MATH 15910 - Problem Set 6

Sohini Banerjee

November 8, 2023

1

If sup(A) = L, then by definition, we know that for all $a \in A$, $a \leq L$. From here, we know that:

- *a* < *L*
- $(-L) + a + (-a) \le (-L) + L + (-a)$ (addition property for order)
- $-L + (a + (-a)) \le ((-L) + L) + (-a)$ (associativity for addition)
- $-L + 0 \le 0 + (-a)$ (additive inverse for addition)
- $-L \le -a$ (identity element for addition)

 $-L \leq -a$ means -L is a lower bound for -A, by definition. We need to show that -L is the greatest lower bound for -A. Assume for contradiction that there exists some L' such that L' > -L and L' is a lower bound for -A. This means for all $-a\epsilon A$, $-a \geq L'$. From here, we know that:

- \bullet -a > L'
- $(-L') + (-a) + a \ge (-L') + L' + a$ (addition property for order)
- $-L' + ((-a) + a) \ge ((-L') + L') + a$ (associativity for addition)
- $-L' + 0 \ge 0 + a$ (additive inverse for addition)
- $-L' \ge a$ (identity element for addition)

 $-L' \ge a$ means that -L' is an upper bound for A, by definition. However, we know that L' > -L. From here, we know that:

- L' > -L
- (-L') + L' + L > (-L') + (-L) + L (addition property for order)
- ((-L') + L') + L > -L' + ((-L) + L) (associativity for addition)
- 0 + L > -L' + 0 (additive inverse for addition)

• L > -L' (identity element for addition)

L > -L' contradicts L being the least upper bound for A since -L' is also an upper bound for A, but -L' < L. So, there cannot exists an L' > -L such that L' is the greatest lower bound for -A. This means that -L must be the greatest lower bound for -A. Thus, we have shown that if sup(A) = L, then inf(-A) = -L.

$\mathbf{2}$

We know that the infinite decimal $0.3333... = \sup\{0.3, 0.33, 0.333, ...\}$. This is equivalent to $\sup\{\sum_{k=1}^\infty \frac{3}{10^k}\} = \sup\{3 \cdot \sum_{k=1}^\infty (\frac{1}{10})^k\} = 3 \cdot \sup\{\sum_{k=1}^\infty (\frac{1}{10})^k\}$. To calculate the infinite sum, we need to find the understand the partial sum. Using the definition of geometric series, we know the partial sum $S_n = \frac{a_1 \cdot (1-x^n)}{1-x}$, which is the sum of the first n terms where $n \in \mathbb{Z}_+$. Plugging in $a_1 = \frac{1}{10}$ and $x = \frac{1}{10}$, we get that $S_n = \frac{\frac{1}{10} \cdot (1-(\frac{1}{10})^n)}{1-\frac{1}{10}}$. This simplifies to $S_n = \frac{1}{9} \cdot (1-\frac{1}{10^n})$. We need to find the supremum of the set of partial sums S_n , or the least upper bound of this set. We know that the supremum is achieved through increasing n because a larger n makes 10^n larger, so $\frac{1}{10^n}$ becomes smaller, so S_n is an increasing function for n. As n increases, the $\frac{1}{10^n}$ term approaches 0, so S_n approaches $\frac{1}{9} \cdot (1-0)$. This means that $\sup\{\frac{1}{9} \cdot (1-\frac{1}{10^n})\} = \frac{1}{9}$, or that $\sum_{k=1}^\infty (\frac{1}{10})^k = \frac{1}{9}$. Thus, $3 \cdot \sup\{\sum_{k=1}^\infty (\frac{1}{10})^k\} = 3 \cdot \frac{1}{9} = \frac{1}{3}$. So, the infinite decimal $0.3333... = \frac{1}{3}$.

3

3.1

We must find $\sup\{S_n\}$ where $S_n = \sum_{k=1}^n \frac{1}{k(k+1)}$ or $S_n = \sum_{k=1}^n (\frac{1}{k} - \frac{1}{k+1})$. If we enumerate S_n for some arbitrary n, we get that $S_n = (\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}) - (\frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1})$. It is evident that after the intermediate terms cancel out, we get $S_n = 1 - \frac{1}{n+1}$. We need to find the supremum of the set of partial sums S_n , or the least upper bound of this set. With increasing n, the $\frac{1}{n+1}$ term becomes smaller, so S_n becomes larger. This means the supremum is achieved through increasing n. As n increases, the $\frac{1}{n+1}$ term approaches 0, so S_n approaches 1-0=1. This means that $\sup\{S_n\}=1$. Thus, $\sum_{k=1}^n \frac{1}{k(k+1)}=1$.

