Matematica utile definizioni, formule ed esempi

Pietro Barbiero

Quest'opera contiene informazioni tratte da wikipedia (http://www.wikipedia.en) e dalle dispense relative al corso di Metodi Matematici per l'Ingegneria tenuto dal professor Bazzanella Danilo del Dipartimento di Scienze Matematiche del Politecnico di Torino (IT).

Quest'opera è stata rilasciata con licenza Creative Commons Attribuzione - Non commerciale - Condividi allo stesso modo 4.0 Internazionale. Per leggere una copia della licenza visita il sito web http://creativecommons.org/licenses/by-nc-sa/4.0/.

Indice

1	FO	rmulario di Probabilita	9
1	Cal	colo combinatorio	1
	1.1	Sequenze ordinate	11
		•	11
			11
			11
			11
	1.2		12
		•	12
		· · · · · · · · · · · · · · · · · · ·	12
2	Pro	pabilità 1	13
	2.1		13
			13
			13
			13
			13
			14
			14
			14
		· · · · · · · · · · · · · · · · · · ·	14
	2.2	•	15
			15
			15
		•	15
			15
		•	15
		·	16
		<u>.</u>	16
			16
			16
			16
			16
			16
			17
	2.3		18
	2.3		18
		1	18
			18
			18
			18
		2.3.2 Distribuzione normale $\mathcal{N}(m_X, \sigma_X^2)$	18

4 INDICE

		2.3.2.1	Funzione di densità di probabilità
		2.3.2.2	Funzione di distribuzione cumulata
	2.3.3	Distribu	zione normale standardizzata $\mathcal{N}(0,1)$
		2.3.3.1	Funzione di densità di probabilità
		2.3.3.2	Funzione di distribuzione cumulata
		2.3.3.3	Cambio di variabile
		2.3.3.4	Teorema del limite centrale
	2.3.4		zione Gamma
	2.0.1	2.3.4.1	Funzione di densità di probabilità
		2.3.4.2	Valor medio
		2.3.4.3	Varianza
	9.2 #		
	2.3.5		1
		2.3.5.1	Funzione di densità di probabilità
		2.3.5.2	Funzione di distribuzione cumulata
		2.3.5.3	Valor medio
		2.3.5.4	Varianza
	2.3.6		zione di Maxwell
		2.3.6.1	Funzione di densità di probabilità
		2.3.6.2	Valor medio
		2.3.6.3	Varianza
	2.3.7	Distribu	zione t-Student a n gradi di libertà
		2.3.7.1	Funzione di densità di probabilità
		2.3.7.2	Valor medio
		2.3.7.3	Varianza
	2.3.8	Distribu	zione Chi-quadrato
		2.3.8.1	Funzione di densità di probabilità
		2.3.8.2	Valor medio
		2.3.8.3	Varianza
	2.3.9	Distribu	zione F (o di Fisher)
		2.3.9.1	Funzione di densità di probabilità
		2.3.9.2	Valor medio
		2.3.9.3	Varianza
2.4	Distrib		probabilità notevoli (discrete)
2.4	2.4.1		zione binomiale $B(n,p)$ (grandi numeri)
	2.4.1	2.4.1.1	Funzione di densità di probabilità
		2.4.1.1	Funzione di distribuzione cumulata
		2.4.1.2	
		2.4.1.4	Varianza
	0.40	2.4.1.5	Teorema locale di asintoticità locale di Moivre-Laplace
	2.4.2		zione di Poisson (eventi rari)
		2.4.2.1	Funzione di densità di probabilità
		2.4.2.2	Valor medio
		2.4.2.3	Varianza
	2.4.3		zione geometrica
		2.4.3.1	Funzione di densità di probabilità
		2.4.3.2	Funzione di distribuzione cumulata
		2.4.3.3	Valor medio
		2.4.3.4	Varianza
	2.4.4	Distribu	zione ipergeometrica
		2.4.4.1	Funzione di densità di probabilità
		2.4.4.2	Valor medio
		2.4.4.3	Varianza

INDICE 5

		0.45	D' 4 '1
		2.4.5	Distribuzione Beta
			2.4.5.1 Funzione di densità di probabilità
			2.4.5.2 Valor medio
			2.4.5.3 Varianza
		2.4.6	Distribuzione di Weibull $\mathcal{W}(\alpha, \beta)$
			2.4.6.1 Funzione di densità di probabilità
			2.4.6.2 Valor medio
			2.4.6.3 Varianza
3		tistica	${f 25}$
	3.1	Statist	ica descrittiva
		3.1.1	Numerosità del campione
		3.1.2	Valori empirici (o determinazioni o realizzazioni di X)
		3.1.3	Insieme delle modalità di un carattere X
		3.1.4	Classi di modalità di un carattere X
		3.1.5	Distribuzioni di frequenze
			3.1.5.1 Frequenza assoluta
			3.1.5.2 Frequenza relativa (o probabilità empirica)
			3.1.5.3 Frequenza cumulata assoluta
			3.1.5.4 Frequenza cumulata relativa
		3.1.6	Funzione di distribuzione delle frequenze
		3.1.7	Funzione di distribuzione delle probabilità empiriche
		3.1.8	Funzione di distribuzione delle frequenze cumulate relative
		3.1.9	1
		5.1.9	1
			3.1.9.1 Media pesata
			3.1.9.2 Media spuntata $(\pm \delta)$
			3.1.9.3 Media mobile
			3.1.9.4 Moda
			3.1.9.5 Mediana
			3.1.9.6 Quantile q -esimo
		3.1.10	Indici di dispersione
			3.1.10.1 Varianza
			3.1.10.2 Scarto quadratico medio (o deviazione standard)
			3.1.10.3 Media pesata delle varianze
			3.1.10.4 Varianza delle medie
			3.1.10.5 Coefficiente di asimmetria
			3.1.10.6 Covarianza
		3.1.11	Indice di connessione χ^2 di Pearson
		3.1.12	Regressione lineare
			3.1.12.1 Coefficiente di traslazione
			3.1.12.2 Coefficiente di regressione lineare
			3.1.12.3 Retta di regressione lineare
			3.1.12.4 Coefficiente di determinazione lineare
			3.1.12.5 Errore standard
	3.2	Model	li statistici
	0.4	3.2.1	Modello uniforme $\mathcal{R}(\theta_1, \theta_2)$
		3.2.1	
			3.2.1.1 Famiglia di densità
		200	3.2.1.2 Parametri incogniti
		3.2.2	Modello Normale-1 $\mathcal{N}(\theta, \sigma^2)$
			3.2.2.1 Famiglia di densità
			3.2.2.2 Parametri incogniti
		3.2.3	Modello Normale-2 $\mathcal{N}(\mu, \theta)$

6 INDICE

		3.2.3.1 Famiglia di densità				
		3.2.3.2 Parametri incogniti				
	3.2.4	Modello Normale generale $\mathcal{N}(\theta_1, \theta_2)$				
		3.2.4.1 Famiglia di densità				
		3.2.4.2 Parametri incogniti				
	3.2.5	Modello Binomiale $\mathcal{B}i(n,\theta)$				
		3.2.5.1 Famiglia di densità				
		3.2.5.2 Parametri incogniti				
	3.2.6	Modello di Poisson $\Pi(\theta)$				
	0.2.0	3.2.6.1 Famiglia di densità				
		3.2.6.2 Parametri incogniti				
	3.2.7	Modello esponenziale $\mathcal{E}(\theta)$				
	J	3.2.7.1 Famiglia di densità				
		3.2.7.2 Parametri incogniti				
3.3	Statist	tiche campionarie				
0.0	3.3.1	Statistica campionaria (o riassunto campionario)				
	3.3.2	Momenti campionari				
	0.0.2	$3.3.2.1$ Momento campionario di ordine $q \ldots 3.3.2.1$				
		3.3.2.2 Media campionaria				
		3.3.2.3 Varianza campionaria				
		3.3.2.4 Varianza campionaria corretta				
		3.3.2.5 Deviazione standard campionaria corretta (campionamento con ripe-				
		tizione)				
		3.3.2.6 Deviazione standard campionaria corretta (campionamento senza ri-				
		petizione)				
	3.3.3	Distribuzione campionaria delle medie				
	3.3.3	3.3.3.1 Valor medio				
		3.3.3.2 Varianza(campionamento con ripetizione)				
		3.3.3.3 Varianza (campionamento senza ripetizione)				
		3.3.3.4 Deviazione standard				
	3.3.4	Distribuzione campionaria delle varianze				
	0.0.2	$3.3.4.1$ Teorema χ^2				
		3.3.4.2 Valor medio corretto (campionamento con ripetizione)				
		3.3.4.3 Varianza corretta (campionamento con ripetizione)				
		3.3.4.4 Valor medio corretto (campionamento senza ripetizione) 34				
		3.3.4.5 Varianza corretta (campionamento senza ripetizione)				
	3.3.5	Deviazione standard corretta (campionamento senza ripetizione)				
	3.3.6	Distribuzione campionaria delle frequenze				
3.4		di statistiche campionarie				
	3.4.1 Stimatore puntuale					
	3.4.2	Stimatore puntuale				
		3.4.2.1 Stimatore corretto (o imparziale o non distorto)				
		3.4.2.2 Stimatore consistente in probabilità				
		3.4.2.3 Stimatore consistente in media quadratica				
		3.4.2.4 Stimatore efficiente				
	3.4.3	Criterio di stima puntuale				
	3.4.4	Stima ottima di un parametro				
	3.4.5	Stima ottima del valor medio				
	3.4.6	Stima ottima della varianza				
	3.4.7	Densità di probabilità congiunta di n realizzazioni x_i				
	3.4.8	Stima di massima verosimiglianza				
	3.4.9					

