多変量解析

第12回 数量化3類

萩原•篠田 情報理工学部

数量化3類

学生と酒類の特徴づけや分類ができないか?

学生のお酒の好み(〇印)

学生	チューハイ	日本酒	ビール
1		0	0
2	0		0
3	0		
	J	,	

相関係数が最大となるように 割り当てた数量 (a_i, b_i) を求める

学生	Ė	チューハイ	日本酒	ビール
		\boldsymbol{b}_1	$\boldsymbol{b_2}$	b_3
1	a_1		(a_1, b_2)	(a_1, b_3)
2	a_2	(a_2, b_1)		(a_2, b_3)
3	a_3	(a_3, b_1)		

主成分分析 (量的変数) 数量化3類 (質的変数)

直感的には並び替え!

学生	チューハイ	ビール	日本酒
1		0	0
2	0	0	
3	0		

keywords

質的変数、主成分分析、相関係数、サンプルスコア、カテゴリ数量(変数スコア)、固有値、固有ベクトル

数量化3類

各サンプル(被験者)のカテゴリに対する反応を示すデータに基づいて、反応の似たサンプルやカテゴリを分類したり、特性を調べたりする手法

被験者No.	1	2	3	• • •	j	• • •	m
1		レ			レ		レ
2	レ		レ				
:	:	:	:	:	:	:	:
i					レ		
:	:	:	:	:	:	:	:
n		レ	レ				レ

サンプルに a_i 、カテゴリに b_j といった数量を与え、反応の似たサンプルやカテゴリを分類することで特性を調べる

	カテゴリ	1	2	3	• •	j	• •	m
被験者No.		b_1	b_2	b_3		b_j		b_m
1	a_1		1					1
2	a_2	1						
:	:	:	:	:	:	:	:	:
i	a_i					t_{ij}		
:	:	:	:	:	:	:	:	:
n	a_n		1	1				1

 a_i :サンプルスコア, b_i :カテゴリ数量

 $t_{ij} = 1 \ or \ 0 : サンプルiのカテゴリj に対する反応$

- (a_i, b_i) に対する相関係数rが最大になる a_i , b_i を求める
- 得られた a_i , b_j の順にサンプルやカテゴリを並べ替える

(例題)

アンケート調査票

項目1

あなたはチューハイが好きですか

1 はい 2 いいえ

項目2

あなたは日本酒が好きですか

1 はい 2 いいえ

項目3

あなたはビールが好きですか

1 はい 2 いいえ

カテゴリ被験者	チュー ハイ	日本酒	ビール
1		レ	レ
2	レ		レ
3	レ		

ħ	テゴリ	1	2	3
被験者		b_1	b_2	b_3
1	a_1		1	1
2	a_2	1		1
3	a_3	1		

 a_i :サンプルスコア, b_i :カテゴリ数量

 $t_{ij} = 1 \text{ or } 0$: サンプルiのカテゴリjに対する反応

- (a_i, b_i) に対する相関係数rが最大になる a_i , b_i を求める
- 得られた a_i , b_i の順にサンプルやカテゴリを並べ替える

カテゴリ数量とサンプルスコアの求め方

(1) 標準化(::相関係数はデータの<mark>標準化</mark>に対して不変) 平均値=0

$$\bar{a} = \frac{2a_1 + 2a_2 + a_3}{5} = 0$$
 $\bar{b} = \frac{2b_1 + b_2 + 2b_3}{5} = 0$

ħ	テゴリ	1	2	3
被験者		b_1	b_2	b_3
1	a_1		1	1
2	a_2	1		1
3	a_3	1		

N=5

$$Var(a) = \frac{2a_1^2 + 2a_2^2 + a_3^2}{5 - 1} = 1 \qquad Var(b) = \frac{2b_1^2 + b_2^2 + 2b_3^2}{5 - 1} = 1$$

相関係数=共分散

$$r = Cov(a,b) = \frac{a_1b_2 + a_1b_3 + a_2b_1 + a_2b_3 + a_3b_1}{5-1}$$

(2) Var(a) = 1, Var(b) = 1の条件のもとで、相関係数rの最大値を与える a_i , b_j を求める条件付極値問題 \rightarrow ラグランジュの乗数法

$$F = r - \frac{\lambda_a}{2} (Var(a) - 1) - \frac{\lambda_b}{2} (Var(b) - 1)$$

$$=\frac{a_{1}b_{2}+a_{1}b_{3}+a_{2}b_{1}+a_{2}b_{3}+a_{3}b_{1}}{4}-\frac{\lambda_{a}}{2}\left(\frac{2a_{1}^{2}+2a_{2}^{2}+a_{3}^{2}}{4}-1\right)-\frac{\lambda_{b}}{2}\left(\frac{2b_{1}^{2}+b_{2}^{2}+2b_{3}^{2}}{4}-1\right)$$

ラグランジュの乗数法(拘束条件が2つ)

$$F = \frac{a_1b_2 + a_1b_3 + a_2b_1 + a_2b_3 + a_3b_1}{4} - \frac{\lambda_a}{2} \left(\frac{2a_1^2 + 2a_2^2 + a_3^2}{4} - 1 \right) - \frac{\lambda_b}{2} \left(\frac{2b_1^2 + b_2^2 + 2b_3^2}{4} - 1 \right)$$

$$F$$
の a_i , b_j による偏微分 $=0$

$$\frac{\partial F}{\partial a_1} = \frac{b_2 + b_3 - 2\lambda_a a_1}{4} = 0 \quad (1)$$

$$\frac{\partial F}{\partial a_2} = \frac{b_1 + b_3 - 2\lambda_a a_2}{4} = 0 \quad (2)$$

$$\frac{\partial F}{\partial a_3} = \frac{b_1 - \lambda_a a_3}{4} = 0 \tag{3}$$

$$\frac{\partial F}{\partial b_1} = \frac{a_2 + a_3 - 2\lambda_b b_1}{4} = 0 \quad (4)$$

$$\frac{\partial F}{\partial b_2} = \frac{a_1 - \lambda_b b_2}{4} = 0 \tag{5}$$
 (7), (8)より $\mathbf{r} = \lambda_a = \lambda_b$

$$\frac{\partial F}{\partial b_2} = \frac{a_1 + a_2 - 2\lambda_b b_3}{4} = 0 \quad (6)$$

$$(1) \times a_1 + (2) \times a_2 + (3) \times a_3$$
として λ_a でまとめる

$$\frac{\partial F}{\partial a_1} = \frac{b_2 + b_3 - 2\lambda_a a_1}{4} = 0 \quad (1) \quad \frac{a_1 b_2 + a_1 b_3 + a_2 b_1 + a_2 b_3 + a_3 b_1}{4} = \lambda_a \left(\frac{2a_1^2 + 2a_2^2 + a_3^2}{4}\right) \quad (7)$$

$$(4) \times b_1 + (5) \times b_2 + (6) \times b_3$$
として λ_b でまとめる

$$\frac{\partial F}{\partial a_3} = \frac{b_1 - \lambda_a a_3}{4} = 0 \qquad (3) \qquad \frac{a_1 b_2 + a_1 b_3 + a_2 b_1 + a_2 b_3 + a_3 b_1}{4} = \lambda_b \left(\frac{2b_1^2 + b_2^2 + 2b_3^2}{4}\right) \tag{8}$$

(7), (8)より
$$r = \lambda_a = \lambda_b$$

$$\frac{\partial F}{\partial h_a} = \frac{a_1 + a_2 - 2\lambda_b b_3}{4} = 0 \quad (6)$$
 あらためて(1) ~ (6)で $\lambda_a = \lambda_b = \lambda$ とおいて

 a_1, a_2, a_3 消去

$$\frac{\partial F}{\partial a_1} = \frac{b_2 + b_3 - 2\lambda a_1}{4} = 0 \qquad (1) \qquad \implies \quad a_1 = \frac{b_2 + b_3}{2\lambda} \quad (9)$$

$$\frac{\partial F}{\partial a_2} = \frac{b_1 + b_3 - 2\lambda a_2}{4} = 0 \qquad (2) \qquad \Longrightarrow \quad a_2 = \frac{b_1 + b_3}{2\lambda} \quad (10)$$

$$\frac{\partial F}{\partial a_2} = \frac{b_1 + b_3 - 2\lambda a_2}{4} = 0 \qquad (2) \qquad \Longrightarrow \qquad a_2 = \frac{b_1 + b_3}{2\lambda} \quad (10)$$

$$\frac{\partial F}{\partial a_3} = \frac{b_1 - \lambda a_3}{4} = 0 \qquad (3) \qquad \Longrightarrow \qquad a_3 = \frac{b_1}{\lambda} \quad (11)$$

$$\frac{\partial F}{\partial b_1} = \frac{a_2 + a_3 - 2\lambda b_1}{4} = 0 \qquad (4) \qquad \Longrightarrow \qquad \qquad \frac{3b_1}{2} + 0b_2 + \frac{b_3}{2} - 2\lambda^2 b_1 = 0 \quad (12)$$

$$\frac{\partial F}{\partial b_2} = \frac{a_1 - \lambda b_2}{4} = 0 \qquad (5) \qquad \Longrightarrow \qquad 0b_1 + \frac{b_2}{2} + \frac{b_3}{2} - \lambda^2 b_2 = 0 \qquad (13)$$

$$\frac{\partial F}{\partial b_3} = \frac{a_1 + a_2 - 2\lambda b_3}{4} = 0 \qquad (6) \qquad \Longrightarrow \qquad \qquad \frac{b_1}{2} + \frac{b_2}{2} + \frac{2b_3}{2} - 2\lambda^2 b_3 = 0 \qquad (14)$$

(12), (13), (14)を変形して固有値固有ベクトル問題に

$$\begin{pmatrix} \frac{3}{4} & 0 & \frac{1}{4} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & \frac{2}{4} \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \lambda^2 \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

固有値は $\lambda^2 = 1.0.6545.0.0955$

固有ベクトルは

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0.5774 \\ 0.5774 \\ 0.5774 \end{pmatrix}, \begin{pmatrix} 0.6116 \\ -0.7559 \\ -0.2336 \end{pmatrix}, \begin{pmatrix} 0.2336 \\ 0.7559 \\ -0.6116 \end{pmatrix}$$

固有値は $\lambda^2 = 1$, 0.6545, 0.0955

固有ベクトルは
$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0.5774 \\ 0.5774 \\ 0.5774 \end{pmatrix}$$
, $\begin{pmatrix} 0.6116 \\ -0.7559 \\ -0.2336 \end{pmatrix}$, $\begin{pmatrix} 0.2336 \\ 0.7559 \\ -0.6116 \end{pmatrix}$

