1. Матрица смежности

	1	2	3	4	5	6
1	0	1	0	0	0	0
2	0	0	1	0	1	0
3	1	1	0	0	0	0
4	0	0	1	0	0	1
5	0	0	0	1	0	0
6	0	0	1	0	0	1

Список смежности

1:2

2: 3, 5

3: 1, 2

4: 3, 6

5: 4

6: 3, 6

Преимущество матрицы в том, что с ней удобнее работать: от одной вершины к другой можно перейти, просто обратясь к соответствующему элементу матрицы. Преимущество списка смежности в том, что он позволяет экономить много памяти, если граф разреженный.

2. Можно, например, в счётчике хранить то количество вершин, которое было посещено, и, сравнивая с общим количеством вершин, проверять, остались ли ещё свободные вершины.

С практической точки зрения стоит использовать следующий критерий: отслеживать, что, например, минимальный путь перестал меняться. Это свидетельствует о том, что мы рассматриваем те части графа, где путь только увеличивается. Для этого можно использовать счётчики.

3.

```
class Reducer
method Reduce(nid m, [p1, p2, . . .])
M ← Ø
for all p ∈ counts [p1, p2, . . .] do
if IsNode(p) then
M ← p
else
s ← s + p
M.PageRank ← s*(1-α) + α/N
Emit(nid m, node M)
```