		0C
		5	W				HFP	[7:0]		D		10
		6	W				HSA	[7:0]	1	00		04
TCON_2	C2	1	W	NL_FIX	0	0	NL[8]	0	0	RSC)[1:0]	82
TCON_2	02	2	W				NL[7:0]	-			10
		1	W	0	120	D_BLKF_S[2	2:0]	BLK_KP	02	I_BLKF_S[2	2:0]	22
TCON_3	C3	2	W	REV_EOR	B4_EOR	B3_EOR	B2_EOR	0	0	0	1	01
		3	W	0	0	0	0	0	1	0	0	04
DSTB	C4	1	W	0	0	0	0	0	0	0	DSTB	00
		1	W		U		SD1	[7:0]				08
		2	W				SD2	[7:0]				10
		3	W	690			SD3	[7:0]				68
SRC_TI	C6	4	W				OP_OI	N1[7:0]	T			08
М	00	5	W	0	0	0	1	0	1	1	0	16
0	6	6	W				OP_OF	F1[7:0]	1		T	60
0		7	W	0	0	1	1	0	1	1	0	36
		8	W	0	0	0	0	0	0	0	0	00
		1	W	0	0	Z_SHIFT	Z_LINE	0	I	NV_SEL[2:0)]	05
		2	W	0	0	1	0		OPDI	R[3:0]	T	23
SRCCO N	C7	3	W	0	SMEQOFF	1	0	1	0	1	1	2B
		4	W	0	1	0	0	0	0	0	1	41
		5	W	PORCH_H IZ	PORCH_G ND	SDSW_DA TA	SDPORC H_DATA	0	NEQSTOP	0	0	00

No.							
SET_GA MMA SET_GA MMA SET_GA MMA SET_GA MMA SET_GA MMA A B B B B B B B B B B B B			1	W	0	VPR18[6:0]	7C
A			2	W	0	VPR17[6:0]	6D
SET_GA MMAA SET_G			3	W	0	VPR16[6:0]	63
6			4	W	0	VPR 15[6:0]	59
Form			5	W	0	VPR 14[6:0]	57
SET_GA MMA			6	W	0	VPR 13[6:0]	4A
SET_GA MMAA SET_GA SET			7	W	0	VPR 12[6:0]	51
SET_GA MMA			8	W	0	VPR 11[6:0]	3A
SET_GA MMA SET_GA MMA SET_GA MMA 11			9	W	0	VPR 10[6:0]	55
SET_GA MMA SET_GA MMA SET_GA MMA 12			10	W	0	VPR 9[6:0]	53
SET_GA MMA 8			11	W	0	VPR 8[6:0]	55
SET_GA MMA 8			12	W	0	VPR 7[6:0]	7A
SET_GA MMAA 8			13	W	0	VPR 6[6:0]	6F
MMA 16 W 0 VPR 3[6:0] 72 17 W 0 VPR 2[6:0] 62 18 W 0 VPR 1[6:0] 2D 19 W 0 VPR 0[6:0] 06 20 W 0 VNR 18[6:0] 7C 21 W 0 VNR 17[6:0] 6D 22 W 0 VNR 16[6:0] 59 24 W 0 VNR 14[6:0] 57 25 W 0 VNR 13[6:0] 4A 26 W 0 VNR 12[6:0] 51 27 W 0 VNR 10[6:0] 55 29 W 0 VNR 10[6:0] 53			14	W	0	VPR 5[6:0]	7F
MMA 16 W 0 VPR 3[6:0] 72 17 W 0 VPR 1[6:0] 62 18 W 0 VPR 1[6:0] 2D 19 W 0 VPR 0[6:0] 06 20 W 0 VNR 18[6:0] 7C 21 W 0 VNR 17[6:0] 6D 22 W 0 VNR 16[6:0] 63 23 W 0 VNR 15[6:0] 59 24 W 0 VNR 14[6:0] 57 25 W 0 VNR 13[6:0] 51 27 W 0 VNR 12[6:0] 51 27 W 0 VNR 10[6:0] 55 29 W 0 VNR 9[6:0] 53	SET_GA	00	15	W	0	VPR 4[6:0]	75
18 W 0 VPR 1[6:0] 2D 19 W 0 VPR 0[6:0] 06 20 W 0 VNR18[6:0] 7C 21 W 0 VNR 17[6:0] 6D 22 W 0 VNR 16[6:0] 59 24 W 0 VNR 14[6:0] 57 25 W 0 VNR 13[6:0] 57 26 W 0 VNR 12[6:0] 51 27 W 0 VNR 11[6:0] 51 28 W 0 VNR 10[6:0] 55 29 W 0 VNR 10[6:0] 55	MMA	C8	16	W	0	VPR 3[6:0]	72
19 W 0 VPR 0[6:0] 06 20 W 0 VNR18[6:0] 7C 21 W 0 VNR 17[6:0] 6D 22 W 0 VNR 16[6:0] 63 23 W 0 VNR 15[6:0] 59 24 W 0 VNR 14[6:0] 57 25 W 0 VNR 13[6:0] 4A 26 W 0 VNR 12[6:0] 51 27 W 0 VNR 11[6:0] 3A 28 W 0 VNR 10[6:0] 55 29 W 0 VNR 10[6:0] 55			17	W	0	VPR 2[6:0]	62
20 W 0 VNR18[6:0] 7C 21 W 0 VNR 17[6:0] 6D 22 W 0 VNR 16[6:0] 63 23 W 0 VNR 15[6:0] 59 24 W 0 VNR 14[6:0] 57 25 W 0 VNR 13[6:0] 4A 26 W 0 VNR 12[6:0] 51 27 W 0 VNR 11[6:0] 52 28 W 0 VNR 10[6:0] 55 29 W 0 VNR 10[6:0] 55			18	W	0	VPR 1[6:0]	2D
21 W 0 VNR 17[6:0] 6D 22 W 0 VNR 16[6:0] 63 23 W 0 VNR 15[6:0] 59 24 W 0 VNR 14[6:0] 57 25 W 0 VNR 13[6:0] 4A 26 W 0 VNR 12[6:0] 51 27 W 0 VNR 11[6:0] 3A 28 W 0 VNR 10[6:0] 55			19	W	0	VPR 0[6:0]	06
22 W 0 VNR 16[6:0] 63 23 W 0 VNR 15[6:0] 59 24 W 0 VNR 14[6:0] 57 25 W 0 VNR 13[6:0] 4A 26 W 0 VNR 12[6:0] 51 27 W 0 VNR 11[6:0] 3A 28 W 0 VNR 10[6:0] 55 29 W 0 VNR 9[6:0] 53			20	W	0	VNR18[6:0]	7C
23 W 0 VNR 15[6:0] 59 24 W 0 VNR 14[6:0] 57 25 W 0 VNR 13[6:0] 4A 26 W 0 VNR 12[6:0] 51 27 W 0 VNR 11[6:0] 3A 28 W 0 VNR 10[6:0] 55 29 W 0 VNR 9[6:0] 53			21	W	0	VNR 17[6:0]	6D
24 W 0 VNR 14[6:0] 57 25 W 0 VNR 13[6:0] 4A 26 W 0 VNR 12[6:0] 51 27 W 0 VNR 11[6:0] 3A 28 W 0 VNR 10[6:0] 55 29 W 0 VNR 9[6:0] 53		1	22	W	0	VNR 16[6:0]	63
25 W 0 VNR 13[6:0] 4A 26 W 0 VNR 12[6:0] 51 27 W 0 VNR 11[6:0] 3A 28 W 0 VNR 10[6:0] 55 29 W 0 VNR 9[6:0] 53	-1		23	W	0	VNR 15[6:0]	59
26 W 0 VNR 12[6:0] 51 27 W 0 VNR 11[6:0] 3A 28 W 0 VNR 10[6:0] 55 29 W 0 VNR 9[6:0] 53	O	-	24	W	0	VNR 14[6:0]	57
27 W 0 VNR 11[6:0] 3A 28 W 0 VNR 10[6:0] 55 29 W 0 VNR 9[6:0] 53			25	W	0	VNR 13[6:0]	4A
28 W 0 VNR 10[6:0] 55 29 W 0 VNR 9[6:0] 53			26	W	0	VNR 12[6:0]	51
29 W 0 VNR 9[6:0] 53			27	W	0	VNR 11[6:0]	3A
			28	W	0	VNR 10[6:0]	55
30 W 0 VNR 8[6:0] 55			29	W	0	VNR 9[6:0]	53
			30	W	0	VNR 8[6:0]	55

31 W 0	朱凹	JL J.									Widone D	ispiay Dri	701
33 W 0 VNR 5[6:0] VNR 4[6:0] VNR			31	W	0				VNR 7[6:0]				7A
34 W 0 VNR 4[6:0]			32	W	0				VNR 6[6:0]				6F
35 W 0 VNR 3[6:0] VNR 1[6:0] VNR 1[6:0] VNR 1[6:0] VNR 0[6:0] VNR			33	W	0				VNR 5[6:0]				7F
36 W			34	W	0				VNR 4[6:0]				75
37 W 0 VNR 1[6:0] VNR 0[6:0] O 0 0 0 0 0 0 0 0 0			35	W	0				VNR 3[6:0]				72
Section Sect			36	W	0				VNR 2[6:0]				62
The color of the			37	W	0				VNR 1[6:0]				2D
CE_CTL CA			38	W	0				VNR 0[6:0]				06
3 RW 0 0 0 0 0 0 0 0 0			1	RW	0	0	0	0	0	0	0	0	00
OTP_AU TO_PR OG CB 1	CE_CTL	CA	2	RW	0	0	0	0	0	0	0	CE_CTL	00
OTP_AU TO_PR OG CB 2			3	RW	0	0	0	0	0	0	0	0	00
TO_PR OG	OTD ALL		1	W	0	0	0	0	. 10				03
ABON_CTR DO	TO_PR		2	W	0	0	0	0	0	0	0		00
ABON_ CTR D0 2 W FS_DETECT[7:0] 3 W BATON_CNT[7:0] 1 W 0 0 1 0 PWM_PO	00		3	W	0	0	0	0	0	0	0		00
CTR D0 2 W FS_DETECT[7:0] BATON_CNT[7:0] 1 W 0 0 1 0 PWM_PO 0 PWM_EN 0 2 W BCFRQSEL[7:0] 3 W 0 0 1 0 0 0 0 0 0 0 4 W 0 0 0 0 0 0 0 0 0 5 W 0 0 0 0 0 0 0 0 0 DGC_C TRL E3 1 W 0 0 0 0 0 0 0 DTR_EN DGC_EN			1	W	0	0	0	0	0	FS_BLK	1	FS_EN	07
BATON_CNT[7:0]		D0	2	W		0	0	FS_DET	ECT[7:0]				10
PWM_C TR 1			3	W				BATON_	CNT[7:0]				00
PWM_C TR			1	W	0	0	1	0		0	PWM_EN	0	22
TR	PWM C		2	W	B			BCFRQ	SEL[7:0]				03
5 W 0 0 0 0 0 0 0 0 DGC_C TRL E3 1 W 0 0 0 0 0 0 DTR_EN DGC_EN	_	E0	3	W	0	0	1	0	0	0	0	0	20
DGC_C	0	0	4	W	0	0	0	0	0	0	0	0	00
TRL E3 1 W 0 0 0 0 0 0 DTR_EN DGC_EN	U	9	5	W	0	0	0	0	0	0	0	0	FF
1 W DGC_R_V255[9:2]		E3	1	W	0	0	0	0	0	0	DTR_EN	DGC_EN	00
			1	W				DGC_R_	V255[9:2]				FF
2 W DGC_R_V254[9:2]			2	W				DGC_R_	V254[9:2]				FE
DGC_R E4 3 W DGC_R_V252[9:2]	DGC_R	E4	3	W				DGC_R_	V252[9:2]				FC
4 W DGC_R_V250[9:2]			4	W				DGC_R_	V250[9:2]				FA
5 W DGC_R_V248[9:2]			5	W				DGC_R_	V248[9:2]				F8

未也	J	_		Widolic Display Dis	1 7 01
		6	W	DGC_R_V244[9:2]	F4
		7	W	DGC_R_V240[9:2]	F0
		8	W	DGC_R_V232[9:2]	E8
		9	W	DGC_R_V224[9:2]	E0
		10	W	DGC_R_V208[9:2]	D0
		11	W	DGC_R_V192[9:2]	C0
		12	W	DGC_R_V160[9:2]	A0
		13	W	DGC_R_V128[9:2]	80
		14	W	DGC_R_V127[9:2]	7F
		15	W	DGC_R_V95[9:2]	5F
		16	W	DGC_R_V63[9:2]	3F
		17	W	DGC_R_V47[9:2]	2F
		18	W	DGC_R_V31[9:2]	1F
		19	W	DGC_R_V23[9:2]	17
		20	W	DGC_R_V15[9:2]	0F
		21	W	DGC_R_V11[9:2]	0B
		22	W	DGC_R_V7[9:2]	07
		23	W	DGC_R_V5[9:2]	05
		24	W	DGC_R_V3[9:2]	03
		25	W	DGC_R_V1[9:2]	01
		26	W	DGC_R_V0[9:2]	00
	10	1	W	DGC_G_V255[9:2]	FF
0	1	2	W	DGC_G_V254[9:2]	FE
C	-	3	W	DGC_G_V252[9:2]	FC
		4	W	DGC_G_V250[9:2]	FA
DGC_G	E5	5	W	DGC_G_V248[9:2]	F8
		6	W	DGC_G_V244[9:2]	F4
		7	W	DGC_G_V240[9:2]	F0
		8	W	DGC_G_V232[9:2]	E8
		9	W	DGC_G_V224[9:2]	E0
			_		

朱凹	JL 1.			Modile Display Dri	1 1 0 1
		10	W	DGC_G_V208[9:2]	D0
		11	W	DGC_G_V192[9:2]	C0
		12	W	DGC_G_V160[9:2]	A0
		13	W	DGC_G_V128[9:2]	80
		14	W	DGC_G_V127[9:2]	7F
		15	W	DGC_G_V95[9:2]	5F
		16	W	DGC_G_V63[9:2]	3F
		17	W	DGC_G_V47[9:2]	2F
		18	W	DGC_G_V31[9:2]	1F
		19	W	DGC_G_V23[9:2]	17
		20	W	DGC_G_V15[9:2]	0F
		21	W	DGC_G_V11[9:2]	0B
		22	W	DGC_G_V7[9:2]	07
		23	W	DGC_G_V5[9:2]	05
		24	W	DGC_G_V3[9:2]	03
		25	W	DGC_G_V1[9:2]	01
		26	W	DGC_G_V0[9:2]	00
		1	W	DGC_B_V255[9:2]	FF
		2	W	DGC_B_V254[9:2]	FE
		3	W	DGC_B_V252[9:2]	FC
		4	W	DGC_B_V250[9:2]	FA
	10	5	W	DGC_B_V248[9:2]	F8
0		6	W	DGC_B_V244[9:2]	F4
DGC_B	E6	7	W	DGC_B_V240[9:2]	F0
		8	W	DGC_B_V232[9:2]	E8
		9	W	DGC_B_V224[9:2]	E0
		10	W	DGC_B_V208[9:2]	D0
		11	W	DGC_B_V192[9:2]	C0
		12	W	DGC_B_V160[9:2]	A0
		13	W	DGC_B_V128[9:2]	80

		14	W		DGC_B_	V127[9:2]				7F
		15	W		DGC_B_	V95[9:2]				5F
		16	W		DGC_B_	V63[9:2]				3F
		17	W		DGC_B_	V47[9:2]				2F
		18	W		DGC_B_	V31[9:2]				1F
		19	W		DGC_B_	V23[9:2]				17
		20	W		DGC_B_	V15[9:2]				0F
		21	W		DGC_B_	V11[9:2]				0B
		22	W		DGC_B	_V7[9:2]		- 0		07
		23	W		DGC_B	_V5[9:2]		0		05
		24	W		DGC_B_V3[9:2]					
		25	W		DGC_B_V1[9:2]					
		26	W		DGC_B_V0[9:2]					00
		1	W	DGC_R_V255[1:0]	DGC_R_V254[1:0]	DGC_R_\	V252[1:0]	DGC_R_\	V250[1:0]	00
		2	W	DGC_R_V248[1:0]	DGC_R_V244[1:0]	DGC_R_\	V240[1:0]	DGC_R_\	V232[1:0]	00
		3	W	DGC_R_V224[1:0]	DGC_R_V208[1:0]	DGC_R_\	V192[1:0]	DGC_R_\	V160[1:0]	00
DGC_R _L	E7	4	W	DGC_R_V128[1:0]	DGC_R_V127[1:0]	DGC_R_	V95[1:0]	DGC_R_	V63[1:0]	00
		5	W	DGC_R_V47[1:0]	DGC_R_V31[1:0]	DGC_R_	V23[1:0]	DGC_R_	V15[1:0]	00
		6	W	DGC_R_V11[1:0]	DGC_R_V7[1:0]	DGC_R	_V5[1:0]	DGC_R	_V3[1:0]	00
		7	W	DGC_R_V1[1:0]	DGC_R_V0[1:0]	0	0	0	0	00
		1	W	DGC_G_V255[1:0]	DGC_G_V254[1:0]	DGC_G_\	V252[1:0]	DGC_G_\	V250[1:0]	00
	10	2	W	DGC_G_V248[1:0]	DGC_G_V244[1:0]	DGC_G_\	V240[1:0]	DGC_G_\	V232[1:0]	00
0		3	W	DGC_G_V224[1:0]	DGC_G_V208[1:0]	DGC_G_\	V192[1:0]	DGC_G_	V160[1:0]	00
DGC_G	E8	4	W	DGC_G_V128[1:0]	DGC_G_V127[1:0]	DGC_G_	_V95[1:0]	DGC_G_	V63[1:0]	00
		5	W	DGC_G_V47[1:0]	DGC_G_V31[1:0]	DGC_G_	_V23[1:0]	DGC_G_	V15[1:0]	00
		6	W	DGC_G_V11[1:0]	DGC_G_V7[1:0]	DGC_G	_V5[1:0]	DGC_G	_V3[1:0]	00
		7	W	DGC_G_V1[1:0]	DGC_G_V0[1:0]	0	0	0	0	00
		1	W	DGC_B_V255[1:0]	DGC_B_V254[1:0]	DGC_B_\	V252[1:0]	DGC_B_\	V250[1:0]	00
DGC_B_ L	E9	2	W	DGC_B_V248[1:0]	DGC_B_V244[1:0]	DGC_B_\	V240[1:0]	DGC_B_\	V232[1:0]	00
		3	W	DGC_B_V224[1:0]	DGC_B_V208[1:0]	DGC_B_\	V192[1:0]	DGC_B_\	V160[1:0]	00

Mobile Display Driver

				1			1		1
	4	W	DGC_B_V128[1:0]	DGC_B_V127[1:0]	DGC_B_	V95[1:0]	DGC_B	_V63[1:0]	00
	5	W	DGC_B_V47[1:0]	DGC_B_V31[1:0]	DGC_B_	V23[1:0]	DGC_B_	_V15[1:0]	0
	6	W	DGC_B_V11[1:0]	DGC_B_V7[1:0]	DGC_B	_V5[1:0]	DGC_B	3_V3[1:0]	0
	7	W	DGC_B_V1[1:0]	DGC_B_V0[1:0]	0	0	0	0	0
PASSW F0	1	W		PASSWO)RD1[7:0]				Α
ORD1	2	W		PASSWO)RD1[7:0]				Α
PASSW F1	1	W)RD1[7:0]				5
RD2	2	W		PASSWO)RD1[7:0]				5

8.2 Level 1 Command Description

8.2.1 NOP: NOP (00h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
NOP	W	0	0	0	0	0	0	0	0	00h
Parameter	-				No	o Paramet	er			

Description	This command is empty command. It does not have effect on the display module.					
Restriction						
	Status	Availability				
Register	Normal Mode On, Idle Mode Off, Sleep Out	Yes				
Availability	Normal Mode On, Idle Mode On, Sleep Out	Yes				
	Sleep In	Yes				
		, T				
	Status	Default Value				
Default	Power On Sequence	N/A				
Delault	S/W Reset	N/A				
	H/W Reset	N/A				
Flow Chart						
61						

8.2.2 SWRESET: Software Reset (01h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
SWRESET	W	0	0	0	0	0	0	0	1	01h
Parameter					No	o Paramet	er			

When the Software Reset command is written, it causes a se	oftware reset. It resets the command						
and parameters to their S/W Reset default values and all source & gate outputs are set to GN							
	nand following software reset.						
5msec.	11/2						
If Software Reset is applied during Sleep Out mode, it will be	e necessary to wait 120msec before						
sending Sleep Out command.							
Software Reset command cannot be sent during Sleep Out	sequence.						
Status	Availability						
Normal Mode On, Idle Mode Off, Sleep Out	Yes						
Normal Mode On, Idle Mode On, Sleep Out	Yes						
Sleep In	Yes						
Status	Default Value						
Power On Sequence	N/A						
S/W Reset	N/A						
H/W Reset	N/A						
SWRESET	Legend						
Display whole	command						
blank screen	Parameter /						
· · · · · · · · · · · · · · · · · · ·	Display						
Commands	Action						
to S/W Default Value	Mode						
1 10	Sequential transfer						
	It will be necessary to wait 5msec before sending new common The display module loads all display suppliers' factory defautions. If Software Reset is applied during Sleep Out mode, it will be sending Sleep Out command. Software Reset command cannot be sent during Sleep Out Status Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Sleep In Status Power On Sequence S/W Reset H/W Reset						

8.2.3 RDDID: Read Display ID (04h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
RDDID	R	0	0	0	0	0	1	0	0	04h
Parameter	1	ID17	ID16	ID15	ID14	ID13	ID12	ID11	ID10	-
Parameter	2	ID27	ID26	ID25	ID24	ID23	ID22	ID21	ID20	-
Parameter	3	ID37	ID36	ID35	ID34	ID33	ID32	ID31	ID30	-

NOTE: "-"Don't care

	Status	Availability						
Restriction								
	3 of the command 04h, respectively.	. 63						
	NOTE: Commands RDID1/2/3(DAh, DBh, DCh) read	data correspond to the parameters 1, 2 and						
Description	The 3 rd parameter (ID37 to UD30): LCD module/driver	r ID.						
Description	The 2 nd parameter (ID27 to ID20): LCD module/driver	version ID.						
	The 1st (ID17 to ID10): LCD module's manufacturer ID).						
	This read byte returns 24-bit display identification information.							

Register Availability

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Sleep In	Yes

If ID1/ID2/ID3 OTP are not yet programmed:

Status	Default Value			
Status	ID1	ID2	ID3	
Power On Sequence	00h	80h	00h	
S/W Reset	00h	80h	00h	
H/W Reset	00h	80h	00h	

Default

If ID1/ID2/ID3 OTP were programmed:

Status	Default Value				
Status	ID1	ID2	ID3		
Power On Sequence	(OTP value)	(OTP value)	(OTP value)		
S/W Reset	(OTP value)	(OTP value)	(OTP value)		
H/W Reset	(OTP value)	(OTP value)	(OTP value)		

8.2.4 RDNUMED: Read Number of Errors on DSI (05h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
RDNUMED	R	0	0	0	0	0	1	0	1	05h
Parameter	1	P7	P6	P5	P4	P3	P2	P1	P0	00h

NOTE DOI	The first parameter is telling a number of the parity errors of	on DSI. The more detailed description of						
	the bits is below.	on both the more detailed description of						
Description	P[60] bits are telling a number of the parity errors. P[7] is set to "1" if there is overflow with P[60] bits.							
Description		re set "O" et the serve times) often the resis						
	P[70] bits are set to "0"s (as well as RDDSM(0Eh)'s D0 a	A 18,000						
	sent the first parameter information (= The read function is	A 10. Y						
-	See also section "Acknowledge with Error Report (AwER)	and command RDDSM 0En.						
Restriction	-	, 62						
	211							
Danista.	Status	Availability						
Register	Normal Mode On, Idle Mode Off, Sleep Out	Yes						
Availability	Normal Mode On, Idle Mode On, Sleep Out	Yes						
	Sleep In	Yes						
	Status	Default Value						
Default	Power On Sequence	00h						
Delault	S/W Reset	No Changed						
	H/W Reset	00h						
	RDUMED(05h) those							
	RDUMED(05h) HOST	Legend						
. 1	Send 1* Parameter Driver	command						
0	/ State 1 to annual /	Parameter /						
Flow Chart	P[7:0]=00h	Display						
	RDDSM(0Eh)' 5 DO= "0"	< Action >						
		(Mode)						
		Sequential						
		namica						

8.2.5 RDDST: Read Display Status (09h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
RDDST	R	0	0	0	0	1	0	0	1	09h
Parameter	1	ST31	ST30	ST29	ST28	ST27	ST26	ST25	ST24	00h
Parameter	2	ST23	ST22	ST21	ST20	ST19	ST18	ST17	ST16	71h
Parameter	3	ST15	ST14	ST13	ST12	ST11	ST10	ST9	ST8	00h
Parameter	4	ST7	ST6	ST5	ST4	ST3	ST2	ST1	ST0	40h

	Bit	Description	of the display as described in the table below. Value
	ST31	Booster Voltage Status	"1"=Booster on, "0"=off
	ST30	Not Used	"0"
	ST29	Not Used	"0"
	ST28	Not Used	°0"
	ST27	Vertical refresh Order (ML)	"1"=Decrement, "0"=Increment
	ST26	RGB/BGR Order (RGB)	"1"=BGR, "0"=RGB
	ST25	Horizontal refresh Order (MH)	"1"=Decrement, "0"=Increment
	ST24	Not Úsed	"0"
	ST23	Not Used	"0"
	ST22-20	Interface Color Pixel Format Definition	"110" = 18-bit / pixel, "111" = 24-bit / pixel
	ST19	Idle Mode On/Off	"1" = On, "0" = Off
	ST18	Not Used	"0"
	ST17	Sleep In/Out	"1" = Out, "0" = In
Description	ST16	Display Normal Mode On/Off	"1" = Normal Display
	ST15	Not Used	"0"
	ST14	Not Used	"0"
	ST13	Inversion Status	"0" = Off
	ST12	All Pixels On	"1" = All Pixels On, "0" = All Pixels Off
	ST11	All Pixels Off	"0"
- 4	ST10	Display On/Off	"1" = On, "0" = Off
47	ST9	Tearing effect line on/off	"1" = On, "0" = Off
Ck	ST8-6	Gamma Curve Selection	"000" = GC0 "001" = GC1 "010" = GC2 "011" = GC3 "100" = GC4 "101" to "111" = Not defined
	ST5	Tearing effect line mode	"0" = mode1, "1" = mode2
	ST4	Not Used	"0"
	ST3	Not Used	"0"
	ST2	Not Used	"0"
	ST1	Not Used	"0"
	ST0	Not Used	"0"

	Status	Availability
Register	Normal Mode On, Idle Mode Off, Sleep Out	Yes
Availability	Normal Mode On, Idle Mode On, Sleep Out	Yes
	Sleep In	Yes
	Status	Default Value
Default	Power On Sequence	00h,71h,00h,00h
Delault	S/W Reset	00h,71h,00h,00h
	H/W Reset	00h,71h,00h,00h
	Send ST[15:8]	Action Mode Sequential transfer
CHI	CONTRACTOR OF THE PARTY OF THE	

8.2.6 RDDPM: Read Display Power Mode (0Ah)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
RDDPM	R	0	0	0	0	1	0	1	0	0Ah
Parameter	1	D7	D6	D5	D4	D3	D2	D1	D0	08h

	This	comr	nand indicates the current statu	s of the displa	y as described in the table below:					
		Bit	Description	Value						
		D7	Booster Voltage Status	"1" = Booste	r on, "0" = Booster off					
		D6	Idle Mode On/Off	"1" = Idle Mode On, "0" = Idle Mode Off						
Barriotera		D5	Not Used	"0"						
Description		D4	Sleep In/Out	"1" = Sleep (Out, "0" = Sleep In					
		D3	Display Normal Mode On/Off	"1" = Norma	Display On, "0" = Normal Display Off					
		D2	Display On/Off	"1" = Display	On, "0" = Display Off					
		D1	Not Used	"0"						
		D0	Not Used	"0"						
Restriction	-			7.7						
				1						
			Status		Availability					
Register		N	Iormal Mode On, Idle Mode Off,	Sleep Out	Yes					
Availability		N	lormal Mode On, Idle Mode On,	Sleep Out	Yes					
			Sleep In		Yes					
			180							
			Status		Default Value					
Default		2/1	Power On Sequence	е	08h					
Delault			S/W Reset		08h					
	13		H/W Reset		08h					
Flow Chart			Send D [7	Driver	Command Parameter Display Action Mode Sequential transfer					

8.2.7 RDDMADCTR: Read Display MADCTR (0Bh)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
RDDMADCTR	R	0	0	0	0	1	0	1	1	0Bh
Parameter	1	D7	D6	D5	D4	D3	D2	D1	D0	00h

NOTE DOII		and indicates the current status of	of the display	as described in the table below:
	Bit	Description	Value	and decembed in the table below.
	D7	Not Used	"0"	
	D6	Not Used	"0"	
	D5	Not Used	"0"	
Description	D3	Vertical fresh Order (ML)	-	ment, "0"=Increment
	D3	RGB/BGR Order	"1"=BGR, "	40. 4
	D2	Horizontal fresh Order (MH)		ment, "0"=Increment
	D1	Not Used	"0"	ment, o -increment
	D0	Not Used	"0"	
	В	Not Osea	0	
Restriction	-		72.	
		01.1	0	A - 21 - 1-212
Pogistor	NI.	Status	0 . 1	Availability
Register Availability		rmal Mode On, Idle Mode Off, S	-	Yes
Availability	No	rmal Mode On, Idle Mode On, S	leep Out	Yes
		Sleep In		Yes
		Status		Default Value
Default		Power On Sequence		00h
20.00	O	S/W Reset		00h
	10	H/W Reset		00h
Flow Chart		RDDMADCTR Send D [7:	Drives	Legend Command Parameter Display Action Mode Sequential printer

8.2.8 RDDCOLMOD: Read Display Pixel Format (0Ch)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
RDDCOLMOD	R	0	0	0	0	1	1	0	0	0Ch
Parameter	1	D7	D6	D5	D4	D3	D2	D1	D0	70h

	This com	mand indicates the current status of	the displa	y as described in the table below:			
	Bit	Description	Value				
	D7	Not Used	"0"				
	D6 – 4	Control Interface Color Format	"110"=	18 bit/pixel			
				24 bit/pixel			
Description			The oth	ners are not defined			
	D3	Not Used	"0"				
	D2	Not Used	"0"				
	D1	Not Used	"0"				
	D0	Not Used	"0"				
Restriction	-		18				
		Status		Availability			
Register	1	Normal Mode On, Idle Mode Off, Sle	ep Out	Yes			
Availability	1	Normal Mode On, Idle Mode On, Sle	ep Out	Yes			
		Sleep In		Yes			
		Status		Default Value			
D-flt	-	Power On Sequence		70h			
Default	0	S/W Reset	70h				
a di		H/W Reset		70h			
Flow Chart		Send D [7:0]	Ch Host Driver	Legend Command Parameter Display Action Mode Sequential transfer			

8.2.9 RDDIM: Read Display Image Mode (0Dh)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
RDDIM	R	0	0	0	0	1	1	0	1	0Dh
Parameter	1	D7	D6	D5	D4	D3	D2	D1	D0	00h

	l Care								
	This com	mand indicates the current status of	the displa	y as described in the table below:					
	Bit	Description	Value						
	D7	Not Used	"0"						
	D6	Not Used	"0"						
	D5	Inversion On/Off	"0" = Inversion is Off						
Description	D4	All Pixels On	"1" = Al	ll Pixels On					
	D3	All Pixels Off	"1" = Al	l Pixels Off					
	D2 -0		"000" =	GC0 ,"001" = GC1,"010" =					
		Gamma Curve Selection	GC2,"0	11" = GC3 ,"100" = GC4, "101" to					
			"111" =	Not defined					
			00						
Restriction	-								
		637,	_						
Register		Status		Availability					
Availability		Normal Mode On, Idle Mode Off, Slee		Yes					
	<u> </u>	Normal Mode On, Idle Mode On, Slee	ep Out	Yes					
		Sleep In		Yes					
		Status		Default Value					
Default		Power On Sequence		00h					
4.0	N/	S/W Reset		00h					
-14	100	H/W Reset		00h					
Flow Chart		RDDIM(ODn) Send D [7:0]	Host Thrower	Legend Command Phranister Display Action Mode Sequential transfer					

8.2.10 RDDIM: Read Display Signal Mode (0Eh)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
RDDSM	R	0	0	0	0	1	1	1	0	0Eh
Parameter	1	D7	D6	D5	D4	D3	D2	D1	D0	00h

NOTE: - Don'	Care							
	This c	ommand indicates the current status	of the displa	y as described in the table below:				
	Bit	Description	Value	Value				
	D7	Tearing Effect Line On/Off	"1" = O	"1" = On, "0" = Off				
	D6	Tearing effect line mode	"0" = m	node1,"1" = mode2				
	D5	Not Used	"0"					
Description	D4	Not Used	"0"					
	D3	Not Used	"0"					
	D2	Not Used	"0"					
	D1	Not Used	"0"					
	D0	Error on DSI	"1" = E	rror, "0" = No Error				
			1 8 W	7				
Restriction	-		2 -					
			7					
Register		Status	Availability					
Availability		Normal Mode On, Idle Mode Off, S	Yes					
		Normal Mode On, Idle Mode On, S	leep Out	Yes				
	L	Sleep In		Yes				
				5.6.404				
	1	Status		Default Value				
Default	0	Power On Sequence	00h 00h					
- 47	X.		S/W Reset					
-14	1	H/W Reset		00h				
Flow Chart		RDDSM(0Eh) Send D [7:0	Host Driver	Commend Parameter Display Action Mode Segmential Iransfer				

8.2.11 RDDSDR: Read Display Self-Diagnostic Result (0Fh)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
RDDSDR	R	0	0	0	0	1	1	1	1	0Fh
Parameter	1	D7	D6	D5	D4	D3	D2	D1	D0	00h

	This c	command indicates the current status of	the display	y as described in the table below:			
	Bit	Description	Value				
	D7	Register Loading Detection					
	D6	Functionality Detection					
	D5	Chip Attachment Detection	See section 6.7				
Description	D4	Display Glass Break Detection					
	D3	Not Used	"0"				
	D2	Not Used	"0"				
	D1	Not Used	"0"				
	D0	Not Used	"0"				
Restriction	_	- 1	100				
	Ī	Status		Availability			
Register		Normal Mode On, Idle Mode Off, Sle	ep Out	Yes			
Availability	-	Normal Mode On, Idle Mode On, Sle	ep Out Yes				
		Sleep In	Yes				
		710					
		Status		Default Value			
Default	A	Power On Sequence	00h				
. 1	V	S/W Reset	00h				
-17	110	H/W Reset		00h			
Flow Chart		RDDSDR(0Fh) Send D [7:0]	,	Legend Command Parameter Display Action Mode Sequential transfer			

8.2.12 SLPIN: Sleep In (10h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
SLPIN	W	0	0	0	1	0	0	0	0	10h
Parameter	-	No Parameter								

	This command causes the LCD module to enter the minimum power consumption mode. In this mode the DC/DC converter is stopped, Internal display oscillator is stopped, and panel scanning is stopped.									
	Source Output Blank display ST	OP								
Description	GIP scan operation S:	ГОР								
	Internal Oscillator	STOP								
	DC/DC Converter	Discharge								
	This command has no effect when module is already in sleep in mode. Sleep In Mode can only be exit by the Sleep Out Command (11h). It will be necessary to wait 5msec before sending next command; this is to allow time for the supply voltages and clock circuits to stabilize. It will be necessary to wait 120msec after sending Sleep Out command (when in Sleep In Mode) before Sleep In command can be sent. Status Availability Normal Mode On, Idle Mode Off, Sleep Out Yes Normal Mode On, Idle Mode On, Sleep Out Yes									
-	supply voltages and clock circuits to stabilize. It will be necessary to wait 120msec after sending Sleep 0 before Sleep In command can be sent. Status Normal Mode On, Idle Mode Off, Sleep Out	Out command (when in Sleep In Mode Availability Yes								
Register	supply voltages and clock circuits to stabilize. It will be necessary to wait 120msec after sending Sleep 0 before Sleep In command can be sent. Status Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Sleep In	Availability Yes Yes Yes Yes								
Register Availability	supply voltages and clock circuits to stabilize. It will be necessary to wait 120msec after sending Sleep of before Sleep In command can be sent. Status Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Sleep In Status	Availability Yes Yes Yes Yes Default Value								
Restriction Register Availability Default	supply voltages and clock circuits to stabilize. It will be necessary to wait 120msec after sending Sleep 0 before Sleep In command can be sent. Status Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Sleep In	Availability Yes Yes Yes Yes								

8.2.13 SLPOUT: Sleep Out (11h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
SLPOUT	W	0	0	0	1	0	0	0	1	11h
Parameter	-	No Parameter								

	This command turns off sleep mode.										
	In this mode the DC/DC converter is enabled, Internal display oscillator is started, and panel										
	scanning is started.										
	Source Output STOP	Blank Display ON									
Description	55acc 5acpai [510]	(If DISPON 29h is set)									
	GIP scan operation										
	Internal Oscillator STOP START										
	DC/DC Converter 0V										
	20.20 001.0101 0	F 5.									
	This command has no effect when module is already in sleep out mode. Sleep Out Mode can only										
	be exit by the Sleep In Command (10h).										
	It will be necessary to wait 5msec before sending next co	mmand; this is to allow time for the									
	supply voltages and clock circuits to stabilize.										
	ICNL9706 loads all default values of extended and test command to the registers during this										
Restriction	5msec and there cannot be any abnormal visual effect on	the display image if those default and									
	register values are same when this load is done and when	n the ICNL9706 is already Sleep Out									
	-mode.										
	ICNL9706 is doing self-diagnostic functions during this 5n										
	necessary to wait 120msec after sending Sleep In comma	and (when in Sleep Out mode) before									
	Sleep Out command can be sent.										
. 0											
Dogistor	Status	Availability									
Register Availability	Normal Mode On, Idle Mode Off, Sleep Out	Yes									
Availability	Normal Mode On, Idle Mode On, Sleep Out Yes										
	Sleep In	Yes									
		26 405									
	Status	Default Value									
Default	Power On Sequence	Sleep In mode									
	S/W Reset	Sleep In mode									
	H/W Reset	Sleep In mode									

8.2.14 NORON: Normal Display Mode ON (13h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
NORON	W	0	0	0	1	0	0	1	1	13h
Parameter	-	No Parameter								

NOTE: - Don										
	This command returns the display to normal mode.									
Description	Normal display mode on.									
	Exit from NORON by the All Pixels On or All Pixels Off command.									
	There is no abnormal visual effect during mode change.									
Restriction	This command has no effect when Normal Display mode is active.									
	Status	Availability								
Register	Normal Mode On, Idle Mode Off, Sleep Out	Yes								
Availability	Normal Mode On, Idle Mode On, Sleep Out	Yes								
	Sleep In	Yes								
	Status	Default Value								
Default	Power On Sequence	Normal Mode On								
20.00	S/W Reset	Normal Mode On								
	H/W Reset	Normal Mode On								
Flow Chart	All Pixel On or All Pixel Off NORON(13h) Normal Display Mode On	Legend mmand arameter Display Action Mode equential ransfer								

8.2.15 INVOFF: Display Inversion OFF (20h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
INVOFF	W	0	0	1	0	0	0	0	0	20h
Parameter	-				No	Paramet	er			

NOTE: "-"Don't care

8.2.16 INVON: Display Inversion ON (21h)

Inst /	Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
INV	ON	W	0	0	1	0	0	0	0	1	21h
Parar	neter	-				No	Paramet	er			

NOTE: "-"Don't care

8.2.17 ALLPOFF: All Pixel OFF (22h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
ALLPOFF	W	0	0	1	0	0	0	1	0	22h
Parameter	-				No	Paramet	ter			

NOTE: "-"Don't care

8.2.18 ALLPON: All Pixel ON (23h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
ALLPON	W	0	0	1	0	0	0	1	1	23h
Parameter	-				No	Paramet	er			

8.2.19 **GAMSET**: Gamma Set (26h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
GAMSET	W	0	0	1	0	0	1	1	0	26h
Parameter	1	GC7	GC6	GC5	GC4	GC3	GC2	GC1	GC0	01h

NOTE: "-"Don	ı						
	This command is	used to select the desired	Gamma curv	e for the current display. A maximum			
			ed by setting	the appropriate bit in the parameter a			
	described in the T	able.					
	GC[7:0]	Parameter	Curve S	elected			
Description	01h	GC0	Gamma	Curve 1 (Gamma=2.2 Set)			
	02h	GC1	Reserve	ed			
	04h	GC2	Reserve	ed			
	08h	GC3	Reserved				
	Note: All other va	lues are undefined.					
Restriction	Values of GC [7:0] not shown in table above	e are invalid a	and will not change the current selecte			
restriction	gamma curve unt	il valid is received.	N				
		47	K .				
5		Status		Availability			
Register	Normal N	Mode On, Idle Mode Off, S	leep Out	Yes			
Availability	Normal N	Mode On, Idle Mode On, S	leep Out	Yes			
		Sleep In		Yes			
		A .					
		Status		Default Value			
Default	SA	Power On Sequence		00h			
		S/W Reset		00h			
	1	H/W Reset		00h			
-V				Legend			
CI		CAMER					
		GAMSET		command			
		\[\sqrt{20.000 \text{o}} \]		Parameter/			
Flow Chart		GC [7:0]		Display			
				Action			
		New Gamma Curve Loaded	Mode Sequential				
		Curve Loaded		transfer			
			ı				

8.2.20 DISPOFF: Display OFF (28h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
DISPOFF	W	0	0	1	0	1	0	0	0	28h
Parameter	-				No	Paramet	er			