	カテゴリ	1	2	3
被験者		b_1	b_2	b_3
1	a_1		1	1
2	a_2	1		1
3	a_3	1		

固有値 $\lambda^2=1$ の固有ベクトルは $b_1=b_2=b_3$ で $\bar{b}=0$ を満たさないため $\lambda^2=1$ を除外

$$a_{1} = \frac{\sum_{j=1}^{p} t_{1j} b_{j}}{\lambda \sum_{j=1}^{p} t_{1j}} : \frac{-0.7559 - 0.2336}{\sqrt{0.6545} \cdot 2} = -0.6116, \qquad \frac{0.7559 - 0.6116}{\sqrt{0.0955} \cdot 2} = 0.2336$$

$$a_{2} = \frac{\sum_{j=1}^{p} t_{2j} b_{j}}{\lambda \sum_{j=1}^{p} t_{2j}} : \frac{0.6116 - 0.2336}{\sqrt{0.6545} \cdot 2} = 0.2336, \qquad \frac{0.2336 - 0.6116}{\sqrt{0.0955} \cdot 2} = -0.6116$$

$$a_{3} = \frac{\sum_{j=1}^{p} t_{3j} b_{j}}{\lambda \sum_{j=1}^{p} t_{3j}} : \frac{0.6116}{\sqrt{0.6545} \cdot 1} = 0.7559, \qquad \frac{0.2336}{\sqrt{0.0955} \cdot 1} = 0.7559$$

		カテゴリ数量 1番目	カテゴリ数量 2番目
チューハイ	b_1	0.6116	0.2336
日本酒	b_2	-0.7559	0.7559
ビール	b_3	-0.2336	-0.6116

		サンプルスコア 1番目	サンプルスコア 2番目
1	a_1	-0.6116	0.2336
2	a_2	0.2336	-0.6116
3	a_3	0.7559	0.7559

相関係数, 寄与率および累積寄与率

相関係数 $r = Cov(a, b) = \lambda$

寄与率 界積寄与率 寄与率(決定係数)= 相関係数²

成分
$$m$$
の寄与率 $=$ $\frac{{\lambda_m}^2}{\sum_{j=1}^p {\lambda_j}^2}$

成分mまでの累積寄与率 = $\frac{\sum_{j=1}^{m}\lambda_{j}^{2}}{\sum_{j=1}^{p}\lambda_{j}^{2}}$

(合計 p個の固有値が得られたとして)

	1番目	2番目
固有値 λ ²	0.6545	0.0955
相関係数 $r = \lambda$	0.8090	0.3090
寄与率	0.8727	0.1273
累積寄与率	0.8727	1.0000

- *1番目の相関係数が0.8090と1に近い
 - $\rightarrow b_1, b_2, b_3$ はお酒の好みをよく説明している
- *カテゴリ数量 b_j の大小関係(日本酒<ビール<チューハイ) \rightarrow チューハイと日本酒に対する好みが最も離れているとわかる

	日本酒		ビー	-ル			-	チューハ	1
_						 			<u></u>
	_	-0.5		(0		().5	

- * サンプルスコアの大小関係(No.1 < No.2 < No.3)
 - → No.1とNo.3が最も離れていることがわかる

		カテゴリ数量 1番目	カテゴリ数量 2番目
チューハイ	b_1	0.6116	0.2336
日本酒	b_2	-0.7559	0.7559
ビール	b_3	-0.2336	-0.6116

		サンプルスコア 1番目	サンプルスコア 2番目
1	a_1	-0.6116	0.2336
2	a_2	0.2336	-0.6116
3	a_3	0.7559	0.7559

カテゴリ数量・サンプルスコアを読む(a_i , b_j の順に並べ替え)

		サンプルスコア 1番目	サンプルスコア 2番目
1	a_1	-0.6116	0.2336
2	a_2	0.2336	-0.6116
3	a_3	0.7559	0.7559

		カテゴリ数量 1番目	カテゴリ数量 2番目
チューハイ	b_1	0.6116	0.2336
日本酒	b_2	-0.7559	0.7559
ビール	b_3	-0.2336	-0.6116

並び替え前

		日本酒	ビール	チューハイ
		b_1	b_2	b_3
1	a_1		5	4
2	a_2	2		3
3	a_3	1		

並び替え後

	テゴリ	日本酒	ビール	チューハイ
サンプトルスコア	数量	b_2	b_3	b_1
3	a_3			1
2	a_2		3	2,
1	a_1	5	4	

数量化3類:反応の似たサンプルスコアとカテゴリ数量の最も良い並べ替え ←→ 相関係数を最大にする

カテゴリ数量とサンプルスコアの求め方

(1) 標準化(:相関係数はデータの標準化に対して不変)

平均值=0

(N = np でも最終結果は同じ)

$$\bar{a} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{p} t_{ij} a_i}{N} = 0$$

$$\bar{a} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{p} t_{ij} a_{i}}{N} = 0 \qquad \bar{b} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{p} t_{ij} b_{j}}{N} = 0 \qquad N = \sum_{i=1}^{n} \sum_{j=1}^{p} t_{ij}$$

分散=1

$$Var(a) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{p} t_{ij} a_{i}^{2}}{N-1} = 1 \quad Var(b) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{p} t_{ij} b_{j}^{2}}{N-1} = 1$$

相関係数=共分散

$$r = Cov(a, b) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{p} t_{ij} a_i b_j}{N - 1}$$

