# The Innovation Long-run Risk Component

## Fabio Franceschini

franceschini.f@protonmail.com University of Bologna

September 12<sup>th</sup>, 2025



Consumption growth





 $\bullet$  Effective R&D: scaling to account for spillovers and product variety effects

- Effective R&D: scaling to account for spillovers and product variety effects
- Multivariate approach: persistent effects of R&D and shocks identification

- Effective R&D: scaling to account for spillovers and product variety effects
- Multivariate approach: persistent effects of R&D and shocks identification
- $\bullet \ \ \text{Significant and robust cross-sectional risk premium, key role of cash-flow channel}$

## **Theoretical framework**

Assumptions:

$$Z_{t} = I_{t}^{\xi} \cdot e^{\alpha_{t}} \tag{1}$$

(2)

Assumptions:

$$Z_{t} = I_{t}^{\xi} \cdot e^{\alpha_{t}} \tag{1}$$

$$I_{t} = (1 - \phi)I_{t-1} + \chi \cdot S_{t-1}^{\eta} I_{t-1}^{\psi} Q_{t-1}^{-\omega}$$
 (2)

Assumptions:

$$Z_{t} = I_{t}^{\xi} \cdot e^{\alpha_{t}} \tag{1}$$

$$I_{t} = (1 - \phi)I_{t-1} + \chi \cdot S_{t-1}^{\eta} I_{t-1}^{\psi} Q_{t-1}^{-\omega}$$
(2)

Key prediction:

$$\Delta \ln Z_{t+1} \approx \gamma_0 + \gamma_1 \left( \ln S_t - \frac{1-\psi}{\eta} \ln I_t - \frac{\omega}{\eta} \ln Q_t \right) + \Delta \alpha_{t+1}$$
 (3)

Assumptions:

$$Z_{t} = I_{t}^{\xi} \cdot e^{\alpha_{t}} \tag{1}$$

$$I_{t} = (1 - \phi)I_{t-1} + \chi \cdot S_{t-1}^{\eta} I_{t-1}^{\psi} Q_{t-1}^{-\omega}$$
 (2)

Key prediction:

$$\Delta \ln Z_{t+1} \approx \gamma_0 + \gamma_1 \left( \ln S_t - \frac{1-\psi}{\eta} \ln I_t - \frac{\omega}{\eta} \ln Q_t \right) + \Delta \alpha_{t+1}$$
 (3)

"Effective R&D":

$$s_{t} \equiv \ln S_{t} - \frac{1 - \psi}{\eta} \ln I_{t} - \frac{\omega}{\eta} \ln Q_{t}$$
 (4)

:

Stationary TFP and effective R&D:

$$\tilde{\mathbf{s}}_{\mathsf{t}} = \mathbf{s}_{\mathsf{t}} - \bar{\mathbf{s}} \tag{5}$$

Stationary TFP and effective R&D:

$$\tilde{\mathbf{s}}_{\mathsf{t}} = \mathbf{s}_{\mathsf{t}} - \bar{\mathbf{s}} \tag{5}$$

$$\mathsf{E}_{\mathsf{t}}\left[\Delta \ln \mathsf{Z}_{\mathsf{t}+1}\right] \approx \mu + \gamma_1 \cdot \tilde{\mathsf{s}}_{\mathsf{t}} \tag{6}$$

Stationary TFP and effective R&D:

$$\tilde{\mathbf{s}}_{t} = \mathbf{s}_{t} - \bar{\mathbf{s}} = \rho_{s} \tilde{\mathbf{s}}_{t-1} + \tilde{\varepsilon}_{t} \tag{5}$$

$$E_{t} \left[ \Delta \ln Z_{t+1} \right] \approx \mu + \gamma_{1} \cdot \tilde{s}_{t} \tag{6}$$

Stationary TFP and effective R&D:

$$\tilde{\mathbf{s}}_{t} = \mathbf{s}_{t} - \bar{\mathbf{s}} = \rho_{s} \tilde{\mathbf{s}}_{t-1} + \tilde{\varepsilon}_{t} \tag{5}$$

$$E_{t} \left[ \Delta \ln Z_{t+1} \right] \approx \mu + \gamma_{1} \cdot \tilde{s}_{t} \tag{6}$$

Long-run impact of R&D shocks:

$$E_{t+1} - E_t \left( \sum_{j=0}^{\infty} \Delta \ln Z_{t+1+j} \right) = \frac{\rho_s}{1 - \rho_s} \tilde{\varepsilon}_{t+1}$$
 (7)

(8)

Stationary TFP and effective R&D:

$$\tilde{\mathbf{s}}_{t} = \mathbf{s}_{t} - \bar{\mathbf{s}} = \rho_{s} \tilde{\mathbf{s}}_{t-1} + \tilde{\varepsilon}_{t} \tag{5}$$

$$E_{t} \left[ \Delta \ln Z_{t+1} \right] \approx \mu + \gamma_{1} \cdot \tilde{s}_{t} \tag{6}$$

Long-run impact of R&D shocks:

$$E_{t+1} - E_t \left( \sum_{j=0}^{\infty} \Delta \ln Z_{t+1+j} \right) = \frac{\rho_s}{1 - \rho_s} \tilde{\varepsilon}_{t+1}$$
 (7)

$$\propto \{E_{t+1} - E_t\} \sum_{j=1}^{\infty} \Delta \ln C_{t+j}$$
 (8)

## The Innovation Long-Run Risk premium

Fundamental asset pricing equation:

$$\mathsf{E}\left[\mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] - \mathsf{R}_{\mathsf{t}}^{\mathsf{f}} = -\mathsf{R}_{\mathsf{t}}^{\mathsf{f}} \cdot \mathsf{Cov}\left[\mathsf{M}_{\mathsf{t}+1}, \mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right]$$

### The Innovation Long-Run Risk premium

Fundamental asset pricing equation:

$$\mathsf{E}\left[\mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] - \mathsf{R}_{\mathsf{t}}^{\mathsf{f}} = -\mathsf{R}_{\mathsf{t}}^{\mathsf{f}} \cdot \mathsf{Cov}\left[\mathsf{M}_{\mathsf{t}+1}, \mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right]$$

Recursive preferences:

$$\ln M_{t+1} = E_t [\ln M_{t+1}] - b_c \, \varepsilon_{c,t+1} - b_x \, \varepsilon_{x,t+1}$$

where

$$\epsilon_{c,t+1} = \ln C_{t+1} - E_t \left[ \ln C_{t+1} \right] \,, \qquad \epsilon_{x,t+1} = \left\{ E_{t+1} - E_t \right\} \sum_{j=1}^{\infty} \kappa_x^j \Delta \ln C_{t+1+j} \,.$$

### The Innovation Long-Run Risk premium

Fundamental asset pricing equation:

$$\mathsf{E}\left[\mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] - \mathsf{R}_{\mathsf{t}}^{\mathsf{f}} = -\mathsf{R}_{\mathsf{t}}^{\mathsf{f}} \cdot \mathsf{Cov}\left[\mathsf{M}_{\mathsf{t}+1}, \mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right]$$

Recursive preferences:

$$\ln M_{t+1} = E_t [\ln M_{t+1}] - b_c \, \varepsilon_{c,t+1} - b_x \, \varepsilon_{x,t+1}$$

where

$$\epsilon_{c,t+1} = \ln C_{t+1} - E_t \left[ \ln C_{t+1} \right] , \qquad \epsilon_{x,t+1} = \left\{ E_{t+1} - E_t \right\} \sum_{j=1}^{\infty} \kappa_x^j \Delta \ln C_{t+1+j}$$

Result:

$$\mathsf{E}_{\mathsf{t}}\left[\mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] - \mathsf{R}_{\mathsf{t}}^{\mathsf{f}} = \lambda_{\mathsf{c}}\beta_{\mathsf{c}}^{\mathsf{i}} + \lambda_{\mathsf{x}}\beta_{\mathsf{x}}^{\mathsf{i}} \tag{9}$$

# **Macroeconometric framework**

$$\tilde{s}_{t} = S_{t} - \frac{1 - \psi}{\eta} I_{t} - \frac{\omega}{\eta} Q_{t} - \bar{s} \tag{10}$$

$$\tilde{s}_t = S_t - \frac{1 - \psi}{\eta \xi} (\ln Z_t - \alpha_t) - \frac{\omega}{\eta} Q_t - \bar{s}$$
 (10)

$$\tilde{s}_{t} = S_{t} - \alpha_{Z} (\ln Z_{t} - \alpha_{t}) - \frac{\omega}{\eta} Q_{t} - \bar{s}$$
(10)

$$\tilde{s}_t = S_t - \alpha_Z (\ln Z_t - \alpha_t) - \alpha_L L_t - \bar{s}$$
(10)

Ideas limit sample timespan and fragile to misspecification:

$$\tilde{s}_t = S_t - \alpha_Z (\ln Z_t - \alpha_t) - \alpha_L L_t - \bar{s}$$
(10)

New object, "gross" effective R&D:

$$\hat{\mathbf{s}}_{t} = \tilde{\mathbf{s}}_{t} - \alpha_{\mathsf{Z}} \mathbf{a}_{t} \tag{11}$$

Ideas limit sample timespan and fragile to misspecification:

$$\hat{\mathbf{s}}_{t} = \mathbf{S}_{t} - \alpha_{\mathsf{Z}} \ln \mathbf{Z}_{t} - \alpha_{\mathsf{L}} \mathbf{L}_{t} - \bar{\mathbf{s}} \tag{10}$$

New object, "gross" effective R&D:

$$\hat{\mathbf{s}}_{t} = \tilde{\mathbf{s}}_{t} - \alpha_{\mathsf{Z}} \mathbf{a}_{t} \tag{11}$$

Ideas limit sample timespan and fragile to misspecification:

$$\hat{s}_t = S_t - \alpha_Z \ln Z_t - \alpha_L L_t - \bar{s} \tag{10}$$

New object, "gross" effective R&D:

$$\hat{\mathbf{s}}_t = \tilde{\mathbf{s}}_t - \alpha_Z \mathbf{a}_t \tag{11}$$

 $\tilde{s}$  not necessary to get  $\epsilon_{s,t+1}$  , but bonus (  $\kappa_{\alpha} \equiv 1 - \alpha_{Z} \gamma_{1}$  ):

$$\tilde{\mathbf{s}}_{t} = \alpha_{Z} \left( \sum_{j=0}^{t-1} \kappa_{\alpha}^{j} (\Delta \ln Z_{t-j} - \mu) \right) + \sum_{j=0}^{t-1} \kappa_{\alpha}^{j} \Delta \hat{\mathbf{s}}_{t-j} + \kappa_{\alpha}^{t} \tilde{\mathbf{s}}_{0}$$
 (12)

•

### Adding feedback effects:

$$a_{t+1} = \theta_s \tilde{s}_t + \rho_a a_t + b_{aa} \varepsilon_{a,t+1}$$
(13a)

$$\Delta \ln Z_{t+1} = (\gamma_1 + \theta_s)\tilde{s}_t + (\rho_a - 1)a_t + b_{aa}\varepsilon_{a,t+1} \tag{13b}$$

$$\tilde{s}_{t+1} = \rho_s \tilde{s}_t + \theta_\alpha \alpha_t + b_{\alpha s} \varepsilon_{\alpha, t+1} + b_{s s} \varepsilon_{s, t+1}$$
(13c)

Adding feedback effects:

$$a_{t+1} = \theta_{s}\tilde{s}_{t} + \rho_{\alpha}a_{t} + b_{\alpha\alpha}\varepsilon_{\alpha,t+1}$$
(13a)

$$\Delta \ln Z_{t+1} = (\gamma_1 + \theta_s)\tilde{s}_t + (\rho_a - 1)a_t + b_{aa}\varepsilon_{a,t+1}$$
 (13b)

$$\tilde{s}_{t+1} = \rho_s \tilde{s}_t + \frac{\theta_a}{\alpha} a_t + b_{as} \varepsilon_{a,t+1} + b_{ss} \varepsilon_{s,t+1}$$
(13c)

### Adding feedback effects:

$$a_{t+1} = \theta_s \tilde{s}_t + \rho_a a_t + b_{aa} \varepsilon_{a,t+1}$$
 (13a)

$$\Delta \ln Z_{t+1} = (\gamma_1 + \theta_s)\tilde{s}_t + (\rho_a - 1)a_t + b_{aa}\varepsilon_{a,t+1} \tag{13b}$$

$$\tilde{s}_{t+1} = \rho_s \tilde{s}_t + \theta_a a_t + b_{as} \varepsilon_{a,t+1} + b_{ss} \varepsilon_{s,t+1}$$
(13c)

### Adding feedback effects:

$$a_{t+1} = \theta_s \tilde{s}_t + \rho_a a_t + b_{aa} \varepsilon_{a,t+1}$$
 (13a)

$$\Delta \ln Z_{t+1} = (\gamma_1 + \theta_s)\tilde{s}_t + (\rho_a - 1)a_t + b_{aa}\varepsilon_{a,t+1} \tag{13b}$$

$$\tilde{s}_{t+1} = \rho_s \tilde{s}_t + \theta_\alpha \alpha_t + b_{\alpha s} \epsilon_{\alpha,t+1} + b_{ss} \epsilon_{s,t+1} \tag{13c}$$

VARMA from taking  $a_t$  out and  $\hat{s}$  in:

$$\begin{split} \Delta \ln Z_{t+1} &= \quad \bar{\gamma}_{11} \hat{s}_t + \rho_\alpha \Delta \ln Z_t - \bar{\gamma}_{12} \hat{s}_{t-1} \\ \hat{s}_{t+1} &= \quad \rho_s \hat{s}_t - \bar{\gamma}_{21} \Delta \ln Z_t + \bar{\gamma}_{22} \hat{s}_{t-1} \\ \end{split} \\ + \bar{b}_{\alpha\alpha} \epsilon_{\alpha,t+1} - \bar{b}_{\alpha\alpha} \epsilon_{\alpha,t} \end{aligned} \tag{14a}$$

The empirical innovation component

## The gross effective R&D

$$S_t = \alpha_0 + \alpha_Z \ln Z_t + \alpha_L \ln L_t + \hat{s}_t$$

|                        | Baseline            | S: Tot. R&D         | Z: Raw TFP          | Q: N.F. Empl.     | Est. Meth.: IM      |  |  |  |  |  |
|------------------------|---------------------|---------------------|---------------------|-------------------|---------------------|--|--|--|--|--|
| $\alpha_Z$             | 3.526***            | 4.197***            | 3.655***            | 3.349***          | 2.821***            |  |  |  |  |  |
| $\alpha_{L}$           | 0.909***            | -0.354              | 0.956***            | 0.953***          | 1.387***            |  |  |  |  |  |
| Т                      | 309                 | 309                 | 309                 | 309               | 309                 |  |  |  |  |  |
| K                      | $3.4 \times 10^{6}$ | $3.4 \times 10^{6}$ | $3.3 \times 10^{6}$ | $3.5 \times 10^6$ | $1.1 \times 10^{8}$ |  |  |  |  |  |
| ŝ <sub>t</sub>         |                     |                     |                     |                   |                     |  |  |  |  |  |
| $\sigma_{\widehat{s}}$ | 0.130               | 0.144               | 0.128               | 0.129             | 0.253               |  |  |  |  |  |
| tt                     | 0.00                | 0.00                | 0.00                | 0.00              | 0.00                |  |  |  |  |  |
| tt <sup>2</sup>        | 0.00                | 0.00                | 0.00                | 0.00              | 0.00                |  |  |  |  |  |
| ADF                    | -2.57**             | -2.45**             | -2.92***            | -2.45**           | <b>-9.18***</b>     |  |  |  |  |  |
| KPSS                   | 0.09                | 0.09                | 0.09                | 0.10              | 0.29                |  |  |  |  |  |
| AR(1)                  | 0.96                | 0.96                | 0.95                | 0.97              | 0.15                |  |  |  |  |  |
| HL low                 | 2.6                 | 2.7                 | 2.1                 | 2.7               | 0.1                 |  |  |  |  |  |
| HL high                | 21.0                | 23.6                | 12.0                | 25.1              | 0.1                 |  |  |  |  |  |

► All ECTs plot

## **Recovering the effective R&D**

$$\Delta \ln Z_{t+1} = b_0 + b_s \hat{\boldsymbol{s}}_t + b_f' \boldsymbol{f}_t + \boldsymbol{u}_{t+1}$$



|                                            | Baseline |          | S: Tot. R&D |          | Z: Raw TFP |            | Q: N.F. Empl. |          |  |  |
|--------------------------------------------|----------|----------|-------------|----------|------------|------------|---------------|----------|--|--|
|                                            | BS       | LN       | BS          | LN       | BS         | LN         | BS            | LN       |  |  |
| b <sub>s</sub> (%)                         | 1.558*** | 1.549*** | 1.066***    | 1.223*** | 0.997***   | 0.794**    | 1.507***      | 1.520*** |  |  |
| Т                                          | 292      | 261      | 292         | 261      | 291        | 260        | 292           | 261      |  |  |
| R <sup>2</sup> (%)                         | 9.5      | 12.4     | 7.4         | 11.8     | 21.8       | 41.7       | 9.1           | 12.2     |  |  |
| W(k)                                       | 79.97*** | 61.00*** | 64.56***    | 50.27*** | 287.53***  | 2775.10*** | 73.09***      | 61.99*** |  |  |
| Кα                                         | 0.964    | 0.971    | 0.950       | 0.949    | 0.945      | 0.945      | 0.955         | 0.949    |  |  |
|                                            | (0.014)  | (0.013)  | (0.016)     | (0.012)  | (0.017)    | (0.012)    | (0.014)       | (0.012)  |  |  |
| $\tilde{s}_t$ $(\kappa_{\alpha}^t < 0.01)$ |          |          |             |          |            |            |               |          |  |  |
| $T_{\tilde{\mathbf{s}}}$                   | 226      | 225      | 207         | 220      | 183        | 151        | 219           | 219      |  |  |
| $\sigma_{\tilde{s}}$                       | 0.058    | 0.057    | 0.068       | 0.065    | 0.060      | 0.062      | 0.055         | 0.055    |  |  |
| ADF                                        | -3.91*** | -3.95*** | -3.17***    | -3.49*** | -3.95***   | -3.50***   | -3.56***      | -3.56*** |  |  |
| KPSS                                       | 0.09     | 0.09     | 0.18        | 0.13     | 0.22       | 0.19       | 0.14          | 0.14     |  |  |
| AR(1)                                      | 0.71     | 0.70     | 0.72        | 0.68     | 0.68       | 0.70       | 0.70          | 0.70     |  |  |



— ŝ — ŝ

The long-run risk from innovation

### **VAR estimates**

|                      | Baseline            | S: Tot. R&D         | Z: Raw TFP          | Q: N.F. Empl.       | ŝ                   |
|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| N. Obs.              | 305                 | 305                 | 306                 | 305                 | 223                 |
| N. Lags              | 3                   | 3                   | 2                   | 3                   | 2                   |
| $R^2_{\Delta Z}$ (%) | 5.3                 | 4.4                 | 4.8                 | 5.3                 | 2.8                 |
| max  roots           | 0.92                | 0.90                | 0.93                | 0.92                | 0.93                |
| K                    | $2.2 \times 10^{3}$ | $5.7 \times 10^{3}$ | $2.7 \times 10^{3}$ | $2.2 \times 10^{3}$ | $2.8 \times 10^{3}$ |
| H-LM(z,4)            | 3.2                 | 2.3                 | 22.6***             | 3.3                 | 4.9                 |
| H-LM(s,4)            | 30.2***             | 27.0***             | 33.2***             | 29.4***             | 6.4                 |
| AC-LM(1)             | 5.8                 | 6.3                 | 6.2                 | 5.1                 | 7.2                 |
| AC-LM(8)             | 29.4                | 37.9                | 41.9                | 26.7                | 37.5                |
| AC-LM(16)            | 69.6                | 68.6                | 69.3                | 69.6                | 69.1                |
| AC-LM(40)            | 169.4               | 155.7               | 166.9               | 165.9               | 154.7               |
| F-GC(s)              | 5.3***              | 6.5***              | 6.1***              | 5.5***              | 1.7                 |

► All ε<sub>S</sub> plot

### VAR IRF's - gross effective R&D



### VAR IRF's - net effective R&D



### LP IRF's



The cross-sectional risk premium

## Estimates robust to omitted risk factors (Giglio, Xiu (2021, JPE), 183 test assets)

|                    | Baseline         | S: Tot. R&D | Z: Raw TFP | Q: N.F. Empl. | ŝ       |  |  |  |  |  |
|--------------------|------------------|-------------|------------|---------------|---------|--|--|--|--|--|
| Horizon: 1 quarter |                  |             |            |               |         |  |  |  |  |  |
| p=6                | 0.01             | 0.02        | 0.02       | 0.02          | 0.02    |  |  |  |  |  |
|                    | [0.93]           | [0.90]      | [1.22]     | [1.03]        | [1.28]  |  |  |  |  |  |
| p=14               | 0.04             | 0.03        | 0.05       | 0.04          | 0.04    |  |  |  |  |  |
|                    | [1.32]           | [0.74]      | [1.35]     | [1.12]        | [1.08]  |  |  |  |  |  |
| p=22               | -0.01            | -0.09       | 0.01       | -0.02         | -0.04   |  |  |  |  |  |
|                    | [-0.21]          | [-1.30]     | [0.09]     | [-0.38]       | [-0.55] |  |  |  |  |  |
|                    | Horizon: 4 years |             |            |               |         |  |  |  |  |  |
| p=6                | 0.08             | 0.07        | 0.09       | 0.08          | 0.11    |  |  |  |  |  |
|                    | [1.33]           | [1.11]      | [1.33]     | [1.36]        | [0.97]  |  |  |  |  |  |
| p=14               | 0.48***          | 0.34**      | 0.52***    | 0.45***       | 0.69*** |  |  |  |  |  |
|                    | [3.28]           | [2.50]      | [3.52]     | [3.11]        | [2.75]  |  |  |  |  |  |
| p=22               | 0.54***          | 0.43**      | 0.61***    | 0.48**        | 0.80**  |  |  |  |  |  |
|                    | [2.80]           | [2.23]      | [3.17]     | [2.52]        | [2.28]  |  |  |  |  |  |
| Num.Obs.           | 213              | 213         | 213        | 213           | 213     |  |  |  |  |  |

### Fundamentals channel: cash flows sensitivities

| Portfolio   | С    | ons.  | Raw   | ΓFP  | Adj.  | TFP   | <b>§</b> : <b>s</b> | hock  | ŝ: l  | evel  |
|-------------|------|-------|-------|------|-------|-------|---------------------|-------|-------|-------|
| Horizon     | 1    | 8     | 1     | 8    | 1     | 8     | 1                   | 8     | 1     | 8     |
| RD(1-small) | 0.09 | 0.18  | 0.05  | 0.39 | -0.07 | 0.03  | 0.01                | 0.00  | -0.59 | -0.58 |
| RD(2-small) | 0.06 | 0.04  | 0.02  | 0.46 | -0.11 | 0.19  | 0.04                | -0.02 | -1.16 | -0.73 |
| RD(3-small) | 0.75 | -0.68 | 0.59  | 1.17 | -0.35 | 0.45  | 0.54                | 1.09  | -1.55 | -3.37 |
| RD(1-big)   | 0.01 | 0.03  | 0.00  | 0.08 | -0.02 | -0.01 | 0.00                | -0.03 | -0.27 | -0.29 |
| RD(2-big)   | 0.05 | 0.12  | 0.01  | 0.23 | -0.03 | 0.00  | 0.03                | -0.07 | -0.36 | -0.28 |
| RD(3-big)   | 0.03 | 0.09  | -0.01 | 0.24 | -0.07 | -0.09 | -0.02               | -0.17 | -1.20 | -1.20 |
| To(1-small) | 0.05 | 0.13  | 0.05  | 0.27 | -0.01 | 0.03  | 0.02                | 0.06  | -0.25 | -0.76 |
| To(2-small) | 0.10 | 0.29  | -0.01 | 0.81 | -0.13 | 0.22  | 0.01                | 0.28  | 0.20  | 0.99  |
| To(3-small) | 0.38 | 1.06  | 0.23  | 1.85 | -0.15 | 0.08  | 0.12                | 0.75  | 2.64  | 3.53  |
| TQ(1-small) | 0.35 | 0.87  | 0.05  | 2.43 | -0.50 | 0.78  | 0.18                | 0.27  | -1.51 | 1.92  |
| TQ(2-small) | 0.14 | 0.65  | 0.01  | 1.10 | -0.12 | -0.15 | 0.06                | 0.20  | 0.36  | 0.63  |
| TQ(3-small) | 0.06 | 0.14  | 0.05  | 0.24 | -0.01 | 0.00  | -0.01               | -0.06 | -0.13 | -0.37 |

### Fundamentals channel: cash flows risk premium

|                    | Cons.  | Raw TFP | Adj. TFP | s̃: shock | $\tilde{s}$ : level |  |  |  |  |
|--------------------|--------|---------|----------|-----------|---------------------|--|--|--|--|
| Horizon: 1 quarter |        |         |          |           |                     |  |  |  |  |
| Ext. pool          | 1.72** | 1.97*** | -2.47**  | 2.28**    | 0.06*               |  |  |  |  |
|                    | [2.58] | [3.14]  | [-2.12]  | [2.31]    | [1.68]              |  |  |  |  |
| R <sup>2</sup> (%) | 24.85  | 20.44   | 17.95    | 16.77     | 4.89                |  |  |  |  |
| MAPE (%)           | 0.41   | 0.44    | 0.43     | 0.46      | 0.48                |  |  |  |  |
| Horizon: 2 years   |        |         |          |           |                     |  |  |  |  |
| Ext. pool          | 0.32   | 0.40**  | 1.17**   | 0.71**    | 0.04                |  |  |  |  |
|                    | [1.65] | [2.15]  | [2.15]   | [2.14]    | [1.63]              |  |  |  |  |
| R <sup>2</sup> (%) | 3.06   | 23.66   | 29.24    | 20.32     | 4.58                |  |  |  |  |
| MAPE (%)           | 0.48   | 0.41    | 0.41     | 0.44      | 0.48                |  |  |  |  |

<sup>\*</sup> p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01

## **Conclusions**

### **Key Takeaways**

- Endogenous growth models provides a synthetic and informative measure of aggregate R&D
- · R&D has persistent effects on TFP growth, accumulating through system interactions
- · R&D is significantly priced in stock markets

# The Innovation Long-run Risk Component

### Fabio Franceschini

franceschini.f@protonmail.com University of Bologna

September 12<sup>th</sup>, 2025

# **Additional Figures**

## All gross effective R&D series



### All effective R&D series



### All effective R&D structural shocks series



## **Recovery approximation accuracy**



# Recovery uncertainty - lower bound

