Week9

陈淇奥 21210160025

2022年5月1日

Exercise 0.0.1 (2.1.7). 偏序集 L 是一个格当且仅当对任意 $X\subseteq_f L$, $\sup X$ 和 $\inf X$ 存在

证明. \Rightarrow : 对 $X=\{x_1,\ldots,x_n\}$ 的基数 n 做归纳,当 n=1 时, $\sup X=\inf X=x_1$

当 n=k+1 时,令 $X'=\{x_1,\ldots,x_k\}$,下面证明 $\sup X=\sup\{\sup X',x_{k+1}\}$,首先易知 $\sup X\leq \sup\{\sup X',x_{k+1}\}$,而 $\sup X'\leq \sup X,x_{k+1}\leq \sup X$,因此 $\sup\{\sup X',x_{k+1}\}\leq \sup X$,因此 $\sup X=\sup\{\sup X',x_{k+1}\}\in L$,同理 $\inf X\in L$

Exercise 0.0.2 (2.1.9). 如果 L 是完全的, $\prod \emptyset$ 和 $\sum \emptyset$ 分别是什么

证明.
$$\prod \emptyset = 1, \sum \emptyset = 0$$

Exercise 0.0.3 (2.1.10). 在偏序集 (L, \leq) 中,如果对任意非空的 $X \subseteq L$, $\prod X$ 都存在,则对任意 $X \subseteq L$,如果 X 有上界,则 $\sum X$ 也存在

证明. 因为 X 有上界,令 $X'=\{a\in L\mid \sum X\leq a\},\ X'$ 非空,下面证明 $\sum X=\prod X'$

对于任何 $x \in X$, 任意 $a \in X'$, $x \le a$, 因此 $x \le \prod X'$, 因此 $\sum X \le \prod X'$ 而 $\sum X \in X'$, 因此 $\sum X \ge \prod X'$, 所以 $\sum X = \prod X'$

Exercise 0.0.4 (2.1.11). 令 L 为一个格,则以下命题等价

- 1. L 是完全的
- 2. 对任意 $X \subseteq L$, $\prod X \in L$
- 3. L 有最大元 1 并且对任意非空 $X \subseteq L$, $\prod X \in L$

证明. $1 \rightarrow 2$: 根据定义

$$2 \rightarrow 3$$
: 由前两个练习, $\prod \emptyset = 1$

Exercise 0.0.5 (2.1.13). 对任意格 L, + 关于·的分配律成立当且仅当·关于+的分配律成立

证明. \Rightarrow : 若对任意 $a,b,c \in L$, (a+b)c=ab+bc, 那么 (a+b)(a+c)=a(a+c)+b(a+c)=a+ac+ab+bc=a+bc

Exercise 0.0.6 (2.1.14). 令 $M_3 = \{0, a, b, c, 1\}$, a, b, c 不可比,证明: + 关于 · 的分配律和 · 关于 + 的分配律在 L 中都不成立

证明.
$$(a+b)c = 1c = 1$$
, $ac + bc = 0$

Exercise 0.0.7 (2.1.15). 任何有端点的线序都是一个分配格,但不是布尔代数 证明. 对任何 $a,b,c\in L$

- 1. $\sup\{a,b\} = \max\{a,b\}, \inf\{a,b\} = \min\{a,b\}$
- 2. 若 $a \le b \le c$, 则 (a+b)c = bc = b + a = ac + bc若 $a \le c \le b$, 则 (a+b)c = bc = c = c + a = ac + bc若 $b \le a \le c$, 则 (a+b)c = ac = ac + bc对于其它情况,同理

若 L 是布尔代数且是布尔代数,则对任何 $a\in L$, $a\leq -a$ 或者 $-a\leq a$,此时 a=1 或 0,于是 L 只有两个元素

Exercise 0.0.8 (2.1.17). 如果 L 是分配格,则对任意 $a \in L$,如果 a 的补存在,则是唯一的

证明. 若
$$a$$
 有补 b , c , 则 $b=b+ac=(b+a)(b+c)=b+c=(c+a)(c+b)=c+ab=c$