ЛАиГ. Домашнее задание 7

1. П213 Как изменится определитель порядка п, если его строки: написать в обратном порядке?

Пусть какое-то произведение входило в сумму определителя и ему соответствовала какая-то перестановка. В новый определитель то же самое произведение будет соответствовать той же перестановке, которую записали в обратном порядке. То есть, чтобы вычислить знак произведения, нужно найти знак новой перестнановки. Ее можно получить из изначальной путем транспозиций 1 и последнего, второго и предпоследнего и так далее. Всего таких транспозиций $\lfloor \frac{n}{2} \rfloor$. У каждой транспозиции знак -1, поэтому знак новой перестановки будет сохраняться, если $\lfloor \frac{n}{2} \rfloor \equiv 0 \mod 2$ и меняться, если $\lfloor \frac{n}{2} \rfloor \equiv 1 \mod 2$. Так как либо у всех произведений знак меняется, либо у всех он сохраняется, то и для всего определителя верно, что $\det A = \det A'$, если $\lfloor \frac{n}{2} \rfloor \equiv 0 \mod 2$ и $\det A = -\det A'$, если $\lfloor \frac{n}{2} \rfloor \equiv 1 \mod 2$

2. Как изменится определитель матрицы, если её «транспонировать» (то есть отразить) относительно побочной диагонали?

Транспонирование относительно побочной диагонали можно реализовать с помощью преобразования из прошлой задачи, назовем его функцией С. Тогда транспонирование относительно побочной диагонали для матрицы $A = C(C(A)^T)$ Так как транспонирование не влияет на знак определителя, как не влияет и четное количество применений функций С (размер матрицы не меняется, значит либо определитель не меняется 2n раз, либо знак у него меняется 2n раз), то определитель матрицы не меняется при транспонировании относительно побочной диагонали.

3. Как изменится определитель матрицы A, если при всех i, j элемент a_{ij} умножить на c^{i-j} , где $c \neq 0$ — некоторое фиксированное число?

Обозначим диагонали степенями с, на которое надо домножить ее элементы. Главная диагональ будет 0, диаггональ над ней 1, под главной -1 и так далее. Хотим доказать, что для каждой перестановки верно, что если сложить номера диагоналей элементов, то получится 0. Тогда итоговое произведение перестановки не изменится. Сумму номеров диагоналей можно вычислить как $\sum_{i=1}^{n} (a_i - i)$. Например, если матрица 3 на 3, то для перестановки 1, 2, 3 сумма номеров диагоналей будет 0 + 0 + 0, а для перестановки 2, 3, 1 будет 1 + 1 - 2. Так как $\sum_{i=1}^{n} (a_i - i) = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} i$. $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} i = \frac{(n+1)n}{2} \Rightarrow \sum_{i=1}^{n} (a_i - i) = 0$. То есть если сложить все степени c, на которое надо умножить произведение, всегда получится 0. То есть никакое произведение не изменится. Значит и весь определитель не изменится.

4. $\Pi 227$, $\Pi 228$

П227 Доказать, что определитель не изменится, если из каждой строки, кроме последней, вычесть все последующие строки.

Уже известно, что определитель не меняется при элементарных преобразованиях 1 типа. Так как преобразования из условия можно выполнить с помощью последовательного применения элементарных преобразований 1 типа, то определитель матрицы не меняется при преобразовании из условия.

П228 Доказать, что определитель не изменится, если к каждому столбцу, начиная со второго, прибавить все предыдущие столбцы.

Уже известно, что определитель матрицы не меняется при транспонировании и элементарных преобразованиях первого типа. Тогда так как преобразование из условия можно представить как транспонирование \rightarrow последовательное применение элементарных преобразований 1 типа \rightarrow транспонирование, то определитель не изменится.

5. П229 Как изменится определитель, если из каждой строки, кроме последней, вычесть последующую строку, из последней строки вычесть прежнюю первую строку?

Определитель никак не изменится, потому что будут использованы только преобразования 1 типа.

