Introduction to stochastic optimization

Anton Rodomanov Research Fellow at Samsung-HSE Laboratory

> 28 August 2018 DeepBayes summer school

Part 1: General stochastic optimization

Stochastic optimization

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where f is a differentiable function.

Main assumption: cannot compute f(x), $\nabla f(x)$ etc. exactly, but we have a stochastic oracle.

Stochastic oracle (SO):

Stochastic optimization

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where f is a differentiable function.

Main assumption: cannot compute f(x), $\nabla f(x)$ etc. exactly, but we have a stochastic oracle.

Stochastic oracle (SO): Given $x \in \mathbb{R}^n$, it returns a stochastic gradient (SG) g(x):

▶ g(x) is a <u>random</u> vector in \mathbb{R}^n such that $\mathbb{E}g(x) = \nabla f(x)$ (plus some assumptions on the fluctuations).

Goal:

Stochastic optimization

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where f is a differentiable function.

Main assumption: cannot compute f(x), $\nabla f(x)$ etc. exactly, but we have a stochastic oracle.

Stochastic oracle (SO): Given $x \in \mathbb{R}^n$, it returns a stochastic gradient (SG) g(x):

▶ g(x) is a <u>random</u> vector in \mathbb{R}^n such that $\mathbb{E}g(x) = \nabla f(x)$ (plus some assumptions on the fluctuations).

Goal: A method for solving the problem given the SO.

Let ξ be a random variable supported on $\Omega \subseteq \mathbb{R}^d$ and distributed according to a probability measure P. For each $\omega \in \Omega$, let $f_\omega : \mathbb{R}^n \to \mathbb{R}$ be a simple differentiable function, and let

$$f(x) := \mathbb{E} f_{\xi}(x) = \int_{\Omega} f_{\omega}(x) dP(\omega).$$

Let ξ be a random variable supported on $\Omega \subseteq \mathbb{R}^d$ and distributed according to a probability measure P. For each $\omega \in \Omega$, let $f_\omega : \mathbb{R}^n \to \mathbb{R}$ be a simple differentiable function, and let

$$f(x) := \mathbb{E} f_{\xi}(x) = \int_{\Omega} f_{\omega}(x) dP(\omega).$$

Main problems:

1. The distribution P may be unknown (machine learning).

Let ξ be a random variable supported on $\Omega \subseteq \mathbb{R}^d$ and distributed according to a probability measure P. For each $\omega \in \Omega$, let $f_\omega : \mathbb{R}^n \to \mathbb{R}$ be a <u>simple</u> differentiable function, and let

$$f(x) := \mathbb{E} f_{\xi}(x) = \int_{\Omega} f_{\omega}(x) dP(\omega).$$

Main problems:

- 1. The distribution P may be unknown (machine learning).
- 2. Even if P is known, to find a ε -approximation of f(x), one needs $O(\varepsilon^{-d})$ computations of $f_{\omega}(x)$.

Let ξ be a random variable supported on $\Omega \subseteq \mathbb{R}^d$ and distributed according to a probability measure P. For each $\omega \in \Omega$, let $f_\omega : \mathbb{R}^n \to \mathbb{R}$ be a <u>simple</u> differentiable function, and let

$$f(x) := \mathbb{E} f_{\xi}(x) = \int_{\Omega} f_{\omega}(x) dP(\omega).$$

Main problems:

- 1. The distribution P may be unknown (machine learning).
- 2. Even if P is known, to find a ε -approximation of f(x), one needs $O(\varepsilon^{-d})$ computations of $f_{\omega}(x)$.

Under mild assumptions, $\nabla f(x) = \mathbb{E} \nabla f_{\xi}(x) = \int_{\Omega} \nabla f_{\omega}(x) dP(\omega)$.

Let ξ be a random variable supported on $\Omega \subseteq \mathbb{R}^d$ and distributed according to a probability measure P. For each $\omega \in \Omega$, let $f_\omega : \mathbb{R}^n \to \mathbb{R}$ be a simple differentiable function, and let

$$f(x) := \mathbb{E} f_{\xi}(x) = \int_{\Omega} f_{\omega}(x) dP(\omega).$$

Main problems:

- 1. The distribution P may be unknown (machine learning).
- 2. Even if P is known, to find a ε -approximation of f(x), one needs $O(\varepsilon^{-d})$ computations of $f_{\omega}(x)$.

Under mild assumptions, $\nabla f(x) = \mathbb{E} \nabla f_{\xi}(x) = \int_{\Omega} \nabla f_{\omega}(x) dP(\omega)$.

Main assumption: It is possible to sample from P efficiently.

Let ξ be a random variable supported on $\Omega \subseteq \mathbb{R}^d$ and distributed according to a probability measure P. For each $\omega \in \Omega$, let $f_\omega : \mathbb{R}^n \to \mathbb{R}$ be a <u>simple</u> differentiable function, and let

$$f(x) := \mathbb{E} f_{\xi}(x) = \int_{\Omega} f_{\omega}(x) dP(\omega).$$

Main problems:

- 1. The distribution P may be unknown (machine learning).
- 2. Even if P is known, to find a ε -approximation of f(x), one needs $O(\varepsilon^{-d})$ computations of $f_{\omega}(x)$.

Under mild assumptions, $\nabla f(x) = \mathbb{E} \nabla f_{\xi}(x) = \int_{\Omega} \nabla f_{\omega}(x) dP(\omega)$.

Main assumption: It is possible to sample from P efficiently.

SO: Given $x \in \mathbb{R}^n$, generate $\xi \sim P$ and return $g(x) := \nabla f_{\xi}(x)$.

Example 2: Finite sums

Let $f_1,\ldots,f_m:\mathbb{R}^n o\mathbb{R}$ be <u>simple</u> differentiable functions, and let $f(x):=rac{1}{m}\sum_{i=1}^m f_i(x).$

Applications: Machine learning with a finite data set.

Example 2: Finite sums

Let $f_1,\ldots,f_m:\mathbb{R}^n o \mathbb{R}$ be simple differentiable functions, and let

$$f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x).$$

Applications: Machine learning with a finite data set.

Main problem: To compute f(x) or $\nabla f(x)$, we need O(m) operations.

Example 2: Finite sums

Let $f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ be simple differentiable functions, and let

$$f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x).$$

Applications: Machine learning with a finite data set.

Main problem: To compute f(x) or $\nabla f(x)$, we need O(m) operations.

SO: Given $x \in \mathbb{R}^n$, generate $i_0 \sim \mathsf{Unif}\{1,\ldots,m\}$, and return $g(x) := \nabla f_{i_0}(x)$.

Complexity: O(1), not depending on m.

Problem: $f^* := \min_{x \in \mathbb{R}^n} f(x)$, where f is given by an SO.

Goal: Given $\varepsilon > 0$, find a random $\bar{x} \in \mathbb{R}^n$:

$$ightharpoonup \mathbb{E} f(\bar{x}) - f^* \leq \varepsilon$$

Problem: $f^* := \min_{x \in \mathbb{R}^n} f(x)$, where f is given by an SO.

Goal: Given $\varepsilon > 0$, find a random $\bar{x} \in \mathbb{R}^n$:

▶ $\mathbb{E}f(\bar{x}) - f^* \le \varepsilon$ (convex optimization).

Problem: $f^* := \min_{x \in \mathbb{R}^n} f(x)$, where f is given by an SO.

Goal: Given $\varepsilon > 0$, find a random $\bar{x} \in \mathbb{R}^n$:

- ▶ $\mathbb{E}f(\bar{x}) f^* \le \varepsilon$ (convex optimization).
- ▶ $\mathbb{E}\|\nabla f(\bar{x})\|^2 \le \varepsilon$ (non-convex optimization).

Complexity measure:

Problem: $f^* := \min_{x \in \mathbb{R}^n} f(x)$, where f is given by an SO.

Goal: Given $\varepsilon > 0$, find a random $\bar{x} \in \mathbb{R}^n$:

- ▶ $\mathbb{E}f(\bar{x}) f^* \le \varepsilon$ (convex optimization).
- ▶ $\mathbb{E}\|\nabla f(\bar{x})\|^2 \le \varepsilon$ (non-convex optimization).

Complexity measure: Number of calls to the SO.

Problem: $f^* := \min_{x \in \mathbb{R}^n} f(x)$, where f is given by an SO.

Goal: Given $\varepsilon > 0$, find a random $\bar{x} \in \mathbb{R}^n$:

- ▶ $\mathbb{E}f(\bar{x}) f^* \le \varepsilon$ (convex optimization).
- ▶ $\mathbb{E}\|\nabla f(\bar{x})\|^2 \le \varepsilon$ (non-convex optimization).

Complexity measure: Number of calls to the SO.

Main result: $O(\varepsilon^{-2})$ complexity.

Problem: $f^* := \min_{x \in \mathbb{R}^n} f(x)$, where f is given by an SO.

Goal: Given $\varepsilon > 0$, find a random $\bar{x} \in \mathbb{R}^n$:

- ▶ $\mathbb{E}f(\bar{x}) f^* \le \varepsilon$ (convex optimization).
- ▶ $\mathbb{E}\|\nabla f(\bar{x})\|^2 \le \varepsilon$ (non-convex optimization).

Complexity measure: Number of calls to the SO.

Main result: $O(\varepsilon^{-2})$ complexity.

NB: We may approximately minimize f without even computing f(x).

Problem: $f^* := \min_{x \in \mathbb{R}^n} f(x)$, where f is given by an SO.

Goal: Given $\varepsilon > 0$, find a random $\bar{x} \in \mathbb{R}^n$:

- ▶ $\mathbb{E}f(\bar{x}) f^* \le \varepsilon$ (convex optimization).
- ▶ $\mathbb{E}\|\nabla f(\bar{x})\|^2 \le \varepsilon$ (non-convex optimization).

Complexity measure: Number of calls to the SO.

Main result: $O(\varepsilon^{-2})$ complexity.

NB: We may approximately minimize f without even computing f(x).

NB 2: $O(\varepsilon^{-2})$ is the complexity of Monte-Carlo ε -approximation of f(x) for a single x. The above $O(\varepsilon^{-2})$ is the complexity of the whole optimization process!

Remark: Same results with high probability under some regularity assumptions.

Problem: $f^* := \min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex</u>.

Problem: $f^* := \min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex</u>.

NB: f may be non-smooth, so instead of gradients we work with subgradients.

Problem: $f^* := \min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex</u>.

NB: f may be non-smooth, so instead of gradients we work with subgradients.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

Problem: $f^* := \min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex</u>.

NB: f may be non-smooth, so instead of gradients we work with subgradients.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

1. Generate a stochastic subgradient g_k of f at x_k .

Problem: $f^* := \min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex</u>.

NB: f may be non-smooth, so instead of gradients we work with subgradients.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic subgradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output:

Problem: $f^* := \min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex</u>.

NB: f may be non-smooth, so instead of gradients we work with subgradients.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic subgradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output: $\bar{x}_T := \frac{1}{T} \sum_{k=0}^{T-1} x_k$.

Main objects responsible for convergence rate:

Problem: $f^* := \min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex</u>.

NB: f may be non-smooth, so instead of gradients we work with subgradients.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic subgradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output: $\bar{x}_T := \frac{1}{T} \sum_{k=0}^{T-1} x_k$.

Main objects responsible for convergence rate:

▶ Magnitude of SG: $\mathbb{E}||g_k||^2 \le M^2$ for all $k \ge 0$.

Problem: $f^* := \min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex</u>.

NB: f may be non-smooth, so instead of gradients we work with subgradients.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic subgradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output: $\bar{x}_T := \frac{1}{T} \sum_{k=0}^{T-1} x_k$.

Main objects responsible for convergence rate:

- ▶ Magnitude of SG: $\mathbb{E}||g_k||^2 \le M^2$ for all $k \ge 0$.
- ▶ Distance from x_0 to optimum x^* : $D^2 := \mathbb{E}||x_0 x^*||^2$.

Theorem:

Problem: $f^* := \min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex</u>.

NB: f may be non-smooth, so instead of gradients we work with subgradients.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic subgradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output: $\bar{x}_T := \frac{1}{T} \sum_{k=0}^{T-1} x_k$.

Main objects responsible for convergence rate:

- ▶ Magnitude of SG: $\mathbb{E}||g_k||^2 \le M^2$ for all $k \ge 0$.
- ▶ Distance from x_0 to optimum x^* : $D^2 := \mathbb{E}||x_0 x^*||^2$.

Theorem: For $\alpha := \frac{D}{M\sqrt{T}}$, we have $\mathbb{E}f(\bar{x}_T) - f^* \leq \frac{MD}{\sqrt{T}}$.

Complexity:

Problem: $f^* := \min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex</u>.

NB: f may be non-smooth, so instead of gradients we work with subgradients.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic subgradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output: $\bar{x}_T := \frac{1}{T} \sum_{k=0}^{T-1} x_k$.

Main objects responsible for convergence rate:

- ▶ Magnitude of SG: $\mathbb{E}||g_k||^2 \le M^2$ for all $k \ge 0$.
- ▶ Distance from x_0 to optimum x^* : $D^2 := \mathbb{E}||x_0 x^*||^2$.

Theorem: For $\alpha := \frac{D}{M\sqrt{T}}$, we have $\mathbb{E}f(\bar{x}_T) - f^* \leq \frac{MD}{\sqrt{T}}$.

Complexity: $O(\varepsilon^{-2})$.

Let $\phi_1, \ldots, \phi_m : \mathbb{R} \to \mathbb{R}$ be convex functions, $a_1, \ldots, a_m \in \mathbb{R}^n$, and let $f(x) := \frac{1}{m} \sum_{i=1}^m \phi_i(\langle a_i, x \rangle).$

Let $\phi_1, \ldots, \phi_m : \mathbb{R} \to \mathbb{R}$ be convex functions, $a_1, \ldots, a_m \in \mathbb{R}^n$, and let

$$f(x) := \frac{1}{m} \sum_{i=1}^{m} \phi_i(\langle a_i, x \rangle).$$

SO: Given $x \in \mathbb{R}^n$, generate $i_0 \sim \mathsf{Unif}\{1,\ldots,m\}$ and return $g(x) := \phi'_{i_0}(\langle a_{i_0},x\rangle)a_{i_0}$.

Magnitude of data:

Let $\phi_1, \ldots, \phi_m : \mathbb{R} \to \mathbb{R}$ be convex functions, $a_1, \ldots, a_m \in \mathbb{R}^n$, and let

$$f(x) := \frac{1}{m} \sum_{i=1}^{m} \phi_i(\langle a_i, x \rangle).$$

SO: Given $x \in \mathbb{R}^n$, generate $i_0 \sim \mathsf{Unif}\{1,\ldots,m\}$ and return $g(x) := \phi'_{i_0}(\langle a_{i_0},x\rangle)a_{i_0}$.

