

第二节 等差数列

第三章 第二节等差数列

年度	2015	2016	2017	2018	2019	2020	2021	2022	2023
考频	2	0	1	1	1	1	1	1	0

第三章 第二节等差数列

一、定义

通项公式

三、数列的前n项和

四、重要性质

一定义

如果在数列 $\{a_n\}$ 中 , $a_{n+1} - a_n = d$ (常数) $(n \in N_+)$, 则称数列 $\{a_n\}$ 为等差数列 , d为公差.

- (1) $d \in R$, d可正可负可为0
- (2) 常数数列也为等差数列 (d=0)

1.基本公式

$$a_n = a_1 + (n-1)d$$

2.扩展公式

$$a_n = a_k + (n - k)d$$

3.函数特征

当公差 $d \neq 0$ 时, a_n 可抽象成关于n的一次函数

$$a_n = f(n) = d\mathbf{n} + (a_1 - d)$$

4.已知
$$a_m$$
 , a_n , 则 $d = \frac{a_n - a_m}{n - m}$

【例1】一等差数列中, $3a_1 + 2a_6 = 0$, $a_4 + a_5 = -3$,该等差数列

的公差是().

A.-2 B.-1

C.1

D.2

【例1】一等差数列中, $3a_1 + 2a_6 = 0$, $a_4 + a_5 = -3$,该等差数列

的公差是().

A.-2 B.-1

C.1

D.2

E.3

【解析】由已知 $3a_1+2(a_1+5d)=0$, $a_1+3d+a_1+4d=-3$, 解得 $a_1=2$, d=-1. 选 B. 本题将其他项元素利用公式 $a_n = a_1 + (n-1)d$ 转化为 a_1 和 d 来表示.

【例2】如果数列x, a_1 , a_2 , a_3 ··· a_m , y和数列x, b_1 , b_2 , b_3 ··· b_n , y都是等差

数列,则 (a_2-a_1) 与 (b_4-b_2) 的比值是().

$$A.\frac{n}{2m}$$

$$B.\frac{n+1}{2m}$$

B.
$$\frac{n+1}{2m}$$
 C. $\frac{n+1}{2(m+1)}$ D. $\frac{n+1}{m+1}$

$$D.\frac{n+1}{m+1}$$

$$\mathsf{E}.\frac{n-1}{m+1}$$

【例2】如果数列 $x, a_1, a_2, a_3 \cdots a_m, y$ 和数列 $x, b_1, b_2, b_3 \cdots b_n, y$ 都是等差

数列,则 (a_2-a_1) 与 (b_4-b_2) 的比值是().

$$A.\frac{n}{2m}$$

$$B.\frac{n+1}{2m}$$

A.
$$\frac{n}{2m}$$
 B. $\frac{n+1}{2m}$ C. $\frac{n+1}{2(m+1)}$ D. $\frac{n+1}{m+1}$

$$D.\frac{n+1}{m+1}$$

$$\mathsf{E}.\frac{n-1}{m+1}$$

【解析】设两数列的公差分别为 a 和 b,则有

$$x, a_1, a_2, a_3, \dots, a_m, y \Rightarrow \frac{a_2 - a_1}{y - x} = \frac{a}{(m+1)a} \Rightarrow a_2 - a_1 = \frac{y - x}{m+1};$$

 $x, b_1, b_2, b_3, \dots, b_n, y \Rightarrow \frac{b_4 - b_2}{y - x} = \frac{2b}{(n+1)b} \Rightarrow b_4 - b_2 = \frac{2(y - x)}{n+1};$
 $\Rightarrow \frac{a_2 - a_1}{b_4 - b_2} = \frac{n+1}{2(m+1)}, \text{ if } C.$

1.基本公式

$$S_n = \frac{n(a_1 + a_n)}{2}$$

2.扩展公式

$$S_n = na_1 + \frac{n(n-1)}{2}d$$

3.函数特征

当公差 $d \neq 0$ 时, S_n 可抽象成关于n的不含常数项的二次函数

$$S_n = f(n) = \frac{d}{2}n^2 + \left(a_1 - \frac{d}{2}\right)n$$

特征:(1)常数项为零

(2)开口方向由d的符号决定

(3) 二次项系数为半公差 $\frac{d}{2}$

(4) 对称轴
$$x = \frac{1}{2} - \frac{a_1}{d}$$
 (求最值)

3.函数特征

$$a_n = dn + (a_1 - d)$$

$$S_n = \frac{d}{2}n^2 + \left(a_1 - \frac{d}{2}\right)n$$

(1) 已知
$$S_n = An^2 + Bn$$
, 则 $a_n = 2An + (B - A)$

(2) 已知
$$S_n = An^2 + Bn + C$$
, 则 $a_n = \begin{cases} A + B + C, n = 1\\ 2An + (B - A), n \ge 2 \end{cases}$

【例3】已知数列 $\{a_n\}$ 的前n项和 $S_n = n(2n+1)$,则39是该数列的

第()项.

A.6

B.7

C.8

D.9

【例3】已知数列 $\{a_n\}$ 的前n项和 $S_n = n(2n+1)$,则39是该数列的

第()项.

A.6

B.7

C.8

D.9

E.10

【解析】先求通项, 当 n=1 时, $a_1=3$,

当 $n \ge 2$ 时, $a_n = S_n - S_{n-1} = 2n^2 + n - 2(n-1)^2 - (n-1) = 4n - 1$,

当 n=1 时,满足 $a_n=4n-1$,所以数列的通项公式为 $a_n=4n-1$.

设 39 是该数列的第 n 项,则 39=4n-1, n=10,即 39 是该数列的第 10 项.选 E.

【例4】在等差数列
$$\{a_n\}$$
中 $S_4=12$, $S_{10}=150$, 则 $S_{18}=($).

A.558 B.568 C.572 D.628

【例4】在等差数列 $\{a_n\}$ 中 $S_4 = 12$, $S_{10} = 150$, 则 $S_{18} = ()$.

A.558

B.568

C.572

D.628

E.658

【解析】

由
$$S_n = na_1 + \frac{n(n-1)}{2}d$$
,得 $\frac{S_n}{n} = a_1 + \frac{n-1}{2}d$,故
$$\begin{cases} \frac{S_4}{4} = a_1 + \frac{3}{2}d = 3 \\ \frac{S_{10}}{10} = a_1 + \frac{9}{2}d = 15 \end{cases} \Rightarrow \begin{pmatrix} d = 4 \\ a_1 = -3 \end{pmatrix}$$

$$x \frac{S_{18}}{18} = a_1 + \frac{17}{2}d, S_{18} = 558.$$
 选 A.

【例5】等差数列 $\{a_n\}$ 的前n项和为 S_n ,若 $a_2 = 9$, $S_4 = 40$,常数c

为()时,数列 $\{\sqrt{S_n+c}\}$ 成等差数列.

A.4或9 B.4 C.9

D.3

【例5】等差数列 $\{a_n\}$ 的前n项和为 S_n ,若 $a_2 = 9$, $S_4 = 40$,常数c

为()时,数列 $\{\sqrt{S_n+c}\}$ 成等差数列.

A.4或9 B.4

C.9

D.3

E.8

解析】由 $a_2 = 9$, $S_4 = 40$, 得 $a_1 = 7$, d = 2, 故 $a_n = 2n + 5$, $S_n = n^2 + 6n$, $\sqrt{S_n + c} = n^2 + 6n$ $\sqrt{n^2+6n+c}$,故当 c=9 时, $\sqrt{S_n+c}=n+3$ 是等差数列,选 C.

1.若
$$m + n = p + q$$
 , 则 $a_m + a_n = a_p + a_q$

成立条件:(1)脚标之和相等(2)等号两端的项数分别相等

推广:若m+n=2p , 则 $a_m+a_n=a_p+a_p=2a_p$

$$\Rightarrow S_n = \frac{n(a_1 + a_n)}{2} = \frac{n \cdot 2a_{n+1}}{2} = n \times a_{\frac{n+1}{2}}$$

【例4】在等差数列
$$\{a_n\}$$
中 $S_4=12$, $S_{10}=150$, 则 $S_{18}=($).

