## Введение в римановы поверхности

С. К. Ландо

Национальный исследовательский университет Высшая школа экономики

2021

#### Лекция 11. Линейные расслоения над кривыми

Функции на кривой можно понимать как сечения тривиального линейного расслоения над ней. Тривиальное линейное расслоение над кривой C — это прямое произведение  $C \times \mathbb{C}$  этой кривой на комплексную прямую. Каждой мероморфной функции  $f: C \to \mathbb{C}P^1$  сопоставляется мероморфное сечение этого расслоения  $C \to C \times \mathbb{C}$ , переводящее точку  $x \in C$  в точку  $(x, f(x)) \in C \times \mathbb{C}$ . Прообразы бесконечности являются полюсами функции f в C. Если кривая C компактна, то все голоморфные функции на ней постоянны, а у всякой непостоянной мероморфной функции есть полюса.

#### Лекция 11. Линейные расслоения над кривыми

Функции на кривой можно понимать как сечения тривиального линейного расслоения над ней. Тривиальное линейное расслоение над кривой  $\mathcal{C}$  — это прямое произведение  $C \times \mathbb{C}$  этой кривой на комплексную прямую. Каждой мероморфной функции  $f: C \to \mathbb{C}P^1$  сопоставляется мероморфное сечение этого расслоения  $C \to C \times \mathbb{C}$ . переводящее точку  $x \in C$  в точку  $(x, f(x)) \in C \times \mathbb{C}$ . Прообразы бесконечности являются полюсами функции f в C. Если кривая C компактна, то все голоморфные функции на ней постоянны, а у всякой непостоянной мероморфной функции есть полюса. Помимо тривиального линейного расслоения над всякой кривой есть еще два естественных линейных расслоения: касательное TC и кокасательное  $T^{\vee}C$ . Эти два расслоения имеются не только над кривыми, но и над произвольными комплексными многообразиями. Однако над комплексным многообразием размерности n>1 эти расслоения не являются линейными; их ранг (т.е., размерность слоя), равен л, тогда как ранг линейного расслоения, по определению, равен 1.

#### Лекция 11. Линейные расслоения над кривыми

#### Definition

Векторным расслоением ранга  $k, k \in \mathbb{N}$ , над комплексным многообразием M размерности m называется пара, состоящая из комплексного многообразия E размерности m+k и голоморфного отображения  $p:E \to M$ , такого, что у любой точки  $x \in M$  существует открытая окрестность  $U(x) \subset M$  и биголоморфизм  $\varphi: U(x) \times \mathbb{C}^k \to p^{-1}(U(x))$  прямого произведения U(x) и  $\mathbb{C}^k$  на полный прообраз этой окрестности, причем

- $p \circ \varphi : (x, v) \mapsto x$  для любой точки  $x \in M$ ;
- ullet ограничение отображения  $\varphi$  на  $y \times \mathbb{C}^k$  является линейным изоморфизмом на  $p^{-1}(y)$  для любой точки  $y \in U(x)$ .

Прообраз  $p^{-1}(x)$  точки  $x \in M$  называется *слоем* векторного расслоения  $p: E \to M$ . *Мероморфным сечением* голоморфного векторного расслоения  $p: E \to M$  называется мероморфное отображение  $\sigma: M \to E$ , такое, что  $p \circ \sigma: M \to M$  есть тождественное отображение.

Если ранг k векторного расслоения равен 1, то расслоение называется линейным.

#### Лекция 11. Касательное и кокасательное расслоения над кривой

Слоем  $T_x$  касательного расслоения TC к кривой C над точкой  $x \in C$  является касательная прямая к C в точке x. Касательная прямая состоит из касательных векторов, которые можно определять по-разному. Например, как классы эквивалентности голоморфных отображений  $(D,0) \to (C,x)$ , где D — единичный диск в  $\mathbb C$ , или как дифференцирования, т.е. линейные отображения из пространства ростков голоморфных функций в точке  $x \in C$  в  $\mathbb C$ , удовлетворяющие правилу Лейбница v(fg) = v(f)g(x) + f(x)v(g). При втором определении утверждение о том, что касательные вектора к кривой C в данной точке x образуют векторное пространство, становится очевидным. Кокасательное расслоение двойственно к касательному.

