Introduction to Computational Science and Engineering

<u>Help</u>

sandipan_dey >

<u>Course</u>

Progress

<u>Dates</u>

Discussion

MO Index

☆ Course / 12 Stiffness and Implicit Methods for ... / 12.3 Implementation of Implicit Met...

< Previo	ous	■ 4	•	■ 4		Next	
12.3.1 l	mplen	nenta	tion o	f Impl	icit M	ethods	
for Line	12.3.1 Implementation of Implicit Methods for Linear Systems ☐ Bookmark this page						
M Booking.	K tills pag	,					
						O-070000 / 0	

MO2.7

MO2.8

Let's next look at the implementation of an implicit method for an IVP for which $\underline{f}(\underline{u},t)$ involves a linear system as described in Section 10.1.2. Recall that for such an IVP that $f(\underline{u},t)$ has the following form,

$$f(\underline{u},t) = A\underline{u} + \underline{b}(t)$$
 (12.32)

where A is an $M \times M$ matrix, M is the number of states, and \underline{b} is a vector of known functions of time (but do not depend on \underline{u}). Let's now compare the Forward Euler and Backward Euler implementations for this $f(\underline{u},t)$. For Forward Euler, an iteration is,

$$\underline{v}^{n+1} = \underline{v}^n + \Delta t \left[\underline{A}\underline{v}^n + \underline{b} \left(t^n \right) \right] \tag{12.33}$$

The computational cost of a Forward Euler iteration will be dominated by the matrix-vector multiplication $A\underline{v}^n$ (unless \underline{b} (t) is an extremely complex function to evaluate). The asymptotic computational complexity of a matrix-vector multiply is $2M^2$ (try deriving this yourself by determining the total number of mathematical operations, in particular multiplications and additions, required to multiply a matrix and

Discussions

All posts sorted by recent activity

© All Rights Reserved

For Backward Euler we have the following iteration,

edX

About
$$\underline{v}^{n+1} = \underline{v}^n + \Delta t \left[\underline{A}\underline{v}^{n+1} + \underline{b} \left(t^{n+1} \right) \right]$$

(12.34)

Affiliates

edX for Business

Now, re-arranging this iteration produces the Open.edX
following linear system of equations to be solved for n=n=1
News '

Legal $-\Delta tA$) $\underline{v}^{n+1} = \underline{v}^n + \Delta t\underline{b}\left(t^{n+1}\right)$

(12.35)

Terms of Service & Honor Code

Privately Phis on M imes M identity matrix. On the left-

Agrandsisibility of क्रिकेट equation, we have a matrix (

Trademarka City was a substitution of the vector \underline{v}^{n+1} . On the right-

Sitema side, we have a known vector,

Thus, a Backward Euler iteration Your Privacy Choices requires the solution of a linear $M \times M$ system of

equations. If we use Gaussian elimination (see Section 10.4) to solve this system of equations, the asymptotic computational complexity is $\frac{2}{3}M^3$

Next >

<u>Blog</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>