Concours commun d'accès en Première année de l'ENSAM

Université Moulay Ismail Meknès Ecole Nationale Supérieure d'Arts et Métiers - Meknès Université Hassan II Mohammedia-Casablanca Ecole Nationale Supérieure d'Arts et Métiers - Casablanca

Filières: Sciences Mathématiques A et B

Epreuve de Physique Durée : 2h 15 min

le 29 Juillet 2013

- L'épreuve contient 5 pages
- Répondre dans les deux feuilles : « Fiche des réponses » à rendre avec la feuille d'examen
- Calculatrice non autorisée

Physique I (Mécanique) : Les parties I, II et III sont indépendantes.

L'objet de l'étude est un système, composé de 3 solides rigides (figure 1) qui sont un piston (un petit cylindre de masse m_p), une tige rigide inextensible (PQ) de longueur l, de masse <u>négligeable</u> et un bras (OP) homogène de longueur R et de masse m_b , de moment d'inertie l_b (par rapport à l'axe fixe (O, Δ)). La tige (PQ) permet de lier le piston avec le bras et reste tout le temps en liaison avec le bras (au point P) et avec le piston (au point Q). Le mouvement du piston est une translation suivant l'axe vertical Ox, celui du bras (OP) est une rotation d'axe fixe (O, Δ) avec une vitesse de rotation constante ω_0 (rd/s). On note (figure 1):

- angle de rotation instantanée du bras: $\theta(t)$; angle d'inclinaison de la tige par rapport à $0x : \beta(t)$,
- position instantanée du piston : x(t) telle que $\overrightarrow{OQ} = x(t)\overrightarrow{i}$, avec \overrightarrow{i} est le vecteur unitaire suivant Ox;
- Rapport des dimensions : $\varepsilon = R/l$, L'accélération de la pesanteur : $\vec{g} = -g\vec{i}$, avec $g(m/s^2)$.
- Les forces de frottement appliquées sur le piston (à travers sa surface latérale) par son support sont interprétées par le vecteur $\vec{f} = -\lambda \dot{x} \vec{i}$, où λ est une constante positive donnée.

Important: La présente étude concerne seulement la plage de fonctionnement : $0 \le \theta(t) \le \pi$, correspondant à la descente du piston.

Partie I : l'objet de cette partie consiste à déterminer le couple produit sur le bras lors de la descente du piston.

- 1. En se basant sur un raisonnement purement géométrique (relations dans le triangle OPQ), exprimer $\sin \beta$ en fonction de θ et ε ; puis exprimer la position du piston x(t) en fonction de R, l et $\theta(t)$.
- 2. Quelle approximation peut-on considérer pour que x(t) peut s'écrire sous la forme : $x(t) \approx A\cos\theta(t) + B$, où A et B sont des constantes à identifier. C ette approximation sera considérée dans la suite du problème et on écrit : $x(t) = A\cos\theta(t) + B$.
- 3. Exprimer $\theta(t)$ (sachant que $\theta(t=0)=0$), la vitesse v(t) puis l'accélération $\gamma(t)$ du piston en fonction de R, ω_0 et le temps t.

Dans la suite, on considère que le piston est soumis sur sa face supérieure à une force supplémentaire $\vec{F} = -F(t)\vec{i}$, où $F(t) = F_0 \sin \theta(t)$ et F_0 est une constante positive donnée.

