| ICS 23.020.30 Ausgabe März 2009

Werkstoffe für Druckbehälter

Kupfer und Kupfer-Knetlegierungen

AD 2000-Merkblatt W 6/2

Die AD 2000-Merkblätter werden von den in der "Arbeitsgemeinschaft Druckbehälter" (AD) zusammenarbeitenden, nachstehend genannten sieben Verbänden aufgestellt. Aufbau und Anwendung des AD 2000-Regelwerkes sowie die Verfahrensrichtlinien regelt das AD 2000-Merkblatt G1.

Die AD 2000-Merkblätter enthalten sicherheitstechnische Anforderungen, die für normale Betriebsverhältnisse zu stellen sind. Sind über das normale Maß hinausgehende Beanspruchungen beim Betrieb der Druckbehälter zu erwarten, so ist diesen durch Erfüllung besonderer Anforderungen Rechnung zu tragen.

Wird von den Forderungen dieses AD 2000-Merkblattes abgewichen, muss nachweisbar sein, dass der sicherheitstechnische Maßstab dieses Regelwerkes auf andere Weise eingehalten ist, z. B. durch Werkstoffprüfungen, Versuche, Spannungsanalyse, Betriebserfahrungen.

Fachverband Dampfkessel-, Behälter-und Rohrleitungsbau e.V. (FDBR), Düsseldorf

Deutsche Gesetzliche Unfallversicherung (DGUV), Berlin

Verband der Chemischen Industrie e.V. (VCI), Frankfurt/Main

Verband Deutscher Maschinen- und Anlagenbau e.V. (VDMA), Fachgemeinschaft Verfahrenstechnische Maschinen und Apparate, Frankfurt/Main

Stahlinstitut VDEh, Düsseldorf

VGB PowerTech e.V., Essen

Verband der TÜV e.V. (VdTÜV), Berlin

Die AD 2000-Merkblätter werden durch die Verbände laufend dem Fortschritt der Technik angepasst. Anregungen hierzu sind zu richten an den Herausgeber:

Verband der TÜV e.V., Friedrichstraße 136, 10117 Berlin.

Inhalt

- 0 Präambel
- 1 Geltungsbereich
- 2 Geeignete Werkstoffe
- 3 Anforderungen

- 4 Prüfungen
- 5 Kennzeichnung
- 6 Nachweis der Güteeigenschaften
- 7 Kennwerte für die Bemessung

0 Präambel

Zur Erfüllung der grundlegenden Sicherheitsanforderungen der Druckgeräte-Richtlinie kann das AD 2000-Regelwerk angewandt werden, vornehmlich für die Konformitätsbewertung nach den Modulen "G" und "B + F".

Das AD 2000-Regelwerk folgt einem in sich geschlossenen Auslegungskonzept. Die Anwendung anderer technischer Regeln nach dem Stand der Technik zur Lösung von Teilproblemen setzt die Beachtung des Gesamtkonzeptes voraus.

Bei anderen Modulen der Druckgeräte-Richtlinie oder für andere Rechtsgebiete kann das AD 2000-Regelwerk sinngemäß angewandt werden. Die Prüfzuständigkeit richtet sich nach den Vorgaben des jeweiligen Rechtsgebietes.

1 Geltungsbereich

1.1 Dieses AD 2000-Merkblatt gilt für Bleche, Bänder, Platten, nahtlose Rohre und Stangen aus Kupfer und Kupfer-Knetlegierungen zum Bau von Druckbehältern, die bei

Betriebstemperaturen sowie Umgebungstemperaturen innerhalb der in Tafel 1 angegebenen Grenztemperaturen¹⁾ betrieben werden.

1.2 Die grundlegenden Anforderungen an die Werkstoffe und an die Werkstoffhersteller sind im AD 2000-Merkblatt W 0 geregelt.

2 Geeignete Werkstoffe

2.1 Für Bleche, Bänder, Platten, nahtlose Rohre, Stangen und Schmiedestücke können die in Tafel 1 angegebenen Werkstoffe innerhalb der angegebenen Temperaturgrenzen verwendet werden. Hinsichtlich Erzeugnisformen und Grenzwerte für die Abmessung gelten die Tafeln 2 bis 5.

Die Verwendung dieser Werkstoffe mit > 65 % Massenanteil Kupfer ist bei Anwesenheit von Acetylen unzulässig

Ersatz für Ausgabe Februar 2008; | = Änderungen gegenüber der vorangehenden Ausgabe

Die AD 2000-Merkblätter sind urheberrechtlich geschützt. Die Nutzungsrechte, insbesondere die der Übersetzung, des Nachdrucks, der Entnahme von Abbildungen, die Wiedergabe auf photomechanischem Wege und die Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei auszugsweiser Verwertung, dem Urheber vorbehalten.

Definition der Wandtemperatur und Betriebstemperatur siehe AD 2000-Merkblatt B 0, Abschnitt 5.

Seite 2 AD 2000-Merkblatt W 6/2, Ausg. 03.2009

- (BGV B6 Gase)²⁾. Bei Verwendung von z. B. Kupfer-Zink-Legierungen ist zu beachten, dass sie gegen die vorkommenden Medien hinreichend beständig sind und dass keine gefährlichen chemischen Reaktionen stattfinden (z. B. ist die BGV B 6 Gase, Anlage 2 Gastabelle, zu beachten).
 - **2.2** Erzeugnisse aus anderen Kupferlegierungen und Kupfer-Knetlegierungen können nach Eignungsfeststellung durch die zuständige unabhängige Stelle³⁾ verwendet werden. Dabei sind die Anwendungsgrenzen, Anforderungen, Prüfmaßgaben, Kennzeichnung und Hinweise zur Weiterverarbeitung (Umformen, Wärmebehandeln, Schweißen, Löten) anzugeben.

Die Werkstoffe sollen folgenden Bedingungen genügen: Die Bruchdehnung A soll die den Werkstoff kennzeichnenden Werte aufweisen, jedoch für Bleche, Bänder, Platten und Stangen unabhängig von der Probenrichtung mindestens 14 % betragen. Ist eine Prüfung nur in Längsrichtung möglich, soll die Bruchdehnung A mindestens 16 % betragen. Diese Werte können unterschritten werden, wenn bei der Eignungsfeststellung ausreichende Umformungseigenschaften (z. B. Berstversuch) nachgewiesen werden.

3 Anforderungen

3.1 Für die Zusammensetzung, den Lieferzustand und die Güteeigenschaften gelten die Angaben der nachfolgend aufgeführten Normen, sofern in diesem AD 2000-Merkblatt keine anderen Festlegungen getroffen werden:

DIN EN 1057 – Kupfer und Kupferlegierungen; Nahtlose Rundrohre aus Kupfer für Wasser- und Gasleitungen für Sanitärinstallationen und Heizungsanlagen

DIN EN 1652 – Kupfer und Kupferlegierungen; Platten, Bleche, Bänder, Streifen und Ronden zur allgemeinen Verwendung

DIN EN 1653 – Kupfer und Kupferlegierungen; Platten, Bleche und Ronden für Kessel, Druckbehälter und Warmwasserspeicheran-

DIN EN 12163 – Kupfer und Kupferlegierungen; Stangen zur allgemeinen Verwendung

DIN EN 12164 – Kupfer und Kupferlegierungen; Stangen für die spanende Bearbeitung

DIN EN 12165 – Kupfer und Kupferlegierungen; Vormaterial für Schmiedestücke

DIN EN 12167 – Kupfer und Kupferlegierungen; Profile und Rechteckstangen zur allgemeinen Verwendung