(2) Var(a) = 1, Var(b) = 1の条件のもとで、相関係数 rの最大値を与える a_i , b_i を 求める条件付極値問題 → ラグランジュの乗数法

$$F = r - \frac{\lambda_a}{2} (Var(a) - 1) - \frac{\lambda_b}{2} (Var(b) - 1)$$

$$= \frac{\sum_{i=1}^n \sum_{j=1}^p t_{ij} a_i b_j}{N - 1} - \frac{\lambda_a}{2} \left(\frac{\sum_{i=1}^n \sum_{j=1}^p t_{ij} a_i^2}{N - 1} - 1 \right) - \frac{\lambda_b}{2} \left(\frac{\sum_{i=1}^n \sum_{j=1}^p t_{ij} b_j^2}{N - 1} - 1 \right)$$

ラグランジュの乗数法(拘束条件が2つ)

$$F = \frac{\sum_{i=1}^{n} \sum_{j=1}^{p} t_{ij} a_{i} b_{j}}{N-1} - \frac{\lambda_{a}}{2} \left(\frac{\sum_{i=1}^{n} \sum_{j=1}^{p} t_{ij} a_{i}^{2}}{N-1} - 1 \right) - \frac{\lambda_{b}}{2} \left(\frac{\sum_{i=1}^{n} \sum_{j=1}^{p} t_{ij} b_{j}^{2}}{N-1} - 1 \right)$$

Fの a_i , b_iによる偏微分=0

$$\frac{\partial F}{\partial a_1} = \frac{\sum_{j=1}^{p} t_{1j} b_j - \lambda_a a_1 \sum_{j=1}^{p} t_{1j}}{N-1} = 0 \quad (1)$$

$$\frac{\partial F}{\partial a_2} = \frac{\sum_{j=1}^p t_{2j} b_j - \lambda_a a_2 \sum_{j=1}^p t_{2j}}{N-1} = 0 \quad (2)$$

$$\frac{\partial F}{\partial a_n} = \frac{\sum_{j=1}^p t_{nj} b_j - \lambda_a a_n \sum_{j=1}^p t_{nj}}{N-1} = 0 \quad (3)$$
 (4)×b₁+(5)×b₂+…+(6)×b_pとして λ_2 でまとめる

$$\frac{\partial F}{\partial b_1} = \frac{\sum_{i=1}^n t_{i1} a_i - \lambda_b b_1 \sum_{i=1}^n t_{i1}}{N-1} = 0 \quad (4)$$

$$\frac{\partial b_2}{\partial b_p} = \frac{\sum_{i=1}^n t_{ip} a_i - \lambda_b b_p \sum_{i=1}^n t_{ip}}{N-1} = 0 \quad (6)$$

$$\frac{\partial F}{\partial b_p} = \frac{\sum_{i=1}^n t_{ip} a_i - \lambda_b b_p \sum_{i=1}^n t_{ip}}{N-1} = 0 \quad (6)$$

 $(1) \times a_1 + (2) \times a_2 + \cdots + (3) \times a_n$ として λ_1 でまとめる

$$\frac{\partial F}{\partial a_{1}} = \frac{\sum_{j=1}^{p} t_{1j} b_{j} - \lambda_{a} a_{1} \sum_{j=1}^{p} t_{1j}}{N-1} = 0 \quad (1) \quad \left| \begin{array}{c} \sum_{i=1}^{n} \sum_{j=1}^{p} t_{ij} a_{i} b_{j} \\ N-1 \end{array} \right| - \lambda_{a} \left(\frac{\sum_{i=1}^{n} \sum_{j=1}^{p} t_{ij} a_{i}^{2}}{N-1} \right) = 0 \quad (7) \\ \frac{\partial F}{\partial a_{2}} = \frac{\sum_{j=1}^{p} t_{2j} b_{j} - \lambda_{a} a_{2} \sum_{j=1}^{p} t_{2j}}{N-1} = 0 \quad (2) \quad \left| \begin{array}{c} \sum_{i=1}^{n} \sum_{j=1}^{p} t_{ij} a_{i} b_{j} \\ N-1 \end{array} \right| - \lambda_{a} \left(\frac{\sum_{i=1}^{n} \sum_{j=1}^{p} t_{ij} a_{i}^{2}}{N-1} \right) = 0 \quad (7) \\ \end{array}$$

$$\frac{\partial a_n}{\partial b_1} = \frac{\sum_{i=1}^n t_{i1} a_i - \lambda_b b_1 \sum_{i=1}^n t_{i1}}{N-1} = 0 \quad (4)$$

$$\frac{\sum_{i=1}^n \sum_{j=1}^p t_{ij} a_i b_j}{N-1} - \lambda_b \left(\frac{\sum_{i=1}^n \sum_{j=1}^p t_{ij} b_j^2}{N-1} \right) = 0 \quad (8)$$

