The South African Mathematical Olympiad Third Round 2006 Senior Division (Grades 10 to 12) Solutions

1.

$$\frac{2121212121210}{1121212121211} = \frac{212121212121210 \div 3}{112121212121211 \div 3}$$
$$= \frac{707070707070}{3737373737}$$
$$= \frac{70 \times 10101010101}{37 \times 10101010101}$$
$$= \frac{70}{37}$$

- 2. B is on the circle with midpoint C and radius 1. Then \widehat{A} reaches its maximum value if AB is tangent to the circle $(\sin \widehat{A} = \frac{\sin \widehat{B}}{2}$ reaches a maximum if $\sin \widehat{B}$ reaches a maximum, i.e., if $\widehat{B} = 90^{\circ}$.) In this case, $\sin \widehat{A} = 1/2$, giving $\widehat{A} = 30^{\circ}$.
- 3. Note that $14^2=196$. Suppose that the square of n=m+14 also ends in 196, for some integer m. Then $1000\,|\,n^2-14^2$, i.e., $1000\,|\,m(m+28)$, and it follows that m is a multiple of 4, otherwise it is either odd (which contradicts $1000\,|\,m(m+28)$), or it is of the form $4\alpha+2$ (which forces $250\,|\,(2\alpha+1)(2\alpha+15)$, another contradiction). Say m=4b. Then $250\,|\,2b(b+7)$, so that $125\,|\,b(b+7)$. Since b and b+7 do not have 5 as a common factor, we have two possibilities:
 - (a) b = 125k for some $k \in \mathbb{Z}$. Then m = 500k, i.e., n = 500k + 14.
 - (b) b+7=125k for some $k\in\mathbb{Z}.$ Then m=500k-28, i.e., n=500k-14.

It is easily checked that $(500k \pm 14)^2 \equiv 196 \pmod{1000}$ for all $k \in \mathbb{Z}$. The positive integers, the squares of which end in 196, is therefore given by the set $\{14\} \cup \{500k \pm 14 : k \in \mathbb{Z}, k > 0\}$.

4. Solution I (Geometrical): Construct DE, with E on BC, such that BE = BD. Construct DF, with F on AB, such that FD \parallel BC. Since B \widehat{D} E = B \widehat{E} D = 80°, we have $C\widehat{E}D = 100^\circ$ and $C\widehat{D}E = 40^\circ$. Furthermore, $A\widehat{F}D = A\widehat{D}F = 40^\circ$ and

BF = DC are consequences of FD \parallel BC. It follows that F $\widehat{D}B = 20^{\circ} = F\widehat{B}D$, and we see that BF = FD = DC. But then triangles AFD and ECD are congruent (FD = CD, and all angles coincide), implying that AD = EC. Consequently, BC = BE + EC = BD + AD.

Solution II (Trigonometrical) by Poobhalan Pillay: Assume, without loss of generality, that AB = AC = 1. Then $BC = 2\cos 40^{\circ}$. By the sine rule in triangle ABD,

$$AD = \frac{\sin 20^{\circ}}{\sin 60^{\circ}} \text{ and } BD = \frac{\sin 100^{\circ}}{\sin 60^{\circ}},$$

giving

$$AD + BD = \frac{\sin(60^{\circ} - 40^{\circ}) + \sin(60^{\circ} + 40^{\circ})}{\sin 60^{\circ}} = \frac{2\sin 60^{\circ}\cos 40^{\circ}}{\sin 60^{\circ}} = BC.$$

5. Solution I (by Dirk Laurie): Every allowable k-element subset corresponds to a way of choosing k out of a row of 10 objects so that no two are adjacent, e.g.

Remove k-1 unselected objects, one form each gap, e.g.

This establishes, for each $k \ge 2$, a one-to-one correspondence between allowable subsets of $\{1,2,\ldots,10\}$ containing k elements, and the number of ways of choosing k out of 10-k+1 objects. It follows that there are

$$\binom{9}{2} + \binom{8}{3} + \binom{7}{4} + \binom{6}{5} = 36 + 56 + 35 + 6 = 133$$

allowable subsets.

Solution II (by Johan Meyer): Let s_n be the number of allowable subsets of $\{1,2,\ldots,n\}$. Clearly $s_1=s_2=0$. Suppose S is an allowable subset of $\{1,2,\ldots,n+1\}$, and let $T=S\cap\{1,2,\ldots,n\}$. If $n+1\notin S$, then T=S. If $n+1\in S$, then either T is an allowable subset of $\{1,2,\ldots,n-1\}$ or $T=\{k\}$, with $k\in\{1,2,\ldots,n-1\}$. Hence

$$s_{n+1} = s_n + s_{n-1} + n - 1.$$

This gives $s_3 = 1$, $s_4 = 3$, $s_5 = 7$, $s_6 = 14$, $s_7 = 26$, $s_8 = 46$, $s_9 = 79$, $s_{10} = 133$.

