Foundation Algebra for Physical Sciences & Engineering

CELEN036

Practice Problems SET-8 Sample Solution

Type 1: Expansion using the Binomial theorem with
$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

2. Expand the following expressions using the Binomial theorem: $(v) (4-3x)^4$

Solution:

$$(4-3x)^4 = 4^4 \cdot (-3x)^0 \cdot {4 \choose 4} + 4^3 \cdot (-3x)^1 \cdot {4 \choose 3} + 4^2 \cdot (-3x)^2 \cdot {4 \choose 2}$$
$$+4^1 \cdot (-3x)^3 \cdot {4 \choose 1} + 4^0 \cdot (-3x)^4 \cdot {4 \choose 0}$$
$$= 256 - 768x + 864x^2 - 432x^3 + 81x^4$$

Type 2: To find the coefficient of certain term in the expansion \boldsymbol{x}

7. Find the coefficient of x^3 in the expansion of $\left(2x - \frac{1}{3x}\right)^9$.

Solution:

The formula for term k + 1 in binomial expansion $(a+b)^n$: $T_{k+1} = a^k \cdot b^{n-k} \cdot \binom{n}{k}$

$$\therefore a = 2x, \ b = (-\frac{1}{3} \cdot x^{-1}), \ n = 9$$

Substitute above in term $\mathbf{k}+1$ formula: $T_{k+1}=(2x)^k\cdot(-\frac{1}{3}\cdot x^{-1})^{9-k}\cdot\begin{pmatrix} 9\\k \end{pmatrix}=2^k\cdot(-\frac{1}{3})^{9-k}\cdot\begin{pmatrix} 9\\k \end{pmatrix}\cdot x^{2k-9}$

As we are looking for term x^3 therefore $x^{2k-9}=x^3 \implies 2k-9=3 \implies k=6$

Therefore the coefficient of term x^3 is the seventh term T_7 with k=6 is $2^6\cdot (-\frac{1}{3})^{9-6}\cdot \begin{pmatrix} 9\\6 \end{pmatrix}=-\frac{1792}{9}$

Type 3: Application of the generalized Binomial theorems

20. The radius of a sphere is measured as r, with an error of $\delta r=1.2\%$ of r. The volume of the sphere $V=\frac{4}{3}\pi r^3$ is then calculated using the measured r. Use the approximation $(1+x)^n\approx 1+nx+\frac{n(n-1)}{2}\cdot x^2$ to find the resulting error δV in the calculated volume.

Solution:

$$V + \delta V \qquad = \frac{4}{3}\pi(r + \delta r)^3$$

As
$$\delta r = 0.012r$$

$$V + \delta V = \frac{4}{3}\pi(r + 0.012r)^3 = \frac{4}{3}\pi r^3(1 + 0.012)^3 = V \cdot (1 + 0.012)^3$$

Now use generalised binomial expansion to find the approximation of $(1+0.012)^3$

$$(1+0.012)^3 \approx 1+3 \times 0.012 + \frac{3 \times (3-1)}{2} \times 0.012^2$$

$$= 1.0364$$

$$V + \delta V = 1.0364V$$

$$\delta V = 0.0364V$$

Therefore the error δv is 3.64% of volume