液晶物性实验报告

1st Chen Yihao School of Physics and Astronomy Beijing Normal University Beijing, China 202211140007@mail.bnu.edu.cn

关键字——液晶,光电性质,旋光性,双折射效应

I. 引言

液晶是介于液态与结晶态之间的一种物质状态。它具有强烈的各向异性物理特征,同时又像普通流体那样具有流动性。它最早于 1888 年被奥地利植物学家莱尼茨所发现,随后科学家们对液晶展开了研究,20 世纪 20 年代随着更多的液晶材料的发现以及液晶合成材料技术的发展,人们开始对液晶材料进行了系统而深入的研究。如今,液晶显示器已经广泛应用于自动化办公设备显示器领域。

液晶物性实验主要目的在于:观察液晶的旋光现象,学习测量液晶盒扭曲角的方法;观察液晶的双折射效应,绘制了经过液晶盒的出射光的线偏振度随液晶盒转角变化的曲线;测量液晶盒的电光响应曲线和响应时间;观察液晶衍射现象,估计光栅常数;通过一系列实验,了解液晶及其光学性质在外电场下的变化,掌握测量液晶光电效应的方法,并尝试解释液晶显示原理。

II. 实验原理

A. 液晶的分类

液晶态不同于一般的固液气三态,一般只有满足特殊 条件的杆状分子才更容易形成液晶态。由杆形分子形成 的液晶可根据分子排列的平移和取向有序性分为如图所 示的三大类:近晶相、向列相和胆甾相。

Fig. 1. 液晶分子三种不同排列方式

不同类型的液晶相具有不同的结构和效应,本实验采 用的液晶是向列相液晶。

B. 液晶的基本物理性质

1. 液晶的极化各项异性

电场对液晶分子的取向作用由极化各项异性决定。

设外电场平行于分子长轴方向的极化率为 α_{\parallel} ,垂直于长轴方向的为 α_{\perp} 。那么根据 Fig. 2. 感生电极矩为

$$p_{\parallel} = \alpha_{\parallel} E_{\parallel} = \alpha_{\parallel} E \cos \beta$$
$$p_{\perp} = \alpha_{\perp} E_{\perp} = \alpha_{\perp} E \sin \beta$$

Fig. 2. 电场对液晶分子取向作用示意图

由此可得,电场 \vec{E} 引起的力矩为

$$M_{\parallel} = p_{\parallel}E = \alpha_{\parallel}E^{2}sin\beta cos\beta$$

 $M_{\perp} = p_{\perp}E = \alpha_{\perp}E^{2}sin\beta cos\beta$

 M_{\parallel} 使分子逆时针转动, M_{\perp} 使分子顺时针转动。由此可知,对于自由分子而言:

当 $\alpha_{\parallel} > \alpha_{\perp}$,即 $M_{\parallel} > M_{\perp}$ 时,分子逆时针转动,直至长轴与 \vec{E} 方向一致

当 $\alpha_{\parallel} < \alpha_{\perp}$,即 $M_{\parallel} < M_{\perp}$ 时,分子逆时针转动,直至长轴与 \vec{E} 方向一致。

若考虑到液晶内分子之间的作用及分子与基片表面的 作用,上述旋转将引起类似于弹性恢复力造成的反方向 力矩,使得分子在转动一个角度之后即不再转动。

2. 液晶的介电各向异性

设液晶平行于分子取向的介电常数为 ε_{\parallel} ,垂直于分子取向的为 ε_{\perp} 。

将液晶的介电各向异性定义为

$$\Delta \varepsilon = \varepsilon_{\parallel} - \varepsilon_{\perp}$$

己知电容率与极化率满足

$$\varepsilon = (1 + \alpha)\varepsilon_0$$

故

$$\Delta \varepsilon = (\alpha_{\parallel} - \alpha_{\perp}) \varepsilon_0$$
$$\alpha_{\parallel} - \alpha_{\perp} = \frac{\Delta \varepsilon}{\varepsilon_0}$$

