Colle: Dynamique CHAISES VOLANTES

1 Présentation

Un manège est constitué d'un socle 1, d'un fût central 2 qui supporte dix potences. Au bout de chacune d'elles, est suspendu l'ensemble noté 3 constitué d'une barre et du passager. Le siège est situé en B et fait partie intégrante de cet ensemble 3 rigide. La direction $\overrightarrow{z_1}$ est verticale. Les liaisons sont parfaites et sans frottement.

On donne:

• $\overrightarrow{O_1A} = R \cdot \overrightarrow{x_2}$ $\overrightarrow{AG_3} = -L \cdot \overrightarrow{z_3}$ $\overrightarrow{y_2} = \overrightarrow{y_2}' = \overrightarrow{y_3}$ • Solide $\mathbf{3}$: masse m_3 , centre d'inertie G_3 , $\overline{\overline{I}}_{(A,3)} = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{b_3}$

• La schématisation cinématique :

Objectif -

v1.0

L'objectif est de déterminer l'angle d'inclinaison θ correspondant à une vitesse de rotation du manège donnée.

2 Travail demandé

Question 1 Tracer le graphe des liaisons en plaçant l'ensemble des informations nécessaires à l'étude.

Question 2 Réaliser les figures de changement de bases.

Question 3 Préciser le torseur des actions mécaniques de 2 sur 3 en A dans la base b_2 .

Question 4 Déterminer la stratégie d'isolement et de projection afin d'étudier les variations de l'angle θ .

La vitesse de rotation $\dot{\varphi}$ est constante. De plus, on suppose que le moment d'inertie C_3 est négligeable devant les autres.

Question 5 Déterminer le torseur cinétique en A de 3 dans R_1 .

Question 6 Déterminer le torseur dynamique en A de 3 dans R_1 .

Question 7 Déterminer l'équation différentielle qui gouverne les variations de l'angle θ .

A une vitesse de rotation constante, la barre 3 se stabilise par rapport à $\mathbf{2}:\theta$ est alors constant et noté θ_s .

Question 8 Déterminer l'expression de cet angle d'inclinaison en supposant qu'en première approximation A_3 peut être négligé devant le produit m_3LR . Réaliser l'application numérique avec $R=4\,\mathrm{m}$ et $\dot{\varphi}=1\,\mathrm{rad.s^{-1}}$.

Question 9 Déterminer dans ce cas l'expression des composantes de $\{\mathcal{T}_{2\to 3}\}$.

Question 10 Réaliser l'application numérique avec : $L=2\,\mathrm{m}$ $m_3=100\,\mathrm{kg}$ $A_3=B_3=130\,\mathrm{kg.m^2}$.

Question 11 Dessiner dans le plan $(A_2, \overrightarrow{x_2}, \overrightarrow{z_1})$ la position de la barre ainsi que les efforts qu'elle subit.

