Linguagens Formais e Autômatos

P. Blauth Menezes

blauth@inf.ufrgs.br

Departamento de Informática Teórica Instituto de Informática / UFRGS

Linguagens Formais e Autômatos

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Linguagens e Gramáticas
- 3 Linguagens Regulares
- 4 Propriedades das Linguagens Regulares
- 5 Autômato Finito com Saída
- **6** Linguagens Livres do Contexto
- 7 Propriedades e Reconhecimento das Linguagens Livres do Contexto
- 8 Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto
- 9 Hierarquia de Classes e Linguagens e Conclusões

8 - Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto

- 8.1 Máquina de Turing
- 8.2 Modelos Equivalentes à Máquina de Turing
- 8.3 Hipótese de Church
- 8.4 Máquina de Turing como Reconhecedor
- 8.5 Propriedades das Linguagens Recursivamente Enumeráveis e Recursivas
- 8.6 Gramática Irrestrita
- 8.7 Linguagem Sensível ao Contexto
- 8.8 Máquina de Turing com Fita Limitada

8 - Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto

8 Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto

◆ Ciência da Computação

- conhecimento sistematizado relativo à computação
- Origem da Ciência da Computação: remota
 - antiga Grécia: III a.C desenho de algoritmos por Euclides
 - Babilônia: estudos sobre complexidade e reducibilidade de problemas
 - início do século XX: pesquisas com o objetivo de definir
 - * modelo computacional suficientemente genérico
 - * capaz de implementar qualquer função computável

Alan Turing (1936) propôs um modelo

- Máquina de Turing
- aceito como uma formalização de
 - * procedimento efetivo
 - * algoritmo ou
 - * função computável
- algoritmo
 - * seqüência finita de instruções
 - * podem ser realizadas mecanicamente
 - * em um tempo finito

Alonzo Church (1936)

Hipótese de Church

qualquer função computável pode ser processada por uma máquina de Turing

- existe um procedimento expresso na forma de uma máquina de Turing capaz de processar a função
- como a noção intuitiva de procedimentos não é matematicamente precisa
 - impossível demonstrar formalmente se a máquina de Turing é, de fato, o mais genérico dispositivo de computação
 - * mostrado: todos os demais modelos propostos possuem, no máximo, a mesma capacidade computacional

Resumidamente, uma máquina de Turing

- autômato
- fita não possui tamanho máximo
- pode ser usada simultaneamente como dispositivo de entrada, de saída e de memória de trabalho

Linguagens Recursivamente Enumeráveis ou Tipo 0

- aceitas por uma máquina de Turing
- segundo a Hipótese de Church, a Classe das Linguagens Recursivamente Enumeráveis
 - * conjunto de todas as linguagens
 - * que podem ser reconhecidas mecanicamente
 - * em um tempo finito

Gramática Irrestrita

- sem restrições sobre a forma das produções
- mesmo poder computacional que o formalismo Máquina de Turing

 Consequência importante do estudo das linguagens recursivamente enumeráveis

existem mais problemas não-solucionáveis do que problemas solucionáveis

◆ Classe das Linguagens Recursivamente Enumeráveis

- inclui algumas para as quais é
 - * impossível determinar mecanicamente
 - * se uma palavra não pertence à linguagem
- se L é uma destas linguagens, então
 - para qualquer máquina de Turing M que aceita L
 - ∗ existe pelo menos uma palavra w não pertencente a L que
 - * ao ser processada por M, a máquina entra em loop infinito
- ou seja
 - * se w pertence a L, M pára e aceita a entrada
 - * se w *não* pertence a L, M pode parar, rejeitando a palavra *ou* permanecer processando indefinidamente

Linguagens Recursivas

- subclasse da Classe das Linguagens Enumeráveis Recursivamente
- existe pelo menos uma máquina de Turing que pára para qualquer entrada, aceitando ou rejeitando

Linguagens Sensíveis ao Contexto ou Tipo 1

- aceitas por uma Máquina de Turing com Fita Limitada
 - máquina de Turing com limitação no tamanho da fita (finita)
 - * exercício: diferença para o Autômato Finito?

