实验二十三 高温超导材料特性测试和低温温度计的 实验报告

物理学院 庄易诚

2024年6月2日

目录

1	实验	数据及处理	2
	1.1	室温检测	2
	1.2	低温温度计对比	2
	1.3	超导转变曲线	5
	1.4	液氮沸点	8
2	收获	与感想	9

1 实验数据及处理

1.1 室温检测

调节各回路的电流值,在室温下测其电压,并通过铂电阻的温度-电阻对应表线性插值得到室温,数据如下表所示:

表 1: 室温检测实验数据表

Pt 电流 I_{Pt}/mA	1.000
Si 电流 $I_{Si}/\mu A$	100.00
样品电流 I_x/mA	10.0000
Pt 电压 U_{Pt}/mV	108.82
Si 电压 U_{Si}/V	0.5159
样品电压 U_x/mV	0.190
电偶电压 U_{TC}/mV	5.951

室温下铂电阻的阻值为: $R_{Pt} = \frac{U_{Pt}}{I_{Pt}} = 100.82\Omega$

根据铂电阻-温度对应表线性插值得到温度: T=295.67K

室温下超导样品的电阻为: $R_x = \frac{U_x}{I_x} = 19m\Omega$

1.2 低温温度计对比

实验中液氮面深度在 21.5cm 附近。下表中 T 代表温度,由铂电阻-温度对应表插值得到, U_{Pt} 代表铂电阻电压, U_{Si} 代表半导体电压, U_{TC} 代表温差电偶电压, U_x 代表样品电压。表格顺序从上到下,从左到右。由于测了样品电压,故同时列出(表格接下两页):

表 2: 低温温度计对比实验数据表

T/K	U_{Pt}/mV	$U_{Si}/{ m V}$	U_{TC}/mV	U_x/mV	T/K	U_{Pt}/mV	$U_{Si}/{ m V}$	U_{TC}/mV	U_x/mV
294.00	108.10	0.5225	5.890	0.179	105.31	32.13	0.9783	0.460	0.085
273.80	100.23	0.5722	5.157	0.170	104.96	31.99	0.9791	0.454	0.085
249.78	90.78	0.6327	4.307	0.160	104.65	31.85	0.9799	0.447	0.085
224.45	80.83	0.6953	3.456	0.150	104.33	31.72	0.9806	0.441	0.085
204.42	72.80	0.7438	2.851	0.139	104.07	31.61	0.9812	0.436	0.084
186.95	65.72	0.7869	2.351	0.130	103.82	31.50	0.9818	0.431	0.084
177.65	61.92	0.8089	2.083	0.125	103.53	31.38	0.9824	0.427	0.084

