ST2132 Tutorial 3 2210

- 1. Refer to Tutorial 2 Question 5.
 - (a) State the marginal distribution of Y.
 - (b) Using (ii), show that if cov(X,Y) = 0, then X and Y are independent.
- 2. Let X_1, \ldots, X_n be IID $N(\mu, \sigma^2)$ random variables. Assume (A), (B), (C) on slide 20 of Probability Review II hold.
 - (a) Show that

$$n\left(\frac{\bar{X}-\mu}{\sigma}\right)^2 \sim \chi_1^2$$

(b) Show that

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

- (c) Calculate $E(S^2)$ and $var(S^2)$.
- 3. Let X_1, \ldots, X_n be IID RV's with expectation μ and variance $\sigma^2 > 0$. Let

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}, \qquad \hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

- (a) Show that $E(S^2) = \sigma^2$. Is $E(S) = \sigma$?
- (b) Find $E(\hat{\sigma}^2)$. Is $E(\hat{\sigma}) = \sigma$?
- 4. In a population of size N, a fraction p of the individuals have value a, and the others have value b. Show that the mean and variance are

$$\mu = pa + (1 - p)b,$$
 $\sigma^2 = p(1 - p)(a - b)^2$

- 5. Let X_1, \ldots, X_N be random draws without replacement from a population of size N with mean μ and variance σ^2 . You may assume that the variables are exchangeable.
 - (a) Explain why $cov(X_i, X_j)$ has the same value for any $i \neq j$.
 - (b) By calculating the variance of $T = \sum_{i=1}^{N} X_i$, or otherwise, show that

$$cov(X_i, X_j) = -\frac{\sigma^2}{N-1}, \qquad i \neq j$$

(c) Let \bar{X} be the mean of X_1, \ldots, X_n . Show that

$$var(\bar{X}) = \frac{N - n}{N - 1} \frac{\sigma^2}{n}$$