射频功率放大器实验(虚拟实验)

姓名: 高佳峻 学号: 04017419

(一) 甲类射频功率放大器电路

示波器中的输入输出信号的波形

分析:

在该电路中,基极输入电压与集电极输出电压均呈现正弦波形,其中输出电压接近于电源电压,工作在大信号极限运用状态,此时输出波形还没有失真。

$$\eta = \frac{P_O}{P_D} = \underline{12.053 / (3.12*12) = 32.19\%}$$

观察失真 电路输入输出波形为:

分析:

输入信号增加至 60mV 时,因甲类放大器输出信号与输入信号成比例增大,输出信号的电压已超过电源电压 12V,导致放大器工作在非线性区域,产生了失真。

(二) 乙类射频功率放大器电路

输入输出信号波形的仿真

示波器中显示的输入输出信号的波形

失真分析:

由于实际电路中三极管导通电压的存在,只有当输入电压足够大时,输出信号才能有明显变化,当输入电压低于导通电压时,两管都截止,出现一个电压值为0的阶段,因此输出波形出现断断续续的情况。

加大输入信号的幅值为 8V 时,输入输出信号的波形

原因分析:

当输入电压增到 8V 时,明显大于两个三极管的导通电压,两管在很短时间内即能正常工作。这段时间相比整个周期可以忽略,所以失真现象不明显。

消除交越失真后的波形

输入信号幅值 (V)	2	4	5	6	6.5	7
电源电压利用系数 ξ	0.167	0.333	0.417	0.500	0.542	0.583
输出功率 P _L (mW)	1.796	7.494	11.829	17.157	20.194	23.479
总的直流功率	14.402	29.298	36.800	44.320	48.084	51.850
$P_{\scriptscriptstyle D}$ (mW)						
两管总耗散 P_c (mW)	12.605	21.804	24.971	27.163	27.890	28.371
效率η	12.5%	25.6%	32.1%	38.7%	42.0%	45.3%

输入信号幅值 (V)	8	9	10	12	13	14
电源电压利用系数 ξ	0.667	0.750	0.833	1.000		
输出功率 P _L (mW)	30.796	39.109	48.419	70.028		
总的直流功率	59.388	66.932	74.482	89.584		
$P_{\scriptscriptstyle D}$ (mW)						
两管总耗散 P_c (mW)	28.592	27.823	26.063	19.556		
效率η	51.9%	58.4%	65.0%	78.2%		

当输入幅值过大时出现的失真波形: (分别为 13V 和 14V 的失真波形)

两管管耗 与 电源电压利用系数 关系图

分析:

输入信号幅值不可以无限增大,功放最大效率在输入信号幅值为 12V 时取到,功放最大效率为 78.2%。

随着电源电压利用系数增加,即输入信号幅值的增大,两个管子的总耗散功率先增加,到一定值后再减小,根据样条插值其最大值约为 28.63mW。而且由上图所示,当输入信号增加到 13V、14V 时会出现愈发严重的失真。因此,输入信号的幅值,不宜过大也不宜过小。

思考题:

(1)

答: 可以。当静态工作点在交流负载线中点时,输出最大的电压和电流,此时 电路的输出功率最大。因此,调节其他电阻使电路满足上述条件即可。

(2)

答: MOS 管受高温影响较小,并且功耗较小。换用 MOS 管后输出电压幅度减小,不失真范围增大。优点为相比于双极型晶体管,MOS 管所构成的 B 类功放不易发生失真。

(3)

答:原来提供-12V的电源接地,原来+12V的电源改为+24V电源。改变后相比之前,电路中各部分直流分量增加了12V。