1. Lec 9, Q1. Prove Lemma 1.

$$\sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i} + \hat{y}_{i} - \overline{y})^{2}$$

$$= \sum_{i=1}^{n} (y_{i} - \hat{y})^{2} + \lambda \sum_{i=1}^{n} (y_{i} - \hat{y}_{i}) (\hat{y}_{i} - \overline{y}) + \sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}$$

Because
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \hat{y}) = \sum_{i=1}^{n} \mathcal{E}_i \hat{y}_i - \hat{y} \sum_{i=1}^{n} \mathcal{E}_i = 0$$

Hence
$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (y_i - \widehat{y})^2 + \sum_{i=1}^{n} (\widehat{y_i} - \overline{y})^2$$

2. Lec 9. Q2. Prove Theorem 1.

Because
$$\sum_{i=1}^{n} (y_{i} - \overline{y}) (\hat{y}_{i} - \overline{y}) = \sum_{i=1}^{n} (\hat{y}_{i} - \overline{y} + y_{i} - \hat{y}_{i}) (\hat{y}_{i} - \overline{y})$$

= $\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2} + \sum_{i=1}^{n} (y_{i} - \hat{y}_{i}) (\hat{y}_{i} - \overline{y}) = \sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}$

Hence.
$$\hat{Q}_{yy}^{2} = \frac{\left[\sum_{i=1}^{n}(\hat{y_{i}}-\overline{y})^{2}\right]^{2}}{\sum_{i=1}^{n}(\hat{y_{i}}-\overline{y})^{2}\cdot\sum_{i=1}^{n}(\hat{y_{i}}-\overline{y})^{2}} = \frac{\sum_{i=1}^{n}(\hat{y_{i}}-\overline{y})^{2}}{\sum_{i=1}^{n}(\hat{y_{i}}-\overline{y})^{2}} = \mathbb{R}^{2}$$

Proof:
$$\widehat{\mathcal{E}}_{l-ij} = \widehat{\mathcal{E}}_i / (l-hii) \sim N(0, (l-hii)^{-2} \cdot \delta^2 (l-hii))$$

$$\frac{\widehat{\Sigma_{1-i}} \cdot (1-h)i}{\sqrt{5^{2}}} \sim N(O,I).$$

$$\hat{\delta}_{1-i} = \frac{\widehat{\Sigma}_{1} \cdot \widehat{\Sigma}}{N-P-I} \quad \text{where} \quad \widehat{\Sigma}_{1} = (\widehat{\Sigma}_{1} \dots \widehat{\Sigma}_{i-1}, \widehat{\Sigma}_{i+1}, \dots \widehat{\Sigma}_{n})^{T}$$

$$= \frac{\widehat{\Sigma}_{1} \cdot \widehat{\Sigma}_{1}}{S^{2}} \cdot \frac{3^{2}}{N-P-I} \sim \frac{3^{2}}{N-P-I} \cdot \chi_{n-P-I}^{2}$$

	Hen	Ce.	150	[[-i]	(1.4.·	=	-	^ [[-i]	1	-hii	_ =		<u>É</u> t	;-i] \ \[\frac{1}{2}	1-hi	_ ii_/	/[-	32 3 5 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	_] _	
	Весі														- ,	•				
					. 0								,	• •						
	And	· k	the	y o	ne	ind	epe	ende	ent		Hen	le	S	tana	irk	\sim		tn-p	-1	
4,	Le	ec (ο.	Ø	7.	P	rov	e	Coc	ki	= 8	Stan	dri	² X	h P(ii` 1-h;	;)			
Pr	oof:	St	rand	a r; ·	hi P(1	i -hii)	=	(Ŝί ^τ ξί 1- h	·bii ii)²	. -	<u> </u>								
		CO		= ()									Pê²)¬Xi	2 \	/:	D 4)				
				= (-hìiÌ) ⁻² {	λ ^T X	Ţ (χ	τχ)-		$(\chi^T$		Xi Śi							
	Heno		ماد						•	78										
	rien	<i>Q</i> (JOUR		SIWN	OF (· [>([l-hii)											

The relationship between the standardized and studentized residual Show that Lec 11.

there is a monotone relationship between the standardized and studentized residual:

$$\mathrm{studr}_i = \mathrm{standr}_i \sqrt{\frac{n-p-1}{n-p-\mathrm{standr}_i^2}}$$

(i) Proof:
$$\widehat{\mathbf{z}}^{2} = \frac{\widehat{\mathbf{z}} \cdot \widehat{\mathbf{z}}}{\mathbf{n} - \mathbf{p} - \mathbf{i}}$$
 where $\widehat{\mathbf{z}} = (\widehat{\mathbf{z}}_{1}, \dots \widehat{\mathbf{z}}_{i-1}, \widehat{\mathbf{z}}_{i+1}, \dots \widehat{\mathbf{z}}_{n})^{T}$

where
$$\widetilde{\Sigma}_{j} = y_{j} - x_{j} \hat{\beta}_{\overline{t-i}}$$
, $j \neq i$

Hence
$$(n-p-1)\hat{\delta}_{t-i}^{2} = (Y-X\hat{\beta}_{t-i})^{T}(Y-X\hat{\beta}_{t-i}) - \hat{\delta}_{t-i}^{2}$$

