```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')

%matplotlib inline
```

In [3]: df = pd.read\_csv("C:\\Users\\anitt\\Downloads\\bank-additional.csv",delimit
 df.rename(columns={'y':'deposit'}, inplace=True)
 df.head()

## Out[3]:

|   | age | job             | marital | education         | default | housing | loan    | contact   | month | day_ |
|---|-----|-----------------|---------|-------------------|---------|---------|---------|-----------|-------|------|
| 0 | 30  | blue-<br>collar | married | basic.9y          | no      | yes     | no      | cellular  | may   |      |
| 1 | 39  | services        | single  | high.school       | no      | no      | no      | telephone | may   |      |
| 2 | 25  | services        | married | high.school       | no      | yes     | no      | telephone | jun   |      |
| 3 | 38  | services        | married | basic.9y          | no      | unknown | unknown | telephone | jun   |      |
| 4 | 47  | admin.          | married | university.degree | no      | yes     | no      | cellular  | nov   |      |

### 5 rows × 21 columns

In [4]: df.head()

## Out[4]:

|   | age | job             | marital | education         | default | housing | loan    | contact   | month | day_ |
|---|-----|-----------------|---------|-------------------|---------|---------|---------|-----------|-------|------|
| 0 | 30  | blue-<br>collar | married | basic.9y          | no      | yes     | no      | cellular  | may   |      |
| 1 | 39  | services        | single  | high.school       | no      | no      | no      | telephone | may   |      |
| 2 | 25  | services        | married | high.school       | no      | yes     | no      | telephone | jun   |      |
| 3 | 38  | services        | married | basic.9y          | no      | unknown | unknown | telephone | jun   |      |
| 4 | 47  | admin.          | married | university.degree | no      | yes     | no      | cellular  | nov   |      |

## 5 rows × 21 columns

**→** 

```
In [5]: df.tail()
```

## Out[5]:

|      | age | job        | marital | education   | default | housing | loan | contact   | month | day_c |
|------|-----|------------|---------|-------------|---------|---------|------|-----------|-------|-------|
| 4114 | 30  | admin.     | married | basic.6y    | no      | yes     | yes  | cellular  | jul   |       |
| 4115 | 39  | admin.     | married | high.school | no      | yes     | no   | telephone | jul   |       |
| 4116 | 27  | student    | single  | high.school | no      | no      | no   | cellular  | may   |       |
| 4117 | 58  | admin.     | married | high.school | no      | no      | no   | cellular  | aug   |       |
| 4118 | 34  | management | single  | high.school | no      | yes     | no   | cellular  | nov   |       |

#### 5 rows × 21 columns

```
T [6]
```

In [6]: df.shape

Out[6]: (4119, 21)

In [7]: df.columns

## In [8]: df.dtypes

#### Out[8]: age int64 object job marital object education object default object housing object loan object contact object month object day\_of\_week object duration int64 int64 campaign pdays int64 int64 previous poutcome object emp.var.rate float64 cons.price.idx float64 cons.conf.idx float64 euribor3m float64 nr.employed float64 deposit object

