Quantitative Research Syntheses: Meta-Analysis

Advanced Biostatistics

Dean Adams

Lecture 14

EEOB 590C

Outline

Slide 2

- -Brief history of methods for combining results from prior studies -Vote-counting
- -Combined probability method

Meta-Analysis

-Meta-analysis

For further information on these approaches see:

Cooper and Hedges (1994). Handbook of Research Synthesis.

Hedges and Olkin (2000). Statistical Methods for Meta-Analysis.

Rosenberg, Adams, and Gurevitch (2000). MetaWin: Statistical Software for Meta-Analysis. Vsn 2.

- -One important goal of science is synthesizing existing knowledge
 - -What does a body of literature say about a particular topic?
 - -Does existing published evidence support a particular hypothesis?
 - -Is there a general 'consensus' about the importance of a hypothesis?
- -This is an obvious question to ask (what do we already know?)
- -Literature reviews are common approach: usually narrative
- -Other more quantitative methods exist
- -Three main approaches:
 - -Vote-counting
 - -Combined probability methods
 - -Meta-analysis

- -Quantitative research synthesis as old as modern statistics
- -First QRS: Pearson (1904) calculated average correlation from several studies on effectiveness of typhoid vaccine
- -Early 20th century: narrative reviews most common (and still are)
- -1930's: several methods for combining probabilities developed (but infrequently used)
- -1970's: 'modern' meta-analytic methods for combining effect sizes from independent studies developed by Glass (1976), Rosenthal etc.
- -Currently, meta-analytic methods common in social sciences and medicine; use in ecology and evolutionary biology is increasing

- -ANY research synthesis begins with a hypothesis (e.g., does smoking significantly increase cancer rates?)
- -Published studies* are then obtained via a literature search (e.g., keyword search on Web of Science, Scholar.Google, Biological Abstracts, etc.)
- -Unusable articles are discarded based on certain criteria (e.g., incomplete information)
- -Remaining articles are reviewed and summarized in some way

- -Results from each study classified as 1 of 3 outcomes
 - -Significant in expected direction
 - -Significant in unexpected direction
 - -Not significant
- -Calculate proportion of each class, and that class with highest proportion represents the 'support' (for, against, equivocal)
- -Advantages: quick and easy to calculate, intuitive
- -Disadvantages: overly conservative, low statistical power (# non-significant findings > expected # significant findings), ignores magnitude of effects of studies, not sensitive to sample sizes (all studies treated equally)

- -Begin with hypothesis and set of published studies (with significance levels)
- -Combine probabilities in some way
- -Many methods exist for various distributions (uniform, normal, t, X², etc. see Becker, 1994 in *Handbook of Research Synthesis*: Cooper & Hedges)
- -Advantages: relatively easy to calculate, sample sizes taken into account (b/c use exact probabilities), general approach (can almost always obtain p-value from a study)
- -Disadvantages: don't directly assess magnitude of study effects, cannot assess direction of effects, cannot assess whether effects are homogeneous
- -Often called *omnibus* tests (only depend on exact probabilities of each study)

-Minimum P method (Tippet, 1931): uses uniform distribution, significant if any study is significant at α -level:

$$\alpha = 1 - \left(1 - \alpha^*\right)^{1/n}$$

-Sum of logs method (Fisher, 1932): uses inverse X2 distribution, significant if < 0.05 from X² with 2n df (n is # studies and pi are study significance levels)

$$P = -2\sum_{1}^{n} \log(p_i)$$

-Sum of Z method (Stouffer et al., 1949): use normal distribution, significant if probability of < 0.05 (Z(pi)) are Z-scores for study p-values)

$$Z = \sum_{i=1}^{n} Z(p_i) / \sqrt{n}$$

-Sum of p method (Edgington, 1972): uses uniform distribution, significant if < 0.05 (n is # studies and pi are study significance levels)

$$P = \left(\sum_{1}^{n} p_{i}\right)^{n} / n!$$

-Sum of logs method (Fisher, 1932): uses inverse X2 distribution, significant if

< 0.05 from X2 with 2n df (n is # studies and pi are study significance levels)

Pi: 0.06; 0.02; 0.035; 0.001; 0.24

Log(pi): -1.22; -1.70; -1.46; -3; -0.62

 $-2\Sigma(pi) = 16$; $P_x 2 = 0.096$ NS

- -Allows the interpretation of the *strength* of the statistical finding, not just whether or not there is significance
- -M-A model can be generalized to address more complicated synthesis questions Requires calculating an *effect size* and *weight* for each study
- -Meta-analysis has two steps:
 - -Calculate effect sizes (and weights) for each study
 - -Summarize effect sizes to address hypothesis (m-a model)

