Gabarito Lista de Exercícios 3

(a) $\omega^2 \neq \omega_0^2$:

$$u(t) = \frac{\cos(\omega t)}{\omega_0^2 - \omega^2} + c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t);$$

$$\omega^2 = \omega_0^2$$
:

$$u(t) = \frac{t\sin(\omega_0 t)}{2\omega_0} + c_1\cos(\omega_0 t) + c_2\sin(\omega_0 t);$$

- (b) $y(t) = t^2 6t + 14 3(\sin t)/10 9(\cos t)/10 + c_1 e^{-t/2} + c_2 e^{-t};$
- (c) $y(t) = -(t+2/3)e^{2t} + c_1e^{-t} + c_2e^{3t}$.
- ② (a) $y(x) = -2x^2 + c_1x + c_2xe^x$;
 - (b) $y(x) = x^2(\ln x)^3/6 + c_1x^2 + c_2x^2 \ln x$;
 - (c) $y(x) = \sqrt{x} [(\ln x) \ln(\ln x) 1] + c_1/\sqrt{x} + c_2\sqrt{x} \ln x$.
- 3 (a) Singularidade regular: x=0. (Todos os outros pontos são ordinários.) Índices: $\lambda_+=\lambda_-=0$. Soluções L.I.:

$$y_1(x) = \sum_{n=0}^{\infty} a_n x^n = 1 + x + \frac{x^2}{4} + \dots, \ a_0 = 1, \ a_{n+1} = \frac{a_n}{(n+1)^2},$$

$$y_2(x) = y_1(x) \ln|x| + \sum_{n=0}^{\infty} b_n x^n$$

$$= y_1(x) \ln|x| - \left(2x + \frac{3x^2}{4} + \frac{11x^3}{108} + \dots\right),$$

$$b_0 = 0, \ b_{n+1} = \frac{b_n}{(n+1)^2} - \frac{2a_{n+1}}{(n+1)};$$

(b) Singularidade regular: x = 0. (Todos os outros pontos são or-

dinários.) Índices: $\lambda_{+} = 1$, $\lambda_{-} = 0$. Soluções L.I.:

$$y_1(x) = x \sum_{n=0}^{\infty} a_n x^n = x - \frac{x^2}{2} + \frac{x^3}{12} + \dots, \quad a_0 = 1, \quad a_{n+1} = \frac{-a_n}{(n+2)(n+1)},$$

$$y_2(x) = ay_1(x) \ln|x| + \sum_{n=0}^{\infty} b_n x^n$$

$$= -y_1(x) \ln|x| + \left(1 - \frac{3x^2}{4} + \frac{7x^3}{36} + \dots\right),$$

$$a = -1, \quad b_0 = a_0, \quad b_1 = 0, \quad b_{n+2} = -\frac{[b_{n+1} - (2n+3)a_{n+1}]}{(n+2)(n+1)};$$

(c) Singularidades regulars: x=0 e x=1. (Todos os outros pontos são ordinários.) Índices: $\lambda_+=1,\ \lambda_-=0$ para ambos. Soluções L.I.:

$$y_1(x) = x \sum_{n=0}^{\infty} a_n x^n = x + \frac{x^2}{2} + \frac{x^3}{4} + \dots, \quad a_0 = 1, \quad a_{n+1} = \frac{(n^2 + n + 1)a_n}{(n+2)(n+1)},$$

$$y_2(x) = ay_1(x) \ln|x| + \sum_{n=0}^{\infty} b_n x^n$$

$$= y_1(x) \ln|x| + \left(1 - \frac{x^2}{4} - \frac{x^3}{12} + \dots\right),$$

$$a = 1, \quad b_0 = a_0, \quad b_1 = 0, \quad b_{n+2} = \frac{(n^2 + n + 1)b_{n+1}}{(n+2)(n+1)} + \frac{(2n^2 + 2n - 1)a_n}{(n+2)^2(n+1)^2}.$$

- (a) $\lambda_{\pm} = \pm \nu$;
 - (b) $\nu = 0$:

$$y_1(x) = \sum_{n=0}^{\infty} a_n x^n,$$

$$y_2(x) = y_1(x) \ln|x| + \sum_{n=0}^{\infty} b_n x^n;$$

 $\nu = k/2$, com $k \in \mathbb{Z}^*$:

$$y_1(x) = |x|^{|k|/2} \sum_{n=0}^{\infty} a_n x^n,$$

Primeiro Semestre – 2023

$$y_2(x) = ay_1(x) \ln|x| + |x|^{-|k|/2} \sum_{n=0}^{\infty} b_n x^n;$$

 $\nu \neq k/2$, para todo $k \in \mathbb{Z}$:

$$y_1(x) = |x|^{\nu} \sum_{n=0}^{\infty} a_n x^n,$$

$$y_2(x) = |x|^{-\nu} \sum_{n=0}^{\infty} b_n x^n.$$

(c) $\nu=0$: Vide seção 5.7 do livro do Boyce&DiPrima (9ª ed.); $\nu=1/4$:

$$y_1(x) = |x|^{1/4} \sum_{n=0}^{\infty} a_n x^n = |x|^{1/4} \left(1 - \frac{x^2}{5} + \frac{x^4}{90} + \dots \right),$$

$$a_0 = 1, \quad a_1 = 0, \quad a_{n+2} = \frac{-a_n}{(n+5/2)(n+2)},$$

$$y_2(x) = |x|^{-1/4} \sum_{n=0}^{\infty} b_n x^n = |x|^{-1/4} \left(1 - \frac{x^2}{3} + \frac{x^4}{42} + \dots \right),$$

$$b_0 = 1, \quad b_1 = 0, \quad b_{n+2} = \frac{-b_n}{(n+3/2)(n+2)};$$

 $\nu = 3/2$:

$$y_1(x) = |x|^{3/2} \sum_{n=0}^{\infty} a_n x^n = |x|^{3/2} \left(1 - \frac{x^2}{10} + \frac{x^4}{280} + \dots \right),$$

$$a_0 = 1, \quad a_1 = 0, \quad a_{n+2} = \frac{-a_n}{(n+5)(n+2)},$$

$$y_2(x) = ay_1(x) \ln|x| + |x|^{-3/2} \sum_{n=0}^{\infty} b_n x^n = |x|^{-3/2} \left(1 - \frac{x^2}{3} + \frac{x^4}{42} + \dots \right),$$

$$a = 0, \quad b_0 = 1, \quad b_1 = 0, \quad b_{n+2} = \frac{-b_n}{(n-1)(n+2)};$$

$$y_1(x) = x^2 \sum_{n=0}^{\infty} a_n x^n = x^2 - \frac{x^4}{12} + \frac{x^6}{384} + \dots,$$

$$a_0 = 1, \quad a_1 = 0, \quad a_{n+2} = \frac{-a_n}{(n+6)(n+2)},$$

$$y_2(x) = ay_1(x) \ln|x| + x^{-2} \sum_{n=0}^{\infty} b_n x^n = -\frac{1}{16} y_1(x) \ln|x| + \frac{1}{x^2} + \frac{1}{4} - \frac{x^4}{288} + \dots,$$

$$a = -1/16, \quad b_0 = a_0, \quad b_1 = b_3 = b_4 = 0, \quad b_2 = \frac{b_0}{4},$$

$$b_{n+4} = -\frac{[8b_{n+2} - (n+2)a_n]}{8n(n+4)}.$$

5 (a)
$$n!/(s-a)^{n+1}$$
, $s > a$;

(b)
$$e^{-as}/s$$
, $s > 0$;

 $\nu = 2$:

(c)
$$n! e^{-as}/s^{n+1}$$
, $s > 0$;

(d)
$$(e^{-as} - e^{-bs})/s$$
, $s > 0$;

(e)
$$1/[s(1-e^{-s})], s > 0;$$

(f)
$$e^{-as}$$
.

6 (a)
$$e^{(2-t)}(t-2)u_2(t)$$
;

(b)
$$[e^{3(t-1)} + e^{(t-1)}]u_1(t)/2;$$

(c)
$$e^{-t/2}(\cos t)/2$$
.