امتحانات الشهادة الثانوية العامة فرع العلوم العامة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسمية

I- (2 points)

Le plan complexe est rapporté à un repère orthonormé direct $\left(O\;;\;\overrightarrow{u}\;,\overrightarrow{v}\right)$.

A et B sont deux points d'affixes respectives $z_A = -4$ et $z_B = 2$.

M et M' sont deux points d'affixes respectives z et z' tel que $z' = \frac{\overline{z} + 4}{\overline{z} - 2}$, où $z \neq -4$ et $z \neq 2$.

- 1) Déterminer les coordonnées des points M dans le cas où M et M' sont confondus.
- 2) a- Exprimer $\left|z'\right|$ en fonction de MA et MB et vérifier que $\arg(z')=\arg\left(\frac{z-2}{z+4}\right)+2k\pi$, ($k\in\mathbb{Z}$).
 - b- Montrer que si M' se déplace sur le cercle (C) de centre O et de rayon 1, alors M se déplace sur une droite (Δ) à déterminer.
 - c- Déterminer l'ensemble des points M si z' est un réel strictement négatif.
 - d- On donne le nombre complexe $u=e^{-i\frac{\pi}{9}}$. Déterminer la nature du triangle MBA lorsque u est une racine cubique de z'.

II- (2,5 points)

On considère deux urnes U1 et U2.

- U₁ contient une boule blanche et trois boules noires
- U₂ contient une boule rouge, trois boules blanches et deux boules noires.

On choisit au hasard une de ces deux urnes :

- Si l'urne U₁ est choisie, on tire au hasard, successivement et avec remise deux boules de l'urne U₁
- Si l'urne U₂ est choisie, on tire au hasard, successivement et sans remise trois boules de l'urne U₂.

On considère les évènements suivants :

 $T: \ll L'$ urne U_1 est choisie »

E : « Exactement deux boules blanches sont tirées ».

1) a- Calculer les probabilités P(E/T) et $P(E \cap T)$.

b- Montrer que
$$P(E \cap \overline{T}) = \frac{9}{40}$$
.

- c- En déduire P(E).
- 2) Sachant qu'exactement deux boules blanches sont tirées, calculer la probabilité qu'elles soient de U2.
- 3) Soit X la variable aléatoire égale au nombre de boules blanches tirées.

a- Vérifier que
$$P(X=1) = \frac{33}{80}$$
.

b- Déterminer $P(X \ge 1)$.

III- (2,5 points)

L'espace est rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$.

On considère les droites (d) et (d') d'équations paramétriques

$$(d): \begin{cases} x = m+1 \\ y = 2m+1 \text{ et } (d'): \\ z = 2m+1 \end{cases} \begin{cases} x = -t \\ y = 2t+3 \text{ où } m, \, t \in \mathbb{R}. \\ z = -2t-1 \end{cases}$$

- 1) Montrer que (d) et (d') se coupent au point A(1;1;1).
- 2) Déterminer une équation cartésienne du plan (P) déterminé par (d) et (d').
- 3) Soit (C) le cercle, de rayon $3\sqrt{5}$, tangent à (d) en T et tangent à (d') en S. Soit (Δ) la droite passant par A et perpendiculaire au plan (P).
 - a- Montrer que le point I(1; 10; 1) est le centre de (C).
 - b- Calculer les coordonnées des deux points E et F de (C) équidistants de (d) et (d').
 - c- Montrer que l'aire du quadrilatère ATIS est $18\sqrt{5}$.
 - d- Déterminer les coordonnées des points B de (Δ) tel que le volume du solide BATIS est 30.

IV- (3 points)

Dans la figure ci-contre :

- ABEO et OECF sont deux carrés directs de côté 1
- $(\overrightarrow{AB}; \overrightarrow{AO}) = \frac{\pi}{2} + 2k\pi$ où $k \in \mathbb{Z}$
- D est le symétrique de O par rapport à F.

Soit S la similitude plane directe qui transforme A en C et B en D.

- 1) a- Montrer que le rapport de S est égal à $\sqrt{2}$ et que $\frac{3\pi}{4}$ est un angle de S.
 - b- Montrer que O est le centre de la similitude S.
 - c- Déterminer S(E).
- 2) Soit S^n la transformation définie par $S^n = \underbrace{S \circ S \circ S \circ ... \circ S}_{n \text{ fois}}$ où n est un entier naturel; $(n \ge 2)$.
 - a- Déterminer la valeur de n lorsque l'image du carré OABE par Sⁿ est un carré d'aire 16 et en déduire que, dans ce cas, Sⁿ est une homothétie négative.
 - b- Déterminer le plus petit entier naturel n pour que Sⁿ soit une homothétie positive.

