ANALYSE 1

Semestre1

Unité d'enseignement: Fondamentale

Crédits: 6

Coefficient: 4

Programme:

Chapitre 1: Le Corps des Réels

Chapitre 2: Le Corps des Nombres Complexes

Chapitre 3: Suites de Nombres réels

Chapitre 4: Fonctions réelles d'une variable réelle

Chapitre 5: Fonctions dérivables

Chapitre 6: Fonctions élémentaires

Chapitre 1

Le Corps des réels

1 Introduction

La théorie des ensembles permet de construire l'ensemble des entiers naturels $\mathbb{N}=\{0,1,2,....\}$ muni d'une loi opération + (addition) associative, commutative et possédant un élément neutre 0. Toutefois il ne s'agit pas d'une loi de groupe: étant donné deux entiers naturels a et b, il n'existe pas toujours un élément x de \mathbb{N} tel que a+x=b, Pour celà, on a construit l'ensemble des entiers relatifs muni de l'addition est un groupe commutatif.

En construisant \mathbb{Z} , on a défini une autre opération, c'est la multiplication, dans ce cas il est apparu in problème pour résoudre l'équation: $a.x = b, a \neq 0, a, b \in \mathbb{Z}$ qui admet des solutions seulement si a divise b, pour celà, on a construit l'ensemble des nombres rationnels $\mathbb{Q} = \left\{\frac{a}{b}/a \in \mathbb{Z}, b \in \mathbb{Z}^*\right\}$. Dans cet ensemble, est apparu un problème, par exemple considérons un triangle ABC rectangle en A. Le théorème de Pytagore dit qu'on a la relation $a^2 = b^2 + c^2$, et si b = c = 1, on obtient $a^2 = 2$ alors $a = \sqrt{2}$ mais $\sqrt{2} \notin \mathbb{Q}(\sqrt{2}$ n'est pas un rationnel). Dans ce cas, on est amené à construire un ensemble plus vaste, l'ensemble des nombres réels \mathbb{R} .

On a les inclusions $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

2 Définition axiomatique des nombres réels

Le corps des nombres réels est un ensemble $\mathbb R$ dans lequel sont définies deux lois $\begin{array}{ccc} +:& \mathbb R \times \mathbb R & \to & \mathbb R \\ & (x,y) & \mapsto & x+y \end{array}$ l'addition,

.: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ multiplication, et une relation d'ordre notée (\leq) , satisfaisant les axiomes suivantes:

A) \mathbb{R} est un corps commutatif:

 $(A_1): x + y = y + x$ (commutativité de l'addition).

 $(A_2): (x+y)+z=x+(y+z)$ (l'associativité de l'addition).

 (A_3) : Il existe un élément neutre $0 \in \mathbb{R}/\forall x \in \mathbb{R}, x + 0 = x$.

 (A_4) : Pour tout $x \in \mathbb{R}$, il existe un élément symetrique $(-x) \in \mathbb{R}/x + (-x) = 0$.

 $(A_5): x.y = y.x$ (commutativité de la multiplication).

 $(A_6):(x.y).z=x.\,(y.z)$ (l'associativité de la multiplication).

 (A_7) : Il existe un élément neutre $1 \in \mathbb{R}/\forall x \in \mathbb{R}, x.1 = x.$

 (A_8) : Pour tout $x \in \mathbb{R}$, il existe un élément symetrique $(-x) \in \mathbb{R}/x + (-x) = 0$.

 $(A_9): x.(y+z) = x.y + x.z$ (distributivité de la multiplication par rapport à l'addition).

B) \mathbb{R} est totalement ordonné:

 $(A_{10}): x \leq y \text{ et } y \leq z \text{ alors } x \leq z.$

$$(A_{11}): x \leq y \text{ et } y \leq x \text{ alors } x = y.$$

 (A_{12}) : Pour deux éléments quelconque $x,y\in\mathbb{R}$, on a ou bien $x\leq y$ ou $y\leq x$. Dans ce cas on dit que \mathbb{R} est totalement ordonné.

$$(A_{13}): x \leq y \text{ alors } x + z \leq y + z, \forall z \in \mathbb{R}.$$

$$(A_{14}): 0 \le x, 0 \le y \text{ alors } 0 \le x.y.$$

C) Axiome de la borne supérieure:

 (A_{15}) : Toute partie non vide et majorée de $\mathbb R$ admet une borne supérieure.

3 Valeur absolue

Définition: On définit la valeur absolue sur l'ensemble des nombres réels \mathbb{R} , par l'application de \mathbb{R} dans \mathbb{R}_+ et

on note |.| par

$$|.| \quad \mathbb{R} \quad \to \qquad \qquad \mathbb{R}_+$$

$$x \quad \mapsto \quad |x| = \left\{ \begin{array}{l} x \text{ si } x \ge 0 \\ -x \text{ si } x < 0 \end{array} \right.$$

Propriétés de la valeur absolue:

1.
$$\forall x \in \mathbb{R}, |x| \ge 0, -|x| \le x \le |x|$$
.

2.
$$|x| = 0 \Leftrightarrow x = 0$$
.

3.
$$\forall x, y \in \mathbb{R}, |x.y| = |x| . |y|.$$

4.
$$\forall x, y \in \mathbb{R}, |x+y| \leq |x| + |y|$$
 (inégalité triangulaire).

5. Soit
$$a \in \mathbb{R}_+$$
; $\forall x \in \mathbb{R}, |x| \leq a \Leftrightarrow -a \leq x \leq a$.

6.
$$||x| - |y|| \le |x - y|$$
.

7.
$$||x| - |y|| \le |x + y|$$
.

8. $\max(x, -x) = |x|$.

Preuve:

1. $\forall x \in \mathbb{R}, |x| \geq 0$ évidente par définition.

$$|x| = x \text{ si } x \ge 0, \text{ alors } -|x| = -x \le x \le x = |x|.$$

$$|x| = -x \text{ si } x < 0, \text{ alors } -|x| = x \le -x = |x|.$$

4. On a 4 cas:

1)
$$x \ge 0, y \ge 0, x + y \ge 0 \Rightarrow |x + y| = x + y = |x| + |y|$$

2)
$$x \le 0, y \le 0, x + y \le 0 \Rightarrow |x + y| = -(x + y) = (-x) + (-y) = |x| + |y|$$

3)
$$x \ge 0, y \le 0, x + y$$
 $\begin{cases} \ge 0, & \text{si } x \ge -y \\ \le 0, & \text{si } x \le -y \end{cases}$

Si
$$x \ge -y, |x+y| = x+y = |x|-|y| \le |x| \le |x|+|y|$$
.

Si
$$x \le -y, |x+y| = -(x+y) = (-x) + (-y) = -|x| + |y| \le |y| \le |x| + |y|$$
.

- 4) $x \le 0, y \ge 0$, même raisonnement que le cas 3.
- 5. $|x| \le a \Rightarrow -a \le -|x|$ d'aprés la propriété 1. $-a \le -|x| \le x \le |x| \le a$.
- 6. D'aprés 5. $|\underbrace{|x|-|y|}_{X}| \leq \underbrace{|x-y|}_{a} \Leftrightarrow -a \leq |X| \leq a \Leftrightarrow -|x-y| \leq |x|-|y| \leq |x-y|?$

On a
$$|x| = |x - y + y| = |(x - y) + y| \le |x - y| + |y| \Rightarrow |x| - |y| \le |x - y| \dots (1)$$
 d'autre part

$$|y| = |y - x + x| = |(y - x) + x| \le |y - x| + |x| \Rightarrow |x| - |y| \ge -|y - x| = -|-(x - y)| = -|x - y| \dots (2)$$

de (1) et (2) on obtient $-|x-y| \le |x|-|y| \le |x-y| \Leftrightarrow ||x|-|y|| \le |x-y|$.

8.
$$\max(x, -x) = \begin{cases} x, & \text{si } x \ge 0 \\ -x, & \text{si } x < 0 \end{cases} = |x|.$$

La fonction partie entière:

Définition: La partie entière d'un nombre réel x est le plus grand entier inférieur ou égal à x, elle est notée par [x] ou E(x).

et on a
$$[x] \leq x \leq [x] + 1, [x] \in \mathbb{Z}.$$

Exemple

$$[2.83] = 2, \left[\frac{3}{2}\right] = 1 \text{ et } \left[-\frac{3}{2}\right] = -2, [-3.5] = -4$$

$$[x] = 3 \Rightarrow x \in [3, 4[$$

Proposition: Tout nombre réel s'écrit d'une façon unique sous la forme

$$x = [x] + \alpha$$
, où $\alpha \in [0, 1[$.

Propriétés:

1.
$$\forall x, y \in \mathbb{R}, x \leq y \Rightarrow [x] \leq [y]$$
.

2.
$$\forall x \in \mathbb{R}, \forall a \in \mathbb{Z}, [x+a] = [x] + a,$$

Axiome d'Archimed

 $1^{\grave{e}re}$ formule: Soit $x\in\mathbb{R},$ alors il existe un entier naturel n tel que n>x.

 $2^{\grave{e}me}$ formule: Soit $y\in\mathbb{R}$ et x>0, alors il existe $n\in\mathbb{N}^*$ tel que nx>y.