Convolutional Neural Networks

Convolution

- Convolution is a pointwise multiplication of two functions to produce a third function.
- Primary purpose of convolution in CNN is to extract features from the input image.
- matrix formed by sliding the filter over the image and computing the dot product is called the 'Convolved Feature' or 'Activation Map' or the 'Feature Map'.

CNNs Vs. ANNs

- ANNs suffer from curse of dimensionality when it comes to high resolution images
- CNNs do a little pre-processing, that means the network learns the filters before doing the real classification.
- We use filters (receptive fields) to exploit spatial locality by enforcing a local connectivity pattern between neurons of adjacent layers

Detecting Vertical edges

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Convolution

3X3 Filter (fXf)

(n-f+1)X(n-f+1)

6X6 Matrix (nXn)

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

Detecting Vertical edges

 1
 0
 -1

 1
 0
 -1

 1
 0
 -1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Filter Weights

1	1	1
0	0	0
-1	-1	-1

Horizontal Filter

1	0	-1
2	0	-2
1	0	-1

Sobel Filter

3	0	-3
10	0	-10
3	0	-3

Schorr Filter

W_1	W_2	W_3
W_4	W_5	W_6
W ₇	W ₈	W_9

Convolutional Neural Networks automatically estimates the weights of the filter

More Intuition

Visualization of a curve detector filter

Interpretation

Convolution is just another way of computing W^TX

In CNN, input is image, kernel is convolution filter to be learned, response is the

feature map

filter

Padding

Padding is used to preserve the original dimensions of the input

Zeros are added to outside of the input

Number of zero layers depend upon the size of the kernel

0	0	0	0	0	0	0
0	1	1	1	0	0	0
0	0	1	1	1	0	0
0	0	0	1	1	1	0
0	0	1	1	1	0	0
0	0	1	1	0	0	0
0	0	0	0	0	0	0

2	2	3	1	1
1	4	3	4	1
2	2	4	3	3
1	2	3	4	1
1	2	3	1	1

5X5 (with padding)

5X5

Padding

nXn 6X6 to 8X8 Padding=1

(n-f+1)X(n-f+1) to (n+2p-f+1)X(n+2p-f+1)Valid to same

Stride=s Floor(
$$\frac{n+2p-f}{s} + 1$$
) XFloor($\frac{n+2p-f}{s} + 1$)

Stride

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

1	0	-1
1	0	-1
1	0	-1

3X3 Filter

Stride=s (3 Here) Floor($\frac{n+2p-f}{s}$ + 1) XFloor($\frac{n+2p-f}{s}$ + 1)

6/25/2018

6X6 Matrix

Channels

w^[1] 2 filters means two units here

Pooling

1	4	6	3
1	8	9	7
2	9	1	2
3	4	4	3

8	9
9	4

Max Pooling : One example of pooling layer

s=2 4X4 converted to 2X2

Function of Pooling is to progressively reduce the spatial size of the representation to reduce the amount of parameters and computation in the network.

Pooling

1	4	6	3
1	8	9	7
2	9	1	2
3	4	4	3

3.5	6.25
4.5	2.5

Average Pooling: Another example of pooling layer

f=2

s=2 4X4 converted to 2X2

Famous CNN Models

LeNet - 1990)
AlexNet - 2012	}
ZFNet - 2013	
GoogLeNet - 2014)
VGGNet - 2014)
ResNet - 2015	
Inception v3 - 2016	
MobileNet - 2017	