我们根据液晶介电各向异性的差异,将其分为正性液 晶、负性液晶。

正性液晶: $\Delta \varepsilon > 0$, $\alpha_{\parallel} > \alpha_{\perp}$, 在外电场下,分子 趋向于与场平行排列。

负性液晶: $\Delta \varepsilon < 0$, $\alpha_{\parallel} < \alpha_{\perp}$, 在外电场下,分子趋向于与场垂直排列。

3. 液晶的光学各向异性

当光波入射面与液晶的主截面重合时, o 光与 e 光主 平面与主截面重合, o 光的振动方向与主截面垂直, e 光的振动方向与主截面平行。

当液晶分子取向与液晶表面平行并平行入射面时, o、e 光重合, 但二者存在一定相位差, 若入射光为线偏振光, 出射光一般为椭圆偏振光。

设平行分子长轴方向振动的光波折射率为 n_{\parallel} ,垂直长轴方向的为 n_{\parallel}

定义双折射率

$$\Delta n = n_e - n_o = n_{\parallel} - n_{\perp}$$

我们根据双折射材料双折射率的差异,将其分为正光 性材料、负光性材料。

正光性材料: $\Delta n > 0$, $n_e > n_o$,即液晶中 $v_e < v_o$, o光的传播速度大。

负光性材料: $\Delta n < 0$, $n_e < n_o$, 即液晶中 $v_e > v_o$, e 光的传播速度大。

Fig. 3. 双折射效应示意图

如 Fig. 3. 所示,设入射线偏振的电矢量为振幅为 E_0 ,其振动方向与 x 轴的夹角 θ ,则液晶内光波的电矢量强度为

$$E_x = E_0 \cos \theta \cos(\omega t - k_1 z), \quad k_1 = \frac{\omega n_1}{c}$$

 $E_y = E_0 \sin \theta \cos(\omega t - k_1 z), \quad k_1 = \frac{\omega n_1}{c}$

则液晶引入的相位差为

$$\delta = (k_1 - k_2)d = \frac{\omega(n_1 - n_2)d}{c}$$

则透出射光的电矢量强度为

$$E_x = E_0 \cos \theta \cos(\omega t - kz)$$

$$E_y = E_0 \sin \theta \cos(\omega t - kz + \delta)$$

由此可知出射光总光强为

$$I = \frac{1}{2}E_0^2$$

φ方向分量的光强为

$$\begin{split} I_{\varphi} &= \left(\frac{1}{2}\cos^2\theta\cos^2\varphi + \frac{1}{2}\sin^2\theta\sin^2\varphi \right. \\ &+ \frac{1}{4}\sin2\theta\sin2\varphi\cos\delta\right)E_0^2 \end{split}$$

C. 液晶盒的结构及其旋光性

1. 液晶盒结构

液晶盒的玻璃表面经过特殊处理,表面液晶分子具有 特定取向,受分子间作用力的影响,内部液晶分子将均 匀转过一点角度,因此液晶盒具有很强的旋光性。

当分子扭曲排列螺距 p_0 远大于光波长 λ 时,若光以平行于分子轴的偏振方向入射,则随着分子轴的扭曲,将以平行于出射面分子轴的偏振方向射出。

若光以垂直于分子轴的偏振方向入射,将以垂直于出 射面分子轴的偏振方向射出,当以其它方向入射时,则 根据双折射效应带来的附加位相差,出射光一般为线偏 振光。

2. 旋光色散

线偏振光通过旋光物质后,振动面的旋转角度 θ 与旋光物质的厚度成正比,即

$$\theta = \alpha(\lambda)d$$

其中, $\alpha(\lambda)$ 为旋光本领,也称旋光率,与波长有关。

Fig. 4. 扭曲向列相液晶盒

TN 液晶盒: 旋光率在可见光范围几乎不变, 所有光通过都旋转 90°

HTN、STN 液晶盒:旋转率在可见光范围变化较大,可观察到明显色散。

旋光本领可由下式给出

$$\alpha(\lambda) = -\frac{2\pi}{p_0} \cdot \frac{\Delta \varepsilon^2}{8\left(\frac{\lambda}{p_0}\right)^2 \left(1 - \frac{\lambda^2}{p_0^2 \varepsilon_0}\right)}$$

