1 Modeling Approach

1.1 Intersection Points & Coefficient Matrix

In each tetrahedral element \mathcal{V}_k , we locate six intersection points q_j by ray-casting from the **barycenter** x_b along the three anisotropy axes to the faces. At the same time we build a 4×6 coefficient matrix C^k whose entries let us reconstruct any intersection q_j from the four vertex positions.

1. Barycenter

where x_i are the four vertex coordinates.

$$x_b = \frac{1}{4} \sum_{i=1}^{4} x_i \tag{2.22}$$

2. Point-in-triangle test & barycentric coords

A traced point q_j on face $\Delta_{i_1i_2i_3}$ is inside if and only if

$$S_{\Delta_{i_1 i_2 i_3}} = S_{\Delta_{q_i i_2 i_3}} + S_{\Delta_{i_1 q_i i_3}} + S_{\Delta_{i_1 i_2 q_i}}. \tag{2.23}$$

Then its local (area) coordinates on that triangle are

$$\xi = \frac{S_{\Delta_{q_j i_2 i_3}}}{S_{\Delta_{i_1 i_2 i_3}}}, \quad \eta = \frac{S_{\Delta_{q_j i_1 i_3}}}{S_{\Delta_{i_1 i_2 i_3}}}, \quad 1 - \xi - \eta = \frac{S_{\Delta_{i_1 i_2 q_j}}}{S_{\Delta_{i_1 i_2 i_3}}}. \tag{2.24}$$

3. Building the coefficient matrix C^k

Figure 1: Intersection points in a tetrahedral volume element: The tetrahedron with three axes of anisotropy set at the barycenter and the six intersection points that they define (a), a triangular face of the element containing an intersection point and the coefficients ξ_0 and η_0 related to the intersection point. Note that ξ increases with the cyan color gradient starting from $\xi = 0$ at the line segment (p_1, p_2) and is equal to $\xi = 1$ at p_3 , while η increases along the orange color gradient starting from $\eta = 0$ at (p_2, p_3) until it reaches $\eta = 1$ at p_1 (b).

For each intersection q_i we evaluate the four linear shape-functions N_i of the tetrahedron's nodes

 $i=1\ldots 4$. On the face containing q_j , those coincide with the barycentric coordinates:

$$\begin{cases} N_{i_1}(q_j) = 1 - \xi - \eta, \\ N_{i_2}(q_j) = \xi, \\ N_{i_3}(q_j) = \eta, \\ N_{i_4}(q_j) = 0, \end{cases}$$

where $\{i_1,i_2,i_3\}$ are the face nodes and i_4 is the opposite vertex. We then set

$$C_{ij}^k = N_i(q_j),$$

assembling a 4×6 matrix whose j-th column holds the four shape-function values at q_i .

4. Updating intersections

At runtime, once the current vertex positions x_i^t are known, each intersection moves as

$$x_j^t = \sum_{i=1}^4 C_{ij}^k x_i^t \tag{2.25}$$

reproducing the straight-sided mapping of a linear tetrahedron.

In the implementation the six q_j and the corresponding C_k are updated each step to remain exact under large deformation.

1.2 Internal Forces

Internal ("deformation") forces in each tetrahedron are computed by **three axial springs** along the anisotropy axes, plus **three torsion springs** coupling each pair of axes. See Fig. 2. The angle α_{lm}^t between the axes ζ_l and ζ_m can be given by...

Figure 2: A tetrahedron with three axial springs (in cyan) along the axes of anisotropy and three torsion springs in the barycenter of the tetrahedron (in violet).

1.2.1 Axial Springs

• Axis vectors: Along axis $\ell \in \{1, 2, 3\}$, let the two intersection points be $q_{\ell,1}$ and $q_{\ell,2}$. Their current axis vector is

$$\zeta_{\ell}^t = x_{q_{\ell,1}}^t - x_{q_{\ell,2}}^t.$$

• Initial length (at t = 0):

$$l_{\ell}^{0} = \|\zeta_{\ell}^{0}\| = \|x_{q_{\ell,1}}^{0} - x_{q_{\ell,2}}^{0}\|. \tag{2.30}$$

• Unit direction:

$$\hat{\zeta}_{\ell}^{t} = \frac{\zeta_{\ell}^{t}}{\|\zeta_{\ell}^{t}\|}.\tag{2.31}$$

• Hooke's law (linear axial force):

$$f_{\ell, \text{ axial}}^t = -k_{\ell} \left(\|\zeta_{\ell}^t\| - \|\zeta_{\ell}^0\| \right) \hat{\zeta}_{\ell}^t$$

$$(2.35)$$

where k_{ℓ} is the stiffness constant.

1.2.2 Torsion Springs

To capture bending resistance between each pair of anisotropy axes in a tetrahedron, we introduce **torsion** springs. These springs penalize deviations of the angles between axes from their rest values.

1. Angle between two axes For any two axes ℓ and m, the angle is

$$\alpha_{\ell m}^{t} = \arccos(\hat{\zeta}_{\ell}^{t} \cdot \hat{\zeta}_{m}^{t}), \quad \alpha_{\ell m}^{0} = \alpha_{\ell m}^{t=0}$$
(2.32)

where $\hat{\zeta}_{\ell}^t$ and $\hat{\zeta}_m^t$ are the unit–direction vectors at time t, and $\alpha_{\ell m}^0$ is the **rest angle**, measured in the undeformed configuration.

