1 Introduction I

Definition 1.1 (Symmetric function). A function $\varphi(x_1,\ldots,x_n)$ is called *symmetric* if

$$\varphi(x_1,\ldots,x_n)=\varphi(x_{\omega(1)},\ldots,x_{\omega(n)})$$

for all $\omega \in S_n$.

Definition 1.2 (Elementary symmetric polynomial).

$$\sigma_1 = \sigma_1(x_1, \dots, x_n) = x_1 + \dots + x_n$$

$$\sigma_2 = \sigma_2(x_1, \dots, x_n) = x_1 x_2 + \dots + x_1 x_n + x_2 x_3 + \dots + x_{n-1} x_n$$

$$\vdots$$

$$\sigma_k = \sigma_k(x_1, \dots, x_n) = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} x_{i_1} \cdots x_{i_k}$$

$$\vdots$$

$$\sigma_n = \sigma_n(x_1, \dots, x_n) = \prod_{i=1}^n x_i$$

Theorem 1.3. For any symmetric function $\psi(x_1,\ldots,x_n)$, there exists a unique polynomial $P(t_1,\ldots,t_n)$ such that $\psi(x_1,\ldots,x_n)=P(\sigma_1,\ldots,\sigma_n)$.

Definition 1.4 (Vieta formulae). Suppose $f(t) = t^n + a_{n-1}t^{n-1} + \cdots + a_0$ has roots r_1, \ldots, r_n . Then,

$$r_{1} + r_{2} + \dots + r_{n} = -a_{n-1}$$

$$\sum_{1 \leq i < j \leq n} r_{i} r_{j} = a_{n-2}$$

$$\vdots$$

$$\sum_{1 \leq i_{1} < i_{2} < \dots < i_{k} \leq n} r_{i_{1}} r_{i_{2}} \cdots r_{i_{k}} = (-1)^{k} a_{n-k}$$

$$\vdots$$

$$r_{1} r_{2} \cdots r_{n} = (-1)^{n} a_{0}$$

Corollary 1.5. The discriminant D of $f \in R[x]$, where R is a ring and $f = x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$, is a polynomial in a_1, \ldots, a_n and coefficients from R (i.e. $D \in R[a_1, \ldots, a_n]$).

Note: Any cubic equation can be converted to a depressed cubic by

$$x^{3} + Ax^{2} + Bx + c = \left(x + \frac{A}{3}\right)^{3} + p\left(x + \frac{A}{3}\right) + q.$$

Theorem 1.6 (Vieta's method). Using the trigonometric identity $\cos 3\varphi = 4\cos^3 \varphi - 3\cos \varphi$, we can solve certain cubic equations. For example, consider $4x^3 - 3x = -\frac{1}{2}$. Let $x = \cos \varphi$. Then

$$\cos 3\varphi = -\frac{1}{2} \iff 3\varphi = \pm \frac{2\pi}{3} + 2\pi k \quad \text{for } k \in \mathbb{Z}$$

$$\iff \varphi = \pm \frac{2\pi}{9} + 2\pi k$$

$$\iff x \in \left\{\cos \frac{2\pi}{9}, \cos \frac{4\pi}{9}, \cos \frac{8\pi}{9}\right\}.$$

In general, we can use this method to solve $4x^3-3x=a \implies x=\cos\varphi,\ \cos3\varphi \ \text{and}\ \cos:\mathbb{C}\to\mathbb{C}$ is now a complex function. For $x^3+px+q=0$, set x=ky such that $\frac{k^3}{pk}=\frac{-4}{3}\implies k=\pm\frac{\sqrt{-4p}}{3}$.

Definition 1.7 (Ferrari's resolvent). Let $f(x) = x^4 + ax^2 + bx + c$, and assume $b^2 - 4ac \neq 0$. Consider a parameter y. Then

$$f(x) = \left(x^2 + \frac{y}{2}\right)^2 + (a - y)x^2 + bx + c - \frac{y^2}{4}$$

$$\implies D = b^2 - 4(a - y)\left(c - \frac{y^2}{4} = 0\right)$$

and hence we obtain Ferrari' resolvent:

$$y^3 - ay^2 - 4cy + 4ac - b^2 = 0.$$

Solving the resolvent allows one to reduce solving f to solving a system of quadratics.

2 Introduction II

Theorem 2.1 (Lagrange). Let $\varphi = \varphi(x_1, \ldots, x_n)$ and

$$\operatorname{orb}(\varphi) = \left\{ \varphi^{\omega} = \varphi(x_{\omega(1)}, \dots, x_{\omega(n)}) \mid \omega \in S_n \right\}.$$

Then y_1, \ldots, y_k are roots of some polynomial with degree $\leq k$ whose coefficients depend on elementary symmetric polynomials $\sigma_1, \ldots, \sigma_n$ in a polynomial way.

Theorem 2.2 (Lagrange). Let $\varphi, \psi \in K[x_1, \dots, x_n]$ and $G_{\varphi} = \{\omega \in S_n \mid \varphi^{\omega} = \varphi\} \leqslant G_{\psi}$. Then $\psi = R(\varphi)$ where R is a rational function whose coefficients are symmetric functions on x_1, \dots, x_n .

Definition 2.3 (Group action). Let G be a group and X be a set. The (left) group action of G on X is the map $\cdot : G \times X \to X$ such that

- 1. $e_G \cdot x = x$, $\forall x \in X$
- 2. $g \cdot (h \cdot x) = (g \cdot h) \cdot x$, $\forall x \in X, \forall g, h \in G$

Definition 2.4 (Orbit). Let G be a group, X be a set, and $x \in X$. Then we define the orbit of x, $G \cdot x = \operatorname{orb}(x)$, as $\{g \cdot x \mid g \in G\}$. Moreover, $\operatorname{orb}(x) \subseteq X$.

Definition 2.5 (Stabilizer). Let G be a group, X be a set, and $x \in X$. Then we define the stabilizer of x, stab(x), as $\{g \in G \mid g \cdot x = x\}$. Moreover, stab $(x) \leq G$.

Theorem 2.6. Let G be a finite group that acts on X. Then for all $x \in X$, $|\operatorname{orb}(x)| \cdot |\operatorname{stab}(x)| = |G|$.

Definition 2.7 (Polynomial ring). Let R be a commutative ring. Then the ring of polynomials with coefficients in R is

$$R[t] = \left\{ \sum_{i=0}^{n} c_i t^i : n \in \mathbb{Z}_+, c_i \in R \right\}$$

3 Field Extensions I

Definition 3.1 (Integral domain). Let R be a commutative ring. Then R is an integral domain if ab = 0 implies that a = 0 or b = 0 for all $a, b \in R$.

Definition 3.2 (Euclidean domain). Let R be an integral domain. Then R is a *Euclidean domain* if there exists some function $f: R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ such that for all $a, b_{\not\equiv 0} \in R$, there exist elements $q, r \in R$ such that a = qb + r where r = 0 or f(r) < f(b).

Theorem 3.3 (Bézout's Identity). Let R be a Euclidean domain. For $a, b \in R$, there exists $\alpha, \beta \in R$ such that $gcd(a, b) = \alpha a + \beta b$

Definition 3.4 (Irreducible). Let F be a field, and $f \in F[t] \setminus F$. Then f is *irreducible* if $\not\supseteq g, h \in F[t] \setminus F$ of strictly smaller degree such that f = gh.

