Devoir à la maison $n^{\circ}09$

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – Centrale PSI Maths1 2018 – Autour des matrices de Toeplitz

- Dans tout le problème, K désigne le corps R ou C, *n* un entier naturel supérieur ou égal à 2, U_n l'ensemble des racines *n*-ièmes de l'unité.
- Si a et b sont deux entiers relatifs tels que $a \le b$, [a, b] désigne l'ensemble $\{a, a + 1, ..., b 1, b\}$.
- $\mathbb{K}[X]$ désigne l'ensemble des polynômes à coefficients dans \mathbb{K} .
- L'ensemble des matrices carrées de taille n à coefficients dans \mathbb{K} est noté $\mathcal{M}_n(\mathbb{K})$.
- Si $(t_{-n+1},\ldots,t_0,\ldots,t_{n-1})\in\mathbb{K}^{2n-1},$ on note $\mathrm{T}(t_{-n+1},\ldots,t_0,\ldots,t_{n-2},t_{n-1})$ la matrice

$$\mathbf{T}(t_{-n+1},\dots,t_0,\dots,t_{n-2},t_{n-1}) = \left(\begin{array}{ccccc} t_0 & t_1 & t_2 & \cdots & \cdots & t_{n-1} \\ t_{-1} & t_0 & t_1 & \ddots & & \vdots \\ t_{-2} & t_{-1} & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & t_1 & t_2 \\ \vdots & & \ddots & t_{-1} & t_0 & t_1 \\ t_{-n+1} & \cdots & \cdots & t_{-2} & t_{-1} & t_0 \end{array} \right)$$

Une telle matrice est appelée matrice de Toeplitz d'ordre n. On nomme Toep $_n(\mathbb{K})$ l'ensemble des matrices de Toeplitz d'ordre n à coefficients dans \mathbb{K} :

$$\mathsf{Toep}_n(\mathbb{K}) = \{ \mathsf{M} \in \mathcal{M}_n(\mathbb{K}) \mid \exists (t_{-n+1}, \dots, t_0, \dots, t_{n-1}) \in \mathbb{K}^{2n-1}, \ \mathsf{M} = \mathsf{T}(t_{-n+1}, \dots, t_0, \dots, t_{n-2}, t_{n-1}) \}$$

- Une matrice N de $\mathcal{M}_n(\mathbb{K})$ est dite nilpotente s'il existe $p \in \mathbb{N}^*$ tel que $\mathbb{N}^p = 0$.
- Pour toute matrice M de $\mathcal{M}_n(\mathbb{K})$, on note χ_{M} son polynôme caractéristique défini par

$$\chi_{\mathbf{M}}(\mathbf{X}) = \det(\mathbf{X}\mathbf{I}_n - \mathbf{M})$$

• Si $P = a_0 + a_1X + \cdots + a_pX^p$ $(p \in \mathbb{N})$ est un polynôme de $\mathbb{K}[X]$, P(M) désigne la matrice

$$P(M) = a_0 I_n + a_1 M + \dots + a_n M^p$$

Le but de ce problème est l'étude de certaines propriétés des matrices de Toeplitz. La partie I traite de généralités sur les matrices de Toeplitz et de quelques exemples. La partie II, indépendante de la partie I, étudie un type particulier de matrices de Toeplitz — les matrices circulantes — en s'intéressant à leur structure et à leur diagonalisabilité. Enfin, la partie III, indépendante des précédentes, aborde l'étude des matrices cycliques et les relie aux matrices de Toeplitz.

I Généralités et quelques exemples

I.A Généralités

1 Montrer que Toep_n(\mathbb{C}) est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$. En donner une base et en préciser la dimension.

Montrer que si deux matrices A et B commutent (AB = BA) et si P et Q sont deux polynômes de $\mathbb{C}[X]$, alors P(A) et Q(B) commutent.

I.B Cas de la dimension 2

Soit A = $\begin{pmatrix} a & b \\ c & a \end{pmatrix}$ une matrice de Toeplitz de taille 2 × 2, où (a, b, c) sont des complexes.

