Sequence Alignment & Computational Thinking Michael Schatz

Sept 23, 2013 SBU Introduction to Physical and Quantitative Biology

Schatz Lab Overview

Outline

- I. Rise of DNA Sequencing
- 2. Sequence Alignment Basics

- 3. Understanding Bowtie
- 4. Genetics of Autism

Cost per Genome

http://www.genome.gov/sequencingcosts/

Illumina Sequencing by Synthesis

1. Prepare

2. Attach

3. Amplify

4. Image

5. Basecall

Inside the NY Genome Center

Sequencing Capacity: 16 HiSeq 2500 @ 600 Gbp / 11 day = 872 Gbp / day

Sequencing Centers

Next Generation Genomics: World Map of High-throughput Sequencers http://omicsmaps.com

Milestones in Molecular Biology

There is tremendous interest to sequence:

- What is your genome sequence?
- How does your genome compare to my genome?
- Where are the genes and how active are they?
- How does gene activity change during development?
- How does splicing change during development?
- How does methylation change during development?
- How does chromatin change during development?
- How does is your genome folded in the cell?
- Where do proteins bind and regulate genes?
- What virus and microbes are living inside you?
- How has the disease mutated your genome?
- What drugs should we give you?

Outline

- I. Rise of DNA Sequencing
- 2. Sequence Alignment Basics

- 3. Understanding Bowtie
- 4. Genetics of Autism

Personal Genomics

How does your genome compare to the reference?

- Where is GATTACA in the human genome?
- Strategy I: Brute Force

No match at offset I

- Where is GATTACA in the human genome?
- Strategy I: Brute Force

I	2	3	4	5	6	7	8	9	10	П	12	13	14	15	•••
Т	G	Α	Т	Т	Α	С	Α	G	Α	Т	Т	Α	С	С	• • •
	G	Α	Т	Т	Α	С	Α								

Match at offset 2

- Where is GATTACA in the human genome?
- Strategy I: Brute Force

1	2	3	4	5	6	7	8	9	10	Ш	12	13	14	15	•••
Т	G	Α	Т	Т	Α	С	Α	G	Α	Т	Т	Α	С	С	•••
		G	Α	Т	Т	Α	С	Α	•••						

No match at offset 3...

- Where is GATTACA in the human genome?
- Strategy I: Brute Force

No match at offset 9 <- Checking each possible position takes time

Brute Force Analysis

- Brute Force:
 - At every possible offset in the genome:
 - Do all of the characters of the query match?
- Analysis
 - Simple, easy to understand

Genome length = n	[3B]
— Query length = m	[7]
Comparisons: (n-m+1) * m	[21B]

Overall runtime: O(nm)

[How long would it take if we double the genome size, read length?] [How long would it take if we double both?]

Expected Occurrences

The expected number of occurrences (e-value) of a given sequence in a genome depends on the length of the genome and inversely on the length of the sequence

- I in 4 bases are G, I in 16 positions are GA, I in 64 positions are GAT, ...
- I in 16,384 should be GATTACA
- $E=n/(4^{m})$

[183,105 expected occurrences] [How long do the reads need to be for a significant match?]

Brute Force Reflections

Why check every position?

- GATTACA can't possibly start at position 15

[WHY?]

1	2	3	4	5	6	7	8	9	10	Ш	12	13	14	15	•••
Т	G	Α	Т	Т	Α	С	Α	G	Α	Т	Т	Α	С	С	•••
								G	Α	Т	Т	Α	С	Α	

Improve runtime to O(n + m)

[3B + 7]

- If we double both, it just takes twice as long
- Knuth-Morris-Pratt, 1977
- Boyer-Moyer, 1977, 1991
- For one-off scans, this is the best we can do (optimal performance)
 - We have to read every character of the genome, and every character of the query
 - For short queries, runtime is dominated by the length of the genome

Suffix Arrays: Searching the Phone Book

- What if we need to check many queries?
 - We don't need to check every page of the phone book to find 'Schatz'
 - Sorting alphabetically lets us immediately skip 96% (25/26) of the book without any loss in accuracy
- Sorting the genome: Suffix Array (Manber & Myers, 1991)
 - Sort every suffix of the genome

[Challenge Question: How else could we split the genome?]

