Математика для Data Science. Теория вероятностей. Решения задач

Содержание

	ия и независимые случайные величины	2
Задача 1		 2
Задача 2		 2
Независимы	е случайные величины	3
Задача 1		 3
Дополните.	пьная задача	 3
Задача 2		 4
Дисперсия		4
		 4
Задача 3		 4
Задача 4		 5
Биномиальн	ое распределение и стандартное отклонение	5
		 5
Задача 3		 6
Дополните	льная задача	 6
Ряды		7
		 7
Задача 2		 8
Задача 3		
Задача 4		 8
Абсолютно с	ходящиеся ряды	9
	· · · · · · · · · · · · · · · · · · ·	 9
Задача 2		 10
Задача 3		 10
Дополните	льная задача	 11
Счётное про	странство исходов	13
		 13
1 1		

Замечание. Вот этим цветом отмечены ссылки на страницы внутри этого файла.

Распределения и независимые случайные величины

Задача 1

Мы три раза подряд подбрасываем честную монету.

- Случайная величина У суммарное число выпавших решек
- ullet Случайная величина Z суммарное число выпавших орлов
- 1. Верно ли, что Y = Z?
- 2. Докажите, что $p_Y(a) = p_Z(a)$ для любого числа $a \in \mathbb{R}$. Тем самым, у Y и Z одинаковые функции вероятности. Можно записать это так: $p_Y = p_Z$.

Определение. Две случайные величины с совпадающими функциями вероятности называются *одинаково* распределёнными.

Подсказка. Равенство случайных величин — это то же, что равенство функций.

Решение.

- 1. Случайные величины Y и Z не равны, ведь при любом исходе ω выполнено $Y(\omega) \neq Z(\omega)$.
- 2. Пусть $a \in \mathbb{R}$. Тогда $p_Y(a) = P(Y = a)$ и $P_Z(a) = P(Z = a)$. Значения a, при которых эти вероятности не обращаются в ноль, это $\{0, 1, 2, 3\}$.

Рассмотрим, например, случай a=0. Тогда $p_Y(0)=P(Y=0)$ — вероятность того, что на трёх честных монетках не выпало ни одной решки, то есть все три раза выпали орлы. Вероятность этого $\frac{1}{8}$.

С другой стороны, $p_Z(0)$ — это вероятность того, что на трёх честных монетках не выпало ни одного орла, то есть все три раза выпали решки. Вероятность этого тоже $\frac{1}{8}$.

Аналогичное рассуждение проводится для остальных значений a: вычисляем $p_Y(a)$, а затем в рассуждениях меняем орла и решку местами и получаем $p_Z(a) = p_Y(a)$.

Задача 2

Дана случайная величина X. Пусть она принимает ровно n различных значений: x_1, \ldots, x_n .

- 1. Докажите, что $\forall i : p_X(x_i) \geq 0$
- 2. Докажите, что $p_X(a) = 0$ для всех a не равных одному из x_1, \ldots, x_n .
- 3. Докажите, что $\sum_{i=1}^n p_X(x_i) = 1$. Или в другой записи: $p_X(x_1) + p_X(x_2) + \cdots + p_X(x_n) = 1$.

То есть про функцию вероятности можно думать, как про суммарную массу 1, как-то раскиданную по n точкам на числовой прямой.

Поэтому можно задавать функцию вероятности случайной величины, просто перечислив значения в точках x_1, \ldots, x_n . Например, такие условия: $p_Y(25) = 0.33, p_Y(38) = 0.67$ однозначно задают функцию вероятности случайной величины Y, которая принимает ровно два значения: 25 и 38.

Комментарий. Если эта задача вам кажется подозрительно простой, то да, подвоха нет, это действительно простая задача – фактически, мы просим вас применить определение функции вероятности случайной величины.

Решение.

- 1. По определению $p_X(x_i) = P(X = x_i) \ge 0$ как и любая вероятность.
- 2. Если $a \notin \{x_1, \dots, x_n\}$, то $p_X(a) = P(X = a) = 0$, ведь такое значение случайная величина X по условию не принимает.
- 3. $\sum_{i=1}^{n} p_X(x_i) = \sum_{i=1}^{n} P(X = x_i) = 1$, поскольку возможные значения величины X это только x_1, \dots, x_n .

Независимые случайные величины

Задача 1

В конце прошлой недели мы поняли, что вычисление математического ожидания не перестановочно с умножением. То есть не всегда выполнено $E[X \cdot Y] = E[X] \cdot E[Y]$.

Задача. Докажите, что если X и Y независимы, то $E[X \cdot Y] = E[X] \cdot E[Y]$.

Подсказка. Введите обозначения для всех значений, которые могут принимать X и Y, и для вероятностей, соответствующих этим значениям.

Решение. Пусть случайная величина X принимает значения x_1, \ldots, x_n с вероятностями p_1, \ldots, p_n соответственно. Тогда по определению $E[X] = \sum_{i=1}^n x_i p_i$.

Аналогично, пусть случайная величина Y принимает значения y_1,\dots,y_m с вероятностями q_1,\dots,q_m . Тогда $E[Y]=\sum_{i=1}^m y_jq_j$. Итак,

$$E[X] \cdot E[Y] = \left(\sum_{i=1}^{n} x_i p_i\right) \cdot \left(\sum_{j=1}^{m} y_j q_j\right).$$

Наконец, по определению $E[X\cdot Y]=\sum\limits_{i,j}x_iy_jP(X=x_i,Y=y_j)$, где суммирование ведётся по всем возможным парам $i\in\{1,\ldots,n\}$ и $j\in\{1,\ldots,m\}$. Далее, поскольку X и Y независимы, равенство продолжается так:

$$E[X \cdot Y] = \sum_{i,j} x_i y_j P(X = x_i) \cdot P(Y = y_j) = \sum_{i,j} x_i y_j p_i q_j = \sum_{i=1}^n \sum_{j=1}^m x_i p_i y_j q_j = \left(\sum_{i=1}^n x_i p_i\right) \cdot \left(\sum_{j=1}^m y_j q_j\right) = E[X] \cdot E[Y].$$

Дополнительная задача

Обозначение. Аналогично обозначению события X = a введём следующее обозначение. Событие "случайная величина X приняла значение в отрезке [a,b]" будем обозначать так: $X \in [a,b]$.

