Mirror Theory: Proof Techniques and Applications

Abishanka Saha

Eindhoven University of Technology, The Netherlands

■ a.saha1@tue.nl, sahaa.1993@gmail.com

Outline

Provable Security using H-Coefficient Technique

Graphical representation of Bivariate Equations and Non-Equations

Different Variants of Mirror Theory

Provable Security using

H-Coefficient Technique

H-Coefficient Technique: For $\mathcal{T}_{good} \subseteq \mathcal{T}_{Id}$,

$$\Delta(\tau_{\mathsf{Id}},\tau_{\mathsf{Re}}) \leq 1 - \frac{\Pr_{\mathsf{Re}}(\tau_{\mathsf{Re}} = \tau | \tau \in \mathcal{T}_{\mathsf{good}})}{\Pr_{\mathsf{Id}}(\tau_{\mathsf{Id}} = \tau | \tau \in \mathcal{T}_{\mathsf{good}})} + \Pr_{\mathsf{Id}}(\tau \not \in \mathcal{T}_{\mathsf{good}})$$

H-Coefficient Technique: For $\mathcal{T}_{good} \subseteq \mathcal{T}_{Id}$,

$$\Delta(\tau_{\mathsf{Id}},\tau_{\mathsf{Re}}) \leq 1 - \frac{\Pr_{\mathsf{Re}}(\tau_{\mathsf{Re}} = \tau | \tau \in \mathcal{T}_{\mathsf{good}})}{\Pr_{\mathsf{Id}}(\tau_{\mathsf{Id}} = \tau | \tau \in \mathcal{T}_{\mathsf{good}})} + \Pr_{\mathsf{Id}}(\tau \not\in \mathcal{T}_{\mathsf{good}})$$

Need to count: $|\mathcal{T}_{Re} \cap \mathcal{T}_{good}|$.

$$\tau \in \mathcal{T}_{\mathsf{Re}} \cap \mathcal{T}_{\mathsf{good}}$$
 satisfies three kinds of restrictions:

	$(\mathcal{D} \times \mathcal{R})^q$

 $\tau \in \mathcal{T}_{Re} \cap \mathcal{T}_{good}$ satisfies three kinds of restrictions:

Attainability restrictions

 $\tau \in \mathcal{T}_{Re} \cap \mathcal{T}_{good}$ satisfies three kinds of restrictions:

Attainability restrictions

+ Goodness restrictions

 $\tau \in \mathcal{T}_{\mathsf{Re}} \cap \mathcal{T}_{\mathsf{good}}$ satisfies three kinds of restrictions:

Attainability restrictions

- + Goodness restrictions
- + Real world-realizability restrictions

 $\tau \in \mathcal{T}_{\mathsf{Re}} \cap \mathcal{T}_{\mathsf{good}}$ satisfies three kinds of restrictions:

Attainability restrictions

- + Goodness restrictions
- + Real world-realizability restrictions

Restrictions ≡ System of Equations and Non-Equations,

where the variables are outputs of the primitives used in the construction.

Graphical representation of

Bivariate Equations and

Non-Equations

$$\begin{array}{llll} X_1 \oplus X_2 = \lambda_1 & X_1 \oplus X_4 = \lambda_4 & X_6 \oplus X_7 = \lambda_7 \\ X_2 \oplus X_3 = \lambda_2 & X_4 \oplus X_5 = \lambda_5 & X_7 \oplus X_8 = \lambda_8 \\ X_3 \oplus X_4 = \lambda_3 & X_3 \oplus X_5 = \lambda_6 & X_8 \oplus X_9 = \lambda_9 \end{array}$$

$$X_1 \oplus X_2 = \lambda_1 \qquad X_1 \oplus X_4 = \lambda_4 \qquad X_6 \oplus X_7 = \lambda_7$$

$$X_2 \oplus X_3 = \lambda_2 \qquad X_4 \oplus X_5 = \lambda_5 \qquad X_7 \oplus X_8 = \lambda_8$$

$$X_3 \oplus X_4 = \lambda_3 \qquad X_3 \oplus X_5 = \lambda_6 \qquad X_8 \oplus X_9 = \lambda_9$$

For having a solution, all cycles must have label sum zero.

$$X_1 \oplus X_2 = \lambda_1 \qquad X_1 \oplus X_4 = \lambda_4 \qquad X_6 \oplus X_7 = \lambda_7$$

$$X_2 \oplus X_3 = \lambda_2 \qquad X_4 \oplus X_5 = \lambda_5 \qquad X_7 \oplus X_8 = \lambda_8$$

$$X_3 \oplus X_4 = \lambda_3 \qquad X_3 \oplus X_5 = \lambda_6 \qquad X_8 \oplus X_9 = \lambda_9$$

For having a solution, all cycles must have label sum zero.

$$X_1 \oplus X_2 = \lambda_1$$
 $X_1 \oplus X_4 = \lambda_4$ $X_6 \oplus X_7 = \lambda_7$
 $X_2 \oplus X_3 = \lambda_2$ $X_4 \oplus X_5 = \lambda_5$ $X_7 \oplus X_8 = \lambda_8$
 $X_3 \oplus X_4 = \lambda_3$ $X_3 \oplus X_5 = \lambda_6$ $X_8 \oplus X_9 = \lambda_9$

If we assign value to one variable the values of the all the variables in its component gets determined.

 $\xi_{\text{max}} := \text{size of largest}$ component

$$X_1 \oplus X_2 = \lambda'_1 \qquad X_7 \oplus X_6 = \lambda'_5$$

$$X_1 \oplus X_3 = \lambda'_2 \qquad X_7 \oplus X_8 = \lambda'_6$$

$$X_1 \oplus X_4 = \lambda'_3 \qquad X_7 \oplus X_9 = \lambda'_7$$

$$X_1 \oplus X_5 = \lambda'_4$$

$$X_1 \oplus X_2 = \lambda'_1 \qquad X_7 \oplus X_6 = \lambda'_5$$

$$X_1 \oplus X_3 = \lambda'_2 \qquad X_7 \oplus X_8 = \lambda'_6$$

$$X_1 \oplus X_4 = \lambda'_3 \qquad X_7 \oplus X_9 = \lambda'_7$$

$$X_1 \oplus X_5 = \lambda'_4$$

$$X_i \oplus X_j \neq 0^n$$
 $i, j \in [9]$

$$X_1 \oplus X_2 = \lambda'_1 \qquad X_7 \oplus X_6 = \lambda'_5$$

$$X_1 \oplus X_3 = \lambda'_2 \qquad X_7 \oplus X_8 = \lambda'_6$$

$$X_1 \oplus X_4 = \lambda'_3 \qquad X_7 \oplus X_9 = \lambda'_7$$

$$X_1 \oplus X_5 = \lambda'_4$$

$$X_i \oplus X_j \neq 0^n \qquad i, j \in [9]$$

No blue path has label sum 0^n

Complete Mirror Theory Problem (CMTP)

$$X_1 \oplus Y_1 = \lambda_1$$
 $X_3 \oplus Y_3 = \lambda_4$
 $X_2 \oplus Y_1 = \lambda_2$ $X_3 \oplus Y_4 = \lambda_5$
 $X_2 \oplus Y_2 = \lambda_3$

$$X_1 \oplus Y_1 = \lambda_1$$
 $X_3 \oplus Y_3 = \lambda_4$
 $X_2 \oplus Y_1 = \lambda_2$ $X_3 \oplus Y_4 = \lambda_5$
 $X_2 \oplus Y_2 = \lambda_3$

$$X_i \oplus X_j \neq 0^n$$
 $i, j \in [3]$
 $Y_i \oplus Y_j \neq 0^n$ $i, j \in [4]$

$$X_1 \oplus Y_1 = \lambda_1$$
 $X_3 \oplus Y_3 = \lambda_4$
 $X_2 \oplus Y_1 = \lambda_2$ $X_3 \oplus Y_4 = \lambda_5$
 $X_2 \oplus Y_2 = \lambda_3$

$$X_i \oplus X_j \neq 0^n$$
 $i, j \in [3]$
 $Y_i \oplus Y_j \neq 0^n$ $i, j \in [4]$

No even-length blue path has label sum 0^n

Biclique Mirror Theory Problem (BMTP)

$$X_1 \oplus Y_1 = \lambda_1 \qquad X_3 \oplus Y_3 = \lambda_4$$

$$X_2 \oplus Y_1 = \lambda_2 \qquad X_3 \oplus Y_4 = \lambda_5$$

$$X_2 \oplus Y_2 = \lambda_3 \qquad Y_2 \oplus Z_1 = \lambda_6$$

$$Y_2 \oplus Z_2 = \lambda_7 \qquad Y_3 \oplus Z_3 = \lambda_8$$

$$X_1 \oplus Y_1 = \lambda_1 \qquad X_3 \oplus Y_3 = \lambda_4$$

$$X_2 \oplus Y_1 = \lambda_2 \qquad X_3 \oplus Y_4 = \lambda_5$$

$$X_2 \oplus Y_2 = \lambda_3 \qquad Y_2 \oplus Z_1 = \lambda_6$$

$$Y_2 \oplus Z_2 = \lambda_7 \qquad Y_3 \oplus Z_3 = \lambda_8$$

$$X_i \oplus X_j \neq 0^n$$
 $i, j \in [3]$
 $Y_i \oplus Y_j \neq 0^n$ $i, j \in [4]$
 $Z_i \oplus Z_j \neq 0^n$ $i, j \in [3]$

$$X_1 \oplus Y_1 = \lambda_1 \qquad X_3 \oplus Y_3 = \lambda_4$$

$$X_2 \oplus Y_1 = \lambda_2 \qquad X_3 \oplus Y_4 = \lambda_5$$

$$X_2 \oplus Y_2 = \lambda_3 \qquad Y_2 \oplus Z_1 = \lambda_6$$

$$Y_2 \oplus Z_2 = \lambda_7 \qquad Y_3 \oplus Z_3 = \lambda_8$$

$$X_i \oplus X_j \neq 0^n \qquad i, j \in [3]$$

$$Y_i \oplus Y_j \neq 0^n \qquad i, j \in [4]$$

$$Z_i \oplus Z_j \neq 0^n \qquad i, j \in [3]$$

Triclique Mirror Theory Problem (TMTP)

Different Variants of Mirror Theory

Example 1: XORP[w] (contd.)

Equations

$$X_i^0 \oplus X_i^1 = y_i^1$$

$$\vdots \qquad \qquad i \in [q]$$
 $X_i^0 \oplus X_i^w = y_i^w$

Non-Equations

$$X_i^j \oplus X_{i'}^{j'} \neq 0^n, \quad (i,j) \neq (i',j')$$

Example 1: XORP[w] (contd.)

Equations

$$X_{i}^{0} \oplus X_{i}^{1} = y_{i}^{1}$$

$$\vdots \qquad i \in [q]$$
 $X_{i}^{0} \oplus X_{i}^{w} = y_{i}^{w}$

Non-Equations

$$X_i^j \oplus X_{i'}^{j'} \neq 0^n, \quad (i,j) \neq (i',j')$$

Goodness Restrictions:

$$\begin{aligned} y_i^j &\neq 0^n & & (i,j) \in [q] \times [w] \\ y_i^j &\neq y_i^{j'} & & i \in [q], j \neq j' \in [w] \end{aligned}$$

$$\frac{\Pr_{\mathsf{Re}}(\tau_{\mathsf{Re}} = \tau)}{\Pr_{\mathsf{Id}}(\tau_{\mathsf{Id}} = \tau)} = \frac{\mathcal{N}/(2^n)_{(w+1)q}}{2^{nw}}$$

Complete Mirror Theory [CDNPS23]

<u>Theorem</u>

Consider a system of e equations involving v variables

 $largest\ component\ size = \xi_{\max}.$

If $\sqrt{N} \ge \xi_{\max}^2 \log_2 N + \xi_{\max}$, and $1 \le v \le N/12 \xi_{\max}^2$, then the number of solutions of the system of equations and complete set of non-equations is at least

$$\frac{(2^n)_v}{2^{ne}}$$

Complete Mirror Theory [CDNPS23]

Theorem

Consider a system of e equations

 $involving v \ variables$

largest component size = ξ_{max} .

If $\sqrt{N} \ge \xi_{\max}^2 \log_2 N + \xi_{\max}$, and $1 \le v \le N/12\xi_{\max}^2$, then the number of solutions of the system of equations and complete set of non-equations is at least

$$\frac{(2^n)_v}{2^{ne}}$$

 \implies *n*-bit security for XORP[w]

transcript: $\{((L_i, R_i), (S_i, T_i))\}$

extended transcript: $\{((L_i, R_i), L'_i, R'_i, (S_i, T_i))\}$

extended transcript: $\{((L_i, R_i), L'_i, R'_i, (S_i, T_i))\}$

$$X_i \oplus Y_i = L'_i, \quad Y_i \oplus Z_i = T_i, \quad i \in [q]$$

extended transcript: $\{((L_i, R_i), L'_i, R'_i, (S_i, T_i))\}$

$$X_i \oplus Y_i = L'_i, \quad Y_i \oplus Z_i = T_i, \quad i \in [q]$$

Note that
$$R'_i = R'_j \iff X_i = X_j$$
, $S_i = S_j \iff Z_i = Z_j$
 $R'_i \oplus S_i = R'_j \oplus S_j \iff Y_i = Y_j$

Bad events: • cycles, • component size too large, • path between two X/Y/Z-vertices has label sum zero - w.p. $\mathcal{O}(q/2^n)$ due to randomness of π_1, π_2

#(X,Y,Z)-respecting solutions =# permutation-triples (π_1, π_2, π_3) : $\Psi^{(\pi_1,\pi_2,\pi_3)}(L'_i, R'_i) = (S_i, T_i)$.

