№ вар
 Иб. вар
 Пинии, км
 Марки и сечения
 Р1м, МВТ
 Q1м, МВТ
 P2м, МВТ
 Q2м, МВТ
 P1м, МВТ
 Q2м, MST
 Q2м, MST

$$P_{1H} \coloneqq 51 \qquad \qquad P_{2H} \coloneqq 7.65 \qquad \qquad Ub \coloneqq 225 \qquad \qquad i \equiv \sqrt{-1} \\ Q_{1H} \coloneqq 29 \qquad \qquad Q_{2H} \coloneqq 4.35 \qquad \qquad i \equiv \sqrt{-1}$$

Трансформатор

Таблица 1.4.2 Трехфазные двухобмоточные трансформаторы 110 кВ

- F4												
		Прополи		Каталож	Расчетные данные							
Тип	S _{HOM} , MBA	Пределы регули-	U _H	$U_{\text{ном}}$ обмоток, кВ		ΔP _κ ,	Р _х ,	I _x ,	R _т , Ом	X _т , Ом	ΔQ _x , κΒΑp	
		рования	BH	HH		KDI	KDI	70		Ом	квар	
ТД- 40000/110	40	±2*2,5%	121	3,15;6,3;10,5	10,5	160	50	0,65	1,46	38,4	260	

Автотрансформатор

Продолжение таол. 1.4.7

	Каталожные данные						ΔQx,					
Тип	Тип ДРк, кВт			ΔPx,	ΔPx, Ix,		Rт, Ом			Хт, Ом		
	В-С	В-Н	C-H	кВт	%	BH	CH	HH	BH	CH	HH	кВАр
АТДЦТН- 63000/220/110	215	-	-	45	0,5	1,4	1,4	2,8	104	0	195,6	315

Трехфазные трехобмоточные трансформаторы и автотрансформаторы 220 кВ

	1 рехфазные трехоомоточные трансформаторы и автотрансформаторы 220 кв																			
		Пионония		Каталожные данные								Расчетные данные								
Тип	S_{hom}	Пределы	U _H	ном.обмоток,кВ			U_{κ} ,% ΔP_{κ} , κB_T		AD	т	R _T , OM		Л	X _T , O _M		И	ΔQ_x ,			
ТИП	MBA	регули- рования	ВН	СН	НН	В-С	В-Н	С-Н	B- C	B- H	C- H	ΔP _x , κBτ	1 _x , %	ВН	СН	НН	ВН	СН	НН	квар
АТДЦТН- 63000/220/110	63	±6*2%	230	121	6,6; 11; 27,5; 38,5	11	35,7	21,9	215	-	1	45	0,5	1,4	1,4	2,8	104	0	195,6	315

$$K_{H_6} := \frac{11}{230} = 0.04783$$

$$K_{C_6} := \frac{121}{230} = 0.52609$$

$$r_{\theta_C} := \frac{215 \cdot 230^2}{63^2} \cdot 10^{-3} = 2.866$$

$$r_{c} := \frac{r_{\theta_C}}{2} = 1.433$$

$$r_{\scriptscriptstyle \rm H}\!\coloneqq\!r_{\scriptscriptstyle \rm C}$$

$$r_{\scriptscriptstyle \rm H}\!\coloneqq\!r_{\scriptscriptstyle \rm B}\!\cdot\!2\!=\!2.866$$

$$X_{\text{e_c}} \coloneqq \frac{11 \cdot 230^2}{100 \cdot 63} = 92.365$$
 $X_{\text{e_H}} \coloneqq \frac{35.7 \cdot 230^2}{100 \cdot 63} = 299.767$

$$X_{\text{C_H}} \coloneqq \frac{21.9 \cdot 230^2}{100 \cdot 63} = 183.89$$

$$x_{\mathrm{g}} \coloneqq \frac{1}{2} \boldsymbol{\cdot} \left(X_{\mathrm{g_c}} + X_{\mathrm{g_H}} - X_{\mathrm{c_H}} \right) = 104.121$$

$$x_{\mathsf{c}} \coloneqq \frac{1}{2} \cdot \left(X_{\mathsf{B_C}} + X_{\mathsf{C_H}} - X_{\mathsf{B_H}} \right) = -11.756 \qquad x_{\mathsf{c}} \coloneqq 0$$

$$x_{\!\scriptscriptstyle H}\! :=\! \frac{1}{2} \! \cdot \! \left(\! X_{\!\scriptscriptstyle \text{C_H}} \! + \! X_{\!\scriptscriptstyle \text{B_H}} \! - \! X_{\!\scriptscriptstyle \text{B_C}} \! \right) \! = \! 195.646$$

$$Z_{\rm e_c} \coloneqq r_{\rm e} + j \cdot x_{\rm e} = 1.433 + 104.121 \mathrm{i}$$

$$Z_{c_H} \coloneqq r_c + j \cdot x_c = 1.433$$

$$Z_{\!\scriptscriptstyle H_H}\!\coloneqq\! r_{\!\scriptscriptstyle H}\!+\!j\cdot\! x_{\!\scriptscriptstyle H}\!=\!2.866+195.646\mathrm{i}$$

