3 Berechenbarkeitstheorie

3 Berechenbarkeitstheorie

- 3.1 Entwurf einer universellen Turingmaschine
- 3.2 Die Unentscheidbarkeit des Halteproblems
- 3.3 Turing- und Many-One-Reduktionen
- 3.4 Der Satz von Rice
- 3.5 Rekursiv aufzählbare Sprachen
- 3.6 Weitere nicht entscheidbare Probleme

3 Berechenbarkeitstheorie

3 Berechenbarkeitstheorie

- 3.1 Entwurf einer universellen Turingmaschine
- 3.2 Die Unentscheidbarkeit des Halteproblems
- 3.3 Turing- und Many-One-Reduktionen
- 3.4 Der Satz von Rice
- 3.5 Rekursiv aufzählbare Sprachen
- 3.6 Weitere nicht entscheidbare Probleme

Definition 3.14

Eine Turingmaschine M erkennt eine Sprache $L \subseteq \Sigma^*$, wenn sie jedes Wort $w \in L$ akzeptiert und jedes Wort $w \in \Sigma^* \setminus L$ entweder verwirft oder darauf nicht terminiert.

Definition 3.14

Eine Turingmaschine M erkennt eine Sprache $L \subseteq \Sigma^*$, wenn sie jedes Wort $w \in L$ akzeptiert und jedes Wort $w \in \Sigma^* \setminus L$ entweder verwirft oder darauf nicht terminiert.

Eine Sprache $L\subseteq \Sigma^*$ heißt semi-entscheidbar oder rekursiv aufzählbar, wenn es eine Turingmaschine M gibt, die L erkennt.

Definition 3.14

Eine Turingmaschine M erkennt eine Sprache $L \subseteq \Sigma^*$, wenn sie jedes Wort $w \in L$ akzeptiert und jedes Wort $w \in \Sigma^* \setminus L$ entweder verwirft oder darauf nicht terminiert.

Eine Sprache $L \subseteq \Sigma^*$ heißt semi-entscheidbar oder rekursiv aufzählbar, wenn es eine Turingmaschine M gibt, die L erkennt.

Beispiel:

Die folgende Turingmaschine M_H erkennt das Halteproblem:

Bei Eingabe $\langle M \rangle w$ simuliert M_H die TM M auf w.

Terminiert diese Simulation, so akzeptiert M_H die Eingabe $\langle M \rangle w$.

Theorem 3.15 (Abschlusseigenschaften)

Es seien $L_1\subseteq \Sigma^*$ und $L_2\subseteq \Sigma^*$ zwei semi-entscheidbare Sprachen. Dann sind auch die Sprachen $L_1\cup L_2$ und $L_1\cap L_2$ semi-entscheidbar.

Theorem 3.15 (Abschlusseigenschaften)

Es seien $L_1\subseteq \Sigma^*$ und $L_2\subseteq \Sigma^*$ zwei semi-entscheidbare Sprachen. Dann sind auch die Sprachen $L_1\cup L_2$ und $L_1\cap L_2$ semi-entscheidbar.

Beweis: Es seien M_1 und M_2 Turingmaschinen, die L_1 bzw. L_2 erkennen.

 \Rightarrow Die Turingmaschine M_i akzeptiert jedes Wort $x \in L_i$ und kein Wort $x \notin L_i$.

Theorem 3.15 (Abschlusseigenschaften)

Es seien $L_1\subseteq \Sigma^*$ und $L_2\subseteq \Sigma^*$ zwei semi-entscheidbare Sprachen. Dann sind auch die Sprachen $L_1\cup L_2$ und $L_1\cap L_2$ semi-entscheidbar.

Beweis: Es seien M_1 und M_2 Turingmaschinen, die L_1 bzw. L_2 erkennen.

 \Rightarrow Die Turingmaschine M_i akzeptiert jedes Wort $x \in L_i$ und kein Wort $x \notin L_i$.

Konstruktion einer TM M_{\cap} für $L_1 \cap L_2$:

$M_{\cap}(x)$

- 1 Simuliere M_1 auf x.
- 2 Simuliere M_2 auf x.
- 3 Akzeptiere x, wenn M_1 und M_2 die Eingabe x akzeptiert haben. Sonst verwirf x.

Theorem 3.15 (Abschlusseigenschaften)

Es seien $L_1\subseteq \Sigma^*$ und $L_2\subseteq \Sigma^*$ zwei semi-entscheidbare Sprachen. Dann sind auch die Sprachen $L_1\cup L_2$ und $L_1\cap L_2$ semi-entscheidbar.

