Any Differences?

Motivation towards Compression

- Digital images require huge amounts of space for storage and large bandwidths for transmission.
 - A 640 x 480 color image requires close to 1MB of space.
- Calculate the space required for a SD (Standard Definition 720 * 480) movie of 2 hours running at 30 fps...!! (Answer = 224 GB)
- Imagine how movies came in two CD's / DVD's of very less size than required 224 GB size...?

Motivation Continued...

- Have you checked the size of any image when its clicked by your camera and compared it to the ones you share on social media...?
- Imagine the network congestion if all images shared over Whatsapp or any social media did not have any provision for compression.
- What would have been the cost of data transmission then?

Data Compression

- It aims at reducing the amount of data required to represent a given quantity of information.
- Data is the means by which information is conveyed.
- Information are said to contain redundant data.

What is Image Compression?

 Image compression is the process of reducing the amount of data required to represent an image

f(x,y)

Compress

← f(x,y)

Decompress

Data # Information

- Data and information are not synonymous terms.
- Data is the means by which information is conveyed.
- Data compression aims to reduce the amount of data required to represent a given quantity of information while preserving as much information as possible.
- Image compression is an irreversible process.

 The same amount of <u>information</u> can be represented by various amount of <u>data</u>.

For example:-

- Your wife, Helen, will meet you at Logan Airport in Boston at 5 minutes past 6:00 pm tomorrow night
- Your wife will meet you at Logan Airport at 5 minutes past 6:00 pm tomorrow night
- Helen will meet you at Logan at 6:00 pm tomorrow night
- All 3 statements represent the same information with different levels of data redundancy, the first line containing maximum redundant data.

Compression Fundamentals

- ✓ Image compression involves reducing the size of image data files, while retaining necessary information
- √ Retaining necessary information depends upon the application
- ✓ Image segmentation methods, which are primarily a data reduction process, can be used for compression
- ✓ The ratio of the original, uncompressed image file and the
 compressed file is referred to as the compression ratio

Compression Ratio

Compression Ratio: $C_R = \frac{n_1}{n_2}$

Data Redundancy

• Relative data redundancy: $R_D = 1 - \frac{1}{C_R}$

Example:

If
$$C_R = \frac{10}{1}$$
, then $R_D = 1 - \frac{1}{10} = 0.9$
(90% of the data in dataset 1 is redundant)

if
$$n_2 = n_1$$
, then $C_R = 1$, $R_D = 0$
if $n_2 \ll n_1$, then $C_R \to \infty$, $R_D \to 1$
if $n_2 \gg n_1$, then $C_R \to 0$, $R_D \to -\infty$

Data Redundancies

14

Compression algorithms are developed by taking advantage of the redundancy that is inherent in image data

Coding Redundancy

 Occurs when the data used to represent the image is not utilized in an optimal manner

Interpixel Redundancy

 Occurs because adjacent pixels tend to be highly correlated, in most images the brightness levels do not change rapidly, but change gradually.

Psychovisual Redundancy

 Some information is more important to the human visual system than other types of information

Coding Redundancy

- Length of the code words (e.g., 8-bit codes for grey value images) is larger than needed.
- Coding redundancy is associated with the representation of information.
- The information is represented in the form of codes.
- If the gray levels of an image are coded in a way that uses more code symbols than absolutely necessary to represent each gray level then the resulting image is said to contain coding redundancy.

Inter-Pixel Redundancy

• Inter-Pixel Spatial Redundancy:

- Inter-pixel redundancy is due to the correlation between the neighboring pixels in an image.
- The value of any given pixel can be predicated from the value of its neighbors (Highly Correlated).
- The information carried by individual pixel is relatively small.
- To reduce inter-pixel redundancy the difference between adjacent pixels can be used to represent an image.

Inter-Pixel Temporal Redundancy

- Inter-Pixel temporal redundancy is the statistical correlation between pixels from successive frames in video sequence.
- Temporal redundancy is also called inter-frame redundancy.
- Removing a large amount of redundancy leads to efficient video compression.

Psychovisual Redundancy

31)

If the image will only be used for visual observation (i.e. illustrations on the web etc), a lot of the information is usually psycho-visually redundant. It can be removed without changing the visual quality of the image. This kind of compression is usually irreversible.