6. $\Pi 236$, $\Pi 240$

П236 Разлагая по 3-ей строке, вычислить определитель

$$\begin{vmatrix} 2 & -3 & 4 & 1 \\ 4 & -2 & 3 & 2 \\ a & b & c & d \\ 3 & -1 & 4 & 3 \end{vmatrix} = a \cdot \begin{vmatrix} -3 & 4 & 1 \\ -2 & 3 & 2 \\ -1 & 4 & 3 \end{vmatrix} - b \cdot \begin{vmatrix} 2 & 4 & 1 \\ 4 & 3 & 2 \\ 3 & 4 & 3 \end{vmatrix} + c \cdot \begin{vmatrix} 2 & -3 & 1 \\ 4 & -2 & 2 \\ 3 & -1 & 3 \end{vmatrix} - d \cdot \begin{vmatrix} 2 & -3 & 4 \\ 4 & -2 & 3 \\ 3 & -1 & 4 \end{vmatrix} =$$

$$=8a + 15b + 12c - 19d$$

П240 Вычислить определитель

Разложим по 5 строке, затем по 2 строке, затем снова по 2 строке

$$\begin{vmatrix} x & a & b & 0 & c \\ 0 & y & 0 & 0 & d \\ 0 & e & z & 0 & f \\ g & h & k & u & l \\ 0 & 0 & 0 & 0 & v \end{vmatrix} = v \cdot \begin{vmatrix} x & a & b & 0 \\ 0 & y & 0 & 0 \\ 0 & e & z & 0 \\ g & h & k & u \end{vmatrix} = v \cdot y \cdot \begin{vmatrix} x & b & 0 \\ 0 & z & 0 \\ g & k & u \end{vmatrix} = v \cdot y \cdot z \cdot \begin{vmatrix} x & 0 \\ g & u \end{vmatrix} = v \cdot y \cdot z \cdot x \cdot u$$

7. $\Pi 260, \Pi 263$

$\Pi 260$ Вычислить определитель

$$\begin{vmatrix} -3 & 9 & 3 & 6 \\ -5 & 8 & 2 & 7 \\ 4 & -5 & -3 & -2 \\ 7 & -8 & -4 & -5 \end{vmatrix} \rightsquigarrow \begin{vmatrix} 1 & 4 & 0 & 4 \\ -5 & 8 & 2 & 7 \\ 4 & -5 & -3 & -2 \\ 7 & -8 & -4 & -5 \end{vmatrix} \rightsquigarrow \begin{vmatrix} 1 & 4 & 0 & 4 \\ 0 & 28 & 2 & 27 \\ 0 & -21 & -3 & -18 \\ 0 & -36 & -4 & -33 \end{vmatrix} \rightsquigarrow \begin{vmatrix} 1 & 4 & 0 & 4 \\ 0 & 7 & -1 & 9 \\ 0 & -21 & -3 & -18 \\ 0 & -36 & -4 & -33 \end{vmatrix} \rightsquigarrow$$

2

$$\Rightarrow \begin{vmatrix} 1 & 4 & 0 & 4 \\ 0 & 7 & -1 & 9 \\ 0 & 0 & -6 & 9 \\ 0 & -1 & -9 & 12 \end{vmatrix} \Rightarrow - \begin{vmatrix} 1 & 4 & 0 & 4 \\ 0 & 7 & -1 & 9 \\ 0 & 0 & -6 & 9 \\ 0 & 1 & 9 & -12 \end{vmatrix} \Rightarrow \begin{vmatrix} 1 & 4 & 0 & 4 \\ 0 & 1 & 9 & -12 \\ 0 & 0 & -6 & 9 \\ 0 & 7 & -1 & 9 \end{vmatrix} \Rightarrow \begin{vmatrix} 1 & 4 & 0 & 4 \\ 0 & 1 & 9 & -12 \\ 0 & 0 & -6 & 9 \\ 0 & 0 & -64 & 93 \end{vmatrix} \Rightarrow$$

$$\Rightarrow \begin{vmatrix}
1 & 4 & 0 & 4 \\
0 & 1 & 9 & -12 \\
0 & 0 & 0 & -9 \\
0 & 0 & 2 & -6
\end{vmatrix}
\Rightarrow - \begin{vmatrix}
1 & 4 & 0 & 4 \\
0 & 1 & 9 & -12 \\
0 & 0 & 2 & -6 \\
0 & 0 & 0 & -9
\end{vmatrix} = 18$$

