On Removing Rejection Conditions in Practical Lattice-Based Signatures

Rouzbeh Behnia¹, Yilei Chen² and Daniel Masny³

¹ University of South Florida ² Tsinghua University ³ VISA Research

Digital Signatures

Two main approaches to achieve signature schemes

- Hash-and-Sign: Based on trapdoor one-way functions (e.g., RSA)
- Fiat-Shamir (FS) Transform: Resulted from applying transformation on identification schemes.

State-of-the-art

Lattice-Based PQC Candidates Round III

- Based on the Fiat Shamir with Aborts paradigm
- Faster signing
- Larger signature+key size
- Relies on Rejection Sampling

- Based on the Trapdoor approach (GPV)
- Smaller signature+key size
- Slower signing

Why is Rejection Sampling a Limitation?

- Rejection sampling causes repetition of the sign algorithm
- Not having a constant-time signing algorithm could introduce attacks
- In case of Dilithium, the repetition can be high (e.g., around 10 times)

LWE Problem

Matrix form of LWE: Given parameters n, k, q, m and two distributions D_s and D_e :

- Sample $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$
- Sample $S \leftarrow D_S^{k \times n}$, $\mathbf{E} \leftarrow D_e^{k \times m}$

Problem?

Given (A, Y = SA + E), find S or E

A Naïve Approach: Lattice-Based Signatures from FS

$(SK, PK) \leftarrow KeyGen(1^{\kappa})$		
1:	$A \leftarrow \mathbb{Z}_q^{n \times m}$	
2:	$S \leftarrow D_1^{k \times n}, E \leftarrow D_1^{k \times m}$	
3:	$Y \coloneqq SA + E \bmod q$	
4:	PK := (A, Y), SK := (S, E)	

r needs to be from a smaller distribution for the underlying problem to hold

Z leaks the distribution of **S**

What do we need now???

Rejection Sampling

An ancient concept!!!

Applications to lattices due to [Lyu09]

Want the output to be in f(x)

$$\Pr[x] = \frac{f(x)}{M \times g(x)}$$

M is some positive real

Lattice-Based Signatures from FS

($(SK, PK) \leftarrow KeyGen(1^{\kappa})$		
1:	$A \leftarrow \mathbb{Z}_q^{n \times m}$		
2:	$S \leftarrow D_1^{k \times n}, E \leftarrow D_1^{k \times m}$		
3:	$Y \coloneqq SA + E \mod q$		
4:	$PK \coloneqq (A, Y), SK \coloneqq (S, E)$		

	$\{0,1\} \leftarrow Verify(\langle \mathbf{Z},c \rangle, \mu, PK)$		
1:	$v' \coloneqq \mathbf{z}A - cY$ $w \coloneqq \lfloor v' \rfloor$		
	$w\coloneqq \lfloor v' ceil$		
2:	IF:		
	$c == H(\mu, \mathbf{w}) \text{ AND } \ \mathbf{z}\ _{\infty} \notin BAD_2$		
	Valid		

	$\mathbf{z}, c \leftarrow Sign(SK, \mu)$
1:	$r \leftarrow D_2^{1 \times n}$
2:	$c \coloneqq H(\mu, rA \bmod q)$
3:	v = rA - cE IF:
	$\left\ \left[\boldsymbol{v} \right]_{2^{\lambda}} \right\ _{\infty} \in \mathit{BAD}_{1}$
	Restart
4:	$\mathbf{z} \coloneqq \mathbf{r} + c\mathbf{S}$
5:	IF:
	$\ \mathbf{z}\ _{\infty} \in BAD_2$
	Restart

The new Scheme

($(SK, PK) \leftarrow KeyGen(1^{\kappa})$		
1:	$A \leftarrow \mathbb{Z}_q^{n \times m}$		
2:	$S \leftarrow \mathbb{Z}_q^{h \times n}, E \leftarrow D_1^{h \times m}$		
3:	$Y \coloneqq SA + E \mod q$		
4:	$PK \coloneqq (A, Y), SK \coloneqq (S, E)$		

