Efficient Online Set-valued Classification with Bandit Feedback

Zhou Wang, Xingye Qiao

Department of Mathematics and Statistics

A Limitation of Conformal Prediction

• (Class-specific) Conformal prediction [Vovk et al., 2005, Vovk, 2012] returns a prediction set $\widehat{\mathcal{C}}(\boldsymbol{X})$ for an observation $(\boldsymbol{X},Y)\in\mathcal{X}\times\mathcal{Y}$ with the coverage guarantee

$$\mathbb{P}[Y \in \widehat{\mathcal{C}}(X) \mid Y = k] \ge 1 - \alpha, \ \forall \ \alpha \in [0, 1].$$

• Given score functions s(X, k) and quantiles/thresholds $\tau_k, k \in \mathcal{Y}$, we have

$$\widehat{\mathcal{C}}(\boldsymbol{X}) := \{k \in \mathcal{Y} : s(\boldsymbol{X}, k) \geq \tau_k\}.$$

A Limitation of Conformal Prediction

• (Class-specific) Conformal prediction [Vovk et al., 2005, Vovk, 2012] returns a prediction set $\widehat{\mathcal{C}}(\boldsymbol{X})$ for an observation $(\boldsymbol{X},Y)\in\mathcal{X}\times\mathcal{Y}$ with the coverage guarantee

$$\mathbb{P}[Y \in \widehat{\mathcal{C}}(X) \mid Y = k] \ge 1 - \alpha, \ \forall \ \alpha \in [0, 1].$$

• Given score functions s(X, k) and quantiles/thresholds $\tau_k, k \in \mathcal{Y}$, we have

$$\widehat{\mathcal{C}}(\boldsymbol{X}) := \{k \in \mathcal{Y} : s(\boldsymbol{X}, k) \geq \tau_k\}.$$

- Conformal prediction requires fully observed label information:
 - Fit a machine learning model f on labeled training data to obtain score functions s(X, k).
 - **2** Estimate quantiles τ_k for the score functions using **labeled** calibration data.

Online Bandit Feedback Settings

- Full label information is **absent** in online learning settings with **bandit feedback**, e.g., video recommendation and personalized medicine.
- In multi-class classification, a learner has no direct access to the label Y_t of the given instance X_t when updating the model.
 - The learner pulls an arm A_t and only receives the feedback $\mathbb{1}\{A_t = Y_t\}$.
 - ullet Strategy to pull an arm: policy π_t , e.g., a probability distribution on ${\mathcal Y}$.

Online Learning with Bandit Feedback

Figure: Flowchart of the online learning with bandit feedback. Here $\boldsymbol{\tau}^{t-1} = (\tau_1^{t-1}, \cdots, \tau_{|\mathcal{Y}|}^{t-1})^{\top}$.

Remark: Here $f_{\mathcal{W}^{t-1}}$ is the based model (parameterized by \mathcal{W}^{t-1}) to construct score functions. $\tau_k^{t-1}, k \in \mathcal{Y}$ are estimated quantiles.

Estimate $\mathbb{1}\{Y_t = k\}$

ullet As a direct observation of Y_t is unavailable, we rely on an estimation to $\mathbb{1}\{Y_t=k\}$, i.e.,

$$\Delta_{t,k} := \frac{\mathbb{1}\{A_t = k\}}{\pi_t(k \mid X_t)} \mathbb{1}\{A_t = Y_t\}.$$

Proposition 1

 $\Delta_{t,k}$ serves as an unbiased estimator of $\mathbb{1}\{Y_t=k\}$. This is substantiated by the equation

$$\mathbb{E}_{\pi_t}[\Delta_{t,k}] = \mathbb{1}\{Y_t = k\},\,$$

where the expectation is taken with respect to policy π_t , conditioning on all previous information and the point (X_t, Y_t) .

