Classification Fake and True News

Dataset

Dataset downloaded from kaggle

The procedure of collecting is unknown

25% of duplicates in fake.csv, 5% in true.csv

99% of true data comes from reuters, 25% of fake data comes from twitter (comments to the post are included)

Scraping of fake dataset replaces apostrophes with white space (removal of lone letters)

Dataset

40% of dates in fake news are missing, we can't confidently fill in with standard techniques

First value in fake news for date: date 2017-12-31 00:00:00 Name: 0, dtype: object

Last value in fake news for date: date 2016-01-02 00:00:00 Name: 17165, dtype: object

Dataset

Number of true and fake news through time

Data Split

Stratified

Rows of training set: 29601 Rows of validation set: 3700

Rows of test set: 3701

By Date

Rows of training set: 19690 Rows of validation set: 494 Rows of test set: 494

Most Common Unigrams in True and Fake News

Most common words in both corpuses:

said, trump, us, would, president, people, reuters, one, state, new, also, states, house, government, donald, republican, could, united, told, clinton, obama, white, campaign, last, election, two, like, party, time, year

Analysis of Text Structure

Fake News	True News
Higher proportion of uppercase letters to grab attention	Consistent average word length
Higher variance in length	Slightly longer
Higher frequency of exclamation marks	Longer words - more sophisticated language
More outliers	Higher frequency of dots

Feature Engineering

calculated features:

- Proportion of upper case letters
- Average word length
- Number of characters in news
- Count of words
- Proportion of punctuation
- Proportion of exclamation marks
- Proportion of dots

vectorized words:

- Said
- Would
- People
- One
- Also
- Could
- Last
- Two
- Like
- Time
- Year

Modeling with Algorithms from Sklearn

Classification	n Report:			
	precision	recall	f1-score	support
True	0.88	0.91	0.90	2023
Fake	0.89	0.85	0.87	1678
accuracy			0.88	3701
macro avg	0.88	0.88	0.88	3701
weighted avg	0.88	0.88	0.88	3701

- Best performing model -RandomForestClassifier
- Weighted f1_score on calculated features 0.77
- Weighted f1_score using all features on test set 0.88
- Adding more vectorized words didn't improve the outcome

Interpretation of Random Forest Classifier Predictions

Modeling title with Pretrained distilbert-base-cased

Classification	n Report: precision	recall	f1-score	support
True	1.00	1.00	1.00	2023
Fake	1.00	1.00	1.00	1678
accuracy			1.00	3701
macro avg	1.00	1.00	1.00	3701
weighted avg	1.00	1.00	1.00	3701

- The model was mistaken only 0.1% of the time.
- Training reached accuracy 1.00 on validation set after 1 epoch.

Examples of Wrongly Predicted Titles

Modeling text with Pretrained distilbert-base-cased

Performance of the model

CIUDDITITEUCIO	ii itepoi e.			
	precision	recall	f1-score	support
True	0.99	0.99	0.99	2023
Fake	0.98	0.98	0.98	1678
accuracy			0.98	3701
macro avg	0.98	0.98	0.98	3701
weighted avg	0.98	0.98	0.98	3701

The model is wrong every 3 in 100 news.

Problems with correctly classifying fake news

Examples of Wrong Predictions

Conclusions

- Models rely on writing style of the writer
- The structure of title seems to be the most important factor of predictions
- True news have more reporting style of writing
- The size and performance of classic ML and NN models differs by 0.1 in weighted f1 score
- The source of dataset is not known.
- Estimating model performance on examples that are consistent with business are crucial
- Deployment of the model could depend on business integrity, ethics and financial resources

Improvements

- Checking for features that can leak data about the predictions.
- Further feature engineering and optimization of model hyperparameters.
- Estimating the performance of different sets of data to establish if models are performing as good as in the notebook.
- Experimenting with uncased models.
- Building LSTM model which would be smaller but hopefully performed similar.
- Estimating time of getting results and cost of deployment.