▼ Bank_Customer_churn_Prediction using Deep Learning

```
#Importing Required Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error as mse, mean_absolute_error as mae, confusi
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
import keras
import warnings
warnings.filterwarnings('ignore')
from google.colab import drive
drive.mount('/content/drive')
     Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.n
```

#import data
df=pd.read_csv('/content/drive/MyDrive/DL /Churn_Modelling.csv')

EDA - Exploratory Data Analysis

df.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	1
2	3	15619304	Onio	502	France	Female	42	8	1!
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	1:
4									•

df.tail()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenur
9995	9996	15606229	Obijiaku	771	France	Male	39	;
9996	9997	15569892	Johnstone	516	France	Male	35	1
9997	9998	15584532	Liu	709	France	Female	36	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	1

df.shape

(10000, 14)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Gender	10000 non-null	object
6	Age	10000 non-null	int64
7	Tenure	10000 non-null	int64
8	Balance	10000 non-null	float64
9	NumOfProducts	10000 non-null	int64
10	HasCrCard	10000 non-null	int64
11	IsActiveMember	10000 non-null	int64
12	EstimatedSalary	10000 non-null	float64
13	Exited	10000 non-null	int64
dtvn	es: float64(2). i	nt64(9), object(3)

dtypes: float64(2), int64(9), object(3)

memory usage: 1.1+ MB

df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Ва
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.0
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.8
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.4
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.0
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.0
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.5
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.2
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.0
4						>

```
# Check columns list and missing values
df.isnull().sum()
```

RowNumber 0 CustomerId 0 Surname CreditScore Geography Gender 0 Age Tenure Balance NumOfProducts HasCrCard 0 IsActiveMember 0 EstimatedSalary 0 Exited dtype: int64

```
duplicate_data = df[df.duplicated()]
duplicate_data
```

RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Bal

Get unique count for each variable
df.nunique()

RowNumber	10000
CustomerId	10000
Surname	2932
CreditScore	460
Geography	3
Gender	2
Age	70
Tenure	11
Balance	6382
NumOfProducts	4
HasCrCard	2
IsActiveMember	2
EstimatedSalary	9999
Exited	2
dtype: int64	

df.shape

(10000, 14)

Check variable data types
df.dtypes

RowNumber int64

int64 CustomerId Surname object CreditScore int64 object Geography Gender object Age int64 Tenure int64 Balance float64 NumOfProducts int64 HasCrCard int64 IsActiveMember int64 EstimatedSalary float64 Exited int64

dtype: object

plt.figure(figsize=(12,10)) sns.heatmap(df.corr(), annot = True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f535b14a3d0>


```
fig, axarr = plt.subplots(3, 2, figsize=(20, 12))
sns.boxplot(y='CreditScore',x = 'Exited', hue = 'Exited',data = df, ax=axarr[0][0])
sns.boxplot(y='Age',x = 'Exited', hue = 'Exited',data = df, ax=axarr[0][1])
sns.boxplot(y='Tenure',x = 'Exited', hue = 'Exited',data = df, ax=axarr[1][0])
sns.boxplot(y='Balance',x = 'Exited', hue = 'Exited',data = df, ax=axarr[1][1])
sns.boxplot(y='NumOfProducts',x = 'Exited', hue = 'Exited',data = df, ax=axarr[2][0])
sns.boxplot(y='EstimatedSalary',x = 'Exited', hue = 'Exited',data = df, ax=axarr[2][1])
```


Check numberical data distribution

num_cols = ['CreditScore', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'EstimatedSalary']
df.hist(column=num cols, figsize=(14,10))


```
# Handling Outliers
fig, ax = plt.subplots(6, 1, figsize=(18,24))
for i in range(6):
    sns.boxplot(x = df[num_cols[i]], ax=ax[i])
```


Feature Engineering

```
#Drop identifier data column
df = df.drop(['RowNumber', 'CustomerId', 'Surname'], axis = 1)
#Move outliers values to the upper and lower bounds
for col in num cols:
 Q1 = df[col].quantile(0.25)
 Q3 = df[col].quantile(0.75)
  IQR = Q3 - Q1
  S = 1.5*IQR
 LB = Q1 - S
 UB = Q3 + S
  df.loc[df[col] > UB,col] = UB
  df.loc[df[col] < LB,col] = LB
#Create new Gender column with value is 0 and 1
df['Gender New'] = pd.factorize(df.Gender)[0]
df = df.drop(['Gender'], axis = 1)
#One hot encode Geography column¶
dvcat_dummies = pd.get_dummies(df.Geography)
df=pd.concat([df, dvcat_dummies], axis=1)
df = df.drop(['Geography'], axis = 1)
df.head(10)
```

CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember

```
# split feature, targer and train, test
X = df.drop(columns=['Exited'])
y = df['Exited'].values
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=0)
                 850
                      43
                                2 125510.82
                                                        1 0
                                                                                     1
#Feature scaling
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_trf = scaler.fit_transform(X_train)
X_test_trf = scaler.transform(X_test)
le = LabelEncoder()
y_train = le.fit_transform(y_train)
y_test = le.fit_transform(y_test)
y_train
     array([0, 0, 0, ..., 0, 0, 1])
y_test
     array([0, 1, 0, ..., 0, 0, 0])
Model Building
  # Neural network
model = Sequential()
model.add(Dense(6, activation = 'relu', input_shape=(12,)))
model.add(keras.layers.Dropout(0.5))
model.add(Dense(6, activation = 'relu'))
model.add(keras.layers.Dropout(0.5))
model.add(Dense(1, activation = 'sigmoid'))
model.compile(optimizer = 'Adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
Model training
history = model.fit(X_train,y_train,batch_size=50,epochs=100,verbose=1,validation_split=0.
```

Epoch 1/100

```
Epoch 2/100
128/128 [=============== ] - 0s 3ms/step - loss: 3341.2812 - accuracy
Epoch 3/100
128/128 [============ ] - 0s 3ms/step - loss: 1255.6195 - accuracy
Epoch 4/100
Epoch 5/100
Epoch 6/100
Epoch 7/100
Epoch 8/100
Epoch 9/100
Epoch 10/100
128/128 [============= ] - 1s 6ms/step - loss: 1.9319 - accuracy: (
Epoch 11/100
128/128 [============== ] - 1s 5ms/step - loss: 0.9040 - accuracy: (
Epoch 12/100
Epoch 13/100
128/128 [============= ] - 1s 5ms/step - loss: 0.6699 - accuracy: (
Epoch 14/100
Epoch 15/100
128/128 [============= ] - 1s 9ms/step - loss: 0.5662 - accuracy: (
Epoch 16/100
Epoch 17/100
128/128 [============== ] - 0s 3ms/step - loss: 0.5489 - accuracy: (
Epoch 18/100
128/128 [============== ] - 0s 3ms/step - loss: 0.5841 - accuracy: (
Epoch 19/100
Epoch 20/100
128/128 [============== ] - 0s 3ms/step - loss: 0.5101 - accuracy: (
Epoch 21/100
128/128 [================ ] - 0s 3ms/step - loss: 0.5131 - accuracy: (
Epoch 22/100
Epoch 23/100
128/128 [=============== ] - 0s 3ms/step - loss: 0.5084 - accuracy: (
Epoch 24/100
Epoch 25/100
Epoch 26/100
128/128 [=============== ] - 0s 3ms/step - loss: 0.5181 - accuracy: (
Epoch 27/100
Epoch 28/100
Fnoch 29/100
```

```
plt.plot(history.history['loss'])
plt.plot(history.history['accuracy'])
plt.show()
```



```
#Model evaluation
```

```
y_pred = model.predict(X_test)
y_pred = (y_pred > 0.5)
```

plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])

[<matplotlib.lines.Line2D at 0x7f5365332190>]

plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])

[<matplotlib.lines.Line2D at 0x7f53652e7250>]

#Confusion matrix
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(8,8))
sns.heatmap(cm, annot=True, fmt=".0f",linewidth=.5, square=True);
plt.xlabel('Actual Label');
plt.ylabel('Predicted Label');

#Classification report¶
score = metrics.accuracy_score(y_test,y_pred)
print("Accuracy:", score)

print("Report:",metrics.classification_report(y_test,y_pred))

Accuracy: 0.7975

Report:	prec	recision recall f1-score		f1-score	support
0	0.80	1.00	0.8	9 1595	
1	0.00	0.00	0.0	0 405	
accuracy			0.8	0 2000	
macro avg	0.40	0.50	0.4	4 2000	

0.64

0.80

0.71

2000

MAE, MSE & RMSE

```
MSE = mse(y_test, y_pred)
MAE = mae(y_test, y_pred)
print("MSE:",MSE)
print("RMSE:",np.sqrt(MSE))
print("MAE:",MAE)

MSE: 0.2025
    RMSE: 0.45
    MAE: 0.2025
```

Model loss

```
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()
```


Model accuracy

```
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()
```


Colab paid products - Cancel contracts here

√ 3s completed at 11:56

×