Hardware

2. Sběrnice3. ročník

Sběrnice – Bus

- Svazek vodičů propojující jednotlivá zařízení nebo obvody mezi sebou
- Zajišť uje přenos nejen dat, ale také adres nebo řídících signálů či stavových hlášení
- Každá periférie v PC je připojena k nějaké sběrnici
 - Ty jsou pak přivedeny k severnímu nebo jižnímu mostu
 - Chipset, obsahující jejich řadiče
- Rychlost sběrnice může podstatně ovlivnit běh celého systému
 - Její návrh je neméně důležitý, jako návrh architektury uP

Sběrnice – Bus

- Musí vyhovovat typu uP, který udává šířku adresové a datové sběrnice
- Sběrnice v PC můžeme rozdělit na 2 části:
 - Lokální:
 - Přímo připojená k uP nebo v rámci chipsetu
 - Nejrychlejší (FSB, QPI, DMI, ...)
 - Rozšiřující:
 - Také systémové
 - Umožňují připojení dalších komponent (periférií)
 - Pomalejší než lokální
 - Zakončeny slotem nebo portem
 - Kladen důraz na rychlost a standardizaci

Sběrnice – nejdůležitější parametry

Parametr	Význam	Jednotka
Šířka přenosu	Počet bitů, které lze současně přenést po sběrnici	bit
Frekvence	f _{MAX} s jakou může sběrnice pracovat	Hz
Přenosová rychlost (propustnost)	Počet přenesených bitů za jednotku času	bit/s (T/s)
Přístupová doba	Doba čekání na uvolnění sběrnice	S

Sběrnice – výhody a nevýhody

Výhody:

- · Možnost připojení více zařízení najednou
- Přehledná konstrukce
- Otevřené systémy
 - Možnost připojit/odpojit za chodu

Nevýhody:

- Složité řízení (protokoly)
- Tak rychlá jako její nejpomalejší článek
- · Rušení od jiných obvodů nebo sebe samotných
 - Vzdálenost a vysoké frekvence

Sběrnice – rozdělení

1. Řídící, datové, adresní

2. Podle typu přenosu

- a) Sériové vs. Paralelní
 - Jednotlivé bity jsou posílány za sebou v rámci CLK
 - Všechny bity jdou současně s CLK
 - Řízení realizováno po samostatných vodičích nebo stejných
- b) Synchronní vs. asynchronní
 - Jeden CLK, jež generuje master a posílá všem slave zařízením
 - Každé zař. má svůj CLK, jež jsou po dobu přen. "synchronní"

3. Podle směru

- Jednosměrné vs. Obousměrné
 - Simplex, half-duplex, full-duplex

Sběrnice – sériové vs. paralelní

Sériové:

- RS-232, RS-422, RS-485
- I2C, SPI, PS/2
- USB, FireWire, PCI-Ex
- SATA, eSATA

Paralelní:

- IEEE 1284, IEEE 488
- ISA, SCSI, PCI
- PATA (IDE/ATA)

Výstup s otevřeným kolektorem

- Nutný vnější zátěžový odpor
 - V klidovém režimu udržuje log. '1'
 - Rozlišení chybového stavu
- R_{pu} = pull up rezistor
 - 1 10 kOhm

- Využití:
 - · Tam, kde hrozí vysílání více zdrojů současně
 - Vlastní přidělení sběrnice

Výstup s otevřeným kolektorem

- Možno vytvořit sběrnici
 - Připojením více obvodů na jednu linku (I²C)
- Zdrojů vysílání může být více
 - · V danou chvíli pouze jeden
- Komunikaci může zablokovat kdokoliv, kdo vnutí na sběrnici log. '0'

Třístavový výstup

- Nabývá tří stavů:
 - Log '1'
 - Log '0'
 - Stav vysoké impedance
 - Obvod se chová, jako by byl odpojen

- Ostatní ve 3. stavu
 - Časový průběh pro dvě zařízení?
- Výstupy ostatních nijak nezatěžují sběrnici
- Použití u systémových sběrnic v PC

HAW 3. ročník | 2020 | rev. 1

I²C

- Inter-Integrated Circuit
 - Philips (1982)
- Dvouvodičová, obousměrná, synchronní, sériová, externí, half-duplex, multi-master, multi-slave
- Pro nízko rychlostní periférie
 - A/D a D/A převodníky, LCD, externí paměť, RTC, ...
- Master Slave
 - Master řídí komunikaci a generuje CLK
- Poskytuje detekci kolize a prevenci proti poškození dat, v případě vysílání více zdrojů současně

I²C

- Adresace zařízení
 - Možnost připojit až 128 zařízení (7bit)
 - Rozšířená verze až 1024 zařízení (10bit)
 - Teorie x praxe
- Výrazně optimalizuje nároky na počet pinů
 - · Zjednodušení výsledného zapojení
- Přenosová rychlost:
 - < 100 Kbit/s (Standard Mode)
 - < 400 Kbit/s (Fast Mode)
 - < 3,4 Mbit/s (High Speed Mode)

I²C – princip

- Jeden vysílá, všichni ostatní poslouchají
 - Na základě adresy se ohlásí cíl
- Nutno definovat adresu cíle a zda R/W
 - R/W bit může být součástí adresy
- Klidový stav = log. '0' na SDA i SCL
- Start / Stop bit
 - · Zahájení / ukončení přenosu
 - · Přechod SDA do log. '0' / '1', když SCL v log. '1'

