

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日 2003年 3月 6日
Date of Application:

出願番号 特願2003-059520
Application Number:

[ST. 10/C] : [JP2003-059520]

出願人 松下電器産業株式会社
Applicant(s):

2004年 1月 14日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

【書類名】 特許願
【整理番号】 2925040104
【あて先】 特許庁長官殿
【国際特許分類】 H01S
【発明者】
【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式会社内
【氏名】 瀧澤 俊幸
【特許出願人】
【識別番号】 000005821
【氏名又は名称】 松下電器産業株式会社
【代理人】
【識別番号】 100109210
【弁理士】
【氏名又は名称】 新居 広守
【電話番号】 06-4806-7530
【手数料の表示】
【予納台帳番号】 049515
【納付金額】 21,000円
【提出物件の目録】
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【包括委任状番号】 0213583
【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 p型半導体

【特許請求の範囲】

【請求項1】 半導体であって、

前記半導体を構成する元素の価電子数よりも少ない価電子数を有するアクセプタ元素と、

前記半導体を構成する元素と同一の価電子数を有し、かつ、当該元素よりも小さい電気陰性度を有する局在バンド形成元素とを含むことを特徴とするp型半導体。

【請求項2】 前記局在バンド形成元素の含有量は、前記アクセプタ元素の含有量よりも多い

ことを特徴とする請求項1記載のp型半導体。

【請求項3】 前記半導体において、

前記アクセプタ元素は、前記局在バンド形成元素が形成するエネルギー bandwidth の上端よりも低いエネルギー準位を形成することを特徴とする請求項1又は2記載のp型半導体。

【請求項4】 前記半導体において、

前記アクセプタ元素が形成するエネルギー準位と前記局在バンド形成元素が形成するエネルギー bandwidth の上端とのエネルギー差は、当該半導体の使用温度における熱エネルギーよりも小さいことを特徴とする請求項1又は2記載のp型半導体。

【請求項5】 前記半導体において、

前記アクセプタ元素と前記局在バンド形成元素とは、一様に分布していることを特徴とする請求項1～4のいずれか1項に記載のp型半導体。

【請求項6】 前記局在バンド形成元素の含有量は、3atom%以下であることを特徴とする請求項1～5のいずれか1項に記載のp型半導体。

【請求項7】 前記半導体は、化合物半導体である

ことを特徴とする請求項1～6のいずれか1項に記載のp型半導体。

【請求項 8】 前記化合物半導体は、窒化物半導体であることを特徴とする請求項 7 記載の p 型半導体。

【請求項 9】 前記窒化物半導体は、3 族元素のうちの少なくともアルミニウムと 5 族元素のうちの少なくとも窒素とを含む化合物半導体であることを特徴とする請求項 8 記載の p 型半導体。

【請求項 10】 前記窒化物半導体は、3 族元素のうちの少なくともホウ素と 5 族元素のうちの少なくとも窒素とを含む化合物半導体であることを特徴とする請求項 8 記載の p 型半導体。

【請求項 11】 前記アクセプタ元素は、炭素、ケイ素、ゲルマニウム、スズ、ベリリウム、マグネシウム、亜鉛、およびカドミウムのうちの少なくとも 1 つである

ことを特徴とする請求項 8 ~ 10 のいずれか 1 項に記載の p 型半導体。

【請求項 12】 前記局在バンド形成元素は、リン、砒素、およびアンチモンのうちの少なくとも 1 つである

ことを特徴とする請求項 8 ~ 11 のいずれか 1 項に記載の p 型半導体。

【請求項 13】 前記化合物半導体は、酸化物半導体であることを特徴とする請求項 7 記載の p 型半導体。

【請求項 14】 前記酸化物半導体は、2 族元素のうちの少なくとも亜鉛と 6 族元素のうちの少なくとも酸素とを含む化合物半導体であることを特徴とする請求項 13 記載の p 型半導体。

【請求項 15】 前記酸化物半導体は、2 族元素のうちの少なくともベリリウムと 6 族元素のうちの少なくとも酸素とを含む化合物半導体であることを特徴とする請求項 13 記載の p 型半導体。

【請求項 16】 前記アクセプタ元素は、窒素、リン、砒素、およびアンチモンのうちの少なくとも 1 つであることを特徴とする請求項 13 ~ 15 のいずれか 1 項に記載の p 型半導体。

【請求項 17】 前記局在バンド形成元素は、硫黄、セレン、およびテルルのうちの少なくとも 1 つであることを特徴とする請求項 13 ~ 16 のいずれか 1 項に記載の p 型半導体。

【請求項 18】 前記半導体において、

前記アクセプタ元素を含む部分と前記局在バンド形成元素を含む部分とが空間的に分離している

ことを特徴とする請求項 1 記載の p 型半導体。

【請求項 19】 前記アクセプタ元素を含む部分と前記局在バンド形成元素を含む部分とは異なる半導体である

ことを特徴とする請求項 18 記載の p 型半導体。

【請求項 20】 前記異なる半導体とは、

異なる結晶構造の半導体である

ことを特徴とする請求項 19 記載の p 型半導体。

【請求項 21】 3 族元素の欠落に起因する結晶欠陥を有する窒化物半導体であって、

前記窒化物半導体は、リン、砒素、およびアンチモンのうちの少なくとも 1 つを含む

ことを特徴とする p 型半導体。

【請求項 22】 請求項 1 ~ 21 のいずれか 1 項に記載の p 型半導体を含む半導体積層構造を有する

ことを特徴とする半導体素子。

【請求項 23】 請求項 22 記載の半導体素子において、

前記 p 型半導体は、電極に接合されている

ことを特徴とする半導体素子。

【請求項 24】 請求項 22 又は 23 記載の半導体素子において、

前記 p 型半導体に接合する半導体の価電子帯の上端は、前記半導体において前記局在バンド形成元素が形成するエネルギー-band の下端よりも高い

ことを特徴とする半導体素子。

【請求項 25】 請求項 22 又は 23 記載の半導体素子において、

前記 p 型半導体に接合する半導体の価電子帯の上端と前記半導体において前記局在バンド形成元素が形成するエネルギー-band の下端とのエネルギー差は、当該半導体素子の使用温度における熱エネルギーよりも小さい

ことを特徴とする半導体素子。

【請求項 26】 請求項 22～25のいずれか 1 項に記載の半導体素子において、

当該半導体素子は、半導体発光素子である
ことを特徴とする半導体素子。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、低抵抗な p 型半導体に関する。

【0002】

【従来の技術】

近年、窒化ガリウムをベースにした窒化物半導体は、フルカラーディスプレイ、信号灯等の光源に用いられる青色系（紫外から黄色の波長域）の発光ダイオード、光記録メディアの書き込み／読み取り装置、あるいはレーザ顕微鏡等に用いられる青色レーザに実用され、更に、高密度記録が可能なメディア、あるいは水銀を一切必要としない白色光源への応用も期待されている。また、酸化亜鉛をベースにした酸化物半導体は、室温でのバンドギャップが 3.37 eV あり、還元性ガスに対する耐性、高温時における安定性、および優れた透明性を有することから、実用化には至っていないものの、前述の高密度記録が可能なメディアのほか、透明導電膜等への応用が期待されている。

【0003】

これらの技術を実現かつ普及させるには、いくつかの問題がある。特に問題であるのが、低抵抗な p 型半導体の実現である。p 型半導体の低抵抗化には、価電子帯に電気伝導を担う正孔キャリアを多数作ることが必要であり、価電子帯に正孔キャリアを作るには、アクセプタ不純物をドープするのが一般的である。しかしながら、これらの技術を実現するために利用される窒化物半導体では、窒化物半導体を構成する窒素の電気陰性度が高いために、アクセプタ準位が禁制帯の深い位置に形成され、アクセプタ不純物をドープしても正孔キャリア濃度の高い p 型窒化物半導体が得られない。例えば、マグネシウムをアクセプタ不純

物としてドープした窒化ガリウムにおいて、活性化エネルギーは、約 200 m e V あり、最も活性化エネルギーが小さいとされるベリリウムをアクセプタ不純物としてドープした場合においても、その活性化エネルギーは、約 85 m e V あり、約 26 m e V という室温における熱エネルギーと比較して非常に大きく、正孔キャリア濃度の高い p 型窒化ガリウム半導体が得られない。また、酸化物半導体でも同様に、酸化物半導体を構成する酸素の電気陰性度が高いために、アクセプタ準位が禁制帯の深い位置に形成され、アクセプタ不純物をドープしても正孔キャリア濃度の高い p 型酸化物半導体が得られないのである。例えば、窒素をアクセプタ不純物としてドープした酸化亜鉛において、活性化エネルギーは、約 200 m e V あり、約 26 m e V という室温における熱エネルギーと比較して非常に大きく、正孔キャリア濃度の高い p 型酸化亜鉛半導体が得られない。

【0004】

このような問題を解決するための先行事例として、「p 型半導体結晶の製造方法および発光デバイス」（特許文献 1 参照）、「酸化亜鉛透明導電膜」（特許文献 2 参照）、「p 型 3 族窒化物半導体およびその作製方法および半導体装置」（特許文献 3 参照）、あるいは「p 型 ZnO 系酸化物半導体層の成長方法およびそれを用いた半導体発光素子の製法」（特許文献 4 参照）がある。これらは、p 型半導体の低抵抗化方法に関するもので、アクセプタ不純物とドナー不純物とを同時にドープし、母体材料中にアクセプタ不純物とドナー不純物とからなる複合体を形成させることで、アクセプタ準位を浅くし、p 型半導体の低抵抗化をおこなっている。

【0005】

【特許文献 1】

特開平 14-289918 号公報

【0006】

【特許文献 2】

特開平 14-50229 号公報

【0007】

【特許文献 3】

特開平14-353144号公報

【0008】

【特許文献4】

特開平14-93821号公報

【0009】

【発明が解決しようとする課題】

しかしながら、従来のp型半導体の低抵抗化方法では、未だ十分に低抵抗なp型半導体が得られていないという問題がある。例えば、最近の大坂大学の吉田教授らの実験報告にあるように、マグネシウムをアクセプタ不純物とし、酸素をドナー不純物として2対1の割合でドープされた窒化ガリウムにおいて、活性化エネルギーは、約50meVあり、26meVという室温における熱エネルギーと比較して非常に大きく、十分に低抵抗なp型窒化ガリウム半導体が得ることができない。

【0010】

そこで、本発明は、かかる問題点に鑑み、低抵抗なp型半導体を実現することを目的とする。

【0011】

【課題を解決するための手段】

上記目的を達成するために、本発明に関わるp型半導体は、半導体であって、前記半導体を構成する元素の価電子数よりも少ない価電子数を有するアクセプタ元素と、前記半導体を構成する元素と同一の価電子数を有し、かつ、当該元素よりも小さい電気陰性度を有する局在バンド形成元素とを含むことを特徴とする。

【0012】

これによって、アクセプタ準位の近傍に電子で満たされたエネルギー・バンドが形成されるので、多くの正孔を活性化することができ、p型半導体の低抵抗化を図れるという効果が發揮される。

【0013】

また、前記局在バンド形成元素の含有量は、前記アクセプタ元素の含有量よりも多くてもよい。

これによって、アクセプタ準位の近傍に形成されたエネルギー帯の幅を広くすることができ、低抵抗に電気伝導をおこなうことができるという効果が発揮される。

【0014】

また、前記半導体において、アクセプタ元素は、局在バンド形成元素が形成するエネルギー帯の上端よりも低いエネルギー準位を形成してもよい。

これによって、正孔を全て活性化することができ、p型半導体の更なる低抵抗化を図れるという効果が発揮される。

【0015】

また、半導体において、前記アクセプタ元素と前記局在バンド形成元素とは、一様に分布してもよい。

これによって、アクセプタ準位の近傍に形成されたエネルギー帯が半導体において等方的に形成されるため、効率の良い電気伝導が可能となるという効果が発揮される。

【0016】

また、前記局在バンド形成元素の含有量は、2 atom%以下であってもよい。

これによって、アクセプタ準位の近傍に形成されたエネルギー帯の幅を適度な広さにすることができるので、局在バンド形成元素を添加していない半導体のバンドギャップを維持しつつ、低抵抗に電気伝導をおこなうができるという効果が発揮される。

【0017】

また、前記半導体は、窒化物半導体であってもよい。

これによって、窒素の高い電気陰性度のため深いアクセプタ準位を有する窒化物半導体において、多くの正孔を活性化するので、p型窒化物半導体の低抵抗化をおこなうことできるという効果が発揮される。

【0018】

また、前記半導体は、酸化物半導体であってもよい。

これによって、酸素の高い電気陰性度のため深いアクセプタ準位を有する酸化

物半導体において、多くの正孔を活性化できるので、p型酸化物半導体の低抵抗化をおこなうことができるという効果が発揮される。

【0019】

また、前記半導体において、前記アクセプタ元素を含む部分と前記局在バンド形成元素を含む部分とが空間的に分離していてもよい。

これによって、正孔を生成する部分と正孔を伝える部分が分離し、正孔の散乱が抑制されるので、p型半導体の更なる低抵抗化を図れるという効果が発揮される。

【0020】

また、前記アクセプタ元素を含む部分と前記局在バンド形成元素を含む部分とは異なる半導体であってもよい。

これによって、2つの半導体を組み合わせたものがp型半導体となり、それら2つの半導体のそれぞれに異なる半導体を適用できることから、p型半導体の設計自由度を飛躍的に高めることができるという効果が発揮される。

