

Ch. 12 - IoT Internet Layer Challenges and Protocols

COMPSCI 147
Internet-of-Things; Software and Systems

The Internet of Things vision

INTERNET LAYER: PROTOCOLS FOR IOT

Why move away from proprietary technologies and move towards IP based connectivity:

- Open, long-lived, reliable standards
- Easy learning-curve
- Transparent Internet integration
- Network maintainability
- Global scalability
- End-to-end data flows

THE INTERNET LAYER IN THE IOT PROTOCOL STACK

ISO/OSI Reference Model	loT Protocol Stack	TCP/IP Protocol Stack
Application Layer	<u>Applications</u>	
	<u>Service Layer</u> (oneM2M, ETSI M2M, OMA, BBF)	Application Layer
	Application Protocol Layer (HTTP, CoAP, XMPP, AMQP, MQTT) (NETCONF, SNMP, mDNS, DNS-SD)	Application Layer
Presentation Layer		
Session Layer		
Transport Layer	Transport Layer (TCP, MPTCP, UDP, DCCP, SCTP) (TLS, DTLS)	Transport Layer
Network Layer	<u>Network Layer</u> (IPv4, IPv6, 6LoWPAN, ND, DHCP, ICMP)	Internet Layer
Data Link Layer	PHY/MAC Layer (3GPP MTC, IEEE 802.11, IEEE 802.15)	Link Layer
Physical Layer		Link Layer

THE INTERNET LAYER IN THE IOT PROTOCOL STACK

- Recall:
 - The network layer is responsible for the **delivery** of individual **packets** from the **source** host to the **destination** host.
 - Logical addressing
 - Header is added to assist in routing
 - Main device is router:
 - Forwarding. When a packet arrives at a router's input link, the router must move the packet to the appropriate output link (in a single router).
 - Routing: Path taken by packets as they flow from a sender to a receiver.

THE INTERNET LAYER IN THE IOT PROTOCOL STACK

- Examples of Network layer Routed protocols are:
 - IP, IPX, AppleTalkRouting protocols are used to create routing table
 - Routing tables are used to determine the best path / route.
- Routing protocols provide periodic communication between routers in an inter-network to maintain information on network links in a routing table.
- Examples of Network layer Routing protocols are:
 - OSPF, IGRP/EIGRP, RIP, BGP.
- Transmits Packets.

INTERNET LAYER – GENERAL CHALLENGES OF IOT DEPLOYMENTS

- IoT deployments constrains =>
 often Low-power and Lossy Networks (LLNs)
 - Lossy = The packet drop rate is high
 - LLN = large number (thousands) of constrained embedded devices with limited power, memory, and processing resources.
- Interconnected using a variety of link layer technologies
 - ZigBee, BLT, Wi-Fi, etc.

INTERNET LAYER – GENERAL CHALLENGES

- Use cases for LLNs
 - Building automation (HVAC, lighting, access control, fire), connected homes, health care, environmental monitoring, urban sensor networks (e.g., Smart Grid)

Source: Yaqoob et al., 2017. Enabling Communication Technologies for Smart Cities.

- LLNs present **5** challenges to the Internet layer (IL):
 - 1. LLNs operate with a hard, very small bound on state
 - IL protocols need to **minimize** the amount of **state** that needs to be kept per node for **routing** or **topology maintenance** functions.
 - 2. LLNs are optimized for saving energy
 - Employing extended sleep cycles
 - Routing protocols need to operate under constant topological changes due to sleep/wake cycles

- 3. Traffic patterns within LLNs include
 - Flows can be: Point-to-point // Point-to-multipoint // Multipoint-to-point
 - Unicast and multicast should be considered.

Unicast

- Address of a single interface
- Delivery to single interface
- for one-to-one communication

Multicast

- Address of a set of interfaces
- Delivery to all interfaces in the set
- for one-to-many communication

Anycast

- Address of a set of interfaces
- Delivery to a single interface in the set
- for one-to-nearest communication
- Nearest is defined as being closest in term of routing distance
- No Broadcast

- 4. LLNs are typically employed over link layer technologies with restricted frame-sizes
 - Routing protocols should be adapted for technologies in the link layers

- 5. Links within LLNs may be inherently **unreliable** with **time varying loss characteristics**
 - IL protocols need to offer **high reliability** under those characteristics

DESIGN FACTORS IN INTERNET LAYER PROTOCOLS FOR IOT

INTERNET LAYER - INDUSTRY OPEN STANDARDS

1. 6LoWPAN

- IPv6 over Low Power Wireless Personal Area Network
- Adapting IPv6 to the IEEE 802.15.4 (ZigBee) link layer.

2. RPL: Routing Protocol over Low-power

Link independent IPv6 Routing Protocol for Low-Power and Lossy Networks

INTERNET LAYER - INDUSTRY OPEN STANDARDS - 6LOWPAN

A 6LoWPAN system is a low-power wireless mesh network where every node has it's own IPv6 address allowing it to connect directly to the Internet

INTERNET LAYER - 6LOWPAN ARCHITECTURE

INTERNET LAYER - INDUSTRY OPEN STANDARDS - 6LOWPAN

6LoWPAN: Adapting IPv6 to the IEEE 802.15.4 link layer.

- Designed to work with restricted frame size
 - The base maximum frame size for 802.15.4 is 127 bytes
 - 25 bytes reserved for the frame header
 - 21 bytes for link layer security.
 - IPv6 packet header, on its own, is 40 bytes
- 6LoWPAN provides three main functions:
 - IPv6 header compression,
 - IPv6 packet segmentation and reassembly
 - · Forwarding (also referred to as mesh addressing).
- 6LoWPAN compress the IPv6 header into 2 bytes

INTERNET LAYER – MOBILITY

Figure 4.2 The difference between micro-mobility and macro-mobility.

INTERNET LAYER - INDUSTRY OPEN STANDARDS - RPL

RPL: IPv6 Routing Protocol for LLNs

- RPL is a distance-vector routing protocol (opposed to a link-state paradigm)
 - Link-state routing protocols build and maintain a database of the entire network on every node
- RPL computes a Destination Oriented Directed Acyclic Graph (DODAG)
 - minimizing the latency of communication
 - maximizing the probability of message delivery.
 - Includes a shortest-path selection algorithm based on Link latency.
 reliability, or node energy level.

INTERNET LAYER - INDUSTRY OPEN STANDARDS - RPL

RPL Main Advantages:

- RPL is a proactive protocol
 - It can calculate alternate paths as part of the topology setup,
 - It does not rely on determine backup paths after a failure occurs
- RPL is under-reactive
 - Failures are handled by locally choosing an alternate path, which makes the protocol well suited for operation over lossy links.

INTERNET LAYER – WHAT ABOUT SECURITY

6LoWPAN Protocol Stack

How to use 6LoWPAN in your own project

• Unfortunately, current ESP32s do not support 802.15.4 link layer and hence we cannot use the radio for 6LoWPAN.

• But we can get 6LoWPAN over 802.15.4 modules:

ADDITIONAL RESOURCES

- -IPv6 over Low-Power Wireless Personal Area Networks (**6LoWPAN**)
 - Texas Instruments
 - https://youtu.be/zzoZNG_NB_c
 - Zach Shelby
 - https://www.youtube.com/watch?v=4baf7N2N_Wo
- -IPv6 Routing Protocol for LLN (**RPL**)
 - Akif Mufti
 - https://youtu.be/6AP7p0sbBro
- An open-access book
 - 6LoWPAN: The Wireless Embedded Internet, by Z. Shelby, C. Bormann, 2009.