# A simple Motif finder based on random projections

Presented by

**Gergana Stanilova** 

Department of Mathematics and Computer Science Freie Universität Berlin

**Supervisor: Christopher Pockrandt** 

# Outline

> Introduction & Motivation

Problem

Background

Solution

Validation

Future work

# Introduction & Motivation



<sup>\*</sup> Source: https://upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Prokaryote\_cell.svg/914px-Prokaryote\_cell.svg.png

<sup>\*\*</sup> Source: http://2013.igem.org/wiki/images/c/c3/Xmusoftware\_promoter4.jpg

# Introduction & Motivation



 $<sup>*</sup> Source: https://upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Prokaryote\_cell.svg/914px-Prokaryote\_cell.svg.png\\$ 

# Introduction & Motivation



- Influence the expression of a gene family
- Know the binding sites
- Find a pattern ("motif")

<sup>\*</sup> Source: https://upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Prokaryote\_cell.svg/914px-Prokaryote\_cell.svg.png

<sup>\*\*</sup> Source: http://2013.igem.org/wiki/images/c/c3/Xmusoftware\_promoter4.jpg

# Outline

Introduction & Motivation

> Problem

Background

Solution

Validation

Future work

#### The (I, d) - Motif problem

#### Given:

- *t* sequences (the regions upstream of the genes)
- each sequence of length n

#### <u>Wanted</u>

- The motif M
- of length /
- with *d* point substitutions (mutations)

- 1 GGTCTATCTGATTCCAGTCGTCTAT
- 2 CAATTCCAGACGTCTAAAGGTCTA
- 3 ACCTTATTCCAGTCGGCTTTCTCTC
- 4 AGCTAAGAGTCTGATACCAGTCGT
- . ...
- . ...
- . ...
- *t* GGTTTCCAATCGTCTATCCCTGAG

#### The (I, d) - Motif problem

#### Given:

- *t* sequences (the regions upstream of the genes)
- each sequence of length n

#### <u>Wanted</u>

- The motif M
- of length /
- with *d* point substitutions (mutations)

- 1 GGTCTATCTGATTCCAGTCGTCTAT
- 2 CAATTCCAGACGTCTAAAGGTCTA
- 3 ACCTTATTCCAGTCGGCTTTCTCTC
- 4 AGCTAAGAGTCTGATACCAGTCGT
- . ...
- . ...
- . ...
- t GGTTTCCAATCGTCTATCCCTGAG



#### The (I, d) - Motif problem

#### Given:

- *t* sequences (the regions upstream of the genes)
- each sequence of length n

#### <u>Wanted</u>

- The motif M
- of length /
- with d point substitutions (mutations)

- 1 GGTCTATCTGATTCCAGTCGTCTAT
- 2 CAATTCCAGACGTCTAAAGGTCTA
- 3 ACCTTATTCCAGTCGGCTTTCTCTC
- 4 AGCTAAGAGTCTGATACCAGTCGT
- . ...
- •
- . ...
- t GGTTTCCAATCGTCTATCCCTGAG



#### The (I, d) - Motif problem

#### Given:

- *t* sequences (the regions upstream of the genes)
- each sequence of length n

#### <u>Wanted</u>

- The motif M
- of length /
- with d point substitutions (mutations)

1 GGTCTATCTGATTCCAGTCGTCTAT

length /

- 2 CAATTCCAGACGTCTAAAGGTCTA
- 3 ACCTTATTCCAGTCGGCTTTCTCTC
- 4 AGCTAAGAGTCTGATACCAGTCGT
- . ...
- . ...
- . ...
- t GGTTTCCAATCGTCTATCCCTGAG

length n

#### The (I, d) - Motif problem

#### Given:

- *t* sequences (the regions upstream of the genes)
- each sequence of length n

#### <u>Wanted</u>

- The motif M
- of length /
- with d point substitutions (mutations)

1 GGTCTATCTGATTCCAGTCGTCTAT

length I

- 2 CAATTCCAGACGTCTAAAGGTCTA
- 3 ACCTTATTCCAGTCGGCTTTCTCTC
- 4 AGCTAAGAGTCTGATACCAGTCGT
- . ...
- •
- . ...
- t GGTTTCCAATCGTCTATCCCTGAG

length n

# Outline

Introduction & Motivation Problem

Background

Solution

Validation

Future work

# Background

- Gibbs sampling and MEME had a poor performance for the (15,4)motif problem in terms of accuracy
- Algorithms by Pevzner and Sze fail for (14,4)-, (16,5)-, and (18,6)-motif problems
- PROJECTION

\* C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C. Wootton. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. *Science*, 262:208–214, 8 October 1993.

T. L. Bailey and C. Elkan. Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Machine Learning, 21(1-2):51–80, Oct. 1995.

\*\* P. Pevzner and S.-H. Sze. Combinatorial approaches to finding subtle signals in DNA sequences. In *Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology*, pages 269–278, Aug. 2000.

\*\*\* Jeremy Buhler and Martin Tompa. Finding motifs using random projections. J Comput Biol. 2002. 9(2):225-42

JOURNAL OF COMPUTATIONAL BIOLOGY Volume 9, Number 2, 2002 © Mary Ann Liebert, Inc. Pp. 225-242

#### Finding Motifs Using Random Projections

JEREMY BUHLER1 and MARTIN TOMPA2

#### ABSTRACT

The DNA motif discovery problem abstracts the task of discovering short, conserved sites in genomic DNA. Pevzner and Sze recently described a precise combinatorial formulation of motif discovery that motivates the following algorithmic challenge: find twenty planted occurrences of a motif of length fifteen in roughly twelve kilobases of genomic sequence, where each occurrence of the motif differs from its consensus in four randomly chosen positions. Such "subtle" motifs, though statistically highly significant, expose a weakness in existing motif-finding algorithms, which typically fail to discover them. Pevzner and Sze introduced new algorithms to solve their (15,4)-motif challenge, but these methods do not scale efficiently to more difficult problems in the same family, such as the (14,4)-, (16,5)-, and (18,6)-motif problems. We introduce a novel motif-discovery algorithm, PROJECTION, designed to enhance the performance of existing motif finders using random projections of the input's substrings. Experiments on synthetic data demonstrate that PROJECTION remedies the weakness observed in existing algorithms, typically solving the difficult (14,4)-, (16,5)-, and (18,6)-motif problems. Our algorithm is robust to nonuniform background sequence distributions and scales to larger amounts of sequence than that specified in the original challenge. A probabilistic estimate suggests that related motif-finding problems that PROJECTION fails to solve are in all likelihood inherently intractable. We also test the performance of our algorithm on realistic biological examples, including transcription factor binding sites in eukaryotes and ribosome binding sites in prokaryotes.

Key words: motif finding, random projection, regulatory sequences.

#### 1. INTRODUCTION

THE DNA MOTIF DISCOVERY PROBLEM abstracts the task of discovering short, conserved sites in genomic DNA sequence. Pevzner and Sze (2000) studied a precise combinatorial formulation of this problem that had previously been considered by Sagot (1998). This formulation, the planted motif problem, is of particular interest because it is intractable for commonly used motif-finding algorithms.

25

<sup>&</sup>lt;sup>1</sup>Department of Computer Science, Box 1045, Washington University, One Brookings Drive, St. Louis, MO 63130.

<sup>&</sup>lt;sup>2</sup>Department of Computer Science and Engineering, Box 352350, University of Washington, Seattle, WA 98195-350

# Outline

Introduction & Motivation

Problem

Background

> Solution

Validation

Future work

### **Implementation**

- C++
- SEQAN Library \*

### **Approach & Methods**

For m trials

- Step 1: Random Projections
- Step 2: Refinement
- Step 3: Consensus sequence

Take the best consensus sequence from all trials

<sup>\*</sup> K. Reinert, T. H. Dadi, M. Ehrhardt, H. Hauswedell, S. Mehringer, R. Rahn, J. Kim, C. Pockrandt, J. Winkler, E. Siragusa, G. Urgese, and D. Weese. The seqan c++ template library for efficient sequence analysis: a resource for programmers. Journal of biotechnology, vol. 261, pp. 157-168, 2017

# **Implementation**

- C++
- SEQAN Library

# **Approach & Methods**

For m trials

- Step 1: Random Projections
- Step 2: Refinement
- Step 3: Consensus sequence

Take the best consensus sequence from all trials

# **Random Projections**

Project l-mers onto k-mers

GCCACGT *I-mer I=7* 

# **Implementation**

- C++
- SEQAN Library

# **Approach & Methods**

For m trials

- Step 1: Random Projections
- Step 2: Refinement
- Step 3: Consensus sequence

Take the best consensus sequence from all trials

# **Random Projections**

Project l-mers onto k-mers

GCCACGT *I-mer* 
$$I=7$$
 $\downarrow \downarrow \downarrow$ 
C A T  $k$ -mer  $k=3$ 

# **Implementation**

- C++
- SEQAN Library

### **Approach & Methods**

For m trials

- Step 1: Random Projections
- Step 2: Refinement
- Step 3: Consensus sequence

Take the best consensus sequence from all trials

# **Random Projections**

- Project l-mers onto k-mers
- Hash the k-mers

hash(C A T) = hashValue

# **Implementation**

- C++
- SEQAN Library

### **Approach & Methods**

For m trials

- Step 1: Random Projections
- Step 2: Refinement
- Step 3: Consensus sequence

Take the best consensus sequence from all trials

# **Random Projections**

- Project I-mers onto k-mers
- Hash the k-mers
- Order them into buckets hashValue



# **Implementation**

- C++
- SEQAN Library

# **Approach & Methods**

For m trials

- Step 1: Random Projections
- Step 2: Refinement
- Step 3: Consensus sequence

Take the best consensus sequence from all trials

# **Random Projections**

- Project l-mers onto k-mers
- Hash the k-mers
- Order them into buckets



hashValue hashValue





hashValue

# **Implementation**

- C++
- SEQAN Library

# **Approach & Methods**

For m trials

- Step 1: Random Projections
- Step 2: **Refinement**
- Step 3: Consensus sequence

Take the best consensus sequence from all trials

#### Refinement

EM-Algorithm:

- known: the sequences
- unknown: the positions at which the motif occurs

#### hashValue



#### hashValue



#### hashValue



# **Implementation**

- C++
- SEQAN Library

# **Approach & Methods**

For m trials

- Step 1: Random Projections
- Step 2: Refinement
- Step 3: Consensus sequence

Take the best consensus sequence from all trials

#### Refinement

 For each bucket with at least s elements create a weight matrix: with what frequency does each base occur?

 $\mathsf{W}$   $\mathsf{W}$ 

#### hashValue











# **Implementation**

- C++
- SEQAN Library

# **Approach & Methods**

For m trials

- Step 1: Random Projections
- Step 2: Refinement
- Step 3: Consensus sequence

Take the best consensus sequence from all trials

#### Refinement

- For each bucket create a weight matrix
- Create a position matrix: what is the most probable start position of the motif in each sequence?



# **Implementation**

- C++
- SEQAN Library

# **Approach & Methods**

For m trials

- Step 1: Random Projections
- Step 2: Refinement
- Step 3: Consensus sequence

Take the best consensus sequence from all trials

#### Refinement

- For each bucket create a weight matrix
- Create a position matrix
- Refine the weight matrix until convergence



# **Implementation**

- C++
- SEQAN Library

# **Approach & Methods**

For m trials

- Step 1: Random Projections
- Step 2: Refinement
- Step 3: Consensus sequence

Take the best consensus sequence from all trials

# **Consensus sequence**

Extract an I-mer from each sequence using the position matrix









# **Implementation**

- C++
- SEQAN Library

### **Approach & Methods**

For m trials

- Step 1: Random Projections
- Step 2: Refinement
- Step 3: Consensus sequence

Take the best consensus sequence from all trials

# Consensus sequence

- Extract an I-mer from each sequence
- Create a consensus sequence

I-mer I-mer I-mer

l-mer l-mer

consSeq hashValue

I-mer











# **Implementation**

- C++
- SEQAN Library

# **Approach & Methods**

For m trials

- Step 1: Random Projections
- Step 2: Refinement
- Step 3: Consensus sequence

Take the best consensus sequence from all trials

# **Consensus sequence**

- Extract an I-mer from each sequence
- Create a consensus sequence
- Calculate the Hamming distance between each lmer and the consensus sequence





hamm(I-mer, consSeq) = x hamm(I-mer, consSeq) = y hamm(I-mer, consSeq) = z

# hashValue



hamm(I-mer, consSeq) = x hamm(I-mer, consSeq) = y hamm(I-mer, consSeq) = z

#### consSeq hashValue



hamm(I-mer, consSeq) = x hamm(I-mer, consSeq) = y hamm(I-mer, consSeq) = z

# **Implementation**

- C++
- SEQAN Library

# **Approach & Methods**

For m trials

- Step 1: Random Projections
- Step 2: Refinement
- Step 3: Consensus sequence

Take the best consensus sequence from all trials

# Consensus sequence

- Extract an I-mer from each sequence
- Create a consensus sequence
- Calculate the Hamming distance
- Calculate a score for each bucket: the number of hamming distances < d (the max number of mutations)</li>







consSeg => score



consSeq => score

# **Implementation**

- C++
- SEQAN Library

# **Approach & Methods**

For m trials

- Step 1: Random Projections
- Step 2: Refinement
- Step 3: Consensus sequence

Take the best consensus sequence from all trials

# Consensus sequence

- Extract an I-mer from each sequence
- Create a consensus sequence
- Calculate the Hamming distance
- Calculate a score for each bucket
- Keep the consensus sequence from the bucket with the lowest score



# **Implementation**

- C++
- SEQAN Library

# **Approach & Methods**

For m trials

- Step 1: Random Projections
- Step 2: Refinement
- Step 3: Consensus sequence

Take the best consensus sequence from all trials

trial 1



trial 2



trial 3



consSeq => score

trial m



consSeq => score

# **Implementation**

- C++
- SEQAN Library

### **Approach & Methods**

For m trials

- Step 1: Random Projections
- Step 2: Refinement
- Step 3: Consensus sequence

Take the best consensus sequence from all trials

#### trial x



The consensus sequence should be the planted motif

#### **Planted motif: AGCTC**

- Length of motif *l* = 5
- Maximum number of mutations d = 2

#### **Planted motif: AGCTC**

- Length of motif *l* = 5
- Maximum number of mutations d = 2

#### **Given sequences:**

CCGCGAGCTC

AGATCGTAAC

**TGGGCTACCT** 

- Number of sequences t = 3
- Length of one sequence *n* = 10

#### **Planted motif: AGCTC**

- Length of motif *l* = 5
- Maximum number of mutations d = 2

#### **Given sequences:**

CCGCG**AGCTC** 

**AGATC**GTAAC

TG**GGCTA**CCT

- Number of sequences t = 3
- Length of one sequence n = 10

#### **Planted motif: AGCTC**

- Length of motif *l* = 5
- Maximum number of mutations d = 2

#### **Given sequences:**

CCGCGAGCTC 0 mutations

AGATCGTAAC 1 mutation

TGGGCTACCT 2 mutations

- Number of sequences t = 3
- Length of one sequence *n* = 10

#### **Planted motif: AGCTC**

- Length of motif *l* = 5
- Maximum number of mutations d = 2

#### **Given sequences:**

CCGCGAGCTC 0 mutations

AGATCGTAAC 1 mutation

TGGGCTACCT 2 mutations

- Number of sequences *t* = 3
- Length of one sequence *n* = 10

#### **Step 1: Random projections**

- From an I-mer to a k-mer
- Choice of k?

