SKILLFACTORY

Вебинар: Линейная регрессия

Виктория Тюфякова

Data scientist, ментор курса DST

VICDS - Victoria Data Science

- Магистр информационных технологий КубГУ
- Data Scientist Аналитик данных
- Ментор онлайн курса по **DS**
- Автор канала **@vicds** в телеграмм
- Блог в инстаграм @vicdscience

Структура вебинара:

План (~90 минут)

- •Повторение и углубление теории модуля ML-4 (30 минут)
 - Задачи регрессии
 - Регуляризация
 - Метрики регрессии
 - Кросс-валидация
- •Практическая работа (40 50 минут)
- •Q&A сессия по теме вебинара (10 20 минут)

Классическое машинное обучение

Задача регрессии

Задача регрессии — нахождение зависимостей между определяющими переменными и целевой переменнои, если она является непрерывным числом.

Задача линейной регрессии — нахождение такои зависимости, если она линейная.

Цель регрессии состоит в том, чтобы спрогнозировать непрерывное число или вещественное число (float

number).

Линейная регрессия

$$a(x) = w_0 + \sum_{j=1}^{a} w_j x_j$$

Здесь **x** обозначают признаки (в данном примере число характеристик равно **j**) для отдельной точки данных, **w1-wj** – параметры модели, оцениваемые в ходе обучения, и **a(x)** прогноз, выдаваемый моделью. Вес **w0** называется свободным коэффициентом или сдвигом (bias).

Построим простейшую модель зависимости веса от роста человека:

$$a(x) = w0 + w1 * x$$
 $x = 167$ cm, $w1 = 0.33, w0 = 2$ $a(54) = 0.33 * 167 + 2 = 57$ kg

Обучение линейной регрессии

Чаще всего линейная регрессия обучается с использованием среднеквадратичной ошибки.

В этом случае получаем задачу оптимизации:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(\langle w, x_i \rangle - y_i \right)^2 \to \min_{w}$$

Метод наименьших квадратов (МНК)

$$\vec{w} = (X^T X)^{-1} X^T \vec{y}$$

Градиентный спуск

$$w^{(k)} = w^{(k-1)} - \eta_k \nabla Q(w^{(k-1)})$$

Основное свойство антиградиента — он указывает в сторону наискорейшего убывания функции в данной точке.

Метрики для задач регрессии

MAE (*Mean Absolute Error*) среднее арифметическое модуля отклонения предсказанного значения от реального.

$$ext{MAE} = rac{1}{m} \sum_{i=1}^m |a_i - y_i|$$

MSE (Mean Squared Error)

$$ext{MSE} = rac{1}{m} \sum_{i=1}^m |a_i - y_i|^2$$

RMSE (Root Mean Squared Error)

$$ext{RMSE} = \sqrt{ ext{MSE}} = \sqrt{rac{1}{m} \sum_{i=1}^m \left|a_i - y_i
ight|^2}$$

MAPE (Mean Absolute Percent Error)

$$ext{MAPE} = 100\% \cdot rac{1}{m} \sum_{i=1}^m rac{|y_i - a_i|}{|y_i|}$$

R-squared (коэффициент детерминации): Измеряет долю дисперсии, объясненную моделью.

$$R^{2}(a,X) = 1 - \frac{\sum_{i=1}^{\ell} (a(x_{i}) - y_{i})^{2}}{\sum_{i=1}^{\ell} (y_{i} - \bar{y})^{2}}$$

Универсальная мера зависимости одной случайной величины от множества других

Разложение ошибки на смещение и разброс (Bias-variance)

Ошибка прогноза любой модели вида $y=f(x\to)+\varepsilon$ складывается из:

$$\operatorname{Err}\left(ec{x}
ight) \;\; = \;\; \operatorname{Bias}\!\left(\hat{f} \,
ight)^2 + \operatorname{Var}\left(\hat{f} \,
ight) + \sigma^2$$

- квадрата смещения: Bias- средняя ошибка по всевозможным наборам данных;
- дисперсии: Var вариативность ошибки, то, на сколько ошибка будет отличаться, если обучать модель на разных наборах данных;
- неустранимой ошибки: σ2.

При увеличении сложности модели увеличивается дисперсия (разброс) оценки, но уменьшается смещение.

Если же модель слабая, то она не в состоянии найти закономерность, в результате получаем что-то другое, смещенное относительно правильного решения.

