

BILBOKO
INGENIARITZA
ESKOLA
ESCUELA
DE INGENIERÍA
DE BILBAO

Métodos Estadísticos en la Ingeniería

Estatistika Metodoak Ingeniaritzan

Grado en Ingeniería Informática de Gestión y Sistemas de Información: Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

ESTATISTIKA METODOAK INGENIARITZAN

LAUHILEKO BITARTEKO PROBA IDATZIA (2024ko AZAROAK 8)			
ABIZENAK		IZENA	N.A.N
1. Ariketa	2. Ariketa	3. Ariketa	Guztira

Ohar orokorrak:

Probaren iraupena: Ordu 1 eta 30 minutu

Erantzun guztiak modu egokian arrazoituak egon behar dira. Beharrezkoa denean, banaketen arteko konbergentziak erabili behar dira.

1. ARIKETA

46. taldeko ordezkaria hamarretik 3.25 puntuko kalifikazioa lortu duen EMIren lauhileko bitarteko proba ebaluagarriaren berrikusketara joan da. Irakasleak informazio gehigarri hau eman dio: bere puntuazioa taldeko kalifikazioen banaketaren lehen kuartilarekin bat dator, eta bere aldakuntza-koefizientea %46.60koa da. Gainera, ondorengo taula ematen dio, planteatzen dizkion galderei erantzuteko:

$\left[L_{i},L_{i+1}\right)$	f_{i}	
[0,2.5)		
[2.5,5)		
[5,7)	16	
[7,9)	16	
[9,10]	2	
	64	

- a) Definitu zorizko aldagaia eta bete irakasleak emandako maiztasun taula. (2 puntu)
- b) Dagokion histograma irudikatu. (puntu 1)
- c) Ikasleen zein ehunekok liberatu zuen proba honetako gaiak azken azterketarako, horretarako gutxienez 7.25 puntuko kalifikazioa behar izanez gero? (2 puntu)
- **d)** Kalkulatu banaketaren batezbesteko aritmetikoa eta desbideratze tipikoa. 10 puntuko kalifikazioa, balioa arraroa al da? **(1.5 puntu)**
- e) Ordezkariak aurreko galderak zuzen ebazten baditu, irakasleak hitzematen du talde osoari puntu bat oparituko diola eta ikasle bakoitzaren kalifikazioa proban lortutako emaitzaren %90ari puntu hori batuz lortuko dela. Nola eragingo lioke horrek batezbestekoari eta banaketaren sakabanaketari? Konpara itzazu bi banaketen aldakuntza koefizienteak. (2 puntu)

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

Métodos Estadísticos en la Ingeniería

Estatistika Metodoak Ingeniaritzan

Grado en Ingeniería Informática de Gestión y Sistemas de Información: Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

2. ARIKETA

Industrian erabiltzen den zizaila batek metalezko xaflak ebakitzen ditu piezak lortzeko. Pieza horien lodiera, zentimetrotan neurtua X zorizko aldagai bat da eta honako dentsitate funtzioa du:

$$f(x) = \begin{cases} k(3-x)(x-1) & 1 < x < 3 \\ 0 & x \notin (1,3) \end{cases}$$

- a) Zein da k konstantearen balioa f(x) funtzioa X zorizko aldagai jarraituaren dentsitate funtzioa izateko? (puntu 1)
- b) Lortu X zorizko aldagai jarraituari dagokion banaketa funtzioa. (1.5 puntu)

Kalitate-kontrolean, 1.20 zentimetrotik beherako lodiera edo 2.80 zentimetrotik gorakoa duten piezak baztertu egiten dira.

- c) Kalkulatu pieza batek kalitate-kontrola gainditzeko probabilitatea (2 puntu)
- **d)** Langile batek, maneiatzen duen zizailarekin egindako zortzi pieza ateratzen ditu itzulerarekin. Zein da pieza horietatik bi piezak kalitate-kontrola ez gainditzeko probabilitatea? (**2 puntu**)
- e) Piezak 10 unitateko kaxa batzutan paketatzen badira, kalkulatu eguneroko produkzioko kaxa batean (zoriz aukeratuta) kalitate-kontrola gaindituko ez dituen bi pieza baino gutxiago egoteko probabilitatea. (2 puntu)

3. ARIKETA

Saskibaloilari batek, entrenamendu guztietan, ehun hiru-puntuko jaurtiketaren segida egiten du, eta jaurtiketan, batez beste, %55a asmatzen du. Jaurtiketak independenteak direla suposatuko da. Entrenamendu saio batean, kalkulatu:

- a) Jokalariak aurreko zazpietariko bat huts eginda, zortzigarren jaurtiketa saskiratzeko duen probabilitatea (2 puntu)
- b) Jaurtiketen % 60k baino gutxiagok huts egiteko probabilitatea (2 puntu)
- c) Huts egindako jaurtiketa kopurua, lehenengoa saskiratzeko probabilitatea 0.111375 izan dadin.

(2 puntu)

Hiru-puntuko jaurtiketako txapelketa bat prestatzeko, non 70 segundotan 27 baloi jaurti behar dituen posizio ezberdinetatik, jaurtiketa-abiadura ere entrenatzen du. Minutu batean batezbeste 24 jaurtiketa egiten baditu, kalkula ezazu:

d) Txapelketan proba osatzeko denborarik ez emateko probabilitatea. (2 puntu)

R-ko komandoa:

pnorm(0.0945)=0.5376

• pnorm(0.1890)=0.5750

pnorm(0.2835)=0.6116

pnorm(0.4725)=0.6817

pnorm(3.1156)=0.9991

pnorm(3.5177)=0.9998

pnorm(2.9146)=0.9982

pnorm(3.3167))=0.999

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

Métodos Estadísticos en la Ingeniería

Estatistika Metodoak Ingeniaritzan Grado en Ingeniería Informática de Gestión y Sistemas de Información: Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua