システム ソフトウェア 持論 試験予想問題 ■ 逢何 OS (1)マルチプロセッサのアーキテクチャをメモリアーキテクチャの観点から分類し、その各マにつ いて、OSが考慮しなければならない問題を述べす。 · UMA型 どのプロセッサにどのプロセスを割り合てるかというスケジュールの問題が ある.また、各70ロセッサが共有しているデータの一量性を壊せないようにすると いう問題がある. ・・NUMA型(ガューベルメモリあり) 上記のUMA型の問題に加え、ローカルXモリ間のデータの物動の問題. がある。 · NUMA型(でしったにメモリかし) 上記の問題に加え、プローバルメモリが存在しないため、各プロセッサの共有 データをごのメモリに配置するかという問題や、OS本体をどのメモリに配置するか といった問題がある。 · NORMA型. 上記のUMA型, NUMA型の問題に加え、他のプロセックを通さないと 読めないデータの処理をざからにするかという問題がある。 (2)なーネルデータ構造の統一性について、下記の問題に答えよ、対象マシンは、単一プロセッ サシステム・とする。 1)とのような場合に、統一性が壊れる可能性があるか、 ・スケシューリングによるコンテキストスイッチを割り入みによる強制的なプロセッサ 放棄す入出力要求を出した場合など自然的なつのロセッサ放棄でいった。つかの りを放棄した場合に統一性が壊れる可能性がある。 2) また、その契機を分類し、各々の場合への対処がまを示せ、 ・スケミューリングによる コンテキストスイッチ ユーザを行もードではコニテキストの保存で対処し、カーネル歩行もード では、コンテキストスイッチを禁止する

·割山み

割込みハニドラスのデータはベースレベルカーネルコードが、アクセスレ、ベースレベルカーネルコード実行中には、割込み禁止にする。

·自餐的故棄

ファイルアクセスの排他制御を行う..

- (3)共有×モリ型マルチプロセッサでのOSの実装方法を分類し、各々の方式について、実現性能の観点から利点、欠点を述がよ。
 - ・国定マスタスレープ方式

単一プロセッサ用の論理が適用できるため実装が窓易であるという利点があるが、 性能面で MP が ボトルネックになるという欠点が存在する。

・浮動マスタスレーで方画。

ユーザーカーネル間の7°ロセッサ間移動がないという利点があるが、モードがでなり、替めるとき、キャッシュが破壊されるため、キャッシュを活用できないという欠点がある。

・機能コードロック方式

・OSの要素を機能分割し、並列に実行することができるか"、デットロックが発生する可能性があり、きな人とその対力をしかければならないという欠点がある。

・データロックカボ

データ構造にロックをかける方式で、並列実行できる可能性は大きいという利点があるが、データ抽象型、オブニント指向設計であり、既存の5の再構築が必要と今をため、実装が比較的困難であるという欠点がある。

■ 70セス管理とスケシューリュア"

(1) 共有メモリ型マルチプロセッサにおいて、(初期の)UNIXを実装したとする、本UNIXでは、 1つの仮想アドレス室間と1つのコンテクストを一体化ませたUNIXプロセスのみを ユーザに提供しているとする。この環境において、並列処理の軽生の観点から、問題 点をはぶよ、また、軽い並列処理環境を提室し、その利点、欠点を述ぶよ

並列欠理において、並列別理はせたいでいているというして、データを共有させたり場合がある。しかしながらUNIXでのセスでは、1つの仮想アドレス空間しか特にないため、プロセス間通信を用いることで、データを共有することになるが、このでのセス間通信の処理は、重たい、そのため、並列別理がモデータ共有に時間を要してしまうという問題がある。ここでスレッドという、1つの仮想アドレスを他のスレッドと共有し、因有のコンティストを持つものを考える。スレッドは仮想アドレス定間を共有しているため、スレッド問通信は高速で行うことができ、軽い並列又理が実現で生るという利点がある。しかしながら、スレッドの提供方法により、実装の困難性に性能が不定はあるこう欠点がある。

