

Manage administrator accounts

ONTAP 9

NetApp March 11, 2023

This PDF was generated from https://docs.netapp.com/us-en/ontap/authentication/manage-user-accounts-concept.html on March 11, 2023. Always check docs.netapp.com for the latest.

Table of Contents

Manage administrator accounts	. 1
Manage administrator accounts overview	. 1
Associate a public key with an administrator account	. 1
Generate and install a CA-signed server certificate	. 2
Configure Active Directory domain controller access	. 5
Configure LDAP or NIS server access	. 7
Change an administrator password	10
Lock and unlock an administrator account	11
Manage failed login attempts	12
Enforce SHA-2 on administrator account passwords	13

Manage administrator accounts

Manage administrator accounts overview

Depending on how you have enabled account access, you may need to associate a public key with a local account, install a CA-signed server digital certificate, or configure AD, LDAP, or NIS access. You can perform all of these tasks before or after enabling account access.

Associate a public key with an administrator account

For SSH public key authentication, you must associate the public key with an administrator account before the account can access the SVM. You can use the security login publickey create command to associate a key with an administrator account.

Before you begin

- · You must have generated the SSH key.
- · You must be a cluster or SVM administrator to perform this task.

About this task

If you authenticate an account over SSH with both a password and an SSH public key, the account is authenticated first with the public key.

Step

1. Associate a public key with an administrator account:

```
security login publickey create -vserver SVM_name -username user_name -index
index -publickey certificate -comment comment
```

For complete command syntax, see the worksheet.

Associating a public key with a user account

The following command associates a public key with the SVM administrator account symadmin1 for the SVM engData1. The public key is assigned index number 5.

```
cluster1::>security login publickey create -vserver engData1 -username
svmadmin1 -index 5 -publickey
"ssh-rsa AAAAB3NzaClyc2EAAAABIwAAAIEAspH64CYbUsDQCdW22JnK6J
/vU9upnKzd2zAk9Clf7YaWRUAFNs2Qe5lUmQ3ldi8AD0Vfbr5T6HZPCixNAIza
FciDy7hgnmdj9eNGedGr/JNrftQbLDlhZybX+72DpQB0tYWBhe6eDJloPLob
ZBGfMlPXh8VjeU44i7W4+s0hG0E=tsmith@publickey.example.com"
```

Generate and install a CA-signed server certificate

Generate and install a CA-signed server certificate overview

On production systems, it is a best practice to install a CA-signed digital certificate for use in authenticating the cluster or SVM as an SSL server. You can use the security certificate generate-csr command to generate a certificate signing request (CSR), and the security certificate install command to install the certificate you receive back from the certificate authority.

Generate a certificate signing request

You can use the security certificate generate-csr command to generate a certificate signing request (CSR). After processing your request, the certificate authority (CA) sends you the signed digital certificate.

What you'll need

You must be a cluster or SVM administrator to perform this task.

Steps

1. Generate a CSR:

security certificate generate-csr -common-name FQDN_or_common_name -size 512|1024|1536|2048 -country country -state state -locality locality -organization organization -unit unit -email-addr email_of_contact -hash -function SHA1|SHA256|MD5

The following command creates a CSR with a 2048-bit private key generated by the SHA256 hashing function for use by the Software group in the IT department of a company whose custom common name is server1.companyname.com, located in Sunnyvale, California, USA. The email address of the SVM contact administrator is web@example.com. The system displays the CSR and the private key in the output.

```
cluster1::>security certificate generate-csr -common-name
server1.companyname.com -size 2048 -country US -state California
-locality Sunnyvale -organization IT -unit Software -email-addr
web@example.com -hash-function SHA256
```

```
Certificate Signing Request:
----BEGIN CERTIFICATE REOUEST----
```

MIIBGjCBxQIBADBgMRQwEgYDVQQDEwtleGFtcGxlLmNvbTELMAkGA1UEBhMCVVMx CTAHBgNVBAgTADEJMAcGA1UEBxMAMQkwBwYDVQQKEwAxCTAHBgNVBAsTADEPMAOG CSqGSIb3DQEJARYAMFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAPXFanNoJApT1nzS xOcxixqImRRGZCR7tVmTYyqPSuTvfhVtwDJbmXuj6U3a1woUsb13wfEvQnHVFNci2ninsJ8CAwEAAaAAMAOGCSqGSIb3DQEBCwUAA0EA6EagLfso5+4g+ejiRKKTUPQOUqOUEoKuvxhOvPC2w7b//fNSFsFHvXloqEOhYECn/NX9h8mbphCoM5YZ4OfnKw==----END CERTIFICATE REQUEST----

```
Private Key:
----BEGIN RSA PRIVATE KEY----
```

MIIBOwIBAAJBAPXFanNoJApT1nzSxOcxixqImRRGZCR7tVmTYyqPSuTvfhVtwDJb
mXuj6U3a1woUsb13wfEvQnHVFNci2ninsJ8CAwEAAQJAWt2AO+bW3FKezEuIrQlu
KoMyRYK455wtMk8BrOyJfhYsB20B28eifjJvRWdTOBEav99M7cEzgPv+p5kaZTTM
gQIhAPsp+j1hrUXSRj979LIJJY0sNez397i7ViFXWQScx/ehAiEA+oDbOooWlVvu
xj4aitxVBu6ByVckYU8LbsfeRNsZwD8CIQCbZ1/ENvmlJ/P7N9Exj2NCtEYxd0Q5
cwBZ5NfZeMBpwQIhAPk0KWQSLadGfsKO077itF+h9FGFNHbtuNTrVq4vPW3nAiAA
peMBQgEv28y2r8D4dkYzxcXmjzJluUSZSZ9c/wS6fA==
----END RSA PRIVATE KEY----

Note: Please keep a copy of your certificate request and private key for future reference.

2. Copy the certificate request from the CSR output, and send it in electronic form (such as email) to a trusted third-party CA for signing.

After processing your request, the CA sends you the signed digital certificate. You should keep a copy of the private key and the CA-signed digital certificate.

Install a CA-signed server certificate

You can use the security certificate install command to install a CA-signed server certificate on an SVM. ONTAP prompts you for the certificate authority (CA) root and intermediate certificates that form the certificate chain of the server certificate.

What you'll need

You must be a cluster or SVM administrator to perform this task.

Step

Install a CA-signed server certificate: security certificate install -vserver SVM_name
 -type certificate_type

For complete command syntax, see the worksheet.

ONTAP prompts you for the CA root and intermediate certificates that form the certificate chain of the server certificate. The chain starts with the certificate of the CA that issued the server certificate, and can range up to the root certificate of the CA. Any missing intermediate certificates result in the failure of server certificate installation.

The following command installs the CA-signed server certificate and intermediate certificates on the SVMengData2.

```
cluster1::>security certificate install -vserver engData2 -type server
Please enter Certificate: Press <Enter> when done
----BEGIN CERTIFICATE----
MIIB8TCCAZuqAwIBAwIBADANBqkqhkiG9w0BAQQFADBfMRMwEQYDVQQDEwpuZXRh
cHauY29tMQswCQYDVQQGEwJVUzEJMAcGA1UECBMAMQkwBwYDVQQHEwAxCTAHBqNV
BAOTADEJMAcGA1UECxMAMQ8wDQYJKoZIhvcNAQkBFgAwHhcNMTAwNDI2MTk0OTI4
WhcNMTAwNTI2MTk0OTI4WjBfMRMwEQYDVQQDEwpuZXRhcHAuY29tMQswCQYDVQQG
EwJVUzEJMAcGA1UECBMAMQkwBwYDVQQHEwAxCTAHBqNVBAoTADEJMAcGA1UECxMA
MQ8wDQYJKoZIhvcNAQkBFqAwXDANBqkqhkiG9w0BAQEFAANLADBIAkEAyXrK2sry
----END CERTIFICATE----
Please enter Private Key: Press <Enter> when done
----BEGIN RSA PRIVATE KEY----
MIIBPAIBAAJBAMl6ytrK8nQj82UsWeHOeT8gk0BPX+Y5MLycsUdXA7hXhumHNpvF
C61X2G32Sx8VEa1th94tx+v0Ezq+UaqHlt0CAwEAAQJBAMZjDWlgmlm3qIr/n8VT
PFnnZnbVcXVM7OtbUsqPKw+QCCh9dF1jmuQKeDr+wUMWknlDeGrfhILpzfJGHrLJ
z7UCIQDr8d3gOG71UyX+BbFmo/N0uAKjS2cvUU+Y8a8pDxGLLwIhANqa99SuS18U
DiPvdaKTj6+EcGuXfCXz+G0rfgTZK8uzAiEAr1mnrfYC8KwE9k7A0ylRzBLdUwK9
AvuJDn+/z+H1Bd0CIQDD93P/xpaJETNz53Au49VE5Jba/Juqckrbosd/lSd7nQIq
aEMAzt6qHHT4mndi8Bo8sDGedG2SKx6Qbn2IpuNZ7rc=
----END RSA PRIVATE KEY----
Do you want to continue entering root and/or intermediate certificates
\{y \mid n\}: y
Please enter Intermediate Certificate: Press <Enter> when done
----BEGIN CERTIFICATE----
MIIE+zCCBGSqAwIBAqICAQ0wDQYJKoZIhvcNAQEFBQAwqbsxJDAiBqNVBAcTG1Zh
bGlDZXJ0IFZhbGlkYXRpb24gTmV0d29yazEXMBUGA1UEChMOVmFsaUNlcnQsIElu
Yy4xNTAzBqNVBAsTLFZhbGlDZXJ0IENsYXNzIDIqUG9saWN5IFZhbGlkYXRpb24q
QXV0aG9yaXR5MSEwHwYDVQQDExhodHRwOi8vd3d3LnZhbGljZXJ0LmNvbS8xIDAe
BgkqhkiG9w0BCQEWEWluZm9AdmFsaWNlcnQuY29tMB4XDTA0MDYyOTE3MDYyMFoX
DTIOMDYYOTE3MDYYMFowYzELMAkGA1UEBhMCVVMxITAfBqNVBAoTGFRoZSBHbyBE
```

YWRkeSBHcm91cCwgSW5jLjExMC8GA1UECxMoR28gRGFkZHkgQ2xhc3MgMiBDZXJ0
----END CERTIFICATE----

Do you want to continue entering root and/or intermediate certificates $\{y \mid n\}$: y

Please enter Intermediate Certificate: Press <Enter> when done ----BEGIN CERTIFICATE----

MIIC5zCCAlaCAQEwDQYJKoZIhvcNAQEFBQAwgbsxJDAiBgNVBAcTG1ZhbGlDZXJ0
IFZhbGlkYXRpb24gTmV0d29yazEXMBUGA1UEChMOVmFsaUNlcnQsIEluYy4xNTAz
BgNVBAsTLFZhbGlDZXJ0IENsYXNzIDIgUG9saWN5IFZhbGlkYXRpb24gQXV0aG9y
aXR5MSEwHwYDVQQDExhodHRwOi8vd3d3LnZhbGljZXJ0LmNvbS8xIDAeBgkqhkiG
9w0BCQEWEWluZm9AdmFsaWNlcnQuY29tMB4XDTk5MDYyNjAwMTk1NFoXDTE5MDYy
NjAwMTk1NFowgbsxJDAiBgNVBAcTG1ZhbGlDZXJ0IFZhbGlkYXRpb24gTmV0d29y
azEXMBUGA1UEChMOVmFsaUNlcnQsIEluYy4xNTAzBgNVBAsTLFZhbGlDZXJ0IENs
YXNzIDIgUG9saWN5IFZhbGlkYXRpb24gQXV0aG9yaXR5MSEwHwYDVQQDExhodHRw
----END CERTIFICATE----

Do you want to continue entering root and/or intermediate certificates $\{y \mid n\}$: n

You should keep a copy of the private key and the CA-signed digital certificate for future reference.

Configure Active Directory domain controller access

Configure Active Directory domain controller access overview

You must configure AD domain controller access to the cluster or SVM before an AD account can access the SVM. If you have already configured a SMB server for a data SVM, you can configure the SVM as a gateway, or *tunnel*, for AD access to the cluster. If you have not configured a SMB server, you can create a computer account for the SVM on the AD domain.

