Introducción a ML y GenAl

Preprocesamiento de Datos

Ariel Ramos Vela 17-09-2024

Agenda

- 1. Introducción al Preprocesamiento de Datos
- 2. Importancia del Preprocesamiento
- 3. Ejemplo: Titanic Dataset
- 4. Tipos de Preprocesamiento
 - 1. Limpieza de datos
 - 2. Manejo de datos faltantes
 - 3. Conversión de datos categóricos
 - 4. Escalado y normalización
- 5. Conclusiones y recomendaciones
- 6. Preguntas y respuestas

Introducción al Preprocesamiento de Datos

- El preprocesamiento es un paso fundamental en el desarrollo de modelos de Machine Learning.
- Objetivo: Preparar los datos para que los algoritmos puedan extraer patrones y hacer predicciones de manera efectiva.
- El preprocesamiento mejora la calidad y coherencia de los datos.

¿Por qué es Importante el Preprocesamiento?

1. Limpieza de Datos

- 1. Eliminación de duplicados
- 2. Corrección de inconsistencias

2. Manejo de Datos Faltantes

- 1. Eliminación de filas o columnas
- 2. Imputación

3. Conversión de Datos Categóricos

- 1. One-hot encoding
- 2. Label encoding

4. Escalado y Normalización

- 1. Escalado Min-Max
- 2. Normalización Z-score

Introducción al Titanic Dataset

- Titanic Dataset es uno de los conjuntos de datos más utilizados para aprendizaje supervisado.
- Contiene información sobre los pasajeros del Titanic, que se hundió en 1912.
- Objetivo: Predecir si un pasajero sobrevivió o no, basado en las características disponibles.

Features Principales:

- Passengerld: Identificador único del pasajero.
- Pclass: Clase del boleto (1^a, 2^a, 3^a).
- Name: Nombre del pasajero.
- Sex: Género (masculino/femenino).
- Age: Edad del pasajero.
- SibSp: Número de hermanos/esposos a bordo.
- Parch: Número de padres/hijos a bordo.
- Fare: Precio del boleto.
- Cabin: Número de cabina (si disponible).
- **Embarked**: Puerto donde embarcó el pasajero (C = Cherburgo, Q = Queenstown, S = Southampton).
- **Survived**: Indicador binario de supervivencia (0 = No, 1 = Sí).
- Tamaño del Dataset:
 - Total de registros: 891 pasajeros
 - Datos tabulares: Organizados en filas y columnas.

Datos Categóricos vs Datos Numéricos

Passengerld	Pclass	Name	Sex	Age	Fare	Survived
1	3	Braund, Mr. Owen	male	22	7.25	0
2	1	Cumings, Mrs. John	female	38	71.28	1
3	3	Heikkinen, Miss. Laina	female	26	7.92	1

Datos Categóricos

- Representan categorías o etiquetas.
- Ejemplo:
 - Sex: "male" y "female" (género).
 - Pclass: 1, 2, 3 (clase del boleto).
 - Survived: 0 (no sobrevivió) o 1 (sobrevivió).
- Generalmente no tienen un **orden** inherente entre sus valores.

Datos Numéricos

- Representan valores cuantitativos.
- Ejemplo:
 - Age: 22, 38, 26 (edad en años).
 - Fare: 7.25, 71.28, 7.92 (precio del boleto).
- Pueden ser utilizados directamente en cálculos matemáticos.

¿Qué representan las columnas y las filas?

Passengerld	Pclass	Name	Sex	Age	Fare	Survived
1	3	Braund, Mr. Owen	male	22	7.25	0
2	1	Cumings, Mrs. John	female	38	71.28	1
3	3	Heikkinen, Miss. Laina	female	26	7.92	1

Columnas (Features)

- Representan atributos o características de los datos.
- Cada columna contiene un tipo de información específica sobre las observaciones (filas).
- En Machine Learning, las columnas son conocidas como **features**.
- Ejemplos en el Titanic Dataset:
 - Age (Edad): La edad del pasajero.
 - Sex (Sexo): El género del pasajero.
 - Fare (Tarifa): El precio del boleto.
 - Pclass (Clase): La clase del boleto (1ª, 2ª, 3ª).

Filas (Rows)

- Cada fila es una observación individual o un registro.
- Representa un ejemplo específico en el conjunto de datos.
- En el Titanic Dataset, cada fila corresponde a un pasajero.
- Ejemplo en el Titanic Dataset:
 - Fila 1: Pasajero masculino de 22 años, en clase 3, con tarifa de \$7.25.

Tipos de Preprocesamiento

1. Limpieza de Datos

- 1. Eliminación de duplicados
- 2. Corrección de inconsistencias

2. Manejo de Datos Faltantes

- 1. Eliminación de filas o columnas
- 2. Imputación

3. Conversión de Datos Categóricos

- 1. One-hot encoding
- 2. Label encoding

4. Escalado y Normalización

- 1. Escalado Min-Max
- 2. Normalización Z-score

Limpieza de Datos

- •Detección de datos duplicados: Ejemplo, dos pasajeros con el mismo nombre y detalles en el Titanic Dataset.
- •Corrección de inconsistencias: Diferentes formatos para la misma información, como "male" y "Male".

PassengerId	Name	Sex	Age	Pclass	Fare
1	Braund, Mr. Owen	male	22	3	7.25
2	Cumings, Mrs. John	Female	38	1	71.28
3	Heikkinen, Miss Laina	female	26	3	7.92
4	Allen, Mr. William	Male	35	1	8.05

Manejo de Datos Faltantes

- Datos faltantes en el Titanic Dataset:
 - Edad (Age)
 - Cabina (Cabin)
- •Estrategias:
- •Eliminar filas/columnas: Si el porcentaje de datos faltantes es alto.
- •Imputar datos: Usar la mediana o la media para rellenar los valores faltantes.
 - Ejemplo: Imputar la edad faltante con la mediana de las edades.

Passengerld	Name	Age	Pclass	Cabin	Embarked
1	Braund, Mr. Owen	22	3	NaN	S
2	Cumings, Mrs. John	38	1	C85	С
3	Heikkinen, Miss Laina	26	3	NaN	s
4	Allen, Mr. William	35	1	B28	s
5	Moran, Mr. James	NaN	3	NaN	NaN

Conversión de Datos Categóricos

- Datos categóricos en el Titanic Dataset:
 - Sexo (Sex): "male" y "female"
 - Clase del boleto (Pclass): 1, 2, 3
- Métodos:
- **1. Label Encoding**: Convertir "male" en 0 y "female" en 1.
- 2. One-Hot Encoding: Crear columnas binarias para cada categoría de "Pclass".

One-Hot Encoding

Ventajas:

- Sin orden implícito: Útil cuando no existe un orden natural entre las categorías.
- Evita sesgos: Previene que el modelo asuma una jerarquía entre categorías.

• Desventajas:

- Aumenta la dimensionalidad: Puede crear muchas columnas, especialmente en variables con muchas categorías, lo que incrementa el costo computacional.
- Ineficiencia: Para conjuntos de datos grandes, puede ser ineficiente.

Label Encoding

Ventajas:

- Simplicidad: No aumenta la dimensionalidad del dataset.
- Rápido y eficiente: Requiere menos memoria y es más eficiente para conjuntos de datos grandes.

Desventajas:

 Orden implícito: El modelo puede interpretar que las categorías tienen un orden o jerarquía, lo que puede introducir sesgo si el orden no es relevante.

Otras Técnicas de Encoding...

1. Target Encoding

Descripción: Reemplaza cada categoría por el promedio de la variable objetivo (target) en cada categoría.

Uso: Útil en problemas de clasificación, pero puede causar **overfitting** si no se maneja adecuadamente.

Ejemplo: En el Titanic Dataset, reemplazar "Sex" con la tasa de supervivencia media por género.

2. Frequency Encoding

Descripción: Cada categoría se codifica según su **frecuencia** en el dataset.

Ventaja: Compacta y eficiente, especialmente para datos con muchas categorías.

Ejemplo: Reemplazar "Embarked" con la frecuencia de cada puerto en el dataset.

3. Binary Encoding

Descripción: Convierte categorías en binarios de forma compacta. Cada categoría se convierte en un número entero y luego en su representación binaria.

Ventaja: Reduce la dimensionalidad en comparación con One-Hot Encoding.

Ejemplo: Categoría "Pclass" (1, 2, 3) se codifica en binario: 1 = 001, 2 = 010, 3 = 011.

Normalización y Estandarización

 Los algoritmos de Machine Learning basados en distancias (SVM, KNN) necesitan datos en la misma escala.

• Métodos:

- 1. Normalización (Min-Max Scaling):
- 2. Estandarización (Z-Score Scaling):

Ejemplo:

 Normalizar la columna Fare en el Titanic Dataset para que todos los precios de boletos tengan la misma escala.

Normalización (Min-Max Scaling)

- Propósito: Reescalar los datos para que caigan dentro de un rango específico, comúnmente entre 0 y 1.
- **Uso**: Es útil cuando queremos que los datos se mantengan dentro de un rango fijo, como en **redes neuronales** o cuando las características tienen diferentes escalas.
- Sensibilidad a outliers: Muy sensible a valore atípicos (outliers), ya que estos pueden afectar drásticamente el rango mínimo y máximo.
- Ejemplo: Columna de precios que varían en gran magnitud (por ejemplo, de \$0 a \$1000) puede ser normalizada para ajustarse entre 0 y 1.

$$X' = rac{X - X_{min}}{X_{max} - X_{min}}$$

Estandarización (Z-Score Scaling)

- Propósito: Reescalar los datos de manera que tengan media 0 y desviación estándar 1.
- Uso: Útil cuando los datos tienen una distribución normal o en modelos como regresión lineal, SVM, KNN, que son sensibles a las diferentes escalas.
- Sensibilidad a outliers: Menos sensible que la normalización, pero aún puede verse afectada por valores atípicos, ya que influencian la media y desviación estándar.
- **Ejemplo**: Columna de **edades**, donde los valores están distribuidos en torno a una media.

$$Z = rac{X - \mu}{\sigma}$$

- X: Valor de la característica.
- μ: Media de la característica.
- σ: Desviación estándar de la característica.

Conclusiones

- El preprocesamiento es crucial para mejorar la **calidad** y **rendimiento** de los modelos.
- Diferentes tipos de preprocesamiento deben aplicarse según el tipo de datos y su contexto.
- En el Titanic Dataset, las técnicas de imputación, conversión categórica y escalado mejoran la precisión del modelo.

Recomendaciones

Siempre **explorar** los datos antes de aplicar preprocesamiento.

Utilizar **gráficos** para detectar valores atípicos y anomalías.

Evaluar el impacto de cada técnica de preprocesamiento en el rendimiento del modelo.

Siguientes pasos...

- Taller: Preprocesamiento de datos.
- El material lo podrás encontrar en el Github repository del curso.