The following is a complete listing of all claims in the application, with an indication of the status of each:

Listing of claims:

1	1. (canceled)
1	2. (Original) A network connection system for connecting a first
2	communication network and a plurality of user terminals when a second
3	communication network is interposed between said first communication
4	network and said plurality of user terminals, said second communication
5	network employing a second protocol different from a first protocol employed
6	in said first communication network, said system comprising:
7	a scheduling apparatus including:
8	a classification processing unit for classifying data conforming
9	to said first protocol received from said communication network based
10	on quality guaranteed classes set thereto;
11	an overhead amount correction unit for correcting an overhead
12	amount between a data rate associated with said first protocol and a
13	data rate associated with said second protocol to convert received rate
14	information on said second protocol to the rate based on said first
15	protocol;
16	a weighting coefficient calculation unit for calculating a
17	weighting coefficient based on said rate calculated by said overhead
18	amount correction unit such that a minimally guaranteed rate is assured
19	for a minimum rate guaranteed class among classes classified by said
20	classification processing unit;

21	a weighting scheduler for scheduling data conforming to said
22	first protocol of said minimum rate guaranteed class and of a
23	weighting applied class among said classified classes based on the
24	weighting coefficient calculated by said weighting coefficient
25	calculation unit to deliver the data in accordance with the scheduling;
26	and
27	a scheduler for scheduling the data conforming to said first
28	protocol from said weighting scheduler such that the data conforming
29	to said first protocol is delivered at a transmission rate equal to or
30	lower than said rate calculated by said overhead amount correction unit
31	to deliver the data in accordance with the scheduling;
32	a protocol converter for converting the data conforming to said first
33	protocol after said scheduling apparatus has shaped the transmission rate
34	therefor to data conforming to said second protocol; and
35	a multiplexer including a current data detector for supplying said
36	scheduling apparatus with said rate information as indicative of a currently set
37	reception rate for said user terminals, said multiplexer being configured to
38	transmit to each of said user terminals the data conforming to said second
39	protocol from said protocol converter or the data conforming to said first
40	protocol after said scheduling apparatus has shaped the transmission rate
41	therefor.
1	3. (Original) A network connection system for connecting a first
2	communication network and a plurality of user terminals when a second
3	communication network is interposed between said first communication
4	network and said plurality of user terminals, said second communication
5	network employing a second protocol different from a first protocol employed
6	in said first communication network, said system comprising:

7	a scheduling apparatus including:
8	a classification processing unit for classifying data conforming
9	to said first protocol received from said communication network based
10	on quality guaranteed classes set thereto;
11	an overhead amount correction unit for correcting an overhead
12	amount between a data rate associated with said first protocol and a
13	data rate associated with said second protocol to convert received rate
14	information on said second protocol to the rate based on said first
15	protocol;
16	a weighting coefficient calculation unit for calculating a
17	weighting coefficient based on said rate calculated by said overhead
18	amount correction unit such that a minimally guaranteed rate is assured
19	for the minimum rate guaranteed class among classes classified by said
20	classification processing unit;
21	a weighting scheduler for scheduling data conforming to said
22	first protocol of said minimum rate guaranteed class and of a
23	weighting applied class among said classified classes based on the
24	weighting coefficient calculated by said weighting coefficient
25	calculation unit to deliver the data in accordance with the scheduling;
26	and
27	a preferential control scheduler for scheduling the data
28	conforming to said first protocol from said weighting scheduler, and
29	data conforming to said first protocol of a best-effort class among said
30	classified classes such that the data conforming to said first protocol is
31	delivered at a transmission rate equal to or lower than said rate
32	calculated by said overhead amount correction unit, and for
33	preferentially scheduling the data conforming to said first protocol
34	from said weighting scheduler, and delivering the data conforming to

