Теореми за изпита по ЕАИ

Елизабет Великова

Цветелин Цецков

March 8, 2024

Contents

1	Рабин-Скот(детерминизация на произволен автомат)	3
2	Затвореност на езиците разпознавани от ДКА относно конкатенация	4
3	Затвореност на езиците разпознавани от ДКА относно обединение	5
4	Допълнението на език разпознаван от ДКА е също език разпонзаван от ДКА	7
5	Затвореност на езиците разпознавни от ДКА относно операцията сечение	8
6	За всеки език L разпознаван от краен автомат съществува НКА, който разпознав L^{rev}	ва 9
7	Теорема на Клини	10
8	Лема за покачване(Pumping lemma)	12
9	Теорема на Майхил-Нероуд	13
10	Разрешими проблеми за регулярни езици	16
	10.1 Word problem т.е. дали дадена дума принадлежи на езика?	16
	10.2 Проблемът за празнотата на езика	17
	10.3 Проблемът за пълнота	18
	10.4 Проблемът за крайност на езика	19
	10.5 Проблемът за еквивалентност	20
11	Йерархия на Чомски	21
12	Нормална форма на Чомски	22
13	Контекстно-свободна граматика към стеков автомат	23
14	Стеков автомат към контекстно-свободна граматика - няма да има	25

1 Рабин-Скот(детерминизация на произволен автомат)

Теорема 1.1. $\forall A = < Q, \ \Sigma, \ \delta, \ s, \ F >$ - краен автомат, $\exists ! \ A^{det} = < 2^Q, \ \Sigma, \ \delta', \ \{s\} \in 2^Q, \ F' \subseteq 2^Q >$ - краен, детерминиран, тотален автомат: $L(A) \equiv L(A')$

$$\delta' \equiv \bar{\delta} \; : \; \bar{\delta}(M \subseteq Q, \; a \in \Sigma) = \bigcup_{q \in M} \delta(q, \; a)$$

Лема 1.1. Ще докажем, че $\hat{\delta}' \equiv \hat{\delta}$

Доказателство. Нека $M \subseteq Q$

Индукция по думата w:

База:
$$w=\varepsilon\Rightarrow\hat{\delta}'(M,\,\varepsilon)=M=\hat{\bar{\delta}}(M,\,\varepsilon)$$

ИХ: Нека твърдението е вярно за $u \in \Sigma^*, |u| = n$

ИС: Нека w = au, тогава:

$$\hat{\delta}'(M, au) = \hat{\delta}'(\delta'(M, a), u) = \hat{\delta}'(\bar{\delta}(M, a), u) = \hat{\delta}(\bar{\delta}(M, a), u) = \hat{\delta}(M, au)$$

Нека
$$w \in L(A) \iff \hat{\bar{\delta}}(\{s\}, \ w) \cap F \neq \emptyset \iff_{\text{Лема } 1.1} \hat{\delta}'(\{s\}, \ w) \in F' \iff w \in L(a')$$

2 Затвореност на езиците разпознавани от ДКА относно конкатенация

Теорема 2.1. Нека Σ е азбука и $A_1 = < Q_1, \Sigma, \delta_1, s_1, F_1 > u$ $A_2 = < Q_2, \Sigma, \delta_2, s_2, F_2 > ca$ тотални ДКА.

$$Q_1 \cap Q_2 = \emptyset$$

Тогава нека $A = \langle Q_1 \cup Q_2, \Sigma, \delta, \{s_1\}, F \rangle \ \forall \ a \in \Sigma$

$$\Delta(q, a) = \begin{cases} \Delta_{1}(q, a), & a\kappa o \ q \in Q_{1} \\ \Delta_{1} \\ \Delta_{2} \\ F_{1} \cup F_{2} \cup \{s\}, & a\kappa o \ s_{1} \in F_{1} \cup s_{2} \in F_{2} \\ F_{1} \cup F_{2}, & a\kappa o s_{1} \notin F_{1} \& s_{2} \notin F_{2} \end{cases}$$

$$(1)$$

 δ :

1. Ако сме в Q_1 , то $\delta = \delta_1$.

2. Ако сме в Q_2 , то $\delta = \delta_2$.

 $\forall a \in \Sigma : \delta(s, a) := \delta(s_1, a) \cup \delta(s_2, a)$

$$F := \begin{cases} F_1 \cup F_2 \cup \{s\}, & a\kappa o \ s_1 \in F_1 \cup s_2 \in F_2 \\ F_1 \cup F_2, & a\kappa o s_1 \notin F_1 \& s_2 \notin F_2 \end{cases}$$
 (2)

3 Затвореност на езиците разпознавани от ДКА относно обединение

Теорема 3.1. Нека Σ е азбука и $A_1 = < Q_1, \ \Sigma, \ \delta_1, \ s_1, \ F_1 > u \ A_2 = < Q_2, \ \Sigma, \ \delta_2, \ s_2, \ F_2 > ca$ тогава нека $A = < \{s\} \cup Q_1 \cup Q_2, \ \Sigma, \ \delta, \ \{s\}, \ F >$

 δ :

- 1. Ако сме в Q_1 , то $\delta = \delta_1$.
- 2. Ако сме в Q_2 , то $\delta = \delta_2$.

 $\forall a \in \Sigma : \delta(s, a) := \delta(s_1, a) \cup \delta(s_2, a)$

$$F := \begin{cases} F_1 \cup F_2 \cup \{s\}, \ a\kappa o \ s_1 \in F_1 \cup s_2 \in F_2 \\ F_1 \cup F_2, \ a\kappa o s_1 \notin F_1 \& s_2 \notin F_2 \end{cases}$$
(3)

 \mathcal{A} оказателство. І Нека $w \in L_1 = L(A_1)$ w е произволна дума от езика L_1 Ако $w = \varepsilon$

$$\implies s_1 \in F_1 \implies s \in F \implies w \in L(A)$$

Aко w = a.x

$$\implies \exists \text{ fight } P_1 = s_1 \xrightarrow{a} q_1 \xrightarrow{x} f_1 \in F_1 \subseteq F$$

$$\implies$$
 \exists път $P=s\stackrel{\mathrm{a}}{\rightarrow}q_1\stackrel{\mathrm{x}}{\rightarrow}f_1\in F$

$$\implies w \in L(A)$$

II Нека $w \in L_2 = L(A_2)$ w е произволна дума от езика L_2 Ако $w = \varepsilon$

$$\implies s_2 \in F_2 \implies s \in F \implies w \in L(A)$$

Aко w = a.x

$$\implies \exists \text{ път } P_2 = s_2 \xrightarrow{\text{a}} q_2 \xrightarrow{\text{x}} f_2 \in F_1 \subseteq F$$

$$\implies \exists \text{ fith } P = s \xrightarrow{\text{a}} q_2 \xrightarrow{\text{x}} f_2 \in F$$

$$\implies w \in L(A)$$

III Доказателство на $L(A) \subseteq L_1 \cup L_2$

Нека $w \in L(A)$) w е произволна дума от езика L(A)

$$w = \varepsilon$$

$$\implies s \in F \implies s_1 \in F_1 \cup s_2 \in F_2$$

$$\implies \varepsilon \in L_1 \cup \varepsilon \in L_2$$

$$\implies \varepsilon \in L_1 \cup L_2$$

$$w = a.x \implies \exists \text{ fight } P = s \xrightarrow{a} q \xrightarrow{x} f \in F$$

Ако $q=q_1\in Q_1$

$$\implies$$
 \exists път $P_1=s\stackrel{\mathrm{a}}{\to}q_1\stackrel{\mathrm{x}}{\to}f\in F_1$

само състояния достъпни от q_1 са в Q_1

$$\implies ax = w \in L_1 \subseteq L_1 \cup L_2$$

или $q=q_1\in Q_2$

$$\implies$$
 \exists път $P_2 = s \xrightarrow{a} q_2 \xrightarrow{x} f \in F_2$

само състояния достъпни от q_2 са в Q_2

$$\implies ax = w \in L_2 \subseteq L_1 \cup L_2$$

$$\implies L(A) \subseteq L_1 \cup L_2 \checkmark$$

4 Допълнението на език разпознаван от ДКА е също език разпонзаван от ДКА

Теорема 4.1. Нека A = < Q, Σ , δ , s, F > e тотален ДКА, знаем че БОО можем да го изискаме, налагаме го като изискване, защото всяка дума, за която не е дефиниран преход считаме, че не е в езика на автомата, но тя е в допълнението на езика и ни трябва начин, по който да разпознаем цялата дума, това може да стане като си поискаме автомата да е тотален, защото стигайки до състоянието на грешка, автомата след това автоматично прочита остатъка на дума и не променя своето състояние.

Нека
$$A'=< Q,\ \Sigma,\ \delta,\ s,\ Q\backslash F>$$
. Ще докажем, че $L(A')=L(A)$. $\overline{L}=\Sigma^{\star}-L$

Доказателство. Нека L=L(A) за КДА $A=< Q, \Sigma, \delta, q_0, F>$. Тогава $\overline{L}=L(B)$, където B е КДА $< Q, \Sigma, \delta, q_0, Q-F>$. Това показва, че автоматът B е същият като A, но приемащите състояния на A са неприемащи при автомата B, и $vice\ versa\ (Приемащи == финални)$. Тогава w е в $L(B)\iff \hat{\delta}(q_0,w)$ е в Q-F, което се появява \iff когато w не е в L(A).

5 Затвореност на езиците разпознавни от ДКА относно операцията сечение

Нека Σ е азбука и $A_1=< Q_1,\ \Sigma,\ \delta_1,\ s_1,\ F_1>$ и $A_2=< Q_2,\ \Sigma,\ \delta_2,\ s_2,\ F_2>$ са тотални ДКА. Тогава нека $A=< Q_1\times Q_2,\ \Sigma,\ \delta,\ (s_1,\ s_2),\ F_1\times F_2>$.

$$\delta = \{ (((q_1, q_2), a), (\delta_1(q_1, a), \delta_2(q_2, a))) \mid q_1 \in Q_1, q_2 \in Q_2, a \in \Sigma \}$$

Конструкцията е същата, като на автомата разпознаващ обединението на двата езика с изключение на финалните състояния, тук ще искаме думата да бъде разпонзата и от двата автомата едновременно за да кажем, че е разпозната от конструирания автомат.

Ще покажем, че $L(A) = L(A_1) \cap L(A_2)$.

Доказателство. От законите на ДеМорган знаем, че $L\cap M=\overline{\overline{L}\cup\overline{M}}$, както и че $L\cup M=\overline{\overline{L}\cap\overline{M}}$.

Имаме доказателство на това, че обединението запазва регулярността, както и на това, че допълнението има същия ефект върху новополучения език.

6 За всеки език L разпознаван от краен автомат съществува НКА, който разпознава L^{rev}

I. Доказателство по идея на Иво Стратев

Доказателство. Нека БОО $N=< Q, \ \Sigma, \ \delta, \ s, \ F>$ е НКА. Ако ни е даден ДКА, то можем да използваме естествения изоморфизъм между Q и $\{\{q\} \mid q \in Q\}$, който на състояние $q \in Q$ съпоставя неговия синглетон, тоест $q \mapsto \{q\}$. От горното твърдение е ясно и че БОО можем да поискаме |F|=1, тоест $F=\{f\}$. Сега ще построим автомат R, такъв че $L(R)=L(N)^{rev}$. Нека $R=< Q, \ \Sigma, \ \nabla, \ f, \ \{s\}>$, където $\nabla=\{((q,\ a),\ \{p\in Q\mid q\in \Delta(p,\ a)\})\mid q\in Q,\ a\in \Sigma\}$.

Идеята ни този път се базира на факта, че началното състояние е единствено, тогава ако и крайното е единствено то за дадена дума ω от L(N) можем да разглеждаме изчислението като път в граф и гледайки го на обратно получаваме, че $\omega^{rev} \in L(N)^{rev}$. Тоест обръщайки стрелките в графа на автомата N и разменяйки ролите на s и f получаваме автомат за $L(N)^{rev}$, той обаче в повечето случай ще бъде недетерминиран, защото е възможно различни състояния с една и съща буква да са отивали в едно и също, тогава в новия автомат от това състояние с една и съща буква ще има преход към различни състояния.

Нека вземем произволна дума $\omega \in L(R) \iff$

$$\exists a_1, \ \dots, \ a_{|\omega|} \in \Sigma, \ q_0, \ q_1, \ \dots, \ q_{|\omega|} \in Q \ : \ \omega = \prod_{i=1}^{|\omega|} a_i \ \land \ q_0 = f$$

$$\wedge \ q_{|\omega|} = s \ \wedge \ \forall i \in \{0, \ldots, |\omega| - 1\} \ q_{i+1} \in \nabla(q_i, a_{i+1})$$

$$\iff \forall i \in \{1, \ldots, |\omega|\} \ q_{i-1} \in \Delta(q_i, a_i)$$

$$\iff f = q_0 \in \Delta^*(q_{|\omega|}, \ a_{|\omega|} \dots a_1) = \Delta^*(s, \ \omega^{rev})$$

$$\iff \omega^{rev} \in L(N) \iff (\omega^{rev})^{rev} = \omega \in L(N)^{rev}$$

$$\iff \forall \alpha \in L(R) \iff \alpha \in L(N)^{rev} \iff L(R) = L(N)^{rev} \quad \Box$$

7 Теорема на Клини

Теорема 7.1. $\forall A = \langle Q, \Sigma, \delta, s, F \rangle : \exists L \subseteq \Sigma^*$ - регулярен: L(A) = L

Доказателство. Ще считаме, че |F|=1, ако не е дефинираме $\forall f\in F: L_f\equiv L(A_f): A_f=<$

$$Q, \Sigma, \delta, s, \{f\} >$$
, тогава $L \equiv \bigcup_{f \in E} L_f$

Ще считаме също, че $Q = \{1, \ldots, n\} : |Q| = n$, както и $F = \{n\}$

Дефинираме $A_{i,j} = \langle Q, \Sigma, \delta, s = i, \{j\} \rangle$: $L_{i,j} = L(A_{i,j})$. Следователно $L = L_{1,n}$. Ще търсим в общия случай - регулярен израз $\alpha_{i,j} : L(\alpha_{i,j}) \equiv L_{i,j}$.

Дефинираме също: $\forall m \in \{1,\dots,n\}: L^m_{i,j} = \{w|i \xrightarrow{w} j$ като по пътя има състояния с номера \leq m $\}$. Тогава $L^n_{1,n} \equiv L$.

Доказателство с индукция по m:

База: $m=0 \implies$

$$\alpha_{i,j}^0 = \bigcup_{i \xrightarrow{a} j} a \tag{4}$$

При i = j

$$\alpha_{i,j}^0 = \bigcup_{i \stackrel{a}{\longrightarrow} j} a \cup \{\varepsilon\} \tag{5}$$

При $i \neq j$ $L^0_{i,j} = \{w|i \xrightarrow{w} j$ без междинни състояния $\} \implies a \in L^0_{i,j} \iff \exists i \xrightarrow{a} j \iff L(\alpha^0_{i,j}) \subseteq L(a) \implies L(\alpha^0_{i,j}) = \bigcup_{i \xrightarrow{a} j} a$

ИХ: Нека е вярно за $\forall i, j, m < n$:

$$L_{i,j}^m = L(\alpha_{i,j}^m) \tag{6}$$

ИС: Разглеждаме $L_{i,j}^{m+1}$.(Представяме си картинката на проф. Соскова с автоматите - може да мине през състояние с номер m+1, а може и да не мине).

I сл
$$i \xrightarrow{w}^{\leq m} j \iff w \in L(\alpha_{i,j}^m) = L_{i,j}^m$$

II сл Минава през $m+1 \implies \exists \ u,v,x \in \Sigma^*: \ w = uv^*x$ и $i \stackrel{u}{\to} m+1 \stackrel{v}{\to} m+1 \stackrel{v}{\to} m+1 \stackrel{v}{\to} \dots \stackrel{x}{\to} j.$

Тогава получаваме:

$$\alpha_{i,j}^{m+1} = \alpha_{i,j}^m + \alpha_{i,m+1}^m (\alpha_{m+1,m+1}^m)^* \alpha_{m+1,j}^m$$
(7)

Остава само да докажем, че $L^{m+1}_{i,j} \equiv L(\alpha^{m+1}_{i,j})$. Стандартно доказване за еднаквост на 2 езика.

I сл
$$w \in L_{i,j}^m \iff i \stackrel{w}{\to}^{\le m} j \underset{\text{по ИХ}}{\Longleftrightarrow} w \in L(\alpha_{i,j}^m)$$

II сл
$$w \in L_{i,j}^{m+1} \backslash L_{i,j}^m \iff \exists u,\ v_1,\ v_2,\ \dots,\ v_p,\ x \in \Sigma^*:\ i \stackrel{u}{\to}^{\leq m} m+1 \stackrel{v_1}{\to}^{\leq m} m+1 \stackrel{v_2}{\to}^{\leq m} m+1 \stackrel{v_2}{\to}^{\leq m} m+1 \stackrel{v_3}{\to}^{\leq m} \dots \stackrel{v_p}{\to}^{\leq m} m+1 \stackrel{x}{\to}^{\leq m} j \implies w=u\ v_1\ v_2\ \dots\ v_p\ x,$$
 но от преходите следват следните заключения: $u \in L_{i,m+1}^m,\ \forall i:\ v_i \in L_{m+1,m+1}^m,\ x \in L_{m+1,j}^m.$ По ИХ имаме регулярни изрази за всеки от тези езици. $\implies w \in L(\underbrace{\alpha_{i,m+1}^m\ (\alpha_{m+1,m+1}^m)^*\ \alpha_{m+1,j}^m}_{\beta})$

$$\Longrightarrow w \in L^m_{i,j} \cup L^m_{i,m+1} \ (L^m_{m+1,m+1})^* \ L^m_{m+1,j} \iff w \in \alpha^m_{i,j} + \alpha^m_{i,m+1} \ (\alpha^m_{m+1,m+1})^* \ \alpha^m_{m+1,j} \iff w \in L(\alpha^{m+1}_{i,j}) \implies L^{m+1}_{i,j} \subseteq L(\alpha^{m+1}_{i,j})$$

Обратната посока е значително по-кратка:

I сл
$$w \in L(\alpha_{i,j}^{m+1}) \Longrightarrow_{\text{по ИХ}} w \in L_{i,j}^m$$

II сл $w \in L(\beta^1) \implies w = u \ v_1 \ v_2 \ \dots \ v_p \ x$, като за $u, \ v_i, \ x$ важат горните ограничения

$$\begin{aligned} u &\in L(\alpha^m_{i,m+1}) \underset{\text{no MX}}{\Longrightarrow} L^m_{i,m+1} \\ v_i &\in L(\alpha^m_{m+1,m+1}) \underset{\text{no MX}}{\Longrightarrow} L^m_{m+1,m+1} \\ x &\in L(\alpha^m_{m+1,j}) = L^m_{m+1,j} \\ &\Longrightarrow w \in L^m_{i,j} \cup L^m_{i,m+1} \ (L^m_{m+1,m+1})^* \ L^m_{m+1,j} = L^{m+1}_{i,j} \end{aligned}$$

8 Лема за покачване(Pumping lemma)

Лема 8.1. $L \subseteq \Sigma^*$ - регулярен \Longrightarrow

 $\exists n \in \mathbb{N} : \ \forall w \in L, \ |w| \ge n :$

- 1. $\exists x, y, z \in \Sigma^* : w = xyz$
- $2. |xy| \leq n$
- 3. |y| > 0
- 4. $\forall i \in \mathbb{N} x y^i z \in L$

Доказателство. $L\subseteq \Sigma^*$ - регулярен \Longrightarrow $\exists A=< Q,\ \Sigma,\ \delta,\ s,\ F>:\ L(A)\equiv L,$ нека |Q|=n,

 $w \in L, |w| \ge n \implies w = a_1 \ a_2 \ \dots \ a_k, \ k \ge n$

 $w\in L\implies\exists\;s\xrightarrow{a_1}q_1\xrightarrow{a_2}q_2\xrightarrow{a_3}\dots\xrightarrow{a_{k-1}}q_{k-1}\xrightarrow{a_k}f\in F$ - общо k+1 прехода, но състоянията са

 $n \leq k$ \Longrightarrow по принципа на Дирихле² $\exists i \neq j : q_i \equiv q_j$. Избираме първото повторение. Тогава $\exists x,\ y,\ z \in \Sigma^*$:

 $s\xrightarrow{y}q_i\xrightarrow{y}q_i\xrightarrow{z}f,$ с което доказахме 1. Проверяваме условията 2, 3, 4:

2: $|xy| \stackrel{?}{\leq} n$. Знаем, че $s \stackrel{x}{\to} q_i \stackrel{y}{\to} q_i$, ако положим $|xy| = j \implies$ има j+1 преходи

3: $|y| \stackrel{?}{>} 0$. Това е по построение, защото $i \neq j \implies y \neq \varepsilon \implies |y| > 0$

4: $\forall i \in \mathbb{N}: \ xy^iz \overset{?}{\in} L$. Знаем, че $s \xrightarrow{x} q_i \xrightarrow{y} q_i \xrightarrow{z} f \implies$ можем да повторим цикъла n на брой пъти

и ще останем в езика, защтото $s\xrightarrow{x}q_i\xrightarrow{y}q_i\xrightarrow{y}\dots\xrightarrow{y}q_i\xrightarrow{z}f\implies \forall n\in\mathbb{N}:\ xy^nz\in L$

 $^{^{2}}$ Принципа на гълъбовата дупка???

9 Теорема на Майхил-Нероуд

Малко дефиниции: за $L\subseteq \Sigma^*$

Дефиниция 9.1. $R_L \subseteq \Sigma^* \times \Sigma^*$

 $\forall u, \ v \in \Sigma^* u \ R_L \ v \iff \forall \ z \in \Sigma^* : \ (uz \in L \leftrightarrow vz \in L)$

 R_L - релация на еквивалентност

 R_L - дясно инвариантна

Дефиниция 9.2. $R_A \subseteq \Sigma^* \times \Sigma^*$

 $\forall u, \ v \in \Sigma^* u \ R_A \ v \iff \hat{\delta}(s, x) = \hat{\delta}(s, y)$

 R_A - релация на еквивалентност

 R_A - дясно инвариантна

Лема 9.1. $R_A \subseteq R_L$

Доказателство. Нека $x, y \in \Sigma^*$: $x R_A y \iff \hat{\delta}(s, x) = \hat{\delta}(s, x)$, за $\forall z \in \Sigma^*$: $\hat{\delta}(s, xz) = \hat{\delta}(\hat{\delta}(s, x), z) = \hat{\delta}(\hat{\delta}(s, x), z) = \hat{\delta}(\hat{\delta}(s, y), z) = \hat{\delta}(s, yz) := q$. За q имаме 2 възможности $q \in F \lor q \notin F$:

1.
$$q \in F \implies xz \in L \land yz \in L$$

2.
$$q \notin F \implies xz \notin L \land yz \notin L$$

От тук можем да заключим, че: $(xz \in L \iff yz \in L) \implies x \ R_L \ y \implies R_A \subseteq R_L$

Теорема 9.1 (Майхил-Нероуд). $L \subseteq \Sigma^*$: L - регулярен $\iff |R_L| < \infty$

Доказателство. $\implies L$ - регулярен $\implies \exists \ A$ - детерминиран краен тотален автомат: $L(A) \equiv L$ По Лема 9.1 знаем, че $R_A \subseteq R_L \implies |R_A| \ge |R_L|$, но знам, че:

$$|R_A| = |Q| < \infty \implies |R_L| \le |R_A| < \infty \implies |R_L| < \infty$$
 (8)

$$Q_{\equiv} = \{ [w] \mid w \in L \}$$

$$\delta_{\equiv}([w], a) = [wa], \forall w \in \Sigma^*, a \in \Sigma$$

$$s_{\equiv} = [\varepsilon]$$

$$F_{\equiv} = \{ [w] \mid w \in L \}$$

Твърдим, че $L(M) \equiv L$, след коректностите се доказва лесно.

