- 19. L'expression qui donne un résultat imaginaire est :
 - 1. le produit de deux nombre complexes
 - 2. la somme de deux nombres complexes opposés
 - 3. le produit de deux nombres complexes imaginaires
 - 4. le produit de deux nombres complexes opposés5. la somme de deux nombres complexes conjugués
- 20. Les solutions de l'équation $z^2 + zi + 1 + 3i = 0$ notées z_1 et z_2 . $z_1^2 + z_2^2$ vaut :

$$z_1^2 + z_2^2 \text{ vaut}:$$

1.-1 2.1+6i 3.-3-6i 4.1-6i 5.-3+6i (B.-84)

- 21. Calculer dans C les solutions de l'équation $ix^2 + (1+i)x + 2(1-i) = 0$ 1. 1-i; 2 2. i-1; 2 3. 1-i; -2 4.1 + i; -2 5. i-1; -2 (M. -84)
- 22. Soit dans le plan de Gauss, le cercle de centre 0 et de rayon 1. Les points M₁: M₂; M₃; M₄ représentent les racines quatrièmes de :

23. L'argument du complexe $\frac{1+i}{1+i\sqrt{3}}$ est :

1.
$$-\frac{7\pi}{12}$$
 2. $\frac{7\pi}{12}$ 3. $-\frac{\pi}{12}$ 4. $\frac{\pi}{7}$ 5. $\frac{7\pi}{12}$ (B.81)

24. Soient z_1 et z_2 les racines de l'équation $z^2 = (i-1)(z+2)$.