

Dr. Jan-Willem Liebezeit Lukas Fuchs Niklas Eiermann SoSe 2024

12 Übungspunkte

Übungen zu: Mathematik für Informatik II Lösung

Blatt 02

1. (NA) Minifragen

- 1. Wenn der Vektor $b \in \mathbb{R}^m$ als Linearkombination aus den Spaltenvektoren von $A \in M(m \times n, \mathbb{R})$ dargestellt werden kann, ist dann Ax = b für $x \in \mathbb{R}^n$ lösbar? **Lösung:** Ja, in diesem Fall gilt, dass der Rang von A gleich dem von (A|b) ist.
- 2. Sei $x, y \in \mathbb{R}^n$, n > 1, gilt dann $(\langle x, y \rangle = 0 \Rightarrow x = 0 \text{ oder } y = 0)$? **Lösung:** Nein, es gilt nur, dass x, y orthogonal sind. Bsp: $x = e_1, y = e_2$.
- 3. Sei $v \in \mathbb{R}^2$ und sei $w \in \mathbb{R}^2$ ein zu v orthogonaler Vektor mit ||w|| = 1. Ist w eindeutig?

Lösung: Nein, im Fall v=0 gibt es unendlich viele solcher Vektoren. Im Fall $v\neq 0$ gibt es zwei solcher Vektoren, denn falls w orthogonal zu v ist, ist auch -w orthogonal zu v.

4. Kann aus $x, y \in \mathbb{R}^2$ (linear unabhängig) immer mehr als eine Orthonormalbasis mithilfe des Gram-Schmidtschen Orthogonalisierungsverfahrens berechnet werden?

Lösung: Nein, nicht im Allgemeinen. Falls x und y bereits orthogonal sind, berechnet das Verfahren lediglich eine normalisierte Version dieser Vektoren. Falls diese nicht orthogonal sind, verändert die Wahl der Reihenfolge der beiden Vektoren das Ergebnis des Verfahrens.

2. (A) Lösbarkeit und Lösungen

Wir betrachten das Gleichungssystem

$$\begin{cases}
x_1 +2x_2 + x_3 -2x_4 = 3 \\
2x_1 +4x_2 + x_3 + x_4 = 10 \\
3x_1 +6x_2 + x_3 +2x_4 = 15 \\
-x_1 -2x_2 +2x_3 - x_4 = -3
\end{cases}$$

Bestimmen Sie mit Satz 7.4.2 und Satz 7.4.4, ob das System lösbar bzw. universell lösbar ist. Ist das System eindeutig lösbar?
 Lösung: Wir bestimmen zuerst den Rang der Matrix (A|b), die mit dem

Gleichungssystem assoziiert wird.

$$\begin{pmatrix}
1 & 2 & 1 & -2 & 3 \\
2 & 4 & 1 & 1 & 10 \\
3 & 6 & 1 & 2 & 15 \\
-1 & -2 & 2 & -1 & | -3
\end{pmatrix}
Z_{2-2Z_{1},Z_{3}-3Z_{1},Z_{4}+Z_{1}}
\begin{pmatrix}
1 & 2 & 1 & -2 & 3 \\
0 & 0 & -1 & 5 & | 4 \\
0 & 0 & -2 & 8 & | 6 \\
0 & 0 & 3 & -3 & | 0
\end{pmatrix}$$

$$Z_{2}\cdot(-1) \begin{pmatrix}
1 & 2 & 1 & -2 & | & 3 \\
0 & 0 & 1 & -5 & | & -4 \\
0 & 0 & -2 & 8 & | 6 \\
0 & 0 & 3 & -3 & | & 0
\end{pmatrix}
Z_{3+2Z_{2},Z_{4}-3Z_{2}}$$

$$\begin{pmatrix}
1 & 2 & 1 & -2 & | & 3 \\
0 & 0 & 1 & -5 & | & -4 \\
0 & 0 & 0 & -2 & | & -2 \\
0 & 0 & 0 & 12 & | & 12
\end{pmatrix}$$

$$Z_{3}\cdot\frac{-1}{5} \begin{pmatrix}
1 & 2 & 1 & -2 & | & 3 \\
0 & 0 & 1 & -5 & | & -4 \\
0 & 0 & 0 & 1 & | & 1 \\
0 & 0 & 0 & 12 & | & 12
\end{pmatrix}
Z_{4-12Z_{3}}$$

$$\begin{pmatrix}
1 & 2 & 1 & -2 & | & 3 \\
0 & 0 & 1 & -5 & | & -4 \\
0 & 0 & 0 & 1 & | & 1 \\
0 & 0 & 0 & 0 & | & 0
\end{pmatrix}$$

Damit ergibt sich, dass sowohl A als auch (A|b) einen Rang von 3 hat. Somit ist das Gleichungssystem lösbar. Da rgA = 3 < 4, ist das Gleichungssystem weder eindeutig noch universell lösbar.

