Bott / Tu: Applications of Spectral Sequences

Notation and Remarks

- ullet For M a manifold, T(M) is the unit tangent bundle of M
- For R a ring $R\delta_i$ denotes a copy of R appearing in the ith (co)homological degree
- ullet $S^n\subset \mathbb{R}^{n+1}$ and $S^{2n-1}\subset \mathbb{C}^n$
- Theorem: $F \to E \to B$ a fibration results in $E_2^{p,q} = H^p(B,H^q(F;G)) = H^p(B;G) \otimes H^q(F;G)$ for nice enough spaces X and groups G

$$\quad \text{\circ Corollary:} \ H^n(X \times Y) = \bigoplus_{p+q=n} H^p(X, H^q(Y))$$

- Facts about tensor products
 - $\circ \ (rm) \otimes n = r(m \otimes n) = m \otimes (rn)$
 - $\circ \ \ (r+s)(m\otimes n)=rm\otimes n+sm\otimes n$
 - $\circ \ \mathbb{Z}_p \otimes_{\mathbb{Z}} \mathbb{Z}_q = \mathbb{Z}/\gcd(p,q)$ and $\gcd(p,q) = 1$ yields 0.
 - Some computations:
 - $\blacksquare \ \mathbb{Z}_n \otimes_{\mathbb{Z}} \mathbb{Q} = 0$
 - lacksquare $\mathbb{Z}_n\otimes_{\mathbb{Z}}\mathbb{Q}/\mathbb{Z}=0$
 - $\blacksquare \ \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Q}$

 - $\blacksquare \ \mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z} = 0$
 - \blacksquare $R[x] \otimes_R S \cong S[x]$
 - lacksquare k
 ightarrow K a field extension: $k[x]/(f) \otimes_k K \cong K[x]/(f)$
 - o Symmetric, Associative
 - $\circ (\oplus A_i) \otimes B = \oplus (A_i \otimes B)$
 - $\circ \mathbb{Z} \otimes A = A$
 - $\circ \ \mathbb{Z}_n \otimes A = \frac{A}{nA}$

List of Results

ullet A simply connected n-dimensional manifold M_n is orientable

$$\circ$$
 Use $S^{n-1} o T(M_n) o M_n$

- $H^*(\mathbb{CP}^2) = \mathbb{R}\delta_0 + \mathbb{R}\delta_2 + \mathbb{R}\delta_4$
 - \circ Use $S^1 o S^5 o \mathbb{CP}^2$
- $H^*(\mathbb{CP}^2) = \frac{\mathbb{R}[x]}{(x^3)}$
 - \circ Use $S^1 o S^5 o \mathbb{CP}^2$
- $ullet \ H^*(\mathbb{CP}^n) = \sum_{i=0}^n \mathbb{R} \delta_{2i}$

$$\circ$$
 Use $S^1 o S^{2n+1} o \mathbb{CP}^n$

•
$$H^*(\mathbb{CP}^n) = \frac{\mathbb{R}[x]}{(x^{n+1})}$$

$$\circ$$
 Use $S^1 o S^{2n+1} o \mathbb{CP}^n$

•
$$H^*(SO^3) = \mathbb{Z}\delta_0 + \mathbb{Z}_2\delta_2 + \mathbb{Z}\delta_3$$

$$\circ \;\;$$
 Use $S^1 o T(S^2) o S^2$ and identify $T(S^2) = SO^3$

$$\circ$$
 Also use $E_2^{p,q}=H^p(S^2)\otimes H^q(S^1)$

•
$$H^*(SO^4) = ?$$

$$\circ$$
 Use $SO^3 o SO^4 o S^3$

•
$$H^*(U^n) = ?$$

o Use
$$U^{n-1} o U^n o S^{2n-1}$$

$$ullet H^*(\Omega S^2) = \sum_{i=0}^\infty \mathbb{Z} \delta_i$$

$$\circ$$
 Use $\Omega S^2 o PS^2 o S^2$

$$\circ$$
 Also use $E_2^{p,q}=H^p(S^2,H^q(\Omega S^2))$

$$ullet \ H^*(\Omega S^3) = \sum_{i=0}^\infty \mathbb{Z} \delta_{2i}$$

$$\circ$$
 Use $\Omega S^3 o PS^3 o S^3$

•
$$H^*(\Omega S^n) = \sum_{i=0}^{\infty} \mathbb{Z} \delta_{i(n-1)}$$

$$\circ$$
 Use $\Omega S^3 o PS^3 o S^3$

$$ullet$$
 $H^*(\Omega S^2)=rac{\mathbb{Z}[x]}{(x^2)}\otimes \mathbb{Z}\{1,e,rac{1}{2!}e^2,\cdots\},\dim x=1,\dim e=2$

$$\circ$$
 Use $\Omega S^3 o PS^3 o S^3$

$$ullet$$
 $H^*(\Omega S^n)=rac{\mathbb{Z}[x]}{(x^2)}\otimes \mathbb{Z}\{1,e,rac{1}{2!}e^2,\cdots\}, \dim x=n-1, \dim e=2(n-1)$

$$\circ~$$
 Use $\Omega S^3 o PS^3 o S^3$

List of Fibrations

•
$$S^1 o S^{2n+1} o \mathbb{CP}^n$$
, the Hopf fibration?

$$ullet$$
 $S^3 o S^{4n+3} o \mathbb{HP}^n$ the generalized Hopf fibration? (not used here)

Hopf Fibrations

$$\circ \ S^0 \to S^1 \to S^1$$

$$lacksquare$$
 Induced by $S^1\subset \mathbb{R}^2 o S^1=\mathbb{R}\bigcup \infty$

$$\circ \ S^1 o S^3 o S^2$$

$$lacksquare$$
 Induced by $S^3\subset \mathbb{C}^2 o S^2=\mathbb{C}\bigcup \infty$

$$\circ$$
 $S^3 o S^7 o S^4$

$$lacksquare$$
 Induced by $S^7\subset \mathbb{H}^2 o S^4=\mathbb{H}\bigcup \infty$

$$\circ~S^7 o S^{15} o S^8$$

$$lacksquare$$
 Induced by $S^{15}\subset \mathbb{O}^2 o S^8=\mathbb{O}\bigcup \infty$

•
$$SO^3 o SO^4 o S^3$$

$$\bullet \quad U^{n-1} \to U^n \to S^{2n-1}$$

o Can compute
$$H^*(U^n)$$

$$ullet$$
 $\Omega S^n o PS^n o S^n$, path-loop fibration

$$\circ~\Omega S^3 o PS^3 o S^3$$
:

• Can compute
$$H^*(\Omega S^n)$$

•
$$Y \rightarrow X \times Y \rightarrow X$$
 (not used here)