Take Home Exam 4

Question 1

$$a_n = a_{n-1} + 2^n$$
 , $n \ge 1$

$$a_0 = 1$$

$$\sum_{n=1}^{\infty} a_n \cdot x^n = \sum_{n=1}^{\infty} (a_{n-1} + 2^n) x^n$$

$$A(x) - a_0 = x \cdot \sum_{n=1}^{\infty} a_{n-1} \cdot x^{n-1} + \sum_{n=1}^{\infty} 2^n \cdot x^n$$

$$A(x) - a_0 = x \cdot A(x) + \sum_{n=1}^{\infty} (2x)^n$$

$$B(x) = \sum_{n=0}^{\infty} (2x)^n$$

$$A(x) - a_0 = x \cdot A(x) + \sum_{n=1}^{\infty} (2x)^n$$

$$B(x) - b_0$$

$$b_0 = (2x)^0 = 1$$

$$A(x) - 1 = x \cdot A(x) + \frac{1}{1 - 2x} - 1$$

$$A(x) \cdot (1-x) = \frac{1}{1-2x}$$

$$A(x) = \frac{1}{(1-x)\cdot(1-2x)}$$

$$A(x) = \frac{A}{(1-x)} + \frac{B}{(1-2x)} = \frac{1}{(1-x)\cdot(1-2x)}$$
, $A = -1$ $B = 2$

$$A(x) = \frac{-1}{(1-x)} + \frac{2}{(1-2x)}$$

$$(-1,-1,-1,-1,...)$$
 \Leftrightarrow $\frac{-1}{(1-x)}$

$$(2, 4, 8, 16, ..., 2^{n+1}, ...)$$
 \Leftrightarrow $\frac{2}{(1-2x)}$

$$(1, 3, 7, 15, ..., 2^{n+1}-1, ...)$$
 \Leftrightarrow $\frac{-1}{(1-x)} + \frac{2}{(1-2x)} = A(x)$

$$A(n) = 2^{n+1}-1$$

Question 2

$$R = \{ (a,b) \mid a \text{ divides } b \} \text{ on } A = \{ 1, 2, 3, 9, 18 \}$$

a) Hasse diagram of R

$$M_{R} = \begin{bmatrix} 1 & 2 & 3 & 9 & 18 \\ 1 & 1 & 1 & 1 & 1 \\ 2 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

c) For the poset to be called a lattice, each pair of elements must have both a unique least upper bound and a unique greatest lower bound.

Then, in poset (A,R), we can see every pair of elements has both a least upper bound and a greatest lower bound. Hence, this poset can be called a lattice.

d) Symetric Closure of $R = R \cup R^{-1} \{ (b,a) \mid (a,b) \in R \}$

$$M_R = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad M_{R^{-1}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{M_{R}^{-1}} = egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 & 0 \ 1 & 0 & 1 & 0 & 0 \ 1 & 0 & 1 & 1 & 0 \ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$M_{S(R)} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

e) The integers 2 and 9 are incomparable, because $2 \nmid 9$ and $9 \nmid 2$. The integers 3 and 18 are comparable, because 3 | 18.

Question 3

a) A relation has ordered pairs (a,b). For anti-symmetric relation,

$$a \neq b$$
, $a R b \rightarrow b R a$

$$A = \{a_1, a_2, a_3, \dots a_n\} \quad , \qquad R \subseteq A \times A$$

 a_{11} , a_{22} , a_{33} ,, a_{nn} can be both 0 or 1.

So, for (a_n,a_n) , total number of ordered pairs = n,

The total number of relation of diagonal part = 2^n .

From the remaining part,

For $1 \le i \le n$, $1 \le j \le n$ and $i \ne j$, a_{ij} and a_{ij} cannot be both 1,

To find number of different a_{ii}, (total number of ordered pairs—diagonal pairs)/2

(total number of ordered pairs – diagonal pairs) / 2

$$n^2$$
 – n = n . (n-1) /2

There are 3 possible interpretation that makes a_{ij} symetric.

$$(a_{ij} = 0 \ a_{ji} = 0 \ , \ a_{ij} = 1 \ a_{ji} = 0 \ , \ a_{ij} = 0 \ a_{ji} = 1 \ , \underbrace{a_{ij} = 1}_{} a_{ji} = 1) \ .$$

This is not anti-symmetric.

So, there are $3^{\frac{n \cdot (n-1)}{2}}$ option from here.

As a result, total number of anti-symmetric relation is $2^n . 3^{\frac{n \cdot (n-1)}{2}}$.

b)

$$A = \{a_1, a_2, a_3, \dots a_n\} \quad , \qquad R \subseteq A \times A$$

Since all diagonal elements are part of the reflexive relation, $(a_{11}, a_{22}, a_{33}, \dots, a_{nn})$ are all 1.

From the remaining part,

For
$$1 \le i \le n$$
, $1 \le j \le n$ and $i \ne j$, there are $(n^2 - n)/2$ many different a_{ij} .

For anti-symmetric relation, there are 3 possibilities for each of the remaining $(n^2 - n)/2$ elements.

$$(a_{ij} = 0 \ a_{ji} = 0 \ , \ a_{ij} = 1 \ a_{ji} = 0 \ , \ a_{ij} = 0 \ a_{ji} = 1 \ , \underbrace{a_{ij} = 1 \ a_{ji} = 1}_{}) \ .$$

This is not anti-symmetric.

Thus, we get $3^{\frac{n\cdot(n-1)}{2}}$ binary relations which are reflexive and antisymmetric.