Functional Dependencies and Boyce-Codd Normal Form (BCNF) Decomposition

Let X and Y be two sets of attributes. A functional dependency $X \rightarrow Y$ holds if rows that have the same values of X also have the same values of Y.

Example: Consider a table with addresses and suppose that postal_code → city. What does that mean? What about city → postal_code?

Note: X is a key if $X \rightarrow$ all the attributes of a table

By the decomposition rule, if we know that $A \rightarrow BC$, then $A \rightarrow B$ and $A \rightarrow C$ are both true. Also, $A \rightarrow A$ (by the reflexivity rule), so instead of saying $A \rightarrow ABC$, we can say $A \rightarrow BC$.

Recall: an FD X \rightarrow Y is trivial if Y is a subset of X. For example, $A\rightarrow$ A or AB \rightarrow A are trivial.

Boyce-Codd Normal Form (BCNF)

A table T is in BCNF if for all *nontrivial* functional dependencies X A that hold on T, X contains a key of T

Algorithm for BCNF decomposition

Input: Table T, Set F of all non-trivial functional dependencies that hold on T

While there remains at a least one FD in F, call it X→Y, where X does not contain a key

Let B be the table containing X and Y

Decompose B into two tables:

one with just X and Y

one with all the columns of B except Y

Example

T(ABCDE)

 $F = \{AE->BCD, A->B, B->A, DE->C\}$

Decompose T into BCNF. Identify the candidate keys of the decomposed tables and prove that your decomposed schema is in BCNF.

Solution:

First, note that the AE is a key of T. So, AE->BCD does not break BCNF. Next, note that A->B breaks BCNF.

Decompose T into T1(AB), with keys A and B, and T2(ACDE) with key AE In the second iteration of the algorithm, note that DE->C breaks BCNF Decompose T2 into T2a(CDE), with key DE, and T2b(ADE), with key AE

Final answer: T(AB), keys A or B, T2A(CDE) key DE, T2B(ADE) key AE In BCNF because all the dependencies in F now contain a key on the left-hand side.

Practice questions

- 1. Let T be a table with four attributes: ABCD. Assume $F = \{B \rightarrow ACD, C \rightarrow D, C \rightarrow A\}$. Decompose T into BCNF, identify the keys of the decomposed tables, and prove that your decomposed schema is in BCNF.
- 2. Now assume $F = \{BD \rightarrow AC, B \rightarrow C, D \rightarrow A\}$. Decompose T into BCNF, identify the keys of the decomposed tables, and prove that your decomposed schema is in BCNF.