

Antibody Identification

Andrea Nadas, MLS(ASCP)

Some Slides and Information from: Renee Wilkins, PhD, MLS(ASCP)^{cm} CLS 325/435

School of Health Related Professions University of Mississippi Medical Cente

The Basics.....

- Antibody Screens use 2 or 3 Screening Cells to "detect" if antibodies are present in the serum
- If antibodies are detected, they must be identified...

Why do we need to identify?

- Locate/transfuse compatible blood
- Incompatible blood can cause adverse reactions

Key Concepts

- We test "knowns" with "unknowns"
- Antibody ID: we test patient serum (unknown) with reagent RBCs (known)

Known: Unknown:

Reagent RBCs + patient serum Reagent antisera + patient RBCs

Reagent RBCs

- Screening and Panel cells: Group O
- Eliminate ABO antibody interaction
- Negative DAT
- Each screen must have at least 1 cell positive for the following antigens (per FDA):
 - D, C, E, c, e, K, k, Fya, M, N, S, s
 - Most also include: P1, Le(a), Le(b), Fy(b), Jk(a), Jk(b)

Screening Cells

- Antibody Detection
- Set of 2 or 3 vials

Panel Cells

- Antibody
 Identification
- At least 10 vials per set

Antibody Panel vs. Screen

- An antibody panel is just an extended version of an antibody screen
- The screen only uses 2-3 cells:

				Rh					MN	Ss		P ₁	Lev	wis	Luth	eran	K	ell	Du	ıffy	Kie	dd		
Cell	D	С	E	С	e	f	Cw	М	N	s	5	P ₁	Lea	Leb	Lua	Lub	κ	k	Fyª	Fyb	Jka	Jk ^b		
I R1R1 (56)	+	+	0	0	+	0	0	+	+	0	+	0	+	0	0	+	+	+	+	0	+	+		
II R2R2 (89)	+	0	+	+	0	0	0	0	+	+	0	+	0	+	0	+	0	+	0	+	+	0		

Mosby items and derived items © 2009 by Mosby, Inc., an affiliate of Elsevier Inc.: Some material was previously published.

Antibody Panel

• An antibody panel usually includes at least 10 panel cells:

Cell Number	D	С	Ε	С	е	f	M	N	S	s	P1	Lea	Leb	K	k	Fya	Fyb	Jka	Jkb	IS	37	AHG
1	0	+	0	+	+	+	+	+	+	+	+	+	0	0	+	+	+	+	0			
2	+	+	0	0	+	0	+	+	0	+	+	0	+	0	+	0	+	+	0			
3	+	+	0	0	+	0	+	0	+	+	+	0	+	+	+	+	+	0	+			
4	+	0	+	+	0	+	+	+	0	+	+	+	0	0	+	0	+	+	+			
5	0	0	+	+	+	+	0	+	+	0	+	0	+	0	+	0	+	+	+			
6	0	0	0	+	+	+	+	0	0	+	+	0	+	0	+	+	0	+	+			
7	0	- 0	0	+	+	+	+	+	+	+	+	+	0	0	+	0	+	0	+			
8	0	0	0	+	+	+	+	+	0	+	+	0	0	+	+	0	0	+	0			
9	0	0	0	+	+	+	+	0	+	0	0	+	0	0	+	0	+	+	+			
10	0	0	0	+	+	+	+	0	0	+	0	0	+	0	+	+	0	+	0			
11	0	0	0	+	+	+	0	+	0	+	0	0	+	0	+	+	+	+	+			
Patient Typing																						

Panel

- Each of the panel cells has been antigen typed (shown on antigram)
 - + refers to the presence of the antigen
 - 0 refers to the absence of the antigen

