Syntax Variable Type label L ::=x, y, zValue label L_c class label Method label L_a abstract type label mValue S, T, U, V, W ::=Type variable p.Ltype selection $T\{z \Rightarrow \overline{D}\}$ refinement Term value $T \wedge T$ intersection type $T \vee T$ $\mathbf{val}\ x = \mathbf{new}\ c;\ t$ new instance union type field selection top type t.m(t)method invocation bottom type $S_c, T_c ::=$ Path Concrete type variable $p.L_c \mid T_c \{z \Rightarrow \overline{D}\} \mid T_c \wedge T_c \mid \top$ p.lselection D ::=Declaration $c ::= T_c \{\overline{d}\}$ Constructor L: S..Utype declaration Initialization l:Tvalue declaration l = vfield initialization $m:S \to U$ method declaration m(x) = tmethod initialization $s ::= \overrightarrow{x \mapsto c}$ $\Gamma ::= \overline{x : T}$ Store Environment Reduction $t \mid s \rightarrow t' \mid s'$ $\frac{y \mapsto T_c \left\{ \overline{l = v'} \ \overline{m(x) = t} \right\} \in s}{y.m_i(v) \mid s \ \rightarrow \ [v/x_i]t_i \mid s}$ $\mathbf{val}\ x = \mathbf{new}\ c;\ t \,|\, s\ \to\ t \,|\, s, x \mapsto c$ (NEW) (MSEL) $\frac{y \mapsto T_c \left\{ \overline{l = v} \ \overline{m(x) = t} \right\} \in s}{y.l_i \mid s \rightarrow v_i \mid s}$ $\frac{t \mid s \rightarrow t' \mid s'}{e[t] \mid s \rightarrow e[t'] \mid s'}$ (CONTEXT) where evaluation context e ::= [] | e.m(t) | v.m(e) | e.l $\Gamma \vdash t : T$ Type Assignment $x:T\in\Gamma$ $\Gamma \vdash t \ni l : T'$ (VAR) (SEL) $\Gamma \vdash x : T$ $\Gamma \vdash t.l : T'$ $y \notin fn(T')$ $\begin{array}{c} \Gamma \vdash T_c \ \mathbf{wfe} \ , \ \overline{T_c} \prec_y \overline{L:S..U} , \overline{D} \\ \Gamma, y: T_c \vdash \overline{S <: U} \ , \ \overline{d}: \overline{D} \ , \ t': T' \end{array}$ $\Gamma \vdash t \ni m : S \rightarrow T$ $\Gamma \, \vdash \, t' : T' \; , \; T' <: S$ (NEW) (MSEL) $\Gamma \vdash t.m(t') : T$ $\Gamma \vdash \operatorname{val} y = \operatorname{new} T_c \{\overline{d}\}; t' : T'$ $\Gamma \vdash d : D$ Declaration Assignment $\Gamma \vdash v : V', V' <: V$ $\Gamma \vdash S \text{ wfe}$ (VDECL) $\Gamma, x: S \, \vdash \, t: T' \, , \, T' <: T$ $\Gamma \vdash (l = v) : (l : V)$ (MDECL) $\Gamma \vdash (m(x) = t) : (m : S \rightarrow T)$ Figure 1. The DOT Calculus: Syntax, Reduction, Type / Declaration Assignment

Figure 5. The DOT Calculus: Well-Formedness

$$\begin{array}{lll} \operatorname{dom}(\overline{D} \wedge \overline{D'}) & = & \operatorname{dom}(\overline{D}) \cup \operatorname{dom}(\overline{D'}) \\ \operatorname{dom}(\overline{D} \vee \overline{D'}) & = & \operatorname{dom}(\overline{D}) \cap \operatorname{dom}(\overline{D'}) \\ (D \wedge D')(L) & = & L: (S \vee S')..(U \wedge U') & \text{if } (L:S..U) \in \overline{D} \text{ and } (L:S'..U') \in \overline{D'} \\ & = & D(L) & \text{if } L \notin \operatorname{dom}(\overline{D'}) \\ & = & D'(L) & \text{if } L \notin \operatorname{dom}(\overline{D}) \\ (D \wedge D')(m) & = & m: (S \vee S') \rightarrow (U \wedge U') & \text{if } (m:S \rightarrow U) \in \overline{D} \text{ and } (m:S' \rightarrow U') \in \overline{D'} \\ & = & D(m) & \text{if } m \notin \operatorname{dom}(\overline{D'}) \\ & = & D'(m) & \text{if } m \notin \operatorname{dom}(\overline{D}) \\ & = & D'(m) & \text{if } m \notin \operatorname{dom}(\overline{D}) \\ & = & D(l) & \text{if } l \notin \operatorname{dom}(\overline{D}) \\ & = & D(l) & \text{if } l \notin \operatorname{dom}(\overline{D}) \\ & = & D(l) & \text{if } l \notin \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \notin \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \notin \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l) & \text{if } l \in \operatorname{dom}(\overline{D}) \\ & = & D'(l)$$

Sets of declarations form a lattice with the given meet \land and join \lor , the empty set of declarations as the top element, and the bottom element $\overline{D_\perp}$, there $\overline{D_\perp}$ is the set of declarations that contains for every term label l the declaration $l:\bot$, for every type label L the declaration $L:\top$... and for every method label m the declaration $m:\top\to\bot$.

Figure 2. The DOT Calculus: Declaration Lattice