Esercizio 2 (9 punti) Data una stringa di numeri interi $A = (a_1, a_2, \dots, a_n)$, si consideri la seguente ricorrenza z(i, j) definita per ogni coppia di valori (i, j) con $1 \le i, j \le n$:

$$z(i,j) = \begin{cases} a_j & \text{if } i = 1, 1 \leq j \leq n, \\ a_{n+1-i} & \text{if } j = n, 1 < i \leq n, \\ z(i-1,j) \cdot z(i,j+1) \cdot z(i-1,j+1) & \text{altrimenti.} \end{cases} - \text{FOQ}$$

- 1. Si fornisca il codice di un algoritmo iterativo bottom-up Z(A) che, data in input la stringa Arestituisca in uscita il valore z(n,1), (vedo (n,1) e la scansione è per colonna)
- 2. Si valuti il numero esatto $T_Z(n)$ di moltiplicazioni tra interi eseguite dall'algoritmo sviluppato al Reverse column major: a11 a12 a13

Z(A) N = LE NGOH (A) FOR 1=2 TO N ECUCIOCON I 7[1 N] = A_(m+1-i) Z[1:] = A-i FOR 1=2 TO N-1 FOR 5= N-1 DOWN TO 2 ROTUM Z (N,1)

1. Date le dipendenze tra gli indici nella ricorrenza, un modo corretto di riempire la tabella è attraverso una scansione "reverse column-major", in cui calcoliamo gli elementi della tabella in ordine decrescente di indice di colonna e, all'interno della stessa colonna, in ordine crescente di indice di riga. Il codice è il seguente.

Piuttosto che usare per l'inizializzazione due indici, se ne usa solo uno Quando si ha "j", si sa che "j" vale 1, da cui i=j e quindi [1, i] Quando invece si ha "n+1-i" come indice, si vede che "j" è =n e quindi n = length(A)for i=1 to n do avremo che per [i, n] avremo [n+1-i]. $z[1,i] = a_i$ $z[i,n] = a_{n+1-i}$ for j=n-1 downto 1 do Vedendo che "j" parte da n e invece "i" parte da 1, per effettuare una scansione giusta per colonne (avendo che for i=2 to n do z[i,j] = z[i-1,j] * z[i,j+1] * z[i-1,j+1]a prima colonna/riga è stata inizializzata dal caso base), allora return z[n, "j" parte da (n-1) piuttosto che da (n) e "i" parte da 2 piuttosto che da (1) Si osservi che un altro modo corretto di riempire la tabella è attraverso una scansione "reverse diagonal", che scansiona per diagonali parallele alla diagonale principale partendo da quella contenente solo z[1, n].

65ATO SI MOLTIPULAZIONI... $\frac{n-1}{2} = \frac{n-1}{2(n-1)^2} = 2(n-1)^2$

Esercizio 2 (9 punti) Sia n > 0 un intero. Si consideri la seguente ricorrenza M(i, j) definita su tutte le coppie (i, j) con $1 \le i \le j \le n$:

$$M(i,j) = \begin{cases} 1 & \text{se } i = j, \\ 2 & \text{se } j = i+1, \\ M(i+1,j-1) & M(i+1,j) \cdot M(i,j-1) & \text{se } j > i+1. \end{cases}$$

- 1. Scrivere una coppia di algoritmi $INIT_M(n)$ e REC $_M(i,j)$ per il calcolo memoizzato di M(1,n).
- 2. Calcolare il numero esatto T(n) di moltiplicazioni tra interi eseguite per il calcolo di M(1, n).

R5C_M(N)

1F (M(1,3) ==0)

M(1,3) =

R5C_M(1+1,3-1)...

```
INIT_M(n)
                                 Siccome viene già passata la lunghezza, non serve salvarla
                                 Similmente, anche n=1 e n=2 vengono dai due casi base (array di 1/2 elementi max),
if n=1 then return 1
                                 quindi o ha un elemento oppure ne ha due soli
                                                                                           (2-) n(n-1)
if n=2 then return 2
for i=1 to n-1 do
    M[i,i] = 1
    M[i,i+1] = 2
M[n,n] = 1 (ultimo elemento diagonale inizializzato)
for i=1 to n-2 do

    "i" va da i ad (n-1), quindi diventa perché abbiamo già inizializzato

    for j=i+2 to n do
                                    "j" va da (n-1) a 0 compresi, quindi dato che abbiamo inizializzato
        M[i,j] = 0
                                   parte da (n-2)
return REC_M(1,n)
                                     Una volta inizializzato secondo i casi base, tutto il resto della matrice viene
                                     riempita di zeri. Poi, si considera, essendo una scansione per diagonale,
                                     noi partiamo dal basso e riempiamo solo la parte sopra delle diagonali principali
REC_M(i,j)
                                     ovviamente riempita anche questa di zeri.
if M[i,j] = 0 then
```

