# -15 —

# Sommes de variables aléatoires

Dans tout ce chapitre, on considère un univers  $\Omega$  muni d'une probabilité  $\mathbb{P}.$ 

## I. Opérations sur les variables aléatoires

### 1. Sommes et produits par un réel

#### Définition 1

Soit X une variable aléatoire réelle, définie sur  $\Omega$ . Soit a un réel non nul et b un réel. La variable aléatoire aX+b est définie pour tout  $\omega \in \Omega$  par  $(aX+b)(\omega)=a\times X(\omega)+b$  Ainsi, pour tout réel k, on a  $\mathbb{P}(aX+b=k)=\mathbb{P}\left(X=\frac{k-b}{a}\right)$ .

## // Exemple :

On considère une variable aléatoire X dont la loi est résumée dans le tableau suivant :

$$\begin{array}{|c|c|c|c|c|} \hline k & -2 & 3 & 7 \\ \hline \hline \mathbb{P}(X=k) & \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\ \hline \end{array}$$

On note Y la variable aléatoire telle que Y = 3X - 1.

Puisque X prend les valeurs -2, 3 et 7, alors Y prend les valeurs -7, 8 et 20.

Par ailleurs,  $\mathbb{P}(Y = -7) = \mathbb{P}(3X - 1 = -7) = \mathbb{P}(X = -2)$ .

La loi de Y peut donc être résumée par le tableau ci-contre :

| k                         | -7            | 8             | 20            |
|---------------------------|---------------|---------------|---------------|
| $\boxed{\mathbb{P}(Y=k)}$ | $\frac{1}{2}$ | $\frac{1}{3}$ | $\frac{1}{6}$ |

### Exemple :

On considère le jeu suivant : on paye 10 euros puis on lance 4 dés équilibrés à 6 faces, numérotés de 1 à 6. On remporte alors 5 euros par dé qui tombe sur le nombre 6.

Année 2024/2025 Page 1/5

Notons X le nombre de 6 obtenus et Y le gain en euros à l'issue de ce jeu. X suit une loi binomiale de paramètres 4 et  $\frac{1}{6}$ . De plus, on a Y = 5X - 10 puisque -10 représente le coût fixe du jeu, et 5X le gain par numéro 6 obtenu.

Il est donc facile d'obtenir la loi de Y à partir de celle de X:

| k                         | 0                  | 1                 | 2                | 3               | 4                |
|---------------------------|--------------------|-------------------|------------------|-----------------|------------------|
| $\boxed{\mathbb{P}(X=k)}$ | $\frac{625}{1296}$ | $\frac{125}{324}$ | $\frac{25}{216}$ | $\frac{5}{324}$ | $\frac{1}{1296}$ |

| k      | -10                | -5                | 0                | 5               | 10               |
|--------|--------------------|-------------------|------------------|-----------------|------------------|
| P(Y=k) | $\frac{625}{1296}$ | $\frac{125}{324}$ | $\frac{25}{216}$ | $\frac{5}{324}$ | $\frac{1}{1296}$ |

### 2. Variables aléatoires indépendantes

#### Définition 2

Soit n un entier naturel et  $X_1, X_2, ..., X_n$  des variables aléatoires définies sur  $\Omega$ . On dit que les variables aléatoires  $X_1, X_2, ..., X_n$  sont mutuellement indépendantes (ou tout simplement indépendantes) si, pour tous réels  $x_1, x_2, ..., x_n$ , on a

$$\mathbb{P}((X=x_1)\cap(X_2=x_2)\cap\ldots\cap(X_n=x_n))=\mathbb{P}(X_1=x_1)\times\mathbb{P}(X_2=x_2)\times\ldots\times\mathbb{P}(X_n=x_n)$$

### ⚠ Remarque :

Une façon de voir la définition précédente est : si l'on considère une succession d'épreuves aléatoires indépendantes, chacune étant reliée à une variable aléatoire réelle, alors ces variables aléatoires sont indépendantes.

#### 3. Somme de deux variables aléatoires

#### Définition 3

Soient X et Y deux variables aléatoires réelles définies sur  $\Omega$ . On appelle « somme de X et Y » la variable aléatoire Z = X + Y définie pour tout  $\omega \in \Omega$  par

$$Z(\omega) = X(\omega) + Y(\omega)$$

## Exemple :

Un supporter de football a étudié le nombre de buts marqués par son équipe au cours d'une saison. On considère un match au hasard de cette équipe et on appelle X le nombre de buts marqué par cette équipe en première mi-temps de ce match et Y le nombre de buts marqués en deuxième mi-temps. Ainsi, X+Y représente le nombre de buts marqués par l'équipe en question au cours du match.

D'après l'étude de ce supporter, on peut construire l'arbre de probabilités suivant :

Année 2024/2025 Page 2/5



La variable aléatoire X+Y prend alors les valeurs 0, 1, 2, 3 et 4. Il est alors possible d'établir la loi de en s'appuyant sur cet arbre de probabilités. Par exemple, on a :

$$\mathbb{P}(X+Y=1) = \mathbb{P}(X=0 \cap Y=1) + \mathbb{P}(X=1 \cap Y=0) = 0,55 \times 0,6+0,4 \times 0,35 = 0,47$$

La loi de X + Y peut alors être résumée dans le tableau suivant.

| k | 0     | 1    | 2    | 3     | 4    |
|---|-------|------|------|-------|------|
|   | 0,165 | 0,47 | 0,27 | 0,085 | 0,01 |

## II. Espérance et variance d'une somme de variables

## 1. Cas général

#### Propriété 1

Soient X et Y deux variables aléatoires, a et b deux réels. On a

$$\mathbb{E}[aX+b] = a\mathbb{E}[X] + b \qquad \text{et} \qquad \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y].$$