### **Planted motif: AGCTC**

- Length of motif *l* = 5
- Maximum number of mutations d = 2

### **Given sequences:**

CCGCGAGCTC 0 mutations

AGATCGTAAC 1 mutation

TGGGCTACCT 2 mutations

- Number of sequences *t* = 3
- Length of one sequence *n* = 10

### **Step 1: Random projections**

- From an I-mer to a k-mer
- Choice of k? -> k < l d

### **Planted motif: AGCTC**

- Length of motif *l* = 5
- Maximum number of mutations d = 2

### **Given sequences:**

CCGCGAGCTC 0 mutations

AGATCGTAAC 1 mutation

TGGGCTACCT 2 mutations

- Number of sequences *t* = 3
- Length of one sequence *n* = 10

### **Step 1: Random projections**

- From an I-mer to a k-mer
- Choice of k? -> k < 5 2

### **Planted motif: AGCTC**

- Length of motif *l* = 5
- Maximum number of mutations d = 2

### **Given sequences:**

CCGCGAGCTC 0 mutations

AGATCGTAAC 1 mutation

TGGGCTACCT 2 mutations

- Number of sequences *t* = 3
- Length of one sequence *n* = 10

### **Step 1: Random projections**

- From an I-mer to a k-mer
- Choice of k? -> k < 3 -> k = 2

### Planted motif: AGCTC

- Length of motif *l* = 5
- Maximum number of mutations d = 2

### Given sequences:

**CCGCGAGCTC** 0 mutations

AGATCGTAAC 1 mutation

TGGGCTACCT 2 mutations

- Number of sequences *t* = 3
- Length of one sequence *n* = 10

### **Step 1: Random projections**

- From an l-mer to a k-mer
   Choice of k? -> k < 3 -> k = 2
- Randomly chose the k positions in an l-mer
   Via a bitmap of 1-s and 0-s

In the bitmap we need k 1-s and l-k 0-s

For example: "00101"

Use the bitmap on the sequences with a GenericShape

- Hash the k-mers
- Save them into buckets

**Planted motif: AGCTC** 

**Given sequences:** 

CCGCGAGCTC

**AGATC**GTAAC

TGGGCTACCT

## **Step 1: Random projections**

Planted motif: AGCTC CCGCG

Given sequences: 00101

**CCGCG**AGCTC

**AGATCGTAAC** 

**TGGGCTACCT** 

Use the bitmap on the 0th

*I-mer of the first sequence* 

**Step 1: Random projections** 

Planted motif: AGCTC 

CCGCG 

I-mer

Given sequences: 00101 bitmap

**CCGCG**AGCTC

**AGATCGTAAC** 

**TGGGCTACCT** 

**Step 1: Random projections** 

Planted motif: AGCTC 

CCGCG 

I-mer

Given sequences: 00101 bitmap

CCGCGAGCTC -- G - G k-mer

**AGATCGTAAC** 

**TGGGCTACCT** 

**Step 1: Random projections** 

**Planted motif: AGCTC** 

Given sequences:

**CCGCGAGCTC** 

**AGATCGTAAC** 

**TGGGCTACCT** 

CC**G**C**G** *I-mer* 

00**1**0**1** bitmap

**--G-G** *k-mer* 

hash(--G-G)=6 hash value

**Step 1: Random projections** 

Planted motif: AGCTC 

CCGCG 

I-mer

Given sequences: 00101 bitmap

CCGCGAGCTC -- G - G k-mer

AGATCGTAAC hash(--G-G) = 6 hash value

**TGGGCTACCT**Save into a bucket:

Map with [key : value]

**Step 1: Random projections** 

Planted motif: AGCTC 

CCGCG 

1-mer

Given sequences: 00101 bitmap

CCGCGAGCTC -- G - G k-mer

AGATCGTAAC hash(--G-G) = 6 hash value

TGGGCTACCT

Save into a bucket:

Map with [key: value] buckets

**Step 1: Random projections** 

Planted motif: AGCTC

Given sequences:

**CCGCGAGCTC** 

**AGATCGTAAC** 

**TGGGCTACCT** 

CCGCG

00101

--G-G

hash(--G-G) = 6

hash value

Save into a bucket:

Map with [key: value]

buckets

*I-mer* 

bitmap

k-mer

The **key** is the hash value

6

 $\{[0, 0]\}$ The **value** is a vector of pairs

**Step 1: Random projections** 

*I-mer* 

Planted motif: AGCTC 

CCGCG

Given sequences: 00101 bitmap

CCGCGAGCTC -- G - G k-mer

AGATCGTAAC hash(--G-G) = 6 hash value

TGGGCTACCT

Save into a bucket:

Map with [key : value] buckets

The key is the hash value 6

The value is a vector of pairs  $\{[0,0]\}$  only 1 pair for now

**Step 1: Random projections** 

**Planted motif: AGCTC** 

Given sequences:

- CCGCGAGCTC
- 1 AGATCGTAAC
- <sup>2</sup> TGGGCTACCT

CCGCG I-mer

00**1**0**1** bi

bitmap

k-mer

$$hash(--G-G) = 6$$

hash value

Save into a bucket:

Map with [key: value]

buckets

The key is the hash value

6

The value is a vector of pairs

{[**0**, **0**]}

only 1 pair for now

the number of the sequence

**Step 1: Random projections** 

Map with [key: value] buckets

The key is the hash value 6

The value is a vector of pairs {[0, 0]} only 1 pair for now the number of the starting position of the sequence of the I-mer

### **Step 1: Random projections**

Planted motif: AGCTC

00101

**CGCGA** 

I-mer

bitmap

Use the bitmap on the 1st

I-mer of the first sequence

**Given sequences:** 

CCGCGAGCTC

**AGATCGTAAC** 

**TGGGCTACCT** 

**Step 1: Random projections** 

Planted motif: AGCTC 

CGCGA 

I-mer

Given sequences: 00101 bitmap

CCGCGAGCTC -- C - A k-mer

**AGATCGTAAC** 

**TGGGCTACCT** 

**Step 1: Random projections** 

**Planted motif: AGCTC** 

Given sequences:

C**CGCGA**GCTC

**AGATCGTAAC** 

**TGGGCTACCT** 

CGCGA I-mer

00101

- - C - A

hash(--C-A) = 5

bitmap

k-mer

hash value

**Step 1: Random projections** 



### **Step 1: Random projections**

Key Value **Buckets:** Key Value 8 : {[1, 5]} 0 : {[1, 0]} 1 : {[0, 5], [1, 2]} 9:{[2, 2]} 4 : {[0, 3], [2, 4]} 10: {[0, 2], [0, 4], [2, 1]} 5 : {[0, 1]} 11: {[1, 1], [2, 3]} 6 : {[0, 0]} 13: {[2, 5]} 14: {[1, 3], [2, 0]} 7 : {[1, 4]}

## **Step 2: Refinement**

| <b>Buckets:</b> | Key Value            | Key Value                    |
|-----------------|----------------------|------------------------------|
|                 | 0 : {[1, 0]}         | 8 : {[1, 5]}                 |
|                 | 1 : {[0, 5], [1, 2]} | 9: {[2, 2]}                  |
|                 | 4 : {[0, 3], [2, 4]} | 10: {[0, 2], [0, 4], [2, 1]} |
|                 | 5 : {[0, 1]}         | 11: {[1, 1], [2, 3]}         |
|                 | 6 : {[0, 0]}         | 13: {[2, 5]}                 |
|                 | 7 : {[1, 4]}         | 14 : {[1, 3], [2, 0]}        |

Explore each bucket with at least *s* elements

## **Step 2: Refinement**

| <b>Buckets:</b> | Key Value            | Key Value                    |
|-----------------|----------------------|------------------------------|
|                 | 0 : {[1, 0]}         | 8 : {[1, 5]}                 |
|                 | 1 : {[0, 5], [1, 2]} | 9 : {[2, 2]}                 |
|                 | 4 : {[0, 3], [2, 4]} | 10: {[0, 2], [0, 4], [2, 1]} |
|                 | 5 : {[0, 1]}         | 11: {[1, 1], [2, 3]}         |
|                 | 6 : {[0, 0]}         | 13 : {[2, 5]}                |
|                 | 7 : {[1, 4]}         | 14: {[1, 3], [2, 0]}         |

Explore each bucket with at least *s* elements

### **Step 2: Refinement**

```
Key
                                                                    Value
Buckets:
                   Key
                            Value
                                                           8 : {[1, 5]}
                   0 : {[1, 0]}
                   1 : {[0, 5], [1, 2]}
                                                           9:{[2, 2]}
                                                           10: {[0, 2], [0, 4], [2, 1]}
                   4: {[0, 3], [2, 4]}
                   5 : {[0, 1]}
                                                           11: {[1, 1], [2, 3]}
                   6 : {[0, 0]}
                                                            13: {[2, 5]}
                   7 : {[1, 4]}
                                                            14: {[1, 3], [2, 0]}
```

Explore each bucket with at least s elements

### **Step 2: Refinement**

### EM - Algorithm

#### **Buckets:**

Key Value

1 : {[0, 5], [1, 2]}

4 : {[0, 3], [2, 4]}

10: {[0, 2], [0, 4], [2, 1]}

11: {[1, 1], [2, 3]}

14: {[1, 3], [2, 0]}

#### For each bucket h

- Create an initial weight matrix Wh
- Create a position matrix given the weight matrix
- Refine the weight matrix given the position matrix
- Refine the position matrix given the new weight matrix

•••

• • •

• Until convergence

## **Step 2: Refinement**

Create an initial weight matrix Wh for each bucket h

- 0 1 2 3 4 5 6 7 8 9 CCGCGAGCTC
- 1 AGATCGTAAC
- <sup>2</sup> TGGGCTACCT

### **Step 2: Refinement**

Create an initial weight matrix Wh for each bucket h

For bucket 1 : {[0, 5], [1, 2]}

- 0 1 2 3 4 5 6 7 8 9 CCGCGAGCTC
- 1 AGATCGTAAC
- <sup>2</sup> TGGGCTACCT

### **Step 2: Refinement**

Create an initial weight matrix Wh for each bucket h

For bucket 1 : {[0, 5], [1, 2]}

- 0 1 2 3 4 5 6 7 8 9 CCGCGAGCTC
- 1 AGATCGTAAC
- <sup>2</sup> TGGGCTACCT

### **Step 2: Refinement**

Create an initial weight matrix Wh for each bucket h

For bucket 1 : {[0, 5], [1, 2]}

- 0 1 2 3 4 5 6 7 8 9 CCGCGAGCTC
- 1 AGATCGTAAC
- <sup>2</sup> TGGGCTACCT

### **Step 2: Refinement**

Create an initial weight matrix Wh for each bucket h

For bucket 1 : {[0, 5], [1, 2]}

- 1 AGATCGTAAC
- <sup>2</sup> TGGGCTACCT

### **Step 2: Refinement**

Create an initial weight matrix Wh for each bucket h

For bucket 1 : {[0, 5], [1, 2]}

o CCGCGAGCTC 0 1 2 3 4 5 6 7 8 9

AGCTC

Set Wh(i, j) to be the frequency of base i among the jth positions of all I-mers in h.

