МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической кибернетики и компьютерных наук

АВТОМАТИЧЕСКАЯ ТЕМАТИЧЕСКАЯ КЛАССИФИКАЦИЯ НОВОСТНОГО МАССИВА

БАКАЛАВРСКАЯ РАБОТА

студента 4 курса 451 группы направления 09.03.04 — Программная инженерия факультета КНиИТ Кондрашова Даниила Владиславовича

Научный руководитель доцент, к. фм. н.	 С.В.Папшев
Заведующий кафедрой	
к. фм. н.	 С.В.Миронов

СОДЕРЖАНИЕ

BE	ВЕДЕ	ниЕ		5
1	Teop	етичес	кие и методологические основы автоматической тематиче-	
	ской	і класси	іфикации	6
	1.1	Место	автоматической тематической классификации новостей в	
		поиск	e	6
	1.2	Сбор	новостных данных данных	6
		1.2.1	Выбор метода получения новостных данных	6
		1.2.2	Подбор новостной платформы для сбора данных	7
	1.3	Подго	товка собранных данных	8
	1.4	Матем	латические основы тематического моделирования	9
		1.4.1	Основная гипотеза тематического моделирования	9
		1.4.2	Аксиоматика тематического моделирования	9
		1.4.3	Задача тематического моделирования	0
		1.4.4	Решение задачи тематического моделирования (обратной	
			задачи)	1
		1.4.5	Регуляризаторы в тематическом моделировании	4
		1.4.6	Оценка качества моделей	7
	1.5	Метод	цы обработки текста с помощью нейросетей2	0
		1.5.1	Проблема представления текста в пространстве чисел 2	0
		1.5.2	Выбор архитектуры нейронной сети	2
		1.5.3	Оценка качества работы нейронных сетей	3
2	Пра	ктико-т	ехнологические основы автоматической тематической клас-	
	сиф	икации		6
	2.1	Получ	ение новостного массива путём веб-скраппинга2	6
		2.1.1	Выбор инструментов получения новостных данных 2	6
		2.1.2	Реализация алгоритма сбора новостных данных2	6
		2.1.3	Результаты сбора данных с сайта ВШЭ2	7
	2.2	Подго	товка новостного массива2	9
		2.2.1	Выбор инструментов для подготовки данных	9
		2.2.2	Удаление лишних пробелов и переносов строк3	0
		2.2.3	Разделение строк на русские и английские фрагменты 3	0
		2.2.4	Очистка от неалфавитных токенов и удаление крайних	
			неалфавитных символов из токенов	1

	2.2.5	токенизация, лемматизация и удаление стоп-слов по словарю	31
	2.2.6	Удаление высокочастотных и низкочастотных токенов	32
	2.2.7	Удаление стоп-слов с помощью метрики TF-IDF	33
	2.2.8	Очистка набора данных от пустых документов	33
	2.2.9	Результаты подготовки данных	34
2.3	Постро	рение тематической модели	35
	2.3.1	Выбор инструментов для тематического моделирования	35
	2.3.2	Недостающий функционал библиотеки BigARTM	36
	2.3.3	Функциональности классов My_BigARTM_model и	
		Hyperparameter_optimizer	37
	2.3.4	Преобразование новостного массива в приемлемый для	
		BigARTM формат	37
	2.3.5	Реализация механизма упрощённого добавления регуля-	
		ризаторов в модель BigARTM	38
	2.3.6	Вычисление когерентности тематической модели	38
	2.3.7	Вычисление тематической модели и формирование гра-	
		фиков метрик качества тематического моделирования	39
	2.3.8	Подбор гиперпараметров для тематического моделирования	[40
	2.3.9	Разметка данных на основе результатов тематического	
		моделирования	41
	2.3.10	Результаты тематического моделирования	43
2.4	Обуче	ние модели классификатора	46
	2.4.1	Выбор модели для тематической классификации	46
	2.4.2	Выбор способа для получения предобученных моделей	47
	2.4.3	Получение весов предобученной модели	47
	2.4.4	Подготовка данных для работы с моделью	47
	2.4.5	Дообучение модели	48
	2.4.6	Результаты обучения классификатора	48
2.5	Итоги	по реализации инструментов автоматической тематиче-	
	ской к.	лассификации	50
2.6	Выводі	ы и возможные улучшения по практико-методической части.	51
ЗАКЛЮ	ЧЕНИЕ	<u> </u>	52
СПИСО	к исп	ОЛЬЗОВАННЫХ ИСТОЧНИКОВ	54
Приложе	ение А	Пример страницы новостного сайта ВШЭ	57

Приложение Б	Листинги посвящённые реализации веб-скраппера	58
Приложение В	Листинги посвящённые реализации обработчика данных	60
Приложение Г	Полный код класса обработчика данных	65
Приложение Д	Листинги посвящённые реализации классов для темати-	
ческого моде	елирования	72
Приложение Е	Полный код класса My_BigARTM_model	76
Приложение Ж	Полный код класса Hyperparameter_optimizer	83
Приложение 3	Листинги посвящённые реализации обучения нейронной	
сети-классиф	рикатора	87
Приложение И	Полный код класса обучения нейронной сети-классифи-	
катора		89
Приложение К	Количественные характеристики подготовленного и непод-	
готовленного	о новостного массива	93
Приложение Л	Полные материалы работы	97

ВВЕДЕНИЕ

В настоящее время оперативный поиск информации становится критически важной задачей. Однако анализ полного массива данных невозможен из-за его масштабов, что создаёт необходимость в классификации и последующей фильтрации данных для выделения релевантной информации. Решением этой проблемы может служить тематическая классификация.

Большие объёмы данных, такие как новостные потоки, часто не имеют системной тематической разметки. Даже при наличии рубрикации, её субъективность может приводить к проблемам: некорректному присвоению тем, избыточности тематических категорий и их недостаточному охвату. Это вызывает ошибки при поиске и анализе информации. Для устранения этих недостатков требуется механизм, обеспечивающий точную тематическую классификацию с возможностью автоматической разметки новостных материалов.

Одним из инструментов для реализации такого подхода являются тематические модели в сочетании с алгоритмами глубокого обучения. Первые позволяют выявить скрытые темы в текстовых данных и подготовить разметку для обучения вторых. Алгоритмы глубокого обучения, в свою очередь, могут классифицировать новые тексты по заданным темам.

Таким образом, целью данной работы является разработка нейросетевого метода автоматической классификации новостей на основе тематической модели предметной области.

Для достижения цели необходимо решить следующие задачи:

- 1. Выполнить парсинг новостных данных и их текстовую предобработку;
- 2. Провести анализ характеристик и параметров набора данных;
- 3. Выполнить тематическое моделирование подготовленных данных с оптимальными параметрами;
- 4. Разметить данные для обучения нейронной сети-классификатора с помощью тематического моделирования;
- 5. Выполнить обучение нейронной сети-классификатора на размеченных данных;
- 6. Провести анализ качетсва обученной модели;
- 7. Проанализировать эффективность разработанного метода автоматической тематической классификации.

1 Теоретические и методологические основы автоматической тематической классификации

1.1 Место автоматической тематической классификации новостей в поиске

Эффективный поиск информации требует предварительной организации данных. Тематическая классификация улучшает этот процесс за счёт структуризации контента, фильтрации нерелевантных материалов и выделения целевых категорий.

Таким образом, тематическая классификация будет иметь в процессе поиска следующий практический смысл:

- 1. Скорость обработки: ручная классификация тысяч новостных статей в день невозможна. Алгоритмы на базе BigARTM и глубокого обучения справляются с этим за минуты, обеспечивая актуальность данных для принятия решений;
- 2. Масштабируемость: автоматизация позволяет работать с постоянно растущими объёмами информации без значительного увеличения ресурсных затрат;
- 3. Снижение субъективности: исключаются человеческие ошибки, связанные с усталостью или предвзятостью, что повышает достоверность результатов.

Автоматическая классификация новостей не заменяет экспертов, но становится их основным помощником, беря на себя рутинные задачи. Например, в разведочном поиске это критически важно, так как позволяет перейти от обработки данных к их осмысленному использованию — будь то стратегическое планирование или оперативное управление.

Технологии вроде BigARTM и методов глубокого обучения обеспечивают баланс между скоростью, точностью и адаптивностью, что делает их незаменимыми в работе с динамичными новостными потоками.

1.2 Сбор новостных данных данных

1.2.1 Выбор метода получения новостных данных

Для получения данных с сайтов существует три основных метода:

- Ручной сбор извлечение информации человеком вручную;
- Запрос данных получение информации от владельцев с последующим

скачиванием;

— Программный сбор — автоматизированное извлечение данных.

Первый метод можно исключить из рассмотрения из-за низкой эффективности. Второй метод применим не во всех случаях: владельцы информационных платформ вряд ли будут оперативно предоставлять данные по каждому запросу. Таким образом, наиболее целесообразным остаётся третий метод — программный сбор.

Среди методов программного сбора оперативно и эффективно получать данные в большинстве случаев позволяют инструменты веб-скрапинга [1]. Далее в работе будет использован именно этот метод для формирования новостного массива, так как он прост в изученни, а также обеспечивает баланс между скоростью получения данных и минимальными требованиями к стороннему участию.

1.2.2 Подбор новостной платформы для сбора данных

В рамках данной работы основным объектом исследования являются новостные текстовые данные. Для их сбора необходимо выбрать подходящий вебресурс.

При наличии нескольких потенциальных источников выбор следует осуществлять на основе анализа HTML структуры сайта по следующим критериям:

- 1. Единая структура документов на всём сайте;
- 2. Отсутствие блокировок HTTP-запросов от скраперов;
- 3. Статичность контента полная доступность HTML-кода страницы при первичном запросе без динамической подгрузки.
 - Идеальный случай соответствие всем трём пунктам. При этом:
- 1. Ограничения по пунктам 2 и 3 в большинстве случаев можно обойти стандартными методами;
- 2. Нарушение пункта 1 создаёт принципиальные сложности: обработка разноформатных данных может потребовать ручной настройки для каждого документа.

В качестве источника выбран новостной сайт НИУ ВШЭ. Этот ресурс:

- 1. Имеет единую структуру новостных материалов;
- 2. Не блокирует автоматизированные запросы;
- 3. Предоставляет полный HTML-код страницы без динамической генерации контента.

Указанные характеристики делают сайт ВШЭ оптимальным вариантом для реализации поставленных задач.

1.3 Подготовка собранных данных

Полученные данные требуют предварительной обработки для устранения шума и повышения качества анализа. Основные этапы предобработки включают [2]:

- 1. Очистка от технического шума:
 - Удаление лишних пробелов и переносов строк;
 - Очистка от специальных символов (скобки, HTML-теги, эмодзи);
 - Нормализация регистра (приведение текста к нижнему регистру).
- 2. Токенизация: разделение текста на семантические единицы (слова, предложения);
- 3. Лемматизация: приведение словоформ к лемме (словарной форме);
- 4. Удаление стоп-слов: исключение частотных слов с низкой смысловой нагрузкой (предлоги, союзы, частицы);

Обоснование выбора способа приведения слова к начальной форме.

В отличие от стемминга (например, алгоритм Snowball), который применяет шаблонное усечение окончаний, лемматизация обеспечивает точное приведение слов к нормальной форме с сохранением семантики [2]. Это критически важно для тематического моделирования, где искажение смысла слов может привести к некорректной интерпретации контекста. На рис. 1 показаны принципиальные различия между двумя подходами.

Рисунок 1 – Иллюстрация разницы между стеммингом и лемматизацией

1.4 Математические основы тематического моделирования

1.4.1 Основная гипотеза тематического моделирования

Тематическое моделирование — это метод анализа текстовых данных, который позволяет выявить семантические структуры в коллекциях документов.

Основная идея тематического моделирования [3] заключается в том, что слова в тексте связаны не с конкретным документом, а с темами. Сначала текст разбивается на темы, и каждая из них генерирует слова для соответствующих позиций в документе. Таким образом, сначала формируется тема, а затем тема определяет термины.

Эта гипотеза позволяет проводить тематическую классификацию текстов на основе частоты и совместной встречаемости слов.

1.4.2 Аксиоматика тематического моделирования

Каждый текст можно количественно охарактеризовать. Ниже приведены основные количественные характеристики, использующиеся при тематическом моделировании [4]:

- W конечное множество термов;
- *D* конечное множество текстовых документов;
- *T* конечное множество тем;
- $D \times W \times T$ дискретное вероятностное пространство;
- коллекция i.i.d выборка $(d_i, w_i, t_i)_{i=1}^n$;

- $n_{dwt} = \sum_{i=1}^n [d_i = d][w_i = w][t_i = t]$ частота (d, w, t) в коллекции;
- $n_{wt} = \sum_{d} n_{dwt}$ частота терма w в документе d;
- $n_{td} = \sum_{w} n_{dwt}$ частота термов темы t в документе d;
- $n_t = \sum_{d,w} n_{dwt}$ частота термов темы t в коллекции;
- $n_{dw} = \sum_t n_{dwt}$ частота терма w в документе d;
- $n_W = \sum_d n_{dw}$ частота терма w в коллекции;
- $n_d = \sum_w n_{dw}$ длина документа d;
- $n = \sum_{d.w} n_{dw}$ длина коллекции.

Также в тематическом моделировании используются следующие гипотезы и аксиомы [3]:

- независимость слов от порядка в документе: порядок слов в документе не важен;
- независимость от порядка документов в коллекции: порядок документов в коллекции не важен;
- зависимость терма от темы: каждый терм связан с соответствующей темой и порождается ей;
- гипотеза условной независимости: p(w|d,t) = p(w|t).

1.4.3 Задача тематического моделирования

Как уже говорилось ранее, документ порождается следующим образом [3]:

- 1. для каждой позиции в документе генерируется тема p(t|d);
- 2. для каждой сгенерированной темы в соответствующей позиции генерируется терм p(w|d,t).

Тогда вероятность появления слова в документе можно описать по формуле полной вероятности [3,5]:

$$p(w|d) = \sum_{t \in T} p(w|d, t)p(t|d) = \sum_{t \in T} p(w|t)p(t|d)$$
 (1)

Такой алгоритм является прямой задачей порождения текста. Тематическое моделирование призвано решить обратную задачу:

- 1. для каждого терма w в тексте найти вероятность появления в теме t (найти $p(w|t)=\phi_{wt}$);
- 2. для каждой темы t найти вероятность появления в документе d (найти $p(t|d) = \theta_{td}$).

Разработан спектрально-аналитический подход к выявлению размытых протяженных повторов в геномных последовательностях. Метод основан на разномасштабном оценивании сходства нуклеотидных последовательностей в пространстве коэффициентов разложения фрагментов кривых GC- и GA-содержания по классическим ортогональным базисам. Найдены условия оптимальной аппроксимации, обеспечивающие автоматическое распознавание повторов различных видов (прямых и инвертированных, а также тандемных) на спектральной матрице сходства. Метод одинаково хорошо работает на разных масштабах данных. Он позволяет выявлять следы сегментных дупликаций и мегасателлитные участки в геноме, районы синтении при сравнении пары геномов. Его можно использовать для детального изучения фрагментов хромосом (поиска размытых участков с умеренной длиной повторяющегося паттерна).

Рисунок 2 – Алгоритм формирования документа

Обратную задачу можно представить в виде стохастического матричного разложения **3**.

Рисунок 3 – Стохастическое матричное разложение

Таким образом, тематическое моделирование ищет величину p(w|d).

1.4.4 Решение задачи тематического моделирования (обратной задачи)

Для решения задачи тематического моделирования необходимо найти величину p(w|d), сделать это можно с помощью метода максимального правдоподобия.

Лемма о максимизации функции на единичных симплексах.

Перед тем как перейти к решению обратной задачи, сформулируем лемму, которая поможет в этом процессе [3].

Приведём операцию нормировки вектора:

$$p_i = norm_{i \in I}(x_i) = \frac{max\{x_i, 0\}}{\sum_{k \in I} max\{x_k, 0\}}$$
 (2)

Лемма о максимизации функции на единичных симплексах [3,6]:

Пусть функция $f(\Omega)$ непрерывно дифференцируема по набору векторов $\Omega=(w_i)_{j\in J}, \quad w_j=(w_{ij})_{i\in I_j}$ различных размерностей $|I_j|$. Тогда векторы w_j локального экстремума задачи

$$\begin{cases} f(\Omega) \to \max_{\Omega} \\ \sum_{i \in I_j} w_{ij} = 1, \ j \in J \\ w_{ij} \ge 0, \ i \in I_j, j \in J \end{cases}$$

при условии $1^0: \ (\exists i \in I_j) w_{ij} \frac{\partial f}{\partial w_{ij}} > 0$ удовлетворяют уравнениям

$$w_{ij} = norm_{i \in I_j} \left(w_{ij} \frac{\partial f}{\partial w_{ij}} \right), \quad i \in I_j;$$
(3)

при условии 2^0 : $(\forall i\in I_j)w_{ij}\frac{\partial f}{\partial w_{ij}}\leq 0$ и $(\exists i\in I_j)w_{ij}\frac{\partial f}{\partial w_{ij}}<0$ удовлетворяют уравнениям

$$w_{ij} = norm_{i \in I_j} \left(-w_{ij} \frac{\partial f}{\partial w_{ij}} \right), \quad i \in I_j;$$
(4)

в противном случае (условие 3^0) — однородным уравнениям

$$w_{ij}\frac{\partial f}{\partial w_{ij}} = 0, \quad i \in I_j. \tag{5}$$

Данная лемма служит для оптимизации любых моделей, параметрами которых являются неотрицательные нормированные векторы.

Сведение обратной задачи к максимизации функционала.

