CentraleSupelec 2018-2019 MSC DSBA / DATA SCIENCES Big Data Algorithms, Techniques and Platforms

Distributed Computing with Spark

Hugues Talbot & Céline Hudelot, professors.

- A simple programming model for processing huge data sets in a distributed way.
- A framework that runs these programs on clusters of commodity servers, automatically handling the details of distributed computing

Limitations

Efficiency: Each stage passes through the hard drives! Frequent disk I/O

Limitations for iterative jobs

Efficiency: Disk I/O for each repetition. The processing is slow when many small iterations.

Other limitations

- Efficiency
 - Shuffle step for each reduce step : high communication cost.
 - Limite exploitation of the main memory
- Real-time processing
 - Stream processing and random access is not possible.
 - Designed for batch processing
- Programming aspect
 - The MapReduce design pattern is very constrained and not so expressive.
 - Native support for JAVA only (c.f. your difficulties in using python)

In-Memory Processing

Main ideas

- Many datasets fit in memory (of a cluster).
- Memory is fast and avoid disk I/O.
- Idea: In-memory Computing The data is kept in random access memory(RAM)

Plan

- Introduction : Limitations of Hadoop
- 2 Spark
 - RDD : Resilient Distributed Dataset
 - Anatomy of a job
 - Examples
- Spark SQL and DataFrames
- 4 MLlib

Spark

- **Spark** is another distributed computing framework.
- A cluster-computing platform that provides an API for distributed programming designed to be fast for interactive queries and iterative algorithms.
- A separate, fast, MapReduce engine.
- An unified computing engine and a set of libraries for parallel data processing on computer clusters
- In-memory data storage for very fast iterative queries.
- Handles batch, interactive, and real-time within a single framework.
- Use of Resilient Distributed Dataset: a data structure to distribute data and computations across the cluster

Spark

A bit of history

- **Spark** project started in 2009 at UC Berkeley AMPLab.
 - PhD thesis of Matei Zaharia ^a
- Open sourced in 2010.
- Today, the most popular project for big data analysis ^b.

a. http://static.usenix.org/legacy/events/hotcloud10/tech/full_ papers/Zaharia.pdf

b. https://tinyurl.com/y7nf5z5z

Spark

A bit of history

- Two funding papers :
 - Spark: Cluster Computing with Working Sets Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion Stoica USENIX HotCloud (2010)
 - people.csail.mit.edu/matei/papers/2010/hotcloud_spark.
 pdf
 - Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica.NSDI (2012)

 usenix.org/system/files/conference/nsdi12/
 - usenix.org/system/files/conference/nsdi12/
 nsdi12-final138.pdf

Spark : In-Memory fast data sharing

Data sharing in MapReduce

Spark: In-Memory fast data sharing

Replace disk with Memory

10-100x faster than network and disk

Characteristics of Spark

- Performance : In-memory data processing.
- Processing model : Map Reduce and others models
- Data Processing: No need of external librairies
- Database Management : No need of external librairies
- Programming aspects: Java, Scala but also native python, R.

Characteristics of Spark

Undoon	Smark	
<u>Hadoop</u>	Spark	
Java Virtual Machine (JVM)		
Write to disk (HDFS)	In-memory	
Native data structures	Resilient Distributed Datasets (RDD)	
Java (+ Hadoop streaming)	Java + Scala + Python + R	
-	Python + Scala shell	
Pluggable SQL (Hive)	Spark SQL (native)	
Pluggable ML	Spark ML (native)	

The Spark stack

Spark focuses on computation rather than on data storage.

- Runs on a cluster with data warehousing and cluster management (e.g. Yarn, HDFS)
- Spark Core Module: basic and general functionalities, API.
- Spark SQL : SQL interface
- Spark Streaming : Stream processing.
- MLlib : Machine learning.
- GraphX: Parallel graph data processing.

The Spark execution model

- Spark applications are run as independent sets of processes, coordinated by a Spark Context in a driver program.
- Spark **application** = a driver program and executors on the cluster.
- Cluster manager: An external service for acquiring resources on the cluster

The Spark execution model

SparkContext

• First thing that a spark program does : create a SparkContext object that tell Spark how to access a cluster.

```
import pyspark
  sc = pyspark.SparkContext('local[*]')
  print(sc)
4
5
  <SparkContext master=local[*] appName=pyspark-shell>
```

master	description
local	run Spark locally with one worker thread (no parallelism)
local[K]	run Spark locally with K worker threads (ideally set to # cores)
spark://HOST:PORT	connect to a Spark standalone cluster; PORT depends on config (7077 by default)
mesos://HOST:PORT	connect to a Mesos cluster; PORT depends on config (5050 by default)

The Spark execution model

The master:

- Connects to a cluster manager (e.g. Yarn) which allocates resources across applications.
- Acquires executors on cluster nodes (worker processes to run computations and store data).
- Sends app code to the executors.
- Sends tasks to the executors to run.

