

Smart Contract Based Decentralized Parking Management in ITS

Pranav Kumar Singh, Roshan Singh, Sunit Kumar Nandi and Sukumar Nandi

Department Computer Science and Engineering, IITG, CITK and NIT AP, India

Overview

- Introduction
- Problem Statement
- Motivation
- Related Work
- Proposed Mechanism
- Experimental Setup
- Results
- Conclusion

Parking

- Due to rise in the number of smart vehicles on the road, ITS is becoming a necessity.
- Problem of Parking: Much more prominent in urban areas and major causes of traffic congestion and air pollution
- Finding space: Much more difficult and frustrating to the drivers.

Source: styleweekly.com

Problem Statement

- Current cloud based Parking Services are prone to single point of failure
- Have availability issues.
- Customers does not have freedom to compare
 - Quality and
 - Cost of services
- Installation and Maintenance are costly.
- Lack of transparency

Source: China Unicom Shanghai

Motivation

- Implement a Decentralized System to provide
 - High availability.
 - Transparency to the system.
 - Common Platform to service providers and customers.
 - Better parking services to the drivers.
- Enable Individuals/small parking lots provider a platform to provide the service.
- Removing the need of trust on untrusted and unknown parties.

Related Work

- There exist a significant number of work for centralized parking management using technologies such as
 - ➤ Wi-Fi.
 - > WSNs. [12, 15, 18]
 - > RFID. [10]
 - ➤ IoT [3,5,14]
- Very Few Studies proposed decentralized architecture. [1]
- ➤ No significant contribution in the domain of parking management systems using blockchain technology [2]
- Blockchain with smart contracts has the potential to felicitate security (from inside and outside attack), availability, reliability, and trust in the parking systems

Proposed System Architecture

- > Traffic Authority:
 - Deploys RSU and Smart Contract,
 - Does vehicle registration,
 - Does parking lot registration.
- > RSUs:
 - ☐ Primarily maintains the Blockchain.
- IoT Device at Parking Lot :
 - □ Senses the vehicle address and checks status from the blockchain.
- Intelligent Vehicle :
 - Executes transactions for various Parking processes.

Community Services

Blockchain Technologies Used

Ethereum:

- Public permissionless blockchain platform allows to setup a private and permissioned instance of the chain.
- Supports smart contracts (application specific code deployed on the blockchain).
- **Smart Contract:**
 - ☐ A bunch of self-executable code sitting on top of a blockchain.
 - Consists of well-defined conditions and their corresponding actions.
 - Triggered by the Transactions.

Source: Edureka

Execution

Avoid Manual Error

Backups

Experimental Setup

Fig. 3. Full node and miner setup

Fig. 4. Vehicle OBU

Fig. 5. IoT device at parking lot

Table 1. Devices and their Role

Device name	No. of device	Geth version	Role
Dell-Vostro (8 GB RAM, i7-7700 CPU, 1 TB HDD)	1	v1.8.17-stable release	RSU/TA
Lenovo G-5080 laptop (4 GB RAM, Intel Core i5 processor, 1 TB HDD)	1	geth-linux-amd64-1.8.22	RSU
Raspberry Pi 3	1	geth 1.8.18 ARMv7	Vehicle OBU
nodeMCU	1		IoT device

System Characteristics

- > Search for availability of a parking lot in an area.
- Can view the price charged by a parking lot.

A driver can book a parking lot.

A driver can cancel a booking.

Fig. 6. GUI at the vehicle end

Results

- We analyze the performance by evaluating the average throughput
- Consider throughput as the number of successful transactions per second
- Average throughput = An average of throughput over execution time.
- Batch of Tx = 1, 10, 50, 100, 250, 500, 750, 1000, 1100, 1200, 1300, 1400 and 1500
- Average was calculated over five independent runs for each set of transactions.

