Worksheet # 12: Higher Derivatives and Trigonometric Functions

- 1. Given that $G(t) = 4t^2 3t + 42$ find the instantaneous rate of change when t = 3.
- 2. An object which is thrown upward with an initial velocity of 5 m/s from an initial height of 40 m. Find the velocity of the object when it hits the ground.
- 3. Find the instantaneous rate of change in the area with respect to base b and height b of a triangle whose base equals its height when b = 7.
- 4. Calculate the indicated derivative:
 - (a) $f^{(4)}(1)$,

$$f(x) = x^4$$

(b) $g^{(3)}(5)$,

$$g(x) = 2x^2 - x + 4$$

(c) $h^{(3)}(t)$,

$$h(t) = 4e^t - t^3$$

(d) $s^{(2)}(w)$,

$$s(w) = \sqrt{w}e^w$$

- 5. Calculate the first three derivatives of $f(x) = xe^x$ and use these to guess a general formula for $f^{(n)}(x)$, the *n*-th derivative of f.
- 6. Differentiate each of the following functions:
 - (a) $f(t) = \cos(t)$
 - (b) $g(u) = \frac{1}{\cos(u)}$
 - (c) $r(\theta) = \theta^3 \sin(\theta)$
 - (d) $s(t) = \tan(t) + \csc(t)$
 - (e) $h(x) = \sin(x)\csc(x)$
 - (f) $f(x) = x^2 \sin^2(x)$
 - (g) $g(x) = \sec(x) + \cot(x)$
- 7. Calculate the first five derivatives of $f(x) = \sin(x)$. Then determine $f^{(8)}$ and $f^{(37)}$
- 8. A particle's distance from the origin (in meters) along the x-axis is modeled by $p(t) = 2\sin(t) \cos(t)$, where t is measured in seconds.
 - (a) Determine the particle's speed (speed is defined as the absolute value of velocity) at π seconds.
 - (b) Is the particle moving towards or away from the origin at π seconds? Explain.
 - (c) Now, find the velocity of the particle at time $t = \frac{3\pi}{2}$. Is the particle moving toward the origin or away from the origin?
 - (d) Is the particle speeding up at $\frac{\pi}{2}$ seconds?
- 9. Find an equation of the tangent line at the point specified:

(a)
$$y = x^3 + \cos(x)$$
,

$$x =$$

(b)
$$y = \csc(x) - \cot(x)$$
,

$$x = \frac{\pi}{4}$$

(c)
$$y = e^{\theta} \sec(\theta)$$
,

$$\theta = \frac{\pi}{4}$$