Введение

План 1-го полугодия

- 1) Метрические и нормированные пространства;
- 2) Банаховы пространства и геометрия в них;
- 3) Гильбертовы пространства и геометрия в них;
- 4) Линейные непрерывные функционалы и операторы в банаховых и гильбертовых пространствах;
- 5) Спектральная теория;
- 6) Теория Фредгольма;

Метрические и нормированные пространства

Метрические пространства

Опр: 1. Пару (X, ρ) будем называть метрическим пространством, где X - произвольное множество, функция расстояния ρ задается следующим образом:

$$\rho \colon X \times X \to \mathbb{R}_0^+ = [0; +\infty)$$

называется метрикой и обладает свойствами, называемыми аксиомами метрики:

- 1) **Неотрицательность**: $\forall x, y \in X, \ \rho(x, y) \ge 0 : \ \rho(x, y) = 0 \Leftrightarrow x = y;$
- 2) Симметричность: $\forall x, y \in X, \ \rho(x, y) = \rho(y, x);$
- 3) Неравенство треугольника: $\forall x, y, z \in X, \, \rho(x, y) \le \rho(x, z) + \rho(z, y);$

Примеры метрических пространств:

1) $x=(x_1,\ldots,x_n)\in\mathbb{R}^n,\,\forall i,\,x_i\in\mathbb{R}$ с метрикой:

$$\rho(x,y) = \sqrt{\sum_{i=1}^{n} |x_i - y_i|^2}$$

2) C[a,b] - непрерывные на [a,b] функции с метрикой:

$$\rho(f,g) = \max_{x \in [a,b]} |f(x) - g(x)|$$

3) Дискретное пространство: X - произвольное непустое множество с метрикой:

$$\rho(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$$

Сходимость в (X, ρ)

Опр: 2. Последовательность $\{x_n\}_{n=1}^{\infty} \subset X$ сходится к $x: x_n \to x$, если $\rho(x_n, x) \xrightarrow[n \to \infty]{} 0$.

Опр: 3. Последовательность $\{x_n\}_{n=1}^{\infty} \subset X$ называется фундаментальной, если:

$$\forall \varepsilon > 0, \exists N = N(\varepsilon) : \forall n, m \geq N, \rho(x_n, x_m) < \varepsilon$$

Опр: 4. Метрическое пространство (X, ρ) называется <u>полным</u>, если $\forall \{x_n\}_{n=1}^{\infty} \subset X$ - фундаментальная:

$$\exists \lim_{n \to \infty} x_n = x \in X$$

Полные пространства хороши тем, что если мы делаем предельный переход в нем, то нам не нужно заботиться о том, что предельный элемент обладает теми же свойствами, что и элементы x_n .

Например, пространство непрерывных функций - полное ⇒ если делаем предельный переход по метрике на этом пространстве (равномерный предел непрерывных функций это непрерывная функция), то получим непрерывную функцию.

Можно рассматривать пространство интегрируемых функций, они тоже полны \Rightarrow предельный переход даст интегрируемую функцию.

Примеры метрических пространств:

- 1) (\mathbb{R}^n, ρ) полное;
- 2) $(C[a,b], \rho)$ полное;
- 3) Дискретное пространство полное;
- 4) \mathbb{Q} пространство рациональных чисел с метрикой $\rho(x,y) = |x-y|$ не является полным. Можно взять: $\sqrt{2} \notin \mathbb{Q}$, а в качестве x_n возьмем последовательность цифр, которая приближается к $\sqrt{2}$:

$$x_n = 1, \underbrace{4 \dots}_n \xrightarrow[n \to \infty]{} x = x\sqrt{2}$$

Эта последовательность фундаментальна в \mathbb{R} , но её предел $\notin \mathbb{Q}$;

5) Пространство финитных последовательностей: c_{00} : $x=(x_1,x_2,\ldots,x_n,0,0,\ldots)\in c_{00}$:

$$\forall x \in c_{00}, \exists N = n(x) : \forall k > n, x_k = 0$$

Это пространство не полно, рассмотрим последовательность:

$$x^k = (1, \frac{1}{2}, \dots, \frac{1}{k}, 0, \dots) \in c_{00}$$

Она фундаментальна и после k-го номера первые k координат заведомо не меняются \Rightarrow предельная последовательность не будет финитной (все координаты будут ненулевыми);

Геометрические понятия в метрических пространствах

Опр: 5. <u>Открытым шаром</u> $\mathcal{B}(x_0, r)$ в метрическом пространстве (X, ρ) с центром в точке x_0 радиуса r называется множество:

$$\mathcal{B}(x_0, r) := \{ x \in X \colon \rho(x, x_0) < r \}$$

Опр: 6. Замкнутым шаром $\overline{\mathcal{B}(x_0,r)} = \mathcal{B}[x_0,r]$ в метрическом пространстве (X,ρ) с центром в точке x_0 радиуса r называется множество:

$$\mathcal{B}[x_0, r] := \{ x \in X : \rho(x, x_0) \le r \}$$

Пусть M - множество в метрическом пространстве (X, ρ) : $M \subset (X, \rho)$.

