

Departamento de Matemáticas 1º Bachillerato

22 - Producto Escalar

(a) Las coordenadas de cada uno de ellos respecto de la base canónica. Las coordenadas de los vectores: $\overrightarrow{u} + 2\overrightarrow{v}$, $5\overrightarrow{u} - \overrightarrow{w}$, $-3\overrightarrow{v} + 4\overrightarrow{w}$, $\overrightarrow{w} - 2\overrightarrow{z}$

Sol: [[(-2,1),(2,-3),(1,1),(-1,-3)],[(2,-5),(4,-11),(13,-2),(3,7)]]

- 2. p035e02 Estudia la dependencia lineal de los siguientes conjuntos de vectores:
 - (a) $\vec{u} = (4, 12) \ \vec{v} = (2, 6)$

Sol: True

Sol: False

(c) $\overrightarrow{u} = (1,1)$ $\overrightarrow{v} = (-2,-3)$

(b) $\vec{u} = (1,2) \ \vec{v} = (3,4)$

Sol: False

- 3. p036e09 Respecto de una base ortonormal tenemos dos vectores \overrightarrow{u} y \overrightarrow{v} . Calcular $\overrightarrow{u} \cdot \overrightarrow{v}$, $|\overrightarrow{u}| y |\overrightarrow{v}| y \angle (\overrightarrow{u}, \overrightarrow{v})$ siendo:
 - (a) $\vec{u} = (2, -3) \ \vec{v} = (5, 4)$

(d) $\vec{u} = (2, -3) \ \vec{v} = (5, 4)$

Sol: $\begin{bmatrix} -2, & \sqrt{13}, & \sqrt{41} \end{bmatrix}$, 94,9697407281103 **Sol:** $\begin{bmatrix} -2, & \sqrt{13}, & \sqrt{41} \end{bmatrix}$, 94,9697407281103

(b) $\vec{u} = (1,2) \ \vec{v} = (3,4)$

(e) $\vec{u} = (1,2) \ \vec{v} = (3,4)$

Sol: $[11, [\sqrt{5}, 5], 10,304846468766]$

Sol: $[11, [\sqrt{5}, 5], 10,304846468766]$

(c) $\overrightarrow{u} = (1,1) \ \overrightarrow{v} = (-2,-3)$

(f) $\overrightarrow{u} = (1,1) \ \overrightarrow{v} = (-2,-3)$

Sol: $[-5, [\sqrt{2}, \sqrt{13}], 168,69006752598]$ **Sol:** $[-5, [\sqrt{2}, \sqrt{13}], 168,69006752598]$

- 4. p036e12 Calcula x, de modo que el producto escalar de \overrightarrow{u} y \overrightarrow{v} sea igual a 7, siendo:
 - (a) $\vec{u} = (3, -5) \ \vec{v} = (x, 2)$

(b) $\vec{u} = (3,1) \ \vec{v} = (2,x)$

Sol: $\left[\frac{17}{3}\right]$

Sol: [1]

5. p
036e13 - Dado el vector \overrightarrow{u} , calcula x de modo que sea ortogonal a \overrightarrow{v} siendo:

(a)
$$\vec{u} = (-5, x) \ \vec{v} = (4, -2)$$

Sol:
$$[-10]$$

(b)
$$\overrightarrow{u} = (2, x) \overrightarrow{v} = (3, 1)$$

Sol:
$$[-6]$$

(c)
$$\overrightarrow{u} = (3, x) \overrightarrow{v} = (5, 2)$$

Sol:
$$\left\{ \frac{120}{13} + \frac{87\sqrt{3}}{13}, -\frac{87\sqrt{3}}{13} + \frac{120}{13} \right\}$$

(d)
$$\overrightarrow{u} = (2, x) \overrightarrow{v} = (3, 1)$$

Sol:
$$\left\{4 + \frac{10\sqrt{3}}{3}, -\frac{10\sqrt{3}}{3} + 4\right\}$$

(e)
$$\overrightarrow{u} = (1,0) \overrightarrow{v} = (1,x)$$

Sol:
$$\{-\sqrt{3}, \sqrt{3}\}$$

6. p
036e13b - Dado el vector \overrightarrow{u} , calcula x de modo que $|\overrightarrow{u}| = \sqrt{34}$ siendo:

(a)
$$\overrightarrow{u} = (-5, x)$$

(b)
$$\overrightarrow{u} = (2, x)$$

Sol:
$$[-\sqrt{30}, \sqrt{30}]$$

7. p036e14 - Respecto de una base ortonormal tenemos dos vectores \overrightarrow{u} y \overrightarrow{v} . Calcular $\overrightarrow{u} \cdot \overrightarrow{v}$, $|\overrightarrow{u}| y |\overrightarrow{v}|$ y $\angle(\overrightarrow{u}, \overrightarrow{v})$ siendo:

(a)
$$\overrightarrow{u} = (3, 2) \overrightarrow{v} = (1, -5)$$

(b)
$$\vec{u} = (1, 6) \ \vec{v} = (-0.5, -3)$$

Sol:
$$\left[-7, \quad \left[\sqrt{13}, \quad \sqrt{26}\right], \quad 112,38013505196\right]$$
 Sol: $\left[-\frac{37}{2}, \quad \left[\sqrt{37}, \quad \frac{\sqrt{37}}{2}\right], \quad 180,0\right]$