Automatas Finitos Deterministas U_n AFD es $(Q,T,S;Q\times T \rightarrow Q,q_0 \in Q,F \subseteq Q)$ que 'acepta" la palabra $u \in T^*$ si $S'(q_0,u) = S(S(s(q_0,u_0),u_2)...)u_n) \in F$.

M. $S \rightarrow AB$ $A \rightarrow aA|c$ $B \rightarrow bBb|b$ $L = \{a^{n}cb^{m} / n \geq 0, m \text{ es impar}\}$

de ahi la necessidad de 95.

14. d'u e 19,6,0 1 */ "abe" aparèce un nº inpar de veces)

15. Palabras en las que no aparece "001.

D1 → OD1 | D | E

• Números racionales $S \rightarrow -N \mid +N \quad N \rightarrow 0/D \mid 4N' \mid \dots \mid 9N' \\ N' \rightarrow 0N' \mid N \mid /D \\ D \rightarrow 4D' \mid \dots \mid 9D'$

R1.7. L={/u//ue40,1}*}

R1.6.i. N6(4) ≠3

iii. "ab" no está contenido en u

Una máquina de vending acepta 1,20 y no da cambio. Lleva un AFD que detecta si se ha introducido la cantidad correcta. La máquina acepta momedas de 20,80 cents y 1 ...

Autómata que acepte les multiples de 3 en binario.

Restos posibles: 0, 1,2.

8	0	1	0.2 = 0
790	q.	91	0.2+1=1
	942	90	1.2 = 2 1.2+1=0
	91	92	2.2 = 1 2.2 + 1 = 2

$$A011: 9. \xrightarrow{1} 9. \xrightarrow{0} 9. \xrightarrow{0} 9. \xrightarrow{1} 9. \xrightarrow{1} 9.$$

Autómatas finitos no deterministas Recordatorio: Un AFND es una quintupla (Q, A, S, 90, F) donde: - A alfabeto · Q conjunto de estados - go ∈ Q inicial $\cdot \delta : Q \times A \rightarrow \mathcal{F}(Q) = 2^{Q}$ · FCQ finales Diferencia con automatas deterministas: EJEMPLO $\left\{0^n u 2: n \geq 0, u \in \left\{0, 1\right\}\right\}$ 9 /9, 3/7 96 rst $r \mid \emptyset \notin \{s\}$ 9€ 9€ t $S \not\supset \not \supset \not \supset \not \supset \not \supset$ 9F 9E 9E 95 9c 9e 90

EJEMPLOS: $0^{i}1^{j}$, $1(01)^{i}0^{j}$ palabras que no contençan $02^{u}02^{u}0^{u}20^{u}$; $0^{i}10^{j}1$

Paso de AFND a AFD

Si S es le f. transición del AFND: SiQ×A-SP(Q), hacemos Q'cP(Q) de forma que S'IQ'×A->Q' sca la f. transición del AFD.

Ejercicion R.2.

2. $P = \{ S \rightarrow MOB, B \rightarrow AB | OB | E \}$

Lenguaje: palabras que empiezan por 110.

15. "001" no está en u.

1. "010" está en u:

"110" está en u:

"010" y "Mo" estar ambos en u.

Paso a AFD: 0 19m} 49,4} 79 354 u {w,x} W {W,XY 3 427 124 [{q,r} 19,4,87 19,4,5} {q,r,t} 19,4,0% 19,4,5,t,x} 19,564 19, u, v} {q,r,w,x} 1 2,4, 1 191415,t,x) /19,r, + 9 {q,u,v,4,x,y} 19,1, w,x / 19,1, w,x } 19,4,5, w,y } G 14,4,4,+, x,y} {9, n, v, +, x, y} {q,u,s,w,y} 19,4, 1, w} 19,4,4,49 (9,5, Wx) 19,4,4,4,6 9.41 4r y 19,4,4,4

R16is.6.

α.

E_AFND

Ignal que los AFND pero ahora:

 $S: Q \times (A \cup \{E\}) \longrightarrow \mathcal{P}(Q)$

Difuncias entre AFND y E-AFND:

Construir un E-AFND que reconozca expressiones matemáticas incluyendo: T=1-, (,), [dig], [ltr], [op])

- números -?[dig] + (e.g. f(3)).

- funciones [ltr] (-? [dig] +) o [ltr]()

$$\{0^{n}123^{m}, 0^{n}23^{m}, 0^{n}3^{m}, n \ge 0, m \ge 1\}$$

AFD y gramáticas regulares

- Gramática lineal por la derecha; paso directo

Palabras que empriezan por '66' o una sucerión de a's seguida por una b.

Paso a gramática: creo las variables $Q_1R_1S_1T_1E$ y las producciones $V \rightarrow E$ wando $V \in S$ estado final

inicial:

 $Q \rightarrow 6R \mid aS$ $R \rightarrow aE \mid bT$ $S \rightarrow aS \mid bT$ $T \rightarrow aT \mid bT \mid E$

E -> aE/6E

AFD y gramáticas regulares

-Gramatica lineal por la izguierda: intercambiar flechas del AFD

Paso a gramática i creo las variables Q, R, S, T, E

y las producciones

V → E si v es final

inicial

T → Ta | Tb | Rb | Sb

R → Qb

S → Sa | Qa

Q → E

E → Ea | Eb | Ra ← variable inalcanzable

De gramática a autómata

$$S \rightarrow \alpha \times | 6 \rangle$$

$$X \rightarrow \alpha \times | 6 \rangle$$

$$Y \rightarrow 6 \rangle$$

$$Z \rightarrow \alpha \rangle | 6 \rangle | \epsilon$$

$$(x) \quad \epsilon \rightarrow (6 \rangle)$$

lineales por la izquierda:

- 1 Inventir producciones: 5 -> 015/15/0
- 2) Pasar a automata con 1 estado final?

Expresiones regulares

Son expressiones regularies:

- & denotando el lenguaje vacio: 17
- E denotando la palabra vacia: 1Et
- a devotando la palabra "a"; {a} HaEA
- concatenación de regex: r₁r₂ ~> {uv/uel₁,vel₂}

- union de regex: 14+12 N> L, UL2 = {u/uel, o uel2} EJEMPLO: atbtab ~> {a,b,ab}
- clausura de regex s r* → L* = {ui/i≥0, u∈L} EJEMPLO: at ~> (E, a, aa, aaa ...)

 $(a^{k}+b^{*k})c \sim \{c,ac,bc,aac,bbc,...\}$ (a+6)*c ~> { c,ac,abc, bc, bac,...}

E-AFND y expresiones regulares

Supongemos que tenemos AFND pero gueremos realizar con ellos las operaciones de expresiones regulares; unión, concatenación y clausura. De forma natural surgen las transiciones nulas:

Sabiendo que & viene dado por (9),

sobiendo que & viene dado por (9) y

a viene dado por (9) a (6)

podemos pasor audquier expressión regular a E-AFMD

EJEMPLO
$$(a*b+6b)(a+b)*$$

E-AFND y expresiones regulares

Paso de AFD/AFND a Regex Defininos $X_i = \left\{ \begin{array}{l} \text{palabras } u / \exists (q_i, u) \stackrel{*}{\mapsto} (q_i, \dots) \right\} \\ \text{con } q_f \text{ final} \end{array} \right\}$ - si gieF 为 e e xi - si δ(qi,a) = qjeF ⇒ aexi - si $\delta(g_{i,\alpha}) = g_{i,\beta} \Rightarrow \alpha x_{i,\beta} \subseteq x_{i,\alpha}$ se défine el ristema de ecvaciones para cada Xi: $x_i = \mathcal{E}[[q_i \in F]] + \alpha x_j + \dots$ S(quia)=9; Ecoación característica Se resuelve hasta llegar a xi = Axi + B, que se soluciona como $xi = A^*B \overset{\text{d}}{\in} xi$ La regex final es la solución de Xo. EJEMPLO $\begin{cases} x_0 = 4x_0 + 0x_1 \\ x_4 = 4x_1 + 4x_0 + 0x_2 & = 7 \\ x_2 = 0x_0 + \epsilon \end{cases}$ $\Rightarrow \begin{cases} x_0 = 1 \times 0 \times 1 \\ x_1 = 1 \times 1 + 1 \times 0 + 0 \times 2 \\ x_2 = 0 \times 1 \times 0 \times 1 + \varepsilon \end{cases}$ $\Rightarrow \begin{cases} x_0 = 1 * 0 \times_{\perp} \\ x_4 = 1 \times_{1} + 1 \times_{0} + 0 \times_{2} \\ x_2 = 0 \times_{0} + \varepsilon \end{cases}$ => XL=1X1+11#0X1+0(01*0X1+E)= = (1+11*0+001*0)x+0E= = (1+11*0+001*0)*0 $x_0 = 1*0(1+11*0+001*0)*0$

EJEMPLO 2. Pasar a expresión regular:

Relación 26.1.

Máguinas de Mealy y Moore

Tienen una función salida:

MOORE $\lambda: Q \to B$ estados alfabeto de salida

MEALY 2: QXA -> B

En la mágrina de Moore la salida depende solo del estado, pero en la de Meanly depende del estado y la entrada actual.

Ejemplo: máguina de Moore que controla un sunaforo verde/ámbar/rojo

B=boton pulsado

T= temporizador

T S/ADB

Ejemplo: magnina de Mealy que dervelve el complemento a uno en trinario:

$$\frac{8/2 0 1}{9 0/1 1/0}$$

Ejercicios máquinas de Mealy / Moore

- · Háguina de Moore que devvelve el mód 4 del producto parcial Si leamos 372947 gueremos los mód 4 de los productos parciales:
 - 3 = 3 mod 4
 - 3.7 = 21 = 1 mod 4
 - 3-7-2 = 42 = 2 mod 4
 - 3-729 = 378 = 2 moid 4
 - 3-7.2.9.4 = 1512 = 0 mod 4
 - 3-7.2-9-4.7 = 10584 = 0 mód 4

Salida: 312200

Sabenos que si n = k (mod 4) autorices para me 72 nm = km (mod 4).

Por tanto, nos basta con memorizar el mód 4 del resultado anterior. de = my (mod 4) => de de = mede (mod 4)...

Tendremos 4 estados: 90,91,92,93, indicando gi: d = i (mod 4). El alfabeto tiene 10 caracteres. El estado inicial ha de ser 1 para verificar la regla ounterior (1 = 1 mod 4 ~> d_1 = d_1 mod 4)

leyendo $372947: 91 \xrightarrow{3} 95/3 \xrightarrow{7} 91/1 \xrightarrow{2} 92/2 \rightarrow$ $\frac{9}{\Rightarrow}$ $\frac{9}{2}/2 \xrightarrow{4} \frac{9}{0}/0 \xrightarrow{7} \frac{9}{0}/0$

R-Mealy-Moore. 1. 0/0 0/0 1/1 MOORE 2. MEALY a/1 3. 610 6/1 001 abba -> 0011

4. 41	thereally a	el en	10000	TRIFIED		1-1-1
2. A	lfabebo	de 3	palida	{↑,↓,←,→,	• }	
3. E	stados?	Indi	Can oul	entación: {qn,	95,90	19E)
δ/ λ	A	I	D_	△	V 4	
79N	9n/1	96/-	95/.			
95	95/4	9E/.	90%			
90	90/4	75/0	9n/•			
9€	9E/>	9 N/.	95/0			

· Maguina de Mealy que codifique un Pacman' que siempre va siguiendo un rastro de comida (C), se puede encontrar con bordes (B) y con casillas vacías (O). Pacman puede avanzar (A), girar a la izquienda (I) o a la derecha (D). Pacman termina (T) cuando no hay comida cerca.

1. Estados? Indican cuenta vuelta ha dado Pacmon;

70144142.10						
8/2	С	B	0			
90	90/A	91/D 92/D 93/D	91/0			
91	90/A	92/0	92/0			
92	90/A	93/D	93/D			
93	90/A	93/T	93/T			

Máguina de Moore que some números en binario.

La máguina lee de derecha a izquierda los números

por parejas de dígitos; 0.1011 + 1.0001 = 111100 0.001

Autómata producto

Producto:

