Lecture Notes week 3

Ömer Şakar

November 29, 2016

Contents

1	Lecture 1				
	1.1	Bayes' Rule			
		1.1.1 Full Probability Formula			
	1.2	A Herding Experiment			
	1.3	Genral Cascade Model			
2	Lect	Lecture 2 Network Effects			
	2.1	Self-fulfilling expectation			
	2.2	A Dynamic View			

1 Lecture 1

1.1 Bayes' Rule

Given events A and B:

Definition 1. The Conditional Probability $P(A|B) = \frac{P(A \cap B)}{P(B)}$, with P(B) > 0.

Figure 1: Visual representation of Bayes' Rule

Example: There are 40 Math students of which 15 are girls and there are 50 Computer Science students of which 10 are girls.

Let A = randomly chosen student is a girl and <math>B = randomly chosen student is a math student.

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{15}{90}}{\frac{40}{90}} = \frac{3}{8}$$

And from Bayes' Rule follows $\Rightarrow P(A \cap B) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A), P(A) > 0.$ Thus we can rewrite it as:

Definition 2. The Conditional Probability $P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}$.

1.1.1 Full Probability Formula

Definition 3. $P(A) = P(B) \cdot P(A|B) + P(\bar{B}) \cdot P(A|\bar{B})$

Example:
$$P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)} = \frac{\frac{40}{90} \cdot \frac{3}{8}}{\frac{25}{90}} = \frac{3}{8}$$

1.2 A Herding Experiment

Envelope 1 contains 8 red and 4 blue domino pieces (R) and envelope 2 contains 4 red and 8 blue domino pieces (B).

$$P(R) = P(B) = \frac{1}{2}$$

The first person that draws either a red or blue piece.

 $P(R|(saw)blue) = \frac{P(blue|R) \cdot P(R)}{P(blue)}$

$$P(blue) = P(R) \cdot P(blue|R) + P(B) \cdot P(blue|B) = \frac{1}{2} \cdot \frac{4}{12} + \frac{1}{2} \cdot \frac{8}{12} = \frac{1}{2}$$

$$P(blue) = P(R) \cdot P(blue|R) + P(B) \cdot P(blue|B) = \frac{1}{2} \cdot \frac{4}{12} + \frac{1}{2} \cdot \frac{8}{12} = \frac{1}{2}$$

$$P(R|blue) = \frac{\frac{4}{12} \cdot \frac{1}{2}}{\frac{1}{2}} = \frac{1}{3} < \frac{1}{2} \text{ and } P(B|blue) = \frac{\frac{8}{12} \cdot \frac{1}{2}}{\frac{1}{2}} = \frac{2}{3} > \frac{1}{2}$$

Now lets look at when a second person draws

Definition 4. $D_i = \{blue\}$ or $\{red\}$ – what person i says they saw

Definition 5. $E_i = \{blue\}$ or $\{red\}$ – what person i saw

Lets say that the first person says what he sees $(D_1 = E_1)$

$$P(B|blue, blue) = \frac{P(B) \cdot P(blue, blue|B)}{P(blue, blue)}$$

$$P(blue, blue) = \frac{1}{2} \cdot (\frac{2}{3})^2 + \frac{1}{2} \cdot (\frac{1}{3})^2 = \frac{5}{18}$$

Thus
$$P(B|blue, blue) = \frac{\frac{1}{2} \cdot (\frac{2}{3})^2}{\frac{5}{2}} = \frac{4}{5} > \frac{1}{2}$$

Ects say that the first person says what he sees $(D_1 - D_1)$ $P(B|blue, blue) = \frac{P(B) \cdot P(blue, blue|B)}{P(blue, blue)}$ $P(blue, blue) = \frac{1}{2} \cdot (\frac{2}{3})^2 + \frac{1}{2} \cdot (\frac{1}{3})^2 = \frac{5}{18}$ Thus $P(B|blue, blue) = \frac{\frac{1}{2} \cdot (\frac{2}{3})^2}{\frac{5}{18}} = \frac{4}{5} > \frac{1}{2}$ Conclusion: If $D_1 = \{blue\}$ and $E_2 = \{blue\} \implies D_2 = \{blue\}$

$$P(R) = P(B) = \frac{1}{2}$$

$$P(B|blue, red) = \frac{P(B) \cdot P(blue, red|B)}{P(blue, red)} = \frac{\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{2}}{\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{2}} = \frac{1}{2}$$

$$D_1 = \{blue\}, E_2 = \{red\} \implies D_2 = \{red\}$$

$$D_1 = \{blue\}, E_2 = \{red\} \implies D_2 = \{red\}$$

If your opinions differ (blue, red or red, blue)then you are back at the initial situation. Thus the third person will be equivalent to the first person.