 $M[i,j] = REC_M(i+1,j-1) * REC_M(i+1,j) * REC_M(i,j-1)$

return M[1,1]

$$T(n) = \sum_{i=1}^{n-2} \sum_{j=i+2}^{n} 2 = 2 \sum_{i=1}^{n-2} n - i - 1 = 2 \sum_{k=1}^{n-2} k = (n-2)(n-1)$$

Esercizio 2 (9 punti) Lungo una strada ci sono, in vari punti, n parcheggi liberi e n auto. Un posteggiatore ha il compito di parcheggiare tutte le auto, e lo vuole fare minimizzando lo spostamento totale da fare. Formalmente, dati n valori reali p_1, p_2, \ldots, p_n e altri n valori reali a_1, a_2, \ldots, a_n , che rappresentano

le posizioni lungo la strada rispettivamente di parcheggi e auto, si richiede di assegnare ad ogni auto a_i un parcheggio $p_{h(i)}$ minimizzando la quantità

$$\sum_{i=1}^{n} |a_i - p_{h(i)}|.$$

- Si consideri il seguente algoritmo greedy. Si individui la coppia (auto, parcheggio) con la minima differenza. Si assegni quell'auto a quel parcheggio. Si ripeta con le auto e i parcheggi restanti fino a quando tutte le auto sono parcheggiate. Dimostrare che questo algoritmo non è corretto, esibendo un controesempio.
- 2. Si consideri il seguente algoritmo greedy. Si assuma che i valori $p_1, p_2, ..., p_n$ e $a_1, a_2, ..., a_n$ siano ordinati in modo non decrescente. Si produca l'assegnazione $(a_1, p_1), (a_2, p_2), ..., (a_n, p_n)$. Dimostrare la correttezza di questo algoritmo per il caso n = 2.

1. Si consideri il seguente input:

$$p_1 = 5(p_2 = 10)$$
 e $(a_1 = 9)$ $a_2 = 14$.

L'algoritmo produce l'assegnazione $(a_1, p_2), (a_2, p_1)$, che ha costo 1+9=10, mentre l'assegnazione $(a_1, p_1), (a_2, p_2)$ ha costo 4+4=8.

VE

2. Si consideri il seguente algoritmo greedy. Si assuma che i valori p_1, p_2, \ldots, p_n e a_1, a_2, \ldots, a_n siano ordinati in modo non decrescente. Si produca l'assegnazione $(a_1, p_1), (a_2, p_2), \ldots, (a_n, p_n)$. Dimostrare la correttezza di questo algoritmo per il caso n = 2.

- 2. Ci sono vari casi possibili:
- Dal ragionamento detto, matematicamente, si vede che basta prendere un qualsiasi ordinamento tra le due auto e i due parcheggi di due gen e si esprime la somma in termini matematici (l'idea concreta è quella spiegata c
- (a) Caso $a_1 \le p_1 \le p_2 \le a_2$
 - l'assegnazione $(a_1,p_1),(a_2,p_2)$ ha costo $p_1-a_1+a_2-p_2=(a_2-a_1)-(p_2-p_1)$
 - l'assegnazione $(a_1, p_2), (a_2, p_1)$ ha costo $p_2 a_1 + a_2 p_1 = (a_2 a_1) + (p_2 p_1)$; siccome $p_2 p_1 \ge 0$, questa assegnazione ha costo non inferiore rispetto alla precedente
- (b) Caso $a_1 \le p_1 \le a_2 \le p_2$
 - l'assegnazione $(a_1,p_1),(a_2,p_2)$ ha costo $p_1-a_1+p_2-a_2=(p_2-a_1)-(a_2-p_1)$
 - l'assegnazione $(a_1, p_2), (a_2, p_1)$ ha costo $p_2 a_1 + a_2 p_1 = (p_2 a_1) + (a_2 p_1)$; siccome $a_2 p_1 \ge 0$, questa assegnazione ha costo non inferiore rispetto alla precedente
- (c) Caso $a_1 \leq a_2 \leq p_1 \leq p_2$
 - l'assegnazione $(a_1, p_1), (a_2, p_2)$ ha costo $p_1 a_1 + p_2 a_2 = (p_2 a_1) + (p_1 a_2)$
 - l'assegnazione $(a_1, p_2), (a_2, p_1)$ ha costo $p_2 a_1 + p_1 a_2 = (p_2 a_1) + (p_1 a_2)$, uguale a quello precedente

Tutti gli altri casi sono simmetrici e si dimostrano nella stessa maniera.

Esercizio 2 (10 punti) Abbiamo n programmi da eseguire sul nostro computer. Ogni programma j, dove $j \in \{1, 2, \dots, n\}$, ha lunghezza $\underline{\ell_j}$, che rappresenta la quantità di tempo richiesta per la sua esecuzione. Dato un ordine di esecuzione $\sigma=j_1,j_2,\ldots,j_n$ dei programmi (cioè, una permutazione di $\{1,2,\ldots,n\}$), il tempo di completamento $C_{ii}(\sigma)$ del j_i -esimo programma è dato quindi dalle somma delle lunghezze dei programmi j_1, j_2, \ldots, j_i . L'obiettivo è trovare un ordine di esecuzione σ che minimizza la somma dei tempi di completamento di tutti i programmi, cioè $\sum_{j=1}^{n} C_j(\sigma)$.

(a) Dare un semplice algoritmo greedy per questo problema, e valutarne la complessità.

- (b) Dimostrare la proprietà di scelta greedy dell'algoritmo del punto (a), cioè che esiste un ordine di esecuzione ottimo σ^* che contiene la scelta greedy.

- (b) La scelta greedy consiste nello scegliere, come prossimo programma da eseguire, quello di lunghezza minima. Sia σ^* una soluzione ottima. Se il programma di lunghezza minima è il primo in σ^* , abbiamo finito. Consideriamo quindi il caso in cui il programma di lunghezza minima sia in posizione k > 1 in σ^* . Costruiamo una nuova soluzione σ' scambiando, in σ^* , il k-esimo programma con il primo. Possiamo osservare che:
 - l'insieme dei primi k programmi j₁, j₂, . . . , j_k è lo stesso in σ* e σ', quindi il k-esimo programma ha lo stesso tempo di completamento in σ^* e σ' ; lo stesso vale per tutti i programmi successivi al k-esimo, visto che lo scambio non influisce su di loro;
 - per quanto riguarda tutti gli altri programmi, cioè quelli fino alla posizione k-1, questi hanno un tempo di completamento inferiore o uguale in σ' , perché lo scambio può solo avere ridotto la lunghezza del primo programma.

Quindi

$$\sum_{j=1}^{n} C_j(\sigma') \le \sum_{j=1}^{n} C_j(\sigma^{\star});$$

siccome σ^* è una soluzione ottima, allora deve valere che

$$\sum_{j=1}^{n} C_j(\sigma') = \sum_{j=1}^{n} C_j(\sigma^{\star}),$$

cioè anche σ' è una soluzione ottima.

Domanda 45 Indicare il codice prefisso ottenuto utilizzando l'algoritmo di Ḥuffmann per l'alfabeto $\{a, b, c, d, e, f, g\}$, supponendo che ogni simbolo appaia con le seguenti frequenze.

	a	b	c	d	e	f	g	
- 1	2	12	16	8	6	9	.3	
•				, ,				•

Spiegare il processo di costruzione del codice.

Esercizió: matching sulla linea -> 6 SORPED Sia $S = \{s_1, s_2, ..., s_m\}$ un insiene di punti ordinati sulla retta reale, rappresentanti dei ruva. Sia C = {c,,c,,..,cn} un insieme di punti ordinti sulla retta rede, rappresentanti dei client. Il costa di arreguare un client ci ad un suver S, De Ci −5, l. Fornire un algorithe greedy cle arregna ogni client ad un seven distinte e che minimizzi il costa totale (equiv., media) dell'onequamento.

- 1) asino SeC
- D FOR
- \$) IF C1-55 < TW
 - (HINZG-S5
 - (E) Come rus

