T.E. (Information Technology) Semester-VI (Revised Course 2016-17) EXAMINATION AUGUST 2021 Theory of Computation

[Duration: Two Hours] [Total Marks:60]

Instructions:

- 1. Answer THREE FULL QUESTIONS with ONE QUESTION FROM EACH PART.
- 2. Make necessary assumptions if required.

PART A

- Q.1 a) Construct a state diagram of DFA recognizing the language where $\Sigma = \{a, b\}$ [5]
 - i) L= $\{ w/length \ of \ w \ is \ at \ least \ 4 \ and \ the \ second \ last \ letter \ is \ b \ \}$
 - ii) $L = \{w \mid w \text{ contains odd number of } b's \text{ and three } a's\}$
 - b) Let M1 and M2 given below the finite automata's recognizing languages L1 and L2 [5] respectively

Draw Finite Automata's accepting the following languages:

[5]

c) Prove the following grammar is ambiguous

S→aSb/bSb/€

Obtain the unambiguous grammar from the same

d) Convert the following grammar to Chomsky Normal Form

[5]

[2]

 $S\rightarrow PQP$

P→aP/€

Q→bQ /b

- Q.2 a) Consider the following regular Expression R: (010+11) + (10)*1
 - i) Construct a E-NFA corresponding to R
 - ii) Construct a DFA from E-NFA [4]
 - iii) Obtain a Minimized DFA [2]
 - b) Convert the following grammar to greibache Normal form [6]

 $S \rightarrow XYb/a$

$$X \rightarrow aa X / Y$$

 $Y \rightarrow bXb$

c) Obtain a CFG corresponding to the following PDA

[6]

$$\delta~(q_o,0,z_o)=(q_o,~XZ_o)$$

$$\delta (q_o, 0, X) = (q_o, XX)$$

$$\delta (q_0, 1, X) = (q_1, \mathcal{E})$$

$$\delta (q_1, 1, X) = (q_1, \mathcal{E})$$

$$\delta (q_1, \mathcal{E}, X) = (q_1, \mathcal{E})$$

$$\delta (q_1, \mathcal{E}, Z_o) = (q_1, \mathcal{E})$$

Q.3 a) Construct a top down PDA for the following grammar $P \rightarrow 0 / 0P / 1PP / PP1 / P1P$

[6]

[6]

b) Convert the following NFA to DFA using subset construction method where NFA N = $(\{Q0, Q1, Q2\}, \{0,1\}, \{Q0\}, \{Q3\})$ and transition table is as follows

Current state	Input	Next State
Q0		900 Q0
Q0		V 7 2 0 Q1 0 0 V 2
Q1		Q2 Q2
Q2		\mathbb{Q}_{3}

Using Pumping Lemma Theorem prove that the language $L=\{a^nb^nc^n\}$ is not a context free.

[6]

d) What is a Unit production? How they eliminated?

[2]

PART B

- Q.4 a) Construct a Turing Machine that accept the following language $L = \{x \in \{a, b\}^* \mid x = [6]\}$ contains a substring abaa}
 - b) Construct a Turing machine that reverses the input string. Consider the reverse function as [8] Rev: $\{a, b\}^* \to \{a, b^*\}$
 - c) Write a short note on the following
 - Linearly bounded automata **i**)

[6]

- ii) Rice Theorem
- Q.5 a) Construct a Turing machine that compute n mod 2; n>=1& replace the input string by the [6] output of the operation on the tape

b) Write a short note the following

[8]

- Rice theorem i)
- ii) Unrestricted grammar
- Context sensitive grammar
- c) Explain a halting problem in Turing machine

[6]

Q.6	a) Design a Turing machine to delete a symbol by changing the tape contents from zay to zy where $y \in (\sum \bigcup \{\Delta\})^*$, $a \in \sum \bigcup \{\Delta\}$, and $z \in \sum^*$. assume that $\sum = \{a, b\}$	
	b) Design a Turing machine that computes that following function $F(X) = 3X$	[4]
	c) Obtain the unrestricted grammar to generate the following language L= $\{a^n b^n c^n \mid n \ge 1\}$ PART C	[8]
Q.7	a) Construct a moore machine that counts the occurrences of the substring apapa where	[8]
	$\Sigma = \{p, q\}$ and $\Delta = \{0,1\}$. Convert the machine to a mealy machine	0,4
	b) Convert the following grammar into greibiche Normal form S→ AB	[6]
	$A \rightarrow BS \mid a$ $B \rightarrow SA \mid b$	550
	c) Construct a Turing machine that recognizes the L={ $a^nb^nc^n \mid n \ge 1$ }. Describe the behavior of the machine for the string "aabbcc"	[6]
Q.8	a) Draw an ε – NFA recognizing the following regular expression (a+b) $(ba)^*(aba)^*$	[4]
	 b) Construct a PDA corresponding to the given CFG P→ PP [P] (P) ^ 	[8]
	Describe the behavior of the PDA for the following input string ([]) []	
	c) Explain with the help of an example how you can combine two Turing machines.	[8]