

Chapter 10 (10.1 – 10.2)

Learning Objectives

In this chapter, you learn:

- How to use hypothesis testing for comparing the difference between
 - The means of two independent populations
 - The means of two related populations
 - The proportions of two independent populations
 - The variances of two independent populations
 - Use of MS Excel to do ... all of the above (and you can use Excel in your homework too!)

Two-Sample Tests

Two-Sample Tests

Population Means, Independent Samples Population Means, Related Samples

Population Proportions (later)

Population Variances

Examples:

Group 1 vs. Group 2

Same group before vs. after treatment

Proportion 1 vs. Proportion 2

Variance 1 vs. Variance 2

Difference Between Two Means

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

Goal: Test hypothesis or form a confidence interval for the difference between two population means, $\mu_1 - \mu_2$

The point estimate for the difference is

$$\overline{X}_1 - \overline{X}_2$$

Difference Between Two Means: Independent Samples

Population means, independent samples

- Unrelated
- Independent
 - Sample selected from one population has no effect on the sample selected from the other population

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

Use S_p to estimate unknown σ . Use a **Pooled-Variance t** test.

Use S_1 and S_2 to estimate unknown σ_1 and σ_2 . Use a **Separate-variance t test**

Hypothesis Tests for Two Population Means

Two Population Means, Independent Samples

Lower-tail test:

$$H_0: \mu_1 \ge \mu_2$$

 $H_1: \mu_1 < \mu_2$
i.e.,

$$H_0$$
: $\mu_1 - \mu_2 \ge 0$
 H_1 : $\mu_1 - \mu_2 < 0$

Upper-tail test:

$$H_0: \mu_1 \le \mu_2$$

 $H_1: \mu_1 > \mu_2$
i.e.,

$$H_0$$
: $\mu_1 - \mu_2 \le 0$
 H_1 : $\mu_1 - \mu_2 > 0$

Two-tail test:

$$H_0$$
: $\mu_1 = \mu_2$
 H_1 : $\mu_1 \neq \mu_2$
i.e.,

$$H_0$$
: $\mu_1 - \mu_2 = 0$
 H_1 : $\mu_1 - \mu_2 \neq 0$

Hypothesis tests for $\mu_1 - \mu_2$

Two Population Means, Independent Samples

Lower-tail test:

$$H_0: \mu_1 - \mu_2 \ge 0$$

 H_1 : $\mu_1 - \mu_2 < 0$

Upper-tail test:

 $H_0: \mu_1 - \mu_2 \le 0$

 H_1 : $\mu_1 - \mu_2 > 0$

Two-tail test:

 H_0 : $\mu_1 - \mu_2 = 0$

 H_1 : $\mu_1 - \mu_2 \neq 0$

Reject H_0 if $t_{STAT} < -t_{\alpha}$

Reject H_0 if $t_{STAT} > t_{\alpha}$

Reject H₀ if $t_{STAT} < -t_{\alpha/2}$ or $t_{STAT} > t_{\alpha/2}$

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed or both sample sizes are at least 30
- Population variances are unknown but assumed equal

Hypothesis tests for μ_1 - μ_2 with σ_1 and σ_2 unknown and assumed equal

(continued)

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

The pooled variance is:

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)}$$

• The test statistic is:

$$t_{STAT} = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

• Where t_{STAT} has d.f. = $(n_1 + n_2 - 2)$

Confidence interval for μ_1 - μ_2 with σ_1 and σ_2 unknown and assumed equal

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

The confidence interval for

$$\mu_1 - \mu_2$$
 is:

$$\left(\overline{X}_1 - \overline{X}_2\right) \pm t_{\alpha/2} \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

 σ_1 and σ_2 unknown, not assumed equal

Where $t_{\alpha/2}$ has d.f. = $n_1 + n_2 - 2$

Pooled-Variance t Test Example

You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE & NASDAQ? You collect the following data:

Number Sample mean Sample std dev

NYSE	NASDAQ	
21	25	
3.27	2.53	
1.30	1.16	

Assuming both populations are approximately normal with equal variances, is there a difference in mean yield ($\alpha = 0.05$)?

Pooled-Variance t Test Example: Calculating the Test Statistic

(continued)

H0:
$$\mu_1 - \mu_2 = 0$$
 i.e. $(\mu_1 = \mu_2)$

H1:
$$\mu_1 - \mu_2 \neq 0$$
 i.e. $(\mu_1 \neq \mu_2)$

The test statistic is:

$$t = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{\left(3.27 - 2.53\right) - 0}{\sqrt{1.5021 \left(\frac{1}{21} + \frac{1}{25}\right)}} = \frac{2.040}{\sqrt{1.5021 \left(\frac{1}{21} + \frac{1}{25}\right)}}$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)} = \frac{(21 - 1)1.30^2 + (25 - 1)1.16^2}{(21 - 1) + (25 - 1)} = 1.5021$$

Pooled-Variance t Test Example: Hypothesis Test Solution

2.040

$$H_0$$
: $\mu_1 - \mu_2 = 0$ i.e. $(\mu_1 = \mu_2)$

$$H_1$$
: $\mu_1 - \mu_2 \neq 0$ i.e. $(\mu_1 \neq \mu_2)$

$$\alpha = 0.05$$

$$df = 21 + 25 - 2 = 44$$

Critical Values: $t = \pm 2.0154$

Test Statistic:

$$t = \frac{3.27 - 2.53}{\sqrt{1.5021 \left(\frac{1}{21} + \frac{1}{25}\right)}}$$

Decision:

Reject H_0 at $\alpha = 0.05$

Conclusion:

There is evidence of a difference in means.

Two-Sample Tests in Excel

Examples

- Page 352, ## 10.1, 10.2, 10.8
- Page 353, ## 10.9 (using Excel data analysis toolpak)

Hypothesis tests for μ_1 - μ_2 with σ_1 and σ_2 unknown, not assumed equal

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed or both sample sizes are at least 30
- Population variances are unknown and cannot be assumed to be equal

Hypothesis tests for μ_1 - μ_2 with σ_1 and σ_2 unknown and not assumed equal

(continued)

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

The test statistic is:

$$t_{STAT} = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}}$$

 t_{STAT} has d.f. v =

$$\sigma_1$$
 and σ_2 unknown, not assumed equal

$$v = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{\left(\frac{S_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{S_2^2}{n_2}\right)^2}{n_2 - 1}}$$

Separate-Variance t Test Example

You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE & NASDAQ? You collect the following data:

Number Sample mean Sample std dev

NYSE	NASDAQ
21	25
3.27	2.53
1.30	1.16

Assuming both populations are approximately normal with unequal variances, is there a difference in mean yield ($\alpha = 0.05$)?

Separate-Variance t Test Example: Calculating the Test Statistic

(continued)

H0:
$$\mu_1 - \mu_2 = 0$$
 i.e. $(\mu_1 = \mu_2)$
H1: $\mu_1 - \mu_2 \neq 0$ i.e. $(\mu_1 \neq \mu_2)$

The test statistic is:

$$t = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)}{\sqrt{\left(\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}\right)}} = \frac{\left(3.27 - 2.53\right) - 0}{\sqrt{\left(\frac{1.30^{2}}{21} + \frac{1.16^{2}}{25}\right)}} = 2.019$$

$$v = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2} = \frac{\left(\frac{1.30^2}{21} + \frac{1.16^2}{25}\right)^2}{\left(\frac{1.30^2}{21}\right)^2 + \left(\frac{1.16^2}{25}\right)^2} = 40.57$$

$$\frac{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2}{n_2 - 1} + \frac{\left(\frac{1.30^2}{21}\right)^2 + \left(\frac{1.16^2}{25}\right)^2}{20} + \frac{1.16^2}{24}$$
Use degrees of freedom = 40

Separate-Variance t Test Example: Hypothesis Test Solution

$$H_0$$
: $\mu_1 - \mu_2 = 0$ i.e. $(\mu_1 = \mu_2)$

$$H_1$$
: $\mu_1 - \mu_2 \neq 0$ i.e. $(\mu_1 \neq \mu_2)$

$$\alpha = 0.05$$

$$df = 40$$

Critical Values: t = ± 2.021

Test Statistic:

t = 2.019

Decision:

Fail To Reject H_0 at α = 0.05

Conclusion:

There is no evidence of a difference in means.

Examples

Page 354, ## 10.14-10.15 (using Excel data analysis toolpak)

The F Distribution

- The F critical value is found from the F table
- There are two degrees of freedom required: numerator and denominator
- The larger sample variance is always the numerator

• When
$$F_{STAT} = \frac{S_1^2}{S_2^2}$$
 $df_1 = n_1 - 1$; $df_2 = n_2 - 1$

- In the F table,
 - numerator degrees of freedom determine the column
 - denominator degrees of freedom determine the row

Reject H_0 if $F_{STAT} > F_{\alpha/2}$

Reject H_0 if $F_{STAT} > F_{\alpha}$

F Test: An Example

You are a financial analyst for a brokerage firm. You want to compare dividend yields between stocks listed on the NYSE & NASDAQ. You collect the following data:

	<u>NYSE</u>	<u>NASDAQ</u>
Number	21	25
Mean	3.27	2.53
Std dev	1.30	1.16

Is there a difference in the variances between the NYSE & NASDAQ at the α = 0.05 level?

F Test: Example Solution

Form the hypothesis test:

$$H_0$$
: $\sigma_1^2 = \sigma_2^2$ (there is no difference between variances)
 H_1 : $\sigma_1^2 \neq \sigma_2^2$ (there is a difference between variances)

- Find the F critical value for $\alpha = 0.05$:
- Numerator d.f. = $n_1 1 = 21 1 = 20$
- Denominator d.f. = n2 1 = 25 -1 = 24
- $F_{\alpha/2} = F_{.025, 20, 24} = 2.33$

F Test: Example Solution

(continued)

■ The test statistic is:

$$F_{STAT} = \frac{S_1^2}{S_2^2} = \frac{1.30^2}{1.16^2} = \boxed{1.256}$$

- $F_{STAT} = 1.256$ is not in the rejection region, so we do not reject H_0
- Conclusion: There is not sufficient evidence of a difference in variances at $\alpha = .05$

Examples

Page 377, #10.58, 10.60

Related Populations The Paired Difference Test

Related samples

Tests Means of 2 Related Populations

- Paired or matched samples
- Repeated measures (before/after)
- Use difference between paired values:

$$D_i = X_{1i} - X_{2i}$$

- Eliminates Variation Among Subjects
- Assumptions:
 - Both Populations Are Normally Distributed
 - Or, if not Normal, use large samples

Related Populations The Paired Difference Test

(continued)

Related samples

The ith paired difference is D_i, where

$$D_i = X_{1i} - X_{2i}$$

The point estimate for the paired difference population mean μ_D is \overline{D} :

$$\overline{D} = \frac{\sum_{i=1}^{n} D_{i}}{n}$$

The sample standard deviation is S_D

$$S_{D} = \sqrt{\frac{\sum_{i=1}^{n} (D_{i} - \overline{D})^{2}}{n-1}}$$

n is the number of pairs in the paired sample

The Paired Difference Test: Finding t_{STAT}

Paired samples

• The test statistic for μ_D is:

$$t_{STAT} = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{n}}}$$

■ Where t_{STAT} has n - 1 d.f.

The Paired Difference Test: Possible Hypotheses

Paired Samples

Lower-tail test:

$$H_0: \mu_D \ge 0$$

$$H_1$$
: $\mu_D < 0$

Upper-tail test:

$$H_0: \mu_D \le 0$$

$$H_1$$
: $\mu_D > 0$

Two-tail test:

$$H_0$$
: $\mu_D = 0$

$$H_1$$
: $\mu_D \neq 0$

Reject H_0 if $t_{STAT} < -t_{\alpha}$

Reject H_0 if $t_{STAT} > t_{\alpha}$

Where t_{STAT} has n - 1 d.f.

Reject H₀ if
$$t_{STAT} < -t_{\alpha/2}$$

or $t_{STAT} > t_{\alpha/2}$

The Paired Difference Confidence Interval

Paired samples

The confidence interval for μ_D is

$$\overline{D} \pm t_{\alpha/2} \frac{S_{D}}{\sqrt{n}}$$

where
$$S_D = \sqrt{\frac{\sum_{i=1}^{n} (D_i - \overline{D})^2}{n-1}}$$

Paired Difference Test: Example

Assume you send your salespeople to a "customer service" training workshop. Has the training made a difference in the number of complaints? You collect the following data:

Salesperson	Number of Before (1)	Complaints: After (2)	(2) - (1) <u>Difference,</u> <u>D</u> _i
C.B.	6	4	- 2
T.F.	20	6	-14
M.H.	3	2	- 1
R.K.	0	0	0
M.O.	4	0	<u>- 4</u>
			-21

$$\overline{D} = \frac{\sum D_i}{n}$$

$$= -4.2$$

$$S_D = \sqrt{\frac{\sum (D_i - \overline{D})^2}{n-1}}$$

$$= 5.67$$

Paired Difference Test: Solution

■ Has the training made a difference in the number of

complaints (at the 0.01 level)?

$$H_0$$
: $\mu_D = 0$
 H_1 : $\mu_D \neq 0$

$$\alpha = .01$$
 $\overline{D} = -4.2$

$$t_{0.005} = \pm 4.604$$

d.f. = n - 1 = 4

Test Statistic:

$$t_{STAT} = \frac{\overline{D} - \mu_{D}}{S_{D} / \sqrt{n}} = \frac{-4.2 - 0}{5.67 / \sqrt{5}} = \boxed{-1.66}$$

Decision: Do not reject H_0 (t_{stat} is not in the reject region)

Conclusion: There is not a significant change in the number of complaints.

Testing for the Ratio Of Two Population Variances

Tests for Two
Population
Variances

F test statistic

Hypotheses

$$H_0: \sigma_1^2 = \sigma_2^2$$

 $H_1: \sigma_1^2 \neq \sigma_2^2$

$$H_0: \sigma_1^2 \le \sigma_2^2$$

 $H_1: \sigma_1^2 > \sigma_2^2$

FSTAT

$$S_1^2 / S_2^2$$

Where:

 S_1^2 = Variance of sample 1 (the larger sample variance)

 n_1 = sample size of sample 1

 S_2^2 = Variance of sample 2 (the smaller sample variance)

 n_2 = sample size of sample 2

 $n_1 - 1 = numerator degrees of freedom$

 $n_2 - 1$ = denominator degrees of freedom

Examples

- Page 368, #10.30
- Page 377, #10.60

Chapter Summary

In this chapter we discussed

- Comparing two independent samples
 - Pooled-variance t test for the difference in two means
 - Separate-variance t test for difference in two means
 - Confidence intervals for the difference between two means
 - F test for the ratio of two population variances
- Comparing two related samples (paired samples)
 - Performed paired t test for the mean difference
 - Formed confidence intervals for the mean difference