- -Effect size: statistical measure of the magnitude of factor in the data (*how much* does smoking increase cancer rates?)
- -Different types of primary data require different effect size estimates (some data types have several possible effect sizes)
- -Many test statistics are a form of effect size (e.g., $t = \frac{\overline{X}_1 \overline{X}_2}{\sigma}$ is a standardized mean difference effect size)
- -Use of effect sizes in QRS is desirable because they 'standardize' results from independent studies and express them in a common way (i.e., all results expressed as t-values)
- -Weights are inverse of effect size variance: $w = \frac{1}{v}$

Effect sizes are often transformed so range is - ∞ to + ∞

- -Powerful effect sizes, but require much data from studies
- -Require means, sample sizes, and std from experimental and control group

$$(\overline{X}_C \& \overline{X}_E, s_C \& s_E, N_C \& N_E)$$

-Many are variants on standardized mean difference (like t-test)

Name/s	Equation	Variance
Glass' Δ	$\Delta = \frac{\left(\overline{X}^E - \overline{X}^C\right)}{s^C}$	$v_{\Delta} = \frac{N^{C} + N^{E}}{N^{C} N^{E}} + \frac{\Delta^{2}}{2(N^{C} - 1)}$
Hedges' g	$g = \frac{\left(\overline{X}^E - \overline{X}^C\right)}{S}$	$v_g = \frac{N^C + N^E}{N^C N^E} + \frac{g^2}{2(N^C + N^E - 2)}$
Cohen's d	$d_{Cohen} = \frac{\left(\overline{X}^E - \overline{X}^C\right)}{\sigma}$	$v_{d-Cohen} = \left(\frac{N^{C} + N^{E}}{N^{C}N^{E}} + \frac{d^{2}}{2(N^{C} + N^{E} - 2)}\right)\left(\frac{N^{C} + N^{E}}{N^{C} + N^{E} - 2}\right)$
Hedges' d	$d = \frac{\left(\overline{X}^E - \overline{X}^C\right)}{S}J$	$v_d = \frac{N^C + N^E}{N^C N^E} + \frac{d^2}{2(N^C + N^E)}$
response ratio	$\ln R = \ln \left(\frac{\overline{X}^E}{\overline{X}^C} \right)$	$v_{\ln R} = \frac{\left(s^E\right)^2}{N^E \left(\overline{X}^E\right)^2} + \frac{\left(s^C\right)^2}{N^C \left(\overline{X}^C\right)^2}$

-Common in medicine: for data summarized by 2 X 2 table

	Treatment	Control	Total		
Response	A	В	A + B		
No Response	С	D	C + D		
Total	$n_t = A + C$	$n_c = B + D$	N=A+B+C+D		

-From table calculate $P_t = \frac{A}{n_t}$ and $P_c = \frac{B}{n_c}$: used for effect sizes

Name/s	Equation	Variance				
rate difference risk difference	$RD = P_t - P_c$	$v_{RD} = \frac{P_t(1 - P_t)}{n_t} + \frac{P_c(1 - P_c)}{n_c}$				
relative rate risk ratio rate ratio	$RR = \frac{P_t}{P_c}$	$v_{\ln RR} = \frac{\left(1 - P_t\right)}{n_t P_t} + \frac{\left(1 - P_c\right)}{n_c P_c}$				
odds ratio relative odds	$OR = \frac{P_t (1 - P_c)}{P_t (1 - P_t)}$	$v_{\ln OR} = \frac{1}{A} + \frac{1}{B} + \frac{1}{C} + \frac{1}{D}$				

-Useful when only summary statistics are available

-Convert all test-statistics to correlations, then convert these to Fisher's Z-transform: 1, (1+r) variance: 1

transform: $z = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$ variance: $v_z = \frac{1}{n-3}$

-Common transformations

statistic	conversion
Statistic	
Z^*	$r = \frac{Z}{\sqrt{N}}$
t	$r = \sqrt{\frac{t^2}{t^2 + df}}$
F	$r = \sqrt{\frac{F}{F + df}}$
χ^2	$r = \sqrt{\frac{\chi_{(1)}^2}{N}}$

- -Summarize effect sizes to assess significance
- -Standard statistical summary variables: mean, variance
- -Cumulative Effect Size: weighted mean of effect sizes
- -Homogeneity Statistic: Quantifies variation in effect sizes (analogous to SS) Are effect sizes homogeneous?
- -Method of summary depends upon model for effect size variation
 - -No structure: all studies belong to one 'population'
 - -Categorical structure: studies belong to groups
 - -Continuous structure: studies covary with continuous variable
- -For models with structure (categorical, continuous), variables are often called moderator variables (groups, covariate, etc.)
- -All models are actually special cases of same model

Model: All studies belong to same group

Example H₀: Is there an effect of competition on plant communities?

