Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

U.S. Department of Agriculture ESCS REFERENCE CENTER

RECEIVED MAR 3 1982

STAFF REPORT

1979 PESTICIDE USE ON VEGETABLES IN THE NORTHEAS A PRELIMINARY REPORT

by

Walter L. Ferguson and Iris E. McCalla

December 1981

ERS Staff Report No. AGES811218

RECONOMICS and Statistics Service

United States Department of Agriculture

1979 PESTICIDE USE ON VEGETABLES IN THE NORTHEAST, A PRELIMINARY REPORT

by

Walter L. Ferguson and Iris E. McCalla

December 1981

ERS Staff Report No. AGES811218

Natural Resource Economics Division
Economic Research Service
U.S. Department of Agriculture
Washington, D.C. 20250

1979 PESTICIDE USE ON VEGETABLES IN THE NORTHEAST, A PRELIMINARY REPORT. By Walter L. Ferguson and Iris E. McCalla; Natural Resource Economics Division, Economic Research Service, U.S. Department of Agriculture, Washington, D.C. 20250; December 1981.

ERS Staff Report No. AGES811218

*

*

×

*

*

*

ABSTRACT

According to the U.S. Department of Agriculture's 1979 Vegetable Pesticide Survey, approximately 1.3 million pounds of pesticides were used to control weeds, insects, diseases and nematodes on 10 vegetable crops in New York and New Jersey. The 10 vegetable crops include cabbage, carrots, celery, cucumbers, green peas, lettuce, onions, snap beans, sweet corn, and tomatoes. Approximately 825,000 cre-treatments were made ranging from 262,000 for sweet corn to 700 for carrots.

Key Words: Pesticides, herbicides, fungicides, insecticides, nematicides, tank-mixes, acres treated, application rates, vegetables, Northeast.

* This paper was prepared for limited distribution to the research community outside the U.S. Department of Agriculture. The data in this report are preliminary, and consequently subject to change. The data have not been subjected to statistical reliability testing, but will be tested prior to finalization and publication. The final tabulation of the data will provide information for six regions which will include data for 18 States. The final tabulations are scheduled for publication in early 1982. The data are being released at this time to allow the agricultural community an opportunity to comment on the data. If you have any comments, please send them by January 31, 1982 to:

*

*

* *

Herman W. Delvo Economics of Pesticide Regulation Room 408 500 12th Street, S.W. Washington, D.C. 20250

Use of company names or products in this report is for identification only and does not imply endorsement by the U.S. Department of Agriculture.

ACKNOWLEDGEMENTS

The 1979 Vegetable Pesticide Survey was conducted by a predecessor agency to the Statistical Research Service. Larry K. Roberson and Paul W. Blackwood provided special assistance and advice in compiling the data. Joseph E. Blackwell of the Economic Research Service provided data processing and computer programming services. Herman W. Delvo and Craig D. Osteen, also of the Economic Research Service, provided helpful comments and suggestions in their reviews of final drafts. The data were reviewed for accuracy by university crop specialists having expertise for those crops in the survey.

ALEATON OF PARTITION OF PARTITIONS HE PARTITION HE PARTIT

DESTROY Report No. ACCESSING

TANTES

Superior Constitution of the constitution of t

Top work Procedure with the Commence of the Co

response to a property to a literary consideration of the consequence of the consequence

Hermon W. Dalvo Reconcules of Particles Regulations Some action Street, S.V. Southfactor, D.G. 2023

and the state of the proper and all advantages about the same to the

A COLOR STORE DE LA COLOR

Postella Survey was confusted by a produced the water of the survey of the continue of the con

The specialists included Jerry Heath of New York; and John A. Meade, Stewart E. Race, and John K. Springer of New Jersey. Victoria N. Valentine, Beverly A. Herath, and Andrea E. Lunsford typed the preliminary and final drafts of the manuscript.

CONTENTS

	Page
INTRODUCTION	1
METHODOLOGY	
INTERPRETING THE DATA	
RESULTS	5
Cabbage Carrots Celery Cucumbers Green peas Lettuce Onions Snap beans Sweet corn	9 13 15 15 18 18 20 26 28
Tomatoes	
REFERENCES	

INTRODUCTION

In this report, patterns of pesticide use in the Northeast in 1979 are discussed for cabbage, carrots, celery, cucumbers, green peas, lettuce, onions, snap beans, sweet corn, and tomatoes. Survey data were collected on quantities of pesticides used, acres treated, acre-treatments, number of applications, seasonal rates, and rates per acre-treatment. This report provides information useful to policymakers, researchers, extension specialists, and industry personnel. Because vegetables are highly susceptible to weeds, insects, diseases, and other pest damage, there is a continuing need for information on pesticides used in vegetable production. Regulations on the use of pesticides and review of registrations by the Environmental Protection Agency create the need for accurate, detailed information for economic studies.

A major factor affecting the quantity of pesticides used is the number of acres planted. The year surveyed, 1979, can be viewed as a typical year for the 10 crops surveyed, with 193,300 acres planted in 1979 versus an average of 191,500 acres for the period 1978-80 (Table 1). However, the number of planted acres is only one of several factors affecting pesticide usage. Weather conditions, pest infestations, and pest resistance to pesticides affect pesticide rates and the number of applications per season.

Planted acreage of the 10 crops surveyed in 1979 ranged from about 63,000 acres for snap beans to about 600 acres for celery. Of the 193,300 total acreage of the 10 vegetables, about 92,000 acres were planted for the processing markets.

As pests not only affect yield but also quality, the appearance of the product has a considerable impact on market price. Thus, for these fresh market and processing crops, pest control is especially important.

Table 1. Acres planted in 1979 compared with 1978-80 average, 10 vegetables, Northeast $\underline{a}/$

	:	, ,		:	aging -	narkot		n and sing market
	Fr	esh marl	. et	· Proce	essing r	narket	: process	: 3-year
Crop	· : 1978	· : 1979	• • 1980	: 1978	1979	1980	: 1979	: average
				<u>1,</u> (000 acre	es		
Cabbage	13.1	14.4	13.8	4.2	3.7	3.7	18.1	17.6
Carrots				2.0	2.0	2.2	2.0	2.1
Celery	•7	.6	.8	-			•6	•7
Cucumbers	4.3	4.7	5.5	1.7	1.5	1.4	6.2	6.4
Green peas				5.8	6.3	6.2	6.3	6.1
Lettuce	7.4	7.5	7.1	ent ean	emp-e0x0		7.5	7.3
Onions	15.2	15.7	15.4	major ministr			15.7	15.4
Snap beans	13.6	14.0	15.1	52.3	49.2	49.1	63.2	64.4
Sweet corn	33.6	34.5	_{£3} 33.0	22.4	21.6	17.9	56.1	54.3
Tomatoes	10.1	10.3	10.0	8.3	7.3	5.4	17.6	17.1
10 crops	98.0	101.7	100.7	96.7	91.6	85.9	193.3	191.5

a/ "Vegetables, 1980 Annual Summary," U.S. Department of Agriculture, ESS, Vg 1-2(80), December 1980.

METHODOLOGY

As part of a national survey of pesticide use on vegetables, Northeast vegetable growers were personally interviewed to collect data on specific pesticides used, acres treated, methods of application, and target pests controlled in 1979. Approximately 500 growers were interviewed in New York and 400 in New Jersey.

A stratified random sample design was used to select growers. Data were expanded for individual farms in the survey to reflect all farms by multiplying the sample data by the inverse of the sample ratio for the stratum. The pesticide use data for each crop were then adjusted by the ratio of the number of acres grown in the State to the number of expanded sample acres for each crop grown.

INTERPRETING THE DATA

Pesticides are grouped into the following categories: (1) herbicides (used to kill plants or inhibit their growth), (2) insecticides (used to kill or inhibit insects), (3) fungicides (used to control diseases by killing or inhibiting fungi), and (4) nematicides (used to kill or inhibit nematodes and other organisms in the soil).

The term, "acres treated," is used to identify acres receiving one or more applications of a specific pesticide. Acres treated are not additive because two or more different specific ingredients may have been used on the same acre. Therefore, summing them could result in double counting. For this reason, the sums of acres treated are not shown in Tables 5 through 19.

"Acre-treatments" are the number of acres treated one time by a specific pesticide. The number of applications per season was derived by dividing the acre-treatments by the acres treated for each specific pesticide material.

Single application and annual rates are estimated for specific active ingredients. Annual rates include the average rate for all seasons. The single application rate is derived by dividing the total active ingredients of a specific pesticide by the number of acre-treatments; the annual rate is derived by dividing the total active ingredients by the number of acres treated.

Acres treated and acre-treatments for <u>Bacillus thuringiensis</u>, a bacteria, are included in the insecticide category. The rates and quantities applied are not reported since application rates are expressed in terms of spores per gram rather than in pounds of active ingredient.

The rate per application and number of applications for specific pesticides may vary considerably from published guidelines for a number of reasons. For example, published rates are generally broadcast rates whereas a number of the rates reported in the survey were band or in-furrow rates which are one-fourth to one-third that of the broadcast rates. Also, young vegetable plants require considerally lower dosage rates of insecticides and fungicides than do older plants. For insect control, vegetables grown on sandy soils generally require lower rates of soil insecticides than the same vegetables grown on organic soils.

Weather plays an important role in the use of fungicides as low moisture years generally require lower rates and fewer applications than high moisture years. Some varieties of vegetables have greater resistance to specific diseases and are less attractive to insects than other varieties, requiring lower rates and fewer applications. Also, resistance of pests to pesticides plays an important role in determining rates and number of applications. Rates are generally lower when two or more pesticides with the same spectrum of control are applied in tank-mix applications than when those respective pesticides are applied as single ingredients.

RESULTS

In 1979, Northeast growers planted approximately 193,300 acres of cabbage, carrots, celery, cucumbers, green peas, lettuce, onions, snap beans, sweet corn, and tomatoes (Table 2). New York growers accounted for about 150,900 or nearly 80 percent of the total planted acreage. About 92,000 or 47 percent of the acreage in the two States was planted for the processing market, and about 87,000 or 45 percent for the summer fresh market. New York snap bean (56,000 acres), sweet corn (44,000 acres), and onion growers (15,000 acres) accounted for about 60 percent of the total 10 crop planted acreage for the two States.

The growers used about 825,000 acre-treatments of pesticides on the 10 vegetables, with New York growers accounting for about 70 percent of the total (Table 3). Four vegetables accounted for 80 percent of total acre-treatments; they included onions (32 percent), sweet corn (20 percent), tomatoes (15 percent), and cabbage (14 percent). Of the 622,000 single ingredient acre-treatments, insecticides accounted for 52 percent, herbicides 28 percent, fungicides 18 percent, and other controls 2 percent. Tank-mix applications accounted for about 205,000 acre-treatments or about 25 percent of the 825,000 total acre-treatments.

The growers applied about 1.3 million pounds of active ingredients (a.i.) of all pesticides to the 10 vegetable crops (Table 4). The four vegetables comprising about 80 percent of the quantity applied included onions (46 percent), sweet corn (13 percent), snap beans (12 percent), and tomatoes (12 percent). Mineral spirits are not included in the total quantity applied. An estimated 22,340 gallons of mineral spirits were sprayed on 444 acres of carrots in New York.

Of the total quantity of peticides applied to the 10 crops, two or more active ingredients applied in tank-mixes accounted for about 470,000 pounds (a.i.)

Table 2. Vegetables: Acres planted, fresh and processing markets, Northeast,

	: Processing		Fresh ma			: Total, fresh
Crop	: market	: Spring :	Summer:	Fall	: Total	:and processing
			1 000			
				acres .		
Cabbage						
New York	3.7		1.8	7.6	9.4	13.1
New Jersey	69.59	•9	2.9	1.2	5.0	5.0
Total	3.7	•9	4.7	8.8	14.4	18.1
Carrots						
New York	2.0					2.0
Celery			_			
New York			•5	.1	•6	•6
0 - 1 - 1 /						
Cucumbers b/ New York			2.9		2.9	2.9
	1 5		1.8		1.8	3.3
New Jersey	1.5		4.7		4.7	6.2
Total	1.5		4.7		4.7	0.2
Green peas	6.2					6.3
New York	6.3					0.5
Lettuce						
New York			4.0		4.0	4.0
New Jersey	contractors.	1.7	.7	1.1	3.5	3.5
Total		1.7	4.7	1.1	7.5	7.5
Onions						
New York			14.9		14.9	14.9
New Jersey			.8		.8	.8
Total			15.7		15.7	15.7
Snap beans b/						
New York	49.2		6.6		6.6	55.8
New Jersey	***	1.2	5.1	1.1	7.4	7.4
Total	49.2	1.2	11.7	1.1	14.0	63.2
Sweet corn						
New York	21.6	400 mag	22.7		22.7	44.3
New Jersey			11.8		11.8	11.8
Total	21.6	-	34.5	***	34.5	56.1
Tomatoes						
New York			7.0		7.0	7.0
New Jersey	7.3	***	3.3		3.3	10.6
Total	7.3		10.3		10.3	17.6
10						
10 crops	82.8		60.4	7.7	68.1	150.9
New York		3.8	26.4	3.4	33.6	42.4
New Jersey	8.8		86.8	11.1	101.7	193.3
Total	91.6	3.8	00.0	11.1	101.7	133.3

a/ "Vegetables, 1980 Annual Summary," U.S. Department of Agriculture, ESS, Vg 1-2(80), December 1980.

b/ Cucumbers and snap beans grown for the fresh market were not included in the 1979 Vesgetable Pesticide Survey.

Vegetables: Acre-treatments of pesticides by crop, single ingredient Table 3. and tank-mix applications, Northeast, 1979 a/

	:			:		*		e and ta	
	: S	ingle ing		:		:		pplicati	ons
		applicat			Tank-mix			tate:	m + -1
Cman	:Herbi-: :cides :						: New :		
Crop	:cides :	cides :	cides :	other:	Cations	: d/	: 101K :	Jersey:	<u>d/</u>
			1	.000 ac	re-treatm	ents			
Cabbage	10.6	75.8	9.3	-	17.6	113.3	84.8	28.5	113.3
Carrots	•9 <u>c</u> /	1.2	<u>b</u> /	-	1.2	3.3	3.3 <u>c</u>		3.3
Celery	3.8	10.6	7.6	-	<u>b</u> /	22.0	22.0	~	22.0
Cucumbers	.3	•9	•8	-	1.5	3.5	-	3.5	3.5
Green peas	5.0	-	-	-	<u>b</u> /	5.0	5.0	-	5.0
Lettuce	5.4	28.9	2.4	-	14.7	51.3	16.7	34.6	51.3
Onions	56.6	62.3	43.1	8.7	91.1	261.8	257.8	3.9	261.7
Snap beans	55.8	4.2	9.7	-	5.8	75.5	75.5	~	75.5
Sweet corn	23.9	106.6	<u>b</u> /	-	36.0	166.6	95.2	71.4	166.6
Tomatoes	10.7	36.8	39.0	.9	37.3	124.7	27.5	97.2	124.7
10 crops <u>d</u> /	173.0	327.3	111.9	9.6	205.2	827.0	587.8	239.1	826.9

^{- =} none reported in survey sample.

a/ 1979 Vegetable Pesticide Survey, USDA, ESCS, Natural Resource Economics Division.

b/ Less than 50 acre-treatments.

 $[\]overline{c}$ / Excludes an estimated 22,340 gallons of mineral spirits sprayed on 444 acres.

 $[\]overline{d}$ / Minor differences in totals due to rounding.

Table 4. Vegetables: Quantities of pesticides used by crop, single ingredient and tank-mix applications, Northeast, 1979 a/

	•				:	:	: Singl	e and ta	nk-mix
	•	Single	ingredi	ent	:	:		pplicati	ons
			ications		:Tank-mix			tate	: The 1
	:Herbi-	:Insecti-:	Fungi-:		: appli-	: Total			: Total
Crop	:cides :	cides :	cides :	Other	:cations	: d/	: York :	Jersey	: d/
				- 1,00	O pounds (a	a.i.)			
Cabbage	28.8	34.0	12.4	-	22.3	97.5	59.3	38.1	97.4
Carrots	•7	•7	<u>b</u> /	-	2.3	3.7	3.7 <u>c</u> /	-	3.7
Celery	4.1	4.4	8.4	-	15.0	31.9	31.9	-	31.9
Cucumbers	.8	•5	1.6	-	8.2	11.1	-	11.1	11.1
Green peas	5.2	-	-	-	<u>b</u> /	5.2	5.3	-	5.3
Lettuce	18.6	15.5	3.6	-	32.2	69.9	27.0	43.0	70.0
Onions	243.4	37.4	85.5	13.4	229.1	608.8	600.5	8.3	608.8
Snap beans	128.5	5.4	5.4	-	20.6	159.9	159.9	-	159.9
Sweet corn	32.3	64.2	<u>b</u> /	-	79.1	175.7	94.4	81.4	175.8
Tomatoes	9.2	20.6	60.3	1.1	62.7	153.9	25.5	128.3	153.8
10 crops	471.6	182.7	177.2	14.5	471.5	1,317.6	1,007.5	310.2	1,317.7

^{- =} none reported in survey sample.

a/ "1979 Vegetable Pesticide Survey," USDA, ESCS, Natural Resource Economics Division.

b/ Less than 50 pounds (a.i.).

