Vincenzo Alba

International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy, INFN, Sezione di Trieste

String content of the Néel state

Abstract. Bla bla bla ...

1. Reduced overlaps with the Neel state

Let us consider a generic *n*-string state

$$\lambda_{\alpha}^{n,a} = \lambda_{\alpha}^{n} + \frac{i}{2}(n+1-2a) + i\delta_{\alpha}^{n,a} \quad \text{with } a = 1, \dots, n.$$
 (1)

The overlap with the Neel state reads

$$\frac{\langle \Psi_0 | \{ \pm \lambda_j \}_{j=1}^m, n_\infty \rangle}{|||\{\lambda_j\}_{j=1}^m, n_\infty \rangle||} = \frac{\sqrt{2} N_\infty!}{\sqrt{(2N_\infty)!}} \left[\prod_{j=1}^m \frac{\sqrt{\lambda_j^2 + 1/4}}{4\lambda_j} \right] \sqrt{\frac{\det_m(G^+)}{\det_m(G^-)}}$$
(2)

where

$$G_{jk}^{\pm} = \delta_{jk} \left(NK_{1/2}(\lambda_j) - \sum_{l=1}^{m} K_1^{+}(\lambda_j, \lambda_l) \right) + K_1^{\pm}(\lambda_j, \lambda_k), \quad j, k = 1, \dots, m$$
(3)

and

$$K_1^{\pm}(\lambda,\mu) = K_1(\lambda-\mu) \pm K_1(\lambda+\mu) \tag{4}$$

and

$$K_{\alpha}(\lambda) \equiv \frac{2\alpha}{\lambda^2 + \alpha^2} \tag{5}$$

We start focusing on G^+ . The term $K_1^+(\lambda, \mu)$ diverges when $|\lambda - \mu| = i$, which happens if λ and μ are successive members of the same string.

The number of eigenstates excluding the zero-momentum strings is given by the sequence A014495. It is given as a function of the chain length as

$$C\left(\frac{L}{2}, \left|\frac{L}{4}\right|\right) - 1\tag{6}$$

with C(x,y) denoting the binomial coefficient. Notice that the number of states, which have non-zero overlap with the Neel state, is in principle

$$2^{\frac{L}{2}-1} + \frac{(1+(-1)^{\frac{L}{2}})}{4}C\left(\frac{L}{2}, \frac{L}{4}\right) \tag{7}$$

Bethe states with nonzero Néel overlap ($N=12$)				
String content	$2I_n^+$	E	$ \langle\{\lambda\} \Psi_0 angle ^2$	here
6 inf	-	0	0.002164502165	0.002164502165
2 one, 4 inf	11	-3.918985947229	0.096183409244	0.096183409244237
	3_1	-3.309721467891	0.011288497947	0.0112884979464673
	5_1	-2.284629676547	0.004542580506	0.0045425805061850
	7_1	-1.169169973996	0.002752622983	0.0027526229835876
	9_{1}	-0.317492934338	0.002116006203	0.0021160062026402
4 one, 2 inf	$1_{1}3_{1}$	-7.070529325964	0.310133033838	0.554809782804
	$1_{1}5_{1}$	-5.847128730477	0.129277023687	
	$1_{1}7_{1}$	-4.570746557876	0.085992436024	
	$3_{1}5_{1}$	-5.153853093221	0.015256395523	
	$3_{1}7_{1}$	-3.916336243695	0.010091113504	
	5_17_1	-2.817696043731	0.004059780228	
2 two, 2 inf	1_2	-1.905667167442	0.001207238321	0.005468702625
	3_2	-1.368837200825	0.002340453815	
	5_{2}	-0.681173793635	0.001921010489	
1 one, 1 three, 2 inf	$0_{1}0_{3}$	-2.668031843135	0.034959609810	0.034959609810
6 one	$1_1 3_1 5_1$	-8.387390917445	0.153412152966	0.153412152966
2 two, 2 one	$1_{1}1_{2}$	-5.401838225870	0.040162686361	0.046134750850
	$3_{1}1_{2}$	-4.613929948329	0.004636541934	
	$5_{1}1_{2}$	-3.147465758841	0.001335522556	
1 three, 3 one	$0_1 2_1 0_3$	-6.340207488736	0.052743525774	0.078910020729
	$0_14_10_3$	-5.203653009936	0.015022005621	
	$0_16_10_3$	-3.788693957250	0.011144489334	
1 five, 1 one	$0_{1}0_{5}$	-2.444293750583	0.005887902992	0.005887902992
2 three	13	-1.111855930538	0.001342476001	0.001342476001
1 two, 1 four	$0_{2}0_{4}$	-1.560671012472	0.000026982174	0.000026982174

Table 1. All Bethe states for N=12 with nonzero overlap with the zero-momentum Néel state. The overlap squares add up to 1 up to the precision in which the Bethe equations were solved. The $2I_n^+$ in the second column give the positive n-string quantum numbers of the parity-invariant Bethe states.