DIN EN 12420 – Kupfer und Kupferlegierungen; Schmiedestücke

DIN EN 12451 – Kupfer und Kupferlegierungen; Nahtlose Rundrohre für Wärmeaustauscher

- DIN EN 12452 Kupfer und Kupferlegierungen; Nahtlose gewalzte Rippenrohre für Wärmeaustauscher in Verbindung mit den VdTÜV-Werkstoffblättern 420/1 bis 420/3 und 420/5 bis 420/7
- DIN EN 12449 Kupfer und Kupferlegierungen; Nahtlose Rundrohre zur allgemeinen Verwendung
- DIN EN 12735-1 Kupfer und Kupferlegierungen; Nahtlose Rundrohre aus Kupfer für die Kälteund Klimatechnik – Teil 1: Rohre für Leitungssysteme
- DIN EN 12735-2 Kupfer und Kupferlegierungen; Nahtlose Rundrohre aus Kupfer für die Kälteund Klimatechnik – Teil 2: Rohre für Apparate
- DIN EN 13348 Kupfer und Kupferlegierungen; Nahtlose Rundrohre aus Kupfer für medizinische Gase
- **3.2** Für die Werkstoffzustände, mechanischen Eigenschaften und die Langzeit-Warmfestigkeitseigenschaften gelten die Angaben in den Tafeln 6 bis 12.
- **3.3** Die Erzeugnisformen aus Kupfer-Zink-Legierungen sind im Lieferzustand frei von solchen inneren Spannungen zu halten, die zu Spannungsrisskorrosion führen können.
- **3.4** Für CuZn38Sn1As sind die 1 %-Zeitdehngrenzwerte Abschätzungen anhand einiger Orientierungswerte.
- **3.5** Erzeugnisformen aus Cu-DHP dürfen bei einer Glühung in wasserstoffhaltiger Atmosphäre (z. B. beim Schweißen und Hartlöten mit offener Flamme) keine Wasserstoffkrankheit aufweisen.

4 Prüfungen

Die Prüfungen sind nach den zutreffenden DIN EN-Normen durchzuführen. Zusätzliche Prüfungen sind nachfolgend aufgeführt:

4.1 Chemische Zusammensetzung

Die Chemische Zusammensetzung ist nach den entsprechenden Normen für die für das Fertigungslos⁴⁾ verwendeten Schmelzen oder Abgüsse zu bestimmen.

Ist eine unmittelbare Zuordnung des Halbzeuges zur Schmelze nicht möglich (z. B. kontinuierliches Stranggießverfahren), bezeichnet der Begriff "Schmelze" eine Folge zeitlich unmittelbar nacheinander hergestellter Abgüsse.

Findet bei der Herstellung des Halbzeuges keine Trennung nach Schmelzen oder Abgüssen statt, so sind im Umfang des Zugversuches Analysen am fertigen Halbzeug durchzuführen.

4.2 Maße und Oberflächenbeschaffenheit

Die Einhaltung der Grenzmaße und die Beschaffenheit der Oberfläche jedes Stückes sind zu prüfen.

²⁾ In anderen EU-Mitgliedstaaten k\u00f6nnen abweichende Vorschriften bestehen.

³⁾ Die grundlegenden Anforderungen an die zuständige unabhängige Stelle im Sinne des AD 2000-Regelwerkes sind im AD 2000-Merkblatt G 1, Abschnitt 4 festgelegt.

⁴⁾ Das Fertigungslos ist definiert als die Menge der Halbzeugform eines Auftrages aus einem Werkstoff gleichen Lieferzustandes, gleicher Abmessung und ggf. der gleichen Schmelze, die kontinuierlich in gleicher Fertigungsfolge und gleichen Fertigungseinrichtungen hergestellt wurde.

AD 2000-Merkblatt W 6/2, Ausg. 03.2009 Seite 3

4.3 Sonstige Prüfungen

4.3.1 Bleche, Bänder und Platten

Zugversuch

Erzeugnis- form	Dicke mm	Prüfeinheit für den Zugversuch	Probenent- nahmeort	Proben- richtung
Band	alle	Band	Anfang und Ende	
Blech Platte	≤ 20	10 % der Walz- tafeln bzw. Platten, mind. jedoch an einem Stück jedes Fertigungsloses	an einem Ende	quer
	> 20	Walztafel bzw. Platte		

Es ist je Prüfeinheit und Probenentnahmeort ein Zugversuch bei Raumtemperatur durchzuführen. Zu bestimmen sind $R_{\rm p0,2}$ oder $R_{\rm p1,0}$, $R_{\rm m}$ und A.

4.3.2 Nahtlose Rohre

Zugversuch

Außen- durchmesser mm	Prüfeinheit für den Zugversuch	Probenent- nahmeort	Proben- richtung
≤ 76	1500 m eines Fertigungsloses oder 500 kg eines Fertigungsloses, sofern das Fertigungslos größer als 5000 m ist	an einem Ende	längs
> 76	500 kg eines Fertigungsloses		

Es ist je Prüfeinheit und Probenentnahmeort ein Zugversuch bei Raumtemperatur durchzuführen. Je Fertigungslos⁴⁾ sind jedoch mindestens zwei Zugversuche durchzuführen. Zu bestimmen sind $R_{\rm p0,2}$ oder $R_{\rm p1,0}$, $R_{\rm m}$ und A.

Aufweitversuch

Entsprechend der Anzahl der Zugversuche sind Aufweitversuche nach DIN EN ISO 8493 an beiden Enden der Proberohre durchzuführen. Eine Aufweitung des Außendurchmessers um 30 % darf zu keinem Anriss führen.

Dichtheitsprüfung

Alle Rohre sind auf Dichtheit zu prüfen. Die Prüfung wird im harten oder weichen Zustand der Rohre mit Wirbelstrom nach dem DKI-Werkstoff-Prüfblatt Nr. 781, Prüfklasse A⁵⁾, durchgeführt. Falls der Besteller es verlangt, kann anstelle der Wirbelstromprüfung auch der Innendruckversuch nach DIN 50104 mit einem Überdruck von max. 50 bar benutzt werden.

- Gefügeuntersuchung

Je 1000 Rohre, maximal jedoch nur im Umfang der Zugversuche, ist eine Gefügeuntersuchung durchzuführen; dabei ist der mittlere Korndurchmesser zu ermitteln (siehe DIN EN 12451 und EN ISO 2624).

Prüfung auf Spannungsfreiheit

Im Umfang des Zugversuches sind bei Rohren aus Kupfer-Zink-Legierungen Prüfungen in Quecksilbernitrat (DIN EN ISO 196) oder Ammoniak bzw. Kupfertetramin (DIN 50916-1) auf Spannungsfreiheit durchzuführen.

4.3.3 Stangen

Zugversuch

Prüfeinheit für den	Probenentnahme-	Proben-	
Zugversuch	ort	richtung	
Fertigungslos, Abmessung und 500 kg Liefergewicht	an einem Ende	längs	

Stangen etwa gleicher Abmessungen können zu einer Prüfeinheit zusammengefasst werden, sofern nicht durch unterschiedliche Umformung (Durchknetung) abweichende Eigenschaften der einzelnen Teile bedingt sind. Die Gleichmäßigkeit der Teile ist durch Härteprüfung nachzuweisen.

Es ist je Prüfeinheit und Probenentnahmeort ein Zugversuch bei Raumtemperatur durchzuführen. Je Fertigungslos⁴⁾ werden jedoch höchstens vier Zugversuche durchgeführt. Zu bestimmen sind $R_{\rm p0,2}$ oder $R_{\rm p1,0}$, $R_{\rm m}$ und A.

4.3.4 Schmiedestücke

Zugversuch

Prüfeinheit für den Zugversuch	Probenrichtung	
Fertigungslos, Abmessung und 500 kg Liefergewicht	quer oder tangential	

Schmiedestücke etwa gleicher Abmessungen können zu einer Prüfeinheit zusammengefasst werden, sofern nicht durch unterschiedliches Schmieden abweichende Eigenschaften der einzelnen Teile bedingt sind. Die Gleichmäßigkeit der Teile ist durch Härteprüfung nachzuweisen.

Es ist je Prüfeinheit ein Zugversuch bei Raumtemperatur durchzuführen. Je Fertigungslos⁴⁾ werden jedoch höchstens vier Zugversuche durchgeführt. Zu bestimmen sind $R_{\rm p0,2}$ oder $R_{\rm p1,0}$, $R_{\rm m}$ und A.

5 Kennzeichnung

- 5.1 Alle Erzeugnisse sind mit
- Zeichen des Herstellers,
- Werkstoffkurzzeichen oder Werkstoffnummer,
- Nummer des Fertigungsloses⁴⁾,
- Zeichen der zuständigen unabhängigen Stelle oder des Werkssachverständigen

zu kennzeichnen.

- **5.2** Zur Kennzeichnung ist wasserunlösliche Farbe oder eine andere geeignete dauerhafte Stempelung zu verwenden.
- **5.3** Bleche, Bänder, Platten und Schmiedestücke sind zusätzlich mit der Proben-Nummer zu kennzeichnen.

Bei Blechen und Bändern ≤ 5 mm Dicke aus Kupfer-Zink-Legierungen sind Kennzeichnungen durch Schlagstempel unzulässig.

5.4 Bei nahtlosen Rohren mit Wanddicken ≤ 5 mm aus Kupfer-Zink-Legierungen sind Kennzeichnungen durch

⁴⁾ Siehe Seite 2.

⁵⁾ Für Rohre mit höheren Anforderungen kann eine andere Prüfklasse vereinbart werden.

Seite 4 AD 2000-Merkblatt W 6/2, Ausg. 03.2009

Schlagstempel unzulässig. Eine Rollenstempelung über die gesamte Länge ist bei Rohren und Stangen zulässig. Werden die Rohre oder Stangen in Kisten oder Bündeln geliefert, so ist bei Rohren bei einem äußeren Durchmesser ≤ 20 mm und bei Stangen mit einer Dicke (Durchmesser, Kantenlänge, Schlüsselweite oder Breite) ≤ 25 mm eine Sammelbezeichnung, an der Kiste durch Aufkleber oder am Bündel durch Anhängeschild, zulässig.

6 Nachweis der Güteeigenschaften

6.1 Bleche, Bänder und Platten

Über die mechanischen Eigenschaften, die Oberflächenbeschaffenheit und für Maßprüfungen sind die folgenden Abnahmeprüfzeugnisse nach DIN EN 10204 erforderlich:

Erzeugnisse aus

Abnahmeprüfzeugnis 3.16)

Cu-DHP

 Erzeugnisse aus CuAl10Ni5Fe4 Abnahmeprüfzeugnis 3.2

für alle anderen Werkstoffe gilt:

Band

Abnahmeprüfzeugnis 3.16)

 Blech und Platte, die nicht für Rohrböden vorgesehen sind

≤ 20 mm Dicke Abnahmeprüfzeugnis 3.1⁶⁾ > 20 mm Dicke Abnahmeprüfzeugnis 3.2

 Blech und Platte für Rohrböden

> ≤ 60 mm Dicke Abnahmeprüfzeugnis 3.1⁶⁾ > 60 mm Dicke Abnahmeprüfzeugnis 3.2

6.2 Nahtlose Rohre

Die chemische Zusammensetzung und die Prüfung der Rohre auf Dichtheit werden durch ein Abnahmeprüfzeugnis 3.1 nach DIN EN 10204 bescheinigt.

Über die mechanisch-technologischen Eigenschaften, Prüfung auf Spannungsfreiheit, das Gefüge, die Oberflächenbeschaffenheit und für Maßprüfungen sind die folgenden Abnahmeprüfzeugnisse nach DIN EN 10204 erforderlich:

 Erzeugnisse aus Cu-DHP Abnahmeprüfzeugnis 3.16)

für alle anderen Werkstoffe gilt:

≤ 2,0 mm Wanddicke Abnahmeprüfzeugnis 3.1⁶⁾ > 2,0 mm Wanddicke Abnahmeprüfzeugnis 3.2

6.3 Stangen

Über die mechanischen Eigenschaften, die Oberflächenbeschaffenheit und für Maßprüfungen sind die folgenden Abnahmeprüfzeugnisse nach DIN EN 10204 erforderlich:

Erzeugnisse aus

Abnahmeprüfzeugnis 3.16)

Cu-DHP

 Erzeugnisse aus CuAl10Ni5Fe4 Abnahmeprüfzeugnis 3.2

für alle anderen Werkstoffe gilt:

≤ 60 mm Dicke/ Durchmesser Abnahmeprüfzeugnis 3.1⁶⁾

Duicilliessei

> 60 mm Dicke/ Abnahmeprüfzeugnis 3.2

Durchmesser

6.4 Schmiedestücke

Über die mechanischen Eigenschaften, die Oberflächenbeschaffenheit und für Maßprüfungen sind die folgenden Abnahmeprüfzeugnisse nach DIN EN 10204 erforderlich:

≤ 80 mm Dicke Abnahmeprüfzeugnis 3.1⁶⁾ > 80 mm Dicke Abnahmeprüfzeugnis 3.2

6.5 Inhalt der Abnahmeprüfzeugnisse nach DIN EN 10204

Die Abnahmeprüfzeugnisse müssen die in den Technischen Lieferbedingungen/Normen geforderten Angaben enthalten. Außerdem ist in jedem Abnahmeprüfzeugnis die der Lieferung zugrunde liegende Technische Lieferbedingung/Norm (z. B. DIN EN 12165) und Technische Regel (AD 2000-Merkblatt W 6/2) anzugeben.

6.6 Die Gültigkeit der Prüfbescheinigung nach DIN EN 10204:2005 ist im AD 2000-Merkblatt W 0, Abschnitt 3.4 geregelt.

7 Kennwerte für die Bemessung

- 7.1 In den Tafeln 6 bis 11 sind die Mindestwerte für 0,2 %-oder 1,0 %-Dehngrenze, für Cu-DHP R200 und R220 auch die Mindestzugfestigkeit, in Abhängigkeit von der Temperatur angegeben (Kurzzeitwerte). Für die Berechnung von Druckbehältern aus duktilen Kupferwerkstoffen kann im Kurzzeitbereich anstelle der 0,2 %-Dehngrenze die 1,0 %-Dehngrenze verwendet werden, wenn das Verhältnis 0,2 %-Dehngrenze zur Zugfestigkeit bei Raumtemperatur \leq 0,5 ist und die Bruchdehnung in Querrichtung mindestens 25 % oder in Längsrichtung mindestens 27 % beträgt.
- 7.2 In den Tafeln 12.1 bis 12.3 sind Zeitdehngrenzwerte in Abhängigkeit von Temperatur und Auslegungsdauer angegeben. Es handelt sich dabei um die untere Streubandgrenze für die Zeitdehngrenzen und bei Cu-DHP R250 zusätzlich um den Mittelwert der Zeitstandfestigkeit. Der für Stähle in der Regel verwendete Mittelwert der Zeitstandfestigkeit kann für Kupfer und Kupferlegierungen nicht verwendet werden, weil dabei zu hohe plastische Verformungen auftreten.
- **7.3** Die Tafeln 13.1 bis 13.3 enthalten die jeweils zulässige Spannung K/S. Sie ergibt sich aus dem jeweils kleinsten Wert von 0,2 %-Dehngrenze/1,5 oder 1,0 %-Dehngrenze/1,5 und 1 %-Zeitdehngrenze/1,0. Für Cu-DHP R200 und R220 ergibt sich die zulässige Spannung K/S aus Zugfestigkeit/3,5 für geschweißte und unbehandelte Teile oder Zugfestigkeit/4 für gelötete Teile, obwohl dabei nicht auszuschließen ist, dass das Bauteil im Laufe der Betriebszeit eine plastische Verformung von mehr als 1 % erfahren kann.