Докажите, что если случайные величины X и Y независимы, то для любых $a,b,c,d\in\mathbb{R}$ события $X\in[a,b]$ и $Y\in[c,d]$ независимы.

Подсказка. Вероятность $P(X \in [a,b], Y \in [c,d])$ надо выразить через вероятности вида $P(X = x_i, Y = y_j)$, а затем воспользоваться независимостью случайных величин X и Y.

Решение. Нам нужно доказать, что $P(X \in [a, b], Y \in [c, d]) = P(X \in [a, b]) \cdot P(Y \in [c, d]).$

Зафиксируем $a,b,c,d\in\mathbb{R}$ — произвольные числа. Пусть значения случайной величины X, попадающие в отрезок [a,b] — это x_1,\ldots,x_n , а их вероятности равны соответственно p_1,\ldots,p_n . Аналогично обозначим значения Y, принадлежащие [c,d] за y_1,\ldots,y_m с вероятностями q_1,\ldots,q_m .

Тогда $P(X \in [a,b]) = P((X = x_1) \cup \cdots \cup (X = x_n)) = p_1 + \cdots + p_n$. Аналогично $P(Y \in [c,d]) = q_1 + \cdots + q_m$. Осталось найти $P(((X = x_1) \cup \cdots \cup (X = x_n)) \cap ((Y = y_1) \cup \cdots \cup (Y = y_m)))$.

Вспомним свойство операций над множествами: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (это называется дистрибутивностью).

Много раз применив это свойство, получим $\left((X=x_1)\cup\cdots\cup(X=x_n)\right)\cap\left((Y=y_1)\cup\cdots\cup(Y=y_m)\right)=$ $=\left((X=x_1)\cap(Y=y_1)\right)\cup\cdots\cup\left((X=x_1)\cap(Y=y_m)\right)\cup\cdots\cup\left((X=x_n)\cap(Y=y_1)\right)\cup\cdots\cup\left((X=x_n)\cap(Y=y_n)\right).$

Поскольку X и Y независимы, то вероятности вида $P((X=x_i)\cap (Y=y_j))=P(X=x_i)\cdot P(Y=y_j)=p_iq_j$. Тогда искомая $P(X\in [a,b],Y\in [c,d])=p_1q_1+\cdots+p_1q_m+\cdots+p_nq_1+p_nq_m$, а это как раз равно $P(X\in [a,b])\cdot P(Y\in [c,d])=(p_1+\cdots+p_n)(q_1+\cdots+q_m)$, ypa!

Даны k совместно независимых случайных величин X_1, \ldots, X_k . Все эти величины имеют одинаковое распределение: $P(X_i = 0) = q, P(X_i = 1) = 1 - q$. Найдите распределение случайной величины $X_1 \cdot X_2 \cdot \ldots \cdot X_k$.

Решение.

Случайная величина $X_1 \cdot X_2 \cdot \ldots \cdot X_k$ равна единице только в том случае, когда все $X_i = 1$. Вероятность этого $P(X_1 = 1, \ldots, X_n = 1) = P(X_1 = 1) \cdot \ldots \cdot P(X_n = 1) = (1 - q)^n$.

Итак,
$$P(X_1 \cdot X_2 \cdot \ldots \cdot X_k = 1) = (1 - q)^n$$
 и $P(X_1 \cdot X_2 \cdot \ldots \cdot X_k = 0) = 1 - (1 - q)^n$.

Дисперсия

Задача 2

- 1. Докажите, что для любой случайной величины X выполнено $Var[X] \geq 0$.
- 2. Докажите, что Var[X] = 0 если и только если X это постоянная случайная величина.

Подсказка. Здесь удобнее воспользоваться первым определением дисперсии: $Var[X] = E[(X - E[X])^2]$.

Решение.

- 1. Пусть случайная величина X принимает значения x_1, \ldots, x_n с вероятностями p_1, \ldots, p_n соответственно. По определению $Var[X] = E[(X E[X])^2] = \sum_{i=1}^n p_i(x_i E[X])^2$. При этом $p_i \geq 0$ по определению вероятности, а $(x_i E[X])^2 \geq 0$ как квадрат числа. Значит, мы суммируем неотрицательные величины и получаем тоже неотрицательную величину: $Var[X] \geq 0$.
- 2. Докажем сначала в одну сторону. Пусть X постоянная случайная величина, X=c. Тогда E[X]=c и $Var[X]=E[(X-E[X])^2]=E[(c-c)^2]=E[0]=0$.

Обратно, пусть Var[X] = 0. Пусть случайная величина X принимает значения x_1, \ldots, x_n с ненулевыми вероятностями p_1, \ldots, p_n соответственно.

Тогда $Var[X] = E[(X - E[X])^2] = \sum_{i=1}^n p_i(x_i - E[X])^2 = 0$. Поскольку мы суммируем неотрицательные выражения и получаем ноль, то каждое из слагаемых должно равняться нулю. Поскольку $p_i \neq 0$, то $x_i - E[X] = 0$. Обозначим константу E[X] за c. Тогда $x_i = c$ для всех i. А значит, X = c.

Задача 3

- 1. Пусть X и Y это независимые случайные величины. Докажите, что Var[X+Y] = Var[X] + Var[Y].
- 2. Приведите пример X и Y, таких что $Var[X+Y] \neq Var[X] + Var[Y]$.

Подсказка. Здесь пригодится задача про математическое ожидание произведения независимых случайных величин.

Решение.

