3. előadás

Mérai László diái alapján

Komputeralgebra Tanszék

2014. ősz

Relációk

A relációk

- a függvényfogalom általánosításai;
 - "hagyományos" függvények pontos definiálása;
 - "többértékű függvények"
- kapcsolatot ír le
 - $\bullet=$, <, \leq , oszthatóság, . . .

Rendezett pár

Adott $x \neq y$ és (x, y) rendezett pár esetén számít a sorrend:

- $\{x, y\} = \{y, x\}$
- $(x, y) \neq (y, x)$.

Definíció

Az (x, y) rendezett párt a $\{\{x\}, \{x, y\}\}$ halmazzal definiáljuk.

Az (x, y) rendezett pár esetén a x az első, az y a második koordináta.

Definíció

Az X, Y halmazok Descartes-szorzatán az

$$X \times Y = \{(x, y) : x \in X, y \in Y\}$$

rendezett párokból álló halmazt értjük.

Binér relációk

Adott X, Y halmazok esetén az $R \subset X \times Y$ halmazokat binér (kétváltozós) relációknak nevezzük.

Ha R binér reláció, akkor gyakran $(x, y) \in R$ helyett xRy-t írunk.

Példa

- 1. $\mathbb{I}_X = \{(x, x) \in X \times X : x \in X\}$ az egyenlőség reláció.
- 2. $\{(x,y) \in \mathbb{Z} \times \mathbb{Z} : x \mid y\}$ az osztója reláció.
- 3. \mathcal{F} halmazrendszer esetén az $\{(X,Y) \in \mathcal{F} \times \mathcal{F} : X \subset Y\}$ a tartalmazás reláció.
- 4. Adott $f: \mathbb{R} \to \mathbb{R}$ függvény esetén a függvény grafikonja $\{(x, f(x)) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}.$

Definíció

Ha valamely X, Y halmazokra $R \subset X \times Y$, akkor azt mondjuk, hogy R reláció X és Y között.

Ha X = Y, akkor azt mondjuk, hogy R X-beli reláció (homogén binér reláció).

Relációk értelmezési tartománya, értékkészlete

Ha R reláció X és Y között ($R \subset X \times Y$) és $X \subset X'$, $Y \subset Y'$, akkor R reláció X' és Y' között is!

Definíció

Az $R \subset X \times Y$ reláció értelmezési tartománya a

$$dmn(R) = \{x \in X | \exists y \in Y : (x, y) \in R\},\$$

értékkészlete

$$rng(R) = \{ y \in Y | \exists x \in X : (x, y) \in R \}.$$

- 1. Ha $R = \{(x, 1/x^2) : x \in \mathbb{R}\}$, akkor $dmn(R) = \{x \in \mathbb{R} : x \neq 0\}$, $rng(R) = \{x \in \mathbb{R} : x > 0\}$.
- 2. Ha $R = \{(1/x^2, x) : x \in \mathbb{R}\}$, akkor $dmn(R) = \{x \in \mathbb{R} : x > 0\}$, $rng(R) = \{x \in \mathbb{R} : x \neq 0\}$.

Relációk kitejesztése, leszűkítése, inverze

Definíció

Egy R binér relációt az S binér reláció kiterjesztésének, illetve S-et az Rleszűkítésének (megszorításának) nevezzük, ha $S \subset R$. Ha A egy halmaz, akkor az R reláció A-ra való leszűkítése (az A-ra való megszorítása) az

$$R|_{A} = \{(x, y) \in R : x \in A\}.$$

Példa

Legyen $R = \{(x, x^2) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}, S = \{(\sqrt{x}, x) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}.$ Ekkor R az S kiterjesztése, S az R leszűkítése, $S = R|_{\mathbb{R}^+}$ (ahol \mathbb{R}_0^+ a nemnegatív valós számok halmaza).

Definíció

Egy R binér reláció inverze az $R^{-1} = \{(y, x) : (x, y) \in R\}.$

$$R^{-1} = \{(x^2, x) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}, S^{-1} = \{(x, \sqrt{x}) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}$$

Halmaz képe, teljes inverz képe

Definíció

Legyen $R \subset X \times Y$ egy binér reláció, A egy halmaz. Az A halmaz képe az $R(A) = \{y \in Y | \exists x \in A : (x,y) \in R\}$.

Adott B halmaz inverz képe, vagy teljes ősképe az $R^{-1}(B)$, vagyis a B halmaz képe az R^{-1} reláció esetén.

