Hálózati Ismeretek

OSI modell, Fizikai réteg

- Open Systems Interconnection Reference Model
- ▶ ISO/IEC 7498-1
- Számítógépek kommunikációját leíró absztrakt modell
- Ténylegesen csak és kizárólag papíron létezik.
- Gyakorlatban a TCP/IP modell terjedt el, ami szintén az OSI modellen alapul
- Kidolgozni az 1970-es években kezdték
- ISO kezdeményezés volt

- A kezdeményezés oka az volt, hogy abban az időben is léteztek hálózatok
- Azonban egyik sem volt kompatibilis más gyártó technológiájával, csak saját magával
- Kezdetben csak modell ajánlás volt, később lett szabvány szintre emelve
- Szabványokból két fajta létezik (kiegészítés):
 - De-jure: nemzetközi szakmai bizottságok által megalkotottak, hivatalos dokumentumok rögzítik
 - De-facto: egy-egy megoldás széleskörű elterjedése biztosítja "szabványosságukat", mivel nincsenek "kőbe vésve" el lehet térni tőlük kisebb-nagyobb mértékben

- A tervezésekor figyelembe vett célok:
 - Rétegekre bontott legyen
 - Minden réteg feladata jól definiált legyen, a feladatokat a már nemzetközileg elfogadott szabványok figyelembe vételével alakították ki
 - A rétegek közötti információcsere minimalizálásával kell a rétegek határait megállapítani
 - Elegendő rétegszámot definiáljon, hogy különböző feladatok feleslegesen ne kerüljenek egy rétegbe
 - Egyik gép n-edik rétege csak a másik gép azonos szintű rétegével tudjon kommunikálni a réteg protokollja szerint

- A kapcsolat során használt szabályok és megállapodások összességét nevezzük protokollnak.
- A hálózati architektúrát a rétegek és a protokollok alkotják együttesen.
- Az OSI modell 7 réteget alkalmaz, míg a gyakorlati TCP/IP "csak" 5-öt.

Fizikai réteg

- Fő feladata a bitek kommunikációs csatornára való juttatása.
- Beleértve:
 - Az adatok olyan átalakítását, konverzióját, jelátalakítását, ami biztosítja, hogy a felhasználó adatait a kiválasztott csatorna továbbítani tudja
- Ez a réteg határoz meg minden, az eszközökkel kapcsolatos fizikai és elektromos specifikációt.
 - PI: Érintkezők kiosztása, kábelek típusa, használatos jeltípusok, stb...

Fizikai réteg

- Információt hordozó közegek:
 - Fém kábelek (UTP, Koax)
 - Fény kábelek
 - Rádióhullám.
- Ebben a rétegben dolgozik a HUB és a Repeater.

Adatkapcsolati réteg

- Feladata az adatok megbízható továbbítása az adó és fogadó között.
- Ezt üzenetszórásos vagy pont-pont kapcsolat kialakításával teszi meg.
- A fentebbi rétegekből származó adatokat keretekké tördeli, majd a kereteket továbbítja.
- Minden kerethez nyugtakeret is tartozik, amit a címzett küld vissza, hogy megkapta a keretet.
- Problémaként a rétegben kell kezelni az alábbi eseményeket:
 - Keret elvesztése
 - Nyugtakeret elveszítése
 - Adó sebessége nagyobb, mint a fogadó sebessége probléma kezelése

Adatkapcsolati réteg keret felépítése

- Előtag: váltakozó 0-ák és 1-esek, régen aszinkron közegeknél (Koax kábel) szinkronizálásra szolgált
- Cél és forrás MAC cím alapján van azonosítva
- A hossz mező az adat hosszát adja meg, ami maximum 1536 byte lehet.

Adatkapcsolati réteg keret felépítése

- Amennyiben a típus értéke 1536-nál nagyobb, akkor az arra utal, hogy melyik felsőbb rétegbeli protokollnak kell átadni a keretet.
- CRC mező
 ellenőrzőértéket ad meg
 CRC-32 algoritmus
 alapján.

