NMOS Digital Circuits

Introduction
Static NMOS circuits
Dynamic NMOS circuits

Introduction

- PMOS and NMOS families are based on MOS transistors with induced channel of p, respectively n
- NMOS circuits mostly used for switching (higher speed)
- Circuits are using exclusively NMOS transistors
- One positive power supply
- Logic levels are function of power supply voltage level

Transistor T₁ acts as an inverter

T₂ acts as active load, replacing the static resistor MOS technology use transistors as playing resistor role

 T_1 is based on $\bf n$ channel, in enhancement mode; T_2 works in depletion mode It means: T_1 threshold voltage positive and T_2 being negative

External load is normally also NMOS inputs, so there is a huge input resistance and the load has mainly a capacitance meaning

Transfer Characteristic

Area a, $V_i < V_{T1}$, T1 is off, $I_{DS1} = 0$, $V_o = V_{DD_i}$, T_2 works in linear regime

Area b, $V_i > V_{T1}$, T2 works in linear region. $V_{DS1} > V_{GS1} - V_{T1}$, $V_{S1} > V_{CS1} - V_{CS1} > V_{CS2} - V_{CS2} > V_{CS2} - V_{CS2} > V_{CS2} - V_{CS2} > V_{CS2} - V_{CS2} > V_{CS2} > V_{CS2} - V_{CS2} > V_$

$$V_{T1} < V_i < V_{T1}(1+\sqrt{2})$$

Area c

$$V_i = V_{T1}(1+\sqrt{2})$$

T2 saturated

T1 saturated for:

$$\frac{V_{DD}\sqrt{2}}{4} \le V_o \le \frac{V_{DD}}{2}$$

Here transfer characteristic is linear and abrupt **Area d**, T₁ off saturation and enter linear regime; T₁ goes off saturation for:

$$V_{i} \approx \frac{V_{iDD}^{2}}{16} \cdot \frac{1}{V_{0}} + \frac{V_{DD}}{8} + \frac{V_{0}}{4}$$

Threshold Voltage

- Function of supply voltage for the basic substrate and the doping index
- Usually the substrate terminal is tied together with the source terminal, in most of cases tied to ground
- Sometimes there is a voltage substratesource, allowing a control (adjustment) of the threshold voltage

Load resistance

Built using a transistor: T₂

Gate connected to V_{GG}

 T_1 on, for having V_0 very close to zero, $R_{T2} >> R_{T1}$:

$$\frac{W_1/L_1}{W_2/L_2} >> 1$$

If $R_{T_1}=10K\Omega$ then $R_{T_2}=250K\Omega=R_s$

$$V_0 = \frac{V_{DD}}{R_S + R_{T1}} R_{T1}$$

For $V_{DD} = 15V$, $V_0 = 0.5V$

If T_1 off, $V_0 = V_{GG} - V_{T2}$, for V_0 being approx. V_{DD} , must:

$$V_{GG} = V_{DD} + V_{T}$$

Static NAND Gate

T₁ and T₂ connected serially, the logic inputs are applied on their gates circuits

T₃ load resistance
For making 'better' output voltage levels, mainly the low level very close to 0V, the active resistance must be much greater (20 times) the passing resistance of the input transistors

Not recommended to serially connect too many input transistors, because the load resistance would become too important and the switching times would grow, demaging the gate's dynamic behavior

$$F = \overline{AB}$$

Static NOR Gate

T₁ & T₂ connected in parallel, their gates are the input circuits

T₃ acts as load resistance

Connecting input transistors in parallel doesn't affect the load resistance, so the number of circuit inputs isn't bounded by dynamic considerations

If both inputs have: $V_{IL} = 0V$, $T_1 \& T_2$ off, $V_o \approx V_{DD}$

If applying at least at one input $V_{IH} = V_{DD}$, that input transistor is on, $V_o \approx 0V$

$$F = \overline{A + B}$$

Implementing logic function

 Using the serial and parallel MOS transistors connections, complex logic functions may be implemented, with a simple structure of the integrated circuit; see behind

Static AND, OR & XOR Gates

AND & OR gates are built up by inversing the signal from the output of NAND, respectively NOR gates, using an extra inverter, made with transistors T_4 - T_5

For XOR gate: $V_o=$ "0" for two cases: if T_1 & T_2 are on (A & B inputs both "1") or if T_5 & T_6 off (A & B inputs both "0") (in this case in the gate of T_4 there is a voltage approx. V_{DD} making the transistor on

Dynamic NMOS circuits

- A basic method to store (memorise) the logic values is to use the input capacitances of the MOS transistors
- A capacitance with no stored charge (discharged) is said to represent a logic '0', respectively a charged capacitance is said to represent a logic "1"
- Signals are applied in the gate circuit, from one capacitor to the other, using transistors driven in conduction by special driving signals (command pulses)
- Operate in a small dissipation power regime
- Dynamic MOS circuits offer a better integration density than the static ones
- Transistors performace doesn't depend on their geometry
- Drawback: more driving (command) signals, more logic

Dynamic NMOS Inverter

Output circuit made from transistor Q₃ and storage capacity C₂

There are clock signals:

 V_{p1} , applied on Q_2 gate, sampling input value V_{in} , then inverted by Q_1 and stored (memorised) by C_1

 V_{p2} , applied on Q_3 gate, making it open and 'copying' the stored charge from C_1 to C_2

Dynamic NMOS Inverter

Example of operation:

 $t=t_0$, $V_{in}='0'$, apply pulse V_{p1} : Q_1 off, Q_2 on and from V_{DD} charges C_1 $t=t_1$, apply pulse V_{p2} , Q_3 goes on, charge from C_1 is transmitted on C_2 If $C_1 >> C_2$, transfer of charge is without important losses, and on C_2 there will be a potential corresponding to logic '1'

 $t_2 < t < t_3$, V_{in} ='1', Q_1 on, C_1 loses charge through Q_1 $t=t_4$, pulse V_{p2} , Q_3 open, C_1 without charge, so will become C_2 , so output logic "0"

For this inverter, the output response is delayed with t_1 - t_0 or t_4 - t_2 Pulses V_p need to be applied periodically, achieving the refresh of the information stored on parasitic capacitances

A minimum refresh frequency must be designed, to keep right information on capacitances, which otherwise discharge through existing open junctions

Low-power dynamic NMOS inverter

- Input circuit built using Q₁ şi C₁, transistor driven by V_{p1}
- A V_{p1} pulse makes input transfer on C_1 and in the same time keeps capacitance C_2 at a potential equivalent with the inverted input information
- Input circuit consumes from power supply only on V_{p1} driving signal for input transistor

NAND & NOR Dynamic NMOS gates

Dynamic NAND gate

Dynamic NOR gate

- Logic function implemented similar way as of the static gates
- Operation is similar with that described for dynamic inverter

Dvnamic AND-OR-NOT Gate

Circuit operates synchronously, gate response triggered at output by pulse V_{p2}

For pulse V_{p1} , logic levels from A, B, and C inputs are stored on capacitances from the gates of transistors T_5 , T_4 , T_6 (which mean the basic gate structure)

Transistors with logic '1' inputs will be on, and those with logic '0' will be off

Pulse V_{p2} , makes T_7 open (gate's load active resistance) Output Y depends on the global state of transistors T_4 , T_5 , T_6 Y= '0' if T_6 is on, or T_4 and T_5 are both on $Y = \overline{A*B+C}$