04-Bits-solutions

1 Битовые операции

1.1 Задача 3.1

- 1. Смоделируем нашу задачу: составим таблицу нового состояния клетки в зависимости от текущего состояния клетки и её соседей. Пусть клет- [E] ки расположены так: [D][A][B] и мы хотим получить новое состояние [C] клетки A'.
- 2. Решение задачи:
 - 2.1. Код программы по составлению таблицы. Разделим таблицу на 2 части (1-ая часть A=0, 2-ая часть A=1).
 - 2.2. Составим логическое уравнение для первой части: $\neg A \land (B \lor C \lor D) \land (B \lor C \lor E) \land (B \lor D \lor E) \land (C \lor D \lor E) \land (\neg C \lor \neg D \lor \neg E) \land (\neg B \lor \neg D \lor \neg E) \land (\neg B \lor \neg C \lor \neg D).$
 - 2.3. Составим логическое уравнение для второй части: $A \wedge (A \vee C \vee D \vee E) \wedge (\neg D \vee \neg E) \wedge (\neg C \vee \neg E) \wedge (\neg C \vee \neg D) \wedge (\neg B \vee \neg E) \wedge (\neg B \vee \neg D) \wedge (\neg B \vee \neg C)$.
 - 2.4. Объединим первый и второй случай: $\neg A \land (B \lor C \lor D) \land (B \lor C \lor E) \land (B \lor D \lor E) \land (C \lor D \lor E) \land (\neg C \lor \neg D \lor \neg E) \land (\neg B \lor \neg D \lor \neg E) \land (\neg B \lor \neg C \lor \neg D) \lor A \land (A \lor C \lor D \lor E) \land (\neg D \lor \neg E) \land (\neg C \lor \neg D) \land (\neg B \lor \neg E) \land (\neg B \lor \neg C).$

1.2 Задача 3.3(2)

Выразить X|Y через операции $\tilde{\ }$, & и \oplus .

1. Рассмотрим дизъюнкцию для двух битов: $x\vee y=\overline{\overline{x}\vee y}=\overline{\overline{x}\wedge \overline{y}}\Rightarrow X|Y=\tilde{\ }(\tilde{\ }X\&\tilde{\ }Y).$

2. Для выражения ∂u зъюнкции через исключающее или и конъюнкцию воспользуемся таблицой истинности:

X	У	$x \oplus y$	$x \wedge y$	$x \vee y$
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	0	1	1

- откуда видно, что дизъюнкция может быть представлена в виде $x \lor y = (x \oplus y) \oplus (x \land y) \Rightarrow X|Y = (X \oplus Y) \oplus (X \& Y).$
- 3. Для выражения дизтонкции через исключающее или, контонкцию и отрицаение достаточно выразить исключающее или из 2 пункта: $x \lor y = (x \oplus y) \oplus (x \land y) = ((x \lor y) \land (\overline{x} \lor \overline{y})) \oplus (x \land y) = (\overline{(x} \lor \overline{y}) \land \overline{x} \land y) \oplus (x \land y) = (\overline{(x} \lor \overline{y}) \land \overline{x} \land y) \oplus (x \land y) \Rightarrow X|Y = (\tilde{(x} \lor x) \otimes (x \lor y)) \oplus (x \lor x)$.

Otbet: $(\tilde{X} \tilde{X} \tilde{Y}) \tilde{X} (X \tilde{Y}) \oplus (X \tilde{X})$.

1.3 Задача 3.7

Для знаковых X и Y нужно выразить следующие отношения через битовые операции:

1. X=0. Если X=0, то функция должна вернуть 1, иначе - $0\Rightarrow$ подходит функция вида: $1\gg X$.

Ответ: $1 \gg X$.

2. $X \neq 0$. Из 1 пункта мы получили, что функция $1 \gg X$ даёт 1 при X=0, иначе - $0 \Rightarrow$ нам нужно инвертировать эту функцию, чтобы новая функция возвращала 1 при $X \neq 0$, т.е. подходит функция вида: $1 \gg (1 \gg X)$.

<u>Ответ:</u> $1 \gg (1 \gg X)$.

