

SIMCOM Ltd,. 14 Apr. 2006

Document Name: SIM300C Hardware Interface Description

Version: **01.11**

Date: 2006-04-14

Doc Id: **SIM300C_HD_V1.11**

Status: Release

General Notes

Simcom offers this information as a service to its customers, to support application and engineering efforts that use the products designed by Simcom. The information provided is based upon requirements specifically provided to Simcom by the customers. Simcom has not undertaken any independent search for additional relevant information, including any information that may be in the customer's possession. Furthermore, system validation of this product designed by Simcom within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

Copyright

This document contains proprietary technical information which is the property of SIMCOM Limited., copying of this document and giving it to others and the using or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights reserved in the event of grant of a patent or the registration of a utility model or design. All specification supplied herein are subject to change without notice at any time.

Copyright © SIMCOM Limited. 2006

Contents

Contents	3
Version History	7
1 Introduction	8
1.1 Related documents	8
1.2 Terms and abbreviations	9
2 Product concept	12
2.1 SIM300C key features at a glance	
3 Application Interface	
3.1 SIM300C Pin description	15
3.2 Operating modes	17
3.3 Power supply	19
3.3.1 Power supply pins on the DIP connector	19
3.3.2 Minimizing power losses	20
3.3.3 Monitoring power supply	
3.4 Power up and power down scenarios	20
3.4.1 Turn on SIM300C	20
3.4.2 Turn off SIM300C	22
3.4.3 Restart SIM300C using the PWRKEY pin	
3.5 Charging interface	25
3.5.1 Battery pack characteristics	26
3.5.2 Recommended battery pack	26
3.5.3 Implemented charging technique	27
3.5.4 Operating modes during charging	28
3.5.5 Charger requirements	29
3.6 Power saving	29
3.6.1 Minimum functionality mode	29
3.6.2 Sleep mode (Slow Clocking mode)	30
3.6.3 Wake up SIM300C from SLEEP mode	30
3.7 Summary of state transitions (except SLEEP mode)	30
3.8 RTC backup	31
3.9 Serial interface	34
3.9.1 Function of Serial Port supporting	35
3.9.2 Software upgrade and Serial Port	36
3.10 Audio interfaces	37
3.10.1 Speaker interface configuration	38
3.10.2 Microphone interfaces configuration	39
3.10.3 Earphone interface configuration	
3.10.4 Referenced Electronic Characteristic	40
3.11 Buzzer	41
3.12 SIM card interface	41
2 12 1 SIM aard application	11

3.12.2 Design considerations for SIM card holder	43
3.13 LCD interface	
3.14 ADC	45
3.15 Behaviors of the /RING line (Serial port1 interface only)	46
3.16 Network status indication LED lamp	
3.17 General Purpose Input Output (GPIO)	
4 Antenna interface	
4.1 Antenna installation	49
4.1.1 Antenna connector	49
4.1.2 Antenna pad	49
4.2 Module RF output power.	49
4.3 Module RF receive sensitivity	
4.4 Module receive/transmit frequency	50
4.5 Antenna gain.	
5 Electrical, reliability and radio characteristics.	51
5.1 Absolute maximum ratings	51
5.2 Operating temperatures	51
5.3 Power supply ratings	52
5.4 Current Consumption	53
5.5 Electro-Static discharge	54
6 Mechanics	55
6.1 Mechanical dimensions of SIM300C	55
6.2 Mounting SIM300C onto the application platform	
6.3 connector	55
6.3.1 Mechanical dimensions of the ASTRON 1590060-093	56
6.4 RF Adapter cabling	57
6.5 PIN assignment of DIP connector of SIM300C	59
Table index:	
TABLE 1: RELATED DOCUMENTS	8
TABLE 2: TERMS AND ABBREVIATIONS	9
TABLE 3: SIM300C KEY FEATURES	13
TABLE 4: CODING SCHEMES AND MAXIMUM NET DATA RATES OVER AIR INTERFACE	14
TABLE 5: DIP CONNECTOR PIN DESCRIPTION	15
TABLE 6: OVERVIEW OF OPERATING MODES	17
TABLE 7: AT COMMANDS USED IN ALARM MODE	22
TABLE 8: SPEC OF RECOMMENDED BATTERY PACK	
TABLE 9: OPERATING MODES	28
TABLE 10: AT COMMAND USUALLY USED IN GHOST MODE	
TABLE 11: SUMMARY OF STATE TRANSITIONS	30
TABLE 12: LOGIC LEVELS OF SERIAL PORT PINS.	35
TABLE 13: AUDIO INTERFACE SIGNAL	
TABLE 14: MIC INPUT DC CHARACTERISTICS	40
TABLE 15: AUDIO OUTPUT CHARACTERISTICS	40

Confidential	SIMCOM
TABLE 16: BUZZER OUTPUT DC CHARACTERISTICS	40
TABLE 17: SIGNAL OF SIM INTERFACE (DIP CONNECTOR)	42
TABLE 18: PIN DESCRIPTION (AMPHENOL SIM CARD HOLDER)	44
TABLE 19: PIN DESCRIPTION (MOLEX SIM CARD HOLDER)	45
TABLE 20: PIN DEFINE OF LCD INTERFACE.	45
TABLE 21: ADC PIN OF SIM300C	46
TABLE 22: BEHAVIOURS OF THE /RING LINE	46
TABLE 23: WORKING STATE OF NETWORK STATUS INDICATION LED PIN	47
TABLE 24: GPIO PINS OF SIM300C	48
TABLE 25: SIM300C RF OUTPUT POWER	49
TABLE 26: SIM300C RF RECEIVE SENSITIVITY	
TABLE 27: SIM300C RECEIVE/TRANSMIT FREQUENCY	50
TABLE 28: ANTENNA GAIN	50
TABLE 29: ABSOLUTE MAXIMUM RATINGS	51
TABLE 30: SIM300C OPERATING TEMPERATURE	
TABLE 31: SIM300C POWER SUPPLY RATINGS	52
TABLE 32: SIM300C CURRENT CONSUMPTION	53
TABLE 33: THE ESD ENDURE STATUE MEASURED TABLE (TEMPERATURE: 25° C	
HUMIDITY:45%)	
TABLE 34: CONNECTION DIAGRAMS	59
Element Indian	
Figure Index	
FIGURE 1: VBAT INPUT	19
FIGURE 2: VBAT RIPPLE WAVE AT THE MAXIMUM POWER TRANSMIT PHASE	19
FIGURE 3: TIMING OF TURN ON SYSTEM	21
FIGURE 4: TIMING OF TURN OFF SYSTEM	23
FIGURE 5: TIMING OF RESTART SYSTEM	25
FIGURE 6 : BATTERY CHARGER AND PACK	26
FIGURE 7: RTC SUPPLY FROM NON-CHARGEABLE BATTERY	32
FIGURE 8: RTC SUPPLY FROM RECHARGEABLE BATTERY	32
FIGURE 9: RTC SUPPLY FROM CAPACITOR	32
FIGURE 10: PANASONIC EECEMOE204A CHARGE CHARACTERISTIC	33
FIGURE 11: MAXELL TC614 CHARGE CHARACTERISTIC	33
FIGURE 12: SEIKO TS621 CHARGE CHARACTERISTIC	34
FIGURE 13: INTERFACE OF SERIAL PORT	35
FIGURE 14: INTERFACE OF SOFTWARE UPGRADE	36
FIGURE 15: SPEAKER INTERFACE CONFIGURATION	38
FIGURE 16: SPEAKER INTERFACE WITH AMPLIFIER CONFIGURATION	38
FIGURE 17: MICROPHONE INTERFACE CONFIGURATION	
FIGURE 18: EARPHONE INTERFACE CONFIGURATION	39
FIGURE 19: REFERENCE CIRCUIT FOR BUZZER	41
FIGURE 20: SIM INTERFACE REFERENCE CIRCUIT WITH 8 PINS SIM CARD HOL	DER42
FIGURE 21: SIM INTERFACE REFERENCE CIRCUIT WITH 6 PINS SIM CARD HOL	
FIGURE 22: WITH 6 PINS SIM CARD HOLDER	43

SIM300C Hardware Interface Description

5 5 5
5
5
5

Version History

Data	Version	what is news	Author		
2005-12-27	01.00	Origin	anthony		
2006-1-23	01.01	Update the photo of the module and the connector.			
2006-2-8	01.02	Update the photo of the module mechanical dimensions			
2006-3-31	01.10	Update support Quad-Band	Frank fu		
		Update support GPRS multi-slot class 8			
		Update Temperature range			
		Update Autobauding			
		Update Figure 3: Timing of turn on system ; Figure 4:			
		Timing of turn off system; Figure 5: Timing of restart			
		system			
		Update RTC internal 10K resistor			
		Update power supply ratings			
		Update current consumption			
2006-4-14	1.11	Update support Tri-Band	Frank fu		
		Update Temperature range			
		Update current consumption			
		Remove dual serial ports support			
		Description of 8 pins SIM card holder added and			
		Update Figure 22,Figure 23			
		Description of STATUS pin as output port at table 24			
		Delete the VBAT_TEMP function			

1 Introduction

This document describes the hardware interface of the SIMCOM SIM300C module that connects to the specific application and the air interface. As SIM300C can be integrated with a wide range of applications, all functional components of SIM300C are described in great detail.