Magnitude of data: $B := \max_{1 \le i \le m} ||a_i||$.

Let $\phi_1, \ldots, \phi_m : \mathbb{R} \to \mathbb{R}$ be convex functions, $a_1, \ldots, a_m \in \mathbb{R}^n$, and let

$$f(x) := \frac{1}{m} \sum_{i=1}^{m} \phi_i(\langle a_i, x \rangle).$$

SO: Given $x \in \mathbb{R}^n$, generate $i_0 \sim \mathsf{Unif}\{1,\ldots,m\}$ and return $g(x) := \phi'_{i_0}(\langle a_{i_0},x \rangle)a_{i_0}$.

Magnitude of data: $B := \max_{1 \le i \le m} ||a_i||$.

NB: If $|\phi_i'(t)| \leq G$ for all $t \in \mathbb{R}$, $1 \leq i \leq m$, then $\mathbb{E} ||g(x)||^2 \leq G^2 B^2$. Hence, M = GB.

Let $\phi_1, \ldots, \phi_m : \mathbb{R} \to \mathbb{R}$ be convex functions, $a_1, \ldots, a_m \in \mathbb{R}^n$, and let

$$f(x) := \frac{1}{m} \sum_{i=1}^{m} \phi_i(\langle a_i, x \rangle).$$

SO: Given $x \in \mathbb{R}^n$, generate $i_0 \sim \mathsf{Unif}\{1,\ldots,m\}$ and return $g(x) := \phi'_{i_0}(\langle a_{i_0},x\rangle)a_{i_0}$.

Magnitude of data: $B := \max_{1 \le i \le m} ||a_i||$.

NB: If $|\phi_i'(t)| \leq G$ for all $t \in \mathbb{R}$, $1 \leq i \leq m$, then $\mathbb{E} ||g(x)||^2 \leq G^2 B^2$. Hence, M = GB.

1. (Robust regression) $\phi(t) := |t|$.

Let $\phi_1, \ldots, \phi_m : \mathbb{R} \to \mathbb{R}$ be convex functions, $a_1, \ldots, a_m \in \mathbb{R}^n$, and let

$$f(x) := \frac{1}{m} \sum_{i=1}^{m} \phi_i(\langle a_i, x \rangle).$$

SO: Given $x \in \mathbb{R}^n$, generate $i_0 \sim \mathsf{Unif}\{1,\ldots,m\}$ and return $g(x) := \phi'_{i_0}(\langle a_{i_0},x\rangle)a_{i_0}$.

Magnitude of data: $B := \max_{1 \le i \le m} ||a_i||$.

NB: If $|\phi_i'(t)| \leq G$ for all $t \in \mathbb{R}$, $1 \leq i \leq m$, then $\mathbb{E} ||g(x)||^2 \leq G^2 B^2$. Hence, M = GB.

1. (Robust regression) $\phi(t) := |t|$. In this case $\phi'(t) = \text{sign}(t)$, and G = 1.

Let $\phi_1, \ldots, \phi_m : \mathbb{R} \to \mathbb{R}$ be convex functions, $a_1, \ldots, a_m \in \mathbb{R}^n$, and let

$$f(x) := \frac{1}{m} \sum_{i=1}^{m} \phi_i(\langle a_i, x \rangle).$$

SO: Given $x \in \mathbb{R}^n$, generate $i_0 \sim \mathsf{Unif}\{1,\ldots,m\}$ and return $g(x) := \phi'_{i_0}(\langle a_{i_0},x\rangle)a_{i_0}$.

Magnitude of data: $B := \max_{1 \le i \le m} ||a_i||$.

NB: If $|\phi_i'(t)| \leq G$ for all $t \in \mathbb{R}$, $1 \leq i \leq m$, then $\mathbb{E} ||g(x)||^2 \leq G^2 B^2$. Hence, M = GB.

- 1. (Robust regression) $\phi(t) := |t|$. In this case $\phi'(t) = \text{sign}(t)$, and G = 1.
- 2. (Logistic regression) $\phi(t) := \ln(1 + e^t)$.

Let $\phi_1, \ldots, \phi_m : \mathbb{R} \to \mathbb{R}$ be convex functions, $a_1, \ldots, a_m \in \mathbb{R}^n$, and let

$$f(x) := \frac{1}{m} \sum_{i=1}^{m} \phi_i(\langle a_i, x \rangle).$$

SO: Given $x \in \mathbb{R}^n$, generate $i_0 \sim \text{Unif}\{1,\ldots,m\}$ and return $g(x) := \phi'_{i_0}(\langle a_{i_0},x\rangle)a_{i_0}$.

Magnitude of data: $B := \max_{1 \le i \le m} ||a_i||$.

NB: If $|\phi_i'(t)| \leq G$ for all $t \in \mathbb{R}$, $1 \leq i \leq m$, then $\mathbb{E} \|g(x)\|^2 \leq G^2 B^2$. Hence, M = GB.

- 1. (Robust regression) $\phi(t) := |t|$. In this case $\phi'(t) = \text{sign}(t)$, and G = 1.
- 2. (Logistic regression) $\phi(t) := \ln(1 + e^t)$. Here $\phi'(t) = \frac{e^t}{1 + e^t}$, hence G = 1.

Let $\phi_1, \ldots, \phi_m : \mathbb{R} \to \mathbb{R}$ be convex functions, $a_1, \ldots, a_m \in \mathbb{R}^n$, and let

$$f(x) := \frac{1}{m} \sum_{i=1}^{m} \phi_i(\langle a_i, x \rangle).$$

SO: Given $x \in \mathbb{R}^n$, generate $i_0 \sim \text{Unif}\{1,\ldots,m\}$ and return $g(x) := \phi'_{i_0}(\langle a_{i_0},x\rangle)a_{i_0}$.

Magnitude of data: $B := \max_{1 \le i \le m} ||a_i||$.

NB: If $|\phi_i'(t)| \leq G$ for all $t \in \mathbb{R}$, $1 \leq i \leq m$, then $\mathbb{E} ||g(x)||^2 \leq G^2 B^2$. Hence, M = GB.

- 1. (Robust regression) $\phi(t) := |t|$. In this case $\phi'(t) = \text{sign}(t)$, and G = 1.
- 2. (Logistic regression) $\phi(t) := \ln(1 + e^t)$. Here $\phi'(t) = \frac{e^t}{1 + e^t}$, hence G = 1.
- 3. (SVM) $\phi(t) := \max\{0, 1-t\}$.

Let $\phi_1, \ldots, \phi_m : \mathbb{R} \to \mathbb{R}$ be convex functions, $a_1, \ldots, a_m \in \mathbb{R}^n$, and let

$$f(x) := \frac{1}{m} \sum_{i=1}^{m} \phi_i(\langle a_i, x \rangle).$$

SO: Given $x \in \mathbb{R}^n$, generate $i_0 \sim \text{Unif}\{1,\ldots,m\}$ and return $g(x) := \phi'_{i_0}(\langle a_{i_0},x\rangle)a_{i_0}$.

Magnitude of data: $B := \max_{1 \le i \le m} ||a_i||$.

NB: If $|\phi_i'(t)| \leq G$ for all $t \in \mathbb{R}$, $1 \leq i \leq m$, then $\mathbb{E} \|g(x)\|^2 \leq G^2 B^2$. Hence, M = GB.

- 1. (Robust regression) $\phi(t) := |t|$. In this case $\phi'(t) = \text{sign}(t)$, and G = 1.
- 2. (Logistic regression) $\phi(t) := \ln(1 + e^t)$. Here $\phi'(t) = \frac{e^t}{1 + e^t}$, hence G = 1.

3. (SVM)
$$\phi(t) := \max\{0, 1-t\}$$
. Here $\phi'(t) = \begin{cases} -1 & \text{if } t \leq 1 \\ 0 & \text{if } t > 1 \end{cases}$. Thus, $G = 1$.

Main result: $\frac{1}{T} \sum_{k=0}^{T-1} (\mathbb{E}f(x_k) - f^*) + \frac{\mathbb{E}\|x_T - x^*\|^2}{2\alpha T} \le \frac{\mathbb{E}\|x_0 - x^*\|^2}{2\alpha T} + \frac{\alpha}{2T} \sum_{k=0}^{T-1} \mathbb{E}\|g_k\|^2$. Proof:

$$\mathbb{E}||x_{k+1}-x^*||^2=$$

Main result: $\frac{1}{T} \sum_{k=0}^{T-1} (\mathbb{E}f(x_k) - f^*) + \frac{\mathbb{E}\|x_T - x^*\|^2}{2\alpha T} \le \frac{\mathbb{E}\|x_0 - x^*\|^2}{2\alpha T} + \frac{\alpha}{2T} \sum_{k=0}^{T-1} \mathbb{E}\|g_k\|^2$. Proof:

$$\mathbb{E}||x_{k+1} - x^*||^2 = \mathbb{E}||x_k - x^* - \alpha g_k||^2 =$$

Main result: $\frac{1}{T} \sum_{k=0}^{T-1} (\mathbb{E}f(x_k) - f^*) + \frac{\mathbb{E}\|x_T - x^*\|^2}{2\alpha T} \le \frac{\mathbb{E}\|x_0 - x^*\|^2}{2\alpha T} + \frac{\alpha}{2T} \sum_{k=0}^{T-1} \mathbb{E}\|g_k\|^2$. Proof:

Proof:

$$\mathbb{E}||x_{k+1} - x^*||^2 = \mathbb{E}||x_k - x^* - \alpha g_k||^2 = \mathbb{E}(||x_k - x^*||^2 - 2\alpha \langle g_k, x_k - x^* \rangle + \alpha^2 ||g_k||^2)$$
=

Main result:
$$\frac{1}{T} \sum_{k=0}^{T-1} (\mathbb{E}f(x_k) - f^*) + \frac{\mathbb{E}\|x_T - x^*\|^2}{2\alpha T} \le \frac{\mathbb{E}\|x_0 - x^*\|^2}{2\alpha T} + \frac{\alpha}{2T} \sum_{k=0}^{T-1} \mathbb{E}\|g_k\|^2.$$
Proof:
$$\mathbb{E}\|x_{k+1} - x^*\|^2 = \mathbb{E}\|x_k - x^* - \alpha g_k\|^2 = \mathbb{E}(\|x_k - x^*\|^2 - 2\alpha \langle g_k, x_k - x^* \rangle + \alpha^2 \|g_k\|^2)$$

$$= \mathbb{E}\|x_k - x^*\|^2 - 2\alpha \mathbb{E}\langle \nabla f(x_k), x_k - x^* \rangle + \alpha^2 \mathbb{E}\|g_k\|^2$$

$$<$$

$$\begin{aligned} \text{Main result:} \ \ &\frac{1}{T} \sum_{k=0}^{T-1} (\mathbb{E} f(x_k) - f^*) + \frac{\mathbb{E} \|x_T - x^*\|^2}{2\alpha T} \leq \frac{\mathbb{E} \|x_0 - x^*\|^2}{2\alpha T} + \frac{\alpha}{2T} \sum_{k=0}^{T-1} \mathbb{E} \|g_k\|^2. \\ \text{Proof:} \ &\mathbb{E} \|x_{k+1} - x^*\|^2 = \mathbb{E} \|x_k - x^* - \alpha g_k\|^2 = \mathbb{E} (\|x_k - x^*\|^2 - 2\alpha \langle g_k, x_k - x^* \rangle + \alpha^2 \|g_k\|^2) \\ &= \mathbb{E} \|x_k - x^*\|^2 - 2\alpha \mathbb{E} \langle \nabla f(x_k), x_k - x^* \rangle + \alpha^2 \mathbb{E} \|g_k\|^2 \\ &\leq \mathbb{E} \|x_k - x^*\|^2 - 2\alpha (\mathbb{E} f(x_k) - f^*) + \alpha^2 \mathbb{E} \|g_k\|^2. \end{aligned}$$

Main result:
$$\frac{1}{T} \sum_{k=0}^{T-1} (\mathbb{E}f(x_k) - f^*) + \frac{\mathbb{E}\|x_T - x^*\|^2}{2\alpha T} \le \frac{\mathbb{E}\|x_0 - x^*\|^2}{2\alpha T} + \frac{\alpha}{2T} \sum_{k=0}^{T-1} \mathbb{E}\|g_k\|^2$$
. Proof:

$$\mathbb{E}||x_{k+1} - x^*||^2 = \mathbb{E}||x_k - x^* - \alpha g_k||^2 = \mathbb{E}(||x_k - x^*||^2 - 2\alpha \langle g_k, x_k - x^* \rangle + \alpha^2 ||g_k||^2)$$

$$= \mathbb{E}||x_k - x^*||^2 - 2\alpha \mathbb{E}\langle \nabla f(x_k), x_k - x^* \rangle + \alpha^2 \mathbb{E}||g_k||^2$$

$$\leq \mathbb{E}||x_k - x^*||^2 - 2\alpha (\mathbb{E}f(x_k) - f^*) + \alpha^2 \mathbb{E}||g_k||^2.$$

Hence,

$$\sum_{k=0}^{T-1} (\mathbb{E}f(x_k) - f^*) \le \frac{\sum_{k=0}^{T-1} (\mathbb{E}\|x_k - x^*\|^2 - \mathbb{E}\|x_{k+1} - x^*\|^2)}{2\alpha} + \frac{\alpha}{2} \sum_{k=0}^{T-1} \mathbb{E}\|g_k\|^2$$

9/25

Main result:
$$\frac{1}{T} \sum_{k=0}^{T-1} (\mathbb{E}f(x_k) - f^*) + \frac{\mathbb{E}\|x_T - x^*\|^2}{2\alpha T} \le \frac{\mathbb{E}\|x_0 - x^*\|^2}{2\alpha T} + \frac{\alpha}{2T} \sum_{k=0}^{T-1} \mathbb{E}\|g_k\|^2$$
. Proof:

$$\mathbb{E}||x_{k+1} - x^*||^2 = \mathbb{E}||x_k - x^* - \alpha g_k||^2 = \mathbb{E}(||x_k - x^*||^2 - 2\alpha \langle g_k, x_k - x^* \rangle + \alpha^2 ||g_k||^2)$$

$$= \mathbb{E}||x_k - x^*||^2 - 2\alpha \mathbb{E}\langle \nabla f(x_k), x_k - x^* \rangle + \alpha^2 \mathbb{E}||g_k||^2$$

$$\leq \mathbb{E}||x_k - x^*||^2 - 2\alpha (\mathbb{E}f(x_k) - f^*) + \alpha^2 \mathbb{E}||g_k||^2.$$