- Strategy 2: Binary search
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA
 - Lo = I; Hi = I5;

#	Sequence	Pos
Ι	ACAGATTACC	6
2	ACC	13
3	AGATTACC	8
4	ATTACAGATTACC	3
5	ATTACC	10
6	C	15
7	CAGATTACC	7
8	CC	14
9	GATTACAGATTACC	2
10	GATTACC	9
П	TACAGATTACC	5
12	TACC	12
13	TGATTACAGATTACC	I
14	TTACAGATTACC	4
15	TTACC	П

Hi

- Strategy 2: Binary search
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA
 - Lo = I; Hi = I5; Mid = (I+I5)/2 = 8
 - Middle = Suffix[8] = CC

Hi

Lo

l	ACAGATTACC	6
2	ACC	13
3	AGATTACC	8
4	ATTACAGATTACC	3
5	ATTACC	10
6	C	15
7	CAGATTACC	7
8	CC	14
9	GATTACAGATTACC	2
10	GATTACC	9
П	TACAGATTACC	5
12	TACC	12
12	TACC TGATTACAGATTACC	12 I

Pos

- Strategy 2: Binary search
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA
 - Lo = I; Hi = I5; Mid = (I+I5)/2 = 8
 - Middle = Suffix[8] = CC => Higher: Lo = Mid + I

#	Sequence	Pos
	ACAGATTACC	6
2	ACC	13
3	AGATTACC	8
4	ATTACAGATTACC	3
5	ATTACC	10
6	C	15
7	CAGATTACC	7
8	CC	14
9	GATTACAGATTACC	2
10	GATTACC	9
Ш	TACAGATTACC	5
12	TACC	12
13	TGATTACAGATTACC	ı
14	TTACAGATTACC	4
15	TTACC	П

- Strategy 2: Binary search
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA
 - Lo = I; Hi = I5; Mid = (I+I5)/2 = 8
 - Middle = Suffix[8] = CC=> Higher: Lo = Mid + I
 - Lo = 9; Hi = 15;

#	Sequence	Pos
I	ACAGATTACC	6
2	ACC	13
3	AGATTACC	8
4	ATTACAGATTACC	3
5	ATTACC	10
6	C	15
7	CAGATTACC	7
8	CC	14
9	GATTACAGATTACC	2
10	GATTACC	9
П	TACAGATTACC	5
12	TACC	12
13	TGATTACAGATTACC	I
14	TTACAGATTACC	4
15	TTACC	П

Lo

Ηį

- Strategy 2: Binary search
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA
 - Lo = I; Hi = I5; Mid = (I+I5)/2 = 8
 - Middle = Suffix[8] = CC=> Higher: Lo = Mid + I
 - Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
 - Middle = Suffix[12] = TACC

#	Sequence	Pos
I	ACAGATTACC	6
2	ACC	13
3	AGATTACC	8
4	ATTACAGATTACC	3
5	ATTACC	10
6	C	15
7	CAGATTACC	7
8	CC	14
9	GATTACAGATTACC	2
10	GATTACC	9
П	TACAGATTACC	5
12	TACC	12
13	TGATTACAGATTACC	I
14	TTACAGATTACC	4
15	TTACC	11

Hi

Lo

- Strategy 2: Binary search
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA
 - Lo = I; Hi = 15; Mid = (1+15)/2 = 8
 - Middle = Suffix[8] = CC=> Higher: Lo = Mid + I
 - Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
 - Middle = Suffix[12] = TACC=> Lower: Hi = Mid I
 - Lo = 9; Hi = 11;

- Strategy 2: Binary search
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA
 - Lo = I; Hi = 15; Mid = (1+15)/2 = 8
 - Middle = Suffix[8] = CC=> Higher: Lo = Mid + I
 - Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
 - Middle = Suffix[12] = TACC=> Lower: Hi = Mid I
 - Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
 - Middle = Suffix[10] = GATTACC

#	Sequence	Pos
1	ACAGATTACC	6
2	ACC	13
3	AGATTACC	8
4	ATTACAGATTACC	3
5	ATTACC	10
6	C	15
7	CAGATTACC	7
8	CC	14
9	GATTACAGATTACC	2
10	GATTACC	9
П	TACAGATTACC	5
12	TACC	12
13	TGATTACAGATTACC	I
14	TTACAGATTACC	4
15	TTACC	11

- Strategy 2: Binary search
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA
 - Lo = I; Hi = 15; Mid = (1+15)/2 = 8
 - Middle = Suffix[8] = CC=> Higher: Lo = Mid + I
 - Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
 - Middle = Suffix[12] = TACC=> Lower: Hi = Mid I
 - Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
 - Middle = Suffix[10] = GATTACC=> Lower: Hi = Mid I
 - Lo = 9; Hi = 9;

#	Sequence	Pos
I	ACAGATTACC	6
2	ACC	13
3	AGATTACC	8
4	ATTACAGATTACC	3
5	ATTACC	10
6	C	15
7	CAGATTACC	7
8	CC	14
9	GATTACAGATTACC	2
10	GATTACC	9
11	TACAGATTACC	5
12	TACC	12
13	TGATTACAGATTACC	1
14	TTACAGATTACC	4
15	TTACC	П

- Strategy 2: Binary search
 - Compare to the middle, refine as higher or lower
- Searching for GATTACA
 - Lo = I; Hi = 15; Mid = (1+15)/2 = 8
 - Middle = Suffix[8] = CC
 => Higher: Lo = Mid + I
 - Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
 - Middle = Suffix[12] = TACC=> Lower: Hi = Mid I
 - Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
 - Middle = Suffix[10] = GATTACC=> Lower: Hi = Mid I
 - Lo = 9; Hi = 9; Mid = (9+9)/2 = 9
 - Middle = Suffix[9] = GATTACA...=> Match at position 2!