Генератор

Турбогенераторы

Тип					Ма- хо-	тивлени	я, о.е.	Посто-		
турбогене- ратора	S _{HOM} , MBA	P _{HOM} , MBT	U _{ном} , кВ	cosφ	I _{ном} , вый кА мо-мент т*м²		X" _d	X'd	X _d	янная време- ни, Т _{d0} , с
ТВС-32У3	40	32	6,3	0,8	3,67	5,4	0,143	0,238	2,458	10,4
ТВС-32У3	40	32	10,5	0,8	2,2	5,4	0,53	0,26	2,648	10,4
TBC-32T3	31,25	25	10,5	0,8	1,718	5,4	0,13	0,216	2,0206	10,35

$$S \coloneqq 40$$

$$P \coloneqq 32$$

$$Q \coloneqq \sqrt{S^2 - P^2} = 24$$

$$P_{\Gamma} = P = 32$$

$$Q_{\Gamma} \coloneqq Q = 24$$

Расчет параметров схемы замещения

1) Траняформатор

$S_{\mathit{HOM}1}\!\coloneqq\!40$	$U_{\mathit{BH}1}\!\coloneqq\!121$	$U_{\mathit{HH}1}\!\coloneqq\!10.5$	$U_{\mathit{K}1}\!\coloneqq\!10.5$
$\Delta P_{K_1} \coloneqq 160$	$I_{X1}\!\coloneqq\!0.65$	$\Delta P_{X1}\!\coloneqq\!50$	
$R_{71} \coloneqq 1.46$	$X_{71} \coloneqq 38.4$	$\Delta Q_{X1} \coloneqq 260$	

Трехфазные трехобмоточные трансформаторы и автотрансформаторы 220 кВ

Тип		Пределы	Каталожные данные									
	Sном, МВА	Sном, МВА регули-		Uном	, обмоток, кВ	U _κ ,%						
	ļ ļ	рования	BH	СH	HH	B-C	В-Н	C-H				
АТДЦТН- 63000/220/110	63	+6*2%	230	121	6,6;11;27,5; 38,5	11	35,7	21,9				
		1						$\overline{}$				

Таблица 1.4.2 **Трехфазные двухобмоточные трансформаторы 110 кВ**

		Продоли		Каталож	Расчетные данные						
Тип	$S_{\text{hom}},$ MBA	Пределы регули-	U _H	$U_{\text{ном}}$ обмоток, кВ		ΔP _κ ,	Р _х , кВт	I _x ,	R _т , Ом	X _т , Ом	ΔQ _x , κΒΑp
		рования	BH	HH		KDI	KDI	70		Ом	квар
ТД- 40000/110	40	±2*2,5%	121	3,15;6,3;10,5	10,5	160	50	0,65	1,46	38,4	260

$$R_{\textit{mpahc1}} \coloneqq \frac{\Delta P_{\textit{K1}} \cdot {U_{\textit{BH1}}}^2 \cdot 10^{-3}}{{S_{\textit{HOM1}}}^2} = 1.46$$

$$Z_{\textit{mpahc1}} \coloneqq \frac{U_{\textit{K1}} \cdot {U_{\textit{BH1}}}^2}{100 \cdot S_{\textit{HOM1}}} = 38.43$$

$$X_{mpach1} \coloneqq \sqrt{{Z_{mpahc1}}^2 - {R_{mpahc1}}^2} = 38.4$$

Расчет поперечных параметров:

$$G_{71} \coloneqq \frac{\Delta P_{X1} \cdot 10^{-3}}{U_{R\mu_1}^2} = 3.42 \cdot 10^{-6}$$

$$B_{T1} \coloneqq \frac{I_{X1} \cdot S_{HOM1}}{100 \cdot U_{RH1}^2} = 1.776 \cdot 10^{-5}$$

$$Y_{\mathit{UIT}} := (G_{\mathit{T}1} - 1\mathbf{j} \cdot B_{\mathit{T}1}) = 3.42 \cdot 10^{-6} - 17.76\mathbf{j} \cdot 10^{-6}$$

$$Z_{\textit{mpahc}\phi 1} \coloneqq R_{\textit{mpahc}1} + X_{\textit{mpach}1} \cdot i = 1.464 + 38.405 \mathrm{i}$$

2) Расчет воздушных линий

$$L = 30$$

$$n \coloneqq 2$$

по_спаравочнику

$$R_0 \coloneqq \frac{16.2}{100}$$
 $X_0 \coloneqq \frac{41}{10}$

$$R_0 \coloneqq \frac{16.2}{100} \qquad \qquad X_0 \coloneqq \frac{41.3}{100} \qquad \qquad B_0 \coloneqq \frac{2.75 \cdot 10^{-4}}{100} = 2.75 \cdot 10^{-6}$$

$$\Delta P_{\kappa op_cp} := \frac{0.028 + 0.071 + 0.165}{3} = 0.088$$

$$\Delta P_{\textit{kop_cp}} \coloneqq \frac{0.028 + 0.071 + 0.165}{3} = 0.088 \qquad \Delta P_{\textit{ymev}} \coloneqq \frac{0.055 + 0.510 + 0.850}{3} = 0.472$$

$$R_1 := R_0 \cdot \frac{L}{n} = 2.43$$
 $X_1 := X_0 \cdot \frac{L}{n} = 6.195$

$$X_1 := X_0 \cdot \frac{L}{n} = 6.195$$

$$B_1 \coloneqq B_0 \cdot L \cdot n = 165 \cdot 10^{-6}$$

$$Z_{\text{M1}} := \frac{R_1 + X_1 \cdot i}{n} = 1.215 + 3.098i$$

$$G_0 \coloneqq \frac{\left(\Delta P_{\textit{kop_cp}} + \Delta P_{\textit{ymeч}}\right) \cdot 10^{-3}}{110^2} \!=\! 4.625 \cdot 10^{-8}$$

$$G_1 \coloneqq G_0 \cdot L \cdot n = 2.775 \cdot 10^{-6}$$

$$Y_{\mathit{BN}1}\!\coloneqq\!G_1\!+\!B_1\!\cdot\! i\!=\!2.775\cdot 10^{-6}\!+\!1.65\mathrm{i}\cdot 10^{-4}$$

$$\frac{Y_{en1}}{2} = 1.3876 \cdot 10^{-6} + 8.25i \cdot 10^{-5}$$

2)линия Л2 - Ac-185
$$L \coloneqq 50$$

$$L = 50$$

 $n \coloneqq 1$

$$R_2 \coloneqq R_0 \cdot \frac{L}{n} = 8.1$$

$$X_2 := X_0 \cdot \frac{L}{n} = 20.65$$

$$R_2 := R_0 \cdot \frac{L}{n} = 8.1$$
 $X_2 := X_0 \cdot \frac{L}{n} = 20.65$ $B_2 := B_0 \cdot L \cdot n = 137.5 \cdot 10^{-6}$

$$Z_{//2} := R_2 + X_2 \cdot i = 8.1 + 20.65i$$

$$G_0 \coloneqq \frac{\left(\Delta P_{\textit{kop_cp}} + \Delta P_{\textit{ymeч}}\right) \cdot 10^{-3}}{110^2} = 4.625 \cdot 10^{-8}$$

$$G_2 := G_0 \cdot L \cdot n = 2.313 \cdot 10^{-6}$$

$$Y_{Ba2} := G_2 + B_2 \cdot i = 2.313 \cdot 10^{-6} + 1.375i \cdot 10^{-4}$$

$$\frac{Y_{\rm en2}}{2} = 1.1563 \cdot 10^{-6} + 6.875i \cdot 10^{-5}$$

$$L \coloneqq 20$$

$$n \coloneqq 1$$

$$R_0 \coloneqq \frac{12}{100}$$

$$X_0 \coloneqq \frac{40.5}{100}$$

$$R_0 \coloneqq \frac{12}{100}$$
 $X_0 \coloneqq \frac{40.5}{100}$ $B_0 \coloneqq \frac{2.81 \cdot 10^{-4}}{100} = 2.81 \cdot 10^{-6}$

$$R_3 \coloneqq R_0 \cdot \frac{L}{n} = 2.4$$

$$X_3 := X_0 \cdot \frac{L}{n} = 8.1$$

$$R_3 := R_0 \cdot \frac{L}{n} = 2.4$$
 $X_3 := X_0 \cdot \frac{L}{n} = 8.1$ $B_3 := B_0 \cdot L \cdot n = 56.2 \cdot 10^{-6}$

$$\Delta P_{\kappa op_cp} := \frac{0.027 + 0.061 + 0.123}{3} = 0.0$$

$$\Delta P_{\textit{kop_cp}} \coloneqq \frac{0.027 + 0.061 + 0.123}{3} = 0.07 \qquad \Delta P_{\textit{ymeq}} \coloneqq \frac{0.055 + 0.510 + 0.850}{3} = 0.472$$

$$Z_{n3} := R_3 + X_3 \cdot i = 2.4 + 8.1i$$

$$G_0 := \frac{\left(\Delta P_{\kappa op_cp} + \Delta P_{ymeq}\right) \cdot 10^{-3}}{110^2} = 4.479 \cdot 10^{-8}$$

$$G_3 \coloneqq G_0 \cdot L \cdot n = 8.959 \cdot 10^{-7}$$

$$Y_{\mathit{BJ}3} \coloneqq G_3 + B_3 \cdot i = 8.959 \cdot 10^{-7} + 5.62 \mathbf{i} \cdot 10^{-5}$$

$$\frac{Y_{\text{en}3}}{2} = 4.4793 \cdot 10^{-7} + 2.81i \cdot 10^{-5}$$

4)линия Л4 - 2*Ac-240
$$L\coloneqq 20$$
 $n\coloneqq 2$

$$L = 20$$

$$n := 2$$

$$R_4 \coloneqq R_0 \cdot \frac{L}{n} = 1.2$$

$$X_4 \coloneqq X_0 \cdot \frac{L}{n} = 4.05$$

$$R_4 := R_0 \cdot \frac{L}{n} = 1.2$$
 $X_4 := X_0 \cdot \frac{L}{n} = 4.05$ $B_4 := B_0 \cdot L \cdot n = 112.4 \cdot 10^{-6}$

$$Z_{n4} := \frac{R_4 + X_4 \cdot i}{n} = 0.6 + 2.025i$$

$$G_0 \coloneqq \frac{\left(\Delta P_{\textit{kop_cp}} + \Delta P_{\textit{ymeч}}\right) \cdot 10^{-3}}{110^2} = 4.479 \cdot 10^{-8}$$

$$G_4 \coloneqq G_0 \cdot L \cdot n = 1.792 \cdot 10^{-6}$$

$$Y_{\mathit{BM}} \coloneqq G_4 + B_4 \cdot i = 1.792 \cdot 10^{-6} + 1.124 \mathrm{i} \cdot 10^{-4}$$

$$\frac{Y_{\text{en4}}}{2} = 8.9587 \cdot 10^{-7} + 5.62i \cdot 10^{-5}$$

Автотрансформатор

Трехфязные трехобмоточные трянсформяторы и автотрянсформяторы 220 кВ

			Пределы	Каталожные данные										
Тип	Sном, МВА регули-			Uном	, обмоток, кВ	U _κ ,%								
ļ			рования	BH	CH	HH	B-C	В-Н	C-H					
	АТДЦТН- 63000/220/110	63	+6*2%	230 121		6,6;11;27,5; 38,5	11	35,7	21,9					
г														

Продолжение таол. 1.4./

	Каталожные данные						Расчетные данные						
Тип		ΔРк, кВт		ΔPx, Ix,		, Кт, Ом			Хт, Ом			ΔQx, κBAp	
	В-С	В-Н	C-H	кВт	%	BH	CH	HH	BH	CH	HH	квар	
АТДЦТН- 63000/220/110	215	-	-	45	0,5	1,4	1,4	2,8	104	0	195,6	315	

$$U_{\mathit{B}}\mathit{Hom} \coloneqq 230 \hspace{1cm} Uk_{\mathit{B}} \coloneqq 11 \hspace{1cm} \Delta Pk \coloneqq 215 \hspace{1cm} R_{\mathit{TB}} \coloneqq 1.4 \hspace{1cm} X_{\mathit{TB}} \coloneqq 104 \hspace{1cm} \Delta Qx \coloneqq 315$$

$$\Delta Pk := 215$$

$$R_{ms} := 1.4$$

$$\Delta Ox = 315$$

$$U_{c}$$
ном := 121

$$Uk_C = 35.7$$

$$\Delta Px = 45$$

$$U_{\textit{C}}\textit{HoM} \coloneqq 121 \qquad \qquad Uk_{\textit{C}} \coloneqq 35.7 \qquad \qquad \Delta Px \coloneqq 45 \qquad \qquad R_{\textit{TC}} \coloneqq 1.4 \qquad X_{\textit{TC}} \coloneqq 0 \qquad \qquad S_{\textit{HOM}} \coloneqq 63$$

$$S_{\text{max}} := 63$$

$$U_{\mathsf{H}}$$
ном := 11

$$Uk_H = 21.9$$

$$Ix = 0.5$$

$$R_{TH} \coloneqq 2.8$$

$$U_{\textit{H}}\textit{HoM} \coloneqq 11 \hspace{1cm} Uk_{\textit{H}} \coloneqq 21.9 \hspace{1cm} Ix \coloneqq 0.5 \hspace{1cm} R_{T\textit{H}} \coloneqq 2.8 \hspace{1cm} X_{T\textit{H}} \coloneqq 195.6$$

$$G_{AT} \coloneqq \frac{\Delta Px \cdot 10^{-3}}{U_{B} \text{HoM}^2} = 8.507 \cdot 10^{-7}$$

