

## TDL SDK Software Development Guide

Version: 1.1.0

Release date: 2022-6-15

Copyright © 2020 CVITEK Co., Ltd. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of CVITEK Co., Ltd.



## Contents

| 1 | Disclaimer 2   |                             |                               |  |          |  |
|---|----------------|-----------------------------|-------------------------------|--|----------|--|
| 2 | <b>Fun</b> 2.1 | ction Overview<br>Objective | v<br>                         |  | <b>3</b> |  |
| 3 | Desi           | ign Overview                |                               |  | 4        |  |
|   | 3.1            |                             | ecture                        |  | 4        |  |
|   | 3.2            |                             | cture                         |  |          |  |
|   |                |                             |                               |  | _        |  |
| 4 |                | Reference                   |                               |  | 6        |  |
|   | 4.1            |                             |                               |  | 6        |  |
|   | 4.2            |                             | ore                           |  | 6        |  |
|   |                |                             | ON                            |  | 6        |  |
|   |                | 4.2.1.1                     | CVI_TDL_CreateHandle          |  | 6<br>7   |  |
|   |                | 4.2.1.2 $4.2.1.3$           | CVI_TDL_CreateHandle2         |  | 7        |  |
|   |                | 4.2.1.4                     | CVI_IDL_DestroyHandle         |  | 7        |  |
|   |                | 4.2.1.4 $4.2.1.5$           | CVI_TDL_OpenModel             |  | 8        |  |
|   |                | 4.2.1.6                     | CVI_TDL_SetSkipVpssPreprocess |  | 8        |  |
|   |                | 4.2.1.7                     | CVI_TDL_GetSkipVpssPreprocess |  | 9        |  |
|   |                | 4.2.1.8                     | CVI_TDL_SetVpssThread         |  | 9        |  |
|   |                | 4.2.1.9                     | CVI_TDL_SetVpssThread2        |  |          |  |
|   |                | 4.2.1.10                    |                               |  |          |  |
|   |                | 4.2.1.11                    | -                             |  |          |  |
|   |                |                             | CVI_TDL_SetVpssTimeout        |  | 11       |  |
|   |                | 4.2.1.13                    |                               |  | 11       |  |
|   |                | 4.2.1.14                    |                               |  |          |  |
|   |                |                             | CVI TDL CloseAllModel         |  | 12       |  |
|   |                |                             | CVI_TDL_CloseModel            |  | 12       |  |
|   |                | 4.2.1.17                    |                               |  |          |  |
|   |                | 4.2.1.18                    | CVI_TDL_ObjectNMS             |  |          |  |
|   |                |                             | CVI_TDL_FaceNMS               |  |          |  |
|   |                |                             | CVI_TDL_FaceAlignment         |  |          |  |
|   |                |                             | CVI TDL CropImage             |  |          |  |
|   |                | 4.2.1.22                    | CVI_TDL_CropImage_Face        |  | 15       |  |
|   |                |                             | CVI_TDL_SoftMax               |  | 16       |  |
|   |                | 4.2.1.24                    | CVI_TDL_GetVpssChnConfig      |  | 16       |  |
|   |                |                             | CVI_TDL_Free                  |  |          |  |
|   |                |                             | CVI_TDL_CopyInfo              |  | 17       |  |
|   |                | 4.2.1.27                    | CVI_TDL_RescaleMetaCenter     |  | 18       |  |
|   |                | 4.2.1.28                    | CVI_TDL_RescaleMetaRB         |  | 18       |  |



|   |      |          | getFeatureTypeSize                                                                    |    |
|---|------|----------|---------------------------------------------------------------------------------------|----|
|   |      | 4.2.1.30 | $\label{eq:cvi_total} \begin{cal}{ll} CVI\_TDL\_SetModelThreshold & $                 | 19 |
|   |      | 4.2.1.31 | $CVI\_TDL\_GetModelThreshold \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $                  | 19 |
| 4 | .2.2 | Object   | Detection                                                                             | 19 |
|   |      | 4.2.2.1  | CVI_TDL_MobileDetV2_Vehicle                                                           | 19 |
|   |      | 4.2.2.2  | $CVI\_TDL\_MobileDetV2\_Pedestrian$                                                   | 20 |
|   |      | 4.2.2.3  | CVI_TDL_MobileDetV2_Person_Vehicle                                                    | 20 |
|   |      | 4.2.2.4  | $CVI\_TDL\_MobileDetV2\_Person\_Pets \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $          | 21 |
|   |      | 4.2.2.5  | $CVI\_TDL\_MobileDetV2\_COCO80 \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $                | 21 |
|   |      | 4.2.2.6  | CVI_TDL_Yolov3                                                                        | 21 |
|   |      | 4.2.2.7  | CVI_TDL_Yolov5                                                                        | 22 |
|   |      | 4.2.2.8  | CVI_TDL_YoloX                                                                         | 22 |
|   |      | 4.2.2.9  | $\label{eq:cvi_total} CVI\_TDL\_SelectDetectClass  \dots  \dots  \dots  \dots  \dots$ | 23 |
|   |      | 4.2.2.10 | $CVI\_TDL\_ThermalPerson \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $                      | 23 |
| 4 | .2.3 | Face de  | etection                                                                              | 24 |
|   |      | 4.2.3.1  | CVI_TDL_RetinaFace                                                                    | 24 |
|   |      | 4.2.3.2  | CVI_TDL_RetinaFace_IR                                                                 | 24 |
|   |      | 4.2.3.3  | CVI_TDL_RetinaFace_Hardhat                                                            | 24 |
|   |      | 4.2.3.4  | CVI_TDL_ScrFDFace                                                                     | 25 |
|   |      | 4.2.3.5  | CVI_TDL_ThermalFace                                                                   |    |
|   |      | 4.2.3.6  | CVI_TDL_FLDet3                                                                        | 26 |
|   |      | 4.2.3.7  | CVI_TDL_FaceQuality                                                                   | 26 |
|   |      | 4.2.3.8  | CVI_TDL_FaceMaskDetection                                                             |    |
|   |      | 4.2.3.9  | CVI_TDL_MaskClassification                                                            | 27 |
| 4 | .2.4 | Face Re  | ecognition                                                                            | 27 |
|   |      | 4.2.4.1  | CVI_TDL_FaceRecognition                                                               | 27 |
|   |      | 4.2.4.2  | CVI_TDL_FaceRecognitionOne                                                            | 28 |
|   |      | 4.2.4.3  | CVI_TDL_FaceFeatureExtract                                                            | 28 |
|   |      | 4.2.4.4  | CVI TDL FaceAttribute                                                                 | 29 |
|   |      | 4.2.4.5  | CVI_TDL_FaceAttributeOne                                                              |    |
|   |      | 4.2.4.6  | CVI TDL MaskFaceRecognition                                                           |    |
| 4 | .2.5 | Pedestr  | rian Recognition                                                                      | 30 |
|   |      | 4.2.5.1  | CVI_TDL_OSNet                                                                         | 30 |
|   |      | 4.2.5.2  | CVI_TDL_OSNetOne                                                                      |    |
| 4 | .2.6 |          | Recognition                                                                           | 31 |
|   |      | 4.2.6.1  | CVI TDL Hand Detection                                                                | 31 |
|   |      | 4.2.6.2  | CVI_TDL_HandClassification                                                            | 32 |
|   |      | 4.2.6.3  | CVI_TDL_HandKeypoint                                                                  | 32 |
|   |      | 4.2.6.4  | CVI_TDL_HandKeypointClassification                                                    | 33 |
| 4 | .2.7 | Object   | Tracking                                                                              | 34 |
|   |      | 4.2.7.1  | CVI_TDL_DeepSORT_Init                                                                 | 34 |
|   |      | 4.2.7.2  | CVI_TDL_DeepSORT_GetDefaultConfig                                                     | 34 |
|   |      | 4.2.7.3  | CVI_TDL_DeepSORT_SetConfig                                                            | 34 |
|   |      | 4.2.7.4  | CVI_TDL_DeepSORT_GetConfig                                                            | 35 |
|   |      | 4.2.7.5  | CVI_TDL_DeepSORT_CleanCounter                                                         | 35 |
|   |      | 4.2.7.6  | CVI_TDL_DeepSORT_Obj                                                                  | 36 |
|   |      | 4.2.7.7  | CVI_TDL_DeepSORT_Face                                                                 | 36 |
| 4 | .2.8 |          | Detection                                                                             | 37 |
|   | _    | 4.2.8.1  | CVI_TDL_Set_MotionDetection_Background                                                | 37 |
|   |      | 4.2.8.2  | CVI_TDL_MotionDetection                                                               | 37 |
|   |      | 4.2.8.3  | CVI_TDL_Set_MotionDetection_ROI                                                       | 38 |
|   |      |          |                                                                                       |    |



**5** 

|     | 4.2.9      | License  | e Plate Recognition                           |
|-----|------------|----------|-----------------------------------------------|
|     |            | 4.2.9.1  | CVI_TDL_LicensePlateDetection                 |
|     |            | 4.2.9.2  | CVI_TDL_LicensePlateRecognition_TW            |
|     |            | 4.2.9.3  | CVI_TDL_LicensePlateRecognition_CN            |
|     | 4.2.10     | Tampe    | r Detection                                   |
|     |            | 4.2.10.1 | CVI_TDL_TamperDetection                       |
|     | 4.2.11     | Livenes  | ss Detection                                  |
|     |            | 4.2.11.1 | CVI_TDL_Liveness                              |
|     |            | 4.2.11.2 | CVI_TDL_IrLiveness                            |
|     | 4.2.12     | Pose E   | stimation                                     |
|     |            | 4.2.12.1 | CVI_TDL_AlphaPose                             |
|     | 4.2.13     | Semant   | cic Segmentation                              |
|     |            |          | CVI_TDL_DeeplabV3                             |
|     | 4.2.14     | Fall De  | tection                                       |
|     |            | 4.2.14.1 | CVI_TDL_Fall                                  |
|     | 4.2.15     |          | Fatigue Detection                             |
|     |            |          | CVI_TDL_FaceLandmarker                        |
|     |            | 4.2.15.2 | CVI_TDL_EyeClassification                     |
|     |            |          | CVI_TDL_YawnClassification                    |
|     |            |          | CVI_TDL_IncarObjectDetection                  |
|     | 4.2.16     |          | Classification                                |
|     |            | 4.2.16.1 | CVI_TDL_SoundClassification                   |
|     |            |          | CVI_TDL_Get_SoundClassification_ClassesNum 45 |
|     |            | 4.2.16.3 | CVI_TDL_Set_SoundClassification_Threshold 45  |
| 4.3 | $CVI_{\_}$ | TDL_Sea  | rvice                                         |
|     | 4.3.1      | Commo    | on                                            |
|     |            | 4.3.1.1  | CVI_TDL_Service_CreateHandle                  |
|     |            | 4.3.1.2  | CVI_TDL_Service_DestroyHandle                 |
|     |            | 4.3.1.3  | CVI_TDL_Service_Polygon_SetTarget             |
|     |            | 4.3.1.4  | CVI_TDL_Service_Polygon_Intersect             |
|     |            | 4.3.1.5  | CVI_TDL_Service_RegisterFeatureArray          |
|     |            | 4.3.1.6  | CVI_TDL_Service_CalculateSimilarity           |
|     |            | 4.3.1.7  | CVI_TDL_Service_ObjectInfoMatching            |
|     |            | 4.3.1.8  | CVI_TDL_Service_FaceInfoMatching              |
|     |            | 4.3.1.9  | CVI_TDL_Service_RawMatching                   |
|     |            | 4.3.1.10 | CVI_TDL_Service_FaceAngle                     |
|     |            |          | CVI_TDL_Service_FaceAngleForAll               |
|     | 4.3.2      |          | Scaling                                       |
|     |            | 4.3.2.1  | CVI_TDL_Service_FaceDigitalZoom               |
|     |            | 4.3.2.2  | CVI_TDL_Service_ObjectDigitalZoom             |
|     |            | 4.3.2.3  | CVI_TDL_Service_ObjectDitgitalZoomExt         |
|     | 4.3.3      |          | drawing                                       |
|     | 1.0.0      | 4.3.3.1  | CVI TDL Service FaceDrawPts                   |
|     |            | 4.3.3.2  | CVI_TDL_Service_IdeeDrawRect                  |
|     |            | 4.3.3.3  | CVI_TDL_Service_ObjectDrawPose                |
|     |            | 4.3.3.4  | CVI_TDL_Service_ObjectDrawRect                |
|     |            | 4.3.3.5  | CVI_TDL_Service_ObjectWriteText               |
|     |            | 4.3.3.6  | CVI_TDL_Service_Incar_ObjectDrawRect          |
|     |            | 2.0.0.0  | 5                                             |
| App | licatio    | n (APP   | 57                                            |
| 5.1 | Object     | tive     | 57                                            |



|   | 5.2  | API .  | 57                                                  |
|---|------|--------|-----------------------------------------------------|
|   |      | 5.2.1  | Handle                                              |
|   |      |        | 5.2.1.1 CVI_TDL_APP_CreateHandle                    |
|   |      |        | 5.2.1.2 CVI_TDL_APP_DestroyHandle                   |
|   |      | 5.2.2  | Face Capture                                        |
|   |      |        | 5.2.2.1 CVI TDL APP FaceCapture Init                |
|   |      |        | 5.2.2.2 CVI_TDL_APP_FaceCapture_QuickSetUp 62       |
|   |      |        | 5.2.2.3 CVI_TDL_APP_FaceCapture_FusePedSetup 62     |
|   |      |        | 5.2.2.4 CVI_TDL_APP_FaceCapture_GetDefaultConfig 63 |
|   |      |        | 5.2.2.5 CVI_TDL_APP_FaceCapture_SetConfig           |
|   |      |        | 5.2.2.6 CVI_TDL_APP_FaceCapture_FDFR                |
|   |      |        | 5.2.2.7 CVI_TDL_APP_FaceCapture_FbFR                |
|   |      |        |                                                     |
|   |      |        | 5.2.2.8 CVI_TDL_APP_FaceCapture_Run                 |
|   |      |        | 5.2.2.9 CVI_TDL_APP_FaceCapture_CleanAll            |
|   |      | 5.2.3  | Humanoid Capture                                    |
|   |      |        | 5.2.3.1 CVI_TDL_APP_PersonCapture_Init 67           |
|   |      |        | 5.2.3.2 CVI_TDL_APP_PersonCapture_QuickSetUp 68     |
|   |      |        | 5.2.3.3 CVI_TDL_APP_FaceCapture_GetDefaultConfig 68 |
|   |      |        | 5.2.3.4 CVI_TDL_APP_PersonCapture_SetConfig 69      |
|   |      |        | 5.2.3.5 CVI_TDL_APP_PersonCapture_SetMode 69        |
|   |      |        | 5.2.3.6 CVI_TDL_APP_PersonCapture_Run 69            |
|   |      |        | 5.2.3.7 CVI_TDL_APP_ConsumerCounting_Run 70         |
|   |      |        | 5.2.3.8 CVI_TDL_APP_PersonCapture_CleanAll 70       |
|   |      |        |                                                     |
| 6 | Data | Type   |                                                     |
|   | 6.1  | CVI_7  | FDL_Core                                            |
|   |      | 6.1.1  | CVI_TDL_SUPPORTED_MODEL_E                           |
|   |      | 6.1.2  | cvtdl_obj_class_id_e                                |
|   |      | 6.1.3  | cvtdl_obj_det_group_type_e                          |
|   |      | 6.1.4  | feature_type_e                                      |
|   |      | 6.1.5  | meta_rescale_type_e                                 |
|   |      | 6.1.6  | cvtdl bbox t                                        |
|   |      | 6.1.7  | cvtdl_feature_t                                     |
|   |      | 6.1.8  | cvtdl pts t                                         |
|   |      | 6.1.9  | cvtdl_4_pts_t                                       |
|   |      | 6.1.10 | cvtdl vpssconfig t                                  |
|   |      | 6.1.11 | cvtdl tracker t                                     |
|   |      | 6.1.12 | cvtdl tracker info t                                |
|   |      | 6.1.13 | cvtdl_trk_state_type_t                              |
|   |      | 6.1.14 | cvtdl_deepsort_config_t                             |
|   |      | 6.1.15 | cvtdl_kalman_filter_config_t                        |
|   |      |        |                                                     |
|   |      | 6.1.16 | cvtdl_kalman_tracker_config_t                       |
|   |      | 6.1.17 | cvtdl_liveness_ir_position_e                        |
|   |      | 6.1.18 | cvtdl_head_pose_t                                   |
|   |      | 6.1.19 | cvtdl_face_info_t                                   |
|   |      | 6.1.20 | cvtdl_face_t                                        |
|   |      | 6.1.21 | cvtdl_pose17_meta_t                                 |
|   |      | 6.1.22 | cvtdl_vehicle_meta                                  |
|   |      | 6.1.23 | cvtdl_class_filter_t                                |
|   |      | 6.1.24 | cvtdl_dms_t                                         |
|   |      | 6.1.25 | cvtdl_dms_od_t                                      |
|   |      |        |                                                     |



|               |  | <b>(</b> — | 7             |
|---------------|--|------------|---------------|
| $\overline{}$ |  | _          | $\overline{}$ |

算能科技

| $\alpha$ | DΝ  | 1 | LIN        | TT | $\neg c$ |
|----------|-----|---|------------|----|----------|
| - ( /(   | JIN |   | $\Gamma I$ | N  | ı.       |

|   |      | 6.1.26<br>6.1.27<br>6.1.28<br>6.1.29 | cvtdl_dms_od_info_t   cvtdl_face_emotion_e   cvtdl_face_race_e   cvtdl_pedestrian_meta | 84<br>85 |
|---|------|--------------------------------------|----------------------------------------------------------------------------------------|----------|
|   |      | 6.1.30<br>6.1.31                     | cvtdl_object_t                                                                         | 85       |
|   |      | 6.1.32                               | $cvtdl\_handpose21\_meta\_t  .  .  .  .  .  .  .  .  .  $                              | 86       |
|   |      |                                      | cvtdl_handpose21_meta_ts     Yolov5PreParam     VOLOV5AL-Param                         | 87       |
|   | 6.2  | CVI_T                                | YOLOV5AlgParam                                                                         | 87       |
|   |      | 6.2.1<br>6.2.2                       | cvtdl_service_feature_matching_e                                                       | 88       |
|   |      | 6.2.3<br>6.2.4                       | cvtdl_service_brush_t      cvtdl_area_detect_e                                         |          |
| 7 | Erro | r Code                               | s                                                                                      | 89       |



## Revision History

| Revision | Date      | Description                    |
|----------|-----------|--------------------------------|
| 1.0.0    | 2021/6/30 | Draft                          |
| 1.0.1    | 2022/2/11 | Update API Example description |
| 1.1.0    | 2022/6/15 | Update API                     |
| 1.2.0    | 2022/7/27 | Update API                     |



#### 算能科技

# $1_{\mathrm{Disclaimer}}$



#### Terms and Conditions

The document and all information contained herein remain the CVITEK Co., Ltd's ("CVITEK") confidential information, and should not disclose to any third party or use it in any way without CVITEK's prior written consent. User shall be liable for any damage and loss caused by unauthority use and disclosure.

CVITEK reserves the right to make changes to information contained in this document at any time and without notice.

All information contained herein is provided in "AS IS" basis, without warranties of any kind, expressed or implied, including without limitation mercantability, non-infringement and fitness for a particular purpose. In no event shall CVITEK be liable for any third party's software provided herein, User shall only seek remedy against such third party. CVITEK especially claims that CVITEK shall have no liable for CVITEK's work result based on Customer's specification or published shandard.

#### Contact Us

#### Address

Building 1, Yard 9, FengHao East Road, Haidian District, Beijing, 100094, China

Building T10, UpperCoast Park, Huizhanwan, Zhancheng Community, Fuhai Street, Baoan District, Shenzhen, 518100, China

#### Phone

+86 - 10 - 57590723 + 86 - 10 - 57590724

#### Website

https://www.sophgo.com/

#### Forum

https://developer.sophgo.com/forum/index.html



# 2 Function Overview

## 2.1 Objective

Cvitek provides TDL integration algorithms to reduce the time required for application development.

This architecture realizes the algorithm required by TDL, including its pre and post processing, and provides a unified and convenient programming interface.

At present, TDL SDK includes motion detection, face detection, face recognition, face tracking, pedestrian detection, semantic segmentation, license plate recognition, license plate detection, live recognition, IR live recognition, infant detection, cry detection, attitude detection, gesture detection, Gesture Recognition and other algorithms.



# 3 Design Overview

## 3.1 System Architecture

The following is the TDL SDK system architecture diagram; The TDL SDK architecture is on Cvitek's Middleware and TPU SDK.

It is mainly divided into three modules: Core, Service and Application.

Core mainly provides algorithm-related interfaces, encapsulating complex underlying operations and algorithm details.

Users can directly use the Video Frame Buffer obtained by VI or VPSS for model reasoning.

TDL SDK will conduct corresponding pre and post processing on the model and complete reasoning.

Service provides algorithmic auxiliary apis, such as mapping, feature comparison, and area intrusion determination.

Application Encapsulates the application logic, including the face capture application logic.



Fig. 3.1: Figure 1.

The three modules are placed in two libraries:



| Module        | Static Library        | Dynamic Library      |
|---------------|-----------------------|----------------------|
| Core, Service | libcvi_tdl.so         | libcvi_tdl.a         |
| Application   | $libcvi\_tdl\_app.so$ | $libcvi\_tdl\_app.a$ |

## 3.2 Directory Structure

The directory structure of TDL SDK is as follows:

| Directory Name | Description                          |
|----------------|--------------------------------------|
| include        | TDL SDK headers                      |
| sample         | Sample source code                   |
| doc            | Markdown-formatted document          |
| lib            | TDL SDK static and dynamic libraries |
| bin            | TDL SDK binary file                  |



## 4 API Reference

#### Handle 4.1

#### [Syntax]

```
typedef void *cvitdl_handle_t;
typedef void *cvitdl_service_handle_t;
```

#### [Description]

In TDL SDK, each module has its own handle, but when creating the cvitdl\_service\_handle\_t module, the cvitdl handle t is required as an input.

