

计算方法

令 丹

数学与统计学院

邮箱: danling@xjtu.edu.cn

第八章 矩阵特征值的数值计算

主要内容

1. 基本性质和概念

2. 乘幂法和反幂法

3. 特征值的其他计算方法

4. 奇异值和广义特征值问题

1. 基本性质和概念

定义 1 A 为 $n \times n$ 阶矩阵, x 为 n 维非零向量. 若存在数 λ 使得 $Ax = \lambda x$ 成立, 则称 λ 为 A 的特征值, x 为对应于 λ 的特征向量.

定义 1 A 为 $n \times n$ 阶矩阵, x 为 n 维非零向量. 若存在数 λ 使得 $Ax = \lambda x$ 成立, 则称 λ 为 A 的特征值, x 为对应于 λ 的特征向量.

定义 2 若 λ 满足 $p_A(\lambda) = \det(\lambda I - A) = 0$, 则称 $p_A(\lambda)$ 为矩阵 A 的特征多项式, 称 $\det(\lambda I - A) = 0$ 为特征方程.

令 丹 (数学与统计学院) 计 算 方 法 4/37

定义 **1** A 为 $n \times n$ 阶矩阵, x 为 n 维非零向量. 若存在数 λ 使得 $Ax = \lambda x$ 成立, 则称 λ 为 A 的特征值, x 为对应于 λ 的特征向量.

定义 2 若 λ 满足 $p_A(\lambda) = \det(\lambda I - A) = 0$, 则称 $p_A(\lambda)$ 为矩阵 A 的特征多项式, 称 $\det(\lambda I - A) = 0$ 为特征方程.

定义 3 若 λ_i 为特征方程的 k 重根, 称 k 为特征值 λ_i 的代数重数. 齐次线性方程组 $(\lambda_i I - A)x = 0$ 的基础解系所含的向量个数 (即 λ_i 的特征子空间的维数) 称为特征值 λ_i 的几何重数.

令 丹 (数学与统计学院) 计 算 方 法 4/37

性质 1 设 n 阶矩阵 A 的全部特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 则有

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = \operatorname{tr}(A), \quad \lambda_1 \lambda_2 \dots \lambda_n = \operatorname{det}(A).$$

性质 1 设 n 阶矩阵 A 的全部特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 则有

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = \operatorname{tr}(A), \quad \lambda_1 \lambda_2 \dots \lambda_n = \operatorname{det}(A).$$

性质 2 设 λ 为矩阵 A 的一个特征值, 则对任何多项式

$$p(x) = a_0 + a_1 x + \dots + a_m x^m,$$

 $p(\lambda)$ 为矩阵 p(A) 的一个特征值.

令 丹 (数学与统计学院) 计 算 方 法

性质 1 设 n 阶矩阵 A 的全部特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 则有 $\lambda_1 + \lambda_2 + \dots + \lambda_n = \operatorname{tr}(A), \quad \lambda_1 \lambda_2 \dots \lambda_n = \operatorname{det}(A).$

性质 2 设 λ 为矩阵 A 的一个特征值, 则对任何多项式

$$p(x) = a_0 + a_1 x + \dots + a_m x^m,$$

 $p(\lambda)$ 为矩阵 p(A) 的一个特征值.

性质 3 设 λ 为 n 阶可逆矩阵 A 的一个特征值, 则 $\lambda \neq 0$ 且 $\frac{1}{\lambda}$ 为 A 的逆矩阵 A^{-1} 的一个特征值, $\frac{\det(A)}{\lambda}$ 为 A 的伴随矩阵 A^* 的一个特征值.

性质 4 设 $\lambda_1, \lambda_2, \dots, \lambda_m$ 为矩阵 A 的互异的特征值, x_i 为 A 的对应特征值 λ_i $(i=1,2,\dots,m)$ 的特征向量,则 x_1,x_2,\dots,x_m 线性无关.

性质 4 设 $\lambda_1, \lambda_2, \dots, \lambda_m$ 为矩阵 A 的互异的特征值, x_i 为 A 的对应特征值 λ_i $(i=1,2,\dots,m)$ 的特征向量,则 x_1,x_2,\dots,x_m 线性无关.

性质 5 矩阵 A 的任意特征值的几何重数不大于其代数重数.

