Prop 4: S. B EXTED, of COLIET et P. Cot 18 more par 6, auto gress of Application 19: It emb \$ \$ x \in E: Then = The LOAD 1653

[Shake par gobos - 1

[Shake par The The The The The Par gobos of the part gobos - 1

[Shake par gobos - 1

[Shake EX 13: SATA COUNTY. Les son espaces stable, perpojolut (N) -> to(MIK) Apple 28: S. B-d+n course down le théoreme, exp(b) = exp(d) o exp(n) look down qui contrement In on sont inclus dem H=1M/ta(min) =03. et le ext facte de calcula Perponentialle d'un dugan plisable/un potent aux qui contrement In on sont inclus dem H=1M/ta(min) =03. et le ext facte calcula Perponentialle d'un dugan plisable/un potent. Est senote) Thurs from 1643 Sibe REE, Best diagonalizable on the et seinte Thran 25 Can J. & EX(E) cot trigandinable mi XB of scinck muk do my K. Il exist an unique couple (din) E (K(E)) 2 Let que (Rapso: Sat MCXCE). FCE est shall my west Ft est shall par tu. Them 27 Evan 1983 Sit & EX(E) de plymône caracteristique dein-Thim B COM 166]. Soit REX(E), Pair-, PREKEX] premier entre cue beux & deux (Ans Ker ((#Pr)(B)) = (Ker Pill) Carely, C. 178 est scurde à receive, mingles, L'est diognolisable. 3. Fabrique des ses stables: Le Remme des voyant 10AJ Than Remayne 26 to 1663 Si a est diagonalisable / stugenalisable et P. est obable par as, alon as est diagonalisable / trisposalisable. I'm K et pur tente receire Di de multiplicité di, di= din Edi d est disapprolisable, in est uilly etent et b=d+in, nod=don Prop 17: dim Ebin = deg Thein at Them est Crunque gene when funitaire de vergen de PPEKIX]/P(B)(n) = 05 sateal de KIX]. le plus petit des stable pri & contevent K. On Ce vote E. B.x. Gan 130] 4. Supplementain, stable, et duellité Prople: EBIX = Vect (BE(W), MEN). From Sat projecteur, FCE estable par p M 28 est la Bonne diese. Te d'un sous esque de Jamp et d'un bour espace de Verp 1. Definitions [Man D. 15] Def 1: Sat Rex(E) et Fervole E. On dat que Fest stable par 8 mi ER12: 5: 2 est une princitie, Petable par a son illest la dominate Terete d'un san-espire de Neila-id) et d'un san-espire de Neila+id) Prop 14: Sat REXIES will potent d'indre n=dim E. les eus-espeice polis: Sat BERIE), uf E. le sous-espace cyclique de Banoria n est Prop 3; S. Fertoholde par big EX(E), alous Fertoholde par bigget Bog. Prop 4: S. BEXIE), g EGLIEI et Fest shable par B, alons g(F) est Jahole par B, alons g(F) est Prop 3: S. E=F&G, F.C. Shiller peu & alas TE = ppcm (TBE, TBC) Notes 7; G' Feb 1866 par B. Produit de Brunf est Brif of Ecto, S. B est time homethetie, tent sec establishe por 6 Pape : S. Fertshalf par 8, The ITTB. et xp. 1xe Cache: Kcoyn, E K-espece vectorial de dirmension frince 2. Exemples de sous-espaces stables [Man p. 16] ELZ: S. BEXIE, Im & et Ker & sont stable par & stables par 6 sout les Ker 8te pan 12 Ett 1, UI I. Generalities et exemples

Appli 30 (04 205) St. Car (K) #2, Oth (K) 2 Oth (K) = Main Main Structure SI (Indan) A cot sampled of (50-5) on Ti=(0.10)
Appli 30 (04 200) S. K est alignment de et G. Dans grape abolin where go trade to some en vembre Ne-Netz, i a claim de ministral o Si w* = - u, DB telle go Not Bat diagoule of cofficent down in Theorements, Si w (XIE), is admet un son-er pare stable declines Therement , G, u & X(E) est normel, il existe sone base orthogonale B de E tille que oblite (1) = (10, 10, 10) on Ai = (-10, 10) Lemme 49: Ki = Ver Ai est run ses stable par A. On wete ber = din Demongre 52: On Ehold la recolution de Tordon de A en Econont la Apple 47: Sou(R) est comere per aces, les compaents comers de on (R) out Sou(R) et 1 M (Sou(R) / det M=-15, EdSP193)
April 48: exp. chr (R) -> Sa, (R) est muyestate (FONMS 65). Prop So: La sute X= hi-1 verifie Victor-14-21, 05 Xita 5xi a 6:= ± 3 et Roi = (601 mor) Alls3: A et tA sent Bentleible (pur A tellu(B) & gueleorgiuse) Alababanis: 35 u ECN(R), it ente Borthogonal telle que ottate (a) = (2. 6. Reg.) à E; = ±3 et Rej = (600; mio. Ancioten 32, Since Extent an restern proper de tu, alang (Ku) " Hemme 43: Sal al 210, Pert stable pour C=> Ft est stable pour ux . Healine speeded par la evolungherma synctropia.

April 46: 11 est vormal (=> 11 + (RI4) [dSP 196] = 1 ye E/ Vp(Kx), p(y) = 03 est un hyperplan de E stable pu Renega 42: si est wound, # stable pur u => Ft otable pur u. talkean de Yours aware of (hi), voir annere on Fi= 1 plet / 41=05 et Partragant du seu de la durette. Ide u : < u(u), y>=(x, u*ty) > tringé E. 1. Theorem de Joselan. [Gan], 1426 2) III, Stalmate of ageliate Sat A Augustente, A & Olin (C) Ex33, 5: Kest aleganiquement cles, les sents endonenthismes commis-tant over low les éléments de O-LEB sent les homothètre [Man 26] pelito [Bur256] u (RIB) et vount di moux= uxou in ux est Radiont Thin 35 [ta, 171] Set [6] Fee famille d'endonorphismes de E communtant deux à deux. Aler in triet, le et desgendusable (, il fine, trigenduable), it evils une bax B de E stille que bress down in de Glu(K). S' n' Nou (K) = 1, C-est conjugar d un son-Ex34: Sip est un pryseten, p commute avec u e 2(E) Mr. her(p-id). et her (p) sut stable par 11. EXSTEON 1863 S. Bog-gobst B.g duggenlingle, oden bygent EX 36 THAMPS J S. AJB (JUM (R.) SANT diagonalizables, M-> AMB Prop 32 [0A159] Saint wir (RIE) tel que mon = vou. Alers Kein 1. Compartement wis a vis des Daus-especes statles dute(6,) ext diagonal (rep, triangulare) groupe du groupe des mostrices diagentles. 2. Reductions Mundlances (ban) 3. Endomorphismes normoux I. Stabilté et commutation. Tet Immi dent stables par v ICIN-R, Est entalis est dizganlizable. diogeneitinable

Minse Sit u EXIE. Il existe sine unique famille de preprime. Delet 3 the seprentation du grape G est sen maybinne gi G-GE(V) (33) R68: La représentation de permitation de G est gly]: eq - ege en 1230] Propto: Sat (V.E) representational a It exists un product-radiana [mus, Los, 0>1, tel que vo Er, viel , Los (10) (10) / 2 = (10) (10) / 2 = (10) (10) per pla) take. Incht que (V.S) et incoluette silvadunt per de sou-representation ven tennale [2423 Thun 72 (Marchille) Tarte representation de Cest Bonne ducete de l'représentation incoluetibles [244] Remarque 66: 42 est 18ens-nimple (=> (E.U) est work (XI -module stem-[X73: G.C. e. + atielien, la representation intechnitishes sont de Xs. ..., Xm. les Den -grippes clistinguis de C-sent Les Jes Ker Xs on I C III, mII, avec Ver Xi = 1966 / X (2) = X(e)} Del69: Une son-representation de (V.S) est un sou de V stable I. Aplication en Héorie des représentation. [Col] F. femi entent que représentation à Minischetable ne dépend par de la décompartion en Ensebutable de V closité. (248) Persone 72: Si V= No G. - . OWE, le nombre de Voi Lonnophe, propertiemen 1 Sit 6 grays fini de carellin inteductibles dons legicale Mest diregentisable Theoreme 63: in est semi- Minple Mr Den polynome minimal est produit Remorque 60: Les invariants de Minulaturles de notronvent avve le Hièrem Prop 61: Si a ER(E), as much E dive stracture de KEN-world.

The point P. x = P(u)(u). On wote (E.u) lette stracture. How.