RDD: Resilient Distributed Dataset

- The key abstraction in Spark.
- Data structure used by Spark to distribute data and computations across the cluster.
- A fault-tolerant (automatically rebuilt by the operation history) collection of elements than can be operated in parallel.
- An immutable distributed collection of data.
- Can persist in memory, on disk, or both
- An object on which functions can be invoked.
- Spark application :
 - Data loading into one or more RDDs.
 - Computations by invoking functions on the RDDS

RDD: Resilient Distributed Dataset

Two types

 Parallelized collections: Take an existing in-memory collection and pass it to SparkContext parallelize method.

```
words = ["fish", "cats", "dogs"]
wordsRDD = sc.parallelize(words)
```

 Hadoop datasets: Read from local text file or from HDFS or other storage systems.

RDD: Operations

Two types of operations on RDD:

- Transformations: Take in one or more RDDs and return a new RDD.
 - e.g. map, filter, intersection, groupbykey,...
 - lazy execution :does not execute immediately, the execution will not start until an action is triggered. Spark maintains the record of which operation is being called (Through DAG).
- actions: Take in an RDD and return a value
 - e.g. collect, count, reduce
 - Trigger the execution of transformations.

A spark application

Create RDDs, apply transformations and actions.

RDD: Operations

RDD operations			
Transformations	Actions		
map, distinct, filter, reduceByKey, sortByKey, join	reduce, collect, count, first, take		
Arguments: 1 or more RDD			
Returns: RDD	Returns: not an RDD		
Lazy evaluation	Immediate evaluation		
Sometimes shuffle	Shuffle necessary		

transformation	description
map(func)	return a new distributed dataset formed by passing each element of the source through a function func
filter(func)	return a new dataset formed by selecting those elements of the source on which <i>func</i> returns true
flatMap(func)	similar to map, but each input item can be mapped to 0 or more output items (so <i>func</i> should return a Seq rather than a single item)
<pre>sample(withReplacement, fraction, seed)</pre>	sample a fraction fraction of the data, with or without replacement, using a given random number generator seed
union(otherDataset)	return a new dataset that contains the union of the elements in the source dataset and the argument
distinct([numTasks]))	return a new dataset that contains the distinct elements of the source dataset

transformation	description
<pre>groupByKey([numTasks])</pre>	when called on a dataset of (K, $$ V) pairs, returns a dataset of (K, $$ Seq[V]) pairs
reduceByKey(func, [numTasks])	when called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values for each key are aggregated using the given reduce function
<pre>sortByKey([ascending], [numTasks])</pre>	when called on a dataset of (K, V) pairs where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in ascending or descending order, as specified in the boolean ascending argument
<pre>join(otherDataset, [numTasks])</pre>	when called on datasets of type (K, V) and (K, W) , returns a dataset of $(K, (V, W))$ pairs with all pairs of elements for each key
cogroup(otherDataset, [numTasks])	when called on datasets of type (K, V) and (K, W) , returns a dataset of $(K, Seq[V], Seq[W])$ tuples – also called groupWith
cartesian(otherDataset)	when called on datasets of types T and U, returns a dataset of (T, U) pairs (all pairs of elements)

Filter

```
1     r1 = sc.parallelize([1, 2, 3, 4])
2     f = r1.filter(lambda x : x > 3)
3     >>> print(f)
4     PythonRDD[7] at RDD at PythonRDD.scala:48
5     >>> print(f.collect())
6     [4]
```

Map

```
1  square = r1.map(lambda x : x*x)
2  >>> print(square)
3  PythonRDD[8] at RDD at PythonRDD.scala:48
4  >>> print(square.collect())
5  [1, 4, 9, 16]
```

4 0 5 4 5 1 5 4 5 5 5 5

Lambda functions are not mandatory.

```
Map
```

```
def square(x):
    return x*x

squares=r1.map(square)
print(squares.collect())

[1, 4, 9, 16]
```

flatMap

```
1 squares = r1.flatMap(lambda x : [x, x*x])
2 print(squares.collect())
3
4 [1, 1, 2, 4, 3, 9, 4, 16]
```