Beweis: Es seien M_1 und M_2 Turingmaschinen, die L_1 bzw. L_2 erkennen.

 \Rightarrow Die Turingmaschine M_i akzeptiert jedes Wort $x \in L_i$ und kein Wort $x \notin L_i$.

Konstruktion einer TM M_{\cap} für $L_1 \cap L_2$:

$$M_{\cap}(x)$$

- 1 Simuliere M_1 auf x.
- 2 Simuliere M_2 auf x.
- 3 Akzeptiere x, wenn M_1 und M_2 die Eingabe x akzeptiert haben. Sonst verwirf x.

 M_{\cap} akzeptiert jedes $x \in L_1 \cap L_2$, da jedes solche Wort von M_1 und M_2 akzeptiert wird.

Theorem 3.15 (Abschlusseigenschaften)

Es seien $L_1 \subseteq \Sigma^*$ und $L_2 \subseteq \Sigma^*$ zwei semi-entscheidbare Sprachen. Dann sind auch die Sprachen $L_1 \cup L_2$ und $L_1 \cap L_2$ semi-entscheidbar.

Beweis: Es seien M_1 und M_2 Turingmaschinen, die L_1 bzw. L_2 erkennen.

 \Rightarrow Die Turingmaschine M_i akzeptiert jedes Wort $x \in L_i$ und kein Wort $x \notin L_i$.

Konstruktion einer TM M_{\odot} für $L_1 \cap L_2$:

$$M_{\cap}(x)$$

- 1 Simuliere M_1 auf x.
- 2 Simuliere M_2 auf x.
- 3 Akzeptiere x, wenn M_1 und M_2 die Eingabe x akzeptiert haben. Sonst verwirf x.

 M_{\cap} akzeptiert jedes $x \in L_1 \cap L_2$, da jedes solche Wort von M_1 und M_2 akzeptiert wird. M_{\cap} akzeptiert kein $x \notin L_1 \cap L_2$, da jedes solche Wort von M_1 oder M_2 nicht akzeptiert wird.

Konstruktion einer TM M_{\cup} für $L_1 \cup L_2$:

```
M_{\cup}(x)
```

- 1 Simuliere M_1 auf x.
- 2 Simuliere M_2 auf x.
- Akzeptiere x, wenn M_1 oder M_2 die Eingabe x akzeptiert haben. Sonst verwirf x.

Konstruktion einer TM M_{\cup} für $L_1 \cup L_2$:

$$M_{\cup}(x)$$

- 1 Simuliere M_1 auf x.
- 2 Simuliere M_2 auf x.
- Akzeptiere x, wenn M_1 oder M_2 die Eingabe x akzeptiert haben. Sonst verwirf x.

Problem: Gilt $x \notin L_1$ und $x \in L_2$, so gilt $x \in L_1 \cup L_2$.

In diesem Fall besteht die Möglichkeit, dass M_1 nicht terminiert.

Dann würde auch M_{\cup} nicht terminieren und x damit nicht akzeptieren.

Lösung: Führe die Schritte 1 und 2 parallel aus.

Konstruiere M_{\cup} dazu beispielsweise als 2-Band-TM.

Stoppe, sobald M_1 oder M_2 akzeptiert (oder beide verwerfen).

```
M_{\cup}(x)
```

- 1 Simuliere M_1 auf x.
- 2 Simuliere M_2 auf x.
- 3 Akzeptiere x, wenn M_1 oder M_2 die Eingabe x akzeptiert haben. Sonst verwirf x.

Lösung: Führe die Schritte 1 und 2 parallel aus.

Konstruiere M_{\cup} dazu beispielsweise als 2-Band-TM.

Stoppe, sobald M_1 oder M_2 akzeptiert (oder beide verwerfen).

```
M_{\cup}(x)
```

- 1 Simuliere M_1 auf x.
- 2 Simuliere M_2 auf x.
- 3 Akzeptiere x, wenn M_1 oder M_2 die Eingabe x akzeptiert haben. Sonst verwirf x.

 M_{\cup} akzeptiert jedes $x \in L_1 \cup L_2$, da jedes solche Wort von M_1 oder M_2 akzeptiert wird.

Lösung: Führe die Schritte 1 und 2 parallel aus.

Konstruiere M_{\cup} dazu beispielsweise als 2-Band-TM.

Stoppe, sobald M_1 oder M_2 akzeptiert (oder beide verwerfen).

