PRACTICE PROBLEMS FOR FINAL MATH H54

- (1) Let A and B be square matrices. Suppose that A + B is invertible. Prove that $A(A+B)^{-1}B = B(A+B)^{-1}A$.
- (2) Let A, B, C be rectangle matrices such that the product ABC is defined. Prove that

$$\operatorname{rank}(BC) - \operatorname{rank}(ABC) \le \operatorname{rank}(B) - \operatorname{rank}(AB).$$

(Hint: Consider the restrictions of T_A to the images Im(B) and Im(BC).)

- (3) Let A be an $n \times n$ matrix. Consider the linear transformation $T \colon \operatorname{Mat}_{n \times n}(\mathbb{R}) \to \operatorname{Mat}_{n \times n}(\mathbb{R})$ on the n^2 -dimensional vector space $\operatorname{Mat}_{n \times n}(\mathbb{R})$ defined by T(B) = AB. Express $\det(T)$ in terms of $\det(A)$.
- (4) Consider the function $f: \operatorname{Mat}_{n \times n}(\mathbb{R}) \to \mathbb{R}$ given by $f(A) = \operatorname{tr}(A^2)$.
 - (a) Prove that f is a quadratic form on the vector space $\operatorname{Mat}_{n\times n}(\mathbb{R})\cong\mathbb{R}^{n^2}$.
 - (b) Find the signature of f.

Signature of a quadratic form: Let Q be any quadratic form on \mathbb{R}^k . Recall from Lecture 18 that there exists a basis $\{\vec{v}_1,\ldots,\vec{v}_k\}$ of \mathbb{R}^k and real numbers $\lambda_1,\ldots,\lambda_k\in\mathbb{R}$ such that for any $\vec{x}\in\mathbb{R}^k$ with $\vec{x}=x_1\vec{v}_1+\cdots+x_k\vec{v}_k$, we have

$$Q(\vec{x}) = \lambda_1 x_1^2 + \dots + \lambda_k x_k^2.$$

The *signature* of Q is a triple of non-negative integers (n_+, n_0, n_-) , where n_0 is the number of zeros in $\{\lambda_1, \ldots, \lambda_k\}$, and n_+ (resp. n_-) is the number of positive (resp. negative) numbers in $\{\lambda_1, \ldots, \lambda_k\}$. In particular, Q is positive (resp. negative) definite if and only if its signature is (k, 0, 0) (resp. (0, 0, k)).

- (5) Let A be a square matrix with columns given by unit vectors. Prove that $|\det(A)| \le 1$. When does the equality hold?
- (6) Let V be a finite-dimensional vector space, and let $T\colon V\to V$ be a diagonalizable linear transformation. Suppose $W\subseteq V$ is a subspace satisfying $T(W)\subseteq W$. Prove that the restriction $T|_W\colon W\to W$ also is diagonalizable.
- (7) Consider a sequence of linear transformations between finite-dimensional vector spaces

$$\{0\} \xrightarrow{T_0} V_1 \xrightarrow{T_1} V_2 \xrightarrow{T_2} \cdots \xrightarrow{T_{n-2}} V_{n-1} \xrightarrow{T_{n-1}} V_n \xrightarrow{T_n} \{0\}$$

Assume that $Im(T_{i-1}) = Ker(T_i)$ for all $1 \le i \le n$. What is the value of

$$\dim(V_1) - \dim(V_2) + \dim(V_3) - \dots + (-1)^n \dim(V_n)$$
?

(8) Find all possible 5×5 real symmetric matrices A satisfying

$$A^3 - 2A = 4\mathbb{I}_5.$$

- (9) Let $\operatorname{Mat}_{n\times n}(\mathbb{C})$ denote the n^2 -dimensional complex vector space consisting of $n\times n$ complex matrices. Consider the linear transformation $f: \operatorname{Mat}_{n\times n}(\mathbb{C}) \to \operatorname{Mat}_{n\times n}(\mathbb{C})$ given by $f(A) = A^T$.
 - (a) Find all eigenvalues of f.
 - (b) Prove or disprove: f is diagonalizable.
- (10) Let A be a real $n \times n$ matrix. Prove that the following two statements are equivalent:
 - (a) $A^2 = A$;
 - (b) $\operatorname{rank}(A) + \operatorname{rank}(\mathbb{I}_n A) = n$.
- (11) Let $\{\vec{v}_1, \ldots, \vec{v}_k\}$ be an orthonormal set in a finite-dimensional inner product space V. Suppose that for any $\vec{v} \in V$ we have

$$||\vec{v}||^2 = \langle \vec{v}_1, \vec{v} \rangle^2 + \dots + \langle \vec{v}_k, \vec{v} \rangle^2.$$

Prove that $\{\vec{v}_1, \ldots, \vec{v}_k\}$ is a basis of V.

- (12) Let W_1 and W_2 be subspaces of a finite-dimensional inner product space V.
 - (a) Prove that $W_1^{\perp} \cap W_2^{\perp} = (W_1 + W_2)^{\perp}$.
 - (b) Prove that $\dim(W_1) \dim(W_1 \cap W_2) = \dim(W_2^{\perp}) \dim(W_1^{\perp} \cap W_2^{\perp})$.
- (13) Let A be an $m \times n$ matrix and B be an $n \times m$ matrix. Suppose that $\mathbb{I}_m AB$ is invertible. Prove that $\mathbb{I}_n BA$ also is invertible.
- (14) Let W_1 and W_2 be subspaces of a vectors space V. Consider the union

$$W_1 \cup W_2 := \{x \in V : x \in W_1 \text{ or } x \in W_2\}.$$

Prove that if $W_1 \cup W_2$ is a subspace of V, then we must have $W_1 \subseteq W_2$ or $W_2 \subset W_1$.

- (15) Let A and B be two square matrices such that $AB = A^2 + A + \mathbb{I}$. Prove that AB = BA.
- (16) Let $T\colon V\to V$ be a linear transformation on a (possibly infinite-dimensional) vector space V. Suppose that every subspace of V is invariant under V, i.e. $T(W)\subseteq W$ for any subspace $W\subseteq V$. Prove that T is a scalar multiple of the identity transformation.