Linear Regression Machine Learning Project for House Price Prediction

importing Seaborn, Pandas, Seaborn, Matplotlib and Numpy.

```
In [3]:
        import pandas as pd
         import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
         %matplotlib inline
```

Importing Data and Checking out

```
houseDf = pd.read_csv(r"C:\Users\RISHABH\Documents\discount calculating\USA_Housing.csv")
In [4]:
          houseDf.head()
In [5]:
Out[5]:
                                Avg.
                                      Avg. Area
                                                   Avg. Area
                Avg. Area
                                Area
                                                                      Area
                                                                                                          Address
                                        Number
                                                  Number of
                                                                                    Price
                  Income
                              House
                                                                Population
                                                   Bedrooms
                                      of Rooms
                                Age
                                                                                              208 Michael Ferry Apt.
             79545.458574
                            5.682861
                                       7.009188
                                                         4.09
                                                              23086.800503 1.059034e+06
                                                                                                674\nLaurabury, NE
                                                                                                            3701...
                                                                                            188 Johnson Views Suite
             79248.642455
                            6.002900
                                                         3.09
                                                              40173.072174 1.505891e+06
                                       6.730821
                                                                                           079\nLake Kathleen, CA...
                                                                                                     9127 Elizabeth
          2 61287.067179
                            5.865890
                                       8.512727
                                                         5.13 36882.159400 1.058988e+06
                                                                                             Stravenue\nDanieltown,
                                                                                                       WI 06482...
                                                                                               USS Barnett\nFPO AP
             63345.240046
                            7.188236
                                       5.586729
                                                         3.26 34310.242831 1.260617e+06
                                                                                                            44820
                                                                                           USNS Raymond\nFPO AE
                                                         4.23 26354.109472 6.309435e+05
             59982.197226
                            5.040555
                                       7.839388
                                                                                                            09386
In [6]:
          houseDf.info()
          <class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 5000 entries, 0 to 4999

Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1) memory usage: 273.6+ KB

houseDf.describe() In [7]:

\cap		+	г-	7 7	
U	u	L	/	΄ Ι	

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

```
In [8]: houseDf.columns
```

Out[8]: Index(['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms', 'Avg. Area Number of Bedrooms', 'Area Population', 'Price', 'Address'], dtype='object')

Exploratory Data Analysis for House Price Prediction

In [9]: sns.pairplot(houseDf)

Out[9]: <seaborn.axisgrid.PairGrid at 0x15f2c8c1360>

In [10]: sns.heatmap(houseDf.corr(), annot=True)

C:\Users\RISHABH\AppData\Local\Temp\ipykernel_16644\3849524019.py:1: FutureWarning: The defau lt value of numeric_only in DataFrame.corr is deprecated. In a future version, it will defaul t to False. Select only valid columns or specify the value of numeric_only to silence this warning.

sns.heatmap(houseDf.corr(), annot=True)

Out[10]: <Axes: >

Get Data Ready For Training a Linear Regression Model

X and y List

Split Data into Train, Test

```
In [13]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40, random_state=101)
```

Creating and Training the LinearRegression Model

```
In [14]: from sklearn.linear_model import LinearRegression
In [15]: lm = LinearRegression()
In [16]: lm.fit(X_train,y_train)
Out[16]: v LinearRegression
LinearRegression()
```

LinearRegression Model Evaluation

```
print(lm.intercept_)
In [17]:
          -2640159.79685191
          coeff_df = pd.DataFrame(lm.coef_, X.columns,columns=['Coefficient'])
In [18]:
          coeff_df
In [19]:
                                          Coefficient
Out[19]:
                       Avg. Area Income
                                           21.528276
                   Avg. Area House Age
                                       164883.282027
             Avg. Area Number of Rooms
                                       122368.678027
                                         2233.801864
          Avg. Area Number of Bedrooms
                        Area Population
                                            15.150420
```

Predictions from our Linear Regression Model

```
In [20]: predictions = lm.predict(X_test)
In [21]: plt.scatter(y_test, predictions)
Out[21]: <matplotlib.collections.PathCollection at 0x15f3481d9c0>
```


In the above scatter plot, we see data is in a line form, which means our model has done good predictions.

In the above histogram plot, we see data is in bell shape (Normally Distributed), which means our model has done good predictions.

Regression Evaluation Metrics

```
In [23]: from sklearn import metrics

In [26]: print("MAE:",metrics.mean_absolute_error(y_test, predictions))
    print("MSE:",metrics.mean_squared_error(y_test, predictions))
    print("RMSE:",np.sqrt(metrics.mean_squared_error(y_test, predictions)))
```

MAE: 82288.22251914954 MSE: 10460958907.209501 RMSE: 102278.82922291153

Conclusion

We have created a Linear Regression Model which we help the real state agent for estimating the house price.

You can find this project on GitHub.