Опр: 7. Точка x_0 является предельной точкой множества M, если:

$$\forall \varepsilon > 0, \, \mathcal{B}(x_0, \varepsilon) \cap M$$

содержит бесконечно много точек.

Следствие 1. Точка x_0 - предельная точка для $M \Leftrightarrow \exists \{x_n\}_{n=1}^{\infty}, x_n \in M$ и $x_n \xrightarrow{\rho} x_0$.

 \square (\Leftarrow) $\forall \varepsilon > 0$, $\exists N = N(\varepsilon) \in \mathbb{N}$: $\forall n \geq N$, $\rho(x_n, x_0) < \varepsilon \Rightarrow x_n \in \mathcal{B}(x_0, \varepsilon)$, видно что этих элементов бесконечное число в силу $\forall n \geq N$.

(⇒) $\forall n \in \mathbb{N}, \mathcal{B}\left(x_0, \frac{1}{n}\right) \cap M$ содержит бесконечно много точек, тогда:

$$\forall n, \exists x_n \in \mathcal{B}\left(x_0, \frac{1}{n}\right) \cap M \Rightarrow x_n \in M$$

Поскольку их бесконечно много, то мы можем выбирать их разными, то есть, чтобы $x_n \neq x_1, x_2, \dots, x_{n-1}$. В итоге, мы построили последовательность: $x_n \to x_0$, где $\forall n, x_n \in M$.

Опр: 8. Точка x_0 называется точкой прикосновения множества $M\subset (X,\rho),$ если:

$$\forall \varepsilon > 0, \, \mathcal{B}(x_0, \varepsilon) \cap M \neq \emptyset$$

Опр: 9. Точка x_0 называется <u>изолированной точкой</u> множества $M \subset (X, \rho)$, если:

$$\exists \varepsilon > 0 \colon \mathcal{B}(x_0, \varepsilon) \cap M = \{x_0\}$$

Следствие 2. Если x_0 - предельная точка, то x_0 - это точка прикосновения. Обратно, вообще говоря, не верно.

 \square Если x_0 - предельная точка, то по определению $\forall \varepsilon > 0, \mathcal{B}(x_0, \varepsilon) \cap M \neq \emptyset$, поскольку содержит бесконечно много точек \Rightarrow точка прикосновения.

Обратно, может быть не верно, когда $\exists \varepsilon > 0$, $\mathcal{B}(x_0, \varepsilon) \cap M \neq \emptyset$, но при этом такое пересечение содержит конечное число точек, то есть x_0 - точка прикосновения, но не предельная:

$$\exists \varepsilon > 0, \, \mathcal{B}(x_0, \varepsilon) \cap M \neq \emptyset, \, \mathcal{B}(x_0, \varepsilon) \cap M = \{x_1, x_2, \dots, x_m\}$$

Более того, если мы возьмем: $0 < \hat{\varepsilon} \leq \min_{1 \leq i \leq m} \rho(x_0, x_i)$, то $\mathcal{B}(x_0, \varepsilon) \cap M = \{x_0\}$ - изолированная точка.

Опр: 10. Замыканием множества $M\subset (X,\rho)$ называется объединение множества M со всеми его предельными точками:

$$\overline{M} \coloneqq M \cup \{$$
все предельные точки $M\}$

Упр. 1. Для любого множества $M \subset (X, \rho)$, его замыкание $\overline{M} \equiv$ все точки прикосновения M.

- (\Rightarrow) Пусть $x\in \overline{M}$ предельная точка M, тогда по следствию выше x точка прикосновения M. Если $x\in M$ не является предельной, то $\exists\, \varepsilon>0\colon \mathcal{B}(x,\varepsilon)\cap M$ содержит конечное число точек $\Rightarrow x$ это изолированная точка \Rightarrow точка прикосновения M.
- (\Leftarrow) Пусть $x \in \overline{M}$ точка прикосновения $M \Rightarrow \forall \varepsilon > 0, \mathcal{B}(x,\varepsilon) \cap M \neq \emptyset$. Пусть $x \in M$ тогда:

$$x \in M \Rightarrow x \in \mathcal{B}(x, \varepsilon) \Rightarrow x \in \mathcal{B}(x, \varepsilon) \cap M \neq \emptyset$$

Пусть $x \notin M$, тогда x может быть только предельной точкой. Пусть это не так, тогда:

$$\exists \varepsilon > 0 \colon \mathcal{B}(x,\varepsilon) \cap M = \{x_1, x_2, \dots, x_m\} \Rightarrow \exists 0 < \hat{\varepsilon} \le \min_{1 \le i \le m} \rho(x_0, x_i) \colon \mathcal{B}(x,\hat{\varepsilon}) \cap M = \emptyset$$

Получили противоречие, поскольку $\forall \varepsilon > 0, \ \mathcal{B}(x,\varepsilon) \cap M \neq \varnothing$.

