Formulario di Elettronica dello stato solido

Lorenzo Rossi Anno Accademico 2020/2021

Email: lorenzo14.rossi@mail.polimi.it

GitHub: https://github.com/lorossi

Quest'opera è distribuita con Licenza Creative Commons Attribuzione Non commerciale 4.0 Internazionale $\textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet}$ Versione aggiornata al 24/06/2021

Indice

1	Riguardo al formulario		
2	2.1 Serie	1 1 1	
3	3.1 Packing factor	2 2 2	
4	1	3	
5	5.1 Onde		
6	6.1 Teorema di Bloch 6.2 Operatori 6.3 Tunnelling 6.4 Incidenza 6.5 Buca di potenziale 6.5.1 A pareti infinite 6.5.2 A pareti finite 6.5.3 Parabolica	6 6 7 7 8 8 8 8 8 8	
7	Teoria semi classica del trasporto 7.1 Tight Binding 7.1.1 Semiconduttori 1 7.2 Weak binding 7.2.1 Metalli 7.3 Formule valide sia per lacune che per elettroni 7.4 Livelli di energia	10 12 12 13	
8	Correnti macroscopiche18.1 Effetto Hall18.2 Correnti di diffusione1		
9	Distribuzioni 1	L 4	

1 Riguardo al formulario

Quest'opera è distribuita con Licenza Creative Commons - Attribuzione Non commerciale 4.0 Internazionale $\textcircled{\bullet}(\textcircled{\bullet})$

Questo formulario verrà espanso (ed, eventualmente, corretto) periodicamente fino a fine corso (o finché non verrà ritenuto completo).

Link repository di GitHub: https://github.com/lorossi/formulario-stato-solido L'ultima versione può essere scaricata direttamente cliccando su questo link.

In questo formulario ho cercato prima di tutto di mettere le formule importanti per la risoluzione degli esercizi, preferendole a quelle utili alla comprensione della materia.

2 Richiami di Base

2.1 Serie

- Serie geometrica $s_n = \sum_{n=0}^{+\inf} q^n = 1 + q + q^2 + \dots$ converge a $s_n = \frac{1}{1-q}$ se |q| < 1
- Serie armonica $s_n = \sum_{n=0}^{+\inf} \frac{1}{n^{\alpha}}$ converge se $\alpha > 1$

2.2 Elettromagnetismo

- Forza $|F| = \frac{|V|}{|x|}$
- Forza vettoriale $\vec{F} = -\vec{\nabla}V = -\frac{1}{a}\vec{\nabla}U$
- Campo elettrico E = -qV
- Energia $\delta E=qF\delta x,\, \frac{\partial E}{\partial T}=qFv_g$

3 Struttura cristallina

• Packing factor
$$PF = \frac{4/3 \cdot \pi r^3}{a^3}$$

• Densità del reticolo
$$l = \frac{\text{n}^{\circ} \text{atomi / cella}}{\text{area cella}}$$

• Interferenza del passo reticolare (diffrazione alla Bragg) $2a\sin\theta=n\lambda$ con n ordine di diffrazione

3.1 Packing factor

Struttura	Metalli che la presentano in natura	Packing Factor
Cubico	Po	$\frac{\pi}{6} \approx 0.52$
GBB	Cr, Fe, Mo, Ta	$\pi \frac{\sqrt{3}}{8} \approx 0.68$
FCC	Ag, Au, Cu, Ni, Pb	$\pi \frac{\sqrt{2}}{6} \approx 0.74$

3.2 Indici di Miller

• Distanza interplanare
$$\frac{a}{\sqrt{m^2 + n^2 + p^2}}$$

3.2.1 Caso particolare

Ipotesi: il piano interseca in $\{m, n, 0\}$

• Indici di Miller
$$\{n,m,0\}$$

• Distanza interplanare
$$d = \frac{a}{\sqrt{n^2 + m^2}}$$

4 Radiazione di corpo nero

- Legge di Wien $\lambda_p \cdot T = c_{\text{wien}}$
- Legge di Stefan-Boltzmann $\int\limits_{0}^{\inf}R_{T}d\nu=\sigma T^{4}$
- Potenza emessa dal corpo nero $P=\sigma T^4A=RA,$ con A area della superficie del corpo