Definition 3.5 (Unique factorization domain). Let R be an integral domain. Then R is a unique factorization domain (UFD) if for irreducible $p_i \in R$, any nonzero $x \in R$ can be written uniquely (up to ordering) as $x = p_1 p_2 \cdots p_k$, $k \ge 1$.

Fact: If R is an Euclidean domain, then R is a UFD (and PID)

Corollary 3.6. Let $f \in \mathbb{F}[t]$ be a monic polynomial with deg $f \geq 1$. Then we can write $f = f_1 f_2 \cdots f_k$ uniquely (up to ordering) for irreducible monic polynomials f_j .

Definition 3.7. Let R be a UFD. When $a_0, \ldots, a_n \in R$ are not all 0, we can generalize the *greatest common divisor* of a_0, \ldots, a_n (written $gcd(a_0, \ldots, a_n)$) any element $c \in R$ satisfying

- (i) $c \mid a_i \ (0 \le i \le n)$, and
- (ii) if $d \mid a_i \ (0 \le i \le n)$, then $d \mid c$.

When $f = \sum_{j=0}^{d} a_j x^j \in R[x]$ is a non-zero polynomial, we define a *content* of f to be any $gcd(a_0, \ldots, a_d)$ and $gcd(f) = gcd(a_0, \ldots, a_d)$. We say that $f \in R[X]$ is *primitive* if $f \neq 0$ and the content of f is divisible only by units of R.

Lemma 3.8 (Gauss). $gcd(fg) = gcd f \cdot gcd g$

Corollary 3.9. $f \in \mathbb{Z}[t]$ is irreducible $\iff f$ is irreducible over $\mathbb{Q}[t]$

Corollary 3.10. If R is a UFD with field of fractions Q and $f \in R[X]$ with deg f > 0, then f is irreducible in $R[X] \iff f$ is irreducible in Q.

Theorem 3.11 (Eisenstein's Criterion). Let R be a UFD with field of fractions Q and let $f = a_0 + a_1X + \dots + a_nX^n \in R[X]$ with gcd(f) = 1. Suppose there exists an irreducible element $p \in R$ such that

- (i) $p \mid a_i \text{ for } 0 \leq i < n$,
- (ii) $p^2 \nmid a_0$, and
- (iii) $p \nmid a_n$,

then f is irreducible in R[X] (and hence also in Q[X]).

Definition 3.12 (Field extension). Let L and K be fields. Then L is an *extension* of K if there exists a homomorphism $\varphi: K \to L$. Then we write L: K or L/K, $\varphi(K) \cong K$ and identify $\varphi(K)$ with K.

Fact: Suppose that L is a field extension of K with associated embedding $\varphi: K \to L$. Then L forms a vector space over K, under the operations

```
(vector addition) \psi: L \times L \to L given by (v_1, v_2) \mapsto v_1 + v_2 (scalar multiplication) \tau: K \times L \to L given by (k, v) \mapsto \varphi(k)v.
```

Definition 3.13 (Degree, finite extension). Let L:K. Then the degree of L:K is $[L:K]=\dim L$ over K as a vector space. We say that L:K is a finite extension if $[L:K]<\infty$.

Definition 3.14 (Tower, intermediate field). We say that M:L:K is a tower of field extensions if M:L and L:K are field extensions, and in this case we say that L is an intermediate field (relative to the extension M:K)

Theorem 3.15 (The Tower Law). Suppose that M:L:K is a tower of field extensions. Then M:K is a field extension, and [M:K]=[M:L][L:K].

Corollary 3.16. Suppose that L: K is a field extension for which [L: K] is a prime number. Then whenever L: M: K is a tower of field extensions with $K \subseteq M \subseteq L$, one has either M = L or M = K.

4 Field Extensions II

Definition 4.1 (Smallest subring/subfield). Let L: K with $K \subseteq L$.

- (i) When $\alpha \in L$, we denote by $K[\alpha]$ the smallest subring of L containing K and α , and by $K(\alpha)$ the smallest subfield of L containing K and α ;
- (ii) More generally, when $A \subseteq L$, we denote by K[A] the smallest subring of L containing K and A, and by K(A) the smallest subfield of L containing K and A.

Then

$$K[\alpha] = \left\{ \sum_{i=0}^{d} c_i \alpha^i : d \in \mathbb{Z}_{\leq 0}, \ c_0, \dots, c_d \in K \right\}$$
$$K(\alpha) = \left\{ f/g : f, g \in K[\alpha], g \neq 0 \right\}.$$

Definition 4.2 (Algebraic/transcendental element). Suppose that L: K is a field extension with $K \subseteq L$ and $\alpha \in L$.

- (i) We say α is algebraic over K if $\exists f_{\neq 0} \in K[t]$ such that $f(\alpha) = 0$.
- (ii) If α is not algebraic over K, then we say α is transcendental over K.
- (iii) When every element of L is algebraic over K, we say that L is algebraic over K.

Definition 4.3 (Evaluation map). Suppose that L: K is a field extension with $K \subseteq L$, and that $\alpha \in L$. We define the *evaluation map* $E_{\alpha}: K[t] \to L$ by putting $E_{\alpha}(f) = f(\alpha)$ for each $f \in K[t]$.

Definition 4.4 (Minimal polynomial). Suppose that L: K is a field extension with $K \subseteq L$, and suppose that $\alpha \in L$ is algebraic over K. Then the minimal polynomial of α over K is the unique monic polynomial μ_{α}^{K} such that $\ker(E_{\alpha}) = (\mu_{\alpha}^{K})$.

Lemma 4.5. 1. μ_{α}^{K} is irreducible over K;

- 2. If $f \in K[t]$ such that $f(\alpha) = 0$, then $\mu_{\alpha}^{K} \mid f$;
- 3. If $f \in K[t]$ such that $f(\alpha) = 0$ and f is irreducible over K, then $\exists k \in K$ such that $f = k\mu_{\alpha}^{K}$.

Theorem 4.6. Let L: K with $K \subseteq L$, and suppose that $\alpha \in L$ is algebraic over K.

- (i) $K[\alpha]$ is a field, and $K[\alpha] = K(\alpha)$;
- (ii) If $n = \deg \mu_{\alpha}^{K}$, then $\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$ is a basis for $K(\alpha)$ over $K \ (\Longrightarrow [K(\alpha) : K] = \deg \mu_{\alpha}^{K})$.

Theorem 4.7 (Rational Root Theorem). Let $\frac{p}{q}$ be a root of $f = a_0 t^n + \dots + a_{n-1} t^{n-1} + a_n$, for $a_j \in \mathbb{Z}$, where p and q are coprime. Then $p \mid a_n$ and $q \mid a_0$.

Note: If α is transcendental over K, then $K(\alpha) \cong K(x)$ (where x is a formal variable).

Corollary 4.8. Let L: K with $K \subseteq L$, and suppose that $\alpha \in L$ is algebraic over K. Then every element of $K(\alpha)$ is algebraic over K.

Corollary 4.9. Let L: K with $K \subseteq L$. Then $[L:K] < \infty \iff L = K(\alpha_1, \ldots, \alpha_n)$ for $\alpha_j \in L$.