【0021】

また、3族元素の欠落に起因する結晶欠陥を有する窒化物半導体であって、前記窒化物半導体は、リン、砒素、およびアンチモンのうちの少なくとも1つを含んでもよい。

【0022】

これによって、アクセプタ元素を添加する必要がないので、容易に低抵抗なp型半導体を実現できるという効果が発揮される。

また、本発明に係る半導体素子は、前記p型半導体を含む半導体積層構造を有してもよい。

【0023】

これによって、低抵抗なp型半導体を半導体素子に応用できるので、消費電力の低い半導体素子を実現できるという効果が発揮される。

また、前記半導体素子において、前記p型半導体は、電極に接合されていてよい。

【0024】

これによって、キャリア濃度の高い p 型半導体に電極が接合されるので、電極との接触抵抗を低減できるという効果が発揮される。

また、前記半導体素子において、当該半導体素子は、半導体発光素子であってもよい。

【0025】

これによって、低抵抗な p 型半導体を半導体発光素子に応用できるので、発光効率の高い半導体発光素子を実現できるという効果が発揮される。

【0026】

【発明の実施の形態】

以下、本発明の実施の形態における p 型半導体について、図面を参照しながら説明する。

【0027】

(第 1 の実施の形態)

図 1 は、本実施の形態における p 型半導体の構成を概念的に示す図である。

【0028】

本実施の形態の p 型半導体は、低抵抗な p 型半導体を実現することを目的とするものであって、母体材料 100 と、母体材料 100 に添加されたアクセプタ元素 110 と、母体材料 100 に添加された局在バンド形成元素 120 とから構成される。

【0029】

ここで、母体材料 100 は、単一元素半導体、あるいは化合物半導体であり、例えば、シリコン半導体、ゲルマニウム半導体、およびダイヤモンド半導体に代表される単一元素半導体、または、窒化物半導体、および酸化物半導体に代表される化合物半導体である。なお、窒化物半導体とは、3 族元素のうちの少なくとも 1 つと、5 族元素のうちの少なくとも窒素とを含む化合物半導体のことをいい、酸化物半導体とは、2 族元素のうちの少なくとも 1 つと、6 族元素のうちの少なくとも酸素とを含む化合物半導体のことをいう。

【0030】

また、アクセプタ元素 110 は、母体材料 100 を構成する元素よりも少ない

価電子数を有する元素であり、例えば、母体材料100が窒化物半導体である場合、炭素、ケイ素、ゲルマニウム、スズ、ベリリウム、マグネシウム、亜鉛、およびカドミニウムのうちの少なくとも1つであり、母体材料100が酸化物半導体である場合、窒素、リン、砒素、およびアンチモンのうちの少なくとも1つである。

【0031】

そして、局在バンド形成元素120は、母体材料100を構成する元素と同じ価電子数を有し、かつ、その元素よりも小さな電気陰性度を有する元素であり、例えば、母体材料100が窒化物半導体である場合、リン、砒素、およびアンチモンのうちの少なくとも1つであり、母体材料100が酸化物半導体である場合、硫黄、セレン、およびテルルのうちの少なくとも1つである。

【0032】

このような構成を有するp型半導体は、サファイア、ケイ素、炭化ケイ素、砒化ガリウム、ホウ化ジルコニアム、マグネシウムアルミニウム複合酸化物、リチウムガリウム複合酸化物、および窒化ガリウム等の基板を用意し、適宜な炉内において有機金属化学気相蒸着法（以下MOCVD法）、分子腺エピタキシャル成長法（以下MBE法）、およびハイドライド気相成長法等により、基板上でエピタキシャル成長させることにより作製される。

【0033】

図2は、本発明の実施の形態におけるp型半導体のエネルギー構造を示す図である。図2の縦軸はエネルギーを表し、横軸は状態密度を表している。

図2において、禁制帯220の価電子帯200寄りにアクセプタ準位230が形成され、そのアクセプタ準位230の近傍に局在バンド240が形成されている。ここで、アクセプタ準位230は、母体材料100にアクセプタ元素110を添加することにより形成されるものである。また、局在バンド240は、電子で満たされ、母体材料100に局在バンド形成元素120を添加することにより形成されるものである。アクセプタ準位230の近傍に局在バンド240が形成されることから、アクセプタ元素110は局在バンド240から電子を受け取り、局在バンド240の中に正孔を残す。以上のような局在バンド240が形成さ

れるメカニズムを本発明者は次のように推測した。すなわち、母体材料100を構成する元素よりも小さな電気陰性度を有する局在バンド形成元素120を母体材料100に添加することにより、アクセプタ元素110は局在バンド形成元素120から電子を容易に捕獲することができ、結果的に、電子で満たされた局在バンド240がアクセプタ準位230の近傍に形成されるのである。

【0034】

ここで、アクセプタ準位230が局在バンド240の上端よりも高い場合、アクセプタ元素110は、熱エネルギーに依らなければ、局在バンド240から電子を受け取ることができない。よって、アクセプタ準位230が局在バンド240の上端よりも低くなるようにアクセプタ元素110と局在バンド形成元素120とを選択する。

