I Exercice CCP

Rappelons les règles de déduction naturelle suivantes, où A et B sont des formules logiques et Γ un ensemble de formules logiques quelconques :

- 1. Montrer que le séquent $\vdash \neg A \to (A \to \bot)$ est dérivable, en explicitant un arbre de preuve.
- 2. Montrer que le séquent $\vdash (A \to \bot) \to \neg A$ est dérivable, en explicitant un arbre de preuve.
- 3. Donner une règle correspondant à l'introduction du symbole \wedge ainsi que deux règles correspondant à l'élimination du symbole \wedge . Montrer que le séquent $\vdash (\neg A \to (A \to \bot)) \wedge ((A \to \bot) \to \neg A)$ est dérivable.
- 4. On considère la formule $P = ((A \to B) \to A) \to A$ appelée loi de Peirce. Montrer que $\models P$, c'est-à-dire que P est une tautologie.
- 5. Pour montrer que le séquent $\vdash P$ est dérivable, il est nécessaire d'utiliser la règle d'absurdité classique \perp_c (ou une règle équivalente), ce que l'on fait ci-dessous (il n'y aura pas besoin de réutiliser cette règle). Terminer la dérivation du séquent $\vdash P$, dans laquelle on pose $\Gamma = \{(A \to B) \to A, \neg A\}$:

$$\frac{?}{\Gamma \vdash A} ? \frac{}{\Gamma \vdash \neg A}^{AX}$$

$$\frac{\Gamma = (A \to B) \to A, \neg A \vdash \bot}{(A \to B) \to A) \vdash A}^{\neg_i}$$

$$\frac{(A \to B) \to A) \vdash A}{\vdash ((A \to B) \to A) \to A}^{\rightarrow_i}$$

II Lois de de Morgan

- 1. Prouver le séquent $\neg p \lor \neg q \vdash \neg (p \land q)$.
- 2. Prouver le séquent $\neg(p \lor q) \vdash \neg p \land \neg q$.
- 3. Prouver le séquent $\neg p \land \neg q \vdash \neg (p \lor q)$.

En utilisant le tiers exclu de la logique classique $\overline{\Gamma \vdash p \vee \neg p}$ te :

4. Prouver le séquent $\neg(p \land q) \vdash \neg p \lor \neg q$.

III Démonstrations

- 1. Prouver le séquent $\vdash P \to (Q \to P)$.
- 2. Prouver le séquent $\vdash P \to (P \to Q) \to Q$.
- 3. Prouver le séquent $\vdash \neg (P \land \neg P)$.