МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ Кафедра вычислительной математики

Отчёт

Лабораторная работа

«Методы решения ОДУ»

Вариант №12

Снежко Льва Владимировича студента 3 курса, 3 группы специальности «Информатика» дисциплина «Численные методы»

Постановка задачи

Дана задача Коши вида:

$$\begin{cases} y'(x) = \frac{y}{x} + x(0.7e^{x} + 0.3cosx, x \in [0.7, 1.7] \\ y(0.7) = 0.7(0.7e^{0.7} + 0.3sin0.7) \end{cases}$$

Необходимо:

- Найти приближенное решение задачи Коши на сетке узлов при 10-ти разбиениях отрезка интегрирования, применяя
 - Явный метод Эйлера;
 - Явный метод Рунге-Кутта 2-го порядка $\beta = \frac{3}{4}$;
 - Явный метод Адамса 2-го порядка.
- Используя таблицу результатов, получить погрешности методов, сравнивая приближенное решение с точным.
- Оценивая величину истинной погрешности, сделать вывод о точности каждого используемого метода.

Алгоритм решения

Явный метод Эйлера.

Пусть:

•
$$x_j = x_0 + jh$$
, где j=0,1,2,...,N , $N = 10$;

•
$$h = \frac{X - x_0}{N} = \frac{1.7 - 0.7}{10} = 0.1$$
— шаг;

• y_i — приближённое значение функции у(x_i).

Тогда приближённое решение вычисляется по формуле:

$$y_{j+1}=y_j+hf(x_j,y_j)$$

$$i=\overline{0,N-1}$$

Явный метод Рунге-Кутта 2-го порядка ($\beta = \frac{3}{4}$).

Пусть:

• $x_j = x_0 + jh$, где j=0,1,2,...,N , N = 10;

•
$$h = \frac{X - x_0}{N} = \frac{1.7 - 0.7}{10} = 0.1$$
— шаг;

• y_j — приближённое значение функции у (x_j) .

При $\beta = \frac{3}{4}$ приближённое решение вычисляется по следующей формуле:

$$\begin{aligned} y_{i+1} &= y_i + 2h \big(3f(x_i,y_i) - f(x_i-1,y_i-1)\big) \\ j &= \overline{0,N-1} \end{aligned}$$

Явный метод Адамса 2-го порядка.

Пусть:

- $x_j = x_0 + jh$, где j=0,1,2,...,N , N = 10;
- $h = \frac{X x_0}{N} = \frac{1.7 0.7}{10} = 0.1$ шаг;
- y_j приближённое значение функции у (x_j) .

Тогда приближённое решение вычисляется по формуле:

$$y_{j+1} = y_j + \frac{h}{2}(3f_j + f_{j-1}),$$

$$j=\overline{1,N-1}$$

Причём, y_1 находим с помощью м. Р-К.

Листинг кода

```
import numpy as np
import matplotlib.pyplot as plt
# Правая часть дифференциального уравнения
def f(x, y):
    return y * x + x * (0.7 * np.exp(x) + 0.3 * np.cos(x))
# Точное решение
def exact solution(x):
    return 0.7 * np.exp(x) + 0.3 * np.sin(x)
# Начальные условия
x0 = 0.7
x_{end} = 1.7
y0 = exact_solution(x0) # по условию
# Сетка
n = 10
h = (x_end - x0) / n
x = np.linspace(x0, x end, n+1)
# Метод Эйлера
y_euler = np.zeros(n+1)
y_{euler[0]} = y0
for i in range(n):
    y_{euler[i+1]} = y_{euler[i]} + h * f(x[i], y_{euler[i]})
# Метод Рунге-Кутты 2-го порядка (\beta = 3/4)
beta = 3/4
alpha = 1 / (2 * beta)
y_rk2 = np.zeros(n+1)
y_rk2[0] = y0
for i in range(n):
    k1 = f(x[i], y_rk2[i])
    k2 = f(x[i] + beta*h, y_rk2[i] + beta*h*k1)
    y_rk2[i+1] = y_rk2[i] + h * (alpha * k1 + (1 - alpha) * k2)
# Метод Адамса-Башфорта 2-го порядка (нужны первые два значения, используем РК2)
y adams = np.zeros(n+1)
y_adams[0] = y0
# Второе значение из РК2
k1 = f(x[0], y_adams[0])
k2 = f(x[0] + beta*h, y_adams[0] + beta*h*k1)
y_{adams}[1] = y_{adams}[0] + h * (alpha * k1 + (1 - alpha) * k2)
for i in range(1, n):
    y_{adams[i+1]} = y_{adams[i]} + h/2 * (3 * f(x[i], y_{adams[i]}) - f(x[i-1], y_{adams[i-1]})
1]))
# Точное решение
y_exact = exact_solution(x)
# Погрешности
err_euler = np.abs(y_exact - y_euler)
err_rk2 = np.abs(y_exact - y_rk2)
err_adams = np.abs(y_exact - y_adams)
# Таблица результатов
```

```
print(f"{'x':>5} {'Точное':>12} {'Эйлер':>12} {'Погреш.':>10} {'РК2':>12}
{'Погреш.':>10} {'Адамс':>12} {'Погреш.':>10}")
for i in range(n+1):
    print(f"{x[i]:5.2f} {y_exact[i]:12.6f} {y_euler[i]:12.6f} {err_euler[i]:10.2e}
{y_rk2[i]:12.6f} {err_rk2[i]:10.2e} {y_adams[i]:12.6f} {err_adams[i]:10.2e}")
```

Сравнительный анализ полученных результатов

X	Точное	Эйлер	Погреш.	PK2	Погреш.	Адамс	Погреш.
0.70	1.602892	1.602892	0.00e+00	1.602892	0.00e+00	1.602892	0.00e+00
0.80	1.773085	1.829830	5.67e-02	1.844777	7.17e-02	1.844777	7.17e-02
0.90	1.956720	2.117568	1.61e-01	2.152112	1.95e-01	2.164709	2.08e-01
1.00	2.155239	2.479887	3.25e-01	2.540367	3.85e-01	2.570085	4.15e-01
1.10	2.370278	2.934365	5.64e-01	3.029399	6.59e-01	3.082050	7.12e-01
1.20	2.603694	3.503435	9.00e-01	3.644732	1.04e+00	3.728274	1.12e+00
1.30	2.857575	4.215781	1.36e+00	4.419264	1.56e+00	4.544608	1.69e+00
1.40	3.134275	5.108172	1.97e+00	5.395528	2.26e+00	5.577650	2.44e+00
1.50	3.436431	6.227864	2.79e+00	6.628709	3.19e+00	6.888210	3.45e+00
1.60	3.766995	7.635804	3.87e+00	8.190696	4.42e+00	8.555989	4.79e+00
1.70	4.129263	9.410871	5.28e+00	10.175541	6.05e+00	10.685937	6.56e+00

Метод Эйлера является самым простым из рассмотренных и относится к первому порядку точности. Его глобальная погрешность пропорциональна шагу h, то есть линейно возрастает при увеличении длины интервала. На первых шагах метод даёт приемлемую точность, однако с ростом х ошибка значительно увеличивается. Это связано с тем, что метод опирается только на значение производной в начале шага и не учитывает изменения производной в течение шага, что особенно важно при экспоненциальном росте решения.

Метод Рунге—Кутта второго порядка обладает более высоким порядком точности: его глобальная ошибка уменьшается пропорционально квадрату шага. Этот метод учитывает значение производной не только в начале, но и внутри шага, что делает его более точным на изогнутых участках решения. Несмотря на это, при фиксированном шаге 0.1 и достаточно быстро растущем решении даже метод Рунге—Кутта даёт заметную погрешность, которая к концу интервала достигает более 6 единиц.

Метод Адамса—Башфорта второго порядка также имеет второй порядок точности, но в отличие от Рунге—Кутты, является многошаговым. Это означает, что он использует значения производной на двух предыдущих шагах для предсказания следующего значения. Такой подход требует точных начальных значений, обычно получаемых с помощью одношагового метода. В данной задаче в качестве стартового значения использовано приближение методом Рунге—Кутты. Ошибка, накопленная на первом шаге, передаётся на следующие, и это приводит к наибольшей ошибке среди всех трёх методов на последних узлах сетки. Таким образом, несмотря на формально одинаковый порядок точности с методом Рунге—Кутты, метод Адамса в данной реализации показал худший результат.

Таким образом, поведение ошибок согласуется с теоретическими оценками точности методов. Это подчёркивает важность выбора метода и шага интегрирования в зависимости от поведения решения и требований к точности.