

Università degli Studi dell'Aquila

Seconda Prova Parziale di Algoritmi e Strutture Dati con Laboratorio

Mercoledì 10 Gennaio 2018 – Prof. Guido Proietti (Modulo di Teoria)

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1 (Domande a risposta multipla): Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una x la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo ⊗) e rifare la × sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

1. Dato l'albero AVL in figura si supponga di inserire l'elemento con chiave 11. La visita in ordine anticipato dell'AVL ribilanciato restituisce:

*a) 9,5,4,12,11,14 b) 4,5,9,11,12,14

- c) 4,11,14,5,12,9
- d) 4,5,11,14,12,9

2. Siano $h_1(\cdot), h_2(\cdot)$ due funzioni hash. Quale delle seguenti funzioni descrive il metodo di scansione con hashing doppio in una tabella hash di dimensione m per l'inserimento di un elemento con chiave k dopo l'i-esima collisione:

a) $c(k, i) = (h_1(k) + m \cdot h_2(k)) \mod i$

- b) $c(k, i) = (h_1(k) + h_2(k)) \mod m$
- *c) $c(k, i) = (h_1(k) + i \cdot h_2(k)) \mod m$
- d) $c(k, i) = (h_1(k) + h_2(k)) \mod i$
- 3. Dato il grafo G in figura quale delle seguenti sequenze di vertici rappresenta un suo ordinamento topologico?

- a) 3,8,7,5,11,10,2,9
- b) 5,7,3,11,9,8,2,10
- *c) 3,7,8,5,11,10,2,9
- d) Il grafo non ammette un ordinamento topologico
- 4. Dato il grafo G in figura si applichi l'algoritmo di Bellman&Ford con sorgente il nodo 5, esaminando gli archi in ordine lessicografico. Qual è la stima di distanza dal nodo 5 al nodo 2 alla fine della seconda iterazione?

- a) $+\infty$ d) Non si può applicare l'algoritmo di Bellman&Ford
- 5. Dato un grafo pesato con n vertici ed $m = \Theta(n \log n)$ archi, l'algoritmo di Dijkstra realizzato con heap binomiali costa: *d) $O(n \log^2 n)$ a) $\Theta(n^2)$ b) $\Theta(n+m)$ c) O(m)
- 6. Si consideri il grafo di Domanda 4, e si applichi l'algoritmo di Dijkstra con node sorgente 5. Qual è la sequenza di inserimento dei nodi nella soluzione finale?
 - *a) 5, 4, 3, 2, 1 * b) 5, 4, 2, 3, 1 c) 5, 2, 4, 1, 3
- 7. Si consideri il grafo di Domanda 4, e si applichi l'algoritmo di Floyd&Warshall, con la numerazione dei vertici data in figura. Qual è la lunghezza del cammino minimo 2-vincolato tra il nodo 5 e il nodo 3?
 - a) $+\infty$ b) 11 c) 3 *d) 13
- 8. Si consideri la versione non orientata del grafo di Domanda 4, si elimini l'arco di peso 2 tra i vertici 3 e 4, e si applichi l'algoritmo di Kruskal. Qual è la sequenza di archi inseriti nella soluzione?
 - *a) (2,4), (3,4), (4,5), (1,2)
- b) (2,4), (3,4), (4,5), (1,3)
- c) (2,4), (4,5), (3,4), (1,3)

d) Non si può applicare l'algoritmo di Dijkstra

- d) (3,4), (4,5), (2,4), (1,2)
- 9. Quali tra i seguenti è il corretto pseudocodice del passo di rilassamento dell'algoritmo di Prim (u è il vertice appena aggiunto alla soluzione)?

for each (arco (u, v) in G) do if $(d(v) = +\infty)$ then s.insert(v, w(u, v)) $d(v) \leftarrow w(u, v)$ rendi u padre di v in Telse if $(w(u, v) < d(v) \text{ and } v \in S)$ then ${\tt S.decreaseKey}(v,d(v) – w(u,v))$ $d(v) \leftarrow w(u, v)$ rendi \boldsymbol{u} nuovo padre di \boldsymbol{v} in T

for each (arco (u, v) in G) do if $(d(v) = +\infty)$ then Sinsert(v, w(u, v)) $d(v) \leftarrow w(u, v)$ rendi u padre di v in Telse if (w(u, v) < d(v)) then ${\tt S.decreaseKey}(v,d(v)\!\!-\!\!w(u,v))$ $d(v) \leftarrow w(u, v)$ rendi \boldsymbol{u} nuovo padre di \boldsymbol{v} in T

for each (arco(u, v) in G) do if $(d(v) = +\infty)$ then S.insert(v, w(u, v)) $d(v) \leftarrow w(u, v)$ rendiu padre div in Telse if $(w(u, v) < d(v) \text{ and } v \in S)$ then ${\tt S.decreaseKey}(v,d(v))$ $d(v) \leftarrow w(u, v)$ rendi u nuovo padre di v in T

for each (arco(u, v) in G) do if $(d(v) = +\infty)$ then S.insert(v, w(u, v)) $d(v) \leftarrow w(u, v)$ rendi u padre di v in Telse if (w(u,v) > d(v)) and $v \in S$) then S.decreaseKey(v, d(v)-w(u, v)) $d(v) \leftarrow w(u, v)$ rendi u nuovo padre di v in T

- 10. Dato un grafo connesso di n nodi ed m archi, per quale valore (asintotico) di m si ha che l'algoritmo di Prim con heap di Fibonacci ha la stessa complessità temporale dell'algoritmo di Borůvka?
 - a) $m = \Theta(n^2)$
- *b) $m = \Theta(n)$
- c) per ogni valore di m
- d) per nessun valore di m

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
С										
d										