Példa

Legyen $R = \{(x^2, x) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}, S = \{(x, \sqrt{x}) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}.$

- $R({9}) = {-3, +3}$ (vagy röviden $R(9) = {-3, +3}$),
- $S(9) = \{+3\}.$

Példa

Legyen R reláció az $X = \{A, B, C, \dots, P\}$ halmazon, és legyen $T \to T'$, ha $(T, T') \in R$.

- $\bullet \ \mathrm{dmn}(R) = \{A,B,C,D,F,G,H,I,K\}.$
- $rrg(R) = \{A, B, C, E, F, G, H, I, J, L\}.$
- $R|_{\{A,B,C,D\}} = \{(A,B),(B,C),(C,A),(D,E),(D,F)\}.$

Kompozíció

Definíció

Legyenek R és S binér relációk. Ekkor az $R \circ S$ kompozíció (összetétel, szorzat) reláció:

$$R \circ S = \{(x,y) | \exists z : (x,z) \in S, (z,y) \in R\}.$$

Kompozíció esetén a relációkat "jobbról-balra írjuk":

Példa

Legyen
$$R_{sin} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : \sin x = y\},\$$

 $S_{log} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : \log x = y\}.$

Ekkor

$$R_{\sin} \circ S_{\log} = \{(x, y) | \exists z : \log x = z, \sin z = y\}$$

= \{(x, y) \in \mathbb{R} \times \mathbb{R} : \sin \log x = y\}.

10.

Kompozíció

$$R \circ S = \{(x,y) | \exists z : (x,z) \in S, (z,y) \in R\}$$

Példa

Legyen S, R két reláció, és tekintsük a $T = R \circ S$ kompozíciót:

Példa

Adott cég esetén legyenek A ,B, ..., J az alkalmazottak. A cég két projekten dolgozik: BANK, JÁTÉK.

beosztás	alkalmazott			
menedzser	A, B			
programozó	C, D, E			
tesztelő	F, G, H			
HR	1			
tech. dolgozó	J			

projekt	alkalmazott	határidő		
BANK	A, C, D, F	2014.12.31.		
JÁTÉK	B, D, E, F, G, H	2015.01.31.		

Legyen B a beosztás reláció: például A B menedzser.

P a projekt reláció: például A P BANK

H a határidő reláció: például BANK H 2014.12.31.

- Kik dolgoznak a BANK projekten? $P^{-1}(BANK)$.
- Kik a tesztelők? B^{-1} (tesztelő).
- Mi a BANK projekt határideje? H(BANK).
- Milyen határidejei vannak az alkalmazottaknak? *H* ∘ *P*.
- Milyen határidejei vannak a tesztelőknek? $H \circ P \circ B^{-1}$ (tesztelő).

2014. ősz

Kompozíció

$$R \circ S = \{(x, y) | \exists z : (x, z) \in S, (z, y) \in R\}$$

Állítás

Legyen R, S, T binér reláció. Ekkor

- 1. Ha $rng(S) \supset dmn(R)$, akkor $rng(R \circ S) = rng(R)$.
- 2. $R \circ (S \circ T) = (R \circ S) \circ T$ (a kompozíció asszociatív).
- 3. $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$.

Bizonyítás

- 1. $\operatorname{rng}(R) = \{y | \exists z : (z, y) \in R\}$. Mivel $\operatorname{rng}(S) \supset \operatorname{dmn}(R)$, ezért minden $(z, y) \in R$ esetén $\exists x : (x, z) \in S$, így $(x, y) \in R \circ S$.
- 2. $R \circ (S \circ T) = \{(w, z) | \exists y : (w, y) \in S \circ T, (y, z) \in R\} = \{(w, z) | \exists y \exists x : (w, x) \in T, (x, y) \in S, (y, z) \in R\} = (R \circ S) \circ T.$
- 3. $(R \circ S)^{-1} = \{(y, x) | \exists z : (x, z) \in S, (z, y) \in R\} = \{(y, x) | \exists z : (z, x) \in S^{-1}, (y, z) \in R^{-1}\} = S^{-1} \circ R^{-1}.$

2014. ősz

Relációk tulajdonságai

Példa

Relációk: =, <, \leq , |, \subset , $T = \{(x, y) : x, y \in \mathbb{R}, |x - y| < 1\}.$

Definíció

Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1. R tranzitív, ha $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz; (=, <, \leq, |, \subset)$
- 2. R szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx; \quad (=, T)$
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y; (=, \leq, \subset)$
- 4. *R* szigorúan antiszimmetrikus, ha *xRy* és *yRx* egyszerre nem teljesülhet; (<)
- 5. R reflexív, ha $\forall x \in X : xRx$; $(=, \leq, |, \subset, T)$
- 6. *R* irreflexív, ha $\forall x \in X : \neg xRx$; (<)
- 7. R trichotóm, ha $\forall x, y \in X$ esetén x = y, xRy és yRx közül pontosan egy teljesül; (<)
- 8. R dichotóm, ha $\forall x, y \in X$ esetén xRy vagy yRx (esetleg mindkettő). (<)

