1)3 $T_1 = 1$ $T_2 = ?$ and $\frac{36400}{T_1} - 300 = \frac{96400}{T_2}$ $T_2 = \frac{96400}{96100} = 4.00348$

201 2 = T

, L = 0.248 m => $T_2 = 2\pi \sqrt{\frac{5}{5}} = 1.00368 = 2\pi \sqrt{\frac{0.248}{52}}$

g= = 9.762 m/s =

2) A

Kepler's third law:

T= 5735.78 S = 9559 Min

2) D

Parer = mydh = mydh = mgv = 367.5 W

4)3

mv = (MHY)V

(0.25)(25)= 2.25 · V1

Vf = 2.718 m/s

with an acceleration pointing backward by the brake, the liquid in the bottle would go forward with another acceleration. At this point, a can consider the liquid as another "mini bus" which contains the bubble. When the liquid go forward with an acceleration, the bubble would more back ward.

6) B

Reading the equation:

Ln2 = 8 to

t = RCL12

7) A 2 67€00 \$ = P = density of electron I = e. P.A.V Ja = 1. Tham 6 3 and, for every copper analectule, there is only I free electron ($P = \frac{9 \times 10^{6}}{\frac{63.5}{N_{A}}}$ $= \frac{9 \times 10^{6} \cdot 6.022 \times 10^{6}}{\frac{6.022 \times 10^{6}}{10^{6}}}$ V= I OP.A MM POR = 85x1028 = 6x10 = m/s 8)0 L= 2x-2x (0) 120 (MAM)= M $L^2 = 2x^2(1-(05120^3))$ $E_1 + E_2 = (E_1)^2 + 2E_1E_2(0)$ 23 x = L (=X=導L = (KQ) be belle when the house (po |=+ = + = = = = + | - = = | $J = \frac{100 \times 100}{3 \times 100}$ V=C=3x108m/5 $=\frac{3 kQ}{r^2}$ $=\frac{3 kQ}{\left(\frac{3}{2}L\right)^2}$ =3 M 10) B P = I = 800 WZ P = 800 P = 32007 W $\frac{?}{4\pi(10)^2} = I_2 = \frac{3200R}{4\pi \cdot 100} = \sqrt{\frac{W}{N^2}}$

. 7

A(II tp = 100ns = intrinsic lifetime t = 125ns 12) (f = hf = energy per photon Intentity undrange = power unchangeTherefore, the number of photon must decreuse because Premains constant. According to the equation $\frac{N}{d} = ay$ If digots small by increases According to Newton's third Law, Force, appear in pairs d'with equal magnitude and opposite direction as the another. my = mg + Fr minimum occurs when ru = 0 Mv2 = mg to ingh = 1 mu2+2mgr 16) C 1 mv = initial kinetic energy 45° 49: 1 mgh h= from the roof to the h where vy =0 45° down: 2mvf = Invitmgx Vf1 = 462

*

	U(FI
	By observing the angles nikno and nokno
	while 03 > 0, n, sino, = n3 sinos
	therefore, n3 < n < n2
	and $\frac{c}{V_3} < \frac{c}{V_1} < \frac{c}{V_2}$
	th 21 = 13 m
	$= V_3 > V_1 > V_2$
	180) 3 how some a greaton primetry notice any page a 142 3
. +,	Morton, the marker of states must densite begans PV-I=9 content
	when 2 heaters are in series, the 120V voltage's going to be shared
	between two heaters. Therefore, the heat produced must be decreased.
	According to the execution the my of deep small and increase.
	19) C
	A is closer to the North pole, so the shift of the magnet would
dutinger !	repelit to the left. Bis closer to the south pole, and the shift of
	He magnet would attract it to the left.
	20)B
	Q = KAOT FOR B, the Area exist the floor is greater than the Area
	between the string and the B. Therefore, A:s losing temperated
	fester than &.
	21) 7
	considering a square with site length L
	L 22=1
	when there is a charge in T
	Le=L(I+ADT)
	and this observation applies on the square
	as my gradual at as from standard of man a sunt
	22) A Dad all to topped ox xom - unit - vomit
	By the Red line and the Blue Affline, you can
	tell that the image B is still going to form and
	remain it position. Therefore, only D is correct.
	6

	23)B		
	By m=-di u can tell that as digets further, there are go distortion. Therefore, the answer is B	ina to	be more
	discolor the course is B		
	24) C		
	24) C G'4		
	$\frac{G''}{G'^2} = g$ $9.75 = \frac{6.67 \times 10^{-11}}{(6378 \times 10^3 + h)^2}$		
	9.75 = (6378×103+h)2		
	2		
	$(h + 6.378 \times 10^3)^2 = 4.085 \times 10^3$		
1	1+6.378×103 = 6.3917×106		
	h = 14000m		