Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа №4 по дисциплине «Анализ Алгоритмов»

Тема Параллельные вычисления на основе нативных потоков

Студент Куликов Е. А.

Группа ИУ7-56Б

Преподаватель Волкова Л. Л.

СОДЕРЖАНИЕ

B	ВВЕДЕНИЕ		
1	Входные и выходные данные	2	
2	Преобразование входных данных в выходные	2	
3	Примеры работы программы	3	
4	Тестирование	4	
5	Описание исследования	5	
34	ЗАКЛЮЧЕНИЕ		
\mathbf{C}	ПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	8	

ВВЕДЕНИЕ

Цель работы— получение навыка организации параллельных вычислений на основе нативных потоков.

Задачи работы:

- анализ предметной области;
- разработка алгоритма обработки данных;
- создание ПО, реализующего разработанный алгоритм;
- исследование характеристик созданного ПО.

1 Входные и выходные данные

Входными данными программы является ссылка на сайт с кулинарными рецептами, в данном варианте — на сайт https://www.kuhnyatv.ru/recipes, название папки, в которую нужно сохранять рецепты, количество рецептов, которые нужно сохранить и количество потоков которые нужно создать. Выходными данными программы является папка с заданным именем, внутри которой располагается заданное количество рецептов в сормате html—страниц.

2 Преобразование входных данных в выходные

Программа считывает указанные входные данные и в зависимости от указанного количества потоков выполняет поиск страниц с рецептами в последовательном режиме (при количестве потоков равном 0) или параллельном режиме, создавая указанное количество потоков.

Каждый поток (в последовательном режиме — главный поток, в параллельном — каждый из созданных потоков) выполняет поиск первой необработанной ссылки в общем для всех потоков множестве, помечает эту ссылку обработанной, обращается к сайту по этой ссылке (для этого используется библиотека срг [1]), получая html-страницу. На этой странице производится поиск всех ссылок (с помощью регулярных выражений библиотеки regex [2]), каждая из которых, если уже не находится в общем множестве, помещается в него и помечается необработанной. Далее проверяется, является ли страница рецептом с помощью поиска на странице ключевых слов — "Продукты"и "Способ приготовления". Если страница является рецептом, ее исходный текст помещается в html—файл в указанную во входных данных папку и общий для всех потоков счетчик оставшихся страниц декрементируется. При равенстве счетчика нулю поиск останавливается.

3 Примеры работы программы

На рисунках 3.1- 3.2 представлен пример работы программы.

```
1) Enter dir name, recipes amount and threads amount, get recipes dir
2) Time measures
Enter option:
1
Enter directory name:
recipes
Enter recipes amount:
10
Enter threads amount:
0
Processing...
```

Рисунок 3.1 – Ввод входных данных

```
recipes :
   <> recipe_0.html
   <> recipe_1.html
   <> recipe_2.html
   <> recipe_3.html
   <> recipe_4.html
   <> recipe_5.html
   <> recipe_6.html
   <> recipe_7.html
   <> recipe_8.html
   <> recipe_9.html
```

Рисунок 3.2 – Полученная папка с рецептами

4 Тестирование

В таблице 4.1 представлены функциональные тесты для разработанного ПО. Все тесты пройдены успешно. Порядок ввода входных данных: имя папки, количество рецептов, количество потоков.

Таблица 4.1 – Функциональные тесты

№ теста	Входные данные	Полученные вы-	Ожидаемые вы-
		ходные данные	ходные данные
1	recipes 10 0	recipes/ c 10 pe-	m recipes/~c~10~pe-
		цептами	цептами

Таблица 4.1 – Функциональные тесты (продолжение)

№ теста	Входные данные	Полученные вы-	Ожидаемые вы-
		ходные данные	ходные данные
2	recipes 10 4	recipes/ c 10 pe-	recipes/ c 10 pe-
		цептами	цептами
3	recipes 10 64	recipes/ c 10 pe-	recipes/ c 10 pe-
		цептами	цептами

5 Описание исследования

В ходе исследования требуется исследовать зависимость производительности разработанного ПО (в терминах количества обработанных страниц в единицу времени) от количества дополнительных потоков. Изменять количество дополнительных потоков от 0 (вычисление в основном потоке), до $4 \cdot k$, где k — количество логических ядер используемой ЭВМ, по степеням числа 2. Количество логических ядер процессора, на котором проводилось исследование (13th Gen Intel(R) Core(TM) i5-13500H 2.60 GHz) равно 16, поэтому замеры проводились на интервале от 0 до 64 потоков.

В таблице 5.1 приведены замеры зависимости количества секунд, потраченных на один рецепт от количества потоков, на рисунке 5.1 приведен график, построенный по таблице.

Таблица 5.1 – Таблица замеров времени обработки одной страницы от количества потоков

Количество потоков	Количество полу-
	ченных за секунду
	рецептов
0	0.677015
1	0.689014
2	0.675797
4	0.618141
8	0.586283
16	0.564012
32	0.585115
64	0.602166

Рисунок 5.1 – График зависимости времени на один рецепт от количества потоков

По результатам проведенного исследования сделан вывод о том, что параллельная обработка данных может давать прирост к производительности, но только когда количество потоков не больше чем количество логических ядер процессора. График показывает что при большем количестве потоков степень время выполнения увеличивается, так как степень количество параллельных вычислений не изменяется, а количество издержек на создание потоков увеличивается.

ЗАКЛЮЧЕНИЕ

Цель работы достигнута. Решены все поставленные задачи:

- анализ предметной области;
- разработка алгоритма обработки данных;
- создание ПО, реализующего разработанный алгоритм;
- исследование характеристик созданного ПО.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Документация библиотеки срг [Электронный ресурс]. Режим доступа: https://docs.libcpr.org/ (дата обращения: 29.10.2024).
- 2. Документация библиотеки regex [Электронный ресурс]. Режим доступа: https://learn.microsoft.com/ru-ru/cpp/standard-library/regular-expressions-cpp?view=msvc-170 (дата обращения: 29.10.2024).