DEPARTAMENTO DE COMPUTACIÓN UNRC 2016

ORGANIZACIÓN DEL PROCESADOR

ORGANIZACIÓN DEL PROCESADOR

EQUIPO DOCENTE

Germán Regis

gregis@dc.exa.unrc.edu.ar

Guillermo Fraschetti gfraschetti@dc.exa.unrc.edu.ar

Laura Tardivo

lauratardivo@dc.exa.unrc.edu.ar

Mariana Frutos

mfrutos@dc.exa.unrc.edu.ar

ORGANIZACIÓN DEL PROCESADOR SOBRE LA ASIGNATURA

Dictado de Clases:

Teóricos:

Martes de 10 a 12hs (Aula 31 pab. 4)

Jueves de 10 a 12hs (Aula 6 pab. 4)

Prácticos (Lab 101):

Mañana: Martes y Jueves de 8 a 10hs (Guillermo y Laura)

Tarde: Martes de 14 a 16hs. y Viernes de 16 a 18hs. (Mariana y Laura)

- Exámenes de Laboratorio
- Exámenes Parciales (martes 27/09 jueves 10/11)
- Promoción (Nota parcial >6 y promedio 7, Labs aprobados, proyecto)

HISTORIA - MÁQUINAS MECÁNICAS (1642-1945) ORGANIZACIÓN DEL PROCESADOR

Gottfried Wilhelm von Leibniz

Stepped Reckoner (1671)

HISTORIA - MÁQUINAS MECANICAS (1642-1945) ORGANIZACIÓN DEL PROCESADOR

Charles Babbage

Difference Engine (1822)

instruida mediante tarjetas perforadas. Nunca llegó a construirla. Memoria. Podía realizar cualquier operación aritmética. Estaba pensada para ser Diseñó la Máquina Analítica (Analytical Engine), se considera el primer diseño de una computadora similar a las actuales. Tenía Unidad Aritmética, de Control y

ORGANIZACIÓN DEL PROCESADOR

HISTORIA - MÁQUINAS MECÁNICAS (1642-1945)

Herman Hollerith

Hollerith card (1890)

ORGANIZACIÓN DEL PROCESADOR

HISTORIA - MÁQUINAS TUBOS DE VACIO (1945-1953)

Konrad Zuse

Z1 1935

Diseñó un lenguaje de alto nivel "Plankalkül"

ORGANIZACIÓN DEL PROCESADOR HISTORIA - MÁQUINAS TUBOS DE VACÍO (1945-1953) Atanassoff Berry Computer (ABC) 1942 John Atanasoff

John Presper Eckert

Electronic Numerical Integrator And Computer (ENIAC) - 1946
Pesaba 27 tns, 17468 tubos de vacío y consumía 174 kilowats

ORGANIZACIÓN DEL PROCESADOR

HISTORIA - MAQUINAS CON CIRCUITOS INTEGRADOS (1965-1980

SSI (Small Scale Integration) pequeño nivel: de 10 a 100 transistores MSI (Medium Scale Integration) medio: 101 a 1.000 transistores

LSI (Large Scale Integration) grande: 1. 001 a 10. 000 transistores

ULSI (Ultra Large Scale Integration) ultra grande: 100. 001 a 1. 000. 000 transistores VLSI (Very Large Scale Integration) muy grande: 10. 001 a 100. 000 transistores

GLSI (Giga Large Scale Integration) giga grande: más de un millón de transistores

IBM 360

PDP 11

HISTORIA - MÁQUINAS CON CIRCUITOS INT. VLSI (1980 -ORGANIZACIÓN DEL PROCESADOR

Código de Barras

Código QR

ORGANIZACIÓN DEL PROCESADOR

HEXADECIMAL OCT 0 0 1 1 1 2 2 3 3 3								B A 9 8 7 6 5			
OCTAL 0	J	0 4	0 4 70 0	0 4 0 0 7	7 6 5 4 10	11 10 5 5 4 4 11	10 10 12	5 6 6 7 7 10 11 12	5 6 6 7 7 10 11 12 13	55 4 4 6 6 7 7 10 11 11 11 11 11 11 11 11 11 11 11 11	5 4 4 6 6 6 7 7 7 11 11 11 11 11 11 11 11 11 11 11
AL BINARIO 0000 0001 0010								0011 0100 0101 0110 0110 1000 1001 1011	0011 0100 0101 0110 0111 1000 1000 1011 1011		

ORGANIZACIÓN DEL PROCESADOR

OCTAL Y HEXADECIMAL

