

Fall 2022

Digital Engineering

Dr. Hatem Yousry

1

Agenda

- Basic Logic Theorems.
- DeMorgan's Theorems.
- Algebraic Manipulation.
- Logic Simplification.

Reference	Rule or Law	Reference	Rule or Law	
Rule 1	A+0=A	Rule 10	A + AB = A	
Rule 2	A+1=1	Rule 11	A + A'B = A	
Rule 3	$A \cdot 0 = 0$	Rule 12	(A+B)(A+C) = A+BC	
Rule 4	$A \cdot 1 = A$	Commutative Law	A+B=B+A	
Rule 5	A + A = A	Commutative Law	AB = BA	
Rule 6	A + A' = 1	Associative Law	A + (B+C) = (A+B) + C	
Rule 7	$A \cdot A = A$	Associative Law	A(BC) = (AB)C	
Rule 8	$A \cdot A' = 0$	Distributive Law	A(B+C) = AB + AC	
Rule 0	(A')' = A			

Logic Circuit Design Process

- Problem specification.
- Truth table derivation.
- Derivation of logical expression.
- Simplification of logical expression.
- Implementation.

Conversion from Decimal to a system with base R

A decimal number can be converted into its equivalent in base R using the following procedure:

- Step 1: Perform the integer division of the decimal number by R and record the remainder.
 - e.g. if the number is 70 and the base is 4 then 70/4 = 17 + 2/4
- Step 2: Replace the decimal number with the result of the division in step 1. Repeat step 1, until a zero result is found.

e.g.
$$17/4 = 4 + 1/4$$

 $4/4 = 1 + 0/4$
 $1/4 = 0 + 1/4$

Step 3: The number is formed by reading the remainders in reversed order.

e.g.
$$(70)_{10} = (1012)_4$$

Conversion from decimal to binary

- Divide the number by 2 obtaining quotient and remainder
- Divide the new quotient by 2 obtaining quotient and remainder
- Repeat until quotient is 0
- The binary number digits are the remainder digits in reverse order

$(24)_{10} = (?)_2$

	q	I
24/2	12	C
12/2	6	C
6/2	3	C
3/2	1	1
1/2	0	1

Successive Division by 2

2 29	Remainders
2 14	1 LSB
2 7	0
2 3	1
2 1	1
0	1 MSB
	Read the remainders from the bottom up

$$(24)_{10} = (11000)_2$$

24	2 ³	2 ²	21	2 ⁰	
16	8	4	2	1	
0	0	0	0	0	0

Conversion from decimal to binary

Conversion from decimal to binary

Binary Logic

 $z = x \cdot y$

Logic gates

 \boldsymbol{x}

• Graphic Symbols and Input-Output Signals for Logic gates:

z = x + y

Logic Chips

5400/7400 Quad NAND gate

5402/7402 Quad NOR gate

7400 Quad 2-input NAND Gates

5408/7408 Quad AND gate

5432/7432 Quad OR gate

5486/7486 Quad XOR gate

5404/7404 Hex inverter

Boolean Algebra

- Complement
 - $x+x'=1 \rightarrow 0+0'=0+1=1; 1+1'=1+0=1$
 - $x.x'=0 \rightarrow 0.$ 0'=0. 1=0; 1. 1'=1. 0=0
- Duality
 - Form the dual of the expression
 - a + (bc) = (a + b)(a + c)
 - Following the replacement rules...
 - a(b+c) = ab + ac
- Absorption Property (Covering)
 - $\bullet \quad \mathbf{x} + \mathbf{x}\mathbf{y} = \mathbf{x}$

\overline{x}	y	xy	x+xy
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

Basic Logic Theorems

Reference	Rule or Law	Reference	Rule or Law
Rule 1	A+0=A	Rule 10	A + AB = A
Rule 2	A + 1 = 1	Rule 11	A + A B = A
Rule 3	$A \cdot 0 = 0$	Rule 12	(A+B)(A+C) = A+BC
Rule 4	$A \cdot 1 = A$	Commutative Law	A+B=B+A
Rule 5	A + A = A	Commutative Law	AB = BA
Rule 6	A+A'=1	Associative Law	A + (B+C) = (A+B) + C
Rule 7	$A \cdot A = A$	Associative Law	A(BC) = (AB)C
Rule 8	$A \cdot A' = 0$	Distributive Law	A(B+C) = AB + AC
Rule 9	(A')' = A		