8BYTE	6ВҮТЕ	6BYTE	2BYTE	46-1500BYTE	4BYTE
Előtag / Preamble	CÉL MAC CÍME	FORRÁS MAC CÍME	Tipus/ Hossz	Adatok	CRC

Ciklikus Redundancia számítás

- Egy fajta hash algoritmus.
- A hash algoritmus egy olyan algoritmus, amely végtelen hosszú adatmennyiséget képez le egy fix hosszúságú adatmennyiségre.
- A kimeneti adatmennyiség egyedien jellemző lesz a bemeneti adatra.
- A folyamat egyirányú, hash adatból a definícióból adódóan a tényleges adat nem nyerhető ki.
- Adatellenőrzési és titkosítási célokra egyaránt alkalmazhatóak.
- Gond lehet algoritmus esetén a hash ütközés

MAC-cim

- MAC = Media Access Control
- Fizikai végpont azonosításra szolgál
- 12db hexadecimális számjegy formájában határozzák meg (48 bit)
- Szabványügyi hivatal adja ki gyártóknak a címtartományokat
- Eszközönként egyedi
- Két részből áll:
 - 24 bit gyártó és típus meghatározása
 - 24 bit egyedi sorszám

MAC-cim

- Elméletileg nem módosítható a felhasználó által
- Gyakorlatilag azonban lehetséges vagy könnyebben, vagy nehezebben. (MAC spoofing)
- Ennek oka az, hogy előfordulhat egyes gyártók hibájából az, hogy azonos MAC-címmel látnak el két eszközt vagy két kártyát.
- Ezt a címzési sémát használja az Ethernet hálózaton kívül a Bluetooth is.

Adatkapcsolati réteg

- Ebben a rétegben dolgozik a Switch.
- A Switch a MAC-címek alapján továbbítja a csomagokat a cél felé.
- A hatás azonban nem azonnali, a Switch-nek először fel kell térképeznie a hálózatot, tanulási folyamattal rendelkezik.

Hálózati réteg

- A kommunikációs alhálózatok működését vezérli.
- Itt már csomagokról beszélünk.
- Egy nagyobb hálózat esetén elvileg a feladótól a célig az adatok eljuttatása több útvonalon is lehetséges.
- Ezért feladat az optimális útvonal kiválasztása.
- Ez kiterjedt hálózatok esetén alapvető jelentőségű.
- Ez a réteg már logikai címzési sémát alkalmaz, ami felhasználó barátabb kicsivel*

Hálózati réteg

- A kommunikáció kezdetén döntünk arról, hogy a teljes üzenet csomagjai milyen útvonalon jussanak el a célba.
- Figyelembe kell venni az útvonal választás során az egyes vonalak terhelését, igény szerint módosítani kell őket.
- Továbbá ebben a rétegben kell megoldani a túl sok csomag hálózatban maradása miatt kialakult torlódást
- Valamint itt kell megoldani a különböző hálózatok összekapcsolását.

Hálózati réteg

- Itt van megoldva az adatátvitel helyességének ellenőrzése a gyakorlatban manapság.
- Hálózati eszköz, amely ebben a rétegben dolgozik: Router
- Protokollja az IP, két változata van jelenleg elterjedve:
 - V4 32 bites címzési séma ~4 milliárd egyenrangú csomópont megkülönböztetése
 - V6 128 bites címzési séma ~3,4x10^34 egyenrangú csomópont megkülönböztetése.

Szállítási réteg

- Biztosítja, hogy a felhasználók közötti adatátvitel transzparens legyen.
- Biztosítja, és ellenőrzi egy adott kapcsolat megbízhatóságát.
- Két fő protokoll dolgozik a rétegben: TCP és UDP
- Protokoll függő a kapcsolat kezelése.
- TCP esetén kapcsolat orientált, UDP esetén üzenetszórásos

Viszony réteg

- A végfelhasználói alkalmazások közötti dialógus menedzselésére alkalmas mechanizmust valósít meg
- A megvalósított mechanizmus lehet duplex vagy félduplex
- Gyakorlatban nem létezik, mivel ezen feladatokat a szállítási réteg protokolljai látják el.