(7), (8)より
$$r = \lambda_a = \lambda_b$$

一般解

$$\frac{\partial F}{\partial a_{1}} = \frac{\sum_{j=1}^{p} t_{1j} b_{j} - \lambda a_{1} \sum_{j=1}^{p} t_{1j}}{N-1} = 0 \quad (1) \implies a_{1} = \frac{\sum_{j=1}^{p} t_{1j} b_{j}}{\lambda \sum_{j=1}^{p} t_{1j}} \quad (9)$$

$$\frac{\partial F}{\partial a_{2}} = \frac{\sum_{j=1}^{p} t_{2j} b_{j} - \lambda a_{2} \sum_{j=1}^{p} t_{2j}}{N-1} = 0 \quad (2) \implies a_{2} = \frac{\sum_{j=1}^{p} t_{2j} b_{j}}{\lambda \sum_{j=1}^{p} t_{2j}} \quad (10)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\sum_{j=1}^{p} t_{nj} b_{j} \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\sum_{j=1}^{p} t_{nj} b_{j} \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\frac{\partial F}{\partial a_n} = \frac{\sum_{j=1}^p t_{nj} b_j - \lambda a_n \sum_{j=1}^p t_{nj}}{N-1} = 0 \quad (3) \implies a_n = \frac{\sum_{j=1}^p t_{nj} b_j}{\lambda \sum_{j=1}^p t_{nj}} \quad (11)$$

$$\frac{\partial F}{\partial b_1} = \frac{\sum_{i=1}^n t_{i1} a_i - \lambda b_1 \sum_{i=1}^n t_{i1}}{N-1} = 0 \qquad (4) \implies \qquad \sum_{i=1}^n \left(\frac{t_{i1} \sum_{k=1}^p t_{ik} b_k}{\sum_{k=1}^p t_{ik}} \right) - \lambda^2 b_1 \sum_{i=1}^n t_{i1} = 0 \quad (12)$$

$$\frac{\partial F}{\partial b_2} = \frac{\sum_{i=1}^n t_{i2} a_i - \lambda b_2 \sum_{i=1}^n t_{i2}}{N-1} = 0 \qquad (5) \implies \sum_{i=1}^n \left(\frac{t_{i2} \sum_{k=1}^p t_{ik} b_k}{\sum_{k=1}^p t_{ik}}\right) - \lambda^2 b_2 \sum_{i=1}^n t_{i2} = 0 \qquad (13)$$

$$\frac{\partial F}{\partial b_p} = \frac{\sum_{i=1}^{n} t_{ip} a_i - \lambda p \sum_{i=1}^{n} t_{ip}}{N-1} = 0 \qquad (6) \implies \qquad \sum_{i=1}^{n} \left(\frac{t_{ip} \sum_{k=1}^{p} t_{ik} b_k}{\sum_{k=1}^{p} t_{ik}} \right) - \lambda^2 b_p \sum_{i=1}^{n} t_{ip} = 0 \qquad (14)$$

(12), (13), (14)を変形して p×p の固有値固有ベクトル問題に

$$\begin{cases} \sum_{i=1}^{n} \left(\frac{t_{i1}^{2}}{\sum_{k=1}^{p} t_{ik}} \right) b_{1} + \sum_{i=1}^{n} \left(\frac{t_{i1}t_{i2}}{\sum_{k=1}^{p} t_{ik}} \right) b_{2} + \dots + \sum_{i=1}^{n} \left(\frac{t_{i1}t_{ip}}{\sum_{k=1}^{p} t_{ik}} \right) b_{p} = \lambda^{2} b_{1} \sum_{i=1}^{n} t_{i1} \\ \sum_{i=1}^{n} \left(\frac{t_{i2}t_{i1}}{\sum_{k=1}^{p} t_{ik}} \right) b_{1} + \sum_{i=1}^{n} \left(\frac{t_{i2}^{2}}{\sum_{k=1}^{p} t_{ik}} \right) b_{2} + \dots + \sum_{i=1}^{n} \left(\frac{t_{i2}t_{i2}}{\sum_{k=1}^{p} t_{ik}} \right) b_{2} = \lambda^{2} b_{2} \sum_{i=1}^{n} t_{i2} \\ \vdots \\ \sum_{i=1}^{n} \left(\frac{t_{ip}t_{i1}}{\sum_{k=1}^{p} t_{ik}} \right) b_{1} + \sum_{i=1}^{n} \left(\frac{t_{ip}t_{i2}}{\sum_{k=1}^{p} t_{ik}} \right) b_{2} + \dots + \sum_{i=1}^{n} \left(\frac{t_{ip}^{2}}{\sum_{k=1}^{p} t_{ik}} \right) b_{p} = \lambda^{2} b_{p} \sum_{i=1}^{n} t_{ip} \end{cases}$$

$$\sum_{i=1}^{n} \left(\frac{t_{i1}^{2}}{\sum_{k=1}^{p} t_{ik}} \right) b_{1} + \sum_{i=1}^{n} \left(\frac{t_{i1}t_{i2}}{\sum_{k=1}^{p} t_{ik}} \right) b_{2} + \sum_{i=1}^{n} \left(\frac{t_{i1}t_{i3}}{\sum_{k=1}^{p} t_{ik}} \right) b_{3} = \lambda^{2} b_{1} \sum_{i=1}^{n} t_{i1}$$

$$\sum_{i=1}^{n} \left(\frac{t_{i2}t_{i1}}{\sum_{k=1}^{p} t_{ik}} \right) b_1 + \sum_{i=1}^{n} \left(\frac{t_{i2}^2}{\sum_{k=1}^{p} t_{ik}} \right) b_2 + \sum_{i=1}^{n} \left(\frac{t_{i2}t_{i3}}{\sum_{k=1}^{p} t_{ik}} \right) b_3 = \lambda^2 b_2 \sum_{i=1}^{n} t_{i2}$$

$$\sum_{i=1}^{n} \left(\frac{t_{i3}t_{i1}}{\sum_{k=1}^{p} t_{ik}} \right) b_1 + \sum_{i=1}^{n} \left(\frac{t_{i3}t_{i2}}{\sum_{k=1}^{p} t_{ik}} \right) b_2 + \sum_{i=1}^{n} \left(\frac{t_{i3}^2}{\sum_{k=1}^{p} t_{ik}} \right) b_3 = \lambda^2 b_3 \sum_{i=1}^{n} t_{i3}$$

