高分子化学

第10回講義

担当:菊池明彦

E-mail: kikuchia@rs.tus.ac.jp

1

第10回講義

付加重合II モノマーの反応性比

共重合 (copolymerization)

- 1. 2種のモノマーの組成を種々変化させ重合
- 2. 反応のごく初期(収率数%)で生成物回収
- 3. 生成物の組成を¹H-NMRなどで解析

これらを定量的に扱うことはできるだろうか?

今回の講義で議論しましょう

- a: 2種のモノマーの反応性がまったく等しい
- b: aに比較的近い反応
- c: M₁の反応性が高い
- d: M₂の反応性が高い

3

モノマー反応性比

モノマー $1(\mathbf{M_1})$ とモノマー $(\mathbf{M_2})$ からコポリマーが成長するこの成長末端は $\mathbf{M_1}$ *または $\mathbf{M_2}$ *

$$\cdots M_1 - M_1 - M_2 - M_1 - M_2 - M_2 - M_1 - M_1 - M_1 - M_2 - M_1$$

 M_1 ・の一つ手前は M_1 または M_2

このとき種々の化学反応の理解から

・・・ M_1 - M_1 ・と・・・ M_2 - M_1 ・の間に反応性の違いはない

成長末端の反応性に手前の構造単位は影響しない

成長末端の反応

$$k_{11}[M_1 \bullet][M_1]$$

$$k_{12}[M_1 \bullet][M_2]$$

$$k_{21}[M_2\bullet][M_1]$$

 $k_{22}[M_2 \bullet][M_2]$

各モノマーの消費速度は以下の式で表される

M₁に対し

$$-\frac{d[M_1]}{dt} = k_{11}[M_1 \bullet][M_1] + k_{21}[M_2 \bullet][M_1]$$

Moに対し

$$-\frac{d[M_2]}{dt} = k_{12}[M_1 \bullet][M_2] + k_{22}[M_2 \bullet][M_2]$$

両式から

$$\frac{d[M_1]}{d[M_2]} = \frac{k_{11}[M_1 \bullet][M_1] + k_{21}[M_2 \bullet][M_1]}{k_{12}[M_1 \bullet][M_2] + k_{22}[M_2 \bullet][M_2]}$$

ここで、 $[M_1 \bullet]$ と $[M_2 \bullet]$ は実測できない \rightarrow 定常状態を考える

$$k_{12}[M_1 \bullet][M_2] = k_{21}[M_2 \bullet][M_1]$$

5

$$\frac{d[M_1]}{d[M_2]} = \frac{\frac{k_{11}[M_1 \bullet][M_1]}{k_{12}[M_1 \bullet][M_2]} + \frac{k_{21}[M_2 \bullet][M_1]}{k_{21}[M_2 \bullet][M_1]}}{\frac{k_{12}[M_1 \bullet][M_2]}{k_{12}[M_1 \bullet][M_2]} + \frac{k_{22}[M_2 \bullet][M_2]}{k_{21}[M_2 \bullet][M_1]}}$$

$$\frac{d[M_1]}{d[M_2]} = \frac{\frac{k_{11}[M_1]}{k_{12}[M_2]} + 1}{1 + \frac{k_{22}[M_2]}{k_{21}[M_1]}}$$

$$\frac{d[M_1]}{d[M_2]} = \frac{[M_1]}{[M_2]} (\frac{r_1[M_1] + [M_2]}{[M_1] + r_2[M_2]})$$

ここで

これらをモノマー反応性比(monomer reactivity ratio; MRR)

こで これ
$$r_1 = rac{k_{11}}{k_{12}}$$
 $r_2 = rac{k_{22}}{k_{21}}$

 $r_1: \mathsf{M}_1$ ・に対する M_1 と M_2 の相対反応性 $r_2: \mathsf{M}_2$ ・に対する M_2 と M_1 の相対反応性

交点法

$$rac{d[M_1]}{d[M_2]} = rac{[M_1]}{[M_2]} (rac{r_1[M_1] + [M_2]}{[M_1] + r_2[M_2]})$$
 を変形

$$r_2 = \frac{[M_1]}{[M_2]} \{ \frac{d[M_2]}{d[M_1]} \Big(1 + r_1 \frac{[M_1]}{[M_2]} \Big) - 1 \}$$

 r_1 と r_2 の間に直線関係が成り立つ 最低 2 組のモノマー比で共重合を行い得られた共重合体 組成を調べれば、交点から r_1 と r_2 を算出可能

Fineman-Ross法

$$rac{[M_1]}{[M_2]}$$
を F 、 $rac{d[M_1]}{d[M_2]}$ を f とすると

$$f = rac{F(r_1F+1)}{F+r_2}$$
 これを変形 $rac{F(f-1)}{f} = rac{r_1F^2}{f} - r_2$

7

表5.1 ラジカル共重合におけるモノマー反応性比(教科書p. 85を改変)

Zona vi					
No.	モノマー2	モノマー1 スチレン		モノマー1 酢酸ビニル	
		r_1	r_2	r_1	r_2
1	無水マレイン酸	0.04 ± 0.01	0		
2	メタクリロニトリル	0.30 ± 0.10	0.16 ± 0.06	0.01 ± 0.01	12 ± 2
3	アクリロニトリル			0.06 ± 0.13	4.05 ± 0.3
4	メタクリル酸メチル	0.52 ± 0.026	0.46 ± 0.026		
5	アクリル酸メチル	0.75 ± 0.07	0.18 ± 0.02	0.1 ± 0.1	9 ± 2.5
6	ブタジエン	0.78 ± 0.01	1.39 ± 0.03		
7	塩化ビニリデン	1.85 ± 0.05	0.085 ± 0.01		
8	桂皮酸メチル	1.9 ± 0.2	0		
9	塩化ビニル	17 ± 3	0.02	0.32 ± 0.02	1.68 ± 0.08
10	クロトン酸	20	0		
11	酢酸ビニル	55 ± 10	0.01 ± 0.01		
12	エチルビニルエーテル	90 ± 20	0	3.0 ± 0.1	0

例1 モノマー1:スチレン、モノマー2:メタクリル酸メチル

$$r_1 = \frac{k_{11}}{k_{12}} = 0.52$$
 スチレンラジカルに対し、スチレンの反応性はメタクリル酸メチルの反応性の $1/2$ 倍

共重合曲線の曲線bに相当

例2 モノマー1:スチレン、 モノマー2:酢酸ビニル

$$r_1 = \frac{k_{11}}{k_{12}} = 55$$

 $r_1 = \frac{k_{11}}{k_{12}} = 55$ スチレンラジカルに対し、 スチレンの反応性は酢酸ビニルの反応性の55倍

$$r_2 = \frac{k_{22}}{k_{21}} = 0.01$$

ールン人でに 酢酸ビニルラジカルに対し、 酢酸ビニルの反応性はスチ レンの反応性の1/100倍

共重合曲線の曲線cに相当

9

一般的に

 $r_1 < 1, r_2 < 1$: 曲線**b** $r_1 > 1, r_2 < 1$: 曲線**c**

 $r_1 < 1, r_2 > 1$: 曲線**d**

第10回講義のまとめ

付加重合II モノマーの反応性比

第10回講義の質疑・コメントならびに課題について

LETUSに第10回講義のフォーラムを立ち上げています。質疑、コメント等はフォーラムに書き込んで相互理解を深められるようにしましょう。

第10回講義の課題をLETUSにアップロードしています。課題の解答を指定期日までにpdfフォーマットでアップロードしてください。

課題、ならびに皆さんの解答をSNS等にアップロードすることは違法行為です。

11