MASTER'S THEOREM. If f(n) & O(nd) or f(n) = c* nd where d>, o in recurrence T(n) T(n/b) + j(n) then $(n) \in SO(n^a)$, $\mathring{y}(a < b^d)$ $O(n^d \log n)$, $\mathring{y}(a = b^d)$ $O(n^{\log b^d})$, $\mathring{y}(a > b^d)$ $T(n) = 8T(n/2) + 1000n^2$ a=8, b=2, $j'(n)=1000n^2$ $b^{d} = 2^{2} = 4 \qquad \log_{b} a = \log_{2} 8$ Hence, $a > b^{d} \qquad \log_{b} a = \log_{2} 8$ $\vdots \qquad t(n) \in O(n \log_{b} a)$.. T(n) e O(n3)

2) $T(n) = 2T(n/2) + n^2$	
a = 2, b = 2, d = 2	
bd = 2 ² = 4	
$b^{d} = 2^{2} = 4$ As, $a < b^{d}$ i , $t(n) \in O(n^{2})$	
	-1
(3) T(n) = 2T(n/2) +10m	
a = 2, b = 2, d = 1	
bd = 2 = 2	
As, $a = b^d$	
$\frac{f(n) = O(n \log n)}{f(n) = O(n \log n)}$	1
	1
	1