Théorie de l'information : DS du 18 octobre 2016

Master Sciences et Technologies, mention Mathématiques ou Informatique, parcours Cryptologie et Sécurité informatique

Responsable : Gilles Zémor

Durée : 1h30. Sans document. Les exercices sont indépendants.

– EXERCICE 1. Soit Σ l'ensemble des transpositions sur l'ensemble à quatre éléments $\{1,2,3,4\}$. On rappelle qu'une transposition permute deux éléments de l'ensemble. On considère le quadruplet $X = [X_1, X_2, X_3, X_4]$ obtenu à partir de [1,2,3,4] en lui appliquant une transposition choisie uniformément dans Σ . Par exemple la transposition (1,2) produit X = [2,1,3,4] et la transposition (1,3) produit X = [3,2,1,4].

- a) Calculer $H(X_i)$, i = 1, 2, 3, 4.
- b) Les variables X_1, X_2 sont-elles indépendantes? Calculer $I(X_1, X_2)$.
- **c)** Que vaut $H(X_3|X_1,X_2)$?

- Solution.

a) Écrire les six valeurs de (X_1, X_2, X_3, X_4) fait apparaître que $P(X_1 = 1) = 1/2$ et $P(X_1 = 2) = P(X_1 = 3) = P(X_1 = 4) = 1/6$. On en déduit que

$$H(X_1) = \frac{1}{2}\log_2 2 + \frac{3}{6}\log_2 6 = \frac{1}{2} + \frac{1}{2}(\log_2 2 + \log_2 3) = 1 + \frac{1}{2}\log_2 3 \approx 1.79.$$

On a $H(X_i) = H(X_1)$ pour i = 2, 3, 4.

b) Il est clair que $P(X_1=1,X_2=1)=0$ alors que $P(X_1)\neq 0$ et $P(X_2)\neq 0$, les variables X_1 et X_2 ne peuvent donc pas être indépendantes. La variable (X_1,X_2) prend six valeurs distinctes, chacune avec probabilité 1/6, en d'autres termes (X_1,X_2) suit une loi uniforme et $H(X_1,X_2)=\log_2 6=\log_2 2+\log_2 3$. Donc

$$I(X_1, X_2) = H(X_1) + H(X_2) - H(X_1, X_2) = 2 + \log_2 3 - 1 - \log_2 3 = 1.$$

c) La variable X_3 est entièrement déterminée par (X_1,X_2) , donc

$$H(X_3|X_1,X_2) = 0.$$

- EXERCICE 2. Donner un exemple de variables aléatoires X et Y, Y prenant ses valeurs dans \mathcal{Y} , telles que H(X|Y=y) > H(X) pour un certain $y \in \mathcal{Y}$.
- **Solution.** Considérons le couple (X,Y) qui prend les valeurs (0,0),(1,0),(1,1) avec comme probabilités respectives 1/4,1/4,1/2. On voit que P(X=0|Y=0)=P(X=1|Y=0)=1/2, donc H(X|Y=0)=1. Mais la loi de X n'est pas uniforme, donc H(X)< H(X|Y=0).
- EXERCICE 3. Montrer que pour toute variable aléatoire X et toute fonction f définie sur l'ensemble des valeurs prises par X, on a $H(f(X)) \leq H(X)$.
- Solution. On a $H(f(X)) \leqslant H(f(X)) + H(X|f(X))$ car une entropie conditionnelle est toujours positive, donc $H(f(X)) \leqslant H(f(X),X)$. Mais H(f(X),X) = H(X) + H(f(X)|X) = H(X) car f(X) étant entièrement déterminée par X on a H(f(X)|X) = 0.
- EXERCICE 4. Soit C un code préfixe pour lequel l'inégalité de Kraft est une égalité. Montrer que tout mot de $\{0,1\}^*$ soit est le préfixe d'un mot de C, soit a pour préfixe un mot de C.
- **Solution.** Supposons qu'il existe un mot $z \in \{0,1\}$ qui ne soit ni préfixe ni suffixe d'un mot de C. Alors en ajoutant z à C on obtient un nouveau code préfixe. Mais alors la quantité

$$\sum_{x \in C} 2^{-\ell(x)}$$

augmente et l'inégalité de Kraft n'est plus vérifiée. Un tel z n'existe donc pas.

– EXERCICE 5. Donner un exemple de loi $p = (p_1, p_2, p_3, p_4, p_5)$ d'une variable prenant ses valeurs dans un ensemble à cinq éléments, pour laquelle l'algorithme de Huffman peut donner trois codes différents de distributions des longueurs

$$(1, 2, 3, 4, 4), (1, 3, 3, 3, 3)$$
 et $(2, 2, 2, 3, 3)$.

Pouvez-vous caractériser l'ensemble de ces lois p?

- Solution.

La loi (2/5,1/5,1/5,1/10,1/10) convient, de même que la loi (3/8,1/4,1/8,1/8,1/8). Supposons $p_1 \geqslant p_2 \geqslant p_3 \geqslant p_4 \geqslant p_5$. Si l'algorithme de Huffman donne les trois distributions des longueurs ci-dessus, c'est que les codes associés sont tous optimaux, ce qui veut dire qu'ils ont des longueurs moyennes égales. On peut donc écrire

$$\overline{\ell} = p_1 + 2p_2 + 3p_3 + 4p_4 + 4p_5
= p_1 + 3(p_2 + p_3 + p_4 + p_5)
= 2(p_1 + p_2) + 3(p_3 + p_4 + p_5)$$

Si on pose $p_2=x$ et $p_3=y$, on en déduit donc que $p_1=x+y$ et $p_4+p_5=p_2=x$. De $p_1+p_2+p_3+p_4+p_5=1$, on déduit

$$3x + 2y = 1.$$

L'inégalité $p_3 \leqslant p_2$ impose $y \leqslant x$ et les inégalités $p_5 \leqslant p_4 \leqslant p_3$ imposent $(p_4+p_5)/2 \leqslant p_3$, soit $x/2 \leqslant y$. En écrivant y=1/2-3x/2 on déduit de ces inégalités que

$$\frac{1}{5} \leqslant x \leqslant \frac{1}{4}.$$

Finalement, l'ensemble des lois qui conviennent est l'ensemble des lois de la forme :

$$p_1 = \frac{1}{2} - \frac{x}{2}, p_2 = x, p_3 = \frac{1}{2} - \frac{3x}{2}, p_4 = \frac{x}{2} + t, p_5 = \frac{x}{2} - t$$

où

$$\frac{1}{5} \leqslant x \leqslant \frac{1}{4}$$
$$0 \leqslant t \leqslant \frac{1}{2} - 2x$$

- EXERCICE 6. Soit X une variable aléatoire à valeurs entières. La variable B est également une variable à valeurs entières, de plus indépendante de X. Soit Y = X + B. On suppose que X peut être retrouvée sans ambiguïté à partir de Y. Montrer dans ce cas que H(Y) = H(X) + H(B).
- Solution. Comme X peut être retrouvée à partir de Y, on a H(X|Y) = 0, donc

$$H(Y) = H(Y) + H(X|Y) = H(X,Y).$$

Comme l'application $(X,B)\mapsto (X,X+B)$ est une bijection, on a H(X,Y)=H(X,B), donc

$$H(Y) = H(X, B).$$

Or X et B sont supposées indépendantes, donc H(X, B) = H(X) + H(B).

– EXERCICE 7. Un joueur A réalise une variable Z = X + Y où X et Y sont deux variables indépendantes de même loi uniforme dans l'ensemble $\{1, 2, 3, 4\}$. Un joueur B doit découvrir la valeur de Z en posant des questions dont la réponse est «oui» ou «non». Une procédure est dite optimale si elle permet au joueur B de poser une suite de questions successives dont les réponses déterminent entièrement Z, et telle que le nombre moyen de questions soit minimum.

Donner une procédure optimale pour déterminer Z et calculer le nombre moyen de questions associé.

Solution. Une procédure n'est pas autre chose qu'un arbre binaire donc chaque sommet qui n'est pas une feuille représente une question du type «est-ce que Z appartient à tel ensemble de valeurs?». La procédure s'identifie donc à un code préfixe, donc le nombre de questions moyen est juste la longueur moyenne du code. Pour trouver une procédure optimale il suffit donc d'appliquer l'algorithme de Huffman. Il y a plusieurs arbres possibles dans le cas présent, l'un d'entre eux est représenté ci-dessus. La première question est donc «est-ce que $Z \in \{4,5\}$?». Le nombre moyen de questions est donc :

$$\overline{q} = 2\left(\frac{4}{16} + \frac{3}{16}\right) + 3\left(\frac{2}{16} + \frac{2}{16} + \frac{3}{16}\right) + 4\left(\frac{1}{16} + \frac{1}{16}\right) = \frac{43}{16}$$