

ÉPREUVE SPÉCIFIQUE - FILIÈRE MP

MATHÉMATIQUES 1

Lundi 29 avril : 14 h - 18 h

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont interdites

Le sujet est composé de deux exercices et d'un problème, tous indépendants.

EXERCICE I

On admet que
$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 et on pose, pour $t \in]0, +\infty[$, $f(t) = \frac{te^{-t}}{1 - e^{-t}}$.

Q1. Justifier que la fonction f est intégrable sur $]0,+\infty[$ puis, à l'aide d'un théorème d'intégration terme à terme, calculer l'intégrale $\int_0^{+\infty} \frac{t}{e^t-1} \, \mathrm{d}t$.

EXERCICE II

Si X est une variable aléatoire à valeurs dans \mathbb{N} de loi de probabilité donnée par : $\forall n \in \mathbb{N}$, $p_n = P(X = n)$, la fonction génératrice de X est $G_X(t) = E(t^X) = \sum_{n=0}^{+\infty} p_n t^n$.

Q2. Démontrer que l'intervalle]-1,1[est inclus dans l'ensemble de définition de la fonction G_X .

Soient X_1 et X_2 deux variables aléatoires indépendantes à valeurs dans $\mathbb N$.

On pose $S = X_1 + X_2$, démontrer que pour tout $t \in]-1$, 1[, $G_S(t) = G_{X_1}(t).G_{X_2}(t)$ par deux méthodes : l'une utilisant le produit de Cauchy de deux séries entières et l'autre utilisant uniquement la définition : $G_X(t) = E(t^X)$.

On généralise ce résultat, que l'on pourra utiliser dans la question suivante, à n variables aléatoires mutuellement indépendantes à valeurs dans \mathbb{N} (on ne demande pas de preuve de cette récurrence).

Q3. Un sac contient quatre boules : une boule numérotée 0, deux boules numérotées 1 et une boule numérotée 2.

On effectue n tirages d'une boule avec remise et on note S_n la somme des numéros tirés.

Déterminer pour tout $t \in]-1, 1[$, $G_{S_n}(t)$ et en déduire la loi de S_n .

PROBLÈME

Introduction

Dans ce sujet une série de fonctions L_a est une série de fonctions $\sum_{n\geq 1} a_n \frac{x^n}{1-x^n}$ où $(a_n)_{n\geq 1}$ est une suite de réels telle que la série entière $\sum_{n\geq 1} a_n x^n$ soit de rayon 1.

Partie I - Propriétés

Soit une série de fonctions $L_a: \sum_{n\geq 1} a_n \frac{x^n}{1-x^n}$.

Q4. Si $x \in]-1,1[$, donner un équivalent de $1-x^n$ pour n au voisinage de $+\infty$.

Démontrer que pour tout $x \in]-1,1[$, la série $\sum_{n>1} a_n \frac{x^n}{1-x^n}$ converge absolument.

Remarque : la série L_a peut parfois converger en dehors de l'intervalle]-1,1[. Donner un exemple de suite $(a_n)_{n\geq 1}$ telle que la série L_a converge en au moins un x_0 n'appartenant pas à l'intervalle]-1,1[.

- Q5. Démontrer que la série de fonctions $\sum_{n\geq 1} a_n \frac{x^n}{1-x^n}$ converge uniformément sur tout segment [-b,b] inclus dans l'intervalle]-1,1[.
- **Q6.** On pose, pour tout $x \in]-1,1[, f(x) = \sum_{n=1}^{+\infty} a_n \frac{x^n}{1-x^n}.$

Justifier que la fonction f est continue sur l'intervalle]-1,1[et démontrer ensuite que la fonction f est de classe C^1 sur l'intervalle]-1,1[. Donner la valeur de f'(0) .

Q7. Expression sous forme de série entière

On note $A = \mathbb{N}^* \times \mathbb{N}^*$.

Lorsque $(u_{n,p})_{(n,p)\in A}$ est une famille sommable de réels, justifier que

$$\sum_{n=1}^{+\infty} \left(\sum_{p=1}^{+\infty} u_{n,p} \right) = \sum_{n=1}^{+\infty} \left(\sum_{(k,p) \in I_n} u_{k,p} \right), \text{ où } I_n = \{(k,p) \in A, kp = n\}.$$

Démontrer que pour tout $x \in]-1,1[$, la famille $(a_n x^{np})_{(n,p)\in A}$ est sommable.

En déduire que pour tout $x \in]-1,1[$, $\sum_{n=1}^{+\infty} a_n \frac{x^n}{1-x^n} = \sum_{n=1}^{+\infty} b_n x^n$ où $b_n = \sum_{d|n} a_d$

(d|n signifiant d divise n).

Partie II - Exemples

- **Q8.** Dans cette question, pour $n \ge 1$, $a_n = 1$ et on note d_n le nombre de diviseurs de n. Exprimer, pour tout $x \in]-1,1[$, $f(x) = \sum_{n=1}^{+\infty} a_n \frac{x^n}{1-x^n}$ comme la somme d'une série entière.
- **Q9.** Dans cette question, pour $n \ge 1$, $a_n = \varphi(n)$ où $\varphi(n)$ est le nombre d'entiers naturels premiers avec n et inférieurs à n.

Justifier que la série entière $\sum_{n>1} a_n x^n$ est de rayon 1.

On admet que pour $n \ge 1$, $n = \sum_{d|n} \varphi(d)$. Vérifier ce résultat pour n = 12.

Pour $x \in]-1,1[$, exprimer $\sum_{n=1}^{+\infty} \varphi(n) \frac{x^n}{1-x^n}$ sous la forme d'un quotient de deux polynômes.

- **Q10.** En utilisant le théorème de la double limite, établir à l'aide du développement en série entière de la fonction $x \mapsto \ln(1+x)$ sur l'intervalle]-1,1[, la valeur de la somme $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$.
- **Q11.** Dans cette question et la suivante, pour $n \ge 1$, $a_n = (-1)^n$ et pour tout $x \in]-1,1[$, $f(x) = \sum_{n=1}^{+\infty} a_n \frac{x^n}{1-x^n}$.

En utilisant le théorème de la double limite, calculer $\lim_{x\to 0} \frac{f(x)}{x}$ et donner un équivalent de f(x) au voisinage de 0. Retrouver le dernier résultat de la question **Q6**.

Q12. Démontrer qu'au voisinage de 1, $f(x) \sim \frac{-\ln 2}{1-x}$.

On pourra remarquer que pour $x \in]0,1[$, $\frac{1-x}{1-x^n} = \frac{1}{1+x+x^2+...+x^{n-1}}$.

FIN