Teori Himpunan dan Relasi

Pendahuluan, Operasi Himpunan, Pembuktian Proposisi Himpunan

Yassin Dwi Cahyo - Kelompok Fourier

Departemen Matematika Fakultas Sains dan Matematika Universitas Diponegoro

14 Oktober 2023

Pendahuluan

2/37

Himpunan adalah sekumpulan objek-objek yang berbeda dan terdefinisi dengan baik (well-defined)

(ロト (御) (注) (注) (注) りへの

3/37

Himpunan adalah sekumpulan objek-objek yang berbeda dan terdefinisi dengan baik (well-defined)

Contoh well-defined

- Himpunan mahasiswa di kelompok Fourier yang berkacamata;
- 4 Himpunan semua bilangan bulat genap;
- Himpunan matriks yang invertibel.

| □ ▶ ∢団 ▶ ∢ 差 ▶ ∢ 差 ▶ ○ 差 ○ 夕久(※)

3/37

Himpunan adalah sekumpulan objek-objek yang berbeda dan terdefinisi dengan baik (well-defined)

Contoh well-defined

- Himpunan mahasiswa di kelompok Fourier yang berkacamata;
- Himpunan semua bilangan bulat genap;
- Himpunan matriks yang invertibel.

Contoh tak well-defined

- Kumpulan mahasiswa di kelompok Fourier yang cantik;
- Kumpulan semua orang baik;
- Kumpulan matriks yang menarik.

3/37

Himpunan adalah sekumpulan objek-objek yang berbeda dan terdefinisi dengan baik (well-defined)

Contoh well-defined

- Himpunan mahasiswa di kelompok Fourier yang berkacamata;
- 4 Himpunan semua bilangan bulat genap;
- Himpunan matriks yang invertibel.

Apakah $\{1, 2, 2, 3, 4, 4\} = \{1, 2, 3, 4\}$?

Contoh tak well-defined

- Kumpulan mahasiswa di kelompok Fourier yang cantik;
- Kumpulan semua orang baik;
- Kumpulan matriks yang menarik.

3/37

Himpunan adalah sekumpulan objek-objek yang berbeda dan terdefinisi dengan baik (well-defined)

Contoh well-defined

- Himpunan mahasiswa di kelompok Fourier yang berkacamata;
- 4 Himpunan semua bilangan bulat genap;
- Himpunan matriks yang invertibel.

Apakah $\{1,2,2,3,4,4\} = \{1,2,3,4\}$? Ya.

Contoh tak well-defined

- Kumpulan mahasiswa di kelompok Fourier yang cantik;
- Kumpulan semua orang baik;
- Kumpulan matriks yang menarik.

3/37

Himpunan adalah sekumpulan objek-objek yang berbeda dan terdefinisi dengan baik (well-defined)

Contoh well-defined

- Himpunan mahasiswa di kelompok Fourier yang berkacamata;
- 4 Himpunan semua bilangan bulat genap;
- Himpunan matriks yang invertibel.

Apakah $\{1, 2, 2, 3, 4, 4\} = \{1, 2, 3, 4\}$? Ya.

Contoh tak well-defined

- Kumpulan mahasiswa di kelompok Fourier yang cantik;
- Kumpulan semua orang baik;
- Kumpulan matriks yang menarik.

Definisi 2 (Elemen Himpunan)

Diberikan himpunan tak kosong A. Objek a dikatakan elemen dari himpunan A jika a termuat di dalam himpunan A. Lebih lanjut, dapat dinotasikan $a \in A$.

3/37

Himpunan adalah sekumpulan objek-objek yang berbeda dan terdefinisi dengan baik (well-defined)

Contoh well-defined

- Himpunan mahasiswa di kelompok Fourier yang berkacamata;
- Mimpunan semua bilangan bulat genap;
- Himpunan matriks yang invertibel.

Apakah $\{1, 2, 2, 3, 4, 4\} = \{1, 2, 3, 4\}$? Ya.

Contoh tak well-defined

- Mumpulan mahasiswa di kelompok Fourier yang cantik;
- Kumpulan semua orang baik;
- Kumpulan matriks yang menarik.

Definisi 2 (Elemen Himpunan)

Diberikan himpunan tak kosong A. Objek a dikatakan elemen dari himpunan A jika a termuat di dalam himpunan A. Lebih lanjut, dapat dinotasikan $a \in A$.

Contoh: Diberikan

$$H = \{1, 2, 3, 4\}.$$

1
$$\in H$$
;

$$\mathbf{2} \quad 5 \notin H.$$

Catatan:

- Himpunan ditulis dengan huruf kapital, misal A, B, C, \cdots atau bisa ditulis {...}.
- Untuk melambangkan elemen, ditulis dengan huruf kecil.