- 3 Donner le polynôme caractéristique de A.
- 4 Discuter, en fonction des valeurs de (a, b, c), de la diagonalisabilité de A.

Réduction d'une matrice sous forme de Toeplitz

Soit $M = \begin{pmatrix} \alpha & b \\ c & d \end{pmatrix}$ une matrice de $\mathcal{M}_2(\mathbb{C})$. Montrer que M est semblable à une matrice de type $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ ou de type $\begin{pmatrix} \alpha & \gamma \\ 0 & \alpha \end{pmatrix}$, où α , β et γ sont des complexes avec $\alpha \neq \beta$.

6 En déduire que toute matrice de $\mathcal{M}_2(\mathbb{C})$ est semblable à une matrice de Toeplitz.

I.C Un autre cas particulier : les matrices tridiagonales

Une matrice tridiagonale est une matrice de Toeplitz de la forme $T(0, ..., 0, t_{-1}, t_0, t_1, 0, ..., 0)$, i.e. une matrice de la forme

$$A_n(a,b,c) = \begin{pmatrix} a & b & (0) \\ c & a & \ddots \\ & \ddots & \ddots & b \\ (0) & c & a \end{pmatrix}$$

où (a, b, c) sont des complexes.

On fixe (a, b, c) trois nombres complexes tels que $bc \neq 0$. On se propose de chercher les éléments propres de $A_n(a, b, c)$.

Soit $\lambda \in \mathbb{C}$ une valeur propre de $A_n(a,b,c)$ et $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{C}^n$ un vecteur propre associé.

Montrer que si l'on pose $x_0 = 0$ et $x_{n+1} = 0$, alors $(x_1, ..., x_n)$ sont les termes de rang variant de 1 à n d'une suite $(x_k)_{k \in \mathbb{N}}$ vérifiant $x_0 = 0$, $x_{n+1} = 0$ et

$$\forall k \in \mathbb{N}, \ bx_{k+2} + (a-\lambda)x_{k+1} + cx_k = 0$$

8 Rappeler l'expression du terme général de la suite $(x_k)_{k\in\mathbb{N}}$ en fonction des solutions de l'équation

$$bx^2 + (a - \lambda)x + c = 0 \tag{E}$$

 $\boxed{\mathbf{9}}$ À l'aide des conditions imposées à x_0 et x_{n+1} , montrer que (E) admet deux solutions distinctes r_1 et r_2 .

- Montrer que r_1 et r_2 sont non nuls et que r_1/r_2 appartient à \mathbb{U}_{n+1} .
- En utilisant l'équation (E) satisfaite par r_1 et r_2 , déterminer r_1r_2 et $r_1 + r_2$. En déduire qu'il existe un entier $\ell \in [\![1,n]\!]$ et un nombre complexe ρ vérifiant $\rho^2 = bc$ tels que

$$\lambda = a + 2\rho \cos\left(\frac{\ell\pi}{n+1}\right)$$

- 12 En déduire qu'il existe $\alpha \in \mathbb{C}$ tel que, pour tout k dans [0, n+1], $x_k = 2i\alpha \frac{\rho^k}{b^k} \sin\left(\frac{\ell k\pi}{n+1}\right)$.
- 13 Conclure que $A_n(a, b, c)$ est diagonalisable et donner ses valeurs propres.

II Matrices circulantes

Une matrice *circulante* est une matrice de Toeplitz $T(t_{-n+1}, \dots, t_0, \dots, t_{n-2}, t_{n-1})$, pour laquelle

$$\forall k \in [[1, n-1]], t_k = t_{-n+k}$$

Elle est donc de la forme

$$\mathbf{T}(t_1,t_2,\ldots,t_0,t_1,\ldots,t_{n-2},t_{n-1}) = \begin{pmatrix} t_0 & t_1 & \cdots & t_{n-2} & t_{n-1} \\ t_{n-1} & t_0 & \ddots & & t_{n-2} \\ t_{n-2} & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & t_1 \\ t_1 & \cdots & t_{n-2} & t_{n-1} & t_0 \end{pmatrix}$$

On pose
$$M_n = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & & \ddots & 1 \\ 1 & 0 & \cdots & \cdots & 0 \end{pmatrix}$$
 et $\omega_n = e^{2i\pi/n}$.

