mas550 homework

20208209 오재민

2020년 12월 9일

Problem (1.1.2).

Let $A = \prod_{i=1}^d (a_i, b_i]$. Then

$$A = (\Pi_{i=1}^d [a_i - 1, b_i]) \cap (\Pi_{I=1}^d (a_i, b_i + 1))$$

which is intersection of open set and closed set. So, $A \in \mathbb{R}^d$ therefore $\sigma(S_d) \subset \mathbb{R}^d$.

On the other hand, let $B = \prod_{i=1}^{d} (a_i, b_i)$ where $-\infty < a_i < b_i < \infty$. We can choose sequences $\{a_{i,j}\}_{j=1}^{\infty}$ and $\{b_{i,j}\}_{j=1}^{\infty}$ for each $1 \le i \le d$ such that $a_{i,j} \downarrow a_i$ and $b_{i,j} \uparrow b_i$. Then $B_n = \prod_{i=1}^{d} (a_{i,n}, b_{i,n}] \uparrow B$. So B is a countable union of open rectangles, hence $B \in \sigma(S_d)$. Since such B forms basis of topology on \mathbb{R}^d , we can conclude that $\mathcal{R}^d \subset \sigma(S_d)$.

Problem (1.2.3).

Let F be a distribution function. It is nonnegative, nondecreasing. So $\lim_{y\downarrow x} F(y)$ and $\lim_{y\uparrow x} F(y)$ always exist. Let x be a point where F is discontinuous. Since F is discontinuous at x, we can assume without loss of generality $\lim_{y\downarrow x} F(y) > F(x)$. Choose a rational number $q_x \in (F(x), \lim_{y\downarrow x} F(y))$. Then function $x\mapsto q_x$ is injective since F is nondecreasing. So there is injection from set of discontinuities to rational numbers. Now we can conclude that set of discontinuities is at most countable.

Problem (1.3.4).

- (a) Let $f: \mathbb{R}^d \to \mathbb{R}$ be a continuous function. Consider $\mathcal{B} = \{U \subset \mathbb{R}: f^{-1}(U) \in \mathcal{R}^d\}$. It is well known that \mathcal{B} is a σ -field. By continuity of f, \mathcal{B} contains every open set of \mathbb{R} , hence $\mathcal{R} \subset \mathcal{B}$. Therefore f is a measurable function.
- (b) Let \mathcal{F} be a σ -field that makes all the continuous functions measurable. Let $\pi_i : \mathbb{R}^d \to \mathbb{R}$ be the projection on i-th factor, which is continuous. Then $\cap_{i=1}^d \pi_i^{-1}((a_i,b_i)) = \prod_{i=1}^d (a_i,b_i) \in \mathcal{F}$. Since \mathcal{F} contains every open rectangles in \mathbb{R}^d , we can conclude that $\mathcal{R}^d \subset \mathcal{F}$. This means \mathcal{R}^d is the smallest such σ -field. The fact that \mathcal{R}^d makes all the continuous functions measurable is written in (a).

Problem (1.3.1).

Since $\sigma(X)$ is the smallest σ -field which makes X measurable, it sufficient to show that X is measurable with respect to $\sigma(X^{-1}(A))$.

Let $X : \Omega \to S$. It is clear that $\{X \in A\} \in \sigma(X^{-1}(A))$ for all $A \in A$. But by theorem 1.3.1, since A generates S, X is measurable with respect to $\sigma(X^{-1}(A))$.

Therefore we can conclude that $\sigma(X^{-1}(A)) \subset \sigma(X)$, and reverse inclusion is canonical since $X^{-1}(A) \subset \sigma(X)$.

Problem (1.4.1).

Let $E_n = \{x : f(x) > \frac{1}{n}\}$. Then $\int f d\mu \ge \int_{E_n} f d\mu \ge \int_{E_n} \frac{1}{n} d\mu = \frac{1}{n} \mu(E_n)$. Therefore $\mu(E_n) = 0$ for every positive integer n. So, $\mu(\{f > 0\}) = \sum_{n=1}^{\infty} \mu(E_n) = 0$. This says f = 0 a.e.

Problem (1.4.2). Since $E_{n+1,2m} \cup E_{n+1,2m+1} = E_{n,m}$ and $\frac{2m+1}{2^{n+1}} \ge \frac{m}{2^n}$, we can easily see that $\sum_{m\ge 1} \frac{m}{2^n} \mu\left(E_{n,m}\right)$ is monotonically increasing as n grows.

For every positive integer M, $\sum_{m=1}^{M} \frac{m}{2^n} \mu\left(E_{n,m}\right) \leq \int f d\mu$. So $\sum_{m\geq 1} \frac{m}{2^n} \mu\left(E_{n,m}\right) \leq \int f d\mu$.

Let $s_n = \sum_{m=1}^{n2^n} \frac{m}{2^n} 1_{E_{n,m}}$. Then $\int s_n d\mu \leq \sum_{m\geq 1} \frac{m}{2^n} \mu\left(E_{n,m}\right) \leq \int f d\mu$. But $s_n \uparrow f$ monotonically. By monotone convergence theorem, $\lim_{n\to\infty} \int s_n d\mu = \int f d\mu$. Hence by sandwich lemma, the desired result follows.

Problem (1.5.1).

First, we will show that $|g| \leq ||g||_{\infty}$ a.e.

It is true because

$$\mu\left(|g| > \|g\|_{\infty}\right) = \mu\left(\bigcup_{n=1}^{\infty} \left\{|g| \ge \|g\|_{\infty} + \frac{1}{n}\right\}\right)$$
$$\le \sum_{n=1}^{\infty} \mu\left(\left\{|g| > \|g\|_{\infty} + \frac{1}{n}\right\}\right)$$
$$= 0$$

by definition of $||g||_{\infty}$.

