Inleveropgaven stochastiek 1

Set 5: inleverdeadline woensdag 2 december 15:00

Opmerking 1: elke opgave dient beredeneerd te worden. Er kunnen 18 punten behaald worden; cijfer = (totaal aantal punten)/2 +1 (afgerond op een geheel getal).

Opmerking 2: Je mag voor deze hele inleveropgave formules uit het college gebruiken, geef wel aan welke formule je gebruikt!

Opgave 1

Zij $n \in \mathbb{N}$. Een eerlijke¹ munt wordt n keer opgegooid en er wordt geteld hoe vaak er 'kop' verschijnt, deze toevalsvariabele noemen we Y_n . Tevens wordt er een eerlijke dobbelsteen n keer opgegooid, de toevalsvariabele die telt hoeveel keer er een 6 boven ligt noemen we Z_n .

- i. (1pt) Er geldt: $Y_n \sim \text{Bin}(n, p_Y)$ en $Z_n \sim \text{Bin}(n, p_Z)$. Geef p_Y en p_Z . (Je hoeft dit niet te beredeneren.)
- ii. (2pt) Geef $\mathbb{E}(Y_6)$ en $\mathbb{E}(Z_6)$.
- iii. (3pt) Welk spel levert meer winst: je krijgt 1 euro als $Y_6 \ge 3$ en niets als $Y_6 < 3$, of je krijgt 1 euro als $Z_6 \ge 1$ en niets als $Z_6 = 0$?

Opgave 2 (Sectie 10 in boek)

Zij $(\Omega, \mathcal{F}, \mathbb{P})$ een kansruimte en zij $X : \Omega \to \mathbb{R}$ een toevalsvariabele. Definieer $F : \mathbb{R} \to [0, 1]$ door $F(x) = \mathbb{P}(X \le x)$ (F is dus de cumulatieve verdelingsfunctie van X). Gebruik opgave 2 van inleverset 4 om de volgende eigenschappen van F te bewijzen:

- i. (2pt) $\lim_{x \to \infty} F(x) = 1$.
- ii. (2pt) Voor alle $x \in \mathbb{R}$ en elk rijtje $(x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ zodanig dat $\lim_{n \to \infty} x_n = x$ en $x_{n+1} \le x_n$, $n \in \mathbb{N}$, geldt: $\lim_{n \to \infty} F(x_n) = F(x)$. (Met andere woorden: F is rechtscontinu.)

Opgave 3 (3pt)

[Opgave 19 in het boek] Zij $\lambda \in (0, \infty)$ en zij X een Poisson toevalsvariabele met parameter λ . Toon aan dat voor alle $n \in \mathbb{N}$ geldt:

$$\mathbb{E}(X^n) = \lambda \mathbb{E}((X+1)^{n-1}).$$

¹Dat wil zeggen: $\mathbb{P}(\text{kop}) = \mathbb{P}(\text{munt}) = \frac{1}{2}$.

Opgave 4

Claim: Voor $n \in \mathbb{N}$ en $p \in (0,1)$ zodanig dat n relatief groot is ten opzichte van p, is de Poisson (λ) verdeling met $\lambda = np$ een goede benadering van de Bin(n,p) verdeling.

- i. (2pt) Leg uit waarom $\lambda = np$ een zinvolle keuze is als men de Bin(n,p) verdeling wil benaderen met een $Poisson(\lambda)$ verdeling.
- ii. (2pt) Hieronder zijn twee plots. De eerste bevat de cumulatieve verdelingsfunctie van de $Bin(5, \frac{1}{5})$ verdeling en de cumulatieve verdelingsfunctie van de Poisson(1) verdeling. Leg voor deze plot uit welke lijn (de doorgetrokken of de gestippelde) hoort bij de $Bin(5, \frac{1}{5})$ verdeling, en welke bij de Poisson(1) verdeling.
- iii. (1pt) De tweede plot bevat de cumulatieve verdelingsfunctie van de $Bin(100, \frac{2}{100})$ verdeling en de cumulatieve verdelingsfunctie van de Poisson(2) verdeling. Vind je dat de plots de claim hierboven onderbouwen?

