Homework 2 Stat 215A, Fall 2024

Due: Submit a homework2.pdf file to Gradescope by Friday, October 04 at 23:59

0 Linear Algebra Review

Recall that the SVD of $\mathbf{X} \in \mathbb{R}^{n \times p}$ is a matrix decomposition such that $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$, where $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_n] \in \mathbb{R}^{n \times n}$, $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_p] \in \mathbb{R}^{p \times p}$, and $\mathbf{D} = \operatorname{diag}(d_1, \dots, d_{\min\{n, p\}}) \in \mathbb{R}^{n \times p}$. In addition, \mathbf{U} and \mathbf{V} are orthogonal matrices so that $\mathbf{U}^{\top}\mathbf{U} = \mathbf{U}\mathbf{U}^{\top} = \mathbf{I}$ and $\mathbf{V}^{\top}\mathbf{V} = \mathbf{V}\mathbf{V}^{\top} = \mathbf{I}$ (i.e., $\mathbf{u}_j^{\top}\mathbf{u}_i = \mathbf{v}_j^{\top}\mathbf{v}_i = 0$ for all $i \neq j$ and $\mathbf{u}_j^{\top}\mathbf{u}_j = \mathbf{v}_j^{\top}\mathbf{v}_j = 1$ for all i). Moreover, we can find a decomposition where $d_1 \geq \dots \geq d_{\min\{n, p\}} \geq 0$.

Now, while the SVD can be used for any rectangular matrix, square matrices have an additional special property and can be decomposed via an eigendecomposition. Given a square matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$, we say that $\mathbf{v} \in \mathbb{R}^p$ is an eigenvector of \mathbf{A} if $\mathbf{v} \neq \mathbf{0}$ and $\mathbf{A} \mathbf{v} = \lambda \mathbf{v}$ for some $\lambda \in \mathbb{R}$. We also call λ the eigenvalue of \mathbf{A} corresponding to the eigenvector \mathbf{v} . For a more intuitive (geometric) interpretation of eigenvalues and eigenvectors, see this reference.

There is a close connection between the SVD and eigendecomposition. Namely, for any matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$, $\mathbf{v} \in \mathbb{R}^p$ is a right singular vector of \mathbf{X} with singular value d if and only if $\mathbf{v} \in \mathbb{R}^p$ is an eigenvector of $\mathbf{X}^\top \mathbf{X}$ corresponding to the eigenvalue d^2 . You may use this fact without proof.

1 Principal Components Analysis and SVD

Let **X** be an $n \times p$ data matrix, where n is the number of observations and p is the number of features. For simplicity, we will assume that **X** has been mean-centered (i.e., each column of X has mean 0) and that $n \le p$. The population version of PCA as can be seen as solving for each $j = 1, \ldots, p$

$$\mathbf{v}_{j}^{*} = \underset{\mathbf{v} \in \mathbb{R}^{p}}{\operatorname{argmax}} \ \mathbf{v}^{\top} \operatorname{Var}(\mathbf{X}) \mathbf{v} \qquad \text{subject to} \quad \|\mathbf{v}\|_{2}^{2} = 1, \ \mathbf{v}^{\top} \mathbf{v}_{i}^{*} = 0 \ \forall i < j.$$
 (1.1)

However, since $\operatorname{Var}(\mathbf{X})$ is almost always unknown in practice, we typically estimate $\operatorname{Var}(\mathbf{X})$ with the sample covariance $\frac{1}{n}\mathbf{X}^{\top}\mathbf{X}$. Thus, in practice, the principal component (PC) directions, $\hat{\mathbf{v}}_1, \dots, \hat{\mathbf{v}}_p$, are the solution to the following system of optimization problems:

$$\hat{\mathbf{v}}_j = \underset{\mathbf{v} \in \mathbb{R}^p}{\operatorname{argmax}} \ \mathbf{v}^\top \mathbf{X}^\top \mathbf{X} \mathbf{v} \qquad \text{subject to} \quad \|\mathbf{v}\|_2^2 = 1, \quad \mathbf{v}^\top \hat{\mathbf{v}}_i = 0 \quad \forall i < j.$$
 (1.2)

In this problem, we will take small steps through the proof to show that the PC directions are precisely the right singular vectors of \mathbf{X} .

1. To begin, prove that the first PC direction $\hat{\mathbf{v}}_1$ is equal to the first right singular vector \mathbf{v}_1 . To show this, use Lagrange multipliers to solve the PC1 optimization problem:

$$\hat{\mathbf{v}}_1 = \underset{\mathbf{v} \in \mathbb{R}^p}{\operatorname{argmax}} \ \mathbf{v}^\top \mathbf{X}^\top \mathbf{X} \mathbf{v} \quad \text{subject to} \quad \|\mathbf{v}\|_2^2 = 1.$$
 (1.3)

Solution:

Using the Lagrangian method, we can define the Lagrangian as:

$$\mathcal{L}(v,\lambda) = v^{\top} X^{\top} X v - \lambda (v^{\top} v - 1)$$

Taking the derivative of \mathcal{L} with respect to v and setting it to zero yields:

$$\nabla_{v}\mathcal{L} = 2X^{\top}Xv - 2\lambda v = 0 \quad \Rightarrow \quad X^{\top}Xv = \lambda v$$

This shows that v is an eigenvector of $X^{\top}X$ corresponding to eigenvalue λ . Therefore, \hat{v}_1 is the first right singular vector of X, associated with the largest eigenvalue.

2. Next, let $j \in \{2, ..., p\}$ be given. Use the SVD and matrix multiplication to show that for all $\mathbf{v} \in \mathbb{R}^p$ satisfying $\mathbf{v}^{\top} \mathbf{v}_i = 0$ for each i < j, we have

$$\mathbf{v}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{v} = \sum_{k=j}^{p} \mathbf{v}^{\top} \left(d_k^2 \mathbf{v}_k \mathbf{v}_k^{\top} \right) \mathbf{v}, \tag{1.4}$$

where we define $d_k = 0$ for $k = n + 1, \ldots, p$.

Solution:

From the SVD decomposition of X:

$$X = UDV^{\top}$$

It follows that:

$$X^{\top}X = VD^2V^{\top}$$

Since v is orthogonal to the first j-1 singular vectors, only the components corresponding to singular values d_j, d_{j+1}, \ldots remain, resulting in the summation:

$$v^{\top} X^{\top} X v = \sum_{k=j} v^{\top} (d_k^2 v_k v_k^{\top}) v$$

3. Then, show that for each $j=2,\ldots,p$, the original (sample) PCA formulation in (1.2) is equivalent to

$$\hat{\mathbf{v}}_j = \underset{\mathbf{v} \in \mathbb{R}^p}{\operatorname{argmax}} \ \mathbf{v}^\top \left(\mathbf{X}_{(j)}^\top \mathbf{X}_{(j)} \right) \mathbf{v} \quad \text{subject to} \quad \|\mathbf{v}\|_2^2 = 1,$$
 (1.5)

where $\mathbf{X}_{(j)} = \widetilde{\mathbf{U}}\widetilde{\mathbf{D}}\widetilde{\mathbf{V}}^{\top}$, $\widetilde{\mathbf{U}} = [\mathbf{u}_j, \dots, \mathbf{u}_n, \mathbf{u}_1, \dots, \mathbf{u}_{j-1}] \in \mathbb{R}^{n \times n}$, $\widetilde{\mathbf{D}} = \operatorname{diag}(d_j, \dots, d_n, 0, \dots, 0) \in \mathbb{R}^{n \times p}$, and $\widetilde{\mathbf{V}} = [\mathbf{v}_j, \dots, \mathbf{v}_p, \mathbf{v}_1, \dots, \mathbf{v}_{j-1}] \in \mathbb{R}^{p \times p}$.

Solution

Using the truncated SVD $X^{(j)}$, we remove the first j-1 components from X. The corresponding optimization problem for the j-th singular vector remains equivalent because the SVD decomposition preserves orthogonality between components.

4. Conclude that for each j = 1, ..., p, the j^{th} PC direction, $\hat{\mathbf{v}}_j$, is equal to the j^{th} right singular vector \mathbf{v}_i . (Hint: Problem 1 may be useful).

Solution:

Since each principal component direction is the result of solving an eigenvalue problem corresponding to $X^{\top}X$, we conclude that each j-th PC direction is equal to the j-th right singular vector from the SVD of X.

2 Miscellaneous

• What are several concrete actions that could be taken to increase the ability of replication for data based scientific findings?

Solution:

- 1. Share datasets and preprocessing scripts openly.
- 2. Provide detailed documentation of methods and results.
- 3. Use standardized methodologies.
- 4. Publish both positive and negative results to avoid bias.
- What are two relevant questions to keep in mind while designing algorithms for partitioning data?

Solution:

- 1. How well does the partitioning method scale with data size?
- 2. How does the method handle imbalanced or noisy data?