COMP 472: Artificial Intelligence Machine Learning Decision Trees

Russell & Norvig: Sections 19.3

Today

- Introduction to ML
- 2. Naive Bayes Classification
 - Application to Spam Filtering
- Decision Trees YOU ARE HERE!
- 4. (Evaluation
- Unsupervised Learning)
- Neural Networks
 - Perceptrons
 - Multi Layered Neural Networks

Guess Who?

一个游戏,每方想好一个人,每次轮流问一个YES OR NO的问题,排除以后关上一个窗,第一个guess出来的人获胜(用最少问题找到人的获胜)

Decision Trees

class

feature 2

- Simplest, but most successful form of learning algorithm
- Very well-know algorithm is ID3 (Quinlan, 1987) and its successor C4.5

把所有的feature根据descrimating 分级(分辨力

- Rank features based on how good they are to indicate the result
- 2. Put the most discriminating feature as a node (as a question) of a tree
- 3. Split the examples so that those with different values for the chosen feature are in a different set
- 4. Repeat the same process with the nest most discriminating feature

Example 1

Info on last year's students to determine if a student will get an 'A' this year

		Features (X)						
Student	'A' last year?	'A' this year?						
X1: Richard	Yes	Yes	No	Yes	No			
X2: Alan	Yes	Yes	Yes	No	Yes			
X3: Alison	No	No	Yes	No	No			
X4: Jeff	No	Yes	No	Yes	No			
X5: Gail	Yes	No	Yes	Yes	Yes			
X6: Simon	No	Yes	Yes	Yes	No			

Example 1

A random decision tree that fits the dataset training set with 100%

		Features						
Student	'A' last year?	'A' this year?						
Richard	Yes	Yes	No	Yes	No			
Alan	Yes	Yes	Yes	No	Yes			
Alison	No	No	Yes	No	No			
Jeff	No	Yes	No	Yes	No			
Gail	Yes	No	Yes	Yes	Yes			
Simon	No	Yes	Yes	Yes	No			

但这里的feature是chosen at random, 我们不知道是不是效率最高

是有可能有更小的DT decision tree的

Example 2: The Restaurant

- Goal: learn whether one should wait for a table
- Attributes
 - 1. Alternate: another suitable restaurant nearby
 - 2. Bar: comfortable bar for waiting
 - 3. Fri/Sat: true on Fridays and Saturdays
 - 4. Hungry: whether one is hungry
 - 5. Patrons: how many people are present (none, some, full)
 - 6. Price: price range (\$, \$\$, \$\$\$)
 - 7. Raining: raining outside
 - 8. Reservation: reservation made
 - 9. Type: kind of restaurant (French, Italian, Thai, Burger)
 - WaitEstimate: estimated wait by host (0-10 mins, 10-30, 30-60, >60)

Example 2: The Restaurant

features

Training data:

						4-0					_	
Example					At	tributes	3	Six .	97	22 22	Te	arget
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	V	Vait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10		Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60		F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10		Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30		T
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60		F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	5	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10		F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10		Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60		F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	$ \ $	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10		F
X_{12}	Т	Т	T	Т	Full	\$	F	F	Burger	30-60		т /

entropy=1

f(x

第一步:先不管attribute,统计f(x)的entropy,发现是1,,完全chaos

source: Norvig (2003) 分别计算每个attribute/feature和target联合以后的entropy , how much knowing its value will reduce the entropy of class ,能减少entropy最多的,就是最具有决定性的attribute

或者说how much information have

A First Decision Tree

But is it the best decision tree we can build?

Ockham's Razor

It is vain to do more than can be done with less... Entities should not be multiplied beyond necessity.
[Ockham, 1324]

- In other words... always favor the simplest answer that correctly fits the training data
- i.e. the smallest tree on average

当我们有两个tree完美符合我们的training set的时候,倾向更小的那个

- This type of assumption is called inductive bias
 - inductive bias = making a choice beyond what the training instances contain

但其实这叫做inductive bias,因为两个tree都是正确的,我们做了超出training instances的内容的选择

Which Tree is Best?

