

TSN mit Linux

Embedded Software Engineering Kongress 2019

Kurt Kanzenbach

Linutronix GmbH

03.12.2019

2

Agenda

- Motivation
- **2** Zeitsynchronisation
- 3 Traffic Scheduling
 Earliest Tx Time

Credit Based Shaper Time Aware Shaper Switches

- **4** Konfiguration
- **6** Fazit

3

Feldbusse

Feldbusse

- System zur Vernetzung von Geräten
- Echtzeitfähig und deterministisch
- Industrieanlagen, Automotive, Luftfahrt, . . .

Ethernet

Vorteile von Ethernet Feldbussen

- + Standard Hardware
- + Überall verfügbar
- + Geschwindigkeit
- + Interoperabilität

5

Time Sensitive Networking

Linux

Warum Linux?

- Offen
- Hardware Unterstützung
- Große Community
- ☐ Echtzeitfähig mit PREEMPT_RT [1]

Linux TSN Lösungen I

Bisherige TSN Implementierungen

- OpenIL [2]
- OpenAVNU [3]
- Acontis [4]
- **.**..

Gemeinsamkeiten

- Modifikationen am Kernel
- Erstellung eigener Interfaces und Tools

Linux TSN Lösungen II

Vorteile

+ Funktional?

Nachteile

- Wartbarkeit
- Abhängigkeit vom Hersteller
- Keine Standard Tools und Interfaces
- Interoperabilität
- ⇒ Lösung: **Standard** Linux!

Agenda

- Motivation
- **2** Zeitsynchronisation
- 3 Traffic Scheduling
 Earliest Tx Time
 Credit Based Shaper
 Time Aware Shaper
- 4 Konfiguration
- **6** Fazit

Precision Time Protocol

Precision Time Protocol

- Synchronisation von Knoten via Ethernet
- Analog zu NTP
- Genauigkeit im Bereich < 1 μs möglich</p>
- Standards: IEEE 1588, 802.1AS, 802.1ASRev
- Profile: Default, Telecom, qPTP, ...

Abbildung: PTP Domain

Linux und PTP

Abbildung: Linux PTP Architektur

Kurt Kanzenbach Linutronix GmbH 11

PTP Hardware Clocks

Linux PTP Hardware Clocks [5]

- Darstellung: Character Devices
- API: Posix Clock
- Kontrolle: ioctl()

```
Kernel API

struct ptp_clock_info {
   int (*adjfine)(struct ptp_clock_info *ptp, long scaled_ppm);
   int (*adjfreq)(struct ptp_clock_info *ptp, s32 delta);
   int (*gettime64)(struct ptp_clock_info *ptp, struct timespec64 *ts);
   int (*settime64)(struct ptp_clock_info *p, const struct timespec64 *ts);
};
```

Kurt Kanzenbach Linutronix GmbH 12

Timestamping

Linux Zeitstempel [6]

- Interface: SO_TIMESTAMPING
- **Erzeugung:**
 - SOF_TIMESTAMPING_TX/RX_HARDWARE
 - SOF_TIMESTAMPING_TX/RX_SOFTWARE
- Receive: Über Control Messages (CMSG)
- Transmit: Über die Error Queue (MSG_ERRQUEUE)

linuxptp

Linuxptp [7]

- Linux User Space PTP Stack
- Unterstützt:
 - IEEE 1588: Ordinary Clock, Boundary Clock und Transparent Clock
 - 802.1AS als End Device
- Open Source, Lizenz: GPL
- □ Nutzt Linux PHC und SO_TIMESTAMPING Interface

Anwendung

System- und Netzwerkzeit

- ptp4l: Regelt die PTP Hardware Clocks
- phc2sys: Synchronisiert die Netzwerkzeit auf das System

Anwendung

- Posix API: clock_nanosleep()
- Clock ID: CLOCK_TAI

Agenda

- Motivation
- **2** Zeitsynchronisation
- 3 Traffic Scheduling
 Earliest Tx Time

Credit Based Shaper Time Aware Shaper Switches

- **4** Konfiguration
- **6** Fazit

Überblick

Agenda

- Motivation
- **2** Zeitsynchronisation
- 3 Traffic Scheduling
 Earliest Tx Time

Credit Based Shaper Time Aware Shaper

- **4** Konfiguration
- **6** Fazit

Earliest Tx Time

Earliest Tx Time [9]

- Sende Paket an Zeitpunkt X
- Deadline Mode verfügbar
- Implementierung Kernel: Qdisc
- Implementierung Userspace: Socket Option SO_TXTIME

