

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC163269

1 of 54 Page:

FCC Radio Test Report FCC ID: 2AL8K-H5

Original Grant

Report No. TB-FCC163269

NZS Inc. DBA Clary Icon **Applicant**

Equipment Under Test (EUT)

EUT Name KK Intelligent Hub/ Interactive Touch Screen

Model No. H5 OneScreen

Series Model No. N/A

Brand Name OneScreen

2018-12-05 **Receipt Date**

2018-12-06 to 2018-12-16 **Test Date**

Issue Date 2018-12-17

Standards FCC Part 15: 2018, Subpart C(15.247)

ANSI C63.10: 2013 **Test Method**

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness

Jason Xu Engineer

IVAN SU fuglis. **Engineer**

Ivan Su Supervisor

Engineer Manager

Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

Page: 2 of 54

Contents

COL	NIENIS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	12
	4.2 Test Setup	12
	4.3 Test Procedure	
	4.4 EUT Operating Mode	13
	4.5 Test Data	13
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	15
	5.3 Test Procedure	
	5.4 EUT Operating Condition	
	5.5 Test Data	
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	18
	6.3 Test Procedure	
	6.4 EUT Operating Condition	
	6.5 Test Data	
7.	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	
	7.2 Test Setup	20
	7.3 Test Procedure	
	7.4 EUT Operating Condition	20
	7.5 Test Data	20
8.	PEAK OUTPUT POWER TEST	21
	8.1 Test Standard and Limit	
	8.2 Test Setup	21
	8.3 Test Procedure	21

Page: 3 of 54

	8.4 EUT Operating Condition	.21
	8.5 Test Data	21
9.	POWER SPECTRAL DENSITY TEST	22
	9.1 Test Standard and Limit	
	9.2 Test Setup	22
	9.3 Test Procedure	22
	9.4 EUT Operating Condition	22
	9.5 Test Data	
10.	ANTENNA REQUIREMENT	23
	10.1 Standard Requirement	23
	10.2 Antenna Connected Construction	
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
	ACHMENT B RADIATED EMISSION AND RESTRICTED BANDS REQUIREMENT	
	T DATA	28
	ACHMENT D BANDWIDTH TEST DATA	.38
	ACHMENT E PEAK OUTPUT POWER TEST DATA	
	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	

Page: 4 of 54

Revision History

Report No.	Version	Description	Issued Date
TB-RF163269	Rev.01	Initial issue of report	2018-12-17
W. W.	10		
	1000	THE STATE OF THE PARTY OF THE P	TO DE
dinna	THE WOLLD		2000
A COLOR	- M33	CON TO	OD A
The same	133 6	Oly The Color	N W
	(403)	The state of the s	
1000		The same of the sa	NO TOD
000	0000		THE REAL PROPERTY.
a more		WUBA WORK	TO TOWN
	M 33	00003	
The same	133	TODS TODS	

Page: 5 of 54

1. General Information about EUT

1.1 Client Information

Applicant: NZS Inc. DBA Clary Icon

Address : 8168 Miramar Road, San Diego CA 92126, United States

Manufacturer : Shenzhen Konka E-display Co.,Ltd

Address 22A,KONKA Building,South Technology Road No.12th,High-tech

Industrial Park, Nanshan, Shenzhen China

1.2 General Description of EUT (Equipment Under Test)

EUT Name		KK Intelligent Hub/ Inte	KK Intelligent Hub/ Interactive Touch Screen		
Models No.		H5 OneScreen			
mil was		Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz		
		Number of Channel:	802.11b/g/n(HT20):11 channels see note(3) 802.11n(HT40):7 channels see note(3)		
Product		Antenna Gain:	5dBi Reverse SMA Antenna		
Description		Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK,QPSK,16QAM, 64QAM)		
		Bit Rate of	802.11b:11/5.5/2/1 Mbps		
		Transmitter:	802.11g:54/48/36/24/18/12/9/6 Mbps 802.11n:up to 150Mbps		
Power Supply Input: AC 100-240, 50/60Hz Output: DC 12V					
Connecting I/O Port(S)	·	Please refer to the User's Manual			

Note:

- (1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01v05.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	80	2447		