$\Pi 263$

$$\begin{vmatrix} 3 & -3 & -2 & -5 \\ 2 & 5 & 4 & 6 \\ 5 & 5 & 8 & 7 \\ 4 & 4 & 5 & 6 \end{vmatrix} \sim \begin{vmatrix} 1 & -8 & -6 & -11 \\ 2 & 5 & 4 & 6 \\ 5 & 5 & 8 & 7 \\ 4 & 4 & 5 & 6 \end{vmatrix} \sim \begin{vmatrix} 1 & -8 & -6 & -11 \\ 0 & 21 & 16 & 28 \\ 0 & 45 & 38 & 62 \\ 0 & 36 & 29 & 50 \end{vmatrix} \sim \begin{vmatrix} 1 & -8 & -6 & -11 \\ 0 & 21 & 16 & 28 \\ 0 & 3 & 6 & 6 \\ 0 & 36 & 29 & 50 \end{vmatrix} \sim$$

$$\Rightarrow \left| \begin{array}{ccc|c} 1 & -8 & -6 & -11 \\ 0 & 0 & -26 & -14 \\ 0 & 3 & 6 & 6 \\ 0 & 0 & -43 & -22 \end{array} \right| \Rightarrow - \left| \begin{array}{ccc|c} 1 & -8 & -6 & -11 \\ 0 & 3 & 6 & 6 \\ 0 & 0 & -26 & -14 \\ 0 & 0 & -43 & -22 \end{array} \right| \Rightarrow - \left| \begin{array}{ccc|c} 1 & -8 & -6 & -11 \\ 0 & 3 & 6 & 6 \\ 0 & 0 & 17 & 8 \\ 0 & 0 & 8 & 2 \end{array} \right| \Rightarrow$$

8. Даны матрицы $A, B \in M_4(\mathbb{R})$. Известно, что det $\mathbf{A} = \mathbf{1}$ и

$$B^{(1)} = 3A^{(3)} - 2A^{(4)} \quad B^{(2)} = 2A^{(1)} + 3A^{(2)} \quad B^{(3)} = -2A^{(1)} + 2A^{(3)} + A^{(4)} \quad B^{(4)} = 2A^{(2)} + 3A^{(4)}$$

где $A^{(i)}B^{(j)}$ обозначают і-й столбец матрицы ${\bf A}$ и ${\bf j}$ -й столбец матрицы ${\bf B}$ соответственно. Найдите det ${\bf B}$.

$$detB = |B^{(1)}, B^{(2)}, B^{(3)}, B^{(4)}| = 3|A^{(3)}, B^{(2)}, B^{(3)}, B^{(4)}| - 2|A^{(4)}, B^{(2)}, B^{(3)}, B^{(4)}| = 3|A^{(4)}, B^{(4)}| = 3|A^$$

$$= 6|A^{(3)},A^{(1)},B^{(3)},B^{(4)}| + 9|A^{(3)},A^{(2)},B^{(3)},B^{(4)}| - 2|A^{(4)},B^{(2)},B^{(3)},B^{(4)}| =$$

$$=12|A^{(3)},A^{(1)},B^{(3)},A^{(2)}|+18|A^{(3)},A^{(1)},B^{(3)},A^{(4)}|+9|A^{(3)},A^{(2)},B^{(3)},B^{(4)}|-2|A^{(4)},B^{(2)},B^{(3)},B^{(4)}|=12|A^{(4)},B^{(4)},B^{(4)}|+18|A^{(4)},A^{(4)},B^{(4)}|+18|A^{(4)},A^{(4)}|+18|A^{(4)}|+18|A^{(4)},A^{(4)}|+18|A^{(4)}|+18|A^{(4)}|+18|A^{(4)$$

$$=12|A^{(3)},A^{(1)},B^{(3)},A^{(2)}|+18|A^{(3)},A^{(1)},B^{(3)},A^{(4)}|+18|A^{(3)},A^{(2)},B^{(3)},A^{(2)}|+27|A^{(3)},A^{(2)},B^{(3)},A^{(4)}|-2|A^{(4)},B^{(2)},B^{(3)},B^{(4)}|=$$

$$=12|A^{(3)},A^{(1)},B^{(3)},A^{(2)}|+18|A^{(3)},A^{(1)},B^{(3)},A^{(4)}|+18|A^{(3)},A^{(2)},B^{(3)},A^{(2)}|+27|A^{(3)},A^{(2)},B^{(3)},A^{(4)}|-4|A^{(4)},A^{(1)},B^{(3)},B^{(4)}|-6|A^{(4)},A^{(2)},B^{(3)},B^{(4)}|=$$