T/K	II_ /mV	17 /V	U_{TC}/mV	U_x/mV	T/K	U_{Pt}/mV	$U_{Si}/{ m V}$	U_{TC}/mV	U_x/mV
171.82	$\frac{6P_t/\text{mV}}{59.64}$	$\frac{0.8230}{0.8230}$	$\frac{c_{TC/\text{mv}}}{1.938}$	$\frac{O_x/mv}{0.123}$	103.28	$\frac{OP_t/\Pi V}{31.27}$	$\frac{O_{Si}/V}{0.9831}$	$\frac{OTC/\text{IIIV}}{0.419}$	$\frac{O_x/mv}{0.083}$
166.15	57.38	0.8361	1.797	0.123 0.120	103.28	31.13	0.9839	0.413	0.083
	55.30								0.083
161.17		0.8476	1.668	0.118	102.62	30.99	0.9847	0.407	
156.98	53.59	0.8576	1.562	0.116	102.29	30.85	0.9855	0.401	0.083
152.61	51.80	0.8680	1.458	0.114	101.96	30.71	0.9863	0.395	0.082
148.83	50.23	0.8769	1.366	0.112	101.40	30.54	0.9876	0.383	0.082
145.10	48.71	0.8858	1.281	0.110	100.41	30.07	0.9912	0.359	0.081
141.72	47.33	0.8935	1.205	0.108	99.53	29.69	0.9940	0.340	0.079
140.33	46.72	0.8971	1.170	0.108	98.07	29.15	0.9971	0.318	0.077
138.50	45.99	0.9012	1.130	0.107	96.82	28.57	0.9999	0.296	0.076
137.15	45.45	0.9044	1.103	0.106	95.71	28.08	1.0021	0.276	0.074
135.49	44.75	0.9084	1.067	0.105	94.84	27.82	1.0033	0.267	0.072
134.04	44.16	0.9117	1.035	0.104	94.11	27.43	1.0049	0.255	0.070
132.56	43.64	0.9114	1.005	0.103	93.74	27.27	1.0059	0.249	0.069
131.51	43.08	0.9128	0.977	0.102	93.20	27.03	1.0071	0.240	0.067
130.31	42.59	0.9209	0.953	0.102	92.80	26.84	1.0081	0.234	0.065
128.93	42.05	0.9240	0.924	0.101	92.21	26.67	1.0094	0.227	0.063
127.89	41.62	0.9275	0.902	0.101	91.99	26.54	1.0099	0.222	0.060
126.81	41.14	0.9291	0.878	0.100	91.98	26.50	1.0087	0.220	0.058
125.57	40.63	0.9319	0.856	0.099	91.89	26.47	1.0087	0.219	0.054
124.50	40.19	0.9344	0.833	0.099	91.86	26.45	1.0088	0.218	0.050
123.61	39.82	0.9359	0.815	0.099	91.79	26.43	1.0089	0.218	0.060
122.60	39.40	0.9388	0.794	0.098	91.77	26.41	1.0090	0.217	0.057
121.59	38.98	0.9410	0.773	0.097	91.70	26.38	1.0092	0.216	0.054
120.72	38.61	0.9425	0.756	0.096	91.63	26.35	1.0093	0.215	0.050
119.90	38.27	0.9449	0.739	0.096	91.51	26.30	1.0096	0.215	0.045
119.23	37.98	0.9468	0.721	0.096	91.49	26.29	1.0096	0.215	0.042
118.28	37.59	0.9487	0.706	0.095	91.47	26.28	1.0097	0.214	0.037
117.42	37.23	0.9507	0.690	0.094	91.45	26.27	1.0098	0.214	0.035
116.68	36.92	0.9524	0.673	0.094	91.41	26.26	1.0098	0.213	0.032
115.94	36.61	0.9542	0.659	0.093	91.39	26.25	1.0099	0.213	0.030
115.13	36.27	0.9560	0.645	0.092	91.37	26.24	1.0099	0.213	0.027
114.47	35.99	0.9570	0.633	0.092	91.35	26.23	1.0100	0.212	0.025
113.82	35.72	0.9588	0.619	0.091	91.32	26.21	1.0100	0.212	0.023
113.13	35.43	0.9605	0.606	0.091	91.28	26.20	1.0101	0.212	0.020

T/K	U_{Pt}/mV	U_{Si}/V	U_{TC}/mV	U_x/mV	T/K	U_{Pt}/mV	$U_{Si}/{ m V}$	U_{TC}/mV	U_x/mV
112.54	35.18	0.9618	0.596	0.091	91.25	26.19	1.0102	0.211	0.017
111.94	34.93	0.9630	0.584	0.090	91.21	26.17	1.0103	0.211	0.015
111.34	34.68	0.9646	0.584	0.090	91.18	26.16	1.0104	0.210	0.013
110.78	34.44	0.9659	0.560	0.090	91.18	26.16	1.0105	0.210	0.012
110.26	34.22	0.9671	0.551	0.090	91.18	26.16	1.0105	0.209	0.010
109.76	34.01	0.9681	0.542	0.089	91.16	26.15	1.0105	0.209	0.008
109.28	33.81	0.9693	0.535	0.089	91.16	26.15	1.0105	0.208	0.007
108.84	33.62	0.9703	0.525	0.088	91.01	26.03	1.0108	0.205	0.006
108.34	33.41	0.9714	0.515	0.088	90.43	25.75	1.0121	0.193	0.005
107.91	33.23	0.9718	0.513	0.087	89.54	25.36	1.0142	0.175	0.005
107.51	33.06	0.9733	0.501	0.087	87.25	24.37	1.0196	0.131	0.004
107.13	32.90	0.9742	0.492	0.086	85.49	23.67	1.0237	0.098	0.004
106.74	32.74	0.9751	0.486	0.086	82.34	22.34	1.0311	0.058	0.004
106.32	32.56	0.9760	0.478	0.086	80.75	21.70	1.0349	0.049	0.004
105.99	32.42	0.9765	0.471	0.086	80.30	21.55	1.0359	0.034	0.004
105.63	32.27	0.9775	0.465	0.086	78.41	20.70	1.0403	0.000	0.004

用铂电阻和半导体上的电压除以各自对应的电流计算出电阻,并用 python 作他们和热电偶电压各自随温度的变化曲线,如下图所示,图中已校对过坐标轴。

图 1: 三种低温温度计随温度变化规律对比图

做直线拟合,拟合结果为:

铂电阻: $k=0.4092\Omega/K$ r=0.99987 半导体: $k=-0.0238k\Omega/K$ r=-0.99982 热电偶: k=0.0250mV/K r=0.989

结合图和拟合结果可以看出,在较大的范围内,Si 半导体电压随温度升高而降低,温度系数为负,呈线性关系。Pt 的电压随温度升高而升高,温度系数为正,线性关系较好。由于温度是由铂电阻查表内插得到,因此后者的线性关系是显然的。

温差电偶电压与温度呈正相关,整体上线性较差。但在 130K 以下较为平滑,线性较好为了进一步说明,我对 130K 以下的部分做了线性拟合,如下图:

图 2: 130K 以下热电偶电压随温度变化图

k = 0.01844 mV/K r = 0.9991

说明低温时线性较好,但 78.41K 时电压为 0,之下的温度无法测量。

1.3 超导转变曲线

实验中从 273.80K 开始逐渐降温, 并在 130K 以下加密取点, 得到超导转变曲线实验数据表如下。其中由铂电压可以直接得到铂电阻。

表 3: 超导转变曲线实验数据表

T/K	U_{Pt}/mV	T/K	U_{Pt}/mV	T/K	U_{Pt}/mV	T/K	U_{Pt}/mV
273.80	0.170	121.59	0.097	104.96	0.085	91.70	0.054
249.78	0.160	120.72	0.096	104.65	0.085	91.63	0.050
224.45	0.150	119.90	0.096	104.33	0.085	91.51	0.045
204.42	0.139	119.23	0.096	104.07	0.084	91.49	0.042
186.95	0.130	118.28	0.095	103.82	0.084	91.47	0.037
177.65	0.125	117.42	0.094	103.53	0.084	91.45	0.035
171.82	0.123	116.68	0.094	103.28	0.083	91.41	0.032
166.15	0.120	115.94	0.093	102.95	0.083	91.39	0.030
161.17	0.118	115.13	0.092	102.62	0.083	91.37	0.027
156.98	0.116	114.47	0.092	102.29	0.083	91.35	0.025
152.61	0.114	113.82	0.091	101.96	0.082	91.32	0.023
148.83	0.112	113.13	0.091	101.40	0.082	91.28	0.020
145.10	0.110	112.54	0.091	100.41	0.081	91.25	0.017
141.72	0.108	111.94	0.090	99.53	0.079	91.21	0.015
140.33	0.108	111.34	0.090	98.07	0.077	91.18	0.013
138.50	0.107	110.78	0.090	96.82	0.076	91.18	0.012
137.15	0.106	110.26	0.090	95.71	0.074	91.18	0.010
135.49	0.105	109.76	0.089	94.84	0.072	91.16	0.008
134.04	0.104	109.28	0.089	94.11	0.070	91.16	0.007
132.56	0.103	108.84	0.088	93.74	0.069	91.01	0.006
131.51	0.102	108.34	0.088	93.20	0.067	90.43	0.005
130.31	0.102	107.91	0.087	92.80	0.065	89.54	0.004
128.93	0.101	107.51	0.087	92.21	0.063	87.25	0.004
127.89	0.101	107.13	0.086	91.99	0.060	85.49	0.004
126.81	0.100	106.74	0.086	91.98	0.058	82.34	0.004
125.57	0.099	106.32	0.086	91.89	0.054	80.75	0.004
124.50	0.099	105.99	0.086	91.86	0.050	80.30	0.004
123.61	0.099	105.63	0.086	91.79	0.060	78.41	0.004
122.60	0.098	105.31	0.085	91.77	0.057	77.63	0.004