Hence $|g| \leq ||g||_{\infty}$ a.e.

Then, $\int |fg| d\mu \le ||g||_{\infty} \int |f| d\mu = ||g||_{\infty} ||f||_{1}$.

Problem (1.5.3).

(a) Since p > 1, $x \mapsto |x|^p$ is convex function. $|f + g|^p \le 2^{p-1}(|f|^p + |g|^p)$ follows from convexity of $|x|^p$.

 $\int |f+g|^p d\mu \le \int 2^p |f|^p d\mu + \int 2^p |g|^p d\mu$. Therefore finiteness of $||f||_p$ and $||g||_p$ leads $||f+g||_p < \infty$.

Now, consider $\int |f+g|^p d\mu = \int |f+g||f+g|^{p-1} d\mu \le \int |f||f+g|^{p-1} d\mu + \int |g||f+g|^{p-1} d\mu$. Let q be Holder conjugate of p. Then by applying Holder inequality, we get $||f+g||_p^p \le ||f+g||_p^{p/q} (||f||_p + ||g||_p)$. Simple calculating leads Minkowski's inequality.

(b) First consider p=1. By using triangle inequality, the result follows directly. Next consider $p=\infty$. $|f+g| \le |f| + |g| \le ||f||_{\infty} + ||g||_{\infty}$ a.e. Therefore $||f+g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$.

Problem (1.6.8).

First assume $g=1_A$. Then $\int g d\mu = \mu(A) = \int_A f(x) dx = \int 1_A f dm$ where m is Lebesgue measure.

Next, assume $g = \sum_i a_i 1_{A_i}$, simple function. Then $\int g d\mu = \sum_i a_i \mu(A_i) = \sum_i a_i \int 1_{A_i} f dm$.

Next, assume g is nonnegative measurable. Let $\{s_n\}_{n=1}^{\infty}$ be increasing sequence of simple function converges to g pointwisely. Then $\int g d\mu = \lim_{n \to \infty} \int s_n d\mu =$

 $\lim_{n\to\infty}\int s_nfdm$. But $s_nf\uparrow gf$ since f is nonnegative. By monotone convergence theorem, we can get $\int gd\mu = \int gfdm$.

Last, assume g is integrable function. We can decompose g by $g = g^+ - g^-$. Applying 3rd step for g^+, g^- each, we can get $\int g d\mu = \int g^+ f dm - \int g^- f dm = \int g f dm$ since f is nonnegative.

Problem (1.6.13).

Since $X_n \uparrow X$, $X_n^+ \uparrow X^+$ and $X_n^- \downarrow X^-$. And note that $X_n^- \leq X_1^-$ which is integrable. Apply monotone convergence theorem to X_n^+ and apply dominated convergence theorem to X_n^- to get $\lim EX_n = \lim EX_n^+ - \lim EX_n^- = EX^+ - EX^- = EX$.

Problem (1.7.1).

We need to show that $\int_{X\times Y} |f| d(\mu_1 \times \mu_2) < \infty$.

Since $|f|^{\pm}$ is nonnegative, by Fubini's theorem, $\int_X \int_Y |f|^{\pm} \mu_2(dy) \mu_1(dx) < \infty$. Then, their sum is also finite, and the sum is $\int_{X\times Y} |f| d(\mu_1 \times \mu_2)$ by Fubini's theorem. This leads the conclusion of the exercise.

Corollary is immediate if we take $\mu_1 = c$ and $\mu_2 = \mu$.

Problem (1.7.3).

1.

$$\int_{(a,b]} \{F(y) - F(a)\} dG(y) = \int_{(a,b]} \int_{(a,y]} 1\mu(dx)\nu(dy)$$

$$= \int_{a < x \le y \le b} 1d(\mu \times \nu)$$

$$= \mu \times \nu(1 < X \le Y \le b)$$

by Fubini's theorem on nonnegative function 1.

2.

$$\begin{split} \int_{(a,b]} F(y) dG(y) &= \int_{(a,b]} \int_{-\infty}^{y} 1\mu(dx)\nu(dy) \\ &= \int_{(-\infty,a]} \int_{(a,b]} 1\nu(dy)\mu(dx) + \int_{(a,b]} \int_{[x,b]} \nu(dy)\mu(dx) \\ &= F(a) \left\{ G(b) - G(a) \right\} + G(b) \left\{ F(b) - F(a) \right\} \\ &- \int_{(a,b]} G(x)\mu(dx) + \int_{(a,b]} G(x) - G(x^{-})\mu(dx) \end{split}$$

We can get similar result for $\int_{(a,b]} G(y)dF(y)$. By simple calculation, we get the conclusion of (2).

3. If F = G continuous, Then $\mu(\lbrace x \rbrace) = \nu(\lbrace x \rbrace) = F(x) - F(x^-) = G(x) - G(x^-) = 0$). Therefore, by using (2), we can get the conclusion.

Problem (2.1.3).

1. If $h(\alpha) = 0$ for some $\alpha > 0$, by mean value theorem, $h'(\beta) = 0$ for some $\beta \in (0, \alpha)$. It contradicts to h'(x) > 0 for positive x. Therefore h > 0 for positive x.

x = y iff $\rho(x, y) = 0$ iff $h(\rho(x, y)) = 0$. And $h(\rho(x, y)) = h(\rho(y, x))$ since $\rho(x, y) = \rho(y, x)$.

