Exercice 1.2.1.

Résoudre par le simplexe

$$\max x_1 + 2x_2$$

$$\max \left\{ \begin{array}{ll} -3x_1 & + & 2x_2 & \leq 2 \\ -x_1 & + & 2x_2 & \leq 4 \\ x_1 & + & x_2 & \leq 5 \end{array} \right.$$

$$x_i \geq 0 \quad i = 1, 2$$

1) Forme standard

Min
$$z = -(x_1 + 2x_2)$$

sous
$$\begin{cases} -3x_1 + 2x_2 + x_3 & = 2 \\ -x_1 + 2x_2 & + x_4 & = 4 \\ x_1 + x_2 & + x_5 = 5 \end{cases}$$

2) Tableau du simplexe (forme canonique!)

3) Si SBR, alors **phase II** (sinon phase I) Ici, évident

$$\begin{cases} x_1 = x_2 = 0 \\ x_3 = 2 \ge 0 \\ x_4 = 4 \ge 0 \\ x_5 = 5 \ge 0 \end{cases}$$

- 4) sol pas optimale car $\exists \ \overline{c}_i \leq 0$
- 5) Changement de base :

 \overline{c}_2 + négatif que $\overline{c}_1 \rightarrow x_2$ rentre dans la base.

? Variable x_s sortant de la base $t=\arg\min_i\{\frac{b_i}{a_{i2}}\}|_{a_{i2}\geq 0}=\min\{\frac{2}{2},\frac{4}{2},\frac{5}{1}\}=\frac{2}{2}$ $\Rightarrow t=1$

$$x_s$$
 to $B^{-1}a_s=e_t=\left(egin{array}{c}1\\0\\0\end{array}
ight)
ightarrow s=3$

6) Tableau canonique de la nouvelle base

$$l'_{2} = l_{2}/2$$
 $l'_{1} = l_{1} + l_{2}$
 $l'_{3} = l_{3} - l_{2}$
 $l'_{4} = l_{4} - l_{2}/2$

7) seul $\overline{c}_1 < 0 \rightarrow x_1$ entre en base

$$\min\{\frac{2}{2}, \frac{4}{5/2}\} = \frac{2}{2} \to x_4$$
 sort de la base

$$l_3'' = l_3'/2$$

$$l_1'' = l_1' + 2l_3'$$

$$l_2'' = l_2' + 3l_3'/4$$

$$l_4'' = l_4' - 5l_3'/4$$

8) seul $\overline{c}_3 < 0 \rightarrow x_3$ entre en base

$$\min\{\frac{3/2}{3/4}\} \to x_5$$
 sort de la base

$$l_4''' = 4l_4''/3$$

 $l_1''' = l_1'' + 4l_4''/3$
 $l_2''' = l_2'' + l_4''/3$
 $l_3''' = l_3'' + 2l_4''/3$

- sol : $x_1 = 2$; $x_2 = 3$; $x_3 = 2$; $x_4 = x_5 = 0$
- coût = -8
- ullet sol optimale car tous les $\overline{c}_j \geq 0$

Exercice 1.2.2.

x_1	x_2	x_3	x_{4}	Z	b
0	6	0	0	-1	31
0	5	1	0	0	7
1	4	0	0	0	5
0	7	0	1	0	12

Optimum, $x_1 = 5$; $x_2 = 0$; $x_3 = 7$; $x_4 = 12$, coût=-31

x_1	x_2	x_3	x_{4}	x_{5}	Z	b
	-1					_
1	-2	0	6	0	0	8 1 1
0	0		6	1	0	1
0	-1	1	2	0	0	1

Optimum non borné $(\to -\infty)$

x_1	x_2	x_3	Z	b
-4	0	0	-1	-2
1	1	0	0	-1
2	0	1	0	2

Impossible!

Exercice 1.2.5.

 $Max x_1$

sous
$$\begin{cases} x_1 - x_2 & \leq 1 \\ 2x_1 - x_2 & \leq 2 \\ x_1 + x_2 & \leq 7 \\ x_1 \geq 0 \\ x_2 \geq 0 \end{cases}$$

Résoudre par le simplexe. Comparer avec les solutions obtenues graphiquement.

1) Forme standard

$$Min z = -x_1$$

2) Tableau du simplexe

SBR (VHB :
$$x_1 = x_2 = 0$$
; VB : $x_3 = 1$; $x_4 = 2$; $x_5 = 7$)

3) Phase II

 x_1 entre dans la base $\min\{\frac{1}{1},\frac{2}{2},\frac{7}{1}\}=1 \to x_3$ ou x_4 sort de la base. Choix : x_3 sort

$$\begin{array}{ccc} l_1 & \rightarrow & l_1 + l_2 \\ l_3 & \rightarrow & l_3 - 2l_2 \\ l_4 & \rightarrow & l_4 - l_2 \end{array}$$

	x_2					
	-1					
1	-1	1	0	0	0	1
0	1	-2	1	0	0	0
0	-1 1 2	-1	O	1	0	6

 x_2 entre dans la base $\min\{\frac{0}{1},\frac{6}{2}\}=0 \rightarrow x_4$ sort de la base.