This document can help you quickly understand SIM300C interface specifications, electrical and mechanical details. With the help of this document and other SIM300C application notes, user guide, you can use SIM300C module to design and set-up mobile applications quickly.

1.1 Related documents

Table 1: Related documents

SN	Document name	Remark		
[1]	SIM300C_ATC_V01.	SIM300C_ATC_V01.00		
[2]	ITU-T Draft new recommendation V.25ter:	Serial asynchronous automatic dialing and control		
[3]	GSM 07.07:	Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)		
[4]	GSM 07.05:	Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)		
[5]	GSM 07.10:	Support GSM 07.10 multiplexing protocol		
[6]	GSM 11.14:	Digital cellular telecommunications system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface		
[7]	GSM 11.11:	Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface		
[8]	GSM 03.38:	Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information		
[9]	GSM 11.10	Digital cellular telecommunications system (Phase 2); Mobile Station (MS) conformance specification; Part 1: Conformance specification		

1.2 Terms and abbreviations

Table 2: Terms and abbreviations

Abbreviation	Description
ADC	Analog-to-Digital Converter
ARP	Antenna Reference Point
ASIC	Application Specific Integrated Circuit
BER	Bit Error Rate
BTS	Base Transceiver Station
CHAP	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
DAC	Digital-to-Analog Converter
DRX	Discontinuous Reception
DSP	Digital Signal Processor
DTE	Data Terminal Equipment (typically computer, terminal, printer)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
FCC	Federal Communications Commission (U.S.)
FDMA	Frequency Division Multiple Access
FR	Full Rate
GMSK	Gaussian Minimum Shift Keying
GPRS	General Packet Radio Service
GSM	Global Standard for Mobile Communications
HR	Half Rate
I/O	Input/Output
IC	Integrated Circuit
IMEI	International Mobile Equipment Identity
Inorm	Normal Current
Imax	Maximum Load Current
kbps	Kilo bits per second
LED	Light Emitting Diode

Abbreviation	Description
Li-Ion	Lithium-Ion
MO	Mobile Originated
MS	Mobile Station (GSM engine), also referred to as TE
MT	Mobile Terminated
PAP	Password Authentication Protocol
РВССН	Packet Switched Broadcast Control Channel
PCB	Printed Circuit Board
PCS	Personal Communication System, also referred to as GSM 1900
PDU	Protocol Data Unit
PPP	Point-to-point protocol
RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
Rx	Receive Direction
SIM	Subscriber Identification Module
SMS	Short Message Service
TDMA	Time Division Multiple Access
TE	Terminal Equipment, also referred to as DTE
TX	Transmit Direction
UART	Universal Asynchronous Receiver & Transmitter
URC	Unsolicited Result Code
USSD	Unstructured Supplementary Service Data
VSWR	Voltage Standing Wave Ratio
Vmax	Maximum Voltage Value
Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
VIHmax	Maximum Input High Level Voltage Value
VIHmin	Minimum Input High Level Voltage Value
VILmax	Maximum Input Low Level Voltage Value
VILmin	Minimum Input Low Level Voltage Value
VImax	Absolute Maximum Input Voltage Value
VImin	Absolute Minimum Input Voltage Value
VOHmax	Maximum Output High Level Voltage Value
VOHmin	Minimum Output High Level Voltage Value
VOLmax	Maximum Output Low Level Voltage Value
VOLmin	Minimum Output Low Level Voltage Value
Phonebook abbr	eviations

Abbreviation	Description
FD	SIM fix dialing phonebook
LD	SIM last dialing phonebook (list of numbers most recently dialed)
MC	Mobile Equipment list of unanswered MT calls (missed calls)
ON	SIM (or ME) own numbers (MSISDNs) list
RC	Mobile Equipment list of received calls
SM	SIM phonebook
M2M	Machine to Machine
NC	Not connect

2 Product concept

Designed for global market, SIM300C is a Tri-band GSM/GPRS engine that works on frequencies of EGSM 900 MHz, DCS 1800 MHz and PCS1900 MHz.SIM300C provides GPRS multi-slot class 10/ class8 (optional) capability and support the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4.

With a tiny configuration of $50 \text{mm} \times 33 \text{mm} \times 6.2 \text{mm}$, SIM300C can fit almost all the space requirement in your industrial application, such as M2M, and mobile data communication system etc. With the charge circuit integrated inside the SIM300C, it is very suitable for the battery power application.

The physical interface to the mobile application is made through a 60 pins DIP connector, which provides all hardware interfaces between the module and customers' boards except the RF antenna interface.

- The keypad and SPI LCD interface will give you the flexibility to develop customized applications.
- Serial port can help you easily develop your applications.
- Two audio channels include two microphones inputs and two speaker outputs. This can be easily configured by AT command.
- Charge interface

SIM300C provide RF antenna interface with two alternatives: antenna connector and antenna pad. The antenna connector is MURATA MM9329-2700. And customer's antenna can be soldered to the antenna pad.

The SIM300C is designed with power saving technique, the current consumption to as low as 2.5mA in SLEEP mode.

The SIM300C is integrated with the TCP/IP protocol, Extended TCP/IP AT commands are developed for customers to use the TCP/IP protocol easily, which is very useful for those data transfer applications.

2.1 SIM300C key features at a glance

Table 3: SIM300C key features

Feature	Implementation		
Power supply	Single supply voltage 3.4V – 4.5V		
Power saving	Typical power consumption in SLEEP mode(DTX=5) to 3.5mA		
Frequency bands	 SIM300C Tri-band: EGSM 900, DCS 1800, PCS 1900. The band can be set by AT COMMAND, and default band is EGSM 900 and DCS 1800. Compliant to GSM Phase 2/2+ 		
GSM class	Small MS		
Transmit power	 Class 4 (2W) at EGSM900 Class 1 (1W) at DCS1800 and PCS 1900 		
GPRS connectivity	 GPRS multi-slot class 8 (optional) GPRS multi-slot class 10 (default) GPRS mobile station class B 		
Temperature range	 Normal operation: -20°C to +55°C Restricted operation: -30°C to -20°C and +55°C to +80°C Storage temperature -40°C to +85°C 		
DATA GPRS: CSD:	 GPRS data downlink transfer: max. 85.6 kbps GPRS data uplink transfer: max. 42.8 kbps Coding scheme: CS-1, CS-2, CS-3 and CS-4 SIM300C supports the protocols PAP (Password Authentication Protocol) usually used for PPP connections. The SIM300C integrates the TCP/IP protocol. Support Packet Switched Broadcast Control Channel (PBCCH) CSD transmission rates: 2.4, 4.8, 9.6, 14.4 kbps, non-transparent Unstructured Supplementary Services Data (USSD) support 		
SMS	 MT, MO, CB, Text and PDU mode SMS storage: SIM card Support transmission of SMS alternatively over CSD or GPRS. User can choose preferred mode. 		
FAX	Group 3 Class 1		
SIM interface	Supported SIM card: 1.8V ,3V		
External antenna	Connected via 50 Ohm antenna connector or antenna pad		
Audio features	Speech codec modes: Half Rate (ETS 06.20) Full Rate (ETS 06.10) Enhanced Full Rate (ETS 06.50 / 06.60 / 06.80)		
Serial interfaces	Serial Port Seven lines on Serial Port Interface		

