Week 08: Graph Algorithms 2

Weighted Graphs

Weighted Graphs

2/40

Graphs so far have considered

- edge = an association between two vertices/nodes
- may be a precedence in the association (directed)

Some applications require us to consider

- a cost or weight of an association
- modelled by assigning values to edges (e.g. positive reals)

Weights can be used in both directed and undirected graphs.

... Weighted Graphs

3/40

Example: major airline flight routes in Australia

Representation: edge = direct flight; weight = approx flying time (hours)

... Weighted Graphs

4/40

Weights lead to minimisation-type questions, e.g.

- 1. Cheapest way to connect all vertices?
 - a.k.a. minimum spanning tree problem
 - · assumes: edges are weighted and undirected
- 2. Cheapest way to get from A to B?
 - a.k.a *shortest path* problem
 - assumes: edge weights positive, directed or undirected

Exercise #1: Implementing a Route Finder

5/40

If we represent a street map as a graph

- what are the vertices?
- what are the edges?
- are edges directional?
- what are the weights?
- are the weights fixed?

What kind of algorithm would ...

• help us find the "quickest" way to get from A to B?

Weighted Graph Representation

6/40

Weights can easily be added to:

- adjacency matrix representation (0/1 → int or float)
- adjacency lists representation (add int/float to list node)

An alternative representation useful in this context:

• edge list representation (list of (s,t,w) triples)

All representations work whether edges are directed or not.

... Weighted Graph Representation

7/40

Adjacency matrix representation with weights:

Weighted Digraph

Adjacency Matrix

Note: need distinguished value to indicate "no edge".

... Weighted Graph Representation

8/40

Adjacency lists representation with weights:

Note: if undirected, each edge appears twice with same weight

... Weighted Graph Representation

9/40

Edge array / edge list representation with weights:

Note: not very efficient for use in processing algorithms, but does give a possible representation for min spanning trees or shortest paths

... Weighted Graph Representation

10/40

Sample adjacency matrix implementation in C requires minimal changes to previous Graph ADT:

```
WGraph.h
```

```
// edges are pairs of vertices (end-points) plus positive weight
typedef struct Edge {
   Vertex v;
   Vertex w;
   int   weight;
} Edge;

// returns weight, or 0 if vertices not adjacent
int adjacent(Graph, Vertex, Vertex);
```

... Weighted Graph Representation

11/40

WGraph.c

```
void insertEdge(Graph g, Edge e) {
   assert(g != NULL && validV(g,e.v) && validV(g,e.w));
   if (g->edges[e.v][e.w] == 0) { // edge e not in graph
     g->edges[e.v][e.w] = e.weight;
     g->nE++;
   }
}
int adjacent(Graph g, Vertex v, Vertex w) {
   assert(g != NULL && validV(g,v) && validV(g,w));
   return g->edges[v][w];
}
```

Minimum Spanning Trees

Minimum Spanning Trees

13/40

Reminder: *Spanning tree ST* of graph G(V,E)

- spanning = all vertices, tree = no cycles
- ST is a subgraph of G (G'=(V,E')) where $E'\subseteq E$
- ST is connected and acyclic

Minimum spanning tree MST of graph G

- *MST* is a spanning tree of *G*
- sum of edge weights is no larger than any other ST

Applications: Computer networks, Electrical grids, Transportation networks ...

Problem: how to (efficiently) find MST for graph G?

NB: MST may not be unique (e.g. all edges have same weight ⇒ every ST is MST)

... Minimum Spanning Trees

14/40

Brute force solution:

```
findMST(G):
    Input graph G
    Output a minimum spanning tree of G
    bestCost=∞
    for all spanning trees t of G do
        if cost(t)<bestCost then
        bestTree=t
        bestCost=cost(t)
    end if</pre>
```

end for return bestTree

Example of generate-and-test algorithm.

