3rd October, 2016

Home Assignment –10

1. An Instrumentation Amplifier is shown in Fig. 1. If $v_1 = 3 + 0.04 \sin(\omega t)$ and $v_2 = 3 - 0.04 \sin(\omega t)$, find the voltages v_a , v_b , v_c and v_d . Also find the voltage gain of this circuit. Assume all op-amps are ideal.

2. A square wave generator is shown in Fig. 2. If the period of the square wave is 400 μ s and the capacitor voltage is 8 V_{p-p} , find 'C' and 'R₂'. Assume $V_{osat} = \pm 10$ V and the opamp is ideal.

Fig. 2

3. A triangular wave shown in **Fig. 3(a)** is fed to a **Schmitt trigger** circuit shown in **Fig. 3(b)**. Assuming $V_{osat} = \pm 12 V$, sketch the output voltage $v_o(t)$ and v_o vs v_i with relevant information.

4. A difference amplifier is shown in Fig. 4. If $v_0 = K(v_2 - v_1)$, determine 'K'. Assume all op-amps are ideal.

5. For the ideal op-amp shown in **Fig. 5**, sketch v_o as a function of v_i . Assume that both diodes have cut-in voltages (V_{γ}) of 0.7 V and Zener voltages (V_{z}) of 6 V.

Fig.5

$$v_1 = 3 + 0.04 \sin(\omega t)$$
 (V)
 $v_2 = 3 - 0.04 \sin(\omega t)$ (V)

trom the bigure,

$$i = \frac{\gamma - \gamma_2}{R_1} = \frac{3 + 0.04 \sin(\omega t) - 3 + 0.04 \sin(\omega t)}{1 \text{ K}}$$

= 0.08 Sin(wt) mA.

Then,

$$v_{a} = v_{1} + i_{1}R_{2} = 3 + 0.04 \sin(\omega t) + [0.08 \sin(\omega t) \times 10^{3} \times 50 \times 10]$$

$$= 3 + 0.04 \sin(\omega t) + 4 \sin(\omega t)$$

$$= 3 + 4.04 \sin(\omega t) \text{ (V)}$$

$$v_{b} = v_{2} - i_{1}R_{2} = 3 - 0.04 \sin(\omega t) - [0.08 \times 10^{3} \sin(\omega t) \times 50 \times 10^{3}]$$

$$= 3 - 0.04 \sin(\omega t) - 4 \sin(\omega t)$$

$$= 3 - 4.04 \sin(\omega t) \text{ (V)}$$

$$v_{d} = v_{c} = \frac{R_{F}}{R + R} \times v_{b}$$

$$= \frac{10 \, \text{K}}{10 \, \text{K} + 10 \, \text{K}} \left[3 - 4.04 \, \text{Sincwt} \right]$$

$$\Rightarrow v_d = v_c = 1.5 - 2.02 \text{ sin (wt)}$$
 (V)

To bind vo, we use the bonowing deduced circuit.

$$V_0 = V_0(-\frac{RF}{R}) + V_b \times \frac{RF}{RF+R} (1 + \frac{RF}{R})$$

$$= \frac{RF}{R} (V_b - V_0)$$

For RF=R=10 KB; Va = Vb-Va

$$= 3 - 4.04 \, \text{Sin}(\omega t) - 3 - 4.04 \, \text{Sin}(\omega t)$$

$$\Rightarrow v_0 = -8.08 \, \text{Sin}(\omega t) \, (v)$$

NOW,

Voltage gain,
$$A_{dm} = \frac{v_0}{v_2 - v_1} = \frac{-8.08 \text{ sincwt}}{3 - 0.04 \text{ sincwt}} - 3 - 0.04 \text{ sincwt}}$$

$$= \frac{-8.08}{-0.08} = 101$$

when
$$v_0 = +10 \text{ V} = (V_{\text{stat}})$$

$$v_0^{\dagger} = \frac{R_2}{R_1^2 + R_2} \times v_0 = \frac{10 R_2}{R_2^2 + 1000}$$

Capacitor will charge till v get equal to v.

From the waveform given above, we have

$$\Rightarrow 4 = \frac{10R_2}{R_2 + 1000}$$

$$\Rightarrow$$
 6 R = 4000

$$\Rightarrow R_2 = \frac{4000}{6} = \frac{2}{3} \text{ kg}$$

capacitor changes for the period of 200 µs and dischanges for the period of 200 µs

let's consider during the changing period

$$v(T_1) = -4V$$
Voxat = $10V$

Then

$$v(T_2) = + V_{0,\text{Aut}} - \left[V_{0,\text{Aut}} - v(T_1)\right] = \left(\frac{T_2 - T_1}{RC}\right)$$

$$= 10 - \left[10 - (-4)\right]e^{-\frac{200 \times 10^6}{RC}}$$

$$= 10 - 14e^{-\frac{200 \times 10^6}{RC}}$$
broom the above bigune $v(T_2) = +4v$

$$\Rightarrow 4 = 10 - 14e^{-\frac{200 \times 10^6}{RC}}$$

$$\Rightarrow 14e^{-\frac{200 \times 10^6}{1000 \times C}} = 10 - 4 = 6$$

$$\Rightarrow e^{-\frac{2 \times 10^7}{C}} = \frac{6}{14} \Rightarrow -2 \times 10^7 = 4n \cdot \frac{6}{14} = -0.8473$$

$$\Rightarrow c = -\frac{2 \times 10^7}{-0.8473} = 0.236 \times 10^{-6} = 0.236 \mu F$$

$$\vdots \qquad R_2 = \frac{2}{3} \text{ k.s.}$$

$$c = 0.236 \mu F$$

Now if Ui goes more than 6V, opening will switch to -Voiset (= -12V)

Now if Ui goes more than 6V, opening will switch to -6V $V_3 = -12 \times \frac{400}{400 + 400} = -6V$ Firsther if Ui falls below -6V, opening will again switch to +Vosat (= +12V)

Given all the op-amps are ideal. So $\gamma = \gamma$ and $\gamma = \gamma_2$ Apply KCL at node A,

$$\frac{\nu_1}{R_2} + \frac{\nu_1 - \nu_B}{R_1} + \frac{\nu_1 - \nu_2}{R} = 0$$

$$\Rightarrow \frac{v_B}{R_1} = -\frac{v_2}{R} + v_1 \left(\frac{1}{R} + \frac{1}{R_1} + \frac{1}{R_2} \right) - 0$$

Apply Kci at mode i,

$$\frac{v_2 - v_B}{R_1} + \frac{v_2 - v_1}{R} + \frac{v_2 - v_0}{R_2} = 0$$

$$\Rightarrow \frac{v_0}{R_2} = v_2 \left(\frac{1}{R} + \frac{1}{R_1} + \frac{1}{R_2} \right) - \frac{v_1}{R} - \frac{v_B}{R_1}$$

$$= v_2 \left(\frac{1}{R} + \frac{1}{R_1} + \frac{1}{R_2} \right) - \frac{v_1}{R} + \frac{v_2}{R} - v_1 \left(\frac{1}{R} + \frac{1}{R_1} + \frac{1}{R_2} \right)$$

[: From O]

$$\Rightarrow \frac{V_0}{R_2} = \frac{V_2}{R_1} \left(\frac{2}{R} + \frac{1}{R_1} + \frac{1}{R_2} \right) - v_1 \left(\frac{2}{R} + \frac{1}{R_1} + \frac{1}{R_2} \right)$$

$$\Rightarrow v_0 = R_2 \left(\frac{2}{R} + \frac{1}{R_1} + \frac{1}{R_2} \right) \left(v_2 - v_1 \right)$$

$$: K = \frac{R}{2} \left(\frac{2}{R} + \frac{1}{R_1} + \frac{1}{R_2} \right)$$

$$= \frac{1}{4} = \frac{v_1^2}{R} + \frac{v_R}{R} = \frac{(v_1^2 - 5)}{R} \left(\frac{v_1^2 - v_2^2}{R} \text{ and } \frac{v_R^2 - 5V}{R} \right).$$

) ia wie be positive for vi >5 V.

Otherwise ia win remain negative.

if
$$0; > 5 V$$
, $0 = -(6+0.7) = -6.7 V$.

(D. is forward biased & D. is reverse biased)

(D. is forward biased & D. is reverse biased)

(D. is forward biased & D. is reverse biased)

(D. is forward biased & D. is reverse biased)

