Created Snags and Snag Management on Industrial Forests

A.J. Kroll
Weyerhaeuser, Federal Way, WA
Matt Hane
Weyerhaeuser, Springfield, OR
Josh Johnson
Mike Rochelle
Weyerhaeuser, Albany, OR

Snags Then and Now

Snag Management

- Deficiencies in snag numbers and types
 - Management required to retain sufficient numbers in upland areas
- How many are needed?
 - Species, size, decay class
- Distributed how?
 - Uniformly? Clumps?
 - In patches of green trees?
 - Different distributions in different landscapes?
 - Landscape has changed!

Current Regulations for Oregon and Washington

- Oregon (DOF 2007) regulations stipulate leaving:
 - 2 green trees (green trees are live, merchantable trees that are retained on a per acre basis in clearcut units) or
 - 2 snags
 - > 30 feet in height and 11 inches dbh per acre
- Washington (WA DNR 2005) regulations stipulate leaving:
 - 2 green trees (> 30 feet in height and 10 inches dbh) per acre and
 - 3 wildlife trees (defective trees > 10 feet in height and 12 inches dbh) per acre
 - Potential exists to retain 2 green trees per acre
- "Type 3 and Type 4 Wildlife Reserve Trees (WRTs) present significant safety considerations.
 - It is best to leave these trees in Riparian Management Zones (RMZs) and Wetland Management Zones (WMZs) where minimum activity will take place near them."

Quantifying Safe Retention of Snags

Assuming an average volume of 24 mbf/acre of Douglas fir at \$400/mbfBuffer area = 1.5 times the snag height or 2 times the snag height

Snag Retention and Development

Ecological responses depend on context

Young *Harvest* Units

- Replanted at uniform densities
- Rarely contain scattered live trees of various ages or snags within the unit
- Pass through truncated successional stages
- Units are often located in proximity to a riparian buffer that was not disturbed during harvesting

Young *Natural* Stands

- Recruitment is irregular
- Extensive biological legacies may remain
- Early successional stages can last for decades
- Disturbances influence both upland and riparian areas

Options for Snag Retention and Development

Thinning stands

- Promotes growth, leading to large trees that can become large snags
- However, survivorship could be high

Green tree retention

- What proportion of green trees survive to become large trees (and snags)?
- Distribution: upland or riparian areas?

Patch retention

- Grouping leave trees from multiple units in one area
- Would encourage retention of "snag-rich" patches

Unstable slope buffers

- Occur in upland areas of the landscape
- Provide an unexplored opportunity for green tree retention and snag creation

Creating Snags

- Various methods
 - Safety concerns and costs
 - Operational efficiency
- Ecological effectiveness
 - Foraging
 - Nesting use
 - Demographic responses
- Longevity of snags
 - Decay rates

The Cottage Grove Created Snag Project Objectives

- Determine rate of avian nest survival in snags created from merchantable 2nd growth Douglas fir
 - Probability that a nest
 produces fledglings (≥ 1)
- 2008-2010
 - 9-11 years after snags were created

Experimental Design

- Random selection of 31 harvest units, 1997-1999
 - Naturally regenerated 2nd growth Douglas fir stands
 - All units were harvested with ground-based systems
 - Harvester cut off tree at the highest point it could reach

Treatments

- Density: 0.2, 0.5, and 1.0 trees/acre
- Clustered (5-6 trees) vs. uniformly distributed
- Each treatment is a density*distribution combination:
 6 different treatments

Results
Nest totals 2008-2010

Species	Total	Successful	Failed	Total	Successful	Failed	Total	Successful	Failed
Red-breasted sapsucker	2	1	1	1	1	0	0	0	0
Northern saw-whet owl	1	0	1	0	0	0	1	0	1
Northern flicker	21	12	9	21	15	6	21	13	6
Purple martin	6	6	0	9	4	5	5	3	5
Violet-green swallow	2	2	0	0	0	0	0	0	0
Hairy woodpecker	3	2	1	2	2	0	1	1	0
House wren	36	27	9	51	41	10	21	17	4
Chestnut-backed chickadee	68	52	16	117	78	39	110	59	51
Western bluebird	3	1	2	1	1	0	0	0	0
Red-breasted nuthatch	0	0	0	0	0	0	2	0	2
TOTALS	142	103	39	202	142	60	161	93	69

Results

- Snag adequacy
 - 10 different species used snags for nesting
 - Only 3 species were common nesters
 - Pileated woodpecker, brown creeper, and red-breasted nuthatch foraged on snags
- For 3 main species:
 - Nest survival was consistent with results from other studies
 - No treatment effect for HOWR and NOFL
 - An effect of snag density for CBCH
- Nesting use must be monitored over longer time periods to assess effectiveness
 - Walter and Maguire 2005
 - Arnett et al. 2010 (no use in 1st 5 years)
 - Return to Cottage Grove in 2018?

Management Implications

A partial solution

- Leaving created snags at a density of 0.5/acre retains some cavitynesting bird species
 - Up to years 12-15...
- Benefits restricted by rotation age
 - Snags must be created from trees growing in unit
 - Suitability is also dependent on stand conditions (e.g., site index) and landscape context
- Different strategies are required to provide tall snags
 - Other taxa besides birds?

Creating Snags in the eastern Cascades, WA

Acknowledgments

- Ed Arnett
- Weyerhaeuser
 - South Valley Operations for creating units and snags
 - Supporting research
- Oregon Forest Industries Council (OFIC)

• Field crews, 2008-2010