Gramática Sensível ao Contexto

- em oposição a "livre do contexto": lado esquerdo das produções
 - * pode ser uma palavra de variáveis ou terminais
 - * definindo um "contexto" de derivação

Classe das Linguagens Sensíveis ao Contexto

- contida propriamente na Classe das Linguagens Recursivas
- classe especialmente importante
 - * inclui a grande maioria das linguagens aplicadas

8 - Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto

- 8.1 Máquina de Turing 8.1.1 Noção Intuitiva 8.1.2 Modelo
- 8.2 Modelos Equivalentes à Máquina de Turing
- 8.3 Hipótese de Church
- 8.4 Máquina de Turing como Reconhecedor
- 8.5 Propriedades das Linguagens Recursivamente Enumeráveis e Recursivas
- 8.6 Gramática Irrestrita
- 8.7 Linguagem Sensível ao Contexto
- 8.8 Máquina de Turing com Fita Limitada

8.1 Máquina de Turing

- ◆ Noção de algoritmo não é matematicamente precisa
- ◆ Intuitivamente, deve possuir
 - descrição finita
 - passos
 - discretos (em oposição ao contínuo)
 - * executáveis mecanicamente
 - * em um tempo finito

8 - Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto

- 8.1 Máquina de Turing 8.1.1 Noção Intuitiva 8.1.2 Modelo
- 8.2 Modelos Equivalentes à Máquina de Turing
- 8.3 Hipótese de Church
- 8.4 Máquina de Turing como Reconhecedor
- 8.5 Propriedades das Linguagens Recursivamente Enumeráveis e Recursivas
- 8.6 Gramática Irrestrita
- 8.7 Linguagem Sensível ao Contexto
- 8.8 Máquina de Turing com Fita Limitada

8.1.1 Noção Intuitiva

- ◆ Máquina de Turing (Alan Turing, 1936)
 - mecanismo simples
 - formaliza a idéia de uma pessoa que realiza cálculos
 - lembra os computadores atuais
 - * embora proposta anos antes do primeiro computador digital
- Modelo máquina de Turing
 - no mínimo, mesmo poder computacional
 - de qualquer computador de propósito geral

Ponto de partida de Turing

- uma pessoa
- com um instrumento de escrita e um apagador
- realiza cálculos em uma folha de papel, organizada em quadrados

Inicialmente, a folha de papel

contém somente os dados iniciais do problema

◆ Trabalho da pessoa: seqüências de operações simples

- ler um símbolo de um quadrado
- alterar um símbolo em um quadrado
- mover os olhos para outro quadrado
- fim dos cálculos
 - representação satisfatória para a resposta desejada

Hipóteses aceitáveis

- natureza bidimensional do papel não é essencial para os cálculos
 * fita infinita organizada em quadrados
- conjunto de símbolos: finito
 - * possível utilizar seqüências de símbolos

Hipóteses aceitáveis (pessoa)

- conjunto de estados da mente durante o cálculo
 - * finito
 - * dois em particular: "estado inicial" e "estado final"
- o comportamento, a cada momento, é determinado pelo
 - * estado presente
 - símbolo para o qual sua atenção está voltada
- pessoa é capaz de
 - * observar e alterar o símbolo de apenas um quadrado
 - * transferir sua atenção para um dos quadrados adjacentes

8 - Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto

- 8.1 Máquina de Turing 8.1.1 Noção Intuitiva 8.1.2 Modelo
- 8.2 Modelos Equivalentes à Máquina de Turing
- 8.3 Hipótese de Church
- 8.4 Máquina de Turing como Reconhecedor
- 8.5 Propriedades das Linguagens Recursivamente Enumeráveis e Recursivas
- 8.6 Gramática Irrestrita
- 8.7 Linguagem Sensível ao Contexto
- 8.8 Máquina de Turing com Fita Limitada

8.1.2 Modelo

Constituído de três partes

- Fita, usada simultaneamente como dispositivo de
 - * entrada, saída e memória de trabalho
- Unidade de Controle
 - * reflete o estado corrente da máquina
 - * possui uma unidade de leitura e gravação (cabeça da fita)
 - * acessa uma célula da fita de cada vez
 - * se movimenta para a esquerda ou para a direita
- Programa, Função Programa ou Função de Transição
 - * define: estado da máquina
 - * comanda: leituras, gravações e sentido de movimento (cabeça)

◆ Fita: finita à esquerda e infinita à direita

- infinita: "tão grande quanto necessário"
- dividida em células, cada uma armazenando um símbolo

