Es. 1	Es. 2	Es. 3	Totale

Analisi Matematica 1 e Geometria, Versione A		Prova scritta del $04/11/2019$
Cognome:	Nome:	Matricola:

• Ogni risposta dev'essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio sotto il testo e sul retro. I fogli di brutta non devono essere consegnati. Durante la prova lo studente non può consultare né avere con sé testi, appunti, calcolatrici, telefoni cellulari o altre apparecchiature elettroniche.

1. (punti 8)

- (a) Risolvere, nel campo complesso, la disuguaglianza $|\text{Re } w| \ge |w|$;
- (b) Risolvere, nel campo complesso, la disuguaglianza $|\text{Re}[(z+1)(z-3)]| \ge |(z+1)(z-3)|$;
- (c) Sia $A \subset \mathbb{C}$ l'insieme delle soluzioni trovate al punto (b). Stabilire se l'insieme $B := \{e^{iz}, z \in A\}$ è limitato, cioè se $\exists K > 0$ t.c. $|z| \leq k \ \forall z \in B$.
- (d) In generale, dato $A \subset \mathbb{C}$ generico, caratterizzare gli insiemi A tali che l'insieme $B := \{e^{iz}, z \in A\}$ sia limitato.

Soluzione.

- (a) Sia w=a+ib deve allora valere $|x|\geq \sqrt{a^2+b^2}$, cioè $a^2\geq a^2+b^2$, cioè b=0. Dunque la disuguaglianza richiesta vale solo se w è reale.
- (b) Sia z=x+iy. Allora $\operatorname{Im}\left[(z+1)(z-3)\right]=\operatorname{Im}\left[(x+1+iy)(x-3+iy)\right]=y(x-3)+(x+1)y=2y(x-1)=0$ se e solo se y=0 oppure x=1. Dunque la disuguaglianza richiesta è soddisfatta se z è reale oppure z=1+iy, $y\in\mathbb{R}$.
- (c) Se z = x + iy allora $e^{iz} = e^{-y}e^{ix}$, quindi $|e^{iz}| = e^{-y}$. Ne segue che B non è limitato dato che A contiene la retta z = 1 + iy, $y \in \mathbb{R}$.
- (d) Dall'uguaglianza $|e^{iz}|=e^{-y}$ sopra notata segue che condizione necessaria e sufficiente affinché B sia limitato è che l'insieme reale $C:=\{t=\operatorname{Im} z,z\in A\}$ sia limitato dal basso.

2. (punti 12) Sia α un parametro reale e sia

$$A_{\alpha} := \begin{pmatrix} -\alpha^2 - 1 & \alpha & 1\\ \alpha & -2 & \alpha\\ 1 & \alpha & -\alpha^2 - 1 \end{pmatrix}.$$

- (a) Determinare una base per il nucleo di A_{α} .
- (b) Stabilire per quale valore del parametro α la retta di equazione 3x=2y=6z è contenuta nel sottospazio ${\rm Im}\,(A_\alpha)$.
- (c) Sia $\boldsymbol{w}_{\alpha} := (1, \alpha, 1)$. Verificare che A_{α} è la matrice associata alla mappa lineare $f_{\alpha} : \mathbb{R}^3 \to \mathbb{R}$ definita da $f_{\alpha}(\boldsymbol{v}) = (\boldsymbol{v} \times \boldsymbol{w}_{\alpha}) \times \boldsymbol{w}_{\alpha}$, $v \in \mathbb{R}^3$, rispetto alla base canonica di \mathbb{R}^3 .

Soluzione.

(a) La matrice A_{α} presenta minori di ordine due non nulli, ad esempio quello formato dalle prime due colonne dalle ultime due righe. Inoltre: det $A_{\alpha}=0$. Pertanto il rango di A_{α} vale due $\forall \alpha \in \mathbb{R}$, dunque il nucleo è monodimensionale. Per determinare una base del nucleo si risolve il sistema omogeneo $A_{\alpha}v=0$. Omettendo la prima riga (ridondante) e scambiando la seconda riga con la terza, si ha:

$$\begin{pmatrix} 1 & \alpha & -\alpha^2 - 1 \\ \alpha & -2 & \alpha \end{pmatrix} \xrightarrow{\text{II riga} = (\alpha \text{ I-II})/(\alpha^2 + 2)} \begin{pmatrix} 1 & \alpha & -\alpha^2 - 1 \\ 0 & 1 & -\alpha \end{pmatrix}.$$

Da cui $y = \alpha z$ e x = z. Scegliendo z = t come parametro libero, si ha:

$$\operatorname{Ker}(A_{\alpha}) = \begin{pmatrix} 1 \\ \alpha \\ 1 \end{pmatrix} t, \qquad t \in \mathbb{R}.$$

Pertanto, è possibile scegliere il vettore \boldsymbol{w}_{α} come base di $\ker\left(A_{\alpha}\right)$.

(b) Per base di Im (A_{α}) possiamo scegliere una qualunque coppia di vettori colonna della matrice. La retta 3x=2y=6z passa per l'origine, e ha vettore direzione $(2,3,1)^t$. Essendo tale retta un sottospazio, essa è contenuta nell'immagine di A_{α} se:

$$\det \begin{pmatrix} \alpha & 1 & 2 \\ -2 & \alpha & 3 \\ \alpha & -\alpha^2 - 1 & 1 \end{pmatrix} = 3(\alpha^2 + 2)(\alpha + 1) = 0,$$

dunque solo se $\alpha = -1$.

In alternativa, si poteva determinare l'equazione cartesiana del piano $\text{Im}(A_{\alpha})$ che risulta essere $x + \alpha y + z = 0$, quindi imporre che un punto qualsiasi della retta diverso dall'origine (ad esempio il punto (2,3,1)) appartenga a tale piano.

(c) Posto $\mathbf{v} = (x, y, z)^t$, si ha:

$$\boldsymbol{v} \times \boldsymbol{w}_{\alpha} = \begin{pmatrix} y - \alpha z \\ -x + z \\ \alpha x - y \end{pmatrix}.$$

Inoltre:

$$\begin{pmatrix} y - \alpha z \\ -x + z \\ \alpha x - y \end{pmatrix} \times \boldsymbol{w}_{\alpha} = \begin{pmatrix} -(\alpha^2 + 1)x + \alpha y + z \\ \alpha x - 2y + \alpha z \\ x + \alpha y - (\alpha^2 + 1)z \end{pmatrix} = \begin{pmatrix} -\alpha^2 - 1 & \alpha & 1 \\ \alpha & -2 & \alpha \\ 1 & \alpha & -\alpha^2 - 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

2

3. (punti 12) Sia

$$A_h = \begin{pmatrix} h+1 & 0 & 1 & h \\ -1 & 2 & 1 & 0 \\ h-2 & 0 & 4 & h \\ 1 & 0 & -1 & 2 \end{pmatrix}, \quad h \in \mathbb{R}$$

- (a) Verificare che $\lambda = 3$ è autovalore di A per ogni $h \in \mathbb{R}$.
- (b) Stabilire per quale valore di h la dimensione dell'autospazio relativo all'autovalore $\lambda = 3$ è due.
- (c) Per tale valore di h stabilire se la matrice è diagonalizzabile.

Soluzione.

- (a) Si consideri la matrice $A_h 3\mathbb{I}$. Essa ha due righe identiche, di conseguenza per ogni valore di h il sistema omogeneo associato ammette soluzioni non banali, che sono per costruzione gli autovettori relativi a $\lambda = 3$.
- (b) La moltiplicità geometrica dell'autospazio relativo all'autovalore $\,\lambda=3\,$ è due solo se

$$\operatorname{rk}(A_h - 3\mathbb{I}) = \operatorname{rk} \begin{pmatrix} -1 & -1 & 1 & 0 \\ h - 2 & 0 & 1 & h \\ 1 & 0 & -1 & -1 \end{pmatrix} = 2$$

Si noti che l'ultima matrice scritta ha il minore di ordine due formato dalle colonne centrali, dalla prima e dalla seconda riga, non nulla. I determinanti degli orlati di ordine tre sono:

$$\det \begin{pmatrix} -1 & -1 & 1 \\ h-2 & 0 & 1 \\ 1 & 0 & -1 \end{pmatrix} = 1 - h, \qquad \det \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & h \\ 0 & -1 & -1 \end{pmatrix} = 1 - h.$$

Entrambi si annullano solo per h=1. Quindi per tale valore di h l'autospazio è bidimensionale.

(c) Sia h=1. L'equazione agli autovalori diventa:

$$\det(A_1 - \lambda \mathbb{I}) = (2 - \lambda) \det \begin{pmatrix} 2 - \lambda & 1 & 1 \\ -1 & 4 - \lambda & 1 \\ 1 & -1 & 2 - \lambda \end{pmatrix} = (2 - \lambda) \det \begin{pmatrix} 2 - \lambda & 1 & 1 \\ -1 & 4 - \lambda & 1 \\ 0 & 3 - \lambda & 3 - \lambda \end{pmatrix} = (2 - \lambda)^2 (3 - \lambda)^2,$$

da cui: Sp $(A_h) = \{2^2, 3^2\}$.

Si è già detto che l'autospazio relativo a $\lambda=3$ è bidimensionale.

Sia $\lambda = 2$. Occorre determinare il rango dell'operatore $\det(A_1 - 2\mathbb{I})$. Si ha:

$$\operatorname{rk}(A_{1} - 2\mathbb{I}) = \operatorname{rk} \begin{pmatrix} 0 & 1 & 1 \\ -1 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & -1 & 0 \end{pmatrix} = 2$$

Infatti la terza colonna risulta essere la somma delle prime due.

Entrambi gli autovalori della matrice A_1 hanno molteplicità algebrica uguale a quella geometrica, quindi la matrice è diagonalizzabile.

3

Es. 1	Es. 2	Es. 3	Totale

Analisi Matematica 1 e Geometria, Versione B		Prova scritta del $04/11/2019$
Cognome:	Nome:	Matricola:

• Ogni risposta dev'essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio sotto il testo e sul retro. I fogli di brutta non devono essere consegnati. Durante la prova lo studente non può consultare né avere con sé testi, appunti, calcolatrici, telefoni cellulari o altre apparecchiature elettroniche.

1. (punti 8)

- (a) Risolvere, nel campo complesso, la disuguaglianza $|\text{Re } w| \ge |w|$;
- (b) Risolvere, nel campo complesso, la disuguaglianza $|\text{Re}[(z+3)(z-1)]| \ge |(z+3)(z-1)|$;
- (c) Sia $A \subset \mathbb{C}$ l'insieme delle soluzioni trovate al punto (b). Stabilire se l'insieme $B := \{e^{-iz}, z \in A\}$ è limitato, cioè se $\exists K > 0$ t.c. $|z| \leq k \ \forall z \in B$.
- (d) In generale, dato $A \subset \mathbb{C}$ generico, caratterizzare gli insiemi A tali che l'insieme $B := \{e^{-iz}, z \in A\}$ sia limitato.

Soluzione.

- (a) Sia w=a+ib deve allora valere $|x|\geq \sqrt{a^2+b^2}$, cioè $a^2\geq a^2+b^2$, cioè b=0. Dunque la disuguaglianza richiesta vale solo se w è reale.
- (b) Sia z=x+iy. Allora $\operatorname{Im}\left[(z+3)(z-1)\right]=\operatorname{Im}\left[(x+1+iy)(x-3+iy)\right]=y(x-1)+(x+3)y=2y(x+1)=0$ se e solo se y=0 oppure x=-1. Dunque la disuguaglianza richiesta è soddisfatta se z è reale oppure z=-1+iy, $y\in\mathbb{R}$.
- (c) Se z = x + iy allora $e^{-iz} = e^y e^{-ix}$, quindi $|e^{-iz}| = e^y$. Ne segue che B non è limitato dato che A contiene la retta z = -1 + iy, $y \in \mathbb{R}$.
- (d) Dall'uguaglianza $|e^{-iz}|=e^y$ sopra notata segue che condizione necessaria e sufficiente affinché B sia limitato è che l'insieme reale $C:=\{t=\operatorname{Im} z,z\in A\}$ sia limitato dall'alto.

2. (punti 12) Sia α un parametro reale e sia

$$A_{\alpha} := \begin{pmatrix} 2 & \alpha & \alpha \\ \alpha & \alpha^2 + 1 & -1 \\ \alpha & -1 & \alpha^2 + 1 \end{pmatrix}.$$

- (a) Determinare una base per il nucleo di A_{α} .
- (b) Stabilire per quale valore del parametro α la retta di equazione 2x=3y=6z è contenuta nel sottospazio ${\rm Im}\,(A_\alpha)$.
- (c) Sia $\boldsymbol{w}_{\alpha} := (-\alpha, 1, 1)$. Verificare che A_{α} è la matrice associata alla mappa lineare $f_{\alpha} : \mathbb{R}^3 \to \mathbb{R}$ definita da $f_{\alpha}(\boldsymbol{v}) = \boldsymbol{w}_{\alpha} \times (\boldsymbol{v} \times \boldsymbol{w}_{\alpha})$, $v \in \mathbb{R}^3$, rispetto alla base canonica di \mathbb{R}^3 .

Soluzione.

(a) La matrice A_{α} presenta minori di ordine due non nulli, ad esempio quello formato dalle prime due colonne, dalla prima e dall'ultima riga. Inoltre: $\det A_{\alpha} = 0$. Pertanto il rango di A_{α} vale due $\forall \alpha \in \mathbb{R}$, dunque il nucleo è monodimensionale. Per determinare una base del nucleo si risolve il sistema omogeneo $A_{\alpha} v = 0$. Omettendo la terza riga (ridondante), si ha:

$$\begin{pmatrix} 2 & \alpha & \alpha \\ \alpha & \alpha^2 + 1 & -1 \end{pmatrix} \xrightarrow{\text{II riga} = (2\text{II} - \alpha \text{ I})/(\alpha^2 + 2)} \begin{pmatrix} 2 & \alpha & \alpha \\ 0 & 1 & -1 \end{pmatrix}.$$

Da cui y=z e $x=-\alpha z$. Scegliendo z=t come parametro libero, si ha:

$$\operatorname{Ker}(A_{\alpha}) = \begin{pmatrix} -\alpha \\ 1 \\ 1 \end{pmatrix} t, \quad t \in \mathbb{R}.$$

Pertanto, è possibile scegliere il vettore \boldsymbol{w}_{α} come base di $\ker\left(A_{\alpha}\right)$.

(b) Per base di Im (A_{α}) possiamo scegliere una qualunque coppia di vettori colonna della matrice. La retta 2x=3y=6z passa per l'origine, e ha vettore direzione $(3,2,1)^t$. Essendo tale retta un sottospazio, essa è contenuta nell'immagine di A_{α} se:

$$\det \begin{pmatrix} 2 & \alpha & 3 \\ \alpha & \alpha^2 + 1 & 2 \\ \alpha & -1 & 1 \end{pmatrix} = 3(\alpha^2 + 2)(\alpha - 1) = 0,$$

dunque solo se $\alpha = 1$.

In alternativa, si poteva determinare l'equazione cartesiana del piano $\text{Im}(A_{\alpha})$ che risulta essere $-\alpha x + y + z = 0$, quindi imporre che un punto qualsiasi della retta diverso dall'origine (ad esempio il punto (3,2,1)) appartenga a tale piano.

(c) Posto $\mathbf{v} = (x, y, z)^t$, si ha:

$$\boldsymbol{v} \times \boldsymbol{w}_{\alpha} = \begin{pmatrix} y - z \\ -x - \alpha z \\ x + \alpha y \end{pmatrix}.$$

Inoltre:

$$\boldsymbol{w}_{\alpha} \times \begin{pmatrix} y - z \\ -x - \alpha z \\ x + \alpha y \end{pmatrix} = \begin{pmatrix} 2x + \alpha y + \alpha z \\ \alpha x + (\alpha^2 + 1)y - z \\ \alpha x - y + (\alpha^2 + 1)z \end{pmatrix} = \begin{pmatrix} 2 & \alpha & \alpha \\ \alpha & \alpha^2 + 1 & -1 \\ \alpha & -1 & \alpha^2 + 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

5

3. (punti 12) Sia

$$A_h = \begin{pmatrix} 2 & -1 & 0 & 1 \\ h-1 & 4 & 0 & h-3 \\ 0 & 1 & 2 & -1 \\ h-1 & 1 & 0 & h \end{pmatrix}, \quad h \in \mathbb{R}$$

- Verificare che $\lambda = 3$ è autovalore di A per ogni $h \in \mathbb{R}$.
- Stabilire per quale valore di h la dimensione dell'autospazio relativo all'autovalore $\lambda=3$ è due.
- \bullet Per tale valore di h stabilire se la matrice è diagonalizzabile.

Soluzione.

- (a) Si consideri la matrice $A_h 3\mathbb{I}$. Essa ha due righe identiche, di conseguenza per ogni valore di h il sistema omogeneo associato ammette soluzioni non banali ovvero gli autovettori relativi a $\lambda = 3$.
- (b) La moltiplicità geometrica dell'autospazio relativo all'autovalore $\lambda=3$ è due solo se

$$\operatorname{rk}(A_h - 3\mathbb{I}) = \operatorname{rk} \begin{pmatrix} -1 & -1 & 0 & 1\\ h - 1 & 1 & 0 & h - 3\\ 0 & 1 & -1 & -1 \end{pmatrix} = 2$$

Si noti che l'ultima matrice scritta ha il minore di ordine due formato dalle colonne centrali, dalla seconda e dalla terza riga, non nulla. I determinanti degli orlati di ordine tre sono:

$$\det \begin{pmatrix} -1 & -1 & 0 \\ h-1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix} = 2 - h, \qquad \det \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & h-3 \\ 1 & -1 & -1 \end{pmatrix} = 2 - h.$$

Entrambi si annullano solo per h=2. Quindi per tale valore di h l'autospazio è bidimensionale.

(c) Sia h = 2. L'equazione agli autovalori diventa:

$$\det(A_2 - \lambda \mathbb{I}) = (2 - \lambda) \det \begin{pmatrix} 2 - \lambda & -1 & 1 \\ 1 & 4 - \lambda & -1 \\ 1 & 1 & 2 - \lambda \end{pmatrix} = (2 - \lambda) \det \begin{pmatrix} 2 - \lambda & -1 & 1 \\ 1 & 4 - \lambda & -1 \\ 0 & \lambda - 3 & 3 - \lambda \end{pmatrix} = (2 - \lambda)^2 (3 - \lambda)^2,$$

da cui: $Sp(A_h) = \{2^2, 3^2\}$.

Si è già detto che l'autospazio relativo a $\lambda = 3$ è bidimensionale.

Sia $\lambda = 2$. Occorre determinare il rango dell'operatore $\det(A_2 - 2\mathbb{I})$. Si ha:

$$\operatorname{rk}(A_2 - 2\mathbb{I}) = \operatorname{rk} \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{pmatrix} = 2$$

Infatti la terza riga risulta essere l'opposto della prima ela quarta è la somma tra la prima e la seconda. Entrambi gli autovalori della matrice A_2 hanno molteplicità algebrica uguale a quella geometrica, quindi la matrice è diagonalizzabile.

6

Es. 1	Es. 2	Es. 3	Totale

Analisi Matematica 1 e Geometria, Versione A		Prova scritta del $20/1/2020$
Cognome:	Nome:	Matricola:

- Ogni risposta dev'essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio sotto il testo e sul retro. I fogli di brutta non devono essere consegnati. Durante la prova lo studente non può consultare né avere con sé testi, appunti, calcolatrici, telefoni cellulari o altre apparecchiature elettroniche.
- 1. (punti 10) Sia

$$f_{\alpha}(x) = \sqrt{x^4 - \alpha x^3} + (x^3 - x^2) \left[\frac{\alpha}{x^2} - \sin\left(\frac{x+2}{x^2}\right) \right].$$

Stabilire se esistono valori del parametro reale α tali che $\lim_{x\to-\infty} f_{\alpha}(x)$ esista finito, e in caso affermativo calcolare tale limite. Successivamente stabilire se, al variare del parametro reale α , l'integrale

$$\int_{-\infty}^{A} \frac{1}{x f_{\alpha}(x)} \, \mathrm{d}x$$

esiste finito (dove A è negativo e sufficientemente grande in valore assoluto).

Soluzione. Si ha, per $x \to -\infty$, notando che $\frac{x+2}{x^2} \to 0$ in tale limite e, inoltre, che sempre in tale limite vale $\frac{x+2}{x^2} \sim \frac{1}{x}$:

$$\sqrt{x^4 - \alpha x^3} = x^2 \sqrt{1 - \frac{\alpha}{x}} = x^2 \left[1 - \frac{\alpha}{2x} - \frac{\alpha^2}{8x^2} + o\left(\frac{1}{x^2}\right) \right] = x^2 - \frac{\alpha}{2}x - \frac{\alpha^2}{8} + o(1);$$

$$(x^3 - x^2) \left[\frac{\alpha}{x^2} - \sin\left(\frac{x+2}{x^2}\right) \right] = (x^3 - x^2) \left[\frac{\alpha}{x^2} - \frac{x+2}{x^2} + \frac{1}{6}\left(\frac{x+2}{x^2}\right)^3 + o\left(\frac{1}{x^3}\right) \right]$$

$$= (x^3 - x^2) \left[-\frac{1}{x} + \frac{\alpha - 2}{x^2} + \frac{1}{6x^3} + o\left(\frac{1}{x^3}\right) \right]$$

$$= -x^2 + (\alpha - 2)x + \frac{1}{6} + x + 2 - \alpha + o(1)$$

$$= -x^2 + (\alpha - 1)x - \alpha + \frac{13}{6} + o(1).$$

Dunque ne segue che:

$$f_{\alpha}(x) = x^{2} - \frac{\alpha}{2}x - \frac{\alpha^{2}}{8} - x^{2} + (\alpha - 1)x - \alpha + \frac{13}{6} + o(1)$$
$$= \left(\frac{\alpha}{2} - 1\right)x - \frac{\alpha^{2}}{8} - \alpha + \frac{13}{6} + o(1).$$

Dunque il limite di f_{α} è finito se e solo se $\alpha=2$. In tal caso i calcoli precedenti mostrano che il limite cercato è $-\frac{\alpha^2}{8}-\alpha+\frac{13}{6}$, che per $\alpha=2$ vale -1/3.

I calcoli precedenti mostrano inoltre che, sempre per $x \to +\infty$:

$$\frac{1}{xf_{\alpha}(x)} \sim \begin{cases} -\frac{3}{x} & \text{se } \alpha = 2\\ \frac{2}{(\alpha - 2)x^2} & \text{se } \alpha \neq 2. \end{cases}$$

Ciò mostra in primo luogo che la funzione ha segno costante all'infinito, dunque il criterio del confronto asintotico è applicabile. Ne segue inoltre che l'integrale cercato esiste se e solo se $\alpha \neq 2$.

$$f(x) = \sqrt{x^2 + x} - 3x.$$

Soluzione. La funzione è definita per gli x per i quali l'argomento della radice è non negativo, dunque se $x \le -1$ e se $x \ge 0$. Vale f(-1) = 3, f(0) = 0. La funzione è chiaramente strettamente positiva per $x \le -1$, mentre per $x \ge 0$ f è positiva se e solo se $\sqrt{x^2 + x} > 3x$, disequazione che è verificata per quegli $x \ge 0$ tali che $8x^2 - x < 0$, cioè per $x \in (0, \frac{1}{8})$. La funzione si annulla in x = 1/8, è negativa per $x > \frac{1}{8}$.

Per quanto riguarda i limiti di f per $x \to \pm \infty$, notiamo che vale, appunto per $x \to \pm \infty$:

$$f(x) = \sqrt{x^2 + x} - 3x = |x| \left(1 + \frac{1}{x} \right)^{\frac{1}{2}} - 3x = |x| \left(1 + \frac{1}{2x} + o\left(\frac{1}{x}\right) \right) - 3x.$$

Quindi:

$$f(x) = x + \frac{1}{2} - 3x + o(1) = -2x + \frac{1}{2} + o(1) \quad \text{per } x \to +\infty$$

$$f(x) = -x - \frac{1}{2} - 3x + o(1) = -4x - \frac{1}{2} + o(1) \quad \text{per } x \to -\infty.$$

Dunque non solo vale $f(x) \to \mp \infty$ se $x \pm \infty$, ma abbiamo anche mostrato che la retta $y = -2x + \frac{1}{2}$ è asintoto obliquo per $x \to +\infty$ e che la retta $y = -4x - \frac{1}{2}$ è asintoto obliquo per $x \to -\infty$.

La funzione è derivabile per x < -1, x > 0. La derivata prima vale, per tali valori di x,

$$f'(x) = \frac{2x+1}{2\sqrt{x^2+x}} - 3.$$

Si noti in primo luogo che

$$\lim_{x \to -1^{-}} f'(x) = -\infty, \quad \lim_{x \to 0^{+}} f'(x) = +\infty.$$

La tangente al grafico di f tende dunque a diventare verticale in tali limiti. Inoltre f'(x) > 0 se e solo se $6\sqrt{x^2 + x} < 1 + 2x$. Tale disequazione è evidentemente sempre falsa per x < -1, mentre per x > 0 equivale alla disequazione $32x^2 + 32x - 1 < 0$. Gli zeri del polinomio di secondo grado appena scritto sono dati da

$$x = \frac{-16 \pm \sqrt{(16)^2 + 32}}{32} = \frac{-16 \pm \sqrt{288}}{32} = \frac{-16 \pm 12\sqrt{2}}{32} = -\frac{1}{2} \pm \frac{3}{8}\sqrt{2}.$$

Solo la radice $x_1:=-\frac{1}{2}+\frac{3}{8}\sqrt{2}$ è maggiore di zero (come segue dal fatto che $-16+\sqrt{(16)^2+32}>0$). Si ha dunque f'(x)<0 per x<-1 e per $x>x_1$, dunque f è decrescente separatamente in ciascuno di tali intervalli, mentre f'(x)>0 per $x\in(0,x_1)$, dunque f è crescente in tale intervallo. Il punto $x=x_1$ è quindi punto di massimo relativo. Si vede facilmente che, come deve peraltro essere per coerenza coi limiti della funzione, $1/8>x_1$ (infatti tale disequazione corrisponde, data l'espressione di x_1 e con calcoli elementari, alla disequazione $3\sqrt{2}<5$, evidentemente vera). Si noti inoltre che i punti x=0, x=-1, in cui f non è derivabile, sono punti di minimo relativo per f. Dati i limiti di f per $x\to\pm\infty$ è immediato notare che non vi sono estremi assoluti di f.

Calcoliamo infine, sempre per x > 1 e per x < 0, la derivata seconda di f. Calcoli elementari mostrano che, per tali x, vale:

$$f''(x) = -\frac{1}{4(x^2 + x)^{\frac{3}{2}}}.$$

Dunque la derivata seconda è ovunque negativa ove definita. Ne segue che f è concava separatamente negli intervalli $(-\infty, -1)$ e $(0, +\infty)$ (ovviamente anche, separatamente, in $(-\infty, -1]$ e in $[0, +\infty)$). In conclusione il grafico di f è il seguente:

3. (punti 10) Calcolare le primitive della seguente funzione:

$$f(x) = \frac{1}{\sqrt[3]{x}(1+\sqrt{x})}.$$

Successivamente dimostrare che

$$\lim_{x \to +\infty} \int_{1}^{x} (2 - \sin^3 t) f(t) dt = +\infty.$$

Soluzione. Poniamo $x^{1/6}=t$, cosicché $x^{1/3}=t^2$, $x^{1/2}=t^3$ e d $x=6t^5$ dt. Vale allora

$$\int \frac{1}{\sqrt[3]{x}(1+\sqrt{x})} dx = 6 \int \frac{t^5}{t^2(1+t^3)} dt = 6 \int \frac{t^3}{t^3+1} dt = 6 \int \left(1 - \frac{1}{t^3+1}\right) dt$$
$$= 6t - 6 \int \frac{1}{t^3+1} dt.$$

Basta dunque calcolare l'ultimo integrale scritto. Il polinomio t^3+1 ha chiaramente la radice t=-1, e la regola di Ruffini mostra allora che $t^3+1=(t+1)(t^2-t+1)$. Osserviamo che il polinomio di secondo grado t^2-t+1 non ha radici reali. Scomponendo in fratti semplici si ottiene allora:

$$\frac{1}{t^3+1} = \frac{1}{(t+1)(t^2-t+1)} = \frac{1}{3(t+1)} + \frac{2-t}{3(t^2-t+1)}.$$

Occorre quindi calcolare

$$\int \frac{2-t}{3(t^2-t+1)} dt = -\frac{1}{2} \int \frac{2t-1}{3(t^2-t+1)} dt + \frac{3}{2} \int \frac{1}{3(t^2-t+1)} dt$$

$$= -\frac{1}{6} \log(t^2-t+1) + \frac{1}{2} \int \frac{1}{t^2-t+1} dt$$

$$= -\frac{1}{6} \log(t^2-t+1) + \frac{1}{2} \int \frac{1}{\left(t-\frac{1}{2}\right)^2 + \frac{3}{4}} dt$$

$$= -\frac{1}{6} \log(t^2-t+1) + \frac{2}{3} \int \frac{1}{\frac{4}{3} \left(t-\frac{1}{2}\right)^2 + 1} dt$$

$$= -\frac{1}{6} \log(t^2-t+1) + \frac{2}{3} \int \frac{1}{\left[\frac{2}{\sqrt{3}} \left(t-\frac{1}{2}\right)\right]^2 + 1} dt$$

$$= -\frac{1}{6} \log(t^2-t+1) + \frac{1}{\sqrt{3}} \arctan\left[\frac{2}{\sqrt{3}} \left(t-\frac{1}{2}\right)\right] + c,$$

dove $c \in \mathbb{R}$ è arbitraria (si noti che $t^2 - t + 1 > 0$ per ogni t, dunque non è necessario il modulo nel logaritmo). Quindi:

$$\int \frac{1}{t^3 + 1} dt = \int \left[\frac{1}{3(t+1)} + \frac{2 - t}{3(t^2 - t + 1)} \right] dt$$
$$= \frac{1}{3} \log|t + 1| - \frac{1}{6} \log(t^2 - t + 1) + \frac{1}{\sqrt{3}} \arctan\left[\frac{2}{\sqrt{3}} \left(t - \frac{1}{2} \right) \right] + c$$

e, ritornando alla variabile originaria:

$$\begin{split} \int \frac{1}{\sqrt[3]{x}(1+\sqrt{x})} \, \mathrm{d}x &= 6t - 6 \int \frac{1}{t^3+1} \, \mathrm{d}t \\ &= 6t - 2\log|t+1| + \log(t^2-t+1) - 2\sqrt{3}\arctan\left[\frac{2}{\sqrt{3}}\left(t-\frac{1}{2}\right)\right] + c \\ &= 6x^{1/6} - 2\log(x^{1/6}+1) + \log(x^{1/3}-x^{1/6}+1) - 2\sqrt{3}\arctan\left[\frac{2x^{1/6}-1}{\sqrt{3}}\right] + c, \end{split}$$

dove si è notato che $x^{1/6}+1>0\,$ per ogni $x\geq 0\,.$

Si noti infine che $(2-\sin^3t)f(t) \ge \frac{1}{\sqrt[3]{t}(1+\sqrt{t})} \sim \frac{1}{t^{5/6}}$ per $t \to +\infty$. Per il teorema del confronto, applicabile dato che la funzione ha segno costante nell'intervallo di integrazione, segue che $(2-\sin^3t)f(t)$ non è integrabile in senso improprio all'infinito, quindi il limite cercato vale $+\infty$ (essendo la funzione integranda positiva nell'intervallo di integrazione).

Es. 1	Es. 2	Es. 3	Es. 4	Totale

Analisi Matematica 1 e Geometria, Versione A		Prova scritta del $17/2/2020$
Cognome:	Nome:	Matricola:

- Ogni risposta dev'essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio sotto il testo e sul retro. I fogli di brutta non devono essere consegnati. Durante la prova lo studente non può consultare né avere con sé testi, appunti, calcolatrici, telefoni cellulari o altre apparecchiature elettroniche.
- 1. (punti 8) Si considerino le seguenti matrici:

$$A = \begin{pmatrix} -1 & 2 & 0 & -1 \\ 0 & 3 & 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & -1 \\ 1 & 0 \\ 2 & -1 \end{pmatrix},$$

e siano $f: \mathbb{R}^4 \to \mathbb{R}^2$ e $g: \mathbb{R}^2 \to \mathbb{R}^3$ le applicazioni lineari associate alle matrici A e B, rispettivamente.

- (a) determinare una base di $ker(g \circ f)$.
- (b) Sia \mathcal{H} il sottospazio di \mathbb{R}^4 formato dai vettori ortogonali al vettore $(0,0,0,1)^t$. Determinare una base del sottospazio $\mathcal{H} \cap \ker(g \circ f)$.
- (c) Trovare le controimmagini del vettore $(1,1,0)^t$ attraverso $g \circ f$.

Soluzione.

