AIR BAG FOR VEHICLE

Patent Number:

JP4292239

Publication date:

1992-10-16

Inventor(s):

ABE TATSUYUKI; others:

Applicant(s):

ASAHI CHEM IND CO LTD

Requested Patent:

☐ JP4292239

Application

JP19910056929 19910320

Priority Number(s):

IPC Classification:

B60R21/16

EC Classification:

Equivalents:

Abstract

PURPOSE:To reduce the capacity of an air bag available for an assistant driver's seat and rear seats as well as to simplify its manufacture.

CONSTITUTION:In this car air bag, a loop form is formed by two bag bodies 2, 3 and a clothlike material 4 whose both ends are connected to each other, while a piece of strip cloth 8 is wound on the circumference of a bag body cross section of the loop, and gas is jetted into the bag body from a gas generator, and when the bag body is inflated enough, the bag body is bent into two parts by means of the strip cloth, whereby the clothlike material is unfolded wide, and a plane is formed there, thus this plane surface is received by a rider, that is its main structure.

Data supplied from the esp@cenet database - I2

L+Ln. / /19 sangasast aam /aanaaaast /ahatraat90V-aa91 Cjan8 DND; 104909900 DN- 10490990 9009 /07 /16

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平4-292239

(43)公開日 平成4年(1992)10月16日

(51) Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

B60R 21/16

8309-3D

審査請求 未請求 請求項の数1(全 5 頁)

(21)出願番号

特顯平3-56929

(22)出願日

平成3年(1991)3月20日

(71)出願人 000000033

旭化成工業株式会社

大阪府大阪市北区堂島浜1丁目2番6号

(72)発明者 阿部 辰行

大阪府高槻市八丁畷町11番7号 旭化成工

業株式会社内

(72)発明者 米田 圭子

大阪府高槻市八丁畷町11番7号 旭化成工

業株式会社内

(74)代理人 弁理士 渡辺 一雄

(54)【発明の名称】 車輌用エアーバツグ

(57)【要約】

(修正有)

【目的】 助手席、後部座席用として用いられるエアー バッグの低容量化、製袋の簡素化を目的とする。

【構成】 袋体2,3とその両端部が連結された布帛状 物4とによりループ状を形成しており、上記ループの袋 体横断面の周囲に帯状布帛8が巻き付けられており、ガ ス発生器より袋体内にガスを噴出し、袋体が膨張したと き、上記帯状布帛によって袋体が2つに屈曲し、前記布 帛状物が展張され、平面が形成されて、上記平面が乗員 を受容する構造の車輌用エアーバッグ。

1

【特許請求の範囲】

【請求項1】 袋体の両端部が布帛状物で連結されてル ープ状に形成されたエアーバッグにおいて、上記、袋体 の横断面の周囲は帯状布帛が巻き付けられ、上記帯状布 帛によって拘束されており、展張したとき上記袋体が屈 曲形状であり、且つ袋体の一部にガス発生器取付け口が 設けられていることを特徴とする車輌用工アーバッグ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、乗物の乗員保護用のエ 10 アーバッグに関し、特に大容量の助手席、後部座席用の 車輌用工アーパッグに関するものである。

[0002]

【従来の技術】近年、各種交通機関、特に自動車の事故 に伴う人身障害防止のための乗員保護用安全装置として エアーパッグシステムが実用化され、これが自動車等に 装備されつつある。上記したエアーバッグシステムは自 動車の衝突を検知するセンサ、上記センサからの信号に よってエアーパッグを膨張させるインフレータ及び乗員 ている。

【0003】そして、エアーバッグシステムは、当初の 運転席から助手席、更には後部座席へと装備する部位が 広がりつつあり、このうち、助手席、後部座席用は対象 となる乗員が複数である場合が多く、エアーバッグシス テムの収納場所までの空間が広いことから、通常、運転 席用エアーパッグ容量の2~4倍程度の大きさのものが 必要となる。

【0004】そのため、前記の運転席用に比較して2~ 4倍程度の大きさのエアーバッグを膨張させるのに使用 30 されるインフレータもガス発生量が多い大型のものを必 要として、エアーバッグシステム全体の収納スペースが 大きくなるばかりでなく、重量増加に伴い燃費効率が低 下するなどの課題があった。更に、運転席用のエアーバ ッグでは二枚の布帛を同形状に裁断し、縫合あるいは接 着によって比較的簡単に製袋化(縫製)されていた。