Hence,

$$\sum_{k=0}^{T-1} (\mathbb{E}f(x_k) - f^*) \leq \frac{\sum_{k=0}^{T-1} (\mathbb{E}\|x_k - x^*\|^2 - \mathbb{E}\|x_{k+1} - x^*\|^2)}{2\alpha} + \frac{\alpha}{2} \sum_{k=0}^{T-1} \mathbb{E}\|g_k\|^2 \\
= \frac{1}{2\alpha} (\mathbb{E}\|x_0 - x^*\|^2 - \mathbb{E}\|x_T - x^*\|^2) + \frac{\alpha}{2} \sum_{k=0}^{T-1} \mathbb{E}\|g_k\|^2. \quad \Box$$

Main result: $\frac{1}{T} \sum_{k=0}^{T-1} (\mathbb{E}f(x_k) - f^*) + \frac{\mathbb{E}\|x_T - x^*\|^2}{2\alpha T} \le \frac{\mathbb{E}\|x_0 - x^*\|^2}{2\alpha T} + \frac{\alpha}{2T} \sum_{k=0}^{T-1} \mathbb{E}\|g_k\|^2$. Proof:

$$\mathbb{E}||x_{k+1} - x^*||^2 = \mathbb{E}||x_k - x^* - \alpha g_k||^2 = \mathbb{E}(||x_k - x^*||^2 - 2\alpha \langle g_k, x_k - x^* \rangle + \alpha^2 ||g_k||^2)$$

$$= \mathbb{E}||x_k - x^*||^2 - 2\alpha \mathbb{E}\langle \nabla f(x_k), x_k - x^* \rangle + \alpha^2 \mathbb{E}||g_k||^2$$

$$< \mathbb{E}||x_k - x^*||^2 - 2\alpha (\mathbb{E}f(x_k) - f^*) + \alpha^2 \mathbb{E}||g_k||^2.$$

Hence,

$$\sum_{k=0}^{T-1} (\mathbb{E}f(x_k) - f^*) \le \frac{\sum_{k=0}^{T-1} (\mathbb{E}\|x_k - x^*\|^2 - \mathbb{E}\|x_{k+1} - x^*\|^2)}{2\alpha} + \frac{\alpha}{2} \sum_{k=0}^{T-1} \mathbb{E}\|g_k\|^2$$

$$= \frac{1}{2\alpha} (\mathbb{E}\|x_0 - x^*\|^2 - \mathbb{E}\|x_T - x^*\|^2) + \frac{\alpha}{2} \sum_{k=0}^{T-1} \mathbb{E}\|g_k\|^2. \quad \Box$$

From the main result, using $\alpha = \frac{D}{M\sqrt{T}}$, we obtain

$$\mathbb{E}f(\bar{x}_T) - f^* \leq \frac{1}{T} \sum_{k=0}^{T-1} (\mathbb{E}f(x_k) - f^*) \leq \underbrace{\frac{D^2}{2\alpha T}}_{\text{poise}} + \underbrace{\frac{\alpha M^2}{2}}_{\text{poise}} =$$

Main result: $\frac{1}{T} \sum_{k=0}^{T-1} (\mathbb{E}f(x_k) - f^*) + \frac{\mathbb{E}\|x_T - x^*\|^2}{2\alpha T} \le \frac{\mathbb{E}\|x_0 - x^*\|^2}{2\alpha T} + \frac{\alpha}{2T} \sum_{k=0}^{T-1} \mathbb{E}\|g_k\|^2$. Proof:

$$\mathbb{E}||x_{k+1} - x^*||^2 = \mathbb{E}||x_k - x^* - \alpha g_k||^2 = \mathbb{E}(||x_k - x^*||^2 - 2\alpha \langle g_k, x_k - x^* \rangle + \alpha^2 ||g_k||^2)$$

$$= \mathbb{E}||x_k - x^*||^2 - 2\alpha \mathbb{E}\langle \nabla f(x_k), x_k - x^* \rangle + \alpha^2 \mathbb{E}||g_k||^2$$

$$< \mathbb{E}||x_k - x^*||^2 - 2\alpha (\mathbb{E}f(x_k) - f^*) + \alpha^2 \mathbb{E}||g_k||^2.$$

Hence,

$$\sum_{k=0}^{T-1} (\mathbb{E}f(x_k) - f^*) \le \frac{\sum_{k=0}^{T-1} (\mathbb{E}\|x_k - x^*\|^2 - \mathbb{E}\|x_{k+1} - x^*\|^2)}{2\alpha} + \frac{\alpha}{2} \sum_{k=0}^{T-1} \mathbb{E}\|g_k\|^2$$

$$= \frac{1}{2\alpha} (\mathbb{E}\|x_0 - x^*\|^2 - \mathbb{E}\|x_T - x^*\|^2) + \frac{\alpha}{2} \sum_{k=0}^{T-1} \mathbb{E}\|g_k\|^2. \quad \Box$$

From the main result, using $\alpha = \frac{D}{M\sqrt{T}}$, we obtain

$$\mathbb{E}f(\bar{x}_T)-f^*\leq \frac{1}{T}\sum_{k=0}^{T-1}(\mathbb{E}f(x_k)-f^*)\leq \underbrace{\frac{D^2}{2\alpha T}}_{2}+\underbrace{\frac{\alpha M^2}{2}}_{2}=\frac{MD}{\sqrt{T}}.\quad \Box$$

Def: A differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is called <u>L-smooth</u> if $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$ for all $x, y \in \mathbb{R}^n$.

Def: A differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is called <u>L-smooth</u> if $f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$ for all $x, y \in \mathbb{R}^n$.

Sufficient condition: $\nabla^2 f(x) \leq LI$ for all $x \in \mathbb{R}^n$.

Example (ERM):

Def: A differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is called <u>L-smooth</u> if $f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$ for all $x, y \in \mathbb{R}^n$.

Sufficient condition: $\nabla^2 f(x) \leq LI$ for all $x \in \mathbb{R}^n$.

Example (ERM): Let $f(x) := \phi(\langle a, x \rangle)$, where $\phi : \mathbb{R} \to \mathbb{R}$, $a \in \mathbb{R}^n$.

Def: A differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is called <u>L-smooth</u> if $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$ for all $x, y \in \mathbb{R}^n$.

Sufficient condition: $\nabla^2 f(x) \leq LI$ for all $x \in \mathbb{R}^n$.

Example (ERM): Let
$$f(x) := \phi(\langle a, x \rangle)$$
, where $\phi : \mathbb{R} \to \mathbb{R}$, $a \in \mathbb{R}^n$. Then $\nabla^2 f(x) = \phi''(\langle a, x \rangle) a a^T \preceq$

Def: A differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is called <u>L-smooth</u> if $f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$ for all $x, y \in \mathbb{R}^n$.

Sufficient condition: $\nabla^2 f(x) \leq LI$ for all $x \in \mathbb{R}^n$.

Example (ERM): Let $f(x) := \phi(\langle a, x \rangle)$, where $\phi : \mathbb{R} \to \mathbb{R}$, $a \in \mathbb{R}^n$. Then $\nabla^2 f(x) = \phi''(\langle a, x \rangle) a a^T \preceq H B^2 I$, where $H := \sup_{t \in \mathbb{R}} \phi''(t)$, $B := \|a\|$. Hence, $L = H B^2$.

Def: A differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is called <u>L-smooth</u> if $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$ for all $x, y \in \mathbb{R}^n$.

Sufficient condition: $\nabla^2 f(x) \leq LI$ for all $x \in \mathbb{R}^n$.

Example (ERM): Let $f(x) := \phi(\langle a, x \rangle)$, where $\phi : \mathbb{R} \to \mathbb{R}$, $a \in \mathbb{R}^n$. Then $\nabla^2 f(x) = \phi''(\langle a, x \rangle) a a^T \preceq H B^2 I$, where $H := \sup_{t \in \mathbb{R}} \phi''(t)$, $B := \|a\|$. Hence, $L = H B^2$.

• (Least squares) $\phi(t) := \frac{1}{2}t^2$.

Def: A differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is called <u>L-smooth</u> if $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$ for all $x, y \in \mathbb{R}^n$.

Sufficient condition: $\nabla^2 f(x) \leq LI$ for all $x \in \mathbb{R}^n$.

Example (ERM): Let $f(x) := \phi(\langle a, x \rangle)$, where $\phi : \mathbb{R} \to \mathbb{R}$, $a \in \mathbb{R}^n$. Then $\nabla^2 f(x) = \phi''(\langle a, x \rangle) a a^T \preceq H B^2 I$, where $H := \sup_{t \in \mathbb{R}} \phi''(t)$, B := ||a||. Hence, $L = H B^2$.

▶ (Least squares) $\phi(t) := \frac{1}{2}t^2$. Here $\phi''(t) = 1$ and hence H = 1.

Def: A differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is called <u>L-smooth</u> if $f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$ for all $x, y \in \mathbb{R}^n$.

Sufficient condition: $\nabla^2 f(x) \leq LI$ for all $x \in \mathbb{R}^n$.

Example (ERM): Let $f(x) := \phi(\langle a, x \rangle)$, where $\phi : \mathbb{R} \to \mathbb{R}$, $a \in \mathbb{R}^n$. Then $\nabla^2 f(x) = \phi''(\langle a, x \rangle) a a^T \preceq H B^2 I$, where $H := \sup_{t \in \mathbb{R}} \phi''(t)$, B := ||a||. Hence, $L = H B^2$.

- ▶ (Least squares) $\phi(t) := \frac{1}{2}t^2$. Here $\phi''(t) = 1$ and hence H = 1.
- (Logistic regression) $\phi(t) := \ln(1 + e^t)$.

Def: A differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is called <u>L-smooth</u> if $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$ for all $x, y \in \mathbb{R}^n$.

Sufficient condition: $\nabla^2 f(x) \leq LI$ for all $x \in \mathbb{R}^n$.

Example (ERM): Let $f(x) := \phi(\langle a, x \rangle)$, where $\phi : \mathbb{R} \to \mathbb{R}$, $a \in \mathbb{R}^n$. Then $\nabla^2 f(x) = \phi''(\langle a, x \rangle) a a^T \preceq H B^2 I$, where $H := \sup_{t \in \mathbb{R}} \phi''(t)$, $B := \|a\|$. Hence, $L = H B^2$.

- ▶ (Least squares) $\phi(t) := \frac{1}{2}t^2$. Here $\phi''(t) = 1$ and hence H = 1.
 - ▶ (Logistic regression) $\phi(t) := \ln(1 + e^t)$. Here $\phi''(t) = \frac{e^t}{(1 + e^t)^2}$, and $H = \frac{1}{4}$.

Def: A differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is called <u>L-smooth</u> if $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$ for all $x, y \in \mathbb{R}^n$.

Sufficient condition: $\nabla^2 f(x) \leq LI$ for all $x \in \mathbb{R}^n$.

Example (ERM): Let $f(x) := \phi(\langle a, x \rangle)$, where $\phi : \mathbb{R} \to \mathbb{R}$, $a \in \mathbb{R}^n$. Then $\nabla^2 f(x) = \phi''(\langle a, x \rangle) a a^T \preceq H B^2 I$, where $H := \sup_{t \in \mathbb{R}} \phi''(t)$, $B := \|a\|$. Hence, $L = H B^2$.

- ▶ (Least squares) $\phi(t) := \frac{1}{2}t^2$. Here $\phi''(t) = 1$ and hence H = 1.
- ▶ (Logistic regression) $\phi(t) := \ln(1 + e^t)$. Here $\phi''(t) = \frac{e^t}{(1 + e^t)^2}$, and $H = \frac{1}{4}$.

Important fact: If f is convex and L-smooth, then for all $x, y \in \mathbb{R}^n$, we have $f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|^2.$

Let
$$\mathbb{E}g(x) = \nabla f(x)$$
.

Previous assumption: $\mathbb{E}||g(x)||^2 \leq M^2$ (bounded second moment).

New assumption:

Let
$$\mathbb{E}g(x) = \nabla f(x)$$
.

Previous assumption: $\mathbb{E}||g(x)||^2 \leq M^2$ (bounded second moment).

New assumption: f is L-smooth and $\mathbb{E}||g(x) - \nabla f(x)||^2 \le \sigma^2$ (bounded <u>variance</u>).

Let
$$\mathbb{E}g(x) = \nabla f(x)$$
.

Previous assumption: $\mathbb{E}||g(x)||^2 \leq M^2$ (bounded second moment).

New assumption: f is L-smooth and $\mathbb{E}||g(x) - \nabla f(x)||^2 \le \sigma^2$ (bounded <u>variance</u>).

NB: Since $\mathbb{E}\|g(x) - \nabla f(x)\|^2 = \mathbb{E}\|g(x)\|^2 - \|\nabla f(x)\|^2$, we always have $\sigma \leq M$. However, sometimes σ can be much smaller than M.

Let
$$\mathbb{E}g(x) = \nabla f(x)$$
.

Previous assumption: $\mathbb{E}||g(x)||^2 \leq M^2$ (bounded second moment).

New assumption: f is L-smooth and $\mathbb{E}||g(x) - \nabla f(x)||^2 \le \sigma^2$ (bounded <u>variance</u>).

NB: Since $\mathbb{E}\|g(x) - \nabla f(x)\|^2 = \mathbb{E}\|g(x)\|^2 - \|\nabla f(x)\|^2$, we always have $\sigma \leq M$. However, sometimes σ can be much smaller than M.

Example 1: Let $g(x) := \nabla f(x) + \xi(x)$, where $\mathbb{E}\xi(x) = 0$, $\mathbb{E}\|\xi(x)\|^2 \le \sigma^2$.

Let
$$\mathbb{E}g(x) = \nabla f(x)$$
.

Previous assumption: $\mathbb{E}||g(x)||^2 \leq M^2$ (bounded second moment).

New assumption: f is L-smooth and $\mathbb{E}||g(x) - \nabla f(x)||^2 \le \sigma^2$ (bounded <u>variance</u>).

NB: Since $\mathbb{E}\|g(x) - \nabla f(x)\|^2 = \mathbb{E}\|g(x)\|^2 - \|\nabla f(x)\|^2$, we always have $\sigma \leq M$. However, sometimes σ can be much smaller than M.

Example 1: Let $g(x) := \nabla f(x) + \xi(x)$, where $\mathbb{E}\xi(x) = 0$, $\mathbb{E}\|\xi(x)\|^2 \le \sigma^2$. Then $\mathbb{E}\|g(x) - \nabla f(x)\|^2 \le \sigma^2$,

Let
$$\mathbb{E}g(x) = \nabla f(x)$$
.

Previous assumption: $\mathbb{E}||g(x)||^2 \leq M^2$ (bounded second moment).

New assumption: f is L-smooth and $\mathbb{E}||g(x) - \nabla f(x)||^2 \le \sigma^2$ (bounded <u>variance</u>).

