Capítulo 1

Pequeñas oscilaciones

Es un formalismo para analizar el movimiento que realiza un sistema cuando está sometido a ligeras perturbaciones en la posición de equilibrio. Esto desarrollará un método sistemático para tratar todo tipo de problemas con muchos grados de libertad pero en forma aproximada.

1.0.1 Idea para un grado de libertad

Para un grado de liberada la idea es que

en un potencial V(x) con un mínimo, es decir que cumple

$$\frac{dV(x)}{dx} = 0, \frac{d^2V(x)}{dx^2} > 0$$

para algún x_{eq} , en la expresión de la energía

$$E = \frac{1}{2}m\dot{x}^2 + V(x),$$
 (1)

se aproxima el potencial según1

$$V(x) \approx V_0 + \frac{1}{2} \left. \frac{d^2 V(x)}{dx^2} \right|_{x_{eq}} (x - x_{eq})^2,$$
 (2)

y si definimos $k \equiv d^2 V/dx^2|_{x_{eq}}$ se llega a

$$E = \frac{1}{2}m\dot{x}^2 + V_0 + \frac{1}{2}k(x-x_{eq})^2,$$

que derivada con respecto al tiempo resulta en

$$m\ddot{x} + k(x - x_{eq}) = 0,$$

la cual no es otra cosa que una ecuación de oscilador armónico, cuya solución general es

$$x(t) = A\cos(\omega t + \varphi),$$

donde $\omega=\sqrt{k/m}$ y φ está asociada a la energía E. Ver Apéndice X para la resolución de oscilador armónico.

El problema físico tiene dos constantes aunque la resolución presenta cuatro (dos complejos, con parte real e imaginaria).

Nótese que el desarrollo del potencial a orden dos equivale a una fuerza linealizada, merced a que $m\ddot{x}=-dV/dx$.

Un apéndice más: oscilador armónico con término no homogéneo (usar 76R carpeta). Acá habría que llegar a despejar quién es φ .

1.0.2 Varias variables

En el caso de un potencial $V(\boldsymbol{x}_1,...,\boldsymbol{x}_n)$ hay que hallar las raíces del mismo y luego desarrollar en torno a los puntos de equilibrio. Se empieza desde

$$\left. \frac{\partial V}{\partial \boldsymbol{x}} \right|_{x=1} = 0,$$

y habría que desarrollar

$$V(\boldsymbol{x}_1,...,\boldsymbol{x}_n) = V(\boldsymbol{x}_1,...,\boldsymbol{x}_n) + \frac{1}{2}\sum_{i,j}\frac{\partial^2 V}{\partial \boldsymbol{x}_j\partial \boldsymbol{x}_i}(\boldsymbol{x}-\boldsymbol{x}_i)(\boldsymbol{x}-\boldsymbol{x}_j)$$

No obstante, el problema se puede enfocar mejor en términos de las coordenadas generalizadas. Entonces, el potencial es

$$V(q_1,...,q_n) \approx V(q_1^0,...,q_n^0) + \sum_{i=1}^n \left. \frac{\partial V}{\partial q_i} \right|_{q_i^0} (q_i - q_i^0) + \frac{1}{2} \sum_{i,j=1}^n \left. \frac{\partial^2 V}{\partial q_i \partial q_j} \right|_{q_i^0} (q_i - q_i^0) (q_j - q_i^0)$$

¹Nótese que esta es la expansión de Taylor en la cual el término lineal está justamente ausente porque la derivada primera en el punto es nula.

y la energía cinética,

$$T(q_1,...,q_n,\dot{q}_1,...,\dot{q}_n) \approx \frac{1}{2} \left(m(q_1^0,...,q_n^0) + \sum_{i=1}^n \left. \frac{\partial m}{\partial q_i} \right|_{q_i^0} (q_i - q_i^0) + ... \right) \sum_{i,j}^n \dot{q}_i \dot{q}_j$$

[Esta expresión hay que revisarla y reubicarla!]

La energía cinética es

$$T = \frac{1}{2} \sum_{i,j} m_{ij}(q_1,...,q_n) \dot{q}_i \dot{q}_j$$

donde m_{ij} son los coeficientes de las coordenadas generalizadas y se desarrollarán en serie en torno al equilibrio (caracterizado por un supraíndice 0), es decir,

$$m_{ij} \approx m_{ij}(q_i^0,...,q_n^0) + \sum_k \left. \frac{\partial m_{ij}}{\partial q_k} \right|_{q^0} (q_k - q_k^0). \label{eq:mij}$$

Estamos considerando que la energía cinética es $T=T_2$, pero cabría pensar que existe un $T_0(q_1,...,q_n)$ y se lo sumaríamos en ese caso al potencial V. En el lagrangiano que consideraremos no está presente T_1 ; queremos un potencial que no depende de las velocidades.

EJEMPLO 0.1 Sobre el término T_1

Para el caso de una masa fija, enhebrada en varilla que gira con velocidad angular ω , el lagrangiano es

$$\mathcal{L} = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\varphi}^2),$$

con energía

$$T = T_0 + T_2 = \frac{2}{2} m r^2 \dot{\varphi}^2 + \frac{2}{2} m \dot{r}^2$$

donde $\dot{\varphi}=\omega$ el último término no depende de la velocidad pero sí de la posición. Es como un potencial que genera la fuerza ficticia.

Haciendo la aproximación consistente resulta

$$\mathcal{L} = T - V = -\frac{1}{2} \sum_{i,j}^{n} \left. \frac{\partial^{2} V}{\partial q_{i} \partial q_{j}} \right|_{q_{i}^{0}} (\eta_{i})(\eta_{j}) + \frac{1}{2} \sum_{i,j}^{n} \left. m_{ij} \right|_{q_{i}^{0}} \dot{\eta}_{i} \dot{\eta}_{j}$$

con $V_{ij}\equiv \partial^2 V/(\partial q_i\partial q_j)|_{q_i^0}, m_{ij}=m_{ij}|_{q_i^0}$, ambos simétricos, y donde se ha definido $\eta_i=q_i-q_i^0$, que es un apartamiento típico de la posición de equilibrio. Notemos que $\dot{q}_i=\dot{\eta}_i$. Nótese también que el término lineal en la aproximación de m_{ij} al verse multiplicado por el producto $\dot{q}_i\dot{q}_j$ es ya de orden cúbico por lo cual debe descartarse para ser consistentes con las aproximaciones hechas en el potencial.