Page: 6 of 54

Note:CH 01~CH 11 for 802.11b/g/n(HT20), CH 03~CH 09 for 802.11n(HT40)

- (4) The Antenna information about the equipment is provided by the applicant.
- 1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

	Power Supply		EUT			
·		•		•		

1.4 Description of Support Units

Equipment Information						
Name Model FCC ID/VOC Manufacturer Used "√"						
DD			13 [Distance of the second		
		Cable Information				
Number Shielded Type Ferrite Core Length				Note		
			1170			

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test			
Final Test Mode Description			
Mode 1	TX B Mode		

For Radiated Test				
Final Test Mode	Description			
Mode 2	TX Mode B Mode Channel 01/06/11			
Mode 3	TX Mode G Mode Channel 01/06/11			

Page: 7 of 54

Mode 4	TX Mode N(HT20) Mode Channel 01/06/11
Mode 5	TX Mode N(HT40) Mode Channel 03/06/09

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps) 802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps) 802.11n (HT40) Mode: MCS 0 (13 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 54

1.6 Description of Test Software Setting

During testing channel&Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version		RtkWiFiTest-v1.8.1	
Channel	CH 01	CH 06	CH 11
IEEE 802.11b DSSS	DEF	DEF	DEF
IEEE 802.11g OFDM	DEF	DEF	DEF
IEEE 802.11n (HT20)	DEF	DEF	DEF
Channel	CH 03	CH 06	CH 09
IEEE 802.11n (HT40)	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	WY STATE OF THE ST
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dedicted Emission	Level Accuracy:	. 4 CO dD
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Dedicted Emission	Level Accuracy:	. 4. 40 dD
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
Dadiated Emission	Level Accuracy:	. 4 20 dD
Radiated Emission	Above 1000MHz	±4.20 dB

Page: 9 of 54

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC Accredited Test Site Number: 854351.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 54

2. Test Summary

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 1					
Standard Section		T4 14	ludament	D	
FCC	IC	Test Item	Judgment	Remark	
15.203	1	Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A	
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A	
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A	
15.247(b)	RSS 247 5.4 (4)	Peak Output Power	PASS	N/A	
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A	
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A	
15.247(d)& 15.209	RSS 247 5.5	Transmitter Radiated Spurious Emission	PASS	N/A	

Note: "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.

Page: 11 of 54

3. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul.18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul.18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul.18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul.18, 2018	Jul. 17, 2019
Radiation Emission	n Test			.	!
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul.18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul.18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 15, 2018	Jul. 14, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.16, 2018	Mar. 15, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.16, 2018	Mar. 15, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.16, 2018	Mar. 15, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducto	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul.18, 2018	Jul. 17, 2019
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul.18, 2018	Jul. 17, 2019
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 15, 2018	Sep. 14, 2019
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 15, 2018	Sep. 14, 2019
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 15, 2018	Sep. 14, 2019
30	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 15, 2018	Sep. 14, 2019
DE DOUGLE	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 15, 2018	Sep. 14, 2019
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 15, 2018	Sep. 14, 2019

Page: 12 of 54

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 13 of 54

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 14 of 54

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Page: 15 of 54

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 54

Above 1GHz Test Setup

5.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

Page: 17 of 54

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 54

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.247(d)

FCC Part 15.209

FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance of 3m (dBuV/m)		
Band (MHz)	Peak	Average	
2310 ~2390	74	54	
2483.5 ~2500	74	54	

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Page: 19 of 54

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please refer to the Attachment C.

Page: 20 of 54

7. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC P	FCC Part 15 Subpart C(15.247)/RSS-210			
Test Item	Limit	Frequency Range(MHz)		
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5		

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.

Page: 21 of 54

8. Peak Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210			
Test Item	Limit	Frequency Range(MHz)	
Peak Output Power	1 Watt or 30 dBm	2400~2483.5	

8.2 Test Setup

8.3 Test Procedure

The measurement is according to section 9.1.2 of KDB 558074 D01 15.247 Meas Guidance v05. The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.

Page: 22 of 54

9. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)			
Test Item	Limit	Frequency Range(MHz)	
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5	

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 15.247 Meas Guidance v05.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

Page: 23 of 54

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 5dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

Result

The EUT antenna is Reverse SMA Antenna. It complies with the standard requirement.