	3.4.10	Livello fiduciario (o probabilità fiduciaria)	37					
			37					
		3.4.11.1 Intervallo fiduciario simmetrico (o a due code)	37					
			37					
	3.4.12		37					
			37					
	3.4.14	Intervalli di confidenza per la media	37					
		3.4.14.1 Intervallo di confidenza simmetrico di una popolazione con varianza						
		nota	37					
		3.4.14.2 Intervallo di confidenza asimmetrico di una popolazione con varianza						
		nota	38					
		3.4.14.3 Intervallo di confidenza simmetrico di una popolazione con varianza						
		ignota	38					
		3.4.14.4 Intervallo di confidenza asimmetrico di una popolazione con varianza						
		ignota	38					
	3.4.15	Determinazione del livello fiduciario	38					
	3.4.16	Determinazione della numerosità del campione	39					
	3.4.17	Intervalli di confidenza per la varianza	39					
			39					
		3.4.17.2 Intervallo di confidenza asimmetrico	39					
3.5	Test p	est parametrici						
	3.5.1	Ipotesi statistiche	40					
		±	40					
		1 1	40					
		· · · · · · · · · · · · · · · · · · ·	40					
		· · · · · · · · · · · · · · · · · · ·	40					
		1	40					
	3.5.2		40					
	3.5.3	1	40					
	3.5.4	1 1	41					
	3.5.5	±	41					
	3.5.6	()	41					
	3.5.7		41					
	3.5.8	v 1	41					
	3.5.9		41					
		3 5 9 1 Test sul valor medio per il modello normale	41					

Parte I Formulario di Probabilità

Capitolo 1

Calcolo combinatorio

1.1 Sequenze ordinate

1.1.1 Numero di permutazioni senza ripetizione

Il numero delle permutazioni senza ripetizione di un insieme S di numerosità n è il fattoriale di n

$$P_n = n! = n(n-1)(n-2)\dots 1$$
(1.1)

Il primo elemento può essere scelto in n modi, il secondo in (n-1), il terzo in (n-2), l'n-esimo in 1 modo solo: n(n-1)(n-2)...1

1.1.2 Numero di permutazioni con ripetizione

Il numero di permutazioni con ripetizione di in insieme S di numerosità n di cui r elementi (con $r \leq n$) si ripetono k_1, k_2, \ldots, k_r volte è il rapporto tra il numero di permutazioni senza ripetizione P_n di S e il prodotto tra il numero di permutazioni di ciascun elemento ripetiuto k_i !

$$P_n^{k_1, k_2, \dots, k_r} = \frac{P_n}{P_{k_1} P_{k_2} \dots P_{k_r}} = \frac{n!}{k_1! k_2! \dots k_r!}$$
(1.2)

1.1.3 Numero di disposizioni senza ripetizione

Il numero di disposizioni senza ripetizione di lunghezza k di un insieme S di numerosità n (con $k \le n$) è il rapporto tra il numero di permutazioni senza ripetizione P_n di S e il numero di permutazioni della differenza tra la numerosità n di S e la lunghezza di ogni disposizione k

$$D_{n,k} = \frac{P_n}{P_{(n-k)}} = \frac{n!}{(n-k)!}$$
(1.3)

1.1.4 Numero di disposizioni con ripetizione

Il numero di disposizioni con ripetizione di lunghezza k di un insieme S di numerosità n è la potenza k-esima della numerosità n

$$D'_{n,k} = n^k = n_1 \cdot n_2 \dots n_k \tag{1.4}$$

Il primo elemento può essere scelto in n modi, il secondo in n modi, il k-esimo in n modi: $n_1 \cdot n_2 \dots n_k$

1.2 Sequenze non ordinate

1.2.1 Numero di combinazioni senza ripetizione

Il numero di combinazioni senza ripetizione di lunghezza k di un insieme S di numerosità n è il rapporto tra il numero di disposizioni senza ripetizione di S e il numero di permutazioni della lunghezza k (k! è la numerosità delle classi di combinazioni aventi gli stessi elementi)

$$C_{n,k} = \frac{D_{n,k}}{P_k} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$
(1.5)

1.2.2 Numero di combinazioni con ripetizione

Il numero di combinazioni con ripetizione di lunghezza k di un insieme S di numerosità n è il numero di combinazioni senza ripetizione di lunghezza k di un insieme di numerosità n + k - 1

$$C'_{n,k} = C_{n+k-1,k} = \binom{n+k-1}{k} \tag{1.6}$$

Capitolo 2

Probabilità

2.1 Probabilità

2.1.1 Probabilità assiomatica

La probabilità è una funzione che associa un numero reale compreso nell'intervallo [0,1] ad ogni evento A_i di un campo di Borel \mathfrak{B} (costituito da sottoinsiemi di uno spazio campione Ω) in modo che: le probabilità dell'evento certo Ω sia 1; la probabilità che si verifichino due eventi incompatibili sia la somma delle rispettive probabilità

$$\mathbb{P}: \quad \mathfrak{B} \to [0,1] \quad | \quad \begin{cases} \mathbb{P}(\Omega) = 1 \\ i \neq j \quad \land \quad A_i \cap A_j = \emptyset \iff \mathbb{P}(A_i \cup A_j) = \mathbb{P}(A_i) + \mathbb{P}(A_j) \end{cases}$$
 (2.1)

2.1.2 Proprietà della funzione probabilità

$$\forall A \in \mathfrak{B} \quad 0 \le \mathbb{P}(A) \le 1 \tag{2.2}$$

$$\mathbb{P}(\bar{A}) = 1 - \mathbb{P}(A) \tag{2.3}$$

$$\mathbb{P}(\emptyset) = 0 \tag{2.4}$$

$$A_i \subset A_i \implies \mathbb{P}(A_i) \le \mathbb{P}(A_i)$$
 (2.5)

$$A_i \cap A_i \neq \emptyset \implies \mathbb{P}(A_i \cup A_i) = \mathbb{P}(A_i) + \mathbb{P}(A_i) - \mathbb{P}(A_i \cap A_i)$$
 (2.6)

2.1.3 Probabilità di un evento

La probabilità di un evento A_i composto da N_A eventi elementari è il quoziente tra il numero di eventi elementari favorevoli ad A_i e il numero di eventi elementari che costituiscono lo spazio campione Ω

$$\mathbb{P}(A_i) = \frac{N_A}{N} \tag{2.7}$$

2.1.4 Probabilità di un evento condizionata

La probabilità di un evento A_i condizionata dal verificarsi dell'evento A_j è il quoziente tra la probabilità favorevole al verificarsi sia di A_i sia di A_j e la probabilità che si verifichi solo A_j

$$\mathbb{P}(A_i|A_j) = \frac{\mathbb{P}(A_i \cap A_j)}{\mathbb{P}(A_j)}$$
(2.8)

2.1.5 Formule per eventi condizionati

2.1.5.1 Eventi statisticamente indipendenti

Due eventi A_i e A_j sono statisticamente indipendenti se e solo se il verificarsi di A_i non condiziona la probabilità che si verifichi A_j

$$\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j) \tag{2.9}$$

2.1.5.2 Formula di Bayes

La formula di Bayes permette di calcolare la probabilità che la causa A_i abbia provocato l'evento E (che sappiamo essersi verificato)

$$\mathbb{P}(A_i|E) = \frac{\mathbb{P}(A_i)\mathbb{P}(E|A_i)}{\sum_j \mathbb{P}(A_j)\mathbb{P}(E|A_j)} = \frac{\mathbb{P}(A_i \cap E)}{\mathbb{P}(E)}$$
(2.10)

2.1.5.3 Formula delle probabilità totali

La formula delle probabilità totali permette di calcolare la probabilità di E se è nota la sua probabilità condizionata dagli eventi A_j

$$\mathbb{P}(E) = \sum_{j} \mathbb{P}(A_j) \mathbb{P}(E|A_j)$$
(2.11)

2.2 Variabili aleatorie

2.2.1 Variabile aleatoria

Una variabile aleatoria è una funzione che associa ad ogni evento elementare ω un numero reale x e una probabilità associata ad x

$$X: (\Omega, \mathfrak{B}, \mathbb{P}) \to (\mathbb{R}, \mathfrak{B}^*, \mathbb{P}^*)$$
 (2.12)

2.2.2 Funzione di distribuzione cumulata (o di ripartizione)

La funzione di distribuzione cumulata è una misura della probabilità che una variabile aleatoria $X(\omega)$ assuma valori minori o uguali al numero reale x

$$F_X: \mathbb{R} \to [0,1] \mid F_X(x) = \mathbb{P}(X \le x)$$
 (2.13)

2.2.3 Funzione di distribuzione cumulata (o di ripartizione) congiunta (o mista)

La funzione di distribuzione cumulata congiunta di una coppia di variabili aleatorie X e Y è una misura della probabilità che le due variabili aleatorie assumano valori minori o uguali ai numeri reali x e y

$$F_{XY}: \mathbb{R}^2 \to [0,1] \mid F_{XY}(x,y) = \mathbb{P}((X \le x) \cap (Y \le y))$$
 (2.14)

2.2.4 Funzione di densità di probabilità

Una funzione di densità di probabilità $f_X(x)$ è una funzione a valori reali tale che l'integrale su un sottoinsieme del suo dominio (o supporto) $B \in S$ è una misura della probabilità che la variabilie aleatoria X assuma valori in B

$$\int_{B} f_X(x)dx = \mathbb{P}(X \in B) \tag{2.15}$$

La relazione tra distribuzione cumulata e densità di probabilità è:

$$\int_{-\infty}^{x} f_X(t)dt = \mathbb{P}(X \le x) = F_X(x) \iff f_X(x) = \frac{dF_X(x)}{dx}$$
 (2.16)

2.2.5 Funzione di densità di probabilità congiunta

Una funzione di densità di probabilità congiunta $f_{XY}(x)$ è una funzione a valori reali tale che l'integrale su un sottoinsieme del suo dominio (o supporto) $B \in S$ è una misura della probabilità che le variabili aleatorie X e Y assumano valori in B

$$\int \int_{B} f_{XY}(x,y)dxdy = \mathbb{P}((X,Y) \in B)$$
(2.17)

La relazione tra distribuzione cumulata congiunta e densità di probabilità congiunta è:

$$\int_{-\infty}^{x} \left(\int_{-\infty}^{y} f_{XY}(x,y) dy \right) dx = \mathbb{P}((X \le x) \cap (Y \le y)) = F_{XY}(x,y) \iff f_{XY}(x,y) = \frac{dF_{XY}(x,y)}{dxdy}$$
(2.18)

2.2.6 Funzione di densità di probabilità marginale

Le funzioni di densità di probabilità marginali $f_Y(y)$ e $f_X(x)$ sono gli integrali della densità congiunta su tutti i valori che può assumere l'altra variabile aleatoria

$$f_Y(y) = \int_{D_x(y)} f_{XY}(x, y) dx = \frac{dF_Y(y)}{dy} = \mathbb{P}(Y \in D_x(y))$$
 (2.19)

$$f_X(x) = \int_{D_y(x)} f_{XY}(x, y) dy = \frac{dF_X(x)}{dx} = \mathbb{P}(X \in D_y(x))$$
 (2.20)

2.2.7 Momenti di variabili aleatorie

2.2.7.1 Momento di ordine q

Il momento di ordine q di una variabile aleatoria X di densità $f_X(x)$ è l'integrale del prodotto tra la funzione di densità di probabilità e la potenza q-esima della variabile x

$$E\{X^q\} = \int_{-\infty}^{+\infty} x^q f_X(x) dx \tag{2.21}$$

2.2.7.2 Momento congiunto di ordine q

Il momento congiunto di ordine q di una coppia di variabili aleatorie X e Y di densità congiunta $f_{XY}(x,y)$ è l'integrale del prodotto tra la funzione di densità di probabilità congiunta e le potenze q-esime delle variabili x e y

$$E\{X^qY^q\} = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} x^q y^q f_{XY}(x,y) dx\right) dy \tag{2.22}$$

2.2.7.3 Valor medio (o atteso)

Il valor medio di una variabile aleatoria X è il momento del primo ordine di X

$$m_X = E\{X\} = \begin{cases} \int_{-\infty}^{\infty} x f_X(x) dx \\ \sum_i p_i x_i \end{cases}$$
 (2.23)

2.2.7.4 Varianza

La varianza di una variabile aleatoria X è il momento del secondo ordine centrato nel valor medio

$$\sigma_X^2 = E\{(X - m_X)^2\} = \int_{-\infty}^{\infty} (x - m_X)^2 f_X(x) dx$$
 (2.24)

Relazione tra la varianza e il momento di primo e secondo ordine non centrati

$$\sigma_X^2 = E\{X^2\} - E^2\{X\} \tag{2.25}$$

2.2.7.5 Covarianza

La covarianza di una coppia di variabili aleatorie X e Y è il momento del secondo ordine congiunto centrato nel valor medio di X e di Y

$$Cov(X,Y) = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} (x - m_X)(y - m_Y) f_{XY}(x,y) dx \right) dy$$
 (2.26)

Relazione tra la covarianza e il momento di primo ordine congiunto

$$Cov(X,Y) = E\{XY\} - m_X m_Y \tag{2.27}$$

2.2.8 Diseguaglianza di Tchebyshev

$$\mathbb{P}(|X - m_X| \ge k) \le \frac{\sigma_X^2}{k^2} \tag{2.28}$$

2.3 Distribuzioni di probabilità notevoli (continue)

2.3.1 Distribuzione uniforme

2.3.1.1 Funzione di densità di probabilità

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & x < a \quad \lor \quad x > b \end{cases}$$
 (2.29)

2.3.1.2 Funzione di distribuzione cumulata

$$F_X(x) = \int_a^x \frac{1}{b-a} dx = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x \ge b \end{cases}$$
 (2.30)

2.3.1.3 Valor medio

$$m_X = \frac{a+b}{2} \tag{2.31}$$

2.3.1.4 Varianza

$$\sigma_X^2 = \frac{(b-a)^2}{12} \tag{2.32}$$

2.3.2 Distribuzione normale $\mathcal{N}(m_X, \sigma_X^2)$

2.3.2.1 Funzione di densità di probabilità

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_X} e^{-\frac{(x-m_X)^2}{2\sigma_X^2}}$$
 (2.33)

2.3.2.2 Funzione di distribuzione cumulata

$$F_X(x) = f_X(x)dx = \frac{1}{2} + erf\left(\frac{x - m_X}{\sigma_X}\right)$$
 (2.34)

2.3.3 Distribuzione normale standardizzata $\mathcal{N}(0,1)$

2.3.3.1 Funzione di densità di probabilità

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \tag{2.35}$$

2.3.3.2 Funzione di distribuzione cumulata

$$F_Z(z) = f_Z(z)dz = \frac{1}{2} + erf(z)$$
 (2.36)

2.3.3.3 Cambio di variabile

$$z = \frac{x - m_X}{\sigma_X} \iff x = \sigma_X z + m_X \tag{2.37}$$

2.3.3.4 Teorema del limite centrale

La densità di probabilità della somma di una successione di variabili aleatorie statisticamente indipendenti X_i con uguali densità di probabilità $f_i(x_i)$ converge per $n \to \infty$ alla distribuzione normale $\mathcal{N}(n\mu, n\sigma^2)$

2.3.4 Distribuzione Gamma

2.3.4.1 Funzione di densità di probabilità

$$f_X(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} e^{-\lambda x} x^{\alpha - 1} \qquad \Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha - 1} dt \qquad (2.38)$$

2.3.4.2 Valor medio

$$m_X = \frac{\alpha}{\lambda} \tag{2.39}$$

2.3.4.3 Varianza

$$\sigma_X^2 = \frac{\alpha}{\lambda^2} \tag{2.40}$$

2.3.5 Distribuzione esponenziale

2.3.5.1 Funzione di densità di probabilità

$$f_X(x) = \lambda e^{-\lambda x} \qquad \forall \lambda > 0$$
 (2.41)

2.3.5.2 Funzione di distribuzione cumulata

$$F_X(x) = 1 - e^{-\lambda x} \tag{2.42}$$

2.3.5.3 Valor medio

$$m_X = \frac{1}{\lambda} \tag{2.43}$$

2.3.5.4 Varianza

$$\sigma_X^2 = \frac{1}{\lambda^2} \tag{2.44}$$

2.3.6 Distribuzione di Maxwell

2.3.6.1 Funzione di densità di probabilità

$$f_X(x) = \sqrt{\frac{2}{\pi}} \frac{x^2}{\sigma^3} e^{-\frac{x^2}{2\sigma^2}}$$
 (2.45)

2.3.6.2 Valor medio

$$m_X = 2\sigma\sqrt{\frac{2}{\pi}}\tag{2.46}$$

2.3.6.3 Varianza

$$\sigma_X^2 = \sigma^2 (3 - \frac{8}{\pi}) \tag{2.47}$$

2.3.7 Distribuzione t-Student a n gradi di libertà

2.3.7.1 Funzione di densità di probabilità

$$f_X(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}} \tag{2.48}$$

2.3.7.2 Valor medio

$$m_X = 0 (2.49)$$

2.3.7.3 Varianza

$$\sigma_X^2 = \frac{n}{n-2} \qquad \forall n > 2 \tag{2.50}$$

Per $n \to \infty$ la distribuzione t-Student tende alla distribuzione normale standardizzata $\mathcal{N}(0,1)$