ONTAP supports the following domain controller authentication services:

- Kerberos
- LDAP
- Netlogon
- Local Security Authority (LSA)

ONTAP supports the following session key algorithms for secure Netlogon connections:

Session key algorithm	Available in
HMAC-SHA256, based on the Advanced Encryption Standard (AES)	ONTAP 9.10.1 and later
DES and HMAC-MD5 (when strong key is set)	All ONTAP 9 releases

If you want to use AES session keys during Netlogon secure channel establishment in ONTAP 9.10.1 and later, you must enable them using the following command:

cifs security modify -vserver vs1 -aes-enabled-for-netlogon-channel true

The default is false.

In ONTAP releases earlier than 9.10.1, if the domain controller enforces AES for secure Netlogon services, the connection fails. The domain controller must be configured to accept strong key connections with ONTAP in these releases.

Configure an authentication tunnel

If you have already configured a SMB server for a data SVM, you can use the security login domain-tunnel create command to configure the SVM as a gateway, or tunnel, for AD access to the cluster.

What you'll need

- You must have configured a SMB server for a data SVM.
- · You must have enabled an AD domain user account to access the admin SVM for the cluster.
- You must be a cluster administrator to perform this task.

Beginning with ONTAP 9.10.1, if you have an SVM gateway (domain tunnel) for AD access, you can use Kerberos for admin authentication if you have disabled NTLM in your AD domain. In earlier releases, Kerberos was not supported with admin authentication for SVM gateways. This functionality is available by default; no configuration is required.

NOTE

Kerberos authentication is always attempted first. In case of failure, NTLM authentication is then attempted.

Step

1. Configure a SMB-enabled data SVM as an authentication tunnel for AD domain controller access to the cluster:

security login domain-tunnel create -vserver SVM name

For complete command syntax, see the worksheet.

The SVM must be running for the user to be authenticated.

The following command configures the SMB-enabled data SVMengData as an authentication tunnel.

cluster1::>security login domain-tunnel create -vserver engData

Create an SVM computer account on the domain

If you have not configured an SMB server for a data SVM, you can use the vserver active-directory create command to create a computer account for the SVM on the domain.

What you'll need

You must be a cluster or SVM administrator to perform this task.

About this task

After you enter the vserver active-directory create command, you are prompted to provide the credentials for an AD user account with sufficient privileges to add computers to the specified organizational unit in the domain. The password of the account cannot be empty.

Step

1. Create a computer account for an SVM on the AD domain:

```
vserver active-directory create -vserver SVM_name -account-name NetBIOS account name -domain domain -ou organizational unit
```

For complete command syntax, see the worksheet.

The following command creates a computer account named ADSERVER1 on the domain example.com for the SVM engData. You are prompted to enter the AD user account credentials after you enter the command.

```
cluster1::>vserver active-directory create -vserver engData -account
-name ADSERVER1 -domain example.com
```

In order to create an Active Directory machine account, you must supply the name and password of a Windows account with sufficient privileges to add computers to the "CN=Computers" container within the "example.com" domain.

Enter the user name: Administrator

Enter the password:

Configure LDAP or NIS server access

Configure LDAP or NIS server access overview

You must configure LDAP or NIS server access to an SVM before LDAP or NIS accounts can access the SVM. The switch feature lets you use LDAP or NIS as alternative name service sources.

Configure LDAP server access

You must configure LDAP server access to an SVM before LDAP accounts can access the SVM. You can use the vserver services name-service ldap client create command to create an LDAP client configuration on the SVM. You can then use the vserver services name-service ldap create command to associate the LDAP client configuration with the SVM.

What you'll need

- You must have installed a CA-signed server digital certificate on the SVM.
- You must be a cluster or SVM administrator to perform this task.

About this task

Most LDAP servers can use the default schemas provided by ONTAP:

- MS-AD-BIS (the preferred schema for most Windows 2012 and later AD servers)
- AD-IDMU (Windows 2008, Windows 2012 and later AD servers)
- AD-SFU (Windows 2003 and earlier AD servers)
- RFC-2307 (UNIX LDAP servers)

It is best to use the default schemas unless there is a requirement to do otherwise. If so, you can create your own schema by copying a default schema and modifying the copy. For more information, see the following documents.

