Skúšanie 24.2.2021

1.

- použiť funkcie =day, =month, =year
- potom =DEC2HEX prekonvertujem na 16-tkovú sústavu
- nakoniec = CONCAT pre zjednotenie

2.

- označíme celú tabuľku a vložíme graf
- pre export ako .png môžeme použiť ctrl+c alebo v novších verziách Excelu priamy export

3.

- Digitalizácia rastrového obrázka:
 - 1. fáza -rozdelenie obrázka na body, preloženie mriežky (rastra) cez obrázok
 - 2. fáza -očíslovanie všetkých použitých farieb, opäť platí: n bitov umožňuje zakódovať 2n farieb.
 - 3.fáza-prepis na binárny kód

4.

- prevedieme čísla z binárnej do desiatkovej sústavy
- príslušné číslo vyhľadáme v ASCII tabuľke alebo v Exceli použijeme príkaz =char
- (dva na druhú plus dva na šiestu)

5.

- Krok 1: Načítaj prvú hodnotu (sčítanec) z pamäti a ulož ju do registra.
- Krok 2: Načítaj druhú hodnotu (sčítanec) z pamäti a ulož ju do iného registra.
- Krok 3: Aktivuj obvody pre sčítanie. Ako ich vstupy nastav registre z kroku 1 a 2 spolu ďalším registrom, ktorý bude uchovávať výsledok.
- Krok 4: Ulož výsledok do pamäti.
- Krok 5: Stop.

zapájame procesor a operačnú pamäť (CPU, RAM)

6.

7.

Najrozšírenejšia forma – **pulzná kódová modulácia (PCM)**, ktorá analógový signál transformuje vzorkovaním a kvantovaním a napokon ho zakóduje do súboru.

Proces nahrávania zvuku do počítača je riadený dvoma veličinami.

Vzorkovacia frekvencia udáva koľkokrát za sekundu je zmerané napätie na vstupe zvukovej karty (mikrofón). Čím je táto frekvencia vyššia, tým vernejší, kvalitnejší ale aj objemnejší záznam dokážeme získať.

Kvalita digitálneho záznamu	vzorkovacia frekvencia	rozlišenie, kanály
Telefóna kvalita	11 025Hz	8 bit - mono
Rozhlasová kvalita	22 050Hz	8 bit - mono
CD kvalita	44 100Hz	16 bit - stereo
DVD kvalita	192 000Hz	24 bit - 5.1 surround sound

Druhým faktorom, ktorý ovplyvňuje kvalitu záznamu, je **kvantovanie**, ktoré v tomto prípade súvisí s počtom bitov určujúcich počet úrovní, ktoré dokážeme rozlíšiť. Prvé zvukové adaptéry boli 8 bitové a umožňovali uložiť zvuk len do 256 rôznych hladín. Neskôr sa rozsah zjemnil na 16 bitov a umožnil zachytiť 65 536 rôznych zvukov. Súčasné adaptéry podporujú 24 bitové vzorkovanie.

V prípade viackanálového zvuku sú kanály zaznamenávané samostatne.

- dĺžka súboru (s) * kanály (stereo=2, mono=1...) * vzorkovacia frekvencia * rozlíšenie
- výsledok / 8 na bajty / 1024 na kB / 1024 na MB

- 233 * 2 * 44 100 * 16 = 328 809 600 / 8 / 1024 / 1024 = 39.197 MB
- dôvody:
 - mp3 je komprimovaný súbor, odstraňuje zvuky, ktoré ľudské ucho nedokáže počuť

8.

- jednotkovým doplnkom (inverzný kód)
- · jednotlivé bajty, ktoré následne zmeníme

9.

Princíp činnosti:

- 1. Do operačnej pamäte sa pomocou vstupných zariadení cez ALU umiestni program, ktorý bude prevádzať výpočet.
- 2. Rovnakým spôsobom sa do operačnej pamäte vložia dáta, ktoré bude program spracovávať
- 3. Prebehne vlastný výpočet, ktorého jednotlivé kroky robí ALU. Tato jednotka je v priebehu výpočtu spolu s ostatnými modulmi riadená RJ. Medzivýsledky výpočtu sú ukladané do operačnej pamäti.
- 4. Po skončení výpočtu sú výsledky poslané cez ALU na výstupné zariadenie. Jednotlivé časti sú spoločne prepojené zbernicou.³
- zazdielal by som mu obrazovku cez aplikáciu Discord, na ktorej by som mu ukázal nákres, ktorý som našiel vyhľadávačom Google, a nakoniec by som sa ujistil, že to vie, tým, že by som mu vyrobil test v Google Forms

- vektor = zložený z geometrických tvarov, počítač má údaje na ich zoztrojenie a krok po kroku ich plní, čo tvorí obraz, pri zväčšení obrazu nestráca na kvalite a nevidíme jednotlivé pixely
- bitmapa = zložená zo "siete" bodov, ktoré majú svoju polohu a farbu

rbg

- o farebný model zložený z kombinácie červenej, modrej a zelenej farby
- zmiešaním dostaneme bielu farbu
- každý farebný bod možno zakódovať troma bajtami
- vhodný na šecko
- cmyk
 - spojením týchto farieb dostaneme čiernu
 - azúrová, purpurová, žltá a blaK (čierna, key)

11.

- wav
 - kvalitný zvukový súbor bez kompresie, príliš veľký, nevhodný na archiváciu
- mp3
 - komprimovaný súbor, odstraňuje zvuky, ktoré ľudské ucho nedokáže počuť, vhodný na archiváciu
- mid
 - uchováva noty, zvuky z hudobných nástrojov, tvorený z príkazov ako zvuky vygenerovať

12.

- dekódovať môžeme správu pomocou online convertoru, excelu alebo manuálne
- vyšlo z toho "Computer Science"

13.

malé písmená sú v ASCII tabuľke o 32 vaššie ako ich veľké ekvivalenty

14.

15.

- manuálne, excel, online converter
- výsledok = 42

16.

- číslo delíme dvojkou, zapisujeme si zvyšky, ktoré od konca tvoria výsledok
- výsledok = 111011

17.

- 11,01 = 3.25
- 101,111 = 5.875
- 10,1 = 2.5
- 110,011 = 6.375

18.

a)
$$4\frac{1}{2}$$
 = 100,1

b)
$$2\frac{3}{4} = 10,1$$

a)
$$4\frac{1}{2}$$
 = 100,1 b) $2\frac{3}{4}$ = 10,11 c) $1\frac{1}{8}$ = 1,001 d) $\frac{5}{16}$ = 0.0101

d)
$$\frac{5}{16}$$
 = 0.010°

19.

- $0110\ 0100 = 100$
- $1110\ 0100 = -28$
- 0110 1111 = 111
- $1001\ 0001 = -111$
- $0011\ 0100 = 52$
- 1100 1100 = -52

- 0101 0010 = 82
- 1010 1110 = -82

https://www.exploringbinary.com/twos-complement-converter/

20.

- 8-bitov = -128 až 127
- 16-bitov = -32768 až 32767

21.

- 1110 = 20
- 0111 = 15
- 1000 = 16
- 0010 = 10

22.