【0005】しかし助手席及び後部座席用のエアーパッ グでは、空間が大きいため、エアーバッグ展張時のガス 発生器取付部分から乗員が衝突する面までの距離(以下 奥行きと称する)を運転席用のものよりも長くする必要 40 があり、また、その空間を埋めるための形状を複雑にし ている。そのため、前述の運転席用エアーバッグの製袋 化方法をそのまま適用することが困難であり、従来、製 袋化の段階で立体的な袋体に形成されている。立体的に 製袋化するのは、例えば、実開昭52-69743号公 報、実開昭48-31726号公報、実開昭49-42 636号公報にみられるように、かなりの労力と技術が 必要である。また、その他の提案として、実開昭49-84830号公報、実開昭48-110832号公報、

化と同時に満足できる奥行きをもたせるための技術の開 示があるが、かなり複雑な形状となり、製袋化が困難と いう点で課題を残している。

2

[0006]

【発明が解決しようとする課題】本発明は、低容量であ りながら、助手席、後部座席の空間を充満できる形状を 有し、しかも簡単な製袋化方法で製造できるエアーバッ グの提供を目的とするものである。

[0007]

【課題を解決するための手段】即ち、本発明のエアーバ ッグは、袋体の両端部が布帛状物で連結されてループ状 に形成されたエアーバッグにおいて、上記、袋体の横断 面の周囲は帯状布帛が巻き付けられ、上記帯状布帛によ って拘束されており、展張したとき上記袋体が屈曲形状 であり、且つ袋体の一部にガス発生器取付け口が設けら れていることを特徴とする車輌用工アーバッグである。

【0008】本発明の車輌用エアーバッグを図面に基づ いて説明する。図1は乗員側からみた取付時の展張した 状態を示す平面図であり、図2は乗員を受容する面に直 の衝撃エネルギーを吸収するエアーバッグから構成され 20 角に切断した断面図である。袋体(2、3)は乗員を受 容する部分の布帛状物(4)によって袋体の両端部 (5、6)が接合されており、ループ状に形成されてい る。袋体は帯状布帛(8)によって、ガス発生器取付け 口(1)のところで袋体を縦に絞られて2分しており、 つまり、ガス発生器取付け口を基点にして、袋体の縦方 向に帯状布帛を巻き付けた格好になっている。従って、 膨張した際、帯状布帛の取付け部分に沿って折れ曲が り、屈曲形状が発生するようになっている。

> 【0009】また、図3は乗員側よりみた側面図で前記 図1の布帛状物に相当する部分の乗員受容面を表わして いる。図4は乗員側からと逆のフロントガラス越しにみ た状態を示す斜視図で取付け口を基点に巻きつけた帯状 布帛(両端8(a)8(b)で接合されている)の接 合、束縛構造を示す。図5は製袋してからループ状とす る前の布帛状物が接合していない状態を示す斜視図であ る。

> 【0010】本発明のエアーバッグは袋体の形成と布帛 状物による袋体の両端部の連結の態様は次のようになっ ている。図5に示すように袋体は巾が同じで長さを異に する長方形の二枚の布帛の一端(5)を揃えて重ね合 せ、重ね合わされない長い方の布帛部分(4)を残し て、上記の重ね合せた二枚の布帛の周辺部を接合 (9) して成形されている。上記重ね合わされない一枚の布帛 状物(4)の端部(7)を袋体の他方の端部(6)と接 合することによってループ状とされている。

【0011】 更に、上記袋体の中央部は巾細の帯状布帛 (8) が巻き付けられて絞られ、狭められている。ルー プ状とは製袋過程において袋体と一枚の布帛状物とがつ ながり輪になっているものをいう。体内にガス発生器取 特開昭 4.7-3.0.0.4.5 号公報にみられるように低容量 50 付け口 1 よりガスが導入されると、袋体は両端を連結す る布帛状物及び帯状布帛によって束縛されているので、この束縛部で2分化して折れ曲がり屈曲形状となる。この時、前記の布帛状物は袋体を屈曲させる束縛力により引張られてフラットに拡張し、この拡張した布帛状物が乗員を受容するための好適なクッションとなるものである。

【0012】本発明の車輌用エアーバッグは上述した構成よりなるものであり、自動車等の事故発生時にガス発生器取付け口よりガスを袋体内に導入して上記袋体を展張させ、上記袋体の両端を連結している布帛状物及び帯 10 状布帛の存在により上記の袋体を屈曲させることができる。この屈曲部の発現により袋体の低容量化が可能となり、人体受容面である布帛状物のフラットな面が良好に得られるものである。