$$\begin{split} Y_{\mathit{AT}} &\coloneqq 2 \cdot \left(G_{\mathit{AT}} - B_{\mathit{AT}} \cdot i \right) = 1.701 \cdot 10^{-6} - 1.191 \mathbf{i} \cdot 10^{-5} \\ Z_{\mathit{TB}} &\coloneqq \frac{\left(R_{\mathit{TB}} + X_{\mathit{TB}} \cdot i \right)}{2} = 0.7 + 52 \mathbf{i} \end{split}$$

$$Z_{TC}\!\coloneqq\!1.4+0\mathrm{i}$$

$$Z_{TH}\!\coloneqq\!R_{TH}\!+\!X_{TH}\!\cdot\!i\!=\!2.8\!+\!195.6\mathrm{i}$$

Начальные приблежения для узлов

$$U_4 \coloneqq 110$$

$$U_b \coloneqq 225$$

$$U_1\!\coloneqq\!220$$

$$U_2 \coloneqq 110$$

$$U_{40} = 220$$

$$U_{10}\!\coloneqq\!220$$

$$U_{20}\!\coloneqq\!110$$

$$U_3 \coloneqq 110$$

$$U_{30} = 110$$

участок 3-30

$$S_{30} := P_{\Gamma} + Q_{\Gamma} \cdot i = 32 + 24i$$

$$S_{30K} := -S_{30} = -32 - 24i$$

$$\Delta S_{3_30} \coloneqq \frac{{\rm Re} \left(S_{30\mathit{K}}\right)^2 + {\rm Im} \left(S_{30\mathit{K}}\right)^2}{\left(U_{30}\right)^2} \cdot Z_{\mathit{mpahc} \phi 1} = 0.194 + 5.078 \mathrm{i}$$

$$S_{3\ 30H} \coloneqq S_{30K} + \Delta S_{3\ 30} = -31.806 - 18.922i$$

участок 2-20

$$S_{20K} := P_{1H} + Q_{1H} \cdot i = 51 + 29i$$

$$\Delta S_{2_20} \coloneqq \frac{\operatorname{Re} \left(S_{20\mathit{K}}\right)^2 + \operatorname{Im} \left(S_{20\mathit{K}}\right)^2}{\left(U_{20}\right)^2} \cdot Z_{\mathit{n4}} = ?$$

$$S_{2_20H}\!\coloneqq\!S_{20K}\!+\!\Delta S_{2_20}\!=?$$

$$\boldsymbol{Y}_{\boldsymbol{\mathcal{U}}\boldsymbol{3}}\!\coloneqq\!\frac{\boldsymbol{Y}_{\boldsymbol{\mathcal{B}}\boldsymbol{\mathcal{I}}\boldsymbol{2}}}{2}\!+\!\frac{\boldsymbol{Y}_{\boldsymbol{\mathcal{B}}\boldsymbol{\mathcal{I}}\boldsymbol{3}}}{2}\!+\!\boldsymbol{Y}_{\boldsymbol{\mathcal{U}}\boldsymbol{\mathcal{T}}}$$

$$Y_{\textit{W2}}\!\coloneqq\!\frac{Y_{\textit{B}\textit{Л}1}}{2}\!+\!\frac{Y_{\textit{B}\textit{Л}2}}{2}\!+\!\frac{Y_{\textit{B}\textit{Л}4}}{2}$$

$$Y_{\omega 4} \coloneqq \frac{Y_{\mathsf{B} \mathsf{J} 1}}{2} + \frac{Y_{\mathsf{B} \mathsf{J} 3}}{2}$$

$$Y_{ul} := Y_{AT}$$

$$\Delta S_{ud} := Ub^2 \cdot \overline{Y_{ud}} = 0.086 + 0.603i$$

$$\Delta S_{\omega 2} \coloneqq U_2^{\ 2} \cdot \overline{Y_{\omega 2}} = 0.042 - 2.51i$$

$$\Delta S_{\omega 3} \coloneqq U_3^2 \cdot \overline{Y_{\omega 3}} = 0.061 - 0.957i$$

$$\Delta S_{u4} \coloneqq {U_4}^2 \cdot \overline{Y_{u4}} = 0.022 - 1.338i$$

$$S_2 := \Delta S_{u2} + S_{220H} = ?$$

$$S_3 := \Delta S_{\mu 3} + S_{330H} = -31.746 - 19.879i$$

$$S_4 \coloneqq \Delta S_{uu4} = 0.022 - 1.338i$$

кольцо

$$S_{4_2} \coloneqq \frac{S_2 \cdot \left(\overline{Z_{_{\varOmega 2}}} + \overline{Z_{_{\varOmega 3}}}\right) + S_3 \cdot \left(\overline{Z_{_{\varOmega 3}}}\right)}{\left(\overline{Z_{_{\varOmega 2}}} + \overline{Z_{_{\varOmega 3}}} + \overline{Z_{_{\varOmega 1}}}\right)} = 38.043 + 19.876i$$