Лема 9.2. δ_M е коректно дефинирана (δ_M задава функция), т.е не зависи от думата в скобите, ако класа на еквивалентност е същия

Доказателство. Нека $u, w \in \Sigma^*$: $u R_L w$. За тях имаме:

$$\delta_{\equiv}([w], a) = [wa]\delta_{\equiv}([u], a) = [ua] \tag{9}$$

 $[wa] \stackrel{?}{\equiv} [ua]$

Знаем, че R_L е дясно инвариантна $\implies wa\ R_L ua \implies [wa] \equiv [ua] \implies \delta_{\equiv}$ е добре дефинирана функция.

Лема 9.3. $\hat{\delta}_{\equiv}([u], v) = [uv]$

Доказателство. Индукция по думата v:

База:
$$v = \varepsilon \implies \hat{\delta}_{\equiv}([u], \ \varepsilon) = [u]$$

ИХ: Нека е вярно за някое v

ИС: Нека v' = av

$$\hat{\delta}_{\equiv}([u], av) = \hat{\delta}_{\equiv}(\delta_{\equiv}([u], a), v) = \hat{\delta}_{\equiv}([ua], v) \underset{\text{no MX}}{=} [uav]$$

$$(10)$$

Лема 9.4. L(M) = L

Доказателство. $I \subseteq w \in L \Longrightarrow [w] \in F_{\equiv}$

$$\underset{\text{по Лема }9.3}{\Longrightarrow} [w] = \hat{\delta}_{\equiv}([\varepsilon], w) \in F_{\equiv} \iff w \in L(M) \implies L \subseteq L(M)$$

II
$$\supseteq w \in L(M) \implies \hat{\delta}_{\equiv}([\varepsilon], w) = [w] \in F_{\equiv}$$

$$\exists x \in L : ([w] \equiv [x] \iff xR_L w)$$

$$\iff \forall x \in \Sigma^*: \ wz \in L \iff xz \in L$$

$$z := \varepsilon : \ w \in L \iff x \in L$$

$$x \in L \implies w \in L \implies L(M) \subseteq L$$

Следователно
$$L(M) \equiv L$$

Дефиниция 9.3. $A=< Q, \Sigma, \delta, s, F>$ е минимален автомат $\iff \forall A'=< Q', \Sigma, \delta', s', F'>:$ $L(A)\equiv L(A') \wedge |Q| \leq |Q'|$

Теорема 9.2. Минималния детерминиран 3 тотален свързан автомат е единствен с точност до изоморфизъм

 Доказателство. Нека $A=< Q, \Sigma, \delta, s, F>$ - детерминиран тотален свързан минимален автомат. Установяваме изоморфизъм $\varphi:A\longrightarrow M$

Проверяваме, че:

- $1. \ \varphi$ е коректно зададена
- 2. φ е биекция от $Q \longrightarrow \Sigma^*/R_L$
- 3. φ е изоморфизъм на автомати: $\varphi(s) = [\varepsilon], \ \varphi(\delta(q, a)) = \delta_{\equiv}(\varphi(q), a)$ и $f \in F \iff \varphi(F) \in F_{\equiv}$

Коректност на φ - Ако $\exists w \in \Sigma^*: \ s \xrightarrow{w} p \wedge s \xrightarrow{w} q \Longrightarrow_{\text{A - детерминиран}} p = q$ φ е биекция

 $^{{}^{3}}$ Можем да си го поискаме детерминиран заради Теоремата на Рабин-Скот

10 Разрешими проблеми за регулярни езици

10.1 Word problem т.е. дали дадена дума принадлежи на езика?

 $w \in L$? Обхождаме КДА A. Т.е. програма, която имитира работата на автомата.

(Пускаме тази програма над думата.)

Симулираме A с вход w.

Дали има крайно състояние, което е достижимо?

Има алгоритъм:

По дадена дума w и съответно описание на езика L:

$$? \ w \in L : \begin{cases}$$
да, ако $w \in L \\$ не, ако $w \notin L \end{cases}$ (11)

Езици, за които има такъв алгоритъм се наричат разрешими.

По-общо, ако има алгоритъм, винаги завръшващ и разрешава даден проблем P, P - разрешим проблем.

10.2 Проблемът за празнотата на езика

І. Начин

$$L = \emptyset$$
?

По даден краен автомат A да разпознаем дали $L(A) = \emptyset$. (Може и КДА, може и НКДА)

Обхождаме с DFS (в дълбочина) от s кои са достижими. Ако няма заключителни състояния от F, които са достижими от $s-L(A)=\emptyset$.

