La Física del Telefonito

Desarrollo de la Experiencia

J. R. Martínez

•0

M. L. Rivera

S. Pinto

M. F. Becerra

Universidad Industrial de Santander, Colombia Escuela de Física, Facultad de ciencias

16 de Octubre de 2023

Universidad Industrial de Santander

Introducción Fenómeno Experimento Discusión Conclusiones

Toma de Datos

•0

Tras basarnos en la configuración mostrada en el trabajo de Jason D. Sagers et al¹ y con un análisis más profundo, se proporciona para la práctica el diseño y la experiencia del montaje en las siguientes figuras:

Fig 1. Montaje experimental con el diagrama de fuerzas para el análisis de fuerzas involucradas en la tensión de la cuerda.

Fig 2. Experiencia del montaje experimental con los instrumentos utilizados para la toma de datos: a) micrófono, b) parlante y c) osciloscopio.

¹ Jason D. Sagers, Andrew R. McNeese, and Preston S. Wilson. The tin-can telephone: An example of sound propagation and communication for Project Listen Up. Procee-dings of Meetings on Acoustics, 9(1):025002, 2010.

Introducción Fenómeno Experimento Discusión Conclusiones

Toma de Datos

•0

Distancia d [m]	Material Material							
	Piola	Nylon	Fique		Cordón			
			Diámetro 1	Diámetro 2	Diámetro 1	Diámetro 2		
2,00 [m]	f_1	f_1	f_1	f_1	f_1	f_1		
	÷	:	:	÷	:	:		
	f_{17}	f_{17}	f_{17}	f_{17}	f_{17}	f_{17}		
1,00 [m]	f_1	f_1	f_1	f_1	f_1	f_1		
	:	:	:	:	:	:		
	f_{17}	f_{17}	f_{17}	f_{17}	f_{17}	f_{17}		
0,20 [m]	f_1	f_1	f_1	f_1	f_1	f_1		
	÷	:	÷	:	:	:		
	f_{17}	f_{17}	f_{17}	f_{17}	f_{17}	f_{17}		
Totalidad de datos	153	153	153	153	153	153		

Tabla 1. Tabla representativa de la toma de datos para un solo material de tres pensados para vasos de papel, latas y de plástico. La cantidad de datos estará sujeta a cambios para el vaso de plástico por condiciones económicas*.

Con esto en mente, el total de datos a recolectar será de 918 por los dos o tres materiales, es decir, entre 1836 y 2754 datos repartidos para las 17 frecuencias que consisten en:

- constantes en el rango de [25,450]
 Hz de saltos de 25 Hz.
- Un último audio más complejo en cuestión de frecuencias con el único objetivo de analizar la calidad de sonidos típicos en telecomunicaciones como lo son las canciones o conversaciones.

Análisis de Resultados

0

Fig 3. Esquema de los datos experimentales en el GitHub junto con un ejemplo de la futura organización.

Evaluación y análisis de los datos:

<u>Para la calidad del audio:</u> métricas que evalúan cuantitativamente la calidad en función de diversos factores, como la distorsión, la pérdida de información y el ruido:

- PESQ (Perceptual Evaluation of Speech Quality)
- PSNR (Peak Signal-to-Noise Ratio)
- ITU-T P.563

<u>Para las frecuencias individuales:</u> técnicas de alineación y correlación para determinar la alteración de la señal original con medidas de distancia:

- Error cuadrático medio (MSE)
- Índice de similitud estructural (SSI)

La Física del Telefonito

Desarrollo de la Experiencia

J. R. Martínez

•0

M. L. Rivera

S. Pinto

M. F. Becerra

Universidad Industrial de Santander, Colombia Escuela de Física, Facultad de ciencias

13 de Noviembre de 2023

Universidad Industrial de Santander

Toma de Datos

	Material								
Distancia d [m]	Piola (x)	Nylon (x)	Fique (Vaso)	Cordón (Vaso y Lata)					
			Diámetro 1	Diámetro 3mm	Diámetro 5mm				
2,00 [m]	f_1	f_1	F done f_1	1.95m done f_1	1.95m done f_1				
	÷	÷	:	:	1				
1,00 [m]	f_1	f_1	f_1	f_1	f_1				
	:	:	÷	÷	:				

- Las frecuencias se tomaron
- De 100 en 100 de 300 a 1000
- De 1000 en 1000 de 1000 a 6000

Orden de toma de datos:

- Cuerda blanca 1.95m vasos.
- Cuerda blanca 1.95m lata.
- Cuerda blanca 1 m vasos.
- Cuerna negra 2 m lata. No sé si están completos