Alignment of Light and Mass in Lensing Galaxies

Claudio Bruderer 1* , J. I. Read 1,2 , P. Saha 3 , J. Coles 4 Institute for Astronomy, Department of Physics, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich, Switzerland

- ²Department of Physics, University of Surrey, Guildford, GU2 7XH, UK
- ³ Institute for Theoretical Physics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- ⁴Department of Biology and Health, Versailles Saint-Quentin-en-Yvelines University, France

11 August 2014

ABSTRACT

Key words: Gravitational lensing: strong — galaxies: structure

1 INTRODUCTION

Content:

- Understand galaxy structure
- Relevant to understand and discriminate between e.g. weak lensing (Intrinsic alignments) and alternative gravity
- Strong lensing reacts purely due to total mass distribution \rightarrow Can disentangle light and mass
 - Free-form modelling technique, less model bias

2 DATA

Content:

 Describe data set (why this data set, special features of galaxies (environment: y/n/unknonwn, elliptical/disk))

METHOD

Content:

- Describe GLASS
- Describe shape measure and link it with Coles, Read and Saha 2014

4 RESULTS

Content:

- Describe special features in reconstructed lenses
- Show the wedges money plot
- Discuss the results, especially:
- 1. Dark matter halos seem quite round, stars not necessarily
- * E-mail: claudio.bruderer@phys.ethz.ch

Figure 4.

- 2. Dark matter halos are consistently more elliptical than stars
- 3. Rather elliptical dark matter halos are more aligned, otherwise not really a clear trend
- 4. There does not seem to be a trend of lenses being misaligned because of shear

CONCLUSION

ACKNOWLEDGEMENTS

Acknowledge Dominik Leier, ...

JIR would like to acknowledge support from SNF grant PP00P2_128540/1.

2 Bruderer

..

 ${\bf Table\ 1.\ Table\ with\ lens\ properties}$

..

 $\textbf{Table 2.} \ \textbf{Table with lens properties relevant for modelling (point masses, positions, time delays)}$

REFERENCES

Figure 1.

$4 \quad Bruderer$

Figure 2.

Figure 3.

Figure 5.