MER 532: Composite Materials Review of Matrix Algebra

- Square Matrices
- Matrix Addition
- Matrix Multiplication
- Matrix Transpose
- Determinants
- □ Cofactor Matrix
- Matrix Inversion
- Eigenvalues and Eigenvectors

Matrix Algebra

$$u = a_{11} \cdot x + a_{12} \cdot y + a_{13} \cdot z$$

$$v = a_{21} \cdot x + a_{22} \cdot y + a_{23} \cdot z$$

$$w = a_{31} \cdot x + a_{32} \cdot y + a_{33} \cdot z$$

$$\{\delta\} = [A] \cdot \{s\}$$
 $\delta_i = A_{ij} \cdot s_j$

$$\{\delta\} = \begin{cases} u \\ v \\ w \end{cases} \qquad [A] = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \qquad \{s\} = \begin{cases} x \\ y \\ z \end{cases}$$

Types of Square Matrices

Diagonal Matrix:
$$\begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{bmatrix}$$

Identity Matrix:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Symmetric Matrix:
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ & a_{22} & a_{23} \\ sym & & a_{33} \end{bmatrix} \qquad a_{ij} = a_{ji}$$

Matrix Addition

$$[A] + [B] = [C]$$

$$c_{ij} = a_{ij} + b_{ij}$$

$$\begin{bmatrix} 2 & 0 & -1 \\ 6 & -3 & 2 \end{bmatrix} + \begin{bmatrix} 0 & -2 & 1 \\ 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 0 \\ 7 & -3 & 1 \end{bmatrix}$$

Scalar Multiplication

$$s \cdot [A] = [s \cdot a_{ij}]$$

$$\begin{bmatrix}
1 & 3 & 0 \\
2 & -1 & 1 \\
0 & 2 & -2
\end{bmatrix} = \begin{bmatrix}
3 & 9 & 0 \\
6 & -3 & 3 \\
0 & 6 & -6
\end{bmatrix}$$

Matrix Multiplication

 Number of columns of the of the first matrix must equal the number of rows of the second

$$[C] = [A] \cdot [B]$$
$$c_{ij} = a_{ik} \cdot b_{kj}$$

Example

$$\begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & 0 \\ -2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 6 & 1 \\ -7 & -9 & 2 \end{bmatrix}$$

Matrix Multiplication of Square Matrices

In general

$$[A] \cdot [B] \neq [B] \cdot [A]$$

• Pre- and postmultiplicatoin of the identity matrix

$$[I] \cdot [A] = [A] \cdot [I] = [A]$$

Associative Law

$$[A] \cdot ([B] \cdot [C]) = ([A] \cdot [B]) \cdot [C]$$

Matrix Transpose

• Interchanging the rows and columns of a matrix

$$[A] = a_{ij} \quad [A]^T = a_{ji}$$

• Example

$$\begin{bmatrix} 2 & 5 & -4 \\ -3 & 7 & -9 \end{bmatrix}^{T} = \begin{bmatrix} 2 & -3 \\ 5 & 7 \\ -4 & -9 \end{bmatrix}$$

• Transpose of the products

$$([A] \cdot [B] \cdot [C])^{T} = [C]^{T} \cdot [B]^{T} \cdot [A]^{T}$$

Determinant of a Matrix

- |A| is the determinant of an n by n square matrix [A]
 - method of cofactors eventually reduces to a 2 by 2 determinant

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

- For an n by n matrix [A]
 - select any row i or column j

$$|A| = \sum_{j=1}^{n} a_{ij} \cdot \tilde{a}_{ij}$$
 selecting row i

$$|A| = \sum_{i=1}^{n} a_{ij} \cdot \tilde{a}_{ij}$$
 selecting column j

 \circ \tilde{a}_{ii} is the cofactor of a_{ii}

Cofactor Matrix

- The cofactor matrix $\begin{bmatrix} \tilde{A} \end{bmatrix}$ is the same order of $\begin{bmatrix} A \end{bmatrix}$
- Each term in $\lceil \tilde{A} \rceil$ is given by

$$\tilde{a}_{ij} = (-1)^{i+j} \cdot m_{ij}$$

- m is the **minor** of the matrix a_{ij} and is the determinate of the $(n-1)\cdot(n-1)$ matrix obtained by eliminating row i and column j of a_{ij}
- Example

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 3 & 0 & 1 \\ -1 & 2 & 0 \\ 1 & -2 & 1 \end{bmatrix} \qquad \begin{bmatrix} \tilde{A} \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ -2 & 2 & 6 \\ -2 & -1 & 6 \end{bmatrix}$$

Matrix Inversion

• Consider the linear equations

$$\{\delta\} = [A] \cdot \{s\}$$

• If $\{\delta\}$ and [A] are known, $\{s\}$ can be found

$$[A]^{-1} \cdot \{\delta\} = [A]^{-1} \cdot [A] \cdot \{s\} = [I] \cdot \{s\} = \{s\}$$

• The inverse of [A], $[A]^{-1}$ is

$$\left[A\right]^{-1} = rac{\left[ilde{A}
ight]^T}{\left|A
ight|}$$

 $\circ \left[\tilde{A}\right]^T$ is the transpose of the cofactor or **adjoint matrix**

Special Cases of Matrix Inversion

• The inverse of [A], $[A]^{-1}$ is

$$\left[A\right]^{-1} = \frac{\left[\tilde{A}\right]^T}{\left|A\right|}$$

- If the determinate of the matrix is zero it is referred to as **singular**
 - The inverse does not exist
 - This typically means that the equations are not **independent**
- The inverse of an orthogonal transformation matrix is simply the transpose of the transformation matrix

$${V'} = [T] \cdot {V}$$
 ${V} = [T]^T \cdot {V'}$

Eigenvalues and Eigenvectors

• The Eigen value problem is of the form, [A] is an n by n square matrix $[A] \cdot \{s\} = \lambda \cdot [I] \cdot \{s\}$

$$([A] - \lambda \cdot [I]) \cdot \{s\} = 0$$

• To avoid the trivial solution, $\{s\} = 0$, $[A] - \lambda \cdot [I]$ is forced to be singular $[A] - \lambda \cdot [I] = 0$