 $[\]overline{c}$ / Excludes an estimated 22,340 gallons of mineral spirits sprayed on 444 acres. \overline{d} / Minor differences in totals due to rounding.

or about 35 percent. Nearly 50 percent of the tank-mixed active ingredients were applied to onions.

PESTICIDE USE BY CROP

In the following sections, the major pesticides used by crop are discussed along with the primary pests controlled by these pesticides. Patterns of pesticide uses discussed include acres treated, acre-treatments, times applied, rates per application, and annual rates by specific ingredient applied alone and in tank-mixes.

Cabbage

In 1979, approximately 18,000 acres of cabbage were planted in the Northeast, about 80 percent for the fresh market and the remainder for the processing market. New York growers accounted for about 65 percent of the region's fresh market acreage and all of the processing market acreage. New York and New Jersey growers used about 97,000 pounds (a.i.) of all pesticides for nearly 115,000 acre-treatments (Tables 5 and 6).

In New York, trifluralin comprised 85 percent of the approximately 7,500 herbicide acre-treatments, and nitrofen accounted for most of the remaining treatments. In New Jersey, DCPA accounted for 75 percent of the 3,100 acre-treatments and trifluralin accounted for most of the remaining treatments. Trifluralin and DCPA were used for controlling grasses including barnyardgrass, crabgrass, and green and yellow foxtail. Nitrofen was used for controlling broadleaf weeds such as pigweed, lambsquarters, ragweed and purslane.

Major insects affecting cabbage include cabbage loopers, imported cabbage worms, and flea beetles. In New York, methamidophos and parathion accounted for about 30 percent of the acre-treatments and 55 percent of the active ingredients applied as single applications. New Jersey growers used methomyl

Table 5. Cabbage: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New York, 1979 a/b/

				7 1- 0	E cotivo in	redient
	•	:	m t		active ing	greatent
	: Acres	: Acre-	Times			•
	:treated		applied		: average	Total
Pesticides	: c/	:		:applied	. average	· TOTAL
Single applications						
Herbicides				0 1	0 1	2,092
Nitrofen	988	995	1.0	2.1	2.1	
Trifluralin	6,403	6,405	1.0	.7	•7	4,792 478
Other	-	118	-	4.0	_	
Total	-	7,518	-	1.0	-	7,362
Insecticides						
Azinphos-methyl	1,021	2,861	2.8	•5	1.4	1,441
Bacillus	,	•				
thuringiensis d/	5,424	20,130	3.7		-	_
Diazinon	1,755	2,263	1.3	•7	1.0	1,672
Endosulfan	3,069	4,962	1.6	.7	1.2	3,621
	1,631	4,592	2.8	•6	1.7	2,751
Methomy1	2,084	3,260	1.6	•3	• 4	898
Meta-systox	4,360	9,001	2.1	1.0	2.1	9,186
Methamidophos	•	-	2.5	.6	1.5	6,049
Parathion	3,925	9,755	1.5	.4	•6	998
Mevinphos	1,755	2,706	1.0	.9	-	922
Other	-	1,074	-		_	27,538
Total	-	60,604	-	•5	_	27,550
Fungicides					0.7	2 200
Chlorothalonil	1,220	3,394	2.8	1.0	2.7	3,280
Copper hydroxide	728	1,430	2.0	1.3	2.5	1,840
Maneb	1,613	3,294	2.0	1.7	3.5	5,575
Other	-	96		1.0	-	91
Total	-	8,214	-	1.3	-	10,786
Tank mixtures Azinphos-methyl	691	1,961	2.8	•2	• 7	452
+ parathion	071	1,701		•5	1.4	981
+ parachion						
Azinphos-methyl						
+ fungicides	202	220	1 (1.9	3.1	625
+ insecticides	203	330	1.6	1.9	2.1	025
Bacillus thuringiens	is					
+ fungicides						
+ insecticides	696	825	1.2	2.0	2.4	1,653
Chlorothalonil						
+ insecticides	572	572	1.0	2.2	2.2	1,235
Copper hydroxide	213	669	3.1	1.4	4.4	936
+ sulfur	213		7 4 2	.8	2.5	534
+ Surrar				•		

-- continued

Table 5. Cabbage: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New York, 1979 a/b/-continued

	:	: :		:Pounds of	active i	ngredie
	: Acres	: Acre- :	Times	: Per		:
	:treated	:treatments:	applied			:
Pesticides	: c/	:			: average	: Total
<pre>fank mixtures (cont'd)</pre>						
tank mixtures (cont u)						
Endosulfan	1,157	2,034	1.8	0.7	1.2	1,361
+ parathion				.8	1.4	1,627
·						
Maneb	286	658	2.3	1.6	3.7	1,052
+ methamidophos				1.0	2.3	658
+ parathion				•5	1.1	329
Methomy1						
+ fungicides + insecticides	165	584	3.5	1.6	5.7	948
+ Insecticides	105	304	5.5	1.0	3.7	3-10
Other	_	877	-	1.4	_	1,272
						Ī
Total	-	8,510	-	1.6	ends	13,663
COMAL DECELOTIVE		9/1 9/16		•7	_	59,349
TOTAL PESTICIDES	-	84,846	-	• /	-	59,349

a/ 1979 Vegetable Pesticide Survey, Natural Resource Economics Division, ESCS, USDA.

b/ In 1979, 13,100 acres planted: 3,700 acres for the processing market and 9,400 acres for the fresh market: Summer - 1,800 acres and Fall - 7,600 acres (Table 2).

c/ Acres treated sums in this column not derived for "other" and "totals" because two or more materials may have been used on the same acre resulting in double counting.

d/ Quantity data not reported because <u>Bacillus thuringiensis</u> is expressed in terms of number of spores per gram rather than in pounds active ingredient.

Table 6. Cabbage: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications,

New Jersey, 1979 a/b/ :Pounds of active ingredient Per acre : Acre-. Times : Acres :treated :treatments: applied :Per time : Annual : average : Total :applied Pesticides Single applications Herbicides 8.7 11.8 20,087 1.4 1,703 2,318 DCPA 267 . 6 1.0 • 6 478 478 Trifluralin 1.047 3.4 312 Other 21,401 6.9 3,108 Total Insecticides Bacillus 3.937 1.9 2.119 thuringiensis d/ 467 1.7 1.7 1.0 280 280 Fonofos 440 3.4 3.9 .9 507 130 Endosulfan .5 2.3 4,041 4.3 Methomyl 1,781 7,734 2.3 812 .6 4.0 358 1,420 Methamidophos 99 2.6 .3 .7 146 379 Mevinphos .7 641 923 Other 6,500 15,180 .4 Total Fungicides 1.3 2.0 890 672 1.5 451 Chlorothalonil 679 1.5 3.0 2.0 226 452 7in-b 2 .4 4 Other 1,571 1.4 1,128 Total Tank mixtures Bacillus thuringiensis + fungicides 2.4 5,716 .7 7,972 3.3 + insecticides 2,380 6.0 1,247 6.0 208 1.0 208 DCPA 832 4.0 4.0 + nitrofen 69 • 5 • 5 138 138 1.0 Azinphos-methvl .3 39 .3 + meta-systox .9 703 788 Ot'er 8,606 9,106 .9 Total 38,078 1.3 28,522 TOTAL PESTICIDES

a/ 1979 Vegetable Pesticide Survey, Natural Resource Economics Division, ESCS, USDA.

 $[\]frac{b}{In}$ In 1979, 5,000 acres planted for the fresh market: Spring - 900 acres, Summer - 2,900 acres, and Fall - 1,200 acres (Table 2).

c/ Acres treated sums in this column not derived for "other" and "totals" because two or more materials may have been used on the same acre resulting in double counting.

d/ Quantity data not reported because <u>Bacillus</u> thuringiensis is expressed in terms of number of spores per gram rather than in pounds active ingredient.

in about 50 percent of the 15,200 single ingredient acre-treatments. <u>Bacillus</u>

thuringiensis was used in about 25 percent of the single ingredient acre-treatments

and in nearly 90 percent of the tank-mix treatments.

Major cabbage diseases include downy mildew, Alternaria, blackleg, and black rot. Chlorothalonil and maneb accounted for about 80 percent of the total fungicides used in both States.