2.3.8 Distribuzione Chi-quadrato

2.3.8.1 Funzione di densità di probabilità

$$f_X(x) = \frac{x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})}$$
 (2.51)

2.3.8.2 Valor medio

$$m_X = n \tag{2.52}$$

2.3.8.3 Varianza

$$\sigma_X^2 = 2n \tag{2.53}$$

Per $n \to \infty$ la distribuzione Chi-quadrato tende alla distribuzione normale standard $\mathcal{N}(n,2n)$

2.3.9 Distribuzione F (o di Fisher)

2.3.9.1 Funzione di densità di probabilità

$$f_X(x) = \left(\frac{m}{n}\right)^{\frac{m}{2}} \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} \frac{x^{\frac{m}{2}-1}}{\left(1+\frac{mx}{n}\right)^{\frac{m+n}{2}}}$$
(2.54)

2.3.9.2 Valor medio

$$m_X = \frac{n}{n-2} \qquad \forall n > 2 \tag{2.55}$$

2.3.9.3 Varianza

$$\sigma_X^2 = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)} \qquad \forall n > 4$$
(2.56)

2.4 Distribuzioni di probabilità notevoli (discrete)

2.4.1 Distribuzione binomiale B(n, p) (grandi numeri)

La distribuzione binomiale di prove di numerosità n ognuna con probabilità di successo p ha una funzione di densità di probabilità pari alla somma somma dei prodotti tra: il numero di combinazioni senza ripetizione di lunghezza k dell'insieme di numerosità n dei tentativi effettuati; la probabilità di successo p elevata al numero di successi k; la probabilità di insuccesso 1-p elevata al numero di insuccessi n-k

2.4.1.1 Funzione di densità di probabilità

$$f_X(x) = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} \delta(x-k)$$
 (2.57)

2.4.1.2 Funzione di distribuzione cumulata

$$F_X(x) = \sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} U(x-k)$$
 (2.58)

2.4.1.3 Valor medio

$$m_X = np (2.59)$$

2.4.1.4 Varianza

$$\sigma_X^2 = npq \tag{2.60}$$

2.4.1.5 Teorema locale di asintoticità locale di Moivre-Laplace

Per $np, npq \to \infty$ la distribuzione binomiale tende alla distribuzione normale $\mathcal{N}(np, npq)$

2.4.2 Distribuzione di Poisson (eventi rari)

2.4.2.1 Funzione di densità di probabilità

$$f_X(x) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \delta(x-k)$$
 (2.61)

2.4.2.2 Valor medio

$$m_X = \lambda \tag{2.62}$$

2.4.2.3 Varianza

$$\sigma_X^2 = \lambda \tag{2.63}$$

2.4.3 Distribuzione geometrica

2.4.3.1 Funzione di densità di probabilità

$$f_X(x) = \sum_{k=0}^{\infty} p(1-p)^k \delta(x-k) \qquad 0 (2.64)$$

2.4.3.2 Funzione di distribuzione cumulata

$$F_X(x) = \sum_{k=0}^{\infty} p(1-p)^k U(x-k)$$
 (2.65)

2.4.3.3 Valor medio

$$m_X = \frac{1-p}{p} \tag{2.66}$$

2.4.3.4 Varianza

$$\sigma_X^2 = \frac{1 - p}{p^2} \tag{2.67}$$

2.4.4 Distribuzione ipergeometrica

2.4.4.1 Funzione di densità di probabilità

$$f_X(x) = \frac{\binom{N_A}{x} \binom{N_B}{n-x}}{\binom{N}{n}} \tag{2.68}$$

2.4.4.2 Valor medio

$$m_X = \frac{nN_a}{N} \tag{2.69}$$

2.4.4.3 Varianza

$$\sigma_X^2 = \frac{nN_A(N - N_A)(N - n)}{N^2(N - 1)} \tag{2.70}$$

2.4.5 Distribuzione Beta

2.4.5.1 Funzione di densità di probabilità

$$f_X(x) = \begin{cases} Ax^b (1-x)^c & \forall x \in [0,1] \land b, c > -1 \\ 0 & \end{cases}$$

$$A = \frac{\Gamma(b+c+2)}{\Gamma(b+1)\Gamma(c+1)}$$
(2.71)

2.4.5.2 Valor medio

$$m_X = \frac{b+1}{b+c+2} \tag{2.72}$$

2.4.5.3 Varianza

$$\sigma_X^2 = \frac{(b+1)(c+1)}{(b+c+2)^2(b+c+3)} \tag{2.73}$$

2.4.6 Distribuzione di Weibull $W(\alpha, \beta)$

2.4.6.1 Funzione di densità di probabilità

$$f_X(x) = \begin{cases} \alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}} & \forall x \in [0, +\infty) \quad \land \quad \alpha, \beta \in \mathbb{R} \\ 0 & \end{cases}$$
 (2.74)

2.4.6.2 Valor medio

$$m_X = \frac{1}{\alpha^{\beta}} \Gamma \left(1 + \frac{1}{\beta} \right) \tag{2.75}$$

2.4.6.3 Varianza

$$\sigma_X^2 = \alpha^{-\frac{2}{\beta}} \left(\Gamma \left(1 + \frac{2}{\beta} \right) - \Gamma^2 \left(1 + \frac{1}{\beta} \right) \right) \tag{2.76}$$

Capitolo 3

Statistica

3.1 Statistica descrittiva

3.1.1 Numerosità del campione

La numerosità di un campione è il numero di elementi di una popolazione presi in considerazione per le analisi statistiche

$$n$$
 (3.1)

3.1.2 Valori empirici (o determinazioni o realizzazioni di X)

I valori empirici sono i dati ricavati dalle osservazioni effettuate su un campione di una popolazione

$$\{x_1, x_2, \dots, x_n\} \tag{3.2}$$

3.1.3 Insieme delle modalità di un carattere X

L'insieme delle modalità di un carattere X è l'insieme dei valori che possono assumere le modalità del carattere

$$\Delta \subseteq \mathbb{R} \tag{3.3}$$

3.1.4 Classi di modalità di un carattere X

Le classi di modalità di un carattere X sono una possibile partizione dell'insieme delle modalità Δ del carattere

$$\Delta_{i} = [a_{i}, b_{i}) \in \Delta \quad | \quad \begin{cases} \Delta = \bigcup_{i}^{m} \Delta_{i} \\ \Delta_{i} \cap \Delta_{j} = \emptyset \quad \forall i \neq j \end{cases}$$

$$(3.4)$$

La numerosità m delle classi dovrebbe avvicinarsi alla parte intera di: $m'=1+\frac{10}{3}log_{10}n$

3.1.5 Distribuzioni di frequenze

3.1.5.1 Frequenza assoluta

La frequenza assoluta di una classe Δ_i è il numero di elementi della serie di dati che appartengono a Δ_i

$$n_i \mid x_i \in \Delta_i \implies \sum_{i=1}^n n_i = n$$
 (3.5)

3.1.5.2 Frequenza relativa (o probabilità empirica)

La frequenza relativa di una classe Δ_i è il rapporto tra il numero di elementi della serie di dati che appartengono alla classe Δ_i e il numero di dati totale

$$f_i = \frac{n_i}{n} \tag{3.6}$$

3.1.5.3 Frequenza cumulata assoluta

La frequenza cumulata assoluta è la somma delle prime i frequenze assolute delle prime i classi

$$N_i = \sum_{j=1}^i n_j \tag{3.7}$$

3.1.5.4 Frequenza cumulata relativa

La frequenza cumulata relativa è la somma delle prime i probabilità empiriche delle prime i classi

$$F_i = \sum_{j=1}^{i} f_j = \frac{N_i}{n}$$
 (3.8)

3.1.6 Funzione di distribuzione delle frequenze

La funzione di distribuzione delle frequenze associa ad ogni classe Δ_i il rapporto tra la propria frequenza assoluta e la propria ampiezza $\Delta_i = b_i - a_i$

$$\phi_n(x): \quad \Delta \to \mathbb{R} \quad | \quad \phi_n(x) = \frac{n_i}{\Delta_i} = \frac{n_i}{b_i - a_i}$$
 (3.9)

3.1.7 Funzione di distribuzione delle probabilità empiriche

La funzione di distribuzione delle probabilità empiriche associa ad ogni classe Δ_i il rapporto tra la propria probabilità empirica e la propria ampiezza $\Delta_i = b_i - a_i$

$$f_n(x) = \frac{n_i}{n\Delta_i} = \frac{f_i}{\Delta_i} \tag{3.10}$$

Per $n \to \infty$ \wedge $\Delta_i \to 0$ la distribuzione delle probabilità empiriche $f_n(x)$ tende alla densità di probabilità $f_X(x)$

3.1.8 Funzione di distribuzione delle frequenze cumulate relative

La funzione di distribuzione delle frequenze cumulate relative associa ad ogni classe Δ_i la probabilità che X assuma valori minori o uguali al valore centrale della classe

$$F_i(x) = \int_{\Delta_i} f_n(x) dx = \sum_{i=1}^n \frac{f_i}{\Delta_i}$$
(3.11)

Per $n \to \infty$ \wedge $\Delta_i \to 0$ la distribuzione delle frequenze cumulate relative $F_i(x)$ tende alla distribuzione cumulata $F_X(x)$

3.1.9 Indici di posizione

3.1.9.1 Media pesata

La media pesata è il rapporto tra: la somma dei valori centrali \bar{x}_i di ciascuna classe moltiplicati per la frequenza assoluta della classe e il numero di dati totale

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{m} n_i \bar{x}_i \tag{3.12}$$

Nel caso in cui la serie di dati non sia raggruppata, e quindi $n_i = 1$, la media pesata viene detta media aritmetica

3.1.9.2 Media spuntata $(\pm \delta)$

La media spuntata è la media pesata calcolata considerando solo una percentuale dei dati centrali che si trovano nell'intervallo $[1 + \delta, n - \delta]$

$$\bar{x}_t = \frac{1}{n} \sum_{i=1+\delta}^{n-\delta} x_i \tag{3.13}$$

3.1.9.3 Media mobile

La media mobile è la media pesata a intervalli regolari di periodo k; è data dalla somma del prodotto tra k dati x_{j+k} presi in considerazione e i pesi p_j

$$\bar{x}_M(t+h) = \sum_{j=1}^k p_j x_{t+j}$$
 $t = 0, 1, \dots, n-k$ (3.14)

3.1.9.4 Moda

La moda è il valore centrale della classe Δ_i avente la frequenza maggiore

$$Mo = \bar{x}_i \in \Delta_i \quad | \quad f_i = max\{f_1, f_2, \dots, f_m\}$$

$$(3.15)$$

3.1.9.5 Mediana

La mediana è il valore dell'insieme delle modalità di un carattere Δ che divide in parti uguali la superficie coperta dalla funzione delle frequenze relative $f_n(x)$

$$\tilde{x} \in \Delta \quad | \quad \mathbb{P}(X \le \tilde{x}) = \mathbb{P}(X \ge \tilde{x}) = \frac{1}{2} \implies \tilde{x} = a_k + \frac{\Delta_k}{f_k} \left(\frac{1}{2} - F_{k-1}\right)$$
 (3.16)

3.1.9.6 Quantile q-esimo

Il quantile q-esimo è il valore massimo delle modalità per cui la frequenza cumulata relativa è minore o uguale al valore q

$$x_q \in \Delta_q \quad | \quad \mathbb{P}(X \le x_q) = F_X(x_q) = q$$
 (3.17)

3.1.10 Indici di dispersione

3.1.10.1 Varianza

La varianza è il rapporto tra: la somma pesata dei quadrati degli scarti tra ogni valore centrale \bar{x}_i e la media pesata della distribuzione \bar{x}_i ; il numero di dati totale.

$$\sigma_X^2 = \frac{1}{n} \sum_{i=1}^n (\bar{x}_i - \bar{x})^2 \tag{3.18}$$

La varianza si può esprimere come: $\sigma_X^2 = \sigma_W^2 + \sigma_B^2$

3.1.10.2 Scarto quadratico medio (o deviazione standard)

Lo scarto quadratico medio è la radice quadrata positiva della varianza

$$\sigma_X = \sqrt{\sigma_X^2} \tag{3.19}$$

3.1.10.3 Media pesata delle varianze

La media pesata delle varianze è il rapporto tra la somma pesata delle varianze calcolate all'interno di ciascuna classe Δ_i e il numero di dati totale

$$\sigma_W^2 = \frac{1}{2} \sum_{i=1}^m n_i \sigma_i^2 \tag{3.20}$$

La media pesata delle varianze si avvicina alla varianza σ_X^2 se le classi Δ_i hanno una varianza omogenea (cioè hanno un grado di dispersione simile)

3.1.10.4 Varianza delle medie

La varianza delle medie è il rapporto tra la somma pesata dei quadrati degli scarti tra: le medie \bar{x}_{Δ_i} all'interno di ciascuna classe e la media aritmetica della serie di dati; il numero di dati totale

$$\sigma_B^2 = \frac{1}{n} \sum_{i=1}^m n_i (\bar{x}_{\Delta_i} - \bar{x})^2$$
 (3.21)

La varianza delle medie misura l'eterogeneità delle classi Δ_i

3.1.10.5 Coefficiente di asimmetria

Il coefficiente di asimmetria è il rapporto tra il momento centrale di ordine 3 di una distribuzione e il cubo della deviazione standard

$$\alpha_3 = \frac{m_3}{\sigma^3}$$
 $m_3 = \frac{1}{n} \sum_{i=1}^m n_i (\bar{x}_i - \bar{x})^3$ (3.22)

Se il coefficiente di asimmetria è nullo la distribuzione è simmetrica; se è negativo la distribuzione è asimmetrica verso sinistra; se è positivo la distribuzione è asimmetrica verso destra

3.1.10.6 Covarianza

La covarianza è il rapporto tra: le somme pesate del prodotto tra gli scarti tra i valori centrali delle classi (di X e di Y) e la media aritmetica (di X e di Y); il numero di dati totale

$$s_{xy} = \frac{1}{n} \sum_{i=1}^{m} \sum_{j=1}^{l} n_{ij} (\bar{x}_i - \bar{x}) (\bar{y}_j - \bar{y})$$
(3.23)

3.1.11 Indice di connessione χ^2 di Pearson

$$\chi^2 = n \left(\sum_{i=1}^m \sum_{j=1}^l \frac{n_{ij}}{n_i n_j} \right) \tag{3.24}$$

L'indice di connessione χ^2 di Pearson è nullo se e solo se i dati del campione sono statisticamente indipendenti

3.1.12 Regressione lineare

3.1.12.1 Coefficiente di traslazione

Il coefficiente di traslazione è la differenza tra la media \bar{y} e il prodotto tra la media \bar{x} e il rapporto tra la covarianza s_{xy} e la varianza σ_x^2

$$a = \bar{y} - \frac{s_{xy}}{\sigma_x^2} \bar{x} \tag{3.25}$$

3.1.12.2 Coefficiente di regressione lineare

Il coefficiente di regressione lineare è il rapporto tra la covarianza s_{xy} e la varianza σ_x^2

$$b = \frac{s_{xy}}{\sigma_x^2} \tag{3.26}$$

3.1.12.3 Retta di regressione lineare

La retta di regressione lineare di Y su X è una retta il cui coefficiente di traslazione è a e il cui coefficiente angolare è il coefficiente di regressione lineare b

$$y = a + bx (3.27)$$

3.1.12.4 Coefficiente di determinazione lineare

Il coefficiente di determinazione lineare è il rapporto tra la covarianza s_{xy} e il prodotto delle deviazioni standard di X e di Y

$$\rho(X,Y) = \frac{s_{xy}}{\sigma_x \sigma_y} \in [-1,1] \tag{3.28}$$

Se il valore assoluto del coefficiente di determinazione lineare è circa a 1 X e Y hanno una forte correlazione lineare; se è circa 0 X e Y hanno una scarsa correlazione lineare

3.1.12.5 Errore standard

L'errore standard è il prodotto tra la deviazione standard di Y e la radice quadrata della differenza tra 1 e il quadrato del coefficiente di determinazione lineare ρ

$$\sigma_{xy} = \sigma_y \sqrt{1 - \rho^2(X, Y)} \tag{3.29}$$

3.2 Modelli statistici

3.2.1 Modello uniforme $\mathcal{R}(\theta_1, \theta_2)$

Il modello uniforme descrive caratteri che possono assumere casualmente qualsiasi modalità in un intervallo limitato incognito

3.2.1.1 Famiglia di densità

$$f(x, \theta_1, \theta_2) = \frac{1}{\theta_2 - \theta_1} \qquad x \in [\theta_1, \theta_2]$$
 (3.30)

3.2.1.2 Parametri incogniti

$$(\theta_1, \theta_2) \mid -\infty < \theta_1 < \theta_2 < +\infty \tag{3.31}$$

3.2.2 Modello Normale-1 $\mathcal{N}(\theta, \sigma^2)$

Il modello Normale-1 descrive caratteri che hanno una distribuzione normale con valor medio incognito

3.2.2.1 Famiglia di densità

$$f(x,\theta) = \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{(x-\theta)^2}{2\sigma^2}}$$
 (3.32)

3.2.2.2 Parametri incogniti

$$\theta \in \Theta = \mathbb{R} \tag{3.33}$$

3.2.3 Modello Normale-2 $\mathcal{N}(\mu, \theta)$

Il modello Normale-2 descrive caratteri che hanno una distribuzione normale con varianza incognita

3.2.3.1 Famiglia di densità

$$f(x,\theta) = \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{(x-\mu)^2}{2\theta}}$$
 (3.34)