Чтобы вычислить величину p(w|d) воспользуемся принципом максимума правдоподобия [5], согласно которому будут подобраны параметры Φ,Θ такие, что p(w|d) примет наибольшее значение.

$$\prod_{i=1}^{n} p(d_i, w_i) = \prod_{d \in D} \prod_{w \in d} p(d, w)^{n_{dw}}$$
(6)

Прологарифмировав правдоподобие, перейдём к задаче максимизации логарифма правдоподобия.

$$\sum_{d \in D} \sum_{w \in d} n_{dw} \ln p(w|d) p(d) \to \max_{\Phi, \Theta}$$
 (7)

Данная задача эквивалентна задаче максимизации функционала

$$L(\Phi, \Theta) = \sum_{d \in D} \sum_{w \in d} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} \to \max_{\Phi, \Theta}$$
 (8)

при ограничениях неотрицательности и нормировки

$$\phi_{wt} \ge 0; \quad \sum_{w \in W} \phi_{wt} = 1; \quad \theta_{td} \ge 0; \quad \sum_{t \in T} \theta_{td} = 1$$
 (9)

Таким образом, обратная задача сводится к задаче максимизации функционала [4].

Аддитивная регуляризация тематических моделей.

Задача, описываемая уравнением 8, не соответствует критериям корректно поставленной задачи по Адамару [7], поскольку в общем случае она имеет бесконечное множество решений. Это свидетельствует о необходимости доопределения задачи.

Для доопределения некорректно поставленных задач применяется регуляризация [7]: к основному критерию добавляется дополнительный критерий — регуляризатор, который соответствует специфике решаемой задачи.

Метод ARTM (аддитивная регуляризация тематических моделей [3]) основывается на максимизации линейной комбинации логарифма правдоподобия и регуляризаторов $R_i(\Phi,\Theta)$ с неотрицательными коэффициентами регуляризации $\tau_i,\ i=1,\ldots,k$.

Преобразуем задачу к ARTM виду:

$$\sum_{d \in D} \sum_{w \in d} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} + R(\Phi, \Theta) \to \max_{\Phi, \Theta}; \quad R(\Phi, \Theta) = \sum_{i=1}^{k} \tau_i R_i(\Phi, \Theta) \quad (10)$$

при ограничениях неотрицательности и нормировки 9.

Регуляризатор (или набор регуляризаторов) выбирается в соответствии с решаемой задачей.

Сведение задачи тематического моделирования к Е-М алгоритму.

Из представленных выше ограничений 9 следует, что столбцы матриц можно считать неотрицательными единичными векторами. Таким образом, задача сводится к максимизации функции на единичных симплексах [3].

Воспользуемся леммой о максимизации функции на единичных симплексах 1.4.4 и перепишем задачу.

Пусть функция $R(\Phi,\Theta)$ непрерывно дифференцируема. Тогда точка (Φ,Θ) локального экстремума задачи с ограничениями, удовлетворяет системе уравнений с вспомогательными переменными $p_{twd}=p(t|d,w)$, если из решения исключить нулевые столбцы матриц Φ и Θ :

$$\begin{cases} p_{tdw} = \underset{t \in T}{norm}(\phi_{wt}\theta_{td}) \\ \phi_{wt} = \underset{w \in W}{norm}\left(n_{wt} + \phi_{wt}\frac{\partial R}{\partial \phi_{wt}}\right); \\ \theta_{td} = \underset{t \in T}{norm}\left(n_{td} + \theta_{td}\frac{\partial R}{\partial \theta_{td}}\right) \end{cases}$$

$$(11)$$

Полученная модель соответствует Е-М алгоритму, где первая строка системы уравнений соответствует Е-шагу, а вторая и третья строки — М-шагу.

Решив полученную систему уравнений, методом простых итерации получим искомые матрицы Φ и Θ .

1.4.5 Регуляризаторы в тематическом моделировании

В этом разделе будут рассмотрены некоторые возможные варианты регуляризаторов.

Дивергенция Кульбака-Лейблера.

Перед тем как перейти к регуляризаторам необходимо ввести меру оценки близости тем.

Чтобы оценить близость тем можно воспользователься дивергенцией Кульбака-Лейблера [3,7] (КL или КL-дивергенция). КL-дивергенция позволяет оценить степень вложенности одного распределения в другое, в случае тематического моделирования будет оценитьваться вложенность матриц.

Определим KL-дивергенцию:

Пусть $P=(p_i)_{i=1}^n$ и $Q=(q_i)_{i=1}^n$ некоторые распределения. Тогда дивергенция Кульбака-Лейблера имеет следующий вид:

$$KL(P||Q) = KL_i(p_i||q_i) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i}.$$
 (12)

Свойства KL-дивергенции:

- 1. $KL(P||Q) \ge 0;$
- 2. $KL(P||Q) = 0 \Leftrightarrow P = Q;$
- 3. Минимизация KL эквивалентна максимизации правдоподобия:

$$KL(P||Q(\alpha)) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i(\alpha)} \to \min_{\alpha} \Leftrightarrow \sum_{i=1}^{n} p_i \ln q_i(\alpha) \to \max_{\alpha};$$

4. Если KL(P||Q) < KL(Q||P), то P сильнее вложено в Q, чем Q в P. Теперь можно перейти к рассмотрению регуляризаторов.

Регуляризатор сглаживания.

Сглаживание предполагает сематническое сближение тем, это может быть полезно в следующих случаях [8]:

- 1. Темы могут быть похожи между собой по терминологии, например, основы теории вероятностей и линейной алгебры обладают рядом одинаковых терминов;
- 2. При выделении фоновых тем важно максимально вобрать в них слова, следовательно, сглаживание поможет решить эту задачу.

Определим регуляризатор сглаживания:

Пусть распределения ϕ_{wt} близки к заданному распределению β_w и пусть распределения θ_{td} близки к заданному распределению α_t . Тогда в форме KL-дивергеннции 1.4.5 выразим задачу сглаживания:

$$\sum_{t \in T} KL(\beta_w || \phi_{wt}) \to \min_{\Phi}; \quad \sum_{d \in D} KL(\alpha_t || \theta_{td}) \to \min_{\Theta}.$$
 (13)

Согласно свойству 3 KL-дивергенции перейдём к задаче максимизации

правдоподобия:

$$R(\Phi, \Theta) = \beta_o \sum_{t \in T} \sum_{w \in W} \beta_w \ln \phi_{wt} + \alpha_0 \sum_{d \in D} \sum_{t \in T} \alpha_t \ln \theta_{td} \to \max.$$
 (14)

Перепишем ЕМ-алгоритм 11 в соответствии с полученной формулой:

$$\begin{cases} p_{tdw} = \underset{t \in T}{norm}(\phi_{wt}\theta_{td}) \\ \phi_{wt} = \underset{w \in W}{norm}(n_{wt} + \beta_0\beta_w); \\ \theta_{td} = \underset{t \in T}{norm}(n_{td} + \alpha_0\alpha_t) \end{cases}$$

$$(15)$$

Таким образом был получен модифицированный EM-алгоритм соответствующий модели LDA [3,7].

Регуляризатор разреживания.

Разреживание подразумевает разделение тем и документов, исключая общие слова из них. Этот тип регуляризации основывается на предположении, что темы и документы в основном являются специфичными и описываются относительно небольшим набором терминов, которые не встречаются в других темах [3,8].

Определим регуялризатор разреживания:

Пусть распределения ϕ_{wt} далеки от заданного распределения β_w и пусть распределения θ_{td} далеки от заданного распределения α_t . Тогда в форме KL-дивергеннции 1.4.5 выразим задачу разреживания:

$$\sum_{t \in T} KL(\beta_w || \phi_{wt}) \to \max_{\Phi}; \quad \sum_{d \in D} KL(\alpha_t || \theta_{td}) \to \max_{\Theta}.$$
 (16)

Согласно свойству 3 KL-дивергенции перейдём к задаче максимизации правдоподобия:

$$R(\Phi, \Theta) = -\beta_o \sum_{t \in T} \sum_{w \in W} \beta_w \ln \phi_{wt} - \alpha_0 \sum_{d \in D} \sum_{t \in T} \alpha_t \ln \theta_{td} \to \max.$$
 (17)

Перепишем ЕМ-алгоритм 11 в соответствии с полученной формулой:

$$\begin{cases} p_{tdw} = \underset{t \in T}{norm}(\phi_{wt}\theta_{td}) \\ \phi_{wt} = \underset{w \in W}{norm}(n_{wt} - \beta_0\beta_w); \\ \theta_{td} = \underset{t \in T}{norm}(n_{td} - \alpha_0\alpha_t) \end{cases}$$
(18)

Таким образом был получен модифицированный ЕМ-алгоритм, разреживающий матрицы Φ и Θ [3,8].

Регуляризатор декоррелирования тем.

Декоррелятор тем — это частный случай разреживания, призванный выделить для каждой темы лексическое ядро — набор термов, отличающий её от других тем [3,8].

Определим регуляризатор декоррелирования:

Минимизируем ковариации между вектор-столбцами ϕ_t :

$$R(\Phi) = -\frac{\tau}{2} \sum_{t \in T} \sum_{s \in T \setminus t} \sum_{w \in W} \phi_{wt} \phi_{ws} \to max.$$
 (19)

Перепишем ЕМ-алгоритм 11 в соответствии с полученной формулой:

$$\begin{cases} p_{tdw} = \underset{t \in T}{norm}(\phi_{wt}\theta_{td}) \\ \phi_{wt} = \underset{w \in W}{norm}\left(n_{wt} - \tau\phi_{wt} \sum_{s \in T \setminus t} \phi_{ws}\right); \\ \theta_{td} = \underset{t \in T}{norm}\left(n_{td} + \theta_{td} \frac{\partial R}{\partial \theta_{td}}\right) \end{cases}$$
(20)

Таким образом был получен модифицированный ЕМ-алгоритм, декоррелирующий темы [3,8].

1.4.6 Оценка качества моделей

После построения модели, очевидно, нужно оценить её качество.

Перечислим основные критерии оценки качества тематических моделей [3]:

- 1. Внешние критерии (оценка производится экспертами):
 - а) полнота и точность тематического поиска;
 - δ) качество ранжирования при тематическом поиске;
 - в) качество классификации / категоризации документов;

- г) качество суммаризации / сегментации документов;
- ∂) экспертные оценки качества тем.
- 2. Внутренние критерии (оценка производится программно):
 - а) правдоподобие и перплексия;
 - δ) средняя когерентность (согласованность тем);
 - *в*) разреженность матриц Φ и Θ ;
 - г) различность тем;
 - ∂) статический тест условной независимости.

Поскольку оценка по внешним критериям невозможна в рамках данной работы, сосредоточимся на внутренних критериях оценки, которые можно вычислять автоматически.

Правдоподобие и перплексия.

Перплексия основывается на логарифме правдоподобия и является его некоторой модификацией [3].

$$P(D) = \exp\left(-\frac{1}{n}\sum_{d\in D}\sum_{w\in d}n_{dw}\ln p(w|d)\right), \quad n = \sum_{d\in D}\sum_{w\in d}n_{dw}$$
 (21)

Не трудно заметить, что при равномерном распределении слов в тексте выполняется равенство $p(w|d)=\frac{1}{|W|}$. В этом случае значение перплексии равно мощности словаря P=|W|. Это позволяет сделать вывод, что перплексия является мерой разнообразия и неопределенности слов в тексте: чем меньше значение перплексии, тем более разнообразны вероятности появления слов.

Таким образом, чем меньше перплексия, тем больше слов с большей вероятностью p(w|d), которые модель умеет лучше предсказывать, следовательно, чем меньше перплексия, тем лучше.

Когерентность.

Когерентность является мерой, коррелирующей с экспертной оценкой интерпретируемости тем [3].

Когерентность (согласованность) темы t по k топовым словам:

$$PMI_{t} = \frac{2}{k(k-1)} \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} PMI(w_{i}, w_{j}),$$
 (22)

где w_i — i-ое слово в порядке убывания ϕ_{wt} ; $PMI(u,v) = \ln \frac{|D|N_{uv}}{N_uN_v}$ — поточечная взаимная информация; N_{uv} — число документов, в которых слова u,v хотя бы один раз встречаются рядом (расстояние опледеляется отдельно); N_u — число документов, в которых u встретился хотя бы один раз.

Гипотезу когерентности можно выразить так: когда человек говорит о какой-либо теме, то часто употребляет достаточно ограниченный набор слов, относящийся к этой теме, следовательно, чем чаще будут встречаться вместе слова этой темы, тем лучше её можно будет интерпретировать.

Сама когерентность берёт самые часто встречающиеся слова из тем, и вычисляет для каждой пары из них насколько они часто встречаются, соответственно, чем выше будет значение взаимовстречаемости, тем лучше.

Разреженность.

Разреженность — доля нулевых элементов в матрицах Φ и Θ .

Разреженность играет ключевую роль в выявлении различий между темами [3]. Каждая тема формируется на основе ограниченного набора слов, в то время как остальные слова должны встречаться реже, что отражается в нулевых элементах матриц. Оптимальный уровень разреженности должен быть высоким, но не чрезмерным: в таком случае темы будут четко различимы. Если разреженность слишком низка, темы могут сливаться, а если слишком высока — содержать недостаточное количество слов для адекватного представления.

Чистота темы.

Чистота темы:

$$\sum_{w \in W_t} p(w|t),\tag{23}$$

где W_t — ядро темы: $W_t=\{w:p(w|t)>\alpha\}$, где α подбирается по разному, например $\alpha=0.25$ или $\alpha=\frac{1}{|W|}$.

Данная характеристика показывает как вероятностно относится ядро темы к фоновым словам темы, следовательно, чем больше вероятность ядра, тем

лучше [8].

Контрастность темы.

Контрастность темы:

$$\frac{1}{|W_t|} \sum_{w \in W_t} p(t|w). \tag{24}$$

Данная характеристика показывает насколько часто слова из ядра темы встречаются в других темах, очевидно, что чем меньше ядро будет встречаться в других темах, тем лучше.

1.5 Методы обработки текста с помощью нейросетей

1.5.1 Проблема представления текста в пространстве чисел

Нейронные сети умеют работать только с числами, поэтому встаёт вопрос о том, как наилучшим образом переносить текст в пространство чисел. Такой способ переноса должен быть не только быстрым, точным и способным вмещать в себя тысячи слов, но ещё и учитывать, что естественный язык имеет временную зависимость: слова в предложении складываются последовательно и зависят друг от друга, а не существуют в вакууме, что дополнительно усложняет задачу.

Тогда формализуем качества, которыми должен обладать способ представления текста в виде чисел:

- Выразительность:
 - 1. Способность различать тысячи слов;
 - 2. Способность учитывать контекст (временную зависимость между словами).
- Скорость: эффективно работать с высокоразмерными данными на современном оборудовании;
- Эффективность: иметь компактное представление и адаптироваться к новым словам.

Теперь кратко рассмотрим некоторые из методов представления текста в виде чисел:

Мешок слов (Bag-of-Words).

Одним из самых простых способов численного представления текста является мешок слов [9].

Данный метод работает следующим образом [10]:

- 1. Создаётся словарь с уникальными индексами;
- 2. Каждое слово кодируется one-hot вектором:

$$v_i = [a_1, \dots, a_N], \quad a_j = \begin{cases} 1, & j = i \\ 0, & j \neq i \end{cases}$$
 (25)

где N — размер словаря.

3. Предложение представляется суммой векторов слов:

$$s = [f_1, \dots, f_N], \quad f_j =$$
 частота слова j в предложении. (26)

Данный метод, несмотря на свою простоту, не может быть выбран из-за ряда существенных недостатков [9, 10]:

- 1. Высокая размерность и разреженность данных;
- 2. Игнорирование порядка слов;
- 3. Отсутствие учёта семантики (все слова ортогональны);
- 4. Сложность адаптации к новым словам (требуется пересчёт словаря).

TF-IDF взвешивание.

Улучшение BoW: элементы вектора предложения умножаются на TF-IDF веса слов, это частично решает проблему семантической значимости, но сохраняет другие недостатки BoW [9, 10].

Эмбеддинги слов.

Семантические векторные представления слов [9, 10]:

- Каждому слову сопоставляется плотный вектор фиксированной размерности (обычно 50-300);
- Векторы обучаются так, чтобы семантически близкие слова имели схожие эмбеддинги;
- Матрица эмбеддингов обучаемый параметр нейросети.

Данный способ максимально полно соответствует описанным ранее критериям, обладая благодаря своей природе следующими преимуществами [9,10]:

- 1. Низкая размерность;
- 2. Учёт семантики;
- 3. Возможность учёта контекста;
- 4. Гибкость: новые слова можно добавлять через дообучение.

1.5.2 Выбор архитектуры нейронной сети

Так как представление текста в виде эмбеддингов удовлетворяет описанным выше критериям то, будем рассматривать архитектуры нейронных сетей, разработанные для работы с ними: рекуррентные нейронные сети (RNN) и трансформеры.

Рекуррентные нейронные сети (RNN).

Рекуррентные нейронные сети обрабатывают последовательность слов рекуррентно, шаг за шагом обновляя своё состояние на основе текущего слова и предыдущих значений [10, 11]. Это позволяет учитывать [10, 11]:

- Порядок слов;
- Контекст (благодаря механизмам памяти в LSTM/GRU). Недостатки [10, 11]:
 - 1. Низкая скорость: вычисления последовательны, невозможна параллелизация;
- 2. Проблемы с длинными последовательностями:
 - а) Забывание раннего контекста;
 - б) Затухание/взрыв градиентов при обучении.

Преимущества [10, 11]:

- 1. Менее требовательны к вычислительным ресурсам;
- 2. Эффективны на малых объёмах данных.

Трансформеры.

