Assignment 1 – Cyclic Redundancy Check

Jorge Catarino (nº85028), Óscar Pimentel (nº80247) Grupo 1 (P4) - ACA

Encoder - Our Approach

- Approach discussed in class Properties of the Remainder:
 - □ 64 XOR gates needed;
 - □ 11 XOR propagation time delays in the worst case (r2);
- We took that basic solution and improved it by building a Parallel implementation:
 - we displayed the basic approach on a table and we found common groups of operations, therefore reducing the gate count;
 - we perform the operations in parallel, reducing the propagation time delays;

a8, a9
a6, a7
a2, a4
a3, a5
a0, a15
a10, a14
a11, a12
a1, a13
a1, a9

Encoder - Results

- Improved worst case propagation delay -> 4 XOR propagation time delays (r0, r1, r2, r5, r6 and r7);
- ☐ Improved gate count -> 35 XOR gates;

Checker - Our Approach

- Approach discussed in class Division Algorithm:
- ☐ When MSB is 0, shift left and bring the next bit down.
- ☐ When MSB is 1, XOR with divisor and shift left.
- ☐ With this algorithm, we can implement a bit-serial solution.

To implement this algorithm, we needed a shift register and a collection of modulo two adders (XOR). This module is called Linear Feedback Shift Register. With that we found two possible designs:

Checker - Results

References

- Culler, David. Lecture 26- LFSR, CRC's (and a little power). Fall 2004, https://www-inst.eecs.berkeley.edu/~cs150/archives.html. PowerPoint Presentation.
- W. W. Peterson and D. T. Brown, "Cyclic Codes for Error Detection," in Proceedings of the IRE, vol. 49, no. 1, pp. 228–235, Jan. 1961, doi: 10.1109/JRPROC.1961.287814.