1. Поскольку X и Y это независимые случайные величины, то по задаче прошлой недели $E[X \cdot Y] = E[X] \cdot E[Y]$. Тогда, пользуясь этим и линейностью математического ожидания, получаем

$$\begin{split} Var[X+Y] &= E[(X+Y)^2] - E[X+Y]^2 = E[X^2 + 2XY + Y^2] - (E[X] + E[Y])^2 = \\ &= E[X^2] + 2E[XY] + E[Y^2] - E[X]^2 - 2E[X]E[Y] - E[Y]^2 = E[X^2] + 2E[X]E[Y] + E[Y^2] - E[X]^2 - 2E[X]E[Y] - E[Y]^2 = \\ &= E[X^2] - E[X]^2 + E[Y^2] - E[Y]^2 = Var[X] + Var[Y] \end{split}$$

2. Рассмотрим X = Y. Тогда Var[X+Y] = Var[2X] = 4Var[X]. Но при этом Var[X]+Var[Y] = 2Var[X]. То есть в качестве X можно взять любую случайную величину с ненулевой дисперсией. Например, можно рассмотреть X с распределением Бернулли с вероятностью успеха 1 > p > 0.

Задача 4

Пусть c это произвольное действительное число. Выразите дисперсию случайной величины cX через дисперсию случайной величины X.

Подсказка. Пригодится то, что константы можно выносить за знак математического ожидания. Это мы доказали в первом пункте этой задачи.

Решение. Воспользуемся определением дисперсии и линейностью математического ожидания:

$$Var[cX] = E[(cX)^2] - (E[cX])^2 = E[c^2X^2] - (cE[X])^2 = c^2E[X^2] - c^2E[X]^2 = c^2(E[X^2] - E[X]^2) = c^2 \cdot Var[X].$$

Биномиальное распределение и стандартное отклонение

Задача 1

В вашей фирме работают n разработчиков. Каждый рабочий день каждый разработчик приходит в офис с вероятностью p, и с вероятностью (1-p) остаётся работать из дома. Разработчики приходят работать независимо друг от друга.

- 1. Какова вероятность, что сегодня конкретные k разработчиков будут работать из офиса, а все остальные из дома? Например, если разработчиков зовут Аня, Гриша, Вика, Петя и Илья, то какова вероятность, что из разработчиков в офис придут только Аня и Петя?
- 2. Какова вероятность, что сегодня в офис придут ровно k разработчиков? Имена пришедших не уточняются важно только чтобы пришло ровно k.
- 3. Найдите распределение случайной величины S, где S число разработчиков, которые пришли сегодня в офис.

Подсказка. Здесь полезно вспомнить про биномиальные коэффициенты и их комбинаторный смысл.

Решение. Пронумеруем всех разработчиков числами от 1 до n и введём случайные величины: X_i равно 1, если i-ый разработчик пришёл сегодня в офис, и 0 иначе. Тогда X_i имеет распределение Бернулли с вероятностью успеха p. А значит, поскольку $S = X_1 + \ldots + X_n$, то S имеет биномиальное распределение Bin(n,p).

1. Пусть конкретные k разработчиков — это X_1, \dots, X_k . Тогда вероятность того, что именно они будут работать из офиса равна

$$P(X_1 = 1, ..., X_k = 1, X_{k+1} = 0, ..., X_n = 0).$$

Поскольку разработчики приходят работать независимо друг от друга, то эта вероятность равна произведению

$$P(X_1 = 1) \cdot \ldots \cdot P(X_k = 1) \cdot P(X_{k+1} = 0) \cdot \ldots \cdot P(X_n = 0) = \underbrace{p \cdot \ldots \cdot p}_{k} \cdot \underbrace{(1-p) \cdot \ldots \cdot (1-p)}_{n-k} = p^k (1-p)^{n-k}.$$

То есть в случае, когда разработчиков зовут Аня, Гриша, Вика, Петя и Илья, то вероятность, что из разработчиков в офис придут только Аня и Петя равна $p^2(1-p)^{5-2} = p^2(1-p)^3$.

2. Если теперь важно только чтобы пришло ровно k разработчиков, то в предыдущем пункте можно было выбрать не разработчиков с номерами $\{1,\ldots,k\}$, а любое другое подмножество множества $\{1,\ldots,n\}$, состоящее из k элементов. Как мы помним, способов сделать этот выбор всего $\binom{n}{k}$. Значит, чтобы найти искомую вероятность, мы должны сложить $\binom{n}{k}$ вероятностей $p^k(1-p)^{n-k}$. Мы получим вероятность, равную $\binom{n}{k}p^k(1-p)^{n-k}$.

3. В предыдущем пункте мы показали, что $p_S(k) = P(S = k) = \binom{n}{k} p^k (1-p)^{n-k}$, где $k \in \mathbb{Z}$ и $0 \le k \le n$. Для всех остальных $a \notin \{0, \ldots, n\}$ функция вероятности равна нулю: $p_S(a) = 0$.

Задача 2

У вас та же фирма, что и в прошлой задаче. Пусть $X_i=1$ если i-ый разработчик пришёл, и $X_i=0$ в противном случае. Тогда $S:=X_1+\cdots+X_n$ это количество пришедших разработчиков.

- 1. Найдите E[S].
- 2. Найдите Var[S].

Подсказка. Вспомните, что происходит с математическим ожиданием и дисперсией, если складывать случайные величины или умножать их на число.

Решение.

- 1. По линейности математического ожидания $E[S] = E[X_1] + \ldots + E[X_n]$. А поскольку X_i имеет распределение Бернулли с вероятностью успеха p, то $E[X_i] = p$. Итого $E[S] = \underbrace{p + \ldots + p}_{} = np$.
- 2. Так как случайные величины X_i независимы, то по второй задаче этого урока $Var[S] = Var[X_1] + \ldots + Var[X_n]$. Дисперсию бернуллиевской случайной величины мы уже считали (например, во втором пункте этой задачи). Итак, поскольку $Var[X_i] = p(1-p)$, то Var[S] = np(1-p).

