	(303,000
Name :	A
Roll No. :	A Spanne (VC) modelage Stad Exclaim
Inviailator's Signature:	00000

CS/B.Tech (ICE) (O)/SEM-5/IC-504/2012-13

2012 ADVANCED CONTROL SYSTEM

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

- i) A set of variable for a system is
 - a) not unique in general
 - b) always unique
 - c) never unique.
- ii) For an *n*th order control system, the number(s) of variable is(are)
 - a) 1
 - b) *n*
 - c) n/2.

5342(O) [Turn over

- iii) Dynamic equation is a set of equations which is formed by putting together
 - a) state equation and input equation
 - b) input equation and output equation
 - c) output equation and state equation.
- iv) State variable approach converts an nth order system into
 - a) *n*-number second order differential equations
 - b) two differential equations
 - c) n-number 1st order differential equations.
- v) The transfer function of a linear system represented by the vector matrix differential equations $\dot{x} = Ax + Bu$ and Y = Cx + Du is given by
 - a) $C(sI A)^{-1} B$
 - b) $C(sI A)^{-1}B + D$
 - c) $B(sI-A)^{-1}C+D$.
- vi) The properties of state transition matrix $\Phi(t)$ is
 - a) $\Phi(0) = 1$
 - b) $\Phi^{-1}(t) = \Phi(t)$
 - c) $[\Phi(t)]^k = \Phi(-kt)$.
- vii) A system is said to be completely observable if
 - a) any of the state variables affects some output
 - b) any of the state variable affects all the output
 - c) all the state variables affects all the outputs.

The value of its damping and natural frequency are

- a) 1 and 1
- b) 0.5 and 1
- c) 0.707 and 2.
- ix) To compute the describing function of a non-linear element for sinusoidal input,
 - a) the function component of the output is required
 - b) the dead zone and saturation are to be avoided
 - c) the non-linear system to be assumed linear.
- x) If the both eigenvalues of a second order system are real and negative then it is termed as
 - a) the saddle point
 - b) the nodal point
 - c) the focus point.
- xi) A non-linear control system is described by the equation $\frac{d^2x}{dt^2} + \sin x = 0.$ The type of singularity at $x = \pi$ and $\frac{dx}{dt} = 0$ is
 - a) centre

- b) stable focus
- c) saddle point
- d) stable node.
- xii) The value of a matrix for the system described by the differential equation $\ddot{y} + 2y + 3\dot{y} = 0$ is
 - a) $\begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$
- b) $\begin{bmatrix} 0 & 1 \\ -3 & -2 \end{bmatrix}$
- c) $\begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}$

A linear 2nd order servo is described by the equation 2.

$$\ddot{y} + 2tw_n \dot{y} + w_n^2 y = w_n^2$$

Where
$$w_n = 1$$
, $y(0) = 2.0$, $\dot{y}(0) = 0$

Determine the singular points when

- i) t = 0,
- ii) t = 0.15.

Construct the phasor trajectory in each case.

3. A linear time invariant system is characterised by the homogeneous state equation

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Compute the solution of the homogenous equation a) assuming the initial state vector

$$x(0) = \left[\frac{1}{0}\right]. 2\frac{1}{2}$$

Consider now that the system has forcing function and b) is represented by the following non-homogeneous state equation

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U,$$

where U is a unit step input. compute the solution of this equation assuming initial conditions of subquestion (a).

- 4. Explain the concept of controllability and observability
- 5. Determine x(k) of the system given below:

$$\dot{x} (k+1) = \begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

where $x_1(0) = 1$, $x_2(0) = 1$ and u(k) = 2.

6. Concept of limit cycles in the system analysis of a non-linear control system.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. Consider three cascaded elements depicted in the figure given below constituting part of a control system. Two of the elements are non-linear and one is linear (an integrator):

Why is it not recommendable to obtain the overall frequency response of this system by multiplication of the FTF of the integrator by the individual DF's of each non-linear element?

Suggest a better method and then use it to obtain the overall DF of the three elements. Plot the DF versus W. 6 + 4 + 5

8. a) The state equations of a system are given by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -3 & 1 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U \text{ and } y = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Determine the controllability and observability of the system.

8

CS/B.Tech (ICE) (O)/SEM-5/IC-504/2012-13

b) Consider the system $\dot{x} = Ax + Bu$

where,
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Design a linear state variable feedback gain matrix such that the closed-loop poles are located at (-2+j4), (-2-j4) and -10.

- 9. a) Define state, state variable, star vector and state space of a system.
 - b) Obtain the state variable model of the system whose transfer function is given by $G(s) = \frac{s^2 + 3s + 1}{s^3 + 5s^2 + 7s + 2}$.
 - c) Find the state transition matrix Φ (t) from the non-homogeneous state equation of a linear control system.

4

10. a) Define phase plane, phase trajectory and phase portrait.

6

b) For the piecewise linear system shown in figure, sketch typical trajectory in the phase-plane where input is r(t) = 10u(t) and T = 1, K = 4, $e_0 = \pm 0.2$, $M_0 = \pm 0.2$.

5342(O)

- 11. a) State Lyapunov's direct method of investigating stability of nonlinear system.
 - b) Determine whether or not the following quadratic form is positive definite: 5

$$Q(x_1, x_2) = 10 x_1^2 + 4 x_2^2 + x_3^2 + 2 x_1 x_2 - 2 x_2 x_3 - 4 x_1 x_3.$$

c) A linear system is described by the state equation 6

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x$$

Investigate the stability of this system by using Lyapunov's theorem.

5342(O) 7 Turn over