Міністерство освіти і науки України

Національний університет "Львівська Політехніка"

Лабораторна робота №9

Виконав:

Студент групи АП-11 Білий Анатолій Іванович

Прийняв:

Чайковський І.Б.

"Логічні та побітові операції у мові С"

Мета роботи: навчитися використовувати логічні та побітові операції під час програмування на мові С.

Теоретичні відомості

В програмуванні треба мати можливість не лише проводити обчислення над числовими даними, тобто робити арифметичніоперації, але й обробляти логічні дані. З логічними даними програма має справу, коли перевіряє чи виконується деяка умова.

Наприклад, крім звичайного для арифметики питання типу скільки буде 2*2, можливо ставити питання типу чи вірно, що 2*2 = 4? або чи вірно, що 2*2 > 5?Іншими словами, можна розглядати 2*2 = 4 та 2*2 > 5 як свого роду вирази, і казати про обчислення значень цих виразів. Значенням першого виразу є логічна істина (true), значенням другого — логічна хиба (false).

В мові С логічні значення зображуються за допомогою цілих чисел. А саме, число 0 зображує логічну хибу, а будь-яке відмінне від нуля число зображує логічну істину.

В мові С існує три логічні операції:

- 1. Логічна операція І&&;
- 2. Логічна операція АБО ||;
- 3. Логічна операція НЕ ! або логічне заперечення.

Логічні операції утворюють складну (складену) умову з декількох простих (двох або більше) умов. Ці операції спрощують структуру програмного коду в декілька разів. Можна їх не використовувати, але у такому випадку кількість умов, і відповідно самого програмного коду, збільшується.

У таблиці 1 коротко охарактеризовано всі логічні операції в мові програмування С, які використовуються для побудови логічних умов.

Логічні операції С

Операції	Позначення	Умова	Короткий опис
I	&&	a==3 && b>4	Складена умова істинна, якщо істинні обидві прості умови
АБО		a==3 b>4	Складена умова істинна, якщо істинна, хоча б одна з простих умов
HE	!	! (a==3)	Умова істинна, якщо а не дорівнює 3

Отже, логічні оператори - це оператори, які приймають в якості аргументів логічні значень (брехня або істина) і повертають логічне значення. Як і звичайні оператори, вони можуть бути одномісними (унарними, тобто приймати один аргумент), двомісними (бінарні, приймають два аргументи), тримісними і т.д.

Операція логічне І, виконується згідно таблиці істинності:

X	Y	X&&Y
0	0	0
0	1	0
1	0	0
1	1	1

Ця операція повертає 1, якщо обидва операнди ненульові, та 0 в противному випадку. Операція гарантує обчислення зліва направо, а якщо лівий операнд є 0, правий не обчислюється. Операнди не повинні бути обов'язково однакового типу, але повинні мати один з основних типів. Результат завжди типу int.

Операція логічне АБО, виконується згідно таблиці істинності:

X	Y	X Y
0	0	0
0	1	1
1	0	1
1	1	1

Ця операція повертає 1, якщо хоча би один з операндів ненульовий, і 0 в противному випадку. Операція гарантує обчислення зліва направо, а якщо перший операнд не ϵ 0, другий операнд не обчислюється. Тип int.

Комп'ютер виконує обчислення саме над двійковими числами, тому в мові С передбачені побітові операції, що дозволяють перевіряти і встановлювати задані розряди або множини розрядів у цілочисельних змінних.

У мові С передбачено кілька операцій для роботи з бітами, але їх не застосовують до змінних типуf float чи double:

- побітове І (&)— результатом операції є кон'юнкція побітового зображення чисел. Результатом є побітова функція І операндів. Результат обчислюється побітово
 для кожного розряду операндів згідно таблиці істинності операції логічне І і записується у відповідний розряд. Операція застосовується тільки до операндів типу int;
- побітове АБО (|) результатом операції є диз'юнкція побітового зображення чисел. Відповідна побітова функція АБО виконується для кожного розряду операндів згідно наведеної для логічного АБО таблиці істинності. Застосовується тільки до операндів типу іпt.;
- побітове виключне АБО (^) (ХОR) результатом операції є додавання по модулю 2 побітового зображення чисел. Дана функція виконується для кожного розряду операндів згідно наведеної таблиці істинності. Застосовується тільки до операндів типу int.

X	Y	X^Y
0	0	0
0	1	1
1	0	1
1	1	0

В інших мовах програмування символ ^ застосовують для виконання операції піднесення до степеня. В мові С піднесення до другого або третього степенів зручно виконувати простим перемноженням. В інших випадках для піднесення числа х до степеня у слід використовувати вбудовану функцію роw(x,y);

Прості висловлювання мовами програмування можна записати у вигляді логічних виразів із використанням операцій порівняння.

У таблиці 2 представлено значення операцій порівняння.

Операції порівняння

Операція	Значення
<	менше
<=	менше або рівне
==	перевірка на рівність
>=	більше або рівне
>	більше
!=	перевірка на нерівність

До бітових операцій також відносять бітові зсуви. При зсуві значення бітів копіюються в сусідні за напрямом зсуву.

Розрізняють зсув вліво (в напрямку від молодшого біта до старшого) і вправо (в напрямку від старшого біта до молодшого).

 – зсув ліворуч(<<) – зсуває ліворуч побітове зображення лівого операнда на кількість розрядів, указану як правий операнд (праворуч дописуються нулі)

- зсув праворуч(>>) зсуває праворуч побітове зображення лівого операнда на кількість розрядів, указану як правий операнд (ліворуч дописується копія знакового біта чи 0);
- доповнення (\sim) результатом операції ε побітове заперечення операнда. Дана операція да ε доповнення до цілого; це означа ε , що кожен біт зі значенням 1 отриму ε значення 0, і навпаки.

У мові СІ операції з вищими пріоритетами обчислюються першими. У таблиці 3 представлено пріоритет операцій.

Асоціативність – напрямок виконання операцій у разі, якщо операції мають однаковий пріоритет.

Пріоритет операцій в С

Пріоритет	Операція	Асоціативність	Опис
	• •		унарна операція дозволу області дії
	[]		операція індексування
	0		круглі скобки
1	•	зліва направо	звернення до члена структури або класу
	->		звернення до члена структури або класу через покажчик
2	++		постфіксний інкремент
2		зліва направо	постфіксний декремент
2	++		префікс ний інкремент
3		справа наліво	префіксний декремент
	*		множення
4	/	зліва направо	ділення
	%	-	залишок від ділення
_	+	зліва направо	додавання
5	_		віднімання
	>>		зсув вправо
6	<<	зліва направо	зрушення вліво
	<		менше
7	<=	nuina wawana	менше або дорівнює
/	>	зліва направо	більше
	>=		більше або дорівнює
8	==	DHIDO HOHMODO	дорівнює
0	!=	зліва направо	не дорівню ϵ
9	&&	зліва направо	Логічне I
10		зліва направо	Логічне АБО
11	?:	справа наліво	умовна операція (тернарного операція)
12	=		присвоювання
	*=		множення з привласненням
	/=	ouropo woring	поділ з привласненням
12	%=	справа наліво	залишок від ділення з привласненням
	+=		додавання з привласненням
	-=		віднімання з привласненням
13	,	зліва направо	кома

Хід роботи:

1. Написати програму на мові С, яка здійснює такі побітові операції як побітове І, побітове АБО, зсув вліво на 2, зсув вправо на 2. Дані операції застосувати до змінних: а= 017, b=036 (змінні представлені у вісімковій системі числення). Операцію зсуву застосувати тільки до змінної а. Скрін коду програми та результати її виконання представити у звіті.

- 2. Здійснити вручну виконання операцій з пункту 1. Для цього здійснити переведення значень змінних а= 017, b=036 з вісімкової у двійкову систему числення та виконати необхідні операції згідно п.1. Отримані результати представити у звіті, та порівняти їх з результати програми з пункту 1.
- 3. Здійснити виконання прикладів, представлених нижче. Представити скріни коду та результати їх виконання у звіті. Пояснити отримані результати.
 - 4. Оформити звіт.

Приклад 1

```
#include <stdio.h>
   int main() {
   int a = 017; // 017 відповідає 15 у десятковій системі
   int b = 036; // 036 відповідає 30 у десятковій системі
   // Побітове I
   int bitwise and = a \& b;
   printf("a & b = %o\n", bitwise and); // %о для виводу у вісімковій системі
   // Побітове АБО
   int bitwise or = a \mid b;
   printf("a | b = \%o\n", bitwise_or);
   // Зсув вправо на 2 (тільки для змінної а)
   int left shift a = a \gg 2;
   printf("a >> 2 = \% o \ n", left_shift_a);
 }
a \& b = 16
a | b = 37
a << 2 = 3
```

Приклад 2

1) Переведення значень змінних а= 017, b=036 з вісімкової у двійкову систему числення:

```
а = 017 (вісімкова) = 000 001 111 (двійкова) b = 036 (вісімкова) = 011 110 (двійкова) 2)Виконання необхідних операцій: *Побітове I (а & b): 000 001 111 & 000 001 110
```

*Побітове АБО (a | b):

```
000 001 111
000 011 110
000 011 111
*Зсув вліво на 2 (тільки для a) (a << 2):
000\ 001\ 111 << 2 = 000\ 111\ 100
*Зсув вправо на 2 (тільки для a) (a >> 2):
000\ 001\ 111 >> 2 = 000\ 000\ 011
3)Отже, результати операцій для змінних а та b:
a & b = 000\ 001\ 110 (вісімкова: 016)
a \mid b = 000 \ 011 \ 111 \ (вісімкова: 037)
a << 2 = 000 111 100 (вісімкова: 074)
a >> 2 = 000\ 000\ 011 (Bicimkoba: 003)
                                     Приклад 3
#include <stdio.h>
#include<conio.h>
main() {
int a=0,b=3,c;
c=b\%2 \|(a>=0)\&\&(++b/2*a)==0;
printf("a=%d, c=%d\n",a,c);
getch();
a=0, c=1
                                     Приклад 4
#include <stdio.h>
#include<conio.h>
main() {
int a=1,b=0,c;
c=b\%2 \|(a>=0)\&\&(++b*a)==0;
printf("c = \% d \mid n",c);
getch();
c=0
                                     Приклад 5
#include <stdio.h>
#include<conio.h>
main() {
int x=2,z,y=0;
z=(x==0)&&(y=x) ||(y>0);
printf("z=\%d\n",z);
getch();
```

z=0

Контрольні питання

1. Пріоритети операцій.

Дужки ()

Постфіксні оператори ++ і --

Префіксні оператори ++ і --

Оператори множення *, ділення /, залишок від ділення %

Оператори додавання + і віднімання -

Оператори відношення <, <=, >, >=

Оператори рівності ==, !=

Логічні оператори I &&

Логічні оператори АБО ||

Оператор присвоєння =

Оператори побітового І &, AБО \mid , XOR $^{\land}$

Оператори зсуву бітів <<, >>

2. Таблиця істинності логічного І.

Операція логічне І, виконується згідно таблиці істинності:

X	Y	X&&Y
0	0	0
0	1	0
1	0	0
1	1	1

3. Таблиця істинності логічного АБО.

Операція логічне АБО, виконується згідно таблиці істинності:

X	Y	X Y
0	0	0
0	1	1
1	0	1
1	1	1

4. Особливості виконання побітових операцій зсуву.

Операції зсуву вправо >> та вліво << виконують зсув бітів вказаного числа на вказану кількість позицій.

При зсуві вправо знакове число може зберігати або втрачати свій знак в залежності від реалізації мови.

5. Таблиця істинності побітової операції XOR

X	Y	X^Y
0	0	0
0	1	1
1	0	1
1	1	0

Висновок: Під час виконання цієї лабораторної роботи я навчився використовувати логічні та побітові операції під час програмування на мові С.