V- (3 points)

Dans la figure ci-contre :

- F'FLL' est un rectangle tel que F'F = 4 et FL= $\sqrt{2}$
- O est le milieu de [FF'].

(H) est l'hyperbole équilatère de foyers F et F'.

- 1) a- Montrer que le point L appartient à (H).
 - b- Montrer que la directrice (D) de (H) associée au foyer F est la médiatrice de [OF].
- 2) Le plan est rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j})$. Soit F(2; 0) et $L(2; \sqrt{2})$.
 - a- Montrer que $x^2 y^2 = 2$ est une équation de (H).
 - b- Déterminer les coordonnées des sommets de (H) ainsi que les équations de ses asymptotes.
 - c- Tracer (H).
- 3) Soit R la rotation de centre O et d'angle $\frac{\pi}{4}$.

Dans la figure ci-dessous :

- (H') est l'image de (H) par la rotation R
- (d) est la première bissectrice
- (C) est le cercle de centre O et de rayon 2
- G est l'un des points d'intersection de (C) et (d).
- a- Montrer que G est l'image de F par R.
- b- Soit (Δ) la droite passant par G et perpendiculaire à (d). Déterminer $R^{-1}(\Delta)$, où R^{-1} est la rotation réciproque de R.
- c- Calculer le volume du solide engendré par la rotation de la partie hachurée autour de la droite (d).

VI- (7 points)

On considère la fonction f définie sur]0; + ∞ [par f(x) = $\left(\frac{\ln x}{x}\right)^2$.

On désigne par (C) la courbe représentative de f dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

Partie A

On considère l'équation différentielle (E) : $xy' + 2y = \frac{2 \ln x}{x^2}$.

- 1) Montrer que f'(x) = $\frac{2(1-\ln x)\ln x}{x^3}$.
- 2) Montrer que x f'(x) + 2f(x) = $\frac{2 \ln x}{x^2}$.
- 3) On pose y = z + f(x) avec $z \neq 0$.
 - a- Montrer qu'une équation différentielle (E') satisfaite par z est $\frac{z'}{z} = -\frac{2}{x}$.
 - b- Résoudre (E') et en déduire la solution générale de (E).

Partie B

- 1) Déterminer $\lim_{\substack{x\to 0\\x>0}} f(x)$ et $\lim_{x\to +\infty} f(x)$. En déduire les deux asymptotes à (C).
- 2) a- Vérifier que f est strictement croissante sur]1; e[.
 - b-Dresser le tableau de variations de f sur]0, $+\infty[$ et vérifier que $f(x) \ge 0$.
 - c- Tracer (C).

Partie C

On définit, pour tout entier naturel non nul n, la suite (I_n) par $I_n = \int\limits_{1}^{e} \frac{\left(\ln x\right)^n}{x^n} dx$.

- 1) Calculer I₁.
- 2) a- Sachant que $\ln x < x$ pout tout $x \in [1; e]$, démontrer que la suite (I_n) est décroissante.
 - b- Montrer que $I_n \ge 0$ pour tout entier naturel non nul n.
 - c- En déduire que la suite (In) est convergente.
- 3) a- Sachant que $\frac{\left(\ln x\right)^n}{x^n} \le \frac{1}{x^n}$ pour tout $1 \le x \le e$, montrer que $0 \le I_n \le \frac{1-e^{-n+1}}{n-1}$.
 - b- Calculer $\lim_{n\to +\infty} I_n$.

أسس تصحيح مسابقة الرياضيات

ست	المسائل:	عدد

I	Réponses	Note
1	$z = \frac{\overline{z} + 4}{\overline{z} - 2}$; $z\overline{z} - 2z = \overline{z} + 4$. Soit $z = x + iy$; $x^2 + y^2 - 2x - 2iy = x - iy + 4$; $x^2 + y^2 - 3x - 4 - iy = 0$	1
	alors $y = 0$ et $x = -1$ ou $x = 4$; $M(-1;0)$ ou $M(4;0)$	
2a	$\left z'\right = \left \frac{\overline{z}+4}{\overline{z}-2}\right = \frac{\left \overline{z}+4\right }{\left \overline{z}-2\right } = \frac{\left \overline{z}+4\right }{\left \overline{z}-2\right } = \frac{\left z+4\right }{\left z-2\right } = \frac{AM}{BM}.$	1
	$\arg(z') = \arg\left(\frac{\overline{z}+4}{\overline{z}-2}\right) = \arg\left(\frac{z+4}{z-2}\right) = -\arg\left(\frac{z+4}{z-2}\right) = \arg\left(\frac{z-2}{z+4}\right) + 2k\pi k \in \square$	
2 b	OM ' = 1 alors AM = BM donc M varie sur (Δ) la médiatrice de [AB].	0,5
2c	$\arg(z') = (2k+1)\pi \; ; \; \arg\left(\frac{z-2}{z+4}\right) = (2k+1)\pi \; ; \; \left(\overrightarrow{AM}, \overrightarrow{BM}\right) = (2k+1)\pi \; k \in \square$	0,5
	Alors M varie sur le segment [AB] privé de A et B.	
2d	$z' = u^3 = e^{-i\frac{\pi}{3}}; z' = 1 \text{ alors } AM = BM \text{ et } arg(z') = \frac{-\pi}{3} \text{ alors } (\overrightarrow{AM}, \overrightarrow{BM}) = -\frac{\pi}{3}.$	1
	Donc MBA est un triangle équilatéral.	

II	Réponses	Note
1a	$P(E/T) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$; $P(E \cap T) = P(T) \times P(E/T) = \frac{1}{2} \times \frac{1}{16} = \frac{1}{32}$	1
1b	$P(E \cap \overline{T}) = P(\overline{T}) \times P(E/\overline{T}) = \frac{1}{2} \times \left(\frac{3}{6} \times \frac{2}{5} \times \frac{3}{4} + \frac{3}{6} \times \frac{3}{5} \times \frac{2}{4} + \frac{3}{6} \times \frac{3}{5} \times \frac{2}{4}\right) = \frac{9}{40}.$	1
1c	$P(E) = P(E \cap T) + P(E \cap \overline{T}) = \frac{1}{32} + \frac{9}{40} = \frac{41}{160}$	0,5
2	$P(\overline{T} / E) = \frac{P(\overline{T} \cap E)}{P(E)} = \frac{\frac{9}{40}}{\frac{41}{160}} = \frac{36}{41}$	0,5
3a	$P(X=1) = \frac{1}{2} \times \left(\frac{1}{4} \times \frac{3}{4} + \frac{3}{4} \times \frac{1}{4}\right) + \frac{1}{2} \times \left(\frac{3}{6} \times \frac{2}{5} \times \frac{3}{4} + \frac{3}{6} \times \frac{3}{5} \times \frac{2}{4} + \frac{3}{6} \times \frac{3}{5} \times \frac{2}{4}\right) = \frac{33}{80}$	1
3b	$P(X \ge 1) = P(X = 1) + P(X = 2) + P(X = 3) = \frac{33}{80} + \frac{41}{160} + \frac{1}{2} \times \left(\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4}\right) = \frac{111}{160}$ $OU: P(X \ge 1) = 1 - P(X = 0) = 1 - \left(\frac{1}{2}\left(\frac{3}{4} \times \frac{3}{4}\right) + \frac{1}{2}\left(\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4}\right)\right) = \frac{111}{160}$	1

III	Réponses	Note
1	$\overrightarrow{V}_d \left(1;2;2\right) \text{et } \overrightarrow{V}_{d'} \left(-1;2;-2\right) \text{ne sont pas colinéaires. Pour } m=0, \ A \in (d). \ \text{Pour } t=-1, \ A \in (d)$	0,5
2	Soit M(x; y; z) \in (P) alors \overrightarrow{AM} . $(\overrightarrow{V} \wedge \overrightarrow{V'}) = 0 \Leftrightarrow \begin{vmatrix} x-1 & y-1 & z-1 \\ 1 & 2 & 2 \\ -1 & 2 & -2 \end{vmatrix} = 0$; (P): $-2x + z + 1 = 0$	1
3a	$-2x_{I} + z_{I} + 1 = 0 \text{ alors } I \in (P)$ $d(I,(d)) = \frac{\left\ \overrightarrow{IA} \wedge \overrightarrow{V_{d}}\right\ }{\left\ \overrightarrow{V_{d}}\right\ } = 3\sqrt{5} = R ; d(I,(d')) = \frac{\left\ \overrightarrow{IA} \wedge \overrightarrow{V_{d}}\right\ }{\left\ \overrightarrow{V_{d}}\right\ } = 3\sqrt{5} = R$	1
3b	(AI): $\begin{cases} x = 1 \\ y = n+1 ; E(1;n+1;1) ; IE = 3\sqrt{5} ; (n-9)^2 = 45 ; n = 9+3\sqrt{5} \text{ ou } n = 9-3\sqrt{5} \\ z = 1 \end{cases}$ $E(1;10+3\sqrt{5};1) \text{ et } F(1;10-3\sqrt{5};1)$	1
3c	$A_{ATIS} = 2 \times A_{ATI} = AT \times IT = \sqrt{IA^2 - IT^2} \times 3\sqrt{5} = \sqrt{81 - 45} \times 3\sqrt{5} = 18\sqrt{5}$	0.5
3d	$ (\Delta) : \begin{cases} x = -2k + 1 \\ y = 1 \\ z = k + 1 \end{cases} ; B(-2k + 1; 1; k + 1) ; \overline{AB}(-2k; 0; k); V_{BATIS} = \frac{1}{3} \times A_{ATIS} \times AB ; \\ 6\sqrt{5}AB = 30 ; 6\sqrt{5}\sqrt{5k^2} = 30 ; 30 k = 30; k = 1 \text{ ou } k = -1 \text{ alors } B(-1; 1; 2) \text{ ou } B(3; 1; 0) \\ \text{ou} \\ V = 2.V' = 2.\frac{1}{6} \left\ \overline{BA}. \left(\overline{AS} \wedge \overline{AI} \right) \right\ = 30 \dots $	1

IV	Réponses	Note
1a	$k = \frac{CD}{AB} = \sqrt{2} \; ; \; \alpha = \left(\overrightarrow{AB}, \overrightarrow{CD}\right) + 2k\pi = \left(\overrightarrow{FC}, \overrightarrow{CD}\right) + 2k\pi = \pi + \left(\overrightarrow{CF}, \overrightarrow{CD}\right) + 2k\pi = \frac{-\pi}{4} + \pi = \frac{3\pi}{4} + 2k\pi$	1
1b	$\frac{OC}{OA} = \sqrt{2}$ et $(\overrightarrow{OA}, \overrightarrow{OC}) = \frac{\pi}{2} + \frac{\pi}{4} + 2k\pi = \frac{3\pi}{4} + 2k\pi$ alors $S(O) = O$. Donc O est le centre de S .	1
1c	S(E) = E'; OABE est un carré direct alors OCDE' est un carré direct de centre F alors E' est le symétrique de C par rapport à F.	1
2a	l'aire de l'image = $\left(k^2\right)^n \times$ Aire de OABE; $16 = k^{2n}$; $16 = 2^n$; $n = 4$. $S^4 = S\left(O; \left(\sqrt{4}\right)^4; 4 \times \frac{3\pi}{4}\right) = H(O; -4) \text{ est une homothétie négative.}$	1.5
2b	$S^{n} = S\left(O; \left(\sqrt{2}\right)^{n}; \frac{3n\pi}{4}\right) \text{ est une homothétie positive si } \frac{3n\pi}{4} = 2k\pi \text{ ; } 3n = 8k$ n est un multiple de 8; n \in {8;16;} la plus petite valeur de n est 8.	1.5

V	Réponses	Note
1a	FF' = 4; c = 2; a = b = $\sqrt{2}$; LF' – LF = $3\sqrt{2} - \sqrt{2} = 2\sqrt{2} = 2a$ alors L \in (H).	1
1b	$\overrightarrow{OF} = e\overrightarrow{OS}$ et $\overrightarrow{OS} = e\overrightarrow{OK}$ alors $\overrightarrow{OF} = e^2\overrightarrow{OK} = 2\overrightarrow{OK}$ où K est le point d'intersection de la directrice avec (FF') et S est un sommet (H). OU $d(O,(D)) = 1 = \frac{a^2}{c}$ et $(D) \perp (FF')$: axe focal.	0.5
2a	O(0;0) est le centre de (H); (x'Ox) est l'axe focal; $a = b = \sqrt{2}$ alors (H): $x^2 - y^2 = 2$	0.5
2b	Sommets $A(\sqrt{2};0)$ et $A'(-\sqrt{2};0)$ Asymptotes $y = x$ et $y = -x$	1
2c	L'A L F X (H)	0.5
3a	$F = (C) \cap (x'Ox); R(F) = R(C) \cap R(x'Ox) = (C) \cap (d) = G \text{ tel que}(\overrightarrow{OF}, \overrightarrow{OG}) = \frac{\pi}{4}$	0.5
3b	(Δ) passe par G et perpendiculaire à (d) $R^{-1}(\Delta)$ passe par $R^{-1}(G)$ et perpendiculaire à $R^{-1}(d)$ $R^{-1}(\Delta)$ passe par F et perpendiculaire à $(x'Ox)$	1
3c	$V = \pi \int_{\sqrt{2}}^{2} y^2 dx = \frac{4\sqrt{2} - 4}{3} \pi \text{ unit\'e de volume.}$	1

VI	Réponses	Note
A1	$f'(x) = \frac{2x \ln x - 2x (\ln x)^2}{x^4} = \frac{2 \ln x - 2(\ln x)^2}{x^3} = \frac{2(1 - \ln x) \ln x}{x^3}$	1
A2	$ x f'(x) + 2f(x) = x \left(\frac{2 \ln x - 2(\ln x)^2}{x^3} \right) + 2 \left(\frac{\ln x}{x} \right)^2 = \frac{2 \ln(x)}{x^2} $	1
A3a	$y = z + f(x); y' = z' + f'(x); xy' + 2y = \frac{2\ln x}{x^2}; xz' + xf'(x) + 2z + 2f(x) = \frac{2\ln x}{x^2}; xz' + 2z = 0$ $alors \frac{z'}{z} = \frac{-2}{x}$	1

A3b	$\int \frac{z'}{z} dx = \int \frac{-2}{x} dx \; ; \; \ln z = -2\ln x + K_1 = -\ln x^2 + \ln e^{K_1} = \ln \frac{K_2}{x^2} \; ; \; z = \frac{C}{x^2} \; ; \; y = \frac{C}{x^2} + \frac{2\ln x}{x^2}$	1
B1	$\lim_{\substack{x\to 0\\x>0}} f(x) = +\infty \; ; \; \lim_{\substack{x\to +\infty}} f(x) = 0 \; \; ; \; \; x = 0 \; \text{et} \; y = 0 \; \text{sont les asymptotes à (C)}.$	1
B2a	$f'(x) = \frac{2(1-\ln x)\ln x}{x^3}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
B2b	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.5
B2c	O 1 2 e 3 4 x	1.5
C1	$I_1 = \int_1^e \frac{\ln x}{x} dx = \frac{(\ln x)^2}{2} \bigg]_1^e = \frac{1}{2}.$	0.5
C2a	$\begin{split} I_{n+1} - I_n &= \int\limits_1^e \frac{\left(\ln x\right)^{n+1}}{x^{n+1}} - \frac{\left(\ln x\right)^n}{x^n} dx = \int\limits_1^e \frac{\left(\ln x\right)^n}{x^n} \left(\frac{\ln x - x}{x}\right) dx \leq 0 \\ \text{puisque} &\left(\ln x\right)^n \geq 0 \text{ ; } x^n > 0 \text{ et } \ln x - x < 0 \text{ pour } x \in [1;e]. \text{ alors la suite (In) est décroissante.} \end{split}$	1
C2b	Pour $x \in [1; e]$, $(\ln x)^n \ge 0$ et $x^n > 0$ alors $I_n = \int_1^e \frac{(\ln x)^n}{x^n} dx \ge 0$.	1
C2c	La suite (I _n) est décroissante et minorée par zéro alors elle est convergente.	0.5
C3a	$\frac{\left(\ln x\right)^{n}}{x^{n}} \le \frac{1}{x^{n}} \; \; ; \; \int_{1}^{e} \frac{\left(\ln x\right)^{n}}{x^{n}} dx \le \int_{1}^{e} \frac{1}{x^{n}} dx \; \; ; \; \; I_{n} \le \frac{x^{-n+1}}{-n+1} \bigg]_{1}^{e} = \frac{1 - e^{-n+1}}{n-1}$	1
C3b	$0 \le I_n \le \frac{1 - e^{-n+1}}{n-1} \text{ alors } \lim_{n \to +\infty} I_n = 0$	1