# 目 录

| 一 实验要求                         | 2  |
|--------------------------------|----|
| 参考内容                           | 3  |
| 数码管显示控制电路                      | 3  |
| 彩灯控制器电路设计                      | 5  |
| 利用 QuartusII 内建宏实现 1Hz 频率的时钟信号 | 11 |
| DEO 外接引脚说明                     | 20 |

## 一 实验要求

要求 1:参照参考内容,用 Quartus II 软件内嵌宏函数 lpm\_counter 实现 50M 分频,输出频率为 1Hz 秒脉冲信号,用实验板上绿色 LED 灯观察。

要求 2: 参照参考内容中数码管显示控制电路设计方法,用 7490 二进制计数器、7447 七段译码器和若干门电路,用原理图输入方法实现在一个 7 段数码管上显示序列:

1) 当输入开关状态为逻辑 0 时,数码管依次显示序列本组一**位**组员学号的后四位; 2) 当输入开关状态为逻辑 1 时,数码管依次显示序列本组**另一位**组员学号的后四位; (**如果 1 人一组**: 1.输入开关状态为逻辑 0 时显示自己学号后四位,输入开关状态为逻辑 1 时显示自己学号后四位的逆序)

要求 3: 参照参考内容,用 74161 二进制计数器、74194 移位寄存器和若干门电路,用原理图输入方法实现彩灯控制器电路设计。

**验收要求:** 将要求 2 和要求 3 同时在实验电路上实现,验收时能够说明电路设计的原理。

注:如果有同学用的电脑软件出现 Megafunction 无法启用,可利用绑定按键开关作为时钟信号,验收时需要演示波形仿真结果。

## 参考内容

## 数码管显示控制电路

#### 一 实验要求

能自动循环显示数字 0, 1, 2, 3, 4, 1, 3, 0, 2, 4

#### 二 实验原理:

- 1. 利用 74LS90、74LS00、74LS20 实现输出序列逻辑;
- 2. 经过卡诺图化简实现码制转换实现所需序列;
- 3. 用 74LS47 驱动七段译码管, 共阳极数码管显示。

#### 三 实验设计过程:

1) 74LS90产生十进制(5421BCD)计数器和所设计的0,1,2,

| 3, 4, 1, 3, 0, 2, 4 序列。对应如下: | 3. | 4. 1. | 3. | 0. | 2. | 4 序列。 | 对应如- | 下表所示 |
|------------------------------|----|-------|----|----|----|-------|------|------|
|------------------------------|----|-------|----|----|----|-------|------|------|

| $Q_A$ | $Q_D$ | $Q_{C}$ | $Q_B$ | $F_D$ | F <sub>C</sub> | $F_B$ | $F_A$ |
|-------|-------|---------|-------|-------|----------------|-------|-------|
| 0     | 0     | 0       | 0     | 0     | 0              | 0     | 0     |
| 0     | 0     | 0       | 1     | 0     | 0              | 0     | 1     |
| 0     | 0     | 1       | 0     | 0     | 0              | 1     | 0     |
| 0     | 0     | 1       | 1     | 0     | 0              | 1     | 1     |
| 0     | 1     | 0       | 0     | 0     | 1              | 0     | 0     |
| 1     | 0     | 0       | 0     | 0     | 0              | 0     | 1     |
| 1     | 0     | 0       | 1     | 0     | 0              | 1     | 1     |
| 1     | 0     | 1       | 0     | 0     | 0              | 0     | 0     |
| 1     | 0     | 1       | 1     | 0     | 0              | 1     | 0     |
| 1     | 1     | 0       | 0     | 0     | 1              | 0     | 0     |

#### 2)卡诺图如下:

F<sub>B</sub>:

| QAQD | 0 0 | 01 | 11 | 10 |
|------|-----|----|----|----|
| QcQB |     |    |    |    |
| 00   | 0   | 0  | ×  | 0  |
| 01   | 0   | ×  | 0  | 1  |
| 11   | 1   | ×  | ×  | 1  |
| 10   | 1   | ×  | ×  | 0  |

$$F_B = \overline{Q}_A Q_C + Q_A \overline{Q}_D Q_B$$

F<sub>A</sub>:

| QaQd | 0 0 | 01 | 11 | 10 |
|------|-----|----|----|----|
| QcQB |     |    |    |    |
| 00   | 0   | 0  | ×  | 1  |
| 01   | 1   | ×  | 0  | 1  |
| 11   | 1   | ×  | ×  | 0  |
| 10   | 0   | ×  | ×  | 0  |

$$F_A = \overline{Q}_A Q_B + Q_A \overline{Q}_D \overline{Q}_C$$

由真值表直接可以看出:

$$F_C = Q_D$$
  
 $F_D = 0$ 

因此实现的逻辑表达式为:

$$F_{A} = \overline{Q}_{A}Q_{B} + Q_{A}\overline{Q}_{D}\overline{Q}_{C}$$

$$F_{B} = \overline{Q}_{A}Q_{C} + Q_{A}\overline{Q}_{D}Q_{B}$$

$$F_{C} = Q_{D}$$

$$F_{D} = 0$$

## 四 整体原理电路图



图 1 数码管显示控制电路图

## 彩灯控制器电路设计

#### 一 实验要求

设计一个能够控制八路彩灯的逻辑电路。要求彩灯组成四种种花型,花型 I——由两边向中间对称性依次亮,全亮后仍由两边向中间依次灭;花型 II——8 路灯分两半,从左自右顺次亮,再顺次灭;花型 III——8 路灯分两半,从右向左顺次亮,再从右向左顺次灭;花型 IV——由中间向两边对称性一次亮,全亮后仍由中间向两边依次灭。并且要求这四种花型循环出现。

#### 二 工作原理

总体电路分为四大模块:模块一由 Quartus 宏函数 1pm\_counter 提供时钟脉冲信号;模块二花型节拍控制电路由两片 74LS161 组成一个 32 进制计数器;模块三花型演示电路由两片 74LS194 来控制花型;模块四花型输出显示电路。总体原理框图如下:



2.1 节拍控制电路:由两片74LS161四位二进制同步计数器完成。除了有二进制加法计数功能外,还具有异步清零、同步并行置数、保持等功能,如表一所示

| CLK      | CLRN' | LDN' | ENP | ENT | 工作状态 |
|----------|-------|------|-----|-----|------|
| *        | 0     | *    | *   | *   | 置零   |
| <b>†</b> | 1     | 0    | *   | *   | 预置数  |
| *        | 1     | 1    | 0   | 1   | 保持   |

表一 74LS161 功能表

| <b>↑</b> | 1 | 1 | * | 0 | 保持 (但 C = 0) |
|----------|---|---|---|---|--------------|
| <b>↑</b> | 1 | 1 | 1 | 1 | 计数           |

当 CLRN'、LDN'、ENP、ENT 等于 1 时 74LS161 实现十六进制计数功能,记录 16 个状态。两片 74LS161 级联实现从 000000 到 011111 计数功能,再利用 74LS161(1)的 Q3 对 74LS194(2)的控制端 S1, S0 进行控制,以及 74LS161(2)的 Q0 对 74LS194(1)的控制端 S1, S0 进行控制。



图 2 74LS161 引脚图

#### 2.2 花型演示电路:

74LS194 是一个 4 位双向移位寄存器, 它具有左移, 右移, 保持, 清零等如表二所示

| RD' | S1 | S0 | 工作状态 |
|-----|----|----|------|
| 0   | *  | *  | 置零   |
| 1   | 0  | 0  | 保持   |
| 1   | 0  | 1  | 右移   |
| 1   | 1  | 0  | 左移   |
| 1   | 1  | 1  | 并行输入 |

表二 74LS194 功能表

在彩灯控制电路设计中只用了 74LS194 左移右移功能,来实现彩灯的花型,双向移位寄存器 74LS194 的控制端 S1=0, S0=1 时,进行右移, S1=1, S0=0 时,进行



图 3 74LS194 引脚图

#### 三 设计步骤及方法

#### 3.18位彩灯分为两部分

8位彩灯分为4个一组,用两个74LS194来实现,花型I——由两边向中间对称性依次亮,全亮后仍由两边向中间依次灭;花型II——8路灯分两半,从左自右顺次亮,再顺次灭;花型III——8路灯分两半,从右向左顺次亮,再从右向左顺次灭;花型IV——由中间向两边对称性依次亮,全亮后仍由中间向两边依次灭,所以通过对花型的分析可知,其中双向移位寄存器74LS194(1)的功能是前16节拍右移,后16节拍左移即先是S1=0,S0=1,后变成S1=1,S0=0.而74LS194(2)则前16节拍为先左移后右移后16节拍也是先左移后右移。根据分析,画出图表,如表三、表四所示。

#### 3.2 低四位彩灯控制电路设计

表三 74LS194(1)控制状态表

| 两人    | 十 74LS161     | 74LS | 74LS194(1) |    | 花型          |
|-------|---------------|------|------------|----|-------------|
| 74161 | (2) 74161 (1) | QAQD | S1         | S0 |             |
| QA    | QDQCQBQA      |      |            |    |             |
| 0     | 0000          | 1000 | 0          | 1  | 从左向右亮(花型 I) |
| 0     | 0001          | 1100 | 0          | 1  | 从左向右亮(花型 I) |
| 0     | 0010          | 1110 | 0          | 1  | 从左向右亮(花型 I) |
| 0     | 0011          | 1111 | 0          | 1  | 从左向右亮(花型 [) |

|   |      |      | T |   |               |
|---|------|------|---|---|---------------|
| 0 | 0100 | 0111 | 0 | 1 | 从左向右灭(花型 [)   |
| 0 | 0101 | 0011 | 0 | 1 | 从左向右灭(花型 [)   |
| 0 | 0110 | 0001 | 0 | 1 | 从左向右灭(花型 [)   |
| 0 | 0111 | 0000 | 0 | 1 | 从左向右灭(花型 [)   |
| 0 | 1000 | 1000 | 0 | 1 | 从左向右亮(花型II)   |
| 0 | 1001 | 1100 | 0 | 1 | 从左向右亮(花型II)   |
| 0 | 1010 | 1110 | 0 | 1 | 从左向右亮(花型II)   |
| 0 | 1011 | 1111 | 0 | 1 | 从左向右亮(花型II)   |
| 0 | 1100 | 0111 | 0 | 1 | 从左向右灭(花型II)   |
| 0 | 1101 | 0011 | 0 | 1 | 从左向右灭(花型II)   |
| 0 | 1110 | 0001 | 0 | 1 | 从左向右灭(花型Ⅱ)    |
| 0 | 1111 | 0000 | 0 | 1 | 从左向右灭(花型Ⅱ)    |
| 1 | 0000 | 0001 | 1 | 0 | 从右向左亮(花型 III) |
| 1 | 0001 | 0011 | 1 | 0 | 从右向左亮(花型 III) |
| 1 | 0010 | 0111 | 1 | 0 | 从右向左亮(花型 III) |
| 1 | 0011 | 1111 | 1 | 0 | 从右向左亮(花型 III) |
| 1 | 0100 | 1110 | 1 | 0 | 从右向左灭(花型 III) |
| 1 | 0101 | 1100 | 1 | 0 | 从右向左灭(花型 III) |
| 1 | 0110 | 1000 | 1 | 0 | 从右向左灭(花型 III) |
| 1 | 0111 | 0000 | 1 | 0 | 从右向左灭(花型 III) |
| 1 | 1000 | 0001 | 1 | 0 | 从右向左亮(花型 IV)  |
| 1 | 1001 | 0011 | 1 | 0 | 从右向左亮(花型 IV)  |
| 1 | 1010 | 0111 | 1 | 0 | 从右向左亮(花型 IV)  |
| 1 | 1011 | 1111 | 1 | 0 | 从右向左亮(花型 IV)  |
| 1 | 1100 | 1110 | 1 | 0 | 从右向左灭(花型 IV)  |
| 1 | 1101 | 1100 | 1 | 0 | 从右向左灭(花型 IV)  |
| 1 | 1110 | 1000 | 1 | 0 | 从右向左灭(花型 IV)  |
| 1 | 1111 | 0000 | 1 | 0 | 从右向左灭(花型 IV)  |
|   |      |      |   |   |               |

电路图中 74LS161(2)的 QA 取反与 74LS194(1)的 SO 连在一起,74LS161(2)

的 QA 和 S1 直接连接,74LS194(1)的 QA 取反与本片的左移输入端 SL 连在一起,QD 取反与 SR 连在一起。

### 3.3 高四位彩灯控制电路设计

表四 74LS194 (2) 控制状态表

| 表四 74L5194(2) |               |            |    |    |               |  |
|---------------|---------------|------------|----|----|---------------|--|
| 两             | 5片 74LS161    | 74LS194(2) |    |    | 花型            |  |
| 74161         | (2) 74161 (1) | QAQD       | S1 | S0 |               |  |
| QA            | QDQCQBQA      |            |    |    |               |  |
| 0             | 0000          | 0001       | 1  | 0  | 从右向左亮(花型 I)   |  |
| 0             | 0001          | 0011       | 1  | 0  | 从右向左亮(花型 I)   |  |
| 0             | 0010          | 0111       | 1  | 0  | 从右向左亮(花型 I)   |  |
| 0             | 0011          | 1111       | 1  | 0  | 从右向左亮(花型 I)   |  |
| 0             | 0100          | 1110       | 1  | 0  | 从右向左灭(花型 I)   |  |
| 0             | 0101          | 1100       | 1  | 0  | 从右向左灭(花型 I)   |  |
| 0             | 0110          | 1000       | 1  | 0  | 从右向左灭(花型 I)   |  |
| 0             | 0111          | 0000       | 1  | 0  | 从右向左灭(花型 I)   |  |
| 0             | 1000          | 1000       | 0  | 1  | 从左向右亮(花型 II)  |  |
| 0             | 1001          | 1100       | 0  | 1  | 从左向右亮(花型Ⅱ)    |  |
| 0             | 1010          | 1110       | 0  | 1  | 从左向右亮(花型Ⅱ)    |  |
| 0             | 1011          | 1111       | 0  | 1  | 从左向右亮(花型 II)  |  |
| 0             | 1100          | 0111       | 0  | 1  | 从左向右灭(花型II)   |  |
| 0             | 1101          | 0011       | 0  | 1  | 从左向右灭(花型 II)  |  |
| 0             | 1110          | 0001       | 0  | 1  | 从左向右灭(花型 II)  |  |
| 0             | 1111          | 0000       | 0  | 1  | 从左向右灭(花型II)   |  |
| 1             | 0000          | 0001       | 1  | 0  | 从右向左亮(花型 III) |  |
| 1             | 0001          | 0011       | 1  | 0  | 从右向左亮(花型 III) |  |
| 1             | 0010          | 0111       | 1  | 0  | 从右向左亮(花型 III) |  |
| 1             | 0011          | 1111       | 1  | 0  | 从右向左亮(花型 III) |  |
| 1             | 0100          | 1110       | 1  | 0  | 从右向左灭(花型 III) |  |
| 1             | 0101          | 1100       | 1  | 0  | 从右向左灭(花型 III) |  |
|               |               |            |    |    |               |  |