Fig.3

- 4. On désigne par $\vec{F}_{p/t}$ et $\vec{F}_{b/t}$ les forces appliquées sur la tige, respectivement par le piston (p) au point Q et par le bras (b) au point P. Etant donné que la masse de la tige (PQ) est négligeable, en appliquant le PFD (principe fondamental de la dynamique), trouver la relation entre ces deux forces en précisant leurs directions. Justifier la relation : $\vec{F}_{t/p} + \vec{F}_{p/t} = \vec{0}$, où $\vec{F}_{t/p}$ est la force appliquée par la tige (t) sur le piston (p) au point Q.
- 5. Au moyen d'un schéma (voir fiche des réponses), tracer le bilan des forces appliquées sur le piston. Respecter le sens du mouvement indiqué.
- 6. En appliquant le PFD et en tenant compte de l'approximation $\cos \beta \approx 1$, déterminer le module de la force $\vec{F}_{t/p}$, en fonction de m_p , g, \dot{x} , \ddot{x} , θ , λ et F_0 . En déduire le module de $\vec{F}_{t/b}$ (force de la tige (t) sur le bras (b) au point P).
- 7. En appliquant le PFD (équation des moments) au bras, déterminer le couple C(t) produit sur ce bras, lors de la descente du piston, en fonction de m_p , g, \dot{x} , \ddot{x} , θ , $\ddot{\theta}$, λ , F_0 , R, I_b , sachant que la distance du point O à la droite (PQ) est approximée par $h(t) = R \sin \theta$. Exprimer C(t) en fonction de m_p , g, λ , F_0 , R, ω_θ et le temps t.

Partie II: Dans l'objectif d'estimer les forces de frottement s'opposant au mouvement du piston (masse m_p), nous réalisons une expérience, *indépendante du système étudié*, dans laquelle on rattache le piston à un ressort (masse négligeable) de longueur à vide L_0 , de raideur K (fig. 2).

8. Après la mise en place du piston (m_p) sur le ressort, sa longueur est devenue L (le système piston-ressort est au repos). Exprimer L_0 -L en fonction de m, g et K. Dans la suite, cette position d'équilibre statique sera considérée comme origine du mouvement vertical x(t) (fig. 2 et 3).

Les forces de frottement appliquées sur le piston sont toujours de la forme $\vec{f}=-\lambda \dot{x}\vec{i}$ (avec $\lambda \geq 0$).

- 9. On écarte le piston de sa position d'équilibre et on l'abandonne à lui-même, en appliquant le principe de la dynamique et en mettant l'équation du mouvement du piston sous la forme : $\ddot{x} + 2\mu\dot{x} + \omega_0^2 x = 0$, préciser les constantes μ et ω_0 en fonction de m_p , λ et K.
- 10. On admet que la solution générale de cette équation est donnée par l'expression : $x(t) = Ae^{-t/\tau}\cos(\omega t)$, où A et ω sont deux constantes positives. Exprimer τ et ω en fonction de μ et ω_0 . Préciser sous quelle condition sur K, en fonction de λ et m_p , l'expression $x(t) = Ae^{-t/\tau}\cos(\omega t)$ sera valable.
- 11. La quantité ($Ae^{-t/\tau}$) est dite amplitude instantanée du mouvement, calculer μ et λ sachant qu'au bout de t=1s cette amplitude est devenue A/2, avec m_p =0.5 kg (on donne ln2=0.69).

Partie III : Un système S de levage (fig.4) est constitué d'une masse m₁, d'une poulie d'axe mobile, d'une poulie d'axe fixe et d'un câble inextensible, tel que :

- Poulie mobile : centre O2, rayon R2, masse m2, moment d'inertie négligé,
- Poulie d'axe fixe : centre O_3 (qui fait la distance d par rapport au support fixe), rayon R_3 , moment d'inertie I_3 , vitesse de rotation (par rapport à son axe fixe) $\omega_3(t)$,
- Câble : inextensible, longueur totale L, de masse négligeable.

La trajectoire du point O_2 est le segment de droite AB. On désigne par $x_1(t)$ et $x_2(t)$ les positions instantanées respectives de la masse m_1 et de la poulie mobile. Le sens positif est orienté vers le bas, l'accélération de la pesanteur g est également vers le bas.

- 12. On note x_{01} et x_{02} les positions initiales (à t=0) respectives de m_1 et de m_2 , exprimer l'énergie potentielle Ep₁ de m_1 et Ep₂ de m_2 en fonction de m_1 , m_2 , g, x_1 , x_2 , x_{01} et x_{02} en considérant Ep₁ nulle en x_{01} et Ep₂ nulle en x_{02} .
- 13. Exprimer l'énergie cinétique E_c de S en fonction de m_I , m_2 , I_3 , \dot{x}_1 , \dot{x}_2 et ω_3 ; En déduire son énergie mécanique E_m en fonction de m_I , m_2 , I_3 , R_3 , g, x_I , x_2 , x_{0I} , x_{02} , \dot{x}_1 et \dot{x}_2 .
- 14. Du fait que le câble est inextensible, sa longueur totale L vérifie à chaque instant l'équation $L=x_1+2x_2+C$. Trouver la constante C en fonction de R_2 , R_3 et la distance d.
- 15. Trouver l'accélération de la poulie mobile en fonction de m_1 , m_2 , I_3 , R_3 et g.

