Correction du DM n°12

Problème

 $\boxed{\mathbf{1}}$ On cherche donc l'ensemble $A^s = \{y \in \mathbb{Z} \mid 0 \equiv y[2]\}.$

L'ensemble cherché est l'ensemble des entiers pairs.

Soit $x \in A$. Alors $x \sim x$ par réflexivité donc il existe bien un élément de A (x lui-même) en relation avec x.

Pour toute partie A de E,
$$A \subset A^s$$
.

Il n'y a pas forcément égalité, comme on le voit dans la question précédente.

 $\boxed{\mathbf{3}}$ D'après la question précédente, $E \subset E^s$, et l'inclusion réciproque est vraie par définition (E^s est une partie de E).

$$E^s = E$$

4 L'inclusion $A^s \subset (A^s)^s$ découle de la question 2 (avec A^s à la place de A, penser à « truc »). Montrons l'inclusion réciproque. Soit $y \in (A^s)^s$. Il existe alors $x \in A^s$ tel que $x \sim y$. Mais puisque $x \in A^s$, il existe $z \in A$ tel que $z \sim x$ donc, par transitivité, $z \in y$: il existe $z \in A$ tel que $z \sim y$ donc $y \in A^s$. D'où l'inclusion réciproque, d'où l'égalité.

$$\mathbf{A}^s = (\mathbf{A}^s)^s$$

5.(a) Soit $y \in A^s$. Il existe $x \in A$ tel que $y \sim x$ donc tel que $y \in cl(x)$, d'où l'inclusion

$$A^s \subset \bigcup_{x \in A} \operatorname{cl}(x)$$

Réciproquement, soit y dans cette union. Il existe alors $x \in A$ tel que $y \in cl(x)$ c'est-à-dire tel que $y \sim x$: $y \in A^s$. D'où l'inclusion réciproque, d'où l'égalité.

$$A^s = \bigcup_{x \in \mathcal{A}} \operatorname{cl}(x)$$

C'est cohérent avec le résultat de la première question.

 A^s est elle-même une partie de S(E) (d'après la question 4) qui contient A (d'après la question 2). En d'autres termes, A^s est une des parties sur lesquelles est prise l'intersection donc contient l'intersection (c'est du cours : une intersection est incluse dans toutes les parties intersectées). Si on note I l'intersection, on a donc $I \subset A^s$. Prouvons l'inclusion réciproque. Soit $y \in A^s$ et prouvons que $y \in I$. Pour cela, il faut et il suffit que y appartienne à tous les ensembles intersectés. Soit donc $B \in S(E)$ tel que $A \subset B$. Puisque $y \in A^s$, il existe $x \in A$ tel que $x \sim y$. Or, $x \in A \subset B$ donc $x \in B$: il existe $x \in B$ tel que $x \sim y$ si bien que $y \in B^s = B$ puisque $y \in A^s$, il existe $y \in A^s$ tous les $y \in A^s$ formant l'intersection donc à l'intersection, ce qui permet de conclure.

$$A^s = \bigcap_{B \in S(E), A \subset B} B$$

G.(a) Soit $y \in (A \cup B)^s$. Alors il existe $x \in A \cup B$ tel que $x \sim y$. Si $x \in A$ alors $y \in A^s$ tandis que si $x \in B$ alors $y \in B^s$. Dans les deux cas, $y \in A^s \cup B^s$: d'où l'inclusion $(A \cup B)^s \subset A^s \cup B^s$. Réciproquement, soit $y \in A^s \cup B^s$. Alors $y \in A^s$ ou $y \in B^s$. Si $y \in B^s$ alors il existe $x \in B$ tel que $x \sim y$, et si $y \in A^s$, alors il existe $x \in A$ tel que $x \sim y$. Dans tous les cas, il existe $x \in A \cup B$ tel que $x \sim y$ si bien que $y \in (A \cup B)^s$: d'où l'inclusion réciproque, d'où l'égalité.

$$(A \cup B)^s = A^s \cup B^s$$

6.(b) Soit $y \in (A \cap B)^s$. Alors il existe $x \in A \cap B$ tel que $x \sim y$, et puisque $x \in A$, alors $y \in A^s$, et puisque $x \in B$, alors $y \in B^s$, d'où l'inclusion

$$(A \cap B)^s \subset A^s \cap B^s$$

La réciproque est fausse en général: prenons $A = \{0\}$ et $B = \{2\}$ sur \mathbb{Z} muni de la congruence modulo 2. Comme à la première question, on a $A^s = 2\mathbb{Z}$, $B^s = 2\mathbb{Z}$ donc $A^s \cap B^s = 2\mathbb{Z}$ mais $A \cap B = \emptyset$ donc $(A \cap B)^s = \emptyset$.

L'inclusion réciproque est fausse en général.