Theorem ([CS25])

Good system of equations:
$$\#$$
 equations = e ,
$$partition \ of \ variables = V_1 \sqcup V_2 \sqcup V_3.$$

$$largest \ component \ size = \xi$$

$$If \ q \leq \frac{2^n}{48\xi^2} \ and \ 2^{n/2} > n\xi^2 + n,$$

$$\#(V_1, V_2, V_3) \text{-respecting solutions} \geq \frac{(2^n - 2)_{|V_1|}(2^n - 2)_{|V_2|}(2^n - 2)_{|V_3|}}{2^{ne}}.$$

The extends the result for biclique mirror theory by [CLL24]

Theorem ([CS25])

Good system of equations:
$$\#$$
 equations = e ,
$$partition \ of \ variables = V_1 \sqcup V_2 \sqcup V_3.$$

$$largest \ component \ size = \xi$$

If
$$q \le \frac{2^n}{48\xi^2}$$
 and $2^{n/2} > n\xi^2 + n$,

$$\#(V_1, V_2, V_3)$$
-respecting solutions $\geq \frac{(2^n - 2)_{|V_1|}(2^n - 2)_{|V_2|}(2^n - 2)_{|V_3|}}{2^{ne}}$.

 \implies *n*-bit CPA security of 5-pLR

Example 3: 1k-DbHtS [DDNP18]

Instantiations: PMAC+

PMAC-Plus based on a block cipher E using three keys K_1 , K_2 , K_3 , where $\Delta_0 = E_{K_1}(0)$ and $\Delta_1 = E_{K_1}(1)$.

Instantiations: LightMAC+

Restricted Mirror Theory Problem [CEJNS24]

Theorem

For a full row rank system, \mathbb{E} , of e bivariate equations in v variables, in standard form, let \mathbb{E}_i be the sub-system comprising of the equations of the i-th component. Then \mathbb{E}_i has at least

$$\frac{(2^n - |\mathcal{F}_i|)}{2^n} \left(1 - 2 \left| \mu(\boldsymbol{\lambda}_i, \mathcal{F}_i) - \frac{(|\mathcal{R}| + e)^2}{2^n} \right| - \frac{4}{2^n} \right),$$

pairwise disjoint solutions with no variable assigned a value from the forbidden set \mathcal{R} . Here $\mathcal{F}_i := x_{\leq i-1} \cup \mathcal{R}$ and

$$\mu(\boldsymbol{\lambda}_i, \mathcal{F}_i) = |\{(\phi_1, \phi_2) \in \mathcal{F}_i^{[2]} : \phi_1 \oplus \phi_2 \in \boldsymbol{\lambda}_i\}|$$

Example 4: The LRW+ Paradigm [JKNS24]

Figure 1: The LRW+ construction.

$$\Pr\left(\widetilde{\mathbf{H}} \leftarrow \mathfrak{s}\widetilde{\mathcal{H}} : \widetilde{\mathbf{H}}(t,m) = \widetilde{\mathbf{H}}(t',m')\right) \leq \epsilon_1 \qquad \widetilde{\mathcal{H}} \text{ is } \epsilon_1\text{-AUTPF}$$

$$\Pr\left(\mathbf{H} \leftarrow \mathfrak{s}\mathcal{H} : \mathbf{H}(t) = \mathbf{H}(t')\right) \leq \epsilon_2 \qquad \mathcal{H} \text{ is } \epsilon_2\text{-AUHF}$$

Instantiations

$$\mathbf{H}_1(t,m) = \boldsymbol{\pi}_1(m) \oplus t$$

$$\mathbf{H}_2^{-1}(t,c) = \boldsymbol{\pi}_2^{-1}(c) \oplus t$$

$$\mathbf{H}(t) = t$$

The LRW+ Paradigm

Good transcripts are such that the graph of equations $\mathsf{Y}_i \oplus \mathsf{V}_i = \Delta_i$ has only the following components:

Bipartite Mirror Theory for Tweakable Permutations [JKNS23]

Theorem (Bipartite Mirror Theory for general $\xi_{\rm max}$ [JN20])

Suppose for a consistent system of equations, the corresponding graph structure contains only type-1, type-2, type-3, type-4 components, in total $q \leq 2^n/4$ edges, and maximum component size $\xi_{\max} q \leq 2^n/2$

$$\left(1 - \frac{13q^4}{2^{3n}} - \frac{2q^2}{2^{2n}} - \left(\sum_{i=1}^{c_2+c_3} \eta_{c_1+i}^2\right) \frac{4q^2}{2^{2n}}\right) \times \frac{(2^n)_{q_1+c_2+q_3}(2^n)_{q_1+q_2+c_3}}{\prod_{i \in [s]} (2^n)_{\nu_i}}$$

solutions satisfying $Y_i \neq Y_j \land V_i \neq V_j$

- c_1, c_2, c_3 the number of components of type-1, type-2, type-3 categories, respectively.
- q_1, q_2, q_3 the number of edges of isolated, type-1, type-2, type-3 components, respectively.

• ν_i - multiplicity of Δ_i .