Révision classe de 2^e Mouvements rectilignes

1) Définitions

- * Le mouvement est **rectiligne**
 - ⇔ la trajectoire est une droite.
- * Le mouvement est **uniforme**
 - ⇔ v (intensité du vecteur vitesse instantanée) est constante.
- * Le mouvement est rectiligne et uniforme
 - $\Leftrightarrow \vec{v}$ (vecteur vitesse instantanée) est constant.
- * Le mouvement est rectiligne et uniformément varié
 - \Leftrightarrow l'accélération \vec{a} est constante.

2) Etude du mouvement rectiligne uniformément varié

a) Terminologie et conditions initiales

La trajectoire est une droite. Afin de repérer la position d'un mobile sur cette trajectoire nous utilisons un repère avec un seul **axe Ox** de même direction que celle de la trajectoire. Ceci constitue le repère le plus pratique car le vecteur position n'aura qu'une seule coordonnée, l'**abscisse x** du mobile.

Il suffit donc tout simplement de munir la trajectoire d'une origine O et d'une orientation, pour laquelle on choisira si possible celle du mouvement. L'origine O s'appelle encore **origine des espaces**.

L'instant où le chronomètre est déclenché est appelé **instant initial** ou **origine des temps**. A l'instant initial le temps t_0 est égal à zéro : $t_0 = 0$.

Si nous choisissons l'origine O tel qu'elle coïncide avec la position initiale du mobile M_0 , le vecteur position initiale est nul. L'**abscisse initiale** (=abscisse à l'instant initial) est donc également nulle : $x_0 = 0$.

A l'instant initial, le mobile est en train de se déplacer avec la **vitesse initiale** \vec{v}_0 , tangentielle à la trajectoire, donc de même direction que l'axe Ox. \vec{v}_0 n'a donc qu'une seule coordonnée, suivant Ox, notée v_{0x} . Si \vec{v}_0 est de même sens que l'axe Ox, $v_{0x} > 0$.

Les conditions initiales sont donc : Si $t = t_0 = 0$, $x = x_0 = 0$ et $v_x = v_{0x}$.

b) L'accélération \vec{a} est constante : a_x constant

A l'instant $t_0 = 0$, $x = x_0 = 0$ et $v_x = v_{0x}$.

Un peu plus tard, à l'instant t>0, le mobile se trouve au point M d'abscisse x, et la vitesse du mobile est \vec{v} . De même que \vec{v}_0 , le vecteur \vec{v} n'a qu'une seule coordonnée, suivant Ox, notée v_x . Si \vec{v} est de même sens que l'axe Ox, $v_x>0$.

Le vecteur vitesse \vec{v} varie donc de $\Delta \vec{v} = \vec{v} - \vec{v}_0$ au cours de l'intervalle de temps $\Delta t = t - t_0$. L'accélération moyenne \vec{a}_m du mobile M s'écrit par définition :

$$\vec{a}_{m} = \frac{\Delta \vec{v}}{\Delta t}$$

Comme l'accélération instantanée \vec{a} est constante, elle est égale à l'accélération moyenne \vec{a}_m . Donc :

$$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$$

L'accélération \vec{a} a la même direction que $\Delta \vec{v}$: elle n'a donc qu'une seule coordonnée suivant Ox, notée a_x . Elle est égale à la coordonnée suivant Ox de $\Delta \vec{v}$, notée $(\Delta \vec{v})_x$, divisée par Δt . Sur la figure on voit que $(\Delta \vec{v})_x = v_x - v_{0x} = \Delta v_x$.

$$a_{x} = \frac{(\Delta \vec{v})_{x}}{\Delta t} = \frac{v_{x} - v_{0x}}{\Delta t} = \frac{\Delta v_{x}}{\Delta t}$$

Formule à retenir :

$$a_{x} = \frac{\Delta v_{x}}{\Delta t}$$

Si $\Delta \vec{v}$ est de même sens que l'axe Ox, $\Delta v_x > 0$ et $a_x > 0$!

c) Relation entre vitesse v_x et temps t

On a donc $\Delta v_x = a_x \cdot \Delta t$.

Comme $\Delta v_x = v_x - v_{0x}$ et $\Delta t = t - t_0 = t$, on obtient (une formule à retenir) :

$$\mathbf{v}_{\mathbf{x}} = \mathbf{v}_{0\mathbf{x}} + \mathbf{a}_{\mathbf{x}} \cdot \mathbf{t}$$

Voilà l'expression mathématique (l'équation) de la vitesse suivant Ox en fonction du temps. Elle permet de calculer cette vitesse à n'importe quelle date, connaissant la vitesse initiale v_{0x} et l'accélération a_x (qui sont des constantes !).

Si on connaît la seule coordonnée v_x du vecteur \vec{v} , celui-ci est entièrement déterminé.

Norme du vecteur $\vec{v}: v = |v_x|$. Si $v_x > 0$ alors $v = v_x$.

La représentation de la vitesse v_x en fonction du temps t est une droite, soit croissante (si $a_x > 0$), soit décroissante (si $a_x < 0$).

- **Q1:** L'équation paramétrique de v_x est-elle valable si le mouvement a lieu dans le sens négatif de l'axe Ox?
- **Q2:** Le mouvement d'un mobile M pour lequel v_x augmente est-il automatiquement un mouvement où M devient de plus en plus rapide.
- Q3: Les trois affirmations suivantes sont-elles équivalentes?

 Le mobile est accéléré. Le mobile devient de plus en plus rapide. La vitesse du mobile augmente.
- **Exemple 1 :** Une voiture a une vitesse initiale de 10 m/s. Elle est en train de rouler sur une route rectiligne avec une accélération constante de 0,8 m/s². Calculer sa vitesse au bout de 10 s.

Solution :
$$\begin{aligned} v_x &= v_{0x} + a_x \cdot t \\ v_x &= (10 + 0.8 \cdot 10) \text{ m/s} = 18 \text{ m/s} \end{aligned}$$

d) Relation entre abscisse x et temps t

Rappel : définition de la vitesse moyenne : $\vec{v}_m = \frac{\Delta OM}{\Delta t}$

Au cas général où le mobile se trouvant en M_1 à l'instant t_1 se déplace à M_2 qu'il atteint à l'instant t_2 , on obtient pour la composante suivant x de \vec{v}_m :

$$v_{mx} = \frac{(\Delta \overrightarrow{OM})_x}{\Delta t} = \frac{(\overrightarrow{OM}_2)_x - (\overrightarrow{OM}_1)_x}{t_2 - t_1} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$

Formule à retenir :

$$v_{mx} = \frac{\Delta x}{\Delta t}$$

Utilisons cette relation pour exprimer la vitesse moyenne entre l'instant initial $t_0 = 0$ et un instant ultérieur quelconque t > 0. Elle devient dans ce cas où le vecteur position initiale $\overrightarrow{OM_0}$ est nul :

$$v_{mx} = \frac{x}{t}$$

Afin de déterminer v_{mx} examinons la variation de v_x en fonction du temps!

La figure montre que la vitesse moyenne v_{mx} est donnée par :

$$v_{mx} = \frac{1}{2} (v_x + v_{0x})$$

Il vient: $x = v_{mx} \cdot t = \frac{1}{2} (v_x + v_{0x}) \cdot t$

Comme : $v_x = v_{0x} + a_x \cdot t$, on obtient (une formule à retenir) :

$$x = \frac{1}{2}a_x t^2 + v_{0x} t$$

C'est **l'équation horaire du mobile** qui permet de calculer l'abscisse x à n'importe quelle date t, connaissant la vitesse initiale v_{0x} et l'accélération a_x ($x_0 = 0$).

La représentation graphique de l'abscisse x en fonction du temps t est une **parabole** passant par l'origine O.

Exemple 2: Reprendre l'exemple 1 et calculer la distance parcourue entre $t_1 = 2$ s et $t_2 = 5$ s.

