

# INDR 450/550

Spring 2022

Lecture 24: Mini Case (Prescriptive Analytics)

May 18, 2022

Fikri Karaesmen

- Here's a short prescriptive analytics case study.
- Implementation by Bijan Bibak (many thanks)
- We'll consider the monthly sales of Minis in Turkey



- Data from 2016 to beginning of 2021.
- A few complications: no data recorded for 2018 and 2019, we'll skip those two years.

• We'll consider the monthly inventory ordering problem: set the target inventory each month, assuming  $c_u$ =10,  $c_o$  = 2.



- There's no major visible trend or seasonality (except for the month of December).
- Let us assume that the sample corresponds to i.i.d. Observations.
- We can then use Sample Average Approximation.
- We'll solve the corresponding stochastic optimization problem.
- As usual, we randomly separate the data to a training set and a test set.

We solve the below LP using Gurobi Solver.

$$\min_{Q} R(Q) = \frac{1}{n} \sum_{i=1}^{n} c_{u} (d_{i} - Q)^{+} + c_{o}(Q - d_{i})^{+}$$

$$\equiv \min_{Q} \frac{1}{n} \sum_{i=1}^{n} c_{u} z_{i}^{+} + c_{o} z_{i}^{-}$$
s.t.
$$z_{i}^{+} \geq d_{i} - Q \quad i = 1, 2, ..., n$$

$$z_{i}^{-} \geq Q - d_{i} \quad i = 1, 2, ..., n$$

$$z_{i}^{+}, z_{i}^{-} \geq 0 \quad i = 1, 2, ..., n$$

Results of Sample Average Approximation:

```
Empirical Risk Minimization (train) ------
Objective function is: 152.667
Optimal Order is: 165.0
Empirical Risk Minimization (test) -----
Average cost is: 194.727
```

- Next, we try a joint estimation and optimization formulation using the following predictors:
- t: to capture the effect of trend (if any)
- Dec: a binary variable for the month of December
- Lag 1, 2, 3: The change in sales at lags 1, 2 and 3.

|     | Α         | В     | С  | D   | Е    | F    | G    | Н |
|-----|-----------|-------|----|-----|------|------|------|---|
| 1   | Month     | Sales | t  | Dec | Lag1 | Lag2 | Lag3 |   |
| 2   | 1/1/2016  | 101   | 1  | 0   |      |      |      |   |
| 3   | 2/1/2016  | 74    | 2  | 0   |      |      |      |   |
| 4   | 3/1/2016  | 134   | 3  | 0   | -27  |      |      |   |
| 5   | 4/1/2016  | 166   | 4  | 0   | 60   | -27  |      |   |
| 6   | 5/1/2016  | 161   | 5  | 0   | 32   | 60   | -27  |   |
| 7   | 6/1/2016  | 143   | 6  | 0   | -5   | 32   | 60   |   |
| 8   | 7/1/2016  | 83    | 7  | 0   | -18  | -5   | 32   |   |
| 9   | 8/1/2016  | 123   | 8  | 0   | -60  | -18  | -5   |   |
| 10  | 9/1/2016  | 147   | 9  | 0   | 40   | -60  | -18  |   |
| 11  | 10/1/2016 | 152   | 10 | 0   | 24   | 40   | -60  |   |
| 12  | 11/1/2016 | 226   | 11 | 0   | 5    | 24   | 40   |   |
| 13  | 12/1/2016 | 178   | 12 | 1   | 74   | 5    | 24   |   |
| 14  | 1/1/2017  | 55    | 13 | 0   | -48  | 74   | 5    |   |
| 15  | 2/1/2017  | 81    | 14 | 0   | -123 | -48  | 74   |   |
| 4.0 | 2/4/2247  |       |    | _   |      |      |      |   |

8

• We then solve the following optimization problem:

$$\min_{Q(\cdot)} R(Q(\cdot), S_n) = \frac{1}{n} \sum_{i=1}^n c_u (d_i - Q(x_i))^+ + c_o (Q(x_i) - d_i)^+ 
\equiv \min_{Q = (q^1, q^2, \dots q^p)} \frac{1}{n} \sum_{i=1}^n c_u z_i^+ + c_o z_i^- 
s.t.$$

$$z_i^+ \geq d_i - \left(q^0 + \sum_{j=1}^p q^j x_i^j\right) \quad i = 1, 2, \dots, n$$

$$z_i^- \geq q^0 + \sum_{j=1}^p q^j x_i^j - d_i \quad i = 1, 2, \dots, n$$

$$z_i^+, z_i^- \geq 0 \quad i = 1, 2, \dots, n$$

$$Q(x) = Q((x^1, x^2, \dots, x^p)) = q^0 + \sum_{j=1}^p q^j x^j$$

Here are the results when we use all five predictors:

```
Feature Based Newsvendor (train) ------ Objective function is: 108.27052529494726

Average Order Quantity is: 160.84910722851487

Feature Based Newsvendor (test) ------

Average cost is: 344.65686264558195

Average Order Quantity is: 131.0496792694867
```

$$Q(\mathbf{x}) = Q((x^1, x^2, \dots, x^p)) = q^0 + \sum_{j=1}^p q^j x^j$$

 $q^0$ : 195.319,  $q^1$ : -1.562,  $q^2$ : -14.894,  $q^3$ : 0.245  $q^4$ : 0.574,  $q^5$ : 0.535

It appears that there is significant overfitting here!

Here are the results when we use only the dummy for December

```
Feature Based Newsvendor (train) ------
Objective function is: 149.273
Average Order is: 162.030
Feature Based Newsvendor (test) ------
Average cost is: 173.273
Average Order is: 164.09
        Q(x) = Q(x^1) = q^0 + q^1 x^1
    q^0: 161, q^1: 17,
```

Very simple ordering rule: order 178 in December and 161 in all other months!