Let $D_1 = D_2 = \{blue\}$. If $E_3 = \{blue\} \implies D_3 = \{blue\}$ If $E_3 = \{red\}$, then $P(R|blue, blue, red) = \frac{P(R) \cdot P(blue, blue, red|R)}{P(blue, blue, red)} = \frac{\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}} = \frac{2}{6} = \frac{1}{3} < \frac{1}{2}$. Thus when $E_3 = \{red\} \implies D_3 = \{blue\}$. Now the cascade has started, which also means $4thperson \equiv 3rdperson.$

$$P(B\ cascade|R) = \frac{1}{3} \cdot \frac{1}{3} + (\frac{1}{3} \cdot \frac{2}{3}) \cdot 2 \cdot \frac{1}{3} \cdot \frac{1}{3} + (\frac{1}{3} \cdot \frac{2}{3} \cdot 2)^2 \cdot \frac{1}{3} \cdot \frac{1}{3} + \dots = \frac{1}{9} \cdot \frac{1}{1 - \frac{4}{9}} = \frac{1}{5} \equiv 20\%$$

1.3 Genral Cascade Model

Example: Adopting a product

- 1) Let B be bad and G be good. We estimate P(B) = 1 p and P(G) = p.
- 2) And let v_g be if we guess G right and v_b if we guess B right.
- $v_g \cdot p + v_b \cdot (1-p) = 0$ Expected Reward. Rewritten it looks like $v_b + (v_g v_b) \cdot p$.
- It is accepted if P(G|signal) > p and rejected if P(G|signal) < p.
- 3) low(L) and high(H)

	В	G
L	q	1-q
Н	1-q	q

Table 1: With $q > \frac{1}{2}$

$$P(L|B) = q > \frac{1}{2}, \ P(H|B) = 1 - q. \ P(L|G) = 1 - q, \ P(H|G) = q > \frac{1}{2}.$$

First person
$$P(G|H) = \frac{P(H|G) \cdot P(G)}{P(H)} = \frac{p \cdot q}{p \cdot q + (1-p) \cdot (1-q)} > \frac{p \cdot q}{p \cdot q + (1-p) \cdot q} = \frac{p \cdot q}{q} = p$$

Thus $E_1 = \{H\} \implies D_1 = \{G\}$

Let a + b - person and S - signal a times H and b times L.

$$\begin{split} P(G|S) &= \tfrac{P(S|G) \cdot P(G)}{P(S)} = \tfrac{p \cdot q^a \cdot (1-q)^b}{p \cdot q^a \cdot (1-q)^b + (1-p) \cdot (1-q)^a \cdot q^b} > \tfrac{p \cdot q^a \cdot (1-q)^b}{p \cdot q^a \cdot (1-q)^b + (1-p) \cdot q^a \cdot (1-q)^b} = p \\ \text{This is when } a < b \iff (1-q)^a \cdot q^b > q^a \cdot (1-q)^b \text{ (because } q > 1-q). \\ \text{Thus when } a < b, D &= \{B\} \\ \text{If } a > b \iff (1-q)^a \cdot q^b < q^a \cdot (1-q)^b \text{ . This would result in } P(G|S) > p \implies D = \{G\} \end{split}$$

Figure 2: Graph showing cascade with up = H and down = L

2 Lecture 2 Network Effects

Definition 6. Externality: welfare affected by actions of others without a "contract" (mutual agreement).

Definition 7. Interest: reservation price (how much you are willing to pay).

Definition 8. Consumers: numbers between 0 and 1.

When x < y, x has a higher reservation price than y.

Definition 9. r(x): reservation price where 0 < x < 1.

//TODO picture

Definition 10. p: market price. $p \ge r(0)$ means nobody buys it and $p \le r(1)$ means everybody buys it.