DeMorgan's Theorem

•
$$(x+y)'=x'y'$$

•
$$(xy)'=x'+y'$$

• By means of truth table

A NAND gate is equivalent to an inversion followed by an OR

$$\hat{A} + \overline{B} = \hat{A} + \overline{B}$$

A NOR gate is equivalent to an inversion followed by an AND

x	y	<i>x</i> '	<i>y</i> '	<i>x</i> + <i>y</i>	(x+y)'	<i>x'y'</i>	xy	x'+y'	(xy) '
0	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	0

Examples

•
$$F_1 = x y z'$$

•
$$F_2 = x + y'z$$

•
$$F_3 = x'y'z + x'yz + xy'$$

•
$$F_4 = x y' + x'z$$

\boldsymbol{x}	y	z	F_1	F_2	F_3	F_4
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

Boolean Functions

Name:

		_		0 ()		
		Inp	uts		Output	
	Α	В	C	D		
0	0	0	0	0		
1	0	0	0	1		
2	0	0	1	0		
3	0	0	1	1		
4	0	1	0	0		
5	0	1	0	1		
6	0	1	1	0		
7	0	1	1	1		
8	1	0	0	0		
9	1	0	0	1		
10	1	0	1	0		
11	1	0	1	1		
12	1	1	0	0		
13	1	1	0	1		
14	1	1	1	0		
15	1	1	1	1		

Boolean Expressions

Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	x
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y , then x
$F_{12} = x'$	x'	Complement	Not x
$F_{13} = x' + y$	$x \supset y$	Implication	If x , then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$	• "	Identity	Binary constant 1

Algebraic Manipulation

To minimize Boolean expressions

- Literal: A primed or unprimed variable (an input to a gate).
- Term: An implementation with a gate.
- The minimization of the number of literals and the number of terms \rightarrow a circuit with less equipment

Example

1.
$$x(x'+y) = xx' + xy = 0 + xy = xy$$

2.
$$x+x'y = (x+x')(x+y) = 1 (x+y) = x+y$$

3.
$$(x+y)(x+y') = x+xy+xy'+yy' = x(1+y+y') = x$$

4.
$$xy + x'z + yz = xy + x'z + yz(x+x') = xy + x'z + yzx + yzx' = xy(1+z) + x'z(1+y) = xy + x'z$$

5. (x+y)(x'+z)(y+z) = (x+y)(x'+z), by duality from function 4. (consensus theorem with duality)

Rules of Boolean Algebra

- 12 basic rules that are useful in manipulating and simplifying Boolean expressions. Rules 1 through 9 will be viewed in terms of their application to logic gates.
- Rules 10 through 12 will be derived in terms of the simpler rules

Basic rules of Boolean algebra.

1.
$$A + 0 = A$$

2.
$$A + 1 = 1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

7.
$$A \cdot A = A$$

8.
$$A \cdot \overline{A} = 0$$

9.
$$\overline{\overline{A}} = A$$

10.
$$A + AB = A$$

11.
$$A + \overline{A}B = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

Rule 11

Rule 11: $A + \overline{AB} = A + B$ This rule can be proved as follows:

$$A + \overline{A}B = (A + AB) + \overline{A}B$$
 Rule $10: A = A + AB$
 $= (AA + AB) + \overline{A}B$ Rule $7: A = AA$
 $= AA + AB + A\overline{A} + \overline{A}B$ Rule $8: \operatorname{adding} A\overline{A} = 0$
 $= (A + \overline{A})(A + B)$ Factoring
 $= 1 \cdot (A + B)$ Rule $6: A + \overline{A} = 1$
 $= A + B$ Rule $4: \operatorname{drop the } 1$

	n		4 . 1 D	4 . D	-
A	В	AB	$A + \overline{A}B$	A + B	_
0	0	0	0	0	$A \rightarrow \bigcirc$
0	1	1	1	1	
1	0	0	1	1	В
1	1	0	1	1	$A \longrightarrow$
			L eq	ual ौ	$B \longrightarrow$

