Minería de Datos: Regresión

Luis Avila loavila@unsl.edu.ar

Aprendizaje supervisado

Complejidad del modelo

Incertidumbre

Variabilidad

Patient 2:

HbA1c = 7.3 %

Mean glucose: 149 mg/dl

SD: 94 mg/dl

Modelos de regresión

Surge la idea de que cada variable tiene cierta dependencia, intrínsecamente relacionada a las demás variables.

A partir de N observaciones

$$D = x_i, y_i \mid i = 1, 2, ..., N$$

Modelos de regresión

Surge la idea de que cada variable tiene cierta dependencia, intrínsecamente relacionada a las demás variables.

A partir de N observaciones

$$D = x_i, y_i \mid i = 1, 2, ..., N$$

Modelos de regresión

$$y_i = r \ x_{i1}, \dots, x_{in} + \varepsilon_i$$

especifica al modelo especifica a la observación

- r es la parte determinista y estructural, que permite explicar el comportamiento de los datos.
- \mathcal{E}_i representa la parte impredecible aleatoria y se denomina término de error.

Función de regresión

Para estimar y(x), buscaremos otra función tal que:

$$\min_{r} E[(y_i - \hat{y}(x_{i1}, \dots, x_{in}))^2]$$

Medidas de error

Error cuadrático medio

$$MSE = \frac{1}{n} \sum_{x \in D} \hat{y} x - y x^{2}$$

Raíz cuadrada del MSE

$$RMSE = \sqrt{\frac{1}{n}} \sum_{x \in D} \hat{y} x - y x^{2}$$

Error absoluto medio

$$MAE = \frac{1}{n} \sum_{x \in D} |\hat{y}| x - y x |$$

Error cuadrático relativo

$$MSE = \frac{1}{n} \sum_{x \in D} \frac{\hat{y}(x) - y(x)}{\hat{y}(x) - \overline{y}^2}, \text{ donde } \overline{y} = \frac{1}{n} \sum_{x \in D} y(x)$$

PROCESOS GAUSSIANOS

Regresión lineal simple

Regresión lineal multivariable

REGRESION LINEAL

Podemos generalizar el modelo de regresión lineal a múltiples variables explicativas

$$y = w_0 x_0 + w_1 x_1 + ... + w_m x_m = \sum_{i=0}^{n} w_i x_i = w^T x$$

Método de mínimos cuadrados

REGRESION LINEAL

Queremos ajustar un set $\{(x_1,y_1),...,(x_N,y_N)\}$ al modelo lineal $y = w_0 + w_1 x$

$$SE = \sum_{i=1}^{N} [y_i - w_0 + w_1 x_i]^2$$

La objetivo es hallar los valores w_0 y w_1 que minimizan el error

$$\frac{\partial E}{\partial w_0} = -2\sum_{i=1}^{N} \left[y_i - w_0 + w_1 x_i \right] x_i = 0$$

$$\frac{\partial E}{\partial w_1} = -2\sum_{i=1}^{N} \left[y_i - w_0 + w_1 x_i \right] = 0$$

$$\begin{pmatrix} w_0 \\ w_1 \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} 1 \end{pmatrix}^{-1} \begin{pmatrix} \sum_{i=1}^{N} x_i y_i \\ \sum_{i=1}^{N} y_i \end{pmatrix}$$

Regresión Ridge

REGRESION LINEAL

Introducimos una restricción adicional L₂-norm

$$\hat{\beta}^{\text{ridge}} = \arg\min_{\beta} \sum_{i=1} (\mathbf{y_i} - (\beta_0 + \beta^T \mathbf{x_i}))^2 + \lambda \|\beta\|_2^2$$

Penalidad por complejidad

Regresión Ridge

Regresión Ridge

Regresión Lasso

REGRESION LINEAL

Introducimos una restricción adicional L₁-norm

$$\hat{\beta}^{\text{lasso}} = \arg\min_{\beta} \sum_{i=1}^{n} (\mathbf{y_i} - (\beta_0 + \beta^T \mathbf{x_i}))^2 + \lambda \|\beta\|_1$$