Fig. 7. Average throughput

Discussion

From the results, we can say that

- The behavior of the proposed system follows the properties of ethereum blockchain and performance remains same.
- > Even for large set of transactions the average throughput is almost consistent.

Conclusion

- Our work presented a framework and a prototype implementation of a decentralized parking management in ITS using blockchain.
- Proposed system allowed drivers to find the best parking lot of their choice.
- It can provide common platform to various PZMs to attract vehicles to use their parking area thus helping them to generate money.
- ➤ The lower transaction throughput and the power consuming PoW based consensus mechanism used for maintaining true decentralized blockchain can be a bottleneck in its public grade implementation.

Future Work

- As a future work, we will try to integrate more features in our current system and will introduce more decentralized ITS related services.
- > We will also explore other low power consuming consensus mechanisms for implementation.

References

- 1. Alam, M., et al.: Real-time smart parking systems integration in distributed its for smart cities. J. Adv. Transp. 2018 (2018)
- 2. Amato, G., Carrara, F., Falchi, F., Gennaro, C., Meghini, C., Vairo, C.: Deep learning for decentralized parking lot occupancy detection. Expert Syst. Appl. 72, 327–334 (2017)
- 3. Kong, X.T., Xu, S.X., Cheng, M., Huang, G.Q.: lot-enabled parking space sharing and allocation mechanisms. IEEE Trans. Autom. Sci. Eng. 99, 1–11 (2018)
- 4. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 839–858. IEEE (2016)
- 5. Kubler, S., Robert, J., Hefnawy, A., Cherifi, C., Bouras, A., Fr'amling, K.: IoT based smart parking system for sporting event management. In: Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pp. 104–114. ACM (2016)
- 6. Lin, T., Rivano, H., Le Mou^el, F.: A survey of smart parking solutions. IEEE Trans. Intell Transp. Syst. 18(12), 3229–3253 (2017)
- 7. Lu, R., Lin, X., Zhu, H., Shen, X.: SPARK: a new VANET-based smart parking scheme for large parking lots. In: IEEE INFOCOM 2009, pp. 1413–1421. IEEE (2009)
- 8. Mei, Z., Feng, C., Ding, W., Zhang, L., Wang, D.: Better lucky than rich? Comparative analysis of parking reservation and parking charge. Transp. Policy 75, 47–56 (2019)
- 9. Nakamoto, S., et al.: Bitcoin: a peer-to-peer electronic cash system (2008)
- 10. Pala, Z., Inanc, N.: Utilizing RFID for smart parking applications. Facta Univ.-Ser. Mech. Eng. 7(1), 101–118 (2009)
- 11. Szabo, N.: Formalizing and securing relationships on public networks. First Monday 2(9), (1997)
- 12. Tang, V.W., Zheng, Y., Cao, J.: An intelligent car park management system based on wireless sensor networks. In: 2006 First International Symposium on Pervasive Computing and Applications, pp. 65–70. IEEE (2006)
- 13. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151, 1–32 (2014)
- 14. Yan, G., Yang, W., Rawat, D.B., Olariu, S.: Smartparking: a secure and intelligent parking system. IEEE Intell. Transp. Syst. Mag. 3(1), 18–30 (2011)
- 15. Yang, J., Portilla, J., Riesgo, T.: Smart parking service based on wireless sensor networks. In: 38th Annual Conference on IEEE Industrial Electronics Society, IECON 2012, pp. 6029–6034. IEEE (2012)
- 16. Yuan, C., Fei, L., Jianxin, C., Wei, J.: A smart parking system using WiFi and wireless sensor network. In: 2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), pp. 1–2. IEEE (2016)
- 17. Zhang, J., Wang, F.Y., Wang, K., Lin, W.H., Xu, X., Chen, C.: Data-driven intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 12(4), 1624–1639 (2011)
- 18. Zhang, Z., Li, X., Yuan, H., Yu, F.: A street parking system using wireless sensor networks. Int. J. Distrib. Sens. Netw. 9(6), 107975 (2013)