Megjelenítési réteg

- Az alkalmazási réteg igényeit teljesíti szolgáltatásaival
- Ez a réteg felelős az információ formázásáért és eljuttatásáért az alkalmazási rétegnek, ahol a további feldolgozás, illetve megjelenítés történik.
- Gondoskodik róla, hogy az alkalmazási rétegnek már ne kelljen foglalkoznia a végfelhasználói rendszerek esetleg különböző adatértelmezési módszereiből származó szintaktikai eltérésekkel.
- PI: ASCII bájtok kódolása UTF adattá.
- Gyakorlatban nem létezik, mivel a feladatait a hetedik réteg látja el.

Alkalmazási réteg

- Szolgáltatásai támogatják a szoftver alkalmazások közötti kommunikációt, és az alsóbb szintű hálózati szolgáltatások képesek értelmezni alkalmazásoktól jövő igényeket, illetve, az alkalmazások képesek a hálózaton küldött adatok igényenkénti értelmezésére.
- Magas szintű protokollok használata a jellemző

OSI modell a gyakorlatban

- A gyakorlatban nem terjedt el, mivel a specifikáció alapján megvalósított struktúra a célhoz feleslegesen bonyolult.
- Helyette a TCP/IP avagy Internet modell van alkalmazva.
- Ez a modell szakirodalomtól függően 3-5 rétegből áll.
- Általánosan azonban az 5 réteges bontás terjedt el.

OSI modell és a TCP/IP kapcsolata

OSI	TCP/IP		
Alkalmazási			
Megjelenítési	Alkalmazási		
Viszony			
Szállítási	Szállítási		
Hálózati	Internet		
Adat kapcsolati	Adatkapcsolati		
Fizikai	Fizikai		

TCP/IP beágyazódás

Fizikai réteg jellemzői

Szükséges fogalmak

Analóg és Digitális jelek

- Analóg jel
 - Hullámzó, a jel feszültsége, folyamatosan változik az időben.
 - Jó példa analóg jelre a szinusz hullám

Analóg és Digitális jelek

- Digitális jel:
 - A feszültség ugrásszerűen változik az idő függvényében
 - Pl: Négyszögjel

Jelterjedés

- A bitet jelképező energiacsomag végighalad az átviteli közegen
- A terjedés sebessége az átviteli közeg anyagától, geometriájától és szerkezetétől, valamint az impulzusok frekvenciájától függ
- Ha a terjedési idő túl rövid, lehetséges, hogy a biteket le kell lassítanunk, illetve azokat ideiglenesen tárolnunk kell (ezt pufferelésnek nevezzük), hogy a hálózati eszközök lépést tudjanak tartani a bitek érkezésével.

Bitek terjedésének problémái

- csillapítás
- visszaverődés
- zaj
- ütközés

Csillapítás

- a jel energiát ad le a környezetnek, így energiát veszít
- az üzenetet szállító jel energiáját a kábel elnyeli
- optikai jelek esetében is fennáll az optikai szál elnyeli és szétszórja a fényenergia egy részét, miközben a fényimpulzusok (a bitek) az üvegszálon áthaladnak
- a rádió- és mikrohullámok esetén is fellép, mivel azt a légkör egyes molekulái elnyelhetik és szétszórhatják

Csillapítás

- Az átviteli közeg hosszát úgy kell megállapítani, hogy még biztonsággal értelmezhető legyen a csatorna végén.
- Csillapítás= 10 log10 P1/P2 (dB)

Visszaverődés, reflexió

- A feszültségimpulzusok, illetve a bitek egy határfelülethez érnek, a hullámenergia egy része visszaverődik.
- Az ellenkező fázisú hullámok kioltják, míg az azonosak erősítik egymást.
- Fontos, hogy a hálózati átviteli közeg hullámimpedanciája illeszkedjen a hálózati kártya elektromos komponenseihez
- Hasonlít a visszhang jelenséghez.

Zaj

- Egy nemkívánatos jel, mely hozzáadódik a feszültségimpulzusokhoz
- Zajmentes elektromos jel nem létezik, viszont fontos, hogy a jel/zaj viszonyt a lehető legmagasabb értéken tartsuk
- Módszerek:
 - árnyékolás: koaxiális kábel
 - kioltás: sodort érpár

Ütközés

- Ugyanabban az időben két, kommunikáló számítógép egy megosztott átviteli közeget használ
- A két bináris számjegyhez tartozó feszültségérték összeadódik, ami egy harmadik feszültségszintet eredményez
- A bináris rendszerben nem engedélyezett, mivel az csak két feszültségszintet ismer. Ebben az esetben a bitek "megsemmisülnek".