Penalidad por complejidad

Regresión Lasso

Regresión k-neighbors

Regresión k-neighbors

Modelización paramétrica

Los modelos que dependen de un número finito de parámetros se denominan paramétricos

donde $w_0, w_1, ..., w_n, \sigma^2$ son los parámetros del modelo

Modelización no-paramétrica

Estimador de la función de regresión \hat{r} xEstimador de la varianza del error $\hat{\sigma}^2$

Ajuste local

Ajuste local

Ajuste local por tramos

una primera idea....

dividir el rango de la variable explicativa en intervalos y aproximar linealmente en cada tramo

desventajas

función de discontinua estimación sesgada

Ajuste local

Núcleo lineal uniforme

Ajuste local

Kernel Gaussiano

Función núcleo (kernel)

REGRESION LINEAL

$$w_i = w \ x^*, x_i = \frac{\frac{x_i - x^*}{h}}{\sum_{j=1}^n \frac{x_j - x^*}{h}}$$

- solo las observaciones cercanas tendrán peso, mayor flexibilidad, problemas de sobreajuste.
- observaciones alejadas también tendrán peso, falta de ajuste, mejor generalización.

Dos enfoques

Restringir la clase de funciones que consideramos que se van a ajustar mejor a los datos.

Definir múltiples relaciones funcionales y especificar una probabilidad a priori para cada función de aproximación posible.

Dudas con el método?

Aprender a mapear valores de $y = f \ x$ de observaciones $x_i, y_i \mid_{i=1}^{N}$

•Ajuste del modelo:

- como ajusto los parámetros?
- flexibilidad vs generalización

•Selección del modelo:

- que modelo uso?
- es el modelo correcto?

•Interpretación:

- cual es la precisión de las estimaciones?
- puedo confiar en ellos incluso si:
 - no estoy seguro de los parámetros
 - no estoy seguro de la estructura del modelo
 - no estoy seguro del nivel de ruido en los datos

Proceso Gaussiano

$$\mathbf{f} = f_1, ..., f_n^T \sim \mathcal{N} \ \mu, \Sigma \longrightarrow f \ x = \mathcal{GP} \ m \ x \ , k \ x, x'$$

Definición de GP

Dado un conjunto \mathcal{H} de todas las posibles funciones que mapean un vector $\mathbf{x} = \{x_1, x_2, x_3, ..., x_m\}$.

Ejemplos de evaluar una función particular h_0 podrían ser:

$$h_0(x_1) = 5, h_0(x_2) = 2.3, h_0(x_3) = \pi, ..., h_0(x_m) = -7$$

Como el dominio de $h_0 \in \mathcal{H}$ tiene solo m elementos, podemos representarlo como un vector

$$\vec{h}_0 = h_0(x_1), h_0(x_2), h_0(x_3), ..., h_0(x_m)^T$$

Especificando una distribución de probabilidad para cada $h \in \mathcal{H}$, le asociamos una probabilidad a priori a cada función.

Definición de GP

Si en particular especificamos $\vec{h} \sim \mathcal{N} \ \mu, \sigma^2 I$ esto implica una distribución sobre funciones

$$p \mathcal{H} = \prod_{i=1}^{m} \frac{2}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} h x_i - \mu_i^2\right)$$

...que estamos haciendo?

Asociamos densidades de probabilidades sobre funciones de dominios infinitos, usando una distribución Gaussiana multivariable en un número finito de puntos de entrada $x_1, ..., x_m$

Definición de GP

Un proceso Gaussiano es una colección de variables aleatorias, tal que cualquier subconjunto finito de ellas tiene una distribución Gaussiana multivariable.

$$h\begin{pmatrix} x_1 \\ \vdots \\ x_2 \end{pmatrix} \sim \mathcal{N} \begin{bmatrix} m & x_1 \\ \vdots \\ m & x_m \end{bmatrix}, \begin{bmatrix} k & x_1, x_1 & \cdots & k & x_1, x_m \\ \vdots & \ddots & \vdots \\ k & x_m, x_1 & \cdots & k & x_m, x_m \end{bmatrix}$$

$$h x \sim \mathcal{GP} m \cdot , k \cdot , \cdot$$

PROCESOS GAUSSIANOS

Para m() podemos usar cualquier función real, pero para k(;) debe cumplirse que para cualquier conjunto x_1, \ldots, x_m , la matriz resultante

$$K = \begin{bmatrix} k & x_1, x_1 & \cdots & k & x_1, x_m \\ \vdots & \ddots & \vdots & \vdots \\ k & x_m, x_1 & \cdots & k & x_m, x_m \end{bmatrix}$$

sea válida para una distribución Gaussiana multivariable, lo cual son las mismas condiciones que para los kernels.

