高等数学笔记

目录

1	曲线	积分与曲面积分	1
	1.1	对弧长的曲线积分	1
		1.1.1 对弧长的曲线积分的概念与性质	1
		1.1.2 对弧长的曲线积分的计算法	1
	1.2	对坐标的曲线积分	1
		1.2.1 对坐标的曲线积分的概念与性质	1
		1.2.2 对坐标的曲线积分的计算法	2
		1.2.3 两类曲线积分之间的联系	2
	1.3	格林公式及其应用	2
		1.3.1 格林公式	2
2			2
	2.1		2
		9.1.1	9

1 曲线积分与曲面积分

1.1 对弧长的曲线积分

1.1.1 对弧长的曲线积分的概念与性质

第一类曲线积分,记为
$$\int_L f(x,y)ds$$
, $\int_\Gamma f(x,y,z)ds$ 若曲线是闭合的,记为 $\oint_L f(x,y)ds$ 性质

1.
$$\int_{L} [\alpha f(x,y) + \beta g(x,y)] ds = \alpha \int_{L} f(x,y) ds + \beta \int_{L} g(x,y) ds$$

2.
$$\int_{L} f(x,y)ds = \int_{L_1} f(x,y)ds + \int_{L_2} f(x,y)ds$$

3. 若
$$f(x,y) \le g(x,y)$$
,则 $\int_L f(x,y)ds \le \int_L g(x,y)ds$
$$\left| \int_L f(x,y)ds \right| = \int_L |f(x,y)|ds$$

1.1.2 对弧长的曲线积分的计算法

若曲线
$$L$$
 的参数方程为
$$\begin{cases} x = g(t) \\ y = h(t) \end{cases}$$
则曲线积分
$$\int_{L} f(x,y)ds = \int_{\alpha}^{\beta} f[g(t),h(t)]\sqrt{g'^{2}(t) + h'^{2}(t)}dt, (\alpha < \beta)$$

1.2 对坐标的曲线积分

1.2.1 对坐标的曲线积分的概念与性质

第二类积分,对函数
$$\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j}$$

$$P(x,y)$$
 在 L 上对 x 坐标的曲线积分为 $\int_L P(x,y)dx$ (L 在 x 方向上的积分)
$$Q(x,y)$$
 在 L 上对 y 坐标的曲线积分为 $\int_L Q(x,y)dy$ (L 在 y 方向上的积分) 对空间函数同理

本积分主要应用于向量函数的积分
$$\int_{I} \vec{F}(x,y) d\vec{r} = \int_{I} \left[P(x,y) dx + Q(x,y) dy \right]$$
其中 $d\vec{r} = dx\vec{i} + d\vec{j}$

性质

 $1. \alpha, \beta$ 为常数,则

$$\int_{L} [\alpha \vec{F_1}(x,y) d\vec{r} + \beta \vec{F_2}(x,y) d\vec{r}] = \alpha \int_{L} \vec{F_1}(x,y) d\vec{r} + \beta \int_{L} \vec{F_2}(x,y) d\vec{r}$$

2. 若有向曲线弧 L 可分成两段光滑的有向曲线弧 L_1, L_2 , 则

$$\int_{L} \vec{F}(x,y)d\vec{r} = \int_{L_{1}} \vec{F}(x,y)d\vec{r} + \int_{L_{2}} \vec{F}(x,y)d\vec{r}$$

 $3. L^{-}$ 是 L 的反向曲线弧,则

$$\int_{L^{-}} \vec{F}(x,y)d\vec{r} = -\int_{L} \vec{F}(x,y)d\vec{r}$$

注:由此可知,在对坐标曲线积分时,我们必须注意积分弧段的方向

1.2.2 对坐标的曲线积分的计算法

$$L$$
 的参数方程为
$$\begin{cases} x=g(t)\\ y=h(t) \end{cases}$$

$$\int_L [P(x,y)dx+Q(x,y)dy] = \int_0^\beta \{P[g(t),h(t)]g'(t)+Q[g(t),h(t)]h'(t)\}dt$$

计算时,只要把 x,y,dx,dy 依次替换为 g(t),h(t),g'(t)dt,h'(t)dt 然后从起点到终点积分即可。 注意: 下限 α 对应于 L 的起点,上限 β 对应于 L 的终点, α 不一定小于 β

空间曲线计算同理

1.2.3 两类曲线积分之间的联系

$$\int_{L} P dx + Q dy = \int_{L} (P \cos \alpha + Q \cos \beta) ds$$

1.3 格林公式及其应用

1.3.1 格林公式

在平面 D 上的二重积分可以通过沿闭区域 D 的边界曲线 L 上的曲线积分来表示。

- 单连通区域: 无洞的区域
- 复连通区域: 有洞的区域

格林公式:
$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{L} P dx + Q dy$$

2

2.1

2.1.1