1 Simultana fördelningar

1.1 Def

Låt X, Y vara två diskreta slumpvariabler

- $p(x,y) = P(X = x, Y = y), \forall x, y$ kallas den simultana sannolikhetsfunktionen.
- $p_X(x) = P(X = x) = \sum_{\forall y} p(x, y)$ $p_Y(y) = P(Y = y) = \sum_{\forall x} p(x, y)$ Kallas de marginella sannolikhetsfunktionerna.

1.2 Def

I en urna finns

- 3 röda
- 4 vita
- 5 blåa kulor

X: antalet röda kulor, Y: antalet vita kulor.

Ta 3 styckna kulor. Vi ska bestämma den simultana och de marginella sannolikhetsfunktionerna.

i,j	0	1	2	3	P(X=i)
0	$\frac{10}{220}$	$\frac{40}{220}$	$\frac{30}{220}$	$\frac{4}{220}$	84 220
1	30	$\frac{\overline{220}}{60}$	$ \begin{array}{r} 30 \\ \hline 220 \\ \hline 18 \\ \hline 220 \end{array} $	0	$\frac{108}{220}$
2	$ \begin{array}{c c} \frac{10}{220} \\ \frac{30}{220} \\ \frac{15}{220} \end{array} $	$\frac{220}{12}$ $\frac{12}{220}$	0	0	$\begin{array}{c} 220 \\ 108 \\ 220 \\ 27 \\ 220 \end{array}$
3	$\frac{1}{220}$	0	0	0	$\frac{1}{220}$
P(Y = j)	$\frac{\frac{1}{220}}{\frac{56}{220}}$	$\frac{112}{220}$	$\frac{48}{220}$	$\frac{4}{220}$	220

1.3 Def

Låt X, Y vara två kontinuerliga slumpvariabler.

ullet Om det finns en icke-negativ funktion f(x,y) sådan att

$$P((X,Y) \in C) = \int \int_{(x,y) \in C} f(x,y) dx dy$$

För alla möjliga delmängder $C \subseteq \mathbb{R}^2$, så kallas f den simultana täthetsfunktionen av X och Y.

• $f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy \ f_Y(y) = \int_{-\infty}^{\infty} f(x,y) dx$ kallas de marginella täthetsfunktionerna.

1.4 Anmärkningar

- I det <u>diskreta</u> fallet: $p_X(x), p_Y(y)$ sannolikhetsfunktioner av de (enskilda) slumpvariabler X respektive Y.
- I det kontinuerliga fallet: $f_X(x), f_Y(y)$ täthetsfunktioner av de enskilda s.v. X respektive Y.

Det betyder att

$$P(X \in A) = \int_{x \in A} f_X(x) dx = \int_{x \in A} \int_{-\infty}^{\infty} f(x, y) dy dx$$

1.5 Example

Låt

$$f(x,y) = \begin{cases} 2e^{-x}e^{-2y}, 0 < x < \infty, 0 < y < \infty \\ 0, annars \end{cases}$$

vara den simultana täthetsfunktionen av (X, Y). Bestäm

- P(X > 1, Y < 1)
- P(X < Y)
- P(X < a)

1.5.1 Lösning (1)

$$P(X > 1, Y < 1) = \int_{y=0}^{1} \int_{x=1}^{\infty} 2e^{-x}e^{-2y}dxdy = \int_{y=0}^{1} 2e^{-2y}dy \int_{x=1}^{\infty} e^{-x}dx = \dots = (1 - e^{-2})e^{-1} = e^{-1} - e^{-3}$$

1.5.2 Lösning (2)

$$P(X < Y) = \int \int_{(x,y):x < y} 2e^{-x}e^{-2y} dx dy = \int_{y=0}^{\infty} \int_{x=0}^{y} 2e^{-x}e^{-2y} dx dy = \int_{y=0}^{\infty} 2e^{-2y} dy \int_{x=0}^{y} e^{-x} dx = \int_{0}^{\infty} 2e^{-2y} \left(1 - e^{-y}\right) dy = \dots = \frac{1}{3}$$

1.5.3 Lösning (3)

Beräkna först marginella täthetsfunktionen för X.

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{-\infty}^{\infty} 2e^{-2y} e^{-x} dy = e^{-x}, x \le 0, X \sim Exp(1)$$
$$f_X(x) = 0, x < 0$$
$$P(X < a) = F_X(a) = 1 - e^{-a}$$

2 Oberoende slumpvariabler

2.1 Motivation

Oberoende händelser E,F

$$P(E \cap F) = P(E)P(F)$$

2.2 Definition

Låt X, Y vara två slumpvariabler. X och Y kallas oberoende om

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B), \forall A, b \subseteq \mathbb{R}$$

2.3 Sats

• <u>diskret fall</u> Två diskreta s.v. X och Y är oberoende om och endast om

$$p(x,y) = p_X(x)p_Y(y), \forall x, y$$

• kontinuerligt fall Två s.v. X och Y är oberoende om och endast om

$$f(x,y) = f_X(x)f_Y(y), \forall x, y \in \mathbb{R}$$

2.4 Anmärkning

Diskreta fallet kan skrivas så här

$$P(X = x, Y = y) = P(X = x)P(Y = y), \forall x, y$$

2.5 Example

I en urna finns

- 3 röda
- 4 vita
- 5 blåa kulor

Ta ur 3. X: # röda kulor. Y: # vita kulor. Är X och Y oberoende?

i, j	0	1	2	3	$P_X(i)$
0	$\frac{10}{220}$	$\frac{40}{220}$	$\frac{30}{220}$	$\frac{4}{220}$	$\frac{84}{220}$
1	$\frac{30}{220}$	$\frac{60}{220}$	$\frac{\overline{220}}{\overline{220}}$	0	$\frac{108}{220}$
2	$\frac{15}{220}$	$\frac{12}{220}$	0	0	$\frac{27}{220}$
3	$\frac{1}{220}$	0	0	0	$\frac{1}{220}$
$p_Y(j)$	$\frac{56}{220}$	$\frac{112}{220}$	$\frac{48}{220}$	$\frac{4}{220}$	
T . 1	1	C.	/.	\	

Inte oberoende eftersom (t.ex.)

$$p(3,3) = 0 \neq p_X(3)p_Y(3) \neq 0$$