Cumulative effect size:
$$\overline{\overline{E}} = \sum_{i=1}^{n} w_i E_i / \sum_{i=1}^{n} w_i$$
 variance: $s_E^2 = \frac{1}{\sum_{i=1}^{n} w_i}$

$$CI = \stackrel{=}{E} \pm t_{\alpha/2[n-1]} * s_{\stackrel{=}{E}} : \stackrel{=}{E} \text{ significant if it CI does not bracket 0.0}$$

Homogeneity:
$$Q_T = \sum_{i=1}^n w_i E_i^2 - \frac{\left(\sum_{i=1}^n w_i E_i\right)^2}{\sum_{i=1}^n w_i}$$
 or $Q_T = \sum_{i=1}^n w_i \left(E_i - \overline{E}\right)^2$

Test against X² (n-1 df)

Significant Q_T implies samples are NOT homogeneous

Implies structure in data: may be captured by a moderator variable

Model: Studies belong to different groups

Example H₀: Does competition differ among habitats (terrestrial, marine, etc.)?

For each group calculate:
$$\overline{E}_j = \frac{\sum\limits_{i=1}^{k_j} w_{ij} E_{ij}}{\sum\limits_{i=1}^{k_j} w_{ij}}$$
 $s_{\overline{E}_j}^2 = \frac{1}{\sum\limits_{i=1}^{k_j} w_{ij}}$ $CI = \overline{E}_j \pm t_{\alpha/2[k_j-1]} * s_{\overline{E}_j}$

$$Q_{Wj} = \sum_{i=1}^{k_j} w_{ij} \Big(E_{ij} - \overline{E}_j \Big)^2$$
 Test if each group is different from zero

Test if groups differ:
$$Q_T = Q_M + Q_E$$

$$Q_E = \sum_{j=1}^m Q_{w_j} = \sum_{j=1}^m \sum_{i=1}^{k_j} w_{ij} \left(E_{ij} - \overline{E}_j \right)^2$$

$$Q_M = \sum_{i=1}^m \sum_{j=1}^{k_j} w_{ij} \left(\overline{E}_j - \overline{\overline{E}}\right)^2$$
 test Q_M vs. X^2 with m-1 df, where m is # groups

Significant Q_M implies groups are different (significant Q_E implies there is still structure remaining)

Model: Study effect sizes covary with continuous variables

Example H₀: **Does competition intensity change with age?**

Use Weighted GLM: $E_i = b_o + b_1 X_i + \varepsilon$

$$b_{1} = \frac{\sum_{i=1}^{n} w_{i} X_{i} E_{i} - \frac{\sum_{i=1}^{n} w_{i} X_{i} \sum_{i=1}^{n} w_{i} E_{i}}{\sum_{i=1}^{n} w_{i} X_{i}}}{\sum_{i=1}^{n} w_{i} X_{i}^{2} - \frac{\left(\sum_{i=1}^{n} w_{i} X_{i}\right)^{2}}{\sum_{i=1}^{n} w_{i}}}$$

$$b_{0} = \frac{\sum_{i=1}^{n} w_{i} E_{i} - b_{1} \sum_{i=1}^{n} w_{i} X_{i}}{\sum_{i=1}^{n} w_{i}}$$
This is weighted regression

$$b_0 = \frac{\sum_{i=1}^n w_i}{\sum_{i=1}^n w_i}$$

This is weighted regression

Homogeneity: $Q_M = \frac{b_1^2}{s_1^2}$ (Q_M vs. X2 with 1 df)

Significant Q_M implies X explains significant component of variation in E

- -What are we doing? Summarizing effect sizes as if 'primary' data
- -If $w_i = 1.0$, then we're calculating standard means & SS

$$\overline{\overline{E}} = \sum_{i=1}^{n} w_i E_i / \sum_{i=1}^{n} w_i$$

$$Q_T = \sum_{i=1}^n w_i \left(E_i - \overline{E} \right)^2$$

Also note, Q_{τ} is partitioned, just like SS

- -Therefore, think of meta-analysis as ANOVA, regression, etc.
- -Meta-analytic models are actually Weighted GLM
- -Weighted GLM is a standard statistical method used to account for different weights of objects (recall PGLS for phylogeny)

Since meta-analysis is analyzed in this general framework, more complicated designs can also be tested (e.g., ANCOVA, 2-factor ANOVA, etc.)