Опр: 11. Множество $M \subset (X, \rho)$ называется открытым, если:

$$\forall x \in M, \exists \varepsilon > 0 \colon \mathcal{B}(x, \varepsilon) \subset M$$

то есть каждая точка содержится вместе с некоторым шаром.

Опр: 12. Множество $M \subset (X, \rho)$ называется <u>замкнутым</u>, если его дополнение $X \setminus M$ - открыто.

Упр. 2. Свойства открытых множеств:

- 1) $\mathcal{B}(x_0,r)$ открытое множество;
- 2) $\mathcal{B}[x_0,r]$ замкнутое множество;
- 3) \overline{M} замкнутое множество;
- 4) $\overline{\overline{M}} = \overline{M}$ замкнутое множество содержит все свои предельные точки;
- 1) Уже доказывали в математическом анализе. По определению:

$$\mathcal{B}(x_0, r) = \{x \in X : \rho(x, x_0) < r\} \Rightarrow \forall x \in \mathcal{B}(x_0, r), \exists \varepsilon = r - \rho(x, x_0) \Rightarrow \mathcal{B}(x, \varepsilon) \subset \mathcal{B}(x_0, r)$$
$$\forall y \in \mathcal{B}(x, \varepsilon), \rho(x_0, y) < \rho(x_0, x) + \rho(x, y) < \rho(x_0, x) + \varepsilon = \rho(x_0, x) + r - \rho(x_0, x) = r$$

2) Пусть $x \in X \setminus \mathcal{B}[x_0, r]$, тогда по определению $\rho(x, x_0) > r$. Пусть $\varepsilon = \rho(x, x_0) - r > 0$, тогда:

$$\forall y \in \mathcal{B}(x,\varepsilon), \, \rho(x_0,x) \le \rho(x_0,y) + \rho(y,x) < \rho(x_0,y) + \varepsilon = \rho(x_0,y) + \rho(x_0,x) - r \Rightarrow$$
$$\Rightarrow \rho(x_0,y) > r \Rightarrow y \in X \setminus \mathcal{B}[x_0,r] \Rightarrow \mathcal{B}(x,\varepsilon) \subset X \setminus \mathcal{B}[x_0,r]$$

3) По определению, \overline{M} содержит M и все предельные точки M, тогда:

$$\forall x \in X \setminus \overline{M}, \exists \varepsilon > 0 \colon \mathcal{B}(x, \varepsilon) \cap M = \emptyset$$

Покажем, что из этого следует: $\mathcal{B}(x,\varepsilon)\cap\overline{M}=\varnothing$. Пусть $\exists\,y\in\mathcal{B}(x,\varepsilon)\colon y\in\mathcal{B}(x,\varepsilon)\cap\overline{M}$. Поскольку $y\not\in M$, то y - предельная точка M. Пусть $\varepsilon_1=\varepsilon-\rho(x,y)$, тогда:

$$\forall z \in \mathcal{B}(y, \varepsilon_1), \ \rho(z, x) \leq \rho(z, y) + \rho(y, x) < \varepsilon_1 + (\varepsilon - \varepsilon_1) = \varepsilon \Rightarrow \mathcal{B}(y, \varepsilon_1) \subset \mathcal{B}(x, \varepsilon)$$

Но $\mathcal{B}(x,\varepsilon)\cap M=\varnothing\Rightarrow y$ не может быть предельной точкой $M\Rightarrow$ противоречие. Тогда:

$$\exists \, \varepsilon > 0 \colon \mathcal{B}(x,\varepsilon) \cap M = \varnothing \Rightarrow \mathcal{B}(x,\varepsilon) \cap \overline{M} = \varnothing \Rightarrow \mathcal{B}(x,\varepsilon) \subset X \setminus \overline{M}$$

4) В одну сторону это очевидно, поскольку $x\in\overline{M}\Rightarrow x\in\overline{\overline{M}}$. Пусть $x\in\overline{\overline{M}}$, тогда:

$$\forall \varepsilon > 0, \ \mathcal{B}(x,\varepsilon) \cap \overline{M} \neq \varnothing \Rightarrow \exists y \in \mathcal{B}(x,\varepsilon) \cap \overline{M}, \ y \in \overline{M}$$

Рассмотрим шар вокруг точки $y \in \overline{M}$, пусть $\varepsilon - \rho(x,y) = \varepsilon_1$, тогда:

$$\forall z \in \mathcal{B}(y, \varepsilon_1), \, \rho(z, y) < \varepsilon_1 \Rightarrow \rho(z, x) \leq \rho(z, y) + \rho(y, x) < \varepsilon_1 + (\varepsilon - \varepsilon_1) = \varepsilon \Rightarrow \mathcal{B}(y, \varepsilon_1) \subset \mathcal{B}(x, \varepsilon)$$

$$y \in \overline{M} \Rightarrow \exists y' \in \mathcal{B}(y, \varepsilon_1) \colon y' \in M \Rightarrow y' \in \mathcal{B}(x, \varepsilon)$$

В силу произвольности $\mathcal{B}(x,\varepsilon)$ верно, что $x \in \overline{M}$.

Свойства полных метрических пространств