一般解 カテゴリ b_1 b_2 b_3 1 a_2 1 a_3

固有値は $\lambda^2 = 1$, 0.6545, 0.0955

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0.5774 \\ 0.5774 \\ 0.5774 \end{pmatrix}, \begin{pmatrix} 0.6116 \\ -0.7559 \\ -0.2336 \end{pmatrix}, \begin{pmatrix} 0.2336 \\ 0.7559 \\ -0.6116 \end{pmatrix}$$

固有値 $\lambda^2=1$ の固有ベクトルは $b_1=b_2=b_3$ で $\bar{b}=0$ を満たさないため $\lambda^2=1$ を除外

		カテゴリ数量 1番目	カテゴリ数量 2番目
チューハイ	b_1	0.6116	0.2336
日本酒	b_2	-0.7559	0.7559
ビール	b_3	-0.2336	-0.6116

		サンプルスコア 1番目	サンプルスコア 2番目
1	a_1	-0.6116	0.2336
2	a_2	0.2336	-0.6116
3	a_3	0.7559	0.7559

$$a_1 = \frac{\sum_{j=1}^p t_{1j} b_j}{\lambda \sum_{j=1}^p t_{1j}} : \frac{-0.7559 - 0.2336}{\sqrt{0.6545} \cdot 2} = -0.6116, \frac{0.7559 - 0.6116}{\sqrt{0.0955} \cdot 2} = 0.2336$$

$$a_2 = \frac{\sum_{j=1}^p t_{2j} b_j}{\lambda \sum_{j=1}^p t_{2j}} : \frac{0.6116 - 0.2336}{\sqrt{0.6545} \cdot 2} = 0.2336, \frac{0.2336 - 0.6116}{\sqrt{0.0955} \cdot 2} = -0.6116$$

$$a_3 = \frac{\sum_{j=1}^p t_{3j} b_j}{\lambda \sum_{j=1}^p t_{3j}} : \frac{0.6116}{\sqrt{0.6545} \cdot 1} = 0.7559, \frac{0.2336}{\sqrt{0.0955} \cdot 1} = 0.7559$$

$$\sum_{i=1}^{n} \left(\frac{t_{i1}^{2}}{\sum_{k=1}^{p} t_{ik}} \right) b_{1} + \sum_{i=1}^{n} \left(\frac{t_{i1}t_{i2}}{\sum_{k=1}^{p} t_{ik}} \right) b_{2} + \sum_{i=1}^{n} \left(\frac{t_{i1}t_{i3}}{\sum_{k=1}^{p} t_{ik}} \right) b_{3} = \lambda^{2} b_{1} \sum_{i=1}^{n} t_{i1}$$

$$\sum_{i=1}^{n} \left(\frac{t_{i2}t_{i1}}{\sum_{k=1}^{p} t_{ik}} \right) b_1 + \sum_{i=1}^{n} \left(\frac{t_{i2}^2}{\sum_{k=1}^{p} t_{ik}} \right) b_2 + \sum_{i=1}^{n} \left(\frac{t_{i2}t_{i3}}{\sum_{k=1}^{p} t_{ik}} \right) b_3 = \lambda^2 b_2 \sum_{i=1}^{n} t_{i2}$$

$$\sum_{i=1}^{n} \left(\frac{t_{i3}t_{i1}}{\sum_{k=1}^{p} t_{ik}} \right) b_1 + \sum_{i=1}^{n} \left(\frac{t_{i3}t_{i2}}{\sum_{k=1}^{p} t_{ik}} \right) b_2 + \sum_{i=1}^{n} \left(\frac{t_{i3}^2}{\sum_{k=1}^{p} t_{ik}} \right) b_3 = \lambda^2 b_3 \sum_{i=1}^{n} t_{i3}$$

$$\sum_{i=1}^{\infty} \left(\frac{\frac{1}{\sum_{k=1}^{p} t_{ik}}}{\sum_{k=1}^{p} t_{ik}}\right) b_{1} + \sum_{i=1}^{\infty} \left(\frac{\frac{1}{\sum_{k=1}^{p} t_{ik}}}{\sum_{k=1}^{p} t_{ik}}\right) b_{2} + \sum_{i=1}^{\infty} \left(\frac{\frac{1}{\sum_{k=1}^{p} t_{ik}}}{\sum_{k=1}^{p} t_{ik}}\right) b_{3} = \lambda^{2} b_{3} \sum_{i=1}^{\infty} t_{i3}$$

$$\begin{bmatrix} \frac{3}{2} b_{1} + 0 b_{2} + \frac{1}{2} b_{3} = \lambda^{2} b_{1} 2 \\ 0 b_{1} + \frac{1}{2} b_{2} + \frac{1}{2} b_{3} = \lambda^{2} b_{2} 1 \\ \frac{1}{2} b_{1} + \frac{1}{2} b_{2} + \frac{2}{2} b_{3} = \lambda^{2} b_{3} 2 \end{bmatrix} \begin{pmatrix} \frac{3}{4} & 0 & \frac{1}{4} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & \frac{2}{4} \end{pmatrix} \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix} = \lambda^{2} \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix} = \begin{pmatrix} 0.5774 \\ 0.5774 \\ 0.5774 \end{pmatrix}, \begin{pmatrix} 0.6116 \\ -0.7559 \\ -0.2336 \end{pmatrix}, \begin{pmatrix} 0.2336 \\ 0.7559 \\ -0.6116 \end{pmatrix}$$

