November 17, 2015

\cup	Contents		7.1	Law of Sines	0
			7.2	Law of Cosines	0
Н	Definition	2	7.3	Law of Tangents	0
	1.1 Extensions to Angles $> 90^{\circ}$	2	7.4	Law of Cotangents	0
	1.2 The Unit Circle	2	7.5	Mollweide's Formula	0
		2	2.6	Stewart's Theorem	0
	-	2	7.7	Angles in Terms of Sides	0
2	adc	အ			2
	2.1 Properties	33	8.1	AAS/ASA Triangle	2
	$2.1.1 \sin x \dots \dots \dots \dots \dots$	3	8.5		10
	$2.1.2 \cos x \dots \dots$	က	8		=
		က	4	SSA Triangle	: =
		3	, 00 , 10	Right Triangle	: =
		3			
	$2.1.6 \cot x \dots \dots \dots \dots \dots \dots \dots$	3		Polar Coordinates 1	Ξ
	2.2 General Forms of Trigonometric Functions.	3	9.1	Properties	Ξ
			9.5	5	Ξ
က	Identities	4			
	3.1 Basic Identities	4 1	10 Speci	Special Polar Graphs 1	Ξ
		4	10.1	Limaçon of Pascal	12
	3.3 Double Angle	4	10.2	Rose	133
		4	10.3	Spiral of Archimedes	133
		. 4	10.4	Lemniscate of Bernoulli	-23
	, ,	1 10	10.5	Folium of Descartes	7
	, ,	ס אר	10.6	Spiral of Fermat	7
		יו כ	10.7		7
	,,	က က	10.0		7 7
		G 1	10.0	r in in its property of the contract of the co	7 ;
	_	2	10.9	Lituus I	₽,
	3.11 Identities without Variables	9	10.10		2
	,		10.11	Ourve	5
4	sphs	9	10.12	Strophoid 1	5
		9	10.13	Cochleoid	19
	4.2 $y = \cos x \dots \dots \dots$	9	10.14	Cycloid of Ceva	16
	4.3 $y = \tan x \dots \dots \dots$	9	10.15	Freeth's Nephroid	19
	y =		7.0		1
	y =				` ;
	4.6 $y = \cot x \dots \dots \dots \dots \dots$	9	11.1	oles sald	12
			11.2		17
D	oles	4	11.3	Area of the Triangle	7
		-1			
	5.2 Relations Between Trig Functions	∞			
9	Inverse Trigonometric Functions	œ			
	6.1 Principal Values	×			
	6.2 Identities	_∞			
1	Bolationshine Botwoon Sides and Angles	o			

Trigonometry Cram Sheet

alltootechnical.tk

1 Definition

Triangle ABC has a right angle at C and sides of length a, b, c. The trigonometric functions of angle A are defined as follows:

1.
$$\sin A = \frac{a}{c} = \frac{\text{opposite}}{\text{hypotenuse}}$$

2.
$$\cos A = \frac{b}{c} = \frac{\text{adjacent}}{\text{hypotenuse}}$$

3.
$$\tan A = \frac{a}{b} = \frac{\text{opposite}}{\text{adjacent}}$$

4.
$$\csc A = \frac{c}{a} = \frac{\text{hypotenuse}}{\text{opposite}}$$

$$a opposition of a constant of a constant$$

6.
$$\cot A = \frac{b}{a} = \frac{\text{adjacent}}{\text{opposite}}$$

1.1 Extensions to Angles $> 90^{\circ}$

negative along OY. The distance from origin O to point P is positive and denoted by $r = \sqrt{x^2 + y^2}$. The angle A described counterclockwise from OX is considered positive. If $r = \pi/180$ radians = 0.017453292519943 ... radians it is described $r = \sqrt{x^2 + y^2}$. it is described *clockwise* from OX it is considered *negative*. For an angle A in any quadrant, the trigonometric functions A point P in the Cartesian plane has coordinates (x,y), where x is considered as positive along OX and negative

of A are defined as follows:

1.
$$\sin A = \frac{y}{r}$$

$$2. \cos A = \frac{x}{r}$$

4.
$$\csc A = \frac{r}{y}$$

3. $\tan A =$

5.
$$\sec A = \frac{r}{x}$$

6.
$$\cot A = \frac{x}{y}$$

1.3 Degrees and Radians

A radian is that angle θ subtended at center O of a circle by an arc MN equal to the radius r. Since 2π radians = 360° we have:

1.4 Signs and Variations

Quadrant	sin A	cos A	$\tan A$
П	(0,1)	(1,0)	+ (0, 8)
П	(1,0)	(0,-1)	(-∞, 0)
Ш	(0,-1)	(-1,0)	(0, ∞) (0, ∞)
IV	(-1,0)	+ (0,1)	$(-\infty, 0)$
Quadrant	cot A	$\sec A$	csc A
Ι	+ (0,%)	+ (1,8)	+ (8) +
П	$(0, -\infty)$	_ (∞, -1)	(1, ∞)
Ш	(8,0)	(-1, ∞)	(8,-1)
	ı	+	

alltootechnical.tk

Properties and General Forms

2.1 Properties

2.1.1 sin x

Domain: $\{x|x \in \mathbb{R}\}$ or $(-\infty, +\infty)$

Range: $\{y|-1 \le y \le 1\}$ or [-1,1]

Period: 2π

x-intercepts: $k\pi$ where $k \in \mathbb{Z}$

VA: none

Parity: odd

2.1.2 cos x

Domain: $\{x | x \in \mathbb{R}\}$ or $(-\infty, +\infty)$

Range: $\{y|-1 \le y \le 1\}$ or [-1,1]

Period: 2π

VA: none

x-intercepts: $\frac{\pi}{2} + k\pi$ where $k \in \mathbb{Z}$

Parity: even

2.1.3 tan x

Domain: $\{x|x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}\ \text{or}\ \bigcup_{k \in \mathbb{Z}} \left(\frac{(k-1)\pi}{2}, \frac{(k+1)\pi}{2}\right)$

Range: $\{y|y\in\mathbb{R}\}$ or $(-\infty,+\infty)$

VA: $x = \frac{\pi}{2} + k\pi$ where $k \in \mathbb{Z}$

x-intercepts: $k\pi$ where $k \in \mathbb{Z}$

Parity: odd

Given some trigonometric function f(x), its general form is represented as y = Af(B(x - C)) + D, where its amplitude is |A|, its period is $\frac{1}{2n}$ or $\frac{1}{n}$ (for tangent and cotangent), its phase shift is C, and its vertical translation is D units upward (if D > 0) or D units downward (if D < 0). The maximum and minimum value for $\sin x$ and $\cos x$ is A + D and

2.1.4 csc x

Domain: $\{x|x \neq k\pi, k \in \mathbb{Z}\}$ or $\bigcup_{k \in \mathbb{Z}} (k\pi, (k+1)\pi)$

Range: $\{y|y \le 1 \cup y \ge 1\}$ or $(-\infty, -1] \cup [1, +\infty)$

Period: 2π

VA: $x = k\pi$ where $k \in \mathbb{Z}$

x-intercepts: none

Parity: odd

2.1.5 sec x

Domain: $\{x | x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$ or $\bigcup_{k \in \mathbb{Z}} \left(\frac{(k-1)\pi}{2}, \frac{(k+1)\pi}{2}\right)$

Range: $\{y|y \le 1 \cup y \ge 1\}$ or $(-\infty, -1] \cup [1, +\infty)$

Period: 2π

VA: $x = \frac{\pi}{2} + k\pi$ where $k \in \mathbb{Z}$

x-intercepts: none

Parity: even

2.1.6 cot x

Domain: $\{x|x \neq k\pi, k \in \mathbb{Z}\}$ or $\bigcup_{k \in \mathbb{Z}} (k\pi, (k+1)\pi)$

Range: $\{y|y\in\mathbb{R}\}$ or $(-\infty,+\infty)$

Period: π

x-intercepts: $\frac{\pi}{2} + k\pi$ where $k \in \mathbb{Z}$ **VA:** $x = k\pi$ where $k \in \mathbb{Z}$

Parity: odd

2.2 General Forms of Trigonometric Functions

-A + D respectively.

vertical tra	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
phase shift	1 1 2 3
period	-1 -1 -2 -2
nplitude	2 3

3.2 Sum and Difference

 $\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta$

3.1 Basic Identities

Identities

Reciprocal Identities

 $\csc \theta = \frac{1}{\sin \theta}; \sin \theta = \frac{1}{\csc \theta}$

 $\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$

 $\tan (\alpha \pm \beta) = \frac{\tan \alpha}{1 \mp \tan \alpha \tan \beta}$

 $\cot (\alpha \pm \beta) = \frac{\cot \alpha \cot \beta \mp 1}{\cot \alpha \cot \beta}$ $\cot \beta \pm \cot \alpha$

3.3 Double Angle

 $\sin 2\alpha = 2\sin\alpha\cos\alpha$

 $\sin\theta \csc\theta = \cos\theta \sec\theta = \tan\theta \cot\theta = 1$

 $\cot \theta = \frac{1}{\tan \theta}; \quad \tan \theta = \frac{1}{\cot \theta}$ $\sec \theta = \frac{1}{\cos \theta}; \cos \theta = \frac{1}{\sec \theta}$

 $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2\sin^2 \alpha = 2\cos^2 \alpha - 1$

 $\tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha}$

 $\tan\theta = \frac{\sin\theta}{\cos\theta}; \quad \cos\theta = \frac{\sin\theta}{\tan\theta}; \quad \sin\theta = \cos\theta\tan\theta$

Ratio Identities

 $\cot\theta = \frac{\cos\theta}{\sin\theta}; \quad \sin\theta = \frac{\cos\theta}{\cot\theta}; \quad \cos\theta = \sin\theta\cot\theta$

3.4 Half Angle

Let \mathcal{Q}_n , where $n \in \{1, 2, 3, 4\}$, denote the set of all angles within the n^{th} quadrant of the Cartesian plane.

$$\sin\frac{\alpha}{2} = \begin{cases} \sqrt{\frac{1-\cos\alpha}{1-\cos\alpha}} & \text{if } \frac{\alpha}{2} \in (\mathcal{Q}_1 \cup \mathcal{Q}_2) \\ -\sqrt{\frac{1-\cos\alpha}{1-\alpha}} & \text{if } \frac{\alpha}{2} \in (\mathcal{Q}_3 \cup \mathcal{Q}_4) \end{cases}$$

 $\tan^2 \theta + 1 = \sec^2 \theta$; $\tan^2 \theta = \sec^2 \theta - 1$; $\sec^2 \theta - \tan^2 \theta = 1$ $\cot^2 \theta + 1 = \csc^2 \theta$; $\cot^2 \theta = \csc^2 \theta - 1$; $\csc^2 \theta - \cot^2 \theta = 1$

 $\sin^2 \theta + \cos^2 \theta = 1$; $\sin^2 \theta = 1 - \cos^2 \theta$; $\cos^2 \theta = 1 - \sin^2 \theta$

Pythagorean Identities

$$\cos\frac{\alpha}{2} = \begin{cases} \sqrt{\frac{1+\cos\alpha}{2}} & \text{if } \frac{\alpha}{2} \in (\mathcal{Q}_1 \cup \mathcal{Q}_4) \\ -\sqrt{\frac{1+\cos\alpha}{1+\cos\alpha}} & \text{if } \frac{\alpha}{2} \in (\mathcal{Q}_2 \cup \mathcal{Q}_3) \end{cases}$$

Co-function Identities

 $\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$ $\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$

$$\tan \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha} = \csc \alpha - \cot \alpha$$

3.5 Multiple Angle

 $\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$

 $\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta$ $\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$

 $\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$

 $\cos 3\alpha = 4\cos^3\alpha - 3\cos\alpha$

 $\tan 3\alpha = \frac{3\tan \alpha - \tan^3 \alpha}{}$ $1-3\tan^2\alpha$

 $\cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$

Parity Identities $\sin\left(-A\right) = -\sin A$

 $\sin 4\alpha = 4\sin\alpha\cos\alpha - 8\sin^3\alpha\cos\alpha$

 $\cos 4\alpha = 8\cos^4\alpha - 8\cos^2\alpha + 1$

 $\tan 4\alpha = \frac{1}{1 - 6\tan^2\alpha + \tan^4\alpha}$ $4\tan\alpha - 4\tan^3\alpha$

 $\sin(n\alpha) = \sum_{i=0}^{n} \binom{n}{i} \cos^{i} \alpha \sin^{n-i} \alpha \sin\left(\frac{(n-i)\pi}{2}\right)$

tan(-A) = -tan A

 $\cos(-A) = \cos A$

unslation

 $\csc(-A) = -\csc A$

sec(-A) = sec A

$$\cos\left(n\alpha\right) = \sum_{i=0}^{n} \binom{n}{i} \cos^{i}\alpha \sin^{n-i}\alpha \cos\left(\frac{(n-i)\pi}{2}\right)$$

