

Question 21: Let CD be a tree. Angle of elevation from A and B are 60° and 30° respectively. Let AD = x m and CD = h m

In right Δ ACD,

$$\frac{CD}{AD}$$
 = tan 60°
 $\frac{h}{x}$ = √3
 $h = \sqrt{3}x - - - (1)$
In right △BCD,
 $\frac{CD}{BD}$ = tan 30°
 $\frac{h}{20 + x} = \frac{1}{\sqrt{3}}$
∴ √3h = 20 + x - - - (2)
Eliminating x from (1) & (2),
√3h = 20 + $\frac{h}{\sqrt{3}}$ or 3h = 20 √3 + h
or h = 10 √3 = 17.32

Height of the tree = 17.32 m

Question 22:

Let AB be the building 7 meters high. AE \perp CD, where CD is the cable tower.

In **Δ**AED,

∠EAD = 30° = Angle of depression

$$\therefore \frac{AE}{ED} = \cot 30^{\circ}$$

$$\Rightarrow \frac{x}{7} = \sqrt{3}$$

In ∆AŒ,

∠CAE = 60° = Angle of elevation of C

∠AEC = 90°

$$\therefore \frac{CE}{AF} = \tan 60^{\circ}$$

$$\Rightarrow \frac{h}{x} = \sqrt{3}$$

$$\therefore h = \sqrt{3}x$$

$$h = \sqrt{3} \times 7\sqrt{3} = 21 \text{ m}$$

Height of the tower = CD = CE + ED = (21 + 7) m = 28 m

********** END *******