Contents

1	Inn		e emner	2
	1.1		s strålingslov	2
	1.2		ektrisk effekt	3
	1.3	_	coneffekt	3
	1.4		atommodell	3
	1.5	de Bro	glies hypotese	4
2	Sch	rödinge	erligningen	4
	2.1	Introdu	uksjon	4
	2.2	Uke 35	5 (Bølgefunksjon)	5
		2.2.1	Bølgefunksjon; fysisk tolkning	5
		2.2.2	Bølgepakker og uskarphet	6
		2.2.3	Operatorer, egenfunksjoner, egenverdier	6
	2.3	Uke 36	6 (TUSL)	6
		2.3.1	Tidsuavhengig Schrödingerligning og stasjonære tilstande	er 6
		2.3.2	Partikkel i 1D-boks	7
		2.3.3	Noen merknader	7
	2.4	Uke 38	3 (Sannsynlighet og operatorer)	9
		2.4.1	Sanns.strøm og sanns.bevarelse	9
		2.4.2	Kommutatorer	9
		2.4.3	Hermitske operatorer	9
		2.4.4	Usikkerhet og uskarphetsrelasjoner	9
		2.4.5	Forventningsverdiens tidsutvikling	10
		2.4.6	Ehrenfests teorem	10
	2.5	Uke 39	(Krystaller og halvledere)	12
		2.5.1	Stykkevis konstante potensialer	12
		2.5.2	Elektroner i krystaller 1D	12
		2.5.3	Periodisk potensial, Blochs teorem	12
		2.5.4	Energibånd, spinn	12
		2.5.5	Pauliprinsippet	12
		2.5.6	Valensbånd, ledningsbånd, båndgap	12
		2.5.7	Isolator, halvleder, metall	12
		2.5.8	Hull, doping av halvledere, p- og n-type	12
		2.5.9	Lagdelte halvledere, heterostrukturer, effektiv masse .	12
	2.6		(Enkle modeller)	12
	-	2.6.1	Endeling potensialbrønn	12
		2.6.2	Harmonisk oscillator i 1D	12
		263	Klassisk vs OM oscillator	12

		2.6.4 Morsepotensialet
	2.7	Uke 41 (Tunnelering)
		2.7.1 Tunneleffekt
		2.7.2 Resonant tunnelering
		2.7.3 Anvendelser av tunnelering
		2.7.4 Deltafunksjonspotensial
		2.7.5 Potensialsprang
	2.8	Uke 42 (QM i 2D og 3D)
		2.8.1 Harmonisk oscillator i 3D
		2.8.2 Partikkel i 3D boks
		2.8.3 Tilstandstetthet
		2.8.4 2D kulesymm, pot. og dreieimpuls
	2.9	Uke 43
		2.9.1 Kompatible størrelser $\dots \dots \dots$
		2.9.2 Simultane egenfunksjoner
		2.9.3 Symmetriegenskaper og paritet
		2.9.4 Dreie impuls i 3D \ldots 12
3	Nur	nerikk 12
	3.1	Numerisk løsning av TUSL
	3.2	Atomære enheter
4	Dog	ulatene 13
4	4.1	
	4.1	A) Operatorpostulatet
	4.2	,
		,
	4.4	D) Målepostulatet

1 Innledende emner

1.1 Plancks strålingslov

Max Planck: **Kvantehypotese** $E_n = n \cdot h\nu$.

Ser på metallboks med lite hull, svart legeme. Kan kun ha stående EM bølger tilsvarende streng med lengde L Sannsynlighet for gitt energi $E=E_n=n\cdot h\nu$:

$$p_n \sim \exp(-E_n/k_bT)$$

Konkulderer at strålingsintensitet fra svart legeme med absolutt temperatur T er

$$j(T) = \int_0^\infty d\nu \frac{dj}{d\mu}$$

med frekvensfordeling

$$\frac{dj}{d\nu} = \frac{2\pi h\nu^3/c^2}{\exp(h\nu/k_bT) - 1}$$

Kjent som Plancks Strålingslov.

Stefan-Boltzmanns lov: $j(T) \sim T^4$.

Wiens forskyvningslov: Maksimal $dj/d\nu$ ved λ_{max} .

Rayleigh-Jeans lov: $hv << k_b T \Rightarrow \frac{du}{d\mu} \approx \frac{8\pi k_b T}{c^3} \cdot \nu^2$ Ekvipartisjonsprinsippet: Et kvadratisk ledd i energifunksjonen gir et bidrag $\frac{1}{2}k_bT$ til midlere energi, pr
 partikkel, eller (som her) svingemode. Her: $u = u_{\varepsilon} + u_B = \frac{1}{2}\epsilon_0\varepsilon^2 + \frac{1}{2\mu_0}B^2$. Det gir $\langle E \rangle = 2 \cdot \frac{1}{2}k_bT$ Som betyr at $du/d\nu = \frac{8\pi k_b T}{c^3} \cdot \nu^3$ Dette er det samme som **Plancks strålingslov** i grensen, som betyr at klassisk fysikk og kvantefysikk "henger sammen".

1.2 Fotoelektrisk effekt

EM stråling kvantisert: Elektron i metallet kan bare absorbere hele $h\nu$. W = minste energi som løsriver elektron fra metalloverflaten = frigjøringsarbeid. Det vi si at $h\nu$ må være større enn W for å kunne løsrive elektroner.

1.3 Comptoneffekt

Kollisjon mellom røntgenfoton med masse 0 og elektron i ro. Foton: m=0, $E = h\nu = pc \Rightarrow p = h\nu/c = h/\lambda$. Energi- og impulsbevaring gir $\lambda_{foton,etter} =$ $\lambda_{foton,for} + \lambda_c (1 - \cos \theta) \mod \lambda_c = h/m_e c \approx 0.024$. Dette er kjent som elektronets Comptonbølgelengde.

1.4 Bohrs atommodell

Frem til nå:

- Elektronet (Thomson 1897)
- Atomkjernen (Rutherford 1911)
- Balmerserien for H-atomet (Balmer 1885) $\lambda_n = B \cdot \frac{n^2}{n^2 2^2}$
- Kvantisert strålingsenergi (Planck 1900, Einstein 1905)

Bohr antok:

- Elektron beveger seg i klassiske baner rundt kjernen med bestemte energier; såkalte stasjonære tilstander.
- Elektronet kan foreta **kvantesprang** mellom de stasjonære tilstandene, ved hjelp av absorpsjon eller emisjon av et strålingskvant med energi hc/λ .
- Elektroet har **kvantisert dreieimpuls** $L = n\hbar$.

Elektronbaner med radius $r_n = n^2 \cdot a_0$. Bohr-radien: $a_0 = 4\pi\epsilon_0 \hbar^2/m_e e^2 \approx 0.059$ Å. Mulige energiverdier for elektronet: $-\frac{e^2}{8\pi\epsilon_0 r_n} \approx -\frac{13.6}{n^2}$ eV

1.5 de Broglies hypotese

Partikler med masse har - i likhet med masseløse partikler - både partikkelog bølge
egenskaper. For fotoner: $\lambda = h/p$ og $\nu = E/h$. De Broglie: Dette gjelder også for elektroner, protoner, nøytroner, atomer, molekyler...

Partiklers termiske de Broglie-bølgelengde fra ekvipartisjonsprinsippet:

$$p_{rms} = \sqrt{2m \cdot 3 \cdot \frac{1}{2} k_b T}$$

og dermed

$$\lambda = h/p_{rms} = h/\sqrt{3mk_bT}$$

k

2 Schrödingerligningen

2.1 Introduksjon

Vil finne bølgefunksjon som kan beskrive de Broglies partikkelbølger. Fra klassisk fysikk:

• Bølgeligningen

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v_f^2} \frac{\partial^2 y}{\partial t^2}$$

med generell løsning $y(x,t) = y(x \pm v_f t)$ og harmoniske løsninger o

$$y(x,t) = Ae^{i(kx - \omega t)}$$

- Bølgestørrelser og relasjoner:
 - -A = amplitude
 - $-k = 2\pi/\lambda = b$ ølgetall
 - $-\omega = 2\pi/T = \text{vinkelfrekvens}$
 - $-\nu = \omega/2\pi = \text{frekvens}$
 - $-v_f = \lambda/T = \lambda \nu = \omega/k = \text{fasehastighet}$
 - $-v_q = d\omega/dk = gruppehastiget$

Fra de Broglie:

$$\lambda = h/p \Rightarrow k = 2\pi/\lambda = 2\pi p/h = p/\hbar$$

$$\nu = E/h \Rightarrow \omega = 2\pi\nu = 2\pi E/h = E/\hbar$$

Finner noe som passer i bølgeligning, og ender opp noe som

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2}$$

for fri partikkel i potensial V=0. En fri partikkel i konstant potensial kan beskrives ved

$$\Psi(x,t) = e^{i(px - Et)/\hbar}$$

Dette gir opphav til Schrödingerligningen

$$i\hbar\frac{\partial}{\partial t}\Psi(\vec{r},t) = \left[-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right]\Psi(\vec{r},t)$$

 \mathbf{Merk} Bølgefunksjonen må være kompleks, og er dermed ikke direkte målbar.

