What's happening to the Orangutan?

An image classification study By Cindy Barrientos

The problem

- ▶ Palm oil plantations generate cheap vegetable oils for production
 - ► Frozen foods, soap, makeup, detergents
- Massive deforestation
 - Orangutans, native to Malaysia and Indonesia, now critically endangered
 - Orangutan population by year
 - **>** 288,500 (1973)
 - **100,000 (2016)**
 - ▶ 47,000 (2025, estimated)
- Satellite imaging to better document location and distribution of world palm oil plantations

Satellite Images

Satellite imaging to better document location and distribution of world palm oil plantations

Satellite Images

Satellite imaging to better document location and distribution of world palm oil plantations

How an image is perceived by a computer

https://engmrk.com/convolutional-neural-network-3/

How an image is perceived by a computer

https://engmrk.com/convolutional-neural-network-3/

Edge detection with filters

Grayscale

Architecture

Class imbalance

```
# list the class sizes
print("Number of images with palm oil plantations: ", len(os.listdir(has palm dir)))
print("Number of images without palm oil plantations: ", len(os.listdir(no palm dir)))
Number of images with palm oil plantations: 936
Number of images without palm oil plantations: 14302
                Class distribution of training set:
                (array([0, 1], dtype=int64), array([11450, 741], dtype=int64))
                Class distribution of validation set:
                (array([0, 1], dtype=int64), array([1413, 110], dtype=int64))
                Class distribution of test set:
                (array([0, 1], dtype=int64), array([1439, 85], dtype=int64))
```

Load and transform data

Model: VGG16

- Winning model designed for the 2014 ImageNet classification challenge
- Researchers found it to be generalizable to other image sets
- Uses architecture of small 3x3 convolutional filters
- Publication: https://arxiv.org/abs/1409.1556

Model: VGG16

```
(10). Maxrootzu(kennet_Stze-z, Scriue-z, pauutng-v, uttacton-t, cett_moue-ratse)
 (17): Conv2d(256, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
 (18): ReLU(inplace)
 (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (20): ReLU(inplace)
  (21): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
 (22): ReLU(inplace)
 (23): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
 (24): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
 (25): ReLU(inplace)
  (26): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
 (27): ReLU(inplace)
 (28): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
 (29): ReLU(inplace)
 (30): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
(classifier): Sequential(
 (0): Linear(in features=25088, out features=4096, bias=True)
 (1): ReLU(inplace)
 (2): Dropout(p=0.5)
 (3): Linear(in features=4096, out features=4096, bias=True)
 (4): ReLU(inplace)
 (5): Dropout(p=0.5)
 (6): Linear(in features=4096, out features=1000, bias=True)
```

Model: VGG16

```
# freeze the features layers
for param in model.features.parameters():
    param.requires grad = False
classifier = nn.Sequential(OrderedDict([
    ('fc1', nn.Linear(25088, 4096)),
    ('relu1', nn.ReLU()),
    ('dropout1', nn.Dropout(p=0.25)),
    ('fc2', nn.Linear(4096, 4096)),
    ('relu2', nn.ReLU()),
    ('dropout2', nn.Dropout(p=0.25)),
    ('output', nn.Linear(4096, 2))
]))
model.classifier = classifier
print(model)
```

Testing

Confusion matrix

precision		recall	f1-score	support	
0	0.99	0.99	0.99	1439	
1	0.91	0.91	0.91	85	

Class imbalance

To offset class imbalance, some later trainings were done on 5x duplicated minority class images

```
Number of images with palm oil plantations: 4680
Number of images without palm oil plantations: 14302
```

```
Class distribution of training set:
  (array([0, 1], dtype=int64), array([11470, 3716], dtype=int64))
Class distribution of validation set:
  (array([0, 1], dtype=int64), array([1441, 457], dtype=int64))
Class distribution of test set:
  (array([0, 1], dtype=int64), array([1391, 507], dtype=int64))
```

Testing

- Confusion matrix of identical model hyperparameters
 - ▶ 5 epochs, SGD optimizer, 0.01 learning rate

Original dataset

array([[1431, 8], [8, 77]], dtype=int64)

precision recall f1-score support 0 0.99 0.99 0.99 1439 1 0.91 0.91 0.91 85

5x minority class images

	precision	recall	f1-score	support	
0	0.95	1.00	0.97	1435	
1	1.00	0.83	0.90	463	

Submission predictions

model name (.pt)	l avers + output	Dropout	Ontimizer	Learn rate Epochs	Augmentation	Testval	Leaderboard
vgg16-5ep-sgd01	Euyers - output		5 SGD	0.01	5 Resize(224), Randomhorizontalflip(), randomverticalflip()	0.99081	
vgg16-5ep-dr75-sgd01	3	3 0.75	5 SGD	0.01	5 Resize(224), Randomhorizontalflip(), randomverticalflip()	0.99212	0.59369
vgg16-5ep-dr75-sgd01	5	0.75	5 SGD	0.01	5 Resize(224), Randomhorizontalflip(), randomverticalflip()	0.98752	0.99652
vgg16-5ep-adam001	3	0.25	5 Adam	0.001	5 Resize(224), Randomhorizontalflip(), randomverticalflip()	0.99212	0.98439
vgg16bn-5ep-sgd01	5	3 0.2!	SGD	0.01	5 Resize(224), Randomhorizontalflip(), randomverticalflip()	0.99015	0.99469
vgg16-fc4-5ep-sgd01	4	4 0.25	5 SGD	0.01	5 Resize(224), Randomhorizontalflip(), randomverticalflip()	0.99146	0.99603
vgg16-imgaug1-5ep-sgd01		3 0.21	5 SGD	0.01	5 Resize(224), Randomhorizontalflip(), randomverticalflip(), colorjitter(brightness=0.5, contrast=0.75)	0.99212	0.99634
rss to misuus i Jep-sguot	,	0.2.	3300	0.01	The size (224), narrow monitority (), randomer treating (), cotto sitter (b) ignuties 5-0.5, contrast-0.73)	0.77212	0.77034
vgg16-5ximg-5ep-sgd01	3	3 0.2!	5 SGD	0.01	5 Resize(224), Randomhorizontalflip(), randomverticalflip(), randomrotation(-30,30)	0.98156	0.99207

Tweaking for improvements

- Model
 - ▶ Densenet151, Resnet121
- Adding fully connected layers
- Optimizer
 - ▶ SGD vs Adam
 - ► Tuning optimal learning rate (perhaps with fast.ai)
- Class imbalance
- Image processing

Q&A

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159668

- Learning
 - Loss (mistakes between predicted and actual)
 - Backpropagation (how a particular weight is contributing to loss)
 - Optimization (how the algorithm will correct itself)

Activation functions

Rectified Linear Unit (ReLU)

- Purpose of activation function:
 - Scales output of layers so they are consistent, small values
 - Efficiency in model training
- ReLU activation
 - Rectified Linear Unit
 - Clips negative values to zero
 - ▶ Generally should be used after every hidden layer for consistent, positive results

Loss: Cross entropy loss

- Difference between predicted and actual classification
- First adds a softmax activation function
 - ► Turns scores into probabilities
- Then applies negative log likelihood loss (NLLLoss)
- Returns the average loss over an entire batch