 $\cot (-A) = -\cot A$

3.6 Power Reduction

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$

$$\tan^2 \theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}$$

$$\sin^3\theta = \frac{3\sin\theta - \sin 3\theta}{4}$$

$$\cos^3\theta = \frac{3\cos\theta + \cos 3\theta}{4}$$

$$\sin^4 \theta = \frac{3 - 4\cos 2\theta + \cos 4\theta}{8}$$
$$\cos^4 \theta = \frac{3 + 4\cos 2\theta + \cos 4\theta}{8}$$

$$\sin^5 \theta = \frac{10\sin \theta - 5\sin 3\theta + \sin 5\theta}{10\cos \theta}$$

$$\cos^5 \theta = \frac{10\cos\theta + 5\cos3\theta + \cos5\theta}{16}$$

3.7 Product to Sum

$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin \left(\alpha + \beta \right) + \sin \left(\alpha - \beta \right) \right]$$

$$\cos \alpha \sin \beta = \frac{1}{2} \left[\sin (\alpha + \beta) - \sin (\alpha - \beta) \right]$$

$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos (\alpha + \beta) + \cos (\alpha - \beta) \right]$$

$$\sin \alpha \sin \beta = \frac{1}{2} \left[\cos \left(\alpha + \beta \right) - \cos \left(\alpha - \beta \right) \right]$$

3.8 Sum to Product

$$\sin\theta \pm \sin\varphi = 2\sin\frac{\theta \pm \varphi}{2}\cos\frac{\theta \mp \varphi}{2}$$

$$\cos\theta + \cos\varphi = 2\cos\frac{\theta + \varphi}{2}\cos\frac{\theta - \varphi}{2}$$

$$\cos\theta - \cos\varphi = -2\sin\frac{\theta + \varphi}{2}\sin\frac{\theta - \varphi}{2}$$

3.9 Linear Combinations

For some purposes it is important to know that any linear combination of sine waves of the same period or frequency but different phase shifts is also a sine wave with the same period or frequency, but a different phase shift.

Definition

The two-argument form of the arctangent function, denoted by $\tan^{-1}(y,x)$ gathers information on the signs of the inputs in order to return the appropriate quadrant of the computed angle. Thus, it is defined as:

$$\tan^{-1}\left(\frac{x}{x}\right) \quad \text{if } x > 0,$$

$$\tan^{-1}\left(\frac{x}{x}\right) + \pi \quad \text{if } x < 0 \text{ and } y \ge 0,$$

$$\tan^{-1}\left(\frac{x}{x}\right) - \pi \quad \text{if } x < 0 \text{ and } y < 0,$$

$$\frac{1}{2} \quad \text{if } x = 0 \text{ and } y < 0,$$

$$\frac{1}{2} \quad \text{if } x = 0 \text{ and } y > 0,$$

$$\frac{1}{2} \quad \text{if } x = 0 \text{ and } y < 0,$$

$$\frac{1}{2} \quad \text{if } x = 0 \text{ and } y < 0,$$

$$\text{undefined} \quad \text{if } x = 0 \text{ and } y = 0.$$

Sine and Cosine

In the case of a non-zero linear combination of a sine and cosine wave (which is just a sine wave with a phase shift of $(\frac{\pi}{2})$, we have:

4 Graphs **4.1** $y = \sin x$

$$a \sin x + b \cos x = c \sin (x + \theta)$$

where $c = \pm \sqrt{a^2 + b^2}$ and θ satisfies the equations $c \cos \theta =$ a and $c\sin\theta = b$, or $\theta = \tan^{-1}(b, a)$.

Arbitrary Phase Shift

More generally, for an arbitrary phase shift, we have:

$$a \sin x + b \sin (x + \theta) = c \sin (x + \varphi)$$

where $c=\pm\sqrt{a^2+b^2+2ab\cos\theta}$, and φ satisfies the equations $\cos\varphi=a+b\cos\theta$ and $c\sin\varphi=b\sin\theta$ or $\varphi=\tan^{-1}(b\sin\theta,a+b\cos\theta)$.

3.10 Other Related Identities

- If $x + y + z = \pi$, then $\sin 2x + \sin 2y + \sin 2z =$ $4 \sin x \sin y \sin z$.
- Triple Tangent Identity. If $x + y + z = \pi$, then $\tan x + \tan y + \tan z = \tan x \tan y \tan z$.

 -2π

- Triple Cotangent Identity. If $x + y + z = \frac{\pi}{2}$, then $\cot x + \cot y + \cot z = \cot x \cot y \cot z$.
- Ptolemy's Theorem. If $w+x+y+z=\pi$, then $\sin{(w+x)}\sin{(x+y)}=\sin{w}\sin{y}+\sin{x}\sin{z}$.
- $\cot x \cot y + \cot y \cot z + \cot z \cot x = 1$
- $a\cos x + b\sin x = \sqrt{a^2 + b^2}\cos(x \tan^{-1}(b, a))$
- Tangent of an Average. $\tan\left(\frac{\alpha+\beta}{2}\right) = \frac{\sin\alpha + \sin\beta}{\cos\alpha + \cos\beta} =$
- $\tan x + \sec x = \tan\left(\frac{x}{2} + \frac{\pi}{4}\right)$
- $\bullet \sum_{i=0}^{n} \sin \left(\varphi + i\alpha\right) = \frac{\sin \frac{(n+1)\alpha}{2} \sin \left(\varphi + \frac{n\alpha}{2}\right)}{\sin \frac{\alpha}{2}}$

Trigonometry Cram Sheet

alltootechnical.tk

$$\bullet \sum_{i=0}^n \cos{(\varphi+i\alpha)} = \frac{\sin{\frac{(n+1)\alpha}{2}}\cos{(\varphi+\frac{n\alpha}{2})}}{\sin{\frac{\alpha}{2}}}$$

$$\bullet \sum_{n=1}^{\infty} \prod_{m=1}^{n} \cos \frac{m\pi}{2n+1} = 1$$

 $\bullet \cos \frac{2\pi}{21} + \cos \left(2 \cdot \frac{2\pi}{21} \right) + \cos \left(4 \cdot \frac{2\pi}{21} \right) + \cos \left(5 \cdot \frac{2\pi}{21} \right) + \cos \left(8 \cdot \frac{2\pi}{21} \right) + \cos \left(10 \cdot \frac{2\pi}{21} \right) = \frac{2}{1}$

