Name: Tian Qiu Instructor: Womble

A. 1.

RandomData <- rnorm(10,mean=5,sd=12) mean(RandomData) sd(RandomData)

std<-sd(RandomData)
m <- mean(RandomData)
quartz() # pop up a window</pre>

hist(RandomData, xlab="Data from Normal Distribution", freq = FALSE, main="Histogram with Normal Curve and Smoothed Curve") curve(dnorm(x, mean=m, sd=std), col="blue", lwd=2, add=TRUE) # normal lines(density(RandomData, adjust=1),col = "red", lwd=2) # pdf

2.

It is difficult to say the histogram is normal or not. Because the points are so few that different people might get different shapes of the histogram.

Histogram with Normal Curve and Smoothed Curve

This suggest important deviations from normality. Because they are not looking like a straight line.

Normal Quantile Plot for normal distribution

B 1.
RandomData <- rnorm(100,mean=5,sd=12)
mean(RandomData)
sd(RandomData)

std<-sd(RandomData) m <- mean(RandomData) hist(RandomData, xlab="Data from Normal Distribution", freq = FALSE, main="Histogram with Normal Curve and Smoothed Curve") curve(dnorm(x, mean=m, sd=std), col="blue", lwd=2, add=TRUE) # normal lines(density(RandomData, adjust=1),col = "red", lwd=2) # pdf

2. The shape of the histogram is fitting the normal distribution.

Histogram with Normal Curve and Smoothed Curve

3. There are only few points outside the line. So QQ-plot doesn't indicate important deviations from normality.

Normal Quantile Plot for normal distribution

4. The plots in A and B are different. Because the plot B is far more random points than plot A which means B is simulating normality better. For plot A, it even does not look like a normal distribution, although A and B come from the same method.

qqline(RandomData)

1. Right n = 100right <- rexp(n,rate=2) left <- rbeta(n,2,0.5,ncp=2) short <- runif(n,min=0,max=2)</pre> long <- rcauchy(n,location=0,scale=1)</pre> RandomData <- right title <- "Right tailed Distribution" quartz() std<-sd(RandomData)</pre> m <- mean(RandomData) hist(RandomData, xlab="Data", freq = FALSE, main=title) curve(dnorm(x, mean=m, sd=std), col="blue", lwd=2, add=TRUE) lines(density(RandomData, adjust=1),col = "red", lwd=2) # pdf quartz() qqnorm(RandomData,main=title)

Right tailed Distribution

shape of the histogram is right skewed. The histogram deviates from the normal.

The

Right tailed Distribution

The plot is concave. The QQ-plot suggests important deviations from normality.

```
2left
```

```
n = 100
right <- rexp(n,rate=2)
left <- rbeta(n,2,0.5,ncp=2)
short <- runif(n,min=0,max=2)</pre>
long <- rcauchy(n,location=0,scale=1)</pre>
RandomData <- left
title <- "left tailed Distribution"
quartz()
std<-sd(RandomData)</pre>
m <- mean(RandomData)
hist(RandomData, xlab="Data", freq = FALSE, main=title)
curve(dnorm(x, mean=m, sd=std), col="blue", lwd=2, add=TRUE)
lines(density(RandomData, adjust=1),col = "red", lwd=2) # pdf
quartz()
qqnorm(RandomData,main=title)
qqline(RandomData)
```

The shape of the histogram is left skewed. The histogram deviates from the normal.

left tailed Distribution

The curve is open convex. The QQ-plot suggests important deviations from normality.

left tailed Distribution


```
3 short
n = 100
right <- rexp(n,rate=2)</pre>
left <- rbeta(n,2,0.5,ncp=2)
short <- runif(n,min=0,max=2)</pre>
long <- rcauchy(n,location=0,scale=1)</pre>
RandomData <- short
title <- "short tailed Distribution"
quartz()
std<-sd(RandomData)
m <- mean(RandomData)
```

```
hist(RandomData, xlab="Data", freq = FALSE, main=title)
curve(dnorm(x, mean=m, sd=std), col="blue", lwd=2, add=TRUE)
lines(density(RandomData, adjust=1),col = "red", lwd=2) # pdf
quartz()
qqnorm(RandomData,main=title)
qqline(RandomData)
```

The histogram fails to produce the tails of the normal density curve. It deviates from normal curve.

short tailed Distribution

The points generally have high slope near the center but low slope near the end. The QQ-plot suggests important deviations from normality.

short tailed Distribution


```
4 long
n = 100
right <- rexp(n,rate=2)
left <- rbeta(n,2,0.5,ncp=2)
short <- runif(n,min=0,max=2)</pre>
long <- rcauchy(n,location=0,scale=1)</pre>
RandomData <- long
title <- "long tailed Distribution"
quartz()
std<-sd(RandomData)</pre>
m <- mean(RandomData)
hist(RandomData, xlab="Data", freq = FALSE, main=title)
curve(dnorm(x, mean=m, sd=std), col="blue", lwd=2, add=TRUE)
lines(density(RandomData, adjust=1),col = "red", lwd=2) # pdf
quartz()
qqnorm(RandomData,main=title)
qqline(RandomData)
```


