

Departamento de Estatística Universidade Federal de Juiz de Fora

Planejamento de Experimentos Fatorial 3^k

Professora Ângela

• Uma extensão do caso 2^k muito utilizada é o fatorial 3^k , no qual são considerados 3 níveis para cada um dos k fatores de interesse.

- Assim como o fatorial 2³, o fatorial 3³ é muito utilizado em experimentos de adubação de solo, com os 3 nutrientes principais N, P e K, em três níveis cada (N₀, N₁, N₂, P₀, P₁, P₂, K₀, K₁, K₂);
- No total são considerados 27 tratamentos, obtidos através das combinações dos 3 níveis de cada nutriente;
- Como a presença de 27 tratamentos pode afetar a homogeneidade da área experimental, esse tipo de fatorial é normalmente instalado utilizando o confundimento de 2 graus de liberdade da interação tripla N × P × K, com blocos.

Confundimento no Fatorial 3³

- Diferentemente do 2³ o 3³ tem 8 graus de liberdade na Interação tripla;
- Costuma-se confundir 2 desses 8 graus de liberdade com blocos;
- Logo, cada bloco de 27 tratamentos é dividido em 3 blocos de 9 tratamentos cada.

Esquema da ANOVA

Causa de Variação	GL – Sem Confundimento	GL – Com Confundimento
Nitrogênio (N)	2	2
Fósforo (P)	2	2
Potássio (K)	2	2
Int NxP	4	4
Int NxK	4	4
Int PxK	4	4
Int NxPxK	8	6
(Trat)	(26)	(24)
Blocos		5
Resíduos	26	24
Total	53	53

Obtenção dos Grupos de Confundimento

Para se obterem os grupos de confundimento usam-se as equações:

$$\begin{cases} x_1 + x_2 + x_3 = 0,1,2 \ (Z) \\ 2x_1 + x_2 + x_3 = 0,1,2 \ (W) \\ x_1 + 2x_2 + x_3 = 0,1,2 \ (X) \\ x_1 + x_2 + 2x_3 = 0,1,2 \ (Y) \end{cases}$$

- x_1 representa as doses de N (0, 1 ou 2);
- \rightarrow x_2 representa as doses de P (0, I ou 2);
- x_3 representa as doses de K (0, I ou 2).
- Admite-se o módulo 3, de forma que:
 - Se o resto da divisão da soma por 3 der zero, o tratamento é designado ao primeiro dos 3 sub-blocos;
 - Se der I será designado ao segundo sub-bloco;
 - Se der 2 será designado ao terceiro sub-bloco.

Obtenção dos Grupos de Confundimento

Cada uma das 4 equações:

$$\begin{cases} x_1 + x_2 + x_3 = 0,1,2 \ (Z) \\ 2x_1 + x_2 + x_3 = 0,1,2 \ (W) \\ x_1 + 2x_2 + x_3 = 0,1,2 \ (X) \\ x_1 + x_2 + 2x_3 = 0,1,2 \ (Y) \end{cases}$$

- Dá um grupo de confundimento diferente;
- São portanto 4 grupos de confundimento, aos quais Yates denominou de W, X,Y e Z;
- A cada grupo correspondem 2 dos 8 graus de liberdade da Interação $N \times P \times K$;
- Sendo que cada grupo é constituído de 3 sub-blocos com 9 tratamentos cada um.

- ▶ Tomemos como exemplo, os dados de produção de algodão herbáceo, em kg/ha, de um experimento de adubação N, P, K (3³), com confundimento de 2 graus de liberdade da Interação N × P × K, em que se usou o grupo W de Yates.
- Foram feitas 2 repetições.
- As doses utilizadas foram:
 - N: 0 40 80 kg de N/ha;
 - $P: 0 60 120 \text{ kg deP}_2O_5/\text{ha};$
 - $Arr K: 0 60 120 \text{ kg de } K_2O/\text{ha}.$

Obtenção dos Grupos de Confundimento

T 4	хI	x2	x3	2(x1)+x2+x3	x1+2(x2)+x3	x1+x2+2(x3)	x1+x2+x3
Trat	N	P	K	W	X	Y	Z
I	0	0	0	0	0	0	0
2	0	0	I	l I	1	2	I
3	0	0	2	2	2	4	2
4	0	I	0	l I	2	1	I
5	0	I	I	2	3	3	2
6	0	I	2	3	4	5	3
7	0	2	0	2	4	2	2
8	0	2	I	3	5	4	3
9	0	2	2	4	6	6	4
10	ı	0	0	2	ı	I	I
- 11	1	0	I	3	2	3	2
12	1	0	2	4	3	5	3
13	1	I	0	3	3	2	2
14	1	I	I	4	4	4	3
15	1	I	2	5	5	6	4
16	1	2	0	4	5	3	3
17	1	2	I	5	6	5	4
18	1	2	2	6	7	7	5
19	2	0	0	4	2	2	2
20	2	0	I	5	3	4	3
21	2	0	2	6	4	6	4
22	2	I	0	5	4	3	3
23	2	I	I	6	5	5	4
24	2	I	2	7	6	7	5
25	2	2	0	6	6	4	4
26	2	2	I	7	7	6	5
27	2	2	2	8	8	8	6

Obtenção dos Grupos de Confundimento

	X	
Bloco	Bloco	Bloco
I	2	3
000	001	002
OII	012	010
O22	020	O21
102	100	101
110	111	112
121	122	120
201	202	200
212	210	211
220	221	222

```
Bloco I resultado (módulo 3) = 0
Bloco 2 resultado (módulo 3) = I
Bloco 3 resultado (módulo 3) = 2
```

