STRENGTHENING CYBER DEFENSES IN ACADEMIA: A CASE STUDY OF CYBERSECURITY CHALLENGES AND STRATEGIES IN THE APPLIED COMPUTER SCIENCE DEPARTMENT AT THE UNIVERSITY OF WINNIPEG

RESEARCH PROJECT

PRESENTED BY VI LE, SUPERVISED BY DR. VICTOR BALOGUN

ABSTRACT

The Applied Computer Science Department at the University of Winnipeg is grappling with heightened cybersecurity threats, an issue that is increasingly prevalent in the open and interconnected realm of higher education. This research presents an investigation into current cybersecurity protocols, highlighting a 44% surge in attacks since 2022, the exploitation of social trust via phishing, and a critical shortage of cybersecurity expertise. Interviews with the university community reveal awareness but also a concerning gap in effective cybersecurity management and policy execution, exacerbated by the BYOD trend and rising IoT use. The study advises bolstering defenses through targeted employee training and a holistic cultural shift towards prioritized cybersecurity, supported by case studies that reveal the severe consequences of breaches in other universities. The urgency for improved security measures is emphasized, with a recommendation for more inclusive future research to better understand and respond to these evolving cyber challenges

BACKGROUND

- "44% increase in cyberattack since 2022" Checkpoint Blog
- 2200 cyberattacks every day according to research in 2017
- 28778 new vulnerabilities was discovered in 2023, an increase of more than 3000 compared to 2022 according to CVE
- A recent cyberattack at the University of Winnipeg occurred on March 24, 2024

CYBER INCIDENTS AT OTHER UNIVERSITIES

- On 11 September 2022, the University of Guelph reported disruption to its IT systems
- The University of Windsor suffered a system outage for two days in June of 2022
- Simon Fraser University suffered a ransomware attack on 27 February 2020
- Simon Fraser University was attacked again on 5 February 2021

Number of police-reported instances of internet fraud in Canada from 2014 to 2022

Number of police-reported instances of online identity fraud in Canada from 2014 to 2022

Estimated annual cost of cybercrime in Canada from 2017 to

OBJECTIVES

- 1 Investigate past cyber attacks within ACS department.
- 2 Analyze attack methods, attack surfaces, and damage caused due to those past attacks.
- 3 Review current systems, critical assets, and architectural design of ACS department
- 4 Evaluate current protocols, and security policies of ACS department
- Evaluate the effectiveness of current control mechanisms, defensive measures implemented in ACS department's system.
- 6 Conduct risk analysis and propose strategies to mitigate those risks.
- 7 Design an incident response plan for ACS department.
- 8 Design penetration testing plan for ACS department

SCOPE OF RESERACH

ACS Physical Security

ACS

Systems and Networks

Policies and

Guidelines

Human Factor

TECHNOLOGY
SOLUTION CENTER

CHALLENGES UNIQUE TO ACADEMIC SETTING

1 Limited Academic
Literatures about Subject

2. Culture of Openess

3. Decentralized Systems

Bring Your Own Device
Policy

loT Adoption

METHOLOGY

1. Conduct Interviews

2. Do Interview Analysis

3. Create High-level network diagram of ACS

4 Conduct Threat Modeling

5. Risk Evaluation

PARTICIPANTS

A member of Information Security Managment

INTERVIEW QUESTION SETS

A member of Information Security Managment

INTERVIEW PROCESS

INTERVIEW ANALYSIS

SOME QUANTITATIVE DATA

Most significant cybersecurity threats according to student	Number of Student	Total Student Count
Phishing	3	7
Social engineering	1	7
Stolen important information	2	7
Disruption of service	2	7
Ransomware	1	7
Man in the middle	1	7

Student preferred method of contact to technician						
Student Number	Phone	Email	live call	in-person		
1	2nd	1st	3rd	4th		
2	1st	1st				
3				1st		
4	1st	3rd		2nd		
5		1st				
6			1st			
7		1st				

SOME QUANTITATIVE DATA

	Student Attack Method Fa	rmilairity	
Number	Attack Method	Yes	No
1	Phishing	7	
2	Spoofing	7	
3	Social engineer	7	
4	DDoS	7	
5	Malware	7	
6	SQL Injection	7	
7	Man in the middle	7	
8	DNS tunneling	3	4
9	Keystroke logging	7	
10	cross-site scripting attack	7	
11	Cryptojacking	2	5
12	Brute-force attack	7	
13	Session hijacking	7	
14	Botnet	4	3

Trus	t impact d	ue to incide	ent in stude	ent group
itudent Number	Negative	Neutral	Positive	Comment
1	1			It is worrying, of all department it is ACS, jarring Negatively impact
	1			Not personal impact, less trust due to it
3			1	A little stress out, happy with trust At the time annoying
4		1		Not effect me personally Sure the uni will resolve it Trust 9 before, 8.5 now, can imporve
5			1	Good trust, comfortable A bit of a stress at the time
6		1		Don't even care about those email, never open them Did not hinder any study
7		1		No impact on ability to study experience Trust in uni, remind of security, aware of transmitting personal data

