# ANALISIS PERFORMANSI RYU, ONOS DAN POX CONTROLLER PADA PROTOKOL ROUTING OSPF DAN BGP DI SOFTWARE DEFINED NETWORK BERBASIS RASPBERRY PI

## PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek tingkat

oleh:

USU GUNAWAN 6705180021



D3 TEKNOLOGI TELEKOMUNIKASI FAKULTAS ILMU TERAPAN UNIVERSITAS TELKOM 2020

## **Latar Belakang**

Seiring berkembangnya zaman, perkembangan teknologi khususnya teknologi jaringan menyebabkan banyaknya penelitian dan percobaan pada platform software defined network dengan tujuan memperbaiki kondisi yang lebih baik dari pada jaringan yang digunakan sekarang yaitu jaringan konvensional. jaringan software defined network merupakan teknologi baru yang memisahkan fungsi data plane dari control plane yang memungkinkan dapat memprogram perangkat seperti switch dan router sesuai dengan yang diinginkan secara terpusat dan membuat arsitektur jaringan lebih fleksibel hemat biaya dan lebih efisien dalam mengkonfigurasi suatu jaringan.

Pada penelitian ini akan dirancang dan mensimulasikan perbandingan suatu jaringan SDN yang menggunakan *POX controller* dan *RYU Controller* yang berbasis pada Raspberry-Pi dengan menggunakan peroutingan OSPF dan perbandingan dari *POX Controller* dengan *ONOS Controller* menggunakan peroutingan BGP, dan dilakukan pengukuran QOS pada jaringan ini untuk melihat perbandingannya antara jaringan SDN dengan dua *controller* yang digunakan dengan jaringan konvensional dan dibandingkan.

Dengan dibuatnya simulasi perbandingan ini diharapkan dapat mengetahui cara kerja *ONOS Controller*, *POX Controller* dan *RYU Controller* pada SDN, Mengetahui hasil analisa berupa QOS dan melihat kinerja antara jaringan konvensional dan jaringan SDN.

## Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

| No | Judul Penelitian /Karya Ilmiah       | Tahun | Keterangan                                                                     |
|----|--------------------------------------|-------|--------------------------------------------------------------------------------|
| 1. | Analisis Perbandingan Performansi    | 2018  | Dalam penelitian ini penulis membuat perancangan dan analisis pengujian        |
|    | Kontroler Floodlight, Maestro, RYU,  |       | performansi kontroler Floodlight, Maestro, RYU, POX dan ONOS                   |
|    | POX dan ONOS dalam Arsitektur        |       | berdasarkan Latency, dan Throughput dengan jumlah host dan switch              |
|    | Software Defined Network (SDN) [1]   |       | bervariasi.                                                                    |
| 2. | Simulasi Jaringan Software Defined   | 2018  | Dalam penelitian ini penulis membuat simulasi jaringan SDN untuk               |
|    | Network Menggunakan Protokol Routing |       | membuktikan kinerja Ryu controller dengan OSPF sebagai protokol                |
|    | OSPF dan Ryu Controller [2]          |       | routingnya. Penulis juga menerangkan untuk membuktikan kinerja dari <i>Ryu</i> |
|    |                                      |       | controller dilakukan dengan mengirimkan paket dari satu user ke user lain.     |
| 3. | Analisis Performa Jaringan Software  | 2017  | Dalam penelitian ini penulis melakukan pengujian terhadap performa             |
|    | Defined Network Berdasarkan          |       | jaringan SDN menggunakan protokol routing OSPF dan menjadikan nilai            |
|    | Penggunaan Cost Pada Protokol        |       | cost sebagai penentu rute.                                                     |
|    | Ruting Open Shortest Path First [3]  |       |                                                                                |
| 4. | Pengujian Performa Kontroler         | 2015  | Dalam penelitian ini penulis melakukan pengujian performa kontroler POX        |
|    | Software-defined Network (SDN):      |       | dan Floodlight untuk mengetahui perbedaan performa dari kontroler yang         |
|    | POX dan Floodlight [4]               |       | dibangun dari dua bahasa yang berbeda.                                         |

| 5. | Perancangan Dan Implementasi Protokol | 2018 | Pada penelitian ini penulis melakukan pengujian performansi dari         |
|----|---------------------------------------|------|--------------------------------------------------------------------------|
|    | Routing EBGP pada Software Defined    |      | penerapan routing eBGP pada Software Defined Network menggunakan         |
|    | Network Menggunakan ONOS Controller   |      | ONOS Controller.                                                         |
|    | [5]                                   |      |                                                                          |
| 6. | Implementasi VPLS Pada Jaringan       | 2020 | Pada penelitian ini penulis melakukan perancangan sistem yang            |
|    | Software Defined Network (SDN) Dengan |      | memudahkan administrator jaringan melakukan kontrol, dan monitor di satu |
|    | menggunakan ONOS Controller Berbasis  |      | controller terpusat yaitu Raspberry-Pi 3 dengan layanan VPLS             |
|    | Raspberry-Pi 3 [6]                    |      |                                                                          |