NOTE: "-"Don't care

8.2.21 **DISPON**: Display ON (29h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
DISPON	W	0	0	1	0	1	0	0	1	29h
Parameter	-				No	o Paramet	er			

NOTE: "-"Don't care

8.2.22 TEOFF: Tearing Effect Line OFF (34h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
TEOFF	W	0	0	1	1	0	1	0	0	34h
Parameter	-				No	Paramet	er			

NOTE: "-"Don't care

NOTE DOII		
Description	This command is used to turn OFF (Active Low) the Tearir signal line.	ng Effect output signal from the TE
Restriction	This command has no effect when Tearing Effect output is	already OFF.
Register Availability	Status Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Sleep In	Availability Yes Yes Yes
Default	Status Power On Sequence S/W Reset H/W Reset	Default Value Tearing Effect off Tearing Effect off Tearing Effect off
Flow Chart	TE Line Output ON TEOFF (34h) D TE Line Output OFF	nmand rameter isplay action Mode quentia

8.2.23 TEON: Tearing Effect Line ON (35h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
TEON	W	0	0	1	1	0	1	0	1	35h
Parameter	1	-	-	-	-	-	-	-	М	00h

NOTE: "-"Don't care

8.2.24 MADCTL: Memory Data Access Control (36h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
MADCTL	W	0	0	1	1	0	1	1	0	36h
Parameter	1	-	-	-	ML	RGB	MH	-	-	00h

NOTE: "-"Don	t care								
	This comn	nand defines display direction of in	nage.						
	This comn	nand makes no change on the othe	er driver sta	tus.					
	Bit	NAME		DESCRIPTION					
Description	ML	Vertical refresh ORDER		LCD Vertical refresh direction control					
Becompact	RGB	RGB-BGR ORDER	Color selector switch control (0=RGB color filter panel, 1=BGR color filter panel)						
	МН	Horizontal refresh ORDER	Horizontal refresh ORDER LCD Ho						
Restriction									
		Status		Availability					
Register	N	ormal Mode On, Idle Mode Off, Slo	eep Out	Yes					
Availability	N	ormal Mode On, Idle Mode On, Sle	eep Out	Yes					
		Sleep In		Yes					
		-0,							
		Status	Default Value						
Default		Power On Sequence		00h					
Delault		S/W Reset		00h					
		H/W Reset		00h					
Flow Chart	P	MADCTL(36h) Parameter (ML,MH,RGB) Parameter Display Action Mode Sequential transfer							

8.2.25 IDMOFF: Idle mode OFF (38h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
IDMOFF	W	0	0	1	1	1	0	0	0	38h
Parameter	-		No Parameter							

	t care					
Description	This command is used to recover from Idle mode on.					
Description	In the idle off mode, display panel can display maximum 1	6.7M colors.				
Restriction	This command has no effect when module is already in Idl	e Off mode.				
	Status	Availability				
Register	Normal Mode On, Idle Mode Off, Sleep Out	Yes				
Availability	Normal Mode On, Idle Mode On, Sleep Out	Yes				
	Sleep In	Yes				
	Status	Default Value				
Default	Power On Sequence	Idle mode Off				
Delault	S/W Reset	Idle mode Off				
	H/W Reset	Idle mode Off				
Flow Chart	Idle On Mode Com Plans Discontinuous (1986) Idle Off Mode	mand imeter/ splay) ction> fode itential				

8.2.26 IDMON: Idle mode ON (39h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
IDMON	W	0	0	1	1	1	0	0	1	39h
Parameter	-		No Parameter							

NOTE: "-"Don	t care									
	This command is used to enter into Idle mode on.									
Description	In the idle on mode, color expression is reduced.									
	The display color is determined by MSB of R, G, and B.									
Restriction	This command has no effect when module is already in	This command has no effect when module is already in Idle On mode								
		a Date								
İ	Status	Availability								
Register	Normal Mode On, Idle Mode Off, Sleep Out	Yes								
Availability	Normal Mode On, Idle Mode On, Sleep Out	Yes								
	Sleep In	Yes								
	Status	Default Value								
Default	Power On Sequence	Idle mode Off								
Delault	S/W Reset	Idle mode Off								
	H/W Reset	Idle mode Off								
Flow Chart	Idle OFF Mode TDMON (39h)	Legend Display Action Mode equential ranster								

8.2.27 COLMOD: Interface Pixel Format (3Ah)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
COLMOD	W	0	0	1	1	1	0	1	0	3Ah
Parameter	1	-		VIPF[2:0]		-	-	-	-	70h

	This o	command is	used to define the format of RGB pic	cture data.								
	The fo	ormats are s	hown in the table:									
		Bit	NAME	DESCRIPTION								
Description				"110" = 18-bit/pixel								
		VIPF[2:0]	Pixel Format for RGB.	"111" = 24-bit/pixel								
				The others = not defined								
Restriction	There	e is no visible effect until the Frame Memory is written to.										
				169								
			Status	Availability								
Register		Normal N	Mode On, Idle Mode Off, Sleep Out	Yes								
Availability		Normal N	Mode On, Idle Mode On, Sleep Out	Yes								
			Sleep In	Yes								
			-69,									
			Status	Default Value								
Default			Power On Sequence	70h								
20.0.0			S/W Reset	70h								
		. 4	H/W Reset	70h								
Flow Chart	P		Panauteter VIFE(2:0)= "H0" [8-bit/ Fixel Mode]	Command Parameter Display Action Mode Sequential gransfer								

8.2.28 STESL: Set Tearing Effect Scan Line (44h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
STESL	W	0	1	0	0	0	1	0	0	44h
Parameter	1	N15	N14	N13	N12	N11	N10	N9	N8	00h
Parameter	1	N7	N6	N5	N4	N3	N2	N1	N0	00h

8.2.29 GSL: Get Scan Line (45h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
GSL	R	0	1	0	0	0	1	0	1	45h
Parameter	1	N15	N14	N13	N12	N11	N10	N9	N8	00h
Parameter	1	N7	N6	N5	N4	N3	N2	N1	N0	00h

	This command returns the current scan line, N, used to u	ipdate the display module. The total								
	number of scan lines on display is defined as Vdisplay +	Vporch. The first scan line is defined as								
Description	the first line of V Sync and is denoted as Line 0.									
	When in Sleep in mode, the returned value is undefined.									
Restriction	-	1								
		100								
	Status	Availability								
Register	Normal Mode On, Idle Mode Off, Sleep Out	Yes								
Availability	Normal Mode On, Idle Mode On, Sleep Out	Yes								
	Sleep In	Yes								
	44.6									
	Status	Default Value								
Default	Power On Sequence	0000h								
Boladit	S/W Reset	0000h								
	H/W Reset	0000h								
Flow Chart	GSL(45h) Host Send Parameter N(7:0)	Command Parameter Display Action Mode								

8.2.30 WRDISBV: Write Display Brightness (51h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
WRDISBV	W	0	1	0	1	0	0	0	1	51h
Parameter	1	BV[7]	BV[6]	BV[5]	BV[4]	BV[3]	BV[2]	BV[1]	BV[0]	00h

NOTE: "-"Don	't care							
	This co	ommand is	used to adjust brightness value.					
	In prin	ciple relatio	nship is that 00h value means the lowe	est brightness and FFh value means the				
	highes	t brightness	i.					
	Ī	BV[7:0]	Brightness (Ratio)	Brightness (%)				
Description		00h	0/256	0 %				
		01h	2/256	0.78 %				
		FEh	255/256	99.6%				
	L	FFh	256/256	100%				
Restriction	The di	splay suppli	er cannot use this command for tuning	(e.g. factory tuning, etc.).				
			.40					
			Status	Availability				
Register		Normal M	lode On, Idle Mode Off, Sleep Out	Yes				
Availability		Normal M	lode On, Idle Mode On, Sleep Out	Yes				
			Sleep In	Yes				
			C -					
			Status	Default Value				
Default		-1/4	Power On Sequence	00h				
Dolault		La Paris	S/W Reset	00h				
		100	H/W Reset	00h				
Flow Chart	A. C.		Parameter BV[7:0] New Brightness Loaded	Legend Command Parameter Display Action Mode Sequential transfer				

8.2.31 RDDISBV: Read Display Brightness (52h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
RDDISBV	R	0	1	0	1	0	0	1	0	52h
Parameter	1	BV[7]	BV[6]	BV[5]	BV[4]	BV[3]	BV[2]	BV[1]	BV[0]	00h

	This command returns brightness value.				
Description	In principle relationship is that 00h value means the lowe	est brightness and FFh value means			
	highest brightness.				
Restriction	-				
		· Dan			
	Status	Availability			
Register	Normal Mode On, Idle Mode Off, Sleep Out	Yes			
Availability	Normal Mode On, Idle Mode On, Sleep Out	Yes			
	Sleep In	Yes			
	Status	Default Value			
Default	Power On Sequence	00h			
	S/W Reset	00h			
	H/W Reset	00h			
Flow Chart	RDDSIBV(52h) Host Send Parameter BV[7:0]	Legend Command Parameter Display Action Mode Sequential trainster			

8.2.32 WRCTRLD: Write CTRL Display (53h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
WRCTRLD	W	0	1	0	1	0	0	1	1	53h
Parameter	1	-	-	BCTRL	-	DD	BL	-	-	00h

	r	1			BCT	114			טט		BL						uun
VOTE: "-"Don	i't care																
	This	comm	nand is us	sed to c	ontrol dis	play b	rightne	SS.	BCTR	L: E	Brightn	ess	Contr	ol B	lock (On/O	ff
	The BCTRL bit is always used to switch brightness for display with dimming effect (according to																
	DD b	DD bit).															
	ВСТР	RL =0	, BV[7:0]	value d	disable. B	CTRL	=1, BV	[7:0] valu	e er	nable.						
	DD: [Displa	y Dimmir	ng Cont	trol On/Of	ff. DD=	0, Dis	play	dimm'	ning	is off.						
	DD=1	1, Dis _l	play dimr	ming is	on.												
Description	BL: B	BL: Backlight Control On/Off without Dimming Effect															
Description	Wher	n BL b	oit change	e from "	On" to "C	Off", dis	play br	ight	ness i	is tu	rned o	off w	ithout	gra	dual	dimm	ing,
	even	even if dimming on (DD="1") is selected.															
	BL =0, Off. BL =1, On																
	The dimming function is adapted to the brightness registers for display when bit BCTRL is																
	chan	ged a	t DD="1",	, e.g. B0	CTRL: 0_	_1 or 1_	_0.										
					mmands			the	re is n	o e	ffect (e	exce	ot reg	ister	's cai	ı be	
	changed) when write commands are used.																
	cnan	ged) v	when writ	te comn	nands are	e used.	P										
Restriction	cnan	ged) v	when writ	te comn	nands are	e used.	P .										
Restriction		ged) v	when writ	te comn	nands are	e used.											
		ged) v	when writ	(nands are	e used.						Ava	ilabilit	ty			
Register				(-0			Dut					ilabilit Yes	ty			
Register		No	ormal Mo	ode On,	Status	le Off,	Sleep (,		ty			
Register		No	ormal Mo	ode On,	Status Idle Mod	le Off,	Sleep (,	Yes	ty			
Register		No	ormal Mo	ode On,	Status Idle Mod Idle Mod Sleep In	le Off,	Sleep (,	Yes Yes Yes				
Register		No	ormal Mo	ode On,	Status Idle Mod Idle Mod Sleep In Status	de Off, de On,	Sleep (,	Yes Yes Yes				
Restriction Register Availability Default		No	ormal Mo	ode On, ode On, S	Status Idle Mod Idle Mod Sleep In Status	le Off, sile On, sile On, sile	Sleep (,	Yes Yes Yes ault V				
Register Availability		No	ormal Mo	ode On,	Status Idle Mod Idle Mod Sleep In Status	le Off, sile On, sile	Sleep (,	Yes Yes Yes		•		

Flow Chart

WRCTRLD(53h) Host

Parameter BCTRL_DD , BL

New Control Value Loaded

Display

Version: 0.7 2017-10

8.2.33 RDCTRLD: Read CTRL Display (54h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
RDCTRLD	R	0	1	0	1	0	1	0	0	54h
Parameter	1	-	-	BCTRL	-	DD	BL	-	-	00h

NOTE: "-"Don	't care										
	This command returns the display brightness. BCTRL: E	Brightness Control Block On/Off									
	The BCTRL bit is always used to switch brightness for d	isplay with dimming effect (according to									
	DD bit).										
	BCTRL =0, BV[7:0] value disable. BCTRL =1, BV[7:0] value	alue enable.									
	DD: Display Dimming Control On/Off. DD= 0, Display di	mming is off.									
Description	DD=1, Display dimming is on.										
Description	BL: Backlight Control On/Off without Dimming Effect										
	When BL bit change from "On" to "Off", display brightness	ss is turned off without gradual dimming,									
	even if dimming on (DD="1") is selected.										
	BL =0, Off. BL =1, On										
	The dimming function is adapted to the brightness regis	ters for display when bit BCTRL is									
	changed at DD="1", e.g. BCTRL: 0_1 or 1_0.										
Restriction											
	Status	Availability									
Register	Normal Mode On, Idle Mode Off, Sleep Out	Yes									
Availability	Normal Mode On, Idle Mode On, Sleep Out	Yes									
	Sleep In	Yes									
	Status	Default Value									
	Power On Sequence	00h									
Default	S/W Reset	00h									
	H/W Reset	00h									
0.		Legend									
Flow Chart	RDCTRLD(54h) Host Parameter BCTRL, DD , BL	Command Parametes Display Action Mode Sequential									

8.2.34 WRCABC: Write Content Adaptive Brightness Control (55h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
WRCABC	W	0	1	0	1	0	1	0	1	55h
Parameter	1	-	-	-	CABC_OFF	-	-	CBAC_CON[1:0]		10h

NOTE: "-"Don't care

This command is used to set parameters for image content based adaptive brightness control functionality.

There is possible to use 4 different modes for content adaptive image functionality, which are defined on a table below.

Description

CABC_CON[1]	CABC_CON[0]	Function				
0	0	Off				
0	1	User Interface Image				
1	0	Still picture				
1	1	Moving Image				

CABC_OFF: 1: Disable CABC Function

0: Enable CABC Function

Restriction

Register	
Availability	

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Sleep In	Yes

Default

Status	Default Value
Power On Sequence	10h
S/W Reset	10h
H/W Reset	10h

Flow Chart

8.2.35 RDCABC: Read Content Adaptive Brightness Control (56h)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
RDCABC	R	0	1	0	1	0	1	1	0	56h
Parameter	1	-	-	-	CABC_OFF	-	-	CBAC_C	CON[1:0]	00h

NOTE: "-"Don't care

This command is used to read the settings for image content based adaptive brightness control functionality.

There is possible to use 4 different modes for content adaptive image functionality, which are defined on a table below.

Description

CABC_CON[1]	CABC_CON[0]	Function		
0	0	Off		
0	0 1 User Inter			
1	0	Still picture		
1	1	Moving Image		

CABC_OFF: 1: Disable CABC Function

0: Enable CABC Function

Restriction

Register	
Availability	

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Sleep In	Yes

Default

Status	Default Value
Power On Sequence	10h
S/W Reset	10h
H/W Reset	10h

Flow Chart

8.2.36 WRCABCMB: Write CABC minimum brightness (5Eh)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
WRCABCMB	W	0	1	0	1	1	1	1	0	5Eh
Parameter	1	MB[7]	MB[6]	MB[5]	MB[4]	MB[3]	MB[2]	MB[1]	MB[0]	00h

	This command is used to set the minimum brightness vi	alue of the display for CABC function					
Description	In principle relationship is that 00h value means the lowest brightness for CABC and FFh value						
	means the highest brightness for CABC.						
Restriction	-						
		O. Dan					
	Status	Availability					
Register	Normal Mode On, Idle Mode Off, Sleep Out	Yes					
Availability	Normal Mode On, Idle Mode On, Sleep Out	Yes					
	Sleep In	Yes					
		1					
	Status	Default Value					
Default	Power On Sequence	00h					
	S/W Reset	00h					
	H/W Reset	00h					
Flow Chart	VRCABCMB(5Eh) Hoss Parameter MB[7:0] New Display Lummance Value Lorded	Legend Command Parameter Display Action Mode Sequential transfer					

8.2.37 RDCABCMB: Read CABC minimum brightness (5Fh)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
RDCABCMB	R	0	1	0	1	1	1	1	1	5Fh
Parameter	1	MB[7]	MB[6]	MB[5]	MB[4]	MB[3]	MB[2]	MB[1]	MB[0]	00h

NOTE: "-"Don't care

	This command return the minimum brightness value of 0	CABC function						
Description	In principle relationship is that 00h value means the lowest brightness for CABC and FFh value means the highest brightness for CABC. MB[7:0] is the minimum brightness for CABC specific							
Description	means the highest brightness for CABC. MB[7:0] is the r	minimum brightness for CABC specified						
	with "WRCABCMB Write CABC minimum brightness (5E	Eh)" command.						
Restriction	-							
	Status	Availability						
Register	Normal Mode On, Idle Mode Off, Sleep Out	Yes						
Availability	Normal Mode On, Idle Mode On, Sleep Out	Yes						
	Sleep In	Yes						
	Status	Default Value						
Default	Power On Sequence	00h						
	S/W Reset	00h						
	H/W Reset	00h						
Flow Chart	RDCABCMB(5Fh) Host Send Parameter MB[7:0]	Legend command Parameter Display Action Mode Sequential transfer						

8.2.38 RDID1: Read ID1 Value (DAh)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
RDID1	R	1	1	0	1	1	0	1	0	DAh
Parameter	1	ID1[7]	ID1[6]	ID1[5]	ID1[4]	ID1[3]	ID1[2]	ID1[1]	ID1[0]	00h

Description	This read byte identifies the TFT LCD module's manufactu	ıre ID.		
Restriction	-			
	Status	Availability		
Register	Normal Mode On, Idle Mode Off, Sleep Out	Yes		
Availability	Normal Mode On, Idle Mode On, Sleep Out	Yes		
	Sleep In	Yes		
		-		
	Status	Default Value		
Default	Power On Sequence	00h		
Dolault	S/W Reset	00h		
	H/W Reset	00h		
Flow Chart	RDIDI(DAh) Host Send Parameter ID1[7:0]	Legend commtand Parameter Display Action Mode Sequential transfer		

8.2.39 RDID2: Read ID2 Value (DBh)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
RDID2	R	1	1	0	1	1	0	1	1	DBh
Parameter	1	ID2[7]	ID2[6]	ID2[5]	ID2[4]	ID2[3]	ID2[2]	ID2[1]	ID2[0]	00h

NOTE: "-"Don't care

Description	This read byte identifies the TFT LCD module's manufa	acture ID.
Restriction	-	
Register Availability	Status Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Sleep In	Availability Yes Yes Yes
Default	Status Power On Sequence S/W Reset H/W Reset	Default Value 00h 00h 00h
Flow Chart	RDID3(DBh) Host Send Parameter Driver ID2[7:0]	Legend Command Parameter Display Action Mode Sequential transfer

8.2.40 RDID3: Read ID3 Value (DCh)

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
RDID3	R	1	1	0	1	1	1	0	0	DCh
Parameter	1	ID3[7]	ID3[6]	ID3[5]	ID3[4]	ID3[3]	ID3[2]	ID3[1]	ID3[0]	00h

NOTE: "-"Don't care

Description	This read byte identifies the TFT LCD module's manufactu	ire ID.			
Restriction	-				
	Status	Availability			
Register	Normal Mode On, Idle Mode Off, Sleep Out	Yes			
Availability	Normal Mode On, Idle Mode On, Sleep Out	Yes			
	Sleep In	Yes			
		-			
	Status	Default Value			
Default	Power On Sequence	00h			
	S/W Reset	00h			
	H/W Reset	00h			
Flow Chart	RDID3(DCh) Host Send Parameter ID3[7:0]	Legend Command Parameter Display Action Mode			

8.3 Level 2 Command Description

8.3.1 CGOUTL Control

This command is used to set the assignment of ASG output signals.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
GOUTL	W	1	0	1	1	0	0	1	1	B3h
Parameter	1	0	0			GOUTL_	SEL1[5:0]			03h
Parameter	2	0	0			GOUTL_	SEL2[5:0]			03h
Parameter	3	0	0			GOUTL_	SEL3[5:0]		Φ.	03h
Parameter	4	0	0			GOUTL_	SEL4[5:0]	- 0	M	03h
Parameter	5	0	0			GOUTL_	SEL5[5:0]	100		03h
Parameter	6	0	0			GOUTL_	SEL6[5:0]	14.		03h
Parameter	7	0	0			GOUTL_	SEL7[5:0]	~		03h
Parameter	8	0	0		GOUTL_SEL8[5:0]					03h
Parameter	9	0	0		GOUTL_SEL9[5:0]				03h	
Parameter	10	0	0		10	GOUTL_S	EL10[5:0]		03h
Parameter	11	0	0	4	100	GOUTL_S	EL11[5:0]		03h
Parameter	12	0	0	6	84	GOUTL_S	EL12[5:0]		03h
Parameter	13	0	0	00		GOUTL_S	EL13[5:0]		03h
Parameter	14	0	0)	(GOUTL_S	EL14[5:0]		03h
Parameter	15	0	0			GOUTL_S	EL15[5:0]		03h
Parameter	16	0	0		(GOUTL_S	EL16[5:0]		03h
Parameter	17	0	0		(GOUTL_S	EL17[5:0]		03h
Parameter	18	0	0		GOUTL_SEL18[5:0]				03h	
Parameter	19	0	0	GOUTL_SEL19[5:0]				03h		
Parameter	20	0	0	GOUTL_SEL20[5:0]				03h		
Parameter	21	0	0		GOUTL_SEL21[5:0]				03h	
Parameter	22	0	0		(GOUTL_S	EL22[5:0]		03h

Note: Refer 8.3.2 CGOUTR Control

8.3.2 CGOUTR Control

This command is used to set the assignment of ASG output signals.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
GOUTR	W	1	0	1	1	0	1	0	0	B4h
Parameter	1	0	0			GOUTR_	SEL1[5:0]			03h
Parameter	2	0	0			GOUTR_	SEL2[5:0]			03h
Parameter	3	0	0			GOUTR_	SEL3[5:0]			03h
Parameter	4	0	0			GOUTR_	SEL4[5:0]			03h
Parameter	5	0	0			GOUTR_	SEL5[5:0]		N	03h
Parameter	6	0	0			GOUTR_	SEL6[5:0]	7.	34.	03h
Parameter	7	0	0			GOUTR_	SEL7[5:0]	4 1/4	K	03h
Parameter	8	0	0			GOUTR_	SEL8[5:0]	1		03h
Parameter	9	0	0	GOUTR_SEL9[5:0]				03h		
Parameter	10	0	0		(GOUTR_S	SEL10[5:0]		03h
Parameter	11	0	0			GOUTR_S	SEL11[5:0]		03h
Parameter	12	0	0			GOUTR_S	SEL12[5:0]		03h
Parameter	13	0	0	V		GOUTR_S	SEL13[5:0]		03h
Parameter	14	0	0	To		GOUTR_S	SEL14[5:0]		03h
Parameter	15	0	0		(GOUTR_S	SEL15[5:0]		03h
Parameter	16	0	0)	(GOUTR_S	EL16[5:0]		03h
Parameter	17	0	0		(GOUTR_S	SEL17[5:0]		03h
Parameter	18	0	0		GOUTR_SEL18[5:0]				03h	
Parameter	19	0	0		GOUTR_SEL19[5:0]				03h	
Parameter	20	0	0	GOUTR_SEL20[5:0]				03h		
Parameter	21	0	0		GOUTR_SEL21[5:0]				03h	
Parameter	22	0	0		(GOUTR_S	EL22[5:0]		03h

8.3.2.1: CGOUTL(n)[5:0], CGOUTR(n)[5:0]

These registers are used to set the mapping of the ASG signals.

CGOUTL(n)[5:0], CGOUTR(n)[5:0]	Function	CGOUTL(n)[5:0], CGOUTR(n)[5:0]	Function	
00h	VGL	13h	GCK8	
01h	VGH	14h	GCK9	
02h	HZ	15h	GCK10	
03h	GND	16h	GCK11	
04h	GSP1	17h	GCK12	
05h	GSP2	18h	GCK13	
06h	GSP3	19h	GCK14	
07h	GSP4	1Ah	GCK15	
08h	GSP5	1Bh	GCK16	
09h	GSP6	1Ch	DIR	
0Ah	GSP7	1Dh	DIRB	
0Bh	GSP8	1Eh	ECLK_AC	
0Ch	GCK1	1Fh	ECLK_ACB	
0Dh	GCK2	20h	ECLK_AC2	
0Eh	GCK3	21h	ECLK_AC2B	
0Fh	GCK4	22h	GCH	
10h	GCK5	23h	GCL	
11h	GCK6	24h	XDON	
12h	GCK7	25h	XDONB	

Hardware RESET	Default
CGO <mark>UTL(n</mark>)[5:0], CGOUTR(n)[5:0]	03h

8.3.3 **SETID**

This command is used to set ID1, ID2, ID3

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
SETID	RW	1	0	1	1	0	1	0	1	B5h
Parameter	1		ID1[7:0]							
Parameter	2		ID2[7:0]							
Parameter	3		ID3[7:0]							00h
Parameter	4	0 0 0 0 OTP_TIMES[2:0]					00h			

8.3.3.1: ID1[7:0], ID2[7:0], ID3[7:0]

These registers are used to write otp ID1, ID2, ID3.

Hardware RESET	Default
ID1[7:0], ID2[7:0], ID3[7:0]	00H

8.3.3.2: OTP_TIMES [2:0]

These registers are used to show the remaining program times status.

Hardware RESET	Default
OTP_TIMES[2:0]	00H

8.3.4 PWRCON_VCOM

This command is used to set VCOM voltage.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
PWRCON_VCOM	RW	1	0	1	1	0	1	1	0	B6h
Parameter	1		VCOM_FW[7:0]							
Parameter	2		VCOM_BW[7:0]							2Fh
Parameter	3	0	0 0 0 0 OTP_VCOM_TIMES[2:0]							00h

8.3.4.1: VCOM_FW[7:0]

These registers are used to set forward scan VCOM voltage. Register Step 15mV.

8.3.4.2: VCOM_BW[7:0]

These registers are used to set backward scan VCOM voltage. Register Step 15mV.

8.3.4.3: OTP_VCOM_TIMES[2:0]

These registers are used to set show the VCOM program times status.

VCOM_FW[7:0], VCOM_BW[7:0]	VCOM (V)				
00h	-0.3V				
01h	-0.315V				
02h	-0.33V				
2Eh	-0.99V				
2Fh	-1.005V				
·····					
7Eh	-2.19V				
7Fh	-2.205V				
80h	VCL				
81h	Disable				

Hardware RESET	Default
VCOM_FW[7:0], VCOM_BW[7:0]	2FH
OTP_VCOM_TIMES[2:0]	00H

8.3.5 PWRCON_SEQ

This command is used to set power sequence.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
PWRCON_SEQ	W	1	0	1	1	0	1	1	1	B7h
Parameter	1	0	0		VSP_DC_H[5:0]				01h	
Parameter	2	0	0		VSN_DC_H[5:0]			01h		
Parameter	3	0	0			VCL_D	C_H[5:0]			09h
Parameter	4	0	0			VGH_D	C_H[5:0]			11h
Parameter	5	0	0		VGL_DC_H[5:0]				0Dh	
Parameter	6	0	0	GAM_DC_H[5:0]			15h			
Parameter	7	0	0	VCOM_DC_H[5:0]			1	19h		
Parameter	8	0	0	0	1	1	1	0	1	1Dh
Parameter	9	0	0	1	0	0	0	0	1	21h
Parameter	10	0	0	0	1	1	1	0	1	1Dh
Parameter	11		VCL_D	C_L[3:0] VSP_DC_L[3:0]				00h		
Parameter	12		VCOM_[DC_L[3:0]				00h		
Parameter	13		VGH_D	DC_L[3:0] VSN_DC_L[3:0]				20h		
Parameter	14	0	0	0	0		GAM_D	C_L[3:0]		00h
Parameter	15	0	0	0	0	1	DISCH_I	DC_L[3:0]		02h

8.3.5.1: VSP_DC_H[5:0], VSN_DC_H[5:0], VCL_DC_H[5:0], VGH_DC_H[5:0], VGL_DC_H[5:0], VGM_DC_H[5:0]

VSP_DC_H[5:0]: These registers are used to set VSP sequence. Register step 2mS VSN_DC_H[5:0]: These registers are used to set VSN sequence. Register step 2mS VCL_DC_H[5:0]: These registers are used to set VCL sequence. Register step 2mS VGH_DC_H[5:0]: These registers are used to set VGH sequence. Register step 2mS VGL_DC_H[5:0]: These registers are used to set VGL sequence. Register step 2mS VGAM_DC_H[5:0]: These registers are used to set VGAM sequence. Register step 2mS VCOM_DC_H[5:0]: These registers are used to set VCOM sequence. Register step 2mS

VSP_DC_H[5:0], VSN_DC_H[5:0], VCL_DC_H[5:0], VGH_DC_H[5:0], VGL_DC_H[5:0], GAM_DC_H[5:0], VCOM_DC_H[5:0]	Time (mS)
00h	0mS
01h	2mS
02h	4mS
20h	64mS
21h	66mS
22h	68mS
	a delin
3Dh	122mS
3Eh	124mS
3Fh	126mS

8.3.5.2: VSP_DC_L[3:0], VSN_DC_L[3:0], VCL_DC_L[3:0], VGH_DC_L[3:0], VGL_DC_L[3:0], GAM_DC_L[3:0], VCOM_DC_L[3:0], DISCH_L[3:0]

VSP_DC_L[3:0]: These registers are used to set VSP sequence. Register step 2mS VSN_DC_L[3:0]: These registers are used to set VSN sequence. Register step 2mS VCL_DC_L[3:0]: These registers are used to set VCL sequence. Register step 2mS VGH_DC_L[3:0]: These registers are used to set VGH sequence. Register step 2mS VGL_DC_L[3:0]: These registers are used to set VGL sequence. Register step 2mS VGAM_DC_L[3:0]: These registers are used to set VGAM sequence. Register step 2mS VCOM_DC_L[3:0]: These registers are used to set VCOM sequence. Register step 2mS DISCH_L[3:0]: These registers are used to set discharge circuit sequence. Register step 2mS

VSP_DC_L[3:0], VSN_DC_L[3:0], VCL_DC_L[3:0], VGH_DC_L[3:0], VGL_DC_L[3:0], GAM_DC_L[3:0], VCOM_DC_L[3:0], DISCH_L[3:0]	Time (mS)
00h	0mS
01h	2mS
02h	4mS
20h	64mS
21h	66mS
22h	68mS
3Dh	122mS
3Eh	124mS
3Fh	126mS

Default			
01H			
01H			
09H			
11H			
0DH			
15H			
19H			
0Н			
ОН			
ОН			
2H			
ОН			
ОН			
ОН			
2H			

8.3.6 PWRCON_CLK

This command is used to set power mode and charge pump circuit.

		•			<u> </u>	•				
Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
PWRCON_CLK	W	1	0	1	1	1	0	0	0	B8h
Parameter	1	0	VGL_RT[2:0] VGH_RT[3:0]				24h			
Parameter	2	0	0	0	0	OTP_VGH_RT[3:0]			01h	
Parameter	3	VCOM_E	EN_S[1:0] DCDCM[1:0]		VGL_ REG_ SHT	0	VSP_PI	MIC[1:0]	30h	
Parameter	4	0	VGL_CLK[2:0]		0	V	CL_CLK[2	2:0]	34h	
Parameter	5	0	PWF	RIC_CLK[2	2:0]	0	VC	SH_CLK[2	2:0]	53h

8.3.6.1: VGL_RT[2:0]

These registers are used to set VGL charge pump circuit.

00h	
	VSN – VCI
01h	VSN - VSP
02h	2 * VSN – VCI
03h	2 * VSN - VSP
04h	Inhibited
05h	Inhibited
06h	Inhibited
07h	Inhibited

8.3.6.2: VGH_RT[3:0], OTP_VGH_RT[3:0]

VGH_RT[3:0]: These registers are used to set VGH charge pump circuit for VGH. OTP_VGH_RT[3:0]: These registers are used to set VGH charge pump circuit for OTP.

VGH_RT[3:0], OTP_VGH_RT[3:0]	VGH (V)
00h	VSP + VCI
01h	2 * VSP
02h	VSP – VSN + VCI
03h	2 * VSP – VSN
04h	2 * VSP – VSN + VCI
05h	3 * VSP – VSN
06h	2 * VSP – 2 * VSN + VCI
07h	3 * VSP – 2 * VSN
08h	Inhibited
0Ah	Inhibited
0Ch	Inhibited
0Eh	Inhibited

8.3.6.3: VCOM_EN_S[1:0]

These registers are used to set VCOM output status.

VCOM_EN_S[1:0]	VCOM Output
00h	Follow VCOM_DC_H[5:0]
01h	Sleep Out Command
02h	Display On Command
03h	Inhibited

8.3.6.4: DCDCM[1:0]

These registers are used to set power mode.

DCDCM[1:0]	VSP/VSN
00h	Inhibited
01h	Inhibited
02h	PMIC 0
03h	PMIC 1

8.3.6.5: VGL_REG_SHT

It is used to set VGL_REG power.

VGL_REG_SHT	VGL_REG
0h	Follow VGL_REG_S[5:0]
1h	VGL

8.3.6.6: VSP_PMIC[1:0]

These registers are used to set PMIC clock for VSP / VSN.

VSP_PMIC[1:0]	VSP / VSN
00h	PMIC 1
01h	PMIC 0
02h	Inhibited
03h	Inhibited

8.3.6.7: VGL_CLK[2:0], VCL_CLK[2:0], VGH_CLK[2:0]

VGL_CLK[2:0]: These registers are used to set VGL charge pump clock.

VCL_CLK[2:0]: These registers are used to set VCL charge pump clock.

VGH_CLK[2:0]: These registers are used to set VGH charge pump clock.

VGL_CLK[2:0], VCL_CLK[2:0], VGH_CLK[2:0]	CLOCK (HS)
00h	16HS
01h	8HS
02h	4HS
03h	2HS
04h	1HS
05h	1/2HS
06h	1/4HS
07h	1/8HS

8.3.6.8: PWRIC_CLK[2:0]

These registers are used to set IC pads VCSW1/2 pin output clock status.

PWRIC_CLK [2:0]	CLOCK (HS)
00h	8HS
01h	4HS
02h	2HS
03h	1HS
04h	1/2HS
05h	1/4HS
06h	1/6HS
07h	1/8HS

Hardware RESET	Default
VGL_RT[2:0]	2H
VGH_RT[3:0]	4H
OTP_VGH_RT[3:0]	1H
VCOM_EN_S[1:0]	0Н
DCDCM[1:0]	3H
VGL_REG_SHT	ОН
VSP_PMIC[1:0]	0Н
VGL_CLK[2:0]	3H
VCL_CLK[2:0]	4H
PWRIC_CLK[2:0]	5H
VGH_CLK[2:0]	3H

8.3.7 PWRCON_BAT

This command is used to set abnormal power off.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
PWRCON_BAT	W	1	0	1	1	1	0	0	1	B9h
Parameter	1	1	0	1	0	0	0	1	0	A1h
Parameter	2	0	0	1	0	0	0	0	0	20h
Parameter	3	1	1	1	1	1	1	1	1	FFh
Parameter	4	GAS_ EN	GA	S_IO_S[2	:0]		GAS_V	CI_S[3:0]		C4h

8.3.7.1: GAS_EN

It is used to set abnormal power off function.

GAS_EN	Function
0h	Disable
1h	Enable

8.3.7.2: VGS_IO_S[2:0]

VGS_IO_S[2:0] : These registers are used to set IOVCC power. Register Step 100mV

VGS_IO_S[2:0]	Voltage				
0h	0.9V				
1h	1.0V				
2h	1.1V				
3h	1.2V				
4h	1.3V				
5h	1.4V				
6h	1.5V				
7h	1.6V				

8.3.7.3: VGS_VCI_S[3:0]

VGS_VCI_S[3:0]: These registers are used to detect VCI power. Register step =100mV

VGS_VCI_S[3:0]	Voltage					
0h	1.7V					
1h	1.8V					
2h	1.9V					
3h	2.0V					
4h	2.1V					
5h	2.2V					
6h	2.3V					
7h	2.4V					
8h	2.8V					
9h	3.0V					
Ah	3.2V					
Bh	3.4V					
Ch	3.6V					
Dh	3.8V					
Eh	4.0V					
Fh	4.2V					

Hardware RESET	Default
GAS_EN	1H
GAS_IO_S[2:0]	4H
GAS_VCI_S[3:0]	4H

8.3.8 PWRCON_MODE

This command is used to set IC pads VCSW1/2 output mode for PMIC Clock.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
PWRCON_MODE	W	1	0	1	1	1	0	1	0	BAh
Parameter	1	VCSW 2_HZ	VC	SW2_S[2:	:0]	VCSW 1_HZ	VC	:SW1_S[2:0]	27h
Parameter	2	0	1	1	0	0	0	1	1	63h

8.3.8.1: VCSW2_HZ, VCSW1_HZ

VCSW2_HZ: It is used to set IC pads VCSW2 floating. VCSW1_HZ: It is used to set IC pads VCSW1 floating.

8.3.8.2: VCSW2_S[2:0], VCSW1_S[2:0]

These registers are used to set IC pads VCSW1/2 output status.

VCSW2_S[2:0] VCSW1_S[2:0]	Status				
0h	VCI				
1h	GND				
2h	PWRIC_CLK				
3h	PMIC_CLK1				
4h	PMIC_CLK2				
5h	Inhibited				
6h	Inhibited				
7h	IOVCC_DC				

Hardware RESET	Default
VCSW2_HZ	0H
VCSW1_HZ	ОН
VCSW2_S[2:0]	2H
VCSW1_S[2:0]	7H

8.3.9 PWRCON_REG

This command is used to set regulator power.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
PWRCON_REG	W	1	0	1	1	1	1	0	1	BDh
Parameter	1	0	1	0	0 VSP_S[4:0]					4Eh
Parameter	2	\	/CL_S[2:0)]		\	/SN_S[4:0)]		0Eh
Parameter	3		VSPR_S[7:0]					4Bh		
Parameter	4		VSNR_S[7:0]					4Bh		
Parameter	5	0	0 VGH_S[5:0]					20h		
Parameter	6	0	0	VGL_S[5:0]					14h	
Parameter	7	0	0		OTP_VGH_S[5:0]					00h
Parameter	8	0	0	VGL_REG_S[5:0]					14h	
Parameter	9	0	1	0	0	0	0	1	1	43h
Parameter	10	0	0	0	0	0	0	1	1	03h

8.3.9.1: VSP_S[4:0]

These registers are used to set VSP output voltage. Register step 150mV.

VSP_S[4:0]	Voltage
00h	3V
01h	3.15V
02h	3.3V
0Dh	4.95V
0Eh	5.1V
0Fh	5.25V
15h	6.15V
16h	6.3V
17h	6.45V

8.3.9.2: VCL_S[2:0]

These registers are used to set VCL output voltage. Register step -100mV

VCL_S[2:0]	Voltage
0h	-2.5V
1h	-2.6V
2h	-2.7V
3h	-2.8V
4h	-2.9V
5h	-3.0V
6h	-3.1V
7h	-3.2V

8.3.9.3: VSN_S[4:0]

These registers are used to set VSN output voltage. Register step -150mV

VSN_S[4:0]	Voltage
00h	-3V
01h	-3.15V
02h	-3.3V
0Dh	-4.95V
0Eh	-5.1V
0Fh	-5.25V
15h	-6.15V
16h	-6.3V
17h	-6.45V

8.3.9.4: VSPR_S[7:0]

These registers are used to set VSPR output voltage for Positive Gamma. Register step 20mV.

VSPR_S[7:0]	Voltage
00h	3.0V
01h	3.02V
02h	3.04V
0Dh	3.26V
0Eh	3.28V
0Fh	3.3V
3Bh	4.18V
3Ch	4.2V
3Dh	4.22V
4Bh	4.5V
4Ch	4.52V
4Dh	4.54V
94h	5.96V
95h	5.98V
96h	6.0V

8.3.9.5: VSNR_S[7:0]

These registers are used to set VSNR output voltage for Negative Gamma. Register step -20mV.

VSNR_S[7:0]	Voltage
00h	-3.0V
01h	-3.02V
02h	-3.04V
0Dh	-3.26V
0Eh	-3.28V
0Fh	-3.3V
	· Ch
3Bh	-4.18V
3Ch	-4.2V
3Dh	-4.22V
4Bh	-4.5V
4Ch	-4.52V
4Dh	-4.54V
94h	-5.96V
95h	-5.98V
96h	-6.0V

8.3.9.6: VGH_S[5:0], OTP_VGH_S[5:0]

VGH_S[5:0]: These registers are used to set VGH output voltage. Register step 200mV. OTP_VGH_S[5:0]: These registers are used to set VGH power for OTP cell.

VGH_S[5:0]	Voltage
00h	8.6V
01h	8.8V
02h	9V
0Dh	11.2V
0Eh	11.4V
0Fh	11.6V
1Fh	14.8V
20h	15V
21h	15.2V
37h	19.6V
38h	19.8V
39h	20V

8.3.9.7: VGL_S[5:0]

These registers are used to set VGL output voltage. Register step -200mV.

