ResearchGate

High Grade Ferromanganese from Spent Primary Batteries

 $See \ discussions, stats, and \ author \ profiles \ for \ this \ publication \ at: \ https://www.researchgate.net/publication/321314904$

Poster · September 2005 DOI: 10.13140/RG.2.2.27313.48486

3 authors, including:

Ricardo Sanchez
Nueva Granada Military University
32 PUBLICATIONS 545 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Short term results of gastric bypass with short alimentary limb View project

Project Sustainable Recycling Concept: Efficient Melting View project

READS
33

Bernd Friedrich
RWTH Aachen University
635 PUBLICATIONS 2,046 CITATIONS

SEE PROFILE

High Grade FeMn from Spent Primary Batteries

• The new directive for battery recycling (draft 11/2003) demands for primary batteries a minimum recycling rate of 55 %

Aims of the research project at IME, Aachen

- Producing a > 50 % high manganese-FeMn
- Safeguard a recovery yield higher than 50 %
- Investigation of the feasibility of a metal condenser process attached to DC-EAF

- A metallic premelt was used. In series 1 the manganese content is diluted to 26 % due to the added steel scrap
- In series 2 FeMn simulating the residue of continuous process after tapping worked very well as premelt. The Mn content in FeMn is about two times higher compared to series 1

Fig.4 Results of the pilot plant trials at IME, Aachen

Fig. 1 Consumption of primary batteries in Germany

Table 1. Chemical composition of potentially recycable materials in spent primary batteries

Battery system	MnO ₂ [w%]	Z n [w%]	Fe [w%]	C [w%]
Alkaline	32-40	15-19	20-25	4
Zn-C	23-27	20-24	15-20	8

Fig. 3 Treatment of primary batteries in a DC-EAF with hollow electrode

Conclusions

- According to the results, the DC-EAF serves good possibilities to produce FeMn from spent primary batteries. However a further development of the slag system will give important additional information to improve the efficiency of the process
- Zn was won in oxidic form because it was not feasible at this stage of development to install a Zn-condenser

Contact: Ricardo Sanchez Rsanchez@ime-aachen.de IME-Metallurgische Prozesstechnik und Metallrecycling/RWTH Aachen Tel. 49 (0) 241 80 95 190