Not useful because #spanning trees is potentially large (e.g. nⁿ⁻² for a complete graph with n vertices)

... Minimum Spanning Trees

15/40

Simplifying assumption:

• edges in G are not directed (MST for digraphs is harder)

Kruskal's Algorithm

16/40

One approach to computing MST for graph G with V nodes:

- 1. start with empty MST
- 2. consider edges in increasing weight order
 - o add edge if it does not form a cycle in MST
- 3. repeat until *V-1* edges are added

Critical operations:

- iterating over edges in weight order
- · checking for cycles in a graph

... Kruskal's Algorithm

17/40

Execution trace of Kruskal's algorithm:

Exercise #2: Kruskal's Algorithm

18/40

Show how Kruskal's algorithm produces an MST on:

After 3rd iteration:

After 6th iteration:

After 7th iteration:

After 8th iteration (*V*-1=8 edges added):

... Kruskal's Algorithm

20/40

Pseudocode:

Input graph G with n nodes
Output a minimum spanning tree of G

MST=empty graph

```
sort edges(G) by weight
for each e∈sortedEdgeList do
   MST = MST \cup \{e\}
   if MST has a cyle then
      MST = MST \setminus \{e\}
   end if
   if MST has n-1 edges then
      return MST
   end if
end for
```

Start step 2 End step I End step 2

... Kruskal's Algorithm

21/40

Exercise #3: Prim's Algorithm

Show how Prim's algorithm produces an MST on:

24/40

Rough time complexity analysis ...

- sorting edge list is $O(E \cdot log E)$
- at least *V* iterations over sorted edges
- on each iteration ...
 - getting next lowest cost edge is O(1)
 - checking whether adding it forms a cycle: cost = ??

Possibilities for cycle checking:

- use DFS ... too expensive?
- could use *Union-Find data structure* (see Sedgewick Ch.1)

Start from vertex 0

Prim's Algorithm

22/40

After 1st iteration:

Another approach to computing MST for graph G=(V,E):

- 1. start from any vertex s and empty MST
- 2. choose edge not already in MST to add to MST
 - must be incident on a vertex already connected to s in MST
 - must have minimal weight of all such edges
- 3. repeat until MST covers all vertices

Critical operations:

- · checking for vertex being connected in a graph
- finding min weight edge in a set of edges

After 3rd iteration:

After 2nd iteration:

... Prim's Algorithm

23/40

After 4th iteration:

Execution trace of Prim's algorithm (starting at *s*=0):

After 8th iteration (all vertices covered):

... Prim's Algorithm

26/40

Pseudocode:

Critical operation: finding best edge

... Prim's Algorithm

27/40

Rough time complexity analysis ...

- V iterations of outer loop
- in each iteration ...
 - find min edge with set of edges is $O(E) \Rightarrow O(V \cdot E)$ overall
 - find min edge with *priority queue* is $O(log E) \Rightarrow O(V \cdot log E)$ overall

Note:

• Using a priority queue gives a variation of DFS (stack) and BFS (queue) graph traversal

Sidetrack: Priority Queues

28/40

Some applications of queues require

• items processed in order of "key"

• rather than in order of entry (FIFO — first in, first out)

Priority Queues (PQueues) provide this via:

- join: insert item into PQueue (replacing enqueue)
- leave: remove item with largest key (replacing dequeue)

... Sidetrack: Priority Queues

29/40

Comparison of different Priority Queue representations:

	sorted array	unsorted array	sorted list	unsorted list
space usage	MaxN	MaxN	O(N)	O(N)
join	O(N)	O(1)	O(N)	O(1)
leave	O(N)	O(N)	O(1)	O(N)
is empty?	O(1)	O(1)	O(1)	O(1)

for a PQueue containing N items

Other MST Algorithms

30/40

Boruvka's algorithm ... complexity $O(E \cdot log V)$

- the oldest MST algorithm
- start with V separate components
- join components using min cost links
- continue until only a single component

Karger, Klein, and Tarjan ... complexity O(E)

- based on Boruvka, but non-deterministic
- randomly selects subset of edges to consider
- for the keen, here's the paper describing the algorithm

Shortest Path

Shortest Path

32/40

Path = sequence of edges in graph G $p = (v_0, v_1), (v_1, v_2), ..., (v_{m-1}, v_m)$

cost(path) = sum of edge weights along path

Shortest path between vertices s and t

• a simple path p(s,t) where s = first(p), t = last(p)

• no other simple path q(s,t) has cost(q) < cost(p)

Assumptions: weighted digraph, no negative weights.

Finding shortest path between two given nodes known as source-target SPP problem

Variations: single-source, all-pairs

Applications: robot navigation, routing in data networks, ...

Single-source Shortest Path (SSSP)

Given: weighted digraph G, source vertex s

Result: shortest paths from s to all other vertices

- dist[] V-indexed array of cost of shortest path from s
- pred[] V-indexed array of predecessor in shortest path from s

Example:

Edge Relaxation

Assume: dist[] and pred[] as above (but containing data for shortest paths *discovered so far*)

dist[v] is length of shortest known path from s to v

dist[w] is length of shortest known path from s to w

Relaxation updates data for w if we find a shorter path from s to w:

Relaxation along edge e = (v, w, weight):

if dist[v]+weight < dist[w] then
 update dist[w]:=dist[v]+weight and pred[w]:=w

Dijkstra's Algorithm

One approach to solving single-source shortest path ...

```
Data: G, s, dist[], pred[] and
```

• *vSet*: set of vertices whose shortest path from s is known

Algorithm:

33/40

34/40

35/40

Exercise #4: Dijkstra's Algorithm

36/40

Show how Dijkstra's algorithm runs on (source node = 0):

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	∞	<u>∞</u>	<u>∞</u>	<u></u>	8
pred	_	_	_	-	_	_

dist	0	14	9	7	∞	∞
pred	_	0	0	0	_	_

dist	0	14	9	7	∞	22
pred	-	0	0	0	_	3

dist	0	13	9	7	∞	12
pred	_	2	0	0	-	2

dist	0	13	9	7	20	12
pred	_	2	0	0	5	2

dist	0	13	9	7	18	12
pred	_	2	0	0	1	2

... Dijkstra's Algorithm

38/40

Why Dijkstra's algorithm is correct:

Hypothesis.

- (a) For visited s ... dist[s] is shortest distance from source
- (b) For unvisited $t \dots dist[t]$ is shortest distance from source via visited nodes

Proof.

Base case: no visited nodes, dist[source] = 0, $dist[s] = \infty$ for all other nodes

Induction step:

- 1. If s is unvisited node with minimum dist[s], then dist[s] is shortest distance from source to s:
 - if \exists shorter path via only visited nodes, then dist[s] would have been updated when processing the predecessor of s on this path
 - if \(\frac{1}{3}\) shorter path via an unvisited node \(u\), then \(dist[u] < dist[s]\), which is impossible if \(s\) has min distance of all unvisited nodes
- 2. This implies that (a) holds for s after processing s
- 3. (b) still holds for all unvisited nodes t after processing s:
 - if \exists shorter path via s we would have just updated dist[t]
 - \circ if \exists shorter path without s we would have found it previously

... Dijkstra's Algorithm

39/40

Time complexity analysis ...

Each edge needs to be considered once $\Rightarrow O(E)$.

Outer loop has O(V) iterations.

Implementing "find sevSet with minimum dist[s]"

- 1. try all $s \in vSet \Rightarrow cost = O(V) \Rightarrow overall cost = O(E + V^2) = O(V^2)$
- 2. using a PQueue to implement extracting minimum
 - \circ can improve overall cost to $O(E + V \cdot log V)$ (for best-known implementation)

Summary 40/40

- Weighted graph representations
- Minimum Spanning Tree (MST)
 - Kruskal, Prim
- Single source shortest path problem
 - Dijkstra
- · Suggested reading:
 - o Sedgewick, Ch.19.3,20-20.4,21-21.3

Produced: 11 Sep 2017