(a) Sappiamo che $g \circ f$ è associata alla matrice BA. Il rango della matrice B vale due, dunque il suo nucleo è dato dal solo vettore nullo, pertanto il nucleo di BA coincide con il nucleo della matrice A. Esso si determina risolvendo il sistema omogeneo $Av = \mathbf{0}$ e si ottiene:

$$oldsymbol{v} = egin{pmatrix} 2lpha - eta \ lpha \ -3lpha - 2eta \ eta \end{pmatrix}, \qquad lpha \in \mathbb{R}, \quad eta \in \mathbb{R}$$

Come base del nucleo può essere scelta la coppia di vettori:

$$\mathcal{B}_{\ker(g \circ f)} = \left\{ \begin{pmatrix} 2\\1\\-3\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\-2\\1 \end{pmatrix} \right\}.$$

- (b) Il sottospazio \mathcal{H} è formato da vettori $\mathbf{v} \in \mathbb{R}^4$ tali che $\mathbf{v} \cdot (0,0,0,1)^t = 0$, ovvero tali che $x_4 = 0$. Imponendo questo vincolo ai vettori del nucleo, si ottiene $\beta = 0$. Dunque $\mathcal{H} \cap \ker(g \circ f)$ è il sottospazio monodimensionale generato dal vettore $(2,1,-3,0)^t$.
- (c) Occorre risolvere il sistema:

$$(BA)\boldsymbol{v} = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$

Senza dover calcolare la matrice BA, è possibile dapprima calcolare la controimmagine di $(1,1,0)^t$ attraverso B:

$$\begin{pmatrix} 3 & -1 \\ 1 & 0 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

da cui: x = 1 e y = 2.

Successivamente, si calcola la controimmagine del vettore $(1,2)^t$ attraverso A:

$$\begin{pmatrix} -1 & 2 & 0 & -1 \\ 0 & 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

e si ottiene ($\ker f$ è stato calcolato in precedenza):

$$egin{pmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{pmatrix} = egin{pmatrix} -1 \ 0 \ 2 \ 0 \end{pmatrix} + oldsymbol{\eta}, \qquad oldsymbol{\eta} \in \ker f.$$

Infatti basta calcolare una soluzione del sistema non omogeneo (qui si è posto ad esempio $x_2 = x_4 = 0$), e notare che la generica soluzione del sistema ha la struttura sopra scritta.

2. (punti 6) Calcolare il seguente limite:

$$\lim_{x \to 0^+} \frac{e^{\sin^3 x} - 1 - \tan^3 x}{x \left(e^{2x^2} - e^{2x \sin x}\right)}.$$

Soluzione. Si ha, per $x \to 0^+$:

$$\begin{split} \sin^3(x) &= \left(x - \frac{x^3}{6} + o(x^3)\right)^3 = x^3 - \frac{x^5}{2} + o(x^5); \\ e^{\sin^3(x)} &= e^{x^3 - \frac{x^5}{2} + o(x^5)} = 1 + x^3 - \frac{x^5}{2} + o(x^5); \\ \tan^3 x &= \left(x + \frac{x^3}{3} + o(x^3)\right)^3 = x^3 + x^5 + o(x^5); \\ e^{2x^2} &= 1 + 2x^2 + 2x^4 + o(x^5); \\ e^{2x \sin x} &= e^{2x\left(x - \frac{x^3}{6} + o(x^4)\right)} = e^{2x^2 - \frac{x^4}{3} + o(x^5)} = 1 + 2x^2 - \frac{x^4}{3} + \frac{4x^4}{2} + o(x^5) \\ &= 1 + 2x^2 + \frac{5}{3}x^4 + o(x^5). \end{split}$$

Dunque

$$\frac{e^{\sin^3 x} - 1 - \tan^3 x}{x\left(e^{2x^2} - e^{2x\sin x}\right)} = \frac{1 + x^3 - \frac{x^5}{2} - 1 - x^3 - x^5 + o(x^5)}{x\left[1 + 2x^2 + 2x^4 - 1 - 2x^2 - \frac{5}{3}x^4 + o(x^5)\right]}$$
$$= \frac{-\frac{3}{2}x^5 + o(x^5)}{\frac{x^5}{3} + o(x^5)}$$
$$\xrightarrow[x \to 0^+]{} \frac{9}{2}.$$

3. (punti 10) Studiare la funzione

$$f(x) = \sqrt[3]{\frac{x^3 - 1}{x}}.$$

Soluzione. La funzione è definita per $x \neq 0$. Essa è positiva per x > 1 e per x < 0, negativa per $x \in (0,1)$, si annulla in x = 1. Vale

$$\lim_{x \to 0^{\pm}} f(x) = \mp \infty, \quad \lim_{x \to \pm \infty} f(x) = +\infty.$$

Non vi sono asintoti obliqui, in quanto la crescita di f è sottolineare all'infinito ($f(x) \sim x^{2/3}$ per $x \to \pm \infty$). La retta x=0 è asintoto verticale bilatero per f. La funzione è derivabile per $x \neq 0, x \neq 1$ e per tali valori di x si ha:

$$f'(x) = \frac{2x^3 + 1}{3x^{\frac{4}{3}}(x^3 - 1)^{\frac{2}{3}}}.$$

Vale

$$\lim_{x \to 1} f'(x) = +\infty.$$

Inoltre f' si annulla se e solo se $x=-\frac{1}{\sqrt[3]{2}}$ e ha il segno di $2x^3+1$, dunque è positiva se $x\in\left(-\frac{1}{\sqrt[3]{2}},0\right)$ e se x>0, perciò crescente separatamente in ciascuno di tali insiemi, negativa se $x<-\frac{1}{\sqrt[3]{2}}$, dunque decrescente in tale insieme. Il punto $x=-\frac{1}{\sqrt[3]{2}}$ è punto di minimo relativo per f. I limiti di f alla frontiera del proprio dominio mostrano che non vi sono estremi assoluti.

La derivata seconda vale, sempre per $x \neq 0, x \neq 1$:

$$f''(x) = -\frac{2(x^6 + 10x^3 - 2)}{9x^{\frac{7}{3}}(x^3 - 1)^{\frac{5}{3}}}.$$

Il polinomio $p(x):=x^6+10x^3-2$ si annulla se e solo se $x^3=-5\pm\sqrt{27}=-5\pm3\sqrt{3}$, cioè se e solo se $x=(-5\pm3\sqrt{3})^{\frac{1}{3}}$. Si ha evidentemente $x_1:=(-5-3\sqrt{3})^{\frac{1}{3}}<0$, $x_2:=(-5+3\sqrt{3})^{\frac{1}{3}}\in(0,1)$. Inoltre p(x)>0 se $x>x_2$ e se $x<x_1$, mentre p(x)<0 se $x\in(x_1,x_2)$. Notando inoltre che il denominatore nell'espressione di f'' è positivo se x>1 e se x<0, e che esso è negativo se $x\in(0,1)$, ne segue che f''(x)>0 se $x\in(x_1,0)$ e se $x\in(x_2,1)$, dunque f è convessa separatamente in ciascuno di tali intervalli, mentre f''(x)<0 se $x< x_1$, se $x\in(0,x_2)$ e se x>1, dunque x_1 0 concava separatamente in ciascuno di tali intervalli. Si vede immediatamente dall'espressione di x_1 1 che $x_1<-\frac{1}{\sqrt[3]{2}}$, dunque x_1 1 si trova a sinistra del punto di minimo relativo. I punti $x=x_{1,2}$ 2 sono di flesso. Inolte il punto x=11 è anch'esso di flesso, ma a tangente verticale.

Il grafico di f è il seguente:

4. (punti 8) Si consideri la funzione

$$f(x) = \frac{1}{x(x^2 - 1)^{1/3}}$$

- (a) Calcolare una primitiva di f;
- (b) Stabilire, senza far uso della primitiva calcolata, quali tra le regioni di piano delimitate dal grafico di f, dagli assi cartesiani, e dalle rette $x = \pm 1$, hanno area finita;
- (c) (facoltativo) Calcolare, facendo uso della primitiva calcolata, le suddette aree.

Soluzione. Si pone $(x^2-1)^{1/3}=t$, cosicché $x^2-1=t^3$, $x^2=t^3+1$ e $x\,\mathrm{d} x=\frac32t^2\,\mathrm{d} t$. Si ha:

$$\begin{split} &\int \frac{1}{x(x^2-1)^{1/3}} \, \mathrm{d}x \\ &= \int \frac{x}{x^2(x^2-1)^{1/3}} \, \mathrm{d}x = \frac{3}{2} \int \frac{t^2}{(t^3+1)t} \, \mathrm{d}t = \frac{3}{2} \int \frac{t}{t^3+1} \, \mathrm{d}t = \frac{1}{2} \int \left(\frac{t+1}{t^2-t+1} - \frac{1}{t+1}\right) \, \mathrm{d}t \\ &= \frac{1}{2} \int \left(\frac{1}{2} \frac{2t-1}{t^2-t+1} + \frac{3}{2} \frac{1}{t^2-t+1} - \frac{1}{t+1}\right) \, \mathrm{d}t = \frac{1}{2} \int \left(\frac{1}{2} \frac{2t-1}{t^2-t+1} + \frac{3}{2} \frac{1}{\left(t-\frac{1}{2}\right)^2 + \frac{3}{4}} - \frac{1}{t+1}\right) \, \mathrm{d}t \\ &= \frac{1}{2} \int \left(\frac{1}{2} \frac{2t-1}{t^2-t+1} + 2 \frac{1}{\left[\frac{2}{\sqrt{3}} \left(t-\frac{1}{2}\right)\right]^2 + 1} - \frac{1}{t+1}\right) \, \mathrm{d}t \\ &= \frac{1}{4} \log(t^2-t+1) + \frac{\sqrt{3}}{2} \arctan\left[\frac{2}{\sqrt{3}} \left(t-\frac{1}{2}\right)\right] - \frac{1}{2} \log|t+1| \\ &= \frac{1}{4} \log((x^2-1)^{\frac{2}{3}} - (x^2-1)^{\frac{1}{3}} + 1) + \frac{\sqrt{3}}{2} \arctan\left[\frac{2}{\sqrt{3}} \left((x^2-1)^{\frac{1}{3}} - \frac{1}{2}\right)\right] - \frac{1}{2} \log|(x^2-1)^{\frac{1}{3}} + 1| \end{split}$$

dove si è notato che $t^2 - t + 1 > 0$ per ogni t e si è posta per comodità uguale a zero la costante additiva.

Riguardo al secondo punto, si noti in primo luogo che la funzione è dispari, dunque possiamo considerare solo le regioni di piano per cui x>0 e poi procedere per simmetria. Se x>0, la funzione f presenta possibili problemi di integrabilità se $x\to 0^+$, se $x\to 1$ e se $x\to +\infty$. Si ha:

$$f(x) \underset{x \to 0^+}{\sim} -\frac{1}{x}, \quad f(x) \underset{x \to 1}{\sim} \frac{1}{\sqrt[3]{2}(x-1)^{\frac{1}{3}}}, \quad f(x) \underset{x \to +\infty}{\sim} \frac{1}{x^{\frac{5}{3}}}.$$

Per i noti criteri di integrabilità, se ne deduce che f è integrabile in un intorno di x=1 e di $+\infty$, mentre non lo è in un intorno di 0. Dunque l'unica regione di area finita individuata dalle curve indicate è, se si assume x>0, quella delimitata dall'asse x, dalla retta x=1 e dal grafico di f. Per simmetria l'unica altra regione tra quelle indicate che abbia area finita è quella delimitata dall'asse x, dalla retta x=-1 e dal grafico di f. Le due regioni hanno la stessa area.

Ciascuna delle due regioni sopra individuate ha area data da (f è positiva per x > 1):

$$\begin{split} & \int_{1}^{+\infty} \frac{1}{x(x^2-1)^{1/3}} \, \mathrm{d}x = \frac{3}{2} \int_{0}^{+\infty} \frac{t}{t^3+1} \, \mathrm{d}t \\ & = \left[\frac{1}{4} \log(t^2-t+1) + \frac{\sqrt{3}}{2} \arctan\left[\frac{2}{\sqrt{3}} \left(t-\frac{1}{2}\right)\right] - \frac{1}{2} \log|t+1| \right]_{0}^{+\infty} \\ & = \frac{\sqrt{3}}{2} \arctan\frac{1}{\sqrt{3}} + \lim_{t \to +\infty} \left[\frac{\sqrt{3}}{2} \arctan\left[\frac{2}{\sqrt{3}} \left(t-\frac{1}{2}\right)\right] + \frac{1}{4} \log\left(\frac{t^2-t+1}{(t+1)^2}\right) \right] \\ & = \frac{\sqrt{3}}{12} \pi + \frac{\sqrt{3}}{4} \pi = \frac{\pi}{\sqrt{3}}, \end{split}$$

dove si è notato che $\arctan s \to \frac{\pi}{2} \ \text{per} \ s \to +\infty \ \text{e che} \ \log\left(\frac{t^2-t+1}{(t+1)^2}\right) \to 0 \ \text{per} \ t \to +\infty \ \text{(per quest'ultimo risultato raccogliere} \ t^2 \ \text{sia a numeratore che a denominatore dell'argomento del logaritmo)}.$

Es. 1	Es. 2	Es. 3	Es. 4	Totale

Analisi Matematica 1 e Geometria, Versione B		Prova scritta del $17/2/2020$
Cognome:	Nome:	Matricola:

- Ogni risposta dev'essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio sotto il testo e sul retro. I fogli di brutta non devono essere consegnati. Durante la prova lo studente non può consultare né avere con sé testi, appunti, calcolatrici, telefoni cellulari o altre apparecchiature elettroniche.
- 1. (punti 8) Si considerino le seguenti matrici:

$$A = \begin{pmatrix} 2 & 0 & 1 & -1 \\ 3 & -1 & 0 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -2 \\ 0 & 1 \\ 1 & -2 \end{pmatrix}.$$

e siano $f: \mathbb{R}^4 \to \mathbb{R}^2$ e $g: \mathbb{R}^2 \to \mathbb{R}^3$ le applicazioni lineari associate alle matrici A e B, rispettivamente.

- (a) determinare una base di $ker(g \circ f)$.
- (b) Sia \mathcal{H} il sottospazio di \mathbb{R}^4 formato dai vettori ortogonali al vettore $(1,0,0,0)^t$. Determinare una base del sottospazio $\mathcal{H} \cap \ker(g \circ f)$.
- (c) Trovare le controimmagini del vettore $(2,1,0)^t$ attraverso $g \circ f$.

Soluzione.

(a) Sappiamo che $g \circ f$ è associata alla matrice BA. Il rango della matrice B vale due, dunque il suo nucleo è dato dal solo vettore nullo, pertanto il nucleo di BA coincide con il nucleo della matrice A. Esso si determina risolvendo il sistema omogeneo $Av = \mathbf{0}$ e si ottiene:

$$oldsymbol{v} = egin{pmatrix} lpha \ 3lpha - 2eta \ -2lpha + eta \ eta \end{pmatrix}, \qquad lpha \in \mathbb{R}, \quad eta \in \mathbb{R}$$

Come base del nucleo può essere scelta la coppia di vettori:

$$\mathcal{B}_{\ker(g \circ f)} = \left\{ \begin{pmatrix} 1\\3\\-2\\0 \end{pmatrix}, \begin{pmatrix} 0\\-2\\1\\1 \end{pmatrix} \right\}.$$

- (b) Il sottospazio \mathcal{H} è formato da vettori $\mathbf{v} \in \mathbb{R}^4$ tali che $\mathbf{v} \cdot (1,0,0,0)^t = 0$, ovvero tali che $x_1 = 0$. Imponendo questo vincolo ai vettori del nucleo, si ottiene $\alpha = 0$. Dunque $\mathcal{H} \cap \ker(g \circ f)$ è il sottospazio monodimensionale generato dal vettore $(0,-2,1,1)^t$.
- (c) Occorre risolvere il sistema:

$$(g \circ f)\mathbf{v} = \begin{pmatrix} 2\\1\\0 \end{pmatrix}$$

Senza dover calcolare esplicitamente BA, è possibile dapprima calcolare la controimmagine di $(2,1,0)^t$ attraverso B:

$$\begin{pmatrix} 2 & -2 \\ 0 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$

da cui: x = 2 e y = 1.

Successivamente, si calcola la controimmagine del vettore $(2,1)^t$ attraverso A:

$$\begin{pmatrix} 2 & 0 & 1 & -1 \\ 3 & -1 & 0 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

e si ottiene ($\ker f$ è stato calcolato in precedenza):

$$egin{pmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{pmatrix} = egin{pmatrix} 0 \ -1 \ 2 \ 0 \end{pmatrix} + oldsymbol{\eta}, \qquad oldsymbol{\eta} \in \ker f.$$

Infatti basta calcolare una soluzione del sistema non omogeneo (qui si è posto ad esempio $x_1 = x_4 = 0$), e notare che la generica soluzione del sistema ha la struttura sopra scritta.

2. (punti 6) Calcolare il seguente limite:

$$\lim_{x \to 0^+} \frac{e^{2\sin^3 x} - 1 - 2\tan^3 x}{x \left(e^{x^2} - e^{x\sin x}\right)}.$$

Si ha, per $x \to 0^+$:

$$\sin^3 x = \left(x - \frac{x^3}{6} + o(x^3)\right)^3 = x^3 - \frac{x^5}{2} + o(x^5);$$

$$e^{2\sin^3 x} = e^{2x^3 - x^5 + o(x^5)} = 1 + 2x^3 - x^5 + o(x^5);$$

$$\tan^3 x = \left(x + \frac{x^3}{3} + o(x^3)\right)^3 = x^3 + x^5 + o(x^5);$$

$$e^{x^2} = 1 + x^2 + \frac{x^4}{2} + o(x^5);$$

$$e^{x\sin x} = e^{x\left(x - \frac{x^3}{6} + o(x^4)\right)} = e^{x^2 - \frac{x^4}{6} + o(x^5)} = 1 + x^2 - \frac{x^4}{6} + \frac{x^4}{2} + o(x^5)$$

$$= 1 + x^2 + \frac{x^4}{3} + o(x^5).$$

Dunque

$$\frac{e^{2\sin^3 x} - 1 - 2\tan^3 x}{x\left(e^{x^2} - e^{x\sin x}\right)} = \frac{1 + 2x^3 - x^5 - 1 - 2x^3 - 2x^5 + o(x^5)}{x\left[1 + x^2 + \frac{x^4}{2} - 1 - x^2 - \frac{x^4}{3} + o(x^5)\right]}$$
$$= \frac{-3x^5 + o(x^5)}{\frac{x^5}{6} + o(x^5)}$$
$$\xrightarrow[x \to 0^+]{} -18.$$

$$f(x) = \sqrt{x^2 - x} + 3x.$$

Soluzione. La funzione è definita per gli x per i quali l'argomento della radice è non negativo, dunque se $x \ge 1$ e se $x \le 0$. Vale f(1) = 3, f(0) = 0. La funzione è chiaramente strettamente positiva per $x \ge 1$, mentre per $x \le 0$ f è positiva se e solo se $\sqrt{x^2 - x} > -3x$, disequazione che è verificata per quegli $x \le 0$ tali che $8x^2 + x < 0$, cioè per $x \in \left(-\frac{1}{8}, 0\right)$. La funzione si annulla in x = -1/8, è negativa per $x < -\frac{1}{8}$.

Per quanto riguarda i limiti di f per $x \to \pm \infty$, notiamo che vale, appunto per $x \to \pm \infty$:

$$f(x) = \sqrt{x^2 - x} + 3x = |x| \left(1 - \frac{1}{x} \right)^{\frac{1}{2}} + 3x = |x| \left(1 - \frac{1}{2x} + o\left(\frac{1}{x}\right) \right) + 3x.$$

Quindi:

$$\begin{split} f(x) &= x - \frac{1}{2} + 3x + o(1) = 4x - \frac{1}{2} + o(1) \quad \text{per } x \to +\infty \\ f(x) &= -x + \frac{1}{2} + 3x + o(1) = 2x + \frac{1}{2} + o(1) \quad \text{per } x \to -\infty. \end{split}$$

Dunque non solo vale $f(x) \to \pm \infty$ se $x \pm \infty$, ma abbiamo anche mostrato che la retta $y = 4x - \frac{1}{2}$ è asintoto obliquo per $x \to +\infty$ e che la retta $y = 2x + \frac{1}{2}$ è asintoto obliquo per $x \to -\infty$.

La funzione è derivabile per x > 1, x < 0. La derivata prima vale, per tali valori di x,

$$f'(x) = \frac{2x - 1}{2\sqrt{x^2 - x}} + 3.$$

Si noti in primo luogo che

$$\lim_{x \to 1^+} f'(x) = +\infty, \quad \lim_{x \to 0^-} f'(x) = -\infty.$$

La tangente al grafico di f tende dunque a diventare verticale in tali limiti. Inoltre f'(x) > 0 se e solo se $6\sqrt{x^2 - x} > 1 - 2x$. Tale disequazione è evidentemente sempre verificata per x > 1, mentre per x < 0 equivale alla disequazione $32x^2 - 32x - 1 < 0$. Gli zeri del polinomio di secondo grado appena scritto sono dati da

$$x = \frac{16 \pm \sqrt{(16)^2 + 32}}{32} = \frac{16 \pm \sqrt{288}}{32} = \frac{16 \pm 12\sqrt{2}}{32} = \frac{1}{2} \pm \frac{3}{8}\sqrt{2}.$$

Solo la radice $x_1 := \frac{1}{2} - \frac{3}{8}\sqrt{2}$ è minore di zero (come segue dal fatto che $16 - \sqrt{(16)^2 + 32} < 0$). Si ha dunque f'(x) > 0 per $x < x_1$ e per x > 1, dunque f è crescente separatamente in ciascuno di tali intervalli, mentre f'(x) < 0 per $x \in (x_1,0)$, dunque f è decrescente in tale intervallo. Il punto $x = x_1$ è quindi punto di massimo relativo. Si vede facilmente che, come deve peraltro essere per coerenza coi limiti della funzione, $-1/8 < x_1$ (infatti tale disequazione corrisponde, data l'espressione di x_1 e con calcoli elementari, alla disequazione $3\sqrt{2} < 5$, evidentemente vera). Si noti inoltre che i punti x = 0, x = 1, in cui f non è derivabile, sono punti di minimo relativo per f. Dati i limiti di f per $x \to \pm \infty$ è immediato notare che non vi sono estremi assoluti di f.

Calcoliamo infine, sempre per x > 1 e per x < 0, la derivata seconda di f. Calcoli elementari mostrano che, per tali x, vale:

$$f''(x) = -\frac{1}{4(x^2 - x)^{\frac{3}{2}}}.$$

Dunque la derivata seconda è ovunque negativa ove definita. Ne segue che f è concava separatamente negli intervalli $(-\infty,0)$ e $(1,+\infty)$ (ovviamente anche, separatamente, in $(-\infty,0]$ e in $[1,+\infty)$). In conclusione il grafico di f è il seguente:

4. (punti 8) Si consideri la funzione

$$f(x) = \frac{1}{x(x^2 - 8)^{1/3}}$$

- (a) Calcolare una primitiva di f;
- (b) Stabilire, senza far uso della primitiva calcolata, quali tra le regioni di piano delimitate dal grafico di f, dagli assi cartesiani, e dalle rette $x = \pm 2\sqrt{2}$, hanno area finita;
- (c) (facoltativo) Calcolare, facendo uso della primitiva calcolata, le suddette aree.

Soluzione. Si pone $(x^2-8)^{1/3}=t$, cosicché $x^2-8=t^3$, $x^2=t^3+8$ e $x\,\mathrm{d} x=\frac{3}{2}t^2\,\mathrm{d} t$. Si ha:

$$\begin{split} &\int \frac{1}{x(x^2-8)^{1/3}} \, \mathrm{d}x \\ &= \int \frac{x}{x^2(x^2-8)^{1/3}} \, \mathrm{d}x = \frac{3}{2} \int \frac{t^2}{(t^3+8)t} \, \mathrm{d}t = \frac{3}{2} \int \frac{t}{t^3+8} \, \mathrm{d}t = \frac{1}{4} \int \left(\frac{t+2}{t^2-2t+4} - \frac{1}{t+2}\right) \, \mathrm{d}t \\ &= \frac{1}{4} \int \left(\frac{1}{2} \frac{2t-2}{t^2-2t+4} + \frac{3}{t^2-2t+4} - \frac{1}{t+2}\right) \, \mathrm{d}t = \frac{1}{4} \int \left(\frac{1}{2} \frac{2t-2}{t^2-2t+4} + \frac{3}{(t-1)^2+3} - \frac{1}{t+2}\right) \, \mathrm{d}t \\ &= \frac{1}{4} \int \left(\frac{1}{2} \frac{2t-2}{t^2-2t+4} + \frac{1}{\left[\frac{1}{\sqrt{3}}(t-1)\right]^2+1} - \frac{1}{t+2}\right) \, \mathrm{d}t \\ &= \frac{1}{8} \log(t^2-2t+4) + \frac{\sqrt{3}}{4} \arctan\left[\frac{1}{\sqrt{3}}(t-1)\right] - \frac{1}{4} \log|t+2| \\ &= \frac{1}{8} \log((x^2-8)^{\frac{2}{3}} - 2(x^2-8)^{\frac{1}{3}} + 4) + \frac{\sqrt{3}}{4} \arctan\left[\frac{1}{\sqrt{3}}\left((x^2-8)^{\frac{1}{3}} - 1\right)\right] - \frac{1}{4} \log|(x^2-8)^{\frac{1}{3}} + 2| \end{split}$$

dove si è notato che $t^2 - 2t + 4 > 0$ per ogni t e si è posta per comodità uguale a zero la costante additiva.

Riguardo al secondo punto, si noti in primo luogo che la funzione è dispari, dunque possiamo considerare solo le regioni di piano per cui x>0 e poi procedere per simmetria. Se x>0, la funzione f presenta possibili problemi di integrabilità se $x\to 0^+$, se $x\to 2\sqrt{2}$ e se $x\to +\infty$. Si ha:

$$f(x) \underset{x \to 0^{+}}{\sim} -\frac{1}{2x}, \quad f(x) \underset{x \to 2\sqrt{2}}{\sim} \frac{1}{2^{7/3} (x - 2\sqrt{2})^{\frac{1}{3}}}, \quad f(x) \underset{x \to +\infty}{\sim} \frac{1}{x^{\frac{5}{3}}}.$$

Per i noti criteri di integrabilità, se ne deduce che f è integrabile in un intorno di $x=2\sqrt{2}$ e di $+\infty$, mentre non lo è in un intorno di 0. Dunque l'unica regione di area finita individuata dalle curve indicate è, se si assume x>0, quella delimitata dall'asse x, dalla retta x=1 e dal grafico di f. Per simmetria l'unica altra regione tra quelle indicate che abbia area finita è quella delimitata dall'asse x, dalla retta $x=-2\sqrt{2}$ e dal grafico di f. Le due regioni hanno la stessa area.

Ciascuna delle due regioni sopra individuate ha area data da (f è positiva per x > 1):

$$\begin{split} &\int_{2\sqrt{2}}^{+\infty} \frac{1}{x(x^2-8)^{1/3}} \, \mathrm{d}x = \frac{3}{2} \int_0^{+\infty} \frac{t}{t^3+8} \, \mathrm{d}t \\ &= \left[\frac{1}{8} \log(t^2-2t+4) + \frac{\sqrt{3}}{4} \arctan\left[\frac{1}{\sqrt{3}} \left(t-1\right)\right] - \frac{1}{4} \log\left|t+2\right| \right]_0^{+\infty} \\ &= \frac{\sqrt{3}}{4} \arctan\frac{1}{\sqrt{3}} + \lim_{t \to +\infty} \left[\frac{\sqrt{3}}{4} \arctan\left[\frac{1}{\sqrt{3}} \left(t-1\right)\right] + \frac{1}{8} \log\left(\frac{t^2-2t+4}{(t+2)^2}\right) \right] \\ &= \frac{\sqrt{3}}{24} \pi + \frac{\sqrt{3}}{8} \pi = \frac{\pi}{2\sqrt{3}}, \end{split}$$

dove si è notato che $\arctan s \to \frac{\pi}{2} \ \text{per} \ s \to +\infty \ \text{e che} \ \log\left(\frac{t^2-2t+4}{(t+2)^2}\right) \to 0 \ \text{per} \ t \to +\infty \ \text{(per quest'ultimo risultato raccogliere} \ t^2 \ \text{sia a numeratore che a denominatore dell'argomento del logaritmo)}.$

Analisi Matematica 1 e Geometria - Ingegneria Fisica Prova del 26 giugno 2020 - Esercizio 1

(10 punti) Sia $a \in \mathbb{R}$ e sia $L_a : \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare associata alla matrice

$$\begin{pmatrix} 1 & a & 0 & -1 \\ a & 4 & 0 & -2 \\ -1 & -a & a^2 - 4 & 1 \end{pmatrix}$$

- Stabilire le dimensioni dell'immagine di L_a al variare del parametro a.
- $\bullet\,$ Determinare una base per il nucleo di L_a nel caso in cui esso sia bidimensionale.

Soluzione.

• Il rango della matrice vale al più tre. Il minore di ordine due formato dagli elementi appartenenti alla prima e seconda riga e prima e quarta colonna risulta essere a-2. Quindi se $a \neq 2$ il rango vale almeno 2. Se a=2 il rango vale uno perchè tutte le righe sono proporzionali (e non nulle). Orlando il minore suddetto si ottengono le seguenti matrici di ordine tre:

$$\begin{pmatrix} 1 & a & -1 \\ a & 4 & -2 \\ -1 & -a & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & -1 \\ a & 0 & -2 \\ -1 & a^2 - 4 & 1 \end{pmatrix}$$

I cui determinanti valgono rispettivamente zero e $-(a+2)(a-2)^2$.

Quindi se a=-2 il rango vale due, se $a\neq\pm2$ il rango è tre.

Dunque:

Se a=2, dim (Im L_a) = 1.

Se a = -2, dim (Im L_a) = 2.

Se $a \neq \pm 2$, dim $(\operatorname{Im} L_a) = 3$.

• Sia a = -2. Occorre risolvere il sistema omogeneo associato alla seguente matrice:

$$\begin{pmatrix}
1 & -2 & 0 & -1 \\
-2 & 4 & 0 & -2
\end{pmatrix}$$

dove si è omessa la terza riga perchè ridondante. Si ricava immediatamente:

$$\operatorname{Ker} L_{a} = \begin{cases} x_{1} = 2t \\ x_{2} = t \\ x_{3} = s \\ x_{4} = 0 \end{cases}, \quad t, s \in \mathbb{R}.$$

Una base del nucleo è data quindi ad esempio dai vettori $(2, 1, 0, 0)^{\top}, (0, 0, 1, 0)^{\top}$.

Analisi Matematica 1 e Geometria - Ingegneria Fisica Prova del 26 giugno 2020 - Esercizio 2

(8 punti) Si consideri la seguente funzione complessa di variabile complessa:

$$f(z) = \frac{1}{i\overline{z}^2}, \quad z \in \mathbb{C} \setminus \{0\}.$$

- Calcolare Re f(z), Im f(z) per ogni $z \in \mathbb{C} \setminus \{0\}$, in termini delle coordinate cartesiane di z.
- Determinare l'insieme $A := \{z \in \mathbb{C} \setminus \{0\}, f(z) \in \mathbb{R}\}.$
- Determinare, al variare del parametro R > 0,

$$C_R := \inf\{f(z), z \in A, |z| \ge R\}.$$

Soluzione. Calcoliamo, posto z = x + iy:

$$\begin{split} \frac{1}{i\overline{z}^2} &= \frac{1}{i(x-iy)^2} = -\frac{i}{x^2-y^2-2ixy} = -\frac{i(x^2-y^2+2ixy)}{(x^2-y^2)^2+4x^2y^2} = \frac{2xy-i(x^2-y^2)}{x^4+y^4-2x^2y^2+4x^2y^2} \\ &= \frac{2xy-i(x^2-y^2)}{(x^2+y^2)^2}. \end{split}$$

Dunque

Re
$$f(z) = \frac{2xy}{(x^2 + y^2)^2}$$
, Im $f(z) = \frac{y^2 - x^2}{(x^2 + y^2)^2}$.

In particolare, f(z) è reale se e solo se |y| = |x| (con $x \neq 0$, si ricordi che deve essere $z \neq 0$ perché f sia definita). Quindi A è dato dall'unione delle due rette $z = x \pm ix$, private dell'origine. Infine, se $z \in A$ si ha

$$f(z) = \text{Re}\,f(z) = \frac{2xy}{(x^2 + y^2)^2}.$$

Si ricordi però che se $z \in A$ vale $z = x \pm ix$ con $x \neq 0$, quindi

$$f(z) = \frac{2xy}{(x^2 + y^2)^2} = \pm \frac{2x^2}{4x^4} = \pm \frac{1}{2x^2}.$$
 (1)

Chiedere $|z| \geq R$ significa, ricordando che $z=x\pm ix$, che $2x^2 \geq R^2$, ovvero che $|x| \geq \frac{R}{\sqrt{2}}$. Si osservi che ci viene chiesto di trovare $\inf\{f(z), z \in A, |z| \geq R\}$, dunque basta considerare il segno meno nella formula (1). È infine chiaro che il minimo della funzione $g(x)=-\frac{1}{2x^2}$ definita sul dominio $|x| \geq \frac{R}{\sqrt{2}}$ si ottiene per $x=\pm \frac{R}{\sqrt{2}}$, e vale $-\frac{1}{R^2}$.

