- 1. (30) (**Show all work**). A mass of 2 kg is suspended from a spring in a viscous fluid. The damping constant is 12 and spring constant is 68 newtons/meter. Let y(t) be the position of the mass at time t with downward direction positive.
 - (a) (5) Write down a differential equation which describes the motion of this mass.
 - (b) (15) If the mass has an initial position 2 meters below the rest (equilibrium) position and is moving downward at 9 m/sec, find the solution y(t) to the differential equation.
 - (c) (10) In a similar situation with a frictionless spring (i.e., the spring is in the air and air resistance is neglected), the solution turns out to be $y(t) = \sqrt{3}\cos(5t) + \sin(5t)$. What is the value of t when the mass first reaches it maximum distance from equilibrium?
- 2. (20) (Show all work). Let $f(x) = \ln(1+x)$.
 - (a) (10) Find a power series in x about a=0 (i.e. a Maclaurin series) for f. You need only write down the first four nonzero terms.
 - (b) (5) Determine the radius of convergence of the above series.
 - (c) (5) Write down a power series in x about a = 0 (i.e. a Maclaurin series) for the derivative, f'(x). You need only write down the first four nonzero terms.
- 3. (32) Multiple Choice Circle the correct response. (No partial credit will be given)
 - (a) $y = c_1 e^{-3t} + c_2 t e^{-3t}$ is the general solution to which differential equation?

A.
$$y'' - 6y' + 9y = 0$$
 B. $y'' - 9y = 0$

C.
$$y'' + 6y' + 9y = 0$$
 D. $y'' + 9y = 0$ E. $y'' - 9y' = 0$

(b) $y = e^{3t}(c_1 \sin(2t) + c_2 \cos(2t))$ is the general solution to which differential equation?

A.
$$y'' + 6y' - 13y = 0$$
 B. $y'' - 13y' + 6y = 0$

C.
$$y'' + 4y = 0$$
 D. $y'' - 6y' + 5y = 0$ **E.** $y'' - 6y' + 13y = 0$

(c) Find the general solution to the differential equation $xy' + 7y = e^{x^7}$.

A.
$$y = \frac{e^{x^7}}{7x^7} + C$$

B.
$$y = \frac{e^{x^7}}{7} + C$$

A.
$$y = \frac{e^{x^7}}{7x^7} + C$$
 B. $y = \frac{e^{x^7}}{7} + C$ **C.** $y = \frac{e^{x^7}}{x^7} + \frac{C}{x^7}$

D.
$$y = \frac{e^{x^7}}{7x^7} + \frac{C}{x^7}$$
 E. None of these

If $y = c_1 e^{3t} + c_2 e^{2t}$ is the general solution to the differential equation y'' - 5y' + 6y = 0, solve the initial value problem with y(0) = 4 and y'(0) = 5.

A.
$$c_1 = 3, c_2 = 7$$
 B. $c_1 = -3, c_2 = 7$ **C.** $c_1 = 7, c_2 = 0$

B.
$$c_1 = -3, c_2 = 7$$

$$\mathbf{C}. \ c_1 = 7, c_2 = 0$$

D.
$$c_1 = 3, c_2 = -7$$
 E. $c_1 = -3, c_2 = -7$

E.
$$c_1 = -3, c_2 = -7$$

- If $z = 3e^{2\pi i/7}$, then z^{16} is in which quadrant?
 - **A**. First
- B. Second
- C. Third
- **D**. Fourth
- E. On an axis

(f)
$$(3-4i)^{-1} = \frac{1}{3-4i} =$$

A.
$$\frac{3}{5} + i\frac{4}{5}$$

B.
$$\frac{3}{5} - i\frac{4}{5}$$

C.
$$\frac{3}{25} + i \frac{4}{25}$$

- **A.** $\frac{3}{5} + i\frac{4}{5}$ **B.** $\frac{3}{5} i\frac{4}{5}$ **C.** $\frac{3}{25} + i\frac{4}{25}$ **D.** $\frac{3}{25} i\frac{4}{25}$
 - **E**. None of these
- If you invest money in a bank at 5% interest compounded continuously, how many (g) years will it take to double?

 - **A.** $\frac{\ln 2}{05}$ **B.** $\frac{.05}{\ln 2}$
- **C**. $5 \ln 2$
- **D**. $2 \ln 5$
- **E**. Depends on initial investment
- The direction field below corresponds to which differential equation? (h)

 - **A**. $\frac{dy}{dx} = x y$ **B**. $\frac{dy}{dx} = x + y$ **C**. $\frac{dy}{dx} = y x$

 - **D**. $\frac{dy}{dx} = x^2 y^2$ **E**. $\frac{dy}{dx} = 1$

4. (18) **True/False.** Circle the correct response.

T F Consider the infinite series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \cdots$ and $\sum_{n=1000}^{\infty} a_n = a_{1000} + a_{1001} + \cdots$. Then $\sum_{n=1}^{\infty} a_n$ diverges if and only if $\sum_{n=1000}^{\infty} a_n$ diverges.

T F Let s_n be the *n*th partial sum of the series $\sum_{n=1}^{\infty} a_n$. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\lim_{n\to\infty} s_n = 0$.

T If $\sum_{n=1}^{\infty} a_n$ diverges, then $\lim_{n \to \infty} a_n = 0$.

T If $a_n \leq b_n \leq c_n$ for all $n = 1, 2, 3, \ldots$, and $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} c_n = M$, then $\lim_{n \to \infty} b_n$ exists.

T F The sum of the first four nonzero terms of the Maclaurin series of e^{-x^2} is $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$.

T F Let a, b, c be constants, and f(x) a function of x. If y_p is a solution of (i) ay'' + by' + cy = f(x), and y_h is a solution of

(ii) ay'' + by' + cy = 0,

then for any constant A, $y_p + Ay_h$ is a solution of (i).