GANHO DE INFORMAÇÃO E PROCESSAMENTO PARALELO

COM PYSPARK

GANHO DE INFORMAÇÃO

• Entropia mede o quão impuro é um conjunto de dados.

Grupo muito impuro

Entropia = 1

Bom grupo para aprendizado

Grupo menos impuro

0 < Entropia < 1

Grupo puro

Entropia = 0

Mau grupo para aprendizado

• Entropia de Shannon é definida como

$$H = -\sum_{i=1}^{K} p_{K} \log_{2} p_{K}$$

$$H = -\frac{5}{10}\log_2\frac{5}{10} - \frac{5}{10}\log_2\frac{5}{10} \qquad H = -\frac{5}{7}\log_2\frac{5}{7} - \frac{2}{7}\log_2\frac{2}{7} \qquad H = -\frac{5}{5}\log_2\frac{5}{5} - \frac{0}{5}\log_2\frac{0}{5}$$

$$H = 1$$

$$H = -\frac{5}{7}\log_2\frac{5}{7} - \frac{2}{7}\log_2\frac{2}{7}$$

$$H = 0.598$$

$$H = -\frac{5}{5}\log_2\frac{5}{5} - \frac{0}{5}\log_2\frac{0}{5}$$

$$H = 0$$

GANHO DE INFORMAÇÃO

- Ganho de Informação mede a mudança de entropia que um atributo causa na classe, a variação de entropia.
- Essa medida nos mostra o quanto um atributo está correlacionado com a classe.

GANHO DE INFORMAÇÃO

• A medida do Ganho de Informação é definida como:

$$\Delta H = H - \sum_{i=1}^{K} \frac{m_K}{m} \cdot H_K$$

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Fonte: Information Gain*

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Fonte: Information Gain*

Calculo da Entropia da Classe (H)

$$H(Y) = -\sum_{i=1}^{K} p_k \log_2 p_k$$

$$= -\frac{5}{14} \log_2 \frac{5}{14} - \frac{9}{14} \log_2 \frac{9}{14}$$

$$= 0.94$$

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Cálculo do Ganho de Informação do atributo Humidade:

Cálculo da Probabilidade

$$InfoGain(Humidity) = H(Y) - \frac{m_L}{m} H_L - \frac{m_R}{m} H_R$$
$$= 0.94 - \frac{7}{14} H_L - \frac{7}{14} H_R$$

Fonte: Information Gain*

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Fonte: Information Gain*

Cálculo do Ganho de Informação do atributo Humidade:

Cálculo das Entropias Condicionais para Valor de Atributo igual a NORMAL

$$H_L = -\frac{6}{7}\log_2\frac{6}{7} - \frac{1}{7}\log_2\frac{1}{7}$$

= 0.592

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Fonte: Information Gain*

Cálculo do Ganho de Informação do atributo Humidade:

Cálculo das Entropias Condicionais para Valor de Atributo igual a HIGH

$$H_R = -\frac{3}{7}\log_2\frac{3}{7} - \frac{4}{7}\log_2\frac{4}{7}$$

= 0.985

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Fonte: Information Gain*

Ganho de Informação do Atributo Humidade:

InfoGain(Humidity) =
$$H(Y) - \frac{m_L}{m} H_L - \frac{m_R}{m} H_R$$

$$0.94 - \frac{7}{14} 0.592 - \frac{7}{14} 0.985$$

$$= 0.94 - 0.296 - 0.4925$$

$$= 0.1515$$

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Ganho de Informação dos Atributos:

> Outlook = 0.247Temperature = 0.029Humidity = 0.152Windy = 0.048

Fonte: Information Gain*

CÓDIGO

- Função que Calcula a Entropia de um conjunto de dados.
- Recebe um conjunto de dados (RDD) e retorna a entropia (escalar)


```
def Entropia (classe):
    """Calcula a Entropia de Shannon de uma distribuição de dados.
   Args:
        classe (RDD): RDD contendo conjunto de dados a ser calculado a entropia.
                      Valores devem ser categóricos.
   Returns:
       float: valor de Entropia de Shannon calculado para o RDD.
   #counts calcula paralelamente o conteúdo do RDD
   #como tuplas contendo (tipo, quantidade)
    counts = (classe.map(lambda x: (x, 1)).reduceByKey(lambda a,b: a + b))
   # n recebe o valor total de itens do RDD
   n = classe.count()
   # probs calcula a probabilidade de cada um dos estados do RDD
    probs = counts.map(lambda x: x[1]/float(n))
   # Entropia calcula a entropia do RDD
   ## a função map faz o calculo da Entropia de cada um dos estados
   ## a função reduce faz o somatório da entropia de Shannon
    entropia = (probs.map(lambda p: -p*math.log(p,2)).reduce(lambda a,b: a + b))
   # retorna valor escalar referênte a entropia do RDD.
    return entropia
```

