Fast algorithms for HodgeRank with application to COVID-19 symptom and NBA team scores

Contributors: Shelby Ferrier, Guangpeng Ren Mentor: Junyuan Lin

> Mathematics Department Seaver College of Science and Engineering Loyola Marymount University (LMU)

> > April 19, 2022

Background and Motivation HodgeRank Results Grouping Method Conclusion References 0000 000000000 0000 000000000000 00 0

Overview

- Background and Motivation
 - What are universal ranking problems?
 - Why are they difficult?
- 4 HodgeRank
 - Building the Model
- Results
 - COVID-19 symptom scores
- Grouping Method
 - Algorithm
 - Results on NBA data
- Conclusion
 - Further Work

Universal ranking problems

Problem: Find a universal ranking from a group of individual rankings

Example: We'd like to rank the symptoms of COVID-19 based on severity

Example: COVID-19

"Rate your symptoms on a scale from 1-10"

Biased: different people have different pain tolerances Incomplete: missing or corrupted data

Example: COVID-19

	Fever	Sore Throat	Cough	Nausea
Patient 1	3	2	2	5
Patient 2	7	8	9	Х
Patient 3	2	2	1	3

Example: COVID-19

	Fever	Sore Throat	Cough	Nausea
Patient 1	3	2	2	5
Patient 2	7	8	9	Х
Patient 3	2	2	1	3

Try taking the average of each column?

→ Fever: 4, Sore Throat: 4, Cough: 4, Nausea: 4

Need method that takes into account:

- Bias
- Incompleteness

Individuals Graphs

	Fever (A)	Sore Throat (B)	Cough (C)	Nausea (D)
Patient 1	3	2	2	5
Patient 2	7	8	9	X
Patient 3	2	2	1	3

Edge Flow

	Fever (A)	Sore Throat (B)	Cough (C)	Nausea (D)
Patient 1	3	2	2	5
Patient 2	7	8	9	Х
Patient 3	2	2	1	3

For $R: P \times S \to \mathbb{R}^+$, with R(p, i) defined as patient p's rating of symptom i, we define the **edge flows** as follows:

$$e_{i,j} = R(p,j) - R(p,i)$$

Define total edge flow $f: E \to \mathbb{R}$ as $f(i,j) = \frac{1}{|P_{ii}|} \sum_{p \in P_{ii}} e_{i,j}$

Solving for \vec{r}

	Fever (A)	Sore Throat (B)	Cough (C)	Nausea (D)
Patient 1	3	2	2	5
Patient 2	7	8	9	X
Patient 3	2	2	1	3
Univ. Rank (\vec{r})	r_A	r _B	r _C	r_D

Define w_{ij} as the number of patients who have data for both symptoms i and j.

Goal: Find
$$\vec{r}$$
 that minimizes $\sum_{(i,j)\in E} w_{ij} (f(i,j) - (r_j - r_i))^2$

ightarrow Minimize the difference between every patient's ranking between two symptoms and the universal ranking between two symptoms

Solving for \vec{r}

Background and Motivation

	Fever (A)	Sore Throat (B)	Cough (C)	Nausea (D)
Patient 1	3	2	2	5
Patient 2	7	8	9	X
Patient 3	2	2	1	3
Univ. Rank (\vec{r})	r_A	r _B	r _C	r_D

Goal: Find \vec{r} that minimizes $\sum_{(i,j)\in E} w_{ij} (f(i,j) - (r_j - r_i))^2$

$$\vec{f} = \begin{matrix} A \to B \\ A \to C \\ A \to D \\ B \to C \\ B \to D \\ C \to D \end{matrix} \begin{pmatrix} 0 \\ 1.5 \\ 0 \\ 2 \\ 2.5 \end{pmatrix}$$

$$\vec{f} = \begin{matrix} A \to B \\ A \to C \\ A \to D \\ B \to C \\ B \to D \\ C \to D \end{matrix} \begin{pmatrix} 0 \\ 1.5 \\ 0 \\ 2 \\ 2.5 \end{pmatrix} \qquad B^T \vec{r} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{pmatrix} r_A \\ r_B \\ r_C \\ r_D \end{pmatrix}$$

Goal: Find \vec{r} that minimizes $\sum_{(i,j)\in E} w_{ij}(f(i,j)-(r_j-r_i))^2$

$$\vec{f} = \begin{matrix} A \to B \\ A \to C \\ A \to D \\ B \to C \\ B \to D \\ C \to D \end{matrix} \begin{pmatrix} 0 \\ 1.5 \\ 0 \\ 2 \\ 2.5 \end{pmatrix} \qquad B^T \vec{r} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{pmatrix} r_A \\ r_B \\ r_C \\ r_D \end{pmatrix}$$

$$\implies \min_{\vec{r} \in \mathbb{R}^{|V|}} (||\vec{f} - B^T \vec{r}||_W^2)$$

W is defined as the diagonal matrix whose values are the weights (w_{ii}) of each edge.

Solving for \vec{r}

Using calculus, we can show that

$$\min_{\vec{r} \in \mathbb{R}^{|V|}} \sum_{(i,j) \in E} w_{ij} (f(i,j) - (r_j - r_i))^2 = \min_{\vec{r} \in \mathbb{R}^{|V|}} (||\vec{f} - B^T \vec{r}||_W^2)$$

reduces to:

$$BWB^{\mathsf{T}}\vec{r} = BW\vec{f}$$

 \vec{r} is the only unknown!

$$\vec{r} = (BWB^T)^{\dagger}BW\vec{f}$$

† denotes a pseudo-inverse.

Example Results

	Fever (A)	Sore Throat (B)	Cough (C)	Nausea (D)
Patient 1	3	2	2	5
Patient 2	7	8	9	Х
Patient 3	2	2	1	3
Univ. Rank (\vec{r})	-0.375	-0.5	-0.625	1.5

Note that $\sum_{(i,j)\in E} w_{ij}(f(i,j)-(r_j-r_i))^2$ provides us with a metric for the correctness of the ranking! $\text{Error}(\vec{r})\approx 0.84$

University of Oxford COVID-19 data set

Features:

Background and Motivation

- 14 symptoms
- 2 tiers of severity (non-severe, severe)
- 5700 respondents (1376 severe, 4324 non-severe)
- non-individualized
- Collected March 2020

```
Cough
                   Fatique
                             Dyspnea
                                       Sputum
                                                shortness
                                                             Myalqia
                                                                       Chill
   Fever
    1216
             978
                       830
                                  608
                                           517
                                                                  358
                                                                          358
                                                       491
1
    3520
            2841
                      1911
                                  246
                                         1211
                                                       553
                                                                 566
                                                                          471
```

	Dizziness	Headache	sore	Nausea	Diarhea	Congestion
0	222	155	107	81	78	39
1	523	584	419	246	251	221

Preparing data

Goal: Create an array who's columns represent symptoms and who's rows represent each of the 5700 respondents Process:

- generated individual patient data based on Oxford data by distributing n non-zero values across each column (symptom)
- accounted for severity; (non-severe = 3, severe = 8)
- distributed non-zero values around a normal distribution; (sd for non-severe = 1, sd for severe = 2)
- bounded non-zero values to be between 1 and 10

Analysis with Hodgerank

Results:

Rank	Symptom	\vec{r}	Rank	Symptom	\vec{r}
1.	Fever	1.53	8.	Myalgia	0.125
2.	Cough	1.28	9.	Dizziness	0.0313
3.	Fatigue	0.875	10.	Headache	0
4.	Sputum Production	0.5	11.	Nausea	-0.031
5.	Dyspnea	0.25	12.	Sore Throat	-0.094
6.	Chills	0.219	13.	Diarrhea	-0.156
7.	Shortness of Breath	0.156	14.	Congestion	-0.156

 $\text{Error}(\vec{r}) \approx 3.5 * 10^{-24}$

Analysis Using Naive algorithm

Naive ranking: Average rating each person gave to a symptom

Rank	Symptom	Score	Rank	Symptom	Score
1.	Fever	3.52	8.	Chills	0.744
2.	Cough	2.84	9.	Dizziness	0.577
3.	Fatigue	2.18	10.	Headache	0.522
4.	Sputum Production	1.36	11.	Sore Throat	0.372
5.	Dyspnea	0.967	12.	Nausea	0.250
6.	Shortness of Breath	0.959	13.	Diarrhea	0.241
7.	Myalgia	0.780	14.	Congestion	0.170

Statistical Comparison

Symptom	HodgeRank rating (\vec{r})	Naive rating
Fever	1.53	3.52
Cough	1.28	2.84
Fatigue	0.875	2.18
Sputum Production	0.5	1.36
Dyspnea	0.25	0.967
Chills	0.219	0.744
Shortness of Breath	0.156	0.959
Myalgia	0.125	0.780
Dizziness	0.0313	0.577
Headache	0	0.522
Nausea	-0.031	0.250
Sore Throat	-0.094	0.372
Diarrhea	-0.156	0.241
Congestion	-0.156	0.170

Runtime Limitations of HR

Background and Motivation

Time complexity of pseudo inverse: $O(n^3)$

	n	10 ⁶	10 ⁷	10 ⁸	10 ⁹
Ì	t	5s	1.39 hrs	58 d	158 yrs

Methods to reduce complexity:

- Algebraic Multigrid (AMG) Method: successive subspace correction method which recursively partitions the solution space to approximate the best solution
- Dimensional reduction: reduce the size of the matrix to be inverted

Key: Run the algorithm on whole group but in different groups

- Obtain naive ranking of elements
- 2 Split elements into k subgroups by naive rank
- Run the algorithm on each of the subgroups
- Stack subgroups rankings on top of each other

Steps:

- Obtain naive ranking of elements
- 2 Split elements into k subgroups by naive rank
- 3 Run the algorithm on each of the subgroups
- Stack subgroups rankings on top of each other

Naive ranking (average difference with other nodes):

$$r_0(i) = \sum_{j \in V} \frac{1}{|P_{ii}|} \sum_{p \in P_{ii}} [R(i) - R(j)]$$

$$\implies V = [v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9]$$

Background and Motivation

- Obtain naive ranking of elements
- 2 Split elements into k subgroups by naive rank
- 3 Run the algorithm on each of the subgroups
- Stack subgroups rankings on top of each other

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9\} \Longrightarrow V_1 = \{v_1, v_2, v_3\}$$

$$V_2 = \{v_4, v_5, v_6\}$$

$$V_3 = \{v_7, v_8, v_9\}$$

- Obtain naive ranking of elements
- 2 Split elements into k subgroups by naive rank
- Run the algorithm on each of the subgroups
- Stack subgroups rankings on top of each other

- Obtain naive ranking of elements
- Split elements into k subgroups by naive rank
- 3 Run the algorithm on each of the subgroups
- Stack subgroups rankings on top of each other

Problem: Omitting much data

Solution: Include other subgroups as pseudo-nodes

Background and Motivation

- Obtain naive ranking of elements
- 2 Split elements into k subgroups by naive rank
- 8 Run the algorithm on each of the subgroups, including the other subgroups as nodes
- Stack subgroups rankings on top of each other, omitting the rankings of subgroups

$$V = \{v_1, v_2, v_3, ... v_9\}$$

$$V_1 = \{v_1, v_2, v_3, g_2, g_3\}, g_2 = \{v_4, v_5, v_6\}, g_3 = \{v_7, v_8, v_9\}$$

$$f(i,j) = \begin{cases} \frac{1}{|P_{ij}|} \sum_{p \in P_{ij}} e_{i,j} & \text{if } i \text{and } j \text{ represent single nodes} \\ \sum_{v \in i} \left[\frac{1}{|P_{vj}|} \sum_{p \in P_{vj}} e_{v,j} \right] & \text{if } i \text{ represents a subgroup and not } j \\ \sum_{v \in i, u \in j} \left[\frac{1}{|P_{vu}|} \sum_{p \in P_{vu}} e_{v,u} \right] & \text{if } i \text{ and } j \text{ represent subgroups} \end{cases}$$

Background and Motivation

- 1 Obtain naive ranking of elements
- 2 Split elements into k subgroups by naive rank
- Run the algorithm on each of the subgroups, including the other subgroups as nodes
- Stack subgroups rankings on top of each other, omitting the rankings of subgroups

$$V = \{v_1, v_2, v_3, ... v_9\}$$

$$V_1 = \{v_1, v_2, v_3, g_2, g_3\}, g_2 = \{v_4, v_5, v_6\}, g_3 = \{v_7, v_8, v_9\}$$

$$w(i,j) = \begin{cases} |P_{ij}| & \text{if } i \text{ and } j \text{ represent single nodes} \\ \sum_{v \in i} |P_{vj}| & \text{if } i \text{ represents a subgroup and not } j \\ \sum_{v \in i, u \in j} |P_{vu}| & \text{if } i \text{ and } j \text{ represent subgroups} \end{cases}$$
 (2)

Time Complexity of Grouping Method

Time complexity of HodgeRank: $O(n^3)$ where n = number of nodes

k = number of groups

Time complexity of HodgeRank with grouping:
$$O(k(\frac{n}{k}+k-1)^3) = O(\frac{n^3}{k^2}+k^2) \ll O(n^3)$$

Grouping method: NBA data

- 2021 season NBA game data
 - 1076 games, 30 teams
 - from stats.nba.com
- Voters: teams
- Elements to be ranked: teams
- Scores: point difference between other team and this team

GAME_ID	SEASON	HOME_TEAM_ID	VISITOR_TEAM_ID	PTS_home	PTS_away
22101005	2021	Heat	Timberwolves	104.0	113.0
22101006	2021	Bulls	Cavaliers	101.0	91.0
22101007	2021	Spurs	Pacers	108.0	119.0
22101008	2021	Warriors	Bucks	122.0	109.0
22101009	2021	Nuggets	Raptors	115.0	127.0

Grouping method: NBA data

Grouping without Pseudo-nodes

Grouping with Pseudo-nodes

Hodge Rank team 7.556319 Suns 6.492398 Warriors 5.609594 Jazz Grizzlies 4.829419 4.436565 Celtics 4.335416 Heat Mavericks 4.225644 Bucks 3.164290 Timberwolves 2.894025 10 Cavaliers 2.364359 11 Bulls 2.351655 12 2.102093 Nuggets 13 1.767214 76ers 14 1.702416 Raptors 15 1.282467 Hawks 16 Nets 0.101050 17 0.045777 Spurs 18 Knicks -0.306826 19 Clippers -1.228548 20 Hornets -1.299388 21 Pelicans -2.183597 22 Pacers -2.251863 23 Lakers -3.192266 24 Wizards -3.263490 Kings -4.236429 26 Trail Blazers -6.199932 27 Magic -6.842637 28 Thunder -7.306982 29 Pistons -8.199562 30 Rockets -8.749182

Grou	ping without P	seudo-nodes
	team	r
	Suns	3.633397
	Warriors	2.932553
	Jazz	1.863423
•	Heat	1.362069
•	Mavericks	1.341824
•	Celtics	0.977510
•	Timberwolves	0.826573
	Bucks	-2.960224
•	Grizzlies	-4.180203
•	Bulls	-5.796922
	Cavaliers	2.689654
•	76ers	2.506727
•	Raptors	2.068132
•	Nets	1.782542
•	Nuggets	1.619619
•	Hornets	1.173192
•	Knicks	-0.754015
•		-2.177948
		-2.330151
•	Spurs	-6.577751
	Pelicans	4.890045
•	Kings	
	Lakers	3.178861
•	Trail Blazers	0.362617
	Pacers	-0.279938
		-0.898655
		-1.047710
•		-2.308111
•	Magic	-2.381868
	Pietone	-4 965944

Grouping with	seudo-nodes
team	r
Suns	4.161130
Warriors	3.083983
Jazz	2.043965
Grizzlies	1.469666
Celtics	1.050483
Heat	0.865651
Mavericks	0.844736
Bucks	-0.230932
Timberwolves	-0.570963
Bulls	-1.189181
Cavaliers	1.799867
Nuggets	1.664072
76ers	1.476747
Raptors	1.210336
Hawks	0.866823
Nets	-0.369443
	-0.490471
Knicks	-0.823813
Hornets	-1.753454
Clippers	-1.880912
Hornets Clippers Pacers	1.823121
Pelicans	1.715692
Lakers	0.751654
Wizards	0.678636
Kings	-0.407239
Trail Blazers	-2.455151
	-2.718680
Thunder	-3.434886
Pistons	-4.196151
Rockets	-4.882323

33/40

Statistical Comparison

Kendall's Tau:

Background and Motivation

- Statistical comparison of rankings
- Returns a number between 0 (no correlation) and 1 (perfect correlation)
- Takes in two orderings of a set

Kendall's Tau(Hodge Rank, Hodge Rank without Grouping)

 $\approx 0.393 \Rightarrow$ Somewhat correlated

Kendall's Tau(Hodge Rank, Hodge Rank with Grouping) ≈ 0.959

⇒ Highly correlated

Glen (2017)

Analysis on k

The effect of number of groups on ranking accuracy

Figure: Note each line corresponds to a different sample size.

Analysis on k

Benefits of the Method

Suitable for data sets that may be:

- biased
- incomplete
- imbalanced
- \Rightarrow Useful on sets where every "rating agent" won't rate every item in the set.

Algorithm provides:

- ranking
- a metric for correctness

Further work for grouping method

- Embedded groupings for sets with many elements to be ranked
- Deal with "edge cases"
 - Split up subgroups in a more sophisticated way
- Test method on data sets with more nodes

References I

Background and Motivation

- C. Colley, J. Lin, X. Hu, and S. Aeron. Algebraic multigrid for least squares problems on graphs with applications to hodgerank. In 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 627–636, 2017. doi: 10.1109/IPDPSW.2017.163.
- S. Glen. Kendall's tau (kendall rank correlation coefficient), Nov 2017. URI https://www.statisticshowto.com/kendalls-tau/#:~: text=Kendall's%20Tau%20is%20a%20non,1%20is%20a% 20perfect%20relationship.
- X. Jiang, L.-H. Lim, Y. Yao, and Y. Ye. Statistical ranking and combinatorial hodge theory. Mathematical Programming, 127 (1):203–244, 2011. doi: 10.1007/s10107-010-0419-x. URL https://doi.org/10.1007/s10107-010-0419-x.

References II

Lin, Junyuan. Graph laplacian in statistical ranking.

D. Nunan, J. Brassey, K. Boyce, A. Gardner, and M. Patrick-Smith. Covid-19 symptoms tracker, Jun 2020. URL https://www.cebm.net/covid-19/ covid-19-signs-and-symptoms-tracker/.

Thank you!

sferrie2@lion.lmu.edu