Cahier Des Charges (CDC)

du projet

Développement d'une base robotique pédagogique en python

Responsabilité documentaire

Action	NOM Prénom	Fonction	Date	Signature
	DESNOS Vincent			
Rédigé par		Fournisseur	04/01/2016	
	Maurice Aymeric			
	P.GAUCHER			
Approuvé par		Client	04/01/2016	
	(Polytech)			

Référence : Tuto_Python_CDC

Page 2 de 10

Suivi des révisions documentaires

Indice	Date	Nature de la révision
1	05/03/2018	Première publication du cahier des charges
_		
	Tahla	des matières
	Tanc	ucs mancres
Table des matières		
1. Identifiants du prod	uit	
2. Nature du document	t	4
3. Cycle de développe	ment du produit orienté quali	té4
4. Présentation du prod	duit à développer	6
5. Exigences client du	produit à développer	6
5.1. Exigences du	ı robot	6
5.1.1. Exiger	nces mécaniques	6
5.1.2. Exiger	nces énergétiques	7
5.1.3. Exiger	nces d'acquisition d'informati	on
5.1.4. Exiger	nces de traitement de l'inform	nation
5.1.5. Exiger	nces d'action	8
5.2. Exigences de	e coût et de délai	8

1. Identifiants du produit

Nom du produit : Programmation microcontrôleur en Python

Référence du produit : Tuto_Python

Projet: Programmation microcontrôleur en Python

Client: Pierre GAUCHER

2. Nature du document

Ce document est un cahier des charges et a pour but de décrire l'ensemble des exigences client relatives au développement du produit.

Figure 1: Arborescence documentaire

La figure ci-dessus fournit une vision d'ensemble de l'arborescence documentaire du projet. Ceci permet ainsi de mieux comprendre la nature de ce document et son positionnement dans le développement en V du produit.

3. Cycle de développement du produit orienté qualité

La figure 1 précédente présente le cycle de développement du produit conformément à la norme de qualité ISO9001. Cette norme est très utilisée dans le secteur du développement électronique et informatique. L'axe principal de cette norme est la « *satisfaction client* ». Pour cela, elle décrit le

processus de développement dans le but d'optimiser la compréhension entre le client et le fournisseur, et donc de garantir la tenue des coûts et délais de développement.

Le *Cahier Des Charges* (CDC) est rédigé par le client et approuvé par le fournisseur. Il regroupe l'ensemble des exigences auxquelles le produit doit répondre. Il constitue un élément fondamental dans le contrat passé entre le client et le fournisseur. Il est donc primordial qu'il soit rédigé avec rigueur et complétude dans le but de minimiser les contentieux et de favoriser le passage d'informations entre demandeurs et concepteurs.

Le *Dossier De Conception* (DDC) est rédigé par le fournisseur et approuvé par le client. Ce dossier est constitué de plusieurs parties :

- La première partie de ce document présente la conception préliminaire du produit. Elle présente l'architecture fonctionnelle du produit développé. Elle apporte les premiers éléments de preuve de la faisabilité du produit.
- La seconde partie rassemble les éléments de conception détaillée du produit développé. Les différents blocs fonctionnels du produit sont étudiés et leurs composants dimensionnés. Cette partie apporte la preuve de la faisabilité du produit conformément aux exigences client.
- La troisième partie présente l'ensemble des simulations réalisées au cours de la conception. Elle permet de conforter le client et le fournisseur sur la justesse des résultats issus de la conception.

Le *Dossier De Fabrication* (DDF) est rédigé par le fournisseur et approuvé par le client. Il synthétise l'ensemble des documents de fabrication du produit. Ainsi, le client comme le fournisseur pourront reproduire à la demande le prototype conçu dans un nombre d'exemplaires beaucoup plus important. Ceci a pour objectif de permettre une production en série et ainsi une distribution à grande échelle du produit.

Le *Dossier De Vérification* (DDV) est rédigé par le fournisseur et approuvé par le client. Il est rédigé sous forme de fiches de vérification qui décrivent la manière de vérifier le bon fonctionnement du produit développé. Chaque fiche est rédigée en corrélation directe avec les exigences client. Le dossier synthétise également les résultats de chacun des essais de vérification. Il constitue ainsi la preuve de la conformité du produit face aux exigences client.

