Grundidee für die Berechnung von kürzesten Wegen

Für jeden Knoten v wird aufrechterhalten:

- $lackbox{\delta[v]}\dots$ Länge des kürzesten schon bekannten Wegs von s
- π[v]... der Vorgängerknoten auf diesem Weg

Diese Werte werden initialisiert auf:

$$\delta[s] = 0$$
 und $\delta[v] = \infty$ für $v \neq s$
 $\pi[x] = \text{NIL}$ für alle x .

Diese Werte werden mit Hilfe von *Kantenrelaxationen* sukzessive verbessert.

```
Relaxieren einer Kante [u,v\rangle: \mathit{relax}(u,v) if \delta[v] > \delta[u] + w([u,v\rangle) then \delta[v] = \delta[u] + w([u,v\rangle) \pi[v] = u
```

Man nennt $[u, v\rangle$ relaxierbar, wenn $\delta[v] > \delta[u] + w([u, v\rangle)$, wenn also ihre Relaxation eine Auswirkung auf $\delta[]$ und $\pi[]$ hat.

Naiver Kürzeste-Wege-"Algorithmus"

- 1. Initialisiere $\delta[]$ und $\pi[]$
- 2. Solange es eine relaxierbare Kante gibt, wähle eine und relaxiere sie.

Probleme:

- Ist das überhaupt ein Algorithmus, also, terminiert diese Methode überhaupt?
 - Nein, nicht wenn es einen negativen Zyklus gibt, der von *s* erreichbar ist.
- Wenn diese Methode terminiert, wie lange braucht sie? Das h\u00e4ngt stark von der Wahl der zu relaxierenden Kante ab.

Bellman-Ford-Algorithmus

Idee: Finde für steigendes *k* die kürzesten Wege mit höchstens *k* Kanten.

Lemma

Es sei e_1, \ldots, e_ℓ ein kürzester Weg von s nach v. Wenn eine Folge R von Kantenrelaxationen relax (e_1) ,relax (e_2) ,...,relax (e_ℓ) als Teilfolge enthält (nicht unbedingt zusammenhängend), dann wurde mit R ein kürzester Weg von s nach v berechnet, $\delta[v] = d_s(v)$ und die entsprchenden Vorgänger $\pi[]$ ergeben diesen Weg.

Bellman-Ford-Algorithmus

Idee: Finde für steigendes *k* die kürzesten Wege mit höchstens *k* Kanten.

Wenn es keine negativen Zyklen gibt, besteht jeder kürzeste Weg aus höchstens n-1 Kanten.

Bellman-Ford-Algorithmus:

- 1. Initialisiere $\delta[]$ und $\pi[]$
- wiederhole n 1 mal relaxiere jede Kante
- 3. Falls es noch immer eine relaxierbare Kante gibt, dann gibt es einen von s erreichbaren negativen Zyklus. Andernfalls gitl für alle Knoten x, dass $\delta[x] = d_s(x)$ und $\pi[]$ gibt einen kürzesten Wege Baum.

Laufzeit: Insgesamt $O(n \cdot m)$.

Wenn kein Kantengewicht negativ ist, gibt es eine Methode, die jede Kante nur einmal relaxiert.

Man lässt ein t von 0 nach ∞ wachsen und hält folgendes aufrecht, wobei $V_t = \{x \in V | d_s(x) \le t\}$:

Invariante

- 1. Für alle $x \in V$ mit $d_s(x) \le t$ gilt: $\delta[x] = d_x(s)$ und $\pi[x]$ ist Vorgänger auf kürzesten Pfad von s nach x
- 2. Für alle $x \in V$ mit $d_s(x) > t$ gilt: $\delta[x]$ ist Länge eine kürzesten Pfades von s nach x mit vorletzten Knoten u in V_t ; und, falls so ein Pfad existiert, dann $\pi[x] = u$

Der Algorithmus verwendet eine Prioritätenschlange für V mit $\delta[x]$ als Schlüssel von x.

```
Initialisierung: Für alle x \in V setze \delta[x] = \infty, \pi[x] = \text{NIL}
Für Startknoten s setze \delta[s] = 0. Bilde (Min)
Prioritätenschlange Q für V.
while Q not emptry do
  u = DELETEMIN(Q)
  for each v \in Out(u) do // relaxiere Kante (u, v)
          if \delta[v] > \delta[u] + w([u, v]) then
                  \delta[v] = \delta[u] + w([u, v])
                  DECREASEKEY(Q, v, \delta[v])
                  \pi[v] = u
```

```
Initialisierung: Für alle x \in V setze \delta[x] = \infty, \pi[x] = \text{NIL} Für Startknoten s setze \delta[s] = 0.
Bilde (Min) Prioritätenschlange Q für V.
```

```
while Q not emptry do u = \mathsf{DELETEMIN}(Q) for each v \in \mathsf{Out}(u) do /\!/ relaxiere Kante (u,v) if \delta[v] > \delta[u] + w([u,v)) then \delta[v] = \delta[u] + w([u,v)) DECREASEKEY(Q,v,\delta[v]) \pi[v] = u
```