2.2 Uke 35 (Bølgefunksjon)

2.2.1 Bølgefunksjon; fysisk tolkning

Både masseløse partikler (fotoner) og partikler med masse (elektroner...) har bølge- og partikkelegenskaper. Tenker på absoluttkvadratet av bølge-funksjonen som sannsynlighetsfordeling for posisjon til partikkel. Max Born .

 $dP = |\Psi(x,t)|^2 dx = \text{ sanns for partiklel mellom } x \text{ og } x + dx \text{ ved tid } t$

Må dermed normere bølgefunksjonen slik at

$$\int_{-\infty}^{\infty} |\Psi(x,t)|^2 dx = 1$$

2.2.2 Bølgepakker og uskarphet

Skarp impuls gir

$$\int_{-\infty}^{\infty} |e^{i(px-Et)/\hbar}|^2 dx = \int_{-\infty}^{\infty} 1 dx = \infty$$

Må derfor innføre en prefaktor for å lage bølgepakke. Dersom vi har skarpt definert bølgepakke for posisjon, vil usikkerheten i impuls være stor, og omvendt. Fra der får vi **Heisenbergs uskarphetsrelasjon**:

$$\Delta x \cdot \Delta p \ge \hbar/2$$

2.2.3 Operatorer, egenfunksjoner, egenverdier

Definerer

$$\hat{A}f(x) = Af(x)$$

der \hat{A} er en operator, f(x) en egenfunksjon, og A er egenverdien. Fra dette kan vi utlede følgende operatorer: **Impulsoperator**

$$\hat{p} = \frac{\hbar}{i} \frac{\partial}{\partial x}$$

Operator for kinetisk energi

$$\hat{K} = \frac{\hat{p}^2}{2m} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$$

Hamiltonoperatoren

$$\hat{H} = \hat{K} + V(x)$$

slik at Scrödingerligningen blir

$$i\hbar \frac{\partial \Psi}{\partial t} = \hat{H}\Psi$$

2.3 Uke 36 (TUSL)

2.3.1 Tidsuavhengig Schrödingerligning og stasjonære tilstander

Antar Schödingerligning er et produkt at tidsuavhengig og posisjonsuavhengig funksjoner $\psi(x)$ og T(t). Ved separasjon får vi tidsuavhengig Schrödingerligning

$$\hat{H}\psi = E\psi$$

og Schrödingerligninger blir

$$\Psi(x,t) = \psi(x)e^{-iEt/\hbar}$$

Dette kalles en **stasjonær tilstand** siden absoluttkvadratet av bølgefunksjonen er uavhengig at tid ($|e^{if(t)} = 1|$). Vi har at E er mulige **energiegenverdier**, og ψ mulige **energiegenfunksjoner**.

Ved linearitet er SL en lineærkombinasjon av energiegenfunksjoner av stasjonære løsninger:

$$\Psi(x,t) = \sum_{n} c_n \psi_n e^{-iE_n t/\hbar}$$

Dersom ulike energiegenverdier bidrar til $\Psi(x,t)$ er den ikke lenger stasjonær (avhengig av tid).

2.3.2 Partikkel i 1D-boks

Ser for oss et potensial som er null i et intervall mellom 0 og L, og uendelig ellers. Partikkel kan ikke være utenfor intervallet, så bølgefunksjonen blir null. Løser TUSL med grensebetingelser at bølgefunksjonen er kontinuerlig og null i endepunkter. Det gir følgelig

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}$$

og

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}$$

2.3.3 Noen merknader

- 1. Symmetris Symmetrisk potensial gir symmetrisk sannsynlighetsfordeling, og enter symmetrisk eller antisymmetrisk bølgefunksjon.
- 2. Nullpunkter $\psi_n(x)$ har n-1 nullpunkter, som gjelder generelt. Eksludert eventuelle endepunkt.
- 3. Grunntilstand og eksiterte tilstander Tilstand med lavest mulig energi. 1D brønn: $E_1=\frac{\pi^2\hbar^2}{2mL^2}>0$

4. Grensebetingelser Ser at TUSL på formen

$$\frac{\psi''}{\psi} = \frac{2m}{\hbar^2}(V - E)$$

gir ψ'' endelig der V er endelig. Dette betyr at ψ og ψ' er kontinuerlige. ψ og $|\psi|^2$ vil alltid være kontinuerlige over alt.