• $\cos \frac{\pi}{5} = \cos 36^{\circ} = \frac{1}{4}(\sqrt{5} + 1) = \frac{1}{2}\varphi$

• $\cos 24^{\circ} + \cos 48^{\circ} + \cos 96^{\circ} + \cos 168^{\circ} =$

3.11 Identities without Variables

- Morrie's Law. $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 80^{\circ} = \frac{1}{8}$
- $\sin 20^{\circ} \cdot \sin 40^{\circ} \cdot \sin 80^{\circ} = \frac{\sqrt{3}}{8}$
- $\sin \frac{\pi}{10} = \sin 18^{\circ} = \frac{1}{4}(\sqrt{5} 1) = \frac{1}{2}\varphi^{-1}$ • $\sin^2 18^\circ + \sin^2 30^\circ = \sin^2 36^\circ$

4.4 $y = \csc x$

2

2 23

 $-\frac{3\pi}{2}$

 -2π

-2

 $y = \cos x$

4.2

$y = \sec x$ 4.5

2π

-2

$4.6 \quad y = \cot x$

2

 $y = \tan x$

4.3

37

 $-\frac{3\pi}{2}$

 -2π

alltootechnical.tk

Tables ಬ

5.1 Exact Values of Trigonometric Functions

$\csc A$	8	$\sqrt{6} + \sqrt{2}$	2	$\sqrt{2}$	$\frac{2}{3}\sqrt{3}$	$\sqrt{6}-\sqrt{2}$	1	$\sqrt{6}-\sqrt{2}$	$\frac{2}{3}\sqrt{3}$	$\sqrt{2}$	2	$\sqrt{6} + \sqrt{2}$	8	$-\left(\sqrt{6}+\sqrt{2}\right)$	-2	$-\sqrt{2}$	$-\frac{2}{3}\sqrt{3}$	$-\left(\sqrt{6}-\sqrt{2}\right)$	-1	$-\left(\sqrt{6}-\sqrt{2}\right)$	$-\frac{2}{3}\sqrt{3}$	$-\sqrt{2}$	-2	$-\left(\sqrt{6}+\sqrt{2}\right)$	8
$\sec A$	1	$\sqrt{6}-\sqrt{2}$	$\frac{2}{3}\sqrt{3}$	$\sqrt{2}$	2	$\sqrt{6} + \sqrt{2}$	8	$-\left(\sqrt{6}+\sqrt{2}\right)$	-2	$-\sqrt{2}$	$-\frac{2}{3}\sqrt{3}$	$-\left(\sqrt{6}-\sqrt{2}\right)$	-1	$-\left(\sqrt{6}-\sqrt{2}\right)$	$-\frac{2}{3}\sqrt{3}$	$-\sqrt{2}$	-2	$-\left(\sqrt{6}+\sqrt{2}\right)$	8	$\sqrt{6} + \sqrt{2}$	23	$\sqrt{2}$	$\frac{2}{3}\sqrt{3}$	$\sqrt{6}-\sqrt{2}$	П
cot A	8	$2 + \sqrt{3}$	<u>√</u> 3	1	$\frac{1}{3}\sqrt{3}$	$2-\sqrt{3}$	0	$-(2-\sqrt{3})$	$-\frac{1}{3}\sqrt{3}$	-1	-\3	$-(2+\sqrt{3})$	8	$2 + \sqrt{3}$	<u>√</u> 3	1	$\frac{1}{3}\sqrt{3}$	$2-\sqrt{3}$	0	$-(2-\sqrt{3})$	$-\frac{1}{3}\sqrt{3}$	-1	-\3	$-(2+\sqrt{3})$	8
tan A	0	$2-\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	1	$\sqrt{3}$	$2+\sqrt{3}$	8	$-\left(2+\sqrt{3}\right)$	$-\sqrt{3}$	-1	$-\frac{1}{3}\sqrt{3}$	$-\left(2-\sqrt{3}\right)$	0	$2-\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	1	$\sqrt{3}$	$2+\sqrt{3}$	8	$-(2+\sqrt{3})$	$-\sqrt{3}$	-1	$-\frac{1}{3}\sqrt{3}$	$-\left(2+\sqrt{3}\right)$	0
$\cos A$	1	$\frac{1}{4} \left(\sqrt{6} + \sqrt{2} \right)$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	□ 0	$\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	0	$-\tfrac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	⊢lΩ	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{3}$	$-\tfrac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	-1	$-\tfrac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$-\frac{1}{2}\sqrt{3}$	$-\frac{1}{2}\sqrt{2}$	- 2 1	$-\tfrac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	0	$\frac{1}{4} \left(\sqrt{6} - \sqrt{2} \right)$	100	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{4} \left(\sqrt{6} + \sqrt{2} \right)$	П
sin A	0	$\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	717	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	1	$\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	□ 0	$\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	0	$-\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	710	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{3}$	$-\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	-1	$-\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$-\frac{1}{2}\sqrt{3}$	$-\frac{1}{2}\sqrt{2}$	- 217	$-\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	0
A rad	0	$\pi/12$	9/μ	π/4	π/3	$5\pi/12$	$\pi/2$	$7\pi/12$	$2\pi/3$	$3\pi/4$	5π/6	$11\pi/12$	ĸ	$13\pi/12$	$9/\mu$	5π/4	$4\pi/3$	$17\pi/12$	$3\pi/2$	$19\pi/12$	5π/3	$7\pi/4$	$11\pi/6$	$23\pi/12$	2π
A°	.0	15°	30°	45°	°09	.22	°06	105°	120°	135°	150°	165°	180°	195°	210°	225°	240°	255°	270°	285°	300°	315°	330°	345°	360°

