TD n°1

Exercice 1

Dans le tableau ci-dessous, on donne la résistivité électrique et la masse volumique de quelques éléments.

Ω .m] à 16 × 1	< 10 ⁻⁹ 208 × 10 ⁻⁹
CC 10 × 1	. 10

1) D'après le tableau ci-dessus et d'autres considération, citer, en justifiant, les éléments (métaux) les plus utilisés dans le domaine de l'électrotechnique ? Préciser pour chaque type le domaine d'application. (Travail à domicile à déposer sur classroom).

la résistivité est malheureusement pour les métaux, variable avec la température selon la loi :

$$\rho = \rho_0(1 + \alpha_0(\theta - \theta_0))$$

- θ_0 : température de référence (K) ou en (°C) généralement 20°C
- ρ_0 : résistivité à la température θ_0 (Ω .m);
- α_0 : coefficient de température à la température θ_0 (K⁻¹);
- θ : température (K) ou en (°) mais doit être de la même unité que θ_0 .

métaux	Cu	Al	Ag	Fe
α [°K ⁻¹] à 20°C	3,93 X10 ⁻³	4,03 X10 ⁻³	3,85 X10 ⁻³	6,5 X10 ⁻³

2) Déterminer la résistance d'un fil en Cu de Section 1mm² et de longueur 1m pour les températures 20°C et 120°C. Que peut-on conclure ?

Exercice 2

Soit une inductance formée d'un matériau ferromagnétique massif (Ferrite) et d'une bobine en cuivre. La géométrie étant de révolution cylindrique, voir la figure ci-

contre.

On souhaite étudier le comportement thermique de cette inductance en convection naturelle (régime laminaire) à $T\infty=20^{\circ}C$. On suppose que la température de surface va atteindre $60^{\circ}C$.

- En considérant des coefficients d'échange par convection h1=2*h2= 6.92 W/m²°K et h3=9.04 W/m²°K. Calculer le flux de chaleur dissipé par convection.
- **2)** Dans l'hypothèse d'un corps gris, calculer le flux de chaleur dissipé par rayonnement.
- 3) En déduire les coefficients d'échanges équivalents par convection h_{eq_c} puis par convection et radiation. h_{eq_c} Conclure.

Diamètre externe D= 0.06m Longueur du cylindre L=0.03m L'émissivité du matériau ε =0.8 on rappelle T[°K]=T[°C]+273

