Métodos de primer orden

Axel Sirota

Facultad de Ciencias Exactas y Naturales

Departamento de Matemática

Hoja de ruta

- 1 Introducción
- 2 Convergencia de algoritmos de tipo batch
- 3 Algoritmos estocásticos
- 4 References

Consideremos una muestra aleatoria $\{x_i, y_i\}_{i \leq N} \subset \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$ tomada bajo una distribución $\mathbb{P}(x, y)$.

El objetivo del *Machine Learning* es encontrar $h^* \in \mathcal{H} = \left\{ h : \mathbb{R}^{d_x} \to \mathbb{R}^{d_y} \right\}$ tal que $R(h) = \mathbb{E}\left[1\left[h(x) \neq y\right]\right]$ sea mínima.

Dicho contexto es variacional y estocástico

La práctica usual consiste en tomar una dada $\widetilde{h}: \mathbb{R}^{d_X} \times \mathbb{R}^d \to \mathbb{R}^{d_y}$ que surge del conocimiento a priori del problema y tomar:

$$\mathcal{H}_{\widetilde{h}} := \{\widetilde{h}(\cdot; w) : w \in \mathbb{R}^d\}$$

Consideremos una muestra aleatoria $\{x_i, y_i\}_{i \leq N} \subset \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$ tomada bajo una distribución $\mathbb{P}(x, y)$.

El objetivo del *Machine Learning* es encontrar $h^* \in \mathcal{H} = \left\{ h : \mathbb{R}^{d_x} \to \mathbb{R}^{d_y} \right\}$ tal que $R(h) = \mathbb{E}\left[1\left[h(x) \neq y\right]\right]$ sea mínima.

Dicho contexto es variacional y estocástico.

La práctica usual consiste en tomar una dada $\tilde{h}: \mathbb{R}^{d_X} \times \mathbb{R}^d \to \mathbb{R}^{d_y}$ que surge del conocimiento a priori del problema y tomar:

$$\mathcal{H}_{\widetilde{h}} := \{\widetilde{h}(\cdot; w) : w \in \mathbb{R}^d\}$$

Consideremos una muestra aleatoria $\{x_i, y_i\}_{i \leq N} \subset \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$ tomada bajo una distribución $\mathbb{P}(x, y)$.

El objetivo del *Machine Learning* es encontrar $h^* \in \mathcal{H} = \left\{ h : \mathbb{R}^{d_x} \to \mathbb{R}^{d_y} \right\}$ tal que $R(h) = \mathbb{E}\left[1\left[h(x) \neq y\right]\right]$ sea mínima.

Dicho contexto es variacional y estocástico.

La práctica usual consiste en tomar una dada $\widetilde{h}: \mathbb{R}^{d_x} \times \mathbb{R}^d \to \mathbb{R}^{d_y}$ que surge del conocimiento a priori del problema y tomar:

$$\mathcal{H}_{\widetilde{h}} := \{\widetilde{h}(\cdot; w) : w \in \mathbb{R}^d\}$$

Dada $\ell: \mathbb{R}^{d_y} \times \mathbb{R}^{d_y} \to \mathbb{R}$ una distancia en \mathbb{R}^{d_y} entonces el objetivo se reduce a minimizar R(w) donde:

$$R(w) = \int_{\mathbb{R}^{d_x} \times \mathbb{R}^{d_y}} \ell(h(x; w), y) dP(x, y) = \mathbb{E}\left[\ell(h(x; w), y)\right]$$

Al no conocer \mathbb{P} se optimiza $R_n(w)$

$$R_n(w) = \frac{1}{n} \sum_{i=1}^n I(h(x; w), y)$$

Que resulta un estimador insesgado de R para cada $w \in \mathbb{R}^d$ por la desigualdad Hoeffding [?]

No obstante, este subconjunto \mathcal{H} parametrizado además debe minimizar $L(h^*, w) = |R(h^*) - R_n(h_w)|$ donde h^* es la función óptima objetivo y h_w es la minimizante de R_n sobre el subconjunto \mathcal{H} .

Dada $\ell: \mathbb{R}^{d_y} \times \mathbb{R}^{d_y} \to \mathbb{R}$ una distancia en \mathbb{R}^{d_y} entonces el objetivo se reduce a minimizar R(w) donde:

$$R(w) = \int_{\mathbb{R}^{d_x} \times \mathbb{R}^{d_y}} \ell(h(x; w), y) dP(x, y) = \mathbb{E}\left[\ell(h(x; w), y)\right]$$

Al no conocer \mathbb{P} se optimiza $R_n(w)$:

$$R_n(w) = \frac{1}{n} \sum_{i=1}^n I(h(x; w), y)$$

Que resulta un estimador insesgado de R para cada $w \in \mathbb{R}^d$ por la desigualdad Hoeffding \cite{Gamma}

No obstante, este subconjunto \mathcal{H} parametrizado además debe minimizar $L(h^*, w) = |R(h^*) - R_n(h_w)|$ donde h^* es la función óptima objetivo y h_w es la minimizante de R_n sobre el subconjunto \mathcal{H} .

