Robótica Móvil un enfoque probabilístico

Repaso de Algebra Lineal

Ignacio Mas

Vectores

- Arreglo de números
- Pueden representar un punto en un espacio de dimensión n

Operaciones con vectores

- Producto de vector por escalar
- Suma de vectores
- Producto interno
- Norma

Vectores: Producto interno

Producto interno de vectores (es un escalar)

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} = \sum_{i} a_i b_i$$

 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} = \sum_i a_i b_i$ Si uno de los vectores, \mathbf{a} , tiene $||\mathbf{a}|| = 1$, el producto interno $\mathbf{a} \cdot \mathbf{b}$ es la longitud de la proyección de b sobre la dirección de a

 $Sia \cdot b = 0$, los vectores son ortogonales

Vectores: (In)Dependencia Lineal

- Un vector \mathbf{b} es linealmente dependiente de $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ si $\mathbf{b} = \sum k_i \mathbf{a}_i$
- Es decir, si ${\bf b}$ se puede obtener sumando los ${\bf a}_i$ escalados apropiadamente
- Si no existen coef. $\{k_i\}$ tales que $\mathbf{b} = \sum_i k_i \mathbf{a}_i$ entonces \mathbf{b} es independiente de $\{\mathbf{a}_i\}$

Vectores: (In)Dependencia Lineal

- Un vector \mathbf{b} es linealmente dependiente de $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ si $\mathbf{b} = \sum k_i \mathbf{a}_i$
- Es decir, si ${\bf b}$ se puede obtener sumando los ${\bf a}_i$ escalados apropiadamente
- Si no existen coef. $\{k_i\}$ tales que $\mathbf{b} = \sum_i k_i \mathbf{a}_i$ entonces \mathbf{b} es independiente de $\{\mathbf{a}_i\}$

Matrices

Una matriz es un arreglo de números

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & & & & \uparrow \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix} \qquad \begin{matrix} A: n \times m \\ \uparrow & \uparrow \\ \text{filas columnas} \end{matrix}$$

- 1er índice es la fila
- 2^{do} índice es la columna
- Nota: un vector de dimensión d es equivalente a una matriz de dx1

Matriz como colección de vectores

Vectores Columna

Matriz como colección de vectores

Vectores fila

Operaciones matriciales

- Multiplicación por un escalar
- Suma (conmutativa, asociativa)
- Multiplicación por un vector
- Producto (no conmutativo)
- Inversión (cuadrada, rango completo)
- Transposición

Producto Matriz-Vector

- El componente i de Ab es el producto interno $\mathbf{a}_{i*}^T \cdot \mathbf{b}$.
- El vector Ab es linealmente dependiente de los vectores columna $\{a_{*i}\}$ con coef. $\{b_i\}$

$$\mathbf{A}\mathbf{b} = \begin{pmatrix} \mathbf{a}_{1*}^T \\ \mathbf{a}_{2*}^T \\ \vdots \\ \mathbf{a}_{n*}^T \end{pmatrix} \cdot \mathbf{b} = \begin{pmatrix} \mathbf{a}_{1*}^T \cdot \mathbf{b} \\ \mathbf{a}_{2*}^T \cdot \mathbf{b} \\ \vdots \\ \mathbf{a}_{n*}^T \cdot \mathbf{b} \end{pmatrix} = \sum_k \mathbf{a}_{*k} b_k$$
Vectores fila
Vectores columna

Producto Matriz-Vector

• Si los vectores columna de $\bf A$ representan un sistema de referencia, el producto $\bf Ab$ calcula la transformación global del vector $\bf b$ según $\{a_{*i}\}$

Producto de Matrices

- Puede definirse como:
 - El producto interno de vectores fila y columna
 - La combinación lineal de las columnas de A escaladas por los coeficientes de las columnas de B

$$C = AB = \begin{pmatrix} \mathbf{a}_{1*}^{T} \cdot \mathbf{b}_{*1} & \mathbf{a}_{1*}^{T} \cdot \mathbf{b}_{*2} & \cdots & \mathbf{a}_{1*}^{T} \cdot \mathbf{b}_{*m} \\ \mathbf{a}_{2*}^{T} \cdot \mathbf{b}_{*1} & \mathbf{a}_{2*}^{T} \cdot \mathbf{b}_{*2} & \cdots & \mathbf{a}_{2*}^{T} \cdot \mathbf{b}_{*m} \\ \vdots & & & & \\ \mathbf{a}_{n*}^{T} \cdot \mathbf{b}_{*1} & \mathbf{a}_{n*}^{T} \cdot \mathbf{b}_{*2} & \cdots & \mathbf{a}_{n*}^{T} \cdot \mathbf{b}_{*m} \end{pmatrix} = \begin{pmatrix} \mathbf{A}\mathbf{b}_{*1} & \mathbf{A}\mathbf{b}_{*2} & \cdots & \mathbf{A}\mathbf{b}_{*m} \end{pmatrix}$$

