Clustering

CS771: Introduction to Machine Learning

Purushottam Kar

Clustering

The technical term used in books/papers is centroid

Given a set S of n data points $\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x} \in \mathbb{R}$

Split this set into C disjoint clusters $S_1, ... S_C$ i.e.

Assign every data point i to one of the subsets, say $z_i \in [C]$ (note that every data point is assigned to exactly one cluster) so that

Data points assigned to the same subset are "similar" to each other, e.g.

If
$$z_i = z_j = c$$
 for some $c \in [C]$ then $\|\mathbf{x}^i - \mathbf{x}^j\|_2$ is small

The K-means problem asks this problem a bit differently

Split S into C clusters $S_1, ... S_C$ and find a prototype for each cluster i.e. $\mathbf{\mu}^c \in \mathbb{R}^d$ s.t. if \mathbf{x}^i is assigned to cluster c i.e. $z_i = c$, then $\|\mathbf{x}^i - \mathbf{\mu}^c\|_2^2$ is small i.e. \mathbf{x}^i is close to prototype of its cluster

K-means clustering

$$\min_{\{\boldsymbol{\mu}^c \in \mathbb{R}^d\}, \{z_i \in [C]\}} \sum_{c=1}^C \sum_{i:z_i=c} \left\| \mathbf{x}^i - \boldsymbol{\mu}^c \right\|_2^2$$
The Heyd's algorithm offers monotonic productions.

K-MEANS/L

The Lloyd's algorithm offers monotonic progress. It always

lowers (or keeps the same) the value of $\sum_{c=1}^{C}\sum_{i:z_i=c}\|\mathbf{x}^i-\mathbf{\mu}^c\|_2^2$

1. Initialize m i.e. the objective function in each iteration. Can you show this?

- 2. For $i \in [n]$, update z_i using $\{\mu^c\}$
 - 1. Let $z_i = \arg\min_{c} \|\mathbf{x}^i \mathbf{\mu}^c\|_2^2$
- 3. Let $n_c = \#$ points assigned to c
- 4. Update $\mu^c = \frac{1}{n_c} \sum_{i:z_i=c} \mathbf{x}^i$
- 5. Repeat until convergence

This looks a bit like coordinate minimization where we fix all but one coordinate and update that one coordinate to its optimal value

True, coordinate minimization can be thought of as a special case of alternating optimization ©

K-means++

Initializes k-means *Provable guarant*

Note that a k-means++ always initializes centroids as actual data points. Also, no data point can be selected twice – if a data point \mathbf{x}^i gets selected once, then for all subsequent iterations, we will have $d_i = 0 = p_i$

Widely used in practice: especially beneficial if k is large

K-MEANS++ INITIALIZER

- 1. Select first centroid randomly
 - $\mu^1 = \mathbf{x}^i$, where $i \sim \text{UNIF}([n])$
- 2. For j = 2, ..., k
 - 1. For all $i \in [n]$, calculate $d_i = \min_{l \in 1, \dots, j-1} \left\| \mathbf{x}^i \mathbf{\mu}^l \right\|_2$
 - 2. Set $\mathbf{\mu}^j = \mathbf{x}^i$ where i is chosen with probability $p_i = \frac{a_i}{\sum_{s=1}^n d_s^2}$

Some applications of clustering

Can be used to make LwP a more powerful algorithm

Learn more than one prototype per class e.g. k prototypes by clustering data of each class into k clusters and using the centroids returned by the clustering algorithm as prototypes

A test point is assigned the class of its closest prototype

Note: this will increase training time, test time, and model size a bit

Seamlessly gives us the 1NN algorithm if we demand as many clusters (and hence as many centroids) as there are data points

Some applications of clustering

Identify subpopulations in data and improve ML performance Example: have data for 1M customers but don't know age/gender However, we suspect that age/gender significantly affects behaviour

Instead of running an ML algo (say SVM) on entire training data, first cluster training data and run ML algo separately on each cluster

If k clusters then k models will get learnt. For test data points, first find to which cluster they belong (using distance to centroid) and use that model Increases model size and test time a bit but may increase accuracy too! If we cluster these customers according to their onsite behaviour (which items did they view/like/buy), possible that we may accidentally discover gender/age groups within our data without knowing these details directly Groups may not be perfectly clean but should improve ML performance

Some applications of clu

Features for features!!

Reduce number of features (also called dimensionality reduction)

Example: have 1M feature these features are redui Example: synonyms in b Can cluster features tog

Once we have \hat{d} feature clusters, say $C_1, \ldots, C_{\hat{d}}$, we can create \hat{d} new features, e.g. by taking average of features within each cluster i.e. for each data point $\mathbf{x} \in \mathbb{R}^d$, create a new feature vector $\tilde{\mathbf{x}} \in \mathbb{R}^{\hat{d}}$ where $\tilde{\mathbf{x}}_l = \frac{1}{|C_l|} \sum_{j \in C_l} \mathbf{x}_j$ for all $l \in [\hat{d}]$

To do this, we first need

Method 1: represent feature j using values it takes on the n train data

 $\mathbf{z}^j = \left[\mathbf{x}_i^1, \mathbf{x}_i^2, \dots, \mathbf{x}_i^n \right] \in \mathbb{R}^n$ for c This trick is often called feature clustering Method 2: represent feature j u Let n_c denote number of train d

Method 2: represent feature
$$j$$
 u or feature agglomeration and is a form of dimensionality reduction. Will see other $\mathbf{z}^j = \left[\frac{1}{n_1}\sum_{i:y^i=1}\mathbf{x}_j^i, \frac{1}{n_2}\sum_{i:y^i=2}\mathbf{x}_j^i, \dots, \frac{1}{n_C}\sum_{i:y^i=C}\mathbf{x}_j^i\right] \in \mathbb{R}^c$ for all $j \in [d]$

Variations in clustering

Might want to prevent empty clusters –

Might want the algorithm to automatical number of clusters C

May Notice that imposing (resp. encouraging) balance among the clusters can Aggle be seen as a form of a constraint (resp. regularization) on clustering. The k-medoid problem also can be seen as a form of constrained clustering — clustering with Bregman divergences

Several other problem variants known e.g. k medoids (uses general $d(\mathbf{x}^i, \mathbf{\mu}^c)$ instead of $\|\mathbf{x}^i - \mathbf{\mu}^c\|_2^2$ and $\mathbf{\mu}^c$ must be one of the data points), soft k-means (a data point can belong to multiple clusters) K-medoids preferable when centroids/prototypes must be real data points