常微分3程B HW 6

1.解

- (1) linear inhomogeneous
- (2) t3y" + sint y'-y = -cust linear inhomo geneous
- 13) nonlinear
- 4) (1-t²)y" + 0y' + (-3)y=0

 linear
 homogeneous

- (1) y'' + 3y' 4y = 0 a=1, b=3, c=-4 $r^2 + 3r - 4 = 0$ $r_1 = -4, r_2 = 1$ $y = C_1 e^{-4t} + C_2 e^{t}$
- 12) a=2.b=-1, c=-1 $2r^2-r-1=0$ $r_1=-\frac{1}{2}, r_2=1$ $y=c_1e^{-\frac{1}{2}t}+c_2e^{t}$

3.49:
$$2r^{2}+(-3)r+1=0$$

 $h_{1}=\frac{1}{2}, h_{2}=1$
 $y=c_{1}e^{\frac{1}{2}t}+c_{2}e^{t}$
 $y(0)=2 \Rightarrow z=c_{1}+c_{2}$
 $y'(0)=\frac{1}{2} \Rightarrow c_{1}+\frac{1}{2}$
 $y=3e^{\frac{1}{2}t}-e^{t}$

4. Problem (a)
$$\frac{y_1'(t) - y_1'(t) - 2y_1(t) = 0}{y_1(t) - y_2'(t) - 2y_2(t) = 0}$$

4. Problem (a) $\frac{y_2(t)}{y_1(t)} = \frac{e^{2t}}{e^{-t}} = e^{3t} + const$

Find the end of t

5.
$$\Re$$
:
W[f,9] = $\begin{vmatrix} f & g \\ f' & g' \end{vmatrix}$ = $fg'-f'g$
W[4, V] = $\begin{vmatrix} U & Y \\ U' & V' \end{vmatrix}$ = $(f+2g)\cdot(f'-g')-(f-g)(f'+2g')$
= $-3(fg'-gf')$
= $-3t\cos t - 3 \sin t$

6.88:
$$ty'' + 2y' + t \cdot e^{t}y = 0$$

 $y'' + \vec{\xi}y' + e^{t}y = 0$
 $W[y_1, y_2](t) = e^{-\int_{-\infty}^{\infty} dt} = \frac{1}{t^2} \cdot C$
 $W[y_1, y_2](t) = 2 \Rightarrow C = 2$
 $W[y_1, y_2](t) = \frac{2}{25}$

7.解:

if y = sint is a solution

y' = cost2.2t

y" = -sint2.2t.2t+ cust2.2

- sint 2 2t - 2t + 2 cost 2 + p1+) · cost 2 2t + q1t) sint = 0

let t=0, 0+2+0+0 =0

So $y=sint^2$ is not a solution on an interval containing t=0