SOME QUALITATIVE DATA

- Student's cybersecurity incident in 2021, multiple students were affected
- "In the middle of class, received a security email about some data breach and they needed to secure the student account. The email asked to verify and make sure to follow instructions"
- The student was not so mindful, windows opened on the side, clicked link that opened a page that was "very professional looking"
- The sender has legitimate domain name as webmail.uwinnipeg.ca
- The student logged in and gave out their password then got logged out of Web Advisor, Nexus and University email.
- "Got sign out from my service and The U of W student email got used for further phishing attacks. I only know of it because my friend texted me and asked yo is this you?"
- The Student's email was compromised and they used personal email to reach out to ACS department
- 15 minutes response time and help personnel did something on ACS end
- Asked to log in with a new password
- The entire thing was done in 30 to 40 minutes, resetting password took 30 minutes
- 50 minutes total to recover from the incident

ACS Department Network A-6 T-8 THREAT MODEL Researcher A Network C-6 **DIAGRAM** A-5 T-5 C-5 T-5 C-5 Researcher A Machine C-2 T-6 A-3 Administrator Network Researcher B Network A-5 T-7 C-10 Backup Server A-1 T-3 C-8 A-8 T-9 C-9 C-1 C-8 T-3 A-4 T-7 C-10 A-2 T-10 C-4 A-1 T-9 C-1 Researcher C Network A-5 T-9 C-1 C-9 T-5 C-5 C-6 T-4 A-1 C-3 T-6 A-3 Researcher C Machine Pilot Desktop Testing Desktop C-1 T-2 A-7 TSC

THREAT MODEL DIAGRAM

Assets

- A-1 Research data
- A-2 Instructor data
- A-3 Researcher servers
- A-4 Researcher databases
- A-5 ACS machines
- A-6 Instructor website
- A-7 Researcher network
- A-8 Administrator network

Threat Agents

- T-1 Unauthorized usage of server resources
- T-2 Unauthorized access to researchers' network
- T-3 Unauthorized access to researcher' data
- T-4 Man-in-the-Middle attack
- T-5 Virus, Worms, Ransomware, etc
- T-6 Exploitation of Server
- T-7 Exploitation of patching mechanism
- T-8 DDoS attack
- T-9 Credential theft
- T-10 Social engineering, phishing attack
- T-11 Email spoofing, spamming

Controls

- C-1 Two-factor authentication for access
- C-2 Monitor network access
- C-3 Monitor server operation
- C-4 Email Filtering
- C-5 Scanning of external packages
- C-6 Endpoint security
- C-7 Regular updates and patches
- C-8 Strict permission model
- C-9 Least privilege access
- C-10 Backup and role back system

LIKELIHOOD TABLE

Rating	Likelihood	Description
1	Rare	May occur only in exceptional circumstances
		and may be deemed as "unlucky" or very
		unlikely.
2	Unlikely	Could occur at some time but not expected
		given current controls, circumstances, and
		recent events.
3	Possible	Might occur at some time, but just as likely as
		not. It may be difficult to control its
		occurrence due to external influences.
4	Likely	Will probably occur in some circumstance
		and one should not be surprised if it occurred
5	Almost Certain	Is expected to occur in most circumstances
		and certainly sooner or later

CONSEQUENCES TABLE

Rating	Consequence	Description
1	Insignificant	Result of a minor security breach in a single area. Limited damage that will take a day to recover.
2	Minor	Result of a minor security breach in one or two areas. Limited damage that will take 3 days to recover, does not need management intervention.
3	Moderate	Result of security breach of a sub-network. Moderate damage that needs from 1 week to 2 weeks and management intervention. The public and other users may have some knowledge of this event
4	Major	Result of security breach of multiple networks. Major damage that needs 1 month to 2 months, management intervention, and massive resources to recover. Loss of some core functionalities are expected. The public and other users will know of this event but not in detail.
5	Catastrophic	Result of complete failure of all networks and systems. Great damage that needs at least 3 months to completely recover. Management intervention is required and outside cybersecurity experts must be called in. Lawyers may be involved in legal matters relating to this event. A massive amount of resources and manpower are needed to recover. Lost all major and minor system capabilities.

RISK MATRIX

	Insignificant	Minor	Moderate	Major	Catastrophic
Likelihood Consequences					
Rare	Low 1	Low 2	Low 3	Low 4	Low 5
Unlikely	Low 2	Low 4	Medium 6	Medium 8	Medium 10
Possible	Low 3	Mediu m 6	Medium 9	High 12	High 15
Likely	Low 4	Mediu m 8	High 12	High 16	Extreme 20
Almost Certain	Low 5	High 10	High 15	Extreme 20	Extreme 25

RISK LEVEL TABLE

Risk Level	Description
Extreme (25-18)	Require detailed research and management
	planning from executive level. Constant
	planning and monitoring with regular
	reviews. The cost of managing risk is higher
	than projected.
High (18-12)	Require management knowledge but can be
	conducted by team manager. Constant
	planning and monitoring with regular
	reviews. The cost of managing risk is within
	the projected amount.
Medium (12-6)	Can be managed by existing monitoring and
	response procedures. The team can implement
	measures without management involvement
	to control risk.
Low (<6)	Can be managed through routine procedures

RISK REGISTRY

Asset	Threat	Likelihood	Consequences	Risk level	Risk Priority
Update Server	Exploitation of patching mechanism	Rare	Catastrophic	Low (5)	8
Instructor Web Server	DDoS attack	Possible	Insignificant	Low (3)	14
Instructor Machine	Phishing attack	Almost Certain	Minor	Medium (10)	1
Instructor network	Unauthorized access	Possible	Moderate	Medium (9)	3
Research network	Unauthorized access	Possible	Minor	Medium (6)	5
administrator network	Unauthorized access	Rare	Major	Low (4)	10
Researcher Database	Man-in-the- middle attack	Unlikely	Moderate	Medium (6)	6
Researcher server	Botnet	Unlikely	Moderate	Medium (6)	7

Instructor	Virus, worms,	Unlikely	Major	Medium	4
network	ransomware, and other malware			(8)	
Pilot/Testing environment	Virus, worms, ransomware, and other malware	Possible	Insignificant	Low (3)	15
Administrator network	Virus, worms, ransomware, and other malware	Rare	Major	Low (4)	11
Instructor Machine	Email spoofing	Almost Certain	Insignificant	Low (5)	9
Researcher server	Cryptojack	Rare	Moderate	Medium (9)	2
Instructor web server	Cross-site scripting attack	Unlikely	Minor	Low (4)	12
DNS server	DNS tunneling on DNS server	Unlikely	Minor	Low (4)	13

IDENTIFIED VULNERABILITIES AND RISKS

PHYSICAL SECURITY

IDENTIFIED VULNERABILITIES AND RISKS

IDENTIFIED VULNERABILITIES AND RISKS

POLICIE S

UPDATE PROCESS

ACCESS AND PRIVILEGE CONTROL

COMMUNICATION

MOVE **SHARED PRINTER**

FINGER-**PRINT LOCKS**

HIRE MORE

PERSONNEL

NO **EDUROAM**

LIMITED INTERNET

VIRTUAL MACHINE

PROPOSED SECURITY POLICY

No device connected to the ACS network can connect to Eduroam wifi network

Researcher's servers and system cannot directly connect to the Internet

All external package such as email attachments, download must first be open in virtual machine before opening in user machine

3-2-2 BACKUP SYSTEM

CHANGED HIGH LEVEL NETWORK

DIAGRAM

PROPOSED INCIDENT RESPONSE PLAN

PENETRATION TESTING TOOL


```
$ sqlmap -h
                          {1.5.10#stable}
   |_|V... |_| https://sqlmap.org
Usage: python3 sqlmap [options]
Options:
               Show basic help messa
 -h. --help
            Show advanced help message and exit
 -hh
               Show program's version number and exit
 --version
                  Verbosity level: 0-6 (default 1)
 -v VERBOSE
 Target:
 At least one of these options has to be provided to define the
 target(s)
 -u URL, --url=URL Target URL (e.g. "http://www.site.com/vuln.php?id=1"
 -g GOOGLEDORK Process Google dork results as target URLs
```

PENETRATION TESTING PLAN

PHASE 1

Test pilot SQLmap on a dummy server in a testing environment

PHASE 2

Implementing SQLmap in a limited capacity to a researcher's network for 3 months, monitor testing and evaluate effectinvess

PHASE 3

Expand penetration testing to all researchers' networks and automate the process

CITATION

- Statista. (2024, March 18). Canada's number of internet fraud cases from 2014 to 2023. https://www.statista.com/statistics/1456731/internet-fraud-cases-canada/
- Statista. (2024b, March 19). Canada's number of identity fraud cases from 2014 to 2023. https://www.statista.com/statistics/1457331/identity-fraud-cases-canada/
- Statista. (2024b, March 19). Canada's predicted cost of Cybercrime from 2017 to 2028. https://www.statista.com/forecasts/1457244/canada-cybercrime-cost-annual
- Jain, S. (2024, February 8). 160 cybersecurity statistics: Updated report 2024. Astra Security Blog.
 https://www.getastra.com/blog/security-audit/cyber-security-statistics/#:~:text=Cybersecurity%20statistics%20indicate%20that%20there,cost%20%248%20trillion%20by%2020

 23.
- Security Magazine. (2020, May 24). Hackers attack every 39 seconds. Security Magazine RSS. https://www.securitymagazine.com/articles/87787-hackers-attack-every-39-seconds
- Check Point Blog. (2022, August 16). Check point research: Education sector experiencing more than double monthly attacks, compared to other industries. https://blog.checkpoint.com/2022/08/09/check-point-researcheducation-sector-experiencing-more-than-double-monthly-attacks-compared-to-other-industries/
- The University of Winnipeg. (2024, March 25). Cyber attack and service outage. https://www.uwinnipeg.ca/updates/index.html?eid=aa32babed1cb2cfb62dd985e81fd67e1

THANK YOU FOR LISTENING ANY QUESTIONS? ASK AWAY

PRESENTED BY VI LE, SUPERVISED BY DR. VICTOR BALOGUN