OPTIMITZACIÓ RISC-V

1.5 En aquest exercici, examinarem detalladament com s'executa una instrucció en un "datapath" d'un cicle únic (single cycle). Els problemes d'aquest exercici fan referència al cicle de rellotge en què el processador obté la següent instrucció: 0x00c6ba23 (ISA RV64I).

Instruction	ALUSrc	Memto- Reg	Reg- Write	Mem- Read	Mem- Write	Branch	ALUOp1	ALUOp0	
R-format	0	0	1	0	0	0	1	0	
ld	1	1	1	1	0	0	0	0	
sd	1	X	0	0	1	0	0	0	
beq	0	X	0	0	0	1	0	1	

(b)

Figura 2: (a) "Datapath" simplificat amb la unitat de control del RISC-V single cycle. (b) Taula amb els valors de les línies de control segons tipus d'instrucció.

Primero pasamos la instrucción a binario: $0x00c6ba23 \rightarrow 1100 0110 1011 1010 0010 0011$

	31	27	26	25	24	20	19	15	14	12	11	7	6	0
R	funct7				rs2		r	rsl		funct3		rd		ode
I	imm[11:0]			rs1		funct3		rd		Opco	ode			
S		imm[11:5]			rs2 rs1		funct3		imm[4:0]		opco	ode		
SB		imm[12 10:5]			rs	rs2 rs1 funct3				ict3	imm[4	:1 11]	opco	ode
\mathbf{U}	imm[31:12]										rd		opco	ode
UJ		0 10:1	0 10:1 11 19:12]			rd		opco	ode					

El Opcode serán siempre los 7 bits menos significativos, en nuestro caso: 010 0011, así que buscamos la instrucción que corresponde a éste y rellenamos las partes según corresponde.

Sd rs2, offset(rs1) M[x[rs1] + sext(offset)] = x[rs2][63:0]Store Doubleword. Tipo S, solo RV64I.

Almacena los ocho bytes del registro x[rs2] a memoria en la dirección x[rs1] + sign-extend(offset).

Formas comprimidas: c.sdsp rs2, offset; c.sd rs2, offset(rs1)

31	25 24	20 19	15 14 12	2 11 7	6	0
offset[11:5]	rs2	rs1	011	offset[4:0]	0100011	

La instrucción corresponde a un sd x12, 20(x13)

offset[11:5]	rs2	rs1	funct3	offset[4:0]	opcode	
0000 0000	0 1100	0110 1	011	1010 0	010 0011	
	12	13		20		

1) Quins són els valors de les entrades de la unitat de control ALU per a aquesta instrucció?

* En la **tabla rosa** de arriba miramos los valores de ALUOp1 y ALUOp0 para nuestra instrucción de tipo sd, que corresponden a **0 0**

AL	UOp		Funct7 field								Funct3 field		
ALUOpi	ALUOp0	I[31]	I[30]	I[29]	I[28]	I[27]	I[26]	I[25]	I[14]	I[13]	I[12]	Operation	
0	0	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0010	
Х	1	Х	Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	0110	
1	Х	0	0	0	0	0	0	0	0	0	0	0010	
1	Х	0	1	0	0	0	0	0	0	0	0	0110	
1	X	0	0	0	0	0	0	0	1	1	1	0000	
1	Х	0	0	0	0	0	0	0	1	1	0	0001	

Las entradas de la unidad de control para nuestros valores son 0010

- 2) Quina és la nova adreça del PC després d'executar aquesta instrucció? Ressalteu el camí a través del qual es determina aquest valor (figura 2).
- If we don't take the branch:

PC = PC+4 = next instruction

• If we do take the branch:

PC = PC + (immediate*4)

PC+4, porque no es un branch

3) Per a cada mux, mostreu els valors de les seves entrades i sortides durant l'execució d'aquesta instrucció. Enumereu els valors que són sortides de registre com Reg [xn] (on n és el nombre de reg).

4) Quins són els valors d'entrada per a l'ALU i les dues unitats addicionals?

ALU 1
Salida: PC+4
Entradas: PC
4

ALU 2
Salida: PC+Shift Left (PC+40)
Entradas: PC
Shift Left 20 (20x2=40)

ALU 3
Salida: rs1+20
Entradas: rx13 (rs1)
20 (immediato)