	Antenna Type	
The state of	Permanent attached antenna	A COURT
a Bur	⊠Unique connector antenna	
	Professional installation antenna	M.

Page: 24 of 54

Attachment A-- Conducted Emission Test Data

Page: 25 of 54

Test Voltage: AC 120V/60 Hz Terminal: Neutral Test Mode: TX 802.11b Mode CH11 Remark: Only worse case is reported	3 T		
Test Mode: TX 802.11b Mode CH11 Remark: Only worse case is reported	3 W		
Remark: Only worse case is reported			
90.0 dBuV	Only worse case is reported		
	QP: —		

				QP: — AVG: —
The May al	×			***
M. M	artharthann y brothan	d on the side of the floor that the side of the side o	Alphabeter Andrew Mary Commence Service Control of the Control of	http://www.dochordes.com
.150	0.5	(MHz)	5	30.00

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV	dBuV	dB	Detector
1		0.1500	38.71	9.64	48.35	65.99	-17.64	QP
2		0.1500	25.61	9.64	35.25	55.99	-20.74	AVG
3		0.1980	33.53	9.65	43.18	63.69	-20.51	QP
4		0.1980	19.59	9.65	29.24	53.69	-24.45	AVG
5		0.6820	26.87	9.59	36.46	56.00	-19.54	QP
6		0.6820	16.66	9.59	26.25	46.00	-19.75	AVG
7		18.1580	30.66	10.64	41.30	60.00	-18.70	QP
8		18.1580	18.89	10.64	29.53	50.00	-20.47	AVG
9	*	19.0380	32.37	10.64	43.01	60.00	-16.99	QP
10		19.0380	19.22	10.64	29.86	50.00	-20.14	AVG
11		22.9860	27.82	10.69	38.51	60.00	-21.49	QP
12		22.9860	18.89	10.69	29.58	50.00	-20.42	AVG

*:Maximum data x:Over limit !:over margin

Emission Level= Read Level+ Correct Factor

Page: 26 of 54

Гетре	erature:	25 ℃		Re	lative Hum	idity:	55%	20
Test V	oltage:	AC 2	40V/60 Hz	a W	1	18		CM!
Termir	nal:	Line	THE		a CHI	The same	-	A STA
Test M	lode:	TX 80	02.11b Mode	e CH11		(61	11/18	
Remar	rk:	Only	worse case	is reported		1 6	6	I Sim
90.0	dBuV						QP:	
40	Mymm	And the second s		way way way		nakannakan	AVG:	pea
-10 0.150		0.5	Reading	(MHz)	Measure-	Limit	Over	30.000
NO.		req. Hz	Level dBuV	Factor dB	ment dBuV	dBuV	dB	Detector
1		060	29.03	9.61	38.64		-17.36	QP
2		060	20.93	9.61	30.54		-15.46	AVG
3		620	27.99	9.60	37.59		-18.41	QP
4	* 0.8	620	21.89	9.60	31.49	46.00	-14.51	AVG
5	1.4	060	24.74	9.60	34.34	56.00	-21.66	QP
6	1.4	060	19.34	9.60	28.94	46.00	-17.06	AVG
7	18.4	020	29.69	10.50	40.19	60.00	-19.81	QP
8	18.4	020	20.53	10.50	31.03	50.00	-18.97	AVG
9	20.8	180	32.88	10.54	43.42	60.00	-16.58	QP
10	20.8	180	22.18	10.54	32.72	50.00	-17.28	AVG
11	23.5	980	27.49	10.63	38.12	60.00	-21.88	QP
			20.22	10.63	30.85	E0.00	-19.15	AVG

Emission Level= Read Level+ Correct Factor

Page: 27 of 54

Remark: All modes and channels have been tested and only listed WiFi link mode that is worst data

28 of 54 Page:

Attachment B-- Radiated Emission and Restricted Bands **Requirement Test Data**

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

IHz~1GHz	ani'		Din.		10	
Temperature:	25 ℃	Callin S	Relative Hu	midity:	55%	2 N
Test Voltage:	AC 120/60Hz	VIII	ATT.			
Ant. Pol.	Horizontal		Million		Fre	
Test Mode:	TX B Mode 2462	2MHz		Miles		ARG
Remark:	Below 1GHz test TX IEEE 802.11b		eport only sha	II the wor	st case mo	de for
30 dBuV/m	1 2 1	**************************************		(RF)FCC 15C	3M Radiation Margin -6 dB	
-20 30.000 40 50 No. Mk. F	Reading req. Level	(MHz) Correct Factor	Measure-	400 500 Limit	600 700 1	000.000
	1Hz dBuV		dBuV/m	dBuV/m		 Detector
	6507 55.89	dB/m -24.14	31.75	40.00	-8.25	QP
	7808 52.45	-24.14	29.61	40.00	-10.39	QP
	5990 58.54	-20.54	38.00	43.50	-5.50	QP
	4898 56.58	-20.02	36.56	43.50	-6.94	QP
5 242.	5253 54.44	-17.60	36.84	46.00	-9.16	QP
6 472.	1760 46.46	-11.38	35.08	46.00	-10.92	QP
*:Maximum data	x:Over limit !:over ma	argin				

Page: 29 of 54

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2462MHz		
Remark:	Below 1GHz test data. T		worst case mode for

No	o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	į	53.6931	61.75	-23.65	38.10	40.00	-1.90	QP
2	*	62.2128	62.37	-24.17	38.20	40.00	-1.80	QP
3		127.2176	57.78	-22.40	35.38	43.50	-8.12	QP
4		144.3348	57.41	-22.03	35.38	43.50	-8.12	QP
5	ļ	166.0680	60.09	-20.67	39.42	43.50	-4.08	QP
6		242.5253	54.86	-17.60	37.26	46.00	-8.74	QP

^{*:}Maximum data x:Over limit !:over margin

Page: 30 of 54

Above 1GHz

Test Mode: IEEE 802.11b

Low channe	el: 241	2 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin
				, ,		93.953.5			` ,	(dB)
2390	Н	48.85	41.69	0.77	49.62	42.46	74	54	-24.38	-11.54
4824	Н	43.26	31.27	13.68	56.94	44.95	74	54	-17.06	-9.05
77,44	Н	77/1/	0)100	- N					<u></u>	(
		1	60	1.37	-	KO		A STATE		80
2390	V	42.95	31.28	0.77	43.72	32.05	74	54	-30.28	-21.95
4824	V	43.51	30.47	13.68	57.19	44.15	74	54	-16.81	-9.85
	V			3		1022				

Middle char	nnel: 2	437 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
4874	Н	44.13	30.18	13.86	57.99	44.04	74	54	-16.01	-9.96
	Н		11970	1	1117		1		2,6	
11177	Н	7 1			(9	min		
6	W		2 11	U.S.		6.30	THE STATE OF		200	100
4874	V	43.37	30.25	13.86	57.23	44.11	74	54	-16.77	-9.89
0 2.	V	1737		1 B		-		W#0		
	V		==)	0 []					3

High channe	el: 246	62 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
2483.5	I	41.35	31.22	1.17	42.52	32.39	74	54	-31.48	-21.61
4924	Η	43.3	30.47	14.03	57.33	44.5	74	54	-16.67	-9.5
	Н	NB	6	11/27		AMIL		1 150		2
	MA				100		THE		1 11/1	U. Santa
2483.5	Η	41.41	30.33	1.17	42.58	31.5	74	54	-31.42	-22.5
4924	V	44.46	31.47	14.03	58.49	45.5	74	54	-15.51	-8.5
(11)	V	J	77/1/2		(a) V	E			(4-11)	162

- 1. Emission Level= Read Level+ Correct Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page: 31 of 54

Test Mode: IEEE 802.11g

Low channe	el: 241	2 MHz					3			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
2390	Η	50.88	39.87	0.77	51.65	40.64	74	54	-22.35	-13.36
4824	H	45.11	31.16	13.68	58.79	44.84	74	54	-15.21	-9.16
	Н		2/4		77.2		(24 J.)		3 //	
11:00		0.47	D. Boston							~ 1
2390	V	51.62.	30.54	0.77	52.39	31.31	74	54	-21.61	-22.69
4824	V	43.30	30.12	13.56	56.98	43.8	74	54	-17.02	-10.2
WJ	V	(1 PF)	ر الإ	2 7/1/						11.77

