Inferência Bayesiana para os parâmetros da distribuição Weibull Estendida de Marshall-Olkin

André F. B. Menezes

Universidade Estadual de Maringá Departamento de Estatística

7 de Novembro de 2017

Inferência Bayesiana

Organização

- Introdução
- 2 Função de Verossimilhança
- 3 Inferência Bayesiana
- 4 Aplicações Aplicação I Aplicação II

Introdução

Método de Marshall-Olkin (1997)

$$S(x \mid \theta, \alpha) = \frac{\alpha S_1(x \mid \theta)}{1 - \overline{\alpha} S_1(x \mid \theta)},$$

$$f(x \mid \theta, \alpha) = \frac{\alpha f_1(x \mid \theta)}{[1 - \overline{\alpha} S_1(x \mid \theta)]^2},$$

$$h(x \mid \theta, \alpha) = \frac{h_1(x \mid \theta)}{1 - \overline{\alpha} S_1(x \mid \theta)}$$

em que $\alpha > 0$ é o novo parâmetro denominado de tilt, $S_1(x \mid \theta)$, $f_1(x \mid \theta)$ e $h_1(x \mid \theta)$ são as funções sobrevivência, densidade e risco da distribuição base, respectivamente.

Distribuição Weibull Estendida de Marshall-Olkin (MOEW)

Função de Verossimilhança

$$S(x \mid \lambda, \alpha, \beta) = \frac{\alpha e^{-(\lambda x)^{\beta}}}{1 - \overline{\alpha} e^{-(\lambda x)^{\beta}}},$$

$$f(x \mid \lambda, \alpha, \beta) = \frac{\alpha \beta \lambda^{\beta} x^{\beta - 1} e^{-(\lambda x)^{\beta}}}{\left[1 - \overline{\alpha} e^{-(\lambda x)^{\beta}}\right]^{2}},$$

$$h(x \mid \lambda, \alpha, \beta) = \frac{\beta \lambda^{\beta} x^{\beta - 1}}{1 - \overline{\alpha} e^{-(\lambda x)^{\beta}}}$$

 $\lambda > 0$ é o parâmetro de taxa $(1/\mu)$, $\beta > 0$ e $\alpha > 0$ governam a forma das funções de densidade e risco.

Introdução

Casos particulares

- $lackbox{0} < \alpha < 1
 ightarrow ext{distribuição Weibull-Geométrica.}$
- $ightharpoonup lpha = 1
 ightarrow ext{distribuição Weibull.}$
- ightarrow eta = 1
 ightarrow distribuição Exponencial Estendida de Marshall–Olkin.
- $ightharpoonup \alpha = \beta = 1 \rightarrow \text{distribuição Exponencial}.$

Inferência Bayesiana

Função de Verossimilhança

Dados completos

Seja $\boldsymbol{x} = (x_1, x_2, \dots, x_n)^{\top}$ uma amostra aleatória e da distribuição MOEW.

► Função de verossimilhança:

$$L(\boldsymbol{\theta} \mid \boldsymbol{x}) = \prod_{i=1}^{n} f(x_i \mid \boldsymbol{\theta}) = \prod_{i=1}^{n} \frac{\alpha \beta \lambda^{\beta} x_i^{\beta-1} e^{-(\lambda x_i)^{\beta}}}{\left[1 - \overline{\alpha} e^{-(\lambda x_i)^{\beta}}\right]^2}.$$

Função de Verossimilhança

Dados com censura intervalar

Considere que $\delta_i=1$ se a observação não foi censurada e $\delta_i=0$ se a observação é censurada por intervalo.

► Função de verossimilhança:

$$L(\boldsymbol{\theta} \mid \boldsymbol{t}, \{\boldsymbol{l}, \boldsymbol{r}\}, \boldsymbol{\delta}) = \prod_{i=1}^{K} [f(t_i \mid \boldsymbol{\theta})]^{\delta_i} [S(l_i \mid \boldsymbol{\theta}) - S(r_i \mid \boldsymbol{\theta})]^{1-\delta_i}.$$

Sendo:

- ▶ $t = (t_1, ..., t_{n_1})$ as n_1 observações exatamente observadas;
- ▶ $\{l,r\} = (\{l_{n_1+1},r_{n_1+1}\},\ldots,\{l_{n_2},r_{n_2}\})$ as n_2 observações com censura intervalar:

Inferência Bayesiana

Distribuição a posteriori

Toda inferência Bayesiana se concentra na distribuição a posteriori. A distribuição a posteriori é proporcional a

$$\pi(\theta \mid \mathsf{Dados}) \propto \pi(\theta) \, L(\theta \mid \mathsf{Dados}),$$

em que:

- $m{ heta} = (\lambda, \beta, \alpha)^{\top}$ é o vetor de parâmetros da distribuição MOEW;
- $\blacktriangleright \pi(\theta)$ é a distribuição a priori conjunta de θ ;
- $ightharpoonup L(\theta \mid {\sf Dados})$ representa a função de verossimilhança da amostra observada.

Inferência Bayesiana

Métodos MCMC

A distribuição a posteriori não possui forma fechada.

- Os métodos de Monte Carlo em Cadeias de Markov (MCMC) foram utilizados para gerar amostras das distribuições marginais posteriori.
- ► A cadeia foi gerada considerando 1,000,000 simulações para cada parâmetro.
- ► Com um *burn-in* de tamanho 1000.
- Os valores simulados foram selecionados de 100 em 100.
- ► Resultando em amostras finais de tamanho 20,000.
- A procedure MCMC do SAS foi utilizada.

Aplicações

Aplicação I

 Os dados foram simulados utilizando o método da transformação inversa, isto é

$$x_i = \frac{1}{\lambda} \left[-\log \left(\frac{u_i}{\alpha + \bar{\alpha} u_i} \right) \right]^{1/\beta}, \quad i = 1, \dots, n.$$

Inferência Bayesiana

em que u_i são números aleatórios da distribuição uniforme padrão.

ightharpoonup O seguinte cenário foi estabelecido: n = (100, 300, 500), $\lambda = 1.0, \, \beta = 2.0 \, \text{e} \, \alpha = 0.1$

Aplicações

Inferência Bayesiana

Aplicação I

Definição das distribuições a priori

- ► $\pi(\lambda)$ ~ Gamma(0.001; 0.001).
- $ightharpoonup \pi(\beta) \sim \text{Gamma}(0.001; 0.001).$
- \blacktriangleright $\pi(\alpha) \sim \mathsf{Uniforme}(0;1).$

0.6446 (0.4796)

 α

(0.2376, 0.9993)

Aplicação I

Estimativas Clássicas e Bayesianas. Parâmetro EMV (E.P.) Média (D.P.) IC 95% HPD95%λ 1.8894 (0.5828) 1.8310 (0.3381) (0.7471, 3.0317)(1.1490, 2.4374) 100 B 1.4222 (0.2273) 1.4388 (0.1549) (0.9767, 1.8678) (1.1568, 1.7507)

	λ	1.3913 (0.2275)	1.5025 (0.2544)	(0.9455, 1.8372)	(1.0365, 2.0378)
300	β	1.7209 (0.1402)	1.6623 (0.1398)	(1.4460, 1.9957)	(1.4025, 1.9411)
	_ α	0.3082 (0.1405)	0.4062 (0.1802)	(0.0329, 0.5835)	(0.1198, 0.7917)
	λ	0.7853 (0.1460)	0.8304 (0.1571)	(0.4990, 1.0715)	(0.5135, 1.1434)
500	β	1.9647 (0.1024)	1.9266 (0.1044)	(1.7639, 2.1655)	(1.7205, 2.1288)
	α	0.0697 (0.0349)	0.0898 (0.0458)	(0.0012, 0.1381)	(0.0178, 0.1823)
_					

0.6217 (0.2260)

Inferência Bayesiana

(-0.2954, 1.5845)

• Verdadeiros valores dos parâmetros: $\lambda = 1, \beta = 2.0$ e $\alpha = 0.1$.

Critérios para avaliar a convergência das cadeias (n = 100).

