Processador 8 bits

Trabalho final AOC

Aluno: George Zambonin

Tipos de instrução

• Tipo R

3 bits	2 bits	2 bits	1 bit
7-5	4-3	2-1	0
Opcode	Reg1	Reg2	Funct

Tipos de instrução

• Tipo I

3 bits	2 bits	2 bits	1 bit
7-5	4-3	2-1	1
Opcode	Reg1	Reg2 / Immediate	Immediate_en

Tipos de instrução

• Tipo J

3 bits	5 bits		
7-5	4-0		
Opcode	Target		

DataPath

Algoritmo	0	li \$0, 7	111	00	111	3
	1	add \$0, \$0	000	00	00	0
	2	add \$0, \$0	000	00	00	00
	3	add \$0, \$0	000	00	00	00
3	4	add \$0, \$0	000	00	00	00
	5	li \$1, 3	111	01	011	ļ
Fibonacci	6	sw \$0, 3	110	00	11	1
	7	li \$1, 1	111	01	001	1
	8	li \$2, 0	111	10	000	
	9	li \$3 5	111	11	101	
	10	sw \$1, 0	110	01	00	1
	11	lw \$0, 0	101	00	00	1
	12	sw \$1, \$0	110	01	00	0
	13	sw \$1, \$3	110	01	11	0
	14	lw \$1, 0	101	01	00	1
	15	add \$3, \$0	000	11	00	0
	16	lw \$1, 1	101	01	01	1
	17	add \$1, \$2	000	01	10	0
	18	lw \$2, 1	101	10	01	1
	19	lw \$0, 3	101	00	11	1
	20	slt \$1, \$0	100	01	00	0
	21	j 12	001	01011		
	22	li \$0, 0	111	00	000)
	23	li \$1, 5	111	01	101	
	24	sw \$0, \$1	110	00	01	0

Waveform

Fibonacci

+ (4)	00000000	Signal Internal
+ 4 (5)	00000000	Signal Internal
+ 4 (6)	00000001	Signal Internal
+ 4 (7)	00000010	Signal Internal
+ 4 (8)	00000011	Signal Internal
+ 4 (9)	00000101	Signal Internal
+ (10)	00001000	Signal Internal
+ (11)	00001101	Signal Internal
+ 4 (12)	00010101	Signal Internal
+ 4 (13)	00100010	Signal Internal
+ (14)	00110111	Signal Internal
+ 4 (15)	01011001	Signal Internal
+ 4 (16)	100 10000	Signal Internal
+ (17)	11101001	Signal Internal
+ 4 (18)	00000000	Signal Internal
+ 4 (19)	00000000	Signal Internal
122		