Нейронные сети-трансформеры обрабатывают всю последовательность слов одновременно благодаря механизму внимания (attention) [10, 12].

Ключевые особенности [10, 12]:

- Параллельные вычисления, а следовательно и высокая скорость;
- Учёт контекста через self-attention;
- Позиционные энкодинги позволяют учитывать порядок слов.
 Недостатки [10, 12]:

- 1. Высокие требования к вычислительным ресурсам;
- 2. Требуют больших объёмов данных для обучения. Преимущества [10, 12]:
- 1. Эффективны для длинных текстов;
- 2. Имеют лучшее качество на сложных задачах.

Определение с типом нейронной сети.

В рамках данной работы рассматривается тематическая классификация текстов, то есть предполагается, что по содержимому длинной входящей последовательности принимается решение о её принадлжности к той или иной теме.

Тогда для данной задачи критичны:

- 1. Обработка длинных последовательностей;
- 2. Скорость предсказания;
- 3. Использование современных вычислительных ресурсов.

Таким образом, для решения поставленной задачи больше подходят сетитрансформеры, так как:

- Проблемы с ресурсами решаются облачными сервисами;
- Доступны предобученные модели (BERT, GPT);
- Механизм внимания [10, 12] лучше улавливает тематические связи.

1.5.3 Оценка качества работы нейронных сетей

Для оценки качества классификации нейронными сетями используются несколько базовых метрик [13].

Прежде чем перейти к рассмотрению метрик, приведём основные обозначения [13]:

- TP (true positive) объект верно отнесён к целевому классу;
- TN (true negative) объект верно не отнесён к целевому классу;
- FP (false positive) объект ошибочно отнесён к целевому классу;
- FN (false negative) объект ошибочно не отнесён к целевому классу.

Accuracy.

Ассигасу вычисляется по формуле [13]:

$$Acc = \frac{TP + TN}{TP + TN + FP + FN} \tag{27}$$

Эта метрика показывает общую долю верных классификаций. Несмотря на простоту интерпретации, ассигасу часто оказывается недостаточно информативной при работе с несбалансированными данными [13].

Precision.

Precision (точность предсказания) вычисляется как [13]:

$$Precision = \frac{TP}{TP + FP} \tag{28}$$

Метрика отражает долю верно классифицированных объектов среди всех примеров, отнесённых классификатором к целевому классу [13].

Recall.

Recall (полнота) определяется формулой [13]:

$$Recall = \frac{TP}{TP + FN} \tag{29}$$

Метрика показывает долю верно распознанных объектов целевого класса относительно их общего количества [13].

F1-мера.

F1-мера вычисляется по формуле [13]:

$$F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall} \tag{30}$$

Эта метрика представляет собой гармоническое среднее precision и recall. Она полезна при необходимости балансировки двух показателей [13].

Confusion matrix.

Матрица ошибок (confusion matrix) наглядно визуализирует распределение ошибок классификации по классам. Хотя её использование для сравнения моделей может быть затруднительно из-за большого размера, она эффективна для демонстрации качества итоговой модели [13].

Пример матрицы ошибок представлен на рис. 4:

Рисунок 4 – Иллюстрация примера матрицы ошибок

2 Практико-технологические основы автоматической тематической классификации

2.1 Получение новостного массива путём веб-скраппинга

2.1.1 Выбор инструментов получения новостных данных

Для веб-скрапинга доступны библиотеки на разных языках, однако выбор логично сделать в пользу Python — наиболее популярного языка для обработки данных и работы с глубоким обучением. Среди Python-библиотек ключевыми являются [14]:

- requests для отправки HTTP-запросов;
- BeautifulSoup4 для парсинга HTML-кода в удобную объектную структуру;
- selenium для работы с динамическими сайтами, где контент генерируется JavaScript.

Первые две библиотеки эффективны для статических страниц: requests получает исходный код, а BeautifulSoup4 извлекает данные через поиск по тегам. Selenium же имитирует взаимодействие реального браузера, что позволяет обрабатывать страницы с отложенной загрузкой контента [14].

Этот набор инструментов покрывает потребности работы с подавляющим большинством сайтов — от простых статических ресурсов до сложных веб-приложений [14].

2.1.2 Реализация алгоритма сбора новостных данных

Для такого простого и имеющего хорошую структуру новостного сайта ВШЭ не потребуется библиотеки Selenium, достаточно только BeautifulSoup4 и requests.

Алгоритм сбора данных включает следующие этапы [14]:

- 1. Анализ структуры сайта:
 - Многостраничный ресурс с 10 новостными карточками на каждой странице;
 - Карточка новости содержит: ссылку, дату публикации, заголовок, краткое содержание;
 - Полный текст доступен по отдельной ссылке внутри карточки.

Пример страницы сайта можно увидеть в приложении А.

2. Получение и сохранение данных с сайта с помощью методов библиотеки

requests [14, 15] (листинг 1):

- Получение HTML-кода страницы через requests.get();
- Сохранение сырых данных для последующей обработки.
- 3. Извлечение метаданных с помощью библиотеки BeautifulSoup4 [14, 16] (листинг 2):
 - Парсинг сохранённого HTML через BeautifulSoup4;
 - Поиск элементов по тегам и CSS-классам (find(), find_all());
 - Извлечение текстового содержимого (text, get()).
- 4. Получение полного текста новостис помощью библиотеки BeautifulSoup4 [14, 16] (листинг 3):
 - Рекурсивное использование get_page() для целевых URL;
 - Анализ структуры контентной страницы.
- 5. Обработка страницы целиком (листинг 4):
 - Итерация по 10 элементам div.post на странице;
 - Использование find_next_sibling() для навигации;
 - Сохранение результатов в pandas DataFrame для анализа.
- 6. Масштабирование на все страницы (листинг 5):
 - Динамическое формирование URL через модификацию параметров;
 - Пакетная обработка через цикл с изменяемым индексом страницы.
- 7. Оптимизация производительности с помощью средств языка Python [17, 18] (листинг 6):
 - Реализация многопоточности через стандартные средства Python;
 - Создание изолированных DataFrame для каждого потока;
 - Агрегация результатов после завершения параллельных задач.
 - 2.1.3 Результаты сбора данных с сайта ВШЭ

В результате выполнения кода был получен набор данных в формате Excel.

Рисунок 5 – Иллюстрация структуры собранных данных

Количественные характеристики полученного набора данных представлены в таблице 1.

Таблица 1 – Характеристики исходного набора данных

Характеристика	Значение
Кол. док.	17430
Кол. токенов	12 131 111
Кол. уник. ток.	278 724
Мин. кол. ток. в док.	6
Модальное кол. ток. в док.	47
Среднее кол. ток. в док.	695
Макс. кол. ток. в док.	6514
Мин. кол. уник. ток. в док.	6
Мод. кол. уник. ток. в док.	39
Сред. кол. уник. ток. в док.	346
Макс. кол. уник. ток. в док.	2287

Анализ представленных характеристик показывает, что документы имеют значительный объём (большая длина текстов), при этом общий размер набора

данных ограничен (17 тыс. документов). Это может повлиять на результаты тематического моделирования и глубокого обучения.

2.2 Подготовка новостного массива

2.2.1 Выбор инструментов для подготовки данных

Чтобы не повышать количество используемых языков, будем рассматривать только инструменты, доступные на Python. Среди них выделяются: NLTK, Pymorphy3, SpaCy и Gensim [19].

Сделаем выбор между связкой NLTK + Pymorphy3 и SpaCy. Обе группы библиотек позволяют проводить лемматизацию и удаление стоп-слов, но реализуют это по-разному. NLTK и Pymorphy3 приводят слова к начальной форме без учёта контекста, тогда как SpaCy — нейросетевой инструмент, анализирующий окружение терминов [19, 20]. Определение стоп-слов в обоих случаях происходит по заранее заданным словарям, поэтому разницы здесь нет [19, 20]. Однако SpaCy обеспечивает не только более точную лемматизацию, но и лаконичный интерфейс, что упрощает её использование [19, 20].

Как упоминалось ранее библиотека SpaCy определяет стоп-слова только по предопределённому списку, который не является исчерпывающим. Это связано с тем, что набор стоп-слов зависит от тематики текста, и универсального решения не существует. Для дополнительной фильтрации применим метрику TF-IDF, которая оценивает значимость слов. Формула расчёта [21]:

$$tfidf(w,d) = \frac{n_{wd}}{n_d} \cdot \log\left(\frac{|D|}{|\{d \in D : w \in d\}|}\right),\tag{31}$$

где:

- w термин;
- d документ;
- n_{wd} частота встречаемости w в d;
- n_d число терминов в d;
- |D| число документов в коллекции;
- $|\{d \in D : w \in d\}|$ количество документов, содержащих w.

Данная метрика будет тем выше для термина w в документе d, чем чаще будет встречаться термин w в документе d и реже во всех остальных документах коллекции. Таким образом, данную метрику можно интерпретировать как метрику значимости слова w для документа d [21]. Её расчёт будет производиться

с помощью билиотеки Gensim.

Таким образом, для обработки текста выбраны библиотеки SpaCy (токенизация, лемматизация, базовые стоп-слова) и Gensim (расширенная фильтрация через TF-IDF).

2.2.2 Удаление лишних пробелов и переносов строк

Для корректной токенизации и анализа текстовых данных требуется предварительная очистка от лишних пробелов и переносов строк. Реализацию этой процедуры можно выполнить с помощью встроенных методов обработки строк в Python [17].

Алгоритм функции включает три этапа:

- 1. Копирование значимых символов: Посимвольное добавление содержимого исходной строки в результирующий буфер до обнаружения пробела или переноса строки.
- 2. Нормализация пробелов: При обнаружении пробела/переноса:
 - Добавление одного пробела в буфер;
 - Пропуск всех последующих пробелов/переносов до первого непробельного символа.
- 3. Циклическая обработка: Повтор шагов 1-2 до полного прохода исходной строки.

Реализация соответствующей функции представлена в листинге 7.

2.2.3 Разделение строк на русские и английские фрагменты

Библиотека SpaCy использует предобученные языковые модели, каждая из которых оптимизирована для обработки одного языка (например, отдельно для русского и английского) [22].

Для новостных материалов ВШЭ, содержащих смешанные языковые фрагменты, применение единой модели недопустимо. Решение заключается в предварительном разделении текста на русскоязычные и англоязычные сегменты с последующей обработкой соответствующими моделями.

Алгоритм разделения текста:

- 1. Инициализация языка:
 - Определение языка первого буквенного символа строки;
 - Установка текущего языкового идентификатора (RU/EN).
- 2. Построение сегментов:

- Посимвольное накопление символов во временном буфере;
- Прерывание потока при обнаружении символа другого языка.
- 3. Сохранение результата:
 - Фиксация сегмента в формате (язык, текст);
 - Сброс временного буфера.
- 4. Циклическое выполнение: Повтор шагов 2-3 до полной обработки строки с автоматическим переключением языкового идентификатора.

Реализация соответствующей функции представлена в листинге 8.

2.2.4 Очистка от неалфавитных токенов и удаление крайних неалфавитных символов из токенов

В текстах часто встречаются токены, содержащие неалфавитные символы. Кроме того, при токенизации могут сохраняться примыкающие к словам знаки пунктуации (например, точки или дефисы), что требует дополнительной обработки.

Удаление всех неалфавитных символов из текста некорректно, поскольку некоторые из них могут быть частью терминов и аббревиатур. Их полное удаление может исказить смысл. Более корректный подход — удаление токенов, в которых доля неалфавитных символов превышает установленный порог (например, 50 процентов). Это реализуется путём подсчёта соотношения буквенных и небуквенных символов в каждом токене.

Алгоритм фильтрации включает следующие шаги:

- 1. Удаление неалфавитных символов в начале и конце токена;
- 2. Подсчёт количества неалфавитных символов в токене;
- 3. Удаление токена, если доля неалфавитных символов превышает 50 процентов.

Реализация соответствующих функций представлена в листинге 9.

2.2.5 Токенизация, лемматизация и удаление стоп-слов по словарю

Библиотека SpaCy предоставляет унифицированный интерфейс для лингвистической обработки текста [22]. Её функционал позволяет выполнять всё в одном конвейере [22]:

- Токенизацию;
- Лемматизацию;
- Идентификацию стоп-слов.

Принцип работы [22]:

- 1. На вход подаётся текстовая строка;
- 2. Обработанные данные возвращаются в виде последовательности токенов;
- 3. Каждый токен содержит:
 - Исходную словоформу;
 - Нормализованную лемму;
 - Флаг принадлежности к стоп-словам.

Результирующая строка формируется путём фильтрации: сохраняются только леммы токенов, не отнесённых к стоп-словам.

Пример обработки русскоязычного текста показан в листинге 10.

Полный алгоритм предобработки, объединяющий нормализацию пробелов, токенизацию и фильтрацию, реализован в листинге 11.

2.2.6 Удаление высокочастотных и низкочастотных токенов

Помимо стандартных стоп-слов и стоп-слов, вычисленных с помощью метрики TF-IDF, следует учитывать токены, встречающиеся либо в слишком большом, либо в слишком малом количестве документов.

Токены, присутствующие в подавляющем большинстве документов, обычно не несут смысловой нагрузки для конкретной темы, поскольку являются общеупотребительными для всего корпуса.

Токены, встречающиеся в крайне малом числе документов, также имеют ограниченную ценность, так как их редкость снижает способность характеризовать тематические различия.

Алгоритм удаления таких токенов включает следующие шаги:

- 1. Определение нижнего и верхнего порогов встречаемости токенов в документах;
- 2. Вычисление для каждого токена количества документов, в которых он встречается;
- 3. Удаление токенов, частота встречаемости которых выходит за установленные пороги.

Реализация алгоритма с использованием библиотеки Pandas и стандартных средств языка Python [17, 18] представлена в листинге 12.

2.2.7 Удаление стоп-слов с помощью метрики TF-IDF

Как отмечалось ранее, удаление стоп-слов исключительно по предзаданному словарю имеет ограниченную эффективность. Для повышения качества фильтрации предлагается дополнительное использование метрики TF-IDF, позволяющей оценивать значимость терминов в корпусе документов [21].

Алгоритм расширенной фильтрации:

1. Вычисление TF-IDF:

- *a*) Формирование словаря терминов с помощью Gensim;
- б) Построение частотного корпуса документов;
- в) Расчёт весов TF-IDF для каждого термина

Реализация базового расчёта с использованием библиотеки Gensim [23] представлена в листинге 13.

2. Коррекция словаря:

- *а*) Добавление терминов с нулевым TF-IDF, исключённых Gensim по умолчанию [23];
- б) Нормализация структуры данных для последующего анализа; Соответствующая доработка реализована в листинге 14.
- 3. Определение порога отсечения:
 - а) Вычисление n-го процентиля распределения TF-IDF;
 - б) Установка границы для отбора малозначимых терминов; Логика расчёта границы с помощью библиотеки Numpy [24] представлена в листинге 15.

4. Фильтрация датасета:

- *а*) Итеративное удаление терминов с ТF'=IDF ниже порога;
- б) Дополнительная очистка низкочастотных слов (менее k вхождений); Финальный этап обработки представлен в листинге 16.

2.2.8 Очистка набора данных от пустых документов

После удаления стоп-слов и неалфавитных символов необходимо выполнить заключительный шаг — удаление документов, содержащих недостаточное количество токенов или не содержащих их вовсе. Это важно для обеспечения корректности последующего тематического моделирования и глубокого обучения.

Реализация данного этапа представлена в листинге 17.

Таким образом, был реализован полный процесс подготовки текстовых данных для последующего анализа. Полный код класса обработчика данных доступен в приложении Γ .

2.2.9 Результаты подготовки данных

Набор данных был обработан с различными параметрами:

- 1. Без фильтрации стоп-слов методом TF-IDF;
- 2. С фильтрацией стоп-слов методом TF-IDF с порогами от 1 до 10 процентов.

Количественные характеристики обработанных данных представлены в таблицах К.

Анализ результатов показывает успешность обработки:

- 1. Эффективное удаление неалфавитных и нерелевантных токенов(количество уникальных токенов снизилось с 278724 до 18707 при обработке без ТГ- IDF фильтрации);
- 2. Успешное удаление документов с недостаточным содержанием (минимальное количество токенов в документе увеличилось с 6 до 79).

Эффективность удаления стоп-слов подтверждается распределением частот токенов, соответствующим закону Ципфа (для исходных данных на рис. 6 для обработанных данных на рис. 7).

Рисунок 6 – Распределение частот токенов: исходные данные

Рисунок 7 – Распределение частот токенов: обработанные данные

На графиках видно, что в обработанных данных устранены токены с экстремально высокой и низкой частотой встречаемости, которые, как отмечалось ранее, обладают низкой тематической различительной способностью.

Следует отметить сокращение размера набора данных с 17430 до 11860 документов, что может ограничить возможности тематического моделирования и глубокого обучения.

2.3 Построение тематической модели

2.3.1 Выбор инструментов для тематического моделирования

При разработке системы автоматической тематической классификации новостей выбор инструментов напрямую влияет на гибкость, скорость и качество модели. Библиотека BigARTM (Additive Regularization of Topic Models) была выбрана по нескольким ключевым критериям, которые делают её предпочтительной на фоне альтернатив, таких как Gensim или Mallet.

