Aleksandra Wójcik 268488

Zadanie 1.

Opis modelu:

Parametry:

M - Liczba lotnisk.

N - Liczba firm.

 \mathcal{C}_{ij} – Koszt paliwa dostarczanego przez firmę i na lotnisko j.

 U_i – Maksymalna ilość paliwa, która firma i jest w stanie dostarczyć na lotnisko j.

 L_i – Zapotrzebowanie na paliwo lotniska j.

Zmienne decyzyjne:

 $X_{i\,j}$ – Ilość paliwa dostarczonego przez firmę i na lotnisko j.

Ograniczenia:

Zmienne decyzyjne muszą być nieujemne.

•
$$\forall i \ \forall j \ X_{ij} >= 0$$

Żadna z firm nie może przekroczyć swoich zasobów.

•
$$\forall i \quad \sum_{j} X_{ij} <= U_i$$

Zapotrzebowanie każdego lotniska musi zostać spełnione.

•
$$\forall j \sum_i X_{ij} \leq = L_i$$

$$\min\sum_{i=1}^{N}\sum_{j=1}^{M}X_{ij}*C_{ij}$$

Wyniki:

	Firma1	Firma2	Firma3
Lotnisko1	0	110 000	0
Lotnisko2	165 000	55 000	0
Lotnisko3	0	0	330 000
Lotnisko4	110 000	0	330 000

- a) Minimalny koszt paliwa to 8 525 000 \$.
- b) Wszystkie firmy dostarczają paliwo.
- c) Jedynie Firma2 nie wykorzysta swoich zasobów.

Zadanie2

Opis modelu:

Parametry:

n – liczba wierzchołków.

 C_{ij} – Koszt przejazdu trasą z miasta i do miasta j.

 t_{ij} – Czas przejazdu trasą z miasta i do miasta j.

 T_{max} – Maksymalny czas przejazdu

startCity = wierzchołek startowy.

endCity - wierzchołek końcowy.

i,j ϵ {1,2,...n}.

Zmienne decyzyjne:

Gdzie X_{ij} to zmienna binarna.

Ograniczenia:

Suma czasów wszystkich ścieżek musi być mniejsza niż Tmax.

$$\bullet \quad \sum_{i=0}^{n} \quad \sum_{j=0}^{n} X_{ij} * t_{ij} <= T_{max}$$

Można wybrać co najwyżej jedną ścieżkę wchodzącą do miasta i.

•
$$\forall i \sum_{j} X_{ij} \leq =1$$

Można wybrać co najwyżej jedną ścieżkę wychodzącą z miasta j.

•
$$\forall j \sum_i X_{ij} <= 1$$

Nie można wracać do miasta w które zostało wcześniej odwiedzone.

•
$$\forall i \ \forall j \ X_{ij} + X_{ji} <= 1$$

Jeśli wybrana ścieżka wchodzi do pewnego wierzchołka, musi też z niego wyjść (Warunek nie dotyczy wierzchołka startowego i końcowego).

•
$$\forall j \setminus \{1, n-1\}$$
 $\sum_i X_{ij} == \sum_m X_{jm}$

Ścieżka musi zawierać wierzchołek początkowy

•
$$\sum_{j} X_{startCity,j} = =1$$

Ścieżka musi zawierać wierzchołek końcowy.

•
$$\sum_{i} X_{i,endCity} = =1$$

$$\min \left(\sum_{i} \sum_{j} X_{ij} * C_{ij}\right)$$

Mój Przykład zadania:

n=10

Tmax = 30

startCity = 1

endCity = 10

Graf:

$$t_{ij} = 10 - c_{ij}$$

Wyniki:

a)

Koszt 15.0

Najkrótsza ścieżka [[1, 2], [2, 5], [5, 7], [7, 10]]

Czas ścieżki 25

b)

Po usunięciu ograniczenia na całkowitoliczbowość zmienne decyzyjne przyjmują takie same wartości.

c)

Po usunięciu ograniczenia na całkowitoliczbowość i usunięciu ograniczenia na Tmax, wynik pozostaje taki sam.

Zadanie3

Opis modelu:

Parametry:

D-liczba dzielnic

Z – liczba zmian

 $minShift_i$ – minimalna liczba radiowozów na zmianie j $minDistrict_i$ – minimalna ilość radiowozów w dzielnicy i

 U_i – Maksymalna liczba radiowozów na j-tej zmianie

 L_i – Minimalna liczba radiowozów na j-tej zmianie

 $i \in \{1,2,...,D\}$

 $j \in \{1, ..., Z\}$

Zmienne decyzyjne:

 X_{ij} – Ilość radiowozów przydzielonych do dzielnicy i na zmianie j.

Ograniczenia:

Ilość radiowozów w każdej dzielnicy i na każdej zmianie musi spełniać normy z tabelki.

$$\forall j \ \forall i \ L_i >= X_{ij} >= U_i$$

Ilość radiowozów na każdej nie może być mniejsza niż minimalna ilość radiowozów na danej zmianie.

$$\forall j \quad \sum_{i=0}^{D} X_{ij} >= minShift_{i}$$

Ilość radiowozów na każdej dzielnicy nie może być mniejsza niż minimalna ilość radiowozów na danej dzielnicy.

$$\forall i \quad \sum_{j=0}^{Z} X_{ij} >= minDistrict_{j}$$

Funkcja celu:

$$\min \sum_{i=1}^{D} \sum_{j=0}^{Z} X_{ij}$$

Wyniki:

	Dzielnica1	Dzielnica2	Dzielnica3
Zmiana1	2	3	5
Zmiana2	7	6	7
Zmiana3	5	5	8

Całkowita liczba wykorzystanych radiowozów to 48.

Zadanie 4.

Opis modelu:

Teren jest podzielony na M x N kwadratów.

containers[] – współrzędne rozmieszczenia kontenerów.

K - pole widzenia kamery.

Zmienne decyzyjne:

 X_{ij} - $\left\{ egin{array}{ll} 1: w \ punkcie \ o \ współrzędnych \ ij \ znajduje \ się \ kamera \ 0: \ w \ punkcie \ o \ współrzędnych \ ij \ nie \ znajduje \ się \ kamera \end{array}
ight.$

Gdzie $X_{i\, j}$ to zmianna decyzyjna binarna.

Ograniczenia:

Każdy kontener musi posiadać co najmniej jedną kamerę w odległości k pól.

$$\forall (m,n) \in containers \ (\ \forall a \in <-k,k> \ \ \forall b \in <-k,k> \ \ \sum_{m}\sum_{n}X_{m+a,n+b} \) \geq 1$$

Kamera nie może stać w polu w którym stoi kontener.

$$\forall (m,n) \in containers \ X_{m,n} \, = 0$$

gdzie

- $a, b \in Z$
- M>=a+i>=1
- N >= b+j >= 1

$$\min \sum_{i=i}^{M} \sum_{j=1}^{N} X_{ij}$$

Mój egzemplarz zadania:

$$M = 10$$

$$N = 10$$

containers =
$$[(1,2),(4,3),(5,1),(2,4),(1,10),(7,2),(9,10)]$$

$$K2 = 4$$

Wyniki:

Dla K1:

Dla K2:

Zadanie 5

Opis modelu:

machineCost_i - koszt godziny pracy maszyny j.

 $cost_i$ – koszt materiałów przy produkcji produktu Pi

 $price_i$ – cena z jaką można sprzedać produkt Pi.

 U_i – zapotrzebowanie na produktu Pi.

 M_{ij} – czas, jaki maszyna j musi poświęcić by wyprodukować 1 kg produktu Pi (w minutach)

Ograniczenia:

Ilość produktów nie może przyjąć wartości ujemnych

$$\forall i \ X_i >= 0$$

Ilość produktów nie może przekroczyć zapotrzebowania.

$$\forall i \sum_{i} X_i <= U_i$$

Maksymalny czas pracy żadnej z maszyn nie może zostać przekroczony

$$\forall j \sum_{i} \sum_{i} X_i * M_{ij} \le 3600$$

$$\max \sum_{i} X_{i} * (price_{i} - cost_{i} - (\sum_{j} M_{ij} * machineCost_{j}/60))$$

Wyniki:

Produkt	Ilość
P1	125
P2	100
P3	150
P4	500

Całkowity zysk: 3632.5 \$