Die zulässigen Spannungen bei Raumtemperatur gelten bis 50 °C. Für die übrigen Temperaturen ist zwischen den angegebenen Werten linear zu interpolieren.

- **7.4** Für geschweißte, hartgelötete oder wärmebehandelte Bauteile sind bei der Berechnung die Kennwerte des Werkstoffzustandes mit den niedrigsten Kennwerten zugrunde zu legen.
- **7.5** Die Tafel 14 enthält Angaben zum Elastizitätsmodul. Die Streuung beträgt \pm 5 %.

Der Hersteller hat der zuständigen unabhängigen Stelle, unterteilt nach Abmessungsbereichen, den Nachweis der ausreichenden statistischen Sicherheit zu erbringen. Dieser Nachweis ist in bestimmten Zeitabständen (1 bis 2 Jahre) zu wiederholen, sofern dies nicht im Rahmen sonstiger Abnahmen geschieht.

Tafel 1. Geeignete Werkstoffe

	Werkstoffkurzzeichen	Werkstoff- nummer	Werkstoffzustände ¹⁾	Grenzter	mperatur ²⁾
Ī	Cu-DHP	CW024A	R200, R220, R240, R250	– 269 bis	250 °C
	CuZn40	CW509L	R340, H075, R400	- 196 bis	250 °C
Ī	CuZn39Pb0,5	CW610N	R340, R400	- 196 bis	250 °C
-	CuZn39Pb2Sn	CW613N	H075	– 196 bis	250 °C
ı	CuZn39Pb3	CW614N	H080	- 196 bis	250 °C
Ī	CuZn40Pb2	CW617N	R360, H075	– 196 bis	250 °C
	CuZn20Al2As	CW702R	R300, R330, R340, R390	- 10 ³⁾ bis	250 ⁴⁾ °C
-	CuZn28Sn1As	CW706R	R320, R360	- 269 bis	250 ⁴⁾ °C
Ī	CuZn38Sn1As	CW717R	R340, R400	- 10 ³⁾ bis	250 °C
	CuZn38AlFeNiPbSn	CW715R	R390, R430	- 196 bis	250 °C
-	CuNi10Fe1Mn	CW352H	R280, R290, R300, R320, R350, H070	- 269 bis	300 °C
Ī	CuNi30Mn1Fe	CW354H	R320, R340, R350, R370, R410, H080, H090	– 269 bis	350 °C
Ī	CuAl10Ni5Fe4	CW307G	R620, H170	- 10 ³⁾ bis	250 °C
	CuNi30Fe2Mn2	CW353H	R420	- 269 bis	250 °C

Der Zustand wird in EN 1173 definiert (z. B. Zustand R = bezeichnet mit dem kleinsten Wert für die Anforderungen an die Zugfestigkeit für das Produkt mit vorgeschriebenen Anforderungen an die Zugfestigkeit, 0,2 %-Dehngrenze und Bruchdehnung).

4) CuZn20Al2As, R300, R330 und CuZn28Sn1As R320 nur bis 150 °C.

Anmerkung zu den Werkstoffen:

Die nachfolgend aufgeführten Werkstoffe sind in folgenden Normen enthalten (siehe auch Abschnitte 3.2 und 3.6)

Cu-DHP: DIN EN 1057, 1652, 1653, 12163, 12165, 12167, 12449, 12451, 12452, 12735-1, 13348

CuZn40: DIN EN 1652, 12163, 12165, 12167, 12420, 12449

CuZn39Pb0,5: DIN EN 1652, 1653, 12164, 12167, 12420

 CuZn39Pb2Sn:
 DIN EN 12420

 CuZn39Pb3:
 DIN EN 12164, 12420

 CuZn40Pb2:
 DIN EN 12164, 12420

CuZn20Al2As: DIN EN 1652, 1653, 12167,12449, 12451

CuZn28Sn1As: DIN EN 12451, 12452 CuZn38Sn1As: DIN EN 1653, 12164

CuZn38AlFeNiPbSn: DIN EN 1653

 CuNi10Fe1Mn:
 DIN EN 1652, 1653, 12163, 12165, 12420, 12449, 12451, 12452

 CuNi30Mn1Fe:
 DIN EN 1652, 1653, 12163, 12165, 12420, 12449, 12451, 12452

CuAl10Ni5Fe4: DIN EN 1653, 12163, 12165, 12167, 12420

CuNi30Fe2Mn2: DIN EN 12451

Die tiefsten Temperaturen gelten für ungeschweißte Teile. Für geschweißte Teile legt die zuständige unabhängige Stelle die niedrigsten Einsatztemperaturen fest.

Diese Werkstoffe sind auch für tiefere Einsatztemperaturen geeignet. Prüfergebnisse liegen zurzeit nicht vor.

| Seite 6 | AD 2000-Merkblatt W 6/2, Ausg. 03.2009

Tafel 2. Geeignete Werkstoffe, Werkstoffzustände und Abmessungen für Bleche, Bänder und Platten

NA a wheat of the summericals are	Werkstoffzustand	Markataffin unaman	Dicke in mm			
Werkstoffkurzzeichen	werkstonzustand	Werkstoffnummer	DIN EN 1652	DIN EN 1653		
Cu-DHP	R200 R220 R240	CW024A	> 5 bis ≤ 15 ≥ 0,2 bis ≤ 5 ≥ 0,2 bis ≤ 15	> 15 bis ≤ 50 - -		
CuZn40	R340 R400	CW509L	≥ 0,3 bis ≤ 10 ≥ 0,3 bis ≤ 10			
CuZn39Pb0,5	R340 R400	CW610N	≥ 0,3 bis ≤ 10 ≥ 0,3 bis ≤ 10	> 2,5 bis ≤ 40 > 10 bis ≤ 40		
CuZn20Al2As	R300 R330 R390	CW702R	- ≥ 3 bis ≤ 15 ≥ 3 bis ≤ 15	> 2,5 bis ≤ 80 - > 10 bis ≤ 40		
CuZn38Sn1As	R340 R400	CW717R		> 2,5 bis ≤ 75 > 2,5 bis ≤ 40		
CuZn38AIFeNiPbSn	R390 R430	CW715R		> 2,5 bis ≤ 120 > 2,5 bis ≤ 40		
CuNi10Fe1Mn	R300 R320 R350	CW352H	≥ 0,3 bis ≤ 15 ≥ 0,3 bis ≤ 15 -	> 2,5 bis ≤ 10 > 2,5 bis ≤ 60 > 10 bis ≤ 40		
CuNi30Mn1Fe	R350 R410	CW354H	≥ 0,3 bis ≤ 15 ≥ 0,3 bis ≤ 15	- > 10 bis ≤ 40		
CuAl10Ni5Fe4	R620	CW307G		> 15 bis ≤ 50		

