3.1.1

Because n(n,n)=0 and $z\neq 0$, we can specify z(n) to any non zero scalar, I'll use 1 in my code.

function [=1= unullu)

n= size (U,1);

Z= Zeros (n, 1);

Z(n)=13

for i=n-1:-1=1

Z(i)= (z(i)- U(i,i+1:n) * Z(i+1:n)) / U(i,i);

end end

3.1.7 LXK=B

LXK=B @ L(XK)=B

We can treat XK as a whole $n\times n$ matrix and solve it using. Multiple right hand sides algorithm, which is a block forward elimination scheme described in book. Then we get $XK = C.ER^{n\times n}$. Then, transpose both sides, $K^TX^T = C^T$, K^T is an upper triangular, and we can solve it using a block backward substitution which is entirely analogous to the previous one. Therefive, we solve X^T , transpose X^T and get X in the end.

P3.2.3

① Show that after τ steps of outer product Lu, A(r+1=n, r+1=n) houses S. We have, $S = A_{22} - L_{21}U_{12}$

In outer product LN algorithm,

end

For A(r+1:n, r+1:n), this part will be subtracted by $A(r+1:n,k)\cdot A(k,r+1:n)$. in the kth iteration, where A(r+1:n,k) is overwritten by $L_{21}(:,k)$ and A(k,r+1:n) is overwritten by $U_{12}(k,:)$ already.

Thus, after r steps,

$$A(r+1:n, r+1:n) = A_{22} - L_{21}(:, i:r) \cdot U_{12}(1:r, :)$$

= $A_{22} - L_{24} \cdot U_{12} = S$. It houses S .

@ How would S be obtained after 1 steps of Gaxpy LM?

Because Gaxpy LU is a left-looking algorithm, after 1 steps, we can
only get the left part of L. U, like this:

In S= A22-L21 M12, we still need U12 to obtain S. So based on our black matrices,

We have
$$L_{11} \cdot U_{12} + 0 \cdot U_{22} = A_{12}$$

 $L_{11} \cdot U_{12} = A_{12}$ $(N_{2} = N_{2}) \cdot A_{12}, L_{11}$ are known.

We can solve $L_1 U_{12} = A_{12}$ by mubtiple RHS algorithm to get U_{12} . Then, $S = A_{22} - L_{21} \cdot U_{12}$ can be obtained.

1) Recursive version: 2) Iterative version: function [L. 11] = doth(CA) Initialize L to the Identity and U to the zero h= size (A, 1); for j=1: 1-1 U= Zeros(n); L= eye(n); if j=1 U(1,1)= A(1,1); A11 = A(12h-1, (-n-1); else [L11, U11]= doth (A11); Solve L(1: j-1, 1:j-1), Z= Q(1:j-1) for ZER1. L(1=n-1, 1=n-1) = L113 いいよりょう= とう 6= A(g) =); Solve 2. U(1:j-1,1:j-1)= 6(1:j-1) firzeRj-1 Ull=n-1, 1=n-1) = U113 ~ A(:, n); Solve $L(1:n-1,1:n-1) \cdot z = a(1:n-1)$ for k=1:3-1 W(1:n-1, n)= = 3 b= A(n, =); Solve 2. U(1:n-1,1:n-1) = b(1:n-1) for = FER ". L(n, 1:n-1) = 23

end

M(n,n) = ALn,n) - L(n,1=n-1) * M(1=n-1,n); 2 dot product.