MA3233: Combinatorics and Graphs II AY21/22 Semester II Suggested Solutions

Written by: Chow Yong Lam Proofread by: Clarence Chew Xuan Da

31 Jul 2022

Question 1

Let $r \ge 1$ be an integer and G be an r-regular graph. Show that G is bipartite if and only if E(G) can be decomposed into edge-disjoint copies of $K_{1,r}$.

Solution. Let $r \geq 1$ be an integer and G be an r-regular graph.

Suppose G is bipartite. Let $G = (A \cup B, E)$ where A and B are the partite sets.

Since $\sum_{v \in A} d_G(v) = \sum_{v \in B} d_G(v)$, we have r|A| = r|B| which means |A| = |B|.

Every vertex in B has degree r. Thus we can decompose E(G) into edge-disjoint copies of $K_{1,r}$ based on the end of each edge on B. In other words, E(G) can be expressed as a disjoint union:

$$\bigcup_{v \in B} E_v, \text{ where } E_v = \{e \in E(G) \mid v \text{ is incident to } e\}$$

Every edge in G is incident to one $v \in B$, so it will belong to one subset E_v . Also, if we let $v \in B$ be arbitrary, the subgraph G_v formed by the edges in E_v is isomorphic to $K_{1,r}$, with v as the central vertex.

Therefore, we have found a decomposition of E(G) where G is r-regular and bipartite, into edge-disjoint copies of $K_{1,r}$.

 (\Longleftrightarrow)

Method 1

Suppose G is an r-regular graph whose edges can be decomposed into edge-disjoint copies of $K_{1,r}$. Let A be the set of vertices which are centres of the copies of $K_{1,r}$ while B be the set of all other vertices. We will show that G is bipartite with A and B as partite sets.

Suppose there is an edge connecting two vertices in A, which we will denote as a_1 and a_2 . This means that the edge belongs to a copy of $K_{1,r}$ with a_1 as the centre vertex, and another with a_2 as the centre vertex. This means that the two copies of $K_{1,r}$ are not vertex disjoint, violating the given condition.

Suppose there is an edge connecting two vertices in B, which we will denote as b_1 and b_2 . This means that the edge is not incident to any centre vertex of $K_{1,r}$, and thus does not belong to any copy of $K_{1,r}$. This also violates the given condition that the edges can be decomposed into copies of $K_{1,r}$.

Therefore, every edge in G is incident to one vertex in A and another in B, and G is bipartite with A and B as partite sets.

Method 2

Suppose G is not bipartite, so there is an odd cycle $C_{2k+1}, k \in \mathbb{N}$ in G. Let the vertices of the cycle be labelled in clockwise order as $v_1, v_2, c_3, \dots, v_{2k}, v_{2k+1}$.

Claim: If the graph can be decomposed into edge-disjoint copies of $K_{1,r}$, every copy of $K_{1,r}$ contains exactly 2 consecutive edges on C_{2k+1} .

Proof of Claim.

- We cannot include 3 edges from C_{2k+1} in one copy of $K_{1,r}$
 - If k = 1, then C_3 is not a subgraph of $K_{1,r}$
 - If k > 1, then in the three edges, at least two are vertex-disjoint. But every pair of edges in $K_{1,r}$ are not vertex-disjoint.
- We cannot include 2 vertex-disjoint edges from C_{2k+1} in one copy of $K_{1,r}$, because every pair of edges in $K_{1,r}$ are not vertex-disjoint.
- Suppose we try to only include one edge from C_{2k+1} in a copy of $K_{1,r}$, without loss of generality denote the edge by v_1v_2 . Since in $K_{1,r}$, there is a central vertex such that every edge is incident to it, v_1 or v_2 must correspond to the central vertex. Without loss of generality let v_1 be the central vertex. Since $d_G(v_1) = r$, all r edges in G incident to v_1 must be included in the copy of $K_{1,r}$, including the edge in C_{2k+1} which is incident to v_1 but not v_2 . Therefore, we can't include only 1 edge from the cycle in one copy of $K_{1,r}$.

Therefore, suppose we work on distributing the edges of C_{2k+1} into copies of $K_{1,r}$, there must have 1 edge (which we will denote as v_iv_{i+1}) which belongs to a different copy of $K_{1,r}$ compared to the other 2k edges of the cycle. Since every edge in $K_{1,r}$ is incident to a central vertex, v_i or v_{i+1} must correspond to the central vertex. Suppose, without loss of generality, that v_i corresponds to the central vertex, we will need to find another r-1 edges incident to v_i to be included in this copy of $K_{1,r}$. But since $v_{i-1}v_i$ belonged to another copy of $K_{1,r}$ and $d_G(v_i) = r$, we can only find at most r-2 more edges to be included. Thus, v_i (and similarly v_{i+1} cannot be the central vertex). Therefore, we cannot decompose E(G) into edge-disjoint copies of $K_{1,r}$.

Thus, given an r-regular graph G, G is bipartite if and only if E(G) can be decomposed into edge-disjoint copies of $K_{1,r}$.

Question 2

For every $d \ge 1$, denote by f(d) the maximum integer t such that every graph G with $\delta(G) \ge d$ contains a path of length at least t. Determine f(d).

Solution. We claim that f(d) = d for all $d \ge 1$.

- $f(d) \leq d$. There exists a graph G such that $\delta(G) \geq d$ and the maximum length of a path in G is d. Indeed if $G \cong K_{d+1}$, then $\delta(G) = d \geq d$ and there is a Hamiltonian path of G. The path has d+1 vertices and d edges so the length is d. We cannot extend it to a larger length because the path is already Hamiltonian. Thus, $f(d) \leq d$.
- $f(d) \geq d$. For all graphs with minimum degree $\delta(G) \geq d$, there is a path in G of at least length d. Claim: For all graphs G, there exists a path of length at least $\delta(G)$. Proof of Claim. Let P be the longest path found in G and $v_0 \in V(G)$ be an endpoint of P. Observe that $N_G(v_0) \subseteq V(P)$. Otherwise if w is a neighbor of v_0 but $v_0w \notin E(P)$, then we can extend P by v_0w to form a path longer than P, which contradicts the assumption that P is the longest path in G. Thus,

$$N_G(v_0) \subseteq V(P) \implies |V(P)| \ge d_G(v_0) + 1 \ge \delta(G) + 1$$

 $\implies P \text{ has length at least } \delta(G)$

From the claim, for all G such that $\delta(G) \geq d$, there is a path in G of at least length $\delta(G)$ which is at least d. Therefore, we have shown that f(d) = d for all $d \geq 1$.

Question 3

A Latin square of order n is an $n \times n$ array filled with symbols from $\{1, \dots, n\}$ such that no symbol is repeated twice in any row or column. Suppose in an $n \times n$ array, the first k rows are already filled by symbols from $\{1, \dots, n\}$

such that no symbol is repeated twice in any row or column. Show that one can always fill the remaining n - k rows to complete a Latin square. Below is an example for n = 4, k = 2:

$$\begin{bmatrix} 1 & 4 & 2 & 3 \\ 2 & 3 & 4 & 1 \\ & & & \end{bmatrix} \implies \begin{bmatrix} 1 & 4 & 2 & 3 \\ 2 & 3 & 4 & 1 \\ 3 & 2 & 1 & 4 \\ 4 & 1 & 3 & 2 \end{bmatrix}$$

Solution. Label the columns in the incomplete $n \times n$ Latin square as c_1 to c_n . Construct a bipartite graph G with partite sets:

$$\begin{split} A &= \{v_1, v_2, \cdots, v_n\} \\ B &= \{w_1, w_2, \cdots, w_n\} \\ \forall 1 \leq i, j \leq n, v_i \sim w_j \text{ in } G \iff \text{the number } i \text{ has not appeared in } c_j \text{ yet.} \end{split}$$

Claim 1: G is (n-k)-regular.

Proof of Claim:

Given any $i \in \{1, 2, \dots, n\}$, in the first k rows, i has appeared in k different columns (i.e. in each row, i is in exactly 1 different column) because no symbol appears twice on any row or column. Thus, i has yet to appear in n - k columns, so $d_G(v_i) = n - k$.

Given any $j \in \{1, 2, \dots, n\}$, c_j should have k different numbers from $\{1, 2, \dots, n\}$ in the current incomplete Latin square. Thus, there are n - k more numbers that have not appeared in c_j , so $d_G(w_j) = n - k$.

Claim 2: Every way to fill the next row of the Latin square corresponds to a perfect matching in *G. Proof of Claim:*

- For every column, a new number (that hasn't been used in the column yet) is to be assigned. Corresponding to G, we pick an edge incident to w_j for each w_j in B. So we pick n edges.
- Among the edges picked, no two can be incident to one same vertex in A because no number appears twice in one row of the square. Every vertex in A must be incident to one of the n edges to be picked.

We are picking n edges in G such that every vertex in A and B is incident to exactly one of them. This corresponds to a perfect matching in G.