## 4.2 CVI\_TDL\_Core

#### 4.2.1 Common

#### 4.2.1.1 CVI\_TDL\_CreateHandle

#### [Syntax]

```
CVI_S32 CVI_TDL_CreateHandle(cvitdl_handle_t *handle);
```

#### [Description]

Create handle to use TDL SDK. The TDL SDK automatically creates a VPSS Group.

|            | Data Type        | Parameter | Description          |
|------------|------------------|-----------|----------------------|
| In-        | cvitdl_handle_t* | handle    | Input handle pointer |
| put/Output |                  |           |                      |



#### 算能科技

#### 4.2.1.2 CVI\_TDL\_CreateHandle2

#### [Syntax]

```
CVI_S32 CVI_TDL_CreateHandle2(cvitdl_handle_t *handle, const VPSS_GRP_u 

vpssGroupId, const CVI_U8 vpssDev);
```

#### [Description]

Create a handle to use the TDL SDK and use the specified VPSS Group ID and Dev ID to create a VPSS.

#### [Parameter]

|        | Data Type            | Parameter   | Description           |
|--------|----------------------|-------------|-----------------------|
| Output | $cvitdl\_handle\_t*$ | handle      | Input handle pointer  |
| Input  | VPSS_GRP             | vpssGroupId | Group ID used by VPSS |
| Input  | CVI_U8               | vpssDev     | VPSS Device id        |

#### 4.2.1.3 CVI\_TDL\_DestroyHandle

#### [Syntax]

```
CVI_S32 CVI_TDL_DestroyHandle(cvitdl_handle_t handle);
```

#### [Description]

Destroy the created handle cvitdl\_handle\_t. Destroy all open models at the same time

#### [Parameter]

|       | Data Type           | Parameter | Description          |
|-------|---------------------|-----------|----------------------|
| Input | $cvitdl\_handle\_t$ | handle    | Input handle pointer |

#### 4.2.1.4 CVI\_TDL\_GetModelPath

#### [Description]

Gets the model path of the model that has been set up internally to support. Release the filepath variable after use.

|       | Data Type                 | Parameter | Description          |
|-------|---------------------------|-----------|----------------------|
| Input | cvitdl_handle_t           | handle    | Input handle pointer |
| Input | CVI_TDL_SUPPORTED_MODEL_E | model     | Model ID             |



#### [Output]

|        | Data Type | Description        |
|--------|-----------|--------------------|
| Output | char*     | Model path pointer |

#### 4.2.1.5 CVI\_TDL\_OpenModel

#### [Syntax]

```
CVI_S32 CVI_TDL_OpenModel(cvitdl_handle_t handle, CVI_TDL_SUPPORTED_MODEL_E_
→model, const char *filepath);
```

#### [Description]

Enable and initialize the model.

#### [Parameter]

|       | Data Type                          | Parameter | Description          |
|-------|------------------------------------|-----------|----------------------|
| Input | $\operatorname{cvitdl\_handle\_t}$ | handle    | Input handle pointer |
| Input | CVI_TDL_SUPPORTED_MODEL_I          | E model   | Model index          |
| Input | const char*                        | filepath  | cvimodel model path  |

#### 4.2.1.6 CVI\_TDL\_SetSkipVpssPreprocess

#### (Syntax)

```
CVI_S32 CVI_TDL_SetSkipVpssPreprocess(cvitdl_handle_t handle, CVI_TDL_SUPPORTED_
→MODEL_E model, bool skip);
```

#### [Description]

Disable preprocessing for a specified model.

By default, TDL SDK uses the internally created VPSS to preprocess the model (skip = false).

When skip is set to true, TDL SDK will not preprocess the model.

The model input must be preprocessed externally before being input to the model.

This is usually used when directly binding VPSS to VI and using only a single model.

CVI\_TDL\_GetVpssChnConfig can be used to obtain the VPSS preprocessing parameters for the model.



|       | Data Type                 | Parameter             | Description          |
|-------|---------------------------|-----------------------|----------------------|
| Input | cvitdl_handle_t           | handle                | Handel               |
| Input | CVI_TDL_SUPPORTED_MODEL_1 | E model               | Model ID             |
| Input | bool                      | $\operatorname{skip}$ | Whether to skip pre- |
|       |                           |                       | processing           |

#### 4.2.1.7 CVI\_TDL\_GetSkipVpssPreprocess

#### (Syntax)

```
CVI_S32 CVI_TDL_GetSkipVpssPreprocess(cvitdl_handle_t handle, CVI_TDL_SUPPORTED_
→MODEL_E model, bool *skip);
```

#### [Description]

Inquire whether the model will be preprocessed within TDL SDK.

#### [Parameter]

|        | Data Type                 | Parameter | Description                                                    |
|--------|---------------------------|-----------|----------------------------------------------------------------|
| Input  | cvitdl_handle_t           | handle    | Handel                                                         |
| Input  | CVI_TDL_SUPPORTED_MODEL_F | model     | Model ID                                                       |
| Output | bool*                     | skip      | Inquire whether the model will be preprocessed within TDL SDK. |

#### 4.2.1.8 CVI\_TDL\_SetVpssThread

#### [Syntax]

```
CVI_S32 CVI_TDL_SetVpssThread(cvitdl_handle_t handle, CVI_TDL_SUPPORTED_MODEL_E_
→model, const uint32_t thread);
```

#### [Description]

Set the thread ID used by a specific model. In TDL SDK, a VPSS thread represents a set of VPSS group settings. Thread 0 is used by default for the VPSS group used by the model. When multiple threads use the same TDL SDK handle for model inference, this API must be used to specify different VPSS threads to avoid race conditions.

|       | Data Type                 | Parameter | Description |
|-------|---------------------------|-----------|-------------|
| Input | cvitdl_handle_t           | handle    | Handel      |
| Input | CVI_TDL_SUPPORTED_MODEL_E | model     | Model ID    |
| Input | uint32_t                  | thread    | Thread ID   |



#### 4.2.1.9 CVI\_TDL\_SetVpssThread2

#### [Syntax]

```
CVI_S32 CVI_TDL_SetVpssThread2(cvitdl_handle_t handle, CVI_TDL_SUPPORTED_MODEL_

—E model, const uint32_t thread, const VPSS_GRP vpssGroupId, const CVI_U8 dev);
```

#### [Description]

Same as CVI\_TDL\_SetVpssThread. You can specify the Vpss Group ID.

#### [Parameter]

|       | Data Type                          | Parameter        | Description    |
|-------|------------------------------------|------------------|----------------|
| Input | $\operatorname{cvitdl\_handle\_t}$ | handle           | Handel         |
| Input | CVI_TDL_SUPPORTED_MODEL_F          | model            | Model ID       |
| Input | $uint32\_t$                        | thread           | Thread ID      |
| Input | VPSS_GRP                           | vpss-<br>GroupId | VPSS Group id  |
| Input | const CVI_U8                       | dev              | VPSS Device id |

#### 4.2.1.10 CVI\_TDL\_GetVpssThread

#### [Syntax]

```
CVI_S32 CVI_TDL_GetVpssThread(cvitdl_handle_t handle, CVI_TDL_SUPPORTED_MODEL_E_

→model, uint32_t *thread);
```

#### [Description]

Gets the thread id used by the model.

#### [Parameter]

|        | Data Type                 | Parameter | Description    |
|--------|---------------------------|-----------|----------------|
| Input  | cvitdl_handle_t           | handle    | Handel         |
| Input  | CVI_TDL_SUPPORTED_MODEL_H | model     | Model ID       |
| Output | uint32_t*                 | thread    | VPSS thread ID |

#### 4.2.1.11 CVI\_S32 CVI\_TDL\_GetVpssGrpIds

#### [Syntax]

#### [Description]

Get all the VPSS group IDs used in the handle. After use, the groups must be released manually.



#### [Parameter]

|        | Data Type                          | Parameter | Description                 |
|--------|------------------------------------|-----------|-----------------------------|
| Input  | $\operatorname{cvitdl\_handle\_t}$ | handle    | Handel                      |
| Output | VPSS_GRP **                        | groups    | Reference to a null pointer |
| Output | uint32_t*                          | num       | Length of groups            |

#### 4.2.1.12 CVI\_TDL\_SetVpssTimeout

#### [Syntax]

```
CVI_S32 CVI_TDL_SetVpssTimeout(cvitdl_handle_t handle, uint32_t timeout);
```

#### [Description]

Set the TDL SDK to wait for VPSS hardware timeout, with a default setting of 100ms. This setting applies to all VPSS threads within TDL SDK.

#### [Parameter]

|       | Data Type       | Parameter | Description |
|-------|-----------------|-----------|-------------|
| Input | cvitdl_handle_t | handle    | Handel      |
| Input | uint32_t        | timeout   | 超时 timeout  |

#### 4.2.1.13 CVI\_TDL\_SetVBPool

#### [Syntax]

```
CVI_S32 CVI_TDL_SetVBPool(cvitdl_handle_t handle, uint32_t thread, VB_POOL pool_ id);
```

#### [Description]

Specify a VBPool for the internal VPSS in TDL SDK. After being specified, the internal VPSS in TDL SDK will directly obtain memory from this pool. If this API is not used to specify a pool, the system will allocate one automatically.

|       | Data Type           | Parameter | Description                                                                                                   |
|-------|---------------------|-----------|---------------------------------------------------------------------------------------------------------------|
| Input | $cvitdl\_handle\_t$ | handle    | Handle                                                                                                        |
| Input | $uint32\_t$         | thread    | VPSS thread ID                                                                                                |
| Input | VB_POOL             | pool_id   | VB Pool Id. If INVALID_POOLID is set, the Pool is not specified and is automatically allocated by the system. |



#### 4.2.1.14 CVI\_TDL\_GetVBPool

#### [Syntax]

```
CVI_S32 CVI_TDL_GetVBPool(cvitdl_handle_t handle, uint32_t thread, VB_P00L

→*pool_id);
```

#### [Description]

Get the VBPool ID used by the specified VPSS. If  $CVI\_TDL\_SetVBPool$  is not used to specify a pool, INVALID\_POOLID will be returned.

#### [Parameter]

|        | Data Type       | Parameter | Description                     |
|--------|-----------------|-----------|---------------------------------|
| Input  | cvitdl_handle_t | handle    | Handle                          |
| Input  | $uint32\_t$     | thread    | VPSS thread ID                  |
| Output | VB_POOL*        | pool_id   | The current VB Pool Id is used. |

#### 4.2.1.15 CVI\_TDL\_CloseAllModel

#### [Syntax]

```
CVI_S32 CVI_TDL_CloseAllModel(cvitdl_handle_t handle);
```

#### [Description]

Unload all models that have been loaded in the handle.

#### [Parameter]

|       | Data Type           | Parameter | Description |
|-------|---------------------|-----------|-------------|
| Input | $cvitdl\_handle\_t$ | handle    | Handle      |

#### 4.2.1.16 CVI\_TDL\_CloseModel

#### (Syntax)

#### [Description]

Dismount the specific model that has been loaded in the handle.



|       | Data Type                 | Parameter | Description |
|-------|---------------------------|-----------|-------------|
| Input | cvitdl_handle_t           | handle    | Handle      |
| Input | CVI_TDL_SUPPORTED_MODEL_I | E model   | Model index |

#### 4.2.1.17 CVI\_TDL\_Dequantize

#### [Syntax]

```
CVI_S32 CVI_TDL_Dequantize(const int8_t *quantizedData, float *data, const_

→uint32_t bufferSize, const float dequantizeThreshold);
```

#### [Description]

Dequantize int8 values to float.

#### [Parameter]

|        | Data Type      | Parameter                     | Description            |
|--------|----------------|-------------------------------|------------------------|
| Input  | const int8_t*  | quantized-<br>Data            | Int8 data              |
| Output | $float^*$      | data                          | Float output data      |
| Input  | const uint32_t | bufferSize                    | Int8 data quantity     |
| Input  | const float    | dequan-<br>tizeThresh-<br>old | Quantization threshold |

#### 4.2.1.18 CVI\_TDL\_ObjectNMS

#### [Syntax]

```
CVI_S32 CVI_TDL_ObjectNMS(const cvtdl_object_t *obj, cvtdl_object_t *objNMS, const float threshold, const char method);
```

#### [Description]

Run the Non-Maximum Suppression algorithm for bboxes in cvtdl\_object\_t.

|        | Data Type                           | Parameter | Description                                                       |
|--------|-------------------------------------|-----------|-------------------------------------------------------------------|
| Input  | $const\ cvtdl\_object\_t^*$         | obj       | Object Meta of the NMS                                            |
| Output | $\operatorname{cvtdl\_object\_t}^*$ | objNMS    | Result after NMS                                                  |
| Input  | const float                         | threshold | IOU threshold                                                     |
| Input  | const char                          | method    | 'u' : Intersection over Union<br>'m' : Intersection over min area |



#### 4.2.1.19 CVI\_TDL\_FaceNMS

#### [Syntax]

```
CVI_S32 CVI_TDL_ObjectNMS(const cvtdl_face_t *face, cvtdl_face_t *faceNMS,_u 

const float threshold, const char method);
```

#### [Description]

Run the Non-Maximum Suppression algorithm for bboxes in cvtdl\_face\_t.

#### [Parameter]

|        | Data Type                | Parameter | Description                      |
|--------|--------------------------|-----------|----------------------------------|
| Input  | $const\ cvtdl\_face\_t*$ | face      | face meta of the NMS             |
| Output | $cvtdl\_face\_t^*$       | faceNMS   | Result after NMS                 |
| Input  | const float              | threshold | IOU threshold                    |
| Input  | const char               | method    | 'u' : Intersection over Union    |
|        |                          |           | 'm' : Intersection over min area |

#### 4.2.1.20 CVI\_TDL\_FaceAlignment

#### [Syntax]

```
CVI_S32 CVI_TDL_FaceAlignment(VIDEO_FRAME_INFO_S *inFrame, const uint32_t_

→metaWidth, const uint32_t metaHeight, const cvtdl_face_info_t *info, VIDEO_

→FRAME_INFO_S *outFrame, const bool enableGDC);
```

#### [Description]

InsightFace Alignment parameter was used to perform Face Alignment for inFrame image Face.

|        | Data Type                      | Parameter                 | Description                          |
|--------|--------------------------------|---------------------------|--------------------------------------|
| Input  | VIDEO_FRAME_INFO_S*            | inFrame                   | Input image                          |
| Input  | const uint32_t metaWidth       | $_{ m idth}^{ m metaW}$ - | The width of the frame in Info       |
| Input  | const uint32_t metaHeight      | meta-<br>Height           | The height of the frame in Info      |
| Input  | $const\ cvtdl\_face\_info\_t*$ | info                      | Face info                            |
| Output | VIDEO_FRAME_INFO_S*            | outFrame                  | The face image after face alignment. |
| Input  | const bool                     | $_{ m able GDC}$          | Whether to use GDC hardware          |



#### 4.2.1.21 CVI\_TDL\_CropImage

#### [Syntax]

```
CVI_S32 CVI_TDL_CropImage(VIDEO_FRAME_INFO_S *srcFrame, cvtdl_image_t *dst,__ 
cvtdl_bbox_t *bbox, bool cvtRGB888);
```

#### [Description]

Retrieves the Bbox-specified region image from the srcFrame image.

#### [Parameter]

|        | Data Type           | Parameter | Description                                             |
|--------|---------------------|-----------|---------------------------------------------------------|
| Input  | VIDEO_FRAME_INFO_S* | srcFrame  | Input image, currently only supports RGB packed format. |
| Output | $cvtdl\_image\_t^*$ | dst       | Output image.                                           |
| Input  | $cvtdl\_bbox\_t^*$  | bbox      | Bounding box                                            |
| Input  | bool                | cvtRGB888 | Whether to convert to RGB888 format for output.         |

#### 4.2.1.22 CVI\_TDL\_CropImage\_Face

#### [Syntax]

#### [Description]

Extract the image within the specified face bbox from the srcFrame image.

|        | Data Type                              | Parameter    | Description                                                                |
|--------|----------------------------------------|--------------|----------------------------------------------------------------------------|
| Input  | VIDEO_FRAME_INFO_                      | srcFrame     | Input image, currently only supports RGB packed format.                    |
| Output | $cvtdl\_image\_t^*$                    | dst          | Output image.                                                              |
| Input  | $\operatorname{cvtdl\_face\_info\_t*}$ | $face\_info$ | Specified face info.                                                       |
| Input  | bool                                   | align        | Whether to perform face alignment. Using InsightFace alignment parameters. |
| Input  | bool                                   | cvtRGB888    | Whether to convert the output format to RGB888.                            |



#### 4.2.1.23 CVI\_TDL\_SoftMax

#### [Syntax]

```
CVI_S32 CVI_TDL_SoftMax(const float *inputBuffer, float *outputBuffer, const⊔ 

→uint32_t bufferSize);
```

#### [Description]

Compute Softmax for the inputBuffer.

#### [Parameter]

|        | Data Type      | Parameter         | Description              |
|--------|----------------|-------------------|--------------------------|
| Input  | const float*   | input-<br>Buffer  | Buffer to be softmaxed   |
| Output | const float*   | output-<br>Buffer | resulting softmax buffer |
| Input  | const uint32_t | bufferSize        | buffer size              |

#### 4.2.1.24 CVI\_TDL\_GetVpssChnConfig

#### [Syntax]

```
CVI_S32 CVI_TDL_GetVpssChnConfig(cvitdl_handle_t handle, CVI_TDL_SUPPORTED_

MODEL_E model, const CVI_U32 frameWidth, const CVI_U32 frameHeight, const CVI_

U32 idx, cvtdl_vpssconfig_t *chnConfig);
```

#### [Description]

Get the VPSS parameters used in model pre-processing.

|        | Data Type                 | Parameter          | Description                                   |
|--------|---------------------------|--------------------|-----------------------------------------------|
| Input  | cvitdl_handle_t           | handle             | Handle                                        |
| Input  | CVI_TDL_SUPPORTED_MODEL_E | model              | Model ID                                      |
| Input  | CVI_U32                   | ${\it frameWidth}$ | Input image width                             |
| Input  | CVI_U32                   | fra<br>meHeight    | Input image height                            |
| Input  | CVI_U32                   | idx                | The input index of the model                  |
| Output | $cvtdl\_vpssconfig\_t*$   | chnConfig          | The specified parameter value to be returned. |



#### 4.2.1.25 CVI\_TDL\_Free

#### CVI\_TDL\_Free(X)

#### [Description]

Free the data structure generated by the model results. Some data structures may contain subitems allocated by malloc, so they need to be released.

#### [Parameter]

The following are the supported input variables:

- cvtdl feature t
- $\bullet$  cvtdl\_pts\_t
- cvtdl\_tracker\_t
- $\bullet$  cvtdl\_face\_info\_t
- $\bullet$  cvtdl\_face\_t
- cvtdl\_object\_info\_t
- cvtdl\_object\_t

#### 4.2.1.26 CVI\_TDL\_CopyInfo

#### CVI\_TDL\_CopyInfo(IN, OUT)

#### [Description]

Generic API for copying CVI\_TDL structures. This API will allocate the pointer memory for the copied structure and perform a complete copy.

|        | Data Type                                                         | Parameter | Description         |
|--------|-------------------------------------------------------------------|-----------|---------------------|
| Input  | Support type: cvtdl_face_info_t cvtdl_object_info_t cvtdl_image_t | IN        | Replication source  |
| Output | Support type: cvtdl_face_info_t cvtdl_object_info_t cvtdl_image_t | OUT       | Replication purpose |



#### 4.2.1.27 CVI\_TDL\_RescaleMetaCenter

#### [Description]

Rescale the coordinates in the structure to the size of the input image with padding on top, bottom, left, and right.

#### [Parameter]

Here are the supported input variables:

- $\bullet$  cvtdl\_face\_t
- cvtdl\_object\_t

#### 4.2.1.28 CVI\_TDL\_RescaleMetaRB

#### [Description]

In the padding image, the coordinates in the structure are restored to the same size as the input image.

#### [Parameter]

Here are the supported input variables:

- $\bullet$  cvtdl\_face\_t
- cvtdl\_object\_t

#### 4.2.1.29 getFeatureTypeSize

#### int getFeatureTypeSize(feature\_type\_e type);

#### [Description]

Gets the unit size of the eigenvalue.

#### [Parameter]

|       | Data Type      | Parameter | Description |
|-------|----------------|-----------|-------------|
| Input | feature_type_e | type      | Unit        |

#### [Output]

|        | Data Type | Parameter | Description           |
|--------|-----------|-----------|-----------------------|
| Output | int       | X         | The unit size is byte |



#### 算能科技

#### 4.2.1.30 CVI\_TDL\_SetModelThreshold

#### [Syntax]

```
CVI_S32 CVI_TDL_SetModelThreshold(cvitdl_handle_t handle, CVI_TDL_SUPPORTED_

→MODEL_E model, float threshold);
```

#### [Description]

Set the threshold value for the model, currently only supported for models of the detection type.

#### [Parameter]

|       | Data Type                 | Parameter | Description              |
|-------|---------------------------|-----------|--------------------------|
| Input | cvitdl_handle_t           | handle    | Handle                   |
| Input | CVI_TDL_SUPPORTED_MODEL_H | model     | Model index              |
| Input | float                     | threshold | Threshold $(0.0\sim1.0)$ |

#### 4.2.1.31 CVI\_TDL\_GetModelThreshold

#### (Syntax)

```
CVI_S32 CVI_TDL_GetModelThreshold(cvitdl_handle_t handle, CVI_TDL_SUPPORTED_

MODEL_E model, float *threshold);
```

#### [Description]

Take out the model threshold, and only the Detection type model is supported at present.

#### [Parameter]

|        | Data Type                 | Parameter | Description |
|--------|---------------------------|-----------|-------------|
| Input  | cvitdl_handle_t           | handle    | Handle      |
| Input  | CVI_TDL_SUPPORTED_MODEL_E | model     | Model index |
| Output | float*                    | threshold | Threshold   |

## 4.2.2 Object Detection

#### 4.2.2.1 CVI\_TDL\_MobileDetV2\_Vehicle

#### [Syntax]

```
CVI_S32 CVI_TDL_MobileDetV2_Vehicle(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S_ *frame, cvtdl_object_t *obj);
```

#### [Description]

Perform inference using the MobilDetV2-Vehicle model, which can detect three categories: Car, Motorcycle, and Truck.



#### [Parameter]

|        | Data Type                          | Parameter | Description      |
|--------|------------------------------------|-----------|------------------|
| Input  | $\operatorname{cvitdl\_handle\_t}$ | handle    | Handle           |
| Input  | VIDEO_FRAME_INFO_S*                | frame     | Input image      |
| Output | $\operatorname{cvtdl\_object\_t*}$ | obj       | Objects detected |

#### 4.2.2.2 CVI\_TDL\_MobileDetV2\_Pedestrian

#### [Syntax]

#### [Description]

Perform inference using MobilDetV2-Pedestrian series model which can detect objects of the class "person" .

#### [Parameter]

|        | Data Type                           | Parameter | Description      |
|--------|-------------------------------------|-----------|------------------|
| Input  | cvitdl_handle_t                     | handle    | Handle           |
| Input  | VIDEO_FRAME_INFO_S*                 | frame     | Input image      |
| Output | $\operatorname{cvtdl\_object\_t^*}$ | obj       | Objects detected |

#### 4.2.2.3 CVI\_TDL\_MobileDetV2\_Person\_Vehicle

#### [Syntax]

```
CVI_S32 CVI_TDL_MobileDetV2_Person_Vehicle(cvitdl_handle_t handle, VIDEO_FRAME_

INFO_S *frame, cvtdl_object_t *obj);
```

#### [Description]

Perform inference using the MobilDetV2-Person-Vehicle model, which can detect the person, car, and non-motorized vehicle classes.

|        | Data Type                          | Parameter | Description      |
|--------|------------------------------------|-----------|------------------|
| Input  | cvitdl_handle_t                    | handle    | Handle           |
| Input  | VIDEO_FRAME_INFO_S*                | frame     | Input image      |
| Output | $\operatorname{cvtdl\_object\_t*}$ | obj       | Objects detected |



#### 4.2.2.4 CVI\_TDL\_MobileDetV2\_Person\_Pets

#### [Syntax]

```
CVI_S32 CVI_TDL_MobileDetV2_Person_Pets(cvitdl_handle_t handle, VIDEO_FRAME_

SINFO_S *frame, cvtdl_object_t *obj);
```

#### [Description]

Perform inference using the MobilDetV2-Lite-Person-Pets model, which can detect person, cat, dog, and other classes.

#### [Parameter]

|        | Data Type           | Parameter     | Description      |
|--------|---------------------|---------------|------------------|
| Input  | $cvitdl\_handle\_t$ | handle        | Handle           |
| Input  | VIDEO_FRAME_INFO_S* | $_{ m frame}$ | Input Image      |
| Output | cvtdl_object_t*     | obj           | Detected Objects |

#### 4.2.2.5 CVI\_TDL\_MobileDetV2\_COCO80

#### (Syntax)

```
CVI_S32 CVI_TDL_MobileDetV2_COC080(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S<sub>□</sub> →*frame, cvtdl_object_t *obj);
```

#### [Description]

Perform inference using MobilDetV2 COCO80 series model, which can detect 80 classes in the standard COCO dataset.

#### [Parameter]

|        | Data Type           | Parameter | Description       |
|--------|---------------------|-----------|-------------------|
| Input  | cvitdl_handle_t     | handle    | Handle            |
| Input  | VIDEO_FRAME_INFO_S* | frame     | Input Image       |
| Output | cvtdl_object_t*     | obj       | Detected Objects. |

#### 4.2.2.6 CVI\_TDL\_Yolov3

#### [Syntax]

```
CVI_S32 CVI_TDL_Yolov3 (cvitdl_handle_t handle, VIDEO_FRAME_INFO_S *frame, ∪ cvtdl_object_t *obj);
```

#### [Description]

Perform inference using the YOLOv3 model, which can detect 80 classes in the COCO dataset.



|        | Data Type                          | Parameter | Description      |
|--------|------------------------------------|-----------|------------------|
| Input  | $cvitdl\_handle\_t$                | handle    | Handle           |
| Input  | VIDEO_FRAME_INFO_S*                | frame     | Input Image      |
| Output | $\operatorname{cvtdl\_object\_t*}$ | obj       | Detected Objects |

#### 4.2.2.7 CVI\_TDL\_Yolov5

#### [Syntax]

```
CVI_S32 CVI_TDL_Yolov5 (cvitdl_handle_t handle, VIDEO_FRAME_INFO_S *frame,_
cvttdl_object_t *obj);
```

#### [Description]

Perform inference using the YOLOv5 model, which can detect 80 classes in the COCO dataset.

#### [Parameter]

|        | Data Type                           | Parameter     | Description      |
|--------|-------------------------------------|---------------|------------------|
| Input  | cvitdl_handle_t                     | handle        | Handle           |
| Input  | VIDEO_FRAME_INFO_S*                 | $_{ m frame}$ | Input Image      |
| Output | $\operatorname{cvtdl\_object\_t^*}$ | obj           | Detected Objects |

#### 4.2.2.8 CVI\_TDL\_YoloX

#### [Syntax]

#### [Description]

Perform inference using the YoloX model, which can detect 80 classes in the COCO dataset.

|        | Data Type                           | Parameter | Description      |
|--------|-------------------------------------|-----------|------------------|
| Input  | cvitdl_handle_t                     | handle    | Handle           |
| Input  | VIDEO_FRAME_INFO_S*                 | frame     | Input Image      |
| Output | $\operatorname{cvtdl\_object\_t}^*$ | obj       | Detected Objects |



#### 4.2.2.9 CVI\_TDL\_SelectDetectClass

#### [Syntax]

```
CVI_S32 CVI_TDL_SelectDetectClass(cvitdl_handle_t handle, CVI_TDL_SUPPORTED_
→MODEL_E model, uint32_t num_classes, ...)
```

#### [Description]

Filter the output results of the Object Detection model and keep the listed classes or groups.

The number of classes is determined by num\_classes, and the detailed class and group Index can be referred to cvtdl\_obj\_class\_id\_e and cvtdl\_obj\_det\_group\_type\_e.

This function is currently only supported for MobileDetV2 and YoloX models.

#### [Parameter]

|       | Data Type                                          | Parameter   | Description                     |
|-------|----------------------------------------------------|-------------|---------------------------------|
| Input | cvitdl_handle_t                                    | handle      | handle                          |
| Input | CVI_TDL_SUPPORTED_MODEL_E                          | model       | Model Index                     |
| Input | uint32_t                                           | num_classes | Number of reserved categories   |
| Input | cvtdl_obj_class_id_e<br>cvtdl_obj_det_group_type_e | Description | Eserved Class ID or<br>Group ID |

#### 4.2.2.10 CVI\_TDL\_ThermalPerson

#### [Syntax]

```
CVI_S32 CVI_TDL_ThermalPerson(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S *frame,
→ cvtdl_object_t *obj);
```

#### [Description]

Thermal imaging of a human body.

|        | Data Type           | Parameter | Description                      |
|--------|---------------------|-----------|----------------------------------|
| Input  | cvitdl_handle_t     | handle    | handle                           |
| Input  | VIDEO_FRAME_INFO_S* | frame     | Input image                      |
| Output | cvtdl_object_t*     | faces     | The human form that was detected |

#### 算能科技

#### 4.2.3 Face detection

#### 4.2.3.1 CVI\_TDL\_RetinaFace

#### [Syntax]

```
CVI_S32 CVI_TDL_RetinaFace(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S *frame, U CVTL_S32 CVI_TDL_RetinaFace(cvitdl_handle, VIDEO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_FRAME_INFO_F
```

#### [Description]

Detect faces using the RetinaFace model.

#### [Parameter]

|        | Data Type                                                            | Parameter | Description    |
|--------|----------------------------------------------------------------------|-----------|----------------|
| Input  | $\operatorname{cvitdl}_{-}\operatorname{handle}_{-}\operatorname{t}$ | handle    | Handle         |
| Input  | VIDEO_FRAME_INFO_S*                                                  | frame     | Input image    |
| Output | $cvtdl\_face\_t*$                                                    | faces     | Detected faces |

#### 4.2.3.2 CVI\_TDL\_RetinaFace\_IR

#### [Syntax]

#### [Description]

The RetinaFace model was used for face detection in IR images.

#### [Parameter]

|        | Data Type           | Parameter | Description    |
|--------|---------------------|-----------|----------------|
| Input  | cvitdl_handle_t     | handle    | Handle         |
| Input  | VIDEO_FRAME_INFO_S* | frame     | Input IR image |
| Output | $cvtdl\_face\_t^*$  | faces     | Detected faces |

#### 4.2.3.3 CVI\_TDL\_RetinaFace\_Hardhat

#### [Syntax]

```
CVI_S32 CVI_TDL_RetinaFace_Hardhat(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S

→*frame, cvtdl_face_t *faces);
```

#### [Description]

Detect faces wearing safety helmets using RetinaFace model.



|        | Data Type           | Parameter | Description          |
|--------|---------------------|-----------|----------------------|
| Input  | $cvitdl\_handle\_t$ | handle    | handle               |
| Input  | VIDEO_FRAME_INFO_S* | frame     | Input IR image       |
| Output | $cvtdl\_face\_t^*$  | faces     | The faces wedetected |

#### 4.2.3.4 CVI\_TDL\_ScrFDFace

#### [Syntax]

```
CVI_S32 CVI_TDL_ScrFDFace(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S *frame,__ 
cvtdl_face_t *faces);
```

#### [Description]

Detect faces using RetinaFace model.

#### [Parameter]

|        | Data Type                         | Parameter | Description           |
|--------|-----------------------------------|-----------|-----------------------|
| Input  | ${\rm cvitdl\_handle\_t}$         | handle    | Handle                |
| Input  | VIDEO_FRAME_INFO_S*               | frame     | Input image           |
| Output | $\operatorname{cvtdl\_face\_t}^*$ | faces     | The faces we detected |

#### 4.2.3.5 CVI\_TDL\_ThermalFace

#### [Syntax]

```
CVI_S32 CVI_TDL_ThermalFace(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S *frame, ⊔ ⇒cvtdl_face_t *faces);
```

#### [Description]

Thermal imaging-based face detection.

|        | Data Type                          | Parameter | Description           |
|--------|------------------------------------|-----------|-----------------------|
| Input  | $\operatorname{cvitdl\_handle\_t}$ | handle    | Handle                |
| Input  | $VIDEO\_FRAME\_INFO\_S*$           | frame     | Input image           |
| Output | $\operatorname{cvtdl\_face\_t}^*$  | faces     | The faces we detected |

算能科技

#### 4.2.3.6 CVI\_TDL\_FLDet3

#### [Syntax]

#### [Description]

Determine the face keypoints in the incoming face structure.

#### [Parameter]

|        | Data Type                         | Parameter | Description        |
|--------|-----------------------------------|-----------|--------------------|
| Input  | $cvitdl\_handle\_t$               | handle    | Handle             |
| Input  | VIDEO_FRAME_INFO_S*               | frame     | The face detected  |
| Output | $\operatorname{cvtdl\_face\_t^*}$ | faces     | The face keypoints |

#### 4.2.3.7 CVI\_TDL\_FaceQuality

#### [Syntax]

```
CVI_S32 CVI_TDL_FaceQuality(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S *frame, cvtdl_face_t *faces, bool *skip);
```

#### [Description]

Evaluate the quality of the faces in the given "faces" structure and detect their angles. The quality is affected by the clarity of the face and whether it is occluded. The quality score of a face is stored in "faces->info[i].face\_quality", while the angle is stored in "faces->info[i].head\_pose"

|                                  | Data Type                                               | Parameter                       | Description                                                                                                           |
|----------------------------------|---------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Input<br>Input<br>Input<br>Input | cvitdl_handle_t VIDEO_FRAME_INFO_S* cvtdl_face_t* bool* | handle<br>frame<br>face<br>skip | handle Input image The faces we detected Bool array: Specifies the face quality required for the face. NULL indicates |
|                                  |                                                         |                                 | that all faces do this.                                                                                               |



#### 4.2.3.8 CVI\_TDL\_FaceMaskDetection

#### [Syntax]

```
CVI_S32 CVI_TDL_FaceMaskDetection(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S

→*frame, cvtdl_face_t *faces);
```

#### [Description]

Detect faces wearing masks. The face score is stored in faces->info[i].bbox.score, and the score of faces wearing masks is stored in faces->info[i].mask\_score.

#### [Parameter]

|        | Data Type                | Parameter | Description           |
|--------|--------------------------|-----------|-----------------------|
| Input  | cvitdl_handle_t          | handle    | handle                |
| Input  | $VIDEO\_FRAME\_INFO\_S*$ | frame     | Input image           |
| Output | $cvtdl\_face\_t*$        | faces     | The faces we detected |

#### 4.2.3.9 CVI\_TDL\_MaskClassification

#### (Syntax)

```
CVI_S32 CVI_TDL_MaskClassification(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S_

→*frame, cvtdl_face_t *face);
```

#### [Description]

Check if all faces in the input faces are masked faces. A face detection must be performed before calling this interface. The score of masked face is stored in faces->info[i].mask\_score.

#### [Parameter]

|       | Data Type           | Parameter | Description           |
|-------|---------------------|-----------|-----------------------|
| Input | cvitdl_handle_t     | handle    | handle                |
| Input | VIDEO_FRAME_INFO_S* | frame     | Input image           |
| Input | cvtdl_face_t*       | faces     | The faces we detected |

## 4.2.4 Face Recognition.

#### 4.2.4.1 CVI\_TDL\_FaceRecognition

#### [Syntax]

```
CVI_S32 CVI_TDL_FaceRecognition(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S_ *frame, cvtdl_face_t *faces);
```

#### [Description]

Extract facial features. This interface will extract features for all faces in the face variable and store them in faces->info[i].feature.

#### [Parameter]

|            | Data Type                         | Parameter | Description           |
|------------|-----------------------------------|-----------|-----------------------|
| Input      | cvitdl_handle_t                   | handle    | handle                |
| Input      | VIDEO_FRAME_INFO_S*               | frame     | Input image           |
| In-        | $\operatorname{cvtdl\_face\_t^*}$ | faces     | The faces we detected |
| put/Output |                                   |           |                       |

#### 4.2.4.2 CVI\_TDL\_FaceRecognitionOne

#### (Syntax)

```
CVI_S32 CVI_TDL_FaceRecognitionOne(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S_ +frame, cvtdl_face_t *faces, int face_idx);
```

#### [Description]

Extract face features. This interface will only extract features for the specified face index and store them in faces->info[index].feature.

#### [Parameter]

|                   | Data Type           | Parameter | Description                                                                            |
|-------------------|---------------------|-----------|----------------------------------------------------------------------------------------|
| Input             | $cvitdl\_handle\_t$ | handle    | handle                                                                                 |
| Input             | VIDEO_FRAME_INFO_   | frame     | Input image                                                                            |
| In-<br>put/Output | cvtdl_face_t*       | faces     | The faces we detected                                                                  |
| Input             | int                 | face_idx  | Index of the face to extract features from. Use -1 to extract features from all faces. |

#### 4.2.4.3 CVI\_TDL\_FaceFeatureExtract

#### [Syntax]

```
CVI_S32 CVI_TDL_FaceFeatureExtract(cvitdl_handle_t handle, const uint8_t *rgb_

→pack, int width, int height, int stride, cvtdl_face_info_t *face_info);
```

#### [Description]

Extract facial features. This interface will only perform feature extraction on the specified 'rgb\_pack' position. The extracted features will be stored in 'face\_info->feature.ptr'.



|            | Data Type                | Parameter    | Description                        |
|------------|--------------------------|--------------|------------------------------------|
| Input      | cvitdl_handle_t          | handle       | Handle                             |
| Input      | const uint8_t*           | rgb_pack     | Input image pixel starting address |
| Input      | int                      | width        | Input image width                  |
| Input      | int                      | height       | Input image height                 |
| Input      | int                      | stride       | Input image stride                 |
| In-        | $cvtdl\_face\_info\_t^*$ | $face\_info$ | The face feature we de-            |
| put/Output |                          |              | tected                             |

#### 4.2.4.4 CVI\_TDL\_FaceAttribute

#### (Syntax)

```
CVI_S32 CVI_TDL_FaceAttribute(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S *frame,

    cvtdl_face_t *faces);
```

#### [Description]

Extract facial features and attributes. This interface will extract features and attributes, including gender, expression, age, and race, for all faces in the input faces data structure. The results will be stored in faces->info[i].feature, faces->info[i].age, faces->info[i].emotion, faces->info[i].gender, and faces->info[i].race respectively.

#### [Parameter]

|            | Data Type           | Parameter | Description           |
|------------|---------------------|-----------|-----------------------|
| Input      | cvitdl_handle_t     | handle    | Handle                |
| Input      | VIDEO_FRAME_INFO_S* | frame     | Input image           |
| In-        | $cvtdl\_face\_t^*$  | faces     | The faces we detected |
| put/Output |                     |           |                       |

#### 4.2.4.5 CVI\_TDL\_FaceAttributeOne

#### [Syntax]

```
CVI_S32 CVI_TDL_FaceAttributeOne(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S_
→*frame, cvtdl_face_t *faces, int face_idx);
```

#### [Description]

Extract facial features and attributes for a specific face index using this interface. The facial features and attributes include gender, emotion, age, and race, and the results will be stored in faces->info[i].feature, faces->info[i].age, faces->info[i].emotion, faces->info[i].gender, faces->info[i].race.



|                            | Data Type                                             | Parameter                | Description                                                                            |
|----------------------------|-------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------|
| Input Input In- put/Output | cvitdl_handle_t<br>VIDEO_FRAME_INFO_<br>cvtdl_face_t* | handle<br>frame<br>faces | handle Input image The faces we detected                                               |
| Input                      | int                                                   | face_idx                 | Index of the face to extract features from. Use -1 to extract features from all faces. |

#### 4.2.4.6 CVI\_TDL\_MaskFaceRecognition

#### (Syntax)

```
CVI_S32 CVI_TDL_MaskFaceRecognition(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S_
→*frame, cvtdl_face_t *faces);
```

#### [Description]

Extract features of faces wearing masks. This interface will extract features for all faces in the input faces and store them in faces->info[i].feature.

#### [Parameter]

|            | Data Type           | Parameter | Description           |
|------------|---------------------|-----------|-----------------------|
| Input      | cvitdl_handle_t     | handle    | handle                |
| Input      | VIDEO_FRAME_INFO_S* | frame     | Input image           |
| In-        | $cvtdl\_face\_t^*$  | faces     | The faces we detected |
| put/Output |                     |           |                       |

#### Pedestrian Recognition 4.2.5

#### 4.2.5.1 CVI\_TDL\_OSNet

#### [Syntax]

```
CVI_S32 CVI_TDL_OSNet(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S *frame, cvtdl_
→object_t *obj);
```

#### [Description]

Extract pedestrian features using the person-reid model. This interface will extract features for all Person-class objects in obj and place them in obj->info[i].feature.

| /r/r | 11-  | TN | 14  |
|------|------|----|-----|
|      | 금    | 大人 | 14  |
| #    | FIE: | 77 | 1 X |

|       | Data Type                          | Parameter | Description      |
|-------|------------------------------------|-----------|------------------|
| Input | cvitdl_handle_t                    | handle    | handle           |
| Input | VIDEO_FRAME_INFO_S*                | frame     | Input image      |
| Input | $\operatorname{cvtdl\_object\_t*}$ | obj       | Objects detected |

#### 4.2.5.2 CVI\_TDL\_OSNetOne

#### (Syntax)

```
CVI_S32 CVI_TDL_OSNetOne(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S *frame, cvtdl_object_t *obj, int obj_idx);
```

#### [Description]

Extract pedestrian features using the person-reid model. This interface only extracts features for the specified object in obj and stores the features in obj->info[i].feature.

#### [Parameter]

|       | Data Type                          | Parameter | Description                                                                               |
|-------|------------------------------------|-----------|-------------------------------------------------------------------------------------------|
| Input | cvitdl_handle_t                    | handle    | handle                                                                                    |
| Input | VIDEO_FRAME_INFO_                  | frame     | Input image                                                                               |
| Input | $\operatorname{cvtdl\_object\_t*}$ | obj       | Objects detected                                                                          |
| Input | int                                | obj_idx   | Index of the object to extract features from1 means to extract features from all objects. |

# 4.2.6 Gesture Recognition

#### 4.2.6.1 CVI\_TDL\_Hand\_Detection

#### [Syntax]

```
CVI_S32 CVI_TDL_Hand_Detection(const cvitdl_handle_t handle, VIDEO_FRAME_INFO_S_ *frame, cvtdl_object_t *meta);
```

#### [Description]

This function is used for detecting hand bounding boxes. The results will be stored in 'meta->info[i]'.



|        | Data Type           | Parameter | Description                   |
|--------|---------------------|-----------|-------------------------------|
| Input  | cvitdl_handle_t     | handle    | The handle for the TDL model. |
| Input  | VIDEO_FRAME_INFO_S* | frame     | The input image.              |
| Output | cvtdl_object_t*     | meta      | Detected hand bounding boxes. |

#### 4.2.6.2 CVI\_TDL\_HandClassification

#### [Syntax]

```
CVI_S32 CVI_TDL_HandClassification(const cvitdl_handle_t handle, VIDEO_FRAME_
→INFO_S *frame, cvtdl_object_t *meta);
```

#### [Description]

This gesture classification algorithm is used for recognizing gestures on the specified 'frame'. The results will be stored in 'meta->info[i].name' and 'meta->info[i].bbox.score'.