【0035】

また、局在バンド形成元素120の含有量がアクセプタ元素110の含有量よりも少ない場合、局在バンド240の幅は非常に狭くなり、局在バンド240で電気伝導をおこなうことが困難になる。よって、局在バンド形成元素120の含有量がアクセプタ元素110の含有量よりも多くなるように、局在バンド形成元素120とアクセプタ元素110とを添加する。

【0036】

そして、局在バンド形成元素120の濃度が高い場合、禁制帯220の幅が狭くなり、母体材料100の特性が薄れてしまう。よって、局在バンド形成元素120の含有量は、2 atom%以下に設定するのが好ましい。

【0037】

そしてまた、アクセプタ元素110と局在バンド形成元素120とが母体材料100の偏った空間に分布している場合、局在バンド240は空間的に狭い部分やエネルギー的に深い部分に形成され、局在バンド240での電気伝導の妨げとなる。よって、母体材料100において、一様に分布するようにアクセプタ元素110と局在バンド形成元素120とを添加する。

【0038】

以上のように本実施の形態によれば、アクセプタ準位230は局在バンド24

0の上端よりも低く形成される。よって、本実施の形態のp型半導体は、アクセプタ準位230の正孔を全て活性化し、高い正孔キャリア濃度を持つp型半導体を実現するので、低抵抗なp型半導体を実現することができる。

【0039】

また、本実施の形態によれば、アクセプタ準位230の正孔を全て活性化するため、本実施の形態のp型半導体は、非常に高い正孔キャリア濃度を持つ。よって、金属電極が接合されたp型半導体において、本実施の形態のp型半導体は、ショットキー障壁に起因する接触抵抗の増大を抑制することができる。また、金属との接合部分において、局在バンド形成元素120が高濃度になるように局在バンド形成元素120を添加し、金属との接合部分における局在バンド240のバンド幅を広げることにより、本実施の形態のp型半導体は、更に接触抵抗の増大を抑制することもできる。

【0040】

また、本実施の形態によれば、正孔は、局在バンド240を伝わって移動する。よって、半導体と接合されたp型半導体において、局在バンド240の下端がその半導体の価電子帯の上端よりも低いとき、又は、局在バンド240の下端とその半導体の価電子帯の上端とのエネルギー差がp型半導体を使用する温度における熱エネルギーよりも小さいとき、本実施の形態のp型半導体は、接合する半導体に低抵抗で電流を流すことができる。

【0041】

なお、本実施の形態において、アクセプタ準位230を形成するためにアクセプタ元素110を添加した。しかし、結晶欠陥を有する半導体を母体材料100として用いることにより、本実施の形態のp型半導体は、アクセプタ元素110を含まなくてもよい。ここで、結晶欠陥を有する半導体は、例えば、3族元素の欠落に起因する結晶欠陥を有する3族窒化物半導体、および2族元素の欠落に起因する結晶欠陥を有する2族酸化物半導体である。

【0042】

また、本実施の形態において、アクセプタ準位230が局在バンド240の上端よりも低くなるようにアクセプタ元素110と局在バンド形成元素120とを

選択した。しかし、アクセプタ準位 230 が局座バンド 240 の上端よりも高く、かつ、アクセプタ準位 230 と局在バンド 240 の上端とのエネルギー差が p 型半導体を使用する温度における熱エネルギーよりも小さくなるようにアクセプタ元素 110 と局在バンド形成元素 120 とを選択してもよい。

【0043】

(実施例 1)

次に、本実施の形態の p 型半導体の具体例を、実施例によって示す。

本実施例における p 型窒化ガリウム半導体は、ガリウムの原料ガスとしてトリメチルガリウム（以下 TMG）、窒素の原料ガスとしてアンモニア、マグネシウムの原料ガスとしてビスシクロペンタジエニルマグネシウム、リンの原料ガスとしてホスフィンを用い、MOCVD 法により、サファイア基板上にエピタキシャル成長させることにより作製される。ここで、リンの含有量は、例えば、約 2 atom% に設定される。なお、本実施例では、p 型窒化ガリウム半導体を作製する方法として MOCVD 法を例示した。しかし、金属ガリウムと、金属マグネシウムと、リン化インジウムと、プラズマによる窒素源とを用いることにより、p 型窒化ガリウム半導体は MBE 法により作製されてもよい。

【0044】

図 3 は、以上 の方法により作製された本実施例の p 型窒化ガリウム半導体の横断面構造を示す図である。

図 3において、本実施例の p 型窒化ガリウム半導体は、サファイア基板 300 上に形成されている。ここで、p 型窒化ガリウム半導体は、窒化ガリウム 310 と、窒化ガリウム 310 に添加されたマグネシウム 320 と、窒化ガリウム 310 に添加されたリン 330 とからなる。

【0045】

図 4 は、本実施例の p 型窒化ガリウム半導体の結晶構造モデルを示す図である。

図 4において、窒化ガリウム 310 の結晶構造の窒素のサイトにリン 330 が入り、ガリウムのサイトにマグネシウム 320 が入っている。ここで、窒化ガリウム 310 の結晶構造はウルツ鉱構造である。なお、本実施例では、窒化ガリウ

ム 310 の結晶構造は岩塩構造であってもよい。

【0046】

図5は、本実施例のp型窒化ガリウム半導体のバンド構造を示す図である。

図5において、価電子帯の上端より120meV上にアクセプタ準位が形成され、価電子帯の上端より240meV上に局在バンドが形成されている。ここで、アクセプタ準位は、窒化ガリウム310にマグネシウム320を添加することにより形成されるものであり、局在バンドは、窒化ガリウム310にリン330を添加することにより形成されるものである。局在バンドの下端は、アクセプタ準位より120meV上有ることから、マグネシウム320は局在バンドから電子を受け取り、局在バンドの中に正孔を残す。以上のような局在バンドが形成されるメカニズムを本発明者は次のように推測した。p型窒化ガリウム半導体にリン330を添加しない場合、p型窒化ガリウム半導体の価電子帯の電子は、大きな電気陰性度を有する窒素に局在する。しかし、リン330をp型窒化ガリウム半導体に添加することにより、図4に示したように窒素よりも小さな電気陰性度を有するリン330が窒素のサイトに置換され、結果的に、図5のバンド構造において、電子で満たされた局在バンドがアクセプタ準位の上に形成されるのである。

【0047】

本実施例のp型窒化ガリウム半導体によれば、窒化ガリウム310に添加されたリン330が形成する局在バンドの下端は窒化ガリウム310に添加されたマグネシウム320が形成するアクセプタ準位の上にあり、アクセプタ準位の正孔を全て活性化することができるので、低抵抗なp型窒化ガリウム半導体を実現することができる。

【0048】

なお、本実施例において、p型窒化ガリウム半導体を例示した。しかし、酸化亜鉛にアクセプタ元素110として窒素を添加し、局在バンド形成元素120として硫黄を添加することにより、低抵抗なp型酸化亜鉛半導体を実現することもできる。

【0049】

(第2の実施の形態)

上記第1の実施の形態に関わるp型半導体の母体材料100において、アクセプタ元素110と局在バンド形成元素120とが一様に添加された。しかし、母体材料100においてアクセプタ元素110を含む部分と局在バンド形成元素120を含む部分とが空間的に分離されても空間的に分離していないときと同様の効果が得られ、更にこの場合、正孔が伝わる部分と正孔を生成する部分とを空間的に分離し、正孔の散乱を抑制することができるので、更に低抵抗なp型半導体を実現することができる。そこで、第2の実施の形態に関わるp型半導体において、アクセプタ元素110を含む母体材料と、局在バンド形成元素120を含む母体材料とを空間的に分離した。以下、第1の実施の形態と異なる点を中心に説明する。

【0050】

図6は、本実施の形態におけるp型半導体の構成を概念的に示す図である。

本実施の形態のp型半導体は、アクセプタ元素110と、局在バンド形成元素120と、第1の母体材料600と、第2の母体材料610とから構成される。なお、第1の実施の形態と同一の元素には同一の符号を付し、その説明を省略する。

【0051】

ここで、第1の母体材料600は、第1の実施の形態の母体材料100と同一の半導体であり、アクセプタ元素110が添加され、局在バンド形成元素120が添加されないという点で第1の実施の形態の母体材料100と異なる。

【0052】

また、第2の母体材料610は、第1の実施の形態の母体材料100と同一の半導体であり、局在バンド形成元素120が添加され、アクセプタ元素110が添加されないという点で第1の実施の形態の母体材料100と異なる。

【0053】

そして、第1の母体材料600と第2の母体材料610とは、同一の半導体である。なお、第1の母体材料600と第2の母体材料610とは、構成元素、組成、および結晶構造が異なる半導体であってもよい。

【0054】

図7は、本実施の形態におけるp型半導体の形態図である。

図7（a）に示すように本実施の形態のp型半導体は、アクセプタ元素110が添加された第1の母体材料600から成るアクセプタ層700aと、局在バンド形成元素120が添加された第2の母体材料610から成る局在バンド層710aとから構成される。なお、図7（b）に示すように本実施の形態のp型半導体は、アクセプタ元素110が添加された第1の母体材料600から成る棒状のアクセプタ領域700bと、その棒状の部分を覆う形状をし、局在バンド形成元素120が添加された第2の母体材料610から成る局在バンド領域710bとから構成されてもよい。