• Conta valores do conjunto de dados

```
#counts calcula paralelamente o conteúdo do RDD
#como tuplas contendo (tipo, quantidade)
counts = (classe.map(lambda x: (x, 1))
.reduceByKey(lambda a,b: a + b))
```

• Conta número de elementos no conjunto de dados

```
# n recebe o valor total de itens do RDD
n = classe.count()
```

• Calcula vetor de probabilidades para cada tipo de dado do conjunto de dados

```
# probs calcula a probabilidade de cada um dos estados do RDD
probs = counts.map(lambda x: x[1]/float(n))
```

• Faz o cálculo da Entropia de Shannon

• Retorna escalar da Entropia

retorna valor escalar referênte a entropia do RDD. return entropia

- Função que Calcula o Ganho de Informação de um atributo para uma classe.
- Recebe dois conjuntos de dados (RDD) para classe e atributo, e um Escalar referente ao valor de Entropia para a Classe; retorna o Ganho de Informação (Escalar)

RDD, RDD, Escalar

INFORMAÇÃO

Escalar

```
def infoGain (feature, classe, H):
    """Calcula o ganho de informação de um atributo em relação a uma classe.
   Args:
        feature (RDD): RDD contendo os conjuntos de dados do atributo a ser
                       calculado o Ganho de Informação
        classe (RDD): RDD contendo conjunto de dados da classe
        H (float): Entropia da Classe, previamente calculada.
    Returns:
        float: valor de ganho de informação (redução da Entropia) que o atributo fornece sobre a classe
    # calcula paralelamente o conteúdo do RDD
    # como tuplas contendo (tipo, quantidade)
    feat count = feature.map(lambda x: (x, 1))
                        .reduceByKey(lambda a,b: a + b)\
                        .collect()
    # calcula as Entropias de um conjunto da classe dado cada um dos estados do atributo
    entropiasN = [Entropia(classe.zip(feature)
                                 .filter(lambda x: x[1]==v)
                                 .map(lambda x: x[\emptyset])) for v, in feat count]
    # calcula a quantidade de itens no atributo
    n = classe.count()
    # calcula o ganho de informação do atributo.
    ig = H - sum([(f[1]/float(n))*p for f,p in zip(feat count, entropiasN)])
    return ig
```

• Conta valores do conjunto de dados

• Dados cabem na memória, logo pode aplicar .collect()

• Calcula cada uma das n Entropiras da classe, filtrada pelo tipo de atributo, para cada um dos n valores que o atributo assume.

• Calcula quantidade de itens na classe.

```
# calcula a quantidade
n = classe.count()
```

Calcula o Ganho de Informação

```
# calcula o ganho de informação do atributo.
ig = H - sum([(f[1]/float(n))*p for f,p in zip(feat_count, entropiasN)])
```

• Nesse caso não é utilizado processamento paralelizado pois todas as variáveis já foram reduzidas.

• Retorna Ganho de Informação

return ig

BASE DE DADOS

2015 FLIGHT DELAYS AND CANCELLATIONS

Competitions

Q

Datasets Kernels Discussion Learn

BANCO DE DADOS

- YEAR
- MONTH
- DAY
- DAY OF WEEK
- AIRLINE
- FLIGHT NUMBER
- TAIL NUMBER
- ORIGIN AIRPORT
 DISTANCE
- DESTINATION AIRP ORT
- **RTURE**

- DEPARTURE TIME
- DEPARTURE DELAY
- TAXI OUT
 - WHEELS OFF
 - SCHEDULED TIME
- ELAPSED TIME
- AIR_TIME

 - WHEELS ON
 DIVERTED
 - TAXI IN
- SCHEDULED DEPA
 SCHEDULED ARRIVAL
 - ARRIVAL TIME

- CANCELLED
- CANCELLATION REASON
- AIR SYSTEM DELAY
- SECURITY DELAY
- AIRLINE DELAY
- LATE AIRCRAFT DELAY
- WEATHER DELAY
- ARRIVAL DELAY

ESCOLHIDOS

- YEAR
- MONTH
- DAY
- DAY OF WEEK
- AIRLINE
- FLIGHT NUMBER
- TAIL NUMBER
- ORIGIN AIRPORT
 DISTANCE
- DESTINATION AIRP ORT
- SCHEDULED DEPA **RTURE**

- DEPARTURE TIME
- DEPARTURE DELAY
- TAXI OUT
 - WHEELS OFF
 - SCHEDULED TIME
 - ELAPSED TIME
- AIR_TIME

 - WHEELS ON
 - TAXI IN
 - SCHEDULED ARRIVAL
 - ARRIVAL TIME

- CANCELLED
- CANCELLATION REASON
- AIR SYSTEM DELAY
- SECURITY DELAY
- AIRLINE DELAY
- LATE AIRCRAFT DELAY
- WEATHER DELAY
- ARRIVAL DELAY
- DIVERTED

OBJETIVO

 Verificar qual dos atributos selecionados está mais fortemente correlacionado com o Cancelamento de Voos Atrasados