Критерии выбора:

- 1. Удобный интерфейс: BigARTM предоставляет простой API для работы с тематическими моделями, что ускоряет интеграцию в существующие пайплайны обработки текстов. Например, загрузка данных, настройка параметров и запуск обучения выполняются с использованием минимального количеством кода, снижая риск ошибок и время на разработку;
- 2. Разнообразие регуляризаторов: библиотека поддерживает множество регуляляризаторов (например, сглаживание, разреживание тем), которые

можно комбинировать для улучшения интерпретируемости и точности модели. Это критически важно для новостных данных, где темы часто пересекаются (например, «экономика» и «политика»);

- 3. Блочный синтаксис: настройка модели в BigARTM осуществляется через декларативное описание компонентов (блоков), что упрощает эксперименты с архитектурой. Например, можно быстро добавить регуляризатор для контроля за размером тем или подключить модуль для обработки мультимодальных данных;
- 4. Доступность туториалов: BigARTM имеет подробную документацию и примеры использования, включая готовые сценарии для классификации текстов. Это сокращает время на изучение библиотеки и позволяет сосредоточиться на решении прикладных задач.

BigARTM сочетает в себе специализацию для работы с текстами, гибкость настройки и низкий порог входа благодаря понятному синтаксису. Это делает её оптимальным выбором для задач автоматической классификации новостей, где важно быстро адаптировать модель под изменяющиеся условия (например, появление новых тем) и контролировать качество результатов.

2.3.2 Недостающий функционал библиотеки BigARTM

Тематическое моделирование с использованием библиотеки BigARTM обладает практической ценностью, но имеет ряд ограничений:

- 1. Отсутствие встроенной метрики оценки когерентности тематик;
- 2. Сложность интеграции регуляризаторов из-за многоэтапного АРІ;
- 3. Трудоёмкое преобразование данных в требуемый формат представления;
- 4. Недостаток инструментов визуализации для мониторинга качества моделей;
- 5. Отсутствие автоматизированных методов подбора гиперпараметров.

Наибольшее влияние на качество моделирования оказывает первый фактор. Остальные ограничения преимущественно связаны с эргономикой рабочего процесса, но их совокупность существенно увеличивает сложность поддержки кодовой базы.

Для компенсации выявленных недостатков предлагается разработка двух вспомогательных классов, расширяющих функционал библиотеки:

1. My_BigARTM_model — обёртка над BigARTM для добавления недостающих метрик, их визуализаций, а также для упрощения взаимодействия

- c BigARTM;
- 2. Hyperparameter_optimizer автоматический оптимизатор гиперпараметров.
- 2.3.3 Функциональности классов My_BigARTM_model и Hyperparameter_optimizer

В рамках класса My_BigARTM_Model целесообразно реализовать:

- Расчёт метрик когерентности тематик;
- Упрощённый интерфейс для добавления регуляризаторов;
- Автоматизацию преобразования данных в требуемый формат;
- Визуализацию динамики метрик качества через графики.

Интеграция функциональности по подбору гиперпараметров в данный класс нецелесообразна, так как это:

- Нарушит принцип единственной ответственности;
- Усложнит поддержку кодовой базы;
- Снизит читаемость реализации.

Для решения этих задач предложено выделение отдельного класса Hyperparamete который:

- Реализует логику оптимизации гиперпараметров;
- Обеспечивает удобное сохранение настроенных моделей.

Такое разделение обеспечивает модульность архитектуры и упрощает дальнейшее расширение системы.

Следующим этапом работы является последовательная реализация обоих классов.

2.3.4 Преобразование новостного массива в приемлемый для BigARTM формат

Модель BigARTM поддерживает ограниченный набор форматов данных, включая Vowpal Wabbit [25]. Для интеграции с pandas DataFrame требуется предварительное преобразование новостного массива, которое целесообразно реализовать отдельной функцией.

Алгоритм преобразования:

- 1. Извлечение строки из DataFrame;
- 2. Конкатенация ячеек строки в единый текстовый блок;
- 3. Запись результата в файл формата Vowpal Wabbit с меткой документа;

4. Итеративная обработка всего массива новостей.

Реализация функции преобразования с использованием библиотеки Pandas и стандартных средств Python [17, 18] приведена в листинге 19.

Последующие этапы обработки:

- 1. Разделение данных на батчи;
- 2. Генерация словаря терминов.

Оба действия выполняются средствами библиотеки BigARTM [25]. Соответствующий код приведён в листинге 20.

После выполнения указанных преобразований данные можно передавать в модель BigARTM для тематического моделирования.

2.3.5 Реализация механизма упрощённого добавления регуляризаторов в модель BigARTM

Библиотека BigARTM предоставляет обширный набор регуляризаторов, однако их интеграция в модель требует знания непростого синтаксиса, что затрудняет их использование. Для упрощения процесса предложен двухуровневый подход:

- 1. Базовая функция добавляет регуляризатор по имени и значению гиперпараметра;
- 2. Обёрточная функция применяет первый метод для массового добавления.

Преимущества решения:

- Устранение необходимости работы с низкоуровневым API BigARTM;
- Единообразный интерфейс для одиночных и групповых операций;
- Повышение читаемости и поддерживаемости кода.
 Фрагмент реализации базовой функции представлен в листинге 21.

Реализация массового добавления регуляризаторов приведена в листинге 22.

Данное решение существенно упрощает эксперименты с различными комбинациями регуляризаторов, сохраняя при этом гибкость подхода BigARTM.

2.3.6 Вычисление когерентности тематической модели

Библиотека BigARTM включает набор встроенных метрик оценки качества, однако не поддерживает расчёт когерентности — ключевого показателя

тематической согласованности [3]. Для восполнения этого функционала предлагается интеграция с библиотекой Gensim, предоставляющей методы вычисления различных видов когерентности [23].

Алгоритм расчёта когерентности:

1. Экспорт тематических ядер:

Получение списка тем, где каждая тема представлена N ключевыми терминами;

2. Подготовка текстового корпуса:

Преобразование документов в структуру вида:

```
[[токен_1_док_1, токен_2_док_1, ...], [токен_1_док_2, ...], ...];
```

3. Вычисление значения когерентности:

Передача данных в Gensim для расчёта выбранного типа когерентности.

Реализация соответствующей функции с использованием библиотеки Gensim [23] представлена в листинге 23.

2.3.7 Вычисление тематической модели и формирование графиков метрик качества тематического моделирования

Библиотека BigARTM не поддерживает мониторинг динамики метрик качества модели в процессе обучения [25]. Для реализации этого функционала требуется разработка дополнительных методов.

Алгоритм отслеживания метрик качества модели:

- 1. Итеративное обучение модели:
 - Установка num_collection_passes=1 для пошагового прохода [25];
 - Циклическое выполнение обучения с накоплением метрик после каждой эпохи.
- 2. Визуализация результатов:
 - Использование matplotlib для построения графиков;
 - Унифицированный подход для различных типов метрик.

Реализация функции итеративного обучения модели представлена в листинге 24.

Реализация функции визуализации для метрики когерентности с использованием библиотеки matplotlib [26] представлена в листинге 25. Иллюстрацая примера графика когерентности представлена на рис.8.

Рисунок 8 – Иллюстрация примера графика когерентности

Для других метрик применяется аналогичная логика с заменой целевого показателя.

Данная реализация завершает базовый функционал класса My_BigARTM_model. Полный код класса представлен в приложении **E**.

2.3.8 Подбор гиперпараметров для тематического моделирования

Для интеллектуального подбора гиперпараметров целесообразно использовать библиотеку Optuna, которая предоставляет [27]:

- Упрощённый API для настройки экспериментов;
- Поддержку байесовской оптимизации (вместо полного перебора);
- Автоматическое сокращение вычислительных ресурсов за счёт адаптивного выбора параметров.

Алгоритм работы [27]:

- 1. Реализация целевой функции:
 - Определение пространства поиска гиперпараметров через trial.suggest_int() и trial.suggest_float();
 - Вычисление и возврат метрик качества модели.

Ключевой фрагмент реализации представлен в листинге 26.

2. Запуск оптимизации:

- Использование study.optimize() для выполнения экспериментов;
- Получение набора попыток с параметрами и метриками.
- 3. Выбор оптимальной конфигурации:
 - Нормализация метрик;
 - Выбор попытки с минимальной совокупной ошибкой.

Реализация логики выбора оптимального набора гиперпараметров представлен в листинге 27.

- 4. Вычисление модели с оптимальными параметрами:
 - Обучение на лучших гиперпараметрах;
 - Возврат оптимизированной модели.

Завершающий этап представлен в листинге 28.

Полный код класса Hyperparameter_optimizer представлен в приложении Ж.

2.3.9 Разметка данных на основе результатов тематического моделирования

В данной работе тематическое моделирование используется для автоматической тематической разметки обучающих данных. Разметка формируется на основе матрицы θ , полученной в результате моделирования [25].

Матрица θ имеет следующую структуру (рис. 9):

	Α	В	С	D	Е	F	G	Н	1
1		topic_0	topic_1	topic_2	topic_3	topic_4	topic_5	topic_6	topic_7
2	1000	0,072086	0,020406	0,009699	0,266355	0,223902	0,329313	0,002374	0,075860
3	1001	0,117255	0,098759	0,020598	0,070207	0,264690	0,344729	0,007923	0,0758343
4	1002	0,2307495	0,038506	0,025174	0,185025	0,094428	0,301799	0,063569	0,060745
5	1003	0	0	0	0,750143	0,063109	0,186747	0	0
6	1004	0,4096910	0,091395	0	0,048495	0,302164	0,024507	0	0,123746
7	1005	0,073419	0,0097568	0,037545	0,137894	0,026901	0,623229	0,014959	0,076293
8	1006	0	0	0	0	0,361840	0,638159	0	0
9	1007	0,4299609	0,025909	0,338930	0,048227	0,047137	0,012776	0,097057	0
10	1008	0,070525	0,3265143	0	0,064485	0,353608	0,043854	0,007815	0,1331972

Рисунок 9 – Иллюстрация примера матрицы θ

Строки матрицы соответствуют документам, столбцы — темам. Элементы матрицы содержат вероятности принадлежности документов к темам.

На основе этой матрицы определяется тематическая принадлежность каждого документа. В простейшем случае документу присваивается тема с максимальной вероятностью. Реализация данного подхода представлена в листинге 29.

В результате формируется размеченный набор данных, готовый для обучения классификатора (рис. 10).

4	Α	В	С	D	Е
1		title	summary	content	topic
2	0	форсайт ц	форсайт ц	iStock φορ	topic_3
3	1	конкурс ра	конкурс п	экономик	topic_3
4	2	состоятьс	разработн	разработн	topic_2
5	3	экспорт сн	сотрудни	iStock сот	topic_3
6	4	передаты	репродукі	репродукі	topic_5
7	5	появиться	миэм откр	iStock миз	topic_0
8	6	учёный пр	консульта	iStock кон	topic_2
9	7	обучение	алина пах	алина лич	topic_1
10	8	форсайт ц	форсайт ц	iStock φορ	topic_3
11	9	конкурс ра	конкурс п	экономик	topic_0
12	10	состоятьс	разработн	разработн	topic_6
13	11	экспорт сн	сотрудни	iStock сот	topic_5
14	12	передаты	репродукі	репродукі	topic_3
15	13	появиться	миэм откр	iStock миз	topic_3
16	14	учёный пр	консульта	iStock кон	topic_1
17	15	обучение	алина пах	алина лич	topic_4
18	16	представи	институт н	креативны	topic_1
19	17	приоритет	отходить	iStock отхо	topic_3

Рисунок 10 – Иллюстрация примера размеченных данных

2.3.10 Результаты тематического моделирования

В ходе исследования проведено тематическое моделирование для 11 (помимо таблиц ещё 1) конфигураций предобработанных данных. Для каждой конфигурации выполнены:

- 1. Оптимизация гиперпараметров;
- 2. Построение финальной модели;
- 3. Оценка метрик качества.

Результаты оценки представлены в таблице 2 (перплексия и когерентность) и таблице 3 (оптимальные гиперпараметры).

Таблица 2 – Метрики моделей

Данные	Перплексия	Когерентность
Без TF-IDF фильтрации	3299	0.413
С исполь-ем TF-IDF филь-	2881	0.511
трации с порог. 1 %		
С исполь-ем TF-IDF филь-	2972	0.518
трации с порог. 2 %		
С исполь-ем TF-IDF филь-	2998	0.525
трации с порог. 3 %		
С исполь-ем TF-IDF филь-	3478	0.469
трации с порог. 4 %		
С исполь-ем TF-IDF филь-	3374	0.494
трации с порог. 5 %		
С исполь-ем TF-IDF филь-	3364	0.495
трации с порог. 6 %		
С исполь-ем TF-IDF филь-	3158	0.501
трации с порог. 7 %		
С исполь-ем TF-IDF филь-	3391	0.509
трации с порог. 8 %		
С исполь-ем TF-IDF филь-	3208	0.535
трации с порог. 9 %		
С исполь-ем TF-IDF филь-	3144	0.537
трации с порог. 10 %		

Таблица 3 – Гиперпараметры моделей

Данные	Кол-во тем	Кол-во про-ов по док-ту	Кол-во про-ов по кол-ции
Без TF-IDF фильтрации	7	5	5
С исполь-ем TF-IDF филь-	8	6	6
трации с порог. 1 %			
С исполь-ем TF-IDF филь-	8	6	7
трации с порог. 2 %			
С исполь-ем TF-IDF филь-	8	6	7
трации с порог. 3 %			
С исполь-ем TF-IDF филь-	7	3	7
трации с порог. 4 %			
С исполь-ем TF-IDF филь-	6	4	7
трации с порог. 5 %			
С исполь-ем TF-IDF филь-	7	4	7
трации с порог. 6 %			
С исполь-ем TF-IDF филь-	7	6	7
трации с порог. 7 %			
С исполь-ем TF-IDF филь-	8	7	5
трации с порог. 8 %			
С исполь-ем TF-IDF филь-	8	7	6
трации с порог. 9 %			
С исполь-ем TF-IDF филь-	8	6	7
трации с порог. 10 %			

В таблицах представлены результаты LDA-моделирования без регуляризаторов. Анализ матриц пересечения тем показал их избыточное перекрытие, что видно на рисунке 11.

Для улучшения результатов была выбрана модель с TF-IDF фильтрацией (порог 1 процент) и пересчитана с регуляризаторами декорреляции матриц ϕ и θ . Полученные значения метрик: перплексия 2810, когерентность 0.501. Однако распределение тем существенно не изменилось.

Это свидетельствует, что регуляризаторы слабо влияют на уже вычислен-

Рисунок 11 – Распределение тем по документам (моделирование без TF-IDF фильтрации)

Рисунок 12 – Распределение тем по документам (с регуляризаторами декорреляции)

ные модели и могут рассматриваться лишь как инструмент калибровки. Основные наблюдения:

- Качество моделей на разных наборах данных сопоставимо. Оптимальная перплексия достигнута при TF-IDF фильтрации с порогом 1 процент, максимальная когерентность при пороге 10 процентов. Это указывает на слабое влияние TF-IDF фильтрации;
- Все модели демонстрируют высокое пересечение тем (рис. 11, 12), вероятно из-за позднего применения регуляризаторов;
- Отклонение от эталонного распределения тем сайта ВШЭ составляет ≥ 84 процента, что указывает на ограничения метода;
- Возможные причины:
 - Ограниченный перебор гиперпараметров;
 - Позднее применение регуляризаторов;
 - Недостаточный объём данных для чёткого разделения тем.

Возможные пути улучшения:

- Расширение пространства гиперпараметров;
- Комбинированные стратегии предобработки;
- Эксперименты с регуляризаторами на всех этапах.

2.4 Обучение модели классификатора

2.4.1 Выбор модели для тематической классификации

Как установлено ранее 1.5.2, для решения задачи классификации длинных текстовых последовательностей наиболее эффективны сети-трансформеры. Существует три основных типа архитектур [10]:

- Encoder-only (BERT, RoBERTa): Содержат только кодирующую часть;
- Decoder-only (GPT): Содержат только декодирующую часть;
- Encoder-Decoder (BART, T5): Комбинируют обе части.Их функциональные различия можно описать следующим образом [10]:
- Encoder модели (BERT, RoBERTa) специализируются на понимании текста (задачи классификации, извлечения информации);
- Decoder модели (GPT) оптимизированы для задачи генерации текста;
- Гибридные модели (BART, T5) предназначены для задачи трансформации текста (перевод, суммаризация).

Для тематической классификации требуется глубокое понимание контекста, поэтому оптимальны encoder-only модели. Среди них RoBERTa (Robustly optimized BERT approach) демонстрирует преимущества перед BERT [28]:

- Обучена на большем объёме данных;
- Использует динамическое маскирование слов;
- Исключает задачу предсказания следующего предложения;
- Показывает лучшие результаты на NLU-задачах.
 Таким образом, для классификации новостей выберем RoBERTa.

2.4.2 Выбор способа для получения предобученных моделей

Существует несколько способо получения весов предобученной модели: от их скачивания с облака и github репозиториев, до получения через API разных сайтов. Из этих методов будет предпочтительнее выбрать последний, так как есть портал Hugging Face.

Hugging Face предсталяет собой большое хранилище различных моделей, в том числе и предобученных крупными компаниями и исследователями (Google, Facebook, Sberbank). Кроме того, данный сайт предоставляет удобный, лаконичный и унифицированный интерфейс для работы с ним, что позволяет делать код максимально компактным и читабельным.

Таким образом, будем получать предобученные модели с помощью портала Hugging Face.

2.4.3 Получение весов предобученной модели

Для начала работы с нейронными сетями с платформы Hugging Face необходимо подключить следующие зависимости [29], как показано в листинге 32.

С помощью данных библиотек будет происходить подготовка данных, загрузка весов моделей и их обучение.

Для загрузки модели потребуется класс AutoModelForSequenceClassification и его метод from_pretrained, в который будут задаваться параметры загрузки (название модели и тип решаемой ей задачи, для загрузки предобученной на соответствующих данных модели) [29].