Laufzeit

- Initialisierung: O(n)
- ► While Loop: *n* DELETEMINS *m* Relaxierungen

 höchstens *m* DECREASEKEYS

```
while Q not emptry do u = \mathsf{DELETEMIN}(Q) for each v \in \mathsf{Out}(u) do /\!/ relaxiere Kante (u,v) if \delta[v] > \delta[u] + w([u,v\rangle) then \delta[v] = \delta[u] + w([u,v\rangle) \mathsf{DECREASEKEY}(Q,v,\delta[v]) \pi[v] = u
```

Laufzeit

- ▶ Initialisierung: O(n)
- ► While Loop: n DELETEMINS O(n log n)

 m Relaxierungen O(m)

 höchstens m DECREASEKEYS O(m)

Mit Hollow-Heaps DeleteMin $O(\log n)$ und DecreaseKey O(1) Gesamtlaufzeit $O(m + n \log n)$

All-Pair-Shortest-Paths (APSP)

Aufgabe: Finde für jedes Paar u, v von Knoten einen kürzesten Pfad von u nach v

Naiver Ansatz: *n* mal Single-Source-Shortest-Path Problem lösen

Keine negative Kanten:

n mal Dijkstra Laufzeit
$$O(nm + n^2 \log n)$$

▶ Negative Kanten:

$$n$$
 mal Bellman-Ford Laufzeit $O(n^2m + n)$

Verbesserung von Don Johnson:

1 mal Bellman-Ford und n-1 mal Dijkstra Laufzeit $O(nm + n^2 \log n)$

Johnson's APSP Algorithm

G = (V, E, w) mit Kantengewichten w(e) < 0 für manche $e \in E$

Idee: Modifiziere w, sodass

- (i) kürzeste Wege erhalten bleiben, und
- (ii) alle Kantengewichte nicht-negativ sind

Für $h: V \to \mathbb{R}$ definiere h-modifiziertes Kantengewicht

$$w_h([u,v\rangle)=w([u,v\rangle)+h(u)-h(v)$$

Für jeden Pfad p von x nach y gilt dann

$$w_h(p) = w(p) + h(x) - h(y).$$

Das bedeutet, kürzeste Wege bzgl. $w_h()$ sind genau auch kürzeste Wege bzgl. w() und damit gilt (i) für jedes h.

Johnson's APSP Algorithm

Idee: Modifiziere w, sodass

- (i) kürzeste Wege erhalten bleiben, und
- (ii) alle Kantengewichte nicht-negativ sind

Für $h: V \to \mathbb{R}$ definiere h-modifiziertes Kantengewicht

$$w_h([u,v\rangle) = w([u,v\rangle) + h(u) - h(v)$$

Wir brauchen ein h, sodass für jede Kante e gilt $0 \le w_h(e)$.

$$0 \leq w_h([u,v\rangle) = w([u,v\rangle) + h(u) - h(v)$$

also $h(v) \leq w([u, v\rangle) + h(u)$.

Das ist genau die Terminierungsbedingung im Bellman-Ford-Algorithms (keine Kante relaxierbar), also gilt (ii) mit $h(x) = \delta[x]$.

Johnson's APSP Algorithm

- 1. Wähle irgendeinen Knoten $s \in V$ und wende Bellman-Ford auf Startknoten s an.
- 2. Wenn negativer Zyklus gefunden wurde, dann Abbruch.
- 3. Verwende das berechnete $\delta[]$ und berechne für jede Kante [u,v) modifiziertes Gewicht

$$w_{\delta}([u,v\rangle) = w([u,v\rangle) + \delta[u] - \delta[v]$$

4. Für jedes $t \in V \setminus \{s\}$ wende Dijkstra's Algorithmus mit Startpunkt t bygl. w_{δ} an.

Laufzeit Insgesamt $O(n \cdot m + n^2 \log n)$.

- 1. $O(n \cdot m)$
- 2. O(1)
- 3. *O*(*m*)
- 4. $(n-1) \cdot O(m + n \log n)$

Floyd-Warshall Algorithmus

(Spezialalgorithmus, hier nur für Distanzen (nicht die Wege))

$$V = \{1, 2, \dots, n\}$$

Wir bezeichnen einen Pfad von i nach j als k-niedrig, wenn die inneren Knoten (also alle außer den beiden Endpunkten) Name höchstens k haben.

Der kürzeste Weg von i nach j ist auf jeden Fall n-niedrig.

 $d_{i,j}^k$ sei Länge eines kürzesten k-niedrigen Weges von Knoten i zu Knoten j

$$d_{i,j}^0 = w([i,j\rangle)$$
 oder ∞ , fall $[i,j\rangle$ keine Kante

für k > 0 gilt induktiv, die Fälle unterscheidend, ob Knoten k auf kürzstem k-niedrigen Weg von i nach j liegt, oder nicht:

$$d_{i,j}^{k} = \min\{d_{i,k}^{k-1} + d_{k,j}^{k-1}, d_{i,j}^{k-1}\}$$

Das ergibt simplen $O(n^3)$ Algorithmus für Berechnung aller $d_{i,j}^n$.