Multivariate Analysis of Chemical Compounds in Marijuana Data, Socio Economic Data, and Genuine and Fake Bank Notes Data.

This is a Report where the concepts and techniques of Multivariate analysis is applied to gain Insight on different scenario and data corresponding to them where certain questions will be analysed and answered

Questions that will be answered in this report by applying the following techniques:

- Principal Component Analysis (PCA).
- Factor Analysis (FA).
- Determinant Analysis (DA).

Principal Component Analysis.

The data is a concentration of 13 different chemical compounds in marijuana plants own in the same region in Colombia that are derived from three different species varieties. The analysis is carries on using **SAS**.

- 1) Compute the mean and standard deviation for the 13 chemical concentrations on the sample data via SAS
- 2) Compute the correlation matrix and a scatterplot in SAS. Is the correlation matrix suitable for a principal component analysis?
- 3) Perform a Principal component analysis using SAS on the raw data and assess how many PCs need to retain.
 - a) What percentage of the total sample variation is accounted for the first, second and third PCs?
 - b) Interpret the first 3 PC's.
 - c) What are the first, second and third PCs as linear functions of the original variables.
 - d) Can the data be effectively summarised in fewer than 13 dimensions?
 - e) Visualise the number of PCs considered.
- 4) Perform a principal component analysis on the correlation matrix.
 - a) What percentage of the total sample variation is accounted for the first, second and third PCs?
 - b) Interpret the first 3 PC's.
 - c) What are the first, second and third PCs as linear functions of the standardised variables.
 - d) Can the data be effectively summarized in fewer than 13 dimensions?
 - e) Visualise the number of PCs considered.

Solutions:

1) Computing the mean and standard deviation for the 13 chemical concentrations in the sample data.

Variable	N	Mean	Std Dev	Minimum	Maximum
varieties	178	1.9382022	0.7750350	1.0000000	3.0000000
chem1	178	13.0006180	0.8118265	11.0300000	14.8300000
chem2	178	2.3363483	1.1171461	0.7400000	5.8000000
chem3	178	2.3665169	0.2743440	1.3600000	3.2300000
chem4	178	19.4949438	3.3395638	10.6000000	30.0000000
chem5	178	99.7415730	14.2824835	70.0000000	162.0000000
chem6	178	2.2951124	0.6258510	0.9800000	3.8800000
chem7	178	2.0292697	0.9988587	0.3400000	5.0800000
chem8	178	0.3618539	0.1244533	0.1300000	0.6600000
chem9	178	1.5908989	0.5723589	0.4100000	3.5800000
chem10	178	5.0580899	2.3182859	1.2800000	13.0000000
chem11	178	0.9574494	0.2285716	0.4800000	1.7100000
chem12	178	2.6116854	0.7099904	1.2700000	4.0000000
chem13	178	746.8932584	314.9074743	278.0000000	1680.00

2) Computing the correlation matrix and a scatterplot for analysis.

						Correla	tion Matri	x					
	chem1	chem2	chem3	chem4	chem5	chem6	chem7	chem8	chem9	chem10	chem11	chem12	chem13
chem1	1.0000	0.0944	0.2115	3102	0.2708	0.2891	0.2368	1559	0.1367	0.5464	0717	0.0723	0.6437
chem2	0.0944	1.0000	0.1640	0.2885	0546	3352	4110	0.2930	2207	0.2490	5613	3687	1920
chem3	0.2115	0.1640	1.0000	0.4434	0.2866	0.1290	0.1151	0.1862	0.0097	0.2589	0747	0.0039	0.2236
chem4	3102	0.2885	0.4434	1.0000	0833	3211	3514	0.3619	1973	0.0187	2740	2768	4406
chem5	0.2708	0546	0.2866	0833	1.0000	0.2144	0.1958	2563	0.2364	0.2000	0.0554	0.0660	0.3934
chem6	0.2891	3352	0.1290	3211	0.2144	1.0000	0.8646	4499	0.6124	0551	0.4337	0.6999	0.4981
chem7	0.2368	4110	0.1151	3514	0.1958	0.8646	1.0000	5379	0.6527	1724	0.5435	0.7872	0.4942
chem8	1559	0.2930	0.1862	0.3619	2563	4499	5379	1.0000	3658	0.1391	2626	5033	3114
chem9	0.1367	2207	0.0097	1973	0.2364	0.6124	0.6527	3658	1.0000	0252	0.2955	0.5191	0.3304
chem10	0.5464	0.2490	0.2589	0.0187	0.2000	0551	1724	0.1391	0252	1.0000	5218	4288	0.3161
chem11	0717	5613	0747	2740	0.0554	0.4337	0.5435	2626	0.2955	5218	1.0000	0.5655	0.2362
chem12	0.0723	3687	0.0039	2768	0.0660	0.6999	0.7872	5033	0.5191	4288	0.5655	1.0000	0.3128
chem13	0.6437	1920	0.2236	4406	0.3934	0.4981	0.4942	3114	0.3304	0.3161	0.2362	0.3128	1.0000