- NFS configuration
- NetApp Technical Report 4835: How to Configure LDAP in ONTAP

Steps

1. Create an LDAP client configuration on an SVM: vserver services name-service ldap client create -vserver SVM_name -client-config client_configuration -servers LDAP_server_IPs -schema schema -use-start-tls true|false

Start TLS is supported for access to data SVMs only. It is not supported for access to admin SVMs.

For complete command syntax, see the worksheet.

The following command creates an LDAP client configuration named <code>corp</code> on the SVMengData. The client makes anonymous binds to the LDAP servers with the IP addresses 172.160.0.100 and 172.16.0.101. The client uses the <code>RFC-2307</code> schema to make LDAP queries. Communication between the client and server is encrypted using Start TLS.

```
cluster1::>vserver services name-service ldap client create
-vserver engData -client-config corp -servers 172.16.0.100,172.16.0.101
-schema RFC-2307 -use-start-tls true
```


Beginning with ONTAP 9.2, the field -ldap-servers replaces the field -servers. This new field can take either a hostname or an IP address for the LDAP server.

2. Associate the LDAP client configuration with the SVM: vserver services name-service ldap create -vserver SVM_name -client-config client_configuration -client-enabled true|false

For complete command syntax, see the worksheet.

The following command associates the LDAP client configuration corp with the SVMengData, and enables the LDAP client on the SVM.

```
cluster1::>vserver services name-service ldap create -vserver engData
-client-config corp -client-enabled true
```


Beginning with ONTAP 9.2, the vserver services name-service ldap create command performs an automatic configuration validation and reports an error message if ONTAP is unable to contact the name server.

3. Validate the status of the name servers by using the vserver services name-service Idap check command.

The following command validates LDAP servers on the SVM vs0.

The name service check command is available beginning with ONTAP 9.2.

Configure NIS server access

You must configure NIS server access to an SVM before NIS accounts can access the SVM. You can use the vserver services name-service nis-domain create command to create an NIS domain configuration on an SVM.

What you'll need

- All configured servers must be available and accessible before you configure the NIS domain on the SVM.
- You must be a cluster or SVM administrator to perform this task.

About this task

You can create multiple NIS domains. Only one NIS domain can be set to active at a time.

Step

1. Create an NIS domain configuration on an SVM: vserver services name-service nis-domain create -vserver SVM_name -domain client_configuration -active true|false -nis -servers NIS server IPs

For complete command syntax, see the worksheet.

Beginning with ONTAP 9.2, the field -nis-servers replaces the field -servers. This new field can take either a hostname or an IP address for the NIS server.

The following command creates an NIS domain configuration on the SVM engData. The NIS domain nisdomain is active on creation and communicates with an NIS server with the IP address 192.0.2.180.

```
cluster1::>vserver services name-service nis-domain create
-vserver engData -domain nisdomain -active true -nis-servers 192.0.2.180
```

Create a name service switch

The name service switch feature lets you use LDAP or NIS as alternative name service sources. You can use the vserver services name-service ns-switch modify command to specify the look-up order for name service sources.

What you'll need

- You must have configured LDAP and NIS server access.
- You must be a cluster administrator or SVM administrator to perform this task.

Step

1. Specify the lookup order for name service sources:

```
vserver services name-service ns-switch modify -vserver SVM_name -database name_service_switch_database -sources name_service_source_order
```

For complete command syntax, see the worksheet.

The following command specifies the lookup order of the LDAP and NIS name service sources for the passwd database on the engDataSVM.

```
cluster1::>vserver services name-service ns-switch
modify -vserver engData -database passwd -source files ldap,nis
```

Change an administrator password

You should change your initial password immediately after logging into the system for the first time. If you are an SVM administrator, you can use the security login

password command to change your own password. If you are a cluster administrator, you can use the security login password command to change any administrator's password.

What you'll need

- You must be a cluster or SVM administrator to change your own password.
- You must be a cluster administrator to change another administrator's password.

