

Olimpiada Națională de Informatică Etapa Județeană Sunday 13th March, 2022

Clasa a X-a

Feladat Pulsar

Bemenet pulsar.in Kimenet pulsar.out

Csillagidő 3210:

A USS Entrerprise kapitánya, Jean-Luc Picard fontos küldetést teljesít a galaxis Béta kvadránsában. A lehető leggyorsabban el kell érnie a Vulkán bolygótól a Qo'noS bolygóra, de sajnos ebben a küldetésben Jean-Luc Picard nem tud azonnal célba érni azáltal, hogy warp drive-ot használ, hanem a szokásos módon kell navigálnia szektorról szektorra.

A galaxis térképét egy $N \times N$ méretű kétdimenziós táblázat alkotja, amelyben minden egyes cella a galaxis egy szektorát reprezentálja. A Vulkán bolygót tartalmazó szektornak a koordinátái (x_s, y_s) , a Qo'noS bolygót tartalamzó szektor koordinátái pedig (x_f, y_f) .

A USS Enterprise időegység alatt mozoghat az egyik szektorból a szomszédos szektorok bármelyikébe, akár ugyanazon a vonalon, akár ugyanabban az oszlopban. Ezenkívül a hajó bármely szektorban korlátlan ideig tartózkodhat. A hajó csak olyan szektorban lehet, ahol nincs veszélyben az épsége.

Mivel veszély nélkül nincs kaland, Jean-Luc Picard útja tele van *pulzárokkal*, nagyon veszélyes kozmikus objektumokkal, amelyek szabályos időközönként gravitációs hullámokat bocsátanak ki, amelyek elpusztíthatják a USS Enterprise-t.

A P_i pulzárt négy (x_i, y_i, r_i, t_i) változó jellemzi, (x_i, y_i) az a szektor, amelyben a pulzár található, r_i a pulzár hatósugara, a t_i pedig az az állapot, amelyben a pulzár található a hajó indulásakor.

A P_i pulzár periódikusan áthalad r_i állapoton 0-tól r_i – 1-ig. Amikor t állapotban van, akkor minden olyan szektorra hatással van, amelynek a Manhattan távolsága kisebb vagy egyenlő t-vel. Ha a pulzár egy időpontban t állapotban van, akkor a következő időpontban $(t+1)\%r_i$ állapotban lesz .

Példa egy r=4 hatósugarú pulzár működésére 6 időegység alatt , t=0 kezdő állapottal:

A ti feladatotok, hogy segítsetek Jean-Luc Picardnak megválaszolni a következő kérdések egyikét a galaxis térképének ismeretében:

- 1. Mennyi az S_{max} értéke, a galaxis azon szektorainak maximális száma, amelyek egy adott időpontban legalább egy pulzár hatása alatt vannak.
- 2. Mekkora a T_{min} minimális idő értéke, ami szükséges, hogy Jean-Luc Picard eljusson a Qo'noS bolygóra.

Olimpiada Națională de Informatică Etapa Județeană Sunday 13th March, 2022

Clasa a X-a

Bemeneti adatok

A pulsar.in állomány tartalma:

- ullet Az első sorban találhatók $C,\,N$ és P értékei szóközzel elválasztva,ezek jelentése a követelmény, a galaxis mérete és a pulzárok száma
- \bullet A következő Psor mindegyikében található négy x_i,y_i,r_i,t_i szám, amely meghatározza a P_i pulzárt
- \bullet Az utolsó előtti sorban található a Vulkán bolygó szektorának x_s és y_s koordinátája
- \bullet Az utolsó sorban található a Qo'noS bolygó szektorának x_f és y_f koordinátája

Kimeneti adatok

A pulsar.out kimeneti állományba egyetlen számot kell írni a követelmény függvényében:

- Ha C=1, akkor a kiírandó érték S_{max}
- $\bullet\,$ HaC=2,akkor a kiírandó érték num
ărul T_{min}

Korlátok

- Két (x_1, y_1) és (x_2, y_2) koordináta közötti Manhattan távolság egyenlő: $|x_1 x_2| + |y_1 y_2|$
- Az űrhajó egyetlen időpontban sem fog letérni a galaxis térképéről
- A pulzárok hullámai elhagyhatják a galaxis térképét, de ezek a szektorok nem jelentenek fontosságot a feladatunknak
- Garantált, hogy az úrhajó az indulás pillanatában nincsen veszélyben
- Garantált, hogy létezik megoldás
- Ugyanabban a szektorban létezhet több pulzár is.
- $C \in \{1, 2\}$
- $3 \le N \le 500$
- $1 \le P \le 15\,000$
- $0 \le t_i < r_i \le 6 \ \forall \ 1 \le i \le P$
- $1 \le x_s, y_s, x_f, y_f \le N$
- $1 \le x_i, y_i \le N \ \forall \ 1 \le i \le P$

#	Pontszám	Korlátok
1	19	C = 1
2	22	$C=2$ és $r_i=1$ \forall $1 \leq i \leq P$
3	9	$C=2,\ N\leq 7$ és $r_i<=3\ \forall\ 1\leq i\leq P$
4	13	$C = 2, t_i = 0 \ \forall \ 1 \le i \le P$
5	37	C=2

Olimpiada Națională de Informatică Etapa Județeană Sunday 13th March, 2022

Clasa a X-a

Példák

pulsar.in	pulsar.out
1 5 4	14
3 1 2 1	
1 5 3 1	
5 3 2 0	
3 4 2 1	
1 1	
5 5	
2 5 4	9
3 1 2 1	
1 5 3 1	
5 3 2 0	
3 4 2 1	
1 1	
5 5	

Magyarázatok

Az alábbiakban követhetjük a USS Enterprise útvonalát. Kékkel jelöltük az űrhajót, pirossal a pulzár által érintett szektort, zölddel a Qo'nos bolygót:

Az első példa esetében észrevehetjük, hogy egyetlen időegységben sem foglalnak el a pulzárok 14-nél több szektort.

A fenti ábrán bemutattunk egy lehetséges útvonalat, amelynek hossza 9. Ez az idő minimális és a feladat megoldása is egyben.