

C PROGRAMMING INTRODUCTION

TUẦN 10: MẢNG

Mång

- Một khối gồm nhiều biến có cùng kiểu
- Mảng có thể được khai báo bằng kiểu bất kỳ
- Ví dụ: int Arr[10] là mảng gồm 10 phần tử số nguyên
- Úng dụng:
 - -Danh sách điểm của sinh viên
 - -Chuỗi các số nhập vào bởi người dùng
 - -Véc-to
 - -Ma trận

Mảng trong bộ nhớ

- Một chuỗi các biến có kiểu dữ liệu xác định
- Biến mảng được lưu trữ ở địa chỉ đầu tiên trong bộ nhớ
- VD:

• Phần tử thứ n của mảng arr được thể hiện bởi arr[n-1] (0-based)

Khởi tạo

- Mảng có thể được khởi tạo khi khai báo
- Số lượng phần tử được khởi tạo không vượt quá kích thước mảng
- Các phần tử còn lại được khởi tạo bằng 0

Khởi tạo (tiếp)

- Kích thước mảng có thể được xác định dựa trên khởi tạo
- Ví dụ:

```
int array1[8] = \{2, 4, 6, 8, 10, 12, 14, 16\};
int array2[] = \{2, 4, 6, 8, 10, 12, 14, 16\};
```


Ví dụ 1: Khởi tạo với vòng for

- Tạo một mảng số chẵn từ 2 đến 20.
- In ra nội dung của mảng

```
#include <stdio.h>
#define arraySize 10
int main()
    int s[arraySize]; // array S has 10 elements
    int i;
    for ( i = 0; i < arraySize; i++)
        s[i] = 2 + 2 * i;
    printf("Element \t Value\n");
    for ( i = 0; i < arraySize; i++ )
        printf("%d\t%d\n", i, s[i]);
    return 0;
```


Vào/ra DL với mảng

- Sử dụng vòng lặp for
- Tại mỗi bước lặp:
 - sử dụng hàm nhập
 DL như scanf
 - sử dụng hàm xuất dữ liệu như printf

month	rainfall (in mm)
1	40
2	45
3	95
4	130
5	220
6	210
7	185
8	135
9	80
10	40
11	45
12	30

table of rainfall

Ví dụ 2.

```
#include <stdio.h>
#define MONTHS 12
/* store and display rainfall in all months of the year */
int main()
   int rainfall[MONTHS];
   int i;
   for (i=0; i < MONTHS; i++)
     printf("Enter the rainfall(mm):");
     scanf("%d", &rainfall[i]);
  /* Print from January to December */
  for ( i=0; i < MONTHS; i++ ) {
     printf( "%5d ", rainfall[i]);
  printf("\n");
  return 0;
```


Ví dụ 3: Chương trình dãy số

 Nhập một dãy số nguyên (nhiều nhất 10 phần tử) và in dãy số đó theo thứ tự đảo ngược

```
#include <stdio.h>
int main(void)
   int i, n, A[10];
   printf("Nhap so phan tu trong day (n<=10):");</pre>
   scanf("%d",&n);
   printf("Nhap cac phan tu trong day:\n");
   for(i=0; i<n; i++) {</pre>
      printf("Phan tu thu %d:", i+1);
      scanf("%d",&A[i]);
   printf("Day so sau khi dao lai:\n");
   for (i=n-1; i>=0; i--)
      printf("%5d",A[i]);
   return 0;
```


Bài tập 10.1

Viết chương trình nhập mảng chứa 20 số nguyên

- a) Tính tổng các số lẻ trong mảng
- b) Tìm giá trị nhỏ nhất của các số vừa nhập

Lời giải

```
#include <stdio.h>
#define MAX 20
int main()
     int a[MAX];
     int i,s,min;
     for ( i = 0; i < MAX; i++ ) {
  printf("a[%d]=",i);scanf("%d", &a[i]);
   s=0; min=a[0];
   for ( i = 0; i < MAX; i++ ) {
  if (a[i] < min) min = a[i];
  if (a[i] %2 == 1) s= s+ a[i];
     printf("\nMinimum value in the array: %d", min);
   printf("Sum of all odd numbers: %d",s);
   return 0;
```


Bài tập 10.2

- Cho một mảng gồm các phần tử được nhập vào bởi người dùng.
- Tính tổng của các cực trị địa phương trong mảng (cực trị địa phương là phần tử có giá trị lớn hơn phần tử liền trước và liền sau nó)

Gọi ý

```
.. // Array data input
sum=0;
for (i=1; i<=size-2; i++)
   if (a[i]>=a[i-1] && a[i]>=a[i+1])
      sum +=a[i];
```

Mảng là tham số của hàm

- Hàm nhận tham số là mảng
- Thường cần thêm tham số là kích thước mảng (tại sao?)

