Cours 2 - Visualisation des données

Neila Mezghani

2 février 2021

Plan du cours

- Visualisation de la distribution
- Visualisation de la corrélation
- Visualisation du rang
- Visualisation de l'évolution
- 5 Visualisation de la cartographie

Introduction

- Tout le monde connait l'expression « une image vaut mille mots » ⇒
 L'objectif de ce cours
- Aujourd'hui'hui, à l'ère des données numériques des méga données,
 nous sommes inondées d'informations provenant de différentes
 modalités ⇒ ce vieux proverbe est devenu encore plus pertinent.
- La visualisation des données rend l'analyse beaucoup plus facile et plus rapide d'où le besoin de choisir les outils appropriés de visualisation

Table of Contents

- Visualisation de la distribution
- Visualisation de la corrélation
- Visualisation du rang
- Visualisation de l'évolution
- 5 Visualisation de la cartographie

Visualisation de la distribution

Diagramme en boite

- Diagramme en boite (boxplot) est l'un des graphiques les plus couramment utilisés.
- Il résume cinq paramètres importants de la variable : la valeur minimale, le premier quartile (Q1), la médiane (ou deuxième quartile Q2), le troisième quartile (Q3) et la valeur maximale.
- La ligne qui divise la boîte en deux parties représente la médiane.

Diagramme en boite

- Les limites de la boite montrent les quartiles supérieur (Q3) et inférieur (Q1).
- Les lignes extrêmes montrent la valeur la plus élevée et la plus basse de la variable tout en excluant les valeurs aberrantes.

Exemple : Diagramme en boite

Q3 = 29 ce qui veut dire que l'âge de 75% des joueurs est <29 ans

Visualisation de la distribution Visualisation de la corrélation Visualisation du rang Visualisation de l'évolution Visualisation de la cartographie

Histogramme

- Un histogramme représente une estimation de la densité d'une variable quantitative.
- La forme de l'histogramme est obtenue suite à la répartition des données selon un ensemble d'intervalles. De ce fait celle-ci peut être différente selon le nombre d'intervalles défini.

Histogramme : Principe de construction

- Identification de la valeur minimale *min* et maximale *max* de la variable à explorer
- Division de l'intervalle [min; max] en I sous-intervalles
- Dénombrement des observations pour lesquels la valeur de la variable tombe dans chacun des intervalles (appelés aussi classes)
- Représentation du nombre d'observations par intervalle par une barre dont la surface est proportionnelle aux décomptes.

Histogramme : Principe de construction

- Un histogramme est dit symétrique lorsque son profil à gauche est identique ou très similaire à son profil à droite autour d'un mode.
- Les modes d'un histogramme correspondent aux classes (intervalles) les plus abondantes localement.
- Un histogramme peut avoir un ou plusieurs modes.

Histogramme

Exemple: Histogramme (1)

L'histogramme est unimodal et asymétrique

La médiane est < à la moyenne —> La majorité des joueurs ont un âge < à la moyenne d'âge

In [27]:	df1['	Age'].describe()
Out[27]:	count mean std min 25% 50% 75% max Name:	364.000000 26.615385 4.233591 19.000000 24.000000 26.000000 29.000000 40.000000 Age, dtype: float64

Exemple: Histogramme (2)

```
In [23]: hist,bin_edges = np.histogram(df['Age'].dropna(), bins=10)
         display(hist)
         display(bin edges)
         df.hist(column='Age', bins =10, figsize=(6,3))
         None
         array([40, 67, 92, 77, 59, 53, 27, 19, 14, 9])
         array([19., 21.1, 23.2, 25.3, 27.4, 29.5, 31.6, 33.7, 35.8, 37.9, 40.])
                                Age
                                                          Les valeurs des limites des intervalles
          80
          60
          40
          20
                                                         La médiane est < à la movenne --->
                                                         La majorité des observations ont un âge
                                                              < à la movenne d'âge
                20
                         25
                                  30
                                           35
```

Densité

- La densité est aussi une représentation graphique de la distribution d'une variable numérique.
- Elle se présente comme un histogramme lissé.
- Le passage d'un histogramme à une courbe de densité consiste à lisser les pics plus ou moins fort dans l'histogramme. Ceci se fait souvent par des techniques d'estimation

Exemple : Densité

```
In [29]:
        sns.distplot(df1["Age"], hist=True, bins=10, kde=True,
                       kde kws={'linewidth': 4});None
         0.10
                                 Lissage des pics
         0.08
         0.06
         0.04
         0.02
          0.00
                    20
                           25
                                       35
```

Extensions des limites minimales et maximales ---> Lissage

Diagramme en violon

- Le diagramme en violon (*violin plot*) permet de visualiser la distribution d'une variable numérique.
- Il est constitué en même temps de deux graphiques de densité en miroir et d'un boxplot permet une compréhension plus approfondie de la densité.