【0055】

このような構成を有する本実施の形態のp型半導体は、第1の実施の形態と同様の方法により製造される。

図8は、本実施の形態におけるp型半導体のエネルギー構成を示す図である。

図8の縦軸はエネルギーを表し、横軸は状態密度を表している。

【0056】

図8（a）は、アクセプタ層700aのエネルギー構成を示し、図8（b）は、局在バンド層710aのエネルギー構成を示している。

図8（a）において、アクセプタ準位830は、禁制帯820の価電子帯800寄りに形成されている。ここで、アクセプタ準位830は、第1の母体材料600にアクセプタ元素110を添加することにより形成される。図8（b）において、局在バンド870は、禁制帯860のアクセプタ準位830の近傍に形成されている。ここで、局在バンド870は、電子で満たされており、第2の母体材料610に局在バンド形成元素120を添加することにより形成される。アクセプタ層700aと局在バンド層710aとは接合しているので、アクセプタ元素110は、局在バンド870から電子を受け取り、局在バンド870のなかに正孔を残す。

【0057】

ここで、アクセプタ元素110と局在バンド形成元素120とが空間的に離れ

ている場合、局在バンド870で電気伝導をおこなうことが困難になる。よって、アクセプタ層700aと局在バンド層710aとの境界において、アクセプタ元素110が高濃度になるように、又は、アクセプタ元素110と局在バンド形成元素120とが混合するように、アクセプタ元素110と局在バンド形成元素120とを添加するのが好ましい。

【0058】

以上のように本実施の形態によれば、アクセプタ元素110を含む第1の母体材料600と、局在バンド形成元素120を含む第2の母体材料610とは空間的に分離している。よって、局在バンド形成元素120を含む第2の母体材料610にはアクセプタ元素110が含まれず、アクセプタイオンによる正孔の散乱を抑制できるので、本実施の形態のp型半導体は、更に低抵抗なp型半導体を実現することができる。

【0059】

また、本実施の形態によれば、第1の母体材料600、第2の母体材料610のそれぞれに構成元素、組成、および結晶構造が異なる半導体を適用できるので、本実施の形態のp型半導体は、p型半導体の設計自由度を飛躍的に高めることができる。

【0060】

(実施例2)

次に、本実施の形態のp型半導体の具体例を実施例によって示す。

本実施例のp型窒化ガリウム半導体は、ガリウムの原料ガスとしてTMG、窒素の原料ガスとしてアンモニア、マグネシウムの原料ガスとしてビスシクロペニタジニエルマグネシウム、リンの原料ガスとしてホスフィンガスを用い、MOCVD法により、サファイア基板上にエピタキシャル成長させることにより作製される。

【0061】

図9は、以上 の方法により作製された本実施例のp型窒化ガリウム半導体の横断面構造を示す図である。

図9において、本実施例のp型窒化ガリウム半導体は、サファイア基板900

上に形成されている。ここで、本実施例の p 型窒化ガリウム半導体は、マグネシウム 920 が添加された窒化ガリウム 910 から成る第 1 の窒化ガリウム層 930 と、リン 940 が添加された窒化ガリウム 910 から成る第 2 の窒化ガリウム層 950 とからなる。

【0062】

図 10 は、本実施例の p 型窒化ガリウム半導体のバンド構造を示す図である。

図 10において、第 1 の窒化ガリウム層 930 の価電子帯の上端より 120 m eV 上にアクセプタ準位が形成され、第 2 の窒化ガリウム層 950 の価電子帯の上端より 240 m eV 上に局在バンドが形成される。ここで、アクセプタ準位は、窒化ガリウム 910 にマグネシウム 920 を添加することにより形成されるものであり、局在バンドは、窒化ガリウム 910 にリン 940 を添加することにより形成されるものである。第 1 の窒化ガリウム層 930 と第 2 の窒化ガリウム層 950 との界面において、局在バンドの下端は、アクセプタ準位より 120 m eV 上にあることから、マグネシウム 920 は局在バンドから電子を受け取り、局在バンドの中に正孔を残す。

【0063】

本実施例の p 型窒化ガリウム半導体によれば、窒化ガリウム 910 に添加されたマグネシウム 920 は第 1 の窒化ガリウム層 930 の禁制帯にアクセプタ準位を形成し、窒化ガリウム 910 に添加されたリン 940 は第 2 の窒化ガリウム層 950 の禁制帯に局在バンドを形成する。よって、局在バンドを伝わる正孔は、マグネシウムイオンによる散乱を受けないので、本実施例の p 型窒化ガリウム半導体は、更に低抵抗な p 型窒化ガリウム半導体を実現する。