### Лекция 11. Касательное и кокасательное расслоения над кривой

Слоем  $T_x$  касательного расслоения TC к кривой C над точкой  $x \in C$  является касательная прямая к C в точке x. Касательная прямая состоит из *касательных векторов*, которые можно определять по-разному. Например, как классы эквивалентности голоморфных отображений  $(D,0) \to (C,x)$ , где D — единичный диск в  $\mathbb C$ , или как дифференцирования, т.е. линейные отображения из пространства ростков голоморфных функций в точке  $x \in C$  в  $\mathbb{C}$ , удовлетворяющие правилу Лейбница v(fg) = v(f)g(x) + f(x)v(g). При втором определении утверждение о том, что касательные вектора к кривой C в данной точке x образуют векторное пространство. становится очевидным. Кокасательное расслоение двойственно к касательному. Векторное поле — это сечение касательного расслоения. Дифференциальная 1-форма сечение кокасательного расслоения (ковекторное поле). В локальной координате zвекторное поле записывается в виде  $a(z)\partial/\partial z$ ; его нули и полюса — это нули и полюса локальных коэффициентов a(z). Если векторное поле голоморфно, то голоморфна и функция a(z); если поле мероморфно, то функция a(z) мероморфна. Соответственно, 1-форма записывается в виде b(z)dz.

На любой кривой C голоморфные векторные поля и голоморфные 1-формы образуют векторное пространство над  $\mathbb{C}$ . В свою очередь, мероморфные векторные поля и мероморфные 1-формы образуют векторное пространство как над  $\mathbb{C}$ , так и над полем мероморфных функций на C. Отношение любых двух ненулевых векторных полей является мероморфной функцией, поэтому последнее векторное пространство одномерно. То же самое справедливо и для 1-форм (и сечений любых линейных расслоений).

На любой кривой C голоморфные векторные поля и голоморфные 1-формы образуют векторное пространство над  $\mathbb C$ . В свою очередь, мероморфные векторные поля и мероморфные 1-формы образуют векторное пространство как над  $\mathbb C$ , так и над полем мероморфных функций на C. Отношение любых двух ненулевых векторных полей является мероморфной функцией, поэтому последнее векторное пространство одномерно. То же самое справедливо и для 1-форм (и сечений любых линейных расслоений). Векторное поле  $\partial/\partial z$  является голоморфным векторным полем на проективной прямой. Его голоморфность очевидна для всех конечных значений z. Чтобы понять, как оно ведет себя в бесконечности, посмотрим, как это векторное поле действует на локальную координату w=1/z в окрестности бесконечности. Имеем

$$\frac{\partial}{\partial z}w = \frac{\partial}{\partial z}\frac{1}{z} = -\frac{1}{z^2} = -w^2.$$

Тем самым, в координате w наше векторное поле имеет вид  $-w^2\partial/\partial w$ . Это означает, в частности, что оно голоморфно (у него нет полюсов) и имеет нуль порядка 2 в бесконечности

Векторное поле  $\partial/\partial z$  является голоморфным векторным полем на проективной прямой. Его голоморфность очевидна для всех конечных значений z. Чтобы понять, как оно ведет себя в бесконечности, посмотрим, как это векторное поле действует на локальную координату w=1/z в окрестности бесконечности. Имеем

$$\frac{\partial}{\partial z}w = \frac{\partial}{\partial z}\frac{1}{z} = -\frac{1}{z^2} = -w^2.$$

Тем самым, в координате w наше векторное поле имеет вид  $-w^2\partial/\partial w$ . Это означает, что оно голоморфно (у него нет полюсов) и имеет нуль порядка 2 в бесконечности.

Векторное поле  $\partial/\partial z$  является голоморфным векторным полем на проективной прямой. Его голоморфность очевидна для всех конечных значений z. Чтобы понять, как оно ведет себя в бесконечности, посмотрим, как это векторное поле действует на локальную координату w=1/z в окрестности бесконечности. Имеем

$$\frac{\partial}{\partial z}w = \frac{\partial}{\partial z}\frac{1}{z} = -\frac{1}{z^2} = -w^2.$$

Тем самым, в координате w наше векторное поле имеет вид  $-w^2\partial/\partial w$ . Это означает, что оно голоморфно (у него нет полюсов) и имеет нуль порядка 2 в бесконечности.

#### Corollary

Всякое голоморфное векторное поле на проективной прямой имеет вид  $P_2(z)\partial/\partial z$ , где  $P_2(z)$  — многочлен степени не выше 2.

Векторное поле  $\partial/\partial z$  является голоморфным векторным полем на проективной прямой. Его голоморфность очевидна для всех конечных значений z. Чтобы понять, как оно ведет себя в бесконечности, посмотрим, как это векторное поле действует на локальную координату w=1/z в окрестности бесконечности. Имеем

$$\frac{\partial}{\partial z}w = \frac{\partial}{\partial z}\frac{1}{z} = -\frac{1}{z^2} = -w^2.$$

Тем самым, в координате w наше векторное поле имеет вид  $-w^2\partial/\partial w$ . Это означает, что оно голоморфно (у него нет полюсов) и имеет нуль порядка 2 в бесконечности.

#### Corollary

Всякое голоморфное векторное поле на проективной прямой имеет вид  $P_2(z)\partial/\partial z$ , где  $P_2(z)$  — многочлен степени не выше 2.

1-форма dz имеет в бесконечности полюс второго порядка:  $dz = d\frac{1}{w} = -\frac{dw}{w^2}$ .



Векторное поле  $\partial/\partial z$  является голоморфным векторным полем на проективной прямой. Его голоморфность очевидна для всех конечных значений z. Чтобы понять, как оно ведет себя в бесконечности, посмотрим, как это векторное поле действует на локальную координату w=1/z в окрестности бесконечности. Имеем

$$\frac{\partial}{\partial z}w = \frac{\partial}{\partial z}\frac{1}{z} = -\frac{1}{z^2} = -w^2.$$

Тем самым, в координате w наше векторное поле имеет вид  $-w^2\partial/\partial w$ . Это означает, что оно голоморфно (у него нет полюсов) и имеет нуль порядка 2 в бесконечности.

#### Corollary

Всякое голоморфное векторное поле на проективной прямой имеет вид  $P_2(z)\partial/\partial z$ , где  $P_2(z)$  — многочлен степени не выше 2.

1-форма dz имеет в бесконечности полюс второго порядка:  $dz = d\frac{1}{w} = -\frac{dw}{w^2}$ .

#### Corollary

На проективной прямой нет ненулевых голоморфных 1-форм.

## Лекция 11. Дифференциал функции

Одним из основных источников мероморфных 1-форм на комплексных кривых являются дифференциалы функций. Всякой мероморфной функции  $f:C\to \mathbb{C}P^1$  на кривой C соответствует 1-форма df, ее дифференциал, на C. По определению, 1-форма df действует на касательный вектор  $v\in T_xC$  по правилу  $df:v\mapsto v(f)$ . В локальной координате z дифференциал мероморфной функции f записывается в виде  $df=\frac{\partial f}{\partial z}dz$ .

