Tema 6

Junio 2018

6.1. El campo eléctrico asociado a una onda electromagnética es:

$$\vec{E} = E_0 e^{i\left(\omega t - kz + \frac{\pi}{4}\right)} \vec{u}_x + 3E_0 e^{i\left(\omega t - kz - \frac{\pi}{4}\right)} \vec{u}_y$$

De forma razonada:

- 1) Determinar el estado de polarización de la onda, indicando, si procede, la dirección de polarización mediante un vector unitario.
- 2) Obtener el campo magnético \vec{H} asociado a la onda, sin hacer uso de las ecuaciones de Maxwell.
- 3) Obtener el vector de Poynting correspondiente, así como la intensidad de la onda.

Julio 2016

6.2. El vector de onda asociado a una onda electromagnética, plana y armónica, que se propaga en un medio cuyo índice de refracción es 6/5, es $12\pi\,\vec{u}_y$ rad m $^{-1}$. Si T es el periodo, la función de onda para el campo eléctrico en el foco, en los instantes t=0 y t=T/4 es, $\vec{E}=40\,\vec{u}_z\,\mathrm{Vm}^{-1}$ y $\vec{E}=40\,\vec{u}_x\,\mathrm{Vm}^{-1}$, respectivamente. Obtener razonadamente las funciones de onda para los campos \vec{E} , \vec{H} y \vec{S} , así como la intensidad de la onda.

Mayo 2018

6.3. Una onda electromagnética tiene asociado el siguiente campo magnético:

$$\vec{H} = -3H_0 e^{i(\omega t - kz - \pi/4)} \vec{u}_x + H_0 e^{i(\omega t - kz + \pi/4)} \vec{u}_y$$

Obtener de forma razonada:

- 1) El estado de polarización de la onda, indicando, si procede, la dirección de polarización mediante un vector unitario.
- 2) El campo eléctrico asociado, sin hacer uso de las ecuaciones de Maxwell.
- 3) El vector de Poynting y la intensidad de la onda.

Diciembre 2018

6.4. La función de onda del campo eléctrico asociado a una onda electromagnética es:

$$\vec{E} = 2\left(8\vec{u}_x + 2\sqrt{11}\vec{u}_y - 6\vec{u}_z\right)e^{i(15\pi \cdot 10^7 t - 3\pi x - 4\pi z)} \text{ Vm}^{-1} \text{ (}t \text{ en s, } x \text{ y z en m)}$$

Sin utilizar las ecuaciones de Maxwell, obtener razonadamente:

- 1) La dirección de propagación, mediante un vector unitario y el estado de polarización de la onda, indicando, si procede, la dirección de polarización mediante un vector unitario.
- 2) La impedancia e índice de refracción del medio.
- 3) El vector de Poynting y la intensidad de la onda.

Julio 2018

6.5. Una onda electromagnética se propaga en un medio en el que la velocidad de fase es $25 \cdot 10^7$ m s⁻¹. La función de onda para el campo eléctrico en el foco es:

$$\vec{E} = a e^{i\left(2\pi \cdot 10^9 t + \frac{\pi}{4}\right)} \vec{u}_x - 20 i e^{i\left(2\pi \cdot 10^9 t + \frac{\pi}{4}\right)} \vec{u}_y \text{ Vm}^{-1} (a > 0, t \text{ en s})$$

Si el valor medio del vector de Poynting es $\frac{8}{\pi} \vec{u}_z \; \mathrm{Wm^{-2}}$, obtener de forma razonada:

- 1) El estado de polarización de la onda, indicando, si procede, la dirección de polarización mediante un vector unitario.
- 2) La función de onda para el campo magnético.

Enero 2018

6.6. El campo magnético asociado a una onda electromagnética es $60 \operatorname{sen} \left(\pi \cdot 10^9 t - 4\pi y \right) \vec{u}_z$ nT, donde t se mide en s e y en m. Obtener razonadamente la correspondiente densidad de corriente de desplazamiento, expresando sus unidades en función de las unidades fundamentales del Sistema Internacional.