Tarun.S.Sarode

As can be seen from the Correlation Matrix and the Scatter plot, some of the chemicals have a strong correlation (greater than 0.44) with each other

Namely;

- chem6&chem7
- chem7&chem9
- chem1&chem10
- chem7&chem12
- chem11&chem12 and
- chem1&chem13
- 3) Perform a Principal component analysis using SAS on the raw data and assess how many PCs need to retain.
 - a) What percentage of the total sample variation is accounted for the first, second and third PCs?

	Eigenva	alues of the Co	ovariance Mat	rix
	Eigenvalue	Difference	Proportion	Cumulative
1	99202.0307	99029.4941	0.9981	0.9981
2	172.5366	163.0054	0.0017	0.9998
3	9.5312	4.4304	0.0001	0.9999
4	5.1008	3.8150	0.0001	1.0000
5	1.2858	0.4176	0.0000	1.0000
6	0.8682	0.5812	0.0000	1.0000
7	0.2870	0.1317	0.0000	1.0000
8	0.1553	0.0415	0.0000	1.0000
9	0.1137	0.0274	0.0000	1.0000
10	0.0864	0.0402	0.0000	1.0000
11	0.0462	0.0113	0.0000	1.0000
12	0.0349	0.0142	0.0000	1.0000
13	0.0208	0.0127	0.0000	1.0000
14	0.0081		0.0000	1.0000

The percentage of total sample variation are:

$$1^{st} = 99.8\%$$

$$2^{nd} = 0.17\%$$

$$3^{rd} = 0.1\%$$

b) Interpret the first 3 PC's.

As from the PC's we can see that only first PC which is 99.8% is high and significant whereas the second and third are very less significant which would not be of significance if included.

c) Write out the first, second and third PCs as linear functions of the original variables.

							Eigenvector	s						
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8	Prin9	Prin10	Prin11	Prin12	Prin13	Prin14
varieties	001559	0.002779	0.100920	0.147646	219197	168685	178801	0.190995	0.165828	0.510993	0.623529	0.366354	0.095988	0.047158
chem1	0.001659	0.001204	0.018304	0.136989	0.048933	0.202080	0.890116	0.349028	0.104297	0.057590	0.089075	0.034777	004240	0.013422
chem2	000681	0.002160	0.124559	0.156739	528931	0.803840	146858	075521	0.010226	033610	007744	035736	0.063236	012055
chem3	0.000195	0.004594	0.051293	012047	0.025846	0.041694	0.050349	150528	0.068881	107161	353256	0.891487	086488	162345
chem4	004671	0.026461	0.928100	356990	0.069611	023860	0.035937	0.011392	002441	009980	0.002659	059311	0.000269	000065
chem5	0.017868	0.999340	029985	004754	006452	001349	0.002065	003569	001632	0.000865	0.001638	002620	0.000501	0.002271
chem6	0.000990	0.000875	042761	076452	0.320081	0.228320	065680	089903	0.364232	0.719696	393379	135677	019082	034648
chem7	0.001567	000059	090267	172191	0.535696	0.357645	079455	204900	0.384930	318459	0.485222	0.080513	000197	0.086672
chem8	000123	001354	0.013722	0.010594	029289	016952	000054	0.000990	0.028873	017794	175069	0.116465	0.132954	0.967218
chem9	0.000601	0.005002	026237	051606	0.253787	0.197181	351740	0.847728	121294	104024	131390	0.087044	015025	019293
chem10	0.002327	0.015114	0.303203	0.856516	0.367299	005508	093290	108372	110801	044505	035782	037635	0.042567	007837
chem11	0.000171	000764	026992	059055	0.045943	030413	0.029583	002817	0.027086	051943	082710	0.024792	0.978655	152355
chem12	0.000705	003501	074366	178526	0.269297	0.249151	0.079984	180924	804595	0.296076	0.179432	0.130239	0.038019	0.056751
chem13	0.999822	017769	0.004627	002951	002713	001211	001178	0.000095	0.000030	0.000388	0.000529	0.000047	000040	0.000067

Prin1 = 0.001659 * chem1 - .000681 * chem2 + 0.000195 * chem3 - .004671 * chem4 + 0.017868 * chem5 + 0.000990 * chem6 + 0.001567 * chem7 - .000123 * chem8 + 0.000601 * chem9 + 0.002327 * chem10 + 0.000171 * chem11 + 0.000705 * chem12 + 0.999822 * chem13

Prin2 = 0.001204*chem1 + 0.002160*chem2 + 0.004594*chem3 + 0.026461*chem4 + 0.999340*chem5 + 0.000875*chem6 -.000059*chem7 -.001354*chem8 + 0.005002*chem9 + 0.015114*chem10 -.000764*chem11 -.003501*chem12 -.017769*chem13

Prin3 = 0.018304*chem1 + 0.124559*chem2 + 0.051293*chem3 + 0.928100*chem4 - .029985*chem5 -.042761*chem6 -.090267*chem7 + 0.013722*chem8 -.026237*chem9 + 0.303203*chem10 -.026992*chem11 -.074366*chem12 + 0.004627*chem13

- d) Can the data be effectively summarised in fewer than 13 dimensions? From the results we can see that as the PC1 cumulatively represents 99.8% of variance therefore the data can be summarised in fewer than 13 dimensions.
- e) Visualise the number of PCs considered.

From the Screen Plot we can see that the change is at point 2 and from all there all the values are near zero which confirms that first PC can summarise the data.

- 4) Perform a principal component analysis using SAS on the correlation matrix. Answer the following from the resultant output
 - a) What percentage of the total sample variation is accounted for the first, second and third PCs?

	Eigenv	alues of the Co	orrelation Mat	rix
	Eigenvalue	Difference	Proportion	Cumulative
1	4.70585025	2.20887652	0.3620	0.3620
2	2.49697373	1.05090176	0.1921	0.5541
3	1.44607197	0.52709805	0.1112	0.6653
4	0.91897392	0.06574575	0.0707	0.7360
5	0.85322818	0.21157115	0.0656	0.8016
6	0.64165703	0.09062872	0.0494	0.8510
7	0.55102831	0.20253095	0.0424	0.8934
8	0.34849736	0.05961742	0.0268	0.9202
9	0.28887994	0.03797746	0.0222	0.9424
10	0.25090248	0.02511384	0.0193	0.9617
11	0.22578864	0.05701840	0.0174	0.9791
12	0.16877023	0.06539230	0.0130	0.9920
13	0.10337794		0.0080	1.0000

The percentage of total sample variation are: $1^{st} = 36.2\%$ $2^{nd} = 19.21\%$ $3^{rd} = 11.12\%$

b) Interpret the first 3 PC's.

As from the PC's we can see that only first PC which is 36.2% 99.8% the second PC is 19.21% and third is 11.12% which does not include most of the data.

c) What are the first, second and third PCs as linear functions of the standardised variables.