Tafel 3. Geeignete Werkstoffe, Werkstoffzustände und Abmessungen für nahtlose Rohre

Werkstoffkurzzeichen	Werkstoffzustand	Werkstoffnummer	Wanddicke mm	max. Durchmesser mm
Cu-DHP	R200 R220 R250	CW024A	> 3 ≤ 3 ≤ 5	200 108 108
CuZn20Al2As	R340 R390	CW702R	≤ 5 ≤ 5	76 76
CuZn28Sn1As	R320 R360	CW706R	≤ 5 ≤ 5	76 76
CuNi10Fe1Mn	R290	CW352H	≤ 5	76
CuNi30Mn1Fe	R370	CW354H	≤ 5	76
CuNi30Fe2Mn2	R420	CW353H	≤ 3	76

Tafel 4. Geeignete Werkstoffe, Werkstoffzustände und Abmessungen für Stangen

	Werkstoffkurzzeichen	Werkstoffzustand	Werkstoffnummer	Durchmesser mm
	Cu-DHP R200 R240		CW024A	> 2 bis ≤ 80 > 6 bis ≤ 60
	CuZn40	R340 R400	CW509L	≥ 2 bis ≤ 80 > 6 bis ≤ 60
l	CuZn39Pb3	R360	CW614N	> 40 bis ≤ 80
	CuZn40Pb2	R360	CW617N	> 40 bis ≤ 80
	CuNi10Fe1Mn	R280	CW352H	≥ 10 bis ≤ 80
	CuNi30Mn1Fe	R340	CW354H	≥ 10 bis ≤ 80
	CuAl10Ni5Fe4	H170	CW307G	≥ 10 bis ≤ 80

Tafel 5. Geeignete Werkstoffe, Werkstoffzustände und Abmessungen für Schmiedestücke

	Werkstoffkurzzeichen	Werkstoffzustand	Werkstoffnummer	Dicke mm
	CuZn40	H075	CW509L	bis 120
	CuZn39Pb2Sn	H075	CW613N	bis 120
I	CuZn39Pb3	H080	CW614N	bis 120
	CuZn40Pb2	H075	CW617N	bis 120
	CuNi10Fe1Mn	H070	CW352H	bis 100
	CuNi30Mn1Fe	H080 H090	CW354H	bis 100
	CuAl10Ni5Fe4	H170	CW307G	bis 100

| Seite 8 AD 2000-Merkblatt W 6/2, Ausg. 03.2009

Tafel 6. Mechanische Eigenschaften bei Raumtemperatur für Bleche, Bänder und Platten

Werkstoffkurzzeichen	Werkstoff- zustand	Proben- richtung	R _{p0,2} MPa mind.	$R_{ m p1,0}$ MPa mind.	R _m MPa mind.	A ¹⁾ % mind.	A ²⁾ % mind.
	R200		40	60	200	42	33
Cu-DHP	R220		45	65	220	42	_
	R240		180	_	240	15	_
0.7.40	R340	-	120	140	340	43	-
CuZn40	R400	-	240	-	400	23	_
CuZn39Pb0,5	R340	-	120	140	340	43	30
Guziis9Fb0,5	R400	-	200	-	400	23	23
CuZn20Al2As	R300		90	100	300	-	35
	R330	- quer	90	100	330	30	-
	R390		240	-	390	-	35
0.7.000.44	R340		140	175	340	-	30
CuZn38Sn1As	R400		200	-	400	-	18
CuZn38AlFeNiPbSn	R390		140	180	390	-	25
CUZIISOAIFENIFDSII	R430		200	-	430	_	20
	R300		120	145	300	30	25
CuNi10Fe1Mn	R320		200	-	320	15	15
	R350		250	-	350	-	14
CuNi30Mn1Fe	R350		150	140	350	35	_
Culvi30IVINTFe	R410		300	1	410	14	14
CuAl10Ni5Fe4	R620		270	-	620	14	-

Bruchdehnung nach DIN EN 1652
 Bruchdehnung nach DIN EN 1653

Tafel 7. Mechanische Eigenschaften bei Raumtemperatur für nahtlose Rohre

Werkstoffkurzzeichen	Werkstoff- zustand	Proben- richtung	R _{p0,2} MPa mind.	R _{p1,0} MPa mind.	R _m MPa mind.	A % mind.
	R200		40	60	200	40
Cu-DHP	R220		45	65	220	40
	R250		150	-	250	20
CuZn20Al2As	R340		120	130	340	55
CuznzoAizAs	R390	längs	150	160	390	45
CuZn28Sn1As	R320		100	105	320	55
Cuznizosimas	R360		140	150	360	45
CuNi10Fe1Mn	R290		90	115	290	30
CuNi30Mn1Fe	R370		120	140	370	35
CuNi30Fe2Mn2	R420		150	_	420	30

AD 2000-Merkblatt

| Seite 10 AD 2000-Merkblatt W 6/2, Ausg. 03.2009

Tafel 8. Mechanische Eigenschaften bei Raumtemperatur für Stangen und Schmiedestücke

Werkstoffkurzzeichen	Werkstoff- zustand	Proben- richtung	R _{p0,2} MPa mind.	R _{p1,0} MPa mind.	R _m MPa mind.	A % mind.
Cu-DHP	R200		40	60	200	35
Cu-DHF	R240		160	_	240	18
	R340		120	140	340	25
CuZn40	R400		250	_	400	20
	H075		120	140	340	25
CuZn39Pb2Sn	H075		120	140	340	20
CuZn39Pb3	R360		120	140	340	20
Cuziis9Fb3	H080	längs, quer oder tangential	120	140	340	20
CuZn40Pb2	R360		120	140	360	20
Cuzii40Fb2	H075		120	140	340	20
CuNi10Fe1Mn	R280		100	125	280	30
Cunitoretwin	H070		100	125	280	25
	R340		120	140	340	30
CuNi30Mn1Fe	H080		120	140	310	20
	H090		120	140	340	25
CuAl10Ni5Fe4	H170		270	-	620	15

Tafel 9. Mechanische Eigenschaften bei erhöhten Temperaturen für Bleche, Bänder und Platten