## **Rancangan Sistem**



Gambar 1 Flowchart Rancangan

Pada rancangan sistem akan dijelaskan analisis performansi perbandingan *onos, pox* dan *ryu controller* pada protokol *routing Open Shortest Path First* (OSPF) dan *Border Gateway Protocol* (BGP) di *software defined network* berbasis raspberry-pi. Analisis ini digunakan untuk membandingkan *pox* dan *ryu controller* menggunakan OSPF dan membandingkan *pox* dan *onos controller* menggukan protokol routing BGP, dengan membandingkan kedua kontroler yang berbeda dengan peroutingan yang berbeda kita dapat mengetahui jenis kontroler mana yang lebih baik antara pox dan ryu untuk peroutingan ospf, dan kontroler mana yang lebih baik antara pox dan onos untuk peroutingan bgp. Langkah pertama yaitu menginstall raspbian terlebih dahulu sebagai sistem operasi dari raspberry-pi, lalu install quangga, mininet serta instalasi pox, onos dan ryu sebagai kontroler yang digunakan pada raspberry-pi , lalu setelah itu membuat topologi jaringan di mininet dan lakukan konfigurasi OSPF di kontroler ryu dan pox, Lalu konfigurasi routing BGP dengan kontroler pox dan onos, untuk peroutingan BGP supaya dikenali kontroler maka aktifkan SDNIP.

Pada tahap pengujian yaitu pengujian dimana kontroler menggunakan Raspberry-Pi. setelah berhasil maka lakukan pengambilan data *Quality of Service* menggunakan wireshark dan diukur dengan standar dari ITU-T G1010. Jika sudah sesuai standar dilakukan analisis data perbandingan antara *routing* Ospf menggunakan POX dan RYU, dan perbandingan *routing* BGP menggunakan kontroler POX dan ONOS, Setelah itu membuat kesimpulan dari hasil pengukuran QoS.

## Referensi

- [1] Putra, M. W., Pramukantoro, E. S., & Yahya, W. (2018). Analisis Perbandingan Performansi Kontroler Floodlight, Maestro, RYU,POX dan ONOS dalam Arsitektur Software Defined Network (SDN). *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2*(10), 3779-3887.
- [2] Simarmata, R. F., Tulloh, R., & Haryani, Y. S. (2018). Simulasi Jaringan Software Defined Network Menggunakan Protokol Routing OSPF Dan Ryu Controller. *4*(3), 2887.
- [3] Anam, K., & Adria, R. (2017). Analisis Performa Jaringan Software Defined Network Berdasarkan Penggunaan Cost Pada Protokol Ruting Open Shortest Path First.
- [4] Anggara, S. M. (2015). Pengujian Performa Kontroler Software-defined Network (SDN): POX dan Floodlight. *STEI ITB*.
- [5] Yaqin, M. N., Tulloh, R., & Irawat, I. D. (2018). Perancangan dan Implementasi Protokol Routing EBGP Pada Software Defined Network Menggunakan ONOS Controller.
- [6] Kurniawan, R. C., Tulloh, R., & Irawati, I. D. (2020). *Implementasi VPLS Pada Jaringan Software Defined Network (SDN) dengan menggunakan ONOS Controller Berbasis Raspberry-Pi 3*.

# Form Kesediaan Membimbing Proyek Tingkat





Tanggal: 09 Desember 2020

Kami yang bertanda tangan dibawah in i:

**CALON PEMBIMBING 1** 

Kode : RMT

Nama : ROHMAT TULLOH, S.T., M.T.

**CALON PEMBIMBING 2** 

Kode : IDI

Nama : Dr. INDRARINI DYAH IRAWATI, S.T., M.T.

Menyatakan bersedia menjadi dosen pembimbing Proyek Tingkat bagi mahasiswa berikut,

NIM : 6705180021

: USU GUNAWAN Nama

: TT /\_\_\_\_\_ (contoh: MI / SDV) Prodi / Peminatan

Calon Judul PA

ANALISIS PERFORMANSI RYU, ONOS, DAN POX CONTROLLER PADA PROTOKOL ROUTING OSPF DAN BGP DI SOFTWARE DEFINED NETWORK

BERBASIS RASPBERRY-PI

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Tingkat yang berlaku.

Calon Pembimbing 1

NIP: 06830002

Calon Pembimbing 2

( Dr. Indrarini Dyah Irawati, S.T., M.T) NIP: 07780053

#### CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja



**Telkom University** Jl.Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

## DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor Induk HPT / HASANAH PUTRI Brogram Studi : 6705180021 Program Studi : D3 Teknologi Telekomunikasi

Nama : USU GUNAWAN

## Mata Kuliah yang Lulus

| Semester | Kode Mata Kuliah | Mata Kuliah                                 | Nama Mata Kuliah B.<br>Inggris                   | SKS | Nilai |
|----------|------------------|---------------------------------------------|--------------------------------------------------|-----|-------|
| 1        | DTH1E2           | BENGKEL<br>MEKANIKAL DAN<br>ELEKTRIKAL      | MECHANICAL AND<br>ELECTRICAL<br>WORKSHOP         | 2   | А     |
| 1        | DTH1C3           | DASAR TEKNIK<br>KOMPUTER DAN<br>PEMROGRAMAN | BASIC COMPUTER<br>ENGINEERING AND<br>PROGRAMMING | 3   | АВ    |
| 1        | DTH1A2           | K3 DAN<br>LINGKUNGAN HIDUP                  | K3 AND ENVIRONMENT                               | 2   | AB    |
| 1        | DUH1A2           | LITERASI TIK                                | ICT LITERACY                                     | 2   | А     |
| 1        | DTH1B3           | MATEMATIKA<br>TELEKOMUNIKASI I              | MATHEMATICS<br>TELECOMMUNICATIONS<br>I           | 3   | А     |
| 1        | HUH1A2           | PENDIDIKAN AGAMA<br>DAN ETIKA - ISLAM       | RELIGIOUS EDUCATION<br>AND ETHICS - ISLAM        | 2   | АВ    |
| 1        | DTH1D3           | RANGKAIAN LISTRIK                           | ELECTRICAL CIRCUITS                              | 3   | С     |
| 1        | DTH1F3           | DASAR SISTEM<br>TELEKOMUNIKASI              | BASIC<br>TELECOMMUNICATIONS<br>SYSTEM            | 3   | С     |
| 2        | DMH1A2           | OLAH RAGA                                   | SPORT                                            | 2   | AB    |
| 2        | DTH1G3           | MATEMATIKA<br>TELEKOMUNIKASI II             | MATHEMATICS<br>TELECOMMUNICATIONS<br>II          | 3   | А     |
| 2        | DTH1H3           | TEKNIK DIGITAL                              | DIGITAL TECHNIQUES                               | 3   | А     |
| 2        | DTH1I3           | ELEKTRONIKA<br>ANALOG                       | ANALOG ELECTRONIC                                | 3   | А     |
| 2        | DTH1J2           | BENGKEL<br>ELEKTRONIKA                      | ELECTRONICS<br>WORKSHOP                          | 2   | А     |
| 2        | DTH1K3           | ELEKTROMAGNETIKA                            | ELECTROMAGNETIC                                  | 3   | AB    |
| 2        | HUH1G3           | PANCASILA DAN<br>KEWARGANEGARAAN            | PANCASILA AND<br>CITIZENSHIP                     | 3   | А     |
|          |                  | Jumlah SKS                                  |                                                  | 81  | 3.65  |

