Probability Review

Klein carlj.klein@gmail.com

1 Cards

Question1:

Inclusion-Exclusion ID

Hint: $P(A \cup B) = ?$

Answer1:

 $P(A \cup B) = P(A) + P(B) - P(AB)$

Question2:

Define Mutually Exclusive

Answer2:

If $AB = \emptyset \rightarrow A$ and B are mutually exclusive

Question3:

Conditional Probability and Corollary

Answer3:

Definition: $P(E|F) = \frac{P(EF)}{P(F)}$ Corollary: P(EF) = P(E) * P(F|E)

Question4:

Multiplication Rule

Hint: extension of conditional probability: $\rightarrow P(E_1 * * * E_n) = ?$

Answer4:

$$P(E_1 * * * E_n) = P(E_1) * P(E_2 \mid E_1) * P(E_3 \mid E_2 * E_1) * * P(E_n \mid E_{n-1} * * E_1)$$

Question5:

Law of Total Probability

Hint: Given a mutually exclusive and exhaustive set A, $P(A_1) + ... + P(A_k) =$ 1, what can be deduced about the probability of an event B occurring?

Answer5:

P(B)

$$= P(BA_1) + ... + P(BA_k) = P(A_1) * P(B \mid A_1) + ... + P(A_k) * P(B \mid A_k) = \sum_{i=1}^{k} P(A_i) * P(B \mid A_i)$$

Question6:

Bayes' Theorem

Answer6:

Given a mutually exclusive and exhaustive set A, $P(A_1) + ... + P(A_k) = 1$,

$$P(A_j | B) = \frac{P(A_j B)}{P(B)} = \frac{P(A_j) * P(B|A_j)}{\sum_{i=1}^k P(A_i) * P(B|A_i)}$$

Question7:

How does independence extend to intersections and conditional probability?

Answer7:

Given independent events, A and B:

$$\begin{split} P(AB) &= P(A) * P(B) \\ P(A|B) &= P(A) \text{ and } P(B|A) = P(B) \end{split}$$

Question8:

Cumulative Distribution Function (CDF)

Answer8:

$$F(x) = P(X \le x)$$

Question9:

Properties of the CDF

Answer9:

- $0 \le F(x) \le 1$
- If $x \le y \to F(x) \le F(y)$
- $\lim_{x\to\infty} F(x) = 1$
- $\lim_{xto-\infty} F(x) = 0$

Question 10:

Probability Mass Function (pmf)

Answer10:

Note: for finite or countably infinite set (i.e. discrete)

$$p(x) = P(X=x)$$

Question11:

For discrete values, describe the following:

- E[X]
- \bullet $E[X^2]$
- E[g(X)]
- E[aX + b]
- E[aX + bY]

Answer11:

- $E[X] = \sum_{x} x P(X = x)$
- $E[X^2] = \sum_x x^2 P(X = x)$
- $E[g(X)] = \sum_{x} g(x)P(X = x)$
- E[aX + b] = aE[X] + b
- E[aX + bY] = aE[X] + bE[Y]

Question12:

For discrete values, describe the following:

- Var(X)
- Var(cX)
- Var(aX + b)
- sd(X)

Answer12:

- $Var(X) = E[(X \mu)^2] = E[X^2] (E[X])^2 = \sigma^2$
- $Var(cX) = c^2 Var(X)$
- $Var(aX + b) = a^2Var(X)$
- $\operatorname{sd}(X) = \sqrt{Var(X)} = \sigma$

Question13:

Define moment and compare it to σ

Answer13:

$$\begin{split} \mathbf{E}[\mathbf{X}^k] &= \mathbf{k}^{th} \text{ raw moment} \\ \sigma &= \text{mean} = 1 \text{st raw moment} \end{split}$$

Question14:

Define covariance and provide the formula.