<sup>2</sup> TGGGCTACCT

**AGATCGT**AAC

### **Step 2: Refinement**

Create an initial weight matrix Wh for each bucket h

For bucket 1 : {[0, 5], [1, 2]}

- o CCGCGAGCTC → AGCTC

  1 AGATCGTAAC → ATCGT
- <sup>2</sup> TGGGCTACCT

**TGGGCTACCT** 

### **Step 2: Refinement**

Create an initial weight matrix Wh for each bucket h

For bucket 1 : {[0, 5], [1, 2]}



### **Step 2: Refinement**

*I-mers* 

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | Α | G | С | Т | С |
| 1 | Α | Т | С | G | Т |

Create an initial weight matrix Wh for each bucket h

For bucket 1 : {[0, 5], [1, 2]}

Wh

|   |   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|---|
| Α | 0 |   |   |   |   |   |
| С | 1 |   |   |   |   |   |
| G | 2 |   |   |   |   |   |
| T | 3 |   |   |   |   |   |

**Step 2: Refinement** 

*I-mers* 

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | Α | G | С | Т | С |
| 1 | Α | Т | С | G | Т |

Create an initial weight matrix Wh for each bucket h

For bucket 1 : {[0, 5], [1, 2]}



### **Step 2: Refinement**

*I-mers* 

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | Α | G | С | Т | С |
| 1 | Α | Т | С | G | Т |

Create an initial weight matrix Wh for each bucket h

For bucket 1 : {[0, 5], [1, 2]}



### **Step 2: Refinement**

*I-mers* 

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | Α | G | С | T | С |
| 1 | Α | Т | С | G | Т |

Create an initial weight matrix Wh for each bucket h

For bucket 1 : {[0, 5], [1, 2]}



**Step 2: Refinement** 

*I-mers* 

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | Α | G | С | Т | С |
| 1 | Α | Т | С | G | Т |

Create an initial weight matrix Wh for each bucket h

For bucket 1 : {[0, 5], [1, 2]}



**Step 2: Refinement** 

*I-mers* 

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | Α | G | C | Т | С |
| 1 | Α | Т | С | G | Т |

Create an initial weight matrix Wh for each bucket h

For bucket 1 : {[0, 5], [1, 2]}



**Step 2: Refinement** 

Create an initial weight matrix Wh for each bucket h

*I-mers* 

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | Α | G | С | Т | С |
| 1 | Α | Т | С | G | Т |

For bucket 1 : {[0, 5], [1, 2]}



## **Step 2: Refinement**

*I-mers* 

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | Α | G | С | Т | С |
| 1 | Α | Т | С | G | Т |

Create an initial weight matrix Wh for each bucket h

For bucket 1 : {[0, 5], [1, 2]}



**Step 2: Refinement** 

Create an initial weight matrix Wh for each bucket h

*I-mers* 

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | Α | G | С | Т | С |
| 1 | Α | Т | С | G | Т |

For bucket 1 : {[0, 5], [1, 2]}



**Step 2: Refinement** 

*I-mers* 

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | Α | G | С | Т | С |
| 1 | Α | Т | С | G | Т |

Create an initial weight matrix Wh for each bucket h

For bucket 1 : {[0, 5], [1, 2]}



**Step 2: Refinement** 

*I-mers* 

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | Α | G | С | Т | С |
| 1 | Α | Т | С | G | Т |

Create an initial weight matrix Wh for each bucket h

For bucket 1 : {[0, 5], [1, 2]}



**Step 2: Refinement** 

*I-mers* 

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | Α | G | С | Т | С |
| 1 | Α | Т | С | G | Τ |

Create an initial weight matrix Wh for each bucket h

For bucket 1 : {[0, 5], [1, 2]}



**Step 2: Refinement** 

Create an initial weight matrix Wh for each bucket h

*I-mers* 

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | Α | G | С | Т | С |
| 1 | Α | Т | С | G | Т |

For bucket 1 : {[0, 5], [1, 2]}

|   | j<br>Wh |   |   |   |   |   |   |  |  |
|---|---------|---|---|---|---|---|---|--|--|
| j |         |   | 0 | 1 | 2 | 3 | 4 |  |  |
|   | Α       | 0 | 2 | 0 | 0 | 0 | 0 |  |  |
| • | C       | 1 | 0 | 0 | 2 | 0 | 1 |  |  |
|   | G       | 2 | 0 | 1 | 0 | 1 | 0 |  |  |
|   | T       | 3 | 0 | 1 | 0 | 1 | 1 |  |  |

Set Wh(i, j) to be the frequency of base i among the jth positions of all I-mers in h.

To get the relative frequency divide by the number of I-mers in the bucket.

**Step 2: Refinement** 

Create an initial weight matrix Wh for each bucket h

*I-mers* 

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | Α | G | С | Т | С |
| 1 | Α | Т | С | G | Т |

For bucket 1 : {[0, 5], [1, 2]}

|   | $\xrightarrow{j}$ Wh |   |     |     |     |     |     |  |  |  |
|---|----------------------|---|-----|-----|-----|-----|-----|--|--|--|
| j |                      |   | 0   | 1   | 2   | 3   | 4   |  |  |  |
|   | Α                    | 0 | 2/2 | 0/2 | 0/2 | 0/2 | 0/2 |  |  |  |
| • | C                    | 1 | 0/2 | 0/2 | 2/2 | 0/2 | 1/2 |  |  |  |
|   | G                    | 2 | 0/2 | 1/2 | 0/2 | 1/2 | 0/2 |  |  |  |
|   | Τ                    | 3 | 0/2 | 1/2 | 0/2 | 1/2 | 1/2 |  |  |  |

Set Wh(i, j) to be the frequency of base i among the jth positions of all l-mers in h.

To get the relative frequency divide by the number of l-mers in the bucket.

**Step 2: Refinement** 

Create an initial weight matrix Wh for each bucket h

*I-mers* 

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | Α | G | С | Т | С |
| 1 | Α | Т | С | G | Т |

For bucket 1 : {[0, 5], [1, 2]}

|   | $\xrightarrow{j}$ Wh |   |   |     |   |     |     |  |  |  |  |  |
|---|----------------------|---|---|-----|---|-----|-----|--|--|--|--|--|
| i |                      |   | 0 | 1   | 2 | 3   | 4   |  |  |  |  |  |
|   | Α                    | 0 | 1 | 0   | 0 | 0   | 0   |  |  |  |  |  |
| • | C                    | 1 | 0 | 0   | 1 | 0   | 0.5 |  |  |  |  |  |
|   | G                    | 2 | 0 | 0.5 | 0 | 0.5 | 0   |  |  |  |  |  |
|   | T                    | 3 | 0 | 0.5 | 0 | 0.5 | 0.5 |  |  |  |  |  |

Set Wh(i, j) to be the frequency of base i among the jth positions of all l-mers in h.

To get the relative frequency divide by the number of l-mers in the bucket.

**Step 2: Refinement** 

Create an initial weight matrix Wh for each bucket h

*I-mers* 

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | Α | G | С | Т | С |
| 1 | Α | Т | С | G | Т |

For bucket 1 : {[0, 5], [1, 2]}

|   |   | j | <b></b>  | W          | 'h       |            |            |
|---|---|---|----------|------------|----------|------------|------------|
| i |   |   | 0        | 1          | 2        | 3          | 4          |
|   | Α | 0 | 1+0.25   | 0 + 0.25   | 0 + 0.25 | 0 + 0.25   | 0 + 0.25   |
| • | C | 1 | 0 + 0.25 | 0 + 0.25   | 1 + 0.25 | 0 + 0.25   | 0.5 + 0.25 |
|   | G | 2 | 0 + 0.25 | 0.5 + 0.25 | 0 + 0.25 | 0.5 + 0.25 | 0 + 0.25   |
|   | T | 3 | 0 + 0.25 | 0.5 + 0.25 | 0 + 0.25 | 0.5 + 0.25 | 0.5 + 0.25 |

Set Wh(i, j) to be the frequency of base i among the jth positions of all l-mers in h.

Laplace correction: to avoid having probability 0 add a background probability.

**Step 2: Refinement** 

Create an initial weight matrix Wh for each bucket h

*I-mers* 

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | Α | G | С | Т | С |
| 1 | Α | Т | С | G | Т |

For bucket 1 : {[0, 5], [1, 2]}

|   |   | j | <b></b> | W    | 'h   |      |      |
|---|---|---|---------|------|------|------|------|
| i |   |   | 0       | 1    | 2    | 3    | 4    |
|   | Α | 0 | 1.25    | 0.25 | 0.25 | 0.25 | 0.25 |
| • | С | 1 | 0.25    | 0.25 | 1.25 | 0.25 | 0.75 |
|   | G | 2 | 0.25    | 0.75 | 0.25 | 0.75 | 0.25 |
|   | T | 3 | 0.25    | 0.75 | 0.25 | 0.75 | 0.75 |

Set Wh(i, j) to be the frequency of base i among the jth positions of all l-mers in h.

Laplace correction: to avoid having probability 0 add a background probability.

### **Step 2: Refinement**

#### Create a position matrix given the weight matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | Α | G | С | Т | С |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т |

Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| T | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 |   |   |   |   |   |   |
| 1 |   |   |   |   |   |   |
| 2 |   |   |   |   |   |   |

$$posM'(i,j) = Pr(z_{ij} = 1 | sequences, Wh)$$

$$= \frac{\Pr(\text{sequences} \mid z_{ij} = 1, \text{Wh})}{\sum_{k=0}^{4} \Pr(\text{sequences} \mid z_{ik} = 1, \text{Wh})}$$

where  $z_{ij} = 1$  means that j is the starting position of the motif in sequence i

### **Step 2: Refinement**

### Create a position matrix given the weight matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | Α | G | С | Т | С |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | Α | С | C | Т |

Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| Τ | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

# posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 |

$$posM'(i,j) = Pr(z_{ij} = 1 | sequences, Wh)$$

$$= \frac{\Pr(\text{sequences} \mid z_{ij} = 1, \text{Wh})}{\sum_{k=0}^{4} \Pr(\text{sequences} \mid z_{ik} = 1, \text{Wh})}$$

where  $z_{ij} = 1$  means that j is the starting position of the motif in sequence i

### **Step 2: Refinement**

### Create a position matrix given the weight matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | Α | G | С | Т | С |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | A | С | C | Т |

Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| T | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

# posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 |

$$posM'(0,0) = Pr(z_{00} = 1 | sequences, Wh)$$

$$= \frac{\Pr(\text{sequences} \mid z_{00} = 1, \text{Wh})}{\sum_{k=0}^{4} \Pr(\text{sequences} \mid z_{0k} = 1, \text{Wh})}$$

where  $z_{00} = 1$  means that 0 is the starting position of the motif in sequence 0

# **Step 2: Refinement**

### Create a position matrix given the weight matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | Α | G | С | Т | С |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | A | С | С | Т |

## Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| T | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

# posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 |

$$posM'(0,0) = \frac{Pr(sequences \mid z_{00} = 1, Wh)}{\sum_{k=0}^{4} Pr(sequences \mid z_{0k} = 1, Wh)}$$

=

### **Step 2: Refinement**

### Create a position matrix given the weight matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | Α | G | С | Т | С |
| 1 | Α | G | Α | Т | С | G | Τ | Α | Α | С |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т |

## Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| Τ | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

# posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 |

$$posM'(0,0) = \frac{Pr(sequences \mid z_{00} = 1, Wh)}{\sum_{k=0}^{4} Pr(sequences \mid z_{0k} = 1, Wh)}$$

0.25\*0.25\*0.25\*0.25\*0.25

# **Step 2: Refinement**

### Create a position matrix given the weight matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | Α | G | С | Т | С |
| 1 | Α | G | Α | Τ | C | G | Τ | Α | Α | С |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т |

### Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| Τ | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

# posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 |

$$posM'(0,0) = \frac{Pr(sequences \mid z_{00} = 1, Wh)}{\sum_{k=0}^{4} Pr(sequences \mid z_{0k} = 1, Wh)}$$

### **Step 2: Refinement**

### Create a position matrix given the weight matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | Α | G | С | Т | С |
| 1 | Α | G | Α | Τ | С | G | Τ | Α | Α | С |
| 2 | Т | G | G | G | С | Τ | Α | С | С | Т |

## Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| T | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

# posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 |

$$posM'(0,0) = \frac{Pr(sequences \mid z_{00} = 1, Wh)}{\sum_{k=0}^{4} Pr(sequences \mid z_{0k} = 1, Wh)}$$

### **Step 2: Refinement**

### Create a position matrix given the weight matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | U | С | G | С | G | А | G | U | H | С |
| 1 | Α | G | Α | Τ | C | G | Τ | Α | Α | С |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т |

# Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| T | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

# posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 |

$$posM'(0,0) = \frac{Pr(sequences \mid z_{00} = 1, Wh)}{\sum_{k=0}^{4} Pr(sequences \mid z_{0k} = 1, Wh)}$$

$$0.0009765625 + 0.25*0.75*1.25*0.75*0.25$$

### **Step 2: Refinement**

#### Create a position matrix given the weight matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | А | G | С | Т | С |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | A | С | С | Т |

## Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| Τ | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

# posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 |

$$posM'(0,0) = \frac{Pr(sequences \mid z_{00} = 1, Wh)}{\sum_{k=0}^{4} Pr(sequences \mid z_{0k} = 1, Wh)}$$

0.0009765625

0.0009765625 + 0.0439453125

### **Step 2: Refinement**

## Create a position matrix given the weight matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | C | С | G | С | G | А | G | С | Т | С |
| 1 | Α | G | Α | Τ | С | G | Τ | Α | Α | C |
| 2 | Т | G | G | G | С | Т | A | С | С | Т |

### Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| T | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

# posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 |

$$posM'(0,0) = \frac{Pr(sequences \mid z_{00} = 1, Wh)}{\sum_{k=0}^{4} Pr(sequences \mid z_{0k} = 1, Wh)}$$

### **Step 2: Refinement**

### Create a position matrix given the weight matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | А | G | С | Т | С |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т |

# Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| Τ | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

# posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 |

$$posM'(0,0) = \frac{Pr(sequences \mid z_{00} = 1, Wh)}{\sum_{k=0}^{4} Pr(sequences \mid z_{0k} = 1, Wh)}$$

0.0009765625

= 0.044921875 + 0.0009765625

### **Step 2: Refinement**

#### Create a position matrix given the weight matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | А | G | С | Т | С |
| 1 | Α | G | Α | Τ | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | A | С | С | Т |

## Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| T | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

# posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 |

$$posM'(0,0) = \frac{Pr(sequences \mid z_{00} = 1, Wh)}{\sum_{k=0}^{4} Pr(sequences \mid z_{0k} = 1, Wh)}$$

### **Step 2: Refinement**

### Create a position matrix given the weight matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | А | G | С | Т | С |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т |

### Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| T | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

# posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 |

$$posM'(0,0) = \frac{Pr(sequences \mid z_{00} = 1, Wh)}{\sum_{k=0}^{4} Pr(sequences \mid z_{0k} = 1, Wh)}$$

### **Step 2: Refinement**

### Create a position matrix given the weight matrix

#### sequences

|   | 0 | 1 | 2 | თ | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | А | G | С | Т | С |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т |

### Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| T | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

# posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 |

$$posM'(0,0) = \frac{Pr(sequences \mid z_{00} = 1, Wh)}{\sum_{k=0}^{4} Pr(sequences \mid z_{0k} = 1, Wh)}$$

0.0009765625

0.0458984375 + 0.0263671875 + 0.0029296875 + 0.6591796875

### **Step 2: Refinement**

### Create a position matrix given the weight matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | C | G | С | G | Α | G | С | Т | С |
| 1 | Α | G | Α | Τ | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | A | С | С | Т |

## Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| Τ | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

# posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 |

$$posM'(0,0) = \frac{Pr(sequences | z_{00} = 1, Wh)}{\sum_{k=0}^{4} Pr(sequences | z_{0k} = 1, Wh)}$$

### **Step 2: Refinement**

### Create a position matrix given the weight matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | А | G | С | Т | С |
| 1 | Α | G | Α | Τ | C | G | Η | Α | Α | С |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т |

## Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| T | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

# posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 |

$$posM'(0,0) = \frac{Pr(sequences | z_{00} = 1, Wh)}{\sum_{k=0}^{4} Pr(sequences | z_{0k} = 1, Wh)}$$

= 0.001329787

### **Step 2: Refinement**

## Create a position matrix given the weight matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | C | G | С | G | Α | G | С | Т | С |
| 1 | Α | G | Α | Τ | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | A | С | С | Т |

## Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| T | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

# posM

|   | 0        | 1 | 2 | 3 | 4 | 5 |
|---|----------|---|---|---|---|---|
| 0 | 0.001329 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0        | 0 | 0 | 0 | 0 | 0 |
| 2 | 0        | 0 | 0 | 0 | 0 | 0 |

$$\operatorname{posM'(0,0)} = \frac{\Pr(\text{sequences} \mid z_{00} = 1, \text{Wh})}{\sum_{k=0}^{4} \Pr(\text{sequences} \mid z_{0k} = 1, \text{Wh})}$$

= 0.001329787

**Step 2: Refinement** 

# Create a position matrix given the weight matrix

# posM

|   | 0          | 1          | 2          | 3          | 4          | 5         |
|---|------------|------------|------------|------------|------------|-----------|
| 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

## **Step 2: Refinement**

## Refine the weight matrix given the position matrix

2

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | Α | G | С | Т | С |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т |

|   | 0          | 1          | 2          | 3          | 4          | 5         |
|---|------------|------------|------------|------------|------------|-----------|
| 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |

0.416667

W

0.0277778

0.0833333

0.138889

0.0833333

0.25

posM

### Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| Т | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

|   |   | 0 | 1 | 2 | 3 | 4 |     |
|---|---|---|---|---|---|---|-----|
| • | 0 |   |   |   |   |   |     |
| • | 1 |   |   |   |   |   |     |
| • | 2 |   |   |   |   |   |     |
|   | 3 |   |   |   |   |   | 104 |

## **Step 2: Refinement**

## Refine the weight matrix given the position matrix

2

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | Α | G | С | Т | С |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т |

|   | 0          | 1          | 2          | 3          | 4          | 5         |
|---|------------|------------|------------|------------|------------|-----------|
| 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |

0.416667

W

0.0277778

0.0833333

0.138889

0.0833333

0.25

posM

## Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| Т | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |



|   | 0 | 1 | 2 | 3 | 4 |     |
|---|---|---|---|---|---|-----|
| 0 | 0 | 0 | 0 | 0 | 0 |     |
| 1 | 0 | 0 | 0 | 0 | 0 |     |
| 2 | 0 | 0 | 0 | 0 | 0 |     |
| 3 | 0 | 0 | 0 | 0 | 0 | 105 |

## **Step 2: Refinement**

### Refine the weight matrix given the position matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | Α | G | С | Т | С |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | Α | С | C | Т |

| posIVI |
|--------|
|--------|

|   | 0          | 1          | 2          | 3          | 4          | 5         |
|---|------------|------------|------------|------------|------------|-----------|
| 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| Т | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

$$W(0,0) = W_{A,0} = \frac{W'_{A,0}}{\sum_{i=A,C,G,T} W'_{i,0}}$$

## **Step 2: Refinement**

## Refine the weight matrix given the position matrix

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | Α | G | С | Т | С |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т |

| pos | M |
|-----|---|
|     |   |

|   | 0          | 1          | 2          | 3          | 4          | 5         |
|---|------------|------------|------------|------------|------------|-----------|
| 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| Т | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

$$W(0,0) = W_{A,0} = \frac{W'_{A,0}}{\sum_{i=A,C,G,T} W'_{i,0}}$$
 that A is the first letter of the motif

The probability

### **Step 2: Refinement**

#### Refine the weight matrix given the position matrix

|   | 0 | 1 | 2 | 3 | 4 | 5 |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|
|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 0 | С | С | G | С | G | А | G | С | Т | С |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т |

|   | 0          | 1          | 2          | 3          | 4          | 5         |  |
|---|------------|------------|------------|------------|------------|-----------|--|
| 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |  |
| 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |  |
| 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |  |

posM

Wh 0 4 1.25 0.25 0.25 0.25 0.25 0 0.25 0.25 1.25 0.75 0.25 1 0.25 0.75 0.25 0.75 0.25 2 0.25 0.75 0.25 0.75 0.75

$$W(0,0) = W_{A,0} = \frac{W'_{A,0}}{\sum_{i=A,C,G,T} W'_{i,0}}$$
 The probability that A is the first letter of the motif

#### **Step 2: Refinement**

#### Refine the weight matrix given the position matrix

|   | 0 | 1 | 2 | 3 | 4 | 5 |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|
|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 0 | С | С | G | С | G | А | G | С | Т | С |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | Α | С | C | Т |

|   | 0          | 1          | 2          | 3          | 4          | 5         |
|---|------------|------------|------------|------------|------------|-----------|
| 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

posM

**<u>start</u>** is the position in the motif

<u>i</u> is the number of the sequence

*i* is the position in the sequence

**pos** is the position in the window

Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| A | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| Т | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

W'BASE, start

For start = 0 to motif length
for i=0 to number of sequences
for j=start and pos=0 to seq\_length - motif\_length + 1
W[ordValue(sequences[i][j])][start] += posM[i][pos]

#### **Step 2: Refinement**

#### Refine the weight matrix given the position matrix

|   | 0 | 1 | 2 | 3 | 4 | 5 |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|
|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 0 | С | С | G | С | G | А | G | С | Т | С |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т |

|   | 0          | 1          | 2          | 3          | 4          | 5         |
|---|------------|------------|------------|------------|------------|-----------|
| 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

posM

**<u>start</u>** is the position in the motif

<u>i</u> is the number of the sequence

*i* is the position in the sequence

**pos** is the position in the window

Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| Т | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

W'BASE, start

For start = 0 to motif length
for i=0 to number of sequences
for j=start and pos=0 to seq\_length - motif\_length + 1
W[ordValue(sequences[i][j])][start] += posM[i][pos]

start

#### **Step 2: Refinement**

*j* 

#### Refine the weight matrix given the position matrix

| į                      |   | 0 | 1 | 2 | 3 | 4 | 5 |   |   |   |   |
|------------------------|---|---|---|---|---|---|---|---|---|---|---|
|                        |   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|                        | 0 | С | С | G | С | G | Α | G | С | Т | С |
| $iggert \left[  ight.$ | 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
|                        | 2 | Т | G | G | G | С | Т | Α | С | С | Т |

|   | 0          | 1          | 2          | 3          | 4          | 5         |
|---|------------|------------|------------|------------|------------|-----------|
| 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

posM

Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| Т | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

**W** BASE, start

For start = 0 to motif length

for i=0 to number of sequences

for j=start and pos=0 to seq\_length - motif\_length + 1

W[ordValue(sequences[i][j]))][start] += posM[i][pos]

**<u>start</u>** is the position in the motif

<u>i</u> is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**

 $\xrightarrow{j}$ 

Refine the weight matrix given the position matrix

| ;        |   | 0 | 1 | 2 | 3 | 4 | 5 |   |   |   |   |
|----------|---|---|---|---|---|---|---|---|---|---|---|
|          |   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|          | 0 | С | С | G | С | G | Α | G | С | Т | С |
| <b>\</b> | 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
|          | 2 | Т | G | G | G | С | Т | A | С | С | Т |

| j | <b>→</b>   |            | posM       | posM       |            |           |  |  |  |
|---|------------|------------|------------|------------|------------|-----------|--|--|--|
|   | 0          | 1          | 2          | 3          | 4          | 5         |  |  |  |
| 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |  |  |  |
| 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |  |  |  |
| 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |  |  |  |

**<u>start</u>** is the position in the motif

<u>i</u> is the number of the sequence

*i* is the position in the sequence

**pos** is the position in the window

Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| Т | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

**W** BASE, start

For start = 0 to motif length

for i=0 to number of sequences

for j=start and pos=0 to seq\_length - motif\_length + 1

W[ordValue(sequences[i][j])][start] += posM[i][pos]

#### **Step 2: Refinement**



Wh

|   |   | 0    | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|------|
| Α | 0 | 1.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| С | 1 | 0.25 | 0.25 | 1.25 | 0.25 | 0.75 |
| G | 2 | 0.25 | 0.75 | 0.25 | 0.75 | 0.25 |
| Т | 3 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |

**W**'BASE, start

For start = 0 to motif length

for i=0 to number of sequences

for j=start and pos=0 to seq\_length - motif\_length + 1

W[ordValue(sequences[i][j]))][start] += posM[i][pos]

**<u>start</u>** is the position in the motif

<u>i</u> is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**



| <u> </u> | <b>→</b>   |            | posM       |            |            |           |
|----------|------------|------------|------------|------------|------------|-----------|
|          | 0          | 1          | 2          | 3          | 4          | 5         |
| 0        | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1        | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2        | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

| <b>N'</b> BASE, start |
|-----------------------|
|-----------------------|

start = 0j = start = 0i = 0pos = 0

For start = 0 to motif length *for i=0 to number of sequences* for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos]

|          |   | 0 | 1 | 2 | 3 | 4 |
|----------|---|---|---|---|---|---|
| Α        | 0 | 0 | 0 | 0 | 0 | 0 |
| С        | 1 | 0 | 0 | 0 | 0 | 0 |
| G        | 2 | 0 | 0 | 0 | 0 | 0 |
| <b>T</b> | 2 | 0 | 0 | 0 | 0 | 0 |

W

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**



| <u> </u> | <b>→</b>   |            | posM       |            |            |           |
|----------|------------|------------|------------|------------|------------|-----------|
|          | 0          | 1          | 2          | 3          | 4          | 5         |
| 0        | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1        | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2        | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

| W'BASE, start | W | BASE, | start |
|---------------|---|-------|-------|
|---------------|---|-------|-------|

start = 0j = start = 0i = 0pos = 0

For start = 0 to motif length for i=0 to number of sequences for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos]

sequences[0][0] = "C"

|   |   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|---|
| 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| С | 1 | 0 | 0 | 0 | 0 | 0 |
| G | 2 | 0 | 0 | 0 | 0 | 0 |
| Т | 3 | 0 | 0 | 0 | 0 | 0 |

W

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**



| <u> </u> | <b>→</b>   |            | posM       |            |            |           |
|----------|------------|------------|------------|------------|------------|-----------|
|          | 0          | 1          | 2          | 3          | 4          | 5         |
| 0        | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1        | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2        | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

**W**'BASE, start

start = 0j = start = 0i = 0pos = 0

For start = 0 to motif length for i=0 to number of sequences for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos] T

0 1 2 3 4 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

W

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**



|   | J | <b>→</b>   |            | posM       |            |            |           |
|---|---|------------|------------|------------|------------|------------|-----------|
|   |   | 0          | 1          | 2          | 3          | 4          | 5         |
|   | 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| , | 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
|   | 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

W'BASE, start

start = 0j = start = 0i = 0pos = 0

For start = 0 to motif length *for i=0 to number of sequences* for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos]

|   |   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|---|
| 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| C | 1 | 0 | 0 | 0 | 0 | 0 |
| G | 2 | 0 | 0 | 0 | 0 | 0 |
| Т | 3 | 0 | 0 | 0 | 0 | 0 |

W

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**



C

0

W'BASE, start

start = 0i = 0pos = 0

For start = 0 to motif length for i=0 to number of sequences for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos] T

j = start = 0

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0

1

2

3

4

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

pos is the position in the window

W[1][0]

#### **Step 2: Refinement**

Refine the weight matrix given the position matrix pos 0 3 6 4 0 C G G G 1 C G Α G Α Α 2 G G G

|   | j posN |            |            |            |            |            |           |
|---|--------|------------|------------|------------|------------|------------|-----------|
|   |        | 0          | 1          | 2          | 3          | 4          | 5         |
|   | 0      | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| , | 1      | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
|   | 2      | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

W'BASE, start

start = 0j = start = 0i = 0pos = 0

For start = 0 to motif length for i=0 to number of sequences for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos]

0 1 2 3 4 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

W

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**

Refine the weight matrix given the position matrix pos 0 6 3 4 0 G G C G 1 G Α C G Α Α 2 G G G

|   | <b></b>    |            | posivi     |            |            |           |
|---|------------|------------|------------|------------|------------|-----------|
|   | 0          | 1          | 2          | 3          | 4          | 5         |
| 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

3

0

0

0

0

4

0

0

W

W'BASE, start

start = 0j = start = 0i = 0pos = 0

For start = 0 to motif length for i=0 to number of sequences for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos]

0 1 2 0 0 0 0 0.00132979 0 0 2 0 0 0 0 0 0

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**



| <u>J</u> |            |            | posM       |            |            |           |
|----------|------------|------------|------------|------------|------------|-----------|
|          | 0          | 1          | 2          | 3          | 4          | 5         |
| 0        | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1        | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2        | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

| 1// | ,<br>BASE, start |  |
|-----|------------------|--|
| VV  | BASE, start      |  |

start = 0i = 1i = 0pos = 1

For start = 0 to motif length for i=0 to number of sequences for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos] T *sequences*[0][1] = "C"

0 1 2 3 4 0 0 0 0 0 0.00132979 0 0 0 0 2 0 0 0 0 0 0 0 0 0

W

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**



| <del></del> |            |            | posM       |            |            |           |
|-------------|------------|------------|------------|------------|------------|-----------|
|             | 0          | 1          | 2          | 3          | 4          | 5         |
| 0           | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1           | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2           | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

W'BASE, start

start = 0j = 1 i = 0pos = 1

For start = 0 to motif length *for i=0 to number of sequences* for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos] ordValue(,,C") = 1

|   |   | 0          | 1 | 2 | 3 | 4 |
|---|---|------------|---|---|---|---|
| A | 0 | 0          | 0 | 0 | 0 | 0 |
| С | 1 | 0.00132979 | 0 | 0 | 0 | 0 |
| G | 2 | 0          | 0 | 0 | 0 | 0 |
| Т | 3 | 0          | 0 | 0 | 0 | 0 |

