VERNAM CIPHER

$$\mathrm{C} = \mathsf{Enc}_{\mathsf{k}}(\mathrm{P}) = \mathrm{P} \oplus \mathsf{k} \hspace{5mm} \mathrm{P} = \mathsf{Dec}_{\mathsf{k}}(\mathrm{C}) = \mathrm{C} \oplus \mathsf{k}$$

CESAR CIPHER

$$\mathrm{C} = \mathsf{Enc}_{\mathsf{k}}(P) = P \boxplus \mathsf{k} \qquad P = \mathsf{Dec}_{\mathsf{k}}(\mathrm{C}) = \mathrm{C} \boxplus \mathsf{k}$$

CIRULAR SHIFT CIPHER

$$\mathrm{C} = \mathsf{Enc}_{\mathsf{k}}(\mathrm{P}) = \mathrm{P} <<< \mathsf{k} \quad \ \ \mathrm{P} = \mathsf{Dec}_{\mathsf{k}}(\mathrm{C}) = \mathrm{C} <<< -\mathsf{k}$$

LEHMER GENERATOR AND LCG

$$s_0 = \text{seed}$$

 $s_{i+1} \equiv a \cdot s_i + b \pmod{m}, i = 0, 1, \cdots$

FIBONACCI LFSR

$$P(x) = 1 + p_{m-1}x + \dots + p_1x^{m-1} + p_0x^m$$

$$\chi_{\mathbf{L}}(x) = x^m P(\frac{1}{x}) = p_0 + p_1 x + \dots + p_{m-1} x^{m-1} + x^m$$

$$\mathbf{L} = \begin{bmatrix} p_{m-1} & \mathbf{1} & 0 & 0 & \cdots & 0 \\ p_{m-2} & 0 & \mathbf{1} & 0 & \cdots & 0 \\ p_{m-3} & 0 & 0 & \mathbf{1} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_1 & 0 & 0 & 0 & \cdots & \mathbf{1} \\ p_0 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

$$\mathbf{s} = [s_{m-1}s_{m-2}s_{m-3}\cdots s_1s_0]$$

$$\mathbf{s} \cdot \mathbf{L} = \mathbf{s}'$$

GALOIS LFSR

$$\mathbf{L} = \begin{bmatrix} 0 & \mathbf{1} & 0 & 0 & \cdots & 0 \\ 0 & 0 & \mathbf{1} & 0 & \cdots & 0 \\ 0 & 0 & 0 & \mathbf{1} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \mathbf{1} \\ p_0 & p_1 & p_2 & p_3 & \cdots & p_{m-1} \end{bmatrix}$$

$$\mathbf{s} = [g_0g_1\cdots g_{m-2}g_{m-1}]$$

$$\mathbf{s}\cdot L = \mathbf{s}'$$

FEISTEL ROUND

SOBSTITUTION-PERMUTATION NETWORK

CBC CIPHERING

$$y_1 = \operatorname{Enc}_{\mathbf{k}}(B1 \oplus IV)$$

If $j > 1$ then $y_j = \operatorname{Enc}_{\mathbf{k}}(Bj \oplus y_{j-1})$.

CBC DECIPHERING

$$B1 = \mathsf{Dec}_{\mathsf{k}}(y_1) \oplus IV$$

If $j > 1$ then $B_j = \mathsf{Dec}_{\mathsf{k}}(y_j) \oplus y_{j-1}$.

CTR CIPHERING

$$O_j = \mathsf{Enc_k}(Tj) \text{ for } j = 1, \dots, N$$

 $C_j = Bj \oplus O_j \text{ for } j = 1, \dots, N$

CTR DECIPHERING

$$O_j = \mathsf{Enc}_{\mathsf{k}}(Tj) \text{ for } j = 1, \cdots, N$$

 $Bj = C_j \oplus O_j \text{ for } j = 1, \cdots, N$

GCM TAG T

$$\begin{split} H &= \mathsf{Enc}_{\mathsf{k}}(0); \\ g_0 &= \mathsf{AAD} \otimes H; \text{ where } \otimes \text{ is the Galois multiplication in } \mathsf{GF}(2^{128}). \\ g_j &= (g_{j-1} \oplus \mathsf{C}_j) \otimes H \text{ for } j = 1, \cdots, N; \\ \mathbf{t} &= (g_N \otimes H) \oplus \mathsf{Enc}_{\mathsf{k}}(T0) \ . \end{split}$$

EULER'S CRITERION

$$r^{\frac{p-1}{2}} \equiv 1 \pmod{p}$$

EULER'S FUNCTION

$$N = p^r \times q^s \times \cdots \quad \phi(N) \quad \mathbb{Z}_N^* \quad \phi(N) = \phi(p^r) \times \phi(q^s) \times \cdots$$

$$\phi(p^r) = (p-1) \times p^{r-1}$$

FERMAT'S LITTLE THEOREM

$$r^p \equiv r \pmod{p}$$

CRT

$$\begin{cases} x = a_1 \, mod \, n_1 \\ x = a_2 \, mod \, n_2 \\ x = a_3 \, mod \, n_3 \end{cases} \qquad N_1 = n_2 * n_3 \;, \quad N_2 = n_1 * n_3 \;, \quad N_3 = n_1 * n_2 * n_3 \;, \quad N_4 = n_2 * n_3 \;, \quad N_5 = n_1 * n_2 * n_3 \;, \quad N_7 = n_1 * n_2 * n_3 \;, \quad N_8 = n_1 * n_2 * n_3 \;, \quad N_8 = n_1 * n_2 * n_3 \;, \quad N_9 = n_1 * n_2 * n_3 \;, \quad N_9 = n_1 * n_2 * n_3 \;, \quad N_9 = n_1 * n_2 * n_3 \;, \quad N_9 = n_1 * n_2 * n_3 \;, \quad N_9 = n_1 * n_2 * n_3 \;, \quad N_9 = n_1 * n_2 * n_3 \;, \quad N_9 = n_1 * n_2 * n_3 \;, \quad N_9 = n_1 * n_2 * n_3 \;, \quad N_9 = n_1 * n_2 * n_3 \;, \quad N_9 = n_1 * n_2 * n_3 \;, \quad N_9 = n_1 * n_2 * n_3 \;, \quad N_9 = n_1 * n_2 * n_3 \;, \quad N_9 = n_1 * n_2 * n_3 \;, \quad N_9 = n_1 * n_3 \;, \quad N_9 = n_1 * n_2 * n_3 \;, \quad N_9 = n_1 *$$

$$f(a,b) = a*f(1,0) + b*f(0,1)$$

HMAC

$$k^+ = \underbrace{00\cdots 00k}_{blocksize} \text{ and } \begin{cases} \text{ipad} = 0\text{x}36 \times \text{blocksize} \\ \text{opad} = 0\text{x}5c \times \text{blocksize} \end{cases}$$

$$\mathsf{HMAC}_k(x) = h[k^+ \oplus \mathsf{ipad}||h[(k^+ \oplus \mathsf{opad})||x]]$$

DAVID-MEYER FUNCTION COM

$$H_i = Enc_{x_i}(H_{i-1}) \oplus H_{i-1}$$

MD4 COMPRESSION

DIFFIE-HELMAN

Alice and Bob agree to use a prime number p and an element g of $GF^*(p)$.

So $k = k_A = k_B$ is the session key between Alice and Bob.

A and B are the private keys whilst g^A , g^B are the public keys.

ELGAMAL

- Parameter domains: g and p as in DH key agreement.
- $\mathsf{Gen}(\lambda)$: $\mathsf{pick}\ A \in \{1, \cdots, p-1\}$ and compute $h = g^A$. Set $\mathsf{pk} = h$ and $\mathsf{sk} = A$.
- $\mathsf{Enc}_{\mathsf{pk}}(m)$ with $m \in \mathsf{GF}(p)$: pick RND $B \in \{1, \cdots, p-1\}$ and compute $C = (g^B, m \cdot h^B)$.
- Dec_{sk}(C) with C = (c₁, c₂): compute m = c₂/c₁^A.

RABIN TEXTBOOK

- $Gen(\lambda)$: choose $p, q \equiv 3 \pmod{4}$ (prime numbers of λ bit), compute N = pq.
- Set pk = N and sk = (p, q).
- Enc_{pk}(m) with m ∈ Z_N: compute C = m² mod N.
- $\operatorname{Dec}_{\mathsf{sk}}(C)$: compute $m_p = C^{\frac{p+1}{4}} \bmod p$, $m_q = C^{\frac{p+1}{4}} \bmod q$. CRT gives four candidates for m: $(\pm m_p, \pm m_q)$.

RSA TEXTBOOK

- Gen(λ): choose p,q (prime numbers of λ bit), compute N=pq and $\phi(N)=(p-1)(q-1)$. Pick $e\in\mathbb{Z}_{\phi(N)}^*$ and compute $d=e^{-1} \bmod \phi(N)$. Set $\mathsf{pk}=(N,e)$ and $\mathsf{sk}=(\phi(N),d)$.
- Enc_{pk}(m) with m ∈ Z_N: compute C = m^e mod N.
- $\operatorname{Dec}_{\mathsf{sk}}(C)$: compute $m = C^d \mod N$.