一般解 、カテゴリ b_1 b_2 b_3 1 a_1 a_2 a_3

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0.5774 \\ 0.5774 \\ 0.5774 \end{pmatrix}, \begin{pmatrix} 0.6116 \\ -0.7559 \\ -0.2336 \end{pmatrix}, \begin{pmatrix} 0.2336 \\ 0.7559 \\ -0.6116 \end{pmatrix}$$

固有値 $\lambda^2=1$ の固有ベクトルは $b_1=b_2=b_3$ で $\bar{b}=0$ を満たさないため $\lambda^2=1$ を除外

		カテゴリ数量 1番目	カテゴリ数量 2番目
チューハイ	b_1	0.6116	0.2336
日本酒	b_2	-0.7559	0.7559
ビール	b_3	-0.2336	-0.6116

		サンプルスコア 1番目	サンプルスコア 2番目
1	a_1	-0.6116	0.2336
2	a_2	0.2336	-0.6116
3	a_3	0.7559	0.7559

$$a_1 = \frac{\sum_{j=1}^p t_{1j} b_j}{\lambda \sum_{j=1}^p t_{1j}} : \frac{-0.7559 - 0.2336}{\sqrt{0.6545} \cdot 2} = -0.6116, \frac{0.7559 - 0.6116}{\sqrt{0.0955} \cdot 2} = 0.2336$$

$$a_2 = \frac{\sum_{j=1}^p t_{2j} b_j}{\lambda \sum_{j=1}^p t_{2j}} : \frac{0.6116 - 0.2336}{\sqrt{0.6545} \cdot 2} = 0.2336, \frac{0.2336 - 0.6116}{\sqrt{0.0955} \cdot 2} = -0.6116$$

$$a_3 = \frac{\sum_{j=1}^p t_{3j} b_j}{\lambda \sum_{j=1}^p t_{3j}} : \frac{0.6116}{\sqrt{0.6545} \cdot 1} = 0.7559, \frac{0.2336}{\sqrt{0.0955} \cdot 1} = 0.7559$$

$$\sum_{i=1}^{n} \left(\frac{t_{i1}^{2}}{\sum_{k=1}^{p} t_{ik}} \right) b_{1} + \sum_{i=1}^{n} \left(\frac{t_{i1}t_{i2}}{\sum_{k=1}^{p} t_{ik}} \right) b_{2} + \sum_{i=1}^{n} \left(\frac{t_{i1}t_{i3}}{\sum_{k=1}^{p} t_{ik}} \right) b_{3} = \lambda^{2} b_{1} \sum_{i=1}^{n} t_{i1}$$

$$\sum_{i=1}^{n} \left(\frac{t_{i2}t_{i1}}{\sum_{k=1}^{p} t_{ik}} \right) b_1 + \sum_{i=1}^{n} \left(\frac{t_{i2}^2}{\sum_{k=1}^{p} t_{ik}} \right) b_2 + \sum_{i=1}^{n} \left(\frac{t_{i2}t_{i3}}{\sum_{k=1}^{p} t_{ik}} \right) b_3 = \lambda^2 b_2 \sum_{i=1}^{n} t_{i2}$$

$$\sum_{i=1}^{n} \left(\frac{t_{i3}t_{i1}}{\sum_{k=1}^{p} t_{ik}} \right) b_1 + \sum_{i=1}^{n} \left(\frac{t_{i3}t_{i2}}{\sum_{k=1}^{p} t_{ik}} \right) b_2 + \sum_{i=1}^{n} \left(\frac{t_{i3}^2}{\sum_{k=1}^{p} t_{ik}} \right) b_3 = \lambda^2 b_3 \sum_{i=1}^{n} t_{i3}$$

一般解 カテゴリ b_1 b_2 b_3 a_1 a_2 a_3

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0.5774 \\ 0.5774 \\ 0.5774 \end{pmatrix}, \begin{pmatrix} 0.6116 \\ -0.7559 \\ -0.2336 \end{pmatrix}, \begin{pmatrix} 0.2336 \\ 0.7559 \\ -0.6116 \end{pmatrix}$$

固有値 $\lambda^2=1$ の固有ベクトルは $b_1=b_2=b_3$ で $\bar{b}=0$ を満たさないため $\lambda^2=1$ を除外

		カテゴリ数量 1番目	カテゴリ数量 2番目
チューハイ	b_1	0.6116	0.2336
日本酒	b_2	-0.7559	0.7559
ビール	b_3	-0.2336	-0.6116

