Geomorphology and ice core proxies

Durban G Keeler

4/17/2018

Overview

- Introduction to paleoclimate
- Glacial geomorphology
- Stable water isotopes
- Ice core reconstructions

- Study of the climate (temperature, moisture, wind vectors, etc.) prior to direct, quantitative observations of climatological variables
- Why would we want to know about climate in the past?

• How do we measure temperature?

- How do we measure temperature?
 - Mercury displacement (traditional thermometers)
 - Changes in electrical properties (digital thermometers)
 - Emission spectrum (satellites, infrared sensors)
- Direct temperature measurements only go back a few hundred years
- How can we estimate temperature before thermometers?
 - Proxies

Paleoclimate proxies

- An indiect measurement of a variable (i.e. the proxy) that is correlated with some other variable of interest (e.g. temperature)
- Percentage of people wearing a coat
- Examples of temperature proxies:
 - Coral distributions
 - Tree ring widths
 - Types and fequency of vegetation/pollen
- Focus on two specific proxies
 - Glacial geomorphology
 - Isotopes in ice cores

Glacial geomorphology

Glacial geomorphology

- Changes in landscape due to presence or changes in nearby glaciers
 - Glacier valleys
 - Moraines
 - Meltwater planes
 - Glacial scouring
 - Glacial erratics

Example of glacial erratic

Example of glacial scour

Review of glacier mass balance

 $\dot{b} = accumulation - ablation$

- What happens if temperatures increase?
- What happens if more snow falls?

$\dot{b} = accumulation - ablation$

Moraines

- Mass of rock and debris pushed by movement of glacier (best preserved in equilibrium)
- Records the extent of a glacier at a specific point in time
- Three types of moraines:
 - Lateral
 - Medial
 - Terminal

Moraines

- We can use moraine positions to reconstruct glacier growth/retreat over time
- We can then make inferences about the changes in climate driving those glacial changes

 Durban G Keeler
 Paleoclimate
 4/17/2018
 17 / 35

Complications

- Different glaciers respond to climate differently
- Features can erode naturallly, or overridden by later glacial events
- Difficult to seperate effects of different climatic variables (e.g. temperature or precipitation?)
- Can be difficult to place a specific moraine set to an absolute point in time

Ice cores

Stable water isotopes

- Focus specifically on two isotope species
 - Deuterium (^2H) and oxygen-18 (^{18}O)
- Stable isotopes (i.e. they do not decay over time)
- Naturally occurring, but in much lower abundance
- Isotopes behave chemically similar to more abundant variety
 - \bullet Forms water molecules (e.g. $H_2^{18}{\it O}$ and $^1H^2H^{18}{\it O})$

Isotope review

• Same element with differing number of neutrons in the nucleus

Fractionation physics

- Although chemically similar, isotopes respond slightly differently due to differences in bond strength and diffusion velocity
- Heavier isotopes (e.g. 2H and ^{18}O) vibrate at a lower frequency and diffuse more slowly (conservation of momentum)
 - Energetically more favorable in lower energy states
- This leads to a fractionation effect i.e. a preference of heavier isotopes go into/remain in lower energy phases
 - Isotopic ratio changes during a phase change

Table 2.1: Natural abundances of oxygen and hydrogen isotopes. After Mook (2001).

Oxygen		Hydrogen	
Isotope	Abundance (%)	Isotope	Abundance (%)
^{16}O	99.76	$^{1}\mathrm{H}$	99.985
¹⁷ O	0.038	² H(D)	0.015
¹⁸ O	0.200	³ H(T)*	$< 10^{-15}$
		*radioactive isotope	

Figure 1: Stable water isotope abundances

- Measure isotopic values as a ratio between the rare isotope and the more common form
 - E.g. ${}^{18}R = \frac{[H_2^{18}O]}{[H_2^{16}O]}$
- More informative when we express these ratios relative to a standard (V-SMOW)
 - $\delta^{18}O = \frac{{}^{18}R_{sample} {}^{18}R_{std}}{{}^{18}R_{ctd}} \times 1000$

 Evaporation leads to a water vapor depleted in heavier isotopes, and remnant liquid water enriched

Durban G Keeler Paleoclimate 4/17/2018 27 / 35

Equilibrium fractionation

- ullet Equilibrium and kinetic fractionation influence final δ values
- In regards to precipitation cycles, most of the isotopic fractionation is governed by equilibrium effects
- Vapor transport gives sufficient time for liquid/vapor constituents to remain in equilibrium
- ullet The amount of equilibrium fractionation is governed by a reaction constant (the 'fractionation factor' lpha)

$$\alpha^{18} O_{water-vapor} = \frac{(^{18} O/^{16} O)_{water}}{(^{18} O/^{16} O)_{vapor}}$$

 At lower temperatures, this fractionation constant is highly temperature-dependent

$$10^3 \cdot \ln(\alpha_b^a) = \frac{A \cdot 10^6}{T^2} + B$$

• (A and B are constants unique to the substances in exchange)

$$10^3 ln(\alpha_b^a) \approx \delta_a - \delta_b = \Delta_b^a$$

• Dansgaard determined an empirical estimate of temperature from $\delta^{18}O$ values:

$$\delta^{18} O \approx 0.62 \cdot T - 15.25$$

• Can be subject to localized variation as well

Paleoclimate reconstruction

Durban G Keeler

Paleoclimate

Paleoclimate reconstruction

Greenland Ice Core $\delta^{18}O$ and Temperature Record

Temperature difference from 1961 to 1990