CMOS INVERTER

The CMOS Inverter - Static Model

Outline

- First Glance
- Digital Gate Characterization
- Static Behavior (Robustness)
 - VTC
 - Switching Threshold
 - Noise Margins

The CMOS Inverter: A First Glance

CMOS Inverters (1)

CMOS Inverter Operation Principle

$$V_{OH} = V_{DD}$$
 $V_{OL} = 0$

Digital Gate Fundamental Parameters

- Functionality
- Reliability, Robustness
- Area
- Performance
 - Speed (delay)
 - Power Consumption
 - Energy

The Ideal Inverter

Static CMOS Properties

Basic inverter belongs to class of static circuits: output always connected to either V_{DD} or V_{SS} . Not ideal but:

- Rail to rail voltage swing
- Ratio less design
- Low output impedance
- Extremely high input impedance
- No static power dissipation
- Good noise properties/margins

{TPS}: prioritize the list above

Voltage Transfer Characteristic (VTC)

Load Line (Ckt Theory)

Exercise:

The blue load line A corresponds to R = The orange load line B corresponds to R = With load line A and $V_{GS} = 1V$, $V_{out} = Draw a graph <math>V_{out}(V_{in})$ for load line A and B

PMOS Load Lines

Goal: Combine I_{Dn} and I_{Dp} in one graph

Kirchoff:

$$V_{in} = V_{DD} + V_{GSp}$$

 $I_{Dn} = -I_{Dp}$
 $V_{out} = V_{DD} + V_{DSp}$

CMOS Inverter Load Characteristics

CMOS Inverter VTC

Operating Conditions

Need to know for proper dimensioning, analysis of noise margin, etc.

Exercise: check results for PMOS

NMOS

1
$$V_{in} = V_{GS} < V_{Tn} \Rightarrow off$$

2
$$V_{out} > V_{in} - V_{Tn}$$

 $V_{DS} > V_{GS} - V_{Tn}$
 $V_{GD} < V_{Tn}$ \Rightarrow saturation

3
$$V_{out} < V_{in} - V_{Tn} \Rightarrow resistive$$

PMOS

$$4 V_{in} > V_{DD} + V_{Tp} \Rightarrow off$$

5
$$V_{out} < V_{in} - V_{Tp} \Rightarrow$$
 saturation

6
$$V_{out} > V_{in} - V_{Tp} \Rightarrow resistive$$

Operating Conditions

NMOS 1 off
2 saturation
3 resistive

PMOS 4 off
5 saturation
6 resistive

Inverter Static Behavior

- Regeneration
- **Noise margins**
- Delay metrics

The Realistic Inverter

The Regenerative Property

A chain of inverters

The regenerative property

Regenerative Property: ability to regenerate (repair) a weak signal in a chain of gates

The Regenerative Property (2)

(a) A chain of inverters.

(c) Non-regenerative gate

The regenerative Property (3)

Exercise: what is the output voltage of a chain of 4 inverters with a piece-wise linear VTC passing through (0, 10), (3,7), (7,1) and (10,0) [Volt], as the result of an input voltage of 6 [Volt].

Exercise: discuss the behavior for an input of 5 [Volt]

Inverter Switching Treshold

- Not the device threshold $V_m = f(R_{onn}, R_{onp})$
- Point of V_{in} = V_{out}

■ Try to set W_n, L_n, W_p, L_p so that VTC is symmetric as this will improve noise margins

optimize NMOS-PMOS ratio

Simulated Gate Switching Threshold

Electrical Design Rule $W_p \approx 2.5 W_n$

- Assumes $L_p = L_n$
- Should be applied consistently

- Symmetrical VTC ⇒ V_m ≈ ½ V_{DD} ⇒ W_p/W_n ≈
- **In practice: somewhat smaller**
- Why?

Inverter Switching Threshold Analytical Derivation

- \mathbf{V}_{M} is \mathbf{V}_{in} such that $\mathbf{V}_{\mathsf{in}} = \mathbf{V}_{\mathsf{out}}$
- $V_{DS} = V_{GS} \Leftrightarrow V_{GD} = 0 \Rightarrow saturation$
 - \blacksquare Assume $V_{DSAT} < V_{M} V_{T}$
 - (velocity saturation)
 - Ignore channel length modulation
- V_M follows from
 - $I_{DSATn}(V_M) = -I_{DSATp}(V_M)$

Inverter Switching Threshold

Analytical Derivation (ctd)

$$I_{DSATn}(V_M) = -I_{DSATp}(V_M)$$

$$I_D = kV_{DSAT}(V_{GS} - V_T - V_{DSAT}/2)$$

$$\Leftrightarrow k_n V_{DSAT_n} (V_M - V_{Tn} - V_{DSAT_n} / 2) = -k_p V_{DSAT_p} (V_M - V_{DD} - V_{Tp} - V_{DSAT_p} / 2)$$

$$\Leftrightarrow \frac{k_p}{k_n} = \frac{-V_{DSAT_n}(V_M - V_{Tn} - V_{DSAT_n}/2)}{V_{DSAT_p}(V_M - V_{DD} - V_{Tp} - V_{DSAT_p}/2)}$$

$$k = \frac{W}{L}$$

$$\Rightarrow \frac{(W/L)_{p}}{(W/L)_{n}} = \frac{k'_{n}V_{DSAT_{n}}(V_{M} - V_{Tn} - V_{DSAT_{n}}/2)}{k'_{p}V_{DSAT_{p}}(V_{M} - V_{DD} - V_{Tp} - V_{DSAT_{p}}/2)}$$

- See Example 5.1:
- (W/L)_p = 3.5 (W/L)_n for typical conditions and $V_M = \frac{1}{2} V_{DD}$
- Usually: L_n = L_p

Gate Switching Threshold w/o Velocity Saturation

- Long channel approximation
- Also applicable with low V_{DD}

Exercise (Problem 5.1): derive V_M for long-channel approximation as shown below

$$V_{M} = \frac{r(V_{DD} - V_{Tp} + V_{Tn})}{1+r}$$
 with $r = \sqrt{\frac{-k_{p}}{k_{n}}}$

Noise in Digital Integrated Circuits

Study behavior of static CMOS Gates with noisy signals

Noise in Digital Circuits

Noise Margins

- **■** V_{OL} = Output Low Voltage
- **V**_{IL} = Input Low Voltage
- **V**_{OH}, **V**_{IH} = ...

Noise Margins

Noise Margins

- NM_H = V_{OH} V_{IH} = High Noise Margin
- **NM**_L = V_{IL} V_{OL} = Low Noise Margin

Noise Margin for Realistic Gates

{TPS}: explain significance of slope = -1 for noise margin

Noise Margin Calculation

g = gain factor (slope of VTC)

We know how to compute V_M Next: how to

compute g

$$V_{IH} - V_{IL} = -\frac{(V_{OH} - V_{OL})}{g} = \frac{-V_{DD}}{g}$$
 $V_{IH} = V_{M} - \frac{V_{M}}{g}$
 $V_{IL} = V_{M} + \frac{V_{DD} - V_{M}}{g}$
 $NM_{H} = V_{DD} - V_{IH}$
 $NM_{I} = V_{II}$

Noise Margin Calculation (2)

Approximate g as the slope in V_{out} vs. V_{in} at $V_{in} = V_{M}$

$$k_n V_{DSAT_n} (V_{in} - V_{Tn} - V_{DSAT_n} / 2) (1 + \lambda_n V_{out}) +$$

$$k_p V_{DSAT_p} (V_{in} - V_{DD} - V_{Tp} - V_{DSAT_p} / 2) (1 + \lambda_p V_{out} - \lambda_p V_{DD}) = 0$$

$$g = \frac{dV_{out}}{dV_{in}}\Big|_{V_{in}=V_M} \approx \frac{1+r}{(V_M - V_T - V_{DSATp}/2)(\lambda_n - \lambda_p)} \qquad r = \frac{k_p V_{DSATp}}{k_n V_{DSATp}}$$

- Mostly determined by technology
- See example 5.2
- Exercise: verify calculation
- **Exercise:** explain why we add channel length modulation to the I_D expressions (we did not do this to determine V_M)

Gain as a function of VDD

consider
$$g = \frac{dV_{out}}{dV_{in}}\Big|_{V_{in}=V_M} \approx \frac{1+r}{(V_M - V_T - V_{DSATp}/2)(\lambda_n - \lambda_p)}$$

Subthreshold!

Dynamic Noise Margin

- Previous definition was Static Noise Margin
- Dynamic Noise Margin: how does noise energy determine behavior
- A short pulse may have higher amplitude than a long pulse before problems occur.
- Short spikes may safely exceed Static Noise Margin

CMOS INVERTER dynamic behavior (performance)

- Capacitances
- **■** (Dis)charge times
- Delay

Before: propagation delay analysis

$$t_{p} \approx 0.69 \times \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{5}{6} \lambda V_{DD} \right) C_{L}$$

Next: propagation delay from a design perspective inverter sizing

Reducing tp

$$t_{DSAT} \approx 0.69 \times \frac{3}{4} \frac{V_{DD}}{I_{DSAT_n}} \left(1 - \frac{5}{6} \lambda V_{DD}\right) C_L$$

$$\lambda = 0$$

$$I_{DSAT} = k' \frac{W}{L} \left[(V_{GS} - V_T) V_{DSAT} - \frac{1}{2} V_{DSAT}^2 \right]$$

$$t_{pHL} \approx 0.52 \frac{C_L V_{DD}}{(W/L)_n k_n^{'} V_{DSATn} (V_{DD} - V_{Tn} - V_{DSATn}/2)}$$

{TPS}: How can you reduce propagation delay?

Propagation Delay t_p can be reduced by

- Increasing V_{DD} (until $V_{DD} >> V_T + V_{DSAT}/2$)
- Increasing W
- Reducing C_L

Delay as a function of V_{DD}

Sizing

Propagation Delay t_p can be reduced by

- Increasing V_{DD} (until $V_{DD} >> V_T + V_{DSAT}/2$)
- Increasing W
- Reducing C_L

$$t_{pHL} = 0.52 \frac{C_L V_{DD}}{(W/L)_n k_n^{\prime} V_{DSATn} (V_{DD} - V_{Tn} - V_{DSATn}/2)} \propto \frac{C_L}{W}$$

- C_L can be reduced by good layout design
- But part of C_L depends on W!

t_p as a function of W_p/W_n

Min t_p in general not when $t_{pLH} = t_{pHL}$ Save area, time at expense of robustness

Intrinsic vs Extrinsic vs Parasitic Load Cap

$$C_{int} = C_{DB1} + C_{DB2} + 2(C_{GD1} + C_{GD2})$$

$$\mathbf{C}_{par} = \mathbf{C}_{w}$$

Intrinsic load
Extrinsic / fan-out load
Parasitic load

Isolated Inverter Sizing

$$t_p = 0.69R_{eq}(C_{int} + C_{ext}) = 0.69R_{eq}C_{int}\left(1 + \frac{C_{ext}}{C_{int}}\right)$$
 Assume C_{par} can be ignored or its effect can be absorbed in other C

resistance of minimum size inverter R_o:

(assume proper $\beta = W_p / W_n$ ratio)

 C_0 : intrinsic load (output, drain) cap of min. size inverter

$$t_{p0} = 0.69 R_0 C_0$$
:

intrinsic or unloaded delay

basic time constant for technology

minimum delay possible in technology given V_{DD}

sizing factor for W_p , W_p of driving inverter S

$$W_n = S W_{min}, W_p = S \beta W_{min}$$

$$\rightarrow$$
 $R_{eq} = R_0/S$

$$C_{int} = SC_0$$

$$\Rightarrow t_p = t_{p0} \left(1 + \frac{C_{ext}}{SC_0} \right)$$

Isolated Inverter Sizing

$$t_{p} = t_{p0} \left(1 + \frac{C_{ext}}{SC_{0}} \right)$$

Increasing S reduces delay until $SC_0 >> C_{ext}$

Inverter Chain

Assume size of inverter 1 is fixed.

- \odot Increasing S of inverter 2 reduces t_p of inverter 2
- \bowtie But it increases t_p of inverter 1 (higher load cap)
- Expect an optimum!

 $\{TPS\}$ If C_L is given and knowing properties of input source:

- How many stages are needed to minimize the delay?
- How to size the inverters?

Delay Formula

$$t_{p} = t_{p0} \left(1 + \frac{C_{ext}}{SC_{0}} \right) = t_{p0} \left(1 + \frac{f}{\gamma} \right)$$

 C_{gin} input gate capacitance

$$\gamma = C_{int}/C_{gin} = SC_0/C_{gin}$$

self loading coefficient

property of technology, typically $\gamma \approx 1$

$$f = C_{ext}/C_{gin}$$
 effective fanout

$$\frac{f}{\gamma} = \frac{C_{\text{ext}}}{C_{\text{con}}} \times \frac{C_{\text{gin}}}{SC_0}$$

Apply to Inverter Chain

In
$$t_p = t_{p,1} + t_{p,2} + \dots + t_{p,N}$$
Out
$$t_p = t_{p,1} + t_{p,2} + \dots + t_{p,N}$$

$$t_{p,j} = t_{p0} \left(1 + \frac{f_j}{\gamma} \right) = t_{p0} \left(1 + \frac{C_{gin,j+1}}{\gamma C_{gin,j}} \right)$$

$$t_p = \sum_{j=1}^{N} t_{p,j} = t_{p0} \sum_{j=1}^{N} \left(1 + \frac{C_{gin,j+1}}{\gamma C_{gin,j}}\right), C_{gin,N+1} = C_L$$

[
$$t_p = t_{p0}(1+f/\gamma)$$
 $f = C_{ext}/C_{gin}$ effective fanout]

Apply to Inverter Chain

Delay equation has *N*-1 unknows, $C_{gin,2}$... $C_{gin,N}$

$$t_{p} = \sum_{j=1}^{N} t_{p, j} = t_{p0} \sum_{j=1}^{N} \left(1 + \frac{C_{gin, j+1}}{\gamma C_{gin, j}}\right), C_{gin, N+1} = C_{L}$$

Make N-1 partial derivatives for $C_{gin,i}$ zero for minimization:

$$\frac{\partial t_{p}}{\partial C_{gin,j}} = t_{p0} \left(\frac{1}{\gamma C_{gin,j-1}} - \frac{C_{gin,j+1}}{\gamma (C_{gin,j})^{2}} \right) = 0, \quad j = 2...N-1$$

$$\frac{1}{a} = \frac{b}{c^{2}} \Leftrightarrow c = \sqrt{ab}$$

Optimal size of each stage is geometric mean of 2 neighbors:

$$C_{gin, j} = \sqrt{C_{gin, j-1} \times C_{gin, j+1}}, \quad j = 2...N-1$$

Optimal Tapering for Given N

Optimal size of each stage is geometric mean of 2 neighbors:

$$C_{gin, j} = \sqrt{C_{gin, j-1} \times C_{gin, j+1}}, \quad j = 2...N-1$$

$$C_{gin, j}^2 = C_{gin, j-1} \times C_{gin, j+1}$$

$$\frac{C_{gin, j}}{C_{gin, j-1}} = \frac{C_{gin, j+1}}{C_{gin, j}}$$

Load cap / input cap ratio same for each stage

$$f_j = \frac{C_{gin, j+1}}{C_{gin, j}} = \sqrt[N]{\frac{C_L}{C_{gin, 1}}} = \sqrt[N]{F}$$

$$F = C_L/C_{gin, 1}: path fan-out.$$
Same fan-out, same delay for each stage.

each stage.

$$t_{p,j} = t_{p0} \left(1 + \frac{f_j}{\gamma} \right) = t_{p0} \left(1 + \frac{C_{gin,j+1}}{\gamma C_{gin,j}} \right) = t_{p0} \left(1 + \frac{\sqrt[N]{F}}{\gamma} \right)$$

Optimal Tapering for Fixed-N Summary

Delay per stage and total Path Delay

$$t_{p,j} = t_{p0} \left(1 + \frac{f_j}{\gamma} \right) = t_{p0} \left(1 + \frac{C_{gin,j+1}}{\gamma C_{gin,j}} \right) = t_{p0} \left(1 + \frac{N F}{\gamma} \right)$$

$$t_{p} = Nt_{p0} \left(1 + \frac{f_j}{\gamma} \right)$$

$$t_{p} = Nt_{p0} \left(1 + \frac{f_{j}}{\gamma} \right)$$

$$f_1 = f_2 = f_3 = \dots = F^{1/N}$$
 $f_1 \times f_2 \times f_3 \times \dots = F$ $F = C_L/C_{gin,1}$

Example

 C_L/C_1 has to be evenly distributed across N=3 stages:

$$f = \sqrt[3]{8} = 2$$
 $t_p = 3t_{p0} \left(1 + \frac{\sqrt[3]{8}}{\gamma}\right) = 9t_{p0}$ for $\gamma = 1$

Optimum Number of Stages

For a given load, C_L and given input capacitance C_{in}

find optimal f if N is free (and possibly non-integer)

$$C_{L} = F \cdot C_{in} = f^{N}C_{in} \text{ with } N = \frac{\ln F}{\ln f}$$

$$t_{p} = Nt_{p0} \left(1 + \frac{f}{\gamma}\right) = \frac{t_{p0} \ln F}{\gamma} \left(\frac{\gamma}{\ln f} + \frac{f}{\ln f}\right)$$

$$\frac{\partial t_{p}}{\partial f} = \frac{t_{p0} \ln F}{\gamma} \cdot \frac{-\gamma/f + \ln f - 1}{\ln^{2} f} = 0$$

$$\ln f = 1 + \frac{\gamma}{f}$$

$$f = \exp\left(1 + \frac{\gamma}{f}\right)$$
Closed-form solution only for $\gamma = 0$

Optimum Effective Fanout f

Optimum f for given process defined by γ

$$f = \exp\left(1 + \frac{\gamma}{f}\right)$$
 $N = \frac{\ln F}{\ln f}$

(In practice, N must be rounded up or down to integer value)

	γ =0	γ=1
f opt	e=2.72	3.6
N _{opt}	In <i>F</i>	0.78In <i>F</i>

Normalized t_p vs. f

- Slight increase of t_p for f > f_{opt}
- Choosing too few stages (f > f_{opt}) is relatively harmless for delay and saves area
- Too many stages is expensive in terms of delay

Fan-out of 4 (FO4) is safe common practice

http://en.wikipedia.org/wiki/FO4

Normalized delay function of F

$$t_{p} = Nt_{p0} \left(1 + \frac{\sqrt[N]{F}}{\gamma} \right) \qquad (\gamma = 1)$$

F	Unbuffered	Two Stage	Inverter Chain
10	11	8.3	8.3
100	101	22	16.5
1000	1001	65	24.8
10,000	10,001	202	33.1

Buffer Design

Power

- Dynamic Power
- **■Static Power**
- Metrics

www.quietpc.com

24 hours audio playback time

CMOS Power Dissipation

- Power dissipation is a very important circuit characteristic
- CMOS has relatively low static dissipation
- Power dissipation was the reason that CMOS technology won over bipolar and NMOS technology for digital IC's
- (Extremely) high clock frequencies increase dynamic dissipation
- Low V_T increases leakage
- Advanced IC design is a continuous struggle to contain the power requirements!

Power Density

Estimate

- Furnace: 2000 Watt, r=10cm → P ≈ 6Watt/cm²
- Processor chip: 100 Watt, 3cm² → P ≈ 33Watt/cm²

Power-aware design, design for low power, is blossoming subfield of VLSI Design

- TPS: what is the difference in power between Bipolar and CMOS technologies?
- A: 10 years

Power Evolution over Technology Generations

Introduction of CMOS over bipolar bought industry 10 years (example: IBM mainframe processors)

[From: Jan Rabaey, Low Power Design Essential, Ref: R. Chu, JEP'04]

Low Power Design Essentials

Recommended reading (available online via University Library and site (?) of book)

Where Does Power Go in CMOS

- Dynamic Power ConsumptionCharging and discharging capacitors
- Short Circuit Currents Short circuit path between supply rails during switching (NMOS and PMOS on together)
- Leakage
 Leaking diodes and transistors
 May be important for battery-operated equipment

Dynamic Power

Dynamic Power

- E_i = energy of switching event i
 - independent of switching speed
 - depends on process, layout
- Power = Energy/Time

$$P = \frac{1}{T} \sum_{i} E_{i}$$

- E_i = Power-Delay-Product P-D
 - important quality measure
- Energy-Delay-Product E-D
 - combines power*speed performance

Low-to-High Transition Energy

Equivalent circuit for lowto-high transition

E_C - Energy stored on C

$$E_{C} = \int_{0}^{\infty} i v_{0} dt \qquad v_{0} = v_{0}(t) \qquad i = i(t) = C \frac{dv_{0}}{dt}$$

$$= \int_{0}^{\infty} C v_{0} \frac{dv_{0}}{dt} dt$$

$$= \int_{0}^{V_{DD}} C v_{0} dv_{0} = \frac{1}{2} C v_{0}^{2} \Big|_{0}^{V_{DD}} = \frac{1}{2} C V_{DD}^{2}$$

Low-to-High Transition Energy

 $E_{V_{DD}}$ Energy delivered by supply

$$E_{V_{DD}} = \int_{0}^{\infty} i(t) V_{DD} d \neq \int_{0}^{V_{DD}} CV_{DD} \frac{dv_0}{dt} d \neq CV_{DD}^2$$

$$E_{V_{DD}} = CV_{DD}^2 \qquad E_c = \frac{1}{2}CV_{DD}^2$$

Where is the rest?

Low-to-High Transition Energy

E_{diss} Energy dissipated in transistor

$$E_{diss} = \int_{0}^{\infty} i(V_{DD} - v_{0})dt$$

$$= \int_{0}^{\infty} iV_{DD}dt - \int_{0}^{\infty} iv_{0}dt$$

$$= E_{V_{DD}} - E_{c}$$

High-to-Low Transition Energy

Exercise: Show that the energy that is dissipated in the transistor upon discharging C from V_{DD} to 0 equals $E_{diss} = \frac{1}{2}CV_{DD}^2$

Compare Charging Strategies

Constant voltage

$$i = C \frac{dV_C}{dT}$$

$$E_{R} = \int_{0}^{\infty} V_{R}idt = \int_{0}^{\infty} (V - V_{C})C \frac{dV_{C}}{dt} dt$$

$$= \int_{0}^{V} (V - V_{c})CdV_{C} = \frac{1}{2}CV^{2}$$

Constant current

$$I = \frac{CV}{T}$$

$$E_{R} = \int_{0}^{\infty} I(RI) dt = \int_{0}^{T} I(RI) dt = RI^{2}T$$

$$=\frac{RC}{T}CV^2$$

- Reduced dissipation if T > 2RC = t_{76%}
- Difficult to reap benefits in practice
- See 'Adiabatic Logic'

CMOS Dynamic Power Dissipation

$$Power = \frac{Energy}{Time} = \frac{Energy}{transition} \times \frac{\# transitions}{time}$$
$$= CV_{DD}^2 \times f$$

- Independent of transistor on-resistances
- **Can only reduce** C, V_{DD} or f to reduce dynamic power

Short Circuit Current

- Shaded area is where both pull-up and pull-down transistors are on (this is when short-circuit current can exist). This region is determined by crossings of input waveform with V_{Tn} and V_{DD}-|V_{Tp}|.
- Short circuit current for output going low is the current delivered by the PMOS
 - (NMOS current is used for discharging)
- TPS Discuss the influence of C_{Load} on the amount of short circuit dissipation higher C_{LOAD} → higher dissipation? or not?

Short Circuit Current

- Input and output waveforms of inverter loaded with a large capacitance (top) and with a small capacitance (bottom).
- Short-circuit current increases with |V_{DSp}|. This is clearly much larger on average for small C_L compared to large C_L.
- Similarly, short-circuit current can exist for low-to-high transition at output.

Short Circuit Current

Best to maintain approximately equal input/output slopes

Leakage

- Leakage current of reverse biased S/D junctions
- Sub-threshold current of MOS devices
- no channel → parasitic bipolar device: n+ (source) – p (bulk) – n+ (drain)
- Important source of leakage

$$I_D = I_0 e^{\frac{qV_{GS}}{nkT}} \left(1 - e^{-\frac{qV_{DS}}{kT}} \right) (1 + \lambda \cdot V_{DS})$$

Sub-Threshold Current

- Rapidly becomes bottleneck with lowering threshold voltages
- Modern technologies offer low-Vt and hi-Vt devices Balance speed and power

Figure 2

MOSFET current in both logarithmic (left) and linear (right) scales vs. gate voltage. The slope of the dotted line represents the large-signal transconductance for a digital circuit. Inset shows the band diagram of an n-MOSFET. The barrier height at $V_{\rm g}=0$ is proportional to $V_{\rm r}$

Y. Taur, CMOS design near the limit of scaling, IBMJRD, Volume 46, Numbers 2/3, 2002

Sub-Threshold Current

- Rapidly becomes bottleneck with lowering threshold voltages
- Modern technologies offer low-V_t and hi-V_t devices Balance speed and power

Transistor Sizing for Minimum Energy

$$t_{pHL} \approx 0.52 \frac{C_L V_{DD}}{(W/L)_n k_n^{'} V_{DSATn} (V_{DD} - V_{Tn} - V_{DSATn}/2)}$$

$$t_{p} = t_{p0} \left(\left(1 + \frac{f}{\gamma} \right) + \left(1 + \frac{F}{f \gamma} \right) \right)$$

$$t_{p0} \propto \frac{V_{DD}}{V_{DD} - V_{TE}}$$
 See Eq. 5.21 $V_{TE} = V_T + \frac{1}{2}V_{DSAT}$: Effective V_T

Transistor Sizing (2)

$$t_{p} = t_{p0} \left(\left(1 + \frac{f}{\gamma} \right) + \left(1 + \frac{F}{f\gamma} \right) \right)$$
 $t_{p0} \propto \frac{V_{DD}}{V_{DD} - V_{TE}}$

Performance Constraint

(with
$$\gamma = 1$$
, $t_{pref} \rightarrow f=1$):

$$1 = \frac{t_p}{t_{pref}} = \frac{t_{p0}}{t_{p0ref}} \frac{\left(2 + f + \frac{F}{f}\right)}{\left(3 + F\right)} = \left(\frac{V_{DD}}{V_{ref}}\right) \left(\frac{V_{ref} - V_{TE}}{V_{DD} - V_{TE}}\right) \frac{\left(2 + f + \frac{F}{f}\right)}{\left(3 + F\right)}$$

- V_{TE}: technology (0.5 V), V_{ref}: standard supply (2.5 V)
- F: fanout
- V_{DD}, f: design parameters
- V_{DD} is a function of f, given a fixed performance

$$V_{DD} = \frac{f(15+5F)}{(14f-8f^2-8F+10fF)}$$

Transistor Sizing (3)

$$V_{DD}=f(f)$$

- Supply voltage needed as a function of f to maintain reference performance
- Lowest supply voltage needed for $f = F^{0.5}$

$$V_{DD} = \frac{f(15+5F)}{(14f-8f^2-8F+10fF)}$$

Transistor Sizing (4)

Transistor Sizing (5)

$$E/E_{ref} = f(f)$$

$$\frac{E}{E_{ref}} = \left(\frac{V_{DD}}{V_{ref}}\right)^2 \left(\frac{2+2f+F}{4+F}\right)$$

- Device sizing is effective
- Oversizing is expensive for power
- Optimal sizing for energy slightly different from sizing for performance

Technology Scaling

Also see: IBM JRD, Vol 46, no 2/3, 2002 Scaling CMOS to the limit http://www.research.ibm.com/journal/rd46-23.html

Moore's Law

The number of transistors that can be integrated on a single chip will double every 18 months

Gordon Moore, co-founder of Intel [Electronics, Vol 38, No. 8, 1965]

Why Scaling

- Reduce price per function:
 - Want to sell more functions (transistors) per chip for the same money → better products
 - Build same products cheaper, sell the same part for less money → larger market
 - Price of a transistor has to be reduced
- But also want to be faster, smaller, lower power

IC Technology Scaling

Scaling improves density and performance

■ First order scaling theory			<u>2008 / 1971</u>	
	dimensions,	1/S	0.007	
	voltages	1/S	0.007	
	intrinsic delay	1/S	0.007	
•	power per transistor	1/S ²	0.00004	

Scaling trend

Scaling Models

Fixed Voltage Scaling

- most common model until 1990's
- only dimensions scale, voltages remain constant

Full Scaling (Constant Electrical Field)

ideal model — dimensions and voltage scale together by the same factor S

General Scaling

- most realistic for today's situation
- Two scaling factors: dimensions scale with S voltages scale with U

Scaling for Velocity Saturated Devices

Constant Field Scaling: S = U

Parameter	Relation	General Scaling	
<i>W, L, t</i> _{ox}		1/S	
V_{DD}, V_{T}		1/U	
N _{SUB}	V/W_{depl}^2	S²/U	
Area / Device	WL	1/S ²	
C _{ox}	1/t _{ox}	S	
C_{gate}	C _{ox} W L	1/S	
k _n , k _p	$C_{ox}W/L$	S	
l _{sat}	C _{ox} W V	1/U	
Current Density	I _{sat} / Area	S ² /U	
R _{on}	V/I _{sat}	1	
Intrinsic Delay	R _{on} C _{gate}	1/S	
Power / Device	I _{sat} V	1/U ²	
Power Density	P/Area	S ² /U ²	

Technology Practice & ITRS

- Scaling Technology Generations
- S ≈ 1.4 ≈ $2^{0.5}$ per generation
- ... 250 180 130 90 65 45 35 22 ... nm
- ITRS: International Technology Roadmap for Semiconductors Industry-wide organization for forecasting technology developments – and (planning) requirements

http://www.itrs.net/home.html

Not really – it is more like science (and a self-fulfilling prophecy at the same time)

International Technology Roadmap for Semiconductors

2007 ITRS Product Technology Trends - Functions per Chip

International Technology Roadmap for Semiconductors

Summary

- Digital Gate Characterization (§ 1.3)
- Static Behavior (Robustness) (§ 5.3)
 - VTC
 - Switching Threshold
 - Noise Margins
- Dynamic Behavior (Performance) (§ 5.4)
 - Capacitances
 - Delay
- Power (§ 5.5)
 - Dynamic Power, Static Power, Metrics
- Scaling (§ 5.6)