Université Paris Cité - LIPADE

Algorithmic Complexity Introduction to Advanced Concepts

Jean-Guy Mailly (jean-guy.mailly@u-paris.fr)

Outline

Boolean Hierarchy

Parameterized Complexity

Basics on Parameterized Complexity Backdoors in SAT Graph Treewidth

Boolean Hierarchy

- Some problems cannot be easily classified in PH-classes
- ► The Boolean Hierarchy is useful to discriminate problems which are between the first (NP, coNP) and second (Σ_2^P, Π_2^P) levels of the polynomial hierarchy

Boolean Hierarchy

- ► Some problems cannot be easily classified in PH-classes
- The Boolean Hierarchy is useful to discriminate problems which are between the first (NP, coNP) and second (Σ^P₂, Π^P₂) levels of the polynomial hierarchy

The BH is the set of decision problems defined inductively by:

- ightharpoonup BH₁ = NP
- ▶ $BH_{2i} = \{\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2 \mid \mathcal{L}_1 \in BH_{2i-1}, \mathcal{L}_2 \in coNP\} = BH_{2i-1} \land coNP$
- $\blacktriangleright \ \mathsf{BH}_{2i+1} = \{\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2 \mid \mathcal{L}_1 \in \mathsf{BH}_{2i}, \mathcal{L}_2 \in \mathsf{NP}\} = \mathsf{BH}_{2i} \bigvee \mathsf{NP}$
- $\blacktriangleright \mathsf{BH} = \cup_{i \in \mathbb{N} \setminus \{0\}} \mathsf{BH}_i \subseteq \Delta_2^\mathsf{P}$

Inclusion of Boolean Hierarchy Classes

- $ightharpoonup \forall i, BH_i \subseteq BH_{i+1}$
- ► Intuition:
 - ▶ For $i \equiv 1 \pmod{2}$, $\forall \mathcal{L} \in \mathsf{BH}_i$, $\mathcal{L} = \mathcal{L} \cap \mathcal{L}_{All}$, where \mathcal{L}_{All} is the language which contains all possible instances. $\mathcal{L}_{All} \in \mathsf{coNP}$, so $\mathcal{L} = \mathcal{L} \cap \mathcal{L}_{All} \in \mathsf{BH}_{i+1}$
 - For $i \equiv 0 \pmod{2}$, $\forall \mathcal{L} \in \mathsf{BH}_i$, $\mathcal{L} = \mathcal{L} \cup \mathcal{L}_\emptyset$, where \mathcal{L}_\emptyset is the language which contains no instance at all. $\mathcal{L}_\emptyset \in \mathsf{NP}$, so $\mathcal{L} = \mathcal{L} \cup \mathcal{L}_\emptyset \in \mathsf{BH}_{i+1}$

A Specific Class from BH: DP

- ▶ DP = BH₂ = { $\mathcal{L}_1 \cap \mathcal{L}_2 \mid \mathcal{L}_1 \in \text{NP}$ and $\mathcal{L}_2 \in \text{coNP}$ } for Difference Polynomial Time
- ▶ DP has been identified before the definition of the Boolean hierarchy [Papadimitriou and Y. 1984]
 - $\blacktriangleright \ \, \mathsf{DP} = \{\mathcal{L}_1 \setminus \mathcal{L}_2 \mid \mathcal{L}_1 \in \mathsf{NP} \text{ and } \mathcal{L}_2 \in \mathsf{NP}\}$
- ▶ NP \subseteq DP, coNP \subseteq DP

A Specific Problem from DP (1)

Exact Clique

Given a graph G and an integer k, is it true that the maximal clique in G has size exactly k?

Complexity of Exact Clique

Exact Clique is DP-complete [Papadimitriou and Y. 1984]

A Specific Problem from DP (2)

SAT-UNSAT

Given two propositional formulas ϕ , ψ , is ϕ satisfiable and ψ unsatisfiable?

Complexity of SAT-UNSAT

SAT - UNSAT is DP-complete [Papadimitriou and Y. 1984]

A Specific Problem from DP (3)

Unique SAT

Given a propositional formula ϕ , is ϕ satisfiable with exactly one model?

Complexity of Unique SAT

Unique SAT is in DP [Papadimitriou and Y. 1984]

References

- [Wechsung 1995] G. Wechsung, *On the Boolean closure of* NP. Proc. of the International Conference on Fundamentals of Computation Theory, p 485–493, 1985.
- [Papadimitriou and Y. 1984] C. H. Papadimitriou and M. Yannakakis, *The complexity of facets (and some facets of complexity)*. Journal of Computer and System Sciences 28, p 244–259, 1984.

Outline

Boolean Hierarchy

Parameterized Complexity

Basics on Parameterized Complexity Backdoors in SAT Graph Treewidth

- 10
- When considering a hard problem, sometimes the difficulty to solve it comes from a specific part of the problem.
- ▶ If, for an instance *i*, we are sure that the hard part is not too big, then maybe the instance *i* is "not so hard"

- When considering a hard problem, sometimes the difficulty to solve it comes from a specific part of the problem.
- ▶ If, for an instance *i*, we are sure that the hard part is not too big, then maybe the instance *i* is "not so hard"

Intuitive Example: SAT

 \blacktriangleright If ϕ is a DNF formula, it is easy to give all its models

- When considering a hard problem, sometimes the difficulty to solve it comes from a specific part of the problem.
- ▶ If, for an instance *i*, we are sure that the hard part is not too big, then maybe the instance *i* is "not so hard"

Intuitive Example: SAT

- \blacktriangleright If ϕ is a DNF formula, it is easy to give all its models
- $\phi \land (x_1 \lor x_2 \lor x_3)$ is not a DNF, so it is not (directly) easy to know if it is satisfiable

- When considering a hard problem, sometimes the difficulty to solve it comes from a specific part of the problem.
- ▶ If, for an instance *i*, we are sure that the hard part is not too big, then maybe the instance *i* is "not so hard"

Intuitive Example: SAT

- \blacktriangleright If ϕ is a DNF formula, it is easy to give all its models
- $\phi \land (x_1 \lor x_2 \lor x_3)$ is not a DNF, so it is not (directly) easy to know if it is satisfiable
- ▶ But since we know all the models of ϕ , it is easy to know if one of them satisfies $x_1 \lor x_2 \lor x_3$

- When considering a hard problem, sometimes the difficulty to solve it comes from a specific part of the problem.
- ▶ If, for an instance *i*, we are sure that the hard part is not too big, then maybe the instance *i* is "not so hard"

Intuitive Example: SAT

- ▶ If ϕ is a DNF formula, it is easy to give all its models
- $\phi \land (x_1 \lor x_2 \lor x_3)$ is not a DNF, so it is not (directly) easy to know if it is satisfiable
- ▶ But since we know all the models of ϕ , it is easy to know if one of them satisfies $x_1 \lor x_2 \lor x_3$
- ▶ More generally, for $\phi \land \psi$, with ϕ a DNF, the size of ψ is a parameter of the difficulty: the smaller ψ , the easier it is to solve SAT for $\phi \land \psi$

Parameters of a Problem

- ► Instead of measuring the complexity of a problem with just the "size" of the problem, we consider several parameters
- Each parameter correspond to a different source of difficulty to solve the problem
- ► If some parameters are fixed (or bounded), then the problem becomes "simpler" than in the general case

Parameterized Language

[Downey and Fellows 1995]

Definition

Given an alphabet Σ , a parameterized language \mathcal{L} is a subset of $\Sigma^* \times \Sigma^*$. For $(x, k) \in \mathcal{L}$, we call x the main part and k the parameter.

Parameterized Language

[Downey and Fellows 1995]

Definition

Given an alphabet Σ , a parameterized language \mathcal{L} is a subset of $\Sigma^* \times \Sigma^*$. For $(x, k) \in \mathcal{L}$, we call x the main part and k the parameter.

Definition

A parameterized language \mathcal{L} is fixed-parameter tractable if it can be decided in $\mathcal{O}(f(k) \times p(n))$, for $(x,k) \in \mathcal{L}$, with n = |x|, p(n) a polynomial, and f(k) any function.

The class of fixed-parameter tractable problems is called FPT

Examples of Natural Parameters

- ▶ The size of a database query
- ► The number of variables in a logical formula
- ► The number of moves in a game [Abrahamson et al. 1995]

Examples of Natural Parameters

- ▶ The size of a database query
- ► The number of variables in a logical formula
- ► The number of moves in a game [Abrahamson et al. 1995]
- The number of Boolean variables to be assigned to move a formula in a tractable class

Partial Assignment of Formulas

Partial Assignment

We suppose that V is the set of propositional variables, and $V' \subseteq V$.

- ▶ A partial assignment on V' is a mapping ω from each variable $x \in V'$ to $\{0,1\}$.
- For a propositional formula ϕ , the result of the partial assignment ω on ϕ is ϕ_{ω} .

Partial Assignment of Formulas

Partial Assignment

We suppose that V is the set of propositional variables, and $V' \subseteq V$.

- ▶ A partial assignment on V' is a mapping ω from each variable $x \in V'$ to $\{0,1\}$.
- For a propositional formula ϕ , the result of the partial assignment ω on ϕ is ϕ_{ω} .

Example

For $V = \{x_1, x_2, x_3, x_4\}$ and $\phi = (x_1 \lor x_3) \land (\neg x_2 \lor x_4)$, we define

- $V' = \{x_1, x_2\}$
- $\omega(x_1) = 0, \, \omega(x_2) = 1$
- $\blacktriangleright \phi_{\omega} = ?$

Partial Assignment of Formulas

Partial Assignment

We suppose that V is the set of propositional variables, and $V' \subseteq V$.

- ▶ A partial assignment on V' is a mapping ω from each variable $x \in V'$ to $\{0,1\}$.
- For a propositional formula ϕ , the result of the partial assignment ω on ϕ is ϕ_{ω} .

Example

For $V = \{x_1, x_2, x_3, x_4\}$ and $\phi = (x_1 \lor x_3) \land (\neg x_2 \lor x_4)$, we define

- $V' = \{x_1, x_2\}$
- $\omega(x_1) = 0, \, \omega(x_2) = 1$

Backdoors in SAT

Target Class

Given $\mathcal C$ a class of propositional formulas, $\mathcal C$ is a target class if

- $ightharpoonup \mathcal{C}$ can be recognized in polynomial time
- ightharpoonup satisfiability of formulas in $\mathcal C$ can be checked in polynomial time
- $ightharpoonup \mathcal{C}$ is closed under isomorphism (*i.e.* is two formulas are identical except for the names of the variables, then either both or none belong to \mathcal{C})

Definition

A strong- $\mathcal C$ -backdoor of a CNF formula ϕ is a set of variables B such that for all interpretations $\tau \in 2^B$, $\phi_\tau \in \mathcal C$

If we know a strong- $\mathcal C$ -backdoor of ϕ of size k, then the satisfiability of ϕ is reduced to the satisfiability of 2^k formulas $\phi_1,\ldots,\phi_{2^k}\in\mathcal C$. So SAT becomes fixed-parameter tractable in k

Examples of Base Classes

Horn Formulas

A Horn formula is a CNF with only Horn clauses, *i.e.* clauses with at most one positive literal

2CNF Formulas

A 2CNF formula is a CNF with only unary and binary clauses

This means that if a formula has a backdoor of size k to Horn or 2CNF, then it is FPT in parameter k More details in [Gaspers and Szeider 2012]

 $\phi = (x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor \neg x_4 \lor \neg x_5)$ is not a Horn formula

- $\phi = (x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor \neg x_4 \lor \neg x_5)$ is not a Horn formula
- ▶ For $B = \{x_2\}$, we have two possible partial assignments
 - $\sim \omega_1(x_2) = 0$
 - $\sim \omega_2(x_2) = 1$

- $\phi = (x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor \neg x_4 \lor \neg x_5)$ is not a Horn formula
- ▶ For $B = \{x_2\}$, we have two possible partial assignments
 - $\sim \omega_1(x_2) = 0$
 - $\sim \omega_2(x_2) = 1$
- $\phi_{\omega_1} = (x_1 \vee \neg x_3) \wedge (x_3 \vee \neg x_4 \vee \neg x_5)$ is a Horn formula

- $\phi = (x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor \neg x_4 \lor \neg x_5)$ is not a Horn formula
- ▶ For $B = \{x_2\}$, we have two possible partial assignments
 - $\omega_1(x_2) = 0$
 - $\sim \omega_2(x_2) = 1$
- $\phi_{\omega_1} = (x_1 \vee \neg x_3) \wedge (x_3 \vee \neg x_4 \vee \neg x_5)$ is a Horn formula
- $\phi_{\omega_2} = (x_3 \vee \neg x_4 \vee \neg x_5)$ is a Horn formula

- $\phi = (x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor \neg x_4 \lor \neg x_5)$ is not a Horn formula
- ▶ For $B = \{x_2\}$, we have two possible partial assignments
 - $\omega_1(x_2) = 0$
 - $\sim \omega_2(x_2) = 1$
- $\phi_{\omega_1} = (x_1 \vee \neg x_3) \wedge (x_3 \vee \neg x_4 \vee \neg x_5)$ is a Horn formula
- $\phi_{\omega_2} = (x_3 \vee \neg x_4 \vee \neg x_5)$ is a Horn formula
- ▶ So *B* is a backdoor of size 1 for ϕ and the Horn target class

Graph Treewidth

- Number that (intuitively) indicates how close a graph is to a tree
- Many problems are FPT in the treewidth, i.e. they are polynomial if the treewidth of the graph is constant/bounded
- ► Idea:
 - from a non-directed graph, we can define some tree decompositions, that are trees made from the elements of the graph
 - a formula associates a number n to each possible tree decomposition of thre graph
 - ▶ the treewidth of the graph is the minimal value of n

Graph Decomposition

Given a non-directed graph $G = \langle N, E \rangle$, define $D = (T, \lambda)$ where $T = \langle N_T, E_T \rangle$ is a tree, and $\lambda : N_T \to 2^N$ is a mapping from tree nodes to subsets of the graph nodes, such that

- ▶ $\forall n \in \mathbb{N}$, there is $t \in \mathbb{N}_T$ such that $n \in \lambda(t)$ (*i.e.* $\bigcup_{t \in \mathbb{N}_T} \lambda(t) = \mathbb{N}$).
- ▶ $\forall \{x,y\} \in E$, there is $t \in N_T$ such that $\{x,y\} \subseteq \lambda(t)$
- ▶ $\forall n \in N$, the nodes $\{t \in N_T \mid n \in \lambda(t)\}$ form a connected subtree

The *width* of a tree decomposition is $w(D) = (\max_{t \in N_T} |\lambda(t)|) - 1$

Example of Graph Decomposition

(source:Wikipedia)

Here, w(D) = 2

Treewidth of a Graph

- Every graph has an infinite number of tree decompositions:
 - ▶ Trivial decomposition: take any tree T, and $\forall t \in N_T$, $\lambda(t) = N$
- ▶ The treewidth of a graph G is $tw(G) = \min_D w(D)$
- ▶ For any graph $G = \langle N, E \rangle$, $1 \le tw(G) \le k 1$ where k = |n|
 - \blacktriangleright tw(G) = 1: G is a tree
 - ► tw(G) = k 1: G is a clique

Treewidth of a Graph

- Every graph has an infinite number of tree decompositions:
 - ▶ Trivial decomposition: take any tree T, and $\forall t \in N_T$, $\lambda(t) = N$
- ▶ The treewidth of a graph G is $tw(G) = \min_D w(D)$
- ▶ For any graph $G = \langle N, E \rangle$, $1 \le tw(G) \le k 1$ where k = |n|
 - \blacktriangleright tw(G) = 1: G is a tree
 - \blacktriangleright tw(G) = k 1: G is a clique
- Finding the treewidth of a graph is generally hard

Theorem [Arnborg et al. 1987]

Given G and $k \in \mathbb{N}$, deciding whether $tw(G) \leq k$ is NP-complete

Treewidth of SAT

- ▶ Given any CNF ϕ , we can define a graph $G_{\phi} = \langle N, E \rangle$ such that N is the set of variables in ϕ , and $\{x, y\} \in E$ iff the variables x and y appear together in some clause
- ▶ Define the treewidth of the formula: $tw(\phi) = tw(G_{\phi})$

Theorem

SAT is FPT with respect to the treewidth

▶ More precisely, SAT can be solved in $\mathcal{O}(nk \times 2^k)$ where n is the number of Boolean variables, and $k = tw(\phi)$

Courcelle Theorem

 Monadic Second-Order logic (MSO) is a rich logical framework for reasoning over sets

Theorem [Courcelle 1990]

Any property of a graph expressed in MSO logic is decidable in linear time if the graph has a bounded treewidth.

Graph Coloring, MSO and Treewidth

- ▶ k-Coloring Problem: given a non-directed graph $G = \langle N, E \rangle$, and a set $C = \{c_1, \dots, c_k\}$ of colors, is it possible to color each node of the graph such that neighbours have a different color?
- ▶ k-Coloring Problem is NP-complete for any $k \ge 3$
- ▶ We can express 3-Coloring Problem in MSO logic:

$$\exists c_1, c_2, c_3, \quad (\forall n \in N, (n \in c_1 \lor n \in c_2 \lor n \in c_3))$$

$$\land (\forall n, n' \in N, \quad ((n \in c_1 \land n' \in c_1) \lor (n \in c_2 \land n' \in c_2)$$

$$\lor (n \in c_3 \land n' \in c_3)) \rightarrow \neg adj(n, n'))$$

So it is FPT with respect to the graph treewidth

References

- [Downey and Fellows 1995] R. G. Downey and M. R. Fellows, Fixed-Parameter Tractability and Completeness I: Basic Results. SIAM J. Comput. 24(4): 873–921, 1995.
- [Abrahamson *et al.* 1995] K. R. Abrahamson, R. G. Downey and M. R. Fellows, *Fixed-Parameter Tractability and Completeness IV:* On Completeness for W[P] and PSPACE Analogues. Ann. Pure Appl. Logic 73(3): 235–276, 1995.
- [Gaspers and Szeider 2012] S. Gaspers and S. Szeider, *Backdoors to Satisfaction*. The Multivariate Algorithmic Revolution and Beyond, 287–317, 2012.

References

- [Arnborg *et al.* 1987] S. Arnborg, D. Corneil and A. Proskurowski, *Complexity of Finding Embeddings in a k-Tree*. SIAM Journal on Algebraic Discrete Methods. 8(2): 277–284, 1987.
- [Courcelle 1990] B. Courcelle, *The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs.* Information and Computation. 85(1): 12–75, 1990.