3.2

We must find $\sup\{S_n(x)\}$ where $S_n(x)=\sum_{k=1}^n\frac{1}{2^k}$. Using the definition of geometric series, we know the partial sum $S_n=\frac{a_1\cdot(1-x^n)}{1-x}$, which is the sum of the first n terms where $n\epsilon\mathbb{Z}_+$. Plugging in $a_1=\frac{1}{2}$ and $x=\frac{1}{2}$, we get that $S_n=\frac{\frac{1}{2}\cdot(1-(\frac{1}{2})^n)}{1-\frac{1}{2}}$. This simplifies to $S_n=1-\frac{1}{2^n}$. We need to find the supremum of the set of partial sums S_n , or the least upper bound of this set. The supremum

is achieved through increasing n because a larger n makes $\frac{1}{2^n}$ smaller and thus, S_n gets larger. As n increases, the $\frac{1}{2^n}$ term approaches 0, so S_n approaches 1-0=1. This means that $\sup\{S_n\}=1$. Thus, $\sum_{k=1}^n \frac{1}{2^k}=1$.

4

For any $a\epsilon A$, a<3 because if $a\geq 3$, then $a^2\geq 9>3$. This means 3 is an upper bound for A. So, by definition of real numbers, A has a least upper bound L, so L=sup(A). We know that $L\geq 1$ because $1\epsilon A$. We need to show that $L^2=3$. We can prove this by contradiction since by trichotomy, if $L^2\neq 3$, then $L^2<3$ or $L^2>3$.

- Consider $L^2>3$. We know that 3 is an upper bound for A, so $L\leq 3$ because L is the least upper bound for A. From class, we know that for $N\geq 1$, $N\leq N^2$, so $\frac{1}{N^2}\leq \frac{1}{N}$. For any integer $N\geq 1$, we know that $(L-\frac{1}{N})^2=L^2-\frac{2L}{N}+\frac{1}{N^2}>L^2-\frac{2L}{N}\geq L^2-\frac{2(3)}{N}=L^2-\frac{6}{N}$ since $L\leq 3$. By the Archimedean property, there exists $N\epsilon\mathbb{Z}_+$ such that $N(L^2-3)>6$, so $L^2-\frac{6}{N}>3$. Since $(L-\frac{1}{N})^2>L^2-\frac{6}{N}$ and $L^2-\frac{6}{N}>3$, then $(L-\frac{1}{N})^2>3>a^2$ for all $a\epsilon A$. Since $a^2<(L-\frac{1}{N})^2$, then $a< L-\frac{1}{N}$, so $L-\frac{1}{N}$ is an upper bound for A. However, $L-\frac{1}{N}< L$, which contradicts L being the least upper bound for A.
- Consider $L^2 < 3$. We know that 3 is an upper bound for A, so $L \le 3$ because L is the least upper bound for A. From class, we know that for $N \ge 1$, $N \le N^2$, so $\frac{1}{N^2} \le \frac{1}{N}$. For any integer $N \ge 1$, we know that $(L+\frac{1}{N})^2 = L^2 + \frac{2L}{N} + \frac{1}{N^2} \le L^2 + \frac{2L}{N} + \frac{1}{N} \le L^2 + \frac{2(3)}{N} + \frac{1}{N} = L^2 + \frac{7}{N}$ since $L \le 3$. By the Archimedean property, there exists $N\epsilon\mathbb{Z}_+$ such that $N(3-L^2) > 7$, so $L^2 + \frac{7}{N} < 3$. Since $(L+\frac{1}{N})^2 \le L^2 + \frac{7}{N}$ and $L^2 + \frac{7}{N} < 3$, then $(L+\frac{1}{N})^2 < 3$, so $L+\frac{1}{N}\epsilon A$. However, $L+\frac{1}{N} > L$, so L is not an upper bound for A, which contradicts L being the least upper bound for A

We found that there is a contradiction when $L^2 < 3$ and $L^2 > 3$, so by trichotomy, $L^2 = 3$. Since $L = \sup(A)$, we know that $(\sup(A))^2 = 3$.