Пусть на области D комплексной плоскости z задана аналитическая функция производные любого порядка. При этом и функции u(x, y) и v(x, y) и непрерывные производные любого порядка.

Пусть на области D комплексной плоскости z задана аналитическая функция f(z) = u(x, y) + iv(x, y). Тогда по определению она имеет на D непрерывные производные любого порядка. При этом и функции u(x, y) и v(x, y) имеют на DДля функции f(z) выполняются условия K-P:

 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} (1), \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} (2),$ продифференцируем равенство (1) по х, а равенство (2) по у:

 $\left(\frac{\partial u}{\partial x}\right)'_{x} = \left(\frac{\partial v}{\partial y}\right)'_{x} (1), \quad \left(\frac{\partial u}{\partial y}\right)'_{y} = \left(-\frac{\partial v}{\partial x}\right)'_{y} (2)$

 $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y} \quad (1), \quad \frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial x \partial y} \quad (2),$

сложим (1) и (2) и получим

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

Обозначим $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$. Тогда уравнение (5.1)

Оператор Лапласа

Функцию *и*, имеющую непрерывные частные производные 2-го порядка на *D* и удовлетворяющую уравнению Лапласа, называют гармонической функцией на D.

Теперь продифференцируем равенство (1) по у, а равенство (2) по х:

Тогда

$$\left(\frac{\partial u}{\partial x}\right)'_{y} = \left(\frac{\partial v}{\partial y}\right)'_{y} (1), \quad \left(\frac{\partial u}{\partial y}\right)'_{x} = \left(-\frac{\partial v}{\partial x}\right)'_{x} (2),$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \left(\frac{\partial^{2} v}{\partial x}\right)'_{x} (2),$$

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 v}{\partial y^2} \quad (1), \quad \frac{\partial^2 u}{\partial x \partial y} = -\frac{\partial^2 v}{\partial x^2} \quad (2),$$

найдем разность (1) и (2) и получим

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0 \text{ или } \Delta v = 0. \tag{5.2}$$

Таким образом, и действительная и мнимая части аналитической функции на D являются гармоническими функциями.

Ооратное не всегда верно. Т.е. если и и у – произвольные гармонические функции на D, то f(z) = u + iv не всегда является аналитической функцией на D.

<u>Пример.</u> 1. Проверить, являются ли функции u = x, v = -y гармоническими.

1. Найдем частные производные

$$\frac{\partial u}{\partial x} = 1; \quad \frac{\partial^2 u}{\partial x^2} = 0; \quad \frac{\partial u}{\partial y} = 0; \quad \frac{\partial^2 u}{\partial y^2} = 0;$$

$$\frac{\partial^2 u}{\partial y^2} = 0; \quad \frac{\partial^2 u}{\partial y^2} = 0;$$

$$\frac{\partial v}{\partial x} = 0; \quad \frac{\partial^2 v}{\partial x^2} = 0; \quad \frac{\partial v}{\partial y} = -1; \quad \frac{\partial^2 v}{\partial y^2} = 0;$$

составим уравнения Лапласа (5.1) и (5.2):

$$\Delta u = 0 + 0 = 0 - \text{верно},$$

 $\Delta v = 0 + 0 = 0 - \text{верно},$

следовательно, функции и и и являются гармоническими.

2. Условия К-Р:

$$\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y}$$
 (1 \neq -1) — первое условия не выполняется,

следовательно, функция $f(z) = u + iv = x - iy = \overline{z}$ не является аналитической.

Показательной функцией е² в комплексной области называется функция, которая является суммой сходящегося во всей комплексной плоскости ряда

$$e^{z} = \sum_{n=0}^{\infty} z^{n}$$

$$= \sum_{n=0}^{\infty} n!$$

Рассмотрим

$$e^{ix} = \sum_{n=0}^{\infty} i^n x^n = \sum_{n=0}^{\infty} n!$$

$$= \frac{1 \cdot x^{0}}{0!} + \frac{i \cdot x^{1}}{1!} + \frac{-1 \cdot x^{2}}{2!} + \frac{-i \cdot x^{3}}{3!} + \frac{1 \cdot x^{4}}{4!} + \frac{i \cdot x^{5}}{5!} + \frac{-1 \cdot x^{6}}{6!} - \frac{i \cdot x^{7}}{7!} = \frac{-1 \cdot x^{6}}{k=0} + \frac{-1 \cdot x^{6}}{k=1} + \frac{-1 \cdot x^{6}}{k=1} + \frac{-1 \cdot x^{6}}{k=2} + \frac{-1 \cdot x^{6}}{k=3} = \frac{-1 \cdot x^{7}}{k=3}$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!} + i \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!} = \cos x + i \sin x$$

Если $x = \varphi$, то получаем формулу Эйлера: $e^{i\varphi} = \cos \varphi + i \sin \varphi$.

Функции $\sin z$, $\cos z$, $\sinh z$, $\cosh z$ соответствующих абсолютно схо вводятся аналогично

THOUGHO CVO	KOIL				
I DUZOW	OHPHIOTOP				
и ветина вети вети вети вети вети вети вети вети	Всей ком Как ст				
Tригонометрический синус	томплексной - суммы				
cia oo (1)n 2 unyc	Гироп 5				
$\sin z = \sum_{n=0}^{\infty} (-1)^n z^{2n+1}$	аналогично как суммы О всей комплексной плоскости рядов				
4 10	LIH IIA				
n=0 $(2n+1)!$	sh = 5 -2n+1				
1ригономет.	SII 2 = > 2				
$T_{puzohomempuческий косинус}$	$\sinh z = \sum_{n=0}^{\infty} z^{2n+1}$ $\Gamma unep60\pi uyecvus$				
on the Rocumyc	[Tunon 6 - 11-0 (211+1)!				
$\cos z = \sum_{n=0}^{\infty} (-1)^n z^{2n}$	Гиперболический косинус				
0052 =) (1) 2	Косинус				
20 (2-11	- 2n				
n=0 $(2n)!$	$ch z = \sum_{z=1}^{\infty}$				
Соотношения для тригонометриности $n=0$ (2n)!					
n=0 (211):					
PALLUHO MOTIVIERE					

Соотношения для тригонометрических и гипербо

e - p-12	і тригонометрических и гиперболических ФКП		
$\sin z = \frac{2i}{i}$	$\cos z = \frac{e^{-} + e^{-1}}{2}$	$\sinh z = \frac{e^z - e^{-z}}{2}$	$ch z = \frac{e^z + e^{-z}}{z}$
$ tg z = \frac{1}{i} \frac{e'^{-} - e^{-iz}}{e^{iz} + e^{-iz}} $	$\operatorname{ctg} z = i \cdot \frac{e^{iz} + e^{-iz}}{e^{iz} - e^{-iz}}$	$th z = \frac{e^z - e^{-z}}{z}$	$\frac{2}{\coth z = \frac{e^z + e^{-z}}{}}$
$e^{iz} = \cos z + i \sin z$		$e^z = \cosh z + \sinh z$	e - e -
$\sin iz = i \sinh z$	$\cos iz = \cosh z$	sh iz = i sin z	ch iz = cos =
$\sin^2 z + \cos^2 z = 1$		$\cosh^2 z - \sinh^2 z = 1$	
$\sin(z_1 \pm z_2) = \sin z_1 \cos z_2 \pm \cos z_1 \sin z_2$			
$cos(z_1 \pm z_2) = cos z_1 cos z_2 \mp sin z_1 sin z_2$			

 ${\cal J}$ ${\it Огарифмом}$ числа $z \neq 0$ называется число ${\it A}$ такое, что справедливо равенство $e^A = z$, т.е. $\ln z = A \Leftrightarrow e^A = z$, $z \neq 0$.

Пусть A = u + iv, $z = re^{i\varphi}$. Тогда $e^{u+iv} = re^{i\varphi} \Rightarrow e^u \cdot e^{iv} = r \cdot e^{i\varphi} \Rightarrow e^u = r$ и $e^{iv}=e^{i\, \varphi}$. Следовательно, $u=\ln r,\, v=\varphi+2\pi k,\, k=0,\pm1,...$ Из этого следует, что логарифм комплексного числа определяется неоднозначно, т.е. получаем множество значений логарифма данного числа

Ln $z = \ln |z| + i(\arg z + 2\pi k)$, $k = 0, \pm 1, \pm 2,...$; r = |z|, $\arg z = \varphi$.

При k=0 получаем главное значение логарифма $\ln z = \ln |z| + i \arg z$.

Степенная функция при любой степени а. $z^{\alpha} = e^{\alpha \ln z}, z \neq 0, \alpha \in C.$

Показательная функция с любым основанием а $a^{2} = e^{2Ln a}$, $a \neq 0$, $a \in C$.

Логарифмическая функция вводится, как функция, обратная показательной, т.е. как решение уравнения $e^w = z \Rightarrow w = \operatorname{Ln} z$.

Обратные тригонометрические и гиперболические ФКП

	Арксинус		
Arcsin z	$=\frac{1}{i}$ In(iz +		
	1	V1-z-)	

Арккосинус

Arccos
$$z = \frac{1}{i} \operatorname{Ln}(z + \sqrt{z^2 - 1})$$

Арктангенс

Arctg
$$z = -\frac{i}{2} \operatorname{Ln} \frac{1+iz}{1-iz}$$

Арккотангенс

Arcctg
$$z = \frac{i}{2} \operatorname{Ln} \frac{z - i}{z + i}$$

Гиперболический арксинус

(ареасинус)

Arsh $z = \operatorname{Ln}(z + \sqrt{1 + z^2})$

Гиперболический арккосинус (ареакосинус)

Arch
$$z = \operatorname{Ln}(z + \sqrt{z^2 - 1})$$

Гиперболический арктангенс (ареатангенс)

Arth
$$z = \frac{1}{2} \ln \frac{1+z}{1-z}$$

Гиперболический арккотангенс (ареакотангенс)

Arcth
$$z = \frac{1}{2} \operatorname{Ln} \frac{z+1}{z-1}$$

Логарифмом числа $z \neq 0$ называется число A такое, что справедливо равенство $e^A = z$, т.е. $\ln z = A \Leftrightarrow e^A = z$, $z \neq 0$.

Пусть A = u + iv, $z = re^{i\varphi}$. Тогда $e^{u+iv} = re^{i\varphi} \Rightarrow e^u \cdot e^{iv} = r \cdot e^{i\varphi} \Rightarrow e^u = r$ и $e^{iv}=e^{i\,\phi}$. Следовательно, $u=\ln r,\,v=\phi+2\pi k,\,k=0,\pm 1,...$ Из этого следует, что логарифм комплексного числа определяется неоднозначно, т.е. получаем множество значений логарифма данного числа

Ln $z = \ln |z| + i(\arg z + 2\pi k), k = 0, \pm 1, \pm 2, ...; r = |z|, \arg z = \varphi$.

При k=0 получаем главное значение логарифма $\ln z = \ln |z| + i \arg z$.

Степенная функция при любой степени а. $z^{\alpha} = e^{\alpha \ln z}, z \neq 0, \alpha \in C.$

Показательная функция с любым основанием а $a^{z} = e^{z \ln a}, a \neq 0, a \in C.$

Логарифмическая функция вводится, как функция, показательной, т.е. как решение уравнения $e^w = z \Rightarrow w = \text{Ln } z$.