Project FrailSafe YΔA

Πετράκης Κωνσταντίνος

Preprocessing

- Unbalanced Dataset
 - Non-Frail (0): 213
 - Pre-Frail (1): 227
 - Frail (2): 100

```
# dimiourgw antigrafa twn deigmatvn tis deuteris klasis gia na lavw 200 deigmata
x_copies = list()
v copies = list()
for i in range(len(y)):
     gia tin klasi 2
   if v[i]==2:
       x copies.append(x[i])
       y copies.append(y[i])
# prosthiki twn diplotipwn digmatwn sto dataset
x = np.append(x,np.array(x copies),axis=0)
y = np.append(y,np.array(y copies))
# antikathistw ta nan me to meso oro kathe stilis
df clinical.fillna(df clinical.mean(),inplace=True)
x train,x test,y train,y test = train test split(x,y,test size=0.2,random state=42)
scaler = StandardScaler().fit(x_train)
x train scaled = scaler.transform(x train)
x test scaled = scaler.transform(x test)
```

SVM results

- Accuracy: 67.1875%
- Balanced Accuracy: 69.2082%
- Precision: 71.1451%
- Recall: 69.2082%

SVM CLASSIFIER

clf = svm.SVC(kernel='poly',gamma='auto',decision_function_shape='ovr',probability=True,degree=3,class_weight=None)
clf.fit(x_train_scaled,y_train)

K-NN results

- Accuracy: 73.4375%
- Balanced Accuracy: 72.7055%
- Precision: 71.6373%
- Recall: 72.7055%

K-NN CLASIFIER

clf = neighbors.KNeighborsClassifier(10,weights='distance')
clf.fit(x_train_scaled,y_train)

Random Forests results

- Accuracy: 83.59375%
- Balanced Accuracy: 82.2606%
- Precision: 83.0398%
- Recall: 82.2606%

RANDOM FOREST CLASSIFIER

clf = RandomForestClassifier(n_estimators=12, max_depth=None,bootstrap=False) # random_state=1
clf.fit(x_train_scaled,y_train)

Συγκεντρωτικά Αποτελέσματα

Μετρική	SVM	K-NN	RandomForests
Accuracy	67.18%	73.43%	83.59%
Balanced_Accuracy	69.20%	72.70%	82.26%
Precision	71.14%	71.63%	83.03%
Recall	69.20%	72.70%	82.26%

Preprocessing beacons

- 46782 δείγματα μετά και την αφαίρεση των λανθασμένων part_id
- Μετακίνηση: 5sec.
 - Αλλαγή δωματίου σε <5 sec θεωρείται σφάλμα των sensors.
- End_time begin_time 5 ο χρόνος που πέρασε στο δωμάτιο με timestamp begin_time.

Clustering

```
x = np.array(df)
x = Normalizer().fit_transform(x)
```

```
kmeans = KMeans(n_clusters=3).fit(x)
kmeans_labels = kmeans.labels_
ag = AgglomerativeClustering(n_clusters=3,linkage='single').fit(x)
ag_labels = ag.labels_
spectral = SpectralClustering(n_clusters=3,affinity='precomputed').fit(laplacian_kernel(x))
laplacian_labels = spectral.labels_
spectral = SpectralClustering(n_clusters=3,affinity='nearest_neighbors').fit(x)|
spectral_nn_labels = spectral.labels_
```

- laplacian_kernel: $k(x,y) = \exp(-\gamma ||x y||_1)$,
 - $\gamma = 1/\text{features}_\text{count}$

Clustering Results

- K-means: 0.321828
- Aggromerative: 0.379261
- Spectral (laplacian_kernel): 0.343358
- Spectral (nearest neighbors): 0.347362
- Me PCA
 - K-means: 0.371994
 - Agglomerative: 0.221339
 - Spectral (laplacian kernel): 0.339670
 - Spectral (nearest neighbors): 0.401819

```
pca = PCA(n_components=0.90)
pca.fit(x)
```

K-means silhouette

Agglomerative silhouette

Laplacian kernel silhouette

Laplacian NN silhouette

Clustering Visualization (1)

Clustering Visualization (2)

Clustering Visualization (3)

Clustering Visualization (Fried)

PCA Visualization

Ευχαριστώ!