DRL, generalization, and DQN

Deep Reinforcement Learning (DRL)

- Originates from the combination of:
 - RL using a value-based technique: Q-Learning
 - A deep neural network
- It can be defined as:
 - Implementation of deep neural networks to approximate the components in RL, such as Q-values.

- With DRL:
 - Q-learning:
 - Learning is done through the approximation of Q-values instead of prediction

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q\left(S_{t+1}, a\right) \right]$$

Approximated through NN

- Now, the RL agent queries the NN for Q-values so that an action can be executed
- Output of the NN are indexed

- Indexed NN output:
 - The output with the highest output value is passed to the RL agent

DRL -> DQN

- With NN approximation, a Q-table can be disregarded
 - Everything is now coming from the NN
 - This is a Deep Q-network
- However, a "warm-up" period is or can be needed to discard unnecessary experience

DQN

- Some cautions with DQN:
 - Since we are working with large state spaces:
 - Dimensionality: the number of states is very large
 - To address this:
 - Use Experience Replay
 - Prioritized experience replay
 - Importance factor

- Generalization:
 - Two definitions:
 - The "problem" of generalization
 - A generalized model
 - The "problem" of generalization:
 - When a model is not able to approximate (or classify) because of overfitted values:
 - Overfitted values:
 - False values for Accuracy and Loss:
 - Very high accuracy reached, very fast
 - Very low loss reached, very fast

- A generalized model:
 - A single model that can be implemented in different environments:
 - This means:
 - No overfitting
 - Good accuracy and loss
 - A generalized model can still output good values even when the input state was never seen before (or during training)
- The main goal of a DRL model is to be able to generalize

DQN flowchart simplified with ER

