Linear algebra, Exercise 6

叶卢庆*

August 1, 2014

Exercise. Let V be a three-dimensional vector space with an ordered basis $\beta := (v_1, v_2, v_3)$. Let γ be the ordered basis $\gamma := ((1, 1, 0), (1, 0, 0), (0, 0, 1))$ of \mathbf{R}^3 . Let $T: V \to \mathbf{R}^3$ be a linear transformation whose matrix representation $[T]^{\gamma}_{\beta}$ is given by

$$[T]^{\gamma}_{\beta} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Compute $T(v_1 + 2v_2 + 3v_3)$.

Solve.

$$T(v_1 + 2v_2 + 3v_3) = T(v_1) + 2T(v_2) + 3T(v_3)$$

= (0,0,1) + 2(1,0,0) + 3(1,1,0)
= (5,3,1).

 $^{^*} Luqing Ye (1992--), E-mail: yeluqing mathematics@gmail.com$