Или т.е.
$$L=\emptyset \iff f\in F: f$$
 е достижимо от s .

• Търсенето в дълбочина е за линейно време и за двата автомата

II. Начин

$$L(A) \neq \emptyset \iff$$
 има дума $w \in L(A) |w| < |Q|$

← очевидно

 \implies Нека допуснем, че няма дума $w \in L(A)$ и |w| < |Q|

$$\implies \forall \ w \in L(A) \ |w| \ge |Q|$$

Избираме най-късата $w \in L(A)$

По Pumping lemma ->

 $w = xyz \; y \neq \epsilon \; |xy| \leq n \; xz \in L(A) \; |xz| < |w|$ противоречи на това, че w е най-късата дума в L(A).

Допускането е грешно \implies $\exists w \in L(A) : |w| < |Q|$

10.3 Проблемът за пълнота

По даден автомат А ? $L(A) = \Sigma^*$

$$L(A) = \Sigma^\star \iff \neg \; \exists \; q \in Q \; \setminus F \; : \; q \; \text{е достижимо от } s >$$

• търсене в дълбочина, линейно време, но само за КДА.

(Еквивалентно: Празнота на \overline{L})

Пълнота на НКДА: Правим го на КДА, не е известен по-добър алгоритъм.

 \bullet Дали има дума. От s се достига в незаключително състоание.

$$\bullet L = L(A) = \emptyset$$

$$\longrightarrow L(\overline{A}) = \Sigma^* \setminus L$$

$$\longrightarrow L(A) = \Sigma^*$$

$$A ? L(A) = \Sigma^* ? L(\overline{A}) = \emptyset$$

10.4 Проблемът за крайност на езика

а) По автомат A: L = L(A) е краен?

L е безкраен \iff има цикъл и да има път от началото до някое състояние на цикъла, както и от някое състояние на цикъла до някое заключително.

б)
$$L(A)$$
 е $\infty \iff \exists \ w \in L(A) \ : \ n \leq |w| < 2n,$ т.е. $n = |Q|$ от Р.L.

$$\longleftarrow$$
 по Р.L. $w \in L(A)$: $|w| \ge n$

$$w=xyz,\;y\neq\epsilon,\;\forall\;i\;xy^iz\in L(A)$$
и от тук Р.L. осигурва $|L|=\infty$

$$\implies$$
 Нека $L(A) = \infty$. $n = |Q|$

Допускаме, че всяка дума $|w| \ge n \longrightarrow |w| \ge 2n$

 $w \in L(A)$ (не може всяка дума $w \in L(A)$ да е $|w| \leq n,$ защото са краен брой, а $L(A) = \infty)$

Избираме най-късата дума $w \in L(A)$, т.е. с минимална дължина $|w| \geq n$, допускаме, че $|w| \geq 2n$.

Но такава по Р.L. $\implies w=xyz,\ y\neq\epsilon \parallel |y|\leq n,\ n\leq |xz|<|w|,\ xz\in L(A)$ противоречи с избора на w, т.е. допускането е грешно.

$$\implies$$
 има дума $w \in L(A) \ : \ n \le |w| \le 2n$

10.5 Проблемът за еквивалентност

По дадени $A_1 \& A_2$ - КДА ? $L(A_1) = L(A_2)$

І. Начин

 $Доказателство. \ A_1\&A_2$ - КДТА и минимизираме и проверяваме дали са изоморфни.

Защото минималният автомат е "единствен".

II. Начин

 Δ оказателство. L&L' са рег. езици, дефинирани с К Δ А.

$$A=\&A'=$$
. Нека $Q\cap Q'=\emptyset$.

Дали L = L'?

Нека да разгледаме $A_{\cup} := \langle Q \cup Q', \Sigma, \delta_{\cup}, s, F \cup F' \rangle$,

$$\delta_{\cup}(q,a) = \begin{cases} \delta(q,a), \text{ ако } q \in Q\\ \delta'(q,a), \text{ ако } q \in Q' \end{cases}$$
 (12)

Намираме класовете на еквивалентност от състояния на A_{\cup} . $L=L'\iff s\equiv s'.$

• Не знам трябва ли да пиша и още, защото имаше в нейните записки, но не мога да разбера напълно написаното :"))).

11 Йерархия на Чомски

Трябва ли ни, не ни ли трябва?

12 Нормална форма на Чомски

Граматиката $G' = < V, \Sigma, P, S >$ е в НФЧ, ако $P \subseteq V \times \Sigma \cup V \times VV.$

- 1. ϵ -елиминиране
- 2. елиминиране на (единичните) правила от вида $A\Rightarrow B$
- 3. елиминиране на правилата с дълга дясна част

13 Контекстно-свободна граматика към стеков автомат

Теорема 13.1. По всяка конт.-свободна граматика G можем да построим стеков автомат M, такъв че $L(G) = L_s(M)$.

