Lab - 4

Subject Code: EC303 P Due Date:11/09/2020

Instructions:

- 1. Please mention legends, axis labels, titles etc in your plot/subplot for better understanding & clarity.
- 2. The report to be submitted must include matlab code & all observations pertaining to each plot below the same.
- 3. Kindly number your answers correctly.
- 4. NO PLAGIARISM.
- 5. Ask any questions in class or via LMS so that it will be beneficial to all (us and you).

Questions:

- 1. Modulation & demodulation of Double sideband with suppressed carrier (DSB-SC) signal using MATLAB
 - a) Generate and plot the sinusoidal waveform $S_1(t)$ with amplitude of 0.5V and frequency of 200 Hz for two complete cycles.
 - b) Generate and plot the sinusoidal waveform $S_2(t)$ with amplitude of 1V and frequency of 2000 Hz for the same time duration as $S_1(t)$.
 - c) Using $S_1(t)$ as the message signal and $S_2(t)$ as the carrier signal, generate and plot the DSB-SC signal, $S_{31}(t)$.
 - d) Plot the power spectrum of the DSB-SC signal, $S_{31}(t)$.
 - e) Using (d), find the lower sideband and upper sideband power of the modulated signal, $S_{31}(t)$.
 - f) Find the bandwidth and total power of the modulated signal, $S_{31}(t)$. Display all these values. Also compare these values obtained from simulation with theoretical values based on formulas.
 - g) Demodulate the DSB-SC signal, $S_{31}(t)$ and plot it.
 - h) Consider transmission of modulated DSB-SC signal, $S_{31}(t)$ over a noisy channel with AWGN noise and then demodulate it assuming SNR=5dB. Plot and compare the demodulated signal with message signal, $S_1(t)$.
 - i) Consider transmission of modulated DSB-SC signal, $S_{31}(t)$ over a noisy channel with AWGN noise and then demodulate it assuming SNR=15dB. Plot and compare the demodulated signal with message signal, $S_1(t)$. Write your observation with respect to this increase in SNR.
- 2. Modulation & demodulation of Amplitude Modulated signal (Double sideband with carrier) using MATLAB
 - a) Using $S_1(t)$ as the message signal and $S_2(t)$ as the carrier signal, generate and plot the amplitude modulated signal, $S_3(t)$.
 - b) Plot the amplitude and power spectrum of the amplitude modulated signal, $S_3(t)$.

- c) Using (b), find the carrier power, the lower sideband and upper sideband power of the modulated signal, S₃(t).
- d) Find the modulation index, bandwidth and total power of the modulated signal, $S_3(t)$. Compare these values obtained from simulation with theoretical values based on formulas.
- e) Demodulate the amplitude modulated signal, $S_3(t)$ and plot it.
- f) Plot the graph between the total AM power normalized to carrier power and modulation index. Consider modulation index varying from 0 to 1.5.
- 3. Modulation & demodulation of Single sideband with suppressed carrier (SSB-SC) signal using MATLAB
 - a) Using $S_1(t)$ as the message signal and $S_2(t)$ as the carrier signal, generate and plot the SSB-SC signal, $S_{32}(t)$.
 - b) Plot the power spectrum of the SSB-SC signal, $S_{32}(t)$.
 - c) Using (b), find the sideband power of the modulated signal, $S_{32}(t)$.
 - d) Calculate the bandwidth and total power of the modulated signal, $S_{32}(t)$. Display all these values calculated above.
 - e) Demodulate the SSB-SC signal, S₃₂(t) and plot it.
 - f) Consider transmission of modulated SSB-SC signal, S₃₂(t) over a noisy channel with AWGN noise and then demodulate it assuming SNR=15dB. Plot and compare the demodulated signal with message signal, S₁(t).