

Python for Data Analysis Modeling in Python – Evaluation (TB2 - Week 4)

Atefeh Khazaei

atefeh.khazaei@port.ac.uk

What we will learn this week?

- Evaluation measures
 - Confusion Matrix
 - Precision
 - □ Recall
 - ☐ F-measure

CRISP-DM Modeling

- ☐ K-Nearest Neighbor (KNN)
- Decision Tree
- Random-Forest
- Naive Bayes
- ☐ Support Vector Machine (SVM)

CRISP-DM Evaluation

- Classification
 - Accuracy
 - Precision
 - Recall
 - □ F-measure
- Regression
 - Mean Absolute Error (MAE)

Evaluation metrics Confusion matrix

Confusion Matrix

True class	် S Positive	Negative
Positive	TP	FN
Negative	FP	TN

- TP: True Positive
- TN: True Negative
- FP: False Positive (type I error)
- FN: False Negative (Type II error)

Evaluation metrics (cont.) Confusion matrix / Example

Confusion Matrix

Predict clas	်း Positive	Negative
Positive	TP	FN
Negative	FP	TN

Actual Class\Predicted class	cancer = yes	cancer = no	Total
cancer = yes	90	210	300
cancer = no	140	9560	9700
Total	230	9770	10000

Evaluation metrics (cont.) Accuracy and Error Rate

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

Actual Class\Predicted class	cancer = yes	cancer = no	Total
cancer = yes	90	210	300
cancer = no	140	9560	9700
Total	230	9770	10000

Accuracy = 0/965; Error-rate = 0/035

- Accuracy, or recognition rate: percentage of test set tuples that are correctly classified
 Accuracy = (TP + TN)/AII
- Error rate: 1 accuracy, or
 Error rate = (FP + FN)/All

Class Imbalance Problem:

- One class may be rare,
 e.g. fraud, or HIV-positive
- Significant majority of the negative class and minority of the positive class

Evaluation metrics (cont.) Precision, Recall, and F-measure

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

 Precision: exactness – what % of tuples that the classifier labeled as positive are actually positive

$$precision = \frac{TP}{TP + FP}$$

 Recall: completeness – what % of positive tuples did the classifier label as positive?

$$recall = \frac{TP}{TP + FN}$$

- Perfect score is 1.0
- Inverse relationship between precision & recall

Evaluation metrics (cont.) Precision, Recall, and F-measure

F measure (F₁ or F-score): harmonic mean of precision and

recall,

$$F = \frac{2 \times precision \times recall}{precision + recall}$$

- F_B: weighted measure of precision and recall
 - assigns ß times as much weight to recall as to precision

$$F_{\beta} = \frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$$

Evaluation metrics (cont.) Precision, Recall, and F-measure / Example

Actual Class\Predicted class	cancer = yes	cancer = no	Total
cancer = yes	90	210	300
cancer = no	140	9560	9700
Total	230	9770	10000

- Precision = 90 / 230 = 39.13 %
- Recall = 90 / 300 = 30 %
- F-measure = $(2 \times 0.3913 \times 0/3) / (0.3913 + 0/3) = 0.3396$

References & More Resources

- References:
 - ☐ McKinney, Wes. *Python for data analysis: Data wrangling with Pandas, NumPy, and Ipython*, O'Reilly Media, Inc., 2012.
 - ☐ Han, Jiawei, Jian Pei, and Micheline Kamber. *Data mining: concepts and techniques*.

Elsevier, 2011.

Practical Session

- ☐ In the previous weeks, you built some models using different algorithms (KNN, Decision Tree, Random Forest, Bayesian, SVM). You only evaluated them using Accuracy.
- □ Evaluate your models using other evaluation measures (Precision, Recall, F-measure, Confusion Matrix) and compare them together.