2. Bestimmen Sie die Dimension des Lösungsraumes \mathcal{L}_0 des zugehörigen homogenen Gleichungssystems. (2)

(2)

(2)

Lösung: $\dim \mathcal{L}_0 = 4 - \operatorname{rg} A = 1$.

3. Bestimmen Sie die Lösungsmenge des Gleichungssystems.

Lösung:

Wir reduzieren weiter:

$$\begin{pmatrix} 1 & 2 & 1 & -2 & 3 \\ 0 & 0 & 1 & -5 & -4 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} Z_{2+5Z_3} \qquad \begin{pmatrix} 1 & 2 & 1 & -2 & 3 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$Z_{1-Z_2+2Z_3} \begin{pmatrix} 1 & 2 & 0 & 0 & | & 4 \\ 0 & 0 & 1 & 0 & | & 1 \\ 0 & 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\Rightarrow \{x \colon Ax = b\} = \begin{cases} \binom{4}{0} \\ 1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \lambda \in \mathbb{R}$$

3. (A) Darstellungen von Bilinearformen

1. Es sei $A \in M(n \times n, \mathbb{R})$. Zeigen Sie, dass

$$B: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \ (x,y) \mapsto x^{\top} Ay = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i y_j$$

eine Bilinearform ist.

Lösung: Seien $x, x', y \in \mathbb{R}^n$ und $\lambda \in \mathbb{R}$. Dann gilt

$$B(x + \lambda x', y) = (x + \lambda x')^{\top} A y$$
$$= x^{\top} A y + (\lambda x')^{\top} A y$$
$$= x^{\top} A y + \lambda (x')^{\top} A y$$
$$= B(x, y) + \lambda B(x', y).$$

Seien $x, y, y' \in \mathbb{R}^n$ und $\lambda \in \mathbb{R}$. Dann gilt

$$B(x, y + \lambda y') = x^{\top} A(y + \lambda y')$$

= $x^{\top} A y + \lambda x^{\top} A y'$
= $B(x, y) + \lambda B(x, y')$.

2. Es sei umgekehrt $s: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ eine Bilinearform und e_1, \ldots, e_n die kanonischen Basisvektoren im \mathbb{R}^n . Zeigen Sie, dass $s(x,y) = \sum_{i=1}^n \sum_{j=1}^n s(e_i,e_j)x_iy_j$. (2) **Lösung:** Seien $x = \sum_{i=1}^n x_ie_i, y = \sum_{j=1}^n y_je_j$. Dann gilt

$$s(x,y) = s\left(\sum_{i=1}^{n} x_{i}e_{i}, \sum_{j=1}^{n} y_{j}e_{j}\right)$$

$$\stackrel{\text{Bilinearität}}{=} \sum_{i=1}^{n} x_{i}s\left(e_{i}, \sum_{j=1}^{n} y_{j}e_{j}\right)$$

$$\stackrel{\text{Bilinearität}}{=} \sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} s(e_{i}, e_{j})y_{j}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} s(e_{i}, e_{j})x_{i}y_{j}.$$

3. Schließen Sie daraus nun die Existenz einer Matrix $M \in M(n \times n, \mathbb{R})$ mit (2) $s(x,y) = x^{\top} My$ für alle $x,y \in \mathbb{R}^n$.

Lösung: Seien $m_{ij} := s(e_i, e_j) \forall i, j = 1, \dots, n \text{ und } M := (m_{ij})$. Dann gilt

$$s(x,y) \stackrel{\text{Teilaufgabe 2}}{=} \sum_{i=1}^{n} \sum_{j=1}^{n} s(e_i, e_j) x_i y_j = x^{\top} M y$$

und die Behauptung folgt.

4. (A) Das Gram-Schmidtsche Orthogonalisierungsverfahren

Zeigen Sie die Behauptungen zum Gram-Schmidtschen Orthogonalisierungsverfahren: Für linear unabhängige Vektoren $v_1, \ldots, v_m \in \mathbb{R}^n$ liefert das in Beispiel 8.2.9 (i) dargestellte Verfahren Vektoren w_1, \ldots, w_m mit

1. $||w_i|| = 1, i = 1, ..., m$, bzgl. der induzierten Norm $||v|| = \sqrt{\langle v, v \rangle}$, (1) **Lösung:** Alle w_k sind normiert, d.h. $||w_1|| = ||\frac{v_1}{||v_1||}|| = \frac{||v_1||}{||v_1||} = 1$ und $||w_k|| = ||\frac{w'_k}{||w'_k||}|| = \frac{||w'_k||}{||w'_k||} = 1$. Hinweis: Im Skript bezeichnet w_k zunächst den noch nicht normierten Vektor, wir nehmen hier an, dass w_k bereits normiert ist.

