High-Level Tensor Operation	Micro-Op Semantics	CISC Instruction Semantics
R = LOAD(addr)	load/store operations don't rely on micro-ops	<pre>LOAD_OP(src, dst, x_size, y_size, x_stride, x_pad, y_pad) for i in range(0, y_size+2*y_pad): for j in range(0, x_size+2*x_pad): if (i < y_pad i >= y_size + y_pad j < x_pad j >= x_size + x_pad): R[dst + i * (x_size+2*x_pad) + j] = 0 else: R[dst + i * (x_size+2*x_pad) + j] = DRAM[src + (i-x_pad) * x_stride + (j-y_pad)</pre>
STORE(R, addr)		STORE_OP(src, dst, x_size, y_size, x_stride)
R = GEMM(R, A, K)	r[x] : r[x] + MMUL(a[y], k[z])	<pre>GEMM_OP(MICRO_OP*, end0, end1, x0, x1, y0, y1, z0, z1) for i0 in range(0, end0): for i1 in range(0, end1): r[i0*x0 + i1*x1 + x] += GEMM(a[i0*y0 + i1*y1 + y], k[i0*z0 + i1*z1 + z])</pre>
RO = VMIN(RO, R1)	r[x] : if (r[x] < r[y]) then r[x] else r[y]	ALU_OP(MICRO_OP*, OPCODE, USE_IMM, IMM_VAL, end0, end1, x0, x1, y0, y1)
RO = VMAX(RO, R1)	r[x] : if (r[x]>r[y]) then r[x] else r[y]	
R = VADDI(R, C)	r[x] : r[x] + c	for in rango(0 and0).
RO = VADD(RO, R1)	r[x] : r[x] + r[y]	<pre>for i0 in range(0, end0): for i1 in range(0, end1):</pre>
R = VMULI(R, C)	r[x] : r[x].low * c.low	<pre>r[i0*x0 + i1*x1 + x] = OP(OPCODE, r[i0*x0 + i1*x1 + x],</pre>
RO = VMUL(RO, R1)	r[x] : r[x].low * r[y].low	
R = VSHLI(R, C)	r[x] : r[x] << c[log(bits):0]	
R = VSHRI(R, C)	r[x] : r[x] >> c[log(bits):0]	