其中, $\Delta \varepsilon$ 是长轴方向和短轴方向的介电常数之差, ε_0 是液晶的平均介电常数, p_0 是液晶的螺距。

D. 液晶的光电效应

液晶在外电场作用下分子的排列状态发生变化,从而引起液晶盒的光学性质也随之变化的一种电对光的调制现象,称为液晶的电光效应。

1. 电光响应曲线

液晶受到外电场作用时,光通过液晶盒时偏振状态也 将发生变化,如果液晶盒后检偏器透光位置不变,系统 透光强度将发生变化,透过率与外加电压的关系曲线称 为电光响应曲线。

Fig. 5. TN 液晶电光响应曲线

由电光响应曲线,还可以定义以下在显示应用中常用的几个参量:

反差: 透过率最大值与最小值之比

$$C = \frac{T_{max}}{T_{min}}$$

其影响液晶显示器显示质量

阈值电压:透过率为90%对应的电压

$$V_{th} = V_{90}$$

饱和电压:透过率为10%对应的电压

$$V_{s} = V_{10}$$

阈值锐度:饱和电压与阈值电压之比称为阈值锐度

$$\beta = \frac{V_{s}}{V_{th}}$$

2. 电光响应时间

当施加在液晶上的电压改变时,液晶改变原排列方式 所需要的时间就是响应时间。形象地说,响应时间作为 一个性能参数,实际上就是液晶由全亮变为全暗、再由 全暗变成全亮的反应时间。分别用上升沿时间和下降沿 时间来衡量液晶对外界驱动信号的响应速度。

上升沿时间 T_{on} : 透过率由最小值升到最大值的 90% 时所需的时间。

下降沿时间 T_{off} : 透过率由最大值降到最大值的 10% 时所需的时间。

在测量液晶响应时间时,一般采用如 Fig. 6. 所示的驱动信号。当驱动信号处于高电平时,液晶处于暗态;当驱动信号处于低电平时,液晶处于亮态。当驱动信号处于高电平时,叠加一个高频脉冲信号,这样可以避免由于直流电驱动带来的液晶寿命下降问题。

Fig. 6. 液晶电光响应时间

3. 液晶衍射

当施加在液晶盒上的低频电压高于某一阈值时,带电质的运动将引起液晶分子的环流,这些环流小区域导致整个液晶盒中液晶取向的有规则形变,形成折射率的周期变化,使得通过样品的光聚焦在明暗交替的带上,这种明暗条纹最早由威廉观察到,所以称为威廉姆斯畴。

威廉姆斯畴构成一个衍射光栅,此时在远场观察液晶的出射光强时会看到衍射图样。衍射强度可以用汉克尔-基尔霍夫-夫琅和费积分计算。

衍射环的数目与液晶材料的双折率有关。近似为

$$N \approx \frac{\Delta n}{\lambda} d$$

液晶位相光栅满足一般的光栅方程

$$asin\theta = k\lambda$$

其中,a 是光栅常数; θ 是衍射角;k=0, ± 1 , ± 2 ……为衍射级次。

III. 实验内容与方法

A. 实验仪器

实验所用的仪器包括: 半导体激光器,示波器,液晶盒,液晶驱动电源,激光器电源,激光功率计,光电池,光电二极管探头,偏振片,光学导轨,白屏。

实验原理图如图所示,在实验原理部分具体解释。

Fig. 7. 液晶物性测量实验原理图

B. 实验内容

1. 调整并测量实验所用的线偏振光

调节光路,使激光器发出的激光平行于导轨传播,使 激光器与光电池等高共轴,并使激光进入光电池功率最 大。 调节光路中的起偏器,使入射到液晶表面的光强最大。调节检偏器,分别记录光功率的最大值和最小值,求得光的线偏度 L_0 。

值得注意的是,环境的影响会使光功率较低时的测量 存在较大波动,尽量在较暗的环境中实验,减少测量功 率时的误差。

Fig. 8. 调整光路,调节偏振器消光

2. 观测液晶中的旋光现象与双折射现象

在起偏器与检偏器之间加入液晶盒,依序先后转动检 偏器和液晶盒,使系统再次处于消光状态。

记录第一次消光与第二次消光检偏器的角度,两者做 差即为实验液晶的扭曲角,或该差值的补角即

$$\theta_{\text{HH}} = 180^{\circ} - (\theta_1 - \theta_2)$$

保持检偏器方位不变,同方向连续缓慢转动的液晶盒, 记录光强达到极值时的数值及对应液晶盒的转角,分析 产生此变化规律的原因。

在极值处,旋转检偏器,记录光强极大值与极小值, 由此测量液晶盒输出光的线偏振度,绘制线偏振度随液 晶盒转角的对数极坐标图,分析线偏振度随液晶盒转角 变化的原因。

Fig. 9. 光强达到极值时液晶转过的角度,对应光强

3. 测量液晶盒的电光响应曲线

按照实验说明,利用函数发生器调节液晶盒的驱动电压,并通过示波器观察,调节时三角波最低电压为零,最高电圧不饱和。

在"常黑模式",即输出光被消光状态下,分别用 V-t 模式、x-y 模式观察液晶输出光强随驱动电压变化曲线和电光响应曲线,分析并求出阈值电压 V_{th} 、饱和电压 V_s 与阈值锐度 β ,说明液晶盒输出光强随驱动电压变化的原因。

Fig. 10. V-t 模式、x-y 模式下的光电响应曲线

4. 测量液晶盒的电光响应时间

按照实验说明,利用液晶驱动电源调节液晶盒的驱动电压,用示波器观察液晶盒的驱动信号和响应信号,调节间歇频率与驱动频率,测量上升沿时间 T_{on} 和下降沿时间 T_{off} 。

Fig. 11. 不同间歇频率与驱动频率条件下的光电响应曲线

5. 液晶衍射现象观测

设置电源工作模式为连续,缓慢调节驱动电压,使用显微镜观察液晶表面形态变化。

缓慢增加、减少驱动电压,利用白屏观察液晶衍射现 象,分别记录衍射斑出现和消失的驱动电压,分析差异。

取下检偏器,测量各级衍射环的直径与光屏距液晶盒 距离,估算光栅常数。

Fig. 12. 在显微镜下观察液晶, 威廉姆斯畴

IV. 实验数据处理与实验结果分析

A. 调整并测量实验所用的线偏振光

调节检偏器,分别记录光功率的最大值和最小值。

TABLE I. 实验使用的线偏振光参数.

最大输出光强	最小输出光强
I_{max}/mW	I_{min}/mW
2.30	0.0045

测得的线偏度

$$L_0 = \frac{I_{max}}{I_{min}} = \frac{2.30 \text{mW}}{0.0045 mW} = 511$$

可知经起偏器的出射光可以看作线偏振光。

B. 观测液晶中的旋光现象

对于液晶的扭曲角,记录第一次消光与第二次消光检 偏器的角度

TABLE II. 两次消光检偏器对应的角度.