{	$\{0,1\} \leftarrow Verify(\langle \mathbf{z}, c \rangle, \mu, PK)$		
1:	v' = zA - cY $w \coloneqq \lfloor v' \rfloor$		
2:	IF: $c == H(\mu, \mathbf{w})$ Valid		

```
\mathbf{z}, c \leftarrow Sign(SK, \mu)
      r \leftarrow \mathbb{Z}_q^{1 \times n}
        c \coloneqq H(\mu, [rA] \mod q)
3: v = rA - cE
        IF:
          \left\| \left[ \boldsymbol{v} \right]_{\mathbf{2}^{\lambda}} \right\|_{\infty} \in \mathit{BAD}_1
           Restart
3:
         z = r + cS
```

Our underlying assumptions

- Bounded Distance Decoding (BDD) Problem: Given uniform $A \leftarrow R_q^{l \times k}$ and $y \leftarrow R_q^k$, the problem asks to find a z such that $z^t A$ is (very) close to y or $y^t z^t A$ is small.
- Depending on the parameters/dimensions of y, A, this can be statistically or computationally hard
- Computational hardness results in more efficient parameters

The Proof

• Based on TWO hybrids:

Hybrid 1

$$\mathbf{s} \leftarrow R_q^l, \mathbf{e} \leftarrow X^k, \mathbf{A} \leftarrow R_q^{l \times k}$$

 $\mathbf{y}^t \coloneqq \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$
 $(m^*, \sigma^*) \leftarrow \mathcal{A}^{\mathcal{O}_H; Sign(\cdot)}$

- Secret key is not known to the reduction
- Queries are answered by using RO

Hybrid 2

$$m{A} \leftarrow R_q^{l \times k}$$
 $m{y} \leftarrow R_q^k$
 $(m^*, \sigma^*) \leftarrow \mathcal{A}^{\mathcal{O}_H; Sign(\cdot)}$

- Public keys are uniform random
- There is no secret key
- Infeasible (based on BDD) for ${\mathcal A}$ to forge without RO

$$\sigma \leftarrow Sign(m)$$

Return $\sigma := (\mathbf{z}, \mathbf{c})$

Repeat till
$$\mathbf{z}^{t}\mathbf{A} - c\mathbf{y}^{t} \in Good$$

$$\mathbf{z} \leftarrow R_{q}^{l}, c \leftarrow C, \mathbf{w} \coloneqq [\mathbf{z}^{t}\mathbf{A} - c\mathbf{y}^{t}]_{p}$$

$$H(\mathbf{w}, (\mathbf{A}, \mathbf{y}), m) \coloneqq c$$

Results

- Two set of parameters are provided:
 - Statistical hardness of BDD, i.e., security in QROM
 - Computational hardness of BDD
- We do not use the public-key size optimization method in Dilithium

Table 2: Comparison with Dilithium-QROM and qTESLA-provable.

Table 2. Comparison with bindinant-grown and q1ESEA-provable.				
Parameters	Classical security	PK size	Sign size	Exp. repetitions
Dilithium-QROM standard	140	7712	5696	4.3
qTESLA-p standard	140	14880	2592	3.45*
Ours standard-I	138.1	13856	3588.5	5.41
Ours standard-II	140.2	14368	3716.5	4.08
Ours standard-III	139.4	19232	3972.5	1.55
Dilithium-QROM high	175	9632	7098	2.2
qTESLA-p high	279	38432	5664	3.84*
Ours high	170.0	17888	6021.8	1.83

Table 4: Comparison with Dilithium.

Parameters	Classical security	PK size	Sign size	Exp. repetitions
Dilithium standard	138	1472	2701	6.6
Ours standard-I	138.4	7200	3716.5	2.02
Ours standard-II	138.1	6944	3972.5	2.33
Dilithium high	174	1760	3366	4.3
Ours high	170.0	9952	6021.8	1.96

Removing the Remaining Rejection Condition

• One rejection condition is left to check $[\mathbf{z}^t \mathbf{A} - c\mathbf{y}]_p = [\mathbf{r}^t \mathbf{A}]_p$ holds

Can we remove the remaining rejection condition???

Looking at two potential approaches:

- 1. Extracting consistent values from commitments with errors
 - Two functions $g(\cdot)$ and $f(\cdot)$ that map ${\pmb r}^t{\pmb A}$ and ${\pmb r}^t{\pmb A}+\hat{\pmb e}^t$, for unbounded error term $\hat{\pmb e}$
 - $g(\mathbf{r}^t \mathbf{A})$ should serve as commitment OR preserve high min-entropy
 - Guo et al. [23]: For a poly q, no balanced functions $g(\cdot)$ and $f(\cdot)$ can guarantee $g(\mathbf{r}^t\mathbf{A}) = f(\mathbf{r}^t\mathbf{A} + \hat{\mathbf{e}}^t)$
- Adapting the Reconciliation Mechanism used in lattice-based key exchange

Lattice-Based Key Exchange

$$M_{Alice} = S_{Alice}A + E_{Alice}$$

$$M_{Bob} = AS_{Bob} + E_{Bob}$$

$$k_{Alice} = [S_{Alice}M_{Bob}]$$

$$k_{Bob} = [\mathbf{M}_{Alice} \mathbf{S}_{Bob}]$$

$$h=Hint(k_{Alice})$$

 $k_{Alice} = Reconcile(h, k_{Bob})$

Reconciled Scheme

($(SK, PK) \leftarrow KeyGen(1^{\kappa})$		
1:	$A \leftarrow \mathbb{Z}_q^{n \times m}$		
2:	$S \leftarrow \mathbb{Z}_q^{n \times m}$, $E \leftarrow D_1^{h \times m}$		
3:	$Y \coloneqq SA + E \mod q$		
4:	$PK \coloneqq (A, Y), SK \coloneqq (S, E)$		

$\{0,1\} \leftarrow Verify(z,c,\frac{\mathbf{h}}{\mathbf{h}},\mu,PK)$		
1:	v' = zA - cY $ rA := Reconcile(h, v')$	
2:	IF: $c = H(\mu, [rA])$ Valid	

	$z, c, \frac{h}{h} \leftarrow Sign(SK, \mu)$
1:	$r \leftarrow \mathbb{Z}_q^{n \times 1}$
2:	$c \coloneqq H(\mu, [rA] \bmod q)$
<mark>3:</mark>	$h \coloneqq \operatorname{Hint}([rA])$
3:	v = rA - cE
	IF:
	 v ≠ rA

Problem?

Reconciled Scheme

($(SK, PK) \leftarrow KeyGen(1^{\kappa})$		
1:	$A \leftarrow \mathbb{Z}_q^{n \times m}$		
2:	$S \leftarrow \mathbb{Z}_q^{n \times m}$, $E \leftarrow D_1^{h \times m}$		
3:	$Y \coloneqq SA + E \mod q$		
4:	PK := (A, Y), SK := (S, E)		

$\{0,1\} \leftarrow Verify(z,c,h,\mu,PK)$	
1:	v' = zA - cY [rA] := Reconcile(h, [v'])
2:	IF: $c = H(\mu, \lfloor rA \rfloor)$ Valid

Problem!

$$v' - |rA| = cE - E_{r,A}$$

Example, let c be in {0,1}

- Get n samples of $E_{r,A}$
- Get n samples of $E E_{r,A}$
- Compute $\frac{1}{n}\sum(E_{r,A}) \frac{1}{n}\sum(E E_{r,A})$ to get a good estimate of $E = \mu(E E_{r,A}) + \mu(E_{r,A})$

Thank you