28. a.	Explain rule-based classification in detail with example.								4	3	5
	(OR)										
b.	b. Construct the decision tree for the basketball players data. Compute										5
	information gain for any two attributes.										
		Person	Jersey color	Offense/ Defense	Injured	Play					
		John	Blue	Offense	No	No Yes					
	0	Steve	Red	Offense	No	Yes					
		Sarah	Blue	Defense	No	Yes					
		Rachel	Blue	Offense	Yes	Yes No					
		Richard	Red	Defense	No	No					
		Alex	Red	Defense	Yes	No					
	9. a.i. How can you make the k-means algorithm more scalable? ii. Differentiate agglomerative and divisive hierarchical clustering.									4	1
b.	(OR) b. Illustrate DBSCAN algorithm with example.								4	4	7
30. a.	0. a. Define outlier detection. Elaborate any four outlier detection techniques.								4	5	4
	(OR) b. Explain any two applications of data mining.								4	5	6
a Na i	. P. C. 19-	is training		****			ar z	. =			

Tin

28NF6/7/18CSE355T

Note:

Reg. No.

B.Tech. DEGREE EXAMINATION, NOVEMBER 2022

Sixth/ Seventh Semester

18CSE355T – DATA MINING AND ANALYTICS

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

(i) (ii)	Part - A should be answered in OMR s to hall invigilator at the end of 40 th min Part - B should be answered in answer	nould be	led o	ver				
ne: 2	½ Hours		Max. Marks: 75					
	PART – A (25 × 1	1 = 25	Marks)	Marks	BL	со	PO	
	Answer ALL							
1	Where is data warehousing used?	Quest	ions	1	1	1	1	
1,36	(A) Transaction system	(B)	Logical system					
	• •		Banking system					
	(C) Decision support system	(D)	balking system					
2.	What is the process of removing the called?	ne defi	ciencies and loop holes in the dat	a 1	2	I	1	
	(A) Cleaning up of data	(B)	Aggregation of data					
	(C) Loading of data		Extraction of data					
	(C) Loading of data	(D)	Extraction of data					
3	In data warehousing we used	kinds	s of model	1	2	1	1	
٥.	(A) 1D model		2D model					
	(C) 3D model	(D)-	Multi-dimensional model		_			
	(C) 3D model	(D)	Wati-amensional model					
4	What is KDD in data mining?			1	1	1	1	
١.	(A) Knowledge discovery database	(B)	Knowledge discovery data					
	(C) Knowledge data definition	. ,	Knowledge data driver					
	(C) Knowledge data definition	(D)	Knowledge data driver					
5.	Which of the following is an est methods are applied to extract data p		_	t 1	2	1	1	
	(A) Warehousing		Data mining					
	(C) Text mining		Data selection					
	(1)	()						
6.	is used as the first step in the	e know	ledge discovery process.	1	2	2	2	
	(A) Data selection		Data cleaning					
	(C) Data transfer		Data integration					
	(C) Data transfer	(2)	Zum miegranen					
7.	Which classifier has the minimum classifiers?	error	rate in comparison with all other	r ¹	1	2	2	
		(D)	Zero R classifier					
	(A) Bayesian classifier							
	(C) One R classifier	(D)	Filtered classifier					
8.	The algorithm used by gird based m	ethod		1	1	2	2	

(B) COBWEB

(D) STING

Page 1 of 4

(A) K-means

(C) DENCLUE

9.	will be	computational complexity of DBSCAN	1	2	2	2	2	20 is both a combination of software and hardware based computing 1 2 4 resources delivered as network service.	6
	(A) O (log n) (C) O (n ²)	(B) O (n) (D) O (n log n)						(A) Mobile computing (B) Distributed computing (C) Grid computing (D) Cloud computing	
10.	Minkowi distance is the generalizati	on of	l	2	2	2	2	21. Learning from past experience is	7
	distance	(B) Tanimoto and Manhattan distance (D) Elucidean and Tanimoto,						(A) Machine learning (B) Improvised learning (C) Predictive learning (D) Machine and improvised learning	,
	distance	Manhattan distance					2	organization.	6
11.	Which is not a category of clustering		1	1	3	2		(A) Public (B) Hybrid	
	(A) Model-based method(C) Grid-based method	(B) Constraint-based method(D) Label-based method					2	(C) Private (D) Public and hybrid	Л
12.	Which is not an attribute selection m	eagure?	1	2	3	2	 	23 provides virtual machine, virtual storage, virtual infrastructure and 1 1 5 other hardware assets.	
	(A) Gini index	(B) Information gain						(A) IaaS (B) SaaS	
	(C) Information index	(D) Gain ratio						(C) PaaS (D) CaaS	
13.	The percentage of tuples the rule car	correctly classify	1	2	3	2	2	24. Which is not a characteristic of big data?	6
	(A) Rule coverage	(B) Rule reliability						(A) Volume (B) Variety	
	(C) Rule accuracy	(D) Rule security						(C) Visibility (D) Velocity	
14.	Zero probability value can be avoide	ed using	1	1	3	3	. 2	25. Interquartile range in	7
	(A) Decision trees	(B) If-then classification						(A) $\theta_3 - \theta_1$ (B) Max-Min	
	(C) Laplacian correction	(D) Naive Bayesian classification						(C) $\theta_3 - \theta_2$ (D) $\theta_2 - \theta_1$	
15.	Interestingness of association rule is		1	2	3	5		$.PART - B (5 \times 10 = 50 Marks)$ Marks BL CO	no.
	(A) Confidence only(C) Info gain	(B) Support only(D) Confidence and support						Answer ALL Questions	ro
16.	The complexity of each iteration in I	K-medoids algorithm	1	2	4	6	26.	a. Explain about pre-processing techniques.	1
	(A) $O(nkt)$	(B) $O(n^2)$						(OR)	
	(C) $O(k(n-k)^2)$	(D) $O(t(n-k)^2)$						b. Define binning and elaborate on any four binning methods used for data 10 3 1 smoothing using following dataset. 36, 25, 38, 46, 55, 68, 72, 55, 36, 38, 67, 45	2
17.	Agglomerative hierarchical clusterin	g usesstrategy.	1	1	4	7	27		
	(A) Bottom-up(C) Relational	(B) Top-down (D) Mesh					21=	a. Discuss in detail about FP growth algorithm with an example. 10 4 1 (OR)	1
18. Data, that can be stored, accessed and processes in the form of fixed format is			1	2	4	6	1	b. A database has five transaction. Let the minimum support be min-sup=60% 10 4 2	1
	termed as							and minimum confidence be min-confi = 80%. Find the frequent itemset and generate all the valid association rule using Apriori algorithm.	
	(A) Unstructured	(B) Semi-structured						TID Items	
	(C) Semi-unstructured	(D) Structured						T_1 {M,O,N,K,E,Y}	
19.	An example of supervised learning		1	1	4	5		T_2 {D,O,N,K,E,Y}	
	(A) Clustering	(B) Dimensionality reduction						$T_3 = \{M,A,K,E\}$	
	(C) DBSCAn	(D) SVM						$T_4 = \{M,U,C,K,Y\}$	
								$T_5 \mid \{C,O,O,K,I,E\}$	