### Лекция 11. Дифференциал функции

Одним из основных источников мероморфных 1-форм на комплексных кривых являются дифференциалы функций. Всякой мероморфной функции  $f:C\to \mathbb{C}P^1$  на кривой C соответствует 1-форма df, ее дифференциал, на C. По определению, 1-форма df действует на касательный вектор  $v\in T_xC$  по правилу  $df:v\mapsto v(f)$ . В локальной координате z дифференциал мероморфной функции f записывается в виде  $df=\frac{\partial f}{\partial z}dz$ . Упражнение. 1-форма dz на проективной прямой является дифференциалом мероморфной функции z. Дифференциалом какой мероморфной функции является 1-форма  $\frac{dz}{z}$ ?

Всякое ненулевое мероморфное векторное поле на проективной прямой имеет вид  $\frac{P(z)}{Q(z)} \frac{\partial}{\partial z}$ , где P(z), Q(z) — многочлены, не имеющие общих корней. Всякая ненулевая мероморфная 1-форма на проективной прямой имеет вид  $\frac{P(z)}{Q(z)}dz$ , где P(z), Q(z) — многочлены, не имеющие общих корней.

#### Лекция 11. Векторные поля и 1-формы на эллиптических кривых

Векторное поле  $\partial/\partial z$  на комплексной прямой  $\mathbb C$  инвариантно относительно сдвигов на любой вектор в  $\mathbb C$ . В частности, оно инвариантно относительно сдвигов на элементы любой решетки  $L\subset \mathbb C$ , и определяет поэтому векторное поле на факторкривой  $\mathbb C/L$ . Это векторное поле голоморфно (у него нет полюсов) и не имеет нулей. Если V — другое голоморфное векторное поле на  $\mathbb C/L$ , то, разделив его на  $\partial/\partial z$ , получаем голоморфную функцию на  $\mathbb C/L$ , т.е. константу. Поэтому пространство голоморфных векторных полей на  $\mathbb C/L$  одномерно.

### Лекция 11. Векторные поля и 1-формы на эллиптических кривых

Векторное поле  $\partial/\partial z$  на комплексной прямой  $\mathbb C$  инвариантно относительно сдвигов на любой вектор в  $\mathbb C$ . В частности, оно инвариантно относительно сдвигов на элементы любой решетки  $L\subset \mathbb C$ , и определяет поэтому векторное поле на факторкривой  $\mathbb C/L$ . Это векторное поле голоморфно (у него нет полюсов) и не имеет нулей. Если V — другое голоморфное векторное поле на  $\mathbb C/L$ , то, разделив его на  $\partial/\partial z$ , получаем голоморфную функцию на  $\mathbb C/L$ , т.е. константу. Поэтому пространство голоморфных векторных полей на  $\mathbb C/L$  одномерно.

Векторное поле  $\partial/\partial z$  на эллиптической кривой  $C=\mathbb{C}/L$  задает *тривиализацию* касательного расслоения TC к C. Таким образом, в случае эллиптической кривой касательное расслоение тривиально,  $TC\cong C\times \mathbb{C}$ .

### Лекция 11. Векторные поля и 1-формы на эллиптических кривых

Векторное поле  $\partial/\partial z$  на комплексной прямой  $\mathbb C$  инвариантно относительно сдвигов на любой вектор в  $\mathbb C$ . В частности, оно инвариантно относительно сдвигов на элементы любой решетки  $L\subset \mathbb C$ , и определяет поэтому векторное поле на факторкривой  $\mathbb C/L$ . Это векторное поле голоморфно (у него нет полюсов) и не имеет нулей. Если V — другое голоморфное векторное поле на  $\mathbb C/L$ , то, разделив его на  $\partial/\partial z$ , получаем голоморфную функцию на  $\mathbb C/L$ , т.е. константу. Поэтому пространство голоморфных векторных полей на  $\mathbb C/L$  одномерно.

Векторное поле  $\partial/\partial z$  на эллиптической кривой  $C=\mathbb{C}/L$  задает *тривиализацию* касательного расслоения TC к C. Таким образом, в случае эллиптической кривой касательное расслоение тривиально,  $TC\cong C\times \mathbb{C}$ .