Theorem 4.10. Let L: K be a field extension, and define

$$L^{\text{alg}} = \{ \alpha \in L : \alpha \text{ is algebraic over } K \}.$$

Then L^{alg} is a subfield of L.

5 Algebraic Conjugates

Lemma 5.1. Let \mathbb{F} be a field with $f \in \mathbb{F}[t]$ irreducible. Then $\mathbb{F}[t]/(f)$ is a field.

Corollary 5.2. If L: K with $\alpha \in L$ algebraic over K, then $K[t]/(\mu_{\alpha}^{K})$ is a field.

Theorem 5.3. Let K be a field, and suppose that $f \in K[t]$ is irreducible. Then there exists a field extension L: K, with associated embedding $\varphi: K[t] \to L[y]$, such that L contains a root of $\varphi(f)$.

Definition 5.4 (Algebraic conjugate). Suppose α is algebraic over K and μ_{α}^{K} factors as a product of linear polynomials over a field $L \supseteq K$:

$$\mu_{\alpha}^{K}(x) = (x - \alpha_1) \cdots (x - \alpha_n), \quad \alpha_1, \dots, \alpha_n \in L.$$

Then $\alpha_1, \ldots, \alpha_n$ are algebraic conjugates of α .

Lemma 5.5. Let $(x-\alpha_1)\cdots(x-\alpha_n)\in K[x]$ and $f(\overline{y},x_1,\ldots,x_n)\in K[\overline{y},x_1,\ldots,x_n]$ be symmetric polynomial in x_1,\ldots,x_n . Then $f(\overline{y},x_1,\ldots,x_n)\in K[\overline{y}]$.

Theorem 5.6. Let α be algebraic over K with algebraic conjugates $\alpha = \alpha_1, \ldots, \alpha_n$. Then for all $f \in K[x]$, the conjugates of $f(\alpha)$ are exactly $f(\alpha_1), \ldots, f(\alpha_n)$.

6 Ruler and Compass Constructions

Definition 6.1 (Constructible points/angles). Let $P_0 = (0,0)$ and $P_1 = (1,0)$, and let $S_n = (P_0, \ldots, P_n)$. Then P_{n+1} is a constructible point if it is the intersection of either

- 1. two lines containing points in S_n ;
- 2. two circles with centers in S_n ;
- 3. a circle and line with center and endpoints in S_n .

Similarly, an angle θ is constructible if for some $a \in \mathbb{R}$, there exists some constructible point x such that $x^2 = a^2$.

Lemma 6.2. If n-gon constructible, then 2n-gon is constructible.

Lemma 6.3. If a, b, c constructible (or polyquadratic), then $a \pm b, \frac{ab}{c}$, and \sqrt{ab} constructible.

Fact 6.4. If m-gon and n-gon are constructible for coprime m, n, then mn-gon is contructible.

Fact 6.5. If $p \ge \text{prime}$, then p^k -gon constructible for $k \in \mathbb{N}$.

Theorem 6.6 (Gauss).

$$\cos\frac{2\pi}{17} = \frac{-1 + \sqrt{17} + \sqrt{34 - 2\sqrt{17}} + 2\sqrt{17 + 3\sqrt{17} - \sqrt{34 - 2\sqrt{17}}}}{16}$$

Corollary 6.7. The 17-gon is constructible.

Corollary 6.8. If $a \in \mathbb{R}$ is constructible, then $[\mathbb{Q}(a) : \mathbb{Q}] = 2^n$ for some $n \geq n$

Corollary 6.9. Given a cube C_1 with volume V_1 , it is impossible to construct a cube C_2 with volume $2V_2$ by ruler and compass. That is, the volume of a cube can not be duplicated by ruler and compass.

Corollary 6.10. An arbitrary angle cannot be trisected by ruler and compass.

Theorem 6.11 (Gauss-Wantzel). A regular n-gon is constructible $\iff n = 2^r p_1 p_2 \cdots p_s$ for $r \in \mathbb{Z}_{\geq 0}$ and Fermat primes $p_j = 2^{\binom{2^k}{r}} + 1$ for $k \in \mathbb{Z}_{\geq 0}$.

7 Cyclotomic Polynomials

Theorem 7.1. For prime p, we have $x^p - 1 = (x - 1)(x^{p-1} + \dots + 1)$ and $\mu_{\varepsilon_p}^{\mathbb{Q}} = x^{p-1} + \dots + 1$.

Definition 7.2 (n^{th} cyclotomic polynomial).

$$\Phi_n(x) = \prod_{\substack{\varepsilon \in \sqrt[n]{1} \\ |\varepsilon| = n}} (x - \varepsilon) = \frac{x^n - 1}{\prod_{\substack{d \mid n, d < n}} \Phi_d(x)}$$

Theorem 7.3. Φ_n is irreducible over \mathbb{Q} .

Corollary 7.4. (a) $\left[\mathbb{Q}(\exp\left(\frac{2\pi i}{n}\right)):\mathbb{Q}\right] = \varphi(n)$ (where φ is Euler's totient function);

- (b) $\left[\mathbb{Q}(\cos\left(\frac{2\pi}{n}\right)):\mathbb{Q}\right] = \frac{1}{2}\varphi(n)$. Furthermore, all algebraic conjugates of $\cos\frac{2\pi}{n}$ are $\cos\frac{2\pi k}{n}$ for $\gcd(k,n) = 1$.
- (c) Let $c=\frac{a+bi}{a-bi}\in \sqrt[\infty]{1},$ where $a,b\in\mathbb{Z}.$ Then $c\in\{\pm i,\pm 1\}$

Lemma 7.5. Let \mathbb{F} be a finite field. Then $\mathbb{F}^{\times} = \mathbb{F} \setminus \{0\}$ is a cyclic group.

8 Splitting Fields, Abel-Ruffini

Definition 8.1 (Splitting field). Let L: K with embedding $\varphi: K \to L$ and $f \in K[t] \setminus K$. We say f splits over L if $\varphi(f) = c \prod_{j=1}^{n} (x - \alpha_j)$ for $\alpha_j \in L$ and $c \in \varphi(K)$. We say that M: K is a splitting field extension for f if f splits over L, $\varphi(K) \subseteq M \subseteq L$, and M is the smallest subfield of L containing $\varphi(K)$ over which f splits.

Lemma 8.2. Let L: K be a splitting field extension for $f \in K[t]$ relative to the embedding $\varphi: K \to L$, and let $\alpha_j \in L$ be roots of $\varphi(f)$. Then $L = \varphi(K)(\alpha_1, \ldots, \alpha_n)$.

Lemma 8.3. Let L: K be a splitting field extension for $f \in K[t] \setminus K$. Then $[L:K] \leq (\deg f)!$.

Lemma 8.4. Let L: K and M: K be splitting field extensions for $f \in K[t] \setminus K$. Then $L \cong M$ (in particular, [L:K] = [M:K]).

Definition 8.5 (Radical, radical extension, solvability by radicals). Let L: K and $\beta \in L$. We say that β is radical over K when $\beta^n \in K$ for some $n \in \mathbb{N}$ (so $\beta = \alpha^{1/n}$ for some $\alpha \in K$ and some $n \in \mathbb{N}$). We say that L: K is an extension by radicals when there is a tower of field extensions $L = L_r : L_{r-1} : \cdots : L_0 = K$ such that $L_i = L_{i-1}(\beta_i)$ with β_i radical over L_{i-1} (for $1 \le i \le r$). We say $f \in K[t]$ is solvable by radicals if there is a radical extension of K over which K splits.

Theorem 8.6 (Abel-Ruffini). Let $K = \mathbb{C}(a_1, \ldots, a_n)$ where a_1, \ldots, a_n are formal variables. Let $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n \in K[x]$ be the generic polynomial of degree $n \geq 5$ over K. Then f(x) is not solvable by radicals.

9 Algebraic Closure I

Definition 9.1 (Algebraically closed field, algebraic closure). Let M be a field.

- (i) We say that M is algebraically closed if every non-constant polynomial $f \in M[t]$ has a root in M.
- (ii) We say that M is an algebraic closure of K if M:K is an algebraic field extension such that M is algebraically closed.

Lemma 9.2. Let M be a field. The following are equivalent:

- (i) The field M is algebraically closed;
- (ii) every non-constant polynomial $f \in M[t]$ factors in M[t] as a product of linear factors;

- (iii) every irreducible polynomial in M[t] has degree 1;
- (iv) the only algebraic extension of M containing M is itself.

Definition 9.3 (Chain). Suppose that X is a nonempty, partially ordered set with \leq denoting the partial ordering. A *chain* C in X is a collection of elements $\{a_i\}_{i\in I}$ of X such that for every $i,j\in I$, either $a_i\leq a_j$ or $a_j\leq a_i$.

Zorn's Lemma: Suppose that X is a nonempty, partially ordered set with \leq the partial ordering. If every non-empty chain C in X has an upper bound in X, then X has at least one maximal element m (i.e. $b \in X$ with $m \leq b \Longrightarrow b = m$).

Corollary 9.4. Any proper ideal A of a commutative ring R is contained in a maximal ideal.

Lemma 9.5. Let K be a field. Then there exists an algebraic extension E: K, with $K \subseteq E$, such that E contains a root of every irreducible $f \in K[t]$, and hence also every $g \in K[t] \setminus K$.

Theorem 9.6 (Existence of Algebraic Closures). Suppose that K is a field. Then there exists an algebraic extension \overline{K} of K such that \overline{K} is algebraically closed.

Definition 9.7 (Extension of field homomorphism, isomorphic field extensions). For i=1 and 2, let $L_i:K_i$ be a field extension relative to the embedding $\varphi_i:K_i\to L_i$. Suppose that $\sigma:K_1\to K_2$ and $\tau:L_1\to L_2$ are isomorphisms. We say that τ extends σ if $\tau\circ\varphi_1=\varphi_2\circ\sigma$. In such circumstances, we say that $L_1:K_1$ and $L_2:K_2$ are isomorphic field extensions.

When $\sigma: K_1 \to K_2$ and $\tau: L_1 \to L_2$ are homomorphisms (instead of isomorphisms), then τ extends σ as a homomorphism of fields when the isomorphism $\tau: L_1 \to L'_1 = \tau(L_1)$ extends the isomorphism $\sigma: K_1 \to K'_1 = \sigma(K_1)$.

Definition 9.8 (K-homomorphism). Let L:K be a field extension relative to the embedding $\varphi:K\to L$, and let M be a subfield of L containing $\varphi(K)$. Then, when $\sigma:M\to L$ is a homomorphism, we say that σ is a K-homomorphism if σ leaves $\varphi(K)$ pointwise fixed, which is to say that for all $\alpha\in\varphi(K)$, one has $\sigma(\alpha)=\alpha$.

Lemma 9.9. Suppose that L: K is a field extension with $K \subseteq L$, and that $\tau: L \to L$ is a K-homomorphism. Suppose that $f \in K[t]$ has the property that $\deg f \geq 1$, and additionally that $\alpha \in L$.

- (i) if $f(\alpha) = 0$, one has $f(\tau(\alpha)) = 0$;
- (ii) if τ is a K-automorphism of L, then $f(\alpha) = 0 \iff f(\tau(\alpha)) = 0$.

Theorem 9.10. Let $\sigma: K_1 \to K_2$ be a field isomorphism. Suppose that L_i is a field with $K_i \subseteq L_i$ (i = 1, 2). Suppose also that $\alpha \in L_1$ is algebraic over K_1 , and that $\beta \in L_2$ is algebraic over K_2 . Then we can extend σ to an isomorphism $\tau: K_1(\alpha) \to K_2(\beta)$ in such a manner that $\tau(\alpha) = \beta$ if and only if $\mu_{\beta}^{K_2} = \sigma(\mu_{\alpha}^{K_1})$.

$$K_{2} \xrightarrow{\varphi_{2}} K_{2}(\beta) \xrightarrow{\iota_{2}} L_{2}$$

$$\downarrow^{\sigma} \qquad \qquad \downarrow^{\tau}$$

$$K_{1} \xrightarrow{\varphi_{1}} K_{1}(\alpha) \xrightarrow{\iota_{1}} L_{1}$$

Note: When $\tau: K_1(\alpha) \to K_2(\beta)$ is a homomorphism, and τ extends the homomorphism $\sigma: K_1 \to K_2$, then τ is completely determined by σ and the value of $\tau(\alpha)$.

Corollary 9.11. Let L:M be a field extension with $M\subseteq L$. Suppose that $\sigma:M\to L$ is a homomorphism, and $\alpha\in L$ is algebraic over M. Then the number of ways we can extend σ to a homomorphism $\tau:M(\alpha)\to L$ is equal to the number of distinct roots of $\sigma(\mu_{\alpha}^{M})$ that lie in L.

10 Algebraic Closure II

Theorem 10.1. Let L:K be an algebraic extension with $K\subseteq L$ and $\varphi:K\to \overline{K}$ be a homomorphism. Then there exists an extension of φ to a homomorphism $\psi:L\to \overline{K}$.

Theorem 10.2. If L and M are both algebraic closures of K, then $L \cong M$.

Corollary 10.3. Let L: K be an extension with $K \subseteq L$. Suppose that $g \in L[t]$ is irreducible over L, and that $g \mid f$ in L[t], where $f \in K[t] \setminus \{0\}$. Then g divides a factor of f that is irreducible over K.

Thus, there exists an irreducible $h \in K[t]$ such that $h \mid f$ in K[t], and $g \mid h$ in L[t].

Definition 10.4 (Normal extension). The extension L: K is *normal* if it is algebraic, and every irreducible polynomial $f \in K[t]$ either splits over L or has no root in L.

Theorem 10.5. $K(\alpha): K$ is normal \iff all conjugates of α are contained in $K(\alpha)$.

Theorem 10.6. A finite extension L: K is normal $\iff L$ is a splitting field extension for some $f \in K[t] \setminus K$.

11 Galois Groups I

Definition 11.1 (Galois group of polynomial). Let $L = K(\alpha_1, ..., \alpha_n)$ and let $P(\alpha_1, ..., \alpha_n)$ where $P \in K[\alpha_1, ..., \alpha_n]$ is an element of L. Then we define

$$\operatorname{Gal}_K(f) = \{ \sigma \in S_n \mid \forall P \in K[\alpha_1, \dots, \alpha_n], \text{ if } P(\alpha_1, \dots, \alpha_n) = 0 \text{ then } P(\alpha_{\sigma(1)}, \dots, \alpha_{\sigma(n)}) \}$$

Lemma 11.2. 1. $Gal_K(f) \leq S_n$;

2. If $K_1: K$, then $Gal_{K_1}(f) \leq Gal_K(f)$.

Definition 11.3. Let L: K be a field extension. Then

$$\operatorname{Gal}_K(L) = \operatorname{Gal}(L:K) = \{ \varphi \in \operatorname{Aut}(L) : \varphi \text{ is a K-homomorphism} \}$$

Definition 11.4 (Galois automorphism on splitting field). Let $\sigma \in \operatorname{Gal}_K f$ where L is a splitting field for f over K, and define $\widehat{\sigma} \in \operatorname{Aut}_K(L)$ such that $\widehat{\sigma}(P(\alpha_1, \dots, \alpha_n)) = P(\alpha_{\sigma(1)}, \dots, \alpha_{\sigma(n)})$.

Lemma 11.5. The map $\psi(\sigma) = \hat{\sigma}$ is a group isomorphism.

Theorem 11.6. If L: K is an algebraic extension and $\sigma: L \to L$ is a K-homomorphism, then $\sigma \in \operatorname{Aut}(L)$

Lemma 11.7. Suppose that M:K is a normal extension. Then:

- (a) for any $\sigma \in \operatorname{Gal}(M:K)$ and $\alpha \in M$, we have $\mu_{\sigma(\alpha)}^K = \mu_{\alpha}^K$;
- (b) for any $\alpha, \beta \in M$ with $\mu_{\alpha}^K = \mu_{\beta}^K$, there exists $\tau \in \operatorname{Gal}(M:K)$ such that $\tau(\alpha) = \beta$.

12 Galois Groups II

Lemma 12.1. Suppose that L: K is a normal extension with $K \subseteq L \subseteq \overline{K}$. Then for any K-homomorphism $\tau: L \to \overline{K}$, we have $\tau(L) = L$.

Lemma 12.2. For $n \geq 2$, S_n is generated by

- 1. transpositions (ij);
- 2. transpositions (1 i);
- 3. adjacent transpositions $(12), (23), \ldots, (n-1, n)$;
- 4. (12) and (12...n);

- 5. (12) and (23...n);
- 6. (ij) and $(i \dots i_p)$ where p is prime.

Lemma 12.3. Let $(i_1 \dots i_k) \in S_n$. Then for all $\sigma \in S_n$, one has $\sigma(i_1 \dots i_k) \sigma^{-1} = (\sigma(i_1) \dots \sigma(i_k))$.

Note: $|Gal_K(f)| = [L:K]$ where L:K is a splitting field extension for f.

13 Galois Groups III

Theorem 13.1 (Kronecker). Let $p \geq 3$ be a prime and $f \in \mathbb{Q}[x]$ be irreducible over \mathbb{Q} with deg f = p. If the equation f(x) = 0 is solvable by radicals, then the number of real roots of f is 1 or p.

Lemma 13.2. Let p be prime and $G \leq S_p$ such that G acts transitively on $\{1, \ldots, p\}$. Then G contains a cycle of order p.

Theorem 13.3. If L: K is a finite extension, then $|Gal_K(L)| \leq [L: K]$.

14 Separability

Definition 14.1 (Separable). Let K be a field.

- (i) An irreducible polynomial $f \in K[t]$ is separable over K if it has no multiple roots, meaning that $f = \lambda(t \alpha_1)(t \alpha_2) \cdots (t \alpha_d)$, where $\alpha_1, \ldots, \alpha_d \in \overline{K}$ are distinct.
- (ii) A non-zero polynomial $f \in K[t]$ is separable over K if its irreducible factors in K[t] are separable over K.
- (iii) When L: K is a field extension, we say that $\alpha \in L$ is separable over K when α is algebraic over K and μ_{α}^{K} is separable.
- (iv) An algebraic extension L: K is a separable extension if every $\alpha \in L$ is separable over K.
- **Lemma 14.2.** Suppose that L:M:K is a tower of algebraic field extensions. Assume that $K\subseteq M\subseteq L\subseteq \overline{K}$, and suppose that $f\in K[t]\setminus K$ satisfies the property that f is separable over K. If $g\in M[t]\setminus M$ has the property that $g\mid f$, then g is separable over M. Thus, if $\alpha\in L$ is separable over K then α is separable over M, and if L:K is separable then so is L:M.
- **Lemma 14.3.** 1. If L:M is an algebraic field extension, $\alpha \in L$ and $\sigma:M \to \overline{M}$ is a homomorphism, then $\sigma(\mu_{\alpha}^{M})$ is separable over $\sigma(M) \Longleftrightarrow \mu_{\alpha}^{M}$ is separable over M.
 - 2. If L:K is a splitting field extension for $f \in K[t]$ and f is separable over K, then L:K is separable.

Theorem 14.4. Let L: K be a finite extension with $K \subseteq L \subseteq \overline{K}$, whence $L = K(\alpha_1, \ldots, \alpha_n)$ for some $\alpha_1, \ldots, \alpha_n \in L$. Put $K_0 = K$, and for $1 \le i \le n$, set $K_i = K_{i-1}(\alpha_i)$. Finally, let $\sigma_0: K \to \overline{K}$ be the inclusion map.

- (i) If α_i is separable over K_{i-1} for $1 \le i \le n$, then there are [L:K] ways to extend σ_0 to a homomorphism $\tau: L \to \overline{K}$.
- (ii) If α_i is not separable over K_{i-1} for some i with $1 \le i \le n$, then there are fewer than [L:K] ways to extend σ_0 to a homomorphism $\tau: L \to \overline{K}$.

Theorem 14.5. Let L: K be a finite extension with $L = K(\alpha_1, \ldots, \alpha_n)$. Set $K_0 = K$, and for $1 \le i \le n$, inductively define K_i by putting $K_i = K_{i-1}(\alpha_i)$. Then the following are equivalent:

- (i) the element α_i is separable over K_{i-1} for $1 \leq i \leq n$;
- (ii) the element α_i is separable over K for $1 \leq i \leq n$;
- (iii) the extension L: K is separable.

Corollary 14.6. Suppose that L: K is a finite extension. If L: K is a separable extension, then the number of K-homomorphism $\sigma: L \to \overline{K}$ is [L:K], and otherwise the number is smaller than [L:K].

Corollary 14.7. Suppose that $f \in K[t] \setminus K$ and that L : K is a splitting field extension for f. Then L : K is a separable extension $\iff f$ is separable over K. More generally, suppose that L : K is a splitting field extension for $S \subseteq K[t] \setminus K$. Then L : K is a separable extension \iff each $f \in S$ is separable over K.

15 The Primitive Element Theorem

Definition 15.1 (Simple extension). Suppose L: K is a field extension relative to the embedding $\varphi: K \to L$. We say that L: K is a *simple extension* if there is some $\gamma \in L$ such that $L = \varphi(K)(\gamma)$.

Theorem 15.2 (The Primitive Element Theorem). If L: K is a finite, separable extension with $K \subseteq L$, then L: K is a simple extension.

Corollary 15.3. Suppose that L: K is an algebraic, separable extension, and suppose that for every $\alpha \in L$, the polynomial μ_{α}^{K} has degree at most n over K. Then $[L:K] \leq n$.

Fact: Let L: K be a normal extension and let $\deg(\mu_{\alpha}^K) \leq n$ for all $\alpha \in L$. Then $[L:K] \leq n$.

Corollary 15.4. If $f \in K[t]$ is irreducible over K, then $Gal_K(f)$ acts transitively on the roots of f.

16 Galois Fields I

Definition 16.1 (Formal derivative). We define the derivative operator $\mathcal{D}: K[t] \to K[t]$ by

$$\mathcal{D}\left(\sum_{k=0}^{n} a_k t^k\right) = \sum_{k=1}^{n} k a_k t^{k-1}.$$

Theorem 16.2. Let $f \in K[t] \setminus K$, and let L : K be a splitting field extension for f with $K \subseteq L$. Then the following are equivalent:

- (i) f has a repeated root over L;
- (ii) There exists $\alpha \in L$ such that $f(\alpha) = 0 = (\mathcal{D}f)(\alpha)$;
- (iii) There exists $g \in K[t]$ with deg $g \ge 1$ such that $g \mid f$ and $g \mid \mathcal{D}f$.

Definition 16.3 (Inseparable). A polynomial $f \in K[t]$ is inseparable over K if f is not separable over K, i.e. f has an irreducible factor $g \in K[t]$ such that g has fewer than deg g distinct roots in K.

Theorem 16.4. Suppose $f \in K[t]$ is irreducible over K. Then f is inseparable over $K \iff \operatorname{char} K = p > 0$ and $f \in K[t^p]$.

Definition 16.5 (Frobenius map). Suppose that char K = p > 0. The Frobenius map $\varphi : K \to K$ is defined by $\varphi(\alpha) = \alpha^p$.

Theorem 16.6. Suppose that char K = p > 0, and put $F = \{c \cdot 1_K : c \in \mathbb{Z}\}$. Then F is a subfield (called the prime subfield) of K, and $F \cong \mathbb{Z}/p\mathbb{Z}$.

Definition 16.7 (Fixed field). Let L: K be a field extension and $G \leq \operatorname{Aut}(L)$. We define the fixed field of G as

$$\operatorname{Fix}_L(G) = \{ \alpha \in L : \sigma(\alpha) = \alpha \text{ for all } \sigma \in G \}.$$

Theorem 16.8. Suppose that char K = p > 0, and let F be the prime subfield of K. Let $\varphi : K \to K$ denote the Frobenius map. Then φ is an injective homomorphism, and $\text{Fix}_{\varphi}(K) = F$.

Corollary 16.9. Suppose that char K = p > 0 and K is algebraic over its prime subfield. Then the Frobenius map is an automorphism of K.

Corollary 16.10. Suppose that char K = p > 0 and K is algebraic over its prime subfield. Then all polynomials in K[t] are separable over K.

Corollary 16.11 (**). Suppose that char K=0. Then all polynomials in K[t] are separable over K.

Theorem 16.12. Suppose that char K = p > 0. Let

$$f(t) = g(t^p) = a_0 + a_1 t^p + \dots + a_{n-1} t^{(n-1)p} + t^{np}$$

be a non-constant monic polynomial over K. Then f(t) is irreducible in K[t] if and only if g(t) is irreducible in K[t] and not all the coefficients a_i are p-th powers in K.

17 Galois Fields II

Theorem 17.1. Let p be a prime, and let $q = p^n$ for some $n \in \mathbb{N}$. Then:

- (a) There exists a field \mathbb{F}_q of order q, and this field is unique up to isomorphism.
- (b) All elements of \mathbb{F}_q satisfy the equation $t^q = t$, and hence $\mathbb{F}_q : \mathbb{F}_p$ is a splitting field extension for $t^q t$.
- (c) There is a unique copy of \mathbb{F}_q inside any algebraically closed field containing \mathbb{F}_p .

Theorem 17.2. Let p be a prime, and suppose that $q = p^n$ for some $n \in \mathbb{N}$. Then:

- (a) $Gal(\mathbb{F}_q : \mathbb{F}_p) \cong \mathbb{Z}/n\mathbb{Z};$
- (b) The field \mathbb{F}_q contains a subfield of order p^d if and only if $d \mid n$. When $d \mid n$, moreover, there is a unique subfield of \mathbb{F}_q of order p^d .

Definition 17.3 (Norm, Trace). Let p be a prime and let $\alpha \in F_q$ where $q = p^n$ for some $n \in \mathbb{N}$. Then we define

$$Tr(\alpha) = \alpha + \alpha^{p} + \dots + \alpha^{p^{n-1}}$$
$$= \alpha + \varphi(\alpha) + \dots + \varphi^{n-1}(\alpha)$$

and

$$Norm(\alpha) = \alpha \cdot \alpha^{p} \cdots \alpha^{p^{n-1}} = \alpha^{\frac{p^{n}-1}{p-1}}$$
$$= \alpha \cdot \varphi(\alpha) \cdots \varphi^{n-1}(\alpha)$$

Lemma 17.4. Let p be a prime and let $\alpha \in F_q$ where $q = p^n$ for some $n \in \mathbb{N}$.

- 1. For all $\alpha \in \mathbb{F}_q$, one has $\text{Tr}(\alpha)$, $\text{Norm}(\alpha) \in \mathbb{F}_p$;
- 2. If $p \neq 2$, then $\exists \alpha_1$ such that $\text{Tr}(\alpha_1) \neq 0$ and $\exists \alpha_2 (\neq 0)$ such that $\text{Norm}(\alpha_2) \neq 1$.

19 Fixed Fields

Definition 19.1 (Fixed field). Let L: K be a field extension and $G \leq \operatorname{Aut}(L)$. Then the fixed field of G is

$$\operatorname{Fix}_L(G) = L^G = \{ \alpha \in L : q\alpha = \alpha \ \forall q \in G \}$$

Theorem 19.2. Let $K, M \subseteq L$ be fields and $G, H \leq \operatorname{Aut}(L)$. Then

- 1) if $K \subseteq M$, then $Gal(L:K) \geqslant Gal(L:M)$;
- 2) if $G \leq H$, then $\operatorname{Fix}_L(G) \supseteq \operatorname{Fix}_L(H)$;

- 3) $K \subseteq \operatorname{Fix}_L(\operatorname{Gal}(L:K))$;
- 4) $G \leq \operatorname{Gal}(L : \operatorname{Fix}_L(G));$
- 5) $Gal(L:K) = Gal(L:Fix_L(Gal(L:K)));$
- 6) $\operatorname{Fix}_L(G) = \operatorname{Fix}_L(\operatorname{Gal}(L : \operatorname{Fix}_L(G))).$

Definition 19.3 (Galois Extension). Let L: K be a field extension. Then L: K is a *Galois extension* if it is normal and separable.

Theorem 19.4. Let L: K be algebraic. Then L: K is Galois $\iff K = \operatorname{Fix}_L(\operatorname{Gal}_K(L))$

Theorem 19.5. Suppose that L is a field, $G \leq \operatorname{Aut}(L)$ such that $|G| < \infty$, and put $K = \operatorname{Fix}_L(G)$. Then L : K is a finite Galois extension with $[L : K] = |\operatorname{Gal}(L : K)|$, and furthermore $G = \operatorname{Gal}_K(L)$.

Theorem 19.6. Let L: K be finite.

- 1. If L: K is a Galois extension, then |Gal(L: K)| = [L: K] and $K = Fix_L(Gal(L: K))$.
- 2. If L: K is not Galois, then |Gal(L:K)| < [L:K] and K is a proper subfield of $Fix_L(Gal(L:K))$.

Corollary 19.7. Let L:M:K be a tower such that L:K is Galois. Then L:M is Galois.

20 Fundamental Theorem of Galois Theory I

Theorem 20.1 (Fundamental Theorem of Galois Theory, Part 1). Let L:K be a Galois extension with $G = \operatorname{Gal}(L:K)$. Define $\mathcal{I}(K,L)$ and $\mathcal{S}(G)$ as the set of all intermediate fields of L:K and the set of all subgroups of G, respectively. For all $P \in \mathcal{I}(K,L)$, we have $P = L^{G_P}$ where $G_P = \operatorname{Aut}_P(L)$ Then

$$\forall P \in \mathcal{I}(K, L), \quad L^{G_P} = P,$$

 $\forall H \in \mathcal{S}(G), \quad G_{I,H} = H,$

Also, $P_1 \subseteq P_2 \iff G_{P_1} \geqslant G_{P_2}$ and $H_1 \leqslant H_2 \iff L^{H_1} \supseteq L^{H_2}$.

21 Fundamental Theorem of Galois Theory II

Theorem 21.1 (Fundamental Theorem of Galois Theory, Part 2). For all $P \in \mathcal{I}(K, L)$, we have P : K is a normal extension $\iff G_P \triangleleft G$. Then, $\operatorname{Gal}_K P \cong G/G_P$.

Lemma 21.2. Let K - P - L be a tower of fields and $g \in \operatorname{Aut} L$. Then $G_{gP} = gG_Pg^{-1}$.

Remark 21.3. Let L:P:K be a tower of fields, where [L:K]=[L:P][P:K]. Then Id.: $G_P:G$ is a tower of groups, where $[G:G_P]\cdot |G_P|$. That is, for all $P\leqslant L$ we have $[P:K]=[G:G_P]$ and $[L:P]=|G_P|$.

22 Composita

Remark 22.1. Let A, B be sets. Then $A \cap B$ can be expressed using only the operation \subseteq . Notice $A \cap B \subseteq A, B$ and $A \cap B$ is the maximal set with this property:

$$\forall C \text{ such that } C \subseteq A, B \implies C \subseteq A \cap B.$$

Let $H_1, H_2 \leq G$. Then $H_1 \cap H_2 \leq G$ is the maximal subgroup contained in both H_1 and H_2 . Hence by the Galois correspondence we have $L^{H_1 \cap H_2}$ is the minimal subfield of L containing both L^{H_1} and L^{H_2} .

Definition 22.2 (Compositum). Let K_1 and K_2 be fields contained in some field L. The *compositum* of K_1 and K_2 in L (or the *composite field*), denoted by K_1K_2 , is the smallest subfield of L containing both K_1 and K_2 .

Lemma 22.3. Let $K, E, F \subseteq L$. Then

- 1. E: K, F: K finite $\implies EF: K$ finite;
- 2. $E: K, F: K \text{ normal} \implies E \cap F: K \text{ normal};$
- 3. E: K, F: K finite and E: K normal $\implies EF: F$ normal;
- 4. E:K, F:K finite and normal $\implies EF:K, E\cap F:K$ normal;
- 5. $E: K, F: K \text{ normal } \Longrightarrow EF: E \cap F \text{ normal.}$

23 Soluble Groups I

Definition 23.1 (Soluble group). A group G is soluble if there exists a finite series of subgroups

$$\{Id.\} = G_n \leqslant G_{n-1} \leqslant \cdots \leqslant G_0 = G$$

such that

- 1. $G_j \triangleleft G_{j-1} \forall 1 \leq j \leq n$ and
- 2. G_{i-1}/G_i is cyclic $\forall 1 \leq j \leq n$.

Definition 23.2 (Simple group). A group G is *simple* if G has no non-trival normal subgroups.

Lemma 23.3. For $n \geq 5$ the group A_n is simple (and hence not soluble).

Lemma 23.4. Let G be a group with $H \subseteq G$ and $A \subseteq G$. Then

- 1. $(A \cap H) \leq A$ and $A/(A \cap H) \cong (HA)/H$
- 2. if $H \subseteq A$ and $A \subseteq G$, then $H \subseteq A$, $(A/H) \subseteq (G/H)$ and $(G/H)/(A/H) \cong G/A$.

Theorem 23.5. 1. If G is a soluble group with $A \leq G$, then A is soluble.

2. Let $H \subseteq G$. Then G is soluble $\iff H$ and G/H are soluble.

Corollary 23.6. S_n is not soluble for $n \geq 5$.

Corollary 23.7. All p-groups are soluble (i.e. groups G such that $|G| = p^n$ for some prime p)

24 Soluble Groups II

Theorem 24.1 (Theorem - Definition). Let G be a group. Then the following are equivalent:

- 0. G is a (finite) soluble group;
- 1. There exists some $n \in \mathbb{Z}^+$ such that $G^{(n)} = \{e\}$:
- 2. There exists a normal series

$$\{Id.\} = G_n \triangleleft G_{n-1} \triangleleft \cdots \triangleleft G_1 \triangleleft G_0 = G$$

such that all quotients G_{j-1}/G_j are abelian;

3. There exists a subnormal series such that quotients G_{j-1}/G_j are abelian.

Definition 24.2 (Derived group). Let G be a group. Then the *derivative of* G is $G' = \langle [x,y] : x,y \in G \rangle = [G,G]$ where $[x,y] = xyx^{-1}y^{-1}$ is the *commutator* of x and y, and (G')' = G''.

Definition 24.3 (Derived series). The *derived series* of G is $G^{(n)} = (G^{(n-1)})'$ and $\{\text{Id.}\} = G^{(n)} \triangleleft G^{(n-1)} \triangleleft \cdots \triangleleft G' \triangleleft G$ (not to be confused with $G_{n+1} = [G_n, G]$, the *lower central series*).

Lemma 24.4. Let $\varphi: G \mapsto H$ be an epimorphism. Then $\varphi(G') = H'$.

Definition 24.5 (Composition series). Let G be a group. Then a *composition series* of G is a subnormal series of finite length

$$\{Id.\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_{\ell-1} \triangleleft G_{\ell} = G$$

such that G_i/G_{i-1} is a simple group for all j.

Theorem 24.6 (Jordan-Hölder). Any 2 composition series of some group G are equivalent up to permutation and isomorphism.

Theorem 24.7. Let K be a field with char $K \neq 2$ and let $f \in K[t]$ be a separable polynomial with splitting field L. Then f = 0 is solvable by *quadratic* radicals $\iff [L : K] = 2^t$.

25 Solvability by radicals and Galois theory I

Theorem 25.1. Let K be a field with char K = 0. Then $f \in K[t]$ is solvable by radicals \iff Gal $_K(f)$ is soluble.

Lemma 25.2. Let char K = 0 and R : K be a radical extension. Then there exists a tower K - R - N such that N : K is normal and radical.

Definition 25.3 (Cyclic extension). Let L be the splitting field of some polynomial f over K. If Gal(L:K) is a cyclic group, then L:K is a cyclic extension.

Lemma 25.4. Let char K = 0 and let n be a positive integer such that $t^n - 1$ splits over K, and let L : K be the splitting field extension for $t^n - a$ for some $a \in K$. Then Gal(L : K) is abelian.

Theorem 25.5. Let char K = 0 and L : K be Galois. Suppose there exists some extension M : L such that M : K is normal. Then Gal(L : K) is soluble.

Corollary 25.6. Let char K = 0. Then $f \in K[t]$ is SBR \implies Gal $_K(f)$ is soluble.

26 Solvability by radicals and Galois theory II

Lemma 26.1. Let p be prime and $G \leq S_p$ such that G acts transitivley on $\{1, \ldots, p\}$. Then G contains a cycle of order p.

Theorem 26.2. Let char K = 0 and $f \in K[t] \setminus K$. Then $Gal_K(f)$ is soluble $\implies f$ is SBR.

Lemma 26.3 (Wooley 14.8). Let char K = 0, and suppose that L : K is a cyclic extension of degree n. Suppose also that K contains a primitive n-th root of 1. Then there exists $\theta \in K$ having the property that $t^n - \theta$ is irreducible over K, and L : K is a splitting field for $t^n - \theta$. Further, if β is a root of $t^n - \theta$ over L, then $L = K(\beta)$.

Theorem 26.4 (Abel-Galois). Let char K = 0 and $f \in K[t]$ be irreducible over K with deg f = p. Then following are equivalent

- 1. f is SBR over K;
- 2. $Gal_K(f)$ is conjugated to a subgroup of $Aff(\mathbb{F}_n)$;
- 3. for the splitting field L of f, one has $L = K(\alpha_i, \alpha_j)$ where α_i, α_j are any two destinct roots of f.

Lemma 26.5. Let $\{\mathrm{Id.}\} \neq N \leq G \leqslant S_p$ for p prime. If G is a transitive group, then N is a transitive group.

27 Final remarks I

Definition 27.1 (Sylvester matrix). Let $f(x) = a_0 + a_1x + \cdots + a_mx^m$ and $g(x) = b_0 + b_1x + \cdots + b_nx^n$ be two polynomials in $\mathbb{K}[x]$. The *Sylvester matrix* of f and g, denoted S(f,g), is the $(m+n) \times (m+n)$ matrix

whose first n rows are the coefficients of f shifted right, and whose last m rows are the coefficients of g shifted right. Concretely,

$$S(f,g) = \begin{pmatrix} a_m & a_{m-1} & \cdots & a_0 & 0 & \cdots & 0 \\ 0 & a_m & a_{m-1} & \cdots & a_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & a_m & a_{m-1} & \cdots & a_0 \\ b_n & b_{n-1} & \cdots & b_0 & 0 & \cdots & 0 \\ 0 & b_n & b_{n-1} & \cdots & b_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & b_n & b_{n-1} & \cdots & b_0 \end{pmatrix}.$$

Definition 27.2 (Resultant). The resultant of f and g is

$$R(f,g) = \det(S(f,g))$$
.

Equivalently, if $\alpha_1, \ldots, \alpha_m$ are the roots of f in an algebraic closure of K, then

$$R(f,g) = a_m^n \prod_{i=1}^m g(\alpha_i).$$

Theorem 27.3. Let α_i be roots of f and β_i be roots of g. Then

$$R(f,g) = a_0^m b_0^n \prod_i (\alpha_i - \beta_j)$$
$$= a_0^m \prod_i g(\alpha_i) = b_0^n \prod_i f(\beta_i)$$

Corollary 27.4. 1. $R(f,g) = (-1)^{\deg f \cdot \deg g} R(g,f)$

- 2. If $f = gq + r \implies R(f,g) = b_0^{\deg f \deg R} R(r,g)$
- 3. R(f, gh) = R(f, g)R(f, h)

Corollary 27.5. Let $f(t) = a_0 t^n + \dots + a_n$, $a_0 \neq 0$. Then $R(f, f') = (-1)^{\frac{n(n-1)}{2}} \prod_{i < j} (\alpha_i - \alpha_j)^2$

28 Final remarks II

Definition 28.1 (Resolvent invariant). Let $G \leq S_n$ and $P \in K[x_1, \ldots, x_n]$. Then P is resolvent invariant for G if $P^g = P \iff g \in G$.

Lemma 28.2. Let P be resolvent invariant for G. Then

- 1. $P^a = P^b \iff ab^{-1} \in G \text{ (obvious: } P^a = P^b \iff P^{ab^{-1}} = P)$
- 2. P^a is resolvent invariant for $a^{-1}Ga$

Corollary 28.3. Let $S_n = \sqcup_j a_j G$. Then P is resolvent invariant for $G \iff P^{a_j}$ are distinct.

Definition 28.4 (Resolvent). Let P be a resolvent polynomial for $G \leqslant S_n$ and $S_n = \sqcup_{j=1}^s a_j G$. Then

$$R_G(z) = R_G(z, x_1, \dots, x_n) = (z - P^{a_1}) \cdots (z - P^{a_s})$$

is a resolvent for G (depends on P).

Lemma 28.5. Let $G \leq S_n$, $f \in K[t]$ be a separable polynomial. If $Gal_K(f) \leq G$ (and its conjugation), then $\exists j \in K$ such that $R_{G,f}(j) = 0$

Lemma 28.6. Let $|K| = \infty$ and $f \in K[t]$ be a separable polynomial. Then $\exists c_1, \ldots, c_n \in K$ such that for all k,

$$h_k(x_1,\ldots,x_k) = c_1x_1 + \cdots + c_kx_k$$

has the property

$$h_k^a(\alpha_1, \dots, \alpha_k) = h_k^b(\alpha_1, \dots, \alpha_k) \iff x_i^a = x_i^b \text{for } i = 1, \dots, k,$$

where $a, b \in S_n$ are any permutations.

Theorem 28.7. Let $|K| = \infty$, $f \in K[t]$ be a separable polynomial, and $G \leq S_n$. Then there exists a resultant $R_{G,f}(z)$ with no multiple roots.

Theorem 28.8. Let $|K| = \infty$ and $f \in K[t]$ be irreducible and separable with deg f = 4. Then

- 1. $\sqrt{D} \notin K$ and $R_{V_4}^{(f)}$ has no roots in $K \implies G \cong S_4$ or $G \cong Z_4$
- 2. $\sqrt{D} \in K$ and $R_{V_4}^{(f)}$ has no roots in $K \implies G \cong A_4$
- 3. $\sqrt{D} \in K$ and $R_{V_4}^{(f)}$ has a roots in $K \implies G \cong V_4$
- 4. $\sqrt{D} \notin K$ and $R_{V_4}^{(f)}$ has no roots in $K \implies G \cong S_4$ or $G \cong D_4$