CS & IT

ENGINEERING

Digital Logic

Logic Gate

Lecture No. 3

By-CHANDAN SIR

TOPICS TO BE COVERED

01 NAND GATE

02 NOR GATE

03 Discussion

Q.

Sketch the waveform of y?

Pw

Thote :- always, for calculation of frequency consider no of

NOT CHATE in Loop ->

 f_1 $f_1 = f_2$

For the circuit given below x & y condition will be-

- A x stable y toggle
- B x toggle y stable
- x & y both toggle
- x & y both stable

Q.

A logical circuit is as shown below, which of the following circuit can be used to get the desired expression.

$$A = Y$$

$$A \cdot B$$

$$A \cdot B$$

$$A \cdot B$$

$$A = X = A$$

HW

The logic circuit shown below, is equivalent to

Wo-

NAND GATE

Symbol

Truth Table

A	В	Y
0	0	1
0 <	1	1:
1	0	1
1	1	0.

Pw

NAND GATE

3. Enable/Disable

CONTROL'O' WISABLE

CONTROL ! ENABLE

NAND GATE

4. Commutative Law

A NAND, NOR follow the commutative Law But does not follow Associative Law

I = 104M

ON -> Saturation -> shortckt

INPUT = 0

OFF -> CUTOFF -- OPEn ckt

A	B	Tj	72	y
0	0	Cutoff	Cutoff	1
0	1	Cutoss	Soluratin	1
L	0	Saturation	a Cutoff	1
1	1	Saturation	n Saturation	D

NOR GATE

Symbol

Bubbled AND = NOR

			4.3					
•	ur.	ru	73	h	-1	· 😘	h	0
4.		ιu	ıu			а	U	Œ

A	В	Y= A+e
0	0	1
0	₁ 1	0
1<	0	0
1	1	0

Pw

NOR GATE

3. Enable/Disable

CONTROL'O' ENABLE

CONTROL'1' DISABLE

NOR GATE

4. Commutative Law

Associative Law X

A	B	7,	Tz	y
0	Ó	atoss	Cutoff	1
0	1	cutoff	Saturation	0
1	0	Saturation	Cutoff	0
L	1	Saturation	Saturation	O

£ 100

Note

:- NAND, NOR are called universal Logic

NAND AS UNIVERSAL LOGIC

NOT GATE

4. XOR GATE

AND GATE

XNOR GATE

OR GATE

Alternate Symbol

Which of the following option is called universal logic?

- A NAND
- B NOR
- Both A & B
- D None

Which of the following option is called universal logic?

- MAND
- B NOR
- C AND
- D OR

Q.

Which of the following option(s) is/are called universal logic?

For the following circuit diagram minimum numbers two NAND gate required.

Thank you

(Leacher)

GW Soldiers! # Self confidance