I²C – princip

Přenos po 1B

- Od MSB po LSB
- Změna hodnoty na SDA pouze při SCL v log. '0'
- S jedním CLK přenesen 1bit

ACK

- Acknowledge bit = potvrzující bit
- Po každém 1B
- Generuje příjemce
- ACK v log. '0' = přenos ok
- · Neposílá se při ukončení přenosu

SPI

SPI

- Serial Peripheral Interface
 - Motorola (1985)
- Čtyř vodičova, obousměrná, synchronní, sériová, externí, full-duplex, multi-slave
- Pro nízko rychlostní periférie
 - A/D a D/A převodníky, LCD, externí paměť, RTC, ...
- Master Slave
 - Master řídí komunikaci a generuje CLK
 - Není nutná adresace
- Přenosová rychlost 1 70 MHz (cca 0,9 66,7 Mbit/s)

Sériový port - RS-232 - COM

- Full-duplex komunikace pouze dvou zařízení
- Asynchronní přenos dat a paritní bit
 - Start / Stop bity
- Řízený přenos dat
 - Hardwarově
 - Vodiče sběrnice zabraňují vysílat data dříve, než je přijímací zařízení připraveno
 - Softwarově
 - Speciální znaky synchronizující komunikaci zařízení
- Možnost využít různé kódování
 - ASCII, Baudot, EBCDIC

Sériový port - RS-232 - COM

- Maximální vzdálenost 15m
 - Čím větší vzdálenost, tím pomalejší komunikace
- Maximální rychlost 115,2 Bd
 - Využívání tzv. modulační rychlosti
 - Počet změn stavu přenosového média za jednotku času

Sériový port - RS-232 - COM

RS-232 Example Transmission

Configuration: 8 - O - 1 (8 data bits, Odd Parity, 1 Stop Bit)

ASCII code for 'V': 0x56 (01010110b)

FireWire - IEEE 1394

- Apple (1986)
 - Texas Instruments, Sony, DEC, IBM, STM
- Sériová sběrnice pro připojení periférií k PC
 - Možnost až 63 zařízení
 - Stromová topologie
 - P2P komunikace (např. tiskárna a scanner bez nutnosti CPU)
- Využití:
 - Dříve především u digitálních kamer; ext. disky, opt. mech.
 - Přenos velkého množství dat (USB neexistovalo / pomalé)
 - Nyní v automobilovém nebo vojenském průmyslu

FireWire – IEEE 1394

- Přenosové rychlosti:
 - IEEE 1394a < 400 Mbit/s (half-duplex; FireWire400)
 - IEEE 1394b < 800 Mbit/s (full-duplex; FireWire800)
 - IEEE 1394c < 3,2 Gbit/s
 - IEEE 1394d < 6,4 Gbit/s
- Maximální délka do 4,5m

RS-422 a RS-485

▶ RS-422

- Sériová, 2xTP, full-duplex
- TP eliminuje přeslechy a šum
- 1 vysílač a až 10 přijímačů
- Bez konektoru (svorkovnice)
- Využití, jako prodloužení RS-232
- Max. vzdálenost 1200m

▶ RS-485

- Sériová, TP, (full)duplex
- Využití v průmyslovém prostředí
- Až 32 jednotek (vysílačů a přijímačů)
- Využití diferenciálního kódování dat
- Přenos až 10Mbit/s
- V jeden okamžik pouze jeden vysílač
- Max. vzdálenost 1200m

Paralelní port – IEEE 1284 – LPT

- Printer port / paralelní rozhraní
 - Line Printer Terminal (1970)
- Původně pouze simplexní
 - Později half-duplex
- 25 vodičů
 - 8 datových
 - 9 řídících
 - 8 zemnících
- Maximální vzdálenost do 5m
 - Ideálně do 2m

IEEE 488

- Tři názvy/označení:
 - GPIB General Purpouse Interface Bus
 - HP-IB Hewlett Packard Interface Bus (1972)
 - IMS International Measurement System
- Původně jako sběrnice pro automatizované testování přístrojů
 - Nyní standardem pro automatizované a průmyslové řízení přístrojů
- Umožňuje přenos mezi dvěma a více přístroji
 - Až 15 zařízení na jedné 8bit sběrnici
 - Možno připojit PC, jež by řídil přenos dat

IEEE 488

- Celková délka max. 20m
 - Mezi přístroji max. 4m
 - Možno prodloužit pomocí tzv. extenderů (zesilovačů)
- 24 vodičů
 - 16 signálových
 - 8 datových
 - 3 pro handshake
 - 5 řídících
 - 8 zemnících
- Asynchronní half-duplex
 - Přenosová rychlost max. 1MB/s
 - Záleží na vzdálenosti

KONEC

Zdroje

- https://en.wikipedia.org/wiki/Automatic_test_equipment [27. 3. 2020]
- http://www.learningaboutelectronics.com/Articles/Open-collector-output.php [29. 3. 2020]
- https://www.petervis.com/dictionary-of-digital-terms/tri-state/tri-state.html [29. 3. 2020]
- https://en.wikipedia.org/wiki/l%C2%B2C [29. 3. 2020]
- https://www.root.cz/clanky/externi-seriove-sbernice-spi-a-i2c/ [29. 3. 2020]
- https://cs.wikipedia.org/wiki/FireWire [29. 3. 2020]
- https://www.root.cz/clanky/sbernice-rs-422-rs-423-a-rs-485/ [29. 3. 2020]
- https://ipc2u.cz/articles/simple-decisions/zakladni-rozdily-mezi-rs-232-rs-422-a-rs-485/ [29. 3. 2020]