Intro to Software Verification - Homework 3

Yosef Goren & Andrew

December 18, 2022

Question 1

- A. 3
- B. 1
- C. 3
- D. 2
- E. 1

Question 2

- 1. True. Let $\pi = s_0 \rightarrow s_5 \rightarrow s_5$.
 - $M, \pi^2 \models b$
 - $M, \pi^1 \models Xb$
 - $M, \pi^0 \models XXb$
 - $M \models E[XXb]$
- 2. True. Let π be an arbitrary path in M. π must be in the form $s_0 \to v \to *$ where $v \in \{s_1, s_4, s_5\}$. We want to prove $M, \pi \models (EXa)U(EXc)$.

$$((s_0, s_1) \in M) \land (s_1 \models a) \Rightarrow s_0 \models EXa \Rightarrow \pi^0 \models EXa$$

Additionally:

$$\forall u \in \{s_1, s_4, s_5\}, \exists u' : (u, u') \in M \land u' \models c$$

$$\Rightarrow \forall u \in \{s_1, s_4, s_5\}, u \models EXc$$

$$\Rightarrow v \models EXc \Rightarrow \pi^1 \models EXc$$

$$\Rightarrow M, \pi \models (EXa)U(EXc)$$

- 3. True. Let $\pi = s_0 \rightarrow s_4 \rightarrow s_7$.
 - $M, \pi^2 \models Gc$
 - $M, \pi^1 \models a$
 - $M, \pi^1 \models aU(Gc)$
 - $M, \pi^0 \models b$
 - $M, \pi^0 \models bU(U(Gc))$
 - $M \models E[bU(U(Gc))]$
- 4. True. Let $\pi = s_0 \to *$.
 - \bullet $s_0 \models b$
 - $s_0 \models cUb$
 - $s_0 \models a(cUb)$
 - $\pi \models a(cUb)$
 - $\Rightarrow M \models A[a(cUb)]$

Question 3

Part A.

Let: $H := \{f_1 \times f_2 \times, ..., \times f_m\}.$

In other words, H is the set of all possible combinations of the m functions in F.

For any $h \in H, i \in [m]$, let h[i] be an item within h which was chosen from f_i one must exists since h is a combination of f_i .

More formally, let $h[i] := argmin_{i|s_i \in h \cap f_i}$ (the minimal item in h from f_i).

Proof.

The following logical formulas are equivalent (and the transition from one to the other is trivial):

- 1. $\forall i \in [m], f_i \cap inf(\pi) \neq \emptyset$
- 2. $\forall i \in [m], \exists s_i, s_i \in f_i \land s_i \in inf(\pi)$
- 3. $\forall i \in [m], \exists s_i \in f_i, s_i \in inf(\pi)$
- 4. $\exists s_1, s_2, ..., s_m, \forall i \in [m], s_i \in f_i \land s_i \in inf(\pi)$
- 5. $\exists h \in H, \forall i \in [m], h[i] \in f_i \land h[i] \in inf(\pi)$
- 6. $\exists h \in H, (\forall i \in [m], h[i] \in f_i) \land (\forall i \in [m], h[i] \in inf(\pi))$
- 7. $\exists h \in H, (h \subseteq inf(\pi)) \land (\forall i \in [m], h[i] \in inf(\pi))$
- 8. $\exists h \in H, (h \subseteq inf(\pi)) \land (true)$
- 9. $\exists h \in H, h \subseteq inf(\pi)$

Part B.

For any
$$i \in [m], \bar{f}_i := S \setminus f_i$$
.
Let $h := \bigcap_{i=1}^m \bar{f}_i, H := \{h\}$.

Proof.

The following series of formulas are equivalent:

- 1. $\forall i \in [m], f_i \cap inf(\pi) = \emptyset$
- 2. $\forall i \in [m], \bar{f}_i \cap inf(\pi) = inf(\pi)$
- 3. $\forall i \in [m], inf(\pi) \subseteq \bar{f}_i$
- 4. $\forall i \in [m], \forall s \in inf(\pi), s \in \bar{f}_i$
- 5. $\forall s \in inf(\pi), \forall i \in [m], s \in \bar{f}_i$
- 6. $\forall s \in inf(\pi), s \in \bigcap_{i=1}^{m} \bar{f}_i$
- 7. $inf(\pi) \subseteq bigcap_{i=1}^m \bar{f}_i$
- 8. $inf(\pi) \subseteq h$
- 9. $\forall h' \in H, inf(\pi) \subseteq h'$

Question 4