Lasry-Lions regularization and a Lemma of Ilmanen

Patrick Bernard

December 2009

Let H be a Hilbert space. We define the following inf (sup) convolution operators acting on bounded functions $u: H \longrightarrow \mathbb{R}$:

$$T_t u(x) := \inf_{y} \left(u(y) + \frac{1}{t} ||y - x||^2 \right)$$

and

$$\check{T}_t u(x) := \sup_{y} \left(u(y) - \frac{1}{t} ||y - x||^2 \right).$$

We have the relation

$$T_t(-u) = -\check{T}_t(u).$$

Recall that these operators form semi-groups, in the sense that

$$T_t \circ T_s = T_{t+s}$$
 and $\check{T}_t \circ \check{T}_s = \check{T}_{t+s}$

for all $t \ge 0$ and $s \ge 0$, as can be checked by direct calculation. Note also that

$$\inf u \leqslant T_t u(x) \leqslant u(x) \leqslant \check{T}_t u(x) \leqslant \sup u$$

for each $t \ge 0$ and each $x \in H$. A function $u: H \longrightarrow \mathbb{R}$ is called k-semi-concave, k > 0, if the function $x \longrightarrow u(x) - \|x\|^2/k$ is concave. The function u is called k-semi-convex if -u is k-semi-concave. A bounded function u is t-semi-concave if and only if it belongs to the image of the operator T_t , this follows from Lemma 1 and Lemma 3 below. A function is called semi-concave if it is k-semi-concave for some k > 0. A function u is said $C^{1,1}$ if it is Frechet differentiable and if the gradient of u is Lipschitz. Note that a continuous function is $C^{1,1}$ if and only if it is semi-concave and semi-convex, see Lemma 6. Let us recall two important results in that language:

Theorem 1. (Lasry-Lions, [6]) Let u be a bounded function. For 0 < s < t, the function $\check{T}_s \circ T_t u$ is $C^{1,1}$ and, if u is uniformly continuous, then it converges uniformly to u when $t \longrightarrow 0$.

Theorem 2. (Ilmanen, [5]) Let $u \geqslant v$ be two bounded functions on H such that u and -v are semi-concave. Then there exists a $C^{1,1}$ function w such that $u \geqslant w \geqslant v$.

Our goal in the present paper is to "generalize" simultaneously both of these results as follows:

Theorem 3. The operator $R_t := \check{T}_t \circ T_{2t} \circ \check{T}_t$ has the following properties:

- Regularization: $R_t f$ is $C^{1,1}$ for all bounded f and all t > 0.
- Approximation: If f is uniformly continuous, then $R_t f$ converges uniformly to f as $t \longrightarrow 0$.

• Pinching: If $u \geqslant v$ are two locally bounded functions such that u and -v are k-semi-concave, then the inequality $u \geqslant R_t f \geqslant v$ holds for each $t \leqslant k$ if $u \geqslant f \geqslant v$.

Theorem 3 does not, properly speaking, generalize Theorem 1. However, it offers a new (although similar) answer to the same problem: approximating uniformly continuous functions on Hilbert spaces by $C^{1,1}$ functions with a simple explicit formula.

Because of its symmetric form, the regularizing operator R_t enjoys some nicer properties than the Lasry-Lions operators. For example, if f is $C^{1,1}$, then it follows from the pinching property that $R_t f = f$ for t small enough.

Theorem 2, can be proved using Theorem 3 by taking $w = R_t u$, for t small enough. Note, in view of Lemma 3 bellow, that $R_t u = \check{T}_t \circ T_t u$ when t is small enough.

Theorem 3 can be somehow extended to the case of finite dimensional open sets or manifolds via partition of unity, at the price of loosing the simplicity of explicit expressions. Let M be a paracompact manifold of dimension n, equipped once and for all with an atlas $(\phi_i, i \in \Im)$ composed of charts $\phi_i : B^n \longrightarrow M$, where B^n is the open unit ball of radius one centered at the origin in \mathbb{R}^n . We assume in addition that the image $\phi_i(B^n)$ is a relatively compact open set. Let us fix, once and for all, a partition of the unity g_i subordinated to the open covering $(\phi_i(B^n), i \in \Im)$. It means that the function g_i is non-negative, with support inside $\phi_i(B^n)$, such that $\sum_i g_i = 1$, where the sum is locally finite. Let us define the following formal operator

$$G_t(u) := \sum_i \left[R_{ta_i} \left((g_i u) \circ \phi_i \right) \right] \circ \phi_i^{-1},$$

where $a_i, i \in \Im$ are positive real numbers. We say that a function $u : M \longrightarrow \mathbb{R}$ is locally semi-concave if, for each $i \in \Im$, there exists a constant b_i such that the function $u \circ \phi_i - \|.\|^2/b_i$ is concave on B^n .

Theorem 4. Let $u \ge v$ be two continuous functions on M such that u and -v are locally semiconcave. Then, the real numbers a_i can be chosen such that, for each $t \in]0,1]$ and each function f satisfying $u \ge f \ge v$, we have:

- The sum in the definition of $G_t(f)$ is locally finite, so that the function $G_t(f)$ is well-defined.
- The function $G_t f$ is locally $C^{1,1}$.
- If f is continuous, then $G_t(f)$ converges locally uniformly to f as $t \longrightarrow 0$.
- $u \geqslant G_t f \geqslant v$.

Notes and Acknowledgements

Theorem 2 appears in Ilmanen's paper [5] as Lemma 4G. Several proofs are sketch there but none is detailed. The proof we detail here follows lines similar to one of the sketches of Ilmanen. This statement also has a more geometric counterpart, Lemma 4E in [5]. A detailed proof of this geometric version is given in [2], Appendix. My attention was attracted to these statements and their relations with recent progresses on sub-solutions of the Hamilton-Jacobi equation (see [4, 1, 7]) by Pierre Cardialaguet, Albert Fathi and Maxime Zavidovique. These authors also recently wrote a detailed proof of Theorem 2, see [3]. This paper also proves how the geometric version follows from Theorem 2. There are many similarities between the tools used in the present paper and those used in [1]. Moreover, Maxime Zavidovique observed in [7] that the existence of $C^{1,1}$ subsolutions of the Hamilton-Jacobi equation in the discrete case can be deduced from Theorem 2. However, is seems that the main result of [1] (the existence of $C^{1,1}$ subsolutions in the continuous case) can't be deduced easily from Theorem 2. Neither can Theorem 2 be deduced from it.

1 The operators T_t and \check{T}_t on Hilbert spaces

The proofs of the theorems follow from standard properties of the operators T_t and \check{T}_t that we now recall in details.

Lemma 1. For each bounded function u, the function $T_t u$ is t-semi-concave and the function $\check{T}_t u$ is t-semi-convex. Moreover, if u is k-semi-concave, then for each t < k the function $\check{T}_t u$ is (k-t)-semi-convex. Similarly, if u is k-semi-convex, then for each t < k the function $T_t u$ is (k-t)-semi-convex.

PROOF. We shall prove the statements concerning T_t . We have

$$T_t u(x) - \|x\|^2 / t = \inf_{y} \left(u(y) + \|y - x\|^2 / t - \|x\|^2 / t \right) = \inf_{y} \left(u(y) + \|y\|^2 / t - 2x \cdot y / t \right),$$

this function is convex as an infimum of linear functions. On the other hand, we have

$$T_t u(x) + ||x||^2 / l = \inf_{y} (u(y) + ||y - x||^2 / t + ||x||^2 / l).$$

Setting $f(x,y) := u(y) + ||y-x||^2/t + ||x||^2/l$, the function $\inf_y f(x,y)$ is a convex function of x if f is a convex function of f is a convex function of f is true if f is f is true if f is f in f is true if f is a convex function of f in f is true if f is f in f in

$$f(x,y) = u(y) + \|y - x\|^2 / t + \|x\|^2 / l = (u(y) + \|y\|^2 / k) + \|\sqrt{\frac{l}{kt}}y - \sqrt{\frac{k}{lt}}x\|^2.$$

Given a uniformly continuous function $u: H \longrightarrow \mathbb{R}$, we define its modulus of continuity $\rho(r): [0,\infty) \longrightarrow [0,\infty)$ by the expression $\rho(r) = \sup_{x,e} u(x+re) - u(x)$, where the supremum is taken on all $x \in H$ and all e in the unit ball of H. The function ρ is non-decreasing, it satisfies $\rho(r+r') \leq \rho(r) + \rho(r')$, and it converges to zero in zero (this last fact is equivalent to the uniform continuity of u). We say that a function $\rho: [0,\infty) \longrightarrow [0,\infty)$ is a modulus of continuity if it satisfies these properties. Given a modulus of continuity $\rho(r)$, we say that a function u is ρ -continuous if $|u(y) - u(x)| \leq \rho(||y - x||)$ for all x and y in H.

Lemma 2. If u is uniformly continuous, then the functions $T_t u$ and $\check{T}_t u$ converge uniformly to u when $t \longrightarrow 0$. Moreover, given a modulus of continuity ρ , there exists a non-decreasing function $\epsilon(t): [0,\infty) \longrightarrow [0,\infty)$ satisfying $\lim_{t\longrightarrow 0} \epsilon(t) = 0$ and such that, for each ρ -continuous bounded function u, we have:

- $T_t u$ and $\check{T}_t u$ are ρ -continuous for each $t \geqslant 0$.
- $u \epsilon(t) \leqslant T_t u(x) \leqslant u$ and $u \leqslant \check{T}_t u \leqslant u + \epsilon(t)$ for each $t \geqslant 0$.

PROOF. Let us fix $y \in H$, and set v(x) = u(x+y). We have $u(x) - \rho(|y||) \le v(x) \le u(x) + \rho(|y||)$. Applying the operator T_t gives $T_t u(x) - \rho(y) \le T_t v(x) \le T_t u(x) + \rho(y)$. On the other hand, we have

$$T_t v(x) = \inf_z \left(u(z+y) + \|z-x\|^2 / t \right) = \inf_z \left(u(z) + \|z-(x+y)\|^2 / t \right) = T_t u(x+y),$$

so that

$$T_t u(x) - \rho(||y||) \le T_t u(x+y) \le T_t u(x) + \rho(||y||).$$

We have proved that $T_t u$ is ρ continuous if u is, the proof for $\dot{T}_t u$ is the same.

In order to study the convergence, let us set $\epsilon(t) = \sup_{r>0} (\rho(r) - r^2/t)$. We have

$$\epsilon(t) = \sup_{r>0} \left(\rho(r\sqrt{t}) - r^2 \right) \leqslant \sup_{r>0} \left((r+1)\rho(\sqrt{t}) - r^2 \right) = \rho(\sqrt{t}) + \rho^2(\sqrt{t})/4.$$

We conclude that $\lim_{t\to 0} \epsilon(t) = 0$. We now come back to the operator T_t , and observe that

$$u(y) - \|y - x\|^2 / t \ge u(x) - \rho(\|y - x\|) + \|y - x\|^2 / t \ge u(x) - \epsilon(t)$$

for each x and y, so that

$$u - \epsilon(t) \leqslant T_t u \leqslant u$$
.

Lemma 3. For each locally bounded function u, we have $\check{T}_t \circ T_t(u) \leq u$ and the equality $\check{T}_t \circ T_t(u) = u$ holds if and only if u is t-semi-convex. Similarly, given a locally bounded function v, we have $T_t \circ \check{T}_t(v) \geq v$, with equality if and only if v is t-semi-convex.

PROOF. Let us write explicitly

$$\check{T}_t \circ T_t u(x) = \sup_{y} \inf_{z} \left(u(z) + ||z - y||^2 / t - ||y - x||^2 / t \right).$$

Taking z = x, we obtain the estimate $\check{T}_t \circ T_t u(x) \leqslant \sup_{y} u(z) = u(z)$. Let us now write

$$\check{T}_t \circ T_t u(x) + ||x||^2 / t = \sup_y \inf_z \left(u(z) + ||z||^2 / t + (2y/t) \cdot (x-z) \right)$$

which by an obvious change of variable leads to

$$\check{T}_t \circ T_t u(x) + ||x||^2 / t = \sup_u \inf_z (u(z) + ||z||^2 / t + y \cdot (x - z)).$$

We recognize here that the function $\check{T}_t \circ T_t u(x) + \|x\|^2 / t$ is the Legendre bidual of the function $u(x) + \|x\|^2 / t$. It is well-know that a locally bounded function is equal to its Legendre bidual if and only if it is convex.

Lemma 4. If u is locally bounded and semi-concave, then $\check{T}_t \circ T_t u$ is $C^{1,1}$ for each t > 0.

PROOF. Let us assume that u is k-semi-concave. Then $u = T_k \circ \check{T}_k u$, by Lemma 3. We conclude that $\check{T}_t \circ T_t u = \check{T}_t \circ T_{t+k} f$, with $f = \check{T}_k u$. By Lemma 1, the function $T_{t+k} f$ is (t+k)-semi-concave. Then, the function $\check{T}_t T_{t+k} f$ is k-semi-concave. Since it is also t-semi-convex, it is $C^{1,1}$.

2 Proof of the main results

PROOF OF THEOREM 3: For each function f and each t > 0, the function $\check{T}_t \circ T_{2t} \circ \check{T}_t f$ is $C^{1,1}$. This is a consequence of Lemma 4 since

$$\check{T}_t \circ T_{2t} \circ \check{T}_t f = \check{T}_t \circ T_t (T_t \circ \check{T}_t f)$$

and since the function $T_t \circ \check{T}_t f$ is semi-concave.

Assume now that both u and -v are k-semi-concave. We claim that

$$u \geqslant f \geqslant v \Longrightarrow u \geqslant T_t \circ \check{T}_t f \geqslant v \text{ and } u \geqslant \check{T}_t \circ T_t f \geqslant v$$

for $t \leq 1/k$. This claim implies that $u \geq \check{T}_t \circ T_{2t} \circ \check{T}_t f \geq v$ when $u \geq f \geq v$. Let us now prove the claim concerning $\check{T}_t \circ T_t$, the other part being similar. Since v is k-semi-convex, we have $\check{T}_t \circ T_t v = v$ for $t \leq k$, by Lemma 3. Then,

$$u \geqslant f \geqslant \check{T}_t \circ T_t f \geqslant \check{T}_t \circ T_t v = v$$

where the second inequality follows from Lemma 3, and the third from the obvious fact that the operators T_t and \check{T}_t are order-preserving.

The approximation property follows directly from Lemma 2.

PROOF OF THEOREM 4: Let a_i be chosen such that the functions $(g_i u) \circ \phi_i$ and $-(g_i v) \circ \phi_i$ are a_i -semi-concave on \mathbb{R}^n . The existence of real numbers a_i with this property follows from Lemma 5 below. Given $u \ge f \ge v$, we can apply Theorem 3 for each i to the functions

$$(g_i u) \circ \phi_i \geqslant (g_i f) \circ \phi_i \geqslant (g_i v) \circ \phi_i$$

extended by zero outside of B^n . We conclude that, for $t \in]0,1]$, the function $R_{ta_i}((g_i f) \circ \phi_i)$ is $C^{1,1}$ and satisfies

$$(g_i u) \circ \phi_i \geqslant R_{ta_i}((g_i f) \circ \phi_i) \geqslant (g_i v) \circ \phi_i.$$

As a consequence, the function

$$[R_{ta_i}((g_i f) \circ \phi_i)] \circ \phi_i^{-1}$$

is null outside of the support of g_i , and therefore the sum in the definition of $G_t f$ is locally finite. The function $G_t(f)$ is thus locally a finite sum of $C^{1,1}$ functions hence it is locally $C^{1,1}$. Moreover, we have

$$u = \sum_{i} g_i u \geqslant G_t(f) \geqslant \sum_{i} g_i v = v.$$

We have used:

Lemma 5. Let $u: B^n \to \mathbb{R}$ be a bounded function such that $u - \|.\|^2/a$ is concave, for some a > 0. For each compactly supported non-negative C^2 function $g: B^n \to \mathbb{R}$, the product gu (extended by zero outside of B^n) is semi-concave on \mathbb{R}^n .

PROOF. Since u is bounded, we can assume that $u \ge 0$ on B^n . Let $K \subset B^n$ be a compact subset of the open ball B^n which contains the support of g in its interior. Since the function $u - \|.\|^2/a$ is concave on B_1 it admits super-differentials at each point. As a consequence, for each $x \in B^n$, there exists a linear form l_x such that

$$0 \le u(y) \le u(x) + l_x \cdot (y - x) + ||y - x||^2 / a$$

for each $y \in B^1$. Moreover, the linear form l_x is bounded independently of $x \in K$. We also have

$$0 \le g(y) \le g(x) + dg_x \cdot (y - x) + C||y - x||^2$$

for some C > 0, for all x, y in \mathbb{R}^n . Taking the product, we get, for $x \in K$ and $y \in B^n$,

$$u(y)g(y) \le u(x)g(x) + (g(x)l_x + u(x)dg_x) \cdot (y - x) + C||y - x||^2 + C||y - x||^3 + C||y - x||^4$$

where C > 0 is a constant independent of $x \in K$ and $y \in B^n$, which may change from line to line. As a consequence, setting $L_x = g(x)l_x + u(x)dg_x$, we obtain the inequality

$$(gu)(y) \le (gu)(x) + L_x \cdot (y - x) + C||y - x||^2$$
 (L)

for each $x \in K$ and $y \in B^n$. If we set $L_x = 0$ for $x \in \mathbb{R}^n - K$, the relation (L) holds for each $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$. For $x \in K$ and $y \in B^n$, we have already proved it. Since the linear forms L_x , $x \in K$ are uniformly bounded, we can assume that $L_x \cdot (y-x) + C||y-x||^2 \ge 0$ for all $x \in K$ and $y \in \mathbb{R}^n - B^n$ by taking C large enough. Then, (L) holds for all $x \in K$ and $y \in \mathbb{R}^n$. For $x \in \mathbb{R}^n - K$ and y outside of the support g, the relation (L) holds in an obvious way, because gu(x) = gu(y) = 0, and $L_x = 0$. For $x \in \mathbb{R}^n - K$ and y in the support of g, the relation holds provided that $C \ge \max(gu)/d^2$, where d is the distance between the complement of K and the support of g. This is a positive number since K is a compact set containing the support of g in its interior. We conclude that the function (gu) is semi-concave on \mathbb{R}^n .

For completeness, we also prove, following Fathi:

Lemma 6. Let u be a continuous function which is both k-semi-concave and k-semi-convex. Then the function u is $C^{1,1}$, and 6/k is a Lipschitz constant for the gradient of u.

PROOF. Let u be a continuous function which is both k-semi-concave and k-semi-convex. Then, for each $x \in H$, there exists a unique $l_x \in H$ such that

$$|u(x+y) - u(x) - l_x \cdot y| \le ||y||^2/k.$$

We conclude that l_x is the gradient of u at x, and we have to prove that the map $x \mapsto l_x$ is Lipschitz. We have, for eah x, y and z in H:

$$l_x \cdot (y+z) - \|y+z\|^2/k \leqslant u(x+y+z) - u(x) \leqslant l_x \cdot (y+z) + \|y+z\|^2/k$$

$$l_{(x+y)} \cdot (-y) - \|y\|^2/k \leqslant u(x) - u(x+y) \leqslant l_{(x+y)} \cdot (-y) + \|y\|^2/k$$

$$l_{(x+y)} \cdot (-z) - \|z\|^2/k \leqslant u(x+y) - u(x+y+z) \leqslant l_{(x+y)} \cdot (-z) + \|z\|^2/k.$$

Taking the sum, we obtain

$$\left| (l_{x+y} - l_x) \cdot (y+z) \right| \le \|y+z\|^2/k + \|y\|^2/k + \|z\|^2/k.$$

By a change of variables, we get

$$|(l_{x+y} - l_x) \cdot (z)| \le ||z||^2/k + ||y||^2/k + ||z - y||^2/k.$$

Taking ||z|| = ||y||, we obtain

$$|(l_{x+y} - l_x) \cdot (z)| \le 6||z|| ||y||/k$$

for each z such that ||z|| = ||y||, we conclude that

$$||l_{x+y} - l_x|| \le 6||y||/k.$$

References

- [1] P. Bernard, Existence of $C^{1,1}$ critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds, Ann. Sci. E. N. S. (4) **40** (2007), No. 3, 445-452.
- [2] P. Cardaliaguet, Front Propagation Problems with Nonlocal Terms 2, J. Math. An. Appl. **260** (2001), 572-601.

- [3] P. Cardaliaguet, A. Fathi, M. Zavidovique, Insertion of $\mathbb{C}^{1,1}$ functions and Illmanen's Lemma.
- [4] A. Fathi, A. Siconolfi : Existence of C^1 critical subsolutions of the Hamilton-Jacobi equation. Invent. Math. 155 (2004), no. 2, 363–388.
- [5] T. Ilmanen: The Level-Set Flow on a Manifold, Proc. Symposia Pure Math. 54 (1993) no. 1, 193–204.
- [6] J. M. Lasry and P. L. Lions: A Remark on Regularization in Hilbert Spaces, *Israel Math. J.* **55** (1996) no. 3, 257–266.
- [7] M. Zavidovique, Existence of $C^{1,1}$ critical subsolutions in discrete weak KAM theory.