Le processus de développement décrit ci-dessus, suggéré par la norme ISO9001, est exploité depuis plusieurs années dans l'industrie. En prenant du recul sur les nombreux développements réalisés, il en résulte que le suivi de ce processus avec rigueur est un gage de qualité conduisant à la satisfaction du client.

4. Présentation du produit à développer

Le produit à développer est une base robotique pédagogique programmé en Python avec un micro-contrôleur WiPy 2.0. Ce robot devra être Plug&Play c'est-à-dire qu'il sera possible de changer, remplacer ou même ajouter différents composants et périphériques sur le robot. Un shield devra être conçu pour pouvoir accueillir certain type de composants explicités dans ce cahier des charges. Ce robot aura pour objectif de faire découvrir à un public jeune, avec un langage simple et intuitif, la robotique d'un point de vue hardware et software.

5. Exigences client du produit à développer

Ce chapitre détaille l'ensemble des exigences client du produit à développer. Chaque exigence est rédigée de manière concise et non ambiguë afin d'être vérifiable explicitement par l'équipe de développement. Dans le but de réaliser ultérieurement une traçabilité aisée entre exigences et tests, chaque exigence a une référence. Chaque référence sera rappelée dans les paragraphes adéquats du *Dossier de Conception* (DDC) du *Dossier de Fabrication* (DDF) et du *Dossier de Vérification* (DDV).

5.1. Exigences du robot.

5.1.1. Exigences mécaniques.

Référence de l'exigence : EXIG_ROBOT_DIMENSIONS

Descriptif de l'exigence : La carte électronique du robot a des dimensions égales à 50mm (+/-20mm) en largeur, 80mm (+/-20mm) en longueur.

Commentaires sur l'exigence : La carte électronique du robot ne possède aucune contrainte de dimensions en hauteur.

Référence de l'exigence : EXIG_ROBOT_ROUE

Descriptif de l'exigence : Les roues du robot doivent être compatible aux moteurs 3,7 V (attention au diamètre).

Commentaires sur l'exigence : La carte électronique du robot ne possède aucune contrainte de dimensions en hauteur.

Référence de l'exigence : EXIG_ROBOT_PLUG&PLAY

Descriptif de l'exigence : Une carte sur mesure (PCB) doit permettre de pouvoir brancher ou retirer tous les périphériques de la carte y compris le μ c.

Commentaires sur l'exigence : Ceci est dans le but de pouvoir remplacer facilement un élément en panne.

Référence de l'exigence : EXIG_ROBOT_CHASSIS

Descriptif de l'exigence : Un châssis doit être réalisé pour pouvoir installer tous les éléments du robots de manière fonctionnel. Le châssis doit être adapté aux composants qui ont été choisis.

5.1.2. Exigences énergétiques.

Référence de l'exigence : EXIG_ROBOT_ENERGIE

Descriptif de l'exigence : Le robot utilise un accumulateur d'énergie électrique de type Lithium-Polymère 2S pour fonctionner. Cet accumulateur est d'une capacité de 2000 à 3000 mah.

Commentaires sur l'exigence : L'accumulateur Lithium-Polymère est considéré comme étant déchargé lorsque l'énergie qui y est stockée est inférieure à 10 % de sa capacité maximale.

Référence de l'exigence : EXIG_ROBOT_INTERRUPTEUR (optionnel)

Descriptif de l'exigence : Le robot comporte un interrupteur afin de mettre sous/hors tension son circuit électronique.

Commentaires sur l'exigence : l'interrupteur est placé judicieusement sur le circuit imprimé de l'émetteur afin d'avoir une bonne ergonomie d'utilisation.

Référence de l'exigence : EXIG_ROBOT_RECHARGE

Descriptif de l'exigence : Le robot comporte un circuit permettant de recharger la batterie lorsque le robot est alimenté par une source d'énergie compatible.

Commentaires sur l'exigence : Ce circuit est assuré par le micro-contrôleur Wipi 2.0 (Pycom)

5.1.3. Exigences d'acquisition d'information

Référence de l'exigence : EXIG_ROBOT_BUS

Descriptif de l'exigence : Le robot comporte au minimum six(+/-1) emplacement pour des périphériques de communication. Ces emplacements doivent être compatible infrarouge et compatible à une tension de 3.7V.

Commentaires sur l'exigence : Cette exigence est en partie assurