8. STRUCTURE THEOREMS.

A topological group G_1 is said to be <u>locally isomorphic</u> to a topological group G_2 if there exists a homeomorphism φ of a neighborhood U of $1 \in G_1$ onto a neighborhood of $1 \in G_2$ such that $\varphi(ab) = \varphi(a) \varphi(b)$ for all $a,b \in U$ for which $ab \in U$.

Then G_2 is locally isomorphic to G_1 . This (not quite trivial) fact we prove as follows. Let U, φ be as above. Let W_1 be a neighborhood of $1 \in G_1$ such that $W_1 W_1 \subset U$; set $W_2 := \varphi(W_1)$ and let ψ be the restriction of φ^{-1} to W_2 . Now W_2 is a neighborhood of $1 \in G_2$ and ψ is a homeomorphism of W_2 onto W_1 . If $x, y \in W_2$ and $xy \in W_2$ then $\psi(x), \psi(y) \in W_1 \subset U$ and $\psi(x) \psi(y) \in W_1 W_1 \subset U$; then $xy = \varphi(\psi(x)) \varphi(\psi(y)) = \varphi(\psi(x) \psi(y))$ so that $\psi(xy) = \psi(x) \psi(y)$. It follows that G_2 is locally isomorphic to G_1 .

Apparently, local isomorphism is an equivalence relation among topological groups.

Examples. R and T are locally isomorphic. All discrete groups are locally isomorphic.

8.A. EXERCISE. Let G be a topological group, H a subgroup of G. Suppose that under the relative topology
H is discrete. Then H is closed. If H is a normal subgroup of G, then G and G/H are locally isomorphic.

We shall need the discrete subgroups of \mathbb{R}^p :

8.B. EXERCISE. Let $p \in \mathbb{N}$ and let H be a discrete subgroup of \mathbb{R}^p . There exist linearly independent $a_1, \ldots, a_m \in \mathbb{R}^p$ such that $H = \sum \mathbf{Z} a_i$. Then H is isomorphic to \mathbf{T}^m and \mathbb{R}^p/H is $(\underline{as\ a\ topological\ group})$ isomorphic to $\mathbf{T}^m \times \mathbb{R}^{p-m}$.

Hint. Choose a \in H. One may assume that H $_{\wedge}$ Ra=Za. If π is the surjection $\mathbb{R}^p \to \mathbb{R}^p/\mathbb{R}$ a, then $\pi(H)$ is a discrete subgroup of \mathbb{R}^p/\mathbb{R} a.

FROM HERE ON, G IS A LOCALLY COMPACT ABELIAN GROUP. In view of the crucial role that R and Z are going to play, WE USE THE ADDITIVE NOTATIONS.

A subset X of G is said to generate G if G does not have proper closed subgroups that contain X. It is compactly generated (finitely generated, monothetic) if it is generated by a compact subset (a finite subset, a one-point subset). Examples of monothetic groups are cyclic groups and the group L_n and P mentioned in Exercise 7.B.

FUNDAMENTAL THEOREM ON MONOTHETIC GROUPS. be monothetic. Then either G is isomorphic (as a topological group) to 1, or G is compact.

Proof. If G is discrete, it is either finite or isomorphic to Z. Assume G is not discrete. Choose a & G such that $G = \overline{Za}$.

If W is a symmetric neighborhood of O and N & N, then, as G is not discrete there exists an n $\in \mathbb{Z}$, $|n| > \mathbb{N}$ for which na $\in W$; hence there is an $n \in \mathbb{N}$, $n > \mathbb{N}$ such that $na \in W$. follows that $ka \in \overline{Na}$ ($k \in \mathbb{Z}$), so that Na is dense in G.

Choose a compact neighborhood V of O. Every y-V (y \in G) intersects Na. Therefore

$$G = \bigcup_{n \in \mathbb{N}} (V+na).$$

Similarly, $G = \bigcup_{n \in \mathbb{N}} (V-na)$. By compactness there exists an $N \in \mathbb{N}$ such that

 $\begin{array}{c} V \subset \bigcup_{n=1}^{N} (V-na). \\ \text{We prove that } G=\bigcup_{n=1}^{N} (V+na): \text{ then } G \text{ must be compact.} \end{array}$ Take $x \in G$. There exist $k \in \mathbb{N}$ with $x \in V + ka$. Then $x - ka \in V$, so $x - ka \in V - na$ for some $n \in \{1, ..., N\}$, i.e. $x \in V+(k-n)a$ for some $n \in \{1, ..., N\}$. It follows that, for every x, $\min\{k \in \mathbb{N} : x \in V + ka\} \leq \mathbb{N}$. Thus, $G \subset \bigcup^{N} (V+na).$

8.C. EXERCISE. Every compact subsemigroup of a topological group is itself a group. (No commutativity required.)

- 8.D. EXERCISE. Let \mathbf{T}_d denote the group \mathbf{T} provided with the discrete topology. $\overline{\mathbf{Z}}$ is the Bohr compactification of Z. (See Exercise 7.D.) The following conditions on G are equivalent.
 - (a) G is monothetic and not isomorphic to Z.
 - (b) There exists a continuous homomorphism of $\overline{m{Z}}$ onto ${m{G}}$.
 - (c) Γ is discrete and isomorphic to a subgroup of \mathbf{T}_{d} .

The main theorem of this section is the following.

8.2. STRUCTURE THEOREM FOR COMPACTLY GENERATED LOCALLY COMPACT ABELIAN GROUPS. If G is compactly generated, it is isomorphic (as a topological group) to $\mathbf{Z}^k \times \mathbf{R}^m \times \mathbf{C}$ for certain k,m $\in \{0,1,2,\dots\}$ and some compact abelian group C.

Before proving the theorem we mention a consequence.

8.3. COROLLARY. G contains an open subgroup that is isomorphic (as a topological group) to $\mathbb{R}^m \times \mathbb{C}$ for some $m \in \{0,1,2,\ldots\}$ and some compact abelian group \mathbb{C} .

Proof. Let X be a compact symmetric neighborhood of 0, and let H be the closure of X \cup (X+X) \cup (X+X+X) \cup ... Then H is a subgroup of G, generated by X. (See also Lemma 3.17.) As ${}_{4}H = \bigcup_{X \in H} (x+X)$, H is an open subset of G. By the structure theorem, H is isomorphic to some $\mathbf{Z}^k \times \mathbf{R}^m \times \mathbf{C}$. Then H contains an open subgroup isomorphic to $\mathbf{R}^m \times \mathbf{C}$.

Now we turn to the proof of the Structure Theorem. Let G be generated by a compact symmetric neighborhood V of O. There exist $x_1, \dots, x_m \in G$ such that $V+V \subset \bigcup_i (x_i+V)$. Let H be the smallest subgroup of G containing x_1, \dots, x_m (not necessarily closed). Then G=H+V.

Call a finite sequence (z_1,\ldots,z_n) of elements of G independent if $(i_1,\ldots,i_n)\longmapsto i_1z_1+\ldots+i_nz_n$ is an isomomorphism of \mathbf{Z}^n onto a discrete subgroup of G. Out of the x_i $(1\leq i\leq m)$ one can build a maximal independent sequence, (x_1,\dots,x_p) , say. Set $Z_p:=\sum_{i=1}^p \mathbf{Z}x_i$. Then Z_p is isomorphic and homeomorphic to \mathbf{Z}^p , and is closed in G (Exercise 8.A). We prove G/Z_p to be compact. Let π be the natural homomorphism $G \to G/Z_p$. If each $\overline{\mathbf{Z}}_{\pi}(x_i)$ (i=1,...,m) is compact in G/Z_p then $G/Z_p = \pi(V) + \sum \overline{Z_{\pi}(x_i)}$ is compact and we are done. Suppose that among x_1,\dots,x_m there is an x for which $\overline{Z_{\pi}(x)}$ is not compact. Then $n \mapsto n\pi(x)$ is an isomorphism of \mathbf{Z} onto a discrete subgroup of G/Z_p . The map

 $\varphi: (i_0,i_1,\dots,i_p) \longmapsto i_0x+i_1x_1+\dots+i_px_p$ is a homomorphism of \mathbf{Z}^{p+1} onto the subgroup $\mathbf{Z}x+Z_p$ of \mathbf{G} . If for certain i_0,\dots,i_p , $\varphi(i_0,i_1,\dots,i_p)=0$, then $i_0\pi(x)==-\pi(i_1x_1+\dots+i_px_p)=0$, so $i_0=0$. But then $i_1x_1+\dots+i_px_p=0$, so $i_1=\dots=i_p=0$. Hence φ is injective. Further, there exist open neighborhoods \mathbf{W} of $0\in \mathbf{G}$ and \mathbf{W}' of $0\in \mathbf{G}/Z_p$ such that $\mathbf{W}\wedge Z_p=\{0\}$ and $\mathbf{W}'\wedge \mathbf{Z}\pi(x)=\{0\}$. Then $\mathbf{W}\wedge \pi^{-1}(\mathbf{W}')$ is a neighborhood of $0\in \mathbf{G}$ and $(\mathbf{W}\wedge \pi^{-1}(\mathbf{W}'))\wedge (\mathbf{Z}x+Z_p)=\mathbf{W}\wedge \pi^{-1}(\mathbf{W}')\wedge \pi^{-1}(\mathbf{Z}\pi(x))=$ $=\mathbf{W}\wedge \pi^{-1}(\mathbf{W}'\wedge \mathbf{Z}\pi(x))=\mathbf{W}\wedge \pi^{-1}(0)=\mathbf{W}\wedge Z_p=\{0\}$. Therefore, $\mathbf{Z}x+Z_p$ is discrete, i.e. $\varphi(\mathbf{Z}^{p+1})$ is discrete, and we have a contradiction with the maximality of the sequence (x_1,\dots,x_p) .

* We see that G/Z_p is compact.

Before we can draw useful conclusions from this fact we need another fact:

8.4. THEOREM. Every connected locally compact abelian group that is locally isomorphic to some \mathbf{R}^p (pen) is (as a topological group) isomorphic to $\mathbf{R}^m \times \mathbf{T}^{p-m}$ for certain $\mathbf{R}^m \in \{0,1,\ldots,p\}$.

Proof. Let G be a connected locally compact abelian group. Let U be an open neighborhood of $0 \in \mathbb{R}^p$, V a neighborhood of $0 \in \mathbb{G}$, and ϕ a homeomorphism of U onto V such that

 $\varphi(x+y)=\varphi(x)+\varphi(y)$ for all $x,y\in U$ for which $x+y\in U$. Without restriction we may assume $\frac{1}{2}x\in U$ for every $x\in U$; then $\varphi(x)=2\varphi(\frac{1}{2}x)$ ($x\in U$). For every $x\in \mathbb{R}^p$ we have $(\frac{1}{2})^kx\in U$ for large $k\in \mathbb{N}$. It follows that there exists a unique $\Phi: \mathbb{R}^p \to G$ for which

$$\begin{cases} \Phi = \varphi & \text{on U,} \\ \Phi(2x) = 2 \Phi(x) & (x \in \mathbb{R}^p). \end{cases}$$

This Φ is easily seen to be a homomorphism. Every $x \in \mathbb{R}^p$ has an open neighborhood (e.g. x+U) which by Φ is mapped homeomorphically onto a neighborhood of $\Phi(x)$. Then Φ is continuous and open. Therefore $\Phi(\mathbb{R}^p)$ is an open subgroup of G. Applying the Isomorphism Theorem 3.6 we find $\Phi(\mathbb{R}^p)$ to be isomorphic to $\mathbb{R}^p/\mathrm{Ker}\,\Phi$. But $\mathrm{Ker}\,\Phi$ is a discrete subgroup of \mathbb{R}^p , since U $_{\bullet}\mathrm{Ker}\,\Phi=\{0\}$. Hence, $\Phi(\mathbb{R}^p)$ is isomorphic to some $\mathbb{R}^m \times \mathbb{T}^{p-m}$ (Exercise 8.B).

 $\Phi(\mathbb{R}^p)$ was an open subgroup of G. Hence it is also closed (Lemma 3.1 (c)). By the connectedness of G, $\Phi(\mathbb{R}^p)$ =G.

