Topological Data Analysis and Neuroscience

Chapter 3: Simplicial Homology

Instructor: Alex McCleary

Chains

- Given a simplicial complex K, a p-chain is
 - A formal sum of p-simplices $c = \sum c_i \sigma_i$
 - Under Z_2 coefficients: a collection of p-simplices

Chains

- Given a simplicial complex K, a p-chain is
 - A formal sum of p-simplices $c = \sum c_i \sigma_i$
 - Under Z_2 coefficients: a collection of p-simplices
- p-th chain group of K
 - $C_p(K)$: collection of p-chains with operation +
 - $c_1 = \sigma_1 + \sigma_3; \ c_2 = \sigma_1 + \sigma_4; \ \Rightarrow \ c_1 + c_2 = \sigma_3 + \sigma_4$
- Under Z_2 coefficients,
 - $ightharpoonup C_p(K)$ is a vector space
 - What is its dimension (rank)?
 - What is a basis for it?

Chains and boundary operator

- ▶ p-th boundary operator ∂_p : $C_p \to C_{p-1}$

 - Hence ∂_p is a homomorphism (map preserving + operation)

Chains and boundary operator

- ▶ p-th boundary operator ∂_p : $C_p \to C_{p-1}$

 - Hence ∂_p is a homomorphism (map preserving + operation)
- Chain complex

$$\cdots \xrightarrow{\partial_{p+2}} \mathbf{C}_{p+1} \xrightarrow{\partial_{p+1}} \mathbf{C}_p \xrightarrow{\partial_p} \mathbf{C}_{p-1} \xrightarrow{\partial_{p-1}} \cdots$$

Theorem:

$$\partial_p \circ \partial_{p+1} = 0$$

Cycles and Boundaries

Cycles:

- p-cycle: a p-chain whose boundary is 0
- ▶ p-th cycle group $Z_p(K) = \ker(\partial_p)$
- Mhat is the relation between Z_p and C_p ?

Cycles and Boundaries

Cycles:

- p-cycle: a p-chain whose boundary is 0
- ▶ p-th cycle group $Z_p(K) = \ker(\partial_p)$

Boundary cycles:

- ▶ p-boundary: a p-cycle which is the boundary of some (p + 1)chain
- ▶ p-th boundary group $B_p(K) = \text{Im}(\partial_{p+1})$

Under Z_2 coefficients, B_p, Z_p, C_p are all vector spaces.

Cycles and Boundaries

Cycles:

- p-cycle: a p-chain whose boundary is 0
- ▶ p-th cycle group $Z_p(K) = \ker(\partial_p)$

Boundary cycles:

- ▶ p-boundary: the boundary of some (p + 1)-chain
- ▶ p-th boundary group $B_p(K) = \text{Im}(\partial_{p+1})$

Homology groups

- ▶ p-th cycle group $Z_p(K) = \ker(\partial_p)$
- ▶ p-th boundary group $B_p(K) = \text{Im}(\partial_{p+1})$
- ▶ p-th homology group
 - $H_p(K) = Z_p/B_p$
 - $ightharpoonup c_1$ is homologous to c_2 if
 - ▶ $c_1 c_2 \in B_p$, i.e, $c_1 c_2$ is a boundary cycle
 - ▶ $h = [c] \in H_p$:
 - \blacktriangleright the family p-cycles homologous to c
 - called a homology class

Betti numbers

- Betti number: $\beta_p(K) = rank(H_p)$
- ▶ Theorem:
 - $\beta_p(K) = rank(Z_p) rank(B_p)$
- Examples: meaning of β_0 , β_1 , β_2

Rank $(H_0) = ?$; Rank $(H_1) = ?$

More results

▶ Theorem:

- For a compact orientable 2-manifold with genus g, we have
 - $\beta_0 = 1$, $\beta_1 = 2g$, $\beta_2 = 1$

▶ Theorem:

- Given two simplicial complexes K_1 and K_2 such that $|K_1| \cong |K_2|$, then $H_*(K_1) \approx H_*(K_2)$.
- Hence different triangulations of the same space have isomorphic homology groups!
- Thus homology groups are a topological invariant

Genus of a surface

Euler characteristics

- ▶ Given a topological space M
 - its Euler characteristics $\chi(M) = \sum_{p \ge 0} (-1)^p \beta_p(M)$
- Theorem (Euler-Poincaré formula)
 - Given a simplicial complexes K, let n_p denote the number of p-simplices in K. Then

$$\chi(K) \coloneqq \chi(|K|) = \sum_{p=0} (-1)^p n_p$$

Hence Euler characteristics is also independent of the triangulation of a space, and is a topological invariant.

Examples of triangulations of 2-manifolds.

Section 2: Matrix view and computation

- $\qquad \qquad \quad \ \, \mathbf{K}^p = \left\{\alpha_1, \ldots, \alpha_{n_p}\right\}, \\ K^{p-1} = \left\{\tau_1, \ldots, \tau_{n_{p-1}}\right\}$
 - $ightharpoonup K^p$ forms a basis for p-th chain group C_p
- ightharpoonup $n_{p-1} \times n_p$ boundary matrix A_p s.t.
 - $A_p[i][j] = 1 \text{ iff } \tau_i \subseteq \sigma_j$
 - ▶ representing ∂_p : $C_p \to C_{p-1}$

- $\qquad \qquad \quad \ \, \mathbf{K}^p = \left\{\alpha_1, \ldots, \alpha_{n_p}\right\}, \\ K^{p-1} = \left\{\tau_1, \ldots, \tau_{n_{p-1}}\right\}$
 - $ightharpoonup K^p$ forms a basis for p-th chain group C_p
- ightharpoonup $n_{p-1} \times n_p$ boundary matrix A_p s.t.
 - $A_p[i][j] = 1 \text{ iff } \tau_i \subseteq \sigma_j$
 - representing $\partial_p \colon C_p \to C_{p-1}$ w.r.t. basis $\{\alpha_1, \dots, \alpha_{n_p}\}$ and $\{\tau_1, \dots, \tau_{n_{p-1}}\}$

$$A_{2} = \begin{array}{c} abc & abd & acd & bcd \\ ab & 1 & 1 & & \\ ac & 1 & 1 & & \\ ad & 1 & 1 & & \\ bc & 1 & & 1 & \\ bd & 1 & & 1 & \\ cd & & & 1 & 1 \end{array}$$

- Given a p-chain $c = \sum_{i=1}^{n_p} c_i \alpha_i$
 - \blacktriangleright Under basis K^p , vector representation of c is

$$\vec{c} = \left[c_1, c_2, \dots, c_{n_p}\right]^T$$

▶ Boundary $\partial_p c$ is a (p-1)-chain with vector representation $A_p \vec{c}$ w.r.t basis K^{p-1}

$$A_{p}\vec{c} = \begin{bmatrix} a_{1}^{1} & a_{1}^{2} & \dots & a_{1}^{n_{p}} \\ a_{2}^{1} & a_{2}^{2} & \dots & a_{2}^{n_{p}} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n_{p-1}}^{1} & a_{n_{p-1}}^{2} & \dots & a_{n_{p-1}}^{n_{p}} \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n_{p}} \end{bmatrix}$$

- Let n_p , z_p , b_p denote the rank of \mathcal{C}_p , \mathcal{Z}_p , and \mathcal{B}_p
- $\beta_p = rank(H_p)$

- Let n_p , z_p , b_p denote the rank of C_p , Z_p , and B_p
- $\beta_p = rank(H_p)$
- Claim: (i) $n_p = z_p + b_{p-1}$; (ii) $\beta_p = z_p - b_p$

- Let n_p , z_p , b_p denote the rank of C_p , Z_p , and B_p
- $\beta_p = rank(H_p)$
- Claim: (i) $n_p = z_p + b_{p-1}$; (ii) $\beta_p = z_p - b_p$
- \blacktriangleright Consider A_p
 - \blacktriangleright Each columns of A_p corresponds to a boundary cycle
 - Rank of A_p gives $b_p = rank(B_p)$
 - Why?

- Let n_p , z_p , b_p denote the rank of C_p , Z_p , and B_p
- $\beta_p = rank(H_p)$
- Claim: (i) $n_p = z_p + b_{p-1}$; (ii) $\beta_p = z_p - b_p$
- \blacktriangleright Consider A_p
 - \blacktriangleright Each columns of A_p corresponds to a boundary cycle
 - Rank of A_p gives $b_p = rank(B_p)$
- Note, this gives an $O(n^3)$ time algorithm for computing all β_p 's via Gaussian elimination
 - Can be improved to matrix multiplication time

Right-reduction algorithm

- Starting with boundary matrix $M = A_p$
 - For the *i*-th column corresponding to p-simplex σ_i ,
 - \blacktriangleright associate a p-chain Γ_i initialized to σ_i
 - AddColumn(j, i)
 - $Col_{M}[i] = Col_{M}[i] + Col_{M}[j]; \Gamma_{i} = \Gamma_{i} + \Gamma_{j}$

Algorithm 1 Right-Reduction(M)

```
for i = 2 to n_p do

while \exists j < i \text{ s.t. } lowId[j] = lowId[i] do

AddColumn(j, i);

end while

end for

Return(M)
```


Properties

Lemma:

Each reduction (column addition) step maintains the following invariance: After k-th stages, $M^{(k)}$ has the same rank as A_p , and $\partial_p \Gamma_j^{(k)} = col_M[j]$ for any j.

Lemma:

At the end of the reduction algorithm, each non-zero column has a unique low-ID.

Reduced form:

- A matrix *M* is in reduced form is all non-zero columns are linearly independent.
- ▶ It is in Smith-Normal form if it has the following structure:

$$S_p = \begin{bmatrix} 1 & & & & & & \\ & 1 & & & & & \\ & & \ddots & & & 0 & \\ & & & 1 & & & \\ & & & 0 & & & \\ & & & 0 & & \ddots & \\ & & & & 0 & & \end{bmatrix}$$

Lemma:

A matrix is in reduced form if each non-zero column has a unique low-ID.

Properties

▶ Theorem:

- Procedure Left-Reduction(M) terminates in $O(n_p^2 n_{p-1})$ time
- \triangleright The output matrix M is in reduced form
- The set of non-zero columns in M form a basis for B_{p-1}
- The set $\{\Gamma_i \mid col_M[i] = 0\}$ form a basis for Z_p

Examples.

This is not the only reduction algorithm!! Any elimination via row/column additions to convert a matrix into a reduced form works!

