附加作业9

Problem (2022-1). Look for a traveling wave solution of the PDE

$$u_{tt} + (u^2)_{xx} = -u_{xxxx}$$

of the form u(x,t) = v(x-ct). In particular, you should find an ODE for v. Under the assumption that v goes to a constant as $|x| \to \infty$, describe the form of the solution.

Problem (2022-2). Let $\Omega \in \mathbb{R}^n$. Let u(x,t) be a smooth solution of the following initial boundary value problem:

$$u_{tt} - \triangle u + u^3 = 0$$
 for $(x, t) \in \Omega \times [0, T]$
 $u(x, t) = 0$ for $(x, t) \in \partial\Omega \times [0, T]$.

- a) Derive an energy equality for u. (Hint: Multiply by u_t and integrate over $\Omega \times [0,T]$.)
- **b)** Show that if $u|_{t=0} = u_t|_{t=0} = 0$ for $x \in \Omega$, then $u \equiv 0$.