FEUILLE 5 : PRIMITIVES - EQUATIONS DIFFÉRENTIELLES

I EXERCICES TECHNIQUES

Exercice 1

Calculer les intégrales suivantes (où t désigne un réel et n un entier naturel) :

Exercice 2

Déterminer les solutions des équations différentielles suivantes sur un intervalle I à préciser :

a.
$$y' + 2y = x^2$$

b.
$$y' + y = x - e^x + \cos x$$

c.
$$(1 + e^x) y' + e^x y = 1 + e^x$$

d.
$$x(1 + \ln^2(x))y' + 2\ln(x)y = 1$$

e.
$$(x^2+1)y'+2xy+1=0$$

f.
$$(1 + \cos^2 x) y' - \sin(2x)y = \cos(x)$$

Exercice 3

Déterminer les solutions réelles des équations différentielles suivantes :

a.
$$y'' + y = 0$$

b.
$$y'' - 3y' + 2y = 0$$

c.
$$y'' + y' - 2y = e^x$$

d.
$$y'' + 2y' + 2y = \sin x$$

II EXERCICES SUR LES PRIMITIVES

Exercice 4

Pour $n \in \mathbb{N}$, on considère

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \mathrm{d}x$$

- **a.** Calculer I_0 et I_1 .
- **b.** Trouver une relation de récurrence entre I_n et I_{n-2} .
- **c.** En déduire I_{2n} et I_{2n+1} pour tout entier naturel n.

Exercice 5

a. Déterminer les réels a et b tels que

$$\frac{1}{x^2 - 1} = \frac{a}{x - 1} + \frac{b}{x + 1}$$

b. En déduire une primitive de f définie sur] -1,1[par

$$f(x) = \frac{1}{x^2 - 1}$$

c. Donner une primitive de g définie sur $\left] \frac{-\pi}{4}, \frac{\pi}{4} \right[$ par

$$g(x) = \frac{1}{\sin^2 x - \cos^2 x}$$

Exercice 6

a. A l'aide d'une intégration par parties, donner une primitive de la fonction f définie par

$$f(x) = \frac{x^2}{(1+x^2)^2}$$

b. En déduire une primitive de la fonction g définie par

$$g(x) = \frac{1}{(1+x^2)^2}$$

c. Retrouver le résultat précédent en effectuant le changement de variable $x = \tan u$.

III EXERCICES SUR LES EQUATIONS DIFFERENTIELLES

Exercice 7

Déterminer les solutions des équations différentielles suivantes sur un intervalle I à préciser :

a.
$$y' = 3y + (3x + 1)e^{2x}$$

b.
$$y' = 3y + \sin(3x)$$

c.
$$xy' - 2y = (x-1)(x+1)^3$$

$$\mathbf{d.} \quad y' + y \tan x = \cos^2 x$$

e.
$$y' - y \cos x = \sin(2x)$$

f.
$$y' - \frac{\sinh(x)}{1 + \cosh(x)}y = \sinh(x)$$

g.
$$(x+1)y'-2y=e^x(x+1)^3$$

h.
$$(1+x^2)y' + y = Arctan x$$

Exercice 8

Déterminer les solutions des équations différentielles suivantes :

a.
$$y'' + 5y' + 6y = x^2 + 1$$

b.
$$y'' - 5y' = (x+1)e^{-3x}$$
 avec $y(0) = 0$ et $y'(0) = 1$

c.
$$y'' + 6y' + 9y = (x+1)e^{-3x}$$
 avec $y(0) = 0$ et $y'(0) = 1$

$$\mathbf{d.} \ y'' + 4y' + 13y = e^{-2x}$$

e.
$$y'' + y = \sin x$$

$$\mathbf{f.} \quad y'' + iy = \sin x$$

g.
$$y'' + \omega^2 y = \cos(\omega_0 x)$$
 avec $y(0) = 1$ et $y'(0) = 0$, où ω et ω_0 sont des réels strictement positifs.

LES BONS RÉFLEXES

- ¥ Les tableaux des primitives usuelles doivent être PARFAITEMENT connus.
- A Quand on veut calculer une intégrale, on cherche d'abord une primitive de la fonction à intégrer, si on n'en trouve pas, on tente une intégration par parties, ou un changement de variable.
- *Les équations différentielles se résolvent TOUJOURS sur des intervalles.