

Monolithic N-Channel JFET Dual

PRODUCT SUMMARY									
V _{GS(off)} (V)	V _{(BR)GSS} Min (V)	g _{fs} Min (mS)	I _G Max (pA)	V _{GS1} – V _{GS2} Max (mV)					
−1.0 to −4.5	-50	1	-50	25					

FEATURES

- Monolithic Design
- High Slew Rate
- Low Offset/Drift Voltage
- Low Gate Leakage: 5 pA
- Low Noise: 9 nV√Hz
- High CMRR: 100 dB

BENEFITS

- Tight Differential Match vs. Current
- Improved Op Amp Speed, Settling Time Accuracy
- Minimum Input Error/Trimming Requirement
- Insignificant Signal Loss/Error Voltage
- High System Sensitivity
- Minimum Error with Large Input Signal

APPLICATIONS

- Wideband Differential Amps
- High-Speed, Temp-Compensated, Single-Ended Input Amps
- High Speed Comparators
- Impedance Converters

DESCRIPTION

The low cost 2N3958 JFET dual is designed for high-performance differential amplification for a wide range of precision test instrumentation applications. This series features tightly matched specs, low gate leakage for accuracy, and wide dynamic range with I_G guaranteed at $V_{DG} = 20 \text{ V}$.

The hermetically-sealed TO-71 package is available with full military processing (see Military Information and the 2N5545/5546/5547JANTX/JANTXV data sheet).

For similar products see 2N5196/5197/5198/5199, the low-noise U/SST401 series, the high-gain 2N5911/5912, and the low-leakage U421/423 data sheets.

ABSOLUTE MAXIMUM RATINGS

Gate-Drain, Gate-Source Voltage	v
Gate Current	
Lead Temperature (1/16" from case for 10 sec.)	С
Storage Temperature—65 to 200°	С
Operating Junction Temperature	С

Power Dissipation: $\mathsf{Total}^\mathsf{b} \ \dots \dots \ 500 \ \mathsf{mW}$

Notes

Derate 2 mW/°C above 85°C

Derate 4 mW/°C above 85°C

Vishay Siliconix

				Limits		
Parameter	Symbol	Test Conditions	Min	Typ ^a	Max	Unit
Static						l
Gate-Source Breakdown Voltage	V _{(BR)GSS}	(BR)GSS $I_G = -1 \mu A, V_{DS} = 0 V$		-57		
Gate-Source Cutoff Voltage	V _{GS(off)}	$V_{DS} = 20 \text{ V}, I_{D} = 1 \text{ nA}$	-1.0	-2	-4.5	V
Saturation Drain Current ^b	I _{DSS}	V _{DS} = 20 V, V _{GS} = 0 V	0.5	3	5	mA
0.1.5		$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$		-10	-100	pA
Gate Reverse Current	I _{GSS}	T _A = 150°C		-20	-500	nA
Coto On continue Comment		$V_{DG} = 20 \text{ V}, I_D = 200 \mu\text{A}$		-5	-50	pA
Gate Operating Current	l _G	T _A =125°C		-0.8	-250	nA
Cata Sauras Valtaga	V	$V_{DG} = 20 \text{ V}, I_D = 200 \mu\text{A}$	-0.5	-1.5	-4	V
Gate-Source Voltage	V_{GS}	$I_D = 50 \mu A$			-4.2	
Gate-Source Forward Voltage	V _{GS(F)}	$I_G = 1 \text{ mA}, V_{DS} = 0 \text{ V}$			2	
Dynamic						
Common-Source Forward Transconductance	9 _{fs}	V _{DS} = 20 V, V _{GS} = 0 V f = 1 kHz	1	2.5	3	mS
Common-Source Output Conductance	gos	f = 1 KMZ		2	35	μS
Common-Source Input Capacitance	C _{iss}	V 20 V V 20 V		3	4	pF
Common-Source Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1 MHz		1	1.2	
Drain-Gate Capacitance	C _{dg}	$V_{DG} = 10 \text{ V}, I_S = 0 \text{ , } f = 1 \text{ MHz}$			1.5	
Equivalent Input Noise Voltage	e _n	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ kHz}$		9		nV∕ √Hz
Noise Figure	NF	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$ f = 100 Hz, R _G = 10 M Ω			0.5	dB
Matching			<u> </u>		•	
Differential Gate-Source Voltage	V _{GS1} -V _{GS2}	$V_{DG} = 20 \text{ V}, I_D = 200 \mu\text{A}$		15	25	mV
ate-Source Voltage Differential Change with emperature $\frac{\Delta V_{\text{GS1}} - V_{\text{GS2}} }{\Delta T}$		V_{DG} = 20 V, I_{D} = 200 μA T_{A} = -55 to 125° C		20	100	μV/°C
aturation Drain Current Ratio I_DSS1 I_DSS2		V _{DS} = 20 V, V _{GS} = 0 V	0.85	0.97	1	
Transconductance Ratio	g _{fs1} g _{fs2}	V _{DS} = 20 V, I _D = 200 μA	0.85	0.97	1	
Differential Output Conductance	g _{os1} -g _{os2}	f = 1 kHz		0.1		μS
Differential Gate Current $ I_{G1}-I_{G2} $		$V_{DG} = 20 \text{ V, } I_D = 200 \mu\text{A}$ $T_A = 125^{\circ}\text{C}$		0.1	10	nA
Common Mode Rejection Ratio ^c	CMRR	$V_{DG} = 10 \text{ to } 20 \text{ V}, I_{D} = 200 \mu\text{A}$		100	1	dB

NQP

Notes
a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
b. Pulse test: PW ≤ 300 µs duty cycle ≤ 3%.
c. This parameter not registered with JEDEC.

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

Output Characteristics

2 $V_{GS(off)} = -2 V$ $V_{GS} = 0 V$ 1.6 -0.2 V ID - Drain Current (mA) -0.4 V 1.2 -0 6 V -0.8 V 0.8 -1.0 V -1.2 V 0.4 –1.4 V 0 –1.6 V 0.8 0 0.2 0.4 0.6 1

V_{DS} - Drain-Source Voltage (V)

Gate Leakage Current 100 nA $I_G @ I_D = 200 \mu A$ 10 nA $T_A = 125^{\circ}C$ 1 nA I G - Gate Leakage I_{GSS} @ 125°C 50 μΑ 100 pA 200 μΑ 50 μA 10 pA I_{GSS} @ 25°C T_A = 25°C 1 pA 0.1 pA 0 10 20 30 40 50 V_{DG} - Drain-Gate Voltage (V)

Output Characteristics

Vishay Siliconix

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

Gate-Source Differential Voltage vs. Drain Current

Common Mode Rejection Ratio vs. Drain Current

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

Common-Source Forward Transconductance vs. Drain Current

Common-Source Reverse Feedback Capacitance vs. Gate-Source Voltage

Output Conductance vs. Drain Current

I_D – Drain Current (mA)

On-Resistance and Output Conductance vs. Gate-Source Cutoff Voltage

V_{GS(off)} - Gate-Source Cutoff Voltage (V)