Microcontroladores - 19.1

Controle de atividades

														Α	tivi	dad	des														
Alunos	1			2				3		4			5			6		7			8			9			10				
	а	b	С	d	а	b	С	а	b	С	а	b	С	а	b	С	а	b	С	а	b	С	а	b	С	а	b	С	а	b	С
Andre Oliveira de Sousa	1	0	3	1	-	-	-																								
Cleanderson Lins Coutinho	1	0	4	1	1	3	6																								
Danillo Jose Cezar Ribeiro	1	0	5	1	-	-	-																								
Gabriel Aires Moreira	1	3	6	0	1	3	6																								
Gabriel de Oliveira Moura Soares	1	2	5	1	1	3	6																								
Geraldo Figueiredo de Santana Junior	-	-	-	0	-	-	-																								
Gustavo Eraldo da Silva	1	3	5	1	1	3	6																								
Ivan de Aquino Trigueiro	1	3	6	1	1	3	6																								
Jonas da Silva Antas	1	0	5	1	1	3	2																								
Julio Gusmao Carlos de Mendonca	1	3	5	1	1	3	6																								
Lucas Eduardo Dutra Quirino Nunes	-	-	-	0	-	-	-																								
Luciano Vieira da Silva Junior	0	3	4	1	0	3	6																					,			
Marismar da Costa Silva	1	3	6	1	-	-	-																								
Walsan Jadson de Lima	1	0	6	0	-	-	-																								

Legenda:

- a) Entrega na data, até às 15h (1,0).
- **b**) Com comentários suficientes e esclarecedores. Até 3,0 pontos.
- c) Atende as especificações. Até 6,0 pontos. Penalização de 3,0 pontos se entregue no dia seguinte.
- d) Respondeu à Enquete AT1 (1,0)?

Vejam as páginas seguintes com as atividades.

Descrição

Medição de tensão e indicação em BCD (data de entrega: 30/07/19)

Objetivo: Exercício de familiarização com o conversor A/D do PIC. Especificações:

- Conversão A/D deve ser efetuada, em modo cíclico e tão rápido quanto possível (limitado pela velocidade do microcontrolador);
- A conversão A/D deve ser feita pela porta GP2;
- O valor da conversão A/D deve ser transformado para o correspondente valor de tensão, com uma casa decimal de precisão;
- O valor da tensão deve ser convertido para codificação BCD e enviado a dois displays de 7 segmentos através de um registrador de deslocamento (*shift register* 74164APC ver *data sheet*);
- Para que a transmissão do PIC ao shift register ocorra sem erros, as especificações do shift register devem ser obedecidas;
- A comunicação com o shift register deve ser feita pelas portas:
 - ☑ GP0 DSA/DSB:
 - ☑ GP1 CP:
- Veja os exemplos:

Valor da conversão A/D	Valor a ser apresentado (V)	Display
23 _h	0,69 → 0,7	רם
32 _h	0,98 → 1,0	10
63 _h	1,94 → 1,9	19
65 _h	1,98 → 2,0	20
A7 _h	$3,27 \rightarrow 3,3$	33
DB _h	4,29 → 4,3	43
FC _h	4,94 → 4,9	49

4. Controlador de LED RGB (data de entrega: 11/07/19)

Objetivo: Exercícios para gerenciamento de portas e de tempo (com TIMERs).

Contexto: Controle da cor e da intensidade do brilho de um LED RGB.

Especificações:

- Três chaves serão utilizadas para configurar a intensidade e selecionar a cor do LED;
- Quando o bit mais significativo da chaves estiver em *HIGH*, a posição das demais chaves irá selecionar qual o LED terá o ajuste da intensidade do brilho, conforme tabela abaixo:

Chaves	Cor do LED
1 00	Desligados
1 01	Red
1 10	Green
1 11	Blue

• Quando o bit mais significativo da chaves estiver em **LOW**, a posição das demais chaves irá configurar a intensidade do brilho do LED selecionado, alterando o *duty cycle*, conforme tabela abaixo:

Chaves	Duty cycle				
0 00	5%				
0 01	20%				
0 10	60%				
0 11	100%				

- Quando houver duty cycle diferente de 100%, a frequência do sinal deve ser de 500Hz;
- Após a configuração, a aplicação deve acender os LEDs de acordo com os ajustes individuais.
- GP0 deverá ser utilizado para o bit 0 da chave;
- GP1 deverá ser utilizado para o bit 1 da chave;
- GP3 deverá ser utilizado para o bit 2 da chave;
- GP2, GP4 e GP5 deverão ser utilizados, respectivamente, para ativar os LED R, G e B.

3. Controlador de intensidade de um LED (data de entrega: 02/07/19)

Objetivo: Exercícios para gerenciamento de portas e de tempo (sem TIMERs).

Especificações:

 Duas chaves serão utilizadas para configurar a <u>intensidade</u> LED, alterando o *duty cycle*, conforme tabela abaixo:

Chaves	Duty cycle
00	5%
01	20%
10	60%
11	100%

- Quando houver duty cycle diferente de 100%, a frequência do sinal deve ser de 500Hz;
- GP0 deverá ser utilizado para o bit 0 da chave;
- GP1 deverá ser utilizado para o bit 1 da chave;
- GP5 deverá ser utilizado para ativar o LED.

2. Rotina de atraso de 31,25 ms (data de entrega: 18/06/19)

Objetivo: Exercício de aplicação da linguagem Assembly.

Contexto: Para executar determinadas tarefas temporizadas, é necessário a medição de tempo decorrido ou a repetição de unidade tempo de atraso.

Especificações:

- Implementar uma subrotina de unidade de tempo de atraso de 31, 25 ms (1/32 s);
- A subrotina deve ser implementada para o PIC12F675 operando com seu clock interno (4MHz);
- O tempo de atraso inclui a chamada à subrotina (CALL) e seu respectivo retorno ;
- Apenas os tempos de execução das instruções devem ser utilizados para produzir atrasos;
- Para permitir a medida e aferição dos tempos da subrotina, uma transição na porta GP5 deve ser gerada repetidamente a cada 31,25 ms.

Atividade 1 - Data de entrega: 06/06/19

Tema: Semáforo de trânsito - Algoritmo

Objetivo: Exercício com algoritmo para posterior implementação com microcontrolador.

Contexto:

Um cruzamento hipotético de trânsito, apresentado na Figura At1.1, necessita ser controlado para agilizar o fluxo de veículos e evitar colisões. A descrição do fluxo tem a seguinte lógica:

- Veículos que vêm da Setor 1 podem seguir para o Setor 2, ou para o Setor 3 ou para o Setor 5;
- Veículos que vêm da Setor 4 podem seguir para o Setor 2, ou para o Setor 5;

Figura At1.1. Cruzamento hipotético de trânsito para estudo do controle dos semáforos A, B, C e D.

O Departamento de Engenharia de Tráfego (DET) efetuou uma pesquisa e concluiu que, em razão do fluxo de veículos, os semáforos **B** e **C** devem ter a metade do tempo destinado aos semáforos **A** e **D**. De acordo com a pesquisa e para complementar o estudo, o DET propôs um diagrama de tempo para representar como deverão funcionar os semáforos A, B, C e D, como ilustrado na Figura At1.2.

Figura At1.2. Diagrama de tempo para os semáforos A, B, C e D. A região em cinza corresponde a indicação de atenção, antes do semáforo fechar.

O DET adota que o tempo padrão para um semáforo permanecer aberto é de 30 segundos.

Tarefa: Proponha um ALGORITMO, escrito em Portugol, para controlar o semáforo descrito acima.