Реализация соответствующего кода представлена в соответствующем листинге **33**.

2.4.4 Подготовка данных для работы с моделью

Для обработки текста используется токенизатор, соответствующи выбранной модели. Его загрузка осуществляется через класс AutoTokenizer [29].

Реализация загрузки реализована в листинге 34.

Токенизатор преобразует сырой текст в формат, пригодный для нейросети. Обработка данных выполняется через метод тар класса Dataset с применением функции токенизации [29] (листинг 35).

Отдельно преобразуются текстовые метки классов в числовые индексы [29] (листинг 36).

2.4.5 Дообучение модели

Выбранная модель (RoBERTa) не является сверхбольшой, а ресурсы Google Colab предоставляют доступ к мощным GPU (Tesla T4/V100), что позволяет дообучить всю архитектуру без заморозки слоёв.

Перед обучением нужно сначала задать его параметры, реализуется это с помощью класса TrainingArguments, в конструктор которого передаются соответствующие параметры [29]. Среди них можно выделить следующие [29]:

- Стратегия обучения (eval_strategy);
- Стратегия сохранения результата (save_strategy);
- Шаг ошибки (learning_rate);
- Размер батча (per_device_train_batch_size, per_device_eval_batch_size);
- Количество эпох обучения (num_train_epochs);
- Метрика качества подбора лучшей модели (metric_for_best_model). Соответствующий код представлен в листинге 37.

Осталось только создать объект тренировщика и запустить его. Делается это с помощью класса Trainer образом, представленным в листинге 38.

Таким образом, была реализована основная функциональнось для обучения тематического классификатора. Полный код представлен в приложении И.

2.4.6 Результаты обучения классификатора

Эксперименты по обучению классификатора на основе тематического моделирования показали на выбранном наборе данных низкую эффективность (таблица 4):

Таблица 4 – Метрики моделей

Данные	Accuracy	F1
Без TF-IDF фильтрации	0.291	0.252
С исполь-ем TF-IDF филь-	0.191	0.095
трации с порог. 1 %		

Данные	Accuracy	F1
С исполь-ем TF-IDF филь-	0.180	0.042
трации с порог. 1 % и доп-		
ой рег-ей		
С исполь-ем TF-IDF филь-	0.183	0.065
трации с порог. 2 %		
С исполь-ем TF-IDF филь-	0.178	0.037
трации с порог. 3 %		
С исполь-ем TF-IDF филь-	0.198	0.047
трации с порог. 4 %		
С исполь-ем TF-IDF филь-	0.235	0.119
трации с порог. 5 %		
С исполь-ем TF-IDF филь-	0.196	0.081
трации с порог. 6 %		
С исполь-ем TF-IDF филь-	0.193	0.085
трации с порог. 7 %		
С исполь-ем TF-IDF филь-	0.166	0.035
трации с порог. 8 %		
С исполь-ем TF-IDF филь-	0.179	0.038
трации с порог. 9 %		
С исполь-ем TF-IDF филь-	0.201	0.109
трации с порог. 10 %		

Для улучшения результатов были предприняты следующие меры:

- 1. Сокращение словаря до 5000 наиболее значимых слов (по матрице ϕ);
- 2. Использование биграмм;
- 3. Применение альтернативных моделей (FastText, полносвязные нейронные сети).

Ни один из методов не привел к улучшению качества. Сокращение словаря не дало положительного эффекта, а использование биграмм снизило значения ассигасу и F1-меры. Альтернативные модели (FastText и полносвязные сети) также не показали значимого улучшения.

Основная гипотеза заключается в несовершенстве вычисленных тематических меток. Для проверки была использована оригинальная разметка сайта

ВШЭ, что дало следующие результаты:

- Точность на первой эпохе: Accuracy = 0.60;
- Максимальная достигнутая точность: Accuracy = 0.71;
- Подтверждение: низкое качество связано с неточностью тематического моделирования выбранного набора данных.

Таким образом, ключевая проблема заключается в несовершенном тематическом распределении документов, что подтверждается:

- 1. Низкими метриками при использовании разметки BigARTM и высокими при использовании разметки ВШЭ;
- 2. Сопоставимыми объемами данных в обоих случаях (количество документов и токенов).

2.5 Итоги по реализации инструментов автоматической тематической классификации

В ходе работы был разработан полный комплект программных компонентов, необходимых для реализации описанного алгоритма автоматической тематической классификации.

Перечислим основные реализованные компоненты:

- 1. Класс для сбора данных с новостного сайта ВШЭ;
- 2. Класс для предобработки текстовых данных;
- 3. Класс для анализа результатов предобработки (реализация не детализирована в работе, но включена в состав);
- 4. Классы для тематического моделирования:
 - а) Класс для работы с библиотекой BigARTM;
 - б) Класс для автоматизации настройки гиперпараметров;
- 5. Класс для анализа результатов тематического моделирования (реализация не детализирована в работе, но включена в состав);
- 6. Класс для обучения и оценки нейросетевого классификатора.

Получить доступ к полным материалам проведённой работы можно в приложении Π .

Таким образом, создана необходимая программная основа для использования предложенного метода автоматической тематической классификации.

2.6 Выводы и возможные улучшения по практико-методической части

Исходя из разделов 2.4.6, 2.3.10, 2.2.9 и 2.1.3 узким местом выбранного подхода автоматической классификации новостей является этап тематического моделирования.

Для решения этой проблемы предлагаются следующие методы:

- 1. Улучшение подготовки данных;
- 2. Расширенная настройка гиперпараметров и регуляризаторов. Однако оба подхода имеют ограничения:
- Подготовка данных уже включает стандартные методы (кроме продвинутой коррекции опечаток), что снижает потенциал улучшений;
- Библиотека BigARTM не поддерживает GPU-ускорение, что делает широкий поиск гиперпараметров вычислительно неэффективным. Возможные улучшения классификатора:
- Автоматический подбор гиперпараметров (например, через Optuna);
- Тестирование альтернативных моделей (CTM, BERTopic). Перспективы развития работы, если будет решена проблема с тематическим моделированием:
 - 1. Рефакторинг кода: повышение модульности и читаемости классов;
 - 2. Создание АРІ для интеграции классификатора в приложения;
 - 3. Разработка веб-интерфейса для пользовательской классификации.

ЗАКЛЮЧЕНИЕ

В ходе данной дипломной работы был разработан алгоритм автоматической классификации новостей на основе тематической модели предметной области.

Для этого было выполнено следующее:

- 1. Проведён анализ инструментов по сбору данных и выбраны наиболее удобные из них (BeautifulSoup4, requests);
- 2. Проведён сбор данных;
- 3. Проанализированы способы обработки текстовых данных и выбранны наиболее удобные из них;
- 4. Проанализированы популярные инструменты для обработки текстовых данных (NLTK, Pymorphy3, SpaCy) и выбран наиболее удобный и точный из них (SpaCy);
- 5. Проведена подготовка данных для тематического моделирования и проведён анализ её результатов;
- 6. Изучен механизм тематического моделирования с помошью аддитивной тематической регуляризации;
- 7. Разработаны инструменты для тематической классификации с помощью библиотеки BigARTM;
- 8. Проведены эксперименты по проведению тематической классификации над подготовленными различными способами данными, а также проведён анализ результатов экспериментов;
- 9. Рассмотрены различные способы обработки текстовых данных нейронными сетями и выбран наиболее подходящий из них (семантическое векторное представление);
- 10. Проведён анализ архитектур подходящих типов нейронных сетей и выбрана наиболее подходящая из них (transformer);
- 11. Проведён анализ доступных предобученных сетей и сервисов, которые их предоставляют, в ходе которого выбран наиболее удобный из них (Hugging Face и Roberta);
- 12. Проведены эксперименты по обучению тематического классификатора новостей, а также выполнен анализ результатов и сделаны соответствующие выводы.

Основной вывод по итогам работы: предложенный метод автоматической

классификации имеет перспективу применения при более тщательном тематическом моделировании исходного набора данных.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Парсинг данных: эффективные методы извлечения информации [Электронный ресурс]. URL: https://sky.pro/wiki/analytics/parsing-dannyh-effektivnye-metody-izvlecheniya-informatsii/ (Дата обращения 30.09.2024). Загл. с экр. Яз. рус.
- 2 *Акжолов*, *Р. К.* Предобработка текста для решения задач nlp / Р. К. Акжолов, А. В. Верига // *Вестник науки*. 2020. Т. 1, № 3. С. 66–68.
- 3 Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым исходным кодом BigARTM [Электронный ресурс]. URL: http://www.machinelearning.ru/wiki/images/d/d5/Voron17survey-artm.pdf (Дата обращения 30.10.2024). Загл. с экр. Яз. рус.
- 4 *Воронцов*, *К. В.* Аддитивная регуляризация тематических моделей коллекций текстовых документов / К. В. Воронцов // Доклады академии наук. 2014. T. 456, № 3. C. 676–687.
- 5 *Николаевич*, *Ш*. Вероятность-1 / Ш. Николаевич. Москва: МЦНМО, 2021.
- 6 *Таха*, *X*. Введение в исследование операций / X. Таха. Москва: Вильямс, 2007.
- 7 Вероятностные тематические модели Лекция 2. Постановка задачи, оптимизация и регуляризация [Электронный ресурс]. URL: http://www.machinelearning.ru/wiki/images/8/86/Voron25ptm-intro.pdf (Дата обращения 13.11.2024). Загл. с экр. Яз. рус.
- 8 *Воронцов, К. В.* Регуляризация вероятностных тематических моделей для повышения интерпретируемости и определения числа тем / К. В. Воронцов, А. А. Потапенко // *Компьютерная лингвистика и интеллектуальные технологии.* 2014. Т. 13, № 20. С. 268–271.
- 9 Введение в NLP. Эмбеддинги слов [Электронный ресурс]. URL: https://stepik.org/lesson/1421109/step/1?auth=login&unit=1439152 (Дата обращения 27.11.2024). Загл. с экр. Яз. рус.
- 10 *Гольдберг*, *Й*. Нейросетевые методы в обработке естественного языка / Й. Гольдберг. — Москва: ДМК Пресс, 2019.

- 11 Рекуррентные нейронные сети (RNN) [Электронный ресурс]. URL: https://stepik.org/lesson/1421112/step/1?auth=login&unit=1439155 (Дата обращения 03.12.2024). Загл. с экр. Яз. рус.
- 12 Apхитектура Transformer [Электронный ресурс]. URL: https://stepik. org/lesson/1264624/step/1?auth=login&unit=1493641 (Дата обращения 10.12.2024). Загл. с экр. Яз. рус.
- 13 Основные метрики задач классификации в машинном обучении [Электронный ресурс]. URL: https://webiomed.ru/blog/osnovnye-metriki-zadach-klassifikatsii-v-mashinnom-obuchenii/ (Дата обращения 12.12.2024). Загл. с экр. Яз. рус.
- 14 Основы парсинга на Python: от Requests до Selenium [Электронный ресурс]. URL: https://habr.com/ru/companies/selectel/articles/754674/ (Дата обращения 20.01.2025). Загл. с экр. Яз. рус.
- 15 Requests: HTTP for Humans [Электронный ресурс]. URL: https://requests.readthedocs.io/en/latest/ (Дата обращения 20.01.2025). Загл. с экр. Яз. англ.
- 16 Модуль BeautifulSoup4 в Python, разбор HTML [Электронный ресурс]. URL: https://docs-python.ru/packages/paket-beautifulsoup4-python/ (Дата обращения 20.01.2025). Загл. с экр. Яз. рус.
- 17 *Васильев*, А. Программирование на РҮТНОN в примерах и задачах / А. Васильев. Москва: Эксмо, 2021.
- 18 pandas documentation [Электронный ресурс]. URL: https://pandas. pydata.org/docs/ (Дата обращения 20.01.2025). Загл. с экр. Яз. англ.
- 19 *Макаров, К. С.* Сравнительный анализ библиотек для обработки естесвенного языка (nlp) / К. С. Макаров, А. А. Халин, Д. А. Костенков, Э. Э. Муханов // *Auditorium*. 2024. Т. 41, № 1.
- 20 Краткий обзор NLP библиотеки SpaCy [Электронный ресурс]. URL: https://habr.com/ru/articles/504680/ (Дата обращения 15.02.2025). Загл. с экр. Яз. рус.
- 21 Мера ТF-IDF, сила связи слов и ключевые сочетания для безызбыточной передачи единицы знаний [Электронный ресурс]. URL: http://www.

- machinelearning.ru/wiki/images/7/79/Biomed_engin_2020_mdv_pres.pdf (Дата обращения 15.02.2025). Загл. с экр. Яз. рус.
- 22 Industrial-Strength Natural Language Processing [Электронный ресурс]. URL: https://spacy.io/ (Дата обращения 17.02.2025). Загл. с экр. Яз. англ.
- 23 NLP Gensim Tutorial Complete Guide For Beginners [Электронный ресурс]. URL: https://www.geeksforgeeks.org/nlp-gensim-tutorial-complete-guide-for-beginners/ (Дата обращения 19.02.2025). Загл. с экр. Яз. англ.
- 24 NumPy user guide [Электронный ресурс]. URL: https://numpy.org/doc/stable/user/index.html (Дата обращения 19.02.2025). Загл. с экр. Яз. англ.
- 25 BigARTM's documentation [Электронный ресурс]. URL: https://docs.bigartm.org/en/stable/index.html (Дата обращения 26.02.2025). Загл. с экр. Яз. англ.
- 26 Matplotlib 3.10.3 documentation [Электронный ресурс]. URL: https://matplotlib.org/stable/index.html (Дата обращения 02.03.2025). Загл. с экр. Яз. англ.
- 27 Optuna: A hyperparameter optimization framework [Электронный ресурс]. URL: https://optuna.readthedocs.io/en/stable/ (Дата обращения 04.03.2025). Загл. с экр. Яз. англ.
- language of models: from 28 A review pre-trained BERT, ELECTRA, DeBERTa, RoBERTa, BigBird, and to more. [Электронный pecypc]. — **URL**: https://tungmphung.com/ a-review-of-pre-trained-language-models-from-bert-RoBERTa-to-electra-deberta-big #DistilBERT (Дата обращения 01.04.2025). Загл. с экр. Яз. англ.
- 29 Hugging Face Documentations [Электронный ресурс]. URL: https://huggingface.co/docs (Дата обращения 01.04.2025). Загл. с экр. Яз. англ.

ПРИЛОЖЕНИЕ А Пример страницы новостного сайта ВШЭ

Март 2025

11 июн 2025

Гражданская идентичность помогает россиянам поддерживать психологическое здоровье в условиях санкций

Исследователи НИУ ВШЭ выяснили, что осознание себя частью страны может психологически помогать в трудные периоды, особенно, если человек склонен переосмысливать происходящее или обращаться к духовным и культурным ценностям. Переосмысление, в том числе, способно несколько снизить уровень депрессии. Исследование опубликовано в Journal of Community Psychology.

Наука публикации исследования и аналитика центры правосходства

11 июн 2025

Рисунок 13 – Пример страницы новостного сайта ВШЭ

приложение б

Листинги посвящённые реализации веб-скраппера

```
def getPage (url: str, file name: str) -> None:
      r = requests.get(url=url)
      with open (file name, "w", encoding="utf-8") as file:
          file.write(r.text)
            Листинг 1: Функция получения HTML-кода страницы
with open(page_file_name, encoding="utf-8") as file:
          src = file.read()
  soup = BeautifulSoup(src, "lxml")
  news = soup.find("div", class = "post")
  try:
      link = news.find("h2")
             class = "first_child").find("a").get("href")
      if not link.startswith("https://"):
          link = 'https://www.hse.ru' + link
  except:
      link = ""
  try:
      news short content = news.find("p",
12
             class ="first child").find next sibling("p").text.strip()
  except:
13
      news short content = ""
             Листинг 2: Извлечение ссылок и кратких описаний
 def __parse_news__(url: str) -> str:
      news file name = "news.html"
      getPage (url, news file name)
      with open(news_file_name, encoding="utf-8") as file:
          src = file.read()
      content = BeautifulSoup(src, "lxml").find("div",
             class = "main").find(
          "div", class = "post text"
      ).text.strip()
```

Листинг 3: Функция извлечения полного текста новости

return content

```
for i in range (10):
           try:
               if link.startswith("https://www.hse.ru/news/"):
                   news_content = __parse_news__(link)
          except:
               news content = ""
           if len (
               news_day + news_month + news_year + news_name +
                      {	t news \ short \ content +}
               news content
10
          ) > 0:
               news_container.loc[len(news_container.index)] = [
                   link, news date, news name, news short content,
13
                          news content
          news = news.find\_next\_sibling("div", class\_="post")
14
                 Листинг 4: Обработка новостной страницы
def crawling pages (start: int, end: int, news container:
         pd.DataFrame, num of thread: int) -> pd.DataFrame:
      page file name = "page.html"
      for i in range (start, end + 1):
           try:
               __getPage__("https://www.hse.ru/news/page{0}.html".format(i),
                      page file name)
               __parse_page__(page_file_name, news_container)
          except:
               continue
            Листинг 5: Функция обработки всего архива новостей
  def crawling_pages (off_pc: bool, pages: int) -> None:
      columns = ["url", "date", "title", "summary", "content"]
      news container1 = pd.DataFrame(columns=columns)
      news container2 = pd.DataFrame(columns=columns)
      thread1 = threading. Thread(target=__crawling_pages__,
              args = (0, pages // 2, news\_container1, 1))
      thread 2 = threading. Thread (target = crawling pages ,
              args = (pages // 2, pages, news container2, 2))
      thread1.start()
      thread 2. start ()
      thread1.join()
      thread 2. join ()
```

