Chapter 1 The Foundations: Logic and Proofs Kenneth H. Rosen 7th edition

Section 1.3: Propositional Equivalences

Tautology, Contradiction & Contingency

► Tautology:

A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it.

Contradiction:

A compound proposition that is always false is called a contradiction.

Contingency:

A compound proposition that is neither a tautology nor a contradiction is called a contingency.

Tautology, Contradiction & Contingency(Contd.)

Example 1:

► <u>Tautology:</u>

Consider the truth table of $p \lor \neg p$. Because $p \lor \neg p$ is always true, it is a tautology.

Contradiction:

Consider the truth table of $p \land \neg p$. Because $p \land \neg p$ is always false, it is a contradiction.

p	$\lnot p$	$m{p} ee eg m{p}$	$p \wedge \neg p$
F	Т	Т	F
Т	F	Т	F

Logical Equivalences

- Compound propositions that have the same truth values in all possible cases are called logically equivalent.
 - The compound propositions p and q are called logically equivalent if $p \leftrightarrow q$ is a tautology.
 - The notation $p \equiv q$ denotes that p and q are logically equivalent.

Logical Equivalences(Contd.)

Example 1:

Show that $\neg(p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.

Solution:

We can verify from the following truth table that, $\neg(p \lor q) \equiv \neg p \land \neg q$.

p	q	$\neg p$	$\neg q$	$(p \lor q)$	$\neg (p \lor q)$	$\neg p \wedge \neg q$
F	F	Т	Т	F	Т	Т
F	Т	Т	F	Т	F	F
Т	F	F	Т	Т	F	F
Т	Т	F	F	Т	F	F

Logical Equivalences(Contd.)

Exercises:

- ightharpoonup Show that p
 ightharpoonup q and $\neg p \lor q$ are logically equivalent.
- Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent.

Logical Equivalence Rules

▶ Important rules

Equivalences	Name	Equivalences	Name
$p \wedge T \equiv p$ $p \vee F \equiv p$	Identity Laws	$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative Laws
$p \lor T \equiv T$ $p \land F \equiv F$	Domination Laws	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive Laws
$p \land p \equiv p$ $p \lor p \equiv p$	Idempotent Laws	$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's Laws
$\neg(\neg p) \equiv p$	Double Negation Law	$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption Laws
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative Laws	$\begin{array}{ccc} p & \vee \neg p & \equiv & T \\ p & \wedge \neg p & \equiv & F \end{array}$	Negation laws

Logical Equivalence Rules(Contd.)

Important Rules Regarding Conditionals

•
$$p \rightarrow q \equiv \neg p \lor q$$

•
$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

•
$$p \lor q \equiv \neg p \rightarrow q$$

•
$$p \land q \equiv \neg(p \rightarrow \neg q)$$

•
$$\neg (p \rightarrow q) \equiv p \land \neg q$$

•
$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

•
$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

•
$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

•
$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

•
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

•
$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

•
$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

•
$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Constructing New Logical Equivalences

Example 1:

▶ Show that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent.

Solution:

$$\neg (p \rightarrow q) \equiv \neg (\neg p \lor q)$$
 by Rule
$$\equiv \neg (\neg p) \land \neg q$$
 by the second De Morgan Law
$$\equiv p \land \neg q$$
 by the Double Negation Law

Constructing New Logical Equivalences(Contd.)

Example 2:

Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent by developing a series of logical equivalences.

Solution:

$$\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg (\neg p \land q) \qquad \text{by the second De Morgan law}$$

$$\equiv \neg p \land [\neg (\neg p) \lor \neg q] \qquad \text{by the first De Morgan law}$$

$$\equiv \neg p \land (p \lor \neg q) \qquad \text{by the double negation law}$$

$$\equiv (\neg p \land p) \lor (\neg p \land \neg q) \qquad \text{by the second distributive law}$$

$$\equiv F \lor (\neg p \land \neg q) \qquad \text{because } \neg p \land p \equiv F$$

$$\equiv (\neg p \land \neg q) \lor F \qquad \text{by the commutative law of disjunction}$$

$$\equiv \neg p \land \neg q \qquad \text{by the identity law for } F$$

._____

Constructing New Logical Equivalences(Contd.)

Example 3:

▶ Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.

Solution:

$$(p \land q) \rightarrow (p \lor q) \quad \equiv \quad \neg (p \land q) \lor (p \lor q) \quad \text{by law of conditional}$$

$$\equiv \quad (\neg p \lor \neg q) \lor (p \lor q) \quad \text{by the first De Morgan law}$$

$$\equiv \quad (\neg p \lor p) \lor (\neg q \lor q) \quad \text{by the associative and commutative laws of disjunction (or simply rearranging the terms)}$$

$$\equiv \quad T \lor T \quad \text{by negation law and the commutative law of disjunction}$$

$$\equiv \quad T \quad \text{by the domination law}$$

._____

Propositional Satisfiability

- A compound proposition is **satisfiable** if there is an assignment of truth values to its variables that makes it **true**.
- When no such assignments exists, that is, when the compound proposition is false for all assignments of truth values to its variables, the compound proposition is unsatisfiable.
- ▶ To show that a compound proposition is **unsatifiable**, we need to show that every assignment of truth values to its variables makes it **false**.
- We can logically reason with the values of each variable. But in our case, we will use the truth table.

Example 1:

- Determine the satisfiability of the compound proposition
 - $(p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p)$

Solution:

Let $s = (p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p)$

p	q	r	$\neg p$	$\neg q$	$\neg r$	$p \vee \neg q$	$q \vee \neg r$	$r \vee \neg p$	S
F	F	F	Т	Т	Т	Т	Т	Т	Т
F	F	Т	Т	Т	F	Т	F	Т	F
F	Т	F	Т	F	Т	F	Т	Т	F
F	Т	Т	Т	F	F	F	Т	Т	F
Т	F	F	F	Т	Т	Т	Т	F	F
Т	F	Т	F	Т	F	Т	F	Т	F
Т	Т	F	F	F	Т	Т	Т	F	F
Т	Т	Т	F	F	F	Т	Т	Т	Т

Since there is at least one combination of input for the variables p, q, r of the compound proposition, which gives a true value for the compound proposition s, we can say that the s is satisfiable.

Exercises:

Determine the satisfiability of each of the compound propositions

- $(p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$
- $(p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p) \land (p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$

THE END