Physique II (Electricité): Les parties A, B, C, D et E sont indépendantes.

Le montage ci-dessous est alimenté par un générateur idéal de tension continue ayant pour force électromotrice : E = 10V.

Il comporte:

- Trois condensateurs de capacités :
 C₁, C₂ et C₃.
- Trois bobines d'inductances :
 L₁, L₂ et L₃, ayant toutes des résistances internes négligeables.
- Quatre conducteurs ohmiques : R_1 , R_2 , R_3 et R_4 .
- Quatre interrupteurs : k_1 , k_2 , k_3 et k_4 .

Le tableau suivant regroupe l'ensemble des composants avec leurs valeurs.

	-	
Composant	Nature	Valeur
R	Résistance	$R_1 = R_2 = R_3 = R_4 = 100 \Omega$
L	Bobine	$L_1 = L_2 = 50 \text{ mH et } L_3 = 100 \text{ mH}$
С	Condensateur	$C_1 = C_2 = 10 \mu F et C_3 = 100 \mu F$

Partie A. k_1 est en position (1) et k_2 est en position (1).

Dans cette partie, on note: C, la capacité du condensateur équivalent aux deux condensateurs C_1 et C_2 en parallèle. On note aussi : t_0 , l'instant où les interrupteurs basculent vers leurs positions respectives, et on suppose qu'à cet instant les condensateurs sont totalement déchargés.

- 1. Quelle est la valeur du courant i_1 en régime permanent ?
- 2. En régime permanent, quelle sera la charge q_1 en mC, au niveau du condensateur C_1 ?
- 3. Quelle sera la valeur, en mJ, de l'énergie stockée au niveau du condensateur C_1 ?
- 4. Quelle est l'équation différentielle vérifiée par la tension u_{C_1} en fonction de R_1 , C et E?
- 5. On donne l'expression temporelle du courant $i_1(t) = Ae^{-B.t}$. Donner les expressions des constantes A et B en fonction de R_1 , C et E.

Partie B. k₂ est en position (2).

Dans cette partie, on note: t_0 , l'instant où l'interrupteur k_2 bascule vers la position (2), et on suppose que $u_{c_2}(t_0) = 10V$.

- 6. Donner l'expression temporelle de la tension $u_{c_2}(t)$ en fonction de R_2 et C_2 .
- 7. Quelle est la valeur, en mA, du courant i_2 qui traverse la résistance R_2 à l'instant t_0 .
- 8. Quelle sera l'énergie stockée dans le condensateur C_2 en régime permanent ?

Partie C. k₂ est en position (3).

Dans cette partie, on note Q_2 et Q_3 , respectivement les charges aux niveaux des condensateurs C_2 et C_3 , et l'instant O_0 , l'instant où l'interrupteur O_2 bascule vers la position (3).

- 9. Quelle sera l'expression de la charge Q_3 en fonction de $Q_2(t_0)$, $Q_3(t_0)$, C_2 et C_3 ?
- 10. Supposant que : $Q_2(t_0) = 0.1 \, mC$ et $Q_3(t_0) = 0C$, quelle sera la valeur de la tension $u_{C_2}(t)$?
- 11. Supposant que : $Q_2(t_0) = 0.1 \, mC$ et $Q_3(t_0) = \frac{Q_2(t_0)}{2}$ Quelle est la valeur de l'énergie, en mJ, qui sera stockée au niveau de C_3 ?

Partie D. k_1 est en position (3), k_2 est en position (1) et k_3 est en position (1).

Dans cette partie, on note L l'inductance équivalente des bobines L_1 et L_2 en série, et t_0 , l'instant où les interrupteurs basculent vers leurs positions respectives.

