Al1110 Assignment-12

Rajulapati Bhargava Ram CS21BTECH11052

June 19, 2022

Outline

Question

- Theory
- Solution

Question

Papoullis 10-8:

The input to a real system $H(\omega)$ is a WSS process x(t) and the output equals y(t). Show that if

$$R_{xx}(\tau) = R_{yy}(\tau)$$
 $R_{xy}(-\tau) = -R_{xy}(\tau)$

as in (10-130), then $H(\omega) = jB(\omega)$ where $B(\omega)$ is a function taking only the values +1 and -1.

Special case: If $y(t) = \widehat{x}(t)$, then $B(\omega) = -sgn \omega$

Theory

CORRELATION

The **Auto** – **correlation** of a process x(t), real or complex, is by definition the mean of the product $x(t_1)x^*(t_2)$. Which is

$$R_{xx}(t_1, t_2) = E\{x(t_1)x^*(t_2)\} = R_{xx}^*(t_2, t_1)$$
(1)

The **Cross** – **correlation** of two process x(t) and y(t) is the function,

$$R_{xy}(t_1, t_2) = E\{x(t_1)y^*(t_2)\} = R_{yx}^*(t_2, t_1)$$
 (2)

WIDE SENSE STATIONARY

A stochastic process x(t) is called wide-sense stationary (abbreviated WSS) if its mean is constant

$$E\{x(t)\} = \eta \tag{3}$$

and its correlation depends only on $\tau = t_1 - t_2$:

$$E\{x(t+\tau)x^*(t)\} = R_{xx}(\tau) \tag{4}$$

Two processes x(t) and y(t) are called jointly WSS if each is WSS and their cross-correlation depends only on $\tau = t_1 - t_2$:

$$R_{xy}(\tau) = E\left\{x(t+\tau)y^*(t)\right\} \tag{5}$$

THE POWER SPECTRUM

The power spectrum (or spectral density) of a WSS process x(t), real or complex, is the Fourier transform $S(\omega)$ of its autocorrelation, $R_{xx}(\tau) = E\{x(t+\tau)x^*(t)\}$:

$$S_{xx}(\omega) = \int_{-\infty}^{\infty} R_{xx}(\tau) e^{-j\omega\tau} d\tau$$
 (6)

If x(t) is a real process, then $R(\tau)$ is real and even; hence $S(\omega)$ is also real and even. In this case,

$$S_{xx}(\omega) = \int_{-\infty}^{\infty} R_{xx}(\tau) \cos \omega \tau \, d\tau \tag{7}$$

From above we get, $S_{xx}(\omega) = S_{xx}(-\omega)$

The cross-power spectrum of two processes x(t) and y(t) is the Fourier transform $S_{xy}(\omega)$ of their cross-correlation $R_{xy}(\tau) = E\{x(t+\tau)y^*(t)\}$:

$$S_{xy}(\omega) = \int_{-\infty}^{\infty} R_{xy}(\tau) e^{-j\omega\tau} d\tau$$
 (8)

$$R_{xy}(\tau) = R_{xx}(\tau) * h^*(-\tau) \qquad R_{yy}(\tau) = R_{xy}(\tau) * h(\tau)$$
 (9)

$$S_{xy}(\omega) = S_{xx}(\omega)H^*(\omega)$$
 $S_{yy}(\omega) = S_{xy}(\omega)H(\omega)$ (10)

Combining above equations we get,

$$R_{yy} = R_{xx}(\tau) * h^*(-\tau) * h(\tau) = R_{xx}(\tau) * \rho(\tau)$$
 (11)

$$S_{yy}(\omega) = S_{xx}(\omega)H^*(\omega)H(\omega) = S_{xx}(\omega)|H(\omega)|^2$$
 (12)

Where $H(\omega)$ is called Transfer function.

Solution

In question given is,

$$R_{xx}(\tau) = R_{yy}(\tau) \tag{13}$$

$$R_{xy}(-\tau) = -R_{xy}(\tau) \tag{14}$$

Begin with cross-power spectrum $S_{yy}(\omega)$,

$$S_{xy}(\omega) = \int_{-\infty}^{\infty} R_{xy}(\tau) e^{-j\omega\tau} d\tau$$
 (15)

$$S_{xy}(-\omega) = \int_{-\infty}^{\infty} R_{xy}(\tau) e^{j\omega\tau} d\tau$$
 (16)

Replace τ with $-\tau$,

$$S_{xy}(-\omega) = \int_{-\infty}^{\infty} R_{xy}(-\tau) e^{-j\omega\tau} d\tau$$
 (17)

Using equation (14),

$$S_{xy}(-\omega) = \int_{-\infty}^{\infty} -R_{xy}(\tau) e^{-j\omega\tau} d\tau$$
 (18)

$$S_{xy}(-\omega) = -\int_{-\infty}^{\infty} R_{xy}(\tau) e^{-j\omega\tau} d\tau$$
 (19)

$$S_{xy}(-\omega) = -S_{xy}(\omega) \tag{20}$$

Similarly using equation (13) we can get,

$$S_{xx}(\omega) = S_{yy}(\omega) \tag{21}$$

Comparing above equation with equation (12) we get,

$$|H(\omega)|^2 = 1 \tag{22}$$

Using equation (10),

$$S_{xy}(-\omega) = S_{xx}(-\omega)H^*(-\omega)$$
 (23)

$$-S_{xy}(\omega) = S_{xx}(-\omega)H^*(-\omega)$$
 (24)

From equation (7) $S_{xx}(-\omega) = S_{xx}(\omega)$, So

$$-S_{xy}(\omega) = S_{xx}(\omega)H^*(-\omega)$$
 (25)

$$\Rightarrow -H^*(\omega) = H^*(-\omega) \tag{26}$$

$$\Rightarrow H(-\omega) = -H(\omega) \tag{27}$$

From above, the real part in $H(\omega)$ is zero, odd function and its in the form,

$$\therefore H(\omega) = j B(\omega) \tag{28}$$

Where $B(\omega)$ is a real function from equation (22),

$$\therefore |B(\omega)| = 1 \tag{29}$$

The graph of function $B(\omega)$,

Figure 0