$$S_{\Gamma} \coloneqq S_{4}$$

$$S_{32} := S_2 - S_{\Gamma} = 13.169 + 7.19i$$

$$S_{34} \coloneqq -S_3 - S_{32} = 18.576 + 12.689i$$

1)

$$S_{42K} := S_{\Gamma} = 38.043 + 19.876i$$

$$\Delta S_{42}\!\coloneqq\!\frac{\operatorname{Re}\left(\!S_{42\!\mathit{K}}\!\right)^{^{2}}\!+\!\operatorname{Im}\left(\!S_{42\!\mathit{K}}\!\right)^{^{2}}}{\left(\!U_{20}\!\right)^{^{2}}}\!\cdot\!Z_{\mathit{n}1}$$

$$S_{42H}\!\coloneqq\!S_{42K}\!+\!\Delta S_{42}\!=\!38.228\!+\!20.347\mathrm{i}$$

$$S_{42H} = 38.228 + 20.347i$$

2)

$$S_{32K} \coloneqq S_{32} = 13.169 + 7.19i$$

$$\Delta \boldsymbol{S}_{32}\!\coloneqq\!\frac{\operatorname{Re}\left(\boldsymbol{S}_{32\mathit{K}}\right)^{^{2}}\!+\!\operatorname{Im}\left(\boldsymbol{S}_{32\mathit{K}}\right)^{^{2}}}{\left(\boldsymbol{U}_{20}\right)^{^{2}}}\!\boldsymbol{\cdot}\boldsymbol{Z}_{n2}$$

$$S_{32\!H}\!\coloneqq\!S_{32\!K}\!+\!\Delta\!S_{32} \\ S_{34\!H}\!+\!S_{32\!H}\!+\!S_3$$

$$S_{34H} \coloneqq -S_{32H} - S_3 = 18.426 + 12.304i$$

$$\Delta S_{34} \coloneqq \frac{\operatorname{Re} \left(S_{34H}\right)^2 + \operatorname{Im} \left(S_{34H}\right)^2}{\left(U_{30}\right)^2} \cdot Z_{\beta 3} = 0.097 + 0.329\mathrm{i}$$

$$S_{34 \mathit{K}}\!\coloneqq\!S_{34 \mathit{H}}\!-\!\Delta S_{34}\!=\!18.328\!+\!11.976\mathrm{i}$$

$S_{42H} = 38.228 + 20.347 i$

$$S_{40.4K} := S_{42H} - S_4 = 38.206 + 21.686i$$

$$\Delta S_{40_4} \coloneqq \frac{\operatorname{Re} \left(S_{40_4\mathit{K}} \right)^2 + \operatorname{Im} \left(S_{40_4\mathit{K}} \right)^2}{\left(U_{40} \right)^2} \cdot Z_{\mathit{C_H}} \! = \! 0.057$$

$$S_{40\ 4H} \coloneqq S_{40\ 4K} + \Delta S_{40\ 4} = 38.263 + 21.686$$
i

Стяжка хвоста 1-10

$$S_{1.10K} := P_{2H} + j \cdot Q_{2H} = 7.65 + 4.35i$$

$$\Delta S_{1_10} \coloneqq \frac{\operatorname{Re} \left(S_{1_10\mathit{K}} \right)^2 + \operatorname{Im} \left(S_{1_10\mathit{K}} \right)^2}{\left(U_{10} \right)^2} \cdot Z_{\mathit{H_H}} = 0.005 + 0.313\mathrm{i}$$

$$S_{1\ 10H} \coloneqq S_{1\ 10K} + \Delta S_{1\ 10} = 7.655 + 4.663i$$

b-1

$$S_{b \ 1K} = S_{1 \ 10H} + S_{40 \ 4H}$$

$$S_{b-1K} := S_{1-10H} + S_{40-4H} = 45.918 + 26.349i$$

$$\Delta S_{b_1} \coloneqq \frac{\operatorname{Re} \left(S_{b_1 \mathit{K}} \right)^2 + \operatorname{Im} \left(S_{b_1 \mathit{K}} \right)^2}{\left(U_1 \right)^2} \cdot Z_{\theta_c} = 0.083 + 6.029 \mathrm{i}$$

