Node centrality and ranking on networks Lecture 4

Natalia Semenova

Higher School of Economics nasemenova 2@edu.hse.ru

Structural Analysis and Visualization of Networks 23.01.2024

Lecture Overview

1 Centralities

Node centrality
Degree centrality
Closeness centrality
Betweenness centrality
Eigenvector centrality
Katz status index
Centrality examples

- 2 Directed graphs Centrality measures for directed graphs
- 3 Connectivity and Aperiodicity Connectivity Aperiodicity
- 4 Page Rank
- 5 Hubs and Authorities (HITS)

 Semenova N. (HSE)
 Lecture 4
 6.02.2024
 2/30

Node centrality

Which vertices are important?

3/30

Which one is important?

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ ■ 900

4/30

Degree centrality

Degree centrality: number of nearest neighbours

$$C_D(i) = k(i) = \sum_j A_{ij} = \sum_j A_{ji}$$

Normalized degree centrality

$$C_D^*(i) = \frac{1}{n-1}C_D(i) = \frac{k(i)}{n-1}$$

High centrality degree -direct contact with many other actors

Closeness centrality

Closeness centrality: how close an actor to all the other actors in network

$$C_C(i) = \frac{1}{\sum_j d(i,j)}$$

Normalized closeness centrality

$$C_{C}^{*}(i) = (n-1)C_{C}(i) = \frac{n-1}{\sum_{j} d(i,j)}$$

High closeness centrality - short communication path to others, minimal number of steps to reach all others

Closeness centrality: example

 Semenova N. (HSE)
 Lecture 4
 6.02.2024
 7/30

Betweenness centrality

Betweenness centrality: number of shortest paths going through the actor $\sigma_{st}(i)$

$$C_B(i) = \sum_{s \neq t \neq i} \frac{\sigma_{st}(i)}{\sigma_{st}}$$

Normalized betweenness centrality

$$C_B^*(i) = \frac{2}{(n-1)(n-2)}C_B(i) = \frac{2}{(n-1)(n-2)}\sum_{s\neq t\neq i}\frac{\sigma_{st}(i)}{\sigma_{st}}$$

High betweenness centrality - vertex lies on many shortest paths Linton Freeman, 1977

Betweenness centrality: example

Eigenvector centrality

Importance of a node depends on the importance of its neighbors (recursive definition)

$$\mathbf{v}_i \leftarrow \sum_j A_{ij} \mathbf{v}_j$$
 $\mathbf{v}_i = \frac{1}{\lambda} \sum_j A_{ij} \mathbf{v}_j$ $\mathbf{A} \mathbf{v} = \lambda \mathbf{v}$

Select an eigenvector associated with largest eigenvalue $\lambda=\lambda_1$, $\mathbf{v}=\mathbf{v}_1$

10/30

Semenova N. (HSE) Lecture 4 6.02.2024

Eigenvector centrality: example

11/30

Katz status index

Weighted count of all paths coming to the node: the weight of path of length n is counted with attenuation factor β^n , $\beta < \frac{1}{\lambda_1}$

$$k_i = \beta \sum_{i} A_{ij} + \beta^2 \sum_{i} A_{ij}^2 + \beta^3 \sum_{i} A_{ij}^3 + \dots$$

$$\mathbf{k} = (\beta \mathbf{A} + \beta^2 \mathbf{A}^2 + \beta^3 \mathbf{A}^3 + ...)\mathbf{e} = \sum_{n=1}^{\infty} (\beta^n \mathbf{A}^n)\mathbf{e} = (\sum_{n=0}^{\infty} (\beta \mathbf{A})^n - \mathbf{I})\mathbf{e}$$

$$\sum_{n=0}^{\infty} (\beta \mathbf{A})^n = (\mathbf{I} - \beta \mathbf{A})^{-1}$$

$$\mathbf{k} = ((\mathbf{I} - \beta \mathbf{A})^{-1} - \mathbf{I})\mathbf{e}$$

$$(I - \beta A)k = \beta Ae$$

$$\mathbf{k} = \beta \mathbf{A} \mathbf{k} + \beta \mathbf{A} \mathbf{e}$$

$$\mathbf{k} = \beta (\mathbf{I} - \beta \mathbf{A})^{-1} \mathbf{A} \mathbf{e}$$