$M_{\cup}(x)$

- 1 Simuliere M_1 auf x.
- 2 Simuliere M_2 auf x.
- Akzeptiere x, wenn M_1 oder M_2 die Eingabe x akzeptiert haben. Sonst verwirf x.

 M_{\cup} akzeptiert jedes $x \in L_1 \cup L_2$, da jedes solche Wort von M_1 oder M_2 akzeptiert wird. M_{\cup} akzeptiert kein $x \notin L_1 \cup L_2$, da jedes solche Wort weder von M_1 noch von M_2 akzeptiert wird.

Theorem 3.16

Sind $L \subseteq \Sigma^*$ und das Komplement $\overline{L} = \Sigma^* \setminus L$ semi-entscheidbar, so ist L entscheidbar.

Theorem 3.16

Sind $L \subseteq \Sigma^*$ und das Komplement $\overline{L} = \Sigma^* \setminus L$ semi-entscheidbar, so ist L entscheidbar.

Beweis: Seien M_L und $M_{\overline{L}}$ Turingmaschinen, die L bzw. \overline{L} erkennen.

Wir konstruieren eine TM *M*, die *L* entscheidet:

M(x)

Führe die folgenden Schritte parallel aus.

- Simuliere M_L auf x. Akzeptiere x, wenn M_L Eingabe x akzeptiert.
- 2 Simuliere $M_{\overline{L}}$ auf x. Verwirf x, wenn $M_{\overline{L}}$ Eingabe x akzeptiert.

Theorem 3.16

Sind $L \subseteq \Sigma^*$ und das Komplement $\overline{L} = \Sigma^* \setminus L$ semi-entscheidbar, so ist L entscheidbar.

Beweis: Seien M_L und $M_{\overline{L}}$ Turingmaschinen, die L bzw. \overline{L} erkennen.

Wir konstruieren eine TM *M*, die *L* entscheidet:

M(x)

Führe die folgenden Schritte parallel aus.

- Simuliere M_L auf x. Akzeptiere x, wenn M_L Eingabe x akzeptiert.
- 2 Simuliere $M_{\overline{L}}$ auf x. Verwirf x, wenn $M_{\overline{L}}$ Eingabe x akzeptiert.

M akzeptiert jedes $x \in L$, da jedes solche Wort von M_L akzeptiert wird.

Theorem 3.16

Sind $L \subseteq \Sigma^*$ und das Komplement $\overline{L} = \Sigma^* \setminus L$ semi-entscheidbar, so ist L entscheidbar.

Beweis: Seien M_L und $M_{\overline{L}}$ Turingmaschinen, die L bzw. \overline{L} erkennen.

Wir konstruieren eine TM *M*, die *L* entscheidet:

M(x)

Führe die folgenden Schritte parallel aus.

- Simuliere M_L auf x. Akzeptiere x, wenn M_L Eingabe x akzeptiert.
- 2 Simuliere $M_{\overline{L}}$ auf x. Verwirf x, wenn $M_{\overline{L}}$ Eingabe x akzeptiert.

M akzeptiert jedes $x \in L$, da jedes solche Wort von M_L akzeptiert wird.

M verwirft jedes $x \notin L$, da jedes solche Wort von $M_{\overline{I}}$ akzeptiert wird.

Theorem 3.17

Es seien $A\subseteq \Sigma_1^*$ und $B\subseteq \Sigma_2^*$ zwei Sprachen, für die $A\le B$ gilt. Ist B semi-entscheidbar, so ist auch A semi-entscheidbar. Ist A nicht semi-entscheidbar, so ist auch B nicht semi-entscheidbar.

Theorem 3.17

Es seien $A \subseteq \Sigma_1^*$ und $B \subseteq \Sigma_2^*$ zwei Sprachen, für die $A \le B$ gilt. Ist B semi-entscheidbar, so ist auch A semi-entscheidbar. Ist A nicht semi-entscheidbar, so ist auch B nicht semi-entscheidbar.

Theorem 3.18

Weder das vollständige Halteproblem

$$H_{\text{all}} = \{ \langle M \rangle \mid M \text{ hält auf jeder Eingabe aus } \{0,1\}^* \} \subseteq \{0,1\}^*$$

noch sein Komplement $\overline{H_{\text{all}}}$ sind semi-entscheidbar.