(2) スレッドモデルを 3つまげ、説明せよ、また、各々のモデルの利点,欠点を述べよ。

・カーネルレベルスレッドモデル

OSのカーネルが、ストッドを提供するモデルである、仮想プロセッサが、ストッドとなる、ユーザアフテ, ピティの拳動が把握しやすいという利点があるが、以下の3つの欠点が存在する。1つ目は、アフティピティの標作がミステムコールであるため、高い性能を引き出せないという点。2つ目は、柔軟性に欠けるという点。3つ目は、よりかくのストッドモデルを包含しているため、オーバースペックになりやすいという点である。

・ユーザレベルスしゅだモデル

ユーザ空間でスレッド主成を治滅などの管理を行うもずれて、ある。ユーザ空間で実現しているため、スレット、特作を関数呼が出し程度の虚度で行うことができ、連れという利点がある。しかしなから、仮想プロセッサのマッセング状況が把握できなり、仮想プロセッサのプロックが発生するといった欠点が存在な、話、仮想プロセッサの複取りによる弊害により、実行可能スレッドが実行できない、スレッドの同時実行が保証できないという問題が発生する欠点がある。

圆同期楼楼

(1)キャッシュが装備されている共有メモリ型において、単にテストアンドセット命令を用いたスピンロックでは、スピードの観点から効率が悪い。かぜか? その理由を述べよ

7°ロセッサが デストアンドセット今々と実行したこま、変数 lock への事さ込みが、行なられ、他の 7°ロセッサのキャッシュから、車を戻しを行った後にキャッシン7"を行り、さらに無効なのできるがいてを流れるというとのンホー現象が起る、これによってバストラフィックが増かし、、処理のスとードがあるるため、効率が悪り、

(2)共有メモリ型マルチプロセッサに むいて、スピンロックを用いたアルゴリスでを3つあげ、説明せよ。また、各マのアルゴリズムの利点、欠点を述べよ.

・ススーピンプロック方式

ロック変数のリードのみを行り、ロック獲得の可能性があるときのみテストアンドロック
今を行う方式である。本立みがないため、コヒーレンス制御の必要がないパストラフィックの無駄な増か付起らないという利点がある。しかし、ロック解除、時に、待っていた
でロセックにする、パースト的なテストアンドロック今今のアクセスが発生してしまるという
欠点を持つ

・街東回避ロックカイ

上記のスマーヒーンプロック方式にかいて、ロック解除時のハースト的アクセスを回避するため、ロック解除後のテストアンドセット命令までに退延を挿入する方式である。スマーセングロック方式の利点はそのままに、スマーセンプロック方式の欠点を持っていないという利益がある。

・トーナメニトロック方式

上記のスマーピンプロック方式において、ロック獲得の順序をトーナメント方式であらかしめ 決めておく方式である。これも、スマーピングロック方式における、パースト的アクセスを除けることができるここう利点がある。

2 1	_
IV	

(3)パリア同期において、次の問いに答える。
1) 別紙に示すアルゴリズム丁は正しいか、正しくないか証明せよ、このとき、パリア同期は、
次の2つを満た生なければならないとする。
・バリア同期の働きをする(足透みをそろえる)
・再初期た問題に対処している。
非、プロセッサerに関して何の制限をないとする。アルコップスンT内の各プロックは
むろ人 , 7リティヤルセクション である
カウニアの初期での際に、プロセッサの鑑取りなどで cocunt がoにはないける、別の
プロセッサが、西心、バリア同期の部分に到達してしまうと、count=Nのままなので、バリア
同期を書通りしてしまり、パリア同期の倒さとしない。 たてこの アルゴリズムては 正しぐ
चैन्द्र।
2)パリア同期を求いる具体的を示せ、
配列の計算で'
Bli] = Aling+Aling
C-[4] = B [4+1] + B[4-1]
を 7'ロセッサ 1, 2, 3 が、 下れ智久、 0~29、 30~59、 60~49 の要案の計算を作うさする。
このでき、この計算を行う前にBの計算が、すかで終アしていないといけないので、
8とこの計覧の間に パリア同期を用いる。
(4)共有メモリ型マルチプロセッサにおいて、パリア同期のアルゴリズムを3つあげ、説明でよ。また冬々
のアルゴリズムの利点、大点を述べよ
CSSD

Ю.	

