Exercício Resolvido (1): Resolva as Equações

- a) 2¹⁰ =
- b) lg(1024) =
- c) lg(17) =
- d) |g(17)| =
- e) [lg(17)]=

PUC Minas Virtual

- a) 1024
- b) 10
- c) 4,08746284125034
- d) 5
- e) 4

Exercício Resolvido (2): Plote os Gráficos

a)
$$f(n) = n^3$$

b)
$$f(n) = n^2$$

c)
$$f(n) = n \times lg(n)$$

d)
$$f(n) = n$$

e)
$$f(n) = sqrt(n)$$

$$f) f(n) = Ig(n)$$

Exercício Resolvido (3)

Calcule o número de subtrações que o código abaixo realiza:

```
if (a - 5 < b - 3){
    i--;
    --b;
    a -= 3;
} else {
    j--;
}
```

PUC Minas Virtual

a) //Melhor caso: f(n) = 3, $\Theta(1)$ //Pior caso: f(n) = 5, $\Theta(1)$

Exercício Resolvido (4)

• Calcule o número de subtrações que o código abaixo realiza:

PUC Minas Virtual

a) //Todos os casos: f(n) = 2n, $\Theta(n)$

Exercício Resolvido (5)

• Calcule o número de subtrações que o código abaixo realiza:

```
for (int i = 0; i < n; i++){
    for (int j = 0; j < n; j++){
        a--;
        b--;
        c--;
    }
}</pre>
```

PUC Minas Virtual

a) $f(n) = 3n^2$, $\Theta(n^2)$

Exercício Resolvido (6)

Calcule o número de multiplicações que o código abaixo realiza:

```
...
for (int i = n; i > 0; i /= 2){
    a *= 2;
}
```

PUC Minas Virtual

a) f(n) = [lg(n)] + 1, $\Theta(lg n)$

Exercício Resolvido (7): Pesquisa Sequencial

 Apresente a função de complexidade de tempo (número de comparações entre elementos do array) da pesquisa sequencial no melhor e no pior caso

```
boolean resp = false;

for (int i = 0; i < n; i++){
    if (array[i] == x){
      resp = true;
      i = n;
    }
}</pre>
```

Este algoritmo é ótimo?

PUC Minas Virtual

 a) Melhor caso: elemento desejado na primeira posição t(n) = 1

Pior caso: elemento desejado não está no array ou está na última posição t(n) = n

Exercício Resolvido (8)

 Um aluno deve procurar um valor em um array de números reais. Ele tem duas alternativas. Primeiro, executar uma pesquisa sequencial. Segundo, ordenar o array e, em seguida, aplicar uma pesquisa binária. O que fazer?

PUC Minas Virtual

a) O aluno deve escolher a primeira opção, pois a pesquisa sequencial tem custo Θ(n).
 A segunda opção tem custo Θ (n * lg n) para ordenar mais Θ(lg n) para a pesquisa binária.

Exercício Resolvido (9)

- Responda se as afirmações são verdadeiras ou falsas:
 - a) $3n^2 + 5n + 1 \notin O(n)$:
 - b) $3n^2 + 5n + 1 \notin O(n^2)$:
 - c) $3n^2 + 5n + 1 \notin O(n^3)$:
 - d) $3n^2 + 5n + 1 \in \Omega(n)$:
 - e) $3n^2 + 5n + 1 \in \Omega(n^2)$:
 - f) $3n^2 + 5n + 1 \in \Omega(n^3)$:
 - g) $3n^2 + 5n + 1 \in \Theta(n)$:
 - h) $3n^2 + 5n + 1 \in \Theta(n^2)$:
 - i) $3n^2 + 5n + 1 \in \Theta(n^3)$:
 - a) falsa
 - b) verdadeira
 - c) verdadeira
 - d) verdadeira
 - e) verdadeira
 - f) falsa
 - g) falsa
 - h) verdadeira
 - i) falsa

Exercício Resolvido (10)

 Sabendo que o Algoritmo de Seleção faz Θ(n²) comparações entre registros, quantas dessas comparações temos no código abaixo? Justifique

```
for (int i = 0; i < n; i++){
     seleção();
}</pre>
```

