Hamiltonsche Graphen und das Traveling Salesman Problem (TSP)

Mathematische Methoden der Informatik 09.05.2018

Albert Kasdorf, Andreas Janster, Alex Bibanaev, Georg Braun

Inhalt

Hamiltonsche Graphen (Albert)

Traveling Salesman Problem (Andreas & Alex)

Algorithmen (Georg)

Motivation

Motivation

Motivation

Bildquelle: https://de.depositphotos.com/168789924

Motivation

Motivation

Ein Graph heißt hamiltonsch oder Hamilton-Graph, wenn in ihm ein Kreis existiert, der jeden Knoten genau einmal enthält. Ein solcher Kreis heißt auch Hamilton-Kreis.

Übung

Vollständigkeit

Definition:

Ein Graph heißt **vollständig**, wenn jeder Knoten zu jedem anderen Knoten benachbart ist.

Minimalgrad / Zusammenhang

Falls ein Graph hamiltonsch ist,

- > dann enthält er keinen Knoten mit Grad 1.
- > dann ist er auch zusammenhängend.

Zusammenhangskomponenten

Zusammenhangskomponenten

Zusammenhangskomponenten

Zusammenhangskomponenten

Zusammenhangskomponenten

Zusammenhangskomponenten

Satz von Dirac (1/2)

Minimalgrad:

$$> \delta(G) = \min \{d(v) \mid v \in V\}$$

Maximalgrad:

$$> \Delta(G) = max \{d(v) \mid v \in V\}$$

$$\delta(G) = 2$$

 $\Delta(G) = 4$

$$\Delta(G) =$$

Satz von Dirac (2/2)

Sei G ein einfacher Graph mit mindestens drei Knoten, für den außerdem $\delta(G) \geq 0.5 \cdot n$ gilt. Dann enthält der Graph einen Hamilton-Kreis.

Satz von Dirac (2/2)

Sei G ein einfacher Graph mit mindestens drei Knoten, für den außerdem $\delta(G) \geq 0.5 \cdot n$ gilt. Dann enthält der Graph einen Hamilton-Kreis.

Satz von Dirac (2/2)

Sei G ein einfacher Graph mit mindestens drei Knoten, für den außerdem $\delta(G) \geq 0.5 \cdot n$ gilt. Dann enthält der Graph einen Hamilton-Kreis.

Vorsicht: Die Rückrichtung gilt nicht.

