

Claims:

1. Process for preparing fluoromethyl-substituted heterocycles of the formula (I)

5 in which

R¹ is hydrogen, fluorine or chlorine,

R² is hydrogen, fluorine or chlorine,

R³ is C₁-C₆-alkyl,

10 A is a 5-membered heterocycle selected from the group of pyrazole which is substituted by R⁴ in the 1-position, thiazole which is substituted by R⁴ in the 2-position and oxazole which is substituted by R⁴ in the 2-position,

R⁴ is C₁-C₄-alkyl, C₃-C₆-cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl or phenyl,

15 characterized in that

a) chloromethyl-substituted heterocycles of the formula (II)

in which R¹, R², R³ and A are each as defined above

are converted in the presence of a fluorinating agent and optionally in the presence
20 of a diluent.

2. Process according to Claim 1, characterized in that the starting materials used are chloromethyl-substituted heterocycles of the formula (II),

in which

25 R¹ is hydrogen, fluorine or chlorine,

R² is hydrogen, fluorine or chlorine,

R³ is C₁-C₄-alkyl,

A is a 5-membered heterocycle selected from the group of

where in each case the bond marked by * is joined to the -CCIR¹R² group and the other bond to the ester group,

R⁴ is methyl, ethyl, n-propyl, isopropyl, cyclopropyl, cyclopentyl, cyclohexyl or phenyl.

3. Process according to one of Claims 1 and 2, characterized in that the starting materials used are one of the following compounds of the formulae (II-a), (II-b), (II-c) or (II-d)

10

in which R¹, R² and R³ in each case are as defined in Claim 1 or 2.

4. Process according to Claim 3, characterized in that R¹ is chlorine, R² is hydrogen and R³ is methyl or ethyl.
 5. Process according to one or more of Claims 1 to 4, characterized in that the fluorinating agent used is an alkali metal fluoride, cobalt(III) fluoride, halogen fluoride, antimony fluoride, molybdenum fluoride, hydrogen fluoride, hydrogen fluoride/pyridine mixture, tertiary ammonium hydrofluoride or trialkylamine hydrofluoride of the general formula n HF / N(Alk)₃ (where n is 1, 2 or 3, and Alk is C₁-C₄-alkyl).
 6. Process according to one or more of Claims 1 to 5, characterized in that the fluorinating agent used is 3 HF / N(Et)₃ (Franz reagent), 3 HF / N(n-Bu)₃ or HF/pyridine (Olah's reagent).

7. Process according to one or more of Claims 1 to 6, characterized in that the fluorinating agent used is 3 HF / N(Et)₃ (Franz reagent) or 3 HF / N(n-Bu)₃.
8. Process according to one or more of Claims 1 to 7, characterized in that it is carried out at temperatures of 80°C to 170°C.
- 5
9. Process according to one or more of Claims 1 to 8, characterized in that it is carried out at temperatures of 120°C to 150°C.
- 10 10. Use of fluoromethyl-substituted heterocycles of the formula (I)

in which

- R¹ is hydrogen, fluorine or chlorine,
- R² is hydrogen, fluorine or chlorine,
- 15 R³ is C₁-C₆-alkyl,
- A is a 5-membered heterocycle selected from the group of pyrazole which is substituted by R⁴ in the 1-position, thiazole which is substituted by R⁴ in the 2-position and oxazole which is substituted by R⁴ in the 2-position,
- R⁴ is C₁-C₄-alkyl, C₃-C₆-cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl or phenyl
- 20

to prepare fungicidally active carboxamides of the formula (VII)

in which

- R¹, R² and A are each as defined above,
- 25 R⁷ is hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulphanyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or
- 30

bromine atoms; (C_1 - C_8 -alkyl)carbonyl, (C_1 - C_8 -alkoxy)carbonyl, (C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, (C_3 - C_8 -cycloalkyl)carbonyl; (C_1 - C_6 -haloalkyl)carbonyl, (C_1 - C_6 -haloalkoxy)carbonyl, ($halo-C_1$ - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, (C_3 - C_8 -halo-cycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or $-C(=O)C(=O)R^{10}$, $-CONR^{11}R^{12}$ or $-CH_2NR^{13}R^{14}$,