Binary Search Analysis

Binary Search

```
Initialize search range to entire list

mid = (hi+lo)/2; middle = suffix[mid]

if query matches middle: done

else if query < middle: pick low range

else if query > middle: pick hi range

Repeat until done or empty range
```

[WHEN?]

- Analysis
 - More complicated method
 - How many times do we repeat?
 - How many times can it cut the range in half?
 - Find smallest x such that: $n/(2^x) \le 1$; $x = \lg_2(n)$

[32]

- Total Runtime: O(m lg n)
 - More complicated, but much faster!
 - Looking up a query loops 32 times instead of 3B

[How long does it take to search 6B or 24B nucleotides?]

Outline

- I. Rise of DNA Sequencing
- 2. Sequence Alignment Basics

- 3. Understanding Bowtie
- 4. Genetics of Autism

Fast gapped-read alignment with Bowtie 2

Ben Langmead and Steven Salzberg (2012) Nature Methods. 9, 357–359

In-exact alignment

- Where is GATTACA approximately in the human genome?
 - And how do we efficiently find them?
- It depends...
 - Define 'approximately'
 - Hamming Distance, Edit distance, or Sequence Similarity
 - Ungapped vs Gapped vs Affine Gaps
 - Global vs Local
 - All positions or the single 'best'?
 - Efficiency depends on the data characteristics & goals
 - Smith-Waterman: Exhaustive search for optimal alignments
 - BLAST: Hash-table based homology searches
 - Bowtie: BWT alignment for short read mapping

• Where is GATTACA approximately in the human genome?

1	2	3	4	5	6	7	8	9	10	Ш	12	13	14	15	•••
Т	G	Α	Т	Т	Α	С	Α	G	Α	Т	Т	Α	С	С	•••
G	Α	Т	Т	Α	С	Α									

Match Score: 1/7

• Where is GATTACA approximately in the human genome?

1	2	3	4	5	6	7	8	9	10	Ш	12	13	14	15	•••
Т	G	Α	Т	Т	Α	С	Α	G	Α	Т	Т	Α	С	С	•••
	G	Α	Т	Т	Α	С	Α								

Match Score: 7/7

• Where is GATTACA approximately in the human genome?

1	2	3	4	5	6	7	8	9	10	П	12	13	14	15	•••
Т	G	Α	Т	Т	Α	С	Α	G	Α	Т	Т	Α	С	С	• • •
		G	A	Т	Т	Α	С	Α	•••						

Match Score: 1/7

Where is GATTACA approximately in the human genome?

Match Score: 6/7 <- We may be very interested in these imperfect matches Especially if there are no perfect end-to-end matches

Similarity metrics

Hamming distance

Count the number of substitutions to transform one string into another

GATTACA	GATTTTTACA
GATCACA	GATTACA
1	6

• Edit distance

 The minimum number of substitutions, insertions, or deletions to transform one string into another

GATTACA	GATTTTTACA
	xxx
GATCACA	GATTACA
1	3

Seed-and-Extend Alignment

Theorem: An alignment of a sequence of length m with at most k differences must contain an exact match at least s=m/(k+1) bp long (Baeza-Yates and Perleberg, 1996)

- Proof: Pigeonhole principle
 - I pigeon can't fill 2 holes
- Seed-and-extend search
 - Use an index to rapidly find short exact alignments to seed longer in-exact alignments
 - BLAST, MUMmer, Bowtie, BWA, SOAP, ...
 - Specificity of the depends on seed length
 - Guaranteed sensitivity for k differences
 - Also finds some (but not all) lower quality alignments <- heuristic

Algorithm Overview

1. Split read into segments

Read Read (reverse complement)

CCAGTAGCTCTCAGCCTTATTTTACCCAGGCCTGTA TACAGGCCTGGGTAAAATAAGGCTGAGAGCTACTGG

Policy: extract 16 nt seed every 10 nt

Seeds
+, 0: CCAGTAGCTCTCAGCC
+, 0: TACAGGCCTGGTAAA
+, 10: TCAGCCTTATTTTACC
+, 20: TTTACCCAGGCCTGTA
-, 20: GGCTGAGAGCTACTGG

2. Lookup each segment and prioritize

3. Evaluate end-to-end match

Outline

- I. Rise of DNA Sequencing
- 2. Sequence Alignment Basics

- 3. Understanding Bowtie
- 4. Genetics of Autism

Unified Model of Autism

Sporadic Autism: 1 in 100

Prediction: De novo mutations of high penetrance contributes to autism, especially in low risk families with no history of autism.