Definition 11. p^* : equilibrium market price. x^* is chosen such that $r(x^*) = p^*$ - equilibrium quality.

 $x < x^* \implies r(x) > p^* \implies$ x wants to buy. $y > x^* \implies r(y) < p^* \implies$ y regrets it (downwards implies regret).

Definition 12. z: fraction of the population that uses the product

Definition 13. r(x): reservation price of $x \in [0, 1]$

The price x wants to pay $p^* = r(x) \cdot f(z)$ (the "new" reservation price). f(z) is increasing in z.

f(0) = 0 (if nobody uses the product) $\implies p(0) = r(0) \cdot f(0) = 0$

Figure 3: Example for social media

So the customer expects fraction z and buys the product if $r(x) \cdot f(z) \ge p^*$ where p^* is the market price.

2.1 Self-fulfilling expectation

If all customers agree that fraction f will buy the product and behave based on that, then the fraction of people who buys the product will be z.

How it works:

```
z = 0: f(0) = 0 \implies \forall x \text{ holds } r(x) \cdot f(0) = 0 \implies z = 0
 x' > 0 buys the product (z > 0). r(x') \cdot f(z) > p^*, r(x) is decreasing fraction. x < x' \implies r(x) > r(x') \implies r(x) \cdot f(z) > r(x') \cdot f(z) > p^* \implies x buys.
```

Customer z has lowest intrinsic value r(z) on [0, z]. If $p^* = f(z) \cdot r(z) \implies$ self-fulfilling expectation. //TODO picture

Suppose $p^* = f(z) \cdot r(x)$ for some $x \Longrightarrow$ fraction x will but \Longrightarrow actual value for x is $f(x) \cdot r(x)$. $x < y \Longrightarrow f(x) \cdot r(x) < p^* \Longrightarrow x$ paid too much! If $p^* = r(z) \cdot f(z)$ ($\exists z$ (there is alwats such a z)) \Longrightarrow z buys $\Longrightarrow x < z$ also buys \Longrightarrow fraction z will have it.

z is the fraction of the population that uses the product. r(x) is the intrinsic price of $x \in [0,1]$. The price x wants to pay $p(x) = r(x) \cdot f(z)$, in other words the reservation price. $p^* = r(z) \cdot f(z)$ is the equilibrium. $f(0) = 0 \implies p^* = r(0) \cdot f(0) = 0$, in other words equilibrium.

Example:
$$r(x) = 1 - x^2$$
, $f(z) = z^2$
 $p^* = r(z) = (1 - z^2) \cdot z^2$

$$p^* > \frac{3}{16} \implies$$
 no solution $p^* < \frac{3}{16} \implies r(z) \cdot f(z)$ has 2 solutions. //TODO 3 pictures

We will look at different cases:

- 1. z = 0: This is a stable equilibrium.
- 2. 0 < z < z': $r(z) \cdot f(z) < p^* \implies$ if they have bought it, they regret it (downward pressure).
- 3. z' < z < z'': $r(z) \cdot f(z) > p^* \implies$ more people want the product (upward pressure).
- 4. z > z'': $r(z) \cdot f(z) < p^* \implies$ downwards pressure.

Conclusion: 0 and z'' are stable equilibrium and z' is a tipping point.

2.2 A Dynamic View

x wants to purchase, thus $r(x) \cdot f(z) \ge p^*$. We define \hat{z} as a solution for $r(\hat{z}) \cdot f(z) = p^*$. This can be rewritten as $r(\hat{z}) = \frac{p^*}{f(z)}$. It holds that when $r(0) \ge \frac{p^*}{f(z)} \iff$ solution exists. We can also rewrite the formula to $\hat{z} = r^{-1}(\frac{p^*}{f(z)}) = g(z)$, (\hat{z} is the fraction of people that will buy given z and p).

Example:
$$r(x)=1-x^2, f(z)=z^2, \hat{z}=\sqrt{1-\frac{p^*}{z^2}}.$$
 If $z>\sqrt{p^*}\implies \hat{z}$ is defined and if $z\leq\sqrt{p^*}\implies \hat{z}=0.$ $q=r(x)=1-x^2\implies x^2=1-q$ $x=\sqrt{1-y}=r^{-1}(y)$ Remember that in these cases we have always assumed that $f(0)=0.$

Figure 4: \hat{z} plotted against z