This histogram has a sharp peak with outliers. It deviates from normal curve

The points generally have low slope near the center but high slope near the end. The QQ-plot suggests important deviations from normality.

long tailed Distribution


```
D
  1.
  airline_cleaned <- read.delim("~/Desktop/STAT350/STAT350/Labs/Lab2/airline_cleaned.txt")
  RandomData <- AirTime
  title <- "Airtime Distribution"
  quartz()
  #generating the histogram with blue line being the normal distribution # and red line the
smoothed curve.
  std<-sd(RandomData)
  m <- mean(RandomData)
  hist(RandomData, xlab="Data", freq = FALSE, main=title)
  curve(dnorm(x, mean=m, sd=std), col="blue", lwd=2, add=TRUE)
  lines(density(RandomData, adjust=1),col = "red", lwd=2) # pdf
  #Notice that we recommend that you use adjust = 3 here. However, if # this is too smooth,
feel free to reduce that number lines(density(RandomData,adjust=3),col = "red", lwd=2)
  quartz()
  #plots the applot with line on a separate plot
  qqnorm(RandomData,main=title)
  qqline(RandomData)
```

2.

The shape of the histogram is right skewed. Because all the points are grouped in left side. The histogram deviates from the normal.

Airtime Distribution

APPENDIX:

Α

[1] -24.023956 7.130342 3.003139 9.185192 -3.563080 16.263516 5.227814 -6.215380 - 14.601739

[10] 16.678912

В

- [1] -1.4776565 -12.3738482 3.1255687 11.3117403 13.2204500 11.6262570 7.2387579 6.5472015 1.3341132
- [10] 3.9844632 4.1316212 1.9114929 11.7089067 18.4184492 1.0429579 -1.4067657 1.5664192 -14.2259660
- [19] 12.3289686 21.3919197 3.4909161 -2.8083634 -1.1837600 1.9197390 3.5013317 12.5078344 -18.6199725
- [28] 7.4402524 11.2522802 -2.7313176 19.8629063 14.9457145 -8.9414262 -1.2753957 10.1804617 9.2116320
- [37] 13.4300801 15.7717087 1.3090086 19.6212121 10.6441444 -0.9461913 9.1236557 0.8237615 4.6884569
- [46] -2.1021674 12.3320866 4.7603272 31.1205553 -3.7597324 31.2165929 5.8753405 7.3617210 -3.9126702
- [55] 8.7962859 26.4183145 -19.5689940 -6.4264762 13.0504394 -0.7582144 -12.3119051 0.5031156 24.4553276
- [64] 0.1434277 7.9499037 -8.6786612 -11.0566456 -20.7731491 12.3342128 -11.1958355 16.4185620 22.4223307
- [73] 4.4435413 6.8781629 -14.6004682 1.9665544 16.2738103 31.6392621 21.1083215 13.8348235 4.0892052
- [82] 9.1683018 11.5825701 5.7853425 -7.5093766 -26.9144759 -6.4748296 23.2226045 2.5269541 16.8214287
- [91] 29.7780712 -10.1791317 8.2863451 -14.7969142 -1.0077656 7.1363701 22.5104230 6.9911250 2.2451760 [100] 8.2153923

C

Right:

> right

- [1] 0.3718308792 1.1644447045 0.4183554917 0.5061374977 0.4232163746 1.1547673316 0.4531148532 0.2532230683
- [9] 0.2738801939 0.2726998793 0.1605680531 0.3935565501 0.6538938749 0.5411508642 0.0932897143 1.2361060911
- [17] 1.0047232452 0.0713139690 0.1835962543 0.1777330190 0.3287963721 0.3611045016 0.4358099387 0.2234458434
- [25] 0.8737453837 0.0875335083 1.2287742895 0.2277042309 1.0428705410 0.2952327173 0.2255200769 1.0248238537

- [33] 0.0140263608 0.4122979389 1.6640216074 0.0022956510 0.3768087525 0.5320867188 1.1307174773 0.7192585310
- [41] 0.1455672784 0.5590144987 0.3022842840 0.8373672822 0.5431472631 1.4233166873 0.5660966262 1.0214518671
- [49] 0.0918312877 0.2663930911 0.1077928303 0.6304323477 0.5534053296 0.4859545165 0.4806972155 0.0551442497
- [57] 0.2667868434 0.1822239836 0.9259202609 0.2483088751 0.1995529125 0.1096247882 0.7127621954 0.4089844170
- [65] 0.3649277228 0.5150721017 1.0583202483 2.3874460551 0.2397472789 0.1254663956 0.9229871481 0.0884307306
- [73] 0.2835775565 0.1399383645 0.0158002456 0.3314596638 0.3582033794 0.0009566906 0.0299266845 0.2671039857
- [81] 1.1501408138 0.9662346970 0.2085673020 0.0392222755 0.0315861385 0.3620814679 0.4477376537 0.0285295797
- [89] 0.0642090417 0.4865262471 0.0267454793 0.1609009048 1.5939698589 0.5044688750 0.1628032669 0.4495984907
- [97] 0.3788270061 0.7465200292 0.0912101229 1.0499435620