$$\begin{array}{ccc} l_1 & \rightarrow & l_1 + l_3 \\ l_2 & \rightarrow & l_2 + l_3 \\ l_4 & \rightarrow & l_4 - 2l_3 \end{array}$$

x_1	x_2	x_3	x_{4}	x_5	Z	b
0	_	_	1	_	_	1
1	0		1		0	1
0	1		1	0	0	0
0	0	3	-2	1	0	6

 x_3 entre dans la base, x_5 en sort.

$$\begin{array}{ccc} l_1 & \rightarrow & l_1 + l_4/3 \\ l_2 & \rightarrow & l_2 + l_4/3 \\ l_3 & \rightarrow & l_3 + 2l_4/3 \\ l_4 & \rightarrow & l_4/3 \end{array}$$

x_1	x_2	x_3	x_{4}	x_5	Z	b
0	0	0	1/3	1/3	-1	3
1	0	0	1/3	1/3	0	3
0	1	0	-1/3	2/3	0	4
0	0	1	-1/3 -2/3	1/3	0	2

Optimum:

$$x_1 = 3$$
; $x_2 = 4$; $x_3 = 2$; $x_4 = x_5 = 0$; $z = -3$

Remarque : si on avait fait sortir x_4 au début

$$\begin{array}{ccc} l_1 & \rightarrow & l_1 + l_3/2 \\ l_2 & \rightarrow & l_2 - l_3/2 \\ l_3 & \rightarrow & l_3/2 \\ l_4 & \rightarrow & l_4 - l_3/2 \end{array}$$

x_1	x_2	x_3	x_{4}	x_5	Z	b
0	,		1/2			
0	-1/2	1	-1/2 1/2	0	0	0
1	-1/2	0	1/2	0	0	1
0	3/2	0	-1/2	1	0	6

$$\begin{array}{ccc} l_1 & \rightarrow & l_1 + l_4/3 \\ l_2 & \rightarrow & l_2 + l_4/3 \\ l_3 & \rightarrow & l_3 + l_4/3 \\ l_4 & \rightarrow & 2/3l_4 \end{array}$$

x_1	x_2	x_{3}	x_{4}	x_5	Z	b
0	0	0	1/3	1/3	-1	3
0	0	1	-2/3	1/3	0	2
1	0	0	1/3	1/3	0	3
0	1	0	-1/3	2/3	0	4

Solution optimale identique mais avec une étape de moins.

Exercice 1.2.3.

Résoudre par la méthode du simplexe

Min
$$x_1 - x_2 + x_3$$

sous
$$\begin{cases} x_1 + 3x_2 & \ge 4 \\ x_1 + x_2 - x_3 & \le 10 \\ x_i \ge 0 & i = 1, \dots, 3 \end{cases}$$

1) Forme standard

Min
$$x_1 - x_2 + x_3$$

2) Pas de base réalisable initiale \rightarrow **Phase I** Variable artificielle : a_6

Min
$$a_6$$
 $(\sum y_i)$

sous
$$\begin{cases} x_1 + 3x_2 & -x_4 \\ x_1 + x_2 - x_3 & +x_5 \end{cases} + a_6 = 4$$

$$x_i \ge 0$$
 $i = 1, \dots, 5;$ $a_6 \ge 0$

$$\Rightarrow$$
 SBR : $x^T = (0 \ 0 \ 0 \ 10 \ 4)$

Fonction objectif sous forme canonique:

$$z = a_6 = 4 - x_1 - 3x_2 + x_4$$

$$\rightarrow -x_1 - 3x_2 + x_4 - z = -4$$

	x_2						
-1	-3	0	1	0	0	-1	-4
1	3 1	0	-1	0	1	0	4
1	1	-1	0	1	0	0	10

$$x_2$$
 rentre; $\min\{\frac{4}{3}, \frac{10}{1}\} \Rightarrow a_6$ sort

$$\begin{array}{ccc} l_1 & \rightarrow & l_1 + l_2 \\ l_2 & \rightarrow & l_2/3 \\ l_3 & \rightarrow & l_3 - l_2/3 \end{array}$$

x_{1}	x_2	x_3	x_{4}	x_5	a_{6}	Z	b
0	0	0	0	0	1	-1	0
1/3	1	0	-1/3	0	1/3 -1/3	0	4/3
2/3	0	-1	1/3	1	-1/3	0	26/3

 $a_6=0
ightarrow {\rm n'est}$ plus nécessaire on a la SBRO du problème min a_6 , $a_6\geq 0$

 \Rightarrow on a une SBR du problème de départ : $x^T = (0\ 4/3\ 0\ 0\ 26/3)$

Base : x_2, x_5

3) Phase II

Exprimer la fct objectif en fct des VHB

$$z = x_1 + x_3 + \frac{x_1 - x_4 - 4}{3} = \frac{4x_1}{3} + x_3 - \frac{x_4}{3} - \frac{4}{3}$$

x_1	x_2	x_3	x_{4}	x_{5}	Z	b
4/3	0	1	-1/3	0	-1	4/3
1/3	1	0	-1/3	0	0	4/3
2/3	0	-1	1/3	1	0	26/3

Optimum : $x^T = (0 \ 10 \ 0 \ 26 \ 0)$; z=-10

Exercice 1.2.4.