On suppose aussi que $u_{C_1}(t_0) = 5V$.

- 12. Quelle est la valeur, en mH, de l'inductance L?
- 13. Quelle est la valeur, en mJ, de l'énergie maximale qui sera stockée au niveau de la bobine L_1 ?
- 14. Quelle est la valeur maximale du courant traversant la bobine L_1 ?

Partie E. k_1 est en position (2), k_2 est en position (1) et k_4 est en position (2).

15. Donner l'équation différentielle vérifiée par la tension u_{c_1} .

Cette feuille ne doit porter **aucun signe indicatif ni signature** Filières SM A et B

	FICHE DES REPONSES (Physique I) : Questions 1 à 15 (2 points pour chaque question)					Note	
					Q .		
1	$\sin \beta = \frac{R}{L} \sin \Theta = \mathcal{E}$				(1/1 - E 300 (
2	Approximation: $\kappa(\mathfrak{h})$	Rc00+	₹ A=	R	B= 6		
3	$\theta(t) = \omega_{\circ} t$ $v(t) = 0$	- Rosin($\gamma(t) =$	-Rô	(0004)		
4	Relation:		Justifi	cation:			
	Directions des forces $\vec{F}_{p/l}$, et $\vec{F}_{b/t}$:			į.	.	
5	Bilan des forces appliquées sur				Sens du mouvement		
	le piston :						
					*		
6	F _{t/p} =						
	F _{t/b} =	or				- 1	
7	C (t)=						
,	C(t)=	ř.					
8	L ₀ -L =						
9	μ=	l is	ω ₀ =	,			
10	τ=	ω=		Condition s	ur K:		,
11	μ= λ=						
12	E _{p1} =		E _{p2} =		g .		
13	E _c =						
	E _m =	¥		2 N	E .		
14	Constante C=	ž.				1	
15	L'accélération γ=	,					
	4/5					L	

Cette feuille ne doit porter **aucun signe indicatif ni signature**Filières SM A et B

Fiche des réponses (Physique II)	Chaque question est notée sur 2 points		
	Réponse	Note	

Partie A.

1.	La valeur du courant i_1 en régime permanent:	$i_1 = O$
2.	La charge, q_1 , en mC , au niveau du	91 = CAE = 10-7mC
3.	La valeur, en mJ , de l'énergie stockée au niveau du condensateur C_1 :	E = 1 C, E2 = 104.100 = 1mg
4.	L'équation différentielle vérifiée par la tension u_c en fonction de R_1 , C et E :	C = 170 2t
5.	Les expressions des constantes A et B en fonction de R_1 , C et E :	$A = -\frac{c}{R_1} \qquad \text{et } B = \frac{1}{R_1} C$

Partie B.

6.	L'expression temporelle de la tension $u_{C_2}(t)$ en fonction de R_2 et C_2 :	$u_{c_2}(t) = A e^{\frac{t}{R_2}C_2} = 10 e^{-\frac{t}{R_2}C_2}$
7.	La valeur, en mA , du courant i_2 qui traverse la résistance R_2 à l'instant t_0 :	i2 = - (2 31/2 => i2(+=0) = 100mA
8.	L'énergie stockée dans le condensateur C_2 en régime permanent :	$E = \frac{1}{2}C_2U^2 = \frac{1}{2}C_2O^2 = 0$

Partie C.

9.	L'expression de la charge Q_3 en fonction de $Q_2(t_0)$, $Q_3(t_0)$, C_2 et C_3 :	Q3 = - 10 e 4 R1C2	
10.	La valeur de la tension $u_{C_2}(t)$:	$u_{\mathcal{C}_2}(t) \equiv$	
11.	L'énergie stockée, en régime permanent	E =	

Partie D.

12.	La valeur, en mH, de l'inductance L :	L =
13.	La valeur, en mJ , de l'énergie maximale qui sera stockée au niveau de la bobine L_1 :	$E_{max} =$
14.	La valeur maximale du courant traversant la bobine L_1 :	$l_{max} =$

Partie E.

15.	L'équation différentielle vérifiée par la	1		
	tension $u_{\mathcal{C}_1}$:			