 令 丹 (数学与统计学院)
 计 算 方 法

2. 乘幂法和反幂法

乘幂法: 用于求模 (绝对值) 最大的特征值.

设 A 的特征值按模大小排列为

$$|\lambda_1| > |\lambda_2| \geqslant \cdots \geqslant |\lambda_n|,$$

并且对应的特征向量 $\xi_1, \xi_2, \cdots, \xi_n$ 线性无关. 此时任一非零向量 z_0 可用 $\xi_1, \xi_2, \cdots, \xi_n$ 线性表示

$$z_0 = c_1 \xi_1 + c_2 \xi_2 + \dots + c_n \xi_n$$

且 c_1, c_2, \cdots, c_n 不全为0.

作向量序列 $z_k = A^k z_0$, 则

$$z_{k} = A^{k} z_{0} = c_{1} A^{k} \xi_{1} + c_{2} A^{k} \xi_{2} + \dots + c_{n} A^{k} \xi_{n}$$

$$= c_{1} \lambda_{1}^{k} \xi_{1} + c_{2} \lambda_{2}^{k} \xi_{2} + \dots + c_{n} \lambda_{n}^{k} \xi_{n}$$

$$= \lambda_{1}^{k} \left(c_{1} \xi_{1} + c_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} \xi_{2} + \dots + c_{n} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} \xi_{n} \right)$$

由此可见, 若 $\lambda_1 \neq 0$, 则当 $k \rightarrow \infty$ 时,

$$\left(\frac{\lambda_j}{\lambda_1}\right)^k \to 0, \quad j = 2, 3, \cdots, n.$$

所以当 k 充分大时, $z_k \approx c_1 \lambda_1^k \xi_1$. z_k 可近似看作 λ_1 对应的特征向量. z_k 与 z_{k-1} 的非零分量之比约为 λ_1 .

令 丹 (数学与统计学院) 计 算 方 法 8/37

问题:

- ① $|\lambda_1| > 1$ 时, $\lambda_1^k \to \infty$, $k \to \infty$. "上溢" $\Longrightarrow z_k$ 单位化
- ② $|\lambda_1| < 1$ 时, $\lambda_1^k \to 0$, $k \to \infty$. "下溢"

据此得到求模最大的特征值 λ_1 和对应特征向量 ξ_1 的算法.

- (1) 任取非零向量 z_0 , 给定 $\varepsilon > 0$, $\delta > 0$. 令 k = 1.
- (2) (i) $y_k := Az_{k-1}$
 - (ii) 求 y_k 绝对值最大的分量 $m_k := \max(y_k)$.
 - (iii) $z_k := y_k/m_k$.
 - (iv) 若 $|m_k m_{k-1}| < \delta$ 或 $||z_k z_{k-1}|| < \varepsilon$, 则 取 $\lambda_1 \approx m_k, \xi_1 \approx z_k$, 停止计算. 否则, k := k+1, 转 (i).

令 丹 (数学与统计学院) 计算 方 法 9/37

例 1: 设

$$A = \left(\begin{array}{rrr} -1 & 2 & 1\\ 2 & -4 & 1\\ 1 & 1 & -6 \end{array}\right)$$

求 A 按模最大的特征值 λ_1 和对应的特征向量 ξ_1 , 误差限为 $||z_{k+1} - z_k|| \le 10^{-8}$.

令 丹 (数学与统计学院) 计 算 方 法 10/37

解 取 $z_0 = (1, 1, 1)^T$, 用乘幂法计算结果如下

k	m_k	$(z_k)_1$	$(z_k)_2$	$(z_k)_3$
1	-4.00000000	-0.50000000	0.25000000	1.00000000
2	-6.25000000	-0.32000000	0.16000000	1.00000000
÷	÷	÷	÷	÷
61	-6.42106658	-0.04614550	-0.37492108	1.00000000
62	-6.42106659	-0.04614550	-0.37492109	1.00000000
63	-6.42106659	-0.04614549	-0.37492110	1.00000000
64	-6.42106660	-0.04614549	-0.37492110	1.00000000

令 丹 (数学与统计学院) 计 算 方 法 11/37

定理

乘幂法定义的序列 $\{m_k\}$ 和向量序列 $\{z_k\}$ 满足

$$\lim_{k\to\infty} m_k = \lambda_1, \quad \lim_{k\to\infty} z_k = \frac{\xi_1}{\max(\xi_1)}.$$