3.2.3.2 Parametri incogniti

$$\theta \in \Theta = \mathbb{R}^+ \tag{3.35}$$

3.2.4 Modello Normale generale $\mathcal{N}(\theta_1, \theta_2)$

Il modello Normale generale descrive caratteri che hanno una distribuzione normale con varianza e valor medio incogniti

3.2.4.1 Famiglia di densità

$$f(x,\theta_1,\theta_2) = \frac{1}{\sqrt{2\pi}\theta_2} e^{-\frac{(x-\theta_1)^2}{2\theta_2}}$$
(3.36)

3.2.4.2 Parametri incogniti

$$(\theta_1, \theta_2) \mid -\infty < \theta_1 < +\infty \quad \land \quad \theta_2 > 0 \tag{3.37}$$

3.2.5 Modello Binomiale $\mathcal{B}i(n,\theta)$

Il modello Binomiale descrive i dati risultanti da una sequenza di n (grande) prove ripetute e indipendenti con probabilità di successo incognita

3.2.5.1 Famiglia di densità

$$f(x,\theta) = \sum_{k=0}^{n} \binom{n}{k} \theta^k (1-\theta)^{n-k} \delta(x-k)$$
(3.38)

3.2.5.2 Parametri incogniti

$$\theta \in \Theta = (0,1) \tag{3.39}$$

3.2.6 Modello di Poisson $\Pi(\theta)$

Il modello di Poisson descrive i dati risultanti da una sequenza di n prove ripetute e indipendenti con probabilità di successo incognita (piccola)

3.2.6.1 Famiglia di densità

$$f(x,\theta) = e^{-\theta} \sum_{k=0}^{\infty} \frac{\theta^k}{k!} \delta(x-k)$$
(3.40)

3.2.6.2 Parametri incogniti

$$\theta \in \Theta = \mathbb{R}^+ \tag{3.41}$$

3.2.7 Modello esponenziale $\mathcal{E}(\theta)$

3.2.7.1 Famiglia di densità

$$f(x,\theta) = \theta e^{\theta x} \qquad x \ge 0 \tag{3.42}$$

3.2.7.2 Parametri incogniti

$$\theta \in \Theta = \mathbb{R}^+ \tag{3.43}$$

3.3 Statistiche campionarie

3.3.1 Statistica campionaria (o riassunto campionario)

La statistica campionaria è una variabile casuale $g(\mathbf{X})$ che si esprime per mezzo delle n variabili casuali $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$

3.3.2 Momenti campionari

3.3.2.1 Momento campionario di ordine q

Il momento campionario di ordine q è una statistica campionaria data dal rapporto tra la somma delle q-esime potenze delle variabili aleatorie X_i e la numerosità del campione

$$G_n = \frac{1}{n} \sum_{i=1}^n X_i^q \tag{3.44}$$

3.3.2.2 Media campionaria

La media campionaria è il rapporto tra la somma delle n variabili aleatorie X_i e la numerosità del campione

$$\mu_n = \frac{1}{n} \sum_{i=1}^n X_i \tag{3.45}$$

3.3.2.3 Varianza campionaria

La varianza campionaria è il rapporto tra il quadrato degli scarti tra la *i*-esima variabile aleatoria X_i e la media campionaria μ_n e la numerosità del campione

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu_n)^2$$
(3.46)

3.3.2.4 Varianza campionaria corretta

La varianza campionaria corretta è il rapporto tra il quadrato degli scarti tra la *i*-esima variabile aleatoria X_i e la media campionaria μ_n e la numerosità del campione meno 1

$$\hat{S}_n^2 = \frac{n}{n-1} S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu_n)^2$$
(3.47)

3.3.2.5 Deviazione standard campionaria corretta (campionamento con ripetizione)

La deviazione standard campionaria corretta è la radice quadrata della varianza campionaria corretta

$$\hat{S}_n = \sqrt{\hat{S}_n^2} = \sqrt{\frac{n}{n-1}} S_n \tag{3.48}$$

3.3.2.6 Deviazione standard campionaria corretta (campionamento senza ripetizione)

La deviazione standard campionaria corretta è la radice quadrata della varianza campionaria corretta

$$\hat{S}_n = \sqrt{\hat{S}_n^2} = \sqrt{\frac{N-1}{N} \frac{n}{n-1}} S_n \tag{3.49}$$

3.3.3 Distribuzione campionaria delle medie

3.3.3.1 Valor medio

Il valor medio della distribuzione campionaria della media campionaria μ_n coincide con il valor medio μ della distribuzione teorica del carattere X

$$\mu = \mu_n \tag{3.50}$$

3.3.3.2 Varianza(campionamento con ripetizione)

La varianza della distribuzione campionaria delle medie è uguale al rapporto tra la varianza teorica della distribuzione del carattere X e la numerosità del campione

$$\sigma_n^2 = \frac{\sigma^2}{n} \tag{3.51}$$

3.3.3.3 Varianza (campionamento senza ripetizione)

La varianza della distribuzione campionaria delle medie è uguale al prodotto tra: il rapporto tra la varianza teorica σ^2 e la numerosità del campione n; il rapporto tra: la differenza tra il numero di elementi della popolazione N e la numerosità del campione n; il numero di elementi della popolazione meno 1

$$\sigma_n^2 = \frac{\sigma^2}{n} \frac{N - n}{N - 1} \tag{3.52}$$

3.3.3.4 Deviazione standard

La deviazione standard della distribuzione campionaria delle medie è la radice quadrata della varianza

$$\sigma_n = \sqrt{\sigma_n^2} \tag{3.53}$$

3.3.4 Distribuzione campionaria delle varianze

3.3.4.1 Teorema χ^2

Se da una popolazione normalmente distribuita con varianza σ^2 si estraggono n campioni casuali, la variabile aleatoria

$$Q_n(\omega) = \frac{nS_n^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu_n)^2$$
 (3.54)

ha distribuzione χ^2_{n-1} con n-1 gradi di libertà

3.3.4.2 Valor medio corretto (campionamento con ripetizione)

Il valor medio della distribuzione campionaria delle varianze corretta coincide con la varianza teorica σ^2

$$E\{\hat{S}_n^2\} = \sigma^2 \tag{3.55}$$

3.3.4.3 Varianza corretta (campionamento con ripetizione)

La varianza della distribuzione campionaria delle varianze corretta è il rapporto tra 2 volte il quadrato della varianza teorica σ^2 e la numerosità del campione n meno 1

$$\sigma^2(\hat{S}_n^2) = \frac{2}{n-1}\sigma^4 \tag{3.56}$$

3.3.4.4 Valor medio corretto (campionamento senza ripetizione)

Il valor medio della distribuzione campionaria delle varianze è il prodotto tra: il rapporto tra la numerosità degli elementi della popolazione N e la numerosità N meno 1; il rapporto tra la numerosità del campione n meno 1 e la numerosità n; la varianza teorica σ^2

$$E\{\hat{S}_n^2\} = \frac{N}{N-1} \frac{n-1}{n} \sigma^2 \tag{3.57}$$

3.3.4.5 Varianza corretta (campionamento senza ripetizione)

La varianza della distribuzione campionaria delle varianze corretta è il prodotto tra: la numerosità degli elementi della popolazione N meno 1 e la numerosità N; il rapporto tra il quadrato dello scarto tra la i-esima variabile aleatoria e la media campionaria μ_n e la numerosità del campione n meno 1

$$\sigma^{2}(\hat{S}_{n}^{2}) = \frac{N-1}{N} \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \mu_{n})^{2}$$
(3.58)

3.3.5 Deviazione standard corretta (campionamento senza ripetizione)

La deviazione standard della distribuzione campionaria delle varianze corretta è la radice quadrata della varianza

$$\sigma_n = \sqrt{\sigma^2(\hat{S}_n^2)} \tag{3.59}$$

3.3.6 Distribuzione campionaria delle frequenze

La distribuzione campionaria delle frequenze per $n \to \infty$ tende al modello Normale generale $\mathcal{N}(\theta_1, \theta_2)$

3.4 Stime di statistiche campionarie

3.4.1 Stimatore puntuale

Avendo a disposizione le realizzazioni $(x_1, x_2, ..., x_n)$ di un campione \mathbf{X} , lo stimatore puntuale di un parametro incognito θ di un modello statistico è una statistica campionaria G_n

$$G_n = g(\mathbf{X}) = g(X_1, X_2, \dots, X_n)$$
 (3.60)

3.4.2 Proprietà degli stimatori

3.4.2.1 Stimatore corretto (o imparziale o non distorto)

Lo stimatore corretto di θ è una statistica campionaria il cui valore atteso $E\{G_n\}$ coincide con il valore teorico del parametro da stimare

$$G_n \mid E\{G_n\} = \theta \tag{3.61}$$

3.4.2.2 Stimatore consistente in probabilità

Lo stimatore consistente in probabilità di θ è una statistica campionaria che converge al valore teorico θ con probabilità 1 quando la numerosità del campione tende ad ∞

$$G_n \mid \lim_{n \to \infty} \mathbb{P}(|G_n - \theta| \le \epsilon) = 1 \quad \forall \epsilon > 0$$
 (3.62)

3.4.2.3 Stimatore consistente in media quadratica

Lo stimatore consistente in media quadratica di θ è una statistica campionaria il cui scarto al quadrato con il valore teorico θ si annulla quando la numerosità del campione tende a ∞

$$G_n \quad | \quad \lim_{n \to \infty} (G_n - \theta)^2 = 0 \tag{3.63}$$

La consistenza in media quadratica implica la convergenza in probabilità (non vale il viceversa) Uno stimatore è consistente in media quadratica se: $\lim_{n\to\infty} \sigma^2(G_n) = 0$

3.4.2.4 Stimatore efficiente

Lo stimatore efficiente di θ è uno stimatore corretto che ha una distribuzione campionaria avente varianza inferiore rispetto a quella degli altri stimatori di θ

$$G_n \mid \forall G_n^i, \quad \sigma^2(G_n) \le \sigma^2(G_n^i)$$
 (3.64)

3.4.3 Criterio di stima puntuale

Il miglior stimatore di θ è il più efficiente tra gli stimatori corretti e consistenti di θ

$$G_n \mid \begin{cases} \sigma^2(G_n) = \min\{\sigma^2(G_n^i)\} \\ \lim_{n \to \infty} \mathbb{P}(|G_n - \theta| \le \epsilon) = 1 \end{cases} \quad \forall \epsilon > 0$$
 (3.65)

3.4.4 Stima ottima di un parametro

La stima ottima di un parametro θ incognito è il valore del miglior stimatore di θ calcolato attraverso le n realizzazioni x_i del campione \mathbf{X}

$$\hat{\theta} = g_n(x_1, x_2, \dots, x_n) \tag{3.66}$$

3.4.5 Stima ottima del valor medio

La stima ottima del valor medio è la media campionaria μ_n

$$\hat{\mu} = \mu_n = \frac{1}{n} \sum_{i=1}^n x_i \tag{3.67}$$

3.4.6 Stima ottima della varianza

La stima ottima della varianza (effettuata con campioni estratti con ripetizione) è la varianza campionaria corretta \hat{S}_n^2

$$\hat{\sigma}^2 = \hat{S}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \mu_n)^2$$
(3.68)

3.4.7 Densità di probabilità congiunta di n realizzazioni x_i

La densità di probabilità congiunta di n variabili aleatorie indipendenti X_i aventi realizzazioni x_1, x_2, \ldots, x_n e densità di probabilità $f(x_i, \theta)$ è il prodotto delle densità di probabilità delle variabili aleatorie

$$L(\theta; x_1, x_2, \dots, x_n) = f(x_1, \theta) f(x_2, \theta) \dots f(x_n, \theta)$$
(3.69)

3.4.8 Stima di massima verosimiglianza

La stima di massima verosimiglianza per il parametro θ è il valore del parametro θ per cui è massima la densità di probabilità congiunta delle realizzazioni del carattere \mathbf{X}

$$\hat{\theta} = MLE(\theta) \quad | \quad L(\hat{\theta}, \mathbf{x}) = \max_{\theta \in \Theta} \{L(\theta_i, \mathbf{x})\}$$
 (3.70)

3.4.9 Equazione di verosimiglianza

L'equazione di verosimiglianza è un'equazione differenziale che individua i punti stazionari di massimo della di densità di probabilità $L(\theta_i, \mathbf{x})$, cioè la stima di massima verosimiglianza di θ

$$\sum_{i=1}^{n} \frac{\partial f(\theta, x_i)}{\partial \theta} \frac{1}{f(\theta, x_i)} = 0$$
(3.71)

3.4.10 Livello fiduciario (o probabilità fiduciaria)

Il livello fiduciario è valore di probabilità scelto a priori che quantifica il grado di accettazione dell'errore commesso nella stima di un parametro θ

$$\gamma \in [0, 1] \tag{3.72}$$

3.4.11 Intervallo di confidenza (o fiduciario)

L'intervallo di confidenza è l'intervallo di valori di Θ per cui la probabilità che θ cada nell'intervallo è maggiore o uguale al livello fiduciario γ

$$[\theta_{min}, \theta_{max}] \in \Theta \quad | \quad \mathbb{P}(\theta \in [\theta_{min}, \theta_{max}]) \ge \gamma \qquad \forall \theta \in \Theta$$
 (3.73)

3.4.11.1 Intervallo fiduciario simmetrico (o a due code)

L'intervallo fiduciario simmetrico è un intervallo fiduciario centrato sul valore calcolato dello stimatore puntuale $\hat{\theta}$

$$[\hat{\theta} - \delta, \hat{\theta} + \delta] \in \Theta \quad | \quad \mathbb{P}(\theta \in [\hat{\theta} - \delta, \hat{\theta} + \delta]) \ge \gamma \quad \forall \theta \in \Theta$$
 (3.74)

3.4.11.2 Intervallo fiduciario asimmetrico (o a una coda)

L'intervallo fiduciario asimmetrico è un intervallo fiduciario in cui si stima che θ sia minore o uguale oppure maggiore o uguale a determinati valori

$$(-\infty, \theta_{max}] \in \Theta \quad | \quad \mathbb{P}(\theta \in (-\infty, \theta_{max}]) \ge \gamma \qquad \forall \theta \in \Theta$$
 (3.75)

$$[\theta_{min}, +\infty) \in \Theta \quad | \quad \mathbb{P}(\theta \in [\theta_{min}, +\infty)) \ge \gamma \quad \forall \theta \in \Theta$$
 (3.76)

3.4.12 Coefficiente fiduciario di una popolazione con varianza nota

Il coefficiente fiduciario è il quantile di ordine $q = \frac{1+\gamma}{2}$ della legge Normale standard $\mathcal{N}(0,1)$

$$z_{\frac{1+\gamma}{2}} \mid F_Z(z_{\frac{1+\gamma}{2}}) = \mathbb{P}(Z \le z_{\frac{1+\gamma}{2}}) = \frac{1+\gamma}{2}$$
 (3.77)

3.4.13 Coefficiente fiduciario di una popolazione con varianza ignota

Il coefficiente fiduciario è il quantile di ordine $q=\frac{1+\gamma}{2}$ della legge t-Student

$$t_{\frac{1+\gamma}{2}} \mid F_T(t_{\frac{1+\gamma}{2}}) = \mathbb{P}(T \le t_{\frac{1+\gamma}{2}}) = \frac{1+\gamma}{2}$$
 (3.78)

3.4.14 Intervalli di confidenza per la media

3.4.14.1 Intervallo di confidenza simmetrico di una popolazione con varianza nota

L'intervallo di confidenza simmetrico per la media per una stima al livello fiduciario γ ha come estremi i limiti fiduciari dati dalla somma (differenza) tra il valore calcolato della media campionaria μ_n e il prodotto tra la variazione standard $\frac{\sigma}{\sqrt{n}}$ e il coefficiente fiduciario $z_{\frac{1+\gamma}{2}}$

$$\mu \in \left[\mu_n - \frac{\sigma}{\sqrt{n}} z_{\frac{1+\gamma}{2}}, \mu_n + \frac{\sigma}{\sqrt{n}} z_{\frac{1+\gamma}{2}}\right] \tag{3.79}$$

3.4.14.2 Intervallo di confidenza asimmetrico di una popolazione con varianza nota

L'intervallo di confidenza asimmetrico per la media per una stima al livello fiduciario γ ha come estremi i limiti fiduciari dati: da $-\infty$ e la somma tra il valore calcolato della media campionaria μ_n e il prodotto tra la variazione standard $\frac{\sigma}{\sqrt{n}}$ e il coefficiente fiduciario z_{γ} (superiore); oppure dalla differenza tra il valore calcolato della media campionaria μ_n e il prodotto tra la variazione standard $\frac{\sigma}{\sqrt{n}}$ e il coefficiente fiduciario z_{γ} e $+\infty$ (inferiore)

$$\mu \in (-\infty, \mu_n + \frac{\sigma}{\sqrt{n}} z_{\gamma}] \tag{3.80}$$

$$\mu \in \left[\mu_n - \frac{\sigma}{\sqrt{n}} z_\gamma, +\infty\right) \tag{3.81}$$

3.4.14.3 Intervallo di confidenza simmetrico di una popolazione con varianza ignota

L'intervallo di confidenza simmetrico per la media per una stima al livello fiduciario γ ha come estremi i limiti fiduciari dati dalla somma (differenza) tra il valore calcolato della media campionaria μ_n e il prodotto tra il valore calcolato della deviazione standard campionaria $\frac{\hat{S}_n^2}{\sqrt{n}}$ e il coefficiente fiduciario $t_{\frac{1+\gamma}{2}}$

$$\mu \in \left[\mu_n - \frac{\hat{S}_n^2}{\sqrt{n}} t_{\frac{1+\gamma}{2}}, \mu_n + \frac{\hat{S}_n^2}{\sqrt{n}} t_{\frac{1+\gamma}{2}}\right]$$
(3.82)

