Post-NGS Data Analysis

Preonath Chondrow Dev Bioinformatician

Child Health Research Foundation

Date: 15 October 2023

Contents

- Sample sheet preparation
- Sequencing quality check (Q30 and PF)
- RNA-virus consensus preparation (CZ ID)
- Virtual tour to basespace
- Troubleshooting
- 1. BCL to Fastq conversion
 - 2. Requeue
- Quality Checking of fastq files
- Quality Quantrol
- Genome Assembly

2

Sample sheet preparation

- A. Required Fields:
- 1. Experiment Name
- 2. Sample_ID
- 3. Sample_Name
- 4. Description
- 5. Index
 - 6. I7_Index_ID
- 7. index2
- 8. I5_Index_ID
- 10. Sample_Project

→ Same but different field name

Same but different field name

Sample sheet Template

[Header]							
Local Run Manager Analysis Id	37037						
Experiment Name	COVIDSeq_Batch_09						
Date	2022-07-07						
Module	GenerateFASTQ - 2.0.0						
Workflow	GenerateFASTQ						
Library Prep Kit	Custom						
Chemistry	Amplicon						
[Reads]							
151							
151							
[Settings]							
Adapter	AGATCGGAAGAG+CTGTCTCTTATA						
[Data]							
Sample ID	Sample Name	Description	index	17 Index ID	index2	15 Index ID	Sample Project
27700193	27700193		GATTGTCC	GATTGTCC	GAATCCGA	GAATCCGA	
27900151	27900151		AGTGGCAA	AGTGGCAA	TCTGAGAG	TCTGAGAG	
27900160	27900160		CCAACTTC	CCAACTTC	AGTCGACA	AGTCGACA	
27700186	27700186		TCGATGAC	TCGATGAC	TGATGTCC	TGATGTCC	
11906015871	11906015871		ACAGTTCG	ACAGTTCG	GATCGTAC	GATCGTAC	
25000555	25000555		CCTTGGAA	CCTTGGAA	AAGTCGAG	AAGTCGAG	
12001021561	12001021561		AACCTACG	AACCTACG	GAGGACTT	GAGGACTT	

Sample sheet preparation

- A. Precautions:
- 1. Never use space between words (e.g. KPN 132). Corrected form (KPN_132, CHRF_COVID_098)
- 2. Delete last 2 bp from index if Barcode has **10bp** sequences.
- 3. Delete first 2 bp from index2 Barcode has **10bp** sequences
- 4. Date format should be this way "YYYY-MM-DD"
- 5. It should be a CSV file.

Sequencing quality check (PF)

PF (Pass filter)

Illumina's chastity filter is designed to ensure that the base calls (A, C, G, T) during a sequencing run are clear and unambiguous. The chastity of a base call is defined as:

$$Chastity = \frac{Intensity of the called base}{Sum of the intensities of the brightest and second brightest bases}$$

- Purpose: To filter out low-quality reads and clusters, minimizing the inclusion of poorquality data in downstream analyses.
- Measurement: A sequence read (cluster) passes the chastity filter if the chastity of all the bases (within the first 25 cycles) is above a defined threshold (usually 0.6).
- Implication: The higher the number or percentage of PF reads, the better the overall sequencing run quality.

Sequencing quality check (Q30)

Q30

The quality score (Q) is logarithmically related to the base-calling error probability, with Q30 indicating a 1 in 1000 error probability. Mathematically:

$$Q = -10 \times \log_{10}(P)$$

where:

- Q is the quality score.
- P is the probability that a base call is incorrect.
- Purpose: To ensure that the base calls are accurate and reliable for downstream analyses.
- Measurement: Percent Q30 refers to the percentage of bases in the sequencing run that have a quality score of 30 or above.
- **Benchmark**: Typically, a high-quality sequencing run would have 70-80% or more bases with a Q30 score.

Sequencing quality check (Q30 and PF)

Fastq File:

1. Real-time Monitoring

- SAV allows users to monitor the ongoing sequencing run,
- Providing insights into various parameters, such as
 - cluster density,
 - cluster passing filter (%PF)
 - Phred quality score (e.g., %Q30).

2. Indexing Ratio

- SAV enables users to view the indexing ratio
 - Refers to the distribution of indexed reads among all the samples in a multiplexed run.
 - An optimal index ratio ensures equal representation of all samples

An optimal index ratio is crucial for de-multiplexing and

downstream analyses.

3. Loading Concentration Quantification

- The software helps users quantify the loading concentration by providing metrics like cluster density,
- It is crucial to ensure optimal data output and to prevent issues like over-clustering or under-clustering.

Example 1: Optimal Loading Concentration

- Scenario: A run with optimal loading concentration.
- SAV Visualization:
 - •X-Axis (% Occupied): Moderately high indicating a good number of clusters.
 - •Y-Axis (%PF): High indicating that a large portion of clusters is of good quality.
- Interpretation: This suggests that the library concentration was optimal, yielding a high-quality sequencing run.

% Occupied:

- Refers to the percentage of total tiles that contain clusters.
- High % Occupied could mean high cluster density,
- Low % Occupied indicates fewer clusters.

Example 2: Overloaded

Scenario: A run with too high loading concentration.

- SAV Visualization:
 - X-Axis (% Occupied): Very high indicating an excess of clusters.
 - Y-Axis (%PF): Possibly lower due to increased signal overlap and noise, reducing the number of clusters that pass the chastity filter.
- Interpretation: Too many DNA fragments were loaded, resulting in over-clustering, which can affect the quality of the sequencing data due to overlapping signals and increased noise.

Example 3: Underloaded

Scenario: A sequencing run where the data quality is suboptimal.

SAV Visualization:

- X-Axis (% Occupied): Low indicating sparse clusters across the flow cell.
- Y-Axis (%PF): Can be variable may still be high if the clusters present are of good quality. 190617, A00279, 0333, BHAMCHKDSXX

Interpretation:

- Underloading means fewer clusters are generated.
 - Which might be due to low library concentration.
 - While the data might still be of high quality (%PF)
- the overall yield (data output) of the sequencing run would be reduced,

RNA-virus Consensus Genome Preparation (CZID)

>sc2-illumina-pipeline output:

- 1. Fasta file (consensus)
- 2. Multiqc result
- 3. Coverage plot

Coverage depth plot

sample_name	depth_avg	mapped_reads	total_reads	n_actg	n_missing	n_gap	n_ambiguous
CHRF_GSB04_080_S1_L001	33891.354	9472195	14415600	29838	49	0	7
CHRF_GSB04_081_S2_L001	37037.561	10301531	14074768	29846	12	0	12

15

RNA-virus Consensus Genome Preparation (CZID)

- Sample_name: The unique identifier for each sequenced sample.
- Depth_avg: The average depth of sequencing, which represents the average number
 of times a base is sequenced.
 - Higher depth increases confidence in the identified bases.
- Mapped_reads: The number of reads that were successfully mapped (aligned) to a reference genome.
 - High mapped read counts suggest good specificity in the sequencing.
- Total_reads: The total number of reads obtained after sequencing.

RNA-virus Consensus Genome Preparation (CZID)

- n_actg: Likely the number of bases (A, C, T, G) in the consensus genome.
 - This might give an idea about the length and quality of the consensus sequence.
- n_missing: The number of positions in the consensus genome with no base called due
 to insufficient data or uncertainty in base calling.
- n_gap: The number of gap characters ("-") in the consensus genome,
 - indicating areas where the sequence is broken or unavailable.
- n_ambiguous: The number of ambiguous base calls (typically represented by "N") in the consensus genome,
 - indicating positions where the base could not be confidently

Basespace Tour

Basespace

Basespace Summary

Instrument FS10002628: This is probably the **identifier** or **name** for the sequencing instrument used.

AVG 94.45: This could refer to an average quality score (AVG).

 A quality score of 94.45 is exceptionally high if we assume it's on the Phred scale which is commonly used in sequencing data quality assessments.

Basespace Summary

%Q30 51.61: This refers to the percentage of bases in the sequencing run that have a quality score of 30 or above (%Q30).

%PF: This might stand for "Percent Pass Filter," indicating the percentage of clusters passing the quality filter.

Basespace Summary

Lane QC Status & Flow Cell Status QcPassed:

(QC) checks have been passed for both the lane and the entire flow cell.

Cycles 151 | 8 | 8 | 151: Describes the read length configuration for the sequencing run. It's often formatted as [Read 1] | [Index 1] | [Index 2] | [Read 2] for paired-end runs.

Flow Cell ID BTC69707-1611 & Run ID 20230806_FS10002628_1_BTC69707-1611:

Unique identifiers for the sequencing run and flow cell, which can be vital for tracking and data management.

Qscore Distribution Chart

Total (million): 5 to 45 and Q Score: % >=
Q30: 1188.3M, 94.2% — This suggests a
visualization of quality scores (Qscore)
across reads. 94.2% of the 1188.3 million
bases have a Qscore of at least 30, which
implies a high level of accuracy.

Flow Cell Chart

Intensity and Cycle 1, Channel 1 — This could be representing a visual data showing the fluorescence intensity from channel 1 during the first cycle. The "Fix Scale" might be a user-defined limit to enhance visualization of the data.

Data By Lane

 Density: 0.00 to 350.00 — This might refer to a graph showing the cluster density per lane on the flow cell, which could help identify issues like under- or over-clustering.

Basespace CHARTS Base

Basespace CHARTS Base

- **% Base**: This refers to the percentage of each nucleotide (A, C, G, T) at a specific position in the sequencing reads.
- Cycle: This refers to the sequencing cycles, each cycle corresponds to the incorporation of one nucleotide in the sequencing process.

Thank You!