

Boolean Algebra

PRESENTED BY NABANITA DAS

Boolean Algebra

- VERY nice machinery used to simplify Boolean functions
- OGeorge Boole (1815-1864): "An investigation of the laws of thought"
- •Terminology:
 - Literal: A variable or its complement
 - Product term: literals connected by •
 - Sum term: literals connected by +

Application of Boolean algebra

- It is used to perform the logical operations in digital computer.
- In digital computer True represent by '1' (high volt) and False represent by '0' (low volt)
- Logical operations are performed by logical operators. The fundamental logical operators are:
 - AND (conjunction)
 - OR (disjunction)
 - NOT (negation/complement)

Boolean Algebra Summary

- We can express Boolean functions with either an expression or a truth table.
- Every Boolean expression can be converted to a circuit.
- Now, we'll look at how Boolean algebra can help simplify expressions, which in turn will lead to simpler circuits.
- We recall that the two binary values have different names:
 - 1/0
 - TRUE/FALSE
- We use 1 and 0 to denote the two values.
- The three basic logical operations are:
 - \circ AND is denoted by a dot (·).
 - OR is denoted by a plus (+).
 - NOT is denoted by an overbar (¯) or a single quote mark (') after, or (~) before the variable

Boolean Operator Precedence

- The order of evaluation is:
 - Parentheses
 - NOT
 - AND
 - o OR
- Consequence: Parentheses appear around OR expressions
- **Example:** F = A(B + C)(C + D)

Boolean Algebra Theorems

Identity Name	AND Form	OR Form	
Identity Law	1x = x	0+x=x	
Null (or Dominance) Law	0x = 0	1+x=1	
Idempotent Law	xx = x	X+X=X	
Inverse Law	$x\overline{x} = 0$	$x+\overline{x}=1$	
Commutative Law	xy = yx	x+y=y+x	
Associative Law	(xy)z = x(yz)	(x+y)+z=x+(y+z)	
Distributive Law	X+YZ = (X+Y)(X+Z)	x(y+z) = xy+xz	
Absorption Law	X(X+Y)=X	x+xy=x	
DeMorgan's Law	$(\overline{xy}) = \overline{x} + \overline{y}$	$(\overline{x+y}) = \overline{x}\overline{y}$	
Double Complement Law	$\overline{\overline{X}} = X$		

Duality

The dual of an expression is obtained by exchanging (• and +), and (1 and 0) in it, provided that the precedence of operations is not changed.

Cannot exchange x with x'

Duality (cont'd)

With respect to duality,

Identities 1 - 8 have the following relationship:

1.
$$X + 0 = X$$
 2. $X \cdot 1 = X$ (dual of 1)

3.
$$X + 1 = 1$$
 4. $X \cdot 0 = 0$ (dual of 3)

5.
$$X + X = X$$
 6. $X \bullet X = X$ (dual of 5)

7.
$$X + X' = 1$$
 8. $X \cdot X' = 0$ (dual of 7)

Power of Duality

- 9. $x + x \cdot y = x$ is true, so $(x + x \cdot y)' = x'$
- 10. $(x + x \bullet y)' = x' \bullet (x' + y')$
- 11. $x' \bullet (x'+y') = x'$
- 12. Let X=x', Y=y'
- 13. $X \bullet (X+Y) = X$, which is the dual of $x + x \bullet y = x$.
- 14. Other Boolean Theorem (CONSENSUS THEOREM)

$$\circ$$
 XY + X'Z + YZ = XY + X'Z

$$\circ$$
 $(X+Y)$ $(X'+Z)$ $(Y+Z) = (X+Y)$ $(X'+Z)$

Proof of XY + X'Z + YZ = XY + X'Z

```
XY + X'Z + YZ = XY + X'Z
Consider LHS => xy+yz+x'z
       yz term has to be eliminated, so multiply yz by (x+x').
                                                         [Note : x+x' = 1]
       = xy+yz(x+x')+x'z
       = xy+xyz+x'yz+x'z
       = xy(1+z)+x'z(1+y) [Note : 1+z = 1]
       = xy(1) + x'z(1)
       = XY + X'Z Proved.
```

Simplification using Boolean algebra

Let us consider an example of a Boolean function: AB+A (B+C) + B (B+C)

The logic diagram for the Boolean function AB+A (B+C) + B (B+C) can be represented as:

Simplification using Boolean algebra

We will simplify this Boolean function on the basis of rules given by Boolean algebra.

```
AB + A (B+C) + B (B+C)

=AB + AB + AC + BB + BC {Distributive law; A (B+C) = AB+AC, B (B+C) = BB+BC}

=AB + AB + AC + B + BC {Idempotent law; AB+AB = AB}

=AB + AC + B + BC {Idempotent law; AB+AB = AB}

=AB + AC + B {Absorption law; B+BC = B}

=B + AC {Absorption law; AB+B = B}

Hence, the simplified Boolean function will be B + AC.
```

The logic diagram for Boolean function B + AC

One more example of logic simplification

Example:

$$(A + B)(A + C) = A + BC$$

It can be proved as follows:

$$(A + B)(A + C) = AA + AC + AB + BC$$
 Distributive law

$$= A + AC + AB + BC$$
 Rule : $AA = A$

$$= A(1 + C) + AB + BC$$
 Rule: $1 + C = 1$

$$= A. 1 + AB + BC$$

$$= A(1 + B) + BC$$
 Rule: $1 + B = 1$

$$= A. 1 + BC$$
 Rule : $A. 1 = A$

$$= A + BC$$

Converting from Truth Table to Boolean Function

- There are two ways to convert from truth tables to Boolean functions:
 - 1. Using Sum of Products / Minterms (SOP)
 - 2. Using Product of Sums / Maxterms (POS)

Sum of Product

- The sum-of-products (**SOP**) form is a method (or form) of simplifying the Boolean expressions of logic gates.
- Sum and product derived from the symbolic representations of the OR and AND functions.
- OR (+), AND (.), addition and multiplication.

Product of Sum

- When two or more sum terms are multiplied by a Boolean OR operation.
- Sum terms are defined by using OR operation and the product term is defined by using AND operation.

$$f(A,B,C) = (A'+B) \cdot (B+C')$$

$$\uparrow \qquad \qquad \qquad \uparrow$$
Sum terms

Canonical form of Boolean Expression (Standard form)

- ☐ The canonical forms are the special cases of SOP and POS forms.
- ☐ In standard SOP and POS each term of Boolean expression must contain all the literals (with and without bar) that has been used in Boolean expression.
- If the above condition is satisfied by the Boolean expression, that expression is called Canonical form of Boolean expression.
- Each individual term in the POS form is called Maxterm.
- Each individual term in the SOP form is called Minterm.
- ☐ We perform **Sum of Minterm** also known as Sum of products (SOP).
- ☐ We perform **Product of Maxterm** also known as Product of sum (POS).

Convert SOP to standard SOP form

- 1. For getting the standard SOP form of the given non-standard SOP form, we will add all the variables in each product term which do not have all the variables. By using the Boolean algebraic law, (x + x' = 1)
- 2. Repeat Step 1, until all resulting product terms contain all variables.
- 3. For each missing variable in the function, the number of product terms doubles.

Example:

$$f(A,B,C) = AB + BC + AC$$

Step 1: Find the missing literals in each product term.