A.558 B.568 C.572 D.628

$$S_n = n \times a_{\frac{n+1}{2}}$$

【例6】已知等差数列 $\{a_n\}$ 中, a_1 和 a_{10} 是方程 $x^2 - 3x - 7 = 0$ 的两

根,则
$$a_3 + a_8 = ()$$
.

$$E.-4$$

【例6】已知等差数列 $\{a_n\}$ 中, a_1 和 a_{10} 是方程 $x^2 - 3x - 7 = 0$ 的两

根,则
$$a_3 + a_8 = ()$$
.

$$D.-3$$

$$E.-4$$

【解析】 a_1 和 a_{10} 是方程 $x^2-3x-7=0$ 的两根,知 $a_1+a_{10}=3$,又 $\{a_n\}$ 是等差数列, $a_3+a_8=$ $a_1 + a_{10} = 3$. 选 C.

【例7】已知等差数列 $\{a_n\}$ 中,若 $a_2 + a_5 + a_8 + a_{11} = 48$,则 $S_{12} = a_{11}$

A.96

B.48

C.144

D.160

【例7】已知等差数列
$$\{a_n\}$$
中,若 $a_2 + a_5 + a_8 + a_{11} = 48$,则 $S_{12} = ($).

A.96

B.48

C.144

D.160

【解析】
$$a_2+a_5+a_8+a_{11}=48$$
,则 $a_1+a_{12}=a_2+a_{11}=a_5+a_8=24$,
又 $S_{12}=6(a_1+a_{12})=6\times 24=144$. 选 C.

2.若 S_n 为等差数列的前n项和,则 S_n , $S_{2n} - S_n$, $S_{3n} - S_{2n}$,…仍为等差数列,其公差 n^2d

2.若 S_n 为等差数列的前n项和,则 S_n , $S_{2n} - S_n$, $S_{3n} - S_{2n}$,…仍为

等差数列,其公差 n^2d

推广: a, b, c成等差 $\Leftrightarrow 2b = a + c$ (等差中项)

$$2(S_{2n} - S_n) = S_n + (S_{3n} - S_{2n}) \Rightarrow S_{3n} = 3(S_{2n} - S_n)$$

【例8】已知等差数列 $\{a_n\}$ 中, S_n 为其前n项和, $S_4=30,S_8=90$,

则
$$S_{12} = ()$$
 .

A.150

B.160

C.180

D.190

【例8】已知等差数列 $\{a_n\}$ 中, S_n 为其前n项和, $S_4=30,S_8=90$,

则
$$S_{12} = ()$$
 .

A.150

B.160

C.180

D.190

E.200

【解析】 $S_4=30$, $S_8=90\Rightarrow S_8-S_4=60$, 又 S_4 , S_8-S_4 , $S_{12}-S_8$ 成等差数列,可得 $S_{12}-S_8$ = $90\Rightarrow S_{12}=180$. 选 C.

3.等差数列 $\{a_n\}$ 和 $\{b_n\}$ 的前n项和分别用 S_n , T_n 表示 , 则 $\frac{a_k}{b_k} = \frac{S_{2k-1}}{T_{2k-1}}$

【例8】等差数列 $\{a_n\}$ 和 $\{b_n\}$ 的前n项和分别用 S_n , T_n 表示,且 $\frac{S_n}{T_n}$ =

$$\frac{5n+3}{2n-1}$$
, $\mathbb{J} \mathbb{J} \frac{a_5}{b_5} = ()$.

$$A.\frac{48}{13}$$

A.
$$\frac{48}{13}$$
 B. $\frac{49}{15}$

$$C.\frac{48}{17}$$

$$D.\frac{49}{19}$$

$$E.\frac{49}{17}$$

【例8】等差数列 $\{a_n\}$ 和 $\{b_n\}$ 的前n项和分别用 S_n , T_n 表示,且 $\frac{S_n}{T_n}$ =

$$\frac{5n+3}{2n-1}$$
, $\mathbb{N} \frac{a_5}{b_5} = ()$.

A.
$$\frac{48}{13}$$
 B. $\frac{49}{15}$ C. $\frac{48}{17}$

$$B.\frac{49}{15}$$

$$C.\frac{48}{17}$$

$$D.\frac{49}{19}$$

$$E.\frac{49}{17}$$

【解析】
$$\frac{a_5}{b_2} = \frac{S_9}{T_2} = \frac{5 \times 9}{2 \times 9}$$

【解析】
$$\frac{a_5}{b_5} = \frac{S_9}{T_9} = \frac{5 \times 9 + 3}{2 \times 9 - 1} = \frac{48}{17}$$
,选 C.