Lemma

$$H \leq H_{all}$$

Beweis: Wir konstruieren eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$, die Eingaben für das Halteproblem H auf Eingaben für das allgemeine Halteproblem Hauf Eingaben für das a

$$f(x) = \begin{cases} x & \text{falls } x \text{ nicht mit G\"{o}delnummer beginnt} \\ \langle M^* \rangle & \text{falls } x = \langle M \rangle w \text{ f\"{u}r eine TM } M \end{cases}$$

Die TM M^* löscht die Eingabe und simuliert das Verhalten von M auf w Schritt für Schritt.

Die Funktion f ist berechenbar, da $\langle M^{\star} \rangle$ für gegebene $\langle M \rangle$ und w konstruiert werden kann.

Analog zum Beweis von Theorem 3.12 gilt auch hier: $x \in H \iff f(x) \in H_{all}$.

Theorem 3.18

Weder das vollständige Halteproblem

$$\mathit{H}_{\mathsf{all}} = \{ \langle \mathit{M} \rangle \mid \mathit{M} \text{ hält auf jeder Eingabe aus } \{0,1\}^* \,\} \subseteq \{0,1\}^*$$

noch sein Komplement $\overline{H_{\text{all}}}$ sind semi-entscheidbar.

Beweis von Theorem 3.18:

Teil 1: H_{all} ist nicht semi-entscheidbar

Theorem 3.18

Weder das vollständige Halteproblem

$$H_{all} = \{\langle M \rangle \mid M \text{ hält auf jeder Eingabe aus } \{0,1\}^* \} \subseteq \{0,1\}^*$$

noch sein Komplement $\overline{H_{\rm all}}$ sind semi-entscheidbar.

Beweis von Theorem 3.18:

Teil 1: H_{all} ist nicht semi-entscheidbar

Es gilt $H \leq H_{\text{all}}$ (analog zu Beweis von Theorem 3.12).

Theorem 3.18

Weder das vollständige Halteproblem

$$H_{\text{all}} = \{ \langle M \rangle \mid M \text{ hält auf jeder Eingabe aus } \{0,1\}^* \} \subseteq \{0,1\}^*$$

noch sein Komplement $\overline{H_{\text{all}}}$ sind semi-entscheidbar.

Beweis von Theorem 3.18:

Teil 1: H_{all} ist nicht semi-entscheidbar

Es gilt $H \leq H_{\text{all}}$ (analog zu Beweis von Theorem 3.12).

$$\Rightarrow \overline{H} \leq \overline{H_{all}}$$
 (Allgemein folgt aus $A \leq B$ auch $\overline{A} \leq \overline{B}$.)

Theorem 3.18

Weder das vollständige Halteproblem

$$\mathit{H}_{\mathsf{all}} = \{ \langle \mathit{M} \rangle \mid \mathit{M} \text{ hält auf jeder Eingabe aus } \{0,1\}^* \} \subseteq \{0,1\}^*$$

noch sein Komplement $\overline{H_{\text{all}}}$ sind semi-entscheidbar.

Beweis von Theorem 3.18:

Teil 1: $\overline{H_{\text{all}}}$ ist nicht semi-entscheidbar

Es gilt $H \leq H_{\text{all}}$ (analog zu Beweis von Theorem 3.12).

$$\Rightarrow \overline{H} \leq \overline{H_{\text{all}}}$$
 (Allgemein folgt aus $A \leq B$ auch $\overline{A} \leq \overline{B}$.)

Ausserdem ist \overline{H} nicht semi-entscheidbar, denn H ist semi-entscheidbar und gemäß Theorem 3.16 wäre H sonst entscheidbar.

Theorem 3.18

Weder das vollständige Halteproblem

$$H_{\text{all}} = \{ \langle M \rangle \mid M \text{ hält auf jeder Eingabe aus } \{0,1\}^* \} \subseteq \{0,1\}^*$$

noch sein Komplement $\overline{H_{\text{all}}}$ sind semi-entscheidbar.

Beweis von Theorem 3.18:

Teil 1: $\overline{H_{all}}$ ist nicht semi-entscheidbar

Es gilt $H < H_{\text{all}}$ (analog zu Beweis von Theorem 3.12).

$$\Rightarrow \overline{H} \leq \overline{H_{\text{all}}}$$
 (Allgemein folgt aus $A \leq B$ auch $\overline{A} \leq \overline{B}$.)

Ausserdem ist \overline{H} nicht semi-entscheidbar, denn H ist semi-entscheidbar und gemäß Theorem 3.16 wäre H sonst entscheidbar.

Zusammen impliziert dies mit Theorem 3.17, dass \overline{H}_{all} nicht semi-entscheidbar ist.