Maximális sávszélesség

- Maximális adatátviteli sebesség zajtalan környezetben, Nyquist – frekvenciatétele
- Max. adatátviteli sebesség= 2 B log2 V (bit/sec)
- Ahol:
 - B sávszélesség (jelzés sebesség, átviteli technológia korlátozza.)
 - V a továbbítandó jel különböző diszkrét szintje (digitális esetben 2)

Max adatátviteli sebesség

- Shannon (1948) meghatározta a maximális adatsebességet zajos csatornára.
- Maximális adatátviteli sebesség = B log2 [1+S/N] (bit/sec)
- Ahol:
 - B sávszélesség,
 - S átlagos jelteljesítmény,
 - N átlagos zajteljesítmény
 - S/N az átvitelre jellemző jel-zaj viszony

Kódolás

- A kódolás az 1-es és 0-s bitek fizikailag megfogható dologgá való átalakítását jelenti:
 - vezetékben haladó elektromos impulzusok
 - optikai szálban haladó fényimpulzus
 - elektromágneses hullámimpulzus a térben

Feszültség alapú átvitel

- 1 értékű bit átviteléhez vagy 3.3 V vagy 5 V impulzus tartozik
- 0 értékű bit átviteléhez 0 V tartozik
- A kódolás problémája, hogy nincs felkészülve a vezeték szakadás esetére.
- Ezért nagy hálózat építése esetén nem alkalmazott.
- Leggyakoribb alkalmazási helye: számítógépen belül.
- Az egyes bitek idejét egy órajel határozza meg.

Nullára vissza nem térő kódolás (NRZ)

- A 0 értékű bit kódolása nem 0 V feszültség szinttel történik, hanem -5V feszültséggel.
- Előny, hogy a 0V állapot vezeték szakadást jelenthet.
- Szintén kell órajel

Manchester kódolás

- Nem kell hozzá órajel.
- A biteket az impulzusok átmenete jelzi
- Magas -> alacsony átmenet jelenti az 1-es állapotot
- Alacsony -> magas átmenet jelenti a 0 állapotot.
- Adat XOR órajel -> Manchester kód

Multiplexelés

- Egy vagy több csatornát összefognak egy csatornába úgy, hogy az inverz multiplexelés művelettel, vagy demultiplexeléssel, vagy demuxálással elő tudják állítani az eredeti csatornákat.
- Fő fajtái:
 - Frekvencia osztásos
 - Időosztásos

FDM – Frequency Division Multiplexing

- Frekvenciaosztásos multiplexelés
- Frekvencia tartomány: 500-1500 kHz
- Frekv. tartom. felosztása 4000 Hz sávokra
- Hangátviteli csatornák 3100 Hz-re korlátozva
- Hangsávok modulálása a vivő frekvenciákkal
- Majd ezek összegzése, továbbítása

FDM – Frequency Division Multiplexing

TDM – Time Division Multiplexing

 Az egyes felhasználók időosztással férnek hozzá a teljes csatornához, így ki tudják használni a csatorna teljes sávszélességét.

További multiplexelések

STDM – Statistical Time Division Multiplexing

A küldendő jelek statisztikai elemzésen mennek keresztül, ez alapján kerül meghatározásra az idő és/vagy frekvencia igényük. Így az átvitel optimalizáltabb, de bonyolultabb is, mivel elemezni kell őket.

CDMA - Code Division Multiple Acces

Kódosztásos többszörös hozzáférés, mobiltelefonok használják. Egyszerre többen használják ugyanazt a frekvencia sávot, azonban minden egyes felhasználó egyedi kóddal modulálja az üzenetét, amiből később kihámozható az eredeti üzenet.

Fizikai réteg

Átviteli közegek

- Koaxiális kábelek
- UTP
- STP
- Optikai kábelek
- Vezeték nélküli hálózatok

Koaxiális kábel

- Az egyik vezető egy rézszál, amely a kábel geometriai középvonalában helyezkedik el
- Ezt egy rugalmas szigetelőréteg veszi körül
- A szigetelőanyagot egy rézfonat vagy fémfólia borítja, ami egyrészt a második jelvezetékként funkcionál az áramkörben, másrészt árnyékolja a belső vezetőt
- Az árnyékoló réteget védőköpeny borítja.

Koaxiális kábel

Koaxiális kábel keresztmetszete

- A kábel átmérője: 5 25 mm.
- A koncentrikus felépítés miatt kevésbé érzékeny a zavarokra és az áthallásra, mint a csavart érpár.
- Nagyobb távolságra használható és többpontos alkalmazásban több állomást támogat a csavart érpárnál.

Koaxiális kábel

Két fő változata:

- Alapsávú 50 ohm ellenállás méterenként, számítógépes hálózatokban használt, szegmenshossz maximálisan 500 méter
- Szélessávú 75 ohm ellenállás méterenként, analóg és digitális hálózatban egyaránt használt, szegmenshossz maximálisan 1 km

UTP kábel

- Árnyékolatlan csavart érpáras kábel
- A vezetékek páronkénti összesodrásával csökkentik az elektromágneses (EMI) és rádiófrekvenciás (RFI) interferencia jeltorzító hatását
- Az árnyékolatlan érpárok közötti áthallást úgy csökkentik, hogy az egyes érpárokat eltérő mértékben sodorják
- Szegmenshossz maximálisan 100 méter
- 4 érpár, a sávszélességet a kötés módja határozza meg

STP kábel

- Árnyékolt csavart érpáras kábel
- Mint az UTP, azonban a vezetékek érpáranként árnyékoltak
- Nagyobb védelmet nyújt a külső interferenciaforrásokkal szemben, viszont drágább, mint az árnyékolatlan csavart érpáras kábel.
- Szintén 100 méteres szegmenshossz

UTP kábelek fajtái

Egyenes kötés

A vevő és adó oldalon a kábelek sorrendje megegyezik. Aktív hálózati eszközök esetén használt, mint: Router, Switch, aktív hub.

Kereszt kötés

A vevő és az adó oldalon a kábelek sorrendje eltér, hogy ne legyen adatütközés. Olyan helyeken használt, ahol nincs aktív eszköz, csak 2 számítógép pl.

Rollover

Speciális kábel, router konfiguráció során alkalmazott, leginkább egy gyártóhoz kötődik: Cisco

UTP kábelek kategóriái és sávszélességek

4 érpár van az UTP kábelben

4 adó/vevő pár. Attól függően, hogy mennyit használunk ki és milyen a kábel határozhatjuk meg az adatátvitel sebességét.

▶ CAT4

Csavart érpár árnyékolás nélkül. 10Mbit/s érhető el ezzel a kábel fajtával. 1db érpár használt csak az átvitel során.

▶ CAT5

Csavart érpár egy külső árnyékolással. 100Mbit/s, 2db érpár van használva.

UTP kábelek kategóriái és sávszélességek

► CAT6

 Csavart érpár külső árnyékolással és érpárankénti árnyékolással. 4db érpár van használva 1Gbit/s.

▶ CAT7

Mint a CAT6, azonban 10Gbit/s illetve 50 méteres szegmenshosszal 40Gbit/s sebesség.

UTP Kábel

Optikai kábel

- A jel fényként továbbított az üvegszálban.
- Galvanikusan izolált, kültéren remekül alkalmazható, mivel a kábelre nem jelent veszélyt a villám.
- Két részből áll a szál:
 - Mag:
 - Nagy tisztaságú nagy törésmutatójú üvegből készül.
 - Köpeny:
 - Kisebb törésmutatójú műanyagból készült védő héj, ami megakadályozza a fény kijutását a magból.

Optikai kábel

Optikai kábel

Optikai kábelek fajtái

Monomódusú

- A mag átmérője közelít a használt fény hullámhosszához, így a kábelen a fény visszaverődések, pattanások nélkül szinte egyenesen halad a kábelben.
- Egy szálon így egyszerre egy jel továbbítható.

Multimódusú

- A mag átmérője nagyobb a fény hullámhosszánál, így a fény a kábel falán pattogva halad végig.
- A beesési szög módosításával elérhető, hogy egy kábelen több jel is haladjon.
- "Nagy" a jelvesztesége, így manapság nem igen alkalmazott.

