FIGURE 1A

FIGURE 1C

FIGURE 1B

FIGURE 1D

Synthesis of Lipid Backbone

FIGURE 2

Synthesis of AZT-Malonic Acid (AZT-MA)

Substituted malonic acid chlorides (CICOCHRCOCI) could also be used in the above reaction; $R = CH_3$, CH_2CH_3 , C_6H_5

FIGURE

Synthesis of AZT-Phosphocholine Conjugate

-SC₁₂H₂₅ $BzO(H_2C)_8O \sim$ 1. Cl2PO2CH2CH2Br 2. (CH₃)₃N -SC₁₂H₂₅ $BzO(H_2C)_8O \sim$

DCC/DMAP AZT-MA -SC₁₂H₂₅ HO(H₂C)₈O ~~ H₂, Pd/C

FIGURE 4

[14C]-BM 21.1290 concentrations in plasma and lymphoid tissues of female C57BI/6 mice

FIGURE 6

lipid & ara-C coupled through phosphate ester

FIGURE 7A

lipid & gemcitabine coupled through phosphate ester

lipid & ara-C coupled through phosphonate ester

FIGURE 8A

lipid & gemcitabine coupled through phosphonate ester

lipid coupled to methotrexate through an ester