CS370 Computer Imaging

The Fundamentals

Recap

- What is Digital Image?
- What is Digital Image Processing (DIP) ?
- 3-Levels of Processing an Image
- Electromagnetic Spectrum
- DIP Applications
- Key Stages of DIP

Lecture Objectives

- Goal of Image Processing
- Human Visual System
- Image Acquisition
- Digital Image Representation
- Image Sampling And Quantisation
- Image Resolution

Goal of Image Processing

- Create images that look "good".
- What does the phrase "look good" imply?
 - One man's good image may be another's trash!
- Subjective vs Objective

Which One "Looks Good?"

Which One "Looks Good?"

A

Goal of Image Processing

- VERY IMPORTANT TO REMEMBER
 - Image Processing quality assessment is largely subjective process.
 - Typical mechanism: come up with a mathematical model/algorithm/process that makes the image appear desirable to the human observer.

How are Images Formed?

- The eye is nearly a sphere (with a diameter of about 20 mm) enclosed by three membranes:
 - Cornea and sclera, the outer membrane
 - Choroid, the middle membrane
 - Retina, the inner membrane

Choroid contains a **network of blood vessels** that serve as the major source of nutrition to the eye.

Fovea, is a small depression at the center of the retina where visual acuity is the highest 15

Lens is a nearly transparent biconvex structure suspended behind the iris of the eye whose sole function is to **focus light rays onto the retina**.

Visual Perception

- The retina is covered with photoreceptor cells called cones (6-7 million) and rods (75-150 million).
- Cones are concentrated around the fovea and are very sensitive to colour.
- Rods are more spread out and are <u>sensitive to low levels of</u> illumination.

Visual Perception

Visual Perception

Day v.s. Night Vision

Objects identified by color

Cones are activated

Objects identified by shape

Rods are activated

Blind-Spot Experiment

 Draw an image similar to that below on a piece of paper (the dot and cross are about 15 cm apart).

- Close your right eye and focus on the cross with your left eye.
- Hold the image about 50 cm away from your face and move it slowly towards you.
- The dot should disappear!

Image Formation In The Eye

 Muscles within the eye change the shape of the lens allowing us to focus on objects that are near or far away.

• An image is focused onto the **retina** causing **rods** and **cones** to become excited which ultimately send signals to the brain.

Visual Response - Brightness Adaptation

- Intensity levels discrimination by the eye is crucial to image understanding.
- Actual dynamic range of the human eye adaptation is in the order of 10¹⁰ from scotopic threshold to glare limit.
- Essential point: The human visual system cannot operate on the entire dynamic range simultaneously.
- The process of gradually changing the overall sensitivity of the human visual system to adapt to the different intensities in the adaptation range is known as brightness adaptation.

B_a: Brightness adaptation level

B_b: Bottom threshold for discernible

intensities

Scotopic vision uses only **rods** to see, meaning that objects are visible, but appear in black and white, whereas **Photopic vision** uses **cones** and provides color.

Brightness Discrimination Test

I − light source ΔI_c – increment of illumination

The quantity $\Delta Ic/I$ which is discriminable 50% of the time with background illumination I, is called the Weber Ratio (small value represents good brightness discrimination).

Intensity Perception

Two phenomena demonstrate that perceived brightness is not a

simple function of intensity:

 The first phenomenon is based on the fact that the visual system tends to undershoot or overshoot around the boundary of regions of different intensities.

 The color of the individual bands appears lighter near its <u>left edge</u> and darker near its <u>right edge</u> due to the contrast with it's neighboring patch.

Intensity Perception first phenomenon

Intensity Perception first phenomenon

A typical observer can discern 12-24 different intensity changes

Mach bands

Intensity Perception

 The second phenomenon, called simultaneous contrast, is that a region's perceived brightness does not depend only on its intensity.

All the center squares have exactly the same intensity, but each appears
to the eye to become darker as the background gets lighter.

Intensity Perception second phenomenon

Optical Illusions

 Other examples of human perception phenomena are optical illusions, in which the eye fills in nonexistent details or wrongly perceives geometrical properties of objects.

Optical Illusions

Stare at the cross in the middle of the image and think circles

Optical Illusions

3D Giraffe

Discussion Question

• When you enter a dark theater on a bright day, it takes some time before you can see well enough to find an empty seat. What of the visual processes is at play in this situation?

This phenomenon is known as "dark adaptation" and it typically takes some minutes to reach its maximum, depending on the intensity of light exposure in the previous surroundings and the perseverance of the eye.

Achromatic, Monochromatic, Chromatic

Achromatic

Achromatic literally means "no color" or "without color." Graphite or charcoal drawings are 'achromatic' or without color, i.e., grayscale in black and white.

Monochromatic

Monochromatic uses 'mono' or <u>one hue</u> or color only. <u>White</u> is mixed with lightening or 'tint' the color, and <u>black</u> is mixed with darkening or creating a 'shade' of the color.

Chromatic

Chromatic means having color or <u>multiple hues</u> relating to or produced by color.

Key Stages in DIP

 Images are typically generated by illuminating a scene and absorbing the energy reflected/transmitted by the objects in that scene.

- Typical notions of illumination and scene can be different:
 - Satellite imaging (captured by energy reflectance)
 - Microscopic imaging (captured by energy reflectance)
 - Ultrasound imaging (captured by energy reflectance)
 - X-ray imaging (captured by energy transmissivity)
 - MRI imaging (captured by energy transmissivity)

Microscopic imaging

Satellite imaging

MRI imaging

X-ray imaging

Ultrasound imaging

Image Sensors

- Incoming energy (example-light) lands on a sensor material responsive to that type of energy and this generates a voltage.
- Collections of sensors are arranged to capture images.

Array of Image Sensors

- Before we discuss image acquisition, recall that a digital image is composed of M-rows and N-columns of pixels each storing a value.
- We discuss Greyscale images having intensity levels in the range 0-255 (black-white)

Spatial domain representation:

- The section of the real plane spanned by the coordinates of an image is called the spatial domain, with x and y being referred to as spatial variables or spatial coordinates.
- There are three ways of representing an image f(x, y):
 - 1. In the **first representation**, an image is displayed as a <u>plot of the function</u>, with two axes determining spatial location and the third axis being the values of **f** as a function of **x** and **y** i.e. (x, y, z).

Spatial domain representation:

2. Second representation is more common, and it shows **f** (**x**, **y**) as it would appear on a <u>computer display</u> or <u>photograph</u>. Here, the intensity of each point in the display is proportional to the value of **f** at that point.

Spatial domain representation:

3. Third representation is an array (matrix) composed of the numerical values of f(x, y). This is the representation used for computer processing.

```
-Origin
0 0 0 · · .5 .5 .5 · ·
0 0 0
0 \ 0 \ 0
0 \ 0 \ 0 \ 0 \ 0
0 0 0 0 0 0
```

Spatial domain representation:

We define the origin of an image at the top left corner.
 This is a convention based on the fact that many image displays (e.g., TV monitors) sweep an image starting at the top left and moving to the right, one row at a time.

Spatial domain representation:

- Digital images are sampled at regular intervals in the X and Y axes.
- **N** = row samples, and **M** = column samples.
- I = N x M array of intensity values.

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & \dots & f(0,M-1) \\ f(1,0) & f(1,1) & \dots & f(1,M-1) \\ \dots & \dots & \dots & \dots \\ f(N-1,0) & f(N-1,1) & \dots & f(N-1,M-1) \end{bmatrix}$$

Mathematical Model of a Digital Image

2D light intensity function:

$$f(3,6) = 3.56$$

Gray Scale Range

 Let the intensity (gray level) of a monochrome image at any coordinates (x, y) be denoted by:

$$L = f(x, y)$$

where,

- L lies in the range of $L_{\min} \leq L \leq L_{\max}$
- In theory, the requirement on L_{\min} is that it be nonnegative, and on L_{\max} that it be finite.
- The interval $[L_{min}, L_{max}]$ is called **Gray (or intensity) Scale**. In practice, the interval starts from 0 to a maximum value L-1:

$$I = 0$$
 is black

$$T = L-1$$
 is white

- The output of most sensors is a continuous voltage waveform whose amplitude and spatial behavior are related to the physical phenomenon being sensed.
- To create a digital image, we need to convert the continuous sensed data into a digital format. This requires two processes: sampling and quantization.
- To digitize a continuous function f(x, y), we have to sample the function in both coordinates and also in amplitude.

