Grundlagen der Rechnerarchitektur Blatt 5

Marco Deuscher Carolin Schindler

05. Dezember 2019

1 Eine Schaltung für den Weihnachtsbaum

(a) Wahrheitstafel

 x_i kodieren Tag und s_i ist Segment i

Tag	x_3	x_2	x_1	x_0	$ s_1 $	s_2	s_3	s_4	s_5	s_6	s_7
So 01	0	0	0	0	1	1	1	1	1	1	1
Mo~02	0	0	0	1	0	1	0	1	0	1	0
Di 03	0	0	1	0	0	1	0	1	0	1	0
Mi 04	0	0	1	1	1	1	0	1	0	1	0
Do 05	0	1	0	0	0	1	0	1	0	1	0
Fr 06	0	1	0	1	1	1	1	1	1	1	0
Sa~07	0	1	1	0	1	1	1	1	1	1	0
So 08	0	1	1	1	1	1	1	1	1	1	1
Mo 09	1	0	0	0	1	0	1	0	1	0	0
Di 10	1	0	0	1	1	1	1	1	1	1	0
Mi 11	1	0	1	0	1	0	1	1	1	1	0
Do 12	1	0	1	1	1	0	1	0	1	0	0
Fr 13	1	1	0	0	1	0	1	0	1	0	0
Sa 14	1	1	0	1	1	1	1	1	1	1	0
So 15	1	1	1	0	1	0	1	0	1	0	1
Mo 16	1	1	1	1	1	1	1	0	1	0	0

(b) Kanonische Normalformen

$$f_{1,DKNF} = (\bar{x}_3\bar{x}_2\bar{x}_1\bar{x}_0) + (\bar{x}_3\bar{x}_2x_1x_0) + (\bar{x}_3x_2\bar{x}_1x_0) + (\bar{x}_3x_2x_1\bar{x}_0) + (\bar{x}_3x_2x_1x_0) + (\bar{x}_3x_2\bar{x}_1\bar{x}_0) + (\bar{x}_3\bar{x}_2\bar{x}_1\bar{x}_0) + (\bar{x}_3\bar{x}_2\bar{x}_1\bar{x}_0) + (\bar{x}_3\bar{x}_2\bar{x}_1\bar{x}_0) + (\bar{x}_3x_2\bar{x}_1\bar{x}_0) + (\bar{x}_3x_2\bar{x}_1\bar{x}_0) + (\bar{x}_3x_2\bar{x}_1\bar{x}_0) + (\bar{x}_3x_2\bar{x}_1\bar{x}_0) + (\bar{x}_3x_2\bar{x}_1\bar{x}_0) + (\bar{x}_3x_2\bar{x}_1\bar{x}_0) + (\bar{x}_3\bar{x}_2\bar{x}_1\bar{x}_0) + (\bar{x}_3\bar{x}_1\bar{x}_0) + (\bar{x}_3\bar{x}_1\bar{x}_0) + (\bar{x}_3\bar{x}_1\bar{x}_0) + (\bar{x}_3\bar{x}_1\bar{x}_0) + (\bar{x}_3\bar{x}_1\bar{x}_0) + (\bar{x}_3\bar{x}_1\bar{x}_0)$$

$$f_{2,KKNF} = (\bar{x}_3 + x_2 + x_1 + x_0) \cdot (\bar{x}_3 + x_2 + \bar{x}_1 + x_0) \cdot (\bar{x}_3 + x_2 + \bar{x}_1 + \bar{x}_0) \cdot (\bar{x}_3 + \bar{x}_2 + x_1 + x_0) \cdot (\bar{x}_3 + \bar{x}_2 + \bar{x}_1 + x_0)$$

(c) Algebraische Minimierung

XXX

(d) Karnaugh-Veitch

Segment 3: $f_{3,KV,DNF} = x_3 + x_2x_0 + x_2x_1 + \bar{x}_2\bar{x}_1\bar{x}_0$

Segment 4: $f_{4,KV,KNF} = (\bar{x}_0 + \bar{x}_1 + \bar{x}_3) \cdot (\bar{x}_3 + \bar{x}_2 + x_0) \cdot (\bar{x}_3 + x_1 + x_0)$

(e) Quine McCluskey XXX

(f) Weniger ist mehr

Segment 1(b): $13 \cdot \text{AND}_4 + \text{OR}_7 + \text{OR}_7 + 23 \cdot \text{NOT}_1 \rightarrow 208 \text{Transistoren}$ Segment 1(c): $6 \cdot \text{AND}_2 + \text{AND}_3 + \text{OR}_7 + 3 \cdot \text{NOT}_1 \rightarrow 66 \text{Transistoren}$ $\rightarrow \text{Ersparnis um} \ (1 - \frac{66}{208} \approx 39.8\%) \ \text{durch Minimierung}$ Segment 2(b): $\text{AND}_5 + 5 \cdot \text{OR}_4 + 11 \cdot \text{NOT}_1 \rightarrow 84 \text{Transistoren}$ Segment 2(c): $\text{AND}_2 + \text{OR}_2 + \text{OR}_3 + 2 \cdot \text{NOT}_1 \rightarrow 24 \text{Transistoren}$ $\rightarrow \text{Ersparnis um} \ (1 - \frac{24}{84} \approx 71.4\%) \ \text{durch Minimierung}$