Now consider $x \geq y > 0$ and $\frac{h(x+y)-h(x)}{y} = h'(x+\theta)$ and $\frac{h(y)}{y} = h'(y-\delta)$. Since h' is decreasing, $h(x+y) - h(x) \leq h(y)$. Using this, we can prove triangle inequality of $h \circ \rho$.

2. $h(x) = 1 - \frac{1}{1+x}$ so $h'(x) = \frac{1}{(1+x)^2}$ and $h''(x) = \frac{-2}{(1+x)^3}$. Given h satisfies all of (1).

Problem (2.1.9).

Let $A_1 = \{\{1,2\},\{1,3\}\}, A_2 = \{\{1,4\}\}.$ For $A_1 \in A_1$ and $A_2 \in A_2$, $P(A_1 \cap A_2) = P(A_1)P(A_2) = 1/4$. But, $\sigma(A_1) = 2^{\Omega}$ and $\sigma(A_2) = \{\Omega,\{1,4\},\{2,3\},\emptyset\}$. They are not independent by considering $A_1 = \{2,3,4\}$ and $A_2 = \{2,3\}$.

Problem (2.2.3).

(a)
$$f(U_i)$$
's are iid because $P(\bigcap_i (f \circ U_i) \in B_i) = P(\bigcap_i \{U_i \in f^{-1}(B_i)\}) = \prod_i P(U_i \in f^{-1}(B_i)) = \prod_i P(f(U_i) \in B_i)$. Also, for borel set B , $P(f(U_i) \in B) = P(U_i \in f^{-1}(B_i))$ are all same for i .

$$Ef(U_i) = \int_0^1 f(x) dx, \ E|f(U_i)| = \int_0^1 |f(x)| dx < \infty.$$

Now, by WLLN, $\frac{\sum f(U_i)}{n}$ converges to $\int_0^1 f(x) dx$ in probability.

(b)
$$P(|I_n - I| > a/n^{0.5}) \le \frac{n}{a^2} E|I_n - I|^2 = \frac{n}{a^2} Var(I_n) = Var(\sum f(U_i))/na^2 = Var(f(U_i))/a^2 = \left[\int_0^1 f(x)^2 dx - \left(\int_0^1 f(x) dx\right)^2\right]/a^2.$$

Problem (2.2.5).

Note that $P(X_i \leq a) = 0$ for all a < e.

$$xP(X_i > x) = \frac{e}{\log x} \to 0 \text{ as } x \to \infty.$$

$$E|X_i| = EX_i = \int_e^\infty P(X_i > x) dx = \int_e^\infty \frac{e}{x \log x} dx = \infty$$
 since $X_i \ge 0$ almost surely.

But $\mu_n = \int_{|X_i| \le n} X_i dP \uparrow EX_i = \infty$ by monotone convergence theorem. Now, theorem 2.2.12 says $\frac{s_n}{n} - \mu_n$ converges to 0 in probability.

Problem (2.3.5).

(a) Let $F_N = \{Y \leq N\}$ and $Y_n = Y1_{F_n}$. Then $EY_n \uparrow EY$ by MCT. So choose N so that $EY - EY_N < \varepsilon$. Now consider $|EX_n - EX| \leq E|X_n - X| \leq \int_{|X_n - X| > \varepsilon} 2YdP + \int_{|X_n - X| < \varepsilon} |X_n - X|dP \leq \varepsilon + \int_{|X_n - X| > \varepsilon} 2YdP$.

Let $E_n = \{|X_n - X| > \varepsilon\}$. Then $\int_{E_n} 2Y dP = \int_{E_n} 2Y - 2Y_N + 2Y_N dP \le E(2Y - 2Y_N) + 2NP(E_n)$, where the last term goes to 0 as $n \to \infty$.

(b) Let h, g be continuous functions, h(0) = 0, g > 0 for large x, $|h|/g \to 0$ as $|x| \to \infty$, and $Eg(X_n) \le C < \infty$.

Choose M so large that g > 0 on |x| > M. $\varepsilon_M = \sup_{|x| \ge M} |h|/g$ and $\bar{Y} = Y1_{|Y| \le M}$.

Then $|Eh(X_n) - Eh(X)| \leq E|h(X_n) - Eh(\bar{X_n})| + E|h(\bar{X_n} - h(\bar{X}))| + E|h(\bar{X}) - h(X)|$. First term and third term are bounded by $\varepsilon_M C$ which goes to 0 as $M \to \infty$. And the second term goes to 0 as $n \to \infty$ by bounded convergence thm.

Therefore the conclusions hold.

Problem (2.3.6.).

(a) We already show that $\rho(x,y) = \frac{|x-y|}{1+|x-y|}$ is a metric in problem 2.1.3. First consider d(X,Y) = 0 iff $E \frac{|X-Y|}{1+|X-Y|} = 0$ iff $\frac{|X-Y|}{1+|X-Y|} = 0$ a.s. iff X = Y a.s.

Next, it is trivial to check d(X,Y) = d(Y,X).

Lastly, $d(X,Z) = E\rho(X,Z) \le E(\rho(X,Y) + \rho(Y,Z)) = E\rho(X,Y) + E\rho(Y,Z) = d(X,Y) + d(Y,Z).$

Therefore given function is a metric of class of random variables.

(b) First assume $X_n \to X$ in probability. Then $\frac{|X_n - X|}{1 + |X_n - X|} \le 1$ and it goes to 0 in probability. So bounded convergence thm implies $d(X_n, X) \to 0$. Next assume $d(X_n, X) \to 0$ as $n \to 0$.

$$P(|X_n - X| > \varepsilon) = P\left(\frac{|X_n - X|}{1 + |X_n - X|} > \frac{\varepsilon}{1 + \varepsilon}\right)$$

$$\leq E\frac{|X_n - X|}{1 + |X_n - X|} \frac{1 + \varepsilon}{\varepsilon}$$

$$= d(X_n, X) \frac{1 + \varepsilon}{\varepsilon} \to 0$$

by Markov's inequality.

Problem (2.3.8).

Independence of A_n implies independence of A_n^c . Let $B_n = \bigcap_{k=1}^n A_k^c$. Then $0 = P(\bigcap_{n=1}^\infty A_n^c) = \lim_{n \to \infty} P(B_n)$.

So, for arbitrary $\varepsilon > 0$, there is a positive integer N_{ε} such that $n \geq N_{\varepsilon}$ implies $P(B_n) = P\left(\cap_{k=1}^n A_k^c\right) = \prod_{k=1}^n \left(1 - P(A_k)\right) = e^{\sum_{k=1}^n \log(1 - P(A_k))} < \varepsilon$. But as $n \to \infty$

$$\lim_{n \to \infty} e^{\sum_{k=1}^{n} \log(1 - P(A_k))} = 0$$

This means that $\sum_{k=1}^{\infty} \log(1 - P(A_k)) = -\infty$, therefore $\log(1 - P(A_k))$ does not converge to 0, which is equivalent to that $P(A_k)$ does not converge to 0. Therefore $\sum_{n=1}^{\infty} P(A_n) = \infty$.

Problem (2.3.12).

Let $\Omega = \{\omega_i : i \in \mathbb{N}\}$. Without loss of generality, we can assume $P(\{\omega_i\}) > 0$ for all $i \in \mathbb{N}$.

If there is ω_i such that $X_n(\omega_i)$ does not converge to $X(\omega_i)$, then for some $\varepsilon > 0$, and for all $N \in \mathbb{N}$, there is $n_N \geq N$ but $|X_{n_N}(\omega_i) - X(\omega_i)| > \varepsilon$.

This means $\{|X_{n_N} - X| > \varepsilon\}$ contains ω_i for all N. So $0 < P(\{\omega_i\}) \le P(|X_{n_N} - X| > \varepsilon)$.

But $X_n \to X$ in probability implies $X_{n_N} \to X$ in probability. This contradicts to above. Therefore there is no such w_i hence X_n converges to X almost surely.

Problem (2.5.2).

If $E|X_1|^p = \infty$, then for each positive integer k, $E|X_1|^p \leq \sum_n P(|X_1|^p > nk) = \infty$. But $P(|X_1|^p > nk) = P(|X_n| > (nk)^{1/p})$. Then by Borel Cantelli lemma $P(|X_n| > (nk)^{1/p}i.o.) = 1$. That is, $\limsup_n |X_n|/n^{1/p} \geq k^{1/p}$ for infinitely many k. Therefore $\limsup_n |X_n|/n^{1/p} = \infty$.

But $|X_n| \leq |S_n| + |S_{n-1}|$. That leads $\limsup_n |S_n|/n^{1/p} = \infty$. By taking contrapositive, we get the conclusion.

Problem (2.5.5).

The first one leads the second one directly because Kolmogorov's three series lemma with A=1 tells it.

The second one implies the third one because $\frac{X_n}{1+X_n} \leq 1_{X_n>1} + X_n 1_{X_n \leq 1}$ and monotone convergence theorem.

The third one implies $\sum_{n} \frac{X_n}{1+X_n} < \infty$ a.s. And convergence of $\sum_{n} \frac{a_n}{1+a_n}$ for $a_n \geq 0$ gives the convergence of $\sum_{n} a_n$. It is because $\lim a_n = 0$ and $|a_N| + \cdots + a_{N+n}| \leq (1+\varepsilon) \left| \frac{a_N}{1+a_N} + \cdots + \frac{a_{N+n}}{1+a_{N+n}} \right|$ for large N. Therefore $\sum_{k=1}^{n} a_k$ is cauchy hence converges. Therefore $\sum_{n} X_n$ converges a.s.

Problem (3.2.4).

Since $X_n \to X_\infty$ in distribution, there are $Y_n =_d X_n$ and $Y_\infty =_d X_\infty$ such that $Y_n \to Y_\infty$ a.s.

Then $g(Y_n) \geq 0$ and $g(Y_n) \rightarrow g(Y_\infty)$ a.s. Therefore by Fatou's lemma, $\liminf Eg(Y_n) \geq Eg(Y_\infty)$ which is equivalent to $\liminf Eg(X_n) \geq Eg(X_\infty)$ since $X_n =_d Y_n$ for all $n \in \mathbb{N} \cup \infty$.

Problem (3.2.5).

There are $Y_n \to Y_\infty$ a.s. and distribution function of Y_n is equal to F_n . $F_\infty = F$.

Then by theorem 1.6.8, $Eh(Y_n) \to Eh(Y_\infty)$ which is equivalent to $\int h(x)dF_n(x) \to \int h(x)dF(x)$ because distribution function of Y_n is F_n .

Problem (4.1.7).

By definition of $Var(X|\mathcal{F})$, we get the following:

$$E\left(\operatorname{Var}(X|\mathcal{F})\right) = EX^2 - E\left(E(X|\mathcal{F})^2\right)$$

And clearly,

$$Var(E(X|\mathcal{F})) = E(E(X|\mathcal{F})^2) - (E(E(X|\mathcal{F})))^2$$

Therefore, by summing them vertically, we can get

$$\operatorname{Var}(E(X|\mathcal{F})) + E\left(\operatorname{Var}(X|\mathcal{F}) = EX^2 - \left(E(E(X|\mathcal{F}))\right)^2\right)$$

which is equal to Var(X) since the last term is equal to square of EX.

