MAC0323 ALGORITMOS E ESTRUTURAS DE DADOS II FOLHA DE SOLUÇÃO

Nome: Lucas Quaresma Medina Lam Número USP: 11796399

Assinatura

Sua assinatura atesta a autenticidade e originalidade de seu trabalho e que você se compromete a seguir o código de ética da USP em suas atividades acadêmicas, incluindo esta atividade.

Exercício: 4 Data: 14/07/2021

SOLUÇÃO

Sendo
$$\phi = (x_0 \lor x_2) \land (x_0 \lor \neg x_3) \land (x_0 \lor \neg x_5) \land (x_1 \lor \neg x_3) \land (x_1 \lor \neg x_4) \land (x_1 \lor \neg x_5) \land (x_2 \lor \neg x_4) \land (x_2 \lor \neg x_5) \land (x_3 \lor x_6) \land (x_4 \lor x_6) \land (x_5 \lor x_6)$$

(i) Encontre uma atribuição de valores-verdade ("true"
e "false") às variáveis que ocorrem em ϕ para que ϕ torne-se verdadeira.

Resposta: Para encontrar uma valoração para as váriaveis, iremos olhar para o grafo de implicação de ϕ , atribuir um valor qualquer para alguma raíz do grafo (onde não chegam arestas apontadas pro vértice) e iremos verificar se a fórmula é satisfazível.

Vemos que $\neg x_6$ é uma raíz desse grafo, e então se valer $\neg x_6$, vemos que todas as outras váriaveis devem ter valoração verdadeira para satisfazer ϕ .

Conseguimos comprovar o resultado, montando a seguinte linha da tabela verdade:

x_0	\mathbf{x}_1	x_2	x_3	x_4	x_5	x_6	ϕ
T	T	T	T	T	T	F	T

(ii) Considere agora a fórmula booleana $\psi = \phi \wedge (\neg x_1 \vee \neg x_2) \wedge (\neg x_6 \vee x_5)$ onde ϕ é como acima. Prove que ψ não é satisfatível, isto é, que não existe uma atribuição de valores-verdade às variáveis que ocorrem em ψ de forma que ψ torne-se satisfatível.

Resposta: Montando o grafo de implicações para ψ , temos:

Como sabemos que a implicação é transitiva, conseguimos andar pelo grafo partindo de x_5 e chegar em $\neg x_5$ e dizer que $x_5 \Rightarrow \neg x_5$. Também conseguimos partir de $\neg x_5$ e chegar em x_5 e dizer que $x_5 \Rightarrow x_5$. Montando então a tabela verdade:

X5	$\neg x_5$	$x_5 \Rightarrow \neg x_5$	$\neg x_5 \Rightarrow x_5$	$x_5 \Rightarrow \neg x_5 \land \neg x_5 \Rightarrow x_5$
T	F	F	T	F
F	T	T	F	F

Conseguimos concluir então que ψ não é satisfazível pois chegamos em uma contradição, como vemos acima.