Tank-mixes accounted for about 10 percent of the total acre-treatments in New York and nearly 30 percent of the total in New Jersey.

Carrots

In 1979, New York carrot growers planted about 2,000 acres. Carrots are not grown commercially in New Jersey. New York growers used 3,730 pounds (a.i.) of all pesticides in about 3,300 acre-treatments (Table 7). Excluded from these totals are an estimated 22,340 gallons of mineral spirits which were used to treat 444 acres. Mineral spirits control both broadleaf weeds and grasses.

Linuron and other herbicides were used for nearly 900 acre-treatments.

Linuron was used for controlling broadleaf weeds such as pigweed, lambsquarters, ragweed, purslane, and Galinsota.

Parathion was used for about 95 percent of nearly 1,200 insecticide acre-treatments applied as single ingredient applications and was combined with maneb for about 85 percent of the tank-mix applications. Parathion was used primarily for controlling leaf hoppers, a vector of the carrot yellows disease.

Fungicides used alone are not an important practice. However, they are applied in tank-mixes with insecticides.

Table 7. Carrots: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New York, 1979 a/b/

	:	:		:Pounds of	active in	ngredient
	: Acres	: Acre- :	Times		acre	_:
	:treated	:treatments:	applied	:Per time	: Annual	:
Pesticides	: c/	: :		:applied	: average	: Total
Single applications						
Herbicides						
Linuron	460	852	1.9	0.7	1.4	637
Other	_	61	-	•9	-	53
Total d/	_	913	-	• ^	-	690
_						
Insecticides			0.0	-	1.7	658
Parathion	398	1,123	2.8	.6	1.7	42
Other	_	41		1.0	_	700
Total	-	1,164	-	•6	_	700
Fungicides						
Chlorothalonil	9	27	3.0	•9	2.6	23
Other	_	14	***	•9	-	13
Total	_	41	-	•9	-	36
Tank mixtures				0	4.0	160
Carbaryl	40	200	5.0	•8	4.0 2.4	96
+ mancozeb				•5	2.4	90
Maneb	330	997	3.0	1.6	4.8	1,595
+ parathion	330		3.0	•4	1.3	440
parachizon						
Other	-	10	-	1.3	-	13
m . 1		1 207	_	1.9	_	2,304
Total	-	1,207		1.0		2,504
TOTAL PESTICIDES	-	3,325	-	1.1	-	3,730

a/ 1979 Vegetable Pesticide Survey, Natural Resource Economics Division, ESCS, USDA.

d/ Excludes 22,340 gallons of mineral spirits used to spray 444 acres.

b/ In 1979, 2,000 acres planted for the processing market (Table 2).

C/ Acres treated sums in this column not derived for "other" and "totals" because two or more materials may have been used on the same acre resulting in double counting.

Celery

An estimated 600 acres of celery were planted during the summer and fall seasons in New York. Celery is not grown commercially in New Jersey. Approximately 32,000 pounds (a.i.) of all pesticides were used by New York growers in 22,000 acre-treatments (Table 8).

Nitrofen accounted for about 80 percent of the 3,800 acre-treatments of herbicides used in celery production. It was used for controlling redroot pigweed, lambsquarters, ragweed, and purslane.

Major insects affecting celery include tarnished plant bugs, aphids, imported cabbageworms, and cabbage loopers. In New York, demeton, methomyl and parathion were the major insecticides used, accounting for nearly 70 percent of the 10,600 insecticide acre-treatments. Demeton was used for control of aphids and imported cabbage worms, methomyl for cabbage loopers, and parathion for tarnished plant bugs. Azinphos-methyl and endosulfan were also important, accounting for about 15 and 10 percent, respectively, of the insecticide acretreatments used by New York growers.

For early and late blight control, chlorothalonil accounted for nearly 45 percent of the 7,600 fungicide acre-treatments followed by anilazine with nearly 30 percent and benomyl with about 20 percent.

Cucumbers

In 1979, an estimated 2,900 acres of cucumbers were planted in the New York and 3,300 acres were planted in New Jersey. Only cucumbers grown in New Jersey for the processing market were included in the survey. These New Jersey growers accounted for about 25 percent of the two States' total cucumber acreage. To control weeds, insects, and diseases, approximately 11,000 pounds (a.i.) of all pesticides were used by New Jersey growers for about 3,500 acre-treatments (Table 9).

Table 8. Celery: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New York, 1979 a/ b/

				.D		namadi ant
			Mimo e	:Pounds of	active i	igredient
	: Acres	: Acre- :	Times			- :
D		:treatments:	applied		: average	· Total
Pesticides	: c/	: :		:applied	: average	· IOCAL
Single applications						
Herbicides						
CDEC	638	638	1.0	3.9	3.9	2,457
Nitrofen	704	3,054	4.3	•5	2.2	1,564
Other	-	89	-	1.1		97
Total	-	3,781	***	1.1	-	4,118
Insecticides						
Azinphos-methyl	426	1,699	4.0	• 5	2.0	841
Demeton	624	2,148	3.4	• 2	.8	525
Endosulfan	388	928	2.4	• 7	1.8	680
Methom 1	502	2,181	4.3	• 2	.9	429
Parathion	627	2,703	4.3	• 6	2.5	1,555
Ot'er	-	908	4.0	•4	2.5	323
Total	_		_	•4		4,353
Total	-	10,567	_	• 4	_	4,333
Fungicides						
Benomy1	200	1,600	8.0	• 5	4.0	800
Chlorothalonil	640	3,351	5.2	1.1	5.9	3,764
Anilazine	624	2,098	3.4	1.4	4.7	2,946
Maneb	79	551	7.0	1.6	11.2	887
Total	-	7,600	•••	1.1	-	8,397
Tank mixtures						
Chloropicrin	56	56	1.0	40.5	40.5	2,250
+ D-D	20	20	1.0	229.5	229.5	12,749
+ <i>D</i> - <i>D</i>				229.3	449.0	14,749
Other	-	16	-	1.7	-	27
To' 1	_	72	-	208.7	_	15,026
TOTAL DECTIONS		22 020		1 /		21 00/
TOTAL PESTICIDES	-	22,020	-	1.4	-	31,894

a/ 1979 Vegetable Pesticide Survey, Natural Resource Economics Division, ESCS, USDA.

b/ In 1979, 600 acres planted for the Summer fresh market (Table 2).

Acres treated sums in this column not derived for "other" and "totals" because two or more materials may have been used on the same acre resulting in double counting.

Table 9. Cucumbers: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New Jersey, 1979 a/ b/

***************************************				.D 1		
		:	Times	Pounds of Per a		ngrealent
	: Acres	: Acre- :				_
D		:treatments:	applied	:Per time :		· Mahal
Pesticides	: c/	:		:applied	average	: Total
Single applications						
Herbicides						
Naptalam	133	133	1.0	2.6	2.6	344
Bensulide	168	168	1.0	2.8	2.8	477
Other	100	9	_	.8	2.0	7 7
Total	_	310	_	2.7	-	828
Total	_	210	_	4.1		020
Insecticides						
Azinphos-methyl	101	168	1.7	•5	•8	85
	131	131	1.0	•7	•7	92
Carbaryl	259	535	2.1	• 5	1.1	281
Endosulfan	259	22	2.1	•6	1.1	13
Other	_	856	_	•6	_	471
Total	-	836	_	• 0	_	4/1
T						
Fungicides Chlorothalonil	279	669	2.4	1.8	4.4	1,217
	101	134	1.3	2.0	2.7	268
Mancozeb	101	42	1.3	3.2	2.7	134
Other		_	_	1.9	_	1,619
Total	-	845	_	1.9	_	1,019
Tank mixtures	1 100	1 100	1.0	2.3	2.3	2,700
Naptalam	1,199	1,199	1.0	4.2	4.2	4,986
+ bensulide				4 • 4	4.2	4,500
Onham		282	_	1.7	_	475
Other	-	40 4	_	1.07		7/3
man al		1,481	_	5.5	_	8,161
Total	_	1,401		J•J		0,101
TOTAL DECTICIDES	_	3,492	_	3.2	_	11,079
TOTAL PESTICIDES	_	3,472		3.4		11,0.5

a/ 1979 Vegetable Pesticide Survey, Natural Resource Economics Division, ESCS,

b/ In 1979, 1,500 acres planted for the processing market; fresh market acreage not included in survey (Table 2).

c/ Acres treated sums in this column not derived for "other" and "totals" because two or more materials may have been used on the same acre resulting in double counting.

Bensulide and naptalam accounted for nearly all of the 300 single ingredient acre-treatments and about 80 percent of the 1,500 tank-mix acre-treatments.

Bensulide was used for controlling grasses, and naptalam for controlling broadleaf weeds.

Major insects affecting cucumbers in New Jersey were the cucumber beetles and squash vine borers. Endosulfan, azinphos-methyl, and carbaryl were used for their control at an application rate of 0.5 to 0.7 pounds (a.i.) per acre.

Anthracnose and downy mildew were the principal diseases affecting cucumbers in New Jersey. Chlorothalonil and mancozeb were used in nearly 850 acre-treatments for their control.

Green peas

In 1979, an estimated 6,300 acres of green peas were planted by New York growers for the processing market. Nearly 5,000 acre-treatments of dinoseb and trifluralin were used as single ingredient applications (Table 10). Dinoseb was used for controlling broadleaf weeds such as pigweed, lambsquarter, ragweed and purslane. Trifluralin was used for controlling the same spectrum of grasses as indicated for cabbage.

None of the surveyed green pea growers reported using insecticides or fungicides.

Lettuce

An estimated 4,000 acres of lettuce were planted in New York and 3,500 acres were planted in New Jersey for harvest during 1979. Because of a shorter growing season, all of New York's acreage was planted for the summer market.

A longer growing period allows New Jersey growers to plant for the spring, summer, and fall markets. For both States, about 50,000 acre-treatments were

Table 10. Green peas: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New York, 1979 a/b/

:					
	:		:Pounds of	active i	ngredient
: Acres	: Acre- :	Times	: Per	acre	_:
:treated	:treatments:	applied	:Per time	: Annual	_:
: c/	:		:applied	: average	: Total
2,903	2,903	1.0	1.5	1.5	4,215
2,044	2,044	1.0	•5	• 5	1,017
-	7	_	1.8	-	12
-	4,954	_	1.1	_	5,244
35	35	1.0	1.5	1.5	52
			•3	•3	10
_	35	_	1.8	-	62
_	4.989	_	1.1	_	5,306
	4,505		272		
	:treated : c/ 2,903 2,044	:treated :treatments: : c/ : :	2,903 2,903 1.0 2,044 2,044 1.0 - 7 - - 4,954 -	<pre>:treated :treatments: applied :Per time : c/ : : :applied 2,903 2,903</pre>	<pre>:treated :treatments: applied :Per time : Annual : c/ :</pre>

a/ 1979 Vegetable Pesticide Survey, Natural Resource Economics Division, ESCS, USDA.

b/ In 1979, 6,300 acres planted for the processing market (Table 2).

Acres treated sums in this column not derived for "other" and "totals" because two or more materials may have been used on the same acre resulting in double counting.

used to apply nearly 70,000 pounds (a.i.) of all pesticides (Tables 11 and 12).

CDEC accounted for nearly 90 percent of the herbicide acre-treatments used on lettuce in New York and bensulide about 70 percent of the acre-treatments in New Jersey. CDEC was used for controlling both broadleaf weeds and grasses and bensulide was used mostly for controlling grasses.

Major insects affecting lettuce included leafhoppers, aphids, and loopers.

Mevinphos was the major insecticide used by New York growers accounting for nearly 60 percent of the acre-treatments used as single ingredient applications.

In New Jersey, methomyl accounted for about 60 percent of the acre-treatments.

Other important insecticides used include diazinon and parathion in New York and Bacillus thuringiensis in New Jersey.

Disease problems affecting lettuce include downy mildew, lettuce mosiac, and yellows. Mosiac and yellows are kept in check by using insecticides to control their insect vectors. In New York, maneb accounted for about 60 percent of the nearly 2,000 fungicide acre-treatments applied as a single ingredient. Maneb was also tank-mixed with other fungicides in about 4,600 acre-treatments in New York and 10,000 acre-treatments in New Jersey.

Onions

In the Northeast, approximately 16,000 acres were planted for the fresh and processing markets, about 15,000 in New York and the remainder in New Jersey. For the two States, approximately 260,000 acre-treatments were used to apply nearly 610,000 pounds (a.i.) of all pesticides (Tables 13 and 14).

CDAA and nitrofen were the major herbicides used by New York growers accounting for nearly 90 percent of the herbicide acre-treatments used in the State. CDAA was applied as a preemergent herbicide for controlling both broadleaf weeds and grasses. Nitrofen was used for controlling broadleaf weeds such as pigweed, lambsquarters, purslane, and ragweed.

Table 11. Lettuce: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New York, 1979 a/b/

	•	: :		:Pounds of		ngredient
	: Acres	: Acre- :	Times	Per		_:
		:treatments:	applied			•
Pesticides	: c/	: :		:applied	: average	: Total
Cinnle andication						
Single applications						
Herbicides CDEC	1 502	1,502	1.0	2.0	2.0	3,043
Pronamide	1,502 21	21	1.0	•9	.9	18
	21	205		2.5	• 7	513
Other	-		_	2.1	_	3,574
Total	-	1,728		2.1	_	3,3/4
Insecticides						
Diazinon	550	1,242	2.3	• 6	1.3	738
Dimethoate	136	504	3.7	•3	1.0	136
Parathion	542	1,608	3.0	1.1	3.3	1,814
		5,006	4.8	•9	4.5	4,650
Mevinphos	1,037	88	4.0	• •	-	-,050
Other d/	_	8,448	_	•9	_	7,341
Total	-	0,440	_	• 3		7,571
Europiaidos						
Fungicides Maneb	4 59	1,118	2.4	1.6	3.9	1,808
	4 3 9	863	2.4	1.6	-	1,377
Other	_	1,981	_	1.6	_	3,185
Total	_	1,901	_	1.0		3,103
Tank mixtures						
	859	4,295	5.0	•5	2.5	2,147
Diazinon	0.79	4,233	3.0	2.4	12.0	10,307
+ maneb				2.47	12.0	10,50
0.1	_	260		1.6	_	424
Other	_	200		2.00		
To+-1		4,555	_	2.8	_	12,878
10. 1		7,555				
TOTAL PESTICIDES	-	16,712	-	1.6	-	26,978
TOTAL TESTEDES						

a/ 1979 Vegetable Pesticide Survey, Natural Resource Economics Division, ESCS, USDA.

d/ Quantity data not reported because <u>Bacillus</u> thuringiensis is expressed in terms of number of spores per gram rather than in pounds active ingredient.

b/ In 1979, 4,000 acres were planted for the Summer fresh market (Table 2).

c/ Acres treated sums in this column not derived for "other" and "totals" because two or more materials may have been used on the same acre resulting in double counting.

Table 12. Lettuce: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New Jersey, 1979 a/ b/

	:	: :		:Pounds of	active i	ngredient
	: Acres	: Acre- :	Times		acre	:
	:treated	:treatments:	applied	:Per time		:
Pesticides	: c/	•		:applied	: average	: Total
Single applications						
Herbicides						
Bensulide	2,475	2,475	1.0	5.0	5.0	12,376
CDEC	359	368	1.0	3.0	3.1	1,102
Pronamide	674	674	1.0	1.4	1.4	966
Other	-	120	-	5.0	-	599
Total	-	3,637	-	4.1	-	15,043
Insecticides						
Acephate	417	913	2.2	.8	1.8	768
Bacillus						
thuringiensis d/	2,172	3,403	1.6	-	-	-
Methomyl	1,377	12,962	9.4	•5	4.3	5,868
Parathion	1,027	1,493	1.5	• 4	•6	633
Mevinphos	771	986	1.3	•3	•3	250
Other	-	689	-	1.0	-	682
Total		20,446	-	• 4	-	8,201
Fungicides						
Chlorothalonil	72	72	1.0	•9	•9	66
Other	_	384	_	•9	-	342
Total	-	456	-	•		408
Tank mixtures						
Bacillus thuringiensi	is					
+ fungicides				1 0	10.1	10.000
+ insecticides	1,601	10,100	6.3	1.9	12.1	19,368
TOTAL PESTICIDES	-	34,639	-	1.2	-	43,020

a/ 1979 Vegetable Pesticide Survey, Natural Resource Economics Division, ESCS, USDA.

 $[\]underline{b}$ / In 1979, 3,500 acres planted for the fresh market: Spring - 1,700 acres, Summer - 700 acres, and Fall - 1,100 acres (Table 2).

c/ Acres treated sums in this column not derived for "other" and "totals" because two or more materials may have been used on the same acre resulting in double counting.

d/ Quantity data not reported because <u>Bacillus thuringiensis</u> is expressed in terms of number of spores per gram rather than in pounds active ingredient.