Dada $\ell: \mathbb{R}^{d_y} \times \mathbb{R}^{d_y} \to \mathbb{R}$ una distancia en \mathbb{R}^{d_y} entonces el objetivo se reduce a minimizar R(w) donde:

$$R(w) = \int_{\mathbb{R}^{d_x} \times \mathbb{R}^{d_y}} \ell(h(x; w), y) dP(x, y) = \mathbb{E}\left[\ell(h(x; w), y)\right]$$

Al no conocer \mathbb{P} se optimiza $R_n(w)$:

$$R_n(w) = \frac{1}{n} \sum_{i=1}^n I(h(x; w), y)$$

Que resulta un estimador insesgado de R para cada $w \in \mathbb{R}^d$ por la desigualdad Hoeffding \cite{Gamma}

No obstante, este subconjunto \mathcal{H} parametrizado además debe minimizar $L(h^*, w) = |R(h^*) - R_n(h_w)|$ donde h^* es la función óptima objetivo y h_w es la minimizante de R_n sobre el subconjunto \mathcal{H} .

En conclusión, la obtención de dicha h óptima se separa en dos problemas no disjuntos:

- ① Encontrar $\mathcal H$ parametrizada por $w \in \mathbb R^d$ tal que $L(h^*, w^*)$ sea mínima, donde $w^* = \arg\min_{w \in \mathbb R^d} R_n(w)$.
- ② Dado ${\mathcal H}$ parametrizado, hallar $w^* = arg \min_{w \in {\mathbb R}^d} R_{n}(w).$

El problema 1 suele tener diferentes enfoques pero ninguno estrictamente teórico, sino que mas bien son basados en el conocimiento a priori del problema

Nos vamos a enfocar en el problema 2 viendo diferentes algoritmos existentes para resolverlo y sus propiedades de convergencia

En conclusión, la obtención de dicha h óptima se separa en dos problemas no disjuntos:

- **1** Encontrar \mathcal{H} parametrizada por $w \in \mathbb{R}^d$ tal que $L(h^*, w^*)$ sea mínima, donde $w^* = \arg\min_{w \in \mathbb{R}^d} R_n(w)$.
- ② Dado ${\mathcal H}$ parametrizado, hallar $w^* = arg \min_{w \in {\mathbb R}^d} R_n(w).$

El problema 1 suele tener diferentes enfoques pero ninguno estrictamente teórico, sino que mas bien son basados en el conocimiento a priori del problema

Nos vamos a enfocar en el problema 2 viendo diferentes algoritmos existentes para resolverlo y sus propiedades de convergencia

Algoritmos de primer orden

Comunmente para encontrar $\underset{w \in \mathbb{R}^d}{arg} \min_{w \in \mathbb{R}^d} F(w)$ se utilizan algoritmos iterativos de primer orden; es decir, algoritmos que se pueden representar por $g : \mathbb{R}^d \to \mathbb{R}^d$ ta que $w_n = \underbrace{g \circ \cdots \circ g}_n(w_0)$ y calcular g(w) solo involucra calcular F(w) y $\nabla F(w)$. Se suelen dividir en dos grandes grupos:

De tipo batch, donde para cada iteración se utilizan todo el conjunto de datos $\{x_i, y_i\}$. Un ejemplo de esta categoría es el descenso de gradiente (GD) dado por $g(w) = w - \alpha_n \sum_{i=1}^N \nabla F(x_i, y_i)$.

De tipo estocástico, donde se elije en cada iteración al azar un subconjunto $S \subset \{x_i, y_i\}$ para calcular g. Un ejemplo de esta categoría es el descenso estocástico de gradiente (SG) dado por $g(w) = w - \alpha_n \nabla F(x_i, y_i)$ para un i elejido al azar.

Algoritmos de primer orden

Comunmente para encontrar $\underset{w \in \mathbb{R}^d}{arg} \min_{w \in \mathbb{R}^d} F(w)$ se utilizan algoritmos iterativos de primer orden; es decir, algoritmos que se pueden representar por $g: \mathbb{R}^d \to \mathbb{R}^d$ ta que $w_n = \underbrace{g \circ \cdots \circ g}_n(w_0)$ y calcular g(w) solo involucra calcular F(w) y $\nabla F(w)$. Se suelen dividir en dos grandes grupos:

De tipo *batch*, donde para cada iteración se utilizan todo el conjunto de datos $\{x_i, y_i\}$. Un ejemplo de esta categoría es el *descenso de gradiente* (GD) dado por $g(w) = w - \alpha_n \sum_{i=1}^N \nabla F(x_i, y_i)$.

De tipo estocástico, donde se elije en cada iteración al azar un subconjunto $S \subset \{x_i, y_i\}$ para calcular g. Un ejemplo de esta categoría es el descenso estocástico de gradiente (SG) dado por $g(w) = w - \alpha_n \nabla F(x_i, y_i)$ para un i elejido al azar.

Hoja de ruta

- 1 Introducción
- 2 Convergencia de algoritmos de tipo batch
- 3 Algoritmos estocásticos
- 4 References

Definiciones

Definición (Débilmente convexo)

Decimos que $F : \mathbb{R}^d \to \mathbb{R}$, tal que $F \in C^1$ es débilmente convexo si cumple las siguientes dos propiedades:

- Existe un único w^* tal que $F_{inf} := F(w^*) \le F(w)$ para todo $w \in \mathbb{R}^n$.
- Para todo $\epsilon > 0$ vale que $\inf_{\|w-w^*\|^2 > \epsilon} (w-w^*) \, \nabla F(w) > 0$

Definición (Condición de Robbins - Monro)

Si consideramos el algoritmo GD, decimos que los incrementos $\{\alpha_k\}$ cumplen la condición de *Robbins* - *Monro* (ver [?]) si:

$$\sum_{k=1}^{\infty} \alpha_k = \infty \quad \text{y} \quad \sum_{k=1}^{\infty} \alpha_k^2 < \infty$$

