Gestion de flux dans le réseau

TD n $^{\circ}$ 5

Modélisation mathématique

Q4

Sibylle Roux

Juliette Arazo Tanguy Thomas Nicolas Le Gallo

21 novembre 2017

Table des matières

$\mathbf{E}t$	ude mat	hématique	de la lo	i ten	te							
2.1	l Densit	é										
	2.1.1	Fonction										
	2.1.2	Représentat	ion grapl	hique								
2.2	2 Foncti	on de réparti	tion									
	2.2.1	Fonction										
	2.2.2	Représentat	ion grapl	hique								
2.3	3 Inverse											

- 1 Essaies randoms
- 1.1
- 2 Etude mathématique de la loi tente
- 2.1 Densité
- 2.1.1 Fonction

$$f(x) = \begin{cases} 1 - |x| & \text{si } -1 \le x \le 1\\ 0 & \text{sinon} \end{cases}$$

2.1.2 Représentation graphique

2.2 Fonction de répartition

2.2.1 Fonction

$$f(x) = \begin{cases} f(x) = 0 & \text{pour } x < -1\\ f(x) = 1 + x & \text{pour } -1 < x < 0\\ f(x) = 1 - x & \text{pour } 0 < x < 1\\ f(x) = 0 & \text{pour } x > 1 \end{cases}$$
 (1)

$$<=> F(x) = \begin{cases}
\int_{-\infty}^{x} 0 \, dx & \text{pour } x < -1 \\
\int_{-\infty}^{\infty} 0 \, dx + \int_{-1}^{x} 1 + x \, dx & \text{pour } -1 < x < 0 \\
\int_{-\infty}^{0} 1 + x \, dx + \int_{0}^{x} 1 - x \, dx & \text{pour } 0 < x < 1 \\
\int_{-\infty}^{0} 1 + x \, dx + \int_{0}^{1} 1 - x \, dx + \int_{1}^{x} 0 \, dx & \text{pour } x > 1
\end{cases}$$
(2)

$$<=> F(x) = \begin{cases}
0 & \text{pour } x < -1 \\
0 + \int_{-1}^{x} 1 + x \, dx & \text{pour } -1 < x < 0 \\
0 + \frac{1}{2} + \int_{0}^{x} 1 - x \, dx & \text{pour } 0 < x < 1 \\
0 + \frac{1}{2} + \frac{1}{2} + \int_{1}^{x} 0 \, dx & \text{pour } x > 1
\end{cases} \tag{3}$$

$$<=> F(x) = \begin{cases}
0 & \text{pour } x < -1 \\
\int_{-1}^{x} 1 + x \, dx & \text{pour } -1 < x < 0 \\
\frac{1}{2} + \int_{0}^{x} 1 - x \, dx & \text{pour } 0 < x < 1 \\
1 & \text{pour } x > 1
\end{cases} \tag{4}$$

$$<=> F(x) = \begin{cases} 0 & \text{pour } x < -1\\ \frac{1}{2} + x + \frac{x^2}{2} \\ \frac{1}{2} + x - \frac{x^2}{2} \\ 1 & \text{pour } x > 1 \end{cases}$$
 (5)

2.2.2 Représentation graphique

2.3 Inverse

Première partie

Conclusion

 \mathbf{A}

A.1

A.1.1