Experimentalphysik (H.-C. Schulz-Coulon)

Robin Heinemann

December 7, 2016

Contents

1	Einl	Einleitung 3							
	1.1	Eigense	chaften der Physik						
		1.1.1	Beispiel						
	1.2	Maßein	heiten						
		1.2.1	Basisgrößen						
		1.2.2	Weitere Größen						
2	Med	Mechanik 5							
	2.1	Kinema	atik des Massenpunktes						
		2.1.1	Eindimensionale Bewegung						
		2.1.2	Bewegung im Raum						
	2.2	Newton	nsche Dynamik						
		2.2.1	Kraft und Impuls						
3	Vers	schieden	ne Kräfte und Kraftgesetze 12						
	3.1	Gravita	ation (TODO Skizze)						
			Anziehungskraft zweier Massen						
		3.1.2	Erdbeschleunigung						
	3.2	Federkraft							
	3.3	3.3 Maxwell'sches Rad							
		3.3.1	Ruhezushand						
		3.3.2	Frage						
		3.3.3	Messung:						
		3.3.4	Auswertung						
	3.4	Rotiere	ende Kette						
	3.5	Norma	lkraft						
	3.6	Schiefe Ebene							
	3.7	Reibun	gskräfte						
		3.7.1	Experiment: Bewegung einer Masse						
		3.7.2	Experiment: Tribologische Messung						

	3.8 3.9		ogische Reibungslehre						
			Ebene: Messung der Reibungskraft (Skizze)						
			petalkraft						
	0.11		Beispiel 1 Rotierendes Pendel						
			Beispiel 2 Geostationärer Satellit						
		3.11. 2		•					
4	Arbe	eit, Ene	rgie, Leistung 1	7					
	4.1	Arbeit		7					
		4.1.1	Beispiel	8					
		4.1.2	Beispiel Kreisbahn (\implies Gravitation) 1	8					
	4.2	kinetis	che Energie	8					
	4.3	Potent	ielle Energie	9					
		4.3.1	Ball als Feder am Auftreffpunkt	9					
	4.4	Bemer	kung	9					
	4.5	Umwai	ndlung von Energie	9					
	4.6	Energi	e	0					
	4.7	Leistur	$_{ m ng}$	0					
	4.8	Konser	vative Kräfte	0					
		4.8.1	Definition	0					
	4.9	Kraftfe	elder und Potential	0					
		4.9.1	Definition Kraftfeld	0					
		4.9.2	Beispiel	1					
		4.9.3	Feldlinien:	1					
		4.9.4	konservative Kraftfelder	1					
		4.9.5	Potential und Gravitationsfeld	3					
5	Erha	ltungss	ätze 2	⊿					
3	5.1		eerhaltung						
	0.1	5.1.1	Doppelbahn						
		5.1.2	Energieerhaltungssatz der Newtonschen Mechanik						
		5.1.3	Energiediagramme						
6	_	Systeme von Massenpunkten 2							
	6.1		eibung eines Systems von Massenpunkten						
		6.1.1	Bewegung des Schwerpunkts						
		6.1.2	Raketenantrieb	8					
7	Stöß	Be	2	9					
	7.1	1 Kollinearer elatischer Stoß							
	7.2 Betrachtung im Schwerpunktsystem								
		7.2.1	htung im Schwerpunktsystem						
	73		ischa Stößa						

8	Med	chanik des starren Körper	33							
	8.1	Bewegung des starren Körpers	34							
	8.2	Drehmoment und Kräftepaare	34							
		8.2.1 Drehmoment und Schwerpunkt	35							
		8.2.2 Kräftepaare	35							
	8.3	3.3 Statisches Gleichgewicht								
	8.4	4 Rotation und Trägheitsmoment								
	8.5	Berechung von Trägheitsmomenten	38							
	8.6	Steinersche Satz	39							
	8.7	Drehimpuls	41							
	8.8	Trägheitstensor, freie Rotation und Kreisel	43							
		8.8.1 Kreisel	44							
9	Med	chanik deformierbarer Körper	44							
	9.1	Atomares Modell	45							
	9.2	Feste Körper	45							
	9.3	Scherung und Torsion	47							
	9.4	Ruhende Flüssigkeiten-Hydrostatik	48							
		♦								
		<i>'//</i>								
	<u> </u>	·								
		mass, m $m \longrightarrow$								
	}									
	\{									

1 Einleitung

1.1 Eigenschaften der Physik

Physik ist <u>nicht</u> axiomatisch!

- Nicht alle Gesetze der Natur sind bekannt.
- Die bekannten Naturgesezte sind nicht unumstößlich
- unfertig
- empirisch
- quantitativ
- experimentell

- überprüfbar
- braucht Mathematik
- Gefühl für Größenordnungen und rationale Zusammenhänge

1.1.1 Beispiel

Fermi-Probleme:

- Anzahl der Klavierstimmer in Chicago?
- Anzahl der Autos in einem 10km Stau?
- Anzahl von Fischen im Ozean

1.2 Maßeinheiten

Internationales Einheitensystem (SI)

1.2.1 Basisgrößen

Größe	Einheit	Symbol
Länge	Meter	m
Masse	Kilogramm	kg
Zeit	Sekunden	\mathbf{s}

Meter Strecke, die das Licht im Vakuum während der Dauer von $\frac{1}{299792458}$ s durchläuft.

Sekunde Das 9 192 631 770-fache der Periodendauder der am Übergang zwischen den beiden Hyperfeinstukturniveaus des Grundzustandes von Atomen des Nukulids Cs_{133} entsprechenden Strahlung.

Kilogramm Das Kilogramm ist die Einheit der Masse, es ist gleich der Masse des internationalen Kilogrammprototyps (ist scheiße).

Avogadroprojekt

$$N_A = \frac{MVn}{m}$$

 N_A : Avogardokonstante ($N_A=6.022\,141\,5\times10^{23})$

1.2.2 Weitere Größen

Größe	Einheit	Symbol
Strom	Ampere	A
Temperatur	Kelvin	K
Lichtstärke	Candla	cd

2 Mechanik

Kinematik: Beschreibung der Bewegung Dynamik: Ursache der Bewegung

2.1 Kinematik des Massenpunktes

2.1.1 Eindimensionale Bewegung

TODO Skizze 1 $x_1, t_1 \longrightarrow x_2, t_2$ Geschwindigkeit

$$v = \frac{\text{Weg}}{\text{Zeit}} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$
 $[v] = \text{m s}^{-1}$ abgeleitete Größe

Momentangeschwindigkeit

$$v := \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{\mathrm{d}x}{\mathrm{d}t} = \dot{x}$$

Beschleunigung

$$a := \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \ddot{x} \quad [a] = \mathrm{m}\,\mathrm{s}^{-2}$$

Freier Fall a = const. (Behauptung)

$$a = \ddot{x} = \text{const} = \dot{v}$$

 \rightarrow Integration:

$$v(t) = \int_0^t a dt + v_0 = at + v_0$$
$$x(t) = x_0 + \int_0^t v(t) dt = x_0 + \int_0^t (at + v_0) dt = \frac{1}{2}at^2 + v_0t + x_0$$

Bei unserem Fallturm

$$x(t) = \frac{1}{2}at^2 \to a = \frac{2x}{t^2}$$

$$x[m] \quad t[ms] \quad \frac{2x}{t^2}[m s^{-2}]$$

$$0.45 \quad 304.1 \quad 9.7321696$$

$$0.9 \quad 429.4 \quad 9.7622163$$

$$1.35 \quad 525.5 \quad 9.7772861$$

$$1.80 \quad 606.8 \quad 9.7771293$$

 $x(t) = \frac{1}{2}gt^2, \ g = 9.81 \,\mathrm{m \, s^{-2}}$

Die Erdbeschleunigung g ist für alle Körper gleich (Naturgesetz).

2.1.2 Bewegung im Raum

TODO Skizze 2 Ortsvektor:

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} x(t) & y(t) & z(t) \end{pmatrix}^{\mathsf{T}}$$

Durschnittsgeschwindigkeit

$$\frac{\Delta \vec{r}_{12}}{\Delta t} = \frac{\vec{r_2} - \vec{r_1}}{\Delta t} = \vec{v_D}$$

$$\vec{v}(t) = \frac{d\vec{r}}{dt} = \dot{\vec{r}}(t) = (\dot{x}(t) \quad \dot{y}(t) \quad \dot{z}(t))^{\mathsf{T}} = (v_x \quad v_y \quad v_z)^{\mathsf{T}}$$

$$\vec{a}(t) = \frac{d\vec{v}}{dt} = \dot{\vec{v}}(t) = \ddot{\vec{r}}(t) = (\ddot{x} \quad \ddot{y} \quad \ddot{z})^{\mathsf{T}} = (a_x \quad a_y \quad a_z)^{\mathsf{T}}$$

\rightarrow Superpositionsprinzip:

Kinematik kann für jede einzelne (Orts)komponente einzeln betrachtet werden.

$$\vec{r}(t) = \vec{r_0} + \vec{v_0}(t - t_0) + \frac{1}{2}\vec{a}(t^2 - t_0^2) = \begin{pmatrix} x_0 + v_{x,0}(t - t_0) + \frac{1}{2}a_{x,0}(t^2 - t_0^2) \\ y_0 + v_{y,0}(t - t_0) + \frac{1}{2}a_{y,0}(t^2 - t_0^2) \\ z_0 + v_{z,0}(t - t_0) + \frac{1}{2}a_{z,0}(t^2 - t_0^2) \end{pmatrix}$$

Horizontaler Wurf

TODO Skizze 3

$$t_0 = 0$$

$$\vec{a_0} = \begin{pmatrix} 0 & 0 & -g \end{pmatrix}^{\mathsf{T}}$$

$$\vec{v_0} = \begin{pmatrix} v_{x,0} & 0 & 0 \end{pmatrix}^{\mathsf{T}}$$

$$\vec{x_0} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}^{\mathsf{T}}$$

$$\vec{r}(t) = \begin{pmatrix} v_{x,0}t & 0 & \frac{1}{2}gt^2 \end{pmatrix}^{\mathsf{T}}$$

Schiefer Wurf

$$\vec{a_0} = \begin{pmatrix} 0 \\ 0 \\ -g \end{pmatrix}$$

$$\vec{v_0} = \begin{pmatrix} v_{x,0} \\ 0 \\ v_{z,0} \end{pmatrix}$$

$$\vec{r_0} = \begin{pmatrix} 0 \\ 0 \\ z_0 \end{pmatrix}$$

$$r(t) = \begin{pmatrix} v_{x,0}t \\ 0 \\ -\frac{1}{2}gt^2 + v_{z,0}t + z_0 \end{pmatrix}$$
$$z(x) = -\frac{1}{2}\frac{g}{v_{x,0}^2}x^2 + \frac{v_{z,0}}{v_{x,0}}x + z_0$$

Nachtrag

$$a = \dot{v}$$

$$\int_0^t \dot{v} dt' = \int_0^t a dt'$$

$$v \mid_0^t = at' \mid_0^t$$

$$v(t) - \underbrace{v(0)}_{v_0} = at$$

$$v(t) = at + v_0$$

analog:

$$x(t) = \frac{1}{2}at^2 + v_0t + x_0$$

TODO Skizze Wurfparabel

$$\tan \varphi = \frac{v_{z,0}}{v_{x,0}}$$
$$v_0^2 = v_{x,0}^2 + v_{z,0}^2$$

Scheitel:

$$Z'(x_s) = 0$$
$$x_s = \frac{v_0^2}{2g}\sin 2\varphi$$

Wurfweite:

$$Z(x_w) = 0$$

$$x_w = \frac{v_0^2}{2g} \sin 2\varphi (1 + \sqrt{1 + \frac{2gz_0}{v_0^2 \sin^2 \varphi}})$$

Optimaler Winkel: φ_{opt}, x_w max.

$$z_0 = 0 \implies \sin 2\varphi = 1 \rightarrow \varphi = 45^{\circ}$$

 $z_0 \neq 0 \implies \sin \varphi_{opt} = \left(2 + \frac{2gz_0}{v_0^2}\right)^{-\frac{1}{2}}$

Gleichförmige Kreisbewegung

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} R\cos\varphi \\ R\sin\varphi \end{pmatrix}$$

 $mit \varphi = \varphi(t)$

$$\vec{v}(t) = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -R\dot{\varphi}\sin{\varphi} \\ R\dot{\varphi}\cos{\varphi} \end{pmatrix}$$

Gleichförmige Kreisbewegung: $\dot{\varphi} = \mathrm{const}$ Definition Winkelgeschwindigkeit:

$$\omega = \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \dot{\varphi} \quad [w] = \mathrm{rad}\,\mathrm{s}^{-1} = 1/\mathrm{s}$$

Für $\omega = \text{const.}$:

$$\vec{r} = R \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} \rightarrow |\vec{r}(t)| = r = \text{const}$$

$$\vec{v} = R\omega \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} \rightarrow |\vec{r}(t)| = r = \text{const}$$

$$\vec{v} \perp \vec{r} \iff \vec{v} \cdot \vec{r} = 0$$

TODO Skizze Kreisbewegung

Mitbewegtes Koordinatensystem

$$\vec{r}(t) = R\vec{e_R} \quad \vec{e_R} = \begin{pmatrix} \cos\varphi(t) \\ \sin\varphi(t) \end{pmatrix}$$

$$\vec{v}(t) = R\omega\vec{e_t} \quad \vec{e_t} = \begin{pmatrix} -\sin\varphi(t) \\ \cos\varphi(t) \end{pmatrix}$$

$$\vec{t} \neq \text{ const das heißt } \vec{a}(t) \neq 0$$

Kreisbeschleunigung

$$\vec{a}(t) = \begin{pmatrix} \ddot{x}(t) \\ \ddot{y}(t) \end{pmatrix} = \begin{pmatrix} -R\omega^2 \cos \varphi \\ -R\omega^2 \sin \varphi \end{pmatrix} = -R\omega^2 \vec{e_R} \implies \vec{a} \parallel \vec{r}$$
$$|\vec{a}(t)| = R\omega^2 = \frac{v^2}{R} \neq 0$$

Zentripetalbeschleunigung Zeigt in Richtung des Ursprungs.

$$\vec{a}_{zp} = -R\omega^2 \vec{e_R}$$

Allgemein

 $\vec{\omega}$

Räumliche Lage der Bewegungsebene

$$\vec{v} = \vec{w} \times \vec{r} \quad v = \omega r$$
$$\vec{a} = \vec{w} \times \vec{v}$$

1. **TODO** Skizze omega

Allgemeine Krummlinige Bewegung

$$\vec{v} = v\vec{e_t}$$

$$\vec{a} = \dot{\vec{v}} = \frac{\mathrm{d}(v\vec{e_t})}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}t}\vec{e_t} + v\frac{\mathrm{d}ve_t}{\mathrm{d}t}$$

$$\vec{e_t} = \cos\rho\vec{e_x} + \sin\rho\vec{e_y}$$

$$\vec{e_n} = -\sin\rho\vec{e_x} + \cos\rho\vec{e_y}$$

$$\frac{\mathrm{d}\vec{e_t}}{\mathrm{d}t} = \dot{\rho} - \sin\rho\vec{e_x} + \cos\rho\vec{e_y} = \dot{\rho}\vec{e_n}$$

$$\vec{a} = \dot{v}\vec{e_t} + \frac{v^2}{\rho}\vec{e_n}$$

TODO Skizze

Relativbewegung

- \bullet S-Laborsystem
- S'-Bewegtes System
- $\vec{u} = (u, 0, 0) = \text{const Geschwindigkeit von S'}$ im System S
- Punkt P = (x, y, z) in S
- Punkt P' = (x', y', z') in S'
- Zeitpunkt t = 0: S = S', P = P'

TODO Skizze Bewegtes Bezugssystem

Galilei-Transformation

1. Eindimensional

$$x' = x - ut$$
$$y' = y$$
$$z' = z$$
$$v' = v - u$$
$$t' = t$$

2. Dreidimensional

$$\vec{r}' = \vec{r} - \vec{u}t$$
$$\vec{v}' = \vec{v} - \vec{u}$$
$$\vec{a}' = \vec{a}$$

2.2 Newtonsche Dynamik

Warum bewegen sich Körper?

Newton 1686: Ursache von Bewegungsänderungen sind Kräfte. Newtonsche Gesetze (Axiome)

- 1. Jeder Körper verharrt im Zustand der Ruhe oder der gleichförmigen Bewegung, sofern er nicht durch Kräfte gezwungen wird diesen Bewegungszustand zu verlassen
- 2. Die Änderung einer Bewegung wird durch Einwirken einer Kraft verursacht. Sie geschieht in Richtung der Kraft und ist proportional zu Größe der Kraft
- 3. Übt ein Körper 1 auf einen Körper 2 die Kraft F_{12} , so reagiert Körper 2 auf den Körper 1 mit der Gegenkraft F_{21} und es gilt $F_{21} = -F_{12}$ (actio = reactio)

2.2.1 Kraft und Impuls

$$\vec{F} = \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix}$$

Superpositions von Kräften (Zusatz zu den Newtonschen Gesetzen (Korollar)):

$$\vec{F}_{\text{ges}} = \sum_{i=1}^{n} \vec{F}_{i}$$

TODO Skizze Addition von Kräften

Grundkräfte der Natur

- Elektromagnetische Kraft
- Starke Draft
- Schwache Kraft
- Gravitation

Impuls

$$\vec{P} = m\vec{v} \quad [\vec{P}] = \text{kg m s}^{-1}$$

Kraft

$$\vec{F} = \frac{\mathrm{d}\vec{P}}{\mathrm{d}t} = \dot{\vec{P}} = \frac{\mathrm{d}}{\mathrm{d}t}(m\vec{v})$$

m = const.:

$$\vec{F} = m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = m\dot{\vec{v}} = m\ddot{\vec{x}} = m\vec{a}$$

Grundgesetz der Dynamik

$$\vec{F} = \dot{\vec{P}}$$
 beziehungsweise $\vec{F} = m\vec{a}$

Trägheitsprinzip (Impulserhaltung)

$$\vec{P} = m\vec{v} = \text{const}, \ \vec{P} = 0 \ \text{für} \ \vec{F} = 0$$

Experiment

$$\vec{F}_G = \underbrace{m\vec{g}}_{Kraft} = \underbrace{(m+M)}_{Trgheit} \vec{a} = m_{\text{ges}} \vec{a}$$

$$\vec{a} = \frac{m}{m+M} \vec{g} \stackrel{d=1}{\iff} a = \frac{m}{m+M} g = \frac{m}{m_{textges}} g$$

Erwartung: $a\sim \frac{m}{m_{\rm ges}},\, a=\frac{2\Delta s}{\Delta s},\, {\rm weil}\,\, \Delta s=\frac{1}{2}a\Delta t^2$

Messung:

m[g]	M[g]	$m_{\rm ges}[{\rm g}]$	$\frac{m_{\mathrm{ges}}}{m}$	$\Delta s [\mathrm{mm}]$	$\Delta t[\mathrm{s}]$	a[meter/s]
10	470	480	48	800	2.75	0.21157025
40	440	480	12	800	1.40	0.81632653
10	1910	1920	192	800	5.55	0.051943836
40	1880	1920	48	800	2.79	0.20554721

TODO Skizze

Trägheitsprinzip - "revisited" Definition: Ein Bezugssystem in dem das Trägheitsprinzip gilt nennt man ein Inatialsystem.

In einem beschleunigten Bezugsystem gilt das Trägheitsprinzip <u>nicht</u>. Beschleunigte Systeme \neq Inatialsysteme. Das Trägheitsprinzip ist Galilei-invariant.

TODO Skizze whatever

Trägheitsprinzip: [moderne Formulierung]: Es gibt Inatialsysteme, das heißt Koordinatensysteme in denen ein Kräftefreier Körper im Zustand der Ruhe oder der gradlinig gleichförmigen Bewegung verbleibt.

Actio gleich Reactio

$$\underbrace{\vec{F_{12}}}_{\text{Kraft}} = \underbrace{-\vec{F_{21}}}_{\text{Gegenkraft}}$$

TODO Skizze von Körpern

TODO (Skizze) Expermiment

1. Erwartung:

$$v_1 = v_2 \to a_1 = a_2 \to F_1 = F_2 \checkmark$$

Nichttrivialer Fall:

Kraftstoß:

Magnetische Kraft: $F_{\text{mag}} \sim \frac{1}{r^2}$

$$v_{1,2} = \int_0^{t_{1,2}} a(t) dt = a_{\text{eff}} T$$

 $\to F_1(t) = F_2(t) \to v_1 = v_2$

Expermiment 2

$$m_1 = 241.8 \,\mathrm{g} \wedge 2 = 341.8 \,\mathrm{g} \implies \frac{m_2}{m_1} \approx 1.5$$

$$v = \frac{\Delta s}{\Delta t} \to \frac{v_1}{v_2} = \frac{t_2}{t_1} = \frac{71}{48} \approx 1.5$$

$$a \sim v, F = ma \to \frac{v_1}{v_2} = \frac{a_1}{a_2} = \frac{m_2}{m_1} \cdot \frac{F_1}{F_2}$$

$$1 = \frac{F_1}{F_2} \implies F_1 = F_2$$

Beispiele

- Kraft und Gegenkraft (TODO Skizze)
- Flaschenzug, Seilkräfte (TODO Skizze)

3 Verschiedene Kräfte und Kraftgesetze

3.1 Gravitation (TODO Skizze)

Eperimenteller Nachweis im Labor mit Torsionsdrehungen (erstmals Cavendish)

3.1.1 Anziehungskraft zweier Massen

 m_1, m_2 Massen, Newtonsches Gravitaitonsgesetz:

$$\vec{F_G} = -G\frac{m_1 m_2}{r^2} \vec{e_r}$$

mit
$$G = 6.67 \times 10^{-11} \,\mathrm{m^3 \, kg^{-1} \, s^{-2}}$$

3.1.2 Erdbeschleunigung

$$F_G = G \frac{mM_E}{(r_E + h)^2} \approx G \frac{mM_E}{r^2} = mg \implies g \approx 9.81 \,\mathrm{m\,s^{-2}}$$

(mittleres g)

Abweichungen

- kompilizierte Massenverteilung, Strukturen
- Abflachung der Erde

Messung von g

- Gravimeter (Federgravimeter, Pendelgravimeter), relative Messung
- Absolutgravimeter (freier Fall, supraleitende Gravimeter)

Träge und schwere Masse

$$F = m_T a \rightarrow \text{träge Masse}$$

$$F = m_S G \frac{M_E}{r_E^2} \rightarrow \text{ schwere Masse}$$

Äquivalenzprinzip $m_S \sim T$ beziehungsweise $m_S = m_T$

3.2 Federkraft

Hook'sches Gesetz

$$F_x = F_x(\Delta x) = -k_F \Delta x$$

Beliebige Auslenkungsfunktion $(F_x(\Delta x = x - x_0))$

$$F_x(x) = F_x(x_0) + \frac{\mathrm{d}F_x(x)}{\mathrm{d}x}(x - x_0) + \frac{1}{2}\frac{\mathrm{d}^2 f_x(x)}{\mathrm{d}x^2}(x - x_0) + \dots$$

 \rightarrow unabhängig von konkreter Zusammenhang $f_x(x)$ gilt kleine Änderungen

3.3 Maxwell'sches Rad

3.3.1 Ruhezushand

Waage misst Gesamtmasse M austariert

3.3.2 Frage

Was passiert, wenn sich das Rad bewegt??