PUC Minas Virtual

PUC Minas Virtual

a) Neste caso, executamos o Seleção n vezes: n x $\Theta(n^2) = \Theta(n^3)$

Exercício Resolvido (11)

- Dado $f(n) = 3n^2 5n 9$, $g(n) = n \cdot lg(n)$, $l(n) = n \cdot lg^2(n)$ e $h(n) = 99n^8$, qual é a ordem de complexidade das operações abaixo (use a notação Θ):
 - a) h(n) + g(n) f(n)
 - b) $\Theta(h(n)) + \Theta(g(n)) \Theta(f(n))$
 - c) f(n) x g(n)
 - d) g(n) x l(n) + h(n)
 - e) f(n) x g(n) x I(n)
 - f) $\Theta(\Theta(\Theta(\Theta(f(n)))))$

- a) $[99n8] + [n.lg(n)] [3n2 -5n-9] \Rightarrow \Theta(n^8)$
- b) $\Theta(n8) + \Theta(n.lg(n)) \Theta(n^2) \Rightarrow \Theta(n^8)$
- c) $\Theta(n2) \times \Theta(n.lg(n)) \Rightarrow \Theta(n^3.lg(n))$
- d) $\Theta(n.lg(n)) \times \Theta(n.lg2(n)) + \Theta(n8) \Rightarrow \Theta(n^8)$
- e) $\Theta(n2) \times \Theta(n.lg(n)) \times \Theta(n.lg(n)) \Rightarrow \Theta(n^4.lg(n))$
- f) **Θ**(n)

Exercício Resolvido (12)

- Dada a definição da notação O:
 - a) Mostre os valores de c e m tal que, para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n^2|$, provando que $3n^2 + 5n + 1 \notin O(n^2)$
 - b) Mostre os valores de c e m tal que, para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n^3|$, provando que $3n^2 + 5n + 1 \notin O(n^3)$
 - c) Prove que $3n^2 + 5n + 1$ não é O(n)

PUC Minas Virtual

a) Para que tal inequação seja verdadeira, c tem que ser maior do que três (e.g., quatro)

b) Novamente, (c = 4 e m = 5,7) e (c = 5 e m = 2,7)

c) Não existe par (c, m) tal que para n ≥ m, |3n2 + 5n +1| ≤ c x |n| seja verdadeira. Aumentando o valor de c, apenas retardamos o momento em que a curva quadrática supera a linear

c = 100

c = 1000

	0 - 100	
n	$g(n) = 3n^2 + 5n + 1$	$C \times f(n) = 100 \times n$
0	1	0
5	101	500
10	351	1000
15	751	1500
20	1301	2000
25	2001	2500
30	2851	3000
35	3851	3500
40	5001	4000
45	6301	4500
50	7751	5000

n	$g(n) = 3n^2 + 5n + 1$	$C \times f(n) = 1000 \times n$
0	1	0
50	7751	50000
100	30501	100000
150	68251	150000
200	121001	200000
250	188751	250000
300	271501	300000
350	369251	350000
400	482001	400000
450	609751	450000
500	752501	500000

Exercício Resolvido (13)

 Apresente a função e a ordem de complexidade para o número de comparações de registros no pior e melhor caso

```
void imprimirMaxMin(int [] array, int n){
    int max, min;
    if (array[0] > array[1]){
        max = array[0];
        min = array[1];
    } else {
        max = array[0];
        min = array[0];
    }
    for (int i = 2; i < n; i++){
        if (array[i] > max){
            max = array[i];
        } else if (array[i] < min){
            min = array[i];
        }
    }
}</pre>
```

a) Função de Complexidade para Comparações

Pior: f(n) = 1 + 2(n - 2)Melhor: f(n) = 1 + (n - 2)

Ordem de Complexidade para Comparações

Ambos os casos: O(n), $\Omega(n)$ e $\Theta(n)$

Exercício Resolvido (14)