RDD: Set transformations

Set transformations

```
1 RDD1 = sc.parallelize([1,2,3,4])
2 RDD2 = sc.parallelize([6,5,4,3])

4 print (RDD1.union(RDD2).collect())
5 >>> [1, 2, 3, 4, 6, 5, 4, 3]
6 print (RDD1.union(RDD2).distinct().collect())
7 >>> [1, 2, 3, 4, 5, 6]
8 print (RDD1.intersection(RDD2).collect())
9 >>> [3, 4]
10 print(RDD1.subtract(RDD2).collect())
11 >>> [1,2]
```

RDD of key/value pairs

RDDs of the type RDD[(K,V)]

Transformations

```
rdd=sc.parallelize(["foo", "bar", "baz", "baz"])
   pairRDD = rdd.map(lambda word : (word, 1))
   >>> [('foo', 1), ('bar', 1), ('baz', 1), ('baz', 1)]
4
5
   occurrences = pairRDD.reduceByKey(lambda x, y : x + y)
   print(occurrences.collect())
   >>> [('foo', 1), ('bar', 1), ('baz', 2)]
8
9
   occurrences = occurrences.sortBy(lambda x: x[1],
       ascending=False)
   print(occurrences.collect())
10
   >>> [('baz', 2), ('foo', 1), ('bar', 1)]
```

RDD Lineage: Logical Execution Plan

RDD Lineage (RDD operator graph or RDD dependency graph): graph of all the parent RDDs of a RDD.


```
r00=sc.parallelize
  ([0,1,2,3,4,5,6,7,8,9])
r01=sc.parallelize(list(range(0,91,10))
  )
r10=r00.cartesian(r01)
r11=r00.map(lambda x: (x,x))
r12=r00.zip(r01)
r13=r01.keyBy(lambda x: x/20)
r20 = r11.union(r12).union(r13).
  intersection(r10)
```

Lazy evaluation: A RDD lineage graph is hence a graph of what transformations need to be executed after an action has been called. To get RDD Lineage Graph in Spark, we can use the toDebugString() method.

How RDDs are represented?

RDDs are made up of 4 parts:

- Partitions: Atomic pieces of the dataset.
- Dependencies: relationships between its RDD and its partition with the RDD(s) it was derived from.
- function : for computing the dataset from its parent RDDs.
- Metadata: related to its partioning scheme and data placement.

RDD Dependencies and Shuffle

A shuffle can occur when the resulting RDD depends on other elements from the same RDD or another RDD (data must move across network).

Two kinds of dependencies

- Narrow dependencies: Each partition of the parent RDD is used by at most one partition of the child RDD.
 - No shuffle necessary. Optimizations like pipelining possible
- Wide dependencies: Each partition of the parent RDD may be used by multiple child partitions
 - Shuffle necessary for all or some data over the network.

RDD Dependencies and Shuffle

Narrow dependencies:

Each partition of the parent RDD is used by at most one partition of the child RDD.

Wide dependencies:

Each partition of the parent RDD may be depended on by multiple child partitions.

co-partitioned

RDD Dependencies: example

RDD Dependencies: example

Let's visualize an example program and its dependencies.

Wide transformations: groupBy, join

Narrow transformations: map, union, join

RDD: Actions

Actions return final result of RDD computations.

action	description
reduce(func)	aggregate the elements of the dataset using a function func (which takes two arguments and returns one), and should also be commutative and associative so that it can be computed correctly in parallel
collect()	return all the elements of the dataset as an array at the driver program — usually useful after a filter or other operation that returns a sufficiently small subset of the data
count()	return the number of elements in the dataset
first()	return the first element of the dataset – similar to take(1)
take(n)	return an array with the first \underline{n} elements of the dataset — currently not executed in parallel, instead the driver program computes all the elements
takeSample(withReplacement, fraction, seed)	return an array with a random sample of num elements of the dataset, with or without replacement, using the given random number generator seed

