8.

	Red die		White die		Green die	
Outcomes	3	6	2	5	1	4
Probability	5/6	1/6	3/6	3/6	1/6	5/6

- The 2×2 tables show pairs of dice.
- Each entry is the probability of seeing the pair of numbers corresponding to that entry.
- The color gives the winning die for that pair of numbers. (We use black instead of white when the white die wins.)

		Wł	nite	Green		
		2	5	1	4	
Red	3	15/36 3/36	15/36		25/36	
	6	3/36	3/36	1/36	5/36	
Green	1	3/36	3/36			
	4	15/36	15/36			

The three comparisons are:

$$P(\text{red beats white}) = 21/36 = 7/12$$

 $P(\text{white beats green}) = 21/36 = 7/12$
 $P(\text{green beats red}) = 25/36$

Thus: red is better than white is better than green is better than red.

There is no best die: the property of being 'better than' is non-transitive.