Problem Set #1

- **0.** (Reading assignment) DL Book Chapters $1 \sim 6$
- 1. (Independent random variables) Find an example of three binary random variables X, Y and Z such that they are pairwise independent but not mutually independent, i.e., p(x,y) = p(x)p(y), p(x,z) = p(x)p(z), p(y,z) = p(y)p(z) for all $(x,y,z) \in \{0,1\}^3$, but $p(x,y,z) \neq p(x)p(y)p(z)$ for some $(x,y,z) \in \{0,1\}^3$.

2. (Saddle points)

- (a) Construct a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that its saddle points are given by $\{(n, 2m+1-n)|n \in \mathbb{Z}, m \in \mathbb{Z}\}$, where \mathbb{Z} is the set of integers.
- (b) Construct a function $f: \mathbb{R}^n \to \mathbb{R}$ such that it has roughly 2^n times more saddle points than local minima in $[0, 100]^n$, where [a, b] is the closed interval between a and b.
- **3.** (No free lunch theorem) You are given a binary random variable X and are told to estimate the value of another binary random variable Y. There can be many learning algorithms producing an estimate \hat{Y} of Y based on the observation X, e.g., $\hat{Y} = 0$, $\hat{Y} = 1$, $\hat{Y} = X$, or $\hat{Y} = 1 X$, i.e., the output of the algorithm is "always 0", "always 1", "same as the first outcome", and "different from the first outcome", respectively. There can also be randomized algorithms, e.g., set $\hat{Y} = 1$ randomly with probability p or set $\hat{Y} = 1$ with probability p and set $\hat{Y} = X$ with probability p.
- (a) Assume X and Y are i.i.d. Bernoulli(1/2). Show that no learning algorithm can perform any better than random guessing, i.e., producing \hat{Y} as Bernoulli(1/2) regardless of X.
- (b) Can there be another joint distribution p(x,y) on (X,Y) such that no learning algorithm can perform any better than random guessing?