RESUMEN 5.3

• Una combinación lineal de los vectores $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ es un espacio vectorial V es la suma de la forma

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_n \mathbf{v}_n$$

donde $\alpha_1, \alpha_2, \ldots, \alpha_n$ son escalares.

- Se dice que los vectores $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ en un espacio vectorial V generan a V si todo vector en Vse puede expresar como una combinación lineal de v_1, v_2, \ldots, v_n
- El espacio generado por un conjunto de vectores $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ en un espacio vectorial V es el conjunto de combinaciones lineales de $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$
- gen $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ es un subespacio de V.

AUTOEVALUACIÓN 5.3

I) ¿Cuáles de los siguientes pares de vectores no pueden generar a \mathbb{R}^2 ?

a)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} -3 \\ -3 \end{pmatrix}$

b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$

b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ **c)** $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$

d)
$$\begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$d) \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad e) \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

II) ¿Cuáles de los siguientes conjuntos de polinomios generan a \mathbb{P}_2 ?

a)
$$1, x^2$$

b) 3,
$$2x$$
, $-x^2$

c)
$$1 + x$$
, $2 + 2x$, x^2

d)
$$1, 1 + x, 1 + x^2$$

Indique si los siguientes enunciados son falsos o verdaderos.

III)
$$\begin{pmatrix} 3 \\ 5 \end{pmatrix}$$
 está en el espacio generado por $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\}$.

IV)
$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 está en el espacio generado por $\left\{ \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix} \right\}$.

V)
$$\{1, x, x^2, x^3, \dots, x^{10\ 000}\}$$
 genera a P .

VI)
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
 genera a M_{22} .

VII) gen
$$\left\{ \begin{pmatrix} 1\\2\\-1\\3 \end{pmatrix}, \begin{pmatrix} 7\\1\\0\\4 \end{pmatrix}, \begin{pmatrix} -8\\0\\8\\2 \end{pmatrix} \right\}$$
 es un subespacio de \mathbb{R}^3 .