

**AMENDMENTS TO THE CLAIMS:**

This listing of claims will replace all prior versions, and listings, of claims in the application:

1-18 (Canceled)

19. (Currently amended) A method for manufacturing an electroluminescent device comprising at least an anode, a cathode and an electroluminescent layer between the anode and the eathode and including at least one organic compound layer an organic compound layer formed therebetween, comprising the step of:

forming at least one of the organic compound layers comprising a step of the organic compound layer by co-depositing a metal salt and an organic compound including a proton-donating functional group showing Bronsted acid, and a functional group having a non-covalent electron pair, and a metal salt over the anode or the cathode,

wherein the proton-donating functional group is one of a hydroxyl group, a carboxyl group and a mercapto group.

20. (Canceled)

21. (Previously Presented) The method for manufacturing the electroluminescent device according to claim 19, wherein the functional group having the non-covalent electron pair is one of a heterocyclic residue group, an azomethine group and a carbonyl group.

22. (Previously Presented) The method for manufacturing the electroluminescent device according to claim 19, wherein the proton-donating functional group is one of a hydroxyl group, a carboxyl group and a mercapto group, and the functional group having the non-covalent electron pair is one of a heterocyclic residue group, an azomethine group and a carbonyl group.

23. (Previously Presented) The method for manufacturing the electroluminescent device according to claim 19, wherein the metal salt is one of a metal acetate salt, a metal

halide and a metal alkoxide.

24. (Withdrawn-Currently Amended) A method for manufacturing an electroluminescent device comprising at least an anode, a cathode and an electroluminescent layer between the anode and the cathode including at least one organic compound layer an organic compound layer formed therebetween, comprising the step of:

forming at least one of the organic compound layers comprising a step of the organic compound layer by co-depositing an organic compound represented by a following general formula (1) and a metal salt over the anode or the cathode:



wherein R<sub>1</sub> [[-]] to R<sub>6</sub> each represents one of a hydrogen element, a halogen element, a cyano group, an alkyl group (1 [[-]] to 10 carbon atoms), an alkoxy group (1 [[-]] to 10 carbon atoms), a substituted or non-substituted aryl group (1 [[-]] to 10 carbon atoms), and a substituted or non-substituted heterocyclic residue group (1 [[-]] to 20 carbon atoms), including the cases of R<sub>3</sub> and R<sub>4</sub>, R<sub>4</sub> and R<sub>5</sub> or R<sub>5</sub> and R<sub>6</sub> being mutually bonded to form a benzene ring or poly-condensed rings (1 [[-]] to 20 carbon atoms) and R<sub>1</sub> and R<sub>2</sub> being mutually bonded to form a pyridine ring.

25. (Withdrawn-Currently Amended) A method for manufacturing an electroluminescent device comprising at least an anode, a cathode and an electroluminescent layer between the anode and the cathode including at least one organic compound layer an organic compound layer formed therebetween, comprising the step of:

forming at least one of the organic compound layers comprising a step of the organic compound layer by co-depositing an organic compound represented by a following general formula (2) and a metal salt over the anode or the cathode:



wherein R<sub>1</sub> [-] to R<sub>15</sub> each represents one of a hydrogen element, a halogen element, a cyano group, an alkyl group (1 [-] to 10 carbon atoms), an alkoxy group (1 [-] to 10 carbon atoms), a substituted or non-substituted aryl group (1 [-] to 20 carbon atoms), and a substituted or non-substituted heterocyclic residue group (1 [-] to 20 carbon atoms), including a case of R<sub>1</sub> and R<sub>2</sub> being mutually bonded to form a pyridine ring.

26. (Currently amended) A method for manufacturing an electroluminescent device comprising ~~at least~~ an anode, a cathode and ~~an electroluminescent layer between the anode and the cathode including at least one organic compound layer an organic compound layer formed therebetween~~, comprising the step of:

~~forming at least one of the organic compound layers comprising a step of the organic compound layer by co-depositing an organic compound represented by a following general formula (3) and a metal salt over the anode or the cathode:~~



wherein R<sub>1</sub> [-] to R<sub>12</sub> each represents one of a hydrogen element, a halogen element, a cyano group, an alkyl group (1 [-] to 10 carbon atoms), an alkoxy group (1 [-] to 10 carbon atoms), a substituted or non-substituted aryl group (1 [-] to 20 carbon atoms), and a substituted or non-substituted heterocyclic residue group (1 [-] to 20 carbon atoms), including cases of R<sub>1</sub> and R<sub>2</sub> being mutually bonded to form a cycloalkane structure, a benzene ring or poly-condensed rings (1 to 20 carbon atoms), R<sub>4</sub> and R<sub>5</sub>, R<sub>5</sub> and R<sub>6</sub>, R<sub>6</sub> and

R<sub>7</sub>, R<sub>8</sub> and R<sub>9</sub>, R<sub>9</sub> and R<sub>10</sub> or R<sub>10</sub> and R<sub>11</sub> being mutually bonded to form a benzene ring or poly-condensed rings (1 [-] to 20 carbon atoms), and R<sub>2</sub> and R<sub>3</sub> or R<sub>1</sub> and R<sub>12</sub> being mutually bonded to form a pyridine ring.

27. (Withdrawn-Currently Amended) A method for manufacturing an electroluminescent device comprising at least an anode, a cathode and an electroluminescent layer between the anode and the cathode including at least one organic compound layer an organic compound layer formed therebetween, comprising the step of: forming at least one of the organic compound layers comprising a step of the organic compound layer by co-depositing an organic compound represented by a following general formula (4) and a metal salt over the anode or the cathode:



wherein R<sub>1</sub> [-] R<sub>30</sub> each represents one of a hydrogen element, a halogen element, a cyano group, an alkyl group (1 [-] to 10 carbon atoms), an alkoxy group (1 [-] to 10 carbon atoms), a substituted or non-substituted aryl group (1 [-] to 20 carbon atoms), and a substituted or non-substituted heterocyclic residue group (1 [-] to 20 carbon atoms) R<sub>1</sub> and R<sub>2</sub> being mutually bonded to form a cycloalkane structure, a benzene ring or poly-condensed rings (1 to 20 carbon atoms) and R<sub>2</sub> and R<sub>3</sub> or R<sub>1</sub> and R<sub>30</sub> being mutually bonded to form a pyridine ring.

28. (Withdrawn-Currently Amended) A method for manufacturing an electroluminescent device comprising at least an anode, a cathode and an electroluminescent layer between the anode and the cathode including at least one organic compound layer an

organic compound layer formed therebetween, comprising the step of:

forming at least one of the organic compound layers comprising a step of the organic compound layer by co-evaporating an organic compound represented by a following general formula (5) and a metal salt over the anode or the cathode:



wherein R<sub>1</sub> [-] to R<sub>5</sub> each represents one of a hydrogen element, a halogen element, a cyano group, an alkyl group (1 [-] to 10 carbon atoms), an alkoxy group (1 [-] to 10 carbon atoms), a substituted or non-substituted aryl group (1 [-] to 20 carbon atoms), and a substituted or non-substituted heterocyclic residue group (1 [-] to 20 carbon atoms), including cases of R<sub>4</sub> representing one of an amino group, a dialkylamino group, and an arylamino group, R<sub>2</sub> and R<sub>3</sub>, R<sub>3</sub> and R<sub>4</sub> or R<sub>4</sub> and R<sub>5</sub> being mutually bonded to form a benzene ring or poly-condensed rings (1 to 20 carbon atoms), and R<sub>3</sub> and R<sub>4</sub>, or R<sub>4</sub> and R<sub>5</sub> being mutually bonded to form a julolidine skeleton.

29. (Previously Presented) The method for manufacturing the electroluminescent device according to any one of claims 24 to 28, wherein the metal salt is one of a metal acetate salt, a metal halide and a metal alkoxide.

30. (Previously Presented) The method for manufacturing the electroluminescent device according to any one of claims 24 to 28, wherein the metal salt includes one of zinc, aluminum, silicon, gallium and zirconium.

31. (New) The method according to claim 19, wherein the metal salt including a metal element selected from the group consisting of a group of zinc, aluminum, silicon, gallium, and zirconium.