

INT354 Machine Learning

Decision Trees and Random Forests

Decision Tree Learning

 Breaking down data by making decisions based on asking a series of questions.

Decision Tree Learning

- A decision tree consists of
 - Nodes
 - Test for the value of a certain attribute.
 - Edges
 - Correspond to the outcome of a test.
 - Connect to the next node or leaf.
 - Leaves
 - Terminal nodes that predict the outcome.

Algorithm

- 1. Start at the root.
- Perform the test.
- 3. Follow the edge corresponding to outcome.
- 4. Goto step 2 unless leaf.
- Predict the outcome associated with the leaf.

Design Decision Tree

Day	Temperature	Outlook	Humidity	Windy	Play Golf?
07-05	hot	sunny	high	false	no
07-06	hot	sunny	high	true	no
07-07	hot	overcast	high	false	yes
07-09	cool	rain	normal	false	yes
07-10	cool	overcast	normal	true	yes
07-12	mild	sunny	high	false	no
07-14	cool	sunny	normal	false	yes
07-15	mild	rain	normal	false	yes
07-20	mild	sunny	normal	true	yes
07-21	mild	overcast	high	true	yes
07-22	hot	overcast	normal	false	yes
07-23	mild	rain	high	true	no
07-26	cool	rain	normal	true	no
07-30	mild	rain	high	false	yes

Note: Consider "Outlook" as root node

today cool sunny	normal false	?
------------------	--------------	---

tomorrow mild	sunny	normal	false	?
---------------	-------	--------	-------	---

© LPU :: INT247 Machine Learning Foundations

Good Attribute?

- Prefers attributes that have a high degree of "order".
 - Maximum Order: All examples are of the same class.
 - Minimum Order: All classes are equally likely.

Entropy

Entropy is the measure of

- Impurity
- Disorder
- uncertainty

Entropy for two classes:

$$E(S) = -p_1 \cdot log_2 p_1 - p_2 \cdot log_2 p_2$$

S is the complete set, p1 is the proportion of examples in class 1 and p2=1-p1 is the proportion of examples in class 2.

Compute entropy

- Outlook=sunny
- Outlook=overcast
- Outlook=rainy

© LPU :: INT247 Machine Learning Foundations

Entropy for more classes

$$E(S) = -p_1 \cdot log p_1 - p_2 \cdot log p_2 \dots - p_n \cdot log p_n$$
$$= -\sum_{i=1}^{n} p_i \cdot log p_i$$

Entropy Disadvantages

 Only computes the quality of a single subset of examples corresponds to a single value.

© LPU :: INT247 Machine Learning Foundations

Average Entropy

 Computes the quality of the entire split corresponds to an entire attribute.

$$I(S,A) = \sum_{i} \frac{|s_i|}{|s|} \cdot E(Si)$$

S is the complete set.

A is Attribute that splits S into different subsets.

Properties of Entropy

- When node is pure, measure should be zero.
- When impurity is maximal, measure should be maximal.

 Compute the average entropy for attribute "Outlook".

© LPU :: INT247 Machine Learning Foundations

Information Gain

$$Gain(S,A) = E(S) - I(S,A)$$

$$= E(S) - \sum_{i} \frac{|s_{i}|}{|s|} \cdot E(Si)$$

Where S is complete set and A is the attribute that splits the set S into subsets S_i .

Note: Maximizing information gain is equivalent to minimizing average entropy, because *E(S)* is constant for all attributes *A*.

- Compute the information gain for
 - Gain(S, Humidity)=?
 - Gain(S, Wind)=?
 - Gain(S, Outlook)=?
 - Gain(S, Temperature)=?

Note:

The attribute with maximum information gain is selected as root node.

Intrinsic Information of an attribute

 Amount of information need to tell which branch an instance belongs to

$$Int1(S,A) = -\sum_{i} \frac{|S_i|}{|S|} log(\frac{|S_i|}{|S|})$$

Note:

Attributes with higher intrinsic information are less useful.

- Compute intrinsic information of
 - Day
 - Temperature
 - Humidity
 - Windy
 - Outlook

Gain Ratio

 Modification of the information gain that reduces its bias towards multi-valued attributes.

$$GR(S,A) = \frac{Gain(S,A)}{Int1(S,A)}$$

- Compute gain ratio of
 - Day
 - Temperature
 - Humidity
 - Windy
 - outlook

Gini Index

Measure impurity

$$Gini(S) = 1 - \sum_{i} p_i^2$$

Average Gini Index

$$Gini(S,A) = \sum_{i} \frac{|S_i|}{|S|} \cdot Gini(Si)$$

Pruning

Pre-pruning:

Stop growing a branch when information becomes unreliable.

Post-pruning:

- Grow a decision tree that correctly classifies all training data.
- Simplify it later by replacing some nodes with leafs.

Random Forest

 Builds multiple decision tree and merges them together to get a more accurate and stable prediction.

© LPU :: INT247 Machine Learning Foundations

Random Forest Creation Algorithm

- 1. Randomly select "K" features from total "m" feaures.
 - Where K << m
- 2. Among the "K" features, calculate the node "d" using the best split point.
- 3. Split the node into daughter nodes using the best split.
- 4. Repeat 1 to 3 steps until "I" number of nodes has been reached.
- 5. Build forest by repeating steps 1 to 4 for "n" number of times to create "n" number of trees.

Random Forest Prediction Algorithm

- 1. Takes the test features and use the rules of each randomly created decision tree to predict the outcome and stores the predicted outcome.
- 2. Calculate the vote for each predicted target.
- 3. Consider the high voted predicted target as the final prediction from the random forest algorithm.

Random Forest Example

Mady takes opinion from friends for some problem.

Why Random Forest Algorithm?

- Can be used for both classification and regression.
- Handles the missing value.
- Not over-fit the model.

Algorithm Selection

