Generating Random Logic Programs Using Constraint Programming

Paulius Dilkas¹ Vaishak Belle^{1,2}

¹University of Edinburgh, Edinburgh, UK
²Alan Turing Institute, London, UK

CP 2020

Probabilistic Logic Programs (Problem (Problem)

"Smokers" (Domingos et al. 2008; Fierens et al. 2015)

```
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
    smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
    cancer(P): - cancer\_spont(P).
    cancer(P): - smokes(P), cancer\_smoke(P).
    person(michelle).
    person(timothy).
    friend(timothy, michelle).
```

Applications

Moldovan et al. 2012

```
is_malignant(Case):-
    biopsyProcedure(Case, usCore),
    changes_Sizeinc(Case, missing),
    feature_shape(Case).

is_malignant(Case):-
    assoFinding(Case, asymmetry),
    breastDensity(Case, scatteredFDensities),
    vacuumAssisted(Case, yes).

is_malignant(Case):-
    needleGauge(Case,9),
    offset(Case,14),
    vacuumAssisted(Case,yes).
```

Côrte-Real, Dutra, and Rocha 2017

Q1: In a group of 10 people, 60 percent have brown eyes. Two people are to be selected at random from the group. What is the probability that neither person selected will have brown eyes?

Q2: Mike has a bag of marbles with 4 white, 8 blue, and 6 red marbles. He pulls out one marble from the bag and it is red. What is the probability that the second marble he pulls out of the bag is white?

Dries et al. 2017

De Maeyer et al. 2013

Introduction 0000

How Many Programs Are Used to Test Algorithms?

Anytime Inference in Probabilistic Logic Programs with T_p -Compilation

Jonas Vlasselaer, Guy Van den Broeck, Ande ka Kimmig, Wannes Meert, Luc De Raedt Department of a myuter Science

firstname.lastname@cs.kuleuven.be

Anytime Inference in Probabilistic Logic Programs with T_p -Compilation

Jonas Vlasselaer, Guy Van den Broeck, Aye ka Kimmig, Wannes Meert, Luc De Raedt Department of exampler Science KU Leuven: Belgium firstname.lastname@fes.kuleuven.be

Inference and learning in probabilistic logic programs using weighted Boolean formulas

DAAN FIERENS, GUY VAN DEN BROECK, JORIS RENKENS, DIMITAR SHTERIONOV, BENED GUTMANN, INGO THON, GERDA JANSSENS and LUC DE RAEDT

Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium (e-mail: FirstName, LastName@cs.kuleuven.be)

Anytime Inference in Probabilistic Logic Programs with T_p -Compilation

Jonas Vlasselaer, Guy Van den Broeck, Angelka Kimmig, Wannes Meert, Luc De Raedt firstname.lastname@cs.kuleuven.be

Inference and learning in probabilistic logic programs using weighted Boolean formulas

DAAN FIERENS, GUY VAN DEN BROECK, JORIS RENKENS, DIMITAR SHTERIONOV, BENED GUTMANN, INGO THON, GERDA JANSSENS and LUC DE RAEDT

Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium (c-mail: FirstName.LastName@cs.kuleuven.be)

k-Optimal: a novel approximate inference algorithm for ProbLog

Joris Renkens · Guy Van den Broeck · Siegfried Nijssen

Anytime Inference in Probabilistic Logic Programs with To-Compilation

Jonas Vlasselaer, Guy Van den Broeck, Angelka Kimmig, Wannes Meert, Luc De Raedt firstname.lastname@cs.kuleuven.be

Inference and learning in probabilistic logic programs using weighted Boolean formulas

DAAN FIERENS, GUY VAN DEN BROECK, JORIS RENKENS, DIMITAR SHTERIONOV, BENED GUTMANN, INGO THON, GERDA JANSSENS and LUC DE RAEDT

Department of Computer Science, KU Leuven, Celestiinenlaan 200A, 3001 Heverlee, Belgium (c-mail: FirstName.LastName@cs.kuleuven.be)

k-Optimal: a novel approximate inference algorithm for ProbLog

Joris Renkens · Guy Van den Broeck · Siegfried Nijssen

On the Efficient Execution of ProbLog Programs

Angelika Kimmig¹, Vítor Santos Cost², Ricardo Rocha², Bart Demoen¹, and Luc De Raedt¹

Anytime Inference in Probabilistic Logic Programs with T_p -Compilation

Jonas Vlasselaer, Guy Van den Broeck, Auge ka Kimmig, Wannes Meert, Luc De Raedt Department of each puter Science KU Leuven: Belgium firstname.lastname@ses.kuleuven.be

Inference and learning in probabilistic logic programs using weighted Boolean formulas

DAAN FIERENS, GUY VAN DEN BROECK, JORIS RENKENS, DIMITAR SHTERIONOV, BENNED GUTMANN, INGO THON, GERDA JANSSENS and LUC DE RAEDT

Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium (e-mail: FirstName.LastName@cs.kuleuven.be)

k-Optimal: a novel approximate inference algorithm for ProbLog

Joris Renkens - Guy Van den Broeck - Siegfried Nijssen

On the Efficient Execution of ProbLog Programs

Angelika Kimmig 1, Vítor Santos Cost 2 , Ricardo Rocha 2, Bart Demoen 1, and Luc De Raedt 1

On the Implementation of the Probabilistic Logic Programming Language ProbLog

Angelika Kimmig, Bart Demoen and Luc De Raedt
Departement Computerwe suschappen, K.U. Leuven
Celestijnenlaan 200A - bus 24°2, B-3001 Heverie, Belgium
(e-mail: {Angelika.Kimig,Bart.Demoen,Luc.Dehaedt}*ec.kuleuven.be)

Vítor Santos Costa and Ricardo Rocha

CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal (e-mail: {vsc.ricroc}@dcc.fc.up.pt)

Introduction 0000

How Many Programs Are Used to Test Algorithms?

