Microeconomics

A. Chapter 2

1. Derive linear demand function

Points	Α	В	С	D	E
P _X	16	12	8	4	0
Q _X	0	20	40	60	80

Answer

Since, linear demand function $Qd_x=a-bP_X$

Based on given schedule

 $Qd_x=80$ at $P_X=0$

a=80

At any two consecutive[i.e. A and B and so on]

$$b = \frac{\Delta Q}{\Delta P}$$

$$=\frac{20}{-4}$$

$$Qd_x=80-5P_X$$

2. Derive linear supply function

Points	Α	В	С	D	E
P _X	0	8	16	24	32
Q_X	40	80	120	160	200

<u>Answer</u>

Since, linear supply function $Qd_x=a+bP_X$

Based on given schedule

$$Qd_x=40$$
 at $P_X=0$

At any two consecutive[i.e. A and B and so on]

$$b = \frac{\Delta Q}{\Delta P}$$

$$=\frac{40}{9}$$

$$Qd_x=40+5P_X$$

3. Find the equilibrium quantity and price in a market if Q_d =126-6p and Q_s =8p

→ From above

- 4. Suppose there are 200 identical consumers in the market for the commodity X, with demand function Q_d =380-10x and 100 identical producers of the commodity X, each with a supply function given by Q_s =40+4p
- a. Find the market demand and market supply function and determine the equilibrium price and equilibrium quantity in the market
- → Individual demand function Q_d=380-10x

Since there are 200 consumer

Market demand function Q_d=200(380-10x)

=76000-2000x

Individual supply function Q_s=40+4p

Since there are 100 producer

Market supply function $Q_s=100(40+4p)$

=4000+400p

76000-2000x=4000+400x

2400x=72000

x = 30

q=4000+400*30

=4000+12000

=16000

b. What happen if the government grants per unit cash subsidy to all the producers of commodity X

→ When government grants per unit cash subsidy to all the producers of commodity X, cost of production of all producer decrease. As a result, their supply functions increases due to more production. After increase in market supply functions, equilibrium price decrease but equilibrium quantity increase

5. Suppose the demand function Q_d =1000-20x and supply function Q_s =100+40p

a. Fill the table given below

 \rightarrow

Price	Quantity demand	Quantity supply
5	1000-20(5)=900	100+40(5)=300
10	1000-20(10)=800	100+40(10)=500
15	1000-20(15)=700	100+40(15)=700
20	1000-20(20)=600	100+40(20)=900
25	1000-20(25)=500	100+40(25)=1100

b. Find equilibrium price and quantity

 \rightarrow Qd=Qs

1000-20x=100+40x

60x=900

X=15

Q=100+40x

- c. Show graph
- 6. The individual demand function Q_d =24-4x and market supply function Q_s =40p. if there are 10 individual customers in the market for commodity X, find
- a. Market demand function
- → Individual demand function Q_d=24-4x

Since there are 10 consumer

Market demand function $Q_d=10(24-4x)$

$$=240-40x$$

- b. Market demand schedule and market supply schedule
- c. Derive market demand curve and market supply curve
- d. Obtain equilibrium price and quantity mathematically

$$\rightarrow$$
 Qd=Qs

$$40x = 240 - 40x$$

$$Q = 30*40$$

- 7. A market consist of three consumers A, B and C, whose individual demand equations are Q_{dA} =30-P, Q_{dB} =22.5-0.75p and Q_{dC} =37.5-1.25p and the industry supply equation is Q_s =40+3.5p
- a. Find market demand function and derive market demand curve
- \rightarrow Market demand function $Q_d = Q_{dA} + Q_{dB} + Q_{dc}$
- =30-P+22.5-0.75p+37.5-1.25p
- =90-3p
- b. Determine the equilibrium price and quantity mathematically
- \rightarrow Qd=Qs
- 90-3p=40+3.5p
- 6.5p=50
- P = 7.69
- Q=90-3*7.69
- =90-23.07
- =66.93
- c. Determine the amount that will be purchased by each individual

 \rightarrow

- $Q_{dA} = 30 7.69$
- =22.31
- Q_{dB}=22.5-0.75*7.69
- =22.5-5.7675

=16.7325

Q_{dC}=37.5-1.25*7.69

=37.5-9.6125

=27.8875

8. Compute cross elasticity

	Commodity	Before		After		
		Price	Quantity	Price	Quantity	
Case 1	Х	10	100	15	80	
	Υ	25	50	25	60	
Case 2	Х	20	200	30	160	
	Υ	40	150	40	80	