Visualisation de la distribution Visualisation de la corrélation Visualisation du rang Visualisation de l'évolution Visualisation de la cartographie

Comparaison des diagrammes en boite et en violon

Exemple: Digramme en violon

Table of Contents

- Visualisation de la distribution
- Visualisation de la corrélation
- Visualisation du rang
- Visualisation de l'évolution
- 5 Visualisation de la cartographie

Visualisation des corrélation

Connected

Correlogram

Bubble

Diagramme de dispersion

• Un nuage de point (*Scatterplot*) permet de représenter une variable numérique en fonction d'une autre variable numérique :

$$Y \sim X$$

- Chaque point représente une observation.
- Les positions sur l'axe X (horizontal) et Y (vertical) représentent les valeurs des 2 variables.

Exemple : Digramme de dispersion

Le diagramme représente la variation de Poids ~ Taille

Lorsque la taille augmente, le poids augmente

Le poids est une fonction linéaire de la taille

Diagramme de dispersion connecté

- Un nuage de points connectés (*Connected Scatterplot*) est très proche d'un nuage de points, sauf que les points sont reliés les uns aux autres par des lignes.
- Cela signifie que les valeurs des observations sur l'axe des X sont ordonnées pour que ce type de représentation soit utile.
- Les diagrammes de dispersions connectés sont souvent utilisés pour les séries chronologiques où l'axe X représente le temps.

Exemple : Diagramme de dispersion connecté (1)

```
flights = sns.load_dataset("flights")
flights.tail()
```

Variation du nombre de passagers / année Chaque année comprend plusieurs mois

	year	month	passengers
139	1960	Aug	606
140	1960	Sep	508
141	1960	Oct	461
142	1960	Nov	390
143	1960	Dec	432

La base de données comprend 144 observations

Chacune est décrite par l'année, le mois et le nombre de passagers

Exemple : Diagramme de dispersion connecté (2)

```
may_flights = flights.query("month == 'May'")
may_flights.head()
```


Variation du nombre de passagers par année (mois de May) Année

Diagramme de dispersion connecté possible parce que les valeurs de X sont ordonnées

Exemple : Diagramme de dispersion connecté (3)

	year	month	n passen	gers									
0	1949	January	/	112		Tra	nsfor	mati	on de l	a matrice	des don	ınées	
1	1949	February	/	118						exploratio			
2	1949	March	n	132									
3	1949	Apri	1	129									
mo	onth	January	February	March	April	May	June	July	August	September	October	November	December
_ !	year												
_	year 1949	112	118	132	129	121	135	148	148	136	119	104	118
1		112 115	118 126	132 141	129 135	121 125	135 149	148 170	148 170	136 158	119 133	104 114	118 140
1	949												
1	949	115	126	141	135	125	149	170	170	158	133	114	140
1 1	949 950 951	115 145	126 150	141 178	135 163	125 172	149 178	170 199	170 199	158 184	133 162	114 146	140 166

Exemple : Diagramme de dispersion connecté (4)

On remarque que la tendance de croissance est la même pour tout les mois au fil des années

Carte de chaleur

- Une carte de chaleur (heatmap) est une représentation graphique des données où les valeurs individuelles contenues dans une matrice sont représentées sous forme de couleurs.
- Permet d'afficher une vue générale des données numériques.

Exemple : Carte de chaleur

Diagramme à bulles

- Un diagramme à bulles (bubbleplot) est un nuage de points où d'autres dimensions sont ajouter pour avoir plus d'informations.
- Besoin de 3 variables numériques en entrée : une est représentée par l'axe X, une par l'axe Y, et une par la taille des bulles.
- La surface des bulles doit être proportionnelle à la valeur des données.

Exemple: Diagramme à bulles

Diagramme de densité 2D

- Un diagramme de densité 2D ou histogramme 2D est une extension de l'histogramme (1D).
- Il montre la distribution des valeurs d'un ensemble de données sur la plage de deux variables quantitatives.

Exemple : Diagramme de densité 2D

Corrélogramme

- Un corrélogramme permet d'analyser la relation entre chaque paire de variables numériques d'une matrice.
- La corrélation entre chaque paire de variables est visualisée par un nuage de points, ou un symbole qui représente la corrélation (bulle, ligne, nombre..).
- La diagonale représente la distribution de chaque variable, en utilisant un histogramme ou un diagramme de densité.

Exemple : Diagramme de densité 2D

Table of Contents

- Visualisation de la distribution
- Visualisation de la corrélation
- Visualisation du rang
- Visualisation de l'évolution
- 5 Visualisation de la cartographie

Visualisation du rang

Bar plot

Word cloud

Parrallel plot

Lollipop plot

Box Plot

Table of Contents

- Visualisation de la distribution
- Visualisation de la corrélation
- Visualisation du rang
- 4 Visualisation de l'évolution
- Visualisation de la cartographie

Table of Contents

- Visualisation de la distribution
- Visualisation de la corrélation
- Visualisation du rang
- Visualisation de l'évolution
- 5 Visualisation de la cartographie