Triagem de drogas in silico para Leucemia Linfoide Aguda (LLA)

DataSci4Health - MO413A/MC936A

Table of contents

Resumo

Pergunta biológica

Fundamentação

Base de dados

Table of contents

Modelo lógico

Ferramentas

Metodologia

Referências

Resumo

Descrição resumida

- Células precursoras de linfócitos B e T;
- Heterogênea;
- Casos de recaída -> pior prognóstico;
 Medicina de precisão -> estratégias terapêuticas individuais.

https://together.stjude.org/

https://abrale.org.br/

Adaptada de Karrman & Johansson (2017)

Descrição resumida

Redes de interação gênica, com dados de genômica e transcriptômica, para identificar a droga com ação potencial para a rede do paciente.

Explorar tratamentos in silico direciona os esforços in vitro e in vivo -> diminui custos para o desenvolvimento de alternativas terapêuticas.

Fundamentação

Fundamentação teórica

Letai, A. (2017). Functional precision cancer medicine—moving beyond pure genomics. Nature Medicine, 23(9), 1028–1035. https://doi.org/10.1038/nm.4389

Aplicações biológicas e clínicas potenciais

Barabási, AL., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat Rev Genet 12, 56–68 (2011). https://doi.org/10.1038/nrg2918CV]

Pergunta biológica

Pergunta biológica

Esses clusters são alvos potenciais para as classes de fármacos usados em LLA que iremos triar in silico?

Base de dados

Base de dados

St. Jude Hospital Cloud:

Dados de genômica e transcriptômica. (Dados liberados mediante assinatura de acordo de cumprimento de regras éticas)

Dados Hospital Boldrini:

Painel de drogas com potencial de serem utilizadas na LLA.

Droga	Mecanismo de ação	Droga	Mecanismo de ação
Omacetaxine mepesuccinate (Synribo) Homoharringtonine	Inibidor de tradução proteica	Clofarabine	Antimetabólico
Dexametasona	Corticoide	Cladribine	Antimetabólico
Topetecan (hydrochloride)	Inibidor de microtúbulo/topoisomerase	Fludarabine phosphate	Antimetabólico
Bortezomib	Inibidor de proteassomo	Binimetinib	Inibidor de tirosina quinase (MEK 1/2)
Docetaxel	Inibidor de microtúbulo/topoisomerase	Selumetinib (Koselugo) AZD 6244	Inibidor de tirosina quinase (MEK 1)
Panobinostat	Inibidor epigenético – HDAC	Ibrutinib	Inibidor de tirosina quinase (BTK)
Mitoxantrone dihydrochloride	Antibiótico – intercalação do DNA	6-thioguanine	Antimetabólico
Idarubicin hydrochloride	Antraciclina	Zanubrutinib	Inibidor de tirosina quinase (BTK)
Trametinib	Inibidor de tirosina quinase (MEK1,2)	Acalabrutinib	Inibidor de tirosina quinase (BTK)
Vincristine (sulfato)	Inibidor de microtúbulo/topoisomerase	Idelalisib	Inibidor de tirosina quinase (PI3Kδ)
Auranofin	Inidor de TrxR	Revumenib (Menin/MLL inib.)	Inibidor de KMT2A

Modelo lógico

Modelo lógico

No modelo lógico do grafo, há duas relações possíveis entre proteínas: a ativação e a inibição da função de uma pela outra. Fármacos externos também podem causar a ativação e inibição de outras proteínas.

Metodologia

Metodologia

Exploraremos os conceitos de **centralidade**, detecção de **comunidade**, e **link prediction** para avaliar as **interações** e possíveis **escapes** em interações de drogas conhecidas com determinadas proteínas que fazem parte do problema estudado.

Ferramentas

Ferramentas

organizar os dados brutos que vieram dos bancos de dados em gráficos de redes.

String

verificar a quais vias protéicas os genes diferencialmente expressos estão inseridos.

Cytoscape

analisar o gráfico em rede gerado de acordo com os conceitos de centralidade, comunidade e link prediction.

Referências

Referências

Cordo', V., van der Zwet, J. C. G., Canté-Barrett, K., Pieters, R., & Meijerink, J. P. P. (2021). T-cell Acute Lymphoblastic Leukemia: A Roadmap to Targeted Therapies. Blood Cancer Discovery, 2(1), 19–31. https://doi.org/10.1158/2643-3230.BCD-20-0093

Letai, A. (2017). Functional precision cancer medicine—moving beyond pure genomics. Nature Medicine, 23(9), 1028–1035. https://doi.org/10.1038/nm.4389

Onciu, M. (2009). Acute Lymphoblastic Leukemia. Hematology/Oncology Clinics of North America, 23(4), 655–674. https://doi.org/10.1016/j.hoc.2009.04.009

Barabási, AL., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat Rev Genet 12, 56–68 (2011). https://doi.org/10.1038/nrg2918

Karrman, K., & Johansson, B. (2017). Pediatric T-cell acute lymphoblastic leukemia. Genes, Chromosomes and Cancer, 56 (2), 89 116. https://doi.org/10.1002/gcc.22416

