

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 Ist SESSIONAL TEST QUESTION PAPER 2018–19 Even SEMESTER

Set A	USN					
JELA						

Degree : B.E Semester : IV

Branch : Computer Science & Engineering Subject Code : 17CS43

Subject Title: Design and Analysis of Algorithms Date: 2019-03-12

Duration: 90 Minutes Max Marks: 30

Note: Answer ONE full question from each part.

Q No.	Question			
1(a)	Write an algorithm using iteration to output all prime factors of a given positive integer N.	5		
Sch & Ans	<pre>Sch: 2 marks for defining iteration loops, 3 marks for correct algo Ans for factor = 2 to sqrt(n), do while remainder(n, factor) eq 0, do print factor replace n by n/factor done //while done // for if n > 1, then print n fi</pre>			
(b)	Discuss an algorithm using recursion to output all prime factors of a given positive integer N.	5		
Sch & Ans	Sch: 2 marks for defining iteration loops, 3 marks for correct algo Ans function primefactor(n) for factor=2 to n do if remainder(n, factor) eq 0 then print factor prime(n / factor) break fi //end for return #invoke the function primefactor(n)			
(c)	Evaluate the performance of above two algorithms w.r.t. time computation and memory requirements.	5		
Sch &	Sch: 2 marks each for defining time complexity of each algo, 1 marks for comparing Ans			
Ans	Algo with iteration will take n computations for remainder function for a primer			

	number and thus worst case performance is O(n).	
	Algo with recursion will again take n computations of remainder and thus its worst case performance will also be O(n). Further, 2 nd algorithm will use extra stack space	
	for non-prime numbers, and the stacks space will be equal to number of prime	
	factors. So, in that sense algo with recursion takes more resources.	
2(a)	Write an algorithm using recursion to compute Binomial coefficients ${}^{n}C_{k} = n!/(k!*(n-k)!)$	5
	Sch: 2 marks for defining mathematical expression and 2 marks for defining terminating condition and 1 mark remaining algorithm Ans	
Sch	The mathematical expression is ${}^{n}C_{k} = {}^{n-1}C_{k} + {}^{n-1}C_{k-1}$	
& Ans	$\begin{array}{c} \text{algo binomial}(n,k) \\ \text{if } k \neq 0 \text{ or } k \neq 1 \text{ then} \end{array}$	
	return 1 fi	
	return (binomial(n-1, k) + binomial(n-1, k-1))	
(b)	Outline an algorithm to compute a polynomial using Horner's rule	5
(0)	$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + + a_1 x + a_0.$	
	Sch: 2 marks for defining mathematical expression and 2 marks for defining terminating condition and 1 mark remaining algorithm	
	Ans Methometical computation for Horner's rule to compute in O(n) time is given as	
	Mathematical computation for Horner's rule to compute in O(n) time is given as follows	
	$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + + a_1 x + a_0$	
	$= a_0 + x (a_1 + x (a_2 + x (+ xa_n))$	
	i.e.	
	$P_n(x) = a_0 + x P_{n-1}(x)$	
Sch	Assuming that all coefficients are given in an arrays arr[] i.e. $a_0=arr[0]$,	
& 4 n c	a ₁ =arr[1],, a _n =arr[n], the algorithm will be as below	X
Ans	Algo horner(x, arr, index, n):	
	if (index == n) then	
	return arr[n]	
	else	
	return (arr[index] + x * horner(x, arr, index+1, n))	
	fi	
	#Invocation of algorithm	
	horner(x, arr, 0, len(arr) -1)	
(c)	Construct the recurrence equation for the computation of Q2(b) and solve the same.	5
	Sch: 2 marks for defining recurrence relation and 3 marks for solving it	
	Ans	
Sch	Recurrence equation for Horner's rule is	
&	T(n) = T(n-1) + 1 = $T(n-2) + 1 + 1$	
Ans	= T(1) + 1 + 1 $ = T(1) + 1 +(n-1 times) + 1$	
	= O(n)	
	<u> </u>	

3(a)	Outline an algorithm to compute sum of N numbers given in an array using divide and conquer technique by dividing the input into two (approximately) equal parts.	5
Sch & Ans	Sch: 2 marks for dividing the array in equal parts, and 3 marks for conquering it Ans Algo computesum(L, R, arr) if (L==R) then return arr[L] mid = (L + R)/2 return (computesum(L, mid, arr) + computesum(mid+1, R, arr)) #invocation print computesum(1,N, arr)	
(b)	Show the recurrence equation for the computation of Q3(a) and solve the same.	5
Sch & Ans	Sch: 2 marks for writing recurrence relation and 3 marks for solving it. Ans $T(1) = 0$ $T(n) = 2T(n/2) + 1, \text{ and }$ $= 2[2T(n/2^2) + 1] + 1 = 2^2T(n/2^2) + 2^1 + 2^0$ $= 2^kT(n/2^k) + 2^{k-1} + + 2^1 + 2^0$ $= 2^{k-1} + + 2^1 + 2^0$ $= 2^k - 1 = n = O(n)$	
(c)	Apply the algorithm in Q3(a) to find the sum of following numbers 11, 27, 18, 14, 25, 31, 29, 15. Show the results at each step of the computation.	5
Sch & Ans	Sch: 1 mark each for splitting and combining Ans Step 1: left arr: 11, 27, 18, 14; right array = 25, 31, 29, 15 Step 2: left arr: 11, 27; right array = 18, 14 Step 3: left arr: 11, right array = 27 Recursion terminates Step 4: Returns 11+27 = 38. Step 5: left array: 18, right array 14 Recursion terminates Step 6: returns 18+14=32 Recursion terminates Step 7: returns 38 + 32 = 70 Process continues like this.	
4(a)	Compare the order of growth of following functions: $f(n) = n(n+1)(2n+1)/6$, $g(n) = n^3$	5
Sch & Ans	Sch: 2 marks for defining the limit formula and 3 marks for computing the limits Ans $ \lim_{n\to\infty} f(n)/g(n) $ $ = \lim_{n\to\infty} (n(n+1)(2n+1)/6)/n^3 $	

	- I : (0m³ + 2m² + m) /6m³	
	$= \operatorname{Lim}_{n \to \infty} (2n^3 + 3n^2 + n) / 6n^3$	
	= $\lim_{n\to\infty} (1/3 + 1/2n + 1/6n^2)$ = 1/3 i.e. a constant.	
	= 1/3 i.e. a constant.	
	Thus, both $f(n)$ and $g(n)$ are of same order i.e.	
	f(n) = O(g(n)) and $g(n) = O(f(n))$	
(h)	Explain Big-Oh, Big-Theta and Big-Sigma notations and provide one example of	5
(b)	each	3
Sch & Ans	Sch: 2 marks for defining the notations and 3 marks for the example Ans Big-Oh defines the upper limit, and formally specified as A function $t(n)$ is said to be in $O(g(n))$ if $t(n)$ is bounded above by some +ve constant multiple of $g(n)$ for large n , i.e. $t(n) \in O(g(n))$, if $t(n) \le cg(n)$ for all $n \ge n_0$ Big-Sigma defines the lower limit and formally specified as A function $t(n)$ is said to be in $\Omega(g(n))$ if $t(n)$ is bounded below by some +ve constant multiple of $g(n)$ for large n , i.e. $t(n) \in \Omega(g(n))$, if $t(n) \ge cg(n)$ for all $n \ge n_0$ Big-Theta defines the similar order of growth A function $t(n)$ is said to be in $\Theta(g(n))$ if $t(n)$ is bounded both above and below by some +ve constant multiple of $g(n)$ for all large n , i.e. $t(n) \in \Theta(g(n))$, if $c_2g(n) \le t(n) \le c_1g(n)$ for all $n \ge n_0$	
(c)	Develop an algorithm to sort 4 numbers a, b, c, d using max of 5 comparisons.	5
Sch & Ans	Sch: 1 marks for showing the approaching of taking 4!=24 possibilities and 4 marks for dividing the solution at each of division Ans The 24 possible orders for 4 numbers are abord abde acbd acdb adde acbd acdb adde bade bade bade bade bade bade ba	a

Comparison 4: Choose a comparison such that set divided into two and one. Let us compare a with d and assume a < d, then this does not divide the set. So let us say compare b and d. Then the set become abcd acbd	0
Comparison 5: Compare b and c now thus we will get Either abcd or acbd.	

Signature of the Faculty Signature of the Module Coordinator Signature of the HOD

Signature of the Chief Academic Coordinator Signature of the Principal