The Macroeconomics of Central-Bank-Issued Digital Currencies

John Barrdear, Bank of England

Michael Kumhof, Bank of England

BNM Monetary Policy Conference Kuala Lumpur, Malaysia, July 24, 2017

Disclaimer

The views expressed herein are those of the authors, and should not be attributed to the Bank of England.

1 Introduction

- The emergence of the distributed ledger technology (DLT) and of Bitcoin was a watershed moment in the history of 'e-monies'.
- It may, for the first time, be <u>technically feasible</u> for central banks to offer universal access to their balance sheet.
 - Existing centralized RTGS systems: Not robust for universal access.
 - New decentralized DLT systems: Can potentially solve this problem.
- Question: Is universal access economically desirable.

2 What is a Central-Bank Digital Currency (CBDC)?

- Access to the central bank's balance sheet.
- Availability: 24/7.
- Universal: Banks, firms and households.
- **Electronic:** For resiliency reasons, probably using DLT.
- National-currency denominated: 1:1 exchange rate.
- **Issued only through spending or against eligible assets:** Government bonds.
- Interest-bearing:
 - To equate demand and supply at 1:1 exchange rate.
 - Second tool of countercyclical monetary policy.
- Coexisting with present banking system:
 - Banks remain the creators of the marginal unit of domestic currency.
 - The vast majority of deposits would remain with banks, and be insured.
 - <u>Credit</u> provision would remain the purview of existing intermediaries.

3 The Model

3.1 Overview

- Based on Benes and Kumhof (2012) and Jakab and Kumhof (2015).
- Households:
 - Deposits: Obtained through bank loans.
 - CBDC: Obtained in exchange for government debt.
 - Deposits and CBDC jointly generate liquidity.
- Banks: Create new deposits by making new loans.

3.2 Endogenous Deposits and Exogenous CBDC

- Sidrauski-Brock monetary models of the 1980s/1990s:
 - 1. Representative household with a demand for money.
 - 2. Government exogenously supplies <u>all</u> money.
- The main problem is 2, not 1. Therefore, in our model:
 - Bank deposits (97% of all money) enter into TA cost technology.
 - Government money is omitted entirely.

- CBDC puts exogenous government money back into the model. But:
 - 1. CBDC is universally accessible (unlike reserves).
 - 2. CBDC is interest-bearing (unlike cash).
 - 3. CBDC competes with bank deposits.

Intermediation of Loanable Funds (ILF) versus Financing Through Money Creation (FMC)

Intermediation of Loanable Funds Model

Financing Through Money Creation Model

Loan transaction requires only digital ledger entries and no intermediation

Deposits and loans are predetermined variables

Key Difference ILF-FMC: Budget Constraints

- Budget Constraints in ILF Model: Saver + Borrower Household
 - Saver Household

$$\Delta deposits_t^s = income_t^s - spending_t^s$$

- Borrower Household

$$-\Delta loans_t^b = income_t^b - spending_t^b$$

Budget Constraint in <u>FMC</u> Model: Representative Household only

$$\Delta deposits_t^r - \Delta loans_t^r = income_t^r - spending_t^r$$

Budget Constraint in FMC+CBDC Model: Representative Household only

$$\Delta deposits_t^r - \Delta loans_t^r + \Delta CBDC_t^r = income_t^r - spending_t^r$$

Deposits and loans are jump variables

3.3 Banks

- Loans: Bernanke, Gertler and Gilchrist (1999) costly state verification.
- Deposits: Schmitt-Grohé and Uribe (2004) transactions cost technology.
- Monetary Distortion = Liquidity Taxes:

$$\tau_t^{\ell iq} = 1 + s_t + s_t' v_t$$

- Equivalent to consumption taxes and capital income taxes.
- Banks' effect on the real economy:
 - * Through these taxes.
 - * Not through intermediation of "loanable funds".

3.4 The Liquidity-Generating Function (LGF)

• Combines the liquidity generated by bank deposits and CBDC.

• Functional form:

$$f_t^x = \left((1 - \gamma)^{\frac{1}{\epsilon}} \left(Deposits_t \right)^{\frac{\epsilon - 1}{\epsilon}} + \gamma^{\frac{1}{\epsilon}} \left(T^{fintec} CBDC_t \right)^{\frac{\epsilon - 1}{\epsilon}} \right)^{\frac{\epsilon}{\epsilon - 1}}$$

• Market clearing: Interest rates on loans, deposits and CBDC adjust.

3.5 Monetary Policy - The Policy Rate

$$i_{t} = (i_{t-1})^{i_{i}} \left(\frac{x \pi_{tgt}^{p} \left(1 + \phi_{b} \left(b_{t}^{rat} - \overline{b}^{rat} \right) \right)}{\beta_{u}} \right)^{(1-i_{i})} \left(\frac{\pi_{4,t+3}^{p}}{\left(\pi_{tgt}^{p} \right)^{4}} \right)^{\frac{(1-i_{i})i_{\pi}p}{4}}$$

3.6 Monetary Policy - CBDC

3.6.1 Quantity Rule for CBDC

$$m_t^{rat} = m_{tgt}^{rat} S_t^{ms} - 100 m_{\pi^p} E_t \ln \left(rac{\pi_{4,t+3}^p}{\left(\pi_{tgt}^p
ight)^4}
ight)$$

- Fix the quantity of CBDC, let CBDC interest rate clear the market.
- $m_{\pi^p} > 0$: Removes CBDC from circulation in a boom.

3.6.2 Price Rule for CBDC

$$i_{m,t} = rac{i_t}{\mathfrak{sp}} \left(rac{\pi^p_{\mathtt{4},t+3}}{\left(\pi^p_{tgt}
ight)^{\mathtt{4}}}
ight)^{-i^m_{\pi^p}}$$

- Fix interest rate on CBDC, let the quantity of CBDC clear the market.
- $i_{\pi p}^{m} > 0$: Makes CBDC less attractive in a boom.

4 Steady State Effects of the Transition to CBDC

- Assumptions:
 - Issue CBDC against government debt.
 - Magnitude: 30% of GDP.
- Results:

	Steady State
	Output Effect
1. Lower Real Policy Rates	+1.8%
2. Higher Deposit Rates Relative to Policy Rates	-0.9%
3. Reductions in Fiscal Tax Rates	+1.1%
4. Reductions in Liquidity Tax Rates	+0.9%
Total	+2.9%

Transition to Steady State with CBDC

solid line = actual transition; dotted line = change in long-run steady state

Quantity Rules or Price Rules for CBDC?

Liquidity demand is mostly satisfied by instantaneous creation of bank deposits through loans. But CBDC can help.

Shock to Demand for Total Liquidity

solid line = quantity rule; dotted line = price rule

6 Financial Stability: CBDC Bank Runs?

- There is no easy way to run from bank deposits to CBDC in aggregate.
- Two reasons:
 - 1. Aggregate increases in CBDC do not affect bank deposits:
 - Central bank sells CBDC only against government debt.
 - Not against bank deposits.
 - CBDC purchases among non-banks are irrelevant.
 - 2. CBDC policy rules can further discourage volatile CBDC demand.

7 Countercyclical CBDC Rules

Bottom Left: Nominal Policy and CBDC Rates

Solid Line = Policy Rate, Dotted Line = Policy Rate minus Fixed Spread, Dashed Line = CBDC Rate

8 Conclusions

- CBDC has significant benefits \Longrightarrow further research is worthwhile.
- Increase in steady-state GDP could be as much as 3%.
- Improved ability to stabilize inflation and the business cycle.
- Should reduce some FS risks, but may introduce others.
- The design of a successful transition is the critical issue.