Teil 2: Hall ist nicht semi-entscheidbar

Konstruktion einer Reduktion $\overline{H_{\varepsilon}} \leq H_{\text{all}}$:

$$f(x) = \begin{cases} \langle M_1 \rangle & \text{falls } x \text{ keine G\"odelnummer ist} \\ \langle M^* \rangle & \text{falls } x = \langle M \rangle \text{ f\"ur eine TM } M \end{cases}$$

Teil 2: Hall ist nicht semi-entscheidbar

Konstruktion einer Reduktion $\overline{H_{\varepsilon}} \leq H_{\text{all}}$:

$$f(x) = \begin{cases} \langle M_1 \rangle & \text{falls } x \text{ keine G\"odelnummer ist} \\ \langle M^* \rangle & \text{falls } x = \langle M \rangle \text{ f\"ur eine TM } M \end{cases}$$

 M_1 ist beliebige TM mit $\langle M_1 \rangle \in H_{\text{all}}$.

 M^* simuliert bei Eingabe w, die TM M auf ε , solange bis sie entweder hält oder |w| viele Schritte gemacht hat. Falls M innerhalb dieser |w| Schritte hält, so geht M^* in eine Endlosschleife. Ansonsten terminiert M^* .

 M_1 ist beliebige TM mit $\langle M_1 \rangle \in H_{\text{all}}$.

 M^* simuliert bei Eingabe w, die TM M auf ε , solange bis sie entweder hält oder |w| viele Schritte gemacht hat. Falls M innerhalb dieser |w| Schritte hält, so geht M^* in eine Endlosschleife. Ansonsten terminiert M^* .

Zu zeigen: $x \in \overline{H_{\varepsilon}} \iff f(x) \in H_{\text{all}}$

 M_1 ist beliebige TM mit $\langle M_1 \rangle \in H_{\text{all}}$.

 M^* simuliert bei Eingabe w, die TM M auf ε , solange bis sie entweder hält oder |w| viele Schritte gemacht hat. Falls M innerhalb dieser |w| Schritte hält, so geht M^* in eine Endlosschleife. Ansonsten terminiert M^* .

Zu zeigen:
$$x \in \overline{H_{\varepsilon}} \iff f(x) \in H_{\text{all}}$$

Fall 1:
$$x \in \overline{H_{\varepsilon}}$$
 (d.h. $x \notin H_{\varepsilon}$)

• Entweder x ist keine gültige Gödelnummer, dann gilt $f(x) = \langle M_1 \rangle \in H_{all}$,

 M_1 ist beliebige TM mit $\langle M_1 \rangle \in H_{\text{all}}$.

 M^* simuliert bei Eingabe w, die TM M auf ε , solange bis sie entweder hält oder |w| viele Schritte gemacht hat. Falls M innerhalb dieser |w| Schritte hält, so geht M^* in eine Endlosschleife. Ansonsten terminiert M^* .

Zu zeigen: $x \in \overline{H_{\varepsilon}} \iff f(x) \in H_{all}$

Fall 1: $x \in \overline{H_{\varepsilon}}$ (d.h. $x \notin H_{\varepsilon}$)

- Entweder x ist keine gültige Gödelnummer, dann gilt $f(x) = \langle M_1 \rangle \in H_{all}$,
- oder es gilt $x = \langle M \rangle$ für eine TM, die nicht auf ε hält

 M_1 ist beliebige TM mit $\langle M_1 \rangle \in H_{\text{all}}$.

 M^* simuliert bei Eingabe w, die TM M auf ε , solange bis sie entweder hält oder |w| viele Schritte gemacht hat. Falls M innerhalb dieser |w| Schritte hält, so geht M^* in eine Endlosschleife. Ansonsten terminiert M^* .

Zu zeigen: $x \in \overline{H_{\varepsilon}} \iff f(x) \in H_{all}$

Fall 1: $x \in \overline{H_{\varepsilon}}$ (d.h. $x \notin H_{\varepsilon}$)

- Entweder x ist keine gültige Gödelnummer, dann gilt $f(x) = \langle M_1 \rangle \in H_{all}$,
- oder es gilt $x = \langle M \rangle$ für eine TM, die nicht auf ε hält $\Rightarrow M^*$ terminiert auf jeder Eingabe $w \Rightarrow f(x) = \langle M^* \rangle \in \mathcal{H}_{\text{all}}$

 M_1 ist beliebige TM mit $\langle M_1 \rangle \in H_{\text{all}}$.

 M^* simuliert bei Eingabe w, die TM M auf ε , solange bis sie entweder hält oder |w| viele Schritte gemacht hat. Falls M innerhalb dieser |w| Schritte hält, so geht M^* in eine Endlosschleife. Ansonsten terminiert M^* .

Zu zeigen:
$$x \in \overline{H_{\varepsilon}} \iff f(x) \in H_{all}$$

Fall 2:
$$x \notin \overline{H_{\varepsilon}}$$
 (d.h. $x \in H_{\varepsilon}$)

• Es gilt $x = \langle M \rangle$ für eine TM M, die auf ε hält.

 M_1 ist beliebige TM mit $\langle M_1 \rangle \in H_{\text{all}}$.

 M^* simuliert bei Eingabe w, die TM M auf ε , solange bis sie entweder hält oder |w| viele Schritte gemacht hat. Falls M innerhalb dieser |w| Schritte hält, so geht M^* in eine Endlosschleife. Ansonsten terminiert M^* .

Zu zeigen:
$$x \in \overline{H_{\varepsilon}} \iff f(x) \in H_{all}$$

Fall 2: $x \notin \overline{H_{\varepsilon}}$ (d.h. $x \in H_{\varepsilon}$)

- Es gilt $x = \langle M \rangle$ für eine TM M, die auf ε hält.
- Sei $t \in \mathbb{N}$ Anzahl an Schritten, die M auf ε benötigt.

 M_1 ist beliebige TM mit $\langle M_1 \rangle \in H_{\text{all}}$.

 M^* simuliert bei Eingabe w, die TM M auf ε , solange bis sie entweder hält oder |w| viele Schritte gemacht hat. Falls M innerhalb dieser |w| Schritte hält, so geht M^* in eine Endlosschleife. Ansonsten terminiert M^* .

Zu zeigen:
$$x \in \overline{H_{\varepsilon}} \iff f(x) \in H_{all}$$

Fall 2: $x \notin \overline{H_{\varepsilon}}$ (d.h. $x \in H_{\varepsilon}$)

- Es gilt $x = \langle M \rangle$ für eine TM M, die auf ε hält.
- Sei $t \in \mathbb{N}$ Anzahl an Schritten, die M auf ε benötigt.
- Die TM M^* gerät für jede Eingabe w mit |w| > t in eine Endlosschleife.

 M_1 ist beliebige TM mit $\langle \mathit{M}_1 \rangle \in \mathit{H}_{all}.$

 M^{\star} simuliert bei Eingabe w, die TM M auf ε , solange bis sie entweder hält oder |w| viele Schritte gemacht hat. Falls M innerhalb dieser |w| Schritte hält, so geht M^{\star} in eine Endlosschleife. Ansonsten terminiert M^{\star} .

Zu zeigen:
$$x \in \overline{H_{\varepsilon}} \iff f(x) \in H_{all}$$

Fall 2: $x \notin \overline{H_{\varepsilon}}$ (d.h. $x \in H_{\varepsilon}$)

- Es gilt $x = \langle M \rangle$ für eine TM M, die auf ε hält.
- Sei $t \in \mathbb{N}$ Anzahl an Schritten, die M auf ε benötigt.
- Die TM M^* gerät für jede Eingabe w mit |w| > t in eine Endlosschleife.
- Somit terminiert M^* nicht auf jeder Eingabe und es gilt $f(x) = \langle M^* \rangle \notin H_{all}$.

Definition 3.19

Ein Aufzähler für eine Sprache $L\subseteq \Sigma^*$ ist eine TM mit einem zusätzlichen Ausgabeband, das zu Beginn leer ist.

Definition 3.19

Ein Aufzähler für eine Sprache $L\subseteq \Sigma^*$ ist eine TM mit einem zusätzlichen Ausgabeband, das zu Beginn leer ist.

Ein Aufzähler erhält keine Eingabe und er schreibt nach und nach Wörter aus L (durch Leerzeichen getrennt) auf das Ausgabeband.

Definition 3.19

Ein Aufzähler für eine Sprache $L\subseteq \Sigma^*$ ist eine TM mit einem zusätzlichen Ausgabeband, das zu Beginn leer ist.

Ein Aufzähler erhält keine Eingabe und er schreibt nach und nach Wörter aus L (durch Leerzeichen getrennt) auf das Ausgabeband.

Er schreibt keine Wörter auf das Ausgabeband, die nicht zu L gehören, und zu jedem Wort $w \in L$ existiert ein Index $i_w \in \mathbb{N}$, sodass das Wort w nach i_w Schritten des Aufzählers auf dem Ausgabeband steht.

