MATH 220B: Homework #4

Due on Mar 1, 2025 at 23:59pm $Professor\ Xiao$

Ray Tsai

A16848188

(a) Let G be a region, let $a \in G$ and suppose that $f: (G - \{a\}) \to \mathbb{C}$ is an analytic function such that $f(G - \{a\}) = \Omega$ is bounded. Show that f has a removable singularity at z = a. If f is one-one, show that $f(a) \in \partial \Omega$.

Proof. Since Ω is bounded, $\lim_{z\to a} |f(z)| < \infty$. Hence, $\lim_{z\to a} (z-a)f(z) = 0$, and so f has a removable singularity at z=a.

Suppose f is injective. Let w = f(a). Since f is analytic on G, $\lim_{z\to a} f(z) = f(a) = w$. This shows that $w \in \overline{\Omega}$. Since f is injective, $f(z_n) \neq w$ for all n. Hence, $f(a) \in \partial \Omega$.

(b) Show that there is no one-one analytic function which maps $G = \{z : 0 < |z| < 1\}$ onto an annulus $\Omega = \{z : r < |z| < R\}$ where r > 0.

Proof. Suppose there exists a injective analytic function $f: G \to \Omega$. Since Ω is bounded, f has a removable singularity at z=0 and |f(0)| is either r or R. But then Ω is not simply connected and conformally equivalent to $B_1(0)$, contradiction.

Find an analytic function f which maps $\{z:|z|<1,\operatorname{Re} z>0\}$ onto B(0;1) in a one-one fashion.

Proof. Consider the Mobius transformation $h(z) = \frac{1+z}{1-z}$. h maps $B_1(0)$ to the right half plane bijectively. Additionally, the interval (-1,1) is mapped to the real axis and h(i)=i, so h maps the upper half circle to the first quadrant. Since $z \mapsto z^2$ maps the first quadrant to the upper half plane bijectively and $g(z) = \frac{z-i}{z+i}$ maps the upper half plane to the unit disk bijectively, $f = g \circ h^2$ is the function we desire.

Let G_1 and G_2 be simply connected regions, neither of which is the whole plane. Let f be a one-one analytic mapping of G_1 onto G_2 . Let $a \in G_1$ and put $\alpha = f(a)$. Prove that for any one-one analytic map h of G_1 into G_2 with $h(a) = \alpha$, it follows that $|h'(a)| \leq |f'(a)|$. Suppose h is not assumed to be one-one; what can be said?

Proof. Let $g = f^{-1} \circ h$. Then g is an analytic function from G_1 to G_1 with g(a) = a. By the Riemann Mapping Theorem, there exists bijective analytic functions $\phi: G_1 \to D$ and $\phi(a) = 0$. Then $\bar{g} = \phi \circ g \circ \phi^{-1}$ is an analytic function from D to D with $\bar{g}(0) = 0$. By Schwarz's Lemma, $|g'(a)| = |\bar{g}'(0)| \leq 1$. But then $g'(a) = (f^{-1})'(h(a)) \cdot h'(a) = \frac{h'(a)}{f'(a)}$, and so $|h'(a)| \leq |f'(a)|$. If h is not assumed to be one-one, then the resulting \bar{g} would not be a rotation. In this case, $|\bar{g}'(0)| < 1$ and so |h'(a)| < |f'(a)|.

Let r_1, r_2, R_1, R_2 be positive numbers such that $R_1/r_1 = R_2/r_2$; show that ann $(0; r_1, R_1)$ and ann $(0; r_2, R_2)$ are conformally equivalent. (The converse of this is presented in Exercise X.4.)

Proof. Let $m = R_1/r_1 = R_2/r_2$, and consider f(z) = mz. f is an Mobius transformation, and so f is injective and analytic. We first note that f(0) = 0. Suppose |z| = r. Then |f(z)| = |mz| = mr. Hence, f maps $B_r(0)$ to $B_{mr}(0)$. Put r as r_1 and r_2 and the result follows.

Show that there is an analytic function f defined on $G = \operatorname{ann}(0;0,1)$ such that f' never vanishes and f(G) = B(0;1).

Proof.