Лабораторная работа 2.3.1. Получение и измерение вакуума.

Калинин Даниил, Б01-110 1 мая 2022 г.

Цель работы:

- 1. измерение объемов форвакуумной и высоковакуумной частей установки;
- 2. определение скорости откачки системы в стационарном режиме, а также по ухудшению и улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным, термопарным и ионизационным.

Экспериментальная установка:

В данной работе используются традиционные методы откачки механическим форвакуумным насосом до давления 10^{-2} торр и диффузионным масляным насосом до давления 10^{-4} торр.

Установка изготовлена из стекла, и состоит из форвакуумного баллона (ФБ), высоковакуумного диффузионного насоса (ВН), высоковакуумного баллона (ВБ), масляного (М) и ионизационного (И) манометров, термопарных манометров (М $_1$ и М $_2$), форвакуумного насоса (ФН) и соединительных кранов ($K_1, K_2, ..., K_6$) (рис. 1). Кроме того, в состав установки входят: вариатор (автотрансформатор с регулируемым выходным напряжением), или реостат и амперметр для регулирования тока нагревателя диффузионного насоса.

Все краны вакуумной установки стеклянные. Стенки кранов тонкие, пробки кранов по-

Рис. 1. Схема установки

лые и составляют одно целое с рукоятками. Пробки кранов притерты к корпусам. Для герметизации используется вакуумная смазка.

Устройство и принцип действия форвакуумного насоса схематически, но довольно ясно изображены на рис 2. В положениях «а» и «б» пластина «А» засасывает разреженный воздух из откачиваемого объёма, а пластина «Б» вытесняет ранее захваченный воздух в атмосферу. В положениях «в» и «г» пластины поменялись ролями. Устройство и принцип

Рис. 2. Схема действия ротационного двухпластинчатого форвакуумного насоса

действия диффузионного насоса схематически изображены на рис 2. Такой насос работает в тысячи раз быстрее форвакуумного. Его действие основано на диффузии. Масло, налитое в сосуд A, подогревается электрической печкой. Пары масла поднимаются по трубке Б и вырываются из сопла B. Струя паров увлекает молекулы газа, которые поступают из откачиваемого сосуда через трубку BB. В трубке Г мало осаждается и стекает вниз. Оставшийся газ, выходя в трубку ФВ, откачивается форвакуумным насосом.

Диффузионный насос работает наиболее эффективно, когда длина свободного пробега молекул примерно равна ширине кольцевого зазора между соплом В и стенками трубки ВВ. Давление насыщенных паров масла при рабочей температуре, создаваемой обогревателем сосуда A, много больше $5\cdot 10^{-2}$ торр, поэтому пары масла создают плотную струю, увлекающую с собой молекулы газа. Диффузионный насос, используемый в нашей уста-

Рис. 3. Схема работы диффузионного насоса

новке (см. рис 1) имеет две ступени и соответственно два сопла. Одно сопло вертикальное (первая ступень), второе горизонтальное (вторая ступень). За второй ступенью имеется ещё одна печь, но пар из этой печи поступает не в сопло, а по тонкой трубке подводится ближе к печке первой ступени. Эта печь осуществляет фракционирование масла. Легколетучие фракции масла, испаряясь, поступают в первую ступень, обогащая её. По этой причине плотность струи первой ступени выше, и эта ступень начинает откачивать при более высоком давлении в форвакуумной части. Вторая ступень обогащается малолетучими фракциями масла. Плотность струи второй ступени меньше, но меньше и давление

насыщенных паров. Соответственно, в откачиваемый объем поступает меньше паров масла, и его удаётся откачать до более высокого вакуума.

Термопарный манометр. Чувствительным элементом манометра является платиново-родиевая термопара, спаянная с никелевой нитью накала и заключённая в стеклянный баллон. Устройство термопары пояснено на рис. 4. По нити накала НН пропускается ток постоянной величины. Для установки тока служит потенциометр R, расположенный на передней панели вакуумметра. Термопара ТТ присоединяется к милливольтметру, показания которого определяются температурой нити накала и зависят от отдачи тепла в окружающее пространство

Потери тепла определяются теплопроводностью нити и термопары, теплопроводностью газа, переносом тепла конвективными потоками газа внутри лампы, и теплоизлучением нити (инфракрасное тепловое излучение). В обычном режиме лампы основную роль играет теплопроводность газа. При давлениях, не меньших 1 торр, теплопроводность газа, а вместе с ней и ЭДС термопары практически не зависят от давления газа, и прибор не работает.

При улучшении вакуума средний свободный пробег молекул становится сравнимым с диаметром нити, теплоотвод падает, и температура спая возрастает. При вакууме порядка 10^{-3} торр теплоотвод, осуществляемый газом, становится сравнимым с другими потерями тепла, и температура становится практически постоянной. Градуировочная кривая термопары приведена на рис. 5.

Рис. 4. Схема термопарного манометра с лампой ЛТ-2

Рис. 5. Градуировочная кривая термопары ЛТ-2

Ионизационный манометр. Схема ионизационного манометра изображения на рисунке 6. Он представляет собой трехэлектродную лампу. Электроны испускаются раскалённым катодом и увлекаются электрическим полем к аноду, имеющему вид редкой спирали. Проскакивая за её витки, электроны замедляются полем коллектора и возвращаются к аноду. Прежде чем осесть на аноде, они успевают много раз пересечь пространство между катодом и коллектором. На своём пути электроны ионизуют молекулы газа. Ионы, образовавшиеся между анодом и коллектором, притягиваются полем коллектора и определяют его ток.

Накалённый катод ионизационного манометра перегорает, если давление в системе превышает 10^{-3} торр, поэтому перед его включением необходимо проверить давление термопарным манометром.

Рис. 6. Схема ионизационной лампы ЛТ-2

Теоритическая справка:

Процесс откачки

Опишем процесс откачки математически: Пусть W — объем газа, удаляемого из сосуда при данном давлении за единицу времени, Q_i для различных значений і обозначим различные притоки газа в сосуд (в единицах PV), такие как течи извне $Q_{\rm u}$, десорбция с поверхностей внутри сосуда $Q_{\rm d}$, обратный ток через насос $Q_{\rm h}$. Тогда, приравнивая убыль газа из сосуда (с точностью до RT/μ) в единицу времени -VdP и сумму перечисленных токов? имеем:

$$-VdP = (PW - \sum_{i} Q_{i})dt \tag{1}$$

При достижении предельного вакуума устанавливается давление $P_{\rm np}$, и dP=0. Тогда

$$W = (\sum_{i} Q_i)/P_{\rm np} \tag{2}$$

Поскольку обычно $Q_{\rm u}$ постоянно, а $Q_{\rm h}$ и $Q_{\rm d}$ слабо зависят от времени, также считая постоянной W, можем проинтегрировать (1) и получить:

$$P - P_{\rm np} = (P_0 - P_{\rm np}) \exp(-\frac{W}{V}t)$$
 (3)

Полная скорость откачки W, собственная скорость откачки насоса $W_{\rm H}$ и проводимости элементов системы C_1, C_2, \dots соотносятся согласно формуле (4), и это учтено в конструкции установки.

$$\frac{1}{W} = \frac{1}{W} + \frac{1}{C_1} + \frac{1}{C_2} + \dots \tag{4}$$

Течение газа через трубу

Характер течения газа существенно зависит от соотношения между размерами системы и длиной свободного пробега молекул. При атмосферном и форвакуумном давлениях длина свободного пробега меньше диаметра трубок, и течение газа определяется его вязкостью, т.е. взаимодействием молекул. При высоком вакууме течение существеннее определяется

взаимодействием со стенками

Для количества газа, протекающего через трубу длины l и радиуса r в условиях высокого вакуума, справедлива формула:

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}}\frac{P_2 - P_1}{l}$$
 (5)

Если труба соединяет насос установку, то давлением P_1 у насоса можно пренебречь. Давление в сосуде $P = P_2$. Тогда имеем:

$$C_{\rm Tp} = \left(\frac{dV}{dt}\right)_{\rm Tp} = \frac{4r^3}{3l}\sqrt{\frac{2\pi RT}{\mu}} \tag{6}$$

Для пропускной способности отверстий имеется формула

$$C_{\text{\tiny OTB}} = \left(\frac{dV}{dt}\right)_{\text{\tiny OTB}} = S\frac{\bar{v}}{4} \tag{7}$$

Для воздуха при комнатной температуре $\bar{v}/4 = 110 \text{ м/c} = 11 \text{ л/c} \cdot \text{см}^2$.

Ход работы:

Измерение объёмов форвакуумной и высоковакуумной частей установки

1. Проверяем, что K_4 открыт, впускаем в установку атмосферный воздух через краны K_1 и K_2 . «Запираем» в капилляре атмосферный воздух кранами K_5 и K_6 . Объем капилляра в используемой установке:

$$V_{\kappa} = 50 \text{ cm}^3.$$

- 2. Закрываем K_1 и K_2 , включаем форвакуумный насос и даём ему откачать себя. Подключаем установку к насосу краном K_2 . Откачиваем установку до 10^{-2} торр. Отсоединяем установку краном K_2 , и оставляем насос работать «на себя». Перекрываем K_3 , отделяя высоковакуумною часть установки. Закрываем K_4 , чтобы привести в готовность масляный манометр.
- 3. Открываем K_5 , чтобы «запертый» ранее воздух заполнил форвакуумную часть установки, снимаем давление с помощью вакуумного манометра, измерив разность высот столбиков масла (приводим результаты и повторного измерения):

$$\Delta h_1 = (15.1 \pm 0.1) \text{ MM}; \quad \Delta h_2(15.2 \pm 0.1) \text{ MM}$$

Погрешность измерения величин определяется ценой деления шкалы манометра и способностью разглядеть показания.

4. Имея в виду, что плотность масла в манометре равна 885 г/л, и считая, что установившееся давление много больше форвакуумного, получаем:

$$P_1 = (1.31 \pm 0.01) \text{ Ha}; \quad P_2 = (1.32 \pm 0.01) \text{ Ha}$$

Пользуясь законом Бойля-Мариотта (т.к. расширение газа изотермическое), используя среднее значение измеренного давления, получаем

$$V_{\Phi B} = (3750 \pm 20) \text{ cm}^3$$

5. Аналогично, открыв кран K_3 , получив значения разности высот на манометре

$$\Delta h_1 = (10.3 \pm 0.1)$$
mm; $\Delta h_2 (10.3 \pm 0.1)$ mm,

Получаем объем высоковакуумной части установки, вычтя из полученного законом Бойля-Мариотта объёма двух частей установки объем измеренной ранее части (погрешности складываются):

$$V_{\rm BB} = (1760 \pm 60) \text{ cm}^3$$

6. Открываем кран K_4 .

Получение высокого вакуума

- 1. Откачиваем установку ФВ насосом.
- 2. Включаем термопарные манометры, устанавливаем их токи согласно паспортам. Переключаем прибор в режим измерения ЭДС и определяем давление в установке по градуировочной кривой (рис. 5)
- 3. По достижении форвакуума закрываем K_5 и начинаем откачку высоковакуумного баллона с помощью диффузионного насоса, для этого:
 - 3.1. На передней панели источника питания, с помощью которого подогревается масло в насосе, все четыре ручки переводим на ноль.
 - 3.2. Включаем источник, ручками 2 и 4 устанавливаем ток I=0,6A. Ждём 5 минут, чтобы масло прогрелось, после чего устанавливаем ток 1,15A.
 - 3.3. По термопаре M_2 контролируем откачку. По достижении ЭДС в 10mV смотрим на кипение масла и считаем капли, стекающие из сопла второй ступени. Убеждаемся в готовности, т.к. насчитали 11 капель в минуту.
- 4. При выключенной ионизационной лампе, вставив предохранитель, ставим переключатель «Род работы» в положение «Обезгаживание» на 10 минут.
- 5. Переключатель «Множитель шкалы» ставим в положение «Установка нуля», «Род работы» в положение «Установка эмиссии», и ручку «Установка эмиссии» ставим в крайнее левое положение.
- 6. Приступаем к включению ионизационной лампы:
 - 6.1. Тумблер «накал» в положение вкл.
 - 6.2. «Род работы» в положение «Измерение», ручкой «Установка нуля» устанавливаем микроамперметр на нуль.
 - 6.3. «Род работы» в положение «Прогрев» на 10 минут.
 - 6.4. «Род работы» в положение «Установка эмиссии», и ручкой «Установка эмиссии» устанавливаем ток эмиссии в 50 мкА.
 - 6.5. «Род работы» в положение «Обезгаживание» на 10 минут. 6.6. «Род работы» в положение «Измерение»
 - 6.7. Переключатель «Множитель шкалы» ставим в положение 10^{-1} .
- 7. Измеряем давление с помощью микроамперметра. Так как переключатель «Множитель шкалы» в положении 10^{-1} , а постоянная ионизационного манометра C=100 мм.рт.ст./A, давление будет определяться как $P=10^{-5}I$, где ${\rm I-nokasahus}$ микроамперметра в делениях.

$$P_{\rm np} = 1, 1 \cdot 10^{-4} \text{ Topp}$$

Измерение скорости по ухудшению и улучшению вакуума

1. Закрываем кран K_3 , отключая тем самым откачку вакуума и записываем на видео изменения показаний микроамперметра, пока вакуум не ухудшится до $6 \cdot 10^{-4}$ торр. Затем открываем K_3 и так же записываем улучшение вакуума. Приводим результаты повторных измерений в таблице 1 и на графиках (рис. 7 и 8).

Улучшение, 1		Улучшение, 2		Ухудшение, 1		Ухудшение, 2		Ухудшение, 3	
t, c	р, торр	t, c	р, торр	t, c	р, торр	t, c	р, торр	t, c	р, торр
0	0,0006	0	0,000615	0	0,00009	0	0,00008	0	0,0001
0,167	0,00058	0,33	0,0006	5,5	0,00012	4	0,00012	5	0,00015
0,33	0,000555	0,9	0,00056	10	0,00016	12	0,00018	12	0,0002
0,5	0,00054	1,5	0,00052	16	0,0002	20	0,00024	18	0,00025
0,75	0,00052	2	0,00046	21	0,00024	26	0,00028	25	0,0003
1	0,0005	2,4	0,00042	26	0,00028	31	0,00032	32	0,00035
1,25	0,00047	3	0,00038	32	0,00032	37	0,00036	39	0,0004
1,5	0,00043	4	0,00032	40	0,00038	43	0,0004	46	0,00045
2	0,0004	5	0,00028	47	0,00042	49	0,00044	52	0,0005
3	0,00032	6	0,00024	52	0,00046	54	0,00048	60	0,00055
4	0,00027	8	0,00019	57	0,0005	60	0,00052	68	0,0006
6	0,0002	12	0,00014	66	0,00055	68	0,00056		
9	0,00015			74	0,0006	74	0,0006		

Таблица 1. Зависимости давления от времени

Рис. 7. Зависимость давления от времени по улучшении вакуума

2. Рассчитав коэффициенты наклона графиков 7(а) и 7(б) и зная объем высоковакуумной части установки, получим скорость откачки W диффузионного насоса, сравнив графики с зависимостью (4). Считаем

$$W = -\bar{a} \cdot V, \quad \varepsilon_W^2 = \varepsilon_{\bar{a}}^2 + \varepsilon_V^2$$

, где \bar{a} — среднее коэффициентов наклона из зависимостей 7(a) и 7(б). Имеем:

$$W = (0,461 \pm 0,016) \text{ } \pi/\text{c}$$

Рис. 8. Зависимость давления от времени по улучшении вакуума

3. Имея в виду соотношения (1) для случая ухудшения вакуума (без откачки), оценим $Q_{\rm H}$ с помощью полученных зависимостей 8(a, б, в). Считаем

$$\frac{dP}{dt} = \bar{a}$$

где \bar{a} — среднее коэффициентов наклона из зависимостей 8(a), 8(б), 8(в). Имеем:

$$Q_{\text{H}} + Q_{\pi} = (1, 26 \pm 0, 04) \cdot 10^{-5} \text{ Topp} \cdot \pi/c$$

 $Q_{\rm д}$ обычно порядка 10^{-8} , поэтому можно считать $Q_{\rm H} + Q_{\rm д} \approx Q_{\rm H}$. Таким образом,

$$Q_{\scriptscriptstyle
m H} + Q_{\scriptscriptstyle
m J} pprox 1,26 \cdot 10^{-5} \ {
m Topp} \cdot {
m J/c}$$

4. Оценим пропускную способность трубы от вакуумного баллона, имея в виду порядки её диаметра и длины и размерного множителя

$$d\sim 10^{-2}$$
 м, $L\sim 1$ м, $\sqrt{\frac{RT}{\mu}}\sim 500$ м/с,

используя формулу (6) имеем:

$$C_{\mathrm{TP}} \sim 1 \ \mathrm{\pi/c},$$

что отлично согласуется с полученным ранее значением W.

5. Рассчитаем производительность насоса ещё одним способом: создав искусственную течь. Открываем кран K_6 при включённом насосе и измеряем давление, установившееся при течи. Оно равно

$$P_{\text{yct}} = 1,9 \cdot 10^{-4} \text{ ropp.}$$

Запишем (2) для данного случая:

$$P_{\text{пр}}W = Q_1, \quad P_{\text{уст}}W = Q_1 + \frac{(PV)_{\text{капилляр}}}{dt}$$

С учётом (6) получаем

$$(P_{\text{ycr}} - P_{\text{пр}})W = \frac{4}{3}(d/2)^3 \sqrt{\frac{2\pi RT}{\mu}} \frac{P_{\phi B}}{L},$$

где d и L — диаметр и длина капилляра, равные

$$d = 9 \text{ mm}, \quad L = 63 \text{ mm}$$

Получаем:

$$W = 0,23 \text{ л/c}$$

Отличается почти ровно в два раза от полученной ранее. Вероятно, потому что теперь течение газа определяется пропускной способностью двух труб, соединённых последовательно (формула (5)). Судя по всему, проводимости трубки от ВВ баллона и капилляра сравнимы.

Выключение установки

- 1. Выключаем накал ионизационного манометра, даем ему остыть, отключаем предохранитель.
- 2. Выключаем подогрев диффузионного насоса, даем маслу остыть.
- 3. Отключаем установку от ФВ насоса.
- 4. Выключаем ФВ насос, ждем, соединяем его с атмосферой.
- 5. Выключаем вакуумметры.

Заключение:

- 1. В ходе данной работы было проверено несколько методик по измерению производительности высоковакуумного насоса.
- 2. Проверены теоретические зависимости, связанные с течением газа (рис. 7 и 8)
- 3. Измерено значение производительности насоса с точностью $\varepsilon = 0,03$