Advanced Database System

Name: Alaikya S Yemul Roll No: 62

ASSIGNMENT NO: 10

Title: Implement algorithm for finding Frequent Itemsets for a given minimum

support.

Theory:

Has it ever happened that you're out to buy something, and you end up buying a lot more than you planned? It's a Phenomenon known as **Impulsive Buying** and Big Retailers take advantage of Machine Learning and **Apriori Algorithm** and make sure that we tend to buy more.

Apriori algorithm uses frequent itemsets to generate association rules. It is based on the concept that a subset of a frequent itemset must also be a frequent itemset. Frequent Itemset is an itemset whose support value is greater than a threshold value(support).

Apriori Algorithm

Apriori algorithm uses frequent itemsets to generate association rules. It is based on the concept that a subset of a frequent itemset must also be a frequent itemset. Frequent Itemset is an itemset whose support value is greater than a threshold value(support).

Let's say we have the following data of a store.

TID	Items
T1	134
T2	2 3 5
Т3	1235
T4	2 5
T5	135

Iteration 1: Let's assume the support value is 2 and create the item sets of the size of 1 and calculate their support values.

WALCHAND INSTITUTE OF TECHNOLOGY, SOLAPUR INFORMATION TECHNOLOGY

2021-22 SEMESTER –I **Advanced Database System**

Name: Alaikya S Yemul Roll No: 62

ASSIGNMENT NO: 10

Title: Implement algorithm for finding Frequent Itemsets for a given minimum support.

TID	Items
T1	134
T2	235
T3	1235
T4	2 5
T5	135

As you can see here, item 4 has a support value of 1 which is less than the min support value. So we are going to **discard {4}** in the upcoming iterations. We have the final Table F1.

Iteration 2: Next we will create itemsets of size 2 and calculate their support values. All the combinations of items set in F1 are used in this iteration.

Advanced Database System

Name: Alaikya S Yemul Roll No: 62

ASSIGNMENT NO: 10

Title: Implement algorithm for finding Frequent Itemsets for a given minimum support.

Itemsets having Support less than 2 are eliminated again. In this case {1,2}. Now, Let's understand what is pruning and how it makes Apriori one of the best algorithm for finding frequent itemsets.

Pruning: We are going to divide the itemsets in C3 into subsets and eliminate the subsets that are having a support value less than 2.

		C3
TID	Items	Itemset
T1	134	{1,2,3}, <mark>{1,2}</mark> , {1,3}, {2,3}
Γ2	2 3 5	
3	1235	{1,2,5}, <mark>{1,2}</mark> , {1,5}, {2,5}
4	2 5	{1,3,5},{1,5}, {1,3}, {3,5}
Γ5	135	{2,3,5}, {2,3}, {2,5}, {3,5}

Iteration 3: We will discard **{1,2,3}** and **{1,2,5}** as they both contain **{1,2}**. This is the main highlight of the Apriori Algorithm.

TID	Items		•
T1	134		Itemset
T2 T3	235	\rightarrow	{1,3,5}
T4	25		{2,3,5}
T5	135		

Iteration 4: Using sets of F3 we will create C4.

TID	Items		3
T1	134	Itemset	Support
T2	235		2
T3	1235	{1,3,5}	2
T4	25	{2,3,5}	2
T5	135		

Advanced Database System

Name: Alaikya S Yemul Roll No: 62

ASSIGNMENT NO: 10

Title: Implement algorithm for finding Frequent Itemsets for a given minimum support.

Since the Support of this itemset is less than 2, we will stop here and the final itemset we will have is F3.

Note: Till now we haven't calculated the confidence values yet.

With F3 we get the following itemsets:

For
$$I = \{1,3,5\}$$
, subsets are $\{1,3\}$, $\{1,5\}$, $\{3,5\}$, $\{1\}$, $\{3\}$, $\{5\}$
For $I = \{2,3,5\}$, subsets are $\{2,3\}$, $\{2,5\}$, $\{3,5\}$, $\{2\}$, $\{3\}$, $\{5\}$

Applying Rules: We will create rules and apply them on itemset F3. Now let's assume a minimum confidence value is **60%**.

For every subsets S of I, you output the rule

- $S \rightarrow (I-S)$ (means S recommends I-S)
- if support(I) / support(S) >= min_conf value

{1,3,5}

Rule 1:
$$\{1,3\} \rightarrow (\{1,3,5\} - \{1,3\})$$
 means 1 & 3 -> 5

Confidence = support(1,3,5)/support(1,3) = 2/3 = 66.66% > 60%

Hence Rule 1 is **Selected**

Rule 2:
$$\{1,5\} \rightarrow (\{1,3,5\} - \{1,5\})$$
 means 1 & 5 -> 3

Confidence = support(1,3,5)/support(1,5) = 2/2 = 100% > 60%

Rule 2 is **Selected**

Rule 3:
$$\{3,5\} \rightarrow (\{1,3,5\} - \{3,5\})$$
 means $3 \& 5 \rightarrow 1$

Advanced Database System

Name: Alaikya S Yemul Roll No: 62

ASSIGNMENT NO: 10

Title: Implement algorithm for finding Frequent Itemsets for a given minimum support.

Confidence = support(1,3,5)/support(3,5) = 2/3 = 66.66% > 60%

Rule 3 is **Selected**

Rule 4:
$$\{1\} \rightarrow (\{1,3,5\} - \{1\}) \text{ means } 1 \rightarrow 3 \& 5$$

Confidence = support(1,3,5)/support(1) = 2/3 = 66.66% > 60%

Rule 4 is **Selected**

Rule 5:
$$\{3\} \rightarrow (\{1,3,5\} - \{3\}) \text{ means } 3 \rightarrow 1 \& 5$$

Confidence = support(1,3,5)/support(3) = 2/4 = 50% < 60%

Rule 5 is **Rejected**

Rule 6:
$$\{5\} \rightarrow (\{1,3,5\} - \{5\}) \text{ means } 5 \rightarrow 1 \& 3$$

Confidence = support(1,3,5)/support(5) = 2/4 = 50% < 60%

Rule 6 is **Rejected**

This is how you create rules in Apriori Algorithm and the same steps can be implemented for the itemset {2,3,5}. Try it for yourself and see which rules are accepted and which are rejected.

Program:

```
import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
def encode_units(x):
    if x <= 0:</pre>
```

Advanced Database System

Name: Alaikya S Yemul Roll No: 62

ASSIGNMENT NO: 10

Title: Implement algorithm for finding Frequent Itemsets for a given minimum support.

```
return 0
   if x >= 1:
        return 1
df = pd.read excel('D:\PROGRAMS\Online Retail.xlsx')
df.head()
df['Description'] = df['Description'].str.strip()
df.dropna(axis=0, subset=['InvoiceNo'], inplace=True)
df['InvoiceNo'] = df['InvoiceNo'].astype('str')
df = df[~df['InvoiceNo'].str.contains('C')]
basket = (df[df['Country'] =="France"]
          .groupby(['InvoiceNo', 'Description'])['Quantity']
          .sum().unstack().reset_index().fillna(0)
          .set_index('InvoiceNo'))
basket
basket sets = basket.applymap(encode units)
basket_sets.drop('POSTAGE', inplace=True, axis=1)
frequent itemsets = apriori(basket sets, min support=0.07, use colnames=True)
rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1)
rules[ (rules['lift'] >= 6) & (rules['confidence'] >= 0.8) ]
```

Screenshots:

Advanced Database System

Name: Alaikya S Yemul Roll No: 62

ASSIGNMENT NO: 10

Title: Implement algorithm for finding Frequent Itemsets for a given minimum support.

Advanced Database System

Name: Alaikya S Yemul Roll No: 62

ASSIGNMENT NO: 10

Title: Implement algorithm for finding Frequent Itemsets for a given minimum support.

Advanced Database System

Name: Alaikya S Yemul Roll No: 62

ASSIGNMENT NO: 10

Title: Implement algorithm for finding Frequent Itemsets for a given minimum support.