		サンプルスコア 1番目	サンプルスコア 2番目
1	a_1	-0.6116	0.2336
2	a_2	0.2336	-0.6116
3	a_3	0.7559	0.7559

$$a_1 = \frac{\sum_{j=1}^p t_{1j} b_j}{\lambda \sum_{j=1}^p t_{1j}} : \frac{-0.7559 - 0.2336}{\sqrt{0.6545} \cdot 2} = -0.6116, \frac{0.7559 - 0.6116}{\sqrt{0.0955} \cdot 2} = 0.2336$$

$$a_2 = \frac{\sum_{j=1}^p t_{2j} b_j}{\lambda \sum_{j=1}^p t_{2j}} : \frac{0.6116 - 0.2336}{\sqrt{0.6545} \cdot 2} = 0.2336, \frac{0.2336 - 0.6116}{\sqrt{0.0955} \cdot 2} = -0.6116$$

$$a_3 = \frac{\sum_{j=1}^p t_{3j} b_j}{\lambda \sum_{j=1}^p t_{3j}} : \frac{0.6116}{\sqrt{0.6545} \cdot 1} = 0.7559, \frac{0.2336}{\sqrt{0.0955} \cdot 1} = 0.7559$$

$$\sum_{i=1}^{n} \left(\frac{t_{i1}^{2}}{\sum_{k=1}^{p} t_{ik}} \right) b_{1} + \sum_{i=1}^{n} \left(\frac{t_{i1}t_{i2}}{\sum_{k=1}^{p} t_{ik}} \right) b_{2} + \sum_{i=1}^{n} \left(\frac{t_{i1}t_{i3}}{\sum_{k=1}^{p} t_{ik}} \right) b_{3} = \lambda^{2} b_{1} \sum_{i=1}^{n} t_{i1}$$

$$\sum_{i=1}^{n} \left(\frac{t_{i2}t_{i1}}{\sum_{k=1}^{p} t_{ik}} \right) b_1 + \sum_{i=1}^{n} \left(\frac{t_{i2}^2}{\sum_{k=1}^{p} t_{ik}} \right) b_2 + \sum_{i=1}^{n} \left(\frac{t_{i2}t_{i3}}{\sum_{k=1}^{p} t_{ik}} \right) b_3 = \lambda^2 b_2 \sum_{i=1}^{n} t_{i2}$$

$$\sum_{i=1}^{n} \left(\frac{t_{i3}t_{i1}}{\sum_{k=1}^{p} t_{ik}} \right) b_1 + \sum_{i=1}^{n} \left(\frac{t_{i3}t_{i2}}{\sum_{k=1}^{p} t_{ik}} \right) b_2 + \sum_{i=1}^{n} \left(\frac{t_{i3}^2}{\sum_{k=1}^{p} t_{ik}} \right) b_3 = \lambda^2 b_3 \sum_{i=1}^{n} t_{i3}$$

					一般解
	カテゴリ	1	2	3	
被験者		b_1	b_2	b_3	
1	a_1		1	1	
2	a_2	1		1	
3	a_3	1			

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0.5774 \\ 0.5774 \\ 0.5774 \end{pmatrix}, \begin{pmatrix} 0.6116 \\ -0.7559 \\ -0.2336 \end{pmatrix}, \begin{pmatrix} 0.2336 \\ 0.7559 \\ -0.6116 \end{pmatrix}$$

固有値 $\lambda^2=1$ の固有ベクトルは $b_1=b_2=b_3$ で $\bar{b}=0$ を満たさないため $\lambda^2=1$ を除外

		カテゴリ数量 1番目	カテゴリ数量 2番目
チューハイ	b_1	0.6116	0.2336
日本酒	b_2	-0.7559	0.7559
ビール	b_3	-0.2336	-0.6116

		サンプルスコア 1番目	サンプルスコア 2番目
1	a_1	-0.6116	0.2336
2	a_2	0.2336	-0.6116
3	a_3	0.7559	0.7559

$$a_1 = \frac{\sum_{j=1}^p t_{1j} b_j}{\lambda \sum_{j=1}^p t_{1j}} : \frac{-0.7559 - 0.2336}{\sqrt{0.6545} \cdot 2} = -0.6116, \frac{0.7559 - 0.6116}{\sqrt{0.0955} \cdot 2} = 0.2336$$

$$a_2 = \frac{\sum_{j=1}^p t_{2j} b_j}{\lambda \sum_{j=1}^p t_{2j}} : \frac{0.6116 - 0.2336}{\sqrt{0.6545} \cdot 2} = 0.2336, \frac{0.2336 - 0.6116}{\sqrt{0.0955} \cdot 2} = -0.6116$$

$$a_3 = \frac{\sum_{j=1}^p t_{3j} b_j}{\lambda \sum_{j=1}^p t_{3j}} : \frac{0.6116}{\sqrt{0.6545} \cdot 1} = 0.7559, \frac{0.2336}{\sqrt{0.0955} \cdot 1} = 0.7559$$

数量化3類

- ① 数量化3類とは何か
- ② 被験者に a_i (サンプルスコア)、カテゴリに b_i (カテゴリ数量)という数量を与え、反応の 似た被験者やカテゴリを分類したり、特性を調べたりするとき、数量化3類ではどのよ うな考え方の下で a_i , b_i を求めるのか述べよ
- ③ アンケート調査で下記のデータを得た カテゴリ数量とサンプルスコアの求め方を述べよ

アンケート調査票

項目1

あなたはチューハイが好きですか

1 はい 2 いいえ

項目2

あなたは日本酒が好きですか

1 はい 2 いいえ

項目3

あなたはビールが好きですか

1 はい 2 いいえ

カテゴリ 被験者No.	チューハイ	日本酒	ビール
1		レ	レ
2	レ		レ
3	レ		

	カテゴリ	1	2	3
被験者No.		b_1	b_2	b_3
1	a_1		1	1
2	a_2	1		1
3	a_3	1		