

Ministère de l'Enseignement supérieur et de la recherche scientifique Université Abderrahmane Mira de Bejaïa

Faculté des Sciences Exactes Département de Mathématiques Année universitaire : 2022-2023

Enseignante: Dr. BERMAD

Durée: 1h30

TD 1 Data Mining:

Techniques de Classification

A l'intention de : L3STID

Exercice 1

Dans la figure 1, les points représentent un ensemble de vecteurs de dimension 2, appartenant à 2 classes appelées A et B. L'ordre de sélection des vecteurs est indiqué par les indices situés à côté de chacun. Les points 1 à 4 sont déjà classés; on applique donc l'algorithme en commençant avec le point 5.

- 1. Appliquer la méthode des KPPV avec k=3. Ecrire la classe résultante à côté de chaque point. Préciser la démarche en prenant quelques points comme exemples.
- 2. Montrer par un exemple (tiré de la figure 1 ou proposé) que le résultat de la classification dépend de l'ordre de présentation des exemples.

Exercice2:

Notre département mathématiques désire utiliser l'apprentissage automatique afin d'améliorer le processus de sélection des étudiants pour l'accès à la première année master PSA pour la prochaine année 2023/2024. Pour atteindre cet objectif, le responsable de la spécialité PSA a décidé d'utiliser les résultats des étudiants inscrits en M1 PSA pour l'année en cours en se basant sur leurs résultats dans les matières: Analyse Numérique et Algèbre obtenus en Licence. La table suivante résume les données rassemblées pour l'entrainement:

N°	Analyse Numérique	Algèbre	Admis en M1 (2022/2023)
1	Excellent	Moyen	Oui
2	Faible	Excellent	Non
3	Moyen	Moyen	Non
4	Moyen	Excellent	Oui
5	Faible	Faible	Non
6	Excellent	Faible	Non

1. Calculer la décision estimée pour l'étudiant ayant les mentions (Analyse Numérique: Moyen, Algèbre: Faible) par la méthode KPPV avec K=5 en utilisant la distance de Hamming généralisée:

$$\begin{cases} D(x_{i}, x_{j}) = 1 - \frac{1}{Nb_{Att}} \sum_{k=1}^{Nb_{Att}} \frac{f(x_{ik}, x_{jk})}{Nb \ modalit\acute{e}s} \\ \text{avec} \quad f(x_{l}, x_{2}) = 1 \quad \text{si} \quad x_{ik} = x_{jk} \quad , \quad 0 \text{ sinon} \end{cases}$$

- 2. Construire un modèle de décision bayésien en utilisant l'estimateur de Laplace.
- 3. Calculer la décision obtenue par ce modèle pour l'étudiant de la question précédente.

Exercice3:

Etant donné l'ensemble d'apprentissage " jouer au tennis?"

Jour	Ciel	Température	Humidité	Vent	Jouer au tennis?
1	Ensoleillé	Chaude	Élevée	Faible	Non
2	Ensoleillé	Chaude	Élevée	Fort	Non
3	Couvert	Chaude	Élevée	Faible	Oui
4	Pluie	Tiède	Élevée	Faible	Oui
5	Pluie	Fraîche	Normale	Faible	Oui
6	Pluie	Fraîche	Normale	Fort	Non
7	Couvert	Fraîche	Normale	Fort	Oui
8	Ensoleillé	Tiède	Élevée	Faible	Non
9	Ensoleillé	Fraîche	Normale	Faible	Oui
10	Pluie	Tiède	Normale	Faible	Oui
11	Ensoleillé	Tiède	Normale	Fort	Oui
12	Couvert	Tiède	Élevée	Fort	Oui
13	Couvert	Chaude	Normale	Faible	Oui
14	Pluie	Tiède	Élevée	Fort	Non

Jeu de données "Jouer au tennis?"

- 1. Construire l'arbre de décision en utilisant l'algorithme ID3?
- 2. En appliquant l'algorithme des k plus proches voisins (KNN), allez-votre jouer s'il y a du soleil, beaucoup d'humidité, température moyenne et pas de vent ?

Exercice 4:

- 1. Sur le jeu de données « jouer au tennis ? »:
- 2. Quelle est la classe prédite en utilisant la règle de Bayes d'une journée ensoleillé avec vent faible ?
- 3. Quelle est la classe d'une journée ensoleille, température de 23°C, humidité de 70 % et vent faible (jeu d'apprentissage2)?
- 4. Quelle est la probabilité de jouer un jour où la température est de 23°C?
- 5. Quelle est la probabilité de jouer un jour où l'humidité est comprise entre 60 et 75 %?

Exercice5:

Etant donné l'ensemble d'apprentissage suivant:

Numéro	Ensoleillement	Température (°F)	Humidité(%)	Vent	Jouer
1	Soleil	75	70	Oui	Oui
2	Soleil	80	90	Oui	Non
3	Soleil	85	85	Non	Non
4	Soleil	72	95	Non	Non
5	Soleil	69	70	Non	Oui
6	Couvert	72	90	Oui	Oui
7	Couvert	83	78	Non	Oui
8	Couvert	64	65	Oui	Oui
9	Couvert	81	75	Non	Oui
10	Pluie	71	80	Oui	Non
11	Pluie	65	70	oui	Non
12	Pluie	75	80	Non	Oui
13	Pluie	68	80	Non	Oui
14	Pluie	70	96	Non	Oui

- 1. Construire l'arbre en utilisant l'algorithme C4.5?
- 2. Estimer la précision du modèle obtenu.