- Calculer M_n^2, \dots, M_n^n . Montrer que M_n est inversible et donner un polynôme annulateur de M_n .
- Justifier que M_n est diagonalisable. Préciser ses valeurs propres (exprimées à l'aide de ω_n) et donner une base de vecteurs propres de M_n .
- On pose $\Phi_n = (\omega_n^{(p-1)(q-1)})_{1 \le p,q \le n} \in \mathcal{M}_n(\mathbb{C})$. Justifier que Φ_n est inversible et donner sans calcul la valeur de la matrice $\Phi_n^{-1} M_n \Phi_n$.
- Soit A une matrice circulante. Donner un polynôme $P \in \mathbb{C}[X]$ tel que $A = P(M_n)$.
- Réciproquement, si $P \in \mathbb{C}[X]$, montrer, à l'aide d'une division euclidienne de P par un polynôme bien choisi, que $P(M_n)$ est une matrice circulante.
- Montrer que l'ensemble des matrices circulantes est un sous-espace vectoriel de $\text{Toep}_n(\mathbb{C})$, stable par produit et par transposition.
- **20** Montrer que toute matrice circulante est diagonalisable. Préciser ses valeurs propres et une base de vecteurs propres.

III Étude des matrices cycliques

III.A Endomorphismes et matrices cycliques

Pour toute matrice M de $\mathcal{M}_n(\mathbb{C})$, on note f_M l'endomorphisme de \mathbb{C}^n canoniquement associé à M.

- **21** Montrer que si M est dans $\mathcal{M}_n(\mathbb{C})$, alors les propositions suivantes sont équivalentes :
 - (i) il existe x_0 dans \mathbb{C}^n tel que $(x_0, f_{\mathbf{M}}(x_0), \dots, f_{\mathbf{M}}^{n-1}(x_0))$ est une base de \mathbb{C}^n ;
 - (ii) M est semblable à la matrice $C(a_0, ..., a_{n-1})$ définie par

$$\mathbf{C}(a_0,\dots,a_{n-1}) = \begin{pmatrix} 0 & 0 & \cdots & 0 & a_0 \\ 1 & \ddots & & \vdots & a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & a_{n-1} \end{pmatrix}$$

où (a_0, \dots, a_{n-1}) sont des nombres complexes.

On dit alors que f_M est un endomorphisme cyclique, que M est une matrice cyclique et que x_0 est un vecteur cyclique de f_M .

III.A.1

Soit M dans $\mathcal{M}_n(\mathbb{C})$. On suppose que $f_{\mathbb{M}}$ est diagonalisable. On note $(\lambda_1,\ldots,\lambda_n)$ ses valeurs propres (non nécessairement distinctes) et (e_1,\ldots,e_n) une base de vecteurs associée à ces valeurs propres. Soit $u=\sum_{i=1}^n u_i e_i$ un vecteur de \mathbb{C}^n où (u_1,\ldots,u_n) sont n nombres complexes.

- Donner une condition nécessaire et suffisante portant sur $(u_1, \dots, u_n, \lambda_1, \dots, \lambda_n)$ pour que $(u, f_M(u), \dots, f_M^{n-1}(u))$ soit une base de \mathbb{C}^n .
- En déduire une condition nécessaire et suffisante pour qu'un endomorphisme diagonalisable soit cyclique. Caractériser alors ses vecteurs cycliques.

III.A.2

Soit $(a_0, \dots, a_{n-1}) \in \mathbb{C}^n$. On s'intéresse aux éléments propres de la matrice $C(a_0, \dots, a_{n-1})$.

- Soit λ un nombre complexe. En discutant dans \mathbb{C}^n du système $C(a_0, \dots, a_{n-1})X = \lambda X$, montrer que λ est une valeur propre de $C(a_0, \dots, a_{n-1})$ si et seulement si λ est racine d'un polynôme de $\mathbb{C}[X]$ à préciser.
- Si λ est racine de ce polynôme, déterminer le sous-espace propre de $C(a_0, \dots, a_{n-1})$ associé à la valeur propre λ et préciser sa dimension.
- **26** En déduire une condition nécessaire et suffisante pour qu'une matrice cyclique soit diagonalisable.

III.A.3 Commutant d'un endomorphisme cyclique

Soient M une matrice cyclique et x_0 un vecteur cyclique de f_M . On cherche à montrer que l'ensemble

$$\mathcal{C}(f_{\mathbf{M}}) = \{ g \in \mathcal{L}(\mathbb{C}^n) \mid f_{\mathbf{M}} \circ g = g \circ f_{\mathbf{M}} \}$$

est l'ensemble des polynômes en $f_{\rm M}$.

- **27** Soit $P \in \mathbb{C}[X]$. Montrer que $P(f_M) \in \mathcal{C}(f_M)$.
- Soit $g \in \mathcal{C}(f_M)$. Montrer qu'il existe $(\alpha_0, \dots, \alpha_{n-1}) \in \mathbb{C}^n$ tels que $g = \alpha_0 \mathrm{Id}_{\mathbb{C}^n} + \alpha_1 f_M + \dots + \alpha_{n-1} f_M^{n-1}$. Indication : on pourra utiliser la base $(x_0, f_M(x_0), \dots, f_M^{n-1}(x_0))$ et exprimer $g(x_0)$ dans cette base.
- 29 Conclure.

III.A.4

Soit N =
$$\begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 \\ 1 & 0 & & & \vdots \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}.$$

- 30 Donner les valeurs propres de N et les sous-espaces propres associés. Est-elle diagonalisable?
- 31 La matrice N est-elle cyclique?
- Montrer que l'ensemble des matrices qui commutent avec N est l'ensemble des matrices de Toeplitz triangulaires inférieures.

III.B Quelques résultats de calcul matriciel dans $\mathcal{M}_n(\mathbb{R})$

Dans toute la suite du problème, les matrices considérées sont à coefficients réels.

Si $A = (a_{i,j})_{1 \le i,j \le n}$ est une matrice d'ordre n et k est un entier dans [-n+1,n-1], on dit que le coefficient $a_{i,j}$ de A est un coefficient diagonal d'ordre k si j-i=k.

On note
$$A^{(k)} = (a_{ij}^{(k)})_{1 \le i,j \le n}$$
 la matrice définie par $\forall (i,j) \in [[1,n]]^2, a_{i,j}^{(k)} = \begin{cases} a_{ij} & \text{si } j-i=k \\ 0 & \text{sinon} \end{cases}$

Tous les coefficients de cette matrice sont nuls sauf ses coefficients diagonaux d'ordre k qui sont égaux aux coefficients diagonaux d'ordre k de A.

Ainsi,si
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, A^{(0)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 9 \end{pmatrix}, A^{(1)} = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 6 \\ 0 & 0 & 0 \end{pmatrix}, A^{(-1)} = \begin{pmatrix} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 0 & 8 & 0 \end{pmatrix}.$$

On note D_k la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont nuls sauf les coefficients diagonaux d'ordre k qui valent 1. Pour tout entier relatif k, on définit l'espace vectoriel Δ_k par

$$\Delta_k = \left\{ \mathbf{M} = (m_{i,j})_{1 \le i, j \le n} \in \mathcal{M}_n(\mathbb{R}) \mid \forall (i,j) \in [[1,n]]^2, \ m_{i,j} = 0 \text{ si } j - i \ne k \right\} \qquad \text{si } k \in [[-n+1, n-1]]$$

et $\Delta_k = \{0\}$ sinon.

Ainsi, Δ_0 est l'ensemble des matrices diagonales, Δ_1 l'ensemble des matrices dont tous les coefficients sont nuls sauf éventuellement les coefficients diagonaux d'ordre 1, Δ_{-1} l'ensemble des matrices dont tous les coefficients sont nuls sauf éventuellement les coefficients diagonaux d'ordre -1.

Pour tout k dans \mathbb{N} , on note H_k l'espace vectoriel $\bigoplus_{i=k}^{n-1} \Delta_i$.

- 33 Montrer que si i et j sont dans [-n+1, n-1], si $A \in \Delta_i$ et $B \in \Delta_j$, alors $AB \in \Delta_{i+j}$.
- **34** En déduire que si $A \in H_i$ et $B \in H_j$, alors $AB \in H_{i+j}$
- 35 Soit C une matrice nilpotente. Montrer que $I_n + C$ est inversible et que

$$(I_n + C)^{-1} = I_n - C + C^2 + \dots + (-1)^{n-1}C^{n-1}$$

On suppose que $k \ge 0$ et que C est une matrice de Δ_{k+1} . On pose $P = I_n + C$.

36 Monter que P est inversible et que $P^{-1} \in \bigoplus_{n=0}^{n-1} \Delta_{p(k+1)}$.

On considère l'endomorphisme φ de $\mathcal{M}_n(\mathbb{R})$ défini par φ : $M \in \mathcal{M}_n(\mathbb{R}) \mapsto P^{-1}MP$.

- Soient $i \in [0, k]$ et $M \in \Delta_i$. Montrer qu'il existe M' dans H_{k+1} tel que $\varphi(M) = M + M'$.
- 38 La matrice N étant la matrice définie en III.A.4, montrer qu'il existe N' dans H_{k+1} tel que

$$\varphi(N) = N + NC - CN + N'$$

Soit T une matrice triangulaire supérieure. On pose A = N + T, $B = \varphi(A)$. Montrer que $B \in H_{-1}$ et que

$$\forall i \in [-1, k-1], \ B^{(i)} = A^{(i)}$$

 $B^{(k)} = A^{(k)} + NC - CN$

III.C L'opérateur de Sylvester

On définit les opérateurs

$$\mathcal{S}: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ X & \longmapsto & \mathsf{NX} - \mathsf{XN} \end{array} \right. \quad \text{et} \quad \mathcal{S}^*: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ X & \longmapsto & \mathsf{N}^\mathsf{T} \mathsf{X} - \mathsf{X}^\mathsf{T} \mathsf{N} \end{array} \right.$$

- Montrer que le noyau de S est l'ensemble des matrices de Toeplitz réelles triangulaires inférieures. On admet que le noyau de S^* est l'ensemble des matrices de Toeplitz réelles triangulaires supérieures.
- Montrer que $\mathcal{S}(\Delta_{k+1}) \subset \Delta_k$ et $\mathcal{S}^*(\Delta_k) \subset \Delta_{k+1}$. On munit $\mathcal{M}_n(\mathbb{R})$ de son produit scalaire usuel défini par : $\forall (M_1, M_2) \in \mathcal{M}_n(\mathbb{R})^2$, $\langle M_1, M_2 \rangle = \operatorname{tr}(M_1^\top M_2)$. On note \mathcal{S}_{k+1} la restriction de \mathcal{S} à Δ_{k+1} et \mathcal{S}_k^* la restriction de \mathcal{S}^* à Δ_k .
- Vérifier que pour tous X dans Δ_{k+1} et Y dans Δ_k , $\langle S_{k+1} X, Y \rangle = \langle X, S_k^* Y \rangle$. En déduire que Ker (S_k^*) et Im (S_{k+1}) sont supplémentaires orthogonaux dans Δ_k , c'est-à-dire que

$$\Delta_k = \operatorname{Ker}(\mathcal{S}_k^*) \oplus \operatorname{Im}(\mathcal{S}_{k+1})$$

- Soient T une matrice triangulaire supérieure, A = N + T et $k \ge 0$. Montrer que A est semblable à une matrice L dont tous les coefficients diagonaux d'ordre k sont égaux et vérifiant $\forall i \in [-1, k-1]$, $L^{(i)} = A^{(i)}$.
- 44 En déduire que toute matrice cyclique est semblable à une matrice de Toeplitz.