Esta aproximación y formalismo sirve para un mínimo y un sistema que hace pequeños apartamientos respecto de ese mínimo.

Con esta nomenclatura puede escribirse el lagrangiano de pequeñas oscilaciones

$$\mathcal{L} = \frac{1}{2} \sum_{i,j=1}^n m_{ij} \dot{\eta}_i \dot{\eta}_j - \frac{1}{2} \sum_{i,j=1}^n V_{ij} \eta_i \eta_j$$

siendo ambas sumatorias formas bilineales cuadráticas reales y definidas positivas. Matricialmente,

$$\mathcal{L} = \frac{1}{2} \dot{\boldsymbol{\eta}}^t \mathbb{T} \dot{\boldsymbol{\eta}} - \frac{1}{2} \dot{\boldsymbol{\eta}}^t \mathbb{V} \dot{\boldsymbol{\eta}}$$

y si ahora evaluamos las ecuaciones de Euler-Lagrange para este formalismo resulta que

$$\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\eta}_k}\right) - \frac{\partial \mathcal{L}}{\partial \eta_k} = \frac{d}{dt}\left(\frac{1}{2}\sum_{i,j=1}^n m_{ij}\frac{d}{d\dot{\eta}_k}(\dot{\eta}_i\dot{\eta}_j)\right) - \frac{1}{2}\sum_{i,j=1}^n V_{ij}\frac{d}{d\eta_k}(\eta_i\eta_j) = 0$$

son n ecuaciones diferenciales de Euler,

$$\sum_{i=1}^{n} m_{kj} \ddot{\eta}_{j} + V_{kj} \eta_{j} = 0 \qquad k = (1,...,n).$$

Esto es un oscilador armónico para cada partícula. Se puede pensar en todas las partículas unidas por resortes acoplados.

Se propone como solución

$$\eta_j(t) = A_j e^{i\omega t}$$

de frecuencia ω , idéntica para todas las partículas, tomando al final del proceso $\Re\{A_je^{i\omega t}\}$ como solución física. Esta elección lleva a

$$\sum_{j=1}^{n} (-\omega^2 m_{kj} + V_{kj}) A_j = 0$$

que equivale a

$$(\mathbb{V} - \omega^2 \mathbb{T}) \boldsymbol{A} = 0$$

que no es otra cosa que un problema de autovalores y autovectores generalizado. Necesito

$$\left| \mathbb{V} - \omega^2 \mathbb{T} \right| = 0$$

lo cual me hará buscar un polinomio característico $P^n[\omega^2]$ de orden n en ω^2 . Así se trendrán n valores para ω^2 con $\omega_s^2 \in \mathbb{R}$ y $\omega_s^2 \geq 0$, que serán las autofrecuencias o frecuencias propias $\omega_1^2,...,\omega_n^2$.

Para cada ω se tiene una solución

$$\eta_i^s = A_i^s e^{i\omega_s t} \qquad s = 1, ..., N$$

pero el movimiento general será una combinación de todas las frecuencias,

$$\eta_j(t) = \sum_{s=1}^N c_s A_j^s e^{i\omega_s t}.$$

En general, dado un $V=V(q_i)$ puede ser más fácil obtener explícitamente la serie de Taylor con $\partial^2 V/\partial q_i \partial q_j|_{q_i^0}$ o bien cambiar variable $\eta=q_i-q_i^0$ y quedarse con los términos cuadráticos en $\eta_i\eta_j$. Para la energía cinética $T=T(q,\dot{q})$ puede ser más fácil evaluar $m_{ij}(q_i)|_{q_i^0}$ y quedarnos con los términos cuadráticos en $\dot{\eta}_i\dot{\eta}_i$.

Veamos la solución para una frecuencia dada,

$$\sum_{i}(V_{kj}-\omega_{s}^{2}m_{kj})A_{j}^{s}=0$$

y como usamos una raíz ω_s se tendrá una ecuación linealmente dependiente que tiraremos. Serán ahora N-1 ecuaciones,

$$\sum_{j} (V_{kj} - \omega_s^2 m_{kj}) \frac{A_j^s}{A_1^s} = 0$$

y definimos el cociente $a_j^s\equiv A_j^s/A_1^s$ al pasar dividiendo la amplitud del modo cuya frecuencia estamos considerando. Entonces

$$\sum_{i}(V_{kj}-\omega_{s}^{2}m_{kj})a_{j}^{s}=-V_{k1}-\omega_{s}^{2}m_{k1} \qquad k=1,...,N-1$$

Entonces como N-1 ecuaciones no homogéneas tienen solución real, entonces a_j es un cociente real y todo los A_s^j tienen que tener la misma fase. [mmm?] La fase viene determinada por las condiciones iniciales.

Veamos ahora que las frecuencias son reales. Para ello se multiplica por el complejo conjugado y se suma

$$\sum_k A_k^{s*} \sum_j V_{kj} A_j^s = \omega_s^2 \sum_k A_k^{s*} \sum_j m_{kj} A_j^s$$

$$\sum_k A_k^s \sum_j V_{kj} A_j^{s*} = \omega_s^{2*} \sum_k A_k^s \sum_j m_{kj} A_j^{s*}$$

Acá sería bueno poner explícitamente hasta donde llega la sumatoria y explicitar qué ω se usa.

y usando la simetría de m_{kj}, V_{kj} se restan estas ecuaciones y se obtiene

$$0=(\omega_s^2-\omega_s^{2*})\sum_k\sum_j A_k^{s*}m_{kj}A_j^s$$

y como la doble sumatoria es no nula se sigue que las frecuencias son reales. Incluso se puede despejar

$$\omega_{s}^{2} = \frac{\sum_{k} \sum_{j} A_{k}^{s*} V_{kj} A_{j}^{s}}{\sum_{k} \sum_{j} A_{k}^{s*} m_{kj} A_{j}^{s}}$$

Ambos, numerador y denominador son definidos positivos. Si el numerador fuese negativo para alguna dirección, eso significa que en esa dirección será un máximo (sería una especie de punto silla); pequeñas oscilaciones no valdrá en esa dirección.