Solution: Abscisse à
$$t_1 = 2$$
 s: $x_1 = \frac{1}{2} a_x t_1^2 + v_{0x} t_1$

$$x_1 = (0.4 \cdot 4 + 10 \cdot 2) \text{ m} = 21.6 \text{ m}$$

Abscisse à
$$t_2 = 5$$
 s: $x_2 = \frac{1}{2} a_x t_2^2 + v_{0x} t_2$

$$x_2 = (0.4 \cdot 25 + 10 \cdot 5) \text{ m} = 60.0 \text{ m}$$

Distance cherchée :
$$\Delta x = x_2 - x_1 = 38,4 \text{ m}$$

e) Relation entre vitesse v_x et abscisse x

Partons des équations paramétriques x = f(t) et $v_x = g(t)$:

$$\mathbf{v}_{\mathbf{x}} = \mathbf{v}_{0\mathbf{x}} + \mathbf{a}_{\mathbf{x}} \cdot \mathbf{t} \tag{1}$$

$$x = \frac{1}{2}a_x t^2 + v_{0x}t$$

$$t = \frac{v_x - v_{0x}}{a_x}$$
(2)

Dans (2)
$$\Rightarrow$$

$$x = \frac{1}{2} \cdot a_{x} \cdot \left(\frac{v_{x} - v_{0x}}{a_{x}}\right)^{2} + v_{0x} \cdot \frac{v_{x} - v_{0x}}{a_{x}}$$
$$x = \frac{1}{2} \cdot a_{x} \cdot \left(\frac{v_{x}^{2} - 2v_{x}v_{0x} + v_{0x}^{2}}{a_{x}^{2}}\right) + \frac{v_{x}v_{0x} - v_{0x}^{2}}{a_{x}}$$
$$x = \frac{1}{2} \cdot \frac{v_{x}^{2} - 2v_{x}v_{0x} + v_{0x}^{2} + 2v_{x}v_{0x} - 2v_{0x}^{2}}{a_{x}}$$

$$x = \frac{v_{x}^{2} - v_{0x}^{2}}{2a_{x}}$$

Finalement on obtient une formule à retenir :

$$v_x^2 - v_{0x}^2 = 2a_x x \iff \Delta(v_x^2) = 2a_x x$$

Exemple 3 : Reprendre l'exemple 1 et calculer la vitesse de la voiture après un parcours de 50 m.

Solution: $v_x^2 - v_{0x}^2 = 2a_x \cdot x \implies v_x = \sqrt{v_{0x}^2 + 2a_x \cdot x}$ $v = \sqrt{100 + 1,6 \cdot 50} \frac{m}{s} = 13,4 \frac{m}{s}$

- **Exemple 4 :** Une voiture initialement en mouvement avec la vitesse de 120 km/h, freine avec accélération constante de sorte qu'elle arrive au repos au bout de 5 s.
 - a) Quelle est l'accélération du mouvement ?
 - b) Quel est le chemin parcouru pendant le freinage?
 - c) Quelle est la vitesse après 3,15 s de freinage?
 - d) Quel est le chemin parcouru jusqu'à l'instant où la vitesse ne vaut plus que 20 km/h?
 - e) Quel est le chemin parcouru après 2 s ?

Solution : Afin de résoudre un tel exercice, il faut obligatoirement faire un croquis en y reportant toutes les données.

a) L'accélération est donnée par : $v_x = a_x \cdot t + v_{0x}$ avec $v_x = 0$, $v_{0x} = \frac{120}{3,6}$ m/s et t = 5 s

Donc: $a_x = \frac{v_x - v_{0x}}{t} = -6,67 \text{ m/s}^2$

 $a_x < 0$ signifie que l'accélération $\vec{a}~$ est orientée dans le sens opposé à celui de l'axe Ox.

b) On a:
$$v_x^2 - v_{0x}^2 = 2a_x \cdot x$$

Donc: $x = \frac{v_x^2 - v_{0x}^2}{2a_x} = 83.3 \text{ m}$

- c) Vitesse à t = 3.15 s: $v_x = a_x \cdot t + v_{0x} = 12.3 \text{ m/s}$
- d) Le chemin parcouru x est donné par : $v_x^2 v_{0x}^2 = 2a_x x$ avec $v_x = \frac{20}{3,6}$ m/s et $v_{0x} = \frac{120}{3,6}$ m/s Donc : $x = \frac{v_{0x}^2 v_x^2}{2a_x} = 81,0$ m

e) Chemin parcouru à
$$t = 2 s$$
: $x = \frac{1}{2} a_x t^2 + v_{0x} t$
Donc: $x = \left(-\frac{1}{2} \cdot 6,67 \cdot 2^2 + \frac{120}{3,6} \cdot 2\right) m = 53,3 m$

f) Cas où le mobile ne se trouve initialement pas à l'origine

Les conditions initiales sont : Si $t = t_0 = 0$, $x = x_0 \neq 0$ et $v_x = v_{0x}$.

Rien ne change pour la relation entre vitesse v_x et temps t:

$$v_{x} = v_{0x} + a_{x}t$$

Dans l'équation horaire il faut additionner x_0 à x:

$$x = \frac{1}{2}a_{x}t^{2} + v_{0x}t + x_{0}$$

Pour la relation entre vitesse v_x et l'abscisse x, on trouve :

$$v_x^2 - v_{0x}^2 = 2a_x \cdot \Delta x$$

3. Etude du mouvement rectiligne uniforme

Il s'agit d'un cas particulier de mouvement rectiligne uniformément varié, celui où $\vec{a} = \vec{0}$. La vitesse \vec{v} est constante, donc $v_x = v_{0x} = \text{constante}$.

L'équation horaire (relation entre x et t) devient (**formule à retenir**) :

$$\mathbf{x} = \mathbf{v}_{\mathbf{x}} \cdot \mathbf{t} + \mathbf{x}_{\mathbf{0}}$$

La relation est valable dans tous les cas :

* cas où \vec{v} est orienté dans le sens de l'axe Ox ($v_x > 0$):

* cas où \vec{v} est orienté dans le sens opposé à celui de l'axe Ox ($v_x < 0$) :

La représentation graphique de la fonction affine x = f(t) est une droite croissante si $v_x > 0$ (figure), et décroissante si $v_x < 0$. La pente équivaut à v_x .

Exemple 5 : Une voiture roule sur une autoroute rectiligne à la vitesse constante de 130 km/h. Lorsqu'on déclenche le chronomètre, elle se trouve à 55 km du lieu de départ. Calculer la position à partir du lieu de départ de la voiture quand le chrono indiquera un temps de 27 min.

Solution : Origine O au lieu de départ !

Vitesse:
$$v_x = \frac{130}{3.6} \text{ m/s}$$

Temps:
$$t = 27.60 \text{ s}$$

Position:
$$x = v_x \cdot t + x_0$$

$$x = \left(\frac{130 \cdot 27 \cdot 60}{3,6} + 55000\right) m = 113500 \text{ m}$$

La voiture se trouve à 113,5 km du lieu de départ.

Exemple 6 : Une voiture roule sur une autoroute rectiligne à la vitesse constante de 100 km/h. Lorsqu'on déclenche le chronomètre, elle se trouve à 88 km du lieu d'arrivée. Déterminer la position à partir du lieu d'arrivée de la voiture quand le chrono indiquera un temps de 15 min.

Solution : Origine O au lieu d'arrivée!

Vitesse:
$$v_x = -\frac{100}{3.6} \text{ m/s}$$

Temps:
$$t = 15.60 \text{ s}$$

Position:
$$x = v_x t + x_0$$

$$x = \left(-\frac{100 \cdot 15 \cdot 60}{3,6} + 88000\right) m = 63000 \text{ m}$$

La voiture se trouve à 63 km du lieu d'arrivée.

4. Chute libre d'un corps

- * Un corps lâché avec $\vec{v}_0 = \vec{0}$ ou avec \vec{v}_0 vertical, soumis uniquement à son poids, effectue un mouvement rectiligne uniformément varié: c'est le mouvement de chute libre.
- * L'accélération des corps en chute libre est la même pour tous les corps: $\mathbf{a} = \mathbf{g} = 9,81 \text{ m/s}^2$. Elle est appelée accélération de la pesanteur.
- * Si l'axe Ox est dirigé verticalement vers le bas, les formules s'écrivent:

$$a_x = g$$
 $v_x = gt + v_{0x}$ $x = \frac{1}{2}gt^2 + v_{0x}t + x_0$ $v_x^2 - v_{0x}^2 = 2g(x - x_0)$

- * Certains corps tombent avec a < 9,81 m/s²: ils sont freinés par la résistance de l'air.
- * Si la résistance de l'air équilibre exactement le poids, l'accélération est nulle et le mouvement est rectiligne et uniforme.