> left

- [1] 0.9194937 0.9899590 0.9999976 0.9111988 0.9314515 0.8298416 0.8822406 0.8226555 0.9695001 0.6430309
- [11] 0.9819778 0.3169000 0.8352348 0.8927650 0.9994010 0.9801780 0.8889894 0.7109231 0.9999987 0.9941636
- [21] 0.9788814 0.9962505 0.6885011 0.9031981 0.9674325 0.9126387 0.9405487 0.9738251 0.9644365 0.9929590
- [31] 0.9653564 0.9824604 0.5506505 0.2961881 0.9731205 0.9786137 0.9382974 0.9975159 0.8457900 0.3889353
- $[41]\ 0.9882316\ 0.9993535\ 0.9773432\ 0.9838330\ 0.6919758\ 0.9823929\ 0.9103350\ 0.8367375\ 0.9988373\ 0.9504504$
- [51] 0.9792229 0.8209837 0.9946027 0.8698079 0.8370886 0.7210463 0.5723389 0.6793938 0.9982230 0.8244343
- [61] 0.6176384 0.9709910 0.9997277 0.7409217 0.6877296 0.7793432 0.4402493 0.9736379 0.5972724 0.7669308
- [71] 0.8494588 0.6063290 0.9001547 0.8934902 0.9857189 0.6386016 0.9966972 0.9999862 0.9094138 0.2122866
- [81] 0.9967888 0.9687362 0.9077699 0.9659049 0.6911444 0.9646612 0.7534136 0.6372083 0.9230705 0.8732785
- [91] 0.7140132 0.9960113 0.9032413 0.9830570 0.7333078 0.9983594 0.2727649 0.9949895 0.9469767 0.9286531

> short

[1] 0.950107699 1.575052906 1.092112120 1.429682272 0.426259826 1.569014356 0.904821825 1.330563914 0.571183409

- [10] 0.583981692 1.708112569 0.771152479 0.124546617 0.669338009 0.340009169 0.333509443 0.882094842 1.052624579
- [19] 1.563928079 1.654523610 1.956961507 0.005702158 1.354241349 1.815841551 1.032389407 0.048669655 0.624413488
- [28] 0.312937621 0.255116706 1.687981130 1.859238627 1.968353045 1.730049562 0.733380873 1.402160034 0.827603316
- [37] 0.484363698 0.478236489 0.089207463 1.568162407 1.701332845 0.557799144 0.882371422 1.365775467 1.424021970
- [46] 0.301595751 1.568007591 1.440251773 1.055888987 0.252125096 0.485047306 0.468597888 0.347379432 0.924097181
- [55] 1.179166188 1.836763384 1.043094607 0.416395185 0.081756668 0.209852947 1.758904273 1.820121592 1.370665454
- [64] 1.063875997 1.784715206 0.398421592 0.392622167 1.495148946 1.044522815 0.761215559 0.944634638 1.779079684
- [73] 0.844265746 1.238234372 1.731934986 0.116089762 0.703517106 0.358656067 0.266710800 1.052076667 0.116430325
- [82] 1.809261375 1.778869482 1.802086850 1.053893499 1.839309626 0.405028231 0.177481196 0.237323402 1.800027599
- [91] 0.244092541 0.993985723 1.820958740 1.873208500 1.057585482 1.574839968 1.148791652 1.712549945 0.422049357 [100] 0.005280854

> long

- [1] 0.01029580 -90.91363493 0.10904814 -0.84349766 4.68226433 -1.27221442 0.99889279 -0.41210536
- [9] 1.54289275 -0.69265432 -0.15164258 -5.35480834 3.64440134 -6.54631894 0.62271191 -2.19111062
- [17] 1.06009808 -0.69293652 -0.32561925 2.75778111 -8.62628021 0.35778982 3.87105953 0.59393073
- [25] -0.08984362 1.45104468 0.48887587 1.31788266 6.85827074 -2.53063297 3.20519307 0.53975460
- [33] 0.77097208 0.35027783 -0.98354332 -1.55237934 -0.54101149 7.34971972 2.91025188 -0.82539073
- [41] 0.31181213 0.37118382 0.14875821 -1.62589050 -0.81792209 1.32350302 11.73917238 0.09907758
- [49] 1.50833758 30.00675044 -1.65718800 2.49075791 4.33573314 -0.23515597 4.75647851 0.21496570
- [65] -6.25499854 -1.30303681 -0.17363013 0.74467537 0.21979067 1.33455037 0.06260646 -1.15716983
- [73] -1.67140530 1.90291169 0.52521037 7.96620772 -0.26060129 0.08517958 0.11366620 -0.73699576

- [81] 2.46311328 0.74020594 -0.42619500 1.40650269 -0.05953048 58.35279780 0.71568178 5.15687986
- [89] 0.95469797 0.20326264 0.90928879 -3.67386698 -0.22514509 0.27430329 0.07202534 8.00252928
- [97] 0.05208311 -0.05335283 -1.81041511 -6.56282750