Beispiel

21

Earliest Tx Time

Userspace

```
ETF Beispiel _____
   /* Prepare message */
    msg.msg_control = control;
    msg.msg controllen = sizeof(control);
    /* Add tx time */
    cmsg = CMSG_FIRSTHDR(&msg);
    cmsg->cmsg level = SOL SOCKET:
    cmsg->cmsg_type = SO_TXTIME;
    cmsg->cmsg len = CMSG LEN(sizeof( u64));
    *((\_u64 *)CMSG\_DATA(cmsg)) = txtime;
10
11
    ret = sendmsg(fd, &msg, 0);
12
```

Kurt Kanzenbach Linutronix GmbH

Hardware Offloading

TAPRIO Hardware Offloading

- TC Parameter: offload
- Treiber Callback: ndo_setup_tc(); Typ: TC_SETUP_QDISC_ETF
- Treiber Offload Parameter: struct tc_etf_qopt_offload;

Treiber

Intel IGB, i210

Agenda

- Motivation
- **2** Zeitsynchronisation
- 3 Traffic Scheduling

Farliest Tx Time

Credit Based Shaper

Time Aware Shaper

- **4** Konfiguration
- **6** Fazit

Credit Based Shaper

Abbildung: Credit based shaper [11]

Beispiel

Hardware Offloading

CBS Hardware Offloading

- TC Parameter: offload
- Treiber Callback: ndo_setup_tc(); Typ: TC_SETUP_QDISC_CBS
- Treiber Offload Parameter: struct tc_cbs_qopt_offload;

Treiber

Intel IGB, TI CPSW, STMMAC, NXP ENETC

Agenda

- Motivation
- **2** Zeitsynchronisation
- 3 Traffic Scheduling

Earliest Tx Time

Credit Based Shaper

Time Aware Shaper

- 4 Konfiguration
- **6** Fazit

TAPRIO

TAPRIO [12]

- Time slot management
- Qdisc
- Pro port

Abbildung: Traffic Klassen

Beispiel I

Abbildung: Beispiel Zyklus

Beispiel II

```
TAPRIO Beispiel -
1 # Setup cycle: TC 0: 200us; TC 1: 400us; TC 2: 200us
2 tc gdisc replace dev eth0 parent root handle 100 taprio \
          num tc 3
          map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 2
          queues 1@0 1@1 2@2
          base-time 1570615200123456789
          sched-entry S 01 200000
          sched-entry S 02 400000
          sched-entry S 04 200000
          clockid CLOCK_TAI
10
          flags 0x02
11
```


Hardware Offloading

TAPRIO Hardware Offloading

- TC Parameter: flags
- Treiber Callback: ndo_setup_tc(); Typ: TC_SETUP_QDISC_TAPRIO
- Treiber Offload Parameter: struct tc_taprio_qopt_offload;

Treiber

sja1105, NXP ENETC

Agenda

- Motivation
- **2** Zeitsynchronisation
- 3 Traffic Scheduling

Earliest Tx Time Credit Based Shaper Time Aware Shaper

- **Switches**
- 4 Konfiguration
- **6** Fazit

Switches

Switch Konfiguration

Wie?

- Bootloader?
- Linux Kernel?
- Spezielle Applikationen?

Lösung

- Linux enthält Switch Frameworks
- Darstellung von Switch Ports als reguläre Netzwerkinterfaces

Distributed Switch Architecture

Distributed Switch Architecture [13]

- Switch Framework
- Treiber Modell
- Kaskadierte Aufbauten möglich
- Voraussetzung: CPU Port

Abbildung: Struktur

Switchdev

Switchdev [14]

- Switch Framework
- Zustandslos
- Ziel: Hardware Offloading
- DSA nutzt switchdev

Abbildung: Struktur

Linux view

Agenda

- Motivation
- 2 Zeitsynchronisation
- Traffic Scheduling
 Earliest Tx Time
 Credit Based Shaper
 Time Aware Shaper
- 4 Konfiguration
- **6** Fazit

Überblick

Abbildung: TSN Konfiguration

Konfiguration

Komponenten

- Centralized User Configuration (CUC):
 - Topologie Discovery
 - Kommunikation mit den End Devices
 - Übergabe der TSN Streams an die CNC
- Centralized Network Configuration (CNC):
 - Kommunikation mit den Switchen
 - Berechnung und Deployment des Schedules

Streams

Stream

- StreamID
- Destination MAC
- VLAN ID
- Priority (PCP)
- Intervall
- OoS Werte

Abbildung: TSN Stream

Linux

Konfiguration

- Konfiguration ist größtenteils Software:
 - CNC
 - CUC
 - Gegenpart auf den End Devices

Implementierungen

- Viele Hersteller haben eigene Implementierungen
- Open Source Lösungen?

Agenda

- Motivation
- 2 Zeitsynchronisation
- Traffic Scheduling
 Earliest Tx Time
 Credit Based Shaper
 Time Aware Shaper
- **4** Konfiguration
- **6** Fazit

TSN Linux Status | Zeitsynchronisation

Linux PTP

- Linux PTP Unterstützung ist hervorragend:
 - Hardware Timestamping
 - linuxptp
- Standards: IEEE 1588, 802.1AS

Was fehlt?

- □ Unterstützung für 802.1AS Time Aware Bridges ⇒ WIP
- 802.1ASRev

TSN Linux Status | Traffic Scheduling

Linux Traffic Scheduling

- Linux Netzwerkstack ist für TSN geeignet:
 - Verschiedene Shaper, Scheduler, Filter, . . .
 - Tooling: iproute2, tcpdump, ethtool, eBPF, . . .
 - Hardware Offloading
 - Support f
 ür Switche

Was fehlt?

Unterstützung für Streams

TSN Linux Status | Konfiguration

Konfiguration

- Konfiguration von TSN Netzwerken ist nicht trivial
- Offene Lösungen fehlen
- Diverse Standards
- \Rightarrow Baustelle

AccessTSN

AccessTSN Projekt

- Research Projekt
- Entwicklung einer generischen TSN Lösung
- Einsatz von Open Source Komponenten
- Partner: ISW, Hochschule Offenburg,
 Hirschmann und Linutronix

Abbildung: AccessTSN

Outlook

Zukunft

- Offenen Punkte für PTP und Traffic Scheduling
- Konfiguration

Erwägungen

- PREEMPT_RT
- eXpress Data Path
- devlink

Fazit

Fazit

- Standard Linux für TSN Netzwerke möglich
- Verwendung der bestehenden Linux Interfaces und Tools
- Konfiguration ist offener Punkt
- Contribute to Upstream, Influence the Interfaces

Referenzen I

- Thomas Gleixner. (2019, Dec.) PREEMPT_RT Wiki. [Online]. Available: https://wiki.linuxfoundation.org/realtime/start
- openil.org. (2019, Oct.) Open Industrial Linux. [Online]. Available: https://www.openil.org/
- OpenAvnu. (2019, Oct.) OpenAvnu. [Online]. Available: https://github.com/AVnu/OpenAvnu
- acontis technologies GmbH. (2019, Oct.) TSN (Time Sensitive Networking) Software Stack. [Online]. Available: https://www.acontis.com/en/tsn.html

Referenzen II

- Richard Cochran. (2019, Oct.) PTP (Precision Time Protocol) Documentation. [Online].

 Available: https://www.kernel.org/doc/Documentation/ptp/ptp.txt
- Patrick Ohly. (2019, Oct.) The Linux Kernel Archives. [Online]. Available: https://www.kernel.org/doc/Documentation/networking/timestamping.txt
- Richard Cochran. (2019, Oct.) The Linux PTP Project. [Online]. Available: http://linuxptp.sourceforge.net/
- Thomas Gleixner, "Evolution and current status of TSN in Linux," Nov. 2018.

Referenzen III

- Jesus Sanchez-Palencia, Vinicius Costa Gomes. (2019, Oct.) ETF (Earliest TxTime First)
 Documentation. [Online]. Available:
 http://man7.org/linux/man-pages/man8/tc-etf.8.html
- Vinicius Costa Gomes. (2019, Oct.) CBS (Credit Based Shaper) Documentation. [Online].

 Available: http://man7.org/linux/man-pages/man8/tc-cbs.8.html
- Wikipedia. (2019, Aug.) Credit Based Shaper Algorithm. [Online]. Available: https://upload.wikimedia.org/wikipedia/en/d/d3/Traffic-shaping.pdf
- Vinicius Costa Gomes. (2019, Oct.) TAPRIO (Time Aware Priority Shaper) Documentation. [Online]. Available: http://man7.org/linux/man-pages/man8/tc-taprio.8.html

Referenzen IV

Florian Fainelli. (2019, Aug.) Distributed Switch Architecture. [Online]. Available: https://www.kernel.org/doc/Documentation/networking/dsa/dsa.txt

Jiri Pirko, Scott Feldman. (2019, Aug.) Ethernet switch device driver model. [Online]. Available: https://www.kernel.org/doc/Documentation/networking/switchdev.txt