14-BIT DAC WITH 85 dB S/N RATIO

GENERAL DESCRIPTION

The TDA1540 is a monolithic integrated 14-bit digital to analogue converter (DAC). It incorporates a 14-bit input shift register with output latches, binary weighted current sources with switches and a reference source.

The IC features an improved switch circuitry which eliminates the need for a deglitcher circuit at the output. This results in a signal-to-noise ratio of typical 85 dB in the audio band.

QUICK REFERENCE DATA

Supply voltages			-	
pin 4	V_{P1}	typ.	5	V
pin 7	v_{N1}	typ.	-5	V
pin 11	V _{N2}	typ.	-17	٧
Signal-to-noise ratio (full scale sine-wave) at analogue output (pin 22)	S/N	typ.	85	dB
Non-linearity at $T_{amb} = -20 \text{ to } + 70 ^{\circ}\text{C}$		typ.	½ LSB	
Current settling time	t _{cs}	typ.	0,5	μs
Maximum input bit rate at data input (pin 1)	BR _{max}	min.	12	Mbit/s
Maximum clock frequency at clock input (pin 28)	^f cl max	min.	12	MHz
Full scale temperature coefficient at analogue output (pin 22)	TC _{FS}	typ.	± 30 · 10 ⁻⁶	K-1
Operating ambient temperature range	T_{amb}	-20 to + 70		oC
Total power dissipation	P _{tot}	typ.	350	mW

PACKAGE OUTLINE

TDA1540P: 28-lead DII - plastic (SOT-117).

FUNCTIONAL DESCRIPTION

The binary weighted current sources are obtained by a combination of a passive divider and a time division concept. Figure 1a gives the diagram of one divider stage. The total emitter current 4 I of the passive divider is divided into four more or less equal output currents.

The output currents of the passive divider are now interchanged during equal time intervals generated by means of a shift register. The average output currents are exactly equal as a result of this operation. A ripple on the output current, caused by a mismatch of the passive divider, is filtered by an a.c. low-pass filter, requiring an external filter capacitor.

The outputs of the dividers are combined to obtain the output currents I (\bar{l}_1) , I (\bar{l}_2) and 2I (\bar{l}_3) (see Fig. 1b). The current of the most significant bit is generated by an on-chip reference source. A binary weighted current network is formed by cascading the current division stages (see Fig. 2).

The interchanging pulses are generated by an on-chip oscillator and a 4-bit shift register. The binary currents are switched to the current output (pin 22) via diode-transistor switching stages; therefore, the voltage on the output pin must be 0 V \pm 10 mV. The output current can be converted into a voltage by means of a summing amplifier.

Figure 3 represents the data input format, and an application circuit is given in Fig. 4.

Fig. 1a Circuit diagram of one divider stage.

Fig. 1b Waveforms showing output currents I₁, I₂ and I₃ of Fig. 1a.

Fig. 2 Functional diagram showing cascading of current division stages.

Fig. 3 Format of input signals.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltages

with respect to GND (pin 6)	V _{P1}	max. 12 V
at pin 4	• •	40. 14
at pin 7	v_{N1}	max. —12 V
at pin 11	v_{N2}	max. —20 V
at pin 4 with respect to pin 11	$V_{P1}-V_{N2}$	max. 32 V
at pin 7 with respect to pin 11	$v_{N1}-v_{N2}$	-1 to + 20 V
Total power dissipation	P_{tot}	max. 600 mW
Storage temperature range	T_{stg}	-55 to + 125 °C
Operating ambient temperature range	T_{amb}	$-25 \text{ to } + 80 \circ \text{C}$

CHARACTERISTICS (see application circuit Fig. 4)

T_{amb} = 25 °C; at typical supply voltages; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply voltages with respect to GND (pin 6)					
at pin 4	V _{P1}	3	5	7	V
at pin 7	V _{N1}	-4,7	- 5	-7	V
at pin 11	V _{N2}	-16,5	-17	-18	V
Supply currents		,			
at pin 4*	I _{P1}	_	12	14	mA
at pin 7	IN1	_	–20	-24	mA
at pin 11	I _{N2}		–11	-13	mA
Power dissipation					
Total power dissipation	P _{tot}	_	350	410	mW
Temperature					
Operating ambient temperature range	T _{amb}	-20	-	+ 70	oC

^{*} When the output current is % IFS (% full scale output current).

parameter	symbol	min.	typ.	max.	unit
Data input DATA (pin 1)				1	
Input voltage HIGH	VIH	2,0	i — .	7,0	V
Input voltage LOW	VIL	0	_	0,8	V
Input current HIGH at VIH	ЧН	_	_	50	μΑ
Input current LOW at VIL	-116	_	_	0,2	mA
Maximum input bit rate	BR _{max}	12	-	_	Mbits/s
Latch enable input LE (pin 2)			,		
Clock input CP (pin 28)					
Input voltage HIGH	V _{IH}	2,0	_	7,0	V
Input voltage LOW	VIL	0	_	0,8	V
Input current HIGH at VIH	ЧН	_	_	50	μΑ
Input current LOW at VIL	-116	_	_	0,2	mA
Maximum clock frequency	fCPmax	12	_	-	MHz
Oscillator (pins 8 and 9)					
Oscillator frequency					
at C ₈₋₉ = 820 pF	fosc	100	160	200	kHz
Analogue output lout (pin 22)					
Output voltage compliance	Voc	-10	_	+ 10	mV
Full scale current	IFS	3,8	4,0	4,2	mA
Zero scale current	± IZS	_	_	100	nA
Full scale temperature coefficient Tamb = -20 to + 70 °C	TCFS	_	± 30 × 10 ⁻⁶	_	K-1
Settling time to ± ½LSB all bits on or off	t _{cs}	_	0,5	_	μς
Signal-to-noise ratio*	S/N	80	85	_	dB

Fig. 4 Application circuit.

sources

voltage reference

voltage reference

clock pulse input

24

25

26

27

28

C9

C10

i.c.*

i.c.* CP

^{*} i.c.: internally connected.