4.1 Gerenciamento de memória

Gerenciamento de memória

- Permite que vários processos sejam executados ao mesmo tempo, mantendo um bom desempenho do sistema
- O SO deve proteger as áreas de memória utilizadas pelos processos de forma que, se um programa tente acessá-la indevidamente, o sistema seja impedido
- Conceito de hierarquia de memória combinando
 - Memória cache
 - memória principal RAM
 - memória secundária
 - baixo custo, alto armazenamento, não volátil, ex.: disco

Hierarquia de memórias

Classes de gerenciamento de memória

- 2 classes
 - Sistemas que durante o processamento levam e trazem a informação da memória para o disco
 - Troca de processos e paginação
 - Sistemas que não o fazem
- A troca de processos (swapping) carrega todo o programa para a memória principal, o executa por um determinado tempo e depois o mesmo retorna para o disco
- A paginação divide a memória em partições para a execução das aplicações

Monoprogramação sem troca de processos ou paginação

 Somente um programa é executado por vez, e a memória é compartilhada entre o sistema operacional e o programa

• 3 formas:

- O SO está utilizando o espaço de endereçamento em RAM
 - Modelo aplicado aos mainframes e minicomputadores
- O SO está utilizando o espaço de endereçamento em ROM somente para a leitura
 - Usado em alguns computadores de mão e em sistemas embarcados
- Os drives de dispositivos estão em ROM e os programas do usuário e o sistema operacional está em RAM
 - Alguns microcontroladores
 - Primeiros computadores pessoais.

- O usuário tem o controle da memória toda, podendo acessar até mesmo a área do sistema operacional
- Somente um usuário tem acesso aos recursos computacionais
- Na técnica de overlay o programa é dividido em módulos, e cada um é executado por vez na memória

Multiprogramação com Partições Fixas

- A maioria dos SOs modernos permite que vários processos executem ao mesmo tempo (multiprogramação)
- Quando um processo é bloqueado aguardando uma informação de entrada/ saída
 - Outro processo poderá utilizar a CPU, aumentando a sua utilização
- A memória é dividida em n partições de tamanhos diferentes, podendo ser definida quando o sistema for iniciado
- Quando um processo chega para ser executado, ele é inserido em uma fila associada à menor partição suficiente para armazená-lo

Problemas da Multiprogramação: relocação e proteção

Relocação

- Transferência de um código de um local para outro de forma que um programa não escreva na área de outro programa
 - Necessária uma vez que processos executam em diferentes endereços na memória física

Linker

- Liga programa principal, auxiliares, e bibliotecas
- Precisa saber o endereço inicial para relocar as instruções
- Uma implementação é relocar ao ser carregado
 - O executável deve ter uma tabela de endereços

- A relocação durante a carga não resolve o problema da proteção
 - Aplicações não podem acessar outras partições
- Recursos do processador (hardware) podem resolver os problemas de relocação e proteção
 - Registradores do processador:
 - Base
 - Endereço de início da partição
 - Limite
 - Tamanho da partição