

5.2 LC正弦波振荡器

采用LC谐振回路作为选频网络的振荡器

LC正弦波振荡器有三种实现电路:

互感耦合振荡器

三点式振荡器

集成电路LC振荡器

LC振荡器可用来产生几十kHz到几百MHz的 正弦波信号。

5.2.1 互感耦合振荡器

常见的互感耦合振荡器电路。

注意: 耦合电容

 C_B 的作用。如果将 C_B

短路,则基极通过变压

器次极直流接地,振荡

电路不能起振。

图5.1.3 集电极调谐互感耦合振荡器电路

碗

其他形式的电路

图5.2.1 互感耦合振荡电路举例 a) 基极选频 b) 发射极选频

采用部分接入,减少三极管输入电阻对选频网络Q的影响。

例5.2.1 判断图例5.2.2所示两极互感耦合振荡电路 能否起振。

解:这是一个共基— 共集反馈电路,容易满足 振幅条件。

相位条件判断:

图5.2.2 例5.2.1图

$$\upsilon_{e1} \uparrow \rightarrow \upsilon_{c1} \uparrow \rightarrow \upsilon_{b2} \downarrow \rightarrow \upsilon_{e2}(\upsilon_{e1}) \downarrow$$

可见电路是负反馈,不能产生振荡。

怎样修改才能能产生振荡?

· 原科學与工程学

5.2.2 三点式振荡电路

三点式振荡器的工作频率可达到几百兆赫。

一、电路组成法则(相位条件)

在三点式电路中, L C 回路中 与发射极相连接的两个电抗元 件必须为同性质, 另外一个电 抗元件必须为异性质。

图5.2.3 三点式振荡器的原理图

回路品质因数足够高, 当回路

谐振时, 满足 $X_{ce} + X_{be} + X_{bc} \approx 0$

户科学与工程学 少 ** ** ** ** *** 证明: 假定LC回路由纯电抗元件组成,分别为

 X_{ce} X_{be} X_{cb} 同时忽略晶体管的阻抗效应,则当回路谐振

$$(\omega = \omega_0)$$
时,回路呈纯阻性,有

$$X_{ce} + X_{be} + X_{bc} \approx 0$$

则有 $X_{ce} \approx -X_{be} - X_{bc}$

由于 \dot{V}_f 是 \dot{V}_c 在 X_{be} X_{bc} 支路分配在 X_{be} 上的电压,

$$\dot{V}_f = \frac{jX_{be}V_c}{j(X_{be} + X_{bc})} \approx -\frac{X_{be}}{X_{ce}}\dot{V}_c$$

因为这是一个由反相放大器组成的正反馈电路, \dot{V}_i 与 \dot{V}_f 同相,

 $\dot{V_c}$ 与 $\dot{V_i}$ 反相,所以必有 $\frac{X_{be}}{X_{ce}} > 0$ 成立。即 X_{ce} X_{be} 必须是同

性质电抗,因而X_{bc}必须是异性质的电抗。

例 5.2.2 在例图5.2.4所示振荡器交流等效电路中,三个LC并

联回路的谐振频率分别是: $f_1 = \int_{(2\pi\sqrt{L_1C_1})}^{1}$

$$f_2 = \frac{1}{(2\pi\sqrt{L_2C_2})}$$
 $f_3 = \frac{1}{(2\pi\sqrt{L_3C_3})}$

试问 f_1 、 f_2 、 f_3 满足什么条件时该振荡器能正常工作?

图5.2.4 例5.2.2图

解: 若组成电容三点式,则在振荡频率 f_{osc1} 处,

应满足
$$f_1 \le f_2 < f_{osc1} < f_3$$
 或 $f_2 \le f_1 < f_{osc1} < f_3$

若组成电感三点式,则在振荡频率 f_{osc2} 处,应满足

TIC 1

信息科学与工程学

碗

二、 电容三点式电路 (又称考毕兹电路, Coplitts)

(b) 高频交流等效电路

(b) 电容三点式高频交流等效电路

$$R_{e0} = Q_0 \omega_{osc} L$$

 $R'_{L} = R_{e0} \| R_{L}$

且忽略晶体管输出电容的影响。可以得到微变等效电路:

微变等效电路

2、考毕兹电路起振条件的近似分析

(1) 电路的简化

在×处断开,并 考虑到负载作用,

得到:

以下分析的前提条件是: 假设满足阻抗部分接入的变换条件,

即回路品质因数足够大!

曲(a)到(b):

$$C_2' = C_2 + C_{b'e}$$

$$\dot{V}_f' = \frac{1}{n} \dot{V}_f$$

接入系数 $n = \frac{C_1}{C_1 + C_2'}$

(通常 $r_e \ll R_e$)

$$r'_e = \frac{1}{n^2} (r_e // R_e) \approx \frac{1}{n^2} r_e$$

曲(b)到(c):

$$G = g'_L + g'_e = \frac{1}{R'_L} + \frac{1}{r'_e}$$

等效电纳

$$B = \omega C - \frac{1}{(\omega L)} \qquad C = \frac{C_1 C_2'}{C_1 + C_2'}$$

图5.2.6 推导 $T(j\omega)$ 的等效电路

程

(2) 环路增益计算:

运为
$$\dot{V}_f' = \frac{g_m \dot{V}_i}{G + jB} = \frac{1}{n} \dot{V}_f$$

图5.2.6 推导 $T(j\omega)$ 的等效电路

$$T(j\omega) = \frac{\dot{V}_f}{\dot{V}_i} = \frac{ng_m}{G + jB} = \frac{ng_m}{g_L' + g_e' + j(\omega C - \frac{1}{\omega L})}$$

(3) 振荡频率的计算:

$\phi T(j\omega)$ 分母的虚部为零,可得到振荡器的振荡角频率为

$$\omega_{osc} = \frac{1}{\sqrt{LC}}$$

一般要求 $T(\omega_{osc})$ 为3~5。

$$g_m > \frac{1}{n}(g'_L + g'_e) = \frac{1}{n}g'_L + ng_e$$

$$\sharp \Phi \quad g_m \approx \frac{I_{EQ}}{26 \, mV} \quad g_L' = \frac{1}{R_L \| R_{e0}} \quad , \quad g_e = \frac{1+\beta}{r_{b'e}} = \frac{1}{r_e}$$

(4) 电路的反馈系数
$$F = n = \frac{C_1}{C_1 + C_2'}$$

-般要求 $T(\omega_{osc})$ 为3~5。反馈系数一般为 $^{1}/_{8}$ ~ $^{1}/_{2}$

3、实际考虑(不考虑品质因数的大小,按现实情况分析)

在图5.2.6(a)中, 令

$$Z_1 = \frac{1}{j\omega C_1} \qquad Z_3 = \frac{1}{g'_L + \frac{1}{j\omega L}}$$

$$Z_2 = \frac{1}{g_i + j\omega C_2'}$$
 $g_i = \frac{1}{r_e} + \frac{1}{R_e}$ $C_2' = C_2 + C_{b'e}$

由 (b) 图求得反馈电压

$$\dot{V}_{f} = \frac{g_{m}\dot{V}_{i}}{\frac{1}{Z_{1} + Z_{2}} + \frac{1}{Z_{3}}} \times \frac{Z_{2}}{Z_{1} + Z_{2}}$$

所以

$$T(j\omega) = \frac{\dot{V}_f}{\dot{V}_i} = \frac{g_m}{\frac{1}{Z_1 + Z_2} + \frac{1}{Z_3}} \times \frac{Z_2}{Z_1 + Z_2} = \frac{g_m}{\frac{1}{Z_2} + \frac{1}{Z_3} + \frac{Z_1}{Z_2 Z_3}}$$

将Z₁、Z₂、Z₃代入上式整理后得

$$\dot{T}(j\omega) = \frac{g_m}{A + jB} = T(\omega)e^{j\varphi_T(\omega)}$$

$$T(\omega) = \frac{g_m}{\sqrt{A^2 + B^2}} \qquad \varphi_T(\omega) = -\arctan\frac{B}{A}$$

$$\mathbf{B} = \omega C_2' - \frac{1}{\omega C_1} g_i g_L' - \frac{C_2'}{C_1} - \frac{g_i}{\omega C_1}$$

$$B = \omega C_2' - \frac{1}{\omega C_1} g_i g_L' - \frac{C_2'}{\omega L C_1} - \frac{1}{\omega L}$$