5 R^8 is hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,

n is 1, 2, 3 or 4, preferably 1 or 2,

10 R^9 is optionally mono- to pentasubstituted phenyl having identical or different substituents which are selected from halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_2 -haloalkyl or C_1 - C_2 -haloalkoxy having in each case 1 to 5 fluorine, chlorine and/or bromine atoms, hydroxyimino- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxyimino- C_1 - C_4 -alkyl, C_1 - C_4 -haloalkoxyimino- C_1 - C_4 -alkyl, or, in the case of two adjacent substituents, from difluoromethylenedioxy or tetrafluoroethylenedioxy,

15 or is C_3 - C_{10} -cycloalkyl or C_3 - C_{10} -bicycloalkyl which is in each case optionally mono- to tetrasubstituted, identically or differently, by halogen and/or C_1 - C_4 -alkyl, or unsubstituted C_2 - C_{20} -alkyl, or C_1 - C_{20} -alkyl which is mono- or polysubstituted, identically or differently, by fluorine, chlorine, bromine, iodine and/or C_3 - C_6 -cycloalkyl, in which case the cycloalkyl moiety may itself optionally be mono- to tetrasubstituted, identically or differently, by fluorine, chlorine, bromine, iodine, C_1 - C_4 -alkyl and/or C_1 - C_4 -haloalkyl,

20 or is C_2 - C_{20} -alkenyl or C_2 - C_{20} -alkynyl which is in each case optionally mono- or polysubstituted, identically or differently, by fluorine, chlorine, bromine, iodine and/or C_3 - C_6 -cycloalkyl in which case the cycloalkyl moiety may itself optionally be mono- to tetrasubstituted, identically or differently, by fluorine, chlorine, bromine, iodine, C_1 - C_4 -alkyl and/or C_1 - C_4 -haloalkyl,

25 R^{10} is hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 -cycloalkyl; C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, $halo-C_1$ - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 -halo-cycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

30 R^{11} and R^{12} are each independently hydrogen, C_1 - C_8 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 -cycloalkyl; C_1 - C_8 -haloalkyl, $halo-C_1$ - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

35 R^{11} and R^{12} are also, together with the nitrogen atom to which they are bonded, a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted, identically or differently, by halogen or C_1 - C_4 -alkyl, and the heterocycle may contain 1 or 2 further, nonadjacent heteroatoms from the group of oxygen, sulphur and NR^{15} ,

R^{13} and R^{14} are each independently hydrogen, C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl; C_1 - C_8 -haloalkyl, C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

5 R^{13} and R^{14} are also, together with the nitrogen atom to which they are bonded, a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted, identically or differently, by halogen or C_1 - C_4 -alkyl, and the heterocycle may contain 1 or 2 further, nonadjacent heteroatoms from the group of oxygen, sulphur and NR^{15} ,
 R^{15} is hydrogen or C_1 - C_6 -alkyl.

10 11. Process for preparing fungicidally active carboxamides of the formula (VII)

in which

R^1 is hydrogen, fluorine or chlorine,

R^2 is hydrogen, fluorine or chlorine,

15 A is a 5-membered heterocycle selected from the group of pyrazole which is substituted by R^4 in the 1-position, thiazole which is substituted by R^4 in the 2-position and oxazole which is substituted by R^4 in the 2-position,

R^4 is C_1 - C_4 -alkyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl or phenyl,

20 R^7 is hydrogen, C_1 - C_8 -alkyl, C_1 - C_6 -alkylsulphonyl, C_1 - C_6 -alkylsulphonyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 -cycloalkyl; C_1 - C_6 -haloalkyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphonyl, C_1 - C_4 -haloalkylsulphonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl; halo-(C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, halo-(C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms;

25 (C_1 - C_8 -alkyl)carbonyl, (C_1 - C_8 -alkoxy)carbonyl, (C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, (C_3 - C_8 -cycloalkyl)carbonyl; (C_1 - C_6 -haloalkyl)carbonyl, (C_1 - C_6 -haloalkoxy)carbonyl, (halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, (C_3 - C_8 -halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or $-C(=O)C(=O)R^{10}$, $-CONR^{11}R^{12}$ or $-CH_2NR^{13}R^{14}$,