Más definiciones

Definición (Condición de Polyak- Lojasiewicz)

Decimos que una función $f: \mathbb{R}^d \to \mathbb{R}$ tal que $f \in C^1$ es PL—convexa, o cumple la condición de Polyak- Lojasiewicz (ver [?], [?]) si existe $\mu > 0$ tal que para todo $x \in \mathbb{R}^d$ vale:

$$\frac{1}{2} \|\nabla f(x)\|_{2}^{2} \ge \mu (f(x) - f_{inf})$$

Definición (Función Lipschitz)

Sea $f: \mathbb{R}^d \to \mathbb{R}$ tal que $f \in C^1$, decimos que es *L-Lipschitz* global si existe L > 0 tal que para todos $x, y \in \mathbb{R}^d$ vale:

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L \|y - x\|_2$$

Resultados de convergencia puntual para GD

Teorema

Sea $F: \mathbb{R}^d \to \mathbb{R}$ tal que $F \in C^1$ la función objetivo, asumamos que F es débilmente convexo, w^* su mínimo y que existen $A, B \geq 0$ tal que para todo $w \in \mathbb{R}^d$ vale que:

$$\|\nabla F(w)\|^2 \le A + B\|w - w^*\|^2$$

Luego si consideramos el algoritmo de descenso de gradiente por batch tal que los incrementos $\{\alpha_k\}$ cumplen la condición Robbins - Monro entonces:

$$W_k \xrightarrow[k \to \infty]{} W^*$$

Idea de la demostración

Sea $h_k = \|w_k - w^*\|^2$, entonces vale que $h_{k+1} - h_k \le \alpha_k^2 (A + Bh_k)$. Luego si definimos:

$$\mu_k = \prod_{j=1}^{k-1} \frac{1}{1 + \alpha_j^2 B}$$
$$h'_k = \mu_k h_k$$

Uno ve que $\{h_k\}$ converge pues $h'_{k+1} - h'_k \leq \alpha_k^2 A \mu_k \leq \alpha_k^2 A$.

Finalmente, como podemos deducir que $\sum\limits_{k=1}^{\infty} \alpha_k \left(w_k - w^*\right) \nabla F(w_k) < \infty$, entonces como los incrementos cumples la condicion de Robbins Monro uno obtiene que $w_k \xrightarrow[k]{} w^*$.

Idea de la demostración

Sea $h_k = \|w_k - w^*\|^2$, entonces vale que $h_{k+1} - h_k \le \alpha_k^2 (A + Bh_k)$. Luego si definimos:

$$\mu_k = \prod_{j=1}^{k-1} \frac{1}{1 + \alpha_j^2 B}$$
$$h_k' = \mu_k h_k$$

Uno ve que $\{h_k\}$ converge pues $h'_{k+1} - h'_k \leq \alpha_k^2 A \mu_k \leq \alpha_k^2 A$.

Finalmente, como podemos deducir que $\sum\limits_{k=1}^{\infty} \alpha_k \left(w_k - w^*\right) \nabla F(w_k) < \infty$, entonces como los incrementos cumples la condicion de Robbins Monro uno obtiene que $w_k \xrightarrow[k \to \infty]{} w^*$.

Resultados de convergencia puntual para GD

Teorema

Sea $F: \mathbb{R}^d \to \mathbb{R}$ la función objetivo tal que $F \in C^1$, F es L-Lipshitz y PL-convexa; entonces el algortimo descenso de gradiente por batch con incremento fijo $\alpha_k = \frac{1}{I}$ cumple:

$$F(w_k) - F_{inf} \leq \left(1 - \frac{\mu}{L}\right)^k \left(F(w_1) - F_{inf}\right)^k$$

Idea de la demostración

Por las implicancias de ser L-Lipschitz y PL-convexa tenemos:

$$F(w_{k+1}) - F(w_k) \le -\frac{1}{2L} \|\nabla F(w_k)\|_2^2 \le -\frac{\mu}{L} (F(w_k) - F_{inf})$$

Luego:

$$F(w_{k+1}) - F_{inf} \leq \left(1 - \frac{\mu}{L}\right) \left(F(w_k) - F_{inf}\right) \leq \left(1 - \frac{\mu}{L}\right)^k \left(F(w_1) - F_{inf}\right)$$

Bajo qué casos el algoritmo GD converge (en alguna forma) con objetivos no convexos?

Para responder esto, sea $g: M \to M$ la fórmula del algoritmo de primer orden en $M \subset \mathbb{R}^N$ una subvariedad sin borde de dimensión d.

Definición

Sea $f: M \to \mathbb{R}$ tal que $f \in C^2$ y $x^* \in \mathbb{R}^d$, luego decimos que x^* es un punto silla estricto de f si es un punto crítico y $\lambda_{min}\left(\nabla^2 f(x^*)\right) < 0$ Notaremos M^* al conjunto de puntos silla estrictos de f.

Definició

Sea:

$$\mathcal{A}_g^* := \left\{x : g(x) = x \quad \max_i |\lambda_i(Dg(x))| > 1
ight\}$$

A este conjunto lo llamaremos el conjunto de *puntos fijos inestables*

Bajo qué casos el algoritmo GD converge (en alguna forma) con objetivos no convexos?

Para responder esto, sea $g: M \to M$ la fórmula del algoritmo de primer orden en $M \subset \mathbb{R}^N$ una subvariedad sin borde de dimensión d.

Definición

Sea $f: M \to \mathbb{R}$ tal que $f \in C^2$ y $x^* \in \mathbb{R}^d$, luego decimos que x^* es un punto silla estricto de f si es un punto crítico y $\lambda_{min}\left(\nabla^2 f(x^*)\right) < 0$ Notaremos M^* al conjunto de puntos silla estrictos de f.

Definición

Sea:

$$\mathcal{A}_g^* := \left\{x : g(x) = x \quad \max_i |\lambda_i(Dg(x))| > 1
ight\}$$

A este conjunto lo llamaremos el conjunto de puntos fijos inestables

Bajo qué casos el algoritmo GD converge (en alguna forma) con objetivos no convexos?

Para responder esto, sea $g: M \to M$ la fórmula del algoritmo de primer orden en $M \subset \mathbb{R}^N$ una subvariedad sin borde de dimensión d.

Definición

Sea $f: M \to \mathbb{R}$ tal que $f \in C^2$ y $x^* \in \mathbb{R}^d$, luego decimos que x^* es un punto silla estricto de f si es un punto crítico y $\lambda_{min}\left(\nabla^2 f(x^*)\right) < 0$ Notaremos M^* al conjunto de puntos silla estrictos de f.

Definición

Sea:

$$\mathcal{A}_{g}^{*} := \left\{x : g(x) = x \quad \max_{i} \left|\lambda_{i}\left(Dg(x)\right)\right| > 1\right\}$$

A este conjunto lo llamaremos el conjunto de puntos fijos inestables

Teorema

Sea $g \in C^1(M)$ tal que $\det(Dg(x)) \neq 0$ para todo $x \in M$, luego el conjunto de puntos iniciales que convergen por g a un punto fijo inestable tiene medida cero:

$$\mu\left(\left\{x_0: \lim_k g^k(x_0) \in \mathcal{A}_g^*\right\}\right) = 0$$

Corolario

Bajo las mismas hipótesis si agregamos que $M^*\subseteq \mathcal{A}_g^*$ entonces

$$\mu(\left\{x_0: \lim_k g^k(x_0) \in M^*\right\}) = 0$$

Teorema

Sea $g \in C^1(M)$ tal que $\det(Dg(x)) \neq 0$ para todo $x \in M$, luego el conjunto de puntos iniciales que convergen por g a un punto fijo inestable tiene medida cero:

$$\mu\left(\left\{x_0: \lim_k g^k(x_0) \in \mathcal{A}_g^*\right\}\right) = 0$$

Corolario

Bajo las mismas hipótesis si agregamos que $M^* \subseteq \mathcal{A}_g^*$ entonces

$$\mu(\left\{x_0: \lim_k g^k(x_0) \in M^*\right\}) = 0$$

Algoritmos de tipo batch estándar

Ademas del algoritmo GD, en la optimización de tipo batch existen dos algoritmos muy usuales:

El algoritmo de punto próximo esta dado por la iteración:

$$x_{k+1} = g(x_k) \stackrel{\triangle}{=} \arg\min_{z \in M} f(z) + \frac{1}{2\alpha} \|x_k - z\|_2^2$$

Por otro lado, si definimos $g_i(x) = x - \alpha \sum_{j \in S_i} e_j^T \nabla f(x)$ entonces e algoritmo de descenso de coordenadas por bloques esta dado por:

$$x_{k+1} = g(x_k) \stackrel{\triangle}{=} g_b \circ g_{b-1} \circ \cdots \circ g_1(x_k)$$

Algoritmos de tipo batch estándar

Ademas del algoritmo GD, en la optimización de tipo batch existen dos algoritmos muy usuales:

El algoritmo de punto próximo esta dado por la iteración:

$$x_{k+1} = g(x_k) \stackrel{\triangle}{=} \arg\min_{z \in M} f(z) + \frac{1}{2\alpha} \|x_k - z\|_2^2$$

Por otro lado, si definimos $g_i(x) = x - \alpha \sum_{j \in S_i} e_j^T \nabla f(x)$ entonces e algoritmo de descenso de coordenadas por bloques esta dado por:

$$x_{k+1} = g(x_k) \stackrel{\triangle}{=} g_b \circ g_{b-1} \circ \cdots \circ g_1(x_k)$$

Algoritmos de tipo batch estándar

Ademas del algoritmo GD, en la optimización de tipo batch existen dos algoritmos muy usuales:

El algoritmo de punto próximo esta dado por la iteración:

$$x_{k+1} = g(x_k) \stackrel{\triangle}{=} \arg\min_{z \in M} f(z) + \frac{1}{2\alpha} \|x_k - z\|_2^2$$

Por otro lado, si definimos $g_i(x) = x - \alpha \sum_{j \in S_i} e_j^T \nabla f(x)$ entonces el algoritmo de descenso de coordenadas por bloques esta dado por:

$$x_{k+1} = g(x_k) \stackrel{\triangle}{=} g_b \circ g_{b-1} \circ \cdots \circ g_1(x_k)$$

