2 Manifolds with corners

2.1 <u>Definition:</u> A <u>quadrant</u> $Q \subseteq R^n$ is a subset of the form $Q = \{x \in R^n: l_1(x) \ge 0, \ldots, l_k(x) \ge 0\}$ where $\{l_1, \ldots, l_k\}$ is a linearly independent subset of $(R^n)^*$. Here $0 \le k \le n$ and k is called the <u>index</u> of Q.

If $x \in Q$ and exactly j of the l_i 's satisfy $l_i(x) = 0$, then x is called a <u>corner of index</u> j. The index of a corner depends only on x and Q and not on the special system $\{l_1, \ldots, l_k\}$ describing Q.

- 2.2 Let $U \subseteq Q$ be an open subset of a quadrant Q. A function f: $U \to \mathbb{R}^p$ is called C^r ($0 \le r \le \infty$) if all partial derivatives of f of order $\le r$ exist and are continuous on U. By the Whitney extension theorem (cf. H. WHITNEY (1936), J.C. TOUGERON (1972)) this is the case iff f can be extended to a C^r function $\widetilde{f} \colon \widetilde{U} \to \mathbb{R}^p$, where $\widetilde{U} \subseteq \mathbb{R}^n$ is open and $U = Q \cap \widetilde{U}$.
- 2.3 The border δQ of a quadrant Q is $\{x \in \mathbb{R}^n : l_1(x) = 0 \text{ or } l_2(x) = 0 \text{ or } ... \text{ or } l_k(x) = 0\}$; it is the disjoint union of finitely many (plane) submanifolds of \mathbb{R}^n , the faces, edges, corners etc. of Q. δQ is "stratified" by this set of submanifolds.

Let $U \subseteq Q$, $U' \subseteq Q'$ be open subsets of quadrants in \mathbb{R}^n . A mapping $f \colon U \to U'$ is a diffeomorphism iff f is bijective and locally of maximal rank. It follows that f maps corners of index f in f to corners of index f in f in f index f is of index f.