Claim 3: Given a d-regular $(d \ge 1)$ bipartite graph G with partite sets A and B, a perfect matching exists. Proof of Claim:

Let $S \subseteq A$ be arbitrary. Since $d_G(v) = d$ for all $v \in S$, $\sum_{v \in S} d_G(v) = d|S|$. In N(S), a vertex may also be adjacent to vertices in $A \setminus S$,

$$\begin{split} d|S| & \leq d|N(S)| \implies |S| \leq |N(S)| \\ \forall S \subseteq A, |N(S)| & \geq |S| \implies G \text{ has a matching perfect to } A \\ & \implies G \text{ has a perfect matching.} \end{split}$$

With that, we can show that for any number of filled rows $1 \le k \le n$, given an $n \times n$ Latin square with n - k unfilled rows, there is a way to complete it.

We prove by induction on n-k. If n-k=1, the corresponding bipartite graph G constructed has exactly one perfect matching. Fill in the last row according to the matching (assign i to column c_j if $v_i \sim w_j$) and we can complete the square.

Assume the statement is true with m-1 unfilled rows $(1 \le m-1 \le n)$. Now, suppose we have m unfilled rows. By claim 3, the corresponding bipartite graph G will be m-regular, and a perfect matching of G exists. Fill in the next row according to the matching (assign i to column c_j if $v_i \sim w_j$) and we can get a square with m-1 unfilled rows left. By the induction hypothesis, there is a way to continue and complete the entire Latin square. Thus, by Mathematical Induction, every incomplete $n \times n$ Latin square with k filled rows $(1 \le k < n)$ can be completed.

Question 4

- (a) Show that for all $k \geq 2$, every connected k-regular bipartite graph is 2-connected.
- (b) Suppose we remove the "bipartite" condition in (a), is the conclusion still true?

Solution.

(a)

Let G = (V, E) be a k-regular bipartite graph with partite sets A and B. $(k \ge 2)$. Since $\sum_{v \in A} d_G(v) = \sum_{v \in B} d_G(v)$, we have k|A| = k|B|, which means |A| = |B|.

Suppose, without loss of generality, that G has a cut-vertex v in A. Removal of v results in at least two connected components in G - v. Let G_1 be one of the connected components, such that its partite sets are $A_1 \subset A \setminus \{v\}, B_1 \subseteq B, B_1 \cap N_G(v) \neq \emptyset$. Then, G_1 is a bipartite subgraph of G - v, which is also bipartite.

Since:

- Removing v will not affect the degrees of vertices in A_1 , $\sum_{w \in A_1} d_{G_1}(w) = k|A_1|$.
- There are at most k-1 and at least 1 neighbor of v in B_1 for G (Otherwise, if $B_1 \cap N_G(v) = \emptyset$, G_1 is already initially disconnected from the rest of G, and if $N_G(v) \subseteq B_1$, $G_1 + v$ is already initially disconnected from the rest of G. So, $\sum_{w \in B_1} d_{G_1}(w) = k|B_1| |B_1 \cap N_G(v)|$, where $|B_1 \cap N_G(v)|$ is not divisible by k.

We observe that $\sum_{w \in B_1} d_{G_1}(w)$ is not divisible by k, so $\sum_{w \in A_1} d_{G_1}(w) \neq \sum_{w \in B_1} d_{G_1}(w)$. However, this is contradictory given that G_1 is bipartite.

Therefore, for all $k \geq 2$, every connected k-regular bipartite graph has no cut-vertex and is thus 2-connected.

(b)

The graph above contains triangles $(C_3 \subseteq G)$ so it is not bipartite. Also, the vertex x as labelled is a cut-vertex, so G is not 2-connected. Thus, the conclusion is false.

Question 5

Determine the maximum and minimum of $\chi(G \cup H)$, over all pairs of graphs (G, H) with $V(G) = V(H), \chi(G) = 20$, and $\chi(H) = 22$. Justify your answers.

Solution.

The minimum value of $\chi(G \cup H)$ is 22. Since $H \subseteq G \cup H$, $\chi(H) = 22 \le \chi(G \cup H)$. Indeed this can be achieved if G is a subgraph of H. Then, $H = G \cup H$ and $\chi(G \cup H) = 22$.

For example, take H to be K_{22} and G to be a K_{20} subgraph on 20 of the vertices, together with 2 more isolated vertices.

The maximum value of $\chi(G \cup H)$ is $\chi(G)\chi(H)$ 20 × 22 = 440.

Claim: $\forall G, H, V(G) = V(H) \implies \chi(G \cup H) \le \chi(G)\chi(H)$.