3.3.3 Messung:

1. Rad fixiert $\rightarrow m = 0$

2. Rad läuft $\rightarrow \Delta m = -0.7g < 0$

3.3.4 Auswertung

Anwendung 3. Newtonsches Gesetz: $\vec{F_1} + \vec{F_2} = m\vec{a}$ beziehungsweise $F_2 = -F_1 + m\vec{a}$

1. $\vec{a} = 0 : |\vec{F_2}| = |\vec{F_1}| \to |\vec{F_2}| = 0, 0m = 0$ (Waage)

2. $\vec{a} > 0: |\vec{F_2}| < |\vec{F_1}| \rightarrow$ Waage mit $|\vec{F_2}| < mg \ \Delta m < 0$

3.4 Rotierende Kette

Winkelelement $\Delta\alpha$. Radialkraft $\vec{F_r}$ ist resultierende Kraft der vom abgeschnittenen Teil der Kette wirkende Kräfte $\vec{F_1}+\vec{F_2}$

 $(\vec{F_G}$ vernachlässigbar klein bei hoher Umdrehung und somit großen $|F_1|, |F_2|)$ Es gilt:

$$\vec{a}_z p = -\frac{v^2}{R} \vec{e}_r \quad \vec{v} = R \omega \vec{e}_t$$

$$\vec{F}_r = \Delta m \vec{a}_z p = -\Delta m \frac{v^2}{R} \vec{e}_r$$

$$\vec{F}_r = \vec{F}_1 + \vec{F}_2$$

$$F_r \approx \Delta \alpha F = F \frac{\Delta L}{R}$$

$$F = F_r \frac{R}{\Delta L} = \Delta m \frac{v^2}{R} \frac{R}{\Delta L} = \frac{m}{2\pi R} v^2$$

Die Kraft $F = \frac{m}{2\pi R}v^2$ spannt die Kette.

3.5 Normalkraft

1. (Skizze) Normalkraft $\vec{F}_N =$ Kraft senktrecht zur Kontaktfläche. Wird kompensiert duchr $\vec{F}_N' =$ Kraft mit der die Unterlage auf Körper wirkt (Źwangskräfte)

3.6 Schiefe Ebene

• Gewichtskraft: $\vec{F}_G = m\vec{g}$

• Normalkraft: $\vec{F}_N = mg \cos \alpha \vec{e}_y$

• Hangabtriebskraft: $\vec{F}_H = mg \sin \alpha \vec{e}_x$

Bewegungsgleichung

 $F_H = m\ddot{x} \to x_x = g \sin \alpha = \text{const.}$

3.7 Reibungskräfte

- im täglichen Leben über all präsent
- spielt eine wichtige Rolle Technik
- \rightarrow Tribologie = Reibungslehre
 - Reibung hängt stark von der Oberfläche ab

3.7.1 Experiment: Bewegung einer Masse

- Gewicht ruhte: $\vec{F}_Z = -\vec{F}_R \rightarrow a = 0, v = 0$
- Gewicht setzt sich in Bewegung: $|\vec{F}_Z| > |\vec{F}_R| \to a > 0, v$ steigt an
- Gewicht gleitet: $\vec{F}_Z = -\vec{R}_R \rightarrow a = 0, v = \text{const.} \neq 0 \text{ mit } \vec{v} = \text{const.}$

Reibugskraft nimmt ab, sobald das Gewicht bewegt wird.

- Haftreibung F_H Schwellenwert für Zugkraft um Körper zu bewegen
- Gleitreibung F_G Reibungskraft bei bewegtem Körper

3.7.2 Experiment: Tribologische Messung

Messung der Zugkraft bei der sich der Holzblock nach kleiner Störung in Richtung Rolle bewegt: $F_R = F_Z$

Beobachtung

- F_R hängt nicht von der Oberfläche ab.
- F_R hängt von dem Gewicht des Blocks ab
- F_R ist Materialbhängig

3.8 Tribologische Reibungslehre

3.9 Mikroskopisches Modell

Verantwortlich sind elektrische Kröfte zwischen Atomen und Molekülen der beieinanderliegenden Oberflächen: Van-der-Waals-Kräfte

• Stärke ergibt sich aus effektivem Kontakt.

Relative mikroskopische Reibungsfläche: $\sum \frac{a_i}{A} \sim \frac{F_N}{A} \leftarrow \text{Druck}$

• $a_1 =$ effektive Kontaktfläche eines Einzelatoms

Also:

$$F_R \sim \sum \frac{a_i}{A} \sim F_N$$

- Haftreibung: Verzahnung der Oberflächen mit minimalen Abstand
- Gleitreibung: Minimaler Abstand wird auf Grund der Bewegung nicht erreicht

3.10 Schiefe Ebene: Messung der Reibungskraft (Skizze)

Kräftegleichgewicht: $F_H = F_R$

$$F_H = mg\sin\alpha, F_N = mg\cos\alpha$$

Grenzwinkel: $F_R = mg \sin \alpha = \mu_R mg \cos \alpha \implies \mu_R = \tan \alpha$

$$\alpha = 15^{\circ} \to \tan \alpha = 0.27, \mu_G = 0.27$$

3.11 Zentripetalkraft

$$\vec{a}_{Zp} = \vec{\omega} \times (\vec{\omega} \times \vec{r})$$
 $\vec{F}_{Zp} = m\vec{\omega} \times (\vec{\omega} \times \vec{r})$

$$a_{Zp} = \omega^2 r = \frac{v^2}{r}$$
 $F_{Zp} = m\omega^2 r = m\frac{v^2}{r}$

3.11.1 Beispiel 1 Rotierendes Pendel

$$\vec{F}_{Zp} := \vec{F}_G + \vec{F}_Z$$

$$F_G = mg = F_Z \cos \theta$$

$$F_{Zp} = F_Z \sin \theta$$

$$F_{Zp} = mg \frac{\sin \theta}{\cos \theta} = mg \tan \theta, \quad a_{Zp} = g \tan \theta$$

$$a_{Zp} = \omega^2 r \implies \omega = \sqrt{\frac{g}{\tan \theta}}$$

- θ steigt mit ω an
- $\theta(\omega)$ ist unabhängig von Masse

3.11.2 Beispiel 2 Geostationärer Satellit

Zentripetal = Gravitationskraft

$$m\omega^2 R = G \frac{mM_E}{R^2}$$

Geostationär: $\omega = \frac{2\pi}{24\,\mathrm{h}} = \frac{2\pi}{24\cdot3600\,\mathrm{s}} = 7.27\times10^{-5}\,\mathrm{s}^{-1}$

$$R^3 = \frac{GM_E}{\omega^2} \to R = 42312 \,\mathrm{km}$$

Abstand von der Erd-Oberfläche:

$$\tilde{R} = R - R_E = 35\,930\,\mathrm{km}$$

- $G = 6.67 \times 10^{-11} \,\mathrm{m}^3 \,\mathrm{kg}^{-1} \,\mathrm{s}^2$
- $M_E = 6 \times 10^{24} \,\mathrm{kg}$
- $R_E = 6373 \, \text{km}$

4 Arbeit, Energie, Leistung

4.1 Arbeit

$$\begin{split} \Delta W &= \vec{F} \vec{x} = F_x \Delta x + F_y \Delta y + F_z \Delta z \\ \mathrm{d} W &= \lim_{\Delta r \to 0} \Delta W = \lim_{\Delta r \to 0} \vec{F} \Delta \vec{r} = \vec{F} \mathrm{d} \vec{r} \\ &= F_x \mathrm{d} x + F_y \mathrm{d} y + F_z \mathrm{d} z \end{split}$$

Gesamtarbeit für Verschiebung von $\vec{r_1}$ nach $\vec{r_2}$

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r}$$

$$[W] = N \,\mathrm{m} = \mathrm{kg} \,\mathrm{m} \,\mathrm{s}^{-2} = \mathrm{J}$$
$$\int_{\vec{r_1}}^{\vec{r_2}} \vec{F} \,\mathrm{d}\vec{r} = \int_{r_1}^{r_2} F_x \,\mathrm{d}x + \int_{r_1}^{r_2} F_y \,\mathrm{d}y + \int_{r_1}^{r_2} F_z \,\mathrm{d}z = \int_{s_1=0}^{s_2} \vec{F}(s) \,\frac{\mathrm{d}\vec{r}}{ds} \,\mathrm{d}s$$

 $\vec{r}(s)$ parametrisiere Geschwindigkeit.

4.1.1 Beispiel

$$\vec{r_1} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \vec{r_2} = \begin{pmatrix} \Delta x \\ 0 \\ 0 \end{pmatrix}, \vec{F} = \begin{pmatrix} mg \\ 0 \\ 0 \end{pmatrix}, d\vec{r} = \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix}$$

$$W = \int_{(0)}^{(1)} mg dx + \int 0 dy + \int 0 dz = mg \Delta x$$

4.1.2 Beispiel Kreisbahn (⇒ Gravitation)

$$W = \int_{A}^{B} \vec{F} d\vec{r} = 0$$

4.2 kinetische Energie

$$k = \frac{1}{2}gt^2$$

$$v = gt$$

$$v^2 = g^2t^2$$

$$v^2 = gh$$

$$W = \int_0^h F_G dx = F_G \int_0^h dx = F_G h = mgh = \frac{1}{2}mv^2$$

• Kinetische Energie: E_{kin}

$$E_{kin} = \frac{1}{2}mv^2$$
 $[E_{kin} = \text{kg m s}^{-2} = \text{J}]$

• Die Zunahme (beziehungsweise Abnahme) der kinetischen Energie eines Körpers ist gleich der ihm zugeführten (beziehungsweise der von ihm gelieferten) Arbeit (keine Reibung)

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r} = \int_{\vec{r_1}}^{\vec{r_2}} m \frac{d\vec{v}}{dt} d\vec{r} = \int_{\vec{v_1}}^{\vec{v_2}} m \frac{d\vec{r}}{dt} d\vec{v}$$
 (1)

$$= \int_{\vec{v_1}}^{\vec{v_2}} m\vec{v} d\vec{r} = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$$
 (2)

4.3 Potentielle Energie

$$W = \int_{h}^{0} F_g dx = \int_{h}^{0} -gm dx = mgh = \frac{1}{2}mv^2$$

4.3.1 Ball als Feder am Auftreffpunkt

$$F = k\xi$$

$$W = \int_0^{\xi} k\xi' d\xi' = \frac{1}{2}k\xi^2$$

4.4 Bemerkung

Arbeit $W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{F}$ gilt immer, Symbol für Linienintegral meist weggelassen.

- kinetische Energie $E_{kin} = \frac{1}{2}mv^2$
- potentielle Energie

$$-E_{pot} = \frac{1}{2}mx^{2}$$
 (Verformen)

$$-E_{pot} = mgh$$
 (Lage)

4.5 Umwandlung von Energie

$$dE_{kin} = Fdx = -dE_{pot}$$

Gilt nur für konservative Kräfte!

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r} = \int_{E_1}^{E_2} dE_{kin} = E_{kin}(\vec{r_2}) - E_{kin}(\vec{r_1})$$
 (3)

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r} = -\int_{E_1}^{E_2} dE_{kin} = E_{pot}(\vec{r_1}) - E_{pot}(\vec{r_2})$$
 (4)

- 1. Für
 - W>0: E_{kin} nimmt zu (Arbeit von System am Objekt verrichtet)
 - W < 0: E_{kin} nimmt ab
- 2. Für
 - W > 0: E_{pot} nimmt ab
 - W < 0: E_{pot} nimmt zu

4.6 Energie

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r} \tag{5}$$

$$=E_{kin}(\vec{r_2}) - E_{kin}(\vec{r_1}) \tag{6}$$

$$= E_{pot}(\vec{r_2}) - E_{pot}(\vec{r_1}) \tag{7}$$

Die unteren beiden Gleichungen gelten nur für konservative Kräfte

4.7 Leistung

$$\vec{F} = \text{const}$$

$$P = \frac{\mathrm{d}W}{\mathrm{d}t} = \vec{F} \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \vec{F}\vec{c}$$

$$[P] = \mathrm{N}\,\mathrm{m}\,\mathrm{s}^{-1} = \mathrm{J}\,\mathrm{s}^{-1} = \mathrm{W} = \mathrm{Watt}$$

4.8 Konservative Kräfte

$$W_1 = \int_{1 \text{ Weg } 1}^{2} \vec{F} \, d\vec{r} = E_{pot}(1) - E_{pot}(2) \tag{8}$$

$$W_2 = \int_{1 \text{ Weg2}}^{2} \vec{F} d\vec{r} = E_{pot}(1) - E_{pot}(2)$$
 (9)

(10)

Geschlossener Weg: $1 \rightarrow 2 \rightarrow 1$

$$W = \oint_{\mathcal{L}} \vec{F} d\vec{r} = W_1 - W_2 = 0$$

4.8.1 Definition

Kräfte, für die die Arbeit unabhängig vom Weg ist nennt man konservativ. Für konservative Kräfte gilt:

$$W = \oint \vec{F} \, \mathrm{d}\vec{s} = 0$$

4.9 Kraftfelder und Potential

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} \mathrm{d}\vec{r}$$

4.9.1 Definition Kraftfeld

Eindeutige Zuordnung einer Kraft zu jedem Punkt im Raum:

$$\vec{F} = \vec{F}(\vec{r}) = \vec{F}(x, y, z) = (F_x(x, y, z), F_y(x, y, z), F_z(x, y, z))$$

4.9.2 Beispiel

Gravitationskraft:

$$\vec{F}(\vec{r}) = -G\frac{mM}{r^2}\vec{e}_r \tag{11}$$

$$= f(r)\vec{e_r} \tag{12}$$

Kugelsymmetrisch, Zentralfeld

TODO Skizze Vektorfeld

TODO Skizze Feldlinien

4.9.3 Feldlinien:

- Feldlinien sind immer tangential zur Kraftrichtung
- Feldliniendichte ist proportional zum Betrag der Karft
- Feldlinien schneiden sich nie

4.9.4 konservative Kraftfelder

Kraftfelder, die konservative Kräfte beschreiben nennt man konservative Kraftfelder Für konservative Kraftfelder gilt

$$W_{12} = \int_{1}^{2} \vec{F} d\vec{r} = E_{pot}(1) - E_{pot}(2)$$

- jedem Ort im Raum kann ein Skalar, die potentielle Energie zugeordnet werden $\implies E_{pot} = E_{pot}(x,y,z)$ Skalar!
- wird bei der Verschiebung eines Körpers von Ort 1 nach Ort 2 Arbeit gegen eine konservative Kraft geleistet, so erhöht sich die potentielle Energie, das heißt $E_{pot}(2) > E_{pot}(1)$.
- Der Nullpunkt $E_{pot}(\vec{r}) = 0$ der potentiellen Energie ist frei wählbar, da allein die Differenz der potentiellen Energie an zwei Punkten relevant ist.

homogenes Kraftfeld

$$\vec{F}(\vec{R}) = (0, 0, F_z)$$

• Weg 1:

$$W_1 = \int_{\text{Weg1}} \vec{F} d\vec{R} = \int_{z_1}^z F_z dz = F_z(z_2 - z_1)$$

• Weg 2:

$$W_2 = \int_{\text{Weg}2} \vec{F} d\vec{R} = \int_{z_1}^z F_z dz = F_z(z_2 - z_1)$$

TODO Skizze

Zentralkraftfeld

$$\vec{F}(\vec{r}) = f(r)\vec{e_r}$$

$$W = \oint \vec{F} \, \mathrm{d}\vec{r} \tag{13}$$

$$= \int_{1}^{2} f(r) dr + \int_{2}^{3} \vec{F} d\vec{r} + \int_{3}^{4} f(r) dr + \int_{4}^{1} \vec{F} d\vec{r}$$
 (14)

$$=0 (15)$$

Gravitationsfeld

$$W_{AB} = \int_{A}^{B} \vec{F} d\vec{R} \tag{16}$$

$$= \int_{A}^{B} -G \frac{mM}{r^2} \vec{e_r} d\vec{r} \tag{17}$$

$$= \int_{A}^{B} -G\frac{mM}{r^2} dr \tag{18}$$

$$= \left[G \frac{mM}{r+\xi} \right]_{r_A}^{r_B} \qquad = E_{pot}(A) - E_{pot}(B) \tag{19}$$

$$\implies E_{pot}(A) = -G\frac{mM}{r_A} + \xi$$

$$\implies E_{pot}(B) = -G\frac{mM}{r_B} + \xi = E_{pot}(C)$$

Potentielle Energie des Gravitationsfelder:

$$E_{pot}^{grav} = -G\frac{mM}{r}$$

 $\mathbf{d} = \mathbf{1}$ Zusammenhang zwischen konservativen Kraftfeld und potentieller Energie:

$$E_{pot} = -\int F dx$$
$$dE_{pot} = -F dx$$
$$-\frac{dE_{pot}}{dx} = F$$

d = 3 Zusammenhang zwischen konservativen Kraftfeld und potentieller Energie:

$$E_{pot} = -\int \vec{F} d\vec{r} \rightarrow \vec{F} = -$$
" $\frac{dE_{pot}}{d\vec{r}}$ "

Gesucht: Ableitung eines Vektors nach einem Skalar. Betrachte:

$$\Delta E_{pot} = -\vec{F}\Delta \vec{r} = -(F_x \Delta x + F_y \Delta y + F_z \Delta z)$$

$$\Delta E_{pot} = \frac{\partial E_{pot}}{\partial x} \Delta x + \frac{\partial E_{pot}}{\partial y} \Delta y + \frac{\partial E_{pot}}{\partial z} \Delta z$$

$$Vergleich : \vec{F}(x, y, z) = -(\frac{\partial E_{pot}}{\partial x} \Delta x, \frac{\partial E_{pot}}{\partial y} \Delta y, \frac{\partial E_{pot}}{\partial z} \Delta z)$$

$$= -\operatorname{grad} E_{pot} \qquad (21)$$

Gilt nur für konservative Kräfte

Gradient Der Gradient eines Skalarfeldes ist ein Vektorfeld, dass in jedem Punkt in die Richtung des steilsten Anstiegs der skalaren Größe zeigt.

Notation:

$$\vec{F} = -\operatorname{grad} E_{pot}$$

$$\vec{F} = -\vec{\nabla} E_{pot}, \vec{\nabla} = (\frac{\partial}{\partial x}, \frac{\partial}{\partial z}, \frac{\partial}{\partial z})$$

4.9.5 Potential und Gravitationsfeld

• Gravitationskraft:

$$\vec{F}(\vec{r}) = -G\frac{mM}{r^2}\vec{e_r}$$

• Potentielle Energie:

$$\vec{E}_{pot}(\vec{r}) = -G\frac{mM}{r}$$

Potential:

$$\Phi(\vec{r}) = \lim_{m \to 0} \frac{E_{pot}(\vec{r})}{m}$$

• Gravitationspotential:

$$\Phi = -G\frac{M}{r}$$

• Gravitationsfeld:

$$\vec{G} = -G\frac{M}{r^2}\vec{e}_r$$

•

$$\vec{G} = -\operatorname{grad}\Phi$$

•

$$E_{not} = m\Phi$$

5 Erhaltungssätze

5.1 Energieerhaltung

Für konservative Kräfte gilt:

$$\Delta E_{kin} = -\Delta E_{pot} = \int_{1}^{2} \vec{F} d\vec{r}$$

das heißt: die kinetische Energie ergibt sich allein aus der Potentialdifferenz und ist unabhängig vom durchlaufenen Weg.

$$E_{kin}(2) - E_{kin}(1) = E_{pot}(1) - E_{pot}(2)$$

$$E_{kin}(1) + E_{pot}(1) = E_{kin}(2) + E_{pot}(2) = \dots = \text{const}$$

5.1.1 Doppelbahn

$$E_{pot}(1) = m \cdot g \cdot h$$

$$E_{pot}(1) = E_{pot(2')} = 0$$

$$\rightarrow$$

$$E_{kin}(2) = E_{kin}(2') = \frac{1}{2}mv^{2}$$

Bemerkung: Berechung von v mit Newtonschen Gesetzen deutlich komplexer

5.1.2 Energieerhaltungssatz der Newtonschen Mechanik

$$E_{pot} + E_{kin} = E_{qes} = \text{const}$$

 $E_{qes} = \text{mechanische Gesamtenergie}$

das heißt: In einem konservativen Kraftfeld ist due Summe aus potetieller und kinetischer Energie eines Massenpunktes zu jeder Zeit konstant

Wichtig: gilt nur für konservative Kraftfelder (Beim Auftreten nicht-konservativer, dissipativer Kröfte wird mechanische Energie in Wärme umgewandelt)

5.1.3 Energiediagramme

Häufig: Potentielle Energie abhängig von Ort x oder Abstand r

Hilfreich: Diskussion mittel Energiediagramm

Kugelbahn

- Abhängig von E_{ges} kann sich die Kugel nur in bestimmten Bereichen aufhalten
- Gleichgewichtslagen: Kugel ruht, es wirken keine Kräfte, das heißt

$$F = -\frac{\mathrm{d}E_{pot}}{\mathrm{d}x} = 0$$
, bzw $\vec{F} = -\operatorname{grad}E_{pot} = 0$

Drei Fälle:

- 1. Stabiles bzw. Metastabiles Gleichgewicht: Potentialkurve hat ein Minimum
- 2. labiles Gleichgewicht: Potentialkurve hat ein Maximum
- 3. Indifferentes Gleichgeweicht: Flacher Verlauf der Potentialkurve

Lennard-Jones-Potential Potienial zur Beschreibung von molekularen Bindugen

$$E_{pot} = V_0(\frac{r}{r_0})^{-12} - 2(\frac{r}{r_0})^{-6}$$

(Dipol-Dipol-Wchselwirkung, Van-der-Waals Kräfte)

Mechanischer Verstärker

 $\begin{array}{c} \text{Volumen} \\ \uparrow \\ E'_{pot} = mgh = \rho(abc)gh \\ \downarrow \\ \text{Dichte} \end{array}$

 $mit h = \frac{1}{2}c$

Fallender Dominostein: $E_{pot} \to E_{kin}$

Startposition: (Meta)stabiles Gleichgewicht

das heißt: Dominosteine müssen über einen Potentialberg angehoben werden. Danach ist die kinetische Energie ausreichend, um den nächsten Stein über Potentialschwelle zu heben. Verstärkungsfaktor:

Skalierung zwischen den Steinen: Alle Längen $\times \sqrt{2}$

Potentielle Energie für Stein m:

$$E_{pot} = \rho(a^{(n)}b^{(n)}c^{(n)})h^{(n)}g = (\sqrt{2})^4 E_{pot}^{(n-1)}$$

$$E_{pot}^{(1)} = mgh$$

$$\implies E_{pot}^{(13)} = 4^{12}E_{pot}^{(1)}$$

 \implies Verstärkungsfaktor $\approx 1.7 \times 10^7$

6 Systeme von Massenpunkten

Bisher: Bewegung einzelner Massenpunkte. Jetzt: Betrachte Systeme von Massenpunkten.

Man unterscheidet:

• Innere Kräfte: Kräfte, die zwischen den Massenpunkten eines Systems wirken.

• Äußere Kräfte: Kräfte, die von außen auf das System einwirken

6.1 Beschreibung eines Systems von Massenpunkten

 \vec{r}_1 : Ortsvektor zum Massenpunkt i m_i : Masse des Massenpunktes i

 $[i=1,\ldots,n]$

Gesamtmasse:

$$M = \sum_{i=1}^{n} m_i$$

Definition 1 Schwerpunkt.

$$\vec{r}_s = \frac{\sum m_i \vec{r}_i}{\sum m_i} = \frac{1}{M} \sum_{i=1}^n m_i \vec{r}_i$$
$$\vec{r}_s = \frac{1}{M} \int_v \vec{r} dm = \frac{1}{M} \int_v \vec{r} \rho(\vec{r}) dV$$

Beispiel 1 System zweier Massenpunkte.

$$\begin{split} \vec{r_s} &= \frac{m_1 \vec{r_1} + m_2 \vec{r_2}}{m_1 + m_2} \quad s_1, s_2 = ? \\ \vec{r_s} &= \vec{r_1} + \lambda_s (\vec{r_1} - \vec{r_1}) \\ &= (1 - \lambda_s) \vec{r_1} + \lambda_s \vec{r_2} \\ &= \underbrace{\frac{m_1}{m_1 + m_2}}_{=1 - \lambda_s} \vec{r_1} + \underbrace{\frac{m_2}{m_1 + m_2}}_{=\lambda_s} \vec{r_2} \\ \implies S_1 &= \frac{m_2}{m_1 + m_2}, S_2 = \frac{m_1}{m_1 + m_2} \wedge \underbrace{\frac{S_1}{S_2}}_{=2} = \frac{m_2}{m_2} \end{split}$$

Das heißt: Das Verhältnis $\frac{S_1}{S_2}$ ist umgekehrt proportional zum Massenverhältnis $\frac{m_1}{m_2}$. Beispiel 2 Schwerpunkt Erde-Sonne.

$$M_E = 6 \times 10^{21} \text{ kg}, M_S = 2 \times 10^{30} \text{ kg}$$

 $X_S = \frac{M_E X_E + M_S 0}{M_E + M_S} = 4.5 \times 10^5 \text{ m}$

Vergleich mit Sonnenradius $7 \times 10^8 \,\mathrm{m}$ Schwerpunkt praktisch im Sonenmittelpunkt

6.1.1 Bewegung des Schwerpunkts

Geschwindigkeit:

$$\vec{v}_s = \frac{d\vec{r}_s}{dt} = \frac{1}{M} \sum_{i=1}^n m_1 \frac{d\vec{r}_i}{dt} = \frac{1}{M} \sum_{i=1}^n m_i \vec{v}_i = \frac{1}{M} \sum_{i=1}^n \vec{p}_i$$

 $\vec{p_i}$: Impuls des einzelnen Massenpunktes

Definition 2 Schwerpunktimpuls.

$$\vec{p}_s = \sum_{i=1}^n \vec{p}_i = \sum_{i=1}^n m_i \vec{v}_i = M \vec{v}_s$$

das heißt: Schwerpunktimpuls ergibt sich aus der Summe der Einzelimpulse

Frage: Wie bewegt sich ein System von Massepunkten under Einfluß von Kräften? Es gilt:

innere Kraft

$$\frac{\mathrm{d}\vec{p_i}}{d} = \downarrow^{\vec{r_i}} + \sum_{i \neq j} \uparrow^{\vec{r_i}} \vec{F_{ij}}, \vec{F_{ij}} = -\vec{F_{ji}}$$

 \Longrightarrow : Änderung des Schwerpukntimpulses $\vec{p_s}$:

$$\frac{d\vec{p}_s}{dt} = \sum_{i=1}^{n} \dot{\vec{p}}_i = \sum_{i=1}^{n} \vec{F}_i + \sum_{i} \sum_{i \neq j} \vec{F}_{ij} = \sum_{i=1}^{n} \vec{F}_i$$

das heißt: die Impulsänderung des Schwerpunktes ergibt sich aus der Summe der äußeren Kräfte:

1. Newtonsches Gesetz für Systeme von Massenpunkten.

$$\dot{\vec{p}}_s = M\vec{a}_s = \sum_{i=1}^n \vec{F}_i$$

Hierbei: $\vec{a}_s = \dot{\vec{r}}_s = \frac{1}{M} \sum m_i \ddot{\vec{r}}_i = \frac{1}{M} \sum m_i \vec{a}_i$

Definition 3 Allgemeiner Impulssatz. Das Schwerpunkt eines beliebiges Systems ovn Massenpunkten I bewegt sich so, als sei er ein Körper mit der Gesamtmasse $M = \sum m_i$

Definition 4 Abgeschlossenes System. Ein abgeschlossenes System ist ein System auf das keine äußeren Kräfte einwirken, das heißt:

$$\sum F_i = 0$$

Der Massenschwerpunkt eines abgeschlossenen Systems hat einen zeitlich konstanten Impuls, das heißt

$$\vec{p_s} = \sum_{i=1}^{n} \vec{p_i} = \text{const}$$

 $(\Longrightarrow Impulserhaltung!!)$

6.1.2 Raketenantrieb

das heißt: die Bewegung von Objekten mit veränderlicher Masse

Beobachtung: Abstoßen einer Masse kann zum Antrieb verwendet werden (Beispiele:

Rakete, Medizinball und Schlittschuläufer)

Betrachte Rakete: Impulssatz:

$$p(t) = p(t + \Delta t)$$

Zeitpunkt t

$$p(t) = (m + \Delta m)v$$

Zeitpunkt $t + \Delta t$

$$p(t + \Delta t)0m(v + \Delta v) + \Delta m(v - v_B)$$

$$\implies mv + \Delta v = mv + m\Delta v + \Delta mv - \Delta mv_B$$

$$m\Delta v - \Delta mv_B = 0$$

Änderung Blickwinkel:

$$m\Delta v + \Delta m v_b = 0$$

Wichtig: Masse m und Massenänderung dm mässen sich auf gleiche Referenz beziehen. Damit folgt:

$$\mathrm{d}v = -v_b \frac{\mathrm{d}m}{m}$$

Integration:

$$\int_{v_1}^{v_2} dv = -v_B \int_{m_1}^{m_2} \frac{1}{m} dm, m_1 > m_2, v_B = \text{const}$$

$$v_2 - v_1 = -v_B \cdot \left[\ln m \right]_{m_1}^{m_2} = v_B (\ln m_1 - \ln m_2) = v_B \ln \frac{m_1}{m_2} > 0$$

Wähle Anfangsbedingungen:

$$v_1 = 0, m_1 = 0, m_0 = m(t = 0), m_2 = m(t)$$

⇒ Raketengleichung für kräftefreie Rakete

$$v(t) = v_B \ln \frac{m_0}{m(t)}$$

das heißt: Die Endgeschwindkigkeit einer Rakete wird duch die Ausstoßgeschwindigkeit und die Brennstoffmenge bestimmt

Für die nicht kräftefreie Rakete gilt:

$$m(t)\frac{\mathrm{d}\vec{v}(t)}{dt} = -\frac{\mathrm{d}m(t)}{dt}\vec{v}_B + \vec{F}$$

Allgemeine Raketengleichung (ohne Herleitung)

Bemerkung 1. Vorsicht bei der Anwendung des zweiten Newtonschen Gesetzen $\vec{F} = \dot{\vec{p}}$. Naiver Ansatz für kräftefreie Rakete:

$$\frac{\mathrm{d}mv}{dt} = \frac{\mathrm{d}m}{dt}v + m\frac{\mathrm{d}v}{dt} = 0$$

Funktioniert nicht! Grund: Impuls des ausströmenden Gases wird bei diesem Ansatz nicht in der Impulsbilanz berücksichtigt

Korrekter Ansatz:

$$\frac{\mathrm{d}mv}{dt} - (v - v_B)\frac{\mathrm{d}m}{dt} = 0 \implies m\frac{\mathrm{d}v}{dt} + v_B\frac{\mathrm{d}m}{dt} = 0$$

das heißt: der naive Ansatz funktioniert nur, wenn $v - v_B = 0$, also die Ausströmungsgeschwindigkeit verschwindet.

7 Stöße

Für ein abgeschlossenens System gilt: (keine äußere Kräfte) Impulserhaltung:

$$\sum_{i=1}^{n} \vec{p_i} = \sum_{i=1}^{n} \vec{p}_i'$$

Energieerhaltung:

$$\sum_{i=1}^{n} E_i = \sum_{i=1}^{n} E_i'$$

7.1 Kollinearer elatischer Stoß

Es gilt:

$$m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2'$$

$$\frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} m_1 v_1'^2 + \frac{1}{2} m_2 v_2'^2$$

⇒ Lösung (ohne Herleitung)

$$v_1' = \frac{v_1(m_1 - m_2) + 2m_2v_2}{m_1 + m_2}$$
$$v_2' = \frac{v_2(m_2 - m_1) + 2m_1v_1}{m_1 + m_2}$$

Geschwindigkeit nach Kollinearer elastisch Stoß Tipp zur Herleitung: Betrachte Bewegung relativ zur Schwerpunktsbewegung (siehe z.B. Demtröders)

Hier Betrachtung von Spezialfällen.

Betrachtung von Spezialfällen ist immer wichtig! Hilft beim Verständnis physikalischer Zusammenhänge

1.
$$m_1 = m_2 = m, r_1 > 0, v_2 = 0$$

$$v_1' = \frac{2mv_2}{2m} = v_2 = 0, v_2' = \frac{2mr_1}{2m} = v_1$$

2.
$$m_1 = m, m_2 = 2m, v_1 > 0, v_2 > 0$$

$$v_1' = \frac{v_1(-m)}{3m} = -\frac{1}{3}v_1$$
$$v_2' = \frac{2mv_1}{3m} = \frac{2}{3}v_1$$

3.
$$m_1 = m, m_2 = 3m, v_1 = v > 0, v_2 = -v$$

$$v_1' = \frac{v(m-2m) - 2(3m)v}{4m} = \frac{v(-2m-6m)}{4m} = -2v$$
$$v_2' = \frac{-v(2m-m) + 2mv}{2m} = \frac{v(-2m+2m)}{3m} = 0$$

4.
$$m_1 = m, m_2 \to \infty, v_1 = v, v_2 = 0$$

$$v_1' = \frac{v(-m_2)}{m_2} = -v$$
 (da m_1 vernachlässigbar)
$$v_2' = \frac{2m_1v}{m_2} = 0$$
 (da $m_1 \ll m_2$)

5. $m_1 = m, m_2$ sehr groß!, $v_1 = 0, v_2 = v$

$$v_1' = \frac{2m_2v}{m_2} = 2v, \quad v_2' = \frac{vm_2}{m_2} = v$$

7.2 Betrachtung im Schwerpunktsystem

Es gilt:

$$v_s = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

Geschwindigkeiten im Schwerpunktsystem:

$$v_1^* = v_1 - v_s = \frac{m_2 v_1 - m_2 v_2}{m_1 + m_2}$$
$$v_2^* = v_2 - v_s = \frac{m_1 v_2 - m_1 v_1}{m_1 + m_2}$$

daraus folgt:

$$p_1^* = m_1 v_1^* = \frac{m_1 m_2}{m_1 + m_2} (v_1 - v_2)$$
$$p_2^* = m_2 v_2^* = \frac{m_1 m_2}{m_1 + m_2} (v_2 - v_1)$$

Das heißt vor dem Stoß gilt:

$$p_1^* = -p_2^* E_{kin,1}^* = \frac{1}{2} m(v_1^*)^2 = \frac{(p_1^*)^2}{2m_1} E_{kin,2}^* = \frac{(p_2^*)^2}{2m_2}$$

nach dem Stoß:

Impulserhaltung:

$$p_s^* = p_1^* + p_2^* = p_1^{*\prime} + p_2^{*\prime} = 0 \rightarrow p_1^{*\prime} = -p_2^{*\prime}$$

Energieerhaltung:

$$E_{ges}^* = E_{kin,1}^* + E_{kin,2}^* = E_{kin,1}^{*\prime} + E_{kin,2}^{*\prime}$$

Außerdem:

$$p_1^{*'} = \frac{p_1^*(m_1 - m_2) + 2m_1p_2^*}{m_1 + m_2} = -p_1^*, p_2^{*'} = -p_2^*$$

daraus folgt:

$$E_{kin,1}^{*\prime} = E_{kin,1}^{*}$$

 $E_{kin,2}^{*\prime} = E_{kin,2}^{*}$

Im Schwerpunktsystem findet bei elastischen Stößen keine Energieübertragung statt. Aber: Impulse werden ausgetauscht

7.2.1 Nicht-zentraler, elatischer Stoß im Schwerpunktsystem

$$\begin{split} \bar{p}_s^* &= 0, \bar{p}_1^* = -\bar{p}_2^* \\ \bar{p}_s^{*\prime} &= -\bar{p}_2^{*\prime}, |\bar{p}_1^* = |\bar{p}_1^{*\prime}|| \end{split}$$

Im Schwerpunktsystem sind für ein abgeschlossenes System zweier Massepunkte ein- und auslaufende kollinear und vom Betrag her gleich

7.3 Inelastische Stöße

Betrachte 2 Kugeln

• Massen: m_1, m_2

• Geschwindigkeit: $v_1 = v, v_2 = 0$

• Impulserhaltung:

$$m_1 v = (m_1 + m_2)v'$$
$$v' = \frac{m}{m_1 + m_2}v$$

• Energiebilanz:

$$E_{kin} = \frac{1}{2}m_1v^2, E'_{kin} = \frac{1}{2}(m_1 + m_2)(\frac{m_1}{m_1 + m_2})^2v^2 = \frac{1}{2}\frac{m_1^2}{m_1 + m_2}v^2 < E_{kin}$$

Beim inelastischen Stoß geht mechanische Energie verloren, sie wird beim Stoß in andere Energieformen (zum Beispiel Wärme) umgewandelt. (siehe Thermodynamik)

Interessant: Betrachtung im Schwerpunktsystem.

$$m_1 v_1^* - m_2 v_2^* = (m_1 + m_2) v^{*\prime}$$

da $p_1^* = -p_2^*$

$$(m_1 + m_2)v^{*\prime} = 0$$

$$E_{kin}^{*\prime} = \frac{1}{2}(m_1 + m_2)(v^{*\prime})^2 = 0$$

Im Schwerpunktsystem findet beim inelastischen Stoß eine vollständige Umwandlung der kinetischen Energie statt.

Allgemein:

falls
$$\vec{F}_{auen} = 0$$

$$E_{kin,1} + E_{kin,2} = E'_{kin,1} + E'_{kin,2} + Q \sum \vec{p_i} = \sum \vec{p_i}' = \text{const}$$

$$\sum E_{kin,i} = \sum E'_{kin,i} + Q$$

$$Q = 0 \qquad \text{elastisch}$$

$$Q > 0 \qquad \text{inelastisch}$$

$$Q < 0 \qquad \text{superelastisch}$$

8 Mechanik des starren Körper

Definition 5 Starrer Körper. System von Massenpunkten mit festen, nicht veränderlichen Abständen.

Idealisierung!

Es gilt:

Volumen:

$$V = \lim_{\Delta V_i \to 0} \sum \Delta V_i = \int \mathrm{d}v$$

Masse:

$$M = \lim_{\Delta m_i \to 0} \sum \Delta m_i = \int dm = \int \rho(\vec{r}) dV$$

Schwerpunkt:

$$\vec{r}_s = \frac{1}{M} \int \vec{r} dm = \frac{1}{M} \int \vec{r} \rho(\vec{r}) dV M = \int \rho dV = \int \rho d^3r$$

Beispiel 3 Quader.

$$\vec{r}_s = \frac{1}{M} \int \vec{r} \rho(\vec{r}) dV$$
$$= \frac{1}{M} \int_0^a \int_0^b \int_0^c \begin{pmatrix} x \\ y \\ z \end{pmatrix} \rho dx dy dz$$

Integration für jede einzelne Ortskomponente:

$$x_{s} = \frac{1}{m} \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} x \rho dx dy dz = \frac{1}{M} \rho b c \int_{0}^{b} x dx = \frac{1}{M} \rho a b c \frac{1}{2} a = \frac{1}{2} a$$

$$y_{s} = \dots = \frac{1}{2} b$$

$$z_{s} = \dots = \frac{1}{2} c$$

$$\vec{r_{s}} = \frac{1}{2} \begin{pmatrix} a \\ b \\ v \end{pmatrix}$$

8.1 Bewegung des starren Körpers

Es gilt:

$$\vec{r}_{si} = \vec{r}_i - \vec{r}_s \rightarrow \frac{\mathrm{d}\vec{r}_{si}}{\mathrm{d}t} = \vec{v}_{si} = \vec{v}_i - \vec{v}_s$$

Mit $|\vec{r}_{si}| = \text{const}$ beziehungsweise $\vec{r}_{si}^2 = \text{const}$ (starrer Körper)

$$\frac{\mathrm{d}}{\mathrm{d}t}(\vec{r}_{si}^2) = 2\vec{r}_{si}\vec{v}_{si} = 0 \to \vec{v}_{si} \perp \vec{r}_{si}$$

da $\vec{v}_{si} \perp \vec{r}_{si}$ gilt: Betrachte Bewegung in der von $\vec{v}_{si}, \vec{r}_{si}$ aufgespannten Ebene \rightarrow Kreisbewegung!, Das heißt:

$$\vec{v}_{si} = \vec{\omega} \times \vec{r}_{si}$$

wobei im Allgemeinen $\vec{\omega}$ zeitabhängig sein kann.

Mit $\vec{v}_{si} = \vec{v}_i - \vec{v}_s$ folgt:

$$\vec{v}_i = \vec{v}_s + (\vec{\omega} \times \vec{r}_{si})$$

Achtung: $\vec{\omega} = \vec{\omega}(t)$ muss nicht raumfest sein.

Die Bewegung eines starren Körpers lässt sich in eine Translationsbewegung und eine Rotation um den Schwerpunkt zerlegen

- 3 Translationsfreiheitsgrade
- 3 Rotationsfreiheitsgrade

8.2 Drehmoment und Kräftepaare

Frage: Wie versetzt man einen Körper in Rotation?

 $Beispiel\ 4$ Balkenwaage. Beobachtung: Kraft mit Angriffspunkt im Abstand l, bewirkt Drehbewegung

Es gilt das Hebelgesetz:

$$F_1 l_1 = F_2 l_2$$

Hebelarm: Abstand zwischen Drehachse und Angriffspunkt der Kräfte \vec{F}_1, \vec{F}_2

Beobachtung:

Kraft \vec{F}_{\parallel} parallel zum Hebelarm bewirkt keine Drehung, nur Kraft \vec{F}_{\perp} senkrecht zur Verbindungslinie zwischen Angriffspunkt und Drehachse führt zur Rotation.

Richtung von \vec{F}_{\perp} bestimmt Drehsinn

Definition 6 Drehmoment.

$$\vec{M} := \vec{r} \times \vec{F}$$

Gibt Drehsinn und Stärke der Kraftwirkung an.

$$M = rF\sin(\angle(\vec{r}, \vec{F}))$$

8.2.1 Drehmoment und Schwerpunkt

Betrachte starren Körper aus zwei Massenpunkten plus masselose Verbindung

$$\begin{split} \vec{M}_1 &= \vec{r}_1 \times \vec{F}_1 \\ \vec{M}_2 &= \vec{r}_2 \times \vec{F}_2 \\ \vec{M}_1 &= r_1 m_1 g \sin \alpha_1 \vec{l}_z \\ \vec{M}_2 &= -r_2 m_2 g \sin \alpha_2 \vec{l}_z \\ &= -r_2 m_2 g \sin \alpha_1 \vec{l}_z \\ \vec{M}_{tot} &= \vec{M}_1 + \vec{M}_2 = (r_1 m_1 - r_2 m_2) g \sin \alpha_1 \vec{l}_z \end{split}$$

vektoriell:

$$\vec{M}_{tot} = \vec{M}_1 + \vec{M}_2 = \vec{r}_1 \times m_2 \vec{g} + \vec{r}_2 \times m_2 \vec{g} = (\vec{r}_1 m_1 + \vec{r}_2 m_2) \times \vec{g}$$

Beliebiger Körper:

$$\vec{M}_{tot} = \sum \vec{M}_i = \sum m_i \vec{r}_i \times \vec{g}$$

$$(\sum m_i \vec{r}_i) \times \vec{g} = m_{ges} \vec{r}_s \times \vec{g} = \vec{r}_s \times \vec{F}$$

Das Gewicht eines starren Körpers greift immer im Schwerpunkt an. Bei Aufhängung eines Körpers im Schwerpunkt ist das resultierende Drehmoment auf Grund der Schwerkraft Null. Grund: Im Schwerpunkt gilt: $\vec{r}_s = 0, \vec{M}_{tot} = \vec{r}_s \times \vec{F}_s = 0$

8.2.2 Kräftepaare

Frage: Wirkung einer Kraft \vec{F}_1 auf einen starren Körper.

Lösungsansatz:

Einführung der sich gegenseitig aufgebenden Kräfte \vec{F}_2 und \vec{F}_3 im Schwerpunkt S. Ändert nichts!

Zerlegung der Bewegung:

Translation durch Kraft \vec{F}_2 mit Angriffspunkt S.

Rotation durch Kräftepaar (\vec{F}_1, \vec{F}_3) mit $F_1 = F_3, \vec{M} = \vec{r} \times \vec{F}_1$

Die Wirkung aller Kräfte auf einen starren Körper lässt sich durch

$$\vec{F} = \sum \vec{F_i}$$
 (Gesamtkraft (Gesamtkraft))
 $\vec{M} = \sum F_{si} \times \vec{F_i} = \sum M_i$ (Gesamtdrehmoment (Rotation))

beschreiben. Dabei greift \vec{F} im Schwerpunkt an

Wirkung von Kräftepaaren: Reine Rotation. Es gilt:

$$\vec{M} = \vec{r}_1 \times \vec{F} - \vec{r}_2 \times \vec{F} = (\vec{r}_1 - \vec{r}_2) \times \vec{F} = \vec{r}_{12} \times \vec{F}$$

Merke: Das Drehmoment eines Kräftepaares ist unabhängig von
m Bezugspunkt 0 Zwei Kräftepaare sind äquivalent, wenn sie das gleiche Drahmoment besitzen. Äqzivalente Kräftepaare können einander ersetzen.

8.3 Statisches Gleichgewicht

Statik:

$$\vec{F} = \sum \vec{F_i} = 0, \vec{M} = \sum \vec{M_i} = 0$$

das heißt keine Translation, keine Rotation Beispiel 5.

1. Gleichgewicht eines starren Körpers in Schwerefeld Frage: Wo muss \vec{F} angreifen um für statisches Gleichgewicht zu sorgen? Kräfte:

$$sum\vec{F}_i + \vec{F} = 0$$

$$\vec{F} = -\sum m_i \vec{g} = -m_{ges} \vec{g}$$

Drehmomente:

$$\sum \vec{M_i} + \vec{R} \times \vec{F} = 0$$

$$\sum \vec{r_i} \times \vec{F_i} + \vec{R} \times \vec{F} = \sum m_i (\vec{r_i} \times \vec{g}) + \vec{R} \times \vec{F}$$

$$= (\sum m_i \vec{r_i}) \times \vec{g} - m_{ges} \vec{R} \times \vec{G}$$

$$= m_{ges} (\vec{R} \times \vec{g}) = m_{ges} (\vec{r_s} \times \vec{g})$$

Lösung A: $\vec{R} = \vec{r_s}$, das heißt Untertützung im Schwerepunkt mit $\vec{F} = -mges\vec{g}$ Lösung B: $(\vec{R} - \vec{f_s}) \times \vec{g} = 0$, das heißt $(\vec{R} - \vec{r_s}) \parallel \vec{g}$, also Unterstützung oberhalb oder unterhalb des Schwerpunkts 3 Möglichkeiten:

- \vec{R} über Schwerpunkt: stabiles Gleichgewicht
- \vec{R} unter SP: labiles Gleichgewicht
- \vec{R} in PS: in differentes Gleichgewicht
- 2. Schiefer Turm

Drehmoment:

$$F_q r = F_z r \to F_q = F_z$$

Kräftegleichgewicht:

$$F_a + F_z + F_s = 0 \rightarrow F_s = -2F_a$$

3. Stehende Leiter

Kräftegleichgewicht:

$$\vec{F}_N = -\vec{F}_G, \vec{F}_N' = -\vec{F}_R$$

Drehmomente:

Bezugspunkt = unteres Leiterende (günstige Wahl!)

$$F_W h = F_g(\frac{1}{2}a)$$

(vergleiche Übungsaufgabe)

8.4 Rotation und Trägheitsmoment

Bewegungsenergie eines starren Körpers setzt sich zusammen aus:

- kinetischer Energie der Schwerpunktsbewegung
- kinetische Energie aufgrund von Rotation

Experiment: Rollende Objekte $\rightarrow FormdesKrperswichtig!$ Mathematisch:

$$E_{kin} = \sum \frac{1}{2} m_i \vec{v}_i^2$$
 (mit $\vec{v}_i = \vec{v}_s + \vec{v}_{si}$)
$$E_{kin} = \frac{1}{2} \sum m_i (\vec{v}_s^2 + 2\vec{v}_s \vec{v}_{si} + \vec{v}_{si} + \vec{v}_{si}^2)$$

$$= \frac{1}{2} \sum m_i \vec{v}_s^2 + \vec{v}_s \sum m_i \vec{v}_{si} + \frac{1}{2} \sum m_i \vec{v}_{si}^2$$

Die kinetische Energie zerlegt sich in die kinetische Energie des Schwerpunkts und Rotationsenergie, aus der kintischen Energie der Bewegung relativ zum Schwerpunkt

Jetzt: Betrachte Rotation um raumfeste Achse: (Spezialfall: Achse durch Schwerpunkt)

Kinetische Energei des Massenstücks dm:

$$dE_{kin} = \frac{1}{2} dm \vec{v}_i^2 = \frac{1}{2} dm (\omega r_\perp)^2$$

$$= \frac{1}{2} dm \omega^2 r_\perp^2$$

$$E_{rot} = \int dE_{kin} = \frac{1}{2} \int \omega^2 r_\perp^2 dm = \frac{1}{2} \omega^2 \underbrace{\int r_\perp^2 dm}_{\text{Trängheitsmomen}}$$

Definition 7 Trägheitsmoment. Trägheitsmoment bezüglich einer raumfesten Achse

$$I = \int r_{\perp}^2 \mathrm{d}m = \Theta^2 \mathrm{d}m = \Theta$$

Diskret:

$$\Theta = \sum r_{\perp,i}^2 m_i$$

Dabei ist r_{\perp} der Abstand zwischen dem Massenstück dm und der Drehachse.

Definition 8 Rotationsenergie. Rotationsenergie eines starren Rotators (Rotation um raumfeste Achse)

$$E_{rot} = \frac{1}{2}I\omega^2$$

8.5 Berechung von Trägheitsmomenten

Volumenintegral:

$$I = \int r_{\perp}^2 \mathrm{d}m = \int r_{\perp}^2 \rho(\vec{r}) \mathrm{d}V$$

Beispiel 6. 1. Stab (dünn)

$$I = \int_{-\frac{L}{2}}^{\frac{L}{2}} x^2 \rho A dx = \rho A \int_{-\frac{L}{2}}^{\frac{L}{2}} x^2 dx$$
$$= \frac{1}{3} \rho A \left(\left(\frac{L}{2} \right)^3 - \left(-\frac{L}{2} \right)^3 \right)$$
$$= \frac{1}{3} \rho A \frac{L^3}{4} = \frac{1}{12} \rho A L L^2$$
$$= \frac{1}{12} m L^2$$

2. Scheibe, Zylinder

Zylinderkoordinaten:

$$x = r \cos \phi, y = r \sin \phi, z = z$$
$$dV = r d\phi dr dz$$
$$I = \int_{V} \bar{r}_{\perp}^{2} dm = \int_{v} r_{\perp}^{2} \rho dV$$

Zylinderkoordinaten, also $r_{\perp}=r$

$$= \rho \int_{v} r^{2} r dr d\phi dz$$

$$= \rho \int_{0}^{R} \int_{0}^{2\pi} \int_{0}^{h} r^{2} r dr d\phi dz$$

$$= 2\pi \rho h \int_{0}^{R} r^{3} dr = 2\pi \rho h \frac{1}{4} R^{4} = \frac{1}{2} (\pi R^{2} h) \rho R^{2} = \frac{1}{2} m R^{2}$$

3. Dünner Hohlzylinder

$$I = \rho \int_{R}^{R+d} \int_{0}^{2\pi} \int_{0}^{h} r^{2}r dr d\phi dz$$

$$= 2\pi \rho h \int_{R}^{R+d} r^{3} dr = 2\pi \rho h \frac{1}{4} \left[r^{4} \right]_{R}^{R+d}$$

$$= 2\pi \rho h \frac{1}{4} ((R+d)^{4} - R^{4})$$

$$= 2\pi \rho h \frac{1}{4} (R^{4} + 4R^{3}d + \dots - R^{4})$$

$$\approx 2\pi \rho h R^{3}d = (2\pi R dh \rho) R^{2} = mR^{2}$$

4. Kugel

$$I = \int r_{\perp}^2 \mathrm{d}m = \frac{2}{5} mR^2$$

(ohne Beweis, zur Übung...)

8.6 Steinersche Satz

Nochmal Stab:

$$I = \int_0^L x^2 \rho A dx$$
$$= \rho A \int_0^L x^2 dx$$
$$= \frac{1}{3} \rho A L^2$$

mit $m = \rho AL$

$$=\frac{1}{3}mL^3$$

Allgemein:

$$\begin{split} I &= \int r_{\perp}^2 \mathrm{d}m \\ &= \int (r_{s,\perp} + R_{\perp})^2 \mathrm{d}m \\ &= \int \vec{r}_{s,\perp}^2 \mathrm{d}m + \int \vec{R}_{perp}^2 \mathrm{d}m + 2 \int r_{s,\perp} R_{perp} \mathrm{d}m &= \underbrace{\vec{r}_{s,\perp}^2 \int \mathrm{d}m}_{=r_{s,\perp}^2 m} + I_s + 2r_{s,\perp} \underbrace{\int R_{perp} \mathrm{d}m}_{=0} \end{split}$$

Definition 9 Steinersche Satz.

$$I = I_s + r_{\perp,s}^2 m$$

Beispiel 7 Dünner Stab.

$$I_A = \frac{1}{12}mL^2$$

 $I_B = \frac{1}{3}mL^2$
 $I_B = I_A + (\frac{L}{2})^2 m = \frac{1}{3}mL^2$

Trägheitsmomente sind additiv

$$I = \int_{v} r_{\perp}^{2} dm = \int_{v_{1}} r_{\perp}^{2} dm + \int_{v_{2}} r_{\perp}^{2} dm$$

$$\frac{\text{Translation}}{\vec{r}} \qquad \text{Rotation}$$

$$\vec{v} = \dot{\vec{r}} \qquad \vec{\phi}$$

$$\vec{u} = \ddot{\vec{r}} \qquad \vec{\omega} = \dot{\vec{\phi}}$$

$$\vec{a} = \ddot{\vec{r}} \qquad \vec{\alpha} = \ddot{\vec{\phi}} = \dot{\vec{\omega}}$$

$$E_{kin} = \frac{1}{2} m v^{2} \qquad E_{rot} = \frac{1}{2} I \omega^{2}$$

$$F = m\vec{a} \qquad \vec{M} = I \vec{\alpha}$$

Bei nicht ortsfester Rotationsachse:

$$E_{rot} = \frac{1}{2} \vec{\omega}^T \Theta \vec{\omega}$$
$$\vec{M} = \Theta \vec{\alpha}$$

 $\vec{\Theta}$ ist ein Tensor

$$\vec{v}_{i} = \vec{\omega} \times \vec{r}_{\perp,i}, \vec{v}_{i} = \omega r_{\perp,i}$$

$$\vec{M} = \vec{r}_{\perp,i} \times \vec{F}_{i}$$

$$M_{i} = r_{\perp,i} F_{\perp,i} = r_{\perp,i} m_{i} \frac{\mathrm{d}r_{i}}{\mathrm{d}t}$$

$$= r_{\perp,i}^{2} m_{i} \frac{\mathrm{d}\omega}{\mathrm{d}t}$$

$$M_{tot} = \sum_{\alpha} M_{i}$$

$$M_{tot} = \underbrace{\frac{\mathrm{d}\omega}{\mathrm{d}t}}_{\alpha} \underbrace{\sum_{i} r_{\perp,i}^{2} m_{i}}_{I}$$

Bewegungsgleichung für die Rotation um eine Raumfeste Achse

$$M = I\dot{\omega} = I\alpha$$

Beispiel 8.

$$M = I\alpha$$

$$\vec{M} = \vec{r} \times \vec{F}_G$$

$$I = 2mR^2$$

$$\alpha = \frac{M}{I} = \dot{\omega}$$

$$\omega = \alpha t + \omega_0 = \alpha t$$

$$\phi = \frac{1}{2}\alpha t^2 + \omega_0 t + \phi 0 = \frac{1}{2}\alpha t^2$$

$$2\pi = \frac{1}{2}\alpha T^2$$

$$T^2 = \frac{4\phi}{\alpha} = 4\pi \frac{I}{M}$$

wir wollen berechnen

$$T_0^2 = 4\pi \frac{I_0}{M} = (1.72)^2 s^2$$

$$T_1^2 = 4\pi \frac{I_0 + 2mR^2}{M} = (5.9)^2 s^2$$

$$T_2^2 = 4\pi \frac{I_0 + 2m\frac{R^2}{4}}{M} = (3.3)^2 s^2$$

$$T_1^2 - T_0^2 = 32 s^2$$

$$T_2^2 - T_0^2 = 8 s^2$$

8.7 Drehimpuls

• Translation: $\vec{F} = m\vec{a}, \vec{F} = \dot{\vec{p}}$

• Rotation: $\vec{M} = I\vec{\alpha}, \vec{M} = \dot{\vec{L}} \rightarrow \text{Drehimpuls}$

• Impuls: p = mv

• Drehimpuls: (Guess) $L = I\omega = mr^2 \frac{v}{r} = rmv = rp$

Definition 10 Drehimpuls.

$$\vec{L} = \vec{r} \times \vec{p}$$

Wichtig: Allen bewegten Masenpunkten kann man bezüglich eines Referenzpunktes 0 einen Drehimpuls zuordnen; der hängt vom Bezugspunkt ab.

$$\dot{\vec{L}} = \frac{\mathrm{d}}{\mathrm{d}t}(\vec{r}\times\vec{p}) = \dot{\vec{r}}\times\vec{p} + \vec{r}\times\dot{\vec{p}} = \vec{r}\times\vec{F} = \vec{M}$$

Grundgleichung der Dynamik für Rotationsbewegungen:

$$\vec{M} = \frac{\mathrm{d}\vec{L}}{dt} = \dot{\vec{L}}$$

Drehimpulserhaltung:

$$\vec{M} = 0 \rightarrow \vec{L} = \text{const}$$

Drehimpuls für System von Massenpunkten

$$\vec{p_s} = \sum \vec{p_i}, \ \dot{\vec{p}_i} = \sum \vec{F_i}$$

$$\vec{L} = \sum \vec{L_i} = \sum m_i (\vec{r_i} \times \vec{v_i})$$

$$\vec{L} = \int \mathrm{d}\vec{L} = \int (\vec{r} \times \vec{r}) \mathrm{d}m \dot{\vec{L}} = \frac{\mathrm{d}}{dt} \sum \vec{r_i} \times \vec{p_i} = \underbrace{\sum \dot{\vec{r}_i} \times \vec{p_i}}_{0} + \sum \vec{r_i} \times \dot{\vec{p}_i} = \sum \vec{M_i} = \vec{M}$$

Für System von Massenpunkten:

$$\vec{M} = \sum_i \vec{r_i} \times \vec{F_i} = \dot{\vec{L}}$$
 $\vec{L} = 0 \text{ für } \vec{M} = 0$

Allgemeiner Zusammenhang:

mit \hat{I} als Tensor:

$$\begin{split} \vec{L} &= \hat{I} \vec{\omega} \\ \vec{L} &= \int \mathrm{d} \vec{L} \\ \mathrm{d} \vec{L} &= \vec{r} \times \mathrm{d} \vec{p} = \vec{r} \times \vec{v} \mathrm{d} m \\ &= \mathrm{d} m (\vec{r} \times \vec{v}) = \vec{r} \times (\vec{\omega} \times \vec{r}) \end{split}$$

mit $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a}\vec{c}) - \vec{c}(\vec{a}\vec{b})$

$$= dm(r^2\vec{\omega} - \vec{r}(\vec{\omega}\vec{r}))$$
$$\int d\vec{L} = \vec{\omega} \int r^2 dm - \int \vec{r}(\vec{\omega}\vec{r}) dm$$

Beispiel 9 Schief gestellte Hantel. Drehimplus:

$$\vec{L} = \vec{r}_1 \times \vec{p}_1 + \vec{r}_2 \times \vec{p}_2$$

Drehimpulsvektor steht senkrecht auf Verbundingslinie zu m_1 und m_2 . Aber: Winkelgeschwindigkeit $\vec{\omega}$ zeigt in Richtung der Drehachse.

Beispiel 10 Rotierende Scheibe mit Unwucht. Für Rad mit Masse M gilt: (ohne Unwucht)

$$ec{L}_1 = \int \mathrm{d}ec{L}$$
 parallel zu $ec{\omega}$

aus Symmetriegründen, $\vec{L} = I\vec{\omega}$ Für das Rad plus Unwucht gilt:

$$\vec{L}=\vec{L}_1+\vec{L}_2, \vec{L}_2=\vec{r} imes \vec{p}$$
 \downarrow Drehimpul der Unwucht

das heißt: \vec{L} nicht parallel zu $\vec{\omega}$, daraus folgt: Derhimpuls hat Komponente senkrecht zur Winkelgeschwindigkeit $\vec{\omega}$, diese rotiert mit $\vec{\omega}$

$$\vec{M} = \dot{\vec{L}}$$

das heißt auf Achse wirkt Drehmoment.

