Disbelief, Belief Updating, and Polarization

Yuko Kasuya 1 Shinnosuke Kikuchi 2 Daiki Kishishita 3 Yesola Kweon 4

¹Keio ²UCSD ³Hitotsubashi ⁴SKKU

August 2, 2025 Kyoto Summer Workshop on Applied Economics 2025

- Rise of Populist Radical Right Parties everywhere
 - Fake news and disinformation are widespread, and polarization is rising

- Rise of Populist Radical Right Parties everywhere
 - Fake news and disinformation are widespread, and polarization is rising
- Disagreement not only about opinions but also about facts (Lee et al, 2021)
 - e.g.) Immigrants: "immigrants are more likely to be criminals"
 - This persists, i.e., people rarely update their beliefs

- Rise of Populist Radical Right Parties everywhere
 - Fake news and disinformation are widespread, and polarization is rising
- Disagreement not only about opinions but also about facts (Lee et al, 2021)
 - e.g.) Immigrants: "immigrants are more likely to be criminals"
 - This persists, i.e., people rarely update their beliefs
- Widespread disbelief about others
 - Ahler (2014), Bursztyn & Yang (2022), Druckman et al (2022)

- Rise of Populist Radical Right Parties everywhere
 - Fake news and disinformation are widespread, and polarization is rising
- Disagreement not only about opinions but also about facts (Lee et al, 2021)
 - e.g.) Immigrants: "immigrants are more likely to be criminals"
 - This persists, i.e., people rarely update their beliefs
- Widespread disbelief about others
 - Ahler (2014), Bursztyn & Yang (2022), Druckman et al (2022)
- This paper: Roles of Disbeliefs in out-group knowledge in belief updating

- 1. Do people underestimate out-group knowledge on factual information?
 - Existence of Disbelief in out-group knowledge

- 1. Do people underestimate out-group knowledge on factual information?
 - Existence of Disbelief in out-group knowledge
- 2. Do people **overweigh in-group judgments** when evaluating what is true?
 - Existence of In-group bias in belief updating

- 1. Do people underestimate out-group knowledge on factual information?
 - Existence of Disbelief in out-group knowledge
- 2. Do people **overweigh in-group judgments** when evaluating what is true?
 - Existence of In-group bias in belief updating
- 3. Can correcting disbelief reduce in-group bias in belief updating?
 - Yes

Surveys

- US and South Korea (today: only US)
- Two surveys
 - Study 1 (N=295): Document disbelief in out-group knowledge
 - Study 2 (N=301):
 - Document in-group bias in belief updating
 - Experiment if correcting disbelief reduces the in-group bias
- Recruit participants through PureSpectrum, an online survey panel provider
- Today: PILOT (July 2025), not Real (planned soon)

Study 1. Baseline Evidence of Disbelief Hypotheses and Survey Design Disbelief on Out-group's Knowledge

Study 2. Experiment

Hypotheses and Survey Design In-group Bias in Belief Updating Effects of Correcting Disbelief on In-group Bias

Study 1. Baseline Evidence of Disbelief Hypotheses and Survey Design Disbelief on Out-group's Knowledge

Study 2. Experiment
Hypotheses and Survey Design
In-group Bias in Belief Updating
Effects of Correcting Disbelief on In-group Bias

Study 1. Baseline Evidence of Disbelief Hypotheses and Survey Design

Study 2. Experiment
Hypotheses and Survey Design

In-group Bias in Belief Updating Effects of Correcting Disbelief on In-group Bias

2. Totals of Corrocaling Dioxonici on in group Diag

Hypotheses: Disbelief in out-group knowledge

- H1: Target-based Disbelief
 - RP supporters believe that RP supporters are more knowledgeable
 - DP supporters believe that DP supporters are more knowledgeable

