

Combinational circuits

Ms. Prathibha Prakash Department of Computer Science Amrita Vishwa Vidyapeetham

Objective

Introduction

- Logic circuits for digital systems can be combinational or sequential.
- Combinational circuits consist of input variables, logic gates and output variables.
- Outputs are determined from the <u>present input states</u> not on previous states.

n inputs -2^n input combinations

For each input combination, only one possible output.

Block diagram of combinational circuit

Combinational Circuit Design

- The problem is stated
- The input and output variables are assigned letter symbols
- Truth table is derived
- The simplified Boolean function for each output are obtained
- The logic diagram is drawn.

Combinational Circuits

- Adders
- Subtractors
- Comparators
- Decoders
- Encoders
- Multiplexers
- Demultiplexers

Arithmetic and logic functions

Data Transmission

Adder

- Basic arithmetic operation in digital computer is binary addition.
- The combinational circuit which performs the addition of binary digits are called adder.
- **Half-adder**: Circuit performing the addition of 2 bits. $\frac{1}{10}$
- Full-adder: Circuit performing the addition of 3 bits. $_$ $_$ $_$
- Binary addition rules: 0+0=0; 0+1=1; 1+0=1; 1+1=0 with carry 1

Half Adder

 2 binary inputs augend and addend bits with 2 binary output called sum and carry.

inputs		outputs			
A	В	sum	carry		
0	0	0	0		
0	1	1	0		
1	0	1	0		
1	1	0	1		
Truth table					

K-map simplification

Full Adder

Arithmetic sum of 3 input bits where third bit is previous carry bit.

	inputs	out	outs	
A	В	Cin	sum	carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adder

- A full adder can be implemented with <u>2 half adders</u> and <u>1 OR gate</u>
- sum = A'B'C+A'BC'+AB'C'+ABC = $C \oplus (A \oplus B)$
- **carry** = AB+BC+AC = AB+C(A⊕B)

Logic circuit of full adder

Summary

Discussed basic arithmetic combinational circuits called adders

Subtractors & Comparator

Ms. Prathibha Prakash Department of Computer Science Amrita Vishwa Vidyapeetham

Objective

- > Combinational circuits
- Subtractors
- Comparators

Subtractors

- Logic circuit to subtract binary numbers.
- Difference and borrow are the outputs.
- Half subtractors : circuit for subtracting 2 bits.
- **Full subtractors**: circuit for subtracting 3 bits.
- Binary subtractor rules: 0-0=0; 0-1=1 with borrow 1; 1-0=1; 1-1=0

Half subtractors

1/0 1/0

• 2 binary input bits with 2 binary output called difference and borrow.

inp	inputs		outs
Α	В	diff	borrow
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Truth table

Logic diagram

K-map simplification

Full subtractors

 3 inputs minuend, subtrahend, previous borrow with 2 outputs difference and borrow.

i	inputs			outputs		
x	у	z	diff	borrow		
0	0	0	0	0		
0	0	1	1	1		
0	1	0	1	1		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	0		
1	1	0	0	0		
1	1	1	1	1		

$$Borrow = x'z + yz + x'y$$

Magnitude Comparator

A combinational circuit that compares two numbers A & B to determine whether: A > B or A = B or A < B

1-bit Comparator

To compare two single bit number

A	В	A>B	A=B	A <b< th=""></b<>			
0	0	0	1	0			
0	1	0 0		1			
1	0	1	0	0			
1	1	0	1	0			
		↓ A>B : AB'	. 1	↓ A <b :="" a′b<="" th="">			
		A=B: A'B' + AB					

Summary

Explained combinational circuits called subtractors and comparators

Department of Computer Science Amrita Vishwa Vidyapeetham

Objective

Combinational circuits: Parallel adders and subtractors

Binary Parallel Adder

- Digital circuit which perform the arithmetic addition of 2 binary numbers in parallel by <u>cascading full adders</u>.
- To add two n-bit binary numbers we need n-bit binary adder.

Connect the carry output of each full adder to the carry input of the

4-bit binary adder example

Addition of decimal numbers 11 and 3

Binary Parallel Subtractor

- Digital circuit which perform the arithmetic subtraction of 2 binary numbers in parallel by <u>cascading full subtractors</u>.
- Binary adder can also be used to perform binary subtraction.

Summary

Explained how to perform n-bit binary numbers arithmetic operations using Parallel adders and subtractors

Data Transmission circuits

Ms. Prathibha Prakash Department of Computer Science Amrita Vishwa Vidyapeetham

Objective

- > Data transmission circuits
- Decoders
- Encoders
- Multiplexers
- Demultiplexers

Decoders

 n-bit binary number can represent <u>maximum 2ⁿ distinct elements</u> of coded information.

e.g., 3-bit: 8 elements (000 - 111)

- **Decoder** is a combinational circuit with <u>n input lines</u> and maximum of 2^n output lines.
- One of the output will be high based on the combination of input lines.
- Translate coded information from one format to another

Decoders

• Decoder represented as $\mathbf{n} \times 2^n$ provides the 2^n minterms of n input variables.

Enable	inputs			ou	tputs	
E	Α	В	Do	D ₁	D ₂	Dз
0	х	×	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

Out of 4 outputs, only one input combination is high when enabled

Encoders

- Encoders are combinational circuit that performs the reverse operation of decoders.
- It has 2^n input lines and n output lines.

inputs				outp	uts
Dз	D ₂	D ₁	Do	A 1	Ao
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

$$A0 = D3 + D1$$

$$A1 = D2 + D3$$

Priority Encoder

• An encoder circuit with <u>priority function</u>.

If two or more inputs are equal to 1 at the same time, the input with

highest priority will be considered.

After K-map simplification

$$A_1 = D_2 + D_3$$

$$A_0 = D_3 + D_1 D_2'$$

$$V = D_0 + D_1 + D_2 + D_3$$

inputs			ou	tputs		
Dз	D ₂	D ₁	Do	A 1	Ao	V
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	х	0	1	1
0	1	×	х	1	0	1
1	×	x	х	1	1	1

Multiplexers

- Combinational circuit with 2^n input lines, n selection lines whose bit combination determine input to be selected and a single output line.
- Also called <u>data selector</u>, since it selects one of many inputs and outputs.

S ₁	So	Y
0	0	lo
0	1	l1
1	0	l 2
1	1	lз

De-multiplexers

- Combinational circuit that performs the reverse operation of multiplexer.
- It has one input line , n select lines to choose one output out of 2^n possible output lines.

S ₁	So	Yз	Y ₂	Y ₁	Yo
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Summary

Discussed data transmission combinational circuits