Rule 12

Rule 12: (A + B)(A + C) = A + BC This rule can be proved as follows:

$$(A + B)(A + C) = AA + AC + AB + BC$$
 Distributive law
 $= A + AC + AB + BC$ Rule 7: $AA = A$
 $= A(1 + C) + AB + BC$ Factoring (distributive law)
 $= A \cdot 1 + AB + BC$ Rule 2: $1 + C = 1$
 $= A(1 + B) + BC$ Factoring (distributive law)
 $= A \cdot 1 + BC$ Rule 2: $1 + B = 1$
 $= A + BC$ Rule 4: $A \cdot 1 = A$

			•		-			
\boldsymbol{A}	В	C	A + B	A + C	(A+B)(A+C)	BC	A + BC	_
0	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	$A \leftarrow A$
0	1	0	1	0	0	0	0	$B \longrightarrow A$
0	1	1	1	1	1	1	1	c
1	0	0	1	1	1	0	1	
1	0	1	1	1	1	0	1	
1	1	0	1	1	1	0	1	$A \longrightarrow A$
1	1	1	1	1	1 1	1	1	$c \longrightarrow c$
					†	— equal ——	†	
						— equal ——		

Basic rules of Boolean algebra.

- 1. A + 0 = A
- 7. $A \cdot A = A$
- 8. $A \cdot \overline{A} = 0$
- 9. $\overline{\overline{A}} = A$
- 10. A + AB = A

- 5. A + A = A
- 11. $A + \overline{A}B = A + B$
- 6. $A + \overline{A} = 1$
- 12. (A + B)(A + C) = A + BC

- Using Boolean algebra techniques, simplify this expression:
- AB + A(B + C) + B(B + C)

Logic Simplification

- Solution; The following is not necessarily the only approach.
- **Step 1:** Apply the **distributive law** to the second and third terms in the expression, as follows: AB + AB + AC + BB + BC
- **Step 2:** Apply rule 7 (BB = B) to the fourth term. AB + AB + AC + B + BC.
- **Step 3:** Apply rule 5 (AB + AB = AB) to the first two terms. AB + AC + B + BC.
- **Step 4:** Apply rule 10 (B + BC = B) to the last two terms. AB + AC + B.
- **Step 5:** Apply rule 10 (AB + B = B) to the first and third terms. B + AC Atthis point the expression is simplified as much as possible.
- Once you gain experience in applying Boolean algebra, you can often combine many individual steps.

Simplify the following Boolean expression:

$[A\overline{B}(C + BD) + \overline{A}\overline{B}]C$

Solution

Step 1: Apply the distributive law to the terms within the brackets.

$$(A\overline{B}C + A\overline{B}BD + \overline{A}\overline{B})C$$

Step 2: Apply rule 8 ($\overline{B}B = 0$) to the second term within the parentheses.

$$(A\overline{B}C + A \cdot 0 \cdot D + \overline{A}\overline{B})C$$

Step 3: Apply rule 3 $(A \cdot 0 \cdot D = 0)$ to the second term within the parentheses.

$$(A\overline{B}C + 0 + \overline{A}\overline{B})C$$

Step 4: Apply rule 1 (drop the 0) within the parentheses.

$$(A\overline{B}C + \overline{A}\overline{B})C$$

Step 5: Apply the distributive law.

$$A\overline{B}CC + \overline{A}\overline{B}C$$

Step 6: Apply rule 7 (CC = C) to the first term.

$$A\overline{B}C + \overline{A}\overline{B}C$$

Step 7: Factor out $\overline{B}C$.

$$\overline{B}C(A + \overline{A})$$

Step 8: Apply rule 6 ($A + \overline{A} = 1$).

$$\overline{B}C \cdot 1$$

Step 9: Apply rule 4 (drop the 1).