3.4.14.4 Intervallo di confidenza asimmetrico di una popolazione con varianza ignota

L'intervallo di confidenza asimmetrico per la media per una stima al livello fiduciario γ ha come estremi i limiti fiduciari dati: da $-\infty$ e la somma tra il valore calcolato della media campionaria μ_n e il prodotto tra il valore calcolato della deviazione standard campionaria $\frac{\hat{S}_n^2}{\sqrt{n}}$ e il coefficiente fiduciario $t_{\frac{1+\gamma}{2}}$ (superiore); oppure dalla differenza tra il valore calcolato della media campionaria μ_n e il prodotto tra il valore calcolato della deviazione standard campionaria $\frac{\hat{S}_n^2}{\sqrt{n}}$ e il coefficiente fiduciario $t_{\frac{1+\gamma}{2}}$ e $+\infty$ (inferiore)

$$\mu \in (-\infty, \mu_n + \frac{\hat{S}_n^2}{\sqrt{n}} t_\gamma] \tag{3.83}$$

$$\mu \in \left[\mu_n - \frac{\hat{S}_n^2}{\sqrt{n}} t_\gamma, +\infty\right) \tag{3.84}$$

3.4.15 Determinazione del livello fiduciario

Il livello fiduciario γ si può determinare, fissato uno scarto $\delta = \frac{\sigma}{\sqrt{n}} z_{\frac{1+\gamma}{2}}$, come 2 volte il valore che la funzione degli errori $erf(z_{\frac{1+\gamma}{2}})$ assume in $\frac{\sqrt{n}}{\sigma}\delta$

$$\gamma = 2erf\left(\frac{\sqrt{n}}{\sigma}\delta\right) \tag{3.85}$$

3.4.16 Determinazione della numerosità del campione

La numerosità del campione n necessaria per sostenere che il valor medio rientri nell'intervallo di confidenza fissato un livello fiduciario γ è dato dal quadrato del prodotto tra il coefficiente fiduciario $z_{\frac{1+\gamma}{2}}$ e il rapporto tra la varianza σ e lo scarto $\delta = |\mu_n - \mu|$

$$n \ge \left(z_{\frac{1+\gamma}{2}} \frac{\sigma}{\delta}\right)^2 \tag{3.86}$$

3.4.17 Intervalli di confidenza per la varianza

3.4.17.1 Intervallo di confidenza simmetrico

L'intervallo di confidenza simmetrico per la varianza per una stima al livello fiduciario γ ha come estremi i limiti fiduciari dati dal prodotto tra il valore calcolato della varianza campionaria corretta \hat{S}_n^2 e il rapporto tra la numerosità del campione n meno 1 e il coefficiente fiduciario sinistro $\chi_2 = \frac{1+\gamma}{2}$ e destro $\chi_1 = \frac{1-\gamma}{2}$

$$\mu \in \left[\frac{n-1}{\chi_2} \hat{S}_n^2, \frac{n-1}{\chi_1} \hat{S}_n^2\right] \tag{3.87}$$

3.4.17.2 Intervallo di confidenza asimmetrico

L'intervallo di confidenza asimmetrico per la varianza per una stima al livello fiduciario γ ha come estremi i limiti fiduciari dati: da $-\infty$ e il prodotto tra il valore calcolato della varianza campionaria corretta \hat{S}_n^2 e il rapporto tra la numerosità del campione n meno 1 e il coefficiente fiduciario destro $\chi_1 = 1 - \gamma$ (superiore); oppure dal prodotto tra il valore calcolato della varianza campionaria corretta \hat{S}_n^2 e il rapporto tra la numerosità del campione n meno 1 e il coefficiente fiduciario sinistro $\chi_2 = \gamma$ e $+\infty$ (inferiore)

$$\mu \in (-\infty, \frac{n-1}{\gamma_1} \hat{S}_n^2]$$
 (3.88)

$$\mu \in \left[\frac{n-1}{\gamma_2}\hat{S}_n^2, +\infty\right) \tag{3.89}$$

3.5 Test parametrici

3.5.1 Ipotesi statistiche

3.5.1.1 Ipotesi nulla

L'ipotesi nulla è un'ipotesi statistica formulata su un generico fenomeno aleatorio

$$H_0 \tag{3.90}$$

3.5.1.2 Ipotesi parametrica

L'ipotesi parametrica è un'ipotesi nulla che si riferisce a certi parametri θ di una distribuzione teorica appartenenti ad un determinato sottoinsieme Θ_0 del dominio Θ compatibile con il modello statistico adottato

$$H_0: \quad \theta \in \Theta_0 \subset \Theta$$
 (3.91)

3.5.1.3 Ipotesi non parametrica

L'ipotesi non parametrica è un'ipotesi nulla che si riferisce alla natura della funzione di distribuzione $F_X(x)$ appartenente ad un determinato sottoinsieme \mathcal{F}_0 del dominio delle funzioni di distribuzione \mathcal{F} compatibili con il modello statistico adottato

$$H_0: F_X(x) \in \mathcal{F}_0 \subset \mathcal{F}$$
 (3.92)

3.5.1.4 Ipotesi semplice

L'ipotesi semplice è un'ipotesi statistica che si riferisce ad un solo elemento

3.5.1.5 Ipotesi composta

L'ipotesi semplice è un'ipotesi statistica che si riferisce a più elementi

3.5.2 Test statistico

Il test statistico è la regola che permette di decidere se e in quale misura accettare o respingere un'ipotesi statistica esaminando le osservazioni effettuate su una statistica campionaria

3.5.3 Impostazione di un test statistico

L'impostazione di un test statistico avviene attraverso le seguenti operazioni:

- si definisce la legge probabilistica per il carattere aleatorio osservato compatibile con il modello statistico della popolazione
- si definisce l'ipotesi nulla H_0 da verificare
- si definisce l'ipotesi alternativa H_1 , valida se e solo se si rifiuta H_0
- si definisce la statistica campionaria $G_n(\mathbf{X})$ avente distribuzione nota quando H_0 è valida
- si suddivide lo spazio delle possibili osservazioni campionarie \mathcal{G} in due sottoinsiemi disgiunti: la regione di accettazione di H_0 (\mathcal{A}) e la regione di rifiuto (o regione critica) di H_0 (\mathcal{C})
- si assume come criterio decisionale la regola: si accetta H_0 se la realizzazione osservata della statistica campionaria di $G_n(\mathbf{X})$ appartiene ad \mathcal{A} ; si accetta H_1 se la realizzazione osservata della statistica campionaria di $G_n(\mathbf{X})$ appartiene ad \mathcal{C}

3.5.4 Errore di prima specie

L'errore di prima specie α è l'errore che si commette se si rigetta l'ipotesi nulla H_0 quando essa è vera (falso negativo)

$$\alpha = \mathbb{P}(H_1|H_0) = \mathbb{P}(G_n \in \mathcal{C}|H_0 \text{ vera})$$
(3.93)

3.5.5 Errore di seconda specie

L'errore di seconda specie β è l'errore che si commette se si accetta l'ipotesi nulla H_0 quando essa non è vera (falso positivo)

$$\beta = \mathbb{P}(H_0|H_1) = \mathbb{P}(G_n \in \mathcal{A}|H_1 \text{ vera})$$
(3.94)

Fissato α bisogna cercare il modo di minimizzare β

3.5.6 Livello di fiducia (o di significatività) di un test statistico

Il livello di fiducia di un test statistico è la probabilità di respingere l'ipotesi alternativa H_1 quando è vera l'ipotesi nulla H_0

$$1 - \alpha \tag{3.95}$$

3.5.7 Potenza di un test statistico

La potenza di un test statistico è la probabilità di respingere l'ipotesi nulla H_0 quando è vera l'ipotesi alternativa H_1

$$W = 1 - \beta \tag{3.96}$$

A parità di α maggiore è la potenza di un test minore è l'errore di seconda specie β

3.5.8 Test di Neyman-Pearson tra ipotesi semplici

Data una statistica campionaria $G_n(\mathbf{X})$ con valore empirico noto attraverso le n osservazioni \mathbf{x} su un campione \mathbf{X} estratto da una popolazione con funzione di distribuzione $F_X(x,\theta)$ assolutamente continua di densità $f_X(x,\theta)$, un numero reale arbitrario c>0 e un errore di prima specie fissato, il test più potente (quello che minimizza β) è quello per cui la regione critica è l'insieme delle osservazioni \mathbf{x} per cui il rapporto di verosimiglianza $l(\mathbf{x})$ tra le funzioni di densità di probabilità congiunta, calcolate in θ_0 e in θ_1 , è minore di c

$$C = \left\{ \mathbf{x} : \quad l(\mathbf{x}) = \frac{L(\theta_0, \mathbf{x})}{L(\theta_1, \mathbf{x})} < c \right\}$$
(3.97)

3.5.9 Test parametrici con ipotesi composte

3.5.9.1 Test sul valor medio per il modello normale