35	said first protocol of the best-effort class at a timing at which there is
36	no data conforming to said first protocol from said weighting
37	scheduler;
38	a protocol converter for converting the data conforming to said first
39	protocol after said scheduling apparatus has shaped the transmission rate
40	therefor to data conforming to said second protocol; and
41	a multiplexer including a current data detector for supplying said
42	scheduling apparatus with said rate information as indicative of a currently set
43	reception rate for said user terminals, said multiplexer being configured to
44	transmit to each of said user terminals the data conforming to said second
45	protocol from said protocol converter or the data conforming to said first
46	protocol after said scheduling apparatus has shaped the transmission rate
47	therefor.
1	4. (Original) A network connection system for connecting a first
2	communication network and a plurality of user terminals when a second
3	communication network is interposed between said first communication
4	network and said plurality of user terminals, said second communication
5	network employing a second protocol different from a first protocol employed
6	in said first communication network, said system comprising:
7	a scheduling apparatus including:
8	a classification processing unit for classifying data conforming
9	to said first protocol received from said communication network based
10	on quality guaranteed classes set thereto;
11	a rate measuring unit for measuring a transmission rate for a
12	preferential class among said classified classes;
13	an overhead amount correction unit for correcting an overhead
14	amount between a rate based on said second protocol and a rate based

15	on said first protocol to convert received rate information on said
16	second protocol to the rate based on said first protocol;
17	a weighting coefficient calculation unit for calculating a
18	weighting coefficient based on said rate calculated by said overhead
19	amount correction unit and the transmission rate for the preferential
20	class measured by said rate measuring unit such that a minimally
21	guaranteed rate is assured for the minimum rate guaranteed class
22	among the classes classified by said classification processing unit;
23	a weighting scheduler for scheduling data conforming to said
24	first protocol of said minimum rate guaranteed class and of a
25	weighting applied class among said classified classes based on the
26	weighting coefficient calculated by said weighting coefficient
27	calculation unit to deliver the data in accordance with the scheduling;
28	and
29	a preferential control scheduler for scheduling the data
30	conforming to said first protocol of said preferential class, the data
31	conforming to said first protocol from said weighting scheduler, and
32	data conforming to said first protocol of a best-effort class among said
33	classified classes such that the data conforming to said first protocol is
34	delivered at a transmission rate equal to or lower than said rate
35	calculated by said overhead amount correction unit, and for
36	preferentially scheduling the data conforming to said first protocol of
37	said preferential class, preferentially scheduling the data conforming to
38	said first protocol from said weighting scheduler at a timing at which
39	there is no data conforming to said first protocol of said preferential
40	class, and delivering the data conforming to said first protocol of the
41	best-effort class at a timing at which there is no data conforming to
42	said first protocol from said weighting scheduler;

a protocol converter for converting the data conforming to said first 43 protocol after said scheduling apparatus has shaped the transmission rate 44 therefor to data conforming to said second protocol; and 45 a multiplexer including a current data detector for supplying said 46 scheduling apparatus with said rate information as indicative of a currently set 47 reception rate for said user terminals, said multiplexer being configured to 48 transmit to each of said user terminals the data conforming to said second 49 protocol from said protocol converter or the data conforming to said first 50 protocol after said scheduling apparatus has shaped the transmission rate 51 52 therefor. 5. (Original) A network connection system for connecting a first 1 communication network and a plurality of user terminals when a second 2 communication network is interposed between said first communication 3 network and said plurality of user terminals, said second communication network employing a second protocol different from a first protocol employed 5 in said first communication network, said system comprising: 6 a scheduling apparatus including: 7 a classification processing unit for classifying data conforming 8 to said first protocol received from said communication network based 9 on quality guaranteed classes set thereto; 10 a rate measuring unit for measuring a transmission rate for a 11 preferential class among said classified classes; 12 an overhead amount correction unit for correcting an overhead 13 amount between a rate based on said second protocol and a rate based 14 on said first protocol to convert received rate information on said 15 second protocol to the rate based on said first protocol; 16

a preferential class upper limit setting unit, operative when the difference between the transmission rate of the data conforming to said first protocol of the preferential class as measured by said rate measuring unit and said rate calculated by said overhead amount correction unit is lower than a minimally guaranteed rate for a minimum rate guaranteed class among the classes classified by said classification processing unit, for setting an upper limit to the transmission rate for said preferential class for shaping, such that the minimally guaranteed rate can be assured for said minimum rate guaranteed class;

a weighting coefficient calculation unit, operative when said

a weighting coefficient calculation unit, operative when said preferential class upper limit setting unit does not set the upper limit, for calculating a weighting coefficient based on said rate calculated by said overhead amount correction unit and the transmission rate for the preferential class measured by said rate measuring unit such that the minimally guaranteed rate is assured for the minimum rate guaranteed class among the classes classified by said classification processing unit, said weighting coefficient calculation unit being further operative when said preferential class upper limit setting unit sets the upper limit, for calculating a weighting coefficient based on said rate calculated by said overhead amount correction unit and the upper limit rate set by said preferential class upper limit setting unit such that the minimally guaranteed rate is assured for said minimum rate guaranteed class;

