Analysis of Graduate Data

```
In [ ]:
```

Loading the Dependables

```
In [2]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
```

Loading the data set

```
In [4]: # Setting the file path
file_path = 'Reward_Program_Assignment_Input_v6 - TA.xlsx'
# Loading the data
df = pd.read_excel(file_path, sheet_name='Raw_Reward_Data')
```

```
In [5]: # Initial EDA

df.head()
```

Out[5]:		${\bf Member_Name_Sumame_Per_Redemption}$	Reward_Received	Brand	Reward_Value_Amount_in_Dolla
	0	Jane Smith	Amazon Gift Card	Uber	
	1	David Thompson	Coursera Subscription	Amazon	
	2	James Wilson	Netflix Gift Card	Coursera	
	3	David Thompson	Spotify Subscription	Amazon	
	4	Alice Johnson	Spotify Gift Card	Coursera	

```
In []:
```

Task 1

```
In [ ]:
In [9]: # Check for duplicates based on all columns
   num_duplicates = df.duplicated().sum()
```

```
# Print the total Number of Duplicates in the data
print(num_duplicates)
```

0

Observation: There are no duplicates in the data set or it is safe to say that the data set is already cleaned before given for this assignment

```
In [10]: # Remove duplicates
    df_cleaned = df.drop_duplicates()

# Save the cleaned dataset to a new Excel file
    cleaned_file_path = 'cleaned_graduate_data.xlsx'
    df_cleaned.to_excel(cleaned_file_path, index=False)

# Summary of cleaning process
    summary = f"Total duplicates found and removed: {num_duplicates}\n"
    summary += f"Remaining records after cleaning: {df_cleaned.shape[0]}"
    print(summary)

Total duplicates found and removed: 0
    Remaining records after cleaning: 100
In []:
```

Task 3

```
In [ ]:
          df = pd.read_excel("cleaned_graduate_data.xlsx")
          df.head()
In [14]:
Out[14]:
             Member_Name_Surname_Per_Redemption Reward_Received
                                                                         Brand Reward_Value_Amount_in_Dolla
          0
                                          Jane Smith
                                                      Amazon Gift Card
                                                                          Uber
                                                             Coursera
          1
                                     David Thompson
                                                                       Amazon
                                                          Subscription
          2
                                                       Netflix Gift Card
                                        James Wilson
                                                                      Coursera
                                                               Spotify
          3
                                     David Thompson
                                                                       Amazon
                                                          Subscription
          4
                                        Alice Johnson
                                                       Spotify Gift Card Coursera
In [ ]:
In [57]:
          # Descriptive Statistics
          df.describe()
```

Out[57]:		$Reward_Value_Amount_in_Dollars$	${\bf Time_to_Reward_Received_in_Seconds}$	Redemptions_by_User	P
	count	100.000000	100.000000	100.00000	
	mean	48.350000	28.640000	5.29000	
	std	32.791467	16.472518	2.71656	
	min	10.000000	1.000000	1.00000	
	25%	25.000000	14.750000	3.00000	
	50%	50.000000	31.000000	5.00000	
	75%	75.000000	41.250000	8.00000	
	max	100.000000	59.000000	9.00000	
<				:	>
In []:					

Analysis:

1. Distribution of Graduates by Country:

This will help us understand where most of the graduates are located, which can inform region-based engagement strategies.

2. Popular Rewards and Brands:

We'll analyze which rewards and brands are the most frequently redeemed, indicating potential preferences.

3. Satisfaction Rating Analysis:

We'll examine satisfaction ratings to determine how happy graduates are with the rewards they receive.

4. Redemption Frequency:

We'll look into how frequently individuals are redeeming rewards, and the relationship between redemptions and satisfaction.

5. Cost vs. Satisfaction:

We'll explore whether higher-cost redemptions me know how you'd like to proceed!

```
In [ ]:
```

1. Distribution of Graduates by Country

```
In [48]: # Distribution of graduates by country
graduates_by_country = df['Country'].value_counts()
```

```
# Print the distribution
         print("Distribution of Graduates by Country:")
         graduates_by_country
         Distribution of Graduates by Country:
         Country
Out[48]:
         Kenya
                          62
         Rwanda
                          22
                         10
         Nigeria
         South Africa
                          6
         Name: count, dtype: int64
        # Plot the distribution
In [49]:
         plt.figure(figsize=(8, 6))
         graduates_by_country.plot(kind='barh', color='skyblue')
         plt.title('Distribution of Graduates by Country')
         plt.xlabel('Number of Graduates')
         plt.ylabel('')
         plt.tight layout()
         plt.show()
```

Distribution of Graduates by Country

In []:

2. Popular Rewards and Brands

```
In [52]: # Popular rewards
popular_rewards = df['Reward_Received'].value_counts()
print("Most Popular Rewards:")
popular_rewards
```

```
Most Popular Rewards:
         Reward Received
Out[52]:
         Amazon Gift Card
                                   15
         Coursera Gift Card
                                   13
         Spotify Subscription
                                   12
         Uber Gift Card
                                   11
         Uber Subscription
                                   10
         Spotify Gift Card
                                    9
         Amazon Subscription
                                    9
         Netflix Subscription
                                    8
         Coursera Subscription
                                    7
         Netflix Gift Card
         Name: count, dtype: int64
```

```
In [51]: # Plot popular rewards
plt.figure(figsize=(8, 6))
popular_rewards.head(5).plot(kind='barh', color='lightgreen')
plt.title('Top 5 Popular Rewards')
plt.xlabel('Number of Redemptions')
plt.ylabel('')
plt.xticks()
plt.tight_layout()
plt.show()
```



```
In []:
In [53]: # Popular brands
popular_brands = df['Brand'].value_counts()
print("Most Popular Brands:")
popular_brands
```

```
Most Popular Brands:
Brand
Coursera 24
Netflix 22
Amazon 20
Spotify 20
Uber 14
Name: count, dtype: int64
```

```
In [54]: # Plot popular brands
plt.figure(figsize=(8, 6))
popular_brands.head(5).plot(kind='barh', color='orange')
plt.title('Top 5 Popular Brands')
plt.xlabel('Number of Redemptions')
plt.ylabel('')
plt.ylabel('')
plt.tight_layout()
plt.show()
```


3. Satisfaction Rating Analysis

```
In [46]: # Descriptive statistics for satisfaction rating
    satisfaction_stats = df['Satisfaction_Rating_on_Reward'].describe()
    print("Satisfaction Rating Statistics:")
    satisfaction_stats
```

Satisfaction Rating Statistics:

In []:

```
count
                   100.000000
Out[46]:
                     3.918829
          mean
         std
                     0.564479
          min
                     3.007999
          25%
                     3.413431
          50%
                     3.872438
          75%
                     4.314277
                     4.963540
          max
```

Name: Satisfaction_Rating_on_Reward, dtype: float64

```
In [47]: # Plot satisfaction rating distribution
  plt.figure(figsize=(8, 6))
  df['Satisfaction_Rating_on_Reward'].plot(kind='hist', bins=10, color='purple', edgecol
  plt.title('Distribution of Satisfaction Ratings')
  plt.xlabel('Satisfaction Rating')
  plt.ylabel('Frequency')
  plt.tight_layout()
  plt.show()
```



```
In [ ]:
In [ ]:
```

4. Redemption Frequency

```
In [44]: # Descriptive statistics for redemption frequency
  redemptions_stats = df['Redemptions_by_User'].describe()
  print("Redemptions by User Statistics:")
  redemptions_stats
```

```
Redemptions by User Statistics:
                   100.00000
         count
Out[44]:
         mean
                     5.29000
         std
                     2.71656
                     1.00000
         min
         25%
                     3.00000
         50%
                     5.00000
         75%
                     8.00000
                     9.00000
         max
         Name: Redemptions by User, dtype: float64
```

```
In [45]: # Plot redemption frequency
plt.figure(figsize=(8, 6))
df['Redemptions_by_User'].plot(kind='hist', bins=10, color='red', edgecolor='black')
plt.title('Distribution of Redemptions by User')
plt.xlabel('Number of Redemptions')
plt.ylabel('Frequency')
plt.tight_layout()
plt.show()
```


5. Cost vs. Satisfaction Correlation

```
In [43]: # Correlation between cost per redemption and satisfaction rating
    cost_satisfaction_corr = df[['Cost_Per_Redemption_in_Dollars', 'Satisfaction_Rating_or
    cost_satisfaction_corr
```

Out[43]:

Cost Per Redemption in Dollars Satisfaction Rating on Reward

Cost_Per_Redemption_in_Dollars	1.000000	-0.055561
Satisfaction_Rating_on_Reward	-0.055561	1.000000

```
In [40]: # Scatter plot of Cost vs Satisfaction Rating
  plt.figure(figsize=(8, 6))
  plt.scatter(df['Cost_Per_Redemption_in_Dollars'], df['Satisfaction_Rating_on_Reward'],
  plt.title('Cost vs Satisfaction Rating')
  plt.xlabel('Cost per Redemption (Dollars)')
  plt.ylabel('Satisfaction Rating')
  plt.tight_layout()
  plt.show()
```



```
In [ ]:
In [ ]:
```

A detailed Breakdown of the insights is found in the ReadMe file Attached the repository

Analysis_NoteBook

In	[]:	
In	[]:	
In]:	
In	[]:	
In	[]:	