Haken Manifolds: A Comprehensive Overview

BY MATHEMATICAL TOPOLOGY EXPERT

October 7, 2024

Table of contents

1	Haken Manifolds: A Comprehensive Overview	1
	1.1 Definition and Basic Properties	1
	1.2 Historical Context and Development	2
	1.3 Haken Hierarchy in Detail	2
	1.4 Applications and Significance	3
	1.5 Examples of Haken Manifolds	4
	1.6 Advanced Topics and Recent Developments	5
	1.7 Open Questions and Future Directions	6

1 Haken Manifolds: A Comprehensive Overview

1.1 Definition and Basic Properties

A Haken manifold, named after mathematician Wolfgang Haken, is a fundamental concept in 3-manifold topology. To fully understand Haken manifolds, we need to break down several key terms:

- 1. Compact space: A topological space X that is closed and bounded. Mathematically, for every open cover $\{U_{\alpha}\}$ of X, there exists a finite subcover. In the context of manifolds, this means the manifold has finite extent and includes its boundary.
- 2. **P²-irreducible manifold**: A 3-manifold M is P²-irreducible if:
 - Every embedded 2-sphere $S^2 \subset M$ bounds a 3-ball $B^3 \subset M$, i.e., $S^2 = \partial B^3$.
 - *M* does not contain any two-sided projective planes.

This property ensures that the manifold doesn't have any "trivial" pieces that could be easily removed.

3. Incompressible surface: A properly embedded surface S in a 3-manifold M is incompressible if the induced homomorphism on fundamental groups is injective:

$$i_*: \pi_1(S) \hookrightarrow \pi_1(M)$$

where $i: S \hookrightarrow M$ is the inclusion map. Intuitively, this means that any closed curve on S that can be contracted to a point in M can also be contracted to a point within S itself.

4. **Sufficiently large**: A 3-manifold is sufficiently large if it contains a properly embedded, two-sided, incompressible surface.

Definition 1. [Haken Manifold] A Haken manifold is a compact, P^2 -irreducible 3-manifold that is sufficiently large. In the orientable case, which is often the focus of study, a Haken manifold is a compact, orientable, irreducible 3-manifold containing an orientable, incompressible surface.

1.2 Historical Context and Development

Wolfgang Haken introduced the concept of Haken manifolds in 1961. His work was part of a broader effort to understand and classify 3-manifolds, which had been a central problem in topology since the early 20th century.

Key developments in the theory of Haken manifolds include:

- 1. Haken's Hierarchy (1962): Haken proved that Haken manifolds possess a hierarchy, where they can be decomposed into 3-balls along incompressible surfaces. This property is crucial for many proofs involving Haken manifolds.
- 2. Waldhausen's Work (1968): Friedhelm Waldhausen proved several fundamental results about Haken manifolds, including their topological rigidity and the solvability of the word problem for their fundamental groups.
- 3. Jaco-Oertel Algorithm (1984): William Jaco and Ulrich Oertel developed an algorithm to determine if a given 3-manifold is Haken.
- 4. Thurston's Geometrization (1982): William Thurston's geometrization theorem for Haken manifolds was a crucial step in his broader geometrization program, which revolutionized our understanding of 3-manifolds.
- 5. Virtually Haken Conjecture (Proved 2012): Ian Agol proved the virtually Haken conjecture, which states that every compact, irreducible 3-manifold with infinite fundamental group is virtually Haken (i.e., has a finite cover that is Haken).

1.3 Haken Hierarchy in Detail

The Haken hierarchy is a fundamental tool in the study of Haken manifolds. Here's a more detailed explanation of how it works:

- 1. Start with a Haken manifold M.
- 2. Find an incompressible surface $S \subset M$.

- 3. Cut M along S to obtain a new manifold $M' = M \setminus N(S)$, where N(S) is a regular neighborhood of S.
- 4. M' is again a Haken manifold (unless it's a collection of 3-balls).
- 5. Repeat the process with M', finding another incompressible surface and cutting along it.
- 6. Continue this process until you're left with a collection of 3-balls.

Mathematically, we can express this as a sequence:

$$M = M_0 \supset M_1 \supset M_2 \supset \cdots \supset M_n$$

where each M_i is obtained from M_{i-1} by cutting along an incompressible surface, and M_n is a disjoint union of 3-balls.

This hierarchy allows for inductive proofs on Haken manifolds. Many properties can be proven by:

- Showing they hold for 3-balls
- Proving that if they hold for the pieces after cutting along an incompressible surface, they hold for the original manifold

1.4 Applications and Significance

Haken manifolds have numerous important applications in 3-manifold topology:

- 1. **Homeomorphism Problem**: Haken's work led to an algorithm for determining whether two Haken manifolds are homeomorphic. Given Haken manifolds M and N, there exists an algorithm to decide if $M \cong N$.
- 2. Recognition Problem: The Jaco-Oertel algorithm solves the recognition problem for Haken manifolds. Given a 3-manifold M, there exists an algorithm to decide if M is Haken.
- 3. **Topological Rigidity**: Waldhausen's proof of topological rigidity for Haken manifolds shows that they are completely determined by their fundamental groups. Formally, if $f: M \to N$ is a homotopy equivalence between Haken manifolds, then f is homotopic to a homeomorphism.
- 4. **Geometrization**: Thurston's geometrization theorem for Haken manifolds was a crucial step in the proof of the Poincaré conjecture and the geometrization conjecture. It states that every Haken 3-manifold can be decomposed into geometric pieces.

5. Word Problem: The solvability of the word problem for fundamental groups of Haken manifolds has implications in group theory and computational topology. For a Haken manifold M, there exists an algorithm to decide if a word $w \in \pi_1(M)$ represents the identity element.

1.5 Examples of Haken Manifolds

Let's explore some examples of Haken manifolds in more detail:

1. Compact, irreducible 3-manifolds with positive first Betti number:

- The first Betti number $b_1(M) = \operatorname{rank} H_1(M; \mathbb{Z})$ is the rank of the first homology group.
- A positive first Betti number implies the existence of a non-trivial map $f: M \to S^1$, which can be used to construct an incompressible surface.

2. Surface bundles over the circle:

- These are 3-manifolds formed by taking a surface S and an interval I = [0, 1], then identifying (x, 0) with (f(x), 1) for some homeomorphism f of S.
- Mathematically, $M_f = (S \times I) / \sim$, where $(x, 0) \sim (f(x), 1)$.
- ullet The surface S provides a natural incompressible surface in this construction.

3. Link complements:

- The complement of a link L in S^3 is often a Haken manifold.
- Denoted as $S^3 \setminus N(L)$, where N(L) is a tubular neighborhood of L.
- Seifert surfaces for the link components often provide incompressible surfaces.

4. Most Seifert fiber spaces:

- Seifert fiber spaces are 3-manifolds that admit a decomposition into circles in a particularly nice way.
- Many Seifert fiber spaces contain incompressible tori, making them Haken.

5. Handlebodies of genus q > 0:

• These are obtained by attaching g 1-handles to a 3-ball.

• They contain incompressible surfaces (e.g., properly embedded disks).

1.6 Advanced Topics and Recent Developments

1. Virtual Haken Conjecture:

- Proved by Ian Agol in 2012
- States that every compact, irreducible 3-manifold M with infinite fundamental group is virtually Haken, i.e., there exists a finite cover $\tilde{M} \to M$ such that \tilde{M} is Haken.
- The proof uses a combination of techniques from hyperbolic geometry, group theory, and 3-manifold topology

2. Relationship to Hyperbolic Geometry:

- Many Haken manifolds admit hyperbolic structures, i.e., Riemannian metrics of constant sectional curvature -1.
- Thurston's geometrization theorem for Haken manifolds was a key step in understanding this relationship

3. Normal Surface Theory:

- Normal surfaces, introduced by Haken, are a key tool in algorithms involving Haken manifolds
- They provide a finite way to describe essential surfaces in a 3-manifold
- A normal surface intersects each tetrahedron in a triangulation in a finite number of prescribed triangle and quadrilateral types

4. Mapping Class Groups:

- Johannson (1979) proved that atoroidal, anannular, boundary-irreducible Haken 3-manifolds have finite mapping class groups
- For such a manifold M, $MCG(M) = Homeo(M) / Homeo_0(M)$ is finite
- This result ties into the rigidity properties of hyperbolic 3-manifolds

5. Connections to Quantum Topology:

• Haken manifolds play a role in the study of quantum invariants of 3-manifolds

- The hierarchical structure of Haken manifolds can sometimes be used to compute or analyze these invariants
- For example, the Witten-Reshetikhin-Turaev invariants can often be computed recursively using the Haken hierarchy

1.7 Open Questions and Future Directions

While much is known about Haken manifolds, there are still open questions and areas of active research:

- 1. **Effective Algorithms**: Improving the efficiency of algorithms for recognizing and analyzing Haken manifolds. Can we find polynomial-time algorithms for problems currently solved in exponential time?
- 2. Quantitative Aspects: Understanding quantitative aspects of the Haken hierarchy, such as the number of steps needed to decompose a manifold. Is there a relationship between this number and other invariants of the manifold?
- 3. **Generalized Haken Manifolds**: Exploring generalizations of Haken manifolds to higher dimensions or different categories of manifolds. What would be the appropriate definition of a "Haken n-manifold" for n > 3?
- 4. Connections to Other Areas: Further investigating the relationships between Haken manifolds and other areas of mathematics, such as geometric group theory and low-dimensional dynamics. Can techniques from Haken manifolds be applied to problems in these areas?
- 5. **Computational Topology**: Developing practical software tools based on the theory of Haken manifolds for studying 3-manifolds computationally. Can we create efficient implementations of algorithms for normal surface theory and the Haken hierarchy?

The study of Haken manifolds continues to be a rich and active area of research in topology, with connections to diverse areas of mathematics and potential applications in theoretical physics and computer science.