

Computer Vision

Covariance and Principal Components

Hansung Kim h.kim@soton.ac.uk

Example

Face dataset

Variance and Covariance

Random Variables and Expected Values

- Mathematicians talk variance (and covariance) in terms of random variables and expected values
- * The expected value (denoted E[X]) is the most likely value a random variable will take.
 - * For this course we'll **assume** that the values an element of a feature can take are all equally likely
 - * The expected value is thus just the **mean value**

Variance

$$\sigma^{2}(x) = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

Variance (σ^2) is the mean squared difference from the mean (μ).

It's a measure of how spread-out the data is.

technically it's $E[(X - E[X])^2]$

Covariance

$$\sigma(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x - \mu_x)(y - \mu_y)$$

Covariance ($\sigma(x,y)$) measures how two variables change together

technically it's E[(x - E[x])(y - E[y])]

Covariance

$$\sigma(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x - \mu_x)(y - \mu_y)$$

The variance is the covariance when the two variables are the same $(\sigma(x,x)=\sigma^2(x))$

Covariance

$$\sigma(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x - \mu_x)(y - \mu_y)$$

A covariance of 0 means the variables are uncorrelated (independent).

Covariance is related to Correlation

Covariance Matrix

$$\Sigma = \begin{bmatrix} \sigma(X_1, X_1) & \sigma(X_1, X_2) & \dots & \sigma(X_1, X_n) \\ \sigma(X_2, X_1) & \sigma(X_2, X_2) & \dots & \sigma(X_2, X_n) \\ \vdots & & \vdots & \ddots & \vdots \\ \sigma(X_n, X_1) & \sigma(X_n, X_2) & \dots & \sigma(X_n, X_n) \end{bmatrix}$$

A covariance matrix encodes how all possible pairs of dimensions in an *n*-dimensional dataset vary together

Covariance Matrix

$$\Sigma = \begin{bmatrix} \sigma(X_1, X_1) & \sigma(X_1, X_2) & \dots & \sigma(X_1, X_n) \\ \sigma(X_2, X_1) & \sigma(X_2, X_2) & \dots & \sigma(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma(X_n, X_1) & \sigma(X_n, X_2) & \dots & \sigma(X_n, X_n) \end{bmatrix}$$

The covariance matrix is a square symmetric matrix

2D Covariance

Geometric interpretation of $\Sigma = \begin{bmatrix} \sigma(x,x) & \sigma(x,y) \\ \sigma(y,x) & \sigma(y,y) \end{bmatrix}$

Mean Centring

- Mean Centring is the process of computing the mean (across each dimension independently) of a set of vectors, and then subtracting the mean vector from every vector in the set.
 - All the vectors will be translated so their average position is the origin

Covariance matrix again

Each row is a **mean centred** featurevector

To the mean of each column

Then

Principal axes of variation

Basis

- * A basis is a set of *n* linearly independent vectors in an *n* dimensional space
 - The vectors are orthogonal
 - They form a "coordinate system"
 - There are an infinite number of possible basis

The first principal axis

* For a given set of *n* dimensional data, the *first principle axis* (or just *principal axis*) is the vector that describes the direction of **greatest** variance.

The second principal axis

The second principal axis is a vector orthogonal (perpendicular) to the first major axis.

Three principal axes in 3D

- * In a space with 3 or more dimensions, the second principal axis is the direction of the second greatest variance orthogonal to the first principal axes.
 - * The set of *n* principal axes of an *n* dimensional space are a basis

Eigenvectors, Eigenvalues and Eigendecomposition

Very important equation!

$$Av = \lambda v$$

There are at most *n* eigenvector-eigenvalue pairs

If A is symmetric, then the set of eigenvectors is orthogonal

Can you see where this is going?

$$Av = \lambda v$$

- * If A is a covariance matrix, then the eigenvectors are the principal axes.
- * The eigenvalues are proportional to the **variance** of the data along each eigenvector.
- * The eigenvector corresponding to the **largest eigenvalue** is the first P.C.

Finding the EVecs and EVals

- ⋄ For small matrices ($n \le 4$) there are algebraic solutions to finding all the eigenvector-eigenvalue pairs
- * For larger matrices, numerical solutions to the **Eigendecomposition** must be sought.

Eigendecomposition

columns of Q are the eigenvectors

$$A = Q/1Q^{-1}$$

diagonal eigenvalue matrix ($\Lambda_{ii} = \lambda_i$)

Eigendecomposition

$$A = Q / Q^{-1}$$

If **A** is *real symmetric* (i.e. a covariance matrix), then $\mathbf{Q}^{-1} = \mathbf{Q}^{\mathrm{T}}$ (i.e. eigenvectors are orthogonal), so:

$$A=Q/Q^T$$

Eigendecomposition

In summary, the Eigendecomposition of a covariance matrix **A**:

$$A = Q\Lambda Q^T$$

Gives you the principal axes and their relative magnitudes

Ordering

- * Standard Eigendecomposition implementations will order the eigenvectors (columns of \mathbf{Q}) such that the eigenvalues (in the diagonal of $\mathbf{\Lambda}$) are sorted in order of decreasing value.
 - * Some solvers are optimised to only find the top *k* eigenvalues and corresponding eigenvectors, rather than all of them.