NB: Since $\mathbb{E}\|g(x) - \nabla f(x)\|^2 = \mathbb{E}\|g(x)\|^2 - \|\nabla f(x)\|^2$, we always have $\sigma \leq M$. However, sometimes σ can be much smaller than M.

Example 1: Let $g(x) := \nabla f(x) + \xi(x)$, where $\mathbb{E}\xi(x) = 0$, $\mathbb{E}\|\xi(x)\|^2 \le \sigma^2$. Then $\mathbb{E}\|g(x) - \nabla f(x)\|^2 \le \sigma^2$, while $\mathbb{E}\|g(x)\|^2 =$

Let
$$\mathbb{E}g(x) = \nabla f(x)$$
.

Previous assumption: $\mathbb{E}||g(x)||^2 \leq M^2$ (bounded second moment).

New assumption: f is L-smooth and $\mathbb{E}||g(x) - \nabla f(x)||^2 \le \sigma^2$ (bounded <u>variance</u>).

NB: Since $\mathbb{E}\|g(x) - \nabla f(x)\|^2 = \mathbb{E}\|g(x)\|^2 - \|\nabla f(x)\|^2$, we always have $\sigma \leq M$. However, sometimes σ can be much smaller than M.

Example 1: Let $g(x) := \nabla f(x) + \xi(x)$, where $\mathbb{E}\xi(x) = 0$, $\mathbb{E}\|\xi(x)\|^2 \le \sigma^2$. Then $\mathbb{E}\|g(x) - \nabla f(x)\|^2 \le \sigma^2$, while $\mathbb{E}\|g(x)\|^2 = \|\nabla f(x)\|^2 + \mathbb{E}\|\xi(x)\|^2 \le$

Let
$$\mathbb{E}g(x) = \nabla f(x)$$
.

Previous assumption: $\mathbb{E}||g(x)||^2 \leq M^2$ (bounded second moment).

New assumption: f is L-smooth and $\mathbb{E}||g(x) - \nabla f(x)||^2 \le \sigma^2$ (bounded <u>variance</u>).

NB: Since $\mathbb{E}\|g(x) - \nabla f(x)\|^2 = \mathbb{E}\|g(x)\|^2 - \|\nabla f(x)\|^2$, we always have $\sigma \leq M$. However, sometimes σ can be much smaller than M.

Example 1: Let
$$g(x) := \nabla f(x) + \xi(x)$$
, where $\mathbb{E}\xi(x) = 0$, $\mathbb{E}\|\xi(x)\|^2 \le \sigma^2$. Then $\mathbb{E}\|g(x) - \nabla f(x)\|^2 \le \sigma^2$, while $\mathbb{E}\|g(x)\|^2 = \|\nabla f(x)\|^2 + \mathbb{E}\|\xi(x)\|^2 \le \|\nabla f(x)\|^2 + \sigma^2$.

Let
$$\mathbb{E}g(x) = \nabla f(x)$$
.

Previous assumption: $\mathbb{E}||g(x)||^2 \leq M^2$ (bounded second moment).

New assumption: f is L-smooth and $\mathbb{E}||g(x) - \nabla f(x)||^2 \le \sigma^2$ (bounded <u>variance</u>).

NB: Since $\mathbb{E}\|g(x) - \nabla f(x)\|^2 = \mathbb{E}\|g(x)\|^2 - \|\nabla f(x)\|^2$, we always have $\sigma \leq M$. However, sometimes σ can be much smaller than M.

Example 1: Let
$$g(x) := \nabla f(x) + \xi(x)$$
, where $\mathbb{E}\xi(x) = 0$, $\mathbb{E}\|\xi(x)\|^2 \le \sigma^2$. Then $\mathbb{E}\|g(x) - \nabla f(x)\|^2 \le \sigma^2$, while $\mathbb{E}\|g(x)\|^2 = \|\nabla f(x)\|^2 + \mathbb{E}\|\xi(x)\|^2 \le \|\nabla f(x)\|^2 + \sigma^2$.

Example 2: Mini-batching (in a couple of slides).

SGD for smooth convex optimization [cf. Ghadimi-Lan, 2013]

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex L-smooth</u> and given by an SO.

SGD for smooth convex optimization [cf. Ghadimi-Lan, 2013]

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex L-smooth</u> and given by an SO.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex L-smooth</u> and given by an SO.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

1. Generate a stochastic gradient g_k of f at x_k .

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex L-smooth</u> and given by an SO.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic gradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex L-smooth</u> and given by an SO.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic gradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex L-smooth</u> and given by an SO.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic gradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output: $\bar{x}_T := \frac{1}{T} \sum_{k=0}^{T-1} x_k$.

Theorem:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex L-smooth</u> and given by an SO.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic gradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output: $\bar{x}_T := \frac{1}{T} \sum_{k=0}^{T-1} x_k$.

Theorem: For
$$\alpha := \frac{1}{L + \frac{\sigma\sqrt{T}}{D}}$$
, we have $\mathbb{E}f(\bar{x}_T) - f^* \leq \underbrace{\frac{LD^2}{T}}_{\text{deterministic}} + \underbrace{\frac{3\sigma D}{2\sqrt{T}}}_{\text{stochastic}}$.

NB:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex L-smooth</u> and given by an SO.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic gradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output: $\bar{x}_T := \frac{1}{T} \sum_{k=0}^{T-1} x_k$.

Theorem: For
$$\alpha := \frac{1}{L + \frac{\sigma\sqrt{T}}{D}}$$
, we have $\mathbb{E}f(\bar{x}_T) - f^* \leq \underbrace{\frac{LD^2}{T}}_{\text{deterministic}} + \underbrace{\frac{3\sigma D}{2\sqrt{T}}}_{\text{stochastic}}$.

NB: For $\sigma = 0$, we recover the $\frac{LD^2}{T}$ convergence rate of the gradient descent (GD).

Previous result:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex L-smooth</u> and given by an SO.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic gradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output: $\bar{x}_T := \frac{1}{T} \sum_{k=0}^{T-1} x_k$.

Theorem: For
$$\alpha := \frac{1}{L + \frac{\sigma\sqrt{T}}{D}}$$
, we have $\mathbb{E}f(\bar{x}_T) - f^* \leq \underbrace{\frac{LD^2}{T}}_{\text{deterministic}} + \underbrace{\frac{3\sigma D}{2\sqrt{T}}}_{\text{stochastic}}$.

NB: For $\sigma = 0$, we recover the $\frac{LD^2}{T}$ convergence rate of the gradient descent (GD).

Previous result: For $\alpha := \frac{D}{M\sqrt{T}}$, we have $\mathbb{E}f(\bar{x}_T) - f^* \leq \frac{MD}{\sqrt{T}}$. Complexity:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where f is <u>convex L-smooth</u> and given by an SO.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic gradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output: $\bar{x}_T := \frac{1}{T} \sum_{k=0}^{T-1} x_k$.

Theorem: For
$$\alpha := \frac{1}{L + \frac{\sigma\sqrt{T}}{D}}$$
, we have $\mathbb{E}f(\bar{x}_T) - f^* \leq \underbrace{\frac{LD^2}{T}}_{\text{deterministic}} + \underbrace{\frac{3\sigma D}{2\sqrt{T}}}_{\text{stochastic}}$.

NB: For $\sigma = 0$, we recover the $\frac{LD^2}{T}$ convergence rate of the gradient descent (GD).

Previous result: For $\alpha := \frac{D}{M\sqrt{T}}$, we have $\mathbb{E}f(\bar{x}_T) - f^* \leq \frac{MD}{\sqrt{T}}$. Complexity: Still $O(\varepsilon^{-2})$.

SGD in the smooth convex optimization: Proof

Let
$$\delta_k := g_k - \nabla f(x_k)$$
. Using $\|\nabla f(x_k)\|^2 \le L\langle \nabla f(x_k), x_k - x^* \rangle$, we have $\mathbb{E}\|x_{k+1} - x^*\|^2 - \mathbb{E}\|x_k - x^*\|^2 \le -2\alpha \mathbb{E}\langle \nabla f(x_k), x_k - x^* \rangle + \alpha^2 \mathbb{E}\|g_k\|^2$

$$= -2\alpha \mathbb{E}\langle \nabla f(x_k), x_k - x^* \rangle + \alpha^2 \mathbb{E}(\|\nabla f(x_k)\|^2 + 2\langle \nabla f(x_k), \delta_k \rangle + \|\delta_k\|^2)$$

$$\le -\alpha(2 - L\alpha)\mathbb{E}\langle \nabla f(x_k), x_k - x^* \rangle + \alpha^2\sigma^2 \le -\alpha(2 - L\alpha)(\mathbb{E}f(x_k) - f^*) + \alpha^2\sigma^2$$
Hence, using $\alpha = \frac{1}{L + \frac{\sigma\sqrt{T}}{D}} \le \frac{1}{L}$, we obtain
$$\mathbb{E}f(\bar{x}_T) - f^* \le \frac{1}{T} \sum_{k=0}^{T-1} (\mathbb{E}f(x_k) - f^*) \le \frac{\sum_{k=0}^{T-1} (\mathbb{E}\|x_k - x^*\|^2 - \mathbb{E}\|x_{k+1} - x^*\|^2)}{\alpha(2 - L\alpha)T} + \frac{\alpha\sigma^2}{2 - L\alpha}$$

$$\le \frac{D^2}{\alpha(2 - L\alpha)T} + \frac{\alpha\sigma^2}{2 - L\alpha} \le \frac{D^2(L + \frac{\sigma\sqrt{T}}{D})}{T} + \frac{\sigma D}{2\sqrt{T}} = \frac{LD^2}{T} + \frac{3\sigma D}{2\sqrt{T}}. \quad \Box$$

Idea: Given a point $x \in \mathbb{R}^n$, call the SO N times to obtain the i.i.d. $g_1(x), \ldots, g_N(x)$, and set g(x) :=

Idea: Given a point $x \in \mathbb{R}^n$, call the SO N times to obtain the i.i.d. $g_1(x), \ldots, g_N(x)$, and set $g(x) := \frac{1}{N} \sum_{i=1}^{N} g_i(x)$.

Idea: Given a point $x \in \mathbb{R}^n$, call the SO N times to obtain the i.i.d. $g_1(x), \ldots, g_N(x)$, and set $g(x) := \frac{1}{N} \sum_{i=1}^N g_i(x)$. Especially efficient when $g_1(x), \ldots, g_N(x)$ are computed in parallel.

Idea: Given a point $x \in \mathbb{R}^n$, call the SO N times to obtain the i.i.d. $g_1(x), \ldots, g_N(x)$, and set $g(x) := \frac{1}{N} \sum_{i=1}^N g_i(x)$. Especially efficient when $g_1(x), \ldots, g_N(x)$ are computed in parallel.

Proposition: $\mathbb{E}||g(x) - \nabla f(x)||^2 \leq \frac{\sigma^2}{N}$.

Idea: Given a point $x \in \mathbb{R}^n$, call the SO N times to obtain the i.i.d. $g_1(x), \ldots, g_N(x)$, and set $g(x) := \frac{1}{N} \sum_{i=1}^N g_i(x)$. Especially efficient when $g_1(x), \ldots, g_N(x)$ are computed in parallel.

Proposition: $\mathbb{E}||g(x) - \nabla f(x)||^2 \leq \frac{\sigma^2}{N}$.

Proof:

$$\mathbb{E}\|g(x) - \nabla f(x)\|^2 = \mathbb{E}\left\|\frac{1}{N}\sum_{i=1}^N(g_i(x) - \nabla f(x))\right\|^2$$

=

Idea: Given a point $x \in \mathbb{R}^n$, call the SO N times to obtain the i.i.d. $g_1(x), \ldots, g_N(x)$, and set $g(x) := \frac{1}{N} \sum_{i=1}^N g_i(x)$. Especially efficient when $g_1(x), \ldots, g_N(x)$ are computed in parallel.

Proposition: $\mathbb{E}||g(x) - \nabla f(x)||^2 \leq \frac{\sigma^2}{N}$. Proof:

$$\mathbb{E}\|g(x) - \nabla f(x)\|^2 = \mathbb{E}\left\|\frac{1}{N}\sum_{i=1}^N (g_i(x) - \nabla f(x))\right\|^2$$

$$= \frac{1}{N^2}\sum_{i=1}^N \mathbb{E}\|g_i(x) - \nabla f(x)\|^2 + \frac{2}{N^2}\sum_{1 \le i < j \le N} \mathbb{E}\langle g_i(x) - \nabla f(x), g_j(x) - \nabla f(x)\rangle$$

=

Idea: Given a point $x \in \mathbb{R}^n$, call the SO N times to obtain the i.i.d. $g_1(x), \ldots, g_N(x)$, and set $g(x) := \frac{1}{N} \sum_{i=1}^N g_i(x)$. Especially efficient when $g_1(x), \ldots, g_N(x)$ are computed in parallel.

Proposition: $\mathbb{E}||g(x) - \nabla f(x)||^2 \le \frac{\sigma^2}{N}$. Proof:

$$\mathbb{E}\|g(x) - \nabla f(x)\|^{2} = \mathbb{E}\left\|\frac{1}{N}\sum_{i=1}^{N}(g_{i}(x) - \nabla f(x))\right\|^{2}$$

$$= \frac{1}{N^{2}}\sum_{i=1}^{N}\mathbb{E}\|g_{i}(x) - \nabla f(x)\|^{2} + \frac{2}{N^{2}}\sum_{1 \leq i < j \leq N}\mathbb{E}\langle g_{i}(x) - \nabla f(x), g_{j}(x) - \nabla f(x)\rangle$$

$$= \frac{1}{N^{2}}\sum_{i=1}^{N}\mathbb{E}\|g_{i}(x) - \nabla f(x)\|^{2} \leq$$

Idea: Given a point $x \in \mathbb{R}^n$, call the SO N times to obtain the i.i.d. $g_1(x), \ldots, g_N(x)$, and set $g(x) := \frac{1}{N} \sum_{i=1}^N g_i(x)$. Especially efficient when $g_1(x), \ldots, g_N(x)$ are computed in parallel.

Proposition: $\mathbb{E}||g(x) - \nabla f(x)||^2 \leq \frac{\sigma^2}{N}$. Proof:

$$\mathbb{E}\|g(x) - \nabla f(x)\|^2 = \mathbb{E}\left\|\frac{1}{N}\sum_{i=1}^N (g_i(x) - \nabla f(x))\right\|^2$$

$$= \frac{1}{N^2}\sum_{i=1}^N \mathbb{E}\|g_i(x) - \nabla f(x)\|^2 + \frac{2}{N^2}\sum_{1 \le i < j \le N} \mathbb{E}\langle g_i(x) - \nabla f(x), g_j(x) - \nabla f(x)\rangle$$

$$= \frac{1}{N^2}\sum_{i=1}^N \mathbb{E}\|g_i(x) - \nabla f(x)\|^2 \le \frac{\sigma^2}{N}. \quad \Box$$

Result:

Idea: Given a point $x \in \mathbb{R}^n$, call the SO N times to obtain the i.i.d. $g_1(x), \ldots, g_N(x)$, and set $g(x) := \frac{1}{N} \sum_{i=1}^N g_i(x)$. Especially efficient when $g_1(x), \ldots, g_N(x)$ are computed in parallel.