dtype: object

```
In [9]:
         df.dtypes.value_counts()
 Out[9]: object
                    11
         int64
                     5
         float64
                     5
         dtype: int64
In [10]:
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 4119 entries, 0 to 4118
         Data columns (total 21 columns):
          #
              Column
                              Non-Null Count Dtype
                               -----
              -----
          0
                              4119 non-null
                                               int64
              age
          1
              job
                               4119 non-null
                                               object
          2
                              4119 non-null
              marital
                                               object
          3
              education
                              4119 non-null
                                               object
          4
              default
                               4119 non-null
                                               object
          5
              housing
                              4119 non-null
                                               object
          6
              loan
                              4119 non-null
                                               object
          7
              contact
                              4119 non-null
                                               object
          8
              month
                              4119 non-null
                                               object
          9
              day_of_week
                              4119 non-null
                                               object
          10
              duration
                              4119 non-null
                                               int64
              campaign
                              4119 non-null
                                               int64
          11
          12
              pdays
                              4119 non-null
                                               int64
          13
              previous
                              4119 non-null
                                               int64
          14
              poutcome
                              4119 non-null
                                               object
                              4119 non-null
                                               float64
          15
              emp.var.rate
          16
              cons.price.idx 4119 non-null
                                               float64
          17
              cons.conf.idx
                               4119 non-null
                                               float64
          18 euribor3m
                               4119 non-null
                                               float64
          19
              nr.employed
                               4119 non-null
                                               float64
          20
              deposit
                               4119 non-null
                                               object
         dtypes: float64(5), int64(5), object(11)
         memory usage: 675.9+ KB
In [11]: df.duplicated().sum()
```

```
In [12]:
         df.isna().sum()
Out[12]: age
                            0
                            0
         job
         marital
                            0
                            0
         education
         default
                            0
                            0
         housing
         loan
                            0
         contact
                            0
         month
                            0
         day_of_week
                            0
         duration
                            0
         campaign
                            0
                            0
         pdays
         previous
                            0
                            0
         poutcome
                            0
         emp.var.rate
         cons.price.idx
                            0
         cons.conf.idx
                            0
         euribor3m
                            0
                            0
         nr.employed
                            0
         deposit
         dtype: int64
In [13]: cat_cols = df.select_dtypes(include='object').columns
         print(cat_cols)
         num_cols = df.select_dtypes(exclude='object').columns
         print(num_cols)
         Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'conta
         ct',
                 'month', 'day_of_week', 'poutcome', 'deposit'],
                dtype='object')
         Index(['age', 'duration', 'campaign', 'pdays', 'previous', 'emp.var.rate',
                 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed'],
                dtype='object')
```

# In [14]: df.describe()

## Out[14]:

|       | age         | duration    | campaign    | pdays       | previous    | emp.var.rate | cons.p |
|-------|-------------|-------------|-------------|-------------|-------------|--------------|--------|
| count | 4119.000000 | 4119.000000 | 4119.000000 | 4119.000000 | 4119.000000 | 4119.000000  | 4119   |
| mean  | 40.113620   | 256.788055  | 2.537266    | 960.422190  | 0.190337    | 0.084972     | 93     |
| std   | 10.313362   | 254.703736  | 2.568159    | 191.922786  | 0.541788    | 1.563114     | 0      |
| min   | 18.000000   | 0.000000    | 1.000000    | 0.000000    | 0.000000    | -3.400000    | 92     |
| 25%   | 32.000000   | 103.000000  | 1.000000    | 999.000000  | 0.000000    | -1.800000    | 93     |
| 50%   | 38.000000   | 181.000000  | 2.000000    | 999.000000  | 0.000000    | 1.100000     | 93     |
| 75%   | 47.000000   | 317.000000  | 3.000000    | 999.000000  | 0.000000    | 1.400000     | 93     |
| max   | 88.000000   | 3643.000000 | 35.000000   | 999.000000  | 6.000000    | 1.400000     | 94     |
| 4     |             |             |             |             |             |              | •      |

In [15]: df.describe(include='object')

## Out[15]:

|        | job    | marital | education         | default | housing | loan | contact  | month | day_of_wee |
|--------|--------|---------|-------------------|---------|---------|------|----------|-------|------------|
| count  | 4119   | 4119    | 4119              | 4119    | 4119    | 4119 | 4119     | 4119  | 41′        |
| unique | 12     | 4       | 8                 | 3       | 3       | 3    | 2        | 10    |            |
| top    | admin. | married | university.degree | no      | yes     | no   | cellular | may   | tł         |
| freq   | 1012   | 2509    | 1264              | 3315    | 2175    | 3349 | 2652     | 1378  | 86         |
|        |        |         |                   |         |         |      |          |       |            |