Producto de Matrices

- Considerando la segunda interpretación, vemos que las columnas de C son las "transformaciones" de las columnas de B según A
- Todas las interpretaciones hechas para el producto matriz-vector son válidas

$$\mathbf{C} = \mathbf{A}\mathbf{B}$$

$$= \begin{pmatrix} \mathbf{A}\mathbf{b}_{*1} & \mathbf{A}\mathbf{b}_{*2} & \dots \mathbf{A}\mathbf{b}_{*m} \end{pmatrix}$$

$$\mathbf{c}_{*i} = \mathbf{A}\mathbf{b}_{*i}$$

Rango

- Número Máximo de filas (columnas) linealmente independientes.
- Dimensión de la **imagen** de la transformación $f(\mathbf{x}) = A\mathbf{x}$
- Cuando A es $m \times n$ tenemos
 - $\operatorname{rank}(A) \geq 0$ y la igualdad se cumple sii A es la matriz nula
 - $\operatorname{rank}(A) \leq \min(m, n)$
- El cálculo del rango se hace por
 - Eliminación Gaussiana
 - Contando el número de filas distintas de cero

Inversa de una Matriz

AB = I

- Si A es una matriz cuadrada de rango completo, entonces existe una matriz única B=A⁻¹ tal que AB=I
- La fila i de **A** y la columna j de **A**-1 son:
 - ortogonales (si $i \neq j$)
 - o su producto interno es 1 (si i = j)

Traza (tr)

- Solo definido para matrices cuadradas
- Suma de los elementos de la diagonal principal:

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^{n} a_{ii}$$

- Es un operador lineal con las siguientes propiedades
 - Adición: $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$
 - Homogeneidad: $\operatorname{tr}(cA) = c \times \operatorname{tr}(A)$
 - Conmutativa en pares: $tr(AB) = tr(BA), tr(ABC) \neq tr(ACB)$
- La traza es invariante a semejanza $tr(P^{-1}AP) = tr(P(P^{-1}A)) = tr(A)$
- La traza es invariante a la transposición $tr(A) = tr(A^T)$
- Dados dos vectores \mathbf{a} y \mathbf{b} , $tr(\mathbf{a}^T \mathbf{b}) = tr(\mathbf{a} \mathbf{b}^T)$

Determinante (det)

- Solo definido para matrices cuadradas
- La inversa de **A** existe sii $det(\mathbf{A}) \neq 0$
- Para matrices de 2×2 : Sea $\mathbf{A} = [a_{ij}]$ y $|\mathbf{A}| = det(\mathbf{A})$, entonces

$$\left| \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right| = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

Para matrices de 3 x 3 vale la regla de Sarrus:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{11}$$

Determinante: Propiedades

- Operaciones de filas (A es una matriz cuadrada de $n \times n$)
 - Si ${f B}$ resulta de ${f A}$ al intercambiar dos filas, entonces $det({f B}) = -det({f A})$
 - Si ${\bf B}$ resulta de ${\bf A}$ al multiplicar una fila por un número c, entonces $det({\bf B}) = c \cdot det({\bf A})$
 - Si \mathbf{B} resulta de \mathbf{A} al sumar el múltiplo de una fila a otra fila, entonces $det(\mathbf{B}) = det(\mathbf{A})$
- Transpuesta: $det(\mathbf{A}^T) = det(\mathbf{A})$
- Multiplicación: $det(\mathbf{A} \cdot \mathbf{B}) = det(\mathbf{A}) \cdot det(\mathbf{B})$
- No vale para la suma! $det(\mathbf{A} + \mathbf{B}) \neq det(\mathbf{A}) + det(\mathbf{B})$

Determinante: Aplicaciones

- Calcular **autovalores:** Resolver el polinomio característico $det(\mathbf{A} \lambda \cdot \mathbf{I}) = 0$
- Área y Volumen: area = |det(A)|

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
area
$$= \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\mathbf{A} = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right]$$

(r_i es la fila i)

Matriz Ortogonal

 La matriz Q es ortogonal si y solo si sus vectores columnas (filas) representan una base ortonormal

$$q_{*i}^T \cdot q_{*j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}, \forall i, j$$

- Como transformación lineal, preserva la norma
- Algunas propiedades:
 - La transpuesta es la inversa $QQ^T = Q^TQ = I$
 - El determinante tiene norma unitaria (±1)

$$1 = det(I) = det(Q^T Q) = det(Q)det(Q^T) = det(Q)^2$$

Matriz de Rotación

Una matriz de rotación es una matriz ortogonal con det =+1

• Rotaciones 2D
$$R(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Rotaciones 3D sobre los ejes principales

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \quad R_y(\theta) = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

IMPORTANTE: Las rotaciones en 3D no son conmutativas

$$R_x(\frac{\pi}{4}) \cdot R_y(\frac{\pi}{4}) = \begin{bmatrix} 0.707 & 0 & -0.707 \\ -0.5 & 0.707 & -0.5 \\ 0.5 & 0.707 & 0.5 \end{bmatrix}, R_x(\frac{\pi}{4}) \cdot R_y(\frac{\pi}{4}) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.414 \\ 0.586 \\ 3.414 \end{bmatrix}$$

$$R_{y}(\frac{\pi}{4}) \cdot R_{x}(\frac{\pi}{4}) = \begin{bmatrix} 0.707 & -0.5 & -0.5 \\ 0 & 0.707 & -0.707 \\ 0.707 & 0.5 & 0.5 \end{bmatrix}, R_{y}(\frac{\pi}{4}) \cdot R_{x}(\frac{\pi}{4}) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.793 \\ 0.707 \\ 3.207 \end{bmatrix}$$

Matrices que representan transformaciones afines

 Una forma fácil y general de describir una transformación en 3D es con matrices

- Toma en cuenta la no conmutatividad de las transformaciones
- Se llaman transformaciones homogéneas

Combinando Transformaciones

- Un ejemplo de uso: encadenar transformaciones (representadas como matrices homogéneas)
 - Matriz A representa la pose de un robot en el espacio
 - Matriz B representa la posición de un sensor sobre el robot
 - El sensor percibe un objeto en la ubicación p, en su propia terna [el sensor no tiene idea de su ubicación en el mundo]
 - ¿Dónde está el objeto en la terna global?

Combinando Transformaciones

- Un ejemplo de uso: encadenar transformaciones (representadas como matrices homogéneas)
 - Matriz A representa la pose de un robot en el espacio
 - Matriz B representa la posición de un sensor sobre el robot
 - El sensor percibe un objeto en la ubicación p, en su propia terna [el sensor no tiene idea de su ubicación en el mundo]
 - ¿Dónde está el objeto en la terna global?

Bp da la pose del objeto con respecto al robot

Combinando Transformaciones

- Un ejemplo de uso: encadenar transformaciones (representadas como matrices homogéneas)
 - Matriz A representa la pose de un robot en el espacio
 - Matriz B representa la posición de un sensor sobre el robot
 - El sensor percibe un objeto en la ubicación p, en su propia terna [el sensor no tiene idea de su ubicación en el mundo]
 - ¿Dónde está el objeto en la terna global?

Bp da la pose del objeto con respecto al robot

ABp da la pose del objeto con respecto al mundo

Matriz Definida Positiva

- Análogo a número positivo
- Definición M>0 iff $z^TMz>0$ $\forall z\neq 0$

Ejemplo

$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} z_1 & z_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = z_1^2 + z_2^2 > 0$$

Matriz Definida Positiva

- Propiedades
 - Invertible, con inversa definida positiva
 - Todos los autovalores reales > 0
 - La Traza es > 0
 - Tiene descomposición de **Cholesky** $A = LL^T$

Matriz Jacobiana

- En general, es una **matriz no cuadrada** de $n \times m$
- Dada una función vectorial

$$f(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{bmatrix}$$

La matriz Jacobiana se define como

$$\mathbf{F}_{\mathbf{X}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Matriz Jacobiana

 Es la orientación del plano tangente a una función vectorial en un punto dado

 Es la generalización del gradiente de una función escalar