Science can be viewed as a continuing human effort to systematise knowledge for describing and understanding nature. You have learnt in your previous classes that we come across diverse substances present in nature and changes in them in daily life. Curd formation from milk, formation of vinegar from sugarcane juice on keeping for prolonged time and rusting of iron are some of the examples of changes which we come across many times. For the sake of convenience, science is sub-divided into various disciplines: chemistry, physics, biology, geology, etc. The branch of science that studies the preparation, properties, structure and reactions of material substances is called chemistry.

DEVELOPMENT OF CHEMISTRY

Chemistry, as we understand it today, is not a very old discipline. Chemistry was not studied for its own sake, rather it came up as a result of search for two interesting things: i. Philosopher's stone (Paras) which would convert all baser metals e.g., iron and copper into gold. ii. 'Elixir of life' which would grant immortality. People in ancient India, already had the knowledge of many scientific phenomenon much before the advent of modern science. They applied that knowledge in various walks of life. Chemistry developed mainly in the form of Alchemy and Iatrochemistry during 1300-1600 CE. Modern chemistry took shape in the 18th century Europe, after a few centuries of alchemical traditions which were introduced in Europe by the Arabs. Other cultures - especially the Chinese and the Indian - had their own alchemical traditions. These included much knowledge of

chemical processes and techniques. In ancient India, chemistry was called Rasayan Shastra, Rastantra, Ras Kriya or Rasvidya. It included metallurgy, medicine, manufacture of cosmetics, glass, dyes, etc. Systematic excavations at Mohenjodaro in Sindh and Harappa in Punjab prove that the story of development of chemistry in India is very old. Archaeological findings show that baked bricks were used in construction work. It shows the mass production of pottery, which can be regarded as the earliest chemical process, in which materials were mixed, moulded and subjected to heat by using fire to achieve desirable qualities. Remains of glazed pottery have been found in Mohenjodaro. Gypsum cement has been used in the construction work. It contains lime,

sand and traces of CaCO3. Harappans made

faience, a sort of glass which was used in ornaments. They melted and forged a variety of objects from metals, such as lead, silver, gold and copper. They improved the hardness of copper for making artefacts by using tin and arsenic. A number of glass objects were found in Maski in South India (1000-900 BCE), and Hastinapur and Taxila in North India (1000-200 BCE). Glass and glazes were coloured by addition of colouring agents like metal oxides.

Copper metallurgy in India dates back to the beginning of chalcolithic cultures in the subcontinent. There are much archeological evidences to support the view that technologies for extraction of copper and iron were developed indigenously.

According to Rigveda, tanning of leather and dying of cotton were practised during 1000-400 BCE. The golden gloss of the black polished ware of northen India could not be replicated and is still a chemical mystery. These wares indicate the mastery with which kiln temperatures could be controlled. Kautilya's Arthashastra describes the production of salt from sea.

A vast number of statements and material described in the ancient Vedic literature can be shown to agree with modern scientific findings. Copper utensils, iron, gold, silver ornaments and terracotta discs and painted grey pottery have been found in many archaeological sites in north India. Sushruta Samhita explains the importance of Alkalies. The Charaka Samhita mentions ancient indians who knew how to prepare sulphuric acid, nitric acid and oxides of copper, tin and zinc; the sulphates of copper, zinc and iron and the carbonates of lead and iron. Rasopanishada describes the preparation of gunpowder mixture. Tamil texts also describe the preparation of fireworks using sulphur, charcoal, saltpetre (i.e., potassium nitrate), mercury, camphor, etc.

Nagarjuna was a great Indian scientist. He was a reputed chemist, an alchemist and a metallurgist. His work Rasratnakar deals with the formulation of mercury compounds. He has also discussed methods for the extraction of metals, like gold, silver, tin and copper. A

book, Rsarnavam, appeared around 800 CE. It discusses the uses of various furnaces, ovens and crucibles for different purposes. It describes methods by which metals could be identified by flame colour. Chakrapani discovered mercury sulphide. The credit for inventing soap also goes to him. He used mustard oil and some alkalies as ingredients for making soap. Indians began making soaps in the 18th century CE. Oil of Eranda and seeds of Mahua plant and calcium carbonate were used for making soap. The paintings found on the walls of Ajanta and Ellora, which look fresh even after ages, testify to a high level of science achieved in ancient India. Varähmihir's Brihat Samhita is a sort of encyclopaedia, which was composed in the sixth century CE. It informs about the preparation of glutinous material to be applied on walls and roofs of houses and temples. It was prepared entirely from extracts of various plants, fruits, seeds and barks, which were concentrated by boiling, and then, treated with various resins. It will be interesting to test such materials scientifically and assess them for use.