Guidelines for Solving Logistic Regression Problems

Eng. Ahmed Métwalli

February 2025

1 Gradient Descent Method for Logistic Regression

1.1 Step 1: Define the Model

- Logistic regression predicts the probability that Y = 1 given the input features.
- The model is defined as:

$$P(Y = 1 \mid X) = \sigma(z) = \frac{1}{1 + e^{-z}}$$
 (1)

• Where the linear combination is:

$$z = w_0 + w_1 X_1 + w_2 X_2 + \dots + w_n X_n. \tag{2}$$

• Explanation of the Linear Combination:

The term z is a weighted sum of the input features. Each weight w_j scales its corresponding feature X_j . The bias term w_0 is added to adjust the output independently of the inputs. This linear combination forms the input to the sigmoid function, which then maps z into the range [0,1] as a probability.

1.2 Step 2: Initialize Parameters

- Set initial weights w_0, w_1, \ldots, w_n (typically to zero).
- Choose a learning rate α .
- Define the number of iterations for the algorithm.

1.3 Step 3: Compute the Loss Function

• Use the Binary Cross-Entropy (Log Loss) function:

$$J(w) = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right]$$
(3)

• Here, $\hat{y}_i = \sigma(z_i)$ is the predicted probability for the i^{th} example.

1.4 Step 4: Compute the Gradients

• For each parameter w_j , the gradient is computed using the chain rule:

$$\frac{\partial J}{\partial w_i} = \frac{\partial J}{\partial \hat{y}_i} \cdot \frac{\partial \hat{y}_i}{\partial z_i} \cdot \frac{\partial z_i}{\partial w_i}.$$

- We have:
 - Loss derivative:

$$\frac{\partial J}{\partial \hat{y}_i} = -\left(\frac{y_i}{\hat{y}_i} - \frac{1 - y_i}{1 - \hat{y}_i}\right).$$

- Sigmoid derivative:

The sigmoid function is given by

$$\sigma(z_i) = \frac{1}{1 + e^{-z_i}}.$$

Its derivative is derived as:

$$\frac{d}{dz_i}\sigma(z_i) = \sigma(z_i)(1 - \sigma(z_i)) = \hat{y}_i(1 - \hat{y}_i).$$

- Linear combination derivative:

Since the linear combination is defined as

$$z_i = w_0 + w_1 X_{i1} + w_2 X_{i2} + \dots + w_n X_{in},$$

taking the derivative with respect to w_i gives:

$$\frac{\partial z_i}{\partial w_i} = X_{ij}.$$

Note that for the bias term w_0 , we define $X_{i0} = 1$.

• Multiplying these components:

$$\frac{\partial J}{\partial w_j} = -\left(\frac{y_i}{\hat{y}_i} - \frac{1 - y_i}{1 - \hat{y}_i}\right) \cdot \hat{y}_i (1 - \hat{y}_i) \cdot X_{ij}.$$

• With algebraic manipulation, this expression simplifies to:

$$\frac{\partial J}{\partial w_i} = (\hat{y}_i - y_i) X_{ij}.$$

• For the bias term w_0 , the gradient becomes:

$$\frac{\partial J}{\partial w_0} = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i).$$

1.5 Step 5: Update Parameters

• Update each weight using the gradient descent rule:

$$w_j = w_j - \alpha \frac{\partial J}{\partial w_j}. (4)$$

1.6 Step 6: Iterate Until Convergence

• Repeat Steps 3–5 for a predefined number of iterations or until the change in parameters is minimal.

2 Iterative Optimization in Logistic Regression

- Unlike linear regression, logistic regression does not have a closed-form solution (i.e., there is no normal equation).
- Iterative methods such as Gradient Descent or Newton-Raphson (IRLS) must be used to find the optimal parameters.

3 Comparison: Gradient Descent vs. Newton-Raphson (IRLS)

Feature	Gradient Descent	Newton-Raphson (IRLS)
Update Rule	$w_j := w_j - \alpha \frac{\partial J}{\partial w_j}$	$w := w - H^{-1} \nabla J$
Convergence Rate	Slower; requires tuning of α	Faster; uses second-order derivatives
Computation per Iteration	O(n)	$O(n^2)$ (due to Hessian matrix computation)
Implementation	Simple	More complex

Table 1: Comparison between Gradient Descent and Newton-Raphson in Logistic Regression