Tooit $y \in \overline{A^s}$. Montrons que $y \in \overline{A}^s$. On sait que $y \notin A^s$ et puisque $A \subset A^s$ (question 2) alors $y \notin A$ donc $y \in \overline{A}$: il existe un élément de \overline{A} (y lui-même) en relation avec y donc $y \in \overline{A}^s$.

$$\overline{\mathbf{A}^s} \subset \overline{\mathbf{A}}^s$$

8 Soit $A \in \mathcal{P}(E)$. Soit $x \in A$. Alors $x \sim x$ donc il existe un élément de A (x lui-même) en relation avec x. En d'autres termes:

ARA: R est réflexive.

Soient A, B, C trois parties de E telles que ARB et BRC. Soit $x \in A$. Puisque ARB, il existe $y \in B$ tel que $x \sim y$. De plus, BRC donc il existe $z \in C$ tel que $y \sim z$ donc, par transitivité, $x \sim z$:

ARC: C est transitive.

Cependant, si on se replace sur $E = \mathbb{Z}$ muni de la congruence modulo 2, si $A = \{0\}$ et $B = \{2\}$, alors ARB et BRA mais on n'a pas A = B:

R n'est pas forcément antisymétrique.

De plus, si $A = \{0\}$ et $B = \mathbb{Z}$, on a ARB mais pas BRA:

R n'est pas forcément symétrique.

Problème - Conjuguée de Fenchel d'une fonction convexe

Partie I. Exemples

1 f est dérivable deux fois (et même \mathscr{C}^{∞} et, pour tout $x \in \mathbb{R}, f'(x) = x$ et $f''(x) = 1 \geqslant 0$ donc

f est bien convexe.

Montrons à présent que $I^* = \mathbb{R}$. Soit $s \in \mathbb{R}$. Il faut donc montrer que l'ensemble $\{sx - x^2/2 \mid x \in \mathbb{R}\}$ est majoré. Or, la fonction $x \mapsto sx - x^2/2$ est un trinôme du second degré de coefficient dominant strictement négatif donc est majoré (et atteint son maximum en -b/2a = s, tracez la courbe de cette fonction, une parabole tournée vers le bas, pour vous en convaincre). On en déduit donc que, pour tout s, l'ensemble $\{sx - x^2/2 \mid x \in \mathbb{R}\}$ est majoré:

$$I^* = \mathbb{R}$$

Soit $s \in \mathbb{R}$. On a dit ci-dessus que le maximum (qui est en particulier la borne supérieure, réciproque fausse) de l'ensemble $\{sx - x^2/2 \mid x \in \mathbb{R}\}$, est atteint en s et vaut donc $s^2 - s^2/2 = s^2/2$, ce qui permet de conclure:

$$f^*$$
 est la fonction $f^*: s \mapsto s^2/2$

Ci-dessous un dessin, analogue à celui de l'énoncé: on a tracé le graphe de $x \mapsto x^2/2$, la droite d'équation y = sx. L'écart est maximal pour x = s (mais ce ne sera pas toujours le cas à l'avenir, voir les exemples suivants), et on a représenté $f^*(s)$ (en pointillés) sur le graphe:

2.(a) Fait dans la question 1 de l'exercice 13 du chapitre 15.

2.(b) On sait que, si on note φ la valeur absolue, alors φ est convexe sur \mathbb{R} à valeurs dans \mathbb{R}_+ (cf. cours, mais cela se démontre facilement avec l'inégalité triangulaire) et que $g: x \mapsto x^p$ est convexe sur \mathbb{R}_+ (dérivable deux fois de dérivée seconde $x \mapsto p(p-1)x^{p-2}$) et croissante donc, d'après la question précédente, $g \circ \varphi = f$ est convexe sur \mathbb{R} .

$$f$$
 est convexe sur \mathbb{R} .

On a légèrement arnaqué: p n'étant pas forcément un entier, g n'est définie que sur \mathbb{R}_+^* , mais comme p > 0, alors on peut prolonger g par continuité en 0 et, comme en classe, g est convexe sur \mathbb{R}_+^* (car dérivable deux fois de dérivée seconde positive, comme dit ci-dessus) et continue sur \mathbb{R}_+ donc g est convexe sur \mathbb{R}_+ .

2.(c) Montrons à que I* = \mathbb{R} . Comme dans la question 1, on se donne un réel s et on va prouver que l'ensemble $\{sx - f(x) \mid x \in \mathbb{R}\}$ est majoré. Soit donc $x \in \mathbb{R}$. Alors

$$sx - f(x) = sx - \frac{|x|^p}{p}$$

Suivons l'indication de l'énoncé et appliquons l'inégalité de Young à $|x|^p$ et $|s|^q$ (à la place de x et y) qui sont bien des réels positifs, avec $\alpha = 1/p$ (et donc $1 - \alpha = 1/q$ par définition de q):

$$(|x|^p)^{1/p} \times (|s|^q)^{1/q} = |xs| \leqslant \frac{|x|^p}{p} + \frac{|s|^q}{q}$$

Or, $sx \leq |sx|$ donc:

$$sx - \frac{|x|^p}{p} \leqslant \frac{|s|^q}{q}$$

En d'autres termes:

L'ensemble $\{sx - f(x) \mid x \in \mathbb{R}\}$ est majoré: $I^* = \mathbb{R}$.

2.(d) Soit encore $s \in I^* = \mathbb{R}$. On a montré que $|s|^q/q$ est un majorant de $\{sx - f(x) \mid x \in \mathbb{R}\}$. Il suffit de montrer que cet élément appartient à l'ensemble pour montrer que c'est son maximum, et donc sa borne supérieure.

Suivons l'indication de l'énoncé et cherchons une valeur de x pour laquelle il y a égalité dans la question précédente. L'inégalité de la question précédente découle de l'inégalité de Young et de l'inégalité $sx \leq |sx|$. Or :

- L'inégalité $sx \leq |sx|$ est une égalité si (et seulement si) $sx \geq 0$ donc si s et x sont de même signe.
- Il y a égalité dans l'inégalité de Young (au moins) quand x = y (avec les notations de l'exercice 17) donc (avec les notations de notre question) lorsque $|x|^p = |s|^q$ donc lorsque $|x| = |s|^{q/p}$.

Dès lors, prenons x le réel parmi $\pm |s|^{q/p}$ qui est de même signe que s. Alors $sx \ge 0$ donc $sx = |sx| = |s| \times |s|^{p/q}$ si bien que (précisons qu'il n'y a pas de \pm dans le terme de droite car, quand on calcule f(x), on prend la valeur absolue):

$$sx - f(x) = |s|^{1 + \frac{q}{p}} - \frac{\left(|s|^{\frac{q}{p}}\right)^p}{p}$$
$$= |s|^{1 + q\left(1 - \frac{1}{q}\right)} - \frac{|s|^q}{p}$$
$$= |s|^q \times \left(1 - \frac{1}{q}\right)$$
$$= \frac{|s|^q}{q}$$

et donc cet élément appartient bien à l'ensemble voulu : c'est donc son maximum, donc sa borne supérieure.

On a bien
$$f^*: s \mapsto \frac{|s|^q}{q}$$

Cette question est une généralisation de la question précédente: en effet, la question 1 n'est rien d'autre que le cas particulier p = 2 (et donc q = 2 également).

Le graphe est donc tout à fait analogue.

3 Ici, il faut prouver que $I^* = [-1; 1]$ et nous allons raisonner par double inclusion.

• Soit $s \in [-1;1]$. Montrons que l'ensemble $\{sx - f(x) \mid x \in \mathbb{R}\}$ est majoré. Soit donc $x \in \mathbb{R}$. On a:

$$sx - f(x) = sx - |x|$$

Or, $sx \leq |sx| = |s| \times |x| \leq 1 \times |x|$ car $|s| \leq 1$. On en déduit que $sx - f(x) \leq 0$: cet ensemble est bien majoré, si bien que $I^* \subset [-1;1]$.

• Soit à présent $s \notin [-1;1]$ et prouvons que ce même ensemble n'est pas majoré. On a donc |s| > 1. Supposons dans un premier temps s > 0 (et donc s > 1). Si $x \ge 0$, on a:

$$sx - f(x) = sx - x = (s - 1)x \xrightarrow[x \to +\infty]{} +\infty$$

Si s < -1, et si x < 0, on a:

$$sx - f(x) = sx + x = (s+1)x \xrightarrow[x \to -\infty]{} +\infty$$

Dans les deux cas, cet ensemble n'est pas majoré donc $x \notin I^*$. D'où l'inclusion réciproque (par contraposée).

$$\boxed{I^* = [\,-1\,;1\,]}$$

Soit donc $s \in I^* = [-1;1]$. De même que dans les questions précédentes, on a prouvé que 0 est majorant de l'ensemble $\{sx - f(x) | x \in \mathbb{R}\}$, et il est évident (en prenant x = 0) que 0 appartient à cet ensemble. C'est donc encore un maximum, donc la borne supérieure.

$$f^*$$
 est la fonction nulle (sur $[-1;1]$).

Cela se voit bien sur un dessin: si |s| > 1 alors l'écart tend vers $+\infty$ d'un côté ou de l'autre:

tandis que, si $|s| \le 1$, alors la fonction affine est toujours en dessous de la valeur absolue, donc l'écart est majoré par 0 (encore une fois, quand on parle d'écart qui tend ou non vers $+\infty$, on ne parle pas en valeur absolue!), et puisque les deux fonctions coïncident en 0, alors l'écart y est nul, donc l'écart maximum vaut 0:

4 Soit $s \in \mathbb{R}$. Cherchons si l'ensemble $\{sx - f(x) \ x \in \mathbb{R}\}$ est majoré. Soit donc $x \in \mathbb{R}$, si bien que $sx - f(x) = (s - \alpha)x$. La fonction $x \mapsto sx - f(x)$ est affine : elle est donc majorée si et seulement si son coefficient directeur est nul, i.e. si et seulement si $s = \alpha$. On en déduit donc que $I^* = \{\alpha\}$. De plus, si $s = \alpha$, alors sx - f(x) = 0 pour tout x donc $f^*(s) = 0$.

 $I^* = \{\alpha\}$ et f^* est la fonction nulle (sur $\{\alpha\}$ donc cela n'a pas un grand intérêt).

Le graphe est laissé à votre charge: si $s \neq \alpha$, alors les deux fonctions linéaires sont distinctes donc l'écart tend vers $+\infty$ d'un côté ou de l'autre, tandis que si $s = \alpha$, les deux fonctions sont les mêmes, donc l'écart est constant égal à 0 (et donc le maximum est nul).

5 Soit $s \in \mathbb{R}$. Cherchons si l'ensemble $\{sx - f(x) | x \in \mathbb{R}\}$ est majoré. Soit donc $x \in \mathbb{R}$, si bien que $sx - f(x) = sx - e^x$. Différencions les cas selon le signe de s.

- Si s<0, alors $f(x)\xrightarrow[x\to -\infty]{}+\infty$ donc cet ensemble n'est pas majoré: $s\notin I^*$.
- Si s=0 alors $sx-e^x=-e^x\leqslant 0$: cet ensemble est majoré, $0\in {\mathcal I}^*.$
- Si s > 0, alors une rapide de fonction montre que $g: x \mapsto sx e^x$ atteint un maximum en $x = \ln(s)$ donc en particulier cet ensemble est majoré: $s \in I^*$.

Ainsi

$$I^* = \mathbb{R}_+$$

De plus, si s = 0, alors $\sup\{-e^x \mid x \in \mathbb{R}\} = 0$ (mais ce n'est pas un maximum) si bien que $f^*(s) = 0$ et, si s > 0, alors le tableau de variations (que je n'ai pas fait mais que vous avez dû faire) montre que g admet un maximum atteint en $\ln(s)$ qui vaut $s \ln(s) - s$. On en déduit que:

$$\forall s > 0, f^*(s) = s \ln(s) - s$$
 et $f^*(0) = 0$

Pour l'illustration graphique, voir le sujet: on a pris $f(x) = e^x$, et sur le graphe de gauche, on a pris s = 2 et, à droite, s = -2.

Partie II. QUELQUES PROPRIÉTÉS DES DÉRIVÉES À DROITE ET À GAUCHE DES FONCTIONS CONVEXES

- 1 cf. cours: attention, cela ne marche ici sur I tout entier que parce que I est ouvert.
- 2 Idem, cf. cours.
- Soient donc x < y deux éléments de I et on se donne deux éléments de I z et t vérifiant x < z < y < t (possible car I est ouvert). Par croissance de la fonction τ_z (f est croissante), $\tau_z(x) \le \tau_z(y)$. Or,

$$\tau_z(x) = \frac{f(z) - f(x)}{z - x} = \tau_x(z)$$

De même (nous utiliserons souvent ce résultat dans la suite), $\tau_z(y) = \tau_y(z)$, si bien que $\tau_x(z) \leqslant \tau_y(z) \leqslant \tau_y(t)$ car τ_y est croissante. En faisant tendre d'abord (on ne peut pas faire tendre deux variables en même temps) z vers x^+ , l'inégalité large passant à la limite, on obtient $f_d'(x) \leqslant \tau_y(t)$. En faisant ensuite tendre t vers y^+ , on trouve (idem, inégalité large...) que $f_d'(x) \leqslant f_d'(y)$. De même, avec deux réels z et t vérifiant z < x < t < y, on prouve que f_g' est croissante.

$$f_{d}'$$
 et f_{g}' sont croissantes.

4.(a) Rappelons qu'une fonction g croissante sur un intervalle] a; b [admet une limite (finie ou infinie) en b et qu'elle est inférieure à cette limite (cf. chapitre 13). Puisque $f_g'(y)$ est la limite, quand $x \to y^-$, de $\tau_y(x)$, alors on en déduit la première inégalité:

$$\tau_y(x) \leqslant f_g'(x)$$

La fonction $f_g{}'$ étant croissante, elle admet en $x_0{}^-$ une limite finie ou égale à $+\infty$. Pour montrer que celle-ci est finie, il suffit de prouver que $f_g{}'$ est majorée. Or, $f_g{}'$ étant croissante, elle est majorée par $f_g{}'(x_0)$ à gauche de x_0 , d'où le résultat.

$$f_g'$$
 admet une limite finie en x_0^- .

De plus, f étant continue car convexe (sur un intervalle ouvert):

$$\tau_y(x) = \frac{f(y) - f(x)}{y - x} \xrightarrow{y \to x_0^-} \frac{f(x_0) - f(x)}{x_0 - x} = \tau_{x_0}(x)$$

En passant à la limite dans l'inégalité prouvée ci-dessus, lorsque $y \to x_0^-$, et puisque l'inégalité large passe à la limite (on a bien prouvé que les deux limites existent bien), on obtient l'inégalité voulue:

$$\tau_{x_0}(x) \leqslant \lim_{y \to x_0^-} f_g'(y)$$

4.(b) L'inégalité $f_g'(x) \leq f_d'(x)$ découle de la question 2, et l'inégalité $f_d'(x) \leq \tau_{x_0}(x)$ se prouve comme ci-dessus: puisque $\tau_{x_0}(x) = \tau_x(x_0)$ et que $f_d'(x)$ est la limite de τ_x (fonction croissante) en x^+ , alors $f_d'(x) \leq \tau_x(x_0)$ (une fonction croissante sur a; b [est supérieure à sa limite en a).

$$f_{g'}(x) \leqslant f_{d'}(x) \leqslant \tau_{x_0}(x) \lim_{y \to x_0^{-}} f_{g'}(y)$$

En particulier

$$f_g'(x) \leqslant \tau_{x_0}(x) \leqslant \lim_{y \to x_0^-} f_g'(y)$$

En faisant tendre x vers x_0^- , et l'inégalité large passant à la limite (et les limites existent de même que précédemment):

$$\lim_{x \to x_0^-} f_g'(x) \le f_g'(x_0) \le \lim_{y \to x_0^-} f_g'(y)$$

Or, la variable de la limite est muette, donc on a égalité:

$$\lim_{x\to x_0^-} f_q'(x) = f_q'(x_0)$$
: f_q' est continue à gauche.

Attention, on n'applique pas le théorème d'encadrement : tout ce que celui-ci nous apporterait, ce serait que

$$\tau_{x_0}(x) \xrightarrow[x \to x_0^-]{} \lim_{y \to x_0^-} f_g'(y)$$

Pour conclure, il faut encore dire que $\tau_{x_0}(x) \xrightarrow[x \to x_0^-]{} f_g'(x_0)$ puis utiliser l'unicité de la limite. Le fait que l'inégalité large passe à la limite permet donc de conclure plus rapidement, mais n'oublions pas qu'il faut prouver au préalable l'existence des limites.

Précisons également que f_g n'est pas forcément continue: par exemple, si f est la valeur absolue (qui est donc convexe), alors f_g vaut -1 sur \mathbb{R}_+ et 1 sur \mathbb{R}_+^* donc n'est pas continue en 0 (mais elle est bien continue à gauche).

Si f est dérivable, alors $f_g' = f_d' = f'$ et, d'après ce qui précède, cette fonction est continue à droite et à gauche donc est continue.

Une fonction convexe dérivable est automatiquement \mathscr{C}^1 .

Soit $x_0 \in I$ et soit $x \in I$, $x \le x_0$ (on cherche la limite en $-\infty$). D'après l'IAF (numéro 1, mais inutile de l'écrire dans votre copie, je le fais juste ici pour que vous voyiez de laquelle je parle) avec $a = x, b = x_0$ (on a bien $a \le b$), il vient :

$$f(x_0) - f(x) \leqslant M(x_0 - x)$$

et donc $f(x) \ge f(x_0) - M(x_0 - x) = f(x_0) + M(x - x_0)$. M < 0 donc $f(x_0) + M(x - x_0) \xrightarrow[x \to -\infty]{} +\infty$ et on conclut à l'aide du théorème de minoration.

Le résultat est prouvé si f est dérivable.

$$f_d'(x_0) \geqslant \tau_{x_0}(x)$$

5.(c) Reprenons donc $x < x_0$. D'après la question précédente :

$$M \geqslant f_d'(x_0) \geqslant \tau_{x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

Or, $x - x_0 < 0$ donc, en multipliant par $x - x_0$, il vient: $M(x - x_0) \le f(x) - f(x_0)$. On conclut ensuite comme à la question 5.(a).

On a bien
$$f(x) \xrightarrow[x \to -\infty]{} +\infty$$

6.(a) Le résultat étant évident si $x = x_0$ (il y a même égalité), on suppose $x > x_0$. De même que précédemment :

$$s \leqslant f_d'(x_0) \leqslant \frac{f(x) - f(x_0)}{x - x_0}$$

ce qui permet de conclure en multipliant par $x - x_0 > 0$. Supposons enfin $x < x_0$. De même (fonction croissante sur] a; b [majorée par sa limite en b):

$$\tau_{x_0}(x) = ff(x) - f(x_0)x - x_0 \leqslant f_g'(x_0) \leqslant s$$

et on conclut en multipliant par $x-x_0<0$ (et donc l'inégalité change de sens).

Si
$$s \in [f_g'(x_0); f_d'(x_0)]$$
 alors: $\forall x \in I, f(x) \ge s(x - x_0) + f(x_0)$

G.(b) Supposons (raisonnement analogue dans l'autre cas) que $s < f_g'(x_0)$. Par définition d'une limite, pour x assez proche de x_0^- , $s < \tau_{x_0}(x)$ donc:

$$\exists x < x_0, s < \frac{f(x) - f(x_0)}{x - x_0}$$

Il suffit de multiplier par $x - x_0 < 0$ (et donc le sens de l'inégalité change) pour conclure. Le cas $s > f_d'(x_0)$ est analogue.

Si
$$s \notin [f_g'(x_0); f_d'(x_0)]$$
 alors: $\exists x \in I, f(x) < s(x - x_0) + f(x_0)$

L'ensemble $[f_g'(x_0); f_d'(x_0)]$ est appelé le sous-différentiel de f en x_0 . C'est donc l'ensemble des pentes pour lesquelles les fonctions affines qui passent par le point $(x_0, f(x_0))$ sont en-dessous du graphe de f (cela se voit bien sur le dessin de l'énoncé).

Partie III. ÉTUDE DE I*

1.(a) Découle de la croissance de f_d et de f_g (cf. question 3 de la partie II).

$$\alpha$$
 et β existent.

La première inégalité vient du fait que α est la borne inf de f_d sur] a; b [(la limite en a d'une fonction croissante sur] a; b [est sa borne inf, cf. chapitre 13). La deuxième est supposée par l'énoncé. La troisième est analogue à la première : β est la borne sup de f_g . Enfin, τ_x est une fonction croissante et f_a (x) est sa limite en x+ donc t_a (x) (une

fonction croissante à droite de x est supérieure à sa limite en x^+). De même, $\tau_y(x) \leqslant f_g'(y)$ et on conclut en remarquant que $\tau_x(y) = \tau_y(x)$.

$$f_d'(x) \geqslant \alpha \geqslant \beta \geqslant f_g'(y) \geqslant f_d'(x)$$

Les inégalités ci-dessus sont donc toutes des égalités: en particulier, $\alpha = \beta$. Soit $x \in]a; b[$ et soit y > x, alors $f_d'(x) = \alpha$. En d'autres termes, f_d' est constante égale à α .

Mais puisque le résultat précédent est vrai pour tous x et y vérifiant x < y, on peut très bien choisir y d'abord : soit donc $y \in I$ et soit x < y. Alors $f_g'(y) = \alpha$. En d'autres termes, f_g' est constante égale à α . En particulier, f_g' et f_d' sont égales, donc f est dérivable, et f' est constante égale à α , ce qui est absurde car f n'est pas affine.

On a $\alpha < \beta$: J est un intervalle ouvert non vide.

2.(a) Une partie non vide minorée de \mathbb{R} admet une borne inférieure : il suffit donc de prouver que $E = \{t \in I \mid f_d'(x_0)\}$ est non vide minoré.

Par hypothèse, $s < \beta$ qui est la borne sup de f_g' (voir ci-dessus): il existe donc t tel que $s \leqslant f_g'(t)$ et on sait (question 2 de la partie II) que $f_g'(t) \leqslant f_d'(t)$. En d'autres termes, $t \in E$: E est non vide.

Pour le côté minoré: attention de ne pas minorer par a car on peut avoir $a = -\infty$. Il suffit de voir que $\alpha < s$ donc, par définition d'une borne inf, il existe x_1 tel que $f_d'(x_1) < s$. La fonction f_d' étant croissante, tout $t \le x_1$ vérifie $f_d'(t) < s$ donc n'appartient pas à E. En d'autres termes, tous les éléments de E sont supérieurs stricts à x_1 i.e. x_1 minore E, ce qui permet de conclure.

Un tel x_0 existe bien.

2.(b) Attention, il ne suffit pas de dire que x_0 est la borne inf: ce n'est pas parce qu'un élément est la borne inf d'un ensemble que tout élément plus grand lui appartient: cet ensemble n'est pas forcément un intervalle, il peut « avoir des trous »! Mais, ici, ça va marcher car f_d est croissante. Supposons donc qu'il existe n tel que ce ne soit pas le cas. f_d étant croissante, pour tout $t \le x_0 + 1/n$, $f_d(t) \le f_d(x_0 + 1/n) < s$. En d'autres termes, il n'existe aucun élément de E dans l'intervalle $[x_0; x_0 + 1/n]$ ce qui contredit la définition d'une borne inférieure (pour tout $\varepsilon > 0$, il existe...).

C'est bon.

La même preuve montre que, pour tout $t > x_0$, $t \in E$. E est donc l'un des deux intervalles $[x_0; b[$ ou $]x_0; b[$. La question suivante prouve que E est fermé en x_0 .

2.(c) Attention, x_0 n'est pas (encore) un minimum, mais une borne inf: partant, il n'appartient pas forcément à E donc on ne peut pas (encore) affirmer que $s \leq f_d'(x_0)$. Il suffit de prendre une suite (u_n) d'éléments de E qui converge vers x_0 , et la suite de terme général $x_0 + 1/n$ convient d'après la question précédente. Pour tout n, $s \leq f_d'(x_0 + 1/n)$. Or, $x_0 + 1/n \xrightarrow[n \to +\infty]{} x_0^+$ et f_d' est continue à droite (question 4 partie II) donc $f_d'(x_0 + 1/n) \xrightarrow[n \to +\infty]{} f_d'(x_0)$. L'inégalité large passant à la limite, $s \leq f_d'(x_0)$.

En particulier, $x_0 \in E$: c'est donc un minimum.

De plus, pour tout $n, x_0 - 1/n \notin E$ donc:

$$f_g'\left(x_0 - \frac{1}{n}\right) \leqslant f_d'\left(x_0 - \frac{1}{n}\right) < s$$

De plus, $x_0 - 1/n \xrightarrow[n \to +\infty]{} x_0^-$ et f_g est continue à gauche (question 4 partie II) donc f_g $(x_0 - 1/n) \xrightarrow[n \to +\infty]{} f_g$ (x_0). L'inégalité large passant à la limite, f_g $(x_0) \le s$.

$$f_g'(x_0) \leqslant s \leqslant f_d'(x_0)$$

2.(d) D'après la question précédente, s appartient à l'intervalle $[f_g'(x_0); f_d'(x_0)]$ (le sous-différentiel de f en x_0) donc, d'après la question 6.(a) de la question 2:

$$\forall x \in I, sx - f(x) \leqslant sx_0 - f(x_0)$$

En d'autres termes, l'ensemble $\{sx - f(x) \mid x \in I\}$ est majoré par $sx_0 - f(x_0)$, et cet élément est atteint en $x = x_0$ donc c'est son maximum, donc sa borne supérieure.

$$s \in I^* \text{ et } f^*(s) = sx_0 - f(x_0)$$

2.(e) Supposons (raisonnement analogue dans l'autre cas) que $s < \alpha = \inf f_d'$ (en particulier, $\alpha \leqslant f_d'(x)$ pour tout x). Alors la fonction $g: x \mapsto sx - f(x)$ est dérivable à droite, de dérivée à droite $x \mapsto s - f_d'(x) \leqslant s - \alpha < 0$. D'après la question 5 de la partie II, cela implique que $g(x) \xrightarrow[x \to -\infty]{} +\infty$ (on peut prendre la limite en $-\infty$ car $I = \mathbb{R}$) donc g n'est pas majorée: $s \notin I^*$.

Si
$$s < \alpha$$
 alors $s \notin I^*$

On montrerait de même (en montrant au préalable qu'une fonction convexe dérivable à gauche dont la dérivée à gauche est minorée par une constante strictement positive tend vers $+\infty$ en $+\infty$, exo) que, si $b=+\infty$ (i.e. si I n'est pas majoré), si $\beta < +\infty$, et si $s > \beta$, alors $s \notin I^*$. Si $I = \mathbb{R}$, on en déduit donc que:

$$]\alpha;\beta[\subset I^*\subset [\alpha;\beta].$$

On ne peut pas faire mieux: les bornes finies éventuelles de J peuvent ou non appartenir à I*, il y a des exemples dans les deux cas. Par exemple, dans le cas où $f=\exp$, alors $J=\mathbb{R}_+^*$ et on a déjà vu que $I^*=\mathbb{R}_+$ donc $\alpha=0\in I^*$ tandis que, si $f:x\mapsto -\sqrt{x}$, alors $J=[-\infty;0[$ et on peut montrer (exo) que J=0. Dans ce cas, J=0 $\notin J=0$.

Partie IV. Convexité de f^*

1 C'est l'exercice 10 du chapitre 15.

Une borne supérieure de fonctions convexes est convexe.

Or, par définition, pour tout $s \in \mathbb{R}$, $f^*(s) = \sup\{sx - f(x) \mid x \in I\} = \sup\{f_x(s) \mid x \in I\}$ où, pour tout $x \in I$, $f_x(s) = sx - f(x)$. La fonction f_x étant convexe (c'est une fonction affine: la variable est s, pas x), on a le résultat voulu.

$$f^*$$
 est convexe.

On voit que la convexité de f n'est pas utile! On peut donc définir la conjuguée d'une fonction quelconque, et celle-ci est convexe, même si f ne l'est pas!

2.(a) f' est strictement croissante car sa dérivée est strictement positive (réciproque fausse), continue (car dérivable: f est dérivable deux fois) donc, d'après le théorème de la bijection f' est une bijection de I dans J = f'(I) (et J est un intervalle, et g est monotone de même monotonie que f', et g est donc une bijection de J = f'(I) dans J = f'(I) da

$$g$$
 est bien définie.

2.(b) Soit $s \in J$. Soit $x \in I$. Posons $\varphi(x) = sx - f(x)$, et donnons son tableau de variations pour prouver qu'elle est majorée et donner sa borne supérieure. φ est dérivable (deux fois) et $\varphi'(x) = s - f'(x)$.

$$\varphi'(x) \geqslant 0 \iff f'(x) \leqslant s$$

$$\iff x \leqslant g(s)$$

puisque q est strictement croissante et est la bijection réciproque de f'. On en déduit le tableau de variations de φ :

x	g(s)			
φ'	+ 0 -			
$\varphi(x)$	$\varphi(g(s))$			

On en déduit, d'une part, que φ est majorée donc que $s \in I^*$, et d'autre part, que φ admet un maximum (donc une borne sup) égal à $\varphi(g(s))$ si bien que : $f^*(s) = \varphi(g(s)) = sg(s) - f(g(s))$.

Pour tout
$$s \in J$$
, $f^*(s) = sg(s) - f(g(s))$

2.(c) f est dérivable et $s \mapsto s$ est dérivable. Pour prouver que f^* est dérivable, il suffit donc de prouver que g est dérivable, on pourra conclure avec les théorèmes généraux (f^* dérivable car somme, composée, produit de fonctions dérivables). Or, f' est dérivable et sa dérivée ne s'annule pas donc (cf. chapitre 14) sa réciproque est elle-même dérivable: g est dérivable, donc f^* est dérivable. Dès lors, si $s \in J$ (rappelons que f' et g sont réciproques l'une de l'autre donc f'(g(s)) = s):

$$(f^*)'(s) = sg'(s) + g(s) - f'(g(s)) + g'(s) \times f'(g(s))$$

= $sg'(s) + g(s) - s + g'(s) \times s$
= $g(s)$
 f^* est dérivable, de dérivée g .

2.(d) On a déjà dit que g est croissante: f^* est dérivable, de dérivée croissante, donc

$$f^*$$
 est convexe.

Partie V. BICONJUGAISON

1 Si f est la fonction $x \mapsto |x|^p/p$ alors f^* est la fonction $x \mapsto |x|^q/q$ mais alors p est l'exposant conjugué de q donc f^{**} est la fonction $x \mapsto |x|^p/p$ c'est-à-dire que $f^{**} = f$.

Supposons enfin que $f = \exp$, si bien que f^* est la fonction définie sur \mathbb{R}_+ par $f^*(0) = 0$ et, pour tout x > 0, $f^*(x) = x \ln(x) - x$. Soit $s \in \mathbb{R}$ (on évalue f^* en x car on garde la variable s pour f^{**}) et soit $x \in \mathbb{R}_+$. Alors $sx - f^*(x) = 0$ si x = 0 et $sx - f^*(x) = x(s+1) - x \ln(x)$. Notons cette quantité g(x). g est dérivable et $g'(x) = s - \ln(x)$, d'où le tableau suivant :

x	0		e^s	+∞
g'(x)		+	0	_
g			e^s	

On en déduit que $I^* = \mathbb{R}$ et $f^{**} = \exp = f$.

Pour ces deux exemples, on a bien $f^{**} = f$.

2 Attention de bien lire la question : il n'est pas demandé de prouver que f^{**} et f ont le même domaine de définition, mais que f^{**} est définie en tout élément de I (donc que I est inclus dans le domaine de définition de f^{**}).

Soit donc $x \in I$. Pour tout $x \in J$, $f^*(x) = xg(x) - f(g(x))$. Calculons alors f^{**} : comme ci-dessus, s est réservée pour f^{**} et on garde x pour f^* . Soit donc $s \in I$ et soit $x \in J$. Posons $\varphi(x) = sx - f^*(x)$. On a alors:

$$\varphi(x) = sx - xg(x) + f(g(x))$$

On sait déjà que f^* est dérivable de dérivée g, si bien que $\varphi'(x) = s - g(x)$. On trouve de même que précédemment le tableau de variations de φ (rappelons que f' est strictement croissante donc préserve les inégalités):

x	f'(s)
φ'	+ 0 -
$\varphi(x)$	$\varphi(f'(s))$

On en déduit que φ est majorée, donc f^{**} est définie en s, et son maximum (donc sa borne supérieure) est

$$\varphi(f'(s)) = sf'(s) - f'(s)g(f'(s)) + f(g(f'(s))$$

$$= sf'(s) - f'(s) \times s + f(s) \qquad g \text{ et } f' \text{ sont réciproques l'une de l'autre}$$

$$= f(s)$$

$$\boxed{f^{**} \text{ est définie sur I et } f^{**} = f}$$

Ce n'est pas toujours le cas. On peut montrer que, si f est convexe, alors f^{**} est la fermeture de f, c'est-à-dire la fonction continue qui coïncide avec f sur l'intérieur de I. En particulier, si f est continue sur I tout entier, alors $f^{**} = f$.