Universität Leipzig Institut für Informatik Sommersemester 2025 Prof. Dr. Andreas Maletti, Dr. Meenakshi Paramasivan, Dr. habil. Karin Quaas, Fabian Sauer

Aufgaben zur Lehrveranstaltung

Berechenbarkeit

Lösungen zu Serie 1

Übungsaufgabe 1.1 (Grammatiken)

Gegeben sie die folgende Grammatik $G = (\{S\}, \Sigma, S, P)$ mit $\Sigma = \{x, +, -\}$ und Produktionen P

$$S \to x$$
 $S \to S + S$ $S \to S - S$.

- (a) Ist die Grammatik G kontextsensitiv, kontextfrei und/oder regulär? Begründen Sie Ihre Antwort. G ist nicht regulär, denn dafür müsste die rechte Seite jeder Produktionsregel von der Form $(\Sigma \times \{S\}) \cup \Sigma$ sein (aber z.B. $S \to S + S$ ist dies nicht). G is kontextfrei, denn die linke Seite jeder Regel ist in $\{S\}$, und die rechte Seite jeder Regel ist ungleich dem leeren Wort ε . Damit ist G auch kontextsensitiv, denn jede kontextfreie Grammatik ist auch kontextsensitiv.
- (b) Geben Sie eine Ableitung von v = x + x x + x in der Grammatik G an. $S \Rightarrow_G S + S \Rightarrow_G S + S S \Rightarrow_G x + S S \Rightarrow_G x + x S \Rightarrow_G x + x S + S \Rightarrow_G x + x x + x$
- (c) Geben Sie die von G erzeugte Sprache L(G) an. L(G) kann durch den regulären Ausdruck $x \cdot (\{+, -\}x)^*$ ausgedrückt werden (nach mindestens einem x folgt immer +x oder -x).
- (d) Geben Sie die Sprachklasse (Typ-3, Typ-2, Typ-1, oder Typ-0) an. Begründen Sie Ihre Antwort. Typ-3 (reguläre Sprache). Zwar ist die Grammatik G kontextfrei, aber L(G) kann durch einen regulären Ausdruck ausgedrückt werden, und die Klasse der durch regulären Ausdrücke ausdrückbaren Sprachen entspricht den Typ-3-Sprachen.
- (e) Geben Sie die Codierung c(G) von G als endliches Wort über \mathbb{N} an; kodieren Sie dabei Terminale durch ungerade Zahlen (x=1,+=3,-=5), Nichtterminale durch positive gerade Zahlen (S=2), und verwenden Sie die 0 als Trennzeichen. 2,0,1,0,2,0,2,3,2,0,2,0,2,5,2 (das Komma dient hier nur der Lesbarkeit und ist nicht Teil des Wortes.)

Übungsaufgabe 1.2 (Abzählbarkeit)

Beweisen Sie folgenden Satz aus Vorlesung 1.

Seite 1 von 4

§1.12 Jede unendliche Menge M ist abzählbar gdw. eine Bijektion $f: \mathbb{N} \to M$ existiert.

LÖSUNG: Eine Menge M ist abzählbar falls eine injektive Funktion $g:M\to N$ existiert. " \Leftarrow " Angenommen es existiert eine bijektive Funktion $f:\mathbb{N}\to M$. Dann existiert auch die inverse Funktion $f^{-1}:M\to\mathbb{N}$, welche selber auch bijektiv ist. Also ist f^{-1} auch injektiv und somit ist M per Definition abzählbar. Wir zeigen dass M unendlich ist durch einen Widerspruchsbeweis: angenommen, M wäre endlich mit $k\geq 0$ Elementen. Nach dem Taubenschlagprinzip muss dann aber in der Menge $\{f(1),\ldots,f(k),f(k+1)\}$ mindestens ein Element aus M zweimal vorkommen, Widerspruch zur Injektivität von f.

" \Rightarrow " Angenommen M ist unendlich und abzählbar. Es existiert also eine injektive Funktion $g:M\to\mathbb{N}$.

(Falls g auch bijektiv, so können wir $f = g^{-1}$ setzen und sind fertig. Leider ist g nicht unbedingt surjektiv, d.h. es kann Zahlen $n \in N$ geben, für die es kein $m \in M$ mit g(m) = n gibt. Dieses Problem lösen wir wie folgt:)

Für jedes $n \in \mathbb{N}$ definiere die Menge $M_n = \{m \in M \mid g(m) = n\}.$

- (a) Für alle $n \in \mathbb{N}$ gilt: M_n enthält maximal ein Element in M (also $|M_n| \le 1$). Beweis: Sei $n \in \mathbb{N}$. Widerspruchsbeweis: angenommen, es gäbe $m \ne m'$ in M_n . Dann nach Definition g(m) = g(m') = n. Widerspruch zur Injektivität von g.
- (b) Für jedes $m \in M$ existiert ein $n \in \mathbb{N}$ mit $m \in M_n$. Beweis: dies gilt weil g eine Funktion ist, welche jedem Element m in M ein n zuweist.

Sei $0 \le i_0 < i_1 < i_2 < i_3 < i_4 \dots$ die Folge aller Indizes sodass $M_{i_j} \ne \emptyset$. Dann ist also $m_{i_1}, m_{i_2}, m_{i_3}, \dots$ mit $m_{i_j} \in M_{i_j}$ für alle $j \ge 0$ eine Folge *aller* Elemente in M (wegen (b)), in der *kein Element doppelt* (wegen (a)) vorkommt.

Definiere $f: \mathbb{N} \to M$ durch $g(j) = m_{i_j}$ für alle $j \ge 0$. Wir zeigen dass f bijektiv ist:

- f ist injektiv: seien $n, n' \in \mathbb{N}$ mit $n \neq n$. Dann $f(n) = m_{i_n}$ und $f(n') = m_{i_{n'}}$. Wegen (a) gilt in der Tat $f(n) \neq f(n')$.
- f ist surjektiv: sei $m \in M$. wegen (b) gibt es ein $j \ge 0$ mit $m = m_{i_j}$. Dann gilt g(j) = m.

Übungsaufgabe 1.3 (Abzählbarkeit)

Beweisen Sie folgenden Satz.

Die Menge $M = \{f \mid f : \mathbb{N} \to \mathbb{N}\}$ ist nicht abzählbar.

LÖSUNG: Hinweis: der Beweis ist dem Beweis von Satz §1.13 in Vorlesung 1 sehr ähnlich. Widerspruchsbeweis: nimm an, M sei abzählbar. Offensichtlich ist M unendlich. Nach Satz §1.12 existiert eine bijektive Funktion $g: \mathbb{N} \to M$. Definiere die Funktion $f: \mathbb{N} \to \mathbb{N}$ durch

$$f(n) = \begin{cases} 1 & \text{falls } g(n)(n) \neq 1 \\ 0 & \text{falls } g(n)(n) = 1 \end{cases}.$$

Seite 2 von 4

(Also gilt für alle $n \in \mathbb{N}$, f(n) = 1 oder f(n) = 0.) Da g bijektiv ist, muss es $n \in \mathbb{N}$ geben sodass g(n) = f. Angenommen f(n) = 1. Also auch g(n)(n) = 1. Nach Definition von f gilt aber auch $g(n)(n) \neq 1$, Widerspruch. Also muss f(n) = 0 gelten. Also auch g(n)(n) = 0. Nach Definition von f gilt aber g(n)(n) = 1, Widerspruch. Also ist f(n) = 0 micht abzählbar.

Testfrage: ist die Menge $M' = \{f \mid f : \mathbb{N} \to \{0,1\}\}$ abzählbar? Nein, denn wir haben im Beweis genau eine solche Funktion in M' definiert.

Siehe auch Diagonalisierung

Hausaufgabe 1.4 (Grammatiken)

Gegeben sie die folgende Grammatik $G = (\{S\}, \Sigma, S, P)$ mit $\Sigma = \{x, +, -, (,)\}$ und Produktionen P

(11)

$$S \to x$$
 $S \to S + S$ $S \to S - S$ $S \to (S)$.

- (a) Ist die Grammatik G kontextsensitiv, kontextfrei und/oder regulär? Begründen Sie Ihre Antwort. G ist nicht regulär, denn dafür müsste die rechte Seite jeder Produktionsregel von der Form $(\Sigma \times \{S\}) \cup \Sigma$ sein (aber z.B. $S \to S + S$ ist dies nicht) •1. G is kontextfrei, denn die linke Seite jeder Regel ist in $\{S\}$, und die rechte Seite jeder Regel ist ungleich dem leeren Wort ε •2. Damit ist G auch kontextsensitiv, denn jede kontextfreie Grammatik ist auch kontextsensitiv •3. (Je einen Punkt pro richtiger Aussage zu jeder Klasse (mit Begründung))
- (b) Geben Sie eine Ableitung von v = ((x-x)+x)-x in der Grammatik G an. $S \Rightarrow_G S S \Rightarrow_G (S) S \Rightarrow_G (S+S) S \Rightarrow_G ((S)+S) S \Rightarrow_G ((S-S)+S) S \Rightarrow_G ((x-S)+S) S \Rightarrow_G ((x-x)+S) S \Rightarrow_G ((x-x)+x) S \Rightarrow_G (($
- (c) Geben Sie eine Definition für die Sprache $L(G) \cap \{(,),x\}^*$ an. Das sind all die Wörter, die in L(G) sind aber kein + und kein enthalten; also lediglich durch die Regel $S \to (S)$ (beliebig oft) und $S \to x$ (einmal) abgeleitet werden können: $\{(^nx)^n \mid n \ge 0\}$ $\{(gleiche Anzahl von öffnenden und schliessenden Klammern, dazwischen ein <math>(x)$
- (d) Beweisen Sie, dass L(G) keine Typ-3-Sprache ist. Widerspruchsbeweis. Angenommen, L(G) wäre eine Typ-3-Sprache, also regulär. Dann wäre aber auch $L(G) \cap \{(,),x\}^*$ eine reguläre Sprache, denn $\{(,),x\}$ ist regulär und reguläre Sprachen sind unter Schnitt abgeschlossen. Jedoch ist $L(G) \cap \{(,),x\}^*$ nicht regulär (Pumping Lemma). \bullet 9 \bullet 10 \bullet 11

Hausaufgabe 1.5 (Abzählbarkeit)

punkte11

(a) Beweisen Sie folgenden Satz:

Sei M abzählbar und $M' \subseteq M$. Dann ist M' abzählbar.

(3)

Da M abzählbar, existiert injektive Funktion $f: M \to \mathbb{N} \bullet_{12}$. Wir definieren eine injektive Funktion $g: M' \to \mathbb{N}$ um zu zeigen dass M' abzählbar ist: definiere g(m) = f(m) für alle $m \in M' \bullet_{13}$. Da f injektiv ist, ist offensichtlich auch g injektiv \bullet_{14} .

(b) Beweisen oder widerlegen Sie folgende Aussage:

Sei Σ ein endliches Alphabet. Dann ist Σ^* abzählbar.

(4)

(4)

Die Aussage ist wahr $ullet_{15}$. Laut §1.10 ist \mathbb{N}^* abzählbar $ullet_{16}$. O.B.d.A. können wir annehmen, dass $\Sigma \subseteq \mathbb{N}$, also $\Sigma^* \subseteq \mathbb{N}^*$ $ullet_{17}$. Nach 1.5 (a) ist also Σ^* abzählbar. $ullet_{18}$

(c) Beweisen oder widerlegen Sie folgende Aussage:

Die Menge $\mathcal{P}(\mathbb{N}^*)$ aller Teilmengen von Wörtern über \mathbb{N} ist abzählbar. Die Aussage ist falsch \bullet_{19} . Laut §1.13 ist die Menge $\mathcal{P}(\Sigma^*)$ aller Teilmengen von Σ^* nicht abzählbar \bullet_{20} . O.B.d.A. können wir annehmen, dass $\Sigma \subseteq \mathbb{N}$, also $\Sigma^* \subseteq \mathbb{N}^*$ also $\mathcal{P}(\Sigma^*) \subseteq \mathcal{P}(\mathbb{N}^*) \bullet_{21}$. Wäre $\mathcal{P}(\mathbb{N}^*)$ abzählbar, so wäre nach 1.5 (a) auch $\mathcal{P}(\Sigma^*)$ abzählbar \bullet_{22} .

Hausaufgabe 1.6 (Abzählbarkeit)

(5)

Beweisen Sie folgenden Satz.

Sei M eine unendliche Menge und $f: \mathbb{N} \to M$ eine surjektive Funktion. Dann ist M abzählbar.

LÖSUNG: Nach §1.12 genügt es zu zeigen, dass eine bijektive Funktion $g: \mathbb{N} \to M$ existiert•23. Betrachte die unendliche Folge

$$f(0), f(1), f(2), \dots$$

Da f nicht injektiv sein muss, können in dieser Folge Duplikate vorkommen, d.h. es kann $0 \le i < j$ geben mit f(i) = f(j). Wir definieren g so, dass solche Duplikate eliminiert werden. Die Definition von g ist rekursiv. Definiere g(0) = f(0) und g(n+1) = f(j), wobei j die kleinste natürliche Zahl mit f(j) kommt nicht in $g(0), g(1), \ldots g(n)$ vor ist \bullet_{24} \bullet_{25} . Wir zeigen dass g bijektiv ist:

- g ist surjektiv: da f surjektiv ist, gibt es für jedes $m \in M$ ein $n \in \mathbb{N}$ mit f(n) = m. Nach Definition von g existiert ein $n' \in \mathbb{N}$ (mit $n' \leq n$) mit g(n') = m. •26
- g ist injektiv: sei $n, n' \in \mathbb{N}$. Dann n < n' oder n' < n. Ohne Beschränkung der Allgemeinheit sei n < n'. Wir haben g so definiert, dass n' nicht in $g(0), \ldots, g(n), \ldots, g(n-1)$ vorkommt. Also $g(n) \neq g(n')$. •27