Por otra parte, si se consideran dos frecuencias diferentes

$$0=(\omega_s^2-\omega_p^{2*})\sum_k\sum_jA_k^{s*}m_{kj}A_j^p$$

entonces lo que debe ser nulo es la doble sumatoria. Entonces, en la *métrica* dada por $m_{jk}\ A_j$ y A_k son perpendiculares. Para determinar el A_1 (que era el parámetro que permanecía indeterminado) impongo

$$A^{t^{p*}}MA^p = 1$$

y los A_j se consideran reales pués todos tienen la misma fase y son los modos normales. Se está pidiendo que de uno la norma en la métrica dada por M.

Si la raíz del polinomio P^n tiene multiplicidad k, se tienen k ecuaciones linealmente dependientes y hay que arrojar al cesto de la basura k ecuaciones.

Si construyo la matriz

$$A = \begin{pmatrix} A_1^1 & A_1^2 & \dots \\ A_2^1 & & \\ \dots & & \end{pmatrix},$$

donde cada columna de esta matriz es un autovector. Entonces se ve que esta matriz diagonaliza a M, i.e.

$$A^t M A = \begin{pmatrix} 1 & 0 & \dots \\ 0 & 1 & \\ \dots & & \end{pmatrix} = \mathbb{1}.$$

Asimismo, como

$$VA = \omega^2 MA$$
,

eso conduce a que

$$A^t V A = \begin{pmatrix} \omega_1^2 & 0 & \dots \\ 0 & \omega_2^2 & \dots \\ \dots & & \end{pmatrix}.$$

Hay que repasar esto.

EJEMPLO 0.2 Lo de las matrices

Si $A^{p*}MA^s=0$ con $p\neq s$ entonces M está definiendo una métrica pués si $M=\mathbb{1}$ entonces

$$A^{p*} \mathbb{1} A^s = A^{p*} A^s = 0,$$

lo cual significa que $A^{p\ast}$ y A^s son perpendiculares.

1.0.3 Expresión vectorial

Vectorialmente es

$$oldsymbol{\eta}^s = oldsymbol{A}_j^s e^{i\omega_s t} = egin{pmatrix} A_1 e^{i\omega_s t} \ A_2 e^{i\omega_s t} \ ... \ A_N e^{i\omega_s t} \end{pmatrix}$$

para la frecuencia ω_s , siendo cada uno un grado de libertad moviéndose con frecuencia ω_s .

Luego, es

$$\begin{split} \pmb{\eta}_{tot} &= c_1 \pmb{\eta}^1 + c_2 \pmb{\eta}^2 + \ldots + c_N \pmb{\eta}^N \\ \pmb{\eta}_{tot} &= \begin{pmatrix} \eta_1 \\ \eta_2 \\ \ldots \\ \eta_n \end{pmatrix} = \begin{pmatrix} c_1 A_1^1 e^{i\omega t} + c_2 A_1^2 e^{i\omega t} + \ldots + c_n A_1^n e^{i\omega t} \\ c_1 A_2^1 e^{i\omega t} + c_2 A_2^2 e^{i\omega t} + \ldots + c_n A_2^n e^{i\omega t} \\ \ldots \\ c_1 A_n^1 e^{i\omega t} + c_2 A_n^2 e^{i\omega t} + \ldots + c_n A_n^n e^{i\omega t} \end{pmatrix} \end{split}$$

entonces A^s es un modo normal de frecuencia s.

$$\boldsymbol{A}^s = \begin{pmatrix} A_1^s \\ A_2^s \\ \dots \\ A_n^s \end{pmatrix} e^{i\theta_0}$$

La solución total (j es el grado de libertad) se puede escribir

$$\eta_j(t) = \sum_{s=1}^N c_s A_j^s e^{i\omega_s t}$$

$$\pmb{\eta}(t) = \sum_{s=1}^N c_s \pmb{A}^s e^{i\omega_s t}$$

y finalmente

$$\pmb{\eta}(t) = \Re \left\{ \sum_{s=1}^N c_s \pmb{A}^s e^{i\omega_s t} \right\}$$

Matricialmente,

$$A^{\dagger} \mathbb{T} A = 1$$

siendo el † el traspuesto conjugado. Se pide que la norma (en la métrica dada por $\mathbb T$ de la unidad)

$$A^t \mathbb{T} A = \mathbb{1}$$

lo cual significa que A diagonaliza a \mathbb{T} , siendo

$$A = \begin{pmatrix} A_1^1 & A_1^2 & \dots & A_1^n \\ A_2^1 & \dots & & & \\ A_n^1 & A_n^2 & \dots & A_n^n \end{pmatrix}$$

la matriz modal donde sus columnas son autovectores.

$$(\mathbb{V} - \omega^2 \mathbb{T}) \mathbf{A} = 0$$

interpolando a la matriz

$$A^t \mathbb{V} A = \omega^2 A^t \mathbb{T} A = \omega^2 \mathbb{1}$$

1.0.4 Un cambio de coordenadas

Se puede incluso realizar un cambio de coordenadas

$$\eta = A\xi$$

tal que

$$A^{n \times n} \xi^{n \times 1} \qquad (A \boldsymbol{\xi})^t = \xi^{t^{1 \times n}} A^{t^{n \times n}}$$

y que se llaman coordenadas normales. Se resuelve el problema en estas coordenadas ξ y luego se regresa a las originales η

$$\begin{split} \mathcal{L} &= \frac{1}{2} \dot{\pmb{\eta}}^t \mathbb{T} \dot{\pmb{\eta}} - \frac{1}{2} \dot{\pmb{\eta}}^t \mathbb{V} \dot{\pmb{\eta}} \\ \mathcal{L} &= \frac{1}{2} A^t \dot{\pmb{\xi}}^t \mathbb{T} A \dot{\pmb{\xi}} - \frac{1}{2} A^t \dot{\pmb{\xi}}^t \mathbb{V} \dot{\pmb{\xi}} \\ \mathcal{L} &= \frac{1}{2} \dot{\pmb{\xi}}^t \mathbb{1} \dot{\pmb{\xi}} - \frac{1}{2} \dot{\pmb{\xi}}^t \omega^2 \mathbb{1} \dot{\pmb{\xi}} \end{split}$$

$$\mathcal{L} = \frac{1}{2} \sum_{i} \dot{\boldsymbol{\xi}}_{i}^{2} - \frac{1}{2} \sum_{i} \boldsymbol{\xi}_{i}^{2} \omega_{i}^{2}$$

Los autovectores son los modos normales. Son N osciladores armónicos independientes. Se pasa de un problema de muchas partículas interactuantes a uno de N partículas que no interactúan.

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\xi}_i} \right) - \frac{\partial \mathcal{L}}{\partial \xi_i} = \sum_i \ddot{\xi}_i + \omega_i^2 \xi_i = 0$$

y son N ecuaciones de Euler-Lagrange.

$$\sum_i (-\omega^2 + \omega_i^2) A_i = 0$$

de modo que si $\omega^2 = \omega_i^2$ entonces

$$\xi_i = C_i e^{i\omega_i t}.$$

 $\xi_{\ell}(t) = C_{\ell} \cos(\omega_{\ell} t + \varphi_{\ell})$

y entonces

$$\begin{split} \eta_1(t) &= \sum_{\ell} A_1^{\ell} C_{\ell} \cos(\omega_{\ell} t + \varphi_{\ell}) \\ \eta_2(t) &= \sum_{\ell} A_2^{\ell} C_{\ell} \cos(\omega_{\ell} t + \varphi_{\ell}) \end{split}$$

$$\eta_N(t) = \sum_\ell A_N^\ell C_\ell \cos(\omega_\ell t + \varphi_\ell)$$

que son soluciones con $\omega_i \neq 0$. Son η coordenadas normales y ξ coordenadas colectivas [no es al revés?].

Digamos que en coordenadas normales

$$\xi_j = C_j e^{i\omega_j t}$$

grados de libertad en ξ (un grado de libertad es una ω) y se desacoplan los grados de libertad en lo que hace a ω_s . Por otro lado,

$$\eta_j = \sum_{s=1}^N c_s A_j^s e^{i\omega_j t}$$

Hay que consolidar este material disperso y confuso!

grados de libertad en η , un grado de libertad entonces es combinación lineal de todas las ω .

Si $\omega = 0$ es

$$\xi_j = At + B$$

$$\eta_j = \sum_{s=1}^{N-1} c_s A_j^s e^{i\omega_j t} + A_j (Gt + D)$$

siendo el último término asociado a la $\omega=0$. Para volver atrás es

$$A^{\dagger} \mathbb{T} A = \mathbb{1}$$

y entonces

$$A^{\dagger}\mathbb{T}\boldsymbol{\eta}=A^{\dagger}\mathbb{T}A\boldsymbol{\xi}$$

$$A^{\dagger} \mathbb{T} \boldsymbol{\eta} = \mathbb{1} \boldsymbol{\xi}$$

coordenadas normales en función de las de desplazamiento.

En conclusión podemos decir varias cosas,

- Las frecuencias nulas están asociadas a momentos conservados.
- En coordenadas normales cada grado de libertad oscial con una frecuencia única (son N osciladores independientes)
- · Las amplitudes cumplen

$$m{A}^s = egin{pmatrix} a_1^s e^{i\phi_s} \ a_2^s e^{i\phi_s} \ ... \ a_n^s e^{i\phi_s} \end{pmatrix}$$

donde tienen la misma fase los A_i^s para toda frecuencia ω_s

- Los modos normales pueden excitarse por separado (son ortogonales).
- Frecuencias iguales generarán modos normales que son físicamente los mismos. Son generados por la simetría del problema.

$$\boldsymbol{A} = a_1(v_1) + a_2(v_2)$$

si por ejemplo generan dos autovectores de esta forma.

1.0.5 Coordenadas colectivas y normales

Las ecuaciones de Newton del sistema son

$$m_1\ddot{x}_1 = k(x_2 - x_1 - \ell_0) \qquad \qquad m_2\ddot{x}_2 = -k(x_2 - x_1 - \ell_0)$$

que verifican

$$m_1 \ddot{x}_1 + m_2 \ddot{x}_2 = 0,$$

y entonces

$$\ddot{x}_2 - \ddot{x}_1 = -k \left(\frac{1}{m_1} + \frac{1}{m_2} \right) (x_2 - x_1 - \ell_0)$$

Definiendo $x_2-x_1=x_{rel}$ se pasa de un problema de dos partículas acopaladas (x_1,x_2) a otro de dos partículas desacopladas; una oscila y la otra se traslada,

$$\mu \ddot{x}_{rel} + k(x_{rel} - \ell_0) = 0$$
 $\ddot{x}_{cm} = 0$

y x_{rel}, x_{cm} son coordenas colectivas, pero no corresponden a un movimiento real de un sistema. Tendré dos problemas separados que pueden, dado el caso, excitarse por separado.

En el caso de N osciladores, si hay algún $\omega_i=0$ se tendrá

$$\mathcal{L} = \sum_{i=1}^{N} \frac{1}{2} \dot{\xi}_i$$

y como $\ddot{\xi}_i=0$ entonces $\xi(t)=At+B$ es solución y

$$\eta_N(t) = \sum_{\ell} A_n C_{\ell} \cos(\omega_{\ell} t + \varphi_{\ell}) + \sum_{k} A_n^k (Bt + D)$$

donde el primer término es por $\omega_\ell \neq 0$ y el segundo por $\omega_k = 0.$

EJEMPLO 0.3 Aro fijo con bolas engarzadas

El lagrangiano correspondiente a este setup es

$$\mathcal{L} = \frac{1}{2} \left[\dot{\theta}_1^2 + \dot{\theta}_2^2 + \dot{\theta}_3^2 + \dot{\theta}_4^2 \right] m \ell^2 - \frac{1}{2} k \ell^2 \left[(\theta_2 - \theta_1)^2 + (\theta_3 - \theta_2)^2 + (\theta_4 - \theta_3)^2 + (\theta_1 - \theta_4)^2 \right]$$

Este lagrangiano, como está, ya es de pequeñas oscilaciones. En efecto, $\theta_2^0=\theta_1^0$ de modo que $\theta_2-\theta_1=\eta_2-\eta_1=\theta_2-\theta_2^0+\theta_1^0-\theta_1$. Luego,

$$V = \begin{pmatrix} 2k\ell^2 & -k\ell^2 & 0 & -k\ell^2 \\ -k\ell^2 & 2k\ell^2 & -k\ell^2 & 0 \\ 0 & -k\ell^2 & 2k\ell^2 & -k\ell^2 \\ -k\ell^2 & 0 & -k\ell^2 & 2k\ell^2 \end{pmatrix}$$

donde los ceros reflejan la inexistencia de resorte entre dichas partículas. Entonces

$$V - \omega^2 M = \begin{pmatrix} 2k\ell^2 - m\omega^2\ell^2 & -k\ell^2 & 0 & -k\ell^2 \\ -k\ell^2 & 2k\ell^2 - m\omega^2\ell^2 & -k\ell^2 & 0 \\ 0 & -k\ell^2 & 2k\ell^2 - m\omega^2\ell^2 & -k\ell^2 \\ -k\ell^2 & 0 & -k\ell^2 & 2k\ell^2 - m\omega^2\ell^2 \end{pmatrix}$$