2. Decomposing the torsion force At each intersection point on axis ℓ , the net torsion force $f_{\ell,1}$ splits into three orthogonal components:

$$f_{\ell,1} = f_S(\zeta_\ell, \alpha_{\ell m}, \alpha_{\ell n}) \, \hat{\zeta}_\ell + f_\tau(\zeta_\ell, \alpha_{\ell m}, \alpha_{\ell n}) \, \hat{\zeta}_m + f_\tau(\zeta_\ell, \alpha_{\ell m}, \alpha_{\ell n}) \, \hat{\zeta}_n, \tag{2.33}$$

with $f_{\ell,2} = -f_{\ell,1}$, and $\{m,n\}$ are the other two axes.

- Axial component f_S acts along $\hat{\zeta}_{\ell}$.
- Torsional components f_{τ} lie in the planes $(\hat{\zeta}_{\ell}, \hat{\zeta}_m)$ and $(\hat{\zeta}_{\ell}, \hat{\zeta}_n)$.

Expressions for f_S and f_{τ} We derive both from simple spring energies: $f_S = -\frac{\mathrm{d}U_S}{\mathrm{d}\|\zeta_\ell\|}$.

In a conservative spring model, the force along a single coordinate x is the negative derivative of its potential energy:

$$F(x) = -\frac{\mathrm{d}}{\mathrm{d}x} U(x).$$

Here our "coordinate" is the current length $\|\zeta_{\ell}\|$, so the axial force magnitude is

$$f_S = -\frac{\mathrm{d}}{\mathrm{d}\|\zeta_\ell\|} U_S.$$

1. Axial term: Define $U_S = \frac{1}{2} k_\ell (\|\zeta_\ell^t\| - \|\zeta_\ell^0\|)^2$. Then

$$f_S = -\frac{\mathrm{d}}{\mathrm{d}\|\zeta_{\ell}\|} \left[\frac{1}{2} k_{\ell} (\|\zeta_{\ell}\| - \|\zeta_{\ell}^{0}\|)^{2} \right] = -k_{\ell} (\|\zeta_{\ell}^{t}\| - \|\zeta_{\ell}^{0}\|),$$

and the vector is $\mathbf{f}_S = f_S \,\hat{\zeta}_\ell$.

2. Torsional terms: Define $U_{\tau} = \frac{1}{2} \sum_{p \in \{m,n\}} k_{\ell p} \left(\alpha_{\ell p}^t - \alpha_{\ell p}^0\right)^2$. Differentiating with respect to each angle gives

$$f_{\tau}(\zeta_{\ell}, \alpha_{\ell m}, \alpha_{\ell n}) = -k_{\ell m} \left(\alpha_{\ell m}^{t} - \alpha_{\ell m}^{0} \right),$$

and similarly for (ℓ, n) .

3. Linear torsion-spring model

$$f_{\ell \to m}^t = -k_{\ell m} \left(\alpha_{\ell m}^t - \alpha_{\ell m}^0 \right) \hat{\zeta}_m^t, \quad f_{m \to \ell}^t = -f_{\ell \to m}^t.$$
 (2.40–2.41)

4. Cosine-approximation (small-angle) When axes remain near orthogonal, $\alpha_{\ell m}^t - \alpha_{\ell m}^0 \approx (\hat{\zeta}_{\ell}^t \cdot \hat{\zeta}_m^t) - (\hat{\zeta}_{\ell}^0 \cdot \hat{\zeta}_m^0)$. Thus

$$f_{\ell \to m}^t = -k_{\ell m} \left(\left(\hat{\zeta}_{\ell}^t \cdot \hat{\zeta}_{m}^t \right) - \left(\hat{\zeta}_{\ell}^0 \cdot \hat{\zeta}_{m}^0 \right) \right) \hat{\zeta}_{m}^t, \quad f_{m \to \ell}^t = -k_{\ell m} \left(\left(\hat{\zeta}_{\ell}^t \cdot \hat{\zeta}_{m}^t \right) - \left(\hat{\zeta}_{\ell}^0 \cdot \hat{\zeta}_{m}^0 \right) \right) \hat{\zeta}_{\ell}^t.$$

$$(2.44-2.45)$$

Assembly Each tetrahedron contributes:

- 6 axial-spring forces, and
- 6 torsion-spring forces,

which are then distributed to the four vertices via the shape-function coefficients C^k and summed with any body forces before time integration.

1.3 Simplified Volume Preservation (Barycentric Volume Springs)

To control tetrahedral volume without full tensors, we use **barycentric springs** [Eqns. 2.76–2.77]:

1. Current barycenter:

$$x_b^t = \frac{1}{4} \sum_{i=1}^4 x_i^t.$$

- 2. Radial vectors: $\xi_j^t = x_b^t x_j^t$, with lengths $\|\xi_j^t\|$.
- 3. Rest lengths $\|\xi_j^0\|$ computed at t=0.
- 4. Total length error:

$$\Delta L = \sum_{j=1}^{4} \|\xi_j^t\| - \sum_{j=1}^{4} \|\xi_j^0\|.$$

5. Barycentric spring force on node j:

$$f_j^t = -k_s \Delta L \frac{\xi_j^t}{\|\xi_j^t\|} - c \left(v_j^t - v_b^t\right),$$

where k_s is the bulk-modulus-based stiffness, c a damping coefficient, and v_b^t the barycenter velocity.

6. Adaptive stiffness update (LMS, Eq. 2.81):

$$k_s^{t+\Delta t} = k_s^t + \mu \, \Delta V \, \sum_{j=1}^4 \|\xi_j^t\|,$$

clamped to $[k_{\min}, k_{\max}]$, with $\Delta V = V^t - V^0$ the volume error.

_____This completes the fully-spring-based model:

- 1. mesh topology & intersection (Eqs. 2.22-2.25),
- 2. internal forces via axial+torsion springs (Eqs. 2.30-2.44-2.45),
- 3. volume control via barycentric springs.

To do list: 1. survey the