Proposition: $\mathbb{E}||g(x) - \nabla f(x)||^2 \le \frac{\sigma^2}{N}$. Proof:

$$\mathbb{E}\|g(x) - \nabla f(x)\|^2 = \mathbb{E}\left\|\frac{1}{N}\sum_{i=1}^N (g_i(x) - \nabla f(x))\right\|^2$$

$$= \frac{1}{N^2}\sum_{i=1}^N \mathbb{E}\|g_i(x) - \nabla f(x)\|^2 + \frac{2}{N^2}\sum_{1 \le i < j \le N} \mathbb{E}\langle g_i(x) - \nabla f(x), g_j(x) - \nabla f(x)\rangle$$

$$= \frac{1}{N^2}\sum_{i=1}^N \mathbb{E}\|g_i(x) - \nabla f(x)\|^2 \le \frac{\sigma^2}{N}. \quad \Box$$

Result: Instead of $\mathbb{E}f(\bar{x}_T) - f^* \leq \frac{LD^2}{T} + \frac{3\sigma D}{2\sqrt{T}}$, we get $\mathbb{E}f(\bar{x}_T) - f^* \leq \frac{LD^2}{T} + \frac{3\sigma D}{2\sqrt{N}\sqrt{T}}$.

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f : \mathbb{R}^n \to \mathbb{R}$ is *L*-smooth, possibly <u>non-convex</u>.

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f : \mathbb{R}^n \to \mathbb{R}$ is *L*-smooth, possibly <u>non-convex</u>.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f : \mathbb{R}^n \to \mathbb{R}$ is *L*-smooth, possibly <u>non-convex</u>.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

1. Generate a stochastic gradient g_k of f at x_k .

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f : \mathbb{R}^n \to \mathbb{R}$ is *L*-smooth, possibly <u>non-convex</u>.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic gradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f : \mathbb{R}^n \to \mathbb{R}$ is *L*-smooth, possibly <u>non-convex</u>.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic gradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output: $y_T \sim \text{Unif}((x_k)_{0 \le k \le T-1})$.

Theorem:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f : \mathbb{R}^n \to \mathbb{R}$ is *L*-smooth, possibly <u>non-convex</u>.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic gradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output: $y_T \sim \text{Unif}((x_k)_{0 \le k \le T-1})$.

Theorem: For $\alpha := \frac{1}{L + \frac{\sigma\sqrt{T}}{D_f}}$, we have $\frac{1}{L} \mathbb{E} \|\nabla f(y_T)\|^2 \leq \frac{LD_f^2}{T} + \frac{3\sigma D_f}{2\sqrt{T}}$, where

 D_f

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f : \mathbb{R}^n \to \mathbb{R}$ is *L*-smooth, possibly <u>non-convex</u>.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic gradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output: $y_T \sim \text{Unif}((x_k)_{0 \le k \le T-1})$.

Theorem: For
$$\alpha := \frac{1}{L + \frac{\sigma\sqrt{T}}{D_f}}$$
, we have $\frac{1}{L}\mathbb{E}\|\nabla f(y_T)\|^2 \leq \frac{LD_f^2}{T} + \frac{3\sigma D_f}{2\sqrt{T}}$, where $D_f := (\frac{2}{L}(\mathbb{E}f(x_0) - f^*))^{\frac{1}{2}}$.

NB:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f : \mathbb{R}^n \to \mathbb{R}$ is *L*-smooth, possibly <u>non-convex</u>.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic gradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output: $y_T \sim \text{Unif}((x_k)_{0 \le k \le T-1})$.

Theorem: For
$$\alpha := \frac{1}{L + \frac{\sigma\sqrt{T}}{D_f}}$$
, we have $\frac{1}{L}\mathbb{E}\|\nabla f(y_T)\|^2 \leq \frac{LD_f^2}{T} + \frac{3\sigma D_f}{2\sqrt{T}}$, where $D_f := (\frac{2}{T}(\mathbb{E}f(x_0) - f^*))^{\frac{1}{2}}$.

NB: When $\sigma = 0$, we recover the $O(\frac{1}{T})$ convergence rate of the standard GD.

Remark:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f : \mathbb{R}^n \to \mathbb{R}$ is *L*-smooth, possibly <u>non-convex</u>.

Method: Fix $x_0 \in \mathbb{R}^n$, $T \ge 1$, $\alpha > 0$. Repeat for $0 \le k \le T - 1$:

- 1. Generate a stochastic gradient g_k of f at x_k .
- 2. Set $x_{k+1} := x_k \alpha g_k$.

Output: $y_T \sim \text{Unif}((x_k)_{0 \le k \le T-1})$.

Theorem: For
$$\alpha := \frac{1}{L + \frac{\sigma\sqrt{T}}{D_f}}$$
, we have $\frac{1}{L}\mathbb{E}\|\nabla f(y_T)\|^2 \leq \frac{LD_f^2}{T} + \frac{3\sigma D_f}{2\sqrt{T}}$, where $D_f := (\frac{2}{T}(\mathbb{E}f(x_0) - f^*))^{\frac{1}{2}}$.

NB: When $\sigma = 0$, we recover the $O(\frac{1}{T})$ convergence rate of the standard GD.

Remark: If f is convex, then for $\alpha := \frac{1}{L + \frac{\sigma\sqrt{T}}{D}}$, we have $\mathbb{E}f(y_T) - f^* \le \frac{LD^2}{T} + \frac{3\sigma D}{2\sqrt{T}}$, where $D^2 := \mathbb{E}\|x_0 - x^*\|^2$.

Let $\delta_k := g_k - \nabla f(x_k)$. By *L*-smoothness, we have $\mathbb{E} f(x_{k+1}) \le$

Let $\delta_k := g_k - \nabla f(x_k)$. By *L*-smoothness, we have $\mathbb{E} f(x_{k+1}) \le \mathbb{E} \left(f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2 \right)$

Let
$$\delta_k := g_k - \nabla f(x_k)$$
. By *L*-smoothness, we have
$$\mathbb{E} f(x_{k+1}) \leq \mathbb{E} \left(f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2 \right)$$
$$= \mathbb{E} f(x_k) - \alpha \mathbb{E} \langle \nabla f(x_k), g_k \rangle + \frac{L\alpha^2}{2} \mathbb{E} \|g_k\|^2$$
$$=$$

Let
$$\delta_k := g_k - \nabla f(x_k)$$
. By L -smoothness, we have
$$\mathbb{E} f(x_{k+1}) \leq \mathbb{E} \left(f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2 \right)$$
$$= \mathbb{E} f(x_k) - \alpha \mathbb{E} \langle \nabla f(x_k), g_k \rangle + \frac{L\alpha^2}{2} \mathbb{E} \|g_k\|^2$$
$$= \mathbb{E} f(x_k) - \alpha \mathbb{E} \|\nabla f(x_k)\|^2 + \frac{L\alpha^2}{2} \mathbb{E} (\|\nabla f(x_k)\|^2 + 2\langle \nabla f(x_k), \delta_k \rangle + \|\delta_k\|^2)$$
$$=$$

Let
$$\delta_k := g_k - \nabla f(x_k)$$
. By L -smoothness, we have
$$\mathbb{E} f(x_{k+1}) \leq \mathbb{E} \left(f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2 \right)$$

$$= \mathbb{E} f(x_k) - \alpha \mathbb{E} \langle \nabla f(x_k), g_k \rangle + \frac{L\alpha^2}{2} \mathbb{E} \|g_k\|^2$$

$$= \mathbb{E} f(x_k) - \alpha \mathbb{E} \|\nabla f(x_k)\|^2 + \frac{L\alpha^2}{2} \mathbb{E} (\|\nabla f(x_k)\|^2 + 2\langle \nabla f(x_k), \delta_k \rangle + \|\delta_k\|^2)$$

$$= \mathbb{E} f(x_k) - \frac{\alpha(2 - L\alpha)}{2} \mathbb{E} \|\nabla f(x_k)\|^2 + \frac{L\alpha^2\sigma^2}{2}.$$

Let
$$\delta_k := g_k - \nabla f(x_k)$$
. By L -smoothness, we have
$$\mathbb{E} f(x_{k+1}) \leq \mathbb{E} \left(f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2 \right)$$

$$= \mathbb{E} f(x_k) - \alpha \mathbb{E} \langle \nabla f(x_k), g_k \rangle + \frac{L\alpha^2}{2} \mathbb{E} \|g_k\|^2$$

$$= \mathbb{E} f(x_k) - \alpha \mathbb{E} \|\nabla f(x_k)\|^2 + \frac{L\alpha^2}{2} \mathbb{E} (\|\nabla f(x_k)\|^2 + 2\langle \nabla f(x_k), \delta_k \rangle + \|\delta_k\|^2)$$

$$= \mathbb{E} f(x_k) - \frac{\alpha(2 - L\alpha)}{2} \mathbb{E} \|\nabla f(x_k)\|^2 + \frac{L\alpha^2\sigma^2}{2}.$$
Hence

Hence,

$$\frac{1}{L} \mathbb{E} \|\nabla f(y_T)\|^2 = \frac{1}{LT} \sum_{k=0}^{T-1} \mathbb{E} \|\nabla f(x_k)\|^2 \le$$

Let
$$\delta_k := g_k - \nabla f(x_k)$$
. By L -smoothness, we have
$$\mathbb{E} f(x_{k+1}) \leq \mathbb{E} \left(f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2 \right)$$
$$= \mathbb{E} f(x_k) - \alpha \mathbb{E} \langle \nabla f(x_k), g_k \rangle + \frac{L\alpha^2}{2} \mathbb{E} \|g_k\|^2$$
$$= \mathbb{E} f(x_k) - \alpha \mathbb{E} \|\nabla f(x_k)\|^2 + \frac{L\alpha^2}{2} \mathbb{E} (\|\nabla f(x_k)\|^2 + 2\langle \nabla f(x_k), \delta_k \rangle + \|\delta_k\|^2)$$
$$= \mathbb{E} f(x_k) - \frac{\alpha(2 - L\alpha)}{2} \mathbb{E} \|\nabla f(x_k)\|^2 + \frac{L\alpha^2\sigma^2}{2}.$$

Hence,

$$\frac{1}{L}\mathbb{E}\|\nabla f(y_T)\|^2 = \frac{1}{LT}\sum_{k=0}^{T-1}\mathbb{E}\|\nabla f(x_k)\|^2 \leq \frac{2\sum_{k=0}^{T-1}(\mathbb{E}f(x_k) - \mathbb{E}f(x_{k+1}))}{L\alpha(2 - L\alpha)T} + \frac{L\alpha\sigma^2}{2 - L\alpha}$$

=

Let
$$\delta_k := g_k - \nabla f(x_k)$$
. By L -smoothness, we have
$$\mathbb{E} f(x_{k+1}) \leq \mathbb{E} \left(f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2 \right)$$

$$= \mathbb{E} f(x_k) - \alpha \mathbb{E} \langle \nabla f(x_k), g_k \rangle + \frac{L\alpha^2}{2} \mathbb{E} \|g_k\|^2$$

$$= \mathbb{E} f(x_k) - \alpha \mathbb{E} \|\nabla f(x_k)\|^2 + \frac{L\alpha^2}{2} \mathbb{E} (\|\nabla f(x_k)\|^2 + 2\langle \nabla f(x_k), \delta_k \rangle + \|\delta_k\|^2)$$

$$= \mathbb{E} f(x_k) - \frac{\alpha(2 - L\alpha)}{2} \mathbb{E} \|\nabla f(x_k)\|^2 + \frac{L\alpha^2\sigma^2}{2}.$$

Hence,

$$\frac{1}{L} \mathbb{E} \|\nabla f(y_T)\|^2 = \frac{1}{LT} \sum_{k=0}^{T-1} \mathbb{E} \|\nabla f(x_k)\|^2 \le \frac{2 \sum_{k=0}^{T-1} (\mathbb{E} f(x_k) - \mathbb{E} f(x_{k+1}))}{L\alpha(2 - L\alpha)T} + \frac{L\alpha\sigma^2}{2 - L\alpha}$$

$$= \frac{2(\mathbb{E} f(x_0) - f^*)}{L\alpha(2 - L\alpha)T} + \frac{L\alpha\sigma^2}{2 - L\alpha}$$

Let
$$\delta_k := g_k - \nabla f(x_k)$$
. By L -smoothness, we have
$$\mathbb{E} f(x_{k+1}) \leq \mathbb{E} \left(f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2 \right)$$

$$= \mathbb{E} f(x_k) - \alpha \mathbb{E} \langle \nabla f(x_k), g_k \rangle + \frac{L\alpha^2}{2} \mathbb{E} \|g_k\|^2$$

$$= \mathbb{E} f(x_k) - \alpha \mathbb{E} \|\nabla f(x_k)\|^2 + \frac{L\alpha^2}{2} \mathbb{E} (\|\nabla f(x_k)\|^2 + 2\langle \nabla f(x_k), \delta_k \rangle + \|\delta_k\|^2)$$

$$= \mathbb{E} f(x_k) - \frac{\alpha(2 - L\alpha)}{2} \mathbb{E} \|\nabla f(x_k)\|^2 + \frac{L\alpha^2\sigma^2}{2}.$$

Hence,

$$\frac{1}{L} \mathbb{E} \|\nabla f(y_T)\|^2 = \frac{1}{LT} \sum_{k=0}^{T-1} \mathbb{E} \|\nabla f(x_k)\|^2 \le \frac{2 \sum_{k=0}^{T-1} (\mathbb{E} f(x_k) - \mathbb{E} f(x_{k+1}))}{L\alpha(2 - L\alpha)T} + \frac{L\alpha\sigma^2}{2 - L\alpha} \\
= \frac{2(\mathbb{E} f(x_0) - f^*)}{L\alpha(2 - L\alpha)T} + \frac{L\alpha\sigma^2}{2 - L\alpha} = \frac{D_f^2}{\alpha(2 - L\alpha)T} + \frac{L\alpha\sigma^2}{2 - L\alpha}$$

SGD for smooth non-convex optimization: Proof

Let
$$\delta_k := g_k - \nabla f(x_k)$$
. By L -smoothness, we have
$$\mathbb{E} f(x_{k+1}) \leq \mathbb{E} \left(f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2 \right)$$

$$= \mathbb{E} f(x_k) - \alpha \mathbb{E} \langle \nabla f(x_k), g_k \rangle + \frac{L\alpha^2}{2} \mathbb{E} \|g_k\|^2$$

$$= \mathbb{E} f(x_k) - \alpha \mathbb{E} \|\nabla f(x_k)\|^2 + \frac{L\alpha^2}{2} \mathbb{E} (\|\nabla f(x_k)\|^2 + 2\langle \nabla f(x_k), \delta_k \rangle + \|\delta_k\|^2)$$

$$= \mathbb{E} f(x_k) - \frac{\alpha(2 - L\alpha)}{2} \mathbb{E} \|\nabla f(x_k)\|^2 + \frac{L\alpha^2\sigma^2}{2}.$$

Hence,

$$\frac{1}{L} \mathbb{E} \|\nabla f(y_T)\|^2 = \frac{1}{LT} \sum_{k=0}^{T-1} \mathbb{E} \|\nabla f(x_k)\|^2 \le \frac{2 \sum_{k=0}^{T-1} (\mathbb{E} f(x_k) - \mathbb{E} f(x_{k+1}))}{L\alpha(2 - L\alpha)T} + \frac{L\alpha\sigma^2}{2 - L\alpha} \\
= \frac{2(\mathbb{E} f(x_0) - f^*)}{L\alpha(2 - L\alpha)T} + \frac{L\alpha\sigma^2}{2 - L\alpha} = \frac{D_f^2}{\alpha(2 - L\alpha)T} + \frac{L\alpha\sigma^2}{2 - L\alpha} = \frac{LD_f^2}{T} + \frac{3\sigma D_f}{2\sqrt{T}}. \quad \Box$$

Part 2: Noise reduction for finite sums

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x)$ with smooth f_1, \ldots, f_m .

Goal: Given $\varepsilon > 0$, find $\bar{x} \in \mathbb{R}^n$:

- ▶ $\mathbb{E}f(\bar{x}) f^* \le \varepsilon$ (convex optimization).
- ▶ $\mathbb{E}\|\nabla f(\bar{x})\|^2 \le \varepsilon$ (non-convex optimization).

Complexity measure:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x)$ with smooth f_1, \ldots, f_m .

Goal: Given $\varepsilon > 0$, find $\bar{x} \in \mathbb{R}^n$:

- ▶ $\mathbb{E}f(\bar{x}) f^* \leq \varepsilon$ (convex optimization).
- ▶ $\mathbb{E}\|\nabla f(\bar{x})\|^2 \le \varepsilon$ (non-convex optimization).

Complexity measure: Number of computations of $\nabla f_i(x)$.

Special algorithm:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x)$ with smooth f_1, \ldots, f_m .

Goal: Given $\varepsilon > 0$, find $\bar{x} \in \mathbb{R}^n$:

- ▶ $\mathbb{E}f(\bar{x}) f^* \leq \varepsilon$ (convex optimization).
- ▶ $\mathbb{E}\|\nabla f(\bar{x})\|^2 \le \varepsilon$ (non-convex optimization).

Complexity measure: Number of computations of $\nabla f_i(x)$.

	Convex	Non-convex
GD		

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x)$ with smooth f_1, \ldots, f_m .

Goal: Given $\varepsilon > 0$, find $\bar{x} \in \mathbb{R}^n$:

- ▶ $\mathbb{E}f(\bar{x}) f^* \le \varepsilon$ (convex optimization).
- ▶ $\mathbb{E}\|\nabla f(\bar{x})\|^2 \le \varepsilon$ (non-convex optimization).

Complexity measure: Number of computations of $\nabla f_i(x)$.

	Convex	Non-convex
GD	$\mathit{O}(\mathit{m} arepsilon^{-1})$	$\mathit{O}(\mathit{m}arepsilon^{-1})$
SGD	•	•

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x)$ with smooth f_1, \ldots, f_m .

Goal: Given $\varepsilon > 0$, find $\bar{x} \in \mathbb{R}^n$:

- ▶ $\mathbb{E}f(\bar{x}) f^* \le \varepsilon$ (convex optimization).
- ▶ $\mathbb{E}\|\nabla f(\bar{x})\|^2 \le \varepsilon$ (non-convex optimization).

Complexity measure: Number of computations of $\nabla f_i(x)$.

	Convex	Non-convex
GD	$O(m arepsilon^{-1})$	$O(m arepsilon^{-1})$
SGD	$O(arepsilon^{-2})$	$O(arepsilon^{-2})$
SVRG	'	'

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x)$ with smooth f_1, \ldots, f_m .

Goal: Given $\varepsilon > 0$, find $\bar{x} \in \mathbb{R}^n$:

- ▶ $\mathbb{E}f(\bar{x}) f^* \le \varepsilon$ (convex optimization).
- ▶ $\mathbb{E}\|\nabla f(\bar{x})\|^2 \le \varepsilon$ (non-convex optimization).

Complexity measure: Number of computations of $\nabla f_i(x)$.

	Convex	Non-convex
GD	$\mathit{O}(\mathit{m} arepsilon^{-1})$	$\mathit{O}(\mathit{m} arepsilon^{-1})$
SGD	$O(arepsilon^{-2})$	$O(arepsilon^{-2})$
SVRG	$O(\varepsilon^{-1} + m\log \varepsilon^{-1})$	$O(m+m^{\frac{2}{3}}\varepsilon^{-1}).$

Recall the convergence rate of SGD:

$$\mathbb{E}f(\bar{x}_T)-f^*\leq \frac{D^2}{2\alpha T}+\frac{\alpha M^2}{2},$$

where $\mathbb{E}\|g_k\|^2 \leq M^2$.

Recall the convergence rate of SGD:

$$\mathbb{E}f(\bar{x}_T)-f^*\leq \frac{D^2}{2\alpha T}+\frac{\alpha M^2}{2},$$

where $\mathbb{E}\|g_k\|^2 \leq M^2$.

This gives $O(\frac{1}{\sqrt{T}})$ convergence rate for $\alpha = \Theta(\frac{1}{\sqrt{T}})$.

NB:

Recall the convergence rate of SGD:

$$\mathbb{E}f(\bar{x}_T) - f^* \leq \frac{D^2}{2\alpha T} + \frac{\alpha M^2}{2},$$

where $\mathbb{E}\|g_k\|^2 \leq M^2$.

This gives $O(\frac{1}{\sqrt{T}})$ convergence rate for $\alpha = \Theta(\frac{1}{\sqrt{T}})$.

NB: When $\mathbb{E}||g_k||^2 \to 0$, we obtain $\mathbb{E}f(\bar{x}_T) - f^* \leq O(\frac{1}{T})$ for α not depending on T.

Example:

Recall the convergence rate of SGD:

$$\mathbb{E}f(\bar{x}_T) - f^* \leq \frac{D^2}{2\alpha T} + \frac{\alpha M^2}{2},$$

where $\mathbb{E}\|g_k\|^2 \leq M^2$.

This gives $O(\frac{1}{\sqrt{T}})$ convergence rate for $\alpha = \Theta(\frac{1}{\sqrt{T}})$.

NB: When $\mathbb{E}||g_k||^2 \to 0$, we obtain $\mathbb{E}f(\bar{x}_T) - f^* \leq O(\frac{1}{T})$ for α not depending on T.

Example: For $g_k := \nabla f(x_k)$, we have $\mathbb{E} \|g_k\|^2 = \|\nabla f(x_k)\|^2 \to 0$.

Main question:

Recall the convergence rate of SGD:

$$\mathbb{E}f(\bar{x}_T) - f^* \leq \frac{D^2}{2\alpha T} + \frac{\alpha M^2}{2},$$

where $\mathbb{E}\|g_k\|^2 \leq M^2$.

This gives $O(\frac{1}{\sqrt{T}})$ convergence rate for $\alpha = \Theta(\frac{1}{\sqrt{T}})$.

NB: When $\mathbb{E}||g_k||^2 \to 0$, we obtain $\mathbb{E}f(\bar{x}_T) - f^* \leq O(\frac{1}{T})$ for α not depending on T.

Example: For $g_k := \nabla f(x_k)$, we have $\mathbb{E} \|g_k\|^2 = \|\nabla f(x_k)\|^2 \to 0$.

Main question: How to ensure $\mathbb{E}||g_k||^2 \to 0$ in the presence of noise?

Let
$$f := \frac{1}{m} \sum_{i=1}^{m} f_i$$
. Let $x, \tilde{x} \in \mathbb{R}^n$, $i_0 \sim \mathsf{Unif}\{1, \dots, m\}$, $g(x) := \underbrace{\nabla f_{i_0}(x)}_{\mathbb{E} = \nabla f(x)} +$

Let
$$f := \frac{1}{m} \sum_{i=1}^{m} f_i$$
. Let $x, \tilde{x} \in \mathbb{R}^n$, $i_0 \sim \text{Unif}\{1, \dots, m\}$, $g(x) := \underbrace{\nabla f_{i_0}(x)}_{\mathbb{E} = \nabla f(x)} + \underbrace{\left(\nabla f(\tilde{x}) - \nabla f_{i_0}(\tilde{x})\right)}_{\mathbb{E} = \nabla f(\tilde{x}) - \nabla f(\tilde{x}) = 0}$.

Key lemma:

Let
$$f := \frac{1}{m} \sum_{i=1}^{m} f_i$$
. Let $x, \tilde{x} \in \mathbb{R}^n$, $i_0 \sim \mathsf{Unif}\{1, \dots, m\}$, $g(x) := \underbrace{\nabla f_{i_0}(x)}_{\mathbb{E} = \nabla f(x)} + \underbrace{(\nabla f(\tilde{x}) - \nabla f_{i_0}(\tilde{x}))}_{\mathbb{E} = \nabla f(\tilde{x}) - \nabla f(\tilde{x}) = 0}$.

Key lemma: Let f_1, \ldots, f_m be convex and L-smooth. Then $\mathbb{E}||g(x)||^2 < 4L(\mathbb{E}f(x) - f^* + \mathbb{E}f(\tilde{x}) - f^*)$

Let
$$f := \frac{1}{m} \sum_{i=1}^{m} f_i$$
. Let $x, \tilde{x} \in \mathbb{R}^n$, $i_0 \sim \mathsf{Unif}\{1, \dots, m\}$, $g(x) := \underbrace{\nabla f_{i_0}(x)}_{\mathbb{E} = \nabla f(x)} + \underbrace{\left(\nabla f(\tilde{x}) - \nabla f_{i_0}(\tilde{x})\right)}_{\mathbb{E} = \nabla f(\tilde{x}) - \nabla f(\tilde{x}) = 0}$.

), $f(\tilde{x}) \rightarrow f^*$.

Key lemma: Let f_1, \ldots, f_m be convex and L-smooth. Then

$$\mathbb{E}\|g(x)\|^2 \leq 4L(\mathbb{E}f(x) - f^* + \mathbb{E}f(\tilde{x}) - f^*) \to 0 \text{ when } f(x), f(\tilde{x}) \to f^*.$$

Proof:

Let
$$f := \frac{1}{m} \sum_{i=1}^{m} f_i$$
. Let $x, \tilde{x} \in \mathbb{R}^n$, $i_0 \sim \mathsf{Unif}\{1, \dots, m\}$, $g(x) := \underbrace{\nabla f_{i_0}(x)}_{\mathbb{E} = \nabla f(x)} + \underbrace{\left(\nabla f(\tilde{x}) - \nabla f_{i_0}(\tilde{x})\right)}_{\mathbb{E} = \nabla f(\tilde{x}) - \nabla f(\tilde{x}) = 0}$.

Key lemma: Let f_1, \ldots, f_m be convex and L-smooth. Then

$$\mathbb{E}\|g(x)\|^2 \leq 4L(\mathbb{E}f(x) - f^* + \mathbb{E}f(\tilde{x}) - f^*) \to 0 \text{ when } f(x), f(\tilde{x}) \to f^*.$$

Proof: Using the inequalities $||u+v||^2 \le 2||u||^2 + 2||v||^2$, $\mathbb{E}||\xi - \mathbb{E}\xi||^2 \le \mathbb{E}||\xi||^2$ and the important fact about convex *L*-smooth functions, we obtain

$$\mathbb{E}\|g(x)\|^2 = \mathbb{E}\|\nabla f_{i_0}(x) + (\nabla f(\tilde{x}) - \nabla f_{i_0}(\tilde{x}))\|^2$$

$$\leq$$

Let
$$f := \frac{1}{m} \sum_{i=1}^{m} f_i$$
. Let $x, \tilde{x} \in \mathbb{R}^n$, $i_0 \sim \text{Unif}\{1, \dots, m\}$, $g(x) := \underbrace{\nabla f_{i_0}(x)}_{\mathbb{E} = \nabla f(x)} + \underbrace{\left(\nabla f(\tilde{x}) - \nabla f_{i_0}(\tilde{x})\right)}_{\mathbb{E} = \nabla f(\tilde{x}) - \nabla f(\tilde{x}) = 0}$.

Key lemma: Let f_1, \ldots, f_m be convex and L-smooth. Then

$$\mathbb{E}\|g(x)\|^2 \leq 4L(\mathbb{E}f(x) - f^* + \mathbb{E}f(\tilde{x}) - f^*) \to 0 \text{ when } f(x), f(\tilde{x}) \to f^*.$$

Proof: Using the inequalities $||u+v||^2 \le 2||u||^2 + 2||v||^2$, $\mathbb{E}||\xi-\mathbb{E}\xi||^2 \le \mathbb{E}||\xi||^2$ and the important fact about convex *L*-smooth functions, we obtain

$$\begin{split} \mathbb{E}\|g(x)\|^{2} &= \mathbb{E}\|\nabla f_{i_{0}}(x) + (\nabla f(\tilde{x}) - \nabla f_{i_{0}}(\tilde{x}))\|^{2} \\ &\leq 2\mathbb{E}\|\nabla f_{i_{0}}(x) - \nabla f_{i_{0}}(x^{*})\|^{2} + 2\mathbb{E}\|\nabla f_{i_{0}}(x^{*}) - \nabla f_{i_{0}}(\tilde{x}) - (\nabla f(x^{*}) - \nabla f(\tilde{x}))\|^{2} \\ &\leq \end{split}$$

Let
$$f := \frac{1}{m} \sum_{i=1}^{m} f_i$$
. Let $x, \tilde{x} \in \mathbb{R}^n$, $i_0 \sim \mathsf{Unif}\{1, \dots, m\}$, $g(x) := \underbrace{\nabla f_{i_0}(x)}_{\mathbb{E} = \nabla f(x)} + \underbrace{\left(\nabla f(\tilde{x}) - \nabla f_{i_0}(\tilde{x})\right)}_{\mathbb{E} = \nabla f(\tilde{x}) - \nabla f(\tilde{x}) = 0}$.

