Website: ijetms.in Issue: 4 Volume No.6 July – 2022 DOI:10.46647/ijetms.2022.v06i04.0017 ISSN: 2581-4621

Nuclear characterization of Quantum Dots

Dr Rohini V. S. 1, S. Boregowda 1,2

- 1. Dr Rohini V S,Assosciate prof,dept of physics, Nrupatunga university,NT road,Bangalore-560001,Karnataka,India
- 2. S. Boregowda, Assistant prof., dept of physics, SAC college, Nagamangala, Mandya-571432, Karnataka, India Corresponding author Dr Rohini V S¹, **neelarohini@gmail.com**

Abstract:

Quantum dots are a new phase/allotropic form of carbon exhibiting various peculiar properties like photo luminence, radio activity, laser coherent scattering etc. Typical size of the QDs estimated less than 10nm^1 (ie a subnano particle) such that it can be defined as constituent/sub particle of a nano particle falling in a special range between nuclear and nano regions.

Here is a case study of carbon QDs prepared from organic samples. The QDs show βactivity with half life ranging from 141 to 408 secs.

1.Theory

The radioactivity decay law is

$$N_t=N_0 e^{-\lambda t}$$

$$\ln \left(N_t / N_0 \right) = \ln \left(e^{-\lambda t} \right)$$

$$\ln N_t - \ln N_0 = -\lambda t$$

$$\ln N_t = -\lambda t + \ln N_0$$

This eqn is of the type

$$Y = m X + C$$
, $Y = \ln Nt$, slope = λ , intercept = $\ln N_0$

Thus by plotting $\ln N_t$ vs t decay constant λ can be calculated.

The half life of the sample is given by

$$T_{1/2} = 0.693 / \lambda$$

Initial radioactivity=N₀=e intercept

Thus by determining λ of the sample, it's half life,initial activity can be determined and hence the radioactive isotope can be identified.

2. Methodology

Organic materials are crushed and subjected to carbonization at a high temperature such that carbon sample is extracted. The carbon particles of different sizes are seperated out and subjected to radio activity analysis Table 1 shows the β emission of this sample. Various radioactive decaying series can be identified with different decay constants (λ)

Sample 1:

Website: ijetms.in Issue: 4 Volume No.6 July – 2022 DOI:10.46647/ijetms.2022.v06i04.0017 ISSN: 2581-4621

Fig1,2,3,4

Table I:

sno	t(sec)	N_t	ln N _t
1	60	25	3.218875825
2	120	22	3.091042453
3	180	21	3.044522438
4	240	19	2.944438979
5	300	18	2.890371758
6	360	15	2.708050201
7	420	14	2.63905733
8	480	13	2.564949357
9	540	12	2.48490665
10	600	10	2.302585093
11	660	4	1.386294361
12	720	3	1.098612289

 lnN_t t(sec) sno (trunkated) 3.22 1 60 2 120 3.09 3 180 3.04 4 240 2.94 5 300 2.89 6 360 2.71 7 420 2.64 8 480 2.56 9 540 2.48 10 600 2.30 1.39 11 660 12 720 1.099

Graph1

RADIO ACTIVITY OF QDs

3.3
3.25
3.2
3.15
3.15
3.1
3.05
3
2.95
0 50 100 150 200 250
t (sec)

table 1

sno	t(sec)	lnNt (trunkated)
1	60	3.22
2	120	3.09
3	180	3.04

Graph2 table2

Website: ijetms.in Issue: 4 Volume No.6 July – 2022 DOI:10.46647/ijetms.2022.v06i04.0017 ISSN: 2581-4621

sno	t(sec)	lnNt (trunkated)
1	60	3.22
2	120	3.09
3	180	3.04
4	240	2.94
5	300	2.89

Graph3 table3

sno	t(sec)	lnNt (trunkated)	
6	360	2.71	
7	420	2.64	
8	480	2.56	
9	540	2.48	
10	600	2.30	

Graph4 table4

sno	t(sec)	lnNt (trunkated)
11	660	1.39
12	720	1.099

Graph5 table5

Website: ijetms.in Issue: 4 Volume No.6 July – 2022 DOI:10.46647/ijetms.2022.v06i04.0017 ISSN: 2581-4621

Sample 2:

sno	t(sec)	N	ln N	ln N
SHO	i(sec)	14	III I V	trunkated
1	60	24	3.17805383	3.18
2	120	22	3.091042453	3.09
3	180	21	3.044522438	3.04
4	240	20	2.995732274	2.996
5	300	16	2.772588722	2.77
6	360	15	2.708050201	2.71
7	420	14	2.63905733	2.64
8	480	13	2.564949357	2.56
9	540	11	2.397895273	2.398
10	600	9	2.197224577	2.197

Graph6

table6

3.Result

		T		T	1		T
sno	Sample	Linear fit	Decay	Initial	$T_{1/2}$ (sec)	remark	Nuclei
	_		constant	activity	Radioactive		identified
			(λ / sec)	(N_0)	isotope		
			(107 500)	(110)	identifed		
	_		0.0040	0.0			00 01 045
1	I	Y=-0.0049X+4.591	0.0049	99	141	Agreegat	82-Pb-215
						e activity	
2	I	Y=-0.0027X+ 3.602	0.0027	37	257	individua	?
						1	
3	I	Y=-0.0014X+3.279	0.0014	28	173	individua	86-Radon(Rn)-
						1	205
4	I	Y=-	0.0015	27	462	individua	83-Bismath(Bi)-
		0.0015X+3.2967				1	215
5	I	Y=-0.0016X+3.322	0.0016	28	433	individua	93-
						1	Neptunium(Np)-
							240
6	II	Y=-	0.0017	28	408	individua	96-
		0.0017X+3.3321				1	Curium(Cm)-
							236

4. Author's note

There is no conflict of interest regarding publication of this article. Author confirms that this paper is free from plagiarism

5. Conclusions

Decay series identified as

$$^{96} Cm~_{236} (\textbf{-3}~\beta) \rightarrow ^{93} Np~_{240} (\textbf{-3}\alpha \textbf{-1}\beta) \rightarrow ^{86} Rn~_{205} (\textbf{-1}\alpha \textbf{-1}\beta) \rightarrow ^{83} Bi~_{215} (\textbf{-1}\beta) \rightarrow ^{82} Pb~_{215}$$

Website: ijetms.in Issue: 4 Volume No.6 July – 2022 DOI:10.46647/ijetms.2022.v06i04.0017 ISSN: 2581-4621

New isotopes identified are

96
 Cm $_{236}$ $\ ,^{93}$ Np $_{240}$ $,^{86}$ Rn $_{205}$, 83 Bi $_{215}$ $,^{82}$ Pb $_{215}$

6.Reference:

- 1. Optical characterization of carbon quantum dots-Dr Rohini V S,IJSR,vol10,issue 8,Aug 2021,DOI10.21275/SR21808215518,paper Id:SR1808215518
- 2. A study of nano structures-CQDs,Dr Rohini V S,International seminar proceedings,02/02/2021,BGS Auditorium,SACcollege,Nagamangala,Mandya-571432,Karnataka,India-ISBN978-93-88956--41-3
- 3. An experimental study of carbon dust-Dr Rohini V S,IJSR,vol3,issue 7,july 2014,DOI 10.21275/SR14708111434