Задача 3

Теперь пусть разработчики либо все одновременно приходят (с вероятностью p), либо все одновременно не приходят (с вероятностью 1-p). Обозначим число пришедших разработчиков за T.

- 1. Найдите E[T].
- 2. Найдите Var[T].

Подсказка. Вспомните, что происходит с математическим ожиданием и дисперсией, если складывать случайные величины или умножать их на число.

Решение.

Если разработчики либо все одновременно приходят (с вероятностью p), либо все одновременно не приходят (с вероятностью 1-p), то число пришедших разработчиков может равняться либо 0, либо n. По-другому это можно записать так: T=nY, где Y имеет распределение Бернулли с вероятностью успеха p.

- 1. Тогда E[Y]=p и Var[Y]=p(1-p). Значит, поскольку n- константа, E[T]=E[nY]=nE[Y]=np
- 2. $Var[T] = Var[nY] = n^2 Var[Y] = n^2 p(1-p)$.

Дополнительная задача

- 1. Зачем вообще искать средний квадрат отклонения? Давайте лучше искать само среднее отклонение, а не его квадрат. Найдите E[X E[X]].
- 2. Пусть мы приняли определение из прошлого шага H[X] := E[|X E[X]|]. Мы хотим использовать H в наших вычислениях, а не дисперсию. Докажите, что даже для независимых X и Y не всегда выполнено H[X + Y] = H[X] + H[Y].

Как мы помним, для независимых X и Y выполнено Var[X+Y] = Var[X] + Var[Y]. Так что дисперсия ещё и этим удобнее для вычислений, чем H (а не только тем, что H использует модуль, а Var нет).

Подсказка. В обоих пунктах пригодится линейность математического ожидания.

Решение.

- 1. Воспользуемся линейностью математического ожидания: E[X E[X]] = E[X] E[E[X]]. Поскольку E[X] это просто число, то его математическое ожидание равно ему же: E[E[X]] = E[X]. А тогда, продолжая начатое вычисление, получаем E[X E[X]] = E[X] E[X] = 0.
- 2. Пусть

$$X = \begin{cases} 1 \text{ с вероятностью } 0.5 \\ 0 \text{ с вероятностью } 0.5 \end{cases}$$

$$Y = \begin{cases} -1 \text{ с вероятностью } 0.5 \\ 0 \text{ с вероятностью } 0.5 \end{cases}$$

При этом пусть X и Y независимы.

Найдём H[X] = E[|X - E[X]|]. Для начала по определению посчитаем $E[X] = 1 \cdot 0.5 + 0 \cdot 0.5 = 0.5$. Следовательно, H[X] = E[|X - 0.5|]. При этом X - 0.5 равен либо 0.5, либо -0.5. Значит, |X - 0.5| всегда равен 0.5, как и его математическое ожидание. Итак, мы нашли H[X] = 0.5.

Теперь аналогично разберёмся с H[Y] = E[|Y - E[Y]|]. Начнём с $E[Y] = (-1) \cdot 0.5 + 0 \cdot 0.5 = -0.5$. Тогда Y - E[Y] = Y - (-0.5) = Y + 0.5 и эта случайная величина может принимать два значения: -0.5 и 0.5. А её модуль всегда равен 0.5, а значит H[Y] = 0.5.

Итак, мы получили, что H[X] + H[Y] = 0.5 + 0.5 = 1.

Наконец найдём H[X+Y]=E[|X+Y-E[X+Y]|]. Из линейности математического ожидания следует, что E[X+Y]=E[X]+E[Y]=0.5+(-0.5)=0. То есть H[X+Y]=E[|X+Y|].

Далее, поскольку X и Y независимы, то

$$X+Y= egin{cases} 0$$
 с вероятностью $0.5\\ 1$ с вероятностью $0.25\\ -1$ с вероятностью 0.25

Тогда |X+Y| равен 0 с вероятностью 0.5 и равен 1 с вероятностью 0.5. А значит $H[X+Y]=E[|X+Y|]=0\cdot 0.5+1\cdot 0.5=0.5$.

Итого
$$H[X + Y] = 0.5 \neq H[X] + H[Y] = 1.$$

Ряды

Задача 1

Докажите, что для любого $\beta \neq 1$ и любого $t \in \mathbb{N}$ выполнено $1 + \beta + \beta^2 + \dots + \beta^{t-2} + \beta^{t-1} = \frac{1-\beta^t}{1-\beta}$.

Комментарий. Формулу из пункта 2 мы уже доказывали в курсе матана, когда говорили про градиентный спуск с моментом.

Решение. Умножим обе части равенства на $(1-\beta)$. Тогда надо доказать $(1+\beta+\beta^2+\cdots+\beta^{t-2}+\beta^{t-1})(1-\beta)=1-\beta^t$.

Раскроем скобки в левой части: $(1+\beta+\beta^2+\cdots+\beta^{t-2}+\beta^{t-1})(1-\beta)=$ = $1+\beta+\beta^2+\cdots+\beta^{t-2}+\beta^{t-1}-\beta-\beta^2-\beta^3-\cdots-\beta^{t-1}-\beta^t$. Все β^i , где $i\in\{1,2,\ldots,t-1\}$ сократятся. Останется как раз $1-\beta^t$.

Дан ряд $1+\beta+\beta^2+\beta^3+\cdots=\sum_{n=0}^\infty \beta^n$. Для каждого β найдите сумму ряда или докажите, что ряд расходится.

Решение.

- При $\beta=1$ ряд расходится, потому что последовательность его частичных сумм образует ряд натуральных чисел и предела не имеет.
- А теперь воспользуемся предыдущими пунктами этой задачи: по первому пункту при $\beta = -1$ ряд расходится.

По второму пункту при $\beta \neq 1$ выполнено $S_t = 1 + \beta + \dots + \beta^{t-1} = \frac{1-\beta^t}{1-\beta}$.

- ullet Тогда если |eta|<1, то $\lim_{t o\infty}eta^t=0$ и тогда предел $\lim_{t o\infty}S_t=rac{1}{1-eta}$ равен сумме ряда.
- ullet Если же |eta|>1, то $\lim_{t o\infty}eta^t=+\infty$ или $-\infty$, а тогда $\lim_{t o\infty}S_t$ не конечен и, следовательно, ряд расходится.

Задача 3

- 1. Докажите, что ряд $\frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \dots$ расходится.
- 2. Докажите, что ряд $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \dots = \sum_{n=1}^{\infty} \frac{1}{n}$ расходится.

Ряд из Пункта 2 называется гармоническим.

Комментарий. По аналогии с определениями пределами последовательностей можно сказать, что $\sum_{n=1}^{\infty} \frac{1}{n} = +\infty$, ведь последовательность частичных сумм этого ряда сходится к $+\infty$. При этом такой ряд мы всё равно называем расходящимся.

Подсказка. Второй пункт следует из первого.

Решение.

- 1. Посчитаем частичные суммы этого ряда: $S_1 = 1, S_2 = 1.5, S_4 = 2, S_8 = 2.5$ и так далее: $S_{2^k} = 1 + 0.5 \cdot k$. Но $\lim_{k \to \infty} (1 + 0.5 \cdot k) = +\infty$, то есть подпоследовательность $\{S_{2^k}\}$ не имеет конечного предела. А тогда конечного предела не имеет и последовательность частичных сумм $\{S_n\}$. То есть ряд расходится.
- 2. n-ый член гармонического ряда больше n-ого члена ряда из предыдущего пункта. Поэтому предел частичных сумм гармонического ряда тоже равен $+\infty$, то есть ряд расходится.

8

Задача 4

Даны два сходящихся ряда: $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$.

- 1. Докажите, что ряд $\sum\limits_{n=1}^{\infty}(a_n+b_n)$ сходится
- 2. Докажите, что ряд $\sum_{n=1}^{\infty} (a_n b_n)$ сходится
- 3. Докажите, что ряд $\sum\limits_{n=1}^{\infty}(ca_n)$ сходится для любого $c\in\mathbb{R}$

Естественно, в доказательстве можно использовать уже доказанные утверждения из курса матана.

Подсказка. Здесь пригодятся свойства операции суммирования и взятия предела.

Решение. Обозначим суммы рядов так: $A:=\sum\limits_{n=1}^{\infty}a_n=\lim\limits_{N\to\infty}\left(\sum\limits_{n=1}^{N}a_n\right)$ и $B:=\sum\limits_{n=1}^{\infty}b_n=\lim\limits_{N\to\infty}\left(\sum\limits_{n=1}^{N}b_n\right)$.

1.
$$\sum_{n=1}^{\infty} (a_n + b_n) = \lim_{N \to \infty} \left(\sum_{n=1}^{N} (a_n + b_n) \right) = \lim_{N \to \infty} \left(\sum_{n=1}^{N} a_n \right) + \lim_{N \to \infty} \left(\sum_{n=1}^{N} b_n \right) = A + B.$$

$$2. \sum_{n=1}^{\infty} (a_n - b_n) = \lim_{N \to \infty} \left(\sum_{n=1}^{N} (a_n - b_n) \right) = \lim_{N \to \infty} \left(\sum_{n=1}^{N} a_n \right) - \lim_{N \to \infty} \left(\sum_{n=1}^{N} b_n \right) = A - B.$$

3.
$$\sum_{n=1}^{\infty} ca_n = \lim_{N \to \infty} \left(\sum_{n=1}^{N} ca_n \right) = c \cdot \lim_{N \to \infty} \left(\sum_{n=1}^{N} a_n \right) = cA.$$

Абсолютно сходящиеся ряды

Задача 1

Давайте потренируемся применять теорему с прошлого шага.

Пусть

- $a_1 = \frac{1}{1} \frac{1}{2}$
- $a_2 = \frac{1}{3} \frac{1}{4}$,
- $a_3 = \frac{1}{5} \frac{1}{6}$,
- $a_4 = \frac{1}{7} \frac{1}{8}$,
- и так далее

Ясно, что все $a_i \geq 0$. Давайте докажем, что ряд $\sum\limits_{n=1}^{\infty} a_n$ сходится.

Задача. Докажите, что последовательность частичных сумм ряда неубывающая и ограничена сверху числом 1.

Подсказка. Попробуйте по-разному расставить скобки в формуле для частичных сумм S_k .

Решение.

$$S_k = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{5} - \frac{1}{6}\right) + \dots + \left(\frac{1}{2k-1} - \frac{1}{2k}\right) = \frac{1}{1 \cdot 2} + \frac{1}{3 \cdot 4} + \frac{1}{5 \cdot 6} + \dots + \frac{1}{(2k-1)2k}$$

Каждое из слагаемых положительно, поэтому последовательность частичных сумм S_1, S_2, S_3, \ldots возрастает. С другой стороны,

$$S_k = \frac{1}{1} - \left(\frac{1}{2} - \frac{1}{3}\right) - \left(\frac{1}{4} - \frac{1}{5}\right) - \left(\frac{1}{6} - \frac{1}{7}\right) - \dots - \left(\frac{1}{2k - 2} - \frac{1}{2k - 1}\right) - \frac{1}{2k} =$$

$$= 1 - \frac{1}{2 \cdot 3} - \frac{1}{4 \cdot 5} - \frac{1}{6 \cdot 7} - \dots - \frac{1}{(2k - 2)(2k - 1)} - \frac{1}{2k} < 1$$

Итак, мы доказали, что последовательность $S_1, S_2, S_3, S_4, \dots$ возрастает и ограничена сверху числом 1, а к этому мы и хотели прийти!

В этой задаче мы докажем утверждения, ради которых и вводили теорему из пред-предыдущего шага. А эти утверждения помогут нам доказать некоторые свойства абсолютно сходящихся рядов.

Даны два ряда $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$, при этом $0 \le a_n \le b_n$ для всех n. В таком случае говорят, что ряд $\sum_{n=1}^{\infty} b_n$ мажорирует ряд $\sum_{n=1}^{\infty} a_n$.