Semenova N. (HSE)

Centrality examples

- A) Betweenness centrality
- B) Closeness centrality
- C) Eigenvector centrality
- D) Degree centrality
- F) Harmonic centrality
- E) Katz centrality

Directed graphs

- sinks: zero out degree nodes, $k_{out}(i) = 0$, absorbing nodes
- sources: zero in degree nodes, $k_{in}(i) = 0$

14/30

Centrality measures for directed graphs

All based on outgoing edges

Degree centrality (normalized):

$$C_D^{in}(i) = \frac{k^{in}(i)}{n-1}; \quad C_D^{out}(i) = \frac{k^{out}(i)}{n-1}$$

**Closeness centrality (normalized):

$$C_C(i) = \frac{n-1}{\sum_j d(i,j)}$$

**Betweenness centrality (normalized):

$$C_B(i) = \frac{1}{(n-1)(n-2)} \sum_{s \neq t \neq i} \frac{\sigma_{st}(i)}{\sigma_{st}}$$

Connectivity

- Graph is strongly connected if every vertex is reachable form every other vertex.
- Strongly connected components are partitions of the graph into subgraphs that are strongly connected

 In strongly connected graphs there is a path is each direction between any two pairs of vertices

image from Wikipedia

Aperiodicity

A directed graph is aperiodic if the greatest common divisor
of the lengths of its cycles is one (there is no integer k > 1 that
divides the length of every cycle of the graph)

image from Wikipedia

Semenova N. (HSE) Lecture 4

Web as a graph

Hyperlinks - implicit endorsements

Web graph - graph of endorsements (sometimes reciprocal)

Page Rank

"PageRank can be thought of as a model of user behavior. We assume there is a "random surfer" who is given a web page at random and keeps clicking on links, never hitting "back" but eventually gets bored and starts on another random page. The **probability** that the random surfer visits a page is its **PageRank**."

Sergey Brin and Larry Page, 1998

Semenova N. (HSE) Lecture 4 6.02.2024 19/3

Random walk

Random walk on a directed graph:

$$\begin{aligned} \boldsymbol{p}_i^{t+1} &= \sum_{j \in N(i)} \frac{\boldsymbol{p}_j^t}{\boldsymbol{d}_j^{out}} = \sum_j \frac{\boldsymbol{A}_{ji}}{\boldsymbol{d}_j^{out}} \boldsymbol{p}_j \\ \mathbf{D}_{ii} &= diag\{\boldsymbol{d}_i^{out}\} \\ \mathbf{p}^{t+1} &= (\mathbf{D}^{-1}\mathbf{A})^T \mathbf{p}^t \\ \mathbf{P} &= \mathbf{D}^{-1}\mathbf{A} \end{aligned}$$

Power iterations

$$\mathbf{p}^{t+1} \leftarrow \mathbf{P}^T \mathbf{p}^t$$

b)

PageRank formulation

Power iterations:

$$\mathbf{p} \leftarrow \alpha \mathbf{P}^T \mathbf{p} + (1 - \alpha) \frac{\mathbf{e}}{\mathbf{n}}, \quad \alpha \text{ - teleportation coefficient}$$

Sparse linear system:

$$(\mathbf{I} - \alpha \mathbf{P}^{\mathsf{T}})\mathbf{p} = (1 - \alpha)\frac{\mathbf{e}}{n}$$

• Eigenvalue problem ($\lambda = 1$):

$$\left(\alpha\mathbf{P}^{\rm T}+(1-\alpha)\mathbf{E}\right)\mathbf{p}=\lambda\mathbf{p}$$

$$\mathbf{P}=\mathbf{D}^{-1}\mathbf{A}$$

Perron-Frobenius Theorem

Perron-Frobenius theorem (Fundamental Theorem of Markov Chains)

If matrix is

- stochastic (non-negative and rows sum up to one, describes Markov chain)
- irreducible (strongly connected graph)
- aperiodic

then

$$\exists \lim_{t \to \infty} \bar{\mathbf{p}}^t = \bar{\pi}$$

and can be found as a left eigenvector

$$\bar{\pi}P = \lambda \bar{\pi}$$
, where $||\bar{\pi}||_1 = 1, \lambda = 1$

 $ar{\pi}$ - stationary distribution of Markov chain, row vector

Oscar Perron, 1907, Georg Frobenius, 1912.