	Z	
Bloco	Bloco	Bloco
ı	2	3
000	001	002
012	010	011
O21	O22	020
102	100	101
111	112	110
120	121	122
201	202	200
210	211	212
222	220	221

	Y	
Bloco	Bloco	Bloco
I	2	3
000	002	001
011	010	012
O22	O21	020
101	100	102
112	111	110
120	122	121
202	201	200
210	212	211
221	220	222

	W	
Bloco	Bloco	Bloco
ı	2	3
000	001	002
O12	010	011
O21	O22	020
101	102	100
110	Ш	112
122	120	121
202	200	201
211	212	210
220	221	222

Trat	Repl	Rep2	Total	Trat	Repl	Rep2	Total	Trat	Repl	Rep2	Total
000	868	319	1187	001	625	764	1389	002	465	1181	1646
012	951	521	1472	010	1319	1042	2361	011	833	729	1562
021	694	868	1562	022	1042	729	1771	020	1069	660	1729
101	972	486	1458	102	729	833	1562	100	1215	937	2152
110	1319	1139	2458	111	764	1215	1979	112	729	1083	1812
122	812	868	1680	120	806	625	1431	121	660	625	1285
202	951	1076	2027	200	1285	604	1889	201	1076	972	2048
211	1493	1146	2639	212	972	1153	2125	210	1250	1139	2389
220	1076	1215	2291	221	1042	729	1771	222	1076	1264	2340
Total	9136	7638	16774	Total	8584	7694	16278	Total	8373	8590	16963

	P ₀	P ₁	P ₂	Totais de N
N_0	4222	5395	5062	14679
N_1	5172	6249	4396	15817
N ₂	5964	7153	6402	19519
Totais de P	15258	18797	15860	50015

	N_0	N_1	N_2	Totais de K
K ₀	5277	6041	6569	17887
K ₁	4513	4722	6458	15693
K ₂	4889	5054	6492	16435

	P ₀	P ₁	P ₂
K_0	5228	7208	5451
K_1	4895	6180	4618
K_2	5235	5409	5791

Exemplo - ANOVA

CV	GL	SQ	QM	F
N	2	711.582,37	355.791,18	6,59**
P	2	383.420,26	191.710,13	3,55*
K	2	138.879,70	69.189,85	1,28
Int N×P	4	147.562,96	36.890,74	0,68
Int N×K	4	68.241,19	17.060,30	0,32
Int P×K	4	267.152,63	66.788,16	1,24
Int N×P×K	6	282.311,45	47.051,91	0,88
(Trat/n.c.)	(24)	(1.998.650,56)		
Blocos	5	185.195,20	37.039,04	
Resíduos	24	1.294.817,00	53.950,71	
Total	53	3.478.662,76		
		·		

CV(%) = 25,08%

Conclusões

- Como não houve significância para as Interações (tripla ou duplas) pode-se tirar conclusões para N, P e K independentemente;
- Cada fator principal (N, P e K) possui 2 graus de liberdade, logo, pode-se estabelecer regressões de 1° e 2° grau.

Nióraia	Coefi	cientes	Totais	
Níveis	c_1	c_2	N	Р
0	-1	1	14.679	15.358
l	0	-2	15.817	18.797
2	I	I	19.519	15.860
M	I	3		

Níveis	Coeficientes		Totais	
	c_1	c_2	N	Р
0	-1	1	14.679	15.358
l	0	-2	15.817	18.797
2	I	I	19.519	15.860
M	I	3		

CV	GL	SQ	QM	F
N'	I	650711,11	650711,11	12,06 **
N"	1	60871,26	60871,26	1,13 ns
P'	1	7000,11	7000,11	0,13 ns
P"	1	376420,15	376420,15	6,68 *
Resíduo	24	1294817,00	53950,71	

$$F_{tab}$$
 $\begin{cases} n_1 = 1 \\ n_2 = 24 \end{cases} \rightarrow 4,26 (5\%) ; 7,82 (1\%)$

Interpretação

- $\hat{Y}_N = 791,76 + 3,361.X$
- Essa equação nos dá a estimativa da produção de algodão em kg/ha em função de diferentes doses de N (X), com X ∈ [0; 80].Vê-se que, para cada kg de N obtém-se um acréscimo de 3,361kg de algodão/ha.
- Verificação da precisão da interpolação da Regressão Linear:

X	Y(obs)	Y(est)	Desvio
0	815,5	791,76	23,74
40	878,72	926,20	-47,48
80	1084,39	1060,64	23,75
Σ			0,01

Obtensão das Equações de Regressão

- $\hat{Y}_P = 853,219 + 6,1361.X 0,0492.X^2$
- Essa equação nos dá a estimativa da produção de algodão em kg/ha em função de diferentes doses de P (X), com X ∈ [0; 120].
- Verificação da precisão da interpolação da Regressão Quadrática:

X	Y(obs)	Y(est)	Desvio
0	853,22	853,21	-0,01
60	1044,28	1044,25	-0,03
120	881,11	881,05	-0,06
Σ			-0, I

Interpretação

- Como o coeficiente de X^2 é negativo, temos um ponto de máximo que ocorre para X = 62,358kg de P_2O_5 /ha;
- A produção máxima correspondente é de 1044,523kg de algodão/ha.