- 1. Докажите, что если $\sum_{n=1}^{\infty} b_n$ сходится, то $\sum_{n=1}^{\infty} a_n$ сходится. Приведите пример, когда обратное утверждение неверно.
- 2. Докажите, что если $\sum\limits_{n=1}^{\infty}a_n$ расходится, то $\sum\limits_{n=1}^{\infty}b_n$ расходится. Приведите пример, когда обратное утверждение неверно.

Подсказка. Здесь тоже пригодится пройденная ранее теорема.

Решение. Обозначим частичные суммы рядов так: $A_n = a_1 + \dots + a_n$ и $B_n = b_1 + \dots + b_n$. Поскольку $0 \le a_n \le b_n$ для всех n, то $A_n \le B_n$ и последовательности $\{A_n\}$ и $\{B_n\}$ не убывают.

1. Если $\sum\limits_{n=1}^{\infty}b_n$ сходится, то у последовательности $\{B_n\}$ есть предел. Значит, $\{B_n\}$ ограничена: $\exists C:B_n < C$ для всех $n \in \mathbb{N}$. Но тогда и $A_n < C$ для всех натуральных n. А мы уже доказали, что у любой неубывающей ограниченной сверху последовательности есть предел. Итак, последовательность $\{A_n\}$ сходится, а значит сходится и ряд $\sum\limits_{n=1}^{\infty}a_n$.

Пример, когда обратное не верно: $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} 0 = 0$ — ряд сходится, и $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} 1 = +\infty$ — ряд расходится.

2. Если $\sum\limits_{n=1}^{\infty}a_n$ расходится, то $\lim\limits_{n\to\infty}A_n=+\infty.$ То есть по определению $\forall C\in\mathbb{R}\ \exists N\in\mathbb{N}\ \forall n\geq N: A_n>C.$

Но тогда и $\forall n \geq N$ выполнено $B_n > C$, то есть $\lim_{n \to \infty} B_n = +\infty$ и ряд $\sum_{n=1}^{\infty} b_n$ расходится.

Пример, когда обратное не верно, такой же, как в прошлом пункте.

Задача 3

Докажем теорему:

Теорема. Любой абсолютно сходящийся ряд является сходящимся.

Пусть ряд $\sum_{n=1}^{\infty} a_n$ абсолютно сходится, то есть ряд $\sum_{n=1}^{\infty} |a_n|$ сходится. Давайте в три этапа докажем, что тогда $\sum_{n=1}^{\infty} a_n$ сходится.

- 1. Докажите, что ряд $\sum\limits_{n=1}^{\infty} 2|a_n|$ неотрицателен и сходится.
- 2. Докажите, что ряд $\sum_{n=1}^{\infty} (a_n + |a_n|)$ неотрицателен и мажорируется рядом $\sum_{n=1}^{\infty} 2|a_n|$.
- 3. Докажите, что ряд $\sum\limits_{n=1}^{\infty}a_n=\sum\limits_{n=1}^{\infty}(a_n+|a_n|)-\sum\limits_{n=1}^{\infty}|a_n|$ сходится

Тем самым мы доказали, что из абсолютной сходимости ряда следует сходимость ряда.

Подсказка. Пригодятся четвёртая задача урока про ряды и предыдущая задача.

Решение.

- 1. $2|a_n| \geq 0$, поэтому ряд неотрицателен. По третьему пункту второй задачи урока про ряды $\sum_{n=1}^{\infty} 2|a_n| = 2\sum_{n=1}^{\infty} |a_n|$, то есть ряд сходится.
- 2. Найдём, чему равно $a_n + |a_n|$. Если $a_n \ge 0$, то $a_n + |a_n| = a_n + a_n = 2a_n \ge 0$. Если $a_n < 0$, то $a_n + |a_n| = a_n a_n = 0$. Значит, ряд $\sum_{n=1}^{\infty} (a_n + |a_n|)$ неотрицателен. Кроме того, из нашего разбора случаев следует, что $a_n + |a_n| \le 2|a_n|$, то есть действительно ряд $\sum_{n=1}^{\infty} (a_n + |a_n|)$ мажорируется рядом $\sum_{n=1}^{\infty} 2|a_n|$.
- 3. Из двух предыдущих пунктов и предыдущей задачи следует, что ряд $\sum_{n=1}^{\infty} (a_n + |a_n|)$ сходится, так как сходится мажорирующий его ряд. А тогда из второго пункта четвёртой задачи следует, что ряд $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (a_n + |a_n|) \sum_{n=1}^{\infty} |a_n|$ сходится как разность двух сходящихся рядов.

Дополнительная задача

На этом шаге мы докажем теорему с пред-предыдущего шага:

Теорема. Если ряд абсолютно сходится к сумме S, то любой ряд, полученный из него перестановкой слагаемых, тоже абсолютно сходится к той же сумме S.

Пусть дан абсолютно сходящийся ряд $a_1 + a_2 + a_3 + \cdots = \sum_{n=1}^{\infty} a_n$. Обозначим его сумму за S, а его частичные суммы за $\{S_n\}$.

Обозначим за $b_1+b_2+b_3+\cdots=\sum_{n=1}^\infty b_n$ ряд, полученный из ряда $\sum_{n=1}^\infty a_n$ при помощи любой перестановки. Частичные суммы этого ряда будем обозначать за $\{\tilde{S}_n\}$.

В первых трёх пунктах давайте считать, что все $a_i \ge 0$. А в 4-ом и 5-ом пунктах мы поймём, что делать в случае, когда a_i могут быть отрицательными.

