Screenshots of Outputs

Fig 1: Image preprocessing, Segmentation & Feature Extraction of an Eye Image

Module 3: Training of EyeDeep-Net for feature extraction and classification

Fig 2: Logic Block Diagram of A.I Eye Disease Analysis

Fig 3: Flowchart of VisionAI Project

Fig 4: Block Diagram of A.I

Fig 5.1: Model Training & Validation Accuracy

Fig 5.2: Count of Train & Test Data

Fig 5.3: Count of Validation of Data

	precision	recall	f1-score	support	
cataract	0.88	0.95	0.91	156	
diabetic_retinopathy	1.00	0.99	0.99	165	
glaucoma	0.85	0.81	0.83	151	
normal	0.89	0.86	0.87	161	
accuracy			0.91	633	
macro avg	0.90	0.90	0.90	633	
weighted avg	0.91	0.91	0.90	633	

Fig 5.4: Final Predication of Given Data

Fig 5.4: Final Predication of Testing

Fig 6.1: UI or Dashboard by Streamlit of VisionAI

Fig 6.2: Predicated eye disease by using of VisionAI in Streamlit

Fig 7.1: UI or Dashboard by html, CSS & Java of VisionAI

Fig 7.2: Predicated eye disease by using of VisionAI in html, CSS & Java