Problem (4.1.9).

$$\int |X - Y|^2 dP = \int X^2 - 2XY + Y^2 dP$$

$$= \int X^2 - 2E(XY|\mathcal{G}) + Y^2 dP$$

$$= \int X^2 - 2XE(Y|\mathcal{G}) + Y^2 dP$$

$$= \int X^2 - 2X^2 + Y^2 dP$$

$$= EY^2 - EX^2$$

$$= 0$$

Therefore, $|X - Y|^2 = 0$ a.s. which implies X = Y a.s. Note that XY is integrable by Holder's inequality for p = q = 2 and finite second moment of X, Y.

Problem (4.2.3).

Clearly $\mathcal{F}_m \subset \mathcal{F}_{m+1}$ for all positive integer m. Let $Z_n = X_n \vee Y_n$, then Z_n is clearly \mathcal{F}_n measurable.

Now, let $A \in \mathcal{F}_{n-1}$. Then,

$$\int_{A} E(Z_{n}|\mathcal{F}_{n-1})dP = \int_{A} Z_{n}dP$$

$$\geq \int_{A} X_{n}dP \vee \int_{A} Y_{n}dP$$

$$= \int_{A} E(X_{n}|\mathcal{F}_{n-1})dP \vee \int_{A} E(Y_{n}|\mathcal{F}_{n-1})dP$$

$$\geq \int_{A} X_{n-1}dP \vee \int_{A} Y_{n-1}dP$$

Therefore $\int_A E(Z_n|\mathcal{F}_{n-1})dP \geq \int_A X_{n-1}, Y_{n-1}dP$ for all $A \in \mathcal{F}_{n-1}$. Since $E(Z_n|\mathcal{F}_{n-1})$ is \mathcal{F}_{n-1} measurable, we can conclude that conditional expectation of Z_n with respect to \mathcal{F}_{n-1} is equal or greater than X_{n-1} and Y_{n-1} a.s.

So,
$$Z_n$$
 is a submartingale.

Problem (4.2.9).

Note that $\{N > n\} = \{N \le n\}^c \in \mathcal{F}_n \text{ and } \{N < n\} = \{N \le n - 1\} \in \mathcal{F}_{n-1}$ since N is integer valued. Now, consider the following:

$$E(Z_n|\mathcal{F}_{n-1}) = 1_{N \ge n} E(X_n^1|\mathcal{F}_{n-1}) + 1_{N < n} E(X_n^2|\mathcal{F}_{n-1})$$

$$\leq 1_{N \ge n} X_{n-1}^1 + 1_{N < n} X_{n-1}^2$$

$$= 1_{N > n-1} X_{n-1}^1 + 1_{N \le n-1} X_{n-1}^2$$

$$\leq 1_{N \ge n-1} X_{n-1}^1 + 1_{N < n-1} X_{n-1}^2$$

$$= Z_{n-1}$$

So, Z_n is supermartingale.

Now, consider the Y_n :

First,
$$Y_n = X_n^1 1_{N>n} + X_N^2 1_{N=n} + X_n^2 1_{N< n} \le X_n^1 1_{N>n} + X_n^2 1_{N< n}$$
.

$$\begin{split} E(Y_n|\mathcal{F}_{n-1}) &\leq 1_{N \geq n} E\left(X_n^1|\mathcal{F}_{n-1}\right) + !_{N < n} E\left(X_n^2|\mathcal{F}_{n-1}\right) \\ &\leq 1_{N \geq n} X_{n-1}^1 + 1_{N < n} X_{n-1}^2 \\ &= 1_{N > n-1} X_{n-1}^1 + 1_{N \leq n-1} X_{n-1}^2 \\ &= Y_{n-1} \end{split}$$

So, Y_n is also a supermartingale.

Problem (4.2.8).

Let $\nu = \inf \{k : \Pi_{m=1}^k (1 + Y_m) > M\}$ for M > 0. Let $U_n = MX_n \Pi_{m=1}^{n-1} (1 + Y_m)^{-1}$. Clealry ν is a stopping time. Now we claim that $U_{n \wedge \nu}$ is positive supermartingale.

$$E(U_{n+1\wedge\nu}|\mathcal{F}_n) = E\left(U_{\nu}1_{\{n+1>\nu\}} + U_{n+1}1_{\{n+1\leq\nu\}}|\mathcal{F}_n\right)$$

$$\leq U_{\nu}1_{\{\nu\leq n\}} + 1_{\{n+1\leq\nu\}}M\Pi_{m=1}^n (1+Y_m)^{-1} X_n (1+Y_n)$$

$$= U_{\nu}1_{\{\nu\leq n\}} + 1_{\{n<\nu\}}M\Pi_{m=1}^{n-1} (1+Y_m)^{-1} X_n$$

$$= U_{\nu\wedge n}$$

Above manipulation is possible since $\{n+1 \le \nu\} = \{\nu \le n\}^c$. Thus $U_{n \wedge \nu}$ is a positive supermartingale, so it converges almost surely.

Note that $\sum Y_n < \infty$ implies $\Pi(1+Y_n) < \infty$ by considering $1+x \le \exp(x)$ and its partial product. Now fix w so that $U_{\nu \wedge n}(w)$ and $\Pi(1+Y_n(w))$ are convergent. Choose $M > \Pi(1+Y_n)$. Then $\nu = \infty$, so $U_{\nu \wedge n} = U_n$. But we know that $U_{\nu \wedge n}(w)$ converges, say to K. Then for that w, $X_n(w) \to K(w)\Pi(1+Y_n(w))/M$. Thus we can say that X_n converges almost surely.