Année 2024/2025 Page 3/5

### // Exemple :

On reprend l'exemple précédent de l'étude du supporter dont on avait obtenu les lois suivantes :

| k                 | 0    | 1   | 2    |
|-------------------|------|-----|------|
| $\mathbb{P}(X=k)$ | 0,55 | 0,4 | 0,05 |

| k                           | 0     | 1    | 2    | 3     | 4    |
|-----------------------------|-------|------|------|-------|------|
| $\boxed{\mathbb{P}(X+Y=k)}$ | 0,165 | 0,47 | 0,27 | 0,085 | 0,01 |

On a alors  $\mathbb{E}[X] = 1 \times 0, 4 + 2 \times 0, 05 = 0, 5.$ 

De plus,  $\mathbb{E}[X+Y] = 1 \times 0,47 + 2 \times 0,27 + 3 \times 0,085 + 4 \times 0,01 = 1,305.$ 

Or,  $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$ , ce qui nous permet de déterminer  $\mathbb{E}[Y]$ :

$$\mathbb{E}[Y] = E[X+Y] - \mathbb{E}[X] = 1,305 - 0,5 = 0,805$$

Le nombre moyen de buts mis en deuxième mi-temps est donc 0,805.

### ! Remarque :

Dans l'exemple précédent, les variables aléatoires X et Y n'étaient pas indépendantes, et pourtant, l'espérance de la somme pouvait être exprimée comme la somme des espérances. L'hypothèse d'indépendance des variables aléatoires est toutefois primordiales pour la propriété qui suit.

### Propriété 2

Soient X et Y deux variables aléatoires. Soient a et b deux réels.

- $\mathbb{V}(aX + b) = a^2 \times \mathbb{V}(X)$
- Si X et Y sont indépendantes, alors  $\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y)$ .

## ⚠ Remarque :

Attention à ne pas oublier le carré : une variance est toujours positive!

Un exemple classique est : si X et Y sont deux variables aléatoires indépendantes, alors

$$\mathbb{V}(X-Y) = \mathbb{V}(X) + \mathbb{V}(-Y) = \mathbb{V}(X) + (-1)^2 \mathbb{V}(Y) = \mathbb{V}(X) + \mathbb{V}(Y)$$

## Exemple :

Toujours dans l'exemple précédente, on peut comparer les variances de X, Y et X+Y. Calculons la variance de X. On rappelle pour cela la formule de Koenig-Huygens :

$$\mathbb{V}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

| k                 | 0    | 1   | 2    |
|-------------------|------|-----|------|
| $\mathbb{P}(X=k)$ | 0,55 | 0,4 | 0,05 |

| k            | 0    | 1   | 4    |
|--------------|------|-----|------|
| $P(X^2 = k)$ | 0,55 | 0,4 | 0,05 |

Année 2024/2025 Page 4/5

Ainsi,  $\mathbb{E}[X^2] = 0 \times 0,55 + 1 \times 0,4 + 4 \times 0,05 = 0,6$  donc :

$$\mathbb{V}(X) = 0, 6 - 0, 5^2 = 0, 35$$

De même,  $\mathbb{E}[Y^2] = 0 \times 0,32 + 1 \times 0,555 + 4 \times 0,125 = 1,055$  donc :

$$\mathbb{V}(Y) = 1,055 - 0,805^2 = 0,406975$$

Enfin,  $\mathbb{E}[(X+Y)^2] = 0 \times 0$ ,  $165+1\times 0$ ,  $47+4\times 0$ ,  $27+9\times 0$ ,  $085+16\times 0$ , 01=2,475. On obtient donc  $\mathbb{V}(X+Y) = \mathbb{E}[(X+Y)^2] - \mathbb{E}[X+Y]^2 = 2$ , 475-1,  $305^2 = 0$ , 771975. En particulier, on voit que  $\mathbb{V}(X+Y) \neq \mathbb{V}(X) + \mathbb{V}(Y)$ , ce qui nous assure que les variables aléatoires X et Y ne sont pas indépendantes.

### 2. Application à la loi binomiale

#### Propriété 3

Soit  $X_1, X_2, ..., X_n$  des variables aléatoires indépendantes suivant une loi de Bernoulli de paramètre p. Notons  $S = X_1 + X_2 + ... + X_n$ . La variable aléatoire S suit une loi binomiale de paramètres p et p.

On retrouve alors le résultat connu suivant :

#### Propriété 4

Soit X une variable aléatoire qui suit une loi binomiale  $\mathcal{B}(n,p)$ . L'espérance, la variance et l'écart-type de X valent respectivement

$$\mathbb{E}[X] = np, \quad V(X) = np(1-p), \quad \sigma(X) = \sqrt{np(1-p)}$$

**Preuve.** Soit X une variable aléatoire qui suit une loi binomiale  $\mathcal{B}(n,p)$ .

On considère des variables aléatoires indépendantes  $X_1, X_2, ..., X_n$  suivant toute une loi de Bernoulli de paramètre p.

Pour tout entier naturel k compris entre 1 et p, on a  $\mathbb{E}[X_k] = p$  et  $\mathbb{V}(X_k) = p(1-p)$ .

On note alors  $S = X_1 + X_2 + \ldots + X_n$ . D'après la propriété précédente, on a  $S \sim \mathcal{B}(n, p)$ .

S et X suivent donc la même loi et ont alors la même espérance et la même variance.

Or, on a  $\mathbb{E}[S] = p + p + \ldots + p = np$  et comme les variables  $X_i$  sont indépendantes, on a  $\mathbb{V}(S) = p(1-p) + p(1-p) + \ldots + p(1-p) = np(1-p)$ .

Année 2024/2025 Page 5/5