УЕБ СИСТЕМА ЗА ИЗПЪЛНИМОСТ В КОНТАКТНА ЛОГИКА НА СВЪРЗАНОСТТА

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА КАТЕДРА ПО МАТЕМАТИЧЕСКА ЛОГИКА И ПРИЛОЖЕНИЯТА Й

Антон Дудов

Магистърска програма Логика и алгоритми спец. Информатика Факултетен номер: 25691

Научен ръководител: проф. Тинко Тинчев

Табло метод съждителна логика

Табло метод контактна логика - листо

Формула ϕo табло с начало $\mathbb{T} \phi o$ листо \mathbb{B} в отворен клон.

- $\mathbb{T}C(a,b) \to C(a,b)$ (контакт)
- $\mathbb{F}C(e,f) o \neg C(e,f)$ (не-контакт)
- ullet $\mathbb{T} a \leq b
 ightarrow a \leq b
 ightarrow a \sqcap b^* = 0
 ightarrow g = 0$ (нулев терм)
- ullet $\mathbb{F}a \leq b
 ightarrow
 eg(a \leq b)
 ightarrow a \sqcap b^*
 eq 0
 ightarrow d
 eq 0 (ненулев терм)$

$$\beta = \bigwedge_{\mathbb{T}C(a,b)\in\mathbb{B}} C(a,b) \wedge \bigwedge_{\mathbb{T}d=0\in\mathbb{B}} d = 0 \wedge \bigwedge_{\mathbb{F}C(e,f)\in\mathbb{B}} \neg C(e,f) \wedge \bigwedge_{\mathbb{F}g=0\in\mathbb{B}} g \neq 0$$

Модални точки

Дефиниция (Модална точка)

Оценка на променливи \mathcal{E}_n за n булеви променливи е поредица от единици и нули както следва:

$$\mathcal{E}_n = \langle e_1, e_2, \dots, e_n \rangle$$
, where $e_1, \dots, e_n \in \{0, 1\}$

Модална точка е оценка на променливи \mathcal{E}_n

Оценка

Оценка $\upsilon: \mathcal{V} \to \mathcal{P}(W)$:

$$v(x_i) = \{ \mathcal{E} \mid \mathcal{E} \in W \text{ in } (\mathcal{E})^i = 1 \}, \ \ x_i \in \mathcal{V}$$

Дефинира се индуктивно за термове както следва:

- $v(0) = \emptyset$
- v(1) = W
- $v(a \sqcap b) = v(a) \cap v(b)$
- $v(a \sqcup b) = v(a) \cup v(b)$
- $v(a^*) = W \setminus v(a)$

Валидна модална точка

Дефиниция (Валидна модална точка)

 $\mathcal{E} \in W_n$ е валидна модална точка на eta, ако запазва изпълнимостта на нулевите термове и не-контактите

$$g=0\in\beta\to\mathcal{E}\notin\upsilon(g)$$

$$\neg C(e, f) \in \beta \to \mathcal{E} \notin (\upsilon(e) \cap \upsilon(f))$$

Дефиниция (W^{v})

Множеството от всички валидни модални точки е W^{v} .

Валидна релация между точки

Дефиниция (Валидна релация)

Нека x, y $\in W^{\nu}$. Тогава $\langle x,y \rangle$ е **валидна релация** на β , ако запазва изпълнимостта на не-контактите в β .

$$\neg C(e,f) \in \beta \to \neg ((x \in \upsilon(e) \text{ и } y \in \upsilon(f)) \text{ или } (x \in \upsilon(f) \text{ и } y \in \upsilon(e)))$$

Дефиниция (R^{ν})

$$R^{\mathsf{v}} = \{\langle x, y \rangle \mid x, y \in W^{\mathsf{v}} \text{ и } \langle x, y \rangle \text{ е валидна релация на } \beta\}$$

Свързан модел

Стъпка

 $\mathcal{F}^{v}=(W^{v},R^{v}),\ \mathcal{M}^{v}=(\mathcal{F}^{v},\upsilon).\ \mathcal{M}^{v}$ е модел на β , ако контактите и ненулевите термове в β са удовлетворени. Ако \mathcal{M}^{v} не е модел, тогава β няма модел(нито свързан модел).

Стъпка

Нека \mathcal{M}^{v} е модел на β . Всички модели, дефинирани от свързаните компоненти на G^{v} , запазват удовлетворимостта на нулевите термове и не-контактите (не добавят точки, нито релации). Ако има свързана компонента, която запазва удовлетворимостта на контактите и ненулевите термове, то тя дефинира свързан модел на β . Достатъчно е да разгледаме само максималните свързани компоненти на G^{v} .

Имплементация

- Flex & Bison за строене на AST (Абстрактно синтактично дърво)
- Превръщане на AST формула във формула с удобни и ефективни операции свързани за табло метода и строенето на модела
- Пускане на табло метода за търсене на отворен клон
- Генериране на (свързан) модел
- Компилиране на библиотеката в WebAssembly
- Уеб приложение
- Тестове
- Автоматични билдове
- https://github.com/Anton94/modal_logic_formula_prover

Демо

Демо - http://logic.fmi.uni-sofia.bg/theses/Dudov_Stoev/

Благодаря за вниманието!

Въпроси?

Repository - https://github.com/Anton94/modal_logic_formula_prover