				Min	destwer	t bei Tei	mperatu	r °C	
Werkstoffkurzzeichen	Werkstoff- zustand	Prüfwertart	50	100	150	200	250	300	350
						MPa	Ī	Ī	_
	R200	R _{p1,0}	60	55	55	_	_	_	_
	11200	R_{m}	200	200	175	150	125	_	_
Cu-DHP	R220	R _{p1,0}	65	58	58	-	_	_	_
	H220	R_{m}	220	220	195	170	145	_	_
	R240	R _{p0,2}	180	170	160	150	_	_	_
CuZn40	R340	R _{p1,0}	140	137	137	132	_	_	_
GuZ1140	R400	R _{p0,2}	240	220	200	_	_	_	_
CuZn39Pb0,5	R340	R _{p1,0}	140	137	137	132	_	_	_
Guziloar bo,5	R400	R _{p0,2}	200	190	180	_	_	_	_
	R300	R _{p1,0}	100	86	86	_	_	_	_
CuZn20Al2As	R330	R _{p1,0}	100	86	86	_	_	_	_
	R390	$R_{p0,2}$	240	230	225	-	_	_	_
CuZn38Sn1As	R340	R _{p1,0}	175	172	168	-	_	_	_
Ouzhoudinas	R400	R _{p0,2}	200	190	180	-	_	_	_
CuZn38AlFeNiPbSn	R390	R _{p1,0}	180	175	172	170	_	_	-
Guzhooan enn bon	R430	R _{p0,2}	200	185	185	175	_	_	_
	R300	R _{p1,0}	145	138	133	128	123	118	_
CuNi10Fe1Mn	R320	R _{p0,2}	200	190	185	175	170	165	_
	R350	R _{p0,2}	250	235	225	220	210	205	_
CuNi30Mn1Fe	R350	R _{p1,0}	175	163	158	153	148	143	138
Outvioolviiiii e	R410	R _{p0,2}	300	275	265	260	255	245	240
CuAl10Ni5Fe4	R620	R _{p0,2}	270	265	260	260	250	_	_

| Seite 12 AD 2000-Merkblatt W 6/2, Ausg. 03.2009

Tafel 10. Mechanische Eigenschaften bei erhöhten Temperaturen für nahtlose Rohre

				Min	destwer	t bei Tei	mperatu	r °C	
Werkstoffkurzzeichen	Werkstoff- zustand	Prüfwertart	50	100	150	200	250	300	350
				Ī		MPa	Ī	Ī	
	R200	R _{p1,0}	60	55	55	-	-	_	_
	H200	R_{m}	200	200	175	150	125	_	_
Cu-DHP	R220	R _{p1,0}	65	58	58	-	-	_	_
	HZZU	R_{m}	220	220	195	170	145	_	_
	R250	R _{p0,2}	150	135	130	125	120	_	_
CuZn20Al2As	R340	R _{p1,0}	130	125	125	120	_	_	_
CuziizuAizAs	R390	R _{p1,0}	160	148	143	138	_	_	_
CuZn28Sn1As	R320	R _{p1,0}	105	103	100	_	_	_	_
CuziizosiiiAs	R360	R _{p1,0}	150	144	140	135	-	-	-
CuNi10Fe1Mn	R290	R _{p1,0}	115	108	105	102	98	93	-
CuNi30Mn1Fe	R370	R _{p1,0}	140	130	126	123	120	117	112
CuNi30Fe2Mn2	R420	$R_{p0,2}$	150 (145)	140	135	125	120	_	_

Tafel 11. Mechanische Eigenschaften bei erhöhten Temperaturen für Stangen und Schmiedestücke

				Min	destwer	t bei Tei	mperatu	r °C	
Werkstoffkurzzeichen	Werkstoff- zustand	Prüfwertart	50	100	150	200	250	300	350
						MPa			
	R200	$R_{\rm p1,0}$	60	55	55	_	_	_	_
Cu-DHP	11200	R_{m}	200	200	175	150	125	-	_
	R240	$R_{p0,2}$	160	140	130	125	120	_	_
	R340	$R_{\rm p1,0}$	140	137	137	132	_	_	_
CuZn40	R400	$R_{p0,2}$	250	225	200	_	_	_	_
	H075	$R_{\rm p1,0}$	140	137	137	132	_	_	_
CuZn39Pb2Sn	H075	$R_{\rm p1,0}$	140	137	137	132	_	_	_
CuZn39Pb3	R360	R _{p1,0}	140	137	137	132	_	_	_
Cuziloarbo	H080	R _{p1,0}	140	137	137	132	_	_	_
CuZn40Pb2	R360	R _{p1,0}	140	137	137	132	_	_	_
Guzii40Fb2	H075	R _{p1,0}	140	137	137	132	_	_	_
CuNi10Fe1Mn	R280	R _{p1,0}	125	118	114	109	104	99	_
Cunitoretiviii	H070	R _{p1,0}	125	118	114	109	104	99	_
	R340	R _{p1,0}	140	130	126	123	120	117	112
CuNi30Mn1Fe	H080	R _{p1,0}	140	130	126	123	120	117	112
	H090	$R_{\rm p1,0}$	140	130	126	123	120	117	112
CuAl10Ni5Fe4	H170	$R_{p0,2}$	270	265	260	260	250	_	_

Normen-Ticker - Universitatsbibliothek Zweigstelle Vaihingen - Kd.-Nr.6235210 - Abo-Nr.00664690/020/001 - 2010-10-04 13:37:40

Tafel 12.1 Langzeit-Warmfestigkeitseigenschaften für Cu-DHP R200 und R220

		2 %-Zeitde	hngrenze f	ür						
Temperatur °C	10 000 h	30 000 h	50 000 h	100 000 h						
_	MPa									
100	58	57	57	56						
110	57	56	56	55						
120	56	54	54	53						
130	55	54	53	52						
140	54	53	52	51						
150	53	51	50	49						
160	52	50	49	47						
170	51	49	48	46						
180	49	47	46	44						
190	47	45	44	42						
200	46	43	42	40						
210	44	41	40	38						
220	42	39	38	36						
230	40	37	36	34						
240	39	36	34	32						
250	37	34	32	30						

Tafel 12.2 Langzeit-Warmfestigkeitseigenschaften für Cu-DHP R240 und R250

		1 %-Zeitdeh	nngrenze für		Zeitstandfestigkeit (Mittelwert) für					
Temperatur °C	10 000 h	30 000 h	50 000 h	100 000 h	10 000 h	30 000 h	50 000 h	100 000 h		
		М	Pa		MPa					
150	160	153	146	145	212	204	200	195		
160	154	145	141	136	207	196	192	187		
170	147	138	133	126	202	188	184	177		
180	139	128	123	117	196	180	175	166		
190	130	118	113	106	188	171	164	155		
200	122	108	103	94	180	161	153	143		
210	112	98	91	82	170	148	139	129		
220	102	86	79	69	159	134	124	114		
230	90	73	65	55	145	120	111	99		
240	78	61	52	42	128	103	94	82		
250	66	49	39	28	109	84	76	64		

| Seite 14 AD 2000-Merkblatt W 6/2, Ausg. 03.2009

Tafel 12.3 Langzeit-Warmfestigkeitseigenschaften der Werkstoffe nach Tafel 1, ausgenommen Cu-DHP

Werkstoffkurzzeichen			1 %-Zeitdeh	ngrenze für	
und Werkstoffzustände	Temperatur °C	10 000 h	30 000 h	50 000 h	100 000 h
Werkstonzustande			MI	Pa	
	100	145	135	130	125
	110	139	126	120	114
	120	130	117	111	104
	130	120	106	100	93
	140	108	95	89	82
CuZn40 R340, H075, R400	150	96	84	78	72
CuZn39Pb0,5 R340, R400	160	84	72	67	61
CuZn39Pb2Sn H075	170	72	61	56	50
CuZn39Pb3 R360, H080	180	60	51	46	40
CuZn40Pb2 R360, H075 CuZn38Sn1As R340, R400	190	48	39	35	31
04211000111110110, 111100	200	37	30	27	24
	210	29	23	21	18
	220	23	18	16	13
	230 240	18 14	14 11	12 9	9 7
	250	12	9	7	5
	100	175	167	164	160
	110	165	156	152	148
	120	155	146	142	137
	130 140	145 135	136 125	131 120	126 115
	150	125	114	109	104
	160	116	104	98	92
CuZn20Al2As R300, R330,	170	106	93	87	81
R340, R390	180 190	96 86	83 72	76 65	70 59
	200	77	62 50	55 46	48
	210	67	52	46 36	38
	220 230	57 46	43 33	36 27	29 21
	240	34	33 24	20	21 15
	250	24	16	13	10
	150	112	104	100	96
	160	107	97	92	87
	170	100	87	81	74
	180	92	75	67	58
	190	81	63	55	46
CuZn28Sn1As R320, R360	200	68	52	44	36
	210	54	40	34	27
	220	43	31	26	20
	230	33	24	20	15
	240	25	17	14	10

