

Word Based Text Parser and Route Extractor for Chemistry Abstracts Yannan Yuan, Langkun Chen, Runbo Jiang

University of Pittsburgh

Objective

Our goal is to build a model to parse and extract | • information from scientific articles of chemistry which is related to synthesis.

- The model will predict the categories of words in text, such as reactants, products, solvents, conditions, numbers, and units in a synthesis process, then extract this information to directly show the synthesis process.
- Work pipeline: data retrieval → paragraph classification → word labeling and modeling → word extraction.

Text Data Preprocessing

- APIs were used to obtain a large amount of abstracts (>10000) from Elsevier.
- A simple paragraph classifier was trained to get the abstracts that are related to chemical synthesis exclusively.
- In feature engineering, 152 features for each paragraph were created, where 100 features were word count

features, 52 features we and length of paragraph.

Support Vector Machine was used to train the classifier, which gave 0.99 and 0.97 AUC scores on training and test set respectively.

Apply the well-trained classifier to larger data to get more synthesis abstracts as our further samples.

Feature Engineering

- Tokenize the paragraphs to get words as samples and label all words by our defined categories, which is listed in the table.
- Features were created based on words. The main feature is the word embedding which is obtained from a pre-

trained **Word2Vec** model. Word Embedding TSNE

INGII
Reactant
product
Genetic material
condition
apparatus
operation
Synthesis category
Condition unit
Amount unit
Number
Condition description
Amount description

- Word embeddings are positioned in the vector space such that words that share common contexts in the corpus are located close to one another in the space.
- Some **heuristic features**, such as the part-of-speech and chemical entity were involved. ChemDataExtractor and NLTK were used for these rules. These results were transformed into binary feature.

Models and Results

We trained three models for label prediction: Support Vector Machine, Random forest, and LightGBM.

Models	Accu	ıracy	Micro-AUC			
	Train	Test	Train	Test		
SVM	0.671	0.671	0.977	0.958		
RF	0.766 0		0.986	0.969		
RF Hyperopt	0.744	0.725	0.983	0.968		
LightGBM	0.806	0.750	0.989	0.967		

Based on our best model (RF), we used hyperopt for hyper-tuning, the result became less overfitting. The ROC-AUC curve was plot below:

SHAP summary plot for training and test set. In general, heuristic features take more effect for label prediction than word embeddings.

Extractor

Word	Zn(NO3)2•6H2 O	0.297g	1	mmol	were	dissolve d	in	70	mL
Label	reactant	null	number	amount unit	null	operatio n	null	numbe r	amount unit
Word	of	deionize d	water	and	sealed	in	the	steel	autoclav e
Label	null	null	conditi on	null	null	null	null	null	apparat us
Word	and	heated	into	120	°C	After	the	reactio n	the
Label	null	operati	null	number	condition	null	null	null	null

Future Work

- Build context relevant models
- Find better rule features in feature engineering
- Learn patterns and knowledge from chemical synthesis

Reference

- Kim, E., et al. (2017). Machine-learned and codified synthesis parameters of oxide materials. Sci. Data, 4, 170127
- Swain, M. C. et al. (2016). ChemDataExtractor: a toolkit for automated extraction of chemical information from the scientific literature. J. Chem. Info. Model, 56(10), 1894-1904.