

Better lives through livestock

Sequence Data Quality Control

Kennedy Mwangi

International Livestock Research Institute (ILRI)

Viral Pathogen Genome Sequencing and Bioinformatics Analysis Training Workshop 6^{th} – 17 th May, 2024

Overview

- Should be first step!
 - What your data look like
 - Uses tools such as FastQC & MultiQC
- Removes:
 - Low quality bases
 - Low complexity sequences
 - Adaptor sequences

What Reads Do You Get

FastQ Format Data

```
@HWUSI-EAS611:34:6669YAAXX:1:1:5069:1159 1:N:0:
TCGATAATACCGTTTTTTTCCGTTTGATGTTGATACCATT
+
DF=DBD<BBFGGGGGGBD@GGGD4@CA3CGG>DDD:D,B
@HWUSI-EAS611:34:6669YAAXX:1:1:5243:1158 1:N:0:
TATCTGTAGATTTCACAGACTCAAATGTAAATATGCAGAG
@HWUSI-EAS611:34:6669YAAXX:1:1:5266:1162 1:N:0:
GGAGGAAGTATCACTTCCTTGCCTGCCTCCTCTGGGGCCT
: GBGGGGGGGGDGGDEDGGDGGGGDHHDHGHHGBGG: GG
```

Read Quality – Phred Score

A quality value Q is an integer representation of the probability p that the corresponding base call is incorrect.

$$Q = -10 \log_{10} P$$
 \longrightarrow $P = 10^{\frac{-Q}{10}}$

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000 https://en.wikip	99.9999% edia.org/wiki/Phred_quality_score

Different Phred Scores

```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijklmnopgrstuvwxyz{|}~
33
                                 104
                                           126
0.....9......40
                0.2.....41
     Phred+33, raw reads typically (0, 40)
S - Sanger
X - Solexa Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 41)
 with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```


ASCII Encoding

• Each number is converted to one symbol:

40:0

90:Z

141:a

41:A

91:[

142:b

42:B

92:\

143:c

43:C

93:]

144:d

44:D

94:^

145:e

45:E

95**:**_

146:f

... :...

... :...

... :...

ASCII Encoding: cont...

ASCII BASE=33 Illumina, Ion Torrent, PacBio and Sanger											
Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59;	37	0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

$$Q = -10 \log_{10} P$$
 \longrightarrow $P = 10^{\frac{-Q}{10}}$

Read Quality: FastQC

Report

Summary

Basic Statistics

Per base sequence quality

Per tile sequence quality

Per sequence quality scores

Per base sequence content

Per seguence GC content

Per base N content

Sequence Length Distribution

Sequence Duplication Levels

Overrepresented sequences

Adapter Content

Per base sequence quality

Reads raw fastq files

Performs multiple checks

- Pass/warn/fail
- Compares to genomic library

HTML Report

Read Quality: MultiQC

Aggregates QC information from multiple samples

Large number of programs supported

Combined HTML report

Base Call Qualities – Per Cycle

Base Call Qualities – Per Cycle

Clean-up options

Trimming 3' end:

- Remove adapter read through
- Remove poor quality bases

Some quality issues may need to also remove specific reads

Despite issues may still be good enough for what is needed e.g. mapping

Per-Read Quality

Are all reads equally affected?

 Is there a subset of reads which are always poor whilst others are good?

Measuring Read-though Adapters

Adapter removal

Before Trimming

After Trimming

Library Dependent QC Metrics

Some QC metrics will be influenced by what you are sequencing

Concern or Expected?

- GC Content
- Base Composition
- Duplication

Library GC Content

- Generic summary of library composition at a read level
- Expect a normally distributed set of values centred on the overall GC conte

GC Content: Cont...

Specific Contamination with single sequence or closely related sequences

Artificial sequences, ribosomal RNA, contaminants

Library Base Composition

- For every chemistry cycle we can look at the number of ATGC we call
- For Libraries with random start positions the composition should be the same for all cycles.

CGIAR

Bias Composition Throughout

Proportional biases of bases at specific positions: Very low diversity

Bias Composition Throughout Cont...

Duplication

- How frequently the exact same sequence appears in your library
- For WGS expect most sequences to be unique

Duplication: Cont...

If the exact same sequence appears more than once it could be...

Technical:

ATCCGAGCTATTCGGCGAGCTCGCC

ATCCGAGCTATTCGGCGAGCTCGCC

ATCCGAGCTATTCGGCGAGCTCGCC

PCR duplicates

Coincidental:

ATCCGAGCTATTCGGCGAGCTCGCC

ATCCGAGCTATTCGGCGAGCTCGCC

ATCCGAGCTATTCGGCGAGCTCGCC

- Deep sequencing
- Highly present sequences
- Restricted diversity libraries

Duplication: Cont...

RNA-Seq

Amplicon

Overrepresented Sequences

- Extreme duplication
- The exact same sequence is a significant proportion of the whole library (which might not be duplicated overall)
 - Poly Sequences
 - Specific Sequences

Poly Sequences

PolyA (or PolyT) – Common in RNA-Seq

Sequence	Count	Percentage
	68355	1.7344041279604823
ААААААААААААААААААААААА	67792	1.7201188595230343

Overrepresented Specific Sequences

- Normally artificial sequences (primers, adapters, vectors etc)
- Can search a database of known sequences to find matches

Sequence	Count	Percentage	Possible Source
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGC	17957	0.14359551756800035	TruSeq Adapter, Index 12 (100% over 50bp)

Acknowledgments