10

```
try:
news = pd.concat([news_container1, news_container2],
ignore_index=True)
news.to_excel("./news.xlsx")
except:
print("He получилось!")
```

Листинг 6: Многопоточная реализация парсера

приложение в

Листинги посвящённые реализации обработчика данных

```
str:
     processed = ""
     if type(text) != str or len(text) == 0:
        return ""
     flag = True
     for symb in text:
        if flag and (symb = " or symb = "\n"):
           processed += " "
           flag = False
        if symb != " and symb != "\n":
           flag = True
        if flag:
           processed += symb
13
     return processed.strip()
14
```

Листинг 7: Функция нормализации пробелов и переносов строк

```
part += symb
else:
parts.append((is_en, part))
part = symb
is_en = not (is_en)
if part:
parts.append((is_en, part))
return parts
```

Листинг 8: Функция разделения текста на русско- и англоязычные фрагменты

```
def __count_letters_in_token__(self, token: str) -> int:
      num_letters = 0
      for symb in token:
           if ("a" \le symb and symb \le "z") or ("A" \le symb and
                 symb \ll "Z"):
               num letters += 1
          if ("a" \le symb and symb \le "g") or ("A" \le symb and
                 symb \ll "Я"):
               num letters += 1
      return num letters
  def __strip_non_letters__(self, text: str) -> str:
      return re.sub (r"^[^a-zA-Za-яА-ЯёЁ]+|[^a-zA-Za-яА-ЯёЁ]+$",
             "", text)
  def \_\_processing\_token\_\_(self, token: str) -> str:
      new_token = self.__strip_non_letters__(token)
      return new token if
13
             (self.__count_letters_in_token__(new_token) +
                                1.0) / (len(new token) + 1.0) >= 0.5
14
                                       else ""
```

Листинг 9: Реализация удаления неалфавитных токенов

Листинг 10: Обработка строки русского языка средствами SpaCy

10

```
def __processing_cell__(self, cell: str) -> str:
      parts = self.__split_into_en_and_ru__(cell)
      tokens = []
      for part in parts:
           if part [0]:
               tokens += [
                   self.__processing_token__(token.lemma_)
                   for token in self.nlp en(
                       self.__remove_extra_spaces_and_line_breaks__(part[1])
                   ) if not (token.is_stop) and not
                          (token.is punct) and
                   len (self.__processing_token__(token.lemma_)) > 1
           else:
13
               tokens += [
14
                   self.__processing_token__(token.lemma_)
                   for token in self.nlp_ru(
                       self.__remove_extra_spaces_and_line_breaks__(part[1])
17
                   ) if not (token.is_stop) and not
18
                          (token.is_punct) and
                   len (self.__processing_token__(token.lemma_)) > 1
19
      return " ".join (tokens)
```

Листинг 11: Комплексная обработка текста: нормализация, токенизация, лемматизация, фильтрация стоп-слов по словарю

Листинг 12: Удаление токенов с экстремальной частотой встречаемости в документах

```
def calc tfidf corpus without zero score tokens(self) -> None:
      texts = []
      self.original tokens = []
      for row in range (self.p_data.shape[0]):
          words = []
          for column in self.processing columns:
               for word in self.p data.loc[row, column].split(" "):
                   words.append(word)
           self.original tokens.append(words)
           texts.append(words)
      dictionary = gensim.corpora.Dictionary(texts)
11
      corpus = [dictionary.doc2bow(text) for text in texts]
      tfidf = gensim.models.TfidfModel(corpus)
13
      self.tfidf corpus = tfidf [corpus]
14
      self.tfidf dictionary = dictionary
```

Листинг 13: Вычисление TF-IDF метрик для текстового корпуса

```
def add_in_tfidf_corpus_zero_score_tokens(self) -> None:
      full corpus = []
      for doc_idx, doc in enumerate(self.tfidf_corpus):
          original_words = self.original_tokens[doc_idx]
          term weights = {
               self.tfidf_dictionary.get(term_id): weight
               for term id, weight in doc
          }
          full_doc = []
          for word in original words:
               if word in term weights:
                   weight = term weights[word]
               else:
                   weight = 0.0
14
               full doc.append((word, weight))
15
```

```
full_corpus.append(full_doc)
self.tfidf_corpus = full_corpus
```

Листинг 14: Дополнение словаря токенами с нулевыми TF-IDF значениями

Листинг 15: Определение порогового значения TF-IDF

```
def del_tfidf_stop_words(self , tfidf_percent_treshold) -> None:
      self.__calc_tfidf_corpus_without_zero_score_tokens__()
      self.__add_in_tfidf_corpus_zero_score_tokens__()
      self.__calc_threshold_for_tfidf_stop_words__(tfidf_percent_treshold)
      for row, doc in zip(range(self.p data.shape[0]),
             self.tfidf_corpus):
          tfidf stop words = [
              word for word, tfidf_value in doc
              if tfidf value < self.threshold for tfidf stop words
          for column in self.processing_columns:
              words_without_tfidf_stop_words = []
              for word in self.p data.loc[row, column].split(" "):
                   if word in tfidf stop words:
                       continue
                   words_without_tfidf_stop_words.append(word)
               self.p data.loc[
16
                  row, column = "
17
                          ".join(words without tfidf stop words)
```

Листинг 16: Удаление стоп-слов на основе TF-IDF метрики

```
def __count_num_words__(self, doc: str) -> int:
    return len(doc.split(" "))
def __del_docs_with_low_num_words__(self) -> None:
    mask = self.p_data[self.processing_columns].apply(
    lambda col: col.apply(self.__count_num_words__)
```

```
6    ).sum(axis=1)
7    self.p_data = self.p_data[mask >= 80]
8    self.p_data = self.p_data.reset_index(drop=True)
```

Листинг 17: Удаление документов с недостаточным количеством токенов

приложение г

Полный код класса обработчика данных

```
class Text preparer:
       def __init__(self , additional_stop_words_path: str = ""):
           '''Инициализация. \ n
           additional stop words: пользовательский список стоп-слов.'''
           self.nlp en = spacy.load("en core web sm")
           self.nlp ru = spacy.load("ru core news sm")
           self.tfidf.corpus = None
           self.tfidf dictionary = None
       def first is en (self, cell: str) -> bool:
           '''Определяет начинается строка с символа русского алфавита или
           английского алфавита.\n
13
           cell: строка.\n
           Возвращает true, если строка начинается с символа английского алфавит
                  a.,
           index first en = re.search(r"[a-zA-Z]", cell)
           index first ru = re.search(r"[а-яА-Я]", cell)
18
           return True if index first en and (
20
               not (index first ru) or
               index first en.start() < index first ru.start()
           ) else False
23
24
       def split into en and ru (self, cell: str) -> list[(bool, str)]:
           '''Разделяет строку на части, в которых содержатся символы принадлежа
26
                  шие
           только русскому или английскому алфавиту (то есть в строке с русскими
           символами не будет символов английского языка и наоборот, остальные с
28
                  имволы
29
           не удаляются). \ т
           cell: строка.\n
           Возврщает массив кортежей
31
           (True(если начинается с символа английского алфавита), подстрока).
           1.1.1
           parts = []
34
           is_en = self._first_is_en_(cell)
           part = ""
```

```
for symb in cell:
37
                 if is en == (symb in string.ascii letters) or not
38
                         (symb. is alpha()):
                     part += symb
39
                 else:
40
                     parts.append((is en, part))
                     part = symb
42
                     is en = not (is en)
43
            if part:
45
                parts.append((is en, part))
            return parts
48
       def remove extra spaces and line breaks (self, text: str) -> str:
            '''Удаляет из строки лишние пробелы и переносы строки.\п
51
            text: строка.\n
52
            Возврщает строку, с удалёнными лишними пробелами и переносами строк.
53
            1.1.1
            processed = ""
55
            if type(text) != str or len(text) == 0:
57
                return ""
58
59
            flag = True
60
            for symb in text:
61
                 if flag and (symb == " " or symb == "\n"):
                     \texttt{processed} \; +\!\!\!= \; " \quad "
63
                     flag = False
                 if symb != " and symb != "\n":
                     flag = True
67
68
69
                if flag:
                     processed += symb
70
71
            return processed.strip()
73
       def __count_letters_in_token__(self, token: str) -> int:
74
            num\ letters\,=\,0
75
76
            for symb in token:
77
                 if ("a" \leq symb and symb \leq "z") or ("A" \leq symb and symb \leq
78
                         "Z"):
                     num letters += 1
79
                 if ("a" <= symb and symb <= "\(\mathbf{n}\)") or ("A" <= symb and symb <=
                         : ( "R"
                     num_letters += 1
81
```

```
82
           return num letters
83
       def __strip_non_letters__(self, text: str) -> str:
85
           return re.sub(r"^[^a-zA-Za-яА-ЯёЁ]+|[^a-zA-Za-яА-ЯёЁ]+$", "", text)
86
       def __processing_token__(self, token: str) -> str:
88
           new_token = self.__strip_non_letters__(token)
           return new_token if (self.__count_letters_in_token__(new_token) +
91
                                  (1.0) / (len(new token) + 1.0) >= 0.5 else ""
92
       def __processing_cell__(self, cell: str) -> str:
94
           '''Полностью обрабатывает 1 ячейку pandas DataFrame. То есть проводит
           токенизацию, лемматизацию, удаление стоп слов и перевод в нижний реги
           потом происходит склейка и возвращается обработанная ячейка. \ п
97
           cell: строка - ячейка pandas DataFrame.\n
           Возвращает обработанную строку.
100
            parts = self. split into en and ru (cell)
102
           tokens = []
103
104
           for part in parts:
105
                if part [0]:
106
                    tokens += [
                        self. processing token (token.lemma)
108
                        for token in self.nlp en(
109
                             self.__remove_extra_spaces_and_line_breaks__(part[1])
110
                        ) if not (token.is stop) and not (token.is punct) and
                        len (self. processing token (token.lemma)) > 1
                else:
114
                    tokens += [
                        self.__processing_token__(token.lemma)
116
                        for token in self.nlp ru(
                             self.__remove_extra_spaces_and_line_breaks__(part[1])
118
                        ) if not (token.is stop) and not (token.is punct) and
119
                        len(self.\_processing\_token\_\_(token.lemma\_)) > 1
120
                    return " ".join(tokens)
123
124
       def __calc_tfidf_corpus_without_zero_score_tokens_and_tfidf_dictionary__(
           self
       ) -> None:
            '''Вычисление tfidf метрики для слов документов + tfidf словаря.'''
128
```

```
texts = []
129
            self.original tokens = []
130
131
            for row in range (self.p data.shape[0]):
                words = []
                for column in self.processing columns:
134
                     for word in self.p data.loc[row, column].split(""):
                         words.append(word)
136
                self.original tokens.append(words)
137
                texts.append(words)
138
139
            dictionary = gensim.corpora.Dictionary(texts)
            corpus = [dictionary.doc2bow(text) for text in texts]
141
            tfidf = gensim.models.TfidfModel(corpus)
142
143
            self.tfidf corpus = tfidf[corpus]
144
            self.tfidf dictionary = dictionary
145
        def add in tfidf corpus zero score tokens (self) -> None:
147
            '''Добавление слов в tfidf_corpus, которые были исключены gensim при
148
            подсчёте метрики tfidf (gensim не добавляет слова, которые встречаютс
            во всех документах или которые имеют 0 метрику tfidf в
150
                    tfidf corpus).'''
            full corpus = []
151
152
            for doc idx, doc in enumerate (self.tfidf corpus):
153
                original words = self.original tokens[doc idx]
154
                term weights = {
                     self.tfidf dictionary.get(term id): weight
                     for term id, weight in doc
157
                }
158
159
                full doc = []
160
                for word in original words:
161
                     if word in term weights:
162
                         weight = term weights[word]
163
                     else:
164
                         weight = 0.0
165
                     full doc.append((word, weight))
166
167
                full corpus.append(full doc)
168
169
            self.tfidf corpus = full corpus
171
        def calc threshold for tfidf stop words (
            self, tfidf percent treshold
       ) -> None:
174
```

```
'''Вычисляет порог tfidf метрики, при котором слова, значение tfidf
175
            которых меньше, считаются стоп-словами. \ n
176
            tfidf percent threshold: процент от всех слов, которые будут считатьс
177
            стоп-словами. То есть берём списко всех значений tfidf, сортируем их
178
            значение, которое отсекает от остальной базы 1 процент самых низких
179
            значений и будет threshold.'''
180
            all tfidf values = []
181
            for doc in self.tfidf corpus:
182
                for , tfidf value in doc:
183
                    all tfidf values.append(tfidf value)
185
            self.threshold for tfidf stop words = np.percentile(
186
                all tfidf values, tfidf percent treshold
           )
188
189
       def del_tfidf_stop_words(self , tfidf_percent_treshold) -> None:
            '''Удаляет стоп-слова на основе посчитанного tfidf corpus и
191
            tfidf threshold.""
192
            self. calc tfidf corpus without zero score tokens and tfidf dictionary (
194
            self.__add_in_tfidf_corpus_zero_score_tokens__()
195
            self. calc threshold for tfidf stop words (tfidf percent treshold)
197
            for row, doc in zip(range(self.p_data.shape[0]), self.tfidf_corpus):
198
                tfidf stop words = [
                    word for word, tfidf value in doc
                    if tfidf value < self.threshold for tfidf stop words
201
                1
203
                for column in self.processing columns:
204
                    words without tfidf stop words = []
205
                    for word in self.p data.loc[row, column].split(""):
206
                        if word in tfidf stop words:
207
                             continue
                        words without tfidf stop words.append(word)
209
                    self.p data.loc[
                        row, column = " ".join (words without tfidf stop words)
       def __calc_num_docs_for_words__(self) -> None:
            self.num docs for words = dict()
214
215
            for row in range(self.p data.shape[0]):
216
                for column in self.processing columns:
217
                    words = self.p data.loc[row, column].split(" ")
219
                    for word in words:
220
```

```
if word in self.num docs for words.keys():
                             self.num docs for words[word] += 1
222
                         else:
                             self.num docs for words [word] = 1
224
       def count num words (self, doc: str) -> int:
            return len (doc.split(" "))
228
       def del docs with low num words (self) -> None:
            mask = self.p_data[self.processing_columns].apply(
230
                lambda col: col.apply(self. count num words)
            ). sum(axis=1)
            self.p data = self.p data[mask >= 80]
234
235
            self.p data = self.p data.reset index(drop=True)
236
       def __calc_up_and_down_threshold__(self):
            self.up_threshold = self.p data.shape[0] * (
239
                len (self.processing columns) / 2.0
240
            self.down threshold = self.p data.shape[0] / 1000.0
242
243
       def processing data (
            self,
245
            standart processing: bool = True,
246
            tfidf processing: bool = False,
            tfidf percent treshold: int = 1
248
       ) -> None:
249
            1.1.1
           Функция, вызывающая вышеописанные функции для обработки pandas
                   DataFrame. \ n
            standart processing: bool - говорит нужно ли делать стандартную обраб
252
                   oткy;\n
            tfidf processing: bool - говорит нужно ли удалять стоп-слова на основ
            t f i d f ; \setminus n
            tfidf percent treshold: int - какой процент минимальных значений
255
                    tfidf
            отсеивать.'''
            self.p data = self.data.copy(deep=True)
257
            self.p_data.fillna("", inplace=True)
258
            if standart processing:
260
                for row in range (self.p data.shape[0]):
261
                    for column in self.processing columns:
                         cell = self.p data.loc[row, column]
263
264
```

```
if len(cell) > 0:
265
                             self.p data.loc[
266
                                 row, column | = self.__processing_cell__(cell)
268
                self.__del_docs_with_low_num_words__()
269
                self. calc up and down threshold ()
                self.__calc_num_docs_for_words__()
                for row in range (self.p data.shape[0]):
                     for column in self.processing columns:
274
                         words = self.p data.loc[row, column].split(" ")
275
                         new words = []
276
277
                         for word in words:
278
                             if self.num docs for words[
                                 word
280
                             >= self.down threshold and self.num docs for words
281
                                 word | <= self.up threshold:
                                 new words.append(word)
283
284
                         self.p_data.loc[row, column] = " ".join(new_words)
286
                self.__del_docs_with_low_num_words__()
287
            if tfidf processing:
289
                self.p data = self.data
290
                self.p data = self.p data.fillna("")
                self.p data = self.p data.astype(str)
292
                self.del_tfidf_stop_words(tfidf_percent_treshold)
293
                self. del docs with low num words ()
295
        def add data(self, data: pd.DataFrame) -> None:
296
            self.data = data.copy(deep=True)
297
298
        def get data(self) -> pd.DataFrame:
299
            return self.data
301
        def add processing columns (self, processing columns: list[str]) -> None:
302
            self.processing columns = processing columns
303
        def get processing columns(self) -> list[str]:
305
            return self.processing columns
307
        def get processing data(self) -> pd.DataFrame:
308
            return self.p data.copy(deep=True)
309
        def save processing data(self, path: str) -> None:
311
```

```
self.p data.to excel(path, index=False)
```

Листинг 18: Полный код класса обработчика данных

приложение д

Листинги посвящённые реализации классов для тематического моделирования

```
def __make_vowpal_wabbit__(self) -> None:
    f = open(self.path_vw, "w")
    for row in range(self.data.shape[0]):
        string = ""
        for column in self.data.columns:
            string += str(self.data.loc[row, column]) + " "
        f.write("doc_{0}".format(row) + string.strip() + "\n")
```

Листинг 19: Преобразование новостного массива в формат Vowpal Wabbit

```
def __make_batches__(self) -> None:
self.batches = artm.BatchVectorizer(
data_path=self.path_vw,
data_format="vowpal_wabbit",
batch_size=self.batch_size,
target_folder=self.dir_batches
)
self.dictionary = self.batches.dictionary
```