5.2 Relations Between Trig Functions

	$\sin \theta = u$	$n = \theta \cos$	$\tan \theta = u$	$\csc \theta = u$	$\sec \theta = u$	$\cot \theta = u$
θ uis	n	$\sqrt{1-u^2}$	$\frac{u}{\sqrt{1+u^2}}$	$\frac{1}{u}$	$\frac{\sqrt{u^2 - 1}}{u}$	$\frac{1}{\sqrt{1+u^2}}$
$\theta \cos \theta$	$\sqrt{1-u^2}$	n	$\frac{1}{\sqrt{1+u^2}}$	$\frac{\sqrt{u^2-1}}{u}$	<i>a</i> - 1	$\frac{u}{\sqrt{1+u^2}}$
$\tan \theta$	$\frac{u}{\sqrt{1-u^2}}$	$\frac{\sqrt{1-u^2}}{u}$	n	$\frac{1}{\sqrt{u^2-1}}$	$\sqrt{u^2-1}$	<i>a</i> -1
$\theta \cos \theta$	n - 1	$\frac{1}{\sqrt{1-u^2}}$	$\frac{\sqrt{1+u^2}}{u}$	n	$\frac{u}{\sqrt{u^2 - 1}}$	$\sqrt{1+u^2}$
 θ \cos	$\frac{1}{\sqrt{1-u^2}}$	<i>a</i> 1 1	$\sqrt{1+u^2}$	$\frac{u}{\sqrt{u^2-1}}$	n	$\frac{\sqrt{1+u^2}}{u}$
$\cot \theta$	$\frac{\sqrt{1-u^2}}{u}$	$\frac{u}{\sqrt{1-u^2}}$	$\frac{1}{u}$	$\sqrt{u^2-1}$	$\frac{1}{\sqrt{u^2-1}}$	n

6 Inverse Trigonometric Functions Reciprocal Identities

or arcsine of x, is a multiple-valued function of x which is a collection of single-valued functions called *branches*. Similar $\cos^{-1}\frac{1}{x}=\sec^{-1}x$ If $x=\sin y$, then $y=\sin^{-1}x$, i.e. the angle whose sine is $x-\sin^{-1}\frac{1}{x}=\csc^{-1}x$ larly, the other inverse trigonometric functions are multiplevalued.

For many purposes, a particular branch is required. This is called the *principal branch* and the values for this branch are called *principal values*.

6.1 Principal Values

Since none of the six trigonometric functions are one-to-one, $\cot^{-1}\frac{1}{x} = \begin{cases} \frac{\pi}{2} - \cot^{-1}x = \tan^{-1}x & \text{if } x > 0 \end{cases}$ they are restricted in order to have inverse functions. Therefore the ranges of the inverse functions are proper subsets of the domains of the original functions.

0						
Principal values for $x <$	$-\frac{\pi}{2} \le \sin^{-1} x < 0$	$\frac{\pi}{2} < \cos^{-1} x \le \pi$	$-\frac{\pi}{2} < \tan^{-1} x < 0$	$\frac{\pi}{2} < \cot^{-1} x < \pi$	$\frac{\pi}{2} < \sec^{-1} x \le \pi$	$-\frac{\pi}{2} \le \csc^{-1} x < 0$
Principal values for $x \ge 0$ Principal values for $x < 0$	$0 \le \sin^{-1} x \le \frac{\pi}{2}$	$0 \le \cos^{-1} x \le \frac{\pi}{2}$	$0 \le \tan^{-1} x < \frac{\pi}{2}$	$0 < \cot^{-1} x \le \frac{\pi}{2}$	$0 \le \sec^{-1} x < \frac{\pi}{2}$	$0 < \csc^{-1} x \le \frac{\pi}{2}$

6.2 Identities

In all cases it is assumed that principal values are used.

is a cos⁻¹
$$\frac{1}{x} = \sec^{-1}x$$

ole

$$\csc^{-1} \frac{1}{x} = \sin^{-1}x$$
s is
$$\sec^{-1} \frac{1}{x} = \cos^{-1}x$$

$$\tan^{-1} \frac{1}{x} = \left\{ \frac{\pi}{2} - \tan^{-1}x = \cot^{-1}x - \pi \text{ if } x > 0 \right.$$
tan⁻¹ $\frac{1}{x} = \left\{ \frac{\pi}{2} - \cot^{-1}x = \tan^{-1}x - \pi \text{ if } x > 0 \right.$

ne,
$$\cot^{-1} \frac{1}{x} = \left\{ \frac{\pi}{2x} - \cot^{-1}x = \tan^{-1}x - \pi \text{ if } x > 0 \right.$$
sin⁻¹ $(-x) = \sin^{-1}x = \pi + \tan^{-1}x \text{ if } x < 0$

$$\sin^{-1}(-x) = \sin^{-1}x$$

$$\cos^{-1}(-x) = -\sin^{-1}x$$

$$\cos^{-1}(-x) = \pi - \cos^{-1}x$$

$$\sin^{-1}(-x) = -\sin^{-1}x$$

$$\cos^{-1}(-x) = \pi - \cos^{-1}x$$

$$\tan^{-1}(-x) = -\tan^{-1}x$$

$$\csc^{-1}(-x) = -\csc^{-1}x$$

$$\sec^{-1}(-x) = \pi - \cot^{-1}x$$

$$\cot^{-1}(-x) = \pi - \cot^{-1}x$$

Complementary Identities

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$
$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$

Sum and Difference Identities

$$\begin{split} \sin^{-1}\alpha \pm \sin^{-1}\beta &= \sin^{-1}\left(\alpha\sqrt{1-\beta^2} \pm \beta\sqrt{1-\alpha^2}\right) \\ \cos^{-1}\alpha \pm \cos^{-1}\beta &= \cos^{-1}\left(\alpha\beta \mp \sqrt{(1-\alpha^2)\left(1-\beta^2\right)}\right) \\ \tan^{-1}\alpha \pm \tan^{-1}\beta &= \tan^{-1}\left(\frac{\alpha \pm \beta}{1\mp \alpha\beta}\right) \end{split}$$

7 Relationships Between Sides and

7.1 Law of Sines

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

Extended Law of Sines

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R,$$

where R is the circumradius of the triangle.

7.2 Law of Cosines

$$\cos \alpha = \frac{b^2 + c^2 - a^2}{2bc}; \quad a = \sqrt{b^2 + c^2 - 2bc\cos \alpha}$$

$$\cos \beta = \frac{a^2 + c^2 - b^2}{2ac}; \quad b = \sqrt{a^2 + c^2 - 2ac\cos\beta}$$

$$s \gamma = \frac{a^2 + b^2 - c^2}{2ab}; \quad c = \sqrt{a^2 + b^2 - 2ab\cos\gamma}$$

7.3 Law of Tangents

$$\frac{a-b}{a+b} = \frac{\tan\frac{1}{2}(\alpha-\beta)}{\tan\frac{1}{2}(\alpha+\beta)}$$

$$\frac{b-c}{b+c} = \frac{\tan\frac{1}{2}\left(\beta-\gamma\right)}{\tan\frac{1}{2}\left(\beta+\gamma\right)}$$

$$\frac{c-a}{c+a} = \frac{\tan\frac{1}{2}\left(\gamma - \alpha\right)}{\tan\frac{1}{2}\left(\gamma + \alpha\right)}$$

7.4 Law of Cotangents

Let s be the semi-perimeter, that is, $s=\frac{a+b+c}{2},$ and r be the radius of the inscribed circle, then:

$$\frac{\cot\frac{\alpha}{2}}{s-a} = \frac{\cot\frac{\beta}{2}}{s-b} = \frac{\cot\frac{\gamma}{2}}{s-c} = \frac{1}{r}$$

and furthermore that the inradius is given by:

$$= \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$$

7.5 Mollweide's Formula

Each of these identities uses all six parts of the triangle—the three angles and the lengths of the three sides

$$\frac{a+b}{c} = \frac{\cos\frac{\alpha-\beta}{2}}{\sin\frac{\gamma}{2}}$$
$$\frac{a-b}{c} = \frac{\sin\frac{\alpha-\beta}{2}}{\cos\frac{\gamma}{2}}$$

Stewart's Theorem 9.2

Let D be a point in \overline{BC} of $\triangle ABC.$ If $|BD|=m,\,|CD|=n,$ and |AD| = d, then $b^2 m + c^2 n = a (d^2 + mn)$.

7.7 Angles in Terms of Sides

Let $s = \frac{a+b+c}{2}$ be the semiperimeter of the triangle, then:

$$\alpha = \sin^{-1}\left(\frac{2}{bc}\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}\right)$$

$$\beta = \sin^{-1}\left(\frac{2}{ac}\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}\right)$$

$$\gamma = \sin^{-1}\left(\frac{2}{ab}\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}\right)$$

Solving Triangles

Trigonometry Cram Sheet

alltootechnical.tk

A general form triangle has six main characteristics: three classical plane trigonometry problem is to specify three of the six characteristics and determine the other three. A trilinear (side lengths a,b,c) and three angular (α,β,γ) . The angle can be uniquely determined in this sense when given any of the following:

- Three sides (SSS)
- Two sides and the included angle (SAS)
- Two sides and an angle not included between them (SSA), if the side length adjacent to the angle is 8.2 SAS Triangle shorter than the other side length.
- A side and the two angles adjacent to it (ASA)
- $\bullet~$ A side, the angle opposite to it and an angle adjacent

must be specified. If only the angles are given, the side lengths cannot be determined, because any similar triangle For all cases in the plane, at least one of the side lengths is a solution.

Notes

- of sine for the angle of the triangle does not uniquely determines its angle. On the other hand, if the angle is small (or close to 180°), then it is more robust determine this angle. For example, if $\sin \beta = 0.5$, the angle β can be equal either 30° or 150°. Using the law of cosines avoids this problem: within the interval from 0° to 180° the cosine value unambiguously sine because the arc-cosine function has a divergent • To find an unknown angle, the law of cosines is safer than the law of sines. The reason is that the value numerically to determine it from its sine than its coderivative at 1 (or -1).
- lengths uniquely define either a triangle or its reflec- We assume that the relative position of specified characteristics is known. If not, the mirror reflection of the

8.1 AAS/ASA Triangle

The known characteristics are the side c and the angles α, β . The third angle $\gamma = 180^{\circ} - \alpha - \beta$.

alltootechnical.tk

Two unknown side can be calculated from the law of sines:

$$a = \frac{c\sin\alpha}{\sin\gamma}; \quad b = \frac{c\sin\beta}{\sin\gamma}.$$

The procedure for solving an AAS triangle is same as that for an ASA triangle: First, find the third angle by using the angle sum property of a triangle, then find the other two sides using the law of sines.

Here the lengths of sides a, b and the angle γ between these sides are known. The third side can be determined from the law of cosines:

$$c = \sqrt{a^2 + b^2 - 2ab\cos\gamma}$$

Now we use law of cosines to find the second angle:

$$\alpha = \cos^{-1} \frac{b^2 + c^2 - a^2}{2bc}$$

Finally, $\beta = 180^{\circ} - \alpha - \gamma$.

SSS Triangle 8.3

Let three side lengths a, b, c be specified. To find the angles α, β , the law of cosines can be used:

$$\alpha = \cos^{-1} \frac{b^2 + c^2 - a^2}{2bc}; \quad \beta = \cos^{-1} \frac{a^2 + c^2 - b^2}{2ac}$$

Then angle $\gamma = 180^{\circ} - \alpha - \beta$.

SSA Triangle

shorter than the other side length. Assume that two sides b, c and the angle β are known. The equation for the angle γ can be implied from the law of sines: to be unique only if the side length adjacent to the angle is This case is not solvable in all cases; a solution is guaranteed

$$\sin \gamma = \frac{c \sin \beta}{h}$$

We denote further $D = \frac{c \sin \beta}{b}$ (equation's right side). There are four possible cases:

- 1. If D > 1, no such triangle exists because the side bdoes not reach line BC. For the same reason a solution does not exist if the angle $\beta \ge 90^{\circ}$ and $b \le c$.
- 2. If D=1, a unique solution exists: $\gamma=90^{\circ},$ i.e., the triangle is right-angled.
- 3. If D < 1, two alternatives are possible.

- (a) If b < c, the angle γ may be acute: $\gamma = \sin^{-1} D$ or obtuse: $\gamma' = 180^{\circ} \gamma$. The picture above shows the point C, the side b and the angle γ as the first solution, and the point C', side b' and
 - (b) If $b \ge c$ then $\beta \ge \gamma$ (the larger side corresponds to a larger angle). Since no triangle can have two the angle γ' as the second solution.

obtuse angles, γ is a cute angle and the solution $\gamma = \sin^{-1} D$ is unique.

Once γ is obtained, the third angle $\alpha=180^{\circ}-\beta-\gamma$. The third side can then be found from the law of sines:

$$a = \frac{b \sin \alpha}{\sin \beta}$$

8.5 Right Triangle

Solving right triangles is simply using the definitions of the termine the other parts. The right angle $\gamma = 90^{\circ}$ is always trigonometric functions and the Pythagorean theorem to deassumed to be given.

9 Polar Coordinates

A point P can be located by rectangular coordinates (x,y)or polar coordinates (r, θ) .

The angle θ is a directed angle, that is, it is positive if it is measured counterclockwise from the initial side to the terminal side, and negative if it is measured clockwise. The value r is a directed distance, it is positive if the point P lies on the terminal side of θ and negative if P is on the extension of the terminal side.

9.1 Properties

- Every ordered pair of polar coordinates (r, θ) locates a unique point in the plane.
- \bullet However, a point P on the plane may be specified by

an infinite number of ordered pairs (r, θ) .

- The pole O may be specified by the ordered pair $(0,\theta)$ where $\theta \in \mathbb{R}$.
- $(r, \theta + 2k\pi)$ are also coordinates of the point P for • Let $P(r,\theta)$ be a point in the polar plane. any $k \in \mathbb{Z}$.
- It can also be shown that $((-1)^n r, \theta + n\pi)$ are also coordinates of P, where $n \in \mathbb{Z}$.

9.2 Coordinate Transformation

Polar to Rectangular

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$

Rectangular to Polar

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \tan^{-1}(y, x) \approx \tan^{-1}\left(\frac{y}{x}\right) \end{cases}$$

where $\tan^{-1}(y,x)$ is the two-argument form of the arctangent function (see section 3.9).

Special Polar Graphs 10

Theorem

A polar graph is:

- 1. symmetric with respect to the polar axis if an equivalent equation is obtained when (r, θ) is replaced by either $(r, -\theta)$ or $(-r, \pi - \theta)$.
- symmetric with respect to the $\frac{\pi}{2}$ -axis if an equivalent equation is obtained when (r, θ) is replaced by either $(r, \pi - \theta)$ or $(-r, -\theta)$.

Trigonometry Cram Sheet

alltootechnical.tk

alltootechnical.tk

3. symmetric with respect to the pole if an equivalent equation is obtained when (r, θ) is replaced by either $(-r, \theta)$ or $(r, \pi + \theta)$.

24

10.1 Limaçon of Pascal

A polar equation of the form $r = a + b \cos \theta$ or $r = a + b \sin \theta$ has a polar graph which is called a limaçon. Let OQ be a line joining origin O to any point in Q on a circle of diameter b passing through O. Then the curve is the locus of all points in P such that |PQ| = a

Types of Limaçons

• Looped limaçon if $0 < \left| \frac{a}{b} \right| < 1$

• Cardioid if $\left|\frac{a}{b}\right| = 1$

 $\frac{11}{6}$ 5₇ 7₇

• Convex limaçon if $\left|\frac{a}{b}\right| \ge 2$

Symmetry and Direction

For a > 0 and b > 0:

	symmetry	points to the
$r = a + b\cos\theta$	polar axis	right
$r = a - b\cos\theta$	polar axis	left
$r = a + b \sin \theta$	$\frac{\pi}{2}$ -axis	top
$r = a - b\sin\theta$	$\frac{\pi}{2}$ -axis	bottom

12

Ξ

and center (a,0) with the extension of OP. Then the *cissoid of Diocles* is the curve which satisfies OP = RS. It has

10.5 Folium of Descartes

a polar equation $r = 2a \sin \theta \tan \theta$.

10.2 Rose

A rose with n leaves has a polar equation $r=a\cos{(n\theta)}$ or $r=a\sin{(n\theta)}$ where a is a constant and n is an odd integer.

ر و|ئے

For an even integer n, the polar graph of an equation $r=a\cos{(n\theta)}$ or $r=a\sin{(n\theta)}$ is a rose with 2n leaves.

7. 9

Properties

- \bullet The length of one leaf in the polar graph of a rose is
- If n is odd, then the graph of the polar equation $r=a\cos(n\theta)$ is symmetric with respect to the po-
- \bullet If n is odd, then the graph of the polar equation $r = a \sin(n\theta)$ is symmetric with respect to the $\frac{\pi}{2}$ -axis.

13

• A rose with an even number of leaves is symmetric with respect to the polar axis, the $\frac{\pi}{2}$ -axis, and the pole.

10.3 Spiral of Archimedes

A folium is a plane curve proposed by Descartes to challenge Fermat's extremum-finding techniques. It has a polar equation $r=\frac{3\alpha\sec\theta}{1+\tan^3\theta}\theta$.

. 6

10.4 Lemniscate of Bernoulli

with respect to the origin.

27

5 6

A polar equation $r^2=a\cos 2\theta$ or $r^2=a\sin 2\theta$ has a polar graph that is called a *lemniscate*.

. |4 |9

$\frac{11\pi}{6}$ 5|3 3 2 # oc . 9 , E|3

10.8 Epispiral

6

6

The epispiral is a plane curve with a polar equation r = $a \sec(n\theta)$. Then there are $n \sec(n\theta)$ is odd (in blue), or 2n sections if n is even (in red). A slightly more symmetric version considers instead $r = a |\sec(n\theta)|$. The Fermat's spiral, also known as the parabolic spiral, has a polar equation $r^2 = a^2\theta$. The resulting spiral is symmetric

10.7 Cissoid of Diocles

Given an origin O and a point P on the curve, let S be the point where the extension of the line OP intersects the line x=2a and R be the intersection of the circle of radius a

10.9 Lituus

equation $r^2\theta = a^2$.

10.11 Butterfly Curve

The lituus is the locus of the point P moving such that The butterfly curve is a transcendental plane curve discovine area of a circular sector remains constant. It means a ered by Temple H. Eay. The curve is given by the polar "crook," in the sense of a bishop's crosier. It has a polar equation $r = e^{\sin\theta} - 2\cos 4\theta + \sin^2\left(\frac{1}{24}(2\theta - \pi)\right)$.

10.12 Strophoid

Let C be a curve, let O be a fixed point (the pole), and let O' be a second fixed point. Let P and P' be points on a line through O meeting C at Q such that P'Q = QP = QO'. The locus of P and P' is called the *strophoid* of C with respect to the pole O and fixed point O'. Its polar equation is $r=\frac{\sin(\alpha-2\theta)}{\sin(\alpha-\theta)}$.

The eight curve, also known as the lemniscate of Gerono, is given by the polar equation $r^2 = a^2 \sec^4 \theta \cos{(2\theta)}$. It has vertical tangents $(\pm a,0)$ and horizontal tangents at

 $\left(\pm \frac{\sqrt{2}}{2}a, \pm \frac{1}{2}a\right)$

5 6

10.10 Eight Curve

 $\frac{11\pi}{6}$

<u>1</u>2

3 2

K

10.13 Cochleoid

10.15 Freeth's Nephroid

It is a strophoid of a circle with the pole O at the center of the circle and the fixed point P on the circumference of the circle. It has a polar equation $r=a \left(1+2\sin\frac{p}{2}\right)$. A *cochleoid* is a snail-shaped curve similar to a strophoid which can be represented by the polar equation $r=\frac{a\sin\theta}{s\ln\theta}$.

