

Normalization

Orlando Karam okaram@spsu.edu

Anomalies

SPSU

- If we combine information from two tables in the same, we get anomalies
- Insert
- Delete
- Update

<u>Id</u>	Name	<u>email</u>
111	Orlando	ok@ok.com
111	Orlando	ok@spsu.edu
222	Lina	lc@spsu.edu

Functional Dependency

SPSU

- A->B means if two rows have same value of A they necessarily have same value of B
 - -Notice A and B are sets of attributes!
- Generalization of candidate key candidate key says no two rows can have same value
- FDs are determined by semantics, you can't say an FD exists just by looking at data
- But can say whether it is NOT true by looking at data

Quick Check

Id	Name	Gender	Age
1	Orlando	Male	35
2	John	Male	35
3	Jane	Female	31
4	Jane	Female	30

Id -> Name?

Age -> Gender?

Name-> Id?

Name, Age -> Id?

Quick Check

Id	Name	Gender	Age
1	Orlando	Male	35
2	John	Male	35
3	Jane	Female	31
4	Jane	Female	30

Id -> Name ? YES it *could* be true (no two rows with same id)

Age -> Gender? YES it *could* be true (the two rows with same age also have same gender). Do you think it would be true in the real world?

Name -> Id? NO, 3rd and 4th row, same name (jane) but different Id

Name, Age -> Id? YES, no two rows with same name and same age

First normal form

- Only atomic attributes (simple, single-valued)
- Given, since we can't represent tables with non-atomic attributes
- Every relation is in 1NF by definition

Second normal form

- 1NF and no partial (functional) dependencies
- A partial dependency is when a non-key attribute depends on a part of the primary key
- Of course, you need a composite PK

2NF Example

- Can represent FDs with arrow as above or
 - -Stuld->StuName,
 - Courseld->CourseName
 - -Stuld, Courseld -> Grade (and StuName, CourseName)
- Any partial FDs?

2NF Example (again)

- Can represent FDs with arrow as above or
 - -Stuld->StuName

PARTIAL

Courseld->CourseName

PARTIAL

- -Stuld, Courseld -> Grade (and StuName, CourseName)
- How do we convert the partial dependencies into normal ones? By breaking into more tables

2NF: Normalizing

Becomes ... (notice above arrows mean functional dependency, below they represent foreign key constraints)

SeriesId EpisodeId	SeriesTitle	EpisodeTitle	AiringDate
--------------------	-------------	--------------	------------

- FDs
 - -SeriesId -> SeriesTitle
 - –SeriesId, EpisodeId -> SeriesTitle, EpisodeTitle, AiringDate
- Any partial dependencies? How do we eliminate them?

Solution

SeriesId	Episodeld	SeriesTitle	EpisodeTitle	AiringDate
----------	-----------	-------------	--------------	------------

- FDs
 - -SeriesId -> SeriesTitle
- PARTIAL
- -SeriesId, EpisodeId -> SeriesTitle, EpisodeTitle, AiringDate
- How do we eliminate the partial FD? Make new table!

Third normal form

- 2NF and no *transitive* (functional) dependencies
- A transitive dependency is when a non-key attribute depends on another non-key attribute

3NF Example

Course	<u>SectNum</u>	Classroom	Capacity

- Classroom->Capacity
- Any partial FDs?
- Any transitive FDs?

3NF Example

Course	<u>SectNum</u>	Classroom	Capacity

- Classroom->Capacity TRANSITIVE
- Any partial FDs?
- Any transitive FDs? Yes! how do we eliminate? by breaking into its own table

3NF Normalization

You try it

<u>StudentId</u> ProgramId	StudentName	ProgramName	
----------------------------	-------------	-------------	--

- ProgramId -> ProgramName
- Any Partial FDs?
- Any Transitive FDs?

Solution

StudentId ProgramId StudentName ProgramName	StudentId	ProgramId	StudentName	ProgramName	
---	-----------	-----------	-------------	-------------	--

- ProgramId -> ProgramName TRANSITIVE
- Any Partial FDs? NO
- How to eliminate transitive FD? New table!

Further Normalization

- Boyce-Codd Normal form (BCNF)
 - -Slight difference with 3NF
 - -To be in 3NF but not in BNF, needs two composite candidate keys, with one attribute of one key depending on one attribute of the other
 - –Not very common :)
- Fourth Normal Form (4NF)
 - -To break it, need to have two independent multivalued attributes in the same table
- Usually, if you're in 3NF you're in BCNF, 4NF, ...