#### [Parameter]

|            | Data Type                           | Parameter | Description                        |
|------------|-------------------------------------|-----------|------------------------------------|
| Input      | cvitdl_handle_t                     | handle    | The handle for the TDL model.      |
| Input      | VIDEO_FRAME_INFO_S*                 | frame     | The input image.                   |
| In-        | $\operatorname{cvtdl\_object\_t^*}$ | meta      | Detected hand bounding             |
| put/Output |                                     |           | boxes and gesture classifications. |

#### 4.2.6.3 CVI\_TDL\_HandKeypoint

#### [Syntax]

```
CVI_S32 CVI_TDL_HandKeypoint(const cvitdl_handle_t handle, VIDEO_FRAME_INFO_S_
→*frame, cvtdl_handpose21_meta_ts *meta);
```

#### [Description]

This function is used for outputting hand key points and storing them in 'meta->info[i]'.



|                   | Data Type                 | Parameter | Description                                          |
|-------------------|---------------------------|-----------|------------------------------------------------------|
| Input             | cvitdl_handle_t           | handle    | The handle for the TDL model.                        |
| Input             | VIDEO_FRAME_INFO_S*       | frame     | Input image.                                         |
| In-<br>put/Output | cvtdl_handpose21_meta_ts* | meta      | Detected hand bounding boxes and 21 hand key points. |

#### 4.2.6.4 CVI\_TDL\_HandKeypointClassification

#### [Syntax]

```
CVI_S32 CVI_TDL_HandKeypointClassification(const cvitdl_handle_t handle, VIDEO_ 

FRAME_INFO_S *frame, cvtdl_handpose21_meta_t *meta);
```

#### [Description]

This function is used for extracting hand keypoint information. The keypoint information will be stored in 'meta->info[i]'.

|        | Data Type                | Parameter | Description                                                                                                                                                                             |
|--------|--------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input  | $cvitdl\_handle\_t$      | handle    | The handle for the TDL model.                                                                                                                                                           |
| Input  | VIDEO_FRAME_INFO_S*      | frame     | Input 21 key points of the hand. The x and y coordinates are sequentially stored in 'frame->stVFrame.pu8VirAddr[0]', 'frame->stVFrame.u32Height=1', 'frame->stVFrame.u32Width=42*sized. |
| Output | cvtdl_handpose21_meta_t* | meta      | The output of hand gestures, including the gesture label in 'meta->label' and the gesture score in 'meta->score'.                                                                       |

# 4.2.7 Object Tracking

#### 4.2.7.1 CVI\_TDL\_DeepSORT\_Init

#### [Syntax]

#### [Description]

Initialize the DeepSORT algorithm.

#### [Parameter]

|       | Data Type       | Parameter       | Description                           |
|-------|-----------------|-----------------|---------------------------------------|
| Input | cvitdl_handle_t | handle          | handle                                |
| Input | bool            | $use\_specific$ | Whether each object class is assigned |
|       |                 |                 | its own id                            |

#### 4.2.7.2 CVI\_TDL\_DeepSORT\_GetDefaultConfig

#### [Syntax]

```
CVI_S32 CVI_TDL_DeepSORT_GetDefaultConfig(cvtdl_deepsort_config_t *ds_conf);
```

#### [Description]

Get the default parameters for DeepSORT.

#### [Parameter]

|       | Data Type                     | Parameter  | Description        |
|-------|-------------------------------|------------|--------------------|
| Input | $cvtdl\_deepsort\_config\_t*$ | $ds\_conf$ | DeepSORT parameter |

#### 4.2.7.3 CVI\_TDL\_DeepSORT\_SetConfig

#### [Syntax]

```
CVI_S32 CVI_TDL_DeepSORT_SetConfig(const cvitdl_handle_t handle , cvtdl_ deepsort_config_t *ds_conf, int cvi_tdl_obj_type, bool show_config);
```

#### [Description]

Setting DeepSORT parameters.



|       | Data Type                                     | Parameter   | Description                                                                                            |
|-------|-----------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------|
| Input | cvitdl_handle_t                               | handle      | Handle                                                                                                 |
| Input | $\operatorname{cvtdl\_deepsort\_config\_t^*}$ | $ds\_conf$  | DeepSORT parameter                                                                                     |
| Input | int                                           | cvi_tdl_obj | "-1" indicates default settings. Non-negative values indicate setting parameters for cvi_tdl_obj_type. |
| Input | bool                                          | show_config | Display Settings.                                                                                      |

#### 4.2.7.4 CVI\_TDL\_DeepSORT\_GetConfig

#### [Syntax]

#### [Description]

To inquire about the DeepSORT parameters that have been set, please call the corresponding function or method provided by the DeepSORT implementation being used in your system. The specific method or function name may vary depending on the DeepSORT implementation you are using.

#### [Parameter]

|        | Data Type                      | Parameter   | Description                                                                                                                         |
|--------|--------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Input  | $cvitdl\_handle\_t$            | handle      | TDL SDK handle                                                                                                                      |
| Output | $cvtdl\_deepsort\_config\_t^*$ | $ds\_conf$  | DeepSORT parameter                                                                                                                  |
| Input  | int                            | cvi_tdl_obj | -1 indicates that the default parameter is obtained. Non-1 values represent parameters set against the category of cvi_tdl_obj_type |

#### 4.2.7.5 CVI\_TDL\_DeepSORT\_CleanCounter

#### [Syntax]

```
CVI_S32 CVI_TDL_DeepSORT_CleanCounter(const cvitdl_handle_t handle);
```

#### [Description]

Reset the ID counter recorded in DeepSORT.

|       | Data Type       | Parameter | Description |
|-------|-----------------|-----------|-------------|
| Input | cvitdl_handle_t | handle    | Handle      |



#### 4.2.7.6 CVI\_TDL\_DeepSORT\_Obj

#### [Syntax]

#### [Description]

Track objects and update the tracker status. This interface will assign a unique ID to each Object, which can be obtained from obj->info[i].unique\_id. The tracker\_t will record the tracking status of each object and the current predicted Bounding Box. If you want to use object appearance features for tracking, set use\_reid to true, and use CVI\_TDL\_OSNet for feature extraction before tracking. Currently, feature extraction only supports human-shaped objects.

#### [Parameter]

|                          | Data Type                                              | Parameter                | Description                                                    |
|--------------------------|--------------------------------------------------------|--------------------------|----------------------------------------------------------------|
| Input<br>Input<br>Output | cvitdl_handle_t<br>cvtdl_object_t*<br>cvtdl_tracker_t* | handle<br>obj<br>tracker | handle The object to be tracked The trace state of the object  |
| Input                    | bool                                                   | use_reid                 | Whether object appearance characteristics are used for tracing |

#### 4.2.7.7 CVI\_TDL\_DeepSORT\_Face

#### [Syntax]

```
CVI_S32 CVI_TDL_DeepSORT_Face(const cvitdl_handle_t handle, cvtdl_face_t *face, ⊔ cvtdl_tracker_t *tracker, bool use_reid);
```

#### [Description]

Track faces and update the Tracker state. This function assigns a unique ID to each face, which can be retrieved from face->info[i].unique\_id. The tracker\_t will record the tracking status and the predicted bounding box of each face. If you want to use face features for tracking, set use\_reid to true and call CVI\_TDL\_FaceRecognition to compute face features before tracking.

|        | Data Type             | Parameter | Description                                                                             |
|--------|-----------------------|-----------|-----------------------------------------------------------------------------------------|
| Input  | $cvitdl\_handle\_t$   | handle    | handle                                                                                  |
| Input  | $cvtdl\_face\_t^*$    | face      | The face you want to track                                                              |
| Output | $cvtdl\_tracker\_t^*$ | tracker   | The tracking state of a face                                                            |
| Input  | bool                  | use_reid  | Whether to use appearance characteristics for tracing. Currently, only false can be set |

# 4.2.8 Motion Detection

#### 4.2.8.1 CVI\_TDL\_Set\_MotionDetection\_Background

#### [Syntax]

CVI\_S32 CVI\_TDL\_Set\_MotionDetection\_Background(const cvitdl\_handle\_t handle, ⊔ → VIDEO\_FRAME\_INFO\_S \*frame);

#### [Description]

Set the background for Motion Detection. The first time this function is called, it will initialize the Motion Detection module. Subsequent calls will only update the background. The Motion Detection module in TDL SDK uses frame difference method.

#### [Parameter]

|       | Data Type                          | Parameter | Description |
|-------|------------------------------------|-----------|-------------|
| Input | $\operatorname{cvitdl\_handle\_t}$ | handle    | Handle      |
| Input | VIDEO_FRAME_INFO_S*                | frame     | Background  |

#### 4.2.8.2 CVI\_TDL\_MotionDetection

#### [Syntax]

```
CVI_S32 CVI_TDL_MotionDetection(const cvitdl_handle_t handle, VIDEO_FRAME_INFO_ 
S *frame, cvtdl_object_t *objects, uint8_t threshold, double min_area);
```

#### [Description]

Detect objects using frame difference method. The detection results will be stored in "objects".

|        | Data Type                           | Parameter | Description                                                                |
|--------|-------------------------------------|-----------|----------------------------------------------------------------------------|
| Input  | cvitdl_handle_t                     | handle    | handle                                                                     |
| Input  | VIDEO_FRAME_INFO_                   | frame     | image                                                                      |
| Output | $\operatorname{cvtdl\_object\_t}^*$ | object    | Motion detection result                                                    |
| Input  | uint8_t                             | threshold | The frame difference threshold must be 0-255                               |
| Input  | double                              | min_area  | Minimum object area (Pixels). Filters out objects smaller than this value. |



#### 4.2.8.3 CVI\_TDL\_Set\_MotionDetection\_ROI

#### [Syntax]

```
CVI_S32 CVI_TDL_Set_MotionDetection_R0I(const cvitdl_handle_t handle, MDR0I_t_ 
    *roi_s);
```

#### [Description]

This function is used for object detection using frame difference method. The detection results will be stored in 'objects'.

#### [Parameter]

|       | Data Type       | Parameter | Description                                      |
|-------|-----------------|-----------|--------------------------------------------------|
| Input | cvitdl_handle_t | handle    | The handle for the TDL model.                    |
| Input | MDROI_t*        | roi_s     | Set the region of interest for motion detection. |

# 4.2.9 License Plate Recognition

#### 4.2.9.1 CVI\_TDL\_LicensePlateDetection

#### [Syntax]

```
CVI_S32 CVI_TDL_LicensePlateDetection(cvitdl_handle_t handle, VIDEO_FRAME_INFO_ 

S *frame, cvtdl_object_t *vehicle_meta);
```

#### [Description]

License plate detection. Before calling this API, vehicle detection must be performed first. This algorithm will perform license plate detection on the already detected objects. The location of the license plate will be stored in obj->info[i].vehicle\_properity->license\_pts.

|       | Data Type           | Parameter | Description                       |
|-------|---------------------|-----------|-----------------------------------|
| Input | $cvitdl\_handle\_t$ | handle    | handle                            |
| Input | VIDEO_FRAME_INFO_S* | frame     | image                             |
| Input | cvtdl_object_t*     | obj       | Object (vehicle) detection result |



#### 4.2.9.2 CVI\_TDL\_LicensePlateRecognition\_TW

CVI\_S32 CVI\_TDL\_LicensePlateRecognition\_TW(const cvitdl\_handle\_t handle, VIDEO\_ →FRAME\_INFO\_S \*frame, cvtdl\_object\_t \*obj);

#### [Description]

Perform license plate recognition (Taiwan) on all vehicles in the input obj. Prior to calling this API, CVI\_TDL\_LicensePlateDetection must be called once for license plate detection. The license plate number is stored in obj->info[i].vehicle\_properity->license\_char.

#### [Parameter]

|       | Data Type           | Parameter     | Description                     |
|-------|---------------------|---------------|---------------------------------|
| Input | cvitdl_handle_t     | handle        | handle                          |
| Input | VIDEO_FRAME_INFO_S* | $_{ m frame}$ | The input image                 |
| Input | cvtdl_object_t*     | obj           | License plate detection results |

#### 4.2.9.3 CVI\_TDL\_LicensePlateRecognition\_CN

#### [Description]

Perform license plate recognition (Mainland China) for all vehicles in the input obj. CVI\_TDL\_LicensePlateDetection must be called before calling this API for license plate detection. The license plate number is stored in obj->info[i].vehicle\_properity->license\_char.

#### [Parameter]

|            | Data Type                           | Parameter | Description                |
|------------|-------------------------------------|-----------|----------------------------|
| Input      | cvitdl_handle_t                     | handle    | handle                     |
| Input      | VIDEO_FRAME_INFO_S*                 | frame     | image                      |
| In-        | $\operatorname{cvtdl\_object\_t^*}$ | obj       | icense plate detection re- |
| put/Output |                                     |           | sults                      |

# 4.2.10 Tamper Detection

#### 4.2.10.1 CVI\_TDL\_TamperDetection

#### [Syntax]

#### [Description]

Camera Tampering Detection. This algorithm builds a background model based on the Gaussian model and uses the background subtraction method to calculate the difference as the tampering score (moving\_score).

#### [Parameter]

|        | Data Type                          | Parameter    | Description  |
|--------|------------------------------------|--------------|--------------|
| Input  | $\operatorname{cvitdl\_handle\_t}$ | handle       | handle       |
| Input  | VIDEO_FRAME_INFO_S*                | frame        | image        |
| Output | float*                             | move-        | Tamper score |
|        |                                    | $ing\_score$ |              |

# 4.2.11 Liveness Detection

#### 4.2.11.1 CVI\_TDL\_Liveness

#### [Syntax]

```
CVI_S32 CVI_TDL_Liveness(const cvitdl_handle_t handle, VIDEO_FRAME_INFO_Su 
*rgbFrame, VIDEO_FRAME_INFO_S *irFrame, , cvtdl_face_t *rgb_faces, cvtdl_face_
t *ir_faces);
```

#### [Description]

Perform RGB and IR dual-liveness detection. Determine whether the faces in rgb\_faces and ir\_faces are real-time or not. The liveness score is stored in rgb\_face -> info[i].liveness\_score.

|            | Data Type           | Parameter   | Description              |
|------------|---------------------|-------------|--------------------------|
| Input      | cvitdl_handle_t     | handle      | handle                   |
| Input      | VIDEO_FRAME_INFO_S* | rgbFrame    | RGB image                |
| Input      | VIDEO_FRAME_INFO_S* | irFrame     | IR image                 |
| In-        | $cvtdl\_face\_t^*$  | $rgb\_meta$ | Detected RGB face /      |
| put/Output |                     |             | Living fraction          |
| Input      | cvtdl_face_t*       | ir_meta     | The IR faces we detected |



#### 4.2.11.2 CVI\_TDL\_IrLiveness

#### [Syntax]

```
CVI_S32 CVI_TDL_IrLiveness(const cvitdl_handle_t handle, VIDEO_FRAME_INFO_S_ **irFrame, cvtdl_face_t *ir_faces);
```

#### [Description]

This function performs IR (infrared) monocular liveness detection.

It determines whether the detected faces in 'ir\_faces' are real or not.

The liveness scores for each face will be stored in 'ir\_faces->info[i].liveness\_score' .

#### [Parameter]

|            | Data Type           | Parameter   | Description             |
|------------|---------------------|-------------|-------------------------|
| Input      | cvitdl_handle_t     | handle      | Handle                  |
| Input      | VIDEO_FRAME_INFO_S* | irFrame     | The ir image            |
| In-        | $cvtdl\_face\_t^*$  | $ir\_faces$ | Detected IR face/ live- |
| put/Output |                     |             | ness score              |

# 4.2.12 Pose Estimation

#### 4.2.12.1 CVI\_TDL\_AlphaPose

#### [Syntax]

```
CVI_S32 CVI_TDL_AlphaPose(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S *frame, cvtdl_object_t *obj);
```

#### [Description]

Perform inference using the AlphaPose model to predict 17 skeletal keypoints. The detection results are placed in obj->info[i].pedestrian\_properity->pose\_17.

|       | Data Type                          | Parameter | Description                                                     |
|-------|------------------------------------|-----------|-----------------------------------------------------------------|
| Input | $\operatorname{cvitdl\_handle\_t}$ | handle    | Handle                                                          |
| Input | VIDEO_FRAME_INFO_S*                | frame     | Input image                                                     |
| Input | cvtdl_object_t*                    | obj       | The person who was detected / 17 skeleton keypoints coordinates |

# 4.2.13 Semantic Segmentation

#### 4.2.13.1 CVI\_TDL\_DeeplabV3

#### [Syntax]

```
CVI_S32 CVI_TDL_DeeplabV3(const cvitdl_handle_t handle, VIDEO_FRAME_INFO_S_ *frame, VIDEO_FRAME_INFO_S *out_frame, cvtdl_class_filter_t *filter);
```

#### [Description]

Perform semantic segmentation using the DeepLab V3 model.

#### [Parameter]

|        | Data Type                  | Parameter                   | Description       |
|--------|----------------------------|-----------------------------|-------------------|
| Input  | cvitdl_handle_t            | handle                      | handle            |
| Input  | VIDEO_FRAME_INFO_S*        | frame                       | Input image       |
| Output | VIDEO_FRAME_INFO_S*        | $\operatorname{out\_frame}$ | Output image      |
| Input  | $cvtdl\_class\_filter\_t*$ | filter                      | Reserved category |

#### 4.2.14 Fall Detection

#### 4.2.14.1 CVI\_TDL\_Fall

#### [Syntax]

```
CVI_S32 CVI_TDL_Fall(cvitdl_handle_t handle, cvtdl_object_t *obj);
```

#### [Description]

Detect falls using the results of object detection and pose estimation.

Prior to running this API,  $CVI\_TDL\_AlphaPose$  must be called to obtain the human body keypoints.

The fall detection results are stored in obj->info[i].pedestrian\_properity->fall.

|       | Data Type                           | Parameter | Description            |
|-------|-------------------------------------|-----------|------------------------|
| Input | cvitdl_handle_t                     | handle    | handle                 |
| Input | VIDEO_FRAME_INFO_S*                 | frame     | The input image        |
| Input | $\operatorname{cvtdl\_object\_t^*}$ | obj       | Fall condition outcome |

# 4.2.15 Driver Fatigue Detection

#### 4.2.15.1 CVI\_TDL\_FaceLandmarker

#### (Syntax)

```
CVI_S32 CVI_TDL_FaceLandmarker(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S_ + frame, cvtdl_face_t *faces);
```

#### [Description]

Before using this API, the face detection API should be called to obtain the detection result of 106 facial landmarks, which should be placed in face->dms[i].landmarks\_106 and update the 5 facial landmarks in face->dms[i].landmarks\_5.

#### [Parameter]

|       | Data Type                         | Parameter | Description |
|-------|-----------------------------------|-----------|-------------|
| Input | cvitdl_handle_t                   | handle    | handle      |
| Input | VIDEO_FRAME_INFO_S*               | frame     | Input image |
| Input | $\operatorname{cvtdl\_face\_t}^*$ | face      | Human face  |

#### 4.2.15.2 CVI\_TDL\_EyeClassification

#### [Syntax]

```
CVI_S32 CVI_TDL_EyeClassification (cvitdl_handle_t handle, VIDEO_FRAME_INFO_S_ *frame, cvtdl_face_t *faces);
```

#### [Description]

The closed state of the eyes is determined based on the results of face detection and facial landmark detection. The scores of the right and left eyes are stored in face->dms[i].reye\_score and face->dms[i].leye\_score, respectively.

|       | Data Type                         | Parameter | Description |
|-------|-----------------------------------|-----------|-------------|
| Input | cvitdl_handle_t                   | handle    | handle      |
| Input | VIDEO_FRAME_INFO_S*               | frame     | Input image |
| Input | $\operatorname{cvtdl\_face\_t}^*$ | face      | Human face  |



#### 4.2.15.3 CVI\_TDL\_YawnClassification

#### [Syntax]

```
CVI_S32 CVI_TDL_YawnClassification (cvitdl_handle_t handle, VIDEO_FRAME_INFO_S_ +*frame, cvtdl_face_t *faces);
```

#### [Description]

Detect yawning based on the results of face detection and facial landmark detection. CVI\_FaceRecognition must be called first to obtain the results of face detection and facial landmark detection. The yawning score will be placed in face->dms[i].yawn\_score, ranging from 0.0 to 1.0.

#### [Parameter]

|       | Data Type                        | Parameter | Description |
|-------|----------------------------------|-----------|-------------|
| Input | cvitdl_handle_t                  | handle    | handle      |
| Input | VIDEO_FRAME_INFO_S*              | frame     | Input image |
| Input | $\operatorname{cvtdl\_face\_t*}$ | face      | Human face  |

#### 4.2.15.4 CVI\_TDL\_IncarObjectDetection

#### [Syntax]

```
CVI_S32 CVI_TDL_IncarObjectDetection(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S_ + frame, cvtdl_face_t *faces);
```

#### [Description]

Detect objects (water cup/mug/phone) around the driver using object detection. The detection results will be outputted in object format and stored in face->dms[i].dms.dms\_od.

#### [Parameter]

|       | Data Type           | Parameter | Description |
|-------|---------------------|-----------|-------------|
| Input | cvitdl_handle_t     | handle    | Handle      |
| Input | VIDEO_FRAME_INFO_S* | frame     | Input image |
| Input | cvtdl_face_t*       | face      | Human face  |

# 4.2.16 Sound Classification

#### 4.2.16.1 CVI\_TDL\_SoundClassification

#### (Syntax)

```
CVI_S32 CVI_TDL_SoundClassification(cvitdl_handle_t handle, VIDEO_FRAME_INFO_S_ →*frame, int *index);
```

#### [Description]

Classify the audio in the frame into different categories and output the scores of each category in sorted order.

#### [Parameter]

|       | Data Type                          | Parameter | Description             |
|-------|------------------------------------|-----------|-------------------------|
| Input | $\operatorname{cvitdl\_handle\_t}$ | handle    | handle                  |
| Input | VIDEO_FRAME_INFO_S*                | frame     | Input image             |
| Input | $int^*$                            | index     | Scores in each category |

#### 4.2.16.2 CVI\_TDL\_Get\_SoundClassification\_ClassesNum

#### [Syntax]

CVI\_S32 CVI\_TDL\_Get\_SoundClassification\_ClassesNum(cvitdl\_handle\_t handle);

#### [Description]

Get the number of audio categories.

#### [Parameter]

|       | Data Type           | Parameter | Description |
|-------|---------------------|-----------|-------------|
| Input | $cvitdl\_handle\_t$ | handle    | Handle      |

#### [Output]

|        | Data Type | Description            |
|--------|-----------|------------------------|
| Output | int       | The number of category |

#### 4.2.16.3 CVI\_TDL\_Set\_SoundClassification\_Threshold

#### [Syntax]

CVI\_S32 CVI\_TDL\_Set\_SoundClassification\_Threshold(cvitdl\_handle\_t handle, const⊔ ⇒float th);

#### [Description]

Set the audio category threshold.



|       | Data Type       | Parameter | Description                                                                        |
|-------|-----------------|-----------|------------------------------------------------------------------------------------|
| Input | cvitdl_handle_t | handle    | Handle                                                                             |
| Input | const float     | th        | Similarity threshold, the similarity higher than this threshold will be taken out. |

# 4.3 CVI\_TDL\_Service

# 4.3.1 Common

#### 4.3.1.1 CVI\_TDL\_Service\_CreateHandle

#### [Syntax]

#### [Description]

Create a Service handle

#### [Parameter]

|       | Data Type                     | Parameter     | Description         |
|-------|-------------------------------|---------------|---------------------|
| Input | $cvitdl\_service\_handle\_t*$ | handle        | handle              |
| Input | $cvitdl\_handle\_t$           | $tdl\_handle$ | cvi_tdl_core handle |

#### 4.3.1.2 CVI\_TDL\_Service\_DestroyHandle

#### [Syntax]

```
CVI_S32 CVI_TDL_Service_DestroyHandle(cvitdl_service_handle_t *handle);
```

#### [Description]

Destroy the Service handle

|       | Data Type                     | Parameter | Description |
|-------|-------------------------------|-----------|-------------|
| Input | $cvitdl\_service\_handle\_t*$ | handle    | Handle      |

#### 4.3.1.3 CVI\_TDL\_Service\_Polygon\_SetTarget

#### [Syntax]

#### [Description]

Set up a region of interest for intrusion detection with pts as the coordinates of the convex polygon. The order of the points should be clockwise or counterclockwise. Call CVI\_TDL\_Service\_Polygon\_Intersect to check if a bounding box intersects with the defined region.

#### [Parameter]

|       | Data Type                        | Parameter | Description          |
|-------|----------------------------------|-----------|----------------------|
| Input | cvitdl_service_handle_t          | handle    | handle               |
| Input | $\operatorname{cvtdl\_pts\_t}^*$ | pts       | Convex polygon point |

#### 4.3.1.4 CVI\_TDL\_Service\_Polygon\_Intersect

#### (Syntax)

```
CVI_S32 CVI_TDL_Service_Polygon_Intersect(cvitdl_service_handle_t handle, const

cvttdl_bbox_t *bbox, bool *has_intersect);
```

#### [Description]

Detect if a given bounding box is within the targeted intrusion area previously set by calling CVI\_TDL\_Service\_Polygon\_SetTarget.

#### [Parameter]

|        | Data Type                    | Parameter      | Description      |
|--------|------------------------------|----------------|------------------|
| Input  | $cvitdl\_service\_handle\_t$ | handle         | handle           |
| Input  | $cvtdl\_bbox\_t^*$           | bbox           | Bounding box     |
| Output | bool*                        | ha             | Intrusion or not |
|        |                              | $s\_intersect$ |                  |

#### 4.3.1.5 CVI\_TDL\_Service\_RegisterFeatureArray

#### [Syntax]

```
CVI_S32 CVI_TDL_Service_RegisterFeatureArray(cvitdl_service_handle_t handle, 

→ const cvtdl_service_feature_array_t featureArray, const cvtdl_service_feature_

→ matching_e method);
```

[Description]

算能科技

Register a feature database by precomputing and loading the features in the featureArray into memory.

#### [Parameter]

|       | Data Type                             | Parameter         | Description                                 |
|-------|---------------------------------------|-------------------|---------------------------------------------|
| Input | cvitdl_service_handle_t               | handle            | handle                                      |
| Input | const cvtdl_service_feature_array_t   | featureAr-<br>ray | Feature array structure                     |
| Input | const cvtdl_service_feature_matching_ | method            | Currently, only COS_SIMILARITY is supported |

#### 4.3.1.6 CVI\_TDL\_Service\_CalculateSimilarity

#### [Syntax]

```
CVI_S32 CVI_TDL_Service_CalculateSimilarity(cvitdl_service_handle_t handle,__

const cvtdl_feature_t *feature_rhs, const cvtdl_feature_t *feature_lhs, float__

*score);
```

#### [Description]

Compute the cosine similarity between two feature vectors using the RISC-V. The cosine similarity is calculated using the following formula:

$$sim(\theta) = \frac{A \bullet B}{\|A\| \bullet \|B\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

The Cosine Similarity between two features of length n is calculated using the following formula. Currently, only INT8 features are supported.

|        | Data Type                    | Parameter        | Description       |
|--------|------------------------------|------------------|-------------------|
| Input  | $cvitdl\_service\_handle\_t$ | handle           | handle            |
| Input  | const cvtdl_feature_t*       | fea-<br>ture_rhs | The first feature |
| Input  | const cvtdl_feature_t*       | fea-<br>ture_lhs | Second feature    |
| Output | float*                       | score            | Similarity        |

#### 4.3.1.7 CVI\_TDL\_Service\_ObjectInfoMatching

#### [Syntax]

```
CVI_S32 CVI_TDL_Service_ObjectInfoMatching(cvitdl_service_handle_t handle, ⊔

→const cvtdl_object_info_t *object_info, const uint32_t topk, float threshold, ⊔

→uint32_t *indices, float *sims, uint32_t *size);
```

#### [Description]

Compute the cosine similarity between the object feature in **object\_info** and the pre-calculated object features in the registered object feature library. Retrieve the top-K similarities that are greater than **threshold**. The calculation formula is as follows:

$$sim(\theta) = \frac{A \bullet B}{\|A\| \bullet \|B\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Calculate the Cosine Similarity between the object feature in object\_info and the registered object feature in the feature library.

The top-K similarities greater than the given threshold will be returned.

If the number of features in the library is less than 1000, RISC-V will be used for calculation, otherwise TPU will be launched for computation.

Feature registration can be done through CVI\_TDL\_Service\_RegisterFeatureArray.

Note that the feature length n must be consistent and INT8 features are currently supported.

|        | Data Type                         | Parameter        | Description                                                             |
|--------|-----------------------------------|------------------|-------------------------------------------------------------------------|
| Input  | cvitdl_service_handle_t           | handle           | handle                                                                  |
| Input  | $const$ $cvtdl\_object\_info\_t*$ | ob-<br>ject_info | Object Info                                                             |
| Input  | const uint32_t                    | topk             | Take topk similarity                                                    |
| Output | float                             | threshold        | Similarity threshold, above which the similarity will be taken out      |
| Output | uint32_t*                         | indices          | The Index of the similarity that satisfies the condition in the library |
| Output | float*                            | sims             | The similarity of the condition                                         |
| Output | uint32_t*                         | size             | The number of similarities that are finally extracted                   |



#### 4.3.1.8 CVI\_TDL\_Service\_FaceInfoMatching

#### [Syntax]

```
CVI_S32 CVI_TDL_Service_FaceInfoMatching(cvitdl_service_handle_t handle, const_u ⇒ cvtdl_face_info_t *face_info, const uint32_t topk, float threshold, uint32_t ⇒ *indices, float *sims, uint32_t *size);
```

#### [Description]

Calculate the Cosine Similarity between the face features in face\_info and the registered face feature library, and output the top-K similarities that are greater than the given threshold.

The calculation formula is as follows:

$$sim(\theta) = \frac{A \bullet B}{\|A\| \bullet \|B\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Where n is the feature length.

If the number of features in the library is less than 1000, the calculation will be performed on the RISC-V.

Otherwise, the TPU will be used for calculation.

Feature registration requires calling CVI\_TDL\_Service\_RegisterFeatureArray.

Currently, only INT8 features are supported.

#### [Parameter]

|        | Data Type                       | Parameter | Description                                                             |
|--------|---------------------------------|-----------|-------------------------------------------------------------------------|
| Input  | cvitdl_service_handle_t         | handle    | handle                                                                  |
| Input  | $const$ $cvtdl\_face\_info\_t*$ | face_info | Face info                                                               |
| Input  | const uint32_t                  | topk      | Take topk similarity                                                    |
| Output | float                           | threshold | Similarity threshold, above which the similarity will be taken out      |
| Output | uint32_t*                       | indices   | The Index of the similarity that satisfies the condition in the library |
| Output | float*                          | sims      | The similarity of the condition                                         |
| Output | uint32_t*                       | size      | The number of similarities that are finally extracted                   |

#### 4.3.1.9 CVI\_TDL\_Service\_RawMatching

#### (Syntax)

```
CVI_S32 CVI_TDL_Service_RawMatching(cvitdl_service_handle_t handle, const void

→*feature, const feature_type_e type, const uint32_t topk, float threshold,

→uint32_t *indices, float *scores, uint32_t *size);
```

#### [Description]

Compute the Cosine Similarity between a given feature and the registered feature library.

Retrieve the top-K similarities greater than the specified threshold.

The computation is done using the following formula:

$$sim(\theta) = \frac{A \bullet B}{\|A\| \bullet \|B\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

where n is the length of the feature.

If the number of registered feature arrays is less than 1000, the calculation will be performed on RISC-V.

Otherwise, TPU will be launched for calculation.

The feature arrays need to be registered using CVI\_TDL\_Service\_RegisterFeatureArray.

Unlike CVI\_TDL\_Service\_FaceInfoMatching and CVI\_TDL\_Service\_ObjectInfoMatching, this API directly uses the feature array for comparison and does not require cvtdl\_face\_info\_t or cvtdl\_object\_info\_t to be passed in.

This API limits the feature type to be the same as the feature type in the feature arrays.

Currently, only INT8 features are supported.

#### [Parameter]

|        | Data Type                    | Parameter | Description                             |  |  |
|--------|------------------------------|-----------|-----------------------------------------|--|--|
| Input  | $cvitdl\_service\_handle\_t$ | handle    | handle                                  |  |  |
| Input  | $const\ void*$               | feature   | Feature array                           |  |  |
| Input  | $const\ feature\_type\_e$    | type      | Feature type, currently only            |  |  |
|        |                              |           | TYPE_INT8 is supported                  |  |  |
| Input  | $const \ uint 32\_t$         | topk      | Take topk similarity                    |  |  |
| Output | float                        | threshold | Similarity threshold, above which the   |  |  |
|        |                              |           | similarity will be taken out            |  |  |
| Output | $uint32\_t^*$                | indices   | The Index of the similarity that satis- |  |  |
|        |                              |           | fies the condition in the library       |  |  |
| Output | float*                       | scores    | The similarity of the condition         |  |  |
| Output | $uint32\_t*$                 | size      | The number of similarities that are fi- |  |  |
|        |                              |           | nally extracted                         |  |  |

#### 4.3.1.10 CVI\_TDL\_Service\_FaceAngle

#### [Syntax]

#### [Description]

Estimate the pose of a single face.

#### [Parameter]

|        | Data Type               | Parameter  | Description   |
|--------|-------------------------|------------|---------------|
| Input  | $cvtdl\_pts\_t^*$       | pts        | Face landmark |
| Output | $cvtdl\_head\_pose\_t*$ | $_{ m hp}$ | Face posture  |

#### 4.3.1.11 CVI\_TDL\_Service\_FaceAngleForAll

#### [Syntax]

```
CVI_S32 CVI_TDL_Service_FaceAngleForAll(const cvtdl_face_t *meta);
```

#### [Description]

Calculate pose for multiple faces

#### [Parameter]

|       | Data Type                         | Parameter | Description |
|-------|-----------------------------------|-----------|-------------|
| Input | $\operatorname{cvtdl\_face\_t}^*$ | meta      | Face data   |

# 4.3.2 Image Scaling

#### 4.3.2.1 CVI\_TDL\_Service\_FaceDigitalZoom

#### [Syntax]

```
CVI_S32 CVI_TDL_Service_FaceDigitalZoom(
    cvitdl_service_handle_t handle,
    const VIDEO_FRAME_INFO_S *inFrame,
    const cvtdl_face_t *meta,
    const float face_skip_ratio,
    const float trans_ratio,
    const float padding_ratio,
    VIDEO_FRAME_INFO_S *outFrame);
```

#### [Description]

Resizing (zooming in) the detected face.



|        | Data Type               | Parameter      | Description               |
|--------|-------------------------|----------------|---------------------------|
| Input  | cvitdl_service_handle_t | handle         | handle                    |
| Input  | VIDEO_FRAME_INFO_S*     | inFrame        | Input image               |
| Input  | $cvtdl\_face\_t*$       | meta           | Face data                 |
| Input  | float                   | face_skip_rati | Neglect ratio             |
| Input  | float                   | $trans\_ratio$ | Amplification ratio       |
| Input  | float                   | padding_ratio  | Expand bounding box ratio |
| Output | VIDEO_FRAME_INFO_S*     | outFrame       | Output image              |

#### 4.3.2.2 CVI\_TDL\_Service\_ObjectDigitalZoom

#### (Syntax)

```
CVI_S32 CVI_TDL_Service_ObjectDigitalZoom(cvitdl_service_handle_t handle,

const VIDEO_FRAME_INFO_S *inFrame, const cvtdl_object_t *meta, const float obj_

skip_ratio, const float trans_ratio, const float padding_ratio,

VIDEO_FRAME_INFO_S *outFrame);
```

#### [Description]

The object detected in the detection result is zoomed in.

#### [Parameter]

|        | Data Type                    | Parameter      | Description               |
|--------|------------------------------|----------------|---------------------------|
| Input  | $cvitdl\_service\_handle\_t$ | handle         | handle                    |
| Input  | const VIDEO_FRAME_INFO_S*    | inFrame        | Input image               |
| Input  | $const\ cvtdl\_object\_t^*$  | meta           | Object data               |
| Input  | const float                  | obj_skip_ra    | Neglect ratio             |
| Input  | const float                  | $trans\_ratio$ | Amplification ratio       |
| Input  | const float                  | padding_rat    | Expand bounding box ratio |
| Output | VIDEO_FRAME_INFO_S*          | outFrame       | Output image              |

#### 4.3.2.3 CVI\_TDL\_Service\_ObjectDitgitalZoomExt

#### (Syntax)

```
CVI_S32 CVI_TDL_Service_ObjectDigitalZoomExt(cvitdl_service_handle_t handle,u const VIDEO_FRAME_INFO_S *inFrame, const cvtdl_object_t *meta,

const float obj_skip_ratio, const float trans_ratio, const float pad_ratio_left,
const float pad_ratio_right, const float pad_ratio_top,

const float pad_ratio_bottom, VIDEO_FRAME_INFO_S *outFrame);
```



#### [Description]

Zoom in on the object in the detection results

#### [Parameter]

|        | Data Type                   | Parameter      | Description            |
|--------|-----------------------------|----------------|------------------------|
| Input  | cvitdl_service_handle_t     | handle         | handle                 |
| Input  | VIDEO_FRAME_INFO_S*         | inFrame        | Input image            |
| Input  | $const\ cvtdl\_object\_t^*$ | meta           | Object data            |
| Input  | const float                 | obj_skip_ratio | Neglect ratio          |
| Input  | const float                 | $trans\_ratio$ | Amplification ratio    |
| Input  | const float                 | pad_ratio_left | Expansion rate (left)  |
| Input  | const float                 | pad_ratio_rig  | Expansion rate (right) |
| Input  | const float                 | pad_ratio_top  | Expansion rate (top)   |
| Input  | const float                 | pad_ratio_bot  | Expansion rate (lower) |
| Output | VIDEO_FRAME_INFO_S*         | outFrame       | Output image           |

# 4.3.3 Image drawing

#### 4.3.3.1 CVI\_TDL\_Service\_FaceDrawPts

#### [Syntax]

#### [Description]

Drawing face landmarks.

#### [Parameter]

|       | Data Type                       | Parameter | Description        |
|-------|---------------------------------|-----------|--------------------|
| Input | $\operatorname{cvtdl\_pts\_t*}$ | pts       | Face landmark      |
| Input | VIDEO_FRAME_INFO_S*             | hp        | Input/output image |

#### 4.3.3.2 CVI\_TDL\_Service\_FaceDrawRect

#### [Syntax]

```
CVI_S32 CVI_TDL_Service_FaceDrawRect(cvitdl_service_handle_t handle, const_u 

cvtdl_face_t *meta, VIDEO_FRAME_INFO_S *frame, const bool drawText, cvtdl_
service_brush_t brush);
```

#### [Description]

Drawing a bounding box around a detected face.



#### [Parameter]

|       | Data Type                  | Parameter | Description          |
|-------|----------------------------|-----------|----------------------|
| Input | cvitdl_service_handle_t    | handle    | handle               |
| Input | $cvtdl\_face\_t^*$         | meta      | Face data            |
| Input | VIDEO_FRAME_INFO_S*        | frame     | Input/output image   |
| Input | bool                       | drawText  | Whether to draw face |
|       |                            |           | names                |
| Input | $cvtdl\_service\_brush\_t$ | brush     | color                |

#### 4.3.3.3 CVI\_TDL\_Service\_ObjectDrawPose

#### [Syntax]

```
CVI_S32 CVI_TDL_Service_ObjectDrawPose(const cvtdl_object_t *meta, VIDEO_FRAME_
→INFO_S *frame);
```

#### [Description]

Draw 17 skeletal points detected by pose estimation.

#### [Parameter]

|       | Data Type                          | Parameter | Description                      |
|-------|------------------------------------|-----------|----------------------------------|
| Input | $\operatorname{cvtdl\_object\_t*}$ | meta      | Skeletal points detection result |
| Input | VIDEO_FRAME_INFO_S*                | frame     | Input image                      |

#### 4.3.3.4 CVI\_TDL\_Service\_ObjectDrawRect

#### (Syntax)

```
CVI_S32 CVI_TDL_Service_ObjectDrawRect(cvitdl_service_handle_t handle, const_

cvtdl_object_t *meta, VIDEO_FRAME_INFO_S *frame, const bool drawText);
```

#### [Description]

Draw bounding box of detected objects

|       | Data Type                           | Parameter | Description                |
|-------|-------------------------------------|-----------|----------------------------|
| Input | $cvitdl\_service\_handle\_t$        | handle    | handle                     |
| Input | $\operatorname{cvtdl\_object\_t^*}$ | meta      | Object detection result    |
| Input | VIDEO_FRAME_INFO_S*                 | frame     | Input/output image         |
| Input | const bool                          | drawText  | Whether to draw class text |



#### 4.3.3.5 CVI\_TDL\_Service\_ObjectWriteText

#### [Syntax]

```
CVI_S32 CVI_TDL_Service_ObjectWriteText(char *name, int x, int y, VIDEO_FRAME_

→INFO_S *frame, float r, float g, float b);
```

#### [Description]

Draw specified text

#### [Parameter]

|                   | Data Type          | Parameter | Description                    |
|-------------------|--------------------|-----------|--------------------------------|
| Input             | char*              | name      | Drawn text                     |
| Input             | int                | X         | The x coordinate is drawn      |
| Input             | int                | У         | The y coordinate is drawn      |
| In-<br>put/Output | IDEO_FRAME_INFO_S* | rame      | Input/output image             |
| Input             | float              | r         | Draw the color r channel value |
| Input             | float              | g         | Draw the color g channel value |
| Input             | float              | b         | Draw the color b channel value |

#### 4.3.3.6 CVI\_TDL\_Service\_Incar\_ObjectDrawRect

#### [Syntax]

```
CVI_S32 CVI_TDL_Service_Incar_ObjectDrawRect(cvitdl_service_handle_t handle,__

const cvtdl_dms_od_t *meta, VIDEO_FRAME_INFO_S *frame, const bool drawText,__

cvtdl_service_brush_t brush);
```

#### [Description]

Draw specified text

|                   | Data Type                    | Parameter | Description                |
|-------------------|------------------------------|-----------|----------------------------|
| Input             | $cvitdl\_service\_handle\_t$ | handle    | handle                     |
| Input             | $const\ cvtdl\_dms\_od\_t^*$ | meta      | Object detection result    |
| In-<br>put/Output | IDEO_FRAME_INFO_S*           | rame      | Input/output image         |
| Input             | const bool                   | drawText  | Whether to draw class text |
| Input             | $cvtdl\_service\_brush\_t$   | brush     | color                      |



# 5 Application (APP)

# 5.1 Objective

Cvitek TDL Application (APP) is a solution designed for different client applications based on TDL SDK.

The APP integrates TDL SDK and provides customers with more convenient operation APIs.

The APP code is open source and can be used as a reference for client development.

#### [compile]

- 1. Download TDL SDK and its dependent SDK: MW, TPU, IVE.
- 2. Move to the module/app directory of the TDL SDK
- 3. Execute the following commands:

```
make MW_PATH=<MW_SDK> TPU_PATH=<TPU_SDK> IVE_PATH=<IVE_SDK>
make install
make clean
```

The compiled lib will be placed in the tmp install directory of the TDL SDK

# 5.2 API

#### **5.2.1** Handle

#### [Syntax]

```
typedef struct {
  cvitdl_handle_t tdl_handle;

IVE_HANDLE ive_handle;
```

(continues on next page)

(continued from previous page)

```
face_capture_t *face_cpt_info;
} cvitdl_app_context_t;

typedef cvitdl_app_context *cvitdl_app_handle_t;
```

#### [Description]

The cvitdl\_app\_handle\_t is a pointer type of cvitdl\_app\_context, which includes the TDL handle, IVE handle, and other data structures for the application.

#### 5.2.1.1 CVI\_TDL\_APP\_CreateHandle

#### [Syntax]

```
CVI_S32 CVI_TDL_APP_CreateHandle(cvitdl_app_handle_t *handle, cvitdl_handle_tu +tdl_handle);
```

#### [Description]

Create the metrics required for using the APP, which require input of TDL handle and IVE handle.

#### [Parameter]

|        | Data Type                        | Parameter  | Description          |
|--------|----------------------------------|------------|----------------------|
| Output | ${\rm cvitdl\_app\_handle\_t^*}$ | handle     | Handle pointer input |
| Input  | $cvitdl\_handle\_t$              | a i_handle | TDL handle           |

#### 5.2.1.2 CVI\_TDL\_APP\_DestroyHandle

#### [Syntax]

```
CVI_S32 CVI_TDL_APP_DestroyHandle(cvitdl_app_handle_t handle);
```

#### [Description]

Destroy the created handle cvitdl\_app\_handle\_t. Only the data used by individual applications will be destroyed, and it does not affect the tdl handle and ive handle.

|       | Data Type                                             | Parameter | Description          |
|-------|-------------------------------------------------------|-----------|----------------------|
| Input | $\operatorname{cvitdl}$ app handle $\operatorname{t}$ | handle    | Handle pointer input |



# 5.2.2 Face Capture

Face Capture is a function that combines face detection, multi-object tracking, and face quality assessment to capture (or extract) facial images of different individuals in an image or video. The capture conditions can be adjusted using a configuration file, such as capture time, face quality assessment algorithm, face angle threshold, etc.

【Configuration File】



| Parameter                  | Default Value | Description                                                                                                                                                                                                        |
|----------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| miss_time_limit:           | 40            | Face loss time limit. When the APP cannot trace a face continuously, it will determine that the face has left. [Unit: frame]                                                                                       |
| threshold_size_min         | 32            | Minimum/maximum acceptable face size, if either side of the face bbox is less than/greater than this threshold, quality will be forced to 0.                                                                       |
| threshold_size_max         | 512           |                                                                                                                                                                                                                    |
| quality_assessment_method  | 0             | If face evaluation does not use FQNet, enable<br>the built-in quality detection algorithm<br>0: based on face size and Angle<br>1: Based on eye distance                                                           |
| threshold_quality          | 0.1           | Face quality threshold.  If the quality of the new face is greater than this threshold and higher than the quality of the currently captured face, the face data in the staging area will be captured and updated. |
| threshold_quality_high     | 0.95          | Face quality threshold (high).  If the quality of a face in the temporary area is higher than this threshold, the face is judged to be of high quality and will not be updated later.  (level 2,3 only)            |
| threshold_yaw              | 0.25          | Face Angle threshold, if the Angle is greater than this threshold, quality will be forced to set to 0.  (One unit is 90 degrees)                                                                                   |
| $threshold\_pitch$         | 0.25          |                                                                                                                                                                                                                    |
| $threshold\_roll$          | 0.25          |                                                                                                                                                                                                                    |
| fast_mode_interval         | 10            | FAST mode capture interval. [Unit: frame]                                                                                                                                                                          |
| $fast\_mode\_capture\_num$ | 3             | Number of captures in FAST mode.                                                                                                                                                                                   |
| cycle_mode_interval        | 20            | CYCLE mode Snapshot interval. [Unit: frame]                                                                                                                                                                        |
| auto_mode_time_limit       | 0             | Duration of the last output in AUTO mode. [Unit: frame]                                                                                                                                                            |
| auto_mode_fast_cap         | 1             | AUTO Mode Whether to output one quick snapshot.                                                                                                                                                                    |
| capture_aligned_face       | 0             | Whether the captured/captured face is corrected.                                                                                                                                                                   |

【Face Quality Assessment Algorithm】



| # | Algorithm                            | Computation                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | Based on face<br>size and An-<br>gle | <ol> <li>Face Area Score</li> <li>Definition of standard face size A_base = 112 * 112</li> <li>Calculate the detected face area A_face = length * width</li> <li>Calculate MIN(1.0, A_face/A_base) as a fraction</li> <li>Face Pose Score</li> <li>Calculate face Angle yaw, pitch and roll respectively and take their absolute values</li> <li>Calculate 1 - (yaw + pitch + roll) / 3 as a score</li> <li>Face Quality = Face Area Score * Face Pose Score</li> </ol> |
| 1 | Eye distance<br>based                | 1 Define standard pupil distance $D = 80$<br>2 Calculate the distance d between the eyes<br>3 Calculate MIN(1.0, d/D) as a fraction                                                                                                                                                                                                                                                                                                                                     |

#### 5.2.2.1 CVI\_TDL\_APP\_FaceCapture\_Init

#### [Syntax]

CVI\_S32 CVI\_TDL\_APP\_FaceCapture\_Init(const cvitdl\_app\_handle\_t handle, uint32\_tu 
buffer\_size);

#### [Description]

Initialize the data structure for face capture.  $\,$ 

|       | Data Type           | Parameter   | Description            |
|-------|---------------------|-------------|------------------------|
| Input | cvitdl_app_handle_t | handle      | Handle pointer input   |
| Input | uint32_t            | buffer_size | Face staging area size |

#### 5.2.2.2 CVI\_TDL\_APP\_FaceCapture\_QuickSetUp

#### [Syntax]

#### [Description]

Quickly set up face capture.

#### [Parameter]

|       | Data Type            | Parameter         | Description                         |
|-------|----------------------|-------------------|-------------------------------------|
| Input | cvitdl_app_handle_t  | handle            | Handle pointer input                |
| Input | $\operatorname{int}$ | $fd_{model_id}$   | Face detection Model ID             |
| Input | $\operatorname{int}$ | $fr\_model\_id$   | Face recognition model ID           |
| Input | const char*          | $fd_{model_pat}$  | Face detection model Path           |
| Input | const char*          | $fr_{model_path}$ | Face recognition model path         |
| Input | const char*          | fq_model_pat      | Face quality detection model path   |
| Input | const char*          | fl_model_path     | Face key point detection model path |

#### 5.2.2.3 CVI\_TDL\_APP\_FaceCapture\_FusePedSetup

#### [Syntax]

#### [Description]

Quickly set up face capture.

|       | Data Type           | Parameter     | Description                     |
|-------|---------------------|---------------|---------------------------------|
| Input | cvitdl_app_handle_t | handle        | Handle pointer input            |
| Input | int                 | fd_model_id   | Pedestrian detection model ID   |
| Input | const char*         | fl_model_path | Pedestrian detection model path |



#### 5.2.2.4 CVI\_TDL\_APP\_FaceCapture\_GetDefaultConfig

#### [Syntax]

CVI\_S32 CVI\_TDL\_APP\_FaceCapture\_GetDefaultConfig(face\_capture\_config\_t \*cfg);

#### [Description]

Get the preset parameters for face capture.

#### [Parameter]

|        | Data Type                    | Parameter | Description             |
|--------|------------------------------|-----------|-------------------------|
| Output | $face\_capture\_config\_t^*$ | cfg       | Face capture parameters |

#### 5.2.2.5 CVI\_TDL\_APP\_FaceCapture\_SetConfig

#### (Syntax)

CVI\_S32 CVI\_TDL\_APP\_FaceCapture\_SetConfig(const cvitdl\_app\_handle\_t handle,\_\_ →face\_capture\_config\_t \*cfg);

#### [Description]

Setting face capture parameters.

#### [Parameter]

|       | Data Type                    | Parameter            | Description              |
|-------|------------------------------|----------------------|--------------------------|
| Input | cvitdl_app_handle_t          | handle               | Handle pointer input     |
| Input | $face\_capture\_config\_t^*$ | $\operatorname{cfg}$ | Face capture parameters. |

#### 5.2.2.6 CVI\_TDL\_APP\_FaceCapture\_FDFR

#### [Syntax]

CVI\_S32 CVI\_TDL\_APP\_FaceCapture\_FDFR(const cvitdl\_app\_handle\_t handle, VIDEO\_ →FRAME\_INFO\_S \*frame, cvtdl\_face\_t \*p\_face);

#### [Description]

Set face capture parameters.

|       | Data Type                                               | Parameter | Description                |
|-------|---------------------------------------------------------|-----------|----------------------------|
| Input | $\operatorname{cvitdl}_{\operatorname{app\_handle\_t}}$ | handle    | Handle pointer input       |
| Input | VIDEO_FRAME_INFO_S*                                     | frame     | Input image                |
| Input | $\operatorname{cvtdl\_face\_t*}$                        | p_face    | Face capture output result |



#### 5.2.2.7 CVI\_TDL\_APP\_FaceCapture\_SetMode

#### [Syntax]

#### [Description]

Set face capture mode.

#### [Parameter]

|       | Data Type                            | Parameter | Description          |
|-------|--------------------------------------|-----------|----------------------|
| Input | $\operatorname{cvitdl}$ app_handle_t | handle    | Handle pointer input |
| Input | $capture\_mode\_e$                   | mode      | Face capture mode    |

#### 5.2.2.8 CVI\_TDL\_APP\_FaceCapture\_Run

#### [Syntax]

```
CVI_S32 CVI_TDL_APP_FaceCapture_Run(const cvitdl_app_handle_t handle, VIDEO_

FRAME_INFO_S *frame);
```

#### [Description]

Perform face capture.

#### [Parameter]

|       | Data Type           | Parameter | Description          |
|-------|---------------------|-----------|----------------------|
| Input | cvitdl_app_handle_t | handle    | Handle pointer input |
| Input | VIDEO_FRAME_INFO_S* | frame     | Input image          |

#### 5.2.2.9 CVI\_TDL\_APP\_FaceCapture\_CleanAll

#### [Syntax]

```
CVI_S32 CVI_TDL_APP_FaceCapture_CleanAll(const cvitdl_app_handle_t handle);
```

#### [Description]

Clear all the data in the temporary storage area for face capture.

|       | Data Type                | Parameter | Description          |
|-------|--------------------------|-----------|----------------------|
| Input | $cvitdl\_app\_handle\_t$ | handle    | Handle pointer input |



# 5.2.3 Humanoid Capture

Human body capture is a function that combines human body detection, multi-object tracking, and face quality detection to capture (or extract) photos of different people's faces in an image.

The capture conditions can be adjusted using a configuration file, such as the capture time, face quality detection algorithm, face angle threshold, etc.

【Configuration File】



| 15/5 | 4  | TN | 14  |
|------|----|----|-----|
|      | 50 | 不い | 747 |

| Parameter                  | Default Value | Description                                                                                                                                                                                                        |
|----------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| miss_time_limit:           | 40            | Face loss time limit. When the APP cannot trace a face continuously, it will determine that the face has left. [Unit: frame]                                                                                       |
| threshold_size_min         | 32            | Minimum/maximum acceptable face size, if either side of the face bbox is less than/greater than this threshold, quality will be forced to 0.                                                                       |
| threshold_size_max         | 512           |                                                                                                                                                                                                                    |
| quality_assessment_method  | 0             | If face evaluation does not use FQNet, enable the built-in quality detection algorithm 0: based on face size and Angle 1: Based on eye distance                                                                    |
| threshold_quality          | 0.1           | Face quality threshold.  If the quality of the new face is greater than this threshold and higher than the quality of the currently captured face, the face data in the staging area will be captured and updated. |
| threshold_quality_high     | 0.95          | Face quality threshold (high).  If the quality of a face in the temporary area is higher than this threshold, the face is judged to be of high quality and will not be updated later.  (level 2,3 only)            |
| threshold_yaw              | 0.25          | Face Angle threshold, if the Angle is greater than this threshold, quality will be forced to set to 0.  (One unit is 90 degrees)                                                                                   |
| threshold_pitch            | 0.25          |                                                                                                                                                                                                                    |
| threshold_roll             | 0.25          |                                                                                                                                                                                                                    |
| fast_mode_interval         | 10            | FAST mode capture interval. [Unit: frame]                                                                                                                                                                          |
| $fast\_mode\_capture\_num$ | 3             | Number of captures in FAST mode.                                                                                                                                                                                   |
| cycle_mode_interval        | 20            | CYCLE mode Snapshot interval. [Unit: frame]                                                                                                                                                                        |
| auto_mode_time_limit       | 0             | Duration of the last output in AUTO mode. [Unit: frame]                                                                                                                                                            |
| auto_mode_fast_cap         | 1             | AUTO Mode Whether to output one quick snapshot.                                                                                                                                                                    |
| capture_aligned_face       | 0             | Whether the captured/captured face is corrected.                                                                                                                                                                   |

【Face Quality Assessment Algorithm】



| # | Algorithm                            | Computation                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | Based on face<br>size and An-<br>gle | <ol> <li>Face Area Score</li> <li>Definition of standard face size A_base = 112 * 112</li> <li>Calculate the detected face area A_face = length * width</li> <li>Calculate MIN(1.0, A_face/A_base) as a fraction</li> <li>Face Pose Score</li> <li>Calculate face Angle yaw, pitch and roll respectively and take their absolute values</li> <li>Calculate 1 - (yaw + pitch + roll) / 3 as a score</li> <li>Face Quality = Face Area Score * Face Pose Score</li> </ol> |
| 1 | Eye distance based                   | 1 Define standard pupil distance $D=80$<br>2 Calculate the distance d between the eyes<br>3 Calculate MIN(1.0, d/D) as a fraction                                                                                                                                                                                                                                                                                                                                       |

## 5.2.3.1 CVI\_TDL\_APP\_PersonCapture\_Init

## [Syntax]

## [Description]

Initialize the data structure for human body capture.

|       | Data Type           | Parameter   | Description            |
|-------|---------------------|-------------|------------------------|
| Input | cvitdl_app_handle_t | handle      | Handle pointer input   |
| Input | uint32_t            | buffer_size | Face staging area size |

算能科技

## 5.2.3.2 CVI\_TDL\_APP\_PersonCapture\_QuickSetUp

## [Syntax]

```
CVI_S32 CVI_TDL_APP_PersonCapture_QuickSetUp(const cvitdl_app_handle_t handle,
    const char *od_model_name,
    const char *od_model_path,
    const char *reid_model_path);
```

## [Description]

Quickly set up human body capture.

#### [Parameter]

|       | Data Type           | Parameter                                                         | Description                    |
|-------|---------------------|-------------------------------------------------------------------|--------------------------------|
| Input | cvitdl_app_handle_t | handle                                                            | Handle pointer input           |
| Input | const char*         | od_model_na                                                       | Model name for human detection |
| Input | const char*         | od_model_pa                                                       | Path of human detection model  |
| Input | const char*         | $\operatorname{reid}_{-}\operatorname{model}_{-}\operatorname{p}$ | Path of ReID model             |

## 5.2.3.3 CVI\_TDL\_APP\_FaceCapture\_GetDefaultConfig

## [Syntax]

```
CVI_S32 CVI_TDL_APP_PersonCapture_GetDefaultConfig(person_capture_config_t

→*cfg);
```

## [Description]

Get the preset parameters for human body capture.

|        | Data Type                | Parameter | Description                   |
|--------|--------------------------|-----------|-------------------------------|
| Output | person_capture_config_t* | cfg       | Human body capture parameters |

算能科技

# 5.2.3.4 CVI\_TDL\_APP\_PersonCapture\_SetConfig

## [Syntax]

CVI\_S32 CVI\_TDL\_APP\_PersonCapture\_SetConfig(const cvitdl\_app\_handle\_t handle, u person\_capture\_config\_t \*cfg);

## [Description]

Setting the parameters for the person capture.

#### [Parameter]

|       | Data Type                             | Parameter            | Description              |
|-------|---------------------------------------|----------------------|--------------------------|
| Input | $\operatorname{cvitdl}$ _app_handle_t | handle               | Handle pointer input     |
| Input | $person\_capture\_config\_t*$         | $\operatorname{cfg}$ | The parameters for human |
|       |                                       |                      | pose capture             |

## 5.2.3.5 CVI\_TDL\_APP\_PersonCapture\_SetMode

## [Syntax]

## [Description]

Setting the mode of person capture

## [Parameter]

|       | Data Type           | Parameter | Description          |
|-------|---------------------|-----------|----------------------|
| Input | cvitdl_app_handle_t | handle    | Handle pointer input |
| Input | capture_mode_e      | mode      | Person capture mode  |

## 5.2.3.6 CVI\_TDL\_APP\_PersonCapture\_Run

## (Syntax)

## [Description]

Perform human body capture



|       | Data Type                                               | Parameter | Description          |
|-------|---------------------------------------------------------|-----------|----------------------|
| Input | $\operatorname{cvitdl}_{\operatorname{app\_handle\_t}}$ | handle    | Handle pointer input |
| Input | VIDEO_FRAME_INFO_S*                                     | frame     | Input image          |

## $5.2.3.7~CVI\_TDL\_APP\_ConsumerCounting\_Run$

## 【语法】

CVI\_S32 CVI\_TDL\_APP\_ConsumerCounting\_Run(const cvitdl\_app\_handle\_t handle,\_ →VIDEO\_FRAME\_INFO\_S \*frame);

## 【描述】

执行人型抓拍。

## 【参数】

|       | Data Type                               | Parameter | Description          |
|-------|-----------------------------------------|-----------|----------------------|
| Input | $\operatorname{cvitdl\_app\_handle\_t}$ | handle    | Handle pointer input |
| Input | VIDEO_FRAME_INFO_S*                     | frame     | Input image          |

## 5.2.3.8 CVI\_TDL\_APP\_PersonCapture\_CleanAll

## [Syntax]

CVI\_S32 CVI\_TDL\_APP\_PersonCapture\_ClanAll(const cvitdl\_app\_handle\_t handle);

## [Description]

Clear all data in the temporary storage area for human form capture.

|       | Data Type                | Parameter | Description          |
|-------|--------------------------|-----------|----------------------|
| Input | $cvitdl\_app\_handle\_t$ | handle    | Handle pointer input |

# 6 Data Types

# 6.1 CVI\_TDL\_Core

# 6.1.1 CVI\_TDL\_SUPPORTED\_MODEL\_E

## [Description]

This enum defines all Deep Learning Models in the TDL SDK.

The following table shows each model Id and its corresponding model functionality:

| Model ID                                   | Description                    |
|--------------------------------------------|--------------------------------|
| CVI_TDL_SUPPORTED_MODEL_RETINAFACE         | Face detection                 |
| CVI_TDL_SUPPORTED_MODEL_RETINAFACE_IR      | IR Face detec-                 |
|                                            | tion(RetinaFace)               |
| CVI_TDL_SUPPORTED_MODEL_RETINAFACE_HARD:   | Hard hat detec-                |
|                                            | tion(RetinaFace)               |
| CVI_TDL_SUPPORTED_MODEL_SCRFDFACE          | Face detection(ScrFD Face)     |
| CVI_TDL_SUPPORTED_MODEL_THERMALFACE        | Thermal face detection         |
| CVI_TDL_SUPPORTED_MODEL_THERMALPERSON      | Thermal human type detec-      |
|                                            | tion                           |
| CVI_TDL_SUPPORTED_MODEL_FACEATTRIBUTE      | Face attributes and face       |
|                                            | recognition                    |
| CVI_TDL_SUPPORTED_MODEL_FACERECOGNITION    | FaceRecognition                |
| CVI_TDL_SUPPORTED_MODEL_MASKFACERECOGNI    | FaceRecognition by wearing a   |
|                                            | mask                           |
| CVI_TDL_SUPPORTED_MODEL_FACEQUALITY        | Face quality                   |
| CVI_TDL_SUPPORTED_MODEL_MASKCLASSIFICATION |                                |
| CVI_TDL_SUPPORTED_MODEL_HANDCLASSIFICATION | 9                              |
| CVI_TDL_SUPPORTED_MODEL_HAND_KEYPOINT      | Hand keypoints detection       |
| CVI_TDL_SUPPORTED_MODEL_HAND_KEYPOINT_C    | Hand keypoints recognition     |
| CVI_TDL_SUPPORTED_MODEL_LIVENESS           | Binocular vivisection recogni- |
|                                            | tion                           |
| CVI_TDL_SUPPORTED_MODEL_HAND_DETECTION     | Hand detection                 |
| CVI_TDL_SUPPORTED_MODEL_MOBILEDETV2_PERS   | human type and vehicle de-     |
|                                            | tection                        |
| CVI_TDL_SUPPORTED_MODEL_MOBILEDETV2_VEH:   | Vehicle detection              |



