4. Übung zur Vorlesung Modellierung und Simulation im WS 2019/2020

Aufgabe 1: Numerisches Differenzieren

Gegeben ist eine Funktion

$$f(x) = \frac{x}{x+1}.$$

- a) Bestimmen Sie für h = 0.5 den Näherungswert der Ableitung von f(x) an der Stelle $x_0 = 1$ mit der zentralen Differenzenformel.
- b) Vergleichen Sie das Ergebnis der zentralen Differenzenformel mit dem exakten Wert der Ableitung f'(x) an der Stelle $x_0 = 1$.

Aufgabe 2: Numerisches Differenzieren

- a) Bestimmen Sie für eine allgemeine Polynomfunktion 2. Grades der Form $f(x) = ax^2 + bx + c$ die Ableitungsfunktion nach der rechtsseitigen Differenzenformel $D^+f(x_0)$ an einer Stelle x_0 und für eine Schrittweite h.
- b) Wie lautet der Wert der rechtsseitigen Ableitung $D^+g(x_0)$ für die Funktion $g(x) = 4x^2 5x$ an der Stelle $x_0 = 1$ und für eine Schrittweite von h = 0.1?
- c) Bestimmen Sie den Fehler $e = |D^+g(x_0) g'(x_0)|$ aus Aufgabe 2 b) bzgl. des exakten Wertes der Ableitung $g'(x_0)$ an der Stelle $x_0 = 1$ für h = 0.1.
- d) Berechnen Sie den Wert der 2. Ableitung $D^2(g(x)) = D^-(D^+g(x))$ über zentrale Differenzen an der Stelle $x_0 = 1$ und für h = 0.1.
- e) Für Funktionen f(x,y), die von zwei Variablen abhängen, lassen sich zwei erste Ableitungen $D_x^+f(x,y)$ und $D_y^+f(x,y)$ in die beiden Raumdimensionen definieren

$$D_x^+ f(x,y) = \frac{f(x+h,y) - f(x,y)}{h} \quad \text{und} \quad D_y^+ f(x,y) = \frac{f(x,y+h) - f(x,y)}{h}.$$

Wenden Sie die zweidimensionalen Ableitungen an zur Bestimmung der Ableitungen $D_x^+ f(x_0, y_0)$ und $D_y^+ f(x_0, y_0)$ der Funktion $f(x, y) = 5x^2 - 2xy + 7y^2$ an der Stelle $(x_0, y_0) = (1, 0)$ mit Schrittweite h = 0.5.

Aufgabe 3: Numerisches Differenzieren und Taylorreihe Gegeben ist eine Funktion f(x).

a) Stellen Sie im Punkt \boldsymbol{x}_0 die Differenzenformel

$$\overline{D}f(x_0) := \frac{1}{2} \Big(D^+ f(x_0) + D^- f(x_0) \Big)$$

auf.

- b) Formulieren Sie geeignete Taylorreihen und bestimmen Sie die Fehlerordnung der Differenzenformel $\overline{D}f(x_0)$.
- c) Nun sei

$$f(x) = \frac{1}{x^2 + 1}.$$

Wenden Sie die Differenzenformel $\overline{D}f(x_0)$ an und bestimmen Sie für h=0.5 den Näherungswert der Ableitung von f(x) an der Stelle $x_0=0$.

d) Vergleichen Sie das Ergebnis aus Aufgabenteil 1 c) mit dem exakten Wert der Ableitung f'(x) an der Stelle $x_0 = 0$.