

T10xxxH

STANDARD TRIACS

FEATURES

- I_{T(RMS)} = 10A
- $V_{DRM} = 400 \text{V to } 800 \text{V}$
- High surge current capability

The T10xxxH series of triacs uses a high performance MESA GLASS technology. These parts are intended for general purpose switching and phase control applications.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit	
I _{T(RMS)}	RMS on-state current (360° conduction angle)	Tc= 95 °C	10	А
ITSM	Non repetitive surge peak on-state current	tp = 8.3 ms	105	Α
	(T _j initial = 25°C)		100	
l ² t	I ² t Value for fusing	tp = 10 ms	50	A ² s
dI/dt	Critical rate of rise of on-state current $I_G = 500 \text{ mA}$ $I_G = 1 \text{ A/}\mu\text{s}$.		10	A/μs
		Non Repetitive	50	
T _{stg} T _j	Storage and operating junction temperature r	- 40, + 150 - 40, + 125	°C	
TI	Maximum lead temperature for soldering duri 4.5mm from case	260	°C	

Symbol	Parameter		Unit			
		D	М	S	N	
VDRM VRRM	Repetitive peak off-state voltage T _j = 125°C	400	600	700	800	V

January 1995 1/5

T10xxxH

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit
Rth(j-a)	Junction to ambient	60	°C/W
Rth(j-c)	Junction to case for D.C	3.3	°C/W
Rth(j-c)	Junction to case for A.C 360° conduction angle (F=50Hz)	2.5	°C/W

GATE CHARACTERISTICS (maximum values)

 $P_{G (AV)}$ = 1 W P_{GM} = 10 W (tp = 20 μ s) I_{GM} = 4 A (tp = 20 μ s)

ELECTRICAL CHARACTERISTICS

Symbol	Test Conditions		Quadrant		Sensitivity			Unit
Syllibol	rest Conditions	•	Quadrant		10	12	13	
lgt	$V_D=12V$ (DC) $R_L=33\Omega$	Tj= 25°C	1-11-111	MAX	25	50	50	mA
			IV	MAX	25	50	75	
V_{GT}	$V_D=12V$ (DC) $R_L=33\Omega$	Tj= 25°C	I-II-III-IV	MAX		1.5		V
V_{GD}	$V_D=V_{DRM}$ $R_L=3.3k\Omega$	Tj= 125°C	I-II-III-IV	MIN	0.2		V	
tgt	$\begin{array}{ll} V_D {=} V_{DRM} & I_G = 500 mA \\ I_T = 14A \\ dI_G {/} dt = 3A {/} \mu s \end{array}$	Tj= 25°C	I-II-III-IV	TYP	2		μs	
I _H *	I _T = 250 mA Gate open	Tj= 25°C		MAX	25	50	75	mA
IL	I _G = 1.2 I _{GT}	Tj= 25°C	I-III-IV	TYP	25	50	75	mA
			Ξ	TYP	50	100	150	
V _{TM} *	I _{TM} = 14A tp= 380μs	Tj= 25°C		MAX	1.5		V	
IDRM VD = VDRM Tj= 25°C			MAX	10		μΑ		
I _{RRM}	$V_R = V_{RRM}$	Tj= 110°C		MAX	2		mA	
dV/dt *	VD=67%V _{DRM} Gate open	Tj= 110°C		MIN	200	500	500	V/μs
(dV/dt)c*	(dI/dt)c = 4.4 A/ms	Tj= 110°C		MIN	2 5 10		V/µs	

^{*} For either polarity of electrode A₂ voltage with reference to electrode A₁

ORDERING INFORMATION

Fig.1: Maximum RMS power dissipation versus RMS on-state current.

Fig.3: RMS on-state current versus case temperature.

Fig.5: Relative variation of gate trigger current and holding current versus junction temperature.

Fig.2: Correlation between maximum RMS power dissipation and maximum allowable temperature (Tamb and Tcase) for different thermal resistances heatsink + contact.

Fig.4: Relative variation of thermal impedance versus pulse duration.

Fig.6 : Non repetitive surge peak on-state current versus number of cycles.

Fig.7: Non repetitive surge peak on-state current for a sinusoidal pulse with width : $t \le 10$ ms, and corresponding value of l^2t .

 $\textbf{Fig.8:} \ \textbf{On-state characteristics (maximum values)}.$

PACKAGE MECHANICAL DATA

TO220 Non-insulated (Plastic)

	DIMENSIONS						
REF.	Millimeters			Inches			
	Тур.	Min.	Max.	Тур.	Min.	Max.	
Α			10.3			0.406	
В		6.3	6.5	0.248	0.256		
С			9.1			0.358	
D		12.7			0.500		
F			4.2			0.165	
G			3.0			0.118	
Н		4.5	4.7		0.177	0.185	
I		3.53	3.66		0.139	0.144	
J		1.2	1.3		0.047	0.051	
L			0.9			0.035	
М	2.7			0.106			
N			5.3			0.209	
N1	2.54			0.100			
0		1.2	1.4		0.047	0.055	
Р			1.15			0.045	

Marking: type number

Weight: 1.8 g

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to charge without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

