

Kantichai Rujitrakarnchotikul 57010127

Nutchaphut Suebbuk 57010393

Toranun Siridontanakasame 57010597

Metasit Rinthon 57011026

Introduction

- ที่มา
 - O ตั้งแต่อดีตจนถึงปัจจุบัน การซื้อ-ขายสินทรัพย์ทางการเงินในตลาดหลักทรัพย์ ตลาดอนุพันธ์ และอื่นๆ ถือเป็นช่องทางหนึ่งในการลงทุนเพื่อแสวงหาผลกำไรที่นิยม ในหมู่นักลงทุน เนื่องจากตัวเลขผลกำไรที่อาจจะสูง จึงดึงดูดนักลงทุนหน้าใหม่ให้เข้ามาในตลาดหลักทรัพย์ ซึ่งนักลงทุนหน้าใหม่นั้นอาจจะมีความรู้ใน ตลาดหลักทรัพย์ที่น้อยจึงอาจจะสูญเสียเงินในการลงทุนได้
- วัตถุประสงค์
 - O มีเครื่องมือที่ช่วยนักเทรดทำนายค่าว่าเป็นขาขึ้นหรือขาลงตาม Model ต่างๆ ช่วยในการตัดสินใจของนักเทรดโดยตีออกมาเป็นแนวโน้มความน่าจะเป็น(ขึ้น ลง เท่า เดิม) และเปอร์เซ็นต์ความเปลี่ยนแปลงของราคา

Introduction (ต่อ)

- ลักษณะ data ที่ต้องการ
 - ข้อมูลหุ้น 50 ตัวที่มีผลประกอบการดี มี market cap และสภาพคล่องที่สูงเนื่องจากมีแนวคิดว่าหุ้นประเภทดัง
 กล่าวเกิดจากความต้องซื้อและขายจริง ซึ่งควรจะมีการเคลื่อนไหวที่เป็นรูปแบบ
- ลักษณะ data ที่ใช้
 - o เป็นไฟล์ประเภท CSV
 - O รายชื่อหุ้นจาก SET 50 อันดับแรก (SET50)
 - มีข้อมูลย้อนหลัง ตั้งแต่วันที่ 1 มกราคม 2560 จนถึงวันที่ 15 พฤษภาคม 2561

Data

- แหล่งที่มาของข้อมูล + Link
 - O http://siamchart.com/
- ลักษณะของข้อมูล
 - O เป็นไฟล์ CSV ที่มี attribute ticker, date, open, high, low, close และ volume
- Data cleaning
 - O สำหรับหุ้นที่เพิ่งเข้าตลาดใหม่ ในช่วงเวลาก่อนหน้านั้น จะแทนที่ด้วยราคาเดียวกันกับวันแรกที่เข้าตลาด
- Data transformation
 - O เมื่อ open nextday **มากกว่า** close today แทนค่าเป็น UP หรือ 1
 - O เมื่อ open nextday **น้อยกว่า** close today แทนค่าเป็น DOWN หรือ -1
 - O เมื่อ open nextday **เท่ากับ** close today แทนค่าเป็น DRAW หรือ 0

ตัวอย่างข้อมูลดิบ SCB

	А	В	С	D	E	F
1	DATE	OPEN	HIGH	LOW	CLOSE	VOL
2	20170104	154	156	153.5	156	11832000
3	20170105	156.5	157.5	155.5	156.5	8183500
4	20170106	156.5	157	155	156.5	3712600
5	20170109	156.5	158	155.5	156.5	6420200
6	20170110	156	158.5	156	157.5	11395000
7	20170111	158	158.5	157	157	6406500
8	20170112	158.5	158.5	154.5	155.5	7774000
9	20170113	156.5	158.5	155.5	157.5	618310
10	20170116	157	157	155	155	5236700
11	20170117	155	156.5	153.5	155	8864100
12	20170118	155.5	156.5	155	156	4313600
13	20170119	155	155.5	153	155	6844800
14	20170120	151.5	152	148.5	150.5	2818750
15	20170123	151	152	149.5	150.5	878370
16	20170124	150	151.5	150	150.5	7154200
17	20170125	151	153	150.5	152	16493300
18	20170126	153.5	154	152.5	153.5	9258000
19	20170127	153.5	153.5	152.5	152.5	4390400
20	20170130	152.5	153	152	152.5	3537000
21	20170131	152	152	150.5	151	7703200
22	20170201	150.5	153	150.5	152	6969200
23	20170202	152	153	151	151	652910
24	20170203	151	153.5	151	153	6597700
25	20170206	154	155	153.5	154.5	9901200
26	20170207	154.5	155	153.5	154	3802600
27	20170208	153.5	154.5	153	154	5747300
28	20170209	154.5	156	153.5	154	6157400
29	20170210	154.5	155	154	154	9620500
30	20170214	155	156	153	154	9754000
31	20170215	154.5	155	153	153.5	4413500
32	20170216	154	154.5	153.5	154	4592500
33	20170217	154	155	153.5	154	6132300
34	20170220	154	154.5	153	154	6282600
35	20170221	153.5	154	152	152.5	5458500
20	20170000	150 5	150 5		150 5	C700E0

	4	А	В	С	D	E	F	G
ตัวอย่างข้อมูล SCB				HIGH	LOW	CLOSE	VOL	NEXT_OPEN
		20170104	154	156	153.5	156	11832000	UP
		20170105	156.5	157.5	155.5	156.5		
ที่เพิ่ม attribute next_open เข้ามา		20170106	156.5	157	155	156.5	3712600	DRAW
	5	20170109	156.5	158	155.5	156.5	6420200	DOWN
	6	20170110	156	158.5	156	157.5	11395000	UP
	7	20170111	158	158.5	157	157		UP
	8	20170112	158.5	158.5	154.5	155.5	7774000	UP
	9	20170113	156.5	158.5	155.5	157.5	6183100	DOWN
	10	20170116	157	157	155	155	5236700	DRAW
	11	20170117	155	156.5	153.5	155	8864100	UP
	12	20170118	155.5	156.5	155	156	4313600	DOWN
	13	20170119	155	155.5	153	155	6844800	DOWN
	14	20170120	151.5	152	148.5	150.5	28187500	UP
	15	20170123	151	152	149.5	150.5	8783700	DOWN
	16	20170124	150	151.5	150	150.5	7154200	UP
	17	20170125	151	153	150.5	152	16493300	UP
	18	20170126	153.5	154	152.5	153.5	9258000	DRAW
	19	20170127	153.5	153.5	152.5	152.5	4390400	DRAW
	20	20170130	152.5	153	152	152.5	3537000	DOWN
	21	20170131	152	152	150.5	151	7703200	DOWN
	22	20170201	150.5	153	150.5	152	6969200	DRAW
	23	20170202	152	153	151	151	6529100	DRAW
	24	20170203	151	153.5	151	153	6597700	UP
	25	20170206	154	155	153.5	154.5	9901200	DRAW
	26	20170207	154.5	155	153.5	154	3802600	DOWN
	27	20170208	153.5	154.5	153	154	5747300	UP
	28	20170209	154.5	156	153.5	154	6157400	UP
	29	20170210	154.5	155	154	154	9620500	UP
	30	20170214	155	156	153	154	9754000	UP
	31	20170215	154.5	155	153	153.5	4413500	UP
	32	20170216	154	154.5	153.5	154	4592500	DRAW
	33	20170217	154	155	153.5	154	6132300	DRAW
	34	20170220	154	154.5	153	154	6282600	DOWN
	35	20170221	153.5	154	152	152.5		

Data Exploration

- แผนภาพแสดง Heatmap
 - ความสัมพันธ์ของราคาหุ้น 50 ตัว
 - O สีแดง (1) คือคู่ที่มีความสัมพันธ์เหมือนกัน
 - สีขาว (0) คือคู่ที่ไม่มีความสัมพันธ์กัน
 - O สีน้ำเงิน (-1) คือคู่ที่มีความสัมพันธ์แบบตรงกันข้าม

0.8

0.4

0.0

-0.4

Data Exploration (ต่อ)

- ตัวอย่างแผนภาพแสดง Correlation ไปในทิศทางเดียวกัน
 - O WHA และ BBL ในระยะเวลา 1 ปี

Data Exploration (ต่อ)

- ตัวอย่างแผนภาพแสดง Correlation ที่มีลักษณะตรงกันข้ามกัน
 - O CPF และ TISCO ในระยะเวลา 1 ปี

Data Exploration (ต่อ)

- ตัวอย่างแผนภาพแสดง Correlation ไม่มีความสัมพันธ์กัน
 - O BDMS และ INTUCH ในระยะเวลา 1 ปี

Evaluation Method

- Probability
 - O เนื่องจากจุดประสงค์ของ Model Gaussian คือ ทำนายราคาเปิดของราคาหุ้นแต่ละตัวในวันถัดไปเป็นอย่างไร(ขึ้น ลง เท่าเดิม) โดยวัดความแม่นยำจากจำนวนครั้ง ที่ทายถูก ส่วนด้วย จำนวนครั้งทั้งหมดที่ทำนาย
- Root Mean Square Error
 - O ใช้ Root Mean Square Error เป็นตัววัดความแม่นยำของ Model Linear regression และ polynomial regression

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{t=1}^{n} e_t^2}$$

- Mean Absolute Error
 - O ใช้ Mean Absolute Error เป็นตัววัดความแม่นยำ โดยไม่คำนึงถึงการกระจายตัวของ Error

$$\text{MAE} = \frac{1}{n} \sum_{t=1}^{n} |e_t|$$

Models & Algorithms

- Source Code
 - O ฟังก์ชั่นสำหรับค่านค่าจากไฟล์ CSV

```
def import_data(stockName):
    data = pd.read_csv('StocksData/' + stockName + '.csv')
    data = data.drop(['DATE'], 1)
    data = data.dropna()
    headers = list(data.columns.values)
    x = data[headers[:-1]]
    y = data[headers[-1:]].values.ravel()
    y[y == "UP"] = 1
    y[y == "DRAW"] = 0
    y[y == "DOWN"] = -1
    return x, y
```

Models & Algorithms (ต่อ)

- Model ที่ใช้
 - O Linear Regression
- 10-fold cross-validation
 - O SCB prediction
 - O RMSE of Linear Regression accuracy result:

```
0.820846708618
```

```
name == ' main ':
    stockName = 'SCB'
   x, y = import data(stockName)
    skf = KFold(n splits=10)
    predicted y = []
    expected y = []
    accuracy = 0
    for train index, test index in skf.split(x, y):
       x train, x test = x.loc[train index], x.loc[test index]
       y train, y test = y[train index], y[test index]
        classifier = LinearRegression()
        classifier.fit(x train, y train)
       predicted y = classifier.predict(x test)
        expected y = y test
        accuracy += np.sqrt(metrics.mean squared error(expected y, predicted y))
print(stockName, "prediction")
print("RMSE of Linear Regression result:" , accuracy/10)
```

Models & Algorithms (ต่อ)

- Model ที่ใช้
 - O Polynomial Regression
- 10-fold cross-validation
 - O SCB prediction
 - O RMSE of Linear Regression accuracy result: 0.973619205627

```
stockName = 'SCB'
   x, y = import_data(stockName)
    skf = KFold(n splits=10)
   predicted y = []
    expected y = []
    accuracy = 0
    for train index, test_index in skf.split(x, y):
        x train, x test = x.loc[train index], x.loc[test index]
        y train, y test = y[train index], y[test index]
        classifier = PolynomialFeatures(degree = 3)
        X_poly = classifier.fit_transform(x train)
        lr = LinearRegression()
        lr.fit(X poly, y train)
        classifier.fit(X poly, y train)
        predicted y = lr.predict(classifier.fit transform(x test))
        expected y = y test
        accuracy += np.sqrt(metrics.mean squared error(expected y, predicted y))
print "Polynomial-regression accuracy with " + stockName + ": " , accuracy/10
```

if name == ' main ':

Models & Algorithms (ต่อ)

- Model ที่ใช้
 - O GaussianNB
- Accuracy
 - SCB prediction
 - O gaussian Naive Bayes ไม่สามารถใช้ RMSE ได้ เนื่องจากผลลัพธ์ของ Gaussian นั้นจะเป็นค่าบอกว่าเพิ่มขึ้น ลดลง หรือเท่าเดิม ไม่สามารถ
 - O Accuracy score of Gaussian result: 35.7357357357 %

วัดเป็นค่าตวเลขได้ จึงใช้ค่าความน่าจะเป็นแทน

```
name == ' main ':
    stockName = 'SCB'
    x, y = import_data(stockName)
    skf = StratifiedKFold(n splits=10)
    predicted y = []
    expected y = []
    accuracy = 0
    # partition data
    for train index, test index in skf.split(x, y):
        x train, x test = x.loc[train index], x.loc[test index]
        y train, y test = y[train index], y[test index]
        classifier = GaussianNB()
        classifier.fit(x train, y train)
        predicted y.extend(classifier.predict(x test))
        expected y.extend(y test)
    accuracy = metrics.accuracy score(expected y, predicted y)
print(stockName, "prediction")
print("Accuracy score of Gaussian result:" , accuracy*100, '%')
```

Application

```
axsazvon@AxsazvoN-PC: ~/Desktop/data
File Edit View Search Terminal Help
axsazvon@AxsazvoN-PC:~/Desktop/data$ perl run.pl
Stock name : XYZ
Stock not found
axsazvon@AxsazvoN-PC:~/Desktop/data$ perl run.pl
Stock name : BTS
Close price: 9.5
Predict open price compare to last close price : ['DRAW']
GaussianNB accuracy with BTS: 49.2492492492 %
Predict next open price with Linear-regression : [ 9.45627204]
RMSE of Linear-regression with BTS: 0.0350339817777
Predict next open price with Polynomial-regression : [ 8.98901507]
RMSE of Polynomial-regression with BTS: 0.198504584587
axsazvon@AxsazvoN-PC:~/Desktop/data$
```

Summary

- ผลที่ได้รับจากการทำโครงงานนี้
 - 🔾 สร้างเครื่องมือช่วยทำนายการเทรด ที่สามารถนำมาใช้ได้จริง ส่งผลให้มีส่วนช่วยในการตัดสินใจของนักลงทุน
- บทเรียนที่ได้รับจากการลงมือจริง
 - O เห็นความแตกต่างของการวัดผลด้วย RMSE และ MAE
 - เข้าใจการทำงาน และความแตกต่างของอัลกอริที่มที่เลือกใช้

