Exercice N°03

Partie I

Soit g la fonction numérique définie sur $]0 ;+\infty[$ par : $g(x) = x^2 - 2 \ln x$.

- 1. Etudier le sens de variation de g.
- 2. En déduire le signe de g(x) sur $]0; +\infty[$.

Partie II

Soit f la fonction numérique définie sur $]0 ;+\infty[$ par $f(x) = \frac{x}{2} + \frac{1 + \ln x}{x}$.

- 1. Déterminer la limite de f en 0 et limite de f en $+\infty$.
- 2. Montrer que la droite (Δ) d'équation $y = \frac{x}{2}$ est asymptote à la courbe de la fonction $f:(C_1)$

Montrer que (Δ) coupe (C_j) en un point A que l'on déterminera.

3. Etudier le sens de variation de f et dresser son tableau de variation.

Partie III

On considère la suite numérique (x_n) définie par $x_n = e^{\frac{n-2}{2}}$ pour tout nombre entier naturel n.

1. Montrer que (x_n) est une suite géométrique dont on déterminera le premier terme et la

raisc

- 2. Montrer que (x_n) est une suite croissante.
- 3. Pour tout entier naturel n, on pose $a_n = 4 \int_{x_n}^{x_{n-1}} (f(x) \frac{x}{2}) dx$
 - a). Donner une interprétation géométrique de a_n
- b). Montrer que $a_n = \frac{2n+1}{2}$ pour tout nombre entier naturel n.
 - c). En déduire que (a_n) est une suite arithmétique.