Train a Base Model

ullet Train a neural network $m{f}_{\mathcal{W}}(m{X}) = (f_{\mathcal{W}}^1(m{X}), \cdots, f_{\mathcal{W}}^{|\mathcal{Y}|}(m{X}))^{ op} \in \mathbb{R}^{|\mathcal{Y}|}$ with cross-entropy loss

$$\mathcal{L}(\boldsymbol{X}_t; \mathcal{W}) = -\sum_{k \in \mathcal{Y}} \mathbb{1}\{Y_t = k\} \cdot \log \left(\hat{p}(k \mid \boldsymbol{X}_t)\right),$$

where

$$\hat{
ho}(k \mid oldsymbol{X}_t) := rac{\exp(f_{\mathcal{W}}^k(oldsymbol{X}_t))}{\sum_{ ilde{k} \in \mathcal{V}} \exp(f_{\mathcal{W}}^{ ilde{k}}(oldsymbol{X}_t))}, \ k \in \mathcal{Y}.$$

Train a Base Model

ullet Train a neural network $m{f}_{\mathcal{W}}(m{X}) = (f_{\mathcal{W}}^1(m{X}), \cdots, f_{\mathcal{W}}^{|\mathcal{Y}|}(m{X}))^{ op} \in \mathbb{R}^{|\mathcal{Y}|}$ with cross-entropy loss

$$\mathcal{L}(\boldsymbol{X}_t; \mathcal{W}) = -\sum_{k \in \mathcal{Y}} \underline{\boldsymbol{\Delta}_{t,k}} \cdot \log \left(\hat{p}(k \mid \boldsymbol{X}_t) \right),$$

where

$$\hat{
ho}(k \mid \boldsymbol{X}_t) := rac{\exp(f_{\mathcal{W}}^k(\boldsymbol{X}_t))}{\sum_{ ilde{k} \in \mathcal{Y}} \exp(f_{\mathcal{W}}^{ ilde{k}}(\boldsymbol{X}_t))}, \ k \in \mathcal{Y}.$$

Train a Base Model

ullet Train a neural network $m{f}_{\mathcal{W}}(m{X}) = (f_{\mathcal{W}}^1(m{X}), \cdots, f_{\mathcal{W}}^{|\mathcal{Y}|}(m{X}))^{ op} \in \mathbb{R}^{|\mathcal{Y}|}$ with cross-entropy loss

$$\mathcal{L}(m{X}_t; \mathcal{W}) = -\sum_{k \in \mathcal{Y}} \Delta_{t,k} \cdot \log \left(\hat{p}(k \mid m{X}_t) \right),$$

where

$$\hat{\rho}(k \mid \boldsymbol{X}_t) := \frac{\exp(f_{\mathcal{W}}^k(\boldsymbol{X}_t))}{\sum_{\tilde{k} \in \mathcal{Y}} \exp(f_{\mathcal{W}}^{\tilde{k}}(\boldsymbol{X}_t))}, \ k \in \mathcal{Y}.$$

and its updating rule

$$\mathcal{W}^t = \mathcal{W}^{t-1} - \eta_1 \nabla_{\mathcal{W}} \mathcal{L}(\mathbf{X}_t; \mathcal{W}^{t-1}).$$

Estimate Conformal Quantiles

• The check loss $\rho_{\alpha}(s,\tau) = (s-\tau) \cdot (\alpha - \mathbb{I}\{s < \tau\})$ is used to find the $100 \times \alpha\%$ quantile, τ , for the distribution of the score s. In particular, given the score function $s(\mathbf{X},k)$ for class $k \in \mathcal{Y}$, we aim to solve

$$\underset{\tau}{\operatorname{argmin}} \mathbb{E} \left[\rho_{\alpha}(s(\boldsymbol{X}, k), \tau) \mid Y = k \right] = \underset{\tau}{\operatorname{argmin}} \frac{\mathbb{E} \left[\mathbb{1} \{ Y = k \} \cdot \rho_{\alpha}(s(\boldsymbol{X}, k), \tau) \right]}{\mathbb{E} \left[\mathbb{1} \{ Y = k \} \right]} \\
= \underset{\tau}{\operatorname{argmin}} \mathbb{E} \left[\mathbb{1} \{ Y = k \} \cdot \rho_{\alpha}(s(\boldsymbol{X}, k), \tau) \right].$$

In practice, we instead work with its empirical counterpart

$$\mathbb{1}\{Y_t = k\} \cdot \rho_{\alpha}(s^{t-1}(\boldsymbol{X}_t, k), \tau).$$

Estimate Conformal Quantiles

• The check loss $\rho_{\alpha}(s,\tau) = (s-\tau) \cdot (\alpha - \mathbb{I}\{s < \tau\})$ is used to find the $100 \times \alpha\%$ quantile, τ , for the distribution of the score s. In particular, given the score function $s(\mathbf{X},k)$ for class $k \in \mathcal{Y}$, we aim to solve

$$\underset{\tau}{\operatorname{argmin}} \mathbb{E} \left[\rho_{\alpha}(s(\boldsymbol{X}, k), \tau) \mid Y = k \right] = \underset{\tau}{\operatorname{argmin}} \frac{\mathbb{E} \left[\mathbb{1} \{ Y = k \} \cdot \rho_{\alpha}(s(\boldsymbol{X}, k), \tau) \right]}{\mathbb{E} \left[\mathbb{1} \{ Y = k \} \right]} \\
= \underset{\tau}{\operatorname{argmin}} \mathbb{E} \left[\mathbb{1} \{ Y = k \} \cdot \rho_{\alpha}(s(\boldsymbol{X}, k), \tau) \right].$$

In practice, we instead work with its empirical counterpart

$$\Delta_{t,k} \cdot \rho_{\alpha}(s^{t-1}(\boldsymbol{X}_t,k),\tau).$$

Estimate Conformal Quantiles

• The check loss $\rho_{\alpha}(s,\tau) = (s-\tau) \cdot (\alpha - \mathbb{I}\{s < \tau\})$ is used to find the $100 \times \alpha\%$ quantile, τ , for the distribution of the score s. In particular, given the score function $s(\mathbf{X},k)$ for class $k \in \mathcal{Y}$, we aim to solve

$$\underset{\tau}{\operatorname{argmin}} \mathbb{E} \left[\rho_{\alpha}(s(\boldsymbol{X}, k), \tau) \mid Y = k \right] = \underset{\tau}{\operatorname{argmin}} \frac{\mathbb{E} \left[\mathbb{1} \{ Y = k \} \cdot \rho_{\alpha}(s(\boldsymbol{X}, k), \tau) \right]}{\mathbb{E} \left[\mathbb{1} \{ Y = k \} \right]} \\
= \underset{\tau}{\operatorname{argmin}} \mathbb{E} \left[\mathbb{1} \{ Y = k \} \cdot \rho_{\alpha}(s(\boldsymbol{X}, k), \tau) \right].$$

In practice, we instead work with its empirical counterpart

$$\Delta_{t,k} \cdot \rho_{\alpha}(s^{t-1}(\boldsymbol{X}_t,k),\tau).$$

and its updating rule

$$\tau_k^t = \tau_k^{t-1} + \eta_2 \underline{\Delta}_{t,k} (\alpha - \mathbb{I}\{s^{t-1}(\boldsymbol{X}_t, k) < \tau_k^{t-1}\}).$$

Algorithms

Algorithm 1: Bandit Conformal

Require: Initialize weight matrices \mathcal{W}^0 , class-specific quantiles $\tau_{k}^0 = 0$, $k \in \mathcal{Y}$. A score function $s^t(\cdot,\cdot)$, a policy π_t and learning rates η_1, η_2 .

- 1: **for** $t = 1, 2, 3, \dots, T$ **do**
- 2: Learner receives a query X_t
- Generates a prediction set for the query: $\widehat{\mathcal{C}}^{t-1}(\boldsymbol{X}_t) := \left\{k \in \mathcal{Y} : s^{t-1}(\boldsymbol{X}_t, k) \geq \tau_k^{t-1}\right\}$ Learner pulls an arm $A_t \sim \pi_t$, receives the feedback $\mathbbm{1}\left\{A_t = Y_t\right\}$, and computes $\Delta_{t,k}$
- Update all weights and quantiles: 5:

$$\begin{cases} \mathcal{W}^{t} = \mathcal{W}^{t-1} - \eta_{1} \nabla_{\mathcal{W}} \mathcal{L}(\boldsymbol{X}_{t}; \mathcal{W}^{t-1}) \\ \tau_{k}^{t} = \tau_{k}^{t-1} + \eta_{2} \Delta_{t,k} \left(\alpha - \mathbb{I}\left\{ s^{t-1}(\boldsymbol{X}_{t}, k) < \tau_{k}^{t-1} \right\} \right) \end{cases}$$

6: end for

Remark: Choosing a proper η_2 might be challenging in practice [Gibbs and Candes, 2021].

Algorithms

Algorithm 2: Bandit Conformal with Experts

Require: Initialize weight matrices \mathcal{W}^0 , class-specific quantiles $\tau^0_{j,k}=0$, and experts weights $\omega^0_{j,k}=1,\ j\in[J],\ k\in\mathcal{Y}.$ A score function $s^t(\cdot,\cdot)$, a policy π_t and learning rates $\eta_1,\ \eta_{2,j}.$

- 1: **for** $t = 1, 2, 3, \dots, T$ **do**
- 2: Learner receives a query X_t
- 3: Generates a prediction set for the query: $\widehat{\mathcal{C}}^{t-1}(\mathbf{X}_t) := \{k \in \mathcal{Y} : s^{t-1}(\mathbf{X}_t, k) \geq \overline{\tau}_k^{t-1}\},$ where $\overline{\tau}_k^{t-1} = \sum_i \omega_{i,k}^{t-1} \tau_{i,k}^{t-1} / \sum_i \omega_{i,k}^{t-1}$
- 4: Learner pulls an arm $A_t \sim \pi_t$, receives the feedback $\mathbb{1}\{A_t = Y_t\}$, and computes $\Delta_{t,k}$
- 5: Update all weights and quantiles:

$$\begin{cases} \mathcal{W}^{t} = \mathcal{W}^{t-1} - \eta_{1} \nabla_{\mathcal{W}} \mathcal{L}(\boldsymbol{X}_{t}; \mathcal{W}^{t-1}) \\ \tau_{j,k}^{t} = \tau_{j,k}^{t-1} + \eta_{2,j} \Delta_{t,k} \left(\alpha - \mathbb{1}\{s^{t-1}(\boldsymbol{X}_{t},k) < \tau_{j,k}^{t-1}\}\right) \\ \omega_{j,k}^{t} = \exp\left(-\frac{1}{\sqrt{t+1}} \sum_{t' \leq t} \Delta_{t',k} \cdot \rho_{\alpha}(s^{t'-1}(\boldsymbol{X}_{t'},k), \tau_{j,k}^{t'-1})\right) \end{cases}$$

6: end for

Coverage Gap

Theorem 1

Define the filtration $\mathcal{F}_t := (\sigma(\boldsymbol{X}_t, Y_t) \times \sigma(\pi_t)) \cup \mathcal{F}_{t-1}$. Assume $\pi_t(k \mid \boldsymbol{X}_t) \geq c_k > 0$ for all $t \in [T]$ and $\mathbb{E}[\frac{\mathbb{I}\{Y_t = k\}}{\pi_t(k \mid \boldsymbol{X}_t)} \mid \mathcal{F}_{t-1}] = b_k^t$. With probability at least $1 - \delta$ taken over all the randomness, for all class $k \in \mathcal{Y}$, Algorithm 1 yields the empirical coverage gap

$$CvgGap_k := \left| \alpha - \frac{1}{T_k} \sum_{t=1}^{T} \mathbb{1}\{Y_t = k\} \cdot \mathbb{1}\{Y_t \notin \widehat{\mathcal{C}}^{t-1}(\boldsymbol{X}_t)\} \right| \leq \frac{\tau_k^T}{\eta_2 T_k} + \frac{\zeta_k(T, \delta/|\mathcal{Y}|)}{T_k},$$

where
$$\zeta_k(T,\delta) = \frac{2}{3c_k}\log\frac{2}{\delta} + \sqrt{2\log\frac{2}{\delta}\cdot\sum_{t=1}^T b_k^t}$$
, and $T_k = \sum_{t=1}^T \mathbb{1}\{Y_t = k\}$.

• The empirical coverage rate converges to the desired coverage rate α in the order of $\mathcal{O}(T^{-1/2})$ if $\eta_2 = \mathcal{O}(T^{-1/2})$ and $T_k = \mathcal{O}(T)$.

Regret Analysis for the Check Loss

Theorem 2

Let p_k be the prior probability of class $k \in \mathcal{Y}$, and $\tau_k^* = \operatorname{argmin}_{\tau} \frac{1}{T} \sum_{t=1}^{T} \mathbb{1}\{Y_t = k\} \rho_{\alpha}(s^{t-1}(\boldsymbol{X}_t), \tau)$ be the quantile estimate using all the data instances. Define the empirical regret associated with the check loss in the bandit feedback setting as $\operatorname{Reg}_{k,\rho_{\alpha}}(T) := \frac{1}{T} \sum_{t=1}^{T} \Delta_{t,k} \rho_{\alpha}(s^{t-1}(\boldsymbol{X}_t), \tau_k^{t-1}) - \frac{1}{T} \sum_{t=1}^{T} \mathbb{1}\{Y_t = k\} \rho_{\alpha}(s^{t-1}(\boldsymbol{X}_t), \tau_k^*)$. By choosing $\eta_2 = \tau_k^* \rho_k^{1/2} \left(\sum_{t=1}^{T} \mathbb{E}\left[\frac{\mathbb{1}\{Y_t = k\}}{\pi_t^2(k|\boldsymbol{X}_t)}\right]\right)^{-1/2}$, Algorithm 1 yields an expected regret

$$\mathbb{E}[Reg_{k,\rho_{\alpha}}(T)] \leq \frac{\tau_k^*}{T} \sqrt{\rho_k \sum_{t=1}^T \mathbb{E}\left[\frac{\mathbb{I}\{Y_t = k\}}{\pi_t^2(k \mid \boldsymbol{X}_t)}\right]}.$$

• The expected regret converges in the rate of $\mathcal{O}(T^{-1/2})$ if $\eta_2 = \mathcal{O}(T^{-1/2})$.

Experiments

- Set-up: BCCP is tested with three score functions (softmax, APS, RAPS) and two policies (softmax and uniform).
- Metrics: At each time t, metrics are computed on the accumulated batches \mathcal{B}_s , $s \leq t$. The coverage rate is set as 95%.
 - Accumulative Coverage Rate:

$$\mathsf{Acum_cvg_min}(t) = \min_{k \in \mathcal{Y}} \mathsf{Acum_cvg}(t, k), \quad \mathsf{Acum_cvg_max}(t) = \max_{k \in \mathcal{Y}} \mathsf{Acum_cvg}(t, k),$$

where

$$\mathsf{Acum_cvg}(t,k) = \frac{\sum_{s=1}^{t} \sum_{\boldsymbol{X}_i \in \mathcal{B}_s} \mathbb{1}\{Y_i = k \ \& \ Y_i \in \widehat{\mathcal{C}}^{t-1}(\boldsymbol{X}_i)\}}{\sum_{s=1}^{t} \sum_{\boldsymbol{X}_i \in \mathcal{B}_s} \mathbb{1}\{Y_i = k\}}$$

Accumulative Prediction Set Size:

$$\mathsf{Acum_size}(t) = \frac{\sum_{s=1}^{t} \sum_{\boldsymbol{X}_i \in \mathcal{B}_s} |\widehat{\mathcal{C}}^{t-1}(\boldsymbol{X}_i)|}{\sum_{s=1}^{t} |\mathcal{B}_s|}$$

Figure: Performances under Algorithm 2 with softmax policy. The grid of learning rate is [0.1, 0.01, 0.001, 0.0001].

Figure: Performances under Algorithm 2 with uniform policy. The grid of learning rate is [0.1, 0.01, 0.001, 0.0001]

Conclusions

- The unbiased estimation with SGD allows the based model and thresholds to be efficiently updated in conformal prediction.
- The expert-based algorithm reduces the difficulty of selection of learning rate.
- Both coverage guarantee and the regret of the check loss converge at the rate of $\mathcal{O}(T^{-1/2})$.

References

- Isaac Gibbs and Emmanuel Candes. Adaptive conformal inference under distribution shift. *Advances in Neural Information Processing Systems*, 34:1660–1672, 2021.
- Vladimir Vovk. Conditional validity of inductive conformal predictors. In *Asian conference on machine learning*, pages 475–490. PMLR, 2012.
- Vladimir Vovk, Alex Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*. Springer Science & Business Media, 2005.