Problem (4.3.3).

It is very similar to #4.2.8.

Let $\nu = \inf \left\{ k : \sum_{m=1}^k Y_m > M \right\}$ for M > 0. Clearly, ν is a stopping time. Let $U_n = X_n - \sum_{m < n} Y_m + M$. Then clearly, $U_{n \wedge \nu}$ is nonnegative random variables. Now we claim that $U_{n \wedge \nu}$ is a supermartingale.

$$E(U_{n+1\wedge\nu}|\mathcal{F}_n) = E(U_{\nu}1_{\{\nu < n+1\}} + U_{n+1}1_{\{n+1 \le \nu\}}|\mathcal{F}_n)$$

$$\leq U_{\nu}1_{\{\nu < n+1\}} + 1_{\{n+1 \le \nu\}} \left(X_n + Y_n - \sum_{m < n+1} Y_m + M\right)$$

$$= U_{\nu}1_{\{\nu \le n\}} + U_n1_{\{n < \nu\}}$$

$$= U_{\nu \wedge n}$$

Above is possible since $\{\nu \geq n+1\} = \{\nu \leq n\}^c \in \mathcal{F}_n$. Thus $U_{n \wedge \nu}$ is a positive supermartingale, so it converges almost surely.

Now, fix w so that $U_{n\wedge\nu}(w)$, $\sum Y_n(w)$ both are convergent. Choose $M > \sum Y_n(w)$. Then $\nu = \infty$ so $U_{n\wedge\nu} = U_n$. Then we can say that $U_n(w) \to K(w)$, so $X_n(w) \to K(w) - M + \sum Y_n(w)$. Thus X_n converges almost surely.

Problem (4.3.4).

Let $\{Y_n\}_{n=1}^{\infty}$ be a sequence of independent random variables such that $P(Y_n = 1) = p_n$. Also let $P(Y_n = 0) = 1 - p_n$. Since Y_n are independent, by Borel Canteli lemma (1st and 2nd both) implies that

$$\sum_{n>1} p_n = \sum_{n>1} P(Y_n = 1) = \infty \Leftrightarrow P(Y_n = 1i.o.) = 1$$

Note that $\bigcap_{n=N}^{N+k} \{Y_n = 0\} \downarrow \bigcap_{n=N}^{\infty} \{Y_n = 0\}$. So $\prod_{n=N}^{N+k} (1-p_n) \to \prod_{n=N}^{\infty} (1-p_n)$ as $k \to \infty$.

Since $P(Y_n = 1i.o.) = P(\cap_{N=1}^{\infty} \cup_{n \geq N} \{Y_n = 1\}) = 1$, we can get the following:

$$P(\bigcap_{N\geq 1} \bigcup_{n\geq N} \{Y_n = 0\}) = 0 = \lim_{N\to\infty} P\left(\bigcap_{n\geq N} \{Y_n = 0\}\right)$$

$$= \lim_{N\to\infty} \lim_{k\to\infty} P\left(\bigcap_{n=N}^{N+k} \{Y_n = 0\}\right)$$

$$= \lim_{N\to\infty} \lim_{k\to\infty} \Pi_{n=N}^{N+k} (1-p_n)$$

$$= \lim_{N\to\infty} \Pi_{n\geq N} (1-p_n)$$

But, $\Pi_{n\geq N}(1-p_n) \leq \Pi_{n\geq M}(1-p_n)$ where $M\geq N$ since $1-p_n\leq 1$. Therefore we can see that $\Pi_{n\geq N}(1-p_n)\leq \lim_{N\to\infty}\Pi_{n\geq N}(1-p_n)=0$ by above. So, $\Pi_{n\geq N}(1-p_n)=0$ for all positive integer N.

For the other direction, suppose $\Pi_{n\geq 1}(1-p_n)=0$. Then its partial product must converge to zero. It means that $\Pi_{n\geq N}(1-p_n)=0$ for every N. Then $\lim_{N} P(\cap_{n\geq N} \{Y_n=0\})=0$. So $P(Y_n=1i.o.)=1$ which implies the result.

Problem (4.4.1).

Note that $(N = j) \in \mathcal{F}_j$ and $E(X_k | \mathcal{F}_j) \ge X_j$ since X_i is a submartingale. Thus we get the following:

$$\int_{N=j} E(X_k | \mathcal{F}_j) = \int_{N=j} X_k \ge \int_{N=j} X_j$$

Now, by summing the above about j, we get the desired result, which is the second proof of $EX_N \leq EX_k$ for 4.4.1.

Problem (4.4.2).

Let $K_n = 1_{(M < n \le N)}$. Then K_n is predictable, hence $(K \cdot X)_n$ is a submartingale. By simple calculation, $(K \cdot X)_n = X_{n \wedge N} - X_{n \wedge M}$. Thus, $E(K \cdot X)_k \ge 0$ implies $EX_{k \wedge N} \ge EX_{k \wedge M}$ which is the result.

Problem (4.4.7).

 $\lambda > 0$. For c > 0,

$$P(\max_{1 \le m \le n} X_m \ge \lambda) \le P\left(\max_{1 \le m \le n} (X_m + c)^2 \ge (\lambda + c)^2\right)$$
$$\le \frac{E(X_n + c)^2}{(\lambda + c)^2}$$

since $(X_m + c)^2$ is a submartingale, and by the Doob's inequality.

