Алгебра Страница 10

4 Лекция 8.04

Абелевы группы

Пример (Конечно порожденная, но не свободная абелева группа). Подходит любая конечная абелева группа. Например, \mathbb{Z}_n . Докажем, почему она не свободна. Пусть a_1, \ldots, a_n — базис. Но тогда $0 = 0 \cdot a_1 + \cdots + 0 \cdot a_n = |A| \cdot a_1 + \cdots + |A| \cdot a_n$.

Определение 25. Рангом свободной абелевой группы A называется число элементов ε ее базисе. Обозначается как ε ε

Пример. Пусть $A = \mathbb{Z}^n = \{(x_1, ..., x_n) \in \mathbb{R}^n \mid x_i \in \mathbb{Z}\}$ (это решетка!). Покажем, что она свободна. Выберем в A стандартный базис $e_1, ..., e_n$. Тогда любой вектор $(x_1, ..., x_n)$ раскладывается в $x_1e_1 + \cdots + x_ne_n$. Понятно, что такое представление единственно.

Предложение 3. Любая свободная абелева группа A изоморфна \mathbb{Z}^n , где $n = \operatorname{rk} A$.

Доказательство. Зафиксируем базис $a_1, ..., a_n$ в A. Установим изоморфизм $\varphi: A \to \mathbb{Z}^n$, где $\varphi(a) = \varphi(s_1a_1) + \cdots + \varphi(s_na_n) = (s_1, ..., s_n)$. Понятно, что разным a_1, a_2 сооветствуют разные векторы, так как разложение единственно, то есть φ — инъекция. С другой стороны, это сюръекция, потому что каждому набору $s_1, ..., s_n$ можно найти $a = s_1a_1 + \cdots + s_na_n$.

Наконец покажем, что φ сохраняет операцию. Распишем $\varphi(a+b)$:

$$\varphi(a+b) = \varphi((s_1 + s_1')a_1 + \dots + (s_n + s_n')a_n) = (s_1 + s_1', \dots, s_n + s_n') = \varphi(a) + \varphi(b) =$$

$$= (s_1, \dots, s_n) + (s_1', \dots, s_n')$$

Предложение 4. Ранг свободной абелевой группы определен корректно, то есть не зависит от выбора базиса.

Доказательство. От противного. Пусть в A есть базисы a_1, \dots, a_n и b_1, \dots, b_m . Без ограничения общности m > n. Пусть $b_1 = \alpha_{11} a_1 + \dots + \alpha_{1n} a_n, \dots, b_n = \alpha_{m1} a_1 + \dots + \alpha_{mn} a_n$. Запишем в матрицу:

$$C = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{m1} & \dots & \alpha_{mn} \end{pmatrix}$$

Тогда строки матрицы линейно зависимы над \mathbb{Q} , значит существует ненулевой набор $\lambda_1, \dots, \lambda_m$, такой что

$$\lambda_1 C_{(1)} + \dots + \lambda_m C_{(m)} = (0, \dots, 0)$$

Можно считать, что $\lambda_i \in \mathbb{Z}$ (если не так, то домножить на НОК знаменателей). Тогда заметим, что

$$\lambda_1 b_1 + \dots + \lambda_m b_m = 0 b_1 + \dots + 0 b_m = (0, \dots, 0)$$

Получили две разные записи нуля, противоречие с тем, что b_1, \dots, b_m — базис.

Алгебра Страница 11

Классификация базисов Пусть e_1, \dots, e_n — базис в A, e'_1, \dots, e'_1 — какой-то набор из A. Тогда

$$(e'_1, ..., e'_n) = (e_1, ..., e_n) \cdot C$$

где C — целочисленная матрица размером $n \times n$. Тогда столбцы C — координаты e_1', \dots, e_n' в базисе e_1, \dots, e_n .

Предложение 5. Векторы e_1', \dots, e_n' также являются базисом \Leftrightarrow det $C = \pm 1$.

Доказательство. Докажем \Rightarrow . Если e_1', \dots, e_n' — базис, то через них можно выразить e_1, \dots, e_n :

$$(e_1, ..., e_n) = (e'_1, ..., e'_n)D = (e_1, ..., e_n)CD$$

Отсюда следует, что CD = E. Тогда $\det CD = \det C \det D = 1$. Понятно, что если матрица целочисленна, то $\det C$, $\det D \in \{\pm 1\}$.

Теперь докажем \Leftarrow . Заметим, что C^{-1} целочисленна. По формуле обратной матрицы через присоединенную получаем, что $\det C = \det C^{-1} = 1$. Тогда:

$$(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C \Rightarrow (e'_1, \dots, e'_n)C^{-1} = (e_1, \dots, e_n)$$

Отсюда делаем вывод, что векторы e_1, \ldots, e_n выражаются через e'_1, \ldots, e'_n с целыми коэффициентами. Получаем, что все векторы выражаются через e'_1, \ldots, e'_n с целыми коэффициентами. Тогда e'_1, \ldots, e'_n порождают абелеву группу A.

Осталось показать, что любой элемент выражается единственным образом. Пусть $s_1'e_1' + \cdots + s_n'e_n' = s_1''e_1' + \cdots + s_n''e_n'$. Или что то же самое:

$$(e'_1, \dots, e'_n) \cdot \begin{pmatrix} s'_1 \\ \vdots \\ s'_n \end{pmatrix} = (e'_1, \dots, e'_n) \cdot \begin{pmatrix} s''_1 \\ \vdots \\ s''_n \end{pmatrix}$$

$$(e_1, \dots, e_n)C \cdot \begin{pmatrix} s'_1 \\ \vdots \\ s'_n \end{pmatrix} = (e_1, \dots, e_n)C \cdot \begin{pmatrix} s''_1 \\ \vdots \\ s''_n \end{pmatrix} \Leftrightarrow C \cdot \begin{pmatrix} s'_1 \\ \vdots \\ s'_n \end{pmatrix} = C \cdot \begin{pmatrix} s''_1 \\ \vdots \\ s''_n \end{pmatrix}$$

Так как обратимая матрица существует, домножим на нее слева. Тогда справедливо $s_i' = s_i''$ для любого i, что и завершает доказательство.

Цель Мы хотим классифицировать конечные абелевы группы.

Теорема 6. Всякая подгруппа N свободной абелевой группы L ранга n тоже свободна, причем ее ранг $\leq n$.

Замечание 4. В линейной алгебре это означает, что для любого подпространства $U \subseteq V$ справедливо $\dim U \leq \dim V$. Причем $\dim U = \dim V \Leftrightarrow U = V$. Для свободных групп в алгебре это неверно, например для \mathbb{Z} и $2\mathbb{Z}$. Ранги этих групп равны 1, но они не равны.

Доказательство. Докажем индукцией по n. В качестве базы докажем для n=0. Тогда любая подгруппа равна самой себе.

Теперь шаг. Пусть $n>0,\ e_1,\dots,e_n$ — базис L. Определим $L_1=\{s_1e_1+\dots+s_{n-1}e_{n-1}\mid s_i\in\mathbb{Z}\}=\mathbb{Z}e_1+\dots+\mathbb{Z}e_{n-1}$. Тогда это свободная абелева группа ранга n-1. Пусть $N_1=N\cap L_1$. Тогда это подгруппа в L_1 , и по предположению индукции в N_1 есть базис f_1,\dots,f_m , где $m\leq n-1$. Рассмотрим отображение $\varphi:N\to\mathbb{Z}$, причем $\varphi(s_1e_1+\dots+s_ne_n)=s_n$. Ясно, что это гомоморфизм и $\ker\varphi=N_1$, $\operatorname{Im}\varphi=k\mathbb{Z}$, где $k\in\mathbb{Z}_{\geq 0}$. Рассмотрим 2 случая:

Алгебра Страница 12

- 1. k = 0. Тогда $N = N_1$, и все доказано.
- 2. k>0. Пусть $f_{m+1}=s_1e_1+\cdots+s_{n-1}e_{n-1}+ke_n\mapsto k$. Докажем, что f_1,\ldots,f_{m+1} базис в N. Тогда $\mathrm{rk}=m+1\leq (n-1)+1=n$. Заметим, что $\forall f\in N: \varphi(f)=k\cdot c$. Тогда $\varphi(f-cf_{m+1})=kc-kc=0$. Тогда $f-cf_{m+1}\in N_1$, а тогда $f-cf_{m+1}=s_1f_1+\cdots+s_mf_m$, тогда $f=s_1f_1+\cdots+s_mf_m+cf_{m+1}$, то есть любой вектор представим.

Осталось показать, что все представления различны. Пусть какие-то совпали:

$$s_1 f_1 + \dots + s_{m+1} f_{m+1} = s'_1 f_1 + \dots + s'_{m+1} f_{m+1}$$

Посмотрим на последнюю координату. Тогда $s_{m+1}k = s'_{m+1}k \Leftrightarrow s_{m+1} = s'_{m+1}$, поэтому последнюю часть можно сократить. Тогда $s_1 = s'_1, \dots, s_m = s'_m$, поскольку f_1, \dots, f_m базис по определению.

Теорема 7 (О согласованных базисах). Для всякой подгруппы N свободной абелевой группы L существует такой базис e_1, \ldots, e_n в L, $m \in \mathbb{Z}_{\geq 0}$, $m \leq n$ и u_1, \ldots, u_n ($u_i \in \mathbb{N}, u_i \mid u_{i+1}$), такие что u_1e_1, \ldots, u_me_m — базис в подгруппе N.