NAÏVE RSA-SIGNATURE

Alice's public key $pk_A = (n, e)$ and secret key is $sk_A = d$.

Alice Bob

 $\sigma = \mathsf{Sign}_{\mathsf{sk}_A}(m) = m^d \; (\operatorname{mod} n)$

 $\mathsf{Vrfy}_{\mathsf{pk}_A}(m,\sigma) = 1 \text{ iff } \sigma^e = m \pmod{n}$

DSA - GEN

- 1. Generate a prime p with $2^{1023} .$
- 2. Find a prime divisor *q* of p 1 with $2^{159} < q < 2^{160}$.
- Find an element α with ord(α) = q, i.e., α generates the subgroup with q elements.
- Choose a random integer d with 0 < d < q.
- 5. Compute $\beta \equiv \alpha^d \mod p$.

The keys are now:

$$k_{pub} = (p, q, \alpha, \beta)$$

$$k_{pr} = (d)$$

DSA-SIGN

1. Choose an integer as random ephemeral key k_E with $0 < k_E < q$.

2. Compute $r \equiv (\alpha^{k_E} \mod p) \mod q$.

3. Compute $s \equiv (SHA(x) + d \cdot r) k_E^{-1} \mod q$.

DSA - VERIFY

1. Compute auxiliary value $w \equiv s^{-1} \mod q$.

2. Compute auxiliary value $u_1 \equiv w \cdot SHA(x) \mod q$.

3. Compute auxiliary value $u_2 \equiv w \cdot r \mod q$.

4. Compute $v \equiv (\alpha^{u_1} \cdot \beta^{u_2} \mod p) \mod q$.

5. The verification $ver_{k_{pub}}(x,(r,s))$ follows from:

$$v \begin{cases} \equiv r \mod q \Longrightarrow \text{valid signature} \\ \not\equiv r \mod q \Longrightarrow \text{invalid signature} \end{cases}$$

POINT ADDITION

$$y^2 = x^3 + ax + b,$$

$$\lambda = rac{y_q - y_p}{x_q - x_p}$$
 $P + Q = R$ $x_r = \lambda^2 - x_p - x_q$
 $(x_p, y_p) + (x_q, y_q) = (x_r, y_r)$ $y_r = \lambda(x_p - x_r) - y_p$

POINT DOUBLING

$$\lambda = \frac{3x_p^2 + a}{2y_p}$$

EC-HD

Alice and Bob agree to use an elliptic curve E with parameters domain T = (p, a, b, G, n, h).

So $k = k_A = k_B$ is the session key between **Alice** and **Bob**.

A and B are the private keys whilst pA, pB are the public keys.

EC - MASSEY-OMURA

Alice has a secret key 0 < A < n such that gcd(A, n) = 1. So she can efficiently compute $A^{-1} \pmod{n}$.

Bob has a secret key 0 < B < n such that gcd(B, n) = 1. So he can efficiently compute $B^{-1} \pmod{n}$.

EC – DSA GEN

- 1) Choose a RND integer $d \in \{1, 2, \dots, n-1\}$.
- 2) Compute $B = d \cdot G$.

The keys are:

$$\begin{aligned} \mathsf{pk} &= (p, a, b, n, G, B); \\ \mathsf{sk} &= d \end{aligned}$$

EC - DSA SIGN

- Choose an RND integer K as ephemeral key with 0 < K < n.
- 2) Compute $R = \mathbf{K} \cdot G = (x_R, y_R)$ and set $r = x_R$.
- 3) Compute $s = (\mathsf{hash}(M) + d \cdot r) \cdot \mathsf{K}^{-1} \pmod{n}$. If $s = 0 \pmod{n}$ go to 1).

The signature $Sign_{sk}(M)$ of M is the pair (r, s).

EC – DSA VERIFY

- 1) Compute the auxiliar $w = s^{-1} \pmod{n}$.
- 2) Compute the auxiliar $u_1 = w \cdot \mathsf{hash}(M) \pmod{n}$.
- 3) Compute the auxiliar $u_2 = w \cdot r \pmod{n}$.
- 4) Compute $P = u_1 \cdot G + u_2 \cdot B = (x_P, y_P)$.
- 5) The $\mathsf{Vrfy}_{\mathsf{pk}}(M,(r,s))$ outputs 1 for a valid signature if $x_P = r \pmod n$ otherwise $\mathsf{Vrfy}_{\mathsf{pk}}(M,(r,s))$ outputs 0.