第一次消光	第二次消光
$oldsymbol{ heta_1}$	$oldsymbol{ heta_2}$
55.5°	131.0°
55.5°	131.0°

计算扭曲角

$$\theta_{\text{HH}} = 180^{\circ} - (\theta_1 - \theta_2) = 104.5^{\circ}$$

符合讲义给出的范围:实验使用的液晶盒的扭曲角在 100-140 度范围内。

C. 观测液晶中的双折射现象

虽然旋光效应使得 o 光、e 光电矢量振动方向旋转了一定的角度,但其相对数值与相对位置关系没有发生变化。同时,旋光效应并没有引入额外相位差,o 光、e 光的相位差仅由双折射效应引起。

设检偏器透振化方向与出射表面锚泊方向夹角为φ, 根据我们前边的推导,经检偏器的出射光的光强为

$$I_{\varphi} = \left(\frac{1}{2}\cos^2\theta\cos^2\varphi + \frac{1}{2}\sin^2\theta\sin^2\varphi + \frac{1}{4}\sin 2\theta\sin 2\varphi\cos\delta\right)E_0^2$$

第二次消光时, θ 与 φ 的差值为 $\frac{\pi}{2}$,则液晶盒转动时输出的最小光强 I_0 满足

$$I_0 = \cos^2 \theta \sin^2 \theta \, \left(1 - \cos \delta \right) E_0^2$$

其关于液晶盒的转角 θ 的变化率满足

$$\frac{dI_0}{d\theta} = 2\sin\theta\cos\theta\cos2\theta \left(1 - \cos\delta\right)E_0^2$$

所以输出的最小光强的极值出现在

$$\theta = \frac{n}{4}\pi \ \left(n = 0, \pm 1, \pm 2, \dots \right)$$

由此,可分析极化处经检偏器的出射光强 I_{ω} :

当 n为偶数时, $\Leftrightarrow n = 2m$, 即 $\theta = \frac{m}{2}\pi$

$$I_{\varphi} = \frac{1}{2} \left(\cos^2 \frac{m}{2} \pi \cos^2 \varphi + \sin^2 \frac{m}{2} \pi \sin^2 \varphi \right) E_0^2$$

因此, I_{φ} 的极值在 $\varphi = \frac{m'}{2}\pi$ 的位置出现

$$I_{max} = \frac{1}{2}E_0^2$$

$$I_{min} = 0$$

当 n为奇数时,令 n=2m+1,即 $\theta=\frac{2m+1}{4}\pi$

$$I_{\varphi} = \frac{1}{4} \left(1 + \left(-1 \right)^m \sin 2\varphi \cos \delta \right) E_0^2$$

因此, I_{φ} 的极值在 $\varphi = \frac{2m'+1}{4}\pi$ 的位置出现

$$I_{max} = \frac{1}{4}(1 + |\cos\delta|)E_0^2$$

$$I_{min} = \frac{1}{4}(1 - |\cos\delta|)E_0^2$$

此时线偏度

$$L_0 = \frac{I_{max}}{I_{min}} = \frac{1 + |cos\delta|}{1 - |cos\delta|}$$

出射光为一般椭圆偏振光,偏振特性与相位差 δ 有关。 实验数据如表 Π 所示

TABLE Ⅲ. 液晶盒转角及相应的光强测量

形間並下/5%相应17/83M/4里:			
液晶角度	I_{max}/mW	$I_{min}/\mu W$	线偏度 L_0
16°	1.836	1.9	966.31
60°	1.725	64.3	26.82
107°	1.027	1.7	604.12
152°	1.721	66.2	26.0
194°	1.783	2.0	891.50
240°	1.720	62.3	27.61
284°	1.786	1.9	940.0
331°	1.712	58.4	29.32

极值处,液晶盒转角的彼此的差值约为 45° ,并且最小输出光强、最小光强、最大光强呈现明显的周期性,周期 $T = \frac{\pi}{2}$,与理论符合良好。

线偏振度也呈现明显的周期,周期 $T=\frac{\pi}{2}$,与理论符合良好。

出射光在消光点附近的线偏振度大于其他地方,说明 出射光在消光点附近趋近于线偏振光,而在其他地方则 为椭圆偏振光,进而造成了透过光强的最小值的变化。 通过液晶盒后,入射光的偏振状态被改变,这也是一种 双折射现象。