根据相位起振条件,令B=0可求得振荡器的振荡角频率

$$\omega_{osc} = \sqrt{\frac{1}{LC} + \frac{g_i g_L'}{C_1 C_2'}} = \frac{1}{\sqrt{LC}} \sqrt{1 + \frac{g_i g_L'}{\omega_o^2 C_1 C_2'}} = \omega_o \sqrt{1 + \frac{g_i g_L'}{\omega_o^2 C_1 C_2'}}$$

振幅起振条件为

$$g_m > A = g'_L(1 + \frac{C'_2}{C_1}) + g_i(1 - \frac{1}{\omega_{osc}^2 L C_1})$$

上述分析表明电容三点式振荡器的振荡角频率 ω_{osc} 与哪些因素有关?

- (1) 回路的固有角频率 ω_o
- (2) 回路固有谐振电阻 R_{eo}
- (3) 外接电阻 R_L
- (4) 三极管输入电阻 r_e

 \blacksquare $\omega_{osc} > \omega_{o}$

在实际电路中,一般满足 $\omega_o^2 C_1 C_2' \square g_i g_L'$

因此,工程估算时可近似认为: $\omega_{osc} = \omega_o = \frac{1}{\sqrt{LC}}$

15

科

學

与

程

碗

三、电感三点式电路(哈特莱电路,Hartley)

信息科学与工程学院

该电路的振荡角频率 $\omega_{osc} = \frac{1}{\sqrt{LC}}$

其中 $L = L_1 + L_2 \pm 2M$, M为互感。

起振条件
$$g_m > \frac{1}{n} g'_L + n g_e$$
 $g'_L = \frac{1}{R'_L}$ $g_e = \frac{1}{r_e}$

接入系数
$$n = \frac{N_{12}}{N_{13}} = \frac{L_2 \pm M}{L_1 + L_2 \pm 2M}$$

反馈系数
$$F = n = \frac{L_2 \pm M}{L_1 + L_2 \pm 2M}$$
 反馈系数一般为 $\frac{1}{10} \sim \frac{1}{2}$

四、三点式电路的特点

电容三点式:反馈电压中高次谐波分量很小,因而输出波形好,接近正弦波。

反馈系数因与回路电容有关,如果用改变回路电容的方法 来调整振荡频率,必将改变反馈系数,从而影响起振。

电感三点式:便于用改变电容的方法来调整振荡频率,而不会影响 反馈系数,但反馈电压中高次谐波分量较多,输出波 形差。

高次谐波在电感上的压降较大,因此反馈了较强的高次谐波到输入端,使得波形较差。

信息科学与工程学业

例 5.2.3 在如下图所示电容三点式振荡电路中, 已知

$$L = 0.5 \mu \text{H}$$
, $C_1 = 51 \text{pF}$ $C_2 = 3300 \text{pF}$,

$$C_3 = 12 \sim 250 \text{pF}, R_L = 5 \text{k}\Omega$$

$$g_m = 30 \text{mS}, C_{be} = 20 \text{pF}$$
 $Q_0 = 80$

试求起振的频率范围。

信厄科学与工程学

解: 题图的交流等效电路为

电路的有关参数如下

$\begin{bmatrix} C_1 \\ C_2 \end{bmatrix} A$ $\begin{bmatrix} C_2 \\ C_3 \end{bmatrix} A$

接入系数

$$n = \frac{C_1}{C_1 + C_2 + C_{b'e}} = \frac{51}{51 + 3300 + 20} \approx 0.015$$

当
$$C_3 = 12$$
pF 时, $C_{\Sigma} = \frac{C_1(C_2 + C_{b'e})}{C_1 + C_2 + C_{b'e}} + C_3 \approx 66.23$ (pF)

$$g_{e0} = \frac{1}{Q_0} \sqrt{\frac{C_{\Sigma}}{L}} = \frac{1}{80} \sqrt{\frac{62.23 \times 10^{-12}}{0.5 \times 10^{-6}}} \approx 0.14 \times 10^{-3} (S)$$

因为
$$g_L = \frac{1}{R_L} = \frac{1}{5 \times 10^3} = 0.2 \times 10^{-3} (S)$$

$$g_e = \frac{1+\beta}{r_{b'e}} \approx \frac{\beta}{r_{b'e}} = g_m = 30 \times 10^{-3} \, S$$

所以
$$\frac{1}{n}g'_L + ng_e = \frac{1}{n}(g_L + g_{e0}) + ng_e$$

$$= \frac{1}{0.015} (0.2 \times 10^{-3} + 0.14 \times 10^{-3}) + 0.015 \times 30 \times 10^{-3} \approx 23 \times 10^{-3} (S)$$

根据振幅起振条件
$$g_m > \frac{1}{n}g'_L + ng_e$$

可见
$$C_3 = 12pF$$
 电路满足起振条件。

相应的振荡频率:

$$f_{osc} = \frac{1}{2\pi\sqrt{LC_{\Sigma}}} = \frac{1}{2\pi\sqrt{0.5\times10^{-6}\times62.23\times10^{-12}}} \approx 28.53(\text{MHz})$$

24

(2) 当 $C_3 = 250 \text{pF}$ 时,可求出相应的参数

$$\frac{1}{n}g_L' + ng_e \approx 34 \times 10^{-3} > g_m = 30 \times 10^{-3}$$

这时电路不满足起振条件。

在频率低端满足起振条件的临界值为

$$g_m = \frac{1}{n}g'_L + ng_e = \frac{1}{n}(g_{e0} + g_L) + ng_e$$

所以
$$g_{e0} = n(g_m - ng_e) - g_L \approx 0.24 \times 10^{-3} (S)$$

对应的总等效电容

$$C_{\Sigma} = L(Q_0 g_{e0})^2 \approx 184 (pF)$$

对应的可变电容

$$C_3 = C_{\Sigma} - \frac{C_1(C_2 + C_{b'e})}{C_1 + C_2 + C_{b'e}} \approx 184 - 50 = 134(\text{pF})$$

对应的振荡频率

$$f_{osc} = \frac{1}{2\pi\sqrt{LC_{\Sigma}}} = \frac{1}{2\pi\sqrt{0.5 \times 10^{-6} \times 184 \times 10^{-12}}} \approx 16.59(\text{MHz})$$

所以,振荡电路的频率范围为16.59~28.53MHz。

一点科学与工程出一点 人名英格兰

5.2.3 单片集成振荡器

一、差分对管振荡电路

Ree为恒流源

 I_0 的交流等效电阻。

根据瞬时极性法判断,在工管基极断开,有

$$\upsilon_{b1} \uparrow \rightarrow \upsilon_{e1}(\upsilon_{e2}) \uparrow \rightarrow \upsilon_{c2} \uparrow \rightarrow \upsilon_{b1} \uparrow$$

因此, 此振荡器电路能正常工作。

共集电极共基极反馈电路

图5.2.10 差分对管振荡电路

信息科学与工程学

碗

图5.2.11 单片集成振荡器E1648内部电路图

需要说明的是: T_{12} 与 T_{13} 管组成互补稳 定电路,稳定

 T_8 基极电位。若 T_8 基极电位受到干扰而升高,则有

$$\upsilon_{b8}(\upsilon_{b13}) \uparrow \rightarrow \upsilon_{c13}(\upsilon_{b12}) \downarrow \rightarrow \upsilon_{e12}(\upsilon_{b8}) \downarrow$$

这一负反馈作用使工。基极电位保持恒定。

电路的振荡频率
$$f_{osc} = \frac{1}{2\pi\sqrt{L_1(C_1+C_i)}}$$

其中 $C_i \approx 6pF$ 是10、12脚之间的输入电容。

E1648的最高振荡频率可达225MHz。 E1648有1脚与 3脚两个输出端。由于1脚和3脚分别是片内下 管的集电 极和发射极所以1脚输出电压的幅度可大于3脚的输出。

 L_2C_2 回路应调谐在 振荡频率 f_{osc} 上。

信息科学与工程

图5.2.12是利用E1648组成的正弦波振荡器。

如果10脚与12 脚外接包括变容 二极管在内的LC 元件,可以构成 压控振荡器。显 然, 利用E1648 也可以构成晶体 振荡器。

图5.2.12 E1648组成的正弦波振荡

作业: 5.17 5.19

预习 5.3 5.4 5.5