DOI: 10.1002/adfm.200800049

Supporting Information

Iron(II) metallomesogens exhibiting coupled spin state and liquid crystal phase transitions at room temperature

By Maksym Seredyuk, Ana B. Gaspar*, Vadim Ksenofontov, Yury Galyametdinov, Joachim Kusz, and Philipp Gütlich*

Table S1. Crystallographic data and refinement details for C_{6} -1.

Empirical formula	$C_{44}H_{66}CI_2FeN_6O_{11}$					
Formula weight	956.48					
Temperature [K]	100.0(1)					
Wavelength [Å]	0.71073					
Crystal system	orthorhombic					
Space group	<i>P</i> bca					
a [Å]	18.746(4)					
<i>b</i> [Å]	14.398(3)					
<i>c</i> [Å]	36.174(7)					
Volume [Å ³]	9763.54(347)					
Z	8					
$ ho$ [g cm $^{-3}$]	1.335					
Absorption	0.481					
coefficient [mm ⁻¹]						
F(000)	4159					
heta range for data	2.88 to 32.88					
collection [9						
Index ranges	-27 ≤ h ≤ 28					
	-9 ≤ <i>k</i> ≤ 21					

 $-53 \le I \le 53$

Reflections 16690

collected

Independent 7834

reflections

Data/restraints/para 16690/0/584

meters

Goodness-of-fit, F^2 0.827

Final R indices [I > R1 = 0.0456,

 $2\sigma(I)$] wR2 = 0.1050

R indices (all data) R1 = 0.1173,

wR2 = 0.1158

 $\rho_{min},\,\rho_{max}\,[e\; \mathring{A}^{\text{-}3}] \hspace{1cm} 1.938,\,\text{-}0.692$

Table S2. MS, TGA and IR spectral data for complexes C_n -1 and C_n -2.

Compound	MS ^b	TGA, w/w [%]	IR [cm ⁻¹] ^g					
			v(O–H)	$v_s(CH_2),$ $v_{as}(CH_2)$	v(N=C)	δ(CH ₂)	ρ(CH ₂)	v(Anion)
C ₆ -1	391 [M] ^{++ c}	0	_	2932,	1626	1461	_	1084,
	728 [M+H] ⁺			2854				622
	881 [M+ClO ₄] ⁺							
C ₁₈ -1	1387	0	_	2920,	1630	1463	721	1087,
	[M+ClO₄] ⁺			2851				622
C ₁₀ -2	970 [(M+F] ⁺	0	_	2921,	1647	1464	722	1069
				2852				
C ₁₂ -2	1054 [M+F] ⁺	0	_	2921,	1648,	1467	721	1066
				2852	1698			
C ₁₄ -2	1206 [M+BF ₄] ⁺	0	_	2919,	1630,	1466	721	1081
				2851	1698			
C ₁₆ -2	. 1289 [M+BF ₄] ⁺	0	-	2918,	1650	1468	721	1072
				2850				
C ₁₆ -2 ^a			_	2919,	1650	1468	721	1072
				2851				
C ₁₇ -2	1264 [M+F] ⁺	0	_	2921,	1648,	1463	721	1081
	1332 [M+BF ₄] ⁺			2852	1699			
C ₁₈ -2	644 [M] ⁺⁺	0	-	2918,	1654,	1467	721	1071
	1375 [M+BF ₄] ⁺			2850	1698			
C ₂₀ -2	1458 [M+BF ₄] ⁺	1.3	3410 br	2919,	1645,	1464	721	1076
·H ₂ O	686 [M] ⁺⁺			2851	1697			

^a After the first heating up to 410 K; ^b Values of the peaks are given for the ions with the isotope ⁵⁶Fe; ^c Trace; ^g v, stretching; δ , bending; ρ , rocking; as, asymmetric; s, symmetric

Figure S1. Variable temperature XRPD patterns of C_{18} -1 (a), C_{10} -2 (b), C_{12} -2 (b), C_{14} -2 (d), C_{16} -2 (e), C_{17} -2 (f), C_{18} -2 (g) and C_{20} -2 (h).

Figure S2. Magnetic properties of compounds C_{6} -1 (a), C_{18} -1 (b), and C_{10} -2 (c) in the form of $\chi_{M}T$ vs T.

Figure S3. The solid and dashed lines represent the simulation of the transition curve of C_{12} -2 using the Slichter-Drickamer model in the regions before and after melting.

Figure S4. The anisotropic texture of compound C_{16} -2 under crossed polarizers.

Figure S5. DSC measurements for C_{18} -1 (a), C_{10} -2 (b), C_{12} -3 (c), C_{14} -2 (d), C_{16} -2 (e), C_{17} -2 (f), C_{18} -2 (g) and C_{20} -2 (h) in heating and cooling modes at the rate of 10 K/min. Arrows show direction of the scanning runs.

Figure S6. Mössbauer spectra of compounds C_{6} -1 (a), C_{18} -1 (b), C_{10} -2 (c), C_{12} -2 (d), C_{14} -2 (e), C_{16} -2 (f), C_{17} -2 (g), C_{18} -2 (h) and C_{20} -2 (i) measured at 80 K.

Table S3. Mössbauer parameters, isomer shift (δ , relative to α -iron), quadrupole splitting (ΔE_Q), half-width of the lines ($\Gamma_{1/2}$) and percentage of populations in the HS and LS states (A) for $\mathbf{C_n-1}$ (n = 6, 18), $\mathbf{C_n-2}$ (n = 10, 12, 14, 16, 17, 18, 20) at 80 K.

Compound	Spin state	δ [mm s ⁻¹]	Δ <i>E</i> _Q [mm s ⁻¹]	Γ _{1/2} [mm s ⁻¹]	A [%]	
C ₆ -1	LS	0.43(2)	0.41(0)	0.15(1)	100	
C ₁₈ -1	LS1	0.45(1)	0.38(1)	0.13	47	
	LS2	0.45(1)	0.64(0)	0.22	47	
	HS1	1.05(3)	2.58(7)	0.13	3	
	HS2	1.26(3)	2.91(1)	0.22	3	
C ₁₀ -2	LS	0.43(0)	0.39(0)	0.16(0)	100	
C ₁₂ -2	LS	0.46(0)	0.38(0)	0.17(0)	100	
C ₁₄ -2	LS	0.43(1)	0.40(0)	0.17(1)	100	
C ₁₆ -2	LS	0.46(1)	0.40(0)	0.17(1)	100	
C ₁₇ -2	LS	0.45(1)	0.43(1)	0.17(0)	88.5(16)	
	HS	1.18(1)	2.72(1)	0.23(5)	11.5(24)	
C ₁₈ -2	LS	0.48(1)	0.48(0)	0.22(0)	89.5(11)	
	HS	1.22(5)	2.81(10)	0.37(8)	10.5(22)	
C₂₀-2 ·H ₂ O	LS	0.50(0)	0.49(1)	0.24(0)	90.7(7)	
	HS	1.32(0)	2.61(5)	0.29(4)	9.3(12)	

The values given in italics were fixed during the fitting.

Figure S7. TGA analysis of compound C_{20} -2· H_2O .

