

UNIVERSIDAD DE ATACAMA

FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA APLICADA

PRÁCTICA 8

Profesor: Hugo S. Salinas.

Segundo Semestre de 2024

1. Gauss propuso en 1809 el **método de mínimos cuadrados** para obtener los valores $\widehat{\beta}_0$ y $\widehat{\beta}_1$ que mejor se ajustan a los datos:

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i \tag{1}$$

El método consiste en minimizar la suma de los cuadrados de las distancias verticales entre los datos y las estimaciones, es decir, minimizar la suma de los residuos al cuadrado,

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (\widehat{\beta}_0 + \widehat{\beta}_1 x_i))^2$$

Calcular los estimadores de mínimos cuadrados para los parámetros β_0 y β_1 .

2. Supongamos que $\sigma=1,\ \beta_0=1$ y $\beta_1=2.$ Entonces el modelo de Regresión Lineal Simple está dada por

$$Y_i = 1 + 2x_i + u_i, \quad i \in \{1, 2, \dots, n\},$$
 (2)

donde los errores u_i tienen una distribución normal y son independientes.

- a) Fijar $x_i = 1, 2, ..., 10$ (n = 10) y generar las respuestas correspondientes de acuerdo a este modelo.
- b) Graficar los puntos generados y comparar con la verdadera recta y = 1 + 2x.
- c) Graficar los puntos generados y comparar con la recta ajsutada $y = \hat{\beta}_0 + \hat{\beta}_1 x$.
- 3. Los datos de la producción de trigo en toneladas (X) y el precio del kilo de harina en miles de pesos (Y) en la década de los 80 en Chile fueron:

Producción de trigo	30	28	32	25	25	25	22	24	35	40
Precio de la harina	25	30	27	40	42	40	50	45	30	25

Calcular la recta de regresión por el método de mínimos cuadrados.

4. Estimación de la varianza. Para estimar la varianza de los errores, σ^2 , utilizaremos el estimador insesgado denominado varianza residual:

$$S_R^2 = \frac{1}{n-2} \sum_{i=1}^n e_i^2 \tag{3}$$

Calcular la varianza residual del problema anterior.

PRÁCTICA 8