	 Serial Port can be used for CSD FAX, GPRS service and send AT command of controlling module. Serial Port can use multiplexing function Autobauding supports baud rate from 1200 bps to 115200bps. 		
Phonebook management	Supported phonebook types: SM, FD, LD, RC, ON, MC.		
SIM Application Toolkit	Supports SAT class 3, GSM 11.14 Release 98		
Real time clock	Implemented		
Timer function	Programmable via AT command		
Physical characteristics	Size: 50±0.15 x 33±0.15 x7.7±0.3 mm (including application connector) 50±0.15 x 33±0.15 x 6.2±0.3 mm (excluding application connector) Weight: 13.8g		
Firmware upgrade	Firmware upgradeable over serial interface		

Table 4: Coding schemes and maximum net data rates over air interface

Coding scheme	1 Timeslot	2 Timeslot	4 Timeslot		
CS-1:	9.05kbps	18.1kbps	36.2kbps		
CS-2:	13.4kbps	26.8kbps	53.6kbps		
CS-3:	15.6kbps	31.2kbps	62.4kbps		
CS-4:	21.4kbps	42.8kbps	85.6kbps		

3 Application Interface

All hardware interfaces except RF interface that connects SIM300C to the customers' cellular application platform is through a 60-pin 1.27mm pitch DIP connector. Sub-interfaces included in this DIP connector are described in detail in following chapters:

- Power supply (see Chapters 3.3)
- Two analog audio interfaces (see Chapter 3.10)
- SIM interface (see Chapter 3.12)

Electrical and mechanical characteristics of the DIP connector are specified in *Chapter 6*. There we also order information for mating connectors.

3.1 SIM300C Pin description

Table 5: DIP Connector pin description

Power Supply	Power Supply						
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS				
VBAT		Five BAT pins of the DIP connector are dedicated to connect the supply voltage. The power supply of SIM300C has to be a single voltage source of VBAT= 3.4V4.5V. It must be able to provide sufficient current in a transmit burst which typically rises to 2A. may be about 0.1ms up to 3A in some times , these 5 pins are voltage input	Vmax= 4.5V Vmin=3.4V Vnorm=4.0V				
VRTC	I/O	Current input for RTC when the battery is not supplied for the system. Current output for backup battery when the main battery is present and the backup battery in low voltage state.	Vmax=2.0V Vmin=1.2V Vnorm=1.8V Inorm= 20uA				
VDD_EXT	0	Supply 2.93V voltage for external circuit. By measure this pin, user can judge the system is on or off. When the voltage is low, the system is off. Otherwise, the system is on.	Vmax=3.0V Vmin=2.75V Vnorm=2.93V Imax=60mA				
CHG_IN	I	Voltage input for the charge circuit; making the system detect the charger.	Vmax=5.25V Vmin=1.1 * VBAT Vnorm=5.1V				
GND		Digital ground					

Power on or power off					
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS		
PWRKEY	Í	Voltage input for power on key. PWRKEY get a low level Voltage for user to power on or power off the system, The user should keep pressing the key for a moment when power on or power off the system. Because the system need margin time assert the software.	VILmax=0.3*VBAT VIHmin=0.7*VBAT VImax=VBAT		
Audio interfaces					
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS		
MIC1P MIC1N	I	Positive and negative voice-band	Audio DC Characteristics		
	т	input	refer to chapter 3.9.4		
MIC2P MIC2N	Ι	Auxiliary positive and negative voice-band input			
SPK1P	О	Positive and negative voice-band			
SPK1N		output			
SPK2P	O	Auxiliary positive and negative			
SPK2N BUZZER	O	voice-band output			
AGND	U	Buzzer Output Analog ground			
General purpose input/or	utnut	Analog ground			
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS		
KBC0~KBC4	0	The GPO can be configured by AT	VILmin=0V		
KBR0~KBR4	I	command for outputting high or low	VILmax=0.3 *VDD_EXT		
SPI DATA	I/O	level voltage. All of the GPOs are	VIHmin=0.7*VDD_EXT		
SPI CLK	O	initial low without any setting from	VIHmax= VDD_EXT+0.3		
SPI CS	O	AT command.	VOLmin=GND		
SPI D/C	О		VOLmax=0.2V VOHmin= VDD EXT-0.2		
SPI_RST	О		VOHmax= VDD_EXT-0.2		
Network LED	О				
STATUS	O	Indicate work status			
GPIO5	I/O	Normal Input/Output Port			
GPIO32	I/O	Normal Input/Output Port			
Serial 1 interface					
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS		
DTR	I	Data Terminal Ready	VILmin=0V		
RXD	I	Receive Data	VILmax=0.3*VDD_EXT		
TXD	O	Transmit Data	VIHmin=0.7*VDD_EXT		

RTS	I	Request to Send	VIHmax= VDD_EXT+0.3
CTS	O	Clear to Send	VOLmin=GND
RI	O	Ring Indicator	VOLmax=0.2V
DCD	O	Data Carrier detection	VOHmin= VDD_EXT-0.2
Serial 2 interface			VOHmax= VDD_EXT
DBGTX	O	Serial interface for debugging and	
DBGRX	I	communication	
SIM interface			
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS
SIM_VDD	O	Voltage Supply for SIM card	The voltage can be select by software either 1.8v or 2.85V
SIM_I/O	I/O	SIM Data Output	VILmin=0V
SIM_CLK	O	SIM Clock	VILmax=0.3*SIM_VDD
SIM_PRESENCE	I	SIM Card Detection	VIHmin=0.7*SIM_VDD
SIM_RST	O	SIM Reset	VIHmax= SIM_VDD+0.3 VOLmin=GND
			VOLmax=0.2V
			VOHmin= SIM_VDD-0.2
			VOHmax= SIM_VDD
AUXADC			
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS
ADC1	I	General purpose analog to digital converter.	Input voltage value scope 0V to 2.4V

3.2 Operating modes

The following table summarizes the various operating modes, each operating modes is referred to in the following chapters.

Table 6: Overview of operating modes

Mode	Function			
Normal operation	GSM/GPRS	Module will automatically go into SLEEP mode if DTR is set		
	SLEEP	to high level and there is no on air or audio activity is required		
		and no hardware interrupt (such as GPIO interrupt or data on		
		serial port).		
		In this case, the current consumption of module will reduce to		
		the minimal level.		
		During sleep mode, the module can still receive paging		
		message and SMS from the system normally.		
	GSM IDLE	Software is active. Module has registered to the GSM network,		
		and the module is ready to send and receive.		

	GSM TALK	CSD connection is going on between two subscribers. In this case, the power consumption depends on network settings such as DTX off/on, FR/EFR/HR, hopping sequences, antenna.
	GPRS IDLE	Module is ready for GPRS data transfer, but no data is currently sent or received. In this case, power consumption depends on network settings and GPRS configuration (e.g. multi-slot settings).
	GPRS DATA	There is GPRS data in transfer (PPP or TCP or UDP). In this case, power consumption is related with network settings (e.g. power control level), uplink / downlink data rates and GPRS configuration (e.g. used multi-slot settings).
POWER DOWN	PERKEY. The passe band part of Software is not	ovn by sending the "AT+CPOWD=1" command or using the power management ASIC disconnects the power supply from the of the module, only the power supply for the RTC is remained. active. The serial interfaces are not accessible. Operating voltage (BAT) remains applied.
Minimum functionality mode (without remove power supply)	mode without re will not work or	FUN" command can set the module to a minimum functionality emove the power supply. In this case, the RF part of the module of the SIM card is not accessible, or RF part and SIM card be derial interfaces is still accessible. The power consumption in this of the supplementary of the power consumption in this of the supplementary of the supplemen
Alarm mode	POWER DOW	ion launches this restricted operation while the module is in N mode. SIM300C will not be registered to GSM network and Γ commands can be available.
GHOST Mode (Charge-only mode)	 be registered to accessible, the f From POW pin and VE From Norr 	means off and charging mode. In this mode, the module can not GSM network and only limited AT commands can be following way will launch GHOST mode: VER DOWN mode: Connect charger to the module's CHG_IN BAT pin while SIM300C is power down. mal mode: Connect charger to the module's CHG_IN pin and then power down the module by "AT+CPOWD=1"
Charge mode during normal operation		while the module is in normal mode including: SLEEP, IDLE, DLE and GPRS DATA)

3.3 Power supply

The power supply of SIM300C is from a single voltage source of VBAT= 3.4V...4.5V. In some case, the ripple in a transmit burst may cause voltage drops when current consumption rises to typical peaks of 2A, So the power supply must be able to provide sufficient current up to 2A. For the VBAT input, a local bypass capacitor is recommended. A capacitor (about $100\mu F$, low ESR) is recommended. Multi-layer ceramic chip (MLCC) capacitors can provide the best combination of low ESR and small size but may not be cost effective. A lower cost choice may be a $100~\mu F$ tantalum capacitor (low ESR) with a small (1 μF to $10\mu F$) ceramic in parallel, which is illustrated as following figure. And the capacitors should put as closer as possible to the SIM300C VBAT pins. The following figure is the recommended circuit.

Figure 1: VBAT input

The following figure is the VBAT voltage ripple wave at the maximum power transmit phase, the test condition is VBAT=4.0V, VBAT maximum output current =2A, C_A =100 μ F tantalum capacitor (ESR=0.7 Ω) and C_B =4.7 μ F.

Figure 2: VBAT ripple wave at the maximum power transmit phase

3.3.1 Power supply pins on the DIP connector

Five VBAT pins of the DIP connector are dedicated to connect the supply voltage; Five GND pins are recommended for grounding. BACKUP can be used to back up the RTC.

3.3.2 Minimizing power losses

Please pay special attention to the supply power when you are designing your applications. Please make sure that the input voltage will never drops below 3.4V even in a transmit burst during which the current consumption may rise up to 2A. If the power voltage drops below 3.4V, the module may be switched off. Using the DIP connector will be the best way to reduce the voltage drops. You should also take the resistance of the power supply lines on the host board or of battery pack into account.

3.3.3 Monitoring power supply

To monitor the supply voltage, you can use the "AT+CBC" command which include three parameters: charge state, percent of battery capacity and voltage value (in mV). It returns charge state, the percent of battery capacity and actual value measured at VBAT and GND.

The voltage is continuously measured at intervals depending on the operating mode. The displayed voltage (in mV) is averaged over the last measuring period before the AT+CBC command was executed.

3.4 Power up and power down scenarios

3.4.1 Turn on SIM300C

SIM300C can be turned on by various ways, which are described in following chapters:

- Via PWRKEY pin: starts normal operating mode (see chapter 3.4.1.1);
- Via RTC interrupt: starts ALARM modes (see chapter 3.2.1.2)

Note: Only enter AT command through serial port after SIM300C is power on and Unsolicited Result Code "RDY" is received from serial port1.

Note: If configured to a fix baud rate, SIM300C will send the result code "RDY" to indicate that it is ready to operate. This result code does not appear when autobauding is active. You can use AT+IPR=x;&W to set a fix baud rate and save the configuration to non-volatile flash memory. See Chapter AT+IPR in document[1].

3.4.1.1 Turn on SIM300C using the PWRKEY pin (Power on)

You can turn on the SIM300C by driving the PWRKEY to a low level voltage for period time. The power on scenarios illustrate as following figure.

Figure 3: Timing of turn on system

When power on procedure complete, SIM300C will send out following result code to indicate the module is ready to operate, and STATUS pin will drive to 2.8V and keep this level when in work mode. If the SIM300C is configured to a fix baud rate, it will send out an Unsolicited Result Code (URC):

RDY

This result code does not appear when autobauding is active

3.4.1.2 Turn on SIM300C using the RTC (Alarm mode)

Alarm mode is a power-on approach by using the RTC. The alert function of RTC makes the SIM300C wake up while it is power off. In alarm mode, SIM300C will not register to GSM network and the software protocol stack is close. Thus the parts of AT commands related with SIM card and Protocol stack will not accessible, and the others can be used as well as in normal mode.

Use the AT+CALARM command to set the alarm time. The RTC remains the alarm time if SIM300C was power down by "AT+CPOWD=1" or by PWRKEY pin. Once the alarm time expires and executed, SIM300C goes into the Alarm mode. In this case, if the SIM300C is configured to a fixed baud rate, it will send out an Unsolicited Result Code (URC):

RDY

ALARM MODE

This result code does not appear when autobauding is active.

During Alarm mode, using AT+CFUN command to query the status of software protocol stack; it will return 0 which indicates that the protocol stack is closed. Then after 90S, SIM300C will power down automatically. However, during Alarm mode, if the software protocol is started by AT+CFUN=1, 1 command, the process of automatic power down will not available. In ALARM mode, driving the PWRKEY to a low level voltage for a period will cause SIM300C to power down (Please refer to the power down scenarios in 3.4.2.1).

The table follow briefly summarizes the AT commands that are used usually during alarm mode, for details of the instructions refer to *document* [1]:

Table 7: AT commands used in Alarm mode

AT command	USE
AT+CALARM	Set alarm time
AT+CCLK	Set data and time of RTC
AT+CPOWD	Power down
AT+CFUN	Start or close the protocol stack

3.4.1.3 Turn on the SIM300C using the CHG_IN signal

As described in chapter 3.5, charger can be connected to the SIM300C's CHG_IN pin regardless of the module's operating mode.

If the charger is connected to the module's CHG_IN pin while the SIM300C is in POWER DOWN mode, it will go into the GHOST mode (Off and charging). In this mode, the module will not register to network, and only a few AT commands can work in this mode. For detailed information please refers to chapter 3.5.4.

When the SIM300C is powered on using the CHG_IN signal and configured to a fixed baud rate, it will send out a result code as following:

RDY GHOST MODE +CFUN: 0

This result code does not appear when autobauding is active.

In GHOST mode, by driving the PWRKEY to a low level voltage for period time (Please refer to the power on scenarios in 3.4.1.1), the SIM300C will power up and go into charge mode (charging in normal mode), all operation and AT commands can be available. In this case, if the SIM300C is configured to a fixed baud rate, it will send out result code as following:

From GHOST MODE to NORMAL MODE

This result code does not appear when autobauding is active.

3.4.2 Turn off SIM300C

Following procedure can be used to turn off the SIM300C:

- Normal power down procedure: Turn off SIM300C using the PWRKEY pin
- Normal power down procedure: Turn off SIM300C using AT command
- Under-voltage automatic shutdown: Takes effect if Under-voltage is detected
- Over-temperature automatic shutdown: Takes effect if Over-temperature is detected

3.4.2.1 Turn off SIM300C using the PWRKEY pin (Power down)

You can turn off the SIM300C by driving the PWRKEY to a low level voltage for period time. The power down scenarios illustrate as following Figure.

This procedure will let the module to log off from the network and allow the software to enter into a secure state and save data before completely disconnect the power supply.

Before the completion of the switching off procedure the module will send out result code:

NORMAL POWER DOWN

After this moment, no any AT commands can be executed. Module enters the POWER DOWN mode, only the RTC is still active. POWER DOWN can also be indicated by VDD_EXT pin, which is a low level voltage in this mode.

Figure 4: Timing of turn off system

3.4.2.2 Turn off SIM300C using AT command

You can use an AT command "AT+CPOWD=1" to turn off the module. This command will let the module to log off from the network and allow the software to enter into a secure state and safe data before completely disconnect the power supply.

Before switching off the module will send out result code:

NORMAL POWER DOWN

After this moment, no any AT commands can be executed. Module enters the POWER DOWN mode, only the RTC is still active. POWER DOWN can also be indicated by VDD_EXT pin, which is a low level voltage in this mode.

Please refer to *document* [1] for detail about the AT command of "AT+CPOWD".

3.4.2.3 Under-voltage automatic shutdown

Software will constantly monitors the voltage applied on the VBAT, if the measured battery voltage is no more than 3.5V, the following URC will be presented:

POWER LOW WARNNING

If the measured battery voltage is no more than 3.4V, the following URC will be presented:

POWER LOW DOWN

After this moment, no further more AT commands can be executed. The module will log off from network and enters POWER DOWN mode, only the RTC is still active. POWER DOWN can also be indicated by VDD EXT pin, which is a low level voltage in this mode.

3.4.2.4 Over-temperature automatic shutdown

Software will constantly monitors the temperature of the module, if the measured temperature is equal or higher than 80°C, the following URC will be presented:

+*CMTE:1*

If the measured temperature is equal or lower than -30°C, the following URC will be presented:

+*CMTE:-1*

The uncritical temperature range is -35° C to 85° C. If the measured temperature is equal or out of this range, the module will be automatic shutdown soon.

If the measured temperature is equal or higher than 85° C, the following URC will be presented:

+*CMTE*:2

If the measured temperature is equal or lower than -35°C, the following URC will be presented:

+*CMTE:-2*

After this moment, no further more AT commands can be executed. The module will log off from network and enters POWER DOWN mode, only the RTC is still active. POWER DOWN can also be indicated by STATUS pin, which is a low level voltage in this mode.

To monitor the temperature, you can use the "AT+CMTE" command to measure the temperature when the module power on.

For details please refer to document [1]

3.4.3 Restart SIM300C using the PWRKEY pin

You can restart SIM300C by driving the PWRKEY to a low level voltage for period time, same as turn on SIM300C using the PWRKEY pin. Before restart the SIM300C, you need delay at least 500mS from detecting the STATUS low level on. The restart scenarios illustrate as the following figure.

Figure 5: Timing of restart system

3.5 Charging interface

The SIM300C has integrated a charging circuit inside the module for Li-Ion batteries charging control, which make it very convenient for applications to manage their battery charging. A common connection is shown in the following figure:

Figure 6: Battery charger and pack

3.5.1 Battery pack characteristics

The SIM300C has optimized the charging algorithm for the Li-Ion battery that meets the characteristics listed below. To use the SIM300C's charging algorithm properly, it is recommended that the battery pack you integrated into your application is compliant with these specifications. The battery pack compliant with these specifications is also important for the AT command "AT+CBC" to monitor the voltage of battery, or the "AT+CBC" may return incorrect battery capacity values.

- The maximum charging voltage of the Li-Ion battery pack is 4.2V and the recommended capacity is 580mAh.
- The pack should have a protection circuit to avoid overcharging, deep discharging and over-current. This circuit should be insensitive to pulsed current.
- The build-in circuit of the SIM300C's power management chipset monitors the supply voltage constantly. Once the Under-voltage is detected, the SIM300C will power down automatically. Under-voltage thresholds are specific to the battery pack.
- The internal resistance of the battery and the protection circuit should be as low as possible. It is recommended not to exceed $200 \text{m}\Omega$.
- The battery pack must be protected from reverse pole connection.

3.5.2 Recommended battery pack

Following is the spec of recommended battery pack:

Table 8: Spec of recommended battery pack

Product name & type	BYD, Li-Ion, 3.7V, 580mAh
To obtain more information	BYD COMPANY LIMITED
Please contact:	
Normal voltage	3.7V
Capacity	580mAh
Charge Voltage	4.200±0.049V
Max Charge Current	1.5C
Charge Method	CC / CV (Constant Current / Constant Voltage)
Max Discharge Current	1.5C (for continuous discharging mode)
Discharge Cut-off Voltage	2.75V/ cell
Internal resistance	Initial≤200mΩ
	After 400cycles ≤270mΩ

3.5.3 Implemented charging technique

The SIM300C includes the function for battery charging. There are two pins in the connector related with the battery charging function: CHG_IN and VBAT pins. The CHG_IN pin is driven by an external voltage, system can use this pin to detect a charger supply and provide most charging current through the SIM300C module to battery when charging is in fast charge state. The VBAT gives out charging current from the SIM300C module to external battery.

So it is very simple to implement charging technique, you need only connect the charger to the CHG IN pin and connect the battery to the VBAT pin.

The SIM300C detect charger supply and the battery is present, battery charging will happen. If there is no charger supply or no battery present the charging will not be enabled.

Normally, there are three main states in whole charging procedure.

- DDLO charge and UVLO charge;
- Fast charge;
- Trickle charge;

DDLO charge and UVLO charge:

DDLO (deep discharge lock out) is the state of battery when its voltage under 2.4V. And UVLO (under voltage lock out) means the battery voltage less than 3.2V and more than 2.4V. The battery is not suitable for fast charge when its condition is DDLO or UVLO. The SIM300C provides a small constant current to the battery when the battery is between DDLO and UVLO. In DDLO charge, The SIM300C gives out 5mA current to the battery. And in UVLO charge, The SIM300C provide about 25mA current to the battery.

DDLO charge terminated when the battery voltage reaches 2.4V. UVLO charge terminated when the battery voltage is up to 3.2V. Both DDLO and UVLO charge are controlled by the SIM300C hardware only.

Fast charge:

If there is a charger supply and battery present and the battery is not in DDLO and UVLO, the SIM300C will enter fast charge state. Fast charge controlled by the software. Fast charge delivers a strong and constant current (about 450mA) through VBAT pin to the battery until battery voltage reach 4.2V.

Trickle charge:

After fast charging, the battery voltage near the whole battery capacity, trick charge begins .in this state, the SIM300C charge the battery under constant voltage.

3.5.4 Operating modes during charging

The battery can be charged during various operating mode. That means when the module is in Normal mode (SLEEP, IDLE, TALK, GPRS IDLE or GPRS DATA mode), charging can be in progress while the SIM300C remains operational (In this case the voltage supply should be sufficient). Here we name Charging in Normal mode as Charge mode.

If the charger is connected to the module's CHG_IN pin and the battery is connected to the VBAT pin while the SIM300C is in POWER DOWN mode, the SIM300C will go into the GHOST mode (Off and charging). The following table gives the difference between Charge mode and GHOST mode:

Table 9: operating modes

	How to activate mode	Features
Charge Mode	Connect charger to module's CHG_IN pin and connect battery to VBAT pin of module while the SIM300C is in Normal operating mode, including: IDLE, TALK mode; SLEEP mode etc;	 GSM remains operational and registered GSM network while charging is in progress; The serial interfaces are available in IDLE, TALK mode, the AT command set can be used fully in this case; In SLEEP mode, the serial interfaces are not available, once the serial port is connected and there is data in transfer. Then the SIM300C will exit the SLEEP mode.
GHOST Mode	Connect charger to module's CHG_IN pin while the SIM300C is in POWER DOWN mode.	 Battery can be charged when GSM engine is not registered to GSM network; Only a few AT commands is available as listed below.

Note: VBAT can not provide much more than 5mA current while sim300C module is during the DDLO charge state. In other words it is strongly recommended that VBAT should not be the main power supply in the application subsystem while sim300C module is during the DDLO charge state.

Table 10: AT Command usually used in GHOST mode

AT command	Function
AT+CALARM	Set alarm time
AT+CCLK	Set data and time of RTC
AT+CPOWD	Power down
AT+CBC	Indicated charge state and voltage
AT+CFUN	Start or close the protocol Set AT command "AT+CFUN =1", module can be transferred from GHOST mode to Charging in normal mode, In GHOST mode, the default value is 0

3.5.5 Charger requirements

Following is the requirements of charger for the SIM300C.

- Simple transformer power plug
- Output voltage: 5.0V-5.25V
- Charging current limitation: 650mA
- A 10V peak voltage is allowed for maximum 1ms when charging current is switched off.
- A 1.6A peak current is allowed for maximum 1ms when charging current is switched on.

3.6 Power saving

There are two methods to achieve SIM300C module extreme low power. "AT+CFUN" is used to set module into minimum functionality mode and /DTR hardware interface signal can be used to set system to be SLEEP mode (or Slow clocking mode).

3.6.1 Minimum functionality mode

Minimum functionality mode reduces the functionality of the module to a minimum and, thus, minimizes the current consumption to the lowest level. This mode is set with the "AT+CFUN" command which provides the choice of the functionality levels <fun>=0, 1, 4

- 0: minimum functionality;
- 1: full functionality (Default);
- 4: disable phone both transmit and receive RF circuits;

If SIM300C has been set to minimum functionality by "AT+CFUN=0", then the RF function and SIM card function will be closed, in this case, the serial port is still accessible, but all AT commands need RF function or SIM card function will not accessible.

If SIM300C has disable all RF function by "AT+CFUN=4", then RF function will be closed, the serial port is still active in this case but all AT commands need RF function will not accessible.

When SIM300C is in minimum functionality or has been disable all RF functionality by "AT+CFUN=4", it can return to full functionality by "AT+CFUN=1".

For Detailed info about "AT+CFUN", please refer to [1].

3.6.2 Sleep mode (Slow Clocking mode)

Through DTR signal control SIM300C module to enter or exit the SLEEP mode in customer applications.

When DTR is in high level, at the same time there is no on air or audio activity is required and no hardware interrupt (such as GPIO interrupt or data on serial port), SIM300C will enter SLEEP mode automatically. In this mode, SIM300C can still receive paging or SMS from network.

