TEORÍA DE CIRCUITOS III Prueba BT5 (Turno 2)

21 de enero de 2019

Los resultados se publicarán el 22 de enero.

La revisión del examen se realizará los días 23 y 24 de enero de 2019 de 11:30 a 13:30.

El circuito de la figura representa una fuente de corriente alterna sinusoidal alimentando dos cuadripolo Q_1 idénticos conectados en cascada, y una impedancia de carga.

- 1. Determina los parámetros de transmisión del cuadripolo Q_1 .
- 2. Determina los parámetros de transmisión del cuadripolo equivalente, Q_T , conformado por la asociación de los dos cuadripolos Q_1 . Calcula la impedancia de entrada del cuadripolo Q_T y obtén la impedancia que debe tener el generador para se produzca máxima transferencia de potencia.
- 3. ¿Cuál es la impedancia de **salida** del cuadripolo Q_T si la impedancia de la fuente que lo alimenta es la obtenida en el apartado anterior?
- 4. Determina la impedancia que habría que conectar a la salida de Q_T en lugar de \overline{Z}_L para que desde la entrada de Q_T se observe esa misma impedancia. En estas condiciones, ¿que relación de atenuación hay entre los valores eficaces de las tensiones de entrada y salida del cuadripolo Q_T ?.

Solución

1. Parámetros impedancia

Para obtener los parámetros impedancia se pueden aplicar directamente las ecuaciones de esta familia. Otra opción es obtener los parámetros admitancia, dado que se trata de un circuito π , y transformar a parámetros de transmisión. En cualquier caso, el resultado es:

$$[\overline{T}] = \begin{bmatrix} 1+0.5j & 1\\ -0.25+j & 1+0.5j \end{bmatrix}$$

Comprobamos que la matriz cumple las propiedades de un circuito recíproco y simétrico.

2. Asociación en cascada

$$[\overline{T}_{QT}] = [\overline{T}_1] \cdot [\overline{T}_1] = \begin{bmatrix} 0.5 + 2j & 2+j \\ -1.5 + 1.75j & 0.5 + 2j \end{bmatrix}$$

La impedancia de entrada en función de los parámetros transmisión se expresa:

$$\overline{Z}_i = \frac{\overline{A}\overline{Z}_L + \overline{B}}{\overline{C}\overline{Z}_I + \overline{D}}$$

Sustituyendo valores obtenemos:

$$\overline{Z}_i = 0.585 - 0.732j\Omega$$

Por tanto, para que se produzca máxima transferencia de potencia, la impedancia del generador debe ser:

$$\overline{Z}_{g} = \overline{Z}_{i}^{*} = 0.585 + 0.732 \mathrm{i}\,\Omega$$

3. Impedancia de salida

La impedancia de salida de un cuadripolo a partir de los parámetros de transmisión se calcula con la siguiente expresión:

$$\overline{Z}_{out} = \frac{\overline{D} \cdot \overline{Z}_g + \overline{B}}{\overline{C} \cdot \overline{Z}_g + \overline{A}}$$

$$\overline{Z}_{out} = 0.543 - 0.898j \Omega$$

4. Se trata de conectar la impedancia característica del cuadripolo:

$$\overline{Z}_o = \sqrt{\frac{B}{C}} = 0,606 - 0,776 \mathrm{j}\,\Omega$$

Al conectar esta impedancia, la relación entre las tensiones de entrada y salida está definida por la constante de propagación:

$$\exp \overline{\gamma} = \overline{A} + \sqrt{\overline{A}^2 - 1} = 0.949 + 4.225j$$

La relación de atenuación de los valores eficaces de tensión se determina con la parte real de $\overline{\gamma}=\alpha+j\beta$:

$$\exp \alpha = \frac{U_1}{U_2} = 4,33$$