Un marco de demostración común

Teorema

Sea $F: \mathbb{R}^d \to \mathbb{R}$ tal que $F \in C^2$ la función objetivo con Hessiano acotado con constante L, w^* algún mínimo local de F; entonces el algoritmo descenso de gradiente por batch con incremento fijo $\alpha < \frac{1}{L}$ cumple:

$$w_k \xrightarrow[k\to\infty]{c.t.p.} w^*$$

Teorema

Sea $F: \mathbb{R}^d \to \mathbb{R}$ tal que $F \in C^2$ la función objetivo con Hessiano acotado con constante L, w^* algún mínimo local de F; entonces el algoritmo punto próximo con incremento fijo $\alpha < \frac{1}{L}$ cumple:

$$w_k \xrightarrow[k \to \infty]{c.t.p.} w^*$$

Un marco de demostración común

Teorema

Sea $F: \mathbb{R}^d \to \mathbb{R}$ tal que $F \in C^2$ la función objetivo con Hessiano acotado por bloques con constante L_b , w^* algún mínimo local de F; entonces el algoritmo descenso de gradiente por coordenadas con incremento fijo $\alpha < \frac{1}{L_b}$ cumple:

$$w_k \xrightarrow[k \to \infty]{c.t.p.} w^*$$

ldea de las demostraciones

En los tres casos las hipótesis llevan a demostrar que:

- ① $det(Dg)(x) \neq 0$

Luego con eso uno concluye que $\mu(\left\{x_0: \lim_k g^k(x_0) \in M^*\right\}) = 0$ por lo que el conjunto de puntos iniciales tales que el algoritmo en cuestión converge a un punto silla estricto en 0. Como ya sabemos que el algoritmo no converge a máximos locales se concluye que:

$$W_k \xrightarrow[k\to\infty]{c.t.p.} W^*$$

Donde w^* es mínimo local.

Convergencia exponencial de GD

¿El descenso de gradiente inicializado aleatoriamente generalmente escapa de los puntos de silla en tiempo polinomial?

Definición

Dado $B \in \mathbb{R}^d$ decimos que $B \in poly(d)$ si existe $p \in \mathbb{R}[X]$ tal que p(d) = B. Asimismo decimos que una iteración de un algoritmo w_k esta a $\Omega(f(k))$ de w^* si existe $K \in \mathbb{N}$ tal que $|w^* - w_k| \ge Kf(k)$

Teorema

Consideremos el algoritmo descenso de gradiente por batch con w_0 elegido uniformemente en $[-1,1]^d$; luego existe $F:\mathbb{R}^d\mapsto\mathbb{R}$ función objetivo B-acotada, I-Lipshitz, μ -Lipshitz en el Hessiano con $B,I,\mu\in poly(d)$ tal que si $\alpha_k=\alpha\leq \frac{1}{I}$ entonces w_k va a estar a $\Omega(1)$ de cualquier mínimo para todo $k\leq e^{\Omega(d)}$

Convergencia exponencial de GD

¿El descenso de gradiente inicializado aleatoriamente generalmente escapa de los puntos de silla en tiempo polinomial?

Definición

Dado $B \in \mathbb{R}^d$ decimos que $B \in poly(d)$ si existe $p \in \mathbb{R}[X]$ tal que p(d) = B. Asimismo decimos que una iteración de un algoritmo w_k esta a $\Omega(f(k))$ de w^* si existe $K \in \mathbb{N}$ tal que $|w^* - w_k| \ge Kf(k)$

Teorema

Consideremos el algoritmo descenso de gradiente por batch con w_0 elegido uniformemente en $[-1,1]^d$; luego existe $F:\mathbb{R}^d\mapsto\mathbb{R}$ función objetivo B-acotada, I-Lipshitz, μ -Lipshitz en el Hessiano con $B,I,\mu\in poly(d)$ tal que si $\alpha_k=\alpha\leq \frac{1}{I}$ entonces w_k va a estar a $\Omega(1)$ de cualquier mínimo para todo $k\leq e^{\Omega(d)}$

Convergencia exponencial de GD

¿El descenso de gradiente inicializado aleatoriamente generalmente escapa de los puntos de silla en tiempo polinomial?

Definición

Dado $B \in \mathbb{R}^d$ decimos que $B \in poly(d)$ si existe $p \in \mathbb{R}[X]$ tal que p(d) = B. Asimismo decimos que una iteración de un algoritmo w_k esta a $\Omega(f(k))$ de w^* si existe $K \in \mathbb{N}$ tal que $|w^* - w_k| \ge Kf(k)$

Teorema

Consideremos el algoritmo descenso de gradiente por batch con w_0 elegido uniformemente en $[-1,1]^d$; luego existe $F:\mathbb{R}^d\mapsto\mathbb{R}$ función objetivo B-acotada, I-Lipshitz, μ -Lipshitz en el Hessiano con $B,I,\mu\in poly(d)$ tal que si $\alpha_k=\alpha\leq \frac{1}{I}$ entonces w_k va a estar a $\Omega(1)$ de cualquier mínimo para todo $k\leq e^{\Omega(d)}$

Intuición acerca de la demostración: Parte 1

Escapar de dos puntos silla consecutivos

Sean $L > \gamma > 0$ y $f \in [0,3] \times [0,3]$ dada por:

$$f(x_1, x_2) = \begin{cases} -\gamma x_1^2 + Lx_2^2 & \text{si } (x_1, x_2) \in [0, 1] \times [0, 1] \\ L(x_1 - 2)^2 - \gamma x_2^2 & \text{si } (x_1, x_2) \in [1, 3] \times [0, 1] \\ L(x_1 - 2)^2 + L(x_2 - 2)^2 & \text{si } (x_1, x_2) \in [1, 3] \times [1, 3] \end{cases}$$

Notemos que f tiene dos puntos silla estrictos en (0,0) y (2,0), mientras que tiene un óptimo en (2,2).