	. (')
(4)マルチプロセッサのスケシューリングについて、老底すべ	よべ、本当、意理問告
マルチプロをいけであるから、プロセス問う同期に	
=7"のオーハ"ハッド"を考慮しなければ"ならなり、ま	
メモリアワセスの オーパムッドも老底 cなければな	Sなり、軍-プロセッサでは考慮して
いない プロセス(スレッド)の指調動作を考慮し	おければできなけ、
(5) コスケジューリング (Coscheduling) E 説明し, 実	現方法を示せ、
·	
	
	· · · · · · · · · · · · · · · · · · ·
	
	•
	•
-	

		No.		
•	•	•	()

・協調型コーザレベルスレッドモデル

ユーザレベルスレッドモデルにおいて、カーネルに根想つのセッサのマッピング状況を ユーザ空間に通知するシステムコールを追加したモデルである。カーネルレベルスレッド モデルの複能性とユーザレベルスレッドモデルの柔軟性の2つの長所をもつという 割点があるが、カーネルの再構築に多大な労力がかかるという欠点がある。

- was

ලුණුම

園リアルダイムスケニューリング
(1) 優先度国定のスケジューリングの中で、レートモノトニックスケジューリング(Rate Monotonic Sche-
duling)は最適なスケニューリンである。その根拠を示せ、
「周期の長いタスクの優先度を高くしてスケジューリーグしたものか"スケジューリュク"可能で"
ありは、レートモノトニックスケミューリングでも必ずスケシューリニア"可能である」ということ
か、証明できる。
(2) 2つの周期タスク P1, P2のタスクセットを考える. ここで、P1=(3,5), P2=(2,7)とする.1回し,
(実行時間,周期)。このとき、このタスクセットに関して、次のリアルタイムスケニューリングで、スケニュー
ル可能が否かを判定でよ、また、スケニュールの時間的推移を示せ、
1) レートモノトニックスタニュール
$U = \frac{3}{5} + \frac{2}{7} = \frac{215 + 14}{135} = \frac{29}{35} = 0.8285 < 0.83$
よってスケミュール可能
11/16 11/16
2) EDF 27=12-1)=7" (Earliest Deadline First Scheduling)
$U = \frac{2}{5} + \frac{2}{7} = \frac{27}{5} < 1$
よってスケジュール可能
11/1/2 11/1/2 11/1/2 11/1/2 11/1/2

		•	•	•		•	٠			
	-			•	•		•		· No.	
	·	·						• • •	• (<u> </u>
										•
				:			•			•
B v :	とり管理	• • •	••••		· · · ·					
		业 7生, ¬ .	. z # z v	' = 11 4 11 = '	4 -0-		= .4	851 44 .		
(1,						ピックにる	いて、次の	が残りに関い	. F	
· ·	1) + + = = = = = = = = = = = = = = = = =	ユヒーレン	ス同型と	<u> </u>			1		·	
	<u>^}27</u>	0 E+, 7 0 -	トッシュとう	米何メモリー	割で、デ-	タの一部	生 的" 捷久	てしすう可能	<u>性がある</u>	<u>≥113</u>
	問題						•	-		
				·	·				•	
	2)キャッシュ	コヒーレン	ス問題を	- 解決する	方法を分	う類して、	その方言	まを列挙し	祭々の方	:本'の
	. <u>ग्रे.ह</u> ि.	欠点飞进	N. f.							-
				·	·	•				•
······································				•	<u> </u>				·	
-	•				•.			,	·	
	•		•						· · · · · · · · · · · · · · · · · · ·	
				•						
			****	•		• .	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
		,	·		•		······			• .
			· · · · · · · · · · · · · · · · · · · 				·.			
		·			••••		•	•		·····
				·		_		<u> </u>		
	····	•								
	.:									
							•			
					· ·					, -
					· · · · · · · · · · · · · · · · · · ·		•		·	
	•		·							L
· , · · · · · ·					· · · · · · · · · · · · · · · · · · ·				•	
	· · · · · · · · · · · · · · · · · · ·				·					
					···					
-	•									· :
· · ·					· 					
							•	•		·
				.	•					
		•			•		•	· ·	•	
			<u> </u>					·····		

No.		
	 •	乛

,	システムの概論	** * · _ /\
1) 組火	シみシステムを、自分なりに分類を	曲を考えて, か殺でも.
- 段		携帯電対
和印	· 🛣	要は、3 ・ カーナビ
	• ਜੋਪ	以 bvD 款首·娱采楼器
-		10人用情報棋器
	: 決備機器 - コンピー	- 7 <u>周边</u> · 0A 核名
•	交換	大将、 当
		· 医痉微器
	連絡 建設機器	1
産業	·工業制御·FA機管、産業機器	· · · · · · · · · · · · · · · · · · ·
钞用.	・自動車用ソフトウェア(エンジニ制件)	
		Jith Annuary 1
	划御中心	情報观理中心
(2) 1) 7:	を 対称やい ルタイムシステム に おいて、タスクセ	がデルドラインを守れなか。た場合に当該システムに どのよう
(2) ¹) 7:	を 対称やい ルタイムシステム に おいて、タスクセ	
(2) リア: 影響	************************************	がデッドラインを守れなか。た場合に当該システムに どのよう ムシステムを分類し, 冬々の 例を示せ。
(2) リア: 影響 ·	************************************	が デ!, ドラインを守れなか。た場合に当該システA に どのよう Aシステムを分類し, 各々の 例を示せ。 の
(2) リア: 影響 ·	************************************	が デ!, ドラインを守れなか。た場合に当該システA に どのよう Aシステムを分類し, 各々の 例を示せ。 の
(2)リア:影響	************************************	がデッドラインを守れなか。た場合に当該システムに どのよう ムシステムを分類し, 冬々の 例を示せ。 の b X ラ
(2)リア:影響	************************************	がデッドラインを守れなか。た場合に当該システムに どのよう ムシステムを分類し, 冬々の 例を示せ。 の b X ラ
(2) リア:	対称中心 ルタイムシステムにおいて、タスケイがあるかの観点から、リアルタイ システム人の致命的な影響のないも 選挙電話、建帯'DVDピデオリ システム人致命的な影響のあるとい エ書知的	がデッドラインを守れなか。た場合に当該システムに どのよう ムシステムを分類し, 冬々の 削を示せ。 の b X ラ
(2) リア:	対称中心 ルタイムシステムにおいて、タスケイがあるかの観点から、リアルタイ システム人の致命的な影響のないも 選挙電話、様常DVDビデオリ システム人致命的な影響のあるとい 工業知知	がデッドラインを守れなか。た場合に当該システムに どのよう ムシステムを分類し, 冬々の 削を示せ。 の b X ラ
(2) リア:	対称中心 ルタイムシステムにおいて、タスケイがあるかの観点から、リアルタイ システム人の致命的な影響のないも 港帯電話、構帯DVDピラオリ システム人致命的な影響のあるとい 工業別的 システム人の致命的な影響のあるとい 工業別的 システム人の致命的な影響がそのお	がデッドラインを守れなか。た場合に当該システムに どのよう ムシステムを分類し, 冬々の 削を示せ。 の b X ラ
(2) リア:	対称中心 ルタイムシステムにおいて、タスケイがあるかの観点から、リアルタイ システム人の致命的な影響のないも 選挙電話、様常DVDビデオリ システム人致命的な影響のあるとい 工業知知	がデッドラインを守れなか。た場合に当該システムに どのよう ムシステムを分類し, 冬々の 削を示せ。 の b X ラ
(2) リア:	対称中心 ルタイムシステムにおいて、タスケイがあるかの観点から、リアルタイ システム人の致命的な影響のないも 港帯電話、構帯DVDピラオリ システム人致命的な影響のあるとい 工業別的 システム人の致命的な影響のあるとい 工業別的 システム人の致命的な影響がそのお	がデッドラインを守れなか。た場合に当該システムに どのよう Aシステムを分類し, 各々の 削を示せ。 の b X ラ