RDD: Actions

action	description
saveAsTextFile(path)	write the elements of the dataset as a text file (or set of text files) in a given directory in the local filesystem, HDFS or any other Hadoop-supported file system. Spark will call toString on each element to convert it to a line of text in the file
saveAsSequenceFile(path)	write the elements of the dataset as a Hadoop SequenceFile in a given path in the local filesystem, HDFS or any other Hadoop-supported file system. Only available on RDDs of key-value pairs that either implement Hadoop's Writable interface or are implicitly convertible to Writable (Spark includes conversions for basic types like Int, Double, String, etc).
countByKey()	only available on RDDs of type (K, V). Returns a 'Map' of (K, Int) pairs with the count of each key
foreach(func)	run a function func on each element of the dataset — usually done for side effects such as updating an accumulator variable or interacting with external storage systems

RDD: Actions

Reduce

Count

```
1  r1 = sc.parallelize([1, 2, 3, 4])
2  print(r1.count())
3  >>> 4
4  print(r1.countByValue())
5  >>> defaultdict(<class 'int'>, {1: 1, 2: 1, 3: 1, 4: 1})
```

RDD: Actions on Pairs RDD

countByKey

```
rdd=sc.parallelize(["foo", "bar", "baz", "baz"])
pairRDD = rdd.map(lambda word : (word, 1))
print(pairRDD.countByKey())
>>> defaultdict(<class 'int'>, {'foo': 1, 'bar': 1, 'baz' : 2})
```

Count

```
1  r1 = sc.parallelize([1, 2, 3, 4])
2  print(r1.count())
3  >>> 4
4  print(r1.countByValue())
5  >>> defaultdict(<class 'int'>, {1: 1, 2: 1, 3: 1, 4: 1})
```

RDD: Persistence

- By default, each transformed RDD is recomputed each time you run an action to it.
- You can specify the RDD to be cached in memory or on disk
- persist(): specify the storage level to persist a RDD.
- cache(): default storage level: MEMORY_ONLY

RDD: Persistence

Job scheduling

To execute an action on a RDD:

- Scheduler decides the stages (set of tasks that can be runned in parallel) from the RDD lineage graph.
- Each stage contains as many pipelined transformations with **narrow dependencies**.

Anatomy of a job

Example : wordcount in Spark

Running a script

wordcount.py

```
from pyspark import SparkContext
  sc = SparkContext()
  rdd = sc.textFile("iliad.mb.txt")
4
  result = rdd.flatMap(lambda sentence: sentence.split())\
5
       .map(lambda word: (word, 1))\
6
       .reduceByKey(lambda v1, v2: v1 + v2)\
       .sortBy(lambda wc: -wc[1])\
8
      .take(10)
  print(result)
```

Running the script

```
# with all the cores
${SPARK_HOME}/bin/spark-submit ./wordcount.py ./text.txt
# with a single core
${SPARK_HOME}spark-submit --master local[1] ./wordcount.
    py ./text.txt
```

Debugging with Spark UI

Plan

- Introduction : Limitations of Hadoop
- Spark
 - RDD : Resilient Distributed Dataset
 - Anatomy of a job
 - Examples
- Spark SQL and DataFrames
- 4 MLlib

Spark SQL and DataFrames

Spark SQL: a programming module for structured data processing:

- provides a programming abstraction called DataFrame.
- acts as distributed SQL query engine

What is a dataframe?

A distributed collection of rows under named columns (same as RDBMS) that have as characteristics :

- Immutable : We can create DataFrame once but can not change it.
- Lazy Evaluations : A task is not executed until an action is performed
- Distributed : DataFrame are distributed in nature.

Spark DataFrames

Why?

- Processing large collection of structured or semi-structured data.
- Allows higher level languages like SQL.
- Optimize execution plan on queries on these data.

Creating a DataFrame

Different ways:

- Using and loading data from different data format.
- From existing RDDs.
- By programmatically specifying schema.

Ways to Create DataFrame in Spark

Creating a DataFrame

Creating DataFrame from RDD

```
from pyspark.sql import SQLContext,Row
sqlContext = SQLContext(sc)
l = [('John',25),('Jacques',22),('Sally',20),('Emma',26)]

rdd = sc.parallelize(l)
people = rdd.map(lambda x: Row(name=x[0], age=int(x[1])))
schemaPeople = sqlContext.createDataFrame(people)
schemaPeople.printSchema()
>>>
root
l-- age: long (nullable = true)
l-- name: string (nullable = true)
```