	Middle chan	nel: 2	437 MHz								
	Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading (dBuV)	Correction Factor	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit	Peak Margin	AV Margin
	(2)	1 1/ V	(dBµV)		(dB/m)			(a 5 µ 77)	(αΣμ τ/)	(dB)	(dB)
	4874	Н	43.21	31.53	13.86	57.07	45.39	74	54	-16.93	-8.61
		Н						$D_{\overline{c}}$	3.3	[]	1177
		Н		1120	[AllTra		111		// /	
1	111		81 YE		477 L	6-1	TIN'I	2	THIS.		
	4874	V	44.29	30.24	13.86	58.15	44.1	74	54	-15.85	-9.9
	- N	V		W		13/2		WITTEN S		77.77	
	192	V	(-41)F		a W				A 44 3 2		E

	High channe	el: 246	62 MHz								
	Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Peak		Peak limit	AV limit	Peak	AV
	(MHz)	H/V		(dBuV)		(dBµV/m)	(ασμν/π)	(dBµV/m)	(dBµV/m)	Margin	Margin
			(dBµV)		(dB/m)					(dB)	(dB)
١	2483.5	Н	51.26	38.73	1.17	52.43	39.9	74	54	-21.57	-14.1
	4924	Н	44.39	30.72	14.15	58.42	44.75	74	54	-15.58	-9.25
	1	Н		112					102	19.10	
			20 10		10 A S		THIN!				1
	2483.5	Н	50.38	36.28	1.17	51.55	37.45	74	54	-22.45	-16.55
	4924	V	42.24	30.87	14.15	56.27	44.9	74	54	-17.73	-9.1
		V			11 E				4		A N

- 5. Emission Level= Read Level+ Correct Factor
- 6. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 7. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 8. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page: 32 of 54

Test Mode: IEEE 802.11n TH20

Low channe	el: 241	2 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
2390	Н	60.6	40.85	0.77	61.37	41.62	74	54	-12.63	-12.38
4824	Н	44.08	30.24	13.56	57.64	43.80	74	54	-16.36	-10.2
	Н		No.	6	742		(24 J.)		3 //	
		0.47	The second							~ 1
2390	V	59.74	43.44	0.77	60.51	44.21	74	54	-13.49	-9.79
4824	V	44.32	30.14	13.56	57.88	43.70	74	54	-16.12	-10.30
23	V	4	(C	2 7/1/			F 12.			11.77

Mic	Middle channel: 2437 MHz											
	equency MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)	
70	4874	Н	43.28	30.53	13.85	57.13	44.38	74	54	-16.87	-9.62	
li.		Ι		+		-		mm.	333	[[1177	
		I			\					<u> </u>		
		A				1	(i) 13 m		MIN			
	4874	>	44.04	30.34	13.87	57.9	44.2	74	54	-16.1	-9.8	
	7 V	V				10 2		11/11/				
		V		-	M 18				W#2			

High channe	el: 246	62 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
2483.5	Н	56.85	37.01	1.17	58.02	38.18	74	54	-15.98	-15.82
4924	Н	45.36	30.46	14.15	59.51	44.61	74	54	-14.49	-9.39
	Н	W						mm.	J	
	1	777 -		1112		AAA		A LO		
2483.5	Ή	58.14	39.36	1.17	59.31	40.53	74	54	-14.69	-13.47
4924	V	43.67	30.77	14.15	57.82	44.92	74	54	-16.18	-9.08
-	V	1		183- -	67			11.1		-

- 9. Emission Level= Read Level+ Correct Factor
- 10. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 11. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 12. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page: 33 of 54

Test Mode: IEEE 802.11n TH40

Low channe	el: 242	2 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
2390	Н	60.19	45.17	0.77	60.96	45.94	74	54	-13.04	-8.06
4824	Н	43.63	30.27	13.68	57.31	43.95	74	54	-16.69	-10.05
	Н		No.		742		(277 / J.)		3 1	
$\mathcal{L}(\mathcal{D})$		LAN.	The second				1			~ 1
2390	V	59.04	44.39	0.77	59.81	45.16	74	54	-14.19	-8.84
4824	V	43.38	30.18	13.68	57.06	43.86	74	54	-16.94	-10.14
33 -	V	(14)	2	2 7/1//			60 E			