1 of 3

| Semester | Kode Mata Kuliah | Mata Kuliah                                 | Nama Mata Kuliah B.<br>Inggris                    | SKS | Nilai |
|----------|------------------|---------------------------------------------|---------------------------------------------------|-----|-------|
| 2        | LUH1B2           | BAHASA INGGRIS I                            | ENGLISH I                                         | 2   | AB    |
| 3        | DTH2E3           | SISTEM<br>KOMUNIKASI                        | COMMUNICATIONS<br>SYSTEMS                         | 3   | А     |
| 3        | DTH2G3           | SISTEM<br>KOMUNIKASI OPTIK                  | OPTICAL<br>COMMUNICATION<br>SYSTEMS               | 3   | В     |
| 3        | DTH2F3           | TEKNIK TRANSMISI<br>RADIO                   | RADIO TRANSMISSION<br>TECHNIQUES                  | 3   | AB    |
| 3        | DTH2D3           | APLIKASI<br>MIKROKONTROLER<br>DAN ANTARMUKA | MICROCONTROLLER<br>APPLICATIONS AND<br>INTERFACES | 3   | АВ    |
| 3        | DTH2A2           | BAHASA INGGRIS<br>TEKNIK I                  | ENGLISH TECHNIQUE I                               | 2   | А     |
| 3        | DTH2B3           | KOMUNIKASI DATA<br>BROADBAND                | BROADBAND DATA COMMUNICATIONS                     | 3   | А     |
| 3        | DTH2C2           | BENGKEL INTERNET<br>OF THINGS               | INTERNET OF THINGS<br>WORKSHOP                    | 2   | АВ    |
| 4        | DMH2A2           | KERJA PRAKTEK                               | INTERSHIP                                         | 2   | А     |
| 4        | DTH2H3           | JARINGAN DATA<br>BROADBAND                  | BROADBAND DATA<br>NETWORK                         | 3   | А     |
| 4        | DTH2I3           | DASAR KOMUNIKASI<br>MULTIMEDIA              | BASIC<br>COMMUNICATION<br>MULTIMEDIA              | 3   | А     |
| 4        | DTH2J2           | TEKNIK TRAFIK                               | TRAFFIC ENGINEERING                               | 2   | А     |
| 4        | DTH2K3           | ELEKTRONIKA<br>TELEKOMUNIKASI               | ELECTRONICS<br>TELECOMMUNICATIONS                 | 3   | А     |
| 4        | DTH2L3           | TEKNIK ANTENNA<br>DAN PROPAGASI             | ANTENNA TECHNIQUES AND PROPAGATION                | 3   | АВ    |
| 4        | DTH2M3           | SISTEM<br>KOMUNIKASI<br>SELULER             | CELLULAR<br>COMMUNICATION<br>SYSTEMS              | 3   | А     |
| 4        | DMH1B2           | PENGEMBANGAN<br>PROFESIONALISME             | PROFESSIONAL<br>DEVELOPMENT                       | 2   | AB    |
|          | 81               | 3.65                                        |                                                   |     |       |

# Mata Kuliah yang Belum Lulus

| Semester | Kode Mata Kuliah | Mata Kuliah                       | Nama Mata Kuliah B.<br>Inggris      | SKS | Nilai |
|----------|------------------|-----------------------------------|-------------------------------------|-----|-------|
| 3        | VTI2G3           | PENGOLAHAN<br>SINYAL<br>INFORMASI | INFORMATION<br>SIGNAL<br>PROCESSING | 3   |       |
| 4        | UKI2C2           | BAHASA<br>INDONESIA               | INDONESIAN<br>LANGUAGE              | 2   |       |
|          | Juml             | 16                                |                                     |     |       |

2 of 3

| Semester | Kode Mata Kuliah | Mata Kuliah                             | Nama Mata Kuliah B.<br>Inggris | SKS | Nilai |
|----------|------------------|-----------------------------------------|--------------------------------|-----|-------|
| 4        | VTI2K3           | JARINGAN<br>TELEKOMUNIKASI<br>BROADBAND | BROADBAND DATA<br>NETWORKS     | 3   |       |
| 4        | VTI2H2           | BAHASA INGGRIS<br>TEKNIK II             | ENGLISH<br>TECHNIQUES II       | 2   |       |
| 5        | VTI3D3           | KEAMANAN<br>JARINGAN                    | NETWORK<br>SECURITY            | 3   |       |
| 5        | UWI3E1           | HEI                                     | HEI                            | 1   |       |
| 5        | UWI3A2           | KEWIRAUSAHAAN                           | ENTREPRENEURSHIP               | 2   |       |
|          | Jum              | 16                                      |                                |     |       |

| Tingkat I   | : 41 SKS        | Belum Lulus | IPK: 3.54  |
|-------------|-----------------|-------------|------------|
| Tingkat II  | : 81 SKS        | Belum Lulus | IPK : 3.65 |
| Tingkat III | : 81 SKS        | Belum Lulus | IPK : 3.65 |
| Jumlah SKS  | : <b>81 SKS</b> |             | IPK: 3.65  |

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 01 November 2020 23:30:13 oleh USU GUNAWAN

3 of 3