$$=12|A^{(3)},A^{(1)},B^{(3)},A^{(2)}|+18|A^{(3)},A^{(1)},B^{(3)},A^{(4)}|+18|A^{(3)},A^{(2)},B^{(3)},A^{(2)}|+27|A^{(3)},A^{(2)},B^{(3)},A^{(4)}|-8|A^{(4)},A^{(1)},B^{(3)},A^{(2)}|-12|A^{(4)},A^{(1)},B^{(3)},A^{(4)}|-6|A^{(4)},A^{(2)},B^{(3)},B^{(4)}|=$$

$$=12|A^{(3)},A^{(1)},B^{(3)},A^{(2)}|+18|A^{(3)},A^{(1)},B^{(3)},A^{(4)}|+18|A^{(3)},A^{(2)},B^{(3)},A^{(2)}|+27|A^{(3)},A^{(2)},B^{(3)},A^{(4)}|-8|A^{(4)},A^{(1)},B^{(3)},A^{(2)}|-12|A^{(4)},A^{(1)},B^{(3)},A^{(4)}|-12|A^{(4)},A^{(2)},B^{(3)},A^{(2)}|-18|A^{(4)},A^{(2)},B^{(3)},A^{(4)}|$$

Далее можно убрать из суммы элементы, где есть одинаковые элементы, и где есть набор из $A^{(1)}$, $A^{(3)}$, $A^{(4)}$, потому что тогда можно будет сделать какой-нибудь элемент нулем и весь определитель будет 0. Для остальных элементов вычтем все что можем из 3 элемента путем преобразований 1 типа, определитель не изменится. Получим:

$$12|A^{(3)},A^{(1)},B^{(3)},A^{(2)}| + 18|A^{(3)},A^{(1)},B^{(3)},A^{(4)}| + 18|A^{(3)},A^{(2)},B^{(3)},A^{(2)}| + 27|A^{(3)},A^{(2)},B^{(3)},A^{(4)}| - 8|A^{(4)},A^{(1)},B^{(3)},A^{(2)}| - 12|A^{(4)},A^{(1)},B^{(3)},A^{(4)}| - 12|A^{(4)},A^{(2)},B^{(3)},A^{(2)}| - 18|A^{(4)},A^{(2)},B^{(3)},A^{(4)}| = 8|A^{(4)},A^{(2)},B^{(3)},A^{(2)}| - 18|A^{(4)},A^{(2)},B^{(3)},A^{(4)}| - 18|A^{(4)},A^{(2)},B^{(3)},A^{(4)}| - 18|A^{(4)},A^{(4)},A^{(4)}| - 18|A^{(4)},A^{(4)},A^{(4)}| - 18|A^{(4)},A^{(4)}| - 18|A^$$

$$= 12|A^{(3)}, A^{(1)}, B^{(3)}, A^{(2)}| + 27|A^{(3)}, A^{(2)}, B^{(3)}, A^{(4)}| - 8|A^{(4)}, A^{(1)}, B^{(3)}, A^{(2)}| =$$

$$= 12|A^{(3)}, A^{(1)}, A^{(4)}, A^{(2)}| + 27|A^{(3)}, A^{(2)}, -2A^{(1)}, A^{(4)}| - 8|A^{(4)}, A^{(1)}, 2A^{(3)}, A^{(2)}| =$$

$$= 12|A^{(3)}, A^{(1)}, A^{(4)}, A^{(2)}| - 54|A^{(3)}, A^{(2)}, A^{(1)}, A^{(4)}| - 16|A^{(4)}, A^{(1)}, A^{(3)}, A^{(2)}| =$$

$$= 54|A^{(1)}, A^{(2)}, A^{(3)}, A^{(4)}| - 12|A^{(1)}, A^{(2)}, A^{(3)}, A^{(4)}| - 16|A^{(1)}, A^{(2)}, A^{(3)}, A^{(4)}| = 54 - 12 - 16 =$$

$$= 26$$

9. Пусть A, B - квадратные матрицы одинакового порядка ≥ 3 , причём все строки в A одинаковы и все столбцы в B одинаковы. Чему может быть равен определитель матрицы A+B?