Листинг 20: Функция создания батчей и словаря

```
def \ add\_regularizer(self, name: str, tau: float = 0.0) -> None:
      if name = "SmoothSparseThetaRegularizer":
           self.model.regularizers.add(
               artm.SmoothSparseThetaRegularizer(name=name, tau=tau)
          )
           self.user_regularizers[name] = tau
       elif name == "SmoothSparsePhiRegularizer":
           self.model.regularizers.add(
               artm. Smooth Sparse Phi Regularizer (name=name, tau=tau)
           )
      # остальные регуляризаторы ...
      else:
          print (
13
               "Регуляризатора {0} нет! Проверьте корректность назва
                      ния!".
```

```
format (name)
15
           )
16
        Листинг 21: Функция добавления одиночного регуляризатора
def add_regularizers(self, regularizers: dict[str, float]) ->
         None:
      for regularizer in regularizers:
           self.add regularizer (regularizer,
                  regularizers [regularizer])
          Листинг 22: Функция добавления набора регуляризаторов
  def calc coherence (self) -> None:
      last tokens =
              self.model.score_tracker["top_tokens"].last_tokens
      valid_topics = [tokens for tokens in last_tokens.values() if
             tokens]
      texts = []
      for row in range (self.data.shape[0]):
           words = []
           for column in self.data.columns:
               cell_content = self.data.loc[row, column]
               if isinstance (cell content, str) and
                      cell_content.strip():
                   words += cell content.split()
           if words:
               texts.append(words)
      dictionary = Dictionary (texts)
      coherence model = CoherenceModel(
14
           topics=valid topics,
           texts=texts,
16
           dictionary=dictionary,
           coherence="c v"
      )
19
      self.coherence = coherence_model.get_coherence()
          Листинг 23: Функция вычисления метрики когерентности
  def calc_model(self):
      self.perplexity_by_epoch = []
      self.coherence_by_epoch = []
      self.topic_purities_by_epoch = []
```

```
for epoch in range(self.num_collection_passes):
           self.model.fit offline (
               batch vectorizer = self.batches,
                      num_collection_passes=1
           self. calc metrics ()
           self.perplexity by epoch.append(self.perplexity)
           self.coherence_by_epoch.append(self.coherence)
           self.topic purities by epoch.append(self.topic purities)
14
           if epoch > 0:
               change perplexity by percent = abs (
16
                   self.perplexity by epoch[epoch - 1] -
17
                   self.perplexity by epoch [epoch]
18
               ) / (self.perplexity by epoch[epoch - 1] +
19
                      self.epsilon) * 100
               change coherence by percent = \
                   abs (self.coherence by epoch [epoch - 1] - \
21
                        self.coherence_by_epoch[epoch] ) / \
                       (self.coherence\_by\_epoch[epoch-1]+
                         self.epsilon ) * 100
24
               change topics purity by percent = \
25
                   abs (self.topic purities by epoch [epoch - 1] - \
                        self.topic purities by epoch[epoch]) / \
27
                       (self.topic\_purities\_by\_epoch[epoch-1]+
28
                         self.epsilon ) * 100
               if change_perplexity_by_percent < \
31
                  self.plateau perplexity and \
32
                  change_coherence_by_percent < \
                  self.plateau coherence and \
34
                  change topics purity by percent < \
                  self.plateau topics purity:
                   break
```

Листинг 24: Функция вычисления тематической модели с пошаговым рассчётом метрик

```
def print_coherence_by_epochs(self) -> None:
plt.plot(
range(len(self.coherence_by_epoch)),
self.coherence_by_epoch,
```

```
label="coherence"
      plt.title("График когерентности")
      plt.xlabel("Epoch")
      plt.ylabel("Coherence")
      plt.legend()
      plt.show()
      Листинг 25: Функция построения графика динамики когерентности
  def __objective__(self , trial) -> tuple[float , float , float]:
      num_topics = trial.suggest_int(
           self.num_topics[0], self.num_topics[1],
                  self.num topics[2]
      )
      # скрытые остальные гиперпараметры ...
      model = My BigARTM model(
          data=self.data,
          num topics=num topics,
          num document passes=num document passes,
          class_ids=class_ids,
           num collection passes=num collection passes,
           regularizers=regularizers
      )
      model.calc model()
      return model.get perplexity(), model.get coherence(
15
      ), model.get_topic_purities()
       Листинг 26: Целевая функция для оптимизации гиперпараметров
  def __select_best_trial__(self, study, weights):
      params and metrics = [
           (trial.params, trial.values) for trial in
                  study.best trials
      metrics = np.array([item[1] for item in params_and_metrics])
      scaled_metrics = np.zeros_like(metrics)
      for i in range (metrics.shape [1]):
           scaler = RobustScaler()
          scaled column = scaler.fit transform(metrics[:,
                  i | . reshape (-1, 1)
                                                 ) . flatten ()
10
          if weights [i] < 0:
```

11

Листинг 27: Функция выбора оптимальной конфигурации

```
def optimizer(self):
study = optuna.create_study(
directions=["minimize", "maximize", "maximize"])
study.optimize(self.__objective__, n_trials=self.n_trials)
best_trial = self.__select_best_trial__(study, weights=[1, -1, -1])
best_params = best_trial[0]
num_topics = best_params["num_topics"]
# скрытые остальные параметры ...
# скрытый фрагмент создания финальной модели
final_model.calc_model()
self.model = final_model
```

Листинг 28: Обучение модели с оптимальными параметрами

Листинг 29: Получение размеченных данных

приложение е

Полный код класса My_BigARTM_model

```
class My_BigARTM_model():
       def init (
           self,
           data: pd.DataFrame = pd.DataFrame(),
           num topics: int = 1,
           num document passes: int = 1,
           class ids: dict[str, float] = {"@default class": 1.0},
           num processors: int = 8,
           path vw: str = "./vw.txt",
           batch size: int = 1000,
10
           dir batches: str = "./batches",
           num top tokens: int = 10,
           regularizers: dict[str, float] = {},
           num collection passes: int = 1,
14
           plateau perplexity: float = 0.1,
           plateau coherence: float = 0.1,
16
           plateau_topics_purity: float = 0.1,
           epsilon: float = 0.0000001
       ):
19
           self.data = data.copy(deep=True)
20
           self.num topics = num topics
21
           self.num document passes = num\_document\_passes
           self.class ids = class ids
23
           self.num processors = num processors
           self.path vw = path vw
           self.batch size = batch size
26
           self.dir batches = dir batches
           self.num top tokens = num top tokens
           self.user regularizers = regularizers
29
           self.num \quad collection\_passes \\ = num\_collection\_passes
           self.epsilon = epsilon
31
           self.perplexity by epoch = []
           self.coherence by epoch = []
           self.topic purities by epoch = []
35
           self.plateau perplexity = plateau perplexity
           self.plateau coherence = plateau coherence
38
           self.plateau topics purity = plateau topics purity
39
           if data.empty:
41
               print (
42
                    "Чтобы создать модель добавьте данные, на которых будет строи
43
                           ться модель"
               )
44
           else:
               self.__make_vowpal_wabbit__()
46
               self._make_batches_()
47
```

```
self._make_model_()
48
49
           if self.user regularizers:
               self.add regularizers (self.user regularizers)
51
52
       def make vowpal wabbit (self) -> None:
           f = open(self.path vw, "w")
54
           for row in range (self.data.shape[0]):
               string = ""
57
               for column in self.data.columns:
                    string += str(self.data.loc[row, column]) + " "
60
               f.write("doc {0} ".format(row) + string.strip() + "\n")
61
       def make batches (self) -> None:
63
           self.batches = artm.BatchVectorizer(
               data path=self.path vw,
               data format="vowpal wabbit",
66
               batch size=self.batch size,
67
               target folder=self.dir batches
           )
69
70
           self.dictionary = self.batches.dictionary
71
       def __make_model__(self) -> None:
73
           self.model = artm.ARTM(
               cache theta=True,
               num topics=self.num topics,
76
               num document passes=self.num_document_passes,
               dictionary=self.dictionary,
               class ids=self.class ids,
79
               num_processors=8
80
           )
81
82
           self. add BigARTM metrics ()
83
       def add BigARTM metrics (self) -> None:
85
           self.model.scores.add(
86
               artm. PerplexityScore (name='perplexity',
                       dictionary=self.dictionary)
           )
88
           self.model.scores.add(artm.SparsityPhiScore(name='sparsity phi score'))
           self.model.scores.add(
90
               artm.SparsityThetaScore(name='sparsity theta score')
91
           )
           self.model.scores.add(
93
               artm. TopTokensScore (
94
```

```
name="top tokens", num tokens=self.num top tokens
95
                )
96
            )
98
       def \_\_calc\_coherence\_\_(self) -> None:
99
            topics = []
            if "top_tokens" in self.model.score_tracker:
101
                last tokens = self.model.score tracker["top tokens"].last tokens
102
                topics = [last_tokens[topic] for topic in last_tokens]
103
            valid topics = []
105
            for topic in topics:
                if isinstance(topic, list) and len(topic) > 0:
107
                     valid topics.append(topic)
108
109
            if not valid topics:
                self.coherence = 0.0
                return
            texts = []
114
            for row in range (self.data.shape[0]):
                words = []
116
                for column in self.data.columns:
                     cell content = self.data.loc[row, column]
                     if isinstance (cell content, str) and cell content.strip():
119
                         words += cell_content.split()
120
                if words:
                     texts.append(words)
            if not texts:
                self.coherence = 0.0
                return
126
128
            try:
                dictionary = Dictionary (texts)
129
                coherence model = CoherenceModel (
130
                     topics=valid topics,
131
                     texts=texts,
                     dictionary=dictionary,
                     coherence="c v"
                )
                self.coherence = coherence model.get coherence()
136
            except Exception as e:
137
                print (f "Ошибка при расчете когерентности: {e}")
138
                self.coherence = 0.0
139
       def __calc_phi__(self) -> None:
141
            self.phi = np.sort(self.model.get_phi(), axis=0)[::-1, :]
142
```

```
143
       def calc theta (self) -> None:
144
            self.theta = self.model.get theta()
146
       def __calc_topic_purity__(self, topic: int) -> None:
147
            return np.sum(self.phi[:, topic]) / self.phi.shape[0]
148
149
       def __calc_topics_purities__(self) -> None:
150
            topics = range(self.phi.shape[1])
151
            self.topic purities = sum(
152
                [self.__calc_topic_purity__(topic) for topic in topics]
153
            ) / len(topics)
154
       def __calc_metrics__(self) -> None:
156
            self.perplexity = self.model.score tracker['perplexity'].last value
157
            self.sparsity phi score =
158
                    self.model.score tracker['sparsity phi score'
                                                                   l. last_value
            self.sparsity theta score = self.model.score tracker[
160
                'sparsity_theta_score'].last_value
161
            self.top tokens = self.model.score tracker['top tokens'].last tokens
            self.__calc_coherence__()
163
            self._\_calc\_phi\_\_()
164
            self. calc topics purities ()
165
166
       def add data(self, data: pd.DataFrame) -> None:
167
            self.data = data
169
            self.\__make_vowpal_wabbit\__()
170
            self. make batches ()
171
            self._make_model_()
       def add regularizer (self, name: str, tau: float = 0.0) -> None:
174
            if name = "SmoothSparseThetaRegularizer":
175
                self.model.regularizers.add(
176
                    artm.SmoothSparseThetaRegularizer(name=name, tau=tau)
177
178
                self.user regularizers [name] = tau
179
            elif name == "SmoothSparsePhiRegularizer":
180
                self.model.regularizers.add(
181
                    artm.SmoothSparsePhiRegularizer(name=name, tau=tau)
182
                )
183
                self.user regularizers [name] = tau
184
            elif name == "DecorrelatorPhiRegularizer":
185
                self.model.regularizers.add(
186
                    artm. Decorrelator Phi Regularizer (name=name, tau=tau)
188
                self.user_regularizers[name] = tau
189
```

```
elif name == "LabelRegularizationPhiRegularizer":
190
                self.model.regularizers.add(
191
                    artm.LabelRegularizationPhiRegularizer(name=name, tau=tau)
                )
193
                self.user regularizers [name] = tau
194
            elif name == "HierarchicalSparsityPhiRegularizer":
                self.model.regularizers.add(
196
                    artm. HierarchicalSparsityPhiRegularizer(name=name, tau=tau)
197
                )
                self.user regularizers [name] = tau
199
            elif name == "TopicSelectionThetaRegularizer":
200
                self.model.regularizers.add(
201
                    artm. Topic Selection Theta Regularizer (name=name, tau=tau)
202
                )
203
                self.user regularizers [name] = tau
            elif name == "BitermsPhiRegularizer":
                self.model.regularizers.add(
206
                    artm.BitermsPhiRegularizer(name=name, tau=tau)
                )
208
                self.user regularizers [name] = tau
209
            elif name == "BackgroundTopicsRegularizer":
                self.model.regularizers.add(
                    artm. Background Topics Regularizer (name=name, tau=tau)
                )
213
                self.user regularizers [name] = tau
214
            else:
                print (
                    "Регуляризатора {0} нет! Проверьте корректность названия!".
                    format (name)
218
                )
219
       def add regularizers (self, regularizers: dict[str, float]) -> None:
            for regularizer in regularizers:
                self.add regularizer (regularizer, regularizers [regularizer])
224
       def calc model(self):
            self.perplexity by epoch = []
226
            self.coherence by epoch = []
            self.topic purities by epoch = []
            for epoch in range (self.num collection passes):
230
                self.model.fit offline(
                    batch vectorizer=self.batches, num collection passes=1
                self.__calc_metrics__()
234
                self.perplexity by epoch.append(self.perplexity)
                self.coherence by epoch.append(self.coherence)
236
                self.topic_purities_by_epoch.append(self.topic_purities)
```

```
238
                 if epoch > 0:
239
                     change perplexity by percent = abs (
                         self.perplexity_by_epoch[epoch - 1] -
241
                         self.perplexity by epoch[epoch]
242
                     ) / (self.perplexity by epoch[epoch - 1] + self.epsilon) *
243
                     change coherence by percent = \
244
                         abs (self.coherence by epoch [epoch - 1] - \
                              self.coherence_by_epoch[epoch] ) / \
246
                              ( self.coherence by epoch[epoch - 1] + \setminus
247
                              self.epsilon ) * 100
                     change topics purity by percent = \
249
                         abs (self.topic purities by epoch [epoch - 1] - \
250
                              self.topic purities by epoch[epoch]) / \
                              ( self.topic purities by epoch[epoch - 1] + \setminus
252
                              self.epsilon ) * 100
253
254
                     if change perplexity by percent < \
255
                     self.plateau perplexity and \
256
                     change coherence by percent < \
                     self.plateau coherence and \
258
                     change_topics_purity_by_percent < \
259
                     self.plateau_topics_purity:
                         break
261
262
        def get perplexity(self) -> float:
            return self.perplexity
264
265
        def get perplexity by epochs(self) -> list[float]:
            return self.perplexity by epoch
267
268
        def print_perplexity_by_epochs(self) -> None:
269
            plt.plot(
                 range(len(self.perplexity by epoch)),
                 self.perplexity_by_epoch,
                 label="perplexity"
            )
274
            plt.title("График перплексии")
275
            plt.xlabel("Epoch")
276
            plt.ylabel("Perplexity")
277
            plt.legend()
278
            plt.show()
279
280
        def get coherence(self) -> float:
281
            return self.coherence
283
        def get_coherence_by_epochs(self) -> list[float]:
284
```

```
return self.coherence by epoch
285
286
        def print coherence by epochs (self) -> None:
            plt.plot(
288
                range(len(self.coherence by epoch)),
289
                self.coherence by epoch,
                label="coherence"
291
            )
292
            plt.title("График когерентности")
            plt.xlabel("Epoch")
294
            plt.ylabel("Coherence")
295
            plt.legend()
            plt.show()
297
298
        def get topic purities(self) -> float:
            return self.topic purities
300
301
        def get_topic_purities_by_epochs(self) -> list[float]:
            return self.topic purities by epoch
303
304
        def print topic purities by epochs (self) -> None:
            plt.plot(
306
                range (len (self.topic_purities_by_epoch)),
307
                self.topic purities by epoch,
                label="topic purities"
309
            )
            plt.title("График чистоты тем")
311
            plt.xlabel("Epoch")
312
            plt.ylabel("Topics purity")
313
            plt.legend()
            plt.show()
        def get model(self):
317
            return self.model
318
319
        def save model(self, dir model: str = "./drive/MyDrive/model") -> None:
            self.model.dump artm model(dir model)
```

