

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS DE CRATEÚS CURSO: CIÊNCIA DA COMPUTAÇÃO E SISTEMAS DE INFORMAÇÃO

DISCIPLINA: FUNDAMENTOS DE PROGRAMAÇÃO - 2024.1

PROFESSOR: ARNALDO BARRETO VILA NOVA

LISTA DE FIXAÇÃO 01 - ALGORITMOS, CONDICIONAIS E REPETIÇÃO

• ALGORITMOS E CONDICIONAIS

- 1. Dada uma quantidade x de Megabytes (MB), converter este valor para Kilobytes (KB), para Bytes (B) e para Gigabytes (GB). Obs.: 1 GB = 1024 MB, 1 MB = 1024 KB, 1 KB = 1024 B.
- 2. Dado o tempo de uma receita em horas e minutos (Ex.: 1h e 40min), converter esse tempo em segundos.
- 3. Dados três notas e seus pesos, calcular a média ponderada destas notas.
- 4. Dados dois números, calcular o valor absoluto da diferença entre eles.
- 5. Dado o peso de três objetos, identificar qual deles é o mais pesado e qual é o menos pesado.
- 6. A partir da data de nascimento de uma pessoa, calcular a idade dela em anos.
- 7. Como melhorar o algoritmo da questão anterior para calcular a idade da pessoa em anos, meses e dias? Exemplo: Astrogildo tem 17 anos, 5 meses e 25 dias.
- 8. A partir da idade de uma pessoa (em anos, meses e dias) e da data atual, descobrir a data de nascimento dela.
- 9. Um determinado caixa eletrônico deve fornecer o menor número possível de notas para cada pedido. Dado um valor em reais, como determinar quantas e quais notas devem se fornecidas para que o total de notas seja o menor possível? Exemplo: o valor de 267 reais seria convertido em 2 notas de 100, 1 nota de 50 reais, 1 nota de 10 reais, 1 nota de 5 reais e 1 nota de 2 reais. Obs.: Considere a existência de notas de 1 real neste caixa eletrônico.
- 10. Descreva um algoritmo que receba o tempo de uma receita em horas e minutos (Ex.: 1h e 40min) e depois exiba um menu com as opções: 1 segundos; 2 minutos; 3 horas. O programa deverá converter o tempo dado para a unidade de medida escolhida (podendo resultar em números com casas decimais como 1,75 horas, por exemplo).
- 11. Uma determinada empresa irá dar um aumento para seus funcionários de acordo com o cargo, que é definido pelo código da tabela abaixo. Faça um programa que receba o salário de um funcionário e o código correspondente ao seu cargo, e então calcule o novo salário dele.

CÓDIGO DO CARGO	PERCENTUAL DE AUMENTO
1	40%
2	25%
3	10%
4	0.5%

12. Um supermercado irá ajustar os preços de seus produtos de acordo com o número de vendas mensal, utilizando a tabela abaixo. Faça um programa que receba o preço atual de um produto e a quantidade de vendas mensal, e informe o novo preço dele.

VENDA MENSAL	PERCENTUAL DE ACRÉSCIMO/DECRÉSCIMO
menor que 500	-10%
de 500 a 1200	+5%
acima de 1200	+20%

- 13. Faça um programa que receba um ângulo em graus e informe em qual quadrante (ou eixo) ele se encontra. Caso o ângulo informado seja maior que 360° ou menor que -360° , deve ser informado também o número de voltas que o ângulo forma.
- 14. Faça um programa que receba o preço de um produto e mostre um menu para o usuário com as seguintes opções: (1) Aumentar o preço; (2) Diminuir o preço. Após a escolha do usuário, deve ser pedido uma porcentagem para efetuar a tarefa escolhida e mostrar o novo preço do produto.
- 15. Dada a tabela abaixo, faça um programa que receba a escolha de 1 prato, 1 sobremesa e 1 bebida e informe quantas calorias esta refeição terá.

Prato	Calorias	Sobremesa	Calorias	Bebida	Calorias
Vegetariano	180 cal	Abacaxi	75 cal		20 cal
Peixe	230 cal	Sorvete diet		Suco de laranja	70 cal
Frango	250 cal	Mouse diet	170 cal	Suco de melão	100 cal
Carne	350 cal	Mouse chocolate	200 cal	Refrigerante diet	65 cal

• REPETIÇÃO

- 1. Desenvolva um programa que some todos os números inteiros de 1 a 100 e exiba o resultado.
- 2. Com base na questão anterior, receba do usuário um valor positivo x e some todos os números inteiros de 1 até x.
- **3.** Modifique a questão anterior para receber dois inteiros, a e b, então some todos os números inteiros do menor até o maior e exiba o resultado.
- 4. Faça um programa que some números reais fornecidos pelo usuário até que ele digite o número 0 e exiba o resultado.
- 5. Modifique o programa da questão anterior para calcular a média aritmética dos valores digitados.
- **6.** Receba números inteiros do usuário até que ele informe o valor 0 e identifique qual foi o maior valor e qual foi o menor valor digitados.

- 7. Modifique a questão anterior para dizer quais os dois maiores valores e quais os dois menores valores digitados.
- 8. Desenvolva um programa que calcule o fatorial de um número inteiro positivo dado pelo usuário. Ex.: 5! = 5*4*3*2*1 = 120.
- 9. Desenvolva um programa que conte quantos algarismos tem um número inteiro dado pelo usuário. Ex.: 145627 tem 6 dígitos. Dica: Utilize operações de divisão por 10.
- 10. Modifique a questão anterior para apresentar o número invertido. Ex.: 145627 invertido é 726541. Dica: Pegue o resto da divisão por 10 e some com (10 vezes a soma anterior).
- 11. Usando os códigos anteriores, faça com que o programa identifique se o número é palíndromo (ele é lido da mesma forma da direita pra esquerda ou da esquerda para a direita). Ex.: 67511576 é palíndromo.
- 12. Desenvolva um programa que receba um número inteiro e informe quantos divisores positivos ele tem, ou seja, por quantos números ele é divisível.
- **13.** Modifique o programa anterior para informar se o número é primo ou não. Obs.: Um número primo é divisível somente por 1 e por ele mesmo.
- 14. Faça um programa que imprima na tela a fatoração em primos de um número inteiro positivo. Exs.: 18 = 2 * 3 * 3, 44 = 2 * 2 * 11, 63 = 3 * 3 * 7.
- 15. Utilizando estruturas de repetição, faça um programa para calcular o MMC (Mínimo Múltiplo Comum) de dois números inteiros. Ex.: o MMC de 12 e 18 é 36.
- **16.** Faça um programa que sorteie um número inteiro x de 1 a 30 e escreva na tela uma linha com x asteriscos. Dica: Para sortear um número de 1 a 30, utilize o comando x = rand()%30 + 1.
- 17. Deseja-se fazer um programa para gerar uma cartela de bingo. Para tanto, a cartela deve conter 5 números aleatórios, sem repetição, de 0 a 50. Faça um programa que gere e imprima essa cartela.
- 18. Com base no programa da questão anterior, receba do usuário uma quantidade x de cartelas a serem impressas.
- 19. Pedra, Papel e Tesoura. Simule partidas do jogo tradicional de Jan-ken-po contra o computador. Cada jogador (computador e usuário) escolhe uma opção (1 pedra, 2 papel ou 3 tesoura). O computador deve escolher aleatoriamente. Pedra vence tesoura, tesoura vence papel e papel vence pedra. Se os dois escolherem a mesma opção, ninguém ganha a partida. Aquele que ganhar 5 partidas primeiro é o vencedor.
- **20.** Cara ou Coroa? Faça um programa para "jogar uma moeda" (0 cara, 1 coroa) 100 vezes e diga quantas vezes saiu cara e quantas vezes saiu coroa.
- 21. Modifique o programa anterior para "jogar um dado de 6 lados", dizendo ao final quantas vezes saiu cada um dos lados do dado.
- 22. Modifique o programa anterior para "jogar dois dados de 6 lados", dizendo ao final quantas vezes caiu números iguais.

- 23. Em diversos jogos de tabuleiro ou de cartas, para decidir quem começará a partida é utilizado uma jogada de dois dados de seis lados. Faça um programa que simule essas jogadas de dados para uma quantidade de jogadores dada pelo usuário e diga qual deles tirou o maior resultado. Obs.1: Inicialmente desconsidere empates escolhendo qualquer um dos jogadores empatados, e depois pense em como os empates podem ser resolvidos.
- **24.** Letras são números. Tente imprimir uma letra como um número decimal: printf("A = %d", 'A'); Agora tente imprimir um número como letra: printf("98 = %c", 98); Imprima então, todos os caracteres referentes ao número 1 até o número 255.
- 25. Faça um programa que sorteie uma letra maiúscula.
- 26. Com base no programa da questão anterior, faça um programa que receba uma letra de início, uma letra de final e então sorteie uma letra aleatória entre elas.
- **27.** Faça um programa que receba um número inteiro n e desenhe um quadrado com asteriscos como no exemplo abaixo. Obs.: Tente utilizar estruturas de repetição.

Para n=5.

- * * * * *
- * * * * :
- * * * * *
- * * * * *
- * * * * *
- 28. Modifique o programa anterior para desenhar apenas a borda do quadrado, como no exemplo abaixo.

Para n = 5.

- * * * * *
- * *
- *
- * *
- * * * * *
- 29. Modifique o programa anterior para desenhar um losango com diagonal n, como no exemplo abaixo.

Para n = 5.

- * * *
- * * * * *
 - * * *
 - *
- 30. Modifique o programa anterior para desenhar somente a borda do losango, como no exemplo abaixo.

Para n = 5.

*
* *
*
* *

31. Miladynia quer fazer um cartão de natal virtual. Para isso pensou em imprimir uma árvore de natal utilizando símbolos. Faça um programa que imprima uma árvore de natal como a abaixo. Obs.: Tente utilizar estruturas de repetição.

32. Uma sala de cinema tem fileiras identificadas da letra A até a letra M. Cada fileira tem 20 poltronas. Imprima na tela o código de todas as poltronas começando da fileira de cima (M) até a fileira de baixo (A). Ex.:

```
M1 M2 M3 M4 M5 ... L1 L2 L3 L4 L5 ... K1 K2 K3 K4 K5 ...
```

- **33.** Modifique a questão anterior para receber do usuário quantas fileiras tem e quantas poltronas tem cada uma. Obs.: Considere o máximo de 26 fileiras.
- 34. Faça um programa que receba a cor dos olhos (A azuis, C Castanhos, V Verdes, O Outro), a cor do cabelo (N Negro, C Castanho, L Loiro, R Ruivo, O Outro), e a idade de 5 pessoas. Então, o programa deverá indicar quantas pessoas de olhos Azuis tem cabelo Ruivo, a média da idade das pessoas com cabelo Loiro e qual a cor dos olhos da pessoa mais velha.