AMATH 581: HW#1

I. Consider the function

$$f(x) = x \sin(3x) - e^x$$

and solve for the x-value near $x \times .5$ that satisfies f(x) = 0.

In the first part, use the Newton-Raphson method w/initial guess $x_1 = -1.6$ to converge to the solution to 10^{-6} .

A1. Newton-Raphson method. f(xr)=0 (root finding method)

iteration (4). Guess the root, Xo = -1.6 initially.

Then,
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

We may obtain the slope from the original function, $f(x) = x \sin(3x) - e^x$

$$f'(x) = [x \cos(3x) \cdot 3 + \sin(3x)] - e^{x}$$

See attached code for full solution. I also include the following table for convergence for reference.

Assumptions: x1 owns as the "first iteration" (as given, it was x1).

In the second part, use bisection with the initial endpoints x = -7 and x = -4. Keep track of the midpoint values and number of iterations until an accuracy of 10^{-6} is achieved.

A2. Bisection method. Now we perform bisection with the left endpoint -. 7 and right endpoint -. 4.

Again I used python to compute the method, since the tolerance 10-6 is much higher than machine precision.

See attached code for full solution. I also include the following table for convergence for reference.

iteration #	X mid	f(x-mid)
1_	55	0287
2	625	061
3	5875	+.021
Ч	56875	60269
5	578125	. 009 44
6	 5734375	• ๑๘४२२
7	-5711	3.99 x10 ⁻⁴
8	5699	(· l x lo ⁻³
9	570 5	3.7 x10 ⁻⁴
ĮD.	5708	1.466 x10-5
11	5766S	1.77 ×10-4
12	57 073	- 8.156 ×10 -5
13	570 ⁷ 6	-3.344 x10-5
14	570782	- 9.393x10-6
15	-, S7079	2.63×10-6
I 6	5 70787	-3.3×10-6
17	-,S76789	-3.7 × 10 ⁻⁷
A2		

This method, while it initially drops much faster than the Newton-Raphson method, ends up taking a lot longer to converge, ultimately.

II. let the following be defined:

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 0 & -3 \\ 0 & 0 & -1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ -10 \end{bmatrix}, \quad X = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Calculate the following:

a)
$$A+B$$

$$\begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ -1 & 3 \end{bmatrix}$$

b)
$$3x - 4y$$

$$3\begin{bmatrix} 1 \\ 0 \end{bmatrix} - 4\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$$
A5

c)
$$Ax$$

$$\begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$A6$$

d)
$$\beta(x-y)$$

$$X-y = \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$A \cdot (x-y) = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1-2 \\ -1-1 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$

$$A \cdot (x-y) = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ -1 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$

$$A \cdot (x-y) = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ -1 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$

$$A \cdot (x-y) = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ -1 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$

$$A \cdot (x-y) = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ -1 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$

$$A \cdot (x-y) = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ -1 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$

$$\begin{cases} 1 & 2 \\ 2 & 3 \\ -1 & 0 \end{cases} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix}$$

h) BC
$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & -3 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 4 & 0 & -6 \\ 0 & 0 & -2 \end{bmatrix}$$
 All

i) CD
$$\begin{bmatrix} 2 & 0 & -3 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 1 & 0 \end{bmatrix}$$
A12