Approximating Material Interfaces during Data Simplification

Outline

- Motivation
- Multi-resolution Framework
- Material Interfaces
- Discontinuous Field Representations
- Error Metrics
- Pictures

Motivation

- Too much data and not enough processing power. Therefore some of the data must disappear.
- Computational Datasets operate on a large variety of meshes. Rectilinear Curvilinear, and unstructured.
- Datasets often contain discontinuities or small features that must be preserved when the data is simplified.

Our algorithm

- Simplify dataset by resampling rather than decimating the original mesh.
- Recursive tetrahedral mesh presented by Kaufman et. al. provides the basis for our *Multi-Resolution Framework*.
- Represent discontinuities explicitly within each cell. (Polygon Mesh)
- Separate field representations for either side of a discontinuity.

Multi-resolution Framework

- Interactive level of detail transition between pre-computed levels of detail.
- Strict L^{infinity} error bounds.
- Local and adaptive mesh refinement and local error computations.
- Adaptability to different input meshes.
- Explicit representation of discontinuities.

Material Interfaces

- Discontinuity between two distinct materials.
- Example: A missile impacting armor.
- During simplification cells that contain these discontinuities can have large amount of error.
- Example: the difference of density field between oil and water.

Extraction and Approximation

- Interfaces computed via volume fractions.
- Represented as the zero set of the signed distance function.
- Each vertex has one signed distance value per interface.
- Linear, continuous, and local.

Discontinuous Field Representations

- Field rep needed for each material in cell.
- Each vertex needs a distinct field value for each material.
- Extrapolate *Ghost Field*Values at the vertices
 for each material that
 the vertex is not in.

Error Metrics

- Each cell has field and interface errors.
- cell _{err} = max(child _{err}) + split vertex _{err}
- Interface error is the max distance of an interface vertex from the approximation.
- Original Mesh must be composed of *Native Data Elements* (NDE).
- NDE must have a spatial extent and a well defined method of interpolation.

Error Metrics cont.

- One of our cells (tetrahedron) can intersect several NDE.
- We assume it is possible to bound the difference between our field and the original field over this common region.
- Cell error is the maximum difference for all NDE that intersect the cell.
- Currently NDE are grid points.

Visualization and Graphics Research Group Center for Image Processing and Integrated Computing University of California, Davis

Visualization and Graphics Research Group Center for Image Processing and Integrated Computing University of California, Davis

Visualization and Graphics Research Group Center for Image Processing and Integrated Computing University of California, Davis