

ELEC 3210 Introduction to Mobile Robotics Lecture 4

(Machine Learning and Infomation Processing for Robotics)

Huan YIN

Research Assistant Professor, Dept. of ECE

eehyin@ust.hk

Where am I?

- A question with long history
- Solutions
 - Odometry and Dead Reckoning
 - Global Positioning System (GPS)
 - Map-based localization
 - Simultaneous localization and mapping (SLAM)
 - etc. (like wifi-based)

L3 - Wheel Odometry

- Lecture 3
- From wheel spinning speed to odometry-based localization

$$\dot{\mathbf{X}}_{I} = R(\theta)^{-1} \dot{\mathbf{X}}_{R}$$

$$= R(\theta)^{-1} \begin{bmatrix} \frac{r\dot{\varphi}_{1}}{2} + \frac{r\dot{\varphi}_{2}}{2} \\ 0 \\ \frac{r\dot{\varphi}_{1}}{2l} + \frac{-r\dot{\varphi}_{2}}{2l} \end{bmatrix}$$

Wheel Odometry Fails

- Drift occurs using wheel odometry
 - wheel slip etc.
 - uncertainties in the external world
 - we need robot perception and mapping

Courtesy: 4

Sensors

Sensors

Sensors for Mobile Robots

- Interoceptive: being stimuli arising within the body
 - accelerometer
 - gyroscope
- Exteroceptive: activated by stimuli received by an organism from outside
 - global positioning system (GPS)
 - camera
 - laser range finder

Interoceptive Sensors

- Accelerometer
 - measure translational accerlation
- Gyroscope
 - measure angular rate
- Inertial measurement unit (IMU)
 - Linear acceleration
 - Angular velocity

IMU

Pros

- Almost always available and outlier-free
- Very high-rate measurements
- Very mature technology, widely available at very low cost
- Remarkable performance improvement during aggressive motions

Cons

- Noisy sensor, cannot double integrate to obtain position
- Synchronization and inter-sensor calibration requirements
- Unable to operate when inertial and visual measurements are not in the same frame (e.g. on cars or trains)

IMU Demo

• 3D Tracking with IMU (Odometry-based)

Back to Scheme

Interaction with external world

Courtesy: Nikolay Atanasov

Exteroceptive Sensors

Exteroceptive Sensors

- GNSS
- Camera
 - Monocular
 - Stereo
- Range Sensors
 - 2D Laser
 - 3D LiDAR
 - Radar
- RGBD

GNSS

- Global navigation satellite systems
- United States' Global Positioning System (GPS)
 - Commercial used error < 10m

GPS

- Non-direct range-based localization
- Satellite position is known by transmiting ephemeris parameters which describe its orbit
- c: speed of light

$$\mathbf{x} = (x, y, z)^{\top}$$
 $\rho = c \cdot (t_{\text{recieve}} - t_{\text{transmit}})$

GPS

- Considering the receiver clock error
- Need at least four satellites to estimate the position

$$\mathbf{x} = (x, y, z, \delta_{\text{clock}})^{\top}$$

Courtesy: Niko Sünderhauf

Multipath

- GPS-unfriendly/denied Areas
 - Urban, Forest, Park, Indoor, tunnel etc

Received a second time

Received a reflection

Courtesy: Niko Sünderhauf

Differential-GPS

- Corrections sent by ground-based reference stations
- Accuracy: 1~3 meter

Marine Department, HK

Other Countries and Regions

- Beidou (China)
- Galileo (Europe)
- GLONASS (Russia)
- NavIC (India)
- etc

Exteroceptive Sensors

- GNSS ☑
- Camera
 - Monocular
 - Stereo
- Range Sensors
 - 2D Laser
 - 3D LiDAR
 - Radar
- RGB-D

Camera - Monocular

- Simplest setup
- Depth unknown

Lens

Lens

- Rays parallel to the optical axis meet focus after leaving the lens
- Rays through center of the lens do not change direction

- The object comes closer, the image becomes bigger
- A point moving on the same ray does not change its image
- If we only look at rays going through center of the lens:

Courtesy: Wikipedia

25

• If we replace b with f and include a minus because the object image is upside down (Z=a,f=b)

•
$$y = -f\frac{Y}{Z}$$

Courtesy: Shaojie Shen

Assume that the image plane is in front of the lens:

•
$$y = f \frac{Y}{Z}$$

Courtesy: Shaojie Shen

Camera Coordination System

How a point is shown in image plane?

- Optical axis is the z-axis
- The image plane (u, v) is perpendicular to the optical axis
- Translation of Origin: Intersection of the image plane and the optical axis is the image center (u_0, v_0)
- Rescale image plane: f is the distance of the image plane from the origin (in pixels)
- Formation:

•
$$u = \frac{fX_c}{Z_c} + u_0$$
•
$$v = \frac{fY_c}{Z_c} + v_0$$

•
$$v = \frac{fY_c}{Z_c} + v_0$$

Courtesy: Shaojie Shen and Huan Yin

Matrix form:

$$\lambda \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} f & 0 & u_o \\ 0 & f & v_o \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{pmatrix}$$

Courtesy: Shaojie Shen

From camera to world:

$$\begin{pmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{pmatrix} = \begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{pmatrix}$$

Courtesy: 30

Courtesy: Shaojie Shen

Resources

• Prof. Cyrill Stachniss's Camera Basics and Propagation of Light

Courtesy: Cyrill Stachniss

Exteroceptive Sensors

- GNSS ☑
- Camera ✓
 - Monocular
 - Stereo
- Range Sensors
 - 2D Laser
 - 3D LiDAR
 - Radar
- RGB-D

Depth Ambiguity

- Inverse Problem
 - multiple solution exists

Courtesy: Shaojie Shen

Pictorial cues for 3D shape

- Perspective projection gives us the relative position to horizon, therefore we can deduce its physical size
- Shading also reveal shape using illumination model

Courtesy: Shaojie Shen 35

Pictorial cues for 3D shape

Courtesy: Shaojie Shen, Kostas Daniilidis

Camera - Stereo

- Able to compute depth
- Depth accuracy affected by baseline, resolution, and calibration

Courtesy: Shaojie Shen

Stereo Vision of Humans

Courtesy: Shaojie Shen, Kostas Daniilidis

Accommodation & Convergence

- Accommodation and convergence normally change in lock steps. For human, they are important sources of depth information at close distance.
- Human performance: up to a few meters

Accommodation

Convergence

Courtesy: Shaojie Shen

Basic Stereo Derivations

Courtesy: Shaojie Shen, Kostas Daniilidis

Disparity

Notice the disparity difference at different distances

Depth by Stereo Vision

Stereo Vision Depth Map

Correpondence

Correpondence

- Student: "What are the three most important problems in computer vision?"
- Takeo Kanade: "Correspondence, correspondence, correspondence!"

Prof. Takeo Kanade

Visual Perception/SLAM Topics

• one or two lectures in October/November

	L11.,	16/10.,	Fast SLAM with Particle Filter .1	а	₽
	L12.1	18/10.,	Graph SLAM.	.1	₽
Γ	L13.1	25/10.1	Place Recognition.	.1	¢)
	L14.1	30/10.,	Advanced Topic – Visual SLAM 1 (TBD).	a	¢)
	L15.1	01/11.1	Advanced Topic - Visual SLAM 2.1	P2 Out.	Ç
	L16.1	06/11.1	Path Planning 1.	P3 - Planning.	₽ ³
	L17.1	08/11.1	Path Planning 2.1	.1	₽J
					1

Exteroceptive Sensors

- GNSS ☑
- Camera ☑
 - Monocular
 - Stereo ☑
- Range Sensors
 - 2D Laser
 - 3D LiDAR
 - Radar
- RGB-D

LiDARs vs Cameras

- Pros
 - wide field of view
 - precise depth
 - illumination free
- Cons
 - sparse points per raw scan
 - no RGB information
 - higher cost, generally

2D Laser Scanner

Courtesy: Wolfram Burgard

2D Laser SLAM

• Cartographer - 2D laser SLAM with loop closure

Courtesy: Cartographer

3D LiDAR Scanner

- LiDAR Light Detection and Ranging
- Compared to 2D Laser Scanner
 - 3D Data
 - More expensive

3 Years Ago

3D LIDAR SLAM

• Kudan Lidar SLAM: Running on NVIDIA Isaac platform

Courtesy: Kudan LiDAR SLAM

Exteroceptive Sensors

- GNSS ☑
- Camera ✓
 - Monocular
 - Stereo ☑
- Range Sensors
 - 2D Laser ☑
 - 3D LiDAR ✓
 - Radar
- RGB-D

Radar

- Why Radar
 - All-weather robust

Courtesy: RADIATE Dataset

Dense or Sparse Radar?

- Dense vs Sparse
 - Constant false alarm rate (CFAR)

Processing

CFAR Filter

LiDAR and Radar

Range sensors with different sensings

Radar Sensor

• Imaging radar using multiple single-chip FMCW transceivers

Courtesy: Texas Instruments

Pros & Cons of Radar

- Pros
 - All-weather robust
 - Speed of the detection (Doppler)
- Cons
 - Extrememly noisy
 - Less support

Exteroceptive Sensors

- GNSS ☑
- Camera ✓
 - Monocular
 - Stereo ☑
- Range Sensors ☑
 - 2D Laser ☑
 - 3D LiDAR ✓
 - Radar ☑
- RGB-D

RGB-D Sensor

- LiDAR depth (infrared) + Monocular
 - Intel Realsense
 - Microsoft Kinect
 - Intel L515

RGB-D

"RGB-D Revolution" from 2010 to 2015

Courtesy: Internet

RGB-D Sensor

- Pros
 - fast speed for data capture
 - relatively good depth (compared to stereo vision)
- Cons
 - easily affected by illumination
 - doe not work in outdoors!

Multi-Sensor Fusion

Multi-sensor Fusion

- Pros
 - more robust
 - higher precision
- Cons
 - high cost
 - time synchronization

Time Synchronization

Best: Sensors are hardware-triggered

 OK: Sensors have the same clock (e.g. running on the same system clock or have global clock correction) but capture data at different times

Bad: Sensors have different clocks (e.g. each sensor has its own oscillator)

Courtesy: Shaojie Shen

Sensor-Fusion in Research

R3Live

R³LIVE: A Robust, Real-time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled state Estimation and mapping package

Jiarong Lin and Fu Zhang

Our source code are available at: https://github.com/hku-mars/r3live

Sensor-Fusion in Product

- Apple Vision Pro (AR/VR Product)
 - High-precision High-frequency Multi-sensor SLAM inside

Summary

- Sensors
 - Interoceptive: IMU
 - Exteroceptive: GNSS, Camera, LiDAR, Radar, RGBD
 - Pros and Cons
 - Pros and Cons of each sensor

Conclusion

- There is no perfect sensor
- Multi-Sensor fusion is the trend for robotics

L3 - Robot Localization

Odometry

- Wheel Odometry
- Visual Odometry
- LiDAR Odometry
- etc

• SLAM

 Simultaneous localization and mapping

- Map-based Localization
 - Localize on a given map

Next Lecture

- Iterative Closest Points
 - LiDAR sensor-based Odometry
 - Project 1