Answer14:

 $\begin{array}{l} \operatorname{Cov}(X,\,Y) = \\ \operatorname{E}[(X\,\text{-}\,\operatorname{E}[X])(Y\,\text{-}\,\operatorname{E}[Y])] = \\ \operatorname{E}[XY]\,\text{-}\,\operatorname{E}[X]\operatorname{E}[Y] \end{array}$

Question15:

Describe the following properties of covariance:

- Cov(X, X)
- Cov(aX, Y)
- $\operatorname{Cov}(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j)$

Answer15:

- $Cov(X, X) = E[X^2] (E[X])^2 = \sigma^2 = Var(X)$
- Cov(aX, Y) = aCov(X, Y)
- $Cov(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} Cov(X_i, Y_j)$

Question16:

Uniform Distribution (discrete) Provide the following:

- pmf
- E[X]
- Var(X)

Answer16:

- $P(X=x) = \frac{1}{n}$
- $E[X] = \frac{n+1}{2} = \frac{b+a}{2}$

•
$$Var(X) = \frac{n^2+1}{12} = \frac{(b-a+1)^2+1}{12}$$

Question17:

Bernoulli Distribution (discrete)

Provide the following:

- pmf
- E[X]
- Var(X)

Answer17:

Example: flipping a coin for a single experiment, 0 represents heads (probability p) and 1 represents tails ()probability 1 - p).

•

$$P(X = x) = \begin{cases} p; x = 0 \\ 1 - p; x = 1 \end{cases}$$

- E[X] = p
- Var(X) = p(1 p)

Question 18:

Binomial Distribution (discrete)

Provide the following:

- pmf
- E[X]
- Var(X)

Answer18:

Example: Multiple experiments where each experiment only has 2 outcomes (flipping a coin multiple times).

The distribution is the sum of Bernoulli's, number of successes with probability p in n independent trials.

- $P(X=x) = \binom{n}{x} p^x p (1-p)^{n-x}$
- E[X] = np
- Var(X) = np(1 p)

Question19:

Geometric Distribution - "Starting at 0" (discrete) Provide the following:

• pmf

- E[X]
- Var(X)

Answer19:

Example: x is the number of failures before a success (i.e. can be 0).

- $P(X=x) = p(1-p)^x$
- $E[X] = \frac{1-p}{p}$
- $Var(X) = \frac{1-p}{p^2}$

Question 20:

Geometric Distribution - "Starting at 1" (discrete) Provide the following:

- pmf
- E[X]
- Var(X)

Answer20:

Example: x is the number of trials necessary for a success, including the success (i.e. cannot be 0).

- $P(X=x) = p(1-p)^{x-1}$
- $E[X] = \frac{1}{n}$
- $Var(X) = \frac{1-p}{p^2}$

Question21:

Negative Binomial (discrete)

Provide the following:

- pmf
- E[X]
- Var(X)

Answer21:

Number of failures before the \mathbf{r}^{th} success. Sum of Geometric Distributions "starting at 0".

• $P(X=x) = \binom{n+(r-1)}{r-1} p^r (1-p)^n$

•
$$P(X=x) = \binom{n+(r-1)}{r-1} p^r (1-p)$$

•
$$E[X] = r \frac{1-p}{p}$$

•
$$Var(X) = r \frac{1-p}{p^2}$$

Question22:

Poisson Distribution (discrete) Provide the following:

- pmf
- E[X]
- Var(X)

Answer22:

- $P(X=x) = e^{-\lambda} \frac{\lambda^x}{x!}$
- $E[X] = \lambda$
- $Var(X) = \lambda$

Note that the sum of independent Poisson distributions is Poisson:

Given $N = Poiss(\lambda_1)$ and $M = Poiss(\lambda_2)$

$$\rightarrow P(N+M=x) = P(Poiss(\lambda_1+\lambda_2)=x)$$

Question23:

Hypergeometric Distribution (discrete) Provide the following:

- pmf
- E[X]
- Var(X)

Answer 23:

Choosing items without replacement:

- G: total "good"
- g: number of "good" wanted
- N: total
- n: number inspected
- $P(X=g) = \frac{\binom{G}{g}\binom{N-G}{n-g}}{\binom{N}{n}}$
- $E[X] = \frac{G}{N}$
- $\operatorname{Var}(X) = \frac{N-n}{N-1} np(1-p)$

Question24:

 ${\bf Multinomial\ Distribution\ (discrete)}$

Provide the following:

- \bullet pmf
- E[X]
- Var(X)

Answer24:

Example: k-sided die rolled n times (i.e. n trials with k outcomes). Derivation of the binomial distribution (i.e. has more than 2 outcomes).

Given

 X_i : number of trials resulting in the i^{th} outcome.

k: number of categories

then

•
$$P(X_1 = x_1, ..., X_k = x_k) = \frac{n!}{x_1! *** x_k!} p_1^{x_1} *** p_k^{x_k}$$

•
$$E[X_i] = np_i$$

•
$$Var(X_i) = np_i(1 - p_i)$$

Question25:

Define the probability density function (PDF).