Table 13. Onions: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New York, 1979 $\underline{a}/\underline{b}/\underline{b}$

	•			:Pounds of active ingredient			
	: Acres	: Acre-	Times	Per acre		igredient	
		:treatments:				-:	
Pesticides	: c/	: :	applied	:applied	: average	· Total	
TOTTCTCTCT	•	·		·applica	· uverage	. 10041	
Single applications							
Herbicides							
CDAA	12,622	26,446	2.1	7.1	14.8	186,998	
Chloropropham	4,578	5,651	1.2	4.7	5.8	26,583	
Nitrofen	10,265	22,958	2.2	.9	2.1	21,349	
Other		425	-	7.5		3,208	
Total	-	55,055	-	4.3	-	238,376	
Insecticides							
Azinphos-methyl	806	2,910	3.6	•5	1.8	1,416	
Diazinon	3,746	11,725	3.1	• 6	1.8	6,692	
Fonofos	3,659	3,659	1.0	1.6	1.6	5,988	
Methyl parathion	7 4 9	3,235	4.3	•5	2.2	1,617	
Parathion	9,502	37,982	4.0	• 5	2.0	19,223	
Other		803	-	•7	-	593	
Total	-	60,314	-	• 6	-	35,529	
Fungicides					0.0	/0.075	
Chlorothalonil	4,685	22,651	4.8	1.9	8.9	42,075	
Anilazine	321	2,042	6.4	1.5	9.6	3,064	
Maneb	5,041	11,011	2.2	2.2	4.8	24,430	
Nabam	3,119	3,119	1.0	2.7	2.7	8,289	
Mancozeb	554	2,853	5.1	2.2	11.3	6,258	
Other	-	627	-	•3	-	157	
Total	-	42,303	-	2.0	-	84,273	
Sprout control	0.653	0 (57	1 0	1 5	1.5	13,405	
Maleic hydrazide	8,657	8,657	1.0	1.5	1.0	13,403	
Tank mixtures							
CDAA	7 506	9,978	1.3	11.5	15.1	114,817	
+ herbicides	7,596	9,970	1.5	11.5	1301	221,027	
Chlorothalonil	2,117	13,171	6.2	1.0	6.5	13,671	
+ diazinon	2,117	13,171	002	• 2	1.3	2,698	
+ drazmon							
Chlorothalonil	2,548	19,861	7.8	.8	6.0	15,287	
+ methyl parathic		13,002		• 3	1.9	4,965	
+ meethyl parachite							
Chlorothalonil	1,511	12,484	8.3	•9	7.8	11,752	
+ parathion	-,5	,		• 3	2.7	4,063	
paraenzon							

⁻⁻ continued

Table 13. Onions: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New York, 1979 a/ b/ --continued

	: : : : : Pounds of active ingredient
	: Acres : Acre- : Times : Per acre :
	:treated :treatments: applied :Per time : Annual :
Pesticides	: c/ : : :applied : average : Total

Tank mixtures (cont'd)						
Chlorothalonil + herbicides + insecticides	0.646	2.010	. ,			
+ other	2,646	3,818	1.4	3.0	4.3	11,430
Diazinon + fungicides						
+ insecticides	1,727	13,761	8.0	.8	6.6	11,474
Maneb + herbicides						
+ insecticides	1,560	4,669	3.0	2.8	8.4	13,079
Other	-	13,326	-	2.0	-	25,874
Total	-	91,068	-	2.5	-	229,110
TOTAL PESTICIDES		257,822	-	2.3	-	600,455

a/ 1979 Vegetable Pesticide Survey, Natural Resource Economics Division, ESCS, USDA.

 $[\]underline{b}$ / In 1979, 14,900 acres of fresh market onions were planted (Table 2).

c/ Acres treated sums in this column not derived for "other" and "totals" because two or more materials may have been used on the same acre resulting in double counting.

Table 14. Onions: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New Jersey, 1979 a/b/

	:	:			active in	gredient
	: Acres	: Acre- :	Times	: Per	acre	•
	:treated	:treatments:	applied	:Per time	: Annual	:
Pesticides	: c/	::		:applied	: average	: Total
Single applications						
Herbicides						
DCPA	858	873	1.0	5.7	5.8	5,010
Insecticides						
Diazinon	427	839	2.0	• 6	1.1	482
Ethion	335	335	1.0	•9	•9	301
Malathion	312	509	1.6	1.8	3.0	932
Parathion	271	271	1.0	• 2	• 2	60
Other	-	33	-	2.3		73
Total	_	1,987		•9	-	1,848
Fungicides						
Chlorothalonil	332	535	1.6	1.1	1.8	603
Zineb	271	543	2.0	1.5	3.0	815
Total	_	1,078	_	1.3	_	1,418
		,				
TOTAL PESTICIDES	_	3,938	-	2.1	-	8,276

a/ 1979 Vegetable Pesticide Survey, Natural Resource Economics Division, ESCS,

b/ In 1979, 800 acres of fresh market onions were planted (Table 2).

c/ Acres treated sums in this column not derived for "other" and "totals" because two or more materials may have been used on the same acre resulting in double counting.

Onion maggots and thrips are the major insects affecting onions. Parathion was used for nearly 38,000 acre-treatments in New York or about 65 percent of the 60,000 insecticide acre-treatments applied as single ingredient applications. Other important insecticides in New York included diazinon, azinphos-methyl, fonofos, and methyl parathion. In New Jersey, diazinon accounted for about 40 percent and malathion about 25 percent of acre-treatments applied as single ingredient applications.

The major diseases affecting onions include leaf blight, smut, downy mildew, purple blotch and Alternaria leaf spot. In New York, chlorothalonil and maneb accounted for about 80 percent of the 42,000 acre-treatments of fungicides applied as single ingredient applications, and about the same percentage of the quantity applied. Other fungicides used by New York growers included anilazine, nabam, and mancozeb. New Jersey growers used chlorothalonil and zineb for about 1,000 acre-treatments.

New York growers indicated about 9,000 acre-treatments of maliec hydrazide were applied to plants in the field to control onion sprouting during storage.

Tank-mix applications accounted for about 35 percent of the total 258,000 acre-treatments of all pesticides in New York. No tank-mixes were indicated by surveyed New Jersey growers.

Snap beans

In 1979, approximately 63,000 acres of snap beans were planted for the fresh and processing markets, about 56,000 acres in New York and 7,000 in New Jersey. However, only the processing snap bean acreage in New York was included in the 1979 Vegetable Pesticide Survey, about 49,200 acres. An estimated 76,000 acre-treatments were used to apply nearly 160,000 pounds (a.i.) of all pesticides (Table 15). Only one application was used for each of the herbicides, insecticides, and fungicides applied as single ingredients and as tank-mixes.

Table 15. Snap beans: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New York, 1979 a/b/

				- D - 1 - C		11-4
	: . A.m.s		m	:Pounds of		igrealent
	: Acres	: Acre- :	Times	Per a		-
		:treatments:	applied			. m 1
Pesticides	: c/	: :		:applied	average	: Total
Single applications						
Herbicides	17 900	17 000	1 0	2 6	2.6	47,317
Dinoseb	17,899	17,899	1.0	2.6 3.2	3.2	76,219
EPTC	24,157	24,157	1.0			466
Glyphosate	253	253	1.0	1.8	1.8	
Trifluralin	13,528	13,528	1.0	•3	•3	4,547
Total	-	55,837	-	2.3		128,549
Insecticides					^	251
Carbaryl	409	413	1.0	.8	.9	351
Disulfoton	2,247	2,247	1.0	1.8	1.8	3,966
Parathion	1,073	1,073	1.0	•5	• 5	531
Other	-	481	-	1.1		538
Total	-	4,214	_	1.3		5,386
Fungicides						
Benomy1	9,336	9,336	1.0	•6	.6	5,303
Other	-	381	-	• 2	-	77
Total	_	9,717	-	• 6	-	5,380
Tank mixtures						
EPTC	5,124	5,632	1.1	3.2	3.5	17,946
+ trifluralin				• 4	. 4	2,230
Other	_	127	_	3.0	-	381
Total	-	5,759	-	3.6	-	20,557
TOTAL PESTICIDES	_	75,527	-	2.1	-	159,872

a/ 1979 Vegetable Pesticide Survey, Natural Resource Economics Division, ESCS, USDA.

b/ In 1979, 49,200 acres planted for the processing market; fresh market acreage not included in survey (Table 2).

c/ Acres treated sums in this column not derived for "other" and "totals" because two or more materials may have been used on the same acre resulting in double counting.

EPTC, dinoseb, and trifluralin accounted for nearly 100 percent of the 56,000 herbicide acre-treatments applied as single ingredients. EPTC + tri-f ralin also accounted for nearly all of the approximately 5,800 tank-mix applications. Rate per application ranged from 3.2 pounds (a.i.) per acre for EPTC to 0.3 pounds for trifluralin. EPTC and trifluralin were used for controlling grasses such as foxtail, barnyardgrass, crabgrass, and yellow nutsedge. Dinoseb was used for controlling broadleaf weeds such as pigweed, lambsquarters, ragweed, and purslane.

Major insect pests affecting snap beans include leafhoppers, bean beetles, aphids, and mites. To control these pests, disulfoton was used for about 55 percent of the insecticide acre-treatments and parathion for 25 percent of the acre-treatments.

Sclerotinia white mold is the primary disease affecting snap beans.

Benomyl accounted for abou 95 percent of fungicide acre-treatments used for controlling mold.

Sweet corn

In 1979, New York growers planted about 44,000 acres of sweet corn, with market intentions about equally divided between the processing and fresh markets. New Jersey planted about 11,800 acres for the fresh market only. For both States, approximately 120,000 acre-treatments were used to apply nearly 210,000 pounds (a.i.) of all pesticides (Tables 16 and 17).

Atrazine accounted for nearly 80 percent of the total 19,000 single ingredient herbicide acre-treatments in New York and 50 percent of the 4,800 acre-treatments used in New Jersey. Atrazine was used for controlling broadleaf weeds, quackgrass, and nutsedge.

Major insect pests affecting sweet corn include corn borers, corn earworms, and armyworms. In New York, methomyl, EPN and methyl parathion accounted for

Table 16. Sweet corn: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New York, 1979 a/b/

	:	:		·Pounds of	active in	ive ingredient	
	. Acres	: Acre-	Times		acre	·	
		:treatments:					
Pesticides	: c/	: :	appiacu	:applied	: average	: Total	
				vapping			
Single applications							
Herbicides							
Alachlor	1,406	2,406	1.0	1.9	1.9	2,636	
Atrazine	12,657	14,969	1.2	1.0	1.2	15,510	
Butylate	442	442	1.0	2.4	2.4	1,044	
Cyanazine	642	642	1.0	1.8	1.8	1,177	
EPTC	245	245	1.0	2.2	2.2	528	
Glyphosate	935	935	1.0	2.4	2.4	2,254	
2,4-D	345	345	1.0	• 4	• 4	143	
Other	-	131	-	•6	-	84	
Total	-	19,115	_	1.2	-	23,376	
Insecticides						- 100	
Carbaryl	1,738	5,407	3.1	1.3	4.1	7,128	
EPN	12,432	17,589	1.4	• 1	• 2	1,941	
Methomyl	10,518	20,535	2.0	•5	1.0	10,479	
Methyl parathion		15,203	1.5	•6	.9	8,927	
Parathion	1,898	4,717	2.5	•7	1.8	3,429	
Other	-	560	-	•8	-	454	
Total	-	64,011	-	•5	-	32,358	
Fungicides	0.5	٥٢	1 0	1.5	1.5	37	
Chlorothalonil	25	25	1.0 7.0	1.6	11.2	34	
Maneb	3	21	7.0	1.5	11.2	71	
Total	_	46		T • J		, 1	
Tank mixtures	1 612	1,612	1.0	•9	•9	1,486	
Atrazine	1,612	1,012	1.0	1.1	1.1	1,705	
+ cyanazine				1.11		-,	
A	5,371	5,608	1.0	1.0	1.1	5,671	
Atrazine	3,371	3,000	1.0	1.8	1.8	9,911	
+ alachlor							
Atmosino	2,986	2,986	1.0	.8	•8	2,534	
Atrazine	2,900	2,500		3.3	3.3	9,817	
+ butylate							
Atrazine	161	161	1.0	1.0	1.0	161	
+ 2,4-D	101	202		•1	.1	31	
T 2,4-D							

⁻⁻ continued

Table 16. Sweet corn: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New York, 1979 $\underline{a}/\underline{b}/$ --continued

	:	: :		:Pounds of	active in	gredient
	: Acres	: Acre- :	Times		acre	:
		:treatments:		:Per time		•
Pesticides	,	:			: average	: Total
Tank mixtures						
Atrazine						
+ herbicides	360	360	1.0	9.5	9.5	3,437
Bladex						
+ herbicides	388	388	1.0	5.7	5.7	2,194
Other		925	-	1.8	-	1,674
Total	-	12,040	•••	3.2	-	38,621
TOTAL PESTICIDES	***	95,212	•••	1.0	-	94,426

a/ 1979 Vegetable Pesticide Survey, Natural Resource Economics Division, ESCS, USDA.

b/ In 1979, 44,300 acres planted: 21,600 for the processing market and 22,700 for the Summer fresh market (Table 2).

<u>c</u>/ Acres treated sums in this column not derived for "other" and "totals" because two or more materials may have been used on the same acre resulting in double counting.

Table 17. Sweet corn: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New Jersey, 1979 a/b/

				. Dougla of		anadi ant
	: Acres	: Acre- :	Times		active in acre	igredient
		: Acre- : :treatments:		:Per time		-:
Pesticides			appried	:applied		
restrictes	: c/	:		:applied	: average	· IULai
Single applications						
Herbicides						
Atrazine	2,171	2,171	1.0	1.5	1.5	3,157
Alachlor	1,801	1,801	1.0	1.1	1.1	2,062
Butylate	542	542	1.0	6.7	6.7	3,633
Other	J42 	238	_	•3	_	69
Total	-	4,752	_	1.9		8,921
Total	_	4,732		1.0		0,521
Insecticides						
Carbaryl	1,544	3,880	2.5	1.4	3.5	5,389
Methomyl	6,359	25,738	4.0	•8	3.0	19,386
Malathion	211	757	3.6	• 4	1.4	292
Methyl parathion	769	2,568	3.3	•7	2.4	1,848
Parathion	3,077	8,765	2.8	•5	1.4	4,450
Other	5, 077	927	_	•6	-	523
Total	_	42,635	_	• 7	_	31,888
Iocai		42,000				
Fungicides						
Chlorothalonil	7	15	2.1	1.9	3.8	27
Total		15	-	1.8	_	27
10041						
Tank mixtures						
Carbaryl	2,682	16,942	6.3	1.5	9.2	24,782
+ parathion	2,002	20,7		•3	1.8	4,876
parachion						
Methomyl	434	1,302	3.0	• 4	1.4	586
+ parathion		_,-,-		•1	•3	130
parachiton						
Other	_	5,751	-	1.8		10,146
Other		-, ,,,,,				
Total	_	23,995		1.7	-	40,520
10641		, , , , , , , , , , , , , , , , , , , ,				
TOTAL PESTICIDES	-	71,397	-	1.1	-	81,356
TOTAL TESTICION						

a/ 1979 Vegetable Pesticide Survey, Natural Resource Economics Division, ESCS, USDA.

b/ In 1979, 11,800 acres planted for the Summer fresh market (Table 2).

c/ Acres treated sums in this column not derived for "other" and "totals" because two or more materials may have been used on the same acre resulting in double counting.

about 85 percent of the insecticide acre-treatments and 65 percent of the pounds (a.i.) applied. In New Jersey, sweet corn growers used methomyl for about 60 percent of the total insecticide acre-treatments and about the same percentage of the total quantity applied.

Compared with insect control, diseases present a minor problem for sweet corn growers. It is not economically feasible to control smut, the most common disease problem. Less than 50 acre-treatments of chlorothalonil and maneb were used in either State for controlling leaf blights or rusts.

Tomatoes

An estimated 17,600 acres of tomatoes were planted in the Northeast region with about 60 percent and 40 percent of the production intended for the respective fresh and processing markets. Nearly all of the tomatoes grown in New York and about 30 percent of the tomatoes grown in New Jersey are planted for the fresh market. For both States, nearly 154,000 pounds (a.i.) of all pesticides were used for about 125,000 acre-treatments (Tables 18 and 19).

Trifluralin accounted for about 90 percent of the total herbicide acretreatments applied as single ingredients in New York and nearly 80 percent of the total acre-treatments in New Jersey. It was used for controlling barnyard-grass, crabgrass, foxtail, and pigweed.

Major insects affecting tomatoes include aphids, Colorado potato beetles, flea beetles, tomato fruitworms, tomato hornworms, and European corn borers.

New York growers used endosulfan and parathion for about 75 percent of the insecticide acre-treatments. Growers in New Jersey used azinphos-methyl for about 55 percent of the acre-treatments.

Chlorothalonil and captafol comprised 80 to 90 percent of the fungicides used by New York and New Jersey growers for controlling early and late blights.