Terdapat beberapa jenis himpunan yang sudah baku dan umum digunakan di seluruh dunia, diantaranya:

- **1** Himpunan semua bilangan kompleks yang dinotasikan dengan \mathbb{C} ;
- **4** Himpunan semua bilangan real yang dinotasikan dengan \mathbb{R} ;
- $\textcircled{9} \ \ \mbox{Himpunan semua bilangan rasional yang dinotasikan dengan} \ \ \mathbb{Q};$
- lacktriangle Himpunan semua bilangan bulat yang dinotasikan dengan \mathbb{Z} ;
- lacktriangle Himpunan semua bilangan asli yang dinotasikan dengan \mathbb{N} .

4/37

Suatu himpunan dapat didefinisikan dalam beberapa cara antara lain sebagai berikut.

Oeskripsi

Contoh:

 $A = \{ Himpunan semua bilangan bulat genap positif \}$

Notasi Pembentuk

Contoh:

$$A = \{ x \in \mathbb{N} \mid x \text{ genap } \}$$

Mendaftarkan semua anggotanya Contoh:

$$A = \{2, 4, 6, 8, 10, 12, 14, \dots\}$$

Diberikan suatu himpunan A. Banyaknya elemen di dalam himpunan A disebut dengan kardinalitas. Lebih lanjut, dapat dinotasikan n(A) atau |A|.

Contoh:

- Diberikan himpunan $F = \{1, 2, \dots, 2024\}$, diperoleh |F| = 2024;
- ② Diberikan himpunan $O = \{x \mid x \text{ adalah huruf penyusun kata "yassin"}\}$, diperoleh |O| = 5;
- **3** Diberikan himpunan $Y = \{x \in \mathbb{R} \mid 0 < x < 1\}$

6/37

Diberikan suatu himpunan A. Banyaknya elemen di dalam himpunan A disebut dengan kardinalitas. Lebih lanjut, dapat dinotasikan n(A) atau |A|.

Contoh:

- lacktriangle Diberikan himpunan $F=\{1,2,\cdots,2024\}$, diperoleh |F|=2024;
- **②** Diberikan himpunan $O = \{x \mid x \text{ adalah huruf penyusun kata "yassin"}\}$, diperoleh |O| = 5;
- **3** Diberikan himpunan $Y = \{x \in \mathbb{R} \mid 0 < x < 1\}$, diperoleh $|Y| = \infty$;
- **4** Diberikan himpunan $E = \emptyset$,

6/37

Diberikan suatu himpunan A. Banyaknya elemen di dalam himpunan A disebut dengan kardinalitas. Lebih lanjut, dapat dinotasikan n(A) atau |A|.

Contoh:

- lacktriangle Diberikan himpunan $F=\{1,2,\cdots,2024\}$, diperoleh |F|=2024;
- **②** Diberikan himpunan $O = \{x \mid x \text{ adalah huruf penyusun kata "yassin"}\}$, diperoleh |O| = 5;
- **3** Diberikan himpunan $Y = \{x \in \mathbb{R} \mid 0 < x < 1\}$, diperoleh $|Y| = \infty$;
- Diberikan himpunan $E = \emptyset$, diperoleh |E| = 0;
- **1** Diberikan himpunan $H = \{\emptyset\}$,

6/37

Diberikan suatu himpunan A. Banyaknya elemen di dalam himpunan A disebut dengan kardinalitas. Lebih lanjut, dapat dinotasikan n(A) atau |A|.

Contoh:

- lacktriangle Diberikan himpunan $F=\{1,2,\cdots,2024\}$, diperoleh |F|=2024;
- **②** Diberikan himpunan $O = \{x \mid x \text{ adalah huruf penyusun kata "yassin"}\}$, diperoleh |O| = 5;
- **3** Diberikan himpunan $Y = \{x \in \mathbb{R} \mid 0 < x < 1\}$, diperoleh $|Y| = \infty$;
- **1** Diberikan himpunan $E = \emptyset$, diperoleh |E| = 0;
- **5** Diberikan himpunan $H = \{\emptyset\}$, diperoleh |H| = 1.

6/37

Definisi 4 (Himpunan Kosong)

Diberikan himpunan A. Himpunan A dikatakan himpunan kosong (empty set) jika dan hanya jika |A|=0. Lebih lanjut, dapat dinotasikan \emptyset atau $\{\}$.

Contoh:

- **1** Himpunan $F = \{x \in \mathbb{Z} \mid 2023 < x < 2024\};$
- **②** Himpunan $O = \{x \in \mathbb{R} \mid x^2 + 2023 = 0\};$

- **6** Himpunan $H = \{k \in 2\mathbb{Z} \mid 1 + (-1)^k = 0\}.$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ のQの

7/37

Definisi 5 (Himpunan Bagian (Subset))

Diberikan dua himpunan, yaitu A dan B. Himpunan A disebut himpunan bagian dari himpunan B jika untuk setiap $x \in A$ berlaku $x \in B$. Lebih lanjut, dapat dinotasikan $A \subseteq B$.