a weighting scheduler for scheduling data conforming to said first protocol of said minimum rate guaranteed class and of a weighting applied class among said classified classes based on the weighting coefficient calculated by said weighting coefficient

calculation unit to deliver the data in accordance with the scheduling; 45 46 and a preferential control scheduler for scheduling the data 47 conforming to said first protocol of said preferential class, the data 48 conforming to said first protocol from said weighting scheduler, and 49 data conforming to said first protocol of a best-effort class among said 50 classified classes, such that the data conforming to said first protocol is 51 52 delivered at a transmission rate equal to or lower than said rate calculated by said overhead amount correction unit, and for 53 preferentially scheduling the data conforming to said first protocol of 54 said preferential class, preferentially scheduling the data conforming to 55 said first protocol from said weighting scheduler at a timing at which 56 there is no data conforming to said first protocol of said preferential 57 class, and delivering the data conforming to said first protocol of the 58 best-effort class at a timing at which there is no data conforming to 59 said first protocol from said weighting scheduler; 60 a protocol converter for converting the data conforming to said first 61 protocol after said scheduling apparatus has shaped the transmission rate 62 therefor to data conforming to said second protocol; and 63 a multiplexer including a current data detector for supplying said 64 scheduling apparatus with said rate information as indicative of a currently set 65 reception rate for said user terminals, said multiplexer being configured to 66 perform DSL processing using telephone lines to transmit to each of said user 67 terminals the data conforming to said second protocol from said protocol 68 converter or the data conforming to said first protocol after said scheduling 69 apparatus has shaped the transmission rate therefor. 70

1	6. (Original) A network connection system for connecting a first
2	communication network and a plurality of user terminals when a second
3	communication network is interposed between said first communication
4	network and said plurality of user terminals, said second communication
5	network employing a second protocol different from a first protocol employed
6	in said first communication network, said system comprising:
7	a scheduling apparatus including:
8	a classification processing unit for classifying data conforming
9	to said first protocol received from said communication network based
10	on quality guaranteed classes set thereto;
11	an overhead amount correction unit for correcting an overhead
12	amount between a rate based on said second protocol and a rate based
13	on said first protocol to convert received rate information on said
14	second protocol to the rate based on said first protocol;
15	a weighting coefficient calculation unit for calculating a
16	weighting coefficient based on said rate calculated by said overhead
17	amount correction unit and the transmission rate for a preferential class
18	among said classified classes using information fed back from said
19	user terminals such that a minimally guaranteed rate is assured for the
20	minimum rate guaranteed class among the classes classified by said
21	classification processing unit;
22	a weighting scheduler for scheduling data conforming to said
23	first protocol of said minimum rate guaranteed class and of a
24	weighting applied class among said classified classes based on the
25	weighting coefficient calculated by said weighting coefficient
26	calculation unit to deliver the data in accordance with the scheduling;
27	and .

28	a preferential control scheduler for scheduling the data
29	conforming to said first protocol of said preferential class, the data
30	conforming to said first protocol from said weighting scheduler, and
31	data conforming to said first protocol of a best-effort class among said
32	classified classes such that the data conforming to said first protocol is
33	delivered at a transmission rate equal to or lower than said rate
34	calculated by said overhead amount correction unit, and for
35	preferentially scheduling the data conforming to said first protocol of
36	said preferential class, preferentially scheduling the data conforming to
37	said first protocol from said weighting scheduler at a timing at which
38	there is no data conforming to said first protocol of said preferential
39	class, and delivering the data conforming to said first protocol of the
40	best-effort class at a timing at which there is no data conforming to
41	said first protocol from said weighting scheduler;
42	a protocol converter for converting the data conforming to said first
43	protocol after said scheduling apparatus has shaped the transmission rate
44	therefor to data conforming to said second protocol; and
45	a multiplexer including a current data detector for supplying said
46	scheduling apparatus with said rate information as indicative of a currently set
47	reception rate for said user terminals, said multiplexer being configured to
48	perform DSL processing using telephone lines to transmit to each of said user
49	terminals the data conforming to said second protocol from said protocol
50	converter or the data conforming to said first protocol after said scheduling
51	apparatus has shaped the transmission rate therefor.
1	7. (Original) A network connection system for connecting a first
2	communication network and a plurality of user terminals when a second
3	communication network is interposed between said first communication

