Word Embedding

講者:Isaac

Outline

- Bag of Words
- ▶ TF-IDF vector
- ▶ N-Gram
- Skip-gram and CBOW
- GloVe
- Doc2vect

What's word Embedding

Word embedding is the collective name that words or phrases from the vocabulary are mapped to vectors of real numbers

Bag of Words

What's Bag of Words

 one of the simplest methods of embedding words into numerical vectors

What's Bag of Words

Document I	High five!
Document 2	I am old.
Document 3	She is five.

	Document 1	Document 2	Document 3	
High	1	0	0	
Five	1	0	1	
I	0	1	0	
am	0	1	0	
old	0	1	0	
She	0	0	1	
is	0	0	1	

"Five":[1,0,1]
"Document 2":[0,0,1,1,1,0,0]

What's Bag of Words

Bag of Words - Tokenization

Document	Content
I	["it", "was", "the", "best", "of", "times"]
2	["it", "was", "the", "worst", "of", "times"]
3	["it", "was", "the", "age", "of", "wisdom"]
4	["it", "was", "the", "age", "of", "foolishness"]

Bag of Words - Vocabulary building

"it"
"was"
"the"
"best"
"of"
"times"
"worst"
"age"
"wisdom"
"foolishness"

word	word ID
it	I
was	2
the	3
best	4
of	5
times	6
worst	7
Age	8
wisdom	9
foolishness	10

assuming ignore case and punctuation

Bag of Words - Encoding

word	word ID
it	1
was	2
the	3
best	4
of	5
times	6
worst	7
Age	8
wisdom	9
foolishness	10

"it was the worst of times" = [1, 1, 1, 0, 1, 1, 1, 0, 0, 0]
"it was the age of wisdom" = [1, 1, 1, 0, 1, 0, 0, 1, 1, 0]
"it was the age of foolishness" = [1, 1, 1, 0, 1, 0, 0, 1, 0, 1]

Drawback of Bag of Words

- ignores word order
- sparse vector problems
 - solved by filtering out stop word, stemming, lemmazation, ignoring case etc

What's tf-idf?

- tf-idf(term frequency-inverse document frequency) is a method that reflect how important a in a collection of corpus
 - tf means term "frequency"
 - idf means term "inverse document frequency"

Term Frequency (TF)

- In a single document
 - measures how frequently a term occurs in a document

TF = (Number of time the word occurs in the text) / (Total number of words in text)

Inverse Data Frequency (IDF)

Among multiple documents

IDF = log(Total number of documents / Number of documents with word t in it)

Document	Content
Document I	It is going to rain today.
Document 2	Today I am not going outside.
Document 3	I am going to watch the season premiere.

Words / Documents	Document I	Document 2	Document 3	
going	0.16	0.16	0.12	
to	0.16	0	0.12	
today	0.16	0.16	0	
i	0	0.16	0.12	
am	0	0.16	0.12	
it	0.16	0	0	
is	0.16	0	0	
rain	0.16	0	0	

calculate TF on each document

Words / Documents	IDF
going	Log(3/3)
to	Log(3/2)
today	Log(3/2)
i	Log(3/2)
am	Log(3/2)
it	Log(3/1)
is	Log(3/1)
rain	Log(3/1)

calculate TF on each document

Words/ Documents	going	to	today	I	am	it	is	rain
Document	0	0.07	0.07	0	0	0.17	0.17	0.17
Document2	0	0	0.07	0.07	0.07	0	0	0
Document3	0	0.05	0	0.05	0.05	0	0	0

DocumentI = [0, 0.07, 0.07, 0, 0, 0.17, 0.17, 0.17]

N-Gram

What's N-Gram

 n-gram is a contiguous sequence of n items from a given sample of text or speech

What's N-Gram

- Use N-gram to form word vector
 - same as bag of word

word	word ID			
this is	I			
is a	2			
a sentence	3			
a cat	4			
a dog	5			

"this is a dog"

[1,1,0,0,1]

Language model

Probability a sentence occur in a text

Language model

```
the large green __ . Possible answer may be "mountain" or "tree" ?
```

Kate swallowed the large green __ . Possible answer may be "pill" or "broccoli" ?

```
SI="我剛吃過晚飯"
S2="剛我過晚飯吃"
```

Which sentence is more reasonable?

Assume students' height is normal distribution

Student ID	I	2	3	4	5
Height (cm)	162	164	170	168	166

What's mean of the normal distribution?

Assume students' height is normal distribution

Student ID	I	2	3	4	5
Height (cm)	162	164	170	168	166

Intuitively:

mean =
$$(162+164+170+168+166)/5 = 166$$

But why.....?

Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a technique used for estimating the parameters of a given distribution, using some observed data

Given probability distribution f that have some unknown parameters θ x1, x2, ..., xn are observation from f

Likelihood function: $f(x1, x2, ..., xn | \theta) = f(x1 | \theta) * f(x2 | \theta) * ... * f(xn | \theta)$

Maximum Likelihood Estimation

Usually, we use Maximum log likelihood because Maximum likelihood is hard to calculate

Likelihood function: $f(x1, x2, ..., xn | \theta) = f(x1 | \theta) * f(x2 | \theta) * ... * f(xn | \theta)$

Log Likelihood function:
$$f(x_1, x_2, ..., x_n | \theta) = \sum_{i=1}^{n} \log(f(x_i | \theta))$$

Assume apple weights is normal distribution

We got three apples and their weights are 9, 9.5, I I respectively

Our goal is to estimate the mean/std of total apples on the tree

$$P(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

We want to maximize likelihood(the following equation)

$$P(9, 9.5, 11; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(9-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(9.5-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(11-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(11-\mu)^2}{2\sigma^2}\right)$$

But it is hard to derivative on this equation!

maximize likelihood equivalent to maximize log likelihood

$$P(9, 9.5, 11; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(9-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(9.5-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(11-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(11-\mu)^2}{2\sigma^2}\right)$$

$$\ln(P(x;\mu,\sigma)) = \ln\left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{(9-\mu)^2}{2\sigma^2} + \ln\left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{(9.5-\mu)^2}{2\sigma^2} + \ln\left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{(11-\mu)^2}{2\sigma^2}$$

$$\frac{\partial \ln(P(x;\mu,\sigma))}{\partial \mu} = \frac{1}{\sigma^2} \left[9 + 9.5 + 11 - 3\mu \right].$$

$$\mu = \frac{9 + 9.5 + 11}{3} = 9.833$$

Likelihood Estimation Table

Distribution	Estimated parameters
$\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\pi)^2}{2\sigma^2}}$	$\mu = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{x}$ $\sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$
$\lambda e^{-\lambda x}$	$\lambda = \frac{1}{\bar{x}}$
$\frac{e^{-\lambda}\lambda^k}{k!}$	$\lambda = \bar{x}$
•	:

Assume we have m word sequence, the probability of this sentence is

$$P(w_1, w_2, \dots, w_m) = P(w_1)P(w_2|w_1)P(w_3|w_1, w_2) \cdots P(w_m|w_1, \dots, w_{m-1})$$

Assume Markov Property

$$P(w_i|w_1,\cdots,w_{i-1}) = P(w_i|w_{i-n+1},\cdots,w_{i-1})$$

$$P(w_i|w_1,\cdots,w_{i-1}) = P(w_i|w_{i-n+1},\cdots,w_{i-1})$$

unigram model (n=1)

$$P(w_1,w_2,\cdots,w_m) = \prod_{i=1}^m P(w_i)$$
 $P(w_i) = rac{C(w_i)}{M}$

bigram model (n=2)

$$P(w_1, w_2, \cdots, w_m) = \prod_{i=1}^m P(w_i | w_{i-1}) \qquad \qquad P(w_i | w_{i-1}) = rac{C(w_{i-1} w_i)}{C(w_{i-1})}$$

trigram model (n=3)

$$P(w_1, w_2, \cdots, w_m) = \prod_{i=1}^m P(w_i | w_{i-2} w_{i-1}) \qquad P(w_i | w_{i-n-1}, \cdots, w_{i-1}) = rac{C(w_{i-n-1}, \cdots, w_i)}{C(w_{i-n-1}, \cdots, w_{i-1})}$$

Example

Assume we have a corpus

Sentence	Content
I	<s1> <s2> yes no no no yes </s2></s1>
2	<s1> <s2> no no no yes yes yes no </s2></s1>

We want to calculate probability of the following sentence:

Example

Use trigram as example

$$egin{aligned} P(yes| < s1 > < s2 >) &= rac{1}{2}, & P(no| < s2 > yes) = 1 \ & P(no|yes no) = rac{1}{2}, & P(yes|no no) = rac{2}{5} \ & P(|no yes) = rac{1}{2}, & P(|yes < /s2 >) = 1 \end{aligned}$$

<s1> <s2> yes no no yes </s1> </s2>

$$\frac{1}{2} \times 1 \times \frac{1}{2} \times \frac{2}{5} \times \frac{1}{2} \times 1 = 0.05$$

lots of

lots of love lots of fish lots of discharge lots of lollies

Press Enter to search.

search engine

text generation

Skip-gram and CBOW

Skip-gram and CBOW

- ▶ NN-based algorithm
- Core concept
 - the meaning of a word can be inferred by the company it keeps

I like math.

I like programming.

Today is Friday.

Today is a good day.

- •like is the context of target I
- •math is the context of target like
- •programming is also the context of target like

Transform many sentences into training pairs

Window size = 2

Skip-Gram V.S. CBOW

GloVe

What's GloVe

 Glove(Global Vectors for Word Representation) is a count-based and overall statistics word representation method

Construct Co-ocurrence Matrix

		the	cat	sat	on	mat
	the	0	1	0	1	1
v _	cat	1	0	1	0	0
X =	sat	0	1	0	1	0
	on	1	0	1	0	0
	mat	1	0	0	0	0

$$w_i^T ilde{w}_j + b_i + ilde{b_j} = \log(X_{ij})$$

 w_i, w_j : word vector

 b_i , b_i : bias term

 X_{ij} : entity i, j in co – ocurrance matrix i

relationship between word vector and co-ocurrence matrix

Define Cost

$$J = \sum_{i,j=1}^V \! f(X_{ij}) (w_i^T ilde{w}_j + b_i + ilde{b_j} \! - \! \log(X_{ij}))^2$$

avoid Xij is zero

$$f(x) = \left\{ egin{array}{ll} (x/x_{max})^{lpha} & ext{if } x < x_{max} \ 1 & ext{otherwise} \end{array}
ight.$$

Define Cost

$$f(x) = \begin{cases} (\frac{x}{xmax})^{\alpha}, & \text{if } x < xmax \\ 1, & \text{if } x \ge xmax \end{cases}$$

Figure 1: Weighting function f with $\alpha = 3/4$.

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	$2.2 imes 10^{-5}$	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

If word k is very similar to ice but irrelevant to steam (e.g. k=solid) $\rightarrow P(k|ice)/P(k|steam)$ will be very high (>1)

If word k is very similar to steam but irrelevant to ice (e.g. k=gas) $\rightarrow P(k|ice)/P(k|steam)$ will be very small (<1)

If word k is related or unrelated to either words $\rightarrow P(k|ice)/P(k|steam)$ will be close to I

$$F(w_i,w_j, ilde{w_k}) = rac{P_{ik}}{P_{jk}}$$

$$F(w_i-w_j, \widetilde{w_k}) = rac{P_{ik}}{P_{ik}}$$

Word vectors are linear systems vec(king)-vec(male) + vec(queen) = vec(female)

Make LHS scalar

$$F((w_i-w_j)^T \widetilde{w_k}) = rac{P_{ik}}{P_{ik}}$$

$$F((w_i-w_j)^T \widetilde{w_k})$$

homomorphism property F(A-B) = F(A)/F(B)

$$F(A-B) = F(A)/F(B)$$
 $F((w_i - w_j)^T \tilde{w_k}) = rac{F(w_i^T ilde{w_k})}{F(w_j^T ilde{w_k})} \qquad F((w_i - w_j)^T ilde{w_k}) = rac{P_{ik}}{P_{jk}}$

$$F((w_i-w_j)^T ilde{w_k})=rac{P_{ik}}{P_{jk}}$$

$$F(w_i^T ilde{w_k}) = P_{ik} = rac{X_{ik}}{X_i}$$

 $F(w_i^T ilde{w_k}) = P_{ik} = rac{X_{ik}}{X_i}$

assume F is exp

$$w_i^T ilde{w_k} = \log(P_{ik}) = \log(X_{ik}) - \log(X_i)$$

assume bi + bj = Xi

$$w_i^T \tilde{w}_j + b_i + \tilde{b_j} = \log(X_{ij})$$

Doc2vect

Doc2vect

Distributed Memory version of Paragraph Vector (PV-DM)

Words version of Paragraph Vector (PV-DBOW)