shown below. [scale = 0.8](0,0)circle(0.5); at(0,0) ρ_i ; [-i., bend left=45] (0,-0.5) to node[above] $\mathcal{E}(\rho_i)$ (4,0);

A visual representation of the protocol in the case of two iterations is

(6,0) rectangle (8,2); at (7,1)
$$\mathcal{S}$$
, '...';
[- $\dot{\iota}$, bend left=45] (10,1) to node[above] $C_{-}(\mathcal{E}(\rho_{j}))$ (8,1);
[- $\dot{\iota}$, bend left=45] (-1,-0.5) to node[above] $\mathcal{E}(\rho_{j})$ (-3,0);
[- $\dot{\iota}$, bend left=45] (-5,-0.5) to node[above] $\mathcal{E}(\rho_{j})$ (-9,0);

[-, dashed] (-4,0) - (6,0); at (-4,0) :;[-i, bend left=45] (-11,-0.5) to node[above] $\mathcal{E}(\rho_i)$ (-13,0);

pair of operations and measurements.

[-
$$\dot{\epsilon}$$
, bend left=45] (-17,-0.5) to node[above] $\mathcal{E}(\rho_j)$ (-13,0), [- $\dot{\epsilon}$, bend left=45] (-17,-0.5) to node[above] $\mathcal{E}(\rho_j)$ (-19,0); [- $\dot{\epsilon}$, dashed] (-12,0) - (4,0); at (-12,0) :; [- $\dot{\epsilon}$, bend left=45] (-11,-3) to node[above] $\mathcal{E}(\rho_j)$ (-13,-2);

[- $\dot{\epsilon}$, bend left=45] (-17,-3) to node[above] $\mathcal{E}(\rho_i)$ (-19,-2); (11,-2) circle (0.5); at (11,-2) S; [- \dot{c} , bend left=45] (13.5,-2) to node[above] $C_{+}(C_{-}(\mathcal{E}(\rho_{i})))$ (14.5,-1); [- \dot{c} , bend left=45] (8.5,-2.3) to node[right] '+' (11,-3); [-¿, bend left=45] (16.5,-

2) to node[below] '-' (17.5,-3); [-¿, bend left=45] (11,-2.3) to node[below] $C_{-}(C_{-}(\mathcal{E}(\rho_{i})))$ (8,-3);

Description:

In this figure, noisy copies of the states ρ_i are first combined pairwise with the controlled unitary operation in the quantum switch. The measure-

ments are performed on the ancilla qubits, followed by the recombination of the pairs depending on the outcomes. Specifically, when the measurement

outcomes result in a pair of '-', it leads to the effective state $C_{-}(\mathcal{E}(\rho_{i}))$. This process is repeated for another iteration, as indicated by the additional