Sheet 0 Solutions

1. (i)
$$\mathbf{A} \cdot \mathbf{B} = (\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}) \cdot (4\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}) = 4 - 6 - 8 = -10.$$
 (ii) $|\mathbf{A}| = \sqrt{1^2 + 3^2 + 2^2} = \sqrt{14}.$ (iii) $\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -2 \\ 4 & -2 & 4 \end{vmatrix} = 8\mathbf{i} - 12\mathbf{j} - 14\mathbf{k}.$ (iv) $(2\mathbf{A} + \mathbf{B}) \cdot (\mathbf{A} - 2\mathbf{B}) = (6\mathbf{i} + 4\mathbf{j}) \cdot (-7\mathbf{i} + 7\mathbf{j} - 10\mathbf{k}) = -42 + 28 = -14.$

2. Consider a parallelogram with sides **B** and **C** and let $\hat{\mathbf{n}}$ be the unit normal to this parallelogram in the direction $\mathbf{B} \times \mathbf{C}$, so that $\hat{\mathbf{n}} = (\mathbf{B} \times \mathbf{C})/|\mathbf{B} \times \mathbf{C}|$.

The area of the parallelegram is $|\mathbf{B} \times \mathbf{C}|$ and it follows that the volume V of the parallelegiped is $|\mathbf{B} \times \mathbf{C}|$ h where $h = \mathbf{A} \cdot \hat{\mathbf{n}}$ (> 0) is the perpendicular height.

Therefore $V = (\mathbf{A} \cdot \hat{\mathbf{n}}) | \mathbf{B} \times \mathbf{C} | = \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$ upon substituting for $\hat{\mathbf{n}}$ from above.

If the system is not right-handed then $\mathbf{A} \cdot \hat{\mathbf{n}} < 0$ and so $V = |\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})|$.

3. (i) Differentiating, $\partial x/\partial u = 3u^2 + v$ and so $\partial^2 x/\partial v \partial u = (\partial/\partial v)(\partial x/\partial u) = 1$.

We also have $\partial x/\partial v = u + 3v^2$ and so $\partial^2 x/\partial u\partial v = 1$.

In a similar way $\partial y/\partial u = 2u$, $\partial y/\partial v = -2v$ and so $(\partial/\partial u)(\partial y/\partial v) = (\partial/\partial v)(\partial y/\partial u) = 0$.

This can be written in matrix form as
$$\begin{pmatrix} 3u^2 + v & u + 3v^2 \\ 2u & -2v \end{pmatrix} \begin{pmatrix} u_x \\ v_x \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
.

(ii) Differentiating implicitly wrt
$$x$$
 we have $1 = 3u^2u_x + vu_x + uv_x + 3v^2v_x$ and $0 = 2uu_x - 2vv_x$. This can be written in matrix form as $\begin{pmatrix} 3u^2 + v & u + 3v^2 \\ 2u & -2v \end{pmatrix} \begin{pmatrix} u_x \\ v_x \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Letting $u = 1, v = 0$ we have $\begin{pmatrix} u_x \\ v_x \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 1/2 \\ 1 & -3/2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and so $u_x = 0, v_x = 1$.

To get u_y and v_y we go back and differentiate implicitly wrt y. This gives $\begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} u_y \\ v_y \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

After inverting the matrix we find $u_y = 1/2, v_y = -3/2$.

4. (i) First
$$(\partial^2/\partial x^2)(r) = (\partial/\partial x)(\partial r/\partial x) = (\partial/\partial x)(\partial/\partial x)(x^2 + y^2 + z^2)^{1/2} = (\partial/\partial x)(x/r) = (1/r) - (x/r^2)(\partial r/\partial x) = 1/r - x^2/r^3$$
.

Similarly:
$$(\partial^2/\partial y^2)(r) = 1/r - y^2/r^3$$
, $(\partial^2/\partial z^2)(r) = 1/r - z^2/r^3$. Hence $\nabla^2(r) = 3/r - r^2/r^3 = 2/r$.

(ii) This time consider
$$(\partial^2/\partial x^2)(r^{-1}) = (\partial/\partial x)(-r^{-2}\partial r/\partial x) = (\partial/\partial x)(-x/r^3) = -1/r^3 + 3xr^{-4}\partial r/\partial x = -r^{-3} + 3x^2r^{-5}$$
.

Again we can obtain similar expressions for the y and z derivatives.

Putting them together: $\nabla^2(1/r) = -3r^{-3} + 3(x^2 + y^2 + z^2)r^{-5} = 0$.

5. (i)
$$\int_0^{2\pi} \sin^2 \theta \ d\theta = (1/2) \int_0^{2\pi} (1 - \cos 2\theta) \ d\theta = (1/2) [\theta - (1/2) \sin 2\theta]_0^{2\pi} = \pi$$
. (ii) As above but write $\cos^2 \theta = (1/2)(1 + \cos 2\theta)$. Again the answer is equal to π .

(ii) As above but write
$$\cos^2\theta = (1/2)(1+\cos 2\theta)$$
 Again the answer is equal to π

(iii) Letting
$$u = \cos \theta$$
 the integral becomes $-\int_{1}^{-1} u^{2} du = 2/3$.

(iv) Write
$$\cos^4 \theta = (1/2)^2 (1 + \cos 2\theta)^2 = 1/4 + (1/2) \cos 2\theta + (1/4)(1/2)(1 + \cos 4\theta) =$$

$$3/8 + (1/2)\cos 2\theta + (1/8)\cos 4\theta$$
.

After integrating, the trigonometric functions vanish, leaving an answer of $3\pi/4$.

(v) Write
$$\sin^4 \theta = (1/2)^2 (1 - \cos 2\theta)^2$$
 and proceed as above. The answer is $3\pi/4$ once more.

6. In polar coordinates a small element of area dxdy can be represented by $(rd\theta)(dr)$.

So, with
$$x = r \cos \theta$$
, $y = r \sin \theta$ we can write the integral as $I = \int_0^{2\pi} \int_0^a (r^2 \cos^2 \theta - 2r^2 \sin^2 \theta) \ r \ dr \ d\theta = (\int_0^a r^3 dr) (\int_0^{2\pi} \cos^2 \theta - 2 \sin^2 \theta \ d\theta) = (a^4/4)(\pi - 2\pi) = -\pi a^4/4.$

7. (i) The integrating factor is $\exp(-3 \int (x+1)^{-1} dx) = (x+1)^{-3}$.

Multiplying the ODE by this quantity we get $((x+1)^{-3}y)' = (x+1)$ and hence $(x+1)^{-3}y = x^2/2 + x + C$. The solution is therefore $y = (x+1)^3(x^2/2 + x + C)$.

(ii) The homogeneous solution is $y_{HS} = A \cos x + B \sin x$.

For the particular solution we try $y_{PS} = \mu \cos 2x + \lambda \sin 2x$.

Then $y_{PS}'' + y_{PS} = -3\mu\cos 2x - 3\lambda\sin 2x = \cos 2x$. Thus we need $\mu = -1/3, \lambda = 0$.

The general solution is therefore $y = A \cos x + B \sin x - (1/3) \cos 2x$.

(iii) The homogeneous solution is as in (ii).

The RHS is now contained in that solution so we need to modify y_{PS} .

We try $y_{PS} = Cx \cos x + Dx \sin x$ and find after some algebra that $y_{PS}'' + y_{PS} = 2D \cos x - 2C \sin x = \cos x$. We therefore require D = 1/2, C = 0 and the solution is $y = A \cos x + B \sin x + (1/2)x \sin x$.

8. Using the substitution $x=e^t$ we see that dy/dt=(dy/dx)(dx/dt)=xdy/dx and $d^2y/dt^2=x(d/dx)(xdy/dx)=x^2d^2y/dx^2+xdy/dx$. Our ODE becomes $d^2y/dt^2+dy/dt-2y=e^{-t}$. This may now be solved in the standard way to yield $y=Ae^{-2t}+Be^t-(1/2)e^{-t}$. Writing back in terms of x we have $y=A/x^2+Bx-1/(2x)$.

9. If we let $\beta^2 = 1 - \lambda$ then the general solution of the ODE is $y = A \cos \beta x + B \sin \beta x$. Applying the boundary conditions $y(0) = A = 0, y(\pi) = B\sin(\beta\pi) = 0$. Thus we need $\beta = \pm 1, \pm 2, \pm 3, \dots$ The possible values of λ are therefore 0, -3, -8 etc.