"Ou working p: (E.u) - (F.c) est was p (XIE) telque pou = EX 64; Si Kest algebrique ment clos, he est senit-ningle mi ilest dia-Mad 54: w (2/E) ext dut upelique is il euilax (E talque tum = E. pilognome minimal Pi., les P., eint les invarients de simplifiete deu · (E(u) = (Fre) entrat que KEN-woodule, mi au et sent Bemblables. Propose: Metaglique mi Xu=TTu sti Wate(w)=Cp pu PENCY) . Les san-KC1-wohiles de (Eru) sent les sos stables pou ci. . Un some duest de son-especes d'ables est une somme dueste du et Vi E 13, -117, Ei est obs de par u et de; est cyelique de Deglez, L. EXIE) est det 18enn-ningle in taut no stable peu a colmet Gondinolde.
(Rophes: Si car K=0, Mest Other-Numbles & Charle rue externionale K Cullaing St. M. et 5 sont Demblable, () its out même, invariants de Collaise St. Il eunt sur bone B telle que Mats (4)= (Co. Con) Remayne 59; on retrance la décompartien de Dolon. II. A le recharde d'un mylémentaire stable. des fectum invariants de Smith aplane à Co-XI. 1. Statuck et MIXI- undule, TOAT 2697 2. Reduction de Probenius (brup 239) Tole prlymome ineductible, distinct. Bangoles Findacte. War J COA] An sup tementaine state totan une benne bane genelinable.

333

Invariants de similitude.

On se placera toujours dans E, un **K**-espace vectoriel de dimension sur un corps quelconque. Génériquement, u désignera un endomorphisme dans $\mathcal{L}(E)$ dont le polynôme minimal est noté Π_u et le polynôme caractéristique χ_u .

Quelques pré-requis.

Définition. Soit $u \in \mathcal{L}(E)$ et soit $x \in E$. On appelle polynôme minimal de u en x l'unique générateur unitaire de l'idéal

$${P \in \mathbf{K}[X], \ P(u)(x) = 0}.$$

On le note $\Pi_{u,x}$. On a $\Pi_{u,x}|\Pi_u$.

Proposition. Il existe $x \in E$ tel que $\Pi_u = \Pi_{u,x}$.

PREUVE. On écrit $\Pi_u = \prod_{i=1}^r P_i^{m_i}$ où P_i sont des irréductibles distincts. On note $K_i = \operatorname{Ker} P_i^{m_i}(u)$ et $u_i = u|_{K_i}$. Par le lemme des noyaux :

$$E = \bigoplus_i K_i$$
.

Montrons le résultat sur chaque sous-espace K_i . Par l'absurde, si le résultat ne tenait pas, alors pour tout $x_i \in K_i$, Π_{u_i,x_i} diviserait strictement $\Pi_{u_i} = P_i^{m_i}$ donc diviserait $P_i^{m_i-1}$ par irréductibilité. Mais alors $P_i^{m_i-1}(u_i)$ serait nul sur tout K_i , ce qui est impossible par minimalité de Π_{u_i} . On dispose donc d'éléments x_i comme dans l'énoncé sur chaque sous-espace K_i . Montrons que $x = x_1 + \ldots + x_r$ convient. On a :

$$0 = \Pi_{u,x}(u)(x) = \sum_{i} \Pi_{u,x}(x_i)$$

donc $\Pi_{u,x}(u)(x_i) = 0$ puisque les K_i sont en somme directe. Ainsi, $P_i^{m_i} = \Pi_{u_i,x_i}|\Pi_{u,x}$ pour tout i. Puisque les $P_i^{m_i}$ sont premiers entre eux, leur produit qui est égal à Π_u divise aussi $\Pi_{u,x}$, ce qui conclut.

Ce qu'on va montrer.

Théorème. Soit $u \in \mathcal{L}(E)$. Il existe une unique famille P_1, \ldots, P_r de polynômes unitaires et une famille E_1, \ldots, E_r de sous-espaces de E vérifiant :

- (i) $P_r | \dots | P_1$
- (ii) $E = E_1 \oplus \ldots \oplus E_r$
- (iii) Pour tout $i \in \{1, ..., r\}$, E_i est stable par u et $u_{|E_i}$ est cyclique de polynôme P_i .

Les polynômes $P_1, \ldots P_r$ sont appelés les invariants de similitudes de u.

Preuve. Comme d'habitude, on procède par récurrence mais on ne l'écrit pas.

Existence. Soit $d = \deg(\Pi_u)$ et soit $x \in E$ tel que $\Pi_{u,x} = \Pi_u$. On note :

$$F = Vect(x, u(x), \dots, u^{d-1}(x)).$$

Bien sûr, F est stable par u et $u|_F$ est cyclique. On va montrer par dualité que F admet un supplémentaire stable par u. Soit $\varphi \in E^*$ tel que :

$$\varphi(x) = \varphi(u(x)) = \dots = \varphi(u^{d-2}(x)) = 0$$
 et $\varphi(u^{d-1}(x)) = 1$.

