Math 571 - Exam 1 (05.22)

Richard Ketchersid

NOTATION/DEFINITION: Let (X,d) be a metric space for $A,B \subset X$ define $d(A,B) = \sup\{d(a,b) \mid a \in A \text{ and } b \in B\}$. Set $d(a,B) = d(\{a\},B)$.

Problem 1. Let (X,d) be a metric space, prove that

- a) For any closed set F and $x \notin F$, d(x, F) > 0.
- b) For any compact K and closed F with $K \cap F = \emptyset$, d(K, F) > 0.

Can the assumption that K is compact be dropped n (b)? That is, is there a metric space (X, d) and closed sets A, B so that $A \cap B = \emptyset$ and yet d(A, B) = 0?

RECALL: In a metric space (X, d), diam $(A) = \sup\{d(a, b) \mid a, b \in A\}$.

Problem 2. Let (X,d) be a metric space prove or disprove each of the following:

- a) diam(A) = diam(Cl(A)).
- b) $\operatorname{diam}(A) = \operatorname{diam}(\operatorname{Int}(A)).$

Problem 3. Let (X, d) be a metric space and $(x_i)_{i \in \mathbb{N}}$ and $(y_i)_{i \in \mathbb{N}}$ be two Cauchy sequences. Show that $(d(x_i, y_i))_{i \in \mathbb{N}}$ converges.

For the next problem, $(x_{i_k})_{k=0}^{\infty}$ is a **subsequence** of $(x_i)_{i=0}^{\infty}$ means $i_0 < i_1 < \cdots$. A sequence $(x_i)_{i=0}^{\infty}$ is **monotone increasing** iff $x_0 \le x_1 \le x_2 \cdots$. Similarly define **monotone decreasing**. A sequence is **monotone** iff it is either monotone increasing or monotone decreasing.

Problem 4. Show that every infinite sequence of real numbers has a monotone subsequence that converges to $\limsup_{i} x_{i}$.

NOTE: The same is true for $\liminf_i x_i$.