Computer Engineering Department National University of Technology Islamabad, Pakistan

Introduction to Data Mining Practice Exercise 10

Name: <u>Muhammad Sami Uddin Rafay</u>

Roll Number: <u>F18604013</u>

Submitted To: <u>Dr. Kamran Javed</u>

Date: <u>02 February 2020</u>

Practice Exercise 10

Supervised Machine Learning | Decision Tree

Objective:

• Implement Decision Tree using Fisher iris Data.

Equipment/Software Required:

• Python (Spyder 4.0 Anaconda Distribution)

Background:

Decision Tree:

A decision tree is a structure that contains nodes (rectangular boxes) and edges(arrows) and is built from a dataset (table of columns representing features/attributes and rows corresponds to records). Each node is either used to make a decision (known as decision node) or represent an outcome (known as leaf node).

Main Steps of ID3 Algorithm:

- 1. Compute the entropy of Dataset ENTROPY(S)
- 2. For every attribute/feature:
 - a. Calculate entropy for all other values ENTROPY(A)
 - b. Take AVERAGE INFORMATION ENTROPY for current attribute
 - c. Calculate Gain for current attribute
- 3. Pick the Highest Gain attribute
- 4. Repeat until we get the tree we desire

Code:

importing Libraries

import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn import tree

Loading iris dataset

fisher_iris=pd.read_csv(r"C:\Users\User\Downloads\iris.data")

Before implementing Decision Tree on fisher_iris Data frame lets do some data quality assessment

Converting fisher_iris as a Data Frame

fisher_iris=pd.DataFrame(fisher_iris)

Printing the head of fisher_iris Data Frame

```
print("Head of fisher_iris: \n", fisher_iris.head())
print("\n")
# Spcifying the columns name
attributes = ["sepal_length", "sepal_width", "petal_length", "petal_width", "class"]
fisher_iris.columns = attributes
# Printing shape/ Dimentions fisher iris of Data Frame
print("Head of fisher iris: \n",fisher iris.shape)
print("\n")
# Printing statistics of fisher_iris Data Frame
print("Head of fisher_iris: \n", fisher_iris.describe())
print("\n")
#plotting the decision tree for iris dataset
plt.figure(1)
# Slicing Train and Target Data
X, y = load_iris(return_X_y=True)
# Using Decision Tree Classifier
clf = tree.DecisionTreeClassifier()
# Fitting target and Train Data
clf = clf.fit(X, y)
# plotting Decision Tree
tree.plot_tree(clf)
anypoint=[[3., 2., 3, 4]]
# predicting
prediction=clf.predict(anypoint)
print("\n")
print("Prediction of any point: \n",prediction)
Output:
Head of fisher_iris:
  5.1 3.5 1.4 0.2 Iris-setosa
0 4.9 3.0 1.4 0.2 Iris-setosa
```

1 4.7 3.2 1.3 0.2 Iris-setosa

2 4.6 3.1 1.5 0.2 Iris-setosa

3 5.0 3.6 1.4 0.2 Iris-setosa

4 5.4 3.9 1.7 0.4 Iris-setosa

Head of fisher iris:

(149, 5)

Head of fisher_iris:

	sepal_length	sepal_width	petal_lengtl	h petal_width
count	149.000000	149.000000	149.000000	149.000000
mean	5.848322	3.051007	3.774497	1.205369
std	0.828594	0.433499	1.759651	0.761292
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.400000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Prediction of any point:

[2]

Graphs:

Results and Discussions: Decision Trees (DTs) are a non-parametric supervised learning method used for classification and regression. The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. A tree can be seen as a piecewise constant approximation.				
Conclusion:				
Decision Tree is one of the most powerful and popular algorithms. Decision-tree algorithm falls under the category of supervised learning algorithms. It works for both continuous as well as categorical output variables.				