Haizhou Zhao

(±86) 130-7061-7007 ⊠ haizhou zhao@outlook.com Personal Page

EDUCATION

University of Liverpool

Liverpool, United Kingdom

B.Eng. in Mechatronics and Robotic Systems - First Class (Honours)

2019/09 - 2023/07

Suzhou, China

Xi'an Jiaotong-Liverpool University (XJTLU)

2019/09 - 2023/07

B.Eng. in Mechatronics and Robotic Systems

- o GPA 3.86/4.0
- o Year 0 (2019-2020) Rank 1. University Academic Excellence Award (Top 5%)
- o Year 1 (2020-2021) Rank 2. University Academic Excellence Award (Top 5%)

Research Interests

- ▶ Hybrid control schemes that combine model-aware optimization-based control and data-driven learning techniques to enable agile, robust, and adaptive humanoid robot locomotion in the real world.
- ▶ Bionic mechanical design to enhance humanoid robot athletic abilities and compliance.

Publications

Preprints

- ▶ Lei Yu, Haizhou Zhao, Siying Qin, and Yuqing Chen. "A Robot Leg with Compact Variable Stiffness Joint based on Leaf-Spring Mechanism". arXiv preprint abs/2308.13988 (Submitted to IEEE/ASME Transactions on Mechatronics, Under Review), 2023.
- ▶ Haizhou Zhao, Lei Yu, Siying Qin, Yurui Jin, and Yuqing Chen. "Design and Control of a Bio-inspired Wheeled Bipedal Robot". arXiv preprint abs/2308.13205 (Working in progress), 2023.

Conferences

▶ Haizhou Zhao and Yuqing Chen. "Constrained Iterative Nonlinear Optimization for Robot Control Applications". In 2022 27th IEEE International Conference on Automation and Computing (ICAC).

Industrial Experience

Bipedal Robot Walking Control

Beijing, China

Control Engineer (co-founder), ARX Robotics (Beijing) Inc.

2023/06 - 2023/07

o Implemented a DCM + WBC walking controller with footstep and timing optimization for a bipedal robot. The robot could walk stably for more than 1 min.

RESEARCH EXPERIENCE

Bipedal Robot Controller Design

Tsinghua University

Research intern, DISCOVER Lab, Institute for AI Industry Research (AIR)

2022/05 - 2023/05

Advisor: Dr. Guyue Zhou, Associate Professor, AIR, Tsinghua

- Designed an HZD + WBIC walking controller for a bipedal robot with line feet. The robot was capable of performing short-time walking in hardware tests (5 to 10s) .
- Implemented an NMPC + WBC control framework with online foot placement planning based on OCS2. Walking stability was tested successfully in the simulation.
- o Programmed a PUB-SUB multi-task framework based on message queues to facilitate unit tests and continuous development.

Bionic Wheeled Bipedal Robot Design and Control

XJTLU

Undergraduate Research Assistant, XJTLU Robotics Lab

2021/09 - 2023/01

Advisor: Dr. Yuqing Chen, Assistant Professor, Dept. of Mechatronics and Robotics, XJTLU

- o Built a wheeled bipedal robot with special consideration of the link inertia distribution and controller design to improve torque efficiency inspired by human deep squats.
- Devised a CLF-WBC controller using the wheeled linear inverted pendulum (wLIP) as the reduced-order model to control the centroidal dynamics.

Parallel Variable Stiffness Actuator

XJTLU

Undergraduate Research Assistant, XJTLU Robotics Lab

2022/08 - 2022/11

Advisor: Dr. Yuqing Chen, Assistant Professor, Dept. of Mechatronics and Robotics, XJTLU

- o Involved in the design of a compact leaf-spring-based parallel variable stiffness actuator (P-VSA) to improve torque efficiency and increase joint output power.
- Validated the effectiveness of the P-VSA for realistic humanoid robot leg applications via robot leg hopping experiments. The leg was controlled by a virtual model controller (VMC) as well as a mathematical model of the leaf spring to calculate the P-VSA output torque. The stiffness of the P-VSA was modulated online during hopping.

Input-Constrained Horizon-Variable Nonlinear Differential Dynamic Programming

XJTLU

Summer Undergraduate Research Fellow

2021/06 - 2021/09

Advisor: Dr. Yuqing Chen, Assistant Professor, Dept. of Mechatronics and Robotics, XJTLU

- o Designed an SQP-like indirect optimal control algorithm based on Pontryagin's maximum principle (PMP). The optimal control problem was solved in a Riccati-recursion style to exploit the time sparsity. Input constraints are handled by solving intermediate-step sub-problems formulated as quadratic programming.
- Implemented the numerical simulation for an underactuated planar three-link system in MATLAB. The simulation results are presented in the ICAC 2022 paper.

Competition

DJI RoboMaster Robotics Competition 2022, National 1st Prize

Shenzhen, China

Control System Group Advisor, XJTLU GMaster Team

2021/08 - 2022/09

- Assisted the controller design for an omnidirectional co-axial self-balancing robot.
- o Promoted the analysis and improvement of controller performance based on classical control theory.

DJI RoboMaster Robotics Competition 2021, National 2nd Prize

Shenzhen, China 2020/08 - 2021/07

Control System Group Leader, XJTLU GMaster Team

- o Improved and tuned cascaded-PID + low-pass filtering for 2-DOF gimbals according to classical control theory. The gimbals exhibited rapid responses to commands and excellent robustness against external disturbances and unknown noises.
- o Implemented a vision-servo framework that integrated IMU, camera, and Kalman filter for automatic target tracking. The controller latency was explicitly compensated through timestamp calibration and Kalman filter prediction.

TECHNICAL SKILLS

- ▶ Programming: C++, C, Python, embedded systems (STM32, Arduino, FreeRTOS, etc.), MATLAB
- ▶ Simulation: Simulink, Simscape Multibody, RaiSim, MuJoCo
- ▶ Libraries: CasADi, Pinocchio, ROS, ROS2, ACADOS, OSQP, IPOPT, OCS2
- ► Mechanical Design: Solidworks, Ansys