Parâmetro	Heidelberge	er-Welch	Geweke	
	Estatística	valor-p	Estatística valor-p	
λ	0.0639	0.7892	-0.8358	0.4033
β	0.1540	0.3775	-0.3016	0.7629
α	0.0665	0.7733	-0.2364	0.8131

 Os dados consistem de um estudo realizado na Dinamarca entre 1993 e 1972 envolvendo 731 pacientes diagnosticados como diabéticos do Tipo I entre 1933 e 1972, e seguidos até a morte, a emigração ou 31 de dezembro de 1984.

- ▶ O tempo de sobrevivência de interesse é o tempo (meses) desde o início da diabetes até o início da nefropatia diabética (DN).
- Todos os paciente desenvolveram a nefropatia diabética no momento de admissão ou até o final do estudo, logo não há observação censurada a direita.
- ▶ 596 tempos foram exatamente observados e 136 observações apresentaram censura intervalar.
- ► Entre os 731 pacientes, têm-se 277 mulheres e 454 homens.

Considerações

 A distribuição MOEW foi reparametrizada em termos de μ, em que $\lambda = 1/\mu$.

- \blacktriangleright $\pi(\lambda) \sim \text{Gamma}(0.001; 0.001).$
- \blacktriangleright $\pi(\beta) \sim \text{Gamma}(0.001; 0.001).$
- \blacktriangleright $\pi(\alpha) \sim \mathsf{Uniforme}(0;1).$

Estimativas Clássicas e Bayesianas.

Modelo	Gênero	Parâmetro	EMV (E.P.)	Média (D.P.)	IC 95%	HPD 95%
		μ	31.5621 (4.1393)	31.3722 (5.1347)	(23.4492, 39.6751)	(23.1008, 40.9715)
	Feminino	β	4.1870 (0.2991)	4.0692 (0.3100)	(3.6007, 4.7734)	(3.4488, 4.6691)
MOEW		α	0.0489 (0.0360)	0.0754 (0.0565)	(-0.0216, 0.1194)	(0.0010, 0.1854)
	Masculino	μ	33.0371 (3.0012)	33.4082 (3.6710)	(27.1548, 38.9194)	(27.4911, 40.7049)
		β	4.9068 (0.2547)	4.8526 (0.2523)	(4.4076, 5.4059)	(4.3589, 5.3484)
		α	0.0343 (0.0197)	0.0410 (0.0226)	(-0.0043, 0.0729)	(0.0032, 0.0852)
	Feminino	μ	18.0958 (0.4457)	18.1044 (0.4482)	(17.2183, 18.9732)	(17.2491, 19.0029)
Weibull		β	2.6450 (0.1203)	2.6368 (0.1201)	(2.4083, 2.8818)	(2.4070, 2.8771)
vvcibuii	Masculino	μ	19.3296 (0.3357)	19.3346 (0.3375)	(18.6698, 19.9894)	(18.6754, 19.9976)
		β	2.9583 (0.1062)	2.9533 (0.1065)	(2.7497, 3.1670)	(2.7454, 3.1628)

Convergência e densidade a posteriori de μ .

Inferência Bayesiana

Gênero Feminino

Convergência e densidade a posteriori de β .

Inferência Bayesiana

Gênero Feminino

Convergência e densidade a posteriori de α .

Inferência Bayesiana

Gênero Feminino

Critérios de discriminação Clássicos e Bayesianos.

Gênero	Modelo	AIC	DIC
Feminino	MOEW	295.2428	285.9942
i eminio	Weibull	309.9924	309.9955
Masculino	MOEW	399.3692	393.8040
Mascullio	Weibull	438.8576	438.8871

Referências

- [1] Almalki, S. J., Nadarajah, S., 2014. Modifications of the Weibull distribution: A review. Reliability Engineering & System Safety 124 (Supplement C), 32–55.
- [2] Marshall, A. W., Olkin, I., 1997. A new method for adding a parameter to a family of distributions with application to the exponential and weibull families. Biometrika 84 (3), 641–652.
- [3] SAS, 2010a. *The MCMC Procedure*, SAS/STAT User's Guide, Version 9.4. Cary, NC: SAS Institute Inc.
- [4] SAS, 2010b. *The NLMIXED Procedure*, SAS/STATR User's Guide, Version 9.4. Cary, NC: SAS Institute Inc.