-Represent analyses using standard matrix algebra

$$\mathbf{E} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\mathbf{E} = \begin{bmatrix} E_1 \\ \vdots \\ E_n \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} 1 & X_{11} & \cdots & X_{p1} \\ \vdots & \vdots & & & \\ 1 & X_{1n} & \cdots & X_{pn} \end{bmatrix}$$
 (For no structure,
$$\mathbf{X} \text{ is vector of 1's)} \qquad \mathbf{W} = \begin{bmatrix} w_i & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_n \end{bmatrix}$$
 term (w_i) inverse of the variance \mathbf{X} is vector of 1's)

$$\mathbf{W} = \begin{bmatrix} w_i & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_n \end{bmatrix}$$

variance)

- -Solve model as: $\beta = (\mathbf{X}^t \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^t \mathbf{W} \mathbf{E}$
- $-Q_T$, Q_M , etc. calculated as weighted SS
- -Allows for simple-complicated designs
- -Can be generalized to multivariate (though multivariate effect sizes nearly impossible to obtain for a set of published studies!)

- -All previous models are 'fixed effects' models
- -Fixed-effects model: assume only one true effect size shared by all studies (studies therefore only differ by sampling error)
- -Random-effects model: assume studies differ by sampling error and random component (pooled study variance: σ_{pooled}^2)

 σ_{pooled}^2 found from running a fixed effects model σ_{pooled}^2 is incorporated in weights for random model: $w_{i(rand)} = \frac{1}{v_i + \sigma_{nooled}^2}$

$$\sigma_{pooled}^{2} = \frac{Q_{T} - (n-1)}{\sum_{i=1}^{n} w_{i} - \frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n} w_{i}}}$$

 $\sigma_{pooled}^{2} = \frac{Q_{T} - (n-1)}{\sum_{i=1}^{n} w_{i} - \sum_{i=1}^{n} w_{i}^{2}}$ $\sigma_{pooled}^{2} = \frac{Q_{E} - (n-m)}{\sum_{i=1}^{n} w_{i} - \sum_{i=1}^{n} w_{i}^{2}}$ $\sigma_{pooled}^{2} = \frac{Q_{E} - (n-2)}{\sum_{i=1}^{n} w_{i}^{2} - \sum_{i=1}^{n} w_{i}^{2} - \sum_$

No Structure

Categorical Model

Continuous Model

- -Competition in biological communities (Gurevitch et al., 1992)
- -Subset of data (N=43) from 3 habitats (terrestrial, lentic, marine)
- -Data: mean, std, n data from experiment/control
- -H₀: Does competition differ among habitats?

Part of data

Study	Habitat	Nc	Ne	Xc	Xe	Sc	Se	d	var(d)
1	Terrestrial	7	7	78.14	79.71	40.65	40.65	0.0362	0.2858
2	Terrestrial	7	7	18.86	26	9.17	9.17	0.7289	0.3047
3	Terrestrial	6	6	-1.8	-2.1	0.49	0.49	0.5651	0.3466
4	Terrestrial	5	5	-2.2	-2.8	0.224	0.447	1.5329	0.5175
5	Terrestrial	7	7	-2.1	-3	0.265	0.529	2.0139	0.4306
6	Terrestrial	6	6	-2.3	-4.2	0.49	1.225	1.8799	0.4806
7	Terrestrial	3	3	85.3	285.7	115.008	153.806	1.1806	0.7828
8	Terrestrial	3	3	0	3	0	2.425	1.3996	0.8299
9	Terrestrial	3	3	0	2	0	2.078	1.0889	0.7655
10	Terrestrial	3	3	0	1.67	0	1.732	1.0909	0.7658
11	Terrestrial	5	5	17	17	7.603	5.367	0	0.4
12	Terrestrial	5	5	47	37	10.286	9.391	-0.9171	0.4421
13	Terrestrial	4	4	87	272	37.712	183.532	1.2142	0.5921
14	Terrestrial	18	20	-0.113	0.294	0.255	0.215	1.6975	0.1435
15	Terrestrial	20	20	-0.163	0.412	0.588	0.218	1.2709	0.1202
16	Terrestrial	18	20	0.14	0.632	0.38	0.359	1.3051	0.128
17	Terrestrial	20	20	-0.184	0.259	0.326	0.238	1.5213	0.1289
18	Terrestrial	20	20	-0.075	0.354	0.487	0.182	1.1438	0.1164
19	Terrestrial	20	20	0.147	0.541	0.34	0.299	1.2062	0.1182
20	Lentic	4	4	281.11	-201.03	158.038	27.52	3.6961	1.3538

