Antenna Pointer

University of Central Oklahoma School of Engineering, College of Mathematics and Science

Team 3 Members:

Nathaniel Blair, E.E.

Joshua Nutter, M.E.

Cesar Vasquez, M.E.

Faculty Advisor: Dr. Tej Lamichhane

Faculty Co- Advisor: Dr. Evan Lemley

Faculty Co-Advisor: Dr. Nesreen Alsbou

Industry Contact: Jonathan Adams (FAA)

Introduction

ASTI team with FAA

Setup antennas at FAA supported airports

- Point at geostationary satellites
- No hardline communication

Use compass and plumb bob for orientation

Proposed Solution

Digital Handheld Device

- Outputs current antenna orientation
- Battery powered, usable in cold weather

User Manual

How to use

Design Documentation

- CAD Models
- Wiring Diagrams
- Software

Technical Structure

User Interface Prototype

Input Output

Electrical Prototype

Circuit Layout

Outputs

icm test: Azimuth: 80.749901 degrees icm test: Elevation: 11.916349 degrees

BUTTON TEST: BTN0: BUTTON_PRESS_DOWN
BUTTON TEST: BTN0: BUTTON_PRESS_UP[220]
BUTTON TEST: BTN0: BUTTON_SINGLE_CLICK

GitHub repository: UCO_SD_TEAM3_AntennaPointer [1]

Antenna Pointer Device Shell

Keypad

Inside

Backplate

ANTENNA POINTER PROTOTYPE

Impacts

Social

- Communication is critical
- ATC and pilot communication
- Weather data
- Supports aircraft operations

Economic

- Lower maintenance costs
- Device is relatively cheap

Project Standards

Mechanical

ASME Y14.5:
 Dimensioning and Tolerancing

Electrical

- IEEE 315: Graphical Symbols for Electrical and Electronic Diagrams
- IEEE P145: IEEE Draft Standards for Definition of Terms for Antennas

Timeline

Timeline

Future Work

Nathaniel:

- Integrate all components
- Program GUI
- Calibrate sensor data (challenge)
- Custom button board

Joshua:

- Design device clamp
- Experiment with extending IMU sensor
- Test device orientation/accuracy

Cesar:

- Design waterproof buttons
- Test material resistance
- Redesign user interface

Budget

Spent so far.

- \$139.62 spent
- \$610.38 left

Possible Future Costs:

- Custom keypad PCB, switches
- \$2.99 Satellite Finder App
- \$349.00 Silicone 40A Resin [2]
- Ceramic coated fabric
- Hardware

Conclusion

Improve installation time and cost of antennas

 Digital device that accurately determines antenna orientation

QUESTIONS?

Thank you

