

Laboratorio #08

FECHA Y HORARIO: Miércoles 21 de abril de 2021, durante el período de laboratorio.

<u>Instrucciones:</u> Elabore lo que se le solicita a continuación en galletas de protoboard, haciendo uso de un Raspberry Pi y los componentes electrónicos que considere necesarios.

Parte I:

- 1. Implemente un circuito de entrada con un pulsador, tecla, dip switch u otro componente pasivo que permita la entrada de un 1 lógico hacia su raspberry pi.
- 2. Cuando el código que esté ejecutando su raspberry pi, detecte la entrada de este 1 lógico, deberá de enviar un mensaje hacia algún servicio que se esté ejecutando en su computadora o bien en algún sitio cloud. Se recomienda que sea un servicio web sencillo y sin interfaz gráfica.
- 3. Este servicio deberá de ser capaz de recibir este mensaje enviado por la raspberry y enviar un código de respuesta.
- 4. La raspberry deberá de ser capaz de recibir este código de respuesta enviado por el servicio y basado en ese mensaje de respuesta, encenderá segmentos de un display de 7 segmentos.
- 5. El mensaje enviado desde el servicio hacia su Raspberry deberá de ser en binario, este deberá de ser modificable y la raspberry, reaccionará activando los segmentos acorde sea necesario.

Secuencia de funcionamiento:

- 1. Raspberry recibe un 1 lógico de entrada mediante el pulso de una tecla o dip switch.
- 2. Raspberry envía mensaje hacia servicio web.
- 3. Servicio web recibe el mensaje.
- 4. Servicio web trabaja como backend, lee cuál es la configuración actual.
- 5. Servicio web envía mensaje de vuelta a Raspberry basado en configuración.
- 6. Ejemplo en binario: servicio web envía '1111001' Raspberry recibe el mensaje y enciende todos los bits conectados hacia el display de 7 segmentos en donde para formar un "3":

7. Esta "configuración" en el servicio debe de ser editable de alguna forma sencilla. No importa si es dentro del código o que se solicite como parámetro de entrada de alguna manera. Queda a discreción del estudiante.

Nota adicional y requisito:

1. La raspberry no deberá de tener ninguna lógica mas que enviar mensaje hacia el servicio externo y ser capaz de recibir el mensaje de vuelta y activar sus salidas basadas en dicho mensaje.

MVP:

Este laboratorio cuenta como mínimo entregable mostrar que se está recibiendo el mensaje enviado por la Raspberry en el servicio o instancia web creada en un lugar fuera de la Raspberry.

RÚBRICA DE CALIFICACIÓN:

 Posterior a la calificación, deberá de subir al portal del curso en el espacio para "sec03-Lab04" un documento PDF el cual contenga el código realizado en Python para la configuración del dispositivos así como una imagen del funcionamiento alcanzado.

Elemento	Ponderación
Mostrar aplicación que la aplicación funcionando en Raspberry no tiene	25
código mas que enviar y recibir mensaje.	25
Presionar tecla en Raspberry para que envíe mensaje	10
Enviar mensaje desde Raspberry y mostrar de alguna manera, que se recibió	10
en el servicio web.	
Configurar servicio web con la cadena de 7 bits que se desea enviar.	15
Servicio web envía cadena de 7 bits hacia Raspberry y mostrar de alguna	20
manera que Raspberry recibió el mensaje.	
Mostrar en Display de 7 segmentos el mensaje enviado. Cada "1" en el	
mensaje representa "encender segmento". El segmento dependerá de la	20
posición del valor dentro de la cadena.	

100

Laboratorio #09

FECHA Y HORARIO: Miércoles 21 de abril de 2021, durante el período de laboratorio.

<u>Instrucciones:</u> Elabore lo que se le solicita a continuación en galletas de protoboard, haciendo uso de un Raspberry Pi y los componentes electrónicos que considere necesarios.

Parte I:

- 2. Implemente un circuito de entrada con un pulsador, tecla, dip switch u otro componente pasivo que permita la entrada de un 1 lógico hacia su raspberry pi.
- 3. Cuando el código que esté ejecutando su raspberry pi, detecte la entrada de este 1 lógico, deberá de enviar un mensaje hacia algún servicio que se esté ejecutando en su computadora o bien en algún sitio cloud. Se recomienda que sea un servicio web sencillo y sin interfaz gráfica.
- 4. Este servicio deberá de ser capaz de recibir este mensaje enviado por la raspberry y enviar un código de respuesta.
- 5. La raspberry deberá de ser capaz de recibir este código de respuesta enviado por el servicio y basado en ese mensaje de respuesta, encenderá segmentos de un display de 7 segmentos.
- 6. El mensaje enviado desde el servicio hacia su Raspberry deberá de ser en binario, este deberá de ser modificable y la raspberry, reaccionará activando los segmentos acorde sea necesario.

Secuencia de funcionamiento:

- 1. Raspberry recibe un 1 lógico de entrada mediante el pulso de una tecla o dip switch.
- 2. Raspberry envía mensaje hacia servicio web.
- 3. Servicio web recibe el mensaje.
- 4. Servicio web trabaja como backend, lee cuál es la configuración actual.
- 5. Servicio web envía mensaje de vuelta a Raspberry basado en configuración.
- 6. Ejemplo en binario: servicio web envía '11110011' Raspberry recibe el mensaje y enciende todos los bits conectados hacia el display de 7 segmentos en donde para formar un "3":

- 7. Esta "configuración" en el servicio debe de ser editable de alguna forma sencilla. No importa si es dentro del código o que se solicite como parámetro de entrada de alguna manera. Queda a discreción del estudiante.
- 8. El bit menos significativo dentro del arreglo de 8 bits, indicará la activación de un relay. Este relay deberá de encenderse pivotear únicamente. A fin de demostrar la activación del Relay, se colocarán 2 LED a las salidas del Relay. Recuerde que un relay es un interruptor que, conduce entre su pata pivot (la central) hacia sus 2 terminales. Un relay se encuentra "comúnmente conectado" hacia una y al recibir el voltaje de activación, su pata pivot cambia desde su terminal común hacia la no común. Entonces usted verá que un

LED estará "comúnmente encendido" y cuando reciba el pulso proveniente del mensaje del web service como "1", el relay se activará y pasará de estar conectado desde "comúnmente encendido" hacia la otra patita, es decir el otro LED.

Imagen 02: esquema de un relay. Línea puntada ejemplifica la comunicación "común" del relay. En el momento en el que se activa, pasa la comunicación para Pivot y LED 02. En el momento en el que se desactiva, entonces regresa hacia Pivot -> LED 01.

Nota adicional y requisito:

7. La raspberry no deberá de tener ninguna lógica mas que enviar mensaje hacia el servicio externo y ser capaz de recibir el mensaje de vuelta y activar sus salidas basadas en dicho mensaje.

MVP:

Este laboratorio cuenta como mínimo entregable mostrar que se está recibiendo el mensaje enviado por la Raspberry en el servicio o instancia web creada en un lugar fuera de la Raspberry.

RÚBRICA DE CALIFICACIÓN:

• Posterior a la calificación, deberá de subir al portal del curso en el espacio para "sec03-Lab05" un documento PDF el cual contenga el código realizado en Python para la configuración del dispositivos así como una imagen del funcionamiento alcanzado.

Elemento	Ponderación
Mostrar aplicación que la aplicación funcionando en Raspberry no tiene	10
código mas que enviar y recibir mensaje.	
Presionar tecla en Raspberry para que envíe mensaje	2
Enviar mensaje desde Raspberry y mostrar de alguna manera, que se recibió	2
en el servicio web.	
Configurar servicio web con la cadena de 7 bits que se desea enviar.	2
Servicio web envía cadena de 7 bits hacia Raspberry y mostrar de alguna	2
manera que Raspberry recibió el mensaje.	2
Mostrar en Display de 7 segmentos el mensaje enviado. Cada "1" en el	
mensaje representa "encender segmento". El segmento dependerá de la	2
posición del valor dentro de la cadena.	
Al recibir un "1" en el bit menos significativo por medio del mensaje en el	
web service, activar el relay. Deberá de pasar de tener encendido LED 01 a	40
encender LED 02 según Imagen 02 de este instructivo.	
Al recibir un "0" en el bit menos significativo por medio del mensaje en el	
web service, desactivar el relay. Deberá de pasar de tener encendido LED 02	40
a encender LED 01 según Imagen 02 de este instructivo.	