						Eigen	vectors						
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8	Prin9	Prin10	Prin11	Prin12	Prin1
chem1	0.144329	0.483652	207383	017856	0.265664	0.213539	056396	0.396139	0.508619	211605	225917	266286	0.01497
chem2	245188	0.224931	0.089013	0.536890	035214	0.536814	0.420524	0.065827	075283	0.309080	0.076486	0.121696	0.02596
chem3	002051	0.316069	0.626224	214176	0.143025	0.154475	149171	170260	307694	0.027125	498691	049622	14121
chem4	239320	010591	0.612080	0.060859	066103	100825	286969	0.427970	0.200449	052799	0.479314	055743	0.09168
chem5	0.141992	0.299634	0.130757	351797	727049	0.038144	0.322883	156361	0.271403	067870	0.071289	0.062220	0.05677
chem6	0.394661	0.065040	0.146179	0.198068	0.149318	084122	027925	405934	0.286035	0.320131	0.304341	303882	46390
chem7	0.422934	003360	0.150682	0.152295	0.109026	018920	060685	187245	0.049578	0.163151	025694	042899	0.83225
chem8	298533	0.028779	0.170368	203301	0.500703	258594	0.595447	233285	0.195501	215535	0.116896	0.042352	0.11404
chem9	0.313429	0.039302	0.149454	0.399057	136860	533795	0.372139	0.368227	209145	134184	237363	095553	11691
chem10	088617	0.529996	137306	0.065926	0.076437	418644	227712	033797	0.056218	0.290775	0.031839	0.604222	01199
chem11	0.296715	279235	0.085222	427771	0.173615	0.105983	0.232076	0.436624	0.085828	0.522399	048212	0.259214	08988
chem12	0.376167	164496	0.166005	0.184121	0.101161	0.265851	044764	078108	0.137227	523706	0.046423	0.600959	1567
chem13	0.286752	0.364903	126746	232071	0.157869	0.119726	0.076805	0.120023	575786	162116	0.539270	079402	0.01444

Prin1 = 0.144329*chem1 -.245188*chem2 -.002051*chem3 -.23932 *chem4 + 0.141992*chem5 + 0.394661*chem6 + 0.422934*chem7 -.298533*chem8 + 0.313429*chem9 - .088617*chem10 + 0.296715*chem11 + 0.376167*chem12 + 0.286752*chem13

Prin2 = 0.483652*chem1 + 0.224931*chem2 + 0.316069*chem3 -.010591*chem4 + 0.299634*chem5 + 0.065040*chem6 -.00336*chem7 + 0.02877*chem8 + 0.039302 *chem9 + 0.529996*chem10 + -.279235*chem11-.164496*chem12 + 0.364903*chem13

Prin3 = -.207383*chem1 + 0.089013*chem2 + 0.626224*chem3 + 0.612080*chem4 + 0.130757*chem5 + 0.146179*chem6 + 0.150682*chem7 + 0.170368*chem8 + 0.149454*chem9 -.137306*chem10 + 0.085222*chem11 + 0.166005*chem12 -.126746*chem13

d) Can the data be effectively summarized in fewer than 13 dimensions?

From the analysis we need 5 PC to make sure that the data can be summarised and the data can be summarised in less that 13 which is 5 PC.

e) Visualise the number of PCs considered.

From the screen plot we can see that there is an elbow(bend), after which the remaining eigenvalues are relatively small or roughly the same size. The plot on the left the elbow curve occurs at PC4 and therefore it would suggest to use 4 PC's

Factor analysis

A raw data with 12 observations, on 5 socio-economic variables, called Population, School, Employment, Services and House Value will be used to carry on the analysis.

- 1) Compute the means and standard deviations of the data.
- 2) Compute a Factor analysis on the raw data and the correlation matrix.
- 3) From the eigenvalues of the correlation matrix and the factor loading matrix and communalities outputted the following questions can be answered.
 - a) Do the first two principal components (factors) provide an adequate summary of the data?
 - b) How much of the variation is accounted for by 2 factors?
 - c) How much of the variation is accounted for by 3 factors?
- 4) Using PROC PRINCOMP to display the scoring coefficients as eigenvectors, and answer the following questions
 - a) What are the eigenvalues and the respective eigenvectors?
 - b) What is the proportion of the variance accounted for by the first and second component respectively?

- c) Together how much do the first and second factors together account for the standardised variance?
- d) Do the final communality estimates show that all the variables are well accounted for by how many components or factors?
- 5) To obtain the component scores as linear combinations of the observed variables along with the standardized scoring. As each factor/component can expressed as a linear combination of the standardised observed variables the following questions can be answered.
 - a) Write down the first principal component or Factor1 in terms of the standardised variables.
 - b) Write down the second principal component or Factor2 in terms of the standardised variables.
 - c) Write the first and second PCs in terms of eigenvectors.

Solution

1) Compute the means and standard deviations of the data.

Variable	Mean	Std Dev
Population	6241.6667	3439.9943
School	11.4417	1.7865
Employment	2333.3333	1241.2115
Services	120.8333	114.9275
HouseValue	17000.0000	6367.5313

2) Compute a Factor analysis on the raw data and the correlation matrix.

- 3) From the eigenvalues of the correlation matrix and the factor loading matrix and communalities outputted the following questions can be answered.
 - a) Do the first two principal components (factors) provide an adequate summary of the data?

<u>Ans:</u> As the first two PC which explains 93.4% of variance of the dataset, we can say that it is adequate to summarise the data as values>90% is generally considered adequate.

- b) How much of the variation is accounted for by 2 factors?
 Ans: The first 2 factors explain 93.4% of the variance of the dataset or 4.67/5
- c) How much of the variation is accounted for by 3 factors?
 Ans: The first 3 factors explain 97.7% of the variance of the dataset or 4.885/5
- 4) Using PROC PRINCOMP to display the scoring coefficients as eigenvectors, and answer the following questions

a) What are the eigenvalues and the respective eigenvectors?

	Eigenvalue
1	2.87331359
2	1.79666009
3	0.21483689
4	0.09993405
5	0.01525537

Eigenvectors											
	Prin1	Prin2	Prin3	Prin4	Prin5						
Population	0.342730	0.601629	0.059517	0.204033	0.689497						
School	0.452507	406414	0.688822	353571	0.174861						
Employment	0.396695	0.541665	0.247958	0.022937	698014						
Services	0.550057	077817	664076	500386	000124						
HouseValue	0.466738	416429	139649	0.763182	082425						

b) What is the proportion of the variance accounted for by the first and second component respectively?

Ans:

	Eigenv	alues of the C	orrelation Ma	trix
	Eigenvalue	Difference	Proportion	Cumulative
1	2.87331359	1.07665350	0.5747	0.5747
2	1.79666009	1.58182321	0.3593	0.9340
3	0.21483689	0.11490283	0.0430	0.9770
4	0.09993405	0.08467868	0.0200	0.9969
5	0.01525537		0.0031	1.0000

The first and the second component account for 93.4% of the variance.

c) Together how much do the first and second factors together account for the standardised variance?

<u>Ans:</u> The first 2 factors explain 93.4% of the variance. This is the same as the previous question because PCA was used to perform the estimation for the factor analysis.

d) Do the final communality estimates show that all the variables are well accounted for by how many components or factors?

Ans:

The final communality estimates are between 0.987 for population and 0.8802 for service whereas the communality estimate is 4.66.

5) To obtain the component scores as linear combinations of the observed variables along with the standardized scoring. As each factor/component can expressed as a linear combination of the standardised observed variables the following questions can be answered.

Initial Factor Method: Principal Components										
Scoring Coefficients Estimated by Regression										
Squared Multiple Correlations of the Variables with Each Factor										
Factor1	ctor1 Factor2 Factor3 Factor4 Factor5				Factor5					
1.0000000	1.000000	0 1.0000	000	1.00	00000 1.0		0000000			
		dized Scori	-	oeffici	ents Facto	or4	Factor5			
Population	Standard Factor1 0.20219	dized Scori Factor2 0.44884	Fa				Factor5			
Population School	Factor1	Factor2	Fa 0.1	ctor3	Facto	542	- dotoio			
•	Factor1 0.20219	Factor2 0.44884	Fa 0.1	ctor3 2841	Facto 0.645	542 346	5.58240			
School	Factor1 0.20219 0.26695	Factor2 0.44884 -0.30320	Fa 0.1 1.4 0.5	2841 8612	0.645 -1.118	542 346 256	5.58240 1.41574			

a) Write down the first principal component or Factor1 in terms of the standardised variables.

b) Write down the second principal component or Factor2 in terms of the standardised variables.

c) Write the first and second PCs in terms of eigenvectors.

Ans:

		Eigenve	ctors		
	Prin1	Prin2	Prin3	Prin4	Prin5
Population	0.342730	0.601629	0.059517	0.204033	0.689497
School	0.452507	406414	0.688822	353571	0.174861
Employment	0.396695	0.541665	0.247958	0.022937	698014
Services	0.550057	077817	664076	500386	000124
HouseValue	0.466738	416429	139649	0.763182	082425

Print1 = 0.342730*population + 0.452507*school + 0.396695*employment + 0.550057*services + 0.466738*house value.

Print 2 = 0.601629*population – 0.406414*school + 0.541665*employment – 0.077817*services – 0.416429*house value.

Determinant Analysis

For Determinant Analysis a bank data consisting of Six variables measured on 100 **genuine** and 100 **forged** (counterfeit/fake) old Swiss 1000-franc bank notes are used and the following questions are answered.

- 1) Compute the means and the variance-covariance matrix of the data for the **genuine notes**.
- 2) Compute the means and standard deviations and the variance-covariance matrix of the data for the **forged/fake/counterfeit notes**.
- 3) Produce the correlation matrix and an associated scatterplot of the inputted data for the **genuine notes**.
- 4) Produce the correlation matrix and an associated Scatterplot of the inputted data for the **forged /fake notes**.
- 5) Run the discriminant analysis using the SAS which allocates a bank note with the following characteristics $X_0^T = (214.9, 130.1, 129.9, 9, 10.6, 140.5)$ to the appropriate grouping i.e., allocates it to either the **genuine** or the **forged/fake class.**
- 6) Using the SAS DISCRIM and resultant output answer the following questions.
 - a) Is $\Sigma_1 = \Sigma_2$?
 - b) How is the bank note with $X_0^T = (214.9, 130.1, 129.9, 9, 10.6, 140.5)$ allocated?

Solution:

1) Compute the means and the variance-covariance matrix of the data for the **genuine notes.**

The MEANS Procedure							
Variable	Mean						
Length Left Right Bottom Top Diagonal	214.9690000 129.9430000 129.7200000 8.3050000 10.1680000 141.5170000						

Covariance Matrix, DF = 99									
	Length	Left	Right	Bottom	Тор	Diagonal			
Length	0.1502414141	0.0580131313	0.0572929293	0.0571262626	0.0144525253	0.0054818182			
Left	0.0580131313	0.1325767677	0.0858989899	0.0566515152	0.0490666667	0430616162			
Right	0.0572929293	0.0858989899	0.1262626263	0.0581818182	0.0306464646	0237777778			
Bottom	0.0571262626	0.0566515152	0.0581818182	0.4132070707	2634747475	0001868687			
Тор	0.0144525253	0.0490666667	0.0306464646	2634747475	0.4211878788	0753090909			
Diagonal	0.0054818182	0430616162	0237777778	0001868687	0753090909	0.1998090909			

2) Compute the means and standard deviations and the variance-covariance matrix of the data for the **forged/fake/counterfeit notes**.

The MEANS Procedure									
Variable	N	Mean	Std Dev	Minimum	Maximum				
Length Left Right Bottom Top Diagonal	100 100 100 100 100 100	214.8230000 130.3000000 130.1930000 10.5300000 11.1330000 139.4500000	0.3521521 0.2550500 0.2982288 1.1319510 0.6359682 0.5578639	213.9000000 129.6000000 129.3000000 7.4000000 9.1000000	216.3000000 130.8000000 131.1000000 12.7000000 12.3000000				

	Covariance Matrix, DF = 99									
	Length	Left	Right	Bottom	Тор	Diagonal				
Length	0.124011111	0.031515152	0.024001010	-0.100595960	0.019435354	0.011565657				
Left	0.031515152	0.065050505	0.046767677	-0.024040404	-0.011919192	-0.005050505				
Right	0.024001010	0.046767677	0.088940404	-0.018575758	0.000132323	0.034191919				
Bottom	-0.100595960	-0.024040404	-0.018575758	1.281313131	-0.490191919	0.238484848				
Тор	0.019435354	-0.011919192	0.000132323	-0.490191919	0.404455556	-0.022070707				
Diagonal	0.011565657	-0.005050505	0.034191919	0.238484848	-0.022070707	0.311212121				

3) Produce the correlation matrix and an associated scatterplot of the inputted data for the **genuine notes**.

Pearson Correlation Coefficients, N = 100 Prob > r under H0: Rho=0									
	Length	Left	Right	Bottom	Тор	Diagonal			
Length	1.00000	0.41105 <.0001	0.41598 <.0001	0.22928 0.0218	0.05745 0.5702	0.03164 0.7547			
Left	0.41105 <.0001	1.00000	0.66392 <.0001	0.24204 0.0153	0.20764 0.0382	-0.26458 0.0078			
Right	0.41598 <.0001	0.66392 <.0001	1.00000	0.25472 0.0105	0.13289 0.1875	-0.14970 0.1371			
Bottom	0.22928 0.0218	0.24204 0.0153	0.25472 0.0105	1.00000	-0.63156 <.0001	-0.00065 0.9949			
Тор	0.05745 0.5702	0.20764 0.0382	0.13289 0.1875	-0.63156 <.0001	1.00000	-0.25960 0.0091			
Diagonal	0.03164 0.7547	-0.26458 0.0078	-0.14970 0.1371	-0.00065 0.9949	-0.25960 0.0091	1.00000			

Scatter plot

4) Produce the correlation matrix and an associated Scatterplot of the inputted data for the forged /fake notes.

5) Run the discriminant analysis using the SAS which allocates a bank note with the following characteristics $X_0^T = (214.9, 130.1, 129.9, 9, 10.6, 140.5)$ to the appropriate grouping i.e., allocates it to either the **genuine** or the **forged/fake class.**

The DISCRIM Procedure Test of Homogeneity of Within Covariance Matrices

Chi-Square	DF	Pr > ChiSq
121.899123	21	<.0001

Since the Chi-Square value is significant at the 0.1 level, the within covariance matrices will be used in the discriminant function. Reference: Morrison, D.F. (1976) Multivariate Statistical Methods p252.

Number	of Obser	vations and P	erce	nt Clas	sified	into	Status
From Sta	atus	counterfe		genuine			Total
counterfeit		0 00		100 100 00			100 100.00
genuine		0	0	100 100.00			100 100.00
Total		_	0		200		200
Priors		0	00.	1	00.00		100.00
	Erro	or Count Estin	nates	s for St	atus		
		counterfeit	ge	nuine	Tot	al	
	Rate	1.0000	0	.0000	0.00	00	
	Priors	0.0000	1	.0000			
	Obs Num	The DISCRIM In Summary for mary using Quartervation Profi ber of Observ	r Tes ladr le fo	st Data: atic Dis or Test I ns Read	WOR scrimi Data		
	Obs Num	n Summary for mary using Qu servation Profi	r Tes ladr le fo	st Data: atic Dis or Test I ns Read	WOR scrimi Data		
lassificat	Obs Num Num	n Summary for mary using Qu servation Profi ber of Observ	r Tes ladr le fo ation	at Data: atic Dis or Test I ns Read ns Used	WOR scrimi Data d 1 d 1	nant	Functio
assificat	Obs Num Num	n Summary for mary using Qu servation Profi ber of Observ ber of Observ	r Tes ladr le fo ation	at Data: atic Dis or Test I ns Read ns Used	WOR scrimi Data d 1 d 1	nant	Functio
assificat	Obs Num Num	n Summary for mary using Qu servation Profi ber of Observ ber of Observ vations and P	r Tes ladr le fo ation	et Data: atic Dis or Test I ns Read ns Used ent Clas genu	WOR scrimi Data d 1 d 1	nant	Function Status

6) Using the SAS DISCRIM and resultant output answer the following questions.

a) Is
$$\Sigma_1 = \Sigma_2$$
 ?

Ans:

We know that this as the chi-squared test seen above returned a p-value of < 0.0001, meaning we should reject the null hypothesis (that the two covariance matrices are equal), and instead accept that the two covariance matrices are not equal.

b) How is the bank note with $X_0^T = (214.9, 130.1, 129.9, 9, 10.6, 140.5)$ allocated? **Ans:**

Obs	length	left	right	bottom	top	diag	fake	real	INTO
1	214.9	130.1	129.9	9	10.6	140.5	.000002526	1.00000	real

Number of Observations and Percent Classified into Status							
	counterfeit	genuine	Total				
Total	0.00	1 100.00	1 100.00				
Priors	0	1					

Appendix:

proc princomp data=thc;

```
/*1*/
data thc;
       infile '/home/s37007540/ma/ma ass 2/THC.csv' delimiter="," firstobs=2;
       input varieties chem1 chem2 chem3 chem4 chem5 chem6 chem7 chem8 chem9 chem10
chem11 chem12 chem13;
run;
/*1.1*/
proc means data=thc;
var varieties chem1 chem2 chem3 chem4 chem5 chem6 chem7 chem8 chem9 chem10 chem11
chem12 chem13;
run;
proc means data=thc std;
var varieties chem1 chem2 chem3 chem4 chem5 chem6 chem7 chem8 chem9 chem10 chem11
chem12 chem13;
run;
/*1.2*/
```

```
run;
proc sgscatter data=thc;
matrix chem1 chem2 chem3 chem4 chem5 chem6 chem7 chem8 chem9 chem10 chem11 chem12
chem13;
run;
/*1.3.a*/
proc princomp data=thc cov;
run;
/*1.4*/
proc princomp data=thc;
var chem1 chem2 chem3 chem4 chem5 chem6 chem7 chem8 chem9 chem10 chem11 chem12
chem13;
run;
/*2*/
DATA SocioEconomics;
input Population School Employment Services HouseValue;
datalines;
5700 12.8 2500 270 25000
1000 10.9 600 10 10000
3400 8.8 1000 10 9000
3800 13.6 1700 140 25000
4000 12.8 1600 140 25000
8200 8.3 2600 60 12000
1200 11.4 400 10 16000
9100 11.5 3300 60 14000
9900 12.5 3400 180 18000
```

```
9600 13.7 3600 390 25000
9600 9.6 3300 80 12000
9400 11.4 4000 100 13000
proc means data=SocioEconomics mean std maxdec=4;
var Population School Employment Services HouseValue;
run;
proc factor data=SocioEconomics simple corr;
run;
proc factor data=SocioEconomics n=3 simple corr;
run;
/*2.5*/
proc princomp data=SocioEconomics;
run;
/*2.6*/
proc factor data=SocioEconomics n=5 score;
run;
/*3*/
data bank;
informat id 2.0 Status $20.0 Length 2.0 Left 2.0 Right 2.0 Bottom 2.0 Top 2.0 Diagonal 2.0;
infile "/home/s37007540/ma/ma ass 2/banknote.csv" delimiter="," firstobs=2 dsd missover;
```

```
input id status $ length left right bottom top diagonal;
run;
proc sql;
create table genuine as
select*from bank
where status eq "genuine";
quit;
/*mean of genuine*/*/
proc means data=genuine;
var length left right bottom top diagonal;
run;
/*mean of genuine*/
proc means data=genuine mean;
var length left right bottom top diagonal;
run;
proc sql;
create table fake as
select*from bank
where status eq "counterfeit";
quit;
/*mean of fake*/*/
proc means data=fake;
var length left right bottom top diagonal;
run;
```

```
/*mean of fake*/
proc means data=fake;
var length left right bottom top diagonal;
run;
304
/*variance- covariance matrix of genuine notes*/
proc corr data = genuine cov;
var length left right bottom top diagonal;
run;
/*variance- covariance matrix of fake notes*/
proc corr data = fake cov;
var length left right bottom top diagonal;
run;
/*correlation matrix of genuine notes*/
proc corr data=genuine;
var length left right bottom top diagonal;
run;
/*scatter plot matrix of genuine notes*/
proc sgscatter data=genuine;
matrix length left right bottom top diagonal;
run;
/*correlation matrix of fake notes*/
proc corr data=fake;
var length left right bottom top diagonal;
```

```
run;
/*scatter plot matrix of fake notes*/
proc sgscatter data=fake;
matrix length left right bottom top diagonal;
run;
/*uploading test data*/
data test;
input length left right bottom top diagonal;
cards;
214.9 130.1 129.9 9 10.6 140.5
run;
/*discriminant analysis on test data*/
proc discrim data=bank
pool=test
crossvalidate
testdata=test
testout=a;
class status;
var length left right bottom top diagonal;
prior "genuine"=0.99 "fake"=0.01;
fa data
1.
        run; Prepare the dataset for a Factor analysis via SAS.
Ans:
```

```
data SocioEconomics;
input Population School Employment Services HouseValue;
datalines;
5700 12.8 2500 270 25000
1000 10.9 600 10 10000
3400 8.8 1000 10 9000
3800 13.6 1700 140 25000
4000 12.8 1600 140 25000
8200 8.3 2600 60 12000
1200 11.4 400 10 1600
9100 11.5 3300 60 14000
9900 12.5 3400 180 18000
9600 13.7 3600 390 25000
9600 9.6 3300 80 12000
9400 4 4000 100 13000
```