$$S_{b_1H}\!\coloneqq\!S_{b_1K}\!+\!\Delta\!S_{b_1}\!=\!46+32.378\mathrm{i}$$

--

Обратный ход

$$U_1 = U_b - \Delta U_{b_1} - j \left(\delta U_{b_1} \right) = ?$$

$$\Delta U_{b_1} \coloneqq \frac{\operatorname{Re}\left(S_{b_1H}\right) \cdot \operatorname{Re}\left(Z_{\theta_c}\right) - \operatorname{Im}\left(S_{b_1H}\right) \cdot \operatorname{Im}\left(Z_{\theta_c}\right)}{\left|U_{b}\right|} \xrightarrow{explicit} \underbrace{ALL} \\ Re\left(46.00048546475135 + 32.377922332413355i\right) \cdot Re\left(1.4327916351725876 + 12.377922332413355i\right) \cdot Re\left(1.4327916351725876 + 12.377922332413355i\right)} = \underbrace{\left(A_{b_1H}\right) \cdot \operatorname{Re}\left(A_{b_1H}\right) \cdot \operatorname{Re}\left(A_{b_1H}\right) \cdot \operatorname{Im}\left(A_{b_1H}\right) \cdot \operatorname{Im}\left(A_{b_1H}\right)}_{\left|U_{b_1}\right|} \xrightarrow{explicit} \underbrace{\left(A_{b_1H}\right) \cdot \operatorname{Re}\left(A_{b_1H}\right) \cdot \operatorname{Re}\left(A_{b_1H}\right) \cdot \operatorname{Im}\left(A_{b_1H}\right)}_{\left|U_{b_1}\right|} \xrightarrow{explicit} \underbrace{\left(A_{b_1H}\right) \cdot \operatorname{Re}\left(A_{b_1H}\right) \cdot \operatorname{Im}\left(A_{b_1H}\right) \cdot \operatorname{Im}\left(A_{b_1H}\right)}_{\left|U_{b_1}\right|} \xrightarrow{explicit} \underbrace{\left(A_{b_1H}\right) \cdot \operatorname{Im}\left(A_{b_1H}\right)}_{\left|U_{b_1}\right|} \xrightarrow{explicit} \underbrace{\left(A_{b$$

$$\delta U_{b_1} \coloneqq \frac{\operatorname{Re}\left\langle S_{b_1H}\right\rangle \cdot \operatorname{Im}\left\langle Z_{\theta_c}\right\rangle + \operatorname{Im}\left\langle S_{b_1H}\right\rangle \cdot \operatorname{Re}\left\langle Z_{\theta_c}\right\rangle}{\left|U_{b}\right|} \xrightarrow{explicit} \underbrace{ALL} \xrightarrow{Re\left(46.00048546475135 + 32.377922332413355i\right) \cdot Im\left(1.43279163517258764255i\right)}_{ALL} + \underbrace{\operatorname{Re}\left(46.00048546475135 + 32.377922332413355i\right) \cdot Im\left(1.4327916351725876425i\right)}_{ALL} + \underbrace{\operatorname{Re}\left(46.00048546475135 + 32.377922332413355i\right)}_{ALL} + \underbrace{\operatorname{Re}\left(46.0004856475135$$

$$U_{1} \coloneqq \sqrt{\left(U_{b} - \Delta U_{b_1}\right)^{2} - \left(\delta U_{b_1}\right)^{2}} \xrightarrow{\begin{array}{c} explicit \\ ALL \\ \end{array}} \sqrt{\left(225 - -14.69022542166271\right)^{2} - 21.493291420131104^{2}} = 238.7246$$

$$\delta_{1^{\wedge}} \coloneqq \left(\frac{-\delta U_{b_1}}{U_b - \Delta U_{b_1}}\right) = -0.09$$

$$\delta_{1_$$
промежуточное := atan $\left(\delta_{1}\cdot\right) \cdot \frac{180}{\pi} = -5.124$

$$0+\delta_{1_$$
промежуточное}=-5.124

$$U_1 \coloneqq \left| U_1 \right| \angle \left(-5.012 \right)^\circ = 237.812 - 20.856 \mathrm{i}$$

$$U_1$$
 = 238.725 \angle -5.012°

1-10

$$U_{10} = U_1 - \Delta U_{1_10} - j \left(\delta U_{1_10} \right) = ?$$

$$\Delta U_{1_10} \coloneqq \frac{\operatorname{Re}\left(\boldsymbol{S}_{1_10H}\right) \cdot \operatorname{Re}\left(\boldsymbol{Z}_{H_H}\right) - \operatorname{Im}\left(\boldsymbol{S}_{1_10H}\right) \cdot \operatorname{Im}\left(\boldsymbol{Z}_{H_H}\right)}{\left|\boldsymbol{U}_{1}\right|} = -3.73$$

$$U_{1_10} \coloneqq \frac{\operatorname{Re}\left(S_{1_10H}\right) \cdot \operatorname{Im}\left(Z_{H_H}\right) + \operatorname{Im}\left(S_{1_10H}\right) \cdot \operatorname{Re}\left(Z_{H_H}\right)}{|U_1|} = 6.329$$

$$U_{10} \coloneqq \sqrt{\left(U_{1} - \Delta U_{1_10}\right)^{^{2}} - \left(\delta U_{1_10}\right)^{^{2}}} = 242.3717$$

$$\delta_{10} := \! \left(\! \frac{-\delta U_{1_10}}{U_1 - \Delta U_{1_10}} \! \right) \! = \! -0.026$$

$$\delta_{10_\textit{промежуточноe}} \coloneqq \mathrm{atan}\left(\delta_{10}\cdot\right) \cdot \frac{180}{\pi} = -1.4954$$

