

Caso studio italiano:

Valutazione del potenziale "Green Hydrogen" da Power-to-gas

Marzo 2023

Autori:

C. Saccani, A. Guzzini, G. Brunaccini, D. Aloisio, M. Ferraro, M. Pellegrini, F. Sergi

Indice

1. Introduzione ed obiettivi del documento	4
2. Metodologia	5
2.1. Calcolo e localizzazione della domanda di idrogeno	5
2.2. Configurazione di impianto	
2.3. Calcolo dei CAPEX e OPEX degli impianti Power-to-gas	
2.4. Calcolo del costo di trasporto dell'idrogeno	
2.5. Calcolo del costo di connessione dell'impianto alla rete elettrica	
Risultati: stima dei costi e potenzialità di rinnovabili	
3.1. CAPEX e OPEX degli impianti di Power to gas	
3.2. Costo di trasporto dell'idrogeno	
4. Caso di studio regionale: risultati	
e	
4.1. Stima della domanda di idrogeno	
4.2. Analisi economica: Investimento e Levelized Cost of Hydrogen (LCOH)	
5. Caso di studio nazionale: risultati	
5.1. Stima e localizzazione della domanda di idrogeno	
5.2. Analisi economica: investimento e Levelized Cost of Hydrogen (LCOH)	
6. Conclusioni	
7. Appendice	29
8. Contatti utili	34
Indice delle figure	
Figura 1. Diagramma a blocchi della configurazione di impianto ipotizzata per le analisi successive	7
Figura 2. CAPEX elettrolizzatore alcalino nelle condizioni indicate.	8
Figura 3. Potenza elettrica motore del compressore.	10
Figura 4. CAPEX dell'impianto in funzione della taglia dell'elettrolizzatore al 2023	
Figura 5. CAPEX dell'impianto in funzione della taglia dell'elettrolizzatore al 2030.	
Figura 6. CAPEX dell'impianto in funzione della taglia dell'elettrolizzatore al 2050	
Figura 7. OPEX impianto nelle condizioni ipotizzate al 2023. (Comportamento proporzionale al costo dell'energi	
Figura 8. OPEX impianto nelle condizioni ipotizzate al 2030. (Comportamento proporzionale al costo dell'energi	
Figura 9. OPEX impianto nelle condizioni ipotizzate al 2050. (Comportamento proporzionale al costo dell'energi	
Figura 10. Produzione di idrogeno annualmente attesa con le ipotesi di prestazione formulate.	
Figura 11. LCOH al 2023 per diversi valori del costo di acquisto dell'energia elettrica	
Figura 12. LCOH al 2030 per diversi valori del costo di acquisto dell'energia elettrica Figura 13. LCOH al 2050 per diversi valori del costo di acquisto dell'energia elettrica	
Figura 14. LCOH al 2030 per diversi valori dei costo di acquisto dell'energia elettrica Figura 14. LCOH relativo al trasporto dalla centrale di produzione al centro di consumo	
Figura 15. LCOH ripartito per costi di impianto, trasporto e connessione alla rete	
Figura 16. Rappresentazione grafica degli impianti sul territorio pugliese al 2030 ed al 2050.	
Figura 17. Domanda di idrogeno per la mobilità autostradale suddivisa per provincia al 2030	
Figura 18. Domanda di idrogeno per la mobilità autostradale suddivisa per provincia al 2050	
Figura 19. Scenario traffico "base" e distanza massima di trasporto pari a 200 km al 2030	
Figura 20. Scenario traffico "opt" e distanza massima di trasporto pari a 200 km al 2030.	
Figura 21. Scenario traffico "base" e distanza massima di trasporto pari a 500 km al 2030	
Figura 22. Scenario traffico "opt" e distanza massima di trasporto pari a 500 km al 2030	
Figura 23. Numero di impianti installati nei quattro casi dello scenario al 2030 per taglia installata in [kW]	
Figura 24. Scenario traffico "base" e distanza massima di trasporto pari a 200 km al 2050	
Figura 25. Scenario traffico "opt" e distanza massima di trasporto pari a 200 km al 2050.	27
Figura 26. Scenario traffico "base" e distanza massima di trasporto pari a 500 km al 2050.	
Figura 27. Scenario traffico "opt" e distanza massima di trasporto pari a 500 km al 2050.	
Figura 28. Numero di impianti installati nei quattro casi dello scenario al 2050 per taglia installata in [kW]	28

Simboli utilizzati

Parametro	Simbolo	U.d.M
Anno di riferimento	Anno	[-]
CAPEX elettrolizzatore alcalino	CAPEX _{AEK}	[€]
CAPEX altri costi	CAPEX _{OTHER}	[€]
CAPEX compressore	CAPEX _{COMP}	[€]
CAPEX stazione di riempimento	CAPEX _{FILLING}	[€]
CAPEX stoccaggio	CAPEX _{STORAGE}	[€]
Coefficiente di conversione dollaro canadese-euro	α	[\$/€]
Consumo specifico di acqua	g _{H2O}	[litri/kg]
Consumo specifico di energia elettrica	c	[kWh/kg]
Consumo di idrogeno nella linea ferroviaria i-esima	$M_{\rm H2,i}$	[kg]
Consumo specifico di idrogeno	δ	[kg/km]
Costo acqua	c _{H2O}	[€/m³]
Costo combustibile	Cfuel	[€/litro]
Costo energia elettrica	Cel	[€/kWh]
Costo overhead	γ	[%]
Costo personale	Cpers	[€/h]
Costo stack	a _{stack}	[%]
Costo stazione di riempimento	Cfilling	[€]
Costo stoccaggio	C _{storage}	[€/kg]
Distanza percorsa	D	[km]
Distanza alla più vicina sottostazione elettrica	D _{ik}	[km]
Distanza fra l'impianto e la più vicina stazione di trasformazione ad alta tensione	D _{i'k'}	[km]
Distanza percorsa da autovetture, mezzi pesanti, autobus	D _k	[km]
Inverso del consumo specifico	$\varepsilon_{\rm k}$	[km/kg]
Levelized Cost of Hydrogen	LCOH	[€/kg]
Levelized Cost of Hydrogen - Trasporto	LCOH _{trasporto}	[€/kg]
Lunghezza tratta ferroviaria i-esima	Li	[kg]
Manutenzione ordinaria annuale	O&M	[%]
Massa stoccaggio	M _{storage}	[kg]
Massa di idrogeno trasportabile per trailer	M _{trailer}	[kg]
Numero di compressori	N _{comp}	[-]
Numero veicoli nell'area di indagine	N _k	[-]
Numero di stack	N _{stack}	[-]
Numero di stazioni di riempimento	N _{filling}	[-]
OPEX acquisto acqua	OPEX _{H2O}	[€/anno]
OPEX acquisto energia elettrica	OPEX _{el}	[€/anno]
OPEX compressore	OPEX _{COMP}	[€/anno]
OPEX elettrolizzatore alcalino	OPEX _{AEK}	[€/anno]
OPEX manutenzione	OPEX _{O&M}	[€/anno]
OPEX sostituzione stack	OPEX _{stack}	[€/anno]
OPEX stoccaggio	OPEX _{STORAGE}	[€/anno]
Ore di funzionamento annuali	t _{anno}	[h/anno]
Ore di funzionamento centrale di riempimento	t _{filling-day}	[h/day]
Ore per sostituzione stack	t _{sub}	[h/stack]
Ore di riempimento trailer	t _{filling}	[h/trailer]
Penetrazione idrogeno	ρ	[%]
Potenza elettrolizzatore	P _{el}	[kW]
Potenza elettrica motore del compressore	P _{el,comp}	[kW]
Potenza elettrica assorbita dal compressore	Pel,comp	[kW]
Tasso di attualizzazione	t	[%]
Vita utile	T	[anni]

1. Introduzione ed obiettivi del documento

Il presente documento descrive l'applicazione del tool realizzato all'interno del progetto SuperP2G da CNR-ITAE e UNIBO in riferimento a due casi d'uso (nazionale e regionale), riguardanti la penetrazione della mobilità ad idrogeno sul territorio italiano.

Il tool di pianificazione sviluppato fornisce come principali risultati l'allocazione ottima degli impianti di produzione di idrogeno verde basati sull'elettrolisi e la loro taglia, in funzione delle rinnovabili e della domanda di idrogeno presenti in un dato territorio. Inoltre, gli output di calcolo rilasciano anche una caratterizzazione economica delle soluzioni trovate in termini di "cost breakdown", in riferimento ai costi d'investimento, quelli relativi alla connessione alla rete elettrica, al trasporto di idrogeno verso gli utilizzatori, senza tralasciare i costi operativi d'impianto.

Elementi chiave per l'applicazione del tool a casi reali sono la stima della domanda di idrogeno e la definizione dei costi che entrano in gioco in riferimento alle specifiche tecnologie.

A tal proposito è stato necessario sviluppare scenari futuri che tengano conto di una penetrazione del vettore idrogeno rilevante ai fini dell'applicazione del tool, considerando le proiezioni di mercato sia in termini di sviluppo e scale-up delle tecnologie che di possibile domanda di idrogeno. Si è scelto di analizzare i due scenari di riferimento attuali così come previsto nella strategia europea sull'idrogeno e nel "New Green Deal" con i relativi target al 2030 e al 2050.

Nello specifico i due casi studio sviluppati riguardano:

- Penetrazione del vettore idrogeno a livello nazionale nella mobilità veicolare al 2030 e al 2050. Questo caso studio è basato sulla conversione (parziale) in idrogeno delle attuali stazioni di rifornimento di carburante presenti sulle autostrade italiane.
- 2) Penetrazione del vettore idrogeno a livello regionale nella mobilità veicolare al 2030 e al 2050. Questo caso studio è basato sulla conversione (parziale) in idrogeno delle attuali stazioni di rifornimento di carburante presenti nella regione Puglia.

I casi studio hanno messo in luce l'importanza di pianificare attentamente il sistema energetico del futuro sia per la massimizzazione della valorizzazione delle risorse distribuite, sia per la minimizzazione dei costi dell'idrogeno prodotto e consegnato.

I risultati numerici ottenuti in termici di stima del Levelized Cost of Hydrogen (LCOH) nei relativi scenari di riferimento, ci consegnano un quadro abbastanza chiaro, utile per una riflessione molto più ampia sulle potenzialità, i limiti, le necessarie azioni di incentivo delle tecnologie e di stimolo del mercato, necessari per poter sostenere la transizione energetica anche attraverso l'impiego delle tecnologie ad idrogeno.

2. Metodologia

Nei seguenti paragrafi è descritta la metodologia applicata per lo svolgimento e l'analisi dei due casi di studio a livello regionale e nazionale. Nel primo paragrafo sono riportate le ipotesi applicate per la stima della domanda di idrogeno nell'area di indagine. Nel secondo paragrafo è descritta la configurazione di impianto Power-to-gas per la produzione di idrogeno, mentre nel successivo sono riportate le ipotesi tecno-economiche per il calcolo del CAPEX e degli OPEX. Nel quarto e quinto paragrafo sono riportate i modelli per il calcolo, rispettivamente, del costo di trasporto dell'idrogeno dalla centrale di produzione all'utilizzatore e per la connessione della centrale alla sottostazione elettrica.

2.1. Calcolo e localizzazione della domanda di idrogeno

Come indicato nel deliverable D1, ad oggi non sono disponibili database pubblicamente accessibili sulla domanda di idrogeno presente nel territorio nazionale e regionale. Solitamente, infatti, queste informazioni sono conservate dalle aziende produttrici di gas tecnici rappresentando infatti un'informazione confidenziale rispetto al mercato. Peraltro, gli impianti di produzione idrogeno da fonte rinnovabile sono considerati un competitor da parte di queste aziende.

Sulla base di queste difficoltà, nel progetto si è cercato di stimare la domanda di idrogeno utilizzando dati di letteratura, report e formulando, laddove non presenti informazioni utili, modelli di stima ad hoc. I principali settori di consumi idrogeno sono ad oggi:

- Raffinerie
- Settore chimico
- Altri settori fra cui il siderurgico, il food and beverage, il settore dell'elettronica, le vetrerie etc.

Secondo la stima fornita da H2IT¹, nel 2021, il consumo di idrogeno atteso in Italia era pari a 560.000 ton/anno di cui, 464.000 ton/anno (82.9%) nelle raffinerie, 48.000 ton/anno (8.6%) nel settore chimico e il restante in altre attività.

Alla domanda sopra riportata occorre tuttavia aggiungere anche altri consumi possibili relativi al settore mobilità, ovvero per le autovetture che per la riconversione di tratte ferroviarie attualmente non elettrificate.

Settore mobilità – autoveicoli

Per il settore di mobilità veicolare si sono sviluppati due modelli differenti in funzione del focus investigato come di seguito descritto. In particolare, si sono analizzati due casi di studio differenti:

- 1. Conversione delle stazioni di rifornimento autostradale, ovvero su scala nazionale, ad idrogeno
- 2. Conversione di alcune stazioni di rifornimento locali, ovvero su scala regionale pugliese.

Nel primo caso autostradale i dati disponibili sono forniti da ANISCAT² e da ANISA³. Al 2019, ovvero prima dell'emergenza da pandemia covid, la rete autostradale italiana aveva una lunghezza complessiva di circa 7000 km ed è stata percorsa da oltre 80 miliardi di veicoli per km all'anno. In Italia sono presenti circa 440 stazioni di rifornimento sulla rete in cui si consumano annualmente:

- 243 milioni di litri di benzina
- 136 milioni di litri di gas di petrolio liquefatto (GPL)
- Oltre 975 milioni di litri di diesel.

Per ciascuna tratta della rete autostradale sono noti i consumi complessivi di carburante. Pertanto, semplificando il problema e ridistribuendo il consumo attuale nelle stazioni di rifornimento localizzate lungo la tratta, si è calcolato il consumo stimato di idrogeno nel medio (2030) e lungo termine (2050). Nel caso di medio termine si è ipotizzato una penetrazione dell'idrogeno pari al 2% mentre nel lungo termine una penetrazione del 15-30%. Maggiori dettagli sono riportati nella pubblicazione⁴.

-

¹ H2IT, 2019. Piano nazionale di sviluppo. Mobilità Idrogeno Italia.

² AISCAT, 2019. https://www.aiscat.it/wp-content/uploads/2021/07/Trimestrale-3-4-2019_per-web.pdf

³ ANISA. 2021. Report_autostrade_rete_in_concessione_2001_2020.pdf

⁴ Guzzini et al. 2022. https://www.mdpi.com/2071-1050/15/3/2080

Preme evidenziare che tale approccio si rende disponibile non essendo nota la tipologia di veicoli che effettuano il rifornimento nelle stazioni. Inoltre, implicitamente, si è assunto che il rendimento dei motori a combustione interna a benzina, diesel, GPL e dei sistemi di propulsione ad idrogeno sia circa lo stesso. Sebbene questa ipotesi comporti una stima meno precisa, si ritiene che tale ipotesi sia accettabile nello studio di scenario in essere.

Nel secondo caso, invece, si è proceduto con un'analisi più dettagliata in ambito locale. In particolare, a tale scopo sono stati analizzati i dati resi disponibili dall'ACI sul numero di autovetture, mezzi pesanti, furgoni, ed autobus immatricolati sul territorio a livello comunale. In realtà occorre precisare che il database disponibile in rete non fornisce una distinzione fra furgoni e mezzi pesanti a livello di comune ma solo a livello provinciale. Pertanto, si è ipotizzato che la ripartizione fra mezzi pesanti e furgoni a livello provinciale fosse la stessa anche a livello comunale. Per mezzi pesanti si sono considerati tutti i mezzi aventi una massa superiore alle 3.5 tonnellate.

Il consumo di idrogeno è stato calcolato con l'Eq. (1):

$$M_{\rm H2.i} = \sum \left(\frac{\rm DL_k}{\varepsilon_{\rm k}}\right) \times N_{\rm k} \times \rho_{\it k} \tag{1}$$

Dove:

D_k è la distanza media percorsa annualmente dal mezzo che è assunta pari a:

Autovetture: 11000 km/anno⁵
 Furgoni: 40.000 km/anno⁶

• Mezzi pesanti: 120.000-150.000 km/anno

• Autobus: 60.000 km/anno

ε è l'inverso del consumo specifico⁷ pari a:

Autovetture: 125 km/kg
Furgoni: 111 km/kg
Mezzi pesanti: 11.1 km/kg
Autobus: 15.4 km/kg

N_k è il numero di veicoli immatricolati nell'area di indagine.

 ρ è la penetrazione dell'idrogeno nel settore mobilità assunto pari al 2030 in riferimento al numero attuale di veicoli da fonte FCHJU⁸:

Autovetture: 1.0-1.9%
Furgoni: 0.6-1.2%
Mezzi pesanti: 0.5-1.1%
Autobus: 0.9-1.8%

Al 2050 si assume una penetrazione dell'idrogeno nel settore mobilità fino al 30% per i veicoli leggeri in accordo alla stima di Cobertaldo et al. 2017⁹ e Shell¹⁰. Sempre nel report di Shell si ipotizza che per i mezzi pesanti una totale conversione ad idrogeno al 2050. Conservativamente, si assume che sia il numero di veicoli che la percorrenza media rimangano costanti.

Relativamente alla distribuzione sul territorio di questa domanda, occorre premettere che ad oggi non sono stati realizzati piani di sviluppo a livello regionale e/o nazionale per un'infrastruttura di rifornimento idrogeno

 $^{^5}$ https://unrae.it/files/Book%20UNRAE%202019_5e81efee08ac9.pdf

⁶ https://www.tuttotrasporti.it/content/tuttotrasporti/it/listini-nuovo/CostiEsercizio.cal.html

⁷ Zemo Partnership, 2021. Hydrogen Vehicle Well-to-Wheel GHG and Energy Study. Pag. 13.

⁸ https://www.lei.lt/wp-content/uploads/2020/09/Final-Report-Hydrogen-in-NECPs-28-8-2020-ID-9474232.pdf. Pag. 62

⁹ Cobertaldo et al. 2017. The role of hydrogen mobility in fulfilling EU 2050 targets on GHG emissions reduction. EFC Conference.

¹⁰https://www.shell.com/energy-and-innovation/the-energy-future/scenarios/the-energy-security-

scenarios/_jcr_content/root/main/section_926760145/simple/promo/links/item0.stream/1679344984968/5bc8327925d66e1402040d0e79fed7291bf9b7e9/energy-security-scenarios-full-report.pdf

https://www.hydrogeninsight.com/transport/hydrogen-will-be-preferred-solution-for-long-haul-trucks-but-all-cars-will-be-battery-electric-shells-new-2050-scenario/2-1-1423292

tale da poter soddisfare questa domanda. Inoltre, esula da questo studio l'ottimizzazione delle stazioni rifornimento idrogeno che nel futuro saranno localizzate sul territorio.

Pertanto, per semplicità, si assumerà di localizzare le potenziali stazioni di rifornimento del futuro presso le stazioni di rifornimento attuali, opportunamente modificate allo scopo. Tale ipotesi, se da un lato garantisce una semplificazione del problema, dall'altro tiene conto del fatto che l'installazione di una nuova stazione di rifornimento idrogeno richiede il rispetto di vincoli progettuali molto stringenti, fra cui le distanze di sicurezza che potrebbero complicare e non poco la scelta di nuovi siti. Ipotizzare di localizzare le nuove stazioni di rifornimento in sostituzione delle esistenti, dunque, non solo riduce la complessità del caso di studio, ma potrebbe rappresentare anche una soluzione di buon compromesso nella realtà in quanto le stazioni di rifornimento tradizionali devono già ad oggi rispettare vincoli autorizzativi molto stringenti garantendo, al contempo, il servizio nelle posizioni logisticamente migliori per traffico veicolare. Inoltre, installare stazioni di rifornimento idrogeno in altri siti, richiederebbe lo smantellamento, e smaltimento delle stazioni ma anche il recupero delle aree dove sono localizzate le stazioni di rifornimento.

2.2. Configurazione di impianto

Nel caso di studio oggetto dello studio si è ipotizzato un impianto costituito dalle seguenti sezioni schematicamente rappresentate nel diagramma a blocchi in Figura 1.

Macro sezioni di impianto:

- 1. Elettrolizzatore:
- 2. Compressore;
- 3. Serbatoio;
- 4. Unità di filling per il riempimento di cisterne mobili con idrogeno gassoso in pressione.

Figura 1. Diagramma a blocchi della configurazione di impianto ipotizzata per le analisi successive.

Come riportato nel deliverable D.1 dal titolo "Framework di pianificazione territoriale per lo sfruttamento del Green Hydrogen attraverso tecnologie P2G", il calcolo svolto dal tool è per valori discreti della potenza elettrica dell'elettrolizzatore.

Preme evidenziare che in entrambi i casi di studio si è analizzato il solo trasporto dell'idrogeno su gomma. Questa scelta è motivata dai ridotti quantitativi di idrogeno prodotto da Power-to-gas attesi nel medio periodo dal mercato nazionale e dalla limitata distanza fra impianti di produzione e centri di consumo.

2.3. Calcolo dei CAPEX e OPEX degli impianti Power-to-gas

CAPEX e OPEX dell'elettrolizzatore

Per il caso di studio si è ipotizzato di adottare la tecnologia alcalina, preferendola quindi alla tecnologia PEM. Tale scelta è motivata principalmente dalle seguenti due considerazioni:

- 1. L'elettrolizzatore alcalino presenta attualmente un costo specifico (€/kW) inferiore a quello PEM;
- 2. L'elettrolizzatore è collegato alla rete elettrica, ovvero non sono richieste risposte al transitorio rapide tipiche di un elettrolizzatore PEM che sarebbero invece necessarie in caso di configurazione di impianto del tipo off-grid (ordine dei secondi).

Per il calcolo del CAPEX [€] si applica l'eq. (2) riportata nel Deliverable D.1 tratta da Reksteen¹¹:

$$CAPEX_{AEK} = P_{el} \times (301.04 + 11603 \times P_{el}^{0.649-1}) \times \left(\frac{Anno}{2020}\right)^{-27.33}$$
(2)

Dove:

P_{el} è la potenza elettrica dell'elettrolizzatore in [kW]. Anno è l'anno di riferimento dello studio.

A questa voce vanno aggiunti gli altri costi (ingegneria, autorizzazioni, acquisti terreni, commissioning, etc.) necessari per la realizzazione della centrale e calcolabili secondo l'Eq. (3) dove è assunto che il massimo contributo degli altri costi sia pari al 45% del valore della componentistica:

$$CAPEX_{OTHER} = \min\left(\left(0.1 \times \left(\frac{2500}{P_{el}}\right) + 0.35\right) \times CAPEX_{AEK}; 0.45 \times CAPEX_{AEK}\right)$$
(3)

Si riporta nella Figura 2 il CAPEX calcolato assumendo come anno di riferimento il 2023 ed il 2030. Per scenari a più lunga proiezione (2050) si assume una riduzione di circa il 50% rispetto al valore nel 2030¹².

Figura 2. CAPEX elettrolizzatore alcalino nelle condizioni indicate.

L'effetto scala è evidente dalla figura. Per esempio installare un impianto da 100 MW costerebbe circa 65.5 M€ nel 2030 (circa 650 €/kW inclusi i costi indiretti). Installare quattro impianti da 50 MW costerebbe, invece, 73 M€, mentre quattro impianti da 25 MW costerebbe circa 82 M€.

¹¹ Reksteen et al. 2022. Projecting the future cost of PEM and alkaline water electrolysers; a CAPEX model including electrolyser plant size and technology development.

¹² Gorre et al. 2019. Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage. https://www.sciencedirect.com/science/article/pii/S0306261919312681#b0050

Per il calcolo degli OPEX [€] si applicano le Eq. (4-9) in cui sono inclusi i costi per l'acquisto dell'energia elettrica, i costi per l'acquisto dell'acqua, i costi per la manutenzione ordinaria annuale ed i costi di sostituzione dello stack.

$$OPEX_{AEK} = OPEX_{el} + OPEX_{H2O} + OPEX_{O\&M} + OPEX_{stack}$$
 (4)

$$OPEX_{el} = P_{el} \times c_{el} \times t_{anno}$$
 (5)

$$OPEX_{H2O} = g_{H2O} \times \frac{c_{H2O}}{1000} \times \frac{P_{el}}{c} \times t_{anno}$$
 (6)

$$OPEX_{O\&M} = CAPEX_{AEK} \times O\&M \tag{7}$$

$$OPEX_{stack}^{13} = N_{stack} \times \frac{(a_{stack} \times CAPEX_{AEK})}{T} = \frac{T \times t_{anno}}{t_{sub}} \times \frac{(a_{stack} \times CAPEX_{AEK})}{T}$$
(8)

Dove:

cel è il costo di acquisto dell'energia elettrica in [€/kWh]

tanno è il numero di ore di funzionamento all'anno [h/anno]

c_{H2O} è il costo di acquisto dell'acqua pari a 1.3 [€/m³]

c è il consumo specifico dell'elettrolizzatore [kWh/kg_{H2}] assunto pari per la tecnologia alcalina a 50 kWh/kg e 48 kWh/kg nel 2023 e nel 2030¹⁴ e pari a 42.7 kWh/kg¹⁵ nel 2050. Il consumo nel 2023 e nel 2030 è assunto valido nelle seguenti condizioni:

- Regime: 100% (full load). Nelle analisi si trascura il derating causato dal funzionamento in parzializzazione;
- Pressione di produzione dell'idrogeno: 30 barg;
- Purezza idrogeno prodotto: in accordo a ISO 14687-2.

g_{H2O} è il consumo specifico di acqua pari a 9 [litri/kg_{H2}].

O&M è il coefficiente di manutenzione ordinaria annuale pari a:

- 4% del CAPEX per potenze elettriche installate inferiori a 1 MW
- 3% del CAPEX per potenze elettriche installate comprese fra 1 MW e 5 MW
- 2% del CAPEX per potenze elettriche superiori a 5 MW

a_{stack} è il fattore di costo per la sostituzione dello stack assunto pari al 15%.

T è la vita utile totale dell'elettrolizzatore [anni]

t_{sub} è il numero di ore dopo cui si rende necessario sostituire lo stack, valore assunto pari a 60.000 [h/stack]¹⁶

Preme evidenziare che nel calcolo del LCOH il costo di sostituzione dello stack dovrà essere imputato nell'anno in cui viene realizzato per una corretta attualizzazione dei costi.

Così come per il CAPEX anche per l'OPEX devono essere considerati altri costi generali non direttamente imputabili all'elettrolizzatore (costi operativi indiretti) come calcolato in Eq. (9):

$$OPEX_{OTHER} = 0.04 \times CAPEX_{OTHER}$$
 (9)

CAPEX e OPEX della sezione di compressione

A valle della sezione di elettrolisi per la produzione dell'idrogeno è previsto il sistema di compressione fino alla pressione finale di riempimento del trailer. A tale scopo si ipotizza un riempimento del trasporto ad una

¹³ https://www.hydrogen.energy.gov/pdfs/19009 h2 production cost pem electrolysis 2019.pdf

¹⁴ https://www.clean-hydrogen.europa.eu/knowledge-management/strategy-map-and-key-performance-indicators/fch-2-ju-mawp-key-performance-indicators-kpis_en

¹⁵ Gorre et al. 2019. Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage. https://www.sciencedirect.com/science/article/pii/S0306261919312681#b0050

¹⁶ Sergi et al. (2020). https://superp2g.wvgw-kunden.de/wp-content/uploads/2022/09/SUPERP2G_ITALY_Internal_Report_M1.pdf

pressione finale di 500 barg¹⁷. Inoltre, per motivi di ridondanza e sicurezza del servizio, si assume la presenza di due stazioni di compressione che funzionano in alternativa.

Per quanto riguarda i CAPEX si utilizza il modello proposto da Khan et al. (2021) proposto nel deliverable D.1 per compressori ad elevato rapporto di compressione e riportato in Eq. (10). Preme evidenziare che nel testo i valori sono riportati in dollari canadesi. Di conseguenza le correlazioni riportate riportano anche i coefficienti di conversione. Preme evidenziare che si assume che il CAPEX nel 2030 sia circa pari a quello attuale mentre al 2050 si assume una riduzione del 50% rispetto al valore attuale, ovvero un valore inferiore a quello di altre stime in letteratura¹⁸.

$$CAPEX_{COMP} = \alpha \times N_{comp} \times 1.3 \times (62909.9 \times P_{el.comp}^{0.6038})$$
(10)

Dove:

N_{comp} è il numero di compressori in centrale, assunto pari a 2

P_{el,comp} è la potenza elettrica del motore elettrico [kW].

α è il coefficiente di conversione da dollaro canadese del 2019 a euro attuale. Attualmente, tenendo conto dell'inflazione, il valore al 2023 di un dollaro canadese del 2019 è pari a 0.739 €.

Per la potenza elettrica del compressore si è assunto un valore tratto da prodotti disponibili sul mercato per compressori che comprimono idrogeno da una pressione di 30 barg ad una pressione di 550 barg¹⁹. Per il calcolo della potenza specifica [kW/kg_{H2}] si utilizza la correlazione riportata in Figura 3.

Per semplicità, si assume che la portata del compressore sia pari a quella dell'elettrolizzatore. In realtà fra compressore ed elettrolizzatore è solitamente presente un buffer o polmone che garantisce il disaccoppiamento dei due componenti non essendo, nei casi reali, esattamente le stesse. In questo studio preliminare si trascura la presenza del buffer.

Figura 3. Potenza elettrica motore del compressore.

Per quanto riguarda gli altri costi necessari al completamento dell'installazione (ingegneria, preparazione del sito, commissioning, etc.), questo può essere calcolato come percentuale del costo precedente, Eq. (11):

$$CAPEX_{OTHER} = 0.28 \times CAPEX_{COMP}$$
 (11)

Nel caso in esame si è assunto che gli altri costi siano al massimo il 28% del costo per la componentistica.

1'

¹⁷ Lahnaoui, A.; Wulf, C.; Dalmazzone, D. Optimization of Hydrogen Cost and Transport Technology in France and Germany for Various Production and Demand Scenarios. Energies 2021, 14, 744. https://doi.org/10.3390/en14030744

¹⁸ https://arxiv.org/pdf/2202.02711.pdf

¹⁹ https://www.burckhardtcompression.com/wp-content/uploads/2022/01/bc_fly_H2-Overview_220105.pdf

Per il calcolo degli OPEX [€] si applicano le Eq. (12-15) in cui sono inclusi i costi per l'acquisto dell'energia elettrica, i costi per la manutenzione ordinaria annuale:

$$OPEX_{COMP} = OPEX_{el} + OPEX_{O&M}$$
 (12)

$$OPEX_{el} = \widehat{P_{el,comp}} \times c_{el} \times t_{anno}$$
 (13)

$$OPEX_{O\&M} = CAPEX_{COMP} \times O\&M$$
 (14)

Dove:

P_{el,comp} è la potenza elettrica assorbita dalla rete per comprimere l'idrogeno dalla pressione di 30 barg a 550 barg. Nel caso di studio, la potenza elettrica assorbita è stata calcolata mediante software di calcolo Aspen Hysys assumendo una compressione nelle seguenti condizioni:

- Pressione in ingresso: 31 bara
- Temperatura in ingresso: 20 C
- Rendimento isoentropico: 75%

La compressione è stata ottimizzata minimizzando il lavoro di compressione, ovvero ipotizzando una compressione su più stadi interrefrigerata fino ad una temperatura di 35 C (raffreddamento ad acqua da torre di raffreddamento). In particolare, si assume che il rapporto di compressione complessivo sia equamente suddiviso fra i due compressori (β = 4.2). In questo caso la potenza elettrica assorbita è pari a 1.754 kWh/kg. O&M è il coefficiente di manutenzione ordinaria annuale pari al 6.1% del CAPEX

t_{anno} è il numero di ore di funzionamento del compressore. Avendo ipotizzato di aver installato due compressori, il tempo di funzionamento di ciascun compressore è assunto pari alla metà del numero di ore di funzionamento dell'elettrolizzatore.

Così come per il CAPEX anche per l'OPEX devono essere considerati altri costi generali non direttamente imputabili al compressore (costi operativi indiretti). Da Khan et al. Tale fattore di costo si calcola:

$$OPEX_{OTHER} = 288 \times \left(\frac{\frac{P_{el}}{c}}{100000}\right)^{0.25} \times c_{pers} \times \alpha \times (1 + \gamma)$$
(15)

Dove:

 c_{pers} è il costo del personale assunto pari a 49.66 \$/h per gli interventi sul compressore γ è il costo per overhead, ovvero le spese generali che possono essere attribuite al compressore, assunto pari al 50%.

CAPEX e OPEX della sezione di stoccaggio

In letteratura i valori disponibili per la sezione di stoccaggio sono discordanti. Pertanto, i valori proposti derivano da offerte economiche ricevute a fronte di richieste di mercato per altre applicazioni. Preme inoltre evidenziare che le offerte fanno riferimento a volumi di stoccaggio realizzati con bombole da 50 lt a 200 barg. Il valore ottenuto è pari a 470 €/kg. In accordo al documento pubblicato da FCHJU²⁰ si può assumere un valore di 590 €/kg, ovvero un costo superiore del 25% rispetto al valore trovato per lo stoccaggio a 200 bar. Come per il compressore si assume che il CAPEX nel 2030 sia circa pari a quello attuale mentre al 2050 si assume una riduzione del 50% rispetto al valore attuale. Il calcolo è svolto secondo Eq. (16)

$$CAPEX_{STORAGE} = M_{storage} \times c_{stoc}$$
 (16)

⁻

²⁰ FCH JU. 2017. Study on early business cases for H2 in energy storage and more broadly power to H2 applications, EU Commission. https://hsweb.hs.uni-hamburg.de/projects/star-formation/hydrogen/P2H Full Study FCHJU.pdf

Dove:

M_{storage} è la massa stoccata [kg].

c_{stoc} è il costo di stoccaggio a 500 barg assunto pari a 590 €/kg.

Per il calcolo della massa di stoccaggio si ipotizza uno stoccaggio pari a 1 giorno, ovvero uno stoccaggio che possa garantire il rifornimento per almeno un giorno in caso di problemi sull'impianto di produzione dell'idrogeno. Dunque la massa stoccata si calcola applicando l'Eq. (17):

$$M_{\text{storage}} = \frac{P_{\text{el}}}{c} \times 24 \tag{17}$$

Per quanto riguarda gli altri costi necessari al completamento dell'installazione (ingegneria, preparazione del sito, commissioning, etc.), questo può essere calcolato come percentuale del costo precedente, Eq. (18):

$$CAPEX_{OTHER} = 0.35 \times CAPEX_{STORAGE}$$
 (18)

Per il calcolo degli OPEX [€] si applicano le Eq. (19-21) in cui sono inclusi i costi di manutenzione e verifica periodica in accordo al DM 329/04 sugli elementi di sicurezza e sull'integrità del serbatoio.

$$OPEX_{STORAGE} = OPEX_{O\&M}$$
 (19)

$$OPEX_{O\&M} = CAPEX_{STORAGE} \times O\&M$$
 (20)

Dove:

O&M è il coefficiente di manutenzione ordinaria annuale pari al 2% del CAPEX.

Così come per il CAPEX anche per l'OPEX devono essere considerati altri costi generali non direttamente imputabili all'elettrolizzatore (costi operativi indiretti):

$$OPEX_{OTHER} = 0.04 \times CAPEX_{OTHER}$$
 (21)

CAPEX e OPEX dello skid di riempimento dei trailer

Lo skid di riempimento dei trailer è l'impianto di controllo e regolazione portata dal serbatoio all'interno dei trailer per il trasporto dell'idrogeno alle utenze sul territorio. Relativamente al CAPEX vale l'Eq. (22):

$$CAPEX_{FILLING} = N_{filling} \times c_{filling}$$
 (22)

Dove:

N_{FILLING} è il numero di stazioni per il riempimento dei trailer presenti in centrale c_{filling} è il costo di ciascuna stazione, o "baia di riempimento", assunto pari a 200.000 €

Il numero di stazioni di riempimento è calcolato, in prima approssimazione, in modo che l'idrogeno prodotto giornalmente sia pari a quello caricato sui trailer, ovvero secondo l'Eq. (23):

$$N_{\text{filling}} \times M_{\text{trailer}} \times N_{\text{camion}} = N_{\text{filling}} \times M_{\text{trailer}} \times \frac{t_{\text{filling-day}}}{t_{\text{filling}}} = \left(\frac{P_{\text{el}}}{c} \times 24\right)$$
(23)

Dove:

Dove

M_{trailer} è la massa contenuta in un singolo trailer, pari a 1100 kg.

 N_{camion} è il numero di trailer che possono essere riempiti nella singola baia di riempimento giornalmente. Questo valore è calcolato come rapporto fra il numero di ore disponibili in una giornata $t_{filling-day}$, assunto pari a 8 h, ed il numero di ore per il riempimento di un singolo trailer $t_{filling}$. Il tempo di riempimento è stimato in 2 h assumendo un rateo di riempimento pari a 300 g/s²¹ (=1080 kg/h) ed un tempo di peak-up pari a 1 h.

²¹ https://h2.live/wp-content/uploads/2022/03/H2M Overview HDV Refuelling 2022.pdf

Da cui risulta l'Eq. (24):

$$N_{\text{filling}} = \operatorname{Arrotonda}\left(\max\left(1; \frac{\left(\frac{P_{el}}{c} \times 24\right)}{M_{trailer} \times \frac{t_{filling-day}}{t_{filling}}}\right)\right) \tag{24}$$

Come si vede dall'equazione, aumentando il tempo richiesto per il riempimento, ovvero riducendo il numero di ore disponibili in centrale per completare il riempimento, aumentano il numero di stazioni richieste. Preme evidenziare che il numero minimo di baie di riempimento è assunto pari ad 1. Inoltre, il numero risultante viene arrotondato all'intero immediatamente superiore.

Come per il compressore si assume che il CAPEX nel 2030 sia circa pari a quello attuale mentre al 2050 si assume una riduzione del 50% rispetto al valore attuale.

Per quanto riguarda gli altri costi necessari al completamento dell'installazione (ingegneria, preparazione del sito, commissioning, etc.), questo può essere calcolato come percentuale del costo precedente, Eq. (25):

$$CAPEX_{OTHER} = 0.35 \times CAPEX_{FILLING}$$
 (25)

Per il calcolo degli OPEX [€] si applica le Eq. (26-28) in cui sono inclusi i costi di manutenzione e verifica periodica in accordo al DM 329/04 sugli elementi di sicurezza e sull'integrità del serbatoio.

$$OPEX_{FILLING} = OPEX_{O\&M}$$
 (26)

$$OPEX_{O\&M} = CAPEX_{FILLING} \times O\&M$$
 (27)

Dove:

O&M è il coefficiente di manutenzione ordinaria annuale pari al 2% del CAPEX.

Così come per il CAPEX anche per l'OPEX devono essere considerati altri costi generali non direttamente imputabili all'elettrolizzatore (costi operativi indiretti):

$$OPEX_{OTHER} = 0.04 \times CAPEX_{OTHER}$$
 (28)

Stima del LCOH

Il Levelized Cost of Hydrogen [€/kg] si calcola con la seguente Eq. (29):

$$LCOH = \frac{\text{CAPEX} + \sum \frac{OPEX}{(1+t)^i}}{\sum \frac{\frac{P_{el}}{C} \times t_{anno}}{(1+t)^i}}$$
(29)

Dove:

t è il tasso di attualizzazione assunto pari al 4%.

2.4. Calcolo del costo di trasporto dell'idrogeno

Nel caso oggetto dello studio specifico si è ipotizzato un trasporto su gomma di idrogeno allo stato gassoso. Preme evidenziare che nel caso di trasporto mediante pipeline la configurazione di impianto richiederebbe delle modifiche non solo per quanto riguarda le condizioni operative ma anche in relazione alla componentistica presente.

Per le ipotesi formulate si utilizza l'Eq. (30):

$$LCOH_{trasporto} = \frac{(3.11 \times D + (0.345 \times C_{fuel} + 0.191) \times D + 0.758 \times D)}{M_{trailer}}$$
(30)

Si ricorda che il costo stimato è valido nelle seguenti ipotesi:

C_{driver}: è il costo orario dell'autista²² assunto pari a circa 17 €/h.

C_{fuel}: è il costo del carburante per autotrasporto [€/litro].

C_{toll}: è il costo del pedaggio in autostrada per veicolo di classe 5 [€/km]²³. Essendo i costi diversi per il trasporto in montagna ed in pianura, si assume il valore medio pari a 0.191 €/km.

D: è la distanza percorsa [km]. Occorre prestare attenzione al fatto che la distanza percorsa è calcolata come somma fra distanza percorsa all'andata e distanza percorsa al ritorno.

Fuel: è il consumo di carburante per percorrere una certa distanza [litri/km] assunto un consumo specifico pari a 0.345 litri/km.

I: è l'investimento iniziale per l'acquisto della motrice e del rimorchio, ovvero del trattore stradale e del semirimorchio. Nel caso di trasporto di idrogeno gassoso si assume 170 k€ per il trattore e 1057 k€ per il semirimorchio. Si assume una capacità di trasporto pari a 1100 kg/trasporto per l'idrogeno in forma gassosa. N_{driver}: è il numero di autisti.

n: è il periodo di ammortamento [anni]. Il periodo di ammortamento è assunto pari a 5 anni.

O&M: sono i costi fissi di manutenzione, assunti pari al 12% dell'investimento iniziale per la motrice / trattore stradale e il 2% per il rimorchio.

 T_{travel} : è il tempo richiesto per percorrere una certa distanza [h]. Il parametro, nota la velocità media v_{media} , può essere calcolato come rapporto fra distanza e velocità. Si assume una velocità media di trasporto pari a 50 km/h.

U: è il tempo di funzionamento totale in un anno [h] assunto pari a 2000 h/anno.

V: è la velocità di trasporto media, assunta pari a 50 km/h.

WACC: Costo Medio Ponderato del Capitale assunto pari al 8%.

Assumendo un costo del carburante pari a 1.5 €/litro, 1'Eq. (30) si riscrive nell'Eq. (31):

$$LCOH_{trasporto} = \frac{4.57 \times D}{M_{trailer}}$$
(31)

2.5. Calcolo del costo di connessione dell'impianto alla rete elettrica

Il costo di connessione dell'impianto alla rete elettrica è stato calcolato in accordo all'Eq. (32), già proposta nel deliverable D1 e di seguito riportata:

$$c'_{ij} = \{35 \times P_{el} + 90 \times P_{el} \times D_{ik} + 100; 4 \times P_{el} + 7.5 \times P_{el} \times D''_{ik} + 6000\}$$
(32)

Dove:

D010.

Dik: è la distanza geodetica alla più vicina sottostazione elettrica;

Dik": è la distanza geodetica fra la centrale di P2G e la più vicina stazione di trasformazione ad alta tensione.

Preme evidenziare che nel calcolo si è considerata solamente la potenza dell'elettrolizzatore, mentre si è trascurata la potenza elettrica del compressore e degli ausiliari presenti in centrale.

14

²² Per il trasporto di idrogeno è richiesta una specializzazione particolare. Si assume un inquadramento del lavoratore come qualifica 3, Livello C3 (https://fiscomania.com/autotrasportatori-elementi-tipici-della-busta-paga/). Considerando il numero massimo di ore settimanali pari a 47 h/settimana, uno stipendio lordo per il dipendente pari a 1765 €/mese https://www.kitech.it/Retribuzione-stipendio-ccnl.aspx?CodiceCateg=362, assumendo un costo totale per l'azienda pari a 3185 € (ricavato tramite metodo semplificato al https://www.achab.it/come-si-calcola-il-costo-aziendale-di-un-dipendente/business/), si stima un costo orario pari a 16.9 €/h.

²³ https://www.autostrade.it/it/il-pedaggio/come-si-calcola-il-pedaggio

3. Risultati: stima dei costi e potenzialità di rinnovabili

3.1. CAPEX e OPEX degli impianti di Power to gas

CAPEX risultante

Sulla base delle ipotesi formulate è possibile calcolare il CAPEX e gli OPEX di centrale in funzione della potenza elettrica dell'elettrolizzatore. In Figura 4 è mostrato il CAPEX risultante di impianto con le condizioni economiche e prestazionali valide al 2023. Come mostrato per l'elettrolizzatore anche in questo caso è evidente l'effetto scala. Per esempio un impianto da 100 MW, in prima stima, si può ipotizzare un costo di investimento di circa 122 M€, mentre per due impianti da 50 MW il valore salirebbe a circa 135 M€ e per quattro impianti da 25 M€, il valore complessivo sarebbe pari a circa 150 M€. Preme evidenziare che il tool richiede in ingresso espressioni lineari per lo svolgimento dei calcoli. Pertanto si è ipotizzato di linearizzare l'andamento del CAPEX nell'intervallo 0-10 MW e nell'intervallo 10-100 MW. L'errore commesso si ritiene trascurabile.

Figura 4. CAPEX dell'impianto in funzione della taglia dell'elettrolizzatore al 2023.

Figura 5. CAPEX dell'impianto in funzione della taglia dell'elettrolizzatore al 2030.

Figura 6. CAPEX dell'impianto in funzione della taglia dell'elettrolizzatore al 2050.

OPEX risultante

Così come fatto per i CAPEX si sono analizzati anche gli OPEX di impianto. Tuttavia, rispetto al CAPEX preme ricordare che l'OPEX dipende anche dal costo dell'energia elettrica il cui valore è funzione di fenomeni economici complessi non oggetto del progetto SuperP2G-Italy. Per tale motivo, i risultati di sintesi riportati nelle figure sottostanti fanno riferimento a costi di acquisto dell'energia elettrica medi annuali. Inoltre si assume il funzionamento dell'impianto per 8400 h/anno per tenere conto dello svolgimento delle attività di manutenzione ordinarie necessarie. Nelle figure seguenti si riportano i valori di OPEX attesi al 2023, 2030 e 2050. Si ricorda che il costo di sostituzione dello stack è stata ripartita sull'intera vita utile dell'impianto. In realtà, per la corretta attualizzazione del denaro, nel calcolo del LCOH dovrebbe essere imputato nell'anno in cui effettivamente avviene il flusso di cassa in uscita. Come si vede, la differenza di costo operativo fra scenari è trascurabile. Preme tuttavia evidenziare che, aumentando il rendimento della tecnologia, a parità di costi operativi, la produzione annuale di idrogeno aumenta.

Figura 7. OPEX impianto nelle condizioni ipotizzate al 2023. (Comportamento proporzionale al costo dell'energia)

Figura 8. OPEX impianto nelle condizioni ipotizzate al 2030. (Comportamento proporzionale al costo dell'energia)

Figura 9. OPEX impianto nelle condizioni ipotizzate al 2050. (Comportamento proporzionale al costo dell'energia).

Produzione di idrogeno

La produzione annuale di idrogeno, a parità di potenza elettrica e di numero di ore annuali di funzionamento, dipende unicamente dal consumo specifico per produrre un kg di idrogeno, ovvero delle prestazioni dell'impianto di elettrolisi dell'acqua.

Figura 10. Produzione di idrogeno annualmente attesa con le ipotesi di prestazione formulate.

LCOH risultante

Come anticipato, il calcolo esatto del LCOH richiede di imputare il flusso di cassa negativo all'anno in cui questo si verifica. Avendo ipotizzato un funzionamento della centrale per 8400 h/anno, il numero di stack sostituiti risulterebbe pari a 2.8 (= 8400 x 20 / 60000) che si arrotonda per difetto a 2. La sostituzione degli

stack avviene ogni 7 anni, dunque, il flusso di cassa negativo deve essere imputato al 7° ed al 14° anno. Come si vede nelle figure seguenti, il LCOH presenta un ginocchio attorno ai 2-3 MW oltre cui il costo di produzione dell'idrogeno si assesta attorno ad un valore asintotico il cui valore dipende principalmente dal costo di acquisto dell'energia elettrica. Pertanto, fino a tale taglia i costi di investimento giocano un ruolo decisivo nella definizione del LCOH. Al di sopra di tale taglia, invece, si assiste ad un andamento asintotico che non dipende più dalla taglia dall'impianto, ma solamente dal costo di acquisto dell'energia elettrica.

Figura 11. LCOH al 2023 per diversi valori del costo di acquisto dell'energia elettrica.

Figura 12. LCOH al 2030 per diversi valori del costo di acquisto dell'energia elettrica.

Figura 13. LCOH al 2050 per diversi valori del costo di acquisto dell'energia elettrica.

3.2.Costo di trasporto dell'idrogeno

Sulla base del modello proposto è calcolato il costo di trasporto dell'idrogeno in funzione della distanza. In Figura 14 si riporta il costo di trasporto del kg di idrogeno assumendo trailer di capacità pari a 1100 kg. Preme evidenziare che, come indicato nel deliverable D1, la distanza massima consigliata è pari a 400 km in maniera tale che il trasporto ed il rientro dell'autista in centrale possa essere completato nell'arco della giornata. Tuttavia, questo non impedisce che distanze maggiori possano essere coperte adottando una diversa gestione del personale ed essendo consapevoli che l'intero tragitto (andata e ritorno) potrebbe essere coperto in più giorni a seconda della velocità media mantenuta nel tragitto dal centro di produzione a quello di consumo.

Figura 14. LCOH relativo al trasporto dalla centrale di produzione al centro di consumo.

4. Caso di studio regionale: risultati

4.1.Stima della domanda di idrogeno

Settore mobilità

I dati riportati da ACI sui veicoli immatricolati nel 2021 in Puglia forniscono questo quadro di insieme:

Autovetture: 2.435.650

Veicoli leggeri (furgoni): 233.126

Mezzi pesanti: 65.168Autobus e corriere: 7.574

La suddivisione per i 257 comuni pugliesi è riportata in Appendice.

Assumendo lo scenario caratterizzato dalla maggior penetrazione di idrogeno e la maggior percorrenza media per i veicoli pesanti, <u>al 2030</u>, la domanda complessiva di idrogeno in Regione Puglia è stimata pari a <u>15.300 ton/anno di idrogeno</u>.

Al 2050, la domanda di idrogeno, nel caso che tutto il parco pesante sia convertito ad idrogeno e che la penetrazione nel settore leggero raggiunga il 30%, si stima una domanda fino a 999.770 ton/anno. Preme evidenziare che questo risultato non tiene conto dello sviluppo di soluzioni tecnologiche che possano ridurre i consumi specifici, pertanto, è un limite superiore oltre il quale si ritiene ragionevolmente di non poter procedere.

4.2. Analisi economica: Investimento e Levelized Cost of Hydrogen (LCOH)

L'analisi preliminare del caso mobilità pugliese ha permesso di stimare il LCOH per la produzione ed il trasporto di idrogeno nell'intervallo fra 6.9 €/kg e 15.0 €/kg al 2030 e fra 5.01 €/kg e 8.83 €/kg nel 2050. Nel 2030 sono stimati sufficienti nove impianti mentre al 2050 il numero di impianti risulta crescere a sessanta. Preme, tuttavia, evidenziare che il numero di impianti è conseguenza della scelta di taglie date come input per il calcolo al tool.

Nella Figura 15 è riportato il Levelized Cost of Hydrogen per lo scenario al 2030. In figura, inoltre, è mostrata la ripartizione fra costi dovuti all'installazione ed all'esercizio dell'impianto, costi dovuti al trasporto e costi dovuti alla connessione alla rete. Questi ultimi, come atteso risultano essere trascurabili e possono essere esclusi dalle successive valutazioni. Per quanto invece riguarda gli altri costi, si evince che, in special modo nello scenario al 2030, il costo del trasporto dell'idrogeno gioca un ruolo principale ed in alcuni casi supera addirittura la voce di costo legato alla produzione (caso 4). Il costo di produzione dell'idrogeno, invece, si attesta attorno ai 4.5-5 €/kg ad eccezione del caso 1 che a causa di un funzionamento in parziale parzializzazione vede un costo per kg prodotto maggiore rispetto alle altre centrali. Nello scenario al 2050, invece, come si evince dalla distribuzione geografica degli impianti mostrata in Figura 16, la distanza di trasporto media fra impianto di produzione e centro di domanda si riduce notevolmente con conseguente riduzione del fattore trasporto sul costo finale dell'idrogeno consegnato. Al 2030, infatti, sono stimati sufficienti nove impianti sul territorio pugliese per sopperire alla domanda di idrogeno per la mobilità, mentre al 2050 sessanta.

Figura 15. LCOH ripartito per costi di impianto, trasporto e connessione alla rete.

Figura 16. Rappresentazione grafica degli impianti sul territorio pugliese al 2030 ed al 2050.

5. Caso di studio nazionale: risultati

5.1.Stima e localizzazione della domanda di idrogeno

Il caso di studio nazionale, come anticipato nella parte di metodologia, si è limitato unicamente al caso della mobilità e, in particolare, al servizio autostradale.

Sulla base delle ipotesi formulate, la domanda di idrogeno al 2030 ed al 2050 è stimata, rispettivamente, pari a 7-10 kton/anno e 32.6-72.5 kton/anno per penetrazioni dell'idrogeno del 2% e 15%. L'intervallo della domanda è giustificato dal fatto che nel medio (2030) e lungo (2050) termine il traffico veicolare è destinato ad evolvere rispetto alla situazione esistente per cui sono definiti due scenari di traffico²⁴. Fatta questa premessa, si osserva che la domanda di idrogeno è principalmente concentrata in quelle province attraversate dal maggior traffico veicolare. Di fatti, circa il 50% della domanda è stimato concentrato in 17 delle 109 provincie presenti in Italia. Inoltre, circa il 20% della domanda è concentrato in prossimità dei principali centri urbani quali Milano, Roma, Bologna e Firenze che rappresentano importanti snodi per le tratte autostradali che le attraversano.

Preme infine evidenziare che la stima svolta è risultato di un modello semplificato ma rigoroso. A vantaggio di una migliore accuratezza del risultato finale ottenuto con il tool, modelli previsionali di domanda potranno essere sviluppati in futuro. Infatti, assumendo al 2020 un costo di investimento compreso fra 1-5 milioni di euro per ogni stazione di rifornimento idrogeno in funzione della capacità²⁵, sarebbe richiesto un investimento complessivo fra 440-2200 milioni di euro per il revamping di tutte le stazioni presenti in Italia. Ritenendo necessario un intervento step-by-step, una stima della domanda di idrogeno più accurata potrebbe permettere una strategia di revamping delle attuali stazioni di rifornimento prioritizzando quelle coinvolte da una maggior domanda e traffico veicolare.

. .

²⁴ Guzzini et al. 2023. https://www.mdpi.com/2071-1050/15/3/2080

²⁵ https://www.hydrogen.energy.gov/pdfs/21002-hydrogen-fueling-station-cost.pdf

5.2. Analisi economica: investimento e Levelized Cost of Hydrogen (LCOH)

Scenario al 2030

I risultati ottenuti indicano un Levelized Cost of Hydrogen (LCOH) compreso fra 6.93 €/kg e 7.46 €/kg nei quattro casi analizzati. Per quanto riguarda l'ubicazione degli impianti, la rappresentazione su GIS, mostra che gli impianti di produzione idrogeno (punti neri), sono localizzati principalmente in prossimità delle stazioni di rifornimento (punti rossi) caratterizzati dalla maggiore richiesta di idrogeno al fine di minimizzare il costo dovuto al trasporto.

Figura 19. Scenario traffico "base" e distanza massima di trasporto pari a 200 km al 2030.

Figura 20. Scenario traffico "opt" e distanza massima di trasporto pari a 200 km al 2030.

Figura 21. Scenario traffico "base" e distanza massima di trasporto pari a 500 km al 2030.

Figura 22. Scenario traffico "opt" e distanza massima di trasporto pari a 500 km al 2030.

Il numero di impianti che occorre installare dipende dalla distanza massima fra centro di produzione e centro di domanda. Passando da 200 km a 500 km di distanza, il numero di impianti si riduce mentre la potenza complessivamente installata rimane pressoché la stessa. Tale conclusione è facilmente giustificabile dal fatto che, aumentando la distanza, la capacità media installata degli impianti aumenta in quanto il singolo impianto può coprire una domanda maggiore. Non sempre, tuttavia, l'aumento di capacità media installata equivale ad un miglioramento delle prestazioni economiche, in quanto, aumentando la taglia, se da un lato garantisce una riduzione dei costi di investimento per effetto scala, dall'altro è causa di funzionamento in parzializzazione, ovvero carico ridotto.

La distribuzione della capacità degli impianti è mostrata in Figura 23 per i quattro casi di studio. Nello scenario base (caso 1 e 3) la potenza installata è pari a circa 300 MW, mentre nel caso "opt" (caso 2 e 4) la potenza scende a circa 210 MW in conseguenza della minore richiesta a seguito dell'ipotizzata riduzione di traffico veicolare.

Figura 23. Numero di impianti installati nei quattro casi dello scenario al 2030 per taglia installata in [kW].

Scenario al 2050

I risultati ottenuti indicano una riduzione del Levelized Cost of Hydrogen (LCOH) rispetto al 2030 e compreso fra 5.62 €/kg e 6.12 €/kg nei quattro casi analizzati. Per quanto riguarda l'ubicazione degli impianti si riporta la rappresentazione su GIS. Gli impianti di produzione idrogeno sono i punti neri, i centri di consumo sono i punti rossi mentre in blu sono riportati i centroidi degli impianti di produzione di energia elettrica da rinnovabile. Rispetto al caso precedente, i casi baseline e ottimizzati differiscono radicalmente per dimensione e localizzazione degli impianti sul territorio. In particolare, in conseguenza della domanda maggiore, si stima, nel caso "base", ovvero caratterizzato da maggior traffico veicolare, una maggior presenza di impianti di capacità installata elevata. Nel caso "opt", invece, gli impianti di produzione idrogeno aventi capacità maggiore sono localizzati dal tool in prossimità dei centri di domanda maggiori.

Figura 24. Scenario traffico "base" e distanza massima di trasporto pari a 200 km al 2050.

Figura 25. Scenario traffico "opt" e distanza massima di trasporto pari a 200 km al 2050.

Figura 26. Scenario traffico "base" e distanza massima di trasporto pari a 500 km al 2050.

Figura 27. Scenario traffico "opt" e distanza massima di trasporto pari a 500 km al 2050.

In merito alla potenza complessivamente installata, nel caso "base" si stima una potenza complessiva di circa 2.2 GW per soddisfare la richiesta di idrogeno, potenza che scende a circa 1 GW nel caso "opt". Come mostrato in Figura 28, rispetto allo scenario al 2030, la taglia media installata aumenta. In particolare, nei casi "base" indicati in figura con i numeri 5 e 7, la taglia media di impianto è di circa 20 MW mentre nel caso "opt", ovvero nei casi indicati in figura con i numeri 6 e 8, la taglia media di impianto è di circa 10 MW.

Anche nello scenario al 2050, così come in quello al 2050, l'aumento della distanza massima che può essere percorsa per il trasporto di idrogeno, determina un aumento della capacità media installata. Tuttavia, anche in questo caso, se da un lato questo determina una riduzione del costo di investimento grazie all'effetto scala, dall'altro, si osserva un aumento della percentuale di funzionamento in carico parziale con conseguente aumento del costo di impianto per kg di idrogeno prodotto.

Preme infine evidenziare che i risultati al 2030 ed al 2050 ottenuti sono conseguenza della scelta delle taglie date come input al tool. In particolare, indicando la disponibilità al tool di altre taglie di impianto, il risultato ovviamente risulterebbe differente

Figura 28. Numero di impianti installati nei quattro casi dello scenario al 2050 per taglia installata in [kW].

6. Conclusioni

Sulla base della domanda di idrogeno quantificata e localizzata sul territorio è stato possibile identificare la configurazione ottima per la minimizzazione dei costi. Nel deliverable sono stati analizzati due casi di studio, uno a livello regionale ed uno a livello nazionale, entrambi attinenti al tema del settore mobilità. Le principali conclusioni sono:

- All'aumentare della taglia dell'impianto si assiste ad un effetto scala sull'investimento iniziale a
 beneficio di fattibilità economica del mercato power to gas. Tuttavia, in un'ottica di sistema in cui più
 impianti sono operati sul territorio, l'effetto scala potrebbe essere vanificato dalla necessità di operare
 alcuni di questi impianti in modalità di parzializzazione, ovvero ad un costo per kg prodotto maggiore.
- Il costo di acquisto dell'energia elettrica per alimentare l'elettrolizzatore gioca un ruolo decisivo nella
 definizione degli OPEX. La riduzione del consumo specifico così come l'adozione di contratti di
 acquisto dell'energia elettrica ad un basso costo di acquisto è decisiva per garantire la fattibilità
 economica di soluzioni power to gas.
- Il LCOH è compreso fra circa 5-9 €/kg nel caso regionale e fra 5.6-6.1 €/kg nel caso nazionale al 2050. Costi maggiori sono stimati nello scenario di medio termine al 2030. Ipotizzando un consumo specifico di 0.8 kg per 100 km (ovvero l'inverso di 125 km/kg), ed assumendo un costo di vendita al netto dei rincari del rivenditore, ovvero il costo della materia prima, un costo per percorrere 100 km pari a 4-7.2 € nel caso regionale e 4.5-4.9 € nel caso nazionale.
- Il trasporto dell'idrogeno gioca un ruolo decisivo nella definizione del prezzo finale all'utente specialmente nel caso in cui le distanze fra centro di produzione e di consumo siano mediamente lunghe e il trasporto avvenga su gomma.
- Al 2050 i quantitativi di idrogeno sono tali da rendere difficilmente percorribile un trasporto
 dell'idrogeno su gomma mentre una soluzione alternativa potrebbe essere quella di trasporto via tubo.
 In questo caso, indipendentemente dalla realizzazione di una hydrogen backbone per trasportare grandi
 quantitativi di idrogeno lungo la penisola, si dovranno valutare altre soluzioni tecnologiche per
 permettere la distribuzione di idrogeno su scala locale.

7. Appendice

Database veicoli per regione Puglia per comune e tipologia.

PROVINCIA	COMUNE	Autovetture	Mezzi leggeri	Mezzi pesanti e trattori stradali	Autobus e bus
BARI	ACQUAVIVA DELLE FONTI	12171	1022	256	11
	ADELFIA	9748	666	188	11
	ALBEROBELLO	7398	906	285	10
	ALTAMURA	38587	5128	1791	210
	BARI	182131	13526	3706	1356
	BINETTO	1257	59	29	0
	BITETTO	6921	356	120	1
	BITONTO	29894	2892	928	28
	BITRITTO	6681	517	133	6
	CAPURSO	9283	941	243	1
	CASAMASSIMA	11584	848	218	6
	CASSANO DELLE MURGE	8937	728	176	5
	CASTELLANA GROTTE	13758	1345	403	10
	CELLAMARE	3494	274	99	49
	CONVERSANO	16309	1727	464	8
	CORATO	29654	3158	1066	61
	GIOIA DEL COLLE	16996	1421	425	232
	GIOVINAZZO	10746	681	198	11
	GRAVINA IN PUGLIA	22884	2642	799	34

I	CRIMO ADDIH A	6026	1 110	127	·
	GRUMO APPULA LOCOROTONDO	6936 10013	1303	137 406	6 23
	MODUGNO	22065	3217	1057	23
	MOLA DI BARI	12858	729 1899	212 559	8 22
	MOLFETTA MONOPOLI	30921			
	MONOPOLI NOCI	31761 11678	3061 1550	938 465	50
	NOCI NOICATTARO	15784		373	181
	PALO DEL COLLE	11925	1272 816	235	40
		711	73	235	4
	POGGIORSINI POLIGNANO A MARE	11011	1151	325	31
	PUTIGNANO PUTIGNANO	16805	1689	462	487
	RUTIGLIANO	11044	1206	324	23
	RUVO DI PUGLIA	14053	1638	475	36
	SAMMICHELE DI BARI	4059	284	70	1
	SANNICANDRO DI BARI	5511	542	140	8
	SANTERAMO IN COLLE	15266	1437	510	
		15927		397	41 38
	TERLIZZI	4525	1472	69	
	TORITTO		267		0
	TRIGGIANO	15878	1237	425 142	31
	TURI	8180	547		6
	VALENZANO NON DEFINITO DA	10300	635	159	0
DADIT-4-1.	NON DEFINITO BA	27 725671	6	10.425	
BARI Totale BARLETTA TRANI	ANDRIA		65.315	19.435	3.303
BARLETTA TRANI	ANDRIA	58735	6145	2790	86
	BARLETTA	51974	3702	1492	14
	BISCEGLIE GANGSA DI BUCLIA	32868	2309	873	21
	CANOSA DI PUGLIA	17039	1351	660	41
	MARGHERITA DI SAVOIA	6494	395	149	23
	MINERVINO MURGE	4930	367	133	46
	SAN FERDINANDO DI PUGLIA	8461	1219	450	2
	SPINAZZOLA	3791	282	126	8
	TRANI	33794	1967	777	178
DADI ETTA TDANI	TRINITAPOLI	8455	833	346	6
BARLETTA TRANI Totale		226541	18.569	7797	425
BRINDISI	BRINDISI	53218	3923	999	285
DKINDISI	CAROVIGNO	11525	1464	385	21
	CEGLIE MESSAPICA	12596	1305	340	96
	CELLINO SAN MARCO	4070	409	85	11
	CISTERNINO	7901	930	248	72
	ERCHIE	5184	643	167	8
	FASANO	27018	3156	774	16
	FRANCAVILLA FONTANA	21356	2285	483	84
	LATIANO	9600	871	196	14
	MESAGNE	17474	1604	428	18
	ORIA	9867	887	192	12
	OSTUNI	22251	2385	576	37
	SAN DONACI	3950	404	85	4
	SAN MICHELE SALENTINO	7296	1138	235	50
	SAN PANCRAZIO SALENTINO	6313	581	118	3
	SAN PIETRO VERNOTICO	8533	719	145	9
	SAN VITO DEI NORMANNI	12961	1472	522	15
	TORCHIAROLO	3368	276	62	5
	TORRE SANTA SUSANNA	6899	805	165	5
	VILLA CASTELLI	5575	624	147	52
	NON DEFINITO BR	6	3	0	0
BRINDISI Totale	MON DEFINITO DE	256961	25.885	6351	817
	ACCADIA	1275	170	52	92
FOGGIA	ACCADIA	14/3	1/U	3∠	フム

ALBERONA	536	119	45	3
ANZANO DI PUGLIA	646	74	36	1
APRICENA	7701	953	426	84
ASCOLI SATRIANO	3636	443	164	9
BICCARI	1551	171	48	3
BOVINO	1754	238	71	3
CAGNANO VARANO	3620	517	153	6
CANDELA	1597	229	72	5
CARAPELLE	3797	700	438	2
CARLANTINO	476	70	20	1
CARPINO	2126	211	64	4
CASALNUOVO	2120	211	04	
MONTEROTARO	917	137	44	1
CASALVECCHIO DI PUGLIA	911	175	50	0
CASTELLUCCIO DEI SAURI	1344	156	53	1
CASTELLUCCIO	1544	130	33	1
VALMAGGIORE	698	102	36	5
CASTELNUOVO DELLA	070	102	30	
DAUNIA	792	101	31	0
CELENZA VALFORTORE	827	94	28	1
CELLE DI SAN VITO	96	10	3	0
CERIGNOLA	36654	4920	1974	28
CHIEUTI	952	139	41	2
DELICETO	2181	312	95	31
FAETO	371	79	30	3
FOGGIA	90044	7823	2478	165
ISCHITELLA	2500	363	104	0
ISOLE TREMITI	235	50	14	0
LESINA	3443	509	211	7
LUCERA	18541	2196	900	14
MANFREDONIA	26533	2285	794	148
MATTINATA	2918	315	103	8
MONTE SANT'ANGELO	5860	503	179	12
MONTELEONE DI PUGLIA	595	110	31	1
MOTTA MONTECORVINO	416	66	18	1
ORDONA	1598	283	99	2
ORSARA DI PUGLIA	1495	157	53	1
ORTA NOVA	11101	1186	463	8
PANNI	440	95	26	1
PESCHICI PIETRAMONTECORVINO	2798 1507	441 241	123 81	<u>8</u> 5
POGGIO IMPERIALE	1528	264	78	1
RIGNANO GARGANICO	1083	149	42	3
ROCCHETTA SANT'ANTONIO	1000	182	58	1
ROCCHETTA SANT ANTONIO RODI GARGANICO	1854	183	56	3
ROSETO VALFORTORE	523	92	27	3
SAN GIOVANNI ROTONDO	14704	1322	392	89
SAN MARCO IN LAMIS	6644	543	155	12
	528	72	20	
SAN MARCO LA CATOLA SAN NICANDRO GARGANICO	528 8749	807	278	15
SAN NICANDRO GARGANICO SAN PAOLO DI CIVITATE	3408	428	159	15 3
SAN SEVERO	31045	3081	1112	17
 SANT'AGATA DI PUGLIA	1104	173	77	5
 SERRACAPRIOLA	2070	257	73	1
STORNARA	3604	541	232	6
STORNARELLA	3045	349	148	7
TORREMAGGIORE	10234	1343	634	19
TROIA	3871	441	184	5
VICO DEL GARGANO	4219	487	153	6

	VIESTE	7438	826	235	18
	VOLTURARA APPULA	212	34	15	0
	VOLTURINO	1372	232	71	2
	ZAPPONETA	1551	333	96	2
	NON DEFINITO FG	1331	4		0
FOGGIA Totale	NON DEFINITO FO	354281	38.884	13949	885
LECCE	ALESSANO	4009	438	74	2
LECCE		3497	302	49	
	ALEZIO ALLISTE	4234	522	84	5 8
	ANDRANO	3227	216	37	1 5
	ARADEO	5900	698	126	5
	ARNESANO	2638	246	41	1
	BAGNOLO DEL SALENTO	1124	90	14	2
	BOTRUGNO	1699	109	17	2
	CALIMERA	4596	385	61	28
	CAMPI SALENTINA	6623	623	109	8
	CANNOLE	1143	146	23	1
	CAPRARICA DI LECCE	1705	192	35	2
	CARMIANO	8014	946	182	7
	CARPIGNANO SALENTINO	2390	280	44	3
	CASARANO	13768	1578	329	18
	CASTRI DI LECCE	1961	203	32	1
	CASTRIGNANO DE' GRECI	2507	273	45	4
	CASTRIGNANO DEL CAPO	3149	234	38	4
	CASTRO	1320	114	20	3
	CAVALLINO	8997	843	147	5
	COLLEPASSO	4213	508	106	4
	COPERTINO	15502	1721	296	6
	CORIGLIANO D'OTRANTO	3898	403	68	3
	CORSANO	3373	412	67	5
	CURSI	2534	268	43	1
	CUTROFIANO	6193	707	127	20
	DISO	1923	159	29	2
	GAGLIANO DEL CAPO	2995	316	50	8
	GALATINA	17623	1805	371	7
	GALATINA GALATONE	9871	1468	288	11
	GALLIPOLI	12173	912	150	11
	GIUGGIANELLO	771	82	150	0
	GIURDIGNANO	1220	141	22	1
	GUAGNANO	3715	310	50	2
	LECCE	67084	6432	1168	143
	LEQUILE	5632	786	126	5
	LEVERANO	8579	1312	209	18
	LIZZANELLO	7679	720	113	6
	MAGLIE	9301	763	166	4
	MARTANO	5566	559	91	4
	MARTIGNANO	1039	116	18	2
	MATINO	7742	1022	185	4
	MELENDUGNO	6572	629	101	9
	MELISSANO	4721	631	114	42
	MELPIGNANO	1494	165	28	1
	MIGGIANO	2174	197	31	2
	MINERVINO DI LECCE	2426	260	44	58
	MONTERONI DI LECCE	9492	867	141	9
	MONTESANO SALENTINO	1734	141	22	1
	MORCIANO DI LEUCA	2072	206	34	2
	MURO LECCESE	3042	263	43	2
	NARDO'	21077	2790	538	44
	NEVIANO	3323	376	59	1
	1121110	2243	570	J	1

	NOCIGLIA	1414	103	19	0
	NOVOLI	4713	332	52	6
	ORTELLE	1455	118	42	0
	OTRANTO	3637	399	63	18
	PALMARIGGI	906	86	15	0
	PARABITA	6254	548	102	4
	PATU'	1054	80	12	3
	POGGIARDO	3837	341	84	7
	PORTO CESAREO	4103	546	89	8
	PRESICCE-ACQUARICA	6295	769	134	8
	RACALE	7883	1186	194	36
	RUFFANO	6398	1203	213	7
	SALICE SALENTINO	5544	377	70	5
	SALVE	2893	281	46	1
	SAN CASSIANO	1308	105	17	4
	SAN CASSIANO SAN CESARIO DI LECCE	5398	529	100	175
	SAN CESARIO DI LECCE	3567			0
			438	80	-
	SAN PIETRO IN LAMA	2310	231	37	3
	SANARICA	936	112	17	1
	SANNICOLA	3996	397	66	6
	SANTA CESAREA TERME	1896	219	37	10
	SCORRANO	4103	392	65	15
	SECLI'	1395	289	56	2
	SOGLIANO CAVOUR	2715	252	46	1
	SOLETO	3601	399	106	24
	SPECCHIA	3136	337	59	3
	SPONGANO	2430	207	32	1
	SQUINZANO	8853	731	134	13
	STERNATIA	1659	181	58	1
	SUPERSANO	2984	391	69	8
	SURANO	1115	181	36	0
	SURBO	9735	963	199	7
	TAURISANO	7293	1113	191	4
	TAVIANO	8327	1415	229	5
	TIGGIANO	1705	208	34	1
	TREPUZZI	8857	943	184	5
	TRICASE	11254	1016	168	88
	TUGLIE	3598	399	82	4
	UGENTO	7872	1098	190	7
	UGGIANO LA CHIESA	2832	323	52	8
	VEGLIE	8948	1319	216	5
	VERNOLE	4626	425	67	1
	ZOLLINO	1248	358	62	121
	NON DEFINITO LE	20	3	0	0
LECCE Totale		523357	57.227	10245	1.174
TARANTO	AVETRANA	4468	470	138	9
	CAROSINO	4397	265	95	4
	CASTELLANETA	10442	920	230	25
	CRISPIANO	8796	609	189	30
	FAGGIANO	2201	284	68	1
	FRAGAGNANO	3288	413	107	1
	GINOSA	13634	1364	405	12
	GROTTAGLIE	19175	1041	256	68
	LATERZA	8679	801	230	19
	LEPORANO	5211	288	64	4
	LIZZANO	6255	423	96	5
	MANDURIA	20960	1870	463	14
	MARTINA FRANCA	32930	3525	921	40
	MARTINA FRANCA MARUGGIO	3529	524	120	2
L	MARUUUIU	3329	324	120	

	MASSAFRA	20173	2152	648	28
	MONTEIASI	3197	157	38	4
	MONTEMESOLA	2214	251	59	19
	MONTEPARANO	1433	90	23	6
	MOTTOLA	9212	787	234	16
	PALAGIANELLO	4277	338	100	12
	PALAGIANO	9188	828	212	81
	PULSANO	7319	515	120	3
	ROCCAFORZATA	1073	48	11	1
	S.MARZANO DI S.GIUSEPPE	5669	656	190	14
	SAN GIORGIO IONICO	9383	599	169	2
	SAVA	10527	959	229	1
	STATTE	7280	457	131	6
	TARANTO	111263	6355	1782	536
	TORRICELLA	2651	253	67	7
	NON DEFINITO TA	15	5	2	0
TARANTO Totale		348839	27.245	7399	970

8. Contatti utili

Ulteriori informazioni ed aggiornamenti relativi allo sviluppo del tool sono inseriti all'interno della pagina web al link https://site.unibo.it/superp2g-italy/it. Contatti dei referenti di progetto:

- Dr. Ing. Francesco Sergi (CNR-ITAE)
 - o Tel: +39 0039 090 624241 -
 - francesco.sergi@itae.cnr.it
- Prof. Ing. Cesare Saccani (UNIBO)
 - o Tel: +39 051 2093404
 - o cesare.saccani@unibo.it