 Apresente a função e a ordem de complexidade para o número de movimentações de registros no pior e melhor caso

```
void imprimirMaxMin(int [] array, int n){
    int max, min;
    if (array[0] > array[1]){
        max = array[0];
        min = array[1];
    } else {
        max = array[0];
    }
    for (int i = 2; i < n; i++){
        if (array[i] > max){
            max = array[i];
        } else if (array[i] < min){
            min = array[i];
        }
    }
}</pre>
```

a) Função de Complexidade para Movimentações

Pior: f(n) = 2 + (n-2)

Melhor: $f(n) = 2 + \frac{(n-2) \times 0}{n}$

PUC Minas Virtual

Ordem de Complexidade para Movimentações

Pior: O(n), Ω (n) e Θ (n) Melhor: O(1), Ω (1) e Θ (1)

Exercício Resolvido (15)

 Apresente a função e a ordem de complexidade para o número de subtrações para o pior e melhor caso

```
i = 0;
while (i < n) {
         i++;    a--;
}
if (b > c) {
         i--;
} else {
         i--;
         a--;
}
```

PUC Minas Virtual

	Função de Complexidade							
	Pior	f(n) = n + 2						
a)	Melhor	f(n) = n +1						
a)		. ,						

Ordem de Complexidade					
Pior	O(n) $O(n)$ $O(n)$				
Melhor	O(n), Ω (n) e Θ (n)				

Exercício Resolvido (16)

 Apresente a função e a ordem de complexidade para o número de subtrações para o pior e melhor caso

```
for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
        a--;
        b--;
    }
    c--;
}</pre>
```

Todos os casos f(n) = (2n + 1)n

Ordem de Complexidade				
Todos os casos	$O(n^2)$, $\Omega(n^2)$ e $\Theta(n^2)$			

a)

Exercício Resolvido (17)

 Apresente a função e a ordem de complexidade para o número de subtrações para o pior e melhor caso

```
for (i = 0; i < n; i++) {
    for (j = 1; j <= n; j *= 2) {
        b--;
    }
}</pre>
```

PUC Minas Virtual

	Função de Complexidade
Todos os casos	$f(n) = (\lfloor \lg(n) \rfloor + 1) \times n = n \times \lfloor \lg(n) \rfloor + n$

Ordem de Complexidade					
Todos os casos	O(n x lg(n)), Ω (n x lg(n)) e Θ (n x lg(n))				

a)

Exercício Resolvido (18)

 Apresente o tipo de crescimento que melhor caracteriza as funções abaixo (Khan Academy, adaptado)

Constante	Linear	Polinomial	Exponencial
		747	
		7/	
		(4)	
		100	
		1111111	
		Alllan	
	Constante	Constante Linear	Constante Linear Polinomial

	Constante	Linear	Polinomial	Exponencial
3n		\checkmark	747	
1	√			
(3/2)n 2n³		/		
2n³				
2 ⁿ			1111	
3n²				
1000	√		allan	
(3/2) ⁿ				

a)

Exercício Resolvido (19)

Classifique as funções f₁(n) = n², f₂(n) = n, f₃(n) = 2ⁿ, f₄(n) = (3/2)ⁿ, f₅(n) = n³ e f₆(n) = 1 de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

$$f_6(n) = 1 < f_2(n) = n < f_1(n) = n^2 < f_5(n) = n^3 < f_4(n) = (3/2)^n < f_3(n) = 2^n$$

Exercício Resolvido (20)

• Classifique as funções $f_1(n) = n.\log_6(n)$, $f_2(n) = \lg(n)$, $f_3(n) = \log_8(n)$, $f_4(n) = 8n^2$, $f_5(n) = n.\lg(n)$, $f_6(n) = 64$, $f_7(n) = 6n^3$, $f_8(n) = 8^{2n}$ e $f_9(n) = 4n$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

PUC Minas Virtual

RESPOSTA:

$$f_6(n) = 64 < f_3(n) = log_8(n) < f_2(n) = lg(n) < f_9(n) = 4n < f_1(n) = n.log_6(n) < f_5(n) = n.lg(n) < f_4(n) = 8n^2 < f_7(n) = 6n^3 < f_8(n) = 8^{2n}$$
a)

Exercício Resolvido (21)

 Faça a correspondência entre cada função f(n) com sua g(n) equivalente, em termos de O. Essa correspondência acontece quando f(n) = O(g(n)) (Khan Academy, adaptado)

f(n)	g(n)
n + 30	n ⁴
n² + 2n - 10	3n - 1
n³ x 3n	lg(2n)
lg(n)	n² + 3n

Exercício (1)

 Encontre o maior e menor valores em um array de inteiros e, em seguida, encontre a função de complexidade de tempo para sua solução

PUC Minas Virtual

R. Para encontrar o maior e o menor valor em um array de inteiros, você pode percorrer o array uma vez enquanto mantém o controle do valor máximo e mínimo encontrados até agora.

Exercício (2)

 Considerando o problema de encontrar o maior e menor valores em um array, veja os quatro códigos propostos e analisados no livro do Ziviani

PUC Minas Virtual

R. Visto.

Exercício (3)

• Preencha verdadeiro ou falso na tabela abaixo:

	⊖(1)	⊖ (lg n)	Θ (n)	⊖ (n.lg(n))	❸ (n²)	❸ (n³)	❸ (n ⁵)	❸ (n ²⁰)
f(n) = Ig(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

PUC Minas Virtual

R.

	⊖ (1)	❸ (lg n)	8 (n)	⊕(n.lg(n))	⊖ (n²)	⊕ (n³)	⊕ (n ⁵)	⊖ (n ²⁰)
f(n) = Ig(n)	×	V	×	×	×	×	×	×
$f(n) = n \cdot lg(n)$	×	×	×	√	×	×	×	×
f(n) = 5n + 1	×	×	\	×	×	×	×	×
$f(n) = 7n^5 - 3n^2$	×	×	×	×	×	×	\	×
$f(n) = 99n^3 - 1000n^2$	×	×	×	×	×	V	×	×
$f(n) = n^5 - 999999n^4$	×	×	×	×	×	×	V	×

Exercício (4)

Preencha verdadeiro ou falso na tabela abaixo:

	O(1)	O(lg n)	O(n)	O(n.lg(n))	O(n²)	O(n³)	O(n ⁵)	O(n ²⁰)
f(n) = Ig(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

R.

	O(1)	O(lg n)	O(n)	O(n.lg(n))	O(n²)	O(n³)	O(n ⁵)	O(n ²⁰)
f(n) = lg(n)	×	√	7	√	/		1	√
$f(n) = n \cdot lg(n)$	×	×	×	√	/	1	/	1
f(n) = 5n + 1	×	×	/	√	✓	S	/	✓
$f(n) = 7n^5 - 3n^2$	X	×	×	×	×	X	/	1
$f(n) = 99n^3 - 1000n^2$	X	×	×	×	×	V	√	✓
$f(n) = n^5 - 999999n^4$	×	X	*	×	X	×	/	1

Exercício (5)

Preencha verdadeiro ou falso na tabela abaixo:

	Ω(1)	Ω(lg n)	Ω(n)	Ω(n.lg(n))	$\Omega(n^2)$	$\Omega(n^3)$	Ω(n ⁵)	Ω(n ²⁰)
f(n) = Ig(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

PUC Minas Virtual

R.

	Ω(1)	Ω(lg n)	Ω(n)	Ω(n.lg(n))	$\Omega(n^2)$	$\Omega(n^3)$	Ω(n ⁵)	Ω(n ²⁰)
f(n) = Ig(n)	V	J	×	×	×	×	×	×
$f(n) = n \cdot lg(n)$	√	/	V	J	×	×	×	X
f(n) = 5n + 1	/	√	/	X	×	×	×	×
$f(n) = 7n^5 - 3n^2$	✓	✓	/	✓	✓	/	✓	×
$f(n) = 99n^3 - 1000n^2$	1	-	/	✓	/	√ .	×	*
$f(n) = n^5 - 99999n^4$	J	√	✓	✓.	\	√	√	×

Exercício (6)