Регуляризация

Регуляризация означает явное ограничение модели для предотвращения переобучения.

$$Q_{\alpha}(w) = Q(w) + \alpha R(w)$$

Коэффициент α называется параметром регуляризации и контролирует баланс между подгонкой под обучающую выборку и штрафом за излишнюю сложность. Значение параметра подбирается перебором под каждую задачу.

Наиболее распространенными являются L1 и L2-регуляризаторы:

LI
$$R(w) = \|w\|_1 = \sum_{i=1}^d |w_i|$$
 Lasso-регуляризация $R(w) = \|w\|_2 = \sum_{i=1}^d w_i^2$ Ridge-регуляризация

Гребневая регрессия

В гребневой регрессии коэффициенты (**w**) выбираются не только с точки зрения того, насколько хорошо они позволяют предсказывать на обучающих данных, но они еще подгоняются в соответствии с дополнительным ограничением - все элементы **w** должны быть близки к нулю.

Это означает, что каждый признак должен иметь как можно меньшее влияние на результат (то есть каждый признак должен иметь небольшой регрессионный коэффициент) и в то же время он должен по-прежнему обладать хорошей прогнозной силой.

Регуляризация, использующаяся в гребневой регрессии, известна как L2 регуляризация.

sklearn.linear_model.Ridge

class sklearn.linear_model.Ridge(alpha=1.0, *, fit_intercept=True, normalize=False, copy_X=True, max_iter=None,
tol=0.001, solver='auto', random_state=None)
[source]

Linear least squares with I2 regularization.

Minimizes the objective function:

$$||y - Xw||^2_1 + alpha * ||w||^2_2$$

This model solves a regression model where the loss function is the linear least squares function and regularization is given by the I2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape (n_samples, n_targets)).

Лассо регрессия

Как и гребневая регрессия, лассо также сжимает коэффициенты до близких к нулю значений, но несколько иным способом, называемым L1 регуляризацией.

Результат L1 регуляризации заключается в том, что при использовании лассо некоторые коэффициенты становятся равны точно нулю.

Получается, что некоторые признаки полностью исключаются из модели.

Это можно рассматривать как один из видов автоматического отбора признаков.

sklearn.linear_model.Lasso

 $class \ \, sklearn.linear_model. \ \, \textbf{Lasso}(alpha=1.0, *, fit_intercept=True, normalize=False, precompute=False, copy_X=True, \\ max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cyclic') \\ [source]$

Linear Model trained with L1 prior as regularizer (aka the Lasso)

The optimization objective for Lasso is:

```
(1 / (2 * n\_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
```

Technically the Lasso model is optimizing the same objective function as the Elastic Net with l1_ratio=1.0 (no L2 penalty).

Модель регрессии с двумя регуляризаторами L1 и L2 в пропорции

sklearn.linear_model.ElasticNet

class sklearn.linear_model. **ElasticNet**(alpha=1.0, *, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000, copy_X=True, tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cyclic') [source]

Linear regression with combined L1 and L2 priors as regularizer.

Minimizes the objective function:

```
1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2
```

Преимущества линейной регрессии

- Линейные модели очень быстро обучаются, а также быстро прогнозируют.
- Они масштабируются на очень большие наборы данных, а также хорошо работают с разреженными данными.
- Как правило, линейные модели хорошо работают, когда количество признаков превышает количество наблюдений.
- Кроме того, они часто используются на очень больших наборах данных, просто потому, что не представляется возможным обучить другие модели.
- Также у них мало параметров, благодаря чему удается контролировать риск переобучения и использовать их для работы с зашумленными данными и с небольшими выборками.
- Подходят для поиска простых взаимосвязей в данных.

Кросс - валидация

Важно помнить, что кросс-валидация не является способом построения модели, которую можно применить к новым данным. Перекрестная проверка не возвращает модель.

При вызове cross_val_score строится несколько внутренних моделей, однако цель перекрестной проверки заключается только в том, чтобы оценить обобщающую способность данного алгоритма, обучив на определенном наборе данных.

Полезные источники

- 1. Андреас Мюллер, Сара Гвидо Введение в машинное обучение с помощью Python;
- 2. Cross-Validation in Machine Learning: How to Do It Right:

https://neptune.ai/blog/cross-validation-in-machine-learning-how-to-do-it-right

Обратная связь

пройдите по QR-коду или ссылке заполнение займет 2-3 минуты:)

ссылка на анкету

Укажите в соответствующих полях анкеты:

Ведущая вебинара: Виктория Тема вебинара: Регрессия