Листинг 30: Полный код класса My_BigARTM_model

приложение ж

Полный код класса Hyperparameter_optimizer

```
class Hyperparameter_optimizer:
def __init__(
self ,
data: pd.DataFrame,
n_trials: int = 50,
num_topics: tuple[str, int, int] = ("num_topics", 6, 8),
```

```
num document passes: tuple[str, int,
                                       int] = ("num document passes", 3, 7),
           num collection passes: tuple[str, int,
                                         int] = ("num collection passes", 3, 7),
           regularizers: dict[str, tuple[str, float, float]] = {
               "SmoothSparseThetaRegularizer": ('tau theta', -2.0, 2.0),
               "SmoothSparsePhiRegularizer": ('tau_phi', -2.0, 2.0)
           },
           class ids: dict[str, float] = {"@default class": 1.0}
       ):
16
           self.data = data.copy(deep=True)
           self.n trials = n trials
           self.num topics = num topics
19
           self.num document passes = num document passes
20
           self.num collection\_passes = num\_collection\_passes
           self.regularizers = regularizers
           self.class ids = class ids
23
           self.robast scaler = RobustScaler()
26
       def generate regularizers dict (self, trial) -> dict[str, float]:
           """Генерирует словарь с параметрами регуляризаторов для текущего
28
                   trial"""
           reg dict = \{\}
29
           for reg name, (param name, low, high) in self.regularizers.items():
               tau value = trial.suggest float (param name, low, high)
31
               reg dict[reg name] = tau value
           return reg dict
34
       def objective (self, trial) -> tuple[float, float, float]:
           # Основные параметры модели
           num topics = trial.suggest int (
37
               self.num topics[0], self.num topics[1], self.num topics[2]
           num document passes = trial.suggest int (
40
               self.num document passes[0], self.num document passes[1],
41
               self.num document passes[2]
43
           num collection passes = trial.suggest int (
               self.num collection passes[0], self.num collection passes[1],
               self.num collection passes [2]
46
           )
47
           # Динамическое создание параметров регуляризаторов
49
           regularizers_dict = self.__generate_regularizers_dict__(trial)
50
           class ids = self.class ids
52
           # Создание и расчет модели
53
```

```
model = My BigARTM_model(
54
               data=self.data,
55
               num topics=num topics,
               num document passes=num document passes,
57
               class ids=class ids,
58
               num collection passes=num collection passes,
               regularizers=regularizers dict
60
           )
61
           model.calc model()
63
           return model.get perplexity(), model.get coherence(
           ), model.get topic purities()
66
       def __extract_regularizers_params__(self, params: dict) -> dict[str,
               float |:
           """Извлекает параметры регуляризаторов из общего словаря параметров
68
           reg_params = \{\}
69
           for reg name, (param name, , ) in self.regularizers.items():
               if param name in params:
                    reg params[reg name] = params[param name]
           return reg params
74
       def select best trial (self, study, weights):
75
           """Выбирает trial с минимальной взвешенной суммой метрик."""
76
           params and metrics = [
               (trial.params, trial.values) for trial in study.best trials
           metrics = np.array([item[1] for item in params and metrics])
80
           scaled metrics = np.zeros_like(metrics)
           for i in range (metrics.shape[1]):
83
               scaler = RobustScaler()
84
               scaled column = scaler.fit transform(metrics[:, i].reshape(-1, 1)
                                                      ).flatten()
86
               if weights[i] < 0:
87
                    scaled column = -scaled column
               scaled metrics[:, i] = scaled column
89
90
           scaled params and metrics = [
91
               (item [0], item [1], scaled metrics [i].tolist())
92
               for i, item in enumerate (params and metrics)
93
           1
95
           return min(scaled params and metrics, key=lambda trial:
                   sum ( t r i a l [2]))
97
       def optimizer(self):
98
```

```
study = optuna.create study(
99
                directions = ["minimize", "maximize", "maximize"]
100
            )
101
            study.optimize(self.__objective__, n_trials=self.n_trials)
102
            best\_trial = self.\__select\_best\_trial\__(study, weights = [1, -1, -1])
103
            best params = best trial[0]
104
105
            # Извлечение основных параметров
106
            num topics = best params [self.num topics [0]]
            num document passes = best params[self.num document passes[0]]
108
            num collection passes = best params[self.num collection passes[0]]
109
110
            # Извлечение параметров регуляризаторов
            regularizers params =
                    self.__extract_regularizers_params__(best_params)
            print ("Лучшие параметры:")
114
            print (f "Количество тем: {num topics}")
115
            print (f "Проходы по документу: {num document passes}")
116
            print (f "Проходы по коллекции: {num_collection_passes}")
            for reg name, tau value in regularizers_params.items():
119
                print(f"{reg_name}: {tau_value:.4f}")
120
121
            # Создание финальной модели
122
            final \mod el = My \operatorname{BigARTM} \mod el
                data=self.data,
                num topics=num topics,
                num_document_passes=num_document_passes,
126
                num collection passes=num collection passes,
                regularizers=regularizers params,
128
                class ids=self.class ids
129
            )
130
            final model.calc model()
            self.model = final model
       # Остальные методы без изменений
       def get model(self) -> My BigARTM model:
            return self.model
136
137
       def save model(self, path model: str = "./drive/MyDrive/model") -> None:
138
            self.model.model.dump artm model(path model)
139
       def save phi(self, path phi: str = "./drive/MyDrive/phi.xlsx") -> None:
141
            self.model.model.get_phi().to_excel(path_phi)
142
       def save theta(
144
            self, path_theta: str = "./drive/MyDrive/theta.xlsx"
145
```

```
) -> None:
self.model.model.get theta().T.to excel(path theta)
```

Листинг 31: Полный код класса Hyperparameter_optimizer

приложение 3

Листинги посвящённые реализации обучения нейронной сетиклассификатора

```
! pip install transformers datasets evaluate

from datasets import Dataset

from transformers import (

AutoTokenizer,

AutoModelForSequenceClassification,

TrainingArguments,

Trainer,

EarlyStoppingCallback

import evaluate
```

Листинг 32: Подключение необходимых зависимсотей для работы с Hugging Face

```
self.model = AutoModelForSequenceClassification.from_pretrained(
self.model_name,
num_labels=self.num_labels,
problem_type="single_label_classification",
ignore_mismatched_sizes=True
).to(self.device)
```

Листинг 33: Загрузка весов модели

```
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
```

Листинг 34: Загрузка предобученного токенизатора

```
def __tokenize_data__(self , df: pd.DataFrame) -> Dataset:
    dataset = Dataset.from_pandas(df[['text', 'label']])
    def tokenize_function(examples):
        return self.tokenizer(
        examples["text"],
        padding="max_length",
        truncation=True,
```

```
max length=self.maximum sequence length
      return dataset.map(tokenize_function, batched=True)
                  Листинг 35: Функция токенизации текста
  def __prepare_data__(self):
      self.data['text'] = self.data[self.columns].apply(
          lambda x: ' '.join(x.dropna().astype(str)), axis=1)
      unique_topics = self.data['topic'].unique()
      self.topic2id = {topic: i for i, topic in
             enumerate(unique topics)}
      self.id2topic = \{i: topic for i, topic in \}
             enumerate(unique topics)}
      self.num_labels = len(self.topic2id)
      self.data['label'] = self.data['topic'].map(self.topic2id)
                   Листинг 36: Кодировка меток классов
  training args = TrainingArguments (
      output dir=self.output dir,
      eval strategy="epoch",
      save strategy="epoch",
      learning rate=2e-5,
      lr_scheduler_type="linear",
      warmup steps=100,
      per device train batch size=32,
      per_device_eval_batch_size=32,
      num train epochs=10,
      weight decay = 0.01,
      load best model at end=True,
      metric_for_best_model="accuracy",
13
      \log g ing dir = './\log s',
      logging steps=10,
      report to="none",
      save total limit=1
18
              Листинг 37: Код установки параметров обучения
  self.trainer = Trainer(
      model=self.model,
      args=training args,
```

train dataset=train dataset,

```
eval_dataset=val_dataset,

compute_metrics=self.__compute_metrics__,

callbacks=[EarlyStoppingCallback(early_stopping_patience=3)]

self.trainer.train()
```

Листинг 38: Код класса обучения

приложение и

Полный код класса обучения нейронной сети-классификатора

```
class Topic Classifier:
       def __init__(
           self,
           data path: str,
           columns: List[str],
           maximum sequence length: int = 200,
           output dir: str = "./model"
       ):
           try:
               self.data = pd.read excel(data path)
           except FileNotFoundError:
               raise ValueError(f"File {data path} not found!")
           self.model name = "nikitast/multilang-classifier-roberta"
           self.columns = columns
           self.maximum sequence length = maximum sequence length
16
           self.output dir = output dir
           self.device = torch.device("cuda" if torch.cuda.is_available() else
18
                   "cpu")
19
           self.topic2id: Dict[str, int] = \{\}
20
           self.id2topic: Dict[int, str] = {}
21
           self.num labels: int = 0
           self.tokenizer = None
23
           self.model = None
           self.trainer = None
           self.evaluation_results: Dict[str, float] = {}
26
       def __prepare_data__(self):
           self.data['text'] = self.data[self.columns].apply(
29
               lambda x: ' '.join(x.dropna().astype(str)), axis=1
           )
31
32
           unique topics = self.data['topic'].unique()
           self.topic2id = {topic: i for i, topic in enumerate(unique topics)}
           self.id2topic = {i: topic for i, topic in enumerate(unique topics)}
35
```

```
self.num labels = len(self.topic2id)
37
           if self.num labels < 2:
38
               raise ValueError ("At least 2 classes required for
                       classification")
40
           self.data['label'] = self.data['topic'].map(self.topic2id)
41
42
       def load model (self):
43
           self.tokenizer = AutoTokenizer.from pretrained(self.model name)
           self.model = AutoModelForSequenceClassification.from pretrained (
45
               self.model name,
               num labels=self.num labels,
               problem type="single label classification",
48
               ignore mismatched sizes=True
           ).to(self.device)
51
       def __tokenize_data__(self , df: pd.DataFrame) -> Dataset:
52
           dataset = Dataset.from_pandas(df[['text', 'label']])
53
           def tokenize function (examples):
55
               return self.tokenizer (
                    examples ["text"],
57
                    padding="max length",
58
                    truncation=True,
59
                    max length=self.maximum sequence length
60
               )
61
           return dataset.map(tokenize function, batched=True)
63
64
       def compute metrics (self, eval pred) -> Dict[str, float]:
           accuracy metric = evaluate.load("accuracy")
66
           logits, labels = eval pred
67
           predictions = np.argmax(logits, axis=-1)
           metrics = {
70
               "accuracy": accuracy metric.compute(predictions=predictions,
71
                       references=labels)["accuracy"],
               "f1 micro": f1 score(labels, predictions, average="micro"),
               "fl macro": fl score(labels, predictions, average="macro"),
73
               "fl weighted": fl score(labels, predictions, average="weighted"),
           }
76
           try:
               if logits.shape[1] == 2:
78
                    metrics ["roc auc"] = roc auc score (labels, logits [:, 1])
79
               else:
                    metrics ["roc auc"] = roc auc score (
81
                        labels, logits, multi_class="ovo", average="macro"
82
```

```
)
83
            except ValueError:
84
                 metrics ["roc auc"] = float ("nan")
86
            return metrics
87
        def __print_final_metrics__(self):
89
            if not self.evaluation results:
                 raise ValueError("Model not evaluated yet. Call train model()
                         first")
92
            print("\n" + "="*50)
            print("Final Model Evaluation Metrics:")
94
            print ("-"*50)
            for metric, value in self.evaluation results.items():
                 if metric not in ["eval loss", "epoch"]:
                     print (f "{metric.upper():<15}: {value:.4f}")</pre>
98
            print ("="*50 + "\n")
100
        def train model(self):
101
            self.__prepare data ()
            train df, val df = train test split (
103
                 self.data,
104
                 test size = 0.2,
105
                 random state=42,
106
                 stratify=self.data['topic']
107
            )
109
            self.\_load\_model\_\_()
            train_dataset = self.__tokenize_data__(train_df)
            val_dataset = self.__tokenize_data__(val_df)
114
            training args = TrainingArguments (
115
                 output dir=self.output dir,
116
                 eval strategy="epoch",
117
                 save strategy="epoch",
118
                 learning rate=2e-5,
119
                lr scheduler type="linear",
120
                 warmup steps=100,
                 per device train batch size=32,
122
                 per device eval batch size=32,
                 num train epochs=10,
124
                 weight decay = 0.01,
                load best model at end=True,
126
                 metric for best model="accuracy",
                 logging dir='./logs',
128
                 \log g ing \_steps = 10,
129
```

```
report to="none",
130
                save total limit=1
            )
            self.trainer = Trainer (
134
                model=self.model,
                args=training args,
136
                train dataset=train dataset,
137
                eval dataset=val dataset,
138
                compute_metrics=self.__compute_metrics__,
139
                callbacks = [EarlyStoppingCallback(early stopping patience=3)]
140
            )
141
142
            self.trainer.train()
143
            self.evaluation results = self.trainer.evaluate()
145
            self.__print_final_metrics__()
146
            # self.model.save pretrained(self.output dir)
148
            # self.tokenizer.save_pretrained(self.output_dir)
149
            # with open(f"{self.output dir}/id2topic.json", "w") as f:
151
                  json.dump({str(k): v for k, v in self.id2topic.items()}, f)
152
153
       def load trained model (self, model path: str):
154
            self.tokenizer = AutoTokenizer.from pretrained(model path)
            self.model =
                    AutoModelForSequenceClassification.from pretrained(model path).to(self.
157
            with open(f"{model path}/id2topic.json", "r") as f:
                self.id2topic = \{int(k): v for k, v in json.load(f).items()\}
159
160
       def predict(self, text: str) -> str:
161
            self.model.eval()
162
            inputs = self.tokenizer(
163
                text,
                return tensors="pt",
165
                truncation=True,
166
                max length=self.maximum sequence length
167
            ).to(self.device)
168
169
            with torch.no_grad():
170
                logits = self.model(**inputs).logits
171
            predicted id = torch.argmax(logits, dim=-1).item()
173
            return self.id2topic[predicted id]
```

Листинг 39: Полный код класса обучения нейронной сети-классификатора

ПРИЛОЖЕНИЕ К
Количественные характеристики подготовленного и неподготовленного новостного массива

Характеристика	Неподгот. данные	Без TF-IDF фильтрации	С исполь-ем ТК-ІDF фильтрации с порог. 1 %	С исполь-ем ТF-IDF фильтрации с порог. 2 %	С исполь-ем ТК-ІDF фильтрации с порог. 3 %	С исполь-ем ТК-ІDF фильтрации с порог. 4 %
Кол. док.	17340	11860	11860	11860	11860	11860
Кол. токенов	1213111	15233704	5181364	5129026	5076687	5024348
Кол. уник. ток.	278724	18707	18707	18707	18707	18707
Мин. кол. ток. в док.	6	79	79	79	79	79
Модальное кол. ток. в док.	47	130	130	130	461	277
Медианное кол. ток. в док.	-	389	388	385	382	379
Среднее кол. ток. в док.	695	441	436	432	428	423

Продолжение следует...

Продолжение таблицы

Характеристика	Неподгот. данные	Без ТҒ-ІDҒ фильтрации	С исполь-ем ТҒ-ІDҒ фильтрации с порог. 1 %	С исполь-ем ТҒ-ІDҒ фильтрации с порог. 2 %	С исполь-ем ТҒ-ІDҒ фильтрации с порог. 3 %	С исполь-ем ТҒ-ІDҒ фильтрации с порог. 4 %
Макс. кол. ток. в док.	6514	2556	2407	2318	2243	2185
Мин. кол. уник. ток. в док.	6	27	27	27	27	27
Мод. кол. уник. ток. в док.	39	187	187	141	187	208
Мед. кол. уник. ток. в док.	-	237	236	233	230	227
Сред. кол. уник. ток. в док.	346	259	255	251	246	242
Макс. кол. уник. ток. в док.	2287	1183	1151	1113	1079	1040

Характеристика	С исполь-ем ТF-IDF фильтрации с порог. 5 %	С исполь-ем ТҒ-ІДҒ фильтрации с порог. 6 %	С исполь-ем ТҒ-ІДҒ фильтрации с порог. 7 %	С исполь-ем ТҒ-ІДҒ фильтрации с порог. 8 %	С исполь-ем ТҒ-ІДҒ фильтрации с порог. 9 %	С исполь-ем ТҒ-ІДҒ фильтрации с порог. 10%
Кол. док.	11860	11860	11860	11860	11860	11860
Кол. токенов	4972009	4919670	4876331	4814992	4762654	4710315
Кол. уник.	18707	18707	18707	18707	18707	18707
ток.						
Мин. кол.	79	79	79	79	79	79
ток. в док.						
Модальное	359	167	355	372	282	186
кол. ток. в						
док.						
Среднее кол.	377	373	371	368	364	361
ток. в док.						
Медианное	419	414	410	405	401	397
кол. ток. в						
док.						
Макс. кол.	2107	2053	2001	1955	1912	1877
ток. в док.						
Мин. кол.	27	27	27	27	27	27
уник. ток. в						
док.						

Продолжение следует...

Продолжение таблицы

Характеристика	С исполь-ем ТК-ШК фильтрации с порог. 5 %	С исполь-ем ТК-ШК фильтрации с порог. 6 %	С исполь-ем ТК-ШК фильтрации с порог. 7 %	С исполь-ем ТК-ШК фильтрации с порог. 8 %	С исполь-ем ТК-ШК фильтрации с порог. 9 %	С исполь-ем ТҒ-ШҒ фильтрации с порог. 10%
Мод. кол. уник. ток. в док.	184	216	183	208	224	138
Сред. кол. уник. ток. в док.	224	221	218	215	212	208
Мед. кол. уник. ток. в док.	238	234	231	227	223	219
Макс. кол. уник. ток. в док.	991	957	925	891	856	832

приложение л

Полные материалы работы

Полные материалы исследования доступны на приложенном носителе информации со следующей структурой каталогов:

- Каталог code Jupyter-ноутбуки, разработанные в ходе исследования;
- Каталог docs:
 - Каталог Подготовленные данные данные, обработанные для тематического моделирования;
 - Каталог Размеченные данные данные для обучения нейросетевого классификатора;
 - Каталог Тематические модели сохранённые тематические модели, полученные в ходе работы;
 - Каталог phi матрицы ϕ , полученные в результате тематического моделирования;
 - Каталог theta матрицы θ , полученные в результате тематического моделирования.
- Каталог work _ text исходный код работы в формате LaTeX;
- Файл news.xlsx исходный набор новостных данных.