Пусть
$$A = \begin{pmatrix} a & b & \dots & c \\ a & b & \dots & c \\ \vdots & \vdots & \ddots & \vdots \\ a & b & \dots & c \end{pmatrix}, B = \begin{pmatrix} x & x & \dots & x \\ y & y & \dots & y \\ \vdots & \vdots & \ddots & \vdots \\ z & z & \dots & z \end{pmatrix}, A + B = \begin{pmatrix} a+x & b+x & \dots & c+x \\ a+y & b+y & \dots & c+y \\ \vdots & \vdots & \ddots & \vdots \\ a+z & b+z & \dots & c+z \end{pmatrix}$$

Сделаем в первом столбце везде нули, кроме 1 строки. Для этого вычтем с нужными коэффициентами 1 строку из каждой последующей. Получим:

$$\begin{vmatrix} a+x & b+x & \dots & c+x \\ 0 & b+y-\frac{(b+x)(a+y)}{a+x} & \dots & c+y-\frac{(c+x)(a+y)}{a+x} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & b+y-\frac{(b+x)(a+z)}{a+x} & \dots & c+y-\frac{(c+x)(a+z)}{a+x} \end{vmatrix} =$$

$$= (a+x) \cdot \begin{vmatrix} b+y - \frac{(b+x)(a+y)}{a+x} & \dots & c+y - \frac{(c+x)(a+y)}{a+x} \\ \vdots & \ddots & & \vdots \\ b+y - \frac{(b+x)(a+z)}{a+x} & \dots & c+y - \frac{(c+x)(a+z)}{a+x} \end{vmatrix} =$$

$$= (a+x) \cdot \begin{vmatrix} b+y-\frac{(b+x)(a+y)}{a+x} & \dots & c+y-\frac{(c+x)(a+y)}{a+x} \\ \vdots & \ddots & & \vdots \\ b+y-\frac{(b+x)(a+z)}{a+x}-b-y+\frac{(b+x)(a+y)}{(a+x)} & \dots & c+y-\frac{(c+x)(a+z)}{a+x}-c-y+\frac{(c+x)(a+y)}{a+x} \end{vmatrix} =$$

$$= (a+x) \cdot \begin{vmatrix} b+y - \frac{(b+x)(a+y)}{a+x} & \dots & c+y - \frac{(c+x)(a+y)}{a+x} \\ \vdots & \ddots & & \vdots \\ -\frac{(b+x)(a+z)}{a+x} + \frac{(b+x)(a+y)}{(a+x)} & \dots & -\frac{(c+x)(a+z)}{a+x} + \frac{(c+x)(a+y)}{a+x} \end{vmatrix} =$$

$$= (a+x) \cdot \begin{vmatrix} b+y - \frac{(b+x)(a+y)}{a+x} & \dots & c+y - \frac{(c+x)(a+y)}{a+x} \\ \vdots & \ddots & \vdots \\ \frac{(b+x)(a+y) - (b+x)(a+z)}{(a+x)} & \dots & \frac{(c+x)(a+y) - (c+x)(a+z)}{(a+x)} \end{vmatrix} =$$

$$= (a+x) \cdot \left| \begin{array}{cccc} b+y - \frac{(b+x)(a+y)}{a+x} & \dots & c+y - \frac{(c+x)(a+y)}{a+x} \\ & \vdots & \ddots & & \vdots \\ & \frac{(b+x)(y-z)}{(a+x)} & \dots & \frac{(c+x)(y-z)}{(a+x)} \end{array} \right| =$$

$$= (y-z) \cdot \begin{vmatrix} b+y - \frac{(b+x)(a+y)}{a+x} & \dots & c+y - \frac{(c+x)(a+y)}{a+x} \\ \vdots & \ddots & & \vdots \\ b+x & \dots & c+x \end{vmatrix}$$

Еще выше можно было циклически вычесть все строчки друг из друга без изменения, я оставил первую для вычислений. Можно получить определитель вида (каждую строчку можно привести к такому же виду как последнуюю):

$$\frac{(z-y)\dots(y-z)}{(a+x)^{m-2}} \cdot \left| \begin{array}{ccc} b+x & \dots & c+x \\ \vdots & \ddots & \vdots \\ b+x & \dots & c+x \end{array} \right| = 0$$

, где m - размер матрицы m - 2, потому что размер матрицы уменьшился на 1 и в последнюю строчку не надо вносить множитель. Если множитель равен 0, то еще раньше можно сделать вывод, что определитель 0.

Ответ: 0