Laboratorio de Física I:

DINÁMICA

Docente: Lic. Jose Luis Mamani Cervantes

Competencias:

✓ Verificar la Segunda Ley de Newton

Marco Teórico:

Segunda Ley de Newton:

$$d\vec{F} = \frac{d\vec{P}}{dt} \qquad \vec{P} = m\vec{v}$$

$$d\vec{F} = \frac{d(m\vec{v})}{dt} = m\frac{d\vec{v}}{dt} \implies d\vec{F} = m\vec{a}$$

$$\vec{F}_n = m\vec{a}$$

La aceleración \vec{a} de un objeto es directamente proporcional a la fuerza neta $(\overrightarrow{F_n})$ que actúa sobre el y es inversamente proporcional a su masa m. La dirección de la aceleración es la misma que la de la fuerza neta aplicada.

$$\vec{F}_n = \sum \vec{F}$$

$$\sum \vec{F} = m\vec{a}$$

 $\sum \vec{F} = m\vec{a}$ Segunda Ley de Newton

Para un sistema formado por dos bloques:

La masa del sistema

$$M = m_1 + m_2$$

Aceleración dinámica

$$a_d = \frac{1}{m_1 + m_2} m_2 g$$

Aceleración cinámica si:

$$v_o = 0$$
 y $x_o = 0$ $para$ $t_o = 0$

$$x = \frac{1}{2}at^2$$

Materiales:

- ✓ Carril con colchón de aire
- ✓ Móvil
- ✓ Bomba de aire
- ✓ Sensor de movimiento
- ✓ Interfaz
- ✓ Soporte universal
- ✓ Computadora

Recolección de Datos

Registre datos de posición y tiempo

N	t[s]	X [m]
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

