

MT2511 Technical Reference Manual

Version: 1.0

Release date: 5 May 2017

© 2015 - 2018 Airoha Technology Corp.

This document contains information that is proprietary to Airoha Technology Corp. ("Airoha") and/or its licensor(s). Airoha cannot grant you permission for any material that is owned by third parties. You may only use or reproduce this document if you have agreed to and been bound by the applicable license agreement with Airoha ("License Agreement") and been granted explicit permission within the License Agreement ("Permitted User"). If you are not a Permitted User, please cease any access or use of this document immediately. Any unauthorized use, reproduction or disclosure of this document in whole or in part is strictly prohibited. THIS DOCUMENT IS PROVIDED ON AN "AS-IS" BASIS ONLY. AIROHA EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF ANY KIND AND SHALL IN NO EVENT BE LIABLE FOR ANY CLAIMS RELATING TO OR ARISING OUT OF THIS DOCUMENT OR ANY USE OR INABILITY TO USE THEREOF. Specifications contained herein are subject to change without notice.

Document Revision History

Revision	Date	Description
0.1	19 April 2015	Initial draft
0.2	28 April 2016	Editing, adding addition chapters
0.3	2 May 2016	Editing for coda format
0.31	21 June 2016	MP version release.
0.35 3 September 2016 Refine programming guide.		Refine programming guide.
1.0 5 May 2017 Official version.		Official version.

Table of contents

1	MCU	I Interface	e Selection	7
	1.1	Interfac	ce Selection between I2C and SPI	7
	1.2	Access S	Speed of SPI/I2C	7
2	Inter	rupts		8
	2.1	General	l Description	8
	2.2	Progran	mming Guide	8
		2.2.1	Interrupt Enable	8
		2.2.2	Interrupt Status checking	8
		2.2.3	Interrupt Clear	9
	2.3	Interrup	pt Register Definitions	9
3	Seria	al Periphe	ral Interface Slave Controller	13
	3.1	General	l Description	13
		3.1.1	Features	14
4	Inter	r-Integrate	ed Circuit Controller	17
	4.1	General	l Description	17
		4.1.1	Features	17
		4.1.2	Transfer Format Support	17
		4.1.3	Programming Guide	19
5	Timi	ng Contro	ol Module	20
	5.1	General	l Operation	20
	5.2	Dynami	ic Power-Down Mode	20
	5.3	Timing I	Module Operation	22
	5.4	Timing I	Module Register Definitions	25
	5.5	Progran	mming Guide	35
6	PPG	Channel		36
	6.1	General	l Description	36
		6.1.1	Transmitter Front-End	37
		6.1.2	Receiver Front-End	38
		6.1.3	PPG AVERAGE Function Introduce	39
		6.1.4	PPG Data Format	40
	6.2	PPG Reg	gister Definitions	41
	6.3	Progran	mming Guide	52
7	EKG	Channel		54

MT2511 Technical Reference Manual

	7.1	General Description	1
		7.1.1 EKG Data Format	5
	7.2	EKG Channel Register Definitions	5
	7.3	Programming Guide61	L
8	Heart	beat Interval Estimation62	<u>></u>
	8.1	General Description	2
	8.2	Heartbeat Interval Estimation Register Definitions	3
	8.3	Programming Guide	7

Lists of tables and figures

Table 1-1. Register Control Interface Selection	7
Table 2-1. MT2511 Interrupts	8
Table 3-1. SPI Slave Controller Interface	13
Table 3-2. SPI Slave Command Description	15
Table 3-3. SPI Slave Status Description (Use RS Command to Poll SPI Slave Status)	15
Table 5-1-1 Example timing module register setting	23
Figure 3-1. Pin Connection between SPI Master and SPI Slave	13
Figure 3-2. SPI Transmission Formats	13
Figure 3-3. SPI Slave Controller Commands Waveform	14
Figure 3-4. SPI Slave Control Flow Diagram	14
Figure 3-5. Config Read/Write (CR/CW) Command Format	16
Figure 5-1. Timing Module General Operation	20
Figure 5-2. Dynamic Power Down Mode	21
Figure 5-3. Timing Module Operation Example	22
Figure 6-1. PPG Channel Analog Part Block Diagram	36
Figure 6-2. PPG Channel Digital Part Block Diagram	37
Figure 6-3. Push-Pull Mode and H-Bridge Mode	38
Figure 6-4. Receiver Front-End	39
Figure 6-5. ADC Data with Averaging Enabled	40
Figure 7-1. EKG Channel Analog Part Block Diagram	54
Figure 7-2. EKG Channel Digital Part Block Diagram	54
Figure 8-1. Heartbeat Detection Flow	62
Figure 8-2. The Built-in Heartbeat Interval Detector Block Diagram	62

Documentation General Conventions

Abbreviations for Control Moudules

Abbreviation	Full name	
SPI master	Serial peripheral interface master controller	
SPI slave	Serial peripheral interface slave controller	
I2C	Inter-integrated circuit interface	
TCM	Timing Control Moudle	
PPG	Photoplethysmography	
EKG Electrocardiography		
ВІ	Beat Interval	
TCRL	Timing control logic	

Abbreviations for Registers

Abbreviation	Full name	
RW	Read and write	
RO	Read only	
wo	Write only	
RC	Read 1 to clear	
WC	Write 1 to clear	
RWC	Read or write 1 to clear	
FM	Frequency measurement	
FRC	Free running counter	

1 MCU Interface Selection

1.1 Interface Selection between I2C and SPI

Table 1-1 summarizes the MCU register access interface selection.

Table 1-1. Register Control Interface Selection

Interface	I2C_SEL	SPI_MOSI	Register Group	Register Group top_reg_1 base		
	Tied to	Tied to	I2C slave addr. 0x37	I2C slave addr. 0x27		
I2C	logic high	Tied to	I2C slave addr. 0x33	I2C slave addr. 0x23		
SPI	Tied to	as SPI serial in master out	SPI addr. 0x33	SPI addr. 0x23		

1.2 Access Speed of SPI/I2C

The maximum SPI Clock is designed to operate at a frequency of 2M Hz.

The maximum I2C Clock depends on board-level parameters such as trace latency. Typically, the maximum speed is 400K Hz.

Actual operating clock frequency may depending on board level condition, like trace length and total loading,

Either MT2511 I2C or MT2511 SPI does not support burst access.

2 Interrupts

2.1 General Description

To facilitate MCU programming and sensor data flow control, MT2511 supports various interrupts for each function. The table here lists supported interrupts and their usage.

Table 2-1. MT2511 Interrupts

Interrupt	Description
MEM_EKG	When number of data in EKG memory is greater than pre-configured number AFE MEM CON3::rg irg th.
MEM_EKG_WFULL	When putting data to EKG SRAM but it's full.
MEM_EKG_REMPTY	When trying to read data from EKG SRAM but it's empty.
MEM_PPG1	When number of data inPPG1 memory is greater than pre-configured number AFE_MEM_CON7::rg_irq_th.
MEM_PPG1_WFULL	When putting data to PPG1 SRAM but it's full.
MEM_PPG1_REMPTY	When trying to read data from PPG1 SRAM but it's empty.
MEM_PPG2	When number of data in PPG2 memory is greater than pre-configured number AFE_MEM_CON11::rg_irq_th.
MEM_PPG2_WFULL	When putting data to PPG2 SRAM but it's full.
MEM_PPG2_REMPTY	When trying to read data from PPG2 SRAM but it's empty.
MEM_BISI	When number of data in BISI memory is greater than pre-configured number AFE_MEM_CON15::rg_irq_th.
MEM_BISI_WFULL	When putting data to BISI SRAM but it's full.
MEM_BISI_REMPTY	When trying to read data from BISI SRAM but it's empty.

2.2 Programming Guide

Taking MEM_EKG_REMPTY as example, the following sections provide programming guide to enable, check and disable interrupt.

2.2.1 Interrupt Enable

To enable some interrupt, set RG_INT_EN_* to 1. For MEM_EKG_REMPY interrupt, set INT_CON[3] = 1.

2.2.2 Interrupt Status checking

On receiving MT2511 interrupt, host MCU can identify the exact cause of interrupt by reading the INT_STATUS register. When MEM_EKG_REMPTY interrupt is received, INT_STATUS[3] is asserted.

2.2.3 Interrupt Clear

To clear a specific interrupt, RG_INT_EN_* control bit should be set to 0 and RG_INT_CLR* clear bit should be set to 1 then set to 0.

For MEM_EKG_REMPTY interrupt, INT_CON[3] should be set to 0 and INT_STATUS[19] should be set to 0 then set to 0.

2.3 Interrupt Register Definitions

Base name: top_reg

Address	Name	Width	Width Register Function				
0000004C	INT_CON	32	Interrupt control register				
00000054	INT_STATUS	32	Interrupt status register				

00000	04C	<u>IN</u>	NT_C	<u>ON</u>			Inter	rupt	contr	ol reg	gister	•		0	0000	000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		Rese	erved									Rese	erved			
Туре		R	W									R	W			
Reset	0	0	0	0					0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	RG_INT_POLARITY			RG_INT_EN_MEM_BISI_REMPTY	RG_INT_EN_MEM_BISI_WFULL	RG_INT_EN_MEM_BISI	RG_INT_EN_MEM_PPG2_REMPTY	RG_INT_EN_MEM_PPG2_WFULL	RG_INT_EN_MEM_PPG2	RG_INT_EN_MEM_PPG1_REMPTY	RG_INT_EN_MEM_PPG1_WFULL	RG_INT_EN_MEM_PPG1	RG_INT_EN_MEM_EKG_REMPTY	RG_INT_EN_MEM_EKG_WFULL	RG_INT_EN_MEM_EKG	Reserved
Type	RW			RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0			0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31:28	Reserved	
23:16	Reserved	
15	RG_INT_POLARITY	Interrupt level inverting 0: do not invert interrupt source 1: invert interrupt source
12	RG_INT_EN_MEM_BISI_REMPTY	Issue interrupt when number of data when trying

2015 - 2018 Airoha Technology Corp.

Page 9 of 67

Bit(s)	Name	Description
		to read data from empty BI memory 0: do not issue interrupt 1: issue interrupt
11	RG_INT_EN_MEM_BISI_WFULL	Issue interrupt when number of data in BI memory is full 0: do not issue interrupt 1: issue interrupt
10	RG_INT_EN_MEM_BISI	Issue interrupt when number of data in BI memory is greater than pre-configured number AFE_MEM_CON15::rg_irq_th 0: do not issue interrupt
		1: issue interrupt
9	RG_INT_EN_MEM_PPG2_REMPTY	Issue interrupt when number of data when trying to read data from empty PPG2 memory 0: do not issue interrupt 1: issue interrupt
		Issue interrupt when PPG2 memory is full
8	RG_INT_EN_MEM_PPG2_WFULL	0: do not issue interrupt 1: issue interrupt
7	RG_INT_EN_MEM_PPG2	Issue interrupt when number of data in PPG2 memory is greater than pre-configured number AFE_MEM_CON11::rg_irq_th 0: do not issue interrupt 1: issue interrupt
6	RG_INT_EN_MEM_PPG1_REMPTY	Issue interrupt when number of data when trying to read data from empty PPG1 memory 0: do not issue interrupt 1: issue interrupt
5	RG_INT_EN_MEM_PPG1_WFULL	Issue interrupt when PPG1 memory is full 0: do not issue interrupt 1: issue interrupt
4	RG_INT_EN_MEM_PPG1	Issue interrupt when number of data in PPG1 memory is greater than pre-configured number AFE_MEM_CON7::rg_irq_th
		0: do not issue interrupt 1: issue interrupt
3	RG_INT_EN_MEM_EKG_REMPTY	Issue interrupt when number of data when trying to read data from empty EKG memory
3		0: do not issue interrupt 1: issue interrupt
2	RG_INT_EN_MEM_EKG_WFULL	Issue interrupt when EKG memory is full 0: do not issue interrupt 1: issue interrupt
1	RG_INT_EN_MEM_EKG	Issue interrupt when number of data in EKG memory is greater than pre-configured number AFE_MEM_CON3::rg_irq_th 0: do not issue interrupt 1: issue interrupt

00000	054	<u>IN</u>	T_ST	ATUS	<u>S</u>		Int	errup	t stat	us re	giste	r		F	FFFF	FFF
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				RG_INT_CLR_MEM_BISI_REMPTY	RG_INT_CLR_MEM_BISI_WFULL	RG_INT_CLR_MEM_BISI	RG_INT_CLR_MEM_PPG2_REMPTY	RG_INT_CLR_MEM_PPG2_WFULL	RG_INT_CLR_MEM_PPG2	RG_INT_CLR_MEM_PPG1_REMPTY	RG_INT_CLR_MEM_PPG1_WFULL	RG_INT_CLR_MEM_PPG1	RG_INT_CLR_MEM_EKG_REMPTY	RG_INT_CLR_MEM_EKG_WFULL	RG_INT_CLR_MEM_EKG	Reserved
Туре				RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Reset				0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				RG_INT_STATUS_MEM_BISI_REMPTY	RG_INT_STATUS_MEM_BISI_WFULL	RG_INT_STATUS_MEM_BISI	RG_INT_STATUS_MEM_PPG2_REMPTY	RG_INT_STATUS_MEM_PPG2_WFULL	RG_INT_STATUS_MEM_PPG2	RG_INT_STATUS_MEM_PPG1_REMPTY	RG_INT_STATUS_MEM_PPG1_WFULL	RG_INT_STATUS_MEM_PPG1	RG_INT_STATUS_MEM_EKG_REMPTY	RG_INT_STATUS_MEM_EKG_WFULL	RG_INT_STATUS_MEM_EKG	Reserved
Туре				RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset				x	х	х	х	х	X	X	X	х	х	х	х	х

Bit(s)	Name	Description
28	RG_INT_CLR_MEM_BISI_REMPTY	To clear interrupt source MEM_BISI_REMPTY
27	RG_INT_CLR_MEM_BISI_WFULL	To clear interrupt source MEM_BISI_WFULL
26	RG_INT_CLR_MEM_BISI	To clear interrupt source MEM_BISI
25	RG_INT_CLR_MEM_PPG2_REMPTY	To clear interrupt source MEM_PPG2_REMPTY
24	RG_INT_CLR_MEM_PPG2_WFULL	To clear interrupt source MEM_PPG2_WFULL
23	RG_INT_CLR_MEM_PPG2	To clear interrupt source MEM_PPG2
22	RG_INT_CLR_MEM_PPG1_REMPTY	To clear interrupt source

2015 - 2018 Airoha Technology Corp.

Page 11 of 67

Bit(s)	Name	Description
		MEM_PPG1_REMPTY
21	RG_INT_CLR_MEM_PPG1_WFULL	To clear interrupt source MEM_PPG1_WFULL
20	RG_INT_CLR_MEM_PPG1	To clear interrupt source MEM_PPG1
19	RG_INT_CLR_MEM_EKG_REMPTY	To clear interrupt source MEM_EKG_REMPTY
18	RG_INT_CLR_MEM_EKG_WFULL	To clear interrupt source MEM_EKG_WFULL
17	RG_INT_CLR_MEM_EKG	To clear interrupt source MEM_EKG
12	RG_INT_STATUS_MEM_BISI_REMPTY	Status of interrupt MEM_BISI_REMPTY
11	RG_INT_STATUS_MEM_BISI_WFULL	Status of interrupt MEM_BISI_WFULL
10	RG_INT_STATUS_MEM_BISI	Status of interrupt MEM_BISI
9	RG_INT_STATUS_MEM_PPG2_REMPTY	Status of interrupt MEM_PPG2_REMPTY
8	RG_INT_STATUS_MEM_PPG2_WFULL	Status of interrupt MEM_PPG2_WFULL
7	RG_INT_STATUS_MEM_PPG2	Status of interrupt MEM_PPG2
6	RG_INT_STATUS_MEM_PPG1_REMPTY	Status of interrupt MEM_PPG1_REMPTY
5	RG_INT_STATUS_MEM_PPG1_WFULL	Status of interrupt MEM_PPG1_WFULL
4	RG_INT_STATUS_MEM_PPG1	Status of interrupt MEM_PPG1
3	RG_INT_STATUS_MEM_EKG_REMPTY	Status of interrupt MEM_EKG_REMPTY
2	RG_INT_STATUS_MEM_EKG_WFULL	Status of interrupt MEM_EKG_WFULL
1	RG_INT_STATUS_MEM_EKG	Status of interrupt MEM_EKG

3 Serial Peripheral Interface Slave Controller

3.1 General Description

The SPI (Serial Peripheral Interface) is a bit-serial, four-pin transmission protocol. Figure 3-1 is an example of the connection between the SPI master and SPI slave. The SPI slave controller, configured by the SPI master transmit data, is a slave responsible of data transmission with the master.

Figure 3-1. Pin Connection between SPI Master and SPI Slave

Figure 3-2 shows the waveform during the SPI transmission. The low active CS_N determines the start point and end point of one transaction. The CS_N setup time, hold time and idle time are also depicted.

CPOL defines the clock polarity in the transmission. CPHA defines the legal timing to sample MOSI and MISO. MT2511 only support CPOL = 0 and CPHA = 0 mode. The setup/hold/idle time should be greater than 1 us.

Figure 3-2. SPI Transmission Formats

Table 3-1. SPI Slave Controller Interface

Signal name	Туре	Description
CS	I	Low active chip selection signal
SCK	I	The (bit) serial clock (Max SCK clock rate is 2MHz.)
MOSI	I	Data signal from master output to slave input

2015 - 2018 Airoha Technology Corp.

Page 13 of 67

Signal name	Туре	Description
MISO	0	Data signal from slave output to master input

3.1.1 Features

The SPI slave controller has eight commands that can be configured by SPI master transmit data. The commands include "configure-write", "configure-read", "write-data", "read-data", "write-status" and "read-status". The command waveform is shown here.

Note: The SPI slave controller data format is LSBF (least significant bit first).

Figure 3-3. SPI Slave Controller Commands Waveform

SPI slave control flow

The SPI slave control flow is shown here.

Figure 3-4. SPI Slave Control Flow Diagram

First, SPI slave controller transmits "config-read/write" command to configure the transfer data length and read/write address of the memory. After the SPI slave is configured, it can send/receive data package with SPI master by "read/write-data" command. In each state, SPI master transmits "read-status" command to poll SPI

2015 - 2018 Airoha Technology Corp.

Page 14 of 67

This document contains information that is proprietary to Airoha Technology Corp. ("Airoha") and/or its licensor(s). Any unauthorized use, reproduction or disclosure of this document in whole or in part is strictly prohibited.

slave situation. If SPI master detects error flag bit of state, it should send "write-status" command to clear the bit and poll this bit until it turns low. Detailed descriptions of SPI slave command are shown in Table 3-2 and the SPI slave status in Table 3-3 below.

Table 3-2. SPI Slave Command Description

Cmd Field [7:0]	CMD Default Code	Data Field	Usage
Read Data (RD)	0x81	N bytes. Burst data payload	Master read data
Write Data (WD)	0x06	N bytes. Burst data payload	Master write data
Read Status (RS)	0x0A	1 byte	Master reads slave status register
Write Status (WS)	0x08	1 byte	Master writes slave status register to clear error bit (i.e. write 1 to clear).
Config Read (CR)	0x02	2 bytes addr, 2 bytes data length	Master configure slave to start read data.
Config Write (CW)	0x04	2 bytes addr, 2 bytes data length	Master configures slave to start write data.

Table 3-3. SPI Slave Status Description (Use RS Command to Poll SPI Slave Status)

Function	Bit	Usage
SR_CFG_SUCCESS	1	Master checks this bit to know if CW/CR command is successful.
SR_TXRX_FIFO_RDY	2	If master configures read/write, when slave is ready to send/receive data, the master can send RD/WD command. Clean: After SPI slave receives CR/CW command.
SR_RD_ERR	3	After a RD command, master can read this bit to know if there is error in the read transfer. If there is error, master should send WS command to clear this bit and poll this bit until this bit turns 0.
SR_WR_ERR	4	After a WD command, master can read this bit to know if there is error in the write transfer. If there is error, master should send WS command to clear this bit and poll this bit until this bit turns 0.
SR_RDWR_FINISH	5	After RD/WD transaction, master can poll this bit to know if the read/write transfer is finished. Clean: After SPI slave receives CR/CW command.
SR_TIMOUT_ERR	6	SPI slave does not receive or send data over 31.75 us, the flag of timeout will rise. If there is error, master should send WS command to clear this bit and poll this bit until this bit turns 0.
SR_CMD_ERR	7	If master sends an error CMD at the first byte, master can know the error status

2015 - 2018 Airoha Technology Corp.

Page 15 of 67

MT2511 Technical Reference Manual

Function	Bit	Usage
		through the received data. Clean: After SPI slave receives correct command.

Figure 3-5. Config Read/Write (CR/CW) Command Format

4 Inter-Integrated Circuit Controller

4.1 General Description

Inter-Integrated Circuit (I2C) is a two-wire serial interface. The two signals are SCL and SDA. SCL is a clock signal driven by the master. SDA is a bi-directional data signal that can be driven by either the master or the slave. This generic controller supports the slave role and conforms to the I2C specification.

4.1.1 Features

- I2C compliant slave mode operation
- 7-bit addressing
- START/STOP/REPEATED START condition
- Manual transfer mode
- Multi-transfer per transaction
- Active drive/wired-and I/O configuration

4.1.2 Transfer Format Support

Wording convention note:

- Transfer = Anything encapsulated within a Start and Stop or Repeated Start.
- Transfer length = Number of bytes within the transfer
- Transaction = This is the top unit. Everything combined equals one transaction.
- Transaction length = Number of transfers to be conducted.

Single-byte access

MT2511 Technical Reference Manual

Multi-byte access

Multi-byte transfer + multi-transfer (same direction)

Multi Byte Write + Multi Transfer

Multi Byte Read + Multi Transfer

Multi-byte transfer + multi-transfer w RS (same direction)

Combined write/read with Repeated Start (direction change)

Note:

MT2511 Technical Reference Manual

Only supports write and then read sequence. Read and then write is not supported.

P/

RS

DATA

transfer_len

In this format, transaction is 2

Combined Multi Byte Write + Multi Byte Read

4.1.3 Programming Guide

Slave

Address

Common transfer programmable parameters

DATA

5 Timing Control Module

5.1 General Operation

- LED and ambient (AMB) data are stored at the low pass filter (LPF) separately and then digitized by 24-bit incremental ADC.
- Flexible timing module: PRF: 64~4096 SPS, duty: 1~25%

Figure 5-1. Timing Module General Operation

5.2 Dynamic Power-Down Mode

• The flexible timing control enables the users to control the device timing for different applications and to power down the device for power saving.

2015 - 2018 Airoha Technology Corp.

Page 20 of 67

This document contains information that is proprietary to Airoha Technology Corp. ("Airoha") and/or its licensor(s).

Any unauthorized use, reproduction or disclosure of this document in whole or in part is strictly prohibited.

• I_{RX+TX} =480 μ A \rightarrow 100 μ A at PRF=125 and duty=1.5%

Figure 5-2. Dynamic Power Down Mode

5.3 Timing Module Operation

The rising and falling edge position of below 14 signals can be set separately. LED1 and LED2 can be set at the same phase (phase1) or the different phase (phase1 & phase3). Figure 5-3 shows some timing operation example, and corresponding register settings are listed in Table 5-1-1 Example timing module register setting.

Figure 5-3. Timing Module Operation Example

2015 - 2018 Airoha Technology Corp.

Page 22 of 67

Table 5-1-1 Example timing module register setting

Phase	Register	Field	Value
1502.0	AFF TOTAL COMP	RG_LED2_START	451
LED2 On	AFE_TCTRL_CON3	RG_LED2_END	579
1504.0	AFF TOTAL COMP	RG_LED1_START	65
LED1 On	AFE_TCTRL_CON2	RG_LED1_END	193
		RG_SPHASE1_START	128
Phase1 sample	AFE_TCTRL_CON4	RG_SPHASE1_END	192
Dhara 2 agus ala	AFF TOTAL COME	RG_SPHASE2_START	321
Phase2 sample	AFE_TCTRL_CON6	RG_SPHASE2_END	385
		RG_SPHASE3_START	514
Phase3 sample	AFE_TCTRL_CON5	RG_SPHASE3_END	578
51 4 1		RG_SPHASE4_START	707
Phase4 sample	AFE_TCTRL_CON7	RG_SPHASE4_END	771
		RG_CONVPHASE4_START	773
Phase4 convert	AFE_TCTRL_CON11	RG_CONVPHASE4_END	965
		RG_CONVPHASE1_START	194
Phase1 convert	AFE_TCTRL_CON8	RG_CONVPHASE1_END	386
		RG_CONVPHASE2_START	387
Phase2 convert	AFE_TCTRL_CON10	RG_CONVPHASE2_END	579
	455 50504 0040	RG_CONVPHASE3_START	580
Phase3 convert	AFE_TCTRL_CON9	RG_CONVPHASE3_END	772
		RG_ADC_RST1_START	128
	AFE_TCTRL_CON12	RG_ADC_RST1_END	192
		RG_ADC_RST2_START	321
	AFE_TCTRL_CON13	RG_ADC_RST2_END	385
ADC reset		RG_ADC_RST3_START	514
	AFE_TCTRL_CON14	RG_ADC_RST3_END	578
		RG_ADC_RST4_START	707
	AFE_TCTRL_CON15	RG_ADC_RST4_END	771
4 D C D) 4 / C	AFF TOTAL CONIAC	PPGADC_PWD_START	1015
ADC PWD	AFE_TCTRL_CON16	PPGADC_PWD_END	1860
EE DIAID	AFE TOTAL CONTE	RG_PPGFE_PWD_START	1015
FE PWD	AFE_TCTRL_CON17	RG_PPGFE_PWD_END	1910

MT2511 Technical Reference Manual

Phase	Register	Field	Value
PRP	AFE_TCTRL_CON1	RG_PRP	2047
		RG_PPG_OUT_EN_START	192
OUT_EN	AFE_TCTRL_CON18	RG_PPG_OUT_EN_START	835

5.4 Timing Module Register Definitions

BASE name: top_reg

Reset

Address	Name	Width	Register Function
00000060	AFE DIG ENABLE	32	AFE Digital Part Enable

0000060 AFE DIG ENABLE 0000000 22 21 20 Bit 30 29 27 26 25 24 23 19 18 28 Name Type Reset 2 Bit 15 14 13 12 11 10 8 6 5 4 3 0 RG_P2S_MON_EN RG_AFE_MEM_PPG2_EN RG_AFE_MEM_EKG_EN RG_AFE_EKG_ON RG_AFE_BI_ON TIMING_EN AFE_MEM_BISI_EN AFE_MEM_PPG1_EN AFE_PPG_ON Name RW RW RW RW RW RW RW RW Type RW

Bit(s)	Name	Description
10	RG_P2S_MON_EN	Enable P2S monitor module
8	AD_TIMING_EN	Enable timing module
7	RG_AFE_MEM_BISI_EN	Enable BI FIFO memory
6	RG_AFE_MEM_PPG2_EN	Enable PPG2 FIFO memory
5	RG_AFE_MEM_PPG1_EN	Enable PPG1 FIFO memory
4	RG_AFE_MEM_EKG_EN	Enable EKG FIFO memory
3	RG_AFE_EKG_ON	Enable EKG circuit
2	RG_AFE_PPG_ON	Enable PPG circuit
0	RG_AFE_BI_ON	Enable BI circuit

0

0

BASE name: top_reg_1

	1 – 3 –		
Address	Name	Width	Register Function
00000028	AFE_TCTRL_CONO	32	Timing Control Module Control 0
0000002C	AFE_TCTRL_CON1	32	Timing Control Module Control 1
00000030	AFE_TCTRL_CON2	32	Timing Control Module Control 2
00000034	AFE_TCTRL_CON3	32	Timing Control Module Control 3
00000038	AFE TCTRL CON4	32	Timing Control Module Control 4
0000003C	AFE_TCTRL_CON5	32	Timing Control Module Control 5
00000040	AFE_TCTRL_CON6	32	Timing Control Module Control 6
00000044	AFE_TCTRL_CON7	32	Timing Control Module Control 7
00000048	AFE_TCTRL_CON8	32	Timing Control Module Control 8
0000004C	AFE_TCTRL_CON9	32	Timing Control Module Control 9
00000050	AFE TCTRL CON10	32	Timing Control Module Control 10
00000054	AFE TCTRL CON11	32	Timing Control Module Control 11
00000058	AFE TCTRL CON12	32	Timing Control Module Control 12
0000005C	AFE TCTRL CON13	32	Timing Control Module Control 13
00000060	AFE TCTRL CON14	32	Timing Control Module Control 14
00000064	AFE TCTRL CON15	32	Timing Control Module Control 15
00000068	AFE TCTRL CON16	32	Timing Control Module Control 16
0000006C	AFE TCTRL CON17	32	Timing Control Module Control 17
00000070	AFE_TCTRL_CON18	32	Timing Control Module Control 18

O0000028 AFE TCTRL CONO

FFFF0000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		AFE_TCTRL_DEBUG														
Туре		RO														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	x
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													RG_TX_B2_SEL	RG_TX_B1_SEL	RG_SET_DATA	
Туре													RW	RW	RW	
Reset													0	0	0	

Bit(s)	Name	Description
31:16	AFE_TCTRL_DEBUG	Reserved for chip debug
3	RG_TX_B2_SEL	DA_TX_B2 selection 1: from RG_TX_B2 0: use DA_PPG_LED2 falling edge to latch
2	RG_TX_B1_SEL	DA_TX_B1 selection 1: from RG_TX_B1 0: use DA_PPG_LED1 falling edge to latch
1	RG_SET_DATA	software update trigger

0000002C AFE TCTRL CON1

00001FFF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Nam e																
Туре																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Nam e									RG_	PRP						
Туре				RW												
Reset			0	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit(s)	Name	Description
13:0	RG_PRP	PRP Length

07FF0FFF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				RG_LED1_START												
Туре				RW												
Reset			0	0	0	1	1	1	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								R	G_LE	D1_EN	D					
Туре									R	W						
Reset			0	0	1	1	1	1	1	1	1	1	1	1	1	1

Bit(s)	Name	Description
29:16	RG_LED1_START	LED1 ON START POSITION
13:0	RG_LED1_END	LED1 ON END POSITION

17FF1FFF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				RG_LED2_START												
Туре				RW												
Reset			0	1	0	1	1	1	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				RG_LED2_END												
Туре				RW												
Reset			0	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit(s)	Name	Description
29:16	RG_LED2_START	LED2 ON START POSITION
13:0	RG_LED2_END	LED2 ON END POSITION

07FF0FFE

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				RG_SPHASE1_START												
Туре				RW												
Reset			0	0	0	1	1	1	1	1	1	1	1	1	1	1
Bit	15	14	13	3 12 11 10 9 8 7 6 5 4 3 2 1 0									0			
Name				RG_SPHASE1_END												
Туре				RW												

2015 - 2018 Airoha Technology Corp.

Page 28 of 67

		F	

Reset 0 0 1 1 1 1 1 1 1 1 1	1	0
------------------------------------	---	---

Bit(s)	Name	Description
29:16	RG_SPHASE1_START	PHASE1 SAMPLE START POSITION
13:0	RG_SPHASE1_END	PHASE1 SAMPLE END POSITION

0000003C AFE TCTRL CON5

17FF1FFE

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				RG_SPHASE3_START												
Туре									R	W						
Reset			0	1	0	1	1	1	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RG_	_SPHA	ASE3_1	END					
Туре				RW												
Reset			0	1	1	1	1	1	1	1	1	1	1	1	1	0

Bit(s)	Name	Description
29:16	RG_SPHASE3_START	PHASE3 SAMPLE START POSITION
13:0	RG_SPHASE3_END	PHASE3 SAMPLE END POSITION

00000040 AFE_TCTRL_CON6

OFFF17FE

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				RG_ SPHASE2_START												
Туре									R	W						
Reset			0	0	1	1	1	1	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RG_	_SPH/	ASE2_l	END					
Туре				RW												
Reset			0	1	0	1	1	1	1	1	1	1	1	1	1	0

Bit(s)	Name	Description
29:16	RG_SPHASE2_START	PHASE2 SAMPLE START POSITION
13:0	RG_SPHASE2_END	PHASE2 SAMPLE END POSITION

1FFF07FE

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				RG_ SPHASE4_START												
Туре				RW												
Reset			0	1	1	1	1	1	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RG_	_SPHA	ASE4_1	END					
Туре				RW												
Reset			0	0	0	1	1	1	1	1	1	1	1	1	1	0

Bit(s)	Name	Description
29:16	RG_SPHASE4_START	PHASE4 SAMPLE START POSITION
13:0	RG_SPHASE4_END	PHASE4 SAMPLE END POSITION

100017FF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				RG_CONVPHASE1_START												
Туре				RW												
Reset			0	1	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RG_C	ONVP	HASE1	_END					
Туре									R	W						
Reset			0	1	0	1	1	1	1	1	1	1	1	1	1	1

Bit(s)	Name	Description
29:16	RG_CONVPHASE1_START	PHASE1 CONVERSION START POSITION
13:0	RG_CONVPHASE1_END	PHASE1 CONVERSION END POSITION

0000004C AFE TCTRL CON9

000007FF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				RG_CONVPHASE3_START												
Туре									R	W						
Reset			0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RG_C	ONVP	HASE3	_END					
Туре				RW												
Reset			0	0	0	1	1	1	1	1	1	1	1	1	1	1

Bit(s)	Name	Description
29:16	RG_CONVPHASE3_START	PHASE3 CONVERSION START POSITION
13:0	RG_CONVPHASE3_END	PHASE3 CONVERSION END POSITION

00000050 <u>AFE_TCTRL_CON10</u>

18001FFF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				RG_CONVPHASE2_START												
Туре									R	W						
Reset			0	1	1	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RG_C	ONVP	HASE2	_END					
Туре				RG_CONVPHASE2_END RW												

2015 - 2018 Airoha Technology Corp.

1		1	FF.	7
	AU.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PP	r

Reset			0	1	1	1	1	1	1	1	1	1	1	1	1	1
-------	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---

Bit(s)	Name	Description
29:16	RG_CONVPHASE2_START	PHASE2 CONVERSION START POSITION
13:0	RG_CONVPHASE2_END	PHASE2 CONVERSION END POSITION

00000054 **AFE TCTRL CON11**

08000FFF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				RG_CONVPHASE4_START												
Туре									R	W						
Reset			0	0	1	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				RG CONVPHASE4 END												
Туре				RW												
Reset			0	0	1	1	1	1	1	1	1	1	1	1	1	1

Bit(s)	Name	Description
29:16	RG_CONVPHASE4_START	PHASE4 CONVERSION START POSITION
13:0	RG_CONVPHASE4_END	PHASE4 CONVERSION END POSITION

1FFF0000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Nam e				RG_ADC_RST1_START												
Туре									R	W						
Reset			0	1	1	1	1	1	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Nam e				RG_ADC_RST1_END												
Туре				RW												
Reset			0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
29:16	RG_ADC_RST1_START	ADC RESET1 START POSITION
13:0	RG_ADC_RST1_END	ADC RESET1 END POSITION

0000005C AFE TCTRL CON13

07FF0800

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				RG_ADC_RST2_START												
Туре									R	W						
Reset			0	0	0	1	1	1	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RG_	ADC_1	RST2_	END					
Туре				RW												
Reset			0	0	1	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
29:16	RG_ADC_RST2_START	ADC RESET2 START POSITION
13:0	RG_ADC_RST2_END	ADC RESET2 END POSITION

00000060 <u>AFE_TCTRL_CON14</u>

OFFF1000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Nam e				RG_ADC_RST3_START												
Туре									R	W						
Reset			0	0	1	1	1	1	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Nam e				RG_ADC_RST3_END												
Туре				RW												
Reset			0	1	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
29:16	RG_ADC_RST3_START	ADC RESET3 START POSITION
13:0	RG_ADC_RST3_END	ADC RESET3 END POSITION

OOOOOO64 AFE TCTRL CON15

17FF1800

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Nam e								RG_A	ADC_R	ST4_S	TART					
Туре				RW												
Reset			0	1	0	1	1	1	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

OOOOOO64 AFE TCTRL CON15

17FF1800

Nam e							RG_	ADC_	RST4_	END					
Туре								R	W						
Reset		0	1	1	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
29:16	RG_ADC_RST4_START	ADC RESET4 START POSITION
13:0	RG_ADC_RST4_END	ADC RESET4 END POSITION

0000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				RG_PPGADC_PWD_START												
Туре									R	W						
Reset			0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RG_P	PGADO	_PWI	_END)				
Туре				RW												
Reset			0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
29:16	RG_PPGADC_PWD_START	PPGADC PWD START POSITION
13:0	RG_PPGADC_PWD_END	PPGADC PWD END POSITION

0000006C AFE TCTRL CON17

0000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				RG_PPGFE_PWD_START												
Туре				RW												
Reset			0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RG_F	PGFE	_PWD	_END					
Туре				RW												
Reset			0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s) Name	Description
29:1	RG_PPGFE_PWD_START	PPGFE PWD START POSITION
13:0	RG_PPGFE_PWD_END	PPGFE PWD END POSITION

2015 - 2018 Airoha Technology Corp.

Page 34 of 67

00000070 <u>AFE_TCTRL_CON18</u>

3FFF3FFF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				RG_PPG_OUT_EN_START												
Туре									R	W						
Reset			1	1	1	1	1	1	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RG_P	PG_OI	UT_EN	_END					
Туре				RW												
Reset			1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit(s)	Name	Description
29:16	RG_PPG_OUT_EN_START	PPG OUT EN START POSITION
13:0	RG_PPG_OUT_EN_END	PPG OUT EN END POSITION

5.5 Programming Guide

The setting value of AFE_TCTRL_CON1~18 (0x2C~0x70) should be set before enabling EKG channel.

- 1. Setting the value to AFE_TCTRL_CON1~18 (0x2C~0x70)
- 2. Enable rg_set_data (setting AFE_TCTRL_CON0[1] (0x28) = 1 and AFE_DIG_ENABLE.

6 PPG Channel

6.1 General Description

Figure 6-1 illustrates the system block diagram for PPG acquisition.¹ The PPG channel is separated into two parts: Transmitter (TX) and Receiver (RX). The TX part consist of LED driver. The light emitted by LED is penetrated /reflected by the skin, and received by photodiode of the RX. The RX consists of a trans-impedance amplifier (TIA), a programmable gain amplifier (PGA), an ambient cancellation digital-to-analog converter (AMBDAC), and a 24-bit incremental ADC. It amplifies and digitizes the received current. The blocks are described in more detail in the following sections.

Figure 6-1. PPG Channel Analog Part Block Diagram

 $^{^{1}}$ "A **photoplethysmogram** (PPG) is an optically obtained plethysmogram, a volumetric measurement of an organ. "Wikipedia."

AIROHIN-

MT2511 Technical Reference Manual

Figure 6-2. PPG Channel Digital Part Block Diagram

6.1.1 Transmitter Front-End

The LED driver and the voltage boost are used to light up external LED and to provide the voltage drop of LED. The two current DACs can enable two wavelength LEDs, which are turned on in a time-interleaved manner. The LED full scale current range is from 9.5 mA to 103 mA with a 3-bit current step of 13.4mA. The LED current can be set by the following equation: (equation 1 and equation 2)

LED1 current (TX1)
$$= \frac{\text{Full scale range of LED current}}{256} * DAC1 \text{ code}$$
(1)

LED2 current (TX2)

$$= \frac{\text{Full scale range of LED current}}{256} * \text{DAC2 code}$$
 (2)

As shown in Figure 6-3 below, two LED driver schemes are supported:

- Push-Pull Mode: A push-pull drive for a three-terminal LED package. The minimum external supply voltage = 0.7V + (maximum voltage drop across the LED). This value is depends on the registry LED current settings.
- H-Bridge Mode: An H-bridge drive for two-terminal back-to-back LED package. The minimum external supply voltage (LED_SUP) = 0.7V + (maximum voltage drop across the LED). This value is depends on the registry LED current settings.

Figure 6-3. Push-Pull Mode and H-Bridge Mode

6.1.2 Receiver Front-End

As shown in Figure 6-4 the photo detector transfers the reflected light into current, I_{PD} , and then amplifies by TIA that converts the input photodiode current into an appropriate voltage. The feedback resistor of the amplifier (R_F) has seven gain settings (1 M Ω , 500K Ω , 250K Ω , 100K Ω , 25K Ω , 10K Ω) and is programmable to support a wide input range of photodiode currents from 0.5- μ A to 50- μ A.

The feedback resistor (R_F) and the feedback capacitor (C_F) form a low pass filter for the input current. Please ensure that the low pass filter (R_F and C_F) has sufficiently high bandwidth (as shown in Equation 3).

$$R_F * C_F \le \frac{\text{LED Sample Time}}{10} \le \frac{\text{Duty}}{\text{PRF} * 10} = \frac{\text{LED ON Time}}{10}$$
 (3)

The output voltage of the I-V amplifier includes the pleth component (I_{Pleth}) and a component resulting from the ambient light leakage (I_{Amb}). The second stage consists of an AMBDAC that sources the cancellation current (I_{DC offset}) and a PGA.

The AMBDAC has a cancellation current range of 6 μ A with six steps (1 μ A each) for two phases (LED1/LED2 phase and AMB1/AMB2 phase). The PGA amplifier gains up the pleth component and has five programmable gain settings: 1, 1.5, 2, 3, 4, and 6 (V/V). Then, the signals are sampled by the corresponding LPFs and digitized by a 24-bit incremental ADC.

$$V_{DIFF} = 2 * \left[(I_{Pleth} + I_{Amb}) * \frac{R_F}{R_I} - I_{DC \text{ offset}} \right] * R_G$$
 (4)

2015 - 2018 Airoha Technology Corp.

Page 38 of 67

Where $R_I = 100 \text{K}\Omega$

$$R_G = 100 \text{K}\Omega * \text{PGA gain}$$

The PPG control logic (timing module) can adjust the sampling rate (Equation 5) and duty cycle (Equation 6) of the LED currents and also power down the AFE when the LEDs are off. The output of the ambient cancellation amplifier is separated into LED1, AMB1, LED2, AMB2 channels. When LED2 is on, the amplifier output is filtered and sampled on capacitor C_{LED2} . Similarly, the LED1 signal is sampled on the C_{LED1} capacitor when LED1 is ON. In between the LED2 and LED1 pulses, the idle amplifier output is sampled to estimate the ambient signal on capacitors $C_{\text{LED2_amb}}$ and $C_{\text{LED1_amb}}$. The minimum supported RX sampling time is 50 μ s.

PRF (Sampling rate, Hz) =
$$\frac{1 \text{MHz}}{(PRP + 1)}$$
 = 64Hz ~ 4096Hz (5)

Duty (%) =
$$\frac{\text{LED ON Time}}{\text{PRP} * 100} = 1.5\% \sim 25\%$$
 (6)

Figure 6-4. Receiver Front-End

6.1.3 PPG AVERAGE Function Introduce

The PPG AVERAGE module is used to average multiple ADC samples and reduce noise to improve dynamic range. At the next rising edge of the ADC reset signal, the average value (23-bit) is written into the output registers sequentially as follows (see Figure 6-5):

2015 - 2018 Airoha Technology Corp.

Page 39 of 67

 $This \ document \ contains \ information \ that \ is \ proprietary \ to \ Airoha \ Technology \ Corp. \ ("Airoha") \ and/or \ its \ licensor(s).$

AIROHN

MT2511 Technical Reference Manual

- At the 25% reset signal, the averaged 23-bit word is written to reg1.
- At the 50% reset signal, the averaged 23-bit word is written to reg2.
- At the 75% reset signal, the averaged 23-bit word is written to reg3.
- At the next 0% reset signal, the averaged 23-bit word is written to reg4. The contents of reg2 and reg3 are written to reg5 and the contents of reg4 and reg1 are written to reg6.

At the rising edge of the ADC_RDY signal, the contents of all six result registers can be read out.

Figure 6-5. ADC Data with Averaging Enabled

6.1.4 PPG Data Format

The MT2511 outputs 24 bits of data per channel in binary twos complement format, MSB first. A positive full-scale input produces an output code of 7FFFFFh and the negative full-scale input produces an output code of 800000h. The output clips at these codes for signals exceeding full-scale. All 24 bits toggle when the analog input is at positive or negative full-scale.

$$PPG (mV) = \frac{PPGADC \text{ output code} * LSB}{1000}$$

$$= \frac{PPGADC \text{ output code} * \frac{V_{ref}}{2^{16}}}{1000}$$

$$= \frac{PPGADC \text{ output code} * \frac{3.2V}{2^{16}}}{1000}$$
(7)

6.2 PPG Register Definitions

Module name: top_reg

Address	Name	Width	Register Function
00000018	PPGFE_CONO	32	PPGFE Control 0
0000001C	PPGFE_CON1	32	PPGFE Control 1
00000020	PPGADC_CONO	32	PPGADC Control 0
00000028	LEDDRV_CONO	32	LED Driving Control 0
0000002C	LEDDRV CON1	32	LED Driving Control 1
00000068	AFE_PPG_CON	32	PPG Digital Part Control
00000D0	AFE_MEM_CON4	32	PPG1 SRAM Control 0
00000D4	AFE_MEM_CON5	32	PPG1 SRAM Control 1
00000D8	AFE_MEM_CON6	32	PPG1 SRAM Control 2
00000DC	AFE_MEM_CON7	32	PPG1 SRAM Control 3
000000E0	AFE_MEM_CON8	32	PPG2 SRAM Control 0
000000E4	AFE MEM CON9	32	PPG2 SRAM Control 1
000000E8	AFE_MEM_CON10	32	PPG2 SRAM Control 2
00000EC	AFE_MEM_CON11	32	PPG2 SRAM Control 3

00000	018	D18 PPGFE CONO					PPGFE Control 0								70244212	
Bit	31	30	29	29 28 27			25	24	23	22	21	20	19	18	17	16
Name		RG_PPG_PD	RG_PPG_LPF_CT		RG_	AMBE	MBDAC2 R		RG_AMBDAC1			RG_PGA_0		RG_PPG_ENSEPGAIN		
Туре		RW	R'	W		RW			RW				RW		RW	
Reset		1	1	1	0	0	0	0	0	0		0	0	1	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		RG_TIA_CF2				RG_TIA_CF1				RG_TIA_RF2			RG_TIA_RF		RF1	
Туре			RW			RW					RW			RW		
Reset	0	1	0	0	0	0	1	0	0	0	0	1	0	0	1	0

Bit(s)	Name	Description
30	RG_PPG_PD	PPG power down 1: power down

Bit(s)	Name	Description
		0: power on
		PPG LPF corner adjustment
29:28	RG_PPG_LPF_CT	11: 500Hz (default) 10: 1KHz
		01: 2KHz 00: 4KHz
		AMB phase current adjustment (IDC Offset):
		000/001: 1uA,
27:25	RG_AMBDAC2	010: 2uA, 011: 3uA,
		100: 4uA,
		101: 5uA, 110: 6uA.
		LED phase current adjustment (IDC Offset):
		000/001: 1uA, 010: 2uA,
24:22	RG_AMBDAC1	011: 3uA,
		100: 4uA, 101: 5uA,
		110: 6uA.
		PGA gain adjustment (V/V) 111/110/101: 6
20:18	DC DCA CAIN	100: 4
20.16	RG_PGA_GAIN	011: 3 010: 2
		001: 1.5 (default) 000: 1
	DC DDC ENSEDCA	enable separate gain for LED1 phase and LED2 phase:
17	RG_PPG_ENSEPGA IN	1: enable, 0: disable
		CF2<4:0>:TIA CF adjustment for LED2 phase and AMB2 phase if RG_PPG_ENSEPGAIN=H:
		bit4=1: +150p, bit3=1: +50p,
15:11	RG_TIA_CF2	bit2=1: +25p,
		bit1=1: +15p, bit0=1: +5p
		00000: 5pF
		CF1<4:0>:TIA CF adjustment for LED1 phase and AMB1 phase
		bit4=1: +150p, bit3=1: +50p,
10:6	RG_TIA_CF1	bit2=1: +25p, bit1=1: +15p,
		bit0=1: +5p,
		00000: 5pF
		TIA RF adjustment for LED2 phase and AMB2 phase if RG_PPG_ENSEPGAIN=H:
		000: 500k, 001: 250k,
5:3	RG_TIA_RF2	010: 100k,
		011: 50k, 100: 25k,
		101: 10k,
		110/111: 1M TIA RF adjustment for LED1 phase and AMB1 phase
2:0	RG_TIA_RF1	000: 500k,
		001: 250k,

2015 - 2018 Airoha Technology Corp.

Page 42 of 67

Bit(s)	Name	Description	
-		010: 100k,	
		011: 50k,	
		100: 25k,	
		101: 10k,	
		110/111: 1M	

00000	01C	<u>PP</u>	GFE_	<u>CON</u>	<u>1</u>			PPG	FE Co	ntro	1			0	0480	C29
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					RG_AMBDAC_PWDB											
Туре					RW											
Reset					1											

Bit(s)	Name	Description
		AMBDAC_PWDB:
		1: power on,
11	11 RG_AMBDAC_PWDB	0: power down, also need to set
		PPGFE_CON0::RG_AMBDAC1=0
		PPGFE_CON0::RG_AMBDAC2=0

00000020 PPGADC CONO 000F5555

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																RG_PPGADC_PD
Туре																RW
Reset																1

Bit(s)	Name	Description	
- (-)		F	

Bit(s)	Name	Description
0	RG_PPGADC_PD	PPGADC power down: 1: power down, 0: power on

00000	028	<u>LE</u>	DDR	V_CC	<u>NO</u>		LED Driving Control 0						0	00002900		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									RG	_TX_5	SEL					RG_TX_HBRIDGE_PUSHPULL
Туре										RW						RW
Reset									0	0	0					0

Bit(s)	Name	Description
7:5	RG_TX_SEL	Select full-scale range of LED current: 000: 9.5 mA 111: 103.3 mA a step is 13.4 mA
0	RG_TX_HBRIDGE _PUSHPULL	1: Hbridge mode; 0: Push-pull mode

00000	02C	D2C <u>LEDDRV_CON1</u> LE							Privin	g Coı	0	00002020				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				RG_T	ΓX_B2				RG_TX_B1							
Туре				F	RW				RW							
Reset	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0

Bit(s)	Name	Description
15:8	RG_TX_B2	DAC2 code 00000000:minimum; 11111111:maximum
7:0	RG_TX_B1	DAC1 code 00000000:minimum; 11111111:maximum

00000	068	<u>AI</u>	FE_P	PG_C	<u>ON</u>		Pl	PG Di		04B6270A						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18 17		16
Name		RG	_NUM	I_OF_/	AVG		RG_	.PPG_1	FIFO	RG_REG5_CTL_MINUEND		RG_REG5_CTL_SUBTRAHEND		RG_REG6_CTL_MINUEND		RG_REG6_CTL_SUBTRAHEND
Туре		1	R	2W	T	T		RW	1	R	W	RW		RW		RW
Reset	0	0	0	0	0	1	0	0	1	0	1	1	0	1	1	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						RG_NUM_TO_L2			RG_NUM_TO_L3			RG_NUM_TO_L4			RG_NUM_TO_BI	
Туре	RW RW RW				RW	RW			V		RW			RW	1	
Reset	0					1	1	1	0	0	0	0	1	0	1	0

Bit(s)	Name	Description
31:26	RG_NUM_OF_AVG	Reference of number of average in PPGAVG
25:23	RG_PPG_FIFO	PPG FIFO start point
22:21	RG_REG5_CTL_MINUEND	Set minuend of reg5, default = reg2
20:19	RG_REG5_CTL_SUBTRAHEND	Set subtrahend of reg5, default = reg3
18:17	RG_REG6_CTL_MINUEND	Set minuend of reg6, default = reg4
16:15	RG_REG6_CTL_SUBTRAHEND	Set subtrahend of reg6, default = reg1
14:12	RG_NUM_TO_L1	Set l1 register, default = reg2
11:9	RG_NUM_TO_L2	Set l2 register, default = reg3
8:6	RG_NUM_TO_L3	Set l3 register, default = reg4
5:3	RG_NUM_TO_L4	Set l4 register, default = reg1
2:0	RG_NUM_TO_BI	Set bi register, default = reg2

00000	OD0	<u>AF</u>	E M	EM_(CON4		PPG1 SRAM Control 0 00000000										
Bit	31	3	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name	UPSRAM_CE	UPSRAM_RW_ADDR_AUTO_INC	UPSRAM_ATRIG		UPSRAM_WTRIG	UPSRAM_RTRIG				UPSI	RAM_0	CUR_A	ADDR				
Туре	RW	R W	RW		RO	RO					R	20					
Reset	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name										UPS	RAM_	RW_A	DDR				
Туре											R	W					
Reset							0	0	0	0	0	0	0	0	0	0	

Bit(s)	Name	Description
31	UPSRAM_CE	PPG1 SRAM chip select
30	UPSRAM_RW_ADDR_AUTO_INC	Automatically increase I2C/SPI access PPG1 SRAM address 0: no effect 1: automatically increase
29	UPSRAM_ATRIG	Enable access PPG1 SRAM from I2C/SPI 0: no effect 1: toggle access trigger
27	UPSRAM_WTRIG	Write PPG1 SRAM from I2C/SPI 0: no effect 1: write trigger
26	UPSRAM_RTRIG	Read PPG1 SRAM from I2C/SPI 0: no effect 1: read trigger
25:16	UPSRAM_CUR_ADDR	The current access address of PPG1 SRAM from I2C/SPI
9:0	UPSRAM_RW_ADDR	The access address of PPG1 SRAM from I2C/SPI

00000	0D4	<u>AF</u>	<u>E_M</u>	EM_(CON5	•		PPG1	SRA	М Со	ntrol	1		0	0000	000
Bit	31	1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														
Name		UPSRAM_WR_DATA[31:16]														
Туре								F	2W							
Reset	0															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							UPSR/	AM_W	R_DAT	Γ Α [15:0	D]					
Туре		RW														
Reset	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														

Bit(s)	Name	Description
31:0	UPSRAM_WR_DATA	The write data from I2C/SPI to PPG1 SRAM

00000	0D8	<u>AF</u>	E M	EM_(CON6			PPG1		0000000						
Bit	31	1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														
Name		UPSRAM_RD_DATA[31:16]														
Туре								F	RO							
Reset	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							UPSRA	AM_RI	D_DAT	TA[15:0)]					
Туре		RO														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31:0	UPSRAM_RD_DATA	The read data from PPG1 SRAM to I2C/SPI

00000	00000DC <u>AFE MEM CON7</u>							PPG1 SRAM Control 3							0000000			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
Name										FIL.	TER_C	UR_A	DDR					
Туре											R	0						
Reset							0	0	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name											RG	_IRG_	TH					
Туре												RW						
Reset								0	0	0	0	0	0	0	0	0		

Bit(s)	Name	Description
25:16	FILTER_CUR_ADDR	The current access address of PPG1 SRAM from PPG1 FIFO
8:0	RG_IRG_TH	The threshold of PPG1 SRAM to set irq signal

00000	0E0	<u>AF</u>	<u>E_M</u>	EM_(CON8			PPG2	SRA	M Co	ntrol	0		0	0000	000
Bit	31	3	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	UPSRAM_CE	UPSRAM_RW_ADDR_AUTO_INC	UPSRAM_ATRIG		UPSRAM_WTRIG	UPSRAM_RTRIG	UPSRAM_CUR_ADDR									
Туре	RW	R W	RW		RO	RO					R	2O				
Reset	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										UPS	RAM_	RW_A	DDR			
Туре							RW									
Reset							0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31	UPSRAM_CE	PPG2 SRAM chip select
30	UPSRAM_RW_ADDR _AUTO_INC	Automatically increase I2C/SPI access PPG2 SRAM address 0: no effect 1: automatically increase
29	UPSRAM_ATRIG	Enable access PPG2 SRAM from I2C/SPI 0: no effect 1: toggle access trigger
27	UPSRAM_WTRIG	Write PPG2 SRAM from I2C/SPI 0: no effect 1: write trigger
26	UPSRAM_RTRIG	Read PPG2 SRAM from I2C/SPI 0: no effect 1: read trigger
25:16	UPSRAM_CUR_ADDR	The current access address of PPG2 SRAM from I2C/SPI
9:0	UPSRAM_RW_ADDR	The access address of PPG2 SRAM from I2C/SPI

 000000E4
 AFE_MEM_CON9
 PPG2 SRAM Control 1
 00000000

00000	0E4	<u>AF</u>	<u>E_M</u>	EM_(CON9	•		PPG2	SRA	М Со	ntrol	1		0	0000	000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		UPSRAM_WR_DATA[31:16]														
Туре		RW														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							UPSR/	M_W	R_DA7	Γ Α[15: 0	0]					
Туре		RW														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31:0	UPSRAM_WR_DATA	The write data from I2C/SPI to PPG2 SRAM

00000	0E8	<u>AF</u>	<u>E_M</u>	EM_C	CON1	<u>o</u>		PPG	2 SRA	M Co	ontro	2		0	0000	000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		UPSRAM_RD_DATA[31:16]														
Туре		RO														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							UPSR	AM_RI	D_DAT	TA[15:0)]					
Туре								I	RO							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31:0	UPSRAM_RD_DATA	The read data from PPG2 SRAM to I2C/SPI

00000	OEC	<u>AF</u>	FE_M	EM_	CON1	<u>1</u>		PPG	2 SRA	M Co	ontro	l 3		0	0000	000	
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name							FILTER_CUR_ADDR										
Туре							RO										
Reset							0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name											RG	_IRG_	TH				
Туре								RW									
Reset								0	0	0	0	0	0	0	0	0	

Bit(s)	Name	Description
25:16	FILTER_CUR_ADDR	The current access address of PPG2 SRAM from PPG2 FIFO
8:0	RG_IRG_TH	The threshold of PPG2 SRAM to set irq signal

6.3 Programming Guide

The setting value of PPGFE_CON0 (0x18), PPGFE_CON1 (0x1C), PPGADC_CON0 (0x20), LEDDRV_CON0 (0x28), LEDDRV_CON1 (0x2C), LEDSUP_CON1 (0x34), AFE_PPG_CON (0x68) should be set before enabling PPG channel.

- 1. Setting the value to PPGFE_CON0 (0x18), PPGFE_CON1 (0x1C), PPGADC_CON0 (0x20), LEDDRV_CON0 (0x28), LEDDRV_CON1 (0x2C), LEDSUP_CON1 (0x34), AFE_PPG_CON (0x68).
- 2. Enable PPG channel (setting AFE_DIG_ENABLE (0x60) = 0x564)

Read/Write PPG1 SRAM from I2C/SPI

- 1. READ:
 - a. Setting AFE_MEM_CON4 (0xD0) = 0x60000000 | start_addr[9:0]
 - b. HW will put read_data from PPG1 SRAM to AFE_MEM_CON6 (0xD8)
- 2. WRITE:
 - a. Setting AFE_MEM_CON4 (0xD0) = 0x60000000 | start_addr[9:0]
 - b. Setting AFE MEM CON5 (0xD4) = write data[31:0]
- c. HW will write write_data to PPG1 SRAM

Read/Write PPG2 SRAM from I2C/SPI

- 1. READ:
 - a. Setting AFE_MEM_CON8 (0xE0) = 0x60000000 | start_addr[9:0]
 - b. HW will put read_data from PPG2 SRAM to AFE_MEM_CON10 (0xE8)
- 2. WRITE:
 - a. Setting AFE_MEM_CON8 (0xE0) = 0x60000000 | start_addr[9:0]

2015 - 2018 Airoha Technology Corp.

Page 52 of 67

b. Setting AFE_MEM_CON9 (0xE4) = write_data[31:0]

c. HW will write write_data to PPG2 SRAM

7 EKG Channel

7.1 General Description

Figure 7-1 and Figure 7-2 show the analog/digital parts of EKG system. The EKG channel supports two-electrode (2E) mode and right leg drive (RLD) mode, and acts as a buffer between human and circuit. It integrates a programmable gain amplifier (PGA), a right leg drive amplifier, and a 24-bit sigma-delta analog-to-digital converter (ADC) to sense and digitize the EKG signal. The PGA is a differential input/differential output, and has seven gain settings (1, 2, 3, 4, 6, 8, and 12). The sampling frequency of EKG ADC is adjustable from 64Hz to 4096Hz. There are two extra samples (data=0) when doing first time sample EKG.

Figure 7-1. EKG Channel Analog Part Block Diagram

Figure 7-2. EKG Channel Digital Part Block Diagram

2015 - 2018 Airoha Technology Corp.

Page 54 of 67

7.1.1 EKG Data Format

The MT2511 outputs 24 bits of data per channel in binary twos complement format, MSB first. A positive full-scale input produces an output code of 7FFFFFh and the negative full-scale input produces an output code of 800000h. The output clips at these codes for signals exceeding full-scale. All 24 bits toggle when the analog input is at positive or negative full-scale.

$$EKG (mV) = \frac{EKGADC \text{ output code} * LSB}{1000 * EKG PGA Gain}$$

$$= \frac{EKGADC \text{ output code} * \frac{V_{ref}}{2^{23}}}{1000 * EKG PGA Gain}$$

$$= \frac{EKGADC \text{ output code} * \frac{4V}{2^{23}}}{1000 * EKG PGA Gain}$$
(7)

7.2 EKG Channel Register Definitions

Module name: top_reg

Address	Name	Width	Register Function
00000008	EKGFE_CONO	32	EKGFE Control
00000010	EKGADC_CONO	32	EKGADC Control
00000064	AFE EKG CON	32	EKG Digital Part Control
00000C0	AFE_MEM_CONO	32	EKG SRAM Control 0
00000C4	AFE_MEM_CON1	32	EKG SRAM Control 1
000000C8	AFE_MEM_CON2	32	EKG SRAM Control 2
00000CC	AFE_MEM_CON3	32	EKG SRAM Control 3

00000	800	<u>EF</u>	KGFE	_CON	<u>10</u>			EK	GFE (Contr	ol			0	10AE)443
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	RG_RL_ZIN					RG_RL_MODE				RG_IA_GAIN						RG_EKGFE_PD
Туре	R	W				RW				R	W					RW
Reset	1	1				1			0	1	0	0				1

Bit(s)	Name	Description
15:14	RG_RL_ZIN	Input impedance adjustment (Only @2E mode) 11: Zin=500M (default) 10/01: Zin=250M 00: Zin=125M
10	RG_RL_MODE	2E or RLD mode control. 1: 2E mode 0: RLD mode (default)
7:4	RG_IA_GAIN	PGA gain adjustment (V/V) 0000: 1 0001: 2 0010: 3 0011: 4 0100: 6 (default) 0101: 8 0110: 12
0	RG_EKGFE_PD	EKGFE power down: 1: power down, 0: power on

00000	010	EKGADC CONO				EKGADC Control										002F5555		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
Name													EKGA ODESI					
Туре													RW					
Reset												0	1	1				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name																RG_EKGADC_PD		
Туре																RW		
Reset																1		

Bit(s)	Name	Description
20:18	RG_EKGADC_MODESEL	EKGADC Mode Select: 000->fs=64Hz, 001->fs=128Hz, 010->fs=256Hz, 011->fs=512 or 1024 or 2048 or 4096 Hz Set corresponding RG_EKG_DIG_MODESEL at the same time.
0	RG_EKGADC_PD	EKGADC power down: 1->power down, 0->power on

00000	00000064 <u>AFE EKG CON</u>						El		000000В							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											RG_	EKG_	FIFO		EKG_I	
Туре												RW			RW	
Reset											0	0	1	0	1	1

Bit(s)	Name	Description
5:3	RG_EKG_FIFO	EKG FIFO start point
2:0	RG_EKG_DIG_MODESEL	mode selection in EKG: 3b'000->fs=64Hz, 3b'001->fs=128Hz, 3b'010->fs=256Hz,

2015 - 2018 Airoha Technology Corp.

Page 57 of 67

Bit(s)	Name	Description
		3b'011->fs=512Hz,
		3b'100->fs=1024Hz,
		3b'101->fs=2048Hz,
		3b'110->fs=4096Hz.
		Set corresponding RG_EKGADC_MODESEL at the same time.

00000	осо	<u>AF</u>	E_M	EM_(CONO		EKG SRAM Control 0								0000000				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
Name	UPSRAM_CE	UPSRAM_RW_ADDR_AUTO_INC	UPSRAM_ATRIG		UPSRAM_WTRIG	UPSRAM_RTRIG				UPS	RAM_(CUR_A	ADDR						
Туре	R W	RW	RW		RO	RO					R	2O							
Reset	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
Name							UPSRAM_RW_ADDR												
Туре							RW												
Reset							0 0 0 0 0 0 0 0 0 0												

Bit(s)	Name	Description
31	UPSRAM_CE	EKG SRAM chip select
30	UPSRAM_RW_ADDR_AUTO_INC	Automatically increase I2C/SPI access EKG SRAM address 0: no effect 1: automatically increase
29	UPSRAM_ATRIG	Enable access EKG SRAM from I2C/SPI 0: no effect 1: toggle access trigger
27	UPSRAM_WTRIG	Write EKG SRAM from I2C/SPI 0: no effect 1: write trigger
26	UPSRAM_RTRIG	Read EKG SRAM from I2C/SPI 0: no effect 1: read trigger
25:16	UPSRAM_CUR_ADDR	The current access address of EKG SRAM from I2C/SPI
9:0	UPSRAM_RW_ADDR	The access address of EKG SRAM from I2C/SPI

00000	0C4	<u>AF</u>	<u>E_M</u>	EM_(CON1		EKG SRAM Control 1									0000000			
Bit	31	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16																	
Name		UPSRAM_WR_DATA[31:16]																	
Туре								F	2W										
Reset	0																		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
Name						•	UPSR/	M_W	R_DA1	Γ Α[15: 0	D]								
Туре		RW																	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			

Bit(s)	Name	Description
31:0	UPSRAM_WR_DATA	The write data from I2C/SPI to EKG SRAM

00000	0C8	<u>AF</u>	<u>E_M</u>	EM_(CON2		EKG SRAM Control 2								0000000			
Bit	31	81 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16																
Name		UPSRAM_RD_DATA[31:16]																
Туре								F	RO									
Reset	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name		UPSRAM_RD_DATA[15:0]																
Туре		RO																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Bit(s)	Name	Description
31:0	UPSRAM_RD_DATA	The read data from EKG SRAM to I2C/SPI

00000	000000CC AFE MEM CON3							EKG SRAM Control 3 00000								000
Bit	31	30	29	28	27	26	25	25 24 23 22 21 20 19 18 17 16								
Name								FILTER_CUR_ADDR								
Туре											R	0				
Reset							0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											RG	_IRG_	TH			
Туре							RW									
Reset								0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
25:16	FILTER_CUR_ADDR	The current access address of EKG SRAM from EKG FIFO
8:0	RG_IRG_TH	The threshold of EKG SRAM to set irq signal

7.3 Programming Guide

The setting value of EKGFE_CON0 (0x08), EKGADC_CON0 (0x10), and AFE_EKG_CON (0x64) should be set before enabling EKG channel.

- 1. Setting the value to EKGFE_CON0 (0x08), EKGADC_CON0 (0x10), and AFE_EKG_CON (0x64)
- 2. Enable EKG channel (setting AFE_DIG_ENABLE (0x60) = 0x418)

Read/Write EKG SRAM from I2C/SPI

1. READ:

- a. Setting AFE_MEM_CON0 (0xC0) = 0x60000000 | start_addr[9:0]
- b. HW will put read_data from EKG SRAM to AFE_MEM_CON2 (0xC8)

2. WRITE:

- a. Setting AFE MEM CON0 (0xC0) = 0x600000000 | start addr[9:0]
- b. Setting AFE_MEM_CON1 (0xC4) = write_data[31:0]
- c. HW will write write_data to EKG SRAM

8 Heartbeat Interval Estimation

8.1 General Description

MT2511 has a built-in heartbeat interval (BI) detector to reduce power consumption of hear-beat detection. When the signal quality of PPG is good enough, the BI detector is able to approximate wavelength of major tone. Instead of complete PPG signals, only beat time intervals are recorded in SRAM. The MCU is freed from estimating heart rate; as a result the amount of data read from MT2511 SRAM via I2C/SPI is reduced significantly.

Figure 8-1. Heartbeat Detection Flow

Figure 8-2. The Built-in Heartbeat Interval Detector Block Diagram

8.2 Heartbeat Interval Estimation Register Definitions

BASE name: top_reg

Address	Name	Width	Register Function
00000F0	AFE_MEM_CON12	32	BI SRAM Control 0
00000F4	AFE_MEM_CON13	32	BI SRAM Control 1
00000F8	AFE_MEM_CON14	32	BI SRAM Control 2
00000FC	AFE_MEM_CON15	32	BI SRAM Control 3

00000F0	AFE MEM CON12	00000000
---------	---------------	----------

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	UPSRAM_CE	UPSRAM_RW_ADDR_AUTO_INC	UPSRAM_ATRIG		UPSRAM_WTRIG	UPSRAM_RTRIG				UPSI	RAM_0	CUR_A	DDR			
Туре	RW	RW	RW		RO	RO					R	:O				
Reset	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										UPS	RAM_	RW_A	DDR			
Туре								RW								
Reset							0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31	UPSRAM_CE	BI SRAM chip select
30	UPSRAM_RW_ADDR_AUTO_INC	Automatically increase I2C/SPI access BI SRAM address 0: no effect 1: automatically increase
29	UPSRAM_ATRIG	Enable access BI SRAM from I2C/SPI 0: no effect 1: toggle access trigger
27	UPSRAM_WTRIG	Write BI SRAM from I2C/SPI 0: no effect 1: write trigger
26	UPSRAM_RTRIG	Read BI SRAM from I2C/SPI 0: no effect 1: read trigger
25:16	UPSRAM_CUR_ADDR	The current access address of BI SRAM from I2C/SPI
9:0	UPSRAM_RW_ADDR	The access address of BI SRAM from I2C/SPI

OOOOOOF4 AFE MEM CON13

0000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		UPSRAM_WR_DATA[31:16]														
Туре		RW														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							UPSRA	M_W	R_DAT	Γ Α[15: ()]					
Туре		RW														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31:0	UPSRAM_WR_DATA	The write data from I2C/SPI to BI SRAM

OOOOOOF8 AFE MEM CON14

0000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		UPSRAM_RD_DATA[31:16]														
Туре		RO														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							UPSRA	AM_RI	D_DAT	`A[15:0)]					
Туре		RO														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31:0	UPSRAM_RD_DATA	The read data from BI SRAM to I2C/SPI

000000FC <u>AFE MEM CON15</u> 00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Nam e										FILT	TER_C	UR_A	DDR			
Туре											R	0				
Reset							0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Nam e											RG	_IRG_	TH			
Туре												RW				
Reset								0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
25:16	FILTER_CUR_ADDR	The current access address of BI SRAM from BI FIFO
8:0	RG_IRG_TH	The threshold of BI SRAM to set irq signal

8.3 Programming Guide

Enable BI feature:

1. Setting AFE_DIG_ENABLE (0x60) = 0x585

Read/Write BI SRAM from I2C/SPI

2. READ:

- a. Setting AFE_MEM_CON12 (0xF0) = 0x60000000 | start_addr[9:0]
- b. HW will put read_data from BI SRAM to AFE_MEM_CON14 (0xF8)

3. WRITE:

- a. Setting AFE_MEM_CON12 (0xF0) = 0x600000000 | start_addr[9:0]
- b. Setting AFE_MEM_CON13 (0xF4) = write_data[31:0]
- c. HW will write write_data to BI SRAM