Hypotheses: Disbelief in out-group knowledge

- H1: Target-based Disbelief
 - RP supporters believe that RP supporters are more knowledgeable
 - DP supporters believe that DP supporters are more knowledgeable
- H2: Perceiver-based Disbelief
 - RP supporters are seen as more knowledgeable by RP than DP
 - DP supporters are seen as more knowledgeable by DP than RP

Study 1: Survey Structure (N=295)

- Ask to evaluate 16 factual questions:
 - political (4), non-political (4), conspiracy theory (8)
- Examples
 - "New Zealand is located in the Middle East."
 - "The country's GDP growth rate in the previous year was lower than 7%."
 - "The Republican administration initiated the Iraq war for oil interests."
 - "The 2020 presidential election was stolen from Donald Trump."
- Ask to give confidence level $a_{i,k} \in [0, 100]$
- Then, for each question, ask to estimate the accuracy rates for two groups
 - Republican supporters (R), Democrat supporters (D)

East.	
O True (1)	
O False (2)	
Q27 We would like you to estimate how confider true-or-false question. For example, if you believ correct, please choose 50. If you are completely choose 100.	ve there is a 50% chance that your answer is
510000 100.	0 10 20 30 40 50 60 70 80 90 100
Accuracy of your answer ()	
Ω28 Next, we would like you to estimate the per groups who correctly judge whether the state	ement is true or false. For example, if
everyone in group X makes the correct judgeme	of the percentage of group X would be 100%.
Republican Party supporters ()	
Democratic Party supporters ()	

Q26 Please judge whether the sentence is true or false: New Zealand is located in the Middle

Study 1. Baseline Evidence of Disbelief Hypotheses and Survey Design Disbelief on Out-group's Knowledge

Study 2. Experiment
Hypotheses and Survey Design
In-group Bias in Belief Updating
Effects of Correcting Disbelief on In-group Bias

Fact 3: GDP growth rate is less than 7%

Fact 3: The country's nominal GDP growth rate in the previous year was lower than 7%.

Actual Accuracy

Fact 3: GDP growth rate is less than 7%

Fact3: The country's nominal GDP growth rate in the previous year was lower than 7%.

Fact 3: GDP growth rate is less than 7%

Fact 3: The country's nominal GDP growth rate in the previous year was lower than 7%.

Fact 5: New Zealand is in the Middle East?

Fact 5: New Zealand is a country located in the Middle East.

Actual Accuracy

Fact 5: New Zealand is in the Middle East?

Fact5: New Zealand is a country located in the Middle East.

Fact 5: New Zealand is in the Middle East?

Fact 5: New Zealand is a country located in the Middle East.

Fact 13: Stolen Election?

Fact 13: The 2020 presidential election was stolen from Donald Trump.

Actual Accuracy

Fact 13: Stolen Election?

Fact13: The 2020 presidential election was stolen from Donald Trump.

Fact 13: Stolen Election?

Fact 13: The 2020 presidential election was stolen from Donald Trump.

Fact 16: Iraq War and Oil Interest?

Fact 16: The Iraq War was driven by oil interests.

Actual Accuracy

Fact 16: Iraq War and Oil Interest?

Fact16: The Iraq War was driven by oil interests.

Fact 16: Iraq War and Oil Interest?

Fact 16: The Iraq War was driven by oil interests.

- $p_{i,g(i),k}^{g'(i)}$: Accuracy rate of group g'(i) in task k perceived by i in g(i)

- $p_{i,g(i),k}^{g'(i)}$: Accuracy rate of group g'(i) in task k perceived by i in g(i)
- Target-based Disbelief (given perceiver)

$$p_{i,g(i),k}^{g'(i)} = \alpha_1 \mathbb{1}_{g \neq g'} + \eta_g + \mu_k + \varepsilon_{i,g',k}$$