Key lemma: Let f_1, \ldots, f_m be convex and L-smooth. Then

$$\mathbb{E}\|g(x)\|^2 \leq 4L(\mathbb{E}f(x) - f^* + \mathbb{E}f(\tilde{x}) - f^*) \to 0 \text{ when } f(x), f(\tilde{x}) \to f^*.$$

Proof: Using the inequalities $||u+v||^2 \le 2||u||^2 + 2||v||^2$, $\mathbb{E}||\xi - \mathbb{E}\xi||^2 \le \mathbb{E}||\xi||^2$ and the important fact about convex *L*-smooth functions, we obtain

$$\begin{split} \mathbb{E}\|g(x)\|^{2} &= \mathbb{E}\|\nabla f_{i_{0}}(x) + (\nabla f(\tilde{x}) - \nabla f_{i_{0}}(\tilde{x}))\|^{2} \\ &\leq 2\mathbb{E}\|\nabla f_{i_{0}}(x) - \nabla f_{i_{0}}(x^{*})\|^{2} + 2\mathbb{E}\|\nabla f_{i_{0}}(x^{*}) - \nabla f_{i_{0}}(\tilde{x}) - (\nabla f(x^{*}) - \nabla f(\tilde{x}))\|^{2} \\ &\leq 2\mathbb{E}\|\nabla f_{i_{0}}(x) - \nabla f_{i_{0}}(x^{*})\|^{2} + 2\mathbb{E}\|\nabla f_{i_{0}}(\tilde{x}) - \nabla f_{i_{0}}(x^{*})\|^{2} \\ &\leq \end{split}$$

Let
$$f := \frac{1}{m} \sum_{i=1}^{m} f_i$$
. Let $x, \tilde{x} \in \mathbb{R}^n$, $i_0 \sim \mathsf{Unif}\{1, \dots, m\}$, $g(x) := \underbrace{\nabla f_{i_0}(x)}_{\mathbb{E} = \nabla f(x)} + \underbrace{\left(\nabla f(\tilde{x}) - \nabla f_{i_0}(\tilde{x})\right)}_{\mathbb{E} = \nabla f(\tilde{x}) - \nabla f(\tilde{x}) = 0}$.

Key lemma: Let f_1, \ldots, f_m be convex and L-smooth. Then

$$\mathbb{E}\|g(x)\|^2 \leq 4L(\mathbb{E}f(x) - f^* + \mathbb{E}f(\tilde{x}) - f^*) \to 0 \text{ when } f(x), f(\tilde{x}) \to f^*.$$

Proof: Using the inequalities $||u+v||^2 \le 2||u||^2 + 2||v||^2$, $\mathbb{E}||\xi - \mathbb{E}\xi||^2 \le \mathbb{E}||\xi||^2$ and the important fact about convex *L*-smooth functions, we obtain

$$\begin{split} \mathbb{E}\|g(x)\|^{2} &= \mathbb{E}\|\nabla f_{i_{0}}(x) + (\nabla f(\tilde{x}) - \nabla f_{i_{0}}(\tilde{x}))\|^{2} \\ &\leq 2\mathbb{E}\|\nabla f_{i_{0}}(x) - \nabla f_{i_{0}}(x^{*})\|^{2} + 2\mathbb{E}\|\nabla f_{i_{0}}(x^{*}) - \nabla f_{i_{0}}(\tilde{x}) - (\nabla f(x^{*}) - \nabla f(\tilde{x}))\|^{2} \\ &\leq 2\mathbb{E}\|\nabla f_{i_{0}}(x) - \nabla f_{i_{0}}(x^{*})\|^{2} + 2\mathbb{E}\|\nabla f_{i_{0}}(\tilde{x}) - \nabla f_{i_{0}}(x^{*})\|^{2} \\ &\leq 4L\mathbb{E}(f_{i_{0}}(x) - f_{i_{0}}(x^{*}) - (\nabla f_{i_{0}}(x^{*}), x - x^{*})) + \end{split}$$

Let
$$f := \frac{1}{m} \sum_{i=1}^{m} f_i$$
. Let $x, \tilde{x} \in \mathbb{R}^n$, $i_0 \sim \mathsf{Unif}\{1, \dots, m\}$, $g(x) := \underbrace{\nabla f_{i_0}(x)}_{\mathbb{E} = \nabla f(x)} + \underbrace{\left(\nabla f(\tilde{x}) - \nabla f_{i_0}(\tilde{x})\right)}_{\mathbb{E} = \nabla f(\tilde{x}) - \nabla f(\tilde{x}) = 0}$.

Key lemma: Let f_1, \ldots, f_m be convex and L-smooth. Then

$$\mathbb{E}\|g(x)\|^2 \leq 4L(\mathbb{E}f(x) - f^* + \mathbb{E}f(\tilde{x}) - f^*) \to 0 \text{ when } f(x), f(\tilde{x}) \to f^*.$$

Proof: Using the inequalities $||u+v||^2 \le 2||u||^2 + 2||v||^2$, $\mathbb{E}||\xi-\mathbb{E}\xi||^2 \le \mathbb{E}||\xi||^2$ and the important fact about convex *L*-smooth functions, we obtain

$$\begin{split} \mathbb{E}\|g(x)\|^{2} &= \mathbb{E}\|\nabla f_{i_{0}}(x) + (\nabla f(\tilde{x}) - \nabla f_{i_{0}}(\tilde{x}))\|^{2} \\ &\leq 2\mathbb{E}\|\nabla f_{i_{0}}(x) - \nabla f_{i_{0}}(x^{*})\|^{2} + 2\mathbb{E}\|\nabla f_{i_{0}}(x^{*}) - \nabla f_{i_{0}}(\tilde{x}) - (\nabla f(x^{*}) - \nabla f(\tilde{x}))\|^{2} \\ &\leq 2\mathbb{E}\|\nabla f_{i_{0}}(x) - \nabla f_{i_{0}}(x^{*})\|^{2} + 2\mathbb{E}\|\nabla f_{i_{0}}(\tilde{x}) - \nabla f_{i_{0}}(x^{*})\|^{2} \\ &\leq 4L\mathbb{E}(f_{i_{0}}(x) - f_{i_{0}}(x^{*}) - \langle \underbrace{\nabla f_{i_{0}}(x^{*})}_{\mathbb{E}=0}, x - x^{*} \rangle) + 4L\mathbb{E}(f_{i_{0}}(\tilde{x}) - f_{i_{0}}(x^{*}) - \langle \underbrace{\nabla f_{i_{0}}(x^{*})}_{\mathbb{E}=0}, \tilde{x} - x^{*} \rangle) \end{split}$$

Let
$$f := \frac{1}{m} \sum_{i=1}^{m} f_i$$
. Let $x, \tilde{x} \in \mathbb{R}^n$, $i_0 \sim \mathsf{Unif}\{1, \dots, m\}$, $g(x) := \underbrace{\nabla f_{i_0}(x)}_{\mathbb{E} = \nabla f(x)} + \underbrace{\left(\nabla f(\tilde{x}) - \nabla f_{i_0}(\tilde{x})\right)}_{\mathbb{E} = \nabla f(\tilde{x}) - \nabla f(\tilde{x}) = 0}$.

Key lemma: Let f_1, \ldots, f_m be convex and L-smooth. Then $\mathbb{E}\|g(x)\|^2 < 4L(\mathbb{E}f(x) - f^* + \mathbb{E}f(\tilde{x}) - f^*) \to 0 \text{ when } f(x), f(\tilde{x}) \to f^*.$

Proof: Using the inequalities $||u+v||^2 \le 2||u||^2 + 2||v||^2$, $\mathbb{E}||\xi-\mathbb{E}\xi||^2 \le \mathbb{E}||\xi||^2$ and the important fact about convex L-smooth functions, we obtain

$$\mathbb{E}\|g(x)\|^{2} = \mathbb{E}\|\nabla f_{i_{0}}(x) + (\nabla f(\tilde{x}) - \nabla f_{i_{0}}(\tilde{x}))\|^{2} \\
\leq 2\mathbb{E}\|\nabla f_{i_{0}}(x) - \nabla f_{i_{0}}(x^{*})\|^{2} + 2\mathbb{E}\|\nabla f_{i_{0}}(x^{*}) - \nabla f_{i_{0}}(\tilde{x}) - (\nabla f(x^{*}) - \nabla f(\tilde{x}))\|^{2} \\
\leq 2\mathbb{E}\|\nabla f_{i_{0}}(x) - \nabla f_{i_{0}}(x^{*})\|^{2} + 2\mathbb{E}\|\nabla f_{i_{0}}(\tilde{x}) - \nabla f_{i_{0}}(x^{*})\|^{2} \\
\leq 4L\mathbb{E}(f_{i_{0}}(x) - f_{i_{0}}(x^{*}) - \langle \nabla f_{i_{0}}(x^{*}), x - x^{*} \rangle) + 4L\mathbb{E}(f_{i_{0}}(\tilde{x}) - f_{i_{0}}(x^{*}) - \langle \nabla f_{i_{0}}(x^{*}), \tilde{x} - x^{*} \rangle) \\
= 4L(\mathbb{E}f(x) - f^{*}) + 4L(\mathbb{E}f(\tilde{x}) - f^{*}). \quad \square$$

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x)$ and f_i are convex.

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x)$ and f_i are convex.

Method: Fix $x_0 \in \mathbb{R}^n$, $\alpha > 0$. Set $\tilde{x}_0 := x_0$, $x_0^0 := x_0$. Repeat for $0 \le s \le S - 1$:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x)$ and f_i are convex.

Method: Fix $x_0 \in \mathbb{R}^n$, $\alpha > 0$. Set $\tilde{x}_0 := x_0$, $x_0^0 := x_0$. Repeat for $0 \le s \le S - 1$:

► Compute $\tilde{g}_s := \nabla f(\tilde{x}_s) = \frac{1}{m} \sum_{i=1}^m \nabla f_i(\tilde{x}_s)$.

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x)$ and f_i are convex.

Method: Fix $x_0 \in \mathbb{R}^n$, $\alpha > 0$. Set $\tilde{x}_0 := x_0$, $x_0^0 := x_0$. Repeat for $0 \le s \le S - 1$:

- ▶ Compute $\tilde{g}_s := \nabla f(\tilde{x}_s) = \frac{1}{m} \sum_{i=1}^m \nabla f_i(\tilde{x}_s)$.
- ▶ Repeat for $0 \le k \le K_s 1$:
 - ▶ Set $x_{k+1}^s := x_k^s \alpha g_k^s$, where g_k^s

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x)$ and f_i are convex.

Method: Fix $x_0 \in \mathbb{R}^n$, $\alpha > 0$. Set $\tilde{x}_0 := x_0$, $x_0^0 := x_0$. Repeat for $0 \le s \le S - 1$:

- ► Compute $\tilde{g}_s := \nabla f(\tilde{x}_s) = \frac{1}{m} \sum_{i=1}^m \nabla f_i(\tilde{x}_s)$.
- ▶ Repeat for $0 \le k \le K_s 1$:
 - $\blacktriangleright \ \, \mathsf{Set} \,\, x_{k+1}^s := x_k^s \alpha g_k^s, \,\, \mathsf{where} \,\, g_k^s := \nabla f_{i_k^s}(x_k^s) + (\tilde{g}_s \nabla f_{i_k^s}(\tilde{x}_s)), \,\, i_k^s \sim \mathsf{Unif}\{1,\ldots,m\}.$
- ► Set \tilde{x}_{s+1}

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x)$ and f_i are convex.

Method: Fix $x_0 \in \mathbb{R}^n$, $\alpha > 0$. Set $\tilde{x}_0 := x_0$, $x_0^0 := x_0$. Repeat for $0 \le s \le S - 1$:

- ► Compute $\tilde{g}_s := \nabla f(\tilde{x}_s) = \frac{1}{m} \sum_{i=1}^m \nabla f_i(\tilde{x}_s)$.
- ▶ Repeat for $0 \le k \le K_s 1$:
 - $\blacktriangleright \ \, \mathsf{Set} \,\, x_{k+1}^{s} := x_{k}^{s} \alpha g_{k}^{s}, \,\, \mathsf{where} \,\, g_{k}^{s} := \nabla f_{i_{k}^{s}}(x_{k}^{s}) + (\tilde{g}_{s} \nabla f_{i_{k}^{s}}(\tilde{x}_{s})), \,\, i_{k}^{s} \sim \mathsf{Unif}\{1, \dots, m\}.$
- ► Set $\tilde{x}_{s+1} := \frac{1}{K_s} \sum_{k=0}^{K_s-1} x_k^s$ and $x_0^{s+1} := x_{K_s}^s$.

Output:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x)$ and f_i are convex.

Method: Fix $x_0 \in \mathbb{R}^n$, $\alpha > 0$. Set $\tilde{x}_0 := x_0$, $x_0^0 := x_0$. Repeat for $0 \le s \le S - 1$:

- Compute $\tilde{g}_s := \nabla f(\tilde{x}_s) = \frac{1}{m} \sum_{i=1}^m \nabla f_i(\tilde{x}_s)$.
- ▶ Repeat for $0 \le k \le K_s 1$:
 - $\blacktriangleright \text{ Set } x_{k+1}^s := x_k^s \alpha g_k^s \text{, where } g_k^s := \nabla f_{i_k^s}(x_k^s) + (\tilde{g}_s \nabla f_{i_k^s}(\tilde{x}_s)), \ i_k^s \sim \mathsf{Unif}\{1,\ldots,m\}.$
- ► Set $\tilde{x}_{s+1} := \frac{1}{K_s} \sum_{k=0}^{K_s-1} x_k^s$ and $x_0^{s+1} := x_{K_s}^s$.

Output: \tilde{x}_S .

Complexity:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x)$ and f_i are convex.

Method: Fix $x_0 \in \mathbb{R}^n$, $\alpha > 0$. Set $\tilde{x}_0 := x_0$, $x_0^0 := x_0$. Repeat for $0 \le s \le S - 1$:

- ▶ Compute $\tilde{g}_s := \nabla f(\tilde{x}_s) = \frac{1}{m} \sum_{i=1}^m \nabla f_i(\tilde{x}_s)$.
- ▶ Repeat for $0 \le k \le K_s 1$:
 - $\blacktriangleright \ \, \mathsf{Set} \,\, x_{k+1}^{s} := x_k^{s} \alpha g_k^{s}, \,\, \mathsf{where} \,\, g_k^{s} := \nabla f_{i_k^{s}}(x_k^{s}) + (\tilde{g}_s \nabla f_{i_k^{s}}(\tilde{x}_s)), \,\, i_k^{s} \sim \mathsf{Unif}\{1,\ldots,m\}.$
- ► Set $\tilde{x}_{s+1} := \frac{1}{K_s} \sum_{k=0}^{K_s-1} x_k^s$ and $x_0^{s+1} := x_{K_s}^s$.

Output: \tilde{x}_S .

Complexity: $O(\sum_{s=0}^{S-1} K_s + mS)$.

Theorem:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x)$ and f_i are convex.

Method: Fix $x_0 \in \mathbb{R}^n$, $\alpha > 0$. Set $\tilde{x}_0 := x_0$, $x_0^0 := x_0$. Repeat for $0 \le s \le S - 1$:

- ▶ Compute $\tilde{g}_s := \nabla f(\tilde{x}_s) = \frac{1}{m} \sum_{i=1}^m \nabla f_i(\tilde{x}_s)$.
- ▶ Repeat for $0 \le k \le K_s 1$:
 - $\blacktriangleright \ \, \mathsf{Set} \,\, x_{k+1}^s := x_k^s \alpha g_k^s, \,\, \mathsf{where} \,\, g_k^s := \nabla f_{i_k^s}(x_k^s) + (\tilde{g}_s \nabla f_{i_k^s}(\tilde{x}_s)), \,\, i_k^s \sim \mathsf{Unif}\{1,\ldots,m\}.$
- ► Set $\tilde{x}_{s+1} := \frac{1}{K_s} \sum_{k=0}^{K_s-1} x_k^s$ and $x_0^{s+1} := x_{K_s}^s$.

Output: \tilde{x}_S .

Complexity: $O(\sum_{s=0}^{S-1} K_s + mS)$.

Theorem: Let
$$\Delta := \mathbb{E}f(x_0) - f^*$$
, $D^2 := \mathbb{E}\|x_0 - x^*\|^2$. For $\alpha := \frac{1}{6L}$, $K_s := 2^s K_0$, $K_0 := \frac{9LD^2}{\Delta}$, $S := \log_2 \frac{2\Delta}{\varepsilon}$, we have $\mathbb{E}f(\tilde{x}_S) - f^* \le \varepsilon$. Complexity: $O(\frac{LD^2}{\varepsilon} + m \log \frac{\Delta}{\varepsilon})$.

Gain:

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f(x) := \frac{1}{m} \sum_{i=1}^m f_i(x)$ and f_i are convex.

Method: Fix $x_0 \in \mathbb{R}^n$, $\alpha > 0$. Set $\tilde{x}_0 := x_0$, $x_0^0 := x_0$. Repeat for $0 \le s \le S - 1$:

- ▶ Compute $\tilde{g}_s := \nabla f(\tilde{x}_s) = \frac{1}{m} \sum_{i=1}^m \nabla f_i(\tilde{x}_s)$.
- ▶ Repeat for $0 \le k \le K_s 1$:
 - $\blacktriangleright \ \, \mathsf{Set} \,\, x_{k+1}^{s} := x_{k}^{s} \alpha g_{k}^{s}, \,\, \mathsf{where} \,\, g_{k}^{s} := \nabla f_{i_{k}^{s}}(x_{k}^{s}) + (\tilde{g}_{s} \nabla f_{i_{k}^{s}}(\tilde{x}_{s})), \,\, i_{k}^{s} \sim \mathsf{Unif}\{1, \dots, m\}.$
- ► Set $\tilde{x}_{s+1} := \frac{1}{K_s} \sum_{k=0}^{K_s-1} x_k^s$ and $x_0^{s+1} := x_{K_s}^s$.

Output: \tilde{x}_S .

Complexity: $O(\sum_{s=0}^{S-1} K_s + mS)$.

Theorem: Let $\Delta := \mathbb{E}f(x_0) - f^*$, $D^2 := \mathbb{E}\|x_0 - x^*\|^2$. For $\alpha := \frac{1}{6L}$, $K_s := 2^s K_0$, $K_0 := \frac{9LD^2}{\Delta}$, $S := \log_2 \frac{2\Delta}{\varepsilon}$, we have $\mathbb{E}f(\tilde{x}_S) - f^* \leq \varepsilon$. Complexity: $O(\frac{LD^2}{\varepsilon} + m \log \frac{\Delta}{\varepsilon})$.

Gain: $O(\varepsilon^{-1})$ instead of the $O(\varepsilon^{-2})$ of SGD.

SVRG for convex optimization: Proof

It suffices to prove that $\mathbb{E}f(\tilde{x}_S) - f^* \leq \frac{\Delta + \frac{9LD^2}{K_0}}{2^S}$ (*), and then plug in K_0 and S.

By the main result of SGD and the key lemma of SVRG, we have

$$\frac{1}{K_{s}} \sum_{k=0}^{K_{s}-1} (\mathbb{E}f(x_{k}^{s}) - f^{*}) + \frac{1}{2\alpha K_{s}} \mathbb{E}\|x_{K_{s}}^{s} - x^{*}\|^{2} \leq \frac{1}{2\alpha K_{s}} \mathbb{E}\|x_{0}^{s} - x^{*}\|^{2} + \frac{\alpha}{2K_{s}} \sum_{k=0}^{K_{s}-1} \mathbb{E}\|g_{k}^{s}\|^{2} \\
\leq \frac{1}{2\alpha K_{s}} \mathbb{E}\|x_{0}^{s} - x^{*}\|^{2} + 2L\alpha(\mathbb{E}f(\tilde{x}_{s}) - f^{*}) + \frac{2L\alpha}{K_{s}} \sum_{k=0}^{K_{s}-1} (\mathbb{E}f(x_{k}^{s}) - f^{*}).$$

Hence,

$$\frac{1}{K_s} \sum_{k=0}^{K_s-1} (\mathbb{E}f(x_k^s) - f^*) + \frac{\mathbb{E}\|x_{K_s}^s - x^*\|^2}{2\alpha K_s (1 - 2L\alpha)} \le \frac{1}{2} \left(\frac{4L\alpha}{1 - 2L\alpha} (\mathbb{E}f(\tilde{x}_s) - f^*) + \frac{\mathbb{E}\|x_0^s - x^*\|^2}{\alpha K_s (1 - 2L\alpha)} \right)$$

Using
$$\alpha := \frac{1}{6L}$$
, $K_{s+1} := 2K_s$, $\tilde{x}_{s+1} := \frac{1}{K_s} \sum_{k=0}^{K_s-1} x_k$ and $x_0^{s+1} := x_{K_s}^s$, we obtain
$$\mathbb{E}f(\tilde{x}_{s+1}) - f^* + \frac{\mathbb{E}\|x_0^{s+1} - x^*\|^2}{\alpha K_{s+1}(1 - 2L\alpha)} \le \frac{1}{2} \left(\mathbb{E}f(\tilde{x}_s) - f^* + \frac{\mathbb{E}\|x_0^s - x^*\|^2}{\alpha K_s(1 - 2L\alpha)} \right).$$

Now (*) follows by induction.

SVRG for non-convex optimization [Reddi et al., 2016]

Objective: $f(x) := \frac{1}{m} \sum_{i=1}^{m} f_i(x)$, where f_i are *L*-smooth but possibly <u>non-convex</u>.

SVRG for non-convex optimization [Reddi et al., 2016]

Objective: $f(x) := \frac{1}{m} \sum_{i=1}^{m} f_i(x)$, where f_i are *L*-smooth but possibly <u>non-convex</u>.

Method: Same as before but now $K_s := K$ (constant number of inner iterations) and $\tilde{x}_{s+1} := x_0^{s+1} := x_K^s$ (last iterate). **Output:**

SVRG for non-convex optimization [Reddi et al., 2016]

Objective: $f(x) := \frac{1}{m} \sum_{i=1}^{m} f_i(x)$, where f_i are *L*-smooth but possibly <u>non-convex</u>.

Method: Same as before but now $K_s := K$ (constant number of inner iterations) and $\tilde{x}_{s+1} := x_0^{s+1} := x_K^s$ (last iterate).

Output: $y_T \sim \text{Unif}((x_k^s)_{0 \le k \le K-1; 0 \le s \le S-1}).$

Theorem:

SVRG for non-convex optimization [Reddi et al., 2016]

Objective: $f(x) := \frac{1}{m} \sum_{i=1}^{m} f_i(x)$, where f_i are *L*-smooth but possibly <u>non-convex</u>.

Method: Same as before but now $K_s := K$ (constant number of inner iterations) and $\tilde{x}_{s+1} := x_0^{s+1} := x_K^s$ (last iterate).

Output: $y_T \sim \text{Unif}((x_k^s)_{0 \le k \le K-1; 0 \le s \le S-1}).$

Theorem: Let $T \ge 1$. For $\alpha := \Theta(\frac{1}{Lm^{2/3}})$, $K := \Theta(m)$ and S := T/K, we have $\frac{1}{L}\mathbb{E}\|\nabla f(y_T)\|^2 = O(\frac{m^{2/3}}{T}(\mathbb{E}f(x_0) - f^*))$ with complexity is O(m+T).

Corollary: SVRG complexity is $O(m + m^{2/3}\varepsilon^{-1})$.

SVRG for non-convex optimization [Reddi et al., 2016]

Objective: $f(x) := \frac{1}{m} \sum_{i=1}^{m} f_i(x)$, where f_i are *L*-smooth but possibly <u>non-convex</u>.

Method: Same as before but now $K_s := K$ (constant number of inner iterations) and $\tilde{x}_{s+1} := x_0^{s+1} := x_K^s$ (last iterate).

Output: $y_T \sim \text{Unif}((x_k^s)_{0 \le k \le K-1; 0 \le s \le S-1}).$

Theorem: Let $T \ge 1$. For $\alpha := \Theta(\frac{1}{Lm^{2/3}})$, $K := \Theta(m)$ and S := T/K, we have $\frac{1}{L}\mathbb{E}\|\nabla f(y_T)\|^2 = O(\frac{m^{2/3}}{T}(\mathbb{E}f(x_0) - f^*))$ with complexity is O(m+T).

Corollary: SVRG complexity is $O(m + m^{2/3}\varepsilon^{-1})$.

Complexity of SGD: $O(\varepsilon^{-2})$. Complexity of GD: $O(m\varepsilon^{-1})$.

Practical performance [Reddi et al., 2016]

Figure: Neural network results for CIFAR-10, MNIST and STL-10 datasets.

Part 1: General stochastic optimization:

▶ Use random unbiased estimates g(x) of the true gradient $\nabla f(x)$.

- ▶ Use random unbiased estimates g(x) of the true gradient $\nabla f(x)$.
- ► Main method: SGD. Complexity:

- ▶ Use random unbiased estimates g(x) of the true gradient $\nabla f(x)$.
- ▶ Main method: SGD. Complexity: $O(\varepsilon^{-2})$.
- ► Important characteristics:

- ▶ Use random unbiased estimates g(x) of the true gradient $\nabla f(x)$.
- ▶ Main method: SGD. Complexity: $O(\varepsilon^{-2})$.
- ► Important characteristics:
 - ▶ Magnitude of stochastic gradients: $\mathbb{E}||g(x)||^2 \leq M^2$.

- ▶ Use random unbiased estimates g(x) of the true gradient $\nabla f(x)$.
- ▶ Main method: SGD. Complexity: $O(\varepsilon^{-2})$.
- ► Important characteristics:
 - ▶ Magnitude of stochastic gradients: $\mathbb{E}||g(x)||^2 \leq M^2$.
 - ▶ Variance of stochastic gradients: $\mathbb{E}\|g(x) \nabla f(x)\|^2 \le \sigma^2$.

Part 1: General stochastic optimization:

- ▶ Use random unbiased estimates g(x) of the true gradient $\nabla f(x)$.
- ▶ Main method: SGD. Complexity: $O(\varepsilon^{-2})$.
- ► Important characteristics:
 - ▶ Magnitude of stochastic gradients: $\mathbb{E}||g(x)||^2 \leq M^2$.
 - ▶ Variance of stochastic gradients: $\mathbb{E}\|g(x) \nabla f(x)\|^2 \le \sigma^2$.

Part 2: Noise reduction for finite sums

Part 1: General stochastic optimization:

- ▶ Use random unbiased estimates g(x) of the true gradient $\nabla f(x)$.
- ▶ Main method: SGD. Complexity: $O(\varepsilon^{-2})$.
- ► Important characteristics:
 - ▶ Magnitude of stochastic gradients: $\mathbb{E}||g(x)||^2 \leq M^2$.
 - ▶ Variance of stochastic gradients: $\mathbb{E}\|g(x) \nabla f(x)\|^2 \le \sigma^2$.

Part 2: Noise reduction for finite sums

 $\blacktriangleright \text{ When } f(x) = \frac{1}{m} \sum_{i=1}^m f_i(x),$

Part 1: General stochastic optimization:

- ▶ Use random unbiased estimates g(x) of the true gradient $\nabla f(x)$.
- ▶ Main method: SGD. Complexity: $O(\varepsilon^{-2})$.
- ► Important characteristics:
 - ▶ Magnitude of stochastic gradients: $\mathbb{E}||g(x)||^2 \leq M^2$.
 - ▶ Variance of stochastic gradients: $\mathbb{E}\|g(x) \nabla f(x)\|^2 \le \sigma^2$.

Part 2: Noise reduction for finite sums

▶ When $f(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$, both M and σ can be dynamically reduced provided that one can evaluate objective several times.

Part 1: General stochastic optimization:

- ▶ Use random unbiased estimates g(x) of the true gradient $\nabla f(x)$.
- ▶ Main method: SGD. Complexity: $O(\varepsilon^{-2})$.
- ► Important characteristics:
 - ▶ Magnitude of stochastic gradients: $\mathbb{E}||g(x)||^2 \leq M^2$.
 - ▶ Variance of stochastic gradients: $\mathbb{E}\|g(x) \nabla f(x)\|^2 \le \sigma^2$.

Part 2: Noise reduction for finite sums

- ▶ When $f(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$, both M and σ can be dynamically reduced provided that one can evaluate objective several times.
- ► Gain: More efficient method SVRG. Complexity:

Part 1: General stochastic optimization:

- ▶ Use random unbiased estimates g(x) of the true gradient $\nabla f(x)$.
- ▶ Main method: SGD. Complexity: $O(\varepsilon^{-2})$.
- ► Important characteristics:
 - ▶ Magnitude of stochastic gradients: $\mathbb{E}||g(x)||^2 \leq M^2$.
 - ▶ Variance of stochastic gradients: $\mathbb{E}\|g(x) \nabla f(x)\|^2 \le \sigma^2$.

Part 2: Noise reduction for finite sums

- ▶ When $f(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$, both M and σ can be dynamically reduced provided that one can evaluate objective several times.
- ▶ Gain: More efficient method SVRG. Complexity: $O(\varepsilon^{-1})$.