Летний коллоквиум по математическому анализу

hse-ami-open-exams

Содержание

1	Понятие числового ряда, его частичной суммы. Сходимость и расходимость числовых рядов. Примеры сходящихся и расходящихся числовых рядов. Необходимый признак		
	сходимости числового ряда.	3	
	1.1 Понятие числового ряда, его частичной суммы.	3	
	1.2 Сходимость и расходимость числовых рядов	3	
	1.3 Примеры сходящихся и расходящихся числовых рядов	3	
	1.4 Необходимый признак сходимости числового ряда	3	
2	Критерий Коши сходимости числового ряда. Доказать расходимость гармонического ряда.	. 4	
	2.1 Критерий Коши сходимости числового ряда	4	
	2.2 Доказать расходимость гармонического ряда	4	
3	Критерий сходимости ряда с неотрицательными членами через частичные суммы. Тео-		
J	рема о сравнении и предельный признак сравнения.	5	
	3.1 Критерий сходимости ряда с неотрицательными членами через частичные суммы	5	
	3.2 Теорема о сравнении и предельный признак сравнения	5	
4	Интегральный признак сходимости числового ряда. Сходимость ряда $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha} \ln^{\beta} k}$ в за-	,	
	висимости от значений α и β .	6	
	4.1 Интегральный признак сходимости числового ряда	6	
5	Признак Даламбера в простой и предельной формах. Примеры.	7	
	5.1 Примеры	7	
6	Признак Коши в простой и предельной формах. Примеры.	8	
	6.1 Примеры	8	
7	Абсолютно сходящиеся ряды. Докажите, что абсолютно сходящийся ряд сходится.	9	
8	Определение перестановки членов ряда. Теорема о перестановке членов абсолютно		
	сходящегося ряда.	10	
	8.1 Определение перестановки членов ряда	10	
	8.2 Теорема о перестановке членов абсолютно сходящегося ряда	10	
9	Теорема о перестановке членов абсолютно сходящегося ряда (без доказательства). Тео-		
	рема о произведении двух абсолютно сходящихся рядов.	12	
	9.1 Теорема о перестановке членов абсолютно сходящегося ряда (без доказательства)		
	9.2 Теорема о произведении двух абсолютно сходящихся рядов		
10	Условно сходящийся числовой ряд. Признак Лейбница сходимости знакопеременного	,	
	ряда вместе с оценкой на его остаток.	13	
11	Преобразование Абеля. Объясните, почему это преобразование является дискретным		
	аналогом формулы интегрирования по частям.	14	
19	Признаки Лириула и Абалд суолимости радов	15	

13 Теорема Римана о перестановке членов условно сходящегося ряда, идея доказател ства.	њ- 16
14 Дайте определение поточечной и равномерной сходимости функциональных послед вательностей и рядов. Необходимое условие равномерной сходимости функциональн	
го ряда.	17
14.1 Дайте определение поточечной и равномерной сходимости функциональных последователь-	
ностей и рядов.	. 17
14.2 Необходимое условие равномерной сходимости функционального ряда	. 17
15 Критерий Коши сходимости функциональных последовательностей и рядов.	18
16 Признак сравнения для функциональных рядов. Признак Вейерштрасса равномерно	
сходимости функционального ряда.	19
16.1 Признак сравнения для функциональных рядов	
16.2 Признак Вейерштрасса равномерной сходимости функционального ряда	. 19
17 Дайте определение равномерной ограниченности последовательности функций. Сфо	р-
мулируйте признаки Дирихле и Абеля равномерной сходимости ряда (б.д.).	20
17.1 Дайте определение равномерной ограниченности последовательности функций	. 20
17.2 Сформулируйте признаки Дирихле и Абеля равномерной сходимости ряда (б.д.)	. 20
18 Приведите пример последовательности непрерывных функций, которая поточечно сх	
дится к разрывной функции. Теорема об интеграле от равномерного пределеа непр	e-
рывных функций и ее следствие для равномерно сходящихся рядов.	21
18.1 Приведите пример последовательности непрерывных функций, которая поточечно сходится	
к разрывной функции.	
18.2 Теорема об интеграле от равномерного предела непрерывных функций и ее следствие для	
равномерно сходящихся рядов	. 21

- 1 Понятие числового ряда, его частичной суммы. Сходимость и расходимость числовых рядов. Примеры сходящихся и расходящихся числовых рядов. Необходимый признак сходимости числового ряда.
- 1.1 Понятие числового ряда, его частичной суммы.

Определение 1. Числовая последовательность a_k , рассматриваемая вкупе с последовательностью

$$S_n = \sum_{k=1}^n a_k$$

ее частичных сумм, называется числовым рядом.

1.2 Сходимость и расходимость числовых рядов.

Определение 2. Числовой ряд называется сходящимся, если

$$\exists \lim_{n \to \infty} S_n = S < \infty$$

и расходящимся иначе. Число S называется суммой ряда.

- 1.3 Примеры сходящихся и расходящихся числовых рядов.
 - 1. $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится (гармонический ряд)
 - 2. $\sum_{n=1}^{\infty} \frac{1}{n^2} \text{сходится}$
 - $3. \sum_{n=1}^{\infty} \frac{1}{e^n} \operatorname{сходится}$
 - 4. $\sum_{n=1}^{\infty} n$ расходится
- 1.4 Необходимый признак сходимости числового ряда.

Теорема 1. Необходимым условием сходимости числового ряда является стремление κ 0 его n-го члена a_n .

Доказательство. Действительно, в противном случае не выполняется критерий Коши для числовой последовательности S_n .

2 Критерий Коши сходимости числового ряда. Доказать расходимость гармонического ряда.

2.1 Критерий Коши сходимости числового ряда.

Теорема 2. Числовой ряд сходится тогда и только тогда, когда он удовлетворяет условию Коши:

$$\forall \varepsilon > 0 \exists N_{\varepsilon} \forall n \geqslant N \forall p \in \mathbb{N} \left| \sum_{k=n+1}^{n+p} a_k \right| < \varepsilon$$

Доказательство. Следует из критерия Коши сходимости числовой последовательности S_n .

2.2 Доказать расходимость гармонического ряда.

Теорема 3. Гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится.

Доказательство. Воспользуемся критерием Коши:

$$\exists \varepsilon > 0 \forall N \exists n \geqslant N \exists p \in \mathbb{N} |S_{n+p} - S_n| \geqslant \varepsilon$$

Пусть p = n. Тогда

$$S_{n+p}-S_n=\frac{1}{n+1}+\ldots+\frac{1}{2n}\geqslant\frac{n}{2n}=\frac{1}{2}=\varepsilon$$

- 3 Критерий сходимости ряда с неотрицательными членами через частичные суммы. Теорема о сравнении и предельный признак сравнения.
- 3.1 Критерий сходимости ряда с неотрицательными членами через частичные суммы.

Теорема 4. Ряд с неотрицательными членами $\sum_{n=1}^{\infty} p_n$ сходится тогда и только тогда, когда последовательность частиных сумм $\{S_n\}$ ограничена.

Доказательство. Необходимость следует из того, что любая сходящаяся последовательность является ограниченной. Поскольку $p_n \geqslant 0$, то $\{S_n\}$ монотонно возрастает, а тогда по теореме Вейерштрасса эта последовательность сходится тогда и только тогда, когда она является ограниченной сверху. Тем самым доказана достаточность.

3.2 Теорема о сравнении и предельный признак сравнения.

Теорема 5 (первый признак сравнения). Если $\forall n \in \mathbb{N} \Rightarrow 0 \leqslant p_n \leqslant q_n, \ mo$

- 1. Из сходимости $\sum q_n$ следует сходимость $\sum p_n$
- 2. Из расходимости $\sum p_n$ следует расходимость $\sum q_n$

Доказательство.

- 1. Напрямую следует из теоремы 4.
- 2. Предположим, что $\sum p_n$ расходится, а $\sum q_n$ сходится. Тогда получаем противоречие с пунктом 1.

Теорема 6 (предельный признак сравнения). Если $p_n > 0, q_n > 0$ и $\exists \lim_{n \to \infty} = l \in (0, +\infty)$, то ряды $\sum p_n$ и $\sum q_n$ сходятся и расходятся одновременно.

Доказательство. По определению предела

$$\forall \varepsilon \exists N_{\varepsilon} \forall n \geqslant N \Rightarrow \left| \frac{p_n}{q_n} - l \right| < \varepsilon \Leftrightarrow l - \varepsilon < \frac{p_n}{q_n} < l + \varepsilon \Leftrightarrow q_n(l - \varepsilon) < p_n < q_n(l + \varepsilon).$$

Осталось лишь воспользоваться теоремой 5.

4 Интегральный признак сходимости числового ряда. Сходимость ряда $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha} \ln^{\beta} k}$ в зависимости от значений α и β .

4.1 Интегральный признак сходимости числового ряда.

Теорема 7. Пусть при любом $k \in [1, +\infty)$ выполняется $f(k) \ge 0$, причем $f(k) \searrow 0$. Тогда сходимость ряда $\sum_{k=1}^{\infty} f(k)$ эквивалентна сходимости несобственного интеграла $\int\limits_{1}^{\infty} f(x) dx$.

Доказательство. При $x \in [k, k+1]$, в силу $f(x) \searrow$, имеем $f(k+1) \leqslant f(x) \leqslant f(k)$. Возьмем определенный интеграл от всех частей неравенства:

$$\int_{k}^{k+1} f(k+1)dx \leqslant \int_{k}^{k+1} f(x)dx \leqslant \int_{k}^{k+1} f(k)dx$$

$$f(k+1) \leqslant \int_{k}^{k+1} f(x)dx \leqslant f(k)$$

Просуммируем теперь это неравенство по всем k от 1 до n. Получаем

$$\sum_{k=2}^{n+1} f(k) \leqslant \int_{1}^{n+1} f(x) dx \leqslant \sum_{k=1}^{n} f(k)$$

Теперь, если ряд $\sum_{k=1}^{\infty}$ сходится, то из правой части неравенства следует, что сходится интеграл. Если же сходится интеграл, то из левой части неравенства вытекает, что сходится ряд. Аналогично с расходимостью.

4.2 Сходимость ряда $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha} \ln^{\beta} k}$ в зависимости от значений α и β . (TODO)

5 Признак Даламбера в простой и предельной формах. Примеры.

Теорема 8 (признак Даламбера в допредельной форме). *Если* $\forall k \in \mathbb{N}$ *выполнено*

$$\frac{p_{k+1}}{p_k} \leqslant q < 1 \left(\frac{p_{k+1}}{p_k} \geqslant 1 \right),$$

то ряд $\sum p_k$ сходится (расходится).

Доказательство. Положим $p'_k = q^k$. Тогда

$$\frac{p'_{k+1}}{p'_k} = q < 1 \left(\frac{p'_{k+1}}{p'_k} = 1 \right)$$

$$\frac{p_{k+1}}{p_k} \leqslant \frac{p'_{k+1}}{p'_k} \left(\frac{p_{k+1}}{p_k} \geqslant \frac{p'_{k+1}}{p'_k} \right)$$

Но теперь, учитывая тот факт, что ряд $\sum_{k=1}^{\infty} p_k'$ сходится (расходится) и, пользуясь первым признаком сравнения (теорема 5), делаем вывод, что ряд $\sum_{k=1}^{\infty} p_k$ сходится (расходится).

Теорема 9 (признак Даламбера в предельной форме). Пусть существует

$$\lim_{k \to \infty} \frac{p_{k+1}}{p_k} = L$$

Тогда при L < 1 ряд $\sum p_k$ сходится, при L > 1 расходится, а при L = 1 может как сходиться, так и расходиться.

Доказательство. Как мы знаем,

$$\lim_{k \to \infty} \frac{p_{k+1}}{p_k} = L$$

Это означает, что $\forall \varepsilon > 0 \exists N(\varepsilon) \forall k \geqslant N$ выполняется

$$L - \varepsilon < \frac{p_{k+1}}{p_k} < L + \varepsilon$$

Теперь если L>1, то мы можем выбрать такое ϵ , что $L+2\varepsilon=1\Leftrightarrow L+\varepsilon=1-\varepsilon$. Но тогда

$$\frac{p_{k+1}}{p_k} < L + \varepsilon < 1$$

Тем самым получили допредельный вариант теоремы, из которого следует, что ряд $\sum p_k$ сходится. Пусть теперь L>1. Выберем такое ε , что $L-\varepsilon=1$. Получаем

$$\frac{p_{k+1}}{p_k} > L - \epsilon = 1$$

Снова получили допредельный вариант теоремы, из которого следует, что ряд $\sum p_k$ расходится. Наконец, рассмотрим ряды $\sum \frac{1}{k}$ и $\sum \frac{1}{k^2}$. В обоих случаях L=1, но ряд $\sum \frac{1}{k}$ расходится, а ряд $\sum \frac{1}{k^2}$ сходится.

5.1 Примеры.

- 1. $\sum \frac{1}{n!}$ сходится
- 2. $\sum n!$ расходится

6 Признак Коши в простой и предельной формах. Примеры.

Теорема 10 (признак Коши в допредельной форме). *Если* $\forall k \in \mathbb{N}$ *выполнено*

$$\sqrt[k]{p_k} \leqslant q < 1 \left(\sqrt[k]{p_k} \geqslant 1 \right),$$

то ряд $\sum p_k$ сходится (расходится).

Доказательство. Положим $p'_k = q^k$. Тогда

$$\sqrt[k]{p_k'} = q < 1\left(\sqrt[k]{p_k'} = 1\right)$$

$$\sqrt[k]{p_k} \leqslant \sqrt[k]{p_k'} \left(\sqrt[k]{p_k} \geqslant \sqrt[k]{p_k'}\right)$$

Но теперь, учитывая тот факт, что ряд $\sum_{k=1}^{\infty} p_k'$ сходится (расходится) и, пользуясь первым признаком сравнения (теорема 5), делаем вывод, что ряд $\sum_{k=1}^{\infty} p_k$ сходится (расходится).

Теорема 11 (признак Коши в предельной форме). Пусть существует

$$\lim_{k \to \infty} \sqrt[k]{p_k} = L$$

Тогда при L < 1 ряд $\sum p_k$ сходится, при L > 1 расходится, а при L = 1 может как сходиться, так и расходиться.

Доказательство. Как мы знаем,

$$\lim_{k \to \infty} \sqrt[k]{p_k} = L$$

Это означает, что $\forall \varepsilon > 0 \exists N(\varepsilon) \forall k \geqslant N$ выполняется

$$L - \varepsilon < \sqrt[k]{p_k} < L + \varepsilon$$

Теперь если L>1, то мы можем выбрать такое ϵ , что $L+2\varepsilon=1\Leftrightarrow L+\varepsilon=1-\varepsilon$. Но тогда

$$\sqrt[k]{p_k} < L + \varepsilon < 1$$

Тем самым получили допредельный вариант теоремы, из которого следует, что ряд $\sum p_k$ сходится. Пусть теперь L>1. Выберем такое ε , что $L-\varepsilon=1$. Получаем

$$\sqrt[k]{p_k} > L - \epsilon = 1$$

Снова получили допредельный вариант теоремы, из которого следует, что ряд $\sum p_k$ расходится. Наконец, рассмотрим ряды $\sum \frac{1}{k}$ и $\sum \frac{1}{k^2}$. В обоих случаях L=1, но ряд $\sum \frac{1}{k}$ расходится, а ряд $\sum \frac{1}{k^2}$ сходится.

6.1 Примеры.

- 1. $\sum \frac{n^n}{e^n}$ расходится
- 2. $\sum \frac{n^2}{e^n}$ сходится

7 Абсолютно сходящиеся ряды. Докажите, что абсолютно сходящийся ряд сходится.

Определение 3. Будем говорить, что ряд $\sum u_k$ сходится абсолютно, если $\sum |u_k|$ сходится.

Теорема 12. Абсолютно сходящийся ряд сходится.

Доказательство. По критерию Коши имеем

$$\forall \varepsilon > 0 \exists N(\varepsilon) \forall n \geqslant N \forall p \in N \sum_{k=n+1}^{n+p} |u_k| < \varepsilon.$$

Осталось лишь воспользоваться неравенством

$$\left|\sum_{k=n+1}^{n+p}u_k\right|\leqslant \sum_{k=n+1}^{n+p}|u_k|<\varepsilon.$$

8 Определение перестановки членов ряда. Теорема о перестановке членов абсолютно сходящегося ряда.

8.1 Определение перестановки членов ряда.

Определение 4. Говорят, что два ряда $\sum a_n$ и $\sum b_n$ получаются друг из друга перестановкой членов, если существует такое взаимо-однозначное отображение φ множества $\mathbb N$ натуральных чисел на себя, что $b_n = a_{\varphi(n)}$.

8.2 Теорема о перестановке членов абсолютно сходящегося ряда.

Теорема 13. Если числовой ряд $\sum u_k$ сходится абсолютно, то любая его перестановка членов сходится κ той же самой сумме.

Доказательство. Пусть $\sum u_k$ абсолютно сходится к S, а $\sum u_k'$ – некоторая перестановка членов исходного ряда. Требуется доказать, что $\sum u_k' = S$ и $\sum u_k'$ сходится абсолютно. Докажем сначала первое утверждение. Для этого достаточно доказать, что

$$\forall \varepsilon > 0 \exists N(\varepsilon) \forall n \geqslant N \left| \sum_{k=1}^{n} u'_k - S \right| < \varepsilon.$$

Зафиксируем произвольное ε . Поскольку ряд $\sum u_k$ сходится абсолютно, то по признаку Коши

$$\exists N_0' \forall p \in \mathbb{N} \sum_{k=N_0'+1}^{N_0'+p} |u_k| < \frac{\varepsilon}{2},$$

а по определению сходимости ряда

$$\exists N_0'' \left| \sum_{k=1}^{N_0''} u_k - S \right| \leqslant \frac{\varepsilon}{2}.$$

Напоминаем, что данные неравенства по определениям выполняются и для $n \ge N_0', N_0''$. Примем $N_0 = \max\{N_0', N_0''\}$, чтобы для этого номера выполнялись оба неравенства. Теперь возьмем такое N, чтобы любая частичная сумма S_n' ряда $\sum u_k'$ при $n \ge N$ содержала все первые N_0 членов ряда $\sum u_k$. Заметим, что такое N всегда можно выбрать, поскольку мы просто переставили некоторые члены исходного ряда. Оценим теперь разность

$$\left| \sum_{k=1}^{n} u_k' - S \right| < \varepsilon.$$

Пусть $n \geqslant N$. Указанную разность можно перезаписать в виде

$$\sum u'_k - S = \left(\sum_{k=1}^n u'_k - \sum_{k=1}^{N_0} u_k\right) + \left(\sum_{k=1}^{N_0} u_k - S\right).$$

Переходя к модулям, получаем

$$\left| \sum u'_k - S \right| \le \left| \sum_{k=1}^n u'_k - \sum_{k=1}^{N_0} u_k \right| + \left| \sum_{k=1}^{N_0} u_k - S \right|.$$

Если воспользоваться неравенством $\left|\sum_{k=1}^{N_0''}u_k-S\right|\leqslant \frac{\varepsilon}{2},$ то достаточно доказать, что

$$\left| \sum_{k=1}^{n} u_k' - \sum_{k=1}^{N_0} u_k \right| < \frac{\varepsilon}{2}.$$

Вспомним теперь, что мы таким образом выбрали N, что при $n\geqslant N$ первая из сумм содержит все N_0 членов второй суммы. Поэтому указанная выше разность представляет собой сумму $n-N_0$ членов ряда $\sum u_k$ с номерами, каждый из которых превосходит N_0 .

Тогда выберем такое p, чтобы номер N_0+p превосходил номера всех $n-N_0$ членов только что указанной суммы. Тогда справедливо

$$\left| \sum_{k=1}^{n} u_k' - \sum_{k=1}^{n} u_k \right| \leqslant \sum_{k=N_0+1}^{N_0+p} |u_k|$$

Но теперь, пользуясь неравенством

$$\left| \sum_{k=1}^{N_0''} u_k - S \right| \leqslant \frac{\varepsilon}{2},$$

получаем то, что и требовалось доказать. Таким образом, мы доказали, что ряд $\sum u_k'$ сходится к S. Осталось лишь доказать, что он сходится абсолютно. Для этого достаточно применить приведенное выше доказательство для рядов $\sum |u_k|$ и $\sum |u_k'|$.

- 9 Теорема о перестановке членов абсолютно сходящегося ряда (без доказательства). Теорема о произведении двух абсолютно сходящихся рядов.
- 9.1 Теорема о перестановке членов абсолютно сходящегося ряда (без доказательства).

Теорема 14. Если числовой ряд $\sum u_k$ сходится абсолютно, то любая его перестановка членов сходится κ той же самой сумме.

9.2 Теорема о произведении двух абсолютно сходящихся рядов.

Теорема 15. Если $\sum u_k$ и $\sum v_k$ сходятся абсолютно κ и и v соответственно, то ряд $\sum w_k$, составленный из всевозможных произведений $u_i \cdot v_j$ сходится абсолютно κ и $\cdot v$.

Доказательство. Докажем сначала, что ряд $\sum w_k$ сходится абсолютно. Возьмем произвольное n_0 и рассмотрим $\sum_{k=1}^{n_0} |w_k|$. Эта сумма состоит из членов вида $|u_iv_j|$. Найдем среди этих индексов i и j наибольший индекс m, входящий в исследуемую сумму. Тогда

$$\sum_{k=1}^{n_0} |w_k| \leqslant (|u_1| + \ldots + |u_m|) \cdot (|v_1| + \ldots + |v_m|) \leqslant M_1 M_2$$

Ограничения M_1 и M_2 следуют из абсолютной сходимости рядов $\sum u_k$ и $\sum v_k$. Мы ограничили n_0 -ую частичную сумму исследуемого ряда $\sum |w_k|$, значит этот ряд сходится. Осталось лишь доказать, что он сходится к uv.

Пусть данный ряд сходится к S. Заметим, что в силу теоремы 9.1 мы можем как угодно переставлять члены ряда w_i , не влияя на сходимость. Иными словами, любая последовательность или подпоследовательность частичный сумм будет сходиться к S. Тогда рассмотрим последовательность частичных сумм $\{S_{m^2}\}$, где $S_{m^2}=(u_1+\ldots+u_m)\cdot(v_1+\ldots+v_m)$. Но

$$\lim_{m \to \infty} (u_1 + \dots + u_m) = u$$

$$\lim_{m \to \infty} (v_1 + \dots + v_m) = v$$

$$\Rightarrow S_{m^2} \to uv$$

10 Условно сходящийся числовой ряд. Признак Лейбница сходимости знакопеременного ряда вместе с оценкой на его остаток.

Определение 5. Будем говорить, что числовой ряд $\sum u_k$ сходится **условно**, если ряд $\sum u_k$ сходится, а ряд $\sum |u_k|$ расходится.

Теорема 16. Пусть для любого $k \in \mathbb{N}$ выполняется $a_k \geqslant a_{k+1}$, причем $a_k \to 0$. Тогда числовой ряд (называемый рядом Лейбница) $\sum (-1)^{k+1} a_k$ сходится, причем

$$|r_k| = \left| \sum_{l=k+1}^{\infty} (-1)^{l+1} a_l \right| \leqslant a_{k+1}$$

 $\ensuremath{\mathcal{A}\!\mathit{okaзательство}}$. Рассмотрим частичную сумму ряда Лейбница S_{2n} :

$$0 \leqslant S_{2n} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2n-1} - a_{2n}) = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2n-2} - a_{2n-1}) - a_{2n} \leqslant a_1$$

Из этого можно сделать вывод, что последовательность $\{S_{2n}\}$ – ограниченная и монотонно неубывающая. Тогда $\exists \lim_{n\to\infty} S_{2n} = S$. С другой стороны, видно, что $S_{2n-1} = S_{2n} + a_{2n}$. Тогда $\exists \lim_{n\to\infty} S_{2n-1} = S + 0 = S$, т.е. $\lim_{n\to\infty} S_n = S$.

Итак, мы доказали, что ряд сходится. Теперь докажем вторую часть теоремы. Для этого заметим, что поскольку $\{S_{2n}\}$ не убывает, а $\{S_{2n-1}\}$ не возрастает (т.к. $S_{2n+1}=S_{2n-1}-(a_{2n}-a_{2n+1})$), то $S_{2n}\leqslant S\leqslant S_{2n-1}$, а также $S\leqslant S_{2n+1}$. По определению остаточного члена $r_{2n}=S-S_{2n}$. Пользуясь этими замечаниями, можно записать

$$r_{wn} = S - S_{2n} \leqslant S_{2n+1} - S_{2n} = a_{2n+1},$$

$$S_{2n-1} - S \leqslant S_{2n-1} - S_{2n} = a_{2n} \Rightarrow |r_{2n-1}| \leqslant a_{2n}.$$

Но тогда $|r_n| \leqslant a_{n+1}$, что и требовалось доказать.

11 Преобразование Абеля. Объясните, почему это преобразование является дискретным аналогом формулы интегрирования по частям.

Пусть $B_n = \sum_{k=1}^n b_k$ и $B_0 = 0$. Тогда

$$\sum_{k=1}^{n} = a_n B_n - \sum_{k=1}^{n-1} B_k (a_{k+1} - a_k).$$

Преобразование Абеля является дискретным аналогом интегрирования по частям. Для наглядности рассмотрим следующюю таблицу:

f	$\{a_n\}_{n=1}^{\infty}$
f'	$\{a_n - a_{n-1}\}_{n=2}^{\infty}$
$\int_{a}^{b} f(x) dx$	$\sum_{k=1}^{\infty} a_k$
$\left(\int_{a}^{x} f(x) dx\right)_{x}' = f(x)$	$\sum_{k=1}^{n} a_k - \sum_{k=1}^{n-1} a_k = a_n$
$f, g, G = \int_{a}^{x} g(t) dt + C$	${a_k}, {b_k}, {B_k = \sum_{j=1}^k b_j + B_0}$
$\int_{a}^{b} fg dx = \int_{a}^{b} f dG = f \cdot G _{a}^{b} - \int_{a}^{b} Gf' dx$	$\sum_{k=1}^{n} a_k b_k = a_n B_n - a_1 B_0 - \sum_{k=1}^{n-1} (a_{k+1} - a_k) B_k$

12 Признаки Дирихле и Абеля сходимости рядов.

Теорема 17 (Признак Дирихле). Пусть последовательность $\{a_n\}$ монотонна, причем $\lim_{n\to\infty} a_n = 0$, а последовательность $\{B_n\}$ ограничена (например, числом M > 0). Тогда $\sum a_k b_k$ сходится.

Доказательство. Воспользуемся преобразованием Абеля:

$$\sum_{k+1}^{n} a_k b_k = a_n B_n - \sum_{k=1}^{n-1} B_k (a_{k+1} - a_k).$$

Из условия теоремы следует, что $a_nB_n \to 0$. Из ограниченности $\{B_n\}$ и монотонности $\{a_n\}$ следует, что

$$\sum_{k=1}^{\infty} |B_k(a_{k+1} - a_k)| \leqslant M \sum_{k+1}^{\infty} |a_{k+1} - a_k| = M \left| \sum_{k+1}^{\infty} (a_{k+1} - a_k) \right| = M \cdot |a_1| \Rightarrow \sum_{k+1}^{\infty} B_k(a_{k+1} - a_k) \text{ сходится абсолютно.}$$

A это означает, что $\exists \lim_{n\to\infty} \sum_{k=1}^{n-1} B_k(a_{k+1}-a_k)$. Но тогда данный ряд сходится.

Теорема 18 (Признак Абеля). Пусть последовательность $\{a_n\}$ монотонная и ограничена, $a \sum b_k$ сходится. Тогда $\sum a_k b_k$ сходится.

Доказательство. Заметим, что раз $\{a_n\}$ монотонна и ограничена, то $\exists \lim_{n\to\infty} a_n = a$. Тогда $a_n = a + \alpha_n$, где α_n – бесконечно малая, причем в силу монотонности $\{a_n\}$ последовательность $\{\alpha_n\}$ также является монотонной. Тогда

$$\sum a_k b_k = \sum a b_k + \sum \alpha_k b_k.$$

Здесь первый ряд сходится, т.к. сходится ряд $\sum b_k$, а второй ряд сходится по признаку Дирихле ($\{B_k\}$ ограничена, т.к. соответствующий ряд сходится). Значит, $\sum a_k b_k$ сходится.

13 Теорема Римана о перестановке членов условно сходящегося ряда, идея доказательства.

Лемма 1. Если $\sum a_k$ сходится условно, то $\sum a^+$ и $\sum a^-$ расходятся.

Доказательство. Пусть $a_k = a_k^+ + a_k^-$. Допустим, что один из $\sum a^+$ или $\sum a^-$ сходится. Тогда сходится и второй (т.к. сходится сумма). Тогда

$$\sum |a_k| = \sum a^+ - \sum a^-$$

тоже сходится. Противоречие с условной сходимостью.

Теорема 19. Какого бы ни было число $L \in \mathbb{R}$, члены условно сходящегося ряда $\sum u_n$ можно переставить так, чтобы его сумма стала равной L.

- 1. Будем добавлять неиспользованные положительные члены ряда до тех пор пока сумма не станет больше L. Это всегда возможно по лемме 1.
- 2. Будем добавлять неиспользованные отрицательные члены ряда до тех пор пока сумма не станет меньше L. Это всегда возможно по лемме 1.
- 3. Вернемся к первому шагу.

Таким образом, полученный ряд сходится к L.

- 14 Дайте определение поточечной и равномерной сходимости функциональных последовательностей и рядов. Необходимое условие равномерной сходимости функционального ряда.
- 14.1 Дайте определение поточечной и равномерной сходимости функциональных последовательностей и рядов.

Определение 6. Будем говорить, что функциональная последовательность $\{f_n(x)\}$ сходится поточечно на \mathbb{E} , если $\forall x_0 \in \mathbb{E}$ сходится уже числовая последовательность $\{f_n(x_0)\}$.

Определение 7. Будем говорить, что функциональная последовательность $\{f_n(x)\}$ сходится на \mathbb{E} равномерно κ функции f, если

$$\forall \varepsilon > 0 \,\exists N(\varepsilon) \forall n \geqslant N \,\forall x \in \mathbb{E} \, |f_n(x) - f(x)| < \varepsilon.$$

Для равномерной сходимости принято использовать обозначение $\{f_n(x)\} \rightrightarrows f(x)$.

Определение 8. Будем говорить, что функциональный ряд $\{\sum f_n(x)\}$ сходится поточечно на \mathbb{E} , если $\forall x_0 \in \mathbb{E}$ сходится уже числовой ряд $\{\sum f_n(x_0)\}$.

Определение 9. Будем говорить, что функциональный ряд $\{\sum f_n(x)\}$ сходится на $\mathbb E$ **равномерно** к функции S(x), если

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \forall n \geqslant N \ \forall x \in \mathbb{E} \left| \sum_{k=1}^{n} f_k(x) - S(x) \right| < \varepsilon.$$

Для равномерной сходимости принято использовать обозначение $\sum f_n(x)
ightharpoons S(x)$.

14.2 Необходимое условие равномерной сходимости функционального ряда.

Теорема 20. Если $\sum u_n(x)$ равномерно сходится на \mathbb{E} , то $u_k(x) \rightrightarrows 0$ на \mathbb{E} .

Доказательство. Просто заметим, что $u_n(x) = U_n(x) - U_{n-1}(x) \rightrightarrows S(x) - S(x) = 0$, где $U_n(x) = \sum_{k=1}^n u_k(x)$.

15 Критерий Коши сходимости функциональных последовательностей и рядов.

Теорема 21 (Критерий Коши равномерной сходимости функциональной последовательности).

$$\{f_n(x)\} \implies \text{ \it Ha} \ \mathbb{E} \Leftrightarrow \forall \varepsilon > 0 \ \exists N(\varepsilon) \ \forall n \geqslant N \ \forall p \in \mathbb{N} \ \forall x \in \mathbb{E} \ |f_n(x) - f_{n+p}(x)| < \varepsilon \}$$

Доказательство.

• Необходимость Пусть $\{f_n(x)\} \rightrightarrows f(x)$ на $\mathbb E$. Тогда

$$\forall \varepsilon > 0 \exists N(\varepsilon) \forall n \geqslant N \forall x \in \mathbb{E} |f_n(x) - f(x)| < \frac{\varepsilon}{2}.$$

Тогда и подавно $\forall p \in \mathbb{N} |f_{n+p}(x) - f(x)| < \frac{\varepsilon}{2}$. Но

$$|f_{n+p}(x) - f_n(x)| = |f_{n+p}(x) - f(x) + f(x) - f_n(x)| \le |f_{n+p}(x) - f(x)| + |f_n(x) - f(x)| < \varepsilon.$$

• Достаточность Зафиксируем произвольное $x \in \mathbb{E}$. Теперь, используя признак Коши сходимости числовой последовательности, получаем сходимость $\{f_n(x)\}\forall x \in \mathbb{E}$. А это значит, что существует предельная функция f(x).

Снова зафиксируем произвольные $x \in \mathbb{E}$ и $\varepsilon > 0$. Делая предельный перезод в неравенстве $|f_{n+p}(x) - f_n(x)| < \varepsilon$ при $p \to \infty$, получаем $|f_n(x) - f(x)| \le \varepsilon < 2\varepsilon = \varepsilon'$.

Теорема 22. Функциональный ряд сходится равномерно, тогда и только тогда, когда последовательность его частичных сумм сходится равномерно.

Доказательство. Прямое следствие из теоремы 21.

16 Признак сравнения для функциональных рядов. Признак Вейерштрасса равномерной сходимости функционального ряда.

16.1 Признак сравнения для функциональных рядов.

Теорема 23. Пусть $\sum v_k(x)$ равномерно сходится. Если $|u_k(x)| \leq v_k(x) \forall x \in \mathbb{E}$, то ряд $\sum u_k$ тоже сходится равномерно.

Доказательство. То же самое, что и в доказательстве признака Вейерштрасса, но вместо c_k функциональная последовательность.

16.2 Признак Вейерштрасса равномерной сходимости функционального ряда.

Теорема 24. Пусть

$$\exists \{c_k\} \forall k \in \mathbb{N} \forall x \in \mathbb{E} |u_k(x)| \leqslant c_k.$$

Тогда если $\sum c_k$ сходится, то $\sum u_k(x)$ сходится равномерно на \mathbb{E} .

Доказательство. Воспользуемся признаком Коши сходимости числового ряда:

$$\forall \varepsilon > 0 \exists N(\varepsilon) \forall n \geqslant N \forall p \in \mathbb{N} \left| \sum_{k=n+1}^{n+p} c_k \right| < \varepsilon$$

Заметим, что модуль можно опустить. В условии теоремы мы неявно полагаем, что $c_k \geqslant 0$, иначе условие $|u_k(x)| \leqslant c_k$ никак не может выполняться. Тогда

$$\left|\sum_{k=n+1}^{n+p} u_k(x)\right| \leqslant \sum_{k=n+1}^{n+p} |u_k(x)| \leqslant \sum_{k=n+1}^{n+p} c_k < \varepsilon.$$

- 17 Дайте определение равномерной ограниченности последовательности функций. Сформулируйте признаки Дирихле и Абеля равномерной сходимости ряда (б.д.).
- 17.1 Дайте определение равномерной ограниченности последовательности функций.

Определение 10. Будем говорить, что функциональная последовательность $\{f_k(x)\}$ равномерно ограничена на \mathbb{E} , если

$$\exists M > 0 \forall k \in \mathbb{N} \forall x \in \mathbb{E} |f_k(x)| \leqslant M$$

17.2 Сформулируйте признаки Дирихле и Абеля равномерной сходимости ряда (б.д.).

Теорема 25 (Признак Дирихле). Пусть выполнено:

- 1. Последовательность частичных сумм $\{U_n(x)\}$ равномерно ограничена на \mathbb{E} .
- 2. Функциональная последовательность $\{v_k(x)\}$ монотонна по k на $\mathbb E$ и $\{v_k(x)\} \rightrightarrows 0$ на $\mathbb E$.

Тогда
$$\sum u_k(x) \cdot v_k(x) \Longrightarrow$$
 на \mathbb{E} .

Теорема 26. Пусть выполнены условия:

- 1. Функциональная последовательность $\{v_k(x)\}$ равномерно ограничена на \mathbb{E} , $u \, \forall x \in \mathbb{E}$ последовательность $\{v_k(x)\}$ монотонна по k.
- 2. $\sum u_k(x) \rightrightarrows$ на \mathbb{E}

Тогда функциональный ряд $\sum u_k(x) \cdot v_k(x) \Longrightarrow$ на \mathbb{E} .

- 18 Приведите пример последовательности непрерывных функций, которая поточечно сходится к разрывной функции. Теорема об интеграле от равномерного пределеа непрерывных функций и ее следствие для равномерно сходящихся рядов.
- 18.1 Приведите пример последовательности непрерывных функций, которая поточечно сходится к разрывной функции.

$$f_n(x) = \cos^{2n} x \to f(x) = \begin{cases} 1, & x = \pi k, k \in \mathbb{Z} \\ 0, & \text{иначе} \end{cases}$$

Очевидно, что $f_n(x)$ непрерывная, а f(x) разрывная.

18.2 Теорема об интеграле от равномерного предела непрерывных функций и ее следствие для равномерно сходящихся рядов.

Теорема 27. Пусть f_n непрерывна на отрезке [a,b] при всех $n \in \mathbb{N}$. Пусть $f_n \rightrightarrows f$ на [a,b] при $n \to \infty$. Тогда

$$\int_{-\infty}^{x} f_n(t)dt \Longrightarrow \int_{-\infty}^{x} f(t)dt$$

Доказательство. Так как функция f_n непрерывна на отрезке [a,b], то функция f также непрерывна на этом отрезке. В частности f интегрируема по Риману на $[a,x], a \leqslant x \leqslant b$. Поскольку $f_n \rightrightarrows f$, имеем

$$\exists N = N(\varepsilon/(b-a)) \forall n \geqslant N \forall x \in [a,b] |f_n(x) - f(x)| < \frac{\varepsilon}{b-a}$$

Следовательно, при $n\geqslant N$

$$\sup \left| \int\limits_a^x f_n(t) dt - \int\limits_a^x f(t) dt \right| \leqslant \int\limits_a^b |f_n(t) - f(t)| dt \leqslant \int\limits_a^b \frac{\varepsilon}{b-a} dt = \varepsilon, \text{ r.e. } \int\limits_a^x f_n(t) dt \rightrightarrows \int\limits_a^x f(t) dt$$

Теорема 28 (Теорема о почленном интегрировании функционального ряда). Пусть $u_k \in C([a,b])$ и ряд $\sum u_k$ равномерно сходится на [a,b]. Тогда ряд $\sum \int_a^x f(t)dt$ тоже равномерно сходится на [a,b] и его сумма равна $\int_a^x \sum u_k dt \forall x \in [a,b]$.

Доказательство. Применяем теорему 27 к последовательности частичных сумм.