Japan results

1. Cluster results

We used 3 clustering methods to group Japanese dataset-Kmeans, GMM and LPA. Each of them shows different strengths and shortcomings.

1) Kmeans

2) GMM

3) LPA

Based on the previous research, we chose Kmeans to do later analysis.

2. Cluster group results

We divided the Japanese dataset into 3 groups according to their age: YOUNGEST 20-36; MIDDLE 37-45; OLDEST 46 AND ABOVE. And the group clustering results are as follows:

1) Young

2) Middle

3) Old

4) Comparison of centers

3. Elbow method and ASW

Number of clusters: 2 Average Silhouette Width: 0.3815289

Number of clusters: 3 Average Silhouette Width: 0.3495681

Number of clusters: 4 Average Silhouette Width: 0.3299155

Number of clusters: 5 Average Silhouette Width: 0.3287453

Number of clusters: 6 Average Silhouette Width: 0.3309049

Number of clusters: 7 Average Silhouette Width: 0.3327689

Number of clusters: 8 Average Silhouette Width: 0.3434125

Number of clusters: 9 Average Silhouette Width: 0.3328229

Number of clusters: 10 Average Silhouette Width: 0.3355457

2) Young

Number of clusters: 2 Average Silhouette Width: 0.3934016
Number of clusters: 3 Average Silhouette Width: 0.4092919
Number of clusters: 4 Average Silhouette Width: 0.4282703
Number of clusters: 5 Average Silhouette Width: 0.4070163
Number of clusters: 6 Average Silhouette Width: 0.4027752
Number of clusters: 7 Average Silhouette Width: 0.4097197
Number of clusters: 8 Average Silhouette Width: 0.4179557
Number of clusters: 9 Average Silhouette Width: 0.4162042
Number of clusters: 10 Average Silhouette Width: 0.3910863

3) Middle

Number of clusters: 2 Average Silhouette Width: 0.4322387

Number of clusters: 3 Average Silhouette Width: 0.331006

Number of clusters: 4 Average Silhouette Width: 0.3363618

Number of clusters: 5 Average Silhouette Width: 0.3490055

Number of clusters: 6 Average Silhouette Width: 0.3401529

Number of clusters: 7 Average Silhouette Width: 0.3471159

Number of clusters: 8 Average Silhouette Width: 0.3580994

Number of clusters: 9 Average Silhouette Width: 0.3605575

Number of clusters: 10 Average Silhouette Width: 0.3616212

4) Old


```
Number of clusters: 2 Average Silhouette Width: 0.3724213

Number of clusters: 3 Average Silhouette Width: 0.345509

Number of clusters: 4 Average Silhouette Width: 0.331001

Number of clusters: 5 Average Silhouette Width: 0.3305676

Number of clusters: 6 Average Silhouette Width: 0.3399422

Number of clusters: 7 Average Silhouette Width: 0.3429694

Number of clusters: 8 Average Silhouette Width: 0.3553224

Number of clusters: 9 Average Silhouette Width: 0.3594882

Number of clusters: 10 Average Silhouette Width: 0.3448599
```

5) Conclusion

We can conclude that in young and old group, Elbow methods show the best at 4 clusters. While in middle group, ASW shows the best at 4 clusters.

4. ANOVA test

1) PosMinusnegaffect

ALL

\$kmeans

```
diff lwr upr p adj
Q2-Q1 -0.7515954 -1.0415773 -0.4616135 0.0000000
Q3-Q1 0.1101829 -0.1987678 0.4191337 0.7945764
Q4-Q1 0.7528311 0.4522488 1.0534133 0.0000000
Q3-Q2 0.8617783 0.5471299 1.1764268 0.0000000
Q4-Q2 1.5044265 1.1979909 1.8108620 0.0000000
Q4-Q3 0.6426481 0.3182043 0.9670920 0.0000028
```

YOUNG

diff lwr upr p adj

Q2-Q1 -1.17440476 -2.0851159 -0.26369367 0.0064047

Q3-Q1 -0.85634921 -1.6647195 -0.04797894 0.0339069

Q4-Q1 -0.07232143 -1.1179280 0.97328509 0.9977894

Q3-Q2 0.31805556 -0.6198469 1.25595802 0.8056637

Q4-Q2 1.10208333 -0.0466079 2.25077457 0.0644972

Q4-Q3 0.78402778 -0.2853456 1.85340112 0.2226231

MIDDLE

\$Kmeans

diff lwr upr p adj
Q2-Q1 -0.8659159 -1.52747116 -0.2043607 0.0050473
Q3-Q1 0.1082671 -0.56625075 0.7827849 0.9748645
Q4-Q1 0.6029730 -0.03594257 1.2418885 0.0715449
Q3-Q2 0.9741830 0.19561744 1.7527486 0.0080491
Q4-Q2 1.4688889 0.72095634 2.2168214 0.0000096
Q4-Q3 0.4947059 -0.26471632 1.2541281 0.3267805