| 1 | 0110 | 1000 | 1 0 | 从右向左灭(花型 III) |
|---|------|------|-----|---------------|
| 1 | 0111 | 0000 | 1 0 | 从右向左灭(花型 III) |
| 1 | 1000 | 1000 | 0 1 | 从左向右亮(花型 IV)  |
| 1 | 1001 | 1100 | 0 1 | 从左向右亮(花型 IV)  |
| 1 | 1010 | 1110 | 0 1 | 从左向右亮(花型 IV)  |
| 1 | 1011 | 1111 | 0 1 | 从左向右亮(花型 IV)  |
| 1 | 1100 | 0111 | 0 1 | 从左向右灭(花型 IV)  |
| 1 | 1101 | 0011 | 0 1 | 从左向右灭(花型 IV)  |
| 1 | 1110 | 0001 | 0 1 | 从左向右灭(花型 IV)  |
| 1 | 1111 | 0000 | 0 1 | 从左向右灭(花型 IV)  |

所以电路图中 74LS194(2)的 QD 取反后连在右移输入端 SR 上,74LS194(2)的 QA 取反后连在左移输入端 SL 上,74LS161(1)的 QD 取反后连在 74LS194(2)的 S1 上,74LS194(2)的 S0 直接和 74LS161(1)的 QD 连接。

## 四 整体原理电路图



图 4 彩灯控制器电路图

# 利用 Quartus II 内建宏实现 1Hz 频率的时钟信号

第一步: 新建工程,并建立原理图文件



第二步:添加元件,选择"megafunction"



选择 "arithmetic"



选择 lpm\_counter 宏后,单击 OK 按键。



单击 "Next"



第三步: 配置 lpm\_counter 宏,选择 "How wide should the 'q' output bus be?"选择 **26bits** "What should the counter direction be?"选择 "UP only"。



选择"Which type of counter do you want?"选择**"Module,with a count modulus of"**并输入"50,000,000";"Do you want any optional additional ports?"不选择任何选项。



单击 "Next"



单击 "Next"



单击 "Finish"



#### 单击 "Yes"



#### 将生成的 Imp counter 的宏放置在原理图上。



添加 Input 引脚,将 Input 端命名为 clk。在锁定引脚时将 clk 端和内部 50M 时钟(PIN\_G21 引脚)绑定。将宏 Ipm\_counter0 的输出 q[25..0]用总线连接,不用连接任何端口。



用鼠标右键单击该总线,从菜单栏中单击"Properties"选项。



输入q[25..0],单击确定按钮。





用同样的方法给下图 74161 的 CLK 端接入引线



选中该引线右键单击,在弹出的菜单栏中选中"Properties"



将该引线命名为 q[25]



此时 74161CLK 时钟端信号频率为 1Hz。



# DEO 外接引脚说明



按钮开关与 Cyclone III FPGA 的连接

按钮开关的引脚分配

| 信号名        | FPGA 引脚号 | 说明            |
|------------|----------|---------------|
| BUTTON [0] | PIN_ H2  | Pushbutton[0] |
| BUTTON [1] | PIN_ G3  | Pushbutton[1] |
| BUTTON [2] | PIN_ F1  | Pushbutton[2] |



拨动开关与 CyclonellI FPGA 的连接 拨动开关的引脚分配

| 信号名   | FPGA 引脚号. | 说明              |
|-------|-----------|-----------------|
| SW[0] | PIN_J6    | Slide Switch[0] |
| SW[1] | PIN_H5    | Slide Switch[1] |
| SW[2] | PIN_H6    | Slide Switch[2] |
| SW[3] | PIN_G4    | Slide Switch[3] |
| SW[4] | PIN_G5    | Slide Switch[4] |
| SW[5] | PIN_J7    | Slide Switch[5] |
| SW[6] | PIN_H7    | Slide Switch[6] |
| SW[7] | PIN_E3    | Slide Switch[7] |
| SW[8] | PIN_E4    | Slide Switch[8] |
| SW[9] | PIN_D2    | Slide Switch[9] |



LED 灯与 Cyclone III FPGA 的连接

| LED / | 灯的 | 引月 | 脚分 | 配 |
|-------|----|----|----|---|
|-------|----|----|----|---|

| 信号名     | FPGA引脚号 | 说明           |
|---------|---------|--------------|
| LEDG[0] | PIN_J1  | LED Green[0] |
| LEDG[1] | PIN_J2  | LED Green[1] |
| LEDG[2] | PIN_J3  | LED Green[2] |
| LEDG[3] | PIN_H1  | LED Green[3] |
| LEDG[4] | PIN_F2  | LED Green[4] |
| LEDG[5] | PIN_E1  | LED Green[5] |
| LEDG[6] | PIN_C1  | LED Green[6] |
| LEDG[7] | PIN_C2  | LED Green[7] |
| LEDG[8] | PIN_B2  | LED Green[8] |
| LEDG[9] | PIN_B1  | LED Green[9] |

#### HEX0



七段数码管与 Cyclone III FPGA 芯片的连接示意图



七段数码管每个字段的相应编号 七段数码管的引脚配置

| 信号名       | FPGA 引脚号 | 说明                            |
|-----------|----------|-------------------------------|
| HEX0_D[0] | PIN_E11  | Seven Segment Digit 0[0]      |
| HEX0_D[1] | PIN_F11  | Seven Segment Digit 0[1]      |
| HEX0_D[2] | PIN_H12  | Seven Segment Digit 0[2]      |
| HEX0_D[3] | PIN_H13  | Seven Segment Digit 0[3]      |
| HEX0_D[4] | PIN_G12  | Seven Segment Digit 0[4]      |
| HEX0_D[5] | PIN_F12  | Seven Segment Digit 0[5]      |
| HEX0_D[6] | PIN_F13  | Seven Segment Digit 0[6]      |
| HEX0_DP   | PIN_D13  | Seven Segment Decimal Point 0 |
| HEX1_D[0] | PIN_A13  | Seven Segment Digit 1[0]      |
| HEX1_D[1] | PIN_B13  | Seven Segment Digit 1[1]      |
| HEX1_D[2] | PIN_C13  | Seven Segment Digit 1[2]      |
| HEX1_D[3] | PIN_A14  | Seven Segment Digit 1[3]      |
| HEX1_D[4] | PIN_B14  | Seven Segment Digit 1[4]      |
| HEX1_D[5] | PIN_E14  | Seven Segment Digit 1[5]      |
| HEX1_D[6] | PIN_A15  | Seven Segment Digit 1[6]      |
| HEX1_DP   | PIN_B15  | Seven Segment Decimal Point 1 |
| HEX2_D[0] | PIN_D15  | Seven Segment Digit 2[0]      |
| HEX2_D[1] | PIN_A16  | Seven Segment Digit 2[1]      |
| HEX2_D[2] | PIN_B16  | Seven Segment Digit 2[2]      |
| HEX2_D[3] | PIN_E15  | Seven Segment Digit 2[3]      |
| HEX2_D[4] | PIN_A17  | Seven Segment Digit 2[4]      |
| HEX2_D[5] | PIN_B17  | Seven Segment Digit 2[5]      |
| HEX2_D[6] | PIN_F14  | Seven Segment Digit 2[6]      |
| HEX2_DP   | PIN_A18  | Seven Segment Decimal Point 2 |
| HEX3_D[0] | PIN_B18  | Seven Segment Digit 3[0]      |
| HEX3_D[1] | PIN_F15  | Seven Segment Digit 3[1]      |
| HEX3_D[2] | PIN_A19  | Seven Segment Digit 3[2]      |
| HEX3_D[3] | PIN_B19  | Seven Segment Digit 3[3]      |
| HEX3_D[4] | PIN_C19  | Seven Segment Digit 3[4]      |
| HEX3_D[5] | PIN_D19  | Seven Segment Digit 3[5]      |
| HEX3_D[6] | PIN_G15  | Seven Segment Digit 3[6]      |
| HEX3_DP   | PIN_G16  | Seven Segment Decimal Point 3 |



