10_ses_rl.py

1. For all bots which are currently at a node & idle

Update:

- true idleness of all nodes in graph (true) = $+\Delta t$
- Store all the true idleness values at this time stamp
- Expected idleness of nodes at which bots are currently present is calculated by performing simple exponential smoothing (ses) of true idleness for a particular edge (now, expected idleness is function of edge not node)
- We have chosen last 5 values at any instant and $\alpha = 0.4$ for SES.

Calculate: here, learning rate (α) = 0.1, discount factor (γ) = 0.95

• Value function all edges where bots are present (Q) =

$$Q^{new}(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}}\right)}_{\text{new value (temporal difference target)}}$$

- Reward $(r_t) = log(|expect true|)$ and $r_t = 0$ if [expect = true]
- Softmax of Value function = value_exp = $\frac{e^{Q_i}}{\sum\limits_{j=i}^{k} e^{Q_j}}$ (summation over all edges)

Set:

• True idleness of nodes where bots are present = 0

OBSERVATION model: bot will calculate the expected idleness as an average of all the past true idleness it has seen when it last visited the node while travelling **along that particular edge**.

The name 10_ses_rl indicates => ses = SES to estimate expected idleness

(OBSERVATION model)

rl = using reinforcement learning (Q-learning algorithm to calculate the value function

2. For a bot deciding the next node to visit

c		
`	Δ1	۲.

• True idleness of the node where the bot is present = 0

Decision Making: here, we chose ϵ =0.1

- With (1ε) probability, check all neighbours and visit the one with highest value of = [expected idleness] x [value_exp]
- With ε probability, go to a random node

-----END-----

DRAWBACK:

• Even when |expect-true| = 1, reward = 0.