Fast Approximation of Betweenness Centrality through Sampling

Matteo Riondato and Evgenios M. Kornaropoulos

Brown University

WSDM - February 27th 2014

Who is important?

- •Key question in graph analysis:
 - •Which vertices are important?

Need formal definition

•Betweenness centrality of vertex v :

 $\mathbf{b}(v) = \text{fraction of Shortest Paths going through } v$

Formally...

- •Graph G = (V, E) |V| = n |E| = m
- •Betweenness of $v \in V$:

$$\mathbf{b}(v) = \frac{1}{n(n-1)} \sum_{p_{uw} \in \mathbb{S}_G} \frac{\mathbb{1}_{\mathcal{T}_v}(p_{uw})}{\sigma_{uw}}$$

- \mathbb{S}_G : all SPS in G
- • \mathcal{S}_{uv} : SPs from u to v ($\sigma_{uv} = |\mathcal{S}_{uv}|$)
- $\mathcal{T}_v = \{ p \in \mathbb{S}_G : v \in \mathsf{Int}(p) \}$

Computing betweenness

- •Exact algorithm [Brandes01]: $O(nm + n^2 \log n)$
- •Idea: use sampling!

- •Goal: compute (ε, δ) -approximation
 - set of estimations $\tilde{b}(v)$ for all $v \in V$ such that

$$\Pr\left(\forall v \in V, |\tilde{\mathbf{b}}(v) - \mathbf{b}(v)| \le \varepsilon\right) \ge 1 - \delta$$

•[BrandesPich07]: use
$$\frac{1}{\varepsilon^2}\left(\log_2 n + \ln\frac{1}{\delta}\right)$$
 samples

Computing betweenness

- •Exact algorithm [Brandes01]: $O(nm + n^2 \log n)$
- •Idea: use sampling!

- •Goal: compute (ε, δ) -approximation
 - set of estimations $\tilde{b}(v)$ for all $v \in V$ such that

$$\Pr\left(\forall v \in V, |\tilde{\mathbf{b}}(v)| \text{Still too much!} \right) 1 - \delta$$

•[BrandesPich07]: use
$$\frac{1}{\varepsilon^2}\left(\log_2 n + \ln\frac{1}{\delta}\right)$$
 samples

Our algorithm

- Samples shortest paths
- •No. samples independent from n (VC-dimension)

```
b(v) \leftarrow 0, \forall v \in V
For r times do
Sample random pair (u, v)
```

Compute \mathcal{S}_{uv} (all SPs from u to v)

Select a SP p uniformly at random from \mathcal{S}_{uv}

For each $w \in Int(p)$ $\tilde{\mathbf{b}}(w) \leftarrow \tilde{\mathbf{b}}(w) + 1/r$

Relatively easy, see paper

Computing the sample size

- •We use VC-dimension [VapnikChervonenkis71]
 - notion from Statistical Learning Theory
 - •given domain D, measures "richness" of $\mathcal{R} \subseteq 2^D$
 - •combinatorial property of ${\cal R}$
 - •useful to approximate probability masses of subsets in $\mathcal R$ using samples from D

Sampling theorem

- •Assume we know that $VC(\mathcal{R}) \leq d$
- •Let π be a probability distribution on D
- •Given $\varepsilon, \delta \in [0,1]$, let S be a collection of samples from π
- •If

$$|S| \ge \frac{1}{\varepsilon^2} \left(\frac{\mathbf{d}}{\mathbf{d}} + \ln \frac{1}{\delta} \right)$$

then

$$\Pr\left(\forall A \in \mathcal{R}, \left| \pi(A) - \frac{1}{|S|} \sum_{s \in S} \mathbb{1}_A(s) \right| \le \varepsilon\right) \ge 1 - \delta$$

Empirical Average

In our case...

- $D = \mathbb{S}_G$ (all shortest paths in G)
- $ullet \mathcal{R}_G = \{\mathcal{T}_v, v \in V\}$ ($\mathcal{T}_v = \text{all SPs going through } v$)
- •Probability distribution on \mathbb{S}_G :

$$\pi_G(p_{uv}) = \frac{1}{n(n-1)} \frac{1}{\sigma_{uv}}$$

- $\pi_G(\mathcal{T}_v) = \mathsf{b}(v)$
- •Our algorithm
 - •samples SPs according to π_G
 - •compute empirical average $\tilde{b}(v), \forall v \in V$

Sample size

- •Define vertex diameter: $vd(G) = max\{|p| : p \in S_G\}$
 - can be estimated efficiently
- •Theorem: $VC(\mathcal{R}_G) \leq \lfloor \log_2(\mathsf{vd}(G) 2) \rfloor + 1$
- •Sample size for (ε, δ) -approximation:

$$\frac{1}{\varepsilon^2} \left(\lfloor \log_2(\mathsf{vd}(G) - 2) \rfloor + 1 + \ln \frac{1}{\delta} \right)$$

•Independent from |V|

Speedup Results

- •~8x_faster than [BrandesPich07]
- •Scales better as n grows

Matteo Riondato et al. - Estimation of Betweenness Centrality through Sampling

I'm graduating soon!

Looking for exciting postdoc opportunities

- Matteo Riondato
 - •@riondabsd
 - •http://cs.brown.edu/~matteo
 - •matteo@cs.brown.edu

Bibliography

- •[Brandes01] *A faster algorithm for betweenness centrality*, J. Math. Sociol., 2001
- •[BrandesPich07] *Centrality estimation in large networks*, Intl. J. Bifurc. Chaos, 2007
- •[EppsteinWang01] Fast approximation of centrality, J. Graph Alg. and App., 2001
- •[VapnikChervonenkis71] On the uniform convergence of relative frequencies of events to their probabilities, Th. Prob. and its Appl., 1971