Current and coming OSKI features

Mark Hoemmen mhoemmen@cs.berkeley.edu

University of California Berkeley

November 4, 2009

Our goals

- 1. Introduce OSKI sparse matrix library
- 2. Show both current and proposed features
- 3. Solicit advice from users:
 - Help us prioritize our work
 - Help us choose interfaces that balance simplicity and cost
 - ► Teach us about new kernels and optimization possibilities
- 4. Present current sparse kernels and algorithms research

Who am 1?

- I work on communication-avoiding algorithms for sparse and dense linear algebra
- ▶ I understand OSKI algorithms and optimizations, but
- ▶ <u>Not</u> (yet) an OSKI developer
 - Will likely be more involved in the future
 - ▶ I'm here representing OSKI
- Work funded by
 - DOE, NSF, ACM/IEEE, Intel, Microsoft

What is OSKI?

Figure: Oski the Bear (UC Berkeley mascot)

What is OSKI?

- Optimized Sparse Kernel Interface
- "BLAS" for sparse matrix, dense vector ops
- Autotuning C library
 - Automatically picks fast implementation
 - ▶ Based on build-time and runtime search
 - Accepts, but does not require, <u>user hints</u>
- Targets cache-based superscalar platforms
 - Shared-memory parallel coming soon!
 - Ongoing research into other platforms

OSKI collaborators

- Project leaders
 - James Demmel, Kathy Yelick
- Current developers
 - Ben Carpenter, Erin Carson, Armando Fox, Rich Vuduc
- Contributed OSKI code
 - ▶ Jen Hsu, Shoaib Kamil, Ben Lee, Rajesh Nishtala
- Optimizations and algorithms research
 - Various members of UC Berkeley Benchmarking and Optimization (BeBOP) group
 - ▶ For details: bebop.cs.berkeley.edu

Kernels currently supported

- ▶ What's a kernel?
 - ▶ NOT: integral equations, operating systems
 - Computational building block that...
 - exposes potential optimizations
- "Classic" kernels
 - Sparse matrix-vector multiply (SpMV)
 - Sparse triangular solve (SpTS)
- "Exotic" kernels that exploit locality
 - ▶ Matrix and its transpose: $(x, y) \mapsto (Ax, A^T y)$
 - ▶ Matrix <u>times</u> its transpose: $x \mapsto (Ax, A^TAx)$
 - ▶ Power of a matrix: $x \mapsto A^k x$, $k \in \{2, 3, ...\}$

How much faster?

- Sequential:
 - ► SpMV: 4×
 - ► SpTS: 1.8×
 - $x \mapsto A^T A x$: 4.2×
- ► Parallel:
 - ► SpMV: 11.3× on 8 cores
- How? Autotuning
 - 1. Humans develop algorithms and optimizations
 - 2. Humans write code generation scripts (in any scripting language)
 - 3. Scripts generate code variants in target language (C)
 - 4. Offline + runtime search (over code variants and parameters)

How does OSKI work?

- Offline phase (library build time)
 - 1. Human-written scripts generate code variants
 - 2. Benchmarks profile hardware
- Online phase (application run time)
 - 1. Accept sparse matrix in standard format
 - 2. User can give tuning hints
 - 3. Library profiles kernels calls to gauge workload
 - 4. Tune only by explicit user request
 - 5. User can save tuning strategy, reuse later

Why explicit tuning?

- Tuning expensive
 - Involves copying matrix into new data structure
 - ▶ The data structure is the tuning
 - ▶ 5–40 SpMVs
- OSKI will NOT tune unless it thinks it pays
 - Users can give workload hints
 - ► "Will call SpMV 500 ×"
 - OSKI counts # kernel calls to guess workload

Three proposed features

Three proposed features

- ▶ Many features coming; these three first
- Two proposed by Mike Heroux:
 - Adding nonzeros
 - Graph-only tuning
- One benchmarked and ready to integrate:
 - Shared-memory parallel SpMV
- Give us interface feedback!

Feature 1: Adding nonzeros to an existing matrix

- Many applications
 - Unstructured mesh changes
 - Dynamic graph algorithms
- Not efficiently supported by many sparse data structures
 - May require full copy for <u>one nonzero</u>
- OSKI does not currently support adding nonzeros
- We're exploring ways to change the interface that
 - Minimize costs (memory and time)
 - Are more natural to users

Adding nonzeros = adding sparse matrices

- ► Adding nonzeros same as adding sparse matrices
 - Old nonzeros: matrix A₁
 - ► New nonzero(s): matrix A₂
- ▶ Merge operation:
 - \blacktriangleright $(A_1, A_2) \mapsto A$ where $A = A_1 + A_2$
 - ▶ Result A: standard sparse matrix data structure
 - ▶ Tuning of A_1 , A_2 lost

Two possible interfaces for adding nonzeros

- Merge only model
 - Adding a nonzero requires merge
 - Merge may lose tuning info
- Sum of matrices model
 - ► Treat matrix as (implicit) sum of k matrices
 - ► SpMV: $Ax = A_1x + A_2x + \cdots + A_kx$
 - ightharpoonup Each A_j retains its tuning
 - Option to merge
 - Only per user request for now
 - Automatic tuning decision later

Advantages and disadvantages of Models 1 and 2

- Merge only model
 - Less work for us
 - Narrower API (OSKI is in C)
 - Slower if frequent, small structure changes
- Sum of matrices model
 - ► Implementation vehicle for many optimizations
 - Naturally supports element assembly (FEM)
 - ► More work (may be overkill) & wider API
 - ► Hinders $A^T A x$ and $A^k x$ (2^k cross terms)

Why split into sum and tune separately?

- Example: UBCSR (Rich Vuduc 2003 PhD thesis)
 - Sum of register-blocked matrices
 - Different register block dimensions for each term
 - ► Speedup: 2.1× (Itanium 2)
 - ► Almost always saves memory (> 50%)
- Linear programming and other optimization problems
 - Dense rows / columns common
 - Typical preprocessing step:
 - 1. Extract dense structures
 - 2. Express matrix as sparse matrix plus outer product

Feature 2: Graph-only tuning

- Tuning a matrix using only its graph structure
 - ▶ No need to store nonzeros sometimes (e.g., Laplacian graph)
 - Multiple matrices with same structure but different nonzeros
 - Avoid copying nonzeros (not needed for tuning)
- Partly supported by OSKI already
 - Can save and restore tuning transformations
 - ► Tune on a matrix with "dummy" nonzero values
 - Recycle tuning for matrices with same structure
- Mainly software engineering
 - OSKI only tunes using matrix structure anyway
 - But we haven't explored no-explicit-nonzeros case

Feature 3: shared-memory parallel backend

- SpMV only, benchmark-quality prototype
- Ankit Jain, UC Berkeley CS Master's Thesis, 2008
- Excellent speedups over optimized serial:
 - ▶ 9x on AMD Santa Rosa (2 socket × 2 core)
 - ▶ 11.3x on AMD Barcelona (2 socket \times 4 core)
 - ▶ 7.2x on Intel Clovertown (2 socket \times 4 core)
- More speedup than # cores, due to
 - Search over 2-D block layouts
 - NUMA optimizations

Shared-memory parallel interface

- Ankit made new interface for parallel version
 - Looks sequential to users
 - ► Pool of fixed # of Pthreads underneath
- Question: is that the interface you want?
 - Sequential front-end, parallel back-end? or
 - Single Program Multiple Data (SMPD) MPI-style?
 - Pthreads, OpenMP, TBB, ...?

Problem: nested parallel library calls

- What if user library makes parallel calls to OSKI?
 - Special case of nested parallelism ("parallel calls parallel")
- Nested parallelism example: sparse QR
 - ► Cilk or Intel TBB for parallelism in elimination tree
 - Each thread may then call (multithreaded) BLAS
- At best: libraries fight for cores
 - ► Each library expects to own all cores
 - Some libraries demand exclusive ownership
- At worst: horrible bugs

Nested parallelism is ongoing research

- ▶ UC Berkeley ParLab project: Lithe
- ► Leave user code alone, change system libraries
 - Any sequential-looking interface can be parallel inside
 - Use OpenMP, TBB, Pthreads, ...as before...
 - but each of these needs new Lithe-based scheduler.
- ▶ Proof of concept: sparse QR calling BLAS
- Invasive to system libraries, work in progress

Questions on shared-memory parallel version

- Users want parallel now, before Lithe
- ▶ We will likely support some non-Lithe parallel version
- Questions:
 - Will you call OSKI in a parallel context?
 - Do your systems support Pthreads, OpenMP, . . . ?
 - Will you want to restrict # cores used by OSKI?
 - Our NUMA optimizations target Linux other platforms?

Higher-level languages (HLLs) in OSKI

Higher-level languages (HLLs) in OSKI

- ► Why we want HLLs inside OSKI
- Why users might want HLL interfaces
- Audience feedback

Why OSKI developers want HLLs inside OSKI

- Already there!
 - Embedded domain-specific language
 - Algebra for matrix data structure transformations
 - Not meant for users (yet)
- ► Tuning <u>decisions</u> vs. tuned <u>kernels</u>
 - Tuning decision code not performance-critical...
 - ...yet often source of most bugs and development time.
 - It's why prototyped kernels take so long to deploy in OSKI!
 - ► HLL dramatically increases (our) productivity
- ► HLLs as development accelerators
 - ▶ Implement new features first in HLL (calling into C)
 - ▶ If performance demands it, push new features into C

Why users might want HLL interface to OSKI

- Interfaces in lower-level languages mix <u>productivity</u> and efficiency code
 - "Productivity code": computation users want to do
 - "Efficiency code": tuning and implementation choices for performance
 - Mixing constrains tuning and kills user productivity
- ► HLLs natural fit for <u>interface</u> of tuned libraries
 - Separate tuning policy from computation
 - OSKI free to experiment with complex optimizations. . .
 - "in parallel" while users experiment with computation.

PySKI: Python Sparse Kernel Interface

- Use Python because of SciPy
 - Popular Matlab-like Python environment
 - scipy.sparse: Sparse matrix wrapper
- Modify scipy.sparse to call OSKI methods
- ► Tuned OSKI data structures live as before in C world
 - Python code only deals with pointers
 - Minimizes memory and copy overhead
 - Preserves tuning
- Experimental vehicle for HLL interfaces

Audience questions on HLLs

- ▶ Does HLL inside OSKI scare you?
 - ▶ Even if users never see it?
- ► Will OSKI users (= Trilinos developers?) want HLL interface?
- ► How portable must the HLL be? (OS, compiler, hardware)
 - ▶ Some HLLs only need a C compiler, but fewer features
 - Python heavier-weight, but has libraries we want

Proposed feature: Matrix powers kernel

Proposed feature: Matrix powers kernel

- $(A,x) \mapsto (Ax,A^2x,\ldots,A^sx) \text{ (or similar)}$
- ► Can compute for same communication cost as one SpMV
- ► See Demmel et al.\ 2007, 2008, 2009 (SC09)
- ► Includes multicore optimizations (SC09)
- Applications
 - Chebyshev iteration
 - Lookahead for nonsymmetric Lanczos / BiCG
 - ▶ s-step iterative methods

s-step iterative methods

- Reorganization of existing Krylov subspace methods
- Compute s Krylov subspace basis vectors
 - All at once, using matrix powers kernel
- ▶ Use BLAS 3 to orthogonalize them
 - ► Tall Skinny QR (TSQR): stable and optimal communication
- CG, GMRES, (symmetric) Lanczos, Arnoldi
- Details in SC09, and my thesis (almost done!)

Kernel co-tuning

- Our SC09 GMRES has three kernels
 - Matrix powers
 - Tall Skinny QR
 - ► Block Gram-Schmidt
- Tuning for one affects others
 - Data layout essential to performance
 - Copy in/out btw formats too slow
- Workload fraction per kernel depends on runtime params
 - Restart length
 - Sparse matrix structure
- Must tune entire app / composition of kernels

Challenges

Challenges (1 of 2)

- Composing multiple optimizations
 - Some optimizations change sparsity structure
 - Register blocking adds nonzeros
 - Changes optimizations that partition the matrix
 - ► Cache blocking, matrix powers, reordering for locality, . . .
 - ▶ If noncommutative, which order? not all orders make sense
- Co-tuning (Composing multiple kernels)
 - Multiple kernels share data layout, but...
 - ...data layout part of tuning!
 - What interface should kernels export for co-tuning?

Challenges (2 of 2)

- Correctness
 - Performance depends on many autogenerated code variants
 - Some matrix data structures have tricky corner cases
 - Current correctness proofs effort at UC Berkeley
- Search: Combinatorial explosion
 - Heterogeneous and rapidly evolving hardware
 - Multiple levels of memory hierarchy
 - NUMA: Nonuniform memory latencies and bandwidths
 - Compute accelerators like GPUs
 - More and more optimizations and parameters
 - Runtime benchmarking expensive
 - ▶ Need smarter search
 - Performance bounds as stopping criterion
 - ► More information out of fewer samples

Conclusions

- OSKI: optimized "sparse matrix BLAS"
- New features and optimizations in progress
- ▶ Interesting research and software development challenges
- We want user feedback!

Extra slides

Why no distributed-memory OSKI?

- Dist-mem search too expensive
 - Single-node already takes hours
 - ▶ Build-time search must discover hardware
 - Network topology runtime-dependent
 - ► Number of procs
 - Job scheduling
 - Must also discover matrix structure at runtime
- Memory bandwidth matters
 - Clearly dominates single-node performance
 - ▶ vs.\ message latency not always
 - Multicore / GPU: more procs, less bw
- Intended use: inside dist-mem library
 - Already wrapped inside PETSc