Intuición acerca de la demostración: Parte 1

Escapar de dos puntos silla consecutivos

Sean $L>\gamma>0$ y $f\in[0,3]\times[0,3]$ dada por:

$$f(x_1, x_2) = \begin{cases} -\gamma x_1^2 + L x_2^2 & \text{si } (x_1, x_2) \in [0, 1] \times [0, 1] \\ L(x_1 - 2)^2 - \gamma x_2^2 & \text{si } (x_1, x_2) \in [1, 3] \times [0, 1] \\ L(x_1 - 2)^2 + L(x_2 - 2)^2 & \text{si } (x_1, x_2) \in [1, 3] \times [1, 3] \end{cases}$$

Notemos que f tiene dos puntos silla estrictos en (0,0) y (2,0), mientras que tiene un óptimo en (2,2).

Escapar de dos puntos silla consecutivos

Sean $L > \gamma > 0$ y $f \in [0,3] \times [0,3]$ dada por:

$$f(x_1, x_2) = \begin{cases} -\gamma x_1^2 + L x_2^2 & \text{si } (x_1, x_2) \in [0, 1] \times [0, 1] \\ L(x_1 - 2)^2 - \gamma x_2^2 & \text{si } (x_1, x_2) \in [1, 3] \times [0, 1] \\ L(x_1 - 2)^2 + L(x_2 - 2)^2 & \text{si } (x_1, x_2) \in [1, 3] \times [1, 3] \end{cases}$$

Notemos que f tiene dos puntos silla estrictos en (0,0) y (2,0), mientras que tiene un óptimo en (2,2).

Sean $U = [0,1]^2$, $V = [1,3] \times [0,1]$ y $W = [1,3]^2$ entornos respectivos de los tres puntos críticos, supongamos que $w_0 = (x_1^0, x_2^0) \in U$ y definamos:

$$k_1 = \inf_{x_1^k \ge 1} k = \min_{x_1^k \ge 1} k$$
 $k_2 = \inf_{x_2^k \ge 1} k = \min_{x_2^k \ge 1} k$

Notemos que como la dirección de escape en (0,0) es por x_1 y luego por x_2 (por el cambio de comportamiento de f) podemos concluir que k_1, k_2 estan bien definidos y que $k_2 \ge k_1 \ge 0$.

Vamos a probar que $k_2 = Ck_1$ con C > 1.

Sean $U = [0,1]^2$, $V = [1,3] \times [0,1]$ y $W = [1,3]^2$ entornos respectivos de los tres puntos críticos, supongamos que $w_0 = (x_1^0, x_2^0) \in U$ y definamos:

$$k_1 = \inf_{x_1^k \ge 1} k = \min_{x_1^k \ge 1} k$$
 $k_2 = \inf_{x_2^k \ge 1} k = \min_{x_2^k \ge 1} k$

Notemos que como la dirección de escape en (0,0) es por x_1 y *luego* por x_2 (por el cambio de comportamiento de f) podemos concluir que k_1, k_2 estan bien definidos y que $k_2 \ge k_1 \ge 0$.

Vamos a probar que $k_2 = Ck_1 \text{ con } C > 1$.

Las iteraciones de GD en este caso van a ser:

$$\begin{pmatrix} \left((1+2\alpha\gamma)\,x_1^k, (1-\alpha 2L)\,x_2^k \right) \\ \text{si } x_1 \leq 1 \\ \left((1-2L\alpha)\,x_1^k + 4L\alpha, (1+2\alpha\gamma)\,x_2^k \right) \\ \text{si } x_1 \geq 1 \;,\; x_2 \leq 1 \\ \left((1-2L\alpha)\,x_1^k + 4L\alpha, (1-2L\alpha)\,x_2^k + 4L\alpha \right) \\ \text{si } x_1 \geq 1 \;,\; x_2 \geq 1 \\ \end{pmatrix}$$

Luego evaluando en k_1 y k_2 :

$$\begin{array}{lll} x_1^{k_1} &=& (1+2\alpha\gamma)^{k_1}\,x_1^0 \\ x_2^{k_1} &=& (1-2\alpha L)^{k_1}\,x_1^0 \\ \\ x_1^{k_2} &=& (1-2L\alpha)^{k_2-k_1}\,(1+2\alpha\gamma)^{k_1}\,x_1^0 + K \geq 1 \quad \text{K constante} \\ x_2^{k_2} &=& (1+2\alpha\gamma)^{k_2-k_1}\,(1-2\alpha L)^{k_1}\,x_2^0 \geq 1 \end{array}$$

concluimos que:

$$k_2 \ge \frac{2\alpha \left(L + \gamma\right) k_1 - \log\left(x_2^0\right)}{2\alpha \gamma} \ge \frac{L + \gamma}{\gamma} k_1$$

Intuición acerca de la demostración: Conclusiones

Esta f que presentamos tiene varios problemas:

- 1 No es continua ni mucho menos C^2
- ② No podemos asegurar que f sea I-Lipschitz o $\mu-$ Lipschitz en el hessiano
- 3 Los puntos críticos estan en el borde del dominio, lo que no es ideal
- 4 No está definida en todo \mathbb{R}^d

La clave va a ser usar splines para resolver los primeros puntos, espejar f para hacer los puntos extremales interiores, asignar d puntos críticos similares para generar el tiempo exponencial en d y extender esa función \tilde{f} a \mathbb{R}^d con el Teorema de extensión de Whitney. Aunque la demostración es larga y tediosa, la idea clave es la vista aquí.

Intuición acerca de la demostración: Conclusiones

Esta f que presentamos tiene varios problemas:

- 1 No es continua ni mucho menos C^2
- ② No podemos asegurar que f sea I—Lipschitz o μ —Lipschitz en el hessiano
- 3 Los puntos críticos estan en el borde del dominio, lo que no es ideal
- 4 No está definida en todo \mathbb{R}^d

La clave va a ser usar splines para resolver los primeros puntos, espejar f para hacer los puntos extremales interiores, asignar d puntos críticos similares para generar el tiempo exponencial en d y extender esa función \tilde{f} a \mathbb{R}^d con el Teorema de extensión de Whitney. Aunque la demostración es larga y tediosa, la idea clave es la vista aquí.

Hoja de ruta

- 1 Introducción
- 2 Convergencia de algoritmos de tipo batch
- 3 Algoritmos estocásticos
- 4 References

En el contexto estocástico vamos a analizar el algoritmo de descenso estocástico generalizado (DE) dado por:

Algorithm 1: Descenso Estocastico (DE)

- 1 **Input:** $w_1 \in \mathbb{R}^d$ el inicio de la iteración, $\{\xi_k\}$ iid
- 2 for $k \in \mathbb{N}$ do
 - Generar una muestra de la variable aleatoria ξ_k
 - Calcular el vector estocástico $g(w_k, \xi_k)$
 - Elegir $\alpha_k > 0$
 - $w_{k+1} \leftarrow w_k \alpha_k g(w_k, \xi_k)$

Donde $g(w_k, \xi_k)$ puede ser varias estimaciones del gradiente como por ejemplo:

$$g(w_k, \xi_k) = \begin{cases} \nabla f(w_k, \xi_k) \\ \frac{1}{n_k} \sum_{i=1}^{n_k} \nabla f(w_k, \xi_{k,i}) \end{cases}$$
(3)

Definamos ahora $\mathbb{E}_{\xi_k}[.] := \mathbb{E}_{P_k}[.|w_k]$ la esperanza condicional bajo la distribución de ξ_k dado w_k .

Lema

Si F es Lipschitz , entonces las iteraciones del algoritmo DE satisfacen que para todo $k \in N$:

$$\begin{split} \mathbb{E}_{\xi_k} \left[F(w_{k+1}) \right] - F(w_k) &\leq -\alpha_k \nabla F(w_k)^T \mathbb{E}_{\xi_k} \left[g(w_k, \xi_k) \right] \\ &+ \frac{1}{2} \alpha_k^2 \mathbb{E}_{\xi_k} \left[\| g(w_k, \xi_k) \|_2^2 \right] \end{split}$$

Notemos que si $g(w_k, \xi_k)$ es un estimador insesgado de $\nabla F(w_k)$ entonces del lema:

$$\mathbb{E}_{\xi_k} \left[F(w_{k+1}) \right] - F(w_k) \le -\alpha_k \|\nabla F(w_k)\|^2 + \frac{1}{2} \alpha_k^2 \mathbb{E}_{\xi_k} \left[\|g(w_k, \xi_k)\|_2^2 \right]$$

Definamos ahora $\mathbb{E}_{\xi_k}[.] := \mathbb{E}_{P_k}[.|w_k]$ la esperanza condicional bajo la distribución de ξ_k dado w_k .

Lema

Si F es Lipschitz , entonces las iteraciones del algoritmo DE satisfacen que para todo $k \in \mathbb{N}$:

$$\begin{split} \mathbb{E}_{\xi_k}\left[F(w_{k+1})\right] - F(w_k) &\leq -\alpha_k \nabla F(w_k)^T \mathbb{E}_{\xi_k}\left[g(w_k, \xi_k)\right] \\ &+ \frac{1}{2} \alpha_k^2 \mathbb{E}_{\xi_k}\left[\left\|g(w_k, \xi_k)\right\|_2^2\right] \end{split}$$

Notemos que si $g(w_k, \xi_k)$ es un estimador insesgado de $\nabla F(w_k)$ entonces del lema:

$$\mathbb{E}_{\xi_{k}}[F(w_{k+1})] - F(w_{k}) \leq -\alpha_{k} \|\nabla F(w_{k})\|^{2} + \frac{1}{2}\alpha_{k}^{2} \mathbb{E}_{\xi_{k}} \left[\|g(w_{k}, \xi_{k})\|_{2}^{2}\right]$$

Hipótesis (Acotaciones al primer y segundo momento de g)

Supongamos que dada F función objetivo y g la estimación del gradiente en 1 vale:

- ① Existe $U \subset \mathbb{R}^d$ tal que $\{w_k\} \subset U$ y que existe F_{inf} tal que $F|_U \geq F_{inf}$
- ② Existen $\mu_G \ge \mu \ge 0$ tal que para todo $k \in \mathbb{N}$ valen:

$$\nabla F(w_k)^T \mathbb{E}_{\xi_k} \left[g(w_k, \xi_k) \right] \ge \mu \left\| \nabla F(w_k) \right\|_2^2 \tag{4a}$$

Y

$$\|\mathbb{E}_{\xi_k} [g(w_k, \xi_k)]\|_2 \le \mu_G \|\nabla F(w_k)\|_2$$
 (4b)

3 Existen $M, M_V \ge 0$ tal que para todo $k \in \mathbb{N}$:

$$\mathbb{V}_{\xi_{k}}[g(w_{k},\xi_{k})] \leq M + M_{V} \|\nabla F(w_{k})\|_{2}^{2}$$
 (5)