0.05kB

Fidelity Criteria

- How close is f(x,y) to $\hat{f}(x,y)$?
- Criteria
 - Subjective: based on human observers
 - Objective: mathematically defined criteria

Subjective Fidelity Criteria

Value Rating 1 Excellent		Description		
		An image of extremely high quality, as good as you could desire.		
2	Fine	An image of high quality, providing enjoyable viewing. Interference is not objectionable.		
3	Passable	An image of acceptable quality. Interference is not objectionable.		
4	Marginal	An image of poor quality; you wish you could improve Interference is somewhat objectionable.		
5	Inferior	A very poor image, but you could watch it. Objectionable interference is definitely present.		
6	Unusable	An image so bad that you could not watch it.		

Types of Image Compression

- Based on the loss incurred in the compression scheme, it is classified into the following:-
- Lossless
 - Information preserving
 - Low compression ratios
- Lossy
 - Not information preserving
 - High compression ratios
- Trade-off: image quality vs compression ratio

Image Compression

Some Basic Compression Methods

- Huffman coding
- Golomb Coding
- Arithmetic Coding
- LZW Coding
- Run Length Coding (Already Discussed)
- Symbol Based Coding
- Bit Plane Coding (You are familiar)

....many more for detail:

Image Processing Gonzalez Book (Chapter 8-Image Compression)

Lossless Compression

Huffman Coding (coding redundancy)

- A variable-length coding technique.
- Optimal code (i.e., minimizes the number of code symbols per source symbol).
- Assumption: symbols are encoded one at a time!

Arithmetic (or Range) Coding (coding redundancy)

- No assumption on encoding source symbols one at a time.
 - Sequences of source symbols are encoded together.
 - There is no one-to-one correspondence between source symbols and code words.

Slower than Huffman coding but typically achieves better compression.

Arithmetic Coding (cont'd)

 A sequence of source symbols is assigned a single arithmetic code word which corresponds to a sub-interval in [0,1].

 As the number of symbols in the message increases, the interval used to represent it becomes smaller.

 Smaller intervals require more information units (i.e., bits) to be represented.

LZW Coding (Interpixel Redundancy)

Requires <u>no prior knowledge</u> of pixel probability distribution values.

Assigns fixed length code words to variable length sequences.

It is a type of Dictionary based Coding.

Included in GIF and TIFF and PDF file formats

LZW Coding

 A codebook (or dictionary) needs to be constructed.

 Initially, the first 256 entries of the dictionary are assigned to the gray levels 0,1,2,..,255 (i.e., assuming 8 bits/pixel)

Initial Dictionary

Con	side	ra4	x4, 8	bit image
	39	39	126	126
	39	39	126	126
	39	39	126	126
	39	39	126	126

Dictionary Location	Entry
0	0
1	1
255	255
256	15a
511	175

Lempel-Ziv-Welch (LZW) coding

Focusses on spatial redundancy.

127	127	127	127
25	25	25	25
25	25	127	127
127	127	127	127

Lempel-Ziv-Welch (LZW) coding

Focusses on spatial redundancy.

127	127	127	127	
25	25	25	25	
25	25	127	127	
127	127	127	127	

Assigns fixed-length code words to variable

length sequences.

xxxxxxxxx - 127-127

yyyyyyyyy - 127-127-127

ZZZZZZZZZ - 25-25

LZW Coding (cont'd)

39 39 126 126

39 39 126 126

39 39 126 126

39 39 126 126

As the encoder examines image pixels, gray level sequences (i.e., **blocks**) that are not in the dictionary are assigned to a new entry.

Dictionary Location	Entry
0	0
1	1
NE:	
255	255
256	39-39
511	

- Is 39 in the dictionary......Yes
- What about 39-39.....No
- Then add 39-39 in entry 256

Example

39 39 126 126 39 39 126 126

39 39 126 126

39 39 126 126

CR = empty

If CS is found:

(1) No Output

(2) CR=CS

else:

(1) Output D(CR)

(2) Add CS to D

(3) CR=P

Concatenated Sequence: CS = CR + P

Currently Recognized Sequence	Pixel Being Processed	Encoded Output	Dictionary Location (Code Word)	Dictionary Entry
	39			
39	39	39	256	39-39
39	126	39	257	39-126
126	126	126	258	126-126
126	39	126	259	126-39
39	39			
39-39	126	256	260	39-39-126
126	126			
126-126	39	258	261	126-126-39
39	39			
39-39	126			
39-39-126	126	260	262	39-39-126-126
126	39			
126-39	39	259	263	126-39-39
39	126			
39-126	126	257	264	39-126-126
126		126		