【0064】

なお、本実施例において、窒化ガリウム 910 という 1 種類の半導体を母体材料とした p 型半導体を例示した。しかし、サファイア基板上にリンが添加された窒化アルミニウムからなる層を作製し、その層の上にマグネシウムが添加された窒化ガリウムからなる層を作製することにより、異なる 2 種類の半導体を母体材料とした低抵抗な p 型半導体を実現することもできる。

【0065】

【発明の効果】

以上の説明から明らかなように、本発明に係る p 型半導体によれば、アクセプタ準位の近傍に局在バンドを形成し、アクセプタ準位の正孔を全て活性化するので、低抵抗な p 型半導体を実現できるという効果が奏される。また、本発明に係る p 型半導体によれば、 p 型半導体を含む半導体積層構造を有する半導体素子において、 p 型半導体は低抵抗であることから、半導体素子の動作電圧を減らし、半導体素子の消費電力を減らすことができるという効果が奏される。また、本発明に係る p 型半導体によれば、電極が接合された p 型半導体を含む半導体積層構造を有する半導体素子において、 p 型半導体は高い正孔キャリア濃度を有することから、 p 側電極との接触抵抗を低減し、半導体素子の寿命を長くすることができるという効果が奏される。

【0066】

よって、本発明により、低抵抗な p 型半導体を提供することが可能となり、実用化が期待される高密度記録が可能なメディア、水銀を一切必要としない白色光源等を実現することができ、実用的価値は極めて高い。

【図面の簡単な説明】**【図 1】**

本発明の第 1 の実施の形態における p 型半導体の構成を概念的に示す図である。

【図 2】

同 p 型半導体のエネルギー構造を示す図である。

【図 3】

本発明の実施例 1 に係る p 型窒化ガリウム半導体の横断面構造を示す図である。

【図 4】

同 p 型窒化ガリウム半導体の結晶構造モデルを示す図である。

【図 5】

同 p 型窒化ガリウム半導体のバンド構造を示す図である。

【図 6】

本発明の第2の実施の形態におけるp型半導体の構成を概念的に示す図である。

【図7】

同p型半導体の形態図である。

【図8】

同p型半導体のエネルギー構造を示す図である。

【図9】

本発明の実施例2に係るp型窒化ガリウム半導体の横断面構造を示す図である。

【図10】

同p型窒化ガリウム半導体のバンド構造を示す図である。

【符号の説明】

- | | |
|------|-----------|
| 100 | 母体材料 |
| 110 | アクセプタ元素 |
| 120 | 局在バンド形成元素 |
| 200 | 価電子帯 |
| 210 | 伝導帯 |
| 220 | 禁制帯 |
| 230 | アクセプタ準位 |
| 240 | 局在バンド |
| 300 | サファイア基板 |
| 310 | 窒化ガリウム |
| 320 | マグネシウム |
| 330 | リン |
| 600 | 第1の母体材料 |
| 610 | 第2の母体材料 |
| 700a | アクセプタ層 |
| 710a | 局在バンド層 |
| 700b | アクセプタ領域 |

710b 局在バンド領域
800 僮電子帯
810 伝導帯
820 禁制帯
830 アクセプタ準位
840 僮電子帯
850 伝導帯
860 禁制帯
870 局在バンド
900 サファイア基板
910 壱化ガリウム
920 マグネシウム
930 第1の壱化ガリウム層
940 リン
950 第2の壱化ガリウム層

【書類名】

図面

【図 1】

【図2】

【図3】

【図4】

- (○) ガリウム
- (○) 窒素
- (●) リン
- (●) マグネシウム

【図 5】

【図 6】

【図 7】

(a)

(b)

【図 8】

【図9】

【図10】

【書類名】 要約書

【要約】

【課題】 低抵抗な p 型半導体を実現する。

【解決手段】 半導体である母体材料 100 と、母体材料 100 に添加され、母体材料 100 を構成する元素の価電子数よりも少ない価電子数を有し、アクセプタ準位を形成するアクセプタ元素 110 と、母体材料 100 に添加され、母体材料 100 を構成する元素と同一の価電子数を有し、かつ、母体材料 100 を構成する元素よりも小さい電気陰性度を有し、アクセプタ準位の正孔を活性化する局在バンドを形成する局在バンド形成元素 120 とを含む。

【選択図】 図 1

認定・付加情報

特許出願の番号 特願 2003-059520
受付番号 50300362885
書類名 特許願
担当官 第二担当上席 0091
作成日 平成15年 3月17日

<認定情報・付加情報>

【提出日】 平成15年 3月 6日

次頁無

出証特 2003-3111519

特願 2003-059520

出願人履歴情報

識別番号 [000005821]

1. 変更年月日 1990年 8月28日

[変更理由] 新規登録

住所 大阪府門真市大字門真1006番地
氏名 松下電器産業株式会社