Processos Estacionários

Bibliografia Básica:

- Enders, W. *Applied Econometric Time Series*. Cap. 2.
- Bueno, R. L. S. *Econometria de Séries Temporais*. Cap. 2 e 3.
- Box, G.E. & Jenkins, G. M.. Time series analysis: forecasting and control. Cap. 3.
- Morettin, P. A. *Análise de Séries Temporais*. Cap. 2 e 5.

Revisão Conceitos

Processo estocástico: é uma coleção de variáveis aleatórias ordenadas no tempo.

Processo Estocástico Estacionário: média e variância são constantes ao longo do tempo; covariância depende da distância entre os valores da série.

Processo Ergódico: coeficiente de autocorrelação (autocovariância) tende a zero, para $t \to \infty$.

Processo Estocástico Não Estacionário: média e/ou variância serão dependentes do tempo.

Processos Puramente Aleatórios, chamado de "ruído branco", são processos que possuem média zero, variância constante e correlação serial igual a zero:

$$\epsilon_t \sim RB(0,\sigma_\epsilon^2)$$

Processos Auto-Regressivos

Um processo estocástico auto-regressivo pode ser modelado por um modelo autoregressivo de ordem p. De acordo com esse modelo, uma série temporal y_t é descrita apenas por seus valores passados e pelo ruído branco ϵ_t :

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_p y_{t-p} + \epsilon_t$$
 (1)

A versão mais simples de um modelo AR é aquela em que y_t depende somente de y_{t-1} e de ϵ_t . Diz-se, nesse caso, que o modelo é autorregressivo de ordem 1, o que se indica abreviadamente por AR(1).

Processo AR(1)

Um modelo AR(1) é dado por:

$$y_t = c + \phi y_{t-1} + \epsilon_t \tag{2}$$

em que ϵ_t é um processo de ruído branco, ou seja, $\epsilon_t \sim RB(0,\sigma_\epsilon^2)$.

A Eq. (2) é uma equação em diferença não homogênea de primeira ordem. A trajetória deste processo depende do valor de ϕ :

 $|\phi| \ge 1$: choques em $\{y_t\}$ se acumulam ao longo do tempo e, portanto, o **processo é não estacionário**:

- ullet $|\phi| > 1$: o processo cresce infinitamente;
- $ullet \phi = 1$: o processo tem uma raiz unitária.

 $|\phi| < 1$: choques em $\{y_t\}$ se dissipam ao longo do tempo e, portanto, o **processo é estacionário**:

Processo AR(1)

Vamos considerar o caso em que $|\phi| < 1$, ou seja processos estacionários.

Aplicando o operador de defasagem $L^{j}y_{t}=y_{t-j}$ na Eq (2) temos:

$$(1 - \phi L)y_t = c + \epsilon_t \tag{3}$$

A partir do Teorema de Séries Geométricas¹, a solução estável do processo expresso em (3) é dada por uma soma infinita de erros passados com pesos decrescentes:

$$y_t = \left[\frac{c}{1-\phi}\right] + \epsilon_t + \phi \epsilon_{t-1} + \phi^2 \epsilon_{t-2} + \dots = \mu + \sum_{k=0}^{\infty} \phi^k \epsilon_{t-k}$$
 (4)

 $^{^1 \}text{Se } |\phi| < 1,$ a série geométrica $a + a\phi + a\phi^2 + \ldots + a\phi^n + \ldots$ converge para $a/(1+\phi)$ quando $n \longrightarrow \infty.$

Características do Processo AR(1)

O valor esperado e os momentos de segunda ordem do processo AR(1) expresso na Eq. (2) são dados por:

Valor esperado:

$$\mu = E(y_t) = \left[\frac{c}{1 - \phi}\right] \tag{5}$$

Variância:

$$\gamma_0 = E(y_t - \mu)^2 = \left[\frac{\sigma_\epsilon^2}{1 - \phi^2}\right] \tag{6}$$

Covariância:

$$\gamma_j = E(y_t - \mu)(y_{t-j} - \mu) = \left[\frac{\phi^j}{1 - \phi^2}\right] \sigma_{\epsilon}^2 \tag{7}$$

Condições (5)-(7): processo $\{y_t\}$ é estacionário.