In [16]: df.hist(figsize=(10,10),color='#cc5500')
plt.show()



```
In [17]: for feature in cat_cols:
    plt.figure(figsize=(5,5)) # Adjust the figure size as needed
        sns.countplot(x=feature, data=df, palette='Wistia')
    plt.title(f'Bar Plot of {feature}')
    plt.xlabel(feature)
    plt.ylabel('Count')
    plt.xticks(rotation=90)
    plt.show()
```



In [18]: df.plot(kind='box', subplots=True, layout=(2,5),figsize=(20,10),color='#7b3
plt.show()



5050

nr.employed

```
column = df[['age','campaign','duration']]
In [19]:
         q1 = np.percentile(column, 25)
         q3 = np.percentile(column, 75)
         iqr = q3 - q1
         lower_bound = q1 - 1.5 * iqr
         upper_bound = q3 + 1.5 * iqr
         df[['age','campaign','duration']] = column[(column > lower_bound) & (column
In [20]: df.plot(kind='box', subplots=True, layout=(2,5),figsize=(20,10),color='#808
         plt.show()
                                          15
                                          10
                                                         200
                                                                        5200
                                         -30
                                         -35
                                         -40
```

-45

92.5

```
In [21]:
          corr = df.corr()
          print(corr)
          corr = corr[abs(corr)>=0.90]
          sns.heatmap(corr,annot=True,cmap='Set3',linewidths=0.2)
          plt.show()
                                        duration
                                   age
                                                    campaign
                                                                   pdays
                                                                           previous
           age
                             1.000000
                                        0.014048 -0.014169 -0.043425
                                                                           0.050931
          duration
                             0.014048
                                        1.000000 -0.218111 -0.093694
                                                                           0.094206
           campaign
                            -0.014169 -0.218111
                                                    1.000000
                                                               0.058742 -0.091490
          pdays
                            -0.043425 -0.093694
                                                    0.058742
                                                               1.000000 -0.587941
          previous
                             0.050931
                                        0.094206 -0.091490 -0.587941
                                                                           1.000000
                                                               0.270684 -0.415238
          emp.var.rate
                            -0.019192 -0.063870
                                                    0.176079
           cons.price.idx -0.000482 -0.013338
                                                    0.145021
                                                               0.058472 -0.164922
           cons.conf.idx
                             0.098135
                                        0.045889
                                                    0.007882 -0.092090 -0.051420
          euribor3m
                            -0.015033 -0.067815
                                                    0.159435
                                                               0.301478 -0.458851
          nr.employed
                            -0.041936 -0.097339
                                                               0.381983 -0.514853
                                                    0.161037
                                             cons.price.idx
                                                               cons.conf.idx
                                                                                 euribor3m
                             emp.var.rate
          age
                                -0.019192
                                                   -0.000482
                                                                     0.098135
                                                                                 -0.015033
          duration
                                -0.063870
                                                   -0.013338
                                                                     0.045889
                                                                                 -0.067815
          campaign
                                 0.176079
                                                    0.145021
                                                                     0.007882
                                                                                  0.159435
           pdays
                                 0.270684
                                                    0.058472
                                                                    -0.092090
                                                                                  0.301478
                                -0.415238
                                                   -0.164922
                                                                    -0.051420
                                                                                -0.458851
          previous
           emp.var.rate
                                 1.000000
                                                    0.755155
                                                                     0.195022
                                                                                  0.970308
          cons.price.idx
                                 0.755155
                                                    1.000000
                                                                     0.045835
                                                                                  0.657159
           cons.conf.idx
                                 0.195022
                                                    0.045835
                                                                     1.000000
                                                                                  0.276595
          euribor3m
                                 0.970308
                                                    0.657159
                                                                     0.276595
                                                                                  1.000000
          nr.employed
                                 0.897173
                                                    0.472560
                                                                     0.107054
                                                                                  0.942589
