Fiche de révision : primitive et intégrale

Tableaux des primitives usuelles

On désigne les fonctions à "primitiver" par des lettres minuscules et une de leurs primitives par les majuscules correspondantes.

Intervalle(s)	Fonction	Primitive (avec la constante k)
\mathbb{R}	λ (constante)	$\lambda x + k$
R	x	$\frac{1}{2}x^2 + k$
\mathbb{R}	x^2	$\frac{1}{3}x^3 + k$
\mathbb{R} ou \mathbb{R}_+^* si $\alpha \notin \mathbb{Z}$	$x^{\alpha} \ (\alpha \neq -1)$	$\frac{1}{\alpha+1}x^{\alpha+1} + k$
\mathbb{R}_+^* ou \mathbb{R}^*	1/x	$\ln x + k$
\mathbb{R}_+^* ou \mathbb{R}^*	$1/x^2$	-1/x + k
\mathbb{R}_{+}	\sqrt{x}	$\frac{2}{3}x^{\frac{3}{2}} + k$
\mathbb{R}_+^*	$1/\sqrt{x}$	$2\sqrt{x} + k$
\mathbb{R}	e^x	$e^x + k$
\mathbb{R}_+^*	$\ln x$	$x \ln x - x + k$
\mathbb{R}	$\sin x$	$-\cos x + k$
\mathbb{R}	$\cos x$	$\sin x + k$
	$\tan x$	$-\ln \cos x + k$
] - 1,1[$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x) + k$
\mathbb{R}	$\frac{1}{1+x^2}$	$\arctan(x) + k$
\mathbb{R}	ch(x)	sh(x) + k
\mathbb{R}	sh(x)	$\operatorname{ch}(x) + k$
\mathbb{R}	th(x)	$\ln \cosh(x) + k$

	I
Fonction	Primitive (sans k)
$\lambda f + \mu g$ (λ , μ constantes)	$\lambda F + \mu G$
$\frac{u'}{u}$	$\ln u $
$u' \times u^{\alpha} \ (\alpha \neq -1)$	$\frac{1}{\alpha+1}u^{\alpha+1}$
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$
$u' \times e^u$	e^u
$u' \times \sin u$	$-\cos u$
$u' \times \cos u$	$\sin u$
$f(\lambda x)$	$\frac{1}{\lambda}F(\lambda x)$
$u'(x) \times f(u(x))$	F(u(x))

Intégrale

Définition 1. Pour une fonction f continue sur un intervalle I et $a, b \in I$, on définit l'intégrale de f de a à b par :

$$\int_{a}^{b} f(t)dt = F(b) - F(a)$$

où F est une primitive de f sur I (n'importe laquelle, cela ne change pas la valeur de l'intégrale).

Règles de calcul:

- $\int_a^a f(t)dt = 0$ et $\int_b^a f(t)dt = -\int_a^b f(t)dt$.
- $\int_a^b (\lambda f(t) + \mu g(t)) dt = \lambda \int_a^b f(t) dt + \mu \int_a^b g(t) dt$ où λ et μ sont des **constantes**.
- $\int_a^c f(t)dt = \int_a^b f(t)dt + \int_b^c f(t)dt$ (relation de Chasles).
- Si f est à valeurs **positives** et a < b alors $\int_a^b f(t)dt \ge 0$ avec égalité $ssi\ f = 0$.
- ullet Pour des fonctions u et v de classe \mathcal{C}^1 sur I, on a la formule d'intégration par parties :

$$\int_a^b u'(t)v(t)dt = \left[u(t)v(t)\right]_a^b - \int_a^b u(t)v'(t)dt.$$