Normen-Ticker - Universitatsbibliothek Zweigstelle Vaihingen - Kd.-Nr.6235210 - Abo-Nr.00664690/020/001 - 2010-10-04 13:37:40

Tafel 12.3 (Fortsetzung)

Werkstoffkurzzeichen			1 %-Zeitdel	ngrenze für	
und Werkstoffzustände	Temperatur °C	10 000 h	30 000 h	50 000 h	100 000 h
Werneten Zuetan de			M	Pa	
	100 110 120 130 140	144 137 130 123 116	138 131 124 116 108	137 128 121 113 105	132 125 118 110 101
CuZn38AlFeNiPbSn R390, R430	150 160 170 180 190	108 100 91 82 73	100 91 81 72 63	96 87 77 67 58	92 82 72 62 53
	200 210 220 230 240	64 55 46 38 31	54 45 37 30 23	49 41 33 26 20	44 36 29 22 16
	250	24	17	14	11
CuNi10Fe1Mn	200 210 220 230 240	98 96 94 92 90	96 94 92 90 88	95 93 91 89 87	94 92 90 88 86
R280, R290, R300, R320, R350, H070	250 260 270 280 290	88 86 83 80 77	85 83 80 76 72	84 82 79 75 70	83 80 77 73 68
	300	74	68	65	62
	200 210 220 230 240	107 105 104 102 101	104 102 101 99 98	103 101 100 98 97	102 100 99 97 96
CuNi30Mn1Fe R320, R340, R350, R370, R410, H080, H090 CuNi30Fe2Mn2 R420	250 260 270 280 290	99 98 96 95 93	96 95 93 92 90	95 94 92 91 89	94 92 91 89 88
jedoch nur bis 250 °C	300 310 320 330 340	92 90 89 87 86	89 87 86 84 83	88 86 85 83 82	86 84 83 82 80
	350	84	81	80	78
	150 160 170 180 190	252 243 236 229 223	242 233 226 219 213	237 228 221 214 208	232 224 216 209 203
CuAl10Ni5Fe4 R620, H170	200 210 220 230 240	218 213 210 207 205	207 202 199 196 194	202 197 193 190 188	198 193 188 185 182
	250	204	192	186	180

| Seite 16 AD 2000-Merkblatt W 6/2, Ausg. 03.2009

Tafel 13.1 Zulässige Spannung K/S für Blech, Band oder Platte

			2	Zulässige	Spannun	g <i>K/S</i> in N	1Pa für Aı	uslegungs	dauer in l	h			
Tem-			Cu-	DHP			CuZn40 und CuZn39Pb0,5						
peratur °C	R200	R200 ¹⁾	R220	R220 ¹⁾	R2	240	R3	340	R400		R400 ²⁾		
		bis 10	0 000		10 000	100 000	10 000	100 000	10 000	100 000	10 000	100 000	
20/50	57	50	63	55	120	120	93	93	160	160	133	133	
100	57	50	63	55	113	113	91	91	145	125	127	125	
110	56	49	62	54	112	112	91	91	139	114	125	114	
120	54	48	60	53	111	111	91	91	130	104	125	104	
130	53	46	59	51	109	109	91	91	120	93	120	93	
140	51	45	57	50	108	108	91	82	108	82	108	82	
150	50	44	56	49	107	107	91	72	96	72	96	72	
160	49	43	54	48	106	106	84	61	84	61	84	61	
170	47	41	53	46	104	104	72	50	72	50	72	50	
180	46	40	51	45	103	103	60	40	60	40	60	40	
190	44	39	50	44	101	101	48	31	48	31	48	31	
200	43	38	49	43	100	94	37	24	37	24	37	24	
210	41	36	47	41	99	82	29	18	29	18	29	18	
220	40	35	46	40	97	69	23	13	23	13	23	13	
230	39	34	44	39	90	55	18	9	18	9	18	9	
240	37	33	43	38	78	42	14	7	14	7	14	7	
250	36	31	41	36	66	28	12	5	12	5	12	5	

¹⁾ gelötet

			Zulässi	ge Spann	ung <i>K/S</i> ir	MPa für	Auslegung	gsdauer in	h			
Tem-	CuZi	n20Al2As			CuZn38	3Sn1As		CuZn38AlFeNiPbSn				
peratur °C	R300/R330	R3	390	R3	340	R400		R390		R430		
	bis 100 000	10 000	100 000	10 000	100 000	10 000	100 000	10 000	100 000	10 000	100 000	
20/50	67	160	160	117	117	133	133	120	120	133	133	
100 110 120 130 140	57 57 57 57 57	153 153 153 145 135	153 148 137 126 115	115 114 114 113 108	115 114 104 93 82	127 125 124 120 108	125 114 104 93 82	117 116 116 115 115	117 116 116 110 101	123 123 123 123 116	123 123 118 110 101	
150 160 170 180 190	57 kein	125 116 106 96 86	104 92 81 70 59	96 84 72 60 48	72 61 50 40 31	96 84 72 60 48	72 61 50 40 31	108 100 91 82 73	92 82 72 62 53	108 100 91 82 73	92 82 72 62 53	
200 210 220 230 240	Einsatz über 150°C	77 67 57 46 34	48 38 29 21 15	37 29 23 18 14	24 18 13 9 7	37 29 23 18 14	24 18 13 9 7	64 55 46 38 31	44 36 29 22 16	64 55 46 38 31	44 36 29 22 16	
250		24	10	12	5	12	5	24	11	24	11	

 $^{^{2)} &}gt; 10 \text{ bis} \le 40 \text{ mm}$

Tafel 13.1 (Fortsetzung)

			;	Zulässige	Spannung	g <i>K/S</i> in Mi	Pa für Aus	slegungsda	auer in h		
Tem- peratur			CuNi10)Fe1Mn				CuNi30	Mn1Fe		CuAl10Ni5Fe4
°C	R	300	R	320	R	350	R	350	R	410	R620, H170
	10 000	100 000	10 000	100 000	10 000	100 000	10 000	100 000	10 000	100 000	bis 100 000
20/50	97	97	133	133	167	167	117	117	200	200	180
100	92	92	127	127	157	157	109	109	183	183	177
110	91	91	126	126	156	156	108	108	182	182	176
120	91	91	125	125	154	154	107	107	181	181	175
130	90	90	125	125	153	153	107	107	179	179	175
140	90	90	124	124	151	151	106	106	178	178	174
150	89	89	123	123	150	150	105	105	177	177	173
160	88	88	122	122	149	149	104	104	176	176	173
170	87	87	121	121	149	149	104	104	175	175	173
180	87	87	119	119	148	148	103	103	175	175	173
190	86	86	118	118	148	148	103	103	174	174	173
200	85	85	117	117	147	147	102	102	173	173	173
210	85	85	110	110	134	134	101	100	157	157	172
220	84	84	103	103	121	121	101	99	141	141	171
230	83	83	96	96	108	108	100	97	125	125	169
240	83	83	89	89	95	95	99	96	109	109	168
250	82	82	83	83	83	83	99	94	94	94	167
260	81	80	83	80	83	80	98	92	94	92	_
270	81	77	83	77	83	77	96	91	94	91	_
280	80	73	80	73	80	73	95	89	94	89	_
290	77	68	77	68	77	68	93	88	93	88	-
300	74	62	74	62	74	62	92	86	92	86	-
310	_	_	_	_	_	_	90	84	90	84	_
320	_	_	_	_	_	_	89	83	89	83	_
330	_	_	_	_	_	_	87	82	87	82	_
340	_	_	_	_	_	_	86	80	86	80	-
350	_	_	_	_	_	_	84	78	84	78	-

