1. 컴퓨터 (Computer)

A. 수식 / 논리적 언어로 표현된 계산을 수행 / 작업 통제하는 기계

2. 컴퓨터 기능

- A. 전자회로로 구성
- B. 자동적으로 계산이나 데이터를 처리하는 기계
- c. 프로그래밍이 가능
- D. 입력자료를 받아들여 처리
- E. 그 정보를 저장하고 검색하여 결과를 출력 즉, 입력기능 / 제어기능 / 기억기능 / 연산기능 / 출력기능
 - -> 컴퓨터의 구성 요소

Calculator

performs all the basic arithmetic tasks, complex numbers and numerical.

Computer

people have the option of using the tool for several purposes.

1. 컴퓨터 역사

- A. 초기 계산 장치
 - 17세기 이전: 주판
 - 1642년: 파스칼의 기계식 수동 계산기 (파스칼라인) 덧셈과 뺄셈
 - 1647년: 라이프니츠의 기계식 수동 계산기 곱셈과 나눗셈

1. 컴퓨터 역사

- A. 천공카드 계산장치
 - 1823년: 베비지 차분기관 (Difference Engine)
 - 1830년: 베비지 해석기관 (Analytical Engine) 설계도

First computer **programmer - Ada** Love lace 영국의 시인 '바이런'의 딸

다용도

= 범용 = General Purpose

<-> 전용 = Special Purpose

1. 컴퓨터 역사

Digital Computer

<--> Analog Computer

A. 다용도 디지털 컴퓨터

• 1946년: 에거트와 모클리의 에니악 (**ENIAC**)

18,000여 개 진공관 + 1,500개 계전기, 무게 30톤

→ 프로그램을 외부 프로그래밍하는 방식

• 1952년: 폰 노이만의 에드박 (EDVAC)

→ 프로그램을 내장하는 방식(Stored Program)

ENIAC? - Electronic Numerical

Integrator and

Calculator(Computer)

전자식 숫자 적분기 및 계산기 탄도 계산의 목적

1. Memory Architecture

A. processor/memory architectures

2. Harvard vs Princeton

- A. The **Von Neumann (aka Princeton) Architecture**_developed for the **ENIAC** uses the **same memory and data paths** for both program and data storage.
- B. The **Harvard architecture** characterized by the **Harvard Mark 1** used physically **separate memory and data paths** for program and memory.

Memory

Program Memory

3. Which is better?

A. Each architecture has its advantages: All else being equal, the **Harvard model** has the edge in **performance**.

The Von Neumann model is more flexible.

4. Modern Hybrids

- A. Most **general purpose computers** are hybrid designs that give you the best of both arch.
- B. Within the CPU they operate on the Harvard model using separate caches for instructions and data to maximize performance. But the instruction and data caches are both loaded automatically from a common memory space.
- c. From a programming perspective, these computers appear to be pure Von Neumann machines with **many gigabytes of virtual storage**.

1. 컴퓨터 역사

A. 다용도 디지털 컴퓨터 (다용도, 범용, General Purpose)

내용	제1세대 (1951년-1959년)	제2세대 (1959년-1963년)	제3세대 (1963년-1975년)	제4세대 (1975년 이후)
기억 소자	진공관(Tube)	트랜지스터	집적회로(IC)	고밀도 집적회로(LSI), 초고밀도 집적회로 (VLSI)
주기억장치	자기드럼	자기코어	집적회로(IC)	LSI, VLSI
처리 속도	ms(10 ⁻³)	μs(10 ⁻⁶)	ns(10 ⁻⁹)	ps(10 ⁻¹²)
트징	• 신뢰성 낮음 • 대형화	 소프트웨어 중심 운영체제(OS) 전력소모 감소 신뢰도 향상 소형화 온라인 방식 도입 	• 시분할 처리 • 다중처리 방식	전문가 시스템 인공지능 (AI) 종합정보 통신망 마이크로 컴퓨터
사용 언어	저급 언어 (기계어, 어셈블리어)	고급 언어 (FORTRA N, ALGOL, COBOL)	고급 언어 (LISP, PAS CAL, BASIC, PL/I)	문제지향적 언어

SI (International System of Units) 접두어 (Prefix)

- SI 단위 앞에 붙이는 접두어. 10의 배수를 생략하기 위하여.

10 ⁿ	접두어	기호	배수
10 ²⁴	요타 (yotta)	Υ	자
10 ²¹	제타 (zetta)	Z	십해
10 ¹⁸	엑사 (exa)	Ε	백경
10 ¹⁵	페타 (peta)	Р	천조
10 ¹²	테라 (tera)	T	조
10 ⁹	기가 (giga)	G	십억
10 ⁶	메가 (mega)	М	백만
10 ³	킬로 (kilo)	k	천
10 ²	헥토 (hecto)	h	백
10 ¹	데카 (deca)	da	십
10 ⁰			일

10 ⁿ	접두어	기호	배수	십진수
10 ⁰			일	1
10-1	데시 (deci)	d	십분의 일	0.1
10 ⁻²	센티 (centi)	С	백분의 일	0.01
10 ⁻³	밀리 (milli)	m	천분의 일	0.001
10 ⁻⁶	마이크로 (micro)	μ	백만분의 일	0.000 001
10 ⁻⁹	나노 (nano)	n	십억분의 일	0.000 000 001
10-12	피코 (pico)	p	일조분의 일	0.000 000 000 001
10 ⁻¹⁵	펨토 (femto)	f	천조분의 일	0.000 000 000 000 001
10 ⁻¹⁸	아토 (atto)	а	백경분의 일	0.000 000 000 000 001
10-21	젭토 (zepto)	Z	십해분의 일	0.000 000 000 000 000 001
10-24	욕토 (yocto)	у	일자분의 일	0.000 000 000 000 000 000 001

1. 컴퓨터 역사

- A. 개인 컴퓨터 (PC, Personal Computer)
 - 1970년 초: 미국 IBM사가 발매한 기종에 처음 사용 IBM PC의 명칭 변경
 - PC -> PC Jr (Junior) -> PC XT (eXcellent Technology)
 - -> PC AT (Advanced Technology) -> PC 386 (Intel 386)
 - -> PC PS/2 -> PC 486 (Intel 486)
 - -> PC Pentium (Intel Pentium Processor)

1. 컴퓨터 역사

- A. 개인 컴퓨터 (PC, Personal Computer)
 - 1970년대: 8비트 시대 Altair 8800, Apple Computer 등
 - 1980년대: **16비트 시대 IBM PC (MS-DOS), Macintosh 등**

ALTAIR 8800 컴퓨터

Apple II

8, 16, 32, 64 bit — 의미?

- 1. 하나의 명령어로 처리할 수 있는 데이터의 단위
- 2. ALU의 처리 단위
- 3. CPU가 한 번에 처리할 수 있는 단위

IBM 5150 PC

Macintosh PC

- 1. 컴퓨터 역사
 - A. 개인 컴퓨터 (PC, Personal Computer)
 - 1990년대: **32비트 시대 IBM PC, Macintosh 등**

- 2000년대: **64비트 시대 (2003년 PowerMac G5)** 등
 - ❖ Windows XP, 인터넷 등을 통하여 컴퓨터 보급 활성화

1. 컴퓨터 분류

- A. 사용 목적, 데이터 취급 방법, 기억 용량, 연산 처리 능력, 가격 등 여러 측면에서 컴퓨터를 분류가 가능함
- B. 사용 목적에 따른 분류
 - 개인용 컴퓨터
 - 노트북 컴퓨터 (랩탑, Laptop)
 - 슈퍼 컴퓨터
 - 메인 프레임 (대형) 컴퓨터
 - 미니 컴퓨터
 - 마이크로 컴퓨터
 - 워크스테이션 (Workstation)

 - 개인 정보 단말기 (PDA, Personal Digital Assistant, Palm top)
 - 착용형 컴퓨터 (Wearable Computer)

Palmtop - 손바닥

Laptop — 무릎, knee

Desktop

Deskside

Notebook

Tablet - 평판, 기념 액자, 패, 작고 납작한 조각

• a bronze tablet - 청동패.

1. 컴퓨터 분류

A. 사용 목적에 따른 분류

슈퍼컴퓨터: Cray-2

메인프레임: IBM Z800

마이크로컴퓨터: Commodore 64

워크스테이션: Sun Sparc Station

PDA: Palm Pilot

착용형 컴퓨터

1. 컴퓨터 분류

- A. 운영 체제에 따른 분류
 - 윈도우 호환 기종 (Microsoft Windows)
 - 매킨토시 (Macintosh)
 - 유닉스 (Unix)
 - 리눅스 (Linux)

실시간 운영체제 (Real Time Operating System)

1. 컴퓨터 분류

- A. 개인용 컴퓨터
 - 데스크톱 컴퓨터 (Desktop computer)
 - 넷북 (Netbook) : Internet + Notebook
 - 울트라 모바일 PC (UMPC)
 - 노트북 컴퓨터 (랩탑, Laptop)
 - 포켓 PC
 - 태블릿 PC

넷북: HP Mini 210

포켓 PC: Qtek

울트라 모바일 PC, Wibrain B1

태블릿 PC, HP Table PC

4. 컴퓨터 응용분야

- 1. 초기 컴퓨터 목적 : 군사용
- 2. 현재 컴퓨터 응용분야
 - A. 인터넷
 - B. 엔터테인먼트: 영화 및 게임
 - c. 디자인: CAD
 - D. 시뮬레이션
 - E. 컴퓨터 작곡
 - F. 미술 작품
 - G. 컴퓨터 그래픽스
 - н. 의학: CT, MRI, PACS 시스템
 - 1. 방송