Number Fields

January 18, 2018

C(ONTENTS	2
C	Contents	
-1	Miscellaneous	3
0	Motivation	4
1	Ring of integers	5

3

-1 Miscellaneous

Book: Number Fields, Marcus

Course notes: www.dpmms.ac.uk/ jat58/nfl2018

0 MOTIVATION 4

Motivation 0

Theorem. If p is an odd prime, then $p = a^2 + b^2$ for $a, b \in \mathbb{Z} \iff p \equiv 1$

Proof. If $p = a^2 + b^2$, then $p \equiv 0, 1, 2 \pmod{4}$. So this condition on p is

Suppose instead $p \equiv 1 \pmod{4}$. Then $\left(\frac{-1}{p}\right) = 1$. Thus $\exists a \in \mathbb{Z}$ such that $a^2 \equiv -1 \pmod{p}$, or $p|a^2 + 1$. We can factor $a^2 + 1 = (a+i)(a-i)$ in the ring $\mathbb{Z}[i]$. Here we introduce a notation: if $R \subseteq S$ are rings and $\alpha \in S$, then

$$R[\alpha] = \{ \sum_{i=0}^{n} a_i \alpha^i \in S | a_i \in R \}$$

, the smallest subring of S containing both R and α .

We know from IB GRM that $\mathbb{Z}[i]$ is a UFD. Now p|(a+i)(a-i). If p is irreducible in $\mathbb{Z}[i]$ then p|a+i or p|a-i, contradiction. Thus p is reducible in $\mathbb{Z}[i]$, hence $p = z_1 z_2$ with $z_1, z_2 \in \mathbb{Z}[i]$. If $z_1 = A + Bi$, $A, B \in \mathbb{Z}$, then $A^2 + B^2 = p$.

Another example is when p is an odd prime. Does the equation

$$x^p + y^p = z^p$$

have solutions with $x, y, z \in \mathbb{Z}$ and $xyz \neq 0$?

Theorem. (Kummer, 1850)

If $\mathbb{Z}[e^{2\pi i/p}]$ is a UFD, then there are no solutions. Strategy: factor $x^p + y^p = \prod_{j=0}^{p-1} (x + e^{2\pi i j/p}y)$ in $\mathbb{Z}[e^{2\pi i/p}]$.

However, we now know $\mathbb{Z}[e^{2\pi i/p}]$ is a UFD $\iff p \leq 19$.

Theorem. (Kummer, 1850)

If p is a regular prime, then there are no solutions.

If p < 100, then p is regular $\iff p \neq 37, 59, 67$.

We have seen various examples such as $\mathbb{Z} \subseteq \mathbb{Q}$, $\mathbb{Z}[i] \subseteq \mathbb{Q}[i]$, $\mathbb{Z}[e^{2\pi i/p}] \subseteq \mathbb{Q}[e^{2\pi i/p}]$, or in general, $\mathcal{O}_L \subseteq L$, where a ring of "integers" lies in a number field.

1 Ring of integers

Recall: A field extension L/K is an inclusion $K \leq L$ of fields. The degree of L/K is $[L:K] = \dim_K L$. We say L/K is finite if $[L:K] < \infty$.

Definition. (1.1)

A number field is a finite extension L/\mathbb{Q} . Here are two ways to construct number fields:

- (1) Let $\alpha \in \mathbb{C}$ be an algebraic number. Then $L = \mathbb{Q}(\alpha)$ is a number field;
- (2) Let K be a number field, and let $f(X) \in K[X]$ be an irreducible polynomial. Then L = K[X]/(f(X)) is a number field.

(Recall Tower Law: $[L:Q] = [L:K][K:Q] < \infty$).

Definition. (1.2)

- (1) Let L/K be a field extension. Then we say $\alpha \in L$ is algebraic over K if there exists a monic $f(X) \in K[X]$ such that $f(\alpha) = 0$;
- (2) Let L/\mathbb{Q} be a field extension. Then we say $\alpha \in L$ is an algebraic integer if there exists a monic $f(X) \in Z[X]$ such that $f(\alpha) = 0$.