Basic rules of Boolean algebra.

1.
$$A + 0 = A$$

7. $A \cdot A = A$

2.
$$A + 1 = 1$$

8. $A \cdot \overline{A} = 0$

$$3. A \cdot 0 = 0$$

9. $\bar{A} = A$

4.
$$A \cdot 1 = A$$

5. $A + A = A$

10. A + AB = A

$$6.4 + \overline{4} = 1$$

11. $A + \overline{A}B = A + B$

6.
$$A + \overline{A} = 1$$

12. (A + B)(A + C) = A + BC

Simplify the following Boolean expression:

$$\overline{A}BC + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + A\overline{B}C + ABC$$

Solution

Step 1: Factor BC out of the first and last terms.

$$BC(\overline{A} + A) + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + A\overline{B}C$$

Step 2: Apply rule 6 ($\overline{A} + A = 1$) to the term in parentheses, and factor $A\overline{B}$ from the second and last terms.

$$BC \cdot 1 + A\overline{B}(\overline{C} + C) + \overline{A}\overline{B}\overline{C}$$

Step 3: Apply rule 4 (drop the 1) to the first term and rule 6 ($\overline{C} + C = 1$) to the term in parentheses.

$$BC + A\overline{B} \cdot 1 + \overline{A}\overline{B}\overline{C}$$

Step 4: Apply rule 4 (drop the 1) to the second term.

$$BC + A\overline{B} + \overline{A}\overline{B}\overline{C}$$

Step 5: Factor \overline{B} from the second and third terms.

$$BC + \overline{B}(A + \overline{A}\overline{C})$$

Step 6: Apply rule 11 $(A + \overline{A} \overline{C} = A + \overline{C})$ to the term in parentheses.

$$BC + \overline{B}(A + \overline{C})$$

Step 7: Use the distributive and commutative laws to get the following expression:

$$BC + A\overline{B} + \overline{B}\overline{C}$$

1.
$$A + 0 = A$$

7.
$$A \cdot A = A$$

8. $A \cdot \overline{A} = 0$

2.
$$A + 1 = 1$$

3. $A \cdot 0 = 0$

9.
$$\overline{\overline{A}} = A$$

4.
$$A \cdot 1 = A$$

10.
$$A + AB = A$$

5.
$$A + A = A$$

11.
$$A + \overline{A}B = A + B$$

$$6. A + \overline{A} = 1$$

11.
$$A + \overline{AB} = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

Applying DeMorgan's Theorems

• The following procedure illustrates the application of DeMorgan's theorems and Boolean algebra to the specific expression

$$\overline{A + B\overline{C}} + D(\overline{E + \overline{F}})$$

- Step 1: Identify the terms to which you can apply DeMorgan's theorems, and think of each term as a single variable. Let $\overline{A + B\overline{C}} = X$ and $D(\overline{E + \overline{F}}) = Y$.
- Step 2: Since $\overline{X + Y} = \overline{X}\overline{Y}$, $\overline{(\overline{A + B\overline{C}}) + (\overline{D(E + \overline{F})})} = (\overline{\overline{A + B\overline{C}}})(\overline{D(\overline{E + \overline{F}})})$
- **Step 3:** Use rule $9(\overline{\overline{A}} = A)$ to cancel the double bars over the left term (this is not part of DeMorgan's theorem).

$$(\overline{\overline{A} + B\overline{C}})(\overline{D(\overline{E} + \overline{F})}) = (A + B\overline{C})(\overline{D(\overline{E} + \overline{F})})$$

Step 4: Apply DeMorgan's theorem to the second term.

$$(A + B\overline{C})(\overline{D(\overline{E} + \overline{F})}) = (A + B\overline{C})(\overline{D} + (\overline{\overline{E} + \overline{F}}))$$

Step 5: Use rule $9(\overline{\overline{A}} = A)$ to cancel the double bars over the $E + \overline{F}$ part of the term.