Símbolos podem

- pertencer ao alfabeto de entrada
- pertencer ao alfabeto auxiliar
- ser "branco"
- ser "marcador de início de fita"

Inicialmente

- * palavra a ser processada: células mais à esquerda (após o marcador de início de fita)
- * demais células: "branco"

Unidade de controle

- número finito e predefinido de estados
- cabeça da fita
 - * lê um símbolo de cada vez e grava um novo símbolo
 - * move uma célula para a direita ou para a esquerda
- símbolo gravado e o sentido do movimento
 - * definidos pelo programa

Def: Máquina de Turing

$$M = (\Sigma, Q, \delta, q_0, F, V, \beta, \diamondsuit)$$

- **\(\Sigma \)** alfabeto (de símbolos) de entrada
- Q conjunto de estados possíveis da máquina (finito)
- δ (função) programa ou função de transição (função parcial)
 - * suponha que ∑ ∪ V e { β, ◊ } são conjuntos disjuntos

$$\delta: Q \times (\Sigma \cup V \cup \{\beta, \emptyset\}) \rightarrow Q \times (\Sigma \cup V \cup \{\beta, \emptyset\}) \times \{E, D\}$$

- * transição da máquina: $\delta(p, x) = (q, y, m)$
- q₀ estado inicial: elemento distinguido de Q
- F conjunto de estados finais: subconjunto de Q
- V alfabeto auxiliar (pode ser vazio)
- β símbolo especial branco
- 🗘 símbolo de início ou marcador de início da fita

Símbolo de início de fita

• ocorre exatamente uma vez e na célula mais à esquerda da fita

◆ Função programa

- considera
 - * estado corrente
 - * símbolo lido da fita
- determina
 - * novo estado
 - * símbolo a ser gravado
 - * sentido de movimento da cabeça (E e D)

Função programa interpretada como um diagrama

- estados inicial e finais: como nos autômatos finitos
- suponha a transição $\delta(p, x) = (q, y, m)$)

Computação de uma máquina de Turing M, para uma palavra de entrada w

- sucessiva aplicação da função programa
 - * a partir do estado inicial
 - * cabeça posicionada na célula mais à esquerda da fita
 - até ocorrer uma condição de parada
- processamento pode
 - * parar ou
 - * ficar processando indefinidamente (ciclo ou loop infinito)

Aceita a entrada w

- atinge um estado final
 - * máquina pára
 - * w é aceita

Rejeita a entrada w

- função programa é indefinida para o argumento (símbolo lido e estado corrente)
 - * máquina pára
 - * w é rejeitada
- argumento define um movimento à esquerda, e a cabeça da fita já se encontra na célula mais à esquerda
 - * máquina pára
 - * w é rejeitada

◆ Definição formalmente do comportamento

- necessário estender a definição da função programa
- argumento: um estado e uma palavra
- exercício

Def: Linguagens Aceita, Rejeitada, Loop

Linguagem Aceita ou Linguagem Reconhecida por M

• conjunto de todas as palavras de Σ^* aceitas por M, a partir de q_0

Linguagem Rejeitada por M

REJEITA(M)

conjunto de todas as palavras de Σ* rejeitadas por M, a partir de q₀

Linguagem Loop de M

LOOP(M)

 conjunto de todas as palavras de Σ* para as quais M fica processando indefinidamente a partir de q₀

◆ Cada máquina de Turing M sobre ∑

- induz uma partição de Σ*
- em classes de equivalência
 - * ACEITA(M), REJEITA(M) e LOOP(M)
 - * se um ou dois dos conjuntos for vazios?

Exp: Máquina de Turing: Duplo Balanceamento

$$L = \{ a^n b^n \mid n \ge 0 \}$$

Máquina de Turing

$$M = (\{a, b\}, \{q_0, q_1, q_2, q_3, q_4\}, \delta, q_0, \{q_4\}, \{A, B\}, \beta, \emptyset)$$

é tal que

$$ACEITA(M) = L$$
 e $REJEITA(M) = \sim L$

e, portanto, $LOOP(M) = \emptyset$

qualquer palavra que n\u00e3o esteja na forma a^xb^x \u00e9 rejeitada

Exp: Máquina de Turing: Duplo Balanceamento

δ		а	b	Α	В	β
q 0	(q ₀ , ©, D)	(q ₁ , A, D)			(q ₃ , B, D)	(q ₄ , β, D)
91		(q ₁ , a, D)	(q_2, B, E)		(q ₁ , B, D)	
q 2		(q ₂ , a, E)		(q ₀ , A, D)	(q ₂ , B, E)	
q 3					(q ₃ , B, D)	(q_4, β, D)
Q 4						