4	network and said plurality of user terminals, said second communication
5	network employing a second protocol different from a first protocol employed
6	in said first communication network, said system comprising:
7	a scheduling apparatus including:
8	a classification processing unit for classifying data conforming
9	to said first protocol received from said communication network based
10	on quality guaranteed classes set thereto;
11	an overhead amount correction unit for correcting an overhead
12	amount between a rate based on said second protocol and a rate based
13	on said first protocol to convert received rate information on said
14	second protocol to the rate based on said first protocol;
15	a preferential class upper limit setting unit, operative when the
16	difference between the transmission rate for a preferential class among
17	said classified classes determined to be using information fed back
18	from said user terminals and said rate calculated by said overhead
19	amount correction unit is lower than a minimally guaranteed rate for a
20	minimum rate guaranteed class among the classes classified by said
21	classification processing unit, for setting an upper limit to the
22	transmission rate for said preferential class for shaping such that the
23	minimally guaranteed rate can be assured for said minimum rate
24	guaranteed class;
25	a weighting coefficient calculation unit, operative when said
26	preferential class upper limit setting unit does not set the upper limit,
27	for calculating a weighting coefficient based on said rate calculated by
28	said overhead amount correction unit and the transmission rate for the
29	preferential class such that the minimally guaranteed rate is assured for
30	said minimum rate guaranteed class, said weighting coefficient
31	calculation unit being further operative when said preferential class

upper limit setting unit sets the upper limit, for calculating a weighting 32 coefficient based on said rate calculated by said overhead amount 33 correction unit and the upper limit rate set by said preferential class 34 upper limit setting unit such that the minimally guaranteed rate is 35 assured for said minimum rate guaranteed class; 36 a weighting scheduler for scheduling data conforming to said 37 first protocol of said minimum rate guaranteed class and of a 38 weighting applied class among said classified classes based on the 39 weighting coefficient calculated by said weighting coefficient 40 calculation unit to deliver the data in accordance with the scheduling; 41 and 42 a preferential control scheduler for scheduling the data 43 conforming to said first protocol of said preferential class, the data 44 conforming to said first protocol from said weighting scheduler, and 45 data conforming to said first protocol of a best-effort class among said 46 classified classes such that the data conforming to said first protocol is 47 delivered at a transmission rate equal to or lower than said rate 48 calculated by said overhead amount correction unit, and for 49 preferentially scheduling the data conforming to said first protocol of 50 said preferential class, preferentially scheduling the data conforming to 51 said first protocol from said weighting scheduler at a timing at which 52 there is no data conforming to said first protocol of said preferential 53 class, and delivering the data conforming to said first protocol of the 54 best-effort class at a timing at which there is no data conforming to 55 said first protocol from said weighting scheduler; 56 a protocol converter for converting the data conforming to said first 57 protocol after said scheduling apparatus has shaped the transmission rate 58 therefor to data conforming to said second protocol; and 59

60	a multiplexer including a current data detector for supplying said
61	scheduling apparatus with said rate information as indicative of a currently set
62	reception rate for said user terminals, said multiplexer being configured to
63	perform DSL processing using telephone lines to transmit to each of said user
64	terminals the data conforming to said second protocol from said protocol
65	converter or the data conforming to said first protocol after said scheduling
66	apparatus has shaped the transmission rate therefor.
1	8-11. (canceled)
1	12. (original) A traffic shaping method, in a network connection system for
2	connecting a communication network and a plurality of user terminals, for
3	shaping a transmission rate for data conforming to a first protocol from said
4	communication network, said method comprising the steps of:
5	classifying data conforming to said first protocol received from said
6	communication network based on quality guaranteed classes set thereto;
7	correcting an overhead amount between a rate based on a second
8	protocol and a rate based on said first protocol to convert received rate
9	information on said second protocol to the rate based on said first protocol;
10	calculating a weighting coefficient such that a minimally guaranteed
11	rate is assured for a minimum rate guaranteed class among said classified
12	classes based on said calculated rate;
13	scheduling data conforming to said first protocol of said minimum rate
14	guaranteed class and of a weighting applied class among said classified classe
15	based on the calculated weighting coefficient to deliver the data in accordance
16	with the scheduling; and
17	scheduling the data conforming to said first protocol after said
18	weighting, and data conforming to said first protocol of a best-effort class

