Week 1 Exercises

Gov January Linear Algebra Review 2021-01-04

- 1. (Strang 1.1.4) From the vectors, $v=\begin{bmatrix}2\\1\end{bmatrix}$ and $w=\begin{bmatrix}1\\2\end{bmatrix}$, find the components of 3v+w and cv+dw.
- 2. (Strang 1.2.1) Calculate the dot products $u\cdot v$ and $u\cdot w$ and $u\cdot (v+w)$ and $w\cdot v$:

$$u = \begin{bmatrix} -0.6 \\ 0.8 \end{bmatrix}$$
 $v = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$ $w = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

- 3. (Strang 1.2.2) Compute the lengths $\|u\|$, $\|v\|$, and $\|w\|$ of the vectors in the last problem. Check the Schwarz inequalities $|u\cdot v|\leq \|u\|\|v\|$ and $|v\cdot w|\leq \|v\|\|w\|$.
- 4. (Strang 1.2.19 and 1.2.21) There are two equivalent ways to write the triangle inequality:

$$\|v + w\|^2 \le (\|v\| + \|w\|)^2$$
 \iff $\|v + w\| \le \|v\| + \|w\|$

Use the Schwarz inequality to prove the first of these two inequalities. Hint: use these facts about dot products: $m{v}\cdot m{w} = m{w}\cdot m{v}$ and $m{u}\cdot (m{v}+m{w}) = m{u}\cdot m{v} + m{u}\cdot m{w}$.

- 5. (Strang 1.2.29) If $\|v\| = 5$ and $\|w\| = 3$, what are the smallest and largest possible values of $\|v w\|$? What are the smallest and largest possible values of $v \cdot w$?
- 6. (Strang 2.1.9) Compute each $A\boldsymbol{x}$ by dot products of the rows with the column vector:

(a)
$$\begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \end{bmatrix}$$

- 7. (Strang 2.1.10) Compute each Ax from the previous question as a combination of the columns of A.
- 8. (Strang 2.2.1-2) Use elimination to solve the following system of linear equations:

$$2x + 3y = 1,$$

$$10x + 9y = 11.$$

If the right side changed to (4, 44) what would the answer be?

9. (Strang 2.3.24) Apply elimination to the 2 by 3 augmented matrix $[A \ b]$. What is the triangular system Ux = c? What is the solution x?

$$A\boldsymbol{x} = \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 17 \end{bmatrix}.$$

10. (Strang 2.4.1) Let A be 3 by 5, B be 5 by 3, C be 5 by 1, and D be 3 by 1. All entries of all of these matrices are 1. Which of the following matrix operations are allowed, and what are the results?

$$BA$$
 AB ABD DC $A(B+C)$

- 11. (Strang 2.5.12) If the product C=AB is invertible (A and B are square), then A itself is invertible. Find a formula for A^{-1} that involves C^{-1} and B.
- 12. (Strang 2.5.13) If the product M=ABC of three square matrices is invertible, then B is invertible. (So are A and C.) Find a formula for B^{-1} that involves M^{-1} and A and C.
- 13. (Strang 2.7.39, Challenge) Suppose Q^T equals Q^{-1} (transpose equals inverse, so $Q^TQ=I$).
- (a) Show that the columns $oldsymbol{q}_1,\dots,oldsymbol{q}_n$ are the unit vectors: $\|oldsymbol{q}_i\|^2=1.$
- (b) Show that every two different columns of Q are perpendicular: $q_1^T q_2 = 0$.