                             nr.employed
                               -0.041936
           age
          duration
                               -0.097339
          campaign
                                0.161037
          pdays
                                0.381983
          previous
                               -0.514853
                                0.897173
          emp.var.rate
           cons.price.idx
                                0.472560
          cons.conf.idx
                                0.107054
                                0.942589
          euribor3m
           nr.employed
                                1.000000
                                                                    - 1.00
                   age - 1
                duration -
                                                                    0.99
               campaign -
                  pdays -
                                                                    0.98
                previous -
                                                                    0.97
                                            1
                                                        0.97
             emp.var.rate -
                                                 1
            cons.price.idx -
                                                                    0.96
            cons.conf.idx -
                                                     1
              euribor3m -
                                           0.97
                                                        1
                                                           0.94
                                                                    0.95
                                                        0.94
                                                            1
             nr.employed -
                                    pdays
                                            emp.var.rate
                                        previous
                            duration
                                ampaign
                                                        euribor3m
                                                cons.price.idx
                                                    cons.conf.idx
                                                            nr.employed
```

```
In [22]:
          high_corr_cols = ['emp.var.rate', 'euribor3m', 'nr.employed']
In [23]: df1 = df.copy()
          df1.columns
Out[23]: Index(['age', 'job', 'marital', 'education', 'default', 'housing', 'loan',
                  'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays',
                  'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx',
                  'cons.conf.idx', 'euribor3m', 'nr.employed', 'deposit'],
                dtype='object')
In [24]: df1.drop(high_corr_cols,inplace=True,axis=1) # axis=1 indicates columns
          df1.columns
Out[24]: Index(['age', 'job', 'marital', 'education', 'default', 'housing', 'loan',
                  'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays',
                  'previous', 'poutcome', 'cons.price.idx', 'cons.conf.idx', 'deposi
          t'],
                dtype='object')
In [25]: df1.shape
Out[25]: (4119, 18)
In [26]: from sklearn.preprocessing import LabelEncoder
          lb = LabelEncoder()
          df encoded = df1.apply(lb.fit_transform)
          df_encoded
Out[26]:
                age job marital education default housing loan contact month day_of_week du
             0
                                       2
                                                       2
                 12
                      1
                              1
                                               0
                                                            0
                                                                    0
                                                                           6
                                                                                       0
             1
                 21
                      7
                              2
                                       3
                                               0
                                                       0
                                                            0
                                                                           6
                                                                                       0
             2
                  7
                      7
                              1
                                       3
                                               0
                                                       2
                                                            0
                                                                    1
                                                                           4
                                                                                       4
                 20
                      7
                                       2
             3
                              1
                                               0
                                                       1
                                                            1
                                                                    1
                                                                           4
                                                                                       0
             4
                 29
                      0
                              1
                                       6
                                               0
                                                       2
                                                            0
                                                                    0
                                                                           7
                                                                                       1
             ...
                                       ...
                                              ...
                                                       ...
                  ...
                                                            ...
                                                                          ...
                                                                                       ...
           4114
                 12
                      0
                              1
                                       1
                                               0
                                                       2
                                                            2
                                                                    0
                                                                           3