Note that $E(X_n + c)^2 = EX_n^2 + c^2$ since $EX_n = EX_0 = 0$. The minimum of the last term(with respect to c) occurs when $c = EX_n^2/\lambda$ by differentiating it. And, its minimum value is $EX_n^2/(EX_n^2 + \lambda^2)$.

Problem (4.4.9).

Consider the following:

 $E(X_{m} - X_{m-1})(Y_{m} - Y_{m-1}) = EX_{m}Y_{m} - EX_{m}Y_{m-1} - EX_{m-1}Y_{m} + EX_{m-1}Y_{m-1}$ $= EX_{m}Y_{m} - E(E(X_{m}Y_{m-1}|\mathcal{F}_{m-1}))$ $- E(E(X_{m-1}Y_{m}|\mathcal{F}_{m-1})) + EX_{m-1}Y_{m-1}$ $= EX_{m}Y_{m} - E(Y_{m-1}E(X_{m}|\mathcal{F}_{m-1}))$ $- E(X_{m-1}E(Y_{m}|\mathcal{F}_{m-1})) + EX_{m-1}Y_{m-1}$ $= EX_{m}Y_{m} - EX_{m-1}Y_{m-1}$

So the result follows directly. Note that X_mY_m is integrable due to the Cauchy-Schwartz inequality.

Problem (4.4.10).

By the problem 4.4.9, $EX_n^2 = EX_0^2 + \sum_{m=1}^n E\xi_m^2 \le EX_0^2 + \sum_{m=1}^\infty E\xi_m^2 < \infty$. So $\sup_n E|X_n|^2 \le EX_0^2 + \sum_{m=1}^\infty E\xi_m^2 < \infty$. Therefore, the L_2 martingale convergence theorem implies the result.

Problem (4.6.1).

Let $\mathcal{F}_n = \sigma(Y_1, \dots Y_n)$. Then $E(\theta|Y_1, \dots Y_n) = E(\theta|\mathcal{F}_n)$. By theorem 4.6.8, $E(\theta|\mathcal{F}_n) \to E(\theta|\mathcal{F}_\infty)$ a.s. and in L_1 . Now, it remains to show that $E(\theta|\mathcal{F}_\infty) = \theta$.

Conditioning on θ , we can get the followings:

$$E(Y_i|\theta) = E(Z_i + \theta|\theta) = \theta + E(Z_i|\theta) = \theta$$

$$E(|Y_i - \theta|^2 | \theta) = E(Z_i^2 | \theta) = E(Z_i^2) = 0$$

by independence of Z_i and θ .

Define $X_n = \sum_{i=1}^n Y_i/n$. Clearly, X_n are \mathcal{F}_{∞} measurable. By the above observations, we can easily check that $E(|X_n - \theta|^2 | \theta) = 1/n$. So, by integrating both sides, $E|X_n - \theta|^2 = 1/n$. Therefore $X_n \to \theta$ in L_2 . By the fact that L_2 convergent sequence has a almost sure convergent subsequence, we can say that $X_{n_k} \to \theta$. But each X_{n_k} is \mathcal{F}_{∞} measurable, we can say that θ is \mathcal{F}_{∞} measurable.

Thus, $E(\theta|\mathcal{F}_{\infty}) = \theta$.

Problem (4.6.7).

By triangle inequality,

$$|E(Y_n|\mathcal{F}_n) - E(Y|\mathcal{F}_\infty)| \le |E(Y_n|\mathcal{F}_n) - E(Y|\mathcal{F}_n)| + |E(Y|\mathcal{F}_n) - E(Y|\mathcal{F}_\infty)|$$

Write the above as $S_1 \leq S_2 + S_3$. Then clealry $ES_3 \to 0$ as $n \to \infty$ by theorem 4.6.8. To estimate ES_2 ,

$$ES_2 \le E \left(E \left(|Y_n - Y| | \mathcal{F}_n \right) \right)$$
$$= E|Y_n - Y|$$

by Jensen's inequality. Therefore, L_1 convergence of Y_n implies $ES_2 \to 0$ as $n \to \infty$.

Problem (4.7.2).

Let $w_N = \sup\{|Y_n - Y_m| : m, n \leq N\}$. Then clearly $|Y_n - Y_{-\infty}| \leq w_N$ for $n \leq N$. Since $Y_n \to Y_{-\infty}$ a.s. as $n \to -\infty$, $w_N \to 0$ as $N \to -\infty$ almost surely. Note that $w_N \leq 2Z \in L_1$. Thus $w_N \in L_1$. So, $\mathbb{E}(w_N | \mathcal{F}_{-\infty}) \to 0$ as $N \to -\infty$.

Let

$$|E(Y_n|\mathcal{F}_n) - E(Y_{-\infty}|\mathcal{F}_{-\infty})|$$

$$\leq |E(Y_n|\mathcal{F}_n) - E(Y_{-\infty}|\mathcal{F}_n)| + |E(Y_{-\infty}|\mathcal{F}_n) - E(Y_{-\infty}|\mathcal{F}_{-\infty})|$$

$$= S_1 + S_2$$

Now, consider the following:

$$\limsup_{n \to -\infty} |E(Y_n | \mathcal{F}_n) - E(Y_{-\infty} | \mathcal{F}_n)| \le \limsup_{n \to -\infty} E(|Y_n - Y_{-\infty}| | \mathcal{F}_n)$$

$$\le \lim_{n \to -\infty} E(w_N | \mathcal{F}_n)$$

$$= E(w_N | \mathcal{F}_{-\infty})$$

So, by $N \to -\infty$, $\limsup_{n \to -\infty} S_1 = 0$. $\limsup_{n \to -\infty} S_2 = 0$ because $E(Y_{-\infty} | \mathcal{F}_n)$ is a backward martingale so it converges to $E(Y_{-\infty} | \mathcal{F}_{-\infty})$ a.s. and in L_1 .