Eq (7): evidência do padrão geometricamente decrescente das autocovariâncias.

Processos AR(p)

Considerando uma série temporal estacionária y_t , $t \in \mathcal{Z}_+$, um processo autorregressivo de ordem p, denotado por AR(p), pode ser escrito como:

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_p y_{t-p} + \epsilon_t = \epsilon_t + \sum_{i=1}^p \phi_i y_{t-i}$$
 (8)

sendo $\epsilon_t \sim RB(0, \sigma_\epsilon^2)$. A Eq (8) pode ainda ser representada por:

$$(1 - \phi_1 L - \phi_2 L^2 - \phi_3 L^3 - \dots - \phi_p L^p) y_t = c + \epsilon_t$$
 (9)

Este processo AR(p) é estacionário se todas as raízes do polinômio resultante têm um módulo menor que 1, ou seja, se as raízes estiverem dentro do círculo unitário.

Identificação de um Processo Auto-Regressivo

A identificação de um modelo auto-regressivo é feita a partir da análise das funções de autocorrelação (FAC) e autocorrelação parcial (FACP).

■ FAC: função de autocorrelação decai com o aumento das defasagens.

■ FACP: define a defasagem ou o valor de *p* do modelo AR.

Função de Autocorrelação de Modelos Autorregressivos

A função de autocorrelação associada ao modelo autorregressivo é encontrada multiplicando-se ambos os membros de (8) por y_{t-k} , ou seja,

$$y_{t-k}y_t = \phi_1 y_{t-k} y_{t-1} + \phi_2 y_{t-k} y_{t-2} + \dots + \phi_p y_{t-k} y_{t-p} + \epsilon_t y_{t-k}$$
(10)

Tomando os valores esperados em (10), e considerando que $E[\epsilon_t y_{t-k}] = 0$:

$$\gamma_k = \phi_1 \gamma_{k-1} + \phi_2 \gamma_{k-2} + \dots + \phi_p \gamma_{k-p}$$
 (11)

em que $\gamma_k = Cov(y_{t-k}, y_t) = E[y_t y_{t-k}]$ é o coeficiente de covariância.

Função de Autocorrelação de Modelos Autorregressivos

Dividindo (11) por γ_0 , tem-se:

$$\rho_{k} = \phi_{1} \rho_{k-1} + \phi_{2} \rho_{k-2} + \dots + \phi_{p} \rho_{k-p}, \quad k > 0$$
 (12)

Tomando $k=1,\,2,\,\ldots,\,p$ na equação (12), obtém-se um conjunto de equações lineares para $\phi_1,\,\phi_2,\,\ldots,\,\phi_p$ em termos de $\rho_1,\,\rho_2,\,\ldots,\,\rho_p$:

Estas equações são denominadas equações de Yule-Walker.

Função de Autocorrelação Parcial de Modelos Autorregressivos

Definição:

Função de autocorrelação parcial: ferramenta para determinar a ordem *p* do processo autorregressivo.

Definição:

O coeficiente de autocorrelação parcial: de ordem k, denotado por ϕ_{kk} , é definido como sendo o último coeficiente de um modelo AR(k), ajustado à série temporal $y_t,\ t=1,\ldots,N$.

Função de autocorrelação parcial - FACP

Supondo que para uma série y_t , t = 1, 2, ..., N, um modelo AR(1), isto é, de ordem k = 1, foi ajustado:

$$y_t = \phi_1 y_{t-1} + \epsilon_t$$

Tem-se que o coeficiente de autocorrelação parcial deste modelo é $\phi_{11} = \phi_1$.

■ Supondo que, para a série y_t se ajuste um modelo AR(2):

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \epsilon_t$$

O coeficiente de autocorrelação parcial para este modelo é $\phi_{22} = \phi_2$.

