Post Mid semester exam Problem Set 2

- 1. Let the market demand be given by the inverse demand curve P(Q) = 50 2Q, where $Q = q_1 + q_2$. The cost function for each of the two firms in the industry is $C(q_i) = 2q_i$, i = 1, 2. Firms are Cournot competitors.
 - (a) Derive the best response function of each firm.
 - (b) Find the Cournot Nash equilibrium output of the firms and profits.
- 2. Three oligopolistic firms operate in a market with inverse demand function given by P(Q) = a Q, where $Q = q_1 + q_2 + q_3$ and q_i is the quantity produced by firm i, i = 1, 2, 3. Each firm has constant marginal cost of production, c and no fixed cost. The firms choose their quantities as follows: 1) firm 1 chooses $q_1 \geq 0$; 2) firm 2 and 3 observe q_1 and then simultaneously choose q_2 and q_3 respectively. What is the subgame perfect Nash equilibrium?
- 3. Two firms compete in prices in a market for a homogeneous product. In this market there are N consumers; each buys one unit if the price of the product does not exceed Rs 10, and nothing otherwise. Consumers buy from the firm selling at a lower price. In case both firms charge the same price, assume that $\frac{1}{2}$ consumers buy from each firm. Assume zero cost of production for both firms.
- 4. Suppose there are two firms, 1 and 2 producing homogeneous product. Firm 1 and 2 compete in prices that is Bertrand Competition. The market demand function is A - p = Q, A > 0. Firm 1 has zero cost of production. Firm 2 bears fixed a cost of f, f > 0. We assume that there are prices such that $\frac{(A-p)p}{2} - f > 0$. Is there any pure strategy Nash equilibrium.
- 5. The market demand function is 1-p=Q Suppose there are two firms 1 and 2. The capacity of firm 1 is $\frac{1}{3}$ and the capacity of firm 2 is $\frac{1}{4}$. The cost of production is zero till capacity for each firm. The firms cannot produce more than its capacity. Each firm sets a price. Find the pure strategy Nash Equilibrium.

Answer

1. a) There are two firms 1, 2. The inverse market demand function is 50 - 2q = p, $Q = q_1 + q_2$. Firms 1 and 2 simultaneously chooses output q_1 and q_2 respectively. The payoff of firm 1, profit is $\pi_1(q_1, q_2) = (50 - 2(q_1 + q_2))q_1 - 2q_1$. The payoff of firm 2, profit is $\pi_2(q_1, q_2) = (50 - 2(q_1 + q_2))q_2 - 2q_2$. Firm 1 and 2, each maximizes profit taking the output of the other firm as given.

$$\frac{\partial((50-2(q_1+q_2))q_1-2q_1)}{\partial q_2}=0 \text{ at optimum point.}$$

We get $48 - 2q_2 = 4q_1$, the best response function of firm 1. $\frac{\partial((50 - 2(q_1 + q_2))q_2 - 2q_2)}{\partial q_2} = 0$ We get $48 - 2q_1 = 4q_2$, the best response function of firm 2.

$$\frac{\partial((50-2(q_1+q_2))q_2-2q_2)}{\partial a}=0$$

- b) We get the Cournot Nash equilibrium by solving $48 2q_2 = 4q_1$ and $48 2q_1 = 4q_2$. Output of each firm is $q_1 = q_2 = 8$. The profit $\pi_1 = 128$, $\pi_2 = 128$.
- 2. The market demand function is A Q = p. There are three firms 1, 2 and 3, each producing homogeneous output q_i , i = 1, 2, 3. The cost function of each firm is cq_i , i = 1, 2, 3.

It is a two stage game. In stage I, firm 1 chooses output q_1 . In stage II, firm 2 and 3 simultaneously chooses q_2 and q_3 after observing q_1 .

We find the subgame perfect Nash equilibrium using backward induction.

First we find the output of firm 2 and 3, q_2 and q_3 in stage II, given q_1 . The payoff, (profit) of firm 2 is $\pi_2(q_1, q_2, q_3) = (A - (q_1 + q_2 + q_3))q_2 - cq_2$ and firm 3 is $\pi_3(q_1, q_2, q_3) = (A - (q_1 + q_2 + q_3))q_3 - cq_3$. $\frac{\partial \pi_2(q_1,q_2,q_3)}{\partial q_2} = \frac{\partial ((A - (q_1 + q_2 + q_3))q_2 - cq_2)}{\partial q_2} = 0. \ \ 2q_2 = A - c - q_1 - q_3, \ \text{the best response function of firm}$ $\frac{\partial \pi_3(q_1,q_2,q_3)}{\partial q_2} = \frac{\partial ((A-(q_1+q_2+q_3))q_3-cq_3)}{\partial q_2} = 0.$ $2q_3 = A-c-q_1-q_2$, the best response function of firm

Solving $2q_2 = A - c - q_1 - q_3$ and $2q_3 = A - c - q_1 - q_2$, we get the best response function of firm 2 and 3 given q_1 of firm 1.