We return to the Structure Theorem.

In G we have found a discrete subgroup Z_p , isomorphic to \mathbf{Z}^p , such that G/Z_p is compact. Let Γ be the dual group of G and D := $\{\chi \in \Gamma : \chi = 0 \text{ on } \mathbf{Z}_p\}$. By Theorem 7.16, Γ/D is isomorphic to \hat{Z}_p , hence to \mathbf{T}^p . Then Γ/D is locally isomorphic to \mathbb{R}^p . But D is discrete, being isomorphic to $(G/Z_p)^n$. Hence, Γ is locally isomorphic to \mathbb{R}^p . Our proof of Theorem 8.4 yields an isomorphism (of topological groups) of $\mathbb{R}^m \times \mathbb{T}^{p-m}$ onto some open subgroup Γ_0 of Γ .

In Lemma 8.5 we shall see that there exists a homomorphism 6: $\Gamma/\Gamma_0 \longrightarrow \Gamma$ such that $\sigma(\chi+\Gamma_0) \in \chi+\Gamma_0$ ($\chi \in \Gamma$). It is not hard to prove that the formula

 $(\gamma,\beta+\Gamma_o)\longmapsto \gamma+\sigma(\beta+\Gamma_o) \quad (\gamma\in\Gamma_o;\beta+\Gamma_o\in\Gamma/\Gamma_o)$ defines an isomorphism (of topological groups) of $\Gamma_o\times(\Gamma/\Gamma_o)$ onto Γ . Then $\hat{\Gamma}$ is isomorphic to $\hat{\Gamma_o}\times(\Gamma/\Gamma_o)$. As Γ_o

was isomorphic to $\mathbf{R}^{m} \times \mathbf{T}^{p-m}$, $\hat{\Gamma}_{o}$ is isomorphic to $\mathbf{R}^{m} \times \mathbf{Z}^{p-m}$. Further, $\mathbf{C} := (\Gamma / \Gamma_{o})^{*}$ is compact (Γ_{o} is open in Γ). Now \mathbf{G} is isomorphic to $\mathbf{R}^{m} \times \mathbf{Z}^{p-m} \times \mathbf{C}$.

It remains to prove the existence of s.

An abelian group A is called <u>divisible</u> if for every $a \in A$ and every $k \in N$ there exists an $x \in A$ for which kx=a. Examples of divisible groups are R, T, Q and $R^m \times T^{p-m}$ $(0 \le m \le p)$.

8.5. LEMNA. If A is a divisible subgroup of an abelian group B, then the groups B and A \times (B/A) are isomorphic. The subgroup of an abelian are B and B is the natural surjection there exists a homomorphism of B/A \rightarrow B such that $\pi \circ 6 = id_{B/A}$. (For a set X we denote by id_X the identity map X \rightarrow X.)

Proof. We only prove that such a ε exists: the rest of the lemma follows easily. By Zorn's Lemma it suffices to prove: if J is a subgroup of B/A, if $\varphi\colon J\longrightarrow B$ is a homomorphism for which $\pi\circ \varphi=\operatorname{id}_J$ and if $u\in B/A$, $u\notin J$, then φ can be extended to a homomorphism φ' of J+Zu into B such that $\pi\circ \varphi'=\operatorname{id}_{J+Zu}$.

For such J, φ ,u, choose $x \in \pi^{-1}(u)$. If mu \notin J for all $m \in \mathbb{N}$, we can simply define

 $\varrho'(v+mu) := \varrho(v)+mx \quad (v \in J; m \in \mathbb{Z}).$

Otherwise there exists a smallest $k \in \mathbb{N}$ with $ku \in J$. Now $kx-\varrho(ku) \in A$, so $kx-\varrho(ku)=ky$ for some $y \in A$. Put

 $\varrho'(v+mu) := \varrho(v)+m(x-y) \quad (v \in J; m \in L).$

It is easy to prove that ho^{\bullet} is well-defined and satisfies the requirements.

8.E. EXERCISE. Let G be a locally compact abelian group. The union of the compact subgroups of G is a closed subgroup of G.