Analisi Matematica 1 e Geometria - Ingegneria Fisica Prova del 26 giugno 2020 - Esercizio 3

(14 punti) Studiare la funzione

$$f(x) = x^{\frac{2}{3}}(x^2 - 3x - 4)^{\frac{1}{3}}.$$

Non è richiesto lo studio dettagliato della derivata seconda, ma solo le proprietà qualitative relative alla concavità e convessità del grafico di f deducibili elementarmente dalle altre informazioni già disponibili.

Soluzione. La funzione è definita per ogni $x \in \mathbb{R}$. Non vi sono simmetrie evidenti. Chiaramente

$$\lim_{x \to +\infty} f(x) = +\infty.$$

Non vi sono asintoti obliqui in quanto la crescita di f all'infinito è superlineare, $f(x) \sim x^{4/3}$ per $x \to \pm \infty$. La funzione si annulla se x=0 e se $x^2-3x-4=0$, cioè se x=4 e se x=-1. La funzione ha il segno di x^2-3x-4 (salvo che in x=0 in cui si annulla), dunque è strettamente positiva se x>4 e se x<-1, strettamente negativa se $x\in (-1,4)$, $x\neq 0$.

La funzione non è derivabile in x=0 e nei punti in cui $x^2-3x-4=0$, cioè in x=4 e se x=-1. Se $x\neq 0, x\neq -1, x\neq 4$, si ha:

$$f'(x) = \frac{2}{3x^{\frac{1}{3}}}(x^2 - 3x - 4)^{1/3} + x^{\frac{2}{3}} \frac{2x - 3}{3(x^2 - 3x - 4)^{\frac{2}{3}}} = \frac{2(x^2 - 3x - 4) + x(2x - 3)}{3x^{\frac{1}{3}}(x^2 - 3x - 4)^{\frac{2}{3}}} = \frac{4x^2 - 9x - 8}{3x^{\frac{1}{3}}(x^2 - 3x - 4)^{\frac{2}{3}}}.$$

Si ha:

$$\lim_{x \to 0^{\pm}} f'(x) = -\mp \infty, \quad \lim_{x \to 4} f'(x) = +\infty, \quad \lim_{x \to -1} f'(x) = -\infty.$$

Dunque il punto x=0 è di cuspide. Inoltre le tangenti al grafico di tendono a diventare verticali per $x\to -1$ e per $x\to 4$. Lo studio degli zeri e del segno della derivata è immediato e dà quanto segue. f'(x) si annulla se e solo se $x=\frac{9\pm\sqrt{209}}{8}$. Si noti che (il numero $\sqrt{209}$ è compreso tra 14 e 15) $\frac{9+\sqrt{209}}{8}\in (0,4)$ e che $\frac{9-\sqrt{209}}{8}\in (-1,0)$. Inoltre f'(x)>0 se e solo se $x\in \left(\frac{9-\sqrt{209}}{8},0\right)$ oppure $x\in \left(\frac{9+\sqrt{209}}{8},4\right)\cup (4,+\infty)$, dunque f è strettamente crescente separatamente in tali due insiemi (si osservi che f è continua in x=4). f'(x) è invece negativa se e solo se $x\in (-\infty,-1)\cup \left(-1,\frac{9-\sqrt{209}}{8}\right)$ e in $\left(0,\frac{9+\sqrt{209}}{8}\right)$, dunque f è strettamente decrescente separatamente in tali due insiemi (si osservi che f è continua in x=-1). Ne segue che i punti $x=\frac{9\pm\sqrt{209}}{8}$ sono di minimo relativo. Non svolgiamo la verifica di quale sia, tra questi, il punto di minimo assoluto, ma esso si rivela essere il punto $\frac{9+\sqrt{209}}{8}$. Il punto x=0 che, ricordiamo, era di cuspide, risulta un punto di massimo relativo (pur non essendo un punto di derivabilità), mentre ovviamente non vi sono massimi assoluti (la funzione è illimitata dall'alto).

Da quanto studiato ci si può aspettare che i punti x=-1 e x=4 siano punti di flesso a tangente verticale (si ricordino i limiti delle derivate). Ciò andrebbe dimostrato rigorosamente studiando i limiti di f'' per $x \to -1$ e $x \to 4$, ma ciò non è richiesto. Ci si può inoltre aspettare che esistano almeno altri due flessi di f, uno per x>4 e uno per x<-1. Infatti la funzione ha crescita superlineare all'infinito e la convessità risulterà rivolta verso l'alto in tale limite (ciò è intuitivo ma andrebbe giustificato con un calcolo esplicito, tuttavia non richiesto), mentre da quanto detto prima ci si aspetta che sia rivolta verso il basso per $x \to -1^-$ e per $x \to 4^+$.

Il grafico di f è il seguente:

Analisi Matematica 1 e Geometria - Ingegneria Fisica Prova del 20 luglio 2020 - Esercizio 1

(10 punti) Data la matrice

$$M_h = \begin{pmatrix} 1+h & 0 & 1\\ 1-h & 2 & 3-2h\\ h-1 & 0 & 2h-1 \end{pmatrix}$$

- Determinare, al variare del parametro $h \in \mathbb{R}$, gli autovalori di M_h .
- Studiare, al variare del parametro $h \in \mathbb{R}$, la diagonalizzabilità di M_h .

Soluzione.

• L'equazione caratteristica è:

$$(2 - \lambda) [(1 + h - \lambda)(2h - 1 - \lambda) - h + 1] = 0,$$

da cui

$$(2 - \lambda)(\lambda^2 - 3h\lambda + 2h^2) = (2 - \lambda)(\lambda - h)(\lambda - 2h) = 0$$

Pertanto la matrice M_h ha autovalori 2, $h \in 2h$.

 $\bullet\,$ Gli autovalori sono semplici ad eccezione dei casi: $h=2,\,h=1,\,h=0.$

Sia h=2. In tal caso, l'autovalore $\lambda=2$ ha molteplicità algebrica pari a due. Si ha:

$$M_2 - 2\mathbb{I} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$

e tale matrice ha rango uno, pertanto la molteplicità geometrica dell'autovalore $\lambda=2$ vale 3-1=2 e coincide con la molteplicità algebrica, dunque la matrice è diagonalizzabile.

Sia h=1. Anche in questo caso l'autovalore $\lambda=2$ ha molteplicità algebrica pari a due. Si ha:

$$M_1 - 2\mathbb{I} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{pmatrix}.$$

Anche tale matrice ha rango uno, quindi la molteplicità geometrica dell'autovalore $\lambda=2$ vale di nuovo due e coincide con la molteplicità algebrica, dunque la matrice è diagonalizzabile.

Sia h=0. In questo caso è l'autovalore $\lambda=0$ ad avere molteplicità pari a due. Si ha:

$$M_0 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 3 \\ -1 & 0 & -1 \end{pmatrix}$$

Il rango di quest'ultima matrice è chiaramente due, pertanto la molteplicità gemetrica dell'autovalore $\lambda=0$ è pari a uno e di conseguenza la matrice non è diagonalizzabile.

Analisi Matematica 1 e Geometria - Ingegneria Fisica Prova del 20 luglio 2020 - Esercizio 2

(8 punti) Si consideri, in un intorno di x = 0, la funzione $f(x) = (\cos x)^{\sin x}$.

- Determinare lo sviluppo di Taylor di f centrato in x = 0, di ordine sei.
- Determinare per quali polinomi P vale, per un opportuno $\ell \in \mathbb{R}, \ell \neq 0$,

$$\lim_{x \to 0} \frac{f(x) - P(x)}{x^6} = \ell.$$

Specificare il valore di ℓ in termini dei coefficienti del polinomio P.

Soluzione. Vale $(\cos x)^{\sin x} = e^{\sin x \log(\cos x)}$. Si ha, per $x \to 0$:

$$\begin{split} \log(\cos x) &= \log\left(1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^5)\right) = -\frac{x^2}{2} + \frac{x^4}{24} + o(x^5) - \frac{1}{2}\left(-\frac{x^2}{2} + \frac{x^4}{24} + o(x^5)\right)^2 + o(x^5) \\ &= -\frac{x^2}{2} + \frac{x^4}{24} - \frac{x^4}{8} + o(x^5) \\ &= -\frac{x^2}{2} - \frac{x^4}{12} + o(x^5); \\ \sin x \log(\cos x) &= \left(x - \frac{x^3}{6} + o(x^4)\right)\left(-\frac{x^2}{2} - \frac{x^4}{12} + o(x^5)\right) = -\frac{x^3}{2} + \frac{x^5}{12} - \frac{x^5}{12} + o(x^6) \\ &= -\frac{x^3}{2} + o(x^6); \\ e^{\sin x \log(\cos x)} &= e^{-\frac{x^3}{2} + o(x^6)} = 1 - \frac{x^3}{2} + o(x^6) + \frac{1}{2}\left(-\frac{x^3}{2} + o(x^6)\right)^2 + o(x^6) \\ &= 1 - \frac{x^3}{2} + \frac{x^6}{8} + o(x^6). \end{split}$$

Il polinomio cercato è dunque $Q(x)=1-\frac{x^3}{2}+\frac{x^6}{8}$. Per rispondere alla seconda domanda, osserviamo che

$$\lim_{x \to 0} \frac{f(x) - P(x)}{x^6} = \lim_{x \to 0} \frac{Q(x) - P(x) + o(x^6)}{x^6} = \lim_{x \to 0} \frac{Q(x) - P(x)}{x^6}.$$

Quindi il limite cercato è finito se e solo se $P(x) = Q(x) + cx^6 + o(x^6)$ per un opportuno $c \in \mathbb{R}$, cioè deve essere, per opportuni $N \geq 7$ e $\alpha, c_7, \ldots, c_N \in \mathbb{R}$

$$P(x) = 1 - \frac{x^3}{2} + \alpha x^6 + \sum_{k=7}^{N} c_n x^n.$$
 (*)

In tal caso vale

$$\lim_{x \to 0} \frac{f(x) - P(x)}{x^6} = \lim_{x \to 0} \frac{Q(x) - P(x) + o(x^6)}{x^6} \lim_{x \to 0} \frac{\left(\frac{1}{8} - \alpha\right)x^6 + o(x^6)}{x^6} = \frac{1}{8} - \alpha.$$

Dunque i polinomi cercati sono quelli della forma (*), purché $\alpha \neq \frac{1}{8}$, e in tal caso $\ell = \frac{1}{8} - \alpha$.

Analisi Matematica 1 e Geometria - Ingegneria Fisica Prova del 20 luglio 2020 - Esercizio 3

(14 punti) Studiare la funzione

$$f(x) = e^x |e^{-x} - x^2|.$$

Si può dare per nota la seguente informazione: esiste un solo punto x_0 tale che $e^{-x} = x^2$, e vale $x_0 \in (0,1)$.

Soluzione. La funzione è definita per ogni $x \in \mathbb{R}$. Non vi sono simmetrie evidenti. Chiaramente la funzione è ovunque non negativa, e si annulla solo per $x = x_0$. La quantità $g(x) := e^{-x} - x^2$ si annulla, come detto nel testo, solo per un opportuno $x_0 \in (0,1)$, ed è allora chiaro che g(x) > 0 per $x < x_0$ e g(x) < 0 per $x > x_0$. Quindi si ha:

$$f(x) = \begin{cases} 1 - x^2 e^x & \text{per } x \le x_0 \\ x^2 e^x - 1 & \text{per } x > x_0. \end{cases}$$

Si noti che f(0) = 1. Si ha poi che

$$\lim_{x \to +\infty} f(x) = +\infty, \quad \lim_{x \to -\infty} f(x) = 1^-,$$

si osservi infatti riguardo all'ultima affermazione che l'espressione esplicita di f(x) mostra che f è sempre strettamente minore di uno se $x \le x_0, x \ne 0$.

La funzione è derivabile per $x \neq x_0$. Per tali x si ha:

$$f'(x) = \begin{cases} -e^x(x^2 + 2x) & \text{per } x < x_0 \\ e^x(x^2 + 2x) & \text{per } x > x_0. \end{cases}$$

Ne segue che se $x>x_0$ la derivata prima è sempre strettamente positiva, dunque f cresce strettamente in $[x_0,+\infty)$, mentre se $x< x_0$ si ha f'(x)=0 se e solo se x=0 oppure x=-2 e vale f'(x)>0 se $x\in (-2,0)$ quindi f è strettamente crescente in tale intervallo, mentre f'(x)<0 se $x\in (-\infty,-2)\cup (0,x_0)$ quindi f è strettamente decrescente in ciascuno di tali intervalli. Il punto x=-2 è un punto di minimo relativo, il punto x=0 è un punto di massimo relativo. Si ha infine che, posto $c:=e^{x_0}(x_0^2+2x_0)>0$ (si ricordi che $x_0>0$), vale

$$\lim_{x \to x_0^{\pm}} = \pm c$$

Quindi il punto $x = x_0$ è un punto angoloso. Si noti anche che, per costruzione, tale punto è anche di minimo assoluto per f (è l'unico punto in cui f, che altrimenti è sempre positiva, si annulla).

Calcoliamo infine, sempre per $x \neq x_0$, la derivata seconda, che vale:

$$f''(x) = \begin{cases} -e^x(x^2 + 4x + 2) & \text{per } x < x_0 \\ e^x(x^2 + 4x + 2) & \text{per } x > x_0. \end{cases}$$

Gli zeri del polinomio x^2+4x+2 sono i punti $-2\pm\sqrt{2}$, entrambi negativi. Si ha quindi che f''(x) è strettamente positiva per $x>x_0$, dunque f è strettamente convessa in tale intervallo, mentre $f''(-2\pm\sqrt{2})=0$ e f''(x)>0 se e solo se $x\in(-2-\sqrt{2},-2+\sqrt{2})$, così che f è strettamente convessa in tale intervallo, mentre f''(x)<0 se e solo se $x\in(-\infty,-2-\sqrt{2})\cup(-2+\sqrt{2},x_0)$, così che f è strettamente concava in ciascuno di tali intervalli. I punti $x_{1,2}:=-2\pm\sqrt{2}$ sono di flesso.

In conclusione il grafico di f è il seguente:

Analisi Matematica 1 e Geometria - Ingegneria Fisica Prova settembre 2020

1. Sia $\alpha \in \mathbb{R}$ e sia $L_{\alpha} : \mathbb{R}^3 \to \mathbb{R}^4$ l'applicazione lineare associata alla matrice

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ \alpha & 1 & 1 \\ 1 & 2 & \alpha \end{pmatrix}$$

Nel caso in cui il nucleo non sia banale:

- Determinare una base del nucleo di L_{α} .
- sia \mathcal{H} il sottospazio di \mathbb{R}^3 formato dai vettori $(x_1, x_2, x_3)^t$ tali che $x_1 + 2x_2 = 0$. Si determini una base di $L_{\alpha}(\mathcal{H})$.
- sia \mathcal{K} il sottospazio di \mathbb{R}^4 formato dai vettori $(x_1', x_2', x_3', x_4')^t$ tali che $x_1' + 2x_2' = 0$. Si determini una base di $L_{\alpha}^{-1}(\mathcal{K})$.

Soluzione.

Il minore formato dagli elementi appartenenti alle prime due righe e alle prime due colonne è non nullo. Orlando con le restanti righe, si ottiene:

$$\det\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ \alpha & 1 & 1 \end{pmatrix} = 0 \quad \forall \alpha \in \mathbb{R}, \qquad \det\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & \alpha \end{pmatrix} = \alpha - 2.$$

Pertanto il nucleo è non banale soltanto se $\alpha = 2$.

• Sia dunque $\alpha = 2$. Il rango della matrice è due e le prime due righe sono indipendenti, dunque per risolvere il sistema omogeneo associato basta considerare le prime due equazioni:

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Quindi: $x_1 = 0$ e $x_2 = -x_3$. Una base del nucleo (monodimensionale) è formata dal solo vettore: $(0, 1, -1)^t$.

- Si può scegliere come base del sottospazio \mathcal{H} la coppia di vettori $\mathbf{v}_1 = (-2,1,0)^t$ e $\mathbf{v}_2 = (0,0,1)^t$. Si ha: $L_2(\mathbf{v}_1) = (-1,1,-3,0)^t$ e $L_2(\mathbf{v}_2) = (1,1,1,2)^t$. I vettori $\mathbf{w}_1 = (-1,1,-3,0)^t$ e $\mathbf{w}_2 = (1,1,1,2)^t$ sono linearmente indipendenti e pertanto formano una base di $L_2(\mathcal{H})$.
- L'azione di L_2 in termini delle coordinate dei vettori è la seguente:

$$\begin{cases} x_1' = x_1 + x_2 + x_3 \\ x_2' = x_2 + x_3 \\ x_3' = 2x_1 + x_2 + x_3 \\ x_4' = x_1 + 2x_2 + 2x_3 \end{cases}$$

Da cui, ponendo: $x_1' = -2x_2'$ segue: $x_1 + x_2 + x_3 = -2x_2 - 2x_3$, ovvero: $x_1 + 3x_2 + 3x_3 = 0$. Tale relazione risulta essere l'equazione di un piano passante ad esempio per i punti: (-3,0,1) e (-3,1,0) e ovviamente per l'origine (la controimmagine di un sottospazio tramite un'applicazione lineare è un sottospazio). Di conseguenza i vettori (-3,0,1) e (-3,1,0) sono linearmente indipendenti e formano una base di $L_2^{-1}(\mathcal{K})$.

2. Calcolare il seguente limite

$$\lim_{x \to -2} \frac{e^{\frac{1}{x+3}} + e + ex}{|x+2|^a}$$

al variare del parametro reale a.

Soluzione. Posto: x=h-2, cioè h=x+2 (dunque $h\to 0$ se $x\to -2$), si ha:

$$\lim_{x \to 2} \frac{e^{\frac{1}{x+3}} + e + ex}{|x-2|^a} = \lim_{h \to 0} \frac{e^{\frac{1}{1+h}} - e + eh}{|h|^a}.$$

Inoltre, per $h \to 0$, vale:

$$\begin{split} e^{\frac{1}{1+h}} &= e^{1-h+h^2+o(h^2)} \\ &= e \cdot e^{-h+h^2+o(h^2)} \\ &= e \left[1 + \left(-h + h^2 + o(h^2) \right) + \frac{1}{2} \left(-h + h^2 + o(h^2) \right)^2 + o(h^2) \right] \\ &= e \left[1 - h + \frac{3}{2} h^2 + o(h^2) \right] = e - eh + \frac{3}{2} eh^2 + o(h^2) \end{split}$$

Quindi:

$$\lim_{h \to 0} \frac{e^{\frac{1}{1+h}} - e + eh}{|h|^a} = \lim_{h \to 0} \frac{\frac{3}{2}eh^2 + o(h^2)}{|h|^a} = \frac{3}{2}e|h|^{2-a} = \begin{cases} 0^+ & \text{se } a < 2\\ \frac{3}{2}e & \text{se } a = 2\\ +\infty & \text{se } a > 2 \end{cases}.$$

$$f(x) = (|x-1| - 1)e^{\frac{1}{x}}.$$

Soluzione. La funzione è definita per $x \neq 0$. Non vi sono simmetrie. Si ha

$$\lim_{x\to\pm\infty}f(x)=+\infty,\ \lim_{x\to 0^+}f(x)=-\infty,\ \lim_{x\to 0^-}f(x)=0.$$

Poiché si ha $\lim_{x\to\pm\infty} f(x)/x = \pm 1$, è possibile che siano presenti asintoti obliqui. Per verificarlo si osservi che, usando lo sviluppo di McLaurin dell'esponenziale si ha:

$$f(x) = (x - 2)\left(1 + \frac{1}{x} + o\left(\frac{1}{x}\right)\right) = x - 1 + o(1) \text{ per } x \to +\infty;$$

$$f(x) = (-x)\left(1 + \frac{1}{x}\right) = -x - 1 + o(1) \text{ per } x \to -\infty.$$

Quindi le rette y=x-1 e y=-x-1 sono asintoti obliqui per la funzione rispettivamente per $x\to +\infty$ e per $x\to -\infty$.

La funzione è positiva per x > 2 e x < 0, negativa per $x \in (0,2)$, e si annulla per x = 2 (si ricordi che essa non è definita in x = 0). Per calcolare la derivata prima è opportuno considerare la funzione separatamente per x > 1 e per x < 1 (con $x \ne 0$). Si ha

$$f'(x) = \frac{x^2 - x + 2}{x^2} e^{\frac{1}{x}}, \quad \forall x > 1.$$

Il polinomio a numeratore è sempre positivo, e ciò mostra che f è crescente in $[0, +\infty)$. Si noti che $\lim_{x\to 1^+} f'(x) = 2e$. Si ha invece

$$f'(x) = \frac{1-x}{x}e^{\frac{1}{x}}, \quad \forall x < 1.$$

Dunque f è crescente per $x \in (0,1]$ e decrescente per x < 0. Si noti inoltre che $\lim_{x\to 1^-} f'(x) = 0$, e dunque x = 1 è punto angoloso per f: in particolare f non è ivi derivabile. Inoltre $\lim_{x\to 0^-} f'(x) = 0$, dunque la funzione si avvicina al proprio limite da sinistra in tale punto con tangente che tende a diventare orizzontale. Non vi sono punti di estremo relativo né tantomeno assoluto.

Calcoliamo ora la derivata seconda, per $x \neq -1, x \neq 0$. Si ha

$$f''(x) = -\frac{3x+2}{x^4}e^{\frac{1}{x}}, \quad \forall x > 1.$$

$$f''(x) = -\frac{1}{x^3}e^{\frac{1}{x}}, \quad \forall x < 1, x \neq -0.$$

Ciò mostra subito che f''(x) è positiva per x < 0, mentre f''(x) è negativa per $x \in (0,1)$ e per x > 1. Dunque f è convessa in $(-\infty,0)$, concava in (-1,0] e in $[0,+\infty)$ (attenzione: essa *non* è concava nell'intero intervallo $(0,+\infty)$). In conclusione il grafico della funzione è il seguente:

