Boosting Algorithms (AdaBoost, Gradient Boosting & XGBoost) - Mobile Price Classification dataset

Boosting

- Boosting is an ensemble modeling technique that attempts to build a strong classifier from the number of weak classifiers.
- It is done by building a model by using weak models in series.
- A random sample of data is selected, fitted with a model and then trained sequentially—that is, each
 model tries to compensate for the weaknesses of its predecessor. With each iteration, the weak rules
 from each individual classifier are combined to form one, strong prediction rule.

Types of Boosting

- · Adaptive boosting
- · Gradient boosting
- · Extreme gradient boosting

Objective

 The objective is to build the best model which can predict the price range of a mobile phone using the given features.

Applied Boosting models -

- Adaboost
- · Gradient Boosting
- XGBoost

Dataset source & brief

- The dataset is divided into Train & Test & has been sourced from Kaggle.
- It includes 21 columns having different specification of mobile. Price_range is the target variable with value of 0(low cost), 1(medium cost), 2(high cost) and 3(very high cost)

Import the libraries

In [1]:

```
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

Load and read the dataset

In [2]:

train = pd.read_csv(r"C:\Users\manme\Documents\Priya\Stats and ML\Dataset\New folder\tra
test = pd.read_csv(r"C:\Users\manme\Documents\Priya\Stats and ML\Dataset\New folder\test

In [3]:

train.head(1)

Out[3]:

	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt
0	842	0	2.2	0	1	0	7	0.6	188

1 rows × 21 columns

•

In [4]:

test.head(1)

Out[4]:

	id	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_
0	1	1043	1	1.8	1	14	0	5	0.1	1
1 rows × 21 columns										
4										•

Basic info

In [5]:

print(train.shape, test.shape) ## checking shape

(2000, 21) (1000, 21)

In [33]:

df.duplicated().sum() #check duplicates

Out[33]:

0

In [35]:

df.describe().T.style.background_gradient(cmap='Blues') # Statistical summary

Out[35]:

	count	mean	std	min	25%
Battery	3000.000000	1241.849000	437.063804	500.000000	863.750000
Bluetooth	3000.000000	0.502000	0.500079	0.000000	0.000000
Clockspeed	3000.000000	1.528467	0.820358	0.500000	0.700000
Dualsim	3000.000000	0.512000	0.499939	0.000000	0.000000
FrontCameramegapixels	3000.000000	4.404000	4.383742	0.000000	1.000000
4G	3000.000000	0.510000	0.499983	0.000000	0.000000
Internal_Memory	3000.000000	32.581667	18.152810	2.000000	16.000000
Mobile_Depth	3000.000000	0.507000	0.285969	0.100000	0.200000
Weight_of_mobile	3000.000000	140.003000	35.213809	80.000000	109.000000
Number_of_cores_processor	3000.000000	4.456333	2.289361	1.000000	2.000000
PrimaryCamera_megapixels	3000.000000	9.962333	6.073923	0.000000	5.000000
Pixel_Resolution_Height	3000.000000	639.112333	440.202998	0.000000	277.750000
Pixel_Resolution_Width	3000.000000	1247.601667	434.666168	500.000000	865.000000
RAM	3000.000000	2129.141333	1085.694231	256.000000	1212.750000
Screen Height	3000.000000	12.202667	4.251151	5.000000	9.000000
Screen_Width	3000.000000	5.616667	4.322494	0.000000	2.000000
Talk_time	3000.000000	11.035667	5.474400	2.000000	6.000000
3G	3000.000000	0.759667	0.427357	0.000000	1.000000
Touch_screen	3000.000000	0.502000	0.500079	0.000000	0.000000
Wifi	3000.000000	0.507000	0.500034	0.000000	0.000000
Price_range	2000.000000	1.500000	1.118314	0.000000	0.750000
4					>

In [6]:

```
train['data'] = 'train' # adding a new variable to both datsets
test['data'] = 'test'
```

In [7]:

```
train.isnull().sum() # checking null values
```

Out[7]:

```
battery_power
                  0
blue
                  0
                  0
clock_speed
dual_sim
                  0
                  0
fc
four_g
                  0
                  0
int_memory
                  0
m_dep
mobile_wt
                  0
                  0
n_cores
рс
                  0
px_height
                  0
px_width
                  0
                  0
ram
sc_h
                  0
SC_W
talk_time
                  0
                  0
three_g
touch_screen
wifi
                  0
price_range
                  0
                  0
data
```

In [8]:

dtype: int64

