Лекции по курсу *"Математическая Статистика"* CONTENTS

Contents

И	сточники	2
1	Многомерное нормальное распределение	3
	Замечание	3
	1.1 Лемма 1	3
	1.2 Определение 1	3
	1.3 Лемма 2	3
	1.4 Лемма 3	4
	1.5 Лемма 4	4
	note	4
	1.6 Определение 2	4
	Замечание	4
	1.7 Лемма 5	5
	Доказательство	5
	Замечание	5
	1.8 Определение 3	5
	1.8.1 Доказательство леммы 3	5
	1.8.2 Доказательство леммы 4	6
	Замечание	6
2	Теорема о нормальной корреляции	8
	2.1 Определение 1	8

CONTENTS

Источники

• Ивченко Г. И., Медведев Ю. И. "Математическая статистика", изд. "Высшая школа", 1984

- Кибзун А. И., Наумов А. В., Горяинова Е. Р. "Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами", изд "ФИЗМАТЛИТ", 2013
- Панков А. Р., Платонов Е. Н. "Практикум по математической статистике", изд. "МАИ", 2006

1 Многомерное нормальное распределение

Замечание

Вектор $X=(X_1,\dots,X_n)^T$ называется **случайным**, если X_1,\dots,X_n — случайные величины (далее **с.в**), определенные на одном вероятностном пространстве.

Через $M[X]=m_x$ обозначим вектор математического ожидания:

$$M[X] = m_x = \begin{pmatrix} M[X_1] \\ \vdots \\ M[X_n] \end{pmatrix}$$

Через K_x обозначим ковариационную матрицу с.в X:

$$K_x = \begin{pmatrix} \operatorname{cov}(X_1, X_1) & \dots & \operatorname{cov}(X_1, X_n) \\ \vdots & \ddots & \vdots \\ \operatorname{cov}(X_n, X_1) & \dots & \operatorname{cov}(X_n, X_n) \end{pmatrix}$$

1.1 Лемма 1

Пусть $K_x \in \mathbb{R}^{n \times n}$ — ковариационная матрица с.в X. Тогда:

1.
$$K_x \geqslant 0$$
, r.e. $\forall x \in \mathbb{R}^n \setminus \{0\}, x^T K_x x \geqslant 0$;

2.
$$K_x^T = K_x$$

1.2 Определение 1

Случайный вектор $X = (X_1, \dots, X_n)^T$ называется **невырожденным нормальным вектором**:

$$X \sim N(m_x, K_x)$$

если совместная плотность вероятности имеет вид:

$$f_x(x) = ((2\pi)^n \det K_x)^{\frac{-1}{2}} \exp\{\frac{-1}{2}(x-m_k)^T K_x^{-1}(x-m_x)\}$$

где
$$m_x \in \mathbb{R}^n, K_x \in \mathbb{R}^{n \times n}, K_x > 0, K_x^T = K_x$$

1.3 Лемма 2

Пусть X — невырожденный нормальный вектор с параметрами m_x и K_x .

Тогда $M[X]=m_x$, а K_x — корвариационная матрица X.

Рассмотрим основные свойства многомерного нормального распределения.

1.4 Лемма 3

Пусть $X \sim N(m_x, K_x), A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m.$ Тогда:

$$Y = AX + b \sim N(m_y, K_y),$$

$$m_y = Am_x + b,$$

$$K_y = AK_xA^T.$$

1.5 Лемма 4

Пусть $X \sim N(m_x, K_x)$.

Тогда компоненты вектора X **независимы** тогда и только тогда, когда они некоррелированы.

note

Доказательство данных утверждений при помощи аппарата функций распределения и плотности довольно сложно. Поэтому рассмотрим аппарат характеристических функций.

1.6 Определение 2

Пусть $X = (X_1, \dots, X_n)^T -$ случайный вектор.

Тогда характеристической функцией называется:

$$\psi_X(\lambda) = M[e^{i\lambda^TX}] = \int\limits_{\mathbb{R}^n} e^{i\lambda^TX} dF_X(x)$$

Замечание

Характеристическая функция определена для любого случайного вектора или с.в. Если с.в **дискретная**, то:

$$\psi_X(\lambda) = \sum_{k=1}^\infty e^{i\lambda X_k} p_k$$

Если с.в абсолютно непрерывная, то

$$\psi_X(\lambda) = \int\limits_{\mathbb{R}} e^{i\lambda X} f_X(x) dx$$

В этом случае $\psi_X(\lambda)$ является **преобразованием Фурье** f_X .

Поскольку преобразование Фурье взаимно однозначно, а f_X однозначно определяет распределение, то характеристическая функция характеристическая функция $\psi_X(x)$ также однозначно определяет распределение с.в X.

