XMAC02 Métodos Matemáticos para Análise de Dados

- Importante para realizar teste de hipótese usando software
- Probabilidade de que a hipótese nula é correta
 - \blacksquare Se p Value < α , rejeita-se a hipótese nula
 - \blacksquare Se p Value $> \alpha$, confirma-se a hipótese nula
- Exemplo:
 - Se p = 0,045 é possível rejeitar a hipótese nula com α = 0,05

- Condições
 - Amostra aleatória
 - Observações independente
 - Distribuição amostral deve se aproximar de uma
 Distribuição Normal
 - População possui uma distribuição normal e o desvio padrão da população é conhecido

E

■ Tamanho da amostra >= 30

Exemplo: Máquina fabrica perfumes com média $\mu = 150$ ml e desvio padrão $\sigma = 2$ ml. Uma amostra aleatória de 100 frascos de perfume é colhida e observa-se uma média de 150,2 ml. A máquina está operando corretamente (confiança = 95%)?

H₀:
$$\mu = 150 \text{ ml}$$

H_a: $\mu \neq 150 \text{ ml}$ $z_{cal} = \frac{(\bar{x} - \mu)}{\sigma/\sqrt{n}}$

H₀: μ = 150 ml
H_a: μ ≠ 150 ml
$$z_{cal} = \frac{(\bar{x} - \mu)}{\sigma / \sqrt{n}}$$

$$z_{calculado} = (150.2-150)/[2 / sqrt(100)] = 0.2/0.2 = 1$$

 $z_{crítico} = 1,96$

6

$$z_{calculado} = (150.2-150)/[2 / sqrt(100)] = 0.2/0.2 = 1$$

Falha em rejeitar H₀

Condições

- Amostra aleatória
- Observações independente
- Distribuição amostral deve se aproximar de uma
 Distribuição Normal
 - População possui uma distribuição normal e o desvio padrão da população não é conhecido

E

Tamanho da amostra < 30</p>

Exemplo: Máquina fabrica perfumes com média μ = 150 ml. Uma amostra aleatória de 4 frascos de perfume é colhida e observa-se uma média de 151 ml e um desvio padrão amostral s = 2 ml. A máquina está operando corretamente (confiança = 95%)?

H₀:
$$\mu = 150 \text{ ml}$$

H_a: $\mu \neq 150 \text{ ml}$ $tcal = \frac{(\bar{x} - \mu)}{s / \sqrt{n}}$

H₀: μ = 150 ml
H_a: μ ≠ 150 ml
$$tcal = \frac{(\bar{x} - \mu)}{s / \sqrt{n}}$$

$$t_{calculado} = (151-150)/[2 / sqrt(4)] = 1/1 = 1$$

 $t_{crítico} = ?$

	TAIL PROBABILITY P											
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1,376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2,878	3.197	3.611	3.922
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	.685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	.683	.854	1.055	1.310	1.697	2.042	2.147	2,457	2.750	3.030	3.385	3.640

$$\alpha = 0.05$$
 duas caldas

$$4 \cdot df = n - 1 = 3$$

df = degree of freedom

Distribution Plot T, df=3

H₀: μ = 150cc
H_a: μ ≠ 150cc
$$tcal = \frac{(\bar{x} - \mu)}{s/\sqrt{n}}$$

$$t_{calculado} = (151-150)/[2 / sqrt(4)] = 1/1 = 1$$

 $t_{crítico} = 3,182$

$$t_{calculado} = (151-150)/[2 / sqrt(4)] = 1/1 = 1$$

$$t_{crítico} = 3,182$$

Falha em rejeitar H₀

