VC-Dimension and Sampling

1 Sampling

VC-dimension and sampling are combinatorial properties of set systems that can let us do better than a union bound. Recall that an event $X \subseteq \Omega$ is a subset of the sample space Ω . If an event X is sufficiently likely and we draw enough samples, we are likely to hit the event.

Proposition 1. (Simple sampling). Let $X \subseteq \Omega$ with $\Pr[X] \ge \varepsilon$, and let S be obtained by drawing a set of $\varepsilon^{-1} \ln \delta^{-1}$ samples from Ω independently. Then

$$\Pr[S \cap X] \ge 1 - \delta.$$

In other words, repeating the experiment enough times boosts the probability of it succeeding at least once.

Proof. The probability of never hitting X is at most
$$(1-\varepsilon)^{\varepsilon^{-1}\ln\delta^{-1}} \leq e^{-\ln\delta} = \delta$$
.

Is it true that all high probability events are likely to happen? Draw a set S of some number of points (small-ish, like $\varepsilon^{-1} \ln \delta^{-1}$). Is it true that with some good probability $(e.g., 1 - \delta)$, for every set X with $\Pr[X] \geq \varepsilon$, we have $S \cap X \neq \emptyset$?

This is actually false! Given S, define $X = \bar{S}$. Then $X \cap S = \emptyset$, but $\Pr[X] \ge \varepsilon$ unless we drew more than a $1 - \varepsilon$ fraction of the sample space.

Typically, we go from sampling to the universal statement we wanted via a union bound. If we care about too many events, we only get trivial bounds; if we only care about a small set R of events, then an additive term of $\sim \varepsilon^{-1} \ln R$ in the number of samples we draw is enough to enable a union bound.

Our goal is now to side-step the crude union bound by exploiting some structure in R. Throughout, $R \subseteq \mathcal{P}(\Omega)$ is a collection of events $A \subseteq \Omega$ (i.e., a set system).

2 Shattering and VC-Dimension

Definition 2. A set $X \subseteq \Omega$ is shattered by R iff for every set $Y \subseteq X$, there exists an $A \in R$ with $Y = X \cap A$. That is, every subset of X can be obtained by using a set in R to "clip off" a part of X.

Example 3. Let Ω be the unit square $[0,1]^2$ and R the set of all closed halfspaces. (i) The set of three points is shattered because every subset of points can be separated from its complement by a line. (ii) The set of four points in a square is not shattered because there is no line that can separate the diagonals. (iii) The set of four points in a star is not shattered because there is no line that can separate the middle point.

Definition 4. The VC (Vapnik-Chervonenkis) dimension of R is the maximum size of any set X that is shattered by R. This is a natural measure of the complexity of R). The VC-dimension could be unbounded if the underlying set Ω is infinite. To show VC-dimension equals k, we have to show at least one shatterable subset of size k, then show that no subset of size k + 1 is shattereable.

Example 5. Let Ω be the unit square $[0,1]^d$ and R the set of all closed halfspaces. (i) d=1: we can shatter 2 points but not 3, so the VC-dimension is 2. (ii) d=2: we showed we can shatter 3 points but not 4, so the VC-dimension is 3. (iii) any d: we can easily construct hyperplanes to shatter a set of d+1 points in general position. To show we cannot shatter d+2 points, we need the following:

Theorem 6. [Radon]. Let $S = \{x_1, \dots, x_{d+2}\}$ in \mathbb{R}^d . Then S can be partitioned as $S = X \cup Y$ with $X \cap Y = \emptyset$ such that $conv(X) \cap conv(Y) \neq \emptyset$.

From this theorem we see that no hyperplane can separate X from Y, because with X it would contain conv(X), but the intersection is nonempty so it must also contain some point in Y. So halfspaces in \mathbb{R}^d have a VC-dimension of d+1.

Definition 7. The restriction of R to $\Omega' \subseteq \Omega$ is

$$R\mid_{\Omega'}=\{A\cap\Omega':A\in R\}.$$

It is obvious that the VC-dimension of $(\Omega', R \mid_{\Omega'})$ is at most (Ω, R) .

3 ε -nets and ε -samples

Definition 8. For a set system (Ω, R) , a set $N \subseteq \Omega$ is called an ε -net iff $N \cap A \neq \emptyset$ for all $A \in R$ with $\Pr[A] \geq \varepsilon$. In other words, an ε -net hits all sufficiently large $(w.r.t. \Pr)$ sets. Note: there are other definitions of ε -nets, e.g. containing a point close to every input point.

So, an ε -net would be a good set of samples in the sense that it hits all high-probability events A that we care about.

Theorem 9. [ε -net theorem]. Let R be a set system over Ω with VC-dimension d. Let S be obtained by drawing

$$\Theta\left(\frac{d}{\varepsilon}\log\frac{d}{\varepsilon} + \frac{1}{\varepsilon}\log\frac{1}{\delta}\right)$$

samples from Ω i.i.d. according to Pr. Then S is an ε -net for (Ω, R) with probability at least $1 - \delta$. Notice that this bound is very good when we restrict both d and ε .

Example 10. Consider n points in the plane. We are interested in hitting all halfspaces that contain at least εn points. That is, we want to color a small number of points red such that, with high probability, every halfspace containing enough points also contains at least one red point. How many red points are needed? Because d=3, if we think of ε , δ as constants, $\mathcal{O}(1)$ red points is enough, regardless of n. By drawing $\mathcal{O}(1)$ points, with probability $\geq 90\%$, we hit every set separable by a line that contains at least 20% of the points – pretty remarkable!

Example 11. Consider $R = \mathcal{P}(\Omega)$ with $|\Omega| = n$. How small is the smallest ε -net for (Ω, R) ? We need to intersect all sets of size at least εn . Well, any ε -net must have $|N| > 1 - \varepsilon n$, otherwise \bar{N} would be a set of size greater than εn and would not intersect n. We get nothing useful because the VC-dimension of R is n.

The other key notion besides an ε -net is an ε -sample.

Definition 12. A set $S \subseteq \Omega$ is an ε -sample for (Ω, R) iff

$$|\Pr[A] - \frac{\Pr[S \cap A]}{\Pr[S]}| < \varepsilon$$

for all $A \in R$. Intuitively, an ε -sample contains, for each $A \in R$, up to additive error ε , the right fraction of samples compared to the actual fraction of probability mass in A. In other words, the sample is representative.

Proposition 13. If S is an ε -sample for (Ω, R) then S is an ε -net for (Ω, R) .

Proof. Let $A \in R$ be "large", with $\Pr[A] \ge \varepsilon$. We need to show $A \cap S \ne \emptyset$. If $S \cap A = \emptyset$, then $\Pr[S \cap A] = 0$, so

$$|\Pr[A] - \frac{\Pr[S \cap A]}{\Pr[S]}| = \Pr[A] \ge \varepsilon$$

so S would not be an ε -sample.

Theorem 14. [ε -sample theorem]. Let (Ω, R) be a set system of VC dimension d. Let S be a set of

$$\Omega\big(\frac{d^2}{\varepsilon^2}\log\frac{d}{\varepsilon} + \frac{1}{\varepsilon^2}\log\frac{1}{\delta}\big)$$

points drawn i.i.d. from Ω according to Pr. Then S is an ε -sample with probability at least $1-\delta$.