Obs: Máquina de Turing × Algoritmo

Foi afirmado que Máquina de Turing

é aceita como uma formalização do conceito de algoritmo

Entretanto, também é usual considerar como conceito de algoritmo

máquina de Turing que sempre pára para qualquer entrada

Nesse caso, uma máquina que eventualmente fica em loop infinito

não seria considerada um algoritmo

8 - Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto

- 8.1 Máquina de Turing
- 8.2 Modelos Equivalentes à Máquina de Turing
- 8.3 Hipótese de Church
- 8.4 Máquina de Turing como Reconhecedor
- 8.5 Propriedades das Linguagens Recursivamente Enumeráveis e Recursivas
- 8.6 Gramática Irrestrita
- 8.7 Linguagem Sensível ao Contexto
- 8.8 Máquina de Turing com Fita Limitada

8.2 Modelos Equivalentes à Máquina de Turing

- Uma razão para considerar a máquina de Turing como o mais geral dispositivo de computação
 - todos os demais modelos e máquinas propostos
 - bem como as diversas modificações da máquina de Turing
 - possuem, no máximo, o mesmo poder computacional da máquina de Turing

Autômato com Múltiplas Pilhas

- autômato com duas pilhas (citado no estudo das LLC)
 poder computacional é equivalente ao da máquina de Turing
- maior número de pilhas: não aumenta a capacidade computacional
- exercício
 - * definição formal: autômato com duas (múltiplas) pilhas
 - * equivalência deles ao modelo da máquina de Turing
- como são necessárias duas pilhas, pode-se afirmar
 - * a estrutura de fita é mais expressiva do que a de pilha
- ◆ Máquina de Turing Não-Derminística
 - não aumenta o poder computacional da máquina de Turing

Máquina de Turing com Fita Infinita à Esquerda e à Direita

- fita infinita dos dois lados n\u00e3o aumenta o poder computacional
- pode ser facilmente simulada por uma fita tradicional
 - * células pares: parte direita da fita
 - * células impares: parte esquerda da fita

Máquina de Turing com Múltiplas Fitas

- k fitas infinitas à esquerda e à direita e k cabeças de fita
- função programa
 - * dependendo do estado corrente e do símbolo lido em cada fita
 - * grava um novo símbolo em cada fita
 - * move cada cabeça independentemente
 - * assume um (único) novo estado
- inicialmente
 - * palavra de entrada: armazenada na primeira fita
 - * demais: brancos

◆ Máquina de Turing Multidimensional

- fita tradicional
 - * substituída por uma estrutura do tipo arranjo k-dimensional
 - * infinita em todas as 2k direções

Máquina de Turing com Múltiplas Cabeças

- k cabeças de leitura e gravação sobre a mesma fita
 - * movimentos independentes
- processamento depende
 - * estado corrente
 - * símbolo lido em cada uma das cabeças

Modificações combinadas sobre a Máquina de Turing

- combinação de algumas ou todas as modificações
 - * não aumenta o poder computacional da máquina de Turing
- exemplo, uma máquina de Turing
 - * não-determinística
 - * com múltiplas fitas
 - * múltiplas cabeças
 - pode ser simulada por uma máquina de Turing tradicional

8 - Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto

- 8.1 Máquina de Turing
- 8.2 Modelos Equivalentes à Máquina de Turing
- 8.3 Hipótese de Church
- 8.4 Máquina de Turing como Reconhecedor
- 8.5 Propriedades das Linguagens Recursivamente Enumeráveis e Recursivas
- 8.6 Gramática Irrestrita
- 8.7 Linguagem Sensível ao Contexto
- 8.8 Máquina de Turing com Fita Limitada

8.3 Hipótese de Church

- Objetivo do modelo abstrato de computação Máquina de Turing
 - explorar os limites da capacidade de expressar soluções de problemas
- Portanto, uma proposta de
 - definição formal da noção intuitiva de algoritmo
- Diversos outros trabalhos: equivalentes ao de Turing
 - Máquina de Post (Post 1936)
 - Funções Recursivas (Kleene 1936)

Forte reforço da Hipótese de (Turing-) Church

"A capacidade de computação representada pela máquina de Turing é o limite máximo que pode ser atingido por qualquer dispositivo de computação".

♦ Em outras palavras

 qualquer outra forma de expressar algoritmos terá, no máximo, a mesma capacidade computacional da máquina de Turing

Hipótese de Church não é demonstrável

• algoritmo ou função computável: noção intuitiva

8 - Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto

- 8.1 Máquina de Turing
- 8.2 Modelos Equivalentes à Máquina de Turing
- 8.3 Hipótese de Church
- 8.4 Máquina de Turing como Reconhecedor 8.4.1 Linguagem Recursivamente Enumerável 8.4.2 Linguagem Recursiva
- 8.5 Propriedades das Linguagens Recursivamente Enumeráveis e Recursivas
- 8.6 Gramática Irrestrita
- 8.7 Linguagem Sensível ao Contexto
- 8.8 Máquina de Turing com Fita Limitada

8.4 Máquina de Turing como Reconhecedor

- Classes de linguagens definidas a partir do formalismo máquina de Turing
 - Linguagens Recursivamente Enumeráveis
 - Linguagens Recursivas

Classe das Linguagens Recursivamente Enumeráveis

- existe uma máquina de Turing capaz de determinar
 - * se uma palavra w pertence à linguagem
- entretanto, se w ∈ ~L, o algoritmo pode
 - * parar: w não pertence à linguagem
 - * ficar em loop infinito

◆ Classe das Linguagens Recursivas

- existe pelo menos uma máquina de Turing que sempre pára, capaz de determinar se
 - $* W \in L ou$
 - * W ∈ ~L

◆ Recursivas × Recursivamente Enumeráveis

◆ Aparente contradição

reconhecer o complemento de uma linguagem pode ser impossível, mesmo que seja possível reconhecer a linguagem

8 - Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto

- 8.1 Máquina de Turing
- 8.2 Modelos Equivalentes à Máquina de Turing
- 8.3 Hipótese de Church
- 8.4 Máquina de Turing como Reconhecedor 8.4.1 Linguagem Recursivamente Enumerável 8.4.2 Linguagem Recursiva
- 8.5 Propriedades das Linguagens Recursivamente Enumeráveis e Recursivas
- 8.6 Gramática Irrestrita
- 8.7 Linguagem Sensível ao Contexto
- 8.8 Máquina de Turing com Fita Limitada

8.4.1 Linguagem Recursivamente Enumerável

Def: Linguagem Recursivamente Enumerável ou Tipo 0

Uma linguagem aceita por uma máquina de Turing

Exp: Linguagem Recursivamente Enumerável

- { aⁿbⁿ | n ≥ 0 } já apresentado
- { w | w tem o mesmo número de símbolos a e b } exercício
- $\{a^ib^jc^k \mid i=j \text{ ou } j=k\}$ exercício

Considerando a Hipótese de Church

- a máquina de Turing é o mais geral dispositivo de computação
- então, a Classe das Linguagens Recursivamente Enumeráveis
 - * todas as linguagens que podem ser reconhecidas mecanicamente
- Linguagens Recursivamente Enumeráveis x Universo de todas as linguagens
 - classe de linguagens muito rica
 - entretanto, existem conjuntos que não são recursivamente enumeráveis
 - * não é possível desenvolver uma MT que os reconheça

Teorema: Linguagem Não-Recursivamente Enumerável

Seja
$$\Sigma = \{a, b\}$$

Suponha X_i o i-ésimo elemento na ordenação lexicográfica de **Σ***

- **3** 0 •
- 1 a
- 2 b
- 3 aa
- •

Exercícios

- é possível codificar todas as máquinas de Turing
- como uma palavra sobre ∑ de tal forma que
- cada código represente uma única máquina de Turing
- suponha o conjunto dos códigos ordenados lexicograficamente
- suponha que T_i representa o i-ésimo código nesta ordenação

Então não é linguagem recursivamente enumerável

$$L = \{ x_i \mid x_i \text{ não é aceita por } T_i \}$$

Prova: (por absurdo)

Suponha que L é recursivamente enumerável

- existe uma máquina de Turing que aceita L
- seja T_k a codificação desta máquina de Turing: ACEITA(T_k) = L

Assim

- por definição de L, $x_k \in L$ sse x_k não é aceita por T_k
- como T_k aceita L, $x_k \in L$ sse x_k é aceita por T_k

Contradição!!!

Logo, L não é linguagem recursivamente enumerável

Obs: Cardinal dos Problemas > Cardinal dos Algoritmos

Conjunto das condifições de todas as máquinas de Turing

isomorfo a um subconjunto infinito dos números naturais

Logo, é enumerável (infinitamente contável) o conjunto de todas

- máquinas de Turing
- linguagens recursivamente enumeráveis
- problemas solucionáveis

Em contrapartida, o conjunto das linguagens que *não* são recursivamente enumeráveis (problemas *não*-solucionáveis)

não-contável

Portanto, computacionalmente

existem mais problemas do que algoritmos para resolvê-los.

Exemplo

```
\{f: N \rightarrow N \mid f \in função \}
```

- classe muito particular de problemas (linguagens)
- prova-se: isomorfo a ℝ (cardinal é 2^{ℵ₀})
- maior do que *₀ (cardinal do conjunto das máquinas de Turing)

8.1.2 Linguagem Recursiva

Def: Linguagem Recursiva

Existe pelo menos uma máquina de Turing M

- ACEITA(M) = L
- REJEITA(M) = ~L

Exp: Linguagem Recursiva

- $\{a^nb^n \mid n \ge 0\}$
- $\{a^nb^nc^n \mid n \ge 0\}$
- { w | w ∈ { a, b }* e tem o dobro de símbolos a que b }

8 - Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto

- 8.1 Máquina de Turing
- 8.2 Modelos Equivalentes à Máquina de Turing
- 8.3 Hipótese de Church
- 8.4 Máquina de Turing como Reconhecedor
- 8.5 Propriedades das Linguagens Recursivamente Enumeráveis e Recursivas
- 8.6 Gramática Irrestrita
- 8.7 Linguagem Sensível ao Contexto
- 8.8 Máquina de Turing com Fita Limitada

8.5 Propriedades das Linguagens Recursivamente Enumeráveis e Recursivas

- Algumas das principais propriedades
 - complemento de uma linguagem recursiva é recursiva
 - linguagem é recursiva sse a linguagem e seu complemento são linguagens recursivamente enumeráveis
 - Classe das Linguagens Recursivas está contida propriamente na Classe das Linguagens Recursivamente Enumeráveis

Teorema: Complemento de uma Linguagem Recursiva é Recursiva

Se uma linguagem L sobre um alfabeto ∑ qualquer é recursiva, então o seu complemento ~L é recursiva

Prova: (direta)

Suponha L linguagem recursiva. Então existe M, máquina de Turing

- ACEITA(M) = L
- REJEITA(M) = ~L
- LOOP(M) = Ø

Seja

- Inverte uma máquina de Turing que inverte ACEITA / REJEITA
- M' máquina de Turing resultante da composição de Inverte e M
 - * M' aceita a linguagem ~L
 - * sempre pára para qualquer entrada

Portanto, o complemento de uma linguagem recursiva é recursiva

Teorema: Linguagem Recursiva × Recursivamente Enumerável

L é recursiva sse L e ~L são recursivamente enumeráveis

Prova:

(⇒ direta)

Suponha L linguagem recursiva. Então (teorema anterior)

• ~L é recursiva

Como toda linguagem recursiva também é recursivamente enumerável

• L e ~L são recursivamente enumeráveis

(*⇐ direta*)

Suponha L linguagem tal que L e \sim L são recursivamente enumeráveis Então existem M_1 e M_2 , máquinas de Turing, tais que

- ACEITA(M₁) = L
- ACEITA(M_2) = \sim L

Seja M máquina de Turing resultante da composição

- composição não-determinista de M₁ com M₂
- composição seqüencial de M₁ com Inverte

Para qualquer palavra de entrada

- M aceita se M₁ aceita
- M rejeita se M₂ aceita

Logo, L é recursiva

Teorema: Linguagens Recursivas ⊂ Recursivamente Enumeráveis

Prova: (direta)

Mostrar inclusão própria

 existe pelos menos uma linguagem recursivamente enumerável que não é recursiva

Linguagem recursivamente enumerável que é não-recursiva

$$L = \{ X_i \mid X_i \text{ \'e aceita por } T_i \}$$

L é Recursivamente Enumerável

(esboço da máquina de Turing)

