Architecture pour le signal end_cycle

Count_cycle count de 0 à 1: 1 cycle allumé/éteint de la LED.

End counter cycle = 1 si count cycle = 1, sinon end counter cycle = 0.

A l'aide de porte AND, le signal end_cycle =1 à la fin d'un cycle allumé/éteint et dure une période d'horloge.

Architecture LED_driver avec FIFO générateur

Résultat de simulation pour 100 cycle d'horloge de module counter_unit

Le signal end_cycle=1 à la fin d'un cycle allumé/éteint de la LED.

Le signal d'entrée de la FIFO, din, prend la valeur de color_code. Lorsque wr_en est actif (=1), la FIFO stocke la valeur de din et la transmet à la sortie, dout, lorsque rd_en =1.

Schéma de synthèse

Schéma de synthèse du module LED_driver

Rapport de synthèse

Report Cell Usage:								
	Cell	Count						
1	fifo_generator	1						
12	BUFG	1						
13	CARRY4	7						
4	LUT1	1						
15	LUT2	391						
16	LUT4	4						
17	LUT6	3						
18	FDCE	37						
19	IBUF	4						
10	OBUF	3						
+	+	++						

1 FIFO générateur

Nombre de registre:

28 registres pour module conuter_unit

2 registres pour faire rentrer color_code, vert ou bleu

3 registres pour color_out

1 registres pour la machine à état,

2 registres pour créer le pulse signal de wr_en

1 registre pour créer le signal end_cycle

Total = 37 registres

Nombre de registre est correspondent a schéma RTL

IBUF: clk, resetn, bouton0, bouton1

OBUF: led_out (3 bits)

Rapport de timing

WNS (ns)	TNS(ns) TNS Fa:	lling Endpoints	TNS Total Endpoints	WHS (ns)	THS (ns)	THS Failing Endpoints	THS Total Endpoints	WPWS (ns)	TPWS (ns)	TPWS Failing Endpoints	TPWS Total Endpoints
4.554	0.000	0	145	0.082	0.000	0	145	4.500	0.000	0	84

Le nombre de total négative slack (TNS) est 0, le nombre de total hold slack est 0, donc il n'y a pas problème de timming.

Point départ du chemin / critique:

Q_reg (3) du module counter unit

```
Slack (MET) :
                         4.554ns (required time - arrival time)
                         LED driver/uut/Q reg[3]/C
  Source:
                           (rising edge-triggered cell FDCE clocked by sys clk pin {rise@0.000ns fall@5.000ns period=10.000ns})
                         FIFO/U0/inst fifo gen/gconvfifo.rf/grf.rf/gntv or sync fifo.gl0.rd/rpntr/gc0.count dl reg[0]/CE
 Destination:
                           (rising edge-triggered cell FDRE clocked by sys clk pin {rise@0.000ns fall@5.000ns period=10.000ns})
 Path Group:
                         sys clk pin
 Path Type:
                         Setup (Max at Slow Process Corner)
                         10.000ns (sys clk pin rise@10.000ns - sys clk pin rise@0.000ns)
 Requirement:
                                                                                                        Point d'arrivée du
                         4.866ns (logic 0.982ns (20.180%) route 3.884ns (79.820%))
 Data Path Delay:
 Logic Levels:
                         4 (LUT2=2 LUT4=1 LUT6=1)
                                                                                                       chemin critique:
                         -0.137ns (DCD - SCD + CPR)
 Clock Path Skew:
                                                                                                        FIFO
   Destination Clock Delay (DCD):
                                    4.834ns = (14.834 - 10.000)
   Source Clock Delay
                           (SCD):
                                     5.361ns
   Clock Pessimism Removal (CPR):
                                     0.391ns
 Clock Uncertainty:
                         0.035ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
   Total System Jitter
                                     0.071ns
                         (TSJ):
   Total Input Jitter
                           (TIJ):
                                     0.000ns
   Discrete Jitter
                            (DJ):
                                     0.000ns
```