2.
$$\langle w_i, w_j \rangle = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j. \end{cases}$$
 (3)

Lösung: Für i = j erhalten wir $||w_i||^2 = 1$, was aus 4.i.1 folgt. Für $i \neq j$ können wir oBdA i < j annehmen, da $\langle w_i, w_j \rangle = \langle w_j, w_i \rangle$. Wir beweisen induktiv: Angenommen, die Aussage gilt für ein festes i und für $j = 1, \ldots, k$ für ein festes $k \geq 2$. Wir zeigen die Aussage für j = k + 1:

$$\begin{split} \langle w_i, w_k \rangle &= \frac{1}{||w_k'||} \langle w_i, w_k' \rangle \\ &= \frac{1}{||w_k'||} \langle w_i, v_k - \sum_{j=1}^{k-1} \frac{\langle w_j, v_k \rangle}{||w_j||^2} w_j \rangle \\ &= \frac{\langle w_i, v_k \rangle}{||w_k'||} - \sum_{j=1}^{k-1} \frac{\langle w_j, v_k \rangle \langle w_i, w_j \rangle}{||w_k'|| \cdot ||w_j||^2} \\ &\stackrel{\text{IH}}{=} \frac{\langle w_i, v_k \rangle}{||w_k'||} - \sum_{j=1}^{k-1} \delta_{ij} \frac{\langle w_j, v_k \rangle}{||w_k'|| \cdot ||w_j||^2} \\ &= \frac{\langle w_i, v_k \rangle}{||w_k'||} - \frac{\langle w_i, v_k \rangle}{||w_k'|| \cdot ||w_i||^2} \\ &= \frac{\langle w_i, v_k \rangle}{||w_i||^2 = 1} 0 \end{split}$$

Wenden Sie das Verfahren an, um die Vektoren

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in \mathbb{R}^3$$

zu orthonormieren . (2)

Lösung:

•
$$||v_1|| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \Rightarrow w_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

•
$$w_2' = v_2 - \langle w_1, v_2 \rangle w_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} - \frac{4}{\sqrt{3}} \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} \\ \frac{2}{3} \\ -\frac{1}{3} \end{pmatrix}$$

•
$$w_2 = \frac{w_2'}{||w_2'||} = (1/\sqrt{\frac{1}{9} + \frac{4}{9} + \frac{1}{9}}) \begin{pmatrix} -\frac{1}{3} \\ \frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} = \sqrt{6} \begin{pmatrix} -\frac{1}{6} \\ \frac{1}{3} \\ -\frac{1}{6} \end{pmatrix}$$

•
$$w_3' = v_3 - \langle w_1, v_3 \rangle w_1 - \langle w_2, v_3 \rangle w_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{\sqrt{6}}{6} \sqrt{6} \begin{pmatrix} -\frac{1}{6} \\ \frac{1}{3} \\ -\frac{1}{6} \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{2} \end{pmatrix} - \begin{pmatrix} -\frac{1}{6} \\ \frac{1}{3} \\ -\frac{1}{6} \end{pmatrix} = \begin{pmatrix} -\frac{1}{6} \\ -\frac{4}{6} \\ -\frac{1}{2} \end{pmatrix}$$

•
$$w_3 = \frac{w_3'}{||w_3'||} = \left(1/\left(\sqrt{\frac{1}{36} + \frac{4}{36} + \frac{1}{36}}\right)\right) \begin{pmatrix} -\frac{1}{6} \\ -\frac{4}{6} \\ -\frac{1}{6} \end{pmatrix} = \sqrt{6} \begin{pmatrix} -\frac{1}{6} \\ -\frac{4}{6} \\ -\frac{1}{6} \end{pmatrix}$$

5. (A) Spur einer Matrix

Die Summe $\sum_{i=1}^{n} a_{ii}$ der Diagonalelemente der Matrix $(a_{ij}) = A$ heißt die Spur von (a_{ij}) , in Zeichen Spur $A = \sum_{i=1}^{n} a_{ii}$.

(a) Zeigen Sie, dass die Spur eine Linearform auf $M(n \times n, \mathbb{R})$ ist. Lösung: Seien $A, B \in M(n \times n, \mathbb{R})$ und $\lambda \in \mathbb{R}$, dann gilt

$$\operatorname{Spur}(\lambda A + \lambda B) = \sum_{i=1}^{n} \lambda a_{ii} + \lambda b_{ii} = \lambda \sum_{i=1}^{n} a_{ii} + \lambda \sum_{i=1}^{n} b_{ii} = \lambda \operatorname{Spur}(A) + \lambda \operatorname{Spur}(B).$$

(b) Zeigen Sie, dass durch

$$\langle A, B \rangle := \operatorname{Spur}(A^{\top}B)$$

(3)

ein Skalarprodukt auf $M(n \times n, \mathbb{R})$ definiert ist.

Lösung: Wir zeigen zunächst, dass $\langle A, B \rangle$ eine Bilinearform ist. Seien dazu $A, A', B, B' \in M(n \times n, \mathbb{R})$ und $\lambda \in \mathbb{R}$. Dann gilt

$$\langle A + \lambda A', B \rangle = \operatorname{Spur}((A + \lambda A')^{\top} B)$$

$$= \operatorname{Spur}(A^{\top} B + (\lambda A')^{\top} B)$$

$$= \operatorname{Spur}(A^{\top} B + \lambda A'^{\top} B)$$

$$= \sum_{i=1}^{n} a_{i}^{\top} b_{i} + \lambda a_{i}^{\prime \top} b_{i}$$

$$= \sum_{i=1}^{n} a_{i}^{\top} b_{i} + \lambda \sum_{i=1}^{n} a_{i}^{\prime \top} b_{i}$$

$$= \operatorname{Spur}(A^{\top} B) + \lambda \operatorname{Spur}(A'^{\top} B)$$

$$= \langle A, B \rangle + \lambda \langle A', B \rangle.$$

Außerdem gilt

$$\langle A, B + \lambda B' \rangle = \operatorname{Spur}(A^{\top}(B + \lambda B')))$$

$$= \operatorname{Spur}(A^{\top}B + A^{\top}\lambda B')$$

$$= \operatorname{Spur}(A^{\top}B + \lambda A^{\top}B')$$

$$= \sum_{i=1}^{n} a_{i}^{\top}b_{i} + \lambda a_{i}^{\top}b'_{i}$$

$$= \sum_{i=1}^{n} a_{i}^{\top}b_{i} + \lambda \sum_{i=1}^{n} a_{i}^{\top}b'_{i}$$

$$= \operatorname{Spur}(A^{\top}B) + \lambda \operatorname{Spur}(A^{\top}B')$$

$$= \langle A, B \rangle + \lambda \langle A, B' \rangle.$$

Somit ist $\langle A, B \rangle$ eine Bilinearform. $\langle A, B \rangle$ ist außerdem positiv definit, denn für alle $A \in M(n \times n, \mathbb{R})$ mit $A \neq 0$ gilt

$$\langle A, A \rangle = \operatorname{Spur}(A^{\top}A)$$

= $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ji}^{2}$
 $\stackrel{A \neq 0}{>} 0.$

 $\langle A, B \rangle$ ist außerdem symmetrisch, denn für alle $A, B \in M(n \times n, \mathbb{R})$ gilt

$$\langle A, B \rangle = \operatorname{Spur}(A^{\top}B)$$

$$= \sum_{i=1}^{n} (A^{\top}B)_{ii}$$

$$= \sum_{i=1}^{n} ((B^{\top}A)^{\top})_{ii}$$

$$= \sum_{i=1}^{n} (B^{\top}A)_{ii}$$

$$= \operatorname{Spur}(B^{\top}A)$$

$$= \langle B, A \rangle.$$

Somit ist $\langle A, B \rangle$ eine positiv definite, symmetrische Bilinearform und damit ein Skalarprodukt.

6. (T),(NA) Bilinearformen und Skalarprodukte Gegeben seien die Abbildungen

$$B_{1}: \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}, \qquad (x,y) \mapsto \sum_{j=1}^{n} j x_{j} y_{j},$$

$$B_{2}: \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}, \qquad (x,y) \mapsto \sum_{j=1}^{n} (-1)^{j} x_{j} y_{j},$$

$$B_{3}: \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}, \qquad (x,y) \mapsto \sum_{j=1}^{n} x_{j} y_{j}^{2}.$$

Prüfen Sie jeweils, ob B_1 , B_2 , B_3 eine Bilinearform oder sogar ein Skalarprodukt ist.

7. (T), (NA) Es sei $F: \mathbb{R}^n \to \mathbb{R}^n$ eine lineare Abbildung und $\langle \cdot, \cdot \rangle$ ein beliebiges Skalarprodukt auf dem \mathbb{R}^n . Zeigen Sie:

$$\forall x \in \mathbb{R}^n \left(x - F(x) \in (\text{Bild}(F))^{\perp} \right) \Rightarrow \forall x, y \in \mathbb{R}^n \left(\langle x, F(y) \rangle = \langle F(x), y \rangle \right).$$

Gilt das auch, wenn man \mathbb{R}^n durch \mathbb{C}^n ersetzt?

Erläuterungen zur Bearbeitung und Abgabe:

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Üungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.

Die Übungsblätter sowie aktuelle Informationen sind unter folgender Adresse verfügbar: https://moodle.uni-ulm.de/course/view.php?id=48088