Eigenface & Fishface for face detection

Contents

- Explore dataset
- Apply PCA
- Combine PCA & IDA (Fisher face)

Data set for PCA, from E-class

Dataset 1

- Training set: 20
- Test set: 40

Dataset 2

- Training set: 187
- Closed test set: 90
- Open test set: 200

Environment setup

- Python in Win10
- Opency 2
- Sklearn
 - PCA & IDA (Linear Discriminant Analysis)
- Jupyter notebook

Data preprocessing

Step1: Read training images and test images

- Training set shape: (187, 16384)
- Close test set shape: (90, 16384)
- Open test set shape: (200, 16384)

Step2: Get mean face

After minus mean face

Singular Value Decomposition (SVD)

$$A_{m\times n} = U_{m\times m} S_{m\times n} V^{\mathsf{T}}_{n\times n}$$

Where

$$egin{aligned} \mathbf{U}^{\mathrm{T}}\mathbf{U} &= \mathbf{I}_{\mathrm{mxm}} \ \mathbf{V}^{\mathrm{T}}\mathbf{V} &= \mathbf{I}_{\mathrm{nxn}} \end{aligned}$$
 (i.e. U and V are orthogonal)

Singular Value Decomposition (SVD) $X_{test_new} = X_{test} \cdot V^T$ To transform test faces to new space Training faces in new space To be our eigenvalues $V^T \in \mathbb{R}^{n \times n}$ $U \in \mathbb{R}^{m \times m}$ $\Sigma \in R^{m \times n}$ $A \in \mathbb{R}^{m \times n}$ (187, 16384)(187, 187)(187, 16384)(16384, 16384)

Singular Value Decomposition (SVD)

If choose two principle components.

Principle components

Principle Component and Eigenfaces

Principle Component and Eigenfaces

How to get these Eigenfaces?

(16384, 16384)

Principle component

 $V_{principle}$ (100, 16384)

Transform test faces to new space

```
X_{test_new} = X_{test} \cdot V_{principle}^T
(90,100) (90,16384) (16384,100)
```


Eigenface	= X_test_new	$\cdot V_{principle}$
(90,16384)	(90,100)	(100,16384)

A test face

An eigenface

PCA Processing

- Issue: some faces (people) in test set do not exist in training set.

Prediction Strategy

Step 7: Find a distance threshold

Euclidean Distance

$$\sqrt{(a_1-b_1)^2+(a_2-b_2)^2+\ldots+(a_n-b_n)^2}$$

Best component number and distance threshold

Component Number and Accuracy

Prediction results

		accuracy	Prediction time all faces / second	Prediction time per face / second	NOBODY
Dataset1	Test set (40)	90%	0.0156	0.000391	35.0 %
Dataset2	Close test set (90)	73.3 %	0.085	0.000943	25%
	Open test set (200)	100 %	0.2078	0.001039	100%

Fisher Face (PCA & LDA)

Why do not use the previous dataset?

New Data set

- 152 people totally (38 Nobody)
- > 10 faces / person
- Training set: 2120 faces
- Test set: 306 Faces

https://cswww.essex.ac.uk/mv/allfaces/faces94.html

How to combine PCA and LDA?

pca = PCA(n_components=n_component pca)

Stratege:

```
pca.fit(self.X_train)

lda = LinearDiscriminantAnalysis(n_components=n_component_lda)
```

self.train transformed = lda.fit transform(pca.transform(self.X train), self.y train)

self.test_transformed = lda.transform(pca.transform(self.X_test))

pca = PCA(n_components=n_component pca)

Stratege:

```
pca.fit(self.X_train)

lda = LinearDiscriminantAnalysis(n_components=n_component_lda)

self.train_transformed = lda.fit_transform(pca.transform(self.X_train), self.y_train)

self.test_transformed = lda.transform(pca.transform(self.X_test))
```

Stratege:

```
pca = PCA(n_components=n_component_pca)
pca.fit(self.X_train)

lda = LinearDiscriminantAnalysis(n_components=n_component_lda)
self.train_transformed = lda.fit_transform(pca.transform(self.X_train), self.y_train)
self.test_transformed = lda.transform(pca.transform(self.X_test))
```

Stratege:

```
pca = PCA(n_components=n_component_pca)
pca.fit(self.X_train)

lda = LinearDiscriminantAnalysis(n_components=n_component_lda)
self.train_transformed = lda.fit_transform(pca.transform(self.X_train), self.y_train)
self.test_transformed = lda.transform(pca.transform(self.X_test))
```

In new space

Result of PCA & LDA

PCA 30 component, keep 80% face information.

LDA 13 component, 77.12% accuracy

Prediction results (PCA & LDA)

	accuracy	Prediction time per face / second	NOBODY
test set (306)	77.12%	0.008311	25%

Training data: 2120

Conclusion

	Method		accuracy	Prediction time all faces / second	Prediction time per face / second	NOBODY
Dataset1	PCA	Test set (40)	90%	0.0156	0.000391	35.0 %
Dataset2	PCA	Close test set (90)	73.3 %	0.085	0.000943	25%
	PCA	Open test set (200)	100 %	0.2078	0.001039	100%
Dataset3	PCA&LDA	Test set(306)	77.12%	2.5433	0.008311	25%

Thank you!