Yellow

(1.) A 1500-kg tanker car going 5m/s to the right collides with a 1200-kg boxcar going 7m/s to the left. If they stick to each other after the collision, how fast and in what direction will they be going the instant after their collision?

10 Completely Inelastic Collision:

MAVAIX +MBVBIX = (MA+ MB/VZ)X

+ 15001g (SnB) + (1200g) (-7mb) = (2700g) Vex

- (a) $0.14 \, m/s$ to the left
- (b) $0.33 \, m/s$ to the left
- (c) 2m/s to the left
- (d) $5.88 \, m/s$ to the right
- (e) $5.97 \, m/s$ to the left

= 6.33mb, to left

(2.) What is the linear speed of a point 0.5 m from the center of a wheel that is spinning at 75 RPM?

(a) $37.5 m/s$ (b) $15.7 m/s$	(c) 3.93 m/s (d) $1.96 m/s$ (e) $1.31 r$	m/s	

(3.) A string is wrapped around a flywheel and attached to a large hook as shown. When released from rest, the hook falls down to the floor (with an increasing speed) causing the flywheel to rotate clockwise. What direction is the flywheel's angular acceleration?

Flywheel Robsting Clockwise, RHR 7 20 is & Hook increasing speed & wis Also increasing 2 2 2 is also &

(4.) A uniform thin rod of length $l = 1.50 \, m$ is free to rotate about one end with no friction. If it is horizontal when released from rest, what angular speed will it have at the $\theta = 30^{\circ}$ angle shown below? The moment of inertia for a thin rod rotated about one end is $I = \frac{1}{3}Ml^2$.

(a) $2.21 \, rad/s$

(b) $2.71 \, rad/s$

(c) $3.13 \, rad/s$

(d) $3.83 \, rad/s$

No friction & Gravity only force Dais

(e) $4.43 \, rad/s$

LOORK. Rotation & I Ito + my = \$Ilizano

Y. tyz = height of Center of gravity. Uniform road & &= 0.750

 $\frac{1}{\sqrt{2}} = 0.75 \text{ m} = 0.375 \text{ m}$ $\frac{1}{\sqrt{2}} = 0.375 \text{ m}$ $\frac{1}{\sqrt{2}} = 0.375 \text{ m}$

mg/= = = IUz2 = m(9.8m/s)(0.375m) = = = (\$ or (1.5m/2) WeL

+ WL= 3.13 rad/s

(5.) Two gears, B and D, are welded together and mounted on frictionless axle through their common center. A rope is wound around the edge of gear D. The other end of the rope is attached to a mass C which is free to fall towards the floor. Another gear A is in contact with B at its edge. If at the instant shown, the falling of mass C is causing gear D to rotate at 15 RPM, what is the angular speed of gear A?

BAND D LAMUST have SAME Anystar Speed of WB = ISRAM

A & B MUST have SAME lived Speed of WA TA = WB TB

- WA = WB TB = ISRAM (225mm) = ISRAM (3) = 45RAM

(6.) A hollow sphere rotated about its center has moment of Inertia, $I = \frac{2}{3}MR^2$. Which of the following expressions is the correct one for the kinetic energy of a hollow sphere that is rolling without slipping?

	The contract of the contract o
(a) $\frac{1}{3}Mv^2$ (b) $\frac{2}{3}Mv^2$ (c) $\frac{1}{2}Mv^2$ (d) $\frac{5}{3}Mv^2$	(e) $\frac{5}{6}Mv^2$

(7.) Shown below is a vaguely realistic model for the arm and bicep holding a can. The bicep is treated as a rope that pulls at an angle, which for a horizontal arm is 75°. Using this model, find how much force the bicep would have to exert in order to make the net torque about the elbow (point B) zero. Assume the hand is holding a 5.0-kg can while the arm itself has a mass of 1.5 kg. Note: the points G_1 and G_2 specify the center of gravity of the can and the arm respectively.

(8.) Stanley is standing on the edge of a merry-go-round that is rotating about its center with angular speed ω . If Stanley walks toward the center of the merry-go-round without slipping, which of the following will happen? **Hint:** The moment of inertia of the particle like Stanley is given by $M\ell^2$.

Conservation of Angelez momentur: LTOTA = LMGRT (stanty) = Constant

State / A particle = LStanty = mvr

AS r decreases As he walks to Center, his Angular

Momentum decreases = Merry-go-Rowo's Angular Momentum

Most Increase = 3pins faster

(9.) Two cars, $M_A = 1500 \, kg$ and $M_B = 2000 \, kg$, have a collision at the intersection of Central and University. Before the collision, car A was going east on Central while car B south on University. Measurements taken at the scene of the accident indicate that after the collision car A was going $16.6 \, m/s$ at the 40° angle shown. If car B was going $11.0 \, m/s$ at 30°, was either of the cars speeding before their collision? The speed limit on Central is $30 \, mph = 13.4 \, m/s$. For full points, your answer must include a correct numerical calculation.

X-Coponent: 15006 VAI = (15006)(16.60%)5...40°+ (20006)(11mb)6566°=350586.mb

Y-com: 2000y (-VBI) = (1500y)(-166/6) cos40°+ (2000y)(-VM) Su20°= -366756mb

BoTH we Speeding