Az $\{(x,x)\in\mathbb{R}\times\mathbb{R},x\in\mathbb{R}\}\subset\mathbb{R}\times\mathbb{R}\subset\mathbb{C}\times\mathbb{C}$ mint \mathbb{R} -en értelmezett reláció reflexív, de mint \mathbb{C} -n értelmezett reláció nem reflexív. Példa

tranzitív	Χ	szigorúan antiszimmetrikus	Χ	trichotóm	Χ
szimmetrikus	Χ	reflexív	Χ	dichotóm	Χ
antiszimmetrikus	√	irreflexív	X		

14.

Relációk gráfja

A relációk gráfját egyszerűsíthetjük:

• Ha egy reláció reflexív, akkor a hurokéleket nem rajzoljuk.

 Ha egy reláció tranzitív, akkor elhagyjuk az olyan éleket, amelyek létezése a tranzitivitás miatt a már berajzolt élekből következik.

 Ha egy reláció szimmetrikus, akkor irányított élek helyett csak éleket (vonalakat) rajzolunk.

 \equiv mod3

16.

Ekvivalenciareláció, osztályozások

Definíció

Legyen X egy halmaz, R reláció X-en. Az R relációt ekvivalenciarelációnak mondjuk, ha reflexív, szimmetrikus, tranzitív.

Példa

1. =; 2. $z \sim w$, ha Re(z) = Re(w).

Definíció

Az X részhalmazainak egy \mathcal{O} rendszerét az X osztályozásának nevezzük, ha O páronként diszjunkt nem-üres halmazokból álló halmazrendszer és $\cup \mathcal{O} = X$.

- 1. \mathbb{R} egy osztályozása: $\{\{a\}: a \in \mathbb{R}\}$;
- 2. \mathbb{C} egy osztályozása: $\{\{z \in \mathbb{C} : \text{Re}(z) = r\} : r \in \mathbb{R}\}.$

2014. ősz

Ekvivalenciareláció, osztályozások

Tétel

Valamely X halmazon értelmezett \sim ekvivalenciareláció esetén az $\overline{x}=\{y\in X:y\sim x\}$ $(x\in X)$, ekvivalenciaosztályok X-nek egy osztályozását adják, ezt az osztályozást X/\sim -mal jelöljük.

Bizonyítás

Legyen \sim egy X-beli ekvivalenciareláció. Azt kell megmutatni, hogy $X/\sim=\{\overline{x}:x\in X\}$ az X egy osztályozását adja.

- Mivel \sim reflexív, így $x \in \overline{x} \Rightarrow \bigcup_{x} \overline{x} = X$.
- Különböző ekvivalenciaosztályok páronként diszjunktak. Tfh $\overline{x} \cap \overline{y} \neq \emptyset$, legyen $z \in \overline{x} \cap \overline{y}$. Mivel $z \in \overline{x} \Rightarrow z \sim x$, ahonnan a szimmetria miatt $x \sim z$. Hasonlóan $z \in \overline{y} \Rightarrow z \sim y$. A tranzitivitás miatt $x \sim z \sim y \Rightarrow x \sim y \Rightarrow x \in \overline{y}$. Hasonlóan $y \in \overline{x} \Rightarrow \overline{x} = \overline{y}$.

Ekvivalenciareláció, osztályozások

Tétel

Valamely X halmazon bármely \mathcal{O} osztályozás esetén az $R = \bigcup \{Y \times Y : Y \in \mathcal{O}\}\$ reláció ekvivalenciareláció, amelyhez tartozó ekvivalenciaosztályok halmaza O.

Bizonyítás

- R reflexív: legyen az x osztálya $Y: x \in Y \in \mathcal{O}$. Ekkor $(x,x) \in Y \times Y$.
- R szimmetrikus: legyen az $(x, y) \in R$. Ekkor $x, y \in Y$ valamely Y osztályra, speciálisan $(y, x) \in Y \times Y$.
- R tranzitív: hasonlóan legyen $(x, y), (y, z) \in R$, ezért $x, y \in Y$, $y, z \in Y'$. Mivel az osztályok páronként diszjunktak, így Y = Y', speciálisan $z \in Y$, azaz $(x, z) \in Y \times Y$.

Ekvivalenciareláció, osztályozások

Az ekvivalenciarelációk illetve osztályozások kölcsönösen egyértelműen meghatározzák egymást.