Table 18. Tomatoes: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New York, 1979 a/b/

-							
	:	:		:Pounds of active ingredient			
	: Acres	: Acre- :	Times		acre		
D 41 11		:treatments:	applied			•	
Pesticides	: c/	: :		:applied	: average	: Total	
Single applications							
Herbicides							
Trifluralin	2,133	2,133	1.0	• 5	• 5	1,033	
Other		217	_	1.1	-	243	
Total	_	2,350	_	• 5	-	1,276	
2002		2,000				,	
Insecticides							
Azinphos-methyl	443	515	1.2	•3	• 4	166	
Carbaryl	216	731	3.4	1.2	4.1	876	
Diazinon	569	1,104	1.9	• 5	1.0	558	
Endosulfan	959	4,016	4.2	•8	3.3	3,166	
Parathion	1,555	3,148	2.0	. 4	•9	1,333	
Other	-	255		•5	-	136	
Total	-	9,769	-	• 6		6,235	
Fungicides	- 440	0.07/	, ,	1 0	, 0	0 (01	
Chlorothalonil	2,410	9,874	4.1	1.0	4.0	9,681	
Captafol	412	1,081	2.6	1.7	4.4	1,831	
Maneb	284	939	3.3	1.8	5.9	1,661	
Other	_	379	-	.9	-	353 13,526	
Total	_	12,273	_	1.1	_	13,520	
Marala ariantemana							
Tank mixtures	327	327	1.0	• 2	• 2	74	
Pebulate	341	321	1.0	•5	•5	163	
+ trifluralin				• 5	• •	200	
Chlorothalonil	327	327	1.0	•9	.9	297	
+ diazinon	321	527	1.0	•5	•5	163	
+ drazmon							
Chlorothalonil	327	1,960	6.0	•9	5.5	1,782	
+ endosulfan	321	1,500		•5	3.0	980	
T endosultan							
Other	488	482	-	2.0	-	969	
Ochel.							
Total	_	3,096	-	1.4	-	4,428	
10001							
TOTAL PESTICIDES	-	27,488		•9	-	25,465	

a/ 1979 Vegetable Pesticide Survey, Natural Resource Economics Division, ESCS, USDA.

b/ In 1979, 7,000 acres planted for the Summer fresh market (Table 2).

c/ Acres treated sums in this column not derived for "other" and "totals" because two or more materials may have been used on the same acre resulting in double counting.

Table 19. Tomatoes: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New Jersey, 1979 $\underline{a}/\underline{b}/$

	:	: :	 	:Pounds of	f active in	ngredient
	: Acres	: Acre- :	Times		acre	:
	:treated			:Per time		- `
Pesticides	: c/	:			: average	: Total
Single applications						
Herbicides	500	***				
Diphenamid	503	503	1.0	2.8	2.8	1,413
Metribuzin	461	461	1.0	•3	•3	140
Pebulate	384	384	1.0	•1	• 1	49
Trifluralin	6,519	6,519	1.0	•8	•8	5,487
Other	-	434	-	1.8	-	802
Total	-	8,301	-	1.0	-	7,891
Insecticides						
Azinphos-methyl	4,301	15,349	3.6	• 5	1.9	8,033
Bacillus						,,,,,
thuringiensis d	1/ 542	542	1.0	4860	_	-
Carbaryl	648	1,618	2.5	1.0	2.4	1,548
Oxamyl	2,008	6,143	3.1	• 4	1.4	2,710
Parathion	677	848	1.3	•6	•8	546
Phosphamidon	822	1,244	1.5	•6	•9	721
Other	_	1,284	_	•6	_	827
Total	-	27,028	-	•5	-	14,385
Fundadas						
Fungicides	0.0/0	0.060	, 0		7.0	1 / 00=
Chlorothalonil	2,040	9,860	4.8	1.5	7.3	14,897
Captafol	2,874	11,025	3.8	1.8	6.8	19,528
Maneb	877	2,370	2.7	2.6	6.9	6,053
Mancozeb	761	2,669	3.5	1.9	6.8	5,187
Other	-	807	-	1.3	-	1,080
Total	-	26,731	-	1.7	-	46,745
Growth regulators						
Ethephon	880	880	1.0	1.2	1.2	1,086
Tank mixtures						
Azinphos-methyl	1,349	2,740	2.0	• 5	1.0	1,306
+ chlorothalonil	1,5 %	2,7 40	2.0	•9	1.8	2,491
						-, 1,71
Azinphos-methyl	919	3,295	3.6	•3	•9	823
+ chlorothalonil				1.0	3.4	3,143
+ oxamyl				•3	•9	824
Azinphos-meth 1	426	1,277	3.0	•5	1.5	632
+ captafol		-,-,		1.8	5.3	2,242
+ oxamyl				•5	1.5	639
· · · · · · · · · · · · · · · · · · ·				• 5	1.00	033
Azinphos-methyl	1,810	11,797	6.5	•5	3.2	5,864
+ endosulfan	1,010	,	3.3	•8	4.9	8,845
				•	7.0	0,040

Table 19. Tomatoes: Acres treated, acre-treatments, times applied, rates and quantities used, single ingredient and tank-mix applications, New Jersey, 1979 $\underline{a}/\underline{b}/--$ continued

	:	:			active in	ngredient
	: Acres	: Acre- :	Times		acre	- :
n -4-1 -1 1 -		:treatments:	applied			
Pesticides	: c/	: :		:applied	: average	: Total
Tank mixtures (cont'	d)					
Azinphos-methyl + endosulfan	594	1,188	2.0	• 4 • 8	.8 1.6	446 950
+ maneb				2.4	4.8	2,851
Azinphos-methyl + oxamyl	475	1,144	2.4	•6 •5	1.3 1.2	639 572
Azinphos-methyl						
+ fungicides + insecticides	2,916	4,713	1.6	2.2	3.5	10,327
Captafol + insecticides	469	469	1.0	2.6	2.6	1,226
Chlorothalonil + insecticides + fungicides	1,520	5,395	3.5	1.8	6.5	9,879
Copper hydroxide + insecticides + fungicides	481	669	1.4	2.5	3.5	1,681
Maneb + oxamyl	78	470	6.0	1.7 .5	10.3 3.0	805 235
Oxamyl + fungicides	173	587	3.4	1.7	5.9	1,022
Other	-	480	-	1.6	-	788
Total	-	34,224	-	1.7	-	58,230
TOTAL PESTICIDES	-	97,164	-	1.3	-	128,337

a/ 1979 Vegetable Pesticide Survey, Natural Resource Economics Division, ESCS, USDA.

b/ In 1979, 10,600 acres planted: 7,300 for the processing market and 3,300 for the Summer fresh market (Table 2).

c/ Acres treated sums in this column not derived for "other" and "totals" because two or more materials may have been used on the same acre resulting in double counting.

d/ Quantity data not reported because Bacillus thuringiensis is expressed in terms of number of spores per gram rather than in pounds active ingredient.

blemish, anthracnose, and common leaf spot.

Tank-mix applications accounted for about 10 percent of all applications in New York and 35 percent in New Jersey. Tank-mix applications using azinphos-methyl plus other pesticides accounted for about 75 percent of the tank-mix applications.

REFERENCES

- 1. Metcalf, C.L. and W.P. Flint, "Destructive and Useful Insects," McGraw-Hill Book Company, 4th Edition, 1962.
- New Jersey Cooperative Extension Service, "Commercial Vegetable Production Recommendations," Dept. of Entomology, Extension Bulletin 406-H, Rutgers University, 1981.
- 3. New York Cooperative Extension Service, "Cornell Recommedations for Commercial Vegetable Production," Cornell University, 1981.
- 4. New York Cooperative Extension Service, "Patterns of Pesticide Use by New York Vegetable Growers in 1978," Cornell University, 1978.
- 5. Pfadtt, R. E., Editor, "Fundamentals of Applied Entomology," MacMillan Publishing Co., 3rd Edition, 1972.
- 6. U.S. Dept. Agr. "Guidelines for the Control of Insect and Mite Pests of Foods, Fibers, Feeds, Ornamentals, Livestock, Forests, and Forest Products," Agriculture Handbook No. 554, August 1979.
- 7. U.S. Dept. Agr. "Vegetables, 1980 Annual Summary," Crop Reporting Board, Economics and Statistics Service, Vg 1-2(80), December 1980.

ass Toric Co

Class sep.

TEMPORARY ENTRY

DATE: AACR2

ERS staff report

UPDATED TO AACR2, Formerly:

ERS staff report (United States. Dept. of Agriculture. Economic Research Service)

ds 7-2-85

NAL-324 (7/81)

USDA-NAL Resource Development