Função de autocorrelação parcial - FACP

Seja ϕ_{kj} o coeficiente de um modelo AR(k), tal que, ϕ_{kk} é o último coeficiente do modelo, o coeficiente de autocorrelação parcial ϕ_{kj} satisfaz a equação:

$$\rho_{j} = \phi_{k1}\rho_{j-1} + \phi_{k2}\rho_{j-2} + \dots + \phi_{k(k-1)}\rho_{j-k+1} + \phi_{kk}\rho_{j-k}, \quad j = 1, 2, \dots, k$$
(14)

a partir das quais obtêm-se as equações de Yule-Walker. Resolvendo estas equações sucessivamente para $k=1,\ 2,\ \ldots$, obtém-se:

$$\phi_{11} = \rho_1; \quad \phi_{22} = \frac{\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & \rho_2 \end{vmatrix}}{\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & 1 \end{vmatrix}} = \frac{\rho_2 - \rho_1^2}{1 - \rho_1^2}; \quad \phi_{33} = \frac{\begin{vmatrix} 1 & \rho_1 & \rho_1 \\ \rho_1 & 1 & \rho_2 \\ \rho_2 & \rho_1 & \rho_3 \end{vmatrix}}{\begin{vmatrix} 1 & \rho_1 & \rho_2 \\ \rho_1 & 1 & \rho_1 \\ \rho_2 & \rho_1 & 1 \end{vmatrix}}$$

Erro Padrão das Estimativas de Autocorrelação e Autocorrelação Parcial

Para um número de observações T suficientemente grande, a variância das estimativas dos coeficientes de autocorrelação e autocorrelação parcial pode ser *aproximada* por 1/T.

Para a ACF, testa-se os valores de $\hat{\rho}_j$ forem estatisticamente diferentes de zero, ou seja, se a hipótese nula $H_0: \rho_j = 0$ contra a $H_1: \rho_j \neq 0$ é rejeitada.

Para a PACF, testa-se a estimativa $\hat{\phi}_k$ é significativamente diferente de zero, ou seja, a hipótese nula de coeficiente igual a zero. Assim, rejeita-se H_0 se:

$$|\widehat{\phi}_k| > 2/\sqrt{N}$$

assumindo nível de significância de 95%.

Exemplo - Séries de Vazões – Usina Hidroelétrica de Furnas

Série de Vazões Médias Mensais - Usina Hidroelétrica de Furnas.

Correlograma para a série de vazões médias mensais – Furnas

Componente sazonal

Componente sazonal: analisa-se a média e o desvio padrão.

Estima-se a média $\widehat{\mu}_m$ e o desvio padrão $\widehat{\sigma}_m$ de cada mês da seguinte forma:

$$\widehat{\mu}_m = \frac{1}{n} \sum_{i=1}^n y_{i,m}$$
 (15)

$$\widehat{\sigma}_m = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (y_{i,m} - \widehat{\mu}_m)^2}$$
 (16)

onde $y_{i,m}$ denota a vazão no ano $i=1, 2, \ldots, n$ e no mês $m=1, 2, \ldots, 12$.

Componente sazonal

Média e desvio padrão para a série de vazões de Furnas.

Meses	Média	Desvio Padrão	
Janeiro	1747,6	677,65	
Fevereiro	1662,6	628,75	
Março	1479,6	597,72	
Abril	1010,1	344,34	
Maio	746,7	231,65	
Junho	618,1	247,53	
Julho	508,8	154,40	
Agosto	420,3	121,54	
Setembro	441,2	227,98	
Outubro	515,6	223,32	
Novembro	729,9	311,62	
Dezembro	1239,6	460,91	

Componente sazonal

Média e desvio padrão mensal para a série de vazões de Furnas.

Remoção do componente sazonal

Para remover o componente sazonal procede-se da seguinte forma:

$$z_{t,m} = \frac{x_{t,m} - \widehat{\mu}_m}{\widehat{\sigma}_m} \tag{17}$$

sendo $\widehat{\mu}_m$ e $\widehat{\sigma}_m$ as estimativas da média e do desvio padrão de cada mês, respectivamente.

