AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Previously Amended) An R-T-B based sintered magnet having a composition

comprising:

27.0 mass% to 32.0 mass% of R, which is at least one of Nd, Pr, Dy and Tb and

which always includes either Nd or Pr;

63.0 mass% to 72.5 mass% of T, which always includes Fe and up to 50% of which is

replaceable with Co;

0.01 mass% to 0.08 mass% of Ga; and

0.85 mass% to 0.96 mass % of B,

wherein the magnet comprises a main phase with a tetragonal R₂T₁₄B type crystal

structure, which accounts for at least 90% of the overall volume of the magnet, but includes

substantially no $R_{1.1}Fe_4B_4$ phases.

2. (Original) The R-T-B based sintered magnet of claim 1, further comprising at

most 2.0 mass% of M, which is at least one element selected from the group consisting of Al,

Si, Ti, V, Cr, Mn, Ni, Cu, Zn, Zr, Nb, Mo, In, Sn, Hf, Ta and W.

3. (Canceled)

4. (Original) The R-T-B based sintered magnet of claim 1 or 2, having an oxygen

concentration of at most 0.5 mass%, a nitrogen concentration of at most 0.2 mass%, and a

hydrogen concentration of at most 0.01 mass%.

10965714.1

5. (Currently Amended) A method for producing an R-T-B based sintered magnet,

the method comprising the steps of:

preparing a powder of an alloy that has a composition comprising 27.0 mass% to 32.0

mass% of R (which is at least one of Nd, Pr, Dy and Tb and which always includes either Nd

or Pr), 63.0 mass% to 72.5 mass% of T (which always includes Fe and up to 50% of which is

replaceable with Co), 0.01 mass% to 0.08 mass% of Ga and 0.85 mass% to 0.96 mass % of

В;

compacting and sintering the alloy powder, thereby making a sintered magnet; and

subjecting the sintered magnet to a heat treatment at a temperature of $400 \square$ to $600 \square$

400°C to 600°C--.

6. (Original) The method of claim 5, wherein the step of preparing the alloy powder

includes the steps of:

preparing a melt of the alloy;

rapidly cooling and solidifying the melt of the alloy by a strip casting process, thereby

making a rapidly solidified alloy; and

pulverizing the rapidly solidified alloy.