- $p_{i,g(i),k}^{g'(i)}$: Accuracy rate of group g'(i) in task k perceived by i in g(i)
- Target-based Disbelief (given perceiver)

$$p_{i,g(i),k}^{g'(i)} = \alpha_1 \mathbb{1}_{g \neq g'} + \eta_g + \mu_k + \varepsilon_{i,g',k}$$

- Suppose g(i) = RP (fix perceiver = Republican Party supporters)
- α_1 < 0 iff *i* perceives DP's knowledge as lower than RP's for each task *k*

- $p_{i,g(i),k}^{g'(i)}$: Accuracy rate of group g'(i) in task k perceived by i in g(i)
- Target-based Disbelief (given perceiver)

$$p_{i,g(i),k}^{g'(i)} = \alpha_1 \mathbb{1}_{g \neq g'} + \eta_g + \mu_k + \varepsilon_{i,g',k}$$

- Suppose g(i) = RP (fix perceiver = Republican Party supporters)
- α_1 < 0 iff *i* perceives DP's knowledge as lower than RP's for each task *k*
- Perceiver-based Disbelief (given target)

$$p_{i,g(i),k}^{g'(i)} = \alpha_2 \mathbb{1}_{g \neq g'} + \eta_{g'} + \mu_k + \varepsilon_{i,g',k}$$

- $p_{i,g(i),k}^{g'(i)}$: Accuracy rate of group g'(i) in task k perceived by i in g(i)
- Target-based Disbelief (given perceiver)

$$\rho_{i,g(i),k}^{g'(i)} = \alpha_1 \mathbb{1}_{g \neq g'} + \eta_g + \mu_k + \varepsilon_{i,g',k}$$

- Suppose g(i) = RP (fix perceiver = Republican Party supporters)
- α_1 < 0 iff *i* perceives DP's knowledge as lower than RP's for each task *k*
- Perceiver-based Disbelief (given target)

$$p_{i,g(i),k}^{g'(i)} = \alpha_2 \mathbb{1}_{g \neq g'} + \eta_{g'} + \mu_k + \varepsilon_{i,g',k}$$

- Suppose g'(i) = RP (fix target = Republican Party supporters)
- $\alpha_2 < 0$ iff RP's knowledge for each task k is perceived lower by DP than RP

Average Disbelief is about 20 pt

Disbelief in Out-group Knowledge

Disbelief is Larger for Conspiracy Theory Questions

Heterogeneity in Disbelief

Define out-group disbelief by $q_{i,k} = p_{i,g(i),k}^{g'(i)} - p_{i,g(i),k}^{g(i)}$

Summary of Study 1

Existence of disbelief about out-group knowledge

- Both partisans are equally knowledgeable in non-conspiracy items
- However, there are about 20 points of disbelief in out-group knowledge

Today's Plan

Study 1. Baseline Evidence of Disbelief Hypotheses and Survey Design Disbelief on Out-group's Knowledge

Study 2. Experiment
Hypotheses and Survey Design
In-group Bias in Belief Updating
Effects of Correcting Disbelief on In-group Bias

Conclusion

Today's Plan

Study 1. Baseline Evidence of Disbelief Hypotheses and Survey Design Disbelief on Out-group's Knowledge

Study 2. Experiment
Hypotheses and Survey Design
In-group Bias in Belief Updating
Effects of Correcting Disbelief on In-group Bias

Conclusion

Goals of Study 2

Given the baseline results in Study 1, Study 2

- Documents in-group bias in belief updating
 - e.g., R overweighs the opinion of R over that of D

Goals of Study 2

Given the baseline results in Study 1, Study 2

- Documents in-group bias in belief updating
 - e.g., R overweighs the opinion of R over that of D
- Runs experiments if correcting disbelief reduces the in-group bias
 - Study 1 already shows R and D are equally knowledgeable
 - Treatment = telling the fact above

1. Demographic questions

- 1. Demographic questions
- 2. Pre-treatment judgement questions (two factual)-same structure as in Study 1

