IN THE CLAIMS

Please enter the following amendments to the claims. The amendments are believed to introduce no new matter.

1. (Original) A method for testing arbitration logic or bus-mastering logic associated with a digital logic device, the method comprising:

receiving a request at a secondary component coupled to a primary component through arbitration logic, the request characteristic of a primary component request;

determining a pseudo-random delay prior to responding to the request; and pseudo-randomly delaying a response to the request.

- 2. (Original) The method of claim 1, wherein pseudo-randomly delaying comprises: adjusting the wait-state and/or latency.
- 3. (Original) The method of claim 2, wherein adjusting the wait-state and/or latency comprises: selecting a time delay from a delay mechanism.
- 4. (Original) The method of claim 3, wherein the delay mechanism is a linear feedback shift register.
- 5. (Original) The method of claim 3, wherein the delay mechanism uses cyclical redundancy checking.
- 6. (Original) The method of claim 5, wherein responding to the request comprises: sending a response from the secondary component to the primary component.
- 7. (Original) The method of claim 1, wherein the arbitration logic is a simultaneous multiple primary component switching fabric.
- 8. (Original) The method of claim 7, wherein a plurality of secondary components are coupled to a plurality of primary components through the simultaneous multiple primary component switching fabric.

Application No.: 10/829,024

9. (Original) The method of claim 8, wherein the plurality of secondary components generate

pseudo-random delays for requests from the plurality of primary components.

10. (Original) The method of claim 9, wherein the plurality of secondary components pseudo-

random delay responses to requests from the plurality of primary components.

11. (Original) The method of claim 1, wherein the pseudo-random delay is used to adjust the

wait-state of the secondary component.

12. (Original) The method of claim 1, wherein the pseudo-random delay is used to adjust the

latency of the secondary component.

13. (Previously Presented) A secondary component, comprising:

an interface coupled to an interconnection module, the interface configured to

communicate with a primary component through the interconnection module; and

a delay mechanism configured to determine values operable to delay responses to

requests received through the interconnection module, wherein the values are pseudo-randomly

generated values.

14. (Original) The secondary component of claim 13, wherein the delay mechanism is

configured to adjust the wait-state if the request is either a write request or a read request.

15. (Canceled)

16. (Previously Presented) The secondary component of claim 13, wherein the delay

mechanism is a linear feedback shift register.

17. (Previously Presented) The secondary component of claim 13, wherein the delay

mechanism uses cyclical redundancy checking.

18. (Previously Presented) The secondary component of claim 13, wherein the delay

mechanism is configured to initiate a counter to execute the time delay.

- 19. (Previously Presented) The secondary component of claim 13, wherein the delay mechanism is configured to adjust the latency associated with the secondary component.
- 20. (Previously Presented) The secondary component of claim 13, wherein the delay mechanism is configured to adjust the wait-state associated with the secondary component.

21. (Previously Presented) A programmable chip, comprising:

a plurality of primary components, wherein the plurality of primary components are master components on the programmable chip;

a plurality of secondary components operable to receive requests from the plurality of primary components, wherein the plurality of secondary components are slave components on the programmable chip; and

arbitration logic coupling the plurality of primary components to the plurality of secondary components, the arbitration logic operable to arbitrate primary component access requests for secondary components;

wherein the plurality of secondary components are configured to determine delay values for adjusting response times to requests received through arbitration logic, wherein the values are pseudo-randomly generated values.

- 22. (Original) The programmable chip of claim 21, wherein the plurality of primary and secondary components include processor and memory components.
- 23. (Original) The programmable chip of claim 21, wherein the plurality of secondary components are configured to adjust latency characteristics associated with response times.
- 24. (Original) The programmable chip of claim 21, wherein the plurality of secondary components are configured to adjust wait-state characteristics associated with response times.
- 25. (Original) The programmable chip of claim 21, wherein delay values are determined using a linear feedback shift register.
- 26. (Original) The programmable chip of claim 21, wherein delay values are determined using cyclical redundancy checking.

- 27. (Original) The programmable chip of claim 21, wherein the arbitration logic is operable to provide access to secondary components for multiple primary components simultaneously.
- 28. (Original) An apparatus for testing arbitration logic associated with a programmable chip system, the apparatus comprising:

means for receiving a request at a secondary component coupled to a primary component through arbitration logic, the request characteristic of a primary component request;

means for determining a pseudo-random delay prior to responding to the request; and means for pseudo-randomly delaying a response to the request.

- 29. (Original) The apparatus of claim 28, wherein pseudo-randomly delaying comprises: means for adjusting the wait-state and/or latency.
- 30. (Original) The apparatus of claim 28, further comprising:

means for sending the delayed response from the secondary component to the primary component.