Доказателство. Нека е дадена к.-с. граамтика $G = \langle V, \Sigma, R, s \rangle$ в НФЧ.

Построяваме стеков автомат $M=< Q=\{q\}, \Sigma, \Gamma=\Sigma\cup V, \delta, s=q, \#=s, F=\emptyset>$, който ще разпознава L(G).

- I. $\delta(q, \epsilon, A) \ni (q, \alpha)$, ако $A \Rightarrow \alpha \in P$
- II. $\delta(q, a, a) \ni (q, \epsilon), \ a \in \Sigma$

За да покажем, че L(M) = L(G), ще докажем лема:

Лема 13.1. $A \kappa o \ w \in \Sigma^*, \alpha \in \{\epsilon\} \cup V(\Sigma \cup V)^*, mo$

$$s \implies {}^*w\alpha$$
 (ляв извод) \iff $(q, w, S) \vdash {}^*(q, \epsilon, \alpha)$

Следствие от Лемата: $\alpha = \epsilon \ \forall \ w \in \Sigma^*$

$$w \in L(G) \iff S \implies^* w \text{ (ляв извод)} \iff (q, w, s) \vdash^* (q, \epsilon, \epsilon) \iff w \in L(M)$$

Доказателство. на лемата

$$(\Longrightarrow)$$
 Нека $S \xrightarrow{n} w\alpha$. $w \in \Sigma^*, \ \alpha \in \{\epsilon\} \cup V(V \cup \Sigma)^*$

Тогава има извод $u_0 = S \implies u_1 \dots \implies u_n = w\alpha$.

С индукция по n (дължината на извода) ще покажем, че $(q, w, S) \vdash^* (q, \epsilon, \alpha)$

$$S \implies {}^*w\alpha \longrightarrow (q, w, S) \vdash^* (q, \epsilon, \alpha) :$$

1) n = 0:

$$u_0 = S = w\alpha \longrightarrow w = \epsilon \& \alpha = S \longrightarrow (q, w, S) \vdash^* (q, \epsilon, \alpha)$$

$$(q, w, s) \vdash^* (q, \epsilon, \alpha)$$

$$(q, w = \epsilon, s) \vdash^* (q, \epsilon, \alpha = s) \checkmark$$

$$s \equiv w\alpha \ w = \epsilon \ \& \ \alpha = s$$

2) Нека твърдението е вярно за n.

 $S \xrightarrow{n+1} w \alpha$ най-ляв извод

$$s \xrightarrow{n} xAB \implies w\alpha, \ x \in \Sigma^*, A \in V, B \in (\Sigma \cup V)^*$$

$$A \longrightarrow \gamma \in P$$

$$xAB \implies x\gamma B = w\alpha$$

Сл.

$$w=xy$$
 за някое $y\in\Sigma^*$

$$x\gamma B = xy\alpha \longrightarrow \sigma B = y\alpha$$

За
$$s \xrightarrow{n} x (= w) AB(\alpha)$$
 по И.П.

$$(q, x, s) \vdash^* (q, \epsilon, AB)$$

Същият преход:

$$(q, xy, S) \vdash^* (q, y, AB) \vdash (q, xy, S) \vdash (q, \epsilon, \alpha) \ y \in \Sigma^*$$

у пъти преходи от II. тип

(II
$$(q, a, a) \vdash (q, \epsilon, \epsilon)$$

$$A \longrightarrow \gamma \in P$$

 (\Leftarrow)

Нека $(q, w, s) \vdash^* (q, \epsilon, \alpha)$

Индукция по броя n на преходите от тип I (q, ϵ, A) $\vdash (q, \epsilon, \gamma), \ A \longrightarrow \gamma \in P$)

1)
$$n = 0$$

S не е терминал \longrightarrow няма преходи

$$w = \epsilon, \alpha = S$$

$$S \xrightarrow{*} w(=\epsilon)\alpha(=S)$$
 T.e. $S \xrightarrow{*} S \checkmark$

2)
$$n \longrightarrow n+1$$

 п ньти тип І. $(\star)(q,w,S) \vdash (q,y,AB) \vdash^{n+1} (q,y,\gamma B) \vdash^* (q,\epsilon,\alpha)$

преходи от тип II.

$$A \longrightarrow \gamma \in P, \ y \in \Sigma^*$$

w=xy за някое $x\in\Sigma^*$

у е начало на γB

$$\gamma B = y\alpha$$

От (⋆:

п пъти преходи от тип I.

$$q, x(=w), S) \vdash (q, \epsilon, AB(=\alpha))$$

И.П.
$$\implies S \implies {}^*xAB \implies x\gamma B = xy\alpha = w\alpha$$

 $S \implies w\alpha$

• Проверете за правотата на доказателството за всеки случай със записките на проф. Соскова.

:)))

14 Стеков автомат към контекстно-свободна граматика - няма да има