时钟分配电路的方块图时钟输入的引脚分配

| CLOCK_50 | PIN_G21   | 50 MHz clock input |
|----------|-----------|--------------------|
| 信号名      | FPGA 引脚号. | 说明                 |



扩展接头的 I/O 分配 扩展接头的引脚配置

| 信号名        | FPGA引脚号. | 说明                      |
|------------|----------|-------------------------|
| GPIO0_D[0] | PIN_AB16 | GPIO Connection 0 IO[0] |
| GPIO0_D[1] | PIN_AA16 | GPIO Connection 0 IO[1] |
| GPIO0_D[2] | PIN_AA15 | GPIO Connection 0 IO[2] |
| GPIO0_D[3] | PIN_AB15 | GPIO Connection 0 IO[3] |
| GPIO0_D[4] | PIN_AA14 | GPIO Connection 0 IO[4] |
| GPIO0_D[5] | PIN_AB14 | GPIO Connection 0 IO[5] |
| GPIO0_D[6] | PIN_AB13 | GPIO Connection 0 IO[6] |
| GPIO0_D[7] | PIN_AA13 | GPIO Connection 0 IO[7] |
| GPIO0_D[8] | PIN_AB10 | GPIO Connection 0 IO[8] |

|                 |          | T                         |
|-----------------|----------|---------------------------|
| GPIO0_D[9]      | PIN_AA10 | GPIO Connection 0 IO[9]   |
| GPIO0_D[10]     | PIN_AB8  | GPIO Connection 0 IO[10]  |
| GPIO0_D[11]     | PIN_AA8  | GPIO Connection 0 IO[11]  |
| GPIO0_D[12]     | PIN_AB5  | GPIO Connection 0 IO[12]  |
| GPIO0_D[13]     | PIN_AA5  | GPIO Connection 0 IO[13]  |
| GPIO0_D[14]     | PIN_AB4  | GPIO Connection 0 IO[14]  |
| GPIO0_D[15]     | PIN_AA4  | GPIO Connection 0 IO[15]  |
| GPIO0_D[16]     | PIN_V14  | GPIO Connection 0 IO[16]  |
| GPIO0_D[17]     | PIN_U14  | GPIO Connection 0 IO[17]  |
| GPIO0_D[18]     | PIN_Y13  | GPIO Connection 0 IO[18]  |
| GPIO0_D[19]     | PIN_W13  | GPIO Connection 0 IO[19]  |
| GPIO0_D[20]     | PIN_U13  | GPIO Connection 0 IO[20]  |
| GPIO0_D[21]     | PIN_V12  | GPIO Connection 0 IO[21]  |
| GPIO0_D[22]     | PIN_R10  | GPIO Connection 0 IO[22]  |
| GPIO0_D[23]     | PIN_V11  | GPIO Connection 0 IO[23]  |
| GPIO0_D[24]     | PIN_Y10  | GPIO Connection 0 IO[24]  |
| GPIO0_D[25]     | PIN_W10  | GPIO Connection 0 IO[25]  |
| GPIO0_D[26]     | PIN_T8   | GPIO Connection 0 IO[26]  |
| GPIO0_D[27]     | PIN_V8   | GPIO Connection 0 IO[27]  |
| GPIO0_D[28]     | PIN_W7   | GPIO Connection 0 IO[28]  |
| GPIO0_D[29]     | PIN_W6   | GPIO Connection 0 IO[29]  |
| GPIO0_D[30]     | PIN_V5   | GPIO Connection 0 IO[30]  |
| GPIO0_D[31]     | PIN_U7   | GPIO Connection 0 IO[31]  |
| GPIO0_CLKIN[0]  | PIN_AB12 | GPIO Connection 0 PLL In  |
| GPIO0_CLKIN[1]  | PIN_AA12 | GPIO Connection 0 PLL In  |
| GPIO0_CLKOUT[0] | PIN_AB3  | GPIO Connection 0 PLL Out |
| GPIO0_CLKOUT[1] | PIN_AA3  | GPIO Connection 0 PLL Out |
| GPIO1_D[0]      | PIN_AA20 | GPIO Connection 1 IO[0]   |
| GPIO1_D[1]      | PIN_AB20 | GPIO Connection 1 IO[1]   |
| GPIO1_D[2]      | PIN_AA19 | GPIO Connection 1 IO[2]   |
| GPIO1_D[3]      | PIN_AB19 | GPIO Connection 1 IO[3]   |
| GPIO1_D[4]      | PIN_AB18 | GPIO Connection 1 IO[4]   |
| GPIO1_D[5]      | PIN_AA18 | GPIO Connection 1 IO[5]   |
| GPIO1_D[6]      | PIN_AA17 | GPIO Connection 1 IO[6]   |
| GPIO1_D[7]      | PIN_AB17 | GPIO Connection 1 IO[7]   |
| GPIO1_D[8]      | PIN_Y17  | GPIO Connection 1 IO[8]   |
| GPIO1_D[9]      | PIN_W17  | GPIO Connection 1 IO[9]   |
| GPIO1_D[10]     | PIN_U15  | GPIO Connection 1 IO[10]  |
| GPIO1_D[11]     | PIN_T15  | GPIO Connection 1 IO[11]  |
| GPIO1_D[12]     | PIN_W15  | GPIO Connection 1 IO[12]  |
| GPIO1_D[13]     | PIN_V15  | GPIO Connection 1 IO[13]  |
| GPIO1_D[14]     | PIN_AB9  | GPIO Connection 1 IO[14]  |
| GPIO1_D[15]     | PIN_AA9  | GPIO Connection 1 IO[15]  |
|                 | 1        | <u> </u>                  |

| GPIO1_D[16]     | PIN_AA7  | GPIO Connection 1 IO[16]  |
|-----------------|----------|---------------------------|
| GPIO1_D[17]     | PIN_AB7  | GPIO Connection 1 IO[17]  |
| GPIO1_D[18]     | PIN_T14  | GPIO Connection 1 IO[18]  |
| GPIO1_D[19]     | PIN_R14  | GPIO Connection 1 IO[19]  |
| GPIO1_D[20]     | PIN_U12  | GPIO Connection 1 IO[20]  |
| GPIO1_D[21]     | PIN_T12  | GPIO Connection 1 IO[21]  |
| GPIO1_D[22]     | PIN_R11  | GPIO Connection 1 IO[22]  |
| GPIO1_D[23]     | PIN_R12  | GPIO Connection 1 IO[23]  |
| GPIO1_D[24]     | PIN_U10  | GPIO Connection 1 IO[24]  |
| GPIO1_D[25]     | PIN_T10  | GPIO Connection 1 IO[25]  |
| GPIO1_D[26]     | PIN_U9   | GPIO Connection 1 IO[26]  |
| GPIO1_D[27]     | PIN_T9   | GPIO Connection 1 IO[27]  |
| GPIO1_D[28]     | PIN_Y7   | GPIO Connection 1 IO[28]  |
| GPIO1_D[29]     | PIN_U8   | GPIO Connection 1 IO[29]  |
| GPIO1_D[30]     | PIN_V6   | GPIO Connection 1 IO[30]  |
| GPIO1_D[31]     | PIN_V7   | GPIO Connection 1 IO[31]  |
| GPIO1_CLKIN[0]  | PIN_AB11 | GPIO Connection 1 PLL In  |
| GPIO1_CLKIN[1]  | PIN_AA11 | GPIO Connection 1 PLL In  |
| GPIO1_CLKOUT[0] | PIN_R16  | GPIO Connection 1 PLL Out |
| GPIO1_CLKOUT[1] | PIN_T16  | GPIO Connection 1 PLL Out |