Sujet 1.

- * Exercice 1. Déterminer tous les triplets $(a,b,c) \in \mathbb{R}^3$ tels que le polynôme $P(x) = ax^2 + bx + c$ vérifie
 - 1. P(-1) = 5, P(1) = 1 et P(2) = 2.
 - 2. P(-1) = 4 et P(2) = 1.

Exercice 2. Soient
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $B = A - I$

Calculer B^n pour tout $n \in N$, puis en déduire A^n .

 \star Exercice 3. Déterminer les nombres $z \in \mathbb{C}$ tels que $z^2 = 3 + 4i$. En déduire les racines carrés de 3 + 4i.

Sujet 2.

- * Exercice 1. Soient $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$. Déterminer les matrices $B \in \mathcal{M}_2(\mathbb{R})$ qui commutent avec A.
- \star Exercice 2. Déterminer selon la valeur du paramètre $m \in \mathbb{R}$ l'ensemble des solutions du système

$$\begin{cases} x+y-z &= 1\\ 3x+y-z &= 1\\ x-2y+2z &= m \end{cases}$$

- **★ Exercice 3.** On pose $P(z) = z^3 + iz^2 iz + 1 + i$.
 - 1. Calculer P(-1-i).
 - 2. Résoudre dans \mathbb{C} l'équation P(z) = 0.

Sujet 3.

- **Exercice 1.** Soit $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$. Calculer A^n pour $n \ge 1$.
- \star Exercice 2. Déterminer, suivant la valeur du réel a, le rang de la matrice suivante :

$$A = \begin{pmatrix} 1 & a & a^2 & a^3 \\ a & a^2 & a^3 & 1 \\ a^2 & a^3 & 1 & a \\ a^3 & 1 & a & a^2 \end{pmatrix}$$

 \star Exercice 3. Déterminer selon la valeur du paramètre $m \in \mathbb{R}$ l'ensemble des solutions du système

$$\begin{cases} x + my &= -3 \\ mx + 4y &= 6 \end{cases}$$

Quelle interprétation géométrique du résultat peut-on faire?

Sujet 1.

* Exercice 1. Déterminer, suivant la valeur du réel a, le rang de la matrice suivante :

$$A = \begin{pmatrix} 1 & a & a^2 & a^3 \\ a & a^2 & a^3 & 1 \\ a^2 & a^3 & 1 & a \\ a^3 & 1 & a & a^2 \end{pmatrix}$$

- * Exercice 2. Dire dans chaque cas si les vecteurs sont coplanaires :
 - 1. u = (1, 2, -1), v = (1, 0, 1) et w = (0, 0, 1)
 - 2. u = (1, 2, -1), v = (1, 0, 1) et w = (-1, -2, 3)
- * Exercice 3. Soit $(u_n)_n$ la suite arithmétique telle que $u_6 = 112$ et $u_{14} = 56$. Déterminer u_n en fonction de n, puis calculer le 15ième terme de cette suite. La suite $(u_n)_n$ est-elle croissante?

Sujet 2.

* Exercice 1. Soient $(u_n)_n$ et $(v_n)_n$ deux suites réelles définies par

$$u_0 = 3$$
, $u_{n+1} = \frac{4u_n - 2}{u_n + 1}$ et $v_n = \frac{u_n - 2}{u_n - 1}$

- 1. Démontrer que pour tout $n \ge 0$, $u_n > 1$.
- 2. Démontrer que $(v_n)_n$ est une suite géométrique et donner l'expression de son terme général.
- 3. Etudier la convergence de $(u_n)_n$.
- * Exercice 2. Déterminer les valeurs de t pour lesquelles la matrice $\begin{pmatrix} 1 & 0 & t \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ est inversible.
- * Exercice 3. On considère les deux vecteurs suivants dans \mathbb{R}^3 : u = (1, -1, -1) et v = (2, -1, 2). Trouver un vecteur w tel que u, v et w soient coplanaires.

Sujet 3.

- * Exercice 1. On considère les deux vecteurs suivants dans \mathbb{R}^2 : u = (1,2) et v = (3,5). Montrer que $\{u,v\}$ est une base de \mathbb{R}^2 , puis calculer les coordonnées de w = (2,3) dans cette base.
- * Exercice 2. Ecrire le système suivant sous forme matricielle, déterminer l'inverse de la matrice associée et en déduire l'ensemble des solutions la valeur du paramètre $m \in \mathbb{R}$.

$$\begin{cases} x-z &= m \\ -2x+3y+4z &= 1 \\ y+z &= m \end{cases}$$

* Exercice 3. Soient $(u_n)_n$ et $(v_n)_n$ deux suites réelles définies par

$$u_0 = 4$$
, $u_{n+1} = 2u_n - 3$ et $v_n = u_n - 3$

- 1. Déterminer la nature des suites $(u_n)_n$ et $(v_n)_n$.
- 2. Déterminer l'expression générale de (v_n) en fonction de n, puis de même pour u_n .
- 3. Calculer la somme des 11 premiers termes de u_n .