- M gera palavras X₁, X₂,... em ordem lexicográfica
 - * compara com w
 - * quando $X_i = w$, w é a i-ésima palavra na enumeração
- M gera T_i, a i-ésima máquina de Turing (exercícios)
- M simula T_i para a entrada w = X_i
 - * se w pertence a ACEITA(T_i), então w pertence a ACEITA(M)
 - * simulador: exercício
- M aceita w sse X_i = w é aceita por T_i

Logo, L é recursivamente enumerável

L não é Recursiva

Já foi visto

• L é recursiva sse L e ~L são recursivamente enumeráveis

Complemento de L não é recursivamente enumerável

• então L é *não*-recursiva

8 - Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto

- 8.1 Máquina de Turing
- 8.2 Modelos Equivalentes à Máquina de Turing
- 8.3 Hipótese de Church
- 8.4 Máquina de Turing como Reconhecedor
- 8.5 Propriedades das Linguagens Recursivamente Enumeráveis e Recursivas
- 8.6 Gramática Irrestrita
- 8.7 Linguagem Sensível ao Contexto
- 8.8 Máquina de Turing com Fita Limitada

8.6 Gramática Irrestrita

- Gramática Irrestrita
 - gramática sem qualquer restrição nas produções

Exp: Gramática Irrestrita: { aⁿbⁿcⁿ | n ≥ 0 }

G = ???

Exp: Gramática Irrestrita: { aⁿbⁿcⁿ | n ≥ 0 }

$$G = (\{S,C\}, \{a,b,c\}, P, S)$$

•
$$P = \{ S \rightarrow abc \mid \varepsilon, ab \rightarrow aabbC, Cb \rightarrow bC, Cc \rightarrow cc \}$$

Derivação de aaabbbccc

C "caminha" na palavra até a posição correta para gerar c

Teorema: Linguagem Recursivamente Enumerável × Gramática Irrestrita

L é linguagem recursivamente enumerável sse L é gerada por uma gramática irrestrita

(não será demonstrado)

8 - Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto

- 8.1 Máquina de Turing
- 8.2 Modelos Equivalentes à Máquina de Turing
- 8.3 Hipótese de Church
- 8.4 Máquina de Turing como Reconhecedor
- 8.5 Propriedades das Linguagens Recursivamente Enumeráveis e Recursivas
- 8.6 Gramática Irrestrita
- 8.7 Linguagem Sensível ao Contexto
- 8.8 Máquina de Turing com Fita Limitada

8.7 Linguagem Sensível ao Contexto

Def: Gramática Sensível ao Contexto

$$G = (V, T, P, S)$$

Qualquer regra de produção de P é da forma $\alpha \rightarrow \beta$

- β é palavra de (V∪T)*
- α é palavra de $(V \cup T)^+$ tal que $|\alpha| \le |\beta|$
 - ∗ excetuando-se, eventualmente, para S → ε
 - * neste caso, S não está no lado direito de qualquer produção

◆ Portanto, em uma gramática sensível ao contexto

- a cada etapa de derivação
- tamanho da palavra derivada não pode diminuir
 - * excetuando-se para gerar a palavra vazia
 - * se esta pertencer à linguagem
- ◆ Observe (por quê?)
 - nem toda gramática livre do contexto é sensível ao contexto

Def: Linguagem Sensível ao Contexto, Linguagem Tipo 1

Linguagem gerada por uma gramática sensível ao contexto

Exp: Linguagem Sensível ao Contexto: Palavra Duplicada

```
\{ ww \mid w \text{ \'e palavra de } \{ a, b \}^* \}
G = (\{ S, X, Y, A, B, \langle aa \rangle, \langle ab \rangle, \langle ba \rangle, \langle bb \rangle \}, \{ a, b \}, P, S)
```