- 5. Krumningsegenskaper ψ''/ψ har samme fortegn som V-E.
 - Klassisk tillatt område der $E \geq V$, slik at ψ krummer mot xaksen
 - Klassisk forbudt område der E < V, slik at ψ krummet bort fra x-aksen. (Lov i QM dersom potensial ikke er uendelig.)
- 6. Ortogonalitet, ortonormert sett av funksjoner Et funksjonssett $\{\psi_n(x)\}$ er ortonormet når

$$\langle \psi_n, \psi_k \rangle \equiv \int_{-\infty}^{\infty} \psi_n^*(x) \psi_k(x) dx = \delta_{nk}$$

Dette gjelder generelt for løsninger av TUSL.

7. Starttilstand og tidsutvikling Kan uttrykke en starttilstand som en lineærkombinasjon av energiegenfunksjonene:

$$\Psi(x,0) = \sum_{n} c_n \psi_n(x)$$

Tidsutviklingen blir en lineærkombinasjon av stasjonære tilstander:

$$\Psi(x,t) = \sum_{n} c_n \psi_n(x) e^{-iE_n t/\hbar}$$

Kan fastlegge konstanene slik:

$$c_n = \int_{-\infty}^{\infty} \psi_n^*(x) \Psi(x,0) dx$$

I normert tilstand må vi da ha at

$$\sum_{n} |c_n|^2 = 1$$

slik at sannsynlighet er bevart.

2.4 Uke 38 (Sannsynlighet og operatorer)

2.4.1 Sanns.strøm og sanns.bevarelse

Definerer j(x,t) som **sannsynlighetsstrøm** inn eller ut av et lite intervall dx. Har fra før at sannsynslighetstettheten $\rho(x,t) = |\Psi(x,t)|^2$ Fra dette får vi kontinuitetsligning for sannsynlighet

$$\frac{\partial \rho}{\partial t} + \frac{\partial j}{\partial x} = 0$$

2.4.2 Kommutatorer

Definisjon av kommutatoren mellom to operatorer:

$$[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$$

 \hat{A} og \hat{B} kommuterer dersom $[\hat{A}, \hat{B}]f = 0$.

2.4.3 Hermitske operatorer

Definerer den **adjunkte** \hat{A}^+ av en operator \hat{A} :

$$\int (\hat{A}\Psi_1)^* \Psi_2 dx = \int \Psi_1^* (\hat{A}^+ \Psi_2) dx$$

La F være en fysisk størrelse og \hat{F} operatorer som representerer F. Da må forventningsverdien $\langle F \rangle$ være **reell**.

$$\langle F \rangle = \langle F \rangle^*$$

Har generelt at

$$\int \Psi_1^* \hat{F} \Psi_2 dx = \int \Psi_2 (\hat{F} \Psi_1)^* dx$$

Sier at \hat{F} er **hermitesk** dersom den oppfyller dette. Dermed er også $\hat{F}^+ = \hat{F}$ oppfylt, og vi sier at \hat{F} er **selvadjungert**.

2.4.4 Usikkerhet og uskarphetsrelasjoner

Definerer standardavvik

$$\Delta x = \sqrt{\langle (x - \langle x \rangle)^2 \rangle} = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

For to målbare størrelser A og B:

$$\Delta A \cdot \Delta B \ge \left| \frac{1}{2} \langle [\hat{A}, \hat{B} \rangle] \right|$$

To størrelser med operatorer som ikke kommuterer, kan altså ikke ha skarpe verdier samtidig. Eksempelvis posisjon og impuls:

$$[x,\hat{p}] = i\hbar \Rightarrow \Delta x \cdot \Delta p \ge \frac{1}{2}\hbar$$

.

2.4.5 Forventningsverdiens tidsutvikling

Ser på tidsuavhengig operator \hat{F} slik at $\frac{\partial \hat{F}}{\partial t}=0.$ Dermed:

$$\frac{d}{dt}\langle F \rangle = \frac{i}{\hbar} \langle [\hat{H}, \hat{F}] \rangle$$

.

Dvs: $\langle F \rangle$ endrer seg ikke hvis \hat{F} kommuterer med Hamiltonoperatoren \hat{H} .

2.4.6 Ehrenfests teorem

Kvantemekaniske forventingsverdier $\langle x \rangle$ og $\langle p \rangle$ oppfyller samme bevegelsesligninger som de klassiske x og p,

$$\frac{dx}{dt} = v = \frac{p}{m}; \frac{dp}{dt} = F = -\frac{\partial V}{\partial x}$$

Får

$$\frac{d}{dt}\langle x\rangle = \frac{i}{\hbar}\langle [\hat{H},x]\rangle = \frac{1}{m}\langle \hat{p}\rangle = \frac{1}{m}\langle p\rangle$$

og

$$\frac{d}{dt}\langle p\rangle = \frac{i}{\hbar}\langle [\hat{H},\hat{p}]\rangle = -\langle \frac{\partial V}{\partial x}\rangle$$

Kan for eksempel skrive en kvantemekanisk versjon av Newtons 2. lov:

$$m\frac{d^2}{dt^2}\langle x\rangle = -\langle \frac{\partial V}{\partial x}\rangle = \langle F\rangle$$

- 2.5 Uke 39 (Krystaller og halvledere)
- 2.5.1 Stykkevis konstante potensialer
- 2.5.2 Elektroner i krystaller 1D
- 2.5.3 Periodisk potensial, Blochs teorem
- 2.5.4 Energibånd, spinn
- 2.5.5 Pauliprinsippet
- 2.5.6 Valensbånd, ledningsbånd, båndgap
- 2.5.7 Isolator, halvleder, metall
- 2.5.8 Hull, doping av halvledere, p- og n-type
- 2.5.9 Lagdelte halvledere, heterostrukturer, effektiv masse
- 2.6 Uke 40 (Enkle modeller)
- 2.6.1 Endeling potensialbrønn
- 2.6.2 Harmonisk oscillator i 1D
- 2.6.3 Klassisk vs QM oscillator
- 2.6.4 Morsepotensialet
- 2.7 Uke 41 (Tunnelering)
- 2.7.1 Tunneleffekt
- 2.7.2 Resonant tunnelering
- 2.7.3 Anvendelser av tunnelering
- 2.7.4 Deltafunksjonspotensial
- 2.7.5 Potensialsprang
- 2.8 Uke 42 (QM i 2D og 3D)
- 2.8.1 Harmonisk oscillator i 3D
- 2.8.2 Partikkel i 3D boks
- 2.8.3 Tilstandstetthet
- 2.8.4 2D kulesymm, pot. og dreieimpuls
- 2.9 Uke 43
- **2.9.1** Kompatible størrelser 12
- 2.9.2 Simultane egenfunksjoner
- 2.9.3 Symmetriegenskaper og paritet
- 2.9.4 Dreieimpuls i 3D
- 3 Numerikk

TUSL blir N differensialligninger. Får egenverdiproblemet

$$\mathbf{H}\vec{\psi} = E\vec{\psi}$$

med den tridiagonale, reelle og symmetriske Hamiltonmatrisen \mathbf{H} . Anvendt i numeriske øvinger.

3.2 Atomære enheter

Setter $\hbar = e = a_0 = m_e = 1$. Energienheten **hartree**: $\hbar^2/m_e a_0^2 = 1$ hartree som tilsvarer 27.2 eV.

4 Postulatene

4.1 A) Operatorpostulatet

Målbare størrelser i klassisk mekanikk representeres i QM av lineære operatorer som konstrueres ved at impulskoordinater erstatter av operatorer. Eksempelvis impuls og kinetisk energi.

4.2 B) Tilstandspostulatet

Bølgefunksjonen beskriver partikkelens tilstand og er bestemt av Schrödingerligningen.

4.3 C) Forventningsverdipostulatet

Mange målinger av størrelse F på systemer som er preparert i samme tilstand Ψ vil gi en middelverdi

$$\langle F \rangle = \int \Psi^* \hat{F} \Psi d\tau$$

 $\operatorname{der} \langle F \rangle$ er forventningsverdien til F.

4.4 D) Målepostulatet

Eneste mulige måleverdier av F er egenverdiene f_j gitt ved

$$\hat{F}\Psi_j = f_j \Psi_j$$

Dersom F måles til f_j havner systemet i egentilstanden Ψ_j . Bølgefunksjonen **kollapser**, med andre ord påvirker målingen systemet!