Nome:	 	_ Nº de estudante:
	 · ///////	A.

Análise e Transformação de Dados

ć

	Exame da E	poca Normai	– Parte I	
	15 de junho de 2020		Dura	ação: 50min
1.	Considerar o sinal periódico de tempo a) (4%) Quais as frequências (em Hz)			$\cos{(10\pi t)}$).
	□ 0, 5, 10 e 15 Hz	□ 0, 10, 20 e 30 Hz	2	20π e 30π Hz
	☐ 0 e 10 Hz	\Box 0, 5π, 10π e 15π	Hz 🗆 Nenhum	na das opções
	b) (3%) Analisar, justificadamente, a	paridade de x(t).		
	c) (4%) Qual o valor da componente r à frequência máxima (positiva) do		urier complexa de <i>x</i> (<i>t</i>)	correspondente
	$\Box c = -2j$ $\Box c$	$= 2j$ $\square c$	= -2	:= 2
	$\Box c = -4j$ $\Box c$	= 4j □ <i>c</i>	= -4	:= 4
2.	 d) (4%) Sabendo que o período fund de x(t) a uma dada frequência o garantida a reconstrução de x(t) se Considerar o sinal de tempo discreto x a) (5%) Quais os parâmetros a e b da no sinal x[n] resulta no sinal y[n] : 	de amostragem, é N em aliasing a partir de $[n]=4\cos[0.2\pi n].$ transformação linear d	= 6, verificar, justifica x[n].	adamente, se é
	\Box $a = -0.25$ \Box $a = 0.25$	\Box b	= -2.5) = 2.5
	$\Box a = -4$ $\Box a = 4$	\Box b	= 0	0 = 0.4
	b) (4%) Qual o valor da potência méd $\square Py = 0 W \qquad \square P$ c) (4%) Diga, justificadamente, qual e se esta relação é aplicável a qual	$y = 2 W$ $\square P$ a relação entre os val	•	sinais $x[n]$ e $y[n]$
3.	A análise de uma série temporal envol falta e <i>outliers</i> , bem como a sua decon a) (5%) Diga como proceder para det b) (5%) Diga como proceder para ide estacionária.	nposição em compone etar <i>outliers</i> .	ntes.	

Nome:	Nº de estudante:

Departamento de Engenharia Informática Faculdade de Ciências e Tecnologia Universidade de Coimbra

Análise e Transformação de Dados

Exame da Época Normal – Parte II 15 de junho de 2020 Duração: 50 min 4. Considerar que a resposta a impulso de um router, que recebe x[n] e despacha y[n] pacotes em cada instante n, é dada por $h[n] = 0.4 \times 0.5^{(n-2)} u[n-2]$, considerando condições iniciais nulas. a) (5%) Determine a equação de diferenças que caracteriza o sistema (router). b) (4%) Diga, justificadamente, se o sistema que resulta da colocação do router em série com outro router com as mesmas características é um sistema linear e causal. c) (4%) Considerando condições iniciais nulas e que os pacotes recebidos são expressos por x[n] = 100u[n] - 100u[n-3], determinar o somatório dos pacotes despachados pelo router nos instantes n=4 e n=5. 5. A função de transferência de um SLIT é $G(z) = \frac{z^{-3} + 4z^{-5}}{(1 - 0.25kz^{-1})(1 + (0.8 - 0.2k)z^{-1})}$, $k \in \Re$. a) (5%) Determinar os zeros e os pólos (em função de k) do sistema. b) (4%) Determinar para que intervalo de valores de k o sistema é estável? \square -4 < k < 9 \Box -4 < k < 4 \Box -1 < k < 4 \Box -1 < k < 9 \square O sistema é instável para qualquer valor de kc) (4%) Considerando k = 3, para que valor tende a saída do sistema em regime estacionário, em resposta à entrada x[n] = 3u[n-2] + 3u[n-90]? $\square \infty$ □ -∞ □ 50 □ 80 □ 100 6. Considere que a Transformada de Fourier de Tempo Discreto (DTFT) de um sinal x[n] é dada por: $X_{DTFT}\left(\omega\right) = \sum_{q=-\infty}^{\infty} \begin{cases} 0 & , \omega < (20\pi q - 6\pi)^{rad}/_{s} \lor \omega > (20\pi q + 6\pi)^{rad}/_{s} \\ \frac{(\omega - 20\pi q - 10\pi)(\omega - 20\pi q + 10\pi)}{2\pi^{2}} & , (20\pi q - 6\pi)^{rad}/_{s} \le \omega \le (20\pi q + 6\pi)^{rad}/_{s} \end{cases}$ a) (4%) Qual o valor da frequência de amostragem (em Hz) considerada na obtenção do sinal amostrado x[n] a partir de x(t)? □ 3 Hz □ 10 Hz □ 20 Hz □ 6 Hz b) (4%) Sabendo que a frequência angular fundamental do sinal x[n] é $\Omega_0 = \frac{\pi}{5} rad$, qual o valor da componente c_0 da Série de Fourier complexa do correspondente sinal x(t)? $\Box c_0 = -5$ $\Box c_0 = -50$ $\Box c_0 = -10$ c) (4%) Considerando um filtro ideal, qual o tipo de filtro e que frequência(s) de corte especificaria para identificar os coeficientes não nulos da DFT de x[n]?

