

TRABAJO PRÁCTICO NRO1

Aprendizaje automático 2

FECHA DE ENTREGA: 26 DE SEPTIEMBRE DE 2024

PROFESOR: ING. JORGE CEFERINO VALDEZ
Autor: Fernanda Cader

Aplicaciones de las Redes Neuronales en el Mundo Real

- 1. **Reconocimiento de Imágenes**: Utilizadas en aplicaciones de visión por computadora, como la identificación de objetos en imágenes (por ejemplo, reconocimiento facial).
- 2. Procesamiento del Lenguaje Natural (NLP): Empleadas en traducción automática, chatbots y análisis de sentimientos.
- 3. **Diagnóstico Médico**: Ayudan en la detección de enfermedades a partir de imágenes médicas o datos de pacientes.
- 4. **Finanzas**: Utilizadas para detectar fraudes en transacciones, análisis de riesgos y predicción de precios en mercados.
- 5. **Automóviles Autónomos**: Integradas en sistemas de percepción y toma de decisiones para vehículos sin conductor.
- 6. **Recomendaciones Personalizadas**: Usadas en plataformas de streaming y comercio electrónico para sugerir productos o contenidos a los usuarios.

Funciones de Activación

1. ReLU (Rectified Linear Unit):

Esta función es muy popular en capas ocultas de redes neuronales porque permite que la red aprenda de manera eficiente y evita problemas de desvanecimiento del gradiente.

Uso: Principalmente en redes profundas para clasificación y regresión, pero no se utiliza en la capa de salida para problemas de clasificación multiclase.

2. tanh (tangente hiperbólica):

Uso: A menudo se utiliza en capas ocultas. Aunque es mejor que la sigmoide en cuanto a la normalización de los datos, todavía puede sufrir el problema de desvanecimiento del gradiente.

3. Sigmoide (Logistic):

Su rango es de 0 a 1.

Uso: Comúnmente se utiliza en la capa de salida para problemas de clasificación binaria.

Para Clasificación Multiclase

• **Softmax** es la función de activación más adecuada para la capa de salida en problemas de clasificación multiclase, ya que normaliza las salidas en un rango de probabilidades que suman 1.

Resumen

• **ReLU** y **tanh** son funciones útiles para capas ocultas, mientras que **sigmoide** es apropiada para clasificación binaria. Para clasificación multiclase, se utiliza **softmax** en la capa de salida. La elección de la función de activación depende del tipo de problema y de la arquitectura de la red neuronal.

Informe sobre el Rendimiento de Modelos MLPClassifier

Modificaciones Realizadas

Se realizaron cambios en la configuración del modelo MLPClassifier de la siguiente manera:

1. Estructura de Capas Ocultas:

- o **Modelo Original**: hidden_layer_sizes=(150, 100, 50) con función de activación logistic.
- o **Modelo Modificado**: hidden_layer_sizes=(50, 30, 10) con función de activación relu.

2. Número de Iteraciones:

 El número máximo de iteraciones se redujo de 300 a 100 en el modelo modificado.

Resultados y Métricas de Evaluación

Métrica	Modelo Original	Modelo Modificado
Exactitud	0.9016	0.8525
Precisión	0.9016	0.8525
F1 Score	0.9016	0.8525
Recall	0.9016	0.8525

Análisis de Resultados

Modelo Original:

 Mostró un rendimiento alto con métricas consistentes (exactitud, precisión, F1 score y recall) alrededor del 90.16%. Esto sugiere que el modelo es efectivo para clasificar correctamente los casos de enfermedad cardíaca.

• Modelo Modificado:

 Se observó una disminución notable en todas las métricas, con resultados alrededor del 85.25%. Esto indica que el modelo tiene un menor rendimiento en la clasificación y puede estar clasificando incorrectamente más casos de enfermedad cardíaca.

Conclusiones sobre el Impacto de los Cambios

1. Impacto de la Estructura de Capas:

o Reducir el tamaño de las capas ocultas (de 150, 100, 50 a 50, 30, 10) probablemente limitó la capacidad del modelo para aprender patrones complejos en los datos, resultando en un rendimiento inferior.

2. Función de Activación:

Cambiar de la función de activación logistic a relu podría haber contribuido a un mejor aprendizaje en el modelo original, dado que relu permite una convergencia más rápida en redes profundas. Sin embargo, el cambio de arquitectura podría haber contrarrestado esta ventaja.

3. Número de Iteraciones:

 La reducción de iteraciones de 300 a 100 limitó el tiempo de entrenamiento del modelo modificado, lo que puede haber impedido que el modelo alcanzara un mejor ajuste a los datos.

En resumen, los cambios realizados llevaron a un deterioro significativo en el rendimiento del modelo. Para futuras optimizaciones, sería recomendable ajustar los hiperparámetros, explorar diferentes configuraciones de capas y aumentar el número de iteraciones, manteniendo una función de activación adecuada que maximice el aprendizaje.