

AZ-104

Administer Azure Virtual Machines

AZ-104 Course Outline

- 01: Administer Identity
- 02: Administer Governance and Compliance
- 03: Administer Azure Resources
- 04: Administer Virtual Networking
- 05: Administer Intersite Connectivity
- 06: Administer Network Traffic Management
- 07: Administer Azure Storage
- 08: Administer Azure Virtual Machines
- 09: Administer PaaS Compute Options
- 10: Administer Data Protection
- 11: Administer Monitoring

Learning Objectives - Administer Azure Virtual Machines

- Configure Virtual Machines
- Configure Virtual Machine Availability
- Lab 08 Manage Virtual Machines

Review Cloud Services Responsibilities

[©] Copyright Microsoft Corporation. All rights reserved.

Plan Virtual Machines

Start with the network

Name the virtual machine

Choose a location

- Each region has different hardware and service capabilities
- Locate Virtual Machines as close as possible to your users and to ensure compliance and legal obligations

Consider pricing

70+ Azure regions Available in 140 countries

Determine Virtual Machine Sizing

Туре	Description
General purpose	Balanced CPU-to-memory ratio.
Compute optimized	High CPU-to-memory ratio.
Memory optimized	High memory-to-CPU ratio.
Storage optimized	High disk throughput and I/O.
GPU	Specialized virtual machines targeted for heavy graphic rendering and video editing.
High performance compute	Our fastest and most powerful CPU virtual machines

[©] Copyright Microsoft Corporation. All rights reserved.

Determine Virtual Machine Storage

Each Azure VM has two or more disks:

- OS disk
- Temporary disk (not all SKUs have one, content can be lost)
- Data disks (optional)

OS and data disks reside in Azure Storage accounts:

- Azure-based storage service
- Standard (HDD, SSD) or Premium (SSD), or Ultra (SSD)

Azure VMs use managed disks

Connect to Virtual Machines

Bastion Subnet for RDP/SSH through the Portal over SSL

Remote Desktop Protocol for Windows-based Virtual Machines

Secure Shell Protocol for Linux based Virtual Machines

Connect to Windows Virtual Machines

Remote Desktop Protocol (RDP) creates a GUI session and accepts inbound traffic on TCP port 3389

WS-Man

WinRM creates a command-line session so you can run scripts

Port 5985 5986

Connect to Linux Virtual Machines

Hyper-V VM Wave Solution Azure

Administrator account

Authentication type

Username * (i)

SSH public key *

Provide an RSA public key in the single-line format (starting with "ssh-rsa") or the multi-line PEM format. You can generate SSH keys using ssh-keygen on Linux and OS X, or PuTTYGen on Windows.

1 Learn more about creating and using SSH keys in Azure

Authenticate with a SSH public key or password

port 22

SSH is an encrypted connection protocol that allows secure logins over unsecured connections

There are public and private keys

Learning Recap - Configure Virtual Machines

Check your knowledge questions and additional study

- Introduction to Azure virtual machines
- Choose the right disk storage for your virtual machine workload
- Create a Linux virtual machine in Azure
- Create a Windows virtual machine in Azure
- Connect to virtual machines through the Azure portal by using Azure Bastion

Plan for Maintenance and Downtime

Unplanned Hardware Maintenance

Unexpected Downtime

Planned Maintenance

When the platform predicts a failure, it will issue an unplanned hardware maintenance event

Action: Live migration

Unexpected Downtime is when a virtual machine fails unexpectedly

Action: Automatically migrate (heal)

Planned Maintenance events are periodic updates made to the Azure platform

Action: No action

Setup Availability Sets

Configure multiple Virtual Machines in an Availability Set Configure each application tier into separate Availability Sets

Combine a Load Balancer with Availability Sets Use managed disks with the Virtual Machines

Review Update and Fault Domains

Update domains allows Azure to perform incremental or rolling upgrades across a deployment. During planned maintenance, only one update domain is rebooted at a time

Fault Domains are a group of Virtual Machines that share a common set of hardware, switches, that share a single point of failure. VMs in an availability set are placed in at least two fault domains

Review Availability Zones

Unique physical locations in a region

Includes datacenters with independent power, cooling, and networking

Protects from datacenter failures

Combines update and fault domains

Provides 99.99% SLA

Compare Vertical to Horizontal Scaling

Vertical scaling (scale up and scale down) is the process of increasing or decreasing power to a single instance of a workload; usually manual

Horizontal scaling (scale out and scale in) is the process of increasing or decreasing the number of instances of a workload; frequently automated

Create Scale Sets

Instance count. Number of VMs in the scale set (0 to 1000)

Instance size. The size of each virtual machine in the scale set

Azure Spot Instance. Unused capacity at a discounted rate

Use managed disks

Enable scaling beyond 100 instances

Orchestration A scale set has a "scale set model" that defines the attributes of virtual machine instances (size, number of data disks, etc), As the number of instances in the scale set changes, new instances are added based on the scale set model. Learn more about the scale set model of • Flexible: achieve high availability at scale with identical or multiple virtual Orchestration mode * ① machine types Uniform: optimized for large scale stateless workloads with identical instances Security type (i) Standard Instance details Image * ① Ubuntu Server 20.04 LTS - x64 Gen2 See all images | Configure VM generation Arm64 VM architecture (i) x64 Run with Azure Spot discount ① Standard_D2s_v3 - 2 vcpus, 8 GiB memory (\$70.08/month) Size * (i)

See all sizes

Configure Autoscale

Define a minimum, maximum, and default number of VM instances

Create more advanced scale sets with scale out and scale in parameters

Learning Recap – Configure Virtual Machine Availability

- Build a scalable application with virtual machine scale sets
- Implement scale and high availability with Windows Server VM

Check your knowledge questions and additional study

Lab – Manage Virtual Machines

Lab 08 – Architecture diagram

Azure Virtual Machines

Virtual Machine Scale Sets

Task 5: Create a virtual machine using Azure PowerShell (option 1)

Task 6: Create a virtual machine us ng the CLI (option 2)

End of presentation