Mảng là tham số của hàm (tiếp)

- Ví dụ:
 - int calc_sum(int arr[], int size);
- Trong hàm arr được truy cập như bình thường
- Thay đổi trong hàm tạo ra thay đổi trong mảng (!). Hãy đề xuất ví dụ để kiểm tra (ví dụ 2)

VD

```
int calc sum(const int arr[], int size)
 int i = 0;
 int sum = 0;
 for (i = 0; i < size; ++i)</pre>
    sum += arr[i];
 return sum;
```


Bài tập 10.3

- Cài đặt một hàm nhận tham số là hai mảng, trả về 1 nếu hai mảng giống nhau, 0 nếu ngược lại
- Viết chương trình sử dụng hàm này

Lời giải

```
int compare arrays(const int arr1[], const
 int arr2[], int size)
   int i = 0;
   for (i = 0; i < size; ++i)</pre>
      if (arr1[i] != arr2[i])
          return 0;
    /* if we got here, both arrays are
 identical */
    return 1;
```


Bài tập 10.4

- Viết hai hàm:
 - sắp xếp các số nguyên trong mảng theo thứ tự giảm dần
 - sắp xếp các số lẻ trong mảng theo thứ tự giảm dần
- Viết chương trình yêu cầu người dùng nhập vào mảng gồm 10 phần tử và thực hiện hai hàm trên

Lời giải

```
void DesSort (int a[], int n)
  int tmp;
  for (i = 0; i < n-1; i++)
    for (j = i+1; j < n; j++)
      if (a[i] < a[j]) {
         tmp=a[i];
         a[i] = a[j];
         a[j] = tmp;
```



```
void OddSort (int a[], int n)
  int tmp;
  for (i = 0; i < n-1; i++)
    for (j = i+1; j < n; j++)
      if (a[i] < a[j] \&\& (a[i] %2) \&\& (a[j] %2))
          tmp=a[i];
          a[i] = a[j];
          a[j] = tmp;
```


Bài tập 10.5

- Cho một mảng số nguyên:
 - a) Đếm số phần tử có giá trị bằng 0
 - b) Tìm độ dài của chuỗi dài nhất gồm các phần tử có giá trị bằng 0
 - c) Đếm số lần xuất hiện của các phần tử

Lời giải

```
count=0;
for (i=1; i<n; i++)
   if (a[i] ==0)
      count++;</pre>
```



```
int max=0, temp=0;
for (i=0; i < n; i++)
   if(a[i] == 0)
      temp=temp+1;
   if(a[i]!=0){
      if(temp>max) {
           max=temp;
           temp=0;
if (temp>max) max=temp;
printf ("Do dai day con bang 0 lon nhat
la:", max);
```



```
#include<stdio.h>
void swap(int a[], int i, int j)
   int temp;
   temp = a[i];
   a[i] = a[j];
   a[j] = temp;
```



```
void main()
  int n,a[100],i,j,dem;
  printf("Enter the number of elements in
 array:");
  scanf("%d",&n);
  for(i=0;i<n;i++) {
     printf("a[%d] = ",i);
     scanf("%d", &a[i]);
  for (i=0; i< n-1; i++)
     for (j=i+1; j < n; j++)
        if (a[i]>a[j])
            swap(a, i, j);
  // Slide tiếp theo
```



```
void main()
   // slide trước
   i=0; j=0; dem=0;
   while (i < n) {
      dem=0;
      j=i;
      while (a[i] == a[j]) {
          dem++; j++;
      printf("\n%d occurs for %d times in
 array",a[i],dem);
      i=j;
```


Mảng hai chiều

• Mảng của mảng:

- Mảng gồm 2 mảng số nguyên, mỗi mảng có 3 phần tử
- Truy cập: phần tử j của mảng i

Ví dụ 3

```
#include <stdio.h>
void main()
   /* bảng cửu chương cho cả số 0 */
   int cuuchuong[10][10];
   int i, j;
   /* tạo giá trị cho bảng cửu chương */
   for (i=0; i<=9; i++)
      for (j=0; j \le 9; j++)
         cuuchuong[i][j] = i*j;
   printf("Nhap hai so cua bang cuu chuong\n");
   printf("So 1: "); scanf("%d", &i);
   printf("So 2: "); scanf("%d", &j);
   printf("Giá tri trong bang la %d", cuuchuong[i][j]);
```


Ví dụ 4 : Cộng ma trận

#include <stdio.h>

```
#define SIZE 3
```

```
int main() 

{
    int A[][SIZE] = {{1,2,3}, {4,5,6}, {7,8,9}};
    int B[][SIZE] = {{1,1,1}, {2,2,2}, {3,3,3}};
    int C[SIZE][SIZE];
    int i = 0, j = 0;
    for (i = 0; i < SIZE; ++i)
        for (j = 0; j < SIZE; ++j)
        C[i][j] = A[i][j] + B[i][j];
```

return 0;

Bài tập 10.6

- Viết chương trình khai báo 3 ma trận A, B, C kích thước 3x3 chứa số nguyên; khởi tạo A và B
- Tính kết quả của phép nhân ma trận và lưu vào C: C
 = A * B
- In kết quả ra màn hình

Lời giải

```
#include <stdio.h>
void main() {
 float a[3][3], b[3][3], c[3][3];
 int m, n, p;
 int i,j,k;
 float temp;
 for (i=0; i<3; i++) {
   for (j=0; j<3; j++) {
    printf("a[%d][%d]=", i+1, j+1);
    scanf("%f", &temp);
    printf("b[%d][%d]=", i+1, j+1);
    scanf("%f", &temp);
    b[i][j] = temp;
```



```
for (i=0; i<3; i++) {
  for (j=0; j<3; j++) {
  C[i][j]=0;
  for (k=0; k< n; k++)
   c[i][j] = c[i][j] + a[i][k]*b[k][j];
printf("\n Matrix A:");
for (i=0; i<3; i++) {
 printf("\n");
  for (j=0; j<3; j++) {
  printf("%2.2f\t", a[i][j]);
```



```
printf("\n Matrix b:");
for (i=0; i<3; i++) {
 printf("\n");
  for (j=0; j<3; j++) {
  printf("%2.2f\t", b[i][j]);
printf("\n Matrix c:");
for (i=0; i<3; i++) {
 printf("\n");
  for (j=0; j<3; j++) {
  printf("%2.2f\t", c[i][j]);
```


Bài tập 10.7

 Nhập mảng n phần tử từ người dùng. Kiểm tra tính đối xứng của mảng

Lời giải

```
#include <stdio.h>
int checkSymmetric(int a[], int n);
void main()
  int a[100],n,i;
  printf(" Number of elements: ");
  scanf("%d",&n);
  for(i=0;i<n;i++)
     printf("a[%d]= ",i);
     scanf("%d",&a[i]);
  printf("\n Array's content:\n");
  for(i=0;i<n;i++)
     printf("%d ",a[i]);
  if(checkSymmetric(a,n))
     printf("\n array is symmetric");
  else
    printf("\n array is not symmetric ");
```

```
int checkSymmetric (int a[],int n)
{
    int i=0,j=n-1;
    while(i<=j)
    {
        if(a[i]!=a[j])
            return 0;
        i++;
        j--;
     }
    return 1;
}</pre>
```


• Viết hàm đảo ngược mảng. Sử dụng hàm này trong chương trình với mảng số thực được người dùng nhập vào.

Lời giải

```
void reverse(float a[], int size)
 int i;
 float tmp;
 for (i=0; i< n/2; i++)
    tmp=a[i];
    a[i]=a[n-i-1];
    a[n-i-1]=tmp;
```


- Viết chương trình tính tổng của dãy số theo phương pháp nhập dãy số vào mảng sau đó tính tổng của các số lưu trên mảng.
- Tính min, max của các số trong mảng.

