MSFC-390

# **Bulk Charging of Dielectrics in Cryogenic Space Environments**

J.I. Minow<sup>1</sup>, V.N. Coffey<sup>1</sup>, W.C. Blackwell<sup>2</sup>, Jr., L.N. Parker<sup>2</sup>, I. Jun<sup>3</sup>, and H.B. Garrett<sup>3</sup>

<sup>1</sup>NASA, Marshall Space Flight Center, Huntsville, AL 35812 <sup>2</sup>Jacobs Engineering, ESTS Group, Huntsville, AL 35812 <sup>3</sup>The Jet Propulsion Laboratory, The California Institute of Technology, Pasadena, CA 91109

# 35 Word Abstract

We use a 1-D bulk charging model to evaluate dielectric charging at cryogenic temperatures relevant to space systems using passive cooling to <100K or extended operations in permanently dark lunar craters and the lunar night.

# Corresponding (and presenting) Author:

Joseph I. Minow, NASA, Marshall Space Flight Center, EV13/Natural Environments Branch, Spacecraft and Vehicle Systems Department, Huntsville, AL 35812 (USA), phone: 256-544-2850, fax, 256-544-0242, e-mail: joseph.i.minow@nasa.gov

# **Contributing Authors:**

Victoria N. Coffey, NASA, Marshall Space Flight Center, EV13/Natural Environments Branch, Spacecraft and Vehicle Systems Department, Huntsville, AL 35812 (USA), phone: 256-961-7635, fax, 256-544-7216, e-mail: <a href="mailto:victoria.n.coffey@nasa.gov">victoria.n.coffey@nasa.gov</a>

William C. Blackwell, Jr., Jacobs Engineering, ESTS Group, Marshall Space Flight Center, Huntsville, AL 35812 (USA)

phone: 256-544-6741, fax, 256-544-0242, e-mail: william.c.blackwell@nasa.gov

Linda N. Parker, Jacobs Engineering, ESTS Group, Marshall Space Flight Center, Huntsville, AL 35812 (USA)

phone: 256-544-5313, fax, 256-544-0242, e-mail: <u>linda.n.parker@nasa.gov</u>

Insoo Jun, The Jet Propulsion Laboratory, The California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California, 91109, USA

phone: 818-354-7107, fax, 818-393-4699, e-mail: insoo.jun@jpl.nasa.gov

Henry B. Garrett, The Jet Propulsion Laboratory, The California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California, 91109, USA

phone: 818-354-2644, fax, 818-393-4699, e-mail: henry.garret@jpl.nasa.gov

Session Preference: Space, Atmospheric, and Terrestrial Radiation Effects

Presentation Preference: Oral

### INTRODUCTION

Internal electrostatic discharges (IESD) originating in dielectric materials charged during exposure to the space radiation environment accounts for over half of the anomalies and failures of spacecraft and space systems that have been attributed to the space environment [1]. Charge accumulation is particularly important at cryogenic temperatures because the electrical conductivity  $\sigma$  for semiconductors and insulating materials generally exhibits a  $\sim 1/T^N$  temperature dependence where N depends on the material and physical mechanism for electrical conductivity (which varies with temperature). conductivity at low temperatures greatly limits current flow from the charged dielectric allowing charge densities to accumulate for longer periods of time. This effect increases the risk of dielectric breakdown and IESD due to the enhanced electric fields generated by the buried charge.

Space systems operating at cryogenic temperatures are found in a number of applications [2]. One example is infrared and microwave astronomy missions because low operating temperatures reduce the background of long wavelength photons and increase the sensitivity of infrared and microwave sensors. Passive cooling to ~70K is currently used by the Wilkerson Microwave Anisotropy Prove spacecraft in orbit about the Sun-Earth L2 point and will also be used to cool the instrument systems on the James Webb Space Telescope to ~40K (also bound for L2). Passive cooling technologies represent a particular threat to charging because the requirement that systems be exposed to the cold background of space to achieve low operating temperatures also means they are exposed to the space radiation environment responsible for charging. Cold environments will also be encountered in future lunar exploration where lunar night time temperatures of approximately 85K are observed immediately before sunrise [3,4] and temperatures as low as 40K to 50K will be encountered in the permanently dark craters at the lunar poles [5,6,7]. Radiation environments at lunar and L2 distances are generally considered relatively benign compared to the extreme bulk charging environments within the Earths radiation belts. However, evaluation of bulk charging is an important step in the design and qualification of space systems. This is particularly true for systems at cryogenic temperatures because of the potential threat of enhanced charging due to the reduced conductivity of insulating materials at cold temperatures.