【0013】また、袋体の形成と布帛状物による袋体の 両端部の連結は一枚の布帛を折り重ね、その折り重ね部 分が袋体とされ、それ以外の部分、すなわち折り重ねら れない部分が設けられて、その折り重ねられない部分が 布帛状物とされたものでもよい。また、同形の二枚の布 帛によって袋体形成されており、その両端が布帛状物で 20 接合されたものでもよい。

【0014】更にまた、袋体を特殊な形状とするときも 二枚の同一形状のものの周辺部を接合すれば袋体は容易 に得られるものであり、従来の実用品では、複雑で手間 のかゝる立体縫いが余儀なくされているが、本発明の車 輌用エアーバッグでは平面縫いが可能であり、製袋化は 極めて容易である。さらに、帯状布帛の取り付けは、袋体及びガス発生器取付け口を作成後であれば、袋体の周囲にかけて、ガス発生器取付け口のところで接合されればよく、容易に取り付けられる。好ましくは、もう1ヶ所以上接合点が設けられれば、帯状布帛はさらに固定される。

【0015】また、帯状布帛の長さは、取り付けた袋体の周囲の長さによって、適度に調整することが好ましく、袋体膨張後の屈曲部の高さ、形状を拘束しガス容量をコントロールしたり、乗員に対して必要以上の飛び出し(いわゆるノックアウト現象)を防止するため、乗員の方向に展開する長さを確実にコントロールすることが好ましい。

【0016】しかし、帯状布帛が極端に短いと、ガス発 40 生器より噴出するガスの導入性が悪くなる。帯状布帛が長いと、ガス導入のスペースが広くなり、そのため、ガス導入性がスムーズになり、屈曲部の破損が少なく屈曲部のふくらみが大きいので、人体衝突時のエネルギーの吸収性が高い、といった効果が発現する。長すぎると袋体の内部容積が大きくなり好ましくない。適度の長さを持たせ調節することが好ましい。帯状布帛の巾は特に制限されない。

【0017】本発明の車輌用エアーバッグの袋体及び布 帛状物で作られるフラッ 帛状物の形状は、四角、三角形等の多角形、円、楕円形 50 せることが可能となる。

等があるが、展張したとき局部的に屈曲することができるループ形状が得られ、人体受容面が形成される形状であれば、特に制限されるものではない。また、本発明における接合の方法は、縫合、接着剤による接着、布帛同士の溶融接着、製織及び製編と同時に袋体の外周部を接合、あるいはこれらの方法を併用することもある。

【0018】本発明の袋体と布帛状物とで構成されたエアーバッグを車輌等へ取付ける位置は、ガス発生器取付け口の位置、あるいは袋体、布帛状物の形状を適宜変化させることにより、天井、インストルメントパネル上部、前部、下部、後部座席のいずれにも可能である。本発明の車輌用エアーバッグに用いる袋体部の素材の通気性は、特に限定されない。袋体を不通気性にし、ガスを封入して外部へリークさせなくても人体受容面を形成する布帛状物が適度な緩衝効果を示すものであり、逆に、袋体を通気性としても、袋体自体が緩衝効果をもたらすため、目的に応じて適宜選定すればよい。

【0019】本発明の車輌用エアーバッグに用いる布帛は、袋体部及び布帛状物の作成、バッグの展張性、力学的特性、耐久性及び乗員の衝突・エネルギーの吸収性等を満足するものであればよく、編物、織物、不織布、フィルム等及びこれらの複合体より適宜選定すればよい。また、これらの布帛を構成する糸条物は、溶融紡糸、乾式紡糸、湿式紡糸等から得られた化学繊維、無機繊維等があげられ、これらを単独あるいは組合せて使用してよい。

【0020】本発明の車輌用エアーバッグは、袋体の両端部が布帛状物で連結されたループ状物なので、自動車等の事故発生時に袋体に設けられたガス発生器取付け口よりガスが袋体内に噴出して袋体中に充満したとき、膨張した袋体は前記した袋体の両端部か布帛状物によって連結されているので束縛されて屈曲する。また、膨張の際、前記袋体は中央付近のガス発生器取付け口周囲に帯状布帛が巻き付けられているので、膨張が拘束されることになり、この帯状布帛の部分で屈曲させられる。そして、袋体の両端部を連結した布帛状物が乗員を受容するための部分に使用されれば、好適なクッションとなると同時に、フラットな面を形成するので受容面積が拡くとれる。

