

COMPOSITE FUNCTIONS:

Definition 0.0.1

Given two functions f and g the composite function, denoted by $f \circ g$ (read as "f composed with g"), is defined by $f \circ g = f(g(x))$

Note:-

The Domain of $f \circ g$ is the set of all numbers x in the domain of g such that g(x) is in the domain of f.

Example 1 - Find: a. $f \circ g(4)$ b. $g \circ f(2)$ c. $f \circ f(1)$ d. $g \circ g(0)$

1)
$$f(x) = \sqrt{x+1}$$
 and $g(x) = 3x$

solution:

a)
$$f(g(4)) = \sqrt{13}$$

b)
$$g(f(2)) = 3\sqrt{3}$$

c)
$$f(f(1)) = \sqrt{\sqrt{2} + 1}$$

d)
$$g(g(0)) = 0$$

2)
$$f(x) = |x - 2|$$
 and $g(x) = \frac{3}{x^2 + 4}$

Solution:

a)
$$f(g(4)) = \frac{37}{20}$$

b)
$$g(f(2)) = \frac{3}{4}$$

c)
$$f(f(1)) = 1$$

d)
$$g(g(0)) = \frac{48}{73}$$

Example 2: Find the domain of the composite function $f \circ g$

Note:-

when finding the domain of f(g(x)), you include the restrictions for g(x) and any new restrictions in $f \circ g$

Question 1

$$f(x) = \frac{x}{x+3}$$
$$g(x) = \frac{2}{x}$$

Solution $(f \circ g)$:

⊜

domain of g(x): $x \neq 0$

$$f \circ g: \frac{\frac{2}{x}}{\frac{2}{x}+3} \to \frac{2}{2+3x}$$

domain of f(g(x)): $x \neq -\frac{2}{3}$

so, domain: $\{x \neq 0, x \neq -\frac{2}{3}\}$

Question 2

$$f(x) = x^2 + 4$$

$$g(x) = \sqrt{x-2}$$

solution $(f \circ g)$:

☺

Domain of g(x): $x|x \ge 2$

$$f(\sqrt{x-2}) = (\sqrt{x-2})^2 + 4$$

 $x-2+4 \rightarrow x+2$ (we can ignore this)

so, Domain: $\{x|x \geq 2\}$

Example 3. Find: i. $f \circ g$ ii. $g \circ f$ iii. $f \circ f$ iv. $g \circ g$

For the given functions f and g. State the domain of each composite function.

Question 3

$$f(x) = x^2 + 1$$

$$g(x) = 2x^2 + 3$$

Solution i. $(f \circ g)$:

⊜

Domain of $g(x) \to D : \mathbb{R}$

$$f(2x^2+3) = (2x^3+3)^2+1$$

 $\rightarrow 4x^4 + 12x^2 + 10$ (No restrictions in domain)

So, $D: \mathbb{R}$

Solution ii. $(g \circ f)$:

⊜

Domain of $f(x) \to D : \mathbb{R}$

$$g(x^2 + 1) = 2(x^2 + 1)^2 + 3$$

$$= 2(x^4 + 2x^2 + 1) + 3$$

 $=2x^4+4x^2+5$ (No restrictions in domain)

So, $D: \mathbb{R}$

Solution iii. $(f \circ f)$:

⊜

Domain of $f(x) \to D : \mathbb{R}$

$$f(x^2 + 1) = (x^2 + 1)^2 + 1$$

 $= x^4 + 2x^2 + 1$ (No restrictions in Domain)

So, $D: \mathbb{R}$

Solution iv. $(g \circ g)$:

⊜

Domain of $g(x) \to D : \mathbb{R}$

$$g(2x^2+3) = 2(2x^2+3)^2+3$$

 $=8x^4+24x^2+21$ (no domain restrictions)

So, $D: \mathbb{R}$

Question 4

$$f(x) = \sqrt{x-2}$$

$$g(x) = 1 - 2x$$

Solution i. $(f \circ g)$:

 \odot

Domain of $g(x) \to D : \mathbb{R}$

$$f(1-2x) = \sqrt{1-2x-2} \to \sqrt{-2x-1}$$

$$\sqrt{-2x-1} \ge 0$$

$$-2x - 1 \ge 0 \rightarrow -2x \ge 1$$

$$x \leq -\frac{1}{2}$$

So,
$$D: \{x | x \le -\frac{1}{2}\}$$

Solution ii. $(g \circ f)$:

Domain of $f(x) \to D : \{x | x \ge 2\}$

$$g(\sqrt{x-2}) = 1 - 2\sqrt{x-2}$$

So,
$$D: \{x | x \ge 2\}$$