Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2115 - Programación como herramienta para la ingeniería

Manejo de redes

Profesor: Hans Löbel

¿Cómo podríamos encontrar la mejor ruta de evacuación en caso de inundación?

(manteniendo la idea del análisis de datos geoespaciales)

¿Cómo podríamos encontrar la mejor ruta de evacuación en caso de inundación?

(manteniendo la idea del análisis de datos geoespaciales)

¿Cómo podríamos encontrar la mejor ruta de evacuación en caso de inundación?

(manteniendo la idea del análisis de datos geoespaciales)

No nos basta con la información geométrica de la red de transporte/vial

- Necesitamos una abstracción más fácil de operar que los GeoDataframes.
- Grafos son una solución eficiente para esto.
- Existen múltiples algoritmos para solucionar problemas de ruta mínima, flujo, ruteo, entre otros.
- Para hacer esto, nos basaremos en 2 librerías:
 NetworkX y OpenStreetMap, además de GeoPandas.

¿Qué es un grafo?

- Abstracción matemática para representar redes.
- Consta de nodos y arcos, que representan entidades y las relaciones entre ellas, respectivamente.
- Aplicable a múltiples dominios: redes de transporte, redes sociales, redes de comunicación, moléculas, etc.
- Para redes de transporte, podemos utilizar distintos grafos dependiendo del problema.

Principalmente, nos interesará obtener/generar el grafo adecuado al problema y luego movernos por él

Para movernos por el grafo, utilizaremos algoritmos conocidos y eficientes, ya implementados en la librería NetworkX

- Ruta óptima
- Vendedor viajero
- Clique
- Cortes mínimos
- Flujo
- Y muchos más...

¿Qué tipo de ejercicios considera este capítulo?

- El flujo comienza típicamente con la identificación del lugar a analizar y el tipo de red a descargar.
- Posteriormente, se localizan los puntos de interés, típicamente como nodos en la red.
- Luego, aplicamos alguno de los algoritmos disponibles, dependiendo de lo que se busque.
- Finalmente, se grafica el resultado de las operaciones.

Identificación de lugar de análisis y descarga de la red

Podemos obtener el grafo/red de interés, de múltiples maneras:

- Nombre del lugar
- Polígono
- Bounding Box
- Centro y radio

Adicionalmente, es posible especificar qué tipo de vialidad tendrá la red.


```
1 G = ox.graph_from_place('Macul')
2 ox.plot_graph(G, figsize= (20,20), bgcolor = 'w', node_color = 'red', edge_color = 'black');
```

Con poco esfuerzo, luego es posible ubicar los nodos y ejecutar algún algoritmo


```
1 orig_node = ox.distance.nearest_nodes(G, -70.746707, -34.164603)
2 dest_node = ox.distance.nearest_nodes(G, -70.711568, -34.180152)
3 route = nx.shortest_path(G, orig_node, dest_node, weight = 'length')
4 ox.plot_graph_route(G, route, figsize=(20,20), bgcolor = 'w', node_color = 'black', edge_color = 'black');
```

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2115 - Programación como herramienta para la ingeniería

Manejo de redes

Profesor: Hans Löbel