Vezeték nélküli átvitel

- Átviteli közegre nincs hozzá szükség
- A jelek elektromágneses hullámok
- Rengeteg helyen alkalmazott
- Hálózat esetén számunkra érdekes technológia:
 - WLAN, 802.11

WLAN

- 1997 óta
- A fizikai réteget és az adatkapcsolati réteget definiálja a szabvány.
- Az adatkapcsolati réteg definiálására azért van szükség, mivel titkosítási feladatokat is el kell látnia a hálózatnak.
- Több szabvány van manapság használatban

WLAN szabványok

Szabvány	Megjelenés ideje	Működési frekvencia (Ghz)	Jellemző sebesség (Mbit/s)	Maximális sebesség (Mbit/s)	Hatótávolság beltéren (méter)	Hatótávolság kültéren (méter)
802.11	1997	2,4	0,9	2	~20	~100
802.11 a	1999	5	23	54	~35	~120
802.11 b	1999	2,4	4,3	11	~38	~140
802.11 g	2003	2,4	19	54	~38	~140
802.11 n	2008	2,4 / 5	74	150/300	~70	~250

WLAN fizikai réteg

- ▶ IR infravörös, nincs szükség közvetlen rálátásra, csak beltéren használható, max. 2Mb/s
- FHSS Frekvenciaugrásos szórt spektrum, 2,4GHz
- DSSS Direct-sequence spread spectrum 5GHz

Antenna típusok

Irány antenna

Pont-Multipont

Antenna típusok

Sáv antenna / Grid

Sebességet befolyásoló tényezők

- Árnyékolás (Pl. beton, fák)
- Vezeték nélküli telefonok
- Mikrohullámú sütő
- Bluetooth eszközök
- Időjárás
- Használt kábel típusa

Wi-Fi minősítés

- Vezeték nélküli hálózat != Wi-Fi
- Wi-Fi Alliance teszt alapján kaphatja meg a termék
- Teszt feltételek, aminek a terméknek meg kell felelnie (2008-as):
 - Kimeneti teljesítmény (max. 56mW)
 - WPA2 titkosítás támogatása
 - WMM / WME támogatás

Vezeték nélküli biztonság

- Mac Filtering
- WEP
 - Elavult
- WPA
- WPA2

A WEP problémái

- 24 bites titkosító kulcs (16 777 216 lehetséges kulcs)
- Minden csomaghoz 1 titkosító kulcs
- Kellő mennyiségű adat passzív lehallgatása (Kb 1GB) után a kezdeti kulcs könnyen visszafejthető (Kb 1-3 perc alatt a kulcs bonyolultságától függően)
- 2003 óta hivatalosan is elavultnak számít, ennek ellenére még ma is széles körben használt

WPA

- 1999-ben jelent meg először, azonban 2003-ig nem nagyon terjedt el.
- TKIP ("tee-kip") titkosítást használ
- Újdonságai:
 - Kulcskeverés (Kiinduló kulcs módosítása titkosítás előtt)
 - Csomag sorrend figyelés
 - 64 bites csomag hashelés
 - Minden csomaghoz egyedi kulcs

Mitől biztonságos?

- Csomag sorrend figyelés: Ha egy csomag hamarább érkezik meg, mint ami előtte van, az AP dobja a csomagot
- A csomag hash alapján eldönthető, hogy az módosult, vagy nem
- Ha 60 mp-en belül 2db rossz hash értékű csomag érkezik, akkor az AP új kulcsot vezet be
- Minimum 8, maximum 63 karakteres kiinduló titkosító kulcs kell

WPA2

- 2004-ben vezették be, a WPA-t váltotta
- AES alapú titkosítás
- Belátható időn belül lehetetlen visszafejteni a kulcsot
- Bevezetésének oka az volt, hogy a WPA titkosítást használó hálózatokból óránként 12 bit információ nyerhető ki
- WPA esetén egy egyszerűbb kulcs visszafejthető 3-4 nap alatt.

WMM / WME

- Wireless Multi Media, Wireless Multi Media Extensions
- QoS csomag ütemezési támogatás alkalmazása:
 - WiFi telefonok (Skype funkcionalitás)
 - Otthoni multimédia megosztók. Pl. Linksys DMA2100, DMA2200