Contoh:

- **1** $\{5\} \subseteq \{1,5\};$
- **②** $\{t, e, o, h\} \subseteq \{t, e, o, h\};$

Teorema 1

Diberikan himpunan $A,B,\,\mathrm{dan}\ C.$ Pada himpunan-himpunan tersebut, berlaku sifat-sifat sebagai berikut.

- \bullet $A \subseteq A$;
- lacktriangle Jika $A \subseteq B$ dan $B \subseteq C$, maka $A \subseteq C$.

Diberikan himpunan A dan himpunan B. Himpunan A=B jika dan hanya jika $A\subseteq B$ dan $B\subseteq A$.

Contoh:

< ロ > ∢団 > ∢ ≣ > ∢ ≣ > り へ ⊙

Diberikan himpunan A dan himpunan B. Himpunan A = B jika dan hanya jika $A \subseteq B$ dan $B \subseteq A$.

Contoh:

- ① Diberikan himpunan $A=\{1,2,3,4,5,\cdots,2024\}$ dan himpunan $B=\{x\in\mathbb{N}\mid x\leq 2024\}$, selanjutnya A=B;

Diberikan himpunan A dan himpunan B. Himpunan A = B jika dan hanya jika $A \subseteq B$ dan $B \subseteq A$.

Contoh:

- ① Diberikan himpunan $A=\{1,2,3,4,5,\cdots,2024\}$ dan himpunan $B=\{x\in\mathbb{N}\mid x\leq 2024\}$, selanjutnya A=B;

Definisi 7 (Ekuivalensi Dua Himpunan)

Diberikan himpunan A dan himpunan B. Himpunan A dikatakan ekuivalen dengan himpunan B $(A \sim B)$ jika dan hanya jika |A| = |B|.

Contoh:

9/37

Diberikan himpunan A dan himpunan B. Himpunan A=B jika dan hanya jika $A\subseteq B$ dan $B\subseteq A$.

Contoh:

- ① Diberikan himpunan $A=\{1,2,3,4,5,\cdots,2024\}$ dan himpunan $B=\{x\in\mathbb{N}\mid x\leq 2024\}$, selanjutnya A=B;

Definisi 7 (Ekuivalensi Dua Himpunan)

Diberikan himpunan A dan himpunan B. Himpunan A dikatakan ekuivalen dengan himpunan B $(A \sim B)$ jika dan hanya jika |A| = |B|.

Contoh:

- $\{a, f, i, f, a, h\} \sim \{f, u, a, d\};$
- $\{y, a, s, s, i, n\} \sim \{f, e, r, d, i\};$
- $\bullet \ \{s,e,k,a,r\} \sim \{n,u,k,m,a\};$
- $\{a, l, f, i\} \sim \{z, i, a, n\}$

- $\{w, y, n, e\} \sim \{f, e, b, i\};$
- $\{h, u, m, a, i, r, a\} \sim \{d, a, l, v, i, n\};$
- $\bullet \ \{h,a,n,i,f,a,h\} \sim \{s,i,n,t,a\} \sim \{r,e,n,a,t,a\};$
- $\bullet \ \{i,z,a,t\} \sim \{t,e,o,h\}.$

14 Oktober 2023

Definisi 8 (Himpunan Saling Lepas (disjoint set))

Diberikan himpunan A dan himpunan B. Himpunan A dan B dikatakan saling lepas jika dan hanya jika tidak ada elemen yang sama pada keduanya atau dengan kata lain. A saling lepas dengan $B \Leftrightarrow A \cap B \neq \emptyset$

Contoh:

- \bullet Himpunan $F=\{n\in\mathbb{N}\mid n\leq 2023\}$ dan himpunan $U=\{n\in\mathbb{N}\mid n>2023\}$, sehingga F saling lepas dengan U;
- $\textbf{ 4 Himpunan } A = \{2k \mid k \in \mathbb{Z}\} \text{ dan himpunan } D = \{2k+1 \mid k \in \mathbb{Z}\}, \text{ sehingga } A \text{ saling lepas dengan } D;$
- 🧿 🛭 saling lepas dengan 🖟.

10/37

Definisi 9 (Himpunan Kuasa (power set))

Diberikan himpunan A. Himpunan kuasa dari himpunan A, yang dinotasikan dengan $\mathcal{P}(A)$ adalah himpunan yang elemennya berupa semua himpunan bagian dari himpunan A, yaitu

$$\mathcal{P}(A) \stackrel{def.}{=} \{B \mid B \subseteq A\}.$$

Teorema 2

Diberikan himpunan A dengan kardinalitas sebanyak n. Kardinalitas dari $\mathcal{P}(A) = 2^n$.