In SLEEP mode, the serial port is not accessible.

Note: For SIM300C, it requests to set AT command "AT+CSCLK=1" to enable the sleep mode; the default value is 0, that can't make the module enter sleep mode, for more details please refer to our AT command list.

3.6.3 Wake up SIM300C from SLEEP mode

When SIM300C is SLEEP mode, the following method can wake up the module.

- Enable DTR pin to wake up SIM300C;
 If DTR Pin is pull down to a low level, this signal will wake up SIM300C from power saving mode. The serial port will be active after DTR change to low level about 20ms.
- Receive a voice or data call from network to wake up SIM300C;
- Receive a SMS from network to wake up SIM300C
- RTC alarm expired to wake up SIM300C;

3.7 Summary of state transitions (except SLEEP mode)

Table 11: Summary of state transitions

Further mode Current mode	POWER DOWN	Normal mode	Alarm mode	Ghost mode (Charge-only mode)	Charging in normal
POWER		Use	Switch on from	Connect charger to	No direct transition,
DOWN		PWRKEY	POWER DOWN	CHG_IN and	but via "Ghost
			mode bye RTC	connect battery to	mode" or "Normal
				VBAT	mode"

Normal	AT+CPOWD		Set alarm by	Connect charger to	Connect charger to
mode	or use		"AT+CALARM"	CHG_IN and	CHG_IN pin of
	PWRKEY		, and then	connect battery to	module and connect
	pin		switch off the	VBAT, then switch	battery to VBAT pin
			module. When	off module by	of module
			the timer expire,	AT+CPOWD or	
			the module turn	using PWRKEY	
			on and enter		
			Alarm mode		
Alarm	Use	Use		No transition	Use AT+CFUN let
mode	PWRKEY	AT+CFUN			module enter Normal
	pin or wait				mode, then connect
	module				the charger to
	switch off				CHG_IN pin of
	automatically				module
Ghost	Disconnect	No direct	Set alarm by		Turn on the module
mode	charger	transition, but	"AT+CALARM"		using PWRKEY OR
(Charge-o		via "Charging	, when the timer		SET AT Command
nly mode)		in normal"	expire, module		"AT+CFUN=1"
		mode	will enter Alarm		
			mode		
Charging	AT+CPOWD	Disconnect	No direct	Switch off module by	
in normal	→ "Ghost	the charger	transition	AT+CPOWD or	
	mode", then			using PWRKEY	
	disconnect				
	charger				

3.8 RTC backup

The RTC (Real Time Clock) power supply of module can be provided by an external battery or a battery (rechargeable or non-chargeable) through PIN 14 on the DIP connector. There is an 10K resistance has been integrated in SIM300C module used for restricting current. You need only a coin-cell battery or a super-cap to PIN 14 to backup power supply for RTC.

The following figures show various sample circuits for RTC backup.

Figure 7: RTC supply from non-chargeable battery

Figure 8: RTC supply from rechargeable battery

Figure 9: RTC supply from capacitor

Li-battery backup

Rechargeable Lithium coin cells such as the TC614 from Maxell, or the TS621 from Seiko, are also small in size, but have higher capacity than the double layer capacitors resulting in longer backup times.

Typical charge curves for each cell type are shown in following figures. Note that the rechargeable Lithium type coin cells generally come pre-charged from the vendor.

Figure 10: Panasonic EECEMOE204A Charge Characteristic

Figure 11: Maxell TC614 Charge Characteristic

Figure 12: Seiko TS621 Charge Characteristic

Note:

Gold-capacitance backup

Some suitable coin cells are the electric double layer capacitors available from Seiko (XC621), or from Panasonic (EECEM0E204A). They have a small physical size (6.8 mm diameter) and a nominal capacity of 0.2 F to 0.3 F, giving hours of backup time.

3.9 Serial interface

SIM300C provides asynchronous serial port. The SIM300C module is designed as a DCE (Data Communication Equipment), following the traditional DCE-DTE (Data Terminal Equipment) connection, the module and the client (DTE) are connected through the following signal (as following figure shows). Autobauding supports baud rate from 1200 bps to 115200bps.

Serial port

- Port/TXD @ Client sends data to the RXD signal line of module
- Port/RXD @ Client receives data from the TXD signal line of module

All pins of serial port have 8mA driver, the logic levels are described in following table

Table 12: Logic levels of serial port pins

Parameter	Min	Max	Unit
Logic low input	0	0.3*VDD_EXT	V
Logic high input	0.7 *VDD_EXT	VDD_EXT +0.3	V
Logic low output	GND	0.2	V
Logic high output	VDD_EXT -0.2	VDD_EXT	V

Figure 13: Interface of serial port

3.9.1 Function of Serial Port supporting

- Seven lines on Serial Port Interface
- Contains Data lines /TXD and /RXD, State lines /RTS and /CTS, Control lines /DTR, /DCD and RING;
- Serial Port can be used for CSD FAX, GPRS service and send AT command of controlling module. Serial Port can use multiplexing function.
- Serial Port supports the communication rate as following:
 300,1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 Default as 115200bps.
- Auto-bauding supports the communication rate as following:
 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200bps.

Autobauding allows the GSM engine to automatically detect the bitrate configured in the host application. The serial interface of the GSM engine supports autobauding for the following rates: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200bps. Factory setting is autobauding enabled. This gives you the flexibility to put the GSM engine into operation no matter what rate your host application is configured to. To take advantage of autobauding mode specific attention must be paid to the following requirements:

Synchronization between DTE and DCE.

Ensure that DTE and DCE are correctly synchronized and the rate used by the DTE is detected by the DCE (= ME). To allow the rate to be synchronized simply issue an "AT" or "at" string. This is necessary

- after you have activated autobauding
- when you start up the GSM engine while autobauding is enabled. It is recommended to wait 3
 to 5 seconds before sending the first AT character. Otherwise undefined characters might be
 returned.

Restrictions on autobauding operation

- The serial interface has to be operated at 8 data bits, no parity and 1 stop bit (factory setting).
- The Unsolicited Result Codes like "RDY", "+CFUN: 1" and "+CPIN: READY" are not
 indicated when you start up the ME while autobauding is enabled. This is due to the fact that
 the new rate is not detected unless DTE and DCE are correctly synchronized as described
 above.

3.9.2 Software upgrade and Serial Port

The TXD、RXD、DBGTXD、DBGRXD and GND must be connected to the IO connector when user need to upgrade software and debug software, the TXD、RXD should be used for software upgrade, the DBGTXD、DBGRXD for software debug. The PWRKEY pin is recommended to connect to the IO connector. The user also can add a switch between the PWRKEY and the GND. The PWRKEY should be connected to the GND when SIM300C is upgrading software. Please refer to the following figure.

Figure 14: Interface of software upgrade

Note: You should match the level of serial port between DCE and DTE.

3.10 Audio interfaces

Table 13: Audio interface signal

	Name	Pin	Function
	Miclp	54	Microphone1 input +
(AIN1/AOUT1)	Micln	56	Microphone1 input -
	Spk1p	53	Audio1 output+
	Spk1n	55	Audio1 output-
(AIN2/AOUT2)	Mic2p	58	Microphone2 input +
	Mic2n	60	Microphone2 input -
	Spk2p	57	Audio2 output+
	Spk2n	59	Audio2 output-

The module provides two Analogy input channels, AIN1 and AIN2, which may be used for both microphone and line inputs. The AIN1 and AIN2 channels are identical. One of the two channels is typically used with a microphone built into a handset. The other channel is typically used with an external microphone or external line input. The Module Analogy input configuration is determined by control register settings and established using Analogy multiplexes.

For each channels, you can use AT+CMIC to set the input gain level of microphone, use AT+ECHO to set the parameters for echo suppression. Also, you can use AT+SIDET to set the side-tone level. For detail, please refer to [1].

It is suggested that you adopt the one of following two matching circuits in order to satisfy speaker effect. The difference audio signals have to be layout according to difference signal layout rules. As show in following Figures(**Note: all components package are 0603**). If you want to adopt a amplifier circuit for audio, we commend National company's LM4890. But you can select it according to your needs.