A Better Decision Tree

- 4 tests instead of 9
- 11 branches instead of 21

Choosing the Next Feature

- The key problem is choosing which feature to split a given set of examples
- Different measures have been proposed
- ID3 uses Maximum Information-Gain
 - □ i.e. we choose the feature that has the largest information gain
 - we expect this feature to result in the smallest tree on average we expect but cannot guarantee确保
 - based on information theory

Essential Information Theory

- Developed by Shannon in the 40s
- Shannon developed the notion of entropy (aka information content) of a 测量一个random variable有多informative random variable (RV)

or how much information the random variable can take

- Entropy measures how "predictable" a RV is
 - □ If you already have a good idea about the answer (e.g. 90/10 split)
 - → low entropy //sure thing , 例如扔一个硬币 , 90正面 , 10反面 , low entropy
 - □ If you have no idea about the answer (e.g. 50/50 split)
 - → high entropy //total chaos

Dartmouth Conference: The Founding Fathers of AI

Herbert Simon

Nathaniel Rochester

Entropy

离散的

random variable

- Let X be a discrete RV with i possible outcomes x_i
- Entropy (or information content) of X

例如字母表,有26个outcome 例如字典,有10000个outcome

$$H(X) = -\sum_{i=1}^{n} p(x_i) log_2 p(x_i)$$
 p就是posibility 这里必须是base 2

- measures:
 - the amount of information in a RV
 - average uncertainty of a RV
- measured in bits entropy计量单位是bit

Entropy of a Coin Toss

$$H(X) = -\sum_{x_i \in X} p(x_i) \log_2 p(x_i)$$

Entropy (or information content)

$$H(\text{fair coin toss}) = -\sum_{x_i \in X} p(x_i) \log_2 p(x_i) = H\left(\frac{1}{2}, \frac{1}{2}\right)$$

$$= -\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}\right) = 1 \text{ bit}$$

这个就很简单,正反面几率是0.5,相加=1,单位是bit

entropy of a fair coin toss (the RV) with 2 possible outcomes, each with a probability of 1/2

a RV with only 2 outcomes x_1 and x_2 will have $1 \ge H(X) \ge 0$

total chaos

sure thing

Example: The Coin Toss

Fair coin:
$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i) = -\left(\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} \log_2 \frac{1}{2}\right) = 1 \text{ bit}$$

下正当的 Rigged coin:
$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i) = -\left(\frac{99}{100} \log_2 \frac{99}{100} + \frac{1}{100} \log_2 \frac{1}{100}\right) = 0.08 \text{ bits}$$

fair coin -> high entropy

rigged coin -> low entropy

P(head)

Information Gain

- information gain 知道一段信息后测量减少entropy的方法
 - measure the entropy reduction of a RV, once a piece of information is known
 - used to measure the "discriminating power" of an attribute A given a data set S 用来测量一个attribute的descriminating power
 - Let Values(A) = the set of values that attribute A can take
 - Let S_v = the set of examples in the data set which have value v for attribute A (for each value v from Values(A))

第八页 没统计过attribute的各种class的entropy

$$gain(S, A) = H(S) - H(S|A)$$
 在attributeA下的entropy entropy reduction)
$$= H(S) - \sum_{v \in values(A)} \frac{|S_v|}{|S|} \times H(S_v)$$

Some Intuition

Size	Color	Shape	Output
Big	Red	Circle	+
Small	Red	Circle	+
Small	Red	Square	-
Big	Blue	Circle	-

- Size is the least discriminating attribute (i.e. smallest information gain)
- Shape and color are the most discriminating attributes (i.e. highest information gain)

A Small Example (1)

Size	Color	Shape	Output
Big	Red	Circle	+
Small	Red	Circle	+
Small	Red	Square	
Big	Blue	Circle	-

 $gain(S, Color) = H(S) - \sum_{S = S = S = S = S = S}$

$$H(S) = -\left(\frac{2}{4}\log_2\frac{2}{4} + \frac{2}{4}\log_2\frac{2}{4}\right) = 1$$
 这个就不解释了

for each v of Values(Color)

$$H(S|Color = red) = H(\frac{2}{3}, \frac{1}{3}) = -(\frac{2}{3}log_2 \frac{2}{3} + \frac{1}{3}log_2 \frac{1}{3}) = 0.918$$

$$H(S|Color = blue) = H(1,0) = -\left(\frac{1}{1}log_2\frac{1}{1}\right) = 0$$

$$H(S|Color) = \frac{3}{4}(0.918) + \frac{1}{4}(0) = 0.6885$$

例如我们要看color,分两步, 第一步按color divide,分别统计output 结果是red下两个正的一个负的,统计H熵 blue下一个负的,熵为0

第二步根据color各自比重,乘以他们的对应熵, 得到了加入color之后的entropy熵

相减得到gain

A Small Example (2)

Size	Color	Shape	Output
Big	Red	Circle	+
Small	Red	Circle	+
Small	Red	Square	-
Big	Blue	Circle	-

Note: by definition,

- □ $Log 0 = -\infty$
- □ OlogO is O

$$H(S) = -\left(\frac{2}{4}\log_2\frac{2}{4} + \frac{2}{4}\log_2\frac{2}{4}\right) = 1$$

H(S|Shape) =
$$\frac{3}{4}$$
(0.918) + $\frac{1}{4}$ (0) = 0.6885
gain(Shape) = H(S) - H(S|Shape) = 1 - 0.6885 = 0.3115

A Small Example (3)

Size	Color	Shape	Output
Big	Red	Circle	+
Small	Red	Circle	+
Small	Red	Square	-
Big	Blue	Circle	-

$$H(S) = -\left(\frac{2}{4}\log_2\frac{2}{4} + \frac{2}{4}\log_2\frac{2}{4}\right) = 1$$

$$H(S|Size) = \frac{1}{2}(1) + \frac{1}{2}(1) = 1$$

gain(Size) = $H(S) - H(S|Size) = 1 - 1 = 0$

A Small Example (4)

Size	Color	Shape	Output
Big	Red	Circle	+
Small	Red	Circle	+
Small	Red	Square	-
Big	Blue	Circle	-

$$gain(Shape) = 0.3115$$

 $gain(Color) = 0.3115$
 $gain(Size) = 0$

所以ssize是最没用的attribute,我们建立树的时候优先shape color,最后size

 So first separate according to either color or shape (root of the tree)

A Small Example (4)

Let's assume we pick Color for the root.

Size	Color	Shape	Output
Big	Red	Circle	+
Small	Red	Circle	+
Small	Red	Square	-
Big	Blue	Circle	-

Color

子树, blue排除了, 所以我们只用3instancce, 所以我们要重新计算一遍

$$H(S_2) = -\left(\frac{2}{3}\log_2\frac{2}{3} + \frac{1}{3}\log_2\frac{1}{3}\right)$$

$$H(S_2 | Size = big) = H(\frac{1}{1}, \frac{0}{1}) = 0$$

$$H(S_2 | Size = small) = H(\frac{1}{2}, \frac{1}{2}) = 1$$

$$H(S_2 | Size) = \frac{1}{3}(0) + \frac{2}{3}(1)$$

$$gain(Size) = H(S_2) - H(S_2 \mid Size)$$

$$H(S_2 | Shape = circle) = H\left(\frac{2}{2}, \frac{0}{2}\right) = 0$$

$$H(S_2 | Shape = square) = H_{1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$$

H(S2|Shape)

$$gain(Shape) = H(S_2) - H(S_2 | Shape)$$

构建完整的树,我

们用4instance

blue

Back to the Restaurant

Training data:

Example		5 55			At	tributes	3	534	97	27 13	Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	T	Т	Full	\$	F	F	Burger	30–60	Т

source: Norvig (2003)

The Restaurant Example

$$gain(alt) = ...$$
 $gain(bar) = ...$ $gain(fri) = ...$ $gain(hun) = ...$

$$\begin{aligned} &gain(pat) = 1 - \left(\frac{2}{12} \times H\left(\frac{0}{2}, \frac{2}{2}\right) + \frac{4}{12} \times H\left(\frac{0}{4}, \frac{4}{4}\right) + \frac{6}{12} \times H\left(\frac{2}{6}, \frac{4}{6}\right)\right) \\ &= 1 - \left(\frac{2}{12} \times - \left(\frac{0}{2} \log_2 \frac{0}{2} + \frac{2}{2} \log_2 \frac{2}{2}\right) + \frac{4}{12} \times - \left(\frac{0}{4} \log_2 \frac{0}{4} + \frac{4}{4} \log_2 \frac{4}{4}\right) + \dots\right) \approx 0.541 \text{bits} \end{aligned}$$

$$gain(price) = ...$$
 $gain(rain) = ...$ $gain(res) = ...$

gain(type) =
$$1 - \left(\frac{2}{12} \times H\left(\frac{1}{2}, \frac{1}{2}\right) + \frac{2}{12} \times H\left(\frac{1}{2}, \frac{1}{2}\right) + \frac{4}{12} \times H\left(\frac{2}{4}, \frac{2}{4}\right) + \frac{4}{12} \times H\left(\frac{2}{4}, \frac{2}{4}\right)\right) = 0 \text{ bits}$$

- Attribute pat (Patron) has the highest gain, so root of the tree should be attribute Patrons
- do recursively for subtrees

别忘了 do recursively for subtree

Applications of Decision Trees

- One of the most widely used learning methods in practice
 - Fast
 - Simple
 - Traceable (<-- very important!)</p>

Today

- 1. Introduction to ML
- 2. Naïve Bayes Classification
 - a. Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- 5. Unsupervised Learning)
- 6. Neural Networks
 - a. Perceptrons
 - b. Multi Layered Neural Networks

Up Next

- 1. Introduction to ML
- 2. Naive Bayes Classification
 - a. Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- 5. Unsupervised Learning)
- 6. Neural Networks
 - a. Perceptrons
 - b. Multi Layered Neural Networks