由表格读出乱真电动势 $U_0=0.004mV$,修正乱真电动势后,以温度为横轴,超导样品电阻为纵轴作图,并分段拟合,如下图所示:

图 3: 超导转变曲线图

由于图中温区过大,我截取了 130K 以下的数据重新做图,并在图中画出了 $R_n\left(T\right)$ 、 $\frac{1}{2}R_n\left(T\right)$ 、 $R_V\left(T\right)$ 作为参考线。

图 4: 超导转变曲线图 (截取后)

对超导相变前(正常态)的数据点进行线性拟合,拟合结果为:

$$R_n(T) = aT + b$$

 $a = (4.78 \pm 0.04) \times 10^{-5} \,\Omega/\mathrm{K}$ $b = (3.62 \pm 0.07) \times 10^{-3} \,\Omega$
 $r = 0.9992$

对超导相变快速下降接近直线的阶段进行线性拟合, 拟合结果为:

$$R_V(T) = a T + b$$

 $a = (9.1 \pm 0.3) \times 10^{-3} \,\Omega/\mathrm{K}$ $b = -(0.83 \pm 0.03) \,\Omega$
 $r = 0.991$

比对表中数据,得到超导样品起始转变温度 $T_{c,onset}$ 、转变中点温度 T_{cm} 、零电阻温度 T_{c0} 的测量结果为

$$T_{c,ontest} = 100.2 \,\mathrm{K}$$

$$T_{co} = 90.4 \,\mathrm{K}$$

1.4 液氮沸点

实验测得液氮沸点相关的数据如下表:

液氮沸点 室温 Pt 电流 I_{Pt}/mA 0.98971.000 Si 电流 $I_{Si}/\mu A$ 99.95100.00 样品电流 I_x/mA 10.0000 9.9928Pt 电压 U_{Pt}/mV 20.39 108.82 Si 电压 U_{Si}/V 1.0450 0.5159样品电压 (未消除 U_0) U_x /mV 0.0040.190电偶电压 U_{TC}/mV 0.000 5.951

表 4: 液氮检测实验数据表

温度同样可由铂电阻-温度对应表插值得到,结果为 T = 77.63K,经查询液氮沸点标准值约 77.36K,与实验数据较为接近,测量系统的精确性较好。

消除乱真电动势后,样品电压为 0,因此在仪器精度内,样品电阻为 0。

对比可知,液氮沸点和室温时三部分测量电路电流变化幅度很小(相对变化最大在 1% 左右),基本满足恒流条件,因此测量系统的稳定性较好。

2 收获与感想

- 实验中我观察到温度较高时调整拉杆位置后电偶电压会有所波动,可能是因为液面以上温度分布不均,对热电偶会有较大影响。
- 实验中前期温度下降较慢,因此我们取点过多,浪费了大量时间,后期下降了拉杆加速导致转变区温度又下降过快,第二次测量将温度调到转变点附近,并以极慢的速度让温度下降,经过漫长的等待才开始测量,取到较多的数据点. 因此做实验一定要有耐心,不能急躁。