Produções de P

- S \rightarrow XY | aa | bb | ϵ ,
- X → XaA | XbB | aa⟨aa⟩ | ab⟨ab⟩ | ba⟨ba⟩ | bb⟨bb⟩,
- Aa → aA, Ab → bA, AY → Ya,
- Ba \rightarrow aB, Bb \rightarrow bB, BY \rightarrow Yb,
- $\langle aa \rangle a \rightarrow a \langle aa \rangle$, $\langle aa \rangle b \rightarrow b \langle aa \rangle$, $\langle aa \rangle Y \rightarrow aa$,
- $\langle ab \rangle a \rightarrow a \langle ab \rangle$, $\langle ab \rangle b \rightarrow b \langle ab \rangle$, $\langle ab \rangle Y \rightarrow ab$,
- $\langle ba \rangle a \rightarrow a \langle ba \rangle$, $\langle ba \rangle b \rightarrow b \langle ba \rangle$, $\langle ba \rangle Y \rightarrow ba$,
- $\langle bb \rangle a \rightarrow a \langle bb \rangle$, $\langle bb \rangle b \rightarrow b \langle bb \rangle$, $\langle bb \rangle Y \rightarrow bb$

Gera o primeiro w após X, e o segundo w após Y

- a cada terminal gerado após X
 - gerada correspondente variável
- variável "caminha" na palavra até passar por Y
 - * deriva o correspondente terminal
- para encerrar
 - * X deriva subpalavra de dois terminais
 - e correspondente variável a qual "caminha" até encontrar Y
 - * quando é derivada a mesma subpalavra de dois terminais
- se X derivar uma subpalavra de somente um terminal (e a correspondente variável)?

8 - Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto

- 8.1 Máquina de Turing
- 8.2 Modelos Equivalentes à Máquina de Turing
- 8.3 Hipótese de Church
- 8.4 Máquina de Turing como Reconhecedor
- 8.5 Propriedades das Linguagens Recursivamente Enumeráveis e Recursivas
- 8.6 Gramática Irrestrita
- 8.7 Linguagem Sensível ao Contexto
- 8.8 Máquina de Turing com Fita Limitada

8.8 Máquina de Turing com Fita Limitada

Máquina de Turing com Fita Limitada

- máquina de Turing
- fita limitada ao tamanho da entrada
- mais duas células
 - * marcadores de início e de fim de fita

◆ Não-Determinismo?

não é conhecido se aumenta o poder computacional

Def: Máquina de Turing com Fita Limitada (MTFL)

$$M = (\Sigma, Q, \delta, q_0, F, V, \diamondsuit, \dagger)$$

- ∑ alfabeto (de símbolos) de entrada
- Q conjunto de estados (finito)
- **\delta** (função) programa ou função de transição (parcial)

$$\delta: Q \times (\Sigma \cup V \cup \{ \circlearrowleft, + \}) \to 2^{Q \times (\Sigma \cup V \cup \{ \circlearrowleft, + \}) \times \{E, D\}}$$
* transição: $\delta(p, x) = \{ (q_1, y_1, m_1), ..., (q_n, y_n, m_n) \}$

- q₀ estado inicial: elemento distinguido de Q
- F conjunto de estados finais: subconjunto de Q
- V alfabeto auxiliar (pode ser vazio)
- 🗘 símbolo de início ou marcador de início da fita
- † símbolo de fim ou marcador de fim da fita

Exp: Máquina de Turing com Fita Limitada: Palavra Duplicada

$$L = \{ ww \mid w \text{ \'e palavra de } \{ a, b \}^* \}$$

A máquina de Turing com fita limitada

$$M = (\{a, b\}, \{q_0, q_1, ..., q_9, q_f\}, \delta, q_0, \{q_f\}, \{X, Y\}, \odot, t)$$

é tal que ACEITA(M) = L e $REJEITA(M) = \sim L$

- q₁, o início do primeiro w é marcado com um X
- q₂ e q₃ definem não-determinismos
 - * marcar com um Y o início do segundo w
- q₅ a q₁₁ verifica a igualdade das duas metades

Teorema: Linguagem Sensível ao Contexto × Máquina de Turing com Fita Limitada

- L é uma linguagem sensível ao contexto sse
- L é reconhecida por uma máquina de Turing com fita limitada
 - não será demonstrado

Linguagens Formais e Autômatos

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Linguagens e Gramáticas
- 3 Linguagens Regulares
- 4 Propriedades das Linguagens Regulares
- 5 Autômato Finito com Saída
- 6 Linguagens Livres do Contexto
- 7 Propriedades e Reconhecimento das Linguagens Livres do Contexto
- 8 Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto
- 9 Hierarquia de Classes e Linguagens e Conclusões

Linguagens Formais e Autômatos

P. Blauth Menezes

blauth@inf.ufrgs.br

Departamento de Informática Teórica Instituto de Informática / UFRGS