Answer25:

Function which describes the probability for an event to occur for continuous functions.

$$\mathbf{f}(\mathbf{x}) = \frac{d}{dx}\mathbf{F}(\mathbf{x}) \rightarrow \mathbf{P}(\mathbf{X} \in \mathbf{B}) = \int_{B}\!\mathbf{f}(\mathbf{x})\mathrm{d}\mathbf{x}$$

Question26:

Properties of the PDF.

Answer26:

$$\begin{aligned} f(x) &\geq 0 \\ \int_{-\infty}^{\infty} f(x) \mathrm{d}x &= 1 \\ \int_{a}^{b} f(x) \mathrm{d}x &= P(a \leq x \leq b) \end{aligned}$$

Question27:

For continuous values, describe the following:

- E[X]
- E[g(X)]

• Var(X)

Answer27:

- $E[X] = \int_{-\infty}^{\infty} xf(x)dx$
- $E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$
- $Var(X) = E[X^2] (E[X])^2 = \sigma^2$

 ${\bf Question 28:}$

Uniform Distribution (continuous) Provide the following:

- PDF
- E[X]
- Var(X)

Answer28:

- $f(x) = \frac{1}{b-a}$, a < x < b
- $E[X] = \frac{a+b}{2}$
- $Var(X) = \frac{(b-a)^2}{12}$

Question29:

Normal Distribution (continuous) Provide the following:

- PDF
- E[X]
- Var(X)

Answer29:

- $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$
- $E[X] = \mu$
- $Var(X) = \sigma^2$

Standard Normal Conversion:

Want
$$\mu = 0$$
 and $\sigma = 1$

If
$$X = Norm(\mu, \sigma^2) \to Z = \frac{x-\mu}{\sigma}$$
 is the standard normal.

Question 30:

Exponential Distribution (continuous)

Provide the following:

- PDF
- E[X]
- Var(X)

Answer30:

Example: X is the waiting time until an event occurs, when events are always occurring at a random rate of $\mu > 0$.

•
$$f(x) = \mu e^{-\lambda x}, x > 0$$

•
$$E[X] = \frac{1}{\lambda}$$

•
$$Var(X) = \frac{1}{\lambda^2}$$

$$P(X > x) = e^{-\lambda x}$$

X has the memoryless property: implies the probability of an event occurring in the future is independent of how long it has not occurred in the past.

Question31:

Central Limit Theorem (CLT).

Answer31:

The sum of a large number of independent random variables has a distribution that is approximately normal.

That is, given a sequence of individually and identically distributed random variables (iid's), each with mean μ and variance σ^2 :

$$\frac{x_1 + \dots + x_n - n\mu}{\sigma \sqrt{n}}$$
 is approximately N(0,1) as $n \to \infty$

$$S_n = x_1 + ... + x_n$$
, $E[S_n] = n\mu$, $SD(S_n) = \sigma\sqrt{n}$, $VarSD(S_n) = \sigma^2 n$

$$\rightarrow \frac{S_n - n \mu}{\sigma \sqrt{n}}$$
 is approximately N(0,1).

Question32:

Central Limit Theorem (CLT) Extensions, describe the following:

- Given $S_n = x_1 + ... + x_n$, provide the CDF $P(S_n \le x)$
- Averages

Answer32:

•
$$P(S_n \le x) = P(\frac{S_n - n\mu}{\sigma\sqrt{n}} \le \frac{x - n\mu}{\sigma\sqrt{n}}) = \phi(\frac{x - n\mu}{\sigma\sqrt{n}})$$

•
$$S_n = \sum x_i \to \bar{x} = \frac{S}{n} \to E[\bar{X}] = E[X]$$

 $Var(\bar{X}) = \frac{Var(X)}{n}$
 $\to X$ is approximately $N(E[X], \frac{Var(X)}{n})$

Question33:

Describe the strong law of large numbers.

Answer33:

The average of a sequence of iid's random variables will converge to the mean of that distribution.

Given
$$\mathrm{E}[X_i] = \mu$$
, $S_n = x_1 + \ldots + x_n$,
then $\frac{S_n}{n} \to \mu$ as $n \to \infty$

Question34:

Moment Generating Function (MGF)

Answer34:

 $M(t) = E[e^{tx}]$, which can be generated for both discrete and continuous variables.

$$\begin{aligned} \mathbf{M}'(0) &= \mathbf{E}[\mathbf{X}] = \mathbf{1}^{st} \text{ moment} \\ \cdot \\ \cdot \\ \cdot \\ M^k &= \mathbf{E}[X^k] = k^{th} \text{ moment} \end{aligned}$$

Question35:

Define joint CDFs for both discrete (pmf) and continuous.

Answer35:

Discrete: joint pmf: p(i, j) = P(X=i, Y=j) Individual pmfs from joint: P(X=i) =
$$\sum_j$$
 P(i, j), P(X=j) = \sum_i P(i, j)

Continuous:
$$F(x, y) = P(X \le x, Y \le y); -\infty < x, y < \infty$$

Individual CDFs (marginal distributions): $F_x(x) = \lim_{y \to \infty} F(x, y), F_y(x) = \lim_{x \to \infty} F(x, y)$

Question36:

Define joint PDFs.

Answer36:

Suppose we have joint PDF f(x, y) such that $P((x, y) \in C) = \iint_C f(x, y) dxdy$

$$f_x(x) = \int_{\infty}^{-\infty} f(x, y) dy, f_y(y) = \int_{\infty}^{-\infty} f(x, y) dx$$

Joint PDF Independence.

Answer37:

Random variables X and Y are independent if for all sets A and B:

 $P(x \in A, y \in B) = P(X \in A)P(y \in B)$

Independence creates the following:

- $F(a, b) = F_X(a)F_Y(b)$
- $p(x, y) = p_x(x)p_y(y)$
- $f(x, y) = f_X(x)f_Y(y)$

Question38:

Define joint conditional distributions for both discrete and continuous random variables.

Answer38:

Discrete:

$$P(Y = y \mid X = x) = \frac{P(X = x, Y = y)}{P(X = x)} = \frac{P(Y = x, Y = y)}{\sum_{y} P(X = x, Y = y)}$$

Continuous:

$$f_{x|y}(y \mid X = x) = \frac{f(x,y)}{f_x(x)} = \frac{f(x,y)}{\int f(x,y)dy}$$

Question39:

Define joint moments:

- E[g(x, y)]
- E[y | X=x]
- $E[g(y) \mid X=x]$
- $\mathrm{E}[Y^k]$

Answer39:

- $E[g(x, y)] = \int \int g(x, y) f(x, y) dx dy$
- $E[y \mid X=x] = E[Y \mid X] = \int y f_{y|x}(y \mid X=x)$
- $E[g(y) \mid X=x] = \int g(y) f_{y|x}(y \mid X=x)$
- $E[Y^k] = E[E[Y^k \mid X]]$

Question 40:

Define the following in terms of X and Y:

- Var(Y)
- $Var(Y \mid X = x)$

Answer40:

- $Var(Y) = E[Var(Y \mid X)] + Var(E[Y \mid X])$

=
$$\int y^2 f_{y\mid x}(y\mid X=x) dy$$
 - $(\int y f_{y\mid x}(y\mid X=x) dy)^2$

Question41:

Define the following covariance:

- Cov(X, Y)
- Var(X + Y)
- Var(aX + bY)
- Cov(X, b)
- Cov(X, X)
- Cov(aX + bY, cZ)

Answer41:

- Cov(X, Y) = E[XY] E[X]E[Y]
- Var(X + Y) = Var(x) + 2Cov(X, Y) + Var(Y)
- $Var(aX + bY) = a^2(x) + 2abCov(X, Y) + b^2Var(Y)$
- Cov(X, b) = 0
- Cov(X, X) = Var(X)
- Cov(aX + bY, cZ) = Cov(aX, cZ) + Cov(bY, cZ)= acCov(X, Z) + bcCov(Y, Z)

Question 42:

Define the multi-variate moment generating functions (MGFs).

Answer42:

$$M_{X,Y}(s,t) = \mathbb{E}[e^{sx+ty}]$$

$$\frac{\partial}{\partial s}M_{x,y} = E[Xe^{sx+ty}]$$

$$\frac{\partial}{\partial t}M_{x,y} = E[Ye^{sx+ty}]$$

$$\frac{\partial}{\partial s} M_{x,y} \mid_{0,0} = E[X]$$

$$\frac{\partial}{\partial t}M_{x,y}\mid_{0,0}=E[Y]$$

$$\frac{\partial^2}{\partial s \partial t} M_{x,y} \mid_{0,0} = E[XY]$$