Тест по работе 3.10

Попытка

- 1. Прохождение данного теста является необходимым условием для допуска к записи на выполнение измерений
- 2. Проходная оценка: 8 баллов (80%)

Разрешено попыток: 5 Ограничение по времени: 20 мин.

Оценка / 10.00

10,00

Просмотр

Метод оценивания: Высшая оценка

Результаты ваших предыдущих попыток

Состояние

NAME AND ADDRESS OF		ASCORDANGE PROBLEMS	(1000)(3)500(00)(00)
1	Завершенные Отправлено Воскресенье, 23 Февраль 2020, 22:26	10,00	Не разрешается
2	Завершенные Отправлено Воскресенье, 23 Февраль 2020, 22:27	10,00	Не разрешается
3	Завершенные Отправлено Воскресенье, 23 Февраль 2020, 22:28	10,00	Не разрешается

4 Завершенные Отправлено Воскресенье, 23 Февраль 2020, 22:32

Высшая оценка: 10,00 / 10,00.

Вопрос 1 Ответ оохранен Балл: 1,00 **Р** Отметить вопрос

Заполните пропуски в тексте соответствующими терминами из выпадающих списков. По мере разряда конденсатора и возрастания силы тока в контуре конденсатора будет энергия электрического поля ф Возникающая в катушке при превращаться в энергию магнитного поля катушки и в джоулево тепло на активном сопротивлении. ЭДС самоиндукции будет тормозить рост тока. Предположим, что нарастании тока активное сопротивление достаточно мало, чтобы выделившееся при разрядке количество теплоты было невелико по сравнению с первоначальной энергией конденсатора. Процесс нарастания тока закончится, когда конденсатор полностью разрядится, а ток в цепи . В этот момент вся энергия контура будет сосредоточена в магнитном поле катушки. С достигнет максимума этого момента ток в цепи, не меняя направления, начнёт убывать. Однако, он прекратится не сразу, его будет поддерживать ЭДС самоиндукции , которая поменяет знак после смены возрастания тока на его убывание.

Ответ

вопрос

Вопрос 3 В LC-контуре происходят **незатухающие** гармонические колебания. Какие из перечисленных величин достигают амплитудных значений, в те моменты времени, когда заряд конденсатора равен нулю? Выберите один или несколько ответов: энергия магнитного поля полная энергия колебательного контура ЭДС самоиндукции в индуктивности сила тока в индуктивности энергия электрического поля

Borroc 4

Выберите один или несколько ответов: $\frac{\pi}{\Box}$

Какие из приведённых ниже выражений не имеют отношения к логарифмическому декременту колебаний?

$$rac{\sqrt{L}}{\ln\left(rac{q(t)}{q(t+T)}
ight)} \ \sqrt{rac{1}{R^2}}$$

Вопрос 5	От каких параметров зависит добротность электрического колебательного контура?	
Ответ сохранен	Выберите один или несколько ответов:	
Балл: 1,00	 Амплитуда силы тока в катушке индуктивности 	
№ Отметить вопрос	Максимальное напряжение на конденсаторе	
170	Индуктивность катушки	

Вопрос 6	Каким образом изменяются хара	ктеристики колебательного процесса при увеличении активного сопротивления в контуре?
Ответ сохранен		
Балл: 1,00	Логарифмический декремент	увеличивается •
№ Отметить вопрос	Добротность	уменьшается Ф
	Период свободных колебаний	увеличивается 🗢

Вопрос /
Ответ сохранен
Балл: 1,00
№ Отметить вопрос
Borrpoc

По какому закону убывает амплитуда затухающих колебаний в LCR-контуре с течением времени?

$$\sim \ln^{-1}$$

 $\sim \beta t^{-1}$

 \circ $\sim \ln^{-1} \beta t$

Вопрос 8	Каким образом изменяются хара	ктеристики колебательного процесса при уменьшении индуктивности катушки в контуре?
Ответ сохранен Балл: 1,00	Период свободных колебаний	уменьшается Ф
№ Отметить вопрос	Добротность	уменьшается •
470	Логарифмический декремент	увеличивается Ф

ı	Вопрос 9	
	Ответ сохранен	
	Балл: 1,00	
	№ Отмети вопрос	

Выберите один ответ: $R > \sqrt{\frac{C}{C}}$

Каков критерий перехода от колебательного характера изменения напряжения на конденсаторе к его апериодической разрядке?

$$\circ$$
 $R > \sqrt{\frac{L}{C}}$

$$R < 2\sqrt{rac{1}{6}}$$

$$R>2\sqrt{rac{L}{C}}$$

$$2\sqrt{\frac{c}{L}}$$

Вопрос 10 Ответ сохранен	С каким шагом по изменению значения сопротивления в диапазоне $0\div 100$ Ом следует производить измерение амплитуды затухающих колебаний в первой части лабораторной работы?	
Балл: 1,00	0==== 10	
№ Отметить вопрос	Ответ: 10	® OM