6. Solution I (by Johan Meyer): To solve (a), it is sufficient to show that the sequence $f(1), f(2), f(3), \ldots$ contains a strictly increasing subsequence. We find (using $\lfloor x \rfloor + \lfloor y \rfloor \leqslant \lfloor x + y \rfloor$) that:

$$\begin{split} f(2n) &= \frac{1}{2n} \left(\left\lfloor \frac{2n}{1} \right\rfloor + \left\lfloor \frac{2n}{2} \right\rfloor + \left\lfloor \frac{2n}{3} \right\rfloor + \dots + \left\lfloor \frac{2n}{2n} \right\rfloor \right) \\ &\geqslant \frac{1}{2n} \left(2 \left\lfloor \frac{n}{1} \right\rfloor + 2 \left\lfloor \frac{n}{2} \right\rfloor + \dots + 2 \left\lfloor \frac{n}{n} \right\rfloor + \left\lfloor \frac{2n}{n+1} \right\rfloor + \dots + \left\lfloor \frac{2n}{2n} \right\rfloor \right) \\ &> \frac{1}{2n} \left(2 \left\lfloor \frac{n}{1} \right\rfloor + 2 \left\lfloor \frac{n}{2} \right\rfloor + \dots + 2 \left\lfloor \frac{n}{n} \right\rfloor \right) \\ &= \frac{1}{n} \left(\left\lfloor \frac{n}{1} \right\rfloor + \left\lfloor \frac{n}{2} \right\rfloor + \dots + \left\lfloor \frac{n}{n} \right\rfloor \right) \\ &= f(n). \end{split}$$

This gives a strictly increasing subsequence $f(1) < f(2) < f(4) < f(8) < \cdots$.

To solve (b), we note that if $p\geqslant 3$ is prime and $2\leqslant k\leqslant p-1$, then the integral parts of $\frac{p}{k}$ and $\frac{p-1}{k}$ coincide, i.e., $\lfloor \frac{p}{k}\rfloor = \lfloor \frac{p-1}{k}\rfloor$. Let $S_p = \sum_{k=2}^{p-1} \lfloor \frac{p}{k}\rfloor = \sum_{k=2}^{p-1} \lfloor \frac{p-1}{k}\rfloor$. Then $f(p) = \frac{1}{p}(p+S_p+1) = 1 + \frac{1}{p}(S_p+1)$ and $f(p-1) = 1 + \frac{1}{p-1}S_p$, so that f(p-1) - f(p) > 0 if and only if $S_p > p-1$. But if we choose $p\geqslant 7$, then $S_p > p-1$, since, in this case, $\frac{p-1}{2}\geqslant 3, \frac{p-1}{3}\geqslant 2$, and $\frac{p-1}{k}\geqslant 1$ for $4\leqslant k\leqslant p-1$. As there are infinitely many primes, (b) is solved.

Solution II (by Dirk Laurie): Let g(n) = nf(n). Note that $\lfloor \frac{n}{k} \rfloor - \lfloor \frac{n-1}{k} \rfloor = 0$ except when k is a divisor of n, in which case $\lfloor \frac{n}{k} \rfloor - \lfloor \frac{n-1}{k} \rfloor = 1$. It follows that g(n) = g(n-1) + d(n), where d(n) is the number of positive divisors of n, giving $f(n) = (d(1) + d(2) + \cdots + d(n))/n$, That is to say, f(n) equals the arithmetic mean of $d(1), d(2), \ldots, d(n)$. Thus, it is sufficient to prove that d(n+1) > f(n) infinitely often, and d(n+1) < f(n) infinitely often.

Now d(1)=1, and when n>1, $d(n)\geqslant 2$, with equality if and only if n is prime. Since $f(6)=\frac{7}{3}$, it follows that f(n)>2 for all $n\geqslant 6$.

- (a) Since $d(2^k)=k+1$, the sequence $d(1),d(2),d(3),\ldots$ is unbounded, and it happens infinitely often that $d(n+1)>\max\{d(1),d(2),\ldots,d(n)\}$. For all such n,d(n+1)>f(n).
- (b) Since there are infinitely many primes, it happens infinitely often that d(n+1) = 2. For all such n, d(n+1) < f(n).