- Dada a definição da notação Ω:
 - a) Mostre os valores de c e m tal que, para $n \ge m$, $|g(n)| \ge c \times |f(n)|$, provando que $3n^2 + 5n + 1 \in \Omega(n^2)$
 - b) Mostre os valores de c e m tal que, para $n \ge m$, $|g(n)| \ge c \times |f(n)|$, provando que $3n^2 + 5n + 1 \in \Omega(n)$
 - c) Prove que $3n^2 + 5n + 1$ <u>não é</u> $\Omega(n^3)$

PUC Minas Virtual

- a) $cxn^2 \le 3n^2+5n+1 -> (dividindo ambos os lados por <math>n^2) c \le 3+((5n+1)/n^2)$, ou simplificando $c \le 3(c=2, m=0)$
- b) $cxn \le 3n^2+5n+1 -> (dividindo ambos os lados por n) c <= 3n+5+(1/n), ou simplificando c > 0(c=2, m=0)$
- c) Não existe par (c, m) tal que para n ≥ m, |3n2 + 5n +1| <= c x |n³| seja verdadeira. Diminuindo o valor de c, apenas retardamos o momento em que a curva cúbica supera a quadrática

Exercício (7)

- Dada a definição da notação Θ:
 - a) Mostre um valor para c_1 , c_2 e m tal que, para $n \ge m$, $c_1 \times |f(n)| \le |g(n)| \le c_2 \times |f(n)|$, provando que $3n^2 + 5n + 1 \in \Theta(n^2)$
 - b) Prove que $3n^2 + 5n + 1$ não é $\Theta(n)$
 - c) Prove que $3n^2 + 5n + 1$ não é $\Theta(n^3)$

- a) $c1xn^2 \le 3n^2+5n+1 \le c2xn^2 -> (dividindo ambos os lados por n^2) c1 <= 3+((5n+1)/n^2) <= c2, ou simplificando c1<3 e c2>3$
- b) $c1xn \le 3n^2+5n+1 \le c2xn -> (dividindo ambos os lados por n) c1 <= 3n+5+(1/n) <= c2, é impossível ter um c2 maior que <math>3n+5+(1/n)$, portanto é falso

c) $c1xn^3 <= 3n^2+5n+1 <= c2xn^3 -> (dividindo ambos os lados por n^3) c1 <= ((3n^2+5n+1)/n^3)<= c2, é impossível ter um c1 menor que <math>(3n^2+5n+1)/n^3$, portanto é falso

Exercício (8)

 Suponha um sistema de monitoramento contendo os métodos telefone, luz, alarme, sensor e câmera, apresente a função e ordem de complexidade para o pior e melhor caso: (a) método alarme; (b) outros métodos.

```
void sistemaMonitoramento() {
    alarme(((telefone() == true && luz() == true)) ? 0 : 1);
    for (int i = 2; i < n; i++){
        if (sensor(i- 2) == true){
            alarme (i - 2);
        } else if (camera(i- 2) == true){
            alarme (i - 2 + n);
    }
}</pre>
```

PUC Minas Virtual

a. Pior caso: 1+(n-2) Melhor caso: 1

b. .

i. Telefone: 1

ii. Luz: 1

iii. Sensor: Melhor caso n-2, pior caso n-2iv. Câmera: Melhor caso 0, pior caso n-2

Exercício (9)

 Apresente um código, defina duas operações relevantes e apresente a função e a ordem de complexidade para as operações escolhidas no pior e melhor caso

Exercício (10)

Anteriormente, verificamos que quando desejamos pesquisar a existência de um elemento em um array de números reais é adequado executar uma pesquisa sequencial cujo custo é Θ(n). Nesse caso, o custo de ordenar o array e, em seguida, aplicar uma pesquisa binária é mais elevado, Θ(n x lg(n)) + Θ(lg(n)) = Θ(n x lg(n)). Agora, supondo que desejamos efetuar n pesquisas, responda qual das duas soluções é mais eficiente

PUC Minas Virtual

R. Usar apenas a pesquisa padrão, pois em quantidades muito altas, esta se torna mais eficiente.