

Gated Linear Attention Transformers with Hardware-Efficient Training

Rameswar Panda² Yikang Shen² Bailin Wang*1 Songlin Yang*1 Yoon Kim¹ ²MIT-IBM Watson AI Lab ¹Massachusetts Institute of Technology

Summary

Linear attention: removes the softmax in ordinary attention ⇒ a linear RNN with matrix-valued hidden states.

	Softmax Attention	Linear Attention
	$\mathbf{O} = \operatorname{softmax}\left(\left(\mathbf{Q}\mathbf{K}^{T}\right)\odot\mathbf{M}\right)\mathbf{V}$	$\mathbf{O} = \left((\mathbf{Q}\mathbf{K}^{T}) \odot \mathbf{M} \right) \mathbf{V}$
Inference	$oldsymbol{o}_t = rac{\sum_{i=1}^t \exp(oldsymbol{q}_t oldsymbol{k}_i^T) oldsymbol{v}_i}{\sum_{i=1}^t \exp(oldsymbol{q}_t oldsymbol{k}_i^T)}$	$\mathbf{S}_t = \mathbf{S}_{t-1} + \boldsymbol{k}_t^{T} \boldsymbol{v}_t, \ \boldsymbol{o}_t = \boldsymbol{q}_t \mathbf{S}_t$

Issues:

- Slow wall time training speed compared to FlashAttention.
- Poor language modeling performance.

Our contributions

- FlashLinearAttention: a hardware-efficient linear attention implementation library.
- Gated Linear Attention: improve language modeling performance through a data-dependent gating mechanism.

Three Forms of Linear Attention

	Equation	Linear scaling	Tensor cores	Sequence parallel
Parallel	$\mathbf{O} = \left((\mathbf{Q}\mathbf{K}^{T}) \odot \mathbf{M} \right) \mathbf{V}$	No, $O(L^2D)$	Yes	Yes
Recurrent	$egin{aligned} \mathbf{S}_t &= \mathbf{S}_{t-1} + oldsymbol{k}_t^{T} oldsymbol{v}_t \ oldsymbol{o}_t &= oldsymbol{q}_t \mathbf{S}_t \end{aligned}$	${\rm Yes,}\ O(LD^2)$	No	No
Chunkwise	$egin{aligned} \mathbf{S}_{[i+1]} &= \mathbf{S}_{[i]} + \mathbf{K}_{[i]}^T \mathbf{V}_{[i]} \ & \mathbf{O}_{[i+1]} = \mathbf{Q}_{[i+1]} \mathbf{S}_{[i]} \ & + \Big((\mathbf{Q}_{[i+1]} \mathbf{K}_{[i+1]}^T ig) \odot \mathbf{M} \Big) \mathbf{V}_{[i+1]} \end{aligned}$	$\begin{array}{c} \text{Yes} \\ O(LCD+LD^2) \end{array}$	Yes,	Yes

FlashLinearAttention: Efficient Linear Attention

- (a): minimal I/O cost, restricted parallelism
- (b-c): high chunk-level parallelism, slightly higher I/O cost.

Gated Linear Attention

Introducing 2D forget gate $\mathbf{G}_t \in \mathbb{R}^{d \times d}$ to linear attention: $\mathbf{S}_t = \mathbf{G}_t \odot \mathbf{S}_{t-1} + \boldsymbol{k}_t^{ op} \boldsymbol{v}_t$

Different parameterization on G_t leads to different models:

Model	Parameterization	Paramet
Mamba [Gu & Dao 2023]	$\mathbf{G}_t = \exp(-(1oldsymbol{lpha}_t^{T})\odot\exp(oldsymbol{A})), \ \ oldsymbol{lpha}_t = \operatorname{softplus}(oldsymbol{x}_toldsymbol{W}_{lpha_1}oldsymbol{W}_{lpha_2})$	$oldsymbol{A}, oldsymbol{W}_{lpha_1},$
Mamba-2 [Dao & Gu 2024]	$\mathbf{G}_t = \gamma_t 1 1^T, \gamma_t = \exp\left(-\operatorname{softplus}\left(\boldsymbol{x}_t \boldsymbol{W}_{\gamma}\right) \exp\left(a\right)\right)$	$oldsymbol{W}_{\gamma},a$
xLSTM [Beck et al. 2024]	$\mathbf{G}_t = \gamma_t 1 1^{^{T}}, \gamma_t = \sigma\left(oldsymbol{x}_t oldsymbol{W}_{\gamma} ight)$	$oldsymbol{W}_{\gamma}$
GLA [Yang et al. 2023]	$\mathbf{G}_t = oldsymbol{lpha}_t 1^{^{T}}, oldsymbol{lpha}_t = \sigma \left(oldsymbol{x}_t oldsymbol{W}_{lpha_1} oldsymbol{W}_{lpha_2} ight)^{rac{1}{ au}}$	$oldsymbol{W}_{lpha_1}, oldsymbol{W}_{lpha}$
Gated RetNet [Sun et al. 2024] $\mathbf{G}_t = \gamma_t 1 1^{^{T}}, \gamma_t = \sigma \left(oldsymbol{x}_t oldsymbol{W}_{\gamma} ight)^{rac{1}{ au}}$	$oldsymbol{W}_{\gamma}$
HGRN-2 [Qin et al. 2024]	$\mathbf{G}_t = \boldsymbol{lpha}_t 1^{^{T}}, \boldsymbol{lpha}_t = \boldsymbol{\gamma} + (1 - \boldsymbol{\gamma}) \sigma(\boldsymbol{x}_t \boldsymbol{W}_{\! lpha})$	$egin{array}{cccc} oldsymbol{v_{\gamma}} \ oldsymbol{W_{lpha}}, oldsymbol{\gamma} \end{array}$
RWKV-6 [Peng et al. 2024]	$\mathbf{G}_t = oldsymbol{lpha}_t 1^{^{\!\intercal}}, oldsymbol{lpha}_t = \exp\left(-\exp\left(oldsymbol{x}_t oldsymbol{W}_lpha ight) ight)$	`
Gated RFA [Peng et al. 2021]	$\mathbf{G}_t = \gamma_t 1 1^{^{T}}, \gamma_t = \sigma\left(oldsymbol{x}_t oldsymbol{W}_{\gamma} ight)$	$oldsymbol{W}_{lpha} \ oldsymbol{W}_{\gamma}$
Decaying FW [Mao et al. 2022	$[\mathbf{G}_t = oldsymbol{lpha}_t oldsymbol{eta}_t^{T}, oldsymbol{lpha}_t = \sigma\left(oldsymbol{x}_t oldsymbol{W}_lpha ight), oldsymbol{eta}_t = \sigma\left(oldsymbol{x}_t oldsymbol{W}_eta ight)$	$oldsymbol{W}_{\gamma}$

Gated Linear Attention ⊂ State-Space Models

GLA's chunkwise parallel form and fast Triton kernel:

- Support efficient scaling of hidden state size by leveraging tensor cores.
- Faciliate training of recent models like HGRN-2, RWKV-6, Mamba-2.

Performance

		Wiki.	LM Eval.	Re	call Ta	sks
Scale	Model	ppl ↓	acc. ↑	FDA	SWD	SQD
340M Params	Transformer++	28.39	41.2	21.4	42.2	22.1
15B Tokens	RetNet	32.33	41.0	2.9	13.3	27.6
	Mamba	28.39	41.8	2.1	12.4	23.0
	GLA	28.65	41.5	8.1	18.6	27.2
1.3B Params	Transformer++	16.85	50.9	21.4	42.2	22.1
100B Tokens	RetNet	18.64	48.9	14.3	42.8	34.7
	Mamba	17.06	50.0	6.2	41.4	35.2
	GLA	17.22	51.0	19.9	50.6	42.6

MQAR

Length extrapolation PG19

Training Speed / Memory

