INF01 118

Técnicas Digitais para Computação

Famílias Lógicas RTL, DTL, TTL, NMOS e CMOS

Aula 8

Famílias Lógicas:

Bipolar:

RTL - Resistor - Transistor Logic

DTL - Diode - Transistor Logic

TTL - Transistor - Transistor Logic

ECL - Emitter-Coupled Logic

MOS METAL-OXIDO SEMICONDUTOR:

NMOS

CMOS

Resistor - Transistor Logic (RTL)

Qualquer entrada HIGH => transistor correspondente conduz => V_{out} = LOW Todas entradas LOW => nenhum T conduz => V_{out} = HIGH

A	В	C	OUT
L	L	L	Н
L	L	H	L
L	H	L	L
:	:	:	:
H	H	H	L

$$NOR (OR + NOT)$$

• Outro modo de encarar a porta:

$$\overline{A + B + C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$$
 (DeMorgan)

DIODE - TRANSISTOR LOGIC (DTL)

- D_1 , D_2 , R_1 funcionam como uma porta AND
- R_2 , Q_1 , R_3 funcionam como um inversor

Transistor - Transistor Logic (TTL)

Porta Básica - NAND

Famílias TTL

- 74 TRADICIONAL
- 74 H HIGH-SPEED diminuindo valores de resistências, diminui τ
- 74 L LOW-POWER aumenta valores de resistências, diminui corrente
- 74 S SCHOTTKY usa T não saturados, diminui tempos de chaveamento
- 74 LS LOW-POWER SCHOTTKY
- 74 AS ADVANCED SCHOTTKY ainda mais rápidos
- 74 ALSADVANCED LOW-POWER SCHOTTKY

Tabela de Referência para NANDs de 2 entradas

	atraso propagação (ns)	potência consumida (mW)
74	9	10
74 L	33	1
74H	6	22
74 S	3	20
74 LS	9	2
74 AS	1,6	20
74 ALS	5	1,3

Famílias MOS

- menor potência consumida que as famílias bipolares.
- maior densidade de integração (portas ocupam menor área em silício)
- apropriada para circuitos integrados VLSI
- -Atrasos ("delays") de propagação reduzem com a redução das dimensões. Nos anos 1980 estes atrasos ficaram menores que nas famílias bipolares, tipo TTL, ECL, I2L, da mesma geração de chips.

Conduz ("ON") para Vgs = 0 V. resistência varia com Vds.

NAND N-MOS

NOR N-MOS

- •O NMOS possui um consumo estático grande devido à corrente que conduz o transistor de depleção (transistor de carga) quando a saída S= 0.
- Portas de uso predominante nos anos 1970 -- 1982.

Inversor CMOS (revisão)

Família predominante atualmente. Dominante em digitais desde 1982.

- •Consumo de uma porta CMOS é muito menor do que consumo de uma porta NMOS pois a potência consumo é devido basicamente ao chaveamento (potência dinâmica). O consumo estático é muito pequeno.
- Substituiu com vantagens as portas NMOS tipo enriquecimento e depleção .

NAND CMOS (revisão – vide aula 4)