4.1 Cavità di corpo nero all'equilibrio, monodimensionale

- Lunghezze d'onda permesse $a=n\frac{\lambda}{2}$
- Frequenze permesse $\nu = \frac{c}{2a} n$ con n intero e non nullo
- Free spectral range FSR = $\nu_n \nu_{n-1} = \frac{c}{2a}$

5 Onde e particelle

5.1 Onde

- Frequenza / lunghezza d'onda $\nu = \frac{c}{\lambda}$
- Energia associata ad un'onda $E=h\nu=\hbar\omega$
- Vettore d'onda $k = \frac{2\pi}{h}$
- Velocità di fase $v_f = \frac{d\omega}{dt}$
- Velocità di gruppo $v_g = \frac{\partial \omega}{\partial k} = \frac{1}{\hbar} \frac{\partial E}{\partial k} = \frac{\hbar k}{m}$

5.1.1 Pacchetti d'onda

- Formula generale $\Psi(x,t) = \int g(k)e^{i(kx-\omega t)}dk$
- Densità di probabilità $|\Psi(x,t)|^2=e^{-rac{(x-v_gt)^2}{2lpha(1+eta^2t^2/lpha^2)}}\sqrt{rac{\pi^2}{lpha^2+eta^2t^2}}$
- Deviazione standard $\sigma_x(t) = \sqrt{\frac{\alpha^2 + \beta^2 t^2}{\alpha}}$
- Pacchetto gaussiano:
 - Velocità $v_g = \frac{\partial \, \omega}{\partial k}$
 - Dispersione $\beta = \frac{1}{2} \frac{\partial^2 E}{\partial^2 k}$
 - Oscillazione $\omega = \omega_0 + v_g \cdot (k k_0) + \beta \cdot (k k_o)^2$
 - Il picco si sposta con $v = v_q$

5.2 Particelle

• Energia
$$E = E_k + U$$

– Energia cinetica
$$E_k = \frac{1}{2}mv^2 = \frac{h^2}{2m\lambda^2}$$

- Principio di equipartizione dell'energia, particella con l gradi di libertà: $E_k = \frac{l}{2}kT$
- Energia potenziale di una particella in un potenziale $V\colon U=qV$

• Relazione di De Broglie
$$\lambda = \frac{h}{p}, \, p = \hbar k$$

• Relazione di dispersione
$$E = \frac{h^2 k^2}{2m}$$

• Vettore d'onda
$$k = \frac{\sqrt{2mE}}{\hbar}$$

• Lunghezza d'onda
$$\lambda = \frac{h}{\sqrt{2mE}}$$

6 Meccanica quantistica

• Principio di indeterminazione di Heisenberg $\Delta x \Delta p \geq \frac{\hbar}{2}$

- Equazione di Schrödinger $i\hbar\frac{\partial\Psi}{\partial t}(x,t)=\hat{H}\Psi(x,t)$

• Flusso quantistico $J = \frac{\hbar k}{m} |\Psi|^2$

6.1 Teorema di Bloch

Ipotesi:

• Struttura reticolare con passo a

• Il potenziale è periodico V(x+a) = V(x)

• La funzione d'onda si ripete a meno di un fattore di fase $\psi(x+a)=\psi(x)e^{ika}$

• La densità di probabilità è periodica $|\psi(x+a)|^2 = |\psi(x)|^2$

Allora: $|\psi(x)| = u_k(x)e^{-ikx}$ con $u_k(x)$ funzione di Bloch (periodica), quindi $u_k(x+a) = u_k(x)$. e e^{-ikx} inviluppo.

Normalmente è costruita da $\sin^2(x)$ o $\cos^2(x)$, con i massimi in corrispondenza dei centri delle barriere.

6

Inoltre $\psi(x+a) = u_k(x+a)e^{ikx}e^{ika}$, con e^{ika} sfasamento.

6.2 Operatori

• Operatore Hamiltoniano $\hat{H} = -\frac{\hbar^2}{2mi}\frac{\partial^2}{\partial x^2} + V$

• Operatore quantità di moto (momento) $\hat{p}=-i\hbar\frac{\partial}{\partial x}$

• Operatore energia cinetica $\hat{E}_{tot} = -i \frac{\hbar^2}{2m} \frac{\partial^2}{\partial t^2}$

• Operatore energia totale $\hat{E}_k = i\hbar \frac{\partial}{\partial t}$

• Operatore potenziale $\hat{V} = V$

• Commutatore $H = [\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A} = \hat{C}$

– Se $\hat{C} = 0$, allora i due operatori *commutano*.

6.3 Tunnelling

• Probabilità di tunnelling $|T|^2\approx 16\left(\frac{\alpha k}{\alpha^2+k^2}\right)^2e^{-2\alpha a}\approx e^{-2\alpha a}$

– Trasmissione risonante $p=|T|^2=1$

• Tempo medio di tunnelling $\langle t \rangle = \frac{t_{a/r}}{p_t} = \frac{2a}{v p_{\rm tun}}$

• Approssimazione WKB:

– Probabilità $p = |T|^2 = P_T = e^{-2\alpha a}$

– Penetrazione media $x_p = \frac{\hbar}{\sqrt{2m(V_0 - E)}} = \frac{1}{\alpha}$

– L'approssimazione è valida se e solo se $\alpha a \gg 1$

• Approssimazione di Fowler–Nordheim barriera triangolare

– Probabilità
$$P_T = e^{-rac{4}{3}rac{\sqrt{2m}}{\hbar qV}W(V-E)^{3/2}}$$

6.4 Incidenza

• Coefficiente di riflessione $R = \left(\frac{k_1 - k_2}{k_1 + k_2}\right)^2$

• Coefficiente di trasmissione $T = \left(\frac{2k_1}{k_1 + k_2}\right)^2 = 1 - R^2$

6.5 Buca di potenziale

6.5.1 A pareti infinite

• Autovalori $E_n = \frac{h^2}{8ma^2}n^2$, spaziatura $\propto n^2$

6.5.2 A pareti finite

• Funzioni pari $\tan\left(\frac{a}{2\hbar}\sqrt{2mE}\right) = \sqrt{\frac{V_0 - E}{E}}$

• Funzioni dispari $\tan\left(\frac{a}{2\hbar}\sqrt{2mE}\right) = -\sqrt{\frac{E}{V_0 - E}}$

• La soluzione delle equazioni avviene per via grafica

6.5.3 Parabolica

• Profilo di potenziale $U(x) = \frac{1}{2}\alpha x^2$

• Pulsazione caratteristica $\omega = \sqrt{\frac{\alpha}{m}}$, con alpha coefficiente del quadrato di x

• Autovalori $E_n = \left(n + \frac{1}{2}\right)\hbar\omega$, spaziatura $\propto n$

6.5.4 Coppie di buche

• Funzione degli autovalori $\tan\left(k\frac{a}{2}\right) = -\frac{\hbar^2 k}{mu_0}$

• Soluzioni della funzione:

- Pari $\tan(ka) = 0$

– Dispari $\tan(ka) = -\frac{\hbar^2 k}{mu_0}$

• Proporzionalità della ddp $|\psi|^2 \propto \cos\left(\frac{E_2 - E_1}{\hbar}t\right) = \cos\left(2\pi \frac{E_2 - E_1}{\hbar}t\right)$

8

– Oscillazione degli autovalori $\omega = \frac{E_2 - E_1}{\hbar}$

– Frequenza degli autovalori $\nu = \frac{E_2 - E_1}{h}$

7 Teoria semi classica del trasporto

• Formula fondamentale
$$\frac{dk}{dt} = \frac{F}{\hbar} \Rightarrow k = \frac{F}{\hbar}t + k_0$$

• Velocità termica
$$v_{th} = \sqrt{\frac{3kT}{m}}$$

7.1 Tight Binding

• Velocità di gruppo dell'elettrone
$$v_g = \frac{1}{\hbar} \frac{\partial E}{\partial k}$$

• Massa efficace dell'elettrone
$$m^* = \frac{\mathfrak{F}}{a} = \frac{\hbar^2}{\frac{\partial^2 E}{\partial k^2}}$$

• Relazione di dispersione
$$E(k) = E_{0-} + 2\gamma \cos(ka)$$

• Oscillazioni di Bloch
$$\omega=q\frac{aF}{\hbar},\, \nu=q\frac{aF}{\hbar}$$

• Libero cammino medio
$$\lambda = v_{th} \cdot \tau_m$$

– Formula
$$\frac{dk}{dt} + \frac{k}{\tau_m} = \frac{F}{\hbar}$$
 valida solo per gli elettroni

– Soluzione generale
$$k = \frac{q\tau_m F}{\hbar} \left(1 - e^{t/\tau_m}\right)$$

– Soluzione stazionaria
$$\frac{\partial k}{\partial t}=0 \rightarrow \bar{k}=\frac{qF}{\hbar}\tau_m$$

• Masse DOS:

– Elettroni
$$m^\star_{DOS_n} = g^{\scriptscriptstyle 2/\!\scriptscriptstyle 3} \cdot m^{\star^{\scriptscriptstyle 2}\!\!/\!\scriptscriptstyle 3}_t \cdot m^{\star^{\scriptscriptstyle 1}\!\!/\!\scriptscriptstyle 3}_l$$

- Lacune
$$m_{DOS_p}^{\star} = \left(m_{hh}^{\star^{3/2}} + m_{lh}^{\star^{3/2}}\right)^{2/3}$$

• Masse di conduzione:

– Elettroni
$$\frac{n^{\circ}m_{c_n}^{\star}}{m_{c_n}^{\star}} = \frac{n^{\circ}m_l^{\star}}{m_l^{\star}} + \frac{n^{\circ}m_t^{\star}}{m_t^{\star}}$$

- Lacune
$$\frac{1}{m_{c_p}^{\star}} = \frac{m_{hh}^{\star}^{1/2} + m_{lh}^{\star}^{1/2}}{m_{hh}^{\star}^{3/2} + m_{lh}^{\star}^{3/2}}$$

7.1.1 Semiconduttori

• Densità di stati di energia:

- Caso 1D
$$g(E) = \frac{1}{\pi \hbar} \sqrt{\frac{2 m_{DOS}^*}{E - E_F}}$$

- Caso 2D $g(E) = \frac{m_{DOS}^*}{\pi \hbar}$

* Densità di elettroni nel metallo
$$n \approx \frac{m_{DOS}^{\star}}{\pi \hbar} E_F$$

- Caso 3D
$$g(E) = \frac{(2 m_{DOS}^{\star})^{3/2}}{3\pi^2 \hbar^3} \sqrt{E - E_F}$$

* Densità di elettroni nel metallo
$$n \approx \frac{(2 \, m_{DOS}^{\star})^{3/2}}{3 \pi^2 \hbar^3} (E_F)^{3/2}$$

• Densità di portatori:

– Densità efficace di stati:

* In banda di conduzione
$$N_c = \frac{1}{4\hbar^3} \left(\frac{m_{DOS_n}^{\star} kT}{\pi} \right)^{3/2}$$

* In banda di valenza
$$N_v = \frac{1}{4} \left(\frac{m_{DOS_p}^{\star} kT}{\pi \hbar^2} \right)^{3/2}$$

– Concentrazione intrinseca
$$n_i = \sqrt{N_c N_v} \cdot e^{-\frac{E_g}{2kT}}$$

– Elettroni
$$n = \int_{E_F}^{\infty} g(E) f(E) dE \approx N_c \cdot e^{\frac{E_c - E_F}{kT}}$$

– Lacune
$$p = \int_{0}^{E_F} g(E) (1 - f(E)) dE \approx N_v \cdot e^{\frac{E_F - E_v}{kT}}$$

• Concentrazione di drogante neutro:

– Donore
$$n_0 = \frac{n}{1 + \frac{1}{2}e^{\frac{E_n - E_f}{kT}}}$$

- Accettore
$$p_0 = \frac{p}{1 + \frac{1}{4}e^{\frac{E_f - E_p}{kT}}}$$

• Energia media dell'elettrone
$$\langle E\, \rangle = \frac{1}{n} \int\limits_{E_F}^{\inf} E \cdot g(E) f(E)\, dE$$

- Caso 2D
$$\langle E \rangle = \frac{1}{2} E_F$$

– Caso 3D
$$\langle E \rangle = \frac{3}{5} E_F$$

• Energia cinetica dell'elettrone
$$E_k = \frac{\hbar^2 k^2}{2m_n^{\star}}$$

• Legge di Matthiessen
$$\frac{1}{\mu_n} = \frac{1}{\mu_{n,f}} + \frac{1}{\mu_{n,i}}$$