\rightarrow Case I

In term of percent

$$Ep = \frac{\frac{60-50}{50} *100}{\frac{15-10}{10} *100}$$

$$=\frac{10*2}{5*10}$$

$$=\frac{20}{50}$$

=0.4>0

Case II

In term of percent

$$Ep = \frac{\frac{80 - 100}{100} * 100}{\frac{30 - 20}{20} * 100}$$

$$=\frac{-20}{10*5}$$

$$=\frac{-20}{50}$$

- B. Chapter 4
- 9. Let the production function Q=20L+10L²-L³. Derive marginal product function. Compute profit maximizing units of labour and maximum output

$$\rightarrow$$
 MR=20+20L-3L²

$$0=20+20L-3L^2$$

$$L = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$=\frac{-20\pm\sqrt{20^2-4*(-3)*20}}{2*(-3)}$$

$$= \frac{-20 \pm \sqrt{640}}{-6}$$

$$=\frac{-20\pm 25.3}{-6}$$

+ve value

-ve value

$$L=-0.88$$

$$Q=20L+10L^2-L^3$$

- 10. Let the production function Q=100 \sqrt{LK} , r=50, w=40, P=2, C=1000
- a. Compute marginal productivities of two inputs

$$\rightarrow MP_K = \frac{dQ}{dK}$$

$$= \frac{d100\sqrt{LK}}{dK}$$

$$=100L^{1/2}*\frac{1}{2}*K^{1/2-1}$$

$$MP_L = \frac{dQ}{dL}$$

$$= \frac{d100\sqrt{LK}}{dL}$$

$$=100K^{1/2}*\frac{1}{2}*L^{1/2-1}$$

$$=50 K^{1/2}*L^{-1/2}$$

b. Derive expansion path

$$\rightarrow$$

$$\frac{\text{MPK}}{\text{MPL}} = \frac{w}{r}$$

$$\frac{50 \text{ L1/2*K-1/2}}{50 \text{ K1/2*L-1/2}} = \frac{50}{40}$$

$$\frac{L1/2*K-1/2}{K1/2*L-1/2} = \frac{5}{4}$$

$$\frac{L}{K} = \frac{5}{4}$$

$$L = \frac{5}{4} * K$$

c. Compute units of labour and capital that maximize output

 \rightarrow

rK+wL=C

50K+40L=1000

5K+4L=100

$$5K+4[\frac{5}{4}K]=100$$

10K=100

K=10units

$$L=\frac{5}{4}*10$$

=12.5units

d. Compute maximum output and profit

$$\rightarrow$$
 Q=100 \sqrt{LK}

$$=100\sqrt{12.5*10}$$

11. Let the production function Q=AL^{0.8}K^{0.5}, Q=AL^{0.6}K^{0.4}, Q=AL^{0.3}K^{0.5},

a. Compute factor intensity

$$\rightarrow \frac{0.8}{0.5} > 1$$
 labour intensive

$$\frac{0.6}{0.4}$$
>1 labour intensive

$$\frac{0.3}{0.5}$$
<1 capital intensive

b. Compute degree of return to scale

c. Compute MRTS_{KL} where L=20 and k=10

$$MRTS_{KL} = \frac{\beta}{\alpha} * \frac{L}{K}$$

$$MRTS_{KL} = \frac{0.5}{0.8} * \frac{20}{10}$$

$$=\frac{10}{8}$$

$$MRTS_{KL} = \frac{0.4}{0.6} * \frac{20}{10}$$

$$=\frac{8}{6}$$

$$=\frac{4}{3}$$

$$MRTS_{KL} = \frac{0.5}{0.3} * \frac{20}{10}$$

$$=\frac{10}{3}$$

C. Chapter 5

12. Let cost function C=128+169Q-Q²+Q³ find TFC, TVC, TC, AC, AFC, AVC and MC at output 64.5 units

$$\rightarrow$$
 At Q=0

$$=169*64.5-(64.5)^2+(64.5)^3$$

=275076.375

AFC=
$$\frac{128}{64.5}$$

$$AVC = \frac{TVC}{Q}$$

$$=\frac{169Q-Q2+Q3}{Q}$$

$$=169-Q+Q^2$$

$$MC = \frac{dTVC}{dQ}$$

$$=\frac{d(169Q-Q2+Q3)}{dQ}$$

At Q=64.5

 $=169-2*64.5+3(64.5)^2$

=169-129+12480.75

=12520.75

13. Compute TC, AC, AFC, AVC and MC at FC=100 in the given table

Output	0	1	2	3	4	5	6	7	8	9
TVC	0	10	18	24	32	50	80	124	180	200

 \rightarrow

Output	TVC	TFC	TC	AFC	AVC	AC	MC
0		100	100				
1	10	100	110	100	101	110	10
2	18	100	118	50	9	59	8
3	24	100	124	33.3	8	41.3	6
4	32	100	132	25	8	33	8
5	50	100	150	20	10	30	18
6	80	100	180	16.7	13.3	30	30
7	124	100	224	14.3	17.7	32	44
8	180	100	280	12.5	22.5	35	56
9	200	100	380	11.1	28.9	40	80

14. If AR=20 and MR=10 find ep

→ We know that

$$ep = \frac{AR}{AR - MR}$$

$$=\frac{20}{20-10}$$

$$=\frac{20}{10}$$

D. Chapter 6

1. If P=20-Q and C=Q²+8Q+2 find the price and total profit

→ We know that

$$=20Q-Q^2-Q^2-8Q-2$$

$$= -2Q^2 + 12Q - 2$$

For order condition

First derivative=0

Second order derivative of profit

Therefore profit function can be maximize

At Q=3

P=20-Q

=20-3

=17

Profit= $-2Q^2+12Q-2$

=-2*9+12*3-2

=-18+36-2

=16

TR=P*Q

=17*3

=51