VGL_S[5:0]	Voltage
00h	-6V
01h	-6.2V
02h	-6.4V
13h	-9.8V
14h	-10V
15h	-10.2V
1Dh	-11.8V
1Eh	-12V
1Fh	-12.2V
2Eh	-15.2V
2Fh	-15.4V
30h	-15.6V

8.3.9.8: VGL_REG_S[5:0]

These registers are used to set VGL_REG output voltage. Register step -200mV

VGL_S[5:0]	Voltage
00h	-5V
01h	-5.2V
02h	-5.4V
13h	-8.8V
14h	-9V
15h	-9.2V
1Dh	-10.8V
1Eh	-11V
1Fh	-11.2V
	_ _ _ _ _ _ _
2Eh	-14.2V
2Fh	-14.4V
30h	-14.6V

Hardware RESET	Default
VSP_S[4:0]	0Eh
VCL_S[2:0]	00h
VSN_S[4:0]	0Eh
VSPR_S[7:0]	4Bh
VSNR_S[7:0]	4Bh
VGH_S[5:0]	20h
VGL_S[5:0]	14h
OTP_VGH_S[5:0]	00h
VGL_REG_S[5:0]	14h

8.3.10 BIST

This command is used to enable BIST function.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
BIST	W	1	1	0	0	0	0	0	0	C0h
Parameter	1	0	0	0	1	0	0	0	BIST _ON	10h
Parameter	2	1	1	1	1	1	1	1	1	FFh
Parameter	3	1	1	1	1	1	1	1	1	FFh

8.3.10.1: BIST_ON

BIST_ON	Status
0h	Disable
1h	Enable

Default						
0h						
All .						

8.3.11 TCON

This command is used to sets Vertical / Horizontal back porch / vertical front porch.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
TCON	W	1	1	0	0	0	0	0	1	C1h
Parameter	1		VBP[7:0]							0Ch
Parameter	2		VFP[7:0]							10h
Parameter	3		VSW[7:0]							04h
Parameter	4		HBP[7:0]							0Ch
Parameter	5		HFP[7:0]							10h
Parameter	6		HSW[7:0]							04h

8.3.11.1: VBP[7:0], VFP[7:0], VSW[7:0]

VBP[7:0]: These registers are used to set Vertical back porch.

VFP[7:0]: These registers are used to set Vertical front porch.

VSW[7:0]: These registers are used to set Vertical low pulse width.

VBP[7:0] VFP[7:0] VSW[7:0]	Line (HS)
00h	Disable
01h	Disable
02h	2 HS
0Bh	11 HS
0Ch	12 HS
0Dh	13 HS
FDh	253 HS
FEh	254 HS
FFh	255 HS

8.3.11.2: HBP[7:0], HFP[7:0], HSW[7:0]

HBP[7:0] : These registers are used to set Horizontal back porch.

HFP[7:0]: These registers are used to set Horizontal front porch.

HSW[7:0]: These registers are used to set Horizontal low pulse width.

HBP[7:0] HFP[7:0] HSW[7:0]	Clock (DOTCLK)
00h	Disable
0Fh	Disable
10h	16 Clock
11h	17 Clock
FDh	253 Clock
FEh	254 Clock
FFh	255 Clock

	The second secon
Hardware RESET	Default
VBP[7:0]	0Ch
VFP[7:0]	10h
VSW[7:0]	04h
HBP[7:0]	0Ch
HFP[7:0]	10h
HSW[7:0]	04h

8.3.12 TCON2

This command is used to set Display resolution

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
TCON2	W	1	1	0	0	0	0	1	0	C2h
Parameter	1	NL_ FIX	0	0	NL[8]	0	0	RSO[1:0]		82h
Parameter	2		NL[7:0]							

8.3.12.1: NL_FIX

It is used to set display resolution.

NL_FIX	Stauts
0h	NL[8:0]
1h	RSO[1:0]

8.3.12.2: NL[8:0]

These registers are used to set display resolution. Register step 4 HS.

y							
NL[8:0]	Display Line (HS)						
00h	Disable						
01h	4 HS						
10h	8 HS						
A0h	640 HS						
A1h	644HS						
13Fh	1276 HS						
140h	1280 HS						

8.3.12.3: RSO[1:0]

RSO[1:0]	Display Line (HS)
00h	Disable
01h	600 HS
02h	720 HS
03h	800 HS

Hardware RESET	Default
NL_FIX	1h
NL[8:0]	10h
RSO[1:0]	1h

8.3.13 TCON3

This command is used to set TCON of display data and blanking frame.

				. ,						
Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
TCON3	W	1	1	0	0	0	0	1	1	C3h
Parameter	1	0	I2O_BLKF_S[2:0]			BLK_ KP	O2I_BLKF_S[2:0]			22h
Parameter	2	REV_ EOR	B4_ EOR	B3_ EOR	B2_ EOR	0	0	0	1	01h
Parameter	3	0	0	0	0	0	1	0	0	04h

8.3.13.1: I2O_BLKF_S[2:0], O2I_BLKF_S[2:0]

I2O_BLKF_S[2:0] : These registers are used to set SPIN to SPOUT blanking display frame number.

O2I_BLKF_S[2:0] :These registers are used to set SPOUT to SPIN blanking display frame number.

20_BLKF_S[2:0] O2 _BLKF_S[2:0]	Blanking (Frame)
0h	Disable Blanking
1h	1 Frame
2h	2 Frame
3h	3 Frame
4h	4 Frame
5h	5 Frame
6h	6 Frame
7h	7 Frame

8.3.13.2: BLK_KP

It is used to keep blanking display in display off status.

BLK_KP	Blanking
0	Stop
1	Keep

8.3.13.3: REV_EOR

REV_EOR: It is used to set exclusive OR command INVON.

REV_EOR	INVON	Display
0	0	Normal Display
0	1	Inversion Display

1	0	Inversion Display
1	1	Normal Display

8.3.13.4: B4_EOR

B4_EOR: It is used to set exclusive OR command MADTCL D4 function.

B4_EOR	MADTCL D4 (ML)	Display
0	0	Top → Bottom
0	1	Bottom → Top
1	0	Bottom → Top
1	1	Top → Bottom

8.3.13.5: B3_EOR

B3_EOR: It is used to set exclusive OR command MADTCL D3 function.

B3_EOR	MADTCL D3 (RGB)	Display
0	0	RGB order
0	1	BGR order
1	0	BGR order
1	1	RGB order

8.3.13.6: B2_EOR

B2_EOR: It is used to set exclusive OR command MADTCL D2 function.

B2_EOR	MADTCL D2 (MH)	Display
0	0	Left → Right
0	1	Right → Left
1	0	Right → Left
1	1	Left → Right

Hardware RESET	Default
I2O_BLKF_S[2:0]	2h
O2I_BLKF_S[2:0]	2h
BLK_KP	0h
REV_EOR	0h
B4_EOR	0h
B3_EOR	0h
B2_EOR	0h

8.3.14 DSTB

This is used to set deep standby mode.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
DSTB	W	1	1	0	0	0	1	0	0	C4h
Parameter	1	0	0	0	0	0	0	0	DSTB	01h

8.3.14.1: DSTB

It is used to set deep standby mode.

DSTB	Status
0h	Deep Standby mode OFF
1h	Deep Standby mode ON

8.3.14.2: Exit DSTB Sequence

Hardware RESET	Default
DSTB	0h

8.3.15 SRC_TIM

This command is used to set source timing.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
SRC_TIM	W	1	1	0	0	0	1	1	0	C6h
Parameter	1		SD1[7:0]						08h	
Parameter	2				SD2	[7:0]				10h
Parameter	3		SD3[7:0]						68h	
Parameter	4		OP_ON[7:0]						08h	
Parameter	5	0	0	0	1	0	1	1	0	16h
Parameter	6		OP_OFF[7:0]						60h	
Parameter	7	0	0	1	1	0	1.0	1	0	36h
Parameter	8	0	0	0	0	0	0	0	0	00h

8.3.15.1: SD1[7:0], SD2[7:0], SD3[7:0], OP_ON[7:0], OP_OFF[7:0]

SD1[7:0]: These registers are used to set EQ pull gnd time. Register Step 4 x Osc clock.

SD2[7:0] : These registers are used to set EQ pre-charge to VCI/ IOVCC/ VCL time. Register Step $4 \times Osc clock$.

SD3[7:0]: These registers are used to set source Data + / Data- output time. Register Step $4 \times Osc clock$.

 $\mathsf{OP}_{\mathsf{ON}[7:0]}$: These registers are used to set source OP enable time. Register Step 4 x Osc clock.

OP_OFF[7:0]: These registers are used to set source OP disable time. Register Step 4 x Osc clock.

SD1[7:0], SD2[7:0], SD3[7:0], OP_ON[7:0] ,OP_OFF[7:0]	Clock (Oscillator)
0h	0 Clock
1h	4 Clock
2h	8 Clock
1Fh	124 Clock
20h	128 Clock
21h	132 Clock
FDh	1012 Clock
FEh	1016 Clock
FFh	1020 Clock

Figure 8.3.15-1: Source / EQ relationship

Note 1: Oscillator = 45MHz.

Note2: EQ2 time = 1HS - SD3[7:0].

Note3: OP_ON[7:0] value = SD1[7:0] value. Note4 : OP_OFF[7:0] value = SD3[7:0] value.

Hardware RESET	Default
SD1[7:0]	08h
SD2[7:0]	10h
SD3[7:0]	68h
OP_ON[7:0]	08h
OP_OFF[7:0]	60h

8.3.16 SRCCON

This command is used to control source.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
SRCCON	W	1	1	0	0	0	1	1	1	C7h
Parameter	1	0	0	Z_SH IFT	Z_LI NE	0	IN	IV_SEL[2:	:0]	05h
Parameter	2	0	0	1	0	0	0	1	1	23h
Parameter	3	0	SME OFF	1	0	1	0	1	1	2Bh
Parameter	4	0	1	0	0	0	0	0	1	41h
Parameter	5	PORC H_HI Z	PORC H_GN D	SDSW _DATA	SDPO RCH_ DATA	0	NEQS TOP	0	0	00h

8.3.16.1: Z_SHIFT, Z_LINE:

It is used to set Zig-Zag Panel Type

8.3.16.2: INV_SEL[2:0]

These registers are used to set the inversion type.

INV_SEL[2:0]	Status
0h	1 dot inversion
1h	1+2 dot inversion
2h	2 dot inversion
3h	4 dot inversion
4h	8 dot inversion
5h	Column inversion
6h	Zig- Zag inversion
7h	Disable

8.3.16.3: SMEOFF

It is used to set smart EQ control.

SMEOFF	SMART EQ
0h	Disable
1h	Enable

8.3.16.4: PORCH_HIZ

It is used to set Non display area source state.

PORCH_HZ	Status
0h	GND / V0 / V255
1h	HZ / GND

8.3.16.5: PORCH_GND

It is used to set Non display area source state.

PORCH_GND	Status
0h	Hiz / V0 / V255
1h	GND

8.3.16.6: SDPORCH_DATA

It is used to set Non display area source state.

SDPORCH_DATA	Status
0h	V0
1h	V255

8.3.16.7: SDSW_DATA

It is used to set Blanking frame source state.

SDSW_DATA	Status
0h	V0
1h	V255

8.3.16.8: NEQSTOP

It is used to set negative EQ ON / OFF.

NEQSTOP	Status
0h	Enable
1h	Disable

Figure 8.3.16-1: Non-Display Area and Display Area relationship.

Hardware RESET	Default
Z_SHIFT	0h
Z_LINE	0h
INV_SEL[2:0]	5h
SMEQOFF	0h
PORCH_HIZ	0h
PORCH_GND	0h
SDSW_DATA	0h
SDPORCH_DATA	0h
NEQSTOP	0h
HIIP ON THE	

8.3.17 **SET_GAMMA**

This command is used to set analog gamma for display quality.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
SET_GAMMA	W	1	1	0	0	1	0	0	0	C8h
Parameter	1	0				/PR18[6:0				7Ch
Parameter	2	0				/PR17[6:0				6Dh
Parameter	3	0				/PR16[6:0				63h
Parameter	4	0				/PR15[6:0				59h
Parameter	5	0				PR14[6:0		-	10	57h
Parameter	6	0						. 13	- W	4Ah
Parameter	7	0			\	/PR12[6:0)]	11/11		51h
Parameter	8	0			١	/PR11[6:0)]			3Ah
Parameter	9	0			\	/PR10[6:0)]			55h
Parameter	10	0				VPR9[6:0				53h
Parameter	11	0			. 4	VPR8[6:0]			55h
Parameter	12	0			18	VPR7[6:0]			7Ah
Parameter	13	0		- 4	1	VPR6[6:0]			6Fh
Parameter	14	0		Red	D	VPR5[6:0]			7Fh
Parameter	15	0	-6) T		VPR4[6:0]			75h
Parameter	16	0	((1)			VPR3[6:0]			72h
Parameter	17	0				VPR2[6:0]			62h
Parameter	18	0				VPR1[6:0]			2Dh
Parameter	19	0				VPR0[6:0]			06h
Parameter	20	0			\	/NR18[6:0)]			7Ch
Parameter	21	0			\	/NR17[6:0)]			6Dh
Parameter	22	0			\	/NR16[6:0)]			63h
Parameter	23	0			\	/NR15[6:0)]			59h
Parameter	24	0			\	/NR14[6:0)]			57h
Parameter	25	0			\	/NR13[6:0)]			4Ah
Parameter	26	0		VNR12[6:0]						51h
Parameter	27	0		VNR11[6:0]					3Ah	
Parameter	28	0	VNR10[6:0]					55h		
Parameter	29	0	VNR9[6:0]					53h		
Parameter	30	0	VNR8[6:0]					55h		
Parameter	31	0		VNR7[6:0]					7Ah	
Parameter	32	0				VNR6[6:0				6Fh

Parameter	33	0	VNR5[6:0]	7Fh
Parameter	34	0	VNR4[6:0]	75h
Parameter	35	0	VNR3[6:0]	72h
Parameter	36	0	VNR2[6:0]	62h
Parameter	37	0	VNR1[6:0]	2Dh
Parameter	38	0	VNR0[6:0]	06h

8.3.17.1: VPR(n)[6:0]:

These registers are used to set positive gamma.

	VDD(=) [C.0]	Gra	ay
	VPR(n) [6:0]	Normal Black Panel	Normal White Panel
	18	255	0
	17	251	4
	16	247	8
	15	243	12
	14	235	20
	13	227	28
	12	211	44
	11	191	64
Positive	10	159	96
	9	128	128
	8	96	159
	7	64	191
	6	44	211
	5	28	227
	4	20	235
	3	12	243
	2	8	247
	1	4	251
	0	0	255

8.3.17.2: VNR(n)[6:0]:

These registers are used to set negative gamma.

	VNR(n) [6:0] 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	Gra	ay
	VИК(П) [6:U]	Normal Black Panel	Normal White Pane
	18	255	0
	17	251	4
	16	247	8
	15	243	12
	14	235	20
	13	227	28
	12	211	44
	11	191	64
Negative	10	159	96
	9	128	128
	8	96	159
	7	64	191
	6	44	211
	5	28	227
	4	20	235
	3	12	243
	2	8	247
	1	4	251
	0	0	255

8.3.18 CE_CTR

This command is used to set color enhancement

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
CE_CTR	W	1	1	0	0	1	0	1	0	CAh
Parameter	1	0	0	0	0	0	0	0	0	00h
Parameter	2	0	0	0	0	0	0	0	CE_ CTR	00h
Parameter	3	0	0	0	0	0	0	0	0	00h

8.3.18.1: CE_CTR

It is used to set color enhancement.

CE_CTR	Status
0h	Disable
1h	Enable

Hardware RESET	Default
CE_CTR	0h

8.3.19 OTP_AUTO_PROG

This command is used to set OTP Programming.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
SRC_TIM	W	1	1	0	0	1	0	1	1	CBh
Parameter	1	0	0	0	OTP_ BANK 4	OTP_ BANK 3	OTP_ BANK 2	OTP_ BANK 1	OTP_ BANK 0	03h
Parameter	2	0	0	0	0	0	0	0	OTP_ INT_ VPP	00h
Parameter	3	0	0	0	0	0	0	0	OTP_ AUTO _PRO G	00h

8.3.19.1: OTP_BANK 4, OTP_BANK 3, OTP_BANK 2, OTP_BANK 1, OTP_BANK 0

These registers are used to set OTP bank.

OTP_BANK	Status
Bank 0	ID Code
Bank 1	VCOM
Bank 2	Level 2
Bank 3	Level 2
Bank 4	Level 2

8.3.19.2: OTP_INT_VPP

It is used to set OTP power.

OTP_INT_VPP	Status
0h	External Power (VPP pad (8.5V))
1h	Internal Power (OTP_VGH_RT[3:0])

8.3.19.2: OTP_AUTO_PROG

It is used to set OTP cell.

OTP_AUTO_PROG	Status
0h	Disable
1h	Enable

Hardware RESET	Default
OTP_BANK 4	0h
OTP_BANK 3	0h
OTP_BANK 2	0h
OTP_BANK 1	1h
OTP_BANK 0	1h
OTP_INT_VPP	0h
OTP_AUTO_PROG	0h

8.3.20 ABNO_CTR

This command is used to set MIPI abnormal state.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
ABNO_CTR	W	1	1	0	1	0	0	0	0	D0h
Parameter	1	0	0	0	0	0	FS_B LK	1	FS_EN	07h
Parameter	2		FS_DETECT[7:0]						10h	
Parameter	3				BATON_	CNT[7:0]				00h

8.3.20.1: FS_BLK

It is used to set MIPI abnormal display state.

FS_BLK	Status
0h	GND
1h	Blanking display

8.3.20.2: FS_EN

It is used to set MIPI abnormal function.

FS_EN	Status
0h	Disable
1h	Enable

8.3.20.3: FS_DETECT[7:0]

These registers are used to set timing of MIPI abnormal. Register step 22uS

FS_DETECT[7:0]	Time (uS)
0h	0uS
1h	22uS
2h	44uS
0Fh	330uS
10h	352uS
FEh	5588 uS
FFh	5610 uS

8.3.20.3: BATON_CON[7:0]

These registers used to set timing of power abnormal. Register step 0.088uS

0 0 1	9 1				
BATON_CON[7:0]	Time (uS)				
0h	0uS				
1h	0.088uS				
2h	0.176uS				
0Fh	1.32uS				
10h	1.408uS				
FEh	22.352uS				
FFh	22.44uS				

Hardware RESET	Default
FS_BLK	1h
FS_EN	1h
FS_DETECT[7:0]	10h
BATON_CON[7:0]	00h

8.3.21 PWM_CTR

This command is used to set PWM clock.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
PWM_CTR	W	1	1	1	0	0	0	0	0	E0h
Parameter	1	0	0	1	1	PWM_ POL	0	PWM_ EN	0	32h
Parameter	2		PWM[7:0]						03h	
Parameter	3	0	0	1	0	0	0	0	0	20h
Parameter	4	0	0	0	0	0	0	0	0	00h
Parameter	5	1	1	1	1	1	1	. 1	1	FFh

8.3.21.1: PWM_POL

It is used to set inverse CABC_PWM_OUT output

PWM_POL	CABC_PWM_OUT				
0h	Original				
1h	Inversed				

8.3.21.2: PWM_EN

It is used to set PWM output.

PWM_EN	Frequency
0h	Disable
1h	Enable

8.3.21.3: PWM[7:0]

These registers are used to set PWM frequency. Register step 120Hz

PWM[7:0]	Frequency (Hz)				
0h	120Hz				
1h	240Hz				
2h	360Hz				
7Fh	15360Hz				
80h	15480Hz				
FEh	30600Hz				
FFh	30720Hz				

Hardware RESET	Default
PWM_POL	0h
PWM_EN	1h
PWM[7:0]	03h

8.3.22 DGC_CTR

This command is used to control digital gamma.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
DGC_CTR	W	1	1	1	0	0	0	1	1	E3h
Parameter	1	0	0	0	0	0	0	DTR_ EN	DGC_ EN	00h

8.3.22.1: DTR_EN

It is used to set dithering function.

DTR_EN	Status
0h	Disable
1h	Enable

8.3.22.2: DGC_EN

It is used to set digital gamma function

DGC_EN	Status				
0h	Disable				
1h	Enable				

Hardware RESET	Default				
DTR_EN	0h				
DGC_EN	0h				

8.3.23 DGC_R

This command is used to set digital gamma gray red.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
DGC_R	W	1	1	1	0	0	1	0	0	E4h
Parameter	1		DGC_R_V255[9:2]							
Parameter	2		DGC_R_V254[9:2]							FEh
Parameter	3		DGC_R_V252[9:2]							FCh
Parameter	4		DGC_R_V250[9:2]							FAh
Parameter	5		DGC_R_V248[9:2]							F8h
Parameter	6		DGC_R_V244[9:2]							
Parameter	7		DGC_R_V240[9:2]							
Parameter	8		DGC_R_V232[9:2]							
Parameter	9		DGC_R_V224[9:2]							
Parameter	10		DGC_R_V208[9:2]							
Parameter	11		DGC_R_V192[9:2]							
Parameter	12		DGC_R_V160[9:2]							
Parameter	13		DGC_R_V128[9:2]							
Parameter	14			a Bra	DGC_R_	V127[9:2]				7Fh
Parameter	15		-()) "	DGC_R	_V95[9:2]				5Fh
Parameter	16		DGC_R_V63[9:2]							
Parameter	17	-	DGC_R_V47[9:2]							
Parameter	18		DGC_R_V31[9:2]							
Parameter	19		DGC_R_V23[9:2]							
Parameter	20	ó	DGC_R_V15[9:2]							
Parameter	21		DGC_R_V11[9:2]							
Parameter	22		DGC_R_V7[9:2]							
Parameter	23		DGC_R_V5[9:2]							05h
Parameter	24	DGC_R_V3[9:2]							03h	
Parameter	25	DGC_R_V1[9:2]							01h	
Parameter	26	DGC_R_V0[9:2]							00h	

8.3.24 DGC_G

This command is used to set digital gamma gray green.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
DGC_G	W	1	1	1	0	0	1	0	1	E5h
Parameter	1		DGC_G_V255[9:2]							
Parameter	2		DGC_G_V254[9:2]							FEh
Parameter	3		DGC_G_V252[9:2]							FCh
Parameter	4		DGC_G_V250[9:2]							
Parameter	5		DGC_G_V248[9:2]							
Parameter	6		DGC_G_V244[9:2]							
Parameter	7		DGC_G_V240[9:2]							
Parameter	8		DGC_G_V232[9:2]							
Parameter	9		DGC_G_V224[9:2]							
Parameter	10		DGC_G_V208[9:2]							
Parameter	11		DGC_G_V192[9:2]							
Parameter	12		DGC_G_V160[9:2]							
Parameter	13		DGC_G_V128[9:2]							
Parameter	14		-	Ba	DGC_G_	V127[9:2]				7Fh
Parameter	15		-(1	DGC_G	_V95[9:2]				5Fh
Parameter	16		DGC_G_V63[9:2]							
Parameter	17	-	DGC_G_V47[9:2]							
Parameter	18		DGC_G_V31[9:2]							
Parameter	19		DGC_G_V23[9:2]							
Parameter	20	ó	DGC_G_V15[9:2]							
Parameter	21		DGC_G_V11[9:2]							
Parameter	22		DGC_G_V7[9:2]							
Parameter	23		DGC_G_V5[9:2]							
Parameter	24	DGC_G_V3[9:2]								03h
Parameter	25	DGC_G_V1[9:2]							01h	
Parameter	26	DGC_G_V0[9:2]								00h

8.3.25 DGC_B

This command is used to set digital gamma gray blue

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
DGC_B	W	1	1	1	0	0	1	1	0	E6h
Parameter	1				DGC_B_	V255[9:2]				FFh
Parameter	2				DGC_B_	V254[9:2]				FEh
Parameter	3				DGC_B_	V252[9:2]				FCh
Parameter	4				DGC_B_	V250[9:2]				FAh
Parameter	5				DGC_B_	V248[9:2]				F8h
Parameter	6				DGC_B_	V244[9:2]		~ D	N. Pro	F4h
Parameter	7				DGC_B_	V240[9:2]	- 4	BA		F0h
Parameter	8				DGC_B_	V232[9:2]	1.1			E8h
Parameter	9				DGC_B_	V224[9:2]	60			E0h
Parameter	10				DGC_B_	V208[9:2]	0.			D0h
Parameter	11				DGC_B_	V192[9:2]				C0h
Parameter	12			- 2	DGC_B_	V160[9:2]				A0h
Parameter	13			- 0	DGC_B_	V128[9:2]				80h
Parameter	14		- 4	J. Com	DGC_B_	V127[9:2]				7Fh
Parameter	15		-6)) "	DGC_B	V95[9:2]				5Fh
Parameter	16		(Cs)		DGC_B	V63[9:2]				3Fh
Parameter	17	1	-		DGC_B	_V47[9:2]				2Fh
Parameter	18	1			DGC_B	_V31[9:2]				1Fh
Parameter	19	Da			DGC_B	V23[9:2]				17h
Parameter	20				DGC_B	V15[9:2]				0Fh
Parameter	21				DGC_B	_V11[9:2]				0Bh
Parameter	22				DGC_B	_V7[9:2]				07h
Parameter	23				DGC_B	_V5[9:2]				05h
Parameter	24				DGC_B	_V3[9:2]				03h
Parameter	25				DGC_B	_V1[9:2]				01h
Parameter	26				DGC_B	_V0[9:2]				00h

8.3.26 DGC_R_L

This command is used to set digital gamma gray red.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
DGC_R_L	W	1	1	1	0	0	1	1	1	E7h
Parameter	1	DGC_R_	V255[1:0]	DGC_R_	V254[1:0]	DGC_R_	V252[1:0]	DGC_R_	V250[1:0]	00h
Parameter	2	DGC_R_	V248[1:0]	DGC_R_	V244[1:0]	DGC_R_	V240[1:0]	DGC_R_	V232[1:0]	00h
Parameter	3	DGC_R_	V224[1:0]	DGC_R_	V208[1:0]	DGC_R_	V192[1:0]	DGC_R_	V160[1:0]	00h
Parameter	4	DGC_R_	V128[1:0]	DGC_R_	V127[1:0]	DGC_R_	V95[1:0]	DGC_R	V63[1:0]	00h
Parameter	5	DGC_R_	_V47[1:0]	DGC_R_	V31[1:0]	DGC_R_	_V23[1:0]	DGC_R	V15[1:0]	00h
Parameter	6	DGC_R	_V11[1:0]	DGC_R	_V7[1:0]	DGC_R	_V5[1:0]	DGC_R	_V3[1:0]	00h
Parameter	7	DGC_R	_V1[1:0]	DGC_R	_V0[1:0]	0	0	0	0	00h

8.3.27 DGC_G_L

This command is used to set digital gamma gray green.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
DGC_G_L	W	1	1	1	0	1	0	0	0	E8h
Parameter	1	DGC_G_	V255[1:0]	DGC_G_	V254[1:0]	DGC_G_	V252[1:0]	DGC_G_\	V250[1:0]	00h
Parameter	2	DGC_G_	V248[1:0]	DGC_G_	V244[1:0]	DGC_G_	V240[1:0]	DGC_G_\	V232[1:0]	00h
Parameter	3	DGC_G_	V224[1:0]	DGC_G_	V208[1:0]	DGC_G_	V192[1:0]	DGC_G_\	V160[1:0]	00h
Parameter	4	DGC_G_	V128[1:0]	DGC_G_	V127[1:0]	DGC_G_	_V95[1:0]	DGC_G_	V63[1:0]	00h
Parameter	5	DGC_G_	_V47[1:0]	DGC_G_	V31[1:0]	DGC_G_	V23[1:0]	DGC_G_	V15[1:0]	00h
Parameter	6	DGC_G_	_V11[1:0]	DGC_G	_V7[1:0]	DGC_G	_V5[1:0]	DGC_G	_V3[1:0]	00h
Parameter	7	DGC_G	_V1[1:0]	DGC_G	_V0[1:0]	0	0	0	0	00h

8.3.28 DGC_B_L

This command is used to set digital gamma gray blue.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
DGC_B_L	W	1	1	1	0	1	0	0	1	E9h
Parameter	1	DGC_B_	V255[1:0]	DGC_B_	V254[1:0]	DGC_B_	V252[1:0]	DGC_B_	V250[1:0]	00h
Parameter	2	DGC_B_	V248[1:0]	DGC_B_	V244[1:0]	DGC_B_	V240[1:0]	DGC_B_	V232[1:0]	00h
Parameter	3	DGC_B_	V224[1:0]	DGC_B_	V208[1:0]	DGC_B_	V192[1:0]	DGC_B_	V160[1:0]	00h
Parameter	4	DGC_B_	V128[1:0]	DGC_B_	V127[1:0]	DGC_B_	V95[1:0]	DGC_B_	V63[1:0]	00h
Parameter	5	DGC_B_	_V47[1:0]	DGC_B_	V31[1:0]	DGC_B_	V23[1:0]	DGC_B_	V15[1:0]	00h
Parameter	6	DGC_B_	_V11[1:0]	DGC_B	_V7[1:0]	DGC_B	_V5[1:0]	DGC_B	_V3[1:0]	00h
Parameter	7	DGC_B	_V1[1:0]	DGC_B	_V0[1:0]	0	0	0	0	00h

8.3.29 PASSWORD1

This command is used to enable Level 2 and OTP Function.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
PASSWORD1	W	1	1	-1	1	0	0	0	0	F0h
Parameter	1		Password1_1[7:0]						A5	
Parameter	2		(C	9	Password	d1_2[7:0]				A5

This Password is for accessing Level 2 registers.

Password1_1[7:0]: This register should be set to "5Ah" for writing / reading Level 2 registers.

Password1_2[7:0]: This register should be set to "5Ah" for writing / reading Level 2 registers.

Password1_1[7:0]: This register should be set to "B4h" for writing / reading Level 2 and OTP registers.

Password1_2[7:0]: This register should be set to "4Bh" for writing / reading Level 2 and OTP registers.

8.3.30 PASSWORD2

This command is used to enable Level 2 and OTP Function.

Inst / Para	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Hex
PASSWORD2	W	1	1	1	1	0	0	0	1	F1h
Parameter	1		Password2_1[7:0]						5Ah	
Parameter	2				Password	d2_2[7:0]				5Ah

This Password is for accessing Level 2 registers.

Password1_1[7:0]: This register should be set to "A5h" for writing / reading Level 2 registers.

Password1_2[7:0]: This register should be set to "A5h" for writing / reading Level 2 registers.

9. Application

9.1 PCCS [1:0] = 0,0 Mode

9.2 PCCS [1:0] = 1,0 Mode

9.3, PCCS [1:0] = 1,1 Mode

9.4 External Components Connection

9.4.1 PCCS[1:0] = 0,0 Mode

Pad Name	Symbol	Connection	Typical Component Value
HS_LDO	C1	Connect to Capacitor (Max :6V): HS_LDO(+) (-) GND	1.0uF
VDDD	C2	Connect to Capacitor (Max :6V): VDDD(+) (-) GND	1.0uF
VSPR	C3 (Option)	Connect to Capacitor (Max :10V): VSPR(+) (-) GND	1.0uF
VSNR	C4 (Option)	Connect to Capacitor (Max :10V): VSNR(-) (+) GND	1.0uF
VREF	C5 (Option)	Connect to Capacitor (Max :6V): VREF(+) (-) GND	1.0uF
VCL	C6	Connect to Capacitor (Max :6V): VCL(-) (+) GND	1.0uF
C41P - C41N	C7 (Option)	Connect to Capacitor (Max :6V): C41P(+) (-) C41N	1.0uF
C42P – C42N	C8 (Option)	Connect to Capacitor (Max :6V): C42P (+) (-) C42N	1.0uF
VGL	D1	Connect to Schottky Diode (VR>= 30V) VGL(+)▶ (-) VSN	VF<0.4V / 20mA @25 °C ,VR> =30V
VGL_REG	C15 (Option)	Connect to Capacitor (Max :25V): VGL_REG(-) (+) GND	1.0uF
VCOM	C16	Connect to Capacitor (Max :6V): VCOM(-) (+) GND	2.2uF

9.4.1 PCCS[1:0] = 1,0 Mode

Pad Name	Symbol	Connection	Typical Component Value
HS_LDO	C1	Connect to Capacitor (Max :6V): HS_LDO(+) (-) GND	1.0uF
VDDD	C2	Connect to Capacitor (Max :6V): VDDD(+) (-) GND	1.0uF
VSPR	C3 (Option)	Connect to Capacitor (Max :10V): VSPR(+) (-) GND	1.0uF
VSNR	C4 (Option)	Connect to Capacitor (Max :10V): VSNR(-) (+) GND	1.0uF
VREF	C5 (Option)	Connect to Capacitor (Max :6V): VREF(+) (-) GND	1.0uF
VCL	C6	Connect to Capacitor (Max :6V): VCL(-) (+) GND	1.0uF
C41P - C41N	C7 (Option)	Connect to Capacitor (Max :6V): C41P(+) (-) C41N	1.0uF
C42P – C42N	C8 (Option)	Connect to Capacitor (Max :6V): C42P (+) (-) C42N	1.0uF
C21P – C21N	C9	Connect to Capacitor (Max :25V): C21P (+) (-) C21N	1.0uF
C22P – C22N	C10	Connect to Capacitor (Max :25V): C22P (+) (-) C22N	1.0uF
VGH	C11	Connect to Capacitor (Max :25V): VGH (+) (-) GND	1.0uF
C31P – C31N	C12	Connect to Capacitor (Max :25V): C31P (+) (-) C31N	1.0uF
C32P – C32N	C13 (Option)	Connect to Capacitor (Max :25V): C32P (+) (-) C32N	1.0uF
VGL	C14	Connect to Capacitor (Max :25V): VGL (-) (+) GND	1.0uF
VGL	D1	Connect to Schottky Diode (VR>= 30V) VGL(+)▶ (-) GND	VF<0.4V / 20mA @25 ℃,VR> =30V
VGL_REG	C15 (Option)	Connect to Capacitor (Max :25V): VGL_REG(-) (+) GND	1.0uF
VCOM	C16	Connect to Capacitor (Max :6V): VCOM(-) (+) GND	2.2uF

C1P – C1N	C17	Connect to Capacitor (Max :10V):	1.0uF
(ICN7517) C2P – C2N	C18	C1P (+) (-) C1N Connect to Capacitor (Max :10V):	1.0uF
(ICN7517) C3P – C3N (ICN7517)	C19	C2P (+) (-) C2N Connect to Capacitor (Max :10V): C3P (+) (-) C3N	1.0uF
VSP	C20	Connect to Capacitor (Max :10V): VSP (+) (-) GND	2.2uF
VSN	C21	Connect to Capacitor (Max :10V): VSN (-) (+) GND	2.2uF
			TI I PAR
		CONTRIDIC	
CHIP		CONTRIDIT	
CHIP		CONTRIBUTE	

9.4.1 PCCS[1:0] = 1,1 Mode

Pad Name	Symbol	Connection	Typical Component Value
HS_LDO	C1	Connect to Capacitor (Max :6V): HS_LDO(+) (-) GND	1.0uF
VDDD	C2	Connect to Capacitor (Max :6V): VDDD(+) (-) GND	1.0uF
VSPR	C3 (Option)	Connect to Capacitor (Max :10V): VSPR(+) (-) GND	1.0uF
VSNR	C4 (Option)	Connect to Capacitor (Max :10V): VSNR(-) (+) GND	1.0uF
VREF	C5 (Option)	Connect to Capacitor (Max :6V): VREF(+) (-) GND	1.0uF
VCL	C6	Connect to Capacitor (Max :6V): VCL(-) (+) GND	1.0uF
C41P - C41N	C7 (Option)	Connect to Capacitor (Max :6V): C41P(+) (-) C41N	1.0uF
C42P – C42N	C8 (Option)	Connect to Capacitor (Max :6V): C42P (+) (-) C42N	1.0uF
C21P – C21N	C9	Connect to Capacitor (Max :25V): C21P (+) (-) C21N	1.0uF
C22P – C22N	C10	Connect to Capacitor (Max :25V): C22P (+) (-) C22N	1.0uF
VGH	C11	Connect to Capacitor (Max :25V): VGH (+) (-) GND	1.0uF
C31P – C31N	C12	Connect to Capacitor (Max :25V): C31P (+) (-) C31N	1.0uF
C32P – C32N	C13 (Option)	Connect to Capacitor (Max :25V): C32P (+) (-) C32N	1.0uF
VGL	C14	Connect to Capacitor (Max :25V): VGL (-) (+) GND	1.0uF
VGL	D1	Connect to Schottky Diode (VR>= 30V) VGL(+)▶ (-) VSN	VF<0.4V / 20mA @25 °C ,VR> =30V
VGL_REG	C15 (Option)	Connect to Capacitor (Max :25V): VGL_REG(-) (+) GND	1.0uF
VCOM	C16	Connect to Capacitor (Max :6V): VCOM(-) (+) GND	2.2uF

9.5、Maximum Layout Resistance

Ma	Name	Maximum	Ma	Name	Maximum
No.	Name	series	No.	Name	series
1 - 2	DUMMY	Resistance NA	263 - 264	PCLK	Resistance 100
3		10	265 - 266	DCX	100
	CGOUT_L1	10	267 - 268	CSX	100
5	CGOUT_L2 CGOUT_L3	10	269 - 270	SCL	100
6	_	10	271 - 272	SDI	100
7	CGOUT_L4	10	271 - 272	SDO	100
8	CGOUT_L5 CGOUT_L6	10	275 - 278		100
9	_			CABC_PWM_OUT TE	
	CGOUT_L7	10	279 - 284	4 4	100
10	CGOUT_L8	10	285 - 290	TE_TOUCH	100
11	CGOUT_L9	10	291 - 294	RESX	100
12	CGOUT_L10	10	295 - 296	TEST0	100
13	CGOUT_L11	10	297 - 298	TEST1	100
14	CGOUT_L12	10	299 - 300	TEST2	100
15	CGOUT_L13	10	301 - 302	VSSD	5
16	CGOUT_L14	10	303 - 304	BS0	100
17	CGOUT_L15	10	305 - 306	IOVCC	5
18	CGOUT_L16	10	307 - 308	BS1	100
19	CGOUT_L17	10	309 - 310	VSSD	5
20	CGOUT_L18	10	311 - 312	DUMMY	NA
21	CGOUT_L19	10	313 - 314	IOVCC	5
22	CGOUT_L20	10	315 - 316	DUMMY	NA
23	CGOUT_L21	10	317 - 318	VSSD	5
24	CGOUT_L22	10	319 - 320	BS2	100
25 - 27	VCOM	10	321 - 322	IOVCC	5
28 - 37	VSSA	5	323 - 324	PCCS0	100
38 - 39	VTESTOUTN	100	325 - 326	VSSD	5
40	HS_VSS	5	327 - 328	PCCS1	100
41 - 46	HS_D0N	5	329 - 338	IOVCC	5
47 - 52	HS_D0P	5	339 - 348	VDDD	5
53	HS_VSS	5	349 - 358	VSSD	5
54 - 59	HS_D1N	5	359 - 366	VCSW2	20
60 - 65	HS_D1P	5	367 - 374	VCSW1	20
66	HS_VSS	5	375 - 380	VPP	10
67 - 72	HS_CKN	5	381 - 382	VTESTOUTP	100

73 - 78 HS_CKP 5 383 - 387 VCI 5 79 HS_VSS 5 388 - 395 VSSD 5 80 - 85 HS_D2N 5 396 - 399 VSSAC 5 86 - 91 HS_D2P 5 400 - 406 VSSA 5 92 HS_VSS 5 407 - 409 VSPR 5 93 - 98 HS_D3N 5 410 - 412 VSNR 5 99 - 104 HS_D3P 5 413 - 415 VREF 20 105 - 116 HS_VSS 5 416 - 420 VSSD 5 117 - 128 HS_LDO 5 421 - 428 VCI 5 129 - 140 HS_VCC 5 429 - 433 VCL 5 129 - 140 HS_VCC 5 429 - 433 VCL 5 141 - 155 IOVCC 5 434 - 440 C41P 5 156 - 170 VDDD 5 441 - 447 C41N 5 187	集刨儿	r 17			MOUL	ie Dispiay Driver
80 - 85 HS_D2N 5 396 - 399 VSSAC 5 86 - 91 HS_D2P 5 400 - 406 VSSA 5 92 HS_VSS 5 407 - 409 VSPR 5 93 - 98 HS_D3N 5 410 - 412 VSNR 5 99 - 104 HS_D3P 5 413 - 415 VREF 20 105 - 116 HS_VSS 5 416 - 420 VSSD 5 117 - 128 HS_LDO 5 421 - 428 VCI 5 129 - 140 HS_VCC 5 429 - 433 VCL 5 129 - 140 HS_VCC 5 429 - 433 VCL 5 141 - 155 IOVCC 5 434 - 440 C41P 5 156 - 170 VDDD 5 441 - 447 C41N 5 171 - 185 VSSD 5 448 - 454 C42P 5 186 TS7 100 462 - 468 VSP 5 188	73 - 78	HS_CKP	5	383 - 387	VCI	5
86 - 91 HS_D2P 5 400 - 406 VSSA 5 92 HS_VSS 5 407 - 409 VSPR 5 93 - 98 HS_D3N 5 410 - 412 VSNR 5 99 - 104 HS_D3P 5 413 - 415 VREF 20 105 - 116 HS_D3P 5 416 - 420 VSSD 5 117 - 128 HS_LDO 5 421 - 428 VCI 5 129 - 140 HS_VCC 5 429 - 433 VCL 5 129 - 140 HS_VCC 5 429 - 433 VCL 5 141 - 155 IOVCC 5 434 - 440 C41P 5 156 - 170 VDDD 5 441 - 447 C41N 5 171 - 185 VSSD 5 448 - 454 C42P 5 186 TS7 100 455 - 461 C42N 5 187 TS6 100 469 - 475 VSN 5 188	79	HS_VSS	5	388 - 395	VSSD	5
92 HS_VSS 5 407 - 409 VSPR 5 93 - 98 HS_D3N 5 410 - 412 VSNR 5 99 - 104 HS_D3P 5 413 - 415 VREF 20 105 - 116 HS_VSS 5 416 - 420 VSSD 5 117 - 128 HS_LDO 5 421 - 428 VCI 5 129 - 140 HS_VCC 5 429 - 433 VCL 5 141 - 155 IOVCC 5 434 - 440 C41P 5 156 - 170 VDDD 5 441 - 447 C41N 5 171 - 185 VSSD 5 448 - 454 C42P 5 186 TS7 100 455 - 461 C42N 5 187 TS6 100 462 - 468 VSP 5 188 TS5 100 469 - 475 VSN 5 189 TS4 100 476 - 482 C21P 5 190 TS3 100 490 - 496 C22P 5 192 TS1 100 497 - 503 C22N 5 193 TS0 100 504 - 509 VGH 5 194 - 199 VSP 5 510 - 515 VCI 5 200 - 201 DUMMY NA 516 - 519 VSSA 5 202 - 203 TEST_OSC 100 531 - 537 C31N 5 209 DB_23 100 531 - 537 C31N 5	80 - 85	HS_D2N	5	396 - 399	VSSAC	5
93 - 98	86 - 91	HS_D2P	5	400 - 406	VSSA	5
99 - 104	92	HS_VSS	5	407 - 409	VSPR	5
105 - 116	93 - 98	HS_D3N	5	410 - 412	VSNR	5
117 - 128 HS_LDO 5 421 - 428 VCI 5 129 - 140 HS_VCC 5 429 - 433 VCL 5 141 - 155 IOVCC 5 434 - 440 C41P 5 156 - 170 VDDD 5 441 - 447 C41N 5 171 - 185 VSSD 5 448 - 454 C42P 5 186 TS7 100 455 - 461 C42N 5 187 TS6 100 462 - 468 VSP 5 188 TS5 100 469 - 475 VSN 5 189 TS4 100 476 - 482 C21P 5 190 TS3 100 483 - 489 C21N 5 191 TS2 100 490 - 496 C22P 5 192 TS1 100 497 - 503 C22N 5 193 TS0 100 504 - 509 VGH 5 194 - 199 VSP	99 - 104	HS_D3P	5	413 - 415	VREF	20
129 - 140 HS_VCC 5 429 - 433 VCL 5 141 - 155 IOVCC 5 434 - 440 C41P 5 156 - 170 VDDD 5 441 - 447 C41N 5 171 - 185 VSSD 5 448 - 454 C42P 5 186 TS7 100 455 - 461 C42N 5 187 TS6 100 462 - 468 VSP 5 188 TS5 100 469 - 475 VSN 5 189 TS4 100 476 - 482 C21P 5 190 TS3 100 483 - 489 C21N 5 191 TS2 100 490 - 496 C22P 5 192 TS1 100 497 - 503 C22N 5 193 TS0 100 504 - 509 VGH 5 200 - 201 DUMMY NA 516 - 519 VSSA 5 202 - 203 TEST_OSC	105 - 116	HS_VSS	5	416 - 420	VSSD	5
141 - 155 IOVCC 5 434 - 440 C41P 5 156 - 170 VDDD 5 441 - 447 C41N 5 171 - 185 VSSD 5 448 - 454 C42P 5 186 TS7 100 455 - 461 C42N 5 187 TS6 100 462 - 468 VSP 5 188 TS5 100 469 - 475 VSN 5 189 TS4 100 476 - 482 C21P 5 190 TS3 100 483 - 489 C21N 5 191 TS2 100 490 - 496 C22P 5 192 TS1 100 497 - 503 C22N 5 193 TS0 100 504 - 509 VGH 5 194 - 199 VSP 5 510 - 515 VCI 5 200 - 201 DUMMY NA 516 - 519 VSSA 5 204 - 208 VSSD 5	117 - 128	HS_LDO	5	421 - 428	VCI	5
156 - 170 VDDD 5 441 - 447 C41N 5 171 - 185 VSSD 5 448 - 454 C42P 5 186 TS7 100 455 - 461 C42N 5 187 TS6 100 462 - 468 VSP 5 188 TS5 100 469 - 475 VSN 5 189 TS4 100 476 - 482 C21P 5 190 TS3 100 483 - 489 C21N 5 191 TS2 100 490 - 496 C22P 5 192 TS1 100 497 - 503 C22N 5 193 TS0 100 504 - 509 VGH 5 194 - 199 VSP 5 510 - 515 VCI 5 200 - 201 DUMMY NA 516 - 519 VSSA 5 202 - 203 TEST_OSC 100 520 - 523 VSSD 5 204 - 208 VSSD	129 - 140	HS_VCC	5	429 - 433	VCL	5
171 - 185 VSSD 5 448 - 454 C42P 5 186 TS7 100 455 - 461 C42N 5 187 TS6 100 462 - 468 VSP 5 188 TS5 100 469 - 475 VSN 5 189 TS4 100 476 - 482 C21P 5 190 TS3 100 483 - 489 C21N 5 191 TS2 100 490 - 496 C22P 5 192 TS1 100 497 - 503 C22N 5 193 TS0 100 504 - 509 VGH 5 194 - 199 VSP 5 510 - 515 VCI 5 200 - 201 DUMMY NA 516 - 519 VSSA 5 202 - 203 TEST_OSC 100 520 - 523 VSSD 5 204 - 208 VSSD 5 524 - 530 C31P 5 209 DB_23 1	141 - 155	IOVCC	5	434 - 440	C41P	5
186 TS7 100 455 - 461 C42N 5 187 TS6 100 462 - 468 VSP 5 188 TS5 100 469 - 475 VSN 5 189 TS4 100 476 - 482 C21P 5 190 TS3 100 483 - 489 C21N 5 191 TS2 100 490 - 496 C22P 5 192 TS1 100 497 - 503 C22N 5 193 TS0 100 504 - 509 VGH 5 194 - 199 VSP 5 510 - 515 VCI 5 200 - 201 DUMMY NA 516 - 519 VSSA 5 202 - 203 TEST_OSC 100 520 - 523 VSSD 5 204 - 208 VSSD 5 524 - 530 C31P 5 209 DB_23 100 531 - 537 C31N 5 <td>156 - 170</td> <td>VDDD</td> <td>5</td> <td>441 - 447</td> <td>C41N</td> <td>5</td>	156 - 170	VDDD	5	441 - 447	C41N	5
187 TS6 100 462 - 468 VSP 5 188 TS5 100 469 - 475 VSN 5 189 TS4 100 476 - 482 C21P 5 190 TS3 100 483 - 489 C21N 5 191 TS2 100 490 - 496 C22P 5 192 TS1 100 497 - 503 C22N 5 193 TS0 100 504 - 509 VGH 5 194 - 199 VSP 5 510 - 515 VCI 5 200 - 201 DUMMY NA 516 - 519 VSSA 5 202 - 203 TEST_OSC 100 520 - 523 VSSD 5 204 - 208 VSSD 5 524 - 530 C31P 5 209 DB_23 100 531 - 537 C31N 5	171 - 185	VSSD	5	448 - 454	C42P	5
188 TS5 100 469 - 475 VSN 5 189 TS4 100 476 - 482 C21P 5 190 TS3 100 483 - 489 C21N 5 191 TS2 100 490 - 496 C22P 5 192 TS1 100 497 - 503 C22N 5 193 TS0 100 504 - 509 VGH 5 194 - 199 VSP 5 510 - 515 VCI 5 200 - 201 DUMMY NA 516 - 519 VSSA 5 202 - 203 TEST_OSC 100 520 - 523 VSSD 5 204 - 208 VSSD 5 524 - 530 C31P 5 209 DB_23 100 531 - 537 C31N 5	186	TS7	100	455 - 461	C42N	5
189 TS4 100 476 - 482 C21P 5 190 TS3 100 483 - 489 C21N 5 191 TS2 100 490 - 496 C22P 5 192 TS1 100 497 - 503 C22N 5 193 TS0 100 504 - 509 VGH 5 194 - 199 VSP 5 510 - 515 VCI 5 200 - 201 DUMMY NA 516 - 519 VSSA 5 202 - 203 TEST_OSC 100 520 - 523 VSSD 5 204 - 208 VSSD 5 524 - 530 C31P 5 209 DB_23 100 531 - 537 C31N 5	187	TS6	100	462 - 468	VSP	5
190 TS3 100 483 - 489 C21N 5 191 TS2 100 490 - 496 C22P 5 192 TS1 100 497 - 503 C22N 5 193 TS0 100 504 - 509 VGH 5 194 - 199 VSP 5 510 - 515 VCI 5 200 - 201 DUMMY NA 516 - 519 VSSA 5 202 - 203 TEST_OSC 100 520 - 523 VSSD 5 204 - 208 VSSD 5 524 - 530 C31P 5 209 DB_23 100 531 - 537 C31N 5	188	TS5	100	469 - 475	VSN	5
191 TS2 100 490 - 496 C22P 5 192 TS1 100 497 - 503 C22N 5 193 TS0 100 504 - 509 VGH 5 194 - 199 VSP 5 510 - 515 VCI 5 200 - 201 DUMMY NA 516 - 519 VSSA 5 202 - 203 TEST_OSC 100 520 - 523 VSSD 5 204 - 208 VSSD 5 524 - 530 C31P 5 209 DB_23 100 531 - 537 C31N 5	189	TS4	100	476 - 482	C21P	5
192 TS1 100 497 - 503 C22N 5 193 TS0 100 504 - 509 VGH 5 194 - 199 VSP 5 510 - 515 VCI 5 200 - 201 DUMMY NA 516 - 519 VSSA 5 202 - 203 TEST_OSC 100 520 - 523 VSSD 5 204 - 208 VSSD 5 524 - 530 C31P 5 209 DB_23 100 531 - 537 C31N 5	190	TS3	100	483 - 489	C21N	5
193 TS0 100 504 - 509 VGH 5 194 - 199 VSP 5 510 - 515 VCI 5 200 - 201 DUMMY NA 516 - 519 VSSA 5 202 - 203 TEST_OSC 100 520 - 523 VSSD 5 204 - 208 VSSD 5 524 - 530 C31P 5 209 DB_23 100 531 - 537 C31N 5	191	TS2	100	490 - 496	C22P	5
194 - 199 VSP 5 510 - 515 VCI 5 200 - 201 DUMMY NA 516 - 519 VSSA 5 202 - 203 TEST_OSC 100 520 - 523 VSSD 5 204 - 208 VSSD 5 524 - 530 C31P 5 209 DB_23 100 531 - 537 C31N 5	192	TS1	100	497 - 503	C22N	5
200 - 201 DUMMY NA 516 - 519 VSSA 5 202 - 203 TEST_OSC 100 520 - 523 VSSD 5 204 - 208 VSSD 5 524 - 530 C31P 5 209 DB_23 100 531 - 537 C31N 5	193	TS0	100	504 - 509	VGH	5
202 - 203 TEST_OSC 100 520 - 523 VSSD 5 204 - 208 VSSD 5 524 - 530 C31P 5 209 DB_23 100 531 - 537 C31N 5	194 - 199	VSP	5	510 - 515	VCI	5
204 - 208 VSSD 5 524 - 530 C31P 5 209 DB_23 100 531 - 537 C31N 5	200 - 201	DUMMY	NA	516 - 519	VSSA	5
209 DB_23 100 531 - 537 C31N 5	202 - 203	TEST_OSC	100	520 - 523	VSSD	5
	204 - 208	VSSD	5	524 - 530	C31P	5
	209	DB_23	100	531 - 537	C31N	5
	210	DB_22	100	538 - 544	C32P	5
211 DB_21 100 545 - 551 C32N 5	211	DB_21	100	545 - 551	C32N	5
212 DB_20 100 552 - 557 VGL 5	212	DB_20	100	552 - 557	VGL	5
213 DB_19 100 558 - 564 VCI 5	213	DB_19	100	558 - 564	VCI	5
214 DB_18 100 565 - 571 VSSD 5	214	DB_18	100	565 - 571	VSSD	5
215 DB_17 100 572 - 577 VGL_REG 5	215	DB_17	100	572 - 577	VGL_REG	5
216 DB_16 100 578 - 581 DUMMY NA	216	DB_16	100	578 - 581	DUMMY	NA
217 DB_15 100 582 - 584 VCOM 5	217	DB_15	100	582 - 584	VCOM	5
218 DB_14 100 585 CGOUT_R22 10	218	DB_14	100	585	CGOUT_R22	10
219 DB_13 100 586 CGOUT_R21 10	219	DB_13	100	586	CGOUT_R21	10
220 DB_12 100 587 CGOUT_R20 10	220	DB_12	100	587	CGOUT_R20	10
221 DB_11 100 588 CGOUT_R19 10	221	DB_11	100	588	CGOUT_R19	10
222 DB_10 100 589 CGOUT_R18 10	222	DB_10	100	589	CGOUT_R18	10
223 DB_9 100 590 CGOUT_R17 10	223	DB_9	100	590	CGOUT_R17	10

224					ic Display Diffe
'	DB_8	100	591	CGOUT_R16	10
225	DB_7	100	592	CGOUT_R15	10
226	DB_6	100	593	CGOUT_R14	10
227	DB_5	100	594	CGOUT_R13	10
228	DB_4	100	595	CGOUT_R12	10
229	DB_3	100	596	CGOUT_R11	10
230	DB_2	100	597	CGOUT_R10	10
231	DB_1	100	598	CGOUT_R9	10
232	DB_0	100	599	CGOUT_R8	10
233 - 234	DUMMY	NA	600	CGOUT_R7	10
235 - 238	VSN	5	601	CGOUT_R6	10
239 - 240	BIST	100	602	CGOUT_R5	10
241 - 248	DUMMY	NA	603	CGOUT_R4	10
249 - 256	DUMMY	NA	604	CGOUT_R3	10
257 - 258	HSYNC	100	605	CGOUT_R2	10
259 - 260	VSYNC	100	606	CGOUT_R1	10
261 - 262	DE	100	607 - 608	DUMMY	NA
	IPENI	CO			

10 Pad Location Information

10.1 Chip Information

10.1.1 Pad Location

10.1.2 Chip Size

Chip size	X	Y	Unit
Chip size	27680	930	um

10.1.3 Alignment Mark

A1: Left (-13706,398.5)

B1: Left (-13706,311.5)

A2: Right (13706,398.5)

B2: Right (13706,311.5)

10.2 Input Pad Location

	PAD	Coordi	nate		PAD	Coord	inate
No.	Name	X-axis	Y-axis	No.	Name	X-axis	Y-axis
1	DUMMY	-13667.5	-348.5	305	IOVCC	22.5	-348.5
2	DUMMY	-13622.5	-348.5	306	IOVCC	67.5	-348.5
3	CGOUT_L1	-13577.5	-348.5	307	BS1	112.5	-348.5
4	CGOUT_L2	-13532.5	-348.5	308	BS1	157.5	-348.5
5	CGOUT_L3	-13487.5	-348.5	309	VSSD	202.5	-348.5
6	CGOUT_L4	-13442.5	-348.5	310	VSSD	247.5	-348.5
7	CGOUT_L5	-13397.5	-348.5	311	DUMMY	292.5	-348.5
8	CGOUT_L6	-13352.5	-348.5	312	DUMMY	337.5	-348.5
9	CGOUT_L7	-13307.5	-348.5	313	IOVCC	382.5	-348.5
10	CGOUT_L8	-13262.5	-348.5	314	IOVCC	427.5	-348.5
11	CGOUT_L9	-13217.5	-348.5	315	DUMMY	472.5	-348.5
12	CGOUT_L10	-13172.5	-348.5	316	DUMMY	517.5	-348.5
13	CGOUT_L11	-13127.5	-348.5	317	VSSD	562.5	-348.5
14	CGOUT_L12	-13082.5	-348.5	318	VSSD	607.5	-348.5
15	CGOUT_L13	-13037.5	-348.5	319	BS2	652.5	-348.5
16	CGOUT_L14	-12992.5	-348.5	320	BS2	697.5	-348.5
17	CGOUT_L15	-12947.5	-348.5	321	IOVCC	742.5	-348.5
18	CGOUT_L16	-12902.5	-348.5	322	IOVCC	787.5	-348.5
19	CGOUT_L17	-12857.5	-348.5	323	PCCS0	832.5	-348.5
20	CGOUT_L18	-12812.5	-348.5	324	PCCS0	877.5	-348.5
21	CGOUT_L19	-12767.5	-348.5	325	VSSD	922.5	-348.5
22	CGOUT_L20	-12722.5	-348.5	326	VSSD	967.5	-348.5
23	CGOUT_L21	-12677.5	-348.5	327	PCCS1	1012.5	-348.5
24	CGOUT_L22	-12632.5	-348.5	328	PCCS1	1057.5	-348.5
25	VCOM	-12587.5	-348.5	329	IOVCC	1102.5	-348.5
26	VCOM	-12542.5	-348.5	330	IOVCC	1147.5	-348.5
27	VCOM	-12497.5	-348.5	331	IOVCC	1192.5	-348.5
28	VSSA	-12442.5	-348.5	332	IOVCC	1237.5	-348.5
29	VSSA	-12397.5	-348.5	333	IOVCC	1282.5	-348.5
30	VSSA	-12352.5	-348.5	334	IOVCC	1327.5	-348.5
31	VSSA	-12307.5	-348.5	335	IOVCC	1372.5	-348.5
32	VSSA	-12262.5	-348.5	336	IOVCC	1417.5	-348.5
33	VSSA	-12217.5	-348.5	337	IOVCC	1462.5	-348.5
34	VSSA	-12172.5	-348.5	338	IOVCC	1507.5	-348.5

VSSA -12127.5 -348.5 339 **VDDD** 1552.5 -348.5 35 **VSSA** -12082.5-348.5 340 **VDDD** 1597.5 -348.5 36 37 **VSSA** -12037.5 -348.5 341 **VDDD** 1642.5 -348.5 38 **VTESTOUTN** -11992.5 -348.5342 **VDDD** 1687.5 -348.5 **VTESTOUTN** -11947.5 -348.5 39 -348.5343 **VDDD** 1732.5 40 HS VSS -11902.5 -348.5 344 **VDDD** 1777.5 -348.5 41 -11857.5 -348.5 345 **VDDD** 1822.5 -348.5 HS D0N -11812.5 -348.5 346 **VDDD** 1867.5 -348.5 42 HS D0N -348.5 347 **VDDD** 1912.5 -348.5 43 HS D0N -11767.5 44 -11722.5 1957.5 HS D0N -348.5348 **VDDD** -348.5 45 HS D0N -11677.5 -348.5 349 **VSSD** 2002.5 -348.5 -348.5 350 **VSSD** 2047.5 46 HS D0N -11632.5 -348.5 47 HS D0P -11587.5 -348.5351 **VSSD** 2092.5 -348.5 48 HS D0P -11542.5 -348.5 352 **VSSD** 2137.5 -348.5 49 HS D0P -11497.5 -348.5 353 **VSSD** 2182.5 -348.5 50 HS D0P -11452.5 -348.5354 **VSSD** 2227.5 -348.551 HS D0P -11407.5 -348.5 355 **VSSD** 2272.5 -348.5 -11362.5 -348.5**VSSD** 2317.5 -348.552 HS D0P 356 53 -11317.5 -348.5357 **VSSD** 2362.5 -348.5 HS VSS 54 HS_D1N -11272.5 -348.5358 **VSSD** 2407.5 -348.5359 55 HS D1N -11227.5 -348.5VCSW2 2452.5 -348.556 HS D1N -11182.5 -348.5360 VCSW2 2497.5 -348.557 -11137.5 -348.5 361 VCSW2 2542.5 -348.5 HS D1N 58 -11092.5 -348.5 362 VCSW2 2587.5 -348.5 HS D1N 363 -348.5 59 HS D1N -11047.5 -348.5VCSW2 2632.5 60 HS D1P -11002.5 -348.5 364 VCSW2 2677.5 -348.5 -348.5 365 VCSW2 2722.5 -348.5HS D1P -10957.5 61 62 HS D1P -10912.5 -348.5366 VCSW2 2767.5 -348.5-10867.5-348.5367 VCSW1 2812.5 -348.563 HS D1P 64 HS D1P -10822.5-348.5368 VCSW1 2857.5 -348.5 65 HS D1P -10777.5 -348.5369 VCSW1 2902.5 -348.5 370 66 HS VSS -10732.5-348.5VCSW1 2947.5 -348.5 371 67 HS CKN -10687.5 -348.5 VCSW1 2992.5 -348.5 68 HS CKN -10642.5-348.5372 VCSW1 3037.5 -348.5 69 HS CKN -10597.5 -348.5 373 VCSW1 3082.5 -348.5 70 HS CKN -10552.5 -348.5374 VCSW1 3127.5 -348.5 -10507.5 **VPP** -348.5 71 HS CKN -348.5375 3172.5 72 HS CKN -10462.5 -348.5376 **VPP** 3217.5 -348.5 **VPP** 73 HS CKP -10417.5 -348.5377 3262.5 -348.5 **VPP** 74 HS CKP -10372.5 -348.5 378 3307.5 -348.5

Version: 0.7 2017-10

HS CKP -10327.5 -348.5 379 **VPP** 3352.5 -348.5 75 76 HS_CKP -10282.5-348.5 380 **VPP** 3397.5 -348.5 77 HS CKP -10237.5 -348.5 381 **VTESTOUTP** 3442.5 -348.5 78 HS CKP -10192.5 -348.5382 **VTESTOUTP** 3487.5 -348.5 -348.5 -10147.5 VCI -348.5 79 HS_VSS 383 3532.5 80 HS D2N -10102.5 -348.5 384 VCI 3577.5 -348.5 HS D2N -10057.5 -348.5 385 VCI 3622.5 -348.5 81 -10012.5 -348.5 386 VCI 3667.5 -348.5 82 HS D2N -348.5 387 VCI 3712.5 -348.5 83 HS D2N -9967.5 **VSSD** 3757.5 84 HS D2N -9922.5 -348.5388 -348.5 85 HS D2N -9877.5 -348.5 389 **VSSD** 3802.5 -348.5 -348.5 **VSSD** 3847.5 86 HS D2P -9832.5 390 -348.5 87 HS D2P -9787.5 -348.5391 **VSSD** 3892.5 -348.5 88 -9742.5 -348.5 392 **VSSD** 3937.5 -348.5 HS D2P 89 HS D2P -9697.5 -348.5 393 **VSSD** 3982.5 -348.5 90 HS D2P -9652.5 -348.5394 **VSSD** 4027.5 -348.5HS D2P -9607.5 -348.5 395 VSSD 4072.5 -348.5 91 **VSSAC** 4117.5 -348.5-348.592 HS VSS -9562.5396 93 -9517.5 -348.5397 **VSSAC** 4162.5 -348.5 HS D3N 94 HS_D3N -9472.5 -348.5398 **VSSAC** 4207.5 -348.5-348.5399 95 HS D3N -9427.5 **VSSAC** 4252.5 -348.596 HS D3N -9382.5 -348.5400 **VSSA** 4297.5 -348.597 -9337.5 -348.5 401 **VSSA** 4342.5 -348.5 HS D3N 98 -9292.5 -348.5 402 **VSSA** 4387.5 -348.5 HS D3N -348.5 403 -348.5 99 HS D3P -9247.5**VSSA** 4432.5 100 HS D3P -9202.5 -348.5 404 **VSSA** 4477.5 -348.5 101 -348.5 405 **VSSA** 4522.5 -348.5HS D3P -9157.5 102 HS D3P -9112.5 -348.5406 **VSSA** 4567.5 -348.5407 103 -348.5**VSPR** 4612.5 -348.5 HS D3P -9067.5 104 HS D3P -9022.5 -348.5408 **VSPR** 4657.5 -348.5 105 409 HS VSS -8977.5 -348.5**VSPR** 4702.5 -348.5 106 HS VSS -8932.5 -348.5410 **VSNR** 4747.5 -348.5411 107 HS VSS -8887.5 -348.5 **VSNR** 4792.5 -348.5 108 HS VSS -8842.5 -348.5412 **VSNR** 4837.5 -348.5 109 HS VSS -8797.5 -348.5 413 **VREF** 4882.5 -348.5 110 HS_VSS -8752.5 -348.5414 **VREF** 4927.5 -348.5 -348.5 415 4972.5 -348.5 111 HS_VSS -8707.5 **VRFF** 112 HS VSS -8662.5 -348.5416 **VSSD** 5017.5 -348.5 113 417 **VSSD** HS_VSS -8617.5 -348.55062.5 -348.5 114 HS VSS -8572.5 -348.5 418 **VSSD** 5107.5 -348.5

無	创工力					Mobile Disp	lay Dilvei
115	HS_VSS	-8527.5	-348.5	419	VSSD	5152.5	-348.5
116	HS_VSS	-8482.5	-348.5	420	VSSD	5197.5	-348.5
117	HS_LDO	-8437.5	-348.5	421	VCI	5242.5	-348.5
118	HS_LDO	-8392.5	-348.5	422	VCI	5287.5	-348.5
119	HS_LDO	-8347.5	-348.5	423	VCI	5332.5	-348.5
120	HS_LDO	-8302.5	-348.5	424	VCI	5377.5	-348.5
121	HS_LDO	-8257.5	-348.5	425	VCI	5422.5	-348.5
122	HS_LDO	-8212.5	-348.5	426	VCI	5467.5	-348.5
123	HS_LDO	-8167.5	-348.5	427	VCI	5512.5	-348.5
124	HS_LDO	-8122.5	-348.5	428	VCI	5557.5	-348.5
125	HS_LDO	-8077.5	-348.5	429	VCL	5602.5	-348.5
126	HS_LDO	-8032.5	-348.5	430	VCL	5647.5	-348.5
127	HS_LDO	-7987.5	-348.5	431	VCL	5692.5	-348.5
128	HS_LDO	-7942.5	-348.5	432	VCL	5737.5	-348.5
129	HS_VCC	-7897.5	-348.5	433	VCL	5782.5	-348.5
130	HS_VCC	-7852.5	-348.5	434	C41P	5827.5	-348.5
131	HS_VCC	-7807.5	-348.5	435	C41P	5872.5	-348.5
132	HS_VCC	-7762.5	-348.5	436	C41P	5917.5	-348.5
133	HS_VCC	-7717.5	-348.5	437	C41P	5962.5	-348.5
134	HS_VCC	-7672.5	-348.5	438	C41P	6007.5	-348.5
135	HS_VCC	-7627.5	-348.5	439	C41P	6052.5	-348.5
136	HS_VCC	-7582.5	-348.5	440	C41P	6097.5	-348.5
137	HS_VCC	-7537.5	-348.5	441	C41N	6142.5	-348.5
138	HS_VCC	-7492.5	-348.5	442	C41N	6187.5	-348.5
139	HS_VCC	-7447.5	-348.5	443	C41N	6232.5	-348.5
140	HS_VCC	-7402.5	-348.5	444	C41N	6277.5	-348.5
141	IOVCC	-7357.5	-348.5	445	C41N	6322.5	-348.5
142	IOVCC	-7312.5	-348.5	446	C41N	6367.5	-348.5
143	IOVCC	-7267.5	-348.5	447	C41N	6412.5	-348.5
144	IOVCC	-7222.5	-348.5	448	C42P	6457.5	-348.5
145	IOVCC	-7177.5	-348.5	449	C42P	6502.5	-348.5
146	IOVCC	-7132.5	-348.5	450	C42P	6547.5	-348.5
147	IOVCC	-7087.5	-348.5	451	C42P	6592.5	-348.5
148	IOVCC	-7042.5	-348.5	452	C42P	6637.5	-348.5
149	IOVCC	-6997.5	-348.5	453	C42P	6682.5	-348.5
150	IOVCC	-6952.5	-348.5	454	C42P	6727.5	-348.5
151	IOVCC	-6907.5	-348.5	455	C42N	6772.5	-348.5
152	IOVCC	-6862.5	-348.5	456	C42N	6817.5	-348.5
153	IOVCC	-6817.5	-348.5	457	C42N	6862.5	-348.5
154	IOVCC	-6772.5	-348.5	458	C42N	6907.5	-348.5

Version: 0.7 2017-10

155 **IOVCC** -6727.5 -348.5 459 C42N 6952.5 -348.5 156 **VDDD** -6682.5 -348.5 460 C42N 6997.5 -348.5 157 **VDDD** -6637.5 -348.5 461 C42N 7042.5 -348.5 462 **VSP** 158 **VDDD** -6592.5-348.57087.5 -348.5 -348.5 **VSP** 7132.5 -348.5 159 **VDDD** -6547.5 463 160 **VDDD** -6502.5 -348.5 464 **VSP** 7177.5 -348.5 161 **VDDD** -6457.5 -348.5 465 **VSP** 7222.5 -348.5 162 **VDDD** -6412.5 -348.5 466 **VSP** 7267.5 -348.5 **VDDD** -348.5 467 **VSP** 7312.5 -348.5 163 -6367.5 **VSP** 7357.5 164 **VDDD** -6322.5-348.5468 -348.5 165 **VDDD** -6277.5 -348.5 469 **VSN** 7402.5 -348.5 -348.5 470 **VSN** 7447.5 166 **VDDD** -6232.5-348.5 167 **VDDD** -6187.5 -348.5471 **VSN** 7492.5 -348.5 **VSN** 168 **VDDD** -6142.5 -348.5 472 7537.5 -348.5 169 **VDDD** -6097.5 -348.5 473 **VSN** 7582.5 -348.5 170 **VDDD** -6052.5-348.5474 VSN 7627.5 -348.5171 **VSSD** -6007.5 -348.5 475 **VSN** 7672.5 -348.5 172 **VSSD** -5962.5 -348.5C21P 7717.5 -348.5476 173 **VSSD** -5917.5 -348.5477 C21P 7762.5 -348.5 174 **VSSD** -5872.5 -348.5478 C21P 7807.5 -348.5-348.5479 7852.5 175 **VSSD** -5827.5 C21P -348.5176 **VSSD** -5782.5-348.5480 C21P 7897.5 -348.5177 **VSSD** -5737.5 -348.5 481 C21P 7942.5 -348.5 178 **VSSD** -5692.5 -348.5 482 C21P 7987.5 -348.5 179 -348.5 483 -348.5 **VSSD** -5647.5C21N 8032.5 180 **VSSD** -5602.5 -348.5 484 C21N 8077.5 -348.5 181 **VSSD** -348.5 485 C21N 8122.5 -348.5-5557.5 182 **VSSD** -5512.5 -348.5 486 C21N 8167.5 -348.5487 183 **VSSD** -348.5C21N 8212.5 -348.5 -5467.5184 **VSSD** -5422.5 -348.5488 C21N 8257.5 -348.5 489 185 **VSSD** -5377.5 -348.5C21N 8302.5 -348.5 186 TS7 -5332.5 -348.5490 C22P 8347.5 -348.5491 C22P 187 TS6 -5287.5 -348.5 8392.5 -348.5 188 TS5 -5242.5 -348.5492 C22P 8437.5 -348.5 189 TS4 -5197.5 -348.5 493 C22P 8482.5 -348.5 190 TS3 -5152.5 -348.5494 C22P 8527.5 -348.5 TS2 -348.5 495 -348.5 191 -5107.5 C22P 8572.5 -348.5 496 192 TS1 -5062.5 C22P 8617.5 -348.5 193 497 C22N TS₀ -5017.5 -348.58662.5 -348.5**VSP** 194 -4972.5-348.5498 C22N 8707.5 -348.5

195 **VSP** -4927.5 -348.5 499 C22N 8752.5 -348.5 196 **VSP** -4882.5 -348.5 500 C22N 8797.5 -348.5 197 **VSP** -4837.5 -348.5 501 C22N 8842.5 -348.5 198 **VSP** -348.5 502 -4792.5C22N 8887.5 -348.5 -348.5 **VSP** -4747.5 503 C22N -348.5 199 8932.5 200 **DUMMY** -4702.5 -348.5 504 **VGH** 8977.5 -348.5 201 **DUMMY** -4657.5 -348.5 505 **VGH** 9022.5 -348.5 202 TEST OSC -4612.5 -348.5 506 **VGH** 9067.5 -348.5 203 -348.5 507 **VGH** -348.5 TEST OSC -4567.5 9112.5 204 -348.5 508 9157.5 **VSSD** -4522.5**VGH** -348.5 205 **VSSD** -4477.5 -348.5 509 **VGH** 9202.5 -348.5 206 **VSSD** -348.5 510 VCI -4432.5 9247.5 -348.5 207 **VSSD** -4387.5-348.5511 VCI 9292.5 -348.5 VCI 208 **VSSD** -4342.5 -348.5 512 9337.5 -348.5 209 **DB 23** -4297.5-348.5 513 VCI 9382.5 -348.5 210 **DB 22** -4252.5-348.5514 VCI 9427.5 -348.5211 **DB 21** -4207.5 -348.5 515 VCI 9472.5 -348.5 -348.5 **DB 20** -4162.5 -348.5**VSSA** 9517.5 212 516 213 DB 19 -4117.5 -348.5 517 **VSSA** 9562.5 -348.5 214 **DB** 18 -4072.5-348.5518 **VSSA** 9607.5 -348.5DB 17 215 -4027.5 -348.5519 **VSSA** 9652.5 -348.5216 **DB 16** -3982.5-348.5520 **VSSD** 9697.5 -348.5217 -3937.5 -348.5 521 **VSSD** 9742.5 -348.5 **DB** 15 218 DB_14 -3892.5 -348.5 522 **VSSD** 9787.5 -348.5 523 -348.5 219 DB 13 -3847.5-348.5**VSSD** 9832.5 220 **DB 12** -3802.5 -348.5 524 C31P 9877.5 -348.5 221 -348.5 525 9922.5 -348.5**DB** 11 -3757.5C31P 222 **DB 10** -3712.5-348.5526 C31P 9967.5 -348.5527 223 -348.5C31P 10012.5 -348.5 DB 9 -3667.5224 DB 8 -3622.5 -348.5528 C31P 10057.5 -348.5 225 529 DB 7 -3577.5 -348.5C31P 10102.5 -348.5 530 226 DB 6 -3532.5-348.5C31P 10147.5 -348.5531 227 DB 5 -3487.5 -348.5 C31N 10192.5 -348.5 228 DB 4 -3442.5-348.5532 C31N 10237.5 -348.5 229 DB 3 -3397.5 -348.5 533 C31N 10282.5 -348.5 DB_2 -3352.5 -348.5534 C31N 10327.5 -348.5 230 -348.5 535 10372.5 -348.5 231 DB 1 -3307.5C31N 10417.5 232 DB 0 -3262.5-348.5536 C31N -348.5 233 537 -348.5 **DUMMY** -3217.5-348.5C31N 10462.5 234 **DUMMY** -3172.5-348.5 538 C32P 10507.5 -348.5

235 VSN -3127.5 -348.5 539 C32P 10552.5 -348.5 236 VSN -3082.5 -348.5 540 C32P 10597.5 -348.5 237 VSN -3037.5 -348.5 541 C32P 10687.5 -348.5 238 VSN -2992.5 -348.5 542 C32P 10687.5 -348.5 240 BIST -2997.5 -348.5 544 C32P 10777.5 -348.5 241 DUMMY -2867.5 -348.5 546 C32N 10822.5 -348.5 242 DUMMY -2767.5 -348.5 546 C32N 10912.5 -348.5 243 DUMMY -2767.5 -348.5 547 C32N 10912.5 -348.5 244 DUMMY -267.5 -348.5 550 C32N 11002.5 -348.5 245 DUMMY -267.5 -348.5 550 C32N 11047.5 -348.5	抏	Gi) 7F 12					Mobile Disp	lay Dirver
237 VSN -3037.5 -348.5 541 C32P 10642.5 -348.5 238 VSN -2992.5 -348.5 542 C32P 10687.5 -348.5 239 BIST -2947.5 -348.5 543 C32P 10732.5 -348.5 240 BIST -2967.5 -348.5 544 C32P 10777.5 -348.5 241 DUMMY -2867.5 -348.5 546 C32N 10867.5 -348.5 242 DUMMY -2812.5 -348.5 546 C32N 10967.5 -348.5 243 DUMMY -2767.5 -348.5 548 C32N 10967.5 -348.5 244 DUMMY -2677.5 -348.5 549 C32N 11002.5 -348.5 245 DUMMY -2675.5 -348.5 550 C32N 11002.5 -348.5 246 DUMMY -2545.5 -348.5 551 C32N 11092.5 -348.5	235	VSN	-3127.5	-348.5	539	C32P	10552.5	-348.5
238 VSN -2992.5 -348.5 542 C32P 10687.5 -348.5 239 BIST -2947.5 -348.5 543 C32P 10732.5 -348.5 240 BIST -2902.5 -348.5 544 C32P 10777.5 -348.5 241 DUMMY -2812.5 -348.5 546 C32N 10822.5 -348.5 242 DUMMY -22767.5 -348.5 547 C32N 10912.5 -348.5 243 DUMMY -2767.5 -348.5 548 C32N 10957.5 -348.5 244 DUMMY -2677.5 -348.5 549 C32N 11002.5 -348.5 245 DUMMY -2632.5 -348.5 550 C32N 11092.5 -348.5 246 DUMMY -2632.5 -348.5 551 C32N 11092.5 -348.5 247 DUMMY -2497.5 -348.5 551 C32N 11092.5 -348.5 <tr< td=""><td>236</td><td>VSN</td><td>-3082.5</td><td>-348.5</td><td>540</td><td>C32P</td><td>10597.5</td><td>-348.5</td></tr<>	236	VSN	-3082.5	-348.5	540	C32P	10597.5	-348.5
BIST	237	VSN	-3037.5	-348.5	541	C32P	10642.5	-348.5
240 BIST -2902.5 -348.5 544 C32P 10777.5 -348.5 241 DUMMY -2857.5 -348.5 545 C32N 10822.5 -348.5 242 DUMMY -2812.5 -348.5 546 C32N 10967.5 -348.5 243 DUMMY -2722.5 -348.5 547 C32N 10957.5 -348.5 244 DUMMY -2677.5 -348.5 548 C32N 11002.5 -348.5 245 DUMMY -2632.5 -348.5 550 C32N 11092.5 -348.5 246 DUMMY -2632.5 -348.5 551 C32N 11092.5 -348.5 247 DUMMY -2542.5 -348.5 551 C32N 11092.5 -348.5 248 DUMMY -2497.5 -348.5 551 VGL 11137.5 -348.5 250 DUMMY -2497.5 -348.5 554 VGL 11272.5 -348.5 <tr< td=""><td>238</td><td>VSN</td><td>-2992.5</td><td>-348.5</td><td>542</td><td>C32P</td><td>10687.5</td><td>-348.5</td></tr<>	238	VSN	-2992.5	-348.5	542	C32P	10687.5	-348.5
241 DUMMY -2857.5 -348.5 545 C32N 10822.5 -348.5 242 DUMMY -2812.5 -348.5 546 C32N 10867.5 -348.5 243 DUMMY -2767.5 -348.5 547 C32N 10997.5 -348.5 244 DUMMY -2677.5 -348.5 548 C32N 11092.5 -348.5 245 DUMMY -2677.5 -348.5 549 C32N 11092.5 -348.5 246 DUMMY -2632.5 -348.5 550 C32N 11047.5 -348.5 247 DUMMY -2587.5 -348.5 551 C32N 11047.5 -348.5 248 DUMMY -2542.5 -348.5 552 VGL 11137.5 -348.5 250 DUMMY -2497.5 -348.5 553 VGL 11127.5 -348.5 251 DUMMY -2407.5 -348.5 555 VGL 11137.5 -348.5 <tr< td=""><td>239</td><td>BIST</td><td>-2947.5</td><td>-348.5</td><td>543</td><td>C32P</td><td>10732.5</td><td>-348.5</td></tr<>	239	BIST	-2947.5	-348.5	543	C32P	10732.5	-348.5
242 DUMMY -2812.5 -348.5 546 C32N 10867.5 -348.5 243 DUMMY -2767.5 -348.5 547 C32N 10912.5 -348.5 244 DUMMY -2677.5 -348.5 548 C32N 11092.5 -348.5 245 DUMMY -2632.5 -348.5 559 C32N 11002.5 -348.5 246 DUMMY -2587.5 -348.5 550 C32N 11092.5 -348.5 247 DUMMY -2587.5 -348.5 551 C32N 11092.5 -348.5 248 DUMMY -2497.5 -348.5 552 VGL 11137.5 -348.5 250 DUMMY -2492.5 -348.5 555 VGL 11127.5 -348.5 251 DUMMY -2492.5 -348.5 555 VGL 1127.5 -348.5 251 DUMMY -2407.5 -348.5 556 VGL 1137.5 -348.5	240	BIST	-2902.5	-348.5	544	C32P	10777.5	-348.5
243 DUMMY -2767.5 -348.5 547 C32N 10912.5 -348.5 244 DUMMY -2722.5 -348.5 548 C32N 10957.5 -348.5 245 DUMMY -2677.5 -348.5 549 C32N 11002.5 -348.5 246 DUMMY -2632.5 -348.5 550 C32N 11047.5 -348.5 247 DUMMY -2542.5 -348.5 551 C32N 11092.5 -348.5 248 DUMMY -2497.5 -348.5 552 VGL 11137.5 -348.5 249 DUMMY -2497.5 -348.5 553 VGL 11122.5 -348.5 250 DUMMY -2452.5 -348.5 555 VGL 11127.5 -348.5 251 DUMMY -2407.5 -348.5 556 VGL 11377.5 -348.5 252 DUMMY -2302.5 -348.5 556 VGL 11376.5 -348.5	241	DUMMY	-2857.5	-348.5	545	C32N	10822.5	-348.5
244 DUMMY -2722.5 -348.5 548 C32N 10957.5 -348.5 245 DUMMY -2677.5 -348.5 549 C32N 11002.5 -348.5 246 DUMMY -2632.5 -348.5 550 C32N 11047.5 -348.5 247 DUMMY -2587.5 -348.5 551 C32N 11092.5 -348.5 248 DUMMY -2542.5 -348.5 552 VGL 11137.5 -348.5 249 DUMMY -2497.5 -348.5 553 VGL 111227.5 -348.5 250 DUMMY -2407.5 -348.5 555 VGL 111272.5 -348.5 251 DUMMY -2407.5 -348.5 556 VGL 11137.5 -348.5 252 DUMMY -2317.5 -348.5 557 VGL 11362.5 -348.5 253 DUMMY -2217.5 -348.5 558 VCI 11472.5 -348.5	242	DUMMY	-2812.5	-348.5	546	C32N	10867.5	-348.5
245 DUMMY -2677.5 -348.5 549 C32N 11002.5 -348.5 246 DUMMY -2632.5 -348.5 550 C32N 11047.5 -348.5 247 DUMMY -2587.5 -348.5 551 C32N 11092.5 -348.5 248 DUMMY -2497.5 -348.5 552 VGL 11137.5 -348.5 249 DUMMY -2497.5 -348.5 553 VGL 11127.5 -348.5 250 DUMMY -2452.5 -348.5 554 VGL 11272.5 -348.5 251 DUMMY -2407.5 -348.5 555 VGL 11317.5 -348.5 252 DUMMY -2362.5 -348.5 556 VGL 11362.5 -348.5 253 DUMMY -2317.5 -348.5 557 VGL 11362.5 -348.5 254 DUMMY -2272.5 -348.5 558 VCI 11407.5 -348.5	243	DUMMY	-2767.5	-348.5	547	C32N	10912.5	-348.5
246 DUMMY -2632.5 -348.5 550 C32N 11047.5 -348.5 247 DUMMY -2587.5 -348.5 551 C32N 11092.5 -348.5 248 DUMMY -2542.5 -348.5 552 VGL 11137.5 -348.5 249 DUMMY -2497.5 -348.5 553 VGL 11127.5 -348.5 250 DUMMY -2497.5 -348.5 554 VGL 11272.5 -348.5 251 DUMMY -2407.5 -348.5 555 VGL 1137.5 -348.5 252 DUMMY -2362.5 -348.5 556 VGL 1137.5 -348.5 253 DUMMY -2217.5 -348.5 557 VGL 11407.5 -348.5 254 DUMMY -2217.5 -348.5 559 VCI 11452.5 -348.5 255 DUMMY -2218.5 -348.5 560 VCI 11497.5 -348.5	244	DUMMY	-2722.5	-348.5	548	C32N	10957.5	-348.5
247 DUMMY -2587.5 -348.5 551 C32N 11092.5 -348.5 248 DUMMY -2542.5 -348.5 552 VGL 11137.5 -348.5 249 DUMMY -2497.5 -348.5 553 VGL 11182.5 -348.5 250 DUMMY -2497.5 -348.5 554 VGL 11272.5 -348.5 251 DUMMY -2407.5 -348.5 555 VGL 11377.5 -348.5 252 DUMMY -2362.5 -348.5 556 VGL 11362.5 -348.5 253 DUMMY -2317.5 -348.5 557 VGL 11362.5 -348.5 254 DUMMY -2227.5 -348.5 558 VCI 11407.5 -348.5 255 DUMMY -2217.5 -348.5 560 VCI 11475.5 -348.5 256 DUMMY -2182.5 -348.5 560 VCI 11497.5 -348.5	245	DUMMY	-2677.5	-348.5	549	C32N	11002.5	-348.5
248 DUMMY -2542.5 -348.5 552 VGL 11137.5 -348.5 249 DUMMY -2497.5 -348.5 553 VGL 11182.5 -348.5 250 DUMMY -2452.5 -348.5 554 VGL 11277.5 -348.5 251 DUMMY -2407.5 -348.5 555 VGL 11272.5 -348.5 252 DUMMY -2362.5 -348.5 556 VGL 11362.5 -348.5 253 DUMMY -2317.5 -348.5 557 VGL 11362.5 -348.5 254 DUMMY -2272.5 -348.5 558 VCI 11407.5 -348.5 255 DUMMY -2227.5 -348.5 559 VCI 11452.5 -348.5 256 DUMMY -2182.5 -348.5 560 VCI 11497.5 -348.5 257 HSYNC -2137.5 -348.5 561 VCI 11542.5 -348.5	246	DUMMY	-2632.5	-348.5	550	C32N	11047.5	-348.5
249 DUMMY -2497.5 -348.5 553 VGL 11182.5 -348.5 250 DUMMY -2452.5 -348.5 554 VGL 11227.5 -348.5 251 DUMMY -2407.5 -348.5 555 VGL 1137.5 -348.5 252 DUMMY -2362.5 -348.5 556 VGL 11362.5 -348.5 253 DUMMY -2317.5 -348.5 557 VGL 11362.5 -348.5 254 DUMMY -2217.5 -348.5 558 VCI 11407.5 -348.5 255 DUMMY -2217.5 -348.5 559 VCI 11452.5 -348.5 256 DUMMY -2182.5 -348.5 560 VCI 11497.5 -348.5 257 HSYNC -2137.5 -348.5 561 VCI 11542.5 -348.5 258 HSYNC -2092.5 -348.5 562 VCI 11587.5 -348.5	247	DUMMY	-2587.5	-348.5	551	C32N	11092.5	-348.5
250 DUMMY -2452.5 -348.5 554 VGL 11227.5 -348.5 251 DUMMY -2407.5 -348.5 555 VGL 11272.5 -348.5 252 DUMMY -2362.5 -348.5 556 VGL 11362.5 -348.5 253 DUMMY -2217.5 -348.5 557 VGL 11407.5 -348.5 254 DUMMY -2227.5 -348.5 558 VCI 11407.5 -348.5 255 DUMMY -2227.5 -348.5 559 VCI 11452.5 -348.5 256 DUMMY -2182.5 -348.5 560 VCI 11497.5 -348.5 257 HSYNC -2137.5 -348.5 561 VCI 11542.5 -348.5 258 HSYNC -2092.5 -348.5 562 VCI 11587.5 -348.5 259 VSYNC -2047.5 -348.5 563 VCI 11632.5 -348.5	248	DUMMY	-2542.5	-348.5	552	VGL	11137.5	-348.5
251 DUMMY -2407.5 -348.5 555 VGL 11272.5 -348.5 252 DUMMY -2362.5 -348.5 556 VGL 11317.5 -348.5 253 DUMMY -2217.5 -348.5 557 VGL 11362.5 -348.5 254 DUMMY -2227.5 -348.5 558 VCI 11407.5 -348.5 255 DUMMY -2227.5 -348.5 559 VCI 11497.5 -348.5 256 DUMMY -2182.5 -348.5 560 VCI 11497.5 -348.5 257 HSYNC -2137.5 -348.5 561 VCI 11587.5 -348.5 258 HSYNC -2092.5 -348.5 562 VCI 11632.5 -348.5 259 VSYNC -2047.5 -348.5 563 VCI 11632.5 -348.5 260 VSYNC -2002.5 -348.5 564 VCI 11677.5 -348.5	249	DUMMY	-2497.5	-348.5	553	VGL	11182.5	-348.5
252 DUMMY -2362.5 -348.5 556 VGL 11317.5 -348.5 253 DUMMY -2317.5 -348.5 557 VGL 11362.5 -348.5 254 DUMMY -2272.5 -348.5 558 VCI 11407.5 -348.5 255 DUMMY -2227.5 -348.5 559 VCI 11452.5 -348.5 256 DUMMY -2182.5 -348.5 560 VCI 11497.5 -348.5 257 HSYNC -2137.5 -348.5 561 VCI 11542.5 -348.5 258 HSYNC -2092.5 -348.5 562 VCI 11587.5 -348.5 259 VSYNC -2047.5 -348.5 563 VCI 11632.5 -348.5 260 VSYNC -2002.5 -348.5 564 VCI 11677.5 -348.5 261 DE -1957.5 -348.5 565 VSSD 11767.5 -348.5	250	DUMMY	-2452.5	-348.5	554	VGL	11227.5	-348.5
253 DUMMY -2317.5 -348.5 557 VGL 11362.5 -348.5 254 DUMMY -2272.5 -348.5 558 VCI 11407.5 -348.5 255 DUMMY -2227.5 -348.5 559 VCI 11452.5 -348.5 256 DUMMY -2182.5 -348.5 560 VCI 11497.5 -348.5 257 HSYNC -2137.5 -348.5 561 VCI 11542.5 -348.5 258 HSYNC -2092.5 -348.5 562 VCI 11587.5 -348.5 259 VSYNC -2047.5 -348.5 563 VCI 11632.5 -348.5 260 VSYNC -2002.5 -348.5 564 VCI 11677.5 -348.5 261 DE -1957.5 -348.5 565 VSSD 11767.5 -348.5 262 DE -1912.5 -348.5 567 VSSD 11812.5 -348.5 <	251	DUMMY	-2407.5	-348.5	555	VGL	11272.5	-348.5
254 DUMMY -2272.5 -348.5 558 VCI 11407.5 -348.5 255 DUMMY -2227.5 -348.5 559 VCI 11452.5 -348.5 256 DUMMY -2182.5 -348.5 560 VCI 11497.5 -348.5 257 HSYNC -2137.5 -348.5 561 VCI 11587.5 -348.5 258 HSYNC -2092.5 -348.5 562 VCI 11587.5 -348.5 259 VSYNC -2047.5 -348.5 563 VCI 11632.5 -348.5 260 VSYNC -202.5 -348.5 564 VCI 11677.5 -348.5 260 VSYNC -202.5 -348.5 565 VSSD 11722.5 -348.5 261 DE -1957.5 -348.5 566 VSSD 11767.5 -348.5 262 DE -1912.5 -348.5 567 VSSD 11812.5 -348.5 <t< td=""><td>252</td><td>DUMMY</td><td>-2362.5</td><td>-348.5</td><td>556</td><td>VGL</td><td>11317.5</td><td>-348.5</td></t<>	252	DUMMY	-2362.5	-348.5	556	VGL	11317.5	-348.5
255 DUMMY -2227.5 -348.5 559 VCI 11452.5 -348.5 256 DUMMY -2182.5 -348.5 560 VCI 11497.5 -348.5 257 HSYNC -2137.5 -348.5 561 VCI 11542.5 -348.5 258 HSYNC -2092.5 -348.5 562 VCI 11632.5 -348.5 259 VSYNC -2047.5 -348.5 563 VCI 11632.5 -348.5 260 VSYNC -2002.5 -348.5 564 VCI 11677.5 -348.5 261 DE -1957.5 -348.5 565 VSSD 11722.5 -348.5 261 DE -1912.5 -348.5 566 VSSD 11767.5 -348.5 262 DE -1912.5 -348.5 567 VSSD 11812.5 -348.5 263 PCLK -1867.5 -348.5 567 VSSD 11857.5 -348.5 <td< td=""><td>253</td><td>DUMMY</td><td>-2317.5</td><td>-348.5</td><td>557</td><td>VGL</td><td>11362.5</td><td>-348.5</td></td<>	253	DUMMY	-2317.5	-348.5	557	VGL	11362.5	-348.5
256 DUMMY -2182.5 -348.5 560 VCI 11497.5 -348.5 257 HSYNC -2137.5 -348.5 561 VCI 11542.5 -348.5 258 HSYNC -2092.5 -348.5 562 VCI 11587.5 -348.5 259 VSYNC -2047.5 -348.5 563 VCI 11632.5 -348.5 260 VSYNC -2002.5 -348.5 564 VCI 11677.5 -348.5 261 DE -1957.5 -348.5 565 VSSD 11767.5 -348.5 262 DE -1912.5 -348.5 566 VSSD 11767.5 -348.5 263 PCLK -1867.5 -348.5 567 VSSD 11812.5 -348.5 264 PCLK -1822.5 -348.5 568 VSSD 11857.5 -348.5 265 DCX -1777.5 -348.5 570 VSSD 11992.5 -348.5 <t< td=""><td>254</td><td>DUMMY</td><td>-2272.5</td><td>-348.5</td><td>558</td><td>VCI</td><td>11407.5</td><td>-348.5</td></t<>	254	DUMMY	-2272.5	-348.5	558	VCI	11407.5	-348.5
257 HSYNC -2137.5 -348.5 561 VCI 11542.5 -348.5 258 HSYNC -2092.5 -348.5 562 VCI 11587.5 -348.5 259 VSYNC -2047.5 -348.5 563 VCI 11632.5 -348.5 260 VSYNC -2002.5 -348.5 564 VCI 11677.5 -348.5 261 DE -1957.5 -348.5 565 VSSD 11722.5 -348.5 262 DE -1912.5 -348.5 566 VSSD 11767.5 -348.5 263 PCLK -1867.5 -348.5 567 VSSD 11812.5 -348.5 264 PCLK -1822.5 -348.5 568 VSSD 11867.5 -348.5 265 DCX -1777.5 -348.5 569 VSSD 11902.5 -348.5 266 DCX -1732.5 -348.5 570 VSSD 11947.5 -348.5 <td< td=""><td>255</td><td>DUMMY</td><td>-2227.5</td><td>-348.5</td><td>559</td><td>VCI</td><td>11452.5</td><td>-348.5</td></td<>	255	DUMMY	-2227.5	-348.5	559	VCI	11452.5	-348.5
258 HSYNC -2092.5 -348.5 562 VCI 11587.5 -348.5 259 VSYNC -2047.5 -348.5 563 VCI 11632.5 -348.5 260 VSYNC -2002.5 -348.5 564 VCI 11677.5 -348.5 261 DE -1957.5 -348.5 565 VSSD 11722.5 -348.5 262 DE -1912.5 -348.5 566 VSSD 11767.5 -348.5 263 PCLK -1867.5 -348.5 567 VSSD 11812.5 -348.5 264 PCLK -1822.5 -348.5 568 VSSD 11857.5 -348.5 264 PCLK -1822.5 -348.5 569 VSSD 11902.5 -348.5 265 DCX -1777.5 -348.5 570 VSSD 11947.5 -348.5 266 DCX -1732.5 -348.5 571 VSSD 11947.5 -348.5 <td< td=""><td>256</td><td>DUMMY</td><td>-2182.5</td><td>-348.5</td><td>560</td><td>VCI</td><td>11497.5</td><td>-348.5</td></td<>	256	DUMMY	-2182.5	-348.5	560	VCI	11497.5	-348.5
259 VSYNC -2047.5 -348.5 563 VCI 11632.5 -348.5 260 VSYNC -2002.5 -348.5 564 VCI 11677.5 -348.5 261 DE -1957.5 -348.5 565 VSSD 11722.5 -348.5 262 DE -1912.5 -348.5 566 VSSD 11767.5 -348.5 263 PCLK -1867.5 -348.5 567 VSSD 11812.5 -348.5 264 PCLK -1822.5 -348.5 568 VSSD 11857.5 -348.5 265 DCX -1777.5 -348.5 569 VSSD 11902.5 -348.5 266 DCX -1732.5 -348.5 570 VSSD 11947.5 -348.5 267 CSX -1687.5 -348.5 571 VSSD 11992.5 -348.5 268 CSX -1642.5 -348.5 572 VGL_REG 12037.5 -348.5 <t< td=""><td>257</td><td>HSYNC</td><td>-2137.5</td><td>-348.5</td><td>561</td><td>VCI</td><td>11542.5</td><td>-348.5</td></t<>	257	HSYNC	-2137.5	-348.5	561	VCI	11542.5	-348.5
260 VSYNC -2002.5 -348.5 564 VCI 11677.5 -348.5 261 DE -1957.5 -348.5 565 VSSD 11722.5 -348.5 262 DE -1912.5 -348.5 566 VSSD 11767.5 -348.5 263 PCLK -1867.5 -348.5 567 VSSD 11812.5 -348.5 264 PCLK -1822.5 -348.5 568 VSSD 11857.5 -348.5 265 DCX -1777.5 -348.5 569 VSSD 11902.5 -348.5 266 DCX -1732.5 -348.5 570 VSSD 11947.5 -348.5 267 CSX -1687.5 -348.5 571 VSSD 11992.5 -348.5 268 CSX -1642.5 -348.5 572 VGL_REG 12037.5 -348.5 269 SCL -1597.5 -348.5 573 VGL_REG 12127.5 -348.5	258	HSYNC	-2092.5	-348.5	562	VCI	11587.5	-348.5
261 DE -1957.5 -348.5 565 VSSD 11722.5 -348.5 262 DE -1912.5 -348.5 566 VSSD 11767.5 -348.5 263 PCLK -1867.5 -348.5 567 VSSD 11812.5 -348.5 264 PCLK -1822.5 -348.5 568 VSSD 11857.5 -348.5 265 DCX -1777.5 -348.5 569 VSSD 11902.5 -348.5 266 DCX -1732.5 -348.5 570 VSSD 11947.5 -348.5 267 CSX -1687.5 -348.5 571 VSSD 11992.5 -348.5 268 CSX -1642.5 -348.5 572 VGL_REG 12037.5 -348.5 269 SCL -1597.5 -348.5 573 VGL_REG 12127.5 -348.5 270 SCL -1552.5 -348.5 574 VGL_REG 12172.5 -348.5	259	VSYNC	-2047.5	-348.5	563	VCI	11632.5	-348.5
262 DE -1912.5 -348.5 566 VSSD 11767.5 -348.5 263 PCLK -1867.5 -348.5 567 VSSD 11812.5 -348.5 264 PCLK -1822.5 -348.5 568 VSSD 11857.5 -348.5 265 DCX -1777.5 -348.5 569 VSSD 11902.5 -348.5 266 DCX -1732.5 -348.5 570 VSSD 11947.5 -348.5 267 CSX -1687.5 -348.5 571 VSSD 11992.5 -348.5 268 CSX -1642.5 -348.5 572 VGL_REG 12037.5 -348.5 269 SCL -1597.5 -348.5 573 VGL_REG 12127.5 -348.5 270 SCL -1552.5 -348.5 574 VGL_REG 12172.5 -348.5 271 SDI -1507.5 -348.5 575 VGL_REG 12217.5 -348.5	260	VSYNC	-2002.5	-348.5	564	VCI	11677.5	-348.5
263 PCLK -1867.5 -348.5 567 VSSD 11812.5 -348.5 264 PCLK -1822.5 -348.5 568 VSSD 11857.5 -348.5 265 DCX -1777.5 -348.5 569 VSSD 11902.5 -348.5 266 DCX -1732.5 -348.5 570 VSSD 11947.5 -348.5 267 CSX -1687.5 -348.5 571 VSSD 11992.5 -348.5 268 CSX -1642.5 -348.5 572 VGL_REG 12037.5 -348.5 269 SCL -1597.5 -348.5 573 VGL_REG 12082.5 -348.5 270 SCL -1552.5 -348.5 574 VGL_REG 12172.5 -348.5 271 SDI -1507.5 -348.5 575 VGL_REG 12172.5 -348.5 272 SDI -1462.5 -348.5 576 VGL_REG 12217.5 -348.5 <tr< td=""><td>261</td><td>DE</td><td>-1957.5</td><td>-348.5</td><td>565</td><td>VSSD</td><td>11722.5</td><td>-348.5</td></tr<>	261	DE	-1957.5	-348.5	565	VSSD	11722.5	-348.5
264 PCLK -1822.5 -348.5 568 VSSD 11857.5 -348.5 265 DCX -1777.5 -348.5 569 VSSD 11902.5 -348.5 266 DCX -1732.5 -348.5 570 VSSD 11947.5 -348.5 267 CSX -1687.5 -348.5 571 VSSD 11992.5 -348.5 268 CSX -1642.5 -348.5 572 VGL_REG 12037.5 -348.5 269 SCL -1597.5 -348.5 573 VGL_REG 12082.5 -348.5 270 SCL -1552.5 -348.5 574 VGL_REG 12127.5 -348.5 271 SDI -1507.5 -348.5 575 VGL_REG 12172.5 -348.5 272 SDI -1462.5 -348.5 576 VGL_REG 12217.5 -348.5 273 SDO -1417.5 -348.5 577 VGL_REG 12262.5 -348.5 <td>262</td> <td>DE</td> <td>-1912.5</td> <td>-348.5</td> <td>566</td> <td>VSSD</td> <td>11767.5</td> <td>-348.5</td>	262	DE	-1912.5	-348.5	566	VSSD	11767.5	-348.5
265 DCX -1777.5 -348.5 569 VSSD 11902.5 -348.5 266 DCX -1732.5 -348.5 570 VSSD 11947.5 -348.5 267 CSX -1687.5 -348.5 571 VSSD 11992.5 -348.5 268 CSX -1642.5 -348.5 572 VGL_REG 12037.5 -348.5 269 SCL -1597.5 -348.5 573 VGL_REG 12082.5 -348.5 270 SCL -1552.5 -348.5 574 VGL_REG 12127.5 -348.5 271 SDI -1507.5 -348.5 575 VGL_REG 12172.5 -348.5 272 SDI -1462.5 -348.5 576 VGL_REG 12217.5 -348.5 273 SDO -1417.5 -348.5 577 VGL_REG 12262.5 -348.5	263	PCLK	-1867.5	-348.5	567	VSSD	11812.5	-348.5
266 DCX -1732.5 -348.5 570 VSSD 11947.5 -348.5 267 CSX -1687.5 -348.5 571 VSSD 11992.5 -348.5 268 CSX -1642.5 -348.5 572 VGL_REG 12037.5 -348.5 269 SCL -1597.5 -348.5 573 VGL_REG 12082.5 -348.5 270 SCL -1552.5 -348.5 574 VGL_REG 12127.5 -348.5 271 SDI -1507.5 -348.5 575 VGL_REG 12172.5 -348.5 272 SDI -1462.5 -348.5 576 VGL_REG 12217.5 -348.5 273 SDO -1417.5 -348.5 577 VGL_REG 12262.5 -348.5	264	PCLK	-1822.5	-348.5	568	VSSD	11857.5	-348.5
267 CSX -1687.5 -348.5 571 VSSD 11992.5 -348.5 268 CSX -1642.5 -348.5 572 VGL_REG 12037.5 -348.5 269 SCL -1597.5 -348.5 573 VGL_REG 12082.5 -348.5 270 SCL -1552.5 -348.5 574 VGL_REG 12127.5 -348.5 271 SDI -1507.5 -348.5 575 VGL_REG 12172.5 -348.5 272 SDI -1462.5 -348.5 576 VGL_REG 12217.5 -348.5 273 SDO -1417.5 -348.5 577 VGL_REG 12262.5 -348.5	265	DCX	-1777.5	-348.5	569	VSSD	11902.5	-348.5
268 CSX -1642.5 -348.5 572 VGL_REG 12037.5 -348.5 269 SCL -1597.5 -348.5 573 VGL_REG 12082.5 -348.5 270 SCL -1552.5 -348.5 574 VGL_REG 12127.5 -348.5 271 SDI -1507.5 -348.5 575 VGL_REG 12172.5 -348.5 272 SDI -1462.5 -348.5 576 VGL_REG 12217.5 -348.5 273 SDO -1417.5 -348.5 577 VGL_REG 12262.5 -348.5	266	DCX	-1732.5	-348.5	570	VSSD	11947.5	-348.5
269 SCL -1597.5 -348.5 573 VGL_REG 12082.5 -348.5 270 SCL -1552.5 -348.5 574 VGL_REG 12127.5 -348.5 271 SDI -1507.5 -348.5 575 VGL_REG 12172.5 -348.5 272 SDI -1462.5 -348.5 576 VGL_REG 12217.5 -348.5 273 SDO -1417.5 -348.5 577 VGL_REG 12262.5 -348.5	267	CSX	-1687.5	-348.5	571	VSSD	11992.5	-348.5
270 SCL -1552.5 -348.5 574 VGL_REG 12127.5 -348.5 271 SDI -1507.5 -348.5 575 VGL_REG 12172.5 -348.5 272 SDI -1462.5 -348.5 576 VGL_REG 12217.5 -348.5 273 SDO -1417.5 -348.5 577 VGL_REG 12262.5 -348.5	268	CSX	-1642.5	-348.5	572	VGL_REG	12037.5	-348.5
271 SDI -1507.5 -348.5 575 VGL_REG 12172.5 -348.5 272 SDI -1462.5 -348.5 576 VGL_REG 12217.5 -348.5 273 SDO -1417.5 -348.5 577 VGL_REG 12262.5 -348.5	269	SCL	-1597.5	-348.5	573	VGL_REG	12082.5	-348.5
272 SDI -1462.5 -348.5 576 VGL_REG 12217.5 -348.5 273 SDO -1417.5 -348.5 577 VGL_REG 12262.5 -348.5	270	SCL	-1552.5	-348.5	574	VGL_REG	12127.5	-348.5
273 SDO -1417.5 -348.5 577 VGL_REG 12262.5 -348.5	271	SDI	-1507.5	-348.5	575	VGL_REG	12172.5	-348.5
	272	SDI	-1462.5	-348.5	576	VGL_REG	12217.5	-348.5
274 SDO -1372.5 -348.5 578 DUMMY 12307.5 -348.5	273	SDO	-1417.5	-348.5	577	VGL_REG	12262.5	-348.5
	274	SDO	-1372.5	-348.5	578	DUMMY	12307.5	-348.5

禾	הו זר וז					Mobile Disp	lay Dilver
275	CABC_PWM_OUT	-1327.5	-348.5	579	DUMMY	12352.5	-348.5
276	CABC_PWM_OUT	-1282.5	-348.5	580	DUMMY	12397.5	-348.5
277	CABC_PWM_OUT	-1237.5	-348.5	581	DUMMY	12442.5	-348.5
278	CABC_PWM_OUT	-1192.5	-348.5	582	VCOM	12497.5	-348.5
279	TE	-1147.5	-348.5	583	VCOM	12542.5	-348.5
280	TE	-1102.5	-348.5	584	VCOM	12587.5	-348.5
281	TE	-1057.5	-348.5	585	CGOUT_R22	12632.5	-348.5
282	TE	-1012.5	-348.5	586	CGOUT_R21	12677.5	-348.5
283	TE	-967.5	-348.5	587	CGOUT_R20	12722.5	-348.5
284	TE	-922.5	-348.5	588	CGOUT_R19	12767.5	-348.5
285	TE_TOUCH	-877.5	-348.5	589	CGOUT_R18	12812.5	-348.5
286	TE_TOUCH	-832.5	-348.5	590	CGOUT_R17	12857.5	-348.5
287	TE_TOUCH	-787.5	-348.5	591	CGOUT_R16	12902.5	-348.5
288	TE_TOUCH	-742.5	-348.5	592	CGOUT_R15	12947.5	-348.5
289	TE_TOUCH	-697.5	-348.5	593	CGOUT_R14	12992.5	-348.5
290	TE_TOUCH	-652.5	-348.5	594	CGOUT_R13	13037.5	-348.5
291	RESX	-607.5	-348.5	595	CGOUT_R12	13082.5	-348.5
292	RESX	-562.5	-348.5	596	CGOUT_R11	13127.5	-348.5
293	RESX	-517.5	-348.5	597	CGOUT_R10	13172.5	-348.5
294	RESX	-472.5	-348.5	598	CGOUT_R9	13217.5	-348.5
295	TEST0	-427.5	-348.5	599	CGOUT_R8	13262.5	-348.5
296	TEST0	-382.5	-348.5	600	CGOUT_R7	13307.5	-348.5
297	TEST1	-337.5	-348.5	601	CGOUT_R6	13352.5	-348.5
298	TEST1	-292.5	-348.5	602	CGOUT_R5	13397.5	-348.5
299	TEST2	-247.5	-348.5	603	CGOUT_R4	13442.5	-348.5
300	TEST2	-202.5	-348.5	604	CGOUT_R3	13487.5	-348.5
301	VS <mark>SD</mark>	-157.5	-348.5	605	CGOUT_R2	13532.5	-348.5
302	VSSD	-112.5	-348.5	606	CGOUT_R1	13577.5	-348.5
303	BS0	-67.5	-348.5	607	DUMMY	13622.5	-348.5
304	BS0	-22.5	-348.5	608	DUMMY	13667.5	-348.5

10.3 Output Pad Location

	PAD	Coord	inate		PAD	Coordi	nate
No.	Name	X-axis	Y-axis	No.	Name	X-axis	Y-axis
609	DUMMY	13623.5	211	1848	DUMMY	-5.5	211
610	DUMMY	13612.5	301	1849	DUMMY	-16.5	301
611	DUMMY	13601.5	391	1850	DUMMY	-27.5	391
612	DUMMY	13590.5	211	1851	DUMMY	-38.5	211
613	DUMMY	13579.5	301	1852	DUMMY	-49.5	301
614	DUMMY	13568.5	391	1853	DUMMY	-60.5	391
615	DUMMY	13557.5	211	1854	DUMMY	-71.5	211
616	DUMMY	13546.5	301	1855	DUMMY	-82.5	301
617	SR1	13535.5	391	1856	DUMMY	-93.5	391
618	S2400	13524.5	211	1857	DUMMY	-104.5	211
619	S2399	13513.5	301	1858	DUMMY	-115.5	301
620	S2398	13502.5	391	1859	DUMMY	-126.5	391
621	S2397	13491.5	211	1860	S1200	-137.5	211
622	S2396	13480.5	301	1861	S1199	-148.5	301
623	S2395	13469.5	391	1862	S1198	-159.5	391
624	S2394	13458.5	211	1863	S1197	-170.5	211
625	S2393	13447.5	301	1864	S1196	-181.5	301
626	S2392	13436.5	391	1865	S1195	-192.5	391
627	S2391	13425.5	211	1866	S1194	-203.5	211
628	S2390	13414.5	301	1867	S1193	-214.5	301
629	S2389	13403.5	391	1868	S1192	-225.5	391
630	S2388	13392.5	211	1869	S1191	-236.5	211
631	S2387	13381.5	301	1870	S1190	-247.5	301
632	S2386	13370.5	391	1871	S1189	-258.5	391
633	S2385	13359.5	211	1872	S1188	-269.5	211
634	S2384	13348.5	301	1873	S1187	-280.5	301
635	S2383	13337.5	391	1874	S1186	-291.5	391
636	S2382	13326.5	211	1875	S1185	-302.5	211
637	S2381	13315.5	301	1876	S1184	-313.5	301
638	S2380	13304.5	391	1877	S1183	-324.5	391
639	S2379	13293.5	211	1878	S1182	-335.5	211
640	S2378	13282.5	301	1879	S1181	-346.5	301
641	S2377	13271.5	391	1880	S1180	-357.5	391
642	S2376	13260.5	211	1881	S1179	-368.5	211
643	S2375	13249.5	301	1882	S1178	-379.5	301

Version: 0.7 2017-10

644 S2374 13238.5 391 1883 S1177 -390.5 391 S2373 13227.5 1884 -401.5 211 645 211 S1176 S2372 13216.5 1885 S1175 -412.5 301 646 301 647 S2371 13205.5 391 1886 S1174 -423.5391 -434.5 S2370 648 13194.5 211 1887 S1173 211 649 S2369 13183.5 301 1888 S1172 -445.5 301 S2368 13172.5 -456.5 391 650 391 1889 S1171 S2367 -467.5 211 651 13161.5 211 1890 S1170 S2366 -478.5 652 13150.5 301 1891 S1169 301 S2365 13139.5 391 1892 S1168 -489.5391 653 654 S2364 13128.5 211 1893 S1167 -500.5 211 S2363 655 13117.5 301 1894 S1166 -511.5 301 656 S2362 13106.5 391 1895 S1165 -522.5391 S2361 13095.5 211 S1164 -533.5211 657 1896 658 S2360 13084.5 301 1897 S1163 -544.5 301 659 S2359 13073.5 391 1898 S1162 -555.5 391 660 S2358 13062.5 211 1899 S1161 -566.5 211 -577.5 S2357 S1160 301 661 13051.5 301 1900 S2356 13040.5 391 1901 S1159 -588.5 391 662 663 S2355 13029.5 211 1902 S1158 -599.5 211 664 S2354 13018.5 301 1903 S1157 -610.5 301 665 S2353 13007.5 391 1904 S1156 -621.5 391 12996.5 1905 -632.5 211 666 S2352 211 S1155 S2351 12985.5 301 S1154 -643.5 301 667 1906 391 668 S2350 12974.5 391 1907 S1153 -654.5669 S2349 12963.5 211 1908 S1152 -665.5 211 301 670 S2348 12952.5 301 1909 S1151 -676.5 671 S2347 12941.5 391 1910 S1150 -687.5 391 S2346 12930.5 211 S1149 211 672 1911 -698.5673 S2345 12919.5 301 1912 S1148 -709.5 301 674 S2344 12908.5 391 1913 S1147 -720.5391 211 675 S2343 12897.5 211 1914 S1146 -731.5 676 S2342 12886.5 301 1915 S1145 -742.5 301 677 S2341 12875.5 391 1916 S1144 -753.5 391 S2340 12864.5 211 1917 S1143 -764.5 211 678 S2339 12853.5 S1142 -775.5 301 679 301 1918 391 680 S2338 12842.5 391 1919 S1141 -786.5 681 S2337 12831.5 211 1920 S1140 -797.5 211 682 S2336 12820.5 301 1921 S1139 -808.5 301 683 S2335 12809.5 391 1922 S1138 -819.5 391

集 创 工	רו					Mobile Displ	ay Driver
684	S2334	12798.5	211	1923	S1137	-830.5	211
685	S2333	12787.5	301	1924	S1136	-841.5	301
686	S2332	12776.5	391	1925	S1135	-852.5	391
687	S2331	12765.5	211	1926	S1134	-863.5	211
688	S2330	12754.5	301	1927	S1133	-874.5	301
689	S2329	12743.5	391	1928	S1132	-885.5	391
690	S2328	12732.5	211	1929	S1131	-896.5	211
691	S2327	12721.5	301	1930	S1130	-907.5	301
692	S2326	12710.5	391	1931	S1129	-918.5	391
693	S2325	12699.5	211	1932	S1128	-929.5	211
694	S2324	12688.5	301	1933	S1127	-940.5	301
695	S2323	12677.5	391	1934	S1126	-951.5	391
696	S2322	12666.5	211	1935	S1125	-962.5	211
697	S2321	12655.5	301	1936	S1124	-973.5	301
698	S2320	12644.5	391	1937	S1123	-984.5	391
699	S2319	12633.5	211	1938	S1122	-995.5	211
700	S2318	12622.5	301	1939	S1121	-1006.5	301
701	S2317	12611.5	391	1940	S1120	-1017.5	391
702	S2316	12600.5	211	1941	S1119	-1028.5	211
703	S2315	12589.5	301	1942	S1118	-1039.5	301
704	S2314	12578.5	391	1943	S1117	-1050.5	391
705	S2313	12567.5	211	1944	S1116	-1061.5	211
706	S2312	12556.5	301	1945	S1115	-1072.5	301
707	S2311	12545.5	391	1946	S1114	-1083.5	391
708	S2310	12534.5	211	1947	S1113	-1094.5	211
709	S2309	12523.5	301	1948	S1112	-1105.5	301
710	S2308	12512.5	391	1949	S1111	-1116.5	391
711	S2307	12501.5	211	1950	S1110	-1127.5	211
712	S2306	12490.5	301	1951	S1109	-1138.5	301
713	S2305	12479.5	391	1952	S1108	-1149.5	391
714	S2304	12468.5	211	1953	S1107	-1160.5	211
715	S2303	12457.5	301	1954	S1106	-1171.5	301
716	S2302	12446.5	391	1955	S1105	-1182.5	391
717	S2301	12435.5	211	1956	S1104	-1193.5	211
718	S2300	12424.5	301	1957	S1103	-1204.5	301
719	S2299	12413.5	391	1958	S1102	-1215.5	391
720	S2298	12402.5	211	1959	S1101	-1226.5	211
721	S2297	12391.5	301	1960	S1100	-1237.5	301
722	S2296	12380.5	391	1961	S1099	-1248.5	391
723	S2295	12369.5	211	1962	S1098	-1259.5	211

集凹儿	רו					Mobile Displa	ty Direct
724	S2294	12358.5	301	1963	S1097	-1270.5	301
725	S2293	12347.5	391	1964	S1096	-1281.5	391
726	S2292	12336.5	211	1965	S1095	-1292.5	211
727	S2291	12325.5	301	1966	S1094	-1303.5	301
728	S2290	12314.5	391	1967	S1093	-1314.5	391
729	S2289	12303.5	211	1968	S1092	-1325.5	211
730	S2288	12292.5	301	1969	S1091	-1336.5	301
731	S2287	12281.5	391	1970	S1090	-1347.5	391
732	S2286	12270.5	211	1971	S1089	-1358.5	211
733	S2285	12259.5	301	1972	S1088	-1369.5	301
734	S2284	12248.5	391	1973	S1087	-1380.5	391
735	S2283	12237.5	211	1974	S1086	-1391.5	211
736	S2282	12226.5	301	1975	S1085	-1402.5	301
737	S2281	12215.5	391	1976	S1084	-1413.5	391
738	S2280	12204.5	211	1977	S1083	-1424.5	211
739	S2279	12193.5	301	1978	S1082	-1435.5	301
740	S2278	12182.5	391	1979	S1081	-1446.5	391
741	S2277	12171.5	211	1980	S1080	-1457.5	211
742	S2276	12160.5	301	1981	S1079	-1468.5	301
743	S2275	12149.5	391	1982	S1078	-1479.5	391
744	S2274	12138.5	211	1983	S1077	-1490.5	211
745	S2273	12127.5	301	1984	S1076	-1501.5	301
746	S2272	12116.5	391	1985	S1075	-1512.5	391
747	S2271	12105.5	211	1986	S1074	-1523.5	211
748	S2270	12094.5	301	1987	S1073	-1534.5	301
749	S2269	12083.5	391	1988	S1072	-1545.5	391
750	S2268	12072.5	211	1989	S1071	-1556.5	211
751	S2267	12061.5	301	1990	S1070	-1567.5	301
752	S2266	12050.5	391	1991	S1069	-1578.5	391
753	S2265	12039.5	211	1992	S1068	-1589.5	211
754	S2264	12028.5	301	1993	S1067	-1600.5	301
755	S2263	12017.5	391	1994	S1066	-1611.5	391
756	S2262	12006.5	211	1995	S1065	-1622.5	211
757	S2261	11995.5	301	1996	S1064	-1633.5	301
758	S2260	11984.5	391	1997	S1063	-1644.5	391
759	S2259	11973.5	211	1998	S1062	-1655.5	211
760	S2258	11962.5	301	1999	S1061	-1666.5	301
761	S2257	11951.5	391	2000	S1060	-1677.5	391
762	S2256	11940.5	211	2001	S1059	-1688.5	211
763	S2255	11929.5	301	2002	S1058	-1699.5	301

764 S2254 11918.5 391 2003 S1057 -1710.5 391 S2253 11907.5 2004 S1056 -1721.5211 765 211 S2252 11896.5 301 2005 S1055 -1732.5301 766 S2251 S1054 767 11885.5 391 2006 -1743.5391 S2250 S1053 768 11874.5 211 2007 -1754.5211 769 S2249 11863.5 301 2008 S1052 -1765.5 301 S2248 11852.5 2009 S1051 -1776.5 391 770 391 771 S2247 11841.5 S1050 -1787.5 211 211 2010 S2246 11830.5 S1049 301 772 301 2011 -1798.5 S2245 773 11819.5 391 2012 S1048 -1809.5391 774 S2244 11808.5 211 2013 S1047 -1820.5211 S2243 775 11797.5 301 2014 S1046 -1831.5 301 776 S2242 11786.5 391 2015 S1045 -1842.5391 777 S2241 11775.5 211 S1044 -1853.5211 2016 778 S2240 11764.5 301 2017 S1043 -1864.5301 779 S2239 11753.5 391 2018 S1042 -1875.5 391 780 S2238 11742.5 211 2019 S1041 -1886.5 211 -1897.5 S2237 2020 S1040 301 781 11731.5 301 782 S2236 11720.5 391 2021 S1039 -1908.5 391 783 S2235 11709.5 211 2022 S1038 -1919.5 211 784 S2234 11698.5 301 2023 S1037 -1930.5301 785 S2233 11687.5 391 2024 S1036 -1941.5 391 S2232 2025 S1035 -1952.5 211 786 11676.5 211 787 S2231 11665.5 301 2026 S1034 -1963.5 301 S2230 391 788 11654.5 391 2027 S1033 -1974.5789 S2229 11643.5 211 2028 S1032 -1985.5 211 S2228 301 790 11632.5 301 2029 S1031 -1996.5 791 S2227 11621.5 391 2030 S1030 -2007.5391 211 792 S2226 11610.5 211 2031 S1029 -2018.5793 S2225 11599.5 301 2032 S1028 -2029.5 301 794 S2224 11588.5 391 2033 S1027 -2040.5391 211 795 S2223 11577.5 211 2034 S1026 -2051.5 301 796 S2222 11566.5 301 2035 S1025 -2062.5 797 S2221 11555.5 391 2036 S1024 -2073.5391 798 S2220 11544.5 211 2037 S1023 -2084.5 211 799 S2219 11533.5 2038 S1022 -2095.5 301 301 2039 -2106.5 391 800 S2218 11522.5 391 S1021 S1020 801 S2217 11511.5 211 2040 -2117.5 211 S1019 301 802 S2216 11500.5 301 2041 -2128.5803 S2215 11489.5 391 2042 S1018 -2139.5 391

