ETH zürich

3D Object Recognition with Deep Networks

3D Vision – CVG – ETH Zurich

Instructors: Prof. Marc Pollefeys, Dr. Torsten Sattler

Teaching Assistant: Yagiz Aksoy, Johnasses Schönberger, Thomas Schöps, Peidung Liu

Supervisors: Martin Oswald, Pablo Speciale

Students: Adrian Schneuwly, Johannes Oswald, Tobias Grundmann

Source: Udacity - Deep Learning

To understand the world autonomous systems need to recognize Objects

Object Recognition as a Classification Problem

Source: Udacity - Deep Learning

3D Convolutional Neural Network - VoxNet

Source: Daniel Maturana and Sebastian Scherer; VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition; IEEE/RSJ International Conference on Intelligent Robots and Systems; September; 2015

- Occupany Grid
 - Density Grid
- Convolutional Layers
 - Convolution Through Feature Maps
 - Leaky rectified linear units(ReLU)
- Pooling Layers
 - Down sampling by keeping max value
- Fully Connected Layers
 - Linear combination through(ReLU)
 - Softmax

3D Objects in Voxilized Format (32x32x32)

Source: Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao; 3D ShapeNets: A Deep Representation for Volumetric Shapes; Proceedings of 28th IEEE Conference on Computer Vision and Pattern Recognition

Training, Test Data - ModelNet

- ModelNet
 - 660 Objects
 - 151128 CAD Models
- ModelNet40
 - 40 Objects
 - 100 CAD Models per Object
- Rotational Invariance through Data Augmentation
- **CNN Training through Stochastic Gradient Decent with Momentum**

Source: Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao; 3D ShapeNets: A Deep Representation for Volumetric Shapes; Proceedings of 28th IEEE Conference on Computer Vision and Pattern Recognition

Timeline

March

- Understand 2D Object Recognition with Deep Networks
- Get familiar with Machine Learning, Tensorflow, Papers' Approaches

April

- Implement Neural Network
- Turn 2D into 3D, Achieve Rotational Invariance

may/June

- Train Neural Network (Time Intensive)
- Fine Tuning & Evaluation
- Build Application for Live Demo (Project Tango Data)

