INFO 3605 Fundamentals of LAN Technologies Lecture 14 - Analyzing Classful IPv4 Networks

Naresh Seegobin (M.Sc. CompSci, M.Sc. ProjMgmt, CCNA)

naresh.seegobin@sta.uwi.edu

Based on Chapter 14 of Odom, Wendell. *CCENT/CCNA ICND1* 100-105 official cert quide. Indianapolis, IN: Cisco Press, 2016.

Video Streaming inside your home network

- PlexServer can stream to all computers simultaneous using broadcast IP address.
- Saves bandwidth.

Limited Broadcast: 255.255.255.255 is the broadcast address

Directed Broadcast: 192.168.10.255/24 is the broadcast address for network

192.168.10.0/24

Finding an IP address inside your home network

What about finding an IP address?

 ARP uses the broadcast at the Layer
 2 (MAC/Frames Level)

FF:FF:FF:FF:FF

Different from IP broadcast address.

Objectives

- Configure, verify, and troubleshoot IPv4 addressing and subnetting
- Compare and contrast IPv4 address types:
 - Unicast
 - 1.9.b Broadcast

- Which of the following are not valid Class A network IDs? (Choose two answers.)
 - a. 1.0.0.0
 - b. 130.0.0.0
 - c. 127.0.0.0
 - d. 9.0.0.0

 Which of the following are not valid Class A network IDs? (Choose two answers.)

a. 1.0.0.0

b. 130.0.0.0

c. 127.0.0.0

d. 9.0.0.0

- Which of the following are not valid Class B network IDs?
 - a. 130.0.0.0
 - b. 191.255.0.0
 - c. 128.0.0.0
 - d. 150.255.0.0
 - e. All are valid Class B network IDs.

- Which of the following are not valid Class B network IDs?
 - a. 130.0.0.0
 - b. 191.255.0.0
 - c. 128.0.0.0
 - d. 150.255.0.0
 - e. All are valid Class B network IDs.

- Which of the following are true about IP address 172.16.99.45's IP network? (Choose two answers.)
 - a. The network ID is 172.0.0.0.
 - b. The network is a Class B network.
 - c. The default mask for the network is 255.255.255.0.
 - d. The number of host bits in the unsubnetted network is 16.

- Which of the following are true about IP address 172.16.99.45's IP network? (Choose two answers.)
 - a. The network ID is 172.0.0.0.
 - b. The network is a Class B network.
 - c. The default mask for the network is 255.255.255.0.
 - d. The number of host bits in the unsubnetted network is 16.

Classful Network Concepts

- What can be determines from the following IP address?
 - 10.4.5.99, 255.255.255.0
- Can determine the following facts:
 - Class (A, B, or C)
 - Default mask
 - Number of network octets/bits
 - Number of host octets/bits
 - Number of host addresses in the network
 - Network ID
 - Network broadcast address
 - First and last usable address in the network

IPv4 Network Classes and Related Facts

- IP version 4 (IPv4) defines five address classes.
- Three of the classes, Classes A, B, and C, consist of unicast IP addresses.
- Unicast addresses identify a single host or interface so that the address uniquely identifies the device.
- Class D addresses serve as multicast addresses, so that one packet sent to a Class D multicast IPv4 address can actually be delivered to multiple hosts.
- Class E addresses were originally intended for experimentation.

IPv4 Network Classes and Related Facts

IPv4 Address Classes Based on First Octet Values

Class	First Octet Values	Purpose	
A	1–126	Unicast (large networks)	
В	128–191	Unicast (medium-sized networks)	
С	192-223	Unicast (small networks)	
D	224–239	Multicast	
E	240-255	Reserved (formerly experimental)	

IPv4 Network Classes and Related Facts

Key Facts for Classes A, B, and C

	Class A	Class B	Class C
First octet range	1 – 126	128 – 191	192 – 223
Valid network numbers	1.0.0.0 - 126.0.0.0	128.0.0.0 - 191.255.0.0	192.0.0.0 – 223.255.255.0
Total networks	$2^7 - 2 = 126$	214 = 16,384	$2^{21} = 2,097,152$
Hosts per network	$2^{24} - 2$	$2^{16} - 2$	$2^8 - 2$
Octets (bits) in network part	1 (8)	2 (16)	3 (24)
Octets (bits) in host part	3 (24)	2 (16)	1 (8)
Default mask	255.0.0.0	255.255.0.0	255.255.255.0

The Number and Size of the Class A, B, and C Networks

- 126 Class A networks exist: network 1.0.0.0, 2.0.0.0, 3.0.0.0, and so on, up through network 126.0.0.0.
 - over 16 million host IP addresses per network
- 16,384 Class B networks exist.
 - over 65,000 hosts per network.
- There are more than 2 million Class C networks.
 - 254 hosts in each network.

The Number and Size of the Class A, B, and C Networks

Numbers and Sizes of Class A, B, and C Networks

Address Formats

- The addresses in the classful network have a structure with two parts:
 - the network part (sometimes called the prefix) and
 - the host part.
- The addresses in the same network have the same values in the network part.
- The addresses in the same network have different values in the host part.

Address Formats

 Sizes (Bits) of the Network and Host Parts of Unsubnetted Classful Networks

Default Masks

- Each network class has an associated default mask that defines the size of the network and host parts of an unsubnetted Class A, B, and C network.
- The mask lists binary 1s for the bits considered to be in the network part and binary 0s for the bits considered to be in the host part.
- Class A network 10.0.0.0 has a network part of the first single octet (8 bits) and a host part of last three octets (24 bits).
 - 11111111 00000000 00000000 00000000

Default Masks

Default Masks for Classes A, B, and C

 Decimal 255 converts to the binary value 11111111.

• Decimal 0, converted to 8-bit binary, в is 00000000.

 Decimal
 255
 255
 255
 0

 Binary
 11111111
 11111111
 11111111
 00000000

 Concept
 Network (24)
 Host (8)

Number of Hosts per Network

- With H host bits, 2^H unique combinations exist.
- The number of hosts in a network is not 2^{H} ; instead, it is $2^{H} 2$.
- Two of the addresses have been reserved for special purpose:
 - one for the network ID and
 - one for the network broadcast address

Deriving the Network ID and Related Numbers

- Each classful network has four key numbers that describe the network.
- You can derive these four numbers if you start with just one IP address in the network.
- The numbers are as follows:
 - Network number
 - First (numerically lowest) usable address
 - Last (numerically highest) usable address
 - Network broadcast address

Deriving the Network ID and Related Numbers

- A network broadcast address is always the highest (last) number in the network.
- The highest (last) number usable as an IP address is the address that is simply one less than the network broadcast address.

Unusual Network IDs and Network Broadcast Addresses

For Class A:

- Class A network 0.0.0.0 was originally reserved for some broadcasting requirements, so all addresses that begin with 0 in the first octet are reserved.
- Class A network 127.0.0.0 is still reserved because of a special address used in software testing, called the loopback address (127.0.0.1).

Unusual Network IDs and Network Broadcast Addresses

• For Class B:

- Network numbers range from 128.0.0.0 to 191.255.0.0, for a total of 2^{14} networks.
- The very first (lowest number) Class B network number (128.0.0.0) looks a little like a Class A network number, the first octet is 128, making it a Class B network with a two-octet network part (128.0).
- The high end of the Class B range also might look strange at first glance (191.255.0.0), it's the highest of the valid Class B network numbers.
- This network's broadcast address, 191.255.255.255, might look a little like a Class A broadcast address because of the three 255s at the end, but it is indeed the broadcast address of a Class B network.

Unusual Network IDs and Network Broadcast Addresses

For Class C:

- Class C network 192.0.0.0 looks a little like a Class A network because of the last three octets being 0, but first three octets belongs to class C.
- Class C network 223.255.255.0, is another valid Class C network, consists of all addresses that begin with 223.255.255.

- Which of the following are true about IP address 192.168.6.7's IP network? (Choose two answers.)
 - a. The network ID is 192.168.6.0.
 - b. The network is a Class B network.
 - c. The default mask for the network is 255.255.255.0.
 - d. The number of host bits in the unsubnetted network is 16.

- Which of the following are true about IP address 192.168.6.7's IP network? (Choose two answers.)
 - a. The network ID is 192.168.6.0.
 - b. The network is a Class B network.
 - c. The default mask for the network is 255.255.255.0.
 - d. The number of host bits in the unsubnetted network is 16.

- •Which of the following is a network broadcast address?
 - a. 10.1.255.255
 - b. 192.168.255.1
 - c. 224.1.1.255
 - d. 172.30.255.255

- Which of the following is a network broadcast address?
 - a. 10.1.255.255
 - b. 192.168.255.1
 - c. 224.1.1.255
 - d. 172.30.255.255

Summary

- The address classes.
- Facts about Class A, B and C networks.
- Comparisons of network and host parts of addresses in the same classfull network.
- Default masks.
- Function to calculate the number of hosts per network.
- Steps to find information about a classfull network.

End of Lecture 14, Further Reading, References

• Odom, Wendell. *CCENT/CCNA ICND1 100-105 official cert guide*. Indianapolis, IN: Cisco Press, 2016.