5 K

6

 $\frac{11\pi}{6}$

. 12 9

10.14 Cycloid of Ceva

The cycloid of Ceva is a polar curve that can be used for angle trisection. It has the polar equation $r=1+2\cos 2\theta$.

16

15

alltootechnical.tk

11 Miscellaneous Stuff

11.1 Pythagorean Triples

ery primitive Pythagorean triple (a,b,c) is of the form $(a,b,c)=(m^2-n^2,2mn,m^2+n^2)$ where m and n are relatively prime (i.e. $\gcd(m,n)=1$) and $1\leq n< m$. est common divisor of a, b, and c is 1. For any primitive Pythagorean triple, either m or n is even, but not both (i.e. $m \not\equiv n \mod 2$). When that is done, then evgers such that $a^2 + b^2 = c^2$. It is primitive if the great-A Pythagorean triple (a,b,c) is a triple of positive inte-

			Ö	Ē	T E	C	For	$(x_3,$	give		H		whe		i	Ë	Ę	1 6	. C.E.		For	(x_3)	gIVE				whe	and
c	185	221	145	153	169	193	225	265	173	185	205	233	569	313	197	205	221	245	277	317	365	229	241	261	589	325	369	421
q	176	220	24	75	120	168	216	264	52	104	156	208	260	312	58	84	140	196	252	308	364	09	120	180	240	300	360	420
a	22	21	143	135	119	92	63	23	165	153	133	105	69	25	195	187	171	147	115	22	27	221	209	189	161	125	81	53
u	_∞	10	_	3	5	~	6	11	2	4	9	œ	10	12	-	က	2	~	6	11	13	2	4	9	œ	10	12	14
m	11	11	12	12	12	12	12	12	13	13	13	13	13	13	14	14	14	14	14	14	14	15	15	15	15	15	15	15
c	2	13	17	25	59	41	37	45	61	53	65	85	65	73	88	113	85	26	117	145	101	109	125	149	181	125	137	157
9	4	12	∞	24	20	40	12	36	09	28	26	84	16	48	80	112	36	72	108	144	20	09	100	140	180	44	88	132
a	က	ಸಾ	15	~	21	6	35	27	Π	45	33	13	63	55	39	15	22	65	45	17	66	91	75	51	19	117	105	82
u	1	2	П	3	2	4	-	3	5	2	4	9	1	3	5	7	2	4	9	œ	1	3	5	7	6	2	4	9
u	2	8	4	4	5	2	9	9	9	~	~	_	∞	œ	œ	œ	6	6	6	6	10	10	10	10	10	=	11	11

11.2 Triangle Centers

Barycenter/Centroid

tion of the triangle's three triangle medians. The point is therefore sometimes called the median point. The centroid The geometric centroid (center of mass) of the polygon vertices of a triangle is the point G which is also the intersecis always in the interior of the triangle For a triangle with Cartesian vertices $(x_1, y_1), (x_2, y_2),$ (x_3,y_3) , the Cartesian coordinates of the centroid are given by:

$$G(x_0, y_0) = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

Incenter

The corresponding radius of the incircle is known as the The incenter I is the center of the incircle for a triangle.

 $\sqrt{s(s-a)(s-b)(s-c)}$ $\frac{1}{2}$ (base · height)

П

◁

 $\frac{abc}{4R}$ II

 $\frac{1}{2}\sqrt[3]{abch_ah_bh_c}$

 \parallel Ш Ш

bisectors. It is also the interior point for which distances to The incenter can be constructed as the intersection of angle the sides of the triangle are equal.

For a triangle with Cartesian vertices $(x_1,y_1), (x_2,y_2), (x_3,y_3),$ the Cartesian coordinates of the incenter are given

$$I\left(x_{0},y_{0}\right)=\left(\frac{ax_{1}+bx_{2}+cx_{3}}{a+b+c},\frac{ay_{1}+by_{2}+cy_{3}}{a+b+c}\right)$$

thocenter

ie intersection H of the three altitudes AH_A , BH_B , and I_C of a triangle is called the orthocenter. r a triangle with Cartesian vertices $(x_1, y_1), (x_2, y_2),$ (y_3) , the Cartesian coordinates of the circumcenter are

$$H(x_0, y_0) = \left(\frac{x_1 t_A + x_2 t_B + x_3 t_C}{t_A + t_B + t_C}, \frac{y_1 t_A + y_2 t_B + y_3 t_C}{t_A + t_B + t_C}\right)$$

ere t_A, t_B, t_C is equal to tan A, tan B, tan C respectively.

conncenter

e circumcenter is the center O of a triangle's circumcir-It can be found as the intersection of the perpendicular

r a triangle with Cartesian vertices $(x_1, y_1), (x_2, y_2),$ (y_3) , the Cartesian coordinates of the circumcenter are

$$O\left(x_{0},y_{0}\right)=\left(O_{x},O_{y}\right)$$

$$\begin{aligned} \text{where } \ O_x &= \frac{(y_2 - y_3)(x_1^2 + (y_1 - y_2)(y_1 - y_3) + x_2^2(y_2 - y_1) + x_3^2(y_1 - y_2)}{2(x_1 - x_2)(x_1 - y_2) + x_2^2(y_1 - y_2)} \\ \text{and } O_y &= \frac{2(x_2 - x_3)(x_1^2 + x_2^2 - y_1^2 + y_3^2) + (y_1 - y_2)}{4(x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_2(y_1 - y_2))}. \end{aligned}$$

Excenter

An excenter, denoted J_i , is the center of an excircle of a triangle. An excircle is a circle tangent to the extensions of two sides and the third side. It is also known as an escribed circle.

11.3 Area of the Triangle

Let $\Delta=$ area of the triangle, A,B,C= angles, a,b,c= sides, s= semiperimeter $=\frac{1}{2}(a+b+c),R=$ $h_a,h_b,h_c=$ perpendiculars, $m_a,m_b,m_c=$ perpendiculars, $\beta_a,\beta_b,\beta_c=$ internal bisectors, and $\sigma=\frac{1}{2}\left(m_a+m_b+m_c\right)$. circumradius, r = inradius, $r_a, r_b, r_c = \text{radii of excircles}$,

18