定理

乘幂法定义的序列 $\{m_k\}$ 和向量序列 $\{z_k\}$ 满足

$$\lim_{k \to \infty} m_k = \lambda_1, \quad \lim_{k \to \infty} z_k = \frac{\xi_1}{\max(\xi_1)}.$$

证 由于

$$z_k = \frac{y_k}{m_k} = \frac{Az_{k-1}}{m_k} = \frac{A^2 z_{k-2}}{m_k m_{k-1}} = \dots = \frac{A^k z_0}{m_k \cdot m_{k-1} \cdot \dots \cdot m_1},$$

即 z_k 与 $A^k z_0$ 的方向相同或相反, 而 z_k 的绝对值最大分量为 1.

令 丹 (数学与统计学院) 计 算 方 法 12/37

由于 $|\lambda_1| > |\lambda_2|$, 于是

$$\lim_{k \to \infty} m_k = \lambda_1, \quad \lim_{k \to \infty} z_k = \frac{c_1 \xi_1}{\max(c_1 \xi_1)} = \frac{\xi_1}{\max(\xi_1)}.$$

另一方面

$$\lim_{k \to \infty} \frac{|m_{k+1} - \lambda_1|}{|m_k - \lambda_1|} = \left| \frac{\lambda_2}{\lambda_1} \right| \neq 0$$

因此线性收敛. $\left| \frac{\lambda_2}{\lambda_1} \right|$ 称为收敛率. 收敛率越小, 收敛越快.

当 $|\lambda_1|$ 与 $|\lambda_2|$ 接近时, 收敛慢. 可用 Aitken 方法进行加速

$$m_k^* = m_k - \frac{(m_k - m_{k-1})^2}{m_k - 2m_{k-1} + m_{k-2}}.$$

例 2: 用 Aitken 方法对例 1 的算法进行加速.

解 取 $z_0 = (1, 1, 1)^T$,用加速的乘幂法计算结果如下

\overline{k}	m_k	$(z_k)_1$	$(z_k)_2$	$(z_k)_3$
1	-4.00000000	-0.50000000	0.25000000	1.00000000
2	-6.16346153	-0.22019166	-0.04635613	1.00929959
3	-6.31175629	-0.10766956	-0.25996439	1.00583497
÷	:	:	:	:
15	-6.42106642	-0.04614558	-0.37492093	1.00000000
16	-6.42106655	-0.04614551	-0.37492106	1.00000000
17	-6.42106659	-0.04614549	-0.37492110	1.00000000

乘幂法的加速技术

原点位移法

若 A 的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$, 则对任意常数 p, 矩阵 B = A - pI 的特征值为 $\lambda_i - p$ $(i = 1, 2, \cdots, n)$, 且 A, B 有相同的特征向量.

乘幂法的加速技术

原点位移法

若 A 的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$, 则对任意常数 p, 矩阵 B = A - pI 的特征值为 $\lambda_i - p$ $(i = 1, 2, \cdots, n)$, 且 A, B 有相同的特征向量.

若能选择合适的 p, 使得

$$|\lambda_1 - p| > |\lambda_2 - p| \geqslant \dots \geqslant |\lambda_n - p|$$
 \mathbb{H} $\left| \frac{\lambda_2 - p}{\lambda_1 - p} \right| < \left| \frac{\lambda_2}{\lambda_1} \right|$.

再对 B 用乘幂法求出 $\lambda_1 - p$ 的近似值 m_k , 则 $\lambda_1 \approx m_k + p$.

乘幂法的加速技术

原点位移法

若 A 的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$, 则对任意常数 p, 矩阵 B = A - pI 的特征值为 $\lambda_i - p$ $(i = 1, 2, \cdots, n)$, 且 A, B 有相同的特征向量.

若能选择合适的 p, 使得

$$|\lambda_1 - p| > |\lambda_2 - p| \geqslant \dots \geqslant |\lambda_n - p|$$
 \mathbb{H} $\left| \frac{\lambda_2 - p}{\lambda_1 - p} \right| < \left| \frac{\lambda_2}{\lambda_1} \right|$.

