Recommender System using Matrix Factorization

Jia-Wei Liao*, Kuok-Tong Ng, Yi-Cheng Hung

Department of Applied Mathematics National Yang Ming Chiao Tung University

January 26, 2023

Outline

- Introduction
- 2 Preliminaries
 - Singular Value Decomposition (SVD)
 - Matrix Norm
- 3 Approach
 - Alternative Least Square (ALS)
 - Soft Impute Alternative Least Square (SIALS)
- Experience and Result
 - ml-1m
 - ml-10m
- Summary

Introduction to Recommender System

A competition held by Netflix in 2006.

- 100,480,570 ratings that 480,189 users gave to 17,770 movies.
- 10% improvement then gain 1 million dollar prize.

Introduction to Recommender System

(user, movie)	rating	
(1, 5)	4	
(1, 18)	1	
(1, 32)	3	
(1, 44)	2	
(2, 22)	5	
(2, 90)	2	Use
(3, 49)	3	
(3, 56)	4	
(3, 70)	5	
(3, 94)	1	
:	:	

January 26, 2023

Idea of Low-rank Approximation

Action Romance Science Fiction Fantasy

0.2	1.2	1.8	1.8
1.68	0.5	0.1	0.3
0.2	1.8	0.6	1.6
0.48	0.8	0.4	0.4

Sam	0.8	1.6	1.8	1.2
Jack	1.1	0.3	1.2	1.6
Andy	1.3	0.5	1.6	0.8

5.07

A. R. S. F.

Idea of Low-rank Approximation

Given $R \in \mathbb{R}^{m \times n}$ is rating matrix, where m is number of user, and n is number of movie. Our goal is going to find the feature vector of user x_i and feature vector of movie y_j such that

$$r_{i,j} pprox x_i^ op y_j$$
, for all i,j

Problem

Given $R \in \mathbb{R}^{m \times n}$ is rating matrix, Our goal is going to find the user matrix $X \in \mathbb{R}^{k \times m}$ and feature matrix $Y \in \mathbb{R}^{k \times n}$ such that

$$R \approx X^{\top} Y$$
.

Question

- How to find X and Y?
- \bigcirc How to approximate R?
- Mow to compute with big data?

Outline

- Introduction
- Preliminaries
 - Singular Value Decomposition (SVD)
 - Matrix Norm
- 3 Approach
 - Alternative Least Square (ALS)
 - Soft Impute Alternative Least Square (SIALS)
- 4 Experience and Result
 - ml-1m
 - ml-10m
- Summary

Singular Value Decomposition (SVD)

SVD'

Let $A \in \mathbb{R}^{m \times n}$. Then there exist orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that $U^{\top}AV = \Sigma$ is a diagonal matrix, where

$$\Sigma_{ij} = \begin{cases} \sigma_i, & i = j \\ 0, & i \neq j \end{cases}$$
, with $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$,

and $r = \operatorname{rank}(A)$.

Singular Value Decomposition (SVD)

Separates A into r pieces rank 1 by SVD

$$A = \begin{bmatrix} u_1 & \cdots & u_m \end{bmatrix} \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & \\ & & \sigma_r & \\ \hline & O_{(m-r)\times r} & O_{(m-r)\times (n-r)} \end{bmatrix} \begin{bmatrix} v_1^\top \\ \vdots \\ v_n^\top \end{bmatrix}$$
$$= \sum_{i=1}^r \sigma_i u_i v_i^\top.$$

Rank k approximate

Let $A_k = \sum_{i=1}^k \sigma_i u_i v_i^{\top}$. If B has rank k, then

$$||A - A_k||_* < ||A - B||_*.$$

J.-W. Liao et. al. (NYCU)

10 / 41

Matrix Norm

Matrix norm

Spectral norm:

$$||A||_2 = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \sigma_1,$$

Probenius norm:

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m |a_{ij}|^2} = \sqrt{\sigma_1^2 + \dots + \sigma_r^2},$$

Nuclear norm:

$$||A||_N = \sigma_1 + \cdots + \sigma_r.$$

Outline

- Introduction
- 2 Preliminaries
 - Singular Value Decomposition (SVD)
 - Matrix Norm
- 3 Approach
 - Alternative Least Square (ALS)
 - Soft Impute Alternative Least Square (SIALS)
- 4 Experience and Result
 - ml-1m
 - ml-10m
- Summary

Rank k approximation

Given $k \in \mathbb{N}$ with $1 \le k < r$.

$$R = U\Sigma V^{\top} \approx U_k D_k^2 V_k = (D_k U_k^{\top})^{\top} (D_k V_k^{\top}) = X^{\top} Y$$

where
$$\tilde{U}=[u_1,...,u_k]$$
, $\tilde{V}=[v_1,...,v_k]$ and $D=\mathrm{diag}(\sqrt{\sigma_1},...,\sqrt{\sigma_k})$.

Question

Does it work on the largest dataset?

Matrix Factorization

First, We consider the minimization problem with regularization.

$$\min_{X,Y} \|R - X^{\top}Y\|_F^2 + \lambda (\|X\|_F^2 + \|Y\|_F^2),$$

where

- $R \in \mathbb{R}^{m \times n}$, $X \in \mathbb{R}^{k \times m}$ and $Y \in \mathbb{R}^{k \times n}$,
- $\lambda > 0$ is a parameter.

Remark

$$\begin{split} & \min_{X \in \mathbb{R}^{k \times m}, Y \in \mathbb{R}^{k \times n}} \|R - X^{\top}Y\|_F^2 + \lambda \left(\|X\|_F^2 + \|Y\|_F^2\right) \\ &= \min_{Z: \text{rank } Z \leq k} \|R - Z\|_F^2 + 2\lambda \|Z\|_*. \end{split}$$

Alternative Least Square (ALS)

Given initials X_0 , Y_0 , for t = 0, 1, 2, ..., we solve the following two sub-problem alternatingly:

$$\begin{split} X_{t+1} &= \underset{X}{\arg\min} \|R - X^{\top} Y_{t}\|_{F}^{2} + \lambda \|X\|_{F}^{2}, \\ Y_{t+1} &= \underset{Y}{\arg\min} \|R - X_{t+1}^{\top} Y\|_{F}^{2} + \lambda \|Y\|_{F}^{2}. \end{split}$$

We iterate until convergence.

Solving Alternative Least Square

Define

$$F(X) = \|R^{\top} - Y_t^{\top} X\|_F^2 + \lambda \|X\|_F^2.$$

Then

$$\nabla F(X) = -2Y_t(R^{\top} - Y_t^{\top} X) + 2\lambda X.$$

Let $\nabla F(X) = 0$, we have

$$(Y_t Y_t^\top + \lambda I) X = Y_t R^\top.$$

Therefore, we obtain the solution

$$X_{t+1} = (Y_t Y_t^\top + \lambda I)^{-1} Y_t R^\top.$$

Solving Alternative Least Square

Similarly, we can get

$$Y_{t+1} = (X_{t+1}X_{t+1}^{\top} + \lambda I)^{-1}X_{t+1}R.$$

Therefore, the iterative scheme can be posed as follows:

$$X_{t+1} = \left(Y_t Y_t^\top + \lambda I \right)^{-1} Y_t R^\top,$$

$$Y_{t+1} = \left(X_{t+1}X_{t+1}^{\top} + \lambda I\right)^{-1} X_{t+1}R.$$

Matrix Factorization

Let
$$\Omega = \{(i,j) \mid R_{i,j} > 0\}$$
 and

$$[\mathcal{P}_{\Omega}(A)]_{i,j} = \begin{cases} A_{i,j} & \text{if } (i,j) \in \Omega \\ 0 & \text{if } (i,j) \notin \Omega \end{cases}.$$

Problem

$$\min_{X,Y} \|\mathcal{P}_{\Omega}(R - X^{\top}Y)\|_F^2 + \lambda \left(\|X\|_F^2 + \|Y\|_F^2\right),$$

where

- $R \in \mathbb{R}^{m \times n}$, $X \in \mathbb{R}^{k \times m}$, and $Y \in \mathbb{R}^{k \times n}$,
- $\lambda > 0$ is a parameter.

Matrix Factorization

Problem

$$\min_{X,Y} \|\mathcal{P}_{\Omega}(R - X^{\top}Y)\|_F^2 + \lambda \left(\|X\|_F^2 + \|Y\|_F^2\right).$$

Its equivalence to

$$\min_{x_i,y_j} \sum_{(i,j)\in\Omega} (r_{i,j} - x_i^\top y_j)^2 + \lambda \left(\sum_{i=1}^m \|x_i\|_2^2 + \sum_{i=1}^n \|y_j\|_2^2 \right),$$

where $x_i, y_i \in \mathbb{R}^{k \times 1}$.

Solving Alternative Least Square

For fixed i, we define

$$F(x_i) = \sum_{(i,j)\in\Omega} (r_{i,j} - y_j^\top x_i)^2 + \sum_{i=1}^m ||x_i||_2^2.$$

Then

$$\nabla F(x_i) = -2 \sum_{(i,j) \in \Omega} y_j (r_{i,j} - y_j^\top x_i) + 2\lambda x_i.$$

Letting $\nabla F(x_i) = 0$, we have

$$\left(\sum_{(i,j)\in\Omega} y_j y_j^\top + \lambda I\right) x_i = r_{i,j} y_j.$$

Solving Alternative Least Square

Algorithm (ALS)

- **1** Initial $x_1, x_2, ..., x_m, y_1, y_2, ..., y_n$
- ② For i = 1, 2, ..., m:

$$\left(\sum_{(i,j)\in\Omega} y_j y_j^\top + \lambda I\right) x_i = r_{i,j} y_j.$$

3 For j = 1, 2, ..., n:

$$\left(\sum_{(i,j)\in\Omega} x_i x_i^\top + \lambda I\right) y_j = r_{i,j} x_i.$$

Repeat 2, 3 until convergence.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

Summary of ALS

- The left-hand side of the linear system is sum of the rank 1 matrix.
- 2 There are (m+n) linear systems with $k \times k$.
- **3** The time complexity of the direct method is $O(|\Omega|k^2 + (m+n)k^3)$.

Soft Impute Alternative Least Square (SIALS)

Problem

$$\min_{X,Y} \| \mathcal{P}_{\Omega}(R - X^{\top}Y) \|_F^2 + \lambda \left(\|X\|_F^2 + \|Y\|_F^2 \right).$$

Notice that

$$\mathcal{P}_{\Omega}(R - X^{\top}Y) = \mathcal{P}_{\Omega}(R) - \mathcal{P}_{\Omega}(X^{\top}Y) + X^{\top}Y - X^{\top}Y.$$

Let

$$\tilde{R} = \mathcal{P}_{\Omega}(R) - \mathcal{P}_{\Omega}(X^{\top}Y) + X^{\top}Y.$$

Then the problem becomes

$$\min_{X,Y} \|\tilde{R} - X^{\top}Y\|_F^2 + \lambda \left(\|X\|_F^2 + \|Y\|_F^2 \right).$$

Soft Impute Alternative Least Square (SIALS)

SIALS method

Given an initial X_0, Y_0 , for t = 0, 1, ..., we solve the following two sub-problem alternatingly:

$$\tilde{R}_{t+\frac{1}{2}} = \mathcal{P}_{\Omega}(R) - \mathcal{P}_{\Omega}(X_{t}^{\top}Y_{t}) + X_{t}^{\top}Y_{t},
X_{t+1} = (Y_{t}Y_{t}^{\top} + \lambda I)^{-1}Y_{t}\tilde{R}_{t+\frac{1}{2}}^{\top},
\tilde{R}_{t+1} = \mathcal{P}_{\Omega}(R) - \mathcal{P}_{\Omega}(X_{t+1}^{\top}Y_{t}) + X_{t+1}^{\top}Y_{t},
Y_{t+1} = (X_{t+1}X_{t+1}^{\top} + \lambda I)^{-1}X_{t+1}\tilde{R}_{t+1}.$$

We iterate until convergence is achieved.

Solving SIALS by SVD

Idea (rank k approximation) 1

$$R = U\Sigma V^{\top} \approx U_k D_k^2 V_k = (D_k U_k^{\top})^{\top} (D_k V_k^{\top}) = X^{\top} Y.$$

<u>Goal</u>

Given $U_0 \in \mathbb{R}^{m \times k}$ with orthonormal columns, $D_0 = I_{k \times k}$, and $V_0 = O_{n \times k}$. We use the Iterative method to find the suitable $X = D_t U_t^{\top}$, $Y = D_t V_t^{\top}$ such that

$$\min_{X,Y} \|P_{\Omega}(R - X^{\top}Y)\|_F^2 + \lambda \left(\|X\|_F^2 + \|Y\|_F^2 \right).$$

¹T. Hastie, R. Mazumder, J.-D. Lee and R. Zadeh, Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares, Journal of Machine Learning Research (2015).

Soft Impute ALS by SVD

Given $U_0 \in \mathbb{R}^{m \times k}$ with orthonormal columns, $D_0 = I_{k \times k}$, and $V_0 = O_{k \times k}$. Let $X_0 = D_0 U_0^{\top}$ and $Y_0 = D_0 V_0^{\top}$. For t = 0, 1, ... do

$$\bullet \quad \tilde{R}_{t+\frac{1}{2}} = \mathcal{P}_{\Omega}(R) - \mathcal{P}_{\Omega}(X_t^{\top}Y_t) + X_t^{\top}Y_t$$

- **3** Find the SVD of $D_t X_{t+\frac{1}{2}}$, then get $U_{t+1}, D_{t+\frac{1}{2}}$
- $\tilde{\mathbf{R}}_{t+1} = \mathcal{P}_{\Omega}(R) \mathcal{P}_{\Omega}(X_{t+1}^{\top}Y_t) + X_{t+1}^{\top}Y_t$
- $Y_{t+\frac{1}{2}} = \left(X_{t+1}X_{t+1}^{\top} + \lambda I\right)^{-1} X_{t+1} \tilde{R}_{t+1}$
- Find the SVD of $D_{t+\frac{1}{2}}Y_{t+\frac{1}{2}}$, then get V_{t+1}, D_{t+1}
- **3** $Y_{t+1} = D_{t+1}V_{t+1}^{\mathsf{T}}$

Soft Impute ALS

Let $S = \mathcal{P}_{\Omega}(R) - \mathcal{P}_{\Omega}(X_t^{\top}Y_t)$. We have $\tilde{R} = S + X_t^{\top}Y_t$. We use $X_t = D_t U_t^{\top}$ and $Y_t = D_t V_t^{\top}$ to plug in equation 2. Then

$$X_{t+\frac{1}{2}} = (D_t^2 + \lambda I)^{-1} D_t V_t^{\top} S^{\top} + (D_t^2 + \lambda I)^{-1} D_t^2 X_t.$$

Similarly, we also have

$$Y_{t+\frac{1}{2}} = \left(D_{t+\frac{1}{2}}^2 + \lambda I\right)^{-1} D_{t+\frac{1}{2}} U_{t+1}^{\mathsf{T}} S + \left(D_{t+\frac{1}{2}}^2 + \lambda I\right)^{-1} D_{t+\frac{1}{2}}^{\mathsf{T}} Y_t.$$

Solving SIALS by SVD

Algorithm (SIALS)

- Initial: $R \in \mathbb{R}^{m \times n}$, $U \in \mathbb{R}^{m \times k}$ with orthonormal columns, $D = I_{k \times k}$, $V = O_{n \times k}$, $X = DU^{\top}$ and $Y = DV^{\top}$.
- $\tilde{X} \leftarrow \left(D^2 + \lambda I \right)^{-1} D V^{\top} S^{\top} + \left(D^2 + \lambda I \right)^{-1} D^2 X$

- $\tilde{\mathbf{Y}} \leftarrow \left(D^2 + \lambda I\right)^{-1} D U^{\top} S + \left(D^2 + \lambda I\right)^{-1} D^2 \mathbf{Y}$
- O $D, V \leftarrow SVD(\tilde{D}\tilde{Y}), Y \leftarrow \tilde{D}V^{\top}$
- 8 Repeat 2-7 until convergence.
- Output: U, V, D

