

Parties

Parties are one of the foundational concepts in Tx3. They represent the various actors that interact with your blockchain protocol, such as users, contracts, or services.

Why Parties Matter

In UTxO blockchains like Cardano, addresses control UTxOs. Rather than hardcoding addresses, Tx3 uses the concept of parties to:

- 1. Abstract implementation details Separating roles from specific addresses
- 2. Improve readability Making transactions easier to understand
- 3. Enable configuration Allowing the same protocol to work with different addresses
- 4. Support parameterization Letting transactions work with dynamic parties

Party Definition Syntax

The basic syntax for defining a party is:

```
party {Name};
```

Where Name is an alphanumeric identifier (starting with a letter) that represents this party throughout your protocol.

Simple Party Examples

Usage

Parties define the "who" in transactions - who provides inputs and who receives outputs.

Input Sources

Parties specify who controls the UTxOs that will be consumed:

```
party User;
// User is providing Ada as input
tx deposit(amount: Int) {
    // UTxO controlled by the User party
    input user_tokens {
        from: User,
        min_amount: Ada(amount) + fees,
    }

    // Rest of transaction...
}
```

Output Recipients

Parties specify who will receive newly created UTxOs:

Complex Party Relationships

Real-world protocols typically involve multiple parties with different roles:

```
party EscrowContract;
party Buyer;
party EscrowProvider;
party Seller;
tx escrow_payment(
    seller_item_id: Bytes,
    price: Int,
   escrow_fee: Int,
) {
    input payment {
        from: Buyer,
        min_amount: Ada(price + escrow_fee) + fees,
    }
    output locked_payment {
        to: EscrowContract,
        amount: Ada(price),
        datum: EscrowState {
            buyer: Buyer,
            seller: Seller,
            item_id: seller_item_id,
            amount: price,
    }
    output {
        to: EscrowProvider,
        amount: Ada(escrow_fee),
    }
    output {
        to: Buyer,
        amount: payment - Ada(price + escrow_fee) - fees,
```

J

Party Properties and Methods

Parties have properties and methods that can be accessed in transactions:

```
// Access party's address directly
User;

// In Cardano, get party's stake credential
Treasury.stake_credential;

// In Cardano, get party's payment credential
Treasury.payment_credential;
```

Best Practices for Using Parties

- 1. Use descriptive names Names like LiquidityProvider are clearer than Party1
- 2. Consistent roles Each party should have a well-defined role in the protocol
- 3. Security considerations Be clear about which parties need to authorize actions
- 4. Documentation Document the responsibilities and expectations for each party