Matemática das Coisas

Parte 1

Cálculo de distâncias inacessíveis

Aula de 19 de Setembro de 2023

José Joaquim Martins Oliveira

Congruência de triângulos

 Dois segmentos de recta, [AB] e [CD], dizem-se <u>congruentes</u> se têm o mesmo comprimentos, i.e. AB = CD.

Representa-se por $[AB] \cong [CD]$.

• Dois ângulos, $\angle CAB$ e $\angle EDF$, dizem-se congruentes se têm a mesma medida, i.e. $m(\angle CAB) = m(\angle EDF)$.

Representa-se por $\angle CAB \cong \angle EDF$.

Congruência de triângulos

 Dois triângulos, △ACB e △DFE, dizem-se <u>congruentes</u> se existe uma correspondência entre os vértices

(Na figura
$$A \mapsto D$$
, $C \mapsto F$ e $B \mapsto E$)

tal que ângulos e lados correspondentes são congruentes.

Na figura $[AB] \cong [DE]$, $[BC] \cong [EF]$, $[CA] \cong [FD]$, $\angle A \cong \angle D$, $\angle B \cong \angle E$ e $\angle C \cong \angle F$.

Representa-se por $\triangle ACB \cong \triangle DFE$.

Critério LAL

Dados dois triângulos, $\triangle ABC$ e $\triangle DEF$, para os quais está definida a correspondência

$$A \mapsto D$$
, $B \mapsto E$ e $C \mapsto F$

tal que $[AB] \cong [DE]$, $\angle B \cong \angle E$ e $[BC] \cong [EF]$, então $\triangle ABC \cong \triangle DEF$.

Critério ALA

Dados dois triângulos, $\triangle ABC$ e $\triangle DEF$, para os quais está definida a correspondência

$$A \mapsto D$$
, $B \mapsto E$ e $C \mapsto F$

tal que $\angle A \cong \angle D$, $[AC] \cong [DF]$, e $\angle C \cong \angle F$, então $\triangle ABC \cong \triangle DEF$.

Critério LLL

Dados dois triângulos, $\triangle ABC$ e $\triangle DEF$, para os quais está definida a correspondência

$$A \mapsto D$$
, $B \mapsto E$ e $C \mapsto F$

tal que $[AB] \cong [DE]$, $[AB] \cong [CD]$ e $[BC] \cong [EF]$, então $\triangle ABC \cong \triangle DEF$.

Critério LAA

Dados dois triângulos, $\triangle ABC$ e $\triangle DEF$, para os quais está definida a correspondência

$$A \mapsto D$$
, $B \mapsto E$ e $C \mapsto F$

tal que $[AB] \cong [DE]$, $\angle A \cong \angle D$ e $\angle C \cong \angle F$, então $\triangle ABC \cong \triangle DEF$.

 Verifique que ALL e AAA não são critérios de congruência de triângulos.

Semelhança de triângulos

 Dois triângulos, △ACB e △DFE, dizem-se <u>semelhantes</u> se existe uma correspondência entre os vértices

(Na figura
$$A \mapsto D$$
, $C \mapsto F$ e $B \mapsto E$)

tal que ângulos correspondentes são congruentes e lados correspondentes são proporcionais.

Na figura $\angle A \cong \angle D$, $\angle B \cong \angle E$, $\angle C \cong \angle F$ e

$$\frac{\overline{AB}}{\overline{DE}} = \frac{\overline{BC}}{\overline{EF}} = \frac{\overline{AC}}{\overline{DF}} \qquad \left(\frac{\text{razão de semelhança: } r = \frac{\overline{AB}}{\overline{DE}} \right).$$

Representa-se por $\triangle ACB \sim \triangle DFE$.

Semelhança de triângulos

Exemplo: Considere-se os triângulos △ACB e △DFE,

Onde
$$\angle A \cong \angle E$$
, $\angle B \cong \angle F$, $\angle C \cong \angle D$ e

$$\overline{AB} = 4$$
, $\overline{BC} = 3$, $\overline{AC} = 3.42$, $\overline{EF} = 5.2$, $\overline{DE} = 4.446$, $\overline{DF} = 3.9$

Verifique que os triângulos são semelhantes, identificando a razão de semelhanca.

Critérios de semelhança de triângulos

- Critério AA
 Se dois triângulos têm, de um para o outro, dois ângulos congruentes, então são semelhantes.
- Exemplo Dados dois triângulos, △ABC e △DEF, em que

$$\angle A \cong \angle D$$
 e $\angle B \cong \angle E$

então $\triangle ABC \sim \triangle DEF$.

• Razão de semelhança de △ABC para △DEF:

Critérios de semelhança de triângulos

Critério LAL

Se dois triângulos têm, de um para o outro, um ângulo congruente e os correspondentes lados adjacentes proporcionais, então são semelhantes.

Critério LLL

Se dois triângulos têm, de um par ao outro, todos os lados proporcionais, então são semelhantes.

• Considere os $\triangle OA_1B_1$ e $\triangle OA_2B_2$ em que

$$m(\angle OA_2B_2) = m(\angle OA_1B_1) = 90^\circ$$
 e $\theta = m(\angle A_2OB_2) \in]0^\circ, 90^\circ[.$

Pelo critério AA da semelhança de triângulos

$$\triangle OA_1B_1 \sim \triangle OA_2B_2$$

• Tendo-se $\triangle OA_1B_1 \sim \triangle OA_2B_2$, então

• Assim obtêm-se as razões trigonométricas

$$\begin{array}{ll} \bullet & \overline{\frac{A_2 B_2}{\overline{OB_2}}} = \overline{\frac{A_1 B_1}{\overline{OB_1}}}; & \bullet & \overline{\frac{A_2 B_2}{\overline{OA_2}}} = \overline{\frac{A_1 B_1}{\overline{OA_1}}}; & \bullet & \overline{\frac{\overline{OB_2}}{\overline{A_2 B_2}}} = \overline{\frac{\overline{OB_1}}{\overline{A_1 B_1}}}; \\ \bullet & \overline{\frac{OB_2}{\overline{OB_2}}} = \overline{\frac{\overline{OB_1}}{\overline{OA_1}}}; & \bullet & \overline{\frac{\overline{OB_2}}{\overline{OA_2}}} = \overline{\frac{\overline{OB_1}}{\overline{OA_1}}}; & \bullet & \overline{\frac{\overline{OB_2}}{\overline{OB_2}}} = \overline{\frac{\overline{OB_1}}{\overline{OA_1}}}; \\ \bullet & \overline{\frac{OB_2}{\overline{OB_2}}} = \overline{\frac{\overline{OB_1}}{\overline{OA_1}}}; & \bullet & \overline{\frac{\overline{OB_2}}{\overline{OA_2}}} = \overline{\frac{\overline{OB_1}}{\overline{OA_1}}}; \\ \bullet & \overline{\frac{OB_2}{\overline{OA_2}}} = \overline{\frac{\overline{OB_1}}{\overline{OA_1}}}; & \bullet & \overline{\frac{\overline{OB_2}}{\overline{OA_2}}} = \overline{\frac{\overline{OB_1}}{\overline{OA_1}}}; \\ \bullet & \overline{\frac{OB_2}{\overline{OA_2}}} = \overline{\frac{\overline{OB_1}}{\overline{OA_1}}}; & \bullet & \overline{\frac{\overline{OB_2}}{\overline{OA_2}}} = \overline{\frac{\overline{OB_1}}{\overline{OA_1}}}; \\ \bullet & \overline{\frac{OB_2}{\overline{OA_2}}} = \overline{\frac{\overline{OB_1}}{\overline{OA_1}}; \\ \hline \end{array}$$

- Para $\theta \in]0^{\circ}, 90^{\circ}[$, define-se:
 - 1. <u>Seno de θ </u> como sendo a razão $\frac{A_1B_1}{\overline{OB_1}}$, denotando-se por sen (θ) ;
 - 2. Cosseno de θ como sendo a razão $\frac{\overline{OA_1}}{\overline{OB_1}}$, denotando-se por $\cos(\theta)$;
 - 3. Tangente de θ como sendo a razão $\frac{\overline{A_1B_1}}{\overline{OA_1}}$, denotando-se por $tg(\theta)$;

- Para $\theta \in]0^{\circ}, 90^{\circ}[$, define-se:
 - 4. Cotangente de θ como sendo a razão $\frac{\overline{OA_1}}{\overline{A_1B_1}}$, denotando-se por $\cot(\theta)$;
 - 5. Secante de θ como sendo a razão $\frac{\overline{OB_1}}{\overline{OA_1}}$, denotando-se por $\sec(\theta)$;
 - 6. Cossecante de θ como sendo a razão $\frac{\overline{OB_1}}{\overline{A_1B_1}}$, denotando-se por $\csc(\theta)$.

Fórmula fundamental da trigonometria

• Considere-se um triângulo rectângulo $\triangle OAB$ com a hipotenusa medindo uma unidade, $\overline{OB} = 1$:

1. Assim tem-se

$$\cos(\theta) = \overline{OA}$$
 e $\sin(\theta) = \overline{AB}$.

2. Pelo teorema de Pitágoras, tem-se

$$\overline{OB}^2 = \overline{OA}^2 + \overline{AB}^2$$

3. Donde se obtém a chamada fórmula fundamental da trigonometria:

$$1 = \cos^2(\theta) + \sin^2(\theta), \quad \theta \in]0^\circ, 90^\circ[$$

- Chama-se ângulo ao centro de uma circunferência a qualquer ângulo cujo vértice coincide com o centro.
- Chama-se ângulo inscrito numa circunferência a qualquer ângulo cujo vértice pertence à circunferência e os lados intersectam-na.

- ∠BOA é ângulo ao centro;
- ∠BCA é ângulo inscrito;
- O arco BA chama-se interno a ∠BCA;
- O arco ACB chama-se externo a ∠BCA;
- Chama-se amplitude do arco \widehat{BA} à medida do $\angle BOA$.

 Num circunferência, a medida de um ângulo inscrito é metade da amplitude do arco interno.

Concretamente:

$$m(\angle BCA) = \frac{1}{2}m(\angle BOA).$$

 A medida do ∠CBA, apresentado da figura, pode ser calculada da seguinte forma.

$$m(\angle CBA) = \frac{1}{2} \Big(m(\angle COA) - m(\angle DOE) \Big).$$

 A medida do ∠CBA, apresentado da figura, pode ser calculada da seguinte forma.

$$m(\angle CBA) = \frac{1}{2} \Big(m(\angle COA) + m(\angle DOE) \Big).$$

