Examenul de bacalaureat național 2019 Proba E. d) Fizică BAREM DE EVALUARE ȘI DE NOTARE

Simulare

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la 10.

A. MECANICĂ (45 de puncte)

Subjectul I

Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	b	3р
2.	d	3р
3.	d	3р
4.	а	3р
5.	c	3р
TOTAL pentru Subiectul I		15p

A. Subiectul al II-lea

II.a.	Pentru:	4p
	$m_{\rm C}g - T_{\rm BC} = m_{\rm C} \cdot a $ 2p	
	a=0	
	rezultat final $T_{BC} = 20 \text{ N}$	
b.	Pentru:	4p
	$T_{BC} - T_{AB} - \mu m_B g = 0 $ 2p	
	$T_{AB} - \mu m_A g = 0 $ 1p	
	rezultat final $\mu = 0.25$	
C.	Pentru:	3р
	$m_{\rm C}g - T_{\rm BC}' = m_{\rm C}a'$	
	$T'_{BC} - F_{fB} = m_B a'$	
	rezultat final $a' = 3,75 \text{ m/s}^2$	
d.	Pentru:	4p
	$F_{ax} = T'_{BC} \cdot \sqrt{2}$	
	rezultat final $F_{ax} \cong 17,6 \text{ N}$	
TOTAL	pentru Subiectul al II-lea	15p

A. Subiectul al III-lea

III.a.	Pentru:	3р
	$E_{A} = E_{B}$	
	$E_A = E_B$ $\frac{k \cdot x^2}{2} = \frac{m_1 \cdot v_B^2}{2}$ 1p	
	rezultat final $v_{\rm B} = 5 \text{ m/s}$	
b.	Pentru:	4p
	$\Delta E_c = L_{F_{71}} $ 1p	
	$\Delta E_c = L_{F_1}$ $\Delta E_c = E_{cC} - E_{cB}$ $L_{F_1} = -\mu m_1 g d$ 1p	
	$L_{F_i} = -\mu m_i g d $ 1p	
	rezultat final $E_{cC} = 0.9 \text{ J}$	

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

C.	Pentru:	4p
	$m_1 \cdot V_C = (m_1 + m_2) \cdot V' $ 3p	
	rezultat final $v' = 2 \text{ m/s}$	
d.	Pentru:	4p
	$\Delta E_c = L_{total}$ 1p	
	$\Delta E_c = L_{total}$ $\Delta E_c = -\frac{(m_1 + m_2) \cdot v'^2}{2}$ 1p	
	$L_{total} = -(m_1 + m_2)gh 1p$	
	rezultat final $h = 0.2 \text{ m}$	
TOTAL	pentru Subiectul al III-lea	15p

B. ELEM Subjectu	ELEMENTE DE TERMODINAMICĂ (45 de biectul I	
Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	C	3p
2.	b	3p
3.	b	3p
4.	d	3p
5.	a	3p
TOTAL	pentru Subiectul I	15p
B. Subie	ctul al II-lea	
II.a.	Pentru:	4p
	$p_{\rm B} = p_0$	
	$\rho_{\rm B}S(L-L_{\rm l}) = \nu_{\rm He}RT$	
	rezultat final $v_{\text{He}} = 0.3 \text{mol}$	
b.	Pentru:	4p
	_L	•
	$pS\frac{L}{2} = v_{He}RT$	
	$pS\frac{L}{2} = (v_{aer} + \Delta v)RT$	
	$v_{aer} = \frac{p_o SL_1}{PT}$	
C.	rezultat final $\Delta v = 0,2$ mol 1p Pentru:	3p
	$\rho_0 S(L - L_1) = \rho S \frac{L}{2}$	
	rezultat final $p = 1.5 \cdot 10^5 \text{N/m}^2$	
d.	Pentru:	4p
	$pS\frac{L}{2} = p'SL_1$	
	$\frac{pSL}{2T} = \frac{p'S(L-L_1)}{T'}$	
	rezultat final $T' = 900 K$ 1p	
TOTAL	pentru Subiectul al II-lea	15p
	ctul al III-lea	
III.a.	Pentru:	3р
	Reprezentarea corectă în coordonate $V-T$ 3p	
b.	Pentru:	4p
	$Q_{12} = \nu C_{V} (T_{2} - T_{1})$ 1p	
	$T_2 = T_3 = 9T_1$	
	$L_{23} = \nu R T_2 \ln 3$	
	rezultat final $L_{23} \cong 3,3 \mathrm{kJ}$	
C.	Pentru:	4p
	$T_4 = 3T_1$	٠,٠
	$Q_{cedat} = vC_{V}(T_{4} - T_{3}) + vC_{p}(T_{1} - T_{4})$ 1p	
	$C_{p} = C_{V} + R$	
	rezultat final $Q_{codat} \cong -8,67 \text{kJ}$ 1p	
d.	Pentru:	4p
	$\eta = 1 - rac{\left Q_{codat} ight }{Q_{primit}}$	
	$Q_{primit} = Q_{12} + Q_{23}$ 1p	
	$Q_{23} = L_{23}$ 1p	
	rezultat final $\eta \cong 23,3\%$	
TOTAL	pentru Subiectul al III-lea	15p

C. PROD	Centrul Naţional de Evaluare şi Examinare UCEREA ŞI UTILIZAREA CURENTULUI CONTINUU	(45 d	e puncte)
Subjectu			T
Nr.Item	Soluţie, rezolvare		Punctaj
I.1.	<u>C</u>		3p
2. 3.	b		3p
4.	a		3p 3p
5.	d		3p
	pentru Subiectul I		15p
	ctul al II-lea		
II.a.	Pentru:		3р
	$U_{V} = I_{A}R_{1}$	2p	
	rezultat final $R_1 = 18\Omega$	1p	
b.	Pentru:		4p
	$E_1 + E_2 = I_A (R_2 + r_1 + r_2) + U_V$	3р	
	rezultat final $R_2 = 23\Omega$	1p	
C.	Pentru:	١٢	4p
0.	$E_1 = I_1(R_1 + r_1)$	2n	ן ד
		2p	
	$U_1 = I_1 \cdot R_1$	1p	
	rezultat final $U_1 = 10.8 \text{ V}$	1p	
d.	Pentru:		4p
	$E_2 = I_2 \left(R_2 + r_2 \right)$	1p	
	$I_{K} = I_1 - I_2$	2p	
	rezultat final $I_{\rm K} \cong 0,18$ A	1p	
TOTAL	pentru Subiectul al II-lea		15p
	ctul al III-lea		100
III.a.	Pentru:		3р
	U_n^2		
	$P_n = \frac{U_n^2}{R_{\rm B}}$	2p	
	rezultat final $R_{\rm B} = 10\Omega$	1p	
b.	Pentru:	<u> </u>	4p
	$U_{MC} = U_{n}$	1p	
		'	
	$I_{MC} = I - \frac{\sigma_n}{R}$	1p	
	$I_{MC} = I - \frac{U_n}{R_B}$ $R_{MC} = \frac{U_{MC}}{I_{MC}}$		
	$R_{\rm MC} = \frac{O_{\rm MC}}{I}$	1p	
	-MC	·	
	rezultat final $R_{MC} = 20 \Omega$	1p	
C.	Pentru:		4p
	$P = P_{MC} + P_{CN}$	1p	
	$P_{\text{MC}} = R_{\text{MC}} \cdot I_{\text{MC}}^2$	1p	
	$P_{\rm CN} = (R_{\rm MN} - R_{\rm MC}) \cdot I^2$	1p	
	rezultat final $P = 92 \text{ W}$		
٦.		1p	A se
d.	Pentru:		4p
	$\eta = \frac{R_{\text{ext}}}{R_{\text{ext}} + r}$	1p	
		·	
	$R_{\rm ext} = \frac{R_{\rm B}R_{\rm MC}}{R_{\rm B} + R_{\rm MC}} + R_{\rm CN}$	1p	
	5	ıρ	
	$R_{\rm CN} = R_{\rm MN} - R_{\rm MC}$	1p	
	rezultat final $\eta = 88\%$	1p	
	pentru Subiectul al III-lea	ı ı	15p

D. OPTICĂ (45 de puncte)

Subjectul I

Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	d	3р
2.	b	3р
3.	C	3р
4.	a	3р
5.	b	3р
TOTAL pentru Subiectul I		15p

D. Subjectul al II-lea

D. Subie	ctul al II-lea	
II.a.	Pentru:	4p
	1 1 1	
	$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f}$	
	·	
	rezultat final: $f = 20 \text{ cm}$	
b.	Pentru:	4p
	$\begin{vmatrix} \cdot & \cdot \\ \cdot & \cdot \end{vmatrix}$	
	$\int_{-\infty}^{\infty} \frac{1}{(n-1)^{n-1}} \frac{1}{(n-1)^{n-1}}$	
	$f = \frac{1}{(n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)}$ 2p	
	$R_1 = -R_2 = R$	
	rezultat final: $R = 20 \text{ cm}$	
C.	Pentru:	3р
	$A_{\alpha} = Y_2 = X_2$	
	$\beta = \frac{y_2}{y_1} = \frac{x_2}{x_1}$ 1p	
	v + h = v	
	$\beta = \frac{y_2 + h_2}{y_1 - h_1} = \frac{x_2}{x_1}$	
	rezultat final: $h_1 = 1 \text{ cm}$	
d.	Pentru:	4p
	1 1 1	
	$\frac{1}{x_2 + \Delta x_2} - \frac{1}{x_1 - d_1} = \frac{1}{f}$	
	$\Delta x = d_1 + \Delta x_2 $ 1p	
	rezultat final: $ \Delta x = 10$ cm	
	sensul deplasării este spre lumânare 1p	
TOTAL	pentru Subiectul al II-lea	15p

D. Subiectul al III-lea

III.a.	Pentru:	3р
	$i_1 = \frac{\lambda_1 D}{2\ell}$ $i_2 = \frac{\lambda_2 D}{2\ell}$ 1p	
	$i_2 = \frac{\lambda_2 D}{2\ell}$	
	rezultat final: $\lambda_2 = 600 \text{nm}$	
b.	Pentru:	4p
	$x_k = k_1 \frac{\lambda_1 D}{2\ell}, \ k_1 \in Z $	
	$x_k = k_2 \frac{\lambda_2 D}{2\ell}, \ k_2 \in Z $	
	$\frac{k_1}{k_2} = \frac{\lambda_2}{\lambda_1} = \frac{3}{2}$	
	rezultat final: $x_{k_{\min}} = 2.4 \text{ mm}$	

Ministerul Educaţiei Naţionale Centrul Naţional de Evaluare şi Examinare

C.	Pentru:	4p
	$i_1' = \frac{\lambda_1 D'}{2\ell}$	
	$\frac{\lambda_1 D'}{2\ell} = \frac{\lambda_2 D}{2\ell}$	
	$\Delta D = D' - D$	
	rezultat final: $\Delta D = 1 \text{ m}$	
d.	Pentru:	4p
	$i_2' = \frac{i_2}{n}$	
	$i_2' = i_2 - \frac{25}{100}i_2$ 1p	
	rezultat final: $n = \frac{4}{3}$	
TOTAL	pentru Subiectul al III-lea	15p