Аналогичные утверждения справедливы и для 1-форм. Кокасательное расслоение  $T^{\vee}C$  к эллиптической кривой тривиально и порождается голоморфной 1-формой dz, не имеющей нулей.

Сумма порядков нулей и полюсов мероморфного векторного поля на комплексной кривой равна ее эйлеровой характеристике. Поэтому на кривых рода g>1 (эйлерова характеристика которых отрицательна) нет ненулевых голоморфных векторных полей. Напротив, для существования голоморфных 1-форм отрицательность эйлеровой характеристики не является препятствием.

Сумма порядков нулей и полюсов мероморфного векторного поля на комплексной кривой равна ее эйлеровой характеристике. Поэтому на кривых рода g>1 (эйлерова характеристика которых отрицательна) нет ненулевых голоморфных векторных полей. Напротив, для существования голоморфных 1-форм отрицательность эйлеровой характеристики не является препятствием.

Задавать векторные поля и 1-формы на кривых рода g>1 сложнее, чем на кривых рода 0 и 1, — из-за отсутствия глобальной координаты и трудностей определения мероморфных функций на произвольной кривой. В то же время, 1-форму можно задать на кривой, отображенной в проективное пространство, подняв на нее мероморфную 1-форму на объемлющем пространстве. Например, если кривая C погружена в плоскость, то всякая 1-форма на плоскости задает 1-форму на C. Дифференциал функции также является поднятием 1-формы dz на  $\mathbb{C}P^1$  при отображении  $f:C\to \mathbb{C}P^1$ .

Сумма порядков нулей и полюсов мероморфного векторного поля на комплексной кривой равна ее эйлеровой характеристике. Поэтому на кривых рода g>1 (эйлерова характеристика которых отрицательна) нет ненулевых голоморфных векторных полей. Напротив, для существования голоморфных 1-форм отрицательность эйлеровой характеристики не является препятствием.

Задавать векторные поля и 1-формы на кривых рода g>1 сложнее, чем на кривых рода 0 и 1, — из-за отсутствия глобальной координаты и трудностей определения мероморфных функций на произвольной кривой. В то же время, 1-форму можно задать на кривой, отображенной в проективное пространство, подняв на нее мероморфную 1-форму на объемлющем пространстве. Например, если кривая C погружена в плоскость, то всякая 1-форма на плоскости задает 1-форму на C. Дифференциал функции также является поднятием 1-формы dz на  $\mathbb{C}P^1$  при отображении  $f: C \to \mathbb{C}P^1$ .

**Упражнение.** Почему мероморфное векторное поле на плоскости не задает векторного поля на погруженной в плоскость кривой?

Сумма порядков нулей и полюсов мероморфного векторного поля на комплексной кривой равна ее эйлеровой характеристике. Поэтому на кривых рода g>1 (эйлерова характеристика которых отрицательна) нет ненулевых голоморфных векторных полей. Напротив, для существования голоморфных 1-форм отрицательность эйлеровой характеристики не является препятствием.

Задавать векторные поля и 1-формы на кривых рода g>1 сложнее, чем на кривых рода 0 и 1, — из-за отсутствия глобальной координаты и трудностей определения мероморфных функций на произвольной кривой. В то же время, 1-форму можно задать на кривой, отображенной в проективное пространство, подняв на нее мероморфную 1-форму на объемлющем пространстве. Например, если кривая C погружена в плоскость, то всякая 1-форма на плоскости задает 1-форму на C. Дифференциал функции также является поднятием 1-формы dz на  $\mathbb{C}P^1$  при отображении  $f:C\to \mathbb{C}P^1$ .

**Упражнение.** Почему мероморфное векторное поле на плоскости не задает векторного поля на погруженной в плоскость кривой?

Более общим образом, голоморфное отображение  $F:C\to M$  кривой C в комплексное многообразие M позволяет поднять на C любую 1-форму  $\omega$  на M, положив  $F^*\omega(v)=\omega(dF(v))$ . Поэтому 1-формы — более подходящий объект для изучения и более подходящий инструмент исследования кривых, чем векторные поля.

