

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A position determining system for determining a position of a rotor of a rotating motor, said system comprising:

sensing means coupled to the rotor for generating in response to a rotation of the rotor a quadrature signal comprising a sine component and a cosine component, and

calculating means for calculating

(i) a sum (A^2) of a squared value of the sine component ($A^2\sin^2x$) and a squared value of the cosine component ($A^2\cos^2x$),

(ii) an amplitude correction factor (A) as the a squared root of the sum (A^2),

(iii) an amplitude corrected sine component ($\sin(x)$) as the sine component ($A\sin(x)$) divided by the amplitude correction factor (A) and an amplitude corrected cosine component ($\cos(x)$) as

the cosine component ($\text{Acos}(x)$) divided by the amplitude correction factor (A), and

weighting an inverse sine value of the amplitude corrected sine component ($\sin(x)$) with a weighting factor for favoring the inverse sine value around its zero crossings to obtain a weighted sine value,

weighting an inverse cosine value of the amplitude corrected cosine component ($\cos(x)$) with a weighting factor for favoring the inverse cosine value around its zero crossings, to obtain a weighted cosine value, and

(iv) an output sum of an the weighted inverse sine value of the amplitude corrected sine component ($\sin(x)$) and an the weighted inverse cosine value of the amplitude corrected cosine component ($\cos(x)$), and

output means for outputting the output sum for determining the position of the rotor.

2. (Currently Amended) A position determining method for determining a position of a rotor of a rotating motor, said method comprising:

generating in response to a rotation of the rotor a quadrature signal comprising a sine component and a cosine component, calculating

(i) a sum (A^2) of a squared value of the sine component ($A^2\sin^2x$) and a squared value of the cosine component ($A^2\cos^2x$),

(ii) an amplitude correction factor (A) as the a squared root of the sum (A^2), and

(iii) an amplitude corrected sine component ($\sin(x)$) as the sine component ($A\sin(x)$) divided by the amplitude correction factor (A) and an amplitude corrected cosine component ($\cos(x)$) as the cosine component ($A\cos(x)$) divided by the amplitude correction factor (A), and

weighting an inverse sine value of the amplitude corrected sine component ($\sin(x)$) with a weighting factor for favoring the inverse sine value around its zero crossings to obtain a weighted sine value,

weighting an inverse cosine value of the amplitude corrected cosine component ($\cos(x)$) with a weighting factor for favoring the inverse cosine value around its zero crossings, to obtain a weighted cosine value, and

(iv) an output sum of an the weighted inverse sine value
~~of the amplitude corrected sine component ($\sin(x)$)~~ and an the
weighted inverse cosine value of the amplitude corrected cosine
component ($\cos(x)$), and

~~output means for outputting the output sum for determining the~~
position of the rotor ~~r~~.

Claims 3-4 (Canceled)

5. (Currently Amended) An optical or magnetic drive comprising
a pick-up unit for reading and/or writing information from/to
an optical or magnetic medium,
a rotating motor having a rotor,
a gearbox for converting a rotating movement of the rotor into
a linear movement of optical pick-up unit), and
a position determining system for determining a position of
the rotor, said system comprising
sensing means coupled to the rotor for generating in response
to a rotation of the rotor a quadrature signal comprising a sine
component and a cosine component,

calculating means for calculating

(i) a sum (A^2) of a squared value of the sine component ($A^2\sin^2x$) and a squared value of the cosine component ($A^2\cos^2x$),

(ii) an amplitude correction factor (A) as the a squared root of the sum (A^2), and

(iii) an amplitude corrected sine component ($\sin(x)$) as the sine component ($A\sin(x)$) divided by the amplitude correction factor (A) and an amplitude corrected cosine component ($\cos(x)$) as the cosine component ($A\cos(x)$) divided by the amplitude correction factor (A), and

weighting an inverse sine value of the amplitude corrected sine component ($\sin(x)$) with a weighting factor for favoring the inverse sine value around its zero crossings to obtain a weighted sine value,

weighting an inverse cosine value of the amplitude corrected cosine component ($\cos(x)$) with a weighting factor for favoring the inverse cosine value around its zero crossings, to obtain a weighted cosine value, and

(iv) an output sum of an the weighted inverse sine value of the amplitude corrected sine component ($\sin(x)$) and an the

| weighted inverse cosine value of the amplitude corrected cosine
component ($\cos(x)$), and

output means for outputting the output sum for determining the
position of the rotor.