

VII.1. Définition, Exemples sur les images en niveaux de gris

- Modification d'un attribut pixel (gris, couleur, ...) quelque soit la position spatiale et indépendamment des pixel voisins
- Transformation d'un niveau de gris n en une valeur n' telle que : $n' = \varphi(n)$
- Traitement « point » versus traitement par filtrage
 - > Traitement par filtrage = Traitement local : Modification d'attribut relativement à un voisinage (cf chapitre suivant)

- Exemple : Augmentation du contraste par <u>étalement ou</u> <u>linéarisation</u>
 - Modification de la plage utilisée des niveaux de grix ([n_{min}, n_{max}] pour que toute l'échelle des niveaux de gris soit utilisée :
 - Soient $n_{min'}$ $n_{max'}$ respectivement le niveau de gris minimum, maximum dans l'image d'origine
 - $n'=255*(n-n_{min})/(n_{max}-n_{min})$, alors: $n'_{max}=255$ et $n'_{min}=0$

- $lue{}$ Comment choisir la fonction de transformation φ ?
- Les histogrammes sont des outils très pratiques pour cela:
 - Estimer moyenne, min, max, max-min (contraste), écart-type, ...

h(n) = nbp: Dans l'image, il y a h(n) pixels de niveau de gris n.

4

VII. Traitement « Point »

VII.2. Histogramme de niveau de gris

- Fonction de comptage
 - h(n) = nbp: nombre de pixels dans l'image possédant le niveau n
 - > On a : $\sum_{n=0}^{255} h(n) = N_T$ le nombre total de pixels
- Fonction de densité de la probabilité des niveaux de gris
 - $p(n)=h(n)/N_T$, N_T le nombre total de pixels
 - p(n): estimation de la probabilité du niveau n dans l'image considérée
 - Normalisation :

$$\sum_{n=0}^{255} p(n) = 1$$

VII.3. Transformations affines

- Image trop claire : valeur moyenne importante
 - $n'=max(0; n-n_0)$: diminuer les valeurs de niveau de gris
 - Justification de la fonction max : saturation à zéro (noir)
- Image trop sombre : valeur moyenne faible
 - $n' = min(255 ; n + n_0)$: augmenter les valeurs de niveau de gris
 - Justification de la fonction *min*: saturation à 255 (blanc)
- Image pas assez contrastée : Ecart entre maximum et minimum faible, ou bien écart-type faible
 - \rightarrow n'= min(max(255*(n-n_{min})/(n_{max}-n_{min}); 0); 255)
 - Justification des fonctions min et max : saturation à 0 et à 255
- Dessiner ces trois fonctions

Etalememt ou linéarisation d'histogramme

Exemple : Image plutôt sombre, qui utilise presque toute la

dynamique de l'image

Objectif:

- Rendre cette image plus claire
 - On impose la valeur moyenne de la nouvelle image : environ 100
 - \rightarrow Offset = 100 53, 7 = 46,3; offset = round(46,3)
 - \rightarrow n'=min(255, n+46)

Résultat :

Objectif:

- Rendre cette image plus contrastée en augmentant le contraste pour utiliser toute la dynamique possible des niveaux de gris
 - Correspondances des valeurs minimales et maximales
 - > n_{min} → noir et n_{max} → blanc : 20 → 0 et 200 → 255
 - Transformation affine : $n' = min(max(255*(n-n_{min})/(n_{max}-n_{min}); 0); 255)$

Résultat :

Fonction f de transformation

Résumé des deux modifications d'histogramme

Résumé des deux modifications d'histogramme

Comment peut-on à la fois contrôler la moyenne et le contraste différemment suivant les zones claires ou sombres dans l'image ?

Réponse : avoir des fonctions de transformation non linéaires entre le blanc et le noir

Exemple : Utiliser toute la gamme possible des niveaux de gris et augmenter le contraste <u>dans la zone sombre</u>

- Création d'une fonction de transformation en 2 morceaux
 - Dans la zone sombre jusqu'à 50
 - Et delà de 50

•

VII. Traitement « Point »

VII.4. Transformations affines par morceaux

- Transformation affine : n'=a.n+b
 - > a >1 : étalement des niveaux de gris
 - augmentation du contraste
 - a < 1 : compression des niveaux de gris
 - diminution du contraste
 - > b > 0 : plus claire
 - ▶ b < 0 : plus sombre</p>
- Reprendre la démarche précédente mais l'appliquer par intervalle de niveaux de gris

Exemple : Utiliser toute la gamme possible des niveaux de gris et augmenter le contraste <u>dans la zone sombre</u>

- Création d'une fonction de transformation en 2 morceaux
 - Dans la zone sombre jusqu'à 50
 - Et delà de 50

- Les niveaux de gris entre 25 et 50 sont étalés entre 0 et 120
- Les niveaux de gris entre 50 et 200 sont étalés entre 120 et 255

Résultat :

VII.5 Segmentation par seuillage

50

- Modifications d'histogramme par seuillage
 - Les seuils
 - Détermination du nombre de seuils ?
 - Comment trouver les seuils ?
 - Manuellement ou automatiquement ?
 - Algorithmes de Kmoyennes (KMeans) ou « MeanShift »
 - Cf Mise en œuvre en TP
 - Inconvénient si utilisation telle quelle :
 - Pas de prise en compte des relations de voisinages spatiaux

VII.6 Spécification d'histogramme

- Transformation d'un histogramme vers une fonction cible que l'on se donne a priori
 - La fonction φ de transformation va dépendre de l'histogramme de l'image d'origine

- Exemple d'utilisation
 - Problème de l'invariance aux conditions d'illumination à l'acquisition des images
 - Prendre comme distribution cible, la distribution d'une image acquise qui sera la référence
 - Prendre comme distribution cible, une distribution théorique donnée :

distribution uniforme: trouver une fonction de transformation φ pour que les niveaux de gris soient utilisés le plus uniformément possible

 $p_s(n_s)$

Égalisation d'histogramme

- Formalisme statistique du problème posé
 - Soit n_e une variable <u>continue</u> des niveaux de gris
 - Soit p_e(n_e) l'histogramme normalisé des niveaux de gris sur une image I_e, c'est un estimateur de la fonction de densité des niveaux de gris en entrée. On a alors :

$$\int_{0}^{255} p_e(n_e) dn_e = 1$$

- * On cherche une transformation, $n_s = \varphi(n_e)$ pour que l'image I_s en sortie ait comme fonction de densité $G(n_s)$ uniforme :
 - $G(n_s)$ =constante = 1/255

$$p_s(n_s) = G(n_s) = 1/255$$

* Par définition d'une fonction de densité et sachant qu'il y a une correspondance bijective entre n_e et n_s à travers la fonction φ à trouver, on a :

$$p_e(n_e).dn_e = p_s(n_s).dn_s$$

• De plus, $p_s(n_s)$ est une densité uniforme, donc :

$$p_e(n_e).dn_e = p_s(n_s).dn_s = dn_s/255$$
 or
$$n_s = \varphi(n_e) \quad \text{et} \quad \frac{dn_s}{dn_e} = \varphi'(n_e)$$
 donc
$$\frac{dn_s}{dn_e} = 255.p_e(n_e) = \varphi'(n_e)$$

D'où

$$\varphi(n_e) = 255 \int_{0}^{n_e} .p_e(n).dn$$

NB: l'intégrale de la fonction de densité p_e est <u>la fonction de répartition</u>

- Approximation pour des variables discrètes
 - n_e et n_s sont en réalité des variables discrètes de 0 à n_{max} par pas de 1, avec n_{max}, le niveau de gris maximum que l'on veut atteindre en sortie
- Puisque les variables sont discrètes, <u>la solution ne sera pas exacte</u>
- A partir de l'histogramme normalisé (p_e) : φ se calcule en sommant progressivement :

$$\varphi(n_e) = n_{\text{max}} \sum_{k=0}^{n_e} p_e(k)$$

A partir de l'histogramme non normalisé (h_e), idem mais attention à la constante de normalisation (N_T le nombre total de pixels):

$$\varphi(n_e) = \frac{n_{\text{max}}}{N_T} \sum_{k=0}^{n_e} h_e(k)$$

- Exemple : image en 16 niveaux de gris
 - h_e: histogramme <u>non normalisé</u>, ch_e son cumul
 - $N_T = 200 ; n_{max} = 15$

n _e	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
h _e	0	0	0	30	20	5	5	30	40	40	0	0	20	10	0	0
che	0	0	0	30	50	55	60	90	130	170	170	170	190	200	200	200

> On a : $\varphi(n_e) = ch_e(n_e) \times (15/200)$

n _e	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n_s	0	0	0	2.25	3.75	4.125	4.5	6.75	9.75	12.75	12.75	12.75	14.25	15	15	15
$n_{\rm s}$	0	0	0	2	4	4	5	7	10	13	13	13	14	15	15	15

> Substitution $n_s = \varphi(n_e)$

$n_{\rm s}$	0	0	0	2	4	4	5	7	10	13	13	13	14	15	15	15
h_s	0	0	0	30	20	5	5	30	40	40	0	0	20	10	0	0

Regroupement des niveaux

$n_{\rm s}$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
h_s	0	0	30	0	25	5	0	30	0	0	40	0	0	40	20	10

Exemple suite

 $ch_e/200$, $ch_s/200$

Application à l'image en exemple

Application à l'image en exemple

4

- Pour en savoir plus : Cas général
 - X_e variable aléatoire, x_e ses réalisations (niveaux de gris sur une image I_e), l'histogramme est un estimateur de la fonction de densité f(x_e), F(x_e) est la fonction de répartition.
 - On cherche une transformation, $x_s = \phi(x_e)$ pour que l'image Is des niveaux de gris x_s ait une fonction de répartition $G(x_s)$ fixée à l'avance
 - * Réponse : $x_s = \phi(x_e) = G^{-1}[F(x_e)]$

VII.7. Traitement des images en couleur

- A proscrire : Transformation sur les histogrammes R, G, B
 - Génération de fausses couleurs : Pourquoi ?
- Passage dans un espace à luminance séparée
 - > Transformation sur la dimension de luminance
- Cf TP