Distributed Computing and Introduction to High Performance Computing

Ahmed Ratnani¹

¹Mohammed VI Polytechnic University, Benguerir, Morocco

Outline of this lecture

- A brief introduction on hardwares
- Modern supercomputers
- Overview of Parallel Programming models
- Walls of modern supercomputers

Modern architecture (CPU)

Moore's Law

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at Our/WorldinData.org. There you find more visualizations and research on this topic.

The data visualization is available at OurwondinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser

Moore's Law

CPU vs RAM speeds

CPU vs RAM speeds

Common Processors

Processor	Launched	Number of Cores	Freq.
Xeon Platinum 9282 (formerly Cascade Lake)	2019-Q2	4-56	2.3-3.6 Ghz
E3-1500 v6 (Mobile, 7th generation)	2017-Q1	2-4	2.1-3.0 Ghz
Xeon D-1500 (formerly Broadwell)	2016-Q1	8-10	1.6-2.4 Ghz
E3-1200 v5 (Desktop, 6th generation)	2015-Q4	2-8	1.5-2.2 Ghz
Xeon E5-2600 v3 (formerly Haxwell)	2015-Q3	4	2-2.8 Ghz

Table: Some Intel processors

L2 cache	Number of Cores	Freq.
16 MB	16	2.8-3.5 Ghz
4 MB	4	4.0-4.2 Ghz
1 MB	2	3.5-3.9 Ghz
	16 MB 4 MB	16 MB 16 4 MB 4

Table: Some AMD processors

→ others: ARM (cortex, ...), FPGA, ...

What is a supercomputer?

Cluster

What is a supercomputer?

Summit ORNL (USA)

Top 500 Family system share evolution

November 2009

Top 500 Family system share evolution

November 2011

Top 500 Family system share evolution

November 2015

Top 500 Family system share evolution

November 2017

Top 500 Family system share evolution

Juin 2019

What is Parallel Programming?

Serial problem

What is Parallel Programming?

Parallel problem

Parallel strategies

Setting

Parallel strategies

Setting

data parallelism

Parallel strategies

Setting

task parallelism

Parallel infrastructures

shared memory

Parallel infrastructures

distributed memory

Walls of modern supercomputers

- Programming wall
 - writing parallel codes is time-consuming
- Memory wall
 - Latency of the memory is decreasing very slowly
 - Concurence: number of cores per memory module is increasing
 - Technological advances on memory are very slow
- Portability wall
 - CPUs, GPUs, FPGAs
 - Portability is mandatory
- Power wall
 - Dissipated power $\sim \omega^3$ (freq.)
 - Dissipated power per cm^2 is limited by the cooling system
 - Power costs are expensive (critical for Exascales)

Walls of modern supercomputers

- The computing power of supercomputers is doubling every year (faster than Moore's Law, but electrical consumption is also increasing).
- The number of cores is increasing rapidly (massively parallel (IBM Blue Gene Q) and many-cores architectures (Intel Xeon Phi, GPUs)).
- Emergence of heterogeneous accelerated architectures (standard processors coupled with GPU).
- Machine architecture is becoming more complex and the number of layers increasing (processors/cores, memory access, network and I/O).
- Memory per core has been stagnating and is beginning to decrease.
- Performance per core is stagnating and is much lower on some machines than on a simple laptop (IBM Blue Gene).
- Throughput towards the disk and memory is increasing more slowly than the computing power.

Walls of modern supercomputers

Consequences

Consequences for the applications

- It is necessary to exploit a large number of relatively slow cores.
- Tendancy for individual core memory to decrease: Necessity to not waste memory.
- Higher level of parallelism continually needed for the efficient usage of modern architectures (regarding both computing power and memory size).
- The I/O also becoming an increasingly current problem.

Consequences for the developers

- The time has ended when you only needed to wait a while to obtain better performance (i.e. stagnation of computing power per core).
- Increased necessity to understand the hardware architecture.
- More and more difficult to develop codes on your own (need for experts in HPC as well as multi-disciplinary teams).