# Introduction to Machine Learning

# **Evaluation: Simple Measures for Classification**



## Learning goals

- Know the definitions of misclassification error rate (MCE) and accuracy (ACC)
- Understand the entries of a confusion matrix
- Understand the idea of costs
- Know definitions of Brier score and log loss

## LABELS VS PROBABILITIES

In classification we predict:

Class labels:

$$\mathbf{F} = \left(\hat{o}_k^{(i)}\right)_{i \in \{1, \dots, m\}, k \in \{1, \dots, g\}} \in \mathbb{R}^{m \times g},$$

where  $\hat{o}_k^{(i)} = [\hat{y}^{(i)} = k], k = 1, \dots, g$  is the one-hot-encoded class label prediction.

Class probabilities:

$$\mathbf{F} = \left(\hat{\pi}_{k}^{(i)}\right)_{i \in \{1, \dots, m\}, k \in \{1, \dots, g\}} \in [0, 1]^{m \times g}$$

→ These form the basis for evaluation.



## LABELS: MCE & ACC

The **misclassification error rate (MCE)** counts the number of incorrect predictions and presents them as a rate:

$$\rho_{MCE} = \frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \neq \hat{y}^{(i)}] \in [0, 1].$$

MCE

**Accuracy (ACC)** is defined in a similar fashion for correct classifications:

$$\rho_{ACC} = \frac{1}{m} \sum_{i=1}^{m} [y^{(i)} = \hat{y}^{(i)}] \in [0, 1].$$



- If the data set is small this can be brittle.
- MCE says nothing about how good/skewed predicted probabilities are.
- Errors on all classes are weighted equally, which is often inappropriate.

## LABELS: CONFUSION MATRIX

Much better than reducing prediction errors to a simple number is tabulating them in a **confusion matrix**:

- true classes in columns,
- predicted classes in rows.

We can nicely see class sizes (predicted/true) and where errors occur.

True classes

|                      |            | setosa | versicolor | virginica | error | n   |
|----------------------|------------|--------|------------|-----------|-------|-----|
|                      | setosa     | 50     | 0          | 0         | 0     | 50  |
| cte<br>es            | versicolor | 0      | 46         | 4         | 4     | 50  |
| Predicted<br>classes | virginica  | 0      | 4          | 46        | 4     | 50  |
| 重흥                   | error      | 0      | 4          | 4         | 8     | -   |
|                      | n          | 50     | 50         | 50        | -     | 150 |

## **LABELS: CONFUSION MATRIX**

- In binary classification, we typically call one class "positive" and the other "negative".
- The positive class is the more important, often smaller one.

|       |   | True Class y   |                |  |
|-------|---|----------------|----------------|--|
|       |   | +              | _              |  |
| Pred. | + | True Positive  | False Positive |  |
|       |   | (TP)           | (FP)           |  |
| ŷ     | _ | False Negative | True Negative  |  |
|       |   | (FN)           | (TN)           |  |

#### e.g.,

- **True Positive** (TP) means that an instance is classified as positive that is really positive (correct prediction).
- **False Negative** (FN) means that an instance is classified as negative that is actually positive (incorrect prediction).

## **LABELS: COSTS**

We can also assign different costs to different errors via a cost matrix.

Costs = 
$$\frac{1}{n} \sum_{i=1}^{n} C[y^{(i)}, \hat{y}^{(i)}]$$

Example: Depending on certain features (age, income, profession, ...) a bank wants to decide whether to grant a 10,000 EUR loan.

Predict if a person is solvent (yes / no). Should the bank lend them the money?

#### **Examplary costs:**

Loss in event of default: 10,000 EUR Income through interest paid: 100 EUR

|                     | True classes |             |
|---------------------|--------------|-------------|
|                     | solvent      | not solvent |
| Predicted solvent   | 0            | 10,000      |
| classes not solvent | 100          | 0           |

# **LABELS: COSTS**

#### Cost matrix

#### **Confusion matrix**

|                     | True classes |             |
|---------------------|--------------|-------------|
|                     | solvent      | not solvent |
| Predicted solvent   | 0            | 10,000      |
| classes not solvent | 100          | 0           |

|           |             | True classes |             |
|-----------|-------------|--------------|-------------|
|           |             | solvent      | not solvent |
| Predicted | solvent     | 70           | 3           |
| classes   | not solvent | 7            | 20          |

 If the bank gives everyone a credit, who was predicted as solvent, the costs are at:

Costs = 
$$\frac{1}{n} \sum_{i=1}^{n} C[y^{(i)}, \hat{y}^{(i)}]$$
  
=  $\frac{1}{100} (100 \cdot 7 + 0 \cdot 70 + 10.000 \cdot 3 + 0 \cdot 20) = 307$ 

• If the bank gives everyone a credit, the costs are at:

$$\textit{Costs} = \frac{1}{100} \left( 100 \cdot 0 + 0 \cdot 77 + 10.000 \cdot 23 + 0 \cdot 0 \right) = 2.300$$

#### PROBABILITIES: BRIER SCORE

Measures squared distances of probabilities from the true class labels:

$$\rho_{BS} = \frac{1}{m} \sum_{i=1}^{m} \left( \hat{\pi}^{(i)} - y^{(i)} \right)^2$$

- Fancy name for MSE on probabilities.
- Usual definition for binary case;  $y^{(i)}$  must be encoded as 0 and 1.



## PROBABILITIES: BRIER SCORE

$$\rho_{BS,MC} = \frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{g} \left( \hat{\pi}_{k}^{(i)} - o_{k}^{(i)} \right)^{2}$$

- Original by Brier, works also for multiple classes.
- $o_k^{(i)} = [y^{(i)} = k]$  marks the one-hot-encoded class label.
- For the binary case,  $\rho_{BS,MC}$  is twice as large as  $\rho_{BS}$ : in  $\rho_{BS,MC}$ , we sum the squared difference for each observation regarding both class 0 **and** class 1, not only the true class.

## PROBABILITIES: LOG-LOSS

Logistic regression loss function, a.k.a. Bernoulli or binomial loss,  $y^{(i)}$  encoded as 0 and 1.

$$\rho_{LL} = \frac{1}{m} \sum_{i=1}^{m} \left( -y^{(i)} \log \left( \hat{\pi}^{(i)} \right) - \left( 1 - y^{(i)} \right) \log \left( 1 - \hat{\pi}^{(i)} \right) \right).$$



- Optimal value is 0, "confidently wrong" is penalized heavily.
- Multi-class version:  $\rho_{LL,MC} = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{g} o_k^{(i)} \log \left( \hat{\pi}_k^{(i)} \right)$ .