We first describe a bulk charging model developed for evaluating electrostatic discharge risk in insulating materials exposed to radiation environments. We use the model to evaluate the electric fields generated in cold insulators exposed to interplanetary radiation environments applicable for both the earth-sun L2 and lunar destinations. The model results are used as a screening tool; demonstrating the order of magnitude charging risks anticipated for standard aerospace insulating materials at both ambient and cold conditions.

### **BULK CHARGING MODEL AND SIMULATION RESULTS**

The 1-dimensional bulk charging model is a modified version of the NUMIT (for "numerical integration") code originally developed by the late Dr. Robb Frederickson [8,9] using the radiation induced conductivity approach [10] for solving the charging equations

$$\nabla \bullet E = \frac{\rho}{\varepsilon} \tag{1}$$

$$\nabla \bullet E = \frac{\rho}{\varepsilon}$$

$$\frac{\partial \rho}{\partial t} = -\nabla \bullet \left( J_R + J_C \right)$$
(2)

where  $\rho$  is the charge density, E the electric field,  $J_R$  and  $J_C$  the incident radiation current density and conduction currents, respectively, and the dielectric permittivity  $\varepsilon$  is related to the permittivity in free space  $\varepsilon_0$  and dielectric constant  $\kappa$  through the relationship  $\varepsilon = \kappa \varepsilon_0$ . Conduction currents are defined as

$$J_C = \sigma E = \left(\sigma_{dark} + K \left(\frac{d\gamma}{dt}\right)^{\alpha}\right) E \tag{3}$$

where the bulk conductivity  $\sigma$  is divided into two terms: the  $\sigma_{dark}$  conductivity in the absence of exposure to radiation and a radiation induced conductivity (RIC) term which depends on the dose rate dy/dt and material dependent conductivity coefficient K and exponent  $\alpha$ . Material electrical properties which are temperature dependent include  $\sigma$ ,  $\kappa$ , and to a lesser extent the RIC parameters K and  $\alpha$ .

NUMIT solves equations (1) to (3) numerically yielding self-consistent solutions for the electric fields generated by the charge density deposited in insulating materials exposed to the space radiation environment. We have modified NUMIT to extend the original fixed radiation current and mono-energetic electron energy input to allow for reading a time series of electron flux data from spacecraft measurements. In addition, options for electron flux input to the model includes use of mono-energetic flux from individual energy channels as well as spectral fits to extend the spectra to arbitrary energies or use of a complete spectrum. The mono-energetic flux option is used for its simplicity in the examples given here. Radiation current inputs are derived from ~9.13 years of 245 keV electron flux measurements at L1 by the Deflected Electrons (DE) detector component of the Energetic, Proton, and Alpha Monitor (EPAM) instrument on board the Advanced Composition Explorer (ACE) spacecraft. Transport of the radiation environment into the dielectric material required to obtain the charge deposition and dose rates are accomplished using look-up tables for dose as a function of depth [11,12]. This method provides a computationally efficient method for updating dose rates and charge deposition at each simulation time step.

We adopt the representative electrical parameters given in Table 1. Dielectric conductivity at cryogenic temperatures (T<100K) compared to values at ambient temperatures (T~300K) suggest conductivity ratios for polymers of interest to aerospace applications are  $\sigma_B(T\leq100K)/\sigma_B(T\sim300K)\sim10^{-2}$  to  $10^{-5}$  [13,14] and the dielectric constants increase over the same temperature range by factors of  $K_{T\leq100K}/K_{T\sim300K}\sim1$  to 2 [15,16,17,14].