Covariance, Eigendecomposition and principal axes

$$Q = \begin{array}{cccc} 0.00 & 1.00 \\ 1.00 & 0.00 \end{array}$$

$$\Lambda = \begin{array}{cccc} 1.00 & 0.00 \\ 0.00 & 1.00 \end{array}$$

$$Q = \begin{array}{c} 0.00 & 1.00 \\ 1.00 & 0.00 \end{array}$$

$$\Lambda = \begin{array}{cccc} 1.00 & 0.00 \\ 0.00 & 0.14 \end{array}$$

$$Q = \begin{array}{c} 0.36 - 0.93 \\ 0.93 & 0.36 \end{array}$$

$$\Lambda = \begin{array}{cccc} 1.12 & 0.00 \\ 0.00 & 0.19 \end{array}$$

Principal Component Analysis (PCA)

Linear Transform

- * A linear transform **W** projects data from one space into another:
 - * T = ZW
 - Original data stored in the rows of Z
 - T can have fewer dimensions than Z.

Linear Transform

- The effects of a linear transform can be reversed if W is invertible:
 - * $\mathbf{Z} = \mathbf{T}\mathbf{W}^{-1}$
 - A lossy process if the dimensionality of the spaces is different

PCA

- * PCA is an **Orthogonal Linear Transform** that maps data from its original space to a space defined by the principal axes of the data.
 - * The transform matrix **W** is just the eigenvector matrix **Q** from the Eigendecomposition of the covariance matrix of the data.
 - * Dimensionality reduction can be achieved by removing the eigenvectors with low eigenvalues from **Q** (i.e. keeping the first *L* columns of **Q** assuming the eigenvectors are sorted by decreasing eigenvalue).

PCA Algorithm

- 1. Mean-centre the data vectors
- 2. Form the vectors into a matrix **Z**, such that each row corresponds to a vector
- 3. Perform the Eigendecomposition of the matrix $\mathbf{Z}^T\mathbf{Z}$, to recover the eigenvector matrix \mathbf{Q} and diagonal eigenvalue matrix $\mathbf{\Lambda}$: $\mathbf{Z}^T\mathbf{Z} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^T$
- 4. Sort the columns of Q and corresponding diagonal values of Λ so that the eigenvalues are decreasing.
- 5. Select the L largest eigenvectors of \mathbf{Q} (the first L columns) to create the transform matrix \mathbf{Q}_L .
- 6. Project the original vectors into a lower dimensional space, T_L: T_L = **ZQ**_L

PCA

PCA

Eigenfaces (Eigenimages)

A simple kind of feature...

... but with some problems ...

- Not invariant to:
 - Change in the position/orientation/scale of the object in the image
 - Changes in lighting
 - Size of the image
- Highly susceptible to image noise

Making it invariant

- Require (almost) the same object pose across images (i.e. full frontal faces)
- * Align (rotate, scale and translate) the images so that the a common feature is in the same place (i.e. the eyes in a set of face images)
- Make all the aligned images the same size
- * (optional) Normalise (or perhaps histogram equalise) the images so they are invariant to global intensity changes

...but there is still a bit of a problem...

- The feature vectors are huge!
 - If the images are 100x200 pixels, the vector has 20000 dimensions
 - * That's not really practical...
 - Also, the vectors are still highly susceptible to imaging noise and variations due to slight misalignments

Potential solution... Apply PCA

- * PCA can be used to reduce the dimensionality
 - * smaller number of dimensions allows greater robustness to noise and mis-alignment
 - * there are fewer degrees of freedom, so noise/misalignment has much less effect
 - and the dominant features are captured
 - * Fewer dimensions makes applying machine-learning much more tractable.

EigenFaces and reconstruction

Face dataset

Mean-face

Mean-centred faces

Example for two components

 Visualisation of the face datapoints projected on the first two principal components

Reconstructed faces

49

Summary

- * Covariance measures the "shape" of data by measuring how different dimensions change together.
- * The principle axes are a basis, aligned such they describe most directions of greatest variance.
- * The Eigendecomposition of the covariance matrix produces pairs of eigenvectors (corresponding to the principal axes) and eigenvalues (proportional to the variance along the respective axis).
- * PCA aligns data with its principal axes, and allows dimensionally reduction by discounting axes with low variance.
- * Eigenfaces applies PCA to vectors made from pixel values to make robust low-dimensional image descriptors.

Further reading and exercises

Further reading

- Mark's book covers PCA in the appendices.
- Wikipedia has good coverage of all the key ideas:
 - http://en.wikipedia.org/wiki/Variance
 - http://en.wikipedia.org/wiki/Covariance
 - http://en.wikipedia.org/wiki/Covariance matrix
 - http://en.wikipedia.org/wiki/Eigenvalue, eigenvector and eigenspace
 - http://en.wikipedia.org/wiki/Eigendecomposition of a matrix
 - http://en.wikipedia.org/wiki/Eigenface

Practical exercises – EigenFaces and PCA

- OpenIMAJ tutorial chapter 13
- https://sandipanweb.wordpress.com/2018/01/06/eigenfaces-and-a-simple-face-detector-with-pca-svd-in-python/
- https://learnopencv.com/eigenface-using-opencv-c-python/

^{*} Acknowledgements: Based on earlier Computer Vision lecture slides by Dr. Jon Hare. 51