among said classified classes, such that the data conforming to said first 19 protocol is delivered at a transmission rate equal to or lower than said 20 21 calculated rate, and for preferentially scheduling the data conforming to said first protocol after said weighting, so that the data conforming to said first 22 protocol of said best effort class is delivered at a timing at which there is no 23 data conforming to said first protocol after said weighting. 24 1 13. (canceled) 1 14. (original) A traffic shaping method, in a network connection system for 2 connecting a communication network and a plurality of user terminals, for shaping a transmission rate for data conforming to a first protocol from said 3 communication network, said method comprising the steps of: 4 5 classifying data conforming to said first protocol received from said communication network based on quality guaranteed classes set thereto; 6 measuring a transmission rate for a preferential class among said 7 8 classified classes; correcting an overhead amount between a rate based on a second 9 protocol and a rate based on said first protocol to convert received rate 10 information on said second protocol to the rate based on said first protocol; 11 calculating a weighting coefficient based on said calculated rate and 12 the transmission rate measured for the preferential class such that a minimally 13 guaranteed rate is assured for a minimum rate guaranteed class among the 14 15 classified classes; scheduling data conforming to said first protocol of said minimum rate 16 guaranteed class and of a weighting applied class among said classified classes 17 based on the calculated weighting coefficient to deliver the data in accordance 18 19 with the scheduling; and

20	scheduling the data conforming to said first protocol of said
21	preferential class, the data conforming to said first protocol after said
22	weighting, and data conforming to said first protocol of a best-effort class
23	among said classified classes such that the data conforming to said first
24	protocol is delivered at a transmission rate equal to or lower than said
25	calculated rate, and for preferentially scheduling the data conforming to said
26	first protocol of said preferential class, preferentially scheduling the data
27	conforming to said first protocol after said weighting at a timing at which
28	there is no data conforming to said first protocol of said preferential class, and
29	delivering the data conforming to said first protocol of the best-effort class at a
30	timing at which there is no data conforming to said first protocol after said
31	weighting.
1	15. (original) A traffic shaping method, in a network connection system for
2	connecting a communication network and a plurality of user terminals, for
3	shaping a transmission rate for data conforming to a first protocol from said
4	communication network, said method comprising the steps of:
5	classifying data conforming to said first protocol received from said
6	communication network based on quality guaranteed classes set thereto;
7	measuring a transmission rate for a preferential class among said
8	classified classes;
9	correcting an overhead amount between a rate based on said second
10	protocol and a rate based on said first protocol to convert received rate
11	information on said second protocol to the rate based on said first protocol;
12	when the difference between said measured transmission rate of the
13	data conforming to said first protocol of the preferential class and said
14	calculated rate is lower than a minimally guaranteed rate for a minimum rate
15	guaranteed class among said classified classes, setting an upper limit to the

16	transmission rate for said preferential class for shaping such that the minimally
17	guaranteed rate can be assured for said minimum rate guaranteed class;
18	calculating a weighting coefficient based on said calculated rate and
19	said transmission rate measured for the preferential class such that a minimally
20	guaranteed rate is assured for said minimum rate guaranteed class, when the
21	upper limit rate is not set for said preferential class, and calculating a
22	weighting coefficient based on said calculated rate and said set upper limit rate
23	such that the minimally guaranteed rate is assured for said minimum rate
24	guaranteed class when the upper limit rate is set for said preferential class;
25	scheduling data conforming to said first protocol of said minimum rate
26	guaranteed class and of a weighting applied class among said classified classes
27	based on said calculated weighting coefficient to deliver the data in
28	accordance with the scheduling; and
29	scheduling the data conforming to said first protocol of said
30	preferential class, the data conforming to said first protocol after said
31	weighting, and data conforming to said first protocol of a best-effort class
32	among said classified classes such that the data conforming to said first
33	protocol is delivered at a transmission rate equal to or lower than said
34	calculated rate, preferentially scheduling the data conforming to said first
35	protocol of said preferential class, preferentially scheduling the data
36	conforming to said first protocol after said weighting at a timing at which
37	there is no data conforming to said first protocol of said preferential class, and
38	delivering the data conforming to said first protocol of the best-effort class at a
39	timing at which there is no data conforming to said first protocol after said
40	weighting.
1	16. (original) A traffic shaping method, in a network connection system for
2	connecting a communication network and a plurality of user terminals, for