804 S2214 11478.5 211 2043 S1017 -2150.5 211 805 S2213 11467.5 2044 S1016 -2161.5 301 301 S2212 11456.5 391 2045 S1015 -2172.5 391 806 S1014 211 807 S2211 11445.5 211 2046 -2183.5 S2210 S1013 808 11434.5 301 2047 -2194.5 301 809 S2209 11423.5 391 2048 S1012 -2205.5 391 S2208 11412.5 2049 S1011 -2216.5 211 810 211 S2207 2050 S1010 -2227.5 301 811 11401.5 301 S2206 2051 S1009 812 11390.5 391 -2238.5 391 S2205 11379.5 211 2052 S1008 -2249.5211 813 814 S2204 11368.5 301 2053 S1007 -2260.5 301 S2203 S1006 -2271.5 815 11357.5 391 2054 391 816 S2202 11346.5 211 2055 S1005 -2282.5211 S2201 11335.5 301 S1004 -2293.5301 817 2056 818 S2200 11324.5 391 2057 S1003 -2304.5391 819 S2199 11313.5 211 2058 S1002 -2315.5 211 820 S2198 11302.5 301 2059 S1001 -2326.5 301 -2337.5 S2197 11291.5 S1000 391 821 391 2060 822 S2196 11280.5 2061 S999 -2348.5 211 211 823 S2195 11269.5 301 2062 S998 -2359.5301 824 S2194 11258.5 391 2063 S997 -2370.5391 825 S2193 11247.5 211 2064 S996 -2381.5 211 826 11236.5 2065 S995 -2392.5 301 S2192 301 827 S2191 11225.5 391 S994 -2403.5 391 2066 828 S2190 11214.5 211 2067 S993 -2414.5 211 829 S2189 11203.5 301 2068 S992 -2425.5 301 S991 391 830 S2188 11192.5 391 2069 -2436.5831 S2187 11181.5 211 2070 S990 -2447.5211 S2186 11170.5 2071 S989 -2458.5 301 832 301 S2185 11159.5 391 2072 S988 -2469.5 391 833 211 834 S2184 11148.5 211 2073 S987 -2480.5835 S2183 11137.5 301 2074 S986 -2491.5 301 836 S2182 11126.5 391 2075 S985 -2502.5 391 837 S2181 11115.5 211 2076 S984 -2513.5 211 838 S2180 11104.5 301 2077 S983 -2524.5 301 S2179 11093.5 2078 S982 -2535.5 391 839 391 2079 S981 -2546.5 211 840 S2178 11082.5 211 841 S2177 11071.5 301 2080 S980 -2557.5 301 S979 842 S2176 11060.5 391 2081 -2568.5 391 843 S2175 11049.5 211 2082 S978 -2579.5 211

集凹儿	רו					Mobile Displa	y Diivei
844	S2174	11038.5	301	2083	S977	-2590.5	301
845	S2173	11027.5	391	2084	S976	-2601.5	391
846	S2172	11016.5	211	2085	S975	-2612.5	211
847	S2171	11005.5	301	2086	S974	-2623.5	301
848	S2170	10994.5	391	2087	S973	-2634.5	391
849	S2169	10983.5	211	2088	S972	-2645.5	211
850	S2168	10972.5	301	2089	S971	-2656.5	301
851	S2167	10961.5	391	2090	S970	-2667.5	391
852	S2166	10950.5	211	2091	S969	-2678.5	211
853	S2165	10939.5	301	2092	S968	-2689.5	301
854	S2164	10928.5	391	2093	S967	-2700.5	391
855	S2163	10917.5	211	2094	S966	-2711.5	211
856	S2162	10906.5	301	2095	S965	-2722.5	301
857	S2161	10895.5	391	2096	S964	-2733.5	391
858	S2160	10884.5	211	2097	S963	-2744.5	211
859	S2159	10873.5	301	2098	S962	-2755.5	301
860	S2158	10862.5	391	2099	S961	-2766.5	391
861	S2157	10851.5	211	2100	S960	-2777.5	211
862	S2156	10840.5	301	2101	S959	-2788.5	301
863	S2155	10829.5	391	2102	S958	-2799.5	391
864	S2154	10818.5	211	2103	S957	-2810.5	211
865	S2153	10807.5	301	2104	S956	-2821.5	301
866	S2152	10796.5	391	2105	S955	-2832.5	391
867	S2151	10785.5	211	2106	S954	-2843.5	211
868	S2150	10774.5	301	2107	S953	-2854.5	301
869	S2149	10763.5	391	2108	S952	-2865.5	391
870	S2148	10752.5	211	2109	S951	-2876.5	211
871	S2147	10741.5	301	2110	S950	-2887.5	301
872	S2146	10730.5	391	2111	S949	-2898.5	391
873	S2145	10719.5	211	2112	S948	-2909.5	211
874	S2144	10708.5	301	2113	S947	-2920.5	301
875	S2143	10697.5	391	2114	S946	-2931.5	391
876	S2142	10686.5	211	2115	S945	-2942.5	211
877	S2141	10675.5	301	2116	S944	-2953.5	301
878	S2140	10664.5	391	2117	S943	-2964.5	391
879	S2139	10653.5	211	2118	S942	-2975.5	211
880	S2138	10642.5	301	2119	S941	-2986.5	301
881	S2137	10631.5	391	2120	S940	-2997.5	391
882	S2136	10620.5	211	2121	S939	-3008.5	211
883	S2135	10609.5	301	2122	S938	-3019.5	301

884 S2134 10598.5 391 2123 S937 -3030.5 391 S2133 10587.5 2124 S936 -3041.5 211 885 211 S2132 10576.5 2125 S935 -3052.5 301 886 301 S934 887 S2131 10565.5 391 2126 -3063.5391 888 S2130 10554.5 211 2127 S933 -3074.5 211 889 S2129 10543.5 301 2128 S932 -3085.5 301 S2128 2129 S931 -3096.5 391 890 10532.5 391 S2127 2130 S930 -3107.5 211 891 10521.5 211 2131 S929 301 892 S2126 10510.5 301 -3118.5 S2125 S928 893 10499.5 391 2132 -3129.5391 894 S2124 10488.5 211 2133 S927 -3140.5 211 S2123 S926 895 10477.5 301 2134 -3151.5 301 896 S2122 10466.5 391 2135 S925 -3162.5391 S924 897 S2121 211 -3173.5211 10455.5 2136 898 S2120 10444.5 301 2137 S923 -3184.5 301 899 S2119 10433.5 391 2138 S922 -3195.5391 900 S2118 10422.5 211 2139 S921 -3206.5 211 S2117 S920 -3217.5 301 901 10411.5 301 2140 902 S2116 10400.5 391 2141 S919 -3228.5 391 903 S2115 10389.5 211 2142 S918 -3239.5211 904 S2114 10378.5 301 2143 S917 -3250.5301 905 S2113 10367.5 391 2144 S916 -3261.5 391 10356.5 2145 S915 -3272.5 211 906 S2112 211 S2111 10345.5 301 2146 S914 -3283.5 301 907 391 908 S2110 10334.5 391 2147 S913 -3294.5909 S2109 10323.5 211 2148 S912 -3305.5211 301 910 S2108 10312.5 301 2149 S911 -3316.5911 S2107 10301.5 391 2150 S910 -3327.5391 S2106 10290.5 211 S909 -3338.5211 912 2151 913 S2105 10279.5 301 2152 S908 -3349.5301 914 S2104 10268.5 391 2153 S907 -3360.5391 211 915 S2103 10257.5 211 2154 S906 -3371.5 916 S2102 10246.5 301 2155 S905 -3382.5301 917 S2101 10235.5 391 2156 S904 -3393.5391 918 S2100 10224.5 211 2157 S903 -3404.5 211 S2099 10213.5 S902 -3415.5 301 919 301 2158 S901 391 920 S2098 10202.5 391 2159 -3426.5 921 S2097 10191.5 211 2160 S900 -3437.5 211 S899 922 S2096 10180.5 301 2161 -3448.5301 923 S2095 10169.5 391 2162 S898 -3459.5 391

集凹儿	רו					Mobile Displa	y Diivei
924	S2094	10158.5	211	2163	S897	-3470.5	211
925	S2093	10147.5	301	2164	S896	-3481.5	301
926	S2092	10136.5	391	2165	S895	-3492.5	391
927	S2091	10125.5	211	2166	S894	-3503.5	211
928	S2090	10114.5	301	2167	S893	-3514.5	301
929	S2089	10103.5	391	2168	S892	-3525.5	391
930	S2088	10092.5	211	2169	S891	-3536.5	211
931	S2087	10081.5	301	2170	S890	-3547.5	301
932	S2086	10070.5	391	2171	S889	-3558.5	391
933	S2085	10059.5	211	2172	S888	-3569.5	211
934	S2084	10048.5	301	2173	S887	-3580.5	301
935	S2083	10037.5	391	2174	S886	-3591.5	391
936	S2082	10026.5	211	2175	S885	-3602.5	211
937	S2081	10015.5	301	2176	S884	-3613.5	301
938	S2080	10004.5	391	2177	S883	-3624.5	391
939	S2079	9993.5	211	2178	S882	-3635.5	211
940	S2078	9982.5	301	2179	S881	-3646.5	301
941	S2077	9971.5	391	2180	S880	-3657.5	391
942	S2076	9960.5	211	2181	S879	-3668.5	211
943	S2075	9949.5	301	2182	S878	-3679.5	301
944	S2074	9938.5	391	2183	S877	-3690.5	391
945	S2073	9927.5	211	2184	S876	-3701.5	211
946	S2072	9916.5	301	2185	S875	-3712.5	301
947	S2071	9905.5	391	2186	S874	-3723.5	391
948	S2070	9894.5	211	2187	S873	-3734.5	211
949	S2069	9883.5	301	2188	S872	-3745.5	301
950	S2068	9872.5	391	2189	S871	-3756.5	391
951	S2067	9861.5	211	2190	S870	-3767.5	211
952	S2066	9850.5	301	2191	S869	-3778.5	301
953	S2065	9839.5	391	2192	S868	-3789.5	391
954	S2064	9828.5	211	2193	S867	-3800.5	211
955	S2063	9817.5	301	2194	S866	-3811.5	301
956	S2062	9806.5	391	2195	S865	-3822.5	391
957	S2061	9795.5	211	2196	S864	-3833.5	211
958	S2060	9784.5	301	2197	S863	-3844.5	301
959	S2059	9773.5	391	2198	S862	-3855.5	391
960	S2058	9762.5	211	2199	S861	-3866.5	211
961	S2057	9751.5	301	2200	S860	-3877.5	301
962	S2056	9740.5	391	2201	S859	-3888.5	391
963	S2055	9729.5	211	2202	S858	-3899.5	211

未 69 36	,,,					Widdle Displa	ay Biivei
964	S2054	9718.5	301	2203	S857	-3910.5	301
965	S2053	9707.5	391	2204	S856	-3921.5	391
966	S2052	9696.5	211	2205	S855	-3932.5	211
967	S2051	9685.5	301	2206	S854	-3943.5	301
968	S2050	9674.5	391	2207	S853	-3954.5	391
969	S2049	9663.5	211	2208	S852	-3965.5	211
970	S2048	9652.5	301	2209	S851	-3976.5	301
971	S2047	9641.5	391	2210	S850	-3987.5	391
972	S2046	9630.5	211	2211	S849	-3998.5	211
973	S2045	9619.5	301	2212	S848	-4009.5	301
974	S2044	9608.5	391	2213	S847	-4020.5	391
975	S2043	9597.5	211	2214	S846	-4031.5	211
976	S2042	9586.5	301	2215	S845	-4042.5	301
977	S2041	9575.5	391	2216	S844	-4053.5	391
978	S2040	9564.5	211	2217	S843	-4064.5	211
979	S2039	9553.5	301	2218	S842	-4075.5	301
980	S2038	9542.5	391	2219	S841	-4086.5	391
981	S2037	9531.5	211	2220	S840	-4097.5	211
982	S2036	9520.5	301	2221	S839	-4108.5	301
983	S2035	9509.5	391	2222	S838	-4119.5	391
984	S2034	9498.5	211	2223	S837	-4130.5	211
985	S2033	9487.5	301	2224	S836	-4141.5	301
986	S2032	9476.5	391	2225	S835	-4152.5	391
987	S2031	9465.5	211	2226	S834	-4163.5	211
988	S2030	9454.5	301	2227	S833	-4174.5	301
989	S2029	9443.5	391	2228	S832	-4185.5	391
990	S2028	9432.5	211	2229	S831	-4196.5	211
991	S2027	9421.5	301	2230	S830	-4207.5	301
992	S2026	9410.5	391	2231	S829	-4218.5	391
993	S2025	9399.5	211	2232	S828	-4229.5	211
994	S2024	9388.5	301	2233	S827	-4240.5	301
995	S2023	9377.5	391	2234	S826	-4251.5	391
996	S2022	9366.5	211	2235	S825	-4262.5	211
997	S2021	9355.5	301	2236	S824	-4273.5	301
998	S2020	9344.5	391	2237	S823	-4284.5	391
999	S2019	9333.5	211	2238	S822	-4295.5	211
1000	S2018	9322.5	301	2239	S821	-4306.5	301
1001	S2017	9311.5	391	2240	S820	-4317.5	391
1002	S2016	9300.5	211	2241	S819	-4328.5	211
1003	S2015	9289.5	301	2242	S818	-4339.5	301

Version: 0.7 2017-10

1004 S2014 9278.5 391 2243 S817 -4350.5 391 1005 S2013 9267.5 2244 S816 -4361.5 211 211 1006 S2012 9256.5 301 2245 S815 -4372.5 301 S814 -4383.5 391 1007 S2011 9245.5 391 2246 -4394.5 S2010 1008 9234.5 211 2247 S813 211 1009 S2009 9223.5 301 2248 S812 -4405.5 301 391 1010 S2008 9212.5 2249 S811 -4416.5 391 1011 S2007 9201.5 2250 S810 -4427.5 211 211 S2006 9190.5 2251 S809 -4438.5 301 1012 301 -4449.5 S2005 2252 S808 1013 9179.5 391 391 1014 S2004 9168.5 211 2253 S807 -4460.5 211 S2003 2254 S806 -4471.5 1015 9157.5 301 301 1016 S2002 9146.5 391 2255 S805 -4482.5 391 1017 S2001 9135.5 211 2256 S804 -4493.5211 1018 S2000 9124.5 301 2257 S803 -4504.5301 1019 S1999 9113.5 391 2258 S802 -4515.5 391 1020 S1998 9102.5 211 2259 S801 -4526.5 211 -4537.5 S1997 301 2260 S800 301 1021 9091.5 1022 S1996 9080.5 391 2261 S799 -4548.5 391 1023 S1995 9069.5 211 2262 S798 -4559.5211 1024 S1994 9058.5 301 2263 S797 -4570.5 301 1025 S1993 9047.5 391 2264 S796 -4581.5 391 2265 S795 -4592.5 211 1026 S1992 9036.5 211 1027 S1991 9025.5 301 2266 S794 -4603.5 301 2267 391 1028 S1990 9014.5 391 S793 -4614.5 1029 S1989 9003.5 211 2268 S792 -4625.5 211 S1988 2269 S791 301 1030 8992.5 301 -4636.51031 S1987 8981.5 391 2270 S790 -4647.5391 211 1032 S1986 8970.5 211 2271 S789 -4658.5 1033 S1985 8959.5 301 2272 S788 -4669.5 301 1034 S1984 8948.5 391 2273 S787 -4680.5391 211 1035 S1983 8937.5 211 2274 S786 -4691.5 S785 301 1036 S1982 8926.5 301 2275 -4702.51037 S1981 8915.5 391 2276 S784 -4713.5 391 1038 S1980 8904.5 211 2277 S783 -4724.5 211 1039 S1979 8893.5 2278 S782 -4735.5 301 301 1040 8882.5 2279 S781 -4746.5 391 S1978 391 1041 S1977 8871.5 211 2280 S780 -4757.5 211 1042 2281 S779 301 S1976 8860.5 301 -4768.51043 S1975 8849.5 391 2282 S778 -4779.5 391

1044 S1974 8838.5 211 2283 S777 -4790.5 211 1045 S1973 8827.5 2284 S776 -4801.5 301 301 1046 S1972 8816.5 391 2285 S775 -4812.5 391 1047 8805.5 S774 -4823.5 211 S1971 211 2286 S1970 -4834.5 2287 1048 8794.5 301 S773 301 1049 S1969 8783.5 391 2288 S772 -4845.5 391 1050 S1968 2289 S771 -4856.5 211 8772.5 211 1051 S1967 8761.5 301 2290 S770 -4867.5 301 8750.5 2291 S769 -4878.5 391 1052 S1966 391 S1965 2292 S768 -4889.5 1053 8739.5 211 211 1054 S1964 8728.5 301 2293 S767 -4900.5 301 8717.5 2294 S766 391 1055 S1963 391 -4911.5 1056 S1962 8706.5 211 2295 S765 -4922.5211 1057 S1961 8695.5 301 2296 S764 -4933.5301 1058 S1960 8684.5 391 2297 S763 -4944.5391 1059 S1959 8673.5 211 2298 S762 -4955.5 211 1060 S1958 8662.5 301 2299 S761 -4966.5 301 S1957 8651.5 391 2300 S760 -4977.5 391 1061 1062 S1956 8640.5 2301 S759 -4988.5 211 211 1063 S1955 8629.5 301 2302 S758 -4999.5301 S757 1064 S1954 8618.5 391 2303 -5010.5 391 1065 S1953 8607.5 211 2304 S756 -5021.5 211 8596.5 301 2305 S755 -5032.5 301 1066 S1952 S1951 8585.5 391 2306 S754 -5043.5 391 1067 S753 211 1068 S1950 8574.5 211 2307 -5054.5 1069 S1949 8563.5 301 2308 S752 -5065.5 301 S1948 S751 -5076.5 391 1070 8552.5 391 2309 1071 S1947 8541.5 211 2310 S750 -5087.5 211 S1946 8530.5 2311 S749 -5098.5 301 1072 301 1073 S1945 8519.5 391 2312 S748 -5109.5 391 211 1074 S1944 8508.5 211 2313 S747 -5120.5301 1075 S1943 8497.5 301 2314 S746 -5131.5 391 1076 S1942 8486.5 391 2315 S745 -5142.5 211 1077 S1941 8475.5 211 2316 S744 -5153.5 1078 S1940 8464.5 301 2317 S743 -5164.5 301 1079 S1939 8453.5 391 2318 S742 -5175.5 391 -5186.5 8442.5 2319 S741 211 1080 S1938 211 S740 1081 S1937 8431.5 301 2320 -5197.5 301 1082 2321 S739 391 S1936 8420.5 391 -5208.5 1083 S1935 8409.5 211 2322 S738 -5219.5 211

1084	集凹儿	רו					Mobile Displa	y Diivei
1086 S1932 8376.5 211 2325 S735 -5252.5 211 1087 S1931 8365.5 301 2326 S734 -5263.5 301 3088 S1930 8354.5 391 2327 S733 -5274.5 391 3089 S1929 8343.5 211 2328 S732 -5285.5 211 200 S1928 8332.5 301 2329 S731 -5266.5 301 3091 S1927 8321.5 391 2330 S730 -5307.5 391 3092 S1926 8310.5 211 2331 S729 -5318.5 211 200 S1928 832.5 301 2332 S728 -5329.5 301 3092 S1926 8310.5 211 2331 S729 -5318.5 211 3093 S1925 8299.5 301 2332 S728 -5329.5 301 3094 S1924 8288.5 391 2333 S727 -5340.5 391 3095 S1923 8277.5 211 2334 S726 -5351.5 211 3096 S1922 8266.5 301 2335 S725 -5362.5 301 3097 S1921 8265.5 391 2336 S724 -5373.5 391 3098 S1920 8244.5 211 2337 S723 -5384.5 211 3099 S1919 8233.5 301 2338 S722 -5395.5 301 3098 S1919 8233.5 301 2338 S722 -5395.5 301 3098 S1919 8233.5 301 2338 S722 -5395.5 301 3	1084	S1934	8398.5	301	2323	S737	-5230.5	301
1087 S1931 8365.5 301 2326 S734 -5263.5 301 1088 S1930 8354.5 391 2327 S733 -5274.5 391 1089 S1929 8343.5 211 2328 S732 -5285.5 211 1090 S1928 8332.5 301 2329 S731 -5296.5 301 1091 S1927 8321.5 391 2330 S730 -5307.5 391 1092 S1926 8310.5 211 2331 S729 -5318.5 211 1093 S1925 8299.5 301 2332 S728 -5329.5 301 1094 S1924 8288.5 391 2333 S727 -5340.5 391 1094 S1924 8288.5 391 2333 S727 -5340.5 391 1095 S1923 8277.5 211 2334 S726 -5351.5 211 1096 S1922 8266.5 301 2335 S725 -5362.5 301 1097 S1921 8255.5 391 2336 S724 -5373.5 391 1098 S1920 8244.5 211 2337 S723 -5384.5 211 1099 S1919 8233.5 301 2338 S722 -5395.5 301 1000 S1918 8222.5 391 2338 S722 -5395.5 301 1100 S1918 8222.5 391 2339 S721 -5406.5 391 1101 S1917 8211.5 211 2340 S720 -5417.5 211 1102 S1916 8200.5 301 2344 S719 -5428.5 301 1103 S1915 8189.5 391 2342 S718 -5439.5 391 1104 S1914 8178.5 211 2344 S717 -5450.5 211 1105 S1913 8165.5 391 2346 S714 -5433.5 211 1106 S1912 8156.5 391 2346 S714 -5433.5 211 1108 S1910 8134.5 301 2347 S713 -5494.5 301 1107 S1911 8145.5 211 2340 S710 -5627.5 301 1107 S1911 8145.5 211 2346 S714 -5433.5 211 1108 S1910 8134.5 301 2347 S713 -5494.5 301 1109 S1909 8123.5 391 2348 S712 -5505.5 391 1110 S1908 8112.5 211 2349 S711 -5516.5 211 1114 S1904 8068.5 301 2355 S705 -5582.5 211 1114 S1904 8068.5 301 2355 S705 -5582.5 211 1114 S1904 8068.5 301 2355 S705 -5582.5 211 1116 S1902 8046.5 211 2355 S705 -5582.5 211 1116 S1902 8046.5 211 2358 S701 -5627.5 301 1116 S1902 8046.5 211 2358 S701 -5627.5 301 1116	1085	S1933	8387.5	391	2324	S736	-5241.5	391
1088	1086	S1932	8376.5	211	2325	S735	-5252.5	211
1089	1087	S1931	8365.5	301	2326	S734	-5263.5	301
1090 S1928 8332.5 301 2329 S731 -5296.5 301 1091 S1927 8321.5 391 2330 S730 -5307.5 391 1092 S1926 8310.5 211 2331 S729 -5318.5 211 1093 S1925 8299.5 301 2332 S728 -5329.5 301 1094 S1924 8288.5 391 2333 S727 -5340.5 391 1095 S1923 8277.5 211 2334 S726 -5351.5 211 1096 S1922 8266.5 301 2335 S725 -5362.5 301 1097 S1921 8255.5 391 2336 S724 -5373.5 391 1098 S1920 8244.5 211 2337 S723 -5384.5 211 1099 S1919 8233.5 301 2338 S722 -5395.5 301 1000 S1918 8222.5 391 2339 S721 -5406.5 391 1100 S1918 8222.5 391 2339 S721 -5406.5 391 1101 S1917 8211.5 211 2340 S720 -5417.5 211 1102 S1916 8200.5 301 2341 S719 -5428.5 301 1104 S1914 8178.5 211 2342 S718 -5439.5 391 1104 S1914 8178.5 211 2346 S716 -5461.5 301 1106 S1912 8156.5 391 2342 S716 -5461.5 301 1106 S1912 8156.5 391 2344 S716 -5461.5 301 1107 S1911 8145.5 211 2346 S714 -5483.5 211 1108 S1910 8134.5 301 2347 S713 -5494.5 301 1107 S1911 8145.5 211 2348 S715 -5472.5 391 1107 S1911 8145.5 211 2346 S714 -5483.5 211 1108 S1908 8123.5 391 2345 S715 -5472.5 391 1110 S1908 8123.5 391 2345 S715 -5472.5 391 1110 S1908 8123.5 391 2348 S712 -5505.5 391 1111 S1907 8101.5 301 2350 S710 -5527.5 301 1112 S1906 8090.5 391 2355 S708 -5549.5 211 1114 S1904 8068.5 301 2355 S708 -5549.5 211 1114 S1904 8068.5 301 2355 S706 -5582.5 211 1116 S1902 8046.5 211 2356 S704 -5593.5 301 1118 S1900 8024.5 301 2356 S704 -5593.5 301 1119 S1899 8013.5 211 2358 S707 -5604.5 391 1119 S1899 8013.5 211 2356 S700 -5637.5 391 1112 S1896 7980.5 211 2360 S700 -5637.5 391 1122	1088	S1930	8354.5	391	2327	S733	-5274.5	391
1091 S1927 8321.5 391 2330 S730 -5307.5 391 1092 S1926 8310.5 211 2331 S729 -5318.5 211 1093 S1925 8299.5 301 2332 S728 -5329.5 301 1094 S1924 8288.5 391 2333 S727 -5340.5 391 1095 S1923 8277.5 211 2334 S726 -5351.5 211 1096 S1922 8266.5 301 2335 S725 -5362.5 301 1097 S1921 8255.5 391 2336 S724 -5373.5 391 1098 S1920 8244.5 211 2337 S723 -5384.5 211 1099 S1919 8233.5 301 2338 S722 -5395.5 301 1100 S1918 8222.5 391 2339 S721 -5406.5 391 1101 S1917 8211.5 211 2340 S720 -5417.5 211 1102 S1916 8200.5 301 2341 S719 -5428.5 301 1103 S1915 8189.5 391 2342 S718 -5439.5 391 1104 S1914 8178.5 211 2343 S717 -5450.5 211 1105 S1913 8167.5 301 2344 S716 -5461.5 301 1106 S1912 8156.5 391 2345 S715 -5461.5 301 1107 S1911 8145.5 211 2349 S716 -5461.5 301 1109 S1909 8123.5 391 2348 S712 -5505.5 391 1109 S1909 8123.5 391 2348 S712 -5505.5 391 1110 S1908 8112.5 211 2349 S711 -5516.5 211 1114 S1907 8101.5 301 2354 S709 -5538.5 391 1114 S1907 8101.5 301 2355 S707 -5560.5 301 1114 S1904 8068.5 301 2355 S707 -5560.5 301 1116 S1903 8057.5 391 2355 S707 -5560.5 301 1116 S1900 8057.5 391 2355 S707 -5560.5 301 1116 S1900 8057.5 391 2355 S707 -5560.5 301 1117 S1901 8035.5 301 2356 S707 -5560.5 301 1118 S1900 8024.5 391 2356 S704 -5593.5 301 1119 S1899 8013.5 211 2358 S702 -5615.5 211 1119 S1899 8013.5 211 2358 S702 -5615.5 211 1120 S1898 8002.5 301 2356 S700 -5637.5 391 1122 S1896 7980.5 211 2366 S699 -5648.5 211 1122 S1896 7980.5 211 2366 S699 -5648.5 211 1122 S1896 7980.5 211 2366 S699 -5648.5 211 1122	1089	S1929	8343.5	211	2328	S732	-5285.5	211
1092 S1926 8310.5 211 2331 S729 -5318.5 211 1093 S1925 8299.5 301 2332 S728 -5329.5 301 1094 S1924 8288.5 391 2333 S727 -5340.5 391 1095 S1923 8277.5 211 2334 S726 -5351.5 211 1096 S1922 8266.5 301 2335 S725 -5362.5 301 1097 S1921 8255.5 391 2336 S724 -5373.5 391 1098 S1920 8244.5 211 2337 S723 -5384.5 211 1099 S1919 8233.5 301 2338 S722 -5395.5 301 1100 S1918 8222.5 391 2339 S721 -5466.5 391 1101 S1917 8211.5 211 2340 S720 -5417.5 211 1102 S1916 8200.5 301 2341 S719 -5428.5 301 1103 S1915 8189.5 391 2342 S718 -5439.5 391 1104 S1914 8178.5 211 2343 S717 -5450.5 211 1105 S1913 8167.5 301 2344 S716 -5461.5 301 1106 S1912 8156.5 391 2345 S715 -5472.5 391 1107 S1911 8145.5 211 2346 S714 -5483.5 211 1108 S1910 8134.5 301 2345 S715 -5472.5 391 1107 S1911 8145.5 211 2348 S712 -5505.5 391 1107 S1913 8167.5 301 2347 S713 -5494.5 301 1109 S1909 8123.5 391 2348 S712 -5505.5 391 1110 S1908 8112.5 211 2349 S711 -5516.5 211 1111 S1907 8101.5 301 2350 S710 -5527.5 301 1114 S1904 8068.5 301 2355 S706 -5571.5 391 1116 S1903 8057.5 391 2355 S706 -5571.5 391 1116 S1903 8057.5 391 2356 S704 -5593.5 301 1119 S1809 8035.5 301 2356 S704 -5593.5 301 1119 S1809 8024.5 301 2356 S704 -5593.5 301 1119 S1809 8013.5 211 2358 S702 -5615.5 211 1112 S1806 S09.5 S01 2356 S704 -5593.5 301 1121	1090	S1928	8332.5	301	2329	S731	-5296.5	301
1093 \$1925 \$829.5 301 2332 \$728 -5329.5 301 1094 \$1924 \$828.5 391 2333 \$727 -5340.5 391 1095 \$1923 \$8277.5 211 2334 \$726 -5351.5 211 1096 \$1922 \$8266.5 301 2335 \$725 -5362.5 301 1097 \$1921 \$8255.5 391 2336 \$724 -5373.5 391 1098 \$1920 \$8244.5 211 2337 \$723 -5384.5 211 1099 \$1919 \$823.5 301 2338 \$722 -5395.5 301 1100 \$1918 \$822.5 391 2339 \$721 -5406.5 391 1100 \$1918 \$822.5 391 2339 \$721 -5406.5 391 1101 \$1917 \$8211.5 211 2340 \$770 -5417.5 211 1102 \$1916<	1091	S1927	8321.5	391	2330	S730	-5307.5	391
1094 \$1924 \$8288.5 391 2333 \$\$727\$ -5340.5 391 1095 \$1923 \$277.5 211 2334 \$726 -5351.5 211 1096 \$1922 \$266.5 301 2335 \$725 -5362.5 301 1097 \$1921 \$255.5 391 2336 \$724 -5373.5 391 1098 \$1920 \$244.5 211 2337 \$723 -5384.5 211 1099 \$1919 \$8233.5 301 2338 \$722 -5395.5 301 1100 \$1918 \$8222.5 391 2339 \$721 -5406.5 391 1100 \$1918 \$822.5 391 2340 \$720 -5417.5 211 1100 \$1918 \$822.5 391 2340 \$772 -5406.5 391 1101 \$1916 \$200.5 301 2341 \$719 -5428.5 301 1102 \$1916<	1092	S1926	8310.5	211	2331	S729	-5318.5	211
1095 S1923 8277.5 211 2334 S726 -5351.5 211 1096 S1922 8266.5 301 2335 S725 -5362.5 301 1097 S1921 8255.5 391 2336 S724 -5373.5 391 1098 S1920 8244.5 211 2337 S723 -5384.5 211 1099 S1919 8233.5 301 2338 S722 -5395.5 301 1100 S1918 8222.5 391 2339 S721 -5406.5 391 1101 S1917 8211.5 211 2340 S720 -5417.5 211 1102 S1916 8200.5 301 2341 S719 -5428.5 301 1103 S1915 8189.5 391 2342 S718 -5439.5 391 1104 S1914 8178.5 211 2343 S717 -5450.5 211 1105 S1913	1093	S1925	8299.5	301	2332	S728	-5329.5	301
1096 S1922 8266.5 301 2335 S725 -5362.5 301 1097 S1921 8255.5 391 2336 S724 -5373.5 391 1098 S1920 8244.5 211 2337 S723 -5384.5 211 1099 S1919 8233.5 301 2338 S722 -5395.5 301 1100 S1918 8222.5 391 2339 S721 -5406.5 391 1101 S1917 8211.5 211 2340 S720 -5417.5 211 1102 S1916 8200.5 301 2341 S719 -5428.5 301 1103 S1915 8189.5 391 2342 S718 -5439.5 391 1104 S1914 8178.5 211 2343 S717 -5450.5 211 1105 S1913 8167.5 301 2344 S716 -5461.5 301 1106 S1912	1094	S1924	8288.5	391	2333	S727	-5340.5	391
1097 S1921 8255.5 391 2336 S724 -5373.5 391 1098 S1920 8244.5 211 2337 S723 -5384.5 211 1099 S1919 8233.5 301 2338 S722 -5395.5 301 1100 S1918 8222.5 391 2339 S721 -5406.5 391 1101 S1917 8211.5 211 2340 S720 -5417.5 211 1102 S1916 8200.5 301 2341 S719 -5428.5 301 1103 S1915 8189.5 391 2342 S718 -5439.5 391 1103 S1914 8178.5 211 2343 S717 -5450.5 211 1104 S1914 8178.5 211 2343 S717 -5450.5 211 1105 S1913 8167.5 301 2344 S716 -5461.5 301 1106 S1912	1095	S1923	8277.5	211	2334	S726	-5351.5	211
1098 \$1920 \$244.5 211 2337 \$723 -5384.5 211 1099 \$1919 \$233.5 301 2338 \$722 -5395.5 301 1100 \$1918 \$222.5 391 2339 \$721 -5406.5 391 1101 \$1917 \$211.5 211 2340 \$720 -5417.5 211 1102 \$1916 \$200.5 301 2341 \$719 -5428.5 301 1103 \$1915 \$8189.5 391 2342 \$718 -5439.5 391 1104 \$1914 \$8178.5 211 2343 \$717 -5450.5 211 1105 \$1913 \$8167.5 301 2344 \$716 -5461.5 301 1106 \$1912 \$8156.5 391 2345 \$715 -5472.5 391 1107 \$1911 \$8145.5 211 2346 \$714 -5483.5 211 1107 \$1911<	1096	S1922	8266.5	301	2335	S725	-5362.5	301
1099 S1919 8233.5 301 2338 S722 -5395.5 301 1100 S1918 8222.5 391 2339 S721 -5406.5 391 1101 S1917 8211.5 211 2340 S720 -5417.5 211 1102 S1916 8200.5 301 2341 S719 -5428.5 301 1103 S1915 8189.5 391 2342 S718 -5439.5 391 1104 S1914 8178.5 211 2343 S717 -5450.5 211 1105 S1913 8167.5 301 2344 S716 -5461.5 301 1106 S1912 8156.5 391 2345 S715 -5472.5 391 1107 S1911 8145.5 211 2346 S714 -5483.5 211 1108 S1910 8134.5 301 2347 S713 -5494.5 301 1109 S1909	1097	S1921	8255.5	391	2336	S724	-5373.5	391
1100 S1918 8222.5 391 2339 S721 -5406.5 391 1101 S1917 8211.5 211 2340 S720 -5417.5 211 1102 S1916 8200.5 301 2341 S719 -5428.5 301 1103 S1915 8189.5 391 2342 S718 -5439.5 391 1104 S1914 8178.5 211 2343 S717 -5450.5 211 1105 S1913 8167.5 301 2344 S716 -5461.5 301 1106 S1912 8156.5 391 2345 S715 -5472.5 391 1107 S1911 8145.5 211 2346 S714 -5483.5 211 1108 S1910 8134.5 301 2347 S713 -5494.5 301 1109 S1909 8123.5 391 2348 S712 -5505.5 391 1110 S1908	1098	S1920	8244.5	211	2337	S723	-5384.5	211
1101 S1917 8211.5 211 2340 S720 -5417.5 211 1102 S1916 8200.5 301 2341 S719 -5428.5 301 1103 S1915 8189.5 391 2342 S718 -5439.5 391 1104 S1914 8178.5 211 2343 S717 -5450.5 211 1105 S1913 8167.5 301 2344 S716 -5461.5 301 1106 S1912 8156.5 391 2345 S715 -5472.5 391 1107 S1911 8145.5 211 2346 S714 -5483.5 211 1108 S1910 8134.5 301 2347 S713 -5494.5 301 1109 S1909 8123.5 391 2348 S712 -5505.5 391 1110 S1908 8112.5 211 2349 S711 -5516.5 211 1111 S1907	1099	S1919	8233.5	301	2338	S722	-5395.5	301
1102 S1916 8200.5 301 2341 S719 -5428.5 301 1103 S1915 8189.5 391 2342 S718 -5439.5 391 1104 S1914 8178.5 211 2343 S717 -5450.5 211 1105 S1913 8167.5 301 2344 S716 -5461.5 301 1106 S1912 8156.5 391 2345 S715 -5472.5 391 1107 S1911 8145.5 211 2346 S714 -5483.5 211 1108 S1910 8134.5 301 2347 S713 -5494.5 301 1109 S1909 8123.5 391 2348 S712 -5505.5 391 1110 S1908 8112.5 211 2349 S711 -5516.5 211 1111 S1907 8101.5 301 2350 S710 -5527.5 301 1112 S1906	1100	S1918	8222.5	391	2339	S721	-5406.5	391
1103 S1915 8189.5 391 2342 S718 -5439.5 391 1104 S1914 8178.5 211 2343 S717 -5450.5 211 1105 S1913 8167.5 301 2344 S716 -5461.5 301 1106 S1912 8156.5 391 2345 S715 -5472.5 391 1107 S1911 8145.5 211 2346 S714 -5483.5 211 1108 S1910 8134.5 301 2347 S713 -5494.5 301 1109 S1909 8123.5 391 2348 S712 -5505.5 391 1110 S1908 8112.5 211 2349 S711 -5516.5 211 1111 S1907 8101.5 301 2350 S710 -5527.5 301 1112 S1906 8090.5 391 2351 S709 -5538.5 391 1113 S1904	1101	S1917	8211.5	211	2340	S720	-5417.5	211
1104 \$1914 \$178.5 211 2343 \$717 -5450.5 211 1105 \$1913 \$167.5 301 2344 \$716 -5461.5 301 1106 \$1912 \$156.5 391 2345 \$715 -5472.5 391 1107 \$1911 \$145.5 211 2346 \$714 -5483.5 211 1108 \$1910 \$134.5 301 2347 \$713 -5494.5 301 1109 \$1909 \$123.5 391 2348 \$712 -5505.5 391 1110 \$1908 \$112.5 211 2349 \$711 -5516.5 211 1111 \$1908 \$101.5 301 2350 \$710 -5527.5 301 1111 \$1907 \$101.5 301 2350 \$710 -5527.5 301 1112 \$1906 \$8090.5 391 2351 \$709 -5538.5 391 1113 \$1905	1102	S1916	8200.5	301	2341	S719	-5428.5	301
1105 S1913 8167.5 301 2344 S716 -5461.5 301 1106 S1912 8156.5 391 2345 S715 -5472.5 391 1107 S1911 8145.5 211 2346 S714 -5483.5 211 1108 S1910 8134.5 301 2347 S713 -5494.5 301 1109 S1909 8123.5 391 2348 S712 -5505.5 391 1110 S1908 8112.5 211 2349 S711 -5516.5 211 1111 S1907 8101.5 301 2350 S710 -5527.5 301 1112 S1906 8090.5 391 2351 S709 -5538.5 391 1113 S1905 8079.5 211 2352 S708 -5549.5 211 1114 S1904 8068.5 301 2353 S707 -5560.5 301 1115 S1903	1103	S1915	8189.5	391	2342	S718	-5439.5	391
1106 S1912 8156.5 391 2345 S715 -5472.5 391 1107 S1911 8145.5 211 2346 S714 -5483.5 211 1108 S1910 8134.5 301 2347 S713 -5494.5 301 1109 S1909 8123.5 391 2348 S712 -5505.5 391 1110 S1908 8112.5 211 2349 S711 -5516.5 211 1111 S1908 8101.5 301 2350 S710 -5527.5 301 1112 S1906 8090.5 391 2351 S709 -5538.5 391 1113 S1905 8079.5 211 2352 S708 -5549.5 211 1114 S1904 8068.5 301 2353 S707 -5560.5 301 1115 S1903 8057.5 391 2354 S706 -5571.5 391 1116 S1902	1104	S1914	8178.5	211	2343	S717	-5450.5	211
1107 S1911 8145.5 211 2346 S714 -5483.5 211 1108 S1910 8134.5 301 2347 S713 -5494.5 301 1109 S1909 8123.5 391 2348 S712 -5505.5 391 1110 S1908 8112.5 211 2349 S711 -5516.5 211 1111 S1907 8101.5 301 2350 S710 -5527.5 301 1112 S1906 8090.5 391 2351 S709 -5538.5 391 1113 S1905 8079.5 211 2352 S708 -5549.5 211 1114 S1904 8068.5 301 2353 S707 -5560.5 301 1115 S1903 8057.5 391 2354 S706 -5571.5 391 1116 S1902 8046.5 211 2355 S705 -5582.5 211 1117 S1901	1105	S1913	8167.5	301	2344	S716	-5461.5	301
1108 S1910 8134.5 301 2347 S713 -5494.5 301 1109 S1909 8123.5 391 2348 S712 -5505.5 391 1110 S1908 8112.5 211 2349 S711 -5516.5 211 1111 S1907 8101.5 301 2350 S710 -5527.5 301 1112 S1906 8090.5 391 2351 S709 -5538.5 391 1113 S1905 8079.5 211 2352 S708 -5549.5 211 1114 S1904 8068.5 301 2353 S707 -5560.5 301 1115 S1903 8057.5 391 2354 S706 -5571.5 391 1116 S1902 8046.5 211 2355 S705 -5582.5 211 1117 S1901 8035.5 301 2356 S704 -5593.5 301 1118 S1900	1106	S1912	8156.5	391	2345	S715	-5472.5	391
1109 \$1909 \$123.5 391 2348 \$712 -5505.5 391 1110 \$1908 \$112.5 211 2349 \$711 -5516.5 211 1111 \$1907 \$101.5 301 2350 \$710 -5527.5 301 1112 \$1906 \$8090.5 391 2351 \$709 -5538.5 391 1113 \$1905 \$8079.5 211 2352 \$708 -5549.5 211 1114 \$1904 \$8068.5 301 2353 \$707 -5560.5 301 1115 \$1903 \$8057.5 391 2354 \$706 -5571.5 391 1116 \$1902 \$8046.5 211 2355 \$705 -5582.5 211 1117 \$1901 \$8035.5 301 2356 \$704 -5593.5 301 1118 \$1900 \$8024.5 391 2357 \$703 -5604.5 391 1119 \$189	1107	S1911	8145.5	211	2346	S714	-5483.5	211
1110 \$\text{S1908}\$ \$\text{8112.5}\$ \$211 \$2349 \$\text{S711}\$ \$-5516.5 \$211 1111 \$\text{S1907}\$ \$\text{8101.5}\$ \$301 \$2350 \$\text{S710}\$ \$-5527.5 \$301 1112 \$\text{S1906}\$ \$\text{8090.5}\$ \$391 \$2351 \$\text{S709}\$ \$-5538.5 \$391 1113 \$\text{S1905}\$ \$\text{8079.5}\$ \$211 \$2352 \$\text{S708}\$ \$-5549.5 \$211 1114 \$\text{S1904}\$ \$\text{8068.5}\$ \$301 \$2353 \$\text{S707}\$ \$-5560.5 \$301 1115 \$\text{S1903}\$ \$\text{8075.5}\$ \$391 \$2354 \$\text{S706}\$ \$-5571.5 \$391 1116 \$\text{S1902}\$ \$\text{8046.5}\$ \$211 \$2355 \$\text{S705}\$ \$-5582.5 \$211 1117 \$\text{S1901}\$ \$\text{8045.5}\$ \$301 \$2356 \$\text{S704}\$ \$-5593.5 \$301 1118 \$\text{S1900}\$ \$\text{804.5}\$ \$391 \$2357 \$\text{S703}\$ \$-5604.5	1108	S1910	8134.5	301	2347	S713	-5494.5	301
1111 S1907 8101.5 301 2350 S710 -5527.5 301 1112 S1906 8090.5 391 2351 S709 -5538.5 391 1113 S1905 8079.5 211 2352 S708 -5549.5 211 1114 S1904 8068.5 301 2353 S707 -5560.5 301 1115 S1903 8057.5 391 2354 S706 -5571.5 391 1116 S1902 8046.5 211 2355 S705 -5582.5 211 1117 S1901 8035.5 301 2356 S704 -5593.5 301 1118 S1900 8024.5 391 2357 S703 -5604.5 391 1119 S1899 8013.5 211 2358 S702 -5615.5 211 1120 S1898 8002.5 301 2359 S701 -5626.5 301 1121 S1897	1109	S1909	8123.5	391	2348	S712	-5505.5	391
1112 S1906 8090.5 391 2351 S709 -5538.5 391 1113 S1905 8079.5 211 2352 S708 -5549.5 211 1114 S1904 8068.5 301 2353 S707 -5560.5 301 1115 S1903 8057.5 391 2354 S706 -5571.5 391 1116 S1902 8046.5 211 2355 S705 -5582.5 211 1117 S1901 8035.5 301 2356 S704 -5593.5 301 1118 S1900 8024.5 391 2357 S703 -5604.5 391 1119 S1899 8013.5 211 2358 S702 -5615.5 211 1120 S1898 8002.5 301 2359 S701 -5626.5 301 1121 S1897 7991.5 391 2360 S700 -5637.5 391 1122 S1896	1110	S1908	8112.5	211	2349	S711	-5516.5	211
1113 \$1905 \$8079.5 211 2352 \$708 -5549.5 211 1114 \$1904 \$8068.5 301 2353 \$707 -5560.5 301 1115 \$1903 \$8057.5 391 2354 \$706 -5571.5 391 1116 \$1902 \$8046.5 211 2355 \$705 -5582.5 211 1117 \$1901 \$8035.5 301 2356 \$704 -5593.5 301 1118 \$1900 \$8024.5 391 2357 \$703 -5604.5 391 1119 \$1899 \$8013.5 211 2358 \$702 -5615.5 211 1120 \$1898 \$8002.5 301 2359 \$701 -5626.5 301 1121 \$1897 7991.5 391 2360 \$700 -5637.5 391 1122 \$1896 7980.5 211 2361 \$699 -5648.5 211	1111	S1907	8101.5	301	2350	S710	-5527.5	301
1114 \$1904 \$8068.5 301 2353 \$707 -5560.5 301 1115 \$1903 \$8057.5 391 2354 \$706 -5571.5 391 1116 \$1902 \$8046.5 211 2355 \$705 -5582.5 211 1117 \$1901 \$8035.5 301 2356 \$704 -5593.5 301 1118 \$1900 \$8024.5 391 2357 \$703 -5604.5 391 1119 \$1899 \$8013.5 211 2358 \$702 -5615.5 211 1120 \$1898 \$8002.5 301 2359 \$701 -5626.5 301 1121 \$1897 7991.5 391 2360 \$700 -5637.5 391 1122 \$1896 7980.5 211 2361 \$699 -5648.5 211	1112	S1906	8090.5	391	2351	S709	-5538.5	391
1115 \$1903 \$8057.5 391 2354 \$706 -5571.5 391 1116 \$1902 \$8046.5 211 2355 \$705 -5582.5 211 1117 \$1901 \$8035.5 301 2356 \$704 -5593.5 301 1118 \$1900 \$8024.5 391 2357 \$703 -5604.5 391 1119 \$1899 \$8013.5 211 2358 \$702 -5615.5 211 1120 \$1898 \$8002.5 301 2359 \$701 -5626.5 301 1121 \$1897 7991.5 391 2360 \$700 -5637.5 391 1122 \$1896 7980.5 211 2361 \$699 -5648.5 211	1113	S1905	8079.5	211	2352	S708	-5549.5	211
1116 S1902 8046.5 211 2355 S705 -5582.5 211 1117 S1901 8035.5 301 2356 S704 -5593.5 301 1118 S1900 8024.5 391 2357 S703 -5604.5 391 1119 S1899 8013.5 211 2358 S702 -5615.5 211 1120 S1898 8002.5 301 2359 S701 -5626.5 301 1121 S1897 7991.5 391 2360 S700 -5637.5 391 1122 S1896 7980.5 211 2361 S699 -5648.5 211	1114	S1904	8068.5	301	2353	S707	-5560.5	301
1117 \$1901 \$8035.5 301 2356 \$704 -5593.5 301 1118 \$1900 \$8024.5 391 2357 \$703 -5604.5 391 1119 \$1899 \$8013.5 211 2358 \$702 -5615.5 211 1120 \$1898 \$8002.5 301 2359 \$701 -5626.5 301 1121 \$1897 7991.5 391 2360 \$700 -5637.5 391 1122 \$1896 7980.5 211 2361 \$699 -5648.5 211	1115	S1903	8057.5	391	2354	S706	-5571.5	391
1118 \$1900 \$024.5 391 2357 \$703 -5604.5 391 1119 \$1899 \$013.5 211 2358 \$702 -5615.5 211 1120 \$1898 \$8002.5 301 2359 \$701 -5626.5 301 1121 \$1897 7991.5 391 2360 \$700 -5637.5 391 1122 \$1896 7980.5 211 2361 \$699 -5648.5 211	1116	S1902	8046.5	211	2355	S705	-5582.5	211
1119 \$1899 \$8013.5 211 2358 \$\$5702 -5615.5 211 1120 \$\$1898 \$8002.5 301 2359 \$\$701 -5626.5 301 1121 \$\$1897 7991.5 391 2360 \$\$5700 -5637.5 391 1122 \$\$1896 7980.5 211 2361 \$\$699 -5648.5 211	1117	S1901	8035.5	301	2356	S704	-5593.5	301
1120 \$1898 \$8002.5 \$301 \$2359 \$5701 -5626.5 \$301 1121 \$1897 7991.5 \$391 \$2360 \$5700 -5637.5 \$391 1122 \$1896 7980.5 \$211 \$2361 \$699 -5648.5 \$211	1118	S1900	8024.5	391	2357	S703	-5604.5	391
1121 \$1897 7991.5 391 2360 \$5700 -5637.5 391 1122 \$1896 7980.5 211 2361 \$699 -5648.5 211	1119	S1899	8013.5	211	2358	S702	-5615.5	211
1122 S1896 7980.5 211 2361 S699 -5648.5 211	1120	S1898	8002.5	301	2359	S701	-5626.5	301
	1121	S1897	7991.5	391	2360	S700	-5637.5	391
1123 S1895 7969.5 301 2362 S698 -5659.5 301	1122	S1896	7980.5	211	2361	S699	-5648.5	211
	1123	S1895	7969.5	301	2362	S698	-5659.5	301

Mobile Display Driver 1124 S1894 7958.5 391 2363 S697 -5670.5 391 S1893 7947.5 2364 S696 -5681.5 211 1125 211 1126 S1892 7936.5 301 2365 S695 -5692.5 301 S694 391 1127 S1891 7925.5 391 2366 -5703.5 S1890 S693 211 1128 7914.5 211 2367 -5714.5 1129 S1889 7903.5 301 2368 S692 -5725.5 301 S1888 7892.5 391 2369 S691 -5736.5 391 1130 S1887 7881.5 2370 S690 -5747.5 211 1131 211 -5758.5 S1886 7870.5 2371 S689 301 1132 301 S688 1133 S1885 7859.5 391 2372 -5769.5 391 1134 S1884 7848.5 211 2373 S687 -5780.5 211 7837.5 2374 S686 1135 S1883 301 -5791.5 301 1136 S1882 7826.5 391 2375 S685 -5802.5391 1137 S1881 7815.5 211 2376 S684 -5813.5 211 1138 S1880 7804.5 301 2377 S683 -5824.5 301 1139 S1879 7793.5 391 2378 S682 -5835.5 391 1140 S1878 7782.5 211 2379 S681 -5846.5 211 S1877 7771.5 301 2380 S680 -5857.5 301 1141 1142 S1876 7760.5 391 2381 S679 -5868.5 391 1143 S1875 7749.5 211 2382 S678 -5879.5 211 1144 S1874 7738.5 301 2383 S677 -5890.5 301 1145 S1873 7727.5 391 2384 S676 -5901.5 391 S1872 2385 S675 -5912.5 211 1146 7716.5 211 1147 S1871 7705.5 301 2386 S674 -5923.5 301 2387 S673 391 1148 S1870 7694.5 391 -5934.5 1149 S1869 7683.5 211 2388 S672 -5945.5 211 S1868 7672.5 2389 S671 301 1150 301 -5956.5 1151 S1867 7661.5 391 2390 S670 -5967.5 391 211 1152 S1866 7650.5 211 2391 S669 -5978.5 1153 S1865 7639.5 301 2392 S668 -5989.5 301 1154 S1864 7628.5 391 2393 S667 -6000.5391 2394 211 1155 S1863 7617.5 211 S666 -6011.5 301 1156 S1862 7606.5 301 2395 S665 -6022.5 391 1157 S1861 7595.5 391 2396 S664 -6033.5 1158 S1860 7584.5 211 2397 S663 -6044.5 211 S1859 7573.5 2398 S662 -6055.5 301 1159 301 7562.5 2399 S661 -6066.5 391 1160 S1858 391 S660 1161 S1857 7551.5 211 2400 -6077.5 211

S1856

S1855

1162

1163

301

391

7540.5

7529.5

2401

2402

S659

S658

301

391

-6088.5

-6099.5

未 69 36						Moone Displ	,
1164	S1854	7518.5	211	2403	S657	-6110.5	211
1165	S1853	7507.5	301	2404	S656	-6121.5	301
1166	S1852	7496.5	391	2405	S655	-6132.5	391
1167	S1851	7485.5	211	2406	S654	-6143.5	211
1168	S1850	7474.5	301	2407	S653	-6154.5	301
1169	S1849	7463.5	391	2408	S652	-6165.5	391
1170	S1848	7452.5	211	2409	S651	-6176.5	211
1171	S1847	7441.5	301	2410	S650	-6187.5	301
1172	S1846	7430.5	391	2411	S649	-6198.5	391
1173	S1845	7419.5	211	2412	S648	-6209.5	211
1174	S1844	7408.5	301	2413	S647	-6220.5	301
1175	S1843	7397.5	391	2414	S646	-6231.5	391
1176	S1842	7386.5	211	2415	S645	-6242.5	211
1177	S1841	7375.5	301	2416	S644	-6253.5	301
1178	S1840	7364.5	391	2417	S643	-6264.5	391
1179	S1839	7353.5	211	2418	S642	-6275.5	211
1180	S1838	7342.5	301	2419	S641	-6286.5	301
1181	S1837	7331.5	391	2420	S640	-6297.5	391
1182	S1836	7320.5	211	2421	S639	-6308.5	211
1183	S1835	7309.5	301	2422	S638	-6319.5	301
1184	S1834	7298.5	391	2423	S637	-6330.5	391
1185	S1833	7287.5	211	2424	S636	-6341.5	211
1186	S1832	7276.5	301	2425	S635	-6352.5	301
1187	S1831	7265.5	391	2426	S634	-6363.5	391
1188	S1830	7254.5	211	2427	S633	-6374.5	211
1189	S1829	7243.5	301	2428	S632	-6385.5	301
1190	S1828	7232.5	391	2429	S631	-6396.5	391
1191	S1827	7221.5	211	2430	S630	-6407.5	211
1192	S1826	7210.5	301	2431	S629	-6418.5	301
1193	S1825	7199.5	391	2432	S628	-6429.5	391
1194	S1824	7188.5	211	2433	S627	-6440.5	211
1195	S1823	7177.5	301	2434	S626	-6451.5	301
1196	S1822	7166.5	391	2435	S625	-6462.5	391
1197	S1821	7155.5	211	2436	S624	-6473.5	211
1198	S1820	7144.5	301	2437	S623	-6484.5	301
1199	S1819	7133.5	391	2438	S622	-6495.5	391
1200	S1818	7122.5	211	2439	S621	-6506.5	211
1201	S1817	7111.5	301	2440	S620	-6517.5	301
1202	S1816	7100.5	391	2441	S619	-6528.5	391
1203	S1815	7089.5	211	2442	S618	-6539.5	211

集创工	ת					Mobile Displ	ay Driver
1204	S1814	7078.5	301	2443	S617	-6550.5	301
1205	S1813	7067.5	391	2444	S616	-6561.5	391
1206	S1812	7056.5	211	2445	S615	-6572.5	211
1207	S1811	7045.5	301	2446	S614	-6583.5	301
1208	S1810	7034.5	391	2447	S613	-6594.5	391
1209	S1809	7023.5	211	2448	S612	-6605.5	211
1210	S1808	7012.5	301	2449	S611	-6616.5	301
1211	S1807	7001.5	391	2450	S610	-6627.5	391
1212	S1806	6990.5	211	2451	S609	-6638.5	211
1213	S1805	6979.5	301	2452	S608	-6649.5	301
1214	S1804	6968.5	391	2453	S607	-6660.5	391
1215	S1803	6957.5	211	2454	S606	-6671.5	211
1216	S1802	6946.5	301	2455	S605	-6682.5	301
1217	S1801	6935.5	391	2456	S604	-6693.5	391
1218	DUMMY	6924.5	211	2457	S603	-6704.5	211
1219	DUMMY	6913.5	301	2458	S602	-6715.5	301
1220	DUMMY	6902.5	391	2459	S601	-6726.5	391
1221	DUMMY	6891.5	211	2460	DUMMY	-6737.5	211
1222	DUMMY	6880.5	301	2461	DUMMY	-6748.5	301
1223	DUMMY	6869.5	391	2462	DUMMY	-6759.5	391
1224	DUMMY	6858.5	211	2463	DUMMY	-6770.5	211
1225	DUMMY	6847.5	301	2464	DUMMY	-6781.5	301
1226	DUMMY	6836.5	391	2465	DUMMY	-6792.5	391
1227	DUMMY	6825.5	211	2466	DUMMY	-6803.5	211
1228	DUMMY	6814.5	301	2467	DUMMY	-6814.5	301
1229	DUMMY	6803.5	391	2468	DUMMY	-6825.5	391
1230	DUMMY	6792.5	211	2469	DUMMY	-6836.5	211
1231	DUMMY	6781.5	301	2470	DUMMY	-6847.5	301
1232	DUMMY	6770.5	391	2471	DUMMY	-6858.5	391
1233	DUMMY	6759.5	211	2472	DUMMY	-6869.5	211
1234	DUMMY	6748.5	301	2473	DUMMY	-6880.5	301
1235	DUMMY	6737.5	391	2474	DUMMY	-6891.5	391
1236	S1800	6726.5	211	2475	DUMMY	-6902.5	211
1237	S1799	6715.5	301	2476	DUMMY	-6913.5	301
1238	S1798	6704.5	391	2477	DUMMY	-6924.5	391
1239	S1797	6693.5	211	2478	S600	-6935.5	211
1240	S1796	6682.5	301	2479	S599	-6946.5	301
1241	S1795	6671.5	391	2480	S598	-6957.5	391
1242	S1794	6660.5	211	2481	S597	-6968.5	211
1243	S1793	6649.5	301	2482	S596	-6979.5	301

Mobile Display Driver

Version: 0.7 2017-10

1244 S1792 6638.5 391 2483 S595 -6990.5 391 1245 S1791 6627.5 2484 S594 -7001.5 211 211 1246 S1790 6616.5 301 2485 S593 -7012.5 301 S592 391 1247 S1789 6605.5 391 2486 -7023.5 -7034.5 S1788 211 1248 6594.5 211 2487 S591 1249 S1787 6583.5 301 2488 S590 -7045.5 301 1250 S1786 391 2489 S589 -7056.5 391 6572.5 1251 S1785 6561.5 2490 S588 -7067.5 211 211 S1784 2491 S587 -7078.5 301 1252 6550.5 301 S1783 2492 S586 1253 6539.5 391 -7089.5 391 1254 S1782 6528.5 211 2493 S585 -7100.5 211 1255 S1781 6517.5 2494 S584 -7111.5 301 301 1256 S1780 6506.5 391 2495 S583 -7122.5 391 S582 1257 S1779 6495.5 211 2496 -7133.5 211 1258 S1778 6484.5 301 2497 S581 -7144.5 301 1259 S1777 6473.5 391 2498 S580 -7155.5 391 1260 S1776 6462.5 211 2499 S579 -7166.5 211 6451.5 S1775 2500 S578 -7177.5 301 1261 301 1262 S1774 6440.5 391 2501 S577 -7188.5 391 1263 S1773 6429.5 211 2502 S576 -7199.5 211 1264 S1772 6418.5 301 2503 S575 -7210.5 301 S574 1265 S1771 6407.5 391 2504 -7221.5 391 1266 S1770 2505 S573 -7232.5 211 6396.5 211 1267 S1769 301 2506 S572 -7243.5 301 6385.5 391 1268 S1768 6374.5 391 2507 S571 -7254.5 1269 S1767 6363.5 211 2508 S570 -7265.5 211 S1766 S569 301 1270 6352.5 301 2509 -7276.5 1271 S1765 6341.5 391 2510 S568 -7287.5391 211 1272 S1764 6330.5 211 2511 S567 -7298.51273 S1763 6319.5 301 2512 S566 -7309.5301 1274 S1762 6308.5 391 2513 S565 -7320.5391 211 1275 S1761 6297.5 211 2514 S564 -7331.5 301 1276 S1760 6286.5 301 2515 S563 -7342.5 391 1277 S1759 6275.5 391 2516 S562 -7353.5 1278 S1758 6264.5 211 2517 S561 -7364.5 211 S1757 6253.5 2518 S560 -7375.5 301 1279 301 6242.5 S559 -7386.5 391 1280 S1756 391 2519 1281 S1755 6231.5 211 2520 S558 -7397.5 211 1282 S557 301 S1754 6220.5 301 2521 -7408.51283 S1753 6209.5 391 2522 S556 -7419.5 391

Mobile Display Driver

Version: 0.7 2017-10

1284 S1752 6198.5 211 2523 S555 -7430.5 211 1285 S1751 6187.5 2524 S554 -7441.5 301 301 1286 S1750 6176.5 391 2525 S553 -7452.5 391 S552 -7463.5 211 1287 S1749 6165.5 211 2526 S1748 -7474.5 1288 6154.5 301 2527 S551 301 1289 S1747 6143.5 391 2528 S550 -7485.5 391 1290 S1746 2529 S549 -7496.5 211 6132.5 211 1291 S1745 301 2530 S548 -7507.5 301 6121.5 S1744 6110.5 2531 S547 391 1292 391 -7518.5 S1743 S546 -7529.5 1293 6099.5 211 2532 211 1294 S1742 6088.5 301 2533 S545 -7540.5 301 1295 S1741 6077.5 S544 -7551.5 391 391 2534 1296 S1740 6066.5 211 2535 S543 -7562.5 211 1297 S1739 6055.5 301 2536 S542 -7573.5 301 1298 S1738 6044.5 391 2537 S541 -7584.5 391 1299 S1737 6033.5 211 2538 S540 -7595.5 211 1300 S1736 6022.5 301 2539 S539 -7606.5 301 S1735 391 S538 -7617.5 391 1301 6011.5 2540 1302 S1734 6000.5 2541 S537 -7628.5 211 211 1303 S1733 5989.5 301 2542 S536 -7639.5 301 S535 1304 S1732 5978.5 391 2543 -7650.5 391 1305 S1731 5967.5 211 2544 S534 -7661.5 211 1306 S1730 5956.5 301 2545 S533 -7672.5 301 1307 S1729 5945.5 391 S532 -7683.5 391 2546 211 1308 S1728 5934.5 211 2547 S531 -7694.5 1309 S1727 5923.5 301 2548 S530 -7705.5 301 S1726 S529 391 1310 5912.5 391 2549 -7716.5 1311 S1725 5901.5 211 2550 S528 -7727.5 211 1312 S1724 5890.5 2551 S527 -7738.5 301 301 1313 S1723 5879.5 391 2552 S526 -7749.5 391 211 1314 S1722 5868.5 211 2553 S525 -7760.5301 1315 S1721 5857.5 301 2554 S524 -7771.5 S523 391 1316 S1720 5846.5 391 2555 -7782.5 211 1317 S1719 5835.5 211 2556 S522 -7793.5 1318 S1718 5824.5 301 2557 S521 -7804.5 301 1319 S1717 5813.5 391 S520 -7815.5 391 2558 5802.5 S519 -7826.5 211 1320 S1716 211 2559 1321 S1715 5791.5 301 2560 S518 -7837.5 301 S517 391 1322 S1714 5780.5 391 2561 -7848.5 1323 S1713 5769.5 211 2562 S516 -7859.5 211

集团儿	רו					Mobile Displa	y Diivei
1324	S1712	5758.5	301	2563	S515	-7870.5	301
1325	S1711	5747.5	391	2564	S514	-7881.5	391
1326	S1710	5736.5	211	2565	S513	-7892.5	211
1327	S1709	5725.5	301	2566	S512	-7903.5	301
1328	S1708	5714.5	391	2567	S511	-7914.5	391
1329	S1707	5703.5	211	2568	S510	-7925.5	211
1330	S1706	5692.5	301	2569	S509	-7936.5	301
1331	S1705	5681.5	391	2570	S508	-7947.5	391
1332	S1704	5670.5	211	2571	S507	-7958.5	211
1333	S1703	5659.5	301	2572	S506	-7969.5	301
1334	S1702	5648.5	391	2573	S505	-7980.5	391
1335	S1701	5637.5	211	2574	S504	-7991.5	211
1336	S1700	5626.5	301	2575	S503	-8002.5	301
1337	S1699	5615.5	391	2576	S502	-8013.5	391
1338	S1698	5604.5	211	2577	S501	-8024.5	211
1339	S1697	5593.5	301	2578	S500	-8035.5	301
1340	S1696	5582.5	391	2579	S499	-8046.5	391
1341	S1695	5571.5	211	2580	S498	-8057.5	211
1342	S1694	5560.5	301	2581	S497	-8068.5	301
1343	S1693	5549.5	391	2582	S496	-8079.5	391
1344	S1692	5538.5	211	2583	S495	-8090.5	211
1345	S1691	5527.5	301	2584	S494	-8101.5	301
1346	S1690	5516.5	391	2585	S493	-8112.5	391
1347	S1689	5505.5	211	2586	S492	-8123.5	211
1348	S1688	5494.5	301	2587	S491	-8134.5	301
1349	S1687	5483.5	391	2588	S490	-8145.5	391
1350	S1686	5472.5	211	2589	S489	-8156.5	211
1351	S1685	5461.5	301	2590	S488	-8167.5	301
1352	S1684	5450.5	391	2591	S487	-8178.5	391
1353	S1683	5439.5	211	2592	S486	-8189.5	211
1354	S1682	5428.5	301	2593	S485	-8200.5	301
1355	S1681	5417.5	391	2594	S484	-8211.5	391
1356	S1680	5406.5	211	2595	S483	-8222.5	211
1357	S1679	5395.5	301	2596	S482	-8233.5	301
1358	S1678	5384.5	391	2597	S481	-8244.5	391
1359	S1677	5373.5	211	2598	S480	-8255.5	211
1360	S1676	5362.5	301	2599	S479	-8266.5	301
1361	S1675	5351.5	391	2600	S478	-8277.5	391
1362	S1674	5340.5	211	2601	S477	-8288.5	211
1363	S1673	5329.5	301	2602	S476	-8299.5	301

1364 S1672 5318.5 391 2603 S475 -8310.5 391 1365 S1671 5307.5 2604 S474 -8321.5 211 211 1366 S1670 5296.5 301 2605 S473 -8332.5 301 S472 1367 S1669 5285.5 391 2606 -8343.5 391 1368 S1668 5274.5 211 2607 S471 -8354.5 211 1369 S1667 5263.5 301 2608 S470 -8365.5 301 S1666 5252.5 391 2609 S469 -8376.5 391 1370 S1665 5241.5 S468 -8387.5 211 1371 211 2610 S1664 5230.5 S467 -8398.5 301 1372 301 2611 S466 1373 S1663 5219.5 391 2612 -8409.5 391 1374 S1662 5208.5 211 2613 S465 -8420.5 211 5197.5 S464 1375 S1661 301 2614 -8431.5 301 1376 S1660 5186.5 391 2615 S463 -8442.5391 1377 S1659 5175.5 211 2616 S462 -8453.5 211 1378 S1658 5164.5 301 2617 S461 -8464.5 301 1379 S1657 5153.5 391 2618 S460 -8475.5 391 1380 S1656 5142.5 211 2619 S459 -8486.5 211 -8497.5 S1655 2620 S458 301 1381 5131.5 301 1382 S1654 5120.5 391 2621 S457 -8508.5 391 1383 S1653 5109.5 211 2622 S456 -8519.5 211 S455 1384 S1652 5098.5 301 2623 -8530.5 301 S454 1385 S1651 5087.5 391 2624 -8541.5 391 S1650 2625 S453 -8552.5 211 1386 5076.5 211 1387 S1649 301 2626 S452 301 5065.5 -8563.5 391 1388 S1648 5054.5 391 2627 S451 -8574.5 1389 S1647 5043.5 211 2628 S450 -8585.5 211 S449 301 1390 S1646 5032.5 301 2629 -8596.5 1391 S1645 5021.5 391 2630 S448 -8607.5 391 211 1392 S1644 5010.5 211 S447 -8618.5 2631 1393 S1643 4999.5 301 2632 S446 -8629.5 301 1394 S1642 4988.5 391 2633 S445 -8640.5 391 211 1395 S1641 4977.5 211 2634 S444 -8651.5 301 1396 S1640 4966.5 301 2635 S443 -8662.5 1397 S1639 4955.5 391 2636 S442 -8673.5 391 1398 S1638 4944.5 211 2637 S441 -8684.5 211 S1637 4933.5 2638 S440 -8695.5 301 1399 301 4922.5 2639 S439 -8706.5 391 1400 S1636 391 1401 S1635 4911.5 211 2640 S438 -8717.5 211 S437 301 1402 S1634 4900.5 301 2641 -8728.5 1403 S1633 4889.5 391 2642 S436 -8739.5 391

1404 S1632 4878.5 211 2643 S435 -8750.5 211 1405 S1631 4867.5 2644 S434 -8761.5 301 301 1406 S1630 4856.5 391 2645 S433 -8772.5 391 1407 S432 211 S1629 4845.5 211 2646 -8783.5 1408 S1628 4834.5 301 2647 S431 -8794.5 301 1409 S1627 4823.5 391 2648 S430 -8805.5 391 1410 S1626 4812.5 2649 S429 -8816.5 211 211 1411 S1625 4801.5 301 S428 -8827.5 301 2650 1412 S1624 4790.5 2651 S427 391 391 -8838.5 S426 1413 S1623 4779.5 211 2652 -8849.5 211 1414 S1622 4768.5 301 2653 S425 -8860.5 301 S424 -8871.5 1415 S1621 4757.5 391 2654 391 1416 S1620 4746.5 211 2655 S423 -8882.5 211 S422 1417 S1619 301 2656 -8893.5 301 4735.5 1418 S1618 4724.5 391 2657 S421 -8904.5 391 1419 S1617 4713.5 211 2658 S420 -8915.5 211 1420 S1616 4702.5 301 2659 S419 -8926.5 301 -8937.5 S1615 391 S418 391 1421 4691.5 2660 1422 S1614 4680.5 2661 S417 -8948.5 211 211 1423 S1613 4669.5 301 2662 S416 -8959.5 301 1424 S1612 4658.5 391 2663 S415 -8970.5 391 S414 1425 S1611 4647.5 211 2664 -8981.5 211 S1610 1426 4636.5 301 2665 S413 -8992.5 301 -9003.5 1427 S1609 4625.5 391 S412 391 2666 1428 S1608 4614.5 211 2667 S411 -9014.5 211 1429 S1607 4603.5 301 2668 S410 -9025.5 301 S409 391 1430 S1606 4592.5 391 2669 -9036.5 1431 S1605 4581.5 211 2670 S408 -9047.5 211 1432 S1604 4570.5 2671 S407 -9058.5 301 301 1433 S1603 391 2672 S406 -9069.5 391 4559.5 211 1434 S1602 4548.5 211 2673 S405 -9080.5 301 1435 S1601 4537.5 301 2674 S404 -9091.5 1436 S1600 4526.5 391 2675 S403 -9102.5 391 211 1437 S1599 4515.5 211 2676 S402 -9113.5 1438 S1598 4504.5 301 2677 S401 -9124.5 301 S1597 4493.5 2678 S400 -9135.5 391 1439 391 4482.5 S399 -9146.5 211 1440 S1596 211 2679 1441 S1595 4471.5 301 2680 S398 -9157.5 301 S397 391 1442 S1594 4460.5 391 2681 -9168.5 1443 S1593 4449.5 211 2682 S396 -9179.5 211

集 四 儿	,,,					Mobile Displa	ty Direct
1444	S1592	4438.5	301	2683	S395	-9190.5	301
1445	S1591	4427.5	391	2684	S394	-9201.5	391
1446	S1590	4416.5	211	2685	S393	-9212.5	211
1447	S1589	4405.5	301	2686	S392	-9223.5	301
1448	S1588	4394.5	391	2687	S391	-9234.5	391
1449	S1587	4383.5	211	2688	S390	-9245.5	211
1450	S1586	4372.5	301	2689	S389	-9256.5	301
1451	S1585	4361.5	391	2690	S388	-9267.5	391
1452	S1584	4350.5	211	2691	S387	-9278.5	211
1453	S1583	4339.5	301	2692	S386	-9289.5	301
1454	S1582	4328.5	391	2693	S385	-9300.5	391
1455	S1581	4317.5	211	2694	S384	-9311.5	211
1456	S1580	4306.5	301	2695	S383	-9322.5	301
1457	S1579	4295.5	391	2696	S382	-9333.5	391
1458	S1578	4284.5	211	2697	S381	-9344.5	211
1459	S1577	4273.5	301	2698	S380	-9355.5	301
1460	S1576	4262.5	391	2699	S379	-9366.5	391
1461	S1575	4251.5	211	2700	S378	-9377.5	211
1462	S1574	4240.5	301	2701	S377	-9388.5	301
1463	S1573	4229.5	391	2702	S376	-9399.5	391
1464	S1572	4218.5	211	2703	S375	-9410.5	211
1465	S1571	4207.5	301	2704	S374	-9421.5	301
1466	S1570	4196.5	391	2705	S373	-9432.5	391
1467	S1569	4185.5	211	2706	S372	-9443.5	211
1468	S1568	4174.5	301	2707	S371	-9454.5	301
1469	S1567	4163.5	391	2708	S370	-9465.5	391
1470	S1566	4152.5	211	2709	S369	-9476.5	211
1471	S1565	4141.5	301	2710	S368	-9487.5	301
1472	S1564	4130.5	391	2711	S367	-9498.5	391
1473	S1563	4119.5	211	2712	S366	-9509.5	211
1474	S1562	4108.5	301	2713	S365	-9520.5	301
1475	S1561	4097.5	391	2714	S364	-9531.5	391
1476	S1560	4086.5	211	2715	S363	-9542.5	211
1477	S1559	4075.5	301	2716	S362	-9553.5	301
1478	S1558	4064.5	391	2717	S361	-9564.5	391
1479	S1557	4053.5	211	2718	S360	-9575.5	211
1480	S1556	4042.5	301	2719	S359	-9586.5	301
1481	S1555	4031.5	391	2720	S358	-9597.5	391
1482	S1554	4020.5	211	2721	S357	-9608.5	211
1483	S1553	4009.5	301	2722	S356	-9619.5	301

