

AMENDMENTS TO THE CLAIMS

Listing of Claims:

Claims 1-21 (Canceled).

Claim 22. (Currently amended) A voice communication circuit comprising:
at least one processor operable to packetize digitized voice information to produce at least one voice packet;
a buffer operable to store the at least one voice packet;
interface circuitry operable to communicatively couple the buffer with one of a plurality of interchangeable network interfaces, each of the plurality of interchangeable network interfaces supporting communication of voice packets via an associated type of communication network;
the at least one processor operable to reduce the quantity of voice packets communicated by changing the packetization based upon a level of voice activity;
the at least one processor operable to determine the associated type of communication network supported by the one of the plurality of interchangeable network interfaces in communication with the interface circuitry;
the at least one processor operable to perform call setup based upon the determined associated type of communication network; and
the at least one processor operable to cause transmission of voice packets via the one of the plurality of interchangeable network interfaces based upon the associated type of communication network.

Claim 23. (Previously Presented) The voice communication circuit of claim 22 wherein the voice packets are packetized according to an Internet protocol (IP).

Claim 24. (Previously Presented) The voice communication circuit of claim 23 wherein the Internet protocol (IP) comprises the transmission control protocol (TCP)/Internet protocol (IP).

Claim 25. (Previously Presented) The voice communication circuit of claim 22 wherein the associated type of communication network is a wireless packet network.

Claim 26. (Previously Presented) The voice communication circuit of claim 25 wherein the wireless packet network communicates at approximately 2.4 gigahertz.

Claim 27. (Previously Presented) The voice communication circuit of claim 25 wherein the wireless packet network communicates using a frequency hopping spread spectrum technique.

Claim 28. (Previously Presented) The voice communication circuit of claim 25 wherein the wireless packet network communicates using a direct sequence spread spectrum technique.

Claim 29. (Previously Presented) The voice communication circuit of claim 22 wherein the associated type of communication network comprises a wired network.

Claim 30. (Previously Presented) The voice communication circuit of claim 29 wherein the wired network comprises an Ethernet compatible network.

Claim 31. (Previously Presented) The voice communication circuit of claim 29 wherein the wired network comprises a conventional telephone switching network.

Claim 32. (Previously Presented) The voice communication circuit of claim 22 wherein the interface circuitry is compatible with a Personal Computer Memory Card Interface Association (PCMCIA) standard.

Claim 33. (Cancelled)

Claim 34. (Previously presented) The voice communication circuit of claim 22 further comprising

converter circuitry operable to convert a voice stream into digitized voice information.

Claim 35. (Previously Presented) The voice communication circuit of claim 22 wherein the voice stream comprises an analog signal.

Claim 36. (Currently amended) A voice communication circuit comprising:
interface circuitry operable to communicatively couple with one of a plurality of interchangeable network interfaces, each of the plurality of interchangeable network interfaces operable to communicate via an associated type of communication network to receive at least one voice packet;

a buffer operable to store the at least one voice packet;

at least one processor operable to depacketize the at least one voice packet to produce digitized voice information;

the at least one processor operable to determine the associated type of communication network supported by the one of the plurality of interchangeable network interfaces in communication with the interface circuitry;

the at least one processor operable to adapt call setup based upon the determined associated type of communication network;

the at least one processor operable to cause the reception of the at least one packet via the one of the plurality of interchangeable network interfaces based upon the associated type of communication network; and

the at least one processor operable to cause conversion of the digitized voice information to produce a voice stream and to adjust the buffering of voice packets in order to minimize gaps in the voice stream, wherein the adjusting is based upon a propagation delay of a communication network.

Claim 37. (Previously Presented) The voice communication circuit of claim 36 wherein the voice packets are packetized according to an Internet protocol (IP).

Claim 38. (Previously Presented) The voice communication circuit of claim 36 wherein the associated type of communication network is a wireless packet network.

Claim 39. (Previously Presented) The voice communication circuit of claim 38 wherein the wireless packet network communicates at approximately 2.4 gigahertz.

Claim 40. (Previously Presented) The voice communication circuit of claim 38 wherein the wireless packet network communicates using a frequency hopping spread spectrum technique.

Claim 41. (Previously Presented) The voice communication circuit of claim 38 wherein the wireless packet network communicates using a direct sequence spread spectrum technique.

Claim 42. (Previously Presented) The voice communication circuit of claim 36 wherein the associated type of communication network is a wired network.

Claim 43. (Previously Presented) The voice communication circuit of claim 42 wherein the wired network comprises an Ethernet compatible network.

Claim 44. (Previously Presented) The voice communication circuit of claim 42 wherein the wired network comprises a conventional telephone switching network.

Claim 45. (Previously Presented) The voice communication circuit of claim 36 wherein the interface circuitry is compatible with a Personal Computer Memory Card Interface Association (PCMCIA) standard.

Claims 46-48. (Cancelled)

Claim 49. (Previously presented) The voice communication circuit of claim 36 wherein the voice stream is an analog signal.

Claim 50. (Currently amended) A non-transitory computer-readable storage having stored thereon a computer program having a plurality of code sections for implementing a voice communication system, the voice communication system operable to accept at any point in time one of a plurality of interchangeable network interfaces, each of the interchangeable network interfaces for use with an associated type of communication network, the code sections executable by a computer for causing the computer to perform the operations comprising:

detecting the presence of an interchangeable network interface;

determining the associated type of communication network for use with the detected interchangeable network interface;

performing call setup of the voice communication system based upon the determined associated type of communication network;

establishing a packet voice call via the associated type of communication network;

converting analog voice information to transmit voice packets;

sending the transmit voice packets via the associated type of communication network using the interchangeable network interface;

receiving voice packets via the associated type of communication network using the interchangeable network interface; and

converting the received voice packets to analog voice information, wherein converting the received voice packets to analog voice information comprises buffering voice packets for an adjustable period of time to avoid gaps in the analog voice information, and wherein the adjustable period of time is based upon a propagation delay.

Claim 51. (Previously presented) The non-transitory computer-readable storage of claim 50 wherein the associated type of communication network comprises a wireless network.

Claim 52. (Previously presented) The non-transitory computer-readable storage of claim 51 wherein the wireless network communicates at approximately 2.4 gigahertz.

Claim 53. (Previously presented) The non-transitory computer-readable storage of claim 51 wherein the wireless network communicates using a frequency hopping spread spectrum technique.

Claim 54. (Previously presented) The non-transitory computer-readable storage of claim 50 wherein the associated type of communication network is a local area network.

Claim 55. (Previously presented) The non-transitory computer-readable storage of claim 50 wherein the associated type of communication network comprises an Ethernet compatible network.

Claim 56. (Previously presented) The non-transitory computer-readable storage of claim 50 wherein the associated type of communication network comprises a conventional telephone switching network.

Claim 57. (Previously presented) The non-transitory computer-readable storage of claim 50 wherein converting analog voice information to transmit voice packets comprises:

reducing the volume of transmit voice packets based upon a level of voice activity.

Claims 58-60. (Cancelled)