再对 B 用乘幂法求出 $\lambda_1 - p$ 的近似值 m_k , 则 $\lambda_1 \approx m_k + p$.

 $\frac{p}{p}$ 的选取有赖于对 A 的特征值分布有大致的了解, 因此选取合适的 $\frac{p}{p}$ 比较困难, 实际计算中并不常用.

令 丹 (数学与统计学院) 计 算 方 法 16/37

例 3: 取 $p = -2, z_0 = (1, 1, 1)^T$, 用原点位移法计算例 1.

解 计算结果如下

\overline{k}	$m_k + p$	$(z_k)_1$	$(z_k)_2$	$(z_k)_3$
1	2.00000000	1.00000000	0.25000000	-0.50000000
2	1.25000000	0.30769230	0.30769230	1.000000000
3	-5.38461538	-0.56818181	-0.29545454	1.00000000
÷	:	:	:	:
40	-6.42106658	-0.04614550	-0.37492109	1.00000000
41	-6.42106659	-0.04614549	-0.37492110	1.00000000
42	-6.42106660	-0.04614549	-0.37492111	1.00000000

令 丹 (数学与统计学院) 计 算 方 法 17 /37

用来求 A 的按模最小的特征值和对应的特征向量

设 A 可逆, 则对 A^{-1} 作乘幂法, 称为反幂法.

若 A 的特征值满足

$$|\lambda_1| \geqslant |\lambda_2| \geqslant \cdots \geqslant |\lambda_{n-1}| > |\lambda_n|.$$

根据反幂法有

$$m_k \to \frac{1}{\lambda_n}, \quad z_k \to \frac{\xi_n}{\max(\xi_n)},$$

且收敛率为 $\left| \frac{\lambda_n}{\lambda_{n-1}} \right|$.

$$y_k = A^{-1} z_{k-1} \implies z_{k-1} = A y_k$$

 y_k 的计算需要解线性方程组.

若已知 A 的某个特征值 λ_m 的近似值 $\widetilde{\lambda}_m$, 则可用原点平移的反幂法来求 λ_m 对应的特征向量 ξ_m , 并在计算过程中改进 $\widetilde{\lambda}_m$ 的精度.

由于 $\tilde{\lambda}_m$ 接近 λ_m , 一般应有

$$0 < |\lambda_m - \widetilde{\lambda}_m| \ll |\lambda_j - \widetilde{\lambda}_m|, \quad j \neq m.$$

则 $\left(\lambda_j-\widetilde{\lambda}_m\right)^{-1}$ 是 $(A-\widetilde{\lambda}_mI)^{-1}$ 的按模最大的特征值, ξ_m 是对应的特征向量.

对 $A - \widetilde{\lambda}_m I$ 应用反幂法, 则当 $k \to \infty$ 时,

$$z_k \to \frac{\xi_m}{\max(\xi_m)}, \quad m_k \to \frac{1}{\lambda_m - \widetilde{\lambda}_m}$$

$$\implies \widetilde{\lambda}_m + \frac{1}{m_k} \to \lambda_m, \quad k \to \infty.$$

收敛率 $\left|\frac{\lambda_m-\tilde{\lambda}_m}{\lambda_j-\tilde{\lambda}_m}\right|\ll 1$, 迭代很快, 一般只经过一两次迭代就可达到较高的精度.

令 丹 (数学与统计学院) 计 算 方 法 20/37

- (1) 给定 $\delta > 0, \varepsilon > 0$.
- (2) 对 $A \widetilde{\lambda}_m$ 作三角分解 $A \widetilde{\lambda}_m = LR$. 令 k = 1.
- (3) 解线性方程组
 - (i) k = 1, \mathbb{N} $u = (1, 1, \dots, 1)^{\mathrm{T}}$. $k \neq 1$ \mathbb{N} , $Lu = z_{k-1}$.
 - (ii) $Ry_k = u$.
- (4) $m_k = \max(y_k), \ z_k = y_k/m_k.$
- (5) 若 $|m_k m_{k-1}| < \delta$ 或 $||z_k z_{k-1}|| < \varepsilon$, 则停止计算, 取 $\lambda_m \approx \widetilde{\lambda}_m + \frac{1}{m_k}, \xi_m \approx z_k$. 否则, k := k + 1 转 (3).