Seite 18 AD 2000-Merkblatt W 6/2, Ausg. 03.2009

Tafel 13.2 Zulässige Spannung K/S für nahtlose Rohre

			Zulässi	ge Spannı	ung <i>K/S</i> in	MPa für Au	slegungsd	auer in h			
Temperatur			Cu-	DHP			CuZn20Al2As				
°C	R200	R200 ¹⁾	R220	R220 ¹⁾	R2	250	R3	340	R390		
		bis 10	0 000	•	10 000	100 000	10 000	100 000	10 000	100 000	
20/50	57	50	63	55	100	100	87	87	107	107	
100	57	50	63	55	90	90	83	83	99	99	
110	56	49	62	54	89	89	83	83	98	98	
120	54	48	60	53	89	89	83	83	97	97	
130	53	46	59	51	88	88	83	83	97	97	
140	51	45	57	50	88	88	83	83	96	96	
150	50	44	56	49	87	87	83	83	95	95	
160	49	43	54	48	86	86	83	83	95	92	
170	47	41	53	46	85	85	82	81	94	81	
180	46	40	51	45	85	85	81	70	93	70	
190	44	39	50	44	84	84	81	59	86	59	
200	43	38	49	43	83	83	77	48	77	48	
210	41	36	47	41	83	82	67	38	67	38	
220	40	35	46	40	82	69	57	29	57	29	
230	39	34	44	39	81	55	46	21	46	21	
240	37	33	43	38	78	42	34	15	34	15	
250	36	31	41	36	66	28	24	10	24	10	
1) gelötet	1	<u>'</u>			1	•		•		1	

		Zuläss	ige Spannu	ng <i>K/S</i> in MPa für Au	slegungsdauer in h	
Temperatur	CuZn	28Sn1As		CuNi10Fe1Mn	CuNi30Mn1Fe	CuNi30Fe2Mn2
°C	R320	R3	360	R290	R370	R420
	bis 100 000	10 000	100 000	bis 100 000	bis 100 000	bis 100 000
20/50	70	100	100	77	93	100
100 110 120 130 140	69 68 68 67 67	96 95 95 94 94	96 95 95 94 94	72 72 71 71 70	87 86 86 85 85	93 92 92 91 91
150 160 170 180 190	67	93 93 92 91 81	93 87 74 58 46	70 70 69 69 68	84 84 83 83 82	90 88 87 86 84
200 210 220 230 240	kein Einsatz über	68 54 43 33 25	36 27 20 15 10	68 67 67 66 66	82 82 81 81 80	83 83 82 82 81
250 260 270 280 290	150 °C	19 - - - -	8 - - - -	65 65 64 63 63	80 80 79 79 78	80 - - - -
300 310 320 330 340		- - - -	- - - - -	62 - - - -	78 77 77 76 75	- - - -
350		_	_	_	75	_

Normen-Ticker - Universitatsbibliothek Zweigstelle Vaihingen - Kd.-Nr.6235210 - Abo-Nr.00664690/020/001 - 2010-10-04 13:37:40

Tafel 13.3 Zulässige Spannung K/S für Stangen und Schmiedestücke

	Zulässige Spannung K/S in MPa für Auslegungsdauer in h											
Tem- peratur °C	Cu-DHP					uZn40, Cu 39Pb2Sn, CuZn4	CuZn39F		CuNi1	0Fe1Mn	CuNi30Mn1Fe	
	R200 R200 ¹⁾		R240		R340, R360, H075, H80		R400		R280	, H070	R340, H080, H090	
	bis 100 000		10 000 100 000		10 000	100 000	10 000	100 000	10 000	100 000	bis 100 000	
20/50	57	50	107	107	93	93	167	167	83	83	93	
100 110 120 130 140	57 56 54 53 51	50 49 48 46 45	93 92 91 89 88	93 92 91 89 88	91 91 91 91 91	91 91 91 91 82	145 139 130 120 108	125 114 104 93 82	79 78 78 77 77	79 78 78 77 77	87 86 86 85 85	
150 160 170 180 190	50 49 47 46 44	44 43 41 40 39	87 86 85 85 84	87 86 85 85 84	91 84 72 60 48	72 61 50 40 31	96 84 72 60 48	72 61 50 40 31	76 75 75 74 74	76 75 75 74 74	84 84 84 83 83	
200 210 220 230 240	43 41 40 39 37	38 36 35 34 33	83 83 82 81 78	83 82 69 55 42	37 29 23 18 14	24 18 13 9 7	37 29 23 18 14	24 18 13 9 7	73 72 71 71 70	73 72 71 71 70	82 82 81 81 80	
250 260 270 280 290	36 - - - -	31 - - - -	66 - - -	28 - - - -	12 - - -	5 	12 - - -	5 - - -	69 69 68 67 67	69 69 68 67	80 80 79 79 78	
300 310 320 330 340	- - - -	- - - -				1 1 1 1			66 - - -	62 - - -	78 77 77 76 75	
350	-	_	_	-	_	-	_	-	_	-	75	
1) gelöte	t											

AD 2000-Merkblatt

| Seite 20 AD 2000-Merkblatt W 6/2, Ausg. 03.2009

Tafel 14. Elastizitätsmodul

	Elastizitätsmodul bei Temperatur in K und °C GPa											
Werkstoffkurzzeichen	K	20	68	173	293	323	373	423	473	523	573	623
	°C	- 253	- 195	- 100	20	50	100	150	200	250	300	350
Cu-DHP		138	136	133	128	127	125	122	120	118	_	_
CuZn40		-	108	106	105	100	93	91	89	83	_	_
CuZn39Pb0,5		-	108	106	105	100	93	91	89	83	_	_
CuZn39Pb2Sn		-	108	106	105	100	93	91	89	83	_	_
CuZn39Pb3		_	108	106	105	100	93	91	89	83	_	_
CuZn40Pb2		-	108	106	105	100	93	91	89	83	_	_
CuZn20Al2As		_	_	_	110	110	108	107	106	105	_	_
CuZn28Sn1As		119	116	112	108	108	108	101	94	87	_	_
CuZn38Sn1As		109	108	106	104	102	98	95	92	89	_	_
CuZn38AlFeNiPbSn		-	_	110	106	106	105	98	90	83	_	_
CuNi10Fe1Mn		153	148	142	130	129	128	127	125	122	121	_
CuNi30Mn1Fe		161	158	155	150	150	149	148	146	144	142	141
CuAl10Ni5Fe4		128	123	122	120	120	116	115	115	110	-	_
CuNi30Fe2Mn2		_	_	_	156	-	_	-	_	_	_	-

Herausgeber:

E-Mail: berlin@vdtuev.de http://www.vdtuev.de

Bezugsquelle:

Beuth

Beuth Verlag GmbH 10772 Berlin Tel. 030/26 01-22 60 Fax 030/26 01-12 60 info@beuth.de www.beuth.de