-E: Group effect sizes differed from zero (except lentic)

 Q_M : Effect sizes differed among groups

Conclusion: competition occurs and differs among habitats

Group #5	Studies	E+	df	95% CI				
Terrestrial	 19 1	 1417	 18	0.8999 to 1.3	Model	df	Q Prob	(Chi-Square)
Lentic Marine		.1072).7985	1 21	-7.1465 to 15.3609 0.5419 to 1.0550	Between Within	_	16.4798 69.5016	0.00026 0.00262
E++	43 1	1.0099		0.8408 to 1.1789	 Total	42 8	 35.9814	0.00007

- -Common concern is that only studies with significant results get published, resulting in bias
- -Can be assessed in a number of ways:
- -Funnel Plot: plot effect size vs. sample size: should be funnel shaped (larger variance with smaller n). If overabundance of extreme values (for given n) with lack of data 'in' funnel, might be publication bias

-Rank-Correlation Tests: Look at rank-correlation of standardized effect size vs.

$$E_i^* = \frac{\left(E_i - \overline{\overline{E}}\right)}{\sqrt{v_i^*}}$$

where
$$v_i^* = v_i - \left(\sum_{i=1}^{1} v_i\right)^{-1}$$

-Fail-Safe Numbers: For the 'file drawer problem'. How many non-significant studies must be added to change result to non-significant (if large #, then result is robust)

$$N_R = \frac{\left(\sum_{1}^{n} Z(p_i)\right)^2}{Z_{\alpha}^2} - n$$

N: # studies, Z(pi): Z-scores for study significance values, Za: 1-tail probability

-Normal Quantile Plot: Standardized effect size vs. normal quantile (gaps or strange nonlinearities may indicate publication bias)

- -Rank studies by some criterion (e.g., year of publication)
- -Perform meta-analysis on 1st 2 studies, then 1st 3, 1st 4, etc.
- -Plot cumulative effect sizes (with CI)
- -Addresses when a synthesized result could be determined

Slide 27

Adams et al., 1997 (*Ecology*) proposed some resampling methods

Randomization for assessing significance of Q-statistics

Bootstrapping for assessing CI of cumulative effect sizes

Removes assumptions of testing vs. X² distribution

Adams et al. 1997. *Ecology.* 78:1277-1283. See also: Rosenberg, Adams, Gurevitch. 2000. *MetaWin.* Sinauer Assoc.

Slide 28

- -Phylogenetic meta-analysis recently developed (Adams, 2008)
- -Both PGLS and meta-analysis are GLS models, so can be combined

M-A:
$$\beta = (\mathbf{X}^t \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^t \mathbf{W} \mathbf{E}$$

PGLS:
$$\beta = (\mathbf{X}^t \mathbf{\Sigma}^{-1} \mathbf{X})^{-1} \mathbf{X}^t \mathbf{\Sigma}^{-1} \mathbf{Y}$$

Steps

- -SVD of S: obtain transformation matrix (D) [see Garland and Ives, 2000. Am. Nat.]
- -Transform X and E as: $\mathbf{E}_{new} = \mathbf{DE}$ $\mathbf{X}_{new} = \mathbf{DX}$
- -Solve meta-analysis with transformed data

$$\boldsymbol{\beta}_{p-m-a} = \left(\mathbf{X}_{new}^t \mathbf{W} \mathbf{X}_{new}\right)^{-1} \mathbf{X}_{new}^t \mathbf{W} \mathbf{E}_{new}$$

NOTE: this is a fixed effects, Brownian motion model (method generalized by Lajeunesse, 2009)

Adams. 2008. *Evolution*. 62:567-572. Also: Lajeunesse. 2009. *Am. Nat.* 174:369-381.