

Dataset	Mip-NeRF360					
Method Metric	SSIM [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem
Plenoxels	0.626	23.08	0.463	25m49s	6.79	2.1GB
INGP-Base	0.671	25.30	0.371	5m37s	11.7	13MB
INGP-Big	0.699	25.59	0.331	7m30s	9.43	48MB
M-NeRF360	0.792^{\dagger}	27.69^{\dagger}	0.237^{\dagger}	48h	0.06	8.6MB
Ours-7K	0.770	25.60	0.279	6m25s	160	523MB
Ours-30K	0.815	27.21	0.214	41m33s	134	734MB

$$\theta$$
: a set of
$$[\underbrace{\mu_i}_{\mathsf{position} \in \mathcal{R}^3}, \underbrace{\sigma_i}_{\mathsf{opacity} \in \mathcal{R}^1}, \underbrace{\Sigma_i = (r_i, s_i)}_{\mathsf{covariance} \in \mathcal{R}^7}, \underbrace{\mathbf{c}_i}_{\mathsf{opacity} \in \mathcal{R}^{(k+1)^2+1}}]$$

Projection:
$$\begin{aligned} \mu_i^{2D} &= (K((W\mu_i)/(W\mu_i)_z))_{1:2}, \\ \Sigma_i^{2D} &= (JW\Sigma_i W^T J^T)_{1:2,1:2}, \end{aligned} \text{ approximation of perspective transform } W, K$$

Rasterization:
$$\mathbf{I} = \sum_{i \in \mathcal{N}} \mathbf{c}_i \alpha_i^{2D} \prod_{j=1}^{i-1} (1 - \alpha_j^{2D})$$
 point-based blending of ordered points v.s. sampling rays in NeRF

Hexplane Parameter: $R(i,j) \in R^{h \times l \times N_i \times N_j}$

Separate MLP for position, rotation, scaling

Dynamic Novel View Synthesis

Spacetime Gaussian Splatting, CVPR'24

Polynomial Interpolation around Temporal Center

Time-dependent
$$\mu_i(t) = \sum_{k=0}^{n_p} b_{i,k} (t - \mu_i^{\tau})^k,$$
 position

Time-dependent rotation
$$q_i(t) = \sum_{k=0}^{n_q} c_{i,k} (t - \mu_i^{ au})^k,$$

(a) Spacetime Gaussians

Dual-Domain Deformation Model

polynomial fitting in time domain

$$P_N(t) = \sum_{n=0}^{N} a_n t^n,$$

Fourier series fitting in frequency domain

$$F_L(t) = \sum_{l=1}^{L} \left(f_{sin}^l \cos(lt) + f_{cos}^l \sin(lt) \right)$$

Continuum Mechanics

Conservation of mass

$$\int_{B_{\epsilon}^t} \rho(\boldsymbol{x},t) \equiv \int_{B_{\epsilon}^0} \rho(\boldsymbol{\phi}^{-1}(\boldsymbol{x},t),0),$$

conservation of momentum
$$\rho(\boldsymbol{x},t)\dot{\boldsymbol{v}}(\boldsymbol{x},t) = \nabla\cdot\boldsymbol{\sigma}(\boldsymbol{x},t) + \boldsymbol{f}^{\mathrm{ext}},$$

Intuition: Novel-View Image = Noised Hidden Diffusion Step

$$L_{\text{SDS}} = E_{t,\epsilon}[(DD(t,\epsilon,\mathbf{L},\mathbf{x}_{\phi}) - \epsilon)\frac{\partial \mathbf{x}_{\phi}}{\partial \theta}]$$

GSGEN, CIVPR'24

Intuition: Different from NeRF (implicit), GS are Explicit Point-based Representation

$$L_{\text{PCD}} = E_{t,\epsilon}[(DD(t,\epsilon,\mathbf{L},\theta_{\text{position}}) - \epsilon)]$$

Intuition: Different from NeRF (implicit), GS are Explicit Point-based Representation

$$L_{\text{PCD}} = E_{t,\epsilon}[(DD(t,\epsilon,\mathbf{L},\theta_{\text{position}}) - \epsilon)]$$

text to 4D Align Your Gaussians, CVPR'24

Simultaneous Localization and Mapping

GS-SLAM, CVPR'24

Gaussian Splatting SLAM, CVPR'24

incremental 3D reconstruction using a single moving monocular or RGB-D camera