– Velocità limite
$$v_{\rm sat} = \sqrt{\frac{\hbar \, \omega_0}{2 m^\star}}$$

– Velocità dell'elettrone sopra questo valore
$$v_n = \frac{\mu_n F}{1 + F/F_{sat}} = \frac{\mu_n F}{1 + \mu_n F/v_{sat}}$$

– Mobilità
$$\frac{\mu(T_2)}{\mu(T_1)} = \left(\frac{T_2}{T_1}\right)^{-3/2}$$

– Densità di stati in banda
$$\frac{N_c(T_2)}{N_c(T_1)} = \left(\frac{T_2}{T_1}\right)^{^{3/2}}$$

– Densità intrinseca
$$\frac{n_i(T_2)}{n_i(T_1)} = \left(\frac{T_2}{T_1}\right)^{3/2} e^{-\frac{E_G}{2k}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)}$$

– Conducibilità
$$\frac{\sigma(T_2)}{\sigma(T_1)} = e^{-\frac{E_G}{2k} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)}$$

7.2 Weak binding

• Valore di aspettazione dell'energia $\langle E \rangle = \frac{\hbar^2}{2m} \left(\frac{\pi}{a}\right)^2 = E_n^+ - |u_n|$

7.2.1 Metalli

- Energia di Fermi $E_F(T) = E_F(0 K) \cdot \left[1 \frac{\pi^2}{12} \left(\frac{kT}{E_F(0 K)}\right)^2\right]$
- Densità di portatori approssimazione:

$$-n \approx \int_{0}^{E_F} g(E)dE$$
$$-p = 0$$

- Temperatura di Fermi $T_F = \frac{E_F}{kT}$

7.3 Formule valide sia per lacune che per elettroni

• Mobilità
$$\mu = \frac{q\tau_m}{m^*}$$

- Velocità di deriva
$$v=\mu F$$

- Conducibilità
$$\sigma = qn\mu$$

• Resistività
$$\rho = \frac{1}{\sigma}$$

• Densità di corrente
$$j=qn\mu F=\sigma F$$

7.4 Livelli di energia

• Livello di Fermi
$$E_f = \frac{E_c + E_v}{2} = \frac{(3\pi^2 n)^{2/3}}{2m_n^*} \hbar^2$$

– Rispetto alla densità di stati di energia
$$E_i = E_F + \frac{1}{2}kT\ln\left(\frac{N_v}{N_c}\right)$$

13

– Rispetto alle masse
$$DOS~E_i = E_F + \frac{3}{4}kT \ln \left(\frac{m_h^{\star}}{m_e^{\star}}\right)$$

8 Correnti macroscopiche

• Effetto termoionico
$$J = AT^2 e^{-\frac{w}{kT}}, A = \frac{4\pi m^* q k^2}{h^3}$$

– Elettroni
$$\frac{\partial n}{\partial t} = \frac{1}{q} \frac{\partial J_n}{\partial x} + g_n - r_n$$

- Lacune
$$\frac{\partial p}{\partial t} = -\frac{1}{q} \frac{\partial J_p}{\partial x} + g_p - r_p$$

– Elettroni
$$r_n = \frac{n - n_0}{\tau_n}$$

– Lacune
$$r_p = \frac{p - p_0}{\tau_p}$$

8.1 Effetto Hall

• Mobilità dei portatori
$$\mu_p = \frac{1}{B} \frac{V_H}{V_L} \frac{L}{W}$$

- Densità di drogante
$$p=N_A=\frac{j_P}{q\mu_p F}$$

Correnti di diffusione

• Legge di Einstein
$$D_n = \frac{kT}{q}\mu_n$$

• 1° legge di Fick
$$\Phi_n=-D_n\frac{\partial n}{\partial x},\,\Phi_p=-D_p\frac{\partial p}{\partial x}$$

• 2° legge di Fick
$$\frac{\partial n}{\partial t} = D_n \frac{\partial^2}{\partial t^2}$$
, $\frac{\partial p}{\partial t} = D_p \frac{\partial^2}{\partial t^2}$

Distribuzioni

• Fermi Dirac
$$f_{FD}(e) = \frac{1}{1 + e^{\frac{E - E_f}{kT}}}$$

$$E_F - E$$

• Maxwell Boltzmann $f_{MB}(e) = e^{\frac{E_F - E}{kT}}$