- 1. 数列 $a_n = 1/2n \ (n \ge 1)$ に対して、以下の問いに答えよ.
 - (a) $\varepsilon = 0.1$ に対して $|a_n| < \varepsilon$ を満たす n の条件を答えよ.
 - (b) $\varepsilon = 0.01$ に対して $|a_n| < \varepsilon$ を満たす n の条件を答えよ.
 - (c) 実数 ε (> 0) に対して $|a_n| < \varepsilon$ を満たす n の条件を答えよ.
 - (d) $\lim_{n\to\infty} a_n = 0$ を εN 論法に基づいて示せ.
- 2. 数列 $a_n = 1 1/n^2$ $(n \ge 1)$ に対して、以下の問いに答えよ.
 - (a) $\varepsilon = 0.1$ に対して $|a_n 1| < \varepsilon$ を満たす n の条件を答えよ.
 - (b) $\varepsilon = 0.01$ に対して $|a_n 1| < \varepsilon$ を満たす n の条件を答えよ.
 - (c) 実数 ε (> 0) に対して $|a_n-1|<\varepsilon$ を満たす n の条件を答えよ.
 - (d) $\lim_{n\to\infty} a_n = 1$ を εN 論法に基づいて示せ.
- 3. 漸化式 $a_{n+1}=\frac{1}{2}a_n+\frac{1}{2}, a_1=\frac{1}{2}$ で定まる数列 $\{a_n\}_{n\geq 1}$ に対して、以下の問いに答えよ.
 - (a) 数列 $\{a_n\}_{n\geq 1}$ は収束すると仮定する.このとき極限値 $\alpha=\lim_{n\to\infty}a_n$ を, $\lim_{n\to\infty}a_n=\lim_{n\to\infty}a_{n+1}$ であることを利用して求めよ.
 - (b) $|a_n-1|=\frac{1}{2}|a_{n-1}-1|$ $(n \ge 2)$ を証明せよ.
 - (c) $|a_n-1|=\frac{1}{2n}$ $(n \ge 1)$ を証明せよ.
 - (d) εN 論法に基づいて, $\lim_{n\to\infty} a_n = \alpha$ であることを証明せよ.
- 4. (\mathbb{R}^2,d) を距離空間とする. ただし, 距離関数 d はマンハッタン距離関数

$$d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, (\boldsymbol{x}, \boldsymbol{y}) \mapsto \sum_{i=1}^2 |x_i - y_i|$$

とする. このとき点列 $x_n = (1/n, 1+1/n^2)$ $(n \ge 1)$ の極限点は x = (0,1) であることを示せ.