R^8 is hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,

n is 1, 2, 3 or 4, preferably 1 or 2,

R⁹ is optionally mono- to pentasubstituted phenyl having identical or different substituents which are selected from halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy having in each case 1 to 5 fluorine, chlorine and/or bromine atoms, hydroxyimino-C₁-C₄-alkyl, C₁-C₄-alkoxyimino-C₁-C₄-alkyl, C₁-C₄-haloalkoxyimino-C₁-C₄-alkyl, or, in the case of two adjacent substituents, from difluoromethylenedioxy or tetrafluoroethylenedioxy,

5 or is C₃-C₁₀-cycloalkyl or C₃-C₁₀-bicycloalkyl which is in each case optionally mono- to tetrasubstituted, identically or differently, by halogen and/or C₁-C₄-alkyl, or unsubstituted C₂-C₂₀-alkyl, or C₁-C₂₀-alkyl which is mono- or polysubstituted, identically or differently, by fluorine, chlorine, bromine, iodine and/or C₃-C₆-cycloalkyl, in which case the cycloalkyl moiety may itself optionally be mono- to tetrasubstituted, identically or differently, by fluorine, chlorine, bromine, iodine, C₁-C₄-alkyl and/or C₁-C₄-haloalkyl,

10 or is C₂-C₂₀-alkenyl or C₂-C₂₀-alkynyl which is in each case optionally mono- or polysubstituted, identically or differently, by fluorine, chlorine, bromine, iodine and/or C₃-C₆-cycloalkyl in which case the cycloalkyl moiety may itself optionally be mono- to tetrasubstituted, identically or differently, by fluorine, chlorine, bromine, iodine, C₁-C₄-alkyl and/or C₁-C₄-haloalkyl,

15 R¹⁰ is hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halo-cycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

20 R¹¹ and R¹² are each independently hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

25 R¹¹ and R¹² are also, together with the nitrogen atom to which they are bonded, a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted, identically or differently, by halogen or C₁-C₄-alkyl, and the heterocycle may contain 1 or 2 further, nonadjacent heteroatoms from the group of oxygen, sulphur and NR¹⁵,

R¹³ and R¹⁴ are each independently hydrogen, C₁-C₈-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

30 R¹³ and R¹⁴ are also, together with the nitrogen atom to which they are bonded, a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted, identically or differently, by halogen or C₁-C₄-alkyl, and the heterocycle may contain 1 or 2 further, nonadjacent heteroatoms from the group of oxygen, sulphur and NR¹⁵,

35 R¹⁵ is hydrogen or C₁-C₆-alkyl,

characterized in that fluoromethyl-substituted heterocycles of the formula (I)

in which

R¹, R² and A are each as defined above,

5 R³ is C₁-C₆-alkyl

are hydrolyzed in the presence of a base and optionally in the presence of a diluent, and the free acid is subsequently either converted to the corresponding acid chloride in the presence of a chlorinating agent and optionally in the presence of a diluent or the free acid is reacted directly with aniline derivatives of the formula (VIII)

10

in which R⁷, R⁸, n and R⁹ are each as defined above

optionally in the presence of a catalyst, optionally in the presence of a condensing agent, optionally in the presence of an acid binding agent and optionally in the presence of a diluent.

15

12. Process according to Claim 11, characterized in that the compounds of the formula (I) are obtained by the process according to Claim 1.

13. Chloromethyl-substituted heterocycles of the formula (II)

20

in which R¹, R², R³ and A are each as defined in Claim 1.

14. Compounds of the formula (II-a)

in which R¹, R² and R³ are each as defined in Claim 1.

15. Compounds of the formula (II-b)

5 in which R¹, R² and R³ are each as defined in Claim 1.

16. Compounds of the formula (II-c)

in which R¹, R² and R³ are each as defined in Claim 1.

10

17. Compounds of the formula (II-d)

in which R¹, R² and R³ are each as defined in Claim 1.