Cell Number	D	С	E	С	е	f	M	N	S	s	P1	Lea	Leb	K	k	Fya	Fyb	Jka	Jkb	IS	37	AHG
1	0	+	0	+	+	+	+	+	+	+	+	+	0	0	+	+	+	+	0			
2	+	+	0	0	+	0	+	+	0	+	+	0	+	0	+	0	+	+	0			
3	+	+	0	0	+	0	+	0	+	+	+	0	+	+	+	+	+	0	+			
4	+	0	+	+	0	+	+	+	0	+	+	+	0	0	+	0	+	+	+			
5	0	0	+	+	+	+	0	+	+	0	+	0	+	0	+	0	+	+	+			
6	0	0	0	+	+	+	+	0	0	+	+	0	+	0	+	+	0	+	+			
7	0	- 0	0	+	+	+	+	+	+	+	+	+	0	0	+	0	+	0	+			
8	0	0	0	+	+	+	+	+	0	+	+	0	0	+	+	0	0	+	0			
9	0	0	0	+	+	+	+	0	+	0	0	+	0	0	+	0	+	+	+			
10	0	0	0	+	+	+	+	0	0	+	0	0	+	0	+	+	0	+	0			
1	0	0	0	+	+	+	0	+	0	+	0	0	+	0	. +	+	+	+	+			
Patient Typing																						

Example: Panel Cell #10 has 9 antigens present: c, e, f, M, s, Leb, k, Fya, and Jka

Panel

• An autocontrol should also be run with ALL panels

	Cell Number	D	С	Е	С	е	f	M	N	S	s	P1	Lea	Leb	K	k	Fya	Fyb	Jka	Jkb	IS	37	AHG
	1	0	+	0	+	+	+	+	+	+	+	+	+	0	0	+	+	+	+	0			
	2	+	+	0	0	+	0	+	+	0	+	+	0	+	0	+	0	+	+	0			
	3	+	+	0	0	+	0	+	0	+	+	+	0	+	+	+	+	+	0	+			
	4	+	0	+	+	0	+	+	+	0	+	+	+	0	0	+	0	+	+	+			
	5	0	0	+	+	+	+	0	+	+	0	+	0	+	0	+	0	+	+	+			
	6	0	0	0	+	+	+	+	0	0	+	+	0	+	0	+	+	0	+	+			
	7	0	- 0	0	+	+	+	+	+	+	+	+	+	0	0	+	0	+	0	+			
	8	0	0	0	+	+	+	+	+	0	+	+	0	0	+	+	0	0	+	0			
	9	0	0	0	+	+	+	+	0	+	0	0	+	0	0	+	0	+	+	+			
Autocomtrol	10	0	0	0	+	+	+	+	0	0	+	0	0	+	0	+	+	0	+	0			
<u>Autocontrol</u>	11	0	0	0	+	+	+	0	+	0	+	0	0	+	0	+	+	+	+	+			
Patient RBCs	Patient Typing																						
+ Patient serum		INTE	ERPF	RETA	MOIT	1:																	

Panel

• The same phases used in an antibody screen are used in a panel

Cell Number	D	С	Ε	С	е	f	M	N	S	S	P1	Lea	Leb	K	k	Fya	Fyb	Jka	Jkb	IS	37	AHG
1	0	+	0	+	+	+	+	+	+	+	+	+	0	0	+	+	+	+	0			
2	+	+	0	0	+	0	+	+	0	+	+	0	+	0	+	0	+	+	0			
3	+	+	0	0	+	0	+	0	+	+	+	0	+	+	+	+	+	0	+			
4	+	0	+	+	0	+	+	+	0	+	+	+	0	0	+	0	+	+	+			
5	0	0	+	+	+	+	0	+	+	0	+	0	+	0	+	0	+	+	+			
6	0	0	0	+	+	+	+	0	0	+	+	0	+	0	+	+	0	+	+			
7	0	- 0	0	+	+	+	+	+	+	+	+	+	0	0	+	0	+	0	+			
8	0	0	0	+	+	+	+	+	0	+	+	0	0	+	+	0	0	+	0			
9	0	0	0	+	+	+	+	0	+	0	0	+	0	0	+	0	+	+	+			
10	0	0	0	+	+	+	+	0	0	+	0	0	+	0	+	+	0	+	0			
11	0	0	0	+	+	+	0	+	0	+	0	0	+	0	+	+	+	+	+			
Patient Typing																						

HG

You have agglutination...now what?

Interpreting Antibody Panels

- There are a few basic steps to follow when interpreting panels:
 - 1. "Ruling out" means crossing out antigens that did not react
 - 2. Circle the antigens that are not crossed out
 - 3. Consider antibody's usual reactivity
 - 4. Look for a matching pattern

Always remember:

An antibody will only **react**with cells that *have* the
corresponding antigen;
antibodies will **not react** with
cells that *do not have* the
antigen

Here's an example:

1. Ruling Out

Cross out antigens that show NO REACTION in any phase; do NOT cross out heterozygous antigens that show dosage. Rule out each antibody twice homozygously.

Exceptions to Homozygous Exclusion

- Ruling out D and P1
 - Do not have antithetical alleles
 - Ruled out with negative reaction on a positive cell
- Ruling out K
 - Little k = high frequency
 - Finding homozygous K antigen difficult (K+k-)
 - May rule out big K on heterozygous cells (K+k+)
- Ruling out when anti-D is suspected
 - dCe/dCe or and dcE/dcE cells are extremely rare
 - If anti-D is suspected, rule out C and E using heterozygous cells

2. Circle antigens not crossed out

3. Consider antibody's usual reactivity

Le^a is normally a Cold-Reacting antibody (IgM), so it makes sense that we see the reaction in the IS phase of testing; The E antigen will usually react at warmer temperatures

4. Look for a matching pattern

... Yes, there is a matching pattern!

Interpretation

Guidelines

- Again, it's important to look at:
 - Autocontrol
 - Negative alloantibody
 - Positive autoantibody or DTR (i.e., alloantibodies)
 - Phases
 - IS cold (IgM)
 - 37° cold (some have higher thermal range) or warm reacting
 - AHG warm (IgG)…significant!!
 - Reaction strength
 - 1 consistent strength one antibody
 - Different strengths multiple antibodies or dosage

About reaction strengths.....

- Strength of reaction may be due to "dosage"
 - If panel cells are homozygous, a strong reaction may be seen
 - If panel cells are heterozygous, reaction may be weak or even non-reactive
- Panel cells that are heterozygous should not be crossed out because antibody may be too weak to react (see first example)

Antibody	RBCs	Reaction
Anti-Jk ^a	Jk(a+b-)	3+
Anti-Jk ^a	Jk(a+b+)	1+

Guidelines (continued)

Matching the pattern

- <u>Single antibodies</u> usually shows a pattern that matches one of the antigens (see previous panel example)
- Multiple antibodies are more difficult to match because they often show mixed reaction strengths

Rule of three

- The rule of three must be met to confirm the presence of the antibody
- A p-value ≤ 0.05 must be observed
- This gives a 95% confidence interval
- How is it *demonstrated*?
 - Patient serum MUST be:
 - Positive with 3 cells with the antigen
 - Negative with 3 cells without the antigen

Our previous example fulfills the "rule of three"

Panel Cells 1, 4, and 7 are **positive** for the antigen and gave a reaction at immediate spin Panel Cells 8, 10, and 11 are **negative** for the antigen and did not give a reaction at immediate spin

Ruling-In Antibodies

- Must rule-in 3 times
- If there are multiple antibodies (say Jka and E) they must be ruled in on separate cells.
 - 3 cells that are Jka+ and E negative
 - 3 cells that are E+ and Jka negative

What if the "rule of three" is not fulfilled?

- If there are not enough cells in the panel to fulfill the rule, then additional cells from another panel could be used
- Most labs carry different lot numbers of panel cells
- This is called a select cell panel

Select Cell Panels

- Chosen cells that will finish all necessary rule-outs and ruleins
- You must run a positive control with each select cell panel
 - Positive for the suspected antibody
 - Can be homozygous or heterozygous
- If you are only running rule-ins, a negative control must then be run

Selected Cells

Selected cells	S	Jk ^a	P ₁	IS	LISS 37°	AHG
#1	+ •	O	O	0	Q	2+
#5	0	+ 4-	O	0	Q	3+
#8	0	0	+	0	0	0 🗸

These results show that instead of 3 antibodies, there are actually 2: anti-S and anti-Jk^a

Phenotyping

- In addition to the rule of three, antigen typing the patient red cells can also confirm an antibody
- How is this done?
 - If reagent antisera (of the suspected antibody) is added to the patient RBCs, a **negative** reaction should result...Why?

Individuals **DO NOT** make alloantibodies against antigens they have

Tips for Difficult Panels

- Determine patient history (transfusion, pregnancy, etc.)
- Look at variation in reaction strength
- Test in different methods (gel, PEG, LISS, solid phase, etc.)
- Phenotype the patient
- Enzyme treated cells
- Phenotypically matched cells

Cleveland Clinic

Every life deserves world class care.