3	shaping a transmission rate for data conforming to a first protocol from said
4	communication network, said method comprising the steps of:
5	classifying data conforming to said first protocol received from said
6	communication network based on quality guaranteed classes set thereto;
7	correcting an overhead amount between a rate based on a second
8	protocol and a rate based on said first protocol to convert received rate
9	information on said second protocol to the rate based on said first protocol;
10	calculating a weighting coefficient based on said calculated rate and
11	the transmission rate for a preferential class among said classified classes
12	determined to be using information fed back from said user terminals such that
13	a minimally guaranteed rate is assured for a minimum rate guaranteed class
14	among said classified classes;
15	scheduling data conforming to said first protocol of said minimum rate
16	guaranteed class and of a weighting applied class among said classified classes
17	based on said calculated weighting coefficient; and
18	scheduling the data conforming to said first protocol of said
19	preferential class, the data conforming to said first protocol after said
20	weighting, and data conforming to said first protocol of a best-effort class
21	among said classified classes such that the data conforming to said first
22	protocol is delivered at a transmission rate equal to or lower than said
23	calculated rate, preferentially scheduling the data conforming to said first
24	protocol of said preferential class, preferentially scheduling the data
25	conforming to said first protocol after said weighting at a timing at which
26	there is no data conforming to said first protocol of said preferential class, and
27	delivering the data conforming to said first protocol of the best-effort class at a
28	timing at which there is no data conforming to said first protocol after said
29	weighting.

1	17. (original) A traffic shaping method, in a network connection system for
2	connecting a communication network and a plurality of user terminals, for
3	shaping a transmission rate for data conforming to a first protocol from said
4	communication network, said method comprising the steps of:
5	classifying data conforming to said first protocol received from said
6	communication network based on quality guaranteed classes set thereto;
7	correcting an overhead amount between a rate based on a second
8	protocol and a rate based on said first protocol to convert received rate
9	information on said second protocol to the rate based on said first protocol;
10	when the difference between the transmission rate for a preferential
11	class among said classified classes determined using information fed back
12	from said user terminals and said calculated rate is lower than a minimally
13	guaranteed rate for a minimum rate guaranteed class among said classified
14	classes, setting an upper limit to the transmission rate for said preferential
15	class for shaping such that the minimally guaranteed rate can be assured for
16	said minimum rate guaranteed class;
17	calculating a weighting coefficient based on said calculated rate and
18	the transmission rate for the preferential class such that the minimally
19	guaranteed rate is assured for said minimum rate guaranteed class, when the
20	upper limit rate is not set for said preferential class, and calculating a
21	weighting coefficient based on said calculated rate and said upper limit rate set
22	for said preferential class such that the minimally guaranteed rate is assured
23	for said minimum rate guaranteed class, when the upper limit rate is set for
24	said preferential class;
25	scheduling data conforming to said first protocol of said minimum rate
26	guaranteed class and of a weighting applied class among said classified classes
27	based on said calculated weighting coefficient; and

28

29

30

31

32

33

34

35

36

37

38

39

1

2

3

4

scheduling the data conforming to said first protocol of said preferential class, the data conforming to said first protocol after said weighting, and data conforming to said first protocol of a best-effort class among said classified classes such that the data conforming to said first protocol is transmitted at a transmission rate equal to or lower than said calculated rate, preferentially scheduling the data conforming to said first protocol of said preferential class, preferentially scheduling the data conforming to said first protocol after said weighting at a timing at which there is no data conforming to said first protocol of said preferential class, and delivering the data conforming to said first protocol of the best-effort class at a timing at which there is no data conforming to said first protocol after said weighting. 18. (original) The traffic shaping method according to claim 12, wherein said first communication network is an IP network, said data conforming to said first protocol is an IP packet, said second network is an ATM network, and said data conforming to said second protocol is an ATM cell.