

Appln. No. 10/566,584
Amdt. dated February 17, 2009
Reply to Office action of October 15, 2008

Amendments to the Specification

On page 1, please insert the following heading before the paragraph beginning on line 5:

SUMMARY

On page 2, please insert the following heading before the paragraph beginning on line 31:

BRIEF DESCRIPTION OF THE DRAWINGS

On page 3, please insert the following heading before the paragraph beginning on line 4:

DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

On page 3, please replace the paragraph beginning on line 9 with the following paragraph:

The Gateway GPRS support Node 1 (GGSN) receives a context creation request and queries a Radius (Registration) server 2 (Remote Authentication Dial-In User Service) to get an IP address assigned for the particular PDP context. Within the context the Radius server 2 receives the MSISDN and/or the IMSI of the subscriber. So in the session database 3 of the Radius server 2 there is stored for each PDP context a pair of IP address and IMSI/MSISDN. Based on the tunnel endpoint ID (TEID) the GGSN1 filters all packets running through the PDP context once established, for the correct IP source address. This means the GGSN 1 checks matching TEID/IP address pairs, thus preventing falsification of source address and so called “IP spoofing” for the complete lifecycle of the PDP context. The TEID unambiguously

Appln. No. 10/566,584
Amdt. dated February 17, 2009
Reply to Office action of October 15, 2008

identifies a tunnel endpoint in the receiving GTP-U (GPRS Tunnelling Protocol – User) or GTP-C (GPRS Tunnelling Protocol – Control) protocol entity. The receiving side of a GTP tunnel locally assigns the TEID value for the transmitting side to use. The TEID values are exchanged between tunnel endpoints using GTP-C messages (or RANAP (Radio Access Network Application Part) in the UTRAN (UMTS ~~terrestrial~~Terrestrial Radio Access Network)).