Machine Learning - Prescriptive Modeling

City Segmentation: Clustering Cities by Sales Performance Using KMeans

How can we group cities based on sales performance to uncover patterns for better sales strategy?

1. Overview

In a competitive business environment where sales performance can vary significantly across locations, understanding geographic sales patterns is critical for strategic planning. This project leverages KMeans Clustering, a machine learning technique, to segment cities based on their Total Sales and Units Purchased. By grouping similar-performing cities, the analysis provides actionable insights that can shape targeted marketing strategies, resource allocation, and performance improvement initiatives. The result is a visual and data-driven framework to support smarter, more localized business decisions.

2. Goal

- To group cities into distinct clusters based on their total sales revenue and units purchased.
- To identify underlying patterns in city-level sales performance.
- To visualize city clusters and explore performance similarities or differences.
- To provide data-driven recommendations for refining sales strategy, resource distribution, and market penetration.

3. Business Challenge

- Inconsistent sales performance across multiple cities with limited understanding of the root causes.
- Difficulty in prioritizing regions for sales efforts and investment.
- Inefficient marketing and sales allocation, leading to suboptimal ROI.
- Lack of segmentation intelligence for customized regional strategies.

4. Analysis Approach

 Data Preparation: Cleaned and grouped city-level sales and purchase data from the dataset.

1 of 7 22/05/2025, 21:07

- Feature Selection: Focused on Total Sales and Units Purchased as key performance indicators.
- Modeling: Applied KMeans Clustering to categorize cities into 3 distinct performance clusters.
- Visualization: Developed a scatter plot to represent cluster assignments with intuitive color mapping.
- Insight Reporting: Created a summary table to present each city's cluster, sales, and purchase volume.
- Strategic Interpretation: Used clustering output to recommend targeted actions for high, mid, and low-performing cities.

Importing libraries

```
In [9]: import pandas as pd
import matplotlib.pyplot as plt
```

Loading the clean dataframe (post-ETL process)

```
In [11]: df = pd.read_csv("C:\\Monthly_Sales\\cleaned_data.csv")
In [12]: df.head(10)
```

Out	[12]:
-----	-----	----

2]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Month Name	Year \
-	0	160155	Alienware Monitor	1	400.99	2024-01-01 05:04:00	765 Ridge St, Portland, OR 97035	1	January	2024
	1	151041	AAA Batteries (4- pack)	1	4.99	2024-01-01 05:04:00	964 Lakeview St, Atlanta, GA 30301	1	January	2024
	2	146765	AAA Batteries (4- pack)	1	4.99	2024-01-01 05:20:00	546 10th St, San Francisco, CA 94016	1	January	2024
	3	145617	Amana Washing Machine	1	600.00	2024-01-01 05:24:00	961 Meadow St, Portland, OR 97035	1	January	2024
	4	156535	Lightning Charging Cable	2	14.95	2024-01-01 05:45:00	451 Elm St, Los Angeles, CA 90001	1	January	2024
	5	156535	iPhone	1	700.00	2024-01-01 05:45:00	451 Elm St, Los Angeles, CA 90001	1	January	2024
	6	145534	Samsung Galaxy Phone	1	650.00	2024-01-01 05:56:00	881 Madison St, Los Angeles, CA 90001	1	January	2024
	7	157179	Apple Airpods Headphones	1	150.00	2024-01-01 06:25:00	279 Maple St, New York City, NY 10001	1	January	2024
	8	153780	Lightning Charging Cable	1	14.95	2024-01-01 06:35:00	13 Madison St, Dallas, TX 75001	1	January	2024

3 of 7

	Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Month Name	Year	\
9	144264	LG UltraGear Monitor	1	399.99	2024-01-01 06:49:00	430 Forest St, Portland, OR 97035	1	January	2024	

Replace 'Boston (\rA)' with 'Boston (MA)'

```
In [14]: import re

df['City'] = df['City'].str.replace(r'Boston\s+\(\rA\)', 'Boston (MA)', regex=True
```

Plot City Clustering using KMeans

```
In [16]: | from matplotlib.ticker import FuncFormatter
         from sklearn.cluster import KMeans
         # Deep copy to avoid modifying the original DataFrame
         df_cluster = df.copy(deep=True)
         # Clustering Cities Based on Total Sales
         city_sales_data = df_cluster.groupby('City').agg({'Total Sales': 'sum', 'Units Purch
         city_sales_data.columns = city_sales_data.columns.str.strip()
         city_sales_data['City'] = city_sales_data['City'].astype(str).str.replace(r'[\r\n\t
         # KMeans clustering
         kmeans = KMeans(n_clusters=3, random_state=42)
         city_sales_data['Cluster'] = kmeans.fit_predict(city_sales_data[['Total Sales', 'Un'
         fig, ax = plt.subplots(figsize=(12, 8))
         # Creating a Scatter Plot
         df_scatter = ax.scatter(
             city_sales_data['Total Sales'],
             city_sales_data['Units Purchased'],
             c=city_sales_data['Cluster'],
             cmap='viridis',
             s=100,
             edgecolor='black'
         # Labeling Axes and Formatting
         ax.set_xlabel('Total Sales in USD ($)', labelpad=20)
         ax.set_ylabel('Units Purchased')
         ax.set_title('City Clustering')
         ax.grid(linewidth=0.2)
         ax.xaxis.set_major_formatter(FuncFormatter(lambda x, _: f'{x:,.0f}'))
```

```
# Adding Legend
handles, _ = df_scatter.legend_elements()
ax.legend(handles, [f'Cluster {i}' for i in range(len(handles))], title='Clusters')
# Preparing Tabular Data
table_data = city_sales_data[['Cluster', 'City', 'Units Purchased', 'Total Sales']]
table_data['Units Purchased'] = table_data['Units Purchased'].apply(lambda x: f'{x:
table_data['Total Sales'] = table_data['Total Sales'].apply(lambda x: f'${x:,.0f}')
cell_text = table_data.values.tolist()
columns = table_data.columns.tolist()
table = plt.table(
   cellText=cell_text,
   colLabels=columns,
    loc='bottom',
   cellLoc='center',
    bbox=[0.0, -0.6, 1, 0.4] # Lowered the table further
table.auto_set_font_size(False)
table.set_fontsize(10)
plt.subplots_adjust(left=0.1, bottom=0.10)
plt.savefig(r"C:/Users/DELL/OneDrive - COVENANT UNIVERSITY/Desktop/1. Retail Sales
plt.show()
```


Total Sales in USD (\$)

Cluster	City	Units Purchased	Total Sales
0	Atlanta (GA)	14,581	\$3,146,660
0	Austin (TX)	9,888	\$2,182,211
0	Boston (MA)	19,797	\$4,169,732
0	Dallas (TX)	14,818	\$3,195,317
2	Los Angeles (CA)	29,269	\$6,347,341
2	New York City (NY)	24,514	\$5,206,534
0	Portland (ME)	2,544	\$543,656
0	Portland (OR)	9,709	\$2,053,496
1	San Francisco (CA)	44,418	\$9,395,525
0	Seattle (WA)	14,726	\$3,115,290

Key Insights and Strategic Recommendations

1. Cluster 1 – High Sales & High Volume City

Interpretation:

- The Only City in this cluster, San Francisco (CA) shows strong performance in both revenue and unit sales.
- Indicates high demand, strong customer base, and effective local execution.

Strategic Recommendations:

- Double down on success: Increase inventory levels, staffing, and marketing budget.
- Introduce loyalty programs to retain high-value customers.
- Launch premium products or upsell/cross-sell strategies, this city is more likely to adopt.

• Consider using this city as benchmark or pilots for new product launches.

2. Cluster 2 - Moderate Sales & Moderate Volume Cities

Interpretation:

- These cities perform reasonably well but have room for growth.
- Represents stable markets with potential to be moved into the high-performing cluster.

Strategic Recommendations:

- Localized promotions to drive awareness and increase repeat purchases.
- Sales training or incentive programs to boost performance.
- Monitor customer behavior and competitor activity.

3. Cluster 0 – Low Sales & Low Volume Cities

Interpretation:

- Underperforming regions with low revenue and low units sold.
- Maybe an indication of market saturation, low demand, or ineffective sales presence.

Strategic Recommendations:

- Cost-efficiency measures: Evaluate whether continued investment is justified.
- Reassess market potential: Are these markets viable with a different strategy?

7 of 7