COIMBATORE INSTITUTE OF TECHNOLOGY

2. ANALYSIS ON BRAZIL HOUSE RENT DATA TO PREDICT HOUSE RENT

- THANGAVEL V (1832056)

AIM:

To predict the house rent of Brazil based on other components in the dataset.

DESCRIPTION:

Rent of a house increase or decrease depends on various factors like area, location ,facility, pet, safe and security, etc. But not all factors were responsible to affect the house rent. The project aimed to predict the house rent(Brazil) from the given data. In order to predict the output we have to determine the key factors that affects the house rent. By using such factors, Better results(Rent) can be predicted using it. For this problem Multiple Linear Regression is Best to predict house rent.

CODE:

#IMPORTING PACKAGES

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

#READING DATA FROM LOCAL MACHINE AND STORE IT AS A DATAFRAME

 $df = pd.read_csv(r'C:/Users/THANGAVEL/Desktop/houses_to_rent.csv')$

df.head()

OUTPUT:

	city	area	rooms	bathroom	parking spaces	floor	animal	furniture	hoa (R\$)	rent amount (R\$)	property tax (R\$)	fire insurance (R\$)	total (R\$)
0	São Paulo	70	2	1	1	7	acept	furnished	2065	3300	211	42	5618
1	São Paulo	320	4	4	0	20	acept	not furnished	1200	4960	1750	63	7973
2	Porto Alegre	80	1	1	1	6	acept	not furnished	1000	2800	0	41	3841
3	Porto Alegre	51	2	1	0	2	acept	not furnished	270	1112	22	17	1421
4	São Paulo	25	1	1	0	1	not acept	not furnished	0	800	25	11	836

#EXPLORATORY DATA ANALYSIS

#ALL COLUMNS IN DATASET

 $all_cols = df.columns$

all_cols

OUTPUT:

#INFORMATION ABOUT THE DATA FRAME

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10692 entries, 0 to 10691
Data columns (total 13 columns):
# Column
                         Non-Null Count Dtype
0 city
                         10692 non-null
                                          object
    area
                         10692 non-null
                                          int64
    rooms
                         10692 non-null
                                          int64
    bathroom
                         10692 non-null
                                          int64
    parking spaces
                         10692 non-null
                                          int64
    floor
                         10692 non-null
                                          object
    animal
                         10692 non-null
                                          object
    furniture
                         10692 non-null
                                          object
8 hoa (R$)
                         10692 non-null
                                          int64
    rent amount (R$)
                         10692 non-null
                                          int64
10 property tax (R$) 10692 non-null
11 fire insurance (R$) 10692 non-null
                                          int64
                                          int64
12 total (R$)
                         10692 non-null int64
dtypes: int64(9), object(4)
memory usage: 1.1+ MB
```

#SUMMARY STATISTICS

df.describe().round(3)

OUTPUT:

	area	rooms	bathroom	parking spaces	hoa (R\$)	rent amount (R\$)	property tax (R\$)	fire insurance (R\$)	total (R\$)
	ureu	1001113	Datinooni	• • •	,	· · · ·	1 1 7 (17		• • •
count	10692.000	10692.000	10692.000	10692.000	10692.000	10692.000	10692.000	10692.000	10692.000
mean	149.218	2.506	2.237	1.609	1174.022	3896.247	366.704	53.301	5490.487
std	537.017	1.171	1.407	1.590	15592.305	3408.546	3107.832	47.768	16484.726
min	11.000	1.000	1.000	0.000	0.000	450.000	0.000	3.000	499.000
25%	56.000	2.000	1.000	0.000	170.000	1530.000	38.000	21.000	2061.750
50%	90.000	2.000	2.000	1.000	560.000	2661.000	125.000	36.000	3581.500
75%	182.000	3.000	3.000	2.000	1237.500	5000.000	375.000	68.000	6768.000
max	46335.000	13.000	10.000	12.000	1117000.000	45000.000	313700.000	677.000	1120000.000

#REPALCING MISSING VALUES

cols = df.columns

cols = cols.map(lambda x: x.replace(' ','_') if isinstance(x, (str)) else x)

df.columns = cols

#CHANGE "\$" FOR USE QUERIES

df.rename(columns={'hoa_(R\$)': 'hoa',

'rent_amount_(R\$)': 'rent_amount',

'property_tax_(R\$)': 'property_tax',

'fire_insurance_(R\$)': 'fire_insurance',

'total_(R\$)': 'total'}, inplace = True)

df.head()

	city	area	rooms	bathroom	parking_spaces	floor	animal	furniture	hoa	rent_amount	property_tax	fire_insurance	total
0	São Paulo	70	2	1	1	7	1	1	2065	3300	211	42	5618
1	São Paulo	320	4	4	0	20	1	0	1200	4960	1750	63	7973
2	Porto Alegre	80	1	1	1	6	1	0	1000	2800	0	41	3841
3	Porto Alegre	51	2	1	0	2	1	0	270	1112	22	17	1421
4	São Paulo	25	1	1	0	1	0	0	0	800	25	11	836

#COUNT PLOT FOR FURNITURE

fc = sns.countplot(df['furniture'], hue = df['city'])

fc.figure.set_size_inches(12, 8)

fc.set_title('Furniture Count',fontsize=15)

fc.set_xlabel('Furniture',fontsize=13)

fc.set_ylabel('Count', fontsize=13)

fc.set_xticklabels(['No','Yes'], fontsize=13)

OUTPUT:

#BARPLOT FOR NUMBER OF ROOMS WITH SIZE OF AREA

bs = sns.barplot(x='rooms', y='area', data = df, palette = 'dark')

bs.figure.set_size_inches(15, 10)

bs.set_title('Rooms vs Area size',fontsize=15)

bs.set_xlabel('Number of rooms', fontsize=13)

bs.set_ylabel('Area Size', fontsize=13)

OUTPUT:

#SCATTER PLOT FOR TOTAL RENT VS HOA TAX

df = df.drop(labels=df[(df['hoa'] > 300000)].index)

df = df.drop(labels=df[(df['total'] > 30000)].index)

th = sns.scatterplot(x = 'total', y = 'hoa', data = df)

th.figure.set_size_inches(15, 10)

th.set_title('Total Rent vs HOA Tax',fontsize=15)

th.set_xlabel('Total Rent(R\$)', fontsize=13)

th.set_ylabel('HOA Tax (R\$)', fontsize=13)

#HEAT MAP TO FIND BETTER CORRELATED VALUES FOR TOTAL RENT

cor = df.corr()

plt.figure(figsize=(15,10))

sns.heatmap(df.corr(), annot=True, cmap = 'YlGnBu')

OUTPUT:

#BATROOMS, HOA PROPERTY_TAX, FIRE_INSURANCE WERE MORE CORRELATED WITH RENT_AMOUNT

 $req_cols = cor[cor.loc['rent_amount']>0.5].T.columns$

req_cols

#PAIRPLOT FOR RENT_AMOUNT WITH REQ_COLS

ax = sns.pairplot(df, y_vars='rent_amount', x_vars=req_cols)

ax.fig.suptitle('Scatter plots between variables(rent_amount vs other selected attributes)', fontsize=20, y=1.1)

ax

OUTPUT:

#SELECTING X AND Y VALUES

metrics = []

y = df['rent_amount']

 $x = df[req_cols]$

#IMPORTING PACKAGES FOR MODELS, SPLIT AND ACCURACY SCORES

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

#SPLITTING INTO TRAINING AND TEST DATA USIG TRAIN_TEST_SPLIT

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state = 8)

#FITTING AND TRAINING MODEL

lr = LinearRegression()

lr.fit(x_train, y_train)

predict = lr.predict(x_test)

#ADD A CONSTANT AND LOOKING THE SUMMARY

```
import statsmodels.api as sm
```

 $x_{train}=sm.add_{constant}(x_{train})$

model_sm = sm.OLS(y_train, x_train_constant, hascont = True).fit()

print(model_sm.summary())

#looking the metrics

print('MAE: ', mean_absolute_error(y_test, predict).round(3))

print('RMSE: ', np.sqrt(mean_squared_error(y_test, predict)).round(3))

print('R2:', r2_score(y_test, predict).round(3))

metrics.append(np.sqrt(mean_squared_error(y_test, predict)))

OUTPUT:

OLS Regression Results												
Dep. Variable:		rent_amount	R-squared:		1.000							
Model:		OLS	Adj. R-squ	ared:	1.000							
Method:	Le	ast Squares	F-statisti	.c:	4.984e+31							
Date:	Sun,	07 Mar 2021	Prob (F-st	atistic):	0.00							
Time:		10:03:03	Log-Likeli	hood:	1.7544e+05							
No. Observation	is:	7474	AIC:		-3.509e+05							
Df Residuals:		7466	BIC:		-3.508e+05							
Df Model:		7										
Covariance Type	2:	nonrobust										
	coef	std err	t	P> t	[0.025	0.975]						
const	-1.421e-13	4.48e-13	-0.317	0.751	-1.02e-12	7.36e-13						
rooms	2.402e-12	2.35e-13	10.209	0.000	1.94e-12	2.86e-12						
bathroom	-1.592e-12	2.37e-13	-6.728	0.000	-2.06e-12	-1.13e-12						
parking_spaces	8.171e-13	1.68e-13	4.860	0.000	4.88e-13	1.15e-12						
rent_amount	1.0000	6.23e-16	1.61e+15	0.000	1.000	1.000						
property_tax	7.494e-16	5.4e-16	1.388	0.165	-3.09e-16	1.81e-15						
fire_insurance	-5.329e-14	3.15e-14	-1.690	0.091	-1.15e-13	8.54e-15						
total	-2.151e-16	2.41e-16	-0.894	0.371	-6.87e-16	2.57e-16						
0		4062.600	Donald a Link									
Omnibus:		1862.698			0.672							
Prob(Omnibus):		0.000		a (JB):	3897.781							
Skew:		-1.471	. ,		0.00							
Kurtosis: 4.965 Cond. No. 2.24e+												

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.24e+04. This might indicate that there are strong multicollinearity or other numerical problems.

MAE: 0.0 RMSE: 0.0 R2: 1.0

INFERENCE:

The test results shows that the r-square values(R2) is 1.00 with 0 RMSE and)MAE, which means the model is good enough to predict the house rent.

RESULT:

The value of r2(r-square) resembles 100% of accuracy score, which means the model is perfectly ready to predict the output(House rent). From my observation bathrooms, HOA property tax, fire insurance are the major factors that affects the house rent in Brazil. If this factors are high the rent of the house will be high, Otherwise the rent will decrease depends on the factors variation.