Példa

- $\bullet = \longleftrightarrow \{\{a\} : a \in \mathbb{R}\};$
- $z \sim w$, ha $\operatorname{Re}(z) = \operatorname{Re}(w) \longleftrightarrow \{\{z \in \mathbb{C} : \operatorname{Re}(z) = r\} : r \in \mathbb{R}\}.$

- A síkon két egyenes legyen ~ szerint relációban, ha párhuzamosak.
 Ekkor az osztályok az irány fogalomát adják.
- A síkon két szakasz legyen ~ szerint relációban, ha egybevágóak.
 Ekkor az osztályok a hossz fogalomát adják.
- Két egész számpár esetén $(r,s) \sim (p,q)$ $(s,q \neq 0)$, ha $r \cdot q = p \cdot s$. Ekkor az osztályok a racionális számok halmaza.

Részbenrendezés, rendezés

Definíció

Az X halmazon értelmezett reflexív, tranzitív és antiszimmetrikus relációt részbenrendezésnek nevezzük. (Jele: \leq , \leq \preccurlyeq , ...) Ha $x, y \in X$ esetén $x \leq y$ vagy $y \leq x$, akkor x és y összehasonlítható. (Ha minden elempár összehasonlítható, akkor a reláció dichotóm.) Az X halmazon értelmezett reflexív, tranzitív, antiszimmetrikus és dichotóm relációt rendezésnek nevezzük.

Ha egy részbenrendezés esetén bármely két elem összehasonlítható, akkor az rendezés.

- \mathbb{R} -en a < reláció rendezés: $\forall x, y \in \mathbb{R}$: x < y vagy y < x.
- N-en az | (osztója) reláció részbenrendezés: 4 ∤ 5, 5 ∤ 4.
- Az X halmaz összes részhalmazán a ⊂ reláció részbenrendezés $X = \{a, b, c\}, \{a\} \not\subset \{b, c\}, \{b, c\} \not\subset \{a\}.$

Szigorú és gyenge reláció

Definíció

Az X-beli R relációhoz tartozó szigorú reláció, az az S reláció, melyre $xSy \iff xRy \land x \neq y$.

Az X-beli R relációhoz tartozó gyenge reláció, az a T reláció, melyre $xTy \iff xRy \lor x = y$.

Másképpen megfogalmazva:

$$S = R \setminus \mathbb{I}_X$$
, $T = R \cup \mathbb{I}_X$, ahol $\mathbb{I}_X = \{(x, x) : x \in X\}$.

- ≤ relációhoz tartozó szigorú reláció: <.
- c relációhoz tartozó szigorú reláció: ⊆.
- osztója relációhoz tartozó szigorú reláció: valódi osztója.

2014. ősz

Szigorú és gyenge rendezés

Definíció

Az X halmazon értelmezett tranzitív és irreflexív relációt szigorú részbenrendezésnek nevezzük. (Jele: < , \prec , ...)

Megjegyzések

- A tranzitivitásból és az irreflexivitásból következik a szigorú antiszimmetria: ha x ≺ y és y ≺ x tranzitivitás miatt x ≺ x, ami ellentmondás.
- Egy részbenrendezés relációnak szigorú változata szigorú részbenrendezés, és fordítva: ≺= \\I_X, ≤= ≺∪I_X.

Állítás

Ha a \prec reláció rendezés, akkor \prec trichotóm, és fordítva.

Bizonyítás

Kell: x = y, $x \prec y$ és $y \prec x$ egyszerre nem teljesülhet. Ha x = y, akkor igaz az állítás. Továbbá $x \prec y$ és $y \prec x$ sem teljesülhet egyszerre.

23.

Intervallumok

Definíció

Legyen X egy részbenrendezett halmaz. Ha $x \leq z$ és $z \leq y$, akkor azt mondjuk, hogy z az x és y közé esik, ha $x \prec z$ és $z \prec y$, akkor azt mondjuk, hogy z szigorúan az x és y közé esik. Az összes ilyen elem halmazát [x,y], ill. (x,y) jelöli. A [x,y), ill. (x,y) jelölések definíciója analóg.

Példa

Legyen X az $\{a,b,c\}$ halmaz hatványhalmaza a részhalmaz relációval.

Ekkor
$$[\{a\}, \{a, b, c\}] = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\};$$

 $(\{a\}, \{a, b, c\}) = \{\{a, b\}, \{a, c\}\}.$

Legyen X a pozitív egész számok halmaza az osztója relációval.

Ekkor
$$[2, 12] = \{2, 4, 6, 12\};$$

 $(2, 12) = \{4, 6\}.$

Intervallumok

Definíció

Ha $x \prec y$, de nem létezik szigorúan x és y közé eső elem, akkor x közvetlenül megelőzi y-t.

Példa

Legyen X az $\{a, b, c\}$ halmaz hatványhalmaza a részhalmaz relációval.

Ekkor az $\{a\}$ közvetlenül megelőzi $\{a,b\}$ -t, illetve $\{a,c\}$ -t.

Legyen X a pozitív egész számok halmaza az osztója relációval.

Ekkor 2 közvetlenül megelőzi a 4, 6, 10, 14 elemeket.

Definíció

Az $\{y \in X : y < x\}$ részhalmazt az x elemhez tartozó kezdőszeletnek nevezzük.

Példa

Legyen X az $\{a,b,c\}$ halmaz hatványhalmaza a részhalmaz relációval. Ekkor az $\{a,b\}$ elemhez tartozó kezdőszelet: $\{\emptyset,\{a\},\{b\}\}$.

Részbenrendezések Hasse-diagramja

Ha egy részbenrendezett halmaz elemeit pontokkal ábrázoljuk, és csak azon (x,y) párok esetén rajzolunk irányított élt, amelyre x közvetlenül megelőzi y-t, akkor a részbenrendezett halmaz Hasse-diagramját kapjuk. Néha irányított élek helyett irányítatlan élt rajzolunk, és a kisebb elem kerül lejjebb.

2014. ősz

25

2014. ősz

Legkisebb, legnagyobb, minimális, maximális elem

Definíció

Az X részbenrendezett halmaz

legkisebb eleme: olyan $x \in X$: $\forall y \in X, \ x \leq y$; legnagyobb eleme: olyan $x \in X$: $\forall y \in X, \ y \leq x$;

minimális eleme: olyan $x \in X$: $\neg \exists y \in X, x \neq y, y \leq x$; maximális eleme: olyan $x \in X$: $\neg \exists y \in X, x \neq y, x \leq y$.

Példa

Legyen $X = \{1, 2, \dots, 8\}$ az oszthatóságra:

legkisebb elem: 1, legnagyobb elem: nincs, minimális elem: 1,

maximális elemek: 5, 6, 7, 8.

Legkisebb, legnagyobb, minimális, maximális elem

Megjegyzések

- Minimális és maximális elemből több is lehet.
- Ha a halmaz rendezett, akkor a minimális és legkisebb elem, továbbá a maximális és legnagyobb elem egybeesik.
- Ha X-nek létezik egyértelmű minimális, ill. maximális eleme, akkor azt min X, ill. max X jelöli.

Példa

Legyen $X = \{1, 2, \dots, 8\}$ az oszthatóságra:

$$min X = 1$$
,

 $\max X$ nincs.

Korlátok

Definíció

Egy X részbenrendezett halmaz x eleme az Y részhalmaz alsó korlátja, ha $\forall y \in Y : x \leq y$; felső korlátja, ha $\forall y \in Y : y \prec x$.

Ha az alsó korlátok halmazában van legnagyobb elem, akkor ez az Y infimuma: inf Y, ha a felső korlátok halmazában van legkisebb elem, akkor ez az Y supremuma: sup Y.

Példa

Legyen $X = \{1, 2, \dots, 8\}$ az oszthatóságra:

- {1,2,3} alsó korlátja: 1, felső korlátja: 6, infimuma: 1, supremuma: 6. {2,3,4} alsó korlátja: 1,
 - alsó korlátja: 1, felső korlátja: nincs, infimuma: 1, supremuma: nincs.

Korlátok

Definíció

Ha az X részbenrendezett halmaz bármely nem üres, felülről korlátos részhalmazának van supremuma, akkor felső határ tulajdonságúnak nevezzük, ha bármely nem üres, alulról korlátos részhalmazának van infimuma, akkor X-et alsó határ tulajdonságúnak nevezzük.

Példa

 A pozitív egész számok halmaza az oszthatóságra nézve alsó, és felső határ tulajdonságú:

```
Ha Y = \{a_1, a_2, \dots\}, akkor inf Y = Inko(a_1, a_2, \dots), felső határa Ikkt(a_1, a_2, \dots).
```

 A racionális számok halmaza a szokásos rendezésre nézve sem alsó, sem felső határ tulajdonságú:

```
Y = \{r \in \mathbb{Q} : r \le \sqrt{2}\} halmaznak van felső korlátja (pl.: 1000, 999, 2, 1, 42, ...), de nincs (racionális) supremuma (a supremum \sqrt{2} \notin \mathbb{Q} lenne).
```