1.4 Задача 3.8

Для знаковых X и Y нужно выразить следующие отношения через битовые операции:

1. X = Y. Запишем таблицу истинности для операции \oplus :

X	у	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

- откуда видно, что $x\oplus y$ даёт $1\Leftrightarrow x\neq y\Rightarrow$ функция равенства двух переменных принимает вид: $1\gg (X\oplus Y).$

<u>Otbet:</u> $1 \gg (X \oplus Y)$.

2. $X \neq Y$. Аналогично запишем функцию неравенства через \oplus : $1 \gg (1 \gg (X \oplus Y))$.

Ответ: $1 \gg (1 \gg (X \oplus Y))$.

1.5 Задача 3.9

Выразить следующие операции для беззнаковых X и Y:

- 1. Циклического сдвига X вправо на Y позиций. Для начала разобьём задачу циклического сдвига вправо на 2 задачи(части):
 - 1.1. Сдвиг вправо числа X на Y бит: $X \gg Y$.
 - 1.2. Сдвиг влево числа X на $CHAR_BIT * sizeof(X) Y$ бит, где $CHAR_BIT$ константа, которая показывает кол-во битов в 1 байте, а sizeof функция, которая возвращает длину переменной в байтах. Для того, чтобы посчитать кол-во сдвигов влево числа X необходима маска, которая будет показывать, какое максимальное число переменная X может хранить перед переполнением, т.е. $mask = CHAR_BIT * sizeof(X) 1$. Тогда кол-во сдвигов влево числа X находится так: (-Y)&mask, где -Y представлено в дополнительном коде.

Теперь объединим 1 и 2 части и получим: $(X \gg Y)|(X \ll ((-Y)\&mask))$. **Ответ:** $(X \gg Y)|(X \ll ((-Y)\&mask))$.

2. Циклического сдвига X влево на Y позиций. Аналогично 1 пункту: $(X \ll Y)|(X \gg ((-Y)\&mask)).$

Otbet: $(X \ll Y)|(X \gg ((-Y)\&mask)).$

Примечание:

Для ускорения/оптимизации алгоритма можно откидывать степени 2 из Y большие чем $CHAR_BIT * sizeof(X) - 1$, на которое нужно сдвинуть X, так как сдвиг X на степень двойки большую чем $CHAR_BIT * sizeof(X) - 1$ возвращает все биты X на прежние места(до сдвига на Y бит).

1.6 Задача 3.10

Для беззнаковых X и Y напишите все шаги нахождения gcd этих чисел бинарным алгоритмом Евклида.

$$\begin{array}{l} 1. \ \gcd(X,Y) = \gcd(784,939) = \gcd(392,939) \stackrel{X/2}{=} \gcd(196,123) \stackrel{X/2}{=} \gcd(98,123) \stackrel{X/2}{=} \gcd(49,123) = \gcd(\frac{123-49}{2},49) = \gcd(37,49) = \gcd(\frac{49-37}{2},37) = \gcd(6,37) \stackrel{X/2}{=} \end{array}$$

```
\gcd(3,37)=\gcd(\frac{37-3}{3})=\gcd(34,3)\overset{X/2}{=}\gcd(17,3)=\gcd(\frac{17-3}{3})=\gcd(14,3)\overset{X/2}{=}\gcd(7,3)=\gcd(\frac{7-3}{3})=\gcd(4,3)\overset{X/2}{=}\gcd(2,3)=\gcd(\frac{3-2}{2})=\gcd(1,2)=1. Otbet: \gcd(784,939)=1.
```

2. $\gcd(X,Y) = \gcd(3072,2400)$. $3072_{10} = 110000000000_2, 2400_{10} = 100101100000_2$. $\gcd(110000000000_2, 100101100000_2) = 32 * \gcd(01100000_2, 01001011_2) = 32*\gcd(11_2,0001011_2) = 32*\gcd(\frac{1001011_2-11_2}{102}) = 32*\gcd(1001000_2, 11_2) = 32 * \gcd(1001_2, 11_2) = 32 * \gcd(\frac{1001_2-11_2}{10_2}) = 32 * \gcd(110_2, 11_2) = 32 * \gcd(11_2, 11_2) = 32 * \gcd(11_2,$