Enero 2019

6.7. Una onda electromagnética, linealmente polarizada, tiene asociado el siguiente campo eléctrico:

$$\vec{E} = 6\pi \cos \left(75\pi \cdot 10^7 t - 20\pi y - \frac{\pi}{4} \right) \vec{u}_x - a \cos \left(75\pi \cdot 10^7 t - 20\pi y + \theta \right) \vec{u}_z \text{ Vm}^{-1} \quad (t \text{ en s, } y \text{ en m})$$

donde las constantes a(a>0) y $\theta(0<\theta<\pi)$ son desconocidas. Sabiendo que la amplitud del correspondiente vector de Poynting es $\frac{8\pi}{3}$ Wm $^{-2}$, determinar razonadamente los valores de a y de θ , así como el campo magnético \vec{H} asociado a la onda, sin hacer uso de las ecuaciones de Maxwell.

Hoyo zets

G3.
$$\Pi = 3 \text{ Re } e^{i[nt - kz - \pi 4]} \text{ and } + \text{Ho } e^{i[nt - kz + \pi 4]} \text{ and }$$

1) Ghab de publicación de bordo

(-1 = $e^{2\pi i}$)

 $\Pi = 3 \text{ Ho } c$

Condo plum que sepression como didentro directión and

Condo plum que sepression como didentro directión and

 $\Pi = 1 \text{ Ho } e$
 $\Pi = 3 \text{ Ho } c$

Condo plum que sepression como didentro directión and

 $\Pi = 1 \text{ Ho } e$
 $\Pi = 3 \text{ Ho } c$
 $\Pi = 4 \text{ Ho } c$
 $\Pi = 6 \text{ Ho } c$

3) Vector at Poynting, solvented.

$$\vec{S} = \vec{E} \times \vec{H} \quad \vec{J}$$

$$\vec{S} = \vec{H} \times \vec{J}$$

$$\vec{J} = \vec{J} \times \vec{J}$$

$$\vec{J} \times$$

$$E = \frac{118 \pi x + 25\pi \pi x}{118 \pi x + 25\pi \pi x} = \frac{118 \pi x}{12} = \frac{118 \pi x$$

$$\vec{k} \cdot \vec{r} = k \cdot \vec{r} = 3\pi \times 44\pi^{2}$$

$$\vec{k} = k \cdot \vec{n} \times 44\pi^{2}$$

2) Topedar e inde de refereies.
$$C = 3.10^8$$
 W= 15TT

 $N = \frac{C}{V} = \frac{C}{V} \cdot K = \frac{$

$$S = 12\pi$$
 $S = 12\pi$
 $S = 12\pi$
 $S = 12\pi$
 $S = 74 \text{ W/m}^2$
 $S = 75 \text{ M/m}^2$

Julia 2018. E=aeilzn. 104+ 4) ux - 20ie ilzno 1 + 4) uy Vin 1=25.107 m/s 5 = 8 m2 E = a e i(2Tr. 169 / 14) ax 420 e i(2Tr. 169 / 14 - 2) ay -1=e-T 5= Ex H + 5 = = 7 . mk Notación provincia: E = a col wit + T) + 20 selul + T) S= H $\vec{S} = \left[\vec{a}^2 \cos^2(\omega t + \vec{b}) + 400 \cdot \sin(\omega t + \vec{b}) \right] \cdot \frac{1}{100\pi} \cdot \vec{a} \vec{k} = \frac{8}{\pi} \cdot \vec{a} \vec{k}$ [= μ. ν = 4π. 10⁻⁷. 25. 10⁷ = 100π Ω] uk 11 m2 = K 11 m2. a². ½ + 200 = 800 → a² = 1100 → [a = 20 [3] a + 20 Pobritus eléptes V= W = N = 2T.109 = 8T pollm

$$\frac{1}{1} = \frac{1}{\mu \omega} |x|^{2} \times E$$

$$\frac{1}{1} =$$

Problema 6.1

1) Polarización elíptica, coincidiendo los semiejes de la elipse con los ejes X e Y.

2)
$$\vec{H} = \frac{kE_0}{\mu_0 \omega} \left[-3e^{i\left(\omega t - kz - \frac{\pi}{4}\right)} \vec{u}_x + e^{i\left(\omega t - kz + \frac{\pi}{4}\right)} \vec{u}_y \right]$$

3)
$$\vec{S} = \frac{kE_0^2}{\mu_0 \omega} \left[\cos^2 \left(\omega t - kz + \frac{\pi}{4} \right) + 9\cos^2 \left(\omega t - kz - \frac{\pi}{4} \right) \right] \vec{u}_z; \quad I = \frac{5kE_0^2}{\mu_0 \omega}$$

Problema 6.2

$$\vec{E} = 40\cos(3\pi \cdot 10^9 t - 12\pi y - \pi/2)\vec{u}_x + 40\cos(3\pi \cdot 10^9 t - 12\pi y)\vec{u}_z \text{ Vm}^{-1}$$

$$\vec{H} = \frac{2}{5\pi} \cos(3\pi \cdot 10^9 t - 12\pi y) \vec{u}_x - \frac{2}{5\pi} \cos(3\pi \cdot 10^9 t - 12\pi y - \pi/2) \vec{u}_z \text{ Am}^{-1}$$

$$\vec{S} = \frac{16}{\pi} \vec{u}_y \text{ Wm}^{-2}; \quad I = \frac{16}{\pi} \text{ Wm}^{-2}$$

Problema 6.3

1) Polarización elíptica con los semiejes de la elipse coincidentes con los ejes X e Y.

2)
$$\vec{E} = \frac{\mu_0 \omega H_0}{k} \left[e^{i\left(\omega t - kz + \frac{\pi}{4}\right)} \vec{u}_x - 3e^{i\left(\omega t - kz + \frac{3\pi}{4}\right)} \vec{u}_y \right]$$

3)
$$\vec{S} = \frac{\mu_0 \omega H_0^2}{k} \left[9 \operatorname{sen}^2 \left(\omega t - kz + \frac{\pi}{4} \right) + \cos^2 \left(\omega t - kz + \frac{\pi}{4} \right) \right] \vec{u}_z; \quad I = \frac{5\mu_0 \omega H_0^2}{k}$$

Problema 6.4

1) Dirección de propagación:
$$\frac{3\vec{u}_x + 4\vec{u}_z}{5}$$
. Polarización lineal en la dirección $\frac{2}{3}\vec{u}_x + \frac{1}{6}\sqrt{11}\vec{u}_y - \frac{1}{2}\vec{u}_z$.

2)
$$Z = 12\pi \Omega$$
; $n = 10$

3)
$$\vec{S} = \frac{48}{\pi} \cos^2 \left(15\pi \cdot 10^7 t - 3\pi x - 4\pi z \right) \frac{\left(3\vec{u}_x + 4\vec{u}_z \right)}{5} \text{ Wm}^{-2}; I = \frac{24}{\pi} \text{ Wm}^{-2}$$

Problema 6.5

1) Polarización elíptica, con los semiejes de la elipse coincidentes con los ejes X e Y.

2)
$$\vec{H} = \frac{1}{5\pi} \left[-e^{i\left(2\pi \cdot 10^9 t - 8\pi z - \frac{\pi}{4}\right)} \vec{u}_x + \sqrt{3} e^{i\left(2\pi \cdot 10^9 t - 8\pi z + \frac{\pi}{4}\right)} \vec{u}_y \right] \text{Am}^{-1}$$

Problema 6.6

$$\vec{j}_d = -\frac{3}{5}\cos(\pi \cdot 10^9 t - 4\pi y)\vec{u}_x$$
 Am⁻²

Problema 6.7

$$\theta = \frac{3\pi}{4}; \quad a = 2\pi \text{ Vm}^{-1}; \quad \vec{H} = \frac{2}{15} (\vec{u}_x - 3\vec{u}_z) \cos \left(75\pi \cdot 10^7 t - 20\pi y - \frac{\pi}{4} \right) \text{ Am}^{-1}$$