3.4.1

Use the methods of this chapter to prove that $\forall x (P(x) \land Q(x))$ is equivalent to $\forall x P(x) \land \forall x Q(x)$.

We want to prove $\forall x (P(x) \land Q(x) \iff \forall x P(x) \land \forall x Q(x))$.

Theorem. The statement $\forall x (P(x) \land Q(x))$ is equivalent to $\forall x P(x) \land \forall x Q(x)$.

Proof. (\rightarrow) Suppose $\forall x(P(x) \land Q(x))$. Let y be arbitrary. Since $\forall x(P(x) \land Q(x))$ it follows P(y) and Q(y). Since y was arbitrary, we can conclude $\forall x P(x)$ and $\forall x Q(x)$ or $\forall x P(x) \land \forall x Q(x)$.

 (\leftarrow) Let y be arbitrary. Since $\forall x P(x)$ and $\forall x Q(x)$ then it follows P(y) and Q(y). Since y was arbitrary we can conclude $\forall x (P(x) \land Q(x))$.