Familial Autism: 90% concordance in twins

A unified genetic theory for sporadic and inherited autism Zhao et al. (2007) PNAS. 104(31)12831-12836.

Exome-Capture and Sequencing

Sequencing of 343 families from the Simons Simplex Collection

- Parents plus one child with autism and one non-autistic sibling
- Enriched for higher-functioning individuals

Families prepared and captured together to minimize batch effects

- Exome-capture performed with NimbleGen SeqCap EZ Exome v2.0 targeting 36 Mb of the genome.
- ~80% of the target at >20x coverage with ~93bp reads

De novo gene disruptions in children on the autism spectrum lossifov et al. (2012) Neuron. 74:2 285-299

Genotyping

- Sequencing instruments make mistakes
 - Quality of read decreases over the read length
- A single read differing from the reference is probably just an error, but it becomes more likely to be real as we see it multiple times
 - Often framed as a Bayesian problem of more likely to be a real variant or chance occurrence of N errors
 - Accuracy improves with deeper coverage

Exome Sequencing Pipeline

Scalpel: Haplotype Microassembly

G. Narzisi, J. O'Rawe, I. Iossifov, Y. Lee, Z. Wang, G. Lyon, M. Wigler, and M. C. Schatz

DNA sequence **micro-assembly** pipeline for accurate detection and validation of *de novo* mutations (SNPs, indels) within exome-capture data.

Features

- I. Combine mapping and assembly
- 2. Exhaustive search of haplotypes
- De novo mutations

NRXN1 de novo SNP (auSSC12501 chr2:50724605)

Scalpel Pipeline

Extract reads mapping within the exon including (1) well-mapped reads, (2) soft-clipped reads, and (3) anchored pairs

Decompose reads into overlapping *k*-mers and construct de Bruijn graph from the reads

Find end-to-end haplotype paths spanning the region

Align assembled sequences to reference to detect mutations

De novo mutation discovery and validation

Concept: Identify mutations not present in parents.

Challenge: Sequencing errors in the child or low coverage in parents lead to false positive de novos


```
Father: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...

Mother: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...

Sib: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...

Aut(1): ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...

Aut(2): ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...
```

6bp heterozygous deletion at chr13:25280526 ATP12A

De novo Genetics of Autism

- In 343 family quads so far, we see significant enrichment in de novo *likely gene killers* in the autistic kids
 - Overall rate basically 1:1 (432:396)
 - 2:1 enrichment in nonsense mutations
 - 2:1 enrichment in frameshift indels
 - 4:1 enrichment in splice-site mutations
 - Most de novo originate in the paternal line in an age-dependent manner (56:18 of the mutations that we could determine)
- Observe strong overlap with the 842 genes known to be associated with fragile X protein FMPR
 - Related to neuron development and synaptic plasticity

De novo gene disruptions in children on the autism spectrum lossifov et al. (2012) Neuron. 74:2 285-299

Computational Biology

"Computer science is no more about computers than astronomy is about telescopes." Edsger Dijkstra

- Computer Science = Science of Computation
 - Solving problems, designing & building systems
 - Computers are very, very dumb, but we can instruct them
 - Build complex systems out of simple components
 - They will perfectly execute instructions forever
- CompBio = Thinking Computationally about Biology
 - Processing: Make more powerful instruments, analyze results
 - Designing & Understanding: protocols, procedures, systems

"Think Harder & Compute Less"

Dan Gusfield

Recommended: CSE 549 - Introduction to Computational Biology

Acknowledgements

Schatz Lab

Giuseppe Narzisi

Shoshana Marcus

James Gurtowski

Srividya

Ramakrishnan

Hayan Lee

Rob Aboukhalil

Mitch Bekritsky

Charles Underwood

Tyler Gavin

Alejandro Wences

Greg Vurture

Eric Biggers

Aspyn Palatnick

CSHL

Hannon Lab

Gingeras Lab

Iossifov Lab

Levy Lab

Lippman Lab

Lyon Lab

Martienssen Lab

McCombie Lab

Ware Lab

Wigler Lab

IT Department

NBACC

Adam Phillippy

Sergey Koren

SFARI
SIMONS FOUNDATION
AUTISM RESEARCH INITIATIVE

Questions?

http://schatzlab.cshl.edu

