BUCSS

Thermal RS - Exercise

Panagiotis Sismanidis, Benjamin Bechtel

Our Aim

- Global SUHI Dataset
- Analysis-ready data
- Consistent SUHI definition
- Long time-series of data (>20 years)
- Daytime / Nighttime data
- Documented Uncertainties
- Ancillary data to facilitate data analysis
- Make it publicly available in 2022.

From 3D to 1D

City Delineation (1/3)

• We use a custom implementation of the City Clustering Algorithm.

Distance from coastline > ~2 km

9 or more connected pixels

City Delineation (2/3)

Total number of urban pixels (> 0%)

Total number of cities

- 1992 1999: GHSL 1990 + 1 km changes
- 2000 2003: GHSL 2000 + 1 km changes
- 2004 Present: GHSL 2000 + 2014 [+GUF] + 300 m changes

City Delineation (3/3)

2085 Cities in 20 Köppen-Geiger classes

Natural Buffer (1/2)

- We iteratively expand a buffer around each city until they have approx. the same city.
- One per city
- Same for all years
- Natural LC fraction is ≥95% for each year.
- Urban & water fractions are 0%.
- The elevation must not differ by more than ±200 m from the median elevation of the urban area.
- Maximum width is 30 pixels

Natural Buffer (2/2)

Natural Buffer - Examples

Rural (LCZ B + C + D)

Rural + Forest (LCZ A + B + C + D)

Natural Buffer - Examples

Rural (LCZ B + C + D)

Rural + Forest (LCZ A + B + C + D)

Natural Buffer - Examples

Rural (LCZ B + C + D)

LST Means & SUHI Intensity

Spatial means per day:

$$\overline{LST}_{u} = \frac{1}{n} \sum_{i=1}^{n} LST_{u, i}$$

$$\overline{LST}_{n} = \frac{1}{n} \sum_{i=1}^{n} LST_{n,i}$$

$$SUHII = \overline{LST}_u - \overline{LST}_n$$

- LST min, max, std
- % missing pixels
- Median VZA
- Median Local Solar Time

Analysis-ready Data

- File Format:
 - SQLite is a self-contained, file-based SQL database.
 - Stable, cross-platform, and backwards compatible.
 - Well-supported by both Python and R.
- Ancillary data
 - Timestamp (UTC & Local Solar Time)
 - Satellite VZA, %-missing pixels, urban/natural LST min/max
 - City properties (area, polygon geometry, Köppen-Geiger climate class, lat/lon, elevation, coastal/inland etc.)
 - Socioeconomic data (country, economy, etc.)
 - We are also working to add: NDVI, daily precipitation, daily snowfall, population data.

Outputs

☑ BRA199518

☑ BRA199518

☑ BRA199518

44 🖾 BRA199518

45 🖾 BRA199518

42

43

2018-09-03 13:45:36

2018-09-02 13:02:56

2018-09-02 13:02:56

2018-09-01 13:24:58

2018-09-01 13:24:58

2 🗹

0 🖾

2 2

0 🖾

308.4983

308.1072

307.18

309.338

0.1411

0.2125

0.2454

0.0611

0.1124

0.3457

0.9739

0.9182

0.2366

0.3178

Date

0.01

- LST mean, min, max, std, sem
- % missing pixels
- Median VZA
- Median Local Solar Time
- **Quality Control**
- Solar time

