

Examples – Sequence Modelling						
Domain	Data Type	Output type				
Speech Recognition	Audio	Words (text)				
Music Creation	Nodes (Ø)	Audio				
Sentiment classification	an enjoyable one-time-watch for the funny punchlines, far-out characters and performances. But the unconvincing story and the temperate screenplay prevent it from reaching its full potential	Integers (Stars ratings from 1 to 5)				
Machine Translation	डीएनएन व्याख्यानमाला आपले स्वागत आहे।	Welcome to DNN Lecture.				
Named Entity Recognition	Mohan was driving a Maruti	Mohan was driving a Maruti				
Video activity recognition	Sequence of Video Frames	Identify activity say running				

Representing Words

- □ Vocabulary = [a, aakash, aamaan... to zulu, zyzzogeton]
 - * Also referred as corpus
 - Two more tokens <UNK> and <EOS>
- ☐ Can be converted to one hot encoding
- 0
 0
 0
 1
 0

 0
 0
 0
 0
 0
 0

 1

 1

 1

5/24/2024 **pra-sâmi**

10

To Summarize....

- □ Not all problems can be converted into one with fixed length inputs and outputs
- □ Problems such as Speech Recognition or Time-series Prediction require a system to store and use context information
- ☐ Hard/Impossible to choose a fixed context window
- ☐ There can always be a new sample longer than anything seen

5/24/2024

pra-sâmi

11

What is Recurrent Neural Network...

- □ Remember our little Neural Network...
- □ Let's simplify the layout a little

5/24/2024

That's is Recurrent Neural Network...

- □ Its it great!
- □ All done... sealed, signed, and delivered...
- □ Wait... let's do some math too....

Recurrent Neural Network

5/2

pra-sâmi

What We Know So Far....

- □ Recurrent Neural Networks take the previous output or hidden states as inputs.
- □ The composite input at time 't' has some historical information about the happenings at time 'T' < 't'.
- □ RNNs are useful as their intermediate values (state) can store information about past inputs for a time that is not fixed a priori
- $\hfill \square$ Note that the weights are shared over time
- □ Essentially, copies of the RNN cell are made over time (unrolling/unfolding), with different inputs at different time steps

5/24/2024

Speech Recognition Toad met Pit.... Given any sentence, what is the probability of that being a valid sentence So what language model would do is to calculate probability of a sentence with that combination of words P(Toad met Pit) = 4.6 x 10⁻¹ P(Todd met Pete) = 9.3 x 10⁻⁹ Mathematically P(sentence) = P(y₁, y₂, y₃, ... y_n)

How to Model?

5/24/2024

- □ Training set : Large corpus of English text
 - * Adults need eight hours of sleep a day!

Adults	need	eight	hours	of	sleep	а	day	4	<eos></eos>
y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	-	y_9

- □ First step is to tokenize the sentence
- \Box Add a token at end and at the beginning <EOS> (y_9)
- □ Remember we have limited tokens (say we only have 10,000 tokens).

need

eight

□ Unknown words will be given a token <unk>

5/24/2024 pra-sâmi

RNN Model ☐ At the onset RNN tries to predict probabilities of each word in the corpus of being first word in this sentence. □ i.e. P[a], P[aakash], P[aamaan]... to P[zulu], P[zyzzogeton] This would be an array of 10002 elements Adults eight hours of sleep need <EOS> y(5) y(7) y(8) y(9) y(1) y(2) y(3) y(4) y(6) (X1) (X2) (X3) (X4) (X5) (X6) (X0)

hours

of

RNN Model

- □ Suppose you have sentence with 3 words
- ☐ You want to know probability of it being a sentence
- \Box Given a sentence y_1, y_2, y_3
- $\ \ \square \ \ \mathsf{P}(y_1,y_2,y_3) = \mathsf{P}[y_1] \ * \ \mathsf{P}[y_2 | \ y_1] \ * \ \mathsf{P}[y_3 | \ y_1,y_2]$

5/24/2024

Word representation

- □ Vocabulary = [a, aakash, aamaan... to zulu, zyzzogeton]
 - Also referred as corpus
 - Two more tokens <UNK> and <EOS>
- □ Can be converted to one hot encoding

Word representation								
Word representation □ Vocabulary = [a, aakash, aamaan to zulu, zyzzogeton] ❖ Also referred as corpus ❖ Two more tokens <unk> and <eos> □ Can be converted to one hot encoding □ Man Women King Queen the ple (5468) (8701) (4823) (7157) the ple (56) (7259) □ 0</eos></unk>								
	□ Can be converted to one hot encoding							
	Man	Women	King	Queen	Apple	Oranges		
	(5468)	(8701)	(4823)	(7157) real	(56)	(7259)		
	0 0 - 1 - - 0	0 0 - - - 1 - 0	O 1 - - - - - 0	ignis	0 1 0 - - - - - 0	0 0 - - 1 - 0		
5/24	/2024							

pra-sâmi

Featured Representation

	Man (5468)	Women (8701)	King (4823)	Queen (7157)	Apple (56)	Oranges (7259)
Gender	-1	1	-0.95	0.97	0	0.001
Royal	0.01	0.02	0.90	0.98	0.05	-0.01
Age	0.05	0.02	0.7	0.68	0.001	-0.4
Food	0.001	0.002	0.0001	0.0002	0.95	0.90

Feature representing a huge corpus can drastically be reduced...

- □ Man \rightarrow Women \approx King \rightarrow ????
- ☐ In terms of algorithm, we can use this using Similarity Coefficients
 - hinspace Find a word W : argmax (e_{w} , $\ e_{king} \ e_{man} + \ e_{women}$)

 - * Euclidian distances or Manhattan distances can also be used

5/24/2024 pra-sâmi

Sampling a Sequence from a Well Trained Model

- ☐ Imagine we have super trained RNN network
- □ We ask it to predict first word,
 - * which results in probability words in corpus to be first word,
- Pick a word from the probabilities to be first word (np.random.choice())
- □ Enter this word as input to timestamp '2' to generate second word, again pick a word at random and pass it to third time stamp.
- □ and you will generate a sentence till you reach a <EOS>
- □ Alternatively, you can limit the sentence to say 20 words
- □ Voila!!!
- Remember 2016 US Election, someone fabricated how Trump would have answered questions during press conference
- □ Obviously it would not make exact sense. But in general it will be same.

5/24/2024

2

RNN Model

- ☐ In some cased, it is advantageous to have character based RNN instead of word based RNN.
- □ Both formats have their own advantages.

5/24/2024

pra-sâmi

53

Sequence to sequence: Image Captioning

- ☐ Given an image, produce a sentence describing its contents
- □ Inputs: Image feature (from a CNN)
- □ Outputs: Multiple words (let's consider one sentence)

: The dog is hiding

5/24/2024

Sequence to sequence : Bleu Score

- □ 'Dog', 'bed', 'hiding'
- □ Le chien est sous le lit
- क्ता बिस्तर के नीचे है.
- 🗅 क्त्रा पलंगाच्या खाली आहे.

: The dog is hiding

- □ Reference 1: The Dog is hiding under the bed
- □ Reference 2: There is a dog under the bed
- □ MT Output : The dog the dog hiding under the bed

"BLEU: a Method for Automatic Evaluation of Machine Translation" By Kishore Papineni, Salim Roukos, Todd Ward, Wei Jing Zhu.

5/24/2024

pra-sâmi

RNN Outputs: Image Captions

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

Show and Tell: A Neural Image Caption Generator, CVPR 15 5/24/2024

Two dogs play in the grass.

