Math 54 Worksheet

SECOND-ORDER HOMOGENEOUS LINEAR EQUATIONS

Part A

These questions test your knowledge of the core concepts and computations.

1. Find the general solution to the following Differential Equations

1

Part B

These questions are generally more challenging, often highlighting important subtleties. They require a deeper understanding of each concept and the interrelations between them.

2. Solve the following initial-value problems, if possible

1.
$$y'' + y' - 6y = 0$$
, $y(0) = 1$, $y'(0) = 0$
 $y = C_1 e^{-3x} + C_2 e^{2x}$ [$G_1 a$]

 $y(0) = 1$
 $y = C_1 e^{-0} + C_2 e^0$
 $y' = -3 C_1 e^{-3x} + 2 C_2 e^{2x}$
 $C_1 + C_2 = 1$

2. $y'' + y = 0$, $y(0) = 2$, $y'(0) = 3$
 $f_1 = 1$
 $f_2 = 1$
 $f_3 = -0$
 $f_4 = 1$
 $f_4 = 1$

3.
$$y'' + 4y' + 20y = 0$$
, $y(0) = 1$, $y(\pi) = 2$

$$\eta^{2} + 4\eta + 20 = 0$$

$$\eta = -\frac{4 + 8i}{2}$$

$$\eta = -\frac{4 + 8i}{2} = -2 + 4i$$

$$\eta_{2} = -\frac{4 - 8i}{2} = -2 - 4i$$

$$\eta = e^{0} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$

$$\eta = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$

$$\eta = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$

$$\eta = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$

$$\eta = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$

$$\eta = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right]$$
Thus
$$\eta(x) = e^{2x} \left[C_{1} \left(los(0) + C_{2} lin(0) \right]$$
T