Partiel du 21 Mai 2021 8h-9h30

Instructions:

- Tous les documents, téléphones portables, calculatrices... sont interdits.
- Le barème est donné à titre indicatif et est susceptible d'être modifié.
- La qualité de la rédaction sera prise en compte dans l'évaluation.

Exercice 1 (Questions de cours : 6 points). 1. (1 point) Soit $U \subset \mathbb{C}$ un ouvert, soit $f: U \to \mathbb{C}$ une fonction holomorphe et soit $z_0 \in \mathbb{C}$ une singularité isolée de f. Donner la définition de $\operatorname{res}_{z_0}(f)$.

- 2. (1 point) Comment lire le résidu de f en z_0 sur le développement en série de Laurent de f centré en z_0 ?
- 3. (3 points) Si z_0 est un pôle d'ordre $m \in \mathbb{N}^*$ de f, donner une formule permettant de calculer ce résidu en terme de la dérivée d'un certain ordre d'une certaine fonction. Puis donner l'idée de la démonstration de cette formule.
- 4. (1 point) Si z_0 est une singularité éliminable, que vaut $\operatorname{res}_{z_0}(f)$?

Exercice 2 (2 points). Soit $U \subset \mathbb{C}$ un ouvert simplement connexe. Soit $Z \subset U$ un sous-ensemble fermé et discret. Soit $f: U \setminus Z \to \mathbb{C}$ une fonction holomorphe. Montrer que f admet une primitive si et seulement si $\operatorname{res}_z(f) = 0$ pour tout $z \in U$.

Exercice 3 (5 points). On considère la fonction

$$f: z \mapsto \frac{e^{iz}}{z^2 - 2z + 2}.$$

- 1. (2 point) Déterminer les pôles de *f* et l'ordre de chacun des pôles.
- 2. (1 point) Déterminer le résidu de chacun des pôles dans le demi plan supérieur $\mathbb{H} := \{z \in \mathbb{C} : \text{Im}(z) > 0\}$.
- 3. (2 points) À l'aide du théorème des résidus, calculer l'intégrale suivante :

$$I = \int_{-\infty}^{+\infty} \frac{\cos x}{x^2 - 2x + 2} dx.$$

Exercice 4 (4 points). Soit $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$. Soit $f : \mathbb{D} \to \mathbb{C}$ une fonction holomorphe telle que $|f(z)| \to 0$ quand $|z| \to 1$ (c'est à dire, pour tout $\varepsilon > 0$, il existe r < 1 tel que r < |z| < 1 implique $|f(z)| < \varepsilon$).

- 1. (2 points) Montrer que f(z) = 0 pour tout $z \in \mathbb{D}$
- 2. (2 points) Que dire si on suppose f méromorphe sur \mathbb{D} avec un nombre fini de pôles ? (On pourra par exemple se ramener à la question précédente).

Exercice 5 (3 points). Soit $f : \mathbb{C} \to \mathbb{C}$ une fonction holomorphe telle que

$$|f'(z)| \le |z| \quad \forall z \in \mathbb{C}.$$

Montrer qu'il existe $a,b\in\mathbb{C}$ tels que $|b|<\frac{1}{2}$ et tels que

$$f(z) = a + bz^2 \quad \forall z \in \mathbb{C}.$$