                                                                                       2
           4115
                 21
                      0
                              1
                                       3
                                               n
                                                       2
                                                            0
                                                                    1
                                                                           3
                                                                                       n
           4116
                             2
                                                       0
                  9
                      8
                                       3
                                               0
                                                            0
                                                                    0
                                                                           6
                                                                                       1
           4117
                              1
                                       3
                                               0
                                                       0
                                                                    0
                                                                                       0
                 40
                      0
                                                            0
                                                                           1
           4118
                                       3
                                              0
                                                       2
                                                            0
                                                                    0
                                                                                       4
                 16
                              2
                                                                           7
                      4
          4119 rows × 18 columns
In [27]: | df_encoded['deposit'].value_counts()
Out[27]:
          0
               3668
          Name: deposit, dtype: int64
```

```
In [28]: | x = df_encoded.drop('deposit',axis=1) # independent variable
         y = df_encoded['deposit']
                                                 # dependent variable
         print(x.shape)
         print(y.shape)
         print(type(x))
         print(type(y))
         (4119, 17)
         (4119,)
         <class 'pandas.core.frame.DataFrame'>
         <class 'pandas.core.series.Series'>
In [29]: from sklearn.model_selection import train_test_split
         print(4119*0.25)
         1029.75
In [30]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25,random_
         print(x_train.shape)
         print(x_test.shape)
         print(y_train.shape)
         print(y_test.shape)
         (3089, 17)
         (1030, 17)
         (3089,)
         (1030,)
In [31]: from sklearn.metrics import confusion_matrix,classification_report,accuracy
         def eval_model(y_test,y_pred):
             acc = accuracy_score(y_test,y_pred)
             print('Accuracy_Score',acc)
             cm = confusion_matrix(y_test,y_pred)
             print('Confusion Matrix\n',cm)
             print('Classification Report\n',classification_report(y_test,y_pred))
         def mscore(model):
             train_score = model.score(x_train,y_train)
             test score = model.score(x test,y test)
             print('Training Score',train_score)
             print('Testing Score',test_score)
In [32]: from sklearn.tree import DecisionTreeClassifier
         dt = DecisionTreeClassifier(criterion='gini',max_depth=5,min_samples_split=
         dt.fit(x_train,y_train)
Out[32]: DecisionTreeClassifier(max_depth=5, min_samples_split=10)
```

```
In [33]: |mscore(dt)
         Training Score 0.9148591777274199
         Testing Score 0.8990291262135922
In [34]: ypred_dt = dt.predict(x_test)
         print(ypred_dt)
         [0 0 1 ... 0 0 0]
In [35]: eval_model(y_test,ypred_dt)
         Accuracy_Score 0.8990291262135922
         Confusion Matrix
          [[905 25]
          [ 79 21]]
         Classification Report
                         precision
                                      recall f1-score
                                                          support
                     0
                             0.92
                                       0.97
                                                 0.95
                                                             930
                     1
                             0.46
                                       0.21
                                                 0.29
                                                             100
                                                 0.90
                                                            1030
             accuracy
            macro avg
                             0.69
                                       0.59
                                                 0.62
                                                            1030
         weighted avg
                             0.87
                                       0.90
                                                 0.88
                                                            1030
In [36]: | from sklearn.tree import plot_tree
In [37]: | cn = ['no', 'yes']
         fn = x_train.columns
         print(fn)
         print(cn)
         Index(['age', 'job', 'marital', 'education', 'default', 'housing', 'loan',
                 'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays',
                 'previous', 'poutcome', 'cons.price.idx', 'cons.conf.idx'],
               dtype='object')
         ['no', 'yes']
```

In [38]: plot\_tree(dt,class\_names=cn,filled=True)
 plt.show()



In [39]: dt1 = DecisionTreeClassifier(criterion='entropy',max\_depth=4,min\_samples\_sp
dt1.fit(x\_train,y\_train)

Out[39]: DecisionTreeClassifier(criterion='entropy', max\_depth=4, min\_samples\_split =15)

In [40]: mscore(dt1)

Training Score 0.9080608611201036 Testing Score 0.9048543689320389

In [41]: ypred\_dt1 = dt1.predict(x\_test)

In [42]: eval\_model(y\_test,ypred\_dt1)

Accuracy\_Score 0.9048543689320389

Confusion Matrix

[[915 15] [ 83 17]]

Classification Report

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.92      | 0.98   | 0.95     | 930     |
| 1            | 0.53      | 0.17   | 0.26     | 100     |
| accuracy     |           |        | 0.90     | 1030    |
| macro avg    | 0.72      | 0.58   | 0.60     | 1030    |
| weighted avg | 0.88      | 0.90   | 0.88     | 1030    |

```
In [43]: plt.figure(figsize=(15,15))
    plot_tree(dt1,class_names=cn,filled=True)
    plt.show()
```



In [ ]: