	Nazwisko i imię POMIARY:	klasa	M. Ris Barbosy w Walter
CE	EL: Celem ćwiczenia jest zapoznanie s	ię z pomiaru wielkości fizycznej oraz oprac pomiarowych.	cowanie danych
WSTE	ξP:		
1. 2. 3.	się znaleźć we wstępie: Jaką wielkość fizyczną mierzysz W jakim celu wykonujesz pomiar Zdefiniowanie mierzonej wielkośc Co nazywamy błędem pomiarow	ci fizycznej.	t ta wielkość ?
PRZEB	IEG ĆWICZENIA I POMIRY :		
	doświadczenia. Wskaż typy prze SPECYFIKACJA.	które wykorzystasz podczas pr. wodów jakie wykorzystujesz. – SMA artfonie (klas przyrządu, dokładnoś zaj przyrządu, itd.).	ARTFON – JEGO
3.	Podaj nazwę przyrządu do okreś	lenie błędu pomiarowego.	
4.	Napisz schemat układu pomiarov	vego.	

5. Wykonaj po 5 serii pomiarów po pięć odczytów wartości wielkości fizycznej zadanej przez prowadzącego.

OPRACOWANIE WYNIKÓW:

- 6. Otrzymane wyniki zestaw w tabeli.
- 7. Podaj obliczenia:

W naszym przypadku zakładamy, że wartość prawdziwa (rzeczywista) jest średnią arytmetyczną ze wszystkich wskazań ucznia dla danego zakresu na oporniku dekadowym.

Wartość prawdziwa (rzeczywista):

$$R_{\pm r}^{seria} = \frac{R_1 + R_2 + R_3 + \cdots + R_5}{5}$$

Błąd bezwzględny:

$$\Delta R_1 = R_1 - R_{\circ r}^{seria}$$

Błąd względny:

$$\delta R_1 = \frac{\Delta R_1}{R_{\pm r}^{seria}}$$

Błąd względny wyrażony w procentach:

$$\delta R_1 = \frac{\Delta R_1}{R_{\varsigma r}^{seria}} \times 100 \%$$

Lp.	Wartość	Wartość	Błąd	(Błąd	Błąd	Błąd
	<mark>wskazania</mark>	prawdziwa	bezwzględny	bezwzględny) ²	względny	względny
	R[Ω]	$R_{\text{śr}}$ [Ω]	ΔR [Ω]	$\Delta R^2 [\Omega]^2$	δR [-]	δR [%]
	Seria 1					
1						
2						
3						
4						
5						
Seria 2						
1						_

	1					
2						
3						
4						
5						
			Seria	3		
1						
2						
3						
4						
5						
	Seria 4					
1						
2						
3						
4						
5						
Seria 5						
1						
2						
3						
4						
5						

8. Analiza statystyczna wyników pomiarowych – wykonaj obliczenia parametrów statystycznych dla wszystkich zakresów pomiarów na oporniku dekadowym, zastanów się w jakim celu wyznaczamy odchylenie standardowe. Spróbuj zinterpretować otrzymane wyniki pomiarowe.

ŚREDNIA ARYTMETRYCZNA:

$$R_{sr}^{seria} = \frac{R_1 + R_2 + R_3 + \cdots + R_5}{5}$$

WARIANCJA:

$$\sigma^2 = \frac{\left(R_1 - R_{\pm r}^{seria}\right)^2 + \left(R_2 - R_{\pm r}^{seria}\right)^2 + \cdots \dots + \left(R_5 - R_{\pm r}^{seria}\right)^2}{5}$$

ODCHYLENIE STANDARDOWE:

$$\sigma = \sqrt{\frac{\left(R_1 - R_{\pm r}^{seria}\right)^2 + \left(R_2 - R_{\pm r}^{seria}\right)^2 + \cdots + \left(R_5 - R_{\pm r}^{seria}\right)^2}{5}}$$

Zestaw uzyskane wyniki pomiarowe w poniższej tabeli. Zobacz jak parametr σ wpływa na pomiary dla poszczególnych zakresów Z pomiarowych. Jak zinterpretujesz otrzymane wyniki. Dla których zakresów Z wyniki uzyskane przez ucznia są najbardziej wiarygodne.

Seria pomiaru	ŚREDNIA ARYTMETYCZNA R _{śr} [Ω]	WARIANCJA σ² [Ω]	ODCHYLENIE STANDARDOWE σ [Ω]
1			
2			
3			
4			
5			

- 9. Wykonanie krzywych kalibracji za pomocą materiałów uzyskanych przez nauczyciela.
 - a) Wykonaj wykres zależności błędu bezwzględnego w funkcji wartości uzyskanych podczas pomiaru dla każdej serii.
 - b) Wykonaj wykres zależności błędu względnego w funkcji wartości uzyskanych podczas pomiaru dla każdej serii.
 - c) Wykonaj wykres zależności błędu względnego wyrażonego w procentach w funkcji wartości uzyskanych podczas pomiaru dla każdej serii.

ANALIZA WYNIKÓW:

10. Wykonaj interpretację każdego z wyznaczonych wykresów – jaką on ma

charakterystykę.

- 11. Jaka jest odpowiedz przyrządu na błąd. Jaki charakter matematyczny mają otrzymane wykresy?
- 12. Jakimi zależności matematyczne można opisać przedstawione charakterystyki?
- 13. Wskaż czym się różni rozdzielczość przyrządów od dokładności?

ZAPIS WYNIKU:

 $R_{seria \, 1} = R_{prawdziwa} \pm \Delta R$ $R_{seria \, 2} = R_{prawdziwa} \pm \Delta R$ $R_{seria \, 3} = R_{prawdziwa} \pm \Delta R$ $R_{seria \, 4} = R_{prawdziwa} \pm \Delta R$ $R_{seria \, 5} = R_{prawdziwa} \pm \Delta R$

WNIOSKI:

- 14. Jakie czynności wykonałeś aby określić błąd pomiarowy?
- 15. Wypisz spostrzeżenia przy wykonaniu pomiarów?
- 16. Porównaj błąd względny, bezwzględny z 3σ.