Contoh:

- $\textbf{ 0} \ \, \text{Diberikan} \,\, L = \{ \spadesuit, \clubsuit \}. \,\, \text{Himpunan kuasa} \,\, \mathcal{P}(L) = \{ \emptyset, \{ \spadesuit \}, \{ \clubsuit \}, \{ \spadesuit, \clubsuit \} \}.$

Diperoleh:

- **1** $\mathcal{P}(K) = 16$;
- **2** $\mathcal{P}(L) = 4$

11/37

Operasi-Operasi pada Himpunan

12/37

Definisi 10 (Irisan)

Diberikan himpunan A dan himpunan B. Irisan dari himpunan A dan B adalah himpunan yang setiap elemennya merupakan elemen dari himpunan A dan himpunan B. Lebih lanjut

$$A \cap B \stackrel{def.}{=} \{x \mid x \in A \land x \in B\}.$$

Ilustrasi

Contoh:

- **2** $\{t, e, o, h\} \cap \{q, e, o, h\} \cap \{y, a, s, i, n\} = \emptyset$:
- **3** Himpunan $A = \{(x, y) \in \mathbb{R}^2 \mid x + y = 2024\}$ dan himpunan $B = \{(x, y) \in \mathbb{R}^2 \mid x - y = 10\}$. sehingga $A \cap B =$

13/37

Definisi 10 (Irisan)

Diberikan himpunan A dan himpunan B. Irisan dari himpunan A dan B adalah himpunan yang setiap elemennya merupakan elemen dari himpunan A dan himpunan B. Lebih lanjut

$$A \cap B \stackrel{def.}{=} \{x \mid x \in A \land x \in B\}.$$

Ilustrasi

Contoh:

- **2** $\{t, e, o, h\} \cap \{g, e, o, h\} \cap \{y, a, s, i, n\} = \emptyset;$
- Himpunan A = {(x,y) ∈ ℝ² | x + y = 2024} dan himpunan B = {(x,y) ∈ ℝ² | x y = 10}, sehingga A ∩ B = {(1017, 1007)}.

Definisi 11 (Gabungan)

Diberikan himpunan A dan himpunan B. Gabungan dari himpunan A dan B adalah himpunan yang setiap elemennya merupakan elemen dari himpunan A atau himpunan B. Lebih lanjut

$$A \cup B \stackrel{def.}{=} \{x \mid x \in A \lor x \in B\}.$$

Ilustrasi

Contoh:

Definisi 12 (Komplemen)

Diberikan himpunan bagian A dari himpunan semesta S. Komplemen dari A terhadap himpunan semesta S, yang dinotasikan A^c , adalah himpunan yang setiap elemennya merupakan elemen dari himpunan S yang bukan elemen di himpunan A. Lebih lanjut

$$A^c \stackrel{def.}{=} \{x \mid x \in S \land x \notin A\}.$$

Ilustrasi

Definisi 13 (Selisih)

Diberikan himpunan A dan himpunan B. Selisih A-B adalah himpunan yang elemennya merupakan elemen himpunan A tetapi bukan merupakan elemen himpunan B. Lebih lanjut

$$A - B = A \cap B^c \stackrel{def.}{=} \{x \mid x \in A \land x \notin B\}.$$

Ilustrasi

Definisi 14 (Beda Setangkup)

Diberikan himpunan A dan himpunan B. Beda setangkup $A \oplus B$ adalah himpunan yang elemennya merupakan elemen himpunan A atau B tetapi tidak pada A dan B. Lebih lanjut

$$A \oplus B \stackrel{def.}{=} \{x \mid x \in (A \cup B) \land x \notin (A \cap B)\}.$$

Note:

$$A \oplus B = (A - B) \cup (B - A) = (A \cup B) - (A \cap B)$$

Ilustrasi

Teorema 3

Diberikan himpunan A, B, dan C. Pada himpunan-himpunan tersebut, berlaku sifat-sifat sebagai berikut.

- $A \oplus B = B \oplus A:$
- $A \oplus (B \oplus C) = (A \oplus B) \oplus C.$

- (ロ) (個) (注) (注) (注) (注) り((

17 / 37

Definisi 15 (Kesamaan Pasarangan Terurut)

Diberikan pasangan terurut n- tupel (x_1,x_2,x_3,\cdots,x_n) dan (y_1,y_2,y_3,\cdots,y_n) . Pasangan terurut tersebut dikatakan **sama** jika dan hanya jika $x_1=y_1,\ x_2=y_2,\ x_3=y_3,\cdots,\ x_n=y_n$.

Definisi 16 (Cartesian Product)

Diberikan himpunan A dan himpunan B. Cartesian Product dari himpunan A dan B adalah himpunan yang elemennya merupakan pasangan terurut 2—tupel di mana elemen pertama dari himpunan A dan elemen kedua dari himpunan B. Lebih lanjut

$$A \times B \stackrel{def.}{=} \{(a,b) \mid a \in A \land b \in B\}$$

Dapat digeneralisasi, diberikan keluarga himpunan A_1,A_2,\cdots,A_n , didefinisikan

$$A_1 \times A_2 \times \cdots A_n \stackrel{def.}{=} \{(a_1, a_2, \cdots, a_n) \mid a_1 \in A_1 \land a_2 \in A_2 \land \cdots \land a_n \in A_n\}$$

◆ロト ◆問 ト ◆ 臣 ト ◆ 臣 ・ 夕 Q ○

18/37

Pembuktian Proposisi Himpunan

Teorema 4 (Hukum-Hukum Aljabar Himpunan)

Diberikan himpunan A, B, C, pada himpunan semesta S, berlaku sifat-sifat sebagai berikut.

Komplemen	$A \cup A^c = S$
	$A \cap A^c = \emptyset$
Komutatif	$A \cup B = B \cup A$
	$A \cap B = B \cap A$
Assosiatif	$(A \cup B) \cup C = A \cup (B \cup C)$
	$(A \cap B) \cap C = A \cap (B \cap C)$
Distributif	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Identitas	$A \cup \emptyset = A$
	$A \cap S = A$
De Morgan	$(A \cup B)^c = A^c \cap B^c$
	$(A \cap B)^c = A^c \cup B^c$
<i>null</i> /dominasi	$A \cup S = S$
	$A \cap \emptyset = \emptyset$
Absorpsi	$A \cup (A \cap B) = A$
	$A \cap (A \cup B) = A$
Involusi	$(A^c)^c = A$
Idempoten	$A \cup A = A$
	$A \cap A = A$

Bukti: Pembuktian diserahkan kepada pembaca. ■

Proposisi himpunan adalah pernyataan yang mengandung notasi himpunan. Untuk membuktikan kebenaran proposisi himpunan, terdapat beberapa metode yang dapat digunakan, antara lain:

- Pembuktian Proposisi Himpunan dengan Menggunakan Definisi;
- Pembuktian Proposisi Himpunan dengan Menggunakan Aljabar Himpunan.

21/37

Nomor 1 (UTS TA 2022/2023)

Diberikan himpunan-himpunan A, B, dan C. Buktikan bahwa $A \cup (B \cap C) \Leftrightarrow (A \cup B) \cap (A \cup C)$.

Penyelesaian:

Akan dibuktikan $A \cup (B \cap C) \Leftrightarrow (A \cup B) \cap (A \cup C)$ artinya akan dibuktikan

$$A \cup (B \cap C) \Rightarrow (A \cup B) \cap (A \cup C) \text{ dan } A \cup (B \cap C) \Leftarrow (A \cup B) \cap (A \cup C).$$

- (\Rightarrow) Diambil sebarang $b \in A \cup (B \cap C)$, selanjutnya, perhatikan saat
 - (1) Jika $b \in A$, maka $b \in (A \cup B)$ dan $b \in (A \cup C)$.
 - (2) Jika $b \notin A$, maka haruslah dipenuhi kondisi $b \in B$ dan $b \in C$ dengan kata lain $b \in (A \cup B)$ dan $b \in (A \cup C)$.

Dari kasus 1 dan kasus 2, terbukti bahwa $A \cup (B \cap C) \Rightarrow (A \cup B) \cap (A \cup C)$.

- (\Leftarrow) Diambil sebarang $a \in (A \cup B) \cap (A \cup C)$, berdasarkan definisi irisan didapatkan $a \in (A \cup B)$ dan $a \in (A \cup C)$. Selanjutnya, perhatikan saat
 - (3) $a \in (A \cup B) \stackrel{def.}{\Rightarrow} a \in A \lor a \in B \text{ dan}$
 - $(4) \ a \in (A \cup C) \stackrel{def.}{\Rightarrow} a \in A \lor a \in C.$

Dari kasus 3 dan kasus 4, terbukti bahwa $A \cup (B \cap C) \Leftarrow (A \cup B) \cap (A \cup C)$.

Dari uraian di atas, terbukti bahwa $A \cup (B \cap C) \Leftrightarrow (A \cup B) \cap (A \cup C)$.

・ 4 回 ト 4 豆 ト 4 豆 ・ り Q C

14 Oktober 2023

Nomor 2 (Kuis Kelas C)

Diberikan himpunan-himpunan A,B, dan C. Buktikan bahwa A merupakan gabungan disjoin dari (A-B) dan $(A\cap B).$

Penyelesaian:

Akan dibuktikan bahwa $(A-B)\cap (A\cap B)=\emptyset$. Dengan aljabar himpunan, diperhatikan bahwa

$$(A-B)\cap (A\cap B)=(A\cap B^c)\cap (A\cap B)\quad \text{definisi selisih}\\ =(A\cap B^c)\cap (B\cap A)\quad \text{sifat komutatif}\\ =[(A\cap B^c)\cap B]\cap A\quad \text{sifat assosiatif}\\ =[A\cap (B^c\cap B)]\cap A\quad \text{sifat assosiatif}\\ =(A\cap \emptyset)\cap A\quad \text{sifat komplemen}\\ =\emptyset\cap A\quad \text{sifat null}\\ =\emptyset\quad \text{sifat null}$$

Dari uraian di atas, terbukti bahwa A merupakan gabungan disjoin dari (A-B) dan $(A\cap B)$.

Nomor 3 (UTS TA 2022/2023)

Diberikan himpunan-himpunan P,Q,R dan S. Buktikan bahwa jika $R\subset P$ dan $S\subset Q$, maka $(R\times Q)\cap (P\times S)=R\times S$.

Penyelesaian:

Diambil sebarang $(a,b) \in (R \times Q) \cap (P \times S)$. Diperhatikan bahwa

$$(R\times Q)\cap (P\times S)=\{(a,b)\mid (a,b)\in (R\times Q)\wedge (a,b)\in (P\times S)\}\quad \text{definisi irisan}\\ =\{(a,b)\mid a\in R\wedge b\in Q\wedge a\in P\wedge b\in S\}\quad \text{definisi cartesian product}\\ =\{(a,b)\mid a\in R\wedge a\in P\wedge b\in Q\wedge b\in S\}\quad \text{sifat komutatif}\\ =\{(a,b)\mid a\in (R\cap P)\wedge b\in (Q\cap S)\}\quad \text{definisi irisan}$$

Oleh karena $R \subset P$, maka $R \cap P = R$ dan $S \subset Q$, maka $S \cap Q = S$. Hal ini, berakibat $(R \cap P) \wedge (Q \cap S) = R \cap S$. Dengan kata lain, terbukti bahwa $(R \times Q) \cap (P \times S) \subseteq R \times S$.

Diambil sebarang $(c,d) \in R \times S$, **berdasarkan definisi cartesian product** diperoleh fakta $c \in R$ dan $d \in S$. Bukti $R \times S \subseteq (R \cap P) \cap (Q \cap S)$ dilanjutkan oleh pembaca

40 > 40 > 42 > 42 > 2 > 90 0

Nomor 4

Diberikan himpunan-himpunan A dan B. Buktikan bahwa $A-(A\cap B)=A-B$.

Penyelesaian:

Akan dibuktikan bahwa $A-(A\cap B)=A-B$. Dengan aljabar himpunan, diperhatikan bahwa

$$\begin{array}{ll} A-(A\cap B)=A\cap (A\cap B)^c & \text{definisi selisih}\\ &=A\cap (A^c\cup B^c) & \text{sifat De Morgan}\\ &=(A\cap A^c)\cup (A\cap B^c) & \text{sifat distributif}\\ &=\emptyset\cup (A\cap B^c) & \text{sifat komplemen}\\ &=(A\cap B^c) & \text{sifat null}\\ &=A-B & \text{definisi selisih} \end{array}$$

Dari uraian di atas, terbukti bahwa $A - (A \cap B) = A - B$.

25 / 37

Diberikan himpunan-himpunan A, B, dan C. Buktikan bahwa (A - B) - C = (A - C) - (B - C).

Penyelesaian:

Untuk membuktikan (A-B)-C=(A-C)-(B-C), akan dibuktikan bahwa $(A-B)-C\subseteq (A-C)-(B-C)$ dan $(A-C)-(B-C)\subseteq (A-B)-C$. Diperhatikan bahwa

- Akan dibuktikan bahwa $(A-B)-C\subseteq (A-C)-(B-C)$. Diambil sebarang $k\in (A-B)-C$. Berdasarkan definisi selisih diperoleh $k\in (A\cap B^c)\cap C^c$, selanjutnya berdasarkan sifat komutatif dan assosiatif diperoleh $k\in (A\cap C^c)\cap B^c$.
 - (1) Saat $k \in (A \cap C^c)$, berdasarkan definisi selisih, maka k dapat dinyatakan $k \in A C$ dan
 - (2) Saat $k \in B^c$, ekuivalen dengan menyatakan $k \notin B$, berdasarkan definisi irisan dan selisih diperoleh $k \notin B \cap C^c$ atau $k \notin B C$.

Dari uraian tersebut, diperoleh bahwa $k \in (A-C) \land k \notin (B-C)$, dengan kata lain $k \in (A-C) - (B-C)$. Dengan demikian, terbukti bahwa $(A-B) - C \subseteq (A-C) - (B-C)$

- Akan dibuktikan bahwa $(A-C)-(B-C)\subseteq (A-B)-C$. Diambil sebarang $p\in (A-C)-(B-C)$. Berdasarkan definisi selisih, maka p dapat dinyatakan $p\in (A-C)\land p\notin (B-C)$
 - (1) Saat $p \in (A C)$, berdasarkan definisi selisih, diperoleh $p \in A \land p \notin C$ dan
 - (2) Saat $p \notin (B-C)$, berdasarkan definisi komplemen, diperoleh $p \in (B-C)^c$, berdasarkan definisi selisih dan sifat De Morgan, p dapat dinyatakan sebagai $p \in B^c \vee p \in C$, dengan kata lain $p \notin B \vee p \in C$.

Dari (1), dapat disimplifikasi $p \notin C$, **berdasarkan disjunctive syllogism** dengan (2) diperoleh bahwa $p \in B^c$, sehingga $p \in (A-C)$ juga berarti $p \in A \land p \in B^c$ atau $p \in (A-B)$. Dari (1), juga didapatkan $p \notin C$, artinya $p \in (A-B)-C$. Dengan demikian terbukti bahwa $(A-C)-(B-C) \subseteq (A-B)-C$.

Dari uraian di atas,oleh karena $(A-B)-C\subseteq (A-C)-(B-C)$ dan $(A-C)-(B-C)\subseteq (A-B)-C$ sehingga terbukti bahwa $(A-B)-C=(A-C)-(B-C)\blacksquare$

Akan dibuktikan bahwa (A-B)-C=(A-C)-(B-C). Dengan aljabar himpunan, diperhatikan bahwa

$$(A-C)-(B-C)=(A\cap C^c)\cap (B\cap C^c)^c\quad \text{definisi selisih}\\ =(A\cap C^c)\cap (B^c\cup C)\quad \text{sifat De Morgan}\\ =[(A\cap C^c)\cap B^c]\cup [(A\cap C^c)\cap C]\quad \text{sifat distributif}\\ =[(A\cap C^c)\cap B^c]\cup [A\cap (C^c\cap C)]\quad \text{sifat assosiatif}\\ =[(A\cap C^c)\cap B^c]\cup (A\cap \emptyset)\quad \text{sifat komplemen}\\ =[(A\cap C^c)\cap B^c]\cup \emptyset\quad \text{sifat null}\\ =[(A\cap C^c)\cap B^c]\quad \text{sifat null}\\ =A\cap (C^c\cap B^c)\quad \text{sifat assosiatif}\\ =A\cap (B^c\cap C^c)\quad \text{sifat komutatif}\\ =(A\cap B^c)\cap C^c\quad \text{sifat assosiatif}\\ =(A-B)-C\quad \text{definisi selisih}$$

Dari uraian di atas, terbukti bahwa (A-B)-C=(A-C)-(B-C).

Diberikan himpunan-himpunan A, B, dan C. Buktikan bahwa $(A - B) \cup (B - C) = A - C$

Penyelesaian:

Tidak terbukti $(A-B) \cup (B-C) = A-C$, sebab terdapat *counterexample*, yaitu saat $A = \{t, e, o, h\}, B = \emptyset$, dan $C = \{t, e, o, h\}$. Diperhatikan bahwa

$$A - B = \{t, e, o, h\} - \emptyset$$

$$= \{t, e, o, h\}$$

$$B - C = \emptyset - \{t, e, o, h\}$$

$$= \emptyset$$

$$(A - B) \cup (B - C) = \{t, e, o, h\} \cup \emptyset$$

$$= \{t, e, o, h\} - \{t, e, o, h\}$$

$$= \emptyset$$

$$(2)$$

Dari uraian di atas, didapatkan $(1) \neq (2)$, dengan kata lain terdapat $A = \{t, e, o, h\}, B = \emptyset$, dan $C = \{t, e, o, h\}$ sedemikian sehingga $(A - B) \cup (B - C) \neq A - C$. Jadi, tidak terbukti bahwa $(A - B) \cup (B - C) = A - C$.

Diberikan himpunan-himpunan A,B, dan C. Buktikan bahwa $A-(B\cup C)=(A-B)\cap (A-C)$

Penyelesaian:

Akan dibuktikan bahwa $A-(B\cup C)=(A-B)\cap (A-C)$. Dengan aljabar himpunan, diperhatikan bahwa

$$\begin{array}{ll} A-(B\cup C)=A\cap (B\cup C)^c & \text{definisi selisih}\\ &=A\cap (B^c\cap C^c) & \text{sifat De Morgan}\\ &=(A\cap A)\cap (B^c\cap C^c) & \text{sifat idempoten}\\ &=(A\cap B^c)\cap (A\cap C^c) & \text{sifat komutatif}\\ &=(A-B)\cap (A-C) & \text{definisi selisih} \end{array}$$

Dari uraian di atas, terbukti bahwa $A-(B\cup C)=(A-B)\cap (A-C).\blacksquare$

30 / 37

Diberikan himpunan-himpunan A, B, dan C. Buktikan bahwa $A - (B \cap C) = (A - B) \cup (A - C)$

Penyelesaian:

Akan dibuktika bahwa $A-(B\cap C)=(A-B)\cup (A-C)$. Dengan aljabar himpunan, diperhatikan bahwa

$$\begin{split} A-(B\cap C) &= A\cap (B\cap C)^c \quad \text{definisi selisih} \\ &= A\cap (B^c\cup C^c) \quad \text{sifat De Morgan} \\ &= (A\cap B^c)\cup (A\cap C^c) \quad \text{sifat distributif} \\ &= (A-B)\cup (A-C) \quad \text{definisi selisih} \end{split}$$

Dari uraian di atas, terbukti bahwa $A-(B\cap C)=(A-B)\cup (A-C).\blacksquare$

Diberikan himpunan-himpunan A dan B. Buktikan bahwa $A \subseteq B$ jika dan hanya jika $B^c \subseteq A^c$.

Penyelesaian:

Untuk membuktikan $A\subseteq B$ jika dan hanya jika $B^c\subseteq A^c$ sama halnya dengan membuktikan $A\subseteq B\Rightarrow B^c\subseteq A^c$ dan $A\subseteq B\Leftarrow B^c\subseteq A^c$.

- (\Rightarrow) Diketahui $A\subseteq B$. Diambil sebarang $t\in B^c$, artinya $t\notin B$. Dari diketahui bahwa $A\subseteq B$, artinya jika $k\in A$, maka $k\in B$. Hal ini, berlaku kontraposisi, yaitu jika $k\notin B$, maka $k\notin A$. Analog, saat $t\notin B$ dan $A\subseteq B$, diperoleh $t\notin A$ atau jika $t\in B^c$, maka $t\in A^c$. Terbukti bahwa jika $A\subseteq B$, maka $B^c\subseteq A^c$.
- (\Leftarrow) Diketahui $B^c \subseteq A^c$. Diambil sebarang $s \in A$. Dari diketahui $B^c \subseteq A^c$, artinya jika $l \in B^c$, maka $l \in A^c$. Hal ini, berlaku kontraposisi, yaitu jika $l \notin A^c$, maka $l \notin B^c$, dengan kata lain, jika $l \in A$, maka $l \in B$. Analog, saat $s \in A$ dan $B^c \subseteq A^c$, diperoleh $s \in B$. Terbukti bahwa $A \subseteq B$.

Berdasarkan uraian di atas, terbukti bahwa $A \subseteq B$ jika dan hanya jika $B^c \subseteq A^c$.

Diberikan himpunan-himpunan A dan B. Buktikan bahwa $A \subseteq B$ jika dan hanya jika $A \cup B = B$.

Penyelesaian:

Bukti diserahkan kepada pembaca.

Latihan Nomor 11

Diberikan himpunan-himpunan A dan B. Buktikan bahwa $A\subseteq B$ jika dan hanya jika $A\cap B=A$.

Penyelesaian:

Bukti diserahkan kepada pembaca.

33 / 37

Diberikan himpunan-himpunan A dan B. Buktikan bahwa $A-B=B^c-A^c$.

Penyelesaian:

Akan dibuktikan bahwa $A-B=B^c-A^c$. Dengan aljabar himpunan, diperhatikan bahwa

$$A-B=A\cap B^c$$
 definisi selisih
$$=(A^c)^c\cap B^c \quad \text{sifat involusi} \\ =B^c\cap (A^c)^c \quad \text{sifat komutatif} \\ =B^c-A^c \quad \text{definisi selisih}$$

Dari uraian di atas, terbukti bahwa $A-B=B^c-A^c$.

Soal

35 / 37

Soal

Diberikan himpunan-himpunan A, B, dan C dalam semesta S. Buktikan bahwa

- $A \subseteq B \Leftrightarrow A \cap B^c = \emptyset.$
- $A \subseteq B \Leftrightarrow A^c \cup B = S.$

- \bullet Jika $A \subseteq B$ dan $A \subseteq C$, maka $A \subseteq B \cap C$.
- lacksquare Jika $A\cap B=A\cap C$ dan $A\cup B=A\cup C$, maka B=C.

36 / 37

NoteL

Semangat UTS nya! semoga hasilnya memuaskan. Mohon maaf jika terdapat buanyaaak kesalahan di *file* ini, banyak *typo*, dll. Semoga *file* ini bisa bermanfaat untuk kalian semua. Doakan penulis agar sehat dan sukses selalu. Aamiin YRA

37 / 37