绘制线偏振度随液晶盒转角的对数极坐标图

Closed Log-Polar Plot of Linear Polarization Degree (L_0) vs Liquid Crystal Angle

Fig. 12. 线偏振度随液晶盒转角的对数极坐标图

此外,我们可以根据前面分析的 $L_0 = \frac{I_{max}}{I_{min}} = \frac{1+|cos\delta|}{1-|cos\delta|}$,估算出双折射效应引入的额外相位差 δ

$$|\cos\delta| = 0.930$$

D. 测量液晶盒的电光响应曲线

如 Fig. 10. 所示,为"常黑模式"下,液晶输出光强、驱动电压变化随时间变化的曲线和电光响应曲线。

在x-y模式下,调整驱动电压频率,观察不同的电光响应曲线。

Fig. 13. x-y 光电响应曲线

可见,液晶的电光响应曲线类似于磁滞回线。

实验中观察到所加外电场的频率越大,电光响应曲线的回路越宽。这是因为液晶的响应需要时间,在高频电场下,液晶的响应时间大于电场周期,液晶的响应与电场的变化不同步;而在低频电场下,液晶的响应时间小于电场周期,液晶就可以及时地作出响应。频率越低,响应效果越好,所以应该选择较低频率的外电场来测量电光响应曲线的相关参数。

将从示波器中获得的数据进行清洗,去除噪音,得到 的数据进行可视化。

Fig. 14. 示波器 save 得到的数据

根据数据测量此时的阈值电压、饱和电压和阈值锐度。

$$V_{th} = V_{90} = 5.76 \text{ V}$$

 $V_s = V_{10} = 6.91 \text{ V}$
 $\beta = \frac{V_s}{V_{th}} = 1.199$

E. 测量液晶盒的电光响应时间

设计 3 个间歇频率,记录对应的间歇频率与驱动频率,并测量上升沿时间 T_{on} 和下降沿时间 T_{off} 。

驱动信号与响应信号以及测量结果如表IV所示。

TABLE IV. 驱动频率与间隙频率,上升沿时间与下降沿时间.

间隙频率 /Hz	驱动频率 /Hz	上升沿时间 / <i>ms</i>	下降沿时间 / <i>ms</i>
13.02	69.44	18.4	3.2
13.81	131.58	17.6	3.6
14.62	2326	21.6	9.6

注意到,无论开关周期和脉冲周期如何,下降沿时间都短于上升沿时间。这是因为在外电场作用下,液晶分子的取向和排列改变得更快,而要从已改变的状态在没有外电场的作用下自然恢复至原先的状态,则相对较慢。

F. 液晶衍射现象观测

1. 测量光栅常数

实验中我们改变了液晶盒与光屏的距离,对第一能级 进行了两次测量,测得的数据由下表给出

TABLE V. 测量光栅常数数据.

	能级间距 r/cm	液晶盒与屏的距离 l/cm
第一次测量	1.50	15.2
第二次测量	2.35	24.0

光栅常数由下式计算

$$d = \frac{k_1 \lambda}{r} (\sqrt{r^2 + l^2})$$

其中实验所用激光波长 $\lambda = 650nm$, $k_1 = 1$, 代入得

TABLE VI. 光栅常数计算结果.

	光栅常数d/μm
第一次测量	6.587
第二次测量	6.638
平均值	6.613

所以液晶的光栅常数约为 6.61μm

2. 观察液晶的衍射与外加电场的关系

将液晶上所加的电压由高向低变化,带电杂质的运动将会引起液晶分子的环流,这些环流小区域导致整个液晶盒中液晶取向的有规则形变,液晶内部的折射率也将发生周期性变化,产生衍射条纹。

Fig. 15. 观察液晶分子随电压的变化

电压为 6.99V 时衍射条纹消失。还注意到电压较高时,液晶分子环流成网格状,同时存在两个方向的衍射条纹,且两个方向有不对称性。

V. 实验数据

实验记录的原始数据见附件。