- 1. Demographic questions
- 2. Pre-treatment judgement questions (two factual)-same structure as in Study 1
- 3. Treatment (randomized)
 - Information that both partisans are equally knowledgeable (based on Study 1)

- 1. Demographic questions
- 2. Pre-treatment judgement questions (two factual)-same structure as in Study 1
- 3. Treatment (randomized)
 - Information that both partisans are equally knowledgeable (based on Study 1)
- 4. Post-treatment judgement questions with signals (details in the next slide)
 - In-group signal: tells that in-groups know the correct answers
 - Out-group signal: tells that out-groups know the correct answers

- 1. Demographic questions
- 2. Pre-treatment judgement questions (two factual) same structure as in Study 1
- 3. Treatment (randomized)
 - Information that both partisans are equally knowledgeable (based on Study 1)
- 4. Post-treatment judgement questions with signals (details in the next slide)
 - In-group signal: tells that in-groups know the correct answers
 - Out-group signal: tells that out-groups know the correct answers
- 5. Questions about affective polarization (Appendix)

Today's Plan

Study 1. Baseline Evidence of Disbelief Hypotheses and Survey Design Disbelief on Out-group's Knowledge

Study 2. Experiment

In-group Bias in Belief Updating

Effects of Correcting Disbelief on In-group Bias

Conclusion

- 1. Pre-signal (same as Study 1)
 - Judge if it is True + Give confidence (0-100)
 - Estimate the accuracy rate of RP/DP

- 1. Pre-signal (same as Study 1)
 - Judge if it is True + Give confidence (0-100)
 - Estimate the accuracy rate of RP/DP
- 2. Signal (randomized, in-group or out-group)
 - Truth-telling signal
 - "According to previous surveys, the majority of RP says False"
 - "According to previous surveys, the majority of DP says False"

- 1. Pre-signal (same as Study 1)
 - Judge if it is True + Give confidence (0-100)
 - Estimate the accuracy rate of RP/DP
- 2. Signal (randomized, in-group or out-group)
 - Truth-telling signal
 - "According to previous surveys, the majority of RP says False"
 - "According to previous surveys, the majority of DP says False"
- 3. Post-signal
 - Judge if it is True + Give confidence (0-100)

For each question (suppose it is False),

- 1. Pre-signal (same as Study 1)
 - Judge if it is True + Give confidence (0-100)
 - Estimate the accuracy rate of RP/DP
- 2. Signal (randomized, in-group or out-group)
 - Truth-telling signal
 - "According to previous surveys, the majority of RP says False"
 - "According to previous surveys, the majority of DP says False"
- 3. Post-signal
 - Judge if it is True + Give confidence (0-100)

What we want: See how they update their beliefs (judgement & confidence)

Measurement of Belief Updating

For individual i and task k, construct the following two types of dummy variables

1. Correct Judgement: $y_{i,k}^J \equiv \mathbb{1}\{J_{i,k}^1 - J_{i,k}^0 > 0\}$; mean= 0.163

Measurement of Belief Updating

For individual i and task k, construct the following two types of dummy variables

- 1. Correct Judgement: $y_{i,k}^J \equiv \mathbb{1}\{J_{i,k}^1 J_{i,k}^0 > 0\}$; mean= 0.163
 - J_{ik}^0 : Correctness before signals ($J_{ik}^0 = 1$ if Correct and = 0 if Wrong)
 - $J_{i,k}^{\dagger}$: Correctness after signals

Measurement of Belief Updating

For individual i and task k, construct the following two types of dummy variables

1. Correct Judgement: $y_{i,k}^J \equiv 1\{ J_{i,k}^1 - J_{i,k}^0 > 0 \}$; mean= 0.163

- 2. Confidence towards Correct Answer: $y_{i,k}^{\mu} \equiv \mathbb{1}\{\mu_{i,k}^1 \mu_{i,k}^0 > 0\}$; mean= 0.470
 - $\mu_{i,k}^0$: Confidence towards Correct answers before signals

$$\mu_{i,k}^0 = egin{cases} rac{a_{i,k}^0}{100} & ext{if } J_{i,k}^0 = 1 \ 1 - rac{a_{i,k}^0}{100} & ext{if } J_{i,k}^0 = 0 \end{cases}$$

where $a_{i,k}^0 \in [0, 100]$ is confidence level for their answer

- $\mu_{i,k}^1$: Confidence towards Correct answers after signals

In-group Signals Shift Beliefs More Toward the Truth?

Specification: (i: indiv., k: task)

$$y_{i,k} = \beta \mathbb{1}\{\text{In-group Signal}\}_{i,k} + \eta_k + \varepsilon_{i,k}$$

- $y_{i,k}$: measure of belief updating
- 1{In-group Signal}_{i k}: dummy if signal is about in-group's answer
 - e.g.) If R, "The majority of R says this is T..." is an in-group signal
- η_k : Task (question) fixed effects

In-group Signals Shift Beliefs More Toward the Truth?

Specification: (i: indiv., k: task)

$$y_{i,k} = \beta \mathbb{1}\{\text{In-group Signal}\}_{i,k} + \eta_k + \varepsilon_{i,k}$$

Table: In-group Bias in Belief Updating

	Dep. Var.: Belief Updating Judgement Confidence			
In-group Signal				
iii gi cap cigilai				
Obs.	903	903		
Task FEs	./	./		
	V	V		
Dep. Var Mean	0.163	0.470		
•				

In-group Signals Shift Beliefs More Toward the Truth

Specification: (i: indiv., k: task)

$$y_{i,k} = \beta \mathbb{1}\{\text{In-group Signal}\}_{i,k} + \eta_k + \varepsilon_{i,k}$$

Table: In-group Bias in Belief Updating

	Dep. Var.: Belief Updating Judgement Confidence		
In-group Signal	0.033		
	(0.011)		
Obs.	903	903	
Task FEs	✓	\checkmark	
Dep. Var Mean	0.163	0.470	

In-group Signals Shift Beliefs More Toward the Truth

Specification: (i: indiv., k: task)

$$y_{i,k} = \beta \mathbb{1}\{\text{In-group Signal}\}_{i,k} + \eta_k + \varepsilon_{i,k}$$

Table: In-group Bias in Belief Updating

	Dep. Var.: Belief Updating		
	Judgement Confidence		
In-group Signal	0.033	0.074	
	(0.011)	(0.035)	
Obs.	903	903	
Task FEs	✓	√	
Dep. Var Mean	0.163	0.470	

Today's Plan

Study 1. Baseline Evidence of Disbelief Hypotheses and Survey Design Disbelief on Out-group's Knowledge

Study 2. Experiment

Hypotheses and Survey Design In-group Bias in Belief Updating

Effects of Correcting Disbelief on In-group Bias

Conclusion

- Study 1: Accuracy rates are same across partisans for factual questions

- Study 1: Accuracy rates are same across partisans for factual questions
- Pre-treatment task of Study 2: individuals again guess the accuracy rate

- Study 1: Accuracy rates are same across partisans for factual questions
- Pre-treatment task of Study 2: individuals again guess the accuracy rate
- Keep only those who have disbelief (>5pt) on Out-group Knowlege (64%)

- Study 1: Accuracy rates are same across partisans for factual questions
- Pre-treatment task of Study 2: individuals again guess the accuracy rate
- Keep only those who have disbelief (>5pt) on Out-group Knowlege (64%)
- Treatment (after pre-treatment task)
 - e.g.) "You think that R are more knowledgeable than D. This is wrong."

- Study 1: Accuracy rates are same across partisans for factual questions
- Pre-treatment task of Study 2: individuals again guess the accuracy rate
- Keep only those who have disbelief (>5pt) on Out-group Knowlege (64%)
- Treatment (after pre-treatment task)
 - e.g.) "You think that R are more knowledgeable than D. This is wrong."
- See if Treatment reduces in-group bias in belief updating

Balanced Test across Control and Treated

No In-group Bias in Treated Group?

- Specification: (i: indiv., k: factual task).

$$y_{i,k} = \beta \mathbb{1}\{\text{In-group Signal}\}_{i,k} + \eta_k + \varepsilon_{i,k}$$

No In-group Bias in Treated Group?

- Specification: (i: indiv., k: factual task).

$$y_{i,k} = \beta \mathbb{1}\{\text{In-group Signal}\}_{i,k} + \eta_k + \varepsilon_{i,k}$$

	Dep. Var.: Belief Updating Judgement Confidence			
	Judgement Control Treated			
In-group Signal	CONTROL	neated	Control	neateu
Obs.	453	450	453	450
Task FEs Dep. Var Mean	√ 0.163	√ 0.162	√ 0.455	√ 0.484

No In-group Bias in Treated Group?

- Specification: (i: indiv., k: factual task).

$$y_{i,k} = \beta \mathbb{1}\{\text{In-group Signal}\}_{i,k} + \eta_k + \varepsilon_{i,k}$$

	Dep. Var.: Belief Updating			
	Judgement		Confidence	
	Control	Treated	Control	Treated
In-group Signal	0.055			
	(0.025)			
Obs.	453	450	453	450
Task FEs	√	√	✓	√
Dep. Var Mean	0.163	0.162	0.455	0.484

No In-group Bias in Treated Group!

- Specification: (i: indiv., k: factual task).

$$y_{i,k} = \beta \mathbb{1}\{\text{In-group Signal}\}_{i,k} + \eta_k + \varepsilon_{i,k}$$

	Dep. Var.: Belief Updating			
	Judgement		Confid	dence
	Control	Treated	Control	Treated
In-group Signal	0.055	0.012		
	(0.025)	(0.010)		
Obs.	453	450	453	450
Task FEs	✓	✓	✓	\checkmark
Dep. Var Mean	0.163	0.162	0.455	0.484

No In-group Bias in Treated Group!

- Specification: (i: indiv., k: factual task).

$$y_{i,k} = \beta \mathbb{1}\{\text{In-group Signal}\}_{i,k} + \eta_k + \varepsilon_{i,k}$$

- Run separately for Control and Treated

	Dep. Var.: Belief Updating			
	Judgement		Confidence	
	Control	Treated	Control	Treated
In-group Signal	0.055	0.012	0.108	
	(0.025)	(0.010)	0.036	
Obs.	453	450	453	450
Task FEs	✓	✓	✓	✓
Dep. Var Mean	0.163	0.162	0.455	0.484

No In-group Bias in Treated Group!

- Specification: (i: indiv., k: factual task).

$$y_{i,k} = \beta \mathbb{1}\{\text{In-group Signal}\}_{i,k} + \eta_k + \varepsilon_{i,k}$$

- Run separately for Control and Treated

	Dep. Var.: Belief Updating			
	Judgement		Confidence	
	Control	Treated	Control	Treated
In-group Signal	0.055	0.012	0.108	0.042
	(0.025)	(0.010)	0.036	0.034
Obs.	453	450	453	450
Task FEs	✓	✓	✓	✓
Dep. Var Mean	0.163	0.162	0.455	0.484

	Judgement	Confidence
In-group Signal		
Treatment		
rreatment		
In-group Signal × T		
Obs.	903	903
Task FEs	\checkmark	\checkmark
Dep. Var Mean	0.163	0.470
Min Det. Effect	0.073	0.102

	Judgement	Confidence
In-group Signal	0.054	
	(0.025)	
Treatment	0.019	
	(0.034	
In-group Signal $ imes$ T	-0.041	
	(0.030)	
Obs.	903	903
Task FEs	✓	√
Dep. Var Mean	0.163	0.470
Min Det. Effect	0.073	0.102

	Judgement	Confidence
In-group Signal	0.054	0.105
	(0.025)	(0.037)
Treatment	0.019	0.061
	(0.034	(0.034)
In-group Signal $ imes$ T	-0.041	-0.064
	(0.030)	(0.007)
Obs.	903	903
Task FEs	✓	\checkmark
Dep. Var Mean	0.163	0.470
Min Det. Effect	0.073	0.102

Study 1. Baseline Evidence of Disbelief

Hypotheses and Survey Design Disbelief on Out-group's Knowledge

Study 2. Experiment

Hypotheses and Survey Design In-group Bias in Belief Updating Effects of Correcting Disbelief on In-group Bias

Conclusion

Conclusion

- Widespread disbelief about out-group knowledge for factual questions
- In-group bias in belief updating
- Correcting the disbelief can reduce the in-group bias

Conclusion

- Widespread disbelief about out-group knowledge for factual questions
- In-group bias in belief updating
- Correcting the disbelief can reduce the in-group bias

Next Steps

- Compute MDE, Effective sample size
- IRB, Pre-registration
- Actual survey (sometime in August)
- More countries?

Appendix: Disbelief in Study 2

Appendix: Affective Polarization

Appendix: Disbelief on All Facts

Average Disbelief is about 20 pt also in Study 2

Heterogeneity in Disbelief in Study 2

Define out-group disbelief by $q_{i,k} = p_{i,g(i),k}^{g'(i)} - p_{i,g(i),k}^{g(i)}$

Appendix: Disbelief in Study 2

Appendix: Affective Polarization

Appendix: Disbelief on All Facts

Measure of Affective Polarization

- Ask the following questions in the end
- 1 Warmth against people with certain partisanship
- 2 Uncomfortableness against people with a certain partisanship
 - Colleagues, friend, child's spouse
- Compute relative negative measure against the out-group
- Convert into the [-1, 1] range

Unwarmth Feeling to Out-group (mean=0.507)

Uncomfortable Feeling to Out-group (mean=0.292)

No Detectable Effect on Affective Polarization

Table: Treatment Effects on Affective Polarization

	Dep. Var.: Affective Polarization		
	Unwarmth Feeling	Uncomfortable	
Treatment	-0.040	-0.019	
	(0.039)	(0.047)	
Obs.	301	301	
Dep. Var Mean	0.507	0.292	
Dep. Var σ	0.339	0.408	
MDE	0.109	0.132	

Our current sample size is too small

Appendix: Disbelief in Study 2

Appendix: Affective Polarization

Appendix: Disbelief on All Facts

Fact 1: The term of office of the Senate is 4 years.

Fact 2: To revise the constitution, approval of more than three-fourth of state legislatures is required.

Fact 3: The country's nominal GDP growth rate in the previous year was lower than 7%.

Fact 4: For every 100 working-age Americans, about 40 are aged 65 or older

Fact 5: New Zealand is a country located in the Middle East.

Fact 6: iPhone was invented before 2000.

Fact 7: It is stipulated by law that one must be at least 21 years old to drink alcohol.

Fact 8: The highest mountain in the United States is Denali (formerly known as Mt. McKinley).

Fact 9: The largest state in the United States is Alaska

Fact 10: The number of states in the United States is 50.

Fact 11: The capital of the United States is the New York City.

Fact 12: The first President of the United State is George Washinton

Fact 13: The 2020 presidential election was stolen from Donald Trump.

Fact 14: Climate change is a hoax created to push socialist policies and de:

·

Fact 15: The COVID-19 pandemic was exaggerated-or even planned-to cor

Fact 16: The Iraq War was driven by oil interests.

Fact 17: The Republicans stole the 2024 presidential election.

Fact 18: The CIA flooded Black communities with crack cocaine in the 1980