3.10.1 Speaker interface configuration

Figure 15: Speaker interface configuration

Figure 16: Speaker interface with amplifier configuration

3.10.2 Microphone interfaces configuration

Figure 17: Microphone interface configuration

3.10.3 Earphone interface configuration

Figure 18: Earphone interface configuration

3.10.4 Referenced Electronic Characteristic

Table 14: MIC Input DC Characteristics

Parameter	Min	Тур	Max	Unit
Working Voltage		1.25	2.5	V
Working Current	5		300	uA
External				
Microphone	1.2	2.2		k Ohms
Load Resistance				

Table 15: Audio Output Characteristics

Parameter			Min	Тур	Max	Unit
	Single Ended	load Resistance	27	32		Ohm
Normal	Ended	Ref level			1.0954	Vpp
Output(SPK1)	Differential	load Resistance	27	32		
		Ref level			0.5477	Vpp
Single		load Resistance	27	32		Ohm
Auxiliary Output(SPK2)	Ended	Ref level			1.0954	Vpp
	Differential	load Resistance	27	32		
		Ref level			0.5477	Vpp

Table 16: Buzzer Output DC Characteristics

Parameter	Min	Тур	Max	Unit
Working Voltage	2.4	2.8	3.3	V
Working Current		8		mA
Load Resistance	1			k Ohms

3.11 Buzzer

The PIN 23 on the DIP connector can be used to drive a buzzer to indicate incoming call. The output volume of buzzer can be set by "AT+CRSL" . The reference circuit for buzzer as shown as following Figure:

Figure 19: Reference circuit for Buzzer

3.12 SIM card interface

3.12.1 SIM card application

You can use AT Command to get information in SIM card. For more information, please refer to [1].

The SIM interface supports the functionality of the GSM Phase 1 specification and also supports the functionality of the new GSM Phase 2+ specification for FAST 64 kbps SIM (intended for use with a SIM application Tool-kit).

Both 1.8V and 3.0V SIM Cards are supported.

The SIM interface is powered from an internal regulator in the module having nominal voltage 2.8V. All pins reset as outputs driving low. Logic levels are as described in table

Table 17: Signal of SIM interface (DIP connector)

Pin	Signal	Description
25	SIM_VDD	SIM Card Power output automatic output on SIM mode, one is
		2.85±0.1V, another is 1.8±0.1V. Current is about 10mA.
29	SIM_I/O	SIM Card data I/O
31	SIM_CLK	SIM Card Clock
27	SIM_RST	SIM Card Reset
33	SIM_PRESENCE	SIM Card Presence

Following is the reference circuit about SIM interface. We recommend an Electro-Static discharge device ST (www.st.com) ESDA6V1W5 or ON SEMI (www.onsemi.com) SMF05C for "ESD ANTI".

The SIM_PRESENCE pin is used for detecting the SIM card removal. You can use the AT command "AT+CSDT" to configure this function. For detail of this AT command, please refer to *document* [1]:

You can select the 8 pins SIM card holder. The reference circuit about 8 pins SIM card holder illustrates as the following figure.

Figure 20: SIM interface reference circuit with 8 pins SIM card holder

If you don't use the SIM card detection function, you can let the SIM_PRESENCE pin NC or connect to the GND. The reference circuit about 6 pins SIM card holder illustrate as the following figure.

Figure 21: SIM interface reference circuit with 6 pins SIM card holder

3.12.2 Design considerations for SIM card holder

For 6 pins SIM card holder, we recommend to use Amphenol C707 10M006 049 2 . You can visit http://www.amphenol.com for more information about the holder.

Figure 22: with 6 pins SIM card holder

Table 18: Pin description (Amphenol SIM card holder)

Pin	Signal	Description
C1	SIM_VDD	SIM Card Power supply, it can identify automatically the SIM Card power mode, one is $3.0V\pm10\%$, another is $1.8V\pm10\%$.
		Current is about 10mA.
C2	SIM_RST	SIM Card Reset.
C3	SIM_CLK	SIM Card Clock.
C5	GND	Connect to GND.
C6	VPP	Not connect.
C7	SIM_I/O	SIM Card data I/O.

For 8 pins SIM card holder, we recommend to use Molex 91228. You can visit http://www.molex.com for more information about the holder.

Figure 23: with 8 pins SIM card holder

Table 19: Pin description (Molex SIM card holder)

Pin	Signal	Description
C1	SIM_VDD	SIM Card Power supply, it can identify automatically the SIM Card power mode, one is 3.0V±10%, and another is 1.8V±10%. Current is about 10mA.
C2	SIM_RST	SIM Card Reset.
C3	SIM_CLK	SIM Card Clock.
C4	GND	Connect to GND.
C5	GND	Connect to GND.
C6	VPP	Not connect.
C7	SIM_I/O	SIM Card data I/O.
C8	SIM_PRESENCE	Detect SIM Card Presence

Notes: Implement SIM Card Presence function must select 8 pin SIM Card Holder, and use AT command enable SIM Card Presence detect.

3.13 LCD interface

SIM300C provides a serial LCD display interface that supports serial communication with LCD device. These are composite pins that can be used as GPIO ports or LCD display interface according to your application. When use as LCD interface, the following table is the pin define. LCD interface timing should be united with the LCD device.

Table 20: PIN define of LCD interface

Pin (On DIP connector)	Name	Function
38	SPI_CS	Display enable
40	SPI_CLK	Display clock for LCD
42	SPI_DATA	Display data output
44	SPI_D/C	Display data or address select
46	SPI_RST	LCD reset

3.14 ADC

SIM300C provides one auxiliary ADC (General purpose analog to digital converter.) as voltage input pin, which can be used to detect the values of some external items such as voltage, temperature etc. User can use AT command "AT+CADC" to read the voltage value added on ADC pin. For detail of this AT command, please refer to *document* [1].

Table 21: ADC pin of SIM300C

Name	Pin (On DIP connector)	Input voltage scope(V)
ADC1	12	0 - 2.4

3.15 Behaviors of the /RING line (Serial port1 interface only)

Table 22: Behaviours of the /RING line

State	RI respond
Standby	High
Voice calling	Change low, then: (1) Change to high when establish calling. (2) Use AT command ATH the RING hold low. (3) Sender hang up, change to high
Data calling	Change low, then: (1) Change to high when establish calling. (2) Use AT command ATH the RING hold low.
SMS	When receive SMS, the ring will change to LOW and hold LOW level at least 100 ms, then change to HIGH.

If the module is used as caller, signal ring will maintain high. But when it is used as receiver, following is timing of ring.

Figure 24: SIM300C Services as Receiver

Figure 25: SIM300C Services as caller

3.16 Network status indication LED lamp

The PIN 16 on the DIP connector can be used to drive a network status indication LED lamp. The working state of this pin is listed in following table:

Table 23: Working state of network status indication LED pin

State	SIM300C function
Off	SIM300C is not running
64ms On/ 800ms +50%Off	SIM300C does not find the network
64ms On/ 3000ms +50%Off	SIM300C find the network
64ms On/ 300ms +50% Off	GPRS communication

We provide a reference circuitry for you, show as following Figure:

Figure 26: Reference circuit for Network status LED

3.17 General Purpose Input Output (GPIO)

SIM300C provides a limited number of General Purpose Input/Output signal pins.

Table 24: GPIO Pins of SIM300C

Pin	Name	Function
19	STATUS	The Status indication of the module, General Purpose Output Port
21	GPIO5	General Purpose Input/Output Port
35	GPIO32	General Purpose Input/Output Port

4 Antenna interface

The RF interface has an impedance of 50Ω . To suit the physical design of individual applications SIM300C offers two alternatives:

- Recommended approach: antenna connector on the component side of the PCB
- Antenna pad and grounding plane placed on the bottom side.

To minimize the loss on the RF cable, it need be very careful to choose RF cable. We recommend the insertion loss should be meet following requirement:

- GSM900<1dB
- DCS1800/PCS1900<1.5dB

4.1 Antenna installation

4.1.1 Antenna connector

SIM300C use MURATA's MM9329-2700 RF connector on the module side, we recommend user use MURATA's MXTK92XXXXX as matching connector on the application side. Please refer to appendix for detail info about MURATA's MXTK92XXXXX.

4.1.2 Antenna pad

The antenna can be soldered to the pad, or attached via contact springs. To help you to ground the antenna, SIM300C comes with a grounding plane located close to the antenna pad.