Table 1. Dielectric Electrical Properties

| Property | <b>300K</b> 1.00x10 <sup>-16</sup> S/m | <b>100K</b><br>1.00x10 <sup>-19</sup> S/m |
|----------|----------------------------------------|-------------------------------------------|
| κ        | 3.71                                   | 7.42                                      |
| K        | $2.76 \times 10^{-16} \text{ S/m}$     | $2.76 \times 10^{-16}  \text{S/m}$        |
| α        | 1.00                                   | 1.00                                      |

Output from NUMIT for T~300K conditions is shown in Figure 1. Electric field magnitude and charge density as a function of depth in the insulator is given in the top two panels. Electron current density (blue) of the 139 keV charging electron beam (black) is given in the third panel. The bottom panel is the maximum (black) and minimum (blue) electric field extracted from the results in the top panel. The orange and red lines provide guidance on the approximate nominal and extreme electric fields, respectively, where dielectric failure may occur based on  $\sim 1 \times 10^8$  V/m dielectric strengths (red) reported in the literature for many polymers [18] and a more conservative  $\sim 1 \times 10^7$  V/m value (orange) suggested for use in space applications [19]. In this example we demonstrate that exposure to 139 keV electrons at T~300K may charge the material to values approaching the lower breakdown strength but never exceeding critical values for dielectric failure. Charge densities and electric fields within the material are elevated only when directly exposed to the high flux events and the electric fields rapidly decay with time constants on the order of days when the electron flux decreases to background values.

Charging results for the T~100K electrical properties from Table 1 are given in Figure 2. Reducing the conductivity and increasing the dielectric constant to values appropriate for cryogenic conditions increases the charging time constant  $(\tau \sim \kappa \epsilon_o/\sigma)$  to such a large value that the dielectric integrates charge over the complete exposure period and electric fields approach the breakdown strengths of polymers in environments generally considered relatively benign for bulk charging.



Figure 1. NUMIT T  $\sim$  300K Results. A  $\sim$ 0.23 mm thick dielectric is exposed to 245 keV electrons for  $\sim$ 9.13 years with only moderate charging results during the high electron flux events.



Figure 2. NUMIT T  $\sim$  100K Results. Conductivity and dielectric constants are modified to the T $\sim$ 100K values in Table 1 with more extreme charging due to the greater charging time constants at lower temperatures. Equilibrium electric fields are still less than breakdown in this example.

# **CONCLUSIONS**

We have described an application of the NUMIT 1-dimensional bulk charging model for evaluating radiation charging of dielectric materials in space environments. Novel features of the modified version

of the NUMIT model include the capability of reading long (~years) electron flux time series for use in screening environments for potential risk of electrostatic discharge when dielectric materials are exposed to the radiation environment at both ambient and cryogenic temperatures. The model facilitates bulk charging evaluations for spacecraft design and operations support as well as anomaly analyses when appropriate environment data is available. In addition, the model provides a useful tool for evaluation of total radiation dose, dose rate, and electric field effects. This information can be used to define parameters for incident electron beams in laboratory test protocols for the qualification of materials for space environments.