Ahora hay que calcular el determinante de esta matriz $V-\omega^2 M$, que luego de desarrollar y usar el método que más le gusta al dilegencioso lector permite arribar a

$$P(\omega) = \det(V - \omega^2 M) = m\ell^2\omega(2k\ell^2 - m\ell\omega^2)^2(m\ell\omega^2 - 4k\ell^2),$$

cuvas raíces son:

$$\omega_1^2 = 2\frac{k}{m}$$
 $\omega_2^2 = 2\frac{k}{m}$ $\omega_3^2 = 0$ $\omega_4^2 = 4\frac{k}{m}$

En este ejemplo se conserva el momento angular, de manera que hubiese sido razonable obtener una frecuencia nula asociada como de hecho apareció en ω_3 . Resolvamos ahora ese modo. Será

$$2k\ell^2A_1^3 - k\ell^2A_2^3 - k\ell^2A_4^3 = 0, \\ -k\ell^2A_1^3 + 2k\ell^2A_2^3 - k\ell^2A_3^3 = 0, \\ -k\ell^2A_2^3 + 2k\ell^2A_3^3 - k\ell^2A_4^3 = 0$$

y resulta $A_1^3 = A_2^3 = A_3^3 = A_4^3$.

Entonces

$$\mathbf{A}^3 = a \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

donde
$$a=1/(2\ell\sqrt{m})$$
y se da

$$\mathbf{A}^{3\dagger}M\mathbf{A}^3=\mathbb{1}$$

Este es el modo normal de $\omega_3^2=0$, que se ve dibujado bajo estas líneas

Para la frecuencia ω_4 es

$$\begin{split} -2k\ell^2A_1^4 - k\ell^2A_2^4 - k\ell^2A_4^4 &= 0,\\ k\ell^2A_1^4 - 2k\ell^2A_2^4 - k\ell^2A_3^4 &= 0,\\ , -k\ell^2A_2^4 - 2k\ell^2A_3^4 - k\ell^2A_4^4 &= 0 \end{split}$$

de manera que

$$\mathbf{A}^4 = a \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$

donde $a=1/(2\ell\sqrt{m}).$ El dibujo asociado será

Para las frecuencias $\mathit{mellizas}\,\omega_1,\omega_2$ es

$$-k\ell^2 A_1^1 - k\ell^2 A_3^1 = 0,$$

$$-k\ell^2 A_2^1 - k\ell^2 A_4^1 = 0,$$

o bien

$$A_1 = A_3 = 0$$
 $A_2 = A_4$,

y

$$A_2 = A_4 \qquad A_1 = -A_3$$

y consecuentemente

$$m{A}^1 = a egin{pmatrix} 0 \ 1 \ 0 \ -1 \end{pmatrix} \qquad \quad m{A}^2 = a egin{pmatrix} 1 \ 0 \ -1 \ 0 \end{pmatrix}$$

con $a=1/(\ell\sqrt{2m}).$ Los dibujos siguientes ilustran los movimientos esperados

Con respecto a lo de aquí arriba son situaciones físicas iguales (si cambio masas no será la misma situación). La introducción de M y m (ver figurillas siguientes) rompe la degeneración y serán modos normales pero de diferente frecuencia. Pero podría haberse elegido, ver bajo estas líneas,

Para el caso siguiente

esta configuración no conserva el momento angular.

Si tomamos M=2m entonces podemos considerar momento angular nulo y obtengo un modo normal

$$\begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -1/2 \\ 1 \\ -1/2 \end{pmatrix}$$

En resumen

$$\omega_3^2 = 0 \qquad A^3 = \frac{1}{2\sqrt{m}\ell} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$\omega_4^2 = \frac{4k}{m} \qquad A^4 = \frac{1}{2\sqrt{m}\ell} \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}$$

$$\omega_1^2 = \omega_2^2 = \frac{2k}{m}$$

Este ejemplo se continuó dos clases consecutivas de modo que puede haber alg pise.

$$A^{1} = \frac{1}{\sqrt{2m}\ell} \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix} A^{2} = \frac{1}{2\sqrt{2m}\ell} \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}$$

 $A^t M A = 1$

El problema dependerá de cómo excitemos al sistema. Si $\eta=A\xi$ entonces con $\omega_i\neq 0$ es

$$\xi_i = C_i \cos(\omega_i t + \varphi_i),$$

pero con $\omega_i=0$ se tendrá

$$\xi_i = B_i t + D_i$$
.

Luego, como $\dot{\eta}=A\dot{\xi}$ de tal modo que

$$A^t M \eta = A^t M A \xi$$
 $A^t M \dot{\eta} = A^t M A \dot{\xi} = \mathbb{1} \dot{x} i$

Las condiciones iniciales serán

$$\eta_1(t=0)=\theta_0 \qquad \eta_i(t=0)=0, i\neq 1$$

y los $\dot{\eta}_i(t=0)$ están en función de las η y quiero pasarlas a $\xi.$

$$A^t M = \begin{pmatrix} 0 & \frac{1}{\sqrt{2m\ell}} & 0 & -\frac{1}{\sqrt{2m\ell}} \\ \frac{1}{\sqrt{2m\ell}} & 0 & -\frac{1}{\sqrt{2m\ell}} & 0 \\ \frac{1}{2\sqrt{m\ell}} & \frac{1}{2\sqrt{m\ell}} & \frac{1}{2\sqrt{m\ell}} & -\frac{1}{2\sqrt{m\ell}} \\ \frac{1}{2\sqrt{m\ell}} & -\frac{1}{2\sqrt{m\ell}} & \frac{1}{2\sqrt{m\ell}} & -\frac{1}{2\sqrt{m\ell}} \end{pmatrix} \begin{pmatrix} m & 0 & 0 & 0 \\ 0 & m & 0 & 0 \\ 0 & 0 & m & 0 \\ 0 & 0 & 0 & m \end{pmatrix}$$

mientras que las posiciones iniciales serán

$$\begin{pmatrix} 0 \\ \frac{\sqrt{m}}{\sqrt{2}\ell} \theta_0 \\ \frac{\sqrt{m}}{\sqrt{2}\ell} \theta_0 \\ \frac{\sqrt{m}}{\sqrt{2}\ell} \theta_0 \end{pmatrix} = \begin{pmatrix} C_1 \cos \varphi_1 \\ C_2 \cos \varphi_2 \\ Bt + D \\ C_4 \cos \psi_4 \end{pmatrix}$$

y las velocidades iniciales por su parte,

$$\begin{split} 0 &= -C_1 \omega_1 \sin \varphi_1 \\ 0 &= -C_2 \omega_2 \sin \varphi_2 \\ 0 &= B \\ 0 &= -C_2 \omega_4 \sin \varphi_4 \end{split}$$

