Clustering Methods and Correlated Data: Simulations

Parker Knight

9/29/2021

Overview

- 1. Review of methods
- 2. Simulation design
- 3. Results
- 4. Directions

Methods of Interest

- 1. K-means
- 2. Hierarchical clustering
- 3. Spectral clustering

K-means

Let $X \in \mathbb{R}^{n \times p}$ be a given data matrix. Our goal is to partition the n data points into k non-overlapping clusters, denoted by the set $S = \{S_1, S_2, ..., S_k\}$.

The k-means algorithms does so by minimizing the Euclidean distance between each point and the centroid of it's assigned cluster:

$$\min_{S} \sum_{i=1}^{k} \sum_{X_{i} \in S_{i}} ||X_{j} - \mu_{i}||_{2}^{2}$$

where μ_i is centroid of the points in S_i .

K-means (cont.)

Key points:

- k must be specified up front
- Computation is NP-hard (objective function is not convex)
- ▶ By default, uses Euclidean distances
 - alternate versions exist (K-medoids)
- Assumes separation between clusters is convex

Hierarchical clustering

Let D = dist(X) be the pairwise distance matrix of the n samples.

In agglomerative HC, we start with every observation in a singleton cluster, join clusters G and H together based on the following criteria:

- i. $d_{SL} = \min_{i \in G, j \in H} d_{i,j}$ (single linkage)
- ii. $d_{CL} = \max_{i \in G, j \in H} d_{i,j}$ (complete linkage)
- iii. $d_{GA} = \frac{1}{N_G N_H} \sum_{i \in G} \sum_{j \in H} d_{i,j}$ (group average)

In divisive HC, we begin with data all in one cluster and split into sub-clusters with K-means.

HC (cont.)

Key points:

- ▶ don't need to specify *k* up front, can 'cut' the tree at any depth
- relies on pairwise distances, sensitive to outliers
- greedy algorithm
- 'big data' issues

Spectral clustering

From our data matrix X, compute a similarity matrix $S \in \mathbb{R}^{n \times n}$. Then:

- 1. Compute a similarity graph from S, and define W to be the 'weighted' adjacency matrix
- 2. Construct the Laplacian L from W
- 3. Compute $L = UDU^T$
- 4. Cluster the first k columns of U using k-means

Spectral (cont.)

Key points:

- ▶ How do we construct *S*? How do we construct a graph from *S*?
- Normalized or unnormalized Laplacian?
- ► Need to specify *k*
- Can handle non-convexity between clusters

Simulation Design

Question: how robust are these methods to correlation structure between the samples in X?

We vary the following parameters:

- ► n = 100
- ightharpoonup p = 50,100
- ▶ # of clusters = 2, 3, 4
- ▶ # of groups = 2, 10, 50
 - the 'groups' determine the block-diagonal structure of the covariance matrix
- $\rho = 0.2, 0.5, 0.8$
 - within-group correlation
- ▶ difference in mean between groups: 0.25,1
 - 'signal strength'

Given a set of parameters, repeat R times:

1. Generate block-diagonal Σ with ngroups blocks, set within-group correlation ρ

```
Sigma <- Matrix::bdiag(lapply(1:(n/ngroups), function(i){
    I <- (1-rho) * diag(ngroups)
    ones <- rho * rep(1 ,ngroups) %*% t(rep(1, ngroups))
    I + ones
}))</pre>
```

2. Generate vector of cluster assignments $\mathbf{C} = (C_1, C_2, ..., C_n)^T$ where C_i may equal 1, 2, ..., k. Set the mean vector $\mu = (\mu_{C_1}, \mu_{C_2}, ..., \mu_{C_n})^T$ where μ_{C_i} is the mean of cluster C_i .

```
cluster_names <- LETTERS[1:nclust]</pre>
cluster assignment <- sample(cluster names,</pre>
                                 size = n.
                                 replace = TRUE)
mu <- (0:(nclust - 1)) * mu_step_size</pre>
mu_vec \leftarrow rep(0, n)
for (cl in 1:length(cluster_names))
    mu_vec <- mu_vec + ifelse(cluster_assignment ==</pre>
                                     cluster names[cl],
                                  mu[cl],
                                  0)
```

3. Draw $X \sim MVN(\mu, \Sigma)$.

4. Cluster the rows of X with each method to get an estimated cluster assignment $\hat{\mathbf{C}} = (\hat{C}_1, ..., \hat{C}_n)^T$ and compare results. . .

How do we evaluate the performance of each clustering method? Rand index:

$$RI = \frac{1}{\binom{n}{2}} \sum_{i=1}^{n} \sum_{i \neq i} I \left[(C_i = C_j \wedge \hat{C}_i = \hat{C}_j) \vee (C_i \neq C_j \wedge \hat{C}_i \neq \hat{C}_j) \right]$$

Some immediate concerns:

- 1. We set *k* to be the true number of clusters
- 2. We assume that cluster means are equally spaced apart (signals are equally strong).
- 3. Many options for spectral clustering. . . our method (after some trial-and-error) is:
 - Construct S with a Gaussian similarity kernel with $\sigma^2 = 25$
 - ▶ Build an unweighted K-nearest neighbors graph with K = 25 (relatively dense)
 - ▶ Use a normalized Laplacian $L = I D^{-1/2}AD^{-1/2}$

Results

clustering_method	average_ri
hclust	0.7221509
kmeans	0.7546772
spectral	0.6649400

Results (cont.)

Results (cont.)

Results (cont.)

Directions

- 1. Improve simulations
 - \triangleright Bigger n and p
 - Move beyond Gaussian data
 - More complex correlation structures
- 2. Explore variations of spectral clustering
- 3. More clustering methods
 - Convex clustering?

Directions (cont.)

Interesting Literature:

- 1. Kleindessner et al 2019; "Guarantees for Spectral Clustering with Fairness Constraints"
- 2. Fang and Wang 2011; "Penalized cluster analysis with applications to family data"
- Donnat and Holmes 2019; "Convex Hierarchical Clustering for Graph-Structured Data"
- 4. Gittens et al 2014; "Approximate Spectral Clustering via Randomized Sketching"