

CLAIMS

What is claimed:

1 1. A method for correcting web deformation during a roll-to roll process
2 comprising:
3 initiating a roll-to-roll process involving a flexible web substrate;
4 detecting deformation in the flexible web substrate during the roll-to-roll process;
5 and
6 dynamically aligning the flexible web substrate based on the detected
7 deformation.

1 2. The method of claim 1 wherein detecting deformation in the flexible web
2 substrate includes:
3 utilizing optical markings on the flexible web substrate to detect the deformation;
4 comparing the detected deformation with a desired deformation;
5 generating an error signal based on the comparison; and
6 generating a correction signal to be utilized to dynamically align the flexible web
7 substrate.

1 3. The method of claim 1 wherein dynamically aligning the flexible web
2 substrate includes:
3 utilizing controllable mechanical components to align the flexible web substrate
4 based on the detected deformation.

1 4. The method of claim 3 wherein the controllable mechanical components

2 include steerable disks.

1 5. The method of claim 3 wherein the controllable mechanical components
2 include spherical nips.

1 6. The method of claim 5 wherein each spherical nip includes a spring
2 loaded counter roller.

1 7. The method of claim 3 wherein the controllable mechanical components
2 include mechanical cross-rollers.

1 8. A system for correcting web deformation during a roll-to roll process
2 comprising:

3 means for initiating a roll-to-roll process involving a flexible web substrate;
4 means for detecting deformation in the flexible web substrate during the roll-to-
5 roll process; and
6 means for dynamically aligning the flexible web substrate based on the detected
7 deformation.

1 9. The system of claim 8 wherein the means for detecting deformation in the
2 flexible web substrate includes:

3 means for utilizing optical markings on the flexible web substrate to detect the
4 deformation;
5 means for comparing the detected deformation with a desired deformation;

6 means for generating an error signal based on the comparison; and
7 means for generating a correction signal to be utilized to dynamically align the
8 flexible web substrate.

1 10. The system of claim 8 wherein the means for dynamically aligning the
2 flexible web substrate includes:

3 means for utilizing controllable mechanical components to align the flexible web
4 substrate based on the detected deformation.

1 11. The system of claim 10 wherein the controllable mechanical components
2 include steerable disks.

1 12. The system of claim 10 wherein the controllable mechanical components
2 include spherical nips.

1 13. The system of claim 12 wherein each spherical nip includes a spring
2 loaded counter roller.

1 14. The system of claim 10 wherein the controllable mechanical components
2 include mechanical cross-rollers.

1 15. A roll-to-roll processing system comprising:
2 a web rolling mechanism;
3 a flexible web substrate coupled to the web rolling mechanism;

4 a plurality of sensors configured to dynamically detect deformation in the flexible
5 web substrate;
6 at least one controllable mechanical component coupled to the flexible web
7 substrate; and
8 a computer system coupled to the plurality of sensors and the at least one
9 controllable mechanical component wherein the computer system includes logic for
10 detecting deformation in the flexible web substrate; and
11 dynamically aligning the flexible web substrate based on the detected
12 deformation.

1 16. The system of claim 15 wherein the logic for detecting deformations in
2 the flexible web substrate includes logic for:

3 utilizing optical markings on the flexible web substrate to detect the deformation;
4 comparing the detected deformation with a desired deformation;
5 generating an error signal based on the comparison; and
6 generating a correction signal to be utilized to dynamically align the flexible web
7 substrate.

1 17. The system of claim 15 wherein the logic for dynamically aligning the
2 flexible web substrate comprises logic for:

3 utilizing the at least one controllable mechanical component to align the flexible
4 web substrate based on the detected deformation.

1 18. The system of claim 17 wherein the at least one controllable mechanical

2 component includes steerable disks.

1 19. The system of claim 17 wherein the at least one controllable mechanical
2 component includes spherical nips.

1 20. The system of claim 19 wherein each spherical nip includes a spring
2 loaded counter roller.

1 21. The system of claim 17 wherein the at least one controllable mechanical
2 component includes mechanical cross-rollers.

\\

1 22. A computer program product for correcting web deformation during a
2 roll-to-roll process wherein the computer program product includes a computer usable
3 medium having computer readable program means for causing a computer to perform the
4 steps of:

5 initiating a roll-to-roll process involving a flexible web substrate;
6 detecting deformation in the flexible web substrate during the roll-to-roll process;
7 and
8 dynamically aligning the flexible web substrate based on the detected
9 deformation.

1 23. The computer program product of claim 22 wherein detecting
2 deformation in the flexible web substrate includes:
3 utilizing optical markings on the flexible web substrate to detect the deformation;

4 comparing the detected deformation with a desired deformation;
5 generating an error signal based on the comparison; and
6 generating a correction signal to be utilized to dynamically align the flexible web
7 substrate.

1 24. The computer program product of claim 22 wherein dynamically aligning
2 the flexible web substrate includes:

3 utilizing controllable mechanical components to align the flexible web substrate
4 based on the detected deformation.

1 25. A method for correcting web deformation during a roll-to roll process
2 comprising:

3 utilizing optical markings on a flexible web substrate to detect a deformation in
4 the flexible web substrate;

5 comparing the detected deformation with a desired deformation;
6 generating an error signal based on the comparison;
7 generating a correction signal to be utilized to dynamically align the flexible web
8 substrate and

9 dynamically aligning the flexible web substrate based on the correction signal.

1 26. The method of claim 25 wherein dynamically aligning the flexible web
2 substrate further comprises:

3 utilizing controllable mechanical components to align the flexible web substrate
4 based on the correction signal.

1 27. The method of claim 26 wherein the controllable mechanical components
2 include steerable disks.

1 28. The method of claim 26 wherein the controllable mechanical components
2 include spherical nips.

1 29. The method of claim 28 wherein each spherical nip includes a spring
2 loaded counter roller.