Algebra of Subspaces

Index No.: 3.5.6.1.8

Dr K Madhavi

Govt. Degree College, Kuppam.

Theorem : The intersection of two subspaces W_1 and W_2 of a vector space V(F) is also a subspace.

Proof: Given, W_1 and W_2 are two subspaces of a vector space V (F).

To prove that $W_1 \cap W_2$ is also a subspace of V (F).

For this we need to prove that a, b \in F and α , $\beta \in$ W₁ \cap W₂ \Rightarrow $a\alpha + b\beta \in$ W₁ \cap W₂

Since W_1 and W_2 are two subspaces, $\overline{O} \in W_1$ and $\overline{O} \in W_2$.

$$\Rightarrow \overline{0} \in W_1 \cap W_2$$

$$W_1 \cap W_2 \neq \phi$$
.

Let a, b \in F and α , $\beta \in W_1 \cap W_2$

$$\alpha$$
, $\beta \in W_1$ and α , $\beta \in W_2$

Since a, b \in F, α , $\beta \in$ W₁ and W₁ is a subspace $\Rightarrow \alpha\alpha + b\beta \in$ W₁

Again a, b \in F, α , $\beta \in$ W₂ and W₂ is a subspace $\Rightarrow \alpha\alpha + b\beta \in$ W₂

$$\therefore$$
 a, b \in F and α , $\beta \in W_1 \cap W_2 \Rightarrow \alpha\alpha + b\beta \in W_1 \cap W_2$

Hence $W_1 \cap W_2$ is a subspace of V (F).

Note: 1. The intersection of any family of subspaces of a vector space is also a subspace.

2. The union of two subspaces may not be a subspace of V (F).

Example: Let W_1 and W_2 be two subspaces of a vector space V_3 (R)

Where
$$W_1 = \{ (0,y,0) \mid y \in R \}$$

$$W_2 = \{ (0,0,z) \mid z \in R \}$$

Then $W_1 \cup W_2 = \{ (0,y,0) \cup (0,0,z) \mid y, z \in R \}$

Now (0,y,0) + (0,0,z) = (0,y,z)

But $(0,y,z) \notin W_1$ and $(0,y,z) \notin W_2$

 $\therefore (0,y,z) \notin W_1 \cup W_2$

 \Rightarrow W₁ \cup W₂ is not closed under vector addition.

 \therefore W₁ \cup W₂ is not a subspace of V (F).

Theorem: The union of two subspaces is a subspace if and only if one is contained in the other.

Proof: Let W_1 and W_2 be two subspaces of a vector space V (F).

Part - I: The condition is necessary.

Let one subspace is contained in the other.

i.e. let $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$

To prove that $W_1 \cup W_2$ is a subspace of V(F).

Suppose $W_1 \subseteq W_2$ then $W_1 \cup W_2 = W_2$ and since W_2 is a subspace, $W_1 \cup W_2$ is also a subspace.

Similarly if $W_2 \subseteq W_1$ then $W_1 \cup W_2 = W_1$ and since W_1 is a subspace, $W_1 \cup W_2$ is also a subspace.

Part – **II** : *The condition is sufficient.*

Let $W_1 \cup W_2$ is a subspace.

To prove that $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$

If possible let $W_1 \not\subset W_2$ and $W_2 \not\subset W_1$

Now $W_1 \not\subset W_2 \Rightarrow \exists x \in W_1 \text{ and } x \not\in W_2 \dots (1)$

Again $W_2 \not\subset W_1 \Rightarrow \exists y \in W_2 \text{ and } y \notin W_1 \dots (2)$

 $\therefore x \in W_1 \cup W_2 \text{ and } y \in W_1 \cup W_2$

Since $W_1 \cup W_2$ is a subspace, by closure property $(x + y) \in W_1 \cup W_2 \dots (3)$

Then $(x + y) \in W_1$ or $(x + y) \in W_2$

Suppose $(x + y) \in W_1$

Then $x \in W_1$, $(x + y) \in W_1$ and W_1 is a subspace $\Rightarrow 1(x+y) + (-1) x \in W_1$

$$\Rightarrow$$
 y \in W₁

But this is absurd (From (2)).

 $\therefore (x+y) \notin W_1 \dots (4)$

Similarly suppose $(x + y) \in W_2$

Then $y \in W_2$, $(x + y) \in W_2$ and W_2 is a subspace $\Rightarrow 1(x+y) + (-1) y \in W_2$

$$\Rightarrow x \in W_2$$

But this is also absurd (From (1)). \therefore (x + y) \notin W₂ (5)

Thus (4) & (5) contradict (3).

∴ Our assumption that $W_1 \not\subset W_2$ and $W_2 \not\subset W_1$ is wrong.

And hence either $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$

: The union of two subspaces is a subspace if and only if one is contained in the other.

References:

- V. Venkateswara Rao & others- A text book of B.Sc. Mathematics Linear Algebra
 Publishers S Chand and Company Ltd.
- 2. https://yutsumura.com/the-intersection-of-two-subspaces-is-also-a-subspace/
- 3. http://mathonline.wikidot.com/the-intersection-and-union-of-subspaces