Lecture: K-Means Clustering

Rodrigo Canaan rodrigocanaan.com rocanaan@gmail.com @rocanaan

Slides and Code

Types of Machine Learning

Supervised Learning

Learning to predict values or classify objects based on labeled data

Unsupervised Learning

Learning patterns based on unlabeled data

Reinforcement Learning

Learning to act intelligently based on interaction with an environment

Types of Machine Learning

Supervised Learning

Learning to predict values or classify objects based on labeled data

Unsupervised Learning

Learning patterns based on unlabeled data

Reinforcement Learning

Learning to act intelligently based on interaction with an environment

Why do Unsupervised Learning?

- To gain insight about the data
- To compress and/or visualize the data
- To generate examples that are like the data
- To label data for downstream tasks

Examples in various domains

Recommender Systems

Group similar products and/or users together

Visual Processing

Group similar images even without labels

Games

Build models of different player styles

Science

Create a taxonomy of phenomena (e.g. stars) based on their observed properties (magnitude, spectrum, distance...)

Unsupervised Learning Tasks

Clustering

Partitioning the data into "clusters" based on a measure of similarity

Dimensionality reduction

Transforming the data from a high dimension to a low dimension

Generative models

Learning a "model" that can be used to produce new examples that are similar to the data

Unsupervised Learning Tasks

Clustering

Partitioning the data into "clusters" based on a measure of similarity

Dimensionality reduction

Transforming the data from a high dimension to a low dimension

Generative models

Learning a "model" that can be used to produce new examples that are similar to the data

Visual Example

Clustering - Distances

What does it mean for two data points to be "similar"?

Usually, it means to have a small "distance" according to some metric

Examples (in 2-dimensions)

Manhattan Distance

$$D_M = |x2 - x1| + |y2 - y1|$$

Euclidean Distance

Clustering - Partitions

What does it mean for a partition to be "good"?

Intuitively:

- Elements in the same cluster are similar.
- Elements in different clusters are dissimilar.

- 1. Generate all ____ possible partitions
- 2. Calculate clustering metric for each partition
- 3. Return the partition with best clustering metric

- 1. Generate all k^n possible partitions
- 2. Calculate WCSS for each partition
- 3. Return the partition with minimum WCSS

- 1. Generate all k^n possible partitions
- 2. Calculate WCSS for each partition
- 3. Return the partition with minimum WCSS

Very expensive!

Need heuristic for approximate (but faster) solution!

- 1. Generate all k^n possible partitions
- 2. Calculate WCSS for each partition
- 3. Return the partition with minimum WCSS

Very expensive!

Need heuristic for approximate (but faster) solution!

Example: assign each point to cluster with nearest centroid

Centroid Calculation

Centroid Calculation

$$x_mean = (3+4+5)/3 = 4$$

 $y_mean = (5+7+3)/3 = 5$

Centroid Calculation

$$x_mean = (3+4+5)/3 = 4$$

 $y_mean = (5+7+3)/3 = 5$

Centroid =
$$(4,5)$$

Outline of K-Means Clustering Algorithm

- 1. Generate k initial centroids
- 2. Re-assign points based on heuristic

 Each point is assigned to cluster with nearest centroid
- 3. Recalculate centroids
- 4. Repeat (2, 3) until no re-assignments
 Alternatively, up to some maximum number of repetitions

(Naive) K-Means Pseudo-Code

```
3 Function k-means (data,k)
        P <- initialize_partition(data,k)</pre>
        stop <- False
 6
 7 -
        while not stop # runs until no new assignments
            stop = True
10
            P_new <- empty_partition(k)</pre>
            for d in data
11 -
12
                new_label <- P.find_min_sq_distance_cluster(d)</pre>
                P_new.add_element(d,new_label)
13
                if new_cluster <> P.get_label(d) # new assignment, don't stop!
14 -
                     stop = False
15
16
                Endif
17
            Endfor
18
            P <- P new
            P.compute_centroids()
19
20
        Endwhile
21
        return P
   Endfunction
```

K-Means Initialization

How to initialize clusters?

- Forgy method: Choose *k* initial centroids randomly (from the data), assign other points according to distance to centroids
- Random Partition: Assign each datapoint to a random cluster label, then compute centroids
- Other options: see comparative study by (Celebi et al., 2013)

Forgy Method

```
1 # Forgy initialization
 2 # Select k random points as initial centroids,
 5 Function initialize_partitions(data,k)
        P <- empty_partition(k)</pre>
        medoids <- sample_without_replacement(data,k) # get k points from data</pre>
        for i in 0...k-1
 8 -
            P.add_element(medoids[i],i)
        Endfor
10
        P.compute_centroids()
11
12
13 -
        for d in data
            label <- P.find_min_sq_distance_cluster(d)</pre>
14
            P.add_element(d,label)
15
16
        Endfor
        P.compute_centroids
        return P
18
19
20 Endfunction
```

Random Partition

```
1 # Random Initialization
 2 # Assign each point to a random label, then compute centroids
4 Function initialize_partitions(data,k)
       P <- empty_partition(k)</pre>
 6
       for d in data
            label <- random_uniform(k) # select a random int uniformly in 0..k-1</pre>
            P.add_element(d,label)
10
       Endfor
11
       P.compute_centroids
12
       return P
13
   Endfunction
```

Demo

(Naive) K-Means Disadvantages

Struggles with some cluster shapes, sizes and outliers

(Naive) K-Means Disadvantages

- Struggles with some cluster shapes, sizes and outliers
- Struggles with categorical data
- Guaranteed convergence only to local (not global optimum)
- Need to specify k in advance
- "Curse of dimensionality"
- Worst-case performance?

Time Complexity

O(i)
Outer-loop _
iterations
O(n)
Inner-loop
iterations

```
3 Function k-means (data,k)
        P <- initialize_partition(data,k)</pre>
        stop <- False
 6
       while not stop # runs until no new assignments
            stop = True
10
            P_new <- empty_partition(k)</pre>
            for d in data
                new_label <- P.find_min_sq_distance_cluster(d)</pre>
                P_new.add_element(d,new_label)
13
                if new_cluster <> P.get_label(d) # new assignment, don't stop!
14
                    stop = False
16
                Endif
            Endfor
18
            P <- P_new
            P.compute_centroids()
19
20
        Endwhile
        return P
23 Endfunction
```

Time Complexity = O(nki)

O(i)
Outer-loop _
iterations
O(n)
Inner-loop
iterations

```
3 Function k-means (data,k)
        P <- initialize_partition(data,k)</pre>
        stop <- False
 6
       while not stop # runs until no new assignments
            stop = True
10
            P_new <- empty_partition(k)</pre>
            for d in data
                new_label <- P.find_min_sq_distance_cluster(d)</pre>
                P_new.add_element(d,new_label)
13
                if new_cluster <> P.get_label(d) # new assignment, don't stop!
14
                    stop = False
16
                Endif
            Endfor
18
            P <- P_new
            P.compute_centroids()
19
        Endwhile
20
        return P
23 Endfunction
```

(Naive) K-Means Disadvantages

- Struggles with some cluster shapes, sizes and outliers
- Guaranteed convergence only to local (not global optimum)
- Need to specify k in advance
- "Curse of dimensionality"
- High worst-case performance

K-Means Advantages

- Simple to implement
- Good performance in many practical scenarios
- Adaptations can handle outliers, different shapes and sizes, higher dimensions, categorical data...
- Performance can be improved by non-naive implementations

Thank you!

www.rodrigocanaan.com

rodrigo.canaan@nyu.edu

Scholar Page