La famille $(\varphi, \varphi \circ u, \dots, \varphi \circ u^{d-1})$ est une famille libre de E^* et on note Φ le sous-espace vectoriel de E^* engendré par cette famille. On pose alors :

$$G := \Phi^{\circ} = \{ y \in E, \ \forall \psi \in \Phi, \ \psi(y) = 0 \}$$

et on montre que c'est un supplémentaire de F stable par u. Il y a trois choses à voir :

• G est u-stable. Soit $y \in G$, alors par construction on a déjà :

$$\forall k \in \{0, \dots, d-2\}, \ \varphi \circ u^k(u(y)) = 0.$$

Comme le polynôme minimal de u est de degré d, on a :

$$u^d(y) \in \text{Vect}(y, u(y), \dots, u^{d-1}(y))$$

et donc $\varphi \circ u^{d-1}(u(y)) = \varphi(u^d(y)) = 0$ par ce qui précède.

• $F \cap G = \{0\}$. Soit $y \in F \cap G$, alors on peut écrire :

$$y = a_0 x + \dots a_{d-1} u^{d-1}(x)$$

et en appliquant $\varphi \circ u^i$ pour i allant de 0 à d-1, on trouve que tous les a_k sont nuls.

• $\dim F + \dim G = n$. C'est une propriété générale de l'orthogonal au sens de la dualité :

$$\dim \Phi + \dim \Phi^{\circ} = n.$$

Et bien sûr, $\Pi_{u_{|G}}|\Pi_u$ puisque Π_u annule $u_{|G}$. À une récurrence près, on a achevé la preuve de l'existence.

Unicité. On suppose l'existence d'une autre famille de polynôme Q_1, \ldots, Q_s donnant lieu à une autre décomposition $F_1 \oplus \ldots \oplus F_s$ comme dans l'énoncé. On a déjà $P_1 = Q_i = \Pi_u$. Soit j > 1 l'indice minimal tel que $P_j \neq Q_j$. Alors, on a d'une part :

$$P_i(u)(E) = P_i(u)(E_1) \oplus \ldots \oplus P_i(u)(E_{i-1})$$

et d'autre part :

$$P_i(u)(E) = P_i(u)(F_1) \oplus \ldots \oplus P_i(u)(F_{i-1}) \oplus P_i(u)(F_i) \oplus \ldots \oplus P_i(u)(F_s).$$

Mais pour i < j, on a :

$$\dim P_i(u)(E_i) = \dim P_i(u)(F_i)$$

donc

$$0 = \dim P_i(u)(F_i) = \ldots = \dim P_i(u)(G_s)$$

ce qui prouve $Q_j|P_j$ et par symétrie $P_j|Q_j$. C'est absurde car $P_j \neq Q_j$. Finalement r=s et $P_i=Q_i$ pour tout i.

Corollaire (Décomposition de Frobénius). Soit $u \in \mathcal{L}(E)$. Il existe une base dans laquelle la matrice de u est de la forme

$$\left(\begin{array}{ccc} C_{P_1} & & \\ & \ddots & \\ & & C_{P_r} \end{array}\right)$$

où C_{P_i} est la matrice compagnon associée au polynôme P_i avec $P_r|\dots|P_1$. De plus, on a

$$\chi_u = P_1 \dots P_r$$
.

Corollaire. u et v sont semblables si et seulement s'ils ont les mêmes invariants de similitude.

PREUVE. Si u et v sont semblables, considérer $F_i = \varphi(E_i)$ où E_i sont les sous-espaces associés à u et φ tel que $\varphi \circ u = v \circ \varphi$. Ou alors, reprendre la preuve de l'unicité.

Corollaire. Soit $u \in \mathcal{L}(E)$. Alors u est semblable à sa transposée.

Preuve. Il suffit de le montrer pour les endomorphismes cycliques. Le changement de base

$$e'_{i} = a_{1}e_{1} + \dots + a_{n-i}e_{n-i} + e_{n-i+1}$$

conduit au résultat. \Box

Corollaire (Décomposition de Jordan des endomorphismes nilpotents). Tout est dans le titre

Preuve. Puisque $\chi_u = X^n$, les invariants de similitudes sont de la forme X^{n_i} .

Trucs à savoir.