```
test.isnull().sum() # checking null values
```

```
Out[8]:
```

```
id
                  0
battery_power
blue
                  0
                  0
clock_speed
                  0
dual_sim
                  0
fc
                  0
four_g
                  0
int memory
                  0
m_dep
                  0
mobile_wt
n_cores
                  0
рс
                  0
                  0
px_height
px_width
                  0
                  0
ram
                  0
sc_h
                  0
SC_W
talk time
                  0
```

In [9]:

```
test.drop(['id'],axis=1,inplace=True) # dropping id from test data
```

In [10]:

```
for i in train.columns:
   print("----",
   print()
   print(set(train[i].tolist()))
   print()
{501, 502, 503, 504, 506, 507, 508, 509, 510, 511, 512, 513, 514, 516,
517, 518, 519, 520, 523, 525, 527, 528, 530, 531, 532, 534, 535, 536, 5
37, 538, 539, 541, 543, 544, 545, 546, 547, 548, 550, 551, 553, 554, 55
5, 557, 558, 559, 560, 561, 563, 564, 565, 568, 569, 570, 571, 574, 57
6, 577, 578, 579, 580, 581, 582, 583, 584, 586, 587, 589, 590, 591, 59
2, 593, 594, 595, 596, 598, 599, 600, 601, 602, 603, 605, 606, 608, 60
9, 610, 612, 614, 615, 616, 617, 618, 621, 622, 623, 625, 626, 627, 62
8, 630, 633, 634, 635, 636, 637, 638, 640, 641, 642, 643, 644, 645, 64
8, 649, 651, 652, 654, 657, 658, 659, 660, 662, 663, 664, 665, 666, 66
7, 668, 671, 672, 673, 674, 675, 676, 680, 681, 682, 683, 684, 685, 68
6, 687, 688, 689, 691, 694, 695, 696, 697, 701, 702, 703, 704, 705, 70
6, 707, 708, 709, 710, 712, 713, 714, 715, 717, 718, 719, 720, 721, 72
2, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 737, 739, 74
0, 741, 742, 743, 744, 745, 748, 752, 753, 754, 755, 757, 759, 761, 76
3, 764, 765, 767, 768, 769, 770, 771, 772, 774, 775, 776, 777, 781, 78
3, 786, 787, 788, 790, 793, 794, 796, 797, 798, 799, 801, 802, 803, 80
4, 805, 807, 808, 809, 811, 812, 814, 815, 816, 817, 818, 819, 820, 82
```

```
In [11]:
```

```
for i in test.columns:
   print("-----", i ,
         "-----")
   print()
   print(set(test[i].tolist()))
   print()
 ----- battery_power ------
{500, 504, 507, 510, 511, 517, 518, 519, 520, 521, 524, 529, 530, 532,
533, 534, 535, 536, 541, 542, 543, 544, 546, 547, 549, 553, 556, 557, 5
58, 559, 560, 562, 564, 567, 569, 572, 574, 575, 576, 578, 579, 582, 58
3, 586, 588, 590, 591, 597, 600, 602, 603, 607, 608, 609, 613, 617, 62
1, 623, 624, 626, 628, 630, 632, 635, 636, 639, 640, 643, 644, 645, 64
6, 649, 650, 651, 652, 654, 656, 657, 658, 660, 664, 666, 667, 669, 67
1, 674, 675, 676, 679, 681, 683, 685, 687, 690, 694, 695, 697, 700, 70
1, 702, 703, 706, 708, 709, 710, 712, 716, 717, 718, 721, 723, 725, 72
6, 727, 732, 733, 734, 735, 739, 740, 743, 744, 750, 756, 757, 758, 76
1, 762, 763, 767, 768, 769, 770, 776, 781, 782, 785, 786, 788, 790, 79
2, 794, 795, 796, 797, 800, 803, 804, 805, 812, 815, 817, 819, 820, 82
2, 823, 825, 829, 831, 833, 837, 839, 840, 841, 842, 844, 848, 852, 85
3, 854, 859, 861, 863, 868, 871, 873, 875, 876, 877, 880, 881, 882, 88
5, 886, 888, 890, 894, 895, 896, 897, 898, 899, 900, 904, 905, 906, 90
7, 911, 913, 914, 915, 916, 917, 918, 922, 923, 926, 927, 929, 930, 93
3, 934, 936, 937, 940, 941, 942, 944, 945, 946, 948, 950, 951, 955, 95
8, 959, 964, 965, 966, 968, 971, 972, 974, 975, 976, 977, 979, 980, 98
In [12]:
df = pd.concat([train, test], axis=0)
                                         #concatenating both datasets
In [13]:
df.shape
          #checking revised shape
Out[13]:
(3000, 22)
In [14]:
df.columns
            #column names
Out[14]:
Index(['battery_power', 'blue', 'clock_speed', 'dual_sim', 'fc', 'four_g',
       'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height',
       'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time',
                                                     'three_g',
       'touch_screen', 'wifi', 'price_range', 'data'],
     dtype='object')
```

In [15]:

In [16]:

```
df.columns #renamed columns
```

Out[16]:

In [17]:

```
df.info() #checking info
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3000 entries, 0 to 999
Data columns (total 22 columns):
```

#	Column	Non-Null Count	Dtype
		2000	
0	Battery	3000 non-null	int64
1	Bluetooth	3000 non-null	int64
2	Clockspeed	3000 non-null	float64
3	Dualsim	3000 non-null	int64
4	FrontCameramegapixels	3000 non-null	int64
5	4G	3000 non-null	int64
6	Internal_Memory	3000 non-null	int64
7	Mobile_Depth	3000 non-null	float64
8	Weight_of_mobile	3000 non-null	int64
9	Number_of_cores_processor	3000 non-null	int64
10	PrimaryCamera_megapixels	3000 non-null	int64
11	Pixel_Resolution_Height	3000 non-null	int64
12	Pixel_Resolution_Width	3000 non-null	int64
13	RAM	3000 non-null	int64
14	Screen Height	3000 non-null	int64
15	Screen_Width	3000 non-null	int64
16	Talk_time	3000 non-null	int64
17	3G	3000 non-null	int64
18	Touch_screen	3000 non-null	int64
19	Wifi	3000 non-null	int64
20	Price_range	2000 non-null	float64
21	data	3000 non-null	object
dtyp	es: float64(3), int64(18),	object(1)	-
	ry usage: 539.1+ KB	- • •	

localhost:8889/notebooks/Documents/Priya/Stats and ML/Case Study/Boosting Algorithms (AdaBoost%2C Gradient Boosting %26 XGBoost) - ...

In [18]:

```
#replacing data with Train & Test
train = df[df['data']=='train']
test = df[df['data']=='test']
```

Exploratory Data Analysis

In [19]:

In [20]:

```
df['Price_range'].value_counts().plot(kind='pie',explode=[0.1,0.1,0.1,0.1],autopct='%0.1
plt.title('Target variable distribution')
plt.show()
```


In [21]:

```
plt.figure(figsize=(6,4))
sns.histplot(x='Battery', data=df,palette="plasma")
plt.title('Battery')
plt.show()
```


In [22]:

```
plt.figure(figsize=(6,4))
sns.countplot(x='Bluetooth',data=df)
plt.title('Bluetooth')
plt.show()
```


In [23]:

```
plt.figure(figsize=(6,4))
sns.countplot(x='Clockspeed', data=df,palette="plasma")
plt.title('Clock speed')
plt.show()
```


In [24]:

```
sns.boxplot(x='Mobile_Depth',y='Weight_of_mobile',palette='plasma',data=df)
plt.title('Mobile depth & weight')
plt.show()
```


In [25]:

```
plt.figure(figsize=(8,6))
sns.scatterplot(x='PrimaryCamera_megapixels',y='FrontCameramegapixels',hue='Price_range'
plt.title('Camera Pixels')
plt.show()
```


In [26]:

```
plt.figure(figsize=(8,6))
sns.scatterplot(x='Pixel_Resolution_Height',y='Pixel_Resolution_Width',hue='Price_range'
plt.title('Pixel height & width')
plt.show()
```


In [27]:

```
plt.figure(figsize=(10,6))
sns.violinplot(x='Number_of_cores_processor',y='Talk_time',hue='Price_range',data=df)
plt.title('Core Processor & talk time')
plt.show()
```


In [28]:

```
sns.scatterplot(x='Internal_Memory',y='RAM',hue='Price_range',data=df)
plt.title('Memory')
plt.show()
```


In [29]:

```
plt.figure(figsize=(8,6))
sns.barplot(y='4G',x='3G',hue='Price_range',data=df)
plt.title('3G & 4G')
plt.show()
```


In [30]:

```
sns.histplot(x='Screen Height',y='Screen_Width', hue='Price_range', data=df)
plt.title('Screen Height & Weight')
plt.show()
```


In [32]:

df.hist(figsize=(20,15)) plt.show()

In [36]:

```
plt.figure(figsize=(15,10))
sns.heatmap(df.corr(),annot=True,cmap='viridis') # Correlation by using Heatmap
plt.show()
```


Data Splitting

In [37]:

```
# split the train data into x and y
x = train.drop(['Price_range', 'data'], axis=1)
y = train[['Price_range']]
```

In [38]:

```
x.head(2)
```

Out[38]:

	Battery	Bluetooth	Clockspeed	Dualsim	FrontCameramegapixels	4G	Internal_Memory	N
0	842	0	2.2	0	1	0	7	
1	1021	1	0.5	1	0	1	53	
4								>

```
In [39]:
```

```
y.head(2)
```

Out[39]:

	Price_	range
0		1.0
1		2.0

In [40]:

```
y.value_counts()
```

Out[40]:

```
Price_range
                500
1.0
                500
2.0
                500
3.0
                500
dtype: int64
```

In [41]:

```
test = test.drop(['Price_range', 'data'], axis=1)
```

In [42]:

```
test.head(2)
```

Out[42]:

	Battery	Bluetooth	Clockspeed	Dualsim	FrontCameramegapixels	4G	Internal_Memory	Λ
0	1043	1	1.8	1	14	0	5	
1	841	1	0.5	1	4	1	61	
4							l	>

In [43]:

```
# split the training data into train and test
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2, random_state=1)
```

Model Building

1. Adaptive boosting or AdaBoost

 Yoav Freund and Robert Schapire are credited with the creation of the AdaBoost algorithm. This method operates iteratively, identifying misclassified data points and adjusting their weights to minimize the training error. The model continues optimize in a sequential fashion until it yields the strongest predictor.

In [44]:

```
# Model building
from sklearn.ensemble import AdaBoostClassifier
ada = AdaBoostClassifier()
ad=ada.fit(x_train, y_train)
# Predict
y_pred_ad = ada.predict(x_test)
y_pred_ad_train = ada.predict(x_train)
# Evaluate
from sklearn.metrics import confusion_matrix,classification_report, accuracy_score
accuracy_ad=accuracy_score(y_test,y_pred_ad)
accuracy_ad_train=accuracy_score(y_train,y_pred_ad_train)
print('AdaBoost Train accuracy:', accuracy_score(y_train, y_pred_ad_train))
print('----'*5)
print('AdaBoost Test accuracy:', accuracy_score(y_test, y_pred_ad))
```

```
AdaBoost Train accuracy: 0.70125
AdaBoost Test accuracy: 0.7225
```

Cross validation - Adaboost

In [45]:

```
from sklearn.model_selection import cross_val_score
train_accuracy_ad = cross_val_score(ada,x_train, y_train, cv=10)
crossval_train_ad=train_accuracy_ad.mean()
test_accuracy_ad = cross_val_score(ada,x_test, y_test, cv=10)
crossval_test_ad=test_accuracy_ad.mean()
print('AdaBoost Train accuracy after Cross validation:', crossval_train_ad)
print('----'*5)
print('AdaBoost Test accuracy after Cross validation:', crossval_test_ad)
```

```
AdaBoost Train accuracy after Cross validation: 0.6525000000000001
AdaBoost Test accuracy after Cross validation: 0.67
```

2. Gradient Boosting

 Jerome H. Friedman developed gradient boosting, which works by sequentially adding predictors to an ensemble with each one. However, instead of changing weights of data points like AdaBoost, the gradient boosting trains on the residual errors of the previous predictor. The name, gradient boosting, is used since it combines the gradient descent algorithm and boosting method.

In [46]:

```
# Model building
from sklearn.ensemble import GradientBoostingClassifier
gdb = GradientBoostingClassifier()
gd=gdb.fit(x_train, y_train)
# Predict
y_pred_gd = gdb.predict(x_test)
y_pred_gd_train = gdb.predict(x_train)
# Evaluate
accuracy_gd=accuracy_score(y_test,y_pred_gd)
accuracy_gd_train=accuracy_score(y_train,y_pred_gd_train)
print('GradientBoosting Train accuracy:', accuracy_score(y_train, y_pred_gd_train))
print('----'*5)
print('GradientBoosting Test accuracy:', accuracy_score(y_test, y_pred_gd))
```

```
GradientBoosting Train accuracy: 0.999375
GradientBoosting Test accuracy: 0.8825
```

Cross validation - Gradient Boosting

In [47]:

```
train_accuracy_gd = cross_val_score(gdb,x_train, y_train, cv=10)
crossval_train_gd=train_accuracy_gd.mean()
test_accuracy_gd= cross_val_score(gdb,x_test, y_test, cv=10)
crossval_test_gd=test_accuracy_gd.mean()
print('GradientBoosting Train accuracy after Cross validation:', crossval_train_gd)
print('----'*5)
print('GradientBoosting Test accuracy after Cross validation:', crossval_test_gd)
```

```
GradientBoosting Train accuracy after Cross validation: 0.9125
GradientBoosting Test accuracy after Cross validation: 0.825
```

3. Extreme Gradient Boosting or XGBoost

• XGBoost is an implementation of gradient boosting that's designed for computational speed and scale. It leverages multiple cores on the CPU, allowing for learning to occur in parallel during training.

In [48]:

```
# Model building
from xgboost import XGBClassifier
xgb = XGBClassifier()
xg=xgb.fit(x_train, y_train)
# Predict
y_pred_xg = xgb.predict(x_test)
y_pred_xg_train = xgb.predict(x_train)
# Evaluate
accuracy_xg=accuracy_score(y_test,y_pred_xg)
accuracy_xg_train=accuracy_score(y_train,y_pred_xg_train)
print('XGBoost Train accuracy:', accuracy_score(y_train, y_pred_xg_train))
print('----'*5)
print('XGBoost Test accuracy:', accuracy_score(y_test, y_pred_xg))
```

XGBoost Train accuracy: 1.0 XGBoost Test accuracy: 0.89

Cross Validation - XGBoost

In [49]:

```
train_accuracy_xg= cross_val_score(xgb,x_train, y_train, cv=10)
crossval_train_xg=train_accuracy_xg.mean()
test_accuracy_xg = cross_val_score(xgb,x_test, y_test, cv=10)
crossval_test_xg=test_accuracy_xg.mean()
print('XGBoost Train accuracy after Cross validation:', crossval_train_xg)
print('----'*5)
print('XGBoost Test accuracy after Cross validation:', crossval_test_xg)
```

```
XGBoost Train accuracy after Cross validation: 0.906875
XGBoost Test accuracy after Cross validation: 0.817499999999999
```

Combining all Models accuracy in tabular form

In [50]:

```
Models=['Adaboost','GradientBoosting','XGboost']
Trainacc=[accuracy_ad_train,accuracy_gd_train, accuracy_xg_train]
Testacc=[accuracy_ad,accuracy_gd, accuracy_xg]
Cross_val_train=[crossval_train_ad,crossval_train_gd,crossval_train_xg]
Cross val test=[crossval test ad,crossval test gd,crossval test xg]
```

In [52]:

```
Combined_accuracy=pd.DataFrame({'Model name':Models,'Train Accuracy':Trainacc,'Test Accu
                             'CV Train acc':Cross_val_train,'CV Test acc':Cross_val_test
print(Combined_accuracy)
```

	Model name	Train Accuracy	Test Accuracy	CV Train acc	CV Test
acc					
0	Adaboost	0.701250	0.7225	0.652500	0.6
700					
1 Gra	adientBoosting	0.999375	0.8825	0.912500	0.8
250					
2	XGboost	1.000000	0.8900	0.906875	0.8
175					

Voting ensemble

- Voting is an ensemble method that combines the performances of multiple models to make predictions.
- Here we will combine all 3 Boosting models.

In [53]:

```
from sklearn.ensemble import VotingClassifier
```

In [54]:

```
evc=VotingClassifier(estimators=[('ad',ad),('gd',gd),('xg',xg)],voting='hard')
model_evc=evc.fit(x_train,y_train)
pred_evc=evc.predict(x_test)
pred_evc_train=evc.predict(x_train)
accuracy_evc=accuracy_score(y_test,pred_evc)
accuracy_evc_train=accuracy_score(y_train,pred_evc_train)
print('Voting ensemble train accuracy:', accuracy_score(y_train, pred_evc_train))
print('----'*5)
print('Voting ensemble train accuracy:', accuracy_score(y_test, pred_evc))
```

```
Voting ensemble train accuracy: 0.999375
Voting ensemble train accuracy: 0.895
```

Conclusion

- By looking at Correlation matrix we figured that the most important features are RAM, battery and pixel width in predicting a mobile phone's price as these variables are highly correlated to price range.
- We used Boosting algorithms- AdaBoost, Gradient Boosting & XGBoost to predict mobile phones price's using all of the features in our dataset.
- After building the different models the best performing model was Gradient Boosting and AdaBoost performed worst.
- Gradient Boosting gave train accuracy of 99% and 88% before cross validation.
- After cross validation it gave Train accuracy of 91% and Test accuracy of 82%.
- · We used hard voting ensemble algorithm and it gave us Train accuracy of 99% and Test accuracy of 89%.

• Concluding the above points we can say that Gradient Boosting model is the best model to predict price range of mobile phone.

In []:		