W

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**



0

W'BASE, start

start = 0i = 1i = 0pos = 1

For start = 0 to motif length for i=0 to number of sequences for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos] T

0.00132979 0 0 0 2 0 0 0 0 3 0 0 0 0

1

0

2

0

3

0

4

0

0

0

0

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

pos is the position in the window

W[1][0]

#### **Step 2: Refinement**



| <u>J</u> → |   |            | posM       |            |            |            |           |
|------------|---|------------|------------|------------|------------|------------|-----------|
|            |   | 0          | 1          | 2          | 3          | 4          | 5         |
|            | 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
|            | 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
|            | 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

start = 0j = 1 i = 0pos = 1

For start = 0 to motif length *for i=0 to number of sequences* for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos]

W[1][0] += posM[0][1]

|   |   | 0                         | 1 | 2 | 3 | 4 |
|---|---|---------------------------|---|---|---|---|
| 4 | 0 | 0                         | 0 | 0 | 0 | 0 |
| 5 | 1 | 0.00132979<br>+ 0.0598404 | 0 | 0 | 0 | 0 |
| G | 2 | 0                         | 0 | 0 | 0 | 0 |
| г | 3 | 0                         | 0 | 0 | 0 | 0 |

W

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**



| <del></del> |            |            | posM       |            |            |           |
|-------------|------------|------------|------------|------------|------------|-----------|
|             | 0          | 1          | 2          | 3          | 4          | 5         |
| 0           | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1           | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2           | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

| W  | BASE, | start |
|----|-------|-------|
| VV | DAJL, | Sturt |

| start = 0 | j = 2   |
|-----------|---------|
| i = 0     | pos = 2 |

For start = 0 to motif length *for i=0 to number of sequences* for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos] *sequences[0][1] = "G"* 

|   |   | 0          | 1 | 2 | 3 | 4 |
|---|---|------------|---|---|---|---|
| A | 0 | 0          | 0 | 0 | 0 | 0 |
| С | 1 | 0.06117019 | 0 | 0 | 0 | 0 |
| G | 2 | 0          | 0 | 0 | 0 | 0 |
| Т | 3 | 0          | 0 | 0 | 0 | 0 |

W

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**



W'BASE, start

start = 0j = 2 i = 0pos = 2

For start = 0 to motif length for i=0 to number of sequences for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos] 7

|   |     | 0          | 1 | 2 | 3 | 4 |
|---|-----|------------|---|---|---|---|
| 4 | 0   | 0          | 0 | 0 | 0 | 0 |
| С | 1   | 0.06117019 | 0 | 0 | 0 | 0 |
| G | 2   | 0          | 0 | 0 | 0 | 0 |
| Т | , u | 0          | 0 | 0 | 0 | 0 |

motif

*i* is the number of the sequence

*i* is the position in the sequence

pos is the position in the window

W[2][0]

#### **Step 2: Refinement**



| <u> </u> | <b>→</b>   |            | posM       |            |            |           |
|----------|------------|------------|------------|------------|------------|-----------|
|          | 0          | 1          | 2          | 3          | 4          | 5         |
| 0        | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1        | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2        | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

W'BASE, start

start = 0j = 2 i = 0pos = 2

For start = 0 to motif length *for i=0 to number of sequences* for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos]

W[2][0] += posM[0][2]

|               |   | 0          | 1 | 2 | 3 | 4 |
|---------------|---|------------|---|---|---|---|
| 4             | 0 | 0          | 0 | 0 | 0 | 0 |
| $\mathcal{C}$ | 1 | 0.06117019 | 0 | 0 | 0 | 0 |
| G             | 2 | 0.00132979 | 0 | 0 | 0 | 0 |
| Τ             | 3 | 0          | 0 | 0 | 0 | 0 |

W

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**



| <u> </u> | <b>→</b>   |            | posM       |            |            |           |
|----------|------------|------------|------------|------------|------------|-----------|
|          | 0          | 1          | 2          | 3          | 4          | 5         |
| 0        | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1        | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2        | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

**W**'BASE, start

start = 0i = 3i = 0pos = 3

For start = 0 to motif length for i=0 to number of sequences for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos]

0 1 2 3 4 0 0 0 0 0 0.09707449 1 0 0 0 0 0.00132979 2 0 0 0 0 0 0 0

W

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**



| <u> </u> | <b>→</b>   |            | posiVi     | posivi     |            |           |  |  |  |
|----------|------------|------------|------------|------------|------------|-----------|--|--|--|
|          | 0          | 1          | 2          | 3          | 4          | 5         |  |  |  |
| 0        | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |  |  |  |
| 1        | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |  |  |  |
| 2        | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |  |  |  |

W'BASE, start

start = 0i = 4i = 0pos = 4

For start = 0 to motif length for i=0 to number of sequences for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos]

0 1 2 3 0 0 0 0 0.09707449 0 0 0 0.00531915 2 0 0 0 0 0 0

W

**start** is the position in the motif

*i* is the number of the sequence

4

0

0

*i* is the position in the sequence

pos is the position in the window

W[2][0] += posM[0][4]

#### **Step 2: Refinement**



| <u></u> | <b>→</b>   |            | posM       |            |            |           |  |  |
|---------|------------|------------|------------|------------|------------|-----------|--|--|
|         | 0          | 1          | 2          | 3          | 4          | 5         |  |  |
| 0       | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |  |  |
| 1       | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |  |  |
| 2       | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |  |  |

W'BASE, start

start = 0j = 5i = 0pos = 5

For start = 0 to motif length *for i=0 to number of sequences* for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos]

W[0][0] += posM[0][5]

|     |   | 0          | 1 | 2 | 3 | 4 |
|-----|---|------------|---|---|---|---|
| 4   | 0 | 0.897606   | 0 | 0 | 0 | 0 |
| ( ) | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| Ĝ   | 2 | 0.00531915 | 0 | 0 | 0 | 0 |
| Γ   | 3 | 0          | 0 | 0 | 0 | 0 |

W

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**



|    | J | <b>→</b>   |            | posM       |            |            |           |
|----|---|------------|------------|------------|------------|------------|-----------|
|    |   | 0          | 1          | 2          | 3          | 4          | 5         |
|    | 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| Ų. | 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
|    | 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

W'BASE, start

start = 0i = 0i = 1 pos = 0

For start = 0 to motif length for i=0 to number of sequences for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos]

0 1 2 3 4 1.061044 0 0 0 0 0.09707449 1 0 0 0 0 0.00531915 2 0 0 0 0 0 0 0

W

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**



| J | <b>→</b>   |            | posM       | posM       |            |           |  |  |  |  |
|---|------------|------------|------------|------------|------------|-----------|--|--|--|--|
|   | 0          | 1          | 2          | 3          | 4          | 5         |  |  |  |  |
| 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |  |  |  |  |
| 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |  |  |  |  |
| 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |  |  |  |  |

W'BASE, start

start = 0i = 1i = 1 pos = 1

For start = 0 to motif length for i=0 to number of sequences for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos]

0 1 2 3 4 1.061044 0 0 0 0 0.09707449 0 0 0 0 0.0065298 2 0 0 0 0 0 0 0

W

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

### **Step 2: Refinement**

| -            | j | po | <b>→</b> S | <b>→</b> |   |   | Re | efine | e the | e we | eigh | t m      | atrix ( | given the  | position   | n matrix<br><i>posM</i> |   |
|--------------|---|----|------------|----------|---|---|----|-------|-------|------|------|----------|---------|------------|------------|-------------------------|---|
| <i>i</i> ,   |   | 0  | 1          | 2        | 3 | 4 | 5  |       | Г     | т    |      | <i>i</i> |         | 0          | 1          | 2                       |   |
|              |   | 0  | 1          | 2        | 3 | 4 | 5  | 6     | 7     | 8    | 9    |          | 0       | 0.00132979 | 0.0598404  | 0.00132979              |   |
|              | 0 | С  | С          | G        | С | G | Α  | G     | С     | Т    | С    |          | 1       | 0.163438   | 0.00121065 | 0.817191                | ( |
| $\downarrow$ | 1 | Α  | G          | Α        | Т | С | G  | Т     | Α     | Α    | С    |          | 2       | 0.25       | 0.0833333  | 0.416667                |   |
|              | 2 | Т  | G          | G        | G | С | Т  | Α     | С     | С    | Т    |          |         |            | W          |                         |   |

|    |   | <b></b>    |            | posM       | posM       |            |           |  |  |  |  |
|----|---|------------|------------|------------|------------|------------|-----------|--|--|--|--|
|    |   | 0          | 1          | 2          | 3          | 4          | 5         |  |  |  |  |
|    | 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |  |  |  |  |
| Ų. | 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |  |  |  |  |
|    | 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |  |  |  |  |

| W'BASE, S | start                                                                                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| for i=0   | 0 to motif length<br>to number of sequences<br>r j=start and pos=0 to seq_length - motif_length + 1<br>W[ordValue(sequences[i][j])][start] += posM[i][pos |

|   |   | 0          | 1 | 2 | 3 | 4 |
|---|---|------------|---|---|---|---|
| Α | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| С | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| G | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| Т | 3 | 0          | 0 | 0 | 0 | 0 |

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

### **Step 2: Refinement**

| -            | j | po. | <b>S</b> | <b>→</b> |   |   | Re | efine | e the | e we | eigh     | t m      | atrix<br>j | given the  | position   | n matrix<br><i>posM</i> |   |
|--------------|---|-----|----------|----------|---|---|----|-------|-------|------|----------|----------|------------|------------|------------|-------------------------|---|
| <i>i</i> ,   |   | 0   | 1        | 2        | 3 | 4 | 5  |       | Г     | г    | <b>T</b> | <i>i</i> |            | 0          | 1          | 2                       |   |
|              |   | 0   | 1        | 2        | 3 | 4 | 5  | 6     | 7     | 8    | 9        |          | 0          | 0.00132979 | 0.0598404  | 0.00132979              |   |
|              | 0 | С   | С        | G        | С | G | Α  | G     | С     | Т    | С        |          | 1          | 0.163438   | 0.00121065 | 0.817191                | ( |
| $\downarrow$ | 1 | Α   | G        | Α        | Т | С | G  | Т     | Α     | Α    | С        |          | 2          | 0.25       | 0.0833333  | 0.416667                |   |
|              | 2 | Т   | G        | G        | G | С | Т  | Α     | С     | С    | Т        |          |            |            | W          |                         |   |

| J | <b>→</b>   |            | posM       |            |            |           |
|---|------------|------------|------------|------------|------------|-----------|
|   | 0          | 1          | 2          | 3          | 4          | 5         |
| 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

| W'BASE, start                                          |
|--------------------------------------------------------|
| For start = 0 to motif length                          |
| for i=0 to number of sequences                         |
| for j=start and pos=0 to seq_length - motif_length + 1 |
| W[ordValue(sequences[i][j])][start] += posM[i][pos     |

|   |   | 0          | 1 | 2 | 3 | 4 |
|---|---|------------|---|---|---|---|
| 4 | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| C | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| G | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| Τ | 3 | 0          | 0 | 0 | 0 | 0 |

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

### **Step 2: Refinement**

| _            | j | po | <b>S</b> | <b>→</b> |   |   | Re | efine | e the | e we | eigh | t m      | atrix g | iven the   | position   | n matrix<br><i>posM</i> |   |
|--------------|---|----|----------|----------|---|---|----|-------|-------|------|------|----------|---------|------------|------------|-------------------------|---|
| <i>i</i> ,   |   | 0  | 1        | 2        | 3 | 4 | 5  |       | Г     | т    |      | <i>i</i> |         | 0          | 1          | 2                       |   |
|              |   | 0  | 1        | 2        | 3 | 4 | 5  | 6     | 7     | 8    | 9    |          | 0       | 0.00132979 | 0.0598404  | 0.00132979              |   |
|              | 0 | С  | С        | G        | С | G | Α  | G     | С     | Т    | С    |          | 1       | 0.163438   | 0.00121065 | 0.817191                | ( |
| $\downarrow$ | 1 | Α  | G        | Α        | Т | С | G  | Т     | Α     | Α    | С    |          | 2       | 0.25       | 0.0833333  | 0.416667                |   |
|              | 2 | Т  | G        | G        | G | С | Т  | Α     | С     | С    | Т    |          |         |            | W          |                         |   |

|    |   | <b></b>    |            | posM       |            |            |           |
|----|---|------------|------------|------------|------------|------------|-----------|
|    |   | 0          | 1          | 2          | 3          | 4          | 5         |
|    | 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| Ų. | 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
|    | 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

| <b>W</b> 'BASE, st | start                                                                                                                                   |   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---|
| for i=0            | outo motif length  I to number of sequences  I j=start and pos=0 to seq_length - motif_len  W[ordValue(sequences[i][j])][start] += posN | _ |

|     |   | 0          | 1 | 2 | 3 | 4 |
|-----|---|------------|---|---|---|---|
| 4   | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| ( ) | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| ŝ   | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| г   | 3 | 0          | 0 | 0 | 0 | 0 |

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**

| -            | j | po | →<br>S | <b>→</b> |   |   | Re | efine | e the | e we | eigh | t m      | atrix g | iven the   | position   | n matrix<br>posM |   |
|--------------|---|----|--------|----------|---|---|----|-------|-------|------|------|----------|---------|------------|------------|------------------|---|
| <i>i</i> ,   |   | 0  | 1      | 2        | 3 | 4 | 5  |       | Г     | Г    | •    | $i \mid$ |         | 0          | 1          | 2                |   |
|              |   | 0  | 1      | 2        | 3 | 4 | 5  | 6     | 7     | 8    | 9    |          | 0       | 0.00132979 | 0.0598404  | 0.00132979       |   |
|              | 0 | С  | С      | G        | С | G | Α  | G     | С     | Т    | С    |          | 1       | 0.163438   | 0.00121065 | 0.817191         | ( |
| $\downarrow$ | 1 | Α  | G      | Α        | Т | С | G  | Т     | Α     | Α    | С    |          | 2       | 0.25       | 0.0833333  | 0.416667         |   |
|              | 2 | Т  | G      | G        | G | С | Т  | Α     | С     | С    | Т    |          |         |            | W          |                  |   |

|              | J | <b></b>    |            | posM       |            |            |           |
|--------------|---|------------|------------|------------|------------|------------|-----------|
|              |   | 0          | 1          | 2          | 3          | 4          | 5         |
|              | 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| $\downarrow$ | 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
|              | 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

|     |   | 0          | 1 | 2 | 3 | 4 |  |  |  |  |  |  |  |  |
|-----|---|------------|---|---|---|---|--|--|--|--|--|--|--|--|
| 4   | 0 | 1.061044   | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |
| ( ) | 1 | 0.09707449 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |
| Ĝ   | 2 | 0.0065298  | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |
| Γ   | 3 | 0          | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |

W'BASE, start

For start = 0 to motif length *for i=0 to number of sequences* for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos] T

pos is the position in the

**start** is the position in the

*i* is the number of the

*i* is the position in the

motif

sequence

sequence

window

#### **Step 2: Refinement**

| -            | j | po | <b>S</b> | <b>→</b> |   |   | Re | efine | e the    | e we | eigh | t m      | atrix g | iven the   | position   | n matrix<br>posM |   |
|--------------|---|----|----------|----------|---|---|----|-------|----------|------|------|----------|---------|------------|------------|------------------|---|
| <i>i</i> ,   |   | 0  | 1        | 2        | 3 | 4 | 5  |       | <b>.</b> | Г    | T    | <i>i</i> |         | 0          | 1          | 2                |   |
|              |   | 0  | 1        | 2        | 3 | 4 | 5  | 6     | 7        | 8    | 9    |          | 0       | 0.00132979 | 0.0598404  | 0.00132979       |   |
|              | 0 | С  | С        | G        | С | G | Α  | G     | С        | Т    | С    |          | 1       | 0.163438   | 0.00121065 | 0.817191         | ( |
| $\downarrow$ | 1 | Α  | G        | Α        | Т | С | G  | Т     | Α        | Α    | С    |          | 2       | 0.25       | 0.0833333  | 0.416667         |   |
|              | 2 | Τ  | G        | G        | G | С | Т  | Α     | С        | С    | Т    |          |         |            | W          |                  |   |

|  | J | <b>→</b>   |            | posM       |            |            |           |
|--|---|------------|------------|------------|------------|------------|-----------|
|  |   | 0          | 1          | 2          | 3          | 4          | 5         |
|  | 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
|  | 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
|  | 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

For start = 0 to motif length *for i=0 to number of sequences* for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos] T

|               |   | 0          | 1 | 2 | 3 | 4 |
|---------------|---|------------|---|---|---|---|
| 4             | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| $\mathcal{C}$ | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| G             | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| Γ             | 3 | 0          | 0 | 0 | 0 | 0 |

**<u>start</u>** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

### **Step 2: Refinement**

|   | j |    | <b>→</b> |          |   |   | D. | <b>.c</b> : | . حالا |      | حا ــ : ــ | _ |
|---|---|----|----------|----------|---|---|----|-------------|--------|------|------------|---|
|   |   | po | S        | <b>-</b> |   |   | KE | etine       | e the  | e we | eign       | J |
| ; |   | 0  | 1        | 2        | 3 | 4 | 5  |             |        |      |            | 1 |
|   |   | 0  | 1        | 2        | 3 | 4 | 5  | 6           | 7      | 8    | 9          |   |
|   | 0 | С  | С        | G        | С | G | А  | G           | С      | Т    | С          |   |
|   | 1 | Α  | G        | Α        | Т | С | G  | Т           | Α      | Α    | С          |   |
|   | 2 | Т  | G        | G        | G | С | Т  | Α           | С      | С    | Т          |   |

|   | J | <b>→</b>   |            | posM       |            |            |           |
|---|---|------------|------------|------------|------------|------------|-----------|
|   |   | 0          | 1          | 2          | 3          | 4          | 5         |
| • | 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
|   | 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
|   | 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

| W'BASE, start                                          |
|--------------------------------------------------------|
| For start = 0 to motif length                          |
| for i=0 to number of sequences                         |
| for j=start and pos=0 to seq_length - motif_length + 1 |
| W[ordValue(sequences[i][j])][start] += posM[i][pos     |

|   |   | 0          | 1 | 2 | 3 | 4 |
|---|---|------------|---|---|---|---|
| 4 | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| С | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| G | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| Т | 3 | 0          | 0 | 0 | 0 | 0 |

W

matrix given the position matrix

**<u>start</u>** is the position in the motif

<u>i</u> is the number of the sequence

*i* is the position in the sequence

<u>pos</u> is the position in the window

### **Step 2: Refinement**

| -        | j | po | <b>→</b><br>S | <b>→</b> |   |   | Re | efine | e the | e we | eigh | t m      | าa<br> | i <mark>trix</mark> giv<br><i>j</i> | ven the    | positior   | n matrix<br>posM |   |
|----------|---|----|---------------|----------|---|---|----|-------|-------|------|------|----------|--------|-------------------------------------|------------|------------|------------------|---|
| j        |   | 0  | 1             | 2        | 3 | 4 | 5  |       | Γ     |      |      | <i>i</i> |        |                                     | 0          | 1          | 2                |   |
|          |   | 0  | 1             | 2        | 3 | 4 | 5  | 6     | 7     | 8    | 9    |          |        | 0                                   | 0.00132979 | 0.0598404  | 0.00132979       | - |
|          | 0 | С  | С             | G        | С | G | Α  | G     | С     | Т    | С    |          | ,      | 1                                   | 0.163438   | 0.00121065 | 0.817191         | - |
| <b>\</b> | 1 | Α  | G             | Α        | Т | С | G  | Т     | Α     | Α    | С    |          |        | 2                                   | 0.25       | 0.0833333  | 0.416667         |   |
|          | 2 | Т  | G             | G        | G | С | Т  | Α     | С     | С    | Т    |          |        |                                     |            | W          |                  |   |

|   | <u> </u> | <b>→</b>   |            | posM       |            |            |           |
|---|----------|------------|------------|------------|------------|------------|-----------|
|   |          | 0          | 1          | 2          | 3          | 4          | 5         |
| • | 0        | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
|   | 1        | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
|   | 2        | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

| W'BASE, start                                          |
|--------------------------------------------------------|
| For start = 0 to motif length                          |
| for i=0 to number of sequences                         |
| for j=start and pos=0 to seq_length - motif_length + 1 |
| W[ordValue(sequences[i][j])][start] += posM[i][pos     |
|                                                        |

|   |   | 0          | 1 | 2 | 3 | 4 |
|---|---|------------|---|---|---|---|
| 4 | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| C | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| G | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| Τ | 3 | 0          | 0 | 0 | 0 | 0 |

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

### **Step 2: Refinement**

|          | j | _po | <b>S</b> | <b>→</b> |   |   | Re | efine | e the | e we | eigh | t m      | atrix g | given the  | position   | n matrix<br><i>posM</i> |   |
|----------|---|-----|----------|----------|---|---|----|-------|-------|------|------|----------|---------|------------|------------|-------------------------|---|
| i        |   | 0   | 1        | 2        | 3 | 4 | 5  |       |       |      |      | <i>i</i> |         | 0          | 1          | 2                       |   |
|          |   | 0   | 1        | 2        | 3 | 4 | 5  | 6     | 7     | 8    | 9    |          | 0       | 0.00132979 | 0.0598404  | 0.00132979              |   |
|          | 0 | С   | С        | G        | С | G | А  | G     | С     | Т    | С    |          | 1       | 0.163438   | 0.00121065 | 0.817191                | C |
| <b>\</b> | 1 | Α   | G        | Α        | Т | С | G  | Т     | Α     | Α    | С    |          | 2       | 0.25       | 0.0833333  | 0.416667                |   |
|          | 2 | Т   | G        | G        | G | С | Т  | Α     | С     | С    | Т    |          |         |            | W          |                         |   |

|  | J | <b>→</b>   |            | posM       |            |            |           |  |
|--|---|------------|------------|------------|------------|------------|-----------|--|
|  |   | 0          | 1          | 2          | 3          | 4          | 5         |  |
|  | 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |  |
|  | 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |  |
|  | 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |  |

| <b>W</b> 'BASE, start                                                                                                                          |          |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| For start = 0 to motif length  for i=0 to number of sequences  for j=start and pos=0 to seq_length - mo  W[ordValue(sequences[i][j])][start] + | <i>7</i> |

|   |   | 0          | 1 | 2 | 3 | 4 |
|---|---|------------|---|---|---|---|
| 4 | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| C | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| G | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| Τ | 3 | 0          | 0 | 0 | 0 | 0 |

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

### **Step 2: Refinement**

|              | j |     | <b>_</b> |          |   |   | D. | . <b>.</b> |       |      | . !  | _ |
|--------------|---|-----|----------|----------|---|---|----|------------|-------|------|------|---|
|              |   | po. | S        | <b>-</b> |   |   | KE | etine      | e the | 2 W6 | eign | J |
| ;            |   | 0   | 1        | 2        | 3 | 4 | 5  |            |       |      |      | j |
| <i> </i><br> |   | 0   | 1        | 2        | 3 | 4 | 5  | 6          | 7     | 8    | 9    |   |
|              | 0 | С   | С        | G        | С | G | А  | G          | С     | Т    | С    |   |
| <b>\</b>     | 1 | Α   | G        | Α        | Т | С | G  | Т          | Α     | Α    | С    |   |
|              | 2 | Т   | G        | G        | G | С | Т  | Α          | С     | С    | Т    |   |

|  | Ĵ | <b>→</b>   |            | posM       |            |            |           |
|--|---|------------|------------|------------|------------|------------|-----------|
|  |   | 0          | 1          | 2          | 3          | 4          | 5         |
|  | 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
|  | 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
|  | 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

| W'BASE, st | tart                                                                                                                                                     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| for i=0    | 0 to motif length<br>to number of sequences<br>j=start and pos=0 to seq_length - motif_length + 1<br>W[ordValue(sequences[i][j])][start] += posM[i][pos] |

|   |   | 0          | 1 | 2 | 3 | 4 |
|---|---|------------|---|---|---|---|
| 4 | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| C | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| G | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| Τ | 3 | 0          | 0 | 0 | 0 | 0 |

W

matrix given the position matrix

**<u>start</u>** is the position in the motif

<u>i</u> is the number of the sequence

*i* is the position in the sequence

<u>pos</u> is the position in the window

### **Step 2: Refinement**

| -            | j | po | <b>→</b><br>S | <b>→</b> |   |   | Re | efine | e the | e we | eigh     | t m      | natri<br><u>j</u> | ix giv | ven the    | positior   | n matrix<br><i>posM</i> |   |
|--------------|---|----|---------------|----------|---|---|----|-------|-------|------|----------|----------|-------------------|--------|------------|------------|-------------------------|---|
| <i>i</i> ,   |   | 0  | 1             | 2        | 3 | 4 | 5  |       | г     | Г    | <b>T</b> | <i>i</i> |                   |        | 0          | 1          | 2                       |   |
|              |   | 0  | 1             | 2        | 3 | 4 | 5  | 6     | 7     | 8    | 9        |          |                   | 0      | 0.00132979 | 0.0598404  | 0.00132979              |   |
|              | 0 | С  | С             | G        | С | G | Α  | G     | С     | Т    | С        |          |                   | 1      | 0.163438   | 0.00121065 | 0.817191                | ( |
| $\downarrow$ | 1 | Α  | G             | Α        | Т | С | G  | Т     | Α     | Α    | С        |          |                   | 2      | 0.25       | 0.0833333  | 0.416667                |   |
|              | 2 | Т  | G             | G        | G | С | Т  | Α     | С     | С    | Т        |          |                   |        |            | W          |                         |   |

|   | J | <b>→</b>   |            | posM       |            |            |           |
|---|---|------------|------------|------------|------------|------------|-----------|
|   |   | 0          | 1          | 2          | 3          | 4          | 5         |
| + | 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
|   | 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
|   | 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

|   |   | 0          | 1 | 2 | 3 | 4 |
|---|---|------------|---|---|---|---|
| 4 | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| C | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| G | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| Τ | 3 | 0          | 0 | 0 | 0 | 0 |

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

### **Step 2: Refinement**

| _          | j | po | <b>S</b> | <b>→</b> |   |   | Re | efine | e the | 2 W6 | eigh | t n              | nai | trix gi<br>i | ven the    | position   | n matrix<br>posM |   |
|------------|---|----|----------|----------|---|---|----|-------|-------|------|------|------------------|-----|--------------|------------|------------|------------------|---|
| <i>i</i> , |   |    | 0        | 1        | 2 | 3 | 4  | 5     |       |      |      | , <i>i</i>       |     |              | 0          | 1          | 2                |   |
|            |   | 0  | 1        | 2        | 3 | 4 | 5  | 6     | 7     | 8    | 9    |                  |     | 0            | 0.00132979 | 0.0598404  | 0.00132979       |   |
|            | 0 | С  | С        | G        | С | G | Α  | G     | С     | Т    | С    | $ $ $\downarrow$ | ,   | 1            | 0.163438   | 0.00121065 | 0.817191         | ( |
| ig         | 1 | Α  | G        | Α        | Т | С | G  | Т     | Α     | Α    | С    |                  |     | 2            | 0.25       | 0.0833333  | 0.416667         |   |
|            | 2 | Т  | G        | G        | G | С | Т  | Α     | С     | С    | Т    |                  |     |              |            | W          |                  |   |

|  | J | <b></b>    |            | posM       |            |            |           |
|--|---|------------|------------|------------|------------|------------|-----------|
|  |   | 0          | 1          | 2          | 3          | 4          | 5         |
|  | 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
|  | 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
|  | 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

| W'E | SE, start                                                                                                                                                            |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | rt = 0 to motif length<br>i=0 to number of sequences<br>for j=start and pos=0 to seq_length - motif_length + 1<br>W[ordValue(sequences[i][j])][start] += posM[i][pos |

|   |   | 0          | 1 | 2 | 3 | 4 |
|---|---|------------|---|---|---|---|
| A | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| С | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| G | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| Τ | 3 | 0          | 0 | 0 | 0 | 0 |

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

### **Step 2: Refinement**

| $ \begin{array}{c}                                     $ |   |   |   |   |   |   |   |   |   | positior | n matrix<br>posM |                  |   |   |            |            |            |   |
|----------------------------------------------------------|---|---|---|---|---|---|---|---|---|----------|------------------|------------------|---|---|------------|------------|------------|---|
| i                                                        |   |   | 0 | 1 | 2 | 3 | 4 | 5 |   |          |                  | <i>i</i>         |   |   | 0          | 1          | 2          |   |
|                                                          |   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8        | 9                |                  |   | 0 | 0.00132979 | 0.0598404  | 0.00132979 |   |
|                                                          | 0 | С | С | G | С | G | Α | G | С | Т        | С                | $ $ $\downarrow$ | , | 1 | 0.163438   | 0.00121065 | 0.817191   | C |
| <b>\</b>                                                 | 1 | Α | G | Α | Т | С | G | Т | Α | Α        | С                |                  |   | 2 | 0.25       | 0.0833333  | 0.416667   |   |
|                                                          | 2 | Т | G | G | G | С | Т | А | С | С        | Т                |                  |   |   |            | W          |            |   |

|  | <u>j</u> | <b></b>    |            | posM       |            |            |           |
|--|----------|------------|------------|------------|------------|------------|-----------|
|  |          | 0          | 1          | 2          | 3          | 4          | 5         |
|  | 0        | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
|  | 1        | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
|  | 2        | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

| W'BASE, sto | art                                                                                                                                                  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| for i=0 to  | to motif length<br>o number of sequences<br>=start and pos=0 to seq_length - motif_length + 1<br>W[ordValue(sequences[i][j])][start] += posM[i][pos] |

|   |   | 0          | 1 | 2 | 3 | 4 |
|---|---|------------|---|---|---|---|
| 4 | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| C | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| G | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| Τ | 3 | 0          | 0 | 0 | 0 | 0 |

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**

| -            | j | po | <b>S</b> | <b>→</b> |   |   | Re | efine | e the | e we | eigh | t m              | na <sup>·</sup> | trix giv<br><i>j</i> | ven the    | positior   | n matrix<br>posM |   |
|--------------|---|----|----------|----------|---|---|----|-------|-------|------|------|------------------|-----------------|----------------------|------------|------------|------------------|---|
| <i>i</i> ,   |   |    | 0        | 1        | 2 | 3 | 4  | 5     |       |      |      | <i>i</i>         |                 |                      | 0          | 1          | 2                |   |
|              |   | 0  | 1        | 2        | 3 | 4 | 5  | 6     | 7     | 8    | 9    |                  |                 | 0                    | 0.00132979 | 0.0598404  | 0.00132979       | ( |
|              | 0 | С  | С        | G        | С | G | Α  | G     | С     | Т    | С    | $ $ $\downarrow$ |                 | 1                    | 0.163438   | 0.00121065 | 0.817191         | ( |
| $\downarrow$ | 1 | Α  | G        | Α        | Т | С | G  | Т     | Α     | Α    | С    |                  |                 | 2                    | 0.25       | 0.0833333  | 0.416667         |   |
|              | 2 | Т  | G        | G        | G | С | Т  | Α     | С     | С    | Т    |                  |                 |                      |            | W          |                  |   |

| J | <b>→</b>   |            | posM       |            |            |           |  |  |  |  |
|---|------------|------------|------------|------------|------------|-----------|--|--|--|--|
|   | 0          | 1          | 2          | 3          | 4          | 5         |  |  |  |  |
| 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |  |  |  |  |
| 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |  |  |  |  |
| 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |  |  |  |  |

| <b>W</b> 'BASE, st | start                                                                                                                                   |   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---|
| for i=0            | outo motif length  I to number of sequences  I j=start and pos=0 to seq_length - motif_len  W[ordValue(sequences[i][j])][start] += posN | _ |

|               |   | 0          | 1 | 2 | 3 | 4 |
|---------------|---|------------|---|---|---|---|
| 4             | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| $\mathcal{C}$ | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| G             | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| Γ             | 3 | 0          | 0 | 0 | 0 | 0 |

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**

| -          | j | po | <b>→</b><br>S | <b>→</b> |   |   | Re | efine | e the | e we | eigh | t m      | าล<br> | trix giv<br>j | ∕en the    | positior   | n matrix<br>posM |   |
|------------|---|----|---------------|----------|---|---|----|-------|-------|------|------|----------|--------|---------------|------------|------------|------------------|---|
| <i>i</i> , |   |    | 0             | 1        | 2 | 3 | 4  | 5     |       |      |      | <i>i</i> |        |               | 0          | 1          | 2                |   |
|            |   | 0  | 1             | 2        | 3 | 4 | 5  | 6     | 7     | 8    | 9    |          |        | 0             | 0.00132979 | 0.0598404  | 0.00132979       |   |
|            | 0 | С  | С             | G        | С | G | Α  | G     | С     | Т    | С    |          | ,      | 1             | 0.163438   | 0.00121065 | 0.817191         | 0 |
|            | 1 | Α  | G             | Α        | Т | С | G  | Т     | Α     | Α    | С    |          |        | 2             | 0.25       | 0.0833333  | 0.416667         |   |
| •          | 2 | Т  | G             | G        | G | С | Т  | Α     | С     | С    | Т    |          |        |               |            | W          |                  |   |

| Ĵ | <b></b>    |            | posM       |            |            |           |
|---|------------|------------|------------|------------|------------|-----------|
|   | 0          | 1          | 2          | 3          | 4          | 5         |
| 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

| W'BASE, st | tart                                                                                                                                                     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| for i=0    | 0 to motif length<br>to number of sequences<br>j=start and pos=0 to seq_length - motif_length + 1<br>W[ordValue(sequences[i][j])][start] += posM[i][pos] |

|     |   | 0          | 1 | 2 | 3 | 4 |
|-----|---|------------|---|---|---|---|
| 4   | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| ( ) | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| ŝ   | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| г   | 3 | 0          | 0 | 0 | 0 | 0 |

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**

| j     0     1     2     3     4     5       0     1     2     3     4     5     6     7     8     9       0     C     C     G     C     G     C     T     C       1     0     0.00132979     0.0598404     0.00132979       1     0.163438     0.00121065     0.81719 |   |   |   |   |   |   | n matrix<br>posM |   |   |   |   |          |   |   |            |            |            |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|------------------|---|---|---|---|----------|---|---|------------|------------|------------|---|
| <i>i</i> .                                                                                                                                                                                                                                                            |   |   | 0 | 1 | 2 | 3 | 4                | 5 |   |   |   | <i>i</i> |   |   | 0          | 1          | 2          |   |
|                                                                                                                                                                                                                                                                       |   | 0 | 1 | 2 | 3 | 4 | 5                | 6 | 7 | 8 | 9 |          |   | 0 | 0.00132979 | 0.0598404  | 0.00132979 |   |
|                                                                                                                                                                                                                                                                       | 0 | С | С | G | С | G | Α                | G | С | Т | С |          | , | 1 | 0.163438   | 0.00121065 | 0.817191   | ( |
| $\downarrow$                                                                                                                                                                                                                                                          | 1 | Α | G | Α | Т | С | G                | Т | Α | Α | С |          |   | 2 | 0.25       | 0.0833333  | 0.416667   |   |
|                                                                                                                                                                                                                                                                       | 2 | Т | G | G | G | С | Т                | Α | С | С | Т |          |   |   |            | W          |            |   |

|              | J | <b></b>    |            | posM       |            |            |           |
|--------------|---|------------|------------|------------|------------|------------|-----------|
|              |   | 0          | 1          | 2          | 3          | 4          | 5         |
|              | 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| $\downarrow$ | 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
|              | 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

| W'BA. | SE, start |                                                                     |
|-------|-----------|---------------------------------------------------------------------|
|       |           | ;<br>q_length - motif_length + 1<br>[i][j])][start] += posM[i][pos] |

|   |   | 0          | 1 | 2 | 3 | 4 |
|---|---|------------|---|---|---|---|
| 4 | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| С | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| G | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| Τ | 3 | 0          | 0 | 0 | 0 | 0 |

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**

| - | pos |   |   | <b>-</b> |   |   | e the | 2 <b>W</b> 6 | eigh | t |   |   |
|---|-----|---|---|----------|---|---|-------|--------------|------|---|---|---|
| • |     |   | 0 | 1        | 2 | 3 | 4     | 5            |      |   |   | ı |
|   |     | 0 | 1 | 2        | 3 | 4 | 5     | 6            | 7    | 8 | 9 |   |
|   | 0   | С | С | G        | С | G | А     | G            | С    | Т | С |   |
|   | 1   | Α | G | Α        | Т | С | G     | Т            | Α    | Α | С |   |
|   | 2   | Т | G | G        | G | С | Т     | Α            | С    | C | Т |   |

|              | J | <b>→</b>   |            | posM       |            |            |           |
|--------------|---|------------|------------|------------|------------|------------|-----------|
|              |   | 0          | 1          | 2          | 3          | 4          | 5         |
|              | 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| $\downarrow$ | 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
|              | 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

| W'BASE, start                                          |
|--------------------------------------------------------|
| For start = 0 to motif length                          |
| for i=0 to number of sequences                         |
| for j=start and pos=0 to seq_length - motif_length + 1 |
| W[ordValue(sequences[i][j])][start] += posM[i][pos     |

|   |   | 0          | 1 | 2 | 3 | 4 |
|---|---|------------|---|---|---|---|
| 4 | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| С | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| G | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| Τ | 3 | 0          | 0 | 0 | 0 | 0 |

W

matrix given the position matrix

<u>start</u> is the position in the motif

<u>i</u> is the number of the sequence

*i* is the position in the sequence

<u>pos</u> is the position in the window

#### **Step 2: Refinement**

|          | j | po | 5 | <b>-</b> |   |   | Re | efine | e the | e we | eigh | t |
|----------|---|----|---|----------|---|---|----|-------|-------|------|------|---|
| ;        |   |    | 0 | 1        | 2 | 3 | 4  | 5     |       |      |      | j |
| ,<br>    |   | 0  | 1 | 2        | 3 | 4 | 5  | 6     | 7     | 8    | 9    |   |
|          | 0 | С  | С | G        | С | G | Α  | G     | С     | Т    | С    |   |
| <b>\</b> | 1 | Α  | G | Α        | Т | С | G  | Т     | Α     | Α    | С    |   |
|          | 2 | Т  | G | G        | G | С | Т  | Α     | С     | С    | Т    |   |

|    | j | <b>→</b>   |            | posM       |            |            |           |
|----|---|------------|------------|------------|------------|------------|-----------|
|    |   | 0          | 1          | 2          | 3          | 4          | 5         |
|    | 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| Ų. | 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
|    | 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

| W'BASE, S | start                                                                                                                                                      |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| for i=0   | 0 to motif length<br>to number of sequences<br>r j=start and pos=0 to seq_length - motif_length + 1<br>W[ordValue(sequences[i][j])][start] += posM[i][pos] |

|   |   | 0          | 1 | 2 | 3 | 4 |
|---|---|------------|---|---|---|---|
| 4 | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| C | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| G | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| Τ | 3 | 0          | 0 | 0 | 0 | 0 |

W

matrix given the position matrix

<u>start</u> is the position in the motif

<u>i</u> is the number of the sequence

*i* is the position in the sequence

<u>pos</u> is the position in the window

#### **Step 2: Refinement**

| -            | j | po | <b>→</b><br>S | <b>→</b> |   |   | Re | efine | e the | e we | eigh | t n        | าa <sup>-</sup> | <mark>trix</mark> giv<br><i>j</i> | ven the    | positior   | n matrix<br>posM |   |
|--------------|---|----|---------------|----------|---|---|----|-------|-------|------|------|------------|-----------------|-----------------------------------|------------|------------|------------------|---|
| <i>i</i> ,   |   | Г  | Г             | 0        | 1 | 2 | 3  | 4     | 5     |      | Г    | , <i>i</i> |                 |                                   | 0          | 1          | 2                |   |
|              |   | 0  | 1             | 2        | 3 | 4 | 5  | 6     | 7     | 8    | 9    |            |                 | 0                                 | 0.00132979 | 0.0598404  | 0.00132979       |   |
|              | 0 | С  | С             | G        | С | G | Α  | G     | С     | Т    | С    |            | ,               | 1                                 | 0.163438   | 0.00121065 | 0.817191         | ( |
| $\downarrow$ | 1 | Α  | G             | Α        | Т | С | G  | Т     | Α     | Α    | С    |            |                 | 2                                 | 0.25       | 0.0833333  | 0.416667         |   |
|              | 2 | Т  | G             | G        | G | С | Т  | Α     | С     | С    | Т    |            |                 |                                   |            | W          |                  |   |

| <u> </u> | <b>→</b>   |            | posM       |            |            |           |
|----------|------------|------------|------------|------------|------------|-----------|
|          | 0          | 1          | 2          | 3          | 4          | 5         |
| 0        | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1        | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2        | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

| W'BASE, start                                        |
|------------------------------------------------------|
| For start = 0 to motif length                        |
| for i=0 to number of sequences                       |
| for j=start and pos=0 to seq_length - motif_length + |
| W[ordValue(sequences[i][i])][start] += posM[i][po    |

|   |   | 0          | 1 | 2 | 3 | 4 |
|---|---|------------|---|---|---|---|
| 4 | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| C | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| G | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| Τ | 3 | 0          | 0 | 0 | 0 | 0 |

**start** is the position in the motif

*i* is the number of the sequence

*i* is the position in the sequence

#### **Step 2: Refinement**

| weight   | 5 i | 8 9 | ТС | A C                        | СТ |
|----------|-----|-----|----|----------------------------|----|
| e the    | 4   | 7   | С  | Α                          |    |
| fine     | 3   | 6   | G  | Т                          | Α  |
| Re       | 2   | 5   | Α  | G                          | Т  |
|          | 1   | 4   | G  | С                          | С  |
|          | 0   | 3   | С  | Т                          | G  |
| <b>→</b> |     | 2   | G  | Α                          | G  |
| <b>S</b> |     | 1   | С  | G                          | G  |
| po.      |     | 0   | С  | Α                          | _  |
| j        |     |     | 0  | 1                          | 2  |
| -        | į   |     |    | $\left  \downarrow  ight $ |    |

|    |   | <b></b>    |            | posM       |            |            |           |
|----|---|------------|------------|------------|------------|------------|-----------|
|    |   | 0          | 1          | 2          | 3          | 4          | 5         |
|    | 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| Ų. | 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
|    | 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

|   |   |            | _ |   |   |   |
|---|---|------------|---|---|---|---|
|   |   | 0          | 1 | 2 | 3 | 4 |
| A | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| C | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| G | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| Τ | 3 | 0          | 0 | 0 | 0 | 0 |

W

matrix given the position matrix

**<u>start</u>** is the position in the motif

<u>i</u> is the number of the sequence

*i* is the position in the sequence

**pos** is the position in the window

W'BASE, start

For start = 0 to motif length
for i=0 to number of sequences

for j=start and pos=0 to seq\_length - motif\_length + 1 W[ordValue(sequences[i][j])][start] += posM[i][pos]

#### **Step 2: Refinement**

| -  | j | po | <u>S</u> | <b>-</b> |   |   | Re | efine | e the | e we | eigh | ıt |
|----|---|----|----------|----------|---|---|----|-------|-------|------|------|----|
| ;  |   |    |          |          |   | 0 | 1  | 2     | 3     | 4    | 5    |    |
|    |   | 0  | 1        | 2        | 3 | 4 | 5  | 6     | 7     | 8    | 9    |    |
|    | 0 | С  | С        | G        | С | G | Α  | G     | С     | Т    | С    |    |
| ig | 1 | Α  | G        | Α        | Т | С | G  | Т     | Α     | Α    | С    |    |
|    | 2 | Т  | G        | G        | G | С | Т  | Α     | С     | С    | Т    |    |

|   | Ĵ | <b>→</b>   |            | posM       |            |            |           |
|---|---|------------|------------|------------|------------|------------|-----------|
|   |   | 0          | 1          | 2          | 3          | 4          | 5         |
|   | 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
|   | 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| * | 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

| W'BASE, start                                                |
|--------------------------------------------------------------|
| For start = 0 to motif length for i=0 to number of sequences |
| for j=start and pos=0 to seq_length - motif_length + 1       |
| W[ordValue(sequences[i][j])][start] += posM[i][pos           |

|   |   | 0          | 1 | 2 | 3 | 4 |
|---|---|------------|---|---|---|---|
| 4 | 0 | 1.061044   | 0 | 0 | 0 | 0 |
| С | 1 | 0.09707449 | 0 | 0 | 0 | 0 |
| G | 2 | 0.0065298  | 0 | 0 | 0 | 0 |
| Τ | 3 | 0          | 0 | 0 | 0 | 0 |

W

matrix given the position matrix

**<u>start</u>** is the position in the motif

<u>i</u> is the number of the sequence

*i* is the position in the sequence

<u>pos</u> is the position in the window

**Step 2: Refinement** 



G

**Step 2: Refinement** 

Refine the weight matrix given the position matrix

#### W Wh 0 1 2 3 4 0 2 4 W(0,2) W(0,3) W(0,4) W(0,0)W(0,1)0 0.25 1.25 0.25 0.25 0.25 0 W(1,0) W(1,1) W(1,2) W(1,3) W(1,4) $\boldsymbol{C}$ 0.25 0.25 1.25 0.25 0.75 1 W(2,0) W(2,1) W(2,2) W(2,3) W(2,4) 2 0.25 0.75 0.25 0.25 2 0.75 W(3,0) W(3,2) W(3,3) W(3,4) W(3,1) 3 0.25 0.75 0.25 0.75 0.75 3

**Step 2: Refinement** 



#### **Step 2: Refinement**

$$W_{BASE, start} = \frac{W'_{BASE, start}}{\sum_{i=A,C,G,T} W'_{i,0}}$$

|   |   |          | V        | V        |          |          |
|---|---|----------|----------|----------|----------|----------|
|   |   | 0        | 1        | 2        | 3        | 4        |
| Α | 0 | 3.12824  | 0.394089 | 0.543572 | 0.293635 | 0.733771 |
| С | 1 | 0.43404  | 0.284069 | 3.58019  | 0.562085 | 2.21896  |
| G | 2 | 0.795203 | 2.66042  | 0.593614 | 1.91294  | 0.25387  |
| T | 3 | 0.642521 | 1.66142  | 0.28262  | 2.23134  | 1.7934   |

#### **Step 2: Refinement**

$$W_{BASE, start} = \frac{W'_{BASE, start}}{\sum_{i=A,C,G,T} W'_{i,0}} = \frac{3.12824}{3.12824 + 0.43404 + 0.795203 + 0.642521} = 0.625647$$



#### **Step 2: Refinement**



### **Step 2: Refinement**



|   |   | 0        | 1         | 2         | 3         | 4        |
|---|---|----------|-----------|-----------|-----------|----------|
| Α | 0 | 0.625647 | 0.0788178 | 0.108714  | 0.0587271 | 0.146754 |
| С | 1 | 0.086808 | 0.0568139 | 0.716039  | 0.112417  | 0.443791 |
| G | 2 | 0.159041 | 0.532084  | 0.118723  | 0.382587  | 0.050774 |
| Т | 3 | 0.128504 | 0.332284  | 0.0565241 | 0.446269  | 0.358681 |

### **Step 2: Refinement**

#### Refine the weight matrix given the position matrix



|   |   | 0        | 1         | 2         | 3         | 4        |
|---|---|----------|-----------|-----------|-----------|----------|
| Α | 0 | 0.625647 | 0.0788178 | 0.108714  | 0.0587271 | 0.146754 |
| С | 1 | 0.086808 | 0.0568139 | 0.716039  | 0.112417  | 0.443791 |
| G | 2 | 0.159041 | 0.532084  | 0.118723  | 0.382587  | 0.050774 |
| T | 3 | 0.128504 | 0.332284  | 0.0565241 | 0.446269  | 0.358681 |

#### posM

|   | 0          | 1          | 2          | 3          | 4          | 5         |
|---|------------|------------|------------|------------|------------|-----------|
| 0 | 0.00132979 | 0.0598404  | 0.00132979 | 0.0359043  | 0.00398936 | 0.897606  |
| 1 | 0.163438   | 0.00121065 | 0.817191   | 0.00363196 | 0.00363196 | 0.0108959 |
| 2 | 0.25       | 0.0833333  | 0.416667   | 0.0277778  | 0.0833333  | 0.138889  |

### **Step 2: Refinement**

Refine the position matrix given the new weight matrix





### **Step 2: Refinement**





### **Step 2: Refinement**

Refine the position matrix given the new weight matrix



**Step 2: Refinement** 

### Until convergence





**Step 3: Consensus sequence** 

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | Α | G | С | Т | С |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т |

#### posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 1 | 0 | 0 | 0 |

Use the position matrix to find the most probable starting positions of the motif in each sequence.

**Step 3: Consensus sequence** 

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | С | С | G | С | G | A | G | С | Т | С |
| 1 | A | G | Α | Т | С | G | Τ | Α | Α | С |
| 2 | Τ | G | G | G | С | Т | Α | C | C | Т |

### posM

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 1 | 0 | 0 | 0 |

Use the position matrix to find the l-mer which is the best candidate for the motif in each sequence.

#### **Step 3: Consensus sequence**

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |         |
|---|---|---|---|---|---|---|---|---|---|---|---------|
| 0 | С | С | G | С | G | A | G | С | Т | С | → AGCTC |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С | → AGATC |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т | → GGCTA |

Use the position matrix to find the l-mer which is the best candidate for the motif in each sequence.

**Step 3: Consensus sequence** 

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |           | consensus<br>sequence |
|---|---|---|---|---|---|---|---|---|---|---|-----------|-----------------------|
| 0 | С | С | G | С | G | A | G | С | Т | С | → AGCTC ¬ | sequence              |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С | → AGATC   | AGCTC                 |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т | → GGCTA   |                       |

Use the position matrix to find the l-mer which is the best candidate for the motif in each sequence.

**Step 3: Consensus sequence** 

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | consensus                             |            |
|---|---|---|---|---|---|---|---|---|---|---|---------------------------------------|------------|
| 0 | С | С | G | С | G | Α | G | С | Т | С | sequence → Sequence hammDist(AGCTC, A | .GCTC) = 0 |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С | → AGATC → AGCTC hammDist(AGCTC, A     | •          |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т | hammDist(AGCTC, G                     | GCTA) = 2  |

Calculate the score of the bucket: the number of l-mers whose hamming distance to the consensus sequence exeeds the maximum number of mutations d.

**Step 3: Consensus sequence** 

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | consensus<br>sequence                  |
|---|---|---|---|---|---|---|---|---|---|---|----------------------------------------|
| 0 | С | С | G | С | G | A | G | С | Т | С | hammDist(AGCTC, AGCTC) = 0             |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С | AGATC AGCTC hammDist(AGCTC, AGATC) = 1 |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т | hammDist(AGCTC, GGCTA) = 2             |

Calculate the score of the bucket: the number of l-mers whose hamming distance to the consensus sequence exeeds the maximum number of mutations d.

d = 2
the score of this bucket is 0

**Step 3: Consensus sequence** 

#### sequences

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | consensus<br>sequence                  |
|---|---|---|---|---|---|---|---|---|---|---|----------------------------------------|
| 0 | С | С | G | С | G | Α | G | С | Т | С | hammDist(AGCTC, AGCTC) = 0             |
| 1 | Α | G | Α | Т | С | G | Т | Α | Α | С | AGATC AGCTC hammDist(AGCTC, AGATC) = 1 |
| 2 | Т | G | G | G | С | Т | Α | С | С | Т | hammDist(AGCTC, GGCTA) = 2             |

For each bucket save the score and the consensus sequence.

### **Step 3: Consensus sequence**

```
bucket0 - consSeq0, score0
bucket1 - consSeq1, score1
.
.
bucketN - consSeqN, scoreN
```

For each bucket save the score and the consensus sequence.

**Step 3: Consensus sequence** 



*Keep the bucket with the best score scoreX* 

# Take the best consensus sequence from all trials

"AGCTC"

trial 1

bucketX - consSeqX, scoreX

trial 2

bucketX - consSeqX, scoreX





bucketX - consSeqX, scoreX

## Outline

Introduction & Motivation

Problem

Background

Solution

> Validation

Future work

| l  | d | Gibbs | WINNOWER | SP-STAR | PROJECTION | Correct | m    |
|----|---|-------|----------|---------|------------|---------|------|
| 10 | 2 | 0.20  | 0.78     | 0.56    | 0.82       | 20      | 72   |
| 11 | 2 | 0.68  | 0.90     | 0.84    | 0.91       | 20      | 16   |
| 12 | 3 | 0.03  | 0.75     | 0.33    | 0.81       | 20      | 259  |
| 13 | 3 | 0.60  | 0.92     | 0.92    | 0.92       | 20      | 62   |
| 14 | 4 | 0.02  | 0.02     | 0.20    | 0.77       | 19      | 647  |
| 15 | 4 | 0.19  | 0.92     | 0.73    | 0.93       | 20      | 172  |
| 16 | 5 | 0.02  | 0.03     | 0.04    | 0.70       | 16      | 1292 |
| 17 | 5 | 0.28  | 0.03     | 0.69    | 0.93       | 19      | 378  |
| 18 | 6 | 0.03  | 0.03     | 0.03    | 0.74       | 16      | 2217 |
| 19 | 6 | 0.05  | 0.03     | 0.40    | 0.96       | 20      | 711  |

Table 1: Average performance coefficients on planted (l,d)-motifs in simulated data. Each input instance consists of t=20 sequences each of length n=600. Average performance coefficients of Gibbs, WINNOWER (k=2), and SP-STAR are from Pevzner and Sze [personal communication], who averaged the performance coefficient over eight random instances. For Projection, averages were taken over twenty random instances, with projection size k=7 and threshold s=4.

| l  | d | Gibbs | WINNOWER | SP-STAR | PROJECTION | Correct | m    |
|----|---|-------|----------|---------|------------|---------|------|
| 10 | 2 | 0.20  | 0.78     | 0.56    | 0.82       | 20      | 72   |
| 11 | 2 | 0.68  | 0.90     | 0.84    | 0.91       | 20      | 16   |
| 12 | 3 | 0.03  | 0.75     | 0.33    | 0.81       | 20      | 259  |
| 13 | 3 | 0.60  | 0.92     | 0.92    | 0.92       | 20      | 62   |
| 14 | 4 | 0.02  | 0.02     | 0.20    | 0.77       | 19      | 647  |
| 15 | 4 | 0.19  | 0.92     | 0.73    | 0.93       | 20      | 172  |
| 16 | 5 | 0.02  | 0.03     | 0.04    | 0.70       | 16      | 1292 |
| 17 | 5 | 0.28  | 0.03     | 0.69    | 0.93       | 19      | 378  |
| 18 | 6 | 0.03  | 0.03     | 0.03    | 0.74       | 16      | 2217 |
| 19 | 6 | 0.05  | 0.03     | 0.40    | 0.96       | 20      | 711  |

Table 1: Average performance coefficients on planted (l,d)-motifs in simulated data. Each input instance consists of t=20 sequences each of length n=600. Average performance coefficients of Gibbs, WINNOWER (k=2), and SP-STAR are from Pevzner and Sze [personal communication], who averaged the performance coefficient over eight random instances. For Projection, averages were taken over twenty random instances, with projection size k=7 and threshold s=4.

16 trials for 20 sequences of length 600 with a planted motif AGGCATCCGTT of length 11 with max 2 mutations, k-mer projection size 7 and bucket threshold 4.

16 trials for 20 sequences of length 600 with a planted motif AGGCATCCGTT of length 11 with max 2 mutations, k-mer projection size 7 and bucket threshold 4.

Planted motif:

AGGCATCCGTT

| Motif finder  | Time       |
|---------------|------------|
| PROJECTION    | 1h 30min   |
| MEME          | 15.74 secs |
| Gibbs sampler | 47.81 secs |

## Outline

Introduction & Motivation

Problem

Background

Solution

Validation

> Future work

### Future work

- 0 or more than 1 occurences per sequence (ZOOPS, TCM)
- Multiple cores
- Unknown DNA-base N (SEQAN Dna5)
- Hash buckets of SEQAN
- Tests with more datasets