7.- RESUMEN DE FÓRMULAS

Test para la Media

Hipótesis nula H ₀	Hipótesis alternativa H _a	Tipo de contraste	Estadístico del contraste	Región de aceptación	
$\mu=\mu_0$	μ≠μ ₀	bilateral	00000 ±2 ° €	$(-z_{\frac{\alpha}{2}}, z_{\frac{\alpha}{2}})$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\mu\leqslant\mu_0$	$\mu > \mu_0$	unilateral	$Z = \frac{x - \mu_o}{\frac{\sigma}{\sqrt{n}}}$ sigue una $N(0, 1)$	$(-\infty, Z_{\alpha})$	1-a a
$\mu\geqslant\mu_0$	$\mu < \mu_0$	unilateral		$(-z_{\alpha}, +\infty)$	α 1- α $-z_{\alpha}$ 0

Test para una Proporción:

Hipótesis nula H ₀	Hipótesis alternativa H _a	Tipo de contraste	Estadístico del contraste	Región de aceptación	
$p = p_0$	p ≠ p ₀	bilateral	â	$(-z_{\frac{\alpha}{2}}, z_{\frac{\alpha}{2}})$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$p \leqslant p_0$	$p > p_0$	unilateral	$Z = \frac{\overline{p - p_o}}{\sqrt{\frac{p_o(1 - p_o)}{n}}}$ sigue una N(0, 1)	$(-\infty, Z_{\alpha})$	1 - α
$p \geqslant p_0$	$p < p_0$	unilateral	5.525 54 11(0) 17	$(-z_{\alpha}, +\infty)$	α $1-\alpha$ $-Z_{\alpha}$ O

Test de Comparación de Medias

Hipótesis nula H ₀	Hipótesis alternativa H _a	Tipo de contraste	Estadístico del contraste	Región de aceptación	
$\mu_1-\mu_2=0$	$\mu_1-\mu_2\neq 0$	bilateral	$Z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ sigue una N(0, 1)	$(-z_{\frac{\alpha}{2}}, z_{\frac{\alpha}{2}})$	$1-\alpha$ $-z_{\frac{\alpha}{2}} \stackrel{\downarrow}{0} z_{\frac{\alpha}{2}}$