1 Allgemeines

1.1 SI Einheiten

Physikalische Grösse	Fundamentale Einheit	Symbol
Länge	Meter	m
Zeit	Sekunde	S
Masse	Kilogramm	kg
Ekektrische Stromstärke	Ampère	A
Thermodynamische Temperatur	Kelvin	K
Stoffmenge	Mol	mol
Lichtstärke	Candela	cd

1.2 Winkel

$$2\pi rad = 360 \tag{2}$$

$$1rad = \frac{180}{\pi} \approx 57.296 \tag{2}$$

Umrechnen:

Radiant \rightarrow Grad: Winkel*180/ π Grad \rightarrow Radiant: Winkel* $\pi/180$

1.3 Raum und Zeit

Raum = Abstand zwischen 2 Orten

Zeit = Dauer bestimmter, reproduzierbarer Prozesse

Beispielgrössen

1 pc =
$$3.0857 * 10^{16} m = 206'247 \text{ A.U.}$$
 (3)

wobei pc = Parsec und A.U. = Astronomical Unit = mittlerer Abstand zwischen Erde und Sonne

Grösse des sichtbaren Universums $\approx 10^{10}$ pc Grösse der Milchstrasse (unsere Galaxie) $\approx 10^4$ pc Kleinste bekannte Grösse = Planksche Länge $\approx 10^{-35}$ m

Alter des Universums ca $4.3 * 10^{17}$ s Alter der Erde ca. 5 Milliarden Jahre Umlauf der Erde um die Sonne = 1 Jahr

1.4 Koordinatensysteme

Weil kein "absoluter" Punkt im Raum existiert, muss ein Punkt **P** im Raum immer bezglich einem anderen Punkt **O** (**Ursprung**) definiert werden

Die kartesischen Koordinaten

Im kartesischen Koordinatensystem definiert man 3 zueinander senkrechte Richtungen x (vorne-hinten), y (links-rechts), z (oben-unten). Der Punkt P wird bezgl. des Ursprungs mit drei kartesischen Koordinaten lokalisiert:

$$\mathbf{OP} = (x, y, z) = (OA, OB, OC) \tag{4}$$

wobei A = Projektion von P auf die x-Achse

B = Projektion von P auf die y-Achse

C = Projektion von P auf die z-Achse

Die Kugelkoordinaten

Im Kugelkoordinatensystem wird ein Punkt ${\bf P}$ im Raum durch 3 Koordinaten dargestellt, wobei

 $r = \text{Abstand zwischen } \mathbf{O} \text{ und } \mathbf{O} : \mathbf{OP} = (\mathbf{r}, \vartheta, \varphi)$

 ϑ = Winkel zwischen **OP** und z-Achse; $0 \le \vartheta \le \pi$

 $\varphi = \text{Winkel zwischen OP'}$ und x-Achse; $0 \le \varphi \le 2\pi$

Wenn $\vartheta = \frac{\pi}{2}$, dann liegt P auf der x-y-Ebene, man wird dann die zweidimensionalen **Polarkoordinaten** (r, φ) verwenden.

Umrechnen von Koordinatensystemen

von Kugel- zu kartesischen Koordinaten:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r * \sin\vartheta * \cos\varphi \\ r * \sin\vartheta * \sin\varphi \\ r * \cos\vartheta \end{pmatrix}$$

von kartesischen zu Kugelkoordinaten:

$$\begin{pmatrix} r \\ \varphi \\ \vartheta \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2 + z^2} \\ \arctan(\frac{y}{x}) \\ \arccos(\frac{z}{r}) \end{pmatrix}$$

Zylinderkoordinaten

Zylindrische Koordinaten sind Polarkoordinaten mit einer dritten, senkrechten, Koordinaten ergnzt.

$$\mathbf{OP} = (\rho, \varphi, z) \tag{5}$$

von Zylinder- zu kartesischen Koordinaten:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \rho * \cos\varphi \\ \rho * \sin\varphi \\ z \end{pmatrix}$$

von kartesischen zu Zylinderkoordinaten:

$$\begin{pmatrix} \rho \\ \varphi \\ z \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2} \\ \arctan(\frac{y}{x}) \\ z \end{pmatrix}$$

1.5 Vektoren

Skalarprodukt:

$$a \cdot b = |a||b|\cos\varphi \tag{6}$$

$$a \cdot b = a_x b_x + a_y b_y + a_z b_z \tag{7}$$

wobei φ der Winkel zwischen den beiden Vektoren a und b
 ist. Wenn das Skalarprodukt verschwindet, ist a oder b
 = 0 oder die beiden Vektoren stehen senkrecht aufeinander.

Cosinussatz:

$$|c|^{2} = |a|^{2} + |b|^{2} + 2|a||b|\cos\varphi \tag{8}$$

Vektorprodukt:

$$c = a \times b = -b \times a \tag{9}$$

$$a \times b = (a_y b_z - a_z b_y) e_x + (a_z b_x - a_x b_z) e_y + (a_x b_y - a_y b_x) e_z$$
(10)

$$c = absin\varphi \tag{11}$$

wobei der Betrag des Vektors \mathbf{c} gleich der Flche des Parallelogramms ist, welche \mathbf{a} und \mathbf{b} aufspannen. \mathbf{c} steht senkrecht auf \mathbf{a} und \mathbf{b} . Wenn die Vektoren parallel sind, ist das Vektorprodukt gleich 0.