Creating a DataFrame

Creating DataFrame from a csv file

```
df = sqlContext.read.format('com.databricks.spark.csv').
       options(header='true', inferschema='true', sep=';').
       load('arbres.csv')
   df.printSchema()
4
   root
5
    |-- GEOPOINT: string (nullable = true)
6
    |-- ARRONDISSEMENT: integer (nullable = true)
    |-- GENRE: string (nullable = true)
    |-- ESPECE: string (nullable = true)
9
    |-- FAMILLE: string (nullable = true)
    |-- ANNEE PLANTATION: integer (nullable = true)
10
11
    |-- HAUTEUR: double (nullable = true)
12
    |-- CIRCONFERENCE: double (nullable = true)
13
    |-- ADRESSE: string (nullable = true)
14
    |-- NOM COMMUN: string (nullable = true)
15
    |-- VARIETE: string (nullable = true)
16
    |-- OBJECTID: integer (nullable = true)
```

Show first n observation

```
>>> df.head(2)
3
  [Row(GEOPOINT='(48.857140829, 2.29533455314)',
      ARRONDISSEMENT=7, GENRE='Maclura', ESPECE='pomifera',
      FAMILLE = 'Moraceae', ANNEE PLANTATION = 1935, HAUTEUR
      =13.0, CIRCONFERENCE=None, ADRESSE='Quai Branly,
      avenue de La Motte-Piquet, avenue de la Bourdonnais,
      avenue de Suffren', NOM COMMUN='Oranger des Osages',
      VARIETE=None, OBJECTID=6, NOM_EV='Parc du Champs de
      Mars'),
   Row (GEOPOINT='(48.8685686134, 2.31331809304)',
      ARRONDISSEMENT=8, GENRE='Calocedrus', ESPECE='
      decurrens', FAMILLE='Cupressaceae', ANNEE PLANTATION
      =1854, HAUTEUR=20.0, CIRCONFERENCE=195.0, ADRESSE='
      Cours-la-Reine, avenue Franklin-D.-Roosevelt, avenue
      Matignon, avenue Gabriel', NOM COMMUN='Cèdre à encens'
      , VARIETE=None, OBJECTID=11, NOM_EV='Jardin des Champs
       Elysées')]
```

Count the number of rows

```
1 >>> df.count() 2 97
```

Getting the columns

```
df.columns

['GEOPOINT',

'ARRONDISSEMENT',

'GENRE',

'ESPECE',

'FAMILLE',

'ANNEE PLANTATION',

'HAUTEUR',

'CIRCONFERENCE',

'ADRESSE',

'NOM COMMUN'.
```

```
Summary statistics
```

```
df.describe().show()
3
4
   |summary|
                        GEOPOINT | ARRONDISSEMENT | GENRE |
             ESPECE
                       FAMILLE | ANNEE PLANTATION |
        HAUTEUR |
                  CIRCONFERENCE |
                                                     ADRESSE
         NOM COMMUN| VARIETE |
                                    OBJECTID
       NOM_EVI
5
6
      count |
                                97 I
                                                     97 l
                                                              97 l
                 97 I
                                 97 I
                                                      77 I
              961
                                   921
                                                          861
                 97 l
                            111
                                                97 I
            971
                              null | 13.608247422680412 |
                                                            nulll
       mean l
               nulll
                               null | 1869.8831168831168 |
```

Data selection

Selecting columns

```
df.select("ARRONDISSEMENT", "GENRE").show(4)
```

Number of distinct objects

```
df.select('GENRE').distinct().count()
```

Drop the all rows with null value

```
df.select('GENRE').distinct().count()
```

Fill the null values with a constant

```
df.fillna(-1)
```

And many others:

http://spark.apache.org/docs/2.2.0/api/python/pyspark.sql.html

Apply SQL Queries on DataFrame

```
df.registerTempTable('arbres_table')
    sqlContext.sql('select ARRONDISSEMENT from arbres_table')
        .show(5)
3
4
 5
6
    | ARRONDISSEMENT |
7
                    7 |
                    81
10
                    91
                   121
12
                   12 l
13
14
    only showing top 5 rows
```

Plan

- Introduction : Limitations of Hadoop
- 2 Spark
 - RDD : Resilient Distributed Dataset
 - Anatomy of a job
 - Examples
- Spark SQL and DataFrames
- 4 MLlib

MLlib

- The Spark Machine Learning API.
- Supports different kind of algorithms :
 - mllib.classification: various methods for binary classification, multiclass classification and regression analysis.
 - mllib.clustering : unsupervised learning.
 - mllib.fpm : Frequent pattern matching.
 - mllib.linalg : utilities for linear algebra.
 - mllib.recommendation : collaborative filtering.
 - mllib.regression.