Semenova N. (HSE) Lecture 4 6.02.2024 22/30

PageRank variations

Power iterations

$$\mathbf{p} \leftarrow \alpha \mathbf{P}^T \mathbf{p} + (1 - \alpha) \mathbf{v}, \quad \mathbf{v} \text{ - teleportation vector}$$

$$\mathbf{P}' = \alpha \mathbf{P} + (1 - \alpha) \mathbf{e} \mathbf{v}^T$$

$$\mathbf{p} \leftarrow {\mathbf{P}'}^T \mathbf{p}, \ ||\mathbf{p}|| = 1$$

Topic specific PageRank

v - set of pages on specific topics

TrustRank

v - set of trusted pages

Personalized PageRank

v - set of personal preference pages

PageRank

24/30

PageRank beyond the Web

12. FutureRank

1.	GeneRank	13. TimedPageRank	25. ImageRank
2.	ProteinRank	14. SocialPageRank	26. VisualRank
3.	FoodRank	15. DiffusionRank	27. QueryRank
4.	SportsRank	16. ImpressionRank	28. BookmarkRank
5.	HostRank	17. TweetRank	29. StoryRank
6.	TrustRank	18. TwitterRank	30. PerturbationRank
7.	BadRank	19. ReversePageRank	31. ChemicalRank
8.	ObjectRank	20. PageTrust	32. RoadRank
9.	ItemRank	21. PopRank	33. PaperRank
10.	ArticleRank	22. CiteRank	34. Etc
11. BookRank		23. FactRank	

24. InvestorRank

Hubs and Authorities (HITS)

Citation networks. Reviews vs original research (authoritative) papers

- authorities, contain useful information, a_i
- hubs, contains links to authorities, h_i

Mutual recursion

Good authorities reffered by good hubs

$$a_i \leftarrow \sum_i A_{ji}h_j$$

 Good hubs point to good authorities

$$h_i \leftarrow \sum_i A_{ij} a_j$$

hubs

authorities

HITS

System of linear equations

$$\mathbf{a} = \alpha \mathbf{A}^T \mathbf{h}$$
 $\mathbf{h} = \beta \mathbf{A} \mathbf{a}$

Symmetric eigenvalue problem

$$(\mathbf{A}^T \mathbf{A}) \mathbf{a} = \lambda \mathbf{a}$$

 $(\mathbf{A} \mathbf{A}^T) \mathbf{h} = \lambda \mathbf{h}$

where eigenvalue $\lambda = (\alpha \beta)^{-1}$

27/30

Semenova N. (HSE) Lecture 4 6.02.2024

Hubs and Authorities

References

- Centrality in Social Networks. Conceptual Clarification, Linton C. Freeman, Social Networks, 1, 215-239, 1979
- Power and Centrality: A Family of Measures, Phillip Bonacich, The American Journal of Sociology, Vol. 92, No. 5, 1170-1182, 1987
- A new status index derived from sociometric analysis, L. Katz, Psychometrika, 19, 39-43, 1953.
- Eigenvector-like measures of centrality for asymmetric relations, Phillip Bonacich, Paulette Lloyd, Social Networks 23, 191-201, 2001
- The PageRank Citation Ranknig: Bringing Order to the Web. S. Brin, L. Page, R. Motwany, T. Winograd, Stanford Digital Library Technologies Project, 1998

 Semenova N. (HSE)
 Lecture 4
 6.02.2024
 29/3

References

- Authoritative Sources in a Hyperlinked Environment. Jon M. Kleinberg, Proc. 9th ACM-SIAM Symposium on Discrete Algorithms
- Graph structure in the Web, Andrei Broder et all. Procs of the 9th international World Wide Web conference on Computer networks, 2000
- A Survey of Eigenvector Methods of Web Information Retrieval.
 Amy N. Langville and Carl D. Meyer, 2004
- PageRank beyond the Web. David F. Gleich, arXiv:1407.5107, 2014