[tal vez un typo acá arriba]

Al separar de las posiciones de equilibrio se excitan modos que no son el cero, y tendrán momento angular nulo; el único modo que dará momento angular no nula y por ende generará rotación es el asociado a ω_3^2 .

Según se ve el modo uno tampoco se está excitando,

$$\varphi_2 = 0$$
 $C_2 = \frac{\sqrt{m}}{2\ell}\theta_0$

$$\eta = A\xi = \begin{pmatrix} 0 & \frac{1}{\sqrt{2m\ell}} & \frac{1}{2\sqrt{m\ell}} & \frac{1}{2\sqrt{m\ell}} \\ \frac{1}{\sqrt{2m\ell}} & 0 & \frac{1}{2\sqrt{m\ell}} & -\frac{1}{2\sqrt{m\ell}} \\ 0 & -\frac{1}{2\sqrt{m\ell}} & \frac{1}{2\sqrt{m\ell}} & \frac{1}{2\sqrt{m\ell}} \\ -\frac{1}{\sqrt{2m\ell}} & 0 & \frac{1}{2\sqrt{m\ell}} & -\frac{1}{2\sqrt{m\ell}} \end{pmatrix} \begin{pmatrix} 0 \\ \frac{\sqrt{m}}{\sqrt{2\ell}} \theta_0 \cos(\omega_2 t) \\ \frac{\sqrt{m}}{\sqrt{2\ell}} \theta_0 (Bt + D) \\ \frac{\sqrt{m}}{\sqrt{2\ell}} \theta_2 \cos(\omega_4 t) \end{pmatrix}$$

Esto nos da los η solución. Notemos que para el dibujo de los modos normales no hace falta hallar el valor de las constantes $1/(\sqrt{2m}\ell)$, etc. de normalización.

Si hay simetrías en el problema (V, M son invariantes frente a cierta transformación)

$$VA^{\ell} = \omega^2 MA^{\ell}$$

Una matriz,

$$B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

y su inversa B^{-1} transforman un versor en otro

Pasa según las flechas rojas el sistema; pero ante este cambio el lagrangiano es invariante. Las matrices B y B^{-1} son rotaciones (la inversa es en el otro sentido) y que dejan invariante, como se dijo, al lagrangiano. Se ve que pasan $1000 \rightarrow 0001$ y $0100 \rightarrow 1000$,

$$BVB^t = V$$
 $BVB^tB = VB$ $BV - VB = 0$

Los autovectores de V se pueden elegir dentro de los de B.

Si
$$VA^{\ell} = \omega^2 MA^{\ell}$$
 entonces

$$BVB^{t}BA^{\ell} = \omega^{2}BMB^{t}BA^{\ell}$$
$$VBA^{\ell} = \omega^{2}MBA^{\ell}.$$

aunque para esto necesito que no sean degenerados los autovectores.

1.1 Oscilaciones viscosas

$$\sum_{j} m_{ij} \ddot{\eta}_j + V_{ij} \eta_j + B_{ij} \dot{\eta}_j = 0$$

no se puede convertir en osciladores independientes.

$$\det\left\{\mathbb{V}+\omega^{2}\mathbb{T}+\omega\mathbb{B}\right\}=0$$

EJEMPLO 1.1 Problema 14 Método de Lagrange

Chequear estas ecuacione vectoriales!

La normalización está en A^tMA .

El lagrangiano es

$$\mathcal{L}=\frac{1}{2}m((b-a)^2\dot{\beta}^2+\dot{z}^2)+\frac{1}{2}I(\dot{\varphi}^2+\dot{\theta}^2+\dot{\psi}^2+2\dot{\psi}\dot{\varphi}\cos\theta)-mgz$$

y como la velocidad $oldsymbol{v}_p$ es nula, se tiene

$$\boldsymbol{v}_p = 0 = \boldsymbol{V}_{\!cm} + \boldsymbol{\Omega} \times a\hat{\varphi}$$

que lleva a

$$\begin{split} 0 &= (b-a)\dot{\beta}\hat{\beta} + \dot{z}\hat{z} + [\omega_{\rho}\hat{\rho} + \omega_{\beta}\hat{\beta} + \omega_{z}\hat{z}] \times a\hat{\rho} \\ 0 &= (b-a)\dot{\beta}\hat{\beta} + \dot{z}\hat{z} + a\omega_{z}\hat{\beta} - a\omega_{\beta}\hat{z} \end{split}$$

La condición de rodadura es

$$\begin{cases} (b-a)\dot{\beta} + a\omega_z = 0 \\ \dot{z} - a\omega_\beta = 0 \end{cases}$$

y como la velocidad en cartesianas es ${m \Omega}=\Omega_x\hat x+\Omega_y\hat y+\Omega_z\hat z$, la conversión a los ejes del problema es

$$\hat{\rho} = \cos \beta \hat{x} + \sin \beta \hat{y}$$
 $\hat{\beta} = -\sin \beta \hat{x} + \cos \beta \hat{y}$

o bien

$$\hat{x} = \cos \beta \hat{\rho} - \sin \beta \hat{\beta}$$
 $\hat{y} = \sin \beta \hat{\rho} + \cos \beta \hat{\beta}$

entonces

$$\mathbf{\Omega} = \omega_{\rho}\hat{\rho} + \omega_{\beta}\hat{\beta} + \omega_{z}\hat{z}$$

donde

$$\omega_{\rho} = \Omega_x \cos \beta + \Omega_y \sin \beta \qquad \omega_{\beta} = \Omega_y \cos \beta + \Omega_x \sin \beta$$

