Clustering Longitudinal Categorical Data

Dr. Brianna Heggeseth, Ellen Graham, Zuofu Huang, Kieu-Giang Nguyen

Project Goals

- Explore clustering literature
- •Build a tool to streamline using the methods
- •Compare clustering results using two realworld datasets

Datasets

- ·Cancer patients moving through the healthcare system: Home, Hospital, SNF, Hospice
- ·Sleep stages: Wake, Light, Deep, REM

Methods

- •Distance-based: Measure similarity between two sequences
 - · Distribution Distance: The difference between the distributions of states
 - · Feature Distance: The length of longest common subsequence
 - · Edit Distance: The cost of transforming one sequence into another
- •Model-based: Assume data were generated by a model with group structure
 - · Mixture of Markov Models: Probability of transitioning to next state solely depends on current state
 - Dirichlet Multinomial Models: An extension of a mixture of Markov models allowing for within-cluster variation

Results

- Distance-based
 - Healthcare: For edit and feature distances, clusters defined by length of life after diagnosis; for distribution distances, clusters defined by the state distribution of a sequence
- Sleep: No meaningful clusters produced Model-based
 - Healthcare: One cluster lives a longer time after diagnosis and often transitions back to home; the other cluster lives a shorter time and stays in the same state
 - · Sleep: No meaningful clusters produced

Future Work

- Develop clustering methods that make meaningful clusters of sleep data
- ·Explore relationship of covariates (e.g. age or time of night) and cluster assignments

Different methods to find common patterns highlight some but not all features in longitudinal categorical data.

A good clustering method requires context-specific knowledge.

What is Longitudinal Categorical Data?

It consists of repeated measurements over time of a categorical variable, observed for many units or individuals.

A sample of patient's trajectories from the healthcare data set displayed by cluster

A sample of patient's trajectories from the sleep data set displayed by cluster

Clustering Comparison

Two-Way Table of Cluster Labels

	Second Method		
	1	2	
First Method			
1	89	0	
2	0	11	

Adjusted Rand Index	Jaccard Index	Normalized Mutual Information	Normalized Variation of Information

Dissimilarity Matrices

State Distributions over Time

Markov Chains

Healthcare data, 2 clusters, MMM (Bayesian Estimation)

Sleep data, 2 clusters, MMM (Bayesian Estimation)

Posterior Probabilities

Healthcare data, 2 clusters

Sleep data, 2 clusters