Série de vazões dessazonalizada

Estimativas das autocorrelações

k	r_k	k	r_k	k	r _k
1	0,7158	13	0,1874	25	0,0587
2	0,6193	14	0,1837	26	0,0275
3	0,5427	15	0,1835	27	0,0167
4	0,4660	16	0,1795	28	-0,0020
5	0,4187	17	0,1645	29	-0,0023
6	0,3496	18	0,1730	30	-0,0048
7	0,2931	19	0,1565	31	0,0002
8	0,2754	20	0,1336	32	0,0211
9	0,2614	21	0,1228	33	0,0041
10	0,2344	22	0,0787	34	0,0199
11	0,2220	23	0,0905	35	0,0386
12	0,1872	24	0,0707	36	0,0490

Função de autocorrelação

Estimativa da Função de Autocorrelação— Série de Furnas Dessazonalizada.

Função de autocorrelação parcial - FACP

Supondo um modelo AR(2) para a série de Furnas dessazonalida, ou seja,

$$z_t = \phi_1 z_{t-1} + \phi_2 z_{t-2} + a_t$$

sendo $\phi_2=\phi_{22}$ e ϕ_1 é a estimativa do coeficiente ϕ_{21} , que são obtidos por:

$$r_j = \widehat{\phi}_{21} r_{j-1} + \widehat{\phi}_{22} r_{j-2}$$

j = 1, 2. Resolvendo o sistema linear, tem-se:

$$\widehat{\phi}_1 = \widehat{\phi}_{21} = \frac{r_1(1 - r_2)}{1 - r_1^2} = 0,5588$$

$$\widehat{\phi}_2 = \widehat{\phi}_{22} = \frac{r_2 - r_1^2}{1 - r_1^2} = 0,2193$$

Estimativas dos Coeficientes de Autocorrelação Parcial

k	$\hat{\phi}_{kk}$	k	$\hat{\phi}_{kk}$	k	$\hat{\phi}_{kk}$
1	0,7158	13	0,0376	25	0,0001
2	0,2193	14	0,0244	26	-0,0580
3	0,0854	15	0,0345	27	-0,0019
4	0,0119	16	0,0144	28	-0,0272
5	0,0393	17	-0,0097	29	0,0101
6	-0,0328	18	0,0365	30	0,0129
7	-0,0212	19	-0,0208	31	0,0243
8	0,0528	20	-0,0297	32	0,0379
9	0,0482	21	0,0033	33	-0,0422
10	-0,0015	22	-0,0679	34	0,0178
11	0,0215	23	0,0539	35	0,0474
12	-0,0310	24	-0,0227	36	0,0176

Erro padrão e identificação do modelo AR(p)

Intervalo de confiança é dado por:

$$|\widehat{\phi}_{kk}| > 2DP[\widehat{\phi}_{kk}] \simeq 2\frac{1}{\sqrt{N}} = 2\frac{1}{\sqrt{900}} = 0,0667$$

Estimativa da função de autocorrelação parcial - série de Furnas.

Simulando um processo AR(p)

1. Gere um processo AR(1) estável com 1000 observações e $\phi=0,9$, ou seja,

$$y_t = 0.9y_{t-1} + \epsilon_t$$

3. Gere um processo AR(1) estável com 1000 observações e $\phi=-0,8$, ou seja,

$$y_t = -0.8y_{t-1} + \epsilon_t$$

3. Gere um processo AR(2) estável com 1000 observações e $\phi_1=0,75$ e $\phi_2=-0.5$, ou seja,

$$y_t = 0.75y_{t-1} - 0.5y_{t-2} + \epsilon_t$$

Processo de Média Móvel – MA(q)

Um processo é denominado MA(q), em que q indica a defasagem mais elevada (em inglês, lag) de choques, podendo ser escrito como:

$$y_t = \mu + \epsilon_t - \theta_1 \epsilon_{t-1} - \theta_2 \epsilon_{t-2} - \dots - \theta_q \epsilon_{t-q}$$
 (18)

ou,

$$y_t - \mu = (1 - \theta_1 L - \theta_2 L^2 - \dots - \theta_q L^q) \epsilon_t$$
 (19)

Processo MA(1)

Os momentos do processo MA(1) expresso são dados por:

$$E(y_t) = E(\mu + \epsilon_t - \theta \epsilon_{t-1}) = \mu \tag{20}$$

$$\gamma_0 = E(y_t - \mu)^2 = (1 + \theta^2)\sigma_{\epsilon}^2$$
 (21)

$$\gamma_j = E(y_t - \mu)(y_{t-j} - \mu) = \theta \sigma_{\epsilon}^2, j = 1$$
 (22)

Para valores de $j > 1, \gamma_j = 0$.

Como o valor médio é constante, variância é finita e autocovariância não depende do tempo (do lag), o processo MA é fracamente estacionário, independente do valor de θ .

Inversão de um processo MA(1) em $AR(\infty)$

A transformação ou inversão de um processo MA(1) em um processo AR(∞) envolve a substituição de ϵ_{t-1} na equação $y_t = \epsilon_t - \theta \epsilon_{t-1}$ e substituições sucessivas dos ϵ defasados que aparecem em cada etapa do processo. O resultado é:

$$y_t = \epsilon_t - \theta y_{t-1} - \theta^2 y_{t-2} - \theta^3 y_{t-3} - \dots$$
 (23)

Sendo y_t estacionária, sua representação como em (23) requer que $|\theta| < 1$. Caso contrário, o resultado será explosivo. Essa restrição imposta sobre θ é chamada **condição de invertibilidade**.

Identificando processos MA(q)

Empiricamente, um processo MA(q) pode ser detectado por suas primeiras q autocorrelações significativas e um padrão de decaimento lento ou alternado de suas autocorrelações parciais.

Como a condição de invertibilidade estabelece que $|\theta| < 1$, a FACP do MA(q) decresce à medida que k aumenta mas o decrescimento não segue nenhum padrão fixo.

Simulando um processo MA(q)

1. Gere um processo MA(1) estável com 1000 observações e $\theta=0,8$, ou seja,

$$y_t = 0.8\epsilon_{t-1} + \epsilon_t$$

2. Gere um processo MA(2) estável com 1000 observações e $\theta_1=-0,6$ e $\theta_2=0,8$, ou seja,

$$y_t = -0.6\epsilon_{t-1} + 0.8\epsilon_{t-2} + \epsilon_t$$

Processos ARMA(p,q)

Uma série temporal pode ter sido gerada por processo misto autorregressivo de média móvel, abreviadamente ARMA(p,q). Para uma série de tempo estacionária $\{y_t\}$, um processo misto é definido como:

$$y_t = c + \phi_1 y_{t-1} + \ldots + \phi_p y_{t-p} - \theta_1 \epsilon_{t-1} - \ldots - \theta_q \epsilon_{t-q} + \epsilon_t$$
 (24)

Ou, escrevendo com os operadores de defasagem, tem-se:

$$y_{t} = \frac{c}{(1 + \phi_{1}L + \dots + \phi_{p}L^{p})} + \frac{(1 - \theta_{1}L - \dots - \theta_{q}L^{q})}{(1 + \phi_{1}L + \dots + \phi_{p}L^{p})} \epsilon_{t}$$
(25)

A condição de estacionariedade depende somente dos parâmetros AR e não dos componentes da parte MA.

Simulando um processo ARMA(p,q)

1. Gere um processo ARMA(1,1) estável com 1000 observações e $\phi=0,8$ e $\theta=0,6$, ou seja,

$$y_t = 0.8y_{t-1} + 0.6\epsilon_{t-1} + \epsilon_t$$

2. Gere um processo ARMA(2,1) estável com 1000 observações e $\phi_1=0,6,\phi_2=0,4$ e $\theta_1=0,8,$ ou seja,

$$y_t = -0.3y_{t-1} + 0.5y_{t-2} + 0.8\epsilon_{t-1} + \epsilon_t$$

Exercícios

 Com base nas FAC e FACP da série taxa mensal de inflação medida pelo IPCA entre janeiro de 1995 e maio de 2007, arquivo IPCA.xlsx, identifique o modelo de série temporal.

Sugestão de Leituras

- Enders, W. Applied Econometric Time Series. Cap. 2.
- Bueno, R. L. S. *Econometria de Séries Temporais*. Cap. 3.
- Box, G.E. & Jenkins, G. M.. Time series analysis: forecasting and control. Cap. 6,7,8.
- Morettin, P. A. *Análise de Séries Temporais*. Cap. 5.