أولًا: المتتاليات

المتتالية العددية عبارة عن تابع منطلقه N ومستقره R.

 $f: N \to R$

a₁, a₂, a₃, a₄, ... يُرمز للمتتالية بشكل عام بالرمز: (a_i) ويمكن أن نكتب

ميث a₁ هو الحد الأوّل، و a₂ هو الحد الثاني، و a_n هو الحد النوني، أو الحد العام، وهو الذي يولّد جميع حدود المتتالية بتغيير n من 1 إلى اللانهاية.

يوجد نوعان رئيسيان للمتتاليات في منهاجنا: حسابية، وهندسية.

المتتالية الحسابية، فيها ينتج كل حد عن الحد الذي يسبقه بإضافة عدد ثابت r نسميه أساس المتتالية الحسابية.

 $a_n - a_{n-1} = r$ أي:

أما المتتالية الهندسية، فينتج كل حد عن الحد الذي يسبقه بضربه بعدد ثابت q نسميه أساس المتتالية الهندسية.

 $\frac{a_n}{a_{n-1}} = q$ أي

مثال عن المتتالية الحسابية: ... ,13 ,10 ,13 (ينتج كل حد عن الذي قبله بإضافة العدد 3).

مثال عن المتتالية الهندسية: ... ,2, 4, 8, 16, 32, 64 (ينتج كل حد عن الذي قبله بضربه بالعدد 2).

معرفة حد في متتالية حسابية عُلم فيها أساسها وحدّها الأوّل

:التكن (a_n) متتالية حسابية أساسها r إذا أردنا معرفة قيمة الحد رقم m يمكننا استخدام العلاقة التالية:

$$a_m = a_1 + (m-1)r$$

 a_{20} مثال: إذا كانت (a_n) متتالية حسابية أساسها 3 r وكان الحد الأول هو 5. أوجد الحد

الحل:

$$a_{20} = 5 + (20 - 1) \times 3 = 62$$

معرفة حد في متتالية هندسية عُلم فيها أساسها وحدّها الأوّل

لتكن (a_n) متتالية هندسية أساسها q إذا أردنا معرفة قيمة الحد رقم m يمكننا استخدام العلاقة التالية:

$$a_m = a_1 q^{m-1}$$

. a_6 مثال: إذا كانت (a_n) متتالية هندسية أساسها q=2 وكان الحد الأول هو 3. أوجد الحد

الحل:

$$a_6 = 3 \times 2^{(6-1)} = 96$$

ثانيًا: السلاسل

السلسلة هي عبارة عن مجموع متتالية، ويوجد نوعان أساسيّان من السلاسل في منهاجنا. السلسلة الناجمة عن متتالية حسابية، والسلسلة الناجمة عن متتالية هندسية.

بالنسبة للسلسلة الناجمة عن المتتالية الحسابية (a_n) ونرمز بها بالرمز: $\sum_{k=1}^n a_k$ يمكن حساب مجموع n حد باستخدام القانون التالى:

$$S_n = \frac{n(a_1 + a_n)}{2}$$

ي. هو الحد الأول و a_n هو الحد الأخير. a_1

أما بالنسبة للسلسلة الهندسية (a_n) ، فيمكن حساب مجموع n حد منها باستخدام قانون آخر وهو:

$$S_n = a_1 \frac{1 - r^n}{1 - r}$$

حيث $r \neq 1$ و a_1 هو الحد الأول.

في بعض الحالات من الممكن أن نحتاج إلى جمع سلسلة هندسية لا نهائية من الشكل:

$$\sum_{k=1}^{\infty} a_k$$

في هذه الحالة يجب أن يكون الأساس r يحقّق ما يلي: r < 1 < r < 1. ويُعطى المجموع بالقانون التالي:

$$\sum_{k=1}^{\infty} a_k = \frac{a_1}{1-r}$$

خواص سلاسل المجاميع

1.
$$\sum_{k=1}^{n} (a_k \mp b_k) = \sum_{k=1}^{n} a_k \mp \sum_{k=1}^{n} b_k$$

2.
$$\sum_{k=1}^{n} (c \cdot a_k) = c \cdot \sum_{k=1}^{n} a_k$$

$$3. \quad \sum_{k=1}^{n} c = n \cdot c$$

4. For
$$1 < m < n$$
 için, $\sum_{k=1}^{n} a_k = \sum_{k=1}^{m} a_k + \sum_{k=m+1}^{n} a_k$

5.
$$\sum_{k=r}^{n} a_k = \sum_{k=r \neq p}^{n \neq p} a_{k \pm p}$$

قوانين مهمة لسلاسل المجاميع

1.
$$\sum_{k=1}^{n} k=1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

2.
$$\sum_{k=1}^{n} (2k-1) = 1+3+5+...+ (2n-1) = n^2$$

3.
$$\sum_{k=1}^{n} 2k = 2+4+6+8+...+2n = n(n+1)$$

4.
$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

5.
$$\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

6.
$$\sum_{k=0}^{n-1} r^k = 1 + r + r^2 + \dots + r^{n-1} = \frac{1 - r^n}{1 - r} \qquad (r \neq 1)$$

7.
$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{1}{12} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

8.
$$\sum_{k=1}^{n} k \cdot k! = (n+1)! -1$$

9.
$$\sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}$$

10.
$$\sum_{k=1}^{n} k(k+1) (k+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

سلاسل الجداء

تشبه سلسل المجاميع، إلّا أنّ العملية بين الحدود هي الضرب، وليست الجمع بطبيعة الحال.

مثال:

$$\prod_{k=1}^{n} a_k = a_1. a_2. a_3 \dots a_n$$

خواص سلاسل الجداء

1.
$$\prod_{k=1}^{n} c = c^{n} \quad (c \in \mathbb{R})$$

2.
$$\prod_{k=1}^{n} c \cdot a_k = c^n \cdot \prod_{k=1}^{n} a_k \ (c \in R)$$

3.
$$\prod_{k=1}^{n} (a_k \cdot b_k) = \prod_{k=1}^{n} a_k \cdot \prod_{k=1}^{n} b_k$$

4.
$$1 < m < n \implies \prod_{k=1}^{n} a_k = \prod_{k=1}^{m} a_k \cdot \prod_{k=m+1}^{n} a_k$$

5.
$$\prod_{k=1}^{n} \frac{a_k}{b_k} = \left(\frac{\prod_{k=1}^{n} a_k}{\prod_{k=1}^{n} b_k} \right) (\forall b \neq 0)$$

6.
$$\prod_{k=p}^{n} a_k = \prod_{k=p \neq r}^{n \neq r} (a_{k \neq r})$$

قوانين مهمة لسلاسل الجداء

$$1. \qquad \prod_{k=1}^{n} k = n!$$

2.
$$\prod_{k=p}^{n} \log_{k}(k+1) = \log_{p}(n+1)$$

4.
$$\prod_{i=2}^{n} \left(\frac{i^2 - 1}{i^2} \right) = \frac{n+1}{2n}$$