About this task

The new password must observe the following rules:

- · It cannot contain the user name
- · It must be at least eight characters long
- · It must contain at least one letter and one number
- · It cannot be the same as the last six passwords

You can use the security login role config modify command to modify the password rules for accounts associated with a given role. For more information, see the man page.security login role config modify

Step

 Change an administrator password: security login password -vserver SVM_name -username user name

The following command changes the password of the administrator admin1 for the SVMvs1.example.com. You are prompted to enter the current password, then enter and reenter the new password.

```
vsl.example.com::>security login password -vserver engData -username
admin1
Please enter your current password:
Please enter a new password:
Please enter it again:
```

Lock and unlock an administrator account

You can use the security login lock command to lock an administrator account, and the security login unlock command to unlock the account.

What you'll need

You must be a cluster administrator to perform these tasks.

Steps

1. Lock an administrator account:

```
security login lock -vserver SVM_name -username user_name
```

The following command locks the administrator account admin1 for the SVM vs1.example.com:

```
cluster1::>security login lock -vserver engData -username admin1
```

2. Unlock an administrator account:

```
security login unlock -vserver SVM name -username user name
```

The following command unlocks the administrator account admin1 for the SVM vs1.example.com:

```
cluster1::>security login unlock -vserver engData -username admin1
```

Manage failed login attempts

Repeated failed login attempts sometimes indicate that an intruder is attempting to access the storage system. You can take a number of steps to ensure that an intrusion does not take place.

How you will know that login attempts have failed

The Event Management System (EMS) notifies you about failed login attempts every hour. You can find a record of failed login attempts in the audit.log file.

What to do if repeated login attempts fail

In the short term, you can take a number of steps to prevent an intrusion:

- Require that passwords be composed of a minimum number of uppercase characters, lowercase characters, special characters, and/or digits
- · Impose a delay after a failed login attempt
- Limit the number of allowed failed login attempts, and lock out users after the specified number of failed attempts
- Expire and lock out accounts that are inactive for a specified number of days

You can use the security login role config modify command to perform these tasks.

Over the long term, you can take these additional steps:

- Use the security ssh modify command to limit the number of failed login attempts for all newly created SVMs.
- Migrate existing MD5-algorithm accounts to the more secure SHA-512 algorithm by requiring users to change their passwords.

Enforce SHA-2 on administrator account passwords

Administrator accounts created prior to ONTAP 9.0 continue to use MD5 passwords after the upgrade, until the passwords are manually changed. MD5 is less secure than SHA-2. Therefore, after upgrading, you should prompt users of MD5 accounts to change their passwords to use the default SHA-512 hash function.

About this task

The password hash functionality enables you to do the following:

- Display user accounts that match the specified hash function.
- Expire accounts that use a specified hash function (for example, MD5), forcing the users to change their passwords in their next login.
- Lock accounts whose passwords use the specified hash function.
- When reverting to a release earlier than ONTAP 9, reset the cluster administrator's own password for it to be compatible with the hash function (MD5) that is supported by the earlier release.

ONTAP accepts pre-hashed SHA-2 passwords only by using NetApp Manageability SDK (security-login-create and security-login-modify-password).

Manageability enhancements

Steps

- 1. Migrate the MD5 administrator accounts to the SHA-512 password hash function:
 - a. Expire all MD5 administrator accounts: security login expire-password -vserver * -username * -hash-function md5

Doing so forces MD5 account users to change their passwords upon next login.

b. Ask users of MD5 accounts to log in through a console or SSH session.

The system detects that the accounts are expired and prompts users to change their passwords. SHA-512 is used by default for the changed passwords.

- 2. For MD5 accounts whose users do not log in to change their passwords within a period of time, force the account migration:
 - a. Lock accounts that still use the MD5 hash function (advanced privilege level): security login expire-password -vserver * -username * -hash-function md5 -lock-after integer

After the number of days specified by -lock-after, users cannot access their MD5 accounts.

- b. Unlock the accounts when the users are ready to change their passwords: security login unlock -vserver vserver_name -username user_name
- c. Have users log in to their accounts through a console or SSH session and change their passwords when the system prompts them to do so.

Copyright information

Copyright © 2023 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.