No	ome:			Nº de estudante:			
The state of the s		de Engenharia Informática Tiências e Tecnologia e Coimbra		20000	010		
		Aná	álise e Trans	sformação c	le Dados		
		Exame da É	poca Norma	al – Parte III			
	15 de junho de 20	020			Duração: 40 min		
i	áudio de tempo temporalmente a a) (3%) Aplican garante erro □ 1/	contínuo a uma for ocorrência de duas do a DFT por janela nulo na estimação d	requência de amos notas musicais, o Mi s (STFT), qual das s as frequências corre 1/15 s	stragem <i>fs</i> =2 <i>KHz</i> . P i (330 <i>Hz</i>) e o Lá (440 eguintes dimensões spondentes às duas] 1/20 <i>s</i>	da janela temporal		
	c) (6%) Determ	o, determinar a frequ ninar a expressão do 0j delta[k+5] -500 de	o sinal $x[n]$ na $6^{\underline{a}}$ ja	anela da STFT sabe	ndo que se obteve:		
8. Dado um sinal de tempo discreto, $x[n]$, obtido com uma frequência de amostragem $f_s = 2K$ 0 considere a decomposição de nível 3, apresentada na figura, resultante da aplicação da Transformada de Wavelet Discreta (DWT) com a wavelet da família Daubechies de ordem 9.							
a) (8%) Efetue a caraterização tempo- frequência do sinal $x[n]$ a partir da reconstrução do sinal com base nos coeficientes $\mathbf{a_3}$ e $\mathbf{d_3}$, preenchendo a							
Г	seguinte tab		-	n			
-	n	0 – 499	500 -999	1000 – 1499	1500 -1999		
	A partir de d3 :	$f \in [\underline{\hspace{1cm}}, \underline{\hspace{1cm}}]$ Hz,		f ∈ [, [Hz, C =			
	A partir de a3 :	f = Hz. C =	f = 0 Hz, C =	f = Hz, C=	f = 0 Hz, C =		

n	0 – 499	500 -999	1000 – 1499	1500 -1999
A partir de d3 :	$f \in [$, [Hz,		$f \in [___$, $___$ [Hz,	
A partir de d3 .	C =		C =	
A partir de a3 :	f = Hz, C =	f = 0 Hz, C =	f = Hz, C=	f = 0 Hz, C =
A partii de a3.	J Hz, C	f =Hz, C =		f =Hz, C =

b)	(4%)	Supondo	que	se	pretende	reconstruir	o sina	l <i>x</i> [n]	apenas	com	as	suas	duas	menores
	frequ	uências nã	o nul	as,	qual o coe	eficiente que	dever	á ser	utilizado	na re	100	nstrug	ção?	

Ш	l a	7