=
$$(Y - X \hat{\beta} + (1 - h_{ii})^{T} X (X^{T}X)^{T} X \hat{\epsilon}_{i})^{T} (Y - X \hat{\beta} + (1 - h_{ii})^{T} X (X^{T}X)^{T} X \hat{\epsilon}_{i}) - \hat{\epsilon}_{t-i}^{2}$$

$$= (\Upsilon - X\hat{\beta} + \frac{\hat{\xi}_{i}}{1 - h_{i}i} \cdot \begin{bmatrix} h_{i}i \\ \vdots \\ h_{n}i \end{bmatrix})^{T} (\Upsilon - X\hat{\beta} + \frac{\hat{\xi}_{i}}{1 - h_{i}i} \cdot \begin{bmatrix} h_{i}i \\ \vdots \\ h_{n}i \end{bmatrix}) - \frac{\hat{\xi}_{i}^{2}}{(1 - h_{i}i)^{2}}$$

=
$$(Y - x\hat{\beta})^T (Y - x\hat{\beta}) + \frac{\hat{\xi}_i^2}{(1 - h_{ii})^2} \cdot \sum_{j=1}^{n} h_{ji}^2 - \frac{\hat{\xi}_i^2}{(1 - h_{ii})^2}$$

=
$$(n-p) \cdot \hat{\beta}^2 - \frac{1-hii}{(1-hii)^2} \cdot \hat{\xi}_i^2 = (n-p) \cdot \hat{\beta}^2 \cdot \frac{\xi_i^2}{1-hii}$$

(2) Studri =
$$\frac{\hat{\xi}_{i-1}}{\hat{\xi}_{i-1}^{2}/(1-h)i} = \frac{\hat{\xi}_{i}}{h-h}i \cdot \frac{\int h}{\int h}i \cdot \int h-h}i \cdot \frac{\int h}{\int h}i \cdot \frac{\int h}{\int h}i \cdot \int h-h}i = \frac{\hat{\xi}_{i}}{\int (1-h)i}(n-p)\hat{\xi}^{2}-\hat{\xi}_{i}^{2}}$$

Standri =
$$\frac{\hat{\xi}_i}{\sqrt{\hat{z}^2(1-hii)}}$$
, Standri = $\frac{\hat{\xi}_i^2}{\hat{z}^2(1-hii)}$

Hence Standri
$$\cdot \sqrt{\frac{n-p-1}{n-p-standri}} = \frac{\hat{\xi_i} \cdot \sqrt{n-p-1}}{\sqrt{\hat{G}^2(+hii)(n-p)-\hat{\xi}_i^2}}$$

Hence Studii = Standri ·
$$n-p-1$$

 $n-p-standri$

when Standri increases. Studri increases, there's monotone relation ship.

6. Lec 11 Q7.

7 Independence and correlation With scalar x and y, show that if $x \perp \!\!\! \perp y$, then $\rho_{yx} = 0$. With another variable w, if $x \perp \!\!\! \perp y \mid w$, does $\rho_{yx\mid w} = 0$ hold? If so, give a proof; otherwise, give a counterexample.

(1) if
$$X \perp Y$$
 $E(XY) = E(X) \cdot E(Y)$.

Hence
$$Cov(X,y) = E(X,y) - E(X)E(y) = 0$$
, then $P_{yx} = 0$

Cov
$$(x,y) = E(xy) - Exey = E(E(xy|w)) - Exey$$

$$= E(E(x|w) \cdot E(y|w)) - E(E(x|w)) E(E(y|w))$$

$$= E(\pm \omega^2 \cdot \pm \omega^2) - E(\pm \omega^2)$$

$$= \pm E\omega^4 - \pm E\omega^2 E\omega^2 = \frac{2}{4} - \pm \frac{1}{4}$$

$$Cov(X,w) = E(Xw) - EXEW = E(E(Xw|w)) - E(E(X|w)) EW$$

$$= E(\pm w^3) - E(\pm w) \cdot \pm W = \pm Ew^3 - \pm Ew^2 EW$$

$$= 0$$

7. Lec 11. Q9.

9 Best linear approximation of a cubic curve Assume that $x \sim N(0,1)$, $\varepsilon \sim N(0,\sigma^2)$, $x \perp \!\!\! \perp \varepsilon$, and $y = x^3 + \varepsilon$. Find the best linear approximation of y based on (1,x).

Suppose best linear approximation is $\alpha + \beta \cdot \chi$

$$(\alpha, \beta) = \operatorname{argmin} E (y-a-bx)^2$$

where $x = E(y) - E(x) \beta$ and $\beta = \frac{Cov(x,y)}{Var(x)}$

Because $Cov(X,y) = Cov(X,X^3+2) = Cov(X,X^3) = EX^4 = 3$

$$Var(X) = 1$$

$$E(y) = E(\chi^3 + \varepsilon) = E(\chi^3) + E(\varepsilon) = 0$$

$$E(X) = 0$$

Hence $\alpha = 0$ $\beta = 3$

Hence best linear approximation is 3λ .