Лабораторная работа №3

Анализ трафика в Wireshark

Газизянов Владислав Альбертович

2025-10-10

Содержание І

1 Цели работы

Изучение посредством Wireshark кадров Ethernet Анализ PDU протоколов транспортного и прикладного уровней стека TCP/IP Освоение методов захвата и анализа сетевого трафика

2 Установка и настройка Wireshark

Wireshark - анализатор трафика сетей на базе Ethernet Использует библиотеку Рсар/WinPсар для захвата пакетов Требует административных прав для работы Поддерживает фильтрацию трафика по протоколам

3 Анализ МАС-адресации

Команда ipconfig /all показывает сетевые интерфейсы

Определены МАС-адреса всех адаптеров

Основной интерфейс: Беспроводная сеть

MAC-адрес: C0-BF-BE-CF-C4-CE

```
C:\Windows\System32>ipconfig /all
Hастройка протокола IP для Windows
  Имя компьютера . . . . . . . : Ony
  Основной DNS-суффикс . . . . . :
  Тип узла. . . . . . . . . . . : Гибридный
  ІР-маршрутизация включена . . . : Нет
  WINS-прокси включен . . . . . . : Нет
Адаптер Ethernet Ethernet 2:
  DNS-суффикс подключения . . . . :
  Описание. . . . . . . . . . . : VirtualBox Host-Only Ethernet Adapter
```

4 Структура МАС-адреса

C0-BF-BE-CF-C4-CE

OUI: C0-BF-BE (MediaTek Inc.)

Идентификатор интерфейса: CF-C4-CE

Тип: индивидуальный (unicast)

Администрирование: глобальное

5 Захват ІСМР трафика

Запущен захват на интерфейсе «Беспроводная сеть» Выполнен ping шлюза: ping 192.168.0.1 Применен фильтр: arp or icmp

Рисунок 2: Фильтрация ARP и ICMP

6 Анализ ІСМР-запроса

Echo request от 192.168.0.101 к 192.168.0.1

Длина кадра: 74 байта

MAC назначения: TPLink 15:al:6c (шлюз)

MAC источника: AzureWaveTec_cf:c4:ce (компьютер)

Тип: Ethernet II

```
Frame 41926: Packet, 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interese thernet II, Src: AzureWaveTec_cf:c4:ce (c0:bf:be:cf:c4:ce), Dst: TPLink_15:a1:6c (5c:62:8b:15:a1:6c)

Destination: TPLink_15:a1:6c (5c:62:8b:15:a1:6c)

.....0....... = LG bit: Globally unique address (factory default)

....0..... = IG bit: Individual address (unicast)

Source: AzureWaveTec_cf:c4:ce (c0:bf:be:cf:c4:ce)

....0.... = LG bit: Globally unique address (factory default)

....0.... = IG bit: Individual address (unicast)

Type: IPv4 (0x0800)

[Stream index: 0]

Internet Protocol Version 4. Src: 192.168.0.101. Dst: 192.168.0.1
```

7 Анализ ІСМР-ответа

Echo reply от 192.168.0.1 к 192.168.0.101

Длина кадра: 74 байта

MAC назначения: AzureWaveTec_cf:c4:ce (компьютер)

МАС источника: TPLink_15:al:6c (шлюз)

Тип: Ethernet II

```
Frame 41927: Packet, 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on inter-

Ethernet II, Src: TPLink_15:a1:6c (5c:62:8b:15:a1:6c), Dst: AzureWaveTec_cf:c4:ce (c0:bf:be:cf:c4:ce)

Destination: AzureWaveTec_cf:c4:ce (c0:bf:be:cf:c4:ce)

Bestination: AzureWaveTec_cf:c4:ce (c0:bf:be:cf:c4:ce)

Besti
```

8 Анализ ARP пакетов

ARP запрос:

«Who has 192.168.0.101?» от шлюза

MAC назначения: Broadcast (ff:ff:ff:ff:ff)

ARP ответ:

«192.168.0.101 is at c0:bf:be:cf:c4:ce»

МАС назначения: индивидуальный

9 TCP handshake анализ

Трехэтапное рукопожатие:

Пакет 26: [SYN] - инициация (Seq=0)

Пакет 30: [SYN, ACK] - подтверждение (Seq=0, Ack=1)

Пакет 34: [ACK] - завершение (Seq=1, Ack=1)

No.	Time	Source	Destination	Protocol	Length Info
	26 2.760229	192.168.0.101	192.168.0.1	TCP	66 49703 → 53 [SYN] Seq=0 Win=65535 Len=0 MS
	30 2.764080	192.168.0.1	192.168.0.101	TCP	66 53 → 49703 [SYN, ACK] Seq=0 Ack=1 Win=292
	34 2.764208	192.168.0.101	192.168.0.1	TCP	54 49703 → 53 [ACK] Seq=1 Ack=1 Win=65280 Le
	36 2.764281	192.168.0.101	192.168.0.1	TCP	56 49703 → 53 [PSH, ACK] Seq=1 Ack=1 Win=652
	37 2.764328	192.168.0.101	192.168.0.1	DNS	88 Standard query 0x8957 A gator.volces.com
	40 2.768452	192.168.0.1	192.168.0.101	TCP	54 53 → 49703 [ACK] Seq=1 Ack=3 Win=29312 Le
	41 2.768452	192.168.0.1	192.168.0.101	TCP	54 53 → 49703 [ACK] Seq=1 Ack=37 Win=29312 L
	44 2.768452	192.168.0.1	192.168.0.101	DNS	1111 Standard query response 0x8957 A gator.vo
	46 2.768733	192.168.0.101	192.168.0.1	TCP	54 49703 → 53 [FIN, ACK] Seq=37 Ack=1058 Win
	49 2.772888	192.168.0.1	192.168.0.101	TCP	54 53 → 49703 [FIN, ACK] Seq=1058 Ack=38 Wir
	51 2.772976	192.168.0.101	192.168.0.1	TCP	54 49703 → 53 [ACK] Seq=38 Ack=1059 Win=6425

Рисунок 6: TCP handshake

10 График потока ТСР

Statistics \rightarrow Flow Graph \rightarrow TCP Flow Наглядно показывает этапы соединения Видно передачу данных после handshake Отображение закрытия соединения

11 Сравнение протоколов

Протокол	Уровень	Назначение
ARP	Канальный	Разрешение IP в MAC
ICMP	Сетевой	Диагностика сети
TCP	Транспортный	Надежная передача
UDP	Транспортный	Быстрая передача

12 Ключевые выводы

Wireshark - мощный инструмент анализа трафика Успешно изучены протоколы канального уровня Практически подтвержден TCP handshake Освоены методы фильтрации пакетов Получены навыки диагностики сетевых соединений