Definition. (1.3)

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. We call the minimal polynomial of α over K the monic polynomial $f_{\alpha}(X) \in K[X]$ of least degree such that $f_{\alpha}(\alpha) = 0$.

We recall why $f_{\alpha}(X)$ is well-defined: there exists some monic $f(X) \in K[X]$ with $f(\alpha) = 0$ as α is algebraic. If $f_{\alpha}(\alpha), f'_{\alpha}(\alpha) \in K[X]$ both satisfy the definition of minimal polynomial, then we apply the polynomial division algorithm to write

$$f_{\alpha}(X) = p(X)f'_{\alpha}(X) + r(X)$$

where $p(X), r(X) \in K[X]$, and $\deg r < \deg f'_{\alpha}$. Evaluate at $X = \alpha$, we have $0 = f_{\alpha}(\alpha) = p(\alpha)f'_{\alpha}(\alpha) + r(\alpha) = r(\alpha)$. By minimality of $\deg f'_{\alpha}$, we must have r = 0. Then $\deg f_{\alpha} = \deg f'_{\alpha}$, and $f_{\alpha}(X), f'(\alpha)$ are both monic, i.e. p(X) = 1 and $f_{\alpha}(X) = f'_{\alpha}(X)$.

Lemma. (1.4)

Let L/\mathbb{Q} be a field extension, and let $\alpha \in L$ be an algebraic integer. Then:

- (1) The minimal polynomial $f_{\alpha}(X)$ of α over \mathbb{Q} lies in $\mathbb{Z}[X]$;
- (2) If $g(X) \in \mathbb{Z}[X]$ satisfies $g(\alpha) = 0$, then there exists $q(X) \in \mathbb{Z}[X]$ such that $g(X) = f_{\alpha}(X)q(X)$;
- (3) The kernel of the ring homomorphism $\mathbb{Z}[X] \to L$ by $f(X) \to f(\alpha)$ equals $(f_{\alpha}(X))$, the ideal generated by $f_{\alpha}(X)$.

Proof. (1) Recall that if $f(X) = a_n X^n + ... + a_0 \in \mathbb{Z}[X]$, then we define from GRM, the content $c(f) = \gcd(a_n, ..., a_0)$. Recall Gauss' Lemma: If $f(X), g(X) \in \mathbb{Z}[X]$, then c(fg) = c(f)c(g). Since $\alpha \in L$ is an algebraic integer, there exists monic $f(X) \in \mathbb{Z}[X]$ such that $f(\alpha) = 0$, i.e. c(f) = 1. Apply polynomial division in $\mathbb{Q}[X]$ to get $f(X) = p(X)f_{\alpha}(X) + r(X)$, where $p(X), r(X) \in \mathbb{Q}[X]$, $\deg r < \deg f_{\alpha}$. The definition of $f_{\alpha}(X)$ implies that r(X) = 0, hence $f(X) = p(X)f_{\alpha}(X)$. Now choose integers $n, m \geq 1$ such that $np(X) \in \mathbb{Z}[X]$, c(np) = 1, and $mf_{\alpha}(X) \in \mathbb{Z}[X]$.

 $\mathbb{Z}[x], c(mf_{\alpha}) = 1.$ Then $nmf(x) = (np(x))(mf_{\alpha}(x)) \implies c(nmf(x)) = nm = 1.$ So n = m = 1, hence $f_{\alpha}(x) \in \mathbb{Z}[X]$.

(2) Let $g(X) \in \mathbb{Z}[X]$ be such that $g(\alpha) = 0$. WLOG $g(x) \neq 0$ and c(g) = 1. Now apply polynomial division to write $g(x) = q(x)f_{\alpha}(x) + s(x)$ where $q(x), s(x) \in$ $\mathbb{Q}[x]$, deg $s < \deg f_{\alpha}$. Again by definition we have s(x) = 0. Choose an integer $k \geq 1$ such that $kq(x) \in Z[x]$ and c(kq) = 1. Then $kg(x) = kq(x)f_{\alpha}(x) \implies$ $k = c(kg) = c(kq)c(f_{\alpha}) = 1$. So k = 1, hence $q(x) \in \mathbb{Z}[x]$.

(3) is a reformulation of (2).