k Nearest Neighbor (kNN)

Topics

- Windows Phone
- Astronomy
- Coffee
- Chess
- Cooking
- Wood_Working
- Law
- Space
- Arduino
- Biology
- Anime

Training Data Size

• 5500 documents

Validation Data Size

• 2200 documents

Methodologies and k Matrix

	1	3	5
Hamming Distance	40.91%	41.59%	41.27%
Euclidean Distance	57.27%	57.64%	57.32%
Cosine Similarity	81.23%	83.50%	83.68%

Best Performing kNN Parameters

k = 5

Methodology: Cosine Similarity

Naive Bayes

Topics

- Anime
- Astronomy
- Arduino
- Windows_Phone
- Biology
- Chess
- Wood_Working
- Coffee
- Space
- Law
- Cooking

Training Data Size

• 5500 documents

Validation Data Size

• 2200 documents

Accuracy for Different Smoothing Factors (α)

Serial	Smoothing Factor ($lpha$)	Accuracy
1	0.10	71.59%
2	0.20	71.64%
3	0.30	71.55%
4	0.40	71.23%
5	0.50	71.23%
6	0.60	71.18%
7	0.70	71.09%

Serial	Smoothing Factor ($lpha$)	Accuracy
8	0.80	70.82%
9	0.90	70.59%
10	1.00	70.55%

Best Performing NB Parameters

Smoothing Factor, lpha=0.2

kNN vs. NB Accuracy

Serial	kNN ($k=5$,Cosine Similarity) NB ($lpha$:	
1	86.36%	70.91%
2	88.18%	79.09%
3	87.27%	77.27%
4	82.73%	70.91%
5	86.36%	64.55%
6	88.18%	72.73%
7	87.27%	73.64%
8	87.27%	76.36%
9	81.82%	72.73%
10	82.73%	70.00%
11	81.82%	71.82%
12	85.45%	75.45%
13	77.27%	73.64%
14	80.00%	67.27%
15	83.64%	70.00%
16	76.36%	71.82%
17	80.91%	75.45%

Serial	kNN ($k=5$,Cosine Similarity)	NB ($lpha=0.2$)
18	78.18%	71.82%
19	75.45%	70.91%
20	78.18%	72.73%
21	80.00%	70.00%
22	88.18%	75.45%
23	86.36%	78.18%
24	79.09%	76.36%
25	83.64%	77.27%
26	83.64%	78.18%
27	82.73%	74.55%
28	78.18%	77.27%
29	80.91%	71.82%
30	80.00%	78.18%
31	84.55%	78.18%
32	81.82%	77.27%
33	85.45%	67.27%
34	82.73%	70.00%
35	82.73%	70.00%
36	80.00%	72.73%
37	80.91%	69.09%
38	78.18%	73.64%
39	88.18%	77.27%
40	89.09%	82.73%
41	78.18%	69.09%
42	88.18%	79.09%
43	80.00%	71.82%

Serial	kNN ($k=5$,Cosine Similarity)	NB ($lpha=0.2$)
44	80.91%	69.09%
45	84.55%	74.55%
46	83.64%	80.00%
47	82.73%	70.91%
48	80.91%	69.09%
49	80.91%	74.55%
50	84.55%	74.55%

T-test

Significance Level	T Statistics	T Critical Value	Result
0.005	15.439037	2.679952	t_critical < t_stat kNN better
0.010	15.439037	2.404892	t_critical < t_stat kNN better
0.050	15.439037	1.676551	t_critical < t_stat kNN better

Justifiation

• Cosine Similarity with TF-IDF not only considers the term frequency but also takes an account of the differentiating power of a particular word. If a word appears in all the documents, it is considered less important.

NB does not consider differentiating power of words.

kNN implementation discards any new word in test document.

NB implementation does not discard the new words, rather smooths the probability of any new word to a small probability value. Consequently, if a document has a lot of new words, those words may divert the probability from the correct class.