例 4: 已知矩阵

$$A = \left(\begin{array}{rrr} -1 & 2 & 1\\ 2 & -4 & 1\\ 1 & 1 & -6 \end{array}\right)$$

在 -6.42 附近有一个特征值, 用反幂法求解该特征值和对应的特征向量 ξ_1 , 误差限为 $||z_{k+1} - z_k|| \le 10^{-8}$.

例 4: 已知矩阵

$$A = \left(\begin{array}{rrr} -1 & 2 & 1\\ 2 & -4 & 1\\ 1 & 1 & -6 \end{array}\right)$$

在 -6.42 附近有一个特征值, 用反幂法求解该特征值和对应的特征向量 ξ_1 , 误差限为 $||z_{k+1} - z_k|| \le 10^{-8}$.

解 按照反幂法先对矩阵 A+6.42I 作三角分解,结果如下

$$A + 6.42I = LU, \quad L = \begin{pmatrix} 1 \\ 0.36900369 & 1 \\ 0.18450184 & 0.37514808 & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} 5.42 & 2 & 1 \\ & 1.68199262 & 0.63099631 \\ & & -0.00121890 \end{pmatrix}.$$

k	$\widetilde{\lambda}_m + \frac{1}{m_k}$	$(z_k)_1$	$(z_k)_2$	$(z_k)_3$
1	-6.42121890	-0.04602829	-0.37587276	1.00000000
2	-6.42106628	-0.04614571	-0.37492057	1.00000000
3	-6.42106661	-0.04614548	-0.37492113	1.00000000
4	-6.42106661	-0.04614548	-0.37492113	1.00000000

 令 丹 (数学与统计学院)
 计 算 方 法

23/37

3. 特征值的其他计算方法

QR 方法

用于求矩阵的全部特征值与特征向量

(1) 基本 QR 方法

令 $A_0 = A$, 对 $K = 1, 2, \cdots$, 定义矩阵序列

$$\begin{cases} A_{k-1} = Q_{k-1}R_{k-1}, \\ A_k = R_{k-1}Q_{k-1}, \end{cases}$$

其中 Q_{k-1} 为正交矩阵, R_{k-1} 为上三角矩阵.

由于 A_k 相似于 A_k 从而与 A 有相同的特征值.

QR 方法

 ${\sf Schur}$ 分解 对一个给定的矩阵 $A\in\mathbb{R}^{n imes n}$,存在一个正交矩阵 $Q\in\mathbb{R}^{n imes n}$ 使得

$$Q^{\mathrm{T}}AQ = \begin{pmatrix} R_{11} & R_{12} & \cdots & R_{1n} \\ & R_{22} & \cdots & R_{2n} \\ & & \ddots & \vdots \\ & & & R_{nn} \end{pmatrix},$$

其中对角子块 R_{ii} 为 1×1 或 2×2 矩阵.

QR 方法

基本收敛 当 $k \to \infty$ 时, A_k 的对角线元素均收敛, 其中严格下三角部分收敛到零, 则称 A_k 基本收敛到上三角矩阵.

收敛结论 基本 QR 方法产生的序列 $\{A_k\}$ 基本收敛到分块上三角矩阵, 其对角块的特征值收敛到 A 的特征值. 具体地,若对角块为 1×1 的矩阵, 则收敛到 A 的特征值; 若对角块为 2×2 的矩阵, 其特征值为一对共轭复数, 收敛到 A 的一对共轭特征值.

QR 方法的每一步运算量为 $O(n^3)$. 为使更高效, 可先将 A 通过正交相似变换化为拟上三角 (上 Hessenberg) 形式, 更接近 Schur 形式, 再进行迭代, 可减少计算量.

QR 方法

(2) 带位移的 QR 方法 (加速方法)

令 $A_0 = A$, 对 $K = 1, 2, \cdots$, 定义矩阵序列

$$\begin{cases} A_{k-1} - \mu_{k-1}I = Q_{k-1}R_{k-1}, \\ A_k = R_{k-1}Q_{k-1} + \mu_{k-1}I, \end{cases}$$

其中 μ_{k-1} 为位移量, 通常取为 A 的某一特征值的近似. 实际计算中可取 A_{k-1} 的右下角元素 $a_{nn}^{(k-1)}$ 或右下角 2×2 矩阵的特征值中最接近 $a_{nn}^{(k-1)}$ 的.

令 丹 (数学与统计学院) 计 算 方 法 27 /37

Arnoldi 方法

用于求大型稀疏矩阵的特征值

$$K_m = \text{span}\{z_0, Az_0, \cdots, A^{m-1}z_0\},\$$

正交化过程得到正交向量 z_1, z_2, \cdots, z_m . 记 $Q_m = (z_1, \cdots, z_m)$, 则

$$AQ_m = Q_{m+1}H_{m+1,m} = Q_{m+1} \begin{pmatrix} H_m \\ h_{m+1,m}e_{m+1} \end{pmatrix}.$$

其中 $e_{m+1}=(0,\cdots,0,1)\in\mathbb{R}^{m+1}$. 如果 (λ,ξ) 是 H_m 的特征值和特征向量,则 (λ,ξ) 接近 A 的特征值和特征向量.

Jacobi 方法

用于求实对称矩阵的全部特征值和特征向量

通过一系列正交相似变换,将 A 化为对角矩阵

$$\Lambda = \mathsf{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n),$$

即令

$$\left\{ egin{aligned} A_0 &= A, \ A_k &= R_k A_{k-1} R_k^{\mathrm{T}}, \ R_k \$$
为正交矩阵, $k = 1, 2, \cdots$

对于某个 m, A_m 为对角矩阵, 即

$$\Lambda = R_m R_{m-1} \cdots R_1 A R_1^{\mathrm{T}} R_2^{\mathrm{T}} \cdots R_m^{\mathrm{T}}.$$

Jacobi 方法

记 $P_m = R_1^{\mathrm{T}} R_2^{\mathrm{T}} \cdots R_m^{\mathrm{T}}$, 则 P_m 为正交矩阵, 且

$$P_m^{\mathrm{T}}AP_m = A, \quad AP_m = P_m\Lambda.$$

记 P_m 的列向量为 $\xi_1, \xi_2, \cdots, \xi_n$, 则

$$A\xi_i = \lambda_1 \xi_1, \quad i = 1, 2, \cdots, n$$

因此 Λ 的对角元为 A 的特征值, P_m 的列向量为 A 的特征向量.

 R_k 的取法: Givens 变换.

Givens 方法

用于求实对称三对角矩阵的特征值

$$A = \begin{pmatrix} d_1 & b_1 & & & & & \\ b_1 & d_2 & b_2 & & & & & \\ & b_2 & d_3 & \ddots & & & & \\ & & \ddots & \ddots & \ddots & & \\ & & b_{n-2} & d_{n-1} & b_{n-1} & \\ & & & b_{n-1} & d_n \end{pmatrix}, \quad b_i \neq 0 \ (\forall i)$$

令 A_i 为 A 的 i 阶首主子式, 定义 Strum 序列

$$p_i(x) = \det(A_i - xI_i), \quad i = 1, 2, \dots, n$$

令 丹 (数学与统计学院) 计 算 方 法 31/37

Givens 方法

则有

$$p_0(x) = 1,$$

$$p_1(x) = d_1 - x,$$

$$p_2(x) = (d_2 - x)(d_1 - x) - b_1^2 = (d_2 - x)p_1(x) - b_1^2 p_0(x),$$

$$\vdots$$

$$p_i(x) = (d_i - x)p_{i-1}(x) - b_{i-1}^2 p_{i-2}(x), \quad i = 3, 4, \dots, n$$

可证 $p_n(x)$ 是 A 的特征值多项式. 对任意给定的 $\mu \in \mathbb{R}$,

$$S_{\mu} = \{p_0(\mu), p_1(\mu), \cdots, p_n(\mu)\}$$

符号变化数 $S(\mu)$ 恰是 A 的小于 μ 的特征值的个数, 因此可用二分法确定特征值的近似值.

Lanczos 方法

用干求大型对称稀疏矩阵的最大和最小特征值

Krylov 子空间

$$\left\{z_0, Az_0, \cdots, A^{m-1}z_0\right\}$$

正交化过程产生三对角矩阵 H_m , 得到迭代序列 $\{H_m\}$.