Причем:

$$f_X(x) = \frac{1}{(2\pi)^n} \int\limits_{\mathbb{R}} e^{-i\lambda^T X} \psi_X(x) d\lambda$$

1.7 Лемма 5

Пусть X — случайный вектор, $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$. Тогда:

1. для Y = AX + b

$$\psi_Y(\lambda) = e^{i\lambda^T b} \psi_X(A^T \lambda)$$

2. компоненты вектора X **независимы** тогда и только тогда, когда

$$\psi_Y(\lambda) = \prod_{k=1}^n \psi_{X_k}(\lambda_k)$$

Доказательство

1.
$$\psi_Y(\lambda) = M[e^{i\lambda^T Y}] = M[e^{i\lambda^T AX}e^{i\lambda^T b}] = e^{i\lambda T b}M[e^{i(A^T\lambda)^T X}] = e^{i\lambda^T b}\psi_X(A^T\lambda)$$

$$\begin{array}{ll} 2. \ \psi_X(\lambda) \ = \ \int\limits_{\mathbb{R}} \dots \int\limits_{\mathbb{R}} e^{i(\lambda_1 x_1 + \dots + \lambda_n x_n)} f_X(x_1, \dots, x_n) dx_1 \cdot \dots \cdot dx_n \ = \{\mathbf{h}/\mathbf{3}\} = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} \cdot \dots \cdot e^{\lambda_n x_n} \cdot f_{X_1}(x) \cdot \dots \cdot f_{X_n} dx_1 \cdot \dots \cdot dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{x_1}(x_1) dx_1 \cdot \dots \cdot \int\limits_{\mathbb{R}} e^{i\lambda_n x_n} f_{x_n}(x_n) dx_n = \prod_{k=1}^n \psi_{X_k})(\lambda_k) \end{array}$$

Замечание

При помощи характеристической функции можно дать другое определение нормального распределения. В том числе для вырожденного K_X .

1.8 Определение 3

Случайный вектор X называется **нормальным**: $X \sim N(m_X, K_X)$, если:

$$\psi_X(\lambda) = \exp\{i\lambda^T m_X - \frac{1}{2}\lambda^T K_X \lambda\}$$

1.8.1 Доказательство леммы 3

В силу Лемма 5 (пункт 1)

$$\begin{split} \psi_Y(\lambda) &= e^{i\lambda^T b} \psi_X(A^T \lambda) = e^{i\lambda^T b} \exp\{i\lambda^T A m_x - \frac{1}{2} \lambda^T A K_X A^T \lambda\} = \\ &= \exp\{i\lambda^T (A m_x + b) - \frac{1}{2} \lambda^T (A K_x A^T) \lambda\} \end{split}$$

1.8.2 Доказательство леммы 4

Пусть X_i,\dots,X_n попарно некоррелированы. Тогда $cov(X_i,X_j)=0,$ $i\neq 0,$ т.е. :

$$\begin{split} K_x &= diag(\sigma_{X_1}^2, \dots, \sigma_{X_n}^2) = \\ &= \begin{pmatrix} \sigma_{X_1}^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{X_n}^2 \end{pmatrix} \end{split}$$

$$\begin{array}{ll} \psi_X(\lambda) \ = \ \exp\{i\lambda_1 m_{X_1} + \dots + i\lambda_n m_{X_n} - \frac{1}{2}\lambda^T K_X \lambda\} \ = \ \exp\{i\lambda_1 m_{X_1} + \dots + i\lambda_n m_{X_n} - \frac{1}{2}(\lambda_1^2 \sigma_{X_1}^2 + \dots + \lambda_n^2 \sigma_{X_n}^2)\} = \prod_{k=1}^n \exp\{i\lambda_n m_{X_n} - \frac{1}{2}\lambda_k^2 \sigma_{K_n}^2\} = \prod_{k=1}^n \psi_{X_k}(\lambda_k). \end{array}$$

Откуда с учетом Лемма $\frac{\pi}{5}$ (пункт 2) X_1, \dots, X_n — н/з.

Пусть X_1,\dots,X_n — н/з. Тогда X_1,\dots,X_n попарно некоррелированы. \blacksquare

Замечание

Поскольку K_x — невырожденная, симметричная и положительноопределенная, то существует $S \in \mathbb{R}^{n \times n}$ — ортогональная (т. е. $S^{T} = S^{-1}$) такая, что:

$$S^T K_X S = \Lambda = diag(\lambda_1, \dots, \lambda_n)$$

где
$$\lambda_i>0, i=\overline{1,n}$$

Определим матрицу $\Lambda^{-\frac{1}{2}}=diag(\lambda_1^{-\frac{1}{2}},\dots,\lambda_n^{-\frac{1}{2}}).$

Рассмотрим вектор

$$Y = \Lambda^{-\frac{1}{2}} S^T (X - m_X)$$

Тогда $A=\Lambda^{-\frac{1}{2}}S^T, b=-\Lambda^{-\frac{1}{2}}S^Tm_X.$

В силу Лемма 3:

$$\begin{split} m_Y &= A m_X + b = \Lambda^{-\frac{1}{2}} S^T - \Lambda^{-\frac{1}{2}} S^T m_X = 0, \\ K_Y &= A K_X A^T = \Lambda^{-\frac{1}{2}} S^T K_X S \Lambda^{-\frac{1}{2}} = I, \end{split}$$

т. е. $Y \sim N(0, I)$.

При помощи невырожденного линейного преобразования с.в. X может быть преобразован в стандартный нормальный вектор.

Верно и обратное:

$$X=m_X+S\Lambda^{\frac{1}{2}}Y,$$

откуда следует Лемма 2.

2 Теорема о нормальной корреляции

2.1 Определение 1

Условным математическим ожиданием абсолютно непрерывного случайного вектора X относительно абсолютно непрерывного случайного вектора Y называется: