What Is Claimed Is:

1	1. A method of closed-chest surgical intervention within an internal cavity	
2	of a patient's heart or great vessel, the method comprising:	
3	establishing cardiopulmonary bypass;	
4	arresting the patient's heart;	
5	viewing an internal portion of the patient's chest through a scope extending	

through a percutaneous intercostal penetration in the patient's chest; forming an internal penetration in a wall of the heart or great vessel using

cutting means introduced through a percutaneous intercostal penetration in the patient's

9 chest; and

6

7

8

10

11

12

3

4

Į

introducing an interventional tool through a percutaneous intercostal penetration and through the internal penetration to perform a surgical procedure within the internal cavity under visualization by means of said scope.

- 2. The method of claim 1 wherein the patient's heart is arrested by 2 occluding the patient's aorta between the patient's coronary arteries and the patient's brachiocephalic artery with an expandable member on a distal end of an endovascular catheter, and perfusing the patient's myocardium with cardioplegic fluid.
- 3. The method of claim 1 wherein the interventional tool is introduced 2 through a cannula positioned in a percutaneous intercostal penetration.
- 4. The method of claim 1 wherein the surgical procedure comprises 2 surgically treating a heart valve.
- 5. The method of claim 4 further comprising the step of removing at least a portion of the heart valve by means of a cutting tool introduced through a percutaneous 2 intercostal penetration and through the internal penetration. 3

1	6. The method of claim 4 further comprising the step of introducing a	
2	replacement valve through a percutaneous intercostal penetration and through the	
3	internal penetration into the internal cavity.	
1	7. The method of claim 6 further comprising fastening the replacement	
2	valve within the internal cavity by means of an instrument introduced through a	
3	percutaneous intercostal penetration and through the internal penetration.	
I	8. The method of claim 6 wherein the replacement valve is introduced	
2	through a cannula positioned in a percutaneous intercostal penetration.	
I	9. The method of claim 4 wherein a percutaneous intercostal penetration i	
2	created in a right lateral portion of the patient's chest.	
1	10. The method of claim 9 wherein the internal penetration is made in a wa	
2	of the patient's left atrium.	
l	11. The method of claim 10 wherein the heart valve comprises a mitral	
2	valve.	
1	12. The method of claim 10 wherein the heart valve comprises an aortic	
2	valve.	
.	Vaive.	
į	13. A method of closed-chest replacement of a heart valve in a patient's	
2	heart, the method comprising:	
3	establishing cardiopulmonary bypass:	
1	arresting the patient's heart:	
5	viewing the patient's heart through a scope extending through a percutaneous	

intercostal penetration in the patient's chest:

7	forming an internal penetration through a wall of the patient's heart using a		
8	cutting tool introduced through a percutaneous intercostal penetration in the patient's		
9	chest;		
10	positioning a replacement valve through a percutaneous intercostal penetration		
11	in the patient's chest and through the internal penetration into a chamber of the heart;		
12	and		
13	securing the replacement valve in a valve position in the heart.		
1	14. The method of claim 13 wherein the patient's heart is arrested by		
2	occluding the patient's aorta between the patient's coronary arteries and the patient's		
3	brachiocephalic artery with an expandable member on a distal end of an endovascular		
4	catheter, and perfusing the patient's myocardium with cardioplegic fluid.		
1	15. The method of claim 13 wherein the heart valve comprises a mitral		
2	valve, the valve position comprising a mitral valve position.		
1	16. The method of claim 15 wherein the chamber comprises a left atrium of		
2	the patient's heart.		
1	17. The method of claim 13 wherein the percutaneous intercostal penetration		
2	is disposed in a right lateral portion of the patient's chest.		
1	18. The method of claim 13 further comprising the step of removing at least		
2	a portion of the patient's heart valve using a cutting tool introduced through a		
3	percutaneous intercostal penetration and through the internal penetration.		
1	19. The method of claim 13 further comprising sizing the patient's heart		
2	valve by means of a sizing instrument introduced through a percutaneous intercostal		

penetration and through the internal penetration.

1	20. The method of claim 13 wherein the replacement valve is positioned	bу	
2	means of an introducer, the introducer comprising an elongated shaft and means at a	ì	
3	distal end of the shaft for holding the replacement valve.		
l	21. The method of claim 13 wherein the step of fastening comprises		
2	suturing the replacement valve to an annulus at the valve position.		
1	22. The method of claim 21 wherein the step of suturing comprises apply	yin	
2	a plurality of sutures to an annulus at the valve position, drawing the sutures out of t	he	
3	patient's body through the internal penetration and through a percutaneous intercostal		
4	penetration, and applying the sutures to the replacement valve.		
1	23. The method of claim 22 further comprising radially arranging the		
2	sutures in spaced-apart locations about an organizing ring disposed outside of the		
3	patient's body.		
I	24. The method of claim 23 further comprising holding the sutures in		
2	tension in the organizing ring as the replacement valve is positioned in the valve		
3	position.		

- 1 25. The method of claim 13 wherein the replacement valve is introduced 2 through a cannula positioned in a percutaneous intercostal penetration.
- 26. A system for closed-chest surgical intervention within a patient's heart or great vessel, the system comprising:
- means for forming a percutaneous penetration in an intercostal space in the patient's chest;
- a visualization scope configured to pass through an intercostal space in the

6	patient's chest for viewing an internal chest cavity;		
7	means for arresting the patient's heart from a location outside of the chest		
8	cavity;		
9	a cardiopulmonary bypass system, including means for delivering oxygenated		
10	blood to the patient's arterial system;		
11	cutting means positionable through a percutaneous intercostal penetration into		
12	the chest cavity for forming an internal penetration in a wall of the patient's heart or		
13	great vessel; and		
14	interventional means positionable through a percutaneous intercostal penetration		
15	and through the internal penetration for performing a surgical procedure within the heart		
16	or great vessel.		
1	27. The system of claim 26 wherein the means for arresting the heart		
2	comprises an endovascular catheter having expandable means for occluding the		
3	patient's ascending aorta between the patient's coronary arteries and the patient's		
4	brachiocephalic artery, and an internal lumen for delivering cardioplegic fluid into the		
5	ascending aorta upstream of the expandable means.		
i	28. The system of claim 26 wherein the interventional means comprises		
2	means for securing a replacement valve at a valve location within the patient's heart.		
1	29. The system of claim 28 further comprising a cannula positionable in a		
2	percutaneous intercostal penetration, the cannula having a lumen therein through which		
3	the replacement valve may be introduced into the internal chest cavity.		
i	30. The system of claim 28 wherein the replacement valve comprises an		
2	annular portion for attachment to a valve annulus in the heart, the annular portion		
3	having an outer diameter, wherein the lumen in the cannula has a cross-sectional height		

at least equal to the outer diameter, and a cross-sectional width less than the width of

3

4

1

2

3

4

2

3

5 the intercostal space.

1	31. The system of claim 28 further comprising cutting means positionable
2	through a percutaneous intercostal penetration and through the internal penetration for
3	removing at least a portion of the patient's heart valve.

- The system of claim 28 further comprising means positionable through a percutaneous intercostal penetration and through the internal penetration for sizing a valve annulus of the patient's heart valve.
 - 33. The system of claim 32 wherein the sizing means comprises an elongated shaft and sizing means at a distal end of the shaft, wherein the shaft and sizing means may be introduced through a percutaneous intercostal penetration and through the internal penetration to position the sizing means near the valve annulus.
 - 34. The system of claim 28 further comprising means for introducing the replacement valve into the patient's heart, the introducing means comprising an elongated shaft having means at a distal end thereof for releasably holding the replacement valve.
- 1 35. The system of claim 34 wherein the introducing means further
 2 comprises means actuated from a proximal end of the shaft for pivoting the replacement
 3 valve relative to the shaft from a first position for introduction through a percutaneous
 4 intercostal penetration to a second position for attachment at the valve location.
 - 36. The system of claim 28 wherein the means for securing the replacement valve comprises means positionable through a percutaneous intercostal penetration for suturing the replacement valve to a valve annulus at the valve location.