Write a program in C to store elements in an array and print it.

 Write a program in C to read n number of values in an array and display it in reverse order.

Read n number of values in an array and display it in reverse order

• Write a program in C to find the sum of all elements of an array.

Sum of all elements of array

SUM =
$$a[0] + a[1] + a[2] + a[3] + a[4]$$

= $5 + 2 + 7 + 9 + 6$

• Write a program in C to copy the elements of one array into another array.

Copy the elements one array into another array

• Write a program in C to count a total number of duplicate elements in an array.

Count a total number of duplicate elements in an array

• Write a program in C to print all unique elements in an array.

Print all unique elements in an array

 Write a program in C to merge two arrays of same size sorted in decending order.

Merge two arrays of same size sorted in decending order

• Write a program in C to count the frequency of each element of an array.

Count frequency of each element of an array

 Write a program in C to find the maximum and minimum element in an array.

Find maximum and minimum element in an array

 Write a program in C to separate odd and even integers in separate arrays.

Write a
 program in C
 to sort
 elements of
 array in
 ascending
 order.

Merge two arrays of same size sorted in ascending order

Sort elements of the array in descending order

 Write a program in C to sort elements of an array in descending order.

• Write a program in C to insert New value in the array (sorted list).

• Write a program in C to insert New value in the array (unsorted list).

• Write a program in C to delete an element at desired position from an array.

Delete an element at desired position from an array

 Write a program in C to find the second largest element in an array.

Find the second largest element in an array

Find the second smallest element in an array

• Write a program in C to find the second smallest element in an array.

• Write a program in C for a 2D array of size 3x3 and print the matrix.

• Write a program in C for addition of two Matrices of same size.

Addition of two Matrices

• Write a program in C for subtraction of two Matrices.

Subtraction of two Matrices

• Write a program in C to find transpose of a given matrix.

• Write a program in C to find sum of right diagonals of a matrix.

• Write a program in C to find sum of left diagonals of a matrix.

Diagonal elements is = 5

• Write a program in C to find the sum of rows an

columns of a Matrix.

• Write a program in C to print or display the lower triangular of a given matrix.

• Write a program in C to print or display upper triangular matrix.

• Write a program in C to calculate determinant of a 3 x 3 matrix.

• Write a program in C to accept a matrix and determine whether it is a sparse matrix.

There are 3 number of zeros in the matrix

The given matrix is sparse matrix

• Write a program in C to accept two matrices and check whether they are equal.

• Write a program in C to check whether a given matrix is an identity matrix.

• Write a program in C to find a pair with given sum in the array.

Index 0 and 5 make the given sum

- Write a program in C to find the majority element of an array.
- A majority element in an array A[] of size n is an element that appears more than n/2 times (and hence there is at most one such element).

- Write a program in C
 to find the number
 occurring odd
 number of times in an
 array.
- All numbers occur even number of times except one number which occurs odd number of times.

- Write a program in C
 to find the largest sum
 of contiguous
 subarray of an array.
- The given array is:
- 8 3 8 -5 4 3 -4 3 5
- The largest sum of contiguous subarray is: 21

- Write a program in C to find the missing number from a given array. There are no duplicates in list.
- The given array is: 1 3 4 2 5 6 9 8
- The missing number is: 7

balls 7

- Write a program in C to find the pivot element of a sorted and rotated array using binary search.
 Pivot element is the only element in input array which is smaller than it's previous element.
 A pivot element divided a sorted rotated array into two monotonically increasing array.
- The given array is: 14 23 7 9 3 6 18 22 16 36
- The Pivot Element in the array is: 3

• Write a program in C to merge one sorted array into another sorted array. N.B.: The size of first array is (m+n) but only first m locations are populated remaining are empty. The second array is of size equal to n.

• Write a program in C to rotate an array by N positions. N.B.: The size of first array is (m+n) but only first m locations are populated remaining are empty. The second array is of size equal to n.

• Write a program in C to find the ceiling in a sorted array.

N.B.: Given a sorted array in ascending order and a value x, the ceiling of x is the smallest element in array greater than or equal to x, and the floor is the greatest element smaller than or equal to x.

• Write a program in C for multiplication of two square Matrices.

$$\begin{bmatrix} a_{11}, a_{12} \\ a_{21}, a_{22} \end{bmatrix} X \begin{bmatrix} b_{11}, b_{12} \\ b_{21}, b_{22} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} x b_{11} + a_{12} x b_{21}, a_{11} x b_{12} + a_{12} x b_{22} \\ a_{21} x b_{11} + a_{22} x b_{21}, a_{21} x b_{12} + a_{22} x b_{22} \end{bmatrix}$$

$$\begin{bmatrix} 1 \times 5 + 2 \times 7 & 1 \times 6 + 2 \times 8 \\ 3 \times 5 + 4 \times 7 & 3 \times 6 + 4 \times 8 \end{bmatrix} = \begin{bmatrix} 5 + 14 & 6 + 16 \\ 15 + 28 & 18 + 32 \end{bmatrix}$$

• Write a program in C to find the Floor and Ceil of the number 0 to 10 from a sorted array.

```
Number: 0 ceiling is: 1 floor is: -1
Number: 1 ceiling is: 1 floor is: -1
Number: 9 ceiling is: 9 floor is: 9
Number: 10 ceiling is: -1 floor is: 9
```


• Write a program in C to find the smallest missing element from a sorted array.

• Write a program in C to to print next greater elements in a given unsorted array. Elements for which no greater element exist, consider next greater element as -1.

• Write a program in C to find the two repeating elements in a given array.

• Write a program in C to find two elements whose sum is closest to zero.

The pair of elements whose sum is minimum are

• Write a program in C to find the smallest positive number missing from an unsorted array.

- Write a program in C to find a subarray with given sum from the given array.
- The given array is: 3 4 -7 1 3 3 1 -4
- [0..1] -- { 3 4 }
- [0..5] -- { 3 4 -7 1 3 3 }
- [3..5] -- { 1 3 3 }
- [4..6] -- { 3 3 1 }


```
{
    printf("[%d..%d] -- { ", i, j);
    for (int k = i; k <= j; k++)
    {
        printf("%d ", arr1[k]);
    }
    printf("}\n");
    }
    void PickSubarrayFromArray(int arr1[], int n, int sum)
    {
        for (int i = 0; i < n; i++)
        {
        int sum_upto = 0;
        for (int j = i; j < n; j++)
        {
        sum_upto += arr1[j];
    }
```

```
if (sum_upto == sum)
{
    print(arr1, i, j);
}
}
int main()
{
    int arr1[] = { 3, 4,
    -7, 1, 3, 3, 1, -4 };
    int sum = 7;
    int ctr = sizeof(arr1)
    /sizeof(arr1[0]);
    int i;
//------- print original
    array ------
    printf("The given array is: ");
    for(i = 0; i < ctr; i++)
```


• Write a program in C to find if a given integer x appears more than n/2 times in a sorted array of n integers.

3 appears more than 4 times

• Write a program in C to find majority element of an array.

• Write a program in C to print a matrix in spiral form.

 Write a program in C to find the maximum circular subarray sum of a given array.

Maximum circular sum of the array is:

- Write a program in C to count the number of triangles can be fromed from a given array.
- The given array is: 6 18 9 7 10
- Number of possible triangles can be formed from the array is: 5

Hướng dẫn bài tập 10.61

 Write a program in C to find the number of times (frequency) occurs a given number in an array.

• Write a program in C to sort an array of 0s, 1s and 2s.

• Write a program in C to check whether an array is subset of another array.

The second array is the subset of first array.

- Write a program in C to return the minimum number of jumps to reach the end of the array.
- The given array is: 1 3 5 8 9 2 6 7 6 8 9 1 1 1
- The minimum of number of jumps is required to reach the end is: 3

Hướng dẫn Bài tập 10.65

• Write a program in C to find minimum element in a sorted and rotated array.

• Write a program in C to find minimum element in a sorted and rotated array.

• Write a program in C to move all zeroes to the end of a given array.

- Write a program in C to return the counting sort on an array.
- The given array is: 4 14 8 0 2 5 2 1 0 17 9 0 5
- After sorting the elements in the array are: 0 0 0 1 2 2 4 5 5 8 9 14 17

Hướng dẫn Bài tập 10.69

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