OLD

diff lwr p adj upr Q2-Q1 -0.7419079 -1.0894347 -0.3943812 0.0000004 Q3-Q1 0.1665643 -0.2015915 0.5347200 0.6475729 Q4-Q1 0.7702222 0.3966081 1.1438362 0.0000011 Q4-Q2 1.5121301 1.1337921 1.8904681 0.0000000 Q4-Q3 0.6036579 0.2062872 1.0010286 0.0006096

2) J1SSATIS

ALL

\$Kmeans

diff lwr upr p adj Q2-Q1 -1.1646616 -1.5382937 -0.7910296 0.0000000 03-01 0.2725216 -0.1253272 0.6703703 0.2912328 Q4-Q1 0.9495663 0.5614916 1.3376410 0.0000000 Q3-Q2 1.4371832 1.0320400 1.8423264 0.0000000 Q4-Q2 2.1142279 1.7186785 2.5097774 0.0000000 04-03 0.6770447 0.2585449 1.0955445 0.0002092 YOUNG

\$kmeans

diff lwr upr p adj Q2-Q1 -1.3913690 -2.5907754 -0.1919627 0.0168191 03-01 -0.2932331 -1.3426624 0.7561963 0.8805547 Q4-Q1 0.3638393 -1.0132244 1.7409029 0.8967974 03-02 1.0981360 -0.1240100 2.3202819 0.0929213 Q4-Q2 1.7552083 0.2423821 3.2680345 0.0167985 Q4-Q3 0.6570724 -0.7398419 2.0539866 0.6009595

MIDDLE

\$Kmeans

diff lwr upr p adj
Q2-Q1 -1.1424550 -2.12906111 -0.1558488 0.0165205
Q3-Q1 0.9739666 -0.03197123 1.9799045 0.0613680
Q4-Q1 1.4408784 0.48803579 2.3937210 0.0008604
Q3-Q2 2.1164216 0.95531281 3.2775303 0.0000419
Q4-Q2 2.5833333 1.46790894 3.6987577 0.0000002
Q4-Q3 0.4669118 -0.66564765 1.5994712 0.7028175

OLD

\$Kmeans

diff lwr upr p adj

Q2-Q1 -1.2304892 -1.6702324 -0.7907461 0.0000000

Q3-Q1 0.1178362 -0.3464845 0.5821570 0.9137364

Q4-Q1 0.8365827 0.3636834 1.3094820 0.0000404

Q3-Q2 1.3483255 0.8769480 1.8197030 0.0000000

Q4-Q2 2.0670719 1.5872420 2.5469018 0.0000000

Q4-Q3 0.7187464 0.2162960 1.2211969 0.0014605

3) J1SPWBG1

ALL

diff lwr upr p adj
Q2-Q1 -1.9181649 -2.6784299 -1.1578999 0.0000000
Q3-Q1 -0.7825257 -1.5920667 0.0270153 0.0624237
Q4-Q1 1.4309120 0.6412592 2.2205647 0.0000228
Q3-Q2 1.1356392 0.3112555 1.9600229 0.0023653
Q4-Q2 3.3490769 2.5442145 4.1539392 0.0000000
Q4-Q3 2.2134377 1.3618761 3.0649993 0.0000000

YOUNG

\$Kmeans

diff lwr upr p adj

Q2-Q1 -4.2261905 -6.2592428 -2.193138 0.0000056

Q3-Q1 -2.6691729 -4.4480069 -0.890339 0.0011450

Q4-Q1 -0.7678571 -3.1020472 1.566333 0.8197383

Q3-Q2 1.5570175 -0.5145795 3.628615 0.2039452

Q4-Q2 3.4583333 0.8940191 6.022648 0.0040079

Q4-Q3 1.9013158 -0.4665220 4.269154 0.1574108

MIDDLE

\$kmeans

diff lwr upr p adj Q2-Q1 -1.258258 -2.9820129 0.4654964 0.2306759 Q3-Q1 1.179650 -0.5778799 2.9371804 0.3006498 Q4-Q1 2.772297 1.1075328 4.4370618 0.0002026 Q3-Q2 2.437908 0.4092706 4.4665464 0.0118562 Q4-Q2 4.030556 2.0817353 5.9793758 0.0000031 Q4-Q3 1.592647 -0.3861107 3.5714048 0.1586462

