LECTURE 5:

Parallel, Distributed, Mobile, Social Computing

FACULTY OF COMPUTING & INFORMATICS
MULTIMEDIA UNIVERSITY

von Neumann Architecture

- Common machine modelfor over 40 years
- Stored-program concept
- CPU executes a stored program
- A sequence of read and write operations on the memory (RAM)
- Order of operations is sequential

CISC von Neumann Computer

- CISC (Complex Instruction Set Computer)
 with a single bus system
- Harvard (RISC) architecture utilizes two buses
 separate data bus and address bus
- RISC (Reduced Instruction Set Computer)
- They are SISD machines
 - Single Instruction Stream Single Data Stream

Motivations for Parallel Computing

- Fundamental limits on single processor speed
- Disparity between CPU & memory speed
 - Performance Mismatch Problem
- Distributed data communications
- Need for very large scale computing platforms

Moore's Law

- Moore's observation in 1965:
 - number of transistors per square inch on integrated circuits had doubled every year
- Moor's revised observation in 1975:
 - the space slowed down a bit, but data density had doubled approximately every 18 months
- How about the future?
 - (price of computing power falls by a half every 18 months?)

CPU and Memory Speeds

- In 20 years, CPU speed (clock rate) has increased by a factor of 1000
- DRAM speed has increased only by a factor of smaller than 4
- How to feed data faster enough to keep CPU busy?
- CPU speed: 1-2 ns
- DRAM speed: 50-60 ns
- Cache: 10 ns

CPU, Memory, and Disk Speed

Why Use Parallel Computing

- Save time wall clock time many processors work together
- Solve larger problems larger than one processor's CPU and memory can handle
- Provide concurrency do multiple things at the same time: online access to databases, search engine
- Google's 4,000 PC servers are one of the largest in clusters the world

Other Reasons for Parallel Computing

- Taking advantages of non-local resources → using computing resources on a wide area network, or even internet (grid & cloud computing)
 - Remote Access Resources
- ullet Cost savings o using multiple "cheap" computing resources instead of a high-end CPU
- Overcoming memory constraints → for large problems, using memories of multiple computers may overcome the memory constraint obstacle

Types of Parallel Computing Models

- Data Parallel the same instructions are carried out simultaneously on multiple data items (SIMD)
- Task Parallel different instructions on different data (MIMD)
 - SPMD (single program, multiple data) not synchronized at individual operation level
 - SPMD is equivalent to MIMD since each MIMD program can be made SPMD (similarly for SIMD, but not in practical sense.)

Other Distributed Computing Platforms

- MapReduce/Hadoop
- Android

What Is hadoop?

- Distributed computing frame work
 - For clusters of computers
 - Thousands of Compute Nodes
 - Petabytes of data
- Open source, Java
- Google's MapReduce inspired Yahoos Hadoop.
- Now part of Apache group

What is Hadoop? Commodity Hardware

Typically in 2 level architecture:

- Nodes are commodity PCs
- 30-40 nodes/rack
- Uplink from rack is 3-4 gigabit
- Rack-internal is 1 gigabit

What is Hadoop?

The Apache Hadoop project develops open-source software for reliable, scalable, distributed computing. Hadoop includes:

- Hadoop Common utilities
- Avro: A data serialization system with scripting languages.
- Chukwa: managing large distributed systems.
- HBase: A scalable, distributed database for large tables.
- HDFS: A distributed file system.
- Hive: data summarization and ad hoc querying.
- MapReduce: distributed processing on compute clusters.
- Pig: A high-level data-flow language for parallel computation.
- ZooKeeper: coordination service for distributed applications.

Who uses Hadoop?

Amazon, Facebook, Google, IBM, Joost, Last.fm, New York Times, PowerSet, Veoh, Yahoo!

What is MapReduce used for?

- At Google:
 - Index construction for Google Search
 - Article clustering for Google News
 - Statistical machine translation
- at Yahoo!:
 - 1 "Web map" powering Yahoo! Search
 - Spam detection for Yahoo! Mail
- at Facebook:
 - data mining
 - Ad optimization
 - Spam detection

Social Computing: Social systems

- Social network: graph that represents relationships between independent agents.
- Social networks are everywhere and are shaping our lives:
 - Network of professional contacts (e.g., for finding jobs)
 - 2 Network of colleagues (e.g., for learning new techniques)
 - Web 2.0 systems:
 - Online social networks: facebook, myspace, orkut, IM, linkedIn, twitter,
 - Content sharing: flickr, del.icio.us, youtube, weblogs,
 - Content creation: wikipedia,