

CIVL6415

TRAFFIC ANALYSIS AND SIMULATION

MODULE 1 Traffic flow fundamentals

Dr. Mehmet Yildirimoglu School of Civil Engineering The University of Queensland

Outline

Basic Descriptors of Traffic Flow

- Flow, Density (Occupancy), Speed
- Headway, Spacing

Relationships between Traffic Flow Parameters

- Flow, Density, and Speed
- Flow vs. Headway
- Density vs. Spacing
- Space mean speed vs. Time mean speed

Graphical Relationships for Uninterrupted Flow

- Speed vs. Density
- Flow vs. Density
- Speed vs. Flow

Generalized Definitions of Flow, Density and Speed

CIVL6415

Space-time diagram

Point sensors

- Inductive loops
 - Coil of wire in pavement
 - Energised by AC
 - Detector senses the 'presence' of vehicle
 - Single loop: volume & occupancy
 - Dual loops: vol, occ & speed
 - typically spaced at 500 m on motorways
 - actuated signals
 - dominant technology (low cost)
- CCTV cameras

Point sensor data

Point sensor data

Basic Descriptors of Traffic Flow

Basic Traffic Flow Parameters

Three Principal Traffic Flow Descriptors

- Volume (q)
- Density (k)
- Speed (v)
- Headway (h)
- Spacing (s)

+ Occupancy (Occ)

Volume or Flow

- Flow (q) (also called 'Volume' or 'Flow rate')
 - Number of vehicles per unit time passing a given point on a road
 - vehicles per second (veh/s), vehicles per hour (veh/h), or vehicles per day (veh/d).

Flow
$$q = \frac{N}{T}$$

where:

- N = number of vehicles passing some designated roadway point during time t, and
- *T* = duration of time interval.

CIVL6415

Density

Density (k) (also known as 'Concentration')

- Number of vehicles present within a unit length of lane or road at a given instant of time
- vehicles per kilometre (veh/km) or vehicles per metre (veh/m)

Density
$$k = \frac{N}{L}$$

where:

- N = number of vehicles occupying some length of roadway at some specified time, and
- L = length of roadway.

CIVL6415

Question 1

Flow and Density

• An observer located at point A observes four vehicles passing point A during 30 sec. The figure shows their positions at an instant of time by photography. Calculate flow (veh/h) and density (veh/km).

- A. q = 0.13 veh/h, k = 0.01 veh/km
- B. q = 8 veh/h, k = 1 veh/km
- C. q = 240 veh/h, k = 10 veh/km
- D. q = 480 veh/h, k = 10 veh/km
- E. None of the above

Headway

Headway (h)

- Time interval separating the passing of a fixed point by two consecutive vehicles in a traffic stream, expressed as seconds per vehicle (s/veh)
- The average headway (h) of the stream over a given time interval is the arithmetic mean of the series of headways occurring over that interval

Average headway
$$h = \frac{1}{N} \sum_{i=1}^{N} h_i$$

where:

- h_i = time headway of vehicle i (the elapsed time between the arrivals of vehicles i and i-1)
- N = number of measured vehicle time headways

Spacing

Spacing (s)

- Distance between the fronts of two consecutive vehicles in a traffic stream at a given instant of time, expressed as metres per vehicle (m/veh)
- The average spacing (s) of the stream over a given length of lane or carriageway is the arithmetic mean of the individual spacings occurring over that length at that instant of time

$$s = \frac{1}{N} \sum_{i=1}^{N} s_i$$

Vehicle i > Vehicle i-1 > cles i

where:

- s_i = spacing of vehicle i (the distance between vehicles i and i-1, measured from front bumper to front bumper)
- N = number of measured vehicle spacings

13

Speed (v)

- Distance travelled by a vehicle during a unit of time
- Travel distance / travel time
- metres per second (m/s) or kilometres per hour (km/h or kph)

Two Ways in which average speeds can be obtained:

- Time Mean Speed (v_t) :
 - The average speed for vehicles that travel an equal amount of time
 - Average speed over time = Average travel distance / Fixed time
- Space Mean Speed (v_s):
 - The average speed for vehicles that travel an equal amount of distance
 - Average speed over space = Fixed distance / Average travel time

CIVL6415

■ Time Mean Speed (v₊)

- Arithmetic mean of the measured speeds of all vehicles passing a given point during a given time interval
- Measured by taking a reference point on the roadway over a fixed period of time T
- Average travel distance / Fixed time T:

$$\begin{aligned} & \text{Time} \\ & \underset{\text{speed}}{\text{mean}} \ v_{t} = \frac{\frac{1}{N} \sum_{i=1}^{N} d_{i}}{T} = \frac{\frac{1}{N} \sum_{i=1}^{N} T v_{i}}{T} = \frac{1}{N} \sum_{i=1}^{N} v_{i} \end{aligned}$$

where

- d_i = travel distance of vehicle i during T
- v_i = individual speed (or 'spot speed') of vehicle i
- N = number of vehicles during T

■ Time Mean Speed (v₊)

- Arithmetic mean of the measured speeds of all vehicles passing a given point during a given time interval
- Measured by taking a reference point on the roadway over a fixed period of time T

– Average travel distance / Fixed time T:

v_i = individual spee

Arithmetic mean of spot speeds

N = number of vehicles during 1

Space Mean Speed (v_s)

- Arithmetic mean of the measured speeds of all vehicles within a given length of lane or carriageway, at a given instant of time
- Measured by taking the whole roadway segment into account
- Fixed length L / Average travel time:

$$v_{s} = \frac{L}{\frac{1}{N} \sum_{i=1}^{N} t_{i}} = \frac{L}{\frac{1}{N} \sum_{i=1}^{N} \frac{L}{v_{i}}} = \frac{1}{\frac{1}{N} \sum_{i=1}^{N} \frac{1}{v_{i}}}$$

where:

- t_i = travel time of vehicle i to traverse length L
- v_i = individual speed (or 'spot speed') of vehicle i
- N = number of vehicles along L at a given time

Space Mean Speed (v_s)

- Arithmetic mean of the measured speeds of all vehicles within a given length of lane or carriageway, at a given instant of time
- Measured by taking the whole roadway segment into account
- Fixed length L / Average travel time:

$$v_{s} = \frac{L}{\frac{1}{N} \sum_{i=1}^{N} t_{i}} = \frac{L}{\frac{1}{N} \sum_{i=1}^{N} \frac{L}{v_{i}}} = \frac{1}{\frac{1}{N} \sum_{i=1}^{N} \frac{1}{v_{i}}}$$
Here:

where:

- t_i = travel time of vehicle i to traverse length
- v_i = individual spee

N = number of vehicles

Harmonic mean of spot speeds

Along length L

Question 2 **Speed**

- Three vehicles traverse a 1 km segment of freeway in 1.2, 1.5, and 1.0 minutes respectively. What are the time-mean and space-mean speeds (km/h)? (Assume that the speeds are constant along the segment).
 - A. $v_t = 41.8 \text{ km/h}$, $v_s = 40.9 \text{ km/h}$
 - B. $v_t = 40.9 \text{ km/h}$, $v_s = 41.8 \text{ km/h}$
 - C. $v_t = 50.0 \text{ km/h}, v_s = 48.7 \text{ km/h}$
 - D. $v_t = 48.7 \text{ km/h}$, $v_s = 50.0 \text{ km/h}$
 - E. None of the above

Lane Occupancy

Occupancy (Occ)

 The proportion of time for which a detector is "occupied" or covered by a vehicle at a given location over a defined period of time T, expressed as a proportion (dimensionless)

Occupancy
$$Occ = \frac{\sum_{i=1}^{N} t_{o,i}}{T}$$

where:

- $t_{o,i}$ = duration of the period when the detection zone is occupied by vehicle i
- N = number of vehicles detected during time period T
- *T* = observation time period

Point sensor data

Lane Occupancy

Occupancy (Occ)

- Related to the average spacing (s) as follows:

Occupancy
$$Occ = \frac{\sum_{i=1}^{N} t_{o,i}}{T} = \frac{L_V + L_D}{s}$$

where:

- t_{o,i} = duration of the period when the detection zone is occupied by vehicle i
- L_V = average length of a vehicle (m)
- L_D = effective length of detector (m)
- s = average spacing of vehicles (m/veh)

Lane Occupancy

Density and Occupancy

- Occupancy is often used as a 'surrogate' for density (k) because density is difficult to measure directly (e.g., need aerial photography)
- Obtain Density from Occupancy:

$$Occ = \frac{L_V + L_D}{s} \qquad \leftarrow s[\text{m/veh}] = \frac{1000}{k[\text{veh/km}]}$$

$$k = \frac{1000}{s} = \frac{1000 \cdot Occ}{L_V + L_D} = \frac{10 \cdot (\% Occ)}{L_V + L_D}$$

where:

- %Occ = occupancy expressed as a percentage
- L_V , L_D = vehicle length and detector length, respectively (m)

Question 3

Density and Occupancy

■ A detector records a %occupancy of 20% for a 15-minute analysis period. If the average vehicle length is 9m and the detector is 1m long, what is the density?

- A. 0.2 veh/km
- B. 4 veh/km
- C. 10 veh/km
- D. 20 veh/km
- E. None of the above

$$Occ = \frac{\sum_{i=1}^{N} t_{o,i}}{T}$$

$$k = \frac{1000 \cdot Occ}{L_V + L_D} = \frac{10 \cdot (\% \, Occ)}{L_V + L_D}$$

Macroscopic vs. Microscopic

Macroscopic Parameters

Describing the entire traffic stream

Microscopic Parameters

Describing individual vehicles

Flow (q) Headway (h_i)
Density (k) Spacing (s_i)
Speed (v_s, v_t) Speed (v_i)

Fundamental Relationships

Flow is the product of Density and (Space Mean) Speed

$$q = k \times v_s$$

Flow is the inverse of Average Headway

$$q = 1/h$$

$$q = \frac{3600}{h} \quad \left[\frac{\text{veh}}{\text{h}}\right] = 1 / \left[\frac{\text{s}}{\text{veh}} \times \frac{1\text{h}}{3600\text{s}}\right]$$

Density is the inverse of Average Spacing

$$k = 1/s$$

$$k = \frac{1000}{s} \quad \left[\frac{\text{veh}}{\text{km}}\right] = 1 / \left[\frac{\text{m}}{\text{veh}} \times \frac{1 \text{km}}{1000 \text{m}}\right]$$

• Other derived relations: h = S/V $S = h \cdot V$

Space-Time Diagram

Question 4

Headway and Flow

Traffic flow on a one lane ramp is 360 veh/h, what is the average headway (seconds)?

- A. 0.1 s
- B. 10 s
- C. 36 s
- D. 60 s
- E. None of the above

Why $V_s \leq V_t$??

Slower vehicles occupy any given segment of road for a longer period of time than faster vehicles, and therefore receive a greater weighting in the calculation of space mean speed than they do in the calculation of time mean speed.

[Time Mean Speed] During T at any given location x, the sample contains an equal number of slow and fast vehicles

$$\Rightarrow v_t = \frac{1}{2}v_{slow} + \frac{1}{2}v_{fast}$$

[Space Mean Speed] Over **L** at any given time **t**, the sample contains twice as many slow vehicles as fast vehicles

$$\Rightarrow v_s = \frac{2}{3}v_{slow} + \frac{1}{3}v_{fast}$$

Relationships between V_t and V_s

 The Approximate Relationship between Time Mean Speed and Space Mean Speed

$$v_t = v_s + \frac{\sigma_s^2}{v_s}$$

 σ_S^2 = the variance of space mean speed, $\sum_{i=1}^{N} (v_i - v_S)^2$

i.e.,
$$\sigma_S^2 = \frac{\sum_{i=1}^N (v_i - v_S)^2}{N-1}$$

■ Space mean speed is always less than or equal to time mean speed $(V_s \le V_t)$

When all vehicles have exactly the same speed, the two mean speeds are equal $(V_s = V_t)$.

Graphical Relationships for Uninterrupted Flow

Types of Traffic Flow

Uninterrupted Flow Vs. Interrupted Flow

- Uninterrupted flow occurs in a traffic stream that is not delayed or interfered with by factors external to the traffic stream itself
- Uninterrupted flow facilities
 - No intersections at grade, traffic signals, STOP or GIVE WAY signs, direct property access (e.g., controlled-access roads such as motorways)
 - The characteristics of the traffic stream are based solely on the interactions among vehicles and with the roadway and the general environment.

Types of Traffic Flow

Uninterrupted Flow Vs. Interrupted Flow

- Interrupted flow occurs when external factors have significant effects on the traffic flow.
- Interrupted flow facilities
 - Incorporate fixed external interruptions into their design and operation: traffic signal, STOP or GIVE WAY signs, unsignalized at-grade intersections, land access operations (e.g., arterials and other urban streets)
 - The characteristics of the traffic stream are primarily based on external interruptions (e.g., "red" signals stop traffic periodically and create a platoons of vehicles); vehicle-vehicle interactions and vehicle-roadway interactions play a secondary role in defining the traffic flow.

Traffic Characteristics

Flow, Density, and Speed Relationship

Traffic Characteristics

■ Speed (v) – Flow (q) Plot

Traffic Characteristics

■ Speed (v) – Density (k) Plot

Traffic Characteristics

■ Flow (q) – Density (k) Plot

Traffic Characteristics

Fundamental relationships of 'uninterrupted' traffic flow

39

Flow-Density Relationship

Speed-Flow Relationship

Speed-Density Relationship

Flow-Density-Speed Relationships

Fundamental Diagrams (FD)

'Fundamental relationships' of 'uninterrupted' traffic flow

At A, no interaction
A-B, free flow
B-C, steady flow
At C, traffic unstable
C-D, forced flow
At D, traffic stationary

Linear Speed-Density Relationship

 The first traffic stream model, developed by Greenshields (known as 'Greenshields model')

– Assumes that the space mean speed of the traffic would decrease linearly from the mean free speed, v_f , at zero density, to zero speed at the jam density, k_i .

$$v = v_f \left(1 - \frac{k}{k_j} \right) \dots (1)$$

where:

v = **space-mean** speed (km/h)

 $v_f = free - flow speed (km/h)$

k = density (veh/km)

 $k_i = jam \ density \ (veh/km)$

CIVL6415

k_j Jam

density

Parabolic Flow-Density Relationship

$$-q=k\cdot v \leftarrow Eq. (1)$$

$$q = v_f \left(k - \frac{k^2}{k_j} \right) \dots (2)$$

 $k_i/2$

Density

where:

q = flow rate or volume (veh/h)

 $v_f = free-flow speed (km/h)$

k = density (veh/km)

 $k_i = jam \ density \ (veh/km)$

Parabolic Speed-Flow Relationship

- Rearranging Eq.(1) $\rightarrow k = k_j (1 v/v_f)$
- $-q=k\cdot v \leftarrow k$

$$q = k_j \left(v - \frac{v^2}{v_f} \right) \cdots (3)$$

where:

q = flow rate or volume (veh/h)

v = **space-mean** speed (km/h)

 $v_f = free - flow speed (km/h)$

Parabolic Speed-Flow Relationship

- Rearranging Eq.(1) $\rightarrow k = k_j (1 v/v_f)$
- $-q=k\cdot v \leftarrow k$

$$q = k_j \left(v - \frac{v^2}{v_f} \right) \cdots (3)$$

q = flow rate or volume (veh/h)

v = **space-mean** speed (km/h)

 $v_f = free-flow speed (km/h)$

 v_{cap} = speed at capacity or maximum flow

Speed-Flow-Density Relationships

Exercise: Traffic Stream Model

A section of highway is known to have a free-flow speed of 88 km/h and a capacity of 3300 veh/h. In a given hour, 2100 vehicles were counted at a specified point along this highway section. If the linear speed-density relationship in Eq. (1) applies, what would you estimate the space-mean speed of these 2100 vehicles to be?

$$v = v_f \left(1 - \frac{k}{k_j} \right) \qquad q = k_j \left(v - \frac{v^2}{v_f} \right)$$
.... (1)

Exercise: Traffic Stream Model

A section of highway is known to have a free-flow speed of 88 km/h and a capacity of 3300 veh/h. In a given hour, 2100 vehicles were counted at a specified point along this highway section. If the linear speed-density relationship in Eq. (1) applies, what would you estimate the space-mean speed of these 2100 vehicles to be?

$$q_{cap} = \frac{v_f k_j}{4} \Rightarrow k_j = \frac{4q_{cap}}{v_f} = \frac{4 \times 3300}{88}$$
$$\Rightarrow k_j = 150 \text{ veh/km}$$

$$\begin{cases} q = 2100 \text{ veh/h} \\ k_j = 150 \text{ veh/km} \end{cases} \Rightarrow v = ?$$

Rearranging Eq. (3):

$$q = k_j \left(v - \frac{v^2}{v_f} \right) \Rightarrow \frac{k_j}{v_f} v^2 - k_j v + q = 0$$
$$\Rightarrow \frac{150}{88} v^2 - 150v + 2100 = 0$$

 \Rightarrow v = 70.53 km/h or 17.47 km/h

Generalized Definitions of Flow, Density, and Speed

Generalized Definition for q and k OF QUEEN OF Q

A More Generalized Definition of Flow and Density:

$$q = \frac{N}{T} = \frac{N \times dx}{T \times dx} = \frac{d(B)}{|B|}$$

dx: infinitesimal distance

d(B): sum of distances travelled by all vehicles during T

|B| : area of time-space rectangle B bounded by T and dx

Flow (q): total distance travelled by all vehicles within B divided by the area of B

$$k = \frac{N}{L} = \frac{N \times dt}{L \times dt} = \frac{t(A)}{|A|}$$

dt: infinitesimal duration

t(A): sum of times spent by all vehicles within A

|A| : area of time-space rectangle A bounded by L and dt

Density (k): total travel time spent by all vehicles within A divided by the area of A

CIVL6415

Generalized Definition for q and k

Unifying the Generalized Definition of q, k, and v:

- "Edie's generalized definition" (Edie, 1965)

$$q(C) = \frac{d(C)}{|C|}$$

Total travel distance (veh·km)

Total space-time region (km·hrs)

$$k(C) = \frac{t(C)}{|C|}$$

Total travel time (veh·hrs)

Total space-time region (km·hrs)

Total travel distance (veh·km)

Total travel time (veh·hrs)

where

$$d(C) = \sum_{i=1}^{N} dx_i$$
 $t(C) = \sum_{i=1}^{N} dt_i$

Space-Time Diagram (x-t plot) vs. Fundamental Diagram (q-k plot)

 Relation between Space-Time Diagram and Flow-Density Diagram

Points on the fundamental diagram (FD) describe all possible traffic conditions on the road segment Y.

 \rightarrow FD is a (steady-state) property of the road.

Edie's Generalized Definition

 Calculate flow q in region A using Edie's generalized definition.

Veh i	dt _i	dx _i
1	3 sec	70 m
2	6 sec	100 m
3	10 sec	80 m
4	5 sec	50 m

$$q(A) = \frac{d(A)}{|A|}$$

$$k(A) = \frac{t(A)}{|A|}$$

$$v(A) = \frac{d(A)}{t(A)}$$

- A. 1080 veh/h
- B. 1440 veh/h
- C. 1880 veh/h
- D. 2400 veh/h
- E. None of the above

Next

- Tutorial on Wednesday
- Please don't forget to request the Aimsun License!