Outline

- Introduction
- 2 Preliminaries
 - Singular Value Decomposition (SVD)
 - Matrix Norm
- Approach
 - Alternative Least Square (ALS)
 - Soft Impute Alternative Least Square (SIALS)
- Experience and Result
 - ml-1m
 - ml-10m
- Summary

Information of Dataset: ml-1m

number of data: 900,188number of user: 6,040

• number of movie: 3,952

• sparsity: 3.77%

• train-test split: 9 to 1

Time Elapsed

Objective

Metrics

We use the following metrics to evaluate our methods:

Root Mean Square Error (RMSE):

$$RMSE_{\Omega}(X,Y) = \sqrt{\frac{\sum_{(i,j)\in\Omega} |X_{i,j} - Y_{i,j}|^2}{|\Omega|}}$$

Mean Absolute Error (MAE):

$$MAE_{\Omega}(X,Y) = \frac{\sum_{(i,j)\in\Omega} |X_{i,j} - Y_{i,j}|}{|\Omega|}$$

Evaluation

Evaluation

Metrics	RMSE		MAE	
Туре	Training	Testing	Training	Testing
ALS	0.5542	0.9545	0.4363	0.7385
SIALS (w/o SVD)	0.5745	0.9624	0.4517	0.7441
SIALS (w/ SVD)	0.8928	0.9099	0.7017	0.7143

$$\lambda=5$$
, $d=50$ with 600 epochs

Metrics	RMSE		MAE	
Туре	Training	Testing	Training	Testing
ALS	0.7288	0.8778	0.5727	0.6889
SIALS (w/o SVD)	0.7330	0.8820	0.5749	0.6913
SIALS (w/ SVD)	0.8980	0.9147	0.7101	0.7229

$$\lambda = 20$$
, $d = 50$ with 600 epochs

ml-10m dataset

number of data: 9,000,048

number of user: 71,567

• number of movie: 65,133

• sparsity: 0.19%

• train-test split: 9 to 1

Metrics	RMSE		MAE	
Туре	Training	Testing	Training	Testing
ALS	0.7287	0.8453	0.5453	0.6479
SIALS (w/ SVD)	0.9301	0.9454	0.7171	0.7286

$$\lambda = 50$$
, $d = 100$ with 500 epochs

Prediction of SIALS

We compute $\hat{r}_{i,j} = x_i^{ op} y_j$, and list the prediction as the following:

(user, movie)	prediction	rounding	rating
(308, 1707)	1.5211	2	2
(990, 89)	2.7883	3	3
(2247, 2291)	4.0016	4	3
(2454, 595)	3.8591	4	3
(2853, 3363)	3.7680	4	4
(3067, 703)	1.0212	2	1
(3317, 3793)	4.1885	4	4
(3727, 2259)	2.2826	2	2
(4796, 2761)	4.1454	4	4
(5451, 969)	4.4651	4	5

Outline

- Introduction
- Preliminaries
 - Singular Value Decomposition (SVD)
 - Matrix Norm
- 3 Approach
 - Alternative Least Square (ALS)
 - Soft Impute Alternative Least Square (SIALS)
- Experience and Result
 - ml-1m
 - ml-10m
- 5 Summary

Summary

In this project, we implement ALS, SIALS to do the matrix factorization. We use the direct method and CG to solve ALS and use SVD to solve SIALS and then apply it to the recommender system.

Further Topics:

- Stochastic Gradient Descent (SGD)
- Nonnegative Matrix Factorization (NMF)

Reference

- Trevor Hastie, Rahul Mazumder, Jason D. Lee and Reza Zadeh, Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares, Journal of Machine Learning Research 16 (2015), 3367-3402.
- Yehuda Koren, Robert Bell and Chris Volinsky, Matrix Factorization Techniques for Recommender Systems, IEEE Computer Society 42 (2009), 30-37.

THE END

Thanks for listening!