Middle char	nnel: 2	437 MHz	-1111	1.0						
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
4874	Н	43.37	30.29	13.86	57.23	44.15	74	54	-16.77	-9.85
	Н				1/		(DES)	333	[1]	1177
	Н		11270	\	111				X A	
ALL STREET		AV			-	TIP IN		I THU		
4874	V	43.24	30.29	13.86	57.1	44.15	74	54	-16.9	-9.85
\	V				0 2		11/11/11		-12	
02	V	1777		1 18				W + 1		2 N

High channe	el: 245	52 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
2483.5	Н	58.76	42.43	1.17	59.93	43.6	74	54	-14.07	-10.4
4924	Н	43.72	30.6	14.03	57.75	44.63	74	54	-16.25	-9.37
10-	Н	W					1	mm.	<u> </u>	
	1	7.7		1113		AAA		1	A	637
2483.5	I	57.23	41.73	1.17	58.4	42.9	74	54	-15.6	-11.1
4924	V	43.47	30.25	14.03	57.5	44.28	74	54	-16.5	-9.72
1	V			183	6			A Prince		3/ /

- 13. Emission Level= Read Level+ Correct Factor
- 14. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 15. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 16. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page: 34 of 54

(1) Conducted Test

Page: 35 of 54

Page: 36 of 54

Page: 37 of 54

Page: 38 of 54

Attachment D-- Bandwidth Test Data

25 ℃	Polotivo Humidity	
	Relative Humidity:	55%
AC 120/60Hz		
TX 802.11B Mode		
y 6dB Bandwidth	99% Bandwidth	Limit
(MHz)	(MHz)	(MHz)
9.762	14.912	
9.881	14.859	>=0.5
9.926	14.721	
	TX 802.11B Mode ey 6dB Bandwidth (MHz) 9.762 9.881	TX 802.11B Mode y 6dB Bandwidth (MHz) 99% Bandwidth (MHz) 9.762 14.912 9.881 14.859

802.11B Mode

Page: 39 of 54

Page: 40 of 54

Temperature:	25 ℃		Relative Humidity:	55%	
Test Voltage:	AC	120/60Hz			
Test Mode:	TX 8	802.11G Mode	THE STATE OF THE S	11:30	
Channel frequer	су	6dB Bandwidth	99% Bandwidth	Limit	
(MHz)		(MHz)	(MHz)	(MHz)	
2412		16.66	16.533		
2437		16.62	16.517	>=0.5	
2462		16.59	16.511		
		802.11G	Mode		
		2412 N	ЛНz		

Page: 41 of 54

42 of 54 Page:

Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	AC 120/60Hz				
Test Mode:	TX 802.11N(HT20) Mode				
Channel frequence	cy 6dB Bandwidth	99% Bandwidth	Limit		
(MHz)	(MHz)	(MHz)	(MHz)		
2412	17.68	17.805			
2437	17.66	17.880	>=0.5		
2462	17.59	17.788			
	802.11N(HT2	0) Mode			

Page: 43 of 54

44 of 54 Page:

Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	AC 120/60Hz				
Test Mode:	TX 802.11N(HT40) Mode				
Channel frequence	y 6dB Bandwidth	99% Bandwidth	Limit		
(MHz)	(MHz)	(MHz)	(MHz)		
2422	35.14	35.704			
2437	35.13	35.718	>=0.5		
2452	35.15	35.737			
	802.11N(HT	40) Mode			

Page: 45 of 54

Page: 46 of 54

Attachment E-- Peak Output Power Test Data

Test Conditions	: Continuous transm	itting Mode	
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120/60Hz		
Mode	Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)
	2412	15.46	
802.11b	2437	15.12	
	2462	15.65	
	2412	12.20	
802.11g	2437	12.38	
	2462	2462 12.81	
802.11n	2412	12.17	30
(HT20)	2437	12.32	
(11120)	2462	12.59	
802.11n	2422	12.37	
(HT40)	2437	12.41	
(11170)	2452	12.57	
	Resi	ult: PASS	