 δ_{1} промежуточное $+\delta_{10}$ промежуточное =-6.619

$$U_{10} := |U_{10}| \angle (-6.422)^{\circ} = 240.851 - 27.109i$$

$$U_{10} \cdot = 242.372 \angle -6.422^{\circ}$$

1-40

$$U_{40} = U_1 - \boxed{\Delta U_{1_40}} - j \left(\delta U_{1_40}\right) = ?$$

$$\Delta U_{1_40} \coloneqq \frac{\operatorname{Re}\left(S_{40_4H}\right) \cdot \operatorname{Re}\left(Z_{\varsigma_H}\right) - \operatorname{Im}\left(S_{40_4H}\right) \cdot \operatorname{Im}\left(Z_{\varsigma_H}\right)}{|U_1|} = 0.23$$

$$\delta U_{1_40} \coloneqq \frac{\operatorname{Re}\left(S_{40_4H}\right) \cdot \operatorname{Im}\left(Z_{c_H}\right) + \operatorname{Im}\left(S_{40_4H}\right) \cdot \operatorname{Re}\left(Z_{c_H}\right)}{\left|U_{1}\right|} = 0.13$$

$$U_{40} \coloneqq \sqrt{\left(U_1 - \Delta U_{1_40}\right)^2 - \left(\delta U_{1_40}\right)^2} = 238.4949$$

$$\delta_{40^{\, \cdot}} \coloneqq \! \left(\! \frac{-\delta U_{1_40}}{U_1 - \Delta U_{1-40}} \right) \! = -5.457 \cdot 10^{-4}$$

$$\delta_{40_$$
промежуточное := atan $\left(\delta_{40}\cdot\right)\cdot\frac{180}{\pi}$ = -0.0313

$$U_{40} \coloneqq |U_{40}| \angle (-5.038)^{\circ} = 237.574 - 20.944i$$

$$U_{40} = 238.495 \angle -5.038^{\circ}$$

переход от промежуточных точек к основным (через кольца трансформатора)

$$K_{\text{H_B}} \coloneqq \frac{11}{230} = 0.04783$$

$$U_4\!\coloneqq\!U_{40}\!\cdot\!K_{c_\theta}\!=\!124.984-11.018\mathrm{i}$$

$$K_{c_g} := \frac{121}{230} = 0.52609$$

$$U_4\!=\!125.469\angle\!-\!5.038^\circ$$

$$U_{100} \coloneqq U_{10} \cdot K_{H g} = 11.519 - 1.297i$$

$$U_{100} = 11.592 \angle -6.422^{\circ}$$

Обратный ход по кольцу 1)

4-2

$$U_2 = \left| U_4 \right| - \Delta U_{4_2} - j \left(\delta U_{4_20} \right) = ?$$

$$\Delta U_{4_2} \coloneqq \frac{\operatorname{Re}\left(S_{42\mathit{H}}\right) \cdot \operatorname{Re}\left(Z_{\mathit{H}3}\right) - \operatorname{Im}\left(S_{42\mathit{H}}\right) \cdot \operatorname{Im}\left(Z_{\mathit{H}3}\right)}{\left|U_{4}\right|} = -0.582$$

$$\delta U_{4_2} \coloneqq \frac{\operatorname{Re}\left(S_{42H}\right) \boldsymbol{\cdot} \operatorname{Im}\left(Z_{\jmath 3}\right) + \operatorname{Im}\left(S_{42H}\right) \boldsymbol{\cdot} \operatorname{Re}\left(Z_{\jmath 3}\right)}{\left|U_{4}\right|} = 2.857$$

$$U_2 \coloneqq \sqrt{\left(U_4 - \Delta U_{4_2}\right)^2 - \left(\delta U_{4_2}\right)^2} = 125.5344 - 11.0211\mathrm{i}$$

$$\delta_{2^{+}} \coloneqq \! \left(\! \frac{-\delta U_{4_2}}{U_{4} - \Delta U_{4_2}} \! \right) \! = \! -0.023 - 0.002 \mathrm{i}$$

$$\delta_{2_\textit{промежуточноe}} \coloneqq \mathrm{atan}\left(\delta_{40}\cdot\right) \cdot \frac{180}{\pi} = -0.0313$$

$$\delta_{4_промежуточное} \coloneqq -5.038$$

$$\delta_{2_\textit{промежуточноe}} + \delta_{4_\textit{промежуточноe}} \xrightarrow{explicit} -0.03126806080849235 + -5.038 = -5.069$$

$$U_2\!\coloneqq\!\big|U_2\big|\,\angle\big(-5.064\big)^\circ\!=\!125.525-11.123\mathrm{i}$$

$$U_2\!=\!126.017 \angle\!-\!5.064^\circ$$