$$(A + B\overline{C})(\overline{D} + \overline{E + F}) = (A + B\overline{C})(\overline{D} + E + \overline{F})$$

Applying DeMorgan's Theorems

- Apply DeMorgan's theorems to each of the following expressions:
 - (a) $\overline{(A+B+C)D}$
 - (b) $\overline{ABC + DEF}$
 - (c) $\overline{AB} + \overline{CD} + EF$
- (a) Let A + B + C = X and D = Y. The expression $\overline{(A + B + C)D}$ is of the form $\overline{XY} = \overline{X} + \overline{Y}$ and can be rewritten as

$$\overline{(A+B+C)D} = \overline{A+B+C} + \overline{D}$$

Next, apply DeMorgan's theorem to the term $\overline{A + B + C}$.

$$\overline{A+B+C} + \overline{D} = \overline{A}\overline{B}\overline{C} + \overline{D}$$

Applying DeMorgan's Theorems

- (a) $\overline{(A+B+C)D}$
- **(b)** $\overline{ABC + DEF}$
- (c) $A\overline{B} + \overline{C}D + EF$
- (b) Let ABC = X and DEF = Y. The expression $\overline{ABC + DEF}$ is of the form $\overline{X + Y} = \overline{X}\overline{Y}$ and can be rewritten as

$$\overline{ABC + DEF} = (\overline{ABC})(\overline{DEF})$$

Next, apply DeMorgan's theorem to each of the terms \overline{ABC} and \overline{DEF} .

$$(\overline{ABC})(\overline{DEF}) = (\overline{A} + \overline{B} + \overline{C})(\overline{D} + \overline{E} + \overline{F})$$

(c) Let $A\overline{B} = X$, $\overline{C}D = Y$, and EF = Z. The expression $\overline{A}\overline{B} + \overline{C}D + EF$ is of the form $\overline{X} + \overline{Y} + \overline{Z} = \overline{X}\overline{Y}\overline{Z}$ and can be rewritten as

$$\overline{A\overline{B} + \overline{C}D + EF} = (\overline{A\overline{B}})(\overline{\overline{C}D})(\overline{EF})$$

Next, apply DeMorgan's theorem to each of the terms \overline{AB} , $\overline{\overline{CD}}$, and \overline{EF} .

$$(\overline{A}\overline{B})(\overline{\overline{C}D})(\overline{EF}) = (\overline{A} + B)(C + \overline{D})(\overline{E} + \overline{F})$$

Complement of a Function

- An interchange of 0's for 1's and 1's for 0's in the value of F
 - By DeMorgan's theorem

•
$$(A+B+C)' = (A+X)'$$
 let $B+C = X$
 $= A'X'$ by (DeMorgan's)
 $= A'(B+C)'$ substitute $B+C = X$
 $= A'(B'C')$ by (DeMorgan's)
 $= A'B'C'$ by (associative)

• *Generalizations*: a function is obtained by interchanging AND and OR operators and complementing each literal.

•
$$(A+B+C+D+...+F)' = A'B'C'D'...F'$$

•
$$(ABCD ... F)' = A' + B' + C' + D' ... + F'$$

Examples

- Example $F_1' = (x'yz' + x'y'z)' = (x'yz')' (x'y'z)' = (x+y'+z)$ (x+y+z')
 - $F_2' = [x(y'z'+yz)]' = x' + (y'z'+yz)' = x' + (y'z')' (yz)'$ = x' + (y+z) (y'+z')= x' + yz'+y'z
- Example : a simpler procedure
 - Take the dual of the function and complement each literal

1.
$$F_1 = x'yz' + x'y'z$$
.

The dual of F_1 is (x'+y+z')(x'+y'+z).

Complement each literal: $(x+y'+z)(x+y+z') = F_1'$

2.
$$F_2 = x(y'z' + yz)$$
.

The dual of F_2 is x+(y'+z')(y+z).

Complement each literal: $x'+(y+z)(y'+z')=F_2'$

Thank You

Dr. Hatem Yousry @nctu.edu.eg

