Příklad 1 [8 bodů]

Definujté následující operace nad jazyky: $z\check{r}et\check{e}zen\acute{i}$ a i- $t\acute{a}$ mocnina $(i \in \mathbb{N}_0)$. V definicích nepoužívejte notaci s nepřesným významem (typicky "...").

Dále definujte, kdy je třída jazyků \mathcal{L} uzavřená na binární operaci o.

Příklad 2 [5 bodů]

Určete, kolik slov má jazyk $L^* \setminus (L^2)^+$, kde $L = \{aa, aaa\}$. Všechna slova vypište.

Příklad 3 [10 bodů]

Navrhněte deterministický konečný automat, který rozpoznáva jazyk

 $L = \{w \in \{0,1\}^* \mid w \text{ končí podslovem } 0101\}.$

Příklad 4 [10 bodů]

Rozhodněte, zda platí následující implikace. Svá rozhodnutí zdůvodněte.

- (a) K je konečný a L není regulární $\Longrightarrow K^* \cup L$ není regulární
- (b) K je konečný a $K^* \cup L$ není regulární $\Longrightarrow L$ není regulární

Příklad 5 15 bodů]

Rozhodněte, zda je jazyk

$$L = \{ w \in \{a, b, c\}^* \mid \#_b(w) = \#_a(w) \lor \#_a(w) \bmod 2 = 1 \}$$

regulární. Své tvrzení dokažte. (Pro důkaz, že jazyk je regulární, stačí napsat odpovídající gramatiku nebo automat.)

Příklad 6 [12 bodů]

Zkonstruujte konečný automat rozpoznávající jazyk popsaný regulárním výrazem $(b^* \cdot (\emptyset \cdot c))^* \cdot (a \cdot a + \varepsilon)$. (Nemusíte dokazovat, že zkonstruovaný automat rozpoznává zadaný jazyk, pokud použijete standardní algoritmus a uvedete i jeho mezivýsledky. Při provádění algoritmu můžete vykonat více kroků naráz, bude-li se každý krok týkat jiného přechodu)

Příklad 7 [15 bodů]

Uvažujme jazyk $L = \{a\} \cdot (\{a,b\}^* \cdot \{a\} \text{ nad abecedou } \Sigma = \{a,b\}.$

- Určete index \sim_L .
- Popište jednotlivé třídy rozkladu Σ^*/\sim_L .
- Zadefinujte jazyk L' nad abecedou Σ takový, že $L' \neq L$ a $\sim_{L'} = \sim_L$.

Příklad 1 [8 bodů]

Definujte deterministický konečný automat. Dále definujte, kdy jsou stavy tohoto automatu jazykově ekvivalentní.

Příklad 2 [5 bodů]

Určete, kolik slov má jazyk (co-L) $\setminus L^2$, kde $L = \{a, a^4\} \cup \{a^7\} \cdot \{a\}^*$ je jazyk nad abecedou $\{a\}$. Všechny slova vypište.

Příklad 3 [10 bodů]

Navrhněte deterministický automat generující jazyk

$$L = \{ w \in \{a, b\}^* \mid \#_a(w) > \#_b(w) \land \#_b(w) < 2 \}.$$

Příklad 4 [10 bodů]

Nechť L, R jsou jazyky nad stejnou abecedou. Rozhodněte, zda platí následující implikace. Svá rozhodnutí zdůvodněte.

- (a) $L \cdot R$ není regulární $\Longrightarrow L$ není regulární a R není regulární
- (b) R je konečný \Longrightarrow co $-(L \cup \text{co}-L)$ je regulární

Příklad 5 [15 bodů]

Rozhodněte, zda je jazyk $L = \{w \in \{a,b\}^* \mid \#_a(w) > \#_b(w) \lor \#_b(w) < 2\}$ regulární. Své tvrzení dokažte. (Pro důkaz, že jazyk je regulární, stačí napsat odpovídající gramatiku nebo automat.)

Příklad 6 [12 bodů]

K zadanému deterministickému konečnému automatu \mathcal{A} skonstruujte ekvivalentní minimální konečný automat v kanonickém tvaru. Konstrukci zde uveďte.

\mathcal{A}	a	b
$\Rightarrow 1$	3	6
$\leftarrow 2$	6	3
3	5	5
$\leftarrow 4$	4	5
$\leftarrow 5$	5	4
← 6	-	1

Příklad 7 [15 bodů]

Rozhodněte, zda existuje jazyk Lnad abecedou $\Sigma = \{a,b\}$ takový, že:

- (a) L je konečný a $\sim_L ab$.
- (b) L je nekonečný a $\sim_L ab$.
- (c) L není regulární a $\sim_L = \Sigma^* \times \Sigma^*$.

Pokud rozhodnete, že jazyk existuje, uveď te příklad takového jazyka. V opačném případě své tvrzení dokažte.

Příklad 1 [8 bodů]

Definujte nedeterministický konečný automat s $\varepsilon\text{-kroky}$ a funkci $D_\varepsilon:Q\longrightarrow 2^Q.$

Příklad 2 [5 bodů]

Určete, kolik slov má jazyk $L^3 \cap L^2$, kde $L = \{cd, cc, c, d\}$. Všechny slova vypište.

Příklad 3 [10 bodů]

Navrhněte deterministický automat generující jazyk

$$L = \{ w \in \{a, b, c\}^* \mid \#_a(w) \ge 2, \#_c(w) = 1 \}.$$

Příklad 4 [10 bodů]

Rozhodněte, zda platí následující implikace. Svá rozhodnutí zdůvodněte.

- (a) $L \cdot L$ není regulární $\Longrightarrow R$ není regulární
- (b) L je regulární $\Longrightarrow \{w \cdot w \mid w \in L\}$ je regulární

Příklad 5 [15 bodů]

Rozhodněte, zda je jazyk $L = \{ab^nc^n \mid n \text{ je liché }\}$ regulární. Své tvrzení dokažte. (Pro důkaz, že jazyk je regulární, stačí napsat odpovídající gramatiku nebo automat.)

Příklad 6 [12 bodů]

K zadanému konečnému automatu \mathcal{A} sestrojte ekvivalentní (nedeterministický) automat bez ε -kroků.

\mathcal{A}	a	b	ε
$\rightarrow 1$	{4}	{2}	${3,5}$
2	$\{1, 2\}$	$\{2,3\}$	$\{4\}$
3	Ø	$\{1, 3, 4\}$	Ø
$\leftarrow 4$	{5}	Ø	{5 }
$\leftarrow 5$	{3}	{4}	Ø

Příklad 7 [15 bodů]

Uvažujte následující relace na slovech nad abecedou. U každé relace určete, zda se jedná o pravou kongruenci. Pokud rozhodnete, že se o pravou kongruenci nejedná, dokažte to. V opačném případě určete index relace a popište jednotlivé třídy ekvivalence.

- (a) $u \sim v \stackrel{def}{\longleftrightarrow} u$ obsahuje podslovo a právě když v obsahuje podslovo a.
- (b) $u \sim v \stackrel{def}{\Longleftrightarrow} u$ obsahuje podslovo aa právě když v obsahuje podslovo aa.
- (c) $u \sim v \stackrel{def}{\iff} \#_b(u) \leq \#_b(v)$.

Příklad 1 [10 bodů]

Definujte množinu regulárních výrazů nad abecedou Σ a pro každý regulární výraz E definujte jazyk L(E) jednoznačně určený výrazem E.

Příklad 2 [8 bodů]

Nechť $L = \{a, b, aa, bb, ab, ba\}$ je jazyk nad abecedou $\{a, b\}$. Určete, kolik slov má jazyk $L^* \setminus (\mathsf{co} - L)^2$.

Příklad 3 [10 bodů]

Najděte deterministický konečný automat rozpoznávající jazyk

 $L = \{w \in \{a, b, c\}^* \mid w \text{ obsahuje podslovo } ca \text{ nebo } bb\}$

Příklad 4 [10 bodů]

Rozhodněte, zda pro všechny jazyky L, R nad abecedou $\Sigma = \{a, b\}$ platí následující implikace. Svá rozhodnutí zdůvodněte.

- (a) L je konečný a $L \cup R$ není regulární $\Longrightarrow R$ není regulární
- (b) L je regulární a $R = L \cap R \Longrightarrow R$ není regulární

Příklad 5 [15 bodů]

Rozhodněte, zda je jazyk $L = \{a^i b^j c^k \mid i \geq 2, 0 \leq j, \leq k\}$ regulární. Své tvrzení dokažte. (Pro důkaz, že jazyk je regulární, stačí napsat odpovídající gramatiku nebo automat.)

Příklad 6 [12 bodů]

K zadanému deterministickému konečnému automatu $\mathcal A$ zkonstruujte ekvivalentní minimální automat v kanonickém tvaru. Konstrukci zde uveďte.

pozn.: nemám zadání automatu, výsledek ale byl

\mathcal{A}	a	b
$\overrightarrow{\rightleftharpoons} A$	A	В
В	С	Α
\leftarrow C	D	E
D	D	D
E	Α	A

Příklad 7 [15 bodů]

Uvažujme jazyk $L = \{a\} \cdot (\{a,b\} \cdot \{a,b\})^*$ nad abecedou $\Sigma = \{a,b\}$.

- Určete index \sim_L .
- Popište jednotlivé třídy rozkladu Σ^*/\sim_L .
- Zadefinujte nějakou pravou kongruenci \sim takovou, že L je sjednocením někteřých tříd rozkladu Σ^*/\sim_L a přitom \sim je různé od \sim_L . (Nemusíte dokazovat, že má požadované vlastnosti. Stačí ji definovat.) . . .

Příklad 1 [10 bodů]

Napište definici nedeterministického konečného automatu a rozšířené přechodové funkce.

Příklad 2 [8 bodů]

Určete, kolik slov má jazyk $L^* \setminus (L^+)^2$, kde $L = \{aa, ab, ba, bb\}$.

Příklad 3 [10 bodů]

Najděte deterministický konečný automat rozpoznávající jazyk

$$L = \{w \in \{a, b\}^* \mid (\#_a(w) + 2\#_b(w)) \mod 5 = 1\}$$

Příklad 4 [10 bodů]

Rozhodněte, zda pro všechny jazyky L, R nad abecedou $\Sigma = \{a,b\}$ platí následující implikace. Svá rozhodnutí zdůvodněte.

- (a) L je regulární, R není regulární a $L \cap R = \emptyset \Longrightarrow L \setminus R$ je regulární
- (b) $L \cup R$ není regulární $\Longrightarrow L$ není regulární a R není regulární

Příklad 5 [15 bodů]

Rozhodněte, zda je jazyk $L = \{a^j b^k \mid j, k \geq 0, j \text{ je sudé nebo } j = k\}$ regulární. Své tvrzení dokažte. (Pro důkaz, že jazyk je regulární, stačí napsat odpovídající gramatiku nebo automat.)

Příklad 6 [12 bodů]

Zkonstruujte konečný automat rozpoznávající jazyk popsaný regulárním výrazem $(a + (b^* \cdot c) \cdot (b + \emptyset)^*)^*$. (Nemusíte dokazovat, že zkonstruovaný automat rozpoznává zadaný jazyk, pokud použijete standardní algoritmus a uvedete i jeho mezivýsledky (můžete provést více kroků naráz, bude-li se každý krok týkat jiného přechodu).)

Příklad 7 [15 bodů]

Rozhodněte, zda existuje jazyk L nad abecedou $\Sigma = \{a, b\}$ takový, že:

- (a) L je konečný a index \sim_L je 3.
- (b) L je nekonečný a index \sim_L je 3.
- (c) L je konečný a index \sim_L je nekonečno.

Pokud rozhodnete, že jazyk existuje, uveď te příklad takového jazyka. V opačném případě své tvrzení dokažte.

Příklad 1 [10 bodů]

Napište definici deterministického konečného automatu a rozšířené přechodové funkce.

Příklad 2 [5 bodů]

Určete, kolik slov má jazyk $L^3 \setminus L$, kde $L = \{a, aa, aaa\}$.

Příklad 3 [15 bodů]

Najděte deterministický konečný automat rozpoznávající jazyk $L = \{w \in \{a, b, c\} \mid w \text{ obsahuje podslovo } babaab\}.$

Příklad 4 [15 bodů]

Nechť L, R jsou jazyky nad abecedou $\Sigma = \{a, b\}$. Rozhodněte, zda platí následující implikace a své rozhodnutí zdůvodněte.

- (a) L a L.R jsou regulární $\Rightarrow R$ je regulární
- (b) $L \cup R$ není regulární $\Rightarrow L$ nebo R není regulární

Příklad 5 [20 bodů]

Rozhodněte, zda je daný jazyk regulární. Své tvrzení dokažte.

$$L = \{a\}^*.\{w \in \{b,c\}^* \mid \#_b(w) = \#_c(w)\}$$

Příklad 6 [20 bodů]

K danému konečnému automatu \mathcal{A} sestrojte ekvivalentní (nedeterministický) konečný automat bez ε -kroků.

\mathcal{A}	a	b	ε
$\rightarrow 1$	{2}	{4}	${3,5}$
2	$\{2,3\}$	Ø	{5}
← 3	Ø	$\{1, 4, 5\}$	Ø
$\leftarrow 4$	{4}	{2}	Ø
5	Ø	${3,4}$	{2}

Příklad 7 [20 bodů]

Uvažujte následující relace na slovech nad abecedou $\Sigma = \{a, b\}$. U každé relace určete, zda se jedná o pravou kongruenci. Pokud rozhodnete, že se o pravou kongruenci nejedná, dokažte to. V opačném případě určete index relace a popište třídy ekvivalence

(a)
$$u \sim v \stackrel{def.}{\Longleftrightarrow} \#_a(u) = \#_a(v) + 1$$

(b)
$$u \sim v \stackrel{def.}{\iff} \#_a(u) = \#_a(v)$$

(c)
$$u \sim v \stackrel{def.}{\Longleftrightarrow} \#_a(u)$$
 a $\#_a(v)$ jsou liché nebo $u = v$

(d)
$$u \sim v \stackrel{def.}{\Longleftrightarrow} \#_a(u)$$
 a $\#_a(v)$ mají stejnou paritu