1	37. The system of claim 36 further comprising organizing means for	
2	maintaining sutures in spaced-apart positions outside of the chest cavity after the	
3	sutures have been applied to the valve annulus.	
1	38. The system of claim 37 wherein the organizing means is fixed to a	
2	proximal end of a cannula disposed in a percutaneous intercostal penetration, the	
3	cannula having a lumen through which the replacement valve may be introduced into	
4	the chest cavity.	
1	39. The system of claim 37 further comprising means on the organizing	
2	means for maintaining tension on ends of the sutures to facilitate advancing the	
3	replacement valve along the sutures into the patient's heart.	
1	40. The system of claim 26 further comprising retraction means positionable	
2	through an intercostal space in the patient's chest for opening the internal penetration in	
3	the wall of the heart or great vessel.	
l	41. The system of claim 26 wherein the interventional means is configured	
2	to reach the interior of the heart or great vessel from a percutaneous penetration in a	
3	right lateral portion of the patient's chest.	
l	42. The system of claim 41 wherein the interventional means is at least	
2	about 20 cm in length.	
I	43. A percutaneous access cannula to facilitate closed-chest replacement of a	

heart valve in a patient's heart, the access cannula comprising:

a cannula body configured for placement in an intercostal space in the patient's

chest, the cannula body having a distal end, a proximal end, and a lumen extending

therebetween, the lumen being configured to allow passage of a replacement valve

1				
6	therethrough	h; and		
7	an obturator positionable in the lumen, the obturator having a cross-sectional			
8	width less than the width of the intercostal space and a cross-sectional height greater			
9	than the cro	ss-sectional width.		
1	44.	The access cannula of claim 43 wherein the valve prosthesis has an		
2	annular attac	hment portion with an outer diameter, the obturator having a cross-		
3	sectional hei	ght at least equal to the outer diameter.		
1	45.	The access cannula of claim 43 wherein the cross-sectional height is		
2	about 2 to 6	times the cross-sectional width.		
1	46.	The access cannula of claim 43 wherein the obturator has a generally		
2	rectangular c	ross-section.		
1	47.			
2	oval cross-se	The access cannula of claim 43 wherein the obturator has a generally		
~	0 var C1033-3C	ction.		
1	48.	The access cannula of claim 44 wherein the lumen in the cannula body		
2	has a cross-se	ectional shape in an unstressed condition with a width less than the width		
3	of the intercostal space and a height greater than the outer diameter of the valve			
1	prosthesis.			
	49.	The access cannula of claim 48 wherein the lumen has a generally		
	•			

- rectangular cross-section.
- 50. The access cannula of claim 48 wherein the lumen has a generally ovalshaped cross-section.

4

5

6

- 51. The access cannula of claim 48 wherein the cross-sectional height of the lumen is 2 to 6 times the cross-sectional width of the lumen.
- The access cannula of claim 43 further comprising means at the proximal end of the cannula body for retaining a plurality of sutures extending through the lumen in a spaced apart relationship.
- The access cannula of claim 52 wherein the suture retaining means comprises a plurality of slots in the proximal end of the cannula body in circumferentially spaced positions around the lumen.
- The access cannula of claim 52 further comprising means at the proximal end of the cannula body for maintaining tension on the sutures.
- The access cannula of claim 54 wherein the means for maintaining tension comprises an organizing ring having an interior passage through which the sutures may extend and a plurality of means circumferentially spaced around the passage for frictionally engaging the sutures.
 - 56. The access cannula of claim 55 wherein the organizing ring comprises an inner ring, an outer ring rotatably coupled to the inner ring, a first plurality of apertures circumferentially spaced about the inner ring, and a second plurality of apertures circumferentially spaced about the outer ring, the first and second plurality of apertures being aligned when the outer ring is in a first rotational position, and non-aligned when the outer ring is in a second rotational position.
- 57. A cannula system to facilitate surgical intervention in a patient's body cavity, the cannula system comprising:
- a cannula body having a distal end, a proximal end, and a lumen therebetween,

3

4

5

- the lumen being configured for introduction of surgical instruments therethrough; and organizer means at the proximal end of the cannula body for retaining a plurality of sutures extending through the lumen from the body cavity in spaced apart positions outside of the body cavity.
- 1 58. The cannula system of claim 57 wherein the cannula body is configured 2 for positioning in an intercostal space in the patient's chest.
- The cannula system of claim 57 wherein the organizer means comprises a first organizing ring having an interior passage and a plurality of suture retaining means circumferentially spaced about the interior passage.
- 1 60. The cannula system of claim 59 wherein the first organizing ring is fixed to the proximal end of the cannula body with the interior passage aligned with the lumen.
- 1 61. The cannula system of claim 59 wherein the suture retaining means
 2 comprise a plurality of slots in the interior passage.
- 1 62. The cannula system of claim 60 further comprising means at the 2 proximal end of the cannula body for maintaining the sutures in tension.
 - 63. The cannula system of claim 62 wherein the means for maintaining the sutures in tension comprises a second organizing ring spaced apart from the first organizing ring, the second organizing ring having an interior passage and a plurality of means circumferentially spaced about the interior passage for holding the sutures in tension.

Ţ	64.	The cannula system of claim 63 wherein the means for holding the	
2	sutures in tension comprise slits in the second organizing ring for frictionally engagi		
3	the sutures.		
1	65.	The cannula system of claim 62 wherein the means for maintaining the	
2	sutures in ter	sion comprises slits in the first organizing ring for frictionally engaging	
3	the sutures.		
1	66.	The cannula system of claim 58 further comprising means for holding a	
2	replacement valve outside the chest in proximity to the organizer means, whereby a		
3	suture extend	ing from the body cavity through the lumen in the cannula may be applied	
4	to the replace	ment valve and secured in the organizer means.	
1	67.	The cannula system of claim 66 wherein the lumen is configured to	
2	facilitate intro	duction of the replacement valve therethrough into the body cavity.	
1	68.	A thoracoscopic device for placement of a replacement valve in a valve	
2	position of a p	patient's heart, the thoracoscopic device comprising:	
3	an elongated handle having a distal end and a proximal end, the handle		
4	configured for positioning through an intercostal space in the patient's chest; and		
5	means at the distal end of the handle for releasably holding a replacement valve		
6	in an orientati	on for introduction through the intercostal space.	
I	69.	The thoracoscopic device of claim 68 wherein the handle is at least about	
2	20 cm in lengt	h.	
I	70.	The thoracoscopic device of claim 68 further comprising means for	
2	pivoting the re	placement valve relative to the handle from a first orientation for	

introduction through the intercostal space, to a second orientation for placement in the

4

5

6

7

4	7	
4	1/2/17/6	position
┱	VALVE	002111011
		r

l	71.	The thoracoscopic device of claim 68 wherein the pivoting means
2	includes an ac	tuator disposed at the proximal end of the handle.

- The thoracoscopic device of claim 68 further comprising means at the proximal end of the handle for releasing the replacement valve from the holding means.
- 73. A prosthesis assembly for closed-chest replacement of a heart valve, the prosthesis assembly comprising:

a replacement valve having an annular attachment portion and a movable valve portion coupled to the attachment portion; and

holder means releasably mounted to the attachment portion, wherein the holder means is configured to allow introduction of the replacement valve through an intercostal space in the patient's chest.

- The prosthesis assembly of claim 73 wherein the intercostal space has an intercostal width, the replacement valve and holder means together having a profile with a width less than the intercostal width.
- The prosthesis assembly of claim 74 wherein the attachment portion of the replacement valve has an outer diameter which is greater than the intercostal width.
- The prosthesis assembly of claim 73 wherein the holder means
 comprises an elongated handle having a distal end mounted to the replacement valve
 and a proximal end opposite the distal end, the handle being configured for introducing
 the replacement valve into the patient's heart through the intercostal space.
 - 77. The prosthesis assembly of claim 76 wherein the handle is at least about

- 2 20 cm in length so as to allow positioning the replacement valve in the heart from a
- 3 right lateral portion of the chest.
- The prosthesis assembly of claim 76 wherein the handle comprises
- 2 means for releasing the replacement valve, the releasing means being configured for
- 3 actuation from a proximal end of the handle.
- 1 79. The prosthesis assembly of claim 76 wherein the handle comprises
- 2 means for pivoting the replacement valve from a first orientation for introduction
- 3 through the intercostal space to a second orientation for attachment within the patient's
- 4 heart, the pivoting means being configured for actuation from a proximal end of the
- 5 handle.
- 1 80. The prosthesis assembly of claim 73 wherein the intercostal space is less
- 2 than about 20 mm in width.
- 1 81. The prosthesis assembly of claim 73 wherein the replacement valve and
- 2 holding means are contained in a sterile pack.