Proof of Claim:

Let $c: V(G) \to [\chi(G)]$ be a proper $\chi(G)$ -coloring of G, and $d: V(H) \to [\chi(H)]$ be a proper $\chi(H)$ -coloring of H. (Note. Here [n] represents $\{1, 2, \dots, n\}$ where $n \in \mathbb{N}$)

Define a coloring $f:V(G)\to [\chi(G)]\times [\chi(H)]$ such that $\forall v\in V(G), f(v)=(c(v),d(v))$. We claim that f is a proper coloring of $G\cup H$.

For all $u, v \in V(G)$, if $u \sim v$ in $G \cup H$, then they are either adjacent in G or H.

$$u \sim v \text{ in } G \implies c(u) \neq c(v)$$

$$\implies (c(u), d(u)) \neq (c(v), d(v))$$

$$\implies f(u) \neq f(v)$$

$$u \sim v \text{ in } H \implies d(u) \neq d(v)$$

$$\implies (c(u), d(u)) \neq (c(v), d(v))$$

$$\implies f(u) \neq f(v)$$

Thus, f is a proper coloring of $G \cup H$, which uses $|[\chi(G)] \times [\chi(H)]| = \chi(G)\chi(H)$ colors. Therefore, $\chi(G \cup H) \leq \chi(G)\chi(H)$ When $\chi(G) = 20, \chi(H) = 22, \chi(G \cup H) \leq 440$.

It remains to define V(G) and G, H such that $\chi(G \cup H) = 440$.

Let $V(G) = \{(i, j) | 1 \le i \le 20, 1 \le j \le 22, i, j \in \mathbb{N}\}$ and $E(G) = \{vw | v = (i_1, j_1), w = (i_2, j_2), j_1 = j_2\}.$

Then G is isomorphic to the disjoint union of 22 K_{20} . Since $\chi(K_{20}) = 20$ and each copy of K_{20} is disconnected from others in G, $\chi(G) = 20$.

Let V(H) = V(G) and $E(H) = \{vw|v = (i_1, j_1), w = (i_2, j_2), j_1 \neq j_2\}.$

Then H is isomorphic to a complete 22-partite graph, where every partite set have 20 vertices (i, j) of the same first index i.

- For all $1 \le j \le k \le 22$, $(1, j) \sim (1, k)$ in H. Thus $K_{22} \subseteq H$ and $\chi(H) \ge 22$.
- If we color the vertices of H by the coloring $f:V(H)\to [22]$ s.t. f((i,j))=j for all $1\leq i\leq 20, 1\leq j\leq 22,$ then for all $v,w\in V(H)$:

$$v \sim w$$
 in $H \implies$ the two vertices have different index in the second component $\implies f(v) \neq f(w)$

So, f is a proper 22-coloring of H.

 $\chi(H) = 22$ thus holds.

We now claim that $G \cup H$ is isomorphic to K_{440} . First, the graph has $20 \times 22 = 440$ vertices. Next, for any $v, w \in V(G)$,

- If v, w have the same index in their second component, then they are adjacent in G.
- If v, w have distinct indices in their second component, then they are adjacent in H.

Thus, for any two vertices in $G \cup H$, they are adjacent in $G \cup H$. So, $G \cup H$ is isomorphic to K_{440} , and $\chi(G \cup H) = 440$.

Therefore, the maximum and minimum values of $\chi(G \cup H)$ are 440 and 22 respectively.

Question 6

Show that if a simple undirected graph G has a Hamiltonian graph, then for every $S \subset V(G)$, the number of connected components in G - S is at most |S| + 1.

Solution. Adapted from West, Introduction to Graph Theory.

Let c(H) denote the number of connected components in a graph H. Let P be a Hamiltonian path of G and $S \subset V(G)$ be arbitrary.

From P, every time we delete a vertex from it, the number of components will increase by at most one. So after removing the vertices in S, $c(P-S) \le 1 + |S|$. Since P is a spanning subgraph of G and adding edges will not increase the number of components, we have $c(G-S) \le c(P-S) \le 1 + |S|$.

Question 7: True or False

- 7(a) For any given graph G, its vertex covering number $\tau(G)$ is always equal to its matching number $\mu(G)$. False. For example, a triangle (C_3) has matching number 1 but vertex covering number 2.
- 7(b) In a bipartite graph G on $A \cup B$, if every vertex in A has degree $d_1 \ge 1$ and every vertex in B has degree $d_2 \ge d_1$, then there exists a matching complete to B.

True. If G is disconnected, we shall just consider each component. Thus, assume G is connected. For every edge $xy \in E(G)$ with $x \in B, y \in A$, we have $d_G(y) = d_1 \le d_2 = d_G(x)$. Thus for a subset $S \subseteq B$,

$$\begin{split} |S| &= \sum_{x \in S} 1 \\ &= \sum_{x \in S, y \in N(S), xy \in E(G)} \frac{1}{d_2} \\ &\leq \sum_{x \in S, y \in N(S), xy \in E(G)} \frac{1}{d_1} \\ &= \sum_{y \in N(S)} \sum_{x: x \in S, xy \in E(G)} \frac{1}{d_1} \\ &\leq \sum_{y \in N(S)} 1 \quad (\because \text{ some neighbors of } y \text{ might not be in } S) \\ &= |N(S)| \end{split}$$

By Hall's Theorem, G has a matching perfect to B.

- 7(c) For every graph G, its chromatic number cannot exceed the square of its clique number. **False.** By the Mycielskian construction, we can obtain a triangle-free graph (which means its clique number is 2) with any chromatic number, including chromatic numbers greater than 4.
- 7(d) Every tree has at most one perfect matching.

True.

Suppose there exists an n-vertex tree T with two distinct perfect matchings S_1, S_2 . Then n must be even, since any graph with odd number of vertices can never have a perfect matching.

Consider n being even. Let V_{12} be the vertices incident to an edge in $S_1 \cap S_2$ in the tree. Since each edge in $S_1 \cap S_2$ is incident to two vertices, and the edges are vertex-disjoint (since the edges belong to a matching), thus $|V_{12}|$ is even.

Let $V' = V(T) \setminus V_{12}$. Then $|V'| = n - |V_{12}|$ is even. Let $E' = (S_1 \setminus S_2) \cup (S_2 \setminus S_1)$. Then every edge in E' is not incident to any vertex in V_{12} and can only be incident to two vertices in V'.

With that, consider the subgraph of T, G = (V', E'). Since S_1 and S_2 are perfect matchings, every vertex in G (which is in V' but not in V_{12}) can only be incident to one edge in $(S_1 \setminus S_2)$ and one different edge in $(S_2 \setminus S_1)$. Every vertex in G will have degree 2. G is a 2-regular graph, and its components can only be cycles. However, this contradicts the fact that G is the subgraph of a tree (which has to be acyclic).

- 7(e) Given any n-vertex graph G whose minimum degree is at least n/2, G always contains a Hamiltonian cycle. **True.** This is essentially Dirac's Theorem.
- 7(f) Given any *n*-vertex graph G whose average degree is at least n/2, G always contains a Hamiltonian cycle. **False.** Consider the graph formed by adding a new, isolated vertex to K_{10} . The average degree of the graph is $\frac{9\times10}{11} = \frac{90}{11} \ge \frac{11}{2}$, but due to the isolated vertex, there is no Hamiltonian cycle in the graph.
- 7(g) If a graph G doesn't contain K_5 or $K_{3,3}$ as a subgraph, then G is always planar. **False.** Even if a graph doesn't contain K_5 or $K_{3,3}$ as a subgraph, it may contain a topological minor of K_5 or $K_{3,3}$, in which case it's not planar. Here's an example:

The graph is itself a topological minor of K_5 . By removing x and drawing the edge yz we obtain K_5 . It is obvious that the graph is not planar.

7(h) There exists a 6-connected planar graph.

False. A six-connected planar graph must have at least seven vertices. Let $n \in \mathbb{N}$ be the number of vertices in a planar graph G. If the minimum degree of G is at least 6, then there will be at least $\frac{6n}{2} = 3n$ edges in the graph. But since G is planar, it must have at most 3n - 6 edges (this statement holds for all $n \ge 7 \ge 3$), so its minimum degree must be less than 6. Since a graph's connectivity is not more than its minimum degree, the connectivity of a planar graph must be less than 6 too.

7(i) If a tournament contains a directed cycle, then it must contain a directed triangle.

True. Suppose a tournament T does not have a directed triangle. Let $n \in \mathbb{N}$ be the number of vertices in the smallest directed cycle in T, and label the vertices in the cycle as $v_1 \to v_2 \to v_3 \to \cdots \to v_n \to v_1$. There is a directed edge between v_1 and v_3 . If the directed edge is $v_1 \to v_3$, then by replacing $v_1 \to v_2 \to v_3$ with $v_1 \to v_3$ in the directed cycle, we obtain a smaller directed cycle in T, which is a contradiction. If the directed edge is $v_1 \to v_3$, then $v_1 \to v_2 \to v_3 \to v_1$ is a directed triangle in T. Therefore, we conclude that the statement is true.

7(j) Every tournament contains a directed Hamiltonian cycle.

False. A transitive tournament is acyclic.