Résoudre par la méthode du simplexe

Min
$$x_2 - 2x_1$$

sous
$$\begin{cases} 2 \le x_1 \le 8 \\ x_2 \le x_1 \le x_2 + 2 \end{cases}$$

Comparer avec les solutions obtenues graphiquement

1) Forme standard

Min
$$x_2 - 2x_1$$

sous
$$\begin{cases} x_1 - x_3 = 2 \\ x_1 + x_4 = 8 \\ x_1 - x_2 - x_5 = 0 \\ x_1 - x_2 + x_6 = 2 \\ x_i \ge 0 \quad i = 1, \dots, 6 \end{cases}$$

Il manque une VB

2) Phase I

Min
$$x_7$$

sous
$$\begin{cases} x_1 - x_3 + x_7 = 2 \\ x_1 + x_4 = 8 \\ -x_1 + x_2 + x_5 = 0 \\ x_1 - x_2 + x_6 = 2 \\ x_i \ge 0 \quad i = 1, \dots, 7 \end{cases}$$

$$z = x_7 = 2 - x_1 + x_3 \rightarrow x_3 - x_1 - z = -2$$

x_1	x_2	x_3	x_{4}	x_5	x_{6}	x_7	Z	b
-1	0	1	0	0	0	0	-1	-2
1	0	-1	0	0	0	1	0	2
1	0	0	1	0	0	0	0	8
-1	1	0	0	1	0	0	0	0
1	-1	0	0 1 0 0	0	1	0	0	2

 x_1 rentre; $\min\{\frac{2}{1},\frac{8}{1},\frac{2}{1}\} \to x_6$ ou x_7 sort $(x_7$ pour terminer phase I)

$$z = 0 = x_7$$
 OK; SBR: $x^T = (2 \ 0 \ 0 \ 6 \ 2 \ 0)$ VB: x_1, x_4, x_5, x_6 ; VHB: x_2, x_3

3) Phase II

$$z = x_2 - 2x_1 = x_2 - 2(x_3 + 2) \Rightarrow x_2 - 2x_3 - z = 4$$

x_1	x_2	x_3	x_{4}	x_5	x_6	Z	b
0	1	-2	0	0	0	-1	4
1	0	-1	0	0	0	0	2
0	0	1	1	0	0	0	6
0	1	-1	0	1	0 0	0	2
0	-1	1	0	0	1	0	0

 x_6 sort, x_3 rentre

$$l_1 \rightarrow l_1 + 2l_5$$
 $l_2 \rightarrow l_2 + l_5$
 $l_3 \rightarrow l_3 - l_5$
 $l_4 \rightarrow l_4 + l_5$

x_1	x_2	x_3	x_{4}	x_5	x_{6}	Z	b
0	-1	0	0	0	2	-1	4
1	-1	0	0	0	1	0	2
0	1	0	1	0	-1	0	6
0	0	0	0	1	1	0	2
0	-1 1 0 -1	1	0	0	1	0	0

 x_4 sort, x_2 rentre

$$\begin{array}{ccc} l_1 & \rightarrow & l_1 + l_3 \\ l_2 & \rightarrow & l_2 + l_3 \\ l_5 & \rightarrow & l_5 + l_3 \end{array}$$

x_1	x_2	x_3	x_{4}	x_{5}	x_{6}	Z	b
0	0	0	1	0	1	-1	10
1	0	0	1	0	0	0	8
0	1	0	1	0	-1	0	6
0	0	0	0	1	1	0	2
0	O	1	1	O	0 -1 1 0	0	6

Optimum : $x^T = (8 6 6 0 2 0)$; z=-10

4) Remarque:

Substitution : $x_1' = x_1 - 2$

$$\Rightarrow$$
 Min $x_2 - 2(x_1' + 2) \rightarrow$ Min $x_2 - 2x_1'$

sous
$$\begin{cases} 0 \le x_1' \le 6 \\ x_2 - 2 \le x_1' \le x_2 \\ x_1', x_2 \ge 0 \end{cases}$$

$$\Rightarrow \begin{cases} x_1' + x_3 = 6 \\ x_1' - x_2 + x_4 = 0 \\ -x_1' + x_2 + x_5 = 2 \\ x_i \ge 0 \quad i = 1, \dots, 6 \end{cases}$$

⇒ simplexe canonique!

5) Résolution graphique