

THE COPPERBELT UNIVERSITY SCHOOL OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF MATHEMATICS 2016 ACADEMIC YEAR

MA110 - Mathematical methods

INSTRUCTIONS

TIME ALLOWED: 3 hours

- (1) You must write your NAME, POROGRAM, COMPUTER NUMBER AND GROUP on the cover of your answer sheet.
- (2) There are five questions in this paper. Attempt all Questions.
- (3) Show all neccessary working and number the pages in your answer sheet
- (4) Calculators are NOT allowed in this paper
- (a) (i) Express 2.072 as a fraction $\frac{a}{b}$ in its simplest form where a and b are integers and $b \neq 0$.
- (ii) Express $\frac{1-\sqrt{3}}{2\sqrt{3}+1}$ in the form $a+b\sqrt{3}$ where a and b are rational numbers.
- (b) (i) Sketch the graph of $f(x) = \begin{cases} 2x + 3 & \text{if } x < 0 \\ x^2 & \text{if } 0 \le x < 2. \end{cases}$
 - \star ι (ii)Let $f(x) = \frac{x}{x+2}$ and g(x) = 2x 1. Verify that $(f \otimes g)^{-1} = g^{-1} \circ f^{-1}$.
 - (c) Given that $\sqrt{7}$ is an irrational number, prove that $2 + \sqrt{7}$ is also an irrational number.
- (d) State and prove one of de-Morgan's laws.
 - 2. (a) Given that A, \mathbb{R} and C are sets, simplify the following if possible $[(A \cap B)' \cap (A' \cup B)]'$
 - (b) Express $f(x) = 2x^2 3x 4$ in the form $f(x) = a(x+p)^2 + q$ where a p and q are constants indicating the axis of symmetry and the coordinates of its maximum or the minimum point.
 - (c) Define an operation *on the set of real numbers by $a*b = a + b 2\sqrt{ab}$
 - i). Is * a binary operation on the set of real numbers? Give reason for your answer.
 - ii). Evaluate (1 * -1) * 2 and 1 * (-1 * 2) and state whether * is associative.
 - (i) If $\sqrt{z} = \frac{3}{1+2i} + 4 3i$, find z in the form x + iy where x, y are real numbers.
- Determine whether the function $f(x) = \frac{x}{\sqrt{x^2 + 4}}$ is one-to-one. If it is, find the inverse

graph both the function and its inverse

∨3.(a) Using synthetic division find the quotient and the remainder when

 $f(x) = x^3 + 2x^2 + x - 2$ is divided by x - (1 + i).

 \checkmark (b) Let **R**, the set of real numbers be the universal set. If $A = [-7, 8) \cup [11, \infty)$ and B = [0, 20], find the following sets and display them on the number line:

- (ii) $A \cap B$.
- \checkmark (c) Let α and β be the roots of the quadratic equation $4x^2 + 3x 2 = 0$

 \sim (i) Find the sum $\frac{1}{\alpha^2} + \frac{1}{\beta^2} \sim$ (ii) Find a quadratic equation whose roots are α^2 and β^2

- ✓ (d)Sketch the graph of the function k(x) = |2x 1| |x + 2|
- 4 (a)Solve each of the following inequality/equation.

(i) $|x-1| > 1 - x^2$

- (ii) $2x^{2/5} 11x^{1/5} + 12 = 0$
- \checkmark (b) Given the rational function $f(x) = \frac{x^2 + 2}{x 1}$. Sketch its graph indicating its domain and range, all the asymptotes and intercepts.
 - , (c)Determine the domain of the following functions:

i) $f(x) = x^3 + \sqrt{x^2 - 2x - 24}$ (ii) $f(x) = \sqrt{\frac{x+1}{x-1}}$

- (d) Let z = x + iy be a non zero complex number. Given that $z + \frac{1}{z} = k$, where k is a real number, prove that |z| = 1
- 5. (a) Solve the inequality $\left|\frac{x+1}{x^2+2x+1}\right| \le \frac{1}{2}$
- (1) Sketch the graph of the function $f(x) = 1 + \int_{\frac{\pi}{2}}^{\frac{\pi}{2}}$ and find its domain and range.
 - (c)(i)Solve the polynomial equation below $x^3 10x 12 = 0.$
 - v(ii) Rationalize the denominator $\frac{5\sqrt[3]{z^2}}{4\sqrt[4]{r}}$ and express the final answer in simplest radical
 - (d) (i) If the equation $x^2 (p-2)x + 1 = p(x-2)$ is satisfied by only one value of x, What are the possible values of p.
- (ii) Simplify $\frac{2^n-6^n}{1-3^n}$