In stage I, firm 1 chooses q_1 that maximizes $\pi_1(q_1, q_2, q_3) = (A - (q_1 + q_2 + q_3))q_1 - cq_1 =$

In Stage 1, that it choses q_1 that maximizes $x_1(q_1, q_2, q_3) = (1 - (q_1 + \frac{A - c - q_1}{3}))q_1 - cq_1$. $(A - (q_1 + \frac{A - c - q_1}{3}))q_1 - cq_1$. $\frac{\partial \pi_1(q_1, q_2, q_3)}{\partial q_1} = \frac{\partial ((A - (q_1 + \frac{A - c - q_1}{3} + \frac{A - c - q_1}{3}))q_1 - cq_1)}{\partial q_1} = 0$, at optimum point. Solving the above equation we get $q_1 = \frac{A - c}{2}$. Therefore, $q_2 = \frac{A - c}{6}$ and $q_3 = \frac{A - c}{6}$. This is the subgame perfect Nash equilibrium.

3. There are two firms 1, 2. The demand function faced by firm 1 is

 $D(p_1) = N$, if $p_1 < p_2$.

 $D(p_1) = \frac{N}{2}$, if $p_1 = p_2$. $D(p_1) = 0$, if $p_1 > p_2$ or $p_1 > 10$.

We get similar demand function for firm 2 also.

The payoff (profit) of firm 1 is

 $\pi_1 = p_1 N$, if $p_1 < p_2$ $\pi_1 = p_1 \frac{N}{2}$, if $p_1 = p_2$.

 $\pi_1 = 0$, if $p_1 > p_2$ or $p_1 > 10$.

We need to find the pure strategy Nash equilibrium. The profit function of firm 1 has been plotted in figure 1. If $p_2 = p^*$ then best response of firm 1 is to set $p_1 = p^* - \epsilon$. In the figure 1, it is clear that by undercutting price the profit of firm 1 increases. So, there will be continuous undercutting of prices by both the firms. $p_1 = p_2 = 0$ is the pure strategy Nash equilibrium.

4. There are two firms 1 and 2. The demand function of firm 1 is,

 $D(p_1) = (A - p_1), \text{ if } p_1 < p_2.$

 $D(p_1) = \frac{(A-P_1)}{2}$, if $p_1 = p_2$.

 $D(p_1) = 0$, if $p_1 > p_2$.

We get similar demand function for firm 2 also.

The payoff (profit) of firm 1 is

 $\pi_1 = p_1(A - p_1)$, if $p_1 < p_2$

 $\pi_1 = p_1 \frac{(A-p_1)}{2}$, if $p_1 = p - 2$.

 $\pi_1 = 0$, if $p_1 > p_2$.

The payoff (profit) of firm 2 is

 $\pi_2 = p_2(A - p_2) - f$, if $p_1 > p_2$

 $\pi_2 = p_2 \frac{(A-p_2)}{2}$, if $p_1 = p - 2$.

 $\pi_2 = 0$, if $p_1 < p_2$.

For firm 2, we get \underline{p} and \bar{p} such that $p_2 \frac{(A-p_2)}{2} - f < 0$, for $p_2 < \underline{p}$, $p_2 \frac{(A-p_2)}{2} - f < 0$, for $p_2 > \bar{p}$ and $p_2 \frac{(A-p_2)}{2} - f \ge 0$, for $p \le p_2 \le \bar{p}$.

Since revenue function is same for firm 1 and 2 so the monopoly price p^{M} is same for both firm. Firm 2 will not set any price $p_2 < p$. At $p_1 = p_2 = p, \pi_1 > 0$. From figure 2, we see that if $p_1 = p - \epsilon$, the profit of firm 1 is high. If firm 1 set $p_1 = \underline{p} - \frac{\epsilon}{2}$, $\pi_1(p_1 = \underline{p} - \frac{\epsilon}{2}) > \pi(p_1 = \underline{p} - \epsilon)$ because monopoly price $p^M > p$. So firm 1 increases price p_1 , if $p_1 < p$. As firm 1 keeps on increasing price, $p_1 = p$, so again profit falls because demand is shared. This shows that there is no pure strategy Nash equilibrium.

5. Suppose capacity of firm 1 is k_1 and capacity of firm 2 is k_2 . We know that, if $k_1 \leq R_1(k_2)$ and $k_2 \leq R_2(k_1)$ then the pure strategy of each firm is to set same price and the price is given by $p = 1 - (k_1 + k_2)$. The capacity of firm 1 is $\frac{1}{3}$ and firm 2 is $\frac{1}{4}$. First, we find the Cournot reaction function. $\pi_1 = (1 - (q_1 + q_2))q_1$ and $\pi_2 = (1 - (q_1 + q_2)q_2) \cdot \frac{\partial \pi_1}{\partial q_1} = \frac{\partial (1 - (q_1 + q_2))q_1}{\partial q_1} = 0. \Rightarrow 2q_1 = 1 - q_2$. The reaction function of firm 1.

 $\frac{\partial \pi_2}{\partial q_2} = \frac{\partial (1 - (q_1 + q_2))q_2}{\partial q_2} = 0. \Rightarrow 2q_2 = 1 - q_1.$ The reaction function of firm 2. By solving the reaction function, we get the Cournot output is $q_1^C = \frac{1}{3}$ and $q_2^C = \frac{1}{3}$. The capacity of firm 1 is same as Cournot output and capacity of firm 2 is less than Cournot output. So, in this case the pure strategy Nash equilibrium price is that both firms set the same price and $p = 1 - \frac{1}{3} - \frac{1}{4}$, $p = \frac{5}{12}$.

