Modified Spider Silk for Ligament Repair

Group 3 Jessica Ou, Kristy Dai, Nicholas Higgins, Chelsea Lang

ACL Tear

- Occur commonly in sport injuries
- 350,000 reconstructive surgeries
- Solution
 - Use of autografts/allografts
- Complications

ACL - Mechanical Properties

- Nonlinear and viscoelastic
- Properties dependent on ligament geometry and relationship between ligament length and ligament tension
- ACL differs for different sexes and eventually degrades over age

	Unit	Anteromedial bundle	Anterolateral bundle	Posterior bundle
Modulus	MPa	283.1 ± 114.1	285.9 ± 140.6	154.9 ± 119.5
Strength	MPa	45.7 ± 19.5	30.6 ± 11.0	15.4 ± 9.5
Strain at failure		19.1 ± 2.8	16.1 ± 3.9	15.2 ± 5.2

Spider Silk

- Stronger naturally-occurring fiber known
- Difficult to dissolve
- Ideal for for pursuit of biomaterials
 - Biodegradable
 - Biocompatible
 - Good for cell adhesion
 - Non immunogenic
- Dragline Silk
 - Major ampullate silk
- Spidroin
 - Major protein in dragline silk

Spider Silk - Mechanical Properties

- \circ Tensile strength (1.03 ± 0.11 GPa)
 - Greater than steel
- o Modulus (13.7 ± 3.0 GPa) vs ACL: 0.275 GPa
- Extensibility (18 ± 6%)
- \circ Toughness (114 ± 51 MJ/m3)
- o Nominal fracture strength: 1100 MPa; True fracture strength: 1500 MPa
- Elasticity: More elastic than nylon

Current Problems with Spider Silk Use

- Spiders cannot be farmed for their silk
 - Production of recombinant spidroins
 - Proteins are too big
- Braiding or twisting limits internal space in scaffold
 - Combination of braiding and twisting can cause premature scaffold failure
 - Less internal space reduces ingrowth of connective tissues

Our Design

- Parts of design
 - Shape
 - MSC differentiation
 - Temperature
 - Extracellular matrix production

Shape

- 4 Braid Scaffold
 - ~50 MPa UTS
 - ~700 MPa elastic modulus
 - o 18% UTS strain

[2]

Temperature

- Structural origin of torsional behavior of spider silk
- Influence of moisture content
- Spider silk property: supercontraction

Tissue	% of dry weight			Weight % water in	
	Collagen	Elastin	Proteoglycans	wet sample	
Tendon	75–85	< 3	1–2	65–70	
Ligament (extremity)	75–80	< 5	1–3	55–65	

Graph shows response of spider silk to rapid cyclical changes in humidity

Stem Cell Differentiation

- Mesenchymal stem cells (MSCs) cultured onto spider silk fibers
- Applying mechanical signals
- Spider silk enhance differentiation of stem cells

Collagen Microsponge

- Production
 - Freeze drying silk solution
 - Soak in collagen and hyaluronan
- ECM
 - Increased gene expression

Today's Wrap Up

- ACL
 - Mechanical Properties
- Spider Silk
 - Properties
 - Spidroins
- Main Design
 - Shape
 - Stem Cells
 - ECM Production
 - Water Content

References

[1] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303781/

[2]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2034317/

[3] https://link.springer.com/chapter/10.1007/978-4-431-55858-3 6

[4] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939640/

[5] https://crimsonpublishers.com/madd/fulltext/MADD.000537.php

[6] http://jeb.biologists.org/content/212/13/1981

[7] https://pubs.acs.org/doi/10.1021/acs.biomac.8b00980

[8] https://www.physio-pedia.com/Anterior Cruciate Ligament

[9] https://link.springer.com/article/10.1186/1758-2555-2-20

[10] https://www.sciencedirect.com/science/article/pii/S0142961202003538