Definition 3.19

Ein Aufzähler für eine Sprache $L\subseteq \Sigma^*$ ist eine TM mit einem zusätzlichen Ausgabeband, das zu Beginn leer ist.

Ein Aufzähler erhält keine Eingabe und er schreibt nach und nach Wörter aus L (durch Leerzeichen getrennt) auf das Ausgabeband.

Er schreibt keine Wörter auf das Ausgabeband, die nicht zu L gehören, und zu jedem Wort $w \in L$ existiert ein Index $i_w \in \mathbb{N}$, sodass das Wort w nach i_w Schritten des Aufzählers auf dem Ausgabeband steht.

Theorem 3.20

Eine Sprache L ist genau dann semi-entscheidbar, wenn ein Aufzähler für L existiert.

Beweis: "⇐": Sei A ein Aufzähler für L.

Konstruktion einer TM M, die L erkennt:

Beweis: "←": Sei A ein Aufzähler für L.

Konstruktion einer TM *M*, die *L* erkennt:

Bei Eingabe w simuliert M den Aufzähler A. M terminiert und akzeptiert die Eingabe w, sobald A das Wort w auf das Ausgabeband schreibt.

Beweis: "⇐": Sei A ein Aufzähler für L.

Konstruktion einer TM *M*, die *L* erkennt:

Bei Eingabe w simuliert M den Aufzähler A. M terminiert und akzeptiert die Eingabe w, sobald A das Wort w auf das Ausgabeband schreibt.

Sei $w \in L$. Dann schreibt A das Wort w nach endlich vielen Schritten auf das Ausgabeband. $\Rightarrow M$ akzeptiert w.

Beweis: "←": Sei A ein Aufzähler für L.

Konstruktion einer TM *M*, die *L* erkennt:

Bei Eingabe w simuliert M den Aufzähler A. M terminiert und akzeptiert die Eingabe w, sobald A das Wort w auf das Ausgabeband schreibt.

Sei $w \in L$. Dann schreibt A das Wort w nach endlich vielen Schritten auf das Ausgabeband. $\Rightarrow M$ akzeptiert w.

Seit $w \notin L$. Dann schreibt A das Wort w nie auf das Ausgabeband. $\Rightarrow M$ terminiert nicht auf w.

" \Rightarrow ": Sei eine TM M gegeben, die die Sprache L erkennt.

Konstruktion eines Aufzählers A für L:

"⇒": Sei eine TM M gegeben, die die Sprache L erkennt.

Konstruktion eines Aufzählers A für L:

Erster Versuch:

```
Aufzähler A für L
```

- 1 for i = 1, 2, 3, ...
- Simuliere M auf w_i .
- Wird w_i von M akzeptiert, so schreibe es auf das Ausgabeband.

"⇒": Sei eine TM M gegeben, die die Sprache L erkennt.

Konstruktion eines Aufzählers A für L:

Erster Versuch:

Aufzähler A für L

- 1 for i = 1, 2, 3, ...
- 2 Simuliere M auf w_i .
- Wird w_i von M akzeptiert, so schreibe es auf das Ausgabeband.

Problem: Gilt $w_i \notin L$, so terminiert M nicht notwendigerweise auf w_i und Wörter w_j mit j > i werden nicht mehr erreicht.

Zweiter Versuch:

```
Aufzähler A für L
for i = 1, 2, 3, ...
Simuliere jeweils i Schritte von M auf den Eingaben w<sub>1</sub>, ..., w<sub>i</sub>.
Wird bei einer dieser Simulationen ein Wort w akzeptiert, so schreibe es auf das Ausgabeband.
```

Zweiter Versuch:

```
Aufzähler A für L
for i = 1,2,3,...
Simuliere jeweils i Schritte von M auf den Eingaben w<sub>1</sub>,..., w<sub>i</sub>.
Wird bei einer dieser Simulationen ein Wort w akzeptiert, so schreibe es auf das Ausgabeband.
```

Diese TM schreibt nur Wörter, die von M akzeptiert werden, auf das Ausgabeband. Alle diese Wörter gehören zu L.

Zweiter Versuch:

```
Aufzähler A für L
for i = 1, 2, 3, ...
Simuliere jeweils i Schritte von M auf den Eingaben w<sub>1</sub>, ..., w<sub>i</sub>.
Wird bei einer dieser Simulationen ein Wort w akzeptiert, so schreibe es auf das Ausgabeband.
```

Diese TM schreibt nur Wörter, die von M akzeptiert werden, auf das Ausgabeband. Alle diese Wörter gehören zu L.