SIM300C material properties:

SIM300C PCB Material: FR4 Antenna pad: Gold plated pad

Antenna pad soldering temperature (fewer 10 seconds): 260°C

4.2 Module RF output power

Table 25: SIM300C RF output power

Frequency	Max	Min
E-GSM900	33dBm ±2db	5dBm±5db
DCS1800	30dBm ±2db	0dBm±5db
PCS1900	30dBm ±2db	0dBm±5db

4.3 Module RF receive sensitivity

Table 26: SIM300C RF receive sensitivity

Frequency	Receive sensitivity
E-GSM900	<-106dBm
DCS1800	<-104dBm
PCS1900	<-104dBm

4.4 Module receive/transmit frequency

Table 27: SIM300C receive/transmit frequency

Frequency	Receive	Transmit
E-GSM900	925 ~ 960MHz	880 ∼ 915MHz
DCS1800	1805 ∼ 1880MHz	1710 ∼ 1785MHz
PCS1900	1930 ∼ 1990MHz	1850 ∼ 1910MHz

4.5 Antenna gain

Table 28: Antenna gain

Item	parameter		
	GSM	DCS	
Gain(dBi)	0.5	1	
Pattern	Omr	nidirectional antenna	

5 Electrical, reliability and radio characteristics

5.1 Absolute maximum ratings

Absolute maximum rating for power supply and voltage on digital and analog pins of SIM300C are list in following table:

Table 29: Absolute maximum ratings

Parameter	Min	Max	Unit
Peak current of power supply	0	4.0	A
RMS current of power supply (during one TDMA- frame)	0	0.7	A
Voltage at digit pins	-0.3	3.3	V
Voltage at analog pins	-0.3	3.0	V
Voltage at digit/analog pins in POWER DOWN mode	-0.25	0.25	V

5.2 Operating temperatures

The operating temperature is listed in following table:

Table 30: SIM300C operating temperature

Parameter	Min	Тур	Max	Unit
Ambient temperature	-20	25	55	$^{\circ}$ C
Restricted operation*	-30 to -20		55 to 80	$^{\circ}$
Storage temperature	-40		+85	$^{\circ}$ C

^{*} SIM300C can work, but the deviation from the GSM specification may occur.

5.3 Power supply ratings

Table 31: SIM300C power supply ratings

Parameter	Description	Conditions	Min	Тур	Max	Unit
VBAT	Supply voltage	Voltage must stay within the min/max values, including voltage drop, ripple, and spikes.	3.4	4.0	4.5	V
	Voltage drop during transmit burst	Normal condition, power control level for Pout max			400	mV
	Voltage ripple	Normal condition, power control level for Pout max @ f<200kHz @ f>200kHz			50 2	mV
I_{VBAT}	Average supply current	POWER DOWN mode SLEEP mode		35 3.5		uA mA
		IDLE mode (Not connect console) EGSM 900 GSM 1800/1900		23 23		mA
		IDLE mode (connect console) EGSM 900 GSM 1800/1900		33 33		mA
		TALK mode EGSM 900 GSM 1800/1900		260 200		mA
		DATA mode, GPRS (3 Rx,2Tx) EGSM 900 GSM 1800/1900		470 340		mA
		DATA mode, GPRS (4 Rx,1Tx) EGSM 900 GSM 1800/1900		275 220		mA
	Peak supply current (during transmission slot every 4.6ms)	Power control level		2		A

5.4 Current Consumption

The values for current consumption listed below refer to Table 28.

Table 32: SIM300C current consumption

Voice Call	
GSM 900	@power level #5 <350mA, Typical 260mA
	@power level #10, Typical 130mA
	@power level #19,Typical 86mA
GSM1800/1900	@power level #0 <300mA, Typical 200mA
	@power level #10, Typical 87mA
	@power level #15,Typical 80mA
GPRS Data	
DATA mode, GPRS (1 Rx,1 Tx) CLASS 8	
GSM 900	@power level #5 <350mA, Typical 260mA
	@power level #10, Typical 125mA
	@power level #19, Typical 84mA
GSM1800/1900	@power level #0 <300mA, Typical 200mA
	@power level #10, Typical 83mA
	@power level #15,Typical 76mA
DATA mode, GPRS (3 Rx, 2 Tx) CLASS 10	
GSM 900	@power level #5 <550mA, Typical 470mA
	@power level #10,Typical 225mA
	@power level #19,Typical 142mA
GSM1800/1900	@power level #0 <450mA, Typical 340mA
	@power level #10,Typical 140mA
	@power level #15,Typical 127mA
DATA mode, GPRS (4 Rx,1 Tx) CLASS 8	
GSM 900	@power level #5 <350mA, Typical 270mA
	@power level #10,Typical 160mA
	@power level #19,Typical 120mA
GSM1800/1900	@power level #0 <300mA,Typical 220mA
~	@power level #10,Typical 120mA
	@power level #15,Typical 113mA

5.5 Electro-Static discharge

Normally the module is designed inside customer terminal, so about Electro-Static Discharge (ESD) should be considered base on the requirement of terminal product. But for the module is protected against Electro-Static Discharge in conveyance and customer production, and some second level ESD protect design inside module.

The remaining ports are not special ESD protection in module, so the user should consider in the final product, and therefore, they are only protected according to the Human Body Model requirements.

Table 33: The ESD endure statue measured table (Temperature: 25°C, Humidity:45%)

Part	Contact discharge	Air discharge
VBAT,GND	±8KV	±10KV
KBR0-4, DTR, RXD, TXD, RTS,	±4KV	±8KV
SPI_DATA, SPI_CLK		
Antenna port	±8KV	±8KV
Other port	±4KV	±8KV

6 Mechanics

This chapter describes the mechanical dimensions of SIM300C.

6.1 Mechanical dimensions of SIM300C

Following are SIM300C top view, side view and bottom view. These show you Mechanical dimensions of SIM300C.

Figure 27: Mechanical dimensions of SIM300C (Unit: mm)

6.2 Mounting SIM300C onto the application platform

Use the connector ASTRON 1590060-093 four mounting pads fix the SIM300C onto customer platform.

6.3 connector

We recommend user astron Company's 1590060-093 as the DIP connector. These high density SMT connectors are designed for parallel PCB-to-PCB applications.

6.3.1 Mechanical dimensions of the ASTRON 1590060-093

Figure 28: ASTRON 1590060-093 DIP connector pin side

Figure 29: ASTRON DIP connector physical photo

NOTE:

The connector ASTRON 1491060-094 is used pin side (SIM300C module) and ASTRON 1590060-093 is used socket side (user side).

6.4 RF Adapter cabling

The RF connector in module side is Murata Company Microwave Coaxial Connectors MM9329-2700B, it makes a pair with Murata Company RF connector MXTK. It is have high performance with wide frequency range, surface mountable and reflow solderable. Following is parameter. Certainly you can visit http://www.murata.com/ for more information.

Figure 30: MM9329-2700B

Figure 31: RF connector MXTK

For more information about the connector, please visit http://www.murata.com/

6.5 PIN assignment of DIP connector of SIM300C

Table 34: Connection diagrams

PIN NO.	PIN NAME	I/O	PIN NO.	PIN NAME	I/O
2	GND		1	VBAT	I
4	GND		3	VBAT	I
6	GND		5	VBAT	I
8	GND		7	VBAT	I
10	GND		9	VBAT	I
12	ADC1	I	11	CHG_IN	I
14	VRTC	I	13	NC	I
16	Network LED	O	15	VDD_EXT	O
18	KBC0	O	17	PWRKEY	I
20	KBC1	O	19	STATUS	O
22	KBC2	O	21	GPIO5	I/O
24	KBC3	O	23	BUZZER	O
26	KBC4	O	25	SIM_VDD	O
28	KBR0	I	27	SIM_RST	O
30	KBR1	I	29	SIM_I/O	I/O
32	KBR2	I	31	SIM_CLK	O
34	KBR3	I	33	SIM_PRESENT	I
36	KBR4	I	35	GPIO32	I/O
38	SPI_EN	O	37	DCD	0
40	SPI_CLK	O	39	DTR	I
42	SPI_DO	I/O	41	RXD	I
44	SPI_AO	O	43	TXD	0
46	SPI_RESET	O	45	RTS	I
48	DBGRX	I	47	CTS	О
50	DBGTX	O	49	RI	О
52	AGND		51	AGND	
54	MIC1P	I	53	SPK1P	О
56	MIC1N	I	55	SPK1N	О
58	MIC2P	I	57	SPK2P	О
60	MIC2N Internal connect to AGND	I	59	SPK2N	O