東京工業大学大学院理工学研究科 電気電子工学・電子物理工学専攻大学院修士課程入試問題 平成24年8月22日実施

専門科目 電気電子工学・電子物理工学(午後2) 25 大修

時間 15:30 ~ 17:00

電磁気学

注意事項

- 1. 大問1の解答と大問2の解答は別の答案用紙綴りに記入せよ。
- 2. すべての答案用紙に受験番号を記入せよ。
- 3. 電子式卓上計算機などの使用は認めない。

電磁気学

- 1. 積層されたコンデンサについて考えるため、面積 Sで n+1 枚(ただしnは偶数)の導体板(厚さp/n)と、面積 S、誘電率 ϵ で n 枚の誘電体板(厚さp/n)を交互に組み合わせた。導体板の各層を下から M_0,M_1,M_2,\cdots,M_n 、誘電体の各層を下から D_1,D_2,\cdots,D_n と呼ぶこととする。以下の問いに答えよ。なお、導体板および誘電体板の外側には電界はなく、端部効果等を考慮する必要はない。
- n=2 の場合を図 1.1 に示す。 M_0 を接地し最上部の導体板である M_2 に電圧 Vを印加した時の導体板 M_1 の電位と誘電体各層内での電界の大きさを示せ。各導体板は帯電していないとする。
- n=4 の場合を図 1.2 に示す。このとき M_1 のみに+q/2 の電荷を与えたとする。 M_0 を接地し,最上部の導体板である M_4 に電圧 Vを印加した時の導体板 M_1, M_2, M_3 の電位と誘電体各層内での電界の大きさを示せ。
- 3) n=4 の場合に、 M_1,M_2,M_3 の各層に+q/4 の電荷を与えたとする。 M_0 および M_4 を接地した時の導体板 M_1,M_2,M_3 の電位と誘電体各層内での電界の大きさを示せ。
- 4) M_0 および M_n 以外の導体板すべてに+q/n の電荷を与え、 M_0 および M_n を接地する。導体板各層の電位と誘電体各層内での電界の大きさをnを用いて示せ。
- 5) 問 4)において、*n* を無限大としたときに、この構造内の 電位分布はどのような形状になるかを図で描け。その 最大値も記入せよ。

電磁気学

- 2. 図 2.1 のような構造のギャップを持った磁性体を考える。磁性体の断面は半径 r の円形であり、磁性体の長さ(平均磁路長)は ℓ とする。透磁率は μ_1 である。ギャップ部分の透磁率は真空の透磁率 μ_0 とする。また磁性体にはコイルが巻かれており、その巻数は Nとする。 ℓ は r より十分大きく、また μ_1 >> μ_0 であるため、磁性体断面円内の磁界は一様と考え、円外の磁界は 0(ゼロ)と考えてよい。ギャップ長 g は r と比べて十分小さく、ギャップ内においても磁束は磁性体と同じ断面を通るとしてよい。
 - 1) コイルに直流電流 I を流した時のギャップ 内の磁束密度を求めよ。
 - 2) コイルの自己インダクタンスを求めよ。

図 2.1 のギャップに、図 2.2 のように厚さ g の 直方体の磁性体をはめ込んだ。直方体の厚さ方向以外の二辺は g より十分大きい。この直方体の磁性体の透磁率は μ_2 であり、 μ_1 >> μ_2 > μ_0 である。ギャップ部が半分まで埋まったときの様子を図 2.1 および図 2.2 の視点アからながめて図 2.3 に示す。コイルに直流電流 I を流した。図 2.3 の斜線で示したギャップ内の磁界 H_M は一様、円外の磁界は 0(ゼロ)と考える。

- 3) ギャップ内での磁性体が埋まった部分の磁 束密度 B_2 および磁性体が埋まっていない部 分での磁束密度 B_0 を、 H_M を用いて表せ。
- 4) 透磁率 μ_1 内での磁束密度 B_I は一様と考えてよいとする。磁束の総数は変わらないことから、磁束密度 B_I を H_M を用いて表せ。
- 5) アンペアの法則より H_M とコイルに流れる直流電流 Iの関係を表せ。

図 2.1