Problem (4.8.1).

Let $K_n = 1_{L < n \le M}$. Then $(K \cdot X)_n = X_{n \land M} - X_{n \land L}$ is a submartingale. Thus $EX_{n \land L} \le EX_{n \land M}$. Similarly, $EX_{n \land L}^+ \le EX_{n \land M}^+$. Since $X_{n \land M}$ is uniformly integrable submartingale, $EX_{n \land M} \to EX_M$ as $n \to \infty$. If we can show that $X_{n \land L}$ is also a uniformly integrable submartingale, then $EX_L \le EX_M$.

Note that $\sup_n EY_{n\wedge L}^+ \leq \sup_n EY_{n\wedge M}^+ \leq \sup_n E|Y_{n\wedge M}| < \infty$ by uniform integrability of $Y_{n\wedge M}$. Thus, by martingale convergence theorem, we get $Y_{n\wedge L} \to Y_L$ almost surely and $Y_L \in L_1$.

Now it remains to show that $Y_n 1_{n < L}$ is uniformly integrable.

$$E(|Y_{n \wedge L}|; |Y_{n \wedge L}| > K, n < L) = E(|Y_{n \wedge M}|; |Y_{n \wedge M}| > K, n < L \le M)$$

And sup of the last term goes to 0 as $K \to \infty$ by uniform integrability of $Y_{n \wedge M}$. Therefore, by theorem 4.8.2, $Y_{n \wedge L}$ is uniformly integrable, hence $EY_L \leq EY_M$. 1++;

Problem (4.8.4).

Let $M_n = S_n^2 - n\sigma^2$. Then M_n is a quadratic martingale. Since $n \wedge T$ is bounded stopping time, we have $EM_{n \wedge T} = EM_0 = 0$. Thus $ES_{n \wedge T}^2 = \sigma^2 E(n \wedge T)$. As $n \to \infty$, $E(n \wedge T) \to ET$ by MCT.

Now consider $E|S_T - S_{n \wedge T}|^2 = E\left(\sum_{m=n+1}^{\infty} 1_{(m \leq T)} \xi_m\right)^2$. Note that

$$E(1_{m < T})(1_{m+k < T})\xi_m \xi_{m+k} = (E\xi_{m+k})E1_{m < T}1_{m+k < T}\xi_m = 0$$

Thus $E|S_T - S_{n \wedge T}|^2 = \sum_{m=n+1}^{\infty} E1_{(m \leq T)} \xi_m^2 = \sigma^2 \sum_{m=n+1}^{\infty} P(m \leq T)$. But, $\sum_{m=1}^{\infty} P(m \leq T) = ET < \infty$. So we can say $E|S_T - S_{n \wedge T}|^2 \to 0$ as $n \to 0$.

Therefore $S_{n \wedge T} \to S_T$ in L_2 , so $S_{n \wedge T}^2 \to S_T^2$ in L_1 , which leads the conclusion.

Problem (4.8.7).

Note that $ET = a^2$ by theorem 4.8.7. Claim: (b, c) = (3, 2).

$$E(Y_{n+1}|\mathcal{F}_n)$$
= 1 + 6S_n^2 + S_n^4 - 6(n+1)(1+S_n^2) + 3(n+1)^2 + 2(n+1)
= S_n^4 - 6nS_n^2 + 3n^2 + 2n

Since $n \wedge T$ is bounded stopping time, we can get $EY_0 = EY_{n \wedge T}$. Thus $3E(n \wedge T)^2 = 6E\left[(n \wedge T)S_{n \wedge T}^2\right] - ES_{n \wedge T}^4 - 2E_{n \wedge T}$.

But, by MCT, $E(n \wedge T)^2 \to ET^2$ and $E(n \wedge T) \to ET$. And $S_{n \wedge T}$ is bounded, so BCT implies $ES_{n \wedge T}^m \to a^m$. Thus, $3ET^2 = 6a^4 - a^4 - 2ET = 5a^4 - 2a^2$.

Note that $(n \wedge T)S_{n \wedge T}^2 \leq a^2T \in L_1$. Thus $E(n \wedge T)S_{n \wedge T}^2 \to a^4$ by DCT.

П

Problem (4.8.9).

Since $n \wedge T$ is a bounded stopping time, $EX_0 = EX_{n \wedge T} = EX_n = 1$ which is sames as follows:

$$1 = EX_n 1_{(n < T)} + EX_T 1_{(n \ge T)} = EX_n 1_{(n < T)} + \exp(\theta_0 a) P(n \ge T)$$

But, by MCT, the last term of the above $\rightarrow \exp(\theta_0 a) P(T < \infty)$.

Since $E\xi_i > 0$, $ES_n \to \infty$ as $n \to \infty$. Then, since $x \mapsto \exp(x)$ is a convex function,

$$E \exp(\theta_0 S_n) \le \exp(\theta_0 E S_n).$$

Thus $EX_n 1_{(n < T)} \le EX_n \le \exp(\theta_0 ES_n) \to 0$ as $n \to \infty$ due to $\theta_0 < 0$. Therefore $1 = \lim_n EX_n 1_{(n < T)} + \exp(\theta_0 a) P(T < \infty) = \exp(\theta_0 a) P(T < \infty)$, which says the conclusion.