OLD

\$Kmeans

diff lwr upr p adj

Q2-Q1 -2.1753383 -3.07465583 -1.2760207 0.0000000

Q3-Q1 -1.2230375 -2.17261852 -0.2734565 0.0053798

Q4-Q1 1.0436941 0.07656910 2.0108192 0.0286587

Q3-Q2 0.9523008 -0.01171204 1.9163136 0.0542450

Q4-Q2 3.2190324 2.23773357 4.2003313 0.0000000

Q4-Q3 2.2667316 1.23917165 3.2942916 0.0000002

4) J1SPWBU1

ALL

diff lwr upr p adj Q2-Q1 -0.6967864 -1.42976803 0.03619531 0.0692367 Q3-Q1 0.2810480 -0.49944140 1.06153733 0.7897728 Q4-Q1 0.6647115 -0.09660332 1.42602637 0.1113006 Q3-Q2 0.9778343 0.18303491 1.77263374 0.0087219 Q4-Q2 1.3614979 0.58551930 2.13747647 0.0000450 Q4-Q3 0.3836636 -0.43733844 1.20466555 0.6242563

YOUNG

\$Kmeans

diff lwr upr p adj
Q2-Q1 -0.91666667 -3.179900 1.3465664 0.7075769
Q3-Q1 -1.00000000 -2.980232 0.9802323 0.5435812
Q4-Q1 -0.25000000 -2.848465 2.3484654 0.9941343
Q3-Q2 -0.08333333 -2.389475 2.2228085 0.9996823
Q4-Q2 0.66666667 -2.187977 3.5213107 0.9257893
Q4-Q3 0.75000000 -1.885923 3.3859227 0.8748297

MIDDLE

diff lwr upr p adj
Q2-Q1 -0.8543544 -2.4438495 0.7351408 0.4980286
Q3-Q1 1.4332273 -0.1874126 3.0538672 0.1021688
Q4-Q1 0.7567568 -0.7783428 2.2918563 0.5710844
Q3-Q2 2.2875817 0.4169500 4.1582134 0.0100641
Q4-Q2 1.6111111 -0.1859197 3.4081419 0.0951466
Q4-Q3 -0.6764706 -2.5011072 1.1481660 0.7663011

OLD

\$Kmeans

diff lwr upr p adj
Q2-Q1 -1.01543739 -1.8741330 -0.1567418 0.0129841
Q3-Q1 -0.03563941 -0.9423281 0.8710492 0.9996256
Q4-Q1 0.16099801 -0.7624422 1.0844382 0.9695977
Q3-Q2 0.97979798 0.0593294 1.9002666 0.0318880
Q4-Q2 1.17643541 0.2394616 2.1134092 0.0071077
Q4-Q3 0.19663743 -0.7845079 1.1777828 0.9549193

5) J1SPWBS1

ALL

diff lwr upr p adj

Q2-Q1 -1.9321021 -2.6981050 -1.1660992 0.00000000

Q3-Q1 -0.1100302 -0.9256810 0.7056206 0.9855501

Q4-Q1 2.1618070 1.3661945 2.9574195 0.0000000

Q3-Q2 1.8220719 0.9914664 2.6526775 0.0000002

Q4-Q2 4.0939091 3.2829723 4.9048459 0.0000000

Q4-Q3 2.2718372 1.4138486 3.1298257 0.0000000

YOUNG

\$Kmeans

diff lwr upr p adj

Q2-Q1 -4.750000 -7.4335415 -2.0664585 0.0001049

Q3-Q1 -2.684211 -5.0321947 -0.3362264 0.0189756

Q4-Q1 0.125000 -2.9560303 3.2060303 0.9995508

Q3-Q2 2.065789 -0.6686294 4.8002083 0.2001245

Q4-Q2 4.875000 1.4902157 8.2597843 0.0018997

Q4-Q3 2.809211 -0.3162334 5.9346544 0.0927655

MIDDLE


```
diff lwr upr p adj
Q2-Q1 -2.50150150 -4.5922195 -0.4107835 0.0123456
Q3-Q1 2.40699523 0.2753114 4.5386790 0.0204348
Q4-Q1 2.50405405 0.4848845 4.5232237 0.0087898
Q3-Q2 4.90849673 2.4479901 7.3690034 0.0000069
Q4-Q2 5.00555556 2.6418587 7.3692524 0.0000018
Q4-Q3 0.09705882 -2.3029489 2.4970665 0.9995716
```

OLD

\$Kmeans

Ps: I highlighted all the none significant comparison with red.