Table 6.1 - continued from previous page

| Table 0.1                                         | continued from previous p | 7460                                           |
|---------------------------------------------------|---------------------------|------------------------------------------------|
| Model ID                                          |                           | Description                                    |
| $CVI\_TDL\_SUPPORTED\_MODEL\_$                    | _MOBILEDETV2_PEDl         | Pedestrian detection                           |
| $CVI\_TDL\_SUPPORTED\_MODEL\_$                    | _MOBILEDETV2_PERS         | Cat, dog and human type de-                    |
|                                                   |                           | tection                                        |
| CVI_TDL_SUPPORTED_MODEL_                          | _MOBILEDETV2_COC          | 80 types of object detection                   |
| $CVI\_TDL\_SUPPORTED\_MODEL\_$                    |                           | 80 types of object detection                   |
| $CVI\_TDL\_SUPPORTED\_MODEL\_$                    |                           | 80 types of object detection                   |
| $CVI\_TDL\_SUPPORTED\_MODEL\_$                    |                           | 80 types of object detection                   |
| $CVI\_TDL\_SUPPORTED\_MODEL\_$                    |                           | Pedestrian rerecognition                       |
| $CVI\_TDL\_SUPPORTED\_MODEL\_$                    | _SOUNDCLASSIFICAT1        | Sound recognition                              |
| $CVI\_TDL\_SUPPORTED\_MODEL\_$                    | _SOUNDCLASSIFICAT1        | Sound recognition V2                           |
| $CVI\_TDL\_SUPPORTED\_MODEL\_$                    | _WPODNET                  | License plate detection                        |
| CVI_TDL_SUPPORTED_MODEL_                          | _LPRNET_TW                | License plate recognition in                   |
| CM TDI CUDDODTED MODEL                            | I DDNET CN                | Taiwan                                         |
| CVI_TDL_SUPPORTED_MODEL_                          | _LPRNETCN                 | License plate recognition in<br>Mainland China |
| CVI TDL SUPPORTED MODEL                           | DEEDI ADV2                | Semantic segmentation                          |
| CVI_TDL_SUPPORTED_MODEL_                          | _                         | Human keypoints detection                      |
| CVI_TDL_SUPPORTED_MODEL_                          | <del></del>               | v =                                            |
| CVI_TDL_SUPPORTED_MODEL_                          |                           | v G                                            |
| CVI_TDL_SUPPORTED_MODEL_                          |                           | <u> </u>                                       |
| CVI_TDL_SUPPORTED_MODEL_ CVI_TDL_SUPPORTED_MODEL_ |                           | v x                                            |
| CVI_TDL_SUPPORTED_MODEL_                          |                           | v x                                            |
|                                                   |                           | v                                              |
| CVI_TDL_SUPPORTED_MODEL_                          | <del></del>               | 9 9                                            |
| CVI_TDL_SUPPORTED_MODEL_                          | _                         |                                                |
| CVI_TDL_SUPPORTED_MODEL_                          |                           | IR liveness detection                          |
| CVI_TDL_SUPPORTED_MODEL_                          | _PERSONPETSDET            | Human type, cat and dog detection              |
| CVI_TDL_SUPPORTED_MODEL_                          | PERSON_VEHICLE I          |                                                |
|                                                   |                           | tection                                        |
| $CVI\_TDL\_SUPPORTED\_MODEL\_$                    | _HAND_FACE_PERSO          | Hand, face and Human type                      |
|                                                   |                           | detection                                      |
| CVI_TDL_SUPPORTED_MODEL_                          | HEAD PERSON DET           | Hand and Human type detec-                     |
|                                                   |                           | tion                                           |
| CVI TDL SUPPORTED MODEL                           | YOLOV8POSE                | Pose detection                                 |
| CVI_TDL_SUPPORTED_MODEL_                          |                           | Pose detection                                 |
| CVI_TDL_SUPPORTED_MODEL_                          |                           | Face keypoints detection                       |
|                                                   | <del>-</del>              |                                                |

Here is a table of model IDs, corresponding model files, and the inference functions used:

| Model ID                | Inference<br>tion | Func-  | Model file                                                                                                       |
|-------------------------|-------------------|--------|------------------------------------------------------------------------------------------------------------------|
| CVI_TDL_SUPPORTED_MODEL | CVI_TDL           | _Retin | retinaface_mnet0.25_342_608.cvimodel<br>retinaface_mnet0.25_608_342.cvimodel<br>retinaface_mnet0.25_608.cvimodel |



Table 6.2 – continued from previous page

| Table 6.2 – continued from p                         | revious page                                                                                                                      |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Model ID Inference Function                          | Model file                                                                                                                        |
| CVI_TDL_SUPPORTED_MODEL CVI_TDL_Retin                | $retinaface IR\_mnet 0.25\_608\_342. cvi model \\ retinaface IR\_mnet 0.25\_608\_608. cvi model \\$                               |
| CVI_TDL_SUPPORTED_MODEL CVI_TDL_Retire               |                                                                                                                                   |
| CVI_TDL_SUPPORTED_MODEL CVI_TDL_ScrF                 | scrfd_480_270_int8.cvimodel<br>scrfd_480_360_int8.cvimodel<br>scrfd_500m_bnkps_432_768.cvimodel<br>scrfd_768_432_int8_1x.cvimodel |
| CVI_TDL_SUPPORTED_MODEL CVI_TDL_Then                 |                                                                                                                                   |
| CVI_TDL_SUPPORTED_MODEL CVI_TDL_Ther                 | _                                                                                                                                 |
| CVI_TDL_SUPPORTED_MODEL CVI_TDL_Face<br>CVI_TDL_Face | A                                                                                                                                 |
| CVI_TDL_SUPPORTED_MODEL CVI_TDL_Face CVI_TDL_Face    | F cviface-v4.cvimodel F cviface-v5-m.cvimodel cviface-v5-s.cvimodel cviface-v6-s.cvimodel                                         |
| CVI TDL SUPPORTED MODEL CVI TDL Masl                 | masked-fr-v1-m.cvimodel                                                                                                           |
| CVI_TDL_SUPPORTED_MODEL_CVI_TDL_Face                 | Ganet-v5 shufflenetv2-                                                                                                            |
|                                                      | softmax.cvimodel                                                                                                                  |
| CVI TDL SUPPORTED MODEL CVI TDL Masl                 |                                                                                                                                   |
| CVI_TDL_SUPPORTED_MODEL_CVI_TDL_Hand                 |                                                                                                                                   |
| CVI_TDL_SUPPORTED_MODEL_CVI_TDL_Hand                 |                                                                                                                                   |
| CVI TDL SUPPORTED MODEL CVI TDL Hand                 | •                                                                                                                                 |
| CVI_TDL_SUPPORTED_MODEL CVI_TDL_Liver                | — · —                                                                                                                             |
| CVI_TDL_SUPPORTED_MODEL CVI_TDL_Hand                 | 9                                                                                                                                 |
| CVI_TDL_SUPPORTED_MODEL_CVI_TDL_Mob                  | •                                                                                                                                 |
| CVI_TDL_SUPPORTED_MODEL CVI_TDL_Mob                  |                                                                                                                                   |
| CVI_IDE_SCITORTED_MODEL CVI_IDE_MOD                  | 384.cvimodel                                                                                                                      |
|                                                      | mobiledetv2-pedestrian-d0-ls-                                                                                                     |
|                                                      | 640.cvimodel                                                                                                                      |
|                                                      |                                                                                                                                   |
|                                                      | mobiledetv2-pedestrian-d0-ls-<br>768.cvimodel                                                                                     |
|                                                      |                                                                                                                                   |
|                                                      | mobileDetV2-pedestrian-d1-<br>ls.cvimodel                                                                                         |
|                                                      |                                                                                                                                   |
|                                                      | mobiledetv2-pedestrian-d1-ls-<br>1024.cvimodel                                                                                    |
| CVI_TDL_SUPPORTED_MODEL CVI_TDL_Mob                  |                                                                                                                                   |
|                                                      | 768.cvimodel                                                                                                                      |
|                                                      | mobiledetv2-person-vehicle-<br>ls.cvimodel                                                                                        |
| CVI_TDL_SUPPORTED_MODEL CVI_TDL_Mob                  |                                                                                                                                   |
| CVI_TDL_SUPPORTED_MODEL_CVI_TDL_Mob                  |                                                                                                                                   |
| CAT_IDE_OOLI OIGIED_MODEL CAT_IDE_MOD                | mobiledetv2-d1-ls.cvimodel                                                                                                        |
|                                                      | mobiledetv2-d2-ls.cvimodel                                                                                                        |
|                                                      | modifedetv2-d2-15.Cvimodet                                                                                                        |

Table 6.2 – continued from previous page

| Table 0.2               | continued from pre      | vious page                          |               |
|-------------------------|-------------------------|-------------------------------------|---------------|
| Model ID                | Inference Func-         | Model file                          |               |
|                         | tion                    |                                     |               |
| CVI_TDL_SUPPORTED_MODEL | CVI_TDL_Yolov           | yolo_v3_416.cvimodel                |               |
| CVI_TDL_SUPPORTED_MODEL | $CVI\_TDL\_Yolov$       | yolov5s_3_branch_int8.cvimodel      |               |
| CVI_TDL_SUPPORTED_MODEL | CVI_TDL_YoloX           | yolox_nano.cvimodel                 |               |
|                         |                         | yolox_tiny.cvimodel                 |               |
| CVI_TDL_SUPPORTED_MODEL | $CVI\_TDL\_OSN\epsilon$ | person-reid-v1.cvimodel             |               |
|                         | $CVI\_TDL\_OSN\epsilon$ |                                     |               |
| CVI_TDL_SUPPORTED_MODEL | $CVI\_TDL\_Sounc$       | $es\_classification.cvimodel$       |               |
|                         |                         | $soundcmd\_bf16.cvimodel$           |               |
| CVI_TDL_SUPPORTED_MODEL | CVI_TDL_Sounc           | $c10\_lightv2\_mse40\_mix.cvimodel$ |               |
| CVI_TDL_SUPPORTED_MODEL |                         | <u> </u>                            |               |
| CVI_TDL_SUPPORTED_MODEL |                         | •                                   |               |
| CVI_TDL_SUPPORTED_MODEL |                         | -                                   |               |
| CVI_TDL_SUPPORTED_MODEL |                         |                                     | model         |
| CVI_TDL_SUPPORTED_MODEL | -                       |                                     |               |
| CVI_TDL_SUPPORTED_MODEL |                         | · — —                               |               |
| CVI_TDL_SUPPORTED_MODEL |                         |                                     |               |
| CVI_TDL_SUPPORTED_MODEL |                         |                                     |               |
| CVI_TDL_SUPPORTED_MODEL |                         |                                     | 50ep.cvimodel |
| CVI_TDL_SUPPORTED_MODEL |                         |                                     |               |
| CVI_TDL_SUPPORTED_MODEL |                         | ,                                   |               |
| CVI_TDL_SUPPORTED_MODEL |                         | <del></del>                         |               |
| CVI_TDL_SUPPORTED_MODEL | CVI_TDL_IrLiv€          | 9                                   |               |
|                         |                         | liveness-rgb-ir-3d.cvimodel         |               |
| CVI_TDL_SUPPORTED_MODEL |                         | -                                   |               |
| CVI_TDL_SUPPORTED_MODEL |                         |                                     | imodel        |
| CVI_TDL_SUPPORTED_MODEL |                         |                                     |               |
| CVI_TDL_SUPPORTED_MODEL |                         | -                                   |               |
| CVI_TDL_SUPPORTED_MODEL |                         | v -                                 |               |
| CVI_TDL_SUPPORTED_MODEL |                         | <u> </u>                            |               |
| CVI_TDL_SUPPORTED_MODEL | CVI_TDL_FLDe            | onet_int8.cvimodel                  |               |

## 6.1.2 cvtdl\_obj\_class\_id\_e

## [Description]

This enum defines the categories of object detection, with each category belonging to a group.

| Category                   | Category Group            |
|----------------------------|---------------------------|
| CVI_TDL_DET_TYPE_PERSON    | CVI_TDL_DET_GROUP_PERSON  |
| CVI_TDL_DET_TYPE_BICYCLE   | CVI_TDL_DET_GROUP_VEHICLE |
| CVI_TDL_DET_TYPE_CAR       |                           |
| CVI_TDL_DET_TYPE_MOTORBIKE |                           |
| CVI_TDL_DET_TYPE_AEROPLANE |                           |
| CVI_TDL_DET_TYPE_BUS       |                           |

Table 6.3 – continued from previous page

| Table 6.3 – continued from prev                | Category Group                    |
|------------------------------------------------|-----------------------------------|
|                                                | Category Group                    |
| CVI_TDL_DET_TYPE_TRAIN                         |                                   |
| CVI_TDL_DET_TYPE_TRUCK                         |                                   |
| CVI_TDL_DET_TYPE_BOAT                          |                                   |
| CVI_TDL_DET_TYPE_TRAFFIC_LIGHT                 | CVI_TDL_DET_GROUP_OUTDOOR         |
| CVI_TDL_DET_TYPE_FIRE_HYDRANT                  |                                   |
| CVI_TDL_DET_TYPE_STREET_SIGN                   |                                   |
| CVI_TDL_DET_TYPE_STOP_SIGN                     |                                   |
| CVI_TDL_DET_TYPE_PARKING_METER                 |                                   |
| CVI_TDL_DET_TYPE_BENCH                         |                                   |
| CVI_TDL_DET_TYPE_BIRD                          | CVI_TDL_DET_GROUP_ANIMAL          |
| CVI_TDL_DET_TYPE_CAT                           |                                   |
| CVI_TDL_DET_TYPE_DOG                           |                                   |
| CVI_TDL_DET_TYPE_HORSE                         |                                   |
| CVI_TDL_DET_TYPE_SHEEP                         |                                   |
| CVI_TDL_DET_TYPE_COW                           |                                   |
| CVI_TDL_DET_TYPE_ELEPHANT                      |                                   |
| CVI_TDL_DET_TYPE_BEAR                          |                                   |
| CVI_TDL_DET_TYPE_ZEBRA                         |                                   |
| CVI_TDL_DET_TYPE_GIRAFFE                       |                                   |
| CVI_TDL_DET_TYPE_HAT                           | CVI_TDL_DET_GROUP_ACCESSORY       |
| CVI_TDL_DET_TYPE_BACKPACK                      |                                   |
| CVI_TDL_DET_TYPE_UMBRELLA                      |                                   |
| CVI_TDL_DET_TYPE_SHOE                          |                                   |
| CVI_TDL_DET_TYPE_EYE_GLASSES                   |                                   |
| CVI_TDL_DET_TYPE_HANDBAG                       |                                   |
| CVI_TDL_DET_TYPE_TIE                           |                                   |
| CVI_TDL_DET_TYPE_SUITCASE                      |                                   |
| CVI_TDL_DET_TYPE_FRISBEE                       | CVI_TDL_DET_GROUP_SPORTS          |
| CVI_TDL_DET_TYPE_SKIS                          |                                   |
| CVI_TDL_DET_TYPE_SNOWBOARD                     |                                   |
| CVI_TDL_DET_TYPE_SPORTS_BALL                   |                                   |
| CVI TDL DET TYPE KITE                          |                                   |
| CVI TDL DET TYPE BASEBALL BAT                  |                                   |
| CVI TDL DET TYPE BASEBALL GLOVE                |                                   |
| CVI TDL DET TYPE SKATEBOARD                    |                                   |
| CVI TDL DET TYPE SURFBOARD                     |                                   |
| CVI TDL DET TYPE TENNIS RACKET                 |                                   |
| CVI TDL DET TYPE BOTTLE                        | CVI TDL DET GROUP KITCHEN         |
| CVI TDL DET TYPE PLATE                         | 0   1_122_221_0100 01 _1111 01121 |
| CVI_TDL_DET_TYPE_WINE_GLASS                    |                                   |
| CVI_TDL_DET_TYPE_CUP                           |                                   |
| CVI_TDL_DET_TYPE_FORK                          |                                   |
| CVI_TDL_DET_TTTE_FORK  CVI_TDL DET_TYPE_KNIFE  |                                   |
| CVI_IDE_DET_ITTE_KNIFE CVI_TDL_DET_TYPE_SPOON  |                                   |
| CVI_IDE_DET_ITTE_SFOON CVI_TDL_DET_TYPE_BOWL   |                                   |
| CVI_TDL_DET_TTTE_BOWL CVI_TDL_DET_TYPE_BANANA  | CVI TDL DET GROUP FOOD            |
| CVI_IDL_DEI_ITPE_BANANA CVI_TDL_DET_TYPE_APPLE | OAT_IDE_DET_GROOL_LOOD            |
| OAITINETTI LEFTALLE                            |                                   |



Table 6.3 – continued from previous page

| Category  CVI_TDL_DET_TYPE_SANDWICH  CVI_TDL_DET_TYPE_ORANGE  CVI_TDL_DET_TYPE_BROCCOLI  CVI_TDL_DET_TYPE_CARROT  CVI_TDL_DET_TYPE_HOT_DOG  CVI_TDL_DET_TYPE_PIZZA  CVI_TDL_DET_TYPE_DONUT  CVI_TDL_DET_TYPE_CAKE  CVI_TDL_DET_TYPE_CAKE  CVI_TDL_DET_TYPE_CHAIR  CVI_TDL_DET_GROUP_FURNITURE |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CVI_TDL_DET_TYPE_ORANGE CVI_TDL_DET_TYPE_BROCCOLI CVI_TDL_DET_TYPE_CARROT CVI_TDL_DET_TYPE_HOT_DOG CVI_TDL_DET_TYPE_PIZZA CVI_TDL_DET_TYPE_DONUT CVI_TDL_DET_TYPE_CAKE CVI_TDL_DET_TYPE_CAKE CVI_TDL_DET_TYPE_CHAIR CVI_TDL_DET_GROUP_FURNITURE                                               |
| CVI_TDL_DET_TYPE_BROCCOLI CVI_TDL_DET_TYPE_CARROT CVI_TDL_DET_TYPE_HOT_DOG CVI_TDL_DET_TYPE_PIZZA CVI_TDL_DET_TYPE_DONUT CVI_TDL_DET_TYPE_CAKE CVI_TDL_DET_TYPE_CHAIR CVI_TDL_DET_GROUP_FURNITURE                                                                                             |
| CVI_TDL_DET_TYPE_CARROT  CVI_TDL_DET_TYPE_HOT_DOG  CVI_TDL_DET_TYPE_PIZZA  CVI_TDL_DET_TYPE_DONUT  CVI_TDL_DET_TYPE_CAKE  CVI_TDL_DET_TYPE_CHAIR  CVI_TDL_DET_GROUP_FURNITURE                                                                                                                 |
| CVI_TDL_DET_TYPE_HOT_DOG CVI_TDL_DET_TYPE_PIZZA CVI_TDL_DET_TYPE_DONUT CVI_TDL_DET_TYPE_CAKE CVI_TDL_DET_TYPE_CHAIR CVI_TDL_DET_GROUP_FURNITURE                                                                                                                                               |
| CVI_TDL_DET_TYPE_PIZZA CVI_TDL_DET_TYPE_DONUT CVI_TDL_DET_TYPE_CAKE CVI_TDL_DET_TYPE_CHAIR CVI_TDL_DET_GROUP_FURNITURE                                                                                                                                                                        |
| CVI_TDL_DET_TYPE_DONUT CVI_TDL_DET_TYPE_CAKE CVI_TDL_DET_TYPE_CHAIR CVI_TDL_DET_GROUP_FURNITURE                                                                                                                                                                                               |
| CVI_TDL_DET_TYPE_CAKE CVI_TDL_DET_TYPE_CHAIR CVI_TDL_DET_GROUP_FURNITURE                                                                                                                                                                                                                      |
| CVI_TDL_DET_TYPE_CHAIR CVI_TDL_DET_GROUP_FURNITURE                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                               |
| CH TEN DET THE COLL                                                                                                                                                                                                                                                                           |
| CVI_TDL_DET_TYPE_SOFA                                                                                                                                                                                                                                                                         |
| CVI_TDL_DET_TYPE_POTTED_PLANT                                                                                                                                                                                                                                                                 |
| CVI_TDL_DET_TYPE_BED                                                                                                                                                                                                                                                                          |
| CVI_TDL_DET_TYPE_MIRROR                                                                                                                                                                                                                                                                       |
| CVI_TDL_DET_TYPE_DINING_TABLE                                                                                                                                                                                                                                                                 |
| CVI_TDL_DET_TYPE_WINDOW                                                                                                                                                                                                                                                                       |
| CVI_TDL_DET_TYPE_DESK                                                                                                                                                                                                                                                                         |
| CVI_TDL_DET_TYPE_TOILET                                                                                                                                                                                                                                                                       |
| CVI_TDL_DET_TYPE_DOOR                                                                                                                                                                                                                                                                         |
| CVI_TDL_DET_TYPE_TV_MONITOR CVI_TDL_DET_GROUP_ELECTRONIC                                                                                                                                                                                                                                      |
| CVI_TDL_DET_TYPE_LAPTOP                                                                                                                                                                                                                                                                       |
| CVI_TDL_DET_TYPE_MOUSE                                                                                                                                                                                                                                                                        |
| CVI_TDL_DET_TYPE_REMOTE                                                                                                                                                                                                                                                                       |
| CVI_TDL_DET_TYPE_KEYBOARD                                                                                                                                                                                                                                                                     |
| CVI_TDL_DET_TYPE_CELL_PHONE                                                                                                                                                                                                                                                                   |
| CVI_TDL_DET_TYPE_MICROWAVE CVI_TDL_DET_GROUP_APPLIANCE                                                                                                                                                                                                                                        |
| CVI_TDL_DET_TYPE_OVEN                                                                                                                                                                                                                                                                         |
| CVI_TDL_DET_TYPE_TOASTER                                                                                                                                                                                                                                                                      |
| CVI_TDL_DET_TYPE_SINK                                                                                                                                                                                                                                                                         |
| CVI_TDL_DET_TYPE_REFRIGERATOR                                                                                                                                                                                                                                                                 |
| CVI_TDL_DET_TYPE_BLENDER                                                                                                                                                                                                                                                                      |
| CVI_TDL_DET_TYPE_BOOK CVI_TDL_DET_GROUP_INDOOR                                                                                                                                                                                                                                                |
| CVI_TDL_DET_TYPE_CLOCK                                                                                                                                                                                                                                                                        |
| CVI_TDL_DET_TYPE_VASE                                                                                                                                                                                                                                                                         |
| CVI_TDL_DET_TYPE_SCISSORS                                                                                                                                                                                                                                                                     |
| CVI_TDL_DET_TYPE_TEDDY_BEAR                                                                                                                                                                                                                                                                   |
| CVI_TDL_DET_TYPE_HAIR_DRIER                                                                                                                                                                                                                                                                   |
| CVI_TDL_DET_TYPE_TOOTHBRUSH                                                                                                                                                                                                                                                                   |
| CVI_TDL_DET_TYPE_HAIR_BRUSH                                                                                                                                                                                                                                                                   |



# 6.1.3 cvtdl\_obj\_det\_group\_type\_e

## [Description]

This enum defines the object category groups.

| Category Group               | Description             |
|------------------------------|-------------------------|
| CVI_TDL_DET_GROUP_ALL        | Full class              |
| CVI_TDL_DET_GROUP_PERSON     | Human form              |
| CVI_TDL_DET_GROUP_VEHICLE    | Means of transportation |
| CVI_TDL_DET_GROUP_OUTDOOR    | Outdoors                |
| CVI_TDL_DET_GROUP_ANIMAL     | Animal                  |
| CVI_TDL_DET_GROUP_ACCESSORY  | Accessories             |
| CVI_TDL_DET_GROUP_SPORTS     | Movement                |
| CVI_TDL_DET_GROUP_KITCHEN    | Kitchen                 |
| CVI_TDL_DET_GROUP_FOOD       | Food                    |
| CVI_TDL_DET_GROUP_FURNITURE  | Furniture               |
| CVI_TDL_DET_GROUP_ELECTRONIC | Electronic equipment    |
| CVI_TDL_DET_GROUP_APPLIANCE  | Appliance               |
| CVI_TDL_DET_GROUP_INDOOR     | Indoor articles         |
| CVI_TDL_DET_GROUP_MASK_HEAD  | Custom category         |
| CVI_TDL_DET_GROUP_MASK_START | Custom category start   |
| CVI_TDL_DET_GROUP_MASK_END   | Custom category end     |

# 6.1.4 feature\_type\_e

## [enum]

| Value | Parameter      | Description           |
|-------|----------------|-----------------------|
| 0     | TYPE_INT8      | int8_t feature type   |
| 1     | TYPE_UINT8     | uint8_t feature type  |
| 2     | TYPE_INT16     | int16_t feature type  |
| 3     | TYPE_UINT16    | uint16_t feature type |
| 4     | TYPE_INT32     | int32_t feature type  |
| 5     | $TYPE\_UINT32$ | uint32_t feature type |
| 6     | TYPE_BF16      | bf16 feature type     |
| 7     | TYPE_FLOAT     | float feature type    |



# 6.1.5 meta\_rescale\_type\_e

## [enum]

| Value | Parameter       | Description                                  |
|-------|-----------------|----------------------------------------------|
| 0     | RESCALE_UNKNOW  | Unknown                                      |
| 1     | RESCALE_NOASPEC | Direct adjustment without proportional scal- |
|       |                 | ing                                          |
| 2     | RESCALE_CENTER  | Padding around all sides                     |
| 3     | RESCALE_RB      | Padding on the bottom right side             |

# 6.1.6 cvtdl\_bbox\_t

| Data Type | Parameter | Description                                                            |
|-----------|-----------|------------------------------------------------------------------------|
| float     | x1        | The x value of the coordinate at the top left of the detection frame   |
| float     | y1        | The y value of the coordinate on the upper left of the detection frame |
| float     | x2        | The x value of the lower right coordinate of the detection box         |
| float     | y2        | The y value of the lower right coordinate of the detection box         |
| float     | score     | The confidence level of the detection box                              |

## 6.1.7 cvtdl\_feature\_t

| Data Type      | Parameter | Description              |
|----------------|-----------|--------------------------|
| int8_t*        | ptr       | Address                  |
| $uint32\_t$    | size      | Characteristic dimension |
| feature_type_e | type      | Characteristic pattern   |

# 6.1.8 cvtdl\_pts\_t

| Data Type | Parameter | Description                 |
|-----------|-----------|-----------------------------|
| float*    | X         | Coordinate x                |
| float*    | У         | Coordinate y                |
| uint32_t  | size      | Number of coordinate points |

# 6.1.9 cvtdl\_4\_pts\_t

| Data Type | Parameter | Description                                           |
|-----------|-----------|-------------------------------------------------------|
| float     | x[4]      | The x-coordinate values of the four coordinate points |
| float     | y[4]      | The y coordinate values of the four coordinate points |

# 6.1.10 cvtdl\_vpssconfig\_t

| Data Type         | Parameter   | Description         |
|-------------------|-------------|---------------------|
| VPSS_SCALE_COEF_E | chn_coeff   | Rescale mode        |
| VPSS_CHN_ATTR_S   | $chn\_attr$ | VPSS attribute data |

# 6.1.11 cvtdl\_tracker\_t

| Data Type                  | Parameter | Description              |
|----------------------------|-----------|--------------------------|
| uint32_t                   | size      | Number of trace messages |
| $cvtdl\_tracker\_info\_t*$ | info      | Trace message structure  |

## 6.1.12 cvtdl\_tracker\_info\_t

| Data Type                           | Parameter     | Description                                             |
|-------------------------------------|---------------|---------------------------------------------------------|
| cvtdl_trk_state_type_t cvtdl_bbox_t | state<br>bbox | Tracking state Tracking the Bounding Box of predictions |

# $6.1.13 \quad cvtdl\_trk\_state\_type\_t$

## [enum]

| Value | Parameter       | Description                    |
|-------|-----------------|--------------------------------|
| 0     | CVI_TRACKER_NE  | The tracking status is new     |
| 1     | CVI_TRACKER_UN  | The tracking state is unstable |
| 2     | CVI_TRACKER_STA | The tracking state is stable   |



# $6.1.14 \quad cvtdl\_deepsort\_config\_t$

| Data Type             | Parameter               | Description                               |
|-----------------------|-------------------------|-------------------------------------------|
| float                 | $\max\_distance\_iou$   | Maximum IOU distance for BBox matching    |
| float                 | ma                      | Maximum consine distance during Feature   |
|                       | $x\_distance\_consine$  | matching                                  |
| int                   | $\max\_unmatched\_time$ | The number of maximum unmatched times of  |
|                       |                         | the target participating in BBox matching |
| bool                  | $enable\_internal\_FQ$  | Enable internal feature quality           |
| cvtdl_kalman_filter_e | kfilter_conf            | Kalman filter settings                    |
| cvtdl_kalman_tracker  | ktracker_conf           | Kalman tracker settings                   |

# $6.1.15 \quad cvtdl\_kalman\_filter\_config\_t$

| Data Type                    | Parameter               | Description                     |
|------------------------------|-------------------------|---------------------------------|
| bool                         | en-<br>able_X_constrair | Enable 0th X constraint         |
| bool                         | en-<br>able_X_constrair | Enable 1st X constraint         |
| float                        | X_constraint_mi         | X Constraint lower bound        |
| float                        | $X_{constraint\_ma}$    | X Constraint upper limit        |
| bool                         | en-<br>able_bounding_s  | Keep boundaries                 |
| $mahalanobis\_confidence\_e$ | $confidence\_level$     | Mahalanobis distance confidence |
| float                        | $chi2\_threshold$       | Chi-square threshold            |
| float                        | $Q_std_alpha[8]$        | Process Noise parameter         |
| float                        | $Q_{std\_beta[8]}$      | Process Noise parameter         |
| int                          | $Q_std_x_idx[8]$        | Process Noise parameter         |
| float                        | $R_{std}_{alpha}[4]$    | Measurement Noise parameter     |
| float                        | $R_{std\_beta[4]}$      | Measurement Noise parameter     |
| int                          | $R_std_x_idx[4]$        | Measurement Noise parameter     |

## [Description]

For the motion state X of a tracked target  $\cdots$ 

Process Nose, Q, where

$$Q[i] = \left(Alpha_Q[i] \bullet X \left[Idx_Q[i]\right] + Beta_Q[i]\right)^2$$

Measurement Nose, R, The formula for motion deviation is the same as follows:



# $6.1.16 \quad cvtdl\_kalman\_tracker\_config\_t$

| Data Type | Parameter                     | Description                                                 |
|-----------|-------------------------------|-------------------------------------------------------------|
| int       | $\max\_unmatched\_num$        | Track the maximum number of lost targets                    |
| int       | accredita-<br>tion_threshold  | The threshold at which the tracking state changes to stable |
| int       | feature_budget_size           | Save the maximum number of tracking target features         |
| int       | fea-<br>ture_update_interval  | Time interval of updating feature                           |
| bool      | en-<br>able_QA_feature_init   | Enable QA feature initialization                            |
| bool      | en-<br>able_QA_feature_upc    | Enable QA feature updates                                   |
| float     | fea-<br>ture_init_quality_thr | Feature initialization quality threshold                    |
| float     | fea-<br>ture_update_quality_  | Feature update quality threshold                            |
| float     | $P_std_alpha[8]$              | Initial Covariance parameter                                |
| float     | $P_std_beta[8]$               | Initial Covariance parameter                                |
| int       | $P_std_x_idx[8]$              | Initial Covariance parameter                                |

## [Description]

Initial Covariance, P, The formula for updating the initial covariance is similar to that of the process noise covariance:

## 6.1.17 cvtdl\_liveness\_ir\_position\_e

## [enum]

| Value | Parameter              | Description                                 |
|-------|------------------------|---------------------------------------------|
| 0     | LIVE-<br>NESS_IR_LEFT  | The IR lens is to the left of the RGB lens  |
| 1     | LIVE-<br>NESS_IR_RIGHT | The IR lens is to the right of the RGB lens |



# 6.1.18 cvtdl\_head\_pose\_t

| Data Type | Parameter                                                        | Description                              |
|-----------|------------------------------------------------------------------|------------------------------------------|
| float     | yaw                                                              | Yaw angle                                |
| float     | pitch                                                            | Pitch angle                              |
| float     | roll                                                             | Angle of roll                            |
| float     | $\begin{array}{c} facial Unit Nor-\\ mal Vector [3] \end{array}$ | The face is oriented towards the bearing |

# $6.1.19 \quad cvtdl\_face\_info\_t$

| Data Type                      | Parameter          | Description                      |
|--------------------------------|--------------------|----------------------------------|
| char                           | name[128]          | Face name                        |
| $uint64\_t$                    | unique_id          | Face ID                          |
| $cvtdl\_bbox\_t$               | bbox               | Face detection frame             |
| $\operatorname{cvtdl\_pts\_t}$ | pts                | Face feature point               |
| $cvtdl\_feature\_t$            | feature            | Facial features                  |
| $cvtdl\_face\_emotion\_e$      | emotion            | Expression                       |
| $cvtdl\_face\_gender\_e$       | gender             | Gender                           |
| $cvtdl\_face\_race\_e$         | race               | Race                             |
| float                          | score              | Score                            |
| float                          | age                | Age                              |
| float                          | liveness_score     | Live probability                 |
| float                          | $hardhat\_score$   | Hard hat score                   |
| float                          | $mask\_score$      | Probability of wearing face mask |
| float                          | $recog\_score$     | Recognition score                |
| float                          | face_quality       | Human face quality               |
| float                          | pose_score         | Pose score                       |
| float                          | pose_score1        | Pose score 1                     |
| float                          | $sharpness\_score$ | Sharpness score                  |
| float                          | blurness           | Blurness                         |
| cvtdl_head_pose_t              | head_pose          | Facial angle information         |
| int                            | track_state        | Track state                      |

# 6.1.20 cvtdl\_face\_t

| Data Type                               | Parameter       | Description                        |
|-----------------------------------------|-----------------|------------------------------------|
| uint32_t                                | size            | Number of faces                    |
| uint32_t                                | width           | The width of the original picture  |
| uint32_t                                | height          | The height of the original picture |
| $meta\_rescale\_type\_e^*$              | $rescale\_type$ | Rescale type                       |
| $\operatorname{cvtdl\_face\_info\_t^*}$ | info            | Face synthesis information         |
| $cvtdl\_dms\_t^*$                       | dms             | Driver monitoring system           |

## 6.1.21 cvtdl\_pose17\_meta\_t

| Data Type | Parameter | Description                                         |
|-----------|-----------|-----------------------------------------------------|
| float     | x[17]     | x-coordinate of 17 skeletal keypoints               |
| float     | y[17]     | y-coordinate of 17 skeletal keypoints               |
| float     | score[17] | Predicted confidence value of 17 skeletal keypoints |

# 6.1.22 cvtdl\_vehicle\_meta

| Data Type                       | Parameter       | Description                                       |
|---------------------------------|-----------------|---------------------------------------------------|
| cvtdl_4_pts_t                   | license_pts     | Coordinates of the 4 corners of the license plate |
| $\operatorname{cvtdl\_bbox\_t}$ | $license\_bbox$ | Bounding box of the license plate                 |
| char[125]                       | $license\_char$ | License plate number                              |

## [Description]

The four corner coordinates of the license plate are upper left, upper right, lower right to lower left in order.

# 6.1.23 cvtdl\_class\_filter\_t

| Data Type   | Parameter                | Description                          |
|-------------|--------------------------|--------------------------------------|
| uint32_t*   | preserved_class_ids      | The category id to keep              |
| $uint32\_t$ | $num\_preserved\_classe$ | e The number of category ids to keep |

# 6.1.24 cvtdl\_dms\_t

| Data Type                          | Parameter        | Description                                   |
|------------------------------------|------------------|-----------------------------------------------|
| float                              | reye_score       | Right eye opening and closing score           |
| float                              | leye_score       | Left eye opening and closing score            |
| float                              | yawn_score       | Mouth closure score                           |
| float                              | $phone\_score$   | Talking on the phone score                    |
| float                              | $smoke\_score$   | Smoking score                                 |
| $cvtdl\_pts\_t$                    | $landmarks\_106$ | 106 feature points                            |
| $\operatorname{cvtdl\_pts\_t}$     | $landmarks\_5$   | Five feature points                           |
| cvtdl_head_pose_t                  | head_pose        | Face angle calculated from 106 feature points |
| $\operatorname{cvtdl\_dms\_od\_t}$ | $dms\_od$        | Object detection results in the vehicle       |

## $6.1.25 \quad cvtdl\_dms\_od\_t$

| Data Type                  | Parameter       | Description                  |
|----------------------------|-----------------|------------------------------|
| uint32_t                   | size            | There are a couple of things |
| uint32_t                   | width           | Width                        |
| uint32_t                   | height          | Height                       |
| $meta\_rescale\_type\_e$   | $rescale\_type$ | The shape of rescale         |
| $cvtdl\_dms\_od\_info\_t*$ | info            | Information about objects    |

## $6.1.26 \quad cvtdl\_dms\_od\_info\_t$

| Data Type    | Parameter | Description         |
|--------------|-----------|---------------------|
| char[128]    | name      | Name of object      |
| int          | classes   | Category of objects |
| cvtdl_bbox_t | bbox      | Object bounding Box |

# 6.1.27 cvtdl\_face\_emotion\_e

[Description]

Emotion

| Emotion          | Description |
|------------------|-------------|
| EMOTION_UNKNOWN  | unknown     |
| EMOTION_HAPPY    | Be happy    |
| EMOTION_SURPRISE | Surprise    |
| EMOTION_FEAR     | Fear of     |
| EMOTION_DISGUST  | Aversion to |
| EMOTION_SAD      | Be sad      |
| EMOTION_ANGER    | Get angry   |
| EMOTION_NEUTRAL  | Nature      |

# 6.1.28 cvtdl\_face\_race\_e

| Race           | Description   |
|----------------|---------------|
| RACE_UNKNOWN   | Unknown       |
| RACE_CAUCASIAN | The Caucasian |
| RACE_BLACK     | Black people  |
| RACE_ASIAN     | The Asians    |

# 6.1.29 cvtdl\_pedestrian\_meta

| Data Type           | Parameter | Description           |
|---------------------|-----------|-----------------------|
| cvtdl_pose17_meta_t | pose17    | Human 17 keypoints    |
| bool                | fall      | Whether fallen or not |

# 6.1.30 cvtdl\_object\_info\_t

| Data Type                          | Parameter       | Description               |
|------------------------------------|-----------------|---------------------------|
| char                               | name            | Object class name         |
| $uint64\_t$                        | $unique\_id$    | Unique id                 |
| $\operatorname{cvtdl\_box\_t}$     | bbox            | Bounding box              |
| $\operatorname{cvtdl\_feature\_t}$ | feature         | Feature of objects        |
| $\operatorname{int}$               | classes         | ID of category            |
| $cvtdl\_vehicle\_meta$             | vehi-           | Property of vehicle       |
|                                    | $cle\_property$ |                           |
| $cvtdl\_pedestrian\_meta$          | pedes-          | Attributes of pedestrians |
|                                    | trian_property  |                           |
| int                                | $track\_state$  | Track state               |



# 6.1.31 cvtdl\_object\_t

| Data Type                 | Parameter       | Description                                    |
|---------------------------|-----------------|------------------------------------------------|
| uint32_t                  | size            | The number of objects in info                  |
| uint32_t                  | width           | The width of the original image                |
| $uint32\_t$               | height          | The height of the original picture             |
| $uint32\_t$               | entry_num       | Number of entries                              |
| uint32_t                  | miss_num        | Number of miss                                 |
| meta_rescale_type_e       | $rescale\_type$ | resize method used in model pre-<br>processing |
| $cvtdl\_object\_info\_t*$ | info            | Object information                             |

# $6.1.32 \quad cvtdl\_handpose21\_meta\_t$

| Data Type | Parameter | Description                 |
|-----------|-----------|-----------------------------|
| float     | xn[21]    | normalize x points          |
| float     | x[21]     | x points                    |
| float     | yn[21]    | normalize y points          |
| float     | y[21]     | y points                    |
| float     | bbox_x    | the x-coordinate of the box |
| float     | bbox_y    | the y-coordinate of the box |
| float     | bbox_w    | The width of box            |
| float     | bbox_h    | The height of box           |
| int       | label     | Gesture category            |
| float     | score     | Gesture score               |

# $6.1.33 \quad cvtdl\_handpose21\_meta\_ts$

| Data Type                     | Parameter | Description                  |
|-------------------------------|-----------|------------------------------|
| uint32_t                      | size      | The number of hands detected |
| uint32_t                      | width     | The width of image           |
| uint32_t                      | height    | The height of image          |
| $cvtdl\_handpose21\_meta\_t*$ | info      | Hand keypoints               |



## 6.1.34 Yolov5PreParam

| Data Type           | Parameter         | Description             |
|---------------------|-------------------|-------------------------|
| float               | factor[3]         | Scaling factor          |
| float               | mean[3]           | Image mean              |
| meta_rescale_type_e | rescale_type      | Scaling mode            |
| bool*               | pad_reverse       | Reverse padding         |
| bool*               | keep_aspect_ratio | Keep aspect ratio       |
| bool*               | use_quantize_sca  | Qantization scaling     |
| bool*               | use_crop          | Crop to resize an image |
| VPSS_SCALE_COEF_E*  | $resize\_method$  | Scaling method          |
| PIXEL_FORMAT_E*     | format            | Image format            |

# 6.1.35 YOLOV5AlgParam

| Data Type | Parameter        | Description          |
|-----------|------------------|----------------------|
| uint32_t  | anchors[3][3][2] | model anchors        |
| float     | $conf\_thresh$   | confidence threshold |
| float     | $nms\_thresh$    | RMS Threshold        |

# 6.2 CVI\_TDL\_Service

# $6.2.1 \quad cvtdl\_service\_feature\_matching\_e$

## [Description]

The method used for feature comparison calculation, currently only supports Cosine Similarity.

## [Member]

| Parameter      | Description       |
|----------------|-------------------|
| COS_SIMILARITY | Cosine similarity |

# 6.2.2 cvtdl\_service\_feature\_array\_t

## [Description]

Feature array, this structure contains the pointer to the feature array, length, number of features, and feature type information.

This structure needs to be passed in when registering the feature library.

## [Member]

| Data Type      | Parameter         | Description                  |
|----------------|-------------------|------------------------------|
| int8_t*        | ptr               | Feature array pointer        |
| $uint32\_t$    | $feature\_length$ | Single characteristic length |
| uint32_t       | data_num          | Number of features           |
| feature_type_e | type              | Type of feature              |

## 6.2.3 cvtdl\_service\_brush\_t

## [Description]

Brush structure for drawing, which specifies the RGB color and brush size to be used.

#### [Member]

| Data Type       | Parameter | Description          |
|-----------------|-----------|----------------------|
| Inner structure | color     | The RGB value to use |
| uint32_t        | size      | Brush size           |

# 6.2.4 cvtdl\_area\_detect\_e

## [enum]

| Data Type | Parameter            | Description             |
|-----------|----------------------|-------------------------|
| 0         | UNKNOWN              | The int8_t feature type |
| 1         | NO_INTERSECT         | Not intersect           |
| 2         | ON_LINE              | On line                 |
| 3         | CROSS_LINE_POS       | Forward cross           |
| 4         | CROSS_LINE_NEG       | Negative cross          |
| 5         | INSIDE_POLYGON       | Inside the polygon      |
| 6         | OUT-<br>SIDE_POLYGON | Outside the polygon     |

## 算能科技

# $7_{ m Error~Codes}$

| Error Code | Macro Definition                | Description                           |
|------------|---------------------------------|---------------------------------------|
| 0xFFFFFFF  | CVI_TDL_FAILURE                 | API call failed                       |
| 0xC0010101 | CVI_TDL_ERR_INVALID_MODEL_PATH  | Incorrect model path                  |
| 0xC0010102 | CVI_TDL_ERR_OPEN_MODEL          | Failed to start the model             |
| 0xC0010103 | CVI_TDL_ERR_CLOSE_MODEL         | Failed to close the model             |
| 0xC0010104 | CVI_TDL_ERR_GET_VPSS_CHN_CONF   | Failed to obtain VPSS CHN Settings    |
| 0xC0010105 | CVI_TDL_ERR_INFERENCE           | Model inference failure               |
| 0xC0010106 | CVI_TDL_ERR_INVALID_ARGS        | Incorrect parameters                  |
| 0xC0010107 | CVI_TDL_ERR_INIT_VPSS           | Failed to initialize<br>VPSS          |
| 0xC0010108 | CVI_TDL_ERR_VPSS_SEND_FRAME     | Failed to send Frame to VPSS          |
| 0xC0010109 | CVI_TDL_ERR_VPSS_GET_FRAME      | Failed to get Frame from VPSS         |
| 0xC001010A | CVI_TDL_ERR_MODEL_INITIALIZED   | The model is not open                 |
| 0xC001010B | CVI_TDL_ERR_NOT_YET_INITIALIZED | The function is not initialized       |
| 0xC001010C | CVI_TDL_ERR_NOT_YET_IMPLEMENT   | The function has not been implemented |
| 0xC001010D | CVI_TDL_ERR_ALLOC_ION_FAIL      | Failed to allocate ION memory         |
| 0xC0010201 | CVI_TDL_ERR_MD_OPERATION_FAILE  | Failed to run Motion<br>Detection     |