【0021】さらに、袋体の素材が通気性で全面基布排気型のエアーバッグの場合袋体部で乗員を受容しないために、ガス発生器からの熱ガスが、直接顔面等にかかることがない。また、本発明のエアーバッグは前記したように屈曲することによって、袋体部を低容量化することができる。帯状布帛をガス発生器の取付け口に接合させその屈曲形状を形成させることにより、その附近の補強効果も発現する。また、帯状布帛の巻き付け位置を変えることにより、全体の外観形状及び人体受容面となる布帛状物で作られるフラットな面と乗員との角度を変化させることが可能となる。

5

[0022]

【実施例】以下、実施例により詳細に説明する。なお、エアーバッグの容量の測定は次の方法によって行った。接合部からの漏れが無いようにシールしたエアーバッグを水槽に沈め、ガス発生器取付け口から内部に注水し、水柱500mm時での流入水量(リットル)を求め、エアーバッグの容量とした。

[0023]

【0024】得られたコーティング布を巾70cm、長さ350cmの長方形布帛に裁断し、長さ方向に140cmのところで折り曲げて重ね合わせ、重ねた布帛が2重になった140cmの部分の外周を縫合し、袋体部(2、3)とした。次に、2重に重なっていない巾70cm、長さ70cmの残っている部分を布帛状物(4)(乗員受容面)とし、この布帛状物の端(7)の巾方向の線と、袋状部を形成する一辺で、当初二重に折り曲げた部分(6)の線とを接合した。このようにして、コーティング布を袋状部と一枚の布帛から構成されたループ状布帛とした。

【0025】次に、袋体の対角線の交点のルーブ状の外側部分に片面のみにガス発生器取付け口用の穴(1)を 乗員を受容 開設し、その穴の中心を通って袋状部(2、3)の巾方向の線に沿って長さ80cm、巾5cmの袋状布帛 (8)を巻き付けて、帯状布帛の端(8(a)8 (b))をガス発生器取付け口のところで縫合した。展 30 みた斜視図。 張の奥行きは63cm、巾が68cm、高さが63c [図5]ルーの結合を外間では (205)ルーの結合を外間では (205)ルーの結合を外間では (205)ルーの結合を外間では (205)ルーのは (205)ループ (205)

[0026]

【比較例1】現在、実用化されている円筒状を有するエアーバッグ、展張時のサイズは奥行きが63cm、巾が66cm、高さが61cmで、容量は200リットルであった。このように本発明の車輌用エアーバッグは従来のものに比較して容量が少なくても同一の奥行きが得られる。

[0027]

【表1】

実施例 1 比較例 1 容 量 (2) 130 200 異行き (c m) 63 63

6

[0028]

【発明の効果】本発明に係るエアーバッグは低容量でありながら充分な奥行きをもたせることができ、助手席、後部座席用として好適である。更に複雑な立体接合がなく、平面接合が可能であるため、製袋化が簡単である。また、ガス発生器を袋体へ取付ける位置を変えることで、乗員の衝突部を適宜選定することができ、装着部においても、インストルメントパネルの上部、前部、下部、後部座席いずれも適応可能である。さらに、乗員を受容する部分が、袋体以外の布帛状部分であり、フラットな面が出るため、受容面積が広いうえ、熱ガスが直接、顔面等にかからないため、人体へのダメージも少ない。

【図面の簡単な説明】

【図1】取付け状態で展張したエアーバッグを真上から みた平面図。

【図2】取付け状態で展張した車輌用エアーバッグを、 乗員を受容する面に直角に(ガス発生器取付ロで水平 に)切断した平面の断面図。

【図3】乗員を受容する側の側面図。

【図4】乗員を受容する側と逆のフロントガラス側から みた斜視図。

【図5】ループ状に結合されたエアーバッグの布帛状物の結合を外した状態を示す斜視図。

【符号の説明】

1 : ガス発生器取付け口

2、3:袋体

4 : 布帛状物

5、6:袋体の両端部

: 布帛状物の端部

8 : 帯状布帛

40 8 (a) 、8 (b) : 帯状布帛接合末端

9 : 縫い目

[図1]

【図3】

[図4]

【図2】

【図5】

