Neural Networks and Learning Systems TBMI26 / 732A55 2019

Lecture 4
Ensemble Learning

Magnus Borga magnus.borga@liu.se

Bootstrap Aggregating (Bagging)

Breiman,1994

Train each base-classifier using a subset of the training data $S = \{\mathbf{x}_i, y_i\}_{i=1}^N$ $S_1 \subset S$ $S_1 \subset$

General boosting algorithm

Train weak classifiers sequentially!

- 1. Set weights d₁=1/N
- Train weak classifier h₁(x) using weights d₁
- Increase and decrease weight for wrongly and correctly classified training examples respectively -> \mathbf{d}_2
- Train weak classifier h₂(x) using weights d₂
- Repeat until h_M(x)

Training a decision stump

Find best split threshold $\tau!$

Class label {-1,+1} Training input: $\{x_i, y_i, d_i\}_{i=1}^M$ Normalized weights: $\sum d_i = 1$ Consider only one feature

Threshold function: $h(x; \tau, p) = \begin{cases} +1 & p \ x \ge p \ \tau \\ -1 & p \ x$

0-1 cost function: $\min_{\tau,p} \varepsilon(\tau,p) = \sum_{i=1}^{m} d_i I(y_i \neq h(x_i;\tau,p))$ 1 for false classifications

Training a decision stump, cont.

$$\min_{\tau,p} \varepsilon(\tau,p) = \sum_{i=1}^{M} d_i I(y_i \neq h(x_i;\tau,p)) \text{ is always } \le 0.5!$$

Why? If we classify all training samples wrong we get:

$$\varepsilon(\tau, p) = \sum_{i=1}^{M} d_i = 1$$

-1 -1 -1 x

But we can then just change polarity/sign and get all samples correct, i.e., $\varepsilon = 0!$

In general, if we obtain an error ϵ between 0.5 and 1.0, we can switch polarity and get the error 1.0 – ϵ , which is smaller than 0.5.

Brute force optimization $\min_{\tau,p} \varepsilon(\tau,p) = \sum_{i=1}^{M} d_i \, I(y_i \neq h(x_i;\tau,p))$ Cost-function jumps at the x_i:s. Enough to test all thresolds in the set $\tau \in \{X_i\}_{i=1}^N$ and see which one gives the smallest error.

Discrete AdaBoost

Freund & Schapire, 1995

Training data
$$\left\{\mathbf{X}_{i},y_{i}\right\}_{i=1}^{M},\,y_{i}\in\left\{-1,+1\right\}$$

Initialization:
$$d_1(i) = \frac{1}{M}$$
, $T = \#$ base classifiers

for t = 1 to T

Find weak classifier $h_t(\mathbf{x}) = \{-1,+1\}$ that minimizes the

weighted classification error:

$$\varepsilon_{t} = \sum_{i=1}^{M} d_{t}(i) I(y_{i} \neq h_{t}(\mathbf{x}_{i}))$$

Update weights:
$$d_{t+1}(i) = d_t(i)e^{-\alpha_t y_i h_t(x_t)}, \text{ where } \alpha_t = \frac{1}{2}\ln\frac{1-\varepsilon_t}{\varepsilon_t}$$
 and renormalize so that
$$\sum_{i=1}^M d_{t+1}(i) = 1$$

Final strong classifier: $H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \mathbf{h}_t(\mathbf{x})\right)$

Discrete AdaBoost

- Discrete output from the weak classifier $h_t(\mathbf{x}) = \{-1, +1\}$
- Weight update

$$d_{t+1}(i) = d_t(i)e^{-a_t y_i h_t(\mathbf{x}_i)} = \begin{cases} d_t(i)e^{-a_t} & \text{if } \mathbf{x}_i \text{ correctly classified} \\ d_t(i)e^{a_t} & \text{if } \mathbf{x}_i \text{ wrongly classified} \end{cases}$$

• Performance of weak classifier:

$$\alpha_t = \frac{1}{2} \ln \frac{1 - \varepsilon_t}{\varepsilon_t}$$

Final strong classifier: $H(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{T} \alpha_i \mathbf{h}_i(\mathbf{x})\right)$

Discrete AdaBoost – Toy example

Initial weights
$$d_1(i) = \frac{1}{10}$$
, $T = 3$

10 training samples \mathbf{x}_i , $i = 1 \cdots 10$

Images borrowed from R. Schapire, "A Boosting Tutorial"

Discrete AdaBoost – Toy example

Normalize d₂!

Outlier strategies

- Keep an eye on the weights (plot them!)
- Weight trimming
 - Don't allow weights larger than a certain threshold
 - Disregard training samples with too large weights
- Use alternative weight update schemes with less aggressive increases for misclassified training data
 - LogitBoost
 - GentleBoost

Summary Ensemble Learning

(using decision trees)

- Nonlinear classifiers that are easy to implement
- Easy to use just one or a few parameters (T)
- Inherent feature selection
- Slow to train fast to classify (real-time)
- Look out for outlier problems (AdaBoost)

26

Real-time object detection

P. Viola and M. Jones "Rapid Object Detection using a Boosted Cascade of Simple Features", 2001

Sweep a sub-window over the image. for each position, determine if the sub-window contains a face or not.

27

Haar-features

Rectangle filters

From the sub-window, calculate contrast features (Haar features)

LOTS of different combinations, can be several 100,000 features!

at different locations and scales, and in different orientations.

Train detector with AdaBoost

As described previously!

Similar with non-face images to obtain negative examples.