Thesis

Fang Ni

October 4, 2018

Contents

1	Introduction 1.1 First section		5
			5
	1.1.1	A subsection	5
2	Pairing model		
	2.0.1	Exact solution	7
	2.0.2	TDHFB dynamics	7
3	Requantization of TDHFB in integrable system		9
	3.0.1	Canonical quantization	9
	3.0.2	Fourier decomposition	
	3.0.3	Stationary phase to the path integral	9
	3.0.4	Result	9
4	Requantization of TDHFB in non-integrable system		11
	-4.0.1	Derivation of the collective subspace in adiabatic self-consistent	
		collective coordinate method	11
	4.0.2	Application of SPA in non-integrable system	11
	4.0.3	Result	
5	Discussion	n	13
6	Conclusio	n	15

Introduction

1.1 First section

Your text goes here.

1.1.1 A subsection

More text.

Pairing model

The Hamiltonian of pairing model is

$$H = \sum_{l} \epsilon_{l} n_{l} - g \sum_{l,l'} S_{l}^{+} S_{l'}^{-}, \qquad (2.1)$$

where

$$n_l = \sum a_{lm}^{\dagger} a_{lm} \tag{2.2}$$

$$n_{l} = \sum_{m} a_{lm}^{\dagger} a_{lm}$$

$$S_{l}^{+} = \sum_{m>0} a_{lm}^{\dagger} a_{l\overline{m}}^{\dagger}, \quad S_{l}^{-} = S_{l}^{+\dagger}$$

$$(2.2)$$

- **Exact solution** 2.1
- 2.2 TDHFB dynamics

Requantization of TDHFB in integrable system

- 3.1 Canonical quantization
- 3.2 Fourier decomposition
- 3.3 Stationary phase to the path integral
- 3.4 Result

Requantization of TDHFB in non-integrable system

- 4.1 Derivation of the collective subspace in adiabatic self-consistent collective coordinate method
- 4.2 Application of SPA in non-integrable system
- 4.3 Result

Discussion

Conclusion