Step 2: AND the product term with missing literal + its complement.

$$f(A,B,C) = AB \cdot (C+C') + BC \cdot (A+A') + AC \cdot (B+B')$$

Missing literals and their complements

Step 3: Expends the term and reorder the literals.

$$f(A,B,C) = AB \cdot (C+C') + BC \cdot (A+A') + AC \cdot (B+B')$$

Expand & Reorder:

$$ABC + ABC' + ABC + A'BC + ABC + AB'C$$

Step 4: Omit repeated product terms.

$$f(A,B,C)=ABC+ABC'+ABC+A'BC+AB'C$$

 $f(A,B,C)=ABC+ABC'+A'BC+AB'C$

Convert POS to standard POS form

- 1. For getting the standard POS form of the given non-standard POS form, we will add all the variables in each product term that do not have all the variables. By using the Boolean algebraic law (x * x' = 0).
- 2. Applying Boolean algebraic law, x + y z = (x + y) * (x + z)
- 3. By repeating step 1, until all resulting sum terms contain all variables

Example:

$$f(A,B,C) = (A + B) \cdot (B + C) \cdot (A + C)$$

Step 1: Find The Missing Literals In Each Sum Term.

$$f(A,B,C) = (A + B) \cdot (B + C) \cdot (A + C)$$

$$Literal A is missing$$

$$Literal C is missing$$

Step 2: OR the sum term with missing literal. Its complement.

Step 3: Expends The Term And Reorder The Literals.

$$f(A,B,C) = (A + B+(C.C')). (B + C+(A.A')). (A + C+(B.B'))$$

Expand & Reorder:

by applying, distributive law [A + BC = (A + B) (A + C)]

$$f(A,B,C)=(A+B+C).(A+B+C').(A+B+C).(A'+B+C).(A+B+C).(A+B'+C)$$

Step 4: Omit repeated sum terms.

Minterms

- Minterms are AND terms with every variable present in either true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g.x'), there are 2ⁿ minterms for n variables.

Example: Two variables (X and Y)produce $2 \times 2 = 4$ combinations:

XY(both normal)

XY'(X normal, Y complemented)

X'Y(X complemented, Y normal)

X'Y'(both complemented)

Thus there are four minterms of two variables.

Maxterms

- Maxterms are OR terms with every variable in true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g. x'), there are 2ⁿ maxterms for n variables.

Example: Two variables (X and Y) produce 2x2=4 combinations:

X+Y(both normal)

X+Y'(x normal, y complemented)

X'+Y(x complemented, y normal)

X'+Y'(both complemented)

Minterms & Maxterms for 3 variables

Α	В	С	Minterms	Maxterms	
0	0	0	A'B'C' = m ₀	$A+B+C = M_0$	
0	0	1	A'B'C = m ₁	$A+B+C'=M_1$	
0	1	0	A'BC' = m ₂	A+B'+C = M ₂	
0	1	1	A'BC = m ₃	A+B'+C' = M ₃	
1	0	0	AB'C' = m ₄	A'+B+C = M ₄	
1	0	1	AB'C = m ₅	A'+B+C' = M ₅	
1	1	0	ABC' = m ₆	$A'+B'+C=M_6$	
1	1	1	ABC = m ₇	$A'+B'+C'=M_7$	

Converting from Truth Table to Boolean Function

Truth Table to Boolean Function

Converting from Truth Table to Boolean Function

Truth Table to Boolean Function

Converting from Truth Table to Boolean Function Sum of Minterms

FOR MINTERM (SOP):

$$F = \overline{ABC} + ABC + ABC + ABC$$

$$F = m_1 + m_4 + m_5 + m_7$$

$$F = \sum_{C=0}^{A=1} (1, 4, 5, 7)$$
FOR MAXTERM (POS):
$$A = 0$$

$$B = 0$$

$$C = 0$$

Product of Maxterms

$$F = (A + B + C)(A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)$$

$$F = M_{0} \qquad M_{2} \qquad M_{3} \qquad M_{6}$$

$$F = \prod (0,2,3,6)$$

	А	В	С	F	F'
0	0	0	0	0	1
1	0	0	1	1	0
2	0	1	0	0	1
3	0	1	1	0	1
4	1	0	0	1	0
5	1	0	1	1	0
6	1	1	0	0	1
7	1	1	1	1	0