8.8 Trägheitstensor, freie Rotation und Kreisel

Drehimpuls eines starren Körpers:

$$\vec{L} = \vec{\omega} \int r^2 dm - \int \vec{r}(\vec{\omega}\vec{r}) dm$$

(Bezugspunkt wichtig!)

$$L_{x} = \omega_{x} \int r^{2} dm - \int x(\omega_{x} + \omega_{y}y + \omega_{z}z) dm$$

$$= \omega_{x} \int (r^{2} - x^{2}) dm - \omega_{y} \int xy dm - \omega_{z} \int xz dm$$

$$= I_{xx}\omega_{x} + I_{xy}\omega_{y} + I_{xz}\omega_{z}$$

$$L_{y} = I_{yx}\omega_{x} + I_{yy}\omega_{y} + I_{yz}\omega_{z}$$

$$L_{z} = I_{zx}\omega_{x} + I_{zy}\omega_{y} + I_{zz}\omega_{z}$$

$$\vec{L} = \underbrace{\begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{pmatrix}}_{\text{Trägheitstensor}} \begin{pmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{pmatrix}$$

Definition 11 Trägheitstensor.

$$\begin{array}{c} \text{Matrix} \\ \uparrow \\ \vec{L} = \hat{I}\vec{o}mega, \hat{I} = I_{ij} \end{array}$$

$$I_{xx} = \int (r^2 - x^2) \mathrm{d}m \quad I_{xy} = I_{yx} = -\int xy \mathrm{d}m$$

$$I_{yy} = \int (r^2 - y^2) \mathrm{d}m \quad I_{yz} = I_{zy} = -\int yz \mathrm{d}m$$

$$I_{zz} = \int (r^2 - z^2) \mathrm{d}m \quad I_{xz} = I_{zx} = -\int xz \mathrm{d}m$$

Rotationsenergie:

$$E_{rot} = \frac{1}{2} \vec{\omega}^T \hat{I} \vec{\omega}$$

Trägheitstensor \hat{I} hängt von der Wahl des Koordinatensystems ab! Geeignete Koordinatentransformation \to Diagonalisierung von \hat{I} . (Hauptachsentransformation)

Nach Hauptachsentransformation:

$$\hat{I} = \begin{pmatrix} I_a & 0 & 0 \\ 0 & I_b & 0 \\ 0 & 0 & I_c \end{pmatrix}$$

mit $I_a > I_b > I_c$.

Es folgt: Bei Rotation eines Körpers um eine der drei Hauptachsen sind Drehimpuls und Winkelgeschwindigkeit parallel.

8.8.1 Kreisel

Ein Kreisel ist ein rotierender starrer Körepr, der höchstens an einem Punkt aufgehängt ist. (Kompass, Sattelit, Geschoß)

Beschreibung der Kreiselbewegung mit 3 Achsen:

- Figurachse
- Momentane Drehachse, Richtung von $\vec{\omega}$
- Drehimpulsachse

9 Mechanik deformierbarer Körper

Starrer Körper: $\vec{r_i} - \vec{r_j} = \text{const}$, das heißt Abstand zwischen Massenpunkten konstant. Wirklichkeint: Verformung bei Anwendung äußerer Kräfte.

9.1 Atomares Modell

Experiment: Alle Körper sind aus Atomen oder Molekülen aufgebaut. Beschreibung von Kräften zwischen Atomen und Molekülen durch Lennard-Jones-Potential. (Dipol-Dipol-Wechselwirkung, Van-der-Waals Kräfte)

Gleichgewichtsabstand: r_0 (\$E_{pot} = \$ minimal) Für kleine Auslenkung gilt:

$$E_{pot} = \frac{1}{2}k(r - r_0)^2$$
$$F = -\frac{\mathrm{d}E_{pot}}{dr} = -k(r - r_0) = -kAr$$

Federkraft! \Longrightarrow

- Modell eines Festkörper: Federmodell. Temperatur unterhalb des Schmelzpunktes. Mittlere kinetische Energei klein gegen $E_{pot}(r_0)$. Atome können Gitterplätze nicht verlassen. Fernordung!
- Modell einer Flüssigkeit: Kugelmodell: Auch hier mittlerer Abstand = r_0 , das heißt Dichte ähnlich die des Festkörpers. Aber: Temperatur zu hoch für feste Zuordung auf Kristallgitterplätzen \Longrightarrow flüssiger Zustand. Nahordung!
- Modell eines Gases: frei bewegliche Teilchen. Mittlere kinetische Energie ist grob gegen Bindungsenergie, hohe Temperatur!

9.2 Feste Körper.

- Elastischer fester Körper \rightarrow Formelastizität, Volumenelastitität aufgrund rücktreibender Kräfter (Hookscher Bereich)
- Plastisch feste Körper \rightarrow Formänderungen verbleiben

Hier: Elastische Körper! Experimentell findet man:

$$\Delta f \sim F$$

$$\Delta L \sim L, \Delta L \sim A^{-1}$$

$$\Delta L \sim L \frac{F}{A} = Lr$$
 (r: Zugspannung)

Definition 12 Hooksches Gesetz:.

$$\sigma = E \frac{\Delta L}{L} = E \varepsilon$$

- \bullet E: Elastizitätsmodul, E-Modul
- ε : Elongation, relative Längenänderung

• σ : Zugspannung, $\sigma = \frac{F}{A}$

Auswertung Hooksches Gesetz: Material-Stahl, $D=0.3\,\mathrm{mm}, L=6\,\mathrm{m}, A=0.07\,\mathrm{m}^2$

$$F = 1.2 \,\mathrm{kPa} = 11.8 \,\mathrm{N}, \Delta L = 5 \,\mathrm{mm}, \varepsilon = 8 \times 10^{-4} \to \sigma = 168.6 \,\mathrm{N \,mm^{-2}}$$

$$F = 2.4\,\mathrm{kPa} = 13.5\,\mathrm{N}, \Delta L = 10\,\mathrm{mm}, \varepsilon = 1.7\times10^{-3} \rightarrow \sigma = 337.2\,\mathrm{N\,mm^{-2}} \implies E = \frac{\sigma}{\varepsilon}2\times10^{5}\,\mathrm{N\,mm^{-2}} = 2.4\,\mathrm{kPa} = 13.5\,\mathrm{N}$$

Einfaches Atomares Modell: Lineare Kette. Es gilt:

$$L = na, \Delta a \sim F, \Delta L \sim m\Delta a \sim nF$$

Außerdem wegen

$$L \sim m : \Delta L \sim LF \rightarrow F \sim \frac{\Delta L}{L}$$

Für eine lineare Kette ist $\varepsilon \frac{\Delta L}{L}$ tatsächlich proportional zur Kraft F. Für $\varepsilon \sim A^{-1}$ braucht man mehrere lineare Ketten parallel aneinander.

Aber: Auch Wechselwirkung in transversaler Richtung!

Definition 13 Querkontraktion. $\frac{\Delta D}{D} \sim \frac{\Delta L}{L}$

$$\frac{\Delta D}{D} = -\mu \frac{\Delta L}{L}$$

 μ : Poissonsche Zahl ≈ 0.3

Volumenänderung (kleine Änderung)

$$V = \left(\frac{\pi}{4}\right)D^{2}L$$

$$\Delta \xi = \frac{\Delta V}{V} = ?$$

$$\xi = \ln V$$

$$= 2 \ln D + \ln L + \text{ const}$$

$$\Delta \xi \approx \frac{1}{V}\Delta V \approx 2\frac{1}{D}\Delta D + \frac{1}{L}\Delta L = \frac{\mathrm{d}\xi}{dV}\Delta V = \frac{\mathrm{d}\xi}{dD}\Delta D + \frac{\mathrm{d}\xi}{dL}\delta L$$

$$\frac{V}{V} = -2\mu \frac{\Delta L}{L} + \frac{\Delta L}{L} = \frac{\Delta L}{L}(1 - 2\mu)$$

$$\frac{\Delta V}{V} = \frac{\sigma}{E}(1 - 2\mu)$$
(Volumenänderung)

Kompression (von Flüssigkeiten)

$$\frac{\Delta V}{V} = -\chi \Delta p$$

$$\chi = 3\frac{1}{E}(1 - 2\mu)$$

 χ : Kompressibilität

9.3 Scherung und Torsion

Normalspannung oder Zugspannung

$$\sigma = \frac{F_N}{A}$$

Tangentialspannung oder Scherspannung

$$\tau = \frac{F_T}{A}$$

F+r kliene Scherwinkel

$$\tau = G\alpha$$
 (G: Schubmodul, Torsionsmodul)

Torsion eines Drates (Vollzylinder)

$$\tau = \frac{\mathrm{d}F}{dA}$$

$$R\phi = L\alpha$$

$$\mathrm{d}M = \mathrm{d}FR$$

$$\mathrm{d}A = 2\pi R \mathrm{d}R$$

$$\tau = \frac{\mathrm{d}F}{dA} = \underbrace{\frac{\mathrm{d}M}{R}}_{\mathrm{d}F} \frac{1}{2\pi R \mathrm{d}R} = G\alpha = G\frac{R\phi}{L}$$

$$\mathrm{d}M = \frac{2\pi G\phi}{L} \bar{R}^3 \mathrm{d}\bar{R}$$

$$M = \underbrace{\frac{2\pi GR^4}{2L}}_{\mathrm{const}} \phi = k_0 \phi$$

Empfindlichkeit:

$$\frac{\phi}{M} \sim \frac{1}{R^4}$$

$$M = I\ddot{\phi} = -k_D\phi, k_D = \frac{\pi G R^4}{2L}$$

$$\phi(t) = \phi_{max} \sin(\omega_0 t + \phi_0)$$

$$\omega_0 = \sqrt{\frac{k_K}{I}}$$

$$T = \frac{2\pi}{\omega_0} \sim \sqrt{\frac{I}{k_D}} \frac{1}{R^2}$$

Ein bisschen was für Ingenieure

$$\begin{split} \phi &= \frac{L}{\rho} = \frac{L + \Delta L}{\rho + \eta} \\ \varepsilon &= \frac{\Delta L}{L} = \frac{\eta}{\rho} \\ \mathrm{d}M &= \eta \mathrm{d}F \\ \mathrm{d}M &= \eta \mathrm{d}F = \eta \sigma \mathrm{d}A = \eta \varepsilon E \mathrm{d}A = \eta^2 \frac{1}{\rho} E \mathrm{d}A \end{split} \qquad \text{(wegen } \varepsilon = \frac{\eta}{\rho}\text{)} \\ M &= \frac{E}{\rho} \int \eta^2 \mathrm{d}A \end{split}$$

Definition 14 Flächenträgheitsmoment.

$$J = \int \eta^2 \mathrm{d}A$$

- Integral über Querschnittsfläche
- η : senkrechter Abstand der Punkte der Querschnittsfläche von neutraler Ebene Beispiel 11 Quader.

$$J = \int_{-\frac{h}{2}}^{\frac{h}{2}} \eta^2 v d\eta$$
$$= \frac{1}{12} bh^3$$

Bautechnik: Krümmung κ :

$$\kappa = \frac{1}{\rho} = \frac{M}{EJ}$$

9.4 Ruhende Flüssigkeiten-Hydrostatik

keine Formelastizität, G = 0! aber: Hohe Volumenelastizität

Das heißt: Alle Kräfte senkrecht zur Oberfläche.

Definition 15 Druck. Hydrostatischer Druck

$$p = \frac{F}{A}$$

Also die auf die Fläche wirkende Normalkraft pro Fläche.

$$[p] = N m^{-2} = Pa$$

 $1 bar = 1 \times 10^5 Pa$
 $1 torr = 133.322 Pa$
 $1 atm = 1.013 bar$

$$\begin{split} \frac{\Delta V}{V} &= -\kappa \Delta p = \frac{1}{K} \Delta p \\ \kappa &= 5 \times 10^{-10} \, \mathrm{m^2 \, N^{-1}} \kappa \end{split} \\ &= 1.4 \times 10^{-10} \, \mathrm{m^2 \, N^{-1}} \end{split}$$