

Small Signal Fast Switching Diode

LINKS TO ADDITIONAL RESOURCES

FEATURES

- · Fast switching speed
- · Surface mount package
- Well suited for automated assembly process
- AEC-Q101 qualified available
- Molding compound meets UL 94 V-0 flammability rating
- Moisture Sensitivity Level (MSL)1

AUTOMOTIVE GRADE

- Base P/N-E3 RoHS-compliant, commercial grade
- Base P/NHE3_A RoHS-compliant, AEC-Q101 qualified
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

MECHANICAL DATA

Case: SOT-23

Weight: approx. 9.2 mg Packaging codes / options:

18/10K per 13" reel (8 mm tape), 10K/box 08/3K per 7" reel (8 mm tape), 15K/box

PARTS TABLE							
PART	ORDERING CODE	AEC-Q101 QUALIFIED	TYPE MARKING	CIRCUIT CONFIGURATION	TAPED UNITS PER REEL	MINIMUM ORDER QUANTITY	
BAL99	BAL99-E3-08	no	JG	Single	3 000	15 000	
	BAL99HE3_A-08	yes			(8 mm tape on 7" reel)		
	BAL99-E3-18	no			10 000	10 000	
	BAL99HE3_A-18	yes			(8 mm tape on 13" reel)	10 000	

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT		
Repetitive peak reverse voltage = working peak reverse voltage = DC blocking voltage		$V_{RRM} = V_{RWM} = V_{R}$	70	V		
	$t_p = 1 \mu s$	I _{FSM}	2	Α		
Peak forward surge current (1)	t _p = 1 ms	I _{FSM}	1	Α		
	t _p = 1 s	I _{FSM}	0.5	Α		
Continuous forward current (1)		I _F	350	mA		
Average forward current	Half wave rectification with resistive load and $f \ge 50 \text{ Hz}$	I _{FAV}	250	mA		
Dawey dissination	On FR-4 board with recommended soldering footprint	В	270	mW		
Power dissipation	Infinite heatsink	- P _{tot}	390	mW		

Note

(1) Infinite heatsink

THERMAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT		
Thermal resistance junction to ambient air	according to JEDEC® 51-3 on FR-4 board with recommended soldering footprint	R _{thJA}	460	K/W		
Thermal resistance junction to lead	Infinite heat sink	R_{thJL}	320	K/W		
Junction temperature		Tj	150	°C		
Storage temperature range		T _{stg}	-55 to +150	°C		
Operating temperature range		T _{op}	-55 to +150	°C		

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MAX.	UNIT		
	I _F = 1 mA	V _F	0.715	V		
Forward voltage	$I_F = 10 \text{ mA}$	$\begin{tabular}{c ccccc} \textbf{TEST CONDITION} & \textbf{SYMBOL} & \textbf{MAX}. \\ \hline $I_F = 1 \text{ mA}$ & V_F & 0.715 \\ \hline $I_F = 10 \text{ mA}$ & V_F & 0.855 \\ \hline $I_F = 50 \text{ mA}$ & V_F & 1 \\ \hline $I_F = 150 \text{ mA}$ & V_F & 1 \\ \hline $I_F = 150 \text{ mA}$ & V_F & 1.25 \\ \hline $V_R = 70 \text{ V}$ & I_R & 2500 \\ \hline $V_R = 70 \text{ V}$, $T_j = 150 \text{ °C}$ & I_R & 100 \\ \hline $V_R = 25 \text{ V}$, $T_j = 150 \text{ °C}$ & I_R & 30 \\ \hline $V_F = V_R = 0$, $f = 1 \text{ MHz}$ & C_D & 1.5 \\ \hline \end{tabular}$	V			
Forward voitage	$I_F = 50 \text{ mA}$		1	V		
	I _F = 150 mA	V _F	0.715 0.855 1 1.25 2500 100 30	V		
	V _R = 70 V	I _R	2500	nA		
Reverse current	$V_R = 70 \text{ V}, T_j = 150 ^{\circ}\text{C}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	μΑ		
	V _R = 25 V, T _j = 150 °C		μΑ			
Diode capacitance	$V_F = V_R = 0$, $f = 1$ MHz	C _D	1.5	pF		
Reverse recovery time	$I_F = I_R = 10 \text{ mA}, i_R = 1 \text{ mA}$	t _{rr}	6	ns		

TYPICAL CHARACTERISTICS ($T_{amb} = 25$ °C, unless otherwise specified)

Fig. 1 - Typical Forward Current vs. Forward Voltage

Fig. 2 - Admissible Power Dissipation vs. Ambient Temperature

Fig. 3 - Typical Capacitance vs. Reverse Voltage

Fig. 4 - Typical Reverse Leakage Current vs. Reverse Voltage

PACKAGE DIMENSIONS in millimeters (inches): SOT-23

footprint recommendation:

Created - Date: 18-Oct-2021 Rev. 01 - Date: 18-Jan-2022 S8-V-3929.01-009 (4)

CARRIER TAPE SOT-23

A-A Section 1.75 ± 0.1 0.229 ± 0.013 2 ± 0.05 4 ± 0.1 Ø1.5 ^{+0.1} 0.0 + 0.1 77 3.5 ± 0.05 .0.1 -0.1 <u>Ø 1</u> ± 0.05 В В 1.22 ± 0.1 Α 4 ± 0.1

B-B Section

Created Date: 04-Feb-2010 Rev. Date: 07-Feb-2022 S8-V-3929.01-005 (4)

ORIENTATION IN CARRIER TAPE SOT-23

Created Date: 04-Feb-2010 Rev. Date: 07-Nov-2022 S8-V-3929.01-005 (4)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.