Computational Science on Many-Core Architectures

360.252

Josef Weinbub Karl Rupp

Institute for Microelectronics, TU Wien
http://www.iue.tuwien.ac.at/

Zoom Channel 621 2711 2607 Wednesday, December 6, 2023

Pseudocode

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 0 until convergence

- 1. Compute and store Ap_i
- 2. Compute $\langle p_i, Ap_i \rangle$
- 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- $4. x_{i+1} = x_i + \alpha_i p_i$
- $5. r_{i+1} = r_i \alpha_i A p_i$
- 6. Compute $\langle r_{i+1}, r_{i+1} \rangle$
- 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
- 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

EndFor

BLAS-based Implementation

-

SpMV, AXPY

For i = 0 until convergence

- SpMV
- 2. DOT
- 3. -
- 4. AXPY
- 5. AXPY
- 6. DOT
- 7. -
- 8. AXPY

Pseudocode

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 0 until convergence

- 1. Compute and store Ap_i
- 2. Compute $\langle p_i, Ap_i \rangle$
- 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- 4. $x_{i+1} = x_i + \alpha_i p_i$
- 5. $r_{i+1} = r_i \alpha_i A p_i$
- 6. Compute $\langle r_{i+1}, r_{i+1} \rangle$
- 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
- 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

EndFor

BLAS-based Implementation

_

SpMV, AXPY

For i = 0 until convergence

- 1. SpMV
- 2. DOT ← Global sync!
- 3. -
- 4. AXPY
- 5. AXPY
- 6. DOT ← Global sync!
- 7. -
- 8. AXPY

Pseudocode

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 0 until convergence

- 1. Compute and store Ap_i
- 2. Compute $\langle p_i, Ap_i \rangle$
- 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- $4. x_{i+1} = x_i + \alpha_i p_i$
- 5. $r_{i+1} = r_i \alpha_i A p_i$
- 6. Compute $\langle r_{i+1}, r_{i+1} \rangle$
- 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
- 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

EndFor

BLAS-based Implementation

-

SpMV, AXPY

For i = 0 until convergence

- 1. SpMV \leftarrow No caching of Ap_i
- 2. DOT ← Global sync!
- 3. -
- 4. AXPY
- 5. AXPY \leftarrow No caching of r_{i+1}
- 6. DOT ← Global sync!
- 7. -
- 8. AXPY

- Kernel launches expensive
- Delicate balance for preconditioners

- Kernel launches expensive
- Delicate balance for preconditioners

- Kernel launches expensive
- Delicate balance for preconditioners

- Kernel launches expensive
- Delicate balance for preconditioners

- Kernel launches expensive
- Delicate balance for preconditioners

Conjugate Gradient Optimizations

Optimization 1

- Get best performance out of SpMV
- Compare different sparse matrix types

Cf.: N. Bell: Implementing sparse matrix-vector multiplication on throughput-oriented processors. *Proc. SC '09*

Conjugate Gradient Optimizations

Optimization 2

Optimize kernel parameters for each operation

Conjugate Gradient Optimizations

Optimization 3: Rearrange the algorithm

- Remove unnecessary reads
- Remove unnecessary synchronizations
- Use custom kernels instead of standard BLAS

Standard CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 0 until convergence

- 1. Compute and store Ap_i
- 2. Compute $\langle p_i, Ap_i \rangle$
- 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- **4.** $x_{i+1} = x_i + \alpha_i p_i$
- 5. $r_{i+1} = r_i \alpha_i A p_i$
- 6. Compute $\langle r_{i+1}, r_{i+1} \rangle$
- 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
- 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

Standard CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 0 until convergence

- 1. Compute and store Ap_i
- 2. Compute $\langle p_i, Ap_i \rangle$
- 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- $4. x_{i+1} = x_i + \alpha_i p_i$
- 5. $r_{i+1} = r_i \alpha_i A p_i$
- 6. Compute $\langle r_{i+1}, r_{i+1} \rangle$
- 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
- 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

EndFor

Pipelined CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 1 until convergence

- 1. i = 1: Compute α_0 , β_0 , Ap_0
- 2. $x_i = x_{i-1} + \alpha_{i-1}p_{i-1}$
- 3. $r_i = r_{i-1} \alpha_{i-1}Ap_{i-1}$
- 4. $p_i = r_i + \beta_{i-1}p_{i-1}$
- 5. Compute and store Ap_i
- 6. Compute $\langle Ap_i, Ap_i \rangle$, $\langle p_i, Ap_i \rangle$, $\langle r_i, r_i \rangle$
- 7. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- 8. $\beta_i = (\alpha_i^2 \langle Ap_i, Ap_i \rangle \langle r_i, r_i \rangle) / \langle r_i, r_i \rangle$

Standard CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 0 until convergence

- 1. Compute and store Ap_i
- 2. Compute $\langle p_i, Ap_i \rangle$
- 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- **4.** $x_{i+1} = x_i + \alpha_i p_i$
- 5. $r_{i+1} = r_i \alpha_i A p_i$
- 6. Compute $\langle r_{i+1}, r_{i+1} \rangle$
- 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
- 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

EndFor

Pipelined CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 1 until convergence

- 1. i = 1: Compute α_0 , β_0 , Ap_0
- 2. $x_i = x_{i-1} + \alpha_{i-1}p_{i-1}$
- 3. $r_i = r_{i-1} \alpha_{i-1}Ap_{i-1}$
- 4. $p_i = r_i + \beta_{i-1}p_{i-1}$
- 5. Compute and store Ap_i
- 6. Compute $\langle Ap_i, Ap_i \rangle$, $\langle p_i, Ap_i \rangle$, $\langle r_i, r_i \rangle$
- 7. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- 8. $\beta_i = (\alpha_i^2 \langle Ap_i, Ap_i \rangle \langle r_i, r_i \rangle) / \langle r_i, r_i \rangle$

Standard CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 0 until convergence

- 1. Compute and store Ap_i
- 2. Compute $\langle p_i, Ap_i \rangle$
- 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- **4.** $x_{i+1} = x_i + \alpha_i p_i$
- 5. $r_{i+1} = r_i \alpha_i A p_i$
- 6. Compute $\langle r_{i+1}, r_{i+1} \rangle$
- 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
- 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

EndFor

Pipelined CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 1 until convergence

- 1. i = 1: Compute α_0, β_0, Ap_0
- 2. $x_i = x_{i-1} + \alpha_{i-1}p_{i-1}$
- 3. $r_i = r_{i-1} \alpha_{i-1}Ap_{i-1}$
- 4. $p_i = r_i + \beta_{i-1}p_{i-1}$
- 5. Compute and store Ap_i
- 6. Compute $\langle Ap_i, Ap_i \rangle$, $\langle p_i, Ap_i \rangle$, $\langle r_i, r_i \rangle$
- 7. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- 8. $\beta_i = (\alpha_i^2 \langle Ap_i, Ap_i \rangle \langle r_i, r_i \rangle) / \langle r_i, r_i \rangle$