Anytime Inference in Probabilistic Logic Programs with To-Compilation

Jonas Vlasselaer, Guy Van den Broeck, Ange ka Kimmig, Wannes Meert, Luc De Raedt Department of en apputer Science KU Leuven, Belgium firstname.lastname@cs.kuleuven.be

Inference and learning in probabilistic logic programs using weighted Boolean formulas

DAAN FIERENS, GUY VAN DEN BROECK, JORIS RENKENS, DIMITAR SHTERIONOV, BENED GUTMANN, INGO THON, GERDA JANSSENS and LUC DE RAEDT

Department of Computer Science, KU Leuven, Celestiinenlaan 200A, 3001 Heverlee, Belgium (e-mail: FirstName.LastName@cs.kuleuven.be)

k-Optimal: a novel approximate inference algorithm for ProbLog

Joris Renkens · Guy Van den Broeck · Siegfried Nijssen

On the Efficient Execution of ProbLog Programs

Angelika Kimmig¹, Vítor Santos Cost², Ricardo Rocha², Bart Demoen¹, and Luc De Raedt¹

On the Implementation of the Probabilistic Logic Programming Language ProbLog

Angelika Kimmig, Bart Demoen and Luc De Raedt Departement Computerwe inschappen, K.U. Leuven Celestijnenlaan 200A - bus 24 2, B-3001 Heverlee, Belgium (e-mail: {Angelika.Kinnig,Bart.Demen,Luc.DeRaedt}@cs.kuleuven.be)

Vítor Santos Costa and Ricardo Rocha

CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal (e-mail: {vsc,ricroc}@dcc.fc.up.pt)

ProbLog Technology for Inference in a Probabilistic First Order Logic

Maurice Bruvnooghe and Theofrastos Mantalelia and Angelika Kimmig and Bernd Gutmann and Joost Vennekens and Gerda Janssens and Luc De Raedt1

Outline

Introduction

The Constraint Model

Inference

Conclusions

```
0.2::stress(P):-person(P).
0.3: :influences(P_1, P_2): -friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
    smokes(X) : - stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
     cancer(P):-cancer\_spont(P).
     cancer(P): - smokes(P), cancer\_smoke(P).
    person(michelle).
    person(timothy).
    friend(timothy, michelle).
```

```
0.2::stress(P):-person(P).
0.3: :influences(P_1, P_2): -friend(P_1, P_2).
0.1::cancer\_spont(P):-person(P).
                                                     predicates,
                                                      arities
0.3::cancer\_smoke(P):-person(P).
    smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P): - smokes(P), cancer\_smoke(P).
    person(michelle).
    person(timothy).
    friend(timothy, michelle).
```

```
0.2::stress(P):-person(P).
0.3: influences(P_1, P_2): -friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer\_smoke(P):-person(P).
    smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P): - smokes(P), cancer\_smoke(P).
    person(michelle).
    person(timothy).
    friend(timothy, michelle).
```

- predicates, arities
- variables

```
0.2::stress(P):-person(P).
0.3: influences(P_1, P_2): -friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer\_smoke(P):-person(P).
    smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P): - smokes(P), cancer\_smoke(P).
    person(michelle).
    person(timothy).
    friend(timothy, michelle).
```

- predicates. arities
- variables
- constants

```
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
    smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P): - smokes(P), cancer\_smoke(P).
    person(michelle).
    person(timothy).
    friend(timothy, michelle).
```

- predicates, arities
- variables
- constants
- probabilities

```
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
     smokes(X):-stress(X).
     smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P): - smokes(P), cancer\_smoke(P).
    person(michelle).
    person(timothy).
     friend(timothy, michelle).
```

- predicates, arities
- variables
- constants
- probabilities
- length

```
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
     smokes(X):-stress(X).
     smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P) := smokes(P), cancer_smoke(P).
    person(michelle).
    person(timothy).
    friend(timothy, michelle).
```

- predicates, arities
- variables
- constants
- probabilities
- length
- complexity

Formulas As Trees

$$\neg p(X) \lor (q(X) \land r(X))$$

Formulas As Trees

$$\neg p(X) \lor (q(X) \land r(X))$$

Formulas As Trees

$$\neg p(X) \lor (q(X) \land r(X))$$

Predicate Dependency Graph

Stratification and Negative Cycles

0.1::friend(X,Y):- + smokes(Y).

Stratification and Negative Cycles

0.1::friend(X,Y):- + smokes(Y).

Scalability

Variable

- The number of predicates
- Maximum arity
- The number of variables
- The number of constants
- The number of additional clauses
- The maximum number of nodes

Inference and Knowledge Compilation

```
NNF negation normal form
```

d-DNNF deterministic decomposable negation normal form

BDD binary decision diagrams

SDD sentential decision diagrams

k-Best only use the k most probable proofs

Example Diagrams for $C \wedge (A \vee \neg B)$

Figure: NNF

Figure: BDD

Figure: d-DNNF

Figure: SDD

Properties of Programs vs. Inference Algorithms

Facts: friend(timothy, michelle).

Rules: 0.2::stress(P):-person(P).

Properties of Programs vs. Inference Algorithms

- The model can generate (approximately) realistic instances of reasonable size
- The main performance bottleneck can be addressed by generating programs with a simpler structure
- Open questions for future work
 - Can the model be used to ensure uniform sampling?
 - What is the reason behind all algorithms behaving similarly?
 - Why does independence have no effect on inference time?

The implementation of the model is available at

https://github.com/dilkas/random-logic-programs