Digitizing the **coordinate values** (x, y) is called **sampling**. Digitizing the **amplitude values** f is called **quantization**.

- A digital sensor can only measure a limited number of samples at a discrete set of energy levels.
- More the number of sampling & quantization levels, better the quality of image, but requires more storage.

Remember that a digital image is always only an approximation of a real world scene.

255	255	255	255	255	255	255	255	255	255	255
255	255	20	0	255	255	255	255	255	255	255
255	255	75	75	255	255	255	255	255	255	255
255	75	95	95	75	255	255	255	255	255	255
255	96	127	145	175	255	255	255	255	255	255
255	127	145	175	175	175	255	255	255	255	255
255	127	145	200	200	175	175	95	255	255	255
255	127	145	200	200	175	175	95	47	255	255
255	127	145	145	175	127	127	95	47	255	255
255	74	127	127	127	95	95	95	47	255	255
255	255	74	74	74	74	74	74	255	255	255
255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255

0 = black; 255 = white

- How to choose the number of samples and the number of quantization level?
- They depend on ...
 - Requirement on image quality
 - Domain of usage
 - etc...

More on Quantization

 Due to storage and hardware consideration, the number of quantization level is in power of 2, i.e. L=2^k

When an image has 2^k possible intensity levels, it is common practice to refer to it as a "k-bit image" (e.g., a 256-level image is called an 8-bit image).

Saturation & Noise

- The range of values spanned by the gray scale is referred to as the dynamic range.
- The dynamic range of an imaging system is the ratio of the maximum measurable intensity to the minimum detectable intensity level in the system.
 - The upper limit is determined by saturation
 - The lower limit is determined by noise

Image Resolution

Image Size

$$L=2^k$$

N = rows

M = columns

of bits to store a digitized image:

$$b = N \times M \times k = N^2 k$$
 , when N=M

N×M	1(L=2)	2(L=4)	3(L = 8)	4(L = 16)	5(L=32)	6(L = 64)	7(L = 128)	8(L=256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

Spatial Resolution

- Spatial resolution of an image is determined by the amount of pixels in it.
- Spatial resolution defines the smallest discernable detail in an image.
 - Vision specialists will often talk about pixel size
 - Graphic designers will talk about dots per inch (DPI)

 The <u>amount of pixels</u> that a camera catches in a single photograph is known and quantified as its **resolution**.

Spatial Resolution

•

64 3

Spatial Resolution

abc def

FIGURE 2.20 (a) 1024×1024 , 8-bit image. (b) 512×512 image resampled into 1024×1024 pixels by row and column duplication. (c) through (f) 256×256 , 128×128 , 64×64 , and 32×32 images resampled into 1024×1024 pixels.

Intensity Level Resolution

- Intensity Level resolution refers to the <u>number of</u> <u>intensity levels used</u> to represent the image.
 - The more intensity levels used, the finer the level of detail discernable in an image.
 - Intensity level resolution is usually given in terms of the number of bits used to store each intensity level.

Number of bits	Number of Intensity Levels	Examples
1	2	0,1
2	4	00,01,10,11
4	16	0000,0101,1111
8	256	00110011,01010101
16	65,536	1010101000011111

How many levels of Quantization are enough?

- The number of pixels in each image is kept constant
- Less number of intensity levels produce <u>False contouring</u>

- The big question with resolution is always: how much is enough?
 - This all depends on what is in the image and what you would like to do with it
 - Key questions include
 - Does the image look aesthetically pleasing?
 - Can you see what you need to see within the image?

• The picture on the right is <u>fine for counting the number of cars</u>, but <u>not for reading the number plate</u>

Low Detail Medium Detail High Detail

Isopreference curve: Intensity level resolution Vs Spatial resolution

Total number of bits b=N²×k

For images with a large amount of detail only a few intensity levels may be needed.

Non-uniform Sampling & Quantization

- Sample more points in regions of details
 - Change of intensity level
 - Edges

Low-detail Mid-detail High-detail

Non-uniform sampling - low detail image

Uniform Sampled Image

Non-uniform Sampling

Non-uniform Sampled Image

Difference Image

Next Lecture

- Neighbors of a Pixel
- Adjacency
- Digital Path
- Connectivity
- Region and Boundary
- Proximity Relationship
- Defining Linear Operations