Московский физико-технический институт (государственный университет) Факультет общей и прикладной физики

Лабораторная работа № 10.4

(Общая физика: квантовая физика)

Магнитные моменты легких ядер

Работу выполнил: Иванов Кирилл, 625 группа

г. Долгопрудный 2018 год

Цель работы: В работе вычисляются магнитные моменты протона, дейтрона и ядра фтора на основе измерения их g-факторов методом ядерного магнитного резонанса (ЯМР). Полученные данные сравниваются с вычислениями магнитных моментов на основе кварковой модели адронов и одночастичной оболочечной модели ядер.

1. Теоретическое введение

Момент количества движения ядра, который принимает целые для четного числа нуклонов или полуцелые для нечетных (в единицах \hbar) складывается из спина ядра S и полного орбитального момента нуклонов L:

$$I = L + S$$

При этом у ядер существует магнитный момент μ , связанный с I. Их отношение называется гиромагнитным отношение $\gamma = g\gamma_0$, где g — фактор Ланде, или g-фактор, а $\gamma_0 = -\frac{e}{2m_ec}$. Аналогично $\gamma_{\rm H} = \frac{e}{2m_pc}$

Магнитный момент таким образом можно записать как

$$\mu = \gamma_{\scriptscriptstyle \rm H} \hbar I$$

Измерять его можно через ядерный магнетрон

$$\mu_{\scriptscriptstyle \rm H} = \gamma_{\scriptscriptstyle \rm H} \hbar = \frac{e}{2m_p c} \hbar$$

Таким образом, запишем магнитный момент в виде:

$$\mu = \mu_{\mathfrak{R}} g_{\mathfrak{R}} I \tag{1}$$

В данной работе исследуется ядерный магнитный резонанс (ЯМР). Если пропускать атомы сквозь сильное магнитное поле, связь I и Jразрывается, и оба эти вектора независимо прецессируют вокруг H с угловой частотой $\omega = g(eH/Mc)$, где g — гиромагнитное отношение. Если теперь наложить слабое добавочное магнитное поле H', перпендикулярное к основному полю, то оно вызовет изменение ориентации ядерных спинов. Этот эффект может быть обнаружен, так как он оказывает влияние на траекторию атомов.

Этот метод может быть применен и к неподвижным ядрам и тогда он называется методом ЯМР. ЯМР — это резонансное поглощение электромагнитной энергии в веществах, обусловленное ядерным перемагничиванием. ЯМР наблюдается в постоянном магнитном поле H_0 при одновременном воздействии на образец радиочастотного магнитного поля, перпендикулярного H_0 , и обнаруживается по поглощению излучения.

В магнитном поле ядерные уровни расщепляются (появляется так называемое зеемановское расщепление) и под действием внешнего высокочастотного поля могут происходить переходы между компонентами расщепившегося уровня, это явление носит резонансный характер. Различие по энергии между двумя соседними компонентами определяется формулой

$$\Delta E = g_{\rm g} \mu_{\rm g} B_0 = h f_0$$

Из условия, что ΔE равна энергии квантов, задающие электромагнитные переходы, при резонансной частоте f_0 можно найти фактор Ланде по формуле:

$$g_{\scriptscriptstyle \mathfrak{A}} = \frac{hf_0}{\mu_{\scriptscriptstyle \mathfrak{A}}B_0} \tag{2}$$

2. Выполнение работы

Запишем значение B_0 постоянного магнита:

$$B_0 = 142,7 \text{ мТл}$$

Найдем значения резонансной частоты для трех разных образцов:

- ullet Вода, ЯМР на ядрах водорода: $f_0 = 5.87 \pm 0.01 \ \mathrm{M}$ Гц
- ullet Резина, ЯМР на ядрах водорода: $f_0 = 5.87 \pm 0.01 \ \mathrm{M}\Gamma\mathrm{ц}$
- \bullet Тефлон, ЯМР на ядрах фтора: $f_0 = 5.52 \pm 0.01 \ \mathrm{M}\Gamma\mathrm{ц}$

По формулам (2) и (1) вычислим значения g-фактора и магнитного момента соответственно ($I=\frac{1}{2}$ для водорода и фтора):

- Вода, ЯМР на ядрах водорода: $g_{\mathrm{я}H} = 5{,}398 \pm 0{,}009, \quad \mu_p = (2{,}699 \pm 0{,}005)\mu_{\mathrm{я}}$
- ullet Резина, ЯМР на ядрах водорода: $g_{\mathrm{s}H}=5{,}398\pm0{,}009, \quad \mu_p=(2{,}699\pm0{,}005)\mu_{\mathrm{s}}$
- Тефлон, ЯМР на ядрах фтора: $g_{\mathsf{R}F} = 5{,}079 \pm 0{,}009, \quad \mu_F = (2{,}539 \pm 0{,}005)\mu_{\mathsf{R}}$

Для дейтерия, возьмем результат измерения у коллег по группе из-за отсутствия его на нашей установке:

• $f_0=0.378\pm0.003$ МГц, $B=517\pm2$ мТл, тогда $g=0.857\pm0.004$ \Rightarrow $\mu_d=(0.857\pm0.004)\mu_{\text{я}}$ (т.к $I_d=1$).

3. Вывод

Сведем полученные результаты в таблицу:

Таблица 1: Итоговые результаты

Образец	f_0 , МГц	$g_{\scriptscriptstyle \mathtt{H}}$	μ (в ед. μя)	$\mu_{\text{я таблич}}$ (в ед. $\mu_{\text{я}}$)
Вода (ядра Н)	$5,87 \pm 0,01$	$5,398 \pm 0,009$	$2,699 \pm 0,005$	2,793
Резина (ядра Н)	$5,87 \pm 0,01$	$5,398 \pm 0,009$	$2,699 \pm 0,005$	2,793
Тефлон (ядра F)	$5,52 \pm 0,01$	$5,079 \pm 0,009$	$2,539 \pm 0,005$	2,629
Тяжелая вода (ядра 2H)	0.378 ± 0.003	0.857 ± 0.004	0.857 ± 0.004	0,857

Видно, что полученные значения достаточно близки к табличным. При этом согласно кварковой модели адронов, $\mu_p = 3\mu_{\rm s}$, и для ядра фтора момент, вычисленный при помощи одночастичной оболочечной модели ядер, равен $\mu_F = \mu_{\rm s}$.

Подсчитаем долю состояния 3_1D в основном состоянии дейтрона (из предположения о наличии в нем 3_1S и 3_1D состояний):

$$P_D = \frac{2}{3} \frac{\mu_p + \mu_n - \mu_d}{\mu_p + \mu_d - \frac{1}{2}} \approx 0.04$$

$$\oint x dx = \left/ \frac{x}{y} Damir Petuh \right/ = \cos x$$