Summary Hartree-Fock Stability of HEG

Evan Curtin

I. BACKGROUND

The Hartree-Fock procedure has been implemented the quantum many-body problem since its inception and remains the basis for many more advanced techniques even today. In general, the eigenstates of the Hartree-Fock Hamiltonian are solved self-consistently. However, this procedure ensures only that the solution is stationary with respect to the determined orbitals. A method for determining the stability of a Hartree-Fock solution was proposed by Thouless in 1960[1]. The condition for stability of a Hartree-Fock solution is equivalent to the conditions for unstable (complex frequency) many-body oscillations within the Random Phase Approximation (RPA). The condition was rederived into the expression familiar to quantum chemists by Cizek and Paldus in 1967[2]. Furthermore, the stability equations factorize depending on the symmetry of the Hartree-Fock eigenfunctions. To this end, Seeger and Pople outlined a hierarchical approach to systematically evaluate the stability of HF states in the restricted, unrestricted and generalized Hartree-Fock procedures[3]. Recently, the method has been used to aid the in search for the lowest energy Unrestricted Hartree-Fock (UHF) solutions in molecules, as well as the General Hartree-Fock (GHF) solutions in geometrically frustrated hydrogen rings which cannot conform even to the UHF scheme [4][5].

The presence of GHF solutions to the Homogeneous Electron Gas which have lower energy than the RHF solutions was proven in the landmark paper by Overhauser[6]. Later still, the ground state energies of the electron gas were found to great accuracy by Ceperley and Alder [7]. In the past few years, phase diagrams have been determined for the HEG in 2 and 3 dimensions[8][9][10]. In all cases (to my knowledge) the phase diagrams are made by computing the energies of the polarized and unpolarized states, and comparing them.

II. REFERENCES

D. Thouless, Nuclear Physics 21, 225 (1960), ISSN 00295582, URL http://linkinghub.elsevier.com/retrieve/pii/ 0029558260900481.

^[2] J. Cizek and J. Paldus, The Journal of Chemical Physics 47, 3976 (1967), ISSN 00219606, URL http://scitation.aip.org/content/aip/journal/jcp/47/10/10.1063/1.1701562.

^[3] R. Seeger and J. A. Pople, The Journal of Chemical Physics 66, 3045 (1977), ISSN 00219606, URL http://scitation.aip.org/content/aip/journal/jcp/66/7/10.1063/1.434318.

^[4] P. Pulay and Z. Tótha, Preprint 164102, 1 (2016), ISSN 0021-9606, URL http://dx.doi.org/10.1063/1.4964903.

 ^[5] J. J. Goings, F. Ding, M. J. Frisch, and X. Li, The Journal of Chemical Physics 142, 154109 (2015), ISSN 0021-9606,
URL http://dx.doi.org/10.1063/1.4918561http://scitation.aip.org/content/aip/journal/jcp/142/15/10.1063/1.4918561.

^[6] A. W. Overhauser, Physical Review 128, 1437 (1962), ISSN 0031-899X, URL http://link.aps.org/doi/10.1103/ PhysRev.128.1437.

^[7] D. M. Ceperley and B. J. Alder, Physical Review Letters 45, 566 (1980), ISSN 0031-9007, URL http://link.aps.org/doi/10.1103/PhysRevLett.45.566.

^[8] F. Delyon, M. Duneau, B. Bernu, and M. Holzmann, pp. 1-12 (2008), 0807.0770, URL http://arxiv.org/abs/0807.0770.

 ^[9] B. Bernu, F. Delyon, M. Holzmann, and L. Baguet, Physical Review B 84, 115115 (2011), ISSN 1098-0121, URL http://link.aps.org/doi/10.1103/PhysRevB.84.115115.

^[10] L. Baguet, F. Delyon, B. Bernu, and M. Holzmann, Physical Review Letters 111, 166402 (2013), ISSN 0031-9007, URL http://link.aps.org/doi/10.1103/PhysRevLett.111.166402.