Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №1 по дисциплине «Вычислительная математика»

Вариант 4

Выполнил: Студент группы Р3212 Данько Савелий Максимович Преподаватель:

Цель лабораторной работы:

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений,

выполнить программную реализацию методов.

Вычислительная реализация задачи

1. Решение нелинейного уравнения

Вид нелинейного уравнения для вычислительной реализации:

$$x^3 - 1,89x^2 - 2x + 1,76$$

Метода для вычислительной реализации:

Крайний правый корень - Метод простых итераций Крайний левый корень - Метод половинного деления Центральный корень - Метод секущих

1. Отделить корни нелинейного уравнения графически

$$x_1 \approx -1.1$$

 $x_2 \approx 0.6$
 $x_1 \approx 2.4$

$$x_2 \approx 0.6$$

$$x_1 \approx 2.4$$

2. Определить интервалы изоляции корней

Для определения интервалов изоляции корней данного уравнения, можно воспользоваться методом интервалов знакопеременности. Для этого нужно найти значения функции на различных интервалах и определить знак функции на каждом из них.

Разобьем ось X на 4 интервала:

$$(-\infty; -1.1), (-1.1; 0.6), (0.6; 2.4), (2.4; +\infty)$$

На каждом из этих интервалов нужно определить знак функции. Для этого можем вычислить значения функции в произвольной точке каждого интервала.

для
$$x = -2$$
: $f(-2) = -9.8$
для $x = 0$: $f(0) = 1.76$
для $x = 1$: $f(1) = -1.13$
для $x = 3$: $f(3) = 5.75$

(- ∞; - 1.156)	(- 1.156; 0.63)	(0.63; 2.416)	(2.416; + ∞)	
- +		-	+	

Получаем следующие интервалы изоляции корней уравнения:

(-2; 0)

(0; 1)

(1; 3)

3. Уточнить корни нелинейного уравнения

$$x_1 \approx -1.16$$

 $x_2 \approx 0.63$
 $x_1 \approx 2.42$

4. Уточнение корней многочлена

Крайний правый корень - Метод простых итераций

$$x^3 - 1,89x^2 - 2x + 1,76$$

Промежуток: (1;3)

$$\varphi(x) = (1.89x^2 + 2x - 1.76)^{\frac{1}{3}}$$

$$\varphi'(x) = \left| \frac{100^{\frac{2}{3}} (189x + 100)}{150(189x^2 + 200x - 176)^{\frac{2}{3}}} \right| < 1$$

=> итерационная последовательность сходится

Nō	x_{k}	x_{k+1}	$f(x_{k+1})$	$ x_{k+1} - x_k $
1	2.000	2.140	2.200	0.140
2	2.140	2.235	2.905	0.095
3	2.235	2.299	3.483	0.064
4	2.299	2.340	3.922	0.041
5	2.340	2.367	4.224	0.027
6	2.367	2.384	4.432	0.017
7	2.384	2.396	4.458	0.012
8	2.396	2.403	4.664	0.007
9	2.403	2.407	4.722	0.004

Крайний левый корень - Метод половинного деления

Nō	а	b	Х	f(a)	f(b)	f(x)	a-b
1	-2.000	0.000	-1.000	-9.800	1.760	0.870	2
2	-2.000	-1.000	-1.500	-9.800	0.870	-2.867	1
3	-1.500	-1.000	-1.250	-2.867	0.870	-0.646	0.5
4	-1.250	-1.000	-1.125	-0.646	0.870	0.194	0.25
5	-1.250	-1.125	-1.187	-0.646	0.194	-0.201	0.125
6	-1.187	-1.125	-1.156	-0.201	0.194	0.001	0.062
7	-1.187	-1.156	-1.171	-0.201	0.001	-0.095	0.031
8	-1.171	-1.156	-1.163	-0.095	0.001	-0.043	0.015
9	-1.163	-1.156	-1.159	-043	0.001	-0.017	0.007
10	-1.159	-1.156	-1.157	-0.017	0.001	0.004	0.004