Für jedes Wort $w \in L$ gibt es ein t_w , sodass M die Eingabe w nach t_w vielen Schritten akzeptiert. Somit gibt A jedes Wort $w = w_j \in L$ für $i = \max\{t_w, j\}$ (also nach endlich vielen Schritten) aus.

3 Berechenbarkeitstheorie

3 Berechenbarkeitstheorie

- 3.1 Entwurf einer universellen Turingmaschine
- 3.2 Die Unentscheidbarkeit des Halteproblems
- 3.3 Turing- und Many-One-Reduktionen
- 3.4 Der Satz von Rice
- 3.5 Rekursiv aufzählbare Sprachen
- 3.6 Weitere nicht entscheidbare Probleme

Hilberts zehntes Problem

Eingabe: multivariates Polynom

z. B. $xy + x^2 + 10xy^2 - 2x^2y^3z - 7$

Frage: Besitzt das Polynom eine ganzzahlige Nullstelle?

Hilberts zehntes Problem

Eingabe: multivariates Polynom

z. B. $xy + x^2 + 10xy^2 - 2x^2y^3z - 7$

Frage: Besitzt das Polynom eine ganzzahlige Nullstelle?

Theorem 3.21

Hilberts zehntes Problem ist nicht entscheidbar.

Postsches Korrespondenzproblem (PKP)

Eingabe: endliche Menge Σ

endliche Menge $K = \{(x_1, y_1), \dots, (x_k, y_k)\}$ mit $x_i, y_i \in \Sigma^*$

Postsches Korrespondenzproblem (PKP)

Eingabe: endliche Menge Σ

endliche Menge $K = \{(x_1, y_1), \dots, (x_k, y_k)\}$ mit $x_i, y_i \in \Sigma^*$

Frage: Existieren $n \ge 1$ und Indizes $i_1, \ldots, i_n \in \{1, \ldots, k\}$, sodass $x_{i_1} \ldots x_{i_n} = y_{i_1} \ldots y_{i_n}$?

Postsches Korrespondenzproblem (PKP)

Eingabe: endliche Menge Σ

endliche Menge $K = \{(x_1, y_1), \dots, (x_k, y_k)\}$ mit $x_i, y_i \in \Sigma^*$

Frage: Existieren $n \ge 1$ und Indizes $i_1, \ldots, i_n \in \{1, \ldots, k\}$,

sodass $x_{i_1} \ldots x_{i_n} = y_{i_1} \ldots y_{i_n}$?

Beispiel:

$$K = \left\{ \begin{pmatrix} 110 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 10 \end{pmatrix}, \begin{pmatrix} 0 \\ 110 \end{pmatrix}, \begin{pmatrix} 0 \\ 00 \end{pmatrix} \right\}$$

Postsches Korrespondenzproblem (PKP)

Eingabe: endliche Menge Σ

endliche Menge $K = \{(x_1, y_1), \dots, (x_k, y_k)\}$ mit $x_i, y_i \in \Sigma^*$

Frage: Existieren $n \ge 1$ und Indizes $i_1, \ldots, i_n \in \{1, \ldots, k\}$,

sodass $x_{i_1} \ldots x_{i_n} = y_{i_1} \ldots y_{i_n}$?

Beispiel:

$$K = \left\{ \begin{pmatrix} 110 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 10 \end{pmatrix}, \begin{pmatrix} 0 \\ 110 \end{pmatrix}, \begin{pmatrix} 0 \\ 00 \end{pmatrix} \right\}$$

Lösung: n = 5, $i_1 = 1$, $i_2 = 2$, $i_3 = 1$, $i_4 = 3$, $i_5 = 4$

$$\binom{110}{1}\binom{1}{10}\binom{1}{1}\binom{110}{1}\binom{0}{110}\binom{0}{00} = \binom{110111000}{110111000}$$

Postsches Korrespondenzproblem (PKP)

Eingabe: endliche Menge Σ

endliche Menge $K = \{(x_1, y_1), \dots, (x_k, y_k)\}$ mit $x_i, y_i \in \Sigma^*$

Frage: Existieren $n \ge 1$ und Indizes $i_1, \ldots, i_n \in \{1, \ldots, k\}$,

sodass $x_{i_1} \ldots x_{i_n} = y_{i_1} \ldots y_{i_n}$?

Theorem 3.22

Das Postsche Korrespondenzproblem ist nicht entscheidbar.