Chap3#4: Anonymization and Randomization based approaches #1

February 27, 2023

Devesh C Jinwala,
Professor, SVNIT and Adjunct Prof., CSE, IIT Jammu
Department of Computer Science and Engineering,
Sardar Vallabhhai National Institute of Technology, SURAT

Chap 2: ML Applications in Security: Topics to study

Privacy Preservation, What is Privacy? Data Privacy. Machine Learning in Privacy Preservation: Four Main stakes to Privacy preservation in ML. Two principle approaches: (a) Augmenting the ML techniques with the conventional approaches in the domain of privacy preservation to achieve privacy viz. Homomorphic Encryption(HE Algorithms and the associated mathematics), Secret Multi-party Computations, Zero Knowledge Proofs, Anonymization techniques (e.g.)k-Anonymity, I-Diversity) Perturbation techniques (e.g. differential privacy) (b) ML-specific approaches like Federated Learning OR Ensemble Learning. Ethical issues and Law for data / process privacy: GDPR, Alexa, other relevant applications [6 hours]

Reviewing the theme of ML Paradigms for Privacy Preservation

Four Main stakes to Privacy preservation

There are four main stakes to privacy preservation in general:

- Privacy of the input data, input queries , web search queries
- Privacy of the computations
- Privacy of the output data, web search query results
- Data Privacy General Regulations, Data protection strategies, processes and principles

Four Main stakes to Privacy preservation

There are four main stakes to privacy preservation in general:

- Privacy of the input data, input queries, web search queries
- Privacy of the computations
- Privacy of the output data, web search query results
- Data Privacy General Regulations, Data protection strategies, processes and principles

We examine one of these viz. Privacy of Computations in greater detail shortly hereafter seeing main stakes to Privacy preservation in ML

Four Main stakes to Privacy preservation in ML

There are four main stakes to privacy preservation in general:

- Privacy of the input data
 - the assurance that other parties, including the model developer, will not be able to see a user's input data
- Privacy of the output data
 - the assurance that the output of a model is only accessible to the client whose data is being inferred upon.
- Privacy of the model
 - rhe assurance that a hostile party will not be able to steal the model
- Data privacy in training
 - the assurance that a malicious party will not reverse-engineer the training data - although gathering information about training data and model is more difficult than that for the data.

The goal of privacy-preserving machine learning is

• to bridge the gap between privacy while receiving the benefits of machine learning.

The goal of privacy-preserving machine learning is

- to bridge the gap between privacy while receiving the benefits of machine learning.
- is a critical facilitator for the protection of acquired data and adhering to data privacy laws.

The goal of privacy-preserving machine learning is

- to bridge the gap between privacy while receiving the benefits of machine learning.
- is a critical facilitator for the protection of acquired data and adhering to data privacy laws.

The goal of privacy-preserving machine learning is

- to bridge the gap between privacy while receiving the benefits of machine learning.
- is a critical facilitator for the protection of acquired data and adhering to data privacy laws.

Privacy-preservation in ML

• is achieved by augmenting conventional ML with different strategies that protect data privacy, that include....

The goal of privacy-preserving machine learning is

- to bridge the gap between privacy while receiving the benefits of machine learning.
- is a critical facilitator for the protection of acquired data and adhering to data privacy laws.

- is achieved by augmenting conventional ML with different strategies that protect data privacy, that include....
 - cryptographic approaches like

The goal of privacy-preserving machine learning is

- to bridge the gap between privacy while receiving the benefits of machine learning.
- is a critical facilitator for the protection of acquired data and adhering to data privacy laws.

- is achieved by augmenting conventional ML with different strategies that protect data privacy, that include....
 - cryptographic approaches like
 - homomorphic encryption

The goal of privacy-preserving machine learning is

- to bridge the gap between privacy while receiving the benefits of machine learning.
- is a critical facilitator for the protection of acquired data and adhering to data privacy laws.

- is achieved by augmenting conventional ML with different strategies that protect data privacy, that include....
 - cryptographic approaches like
 - homomorphic encryption
 - secure multi-party computing,

The goal of privacy-preserving machine learning is

- to bridge the gap between privacy while receiving the benefits of machine learning.
- is a critical facilitator for the protection of acquired data and adhering to data privacy laws.

- is achieved by augmenting conventional ML with different strategies that protect data privacy, that include....
 - cryptographic approaches like
 - homomorphic encryption
 - secure multi-party computing,
 - Zero knowledge proofs

The goal of privacy-preserving machine learning is

- to bridge the gap between privacy while receiving the benefits of machine learning.
- is a critical facilitator for the protection of acquired data and adhering to data privacy laws.

- is achieved by augmenting conventional ML with different strategies that protect data privacy, that include....
 - cryptographic approaches like
 - homomorphic encryption
 - secure multi-party computing,
 - Zero knowledge proofs
 - perturbation techniques like differential privacy

The goal of privacy-preserving machine learning is

- to bridge the gap between privacy while receiving the benefits of machine learning.
- is a critical facilitator for the protection of acquired data and adhering to data privacy laws.

- is achieved by augmenting conventional ML with different strategies that protect data privacy, that include....
 - cryptographic approaches like
 - homomorphic encryption
 - secure multi-party computing,
 - Zero knowledge proofs
 - perturbation techniques like differential privacy
 - anonymization techniques like k-Anonymity and I-Diversity

The goal of privacy-preserving machine learning is

- to bridge the gap between privacy while receiving the benefits of machine learning.
- is a critical facilitator for the protection of acquired data and adhering to data privacy laws.

- is achieved by augmenting conventional ML with different strategies that protect data privacy, that include....
 - cryptographic approaches like
 - homomorphic encryption
 - secure multi-party computing,
 - Zero knowledge proofs
 - perturbation techniques like differential privacy
 - anonymization techniques like k-Anonymity and I-Diversity
 - ML-specific approaches like Federated Learning OR Ensemble Learning the Privacy-Preserving Techniques - modifying the conventional ML training methods to keep user data private.

Augmenting ML for Privacy Preservation: Anonymization Methods

Anonymization method

 mainly applied to the databases, to preserve the privacy while mining the data.

	No	n-Sensi	tive Data	Sensitive Data			
#	Zip	Age	Nationality	Name	Condition		
1	13053	28	Indian	Kumar	Heart Disease		
2	13067	29	American	Bob	Heart Disease		
3	13053	35	Canadian	Ivan	Viral Infection		
4	13067	36	Japanese	Umeko	Cancer		

Figure: Data with a hospital

Anonymization method

- mainly applied to the databases, to preserve the privacy while mining the data.
- is useful when there is a data leak leading the violation of privacy....

	No	n-Sensi	tive Data	Sei	nsitive Data
#	Zip	Age	Nationality	Name	Condition
1	13053	28	Indian	Kumar	Heart Disease
2	13067	29	American	Bob	Heart Disease
3	13053	35	Canadian	Ivan	Viral Infection
4	13067	36	Japanese	Umeko	Cancer

Figure: Data with a hospital

Anonymization method

- mainly applied to the databases, to preserve the privacy while mining the data.
- is useful when there is a data leak leading the violation of privacy....
- Let us look at an example.....

	No	n-Sensi	tive Data	Sensitive Data			
#	Zip	Age	Nationality	Name	Condition		
1	13053	28	Indian	Kumar	Heart Disease		
2	13067	29	American	Bob	Heart Disease		
3	13053	35	Canadian	Ivan	Viral Infection		
4	13067	36	Japanese	Umeko	Cancer		

Figure: Data with a hospital

Anonymization method. Let us look at an example....

 Suppose the data that a hospital wishes to publish has the schema as follows

	No	n-Sensi	tive Data	Sen	sitive Data
#	Zip	Age	Nationality	Name	Condition
1	13053	28	Indian	Kumar	Heart Disease
2	13067	29	American	Bob	Heart Disease
3	13053	35	Canadian	Ivan	Viral Infection
4	13067	36	Japanese	Umeko	Cancer

Figure: Data with a hospital

Published	Г	Т	Non	-Se	nsit	ive D	ata		Sensitive	Data
	#	Т	Zip	A	Age N		Nationality		Condition	
Data	1	1	3053	28	3	Indi	an		Heart Dise	ase
	2	1	3067	29)	Ame	erican		Heart Dise	ase
	3	1	3053	35	5	Can	adian		Viral Infec	tion
	4	1	3067	36	5	Japa	anese		Cancer	
Data leak!										
	П	#	Name		Z	ip	Age	1	lationality	Voter List
		1	John	Т	130	153	28	Α	merican	voter List
	→ [2	Bob	Т	130	67	29	Α	merican	
	- 1	3	Chris	_	130	53	23	Δ	merican	l

Figure: Data published but leaks

Anonymization method. Let us look at an example....

- Suppose the data that a hospital wishes to publish has the schema as follows
 - Attribute values which can uniquely identify an individual {zip-code, nationality, age } or/and {name} or/and {SSN}

	No	n-Sensi	tive Data	Ser	nsitive Data
#	Zip	Age	Nationality	Name	Condition
1	13053	28	Indian	Kumar	Heart Disease
2	13067	29	American	Bob	Heart Disease
3	13053	35	Canadian	Ivan	Viral Infection
4	13067	36	Japanese	Umeko	Cancer

Figure: Data with a hospital

Published	Г	Т	Nor	-Sens	itive D	ata	Sens	itive Data	
	#		Zip	Age	Na	tionalit	y Con	Condition	
Data	1	13	053	28	Ind	ian	Heart [Disease	
	2	13	067	29	Am	erican	Heart [Disease	
	3	13	053	35	Can	adian	Viral In	fection	
	4	13	067	36	Јара	anese	Cancer		
Data leak!									
	Г	#	Name	,	Zip	Age	Nationali	ty	
		1 J	ohn	13	053	28	American	Voter L	.ist
	[2 E	lob	13	067	29	American	1	
		3 (hris		053	23	American		

Figure: Data published but leaks

Anonymization method. Let us look at an example....

- Suppose the data that a hospital wishes to publish has the schema as follows
 - Attribute values which can uniquely identify an individual {zip-code, nationality, age } or/and {name} or/and {SSN}
 - sensitive information corresponding to individuals {medical condition, salary, location }

	No	n-Sensi	tive Data	Sensitive Data		
#	Zip	Age	Nationality	Name	Condition	
1	13053	28	Indian	Kumar	Heart Disease	
2	13067	29	American	Bob	Heart Disease	
3	13053	35	Canadian	Ivan	Viral Infection	
4	13067	36	Japanese	Umeko	Cancer	

Figure: Data with a hospital

Published			Non-	Sensi	tive D	ata	Sen	sitive	Data	
	#	Z	p	Age	Nat	ionalit	y C	Condition		
Data	1	130	53	28	Indi	an	Heart	Dise	ase	
	2	130	67	29	Ame	erican	Heart	Dise	ase	
	3	130	53	35	Can	adian	Viral I	nfec	tion	
	4	130	67	36	Japa	anese	Cance	r		
Data leak!										
		# A	lame	2	ip	Age	Nationa	lity	l.,	
		1 Jo	hn	130	53	28	America	n	Voter Li	st
		2 Bo	h	130	067	29	America	n		
	[2 00								

Figure: Data published but leaks

Anonymization method. Let us look at an example....

- Suppose the data that a hospital wishes to publish has the schema as follows
 - Attribute values which can uniquely identify an individual {zip-code, nationality, age } or/and {name} or/and {SSN}
 - sensitive information corresponding to individuals {medical condition, salary, location }
- the aim is to prevent a situation where even if one removes the direct uniquely identifying attributes from a table, there are some fields that may still uniquely identify some individual.

	No	n-Sensi	tive Data	Sensitive Data		
#	Zip Age Nationality Nan		Name	Condition		
1	13053	28	Indian	Kumar	Heart Disease	
2	13067	29	American	Bob	Heart Disease	
3	13053	35	Canadian	Ivan	Viral Infection	
4	13067	36	Japanese	Umeko	Cancer	

Figure: Data with a hospital

Published		No	n-Sensi	tive D	ata	Sensitiv	e Data
	#	Zip	Age	Na	tionalit	y Condi	tion
Data	1	13053	28	Ind	ian	Heart Dis	ease
	2	13067	29	Am	erican	Heart Dis	ease
	3	13053	35	Can	adian	Viral Infe	tion
	4	13067	36	Јар	anese	Cancer	
Data leak!							
		# Nam	e 2	?ip	Age	Nationality	1.,
		1 John	130	053	28	American	Voter List
	→ 3	2 Bob	130	067	29	American	1
	- 13	3 Chris	4.04	053	23	American	1

Figure: Data published but leaks

Anonymization method. Let us look at an example....

- Suppose the data that a hospital wishes to publish has the schema as follows
 - Attribute values which can uniquely identify an individual {zip-code, nationality, age } or/and {name} or/and {SSN}
 - sensitive information corresponding to individuals {medical condition, salary, location }
- the aim is to prevent a situation where even if one removes the direct uniquely identifying attributes from a table, there are some fields that may still uniquely identify some individual.
- The attacker can join them with other Src: B. Asiources, and redentify individuals.

	No	n-Sensi	tive Data	Sensitive Data		
#	Zip	Age	Nationality	Name	Condition	
1	13053	28	Indian	Kumar	Heart Disease	
2	13067	29	American	Bob	Heart Disease	
3	13053	35	Canadian	Ivan	Viral Infection	
4	13067	36	Japanese	Umeko	Cancer	

Figure: Data with a hospital

Published	Non-Sensitive Data					Sensitive Data			
	*		Zip	Age	Nat	ionalit	y	Condit	ion
Data	1	13	3053	28	Indi	an		Heart Dise	ase
	2	13	3067	29	Ame	erican		Heart Dise	ase
	3	13	3053	35	Can	adian		Viral Infec	tion
	4	13	3067	36	Јара	anese		Cancer	
Data leak!									
	Г	#	Name	, ,	Zip	Age	1	lationality	l
		1 .	John	13	053	28	Α	merican	Voter List
	[2	Bob	13	067	29	A	merican	
		3	Chris	4.0	053	23		merican	

Figure: Data published but leaks

Anonymization method. Let us look at an example....

Even if we remove the direct uniquely identifying attributes

Figure: Data with a hospital

Anonymization method. Let us look at an example....

- Even if we remove the direct uniquely identifying attributes
- There are some fields that may still uniquely identify some individual!

Figure: Data with a hospital

Anonymization method. Let us look at an example....

- Even if we remove the direct uniquely identifying attributes
- There are some fields that may still uniquely identify some individual!
- The attacker can join them with other sources and identify individuals

Figure: Data with a hospital

Anonymization method. Let us look at an example....

- Even if we remove the direct uniquely identifying attributes
- There are some fields that may still uniquely identify some individual!
- The attacker can join them with other sources and identify individuals

Figure: Data with a hospital

Anonymization method. Let us look at an example....

- Even if we remove the direct uniquely identifying attributes
- There are some fields that may still uniquely identify some individual!
- The attacker can join them with other sources and identify individuals

Hence the need for anonymization methods

Non-Sensitive Data		Sensitive Data				
#	Zip Age Nation		Nationality	Condition		
Quasi-Identifiers						

Figure: Data with a hospital

Anonymization method

 was first proposed by Sweeney in the paper referenced below.

#	Zip	Age	Nationality	Condition	
1	130**	< 40	*	Heart Disease	4-anonymized
2	130**	< 40	*	Heart Disease	1
3	130**	< 40	*	Viral Infection	
4	130**	< 40	*	Cancer	

Figure: Data with a hospital

Anonymization method

- was first proposed by Sweeney in the paper referenced below.
- mainly applied to the databases, to preserve the privacy while mining the data.

#	Zip	Age	Nationality	Condition	
1	130**	< 40	*	Heart Disease	4-anonymized
2	130**	< 40	*	Heart Disease	
3	130**	< 40	*	Viral Infection	
4	130**	< 40	*	Cancer	

Figure: Data with a hospital

Anonymization method

- was first proposed by Sweeney in the paper referenced below.
- mainly applied to the databases, to preserve the privacy while mining the data.
- the focus is to change data in such a way that for each tuple in the resulting table there are atleast (k-1) other tuples with the same value for the quasi-identifier

#	Zip	Age	Nationality	Condition	
1	130**	< 40	*	Heart Disease	4-anonymized
2	130**	< 40	*	Heart Disease	
3	130**	< 40	*	Viral Infection	
4	130**	< 40	*	Cancer	

Figure: Data with a hospital

Anonymization method

- was first proposed by Sweeney in the paper referenced below.
- mainly applied to the databases, to preserve the privacy while mining the data.
- the focus is to change data in such a way that for each tuple in the resulting table there are atleast (k-1) other tuples with the same value for the quasi-identifier
- this is to prevent a situation where even if one removes the direct uniquely identifying attributes from a table, there are some fields that may still uniquely identify some individual.

#	Zip	Age	Nationality	Condition	<u></u>
1	130**	< 40	*	Heart Disease	4-anonymized
2	130**	< 40	*	Heart Disease	
3	130**	< 40	*	Viral Infection	
4	130**	< 40	*	Cancer	

Figure: Data with a hospital

Anonymization method

- was first proposed by Sweeney in the paper referenced below.
- mainly applied to the databases, to preserve the privacy while mining the data.
- the focus is to change data in such a way that for each tuple in the resulting table there are atleast (k-1) other tuples with the same value for the quasi-identifier
- this is to prevent a situation where even if one removes the direct uniquely identifying attributes from a table, there are some fields that may still uniquely identify some individual.
- here, we have a 4-anonymized table

#	Zip	Age	Nationality	Condition	<u></u>
1	130**	< 40	*	Heart Disease	4-anonymized
2	130**	< 40	*	Heart Disease	
3	130**	< 40	*	Viral Infection	
4	130**	< 40	*	Cancer	

Figure: Data with a hospital

Techniques

Data Swapping

- Data Swapping
- Randomization

- Data Swapping
- Randomization
- Generalization

- Data Swapping
- Randomization
- Generalization
 - Replace the original value by a semantically consistent but less specific value

- Data Swapping
- Randomization
- Generalization
 - Replace the original value by a semantically consistent but less specific value
- Suppression

- Data Swapping
- Randomization
- Generalization
 - Replace the original value by a semantically consistent but less specific value
- Suppression
 - Data not released at all

- Data Swapping
- Randomization
- Generalization
 - Replace the original value by a semantically consistent but less specific value
- Suppression
 - Data not released at all
 - Can be Cell-Level or (more commonly) Tuple-Level

Data Generalization

 is the process of creating a broader categorization of the data in a database,

Figure: Data Generilization/Suppresion

- is the process of creating a broader categorization of the data in a database,
- creating a more general picture of the trends or insights it provides.

Figure: Data Generilization/Suppresion

- is the process of creating a broader categorization of the data in a database,
- creating a more general picture of the trends or insights it provides.
- involves deliberately excluding some data to make them less identifiable.

Figure: Data Generilization/Suppresion

- is the process of creating a broader categorization of the data in a database,
- creating a more general picture of the trends or insights it provides.
- involves deliberately excluding some data to make them less identifiable.
- here, data can be modified within a series of ranges with logical limits.

Figure: Data Generilization/Suppresion

- is the process of creating a broader categorization of the data in a database,
- creating a more general picture of the trends or insights it provides.
- involves deliberately excluding some data to make them less identifiable.
- here, data can be modified within a series of ranges with logical limits.
- the result is a reduced granularity of the data, making it difficult or even impossible to retrieve the exact values associated with an individual.

Figure: Data Generilization/Suppresion

- is the process of creating a broader categorization of the data in a database,
- creating a more general picture of the trends or insights it provides.
- involves deliberately excluding some data to make them less identifiable.
- here, data can be modified within a series of ranges with logical limits.
- the result is a reduced granularity of the data, making it difficult or even impossible to retrieve the exact values associated with an individual.

Figure: Data Generilization/Suppresion

Data Generalization

- is the process of creating a broader categorization of the data in a database,
- creating a more general picture of the trends or insights it provides.
- involves deliberately excluding some data to make them less identifiable.
- here, data can be modified within a series of ranges with logical limits.
- the result is a reduced granularity of the data, making it difficult or even impossible to retrieve the exact values associated with an individual.

#	Zip	Age	Nationality	Condition					
1	130**	< 40	*	Heart Disease					
2	130**	< 40	*	Heart Disease					
3	130**	< 40	*	Viral Infection					
4	130** < 40		*	Cancer					
	,			(
	Genera	lization	Su	Suppression (cell-level)					

Figure: Data Generilization/Suppresion

In Data Suppression certain values of the attributes are replaced by an asterisk '*'. All or some values of a column may be replaced by '*'.

Src: Prof B. Aditya Prakash, IITB and CMU

Anonymization Methods: Generalization Hierarchies

Data owner defines how values can be generalized

Figure: Data Generilization Hierarchies

Anonymization Methods: Generalization Hierarchies

- Data owner defines how values can be generalized
- A table generalization is created by generalizing all values in a column to a specific level of generalization

Figure: Data Generilization Hierarchies

Anonymization Methods: K-minimal Generalizations

• There are many k-anonymizations – which one to pick?

#	Т	Zip	A	ge	Nat	ionality	Con	dition				
1	1	3053	٧	40		*	Heart	Disease				
2	1	3053	٧	40		*	Viral In	nfection	_	2-minimal		
3	1	3067	٧	40	*		Heart	Disease	-	Generalizations		
4	1	3067	٧	40		*	Cance	-				
					#	Zip	Age	Nationa	lity	Condition		
					1	130**	< 30	America	an	Heart Disease		
					2	130**	< 30	America	an	Viral Infection		
					3	130**	3*	Asian		Heart Disease		
					4	130**	3*	Asian		Cancer		
Г	#	Zip		Age	^	lationalit	y C	ondition				
	1	130**	٠.	< 40		*	Hear	t Diseas	e	NOT a		
	2	130**	٠.	< 40		*	Viral	Infectio		2-minimal		
	3	130**	٠.	< 40		*	Hear	t Diseas		Generalization		
_ [:	4_	130**		< 40		*	Can	cer				
								,				

Figure: K Minimum Generalization

Anonymization Methods: K-minimal Generalizations

- There are many k-anonymizations which one to pick?
- Intuitively one that does not generalize the data more than needed (decrease in utility of the published dataset!)

_	_	_									
*	·	Zip	A	lge	Na	tionality		Cond	dition		
1	1	3053	<	40		*	Н	eart [Disease		
2	1	3053	٧	40		*	V	iral Ir	nfection	_	2-minimal
3	1	3067	٧	40		*	Н	eart [Disease	-	Generalizations
4	1	3067	٧	40		*	С	ancer			<u> </u>
					#	Zip		Age	Nationa	lity	Condition
					1	130**	<	< 30	America	an	Heart Disease
					2	130**	<	< 30	America	an	Viral Infection
					3	130**	3	*	Asian		Heart Disease
					4	130**	3	*	Asian		Cancer
_											
	#	Zip		Age		Vationalit	Y	Co	ondition		
	1	130**	ε .	< 40		*		Hear	t Diseas	e	NOT a
	2	130**	c	< 40		*		Viral	Infectio		2-minimal
	3	130**	4	< 40		*		Hear	t Diseas		Generalization
_ [4	130**	4	< 40		*		Cano	er		
						<u> </u>				_	

Figure: K Minimum Generalization

Anonymization Methods: K-minimal Generalizations

- There are many k-anonymizations which one to pick?
- Intuitively one that does not generalize the data more than needed (decrease in utility of the published dataset!)
- K-minimal generalization: A k-anonymized table that is not a generalization of another k-anonymized table