Covarianza exponencial

$$h \cdot \sim \mathcal{GP} \ 0, k \cdot, \cdot$$

$$k_{SE} x, x' = \exp\left(-\frac{1}{2\tau^2} ||x - x'||^2\right)$$

h(x) y h(x') tienen alta covarianza cuando x y x' están cercanos en el espacio

$$||x-x|| \approx 0$$
 y $\exp\left(-\frac{1}{2\tau^2}||x-x||^2\right) \approx 1$

h(x) y h(x') tienen baja covarianza cuando x y x' están alejados en el espacio

$$||x-x|| \gg 0$$
 y $\exp\left(-\frac{1}{2\tau^2}||x-x||^2\right) \approx 0$

Regresión con GPs

Sea
$$S = x_i, y_i = \begin{cases} m \\ i=1 \end{cases}$$
 el conjunto de entrenamiento

Dado un modelo de regresión no paramétrico

$$y_i = h x_i + \varepsilon_i$$

Donde son ϵ_i son variables de ruido con distribuciones $\mathcal{N}(0; \sigma^2)$

EJEMPLO

Regresión con GPs

Sea
$$T = x_i^* \prod_{i=1}^m$$
 un conjunto de datos de pruebas

Queremos hacer predicciones y^* en los puntos x^*

Estimación

La suma de variables Gaussianas también es una Gaussiana, y por lo tanto

Usando las reglas de condicionamiento Gaussianas, se sigue que:

$$p \ \vec{y}^* \mid \vec{y}, X, x^* = \mathcal{N} \ \mu^*, \Sigma^*$$

donde

$$\mu^* = k \ x^*, X \ k \ X, X + \sigma^2 I^{-1} \vec{y}$$

REGRESION LINEAL

$$\Sigma^* = k \ x^*, x^* + \sigma^2 I - k \ x^*, X \ k \ X, X + \sigma^2 I^{-1} k \ X, x^*$$

varianza a priori

datos de testeo

Prior y posterior

distribución a priori con distintas parametrizaciones iniciales

prior condicionada a cinco observaciones

Región de confianza

Regresión con media cero y función de covarianza $k_{SF}(\cdot,\cdot)$ con m = 10, m = 20, y m = 40 ejemplos de entrenamiento

Los hiperparámetros

$$k \ x, x' = \sigma_s^2 \exp\left(-\frac{1}{2} \ x - x'^T C \ x - x'\right)$$

- σ_s es la varianza o factor de escala del ruido
- C es una matriz simétrica que puede tener distintas parametrizaciones
- $C = \text{diag}(\ell^{-2})$ con $\ell = (\ell_1, ..., \ell_D)$ Automatic Relevance Determination (ARD)
- Particularmente ℓ se conoce como factor de escala característico

Los hiperparámetros

Función relativamente suave con algo de ruido

Función más flexible con muy poco ruido

Función muy suave con mucho ruido

Máxima verosimilitud

La función de verosimilitud es una función de lo parámetros del modelo en relación a los datos observados

$$p \theta | X, y$$

Podemos tomar como estimación de los parámetros estudiados el valor que haga máxima la probabilidad de obtener la muestra observada

$$p \theta | X, y \propto p y | X, \theta$$

Dada una función de covarianza exponencial cuadráticas seleccionamos σ_n tal que se optimice el logaritmo

$$\mathcal{L} = \log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \underbrace{-\frac{1}{2}\mathbf{y}^\mathsf{T}(\mathbf{K} + \sigma_n^2\mathbf{I})^{-1}\mathbf{y}}_{\text{data-fit}} - \underbrace{\frac{1}{2}\log\lvert \mathbf{K} + \sigma_n^2\mathbf{I}\rvert}_{\text{complexity}} - \underbrace{\frac{N}{2}\log 2\pi}_{\text{normaliz}}.$$

Navaja de Ockham

De un conjunto de variables explicativas que forman parte del modelo, debe seleccionarse la combinación más reducida y simple posible, teniendo en cuenta la varianza residual

Función de máxima verosimilitud

todos los conjuntos de entrenamiento posibles