En	roi	en	ıtı	N	n .

Subject Code: < BIT 203 >	Subjects C-6	
Time: 1 Hour 15 minutes	Subject: < Software Engineering	>
Note: Q. 1 is compulsory. Attempt any one	Maximum Ma	rks:30

	e: Q. 1 is compulsory. Attempt any one question from the rest.						
Q1							
	(a) Why Albrecht's function count mostly dis	(5*3=1					
	(a) Why Albrecht's function count method is more suitable over line of code for six	e estimation of					
	software systems. Explain Albrecht's function count method with a suitable example. (b) Describe the concept of module weakness. And what problems are likely to arise if two modules have high coupling? (c) Consider the problem of railway reservation system and design level 1 DFD for the same.						
Q2		(75.75.45					
	(a) Assume that the initial failure intensity is 10 failures/CPU hr. The failure intensity	(7.5+7.5= 15					
	parameter is 0.03/failure. We have experienced 75 failures upto this time. Find the failures experienced and failure intensity after 25 and 50 CPU hrs. of execution. (b) Write a program for the calculation of roots of a quadratic equation. Generate cross references list for the program and also calculate helstead matrices for this program.						
Q3		(2					
	(a) Consider a program given below for the selection of the largest of three	(7.5+7.5= 15)					
	<pre>printf("Enter three values()r);</pre>	valence class					
	testing technique.						
	(b) Suppose a system for office automation is to be designed. It is clear from requirement will be five modules of size 0.5 KLOC, 1.5 KLOC, 2.0 KLOC, 1.0 KLOC respectively. Complexity, and reliability requirements are high. Programmer's experience is low. All other factors are of nominal rating. Use COCOMO model overall cost and schedule estimates. Also calculate the cost and schedule estimates phases.	and 2.0 KLOC capability and to determine					

(Please write you	Enrollment Number
-------------------	-------------------

Enrollment No.	

End-Term Examination- ONLINE MODE

	<pro< th=""><th>(CBCS/Non-CBCS)(S gramme NameB.Te</th><th></th><th>><_3 SEM></th><th></th></pro<>	(CBCS/Non-CBCS)(S gramme NameB.Te		><_3 SEM>			
			, 2021)				
Sub	ject Code:< BIT 203	> (SE	T B)				
	e: 1 Hour 15 minutes	>	Subject: <	Software Engineering	>		
Not	e: Q. 1 is compulsory. A	ttempt any one question	n from the r	Maxir	num Marks :		
			The state of	COC			
Q1	/ /				(5*3=1		
-	(a) Explain with the help of an example, how we can calculate amount of data in a						
	(b) Discuss the present state of practices in requirement engineering. Suggest few steps to impro the present state of practice.						
	(c) What is the significance of software crisis in reference to software engineering discipline. Exp						
	with some real world	examples.		o sortware engineering di	scipiine. Expia		
Q2							
	(a) Assume that the in	itial failure intensity is 6	failures/CPL	J hr. The failure intensity	(5+10= 1		
	(a) Assume that the initial failure intensity is 6 failures/CPU hr. The failure intensity decay parameter is 0.02/failure. We assume that 45 failures have been experienced. Calculate the current failure intensity.						
	(b) Write a program in C for the calculation of the roots of a quadratic equation. Find out all						
	software science metr	rics for both the program	is.	equation, i m	d out an		
			1				
3	(a) Admission	to a musfaccional ac			(7.5+7.5= 1		
	(a) Admission to a professional course is subject to the following conditions:						
	(a) Mark	s in Mathematics	>=	60			
	(b) Mark	s in Physics >=		50			
	(c) Mark	s in Chemistry >=		40			
		in all three subje		200			
	Or	un unice subje	CC3 /=	200			
		. 31 3					
	Total	in Mathematics a	ind Physi	ics >= 150			
	If aggregate ma	rks of an eligible candid	ate are more	e than 225, he/she will be	e eligible for		
	honors course,	otherwise he/she will be	e eligible for	pass course.			
	The program re	eads the marks in the thi	ree subjects	and generates the follow	des subsubs		
	(a) Not Eligible	(b) Eligible to Pass Cours	e (c) Fligible	to Honors Course	ing outputs:		
	Design test case	es using decision table te	esting techni	que.			
1	h) Design cause effect (graph for the above prof	nlem Also d	esign test cases for the sa	ama accordin		
1	o equivalence class test	ting technique.	u	eaiBit test cases for the Si	arrie accordin		
-	0 - 4 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7						

SOFTWARE ENGINEERING (END-TERM)

- (a) What is the significance of software crisis in reference to software engineering discipline. List some examples.
- (b) Describe any two Software reliability models.

Assume that the initial failure intensity is 6 failures/CPU hr. The failure intensity decay parameter is 0.02/failure. We assume that 45 failures have been experienced. Calculate the current failure intensity by using basic time execution model.

- (c) What are the linkages between data flow diagram and E–R diagram? Explain with a real-time software system example.
- (a) In Intermediate COCOMO, which mode among the organic, semidetached and embedded represents complex techniques? Explain with example.

Suppose a system for office automation is to be designed. It is clear from requirements that there will be five modules of size 0.5 KLOC, 1.5 KLOC, 2.0 KLOC, 1.0 KLOC and 2.0 KLOC respectively. Complexity, and reliability requirements are high (1.15, 1.15). Programmer's capability and experience is low (1.17, 1.07). All other factors are of nominal rating (1.0). Use COCOMO model to determine overall cost and schedule estimates.

(b) What are the objectives of Software Re-Engineering? Distinguish between Reverse Engineering and Re-Engineering.