 H_m 的最大和最小特征值收敛于 A 的最大和最小特征值.

4. 奇异值和广义特征值问题

奇异值分解

定义 设 $A \in \mathbb{C}^{m \times n}$, 存在酉矩阵 $U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$, 使得

$$U^{\mathrm{H}}AV = \begin{pmatrix} \Sigma_p & 0 \\ 0 & 0 \end{pmatrix} \in \mathbb{R}^{m \times n}, \qquad \Sigma_p = \mathsf{diag}(\sigma_1, \cdots, \sigma_p),$$

其中 $p = \min(m, n)$ 且 $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_p \ge 0$, 则上式称为 A 的 奇异值分解 (SVD). σ_i 称为 A 的奇异值, V 的列 v_i 称为 A 的对 应 σ_i 的右奇异向量, V 的列 v_i 称为 A 的对应 σ_i 的左奇异向量.

奇异值分解

定义 设 $A \in \mathbb{C}^{m \times n}$, 存在酉矩阵 $U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$, 使得

$$U^{\mathrm{H}}AV = \left(egin{array}{cc} \Sigma_p & 0 \\ 0 & 0 \end{array}
ight) \in \mathbb{R}^{m imes n}, \qquad \Sigma_p = \mathsf{diag}ig(\sigma_1, \cdots, \sigma_pig),$$

其中 $p = \min(m, n)$ 且 $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_p \geqslant 0$, 则上式称为 A 的奇异值分解 (SVD). σ_i 称为 A 的奇异值, V 的列 v_i 称为 A 的对应 σ_i 的右奇异向量, V 的列 v_i 称为 A 的对应 σ_i 的左奇异向量.

如果 A 为实矩阵, 则

$$\sigma_i(A) = \sqrt{\lambda_i(A^{\mathrm{T}}A)}, \quad i = 1, 2, \dots, p.$$

A 的奇异值分解可通过计算 $A^{T}A$ 的特征值和特征向量得到.

 令 丹 (数学与统计学院)
 计 算 方 法
 34 /37

广义特征值问题

定义 1 设 $A,B\in\mathbb{C}^{n\times n}$ 为两个给定的矩阵, 则广义特征值问题定义为: 求 $\lambda\in\sigma(A,B)$ 和非零向量 $x\in\mathbb{C}^n$ 满足

$$Ax = \lambda Bx$$

其中<mark>广义特征值</mark> $\sigma(A,B)$ 定义为

$$\sigma(A,B) = \{\lambda | \det(A - \lambda B) = 0\}$$

当 B = I 时,即为标准的矩阵特征值问题.

定义 2 称 $p(\lambda) = \det(A - \lambda B)$ 为特征多项式, $\det(A - \lambda B) = 0$ 称为特征方程. 如果 $\det(A - \lambda B) \neq 0$, 则称 (A, B) 是正则的, 否则为奇异的.

令 丹 (数学与统计学院) 35 /37

广义特征值问题

(A,B) 有 n 个特征值的充要条件是 B 非奇异. 此时广义特征值问题转化为

$$Cx = \lambda x$$
, 其中 C 满足 $BC = A$

若 B 良态可用 QR 方法求解.

更实用的求解方法为基于广义 Schur 分解的 QZ 方法. 如果 A, B 对称且 B 正定, 则可用 QR-Cholesky 算法.

广义特征值与广义逆

令 丹 (数学与统计学院) 计 算 方 法 36 /37

太章总结

 $\int 按模最大的特征值$ 加速方法: 原点平移法 (需大致了解) <math>A 的特征值分布

 $\dot{}$ 按模最大的特征值: 对 A^{-1} 应用乘幂法 原点平移反幂法: 修正近似特征值, 求相应的特征向量

QR 方法: 全部特征值和特征向量

Arnoldi 方法: 大型稀疏矩阵的特征值

Jacobi 方法: 实对称矩阵的全部特征值和特征向量

Givens 方法: Strum 序列, 实对称三对角矩阵的特征值

Lanczos 方法: 大型稀疏对称矩阵的最小和最大特征值

奇异值问题: 可转化为 $A^{T}A$ 的特征值问题

 $\dot{}$ 义特征值问题: $Ax = \lambda Bx$

今 丹 (数学与统计学院) 计算方法 37 / 37