5-3. 경사 하강법(Gradient Descent): 손실 함수 최소화를 위한 최적화 방법론

경사 하강법은 머신러닝과 딥러닝에서 모델의 성능을 최적화하는 가장 기본적인 알고리즘 중 하나입니다. 주로 손실 함수(Loss Function)의 값을 최소화하기 위해 사용되며, 이는 모델이 주어진 데이터를 잘 설명하도록 가중치(weight)를 조정하는 과정에서 중요한 역할을합니다. 경사 하강법은 함수의 기울기(gradient)를 따라 이동하면서 최솟값에 도달하려고합니다.

1. 경사 하강법의 기본 개념

경사 하강법은 손실 함수 f(x)가 있을 때, 이 함수를 최소화하는 최적의 매개변수 x를 찾는 과정입니다. 여기서 f(x)는 함수의 값이며, 경사는 함수의 특정 지점에서의 기울 기를 의미합니다. 경사 하강법은 기울기를 따라 반대 방향으로 조금씩 이동하면서 손실함수를 최소화합니다.

경사 하강법의 수식

기본적인 경사 하강법의 수식은 다음과 같습니다.

$$xnew = xold - \eta \cdot \nabla f(xold)$$

- $\nabla f(x)$ 는 함수 f(x)의 기울기(도함수 입니다.
- η 는 학습률(learning rate)로, 이동하는 크기를 조절합니다.
- x_{new} 는 기울기를 이용해 업데이트된 새로운 매개변수입니다.

2. 경사 하강법의 딥러닝에서의 활용

딥러닝에서는 모델의 매개변수(가중치와 편향)를 최적화하기 위해 손실 함수(Loss Function)를 최소화하는 것이 목표입니다. 이때 경사하강법을 사용하여 손실 함수의 기울기를 계산하고, 그 기울기를 따라 매개변수를 업데이트합니다.

손실 함수는 예측값과 실제값의 차일르 나타내며, 이 차이를 줄여가는 과정에서 경사 하 강법이 사용됩니다. 경사 하강법의 변형으로는 배치 경사 하강법(Batch Gradient Descent), 확률적 경사 하강법(Stochastic Gradient Descent), 그리고 미니 배치 경사 하강법(Mini-batch Gradient Descent)등이 있습니다.

- 배치 경사 하강법 : 전체 데이터셋을 사용하여 한 번의 업데이트를 수행하는 방법
- 확률적 경사 하강법(SGD) : 매년 하나의 샘플만 사용하여 업데이트를 수행하는 방법
- 미니 배치 경사 하강법 : 일부 샘플(미니 배치)을 사용하여 업데이트를 수행하는 방법

3. 경사 하강법의 작동 방식

경사 하강법은 다음과 같은 과정을 거칩니다.

- 1. 초기화 : 모델의 매개변수(가중치)를 임의의 값으로 초기화합니다.
- 2. 손실 함수 계산 : 현재 매개변수에 따른 손실 함수를 계산합니다.
- 3. 기울기 계산 : 손실 함수의 기울기를 계산합니다. 이때 기울기는 매개변수를 업데이 트할 방향을 나타냅니다.
- 4. 매개변수 업데이트 : 기울기를 따라 매개변수를 업데이트합니다. 매개변수는 기울 기 방향의 반대쪽으로 움직입니다.
- 5. 수렴: 손실 함수의 값이 더 이상 크게 변하지 않을 때까지 2~4 과정을 반복합니다.

4. 경사 하강법의 문제점 및 개선

경사 하강법은 손실 함수가 잘 정의된 경우에 잘 작동하지만, 다음과 같은 문제를 가질수 있습니다.

- 학습률 설정 : 학습률이 너무 크면 발산하고, 너무 작으면 수렴 속도가 느려집니다.
- 지역 최적점 : 손실 함수가 여러 개의 지역 최소값을 가질 경우, 전역 최소값(Global Mimimum)에 도달하지 못하고 지역 최소값(Local Minimum)에 머무를 수 있습니다.
- 지그재그 현상 : 기울기가 너무 급격히 변하는 경우, 매개변수가 지그재그로 이동하며 수렴 속도가 느려질 수 있습니다.

이러한 문제를 해결하기 위해 모멘텀(Momentum), Adam 최적화(Adam Optimizer) 등의 개선된 최적화 방법이 존재합니다.

• 그래프 : 간단한 2차 함수 $f(x)=x^2$ 을 최소화하는 예제 구현 , 함수의 소값은 x=0에서 발생합니다.

- 목적함수 : $f(x) = x^2$ 는 매우 간단한 함수로, 이를 최소화하는 것이 목표입니다.
- 도함수(기울기): 이 함수의 기울기는 f'(x)=2x입니다.

```
import numpy as np
import matplotlib.pyplot as plt

# 목적 함수: f(x) = x^2
def f(x):
  return x**2

# 목적 함수의 도함수 (기울기)
```

```
def f_prime(x):
    return 2*x
# 경사 하강법 구현
def gradient_descent(learning_rate=0.1, epochs=20, initial)
   x = initial x
   history = [x] # 각 epoch의 x값 기록
   for i in range(epochs):
        grad = f_prime(x) # 기울기 계산
       x = x - learning_rate * grad # x 업데이트
        history.append(x)
        print(f"Epoch {i+1}: x = \{x\}, f(x) = \{f(x)\}")
    return history
# 경사 하강법 실행
history = gradient_descent()
# 결과 시각화
x_vals = np.linspace(-10, 10, 100)
y_vals = f(x_vals)
plt.figure(figsize=(8, 6))
plt.plot(x_vals, y_vals, label='f(x) = x^2', color='blue')
plt.scatter(history, [f(x) for x in history], color='red',
plt.plot(history, [f(x) for x in history], color='red', li
plt.title("Gradient Descent on f(x) = x^2")
plt.xlabel('x')
plt.ylabel('f(x)')
plt.legend()
plt.grid(True)
plt.show()
```

• 이 코드를 실행하면 x값이 점점 줄어들면서 최소값인 x=0으로 수렴하는 과정을 확인할 수 있습니다. 또한 그래프에서는 경사 하강법이 $f(x)=x^2$ 함수에서 어떻게 이동하는지를 시각화할 수 있습니다.