Duty Cycle			
Mode	Channel frequency (MHz)	Test Result	
	2412		
802.11b	2437		
	2462		
	2412		
802.11g	2437		
	2462	>000/	
000.44	2412	>98%	
802.11n	2437		
(HT20)	2462		
000 44	2422		
802.11n	2437		
(HT40)	2452		

Page: 47 of 54

Attachment F-- Power Spectral Density Test Data

nperature:	25 ℃		Relative I	Humidity:	55%
t Voltage:	AC 120/60Hz				CHID
t Mode:	TX 802.1	1B Mode	Miles		
Channel Freq	uency	Powe	er Density		Limit
(MHz)	(d		m/3 kHz)		(dBm)
2412		-	7.827		
2437		-	7.123		8
2462		-(6.745		
		802.1	11B Mode	I	
		24	12 MHz		
Marker 1 2.41	75 Ω AC CORR 2688221000 GH Offset 2 dB	Z PNO: Fast Trig	Avg T	ype: Log-Pwr old: 52/100	04:01:53 PM Dec 10, 2018 TRACE [] 23 4 5 TYPE MWWWW DET NNNNN 2.412 688 GHz -7.827 dBm
Marker 1 2.41 10 dB/div Ref 12.0 2.00	75.0 AC CORR 2688221000 GH Offset 2 dB 22.00 dBm	Z PNO: Fast Trig	g: Free Run Avg T Avg H en: 30 dB	Mkr1	04:01:53 PM Dec 10, 2018 TRACE 12 3 4 5 TYPE MWWWW DET P NNNN
Marker 1 2.41 10 dB/div Ref 12.0 2.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00	75.0 AC CORR 2688221000 GH Offset 2 dB 22.00 dBm	PNO: Fast Trig	g: Free Run Avg T Avg H en: 30 dB	Mkr1	04:01:53 PM Dec 10, 2018 TRACE 12 3 4 5 TYPE MWWWW DET P NNNN
Marker 1 2.41 10 dB/div Ref 12.00 2.00 -8.00	75.0 AC CORR 2688221000 GH Offset 2 dB 22.00 dBm	PNO: Fast Trig	g: Free Run Avg T Avg H en: 30 dB	Mkr1	04:01:53 PM Dec 10, 2018 TRACE 12 3 4 5 TYPE MWWWW DET P NNNN

Page: 48 of 54

Center 2.462000 GHz #Res BW 3.0 kHz

#VBW 10 kHz

Span 14.89 MHz Sweep 1.570 s (1001 pts)

Page: 49 of 54

Temperature:	25 ℃		Tempera	ature:	25 ℃	
Test Voltage:	AC 120/6	AC 120/60Hz			1 hours	
Test Mode:	TX 802.1	IG Mode	THE P	6		
Channel Freq	uency	Power I	Density		Limit	
(MHz)		(dBm/	3 kHz)		(dBm)	
2412		-13.	248			
2437	2437 2462		-13.333 -12.566		8	8
2462						
		802 110	Mode			

802.11G Mod

Page: 50 of 54

802.11G Mode

Page: 51 of 54

Temperature:	25 ℃		Temperature:	25 ℃	
Test Voltage:	AC 120/6	AC 120/60Hz			
Test Mode:	TX 802.1	1N(HT20) Mode	110		
Channel Freq	uency	Power Dei	nsity	Limit	
(MHz)		(dBm/3 k	Hz)	(dBm)	
2412		-14.060)		
2437	2437		1	8	
2462		-11.299)		
		802 11N/HT20)) Mode		

802.11N(HT20) Mode

Page: 52 of 54

Page: 53 of 54

	25 ℃		Temperature:	25 ℃	
Test Voltage:	AC 120/60Hz		THE PERSON NAMED IN	- W	
Test Mode:	TX 802.11	N(HT40) Mode		THE STATE OF THE S	
Channel Frequ	uency	Power Der	nsity	Limit	
(MHz)		(dBm/3 k	Hz)	(dBm)	
2422		-21.598	3		
2437		-22.267	7	8	
2452		-21.773	3		
	<u>'</u>	802.11N(HT40) Mode		
		2422 MF	łz		

Page: 54 of 54

----END OF REPORT-----