- Les invariants de similitude ne dépendent pas du corps de base.
- \bullet La théorie des $\mathbf{K}[X]\text{-modules}$ donne une façon simple pour calculer les invariants de similitude :

Théorème. Si U est la matrice de $u \in \mathcal{L}(E)$ dans une certaine base, alors les invariants de similitude de u sont les facteurs invariants non inversibles de la matrice $U - XI_n \in \mathcal{M}_n(\mathbf{K}[X])$.

PREUVE. On montre par des opérations élémentaires sur les lignes et les colonnes qu'une matrice de la forme $C_P - XI$ est équivalente à

$$\left(\begin{array}{ccc}
1 & & & 0 \\
& \ddots & & \\
& & 1 & \\
0 & & & P
\end{array}\right)$$

et on utilise la décomposition de Frobenius pour conclure.

Références.

H2G2

X. Gourdon, Algèbre

V. Beck, J, Malick, G. Peyré, Objectif agrégation

151 Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

 ${f 153}$ Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.

154 Sous-espaces stables par un endomorphisme ou une famille d'endomorphisme d'un espace vectoriel de dimension finie. Applications.

Autour des endomorphismes semi-simples.

On se place dans E, un **K**-espace vectoriel de dimension finie n.

Définition. On dit que $f \in \mathcal{L}(E)$ est semi-simple lorsque tout sous-espace vectoriel de E stable par f admet un supplémentaire stable par f.

Lemme. Soit L/K une extension de corps. Alors $\Pi_{f,\mathbf{K}} = \Pi_{f,\mathbf{L}}$.

PREUVE. C'est une conséquence de l'indépendance du rang vis à vis du corps de base (qui provient de l'indépendance du résultat du calcul des mineurs). Maintenant, on a déjà :

$$\Pi_{f,\mathbf{L}}|\Pi_{f,\mathbf{K}}$$

et comme ces polynômes sont unitaires, il suffit de montrer qu'ils sont de même degré pour conclure. Or, le degré du polynôme minimal de f sur \mathbf{L} est égal au rang de la famille (id, f, \ldots, f^{n-1}) dans $\mathcal{L}(E)$ qui est un espace vectoriel de dimension finie n^2 . Comme le rang ne dépend pas du corps de base et quitte à tout mettre dans une grosse matrice, on en déduit l'égalité annoncée.

Lemme. Soit F un sous-espace stable par f. On note $\Pi_f = P_1^{\alpha_1} \dots P_r^{\alpha_r}$. On a:

$$F = \bigoplus_{i=1}^{r} \left[\operatorname{Ker} P_i^{\alpha_i}(f) \cap F \right].$$

Preuve. Par le lemme des noyaux, on sait que :

$$F = \bigoplus_{i=1}^{r} \operatorname{Ker} P_{i}^{\alpha_{i}}(f|_{F}) = \bigoplus_{i=1}^{r} \left[\operatorname{Ker} P_{i}^{\alpha_{i}}(f) \cap F \right]$$

Théorème. Un endomorphisme f est semi-simple si et seulement si son polynôme minimal Π_f est un produit de polynômes irréductibles unitaires distincts deux à deux.

PREUVE. Progressivement:

Étape 1. Lorsque Π_f est irréductible.

On va montrer que f est semi-simple, considérons donc F un sous-espace stable par f. Si F = E, il n'y a rien à faire. Sinon, soit $x \in E \setminus F$ et

$$E_x = \{ P(f)(x), P \in \mathbf{K}[X] \}.$$

П

Clairement E_x est stable par f. Pour conclure et quitte à itérer le processus, il suffit de montrer que

F et E_x sont en somme directe.

L'idéal $I_x = \{P \in \mathbf{K}[X], \ P(f)(x) = 0\}$ est non réduit à 0 (il y a Π_f) et principal donc il est engendré par un unique polynôme unitaire Π_x . Comme $\Pi_x|\Pi_f$, ce polynôme est irréductible.

Soit $y = P(f)(x) \in E_x \cap F$ que l'on suppose non nul. Alors $P \notin I_x$, c'est à dire que Π_x ne divise pas P et comme il est irréductible, P et Π_x sont premiers entre eux. Par le théorème de Bézout, on peut écrire :

$$UP + V\Pi_x = 1.$$

On trouve:

$$x = U(f) \circ P(f)(x) = U(f)(y) \in F \text{ car } y \in F.$$

C'est absurde!

Étape 2. Cas général, condition nécéssaire.

Soit $f \in \mathcal{L}(E)$ un endomorphisme semi-simple de polynôme minimal $\Pi_f = P_1^{\alpha_1} \dots P_r^{\alpha_r}$. Supposons qu'il existe $\alpha_i \geq 2$. On écrit alors $\Pi_f = P^2 Q$.

 $F=\operatorname{Ker} P(f)$ est un sous-espace stable par f qui admet un supplémentaire stable noté S. Si $x\in S,$ alors

- $\Pi_f(f)(x) = P(f)P(f)Q(f)(x) = 0$ donc $P(f)Q(f)(x) \in F$.
- S est stable par f donc $P(f)Q(f)(x) \in S$.

Finalement, $P(f)Q(f)(x) \in F \cap S = \{0\}$ et P(f)Q(f) s'annule sur S.

Mais P(f)Q(f) = Q(f)P(f) donc par définition de F, P(f)Q(f) s'annule aussi sur F. Puisque F et S sont supplémentaires, le polynôme PQ annule f ce qui contredit la minimalité de Π_f .

Étape 3. Cas général, condition suffisante.

Soit $f \in \mathcal{L}(E)$ dont le polynôme minimal est de la forme $\Pi_f = P_1 \dots P_r$ où les P_i sont des polynômes irréductibles distincts. Soit F un sous-espace stable par f. Pour tout $i \in \{1, \dots r\}$, $F \cap \operatorname{Ker} P_i(f)$ est stable par $f|_{\operatorname{Ker} P_i(f)}$. Puisque P_i est un polynôme irréductible qui annule $f|_{\operatorname{Ker} P_i(f)}$, c'est le polynôme minimal de $f|_{\operatorname{Ker} P_i(f)}$. La première étape fournit l'existence d'un sous-espace S_i stable par $f|_{\operatorname{Ker} P_i(f)}$ (donc par f) tel que :

$$\operatorname{Ker} P_i(f) = (F \cap \operatorname{Ker} P_i(f)) \cap S_i.$$

Il suffit d'écrire:

$$E = \bigoplus_{i=1}^{r} \left[F \cap \operatorname{Ker} P_{i}(f) \oplus S_{i} \right] = \left[\bigoplus_{i=1}^{r} \left(F \cap \operatorname{Ker} P_{i}(f) \right) \right] \oplus \bigoplus_{i=1}^{r} S_{i} = F \oplus S$$

et S est stable par f qui est donc semi-simple.

Lorsque K est algébriquement clos, les polynômes irréductibles sont de degré 1 donc f est semi-simple si et seulement si f est diagonalisable. On note maintenant M la matrice de f dans une base et on dit qu'elle est semi-simple lorsque f l'est.

Théorème. Si le corps K est de caractéristique nulle, alors M est semi-simple si et seulement s'il existe une extension L/K dans laquelle M est diagonalisable.

PREUVE. Soit \mathbf{K} de caractéristique nulle et \mathbf{L}/\mathbf{K} une extension de corps. On commence par montrer que M est semi-simple sur \mathbf{K} si et seulement si M l'est sur \mathbf{L} (ici, M est à coefficients dans \mathbf{K}). Le polynôme minimal de M sur \mathbf{K} est le même que celui de M sur \mathbf{L} . Il suffit donc de montrer que Π_M est sans facteur carré dans $\mathbf{K}[X]$ si et seulement s'il est sans facteur carré dans $\mathbf{L}[X]$.

Dans un corps de caractéristique nulle, P est sans facteur carré équivaut à $P \wedge P' = 1$. Mais comme le calcul du pgcd s'effectue dans \mathbf{K} , le fait que P et P' soient premiers entre eux ne dépend pas du corps considéré.

Prouvons le théorème : supposons que M est semi-simple dans \mathbf{K} . Alors soit \mathbf{L} est un corps de décomposition de $\Pi_M \in \mathbf{K}[X]$. Dans $\mathbf{L}[X]$, le polynôme Π_M est scindé à racines simples donc M est diagonalisable. Réciproquement, si M est diagonalisable dans \mathbf{L} alors M est semi-simple dans \mathbf{L} et on vient de montrer que ce fait était équivalent à la semi-simplicité de M sur \mathbf{K} .

Références.

X. Gourdon, Algèbre

V. Beck, J. Malick, G. Peyré, Objectif Agrégation

- 122 Anneaux principaux. Applications.
- 141 Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications.
- 153 Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.
- 154 Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.
- 155 Endomorphismes diagonalisables en dimension finie.
- 160 Endomorphismes remarquables d'un espace vectoriel euclidien (de dimension finie).