#	Zip	-	Age	Nat	tionality	Cor	dition	I	
1	13053	<	40		*	Heart	Disease	l	
2	13053	<	40		*	Viral 1	nfection		2-minimal
3	13067	<	40		*	Heart	Disease	_	Generalizations
4	13067	<	40		*	Cance	er		
				#	Zip	Age	Nationa	lity	Condition
				1	130**	< 30	America	an	Heart Disease
				2	130**	< 30	America	an	Viral Infection
				3	130**	3*	Asian		Heart Disease
				4	130**	3*	Asian		Cancer
_									
4	# Zip		Age	^	lationalit	y (Condition		
1	. 130*	*	< 40		*	Hea	rt Diseas	e	NOT a
2	130*	*	< 40	1	*	Vira	l Infectio		2-minimal
3	130*	*	< 40		*	Hea	ırt Diseas	е	Generalization
4	130*		< 40		*	Car			

Figure: K Minimum Generalization

• To use k-anonymity to process a dataset so that it can be released with privacy protection, a data scientist must first examine the dataset and

- To use k-anonymity to process a dataset so that it can be released with privacy protection, a data scientist must first examine the dataset and
 - decide if each attribute (column) is an identifier (identifying), a non-identifier (not-identifying), or a quasi-identifier (somewhat identifying).

- To use k-anonymity to process a dataset so that it can be released with privacy protection, a data scientist must first examine the dataset and
 - decide if each attribute (column) is an identifier (identifying), a non-identifier (not-identifying), or a quasi-identifier (somewhat identifying).
 - Identifiers such as names are suppressed, non-identifying values are allowed to remain, and the quasi-identifiers need to be processed

- To use k-anonymity to process a dataset so that it can be released with privacy protection, a data scientist must first examine the dataset and
 - decide if each attribute (column) is an identifier (identifying), a non-identifier (not-identifying), or a quasi-identifier (somewhat identifying).
 - Identifiers such as names are suppressed, non-identifying values are allowed to remain, and the quasi-identifiers need to be processed
 - this should be such that every distinct combination of quasi-identifiers designates at least k records.

- To use k-anonymity to process a dataset so that it can be released with privacy protection, a data scientist must first examine the dataset and
 - decide if each attribute (column) is an identifier (identifying), a non-identifier (not-identifying), or a quasi-identifier (somewhat identifying).
 - Identifiers such as names are suppressed, non-identifying values are allowed to remain, and the quasi-identifiers need to be processed
 - this should be such that every distinct combination of quasi-identifiers designates at least k records.
- Limitation: K-anonymity alone does not provide full privacy. This can be seen from the next diagram

- To use k-anonymity to process a dataset so that it can be released with privacy protection, a data scientist must first examine the dataset and
 - decide if each attribute (column) is an identifier (identifying), a non-identifier (not-identifying), or a quasi-identifier (somewhat identifying).
 - Identifiers such as names are suppressed, non-identifying values are allowed to remain, and the quasi-identifiers need to be processed
 - this should be such that every distinct combination of quasi-identifiers designates at least k records.
- Limitation: K-anonymity alone does not provide full privacy. This can be seen from the next diagram

- To use k-anonymity to process a dataset so that it can be released with privacy protection, a data scientist must first examine the dataset and
 - decide if each attribute (column) is an identifier (identifying), a non-identifier (not-identifying), or a quasi-identifier (somewhat identifying).
 - Identifiers such as names are suppressed, non-identifying values are allowed to remain, and the quasi-identifiers need to be processed
 - this should be such that every distinct combination of quasi-identifiers designates at least k records.
- Limitation: K-anonymity alone does not provide full privacy. This can be seen from the next diagram

	Zip	Age	National
Bob →	13053	31	American
Umeko →	13068	21	Japanese

Figure: KAnonymity Attack

k-Anonymization Attack

Figure: KAnonymity Attack

k-Anonymization Attack

Figure: KAnonymity Attack

k-Anonymization Attack

Figure: KAnonymity Attack

k-Anonymization Limitation

 Basic Reasons for leak – Sensitive attributes lack diversity in values -Homogeneity Attack

k-Anonymization Limitation

- Basic Reasons for leak Sensitive attributes lack diversity in values -Homogeneity Attack
- Attacker has additional background knowledge Background knowledge Attack

k-Anonymization Limitation

- Basic Reasons for leak Sensitive attributes lack diversity in values -Homogeneity Attack
- Attacker has additional background knowledge Background knowledge Attack
- Hence a new solution has been proposed in-addition to k-anonymity l-diversity