Notemos que si vale la hipótesis en los momentos de g entonces:

$$\mathbb{E}_{\xi_k} \left[\| g(w_k, \xi_k) \|_2^2 \right] \le M + M_G \| \nabla F(w_k) \|_2^2 \qquad M_G := M_V + \mu_G^2 \ge \mu^2 \ge 0$$

Lema

Bajo la hipótesis en los momentos de g y si F es Lipszhits entonces las iteraciones del algoritmo DE satisfacen para todo $k \in \mathbb{N}$:

$$\mathbb{E}_{\xi_k} \left[F(w_{k+1}) \right] - F(w_k) \le -\mu \alpha_k \|\nabla F(w_k)\|_2^2 + \frac{1}{2} \alpha_k^2 L \mathbb{E}_{\xi_k} \left[\|g(w_k, \xi_k)\|_2^2 \right]$$

$$\mathbb{E}_{\xi_k} \left[F(w_{k+1}) \right] - F(w_k) \le -\left(\mu - \frac{1}{2} \alpha_k L M_G\right) \alpha_k \|\nabla F(w_k)\|_2^2 + \frac{1}{2} \alpha_k^2 L M$$

Notemos que si vale la hipótesis en los momentos de g entonces:

$$\mathbb{E}_{\xi_k} \left[\| g(w_k, \xi_k) \|_2^2 \right] \le M + M_G \| \nabla F(w_k) \|_2^2 \qquad M_G := M_V + \mu_G^2 \ge \mu^2 \ge 0$$

Lema

Bajo la hipótesis en los momentos de g y si F es Lipszhits entonces las iteraciones del algoritmo DE satisfacen para todo $k \in \mathbb{N}$:

$$\mathbb{E}_{\xi_{k}}\left[F(w_{k+1})\right] - F(w_{k}) \leq -\mu\alpha_{k} \|\nabla F(w_{k})\|_{2}^{2} + \frac{1}{2}\alpha_{k}^{2}L\mathbb{E}_{\xi_{k}}\left[\|g(w_{k},\xi_{k})\|_{2}^{2}\right]$$

$$\mathbb{E}_{\xi_k}\left[F(w_{k+1})\right] - F(w_k) \le -\left(\mu - \frac{1}{2}\alpha_k LM_G\right)\alpha_k \|\nabla F(w_k)\|_2^2 + \frac{1}{2}\alpha_k^2 LM$$

Convergencia en L1

Teorema

Sea $F: \mathbb{R}^d \to \mathbb{R}$ tal que $F \in C^1$ la función objetivo tal que existe F_{inf} valor mínimo, F es L-Lipshitz, F es fuertemente convexa y supongamos además que g tiene varianza acotada; entonces el algoritmo descenso estocástico de gradiente generalizado con incremento fijo

$$0 < \alpha_k = \alpha \le \frac{\mu}{LM_G}$$
 cumple:

$$\mathbb{E}\left[F(w_k) - F_{inf}\right] \xrightarrow[k \to \infty]{} \frac{\alpha LM}{2c\mu}$$

Convergencia en L1

Teorema

Sea $F: \mathbb{R}^d \to \mathbb{R}$ tal que $F \in C^1$ la función objetivo tal que existe F_{inf} valor mínimo, F es L-Lipshitz, F es fuertemente convexa; supongamos además que g tiene varianza acotada g que los incrementos g cumplen:

$$\alpha_k = \frac{\beta}{\gamma + k}$$
 para algún $\beta > \frac{1}{c\mu}$ y $\gamma > 0$ tal que $\alpha_1 \le \frac{\mu}{LM_G}$ (7)

Luego el algoritmo descenso estocástico de gradiente generalizado cumple::

$$\mathbb{E}\left[R(w_k) - R^*\right] = \mathcal{O}\left(\frac{1}{k}\right)$$

Convergencia en L1

Teorema

Sea $F: \mathbb{R}^d \to \mathbb{R}$ tal que $F \in C^1$ la función objetivo tal que existe F_{inf} valor mínimo, F es L-Lipshitz, F es fuertemente convexa; supongamos además que g tiene varianza acotada geométricamente. Luego el algoritmo descenso estocástico de gradiente generalizado con incremento fijo

$$0 < \alpha_k = \alpha \le \min\left\{\frac{\mu}{L\mu_G^2}, \frac{1}{\mu}\right\}$$
 cumple:

$$\mathbb{E}\left[R(w_k) - R^*\right] = \mathcal{O}\left(\rho^k\right)$$

Hoja de ruta

- 1 Introducción
- 2 Convergencia de algoritmos de tipo batch
- 3 Algoritmos estocásticos
- 4 References

References I

- L. Berezansky, E. Braverman, L. Idels, *Nicholson's blowflies differential equation revisited: main results and open problems.* Appl. Math. Model, **34**, (2010) 1405–1417.
- H. Freedman, P. Moson, *Persistence definitions and their connections*, Proc. Am. Math. Soc. 109, 4 (1990), 1025–1033.
- A. Fonda, *Uniformly persistent semidynamical systems* Proc. Am. Math. Soc. 104, 1 (1988)
- H. Smith, H. Thieme, *Dynamical Systems and Population Persistence*. American Mathematical Society, 2011.
- J. So, J. S. Yu, Global attractivity and uniform persistence in Nicholson's blowflies, Diff. Eqns. Dynam. Syst. **2** (1) (1994) 11–18

References

Thanks for your attention!