Lehrstuhl für STEUERUNGS-UND REGELUNGSTECHNIK

Technische Universität München Prof. Dongheui Lee

MACHINE LEARNING IN ROBOTICS

Exercises 5: PCA and LDA

Exercise 1

We have a mobile robot which has collected images of objects in its surrounding. The robot will use a clustering algorithm for performing groupng of similar images. Since the image data is high dimensional, a useful preprocessing step is to first project it into a lower dimension space before clustering. Now we have $d \times n$ dimensional data X which has n samples of $d \times 1$ dimensional vectors. These vectors correspond to image data and the dimension $d \gg n$. Now we are interested in calculating the principal components of this data. The principal components correspond to eigenvector of covariance matrix of C

$$C = \frac{1}{n-1} * X_c * X_c^{\mathsf{T}} \tag{1}$$

where X_c is obtained by subtracting the mean vector from X. Since for large values of d (for grayscale image of size 640×480 , d = 307200), this computation can easily hang the onboard system.

A useful trick is to calculate the eigenvector of C1 which is $n \times n$

$$C1 = \frac{1}{n-1} * X_c^{\top} * X_c \tag{2}$$

and now if v is an eigenvector of C1 with corresponding eigenvalue λ then $v1 = X_c * v$ is an eigenvector of C with corresponding eigenvalue λ . Show that this claim is true.

Exercise 2

Use proof by induction to show that the linear projection onto an M-dimensional subspace that maximizes the variance of the projected data is defined by the M eigenvectors of the data covariance matrix S, corresponding to the M largest eigenvalues.

Exercise 3

Calculate the LDA projection for the following dataset:

Class1 = $\{(4,1), (2,4), (2,3), (3,6), (4,4)\}$ and Class2 = $\{(9,10), (6,8), (9,5), (8,7), (10,8)\}$ and using 1-nerest neighbour classifier on the projected data, classify the new point (7,4).