1484 S1552 3998.5 391 2723 S355 -9630.5 391 1485 S1551 3997.5 211 2724 S354 -9641.5 211 1486 S1550 3976.5 301 2725 S353 -9652.5 301 1487 S1549 3965.5 391 2726 S352 -9663.5 391 1488 S1548 3954.5 211 2727 S351 -9674.5 211 1489 S1547 3943.5 301 2728 S350 -9685.5 301 1490 S1546 3932.5 391 2729 S349 -9696.5 391 1491 S1546 3931.5 211 2730 S348 -9707.5 211 1492 S1544 3910.5 301 2731 S347 -978.5 301 1492 S1543 3889.5 211 2733 S346 -9729.5 391 1493 S1524	集团儿	13					Mobile Displa	y Driver
1486 S1550 3976.5 301 2725 S353 -9652.5 301 1487 S1549 3965.5 391 2726 S352 -9663.5 391 1488 S1548 3954.5 211 2727 S351 -9674.5 211 1489 S1547 3943.5 301 2728 S350 -9685.5 301 1490 S1546 3932.5 391 2729 S349 -9696.5 391 1491 S1545 3921.5 211 2730 S348 -9707.5 211 1492 S1544 3910.5 301 2731 S347 -9718.5 301 1493 S1543 3899.5 391 2732 S346 -9729.5 391 1494 S1542 3888.5 211 2733 S345 -9740.5 211 1496 S1540 3866.5 391 2735 S343 -9762.5 391 1496 S1540	1484	S1552	3998.5	391	2723	S355	-9630.5	391
1487 S1549 3965.5 391 2726 S352 -9663.5 391 1488 S1548 3954.5 211 2727 S351 -9674.5 211 1489 S1547 3943.5 301 2728 S350 -9685.5 301 1490 S1546 3932.5 391 2729 S349 -9696.5 391 1491 S1545 3921.5 211 2730 S348 -9707.5 211 1492 S1544 3910.5 301 2731 S347 -9718.5 301 1493 S1543 3899.5 391 2732 S346 -9729.5 391 1494 S1542 3888.5 211 2733 S345 -9740.5 211 1495 S1541 3877.5 301 2734 S344 -9751.5 301 1496 S1540 3866.5 391 2735 S343 -9762.5 391 1497 S1539	1485	S1551	3987.5	211	2724	S354	-9641.5	211
1488 S1548 3954.5 211 2727 S351 -9674.5 211 1489 S1547 3943.5 301 2728 S350 -9685.5 301 1490 S1546 3932.5 391 2729 S349 -9696.5 391 1491 S1545 3921.5 211 2730 S348 -9707.5 211 1492 S1544 3910.5 301 2731 S347 -9718.5 301 1493 S1543 3899.5 391 2732 S346 -9729.5 391 1494 S1542 3888.5 211 2733 S345 -9740.5 211 1496 S1540 3866.5 391 2735 S343 -9762.5 391 1497 S1539 3855.5 211 2736 S342 -9773.5 211 1498 S1537 3833.5 391 2737 S341 -9784.5 301 1499 S1536	1486	S1550	3976.5	301	2725	S353	-9652.5	301
1489 \$1547 3943.5 301 2728 \$350 .9685.5 301 1490 \$1546 3932.5 391 2729 \$349 .9696.5 391 1491 \$1545 3921.5 211 2730 \$348 .9707.5 211 1492 \$1544 3910.5 301 2731 \$347 .9718.5 301 1493 \$1543 3899.5 391 2732 \$346 .9729.5 391 1494 \$1542 3888.5 211 2733 \$344 .9751.5 301 1494 \$1540 3866.5 211 2735 \$344 .9751.5 301 1496 \$1540 3866.5 391 2735 \$343 .9762.5 391 1497 \$1539 3855.5 211 2736 \$342 .9773.5 211 1498 \$1537 3833.5 391 2738 \$340 .9795.5 391 1500 \$1536	1487	S1549	3965.5	391	2726	S352	-9663.5	391
1490 S1546 3932.5 391 2729 S349 -9696.5 391 1491 S1545 3921.5 211 2730 S348 -9707.5 211 1492 S1544 3910.5 301 2731 S347 -9718.5 301 1493 S1543 3899.5 391 2732 S346 -9729.5 391 1494 S1542 3888.5 211 2733 S345 -9740.5 211 1495 S1541 3877.5 301 2734 S344 -9751.5 301 1496 S1540 3865.5 391 2735 S343 -9762.5 391 1497 S1539 3855.5 211 2736 S342 -9773.5 301 1498 S1538 3844.5 301 2737 S341 -9784.5 301 1499 S1537 3833.5 391 2738 S340 -9795.5 391 1500 S1536	1488	S1548	3954.5	211	2727	S351	-9674.5	211
1491 S1545 3921.5 211 2730 S348 -9707.5 211 1492 S1544 3910.5 301 2731 S347 -9718.5 301 1493 S1543 3899.5 391 2732 S346 -9729.5 391 1494 S1542 3888.5 211 2733 S345 -9740.5 211 1495 S1541 3877.5 301 2734 S344 -9751.5 301 1496 S1540 3865.5 391 2735 S343 -9762.5 391 1497 S1539 3855.5 211 2736 S342 -9773.5 211 1498 S1537 3833.5 391 2738 S340 -9795.5 391 1500 S1536 3822.5 211 2739 S339 -9806.5 211 1501 S1535 3811.5 301 2740 S338 -9817.5 301 1502 S1534	1489	S1547	3943.5	301	2728	S350	-9685.5	301
1492 \$1544 3910.5 301 2731 \$347 -9718.5 301 1493 \$1543 3899.5 391 2732 \$346 -9729.5 391 1494 \$1542 3888.5 211 2733 \$345 -9740.5 211 1495 \$1541 3877.5 301 2734 \$344 -9751.5 301 1496 \$1540 3866.5 391 2735 \$343 -9762.5 391 1497 \$1539 3855.5 211 2736 \$342 -9773.5 211 1498 \$1538 3844.5 301 2737 \$341 -9784.5 301 1499 \$1537 3833.5 391 2738 \$340 -9795.5 391 1500 \$1536 3822.5 211 2739 \$339 -9806.5 211 1501 \$1535 3811.5 301 2741 \$337 -9828.5 301 1501 \$1536	1490	S1546	3932.5	391	2729	S349	-9696.5	391
1493 S1543 3899.5 391 2732 S346 -9729.5 391 1494 S1542 3888.5 211 2733 S345 -9740.5 211 1495 S1541 3877.5 301 2734 S344 -9751.5 301 1496 S1540 3866.5 391 2735 S343 -9762.5 391 1497 S1539 3855.5 211 2736 S342 -9773.5 211 1498 S1538 3844.5 301 2737 S341 -9784.5 301 1499 S1537 3833.5 391 2738 S340 -9795.5 391 1500 S1536 3822.5 211 2739 S339 -9806.5 211 1501 S1535 3811.5 301 2740 S338 -9817.5 301 1502 S1534 3800.5 391 2741 S337 -9828.5 391 1503 S1533	1491	S1545	3921.5	211	2730	S348	-9707.5	211
1494 \$1542 3888.5 211 2733 \$345 -9740.5 211 1495 \$1541 3877.5 301 2734 \$344 -9751.5 301 1496 \$1540 3866.5 391 2735 \$343 -9762.5 391 1497 \$1539 3855.5 211 2736 \$342 -9773.5 211 1498 \$1538 3844.5 301 2737 \$341 -9784.5 301 1499 \$1537 3833.5 391 2738 \$340 -9795.5 391 1500 \$1536 3822.5 211 2739 \$339 -9806.5 211 1501 \$1535 3811.5 301 2740 \$338 -9817.5 301 1502 \$1534 3800.5 391 2741 \$337 -9828.5 391 1503 \$1533 3789.5 211 2742 \$336 -9839.5 211 1504 \$1532	1492	S1544	3910.5	301	2731	S347	-9718.5	301
1495 S1541 3877.5 301 2734 S344 -9751.5 301 1496 S1540 3866.5 391 2735 S343 -9762.5 391 1497 S1539 3855.5 211 2736 S342 -9773.5 211 1498 S1538 3844.5 301 2737 S341 -9784.5 301 1499 S1537 3833.5 391 2738 S340 -9795.5 391 1500 S1536 3822.5 211 2739 S339 -9806.5 211 1501 S1535 3811.5 301 2740 S338 -9817.5 301 1502 S1534 3800.5 391 2741 S337 -9828.5 391 1503 S1533 3789.5 211 2742 S336 -9839.5 211 1504 S1532 3778.5 301 2743 S335 -9850.5 301 1504 S1530	1493	S1543	3899.5	391	2732	S346	-9729.5	391
1496 S1540 3866.5 391 2735 S343 -9762.5 391 1497 S1539 3855.5 211 2736 S342 -9773.5 211 1498 S1538 3844.5 301 2737 S341 -9784.5 301 1499 S1537 3833.5 391 2738 S340 -9795.5 391 1500 S1536 3822.5 211 2739 S339 -9806.5 211 1501 S1535 3811.5 301 2740 S338 -9817.5 301 1502 S1534 3800.5 391 2741 S337 -9828.5 391 1503 S1533 3789.5 211 2742 S336 -9839.5 211 1504 S1532 3778.5 301 2743 S335 -9850.5 301 1505 S1531 3767.5 391 2744 S334 -9861.5 391 1506 S1520	1494	S1542	3888.5	211	2733	S345	-9740.5	211
1497 S1539 3855.5 211 2736 S342 -9773.5 211 1498 S1538 3844.5 301 2737 S341 -9784.5 301 1499 S1537 3833.5 391 2738 S340 -9795.5 391 1500 S1536 3822.5 211 2739 S339 -9806.5 211 1501 S1536 3822.5 211 2739 S339 -9806.5 211 1501 S1536 3822.5 211 2740 S338 -9817.5 301 1502 S1534 3800.5 391 2741 S337 -9828.5 391 1502 S1533 3789.5 211 2742 S336 -9839.5 211 1504 S1532 3778.5 301 2743 S335 -9850.5 301 1504 S1530 3756.5 211 2745 S333 -9872.5 211 1506 S1530	1495	S1541	3877.5	301	2734	S344	-9751.5	301
1498 \$1538 3844.5 301 2737 \$341 -9784.5 301 1499 \$1537 3833.5 391 2738 \$340 -9795.5 391 1500 \$1536 3822.5 211 2739 \$339 -9806.5 211 1501 \$1535 3811.5 301 2740 \$338 -9817.5 301 1502 \$1534 3800.5 391 2741 \$337 -9828.5 391 1503 \$1533 3789.5 211 2742 \$336 -9839.5 211 1504 \$1532 3778.5 301 2743 \$335 -9850.5 301 1505 \$1531 3767.5 391 2744 \$334 -9861.5 391 1506 \$1530 3756.5 211 2745 \$333 -9872.5 211 1507 \$1529 3745.5 301 2746 \$332 -9883.5 301 1508 \$1528	1496	S1540	3866.5	391	2735	S343	-9762.5	391
1499 \$1537 3833.5 391 2738 \$340 -9795.5 391 1500 \$1536 3822.5 211 2739 \$339 -9806.5 211 1501 \$1535 3811.5 301 2740 \$338 -9817.5 301 1502 \$1534 3800.5 391 2741 \$337 -9828.5 391 1503 \$1533 3789.5 211 2742 \$336 -9839.5 211 1504 \$1532 3778.5 301 2743 \$335 -9850.5 301 1505 \$1531 3767.5 391 2744 \$334 -9861.5 391 1506 \$1530 3756.5 211 2745 \$333 -9872.5 211 1507 \$1529 3745.5 301 2746 \$332 -9883.5 301 1508 \$1528 3734.5 391 2747 \$331 -9894.5 391 1508 \$1527	1497	S1539	3855.5	211	2736	S342	-9773.5	211
1500 S1536 3822.5 211 2739 S339 -9806.5 211 1501 S1535 3811.5 301 2740 S338 -9817.5 301 1502 S1534 3800.5 391 2741 S337 -9828.5 391 1503 S1533 3789.5 211 2742 S336 -9839.5 211 1504 S1532 3778.5 301 2743 S335 -9850.5 301 1505 S1531 3767.5 391 2744 S334 -9861.5 391 1506 S1530 3756.5 211 2745 S333 -9872.5 211 1507 S1529 3745.5 301 2746 S332 -9883.5 301 1508 S1528 3734.5 391 2747 S331 -9894.5 391 1509 S1527 3723.5 211 2748 S330 -9905.5 211 1510 S1526	1498	S1538	3844.5	301	2737	S341	-9784.5	301
1501 S1535 3811.5 301 2740 S338 -9817.5 301 1502 S1534 3800.5 391 2741 S337 -9828.5 391 1503 S1533 3789.5 211 2742 S336 -9839.5 211 1504 S1532 3778.5 301 2743 S335 -9850.5 301 1505 S1531 3767.5 391 2744 S334 -9861.5 391 1506 S1530 3756.5 211 2745 S333 -9872.5 211 1507 S1529 3745.5 301 2746 S332 -983.5 301 1508 S1528 3734.5 391 2747 S331 -9894.5 391 1509 S1527 3723.5 211 2748 S330 -9905.5 211 1510 S1526 3712.5 301 2749 S329 -9916.5 301 1511 S1522	1499	S1537	3833.5	391	2738	S340	-9795.5	391
1502 \$1534 \$3800.5 \$391 \$2741 \$337 \$-9828.5 \$391 1503 \$1533 \$3789.5 \$211 \$2742 \$336 \$-9839.5 \$211 1504 \$1532 \$3778.5 \$301 \$2743 \$335 \$-9850.5 \$301 1505 \$1531 \$3767.5 \$391 \$2744 \$334 \$-9861.5 \$391 1506 \$1530 \$3756.5 \$211 \$2745 \$333 \$-9872.5 \$211 1507 \$1529 \$3745.5 \$301 \$2746 \$332 \$-9883.5 \$301 1508 \$1528 \$3734.5 \$391 \$2747 \$331 \$-9894.5 \$391 1509 \$1527 \$3723.5 \$211 \$2748 \$330 \$-9905.5 \$211 1510 \$1526 \$3712.5 \$301 \$2749 \$329 \$-9916.5 \$301 1511 \$1525 \$3701.5 \$391 \$2750 \$328 \$-9927.5 \$391	1500	S1536	3822.5	211	2739	S339	-9806.5	211
1503 \$1533 \$378.5 \$211 \$2742 \$336 \$-9839.5 \$211 1504 \$1532 \$3778.5 \$301 \$2743 \$335 \$-9850.5 \$301 1505 \$1531 \$3767.5 \$391 \$2744 \$334 \$-9861.5 \$391 1506 \$1530 \$3756.5 \$211 \$2745 \$333 \$-9872.5 \$211 1507 \$1529 \$3745.5 \$301 \$2746 \$332 \$-9883.5 \$301 1508 \$1528 \$3734.5 \$391 \$2747 \$331 \$-9894.5 \$391 1509 \$1527 \$3723.5 \$211 \$2748 \$330 \$-9905.5 \$211 1510 \$1526 \$3712.5 \$301 \$2749 \$329 \$-9916.5 \$301 1511 \$\$1525 \$3701.5 \$391 \$2750 \$328 \$-9927.5 \$391 1512 \$\$1524 \$3690.5 \$211 \$2751 \$327 \$-9938.5 \$211	1501	S1535	3811.5	301	2740	S338	-9817.5	301
1504 \$1532 \$3778.5 \$301 \$2743 \$335 \$-9850.5 \$301 1505 \$1531 \$3767.5 \$391 \$2744 \$334 \$-9861.5 \$391 1506 \$1530 \$3756.5 \$211 \$2745 \$333 \$-9872.5 \$211 1507 \$1529 \$3745.5 \$301 \$2746 \$332 \$-9883.5 \$301 1508 \$1528 \$3734.5 \$391 \$2747 \$331 \$-9894.5 \$391 1509 \$1527 \$3723.5 \$211 \$2748 \$330 \$-9905.5 \$211 1510 \$\$1526 \$3712.5 \$301 \$2749 \$329 \$-9916.5 \$301 1511 \$\$1526 \$3701.5 \$391 \$2750 \$328 \$-9927.5 \$391 1512 \$\$1524 \$3690.5 \$211 \$2751 \$327 \$-9938.5 \$211 1513 \$\$1523 \$3679.5 \$301 \$2752 \$326 \$-9949.5 \$301	1502	S1534	3800.5	391	2741	S337	-9828.5	391
1505 \$1531 \$3767.5 \$391 \$2744 \$334 -9861.5 \$391 1506 \$1530 \$3756.5 \$211 \$2745 \$333 -9872.5 \$211 1507 \$1529 \$3745.5 \$301 \$2746 \$332 -9883.5 \$301 1508 \$1528 \$3734.5 \$391 \$2747 \$331 -9894.5 \$391 1509 \$1527 \$3723.5 \$211 \$2748 \$330 -9905.5 \$211 1510 \$\$1526 \$3712.5 \$301 \$2749 \$329 -9916.5 \$301 1511 \$\$1526 \$3712.5 \$301 \$2749 \$329 -9916.5 \$301 1511 \$\$1526 \$3701.5 \$391 \$2750 \$328 -9927.5 \$391 1512 \$\$1524 \$3690.5 \$211 \$2751 \$327 -9938.5 \$211 1513 \$\$1523 \$3679.5 \$301 \$2752 \$326 -9949.5 \$301	1503	S1533	3789.5	211	2742	S336	-9839.5	211
1506 \$1530 \$3756.5 \$211 \$2745 \$\$333 -9872.5 \$211 1507 \$1529 \$3745.5 \$301 \$2746 \$332 -9883.5 \$301 1508 \$1528 \$3734.5 \$391 \$2747 \$331 -9894.5 \$391 1509 \$1527 \$3723.5 \$211 \$2748 \$330 -9905.5 \$211 1510 \$\$1526 \$3712.5 \$301 \$2749 \$329 -9916.5 \$301 1511 \$\$1525 \$3701.5 \$391 \$2750 \$328 -9927.5 \$391 1512 \$\$1524 \$3690.5 \$211 \$2751 \$327 -9938.5 \$211 1513 \$\$1523 \$3679.5 \$301 \$2752 \$326 -9949.5 \$301 1514 \$\$1522 \$3668.5 \$391 \$2753 \$325 -9960.5 \$391 1515 \$\$1521 \$3657.5 \$211 \$2754 \$324 -9971.5 \$211 <tr< td=""><td>1504</td><td>S1532</td><td>3778.5</td><td>301</td><td>2743</td><td>S335</td><td>-9850.5</td><td>301</td></tr<>	1504	S1532	3778.5	301	2743	S335	-9850.5	301
1507 S1529 3745.5 301 2746 S332 -9883.5 301 1508 S1528 3734.5 391 2747 S331 -9894.5 391 1509 S1527 3723.5 211 2748 S330 -9905.5 211 1510 S1526 3712.5 301 2749 S329 -9916.5 301 1511 S1525 3701.5 391 2750 S328 -9927.5 391 1512 S1524 3690.5 211 2751 S327 -9938.5 211 1513 S1523 3679.5 301 2752 S326 -9949.5 301 1514 S1522 3668.5 391 2753 S325 -9960.5 391 1515 S1521 3657.5 211 2754 S324 -9971.5 211 1516 S1520 3646.5 301 2755 S323 -9982.5 301 1517 S1518	1505	S1531	3767.5	391	2744	S334	-9861.5	391
1508 S1528 3734.5 391 2747 S331 -9894.5 391 1509 S1527 3723.5 211 2748 S330 -9905.5 211 1510 S1526 3712.5 301 2749 S329 -9916.5 301 1511 S1525 3701.5 391 2750 S328 -9927.5 391 1512 S1524 3690.5 211 2751 S327 -9938.5 211 1513 S1523 3679.5 301 2752 S326 -9949.5 301 1514 S1522 3668.5 391 2753 S325 -9960.5 391 1515 S1521 3657.5 211 2754 S324 -9971.5 211 1516 S1520 3646.5 301 2755 S323 -9982.5 301 1517 S1519 3635.5 391 2756 S322 -9993.5 391 1518 S1518	1506	S1530	3756.5	211	2745	S333	-9872.5	211
1509 S1527 3723.5 211 2748 S330 -9905.5 211 1510 S1526 3712.5 301 2749 S329 -9916.5 301 1511 S1525 3701.5 391 2750 S328 -9927.5 391 1512 S1524 3690.5 211 2751 S327 -9938.5 211 1513 S1523 3679.5 301 2752 S326 -9949.5 301 1514 S1522 3668.5 391 2753 S325 -9960.5 391 1515 S1521 3657.5 211 2754 S324 -9971.5 211 1516 S1520 3646.5 301 2755 S323 -9982.5 301 1517 S1519 3635.5 391 2756 S322 -9993.5 391 1518 S1518 3624.5 211 2757 S321 -10004.5 211 1519 S1516	1507	S1529	3745.5	301	2746	S332	-9883.5	301
1510 S1526 3712.5 301 2749 S329 -9916.5 301 1511 S1525 3701.5 391 2750 S328 -9927.5 391 1512 S1524 3690.5 211 2751 S327 -9938.5 211 1513 S1523 3679.5 301 2752 S326 -9949.5 301 1514 S1522 3668.5 391 2753 S325 -9960.5 391 1515 S1521 3657.5 211 2754 S324 -9971.5 211 1516 S1520 3646.5 301 2755 S323 -9982.5 301 1517 S1519 3635.5 391 2756 S322 -9993.5 391 1518 S1518 3624.5 211 2757 S321 -10004.5 211 1520 S1516 3602.5 391 2758 S320 -10015.5 301 1521 S1515 <td>1508</td> <td>S1528</td> <td>3734.5</td> <td>391</td> <td>2747</td> <td>S331</td> <td>-9894.5</td> <td>391</td>	1508	S1528	3734.5	391	2747	S331	-9894.5	391
1511 S1525 3701.5 391 2750 S328 -9927.5 391 1512 S1524 3690.5 211 2751 S327 -9938.5 211 1513 S1523 3679.5 301 2752 S326 -9949.5 301 1514 S1522 3668.5 391 2753 S325 -9960.5 391 1515 S1521 3657.5 211 2754 S324 -9971.5 211 1516 S1520 3646.5 301 2755 S323 -9982.5 301 1517 S1519 3635.5 391 2756 S322 -9993.5 391 1518 S1518 3624.5 211 2757 S321 -10004.5 211 1519 S1517 3613.5 301 2758 S320 -10015.5 301 1520 S1516 3602.5 391 2759 S319 -10026.5 391 1521 S1515 <td>1509</td> <td>S1527</td> <td>3723.5</td> <td>211</td> <td>2748</td> <td>S330</td> <td>-9905.5</td> <td>211</td>	1509	S1527	3723.5	211	2748	S330	-9905.5	211
1512 S1524 3690.5 211 2751 S327 -9938.5 211 1513 S1523 3679.5 301 2752 S326 -9949.5 301 1514 S1522 3668.5 391 2753 S325 -9960.5 391 1515 S1521 3657.5 211 2754 S324 -9971.5 211 1516 S1520 3646.5 301 2755 S323 -9982.5 301 1517 S1519 3635.5 391 2756 S322 -9993.5 391 1518 S1518 3624.5 211 2757 S321 -10004.5 211 1519 S1517 3613.5 301 2758 S320 -10015.5 301 1520 S1516 3602.5 391 2759 S319 -10026.5 391 1521 S1515 3591.5 211 2760 S318 -10037.5 211	1510	S1526	3712.5	301	2749	S329	-9916.5	301
1513 S1523 3679.5 301 2752 S326 -9949.5 301 1514 S1522 3668.5 391 2753 S325 -9960.5 391 1515 S1521 3657.5 211 2754 S324 -9971.5 211 1516 S1520 3646.5 301 2755 S323 -9982.5 301 1517 S1519 3635.5 391 2756 S322 -9993.5 391 1518 S1518 3624.5 211 2757 S321 -10004.5 211 1519 S1517 3613.5 301 2758 S320 -10015.5 301 1520 S1516 3602.5 391 2759 S319 -10026.5 391 1521 S1515 3591.5 211 2760 S318 -10037.5 211	1511	S1525	3701.5	391	2750	S328	-9927.5	391
1514 S1522 3668.5 391 2753 S325 -9960.5 391 1515 S1521 3657.5 211 2754 S324 -9971.5 211 1516 S1520 3646.5 301 2755 S323 -9982.5 301 1517 S1519 3635.5 391 2756 S322 -9993.5 391 1518 S1518 3624.5 211 2757 S321 -10004.5 211 1519 S1517 3613.5 301 2758 S320 -10015.5 301 1520 S1516 3602.5 391 2759 S319 -10026.5 391 1521 S1515 3591.5 211 2760 S318 -10037.5 211	1512	S1524	3690.5	211	2751	S327	-9938.5	211
1515 S1521 3657.5 211 2754 S324 -9971.5 211 1516 S1520 3646.5 301 2755 S323 -9982.5 301 1517 S1519 3635.5 391 2756 S322 -9993.5 391 1518 S1518 3624.5 211 2757 S321 -10004.5 211 1519 S1517 3613.5 301 2758 S320 -10015.5 301 1520 S1516 3602.5 391 2759 S319 -10026.5 391 1521 S1515 3591.5 211 2760 S318 -10037.5 211	1513	S1523	3679.5	301	2752	S326	-9949.5	301
1516 S1520 3646.5 301 2755 S323 -9982.5 301 1517 S1519 3635.5 391 2756 S322 -9993.5 391 1518 S1518 3624.5 211 2757 S321 -10004.5 211 1519 S1517 3613.5 301 2758 S320 -10015.5 301 1520 S1516 3602.5 391 2759 S319 -10026.5 391 1521 S1515 3591.5 211 2760 S318 -10037.5 211	1514	S1522	3668.5	391	2753	S325	-9960.5	391
1517 S1519 3635.5 391 2756 S322 -9993.5 391 1518 S1518 3624.5 211 2757 S321 -10004.5 211 1519 S1517 3613.5 301 2758 S320 -10015.5 301 1520 S1516 3602.5 391 2759 S319 -10026.5 391 1521 S1515 3591.5 211 2760 S318 -10037.5 211	1515	S1521	3657.5	211	2754	S324	-9971.5	211
1518 S1518 3624.5 211 2757 S321 -10004.5 211 1519 S1517 3613.5 301 2758 S320 -10015.5 301 1520 S1516 3602.5 391 2759 S319 -10026.5 391 1521 S1515 3591.5 211 2760 S318 -10037.5 211	1516	S1520	3646.5	301	2755	S323	-9982.5	301
1519 S1517 3613.5 301 2758 S320 -10015.5 301 1520 S1516 3602.5 391 2759 S319 -10026.5 391 1521 S1515 3591.5 211 2760 S318 -10037.5 211	1517	S1519	3635.5	391	2756	S322	-9993.5	391
1520 S1516 3602.5 391 2759 S319 -10026.5 391 1521 S1515 3591.5 211 2760 S318 -10037.5 211	1518	S1518	3624.5	211	2757	S321	-10004.5	211
1521 S1515 3591.5 211 2760 S318 -10037.5 211	1519	S1517	3613.5	301	2758	S320	-10015.5	301
	1520	S1516	3602.5	391	2759	S319	-10026.5	391
1522 S1514 3580.5 301 2761 S317 -10048.5 301	1521	S1515	3591.5	211	2760	S318	-10037.5	211
	1522	S1514	3580.5	301	2761	S317	-10048.5	301
1523 S1513 3569.5 391 2762 S316 -10059.5 391								

# 63 JC	,,,					Moone Dispi	ay Diivei
1524	S1512	3558.5	211	2763	S315	-10070.5	211
1525	S1511	3547.5	301	2764	S314	-10081.5	301
1526	S1510	3536.5	391	2765	S313	-10092.5	391
1527	S1509	3525.5	211	2766	S312	-10103.5	211
1528	S1508	3514.5	301	2767	S311	-10114.5	301
1529	S1507	3503.5	391	2768	S310	-10125.5	391
1530	S1506	3492.5	211	2769	S309	-10136.5	211
1531	S1505	3481.5	301	2770	S308	-10147.5	301
1532	S1504	3470.5	391	2771	S307	-10158.5	391
1533	S1503	3459.5	211	2772	S306	-10169.5	211
1534	S1502	3448.5	301	2773	S305	-10180.5	301
1535	S1501	3437.5	391	2774	S304	-10191.5	391
1536	S1500	3426.5	211	2775	S303	-10202.5	211
1537	S1499	3415.5	301	2776	S302	-10213.5	301
1538	S1498	3404.5	391	2777	S301	-10224.5	391
1539	S1497	3393.5	211	2778	S300	-10235.5	211
1540	S1496	3382.5	301	2779	S299	-10246.5	301
1541	S1495	3371.5	391	2780	S298	-10257.5	391
1542	S1494	3360.5	211	2781	S297	-10268.5	211
1543	S1493	3349.5	301	2782	S296	-10279.5	301
1544	S1492	3338.5	391	2783	S295	-10290.5	391
1545	S1491	3327.5	211	2784	S294	-10301.5	211
1546	S1490	3316.5	301	2785	S293	-10312.5	301
1547	S1489	3305.5	391	2786	S292	-10323.5	391
1548	S1488	3294.5	211	2787	S291	-10334.5	211
1549	S1487	3283.5	301	2788	S290	-10345.5	301
1550	S1486	3272.5	391	2789	S289	-10356.5	391
1551	S1485	3261.5	211	2790	S288	-10367.5	211
1552	S1484	3250.5	301	2791	S287	-10378.5	301
1553	S1483	3239.5	391	2792	S286	-10389.5	391
1554	S1482	3228.5	211	2793	S285	-10400.5	211
1555	S1481	3217.5	301	2794	S284	-10411.5	301
1556	S1480	3206.5	391	2795	S283	-10422.5	391
1557	S1479	3195.5	211	2796	S282	-10433.5	211
1558	S1478	3184.5	301	2797	S281	-10444.5	301
1559	S1477	3173.5	391	2798	S280	-10455.5	391
1560	S1476	3162.5	211	2799	S279	-10466.5	211
1561	S1475	3151.5	301	2800	S278	-10477.5	301
1562	S1474	3140.5	391	2801	S277	-10488.5	391
1563	S1473	3129.5	211	2802	S276	-10499.5	211

集团儿	רו					Mobile Displa	y Dirver
1564	S1472	3118.5	301	2803	S275	-10510.5	301
1565	S1471	3107.5	391	2804	S274	-10521.5	391
1566	S1470	3096.5	211	2805	S273	-10532.5	211
1567	S1469	3085.5	301	2806	S272	-10543.5	301
1568	S1468	3074.5	391	2807	S271	-10554.5	391
1569	S1467	3063.5	211	2808	S270	-10565.5	211
1570	S1466	3052.5	301	2809	S269	-10576.5	301
1571	S1465	3041.5	391	2810	S268	-10587.5	391
1572	S1464	3030.5	211	2811	S267	-10598.5	211
1573	S1463	3019.5	301	2812	S266	-10609.5	301
1574	S1462	3008.5	391	2813	S265	-10620.5	391
1575	S1461	2997.5	211	2814	S264	-10631.5	211
1576	S1460	2986.5	301	2815	S263	-10642.5	301
1577	S1459	2975.5	391	2816	S262	-10653.5	391
1578	S1458	2964.5	211	2817	S261	-10664.5	211
1579	S1457	2953.5	301	2818	S260	-10675.5	301
1580	S1456	2942.5	391	2819	S259	-10686.5	391
1581	S1455	2931.5	211	2820	S258	-10697.5	211
1582	S1454	2920.5	301	2821	S257	-10708.5	301
1583	S1453	2909.5	391	2822	S256	-10719.5	391
1584	S1452	2898.5	211	2823	S255	-10730.5	211
1585	S1451	2887.5	301	2824	S254	-10741.5	301
1586	S1450	2876.5	391	2825	S253	-10752.5	391
1587	S1449	2865.5	211	2826	S252	-10763.5	211
1588	S1448	2854.5	301	2827	S251	-10774.5	301
1589	S1447	2843.5	391	2828	S250	-10785.5	391
1590	S1446	2832.5	211	2829	S249	-10796.5	211
1591	S1445	2821.5	301	2830	S248	-10807.5	301
1592	S1444	2810.5	391	2831	S247	-10818.5	391
1593	S1443	2799.5	211	2832	S246	-10829.5	211
1594	S1442	2788.5	301	2833	S245	-10840.5	301
1595	S1441	2777.5	391	2834	S244	-10851.5	391
1596	S1440	2766.5	211	2835	S243	-10862.5	211
1597	S1439	2755.5	301	2836	S242	-10873.5	301
1598	S1438	2744.5	391	2837	S241	-10884.5	391
1599	S1437	2733.5	211	2838	S240	-10895.5	211
1600	S1436	2722.5	301	2839	S239	-10906.5	301
1601	S1435	2711.5	391	2840	S238	-10917.5	391
1602	S1434	2700.5	211	2841	S237	-10928.5	211
1603	S1433	2689.5	301	2842	S236	-10939.5	301
			•		•		

集创工	רו					Mobile Displa	ay Diivei
1604	S1432	2678.5	391	2843	S235	-10950.5	391
1605	S1431	2667.5	211	2844	S234	-10961.5	211
1606	S1430	2656.5	301	2845	S233	-10972.5	301
1607	S1429	2645.5	391	2846	S232	-10983.5	391
1608	S1428	2634.5	211	2847	S231	-10994.5	211
1609	S1427	2623.5	301	2848	S230	-11005.5	301
1610	S1426	2612.5	391	2849	S229	-11016.5	391
1611	S1425	2601.5	211	2850	S228	-11027.5	211
1612	S1424	2590.5	301	2851	S227	-11038.5	301
1613	S1423	2579.5	391	2852	S226	-11049.5	391
1614	S1422	2568.5	211	2853	S225	-11060.5	211
1615	S1421	2557.5	301	2854	S224	-11071.5	301
1616	S1420	2546.5	391	2855	S223	-11082.5	391
1617	S1419	2535.5	211	2856	S222	-11093.5	211
1618	S1418	2524.5	301	2857	S221	-11104.5	301
1619	S1417	2513.5	391	2858	S220	-11115.5	391
1620	S1416	2502.5	211	2859	S219	-11126.5	211
1621	S1415	2491.5	301	2860	S218	-11137.5	301
1622	S1414	2480.5	391	2861	S217	-11148.5	391
1623	S1413	2469.5	211	2862	S216	-11159.5	211
1624	S1412	2458.5	301	2863	S215	-11170.5	301
1625	S1411	2447.5	391	2864	S214	-11181.5	391
1626	S1410	2436.5	211	2865	S213	-11192.5	211
1627	S1409	2425.5	301	2866	S212	-11203.5	301
1628	S1408	2414.5	391	2867	S211	-11214.5	391
1629	S1407	2403.5	211	2868	S210	-11225.5	211
1630	S1406	2392.5	301	2869	S209	-11236.5	301
1631	S1405	2381.5	391	2870	S208	-11247.5	391
1632	S1404	2370.5	211	2871	S207	-11258.5	211
1633	S1403	2359.5	301	2872	S206	-11269.5	301
1634	S1402	2348.5	391	2873	S205	-11280.5	391
1635	S1401	2337.5	211	2874	S204	-11291.5	211
1636	S1400	2326.5	301	2875	S203	-11302.5	301
1637	S1399	2315.5	391	2876	S202	-11313.5	391
1638	S1398	2304.5	211	2877	S201	-11324.5	211
1639	S1397	2293.5	301	2878	S200	-11335.5	301
1640	S1396	2282.5	391	2879	S199	-11346.5	391
1641	S1395	2271.5	211	2880	S198	-11357.5	211
1642	S1394	2260.5	301	2881	S197	-11368.5	301
1643	S1393	2249.5	391	2882	S196	-11379.5	391

集则儿	רו					Mobile Displa	y Dirver
1644	S1392	2238.5	211	2883	S195	-11390.5	211
1645	S1391	2227.5	301	2884	S194	-11401.5	301
1646	S1390	2216.5	391	2885	S193	-11412.5	391
1647	S1389	2205.5	211	2886	S192	-11423.5	211
1648	S1388	2194.5	301	2887	S191	-11434.5	301
1649	S1387	2183.5	391	2888	S190	-11445.5	391
1650	S1386	2172.5	211	2889	S189	-11456.5	211
1651	S1385	2161.5	301	2890	S188	-11467.5	301
1652	S1384	2150.5	391	2891	S187	-11478.5	391
1653	S1383	2139.5	211	2892	S186	-11489.5	211
1654	S1382	2128.5	301	2893	S185	-11500.5	301
1655	S1381	2117.5	391	2894	S184	-11511.5	391
1656	S1380	2106.5	211	2895	S183	-11522.5	211
1657	S1379	2095.5	301	2896	S182	-11533.5	301
1658	S1378	2084.5	391	2897	S181	-11544.5	391
1659	S1377	2073.5	211	2898	S180	-11555.5	211
1660	S1376	2062.5	301	2899	S179	-11566.5	301
1661	S1375	2051.5	391	2900	S178	-11577.5	391
1662	S1374	2040.5	211	2901	S177	-11588.5	211
1663	S1373	2029.5	301	2902	S176	-11599.5	301
1664	S1372	2018.5	391	2903	S175	-11610.5	391
1665	S1371	2007.5	211	2904	S174	-11621.5	211
1666	S1370	1996.5	301	2905	S173	-11632.5	301
1667	S1369	1985.5	391	2906	S172	-11643.5	391
1668	S1368	1974.5	211	2907	S171	-11654.5	211
1669	S1367	1963.5	301	2908	S170	-11665.5	301
1670	S1366	1952.5	391	2909	S169	-11676.5	391
1671	S1365	1941.5	211	2910	S168	-11687.5	211
1672	S1364	1930.5	301	2911	S167	-11698.5	301
1673	S1363	1919.5	391	2912	S166	-11709.5	391
1674	S1362	1908.5	211	2913	S165	-11720.5	211
1675	S1361	1897.5	301	2914	S164	-11731.5	301
1676	S1360	1886.5	391	2915	S163	-11742.5	391
1677	S1359	1875.5	211	2916	S162	-11753.5	211
1678	S1358	1864.5	301	2917	S161	-11764.5	301
1679	S1357	1853.5	391	2918	S160	-11775.5	391
1680	S1356	1842.5	211	2919	S159	-11786.5	211
1681	S1355	1831.5	301	2920	S158	-11797.5	301
1682	S1354	1820.5	391	2921	S157	-11808.5	391
1683	S1353	1809.5	211	2922	S156	-11819.5	211

	12					Moone Dispi	,
1684	S1352	1798.5	301	2923	S155	-11830.5	301
1685	S1351	1787.5	391	2924	S154	-11841.5	391
1686	S1350	1776.5	211	2925	S153	-11852.5	211
1687	S1349	1765.5	301	2926	S152	-11863.5	301
1688	S1348	1754.5	391	2927	S151	-11874.5	391
1689	S1347	1743.5	211	2928	S150	-11885.5	211
1690	S1346	1732.5	301	2929	S149	-11896.5	301
1691	S1345	1721.5	391	2930	S148	-11907.5	391
1692	S1344	1710.5	211	2931	S147	-11918.5	211
1693	S1343	1699.5	301	2932	S146	-11929.5	301
1694	S1342	1688.5	391	2933	S145	-11940.5	391
1695	S1341	1677.5	211	2934	S144	-11951.5	211
1696	S1340	1666.5	301	2935	S143	-11962.5	301
1697	S1339	1655.5	391	2936	S142	-11973.5	391
1698	S1338	1644.5	211	2937	S141	-11984.5	211
1699	S1337	1633.5	301	2938	S140	-11995.5	301
1700	S1336	1622.5	391	2939	S139	-12006.5	391
1701	S1335	1611.5	211	2940	S138	-12017.5	211
1702	S1334	1600.5	301	2941	S137	-12028.5	301
1703	S1333	1589.5	391	2942	S136	-12039.5	391
1704	S1332	1578.5	211	2943	S135	-12050.5	211
1705	S1331	1567.5	301	2944	S134	-12061.5	301
1706	S1330	1556.5	391	2945	S133	-12072.5	391
1707	S1329	1545.5	211	2946	S132	-12083.5	211
1708	S1328	1534.5	301	2947	S131	-12094.5	301
1709	S1327	1523.5	391	2948	S130	-12105.5	391
1710	S1326	1512.5	211	2949	S129	-12116.5	211
1711	S1325	1501.5	301	2950	S128	-12127.5	301
1712	S1324	1490.5	391	2951	S127	-12138.5	391
1713	S1323	1479.5	211	2952	S126	-12149.5	211
1714	S1322	1468.5	301	2953	S125	-12160.5	301
1715	S1321	1457.5	391	2954	S124	-12171.5	391
1716	S1320	1446.5	211	2955	S123	-12182.5	211
1717	S1319	1435.5	301	2956	S122	-12193.5	301
1718	S1318	1424.5	391	2957	S121	-12204.5	391
1719	S1317	1413.5	211	2958	S120	-12215.5	211
1720	S1316	1402.5	301	2959	S119	-12226.5	301
1721	S1315	1391.5	391	2960	S118	-12237.5	391
1722	S1314	1380.5	211	2961	S117	-12248.5	211
1723	S1313	1369.5	301	2962	S116	-12259.5	301

						moone Bispi	,
1724	S1312	1358.5	391	2963	S115	-12270.5	391
1725	S1311	1347.5	211	2964	S114	-12281.5	211
1726	S1310	1336.5	301	2965	S113	-12292.5	301
1727	S1309	1325.5	391	2966	S112	-12303.5	391
1728	S1308	1314.5	211	2967	S111	-12314.5	211
1729	S1307	1303.5	301	2968	S110	-12325.5	301
1730	S1306	1292.5	391	2969	S109	-12336.5	391
1731	S1305	1281.5	211	2970	S108	-12347.5	211
1732	S1304	1270.5	301	2971	S107	-12358.5	301
1733	S1303	1259.5	391	2972	S106	-12369.5	391
1734	S1302	1248.5	211	2973	S105	-12380.5	211
1735	S1301	1237.5	301	2974	S104	-12391.5	301
1736	S1300	1226.5	391	2975	S103	-12402.5	391
1737	S1299	1215.5	211	2976	S102	-12413.5	211
1738	S1298	1204.5	301	2977	S101	-12424.5	301
1739	S1297	1193.5	391	2978	S100	-12435.5	391
1740	S1296	1182.5	211	2979	S99	-12446.5	211
1741	S1295	1171.5	301	2980	S98	-12457.5	301
1742	S1294	1160.5	391	2981	S97	-12468.5	391
1743	S1293	1149.5	211	2982	S96	-12479.5	211
1744	S1292	1138.5	301	2983	S95	-12490.5	301
1745	S1291	1127.5	391	2984	S94	-12501.5	391
1746	S1290	1116.5	211	2985	S93	-12512.5	211
1747	S1289	1105.5	301	2986	S92	-12523.5	301
1748	S1288	1094.5	391	2987	S91	-12534.5	391
1749	S1287	1083.5	211	2988	S90	-12545.5	211
1750	S1286	1072.5	301	2989	S89	-12556.5	301
1751	S1285	1061.5	391	2990	S88	-12567.5	391
1752	S1284	1050.5	211	2991	S87	-12578.5	211
1753	S1283	1039.5	301	2992	S86	-12589.5	301
1754	S1282	1028.5	391	2993	S85	-12600.5	391
1755	S1281	1017.5	211	2994	S84	-12611.5	211
1756	S1280	1006.5	301	2995	S83	-12622.5	301
1757	S1279	995.5	391	2996	S82	-12633.5	391
1758	S1278	984.5	211	2997	S81	-12644.5	211
1759	S1277	973.5	301	2998	S80	-12655.5	301
1760	S1276	962.5	391	2999	S79	-12666.5	391
1761	S1275	951.5	211	3000	S78	-12677.5	211
1762	S1274	940.5	301	3001	S77	-12688.5	301
1763	S1273	929.5	391	3002	S76	-12699.5	391
		•					•

Mobile Display Driver

Version: 0.7 2017-10

1764 S1272 918.5 211 3003 **S75** -12710.5 211 S1271 907.5 3004 **S74** -12721.5 301 1765 301 1766 S1270 896.5 391 3005 S73 -12732.5 391 211 1767 S1269 885.5 211 3006 S72 -12743.5 S1268 3007 1768 874.5 301 S71 -12754.5 301 1769 S1267 863.5 391 3008 S70 -12765.5 391 S1266 3009 S69 -12776.5 211 1770 852.5 211 S1265 301 S68 301 1771 841.5 3010 -12787.5 S1264 S67 -12798.5 391 1772 830.5 391 3011 S1263 S66 1773 819.5 211 3012 -12809.5211 1774 S1262 808.5 301 3013 S65 -12820.5 301 S1261 797.5 S64 391 1775 391 3014 -12831.5 1776 S1260 786.5 211 3015 S63 -12842.5211 1777 S1259 775.5 301 S62 -12853.5301 3016 1778 S1258 764.5 391 3017 S61 -12864.5391 1779 S1257 753.5 211 3018 S60 -12875.5 211 1780 S1256 742.5 301 3019 S59 -12886.5 301 -12897.5 S1255 731.5 391 3020 S58 391 1781 1782 S1254 720.5 3021 S57 -12908.5 211 211 1783 S1253 709.5 301 3022 **S56** -12919.5 301 S55 1784 S1252 698.5 391 3023 -12930.5391 1785 S1251 687.5 211 3024 S54 -12941.5 211 S1250 676.5 301 3025 S53 -12952.5 301 1786 1787 S1249 665.5 391 3026 S52 -12963.5 391 S51 211 1788 S1248 654.5 211 3027 -12974.51789 S1247 643.5 301 3028 S50 -12985.5 301 S1246 3029 S49 391 1790 632.5 391 -12996.51791 S1245 621.5 211 3030 **S48** -13007.5211 S1244 3031 **S47** -13018.5 301 1792 610.5 301 1793 S1243 599.5 391 3032 **S46** -13029.5391 211 1794 S1242 588.5 211 3033 **S45** -13040.5301 1795 S1241 577.5 301 3034 **S44** -13051.5 391 1796 S1240 566.5 391 3035 **S43** -13062.5 211 1797 S1239 555.5 211 3036 S42 -13073.5 1798 S1238 544.5 301 3037 S41 -13084.5 301 1799 S1237 391 3038 S40 -13095.5 391 533.5 3039 S39 211 1800 S1236 522.5 211 -13106.5 1801 S1235 511.5 301 3040 S38 -13117.5 301 S37 391 1802 S1234 500.5 391 3041 -13128.5 1803 S1233 489.5 211 3042 S36 -13139.5 211

1804 S1232 478.5 301 3043 S35 -13150.5 301 1805 S1231 467.5 391 3044 S34 -13161.5 391 1806 S1230 456.5 3045 S33 -13172.5 211 211 S32 301 1807 S1229 445.5 301 3046 -13183.5 1808 S1228 434.5 391 3047 S31 -13194.5 391 1809 S1227 423.5 211 3048 S30 -13205.5 211 1810 S1226 412.5 301 3049 S29 301 -13216.5 S1225 401.5 391 3050 S28 -13227.5 391 1811 S1224 3051 S27 211 1812 390.5 211 -13238.5 S1223 S26 1813 379.5 301 3052 -13249.5301 1814 S1222 368.5 391 3053 S25 -13260.5 391 S1221 357.5 S24 1815 211 3054 -13271.5 211 1816 S1220 346.5 301 3055 S23 -13282.5301 S22 1817 S1219 335.5 391 -13293.5391 3056 1818 S1218 324.5 211 3057 S21 -13304.5 211 1819 S1217 313.5 301 3058 S20 -13315.5 301 1820 S1216 302.5 391 3059 S19 -13326.5 391 S1215 3060 **S18** -13337.5 211 1821 291.5 211 S1214 280.5 301 3061 S17 -13348.5 301 1822 1823 S1213 269.5 391 3062 S16 -13359.5391 1824 S1212 258.5 211 3063 S15 -13370.5 211 1825 S1211 247.5 301 3064 **S14** -13381.5 301 1826 S1210 391 3065 S13 391 236.5 -13392.51827 S1209 225.5 211 S12 -13403.5 211 3066 301 1828 S1208 214.5 301 3067 **S11** -13414.5 1829 S1207 203.5 391 3068 S10 -13425.5 391 S1206 S9 211 1830 192.5 211 3069 -13436.5 1831 S1205 181.5 301 3070 S8 -13447.5 301 S1204 170.5 391 3071 S7 391 1832 -13458.5 1833 S1203 159.5 211 3072 **S6** -13469.5 211 S5 1834 S1202 148.5 301 3073 -13480.5 301 391 1835 S1201 137.5 391 3074 S4 -13491.5 S3 211 1836 **DUMMY** 126.5 211 3075 -13502.5 1837 **DUMMY** 115.5 301 3076 S2 -13513.5 301 1838 **DUMMY** 104.5 391 3077 S1 -13524.5 391 **DUMMY** 3078 SL₁ -13535.5 211 1839 93.5 211 3079 **DUMMY** 301 1840 DUMMY 82.5 301 -13546.5 **DUMMY DUMMY** 1841 71.5 391 3080 -13557.5 391 211 1842 DUMMY 60.5 211 3081 DUMMY -13568.5 1843 **DUMMY** 49.5 301 3082 DUMMY -13579.5 301

Mobile Display Driver

1844	DUMMY	38.5	391	3083	DUMMY	-13590.5	391
1845	DUMMY	27.5	211	3084	DUMMY	-13601.5	211
1846	DUMMY	16.5	301	3085	DUMMY	-13612.5	301
1847	DUMMY	5.5	391	3086	DUMMY	-13623.5	391

11 \ Important Notice

Chipone Technology (Beijing) Co., Ltd. (Chipone) reserves the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

Chipone warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Chipone's standard warranty. Testing and other quality control techniques are utilized to the extent Chipone deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CHIPONE SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CHIPONE PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

Chipone assumes no liability for applications assistance or customer product design. Chipone does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of Chipone covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Chipone's publication of information regarding any third party's products or services does not constitute Chipone's approval, warranty or endorsement thereof.

Copyright © 2014, Chipone Technology (Beijing) Co., Ltd.

Revision History

Version	Revisions	Date	Modified by
0.1	First draft.	2014-04-20	Yipin Huang
0.2	Modified Command 2	2015-08	Yipin Huang
0.3	Modified pad location information and	2017/04/17	Yipin Huang
	description of command 2 functions.		
0.4	Modified the part number from ICN9706	2017/07/06	Yipin Huang
	to ICNL9706		
0.5	Modified application circuit and table of	2017/08/07	Yipin Huang
	max layout resistance		
0.6	Notice option cap of application circuit	2017/10/19	Yipin Huang
0.7	Modify OTP flow	2017/10/26	Dean Hsu
	Modified application circuit		Dr.
SHIP	ONIF III		