Network Intrusion Detection Evaluation Using Machine Learning Models on Big Data

Manos Chatzimpyrros, csd3137 Dimitris Karathanasis, csd3547 Savvas Kastanakis, csdp1096

Data Preprocessing

First Actions

Picking a Performance Metric

How we Handled Overfitting

Hyperparameter Tuning

Cost Sensitive Training Algorithms

Data Preprocessing

First Actions

Picking a Performance Metric

How we Handled Overfitting

Hyperparameter Tuning

Cost Sensitive Training Algorithms

Picking a Dataset

- CICIDS2017 dataset contains **benign traffic** and the most up-to-date common **attacks**, which resembles the true real-world data (PCAPs)
 - The implemented attacks include Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet and DDoS
 - Monday, Normal Activity, 11.0G
 - Tuesday, attacks + Normal Activity, 11G
 - Wednesday, attacks + Normal Activity, 13G
 - Thursday, attacks + Normal Activity, 7.8G
 - Friday, attacks + Normal Activity, 8.3G

A Data Point

EC2 Environment Setup

Туре	vCPUs (i) +	Memory (GiB)	Network Performance (i) +	IPv6 Support
t3a.2xlarge	8	32	Up to 5 Gigabit	Yes

Data Preprocessing

First Actions

Picking a Performance Metric

How we Handled Overfitting

Hyperparameter Tuning

Cost Sensitive Training Algorithms

First Pipeline

Balance the Dataset

- ❖ Accuracy is misleading
- Many ML algorithms are designed to maximize overall accuracy
- We can confirm this from the previous slide:
 - LR ignores the minority class in favor of the majority class

- First thing we can do is to balance the dataset
 - > **Up-sampling** is the process of randomly duplicating observations from the minority class in order to reinforce its signal
 - There are several heuristics for doing so, but the most common way is to simply resample with replacement

Tuning the Pipeline

Worse than before, but more representative result

Data Preprocessing

First Actions

Picking a Performance Metric

How we Handled Overfitting

Hyperparameter Tuning

Cost Sensitive Training Algorithms

Switch to ROC AUC

How about measuring the performance of our ML models on the primary imbalanced dataset and on the latter balanced one, using ROC AUC

live its whole life believing it is stupid

If you judge a fish on its

ability to climb a tree, it will

ROC AUC behaves the same both for balanced / imbalanced classes and provides a more representative view of the model's performance

Random Forests For The Win

- One approach we considered is using tree-based algorithms
- Decision trees often perform well on imbalanced datasets because their hierarchical structure allows them to learn signals from both classes
- In modern applied machine learning, tree ensembles (Random Forests, Gradient Boosted Trees, etc.) almost always outperform decision trees, so we jumped right into those

```
clf_4 = RandomForestClassifier().fit(X, y)
prob_y_4 = clf_4.predict_proba(validation_features)
prob_y_4 = [p[1] for p in prob_y_4]
print( roc_auc_score(validation_labels, prob_y_4) )
97%
```


I think we are overfitting

Data Preprocessing

First Actions

Picking a Performance Metric

How we Handled Overfitting

Hyperparameter Tuning

Cost Sensitive Training Algorithms

How we prevented overfitting

- Cross-validation is a powerful preventative measure against overfitting
- Use your initial training data to generate multiple mini train-test splits
- Use these splits to tune your model.
- In standard k-fold cross-validation, we partition the data into k subsets, called folds
- Then, we iteratively train the algorithm on k-1 folds while using the remaining fold as the test set (called the "holdout fold").

How about CV scores on RF and LR

Data Preprocessing

First Actions

Picking a Performance Metric

How we Handled Overfitting

Hyperparameter Tuning

Cost Sensitive Training Algorithms

Why Hyperparameter Tuning (HPT)

- During the models' comparison we have applied **Hyperparameter Tuning** on both models (LR, RF)
- We seeked for the optimal configurations of each model, such that only the best instances would be compared

- Also combined the two models:
 - > Feature Selection using RF
 - Drop unimportant Features
 - LR on "important" Dataset
 - **>** ...
 - ➤ Didn't work

Data Preprocessing

First Actions

Picking a Performance Metric

How we Handled Overfitting

Hyperparameter Tuning

Cost Sensitive Training Algorithms

Why using Cost Sensitive Models

A popular algorithm for this technique is **Penalized-SVM**

We used penalized learning algorithms that increase the cost of classification mistakes on the minority class

During training, we can use the argument class_weight='balanced' to penalize mistakes on the minority class by an amount proportional to how under-represented it is

Running Support Vector Machines (SVM)

Data Preprocessing

First Actions

Picking a Performance Metric

How we Handled Overfitting

Hyperparameter Tuning

Cost Sensitive Training Algorithms

Take Away Messages

- ★ When using Machine Learning Models:
 - Balancing a Dataset can reinforce the signal of a minority class.
 - Picking a representative Performance Metric is crucial
 - Use Cross Validation to Prevent Overfitting

- Best model:
 - Cross Validated Random Forest on Upsampled Dataset with 100 Decision
 Trees
 - 84% Score on Validation Set
 - 84% Score on Test Set

Tools Used

Back-Up Slides

LR HPT

Parameters	Values	Action
solver	'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'	Algorithm to use in the optimization problem
penalty	'L1', 'L2'	Used to specify the norm used in the penalization
class_weight	'Balanced', None	Weights associated with classes
random_state	123, None	Pseudo random number generator seed when shuffling the data
multi_class	'ovr', 'multinomial'	If the option chosen is 'ovr', then a binary problem is fit
n_jobs	int, None	Number of CPU cores used

RF HPT

Parameters	Values	Action
n_estimators	int	The number of trees in the forest
criterion	ʻgini, ʻentropyʻ	The function to measure the quality of a split
bootstrap	boolean	If False, the whole dataset is used to build each tree
class_weight	'Balanced', None	Weights associated with classes
random_state	123, None	Random Seed
max_depth	int, None	Maximum depth of a tree
n_jobs	int, None	Number of CPU cores used

Running Stochastic Gradient Descent (SGD)

