UNDECIDABILITY

Dr. A. Beulah AP/CSE

LEARNING OBJECTIVE

- To Design Turing machines for any Languages (K3)
 - To Understand the concept of Turing Machine

REVISIT - TM

A Turing machine (TM) is a 7-tuple

- M = (Q \cup { h_{α} , h_r }, Σ , Γ , δ , q_0 , B, F) where
- -Q-A finite set of states of the finite control. $Q + h_a$ and h_r
- $-\Sigma$ A finite set of input symbols
- $-\Gamma$ A set of tape symbols, with Σ being a subset
- $-q_0$ The start state, in Q
- -B The blank symbol in Γ , *not* in Σ (should not be an input symbol)
- F The set of final or accepting states

EXAMPLE

$$L = \{\underline{xx} \mid x \in (a,b)^*\}$$

PARSING EXAMPLE WITH H_A,H_R

$q_0\Delta_{aba}$	$\vdash \Delta q_1 a b a$ $\vdash \Delta A q_4 b A$ $\vdash \Delta A q_3 B A$	$\vdash \Delta A q_2 b a$ $\vdash \Delta q_4 A b A$ $\vdash \Delta A h_r B A$	$\vdash^* \Delta Abaq_2\Delta$ $\vdash \Delta Aq_1bA$ (reject)	$\vdash \Delta Abq_3a$ $\vdash \Delta ABq_2A$
$q_0\Delta ab$	$\vdash \Delta q_1 ab \\ \vdash \Delta q_4 AB \\ \vdash \Delta q_6 aB$	$\vdash \Delta A q_2 b$ $\vdash \Delta A q_1 B$ $\vdash \Delta A q_8 B$	$\vdash \Delta Abq_2\Delta \\ \vdash \Delta q_5AB \\ \vdash \Delta Ah_rB$	$\vdash \Delta A q_3 b \Delta$ $\vdash q_5 \Delta a B$ (reject)
$q_0\Delta aa$	$ \vdash \Delta q_1 a a \\ \vdash \Delta q_4 A A \\ \vdash \Delta q_6 a A \\ \vdash \Delta A h_a \Delta $	$\vdash \Delta A q_2 a$ $\vdash \Delta A q_1 A$ $\vdash \Delta A q_8 A$ (accept)	$\vdash \Delta A a q_2 \Delta \\ \vdash \Delta q_5 A A \\ \vdash \Delta q_9 A$	$\vdash \Delta A q_3 a \Delta$ $\vdash q_5 \Delta a A$ $\vdash \Delta A q_6 \Delta$

RECURSIVE (R) AND RECURSIVELY ENUMERABLE(RE) LANGUAGES

18 August 2022 A. Beulah Unit V

DECIDABILITY VS. UNDECIDABILITY

There are two types of TMs (based on halting):

TMs that *always* halt, no matter accepting or non-accepting ≡ **DECIDABLE PROBLEMS**

TMs that are guaranteed to halt only on acceptance. If nonaccepting, it may or may not halt (i.e., could loop forever).

Undecidability:

Undecidable problems are those that are not recursive

Unit V

RECURSIVE LANGUAGE

- A Language L is Recursive if and only if there is a TM that decides L.
 - -Let M=(Q, Σ , Γ , δ , q₀, B, H) such that
 - $H = \{h_a, h_r\}$
 - L $\subseteq \Sigma^*$ Is a language
 - Assume that the initial configuration of the TM is (q_0, w)
 - M decides L if, for all strings $w \in \Sigma^*$
 - –|Either w ∈ L, in which case M accepts w
 - Or w ∉ L, then M rejects w

RECURSIVE ENUMERABLE LANGUAGE

- A Language L is Recursive Enumerable if and only if there is a TM that semidecides L.
 - -Let M =(Q, Σ , Γ , δ , q₀, B, H) such that
 - $H = \{h_a, h_r\}$
 - L $\subseteq \Sigma$ * Is a language
 - Assume that the initial configuration of the TM is (q_0, w)
 - M semidecides L if, for all strings $w \in \Sigma^*$
 - Either $w \in L$, in which case M accepts w
 - Or w ∉ L, then M does not halt

Any TM for a <u>Recursive</u> language is going to look like this:

• Any TM for a <u>Recursively Enumerable</u> (RE) language is going to look like this:

CLOSURE PROPERTIES OF RECURSIVE (R) AND RECURSIVELY ENUMERABLE(RE) LANGUAGES

18 August 2022 A. Beulah Unit V

RL ARE CLOSED UNDER COMPLEMENTATION

If L is Recursive, L is also Recursive

ARE RL CLOSED UNDER COMPLEMENTATION? (NO)

– If L is RE, L need not be RE

RECURSIVE LANGS ARE CLOSED UNDER UNION

- Let $M_u = TM$ for $L_1 \cup L_2$
- M_u construction:
 - Make 2-tapes and copy input w on both tapes
 - 2. Simulate M₁ on tape 1
 - 3. Simulate M₂ on tape 2
 - 4. If either M_1 or M_2 accepts, then M_u accepts
 - 5. Otherwise, M_{II} rejects.

RL ARE CLOSED UNDER INTERSECTION

- Let $M_n = TM$ for $L_1 \cap L_2$
- M_n construction:
 - Make 2-tapes and copy input w on both tapes
 - 2. Simulate M_1 on tape 1
 - 3. Simulate M₂ on tape 2
 - If either M₁ AND M₂ accepts, then M_n accepts
 - 5. Otherwise, M_n rejects.

OTHER CLOSURE PROPERTY RESULTS

- Recursive languages are also closed under:
 - Concatenation ___
 - Kleene closure (star operator)
 - Homomorphism, and inverse homomorphism
- RE languages are closed under:
 - Union, intersection, concatenation, Kleene closure

- RE languages are not closed under:
 - complementation /

TEST YOUR KNOWLEDGE

- Let L1 be a recursive language. Let L2 and L3 be languages that are recursively enumerable but not recursive. Which of the following statements is not necessarily true?
 - L2 L1 is recursively enumerable.
 - L1 L3 is recursively enumerable
 - L2 ∩ L1 is recursively enumerable
 - L2 U L1 is recursively enumerable

SUMMARY

- What is undecidability
- Recursive and Recursive enumerable languages

REFERENCE

 Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