APLICAÇÃO

VALIDAÇÃO

Outlook = 0.247Temperature = 0.029Humidity = 0.152Windy = 0.048

```
In [18]: H = Entropia (Play)
         print H
         0.940285958671
In [43]: igOutlook = infoGain(Outlook, Play, H)
         print igOutlook
         0.246749819774
In [44]: igTemperature = infoGain(Temperature, Play, H)
         print igTemperature
         0.029222565659
In [45]: igHumidity = infoGain(Humidity, Play, H)
         print igHumidity
         0.151835501362
In [46]: igWindy = infoGain(Windy, Play, H)
         print igWindy
         0.0481270304083
```

VERIFICAÇÃO DE MELHOR NÚMERO DE PARTIÇÕES

```
# carregar base de dados
numPartitions = 1
rawData = sc.textFile(fileName, numPartitions)
Cancelled = rawData.map(lambda x: x.split(",")[22])
featDayofWeek = rawData.map(lambda x: x.split(",")[4])
start time = time.time()
H = Entropia (Cancelled)
print H
print("--- %s seconds ---" % (time.time() - start time))
start time = time.time()
igDayofWeek = infoGain(featDayofWeek, Cancelled, H)
print igDayofWeek
print("--- %s seconds ---" % (time.time() - start time))
print "numer of partition:", numPartitions
```

```
0.00425591582633

--- 31.870000124 seconds

1.24766472434e-05

--- 490.332000017 seconds

numer of partition: 1
```

```
0.00425591582633
--- 32.8069999218 seconds
1.24766472434e-05
--- 495.953000069 seconds
numer of partition: 2
```

```
0.00425591582633
--- 32.2950000763 seconds
1.24766472434e-05
--- 492.785000086 seconds
numer of partition: 4
```

```
0.00425591582633

--- 32.1840000153 seconds

1.24766472434e-05

--- 489.861999989 seconds

numer of partition: 6
```

```
0.00425591582633
--- 32.4440000057 seconds
1.24766472434e-05
--- 489.858999968 seconds
numer of partition: 8
```

0.00425591582633 --- 37.8569998741 seconds 1.24766472434e-05 --- 594.200999975 seconds numer of partition: 16

0.00425591582633 --- 68.2899999619 seconds 1.24766472434e-05 --- 815.203999996 seconds numer of partition: 32

VERIFICAÇÃO DE MELHOR NÚMERO DE PARTIÇÕES

```
# carregar base de dados
numPartitions = 1
rawData = sc.textFile(fileName, numPartitions)
Cancelled = rawData.map(lambda x: x.split(",")[22])
featDayofWeek = rawData.map(lambda x: x.split(",")[4])
start time = time.time()
H = Entropia (Cancelled)
print H
print("--- %s seconds ---" % (time.time() - start time))
start time = time.time()
igDayofWeek = infoGain(featDayofWeek, Cancelled, H)
print igDayofWeek
print("--- %s seconds ---" % (time.time() - start time))
print "numer of partition:", numPartitions
```

```
0.00425591582633
--- 31.870000124 seconds
1.24766472434e-05
--- 490.332000017 seconds
numer of partition: 1
```

0.00425591582633 --- 32.8069999218 seconds 1.24766472434e-05 --- 495.953000069 seconds numer of partition: 2

```
0.00425591582633
--- 32.2950000763 seconds
1.24766472434e-05
--- 492.785000086 seconds
numer of partition: 4
```

```
0.00425591582633

--- 32.1840000153 seconds

1.24766472434e-05

--- 489.861999989 seconds

numer of partition: 6
```

0.00425591582633 --- 32.4440000057 seconds 1.24766472434e-05 --- 489.858999968 seconds numer of partition: 8

0.00425591582633 --- 37.8569998741 seconds 1.24766472434e-05 --- 594.200999975 seconds numer of partition: 16

0.00425591582633 --- 68.2899999619 seconds 1.24766472434e-05 --- 815.203999996 seconds numer of partition: 32

RESULTADOS

Tabela 1: Resultados							
-	Mês	Dia do Mês	Dia da Semana	cia. Aérea			
Ganho de Informação	0.0048013	0.0019261	0.0008652	0.0043092			
Tempo com 8 Partições (min)	37.64	94.51	21.79	43.14			
Tempo com 1 Partição (min)	36.46	90.98	21.26	41.94			

CONCLUSÃO

• O número de partições não interferiu no tempo de processamento do grupo de dados.

Os atributos Mês em que o voo foi realizado e
 Companhia Aérea estão mais fortemente correlacionados
 com o Cancelamento dos voos atrasados.

AGRADECIMENTOS

- Agradeço ao Prof. Dr. Fabricio Olivetti por ministrar o curso e me encorajar a continualo até o fim.
- Agradeço ao Prof. Dr. Ronaldo Prati, meu coorientador no mestrado, pela ajuda na realização deste projeto.

OBRIGADO