Discrete Dynamics

3.1	Discrete Systems	43
	Sidebar: Probing Further: Discrete Signals	45
	Sidebar: Probing Further: Modeling Actors as Functions	46
3.2	The Notion of State	48
3.3	Finite-State Machines	48
	3.3.1 Transitions	49
	3.3.2 When a Reaction Occurs	52
	Sidebar: Probing Further: Hysteresis	53
	3.3.3 Update Functions	55
	Sidebar: Software Tools Supporting FSMs	56
	Sidebar: Moore Machines and Mealy Machines	58
	3.3.4 Determinacy and Receptiveness	59
3.4	Extended State Machines	60
3.5	Nondeterminism	64
	3.5.1 Formal Model	66
	3.5.2 Uses of Nondeterminism	67
3.6	Behaviors and Traces	68
3.7	Summary	71
•••	rcises	73

Models of embedded systems include both **discrete** and **continuous** components. Loosely speaking, continuous components evolve smoothly, while discrete components evolve abruptly. The previous chapter considered continuous components, and showed that the physical dynamics of the system can often be modeled with ordinary differential or integral equations, or equivalently with actor models that mirror these equations. Discrete components, on the other hand, are not conveniently modeled by ODEs. In this chapter, we study how state machines can be used to model discrete dynamics. In the next chapter, we will show how these state machines can be combined with models of continuous dynamics to get hybrid system models.

3.1 Discrete Systems

A **discrete system** operates in a sequence of discrete steps and is said to have **discrete dynamics**. Some systems are inherently discrete.

Example 3.1: Consider a system that counts the number of cars that enter and leave a parking garage in order to keep track of how many cars are in the garage at any time. It could be modeled as shown in Figure 3.1. We ignore for now how to design the sensors that detect the entry or departure of cars. We simply assume that the ArrivalDetector actor produces an event when a car arrives, and the DepartureDetector actor produces an event when a car departs. The Counter

Figure 3.1: Model of a system that keeps track of the number of cars in a parking garage.

Figure 3.2: Icon for the Integrator actor used in the previous chapter.

actor keeps a running count, starting from an initial value i. Each time the count changes, it produces an output event that updates a display.

In the above example, each entry or departure is modeled as a **discrete event**. A discrete event occurs at an instant of time rather than over time. The Counter actor in Figure 3.1 is analogous to the Integrator actor used in the previous chapter, shown here in Figure 3.2. Like the Counter actor, the Integrator accumulates input values. However, it does so very differently. The input of an Integrator is a function of the form $x \colon \mathbb{R} \to \mathbb{R}$ or $x \colon \mathbb{R}_+ \to \mathbb{R}$, a continuous-time signal. The signal u going into the up input port of the Counter, on the other hand, is a function of the form

$$u: \mathbb{R} \to \{absent, present\}.$$

This means that at any time $t \in \mathbb{R}$, the input u(t) is either *absent*, meaning that there is no event at that time, or *present*, meaning that there is. A signal of this form is known as a **pure signal**. It carries no value, but instead provides all its information by being either present or absent at any given time. The signal d in Figure 3.1 is also a pure signal.

Assume our Counter operates as follows. When an event is present at the up input port, it increments its count and produces on the output the new value of the count. When an event is present at the down input, it decrements its count and produces on the output the new value of the count. At all other times (when both inputs are absent), it produces no output (the count output is absent). Hence, the signal c in Figure 3.1 can be modeled by a function of the form

$$c: \mathbb{R} \to \{absent\} \cup \mathbb{Z}$$
.

(See Appendix A for notation.) This signal is not pure, but like u and d, it is either absent or present. Unlike u and d, when it is present, it has a value (an integer).

¹It would be wise to design this system with a fault handler that does something reasonable if the count drops below zero, but we ignore this for now.

Assume further that the inputs are absent most of the time, or more technically, that the inputs are discrete (see the sidebar on page 45). Then the Counter reacts in sequence to each of a sequence of input events. This is very different from the Integrator, which reacts continuously to a continuum of inputs.

The input to the Counter is a pair of discrete signals that at certain times have an event (are present), and at other times have no event (are absent). The output also is a discrete signal that, when an input is present, has a value that is a natural number, and at other times is absent.² Clearly, there is no need for this Counter to do anything when the input is absent. It only needs to operate when inputs are present. Hence, it has discrete dynamics.

Probing Further: Discrete Signals

Discrete signals consist of a sequence of instantaneous events in time. Here, we make this intuitive concept precise.

Consider a signal of the form $e \colon \mathbb{R} \to \{absent\} \cup X$, where X is any set of values. This signal is a **discrete signal** if, intuitively, it is absent most of the time and we can count, in order, the times at which it is present (not absent). Each time it is present, we have a discrete event.

This ability to count the events in order is important. For example, if e is present at all rational numbers t, then we do not call this signal discrete. The times at which it is present cannot be counted in order. It is not, intuitively, a sequence of instantaneous events in time (it is a set of instantaneous events in time, but not a sequence).

To define this formally, let $T \subseteq \mathbb{R}$ be the set of times where e is present. Specifically,

$$T = \{t \in \mathbb{R} : e(t) \neq absent\}.$$

Then e is discrete if there exists a one-to-one function $f: T \to \mathbb{N}$ that is **order preserving**. Order preserving simply means that for all $t_1, t_2 \in T$ where $t_1 \leq t_2$, we have that $f(t_1) \leq f(t_2)$. The existence of such a one-to-one function ensures that we can count off the events *in temporal order*. Some properties of discrete signals are studied in Exercise 8.

²As shown in Exercise 8, the fact that input signals are discrete does not necessarily imply that the output signal is discrete. However, for this application, there are physical limitations on the rates at which cars can arrive and depart that ensure that these signals are discrete. So it is safe to assume that they are discrete.

The dynamics of a discrete system can be described as a sequence of steps that we call **reactions**, each of which we assume to be instantaneous. Reactions of a discrete system are triggered by the environment in which the discrete system operates. In the case of the example of Figure 3.1, reactions of the Counter actor are triggered when one or more input events are present. That is, in this example, reactions are **event triggered**. When both inputs to the Counter are absent, no reaction occurs.

Probing Further: Modeling Actors as Functions

As in Section 2.2, the Integrator actor of Figure 3.2 can be modeled by a function of the form

$$I_i \colon \mathbb{R}^{\mathbb{R}_+} \to \mathbb{R}^{\mathbb{R}_+},$$

which can also be written

$$I_i : (\mathbb{R}_+ \to \mathbb{R}) \to (\mathbb{R}_+ \to \mathbb{R}).$$

(See Appendix A if the notation is unfamiliar.) In the figure,

$$y = I_i(x) ,$$

where i is the initial value of the integration and x and y are continuous-time signals. For example, if i = 0 and for all $t \in \mathbb{R}_+$, x(t) = 1, then

$$y(t) = i + \int_0^t x(\tau)d\tau = t.$$

Similarly, the Counter in Figure 3.1 can be modeled by a function of the form

$$C_i : (\mathbb{R}_+ \to \{absent, present\})^P \to (\mathbb{R}_+ \to \{absent\} \cup \mathbb{Z}),$$

where \mathbb{Z} is the integers and P is the set of input ports, $P = \{up, down\}$. Recall that the notation A^B denotes the set of all functions from B to A. Hence, the input to the function C is a function whose domain is P that for each port $p \in P$ yields a function in $(\mathbb{R}_+ \to \{absent, present\})$. That latter function, in turn, for each time $t \in \mathbb{R}_+$ yields either absent or present.

A particular reaction will observe the values of the inputs at a particular time t and calculate output values for that same time t. Suppose an actor has input ports $P = \{p_1, \cdots, p_N\}$, where p_i is the name of the i-th input port. Assume further that for each input port $p \in P$, a set V_p denotes the values that may be received on port p when the input is present. V_p is called the **type** of port p. At a reaction we treat each $p \in P$ as a variable that takes on a value $p \in V_p \cup \{absent\}$. A **valuation** of the inputs P is an assignment of a value in V_p to each variable $p \in P$ or an assertion that p is absent.

If port p receives a pure signal, then $V_p = \{present\}$, a singleton set (set with only one element). The only possible value when the signal is not absent is *present*. Hence, at a reaction, the variable p will have a value in the set $\{present, absent\}$.

Example 3.2: For the garage counter, the set of input ports is $P = \{up, down\}$. Both receive pure signals, so the types are $V_{up} = V_{down} = \{present\}$. If a car is arriving at time t and none is departing, then at that reaction, up = present and down = absent. If a car is arriving and another is departing at the same time, then up = down = present. If neither is true, then both are absent.

Outputs are similarly designated. Consider a discrete system with output ports $Q = \{q_1, \cdots, q_M\}$ with types V_{q_1}, \cdots, V_{q_M} . At each reaction, the system assigns a value $q \in V_q \cup \{absent\}$ to each $q \in Q$, producing a valuation of the outputs. In this chapter, we will assume that the output is *absent* at times t where a reaction does not occur. Thus, outputs of a discrete system are discrete signals. Chapter 4 describes systems whose outputs are not constrained to be discrete (see also box on page 58).

Example 3.3: The Counter actor of Figure 3.1 has one output port named *count*, so $Q = \{count\}$. Its type is $V_{count} = \mathbb{Z}$. At a reaction, *count* is assigned the count of cars in the garage.

3.2 The Notion of State

Intuitively, the **state** of a system is its condition at a particular point in time. In general, the state affects how the system reacts to inputs. Formally, we define the state to be an encoding of everything about the past that has an effect on the system's reaction to current or future inputs. The state is a summary of the past.

Consider the Integrator actor shown in Figure 3.2. This actor has state, which in this case happens to have the same value as the output at any time t. The state of the actor at a time t is the value of the integral of the input signal up to time t. In order to know how the subsystem will react to inputs at and beyond time t, we have to know what this value is at time t. We do not need to know anything more about the past inputs. Their effect on the future is entirely captured by the current value at t. The icon in Figure 3.2 includes i, an initial state value, which is needed to get things started at some starting time.

An Integrator operates in a time continuum. It integrates a continuous-time input signal, generating as output at each time the cumulative area under the curve given by the input plus the initial state. Its state at any given time is that accumulated area plus the initial state. The Counter actor in the previous section also has state, and that state is also an accumulation of past input values, but it operates discretely.

The state y(t) of the Integrator at time t is a real number. Hence, we say that the **state** space of the Integrator is $States = \mathbb{R}$. For the Counter used in Figure 3.1, the state s(t) at time t is an integer, so $States \subset \mathbb{Z}$. A practical parking garage has a finite and nonnegative number M of spaces, so the state space for the Counter actor used in this way will be

$$States = \{0, 1, 2, \cdots, M\}$$
.

(This assumes the garage does not let in more cars than there are spaces.) The state space for the Integrator is infinite (uncountably infinite, in fact). The state space for the garage counter is finite. Discrete models with finite state spaces are called finite-state machines (FSMs). There are powerful analysis techniques available for such models, so we consider them next.

3.3 Finite-State Machines

A **state machine** is a model of a system with discrete dynamics that at each reaction maps valuations of the inputs to valuations of the outputs, where the map may depend on

its current state. A **finite-state machine** (**FSM**) is a state machine where the set *States* of possible states is finite.

If the number of states is reasonably small, then FSMs can be conveniently drawn using a graphical notation like that in Figure 3.3. Here, each state is represented by a bubble, so for this diagram, the set of states is given by

$$States = \{State1, State2, State3\}.$$

At the beginning of each sequence of reactions, there is an **initial state**, State1, indicated in the diagram by a dangling arrow into it.

3.3.1 Transitions

Transitions between states govern the discrete dynamics of the state machine and the mapping of input valuations to output valuations. A transition is represented as a curved arrow, as shown in Figure 3.3, going from one state to another. A transition may also start and end at the same state, as illustrated with State3 in the figure. In this case, the transition is called a **self transition**.

In Figure 3.3, the transition from State1 to State2 is labeled with "guard / action." The **guard** determines whether the transition may be taken on a reaction. The **action** specifies what outputs are produced on each reaction.

A guard is a **predicate** (a boolean-valued expression) that evaluates to *true* when the transition should be taken, changing the state from that at the beginning of the transition to that at the end. When a guard evaluates to *true* we say that the transition is **enabled**. An action is an assignment of values (or *absent*) to the output ports. Any output port not

Figure 3.3: Visual notation for a finite state machine.

mentioned in a transition that is taken is implicitly *absent*. If no action at all is given, then all outputs are implicitly *absent*.

Example 3.4: Figure 3.4 shows an FSM model for the garage counter. The inputs and outputs are shown using the notation name: type. The set of states is $States = \{0, 1, 2, \cdots, M\}$. The transition from state 0 to 1 has a guard written as $up \land \neg down$. This is a predicate that evaluates to true when up is present and down is absent. If at a reaction the current state is 0 and this guard evaluates to true, then the transition will be taken and the next state will be 1. Moreover, the action indicates that the output should be assigned the value 1. The output port count is not explicitly named because there is only one output port, and hence there is no ambiguity.

If the guard expression on the transition from 0 to 1 had been simply up, then this could evaluate to true when down is also present, which would incorrectly count cars when a car was arriving at the same time that another was departing.

If p_1 and p_2 are pure inputs to a discrete system, then the following are examples of valid guards:

inputs: up, down: pure **output:** $count: \{0, \dots, M\}$

Figure 3.4: FSM model for the garage counter of Figure 3.1.

true Transition is always enabled. p_1 Transition is enabled if p_1 is present. $\neg p_1$ Transition is enabled if p_1 is absent. $p_1 \wedge p_2$ Transition is enabled if both p_1 and p_2 are present. $p_1 \vee p_2$ Transition is enabled if either p_1 or p_2 is present. $p_1 \wedge \neg p_2$ Transition is enabled if p_1 is present and p_2 is absent.

These are standard logical operators where *present* is taken as a synonym for *true* and *absent* as a synonym for *false*. The symbol \neg represents logical **negation**. The operator \land is logical **conjunction** (logical AND), and \lor is logical **disjunction** (logical OR).

Suppose that in addition the discrete system has a third input port p_3 with type $V_{p_3} = \mathbb{N}$. Then the following are examples of valid guards:

 $\begin{array}{ll} p_3 & \text{Transition is enabled if } p_3 \text{ is } \textit{present } \text{(not } \textit{absent)}. \\ p_3 = 1 & \text{Transition is enabled if } p_3 \text{ is } \textit{present} \text{ and has value } 1. \\ p_3 = 1 \wedge p_1 & \text{Transition is enabled if } p_3 \text{ has value } 1 \text{ and } p_1 \text{ is } \textit{present}. \\ p_3 > 5 & \text{Transition is enabled if } p_3 \text{ is } \textit{present} \text{ with value greater than } 5. \end{array}$

Example 3.5: A major use of energy worldwide is in heating, ventilation, and air conditioning (**HVAC**) systems. Accurate models of temperature dynamics and temperature control systems can significantly improve energy conservation. Such modeling begins with a modest **thermostat**, which regulates temperature to maintain a **setpoint**, or target temperature. The word "thermostat" comes from Greek words for "hot" and "to make stand."

Figure 3.5: A model of a thermostat with hysteresis.

Consider a thermostat modeled by an FSM with *States* = {heating, cooling} as shown in Figure 3.5. Suppose the setpoint is 20 degrees Celsius. If the heater is on, then the thermostat allows the temperature to rise past the setpoint to 22 degrees. If the heater is off, then it allows the temperature to drop past the setpoint to 18 degrees. This strategy is called hysteresis (see box on page 53). It avoids **chattering**, where the heater would turn on and off rapidly when the temperature is close to the setpoint temperature.

There is a single input *temperature* with type \mathbb{R} and two pure outputs *heatOn* and *heatOff*. These outputs will be *present* only when a change in the status of the heater is needed (i.e., when it is on and needs to be turned off, or when it is off and needs to be turned on).

The FSM in Figure 3.5 could be event triggered, like the garage counter, in which case it will react whenever a *temperature* input is provided. Alternatively, it could be **time triggered**, meaning that it reacts at regular time intervals. The definition of the FSM does not change in these two cases. It is up to the environment in which an FSM operates when it should react.

On a transition, the **action** (which is the portion after the slash) specifies the resulting valuation on the output ports when a transition is taken. If q_1 and q_2 are pure outputs and q_3 has type \mathbb{N} , then the following are examples of valid actions:

```
q_1 q_1 is present and q_2 and q_3 are absent.

q_1, q_2 q_1 and q_2 are both present and q_3 is absent.

q_3 := 1 q_1 and q_2 are absent and q_3 is present with value 1.

q_3 := 1, q_1 q_1 is present, q_2 is absent, and q_3 is present with value 1.

(nothing) q_1, q_2, and q_3 are all absent.
```

Any output port that is not mentioned in a transition that is taken is implicitly *absent*. When assigning a value to an output port, we use the notation name := value to distinguish the **assignment** from a predicate, which would be written name = value. As in Figure 3.4, if there is only one output, then the assignment need not mention the port name.

3.3.2 When a Reaction Occurs

Nothing in the definition of a state machine constrains *when* it reacts. The environment determines when the machine reacts. Chapters 5 and 6 describe a variety of mechanisms

and give a precise meaning to terms like event triggered and time triggered. For now, however, we just focus on what the machine does when it reacts.

When the environment determines that a state machine should react, the inputs will have a valuation. The state machine will assign a valuation to the output ports and (possibly)

Probing Further: Hysteresis

The thermostat in Example 3.5 exhibits a particular form of state-dependent behavior called **hysteresis**. Hysteresis is used to prevent chattering. A system with hysteresis has memory, but in addition has a useful property called **time-scale invariance**. In Example 3.5, the input signal as a function of time is a signal of the form

temperature:
$$\mathbb{R} \to \{absent\} \cup \mathbb{R}$$
.

Hence, temperature(t) is the temperature reading at time t, or absent if there is no temperature reading at that time. The output as a function of time has the form

$$heatOn, heatOff : \mathbb{R} \to \{absent, present\}$$
.

Suppose that instead of temperature the input is given by

$$temperature'(t) = temperature(\alpha \cdot t)$$

for some $\alpha > 0$. If $\alpha > 1$, then the input varies faster in time, whereas if $\alpha < 1$ then the input varies more slowly, but in both cases, the input pattern is the same. Then for this FSM, the outputs heatOn' and heatOff' are given by

$$heatOn'(t) = heatOn(\alpha \cdot t)$$
 $heatOff'(t) = heatOff(\alpha \cdot t)$.

Time-scale invariance means that scaling the time axis at the input results in scaling the time axis at the output, so the absolute time scale is irrelevant.

An alternative implementation for the thermostat would use a single temperature threshold, but instead would require that the heater remain on or off for at least a minimum amount of time, regardless of the temperature. The consequences of this design choice are explored in Exercise 2.

change to a new state. If no guard on any transition out of the current state evaluates to true, then the machine will remain in the same state.

It is possible for all inputs to be absent at a reaction. Even in this case, it may be possible for a guard to evaluate to true, in which case a transition is taken. If the input is absent and no guard on any transition out of the current state evaluates to true, then the machine will **stutter**. A **stuttering** reaction is one where the inputs and outputs are all absent and the machine does not change state. No progress is made and nothing changes.

Example 3.6: In Figure 3.4, if on any reaction both inputs are absent, then the machine will stutter. If we are in state 0 and the input *down* is *present*, then the guard on the only outgoing transition is false, and the machine remains in the same state. However, we do not call this a stuttering reaction because the inputs are not all *absent*.

Our informal description of the garage counter in Example 3.1 did not explicitly state what would happen if the count was at 0 and a car departed. A major advantage of FSM models is that they define all possible behaviors. The model in Figure 3.4 defines what happens in this circumstance. The count remains at 0. As a consequence, FSM models are amenable to formal checking, which determines whether the specified behaviors are in fact desirable behaviors. The informal specification cannot be subjected to such tests, or at least, not completely.

Figure 3.6: A default transition that need not be shown explicitly because it returns to the same state and produces no output.

Although it may seem that the model in Figure 3.4 does not define what happens if the state is 0 and *down* is *present*, it does so implicitly — the state remains unchanged and no output is generated. The reaction is not shown explicitly in the diagram. Sometimes it is useful to emphasize such reactions, in which case they can be shown explicitly. A convenient way to do this is using a **default transition**, shown in Figure 3.6. In that figure, the default transition is denoted with dashed lines and is labeled with "*true I*". A default transition is enabled if no non-default transition is enabled and if its guard evaluates to true. In Figure 3.6, therefore, the default transition is enabled if $up \land \neg down$ evaluates to false, and when the default transition is taken the output is absent.

Default transitions provide a convenient notation, but they are not really necessary. Any default transition can be replaced by an ordinary transition with an appropriately chosen guard. For example, in Figure 3.6 we could use an ordinary transition with guard $\neg(up \land \neg down)$.

The use of both ordinary transitions and default transitions in a diagram can be thought of as a way of assigning priority to transitions. An ordinary transition has priority over a default transition. When both have guards that evaluate to true, the ordinary transition prevails. Some formalisms for state machines support more than two levels of priority. For example SyncCharts (André, 1996) associates with each transition an integer priority. This can make guard expressions simpler, at the expense of having to indicate priorities in the diagrams.

3.3.3 Update Functions

The graphical notation for FSMs defines a specific mathematical model of the dynamics of a state machine. A mathematical notation with the same meaning as the graphical notation sometimes proves convenient, particularly for large state machines where the graphical notation becomes cumbersome. In such a mathematical notation, a finite-state machine is a five-tuple

(States, Inputs, Outputs, update, initialState)

where

- States is a finite set of states;
- *Inputs* is a set of input valuations;
- Outputs is a set of output valuations;
- update : States × Inputs → States × Outputs is an update function, mapping a state and an input valuation to a next state and an output valuation;

• *initialState* is the initial state.

The FSM reacts in a sequence of reactions. At each reaction, the FSM has a *current state*, and the reaction may transition to a *next state*, which will be the current state of the next reaction. We can number these states starting with 0 for the initial state. Specifically, let $s: \mathbb{N} \to \mathit{States}$ be a function that gives the state of an FSM at reaction $n \in \mathbb{N}$. Initially, $s(0) = \mathit{initialState}$.

Let $x \colon \mathbb{N} \to \mathit{Inputs}$ and $y \colon \mathbb{N} \to \mathit{Outputs}$ denote that input and output valuations at each reaction. Hence, $x(0) \in \mathit{Inputs}$ is the first input valuation and $y(0) \in \mathit{Outputs}$ is the first output valuation. The dynamics of the state machine are given by the following equation:

$$(s(n+1), y(n)) = update(s(n), x(n))$$
(3.1)

This gives the next state and output in terms of the current state and input. The *update* function encodes all the transitions, guards, and output specifications in an FSM. The term **transition function** is often used in place of update function.

The input and output valuations also have a natural mathematical form. Suppose an FSM has input ports $P = \{p_1, \dots, p_N\}$, where each $p \in P$ has a corresponding type V_p . Then

Software Tools Supporting FSMs

FSMs have been used in theoretical computer science and software engineering for quite some time (Hopcroft and Ullman, 1979). A number of software tools support design and analysis of FSMs. Statecharts (Harel, 1987), a notation for concurrent composition of hierarchical FSMs, has influenced many of these tools. One of the first tools supporting the Statecharts notation is STATEMATE (Harel et al., 1990), which subsequently evolved into Rational Rhapsody, sold by IBM. Many variants of Statecharts have arisen (von der Beeck, 1994), and some variant is now supported by nearly every software engineering tool that provides UML (unified modeling language) capabilities (Booch et al., 1998). SyncCharts (André, 1996) is a particularly nice variant in that it borrows the rigorous semantics of Esterel (Berry and Gonthier, 1992) for composition of concurrent FSMs. LabVIEW supports a variant of Statecharts that can operate within dataflow diagrams, and Simulink with its Stateflow extension supports a variant that can operate within continuous-time models.

Inputs is a set of functions of the form

$$i: P \to V_{p_1} \cup \cdots \cup V_{p_N} \cup \{absent\}$$
,

where for each $p \in P$, $i(p) \in V_p \cup \{absent\}$ gives the value of port p. Thus, a function $i \in Inputs$ is a valuation of the input ports.

Example 3.7: The FSM in Figure 3.4 can be mathematically represented as follows:

$$\begin{array}{lll} \textit{States} &=& \{0,1,\cdots,M\} \\ \textit{Inputs} &=& (\{\textit{up},\textit{down}\} \rightarrow \{\textit{present},\textit{absent}\}) \\ \textit{Outputs} &=& (\{\textit{count}\} \rightarrow \{0,1,\cdots,M,\textit{absent}\}) \\ \textit{initialState} &=& 0 \end{array}$$

The update function is given by

$$update(s,i) = \begin{cases} (s+1,s+1) & \text{if } s < M \\ & \land i(up) = present \\ & \land i(down) = absent \end{cases}$$

$$(s-1,s-1) & \text{if } s > 0 \\ & \land i(up) = absent \\ & \land i(down) = present \\ & (s,absent) & \text{otherwise} \end{cases}$$

$$(3.2)$$

for all $s \in \mathit{States}$ and $i \in \mathit{Inputs}$. Note that an output valuation $o \in \mathit{Outputs}$ is a function of the form $o \colon \{\mathit{count}\} \to \{0, 1, \cdots, M, \mathit{absent}\}$. In (3.2), the first alternative gives the output valuation as o = s + 1, which we take to mean the constant function that for all $q \in Q = \{\mathit{count}\}\ \mathsf{yields}\ o(q) = s + 1$. When there is more than one output port we will need to be more explicit about which output value is assigned to which output port. In such cases, we can use the same notation that we use for actions in the diagrams.

Moore Machines and Mealy Machines

The state machines we describe in this chapter are known as **Mealy machines**, named after George H. Mealy, a Bell Labs engineer who published a description of these machines in 1955 (Mealy, 1955). Mealy machines are characterized by producing outputs when a transition is taken. An alternative, known as a **Moore machine**, produces outputs when the machine is in a state, rather than when a transition is taken. That is, the output is defined by the current state rather than by the current transition. Moore machines are named after Edward F. Moore, another Bell Labs engineer who described them in a 1956 paper (Moore, 1956).

The distinction between these machines is subtle but important. Both are discrete systems, and hence their operation consists of a sequence of discrete reactions. For a Moore machine, at each reaction, the output produced is defined by the current state (at the *start* of the reaction, not at the end). Thus, the output at the time of a reaction does not depend on the input at that same time. The input determines which transition is taken, but not what output is produced by the reaction. Hence, a Moore machine is strictly causal.

A Moore machine version of the garage counter is shown in Figure 3.7. The outputs are shown in the state rather than on the transitions using a similar notation with a slash. Note, however, that this machine is *not* equivalent to the machine in Figure 3.4. To see that, suppose that on the first reaction, up = present and down = absent. The output at that time will be 0 in Figure 3.7 and 1 in Figure 3.4. The output of the Moore machine represents the number of cars in the garage at the time of the arrival of a new car, not the number of cars after the arrival of the new car. Suppose instead that at the first reaction, up = down = absent. Then the output at that time is 0 in Figure 3.7 and absent in Figure 3.4. The Moore machine, when it reacts, always reports the output associated with the current state. The Mealy machine does not produce any output unless there is a transition explicitly denoting that output.

Any Moore machine may be converted to an equivalent Mealy machine. A Mealy machine may be converted to an almost equivalent Moore machine that differs only in that the output is produced on the *next* reaction rather than on the current one. We use Mealy machines because they tend to be more compact (requiring fewer states to represent the same functionality), and because it is convenient to be able to produce an output that instantaneously responds to the input.

inputs: up, down: pure **output:** count: $\{0, \dots, M\}$

Figure 3.7: Moore machine for a system that keeps track of the number of cars in a parking garage. Note this machine is *not* equivalent to that in Figure 3.4.

3.3.4 Determinacy and Receptiveness

The state machines presented in this section have two important properties:

Determinacy: A state machine is said to be **deterministic** if, for each state, there is at most one transition enabled by each input value. The formal definition of an FSM given above ensures that it is deterministic, since *update* is a function, not a one-to-many mapping. The graphical notation with guards on the transitions, however, has no such constraint. Such a state machine will be deterministic only if the guards leaving each state are non-overlapping. Note that a deterministic state machine is **determinate**, meaning that given the same inputs it will always produce the same outputs. However, not every determinate state machine is deterministic.

Receptiveness: A state machine is said to be **receptive** if, for each state, there is at least one transition possible on each input symbol. In other words, receptiveness ensures that a state machine is always ready to react to any input, and does not "get stuck" in any state. The formal definition of an FSM given above ensures that it is receptive, since *update* is a function, not a partial function. It is defined for every possible state and input value. Moreover, in our graphical notation, since we have implicit default transitions, we have ensured that all state machines specified in our graphical notation are also receptive.

It follows that if a state machine is both deterministic and receptive, for every state, there is *exactly* one transition possible on each input value.

3.4 Extended State Machines

The notation for FSMs becomes awkward when the number of states gets large. The garage counter of Figure 3.4 illustrates this point clearly. If M is large, the bubble-and-arc notation becomes unwieldy, which is why we resort to a less formal use of "..." in the figure.

An **extended state machine** solves this problem by augmenting the FSM model with variables that may be read and written as part of taking a transition between states.

Example 3.8: The garage counter of Figure 3.4 can be represented more compactly by the extended state machine in Figure 3.8.

That figure shows a variable c, declared explicitly at the upper left to make it clear that c is a variable and not an input or an output. The transition indicating the initial state initializes the value of this variable to zero.

The upper self-loop transition is then taken when the input up is present, the input down is absent, and the variable c is less than M. When this transition is taken, the state machine produces an output count with value c+1, and then the value of c is incremented by one.

The lower self-loop transition is taken when the input down is present, the input up is absent, and the variable c is greater than zero. Upon taking the transition,

Figure 3.8: Extended state machine for the garage counter of Figure 3.4.

the state machine produces an output with value c-1, and then decrements the value of c.

Note that M is a parameter, not a variable. Specifically, it is assumed to be constant throughout execution.

The general notation for extended state machines is shown in Figure 3.9. This differs from the basic FSM notation of Figure 3.3 in three ways. First, variable declarations are shown explicitly to make it easy to determine whether an identifier in a guard or action refers to a variable or to an input or an output. Second, upon initialization, variables that have been declared may be initialized. The initial value will be shown on the transition that indicates the initial state. Third, transition annotations now have the form

guard / output action
 set action(s)

The guard and output action are the same as for standard FSMs, except they may now refer to variables. The **set action**s are new. They specify assignments to variables that are made when the transition is taken. These assignments are made *after* the guard has been evaluated and the outputs have been produced. Thus, if the guard or output actions reference a variable, the value of the variable is that *before* the assignment in the set action. If there is more than one set action, then the assignments are made in sequence.

Figure 3.9: Notation for extended state machines.

Extended state machines can provide a convenient way to keep track of the passage of time.

Example 3.9: An extended state machine describing a traffic light at a pedestrian crosswalk is shown in Figure 3.10. This is a time triggered machine that assumes it will react once per second. It starts in the red state and counts 60 seconds with the help of the variable *count*. It then transitions to green, where it will remain until the pure input *pedestrian* is present. That input could be generated, for example, by a pedestrian pushing a button to request a walk light. When *pedestrian* is present, the machine transitions to yellow if it has been in state green for at least 60 seconds. Otherwise, it transitions to pending, where it stays for the remainder of the 60 second interval. This ensures that once the light goes green, it stays green for at least 60 seconds. At the end of 60 seconds, it will transition to yellow, where it will remain for 5 seconds before transitioning back to red.

The outputs produced by this machine are sigG to turn on the green light, sigY to change the light to yellow, and sigR to change the light to red.

Figure 3.10: Extended state machine model of a traffic light controller that keeps track of the passage of time, assuming it reacts at regular intervals.

The state of an extended state machine includes not only the information about which discrete state (indicated by a bubble) the machine is in, but also what values any variables have. The number of possible states can therefore be quite large, or even infinite. If there are n discrete states (bubbles) and m variables each of which can have one of p possible values, then the size of the state space of the state machine is

$$|States| = np^m$$
.

Example 3.10: The garage counter of Figure 3.8 has n=1, m=1, and p=M+1, so the total number of states is M+1.

Extended state machines may or may not be FSMs. In particular, it is not uncommon for p to be infinite. For example, a variable may have values in \mathbb{N} , the natural numbers, in which case, the number of states is infinite.

Example 3.11: If we modify the state machine of Figure 3.8 so that the guard on the upper transition is

$$up \wedge \neg down$$

instead of

$$up \land \neg down \land c < M$$

then the state machine is no longer an FSM.

Some state machines will have states that can never be reached, so the set of **reachable states** — comprising all states that can be reached from the initial state on some input sequence — may be smaller than the set of states.

Example 3.12: Although there are only four bubbles in Figure 3.10, the number of states is actually much larger. The *count* variable has 61 possible values and there are 4 bubbles, so the total number of combinations is $61 \times 4 = 244$. The size of the state space is therefore 244. However, not all of these states are reachable. In particular, while in the yellow state, the *count* variable will have only one of 6 values in $\{0, \dots, 5\}$. The number of reachable states, therefore, is $61 \times 3 + 6 = 189$.

3.5 Nondeterminism

Most interesting state machines react to inputs and produce outputs. These inputs must come from somewhere, and the outputs must go somewhere. We refer to this "somewhere" as the **environment** of the state machine.

Example 3.13: The traffic light controller of Figure 3.10 has one pure input signal, *pedestrian*. This input is *present* when a pedestrian arrives at the crosswalk. The traffic light will remain green unless a pedestrian arrives. Some other subsystem is responsible for generating the *pedestrian* event, presumably in response to a pedestrian pushing a button to request a cross light. That other subsystem is part of the environment of the FSM in Figure 3.10.

A question becomes how to model the environment. In the traffic light example, we could construct a model of pedestrian flow in a city to serve this purpose, but this would likely be a very complicated model, and it is likely much more detailed than necessary. We want to ignore inessential details, and focus on the design of the traffic light. We can do this using a nondeterministic state machine.

inputs: sigR, sigG, sigY: pure outputs: pedestrian: pure true / true / pedestrian sigG / sigR /

Figure 3.11: Nondeterministic model of pedestrians that arrive at a crosswalk.

Example 3.14: The FSM in Figure 3.11 models arrivals of pedestrians at a crosswalk with a traffic light controller like that in Figure 3.10. This FSM has three inputs, which are presumed to come from the outputs of Figure 3.10. Its single output, *pedestrian*, will provide the input for Figure 3.10.

The initial state is crossing. (Why? See Exercise 6.) When *sigG* is received, the FSM transitions to none. Both transitions from this state have guard *true*, indicating that they are always enabled. Since both are enabled, this machine is nondeterministic. The FSM may stay in the same state and produce no output, or it may transition to waiting and produce pure output *pedestrian*.

The interaction between this machine and that of Figure 3.10 is surprisingly subtle. Variations on the design are considered in Exercise 6, and the composition of the two machines is studied in detail in Chapter 5.

If for any state of a state machine, there are two distinct transitions with guards that can evaluate to *true* in the same reaction, then the state machine is **nondeterministic**. In a diagram for such a state machine, the transitions that make the state machine nondeterministic may be colored red. In the example of Figure 3.11, the transitions exiting state none are the ones that make the state machine nondeterministic.

It is also possible to define state machines where there is more than one initial state. Such a state machine is also nondeterministic. An example is considered in Exercise 6.

In both cases, a nondeterministic FSM specifies a family of possible reactions rather than a single reaction. Operationally, all reactions in the family are possible. The nondeterministic FSM makes no statement at all about how *likely* the various reactions are. It is perfectly correct, for example, to always take the self loop in state none in Figure 3.11. A model that specifies likelihoods (in the form of probabilities) is a **stochastic model**, quite distinct from a nondeterministic model.

3.5.1 Formal Model

Formally, a **nondeterministic FSM** is represented as a five-tuple, similar to a deterministic FSM,

(States, Inputs, Outputs, possible Updates, initial States)

The first three elements are the same as for a deterministic FSM, but the last two are not the same:

- States is a finite set of states;
- Inputs is a set of input valuations;
- Outputs is a set of output valuations;
- $possibleUpdates: States \times Inputs \rightarrow 2^{States \times Outputs}$ is an **update relation**, mapping a state and an input valuation to a *set of possible* (next state, output valuation) pairs;
- *initialStates* is a set of initial states.

The form of the function possible Updates indicates there can be more than one next state and/or output valuation given a current state and input valuation. The codomain is the powerset of $States \times Outputs$. We refer to the possible Updates function as an update relation, to emphasize this difference. The term **transition relation** is also often used in place of update relation.

To support the fact that there can be more than one initial state for a nondeterministic FSM, *initialStates* is a set rather than a single element of *States*.

Example 3.15: The FSM in Figure 3.11 can be formally represented as follows:

```
States = \{ none, waiting, crossing \}
Inputs = (\{ sigG, sigY, sigR \} \rightarrow \{ present, absent \})
Outputs = (\{ pedestrian \} \rightarrow \{ present, absent \})
initialStates = \{ crossing \}
```

The update relation is given below:

```
possibleUpdates(s,i) = \begin{cases} \{(\mathsf{none}, absent)\} \\ & \text{if } s = \mathsf{crossing} \\ & \land i(sigG) = present \\ \{(\mathsf{none}, absent), (\mathsf{waiting}, present)\} \\ & \text{if } s = \mathsf{none} \\ \{(\mathsf{crossing}, absent)\} \\ & \text{if } s = \mathsf{waiting} \\ & \land i(sigR) = present \\ \{(s, absent)\} \\ & \text{otherwise} \end{cases}
```

for all $s \in States$ and $i \in Inputs$. Note that an output valuation $o \in Outputs$ is a function of the form $o: \{pedestrian\} \rightarrow \{present, absent\}$. In (3.3), the second alternative gives two possible outcomes, reflecting the nondeterminism of the machine.

3.5.2 Uses of Nondeterminism

While nondeterminism is an interesting mathematical concept in itself, it has two major uses in modeling embedded systems:

Environment Modeling: It is often useful to hide irrelevant details about how an environment operates, resulting in a nondeterministic FSM model. We have already seen one example of such environment modeling in Figure 3.11.

Figure 3.12: Nondeterministic FSM specifying order of signal lights, but not their timing. Notice that it ignores the *pedestrian* input.

Specifications: System specifications impose requirements on some system features, while leaving other features unconstrained. Nondeterminism is a useful modeling technique in such settings as well. For example, consider a specification that the traffic light cycles through red, green, yellow, in that order, without regard for the timing between the outputs. The nondeterministic FSM in Figure 3.12 models this specification. The guard *true* on each transition indicates that the transition can be taken at any step. Technically, it means that each transition is enabled for any input valuation in *Inputs*.

3.6 Behaviors and Traces

An FSM has discrete dynamics. As we did in Section 3.3.3, we can abstract away the passage of time and consider only the *sequence* of reactions, without concern for when in time each reaction occurs. We do not need to talk explicitly about the amount of time that passes between reactions, since this is actually irrelevant to the behavior of an FSM.

Consider a port p of a state machine with type V_p . This port will have a sequence of values from the set $V_p \cup \{absent\}$, one value at each reaction. We can represent this sequence as

a function of the form

$$s_p \colon \mathbb{N} \to V_p \cup \{absent\}$$
.

This is the signal received on that port (if it is an input) or produced on that port (if it is an output).

A **behavior** of a state machine is an assignment of such a signal to each port such that the signal on any output port is the output sequence produced for the given input signals.

Example 3.16: The garage counter of Figure 3.4 has input port set $P = \{up, down\}$, with types $V_{up} = V_{down} = \{present\}$, and output port set $Q = \{count\}$ with type $V_{count} = \{0, \cdots, M\}$. An example of input sequences is

```
s_{up} = (present, absent, present, absent, present, \cdots)

s_{down} = (present, absent, absent, present, absent, \cdots)
```

The corresponding output sequence is

$$s_{count} = (absent, absent, 1, 0, 1, \cdots)$$
.

These three signals s_{up} , s_{down} , and s_{count} together are a behavior of the state machine. If we let

$$s'_{count} = (1, 2, 3, 4, 5, \cdots)$$
,

then s_{up} , s_{down} , and s'_{count} together *are not* a behavior of the state machine. The signal s'_{count} is not produced by reactions to those inputs.

Deterministic state machines have the property that there is exactly one behavior for each set of input sequences. That is, if you know the input sequences, then the output sequence is fully determined. That is, the machine is determinate. Such a machine can be viewed as a function that maps input sequences to output sequences. Nondeterministic state machines can have more than one behavior sharing the same input sequences, and hence cannot be viewed as a function mapping input sequences to output sequences.

The set of all behaviors of a state machine M is called its **language**, written L(M). Since our state machines are receptive, their languages always include all possible input sequences.

A behavior may be more conveniently represented as a sequence of valuations called an **observable trace**. Let x_i represent the valuation of the input ports and y_i the valuation of the output ports at reaction i. Then an observable trace is a sequence

$$((x_0,y_0),(x_1,y_1),(x_2,y_2),\cdots)$$
.

An observable trace is really just another representation of a behavior.

It is often useful to be able to reason about the states that are traversed in a behavior. An **execution trace** includes the state trajectory, and may be written as a sequence

$$((x_0, s_0, y_0), (x_1, s_1, y_1), (x_2, s_2, y_2), \cdots),$$

where $s_0 = initialState$. This can be represented a bit more graphically as follows,

$$s_0 \xrightarrow{x_0/y_0} s_1 \xrightarrow{x_1/y_1} s_2 \xrightarrow{x_2/y_2} \cdots$$

This is an execution trace if for all $i \in \mathbb{N}$, $(s_{i+1}, y_i) = update(s_i, x_i)$ (for a deterministic machine), or $(s_{i+1}, y_i) \in possibleUpdates(s_i, x_i)$ (for a nondeterministic machine).

Example 3.17: Consider again the garage counter of Figure 3.4 with the same input sequences s_{up} and s_{down} from Example 3.16. The corresponding execution trace may be written

$$0 \xrightarrow{up \land down \ /} 0 \xrightarrow{\hspace{1cm} / \hspace{1cm} } 0 \xrightarrow{up \ / \hspace{1cm} 1} 1 \xrightarrow{down \ / \hspace{1cm} 0} 0 \xrightarrow{up \ / \hspace{1cm} 1} \cdots$$

Here, we have used the same shorthand for valuations that is used on transitions in Section 3.3.1. For example, the label "up / 1" means that up is present, down is absent, and count has value 1. Any notation that clearly and unambiguously represents the input and output valuations is acceptable.

For a nondeterministic machine, it may be useful to represent all the possible traces that correspond to a particular input sequence, or even all the possible traces that result from all possible input sequences. This may be done using a **computation tree**.

Figure 3.13: A computation tree for the FSM in Figure 3.12.

Example 3.18: Consider the nondeterministic FSM in Figure 3.12. Figure 3.13 shows the computation tree for the first three reactions with any input sequence. Nodes in the tree are states and edges are labeled by the input and output valuations, where the notation *true* means any input valuation.

Traces and computation trees can be valuable for developing insight into the behaviors of a state machine and for verifying that undesirable behaviors are avoided.

3.7 Summary

This chapter has given an introduction to the use of state machines to model systems with discrete dynamics. It gives a graphical notation that is suitable for finite state machines, and an extended state machine notation that can compactly represent large numbers of

states. It also gives a mathematical model that uses sets and functions rather than visual notations. The mathematical notation can be useful to ensure precise interpretations of a model and to prove properties of a model. This chapter has also discussed nondeterminism, which can provide convenient abstractions that compactly represent families of behaviors.

Exercises

1. Consider an event counter that is a simplified version of the counter in Section 3.1. It has an icon like this:

This actor starts with state i and upon arrival of an event at the input, increments the state and sends the new value to the output. Thus, e is a pure signal, and e has the form $e: \mathbb{R} \to \{absent\} \cup \mathbb{N}$, assuming $i \in \mathbb{N}$. Suppose you are to use such an event counter in a weather station to count the number of times that a temperature rises above some threshold. Your task in this exercise is to generate a reasonable input signal e for the event counter. You will create several versions. For all versions, you will design a state machine whose input is a signal e: $\mathbb{R} \to \{absent\} \cup \mathbb{Z}$ that gives the current temperature (in degrees centigrade) once per hour. The output $e: \mathbb{R} \to \{absent, present\}$ will be a pure signal that goes to an event counter.

- (a) For the first version, your state machine should simply produce a *present* output whenever the input is *present* and greater than 38 degrees. Otherwise, the output should be absent.
- (b) For the second version, your state machine should have hysteresis. Specifically, it should produce a *present* output the first time the input is greater than 38 degrees, and subsequently, it should produce a *present* output anytime the input is greater than 38 degrees but has dropped below 36 degrees since the last time a *present* output was produced.
- (c) For the third version, your state machine should implement the same hysteresis as in part (b), but also produce a *present* output at most once per day.
- 2. Consider a variant of the thermostat of example 3.5. In this variant, there is only one temperature threshold, and to avoid chattering the thermostat simply leaves the heat on or off for at least a fixed amount of time. In the initial state, if the temperature is less than or equal to 20 degrees Celsius, it turns the heater on, and leaves it on for at least 30 seconds. After that, if the temperature is greater than 20 degrees, it turns the heater off and leaves it off for at least 2 minutes. It turns it on again only if the temperature is less than or equal to 20 degrees.

- (a) Design an FSM that behaves as described, assuming it reacts exactly once every 30 seconds.
- (b) How many possible states does your thermostat have? Is this the smallest number of states possible?
- (c) Does this model thermostat have the time-scale invariance property?
- 3. Consider the following state machine:

Determine whether the following statement is true or false, and give a supporting argument:

The output will eventually be a constant 0, or it will eventually be a constant 1. That is, for some $n \in \mathbb{N}$, after the n-th reaction, either the output will be 0 in every subsequent reaction, or it will be 1 in every subsequent reaction.

Note that Chapter 13 gives mechanisms for making such statements precise and for reasoning about them.

4. How many reachable states does the following state machine have?

5. Consider the deterministic finite-state machine in Figure 3.14 that models a simple traffic light.

Figure 3.14: Deterministic finite-state machine for Exercise 5

(a) Formally write down the description of this FSM as a 5-tuple:

(States, Inputs, Outputs, update, initialState).

- (b) Give an execution trace of this FSM of length 4 assuming the input *tick* is *present* on each reaction.
- (c) Now consider merging the red and yellow states into a single stop state. Transitions that pointed into or out of those states are now directed into or out of the new stop state. Other transitions and the inputs and outputs stay the same. The new stop state is the new initial state. Is the resulting state machine deterministic? Why or why not? If it is deterministic, give a prefix of the trace of length 4. If it is nondeterministic, draw the computation tree up to depth 4.
- 6. This problem considers variants of the FSM in Figure 3.11, which models arrivals of pedestrians at a crosswalk. We assume that the traffic light at the crosswalk is controlled by the FSM in Figure 3.10. In all cases, assume a time triggered model, where both the pedestrian model and the traffic light model react once per second. Assume further that in each reaction, each machine sees as inputs the output produced by the other machine *in the same reaction* (this form of composition, which is called synchronous composition, is studied further in Chapter 6).
 - (a) Suppose that instead of Figure 3.11, we use the following FSM to model the arrival of pedestrians:

Find a trace whereby a pedestrian arrives (the above machine transitions to waiting) but the pedestrian is never allowed to cross. That is, at no time after the pedestrian arrives is the traffic light in state red.

(b) Suppose that instead of Figure 3.11, we use the following FSM to model the arrival of pedestrians:

Here, the initial state is nondeterministically chosen to be one of none or crossing. Find a trace whereby a pedestrian arrives (the above machine transitions from none to waiting) but the pedestrian is never allowed to cross. That is, at no time after the pedestrian arrives is the traffic light in state red.

7. Consider the state machine in Figure 3.15. State whether each of the following is a behavior for this machine. In each of the following, the ellipsis "..." means that the last symbol is repeated forever. Also, for readability, *absent* is denoted by the shorthand a and *present* by the shorthand p.

(a)
$$x = (p, p, p, p, p, \cdots), y = (0, 1, 1, 0, 0, \cdots)$$

(b)
$$x = (p, p, p, p, p, \dots), y = (0, 1, 1, 0, a, \dots)$$

(c)
$$x = (a, p, a, p, a, \dots), y = (a, 1, a, 0, a, \dots)$$

(d)
$$x = (p, p, p, p, p, \dots), y = (0, 0, a, a, a, \dots)$$

(e)
$$x = (p, p, p, p, p, \cdots), y = (0, a, 0, a, a, \cdots)$$

- 8. (NOTE: This exercise is rather advanced.) This exercise studies properties of discrete signals as formally defined in the sidebar on page 45. Specifically, we will show that discreteness is not a compositional property. That is, when combining two discrete behaviors in a single system, the resulting combination is not necessarily discrete.
 - (a) Consider a pure signal $x : \mathbb{R} \to \{present, absent\}$ given by

$$x(t) = \begin{cases} present & \text{if } t \text{ is a non-negative integer} \\ absent & \text{otherwise} \end{cases}$$

for all $t \in \mathbb{R}$. Show that this signal is discrete.

(b) Consider a pure signal $y: \mathbb{R} \to \{present, absent\}$ given by

$$y(t) = \begin{cases} \textit{present} & \text{if } t = 1 - 1/n \text{ for any positive integer } n \\ \textit{absent} & \text{otherwise} \end{cases}$$

for all $t \in \mathbb{R}$. Show that this signal is discrete.

- (c) Consider a signal w that is the merge of x and y in the previous two parts. That is, w(t) = present if either x(t) = present or y(t) = present, and is absent otherwise. Show that w is not discrete.
- (d) Consider the example shown in Figure 3.1. Assume that each of the two signals *arrival* and *departure* is discrete. Show that this does not imply that the output *count* is a discrete signal.

input: x: pure **output:** y: $\{0,1\}$

Figure 3.15: State machine for Exercise 7.