Luego de algún álgebra

$$\begin{split} \omega_{\rho} &= \dot{\psi} \sin\theta \sin(\varphi-\beta) + \dot{\theta} \cos(\varphi-\beta) \\ \omega_{\beta} &= -\dot{\psi} \sin\theta \cos(\varphi-\beta) + \dot{\theta} \sin(\varphi-\beta) \\ \omega_{z} &= \dot{\psi} \cos\theta + \dot{\varphi} \end{split}$$

Pero como

$$\begin{split} (b-a)\beta + a\dot{\varphi} + a\dot{\psi}\cos\theta &= 0,\\ \dot{z} - a\dot{\theta}\sin(\varphi - \beta) + a\dot{\psi}\sin\theta\cos(\varphi - \beta) &= 0, \end{split}$$

conviene utilizar multiplicadores de Lagrange,

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_k} \right) - \frac{\partial \mathcal{L}}{\partial q_k} = \sum_{\ell=1}^2 \lambda_\ell a_{\ell k}$$

lo cual lleva a

$$m(b-a)^2 \ddot{\beta} = \lambda_1(b-a) \qquad \qquad m\ddot{z} + mg = \lambda_2$$

$$I\ddot{\varphi} + I\frac{d}{dt}(2\dot{\psi}\cos\theta) = a\lambda_1$$

Haciendo gradiente en los vínculos,

$$\begin{split} \lambda_1([b-a]\delta\beta + a\delta\varphi + a\cos\theta\delta\psi) &= 0\\ \lambda_2(\delta z - a\sin(\varphi - \theta)\delta\theta + a\sin\theta\cos(\varphi - \beta)\delta\psi) &= 0 \end{split}$$

y entonces

$$\begin{split} I\ddot{\theta} + I\dot{\psi}\dot{\varphi}\sin\theta) &= -a\lambda_2\varphi\sin(\varphi-\beta)\\ I\ddot{\psi} + I\frac{d}{dt}(\dot{\psi}\cos\theta) &= \lambda_1a\cos\theta + \lambda_2\varphi\sin\theta\cos(\varphi-\theta) \end{split}$$

Tenemos siete ecuaciones con siete incógnitas. Una sugerencia para resolverlo alternativamente es a través de las ecuaciones de Newton,

$$m\dot{V_{cm}} = f + N$$
 $I\dot{\omega} = t$

$$rac{d\omega}{dt} = \left. rac{d\omega}{dt}
ight| + \dot{eta} \hat{eta} imes oldsymbol{\omega}$$

lo cual nos debería conducir a algo de la forma

$$(I+ma^2)\ddot{\omega}\varphi+\dot{\varphi}I\omega_{\varphi}=0$$

y sale que $\omega_{\rho}=\dot{\varphi}\omega_{\varphi}$ siendo $\dot{\varphi}$ y \dot{z} constantes.

EJEMPLO 1.2 Problema de la molécula diatómica

Acá hay que escribir el potencial con cuidado,

$$V = V_{\alpha}(\alpha) + V_{Cso}(r) + V_{OH}(r'), \label{eq:V_sol}$$

donde

$$V_{\alpha}(\alpha) = \frac{k\ell^2}{2}(\pi - \alpha)^2$$

y ℓ es un r, r' de equilibrio.

$$\begin{split} V_{Cso}(r) &= 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right] \\ V_{OH}(r') &= \frac{V_{Cso}(r')}{15} \end{split}$$

y según se ve ya está separado el mismo. Calculamos las derivadas del potencial,

$$V_{\alpha\alpha} = \frac{\partial^2 V}{\partial \alpha^2} = k\ell^2$$

y de

$$\frac{\partial V_{Cso}}{\partial r}(r)=0$$

sale un r_{eq} que cumple $r_{eq}=\sigma 2^{1/12}\equiv \ell$ y luego

$$\left.V_{Cso}{''}\right|_{eq} = 24\epsilon \left\lceil \frac{26}{r^2} \left(\frac{\sigma}{r}\right)^{12} - \frac{7}{r^2} \left(\frac{\sigma}{r}\right)^6 \right\rceil = k_r$$

donde los términos con σ equivalen a $4\ell^2$ y $2\ell^2$. Además,

$$V_{rr} = k_r \qquad V_{r'r'} = \frac{k_r}{15}$$

Esto define

$$V = \begin{pmatrix} V_{\alpha\alpha} & 0 & 0 & 0\\ 0 & V_{rr} & 0 & 0\\ 0 & 0 & V_{r'r'} & 0\\ 0 & 0 & 0 & \dots \end{pmatrix}$$

En general tenemos más grados de libertad que tres. Ubicamos el centro de masa en el Cesio por ser muy masivo. Entonces pierdo tres grados de libertad y me quedan seis. Ignoro rotación, y otra cosa más [¿?]

Restan cuatro grados de libertad r, φ, r', β .

$$\begin{split} \dot{X}_0^2 &= \dot{r}^2 + r^2 \dot{\varphi}^2 \\ \boldsymbol{X}_0 &= r \cos(\varphi) \hat{x} + r \sin(\varphi) \hat{y} \\ \boldsymbol{X}_H &= \boldsymbol{X}_0 + r' \cos(\varphi + \beta) \hat{x} + r' \sin(\varphi + \beta) \hat{y} \end{split}$$

y el cuadrado es

$$\dot{X}_{H}^{2}=\dot{X}_{0}^{2}+\dot{r'}^{2}+{r'}^{2}(\dot{\varphi}+\dot{\beta})^{2}$$

$$\begin{split} 2\dot{r}r'[\cos\varphi\cos(\beta+\varphi) + \sin\varphi\sin(\beta+\varphi)] + \\ 2rr'[\sin(\beta+\varphi)\sin\varphi(\dot{\beta}+\dot{\varphi})\dot{\varphi} + \cos(\beta+\varphi)\cos\varphi\dot{\varphi}(\dot{\beta}+\dot{\varphi})] + \\ 2\dot{r}r'[\cos(\beta+\varphi)\sin\varphi - \cos\varphi\sin(\beta+\varphi)](\dot{\beta}+\dot{\varphi}) + \\ 2rr'[\dot{\varphi}\cos\varphi\sin(\beta+\varphi) - \dot{\varphi}\sin\varphi\cos(\beta+\varphi)] \end{split} \tag{1.1}$$

donde los últimos dos se mueren al aproximar. Finalmente el lagrangiano de pequeñas oscilaciones resulta en

$$\mathcal{L} = \frac{17}{2} m (\dot{r}^2 + r^2 \dot{\varphi}^2) + \frac{m}{2} (\dot{r'}^2 + {r'}^2 (\dot{\varphi} + \dot{\beta})) + \frac{m}{2} (2 \dot{r} \dot{r'} + 2 \ell^2 (\dot{\beta} + \dot{\varphi}) \dot{\varphi}) - \frac{k_r r^2}{2} - \frac{k_{r'} {r'}^2}{2} - \frac{k_{\beta} \beta^2}{2}$$

en donde los r^2 y ${r'}^2$ son ambos ℓ^2 .

$$\eta = \begin{pmatrix} r - \ell \\ r' - \ell \\ \beta - 0 \\ \varphi - 0 \end{pmatrix} \qquad \qquad \dot{\eta} = \begin{pmatrix} \dot{r} \\ \dot{r}' \\ \dot{\beta} \\ \dot{\varphi} \end{pmatrix}$$

siendo la posición de equilibrio

La matriz del potencial V es

$$V = egin{pmatrix} k_r & 0 & 0 & 0 \\ 0 & k_{r'} & 0 & 0 \\ 0 & 0 & k_{lpha} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

donde $k_r = 15k_{r'}$ y $M_0 = 16M_H$ (check!).

Y ahora hay que armar la energía cinétic T que resulta

$$T = egin{pmatrix} 17m & m & 0 & 0 \\ m & m & 0 & 0 \\ 0 & 0 & 20m\ell^2 & 2m\ell^2 \\ 0 & 0 & 2m\ell^2 & m\ell^2 \end{pmatrix}$$

Luego, el lagrangiano

$$\mathcal{L} = \frac{1}{2} \dot{\boldsymbol{\eta}}^t \mathbb{T} \dot{\boldsymbol{\eta}} - \frac{1}{2} \dot{\boldsymbol{\eta}}^t \mathbb{V} \dot{\boldsymbol{\eta}}$$

puede transformarse a

$$\mathcal{L} = \frac{1}{2}\dot{\boldsymbol{\xi}}\dot{\boldsymbol{\xi}} - \frac{1}{2}\dot{\boldsymbol{\xi}}\omega^2\dot{\boldsymbol{\xi}}$$

y en estas nuevas coordenadas,

$$\ddot{\xi}_i + \omega^2 \xi_i = 0$$

y la solución son osciladores armónicos.

$$\bar{\eta} = A\bar{\xi}$$

y la solución son osciladores armónicos. Para ello debería hallar
$$A$$
, donde
$$\bar{\eta}=A\bar{\xi}$$
 que verifica $A\mathbb{T}A^t=\mathbb{1}$ y $A\mathbb{V}A^t=\omega$ de modo que necesito $|\omega^2\bar{T}-\bar{V}|=|M|=0$ donde es
$$M=\begin{pmatrix} 17m\omega^2-k_r & m\omega^2 & 0 & 0\\ m\omega^2 & m\omega^2-k_{r'} & 0 & 0\\ 0 & 0 & 20m\ell^2\omega^2-k_\alpha & 2m\ell^2\omega^2\\ 0 & 0 & 2m\ell^2\omega^2 & m\ell^2\omega^2 \end{pmatrix}$$

Gracias a los bloques se hace menos trabajo, pués los autovalores de la matriz serán los de cada bloque. El primer bloque es

$$\begin{pmatrix} 17\frac{m\omega^2}{k_{r'}} - \frac{k_r}{k_{r'}} & \frac{m\omega^2}{k_{r'}} \\ \\ \frac{m\omega^2}{k_{r'}} & \frac{m\omega^2}{k_{r'}} - 1 \end{pmatrix} = \begin{pmatrix} 17\lambda - 15 & \lambda \\ \lambda & \lambda - 1 \end{pmatrix}$$

y entonces

$$(17\lambda - 15)(\lambda - 1) - \lambda^2 = \lambda^2 - 2\lambda + \frac{15}{16} = 0$$

resulta en $\lambda_{1,2}=5/4,3/4$ de modo que

$$\omega_1^2 = \frac{5}{4} \frac{k_{r'}}{m}$$
 $\omega_2^2 = \frac{3}{4} \frac{k_{r'}}{m}$

El otro bloque es

$$\begin{pmatrix} 20\lambda - 1 & 2\lambda \\ 2\lambda & \lambda \end{pmatrix} = 0$$

de manera que

$$(20\lambda - 1)\lambda - 4\lambda^2 = 0$$

lo cual conduce a $\lambda_{3,4} = 1/16, 0$.

Los coeficientes de normalización serán

$$a_4 = c_4 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \qquad a_3 = c_3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ -2 \end{pmatrix} \qquad a_1 = c_1 \begin{pmatrix} 1 \\ -5 \\ 0 \\ 0 \end{pmatrix} \qquad a_2 = c_2 \begin{pmatrix} 1 \\ 3 \\ 0 \\ 0 \end{pmatrix}$$

Aquí la matriz se separó en bloques y entonces los autovalores serán independientes en cada bloque; no se mezclan entre sí.

Habría que calcular ahora la matriz modal

$$\bar{a}_1^t \mathbb{T} \bar{a}_1 = 1,$$

que conduce a

$$\begin{pmatrix} 17 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -3 \end{pmatrix} c_1^2 m = 1$$

lo que arroja $c_1=1/(4\sqrt{2m})$

$$\begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 17 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} c_2^2 m = 1$$

que da $c_2=c_1$. Luego $c_3=1/(4\sqrt{m}\ell^2)$ y c_4 que
dó vacante. La matriz modal resulta

$$A = \begin{pmatrix} \frac{1}{4\sqrt{2m}} & \frac{1}{4\sqrt{2m}} & 0 & 0\\ \frac{-5}{4\sqrt{2m}} & \frac{3}{4\sqrt{2m}} & 0 & 0\\ 0 & 0 & \frac{1}{4\sqrt{m\ell}} & 0\\ 0 & 0 & \frac{-2}{4\sqrt{m\ell}} & \frac{1}{\sqrt{m\ell}} \end{pmatrix}$$

Supongamos ahora el sistema moviéndose de acuerdo con

$$\bar{X} = 1\bar{\xi}_2 + 3\bar{\xi}_3$$

y entonces podemos pasar a las coordenadas originales,

$$A\bar{\xi}_2 + 3A\bar{\xi}_3$$

Hay que revisar la notació aquí.