On Deep Multi-View Representation Learning (2015 ICML)

Weiran Wang, Raman Arora, Karen Livescu, Jeff Bilmes

Discussed by: Yizhe Zhang

April 15th, 2016

Outline

Introduction

2 Method

Multi-view representation learning

- In many applications, we have access to multiple views of data:
 - Audio + video (Kidron et al., 2005; Chaudhuri et al., 2009)
 - Audio + articulation (Arora & Livescu, 2013)
 - Images + text (Hardoonetal., 2004; Socher&Li, 2010; Hodosh et al., 2013)
 - Parallel text in two language (Vinokourov et al., 2003; Haghighi et al., 2008)
- The task is to leverage multiple-view information to learn a better representation (than single view).
- At training time, one attempt to learn the latent representations from paired two-view training set.
- At test time, only primary view is available.

DNN-based multiview feature learning

- Suppose we have access to paired observations from two views, denoted $(x_1, y_1), ..., (x_N, y_N)$, where N is the sample size.
- Split autoencoders (Ngiam et al. (2011)) minimize the sum of reconstruction errors for the two views

$$\min_{\mathbf{W_f}, \mathbf{W_p}, \mathbf{W_q}} \frac{1}{N} \sum_{i=1}^{N} (||\mathbf{x}_i - \mathbf{p}(\mathbf{f}(\mathbf{x}_i))||^2 + ||\mathbf{y}_i - \mathbf{q}(\mathbf{f}(\mathbf{x}_i))||^2)$$
 (1)

Reconstructed x Reconstructed y p q 1

Canonical correlation analysis (CCA)

- Given two data matrix $\mathbf{X} = [\boldsymbol{x}_1,...,\boldsymbol{x}_N]^T, \mathbf{Y} = [\boldsymbol{y}_1,...,\boldsymbol{y}_M]^T$, canonical-correlation analysis (CCA) first seeks vectors $\boldsymbol{u}_1 \in \mathbb{R}^N$ and $\boldsymbol{v}_1 \in \mathbb{R}^M$ to maximize the correlation $\rho = \operatorname{corr}(\boldsymbol{u}_1^T\mathbf{X}, \boldsymbol{v}_1^T\mathbf{Y})$.
- $oldsymbol{\circ}$ For identifiability issue, one may add constraint on $oldsymbol{u}_1^T \mathbf{X} \mathbf{X}^T oldsymbol{u}_1$ and $oldsymbol{v}_1^T \mathbf{Y} \mathbf{Y}^T oldsymbol{v}_1$
- Then one seeks vectors minimizing the same correlation, subject to the constraint that $(\boldsymbol{u}_2^T\mathbf{X}, \boldsymbol{v}_2^T\mathbf{Y})$ are uncorrelated with the $(\boldsymbol{u}_1^T\mathbf{X}, \boldsymbol{v}_1^T\mathbf{Y})$
- This procedure may be continued up to $\min(N, M)$ times.

Deep canonical correlation analysis (DCCA)

- Andrew et al. (2013) propose a DNN extension of CCA termed deep CCA.
- In DCCA, the canonical correlation of the extract features for each view is maximized

Figure: DCCA

Deep canonical correlation analysis (DCCA) Cont'd

• Specifically, the optimization function can be written as ¹

$$\min_{\mathbf{W}_{f}, \mathbf{W}_{g}, \mathbf{U}, \mathbf{V}} \frac{1}{N} tr(\mathbf{U}^{T} f(\mathbf{X}) g(\mathbf{Y}) \mathbf{V}^{T})$$
 (2)

s.t.
$$\mathbf{U}^{T}(\frac{1}{N}\mathbf{f}(\mathbf{X})\mathbf{f}(\mathbf{X})^{T} + r_{x}\mathbf{I})\mathbf{U} = \mathbf{I}, \text{(whitening)}$$
 (3)

$$\mathbf{V}^{T}(\frac{1}{N}\mathbf{g}(\mathbf{Y})\mathbf{g}(\mathbf{Y})^{T} + r_{y}\mathbf{I})\mathbf{V} = \mathbf{I}, (\text{whitening})$$
 (4)

$$u_i^T f(\mathbf{X}) g(\mathbf{Y})^T v_j = 0, \text{ for } i \neq j \text{(orthogonal)}$$
 (5)

where $\mathbf{X} = [\boldsymbol{x}_1,...,\boldsymbol{x}_N]$, $\mathbf{Y} = [\boldsymbol{y}_1,...,\boldsymbol{y}_N]$, $\mathbf{U} = [\boldsymbol{u}_1,...,\boldsymbol{u}_L]$ and $\mathbf{V} = [\boldsymbol{v}_1,...,\boldsymbol{v}_L]$. L denote the feature dimension. r_x,r_y are regularization parameters (De Bie & De Moor, 2003).

¹optimization the DCCA requires full data by whitening constraints. The authors claims a sufficiently large minibatch will be enough for estimating the covariances, thus SGD is still valid

Outline

Introduction

2 Method

Deep canonically correlated autoencoders (DCCAE)

- They propose a model that optimizes the combination of *canonical correlation* and the *reconstruction errors* of the autoencoders.
- **Interpretation:** "The DCCAE objective offers a trade-off between the information captured in the (input, feature) mapping within each view, and the information in the (feature, feature) relationship"

Figure: DCCAE

Deep canonically correlated autoencoders (DCCAE) Cont'd

· Specifically, the optimization function can be written as

$$\min_{\mathbf{W}_{f}, \mathbf{W}_{g}, \mathbf{W}_{g}, \mathbf{U}, \mathbf{V}} - \frac{1}{N} tr(\mathbf{U}^{T} f(\mathbf{X}) g(\mathbf{Y})^{T} \mathbf{V})$$
 (6)

$$+ \frac{\lambda}{N} \sum_{i=1}^{N} (||\boldsymbol{x}_i - \boldsymbol{p}(\boldsymbol{f}(\boldsymbol{x}_i))||^2 + ||\boldsymbol{y}_i - \boldsymbol{q}(\boldsymbol{g}(\boldsymbol{y}_i))||^2)$$
 (7)

s.t.
$$\mathbf{U}^{T}(\frac{1}{N}\mathbf{f}(\mathbf{X})\mathbf{f}(\mathbf{X})^{T} + r_{x}\mathbf{I})\mathbf{U} = \mathbf{I},$$
 (8)

$$\mathbf{V}^{T}(\frac{1}{N}\mathbf{g}(\mathbf{Y})\mathbf{g}(\mathbf{Y})^{T} + r_{y}\mathbf{I})\mathbf{V} = \mathbf{I},$$
(9)

$$\boldsymbol{u}_i^T \boldsymbol{f}(\mathbf{X}) \boldsymbol{g}(\mathbf{Y})^T \boldsymbol{v}_j = 0, \text{ for } i \neq j$$
 (10)

Corrlated autoencoders (CorrAE)

• They further relax the uncorrelated feature constraint of DCCAE (i.e. $u_i^T f(\mathbf{X})$, $v_j^T g(\mathbf{Y})$ etc. can be correlated), which they called correlated autoencoders (CorrAE)

$$\min_{\mathbf{W}_{f}, \mathbf{W}_{g}, \mathbf{W}_{p}, \mathbf{W}_{q}, \mathbf{U}, \mathbf{V}} - \frac{1}{N} \operatorname{tr}(\mathbf{U}^{T} f(\mathbf{X}) g(\mathbf{Y})^{T} \mathbf{V})$$
(11)

$$+ \frac{\lambda}{N} \sum_{i=1}^{N} (||\boldsymbol{x}_i - \boldsymbol{p}(\boldsymbol{f}(\boldsymbol{x}_i))||^2 + ||\boldsymbol{y}_i - \boldsymbol{q}(\boldsymbol{g}(\boldsymbol{y}_i))||^2)$$
(12)

$$s.t. \boldsymbol{u}_i^T \boldsymbol{f}(\mathbf{X}) \boldsymbol{f}(\mathbf{X})^T \boldsymbol{u}_i = \boldsymbol{v}_i^T \boldsymbol{g}(\mathbf{Y}) \boldsymbol{g}(\mathbf{Y})^T \boldsymbol{v}_i = N, \ 1 \le i \le L.$$
 (13)

• They demonstrate in experiments that this relaxation results in a large performance gap. Therefore, the constraint 10 is necessary.

Minimum-distance autoencoders (DistAE)

 The whitening constraints complicate the optimization of CCA-based objectives. Thus they also consider another discrepancy objective to substitute CCA objective.

$$\min_{\mathbf{W}_{f}, \mathbf{W}_{g}, \mathbf{W}_{p}, \mathbf{W}_{q}} \frac{||f(x_{i}) - g(y_{i})||^{2}}{||f(x_{i})||^{2} + ||g(y_{i})||^{2}}$$
(14)

$$+ \frac{\lambda}{N} \sum_{i=1}^{N} (||x_i - p(f(x_i))||^2 + ||y_i - q(g(y_i))||^2)$$
 (15)

• This objective is unconstrained and can be factorized by each training sample, so normal SGD applies using small minibatches.

Outline

Introduction

2 Method

- They compare the following methods in the multi-view learning setting on MNIST classification, speech recognition, and word pair semantic similarity.
 - Baseline: Original data without any transformation.
 - DNN-based models: SplitAE, CorrAE, DCCA, DCCAE, and DistAE.
 - Linear CCA (CCA)
 - Kernel CCA approximations: Two approximation methods: FKCCA (random Fourier features), NKCCA (Nyström approximation)

Noisy MNIST digits

- \bullet MNIST dataset. Rescale to [0,1], with 60K/10K images for training/testing.
 - View 1: Add independent random uniform noise.
 - **View 2**: Rotate the images at angles uniformly drawn from $[\pi/4, \pi/4]$.
- "A good multi-view learning algorithm should be able to extract features that disregard the noise".
- Criteria:
 - ACC: (Clustering accuracy) How well the spectral clustering of projected view 1 matches with Ground truth.
 - NMI: (Clustering accuracy) Normalized mutual information.
 - **Error**: Classification error of a linear SVM on the projections.

Method	ACC (%)	NMI (%)	Error (%)
Baseline	47.0	50.6	13.1
CCA (L = 10)	72.9	56.0	19.6
SplitAE ($L = 10$)	64.0	69.0	11.9
CorrAE ($L = 10$)	65.5	67.2	12.9
DistAE ($L=20$)	53.5	60.2	16.0
FKCCA(L = 10)	94.7	87.3	5.1
NKCCA(L = 10)	95.1	88.3	4.5
DCCA (L = 10)	97.0	92.0	2.9
DCCAE ($L = 10$)	97.5	93.4	2.2

Figure: Performance comparison on the test set of noisy MNIST digits (view 1)

Noisy MNIST digits

- They measure the class separation visually by t-SNE embedding.
- The DCCA and DCCAE manage to map digits of the same identity to similar locations while suppressing the rotational variation.
- Overall, DCCAE gives the cleanest embedding.
- The learned mixing weight hyperparameter λ is very small (10^{-3}) .

Figure: t-SNE embedding of the projected test set of noisy MNIST (view 1)

Acoustic-articulatory data for speech recognition

- Wisconsin X-Ray MicroBeam (XRMB) corpus. Two views: speech and articulatory measurements.
- Split the XRMB data to 35/8/2/2 speakers for feature learning/recognizer training/tuning/testing.
- Criteria: Phone error rates (PERs) by using an HMM recognizer.

Method	Mean (std) PER (%)		
Baseline	34.8 (4.5)		
CCA	26.7 (5.0)		
SplitAE	29.0 (4.7)		
CorrAE	30.6 (4.8)		
DistAE	33.2 (4.7)		
FKCCA	26.0 (4.4)		
NKCCA	26.6 (4.2)		
DCCA	24.8 (4.4)		
DCCAE	24.5 (3.9)		

Figure: Mean and standard deviations of PERs over 6 folds obtained by each o

Multilingual data for word embeddings

- Learn a vectorial embedding representation of bigram (AN: adjective-noun, VN verb-noun). Two views: English and German.
- Tuning and test splits (of size 649/1,972) for each subset.
- **Criteria:** Spearmans correlation of the bigram representation between two languages.

Method	AN	VN	Avg.
Baseline	45.0	39.1	42.1
CCA	46.6	37.7	42.2
SplitAE	47.0	45.0	46.0
CorrAE	43.0	42.0	42.5
DistAE	43.6	39.4	41.5
FKCCA	46.4	42.9	44.7
NKCCA	44.3	39.5	41.9
DCCA	48.5	42.5	45.5
DCCAE	49.1	43.2	46.2

Figure: Spearmans correlation (ρ) for bigram similarities.