- 1. Пусть все $a_i \geq 0$. Докажите, что для любого i найдётся j, такой что $S_i \leq \tilde{S}_j$. Другими словами, для любой частичной суммы первого ряда найдётся не меньшая (то есть такая же или бо́льшая) частичная сумма второго ряда.
- 2. Пусть все $a_i \geq 0$. Докажите, что для любого i найдётся j, такой что $\tilde{S}_i \leq S_j$. Другими словами, для любой частичной суммы второго ряда найдётся не меньшая (то есть такая же или бо́льшая) частичная сумма первого ряда.
- 3. Пусть все $a_i \geq 0$. Докажите, что $\lim_{n \to \infty} \tilde{S}_n$ существует и равен $S := \lim_{n \to \infty} S_n$.
- 4. Теперь пусть a_i могут быть какими угодно. Докажите, что ряд, составленный только из неотрицательных членов ряда $\sum_{n=1}^{\infty} a_n$ абсолютно сходится. Аналогично, докажите, что ряд, составленный только из отрицательных членов ряда $\sum_{n=1}^{\infty} a_n$ абсолютно сходится.
- 5. Выведите из пункта 4, что $\lim_{n \to \infty} \tilde{S}_n$ существует и равен $S := \lim_{n \to \infty} S_n$.

Решение.

1. Мы хотим для любого i найти j, такой что $S_i \leq \tilde{S}_j$. Достаточно будет взять j таким, что в \tilde{S}_j присутствуют все слагаемые из S_i . При этом кроме a_1, \ldots, a_i в формуле для \tilde{S}_j могут также быть другие слагаемые, а поскольку все они неотрицательны, то $S_i \leq \tilde{S}_j$

- 2. Аналогично предыдущему пункту достаточно взять j таким, что в S_j присутствуют все слагаемые из \tilde{S}_i . А тогда $\tilde{S}_i \leq S_j$.
- 3. Из второго пункта следует, что для любого n найдётся j такой, что $\tilde{S}_n \leq S_j = \sum\limits_{k=1}^j a_k \leq \sum\limits_{k=1}^\infty a_k = S$. Значит, последовательность \tilde{S}_n ограничена. Кроме того, она не убывает. А значит, как мы обсуждали ранее, у последовательности \tilde{S}_n есть предел. Обозначим его за \tilde{S} . Поскольку $\tilde{S}_n \leq S$ для любого n, то и $\tilde{S} < S$

С другой стороны, из первого пункта следует, что для любого n существует j такой, что $S_n \leq \tilde{S}_j \leq \tilde{S}$. Итак, $S_n \leq \tilde{S}$ для любого n. А тогда и $S \leq \tilde{S}$.

В последних двух параграфах мы доказали, что $\tilde{S} \leq S$ и $S \leq \tilde{S}$. Значит, $\tilde{S} = S$.

4. Введём обозначения:

$$a_n^+ = \begin{cases} a_n, \text{ если } a_n \ge 0 \\ 0, \text{ если } a_n < 0 \end{cases}$$

$$a_n^- = \begin{cases} a_n, \text{ если } a_n < 0 \\ 0, \text{ если } a_n \ge 0 \end{cases}$$

Тогда $\sum_{n=1}^{\infty}a_n^+$ — это ряд, составленный только из неотрицательных членов ряда $\sum_{n=1}^{\infty}a_n$. И также $\sum_{n=1}^{\infty}a_n^-$ — это ряд, составленный только из отрицательных членов ряда $\sum_{n=1}^{\infty}a_n$.

Для любого натурального N выполнено

$$\sum_{n=1}^{N} a_n^+ + \sum_{n=1}^{N} a_n^- = \sum_{n=1}^{N} a_n$$

$$\sum_{n=1}^{N} a_n^+ - \sum_{n=1}^{N} a_n^- = \sum_{n=1}^{N} |a_n|$$

А значит, частичные суммы рядов можно выразить так:

$$\sum_{n=1}^{N} a_n^+ = \frac{1}{2} \left(\sum_{n=1}^{N} a_n + \sum_{n=1}^{N} |a_n| \right)$$

$$\sum_{n=1}^{N} a_n^- = \frac{1}{2} \left(\sum_{n=1}^{N} a_n - \sum_{n=1}^{N} |a_n| \right)$$

Правые части написанных равенств имеют предел при $N \to \infty$, ведь по условию ряд $\sum_{n=1}^{\infty} a_n$ абсолютно сходится. А тогда и левые части равенств имеют предел при $N \to \infty$, то есть ряды $\sum_{n=1}^{\infty} a_n^+$ и $\sum_{n=1}^{\infty} a_n^-$ сходятся.

Наконец, абсолютная сходимость этих рядов следует из того, что они знакопостоянны: $\sum_{n=1}^{\infty} |a_n^+| = \sum_{n=1}^{\infty} a_n^+$ и $\sum_{n=1}^{\infty} |a_n^-| = -\sum_{n=1}^{\infty} a_n^-$.

5. Напомним, ряд $\sum_{n=1}^{\infty} b_n$ получен из ряда $\sum_{n=1}^{\infty} a_n$ перестановкой. Как и в предыдущем пункте введём обозначения b_n^+ и b_n^- .

Поскольку $\sum_{n=1}^{\infty} a_n^+$ абсолютно сходится и $a_n^+ \ge 0$, то по третьему пункту этой задачи ряд $\sum_{n=1}^{\infty} b_n^+$ сходится. Снова по третьему пункту этой задачи получаем, что ряд $\sum_{n=1}^{\infty} b_n^+$ сходится к числу $\sum_{n=1}^{\infty} a_n^+$.

Далее, ряд $\left(-\sum\limits_{n=1}^{\infty}a_{n}^{-}\right)$ тоже абсолютно сходится и его члены неотрицательны. Тогда аналогично предыдущему рассуждению получаем, что ряд $\left(-\sum\limits_{n=1}^{\infty}b_{n}^{-}\right)$ сходится к числу $\left(-\sum\limits_{n=1}^{\infty}a_{n}^{-}\right)$. А тогда и ряд $\sum\limits_{n=1}^{\infty}b_{n}^{-}$ сходится к числу $\sum\limits_{n=1}^{\infty}a_{n}^{-}$.

Итак, мы получаем

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^+ + \sum_{n=1}^{\infty} a_n^- = \sum_{n=1}^{\infty} b_n^+ + \sum_{n=1}^{\infty} b_n^- = \sum_{n=1}^{\infty} b_n$$

А это и есть то, что мы хотели доказать: что пределы частичных сумм этих рядов равны.

Счётное пространство исходов

Задача 1

Мы бросаем честную монетку, пока не выпадет орёл. Обозначим орла за h и решку за t. У нас будут такие исходы и соответствующие вероятности:

1.
$$P(h) = \frac{1}{2}$$

2.
$$P(th) = \frac{1}{4}$$

3.
$$P(tth) = \frac{1}{8}$$

4.
$$P(ttth) = \frac{1}{16}$$

Задача.

- 1. Найдите вероятность события "число бросков больше 2."
- 2. Найдите вероятность события "число бросков делится на 3."

Подсказка. Воспользуйтесь формулой для геометрической прогрессии.

Решение. Обозначим число бросков за N. Число бросков может быть любым натуральным числом.

1.
$$P(N > 3) = 1 - P(N = 1) - P(N = 2) - P(N = 3) = 1 - P(h) - P(th) - P(tth) = 1 - \frac{1}{2} - \frac{1}{4} - \frac{1}{8} = \frac{1}{8} = 0.125$$
.

2. Будем действовать аналогично предыдущему пункту:

$$P(N=3) + P(N=6) + \dots + P(N=3k) + \dots = P(tth) + P(tttth) + \dots + P(\underbrace{t \dots t}_{3k-1}h) + \dots = \underbrace{\frac{1}{2^3} + \frac{1}{2^6} + \dots + \frac{1}{2^{3k}} + \dots}_{k=1} = \sum_{k=1}^{\infty} \frac{1}{2^{3k}} = \sum_{k=1}^{\infty} \left(\frac{1}{8}\right)^k = \underbrace{\frac{1}{1 - \frac{1}{8}}}_{k=1} - 1 = \frac{1}{7}$$

В случае конечного количества исходов мы определяли пространства с равновероятными исходами.

Докажите, что не существует вероятностного пространства со счётным количеством исходов, такого что все исходы равновероятны.

Подсказка. Проблема возникнет со свойством вероятности, про которое мы говорили в определении вероятностного пространства.

Решение. Докажем утверждение от противного. Пусть (Ω, F, P) — вероятностное пространство, $\Omega = (\omega_1, \omega_2, \dots)$ счётно и все исходы равновероятны. Обозначим вероятность исхода так: $P(\omega_i) = p$, где $i \in \mathbb{N}$.

По определению сумма вероятностей всех элементарных исходов должна равняться единице: $\sum_{i=1}^{\infty} P(\omega_i) = 1$.

С другой стороны, $\sum_{i=1}^{\infty} P(\omega_i) = \sum_{i=1}^{\infty} p = p \sum_{i=1}^{\infty} 1$. Но этот ряд расходится, а значит, сумма вероятностей не может равняться 1. Мы получили противоречие с нашим изначальным предположением. Значит, мы доказали, что не существует вероятностного пространства со счётным количеством исходов, такого что все исходы равновероятны.

Задача 3

Мы работаем с тем же вероятностным пространством, что и раньше. Мы подбрасываем монетку до первого орла и получаем такие исходы и соответствующие вероятности:

1.
$$P(h) = \frac{1}{2}$$

2.
$$P(th) = \frac{1}{4}$$

3.
$$P(tth) = \frac{1}{8}$$

4.
$$P(ttth) = \frac{1}{16}$$

5. ...

Задача. Определим случайную величину X так: $X(\underbrace{ttt\dots t}_k h) = \frac{1}{3^{k+1}}$. Найдите E[X].

Подсказка. Здесь пригодится вторая задача из урока про ряды.

Решение. Пронумеруем элементарные исходы ω_k , как в условии: ω_k — это выпадение $\underbrace{t \dots t}_{k-1} h$. Обозначим через P_k вероятность k-ого исхода:

$$P_k = P(w_k) = \frac{1}{2^k}.$$

Также обозначим через x_k значение случайной величины X на k-ом исходе.

$$X(\underbrace{ttt\dots t}_{k-1}h)=x_k=rac{1}{3^k}.$$
 Тогда по определению

$$\sum_{k=1}^{\infty} x_k P_k = \sum_{k=1}^{\infty} \frac{1}{3^k} \cdot \frac{1}{2^k} = \sum_{k=1}^{\infty} \left(\frac{1}{6}\right)^k = \frac{1}{1 - \frac{1}{6}} - 1 = \frac{1}{5}.$$

Все члены ряда положительны, поэтому он сходится абсолютно и, значит, математическое ожидание случайной величины X определено: $E[X] = \frac{1}{5}$.

Мы работаем в том же вероятностном пространстве, что и в предыдущей задаче. Определим ещё одну случайную величину Y так: $Y(\underbrace{ttt \dots t}_k h) = (-1)^{k+1}$.

Найдите E[Y].

Подсказка. Здесь пригодится вторая задача из урока про ряды.

 $\underbrace{t\dots t}_{k-1}h$. Обозначим через P_k вероятность k-ого исхода: **Решение.** Как и в предыдущем решении, пронумеруем элементарные исходы $\omega_k:\omega_k$ — это выпадение

$$P_k = P(w_k) = \frac{1}{2^k}.$$

Также обозначим через y_k значение случайной величины Y на k-ом исходе. $Y(\underbrace{ttt\dots t}_{k-1}h)=y_k=(-1)^k.$ Тогда

$$Y(\underbrace{ttt \dots t}_{k-1} h) = y_k = (-1)^k$$
. Тогда

$$\sum_{k=1}^{\infty} y_k P_k = \sum_{k=1}^{\infty} (-1)^k \cdot \frac{1}{2^k} = \sum_{k=1}^{\infty} \left(\frac{-1}{2}\right)^k = \frac{1}{1 - \frac{-1}{2}} - 1 = -\frac{1}{3}.$$