## REFERENCES

- [1] Koons, H. C., J.E. Mazur, R.S. Selesnick, J.B. Blake, J.F. Fennell, and P.C. Anderson, The impact of the space environment on space systems, in Proceedings of the 6th Spacecraft Charging Technology Conference, AFRL-VS-20001578, 7-11, 1 September 2000.
- [2] Collaudin, B., and N. Rando, Cryogenics in space: a review of the missions and of the technologies, *Cryogenics*, 40, 797-819, 2000.
- [3] Mendell, W.W., and F.J. Low, Preliminary results of the Apollo 17 infrared scanning radiometer, *Earth, Moon, and Planets*, 9, 97 103, 1974.
- [4] Vaniman, D., R. Reedy, G. Heiken, G. Olhoeft, and W. Mendell, The Lunar Environment, in Lunar Sourcebook, a User's Guide to the Moon, Heiken, G.H., D.T. Vaniman, and B.M. French (editors), Cambridge University Press, 1991.
- [5] Ingersoll, A. P., T. Svitek, and B. C. Murray, Stability of polar frosts in spherical bowl-shaped craters on the Moon Mercury, and Mars, *Icarus*, 100, 40–47, 1992.
- [6] Vasavada, A. R., D. A. Paige, and S. E. Wood, Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits, *Icarus*, 141, 179–193, 1999.
- [7] Bussey, D.B.J., P.G. Lucey, D. Res. Lett., VOL. 30, NO. 6, 1278, doi:10.1029/2002GL016180, 2003.
- [8] Frederickson, A.R., Radiation Induced Electrical Current and Voltage in Dielectric Structures, AFRL-TR-74-05823, 1974.
- [9] Frederickson, A.R., Electric Discharge Pulses in Irradiated Solid Dielectrics in Space, IEEE Transactions on Electrical Insulation Vol. 18, pp. 337-349, 1983.
- [10] Sessler, G.M., M.T. Figueiredo, and G.F. Leal Ferreira, Models of charge transport in electron-beam irradiated insulators, IEEE Transactions on Dielectrics and Electrical Insulation, 11, 192 202, 2004.
- [11] Tabata, T., and R. Ito, Nuclear Instruments and Methods, 27, 429, 1975.
- [12] Tabata, T., and R. Ito, Nuclear Science and Engineering, 53, 226, 1974.
- [13] Viswanatha, C., and S.N. Moorching, Influence of low temperature conditioning on the electrical and mechanical properties of dielectrics, Paper 5103, Proc. of the 4<sup>th</sup> International Conference on Properties and Applications of Dielectric Materials, Brisbane, Australia, 3-8 July 1994.
- [14] Gerhold, J., Properties of cryogenic insulants, Cryogenics, 38, 1063 1081, 1998.
- [15] Krupka, J., R.G. Geyer, M. Kuhn, and J.H. Hinken, Dielectric properties of single crystals of Al<sub>2</sub>O<sub>3</sub>, LaAlO<sub>3</sub>, NdGaO<sub>3</sub>, SrTiO<sub>3</sub>, MgO at cryogenic temperatures, *IEEE Transactions on Microwave Theory and Techniques*, 42, 1886 1890, 1994.
- [16] Mizuno, Y., Y. Mitsuyama, M. Nagao, and M. Kosaki, Dielectric properties of ethylene-propylene rubber in cryogenic temperature region, Proc. of the 4<sup>th</sup> International Conference on Properties and Applications of Dielectric Materials, Paper 5105, Brisbane, Australia, 3-8 July 1994.
- [17] Yamaoka, H., K. Miyata, and O. Yano, Cryogenic properties of engineering plastic films, *Cryogenics*, 35, 787 789, 1995.
- [18] Nagao, M., M. Kosaki, and Y. Mizuno, On temperature dependence of electric strengths of polar polymeric films in low-termperature region, IEEE, 1992.
- [19] NASA, Avoiding problems caused by spacecraft on-orbit internal charging effects, NASA-HDBK-4002, NASA, 1998.



# **Bulk Charging of Dielectrics in Cryogenic Space Environments**

now<sup>1</sup>, V.N. Coffey<sup>1</sup>, W.C. Blackwell<sup>2</sup>, Jr., L.N. Parker<sup>2</sup>, I. Jun<sup>3</sup>, and H.B. Garrett<sup>3</sup>

Abstract

The NUMIT ("numerical integration") 1-D bulk charging model [Frederickon 1974, 1977, 1980, 1996; Frederickon 1974, 1977, 1980, 1996; Frederickon 1974, 1975, 1996, 1996; Frederickon 1974, 1975, 1996, 1996; Frederickon 1974, 1975, 1996; Frederickon 1974, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1975, 1

Space systems operating at cryogenic temperatures are found in a number of applications. (California and Russian Comparatures are found in a number of applications.) (California and Russian Comparatures and the system of the properatures residue) in the system of the properatures residue this facetyprised of long vavielength photons and increase the sensitivity of infrared and microvivve censors. Passelve cooling to rook is currently used by the Witterson Microvivve Anisotropy Prove spacecraft in orbit about the Sun-Earth L2 peint and will also be used to cool the instrument systems on the James Webb Space Fleescope to -40K (also bound for L2). Passive cooling technologies represent a particular threat to changing because the requirement that systems be exposed to the cold background of space to achieve low operating temperatures also means they are exposed to the space relation environment responsible for charging. Cold drivionments will also be encounteed driving share spaces and the space of the space

#### Cryogenic Space Systems and Environ

| Butta            | Application     | Typideless           | Least year | Corpora pries                 | feeligts F (%) | Library   | 966               | Role         |
|------------------|-----------------|----------------------|------------|-------------------------------|----------------|-----------|-------------------|--------------|
| RATIFICAÇÃO NOVA | (execute:       | Stratite (serveyor)  | 100        | The (th express)              | *              | Sec.79    | product           | South        |
| ONLOWER, Dr.     | Surrouth.       | Speech payment       |            | . The cit reprint             | 2.6            |           | CHIR              | Not approved |
| DIR (NASA)       | Sciences        | Binding (service)    | 3000       | *He cit commen                | 84 14          | 365-06    | Name Words        | Pakers       |
| EN COLA)         | Schools.        | Soldie (deres)       | 2005       | *Ne click manner.             | 11             | 801-05    | 16945             | Prohogo      |
| PE (INANTHANIBA) | Specific        | Lamaton (1827)       | 384        | Phi (d) cope                  | .63            | West .    | 180               | Postige      |
| NIA CRAFFIGACIO  | ANTEN TE BA FOR |                      |            | sH, vignital                  | 100            | Service . | 1,000             |              |
| NT(KASA)         | Selector/FU b.  | Kanson, belowwest    | PMT.       | «Pg virginia»                 | Dist.          | Minus.    | 1.019             | Postere      |
| OC PARK WALL     | Seesal          | Branday voke         | 100 SHY    | The City Steps<br>micro A TWO | 146            | T and     | Selected Barr     | Patrops      |
| CHR (NASA):      |                 | Bird'sk (nesero)     | 780        | Their old country.            | 475            | 10e-lid   | 2.00              |              |
| CHPURNA          |                 |                      |            |                               |                |           |                   | NOT approved |
| mark (BAK NASA)  | Bismell         | Rodin (thous)        | 300        | sher "Na up-                  | Frienk         | Televant  | 1388              | Since        |
| CONTRACTORS.     | Samplema        | Perferred Officers 1 | 361        | Minter errice                 | **             | 24.0      | 1000              | Designation  |
| DET (NAMA)       |                 |                      | 292        |                               | 9.6            |           |                   |              |
| COR (NAMA)       | Status St.      | Buildin Instrument   |            | Dad off-county                | 47.4           | 470       |                   | Not epported |
| dealisates (RIC) | Sender-en       | SSS principal        | S2588      | THE CO. THE                   | 11.63          | mai       | 1389              | Study        |
| HER (MIN)        | Summer          | (Interest (Days)     | 790        | Siding anti-                  | A46 01         | -80.00    | 1,000             | Study        |
| embal (SKK)      | Sweath          | Builty (depts)       | 367        | "No tile oran-                | 10.817         | 45.0      | New York SE       | Sentimen     |
| hotel (ESA)      | Sandy.          | Buildin toward       | 367        | 31476 F 1 D4                  | 01 A 30        | -         | New Realty LT     | Detallement  |
| CHT (MANA)       | 1000            | Sodia (Bala)         | -          | Parity softs<br>Soft Sander   |                | S Bye     | See Butt \$1      | Shelp        |
| ARREST MINISTER  | Annual Control  | Brakle (Access)      | Des Str.   | Admit blackers                | 0.00           | 3.64      | See Early 17      | Black        |
| RISK (NASA)      | Schools St.     | Section (VCM)        | 264        | Chousele s N. 25              | 200            | 2         | MRG.              | The Co       |
| APPIN (SSA)      | Name of Street  | Availab (NLR)        | > 200M     | Convenient to the PT          |                | ried.     | 1.25 year peoples | Track        |
| FFINADA          | Samuel          | South (V.R)          | 260        | Papelos todio<br>Sopra acobe  | 34             | 39        | LEB-ric maling    | State        |
| rests (198)      | Nominal Louis   | Destroyage Sporthale | 380        | Strikes under                 | -00            | Mine:     | Meleonolitic      | Sheek sheet. |
|                  |                 |                      |            |                               | 74-18          |           |                   |              |





<sup>1</sup>NASA, Marshall Space Flight Center, Huntsville, AL 35812 <sup>2</sup>Jacobs Engineering, ESTS Group, Huntsville, AL 35812 let Propulsion Laboratory, The California Institute of Technology, Pasadena, CA 91109

# Charging Physics and Model V.D.n D = eE. e = ven $\frac{\partial p}{\partial r} = -\nabla \cdot \mathbf{J}$ $J = J_R + J_C = J_R + \sigma E$ = JR + odark + oradiation ]E $\sigma_{\text{radiation}} = k \left(\frac{dy}{dt}\right)^{\alpha} \quad 0.5 < \alpha < 1.0$ ductivity models $\sigma(T) = \sum q_i n_i \mu_i$

### emperature Dependent Bulk Charging Parameters

| nductivity (=1/resistivity)             |  |
|-----------------------------------------|--|
| perameters                              |  |
| lestric constant (relative permitivity) |  |
| ctric (breakdown) strength              |  |
| pacifance                               |  |
| na constants                            |  |

| Example, | consider | an insulator with k-4t          |                |
|----------|----------|---------------------------------|----------------|
| Warm     |          | (4)(8.85x10-12 F/m)/(10-12 S/m) | - 35 seconds   |
| Cold     |          | (4)(8 85x10-12 F/m)/(10-14 S/m) | ~ 3540 seconds |
| Cryogens |          |                                 |                |

# Electrical properties at low temperatures (<77 K to 100K) are difficult to locate in literature tor many materials





Temperature Dependent Conductivity Models

### **ACE Interplanetary Environments**

ACE EPAM data provides L1 solar wind environments that can be used to evaluate charging for L1, L2, and lunar environments

Electron Deflection LEMS Low Energy Magnetic

LEFS Low Energy Foil Spectrometer



DE1 38 - 53 keV DE2 53 - 103 DE3 103 - 175 DE4 175-315

Power law representation of DE electron flux allows extrapolation to MeV energies required for

bulk charging analysis



Mention of the following with me

Exposure to ACE EPAM L1 environments are not generally considered a threat to bulk charging due to relatively low electron flux in interplanetary space compared to radiation belt environments.

#### Cryogenic Charging in Environments Relevant to L1, L2

Case o(S/cm) k kp x

Conductivity Model 1 1 year = 8760 hours 10 years = 87600 hours 30 years = 2.6e5 hours



Case o(S/cm) k kp x

Conductivity Model 1





Examples of bulk charging results using selected dark conductivity, RIC parameters.

#### Conductivity Models

Model 1





 $\sigma 0 = 2 \times 10^{-9} \text{ S/m}$   $\gamma 1 = 6620$ .  $\gamma 2 = 100$ . H1(T) = 1 for T≥298 K =0 for T<298 K H2(T) = 0 for T≥298 K =1 for T<298 K

k. = 2.28x10-24 S-sec/cm-rad a = 0.0576 K 

# Temperature Dependent σ(T), k, x

Temperature Histories



T = 300 K LDPE Cond. Model 2



Cooling T=300K to 100 K LDPE Cond. Model 2



Cooling T = 300 K to 50 K LDPE Cond. Model 2



Long time constants due to low conductivities result in long charge integration times at cryogenic temperatures. Increasingly lower temperatures do not create additional risk once the insulator has ssentially become a "charge integrator."

- · Reduced conductivity of insulating materials at low temperatures result in long charge integration periods.
- maximum charge accumulation results in electric fields less than the breakdown strength of the material.
- Bulk charging models require values of σ, k, x over the complete range of emperatures that will be encountered by the material to accurately assess the threat of dielectric breakdown. Laboratory measurements of these values are critical for quantitative bulk charging assessments at cryogenic temperatures.

#### References

- Aguilar-Hernández, J., and K. Polje-Kamloth, Evaluation of the electrical conductivity of polypys: Appl. Phys., 34, 1700-1711, 2001.
- Barucci, M., G. Blanchini, E. Gottardi, I. Peroni, and G. Ventura. Dielectric properties of Stycast 1266 over the 0.03 temperature range. Cryogenics. 39, 963 966, 1999.
- Brunson, J., and J.R. Dennison. Dependence of resistivity in low-density polyethylene on space en spacecraft Charging Technology Conference. Biarritz. France. 18-21 June, 2007.
- Bussey, D.B.J., P.G. Lucey, D. Steutel, M.S. Robinson, P.D. Spudis, and K.D. Edwards, Permanent shadow in a the lunar poles. Geophys. Res. Lett., VOL. 30, NO. 6, 1278, doi:10.1029/2002GL016180, 2003.
- ison, J.R., J. Gillispie, J. Hodges, R.C. Hoffman, J. Abbott, and A. Hunt, Radiation induced conductivity of highl raft materials. 10th Spacecraft Charging Technology Conference, Blarritz, France, 18-21 June, 2007. Dupont, Summary of properties for Kapton® polyamide films, 2006a.

- Frederickson, A.R., Radiation Induced Electrical Current and Voltage in Dielectric Structures, AFRL-TR-74-05823, 1974. Frederickson, A.R., Radiation induced currents and conductivity in dielectrics, IEEE Trans. Nuc. Sci., NS24, 2532 - 2539, 1977
- Frederickson, A.R., Padiation induced dielectric charging. In "Space Systems and Their Interactions with Earth's Space vironment. Vol. 71. Progress in Astronautics and Aeronautics. H.B. Garrett and C.P. Pike (eds.), AIAA, p. 386 412. 1980
- Frederickson, A.R., et al., "Radiation-induced insulator pulses in the CRRES internal discharge monitor satellite ex-rans. Nucl. Sci., vol. 38, p. 1614, Dec. 1991.
- Frederickson, A.R., et al., "Characteristics of spontaneous electrical discharging of various insulators in space rad frams. Nucl. Sci., vol. 39, p. 1773, Dec. 1992.
- Frederickson, A.R., and J.T. Bell, Analytic applibs, IEEE Trans, Nuc. Sci., 42, 1910, 1995.
- Fredrickson, A.R., and D.H. Brautigam, Mining CRRES IDM Pulse and CRRES Environmental Data to Improve Spacecraft harging/Discharging Models and Guidelines, NASA CR 2004-213228, June, 2004.
- Gerhold, J., Properties of cryogenic insulants. Cryogenics. 38, 1063 1081, 1998.-Ingersoll, A. P., T. Svitsk, and B. C. Murray ability of polar frosts in spherical bowl-shaped craters on the Moon Mercury, and Mars. Joanus. 100, 40–47, 1992.
- Jun, L. H.B. Garrett, W. Kim, and J. Minow, Review of an internal charging code, NUMIT, to be presented at the 10th In pacecraft Charging Conference, Blarritz, France, June 18-21 June, 2007. Koons, H. C., J.E. Mazur, R.S. Selesnick, J.B. Blake, J.F. Fennell, and P.C. Anderson, The impact of the space environn space systems. In Proceedings of the 6th Spacecraft Charging Technology Conference, AFRL-VS-20001578, 7-11, 1 Sept.
- Krupka, J., R.G. Geyer, M. Kuhn, and J.H. Hinken. Dielectric properties of single crystals of Al2O3, LaAlO3, NdGaO3, SrTiO3, MgO It cryogenic temperatures. #EEE Transactions on Microwave Theory and Techniques, 42, 1886 1890, 1994.
- idell, W.W., and F.J. Low, Preliminary results of the Apollo 17 infrared scanning radiometer, Earth, Moon, and Planets, 9, 97
- 100, 197%.

  Mizuno, Y., Y. Mitsuyama, M. Nagao, and M. Kosaki, Dielectric properties of ethylene-propylene rubber in cryogenic temperature region, Proc. of the 4th International Conference on Properties and Applications of Dielectric Materials, Paper 5105, Brisbane.
- Rodgers, D.J., K.A. Ryden, G.L. Wrenn, L. Levy, and J. Sorensen, Fitting of material parameters for DICTAT internal dielectric harging simulations using DICFIT. In Proc. of the 9th International Symposium on Materials in a Space Environment, SP-540 loordwijk, The Netherlands, September, 2003.
- Varinan, D. R. Reedy, G. Helken, G. Olfseth, and W. Mendell. The Lurar Environment. In Lurar Sourcebook, a User's Guide to the Boon, Reliken, G.H., D.T. Varinan, and B.M. Fanch (editors). Cambridge University Press, 1991.
   Vasivada, A. R., D. A. Paljon and S. E. Wood, Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar for Pepositis. Euros. 141, 179–193, 1999.



required for charge to decay from insulating materials exposed to relativistic electrons