Analisi Statica delle Risorse in QASM Stima del Numero di Qubit

Damiano Scevola

Alma Mater Studiorum - Università di Bologna

14 luglio 2021

Sommario

Sommario
Computazione Quantistica
Qubit e Registri Quantistici
Misurazioni e Entanglement
Circuiti Quantistici
Esecuzione Simbolica
Stima del Numero di Qubit
Implementazione dell'Analizzatore
Conclusioni
Bibliografia

Computazione Quantistica

Data una macchina (classica o quantistica), sia $n \in \mathbb{N}$ la dimensione della sua memoria (in bit o qubit).

- **Computazione classica**: la macchina in un dato momento assume un singolo stato tra i 2ⁿ possibili. Le istruzioni modificano la memoria facendo evolvere tale stato in modo sequenziale.
- Computazione quantistica: uno stato quantistico è dato dalla sovrapposizione di più stati classici detti "di base" (potenzialmente anche tutti i 2ⁿ). Una singola istruzione tiene conto di tutte le possibili interazioni fra di essi e determina lo stato successivo.

Passando dal classico al quantistico, si ha uno *speedup* esponenziale del tempo di esecuzione: problemi prima inaffrontabili diventano così risolvibili in un tempo ragionevole dai dispositivi quantistici.

Qubit e Registri Quantistici

Prendendo come stati di base i valori 0 e 1 di un bit classico si possono definire i seguenti vettori (usando la *ket notation*)

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Qubit

Un *qubit* $|\psi\rangle$ è una combinazione lineare di $|0\rangle$ e $|1\rangle$ nel campo dei numeri complessi, ovvero (dati $c_0, c_1 \in \mathbb{C}$):

$$|\psi\rangle = c_0 |0\rangle + c_1 |1\rangle = c_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} c_0 \\ c_1 \end{bmatrix}, \ con |c_0|^2 + |c_1|^2 = 1$$

Registri Quantistici

Un registro quantistico di dimensione n è dato dal prodotto tensoriale di n qubit, ad esempio $|\psi\rangle=c_{00}\,|00\rangle+c_{01}\,|01\rangle+c_{10}\,|10\rangle+c_{11}\,|11\rangle$

Misurazioni e Entanglement

Misurazione

Dato un qubit $|\psi\rangle=\begin{bmatrix}c_0\\c_1\end{bmatrix}$, il risultato di una sua misurazione può essere $|0\rangle$ con probabilità $|c_0|^2$, oppure $|1\rangle$ con probabilità $|c_1|^2$. Una volta misurato il qubit, il suo stato collassa sul valore osservato, e si perde l'informazione relativa allo stato precedente.

Entanglement

Dato un registro quantistico di dimensione almeno 2, si ha un entanglement quando la misurazione di un qubit determina il valore di altri qubit senza misurarli direttamente. Esempio:

$$|\psi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

Circuiti Quantistici

Porte Logiche Quantistiche

Lo stato dei qubit può essere modificato applicandogli le porte logiche quantistiche, rappresentabili matematicamente attraverso matrici unitarie. Esempi:

$$H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}, \ ^{C}X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Esecuzione Simbolica

Stima del Numero di Qubit

Implementazione dell'Analizzatore

Conclusioni

Bibliografia