## Лекция 11. Векторные поля и 1-формы на кривых старших родов

Ограничивая 1-форму dx на произвольную плоскую алгебраическую кривую, мы получаем 1-форму на этой кривой. Если кривая C задана уравнением  $(x-1)^2+y^2=1$ , то ее можно параметризовать рациональной кривой, положив

$$x = \frac{2}{1+t^2}; \qquad y = \frac{2t}{1+t^2}.$$

Тогда  $dx=-\frac{4tdt}{(1+t^2)^2}$ , и нулями этой 1-формы являются те точки кривой, в которых t=0 и  $t=\infty$ , т.е. точки (2,0) и (0,0). Кроме того, у нее два полюса, оба порядка 2, в точках, отвечающих значениям параметра  $t=\pm i$ , т.е. в точках  $(1:\pm i:0)$  на бесконечности нашей кривой.

## Лекция 11. Векторные поля и 1-формы на кривых старших родов

Ограничивая 1-форму dx на произвольную плоскую алгебраическую кривую, мы получаем 1-форму на этой кривой. Если кривая C задана уравнением  $(x-1)^2+y^2=1$ , то ее можно параметризовать рациональной кривой, положив

$$x = \frac{2}{1+t^2}; \qquad y = \frac{2t}{1+t^2}.$$

Тогда  $dx=-\frac{4tdt}{(1+t^2)^2}$ , и нулями этой 1-формы являются те точки кривой, в которых t=0 и  $t=\infty$ , т.е. точки (2,0) и (0,0). Кроме того, у нее два полюса, оба порядка 2, в точках, отвечающих значениям параметра  $t=\pm i$ , т.е. в точках  $(1:\pm i:0)$  на бесконечности нашей кривой.

Другой — и более универсальный, пригодный не только для рациональных кривых, — способ находить нули 1-формы, состоит в том, чтобы сравнить дифференциал на плоскости с дифференциалом df функции f, задающей кривую. В нулях ограничения дифференциала на кривую он пропорционален df; действительно, значение df на любом касательном векторе к кривой f=0 равно 0. Полюсами ограничения дифференциала на кривую могут оказаться точки пересечения кривой его полюсов с самой кривой; в частности, это могут быть точки кривой на бесконечности, которые нужно проверять.

#### Theorem

Пусть C- гладкая плоская кривая степени  $d\geq 3$ . Тогда размерность пространства голоморфных 1-форм на ней не меньше ее рода g(C)=(d-1)(d-2)/2.

#### Theorem

Пусть C — гладкая плоская кривая степени  $d \ge 3$ . Тогда размерность пространства голоморфных 1-форм на ней не меньше ее рода g(C) = (d-1)(d-2)/2.

**Доказательство.** Выберем на проективной плоскости координаты (x:y:z) таким образом, чтобы прямая z=0 пересекала кривую C в d точках (т.е., трансверсально). Пусть кривая C задается в аффинных координатах уравнением f(x,y)=0.

#### Lemma

Дифференциальная 1-форма

$$\omega_C = \frac{dx \wedge dy}{df}$$

является корректно определенной голоморфной 1-формой на С.

Пусть кривая C задается в аффинных координатах уравнением F(x,y,1) = f(x,y) = 0.

#### Lemma

Дифференциальная 1-форма

$$\omega_C = \frac{dx \wedge dy}{df}$$

является корректно определенной голоморфной 1-формой на  ${\cal C}$  .

Пусть кривая C задается в аффинных координатах уравнением F(x,y,1) = f(x,y) = 0.

#### Lemma

Дифференциальная 1-форма

$$\omega_C = \frac{dx \wedge dy}{df}$$

является корректно определенной голоморфной 1-формой на С.

**Доказательство.** В аффинной карте z=1 1-форма  $\omega_{\mathcal{C}}$  не имеет особенностей, поскольку df не обращается в нуль на  $\mathcal{C}$ . Достаточно проверить, что она не имеет полюсов на бесконечности. Перейдем от карты z=1 к карте x=1:  $x=\frac{1}{v}, y=\frac{u}{v}$ . Тогда

$$\omega_{C} = \frac{dx}{\partial f/\partial y} = -\frac{dv/v^{2}}{\partial f/\partial y\left(\frac{1}{v}, \frac{u}{v}, \right)} = -\frac{v^{d-3}dv}{v^{d-1}\partial f/\partial y\left(\frac{1}{v}, \frac{u}{v}\right)}.$$

В знаменателе последнего выражения стоит производная по u функции F(1,u,v).

#### Theorem

Пусть C — гладкая плоская кривая степени  $d \geq 3$ . Тогда размерность пространства голоморфных 1-форм на ней не меньше ее рода g(C) = (d-1)(d-2)/2.

#### Theorem

Пусть C — гладкая плоская кривая степени  $d \geq 3$ . Тогда размерность пространства голоморфных 1-форм на ней не меньше ее рода g(C) = (d-1)(d-2)/2.

#### Lemma

Для всякого многочлена p(x,y) степени, не превосходящей d-3, дифференциальная 1-форма

$$p(x,y)\omega_C$$

является корректно определенной голоморфной 1-формой на C, равной 0 в том и только в том случае, когда  $p\equiv 0$ .

**Доказательство.** Достаточно проверить, что в точках кривой C на бесконечности порядок нуля 1-формы  $\omega_C$  равен d-3.

#### Theorem

Пусть C- гладкая плоская нодальная кривая степени  $d\geq 3$ . Тогда размерность пространства голоморфных 1-форм на ее нормализации не меньше ее рода  $g(C)=(d-1)(d-2)/2-\delta$ , где  $\delta-$  число точек простого самопересечения кривой C.

#### Theorem

Пусть C — гладкая плоская нодальная кривая степени  $d \geq 3$ . Тогда размерность пространства голоморфных 1-форм на ее нормализации не меньше ее рода  $g(C) = (d-1)(d-2)/2 - \delta$ , где  $\delta$  — число точек простого самопересечения кривой C.

#### Lemma

Для всякого многочлена p(x,y) степени, не превосходящей d-3, обращающегося в нуль в двойных точках кривой C, дифференциальная 1-форма

$$p(x,y)\frac{dx \wedge dy}{df}$$

является корректно определенной голоморфной 1-формой на нормализации кривой C, равной 0 в том и только в том случае, когда  $p\equiv 0$ .

### Семинар 11.

- Докажите, что ограничение 1-формы dF на плоскую кривую, где F мероморфная функция на плоскости, является дифференциалом ограничения функции F на эту кривую.
- Рассмотрим результат ограничения 1-формы (a) xdx; (b) ydx на плоскую кривую  $x^n+y^n=1$ . Найдите нули этой 1-формы и укажите их порядки. Найдите полюса этой 1-формы и укажите их порядки.

## Семинар 11.

- Пусть f проекция квадрики  $x^2+y^2=1$  на ось x. Верно ли, что любая мероморфная 1-форма на квадрике является поднятием некоторой 1-формы на прямой при отображении f?
- Пусть плоская кривая задана уравнением  $y^4 = x^3 3x$ . Найдите ее род. Найдите полюсы ограничения 1-формы dx/y на эту кривую и укажите их порядки. Постройте базис голоморфных 1-форм на этой кривой.
- Докажите, что всякая 1 форма вида

$$\frac{p(x)dx}{y}$$

где p — многочлен степени не выше g-1, является голоморфной 1-формой на гипреэллиптической кривой  $y^2=Q_{2g+1}(x)$ , где  $Q_{2g+1}$  — многочлен степени 2g+1 с попарно различными корнями.