Центральный корень - Метод секущих

Nō	x_{k-1}	x_{k}	x_{k+1}	$f(x_{k+1})$	$ x_{k+1} - x_k $
1	0.000	1.000	0,608	0.070	0.392
2	1.000	0.608	0.631	-0.003	0.023
3	0.608	0.631	0.629	0.003	0.002
4	0.631	0.629	0.629	0.003	0.000

2. Решение системы нелинейных уравнений

Вид системы нелинейных уравнений:

$$egin{cases} \sin{(x+y)} - 1.2x = 0.2 \ x^2 + 2y^2 = 1 \end{cases}$$

1. Отделить корни системы нелинейных уравнений графически:

2. Метод Ньютона:

$$egin{cases} \sin{(x+y)} - 1.2x - 0.2 = 0 \ x^2 + y^2 - 1 = 0 \end{cases}$$

Матрица Якоби:

$$egin{array}{c|c} \left| rac{df(x,y)}{dx} & rac{df(x,y)}{dy} \ rac{dg(x,y)}{dx} & rac{dg(x,y)}{dy} \end{array}
ight| \left(egin{array}{c} \Delta x \ \Delta y \end{array}
ight) = - \left(egin{array}{c} f\left(x,\,y
ight) \ g\left(x,\,y
ight) \end{array}
ight)$$

$$egin{aligned} rac{df}{dx} &= \cos{(x+y)} - rac{6}{5} \ rac{df}{dy} &= \cos{(x+y)} \ rac{dg}{dx} &= 2x \ rac{dg}{dy} &= 2y \end{aligned}$$

$$egin{pmatrix} \cos{(x+y)} - rac{6}{5} & \cos{(x+y)} \ 2x & 2y \end{pmatrix} egin{pmatrix} \Delta x \ \Delta y \end{pmatrix} = egin{pmatrix} 1.2x + 0.2 - \sin{(x+y)} \ 1 - x^2 - y^2 \end{pmatrix}$$

$$egin{pmatrix} \cos{(x+y)}\Delta x - rac{6}{5}\Delta x + \cos{(x+y)}\Delta y \ 2x\Delta x + 2y\Delta y \end{pmatrix} = egin{pmatrix} 1.2x + 0.2 - \sin{(x+y)} \ 1 - x^2 - y^2 \end{pmatrix}$$

Возьмем начальное приближение $(x_0; y_0) = (1; 1)$

$$\Delta x = -0.369$$
 $\Delta y = -0.412$

$$x + \Delta x = 1 - 0.369 = 0.631$$

 $y + \Delta y = 1 - 0.412 = 0.588$
 $(x_1; y_1) = (0.629, 0.588)$

Аналогично находим другой корень

$$(x; y) = (-0.631; -0.588)$$

так как график симметричен относительно начала координат

Программная реализация задачи

Код программы:

git hub

Пример работы программы:

_

Выберите действие:

- 1) Нелинейное уравнение
- 2) Система нелинейных уравнений
- 3) Выход

Введите номер пункта: 1

Доступные нелинейные уравнения:

- 1) $x^2 5 = 0$
- 2) $\sin(x) x/2 = 0$
- 3) $e^x + x = 0$

Введите номер уравнения (или 'q' для отмены): 1

Выберите метод решения нелинейного уравнения:

- 1) Метод хорд
- 2) Метод Ньютона
- 3) Метод простых итераций

Введите номер метода (или 'д' для отмены): 1

[Метод хорд] Решаем уравнение: $x^2 - 5 = 0$

Введите 'file' для чтения из файла или 'console' для ввода с консоли: console

Левая граница (a): -3 Правая граница (b): 0 Точность (eps): 0.01

Максимальное число итераций: 100

Найденный корень: -2.2357723577235773

Количество итераций: 5

Значение f(root): -0.0013219644391559981

_

Выберите действие:

- 1) Нелинейное уравнение
- 2) Система нелинейных уравнений
- 3) Выход

Введите номер пункта: 2

Доступные системы нелинейных уравнений:

- 1) $x^2 + y^2 1 = 0 \mu x^3 y = 0$
- 2) $\sin(x) + \cos(y) = 0$ u $\ln(x) + y^2 1 = 0$

Введите номер системы (или 'q' для отмены): 1

Выберите метод решения системы нелинейных уравнений:

1) Метод простых итераций

Введите номер метода (или 'q' для отмены): 1

[Метод простых итераций] Решаем систему уравнений: ['x^2 + y^2 -1 = 0', 'x^3 - y = 0']

Введите 'file' для чтения параметров из файла или 'console' для ввода с консоли: console

Введите alpha (параметр релаксации): 0.01

Начальное приближение x0: 0.9 Начальное приближение y0: 0.6

Точность (eps): 0.01

Максимальное число итераций: 1000

Сходимость по изменению решения достигнута: $||\Delta(x,y)|| =$

0.002134033739189742 < 0.01

Результаты решения системы методом простых итераций с адаптивным шагом:

Найденное решение: x = 0.8983, y = 0.59871

Число итераций: 1

||F(x,y)|| = 0.20802423187619287

Вывод:

Вывод

В ходе выполнения данной лабораторной работы я изучил различные методы решения нелинейных уравнений и систем нелинейных уравнений, а также реализовал их программно.

Метод половинного деления (метод бисекции)

Достоинства:

- Простая и надёжная идея, гарантирующая сходимость.
- Требует от функции f(x) только непрерывности, без необходимости вычисления производной.
- Обладает абсолютной сходимостью.

Рекомендация: Метод эффективен в ситуациях, когда важна высокая надёжность вычислений, а скорость работы не является критичной.

Недостатки:

- Если интервал содержит несколько корней, метод не позволяет определить, к какому из них стремится вычислительный процесс.
- Сходится медленно, поскольку обладает линейной сходимостью.

Метод Ньютона (касательных)

Достоинства:

• Квадратичная сходимость, что делает его значительно быстрее метода бисекции.

Недостатки:

- Требует, чтобы функция была дифференцируемой.
- На каждой итерации необходимо вычислять производную, что усложняет реализацию.
- Чувствителен к выбору начального приближения: неподходящий выбор может привести к расходимости.

Метод простой итерации

Достоинства:

• Простота реализации.

Недостатки:

- Сходимость возможна только в малой окрестности корня, поэтому требуется точный выбор начального приближения. В противном случае процесс может разойтись или сойтись к другому корню.
- Если |φ'(x)|≈1, то скорость сходимости очень низкая.
- Требует преобразования уравнения к форме x=φ(x), что не всегда возможно.

Метод простой итерации для системы нелинейных уравнений

Достоинства:

- Легко реализуется программно.
- Гибкость метода позволяет адаптировать его к разным типам систем.
- Может быть распараллелен для ускорения вычислений.

Недостатки:

- Требует, чтобы начальное приближение находилось в малой окрестности корня, иначе процесс может расходиться.
- Медленная сходимость, если // Ф'(x) // ≈1.
- Не всегда применим, так как систему нужно преобразовать к форме x=Ф(x), что не всегда возможно.

Общий вывод:

Каждый из рассмотренных методов имеет свои сильные и слабые стороны. Метод бисекции надёжен, но медленен. Метод Ньютона быстрее, но требует вычисления производной и правильного начального приближения. Метод простой итерации прост в реализации, но его сходимость зависит от выбора начального приближения. Для систем уравнений метод простой итерации может быть полезен, но требует преобразования системы в удобный вид. Выбор метода зависит от конкретной задачи, требований к точности и вычислительным возможностям.