I Sujet d'oral CCINP

Dans cet exercice, tous les graphes sont orientés. On représente un graphe orienté G = (S, A), avec $S = \{0, \dots, n-1\}$, en C par la structure suivante :

```
typedef struct {
   int n; // nombre de sommets
   int degre[100]; // degre[s] est le degré sortant de s
   int voisins[100][10]; // voisins[s] contient les successeurs de s
} graphe;
```


Pour $s \in S$ on note A(s) l'ensemble des sommets accessibles à partir de s. Pour $s \in S$, le maximum des degrés des sommets accessibles depuis s est noté $d^*(s)$. Par exemple, pour le graphe ci-dessus, $A(2) = \{2, 4, 6, 7, 8\}$ et $d^*(2) = 2$ car le degré sortant de s est s est s est carrier de s est s est

On représente un sous-ensemble de sommets $S' \subseteq S$ par un tableau de booléens de taille n, contenant true à la case d'indice s' si $s' \in S'$ et false sinon.

- 1. Écrire une fonction int degre_max(graphe* g, bool* partie) qui calcule le degré maximum d'un sommet $s' \in S'$ dans un graphe G = (S, A) pour une partie $S' \subseteq S$ représentée par partie, c'est-à-dire qui calcule $\max\{d^+(s') \mid s' \in S'\}$.
- 2. Écrire une fonction bool* accessibles(graphe* g, int s) qui prend en paramètre un graphe et un sommet s et qui renvoie un tableau de booléens de taille n représentant A(s).
- 3. Écrire une fonction int degre_etoile(graphe* g, int s) qui calcule $d^*(s)$ pour un graphe et un sommet passés en paramètre. Quelle est la complexité de cette fonction?
- 4. Donner un tri topologique du graphe ci-dessus.
- 5. Dans cette question, on suppose que le graphe G = (S, A) est acyclique. Décrire un algorithme permettant de calculer tous les $d^*(s)$ pour $s \in S$ en O(|S| + |A|).
- 6. On ne suppose plus le graphe acyclique. Décrire un algorithme permettant de calculer tous les $d^*(s)$ pour $s \in S$ en temps O(|S| + |A|).

II Graphes semi-connexes

Soit G = (S, A) un graphe orienté. On dit que G est semi-connexe si pour tous $(s, t) \in S^2$, il existe un chemin de s à t ou un chemin de t à s.

- 1. Donner un algorithme très simple de complexité O(n(n+p)) (avec n=|S| et p=|A|) permettant de déterminer si un graphe orienté acyclique est semi-connexe.
- 2. Soit G = (S, A) un graphe acyclique et (s_0, \ldots, s_{n-1}) un ordre topologique de G. Montrer que G est semi-connexe si et seulement si pour tout $i \in [0, n-2], (s_i, s_{i+1}) \in A$.
- 3. En déduire un algorithme plus efficace qui décide si un graphe orienté quelconque est semi-connexe et préciser sa complexité.

III Hypercube

Un hypercube Q_n a pour sommets les mots binaires de taille n, 2 sommets étant reliés s'ils différent d'un bit.

- 1. Dessiner Q_3 .
- 2. Quel est le nombre de sommets et d'arêtes de Q_n ?
- 3. Montrer que Q_n est biparti.
- 4. Montrer que Q_n possède un couplage parfait.
- 5. Soit $n \ge 2$. Montrer que Q_n est hamiltonien : il existe un cycle qui visite tous les sommets exactement une fois. Dessiner un tel cycle de Q_3 .

IV Questions sur les couplages

- 1. Soit G un graphe. Montrer que si G a un couplage parfait alors G possède un nombre pair de sommets. La réciproque est-elle vraie ?
- 2. Soit M_1 et M_2 deux couplages d'un graphe G, avec M_2 maximal (c'est-à-dire qu'on ne peut pas ajouter d'arête à M_2 en conservant un couplage). Montrer que $|M_1| \leq 2|M_2|$, puis donner un cas d'égalité.
- 3. Soit G = (V, E) un graphe. Une couverture par sommets (vertex cover) de G est un ensemble C de sommets tels que chaque arête de G est adjacente à au moins un sommet de C. L'objectif est de trouver une couverture par sommets C^* de cardinal minimum.

On propose l'algorithme suivant :

2-approximation de vertex cover

 $M \leftarrow$ couplage maximal de G

 $C \longleftarrow$ ensemble des sommets couverts par M

Montrer que C est bien une couverture par sommet et que $|C| \leq 2|C^*|$.

- 4. Soit *M* un couplage d'un graphe *G*. Rappeler le fonctionnement de l'algorithme de recherche de chemin *M*-augmentant dans *G*. Quelle condition *G* doit-il vérifier ? Donner un contre-exemple si ce n'est pas le cas.
- 5. Soit $M = (m_{i,j})$ une matrice de taille $n \times n$. On définit le permanent de M:

$$per(M) = \sum_{\sigma \in S_n} \prod_{i=1}^n m_{i,\sigma(i)}$$

où S_n est l'ensemble des permutations de $\{1,\ldots,n\}$.

Définir un graphe G dont le nombre de couplages parfaits est égal à per(M).

 $\underline{\text{Remarque}}$: il n'existe pas d'algorithme efficace pour calculer le permanent d'une matrice, contrairement au déterminant qui peut être calculé en $O(n^3)$ avec l'algorithme du pivot de Gauss.