

DATA SCIENCE CHALLENGE | ACTIVITY RECOGNITION

Pedro Matias

MOTIVATION

Number of publications over time

Downstream Task

2

PROBLEM

Accelerometer Data

Target Daily Activities

Sitting

Cycling

Walking

Running

DATASET

Characteristics

- A. 13 users
- **B.** 24 sessions
- C. 4 human activities
- **D.** 10.7 ± 4.4 min (duration)
- **E.** 15 000 samples
- **F.** 40 features

PREPROCESSING PIPELINE

PEDRO MATIAS | DATA SCIENCE CHALLENGE

5

ML PIPELINE

GRID-SEARCH PIPELINE

Notes

5 folds (80/20%)

Split by Session

Optimization by FI-score (macro)

EXPLORATORY DATA ANALYSIS

Notes

Running potentially easier to identify;

Walking and Sitting seem to be distinguishable as well;

Cycling and **Sitting** seem to be more overlapped. Physiological component can play and important role here.

EXPLORATORY DATA ANALYSIS

ML CLASSIFICATION RESULTS

Remarks

Random Forest performs better (79.2% ± 12.5% FI-score)

To deploy: model should be trained with all data, and a single external testing set should be used to report.

ML CLASSIFICATION RESULTS

Remarks

Random Forest performs better (79.2% ± 12.5% FI-score)

To deploy: model should be trained with all data, and a single external testing set should be used to report.

PERFORMANCE IN REAL-WORLD SCENARIOS

- Performance of ML models in free-living scenarios often decreases when compared with validation scores;
- Some **features** are not **position-invariant.** This can affect real-world performances, if new incoming samples are collected with different device orientations;
- Reporting model performances transparently is crucial when deploying model into the real-world. Some examples: female vs male, young vs adult vs elderly, diseased vs healthy, device position, walking style;
- **To improve performance:** opening the context window (post-processing) may help reduce model failures (e.g., classification consistency over N consecutive windows; steps detected in walking windows; intra-user variability may help figure out most likely activities in specific times of day);
- Other approaches: position-invariant features (e.g., same metrics over signal magnitude), more activities (e.g., stand-to-sit/sit-to-stand; jumping; laying; indoors vs outdoors), ensemble methods or layered learning (model A to detect activity levels, model B to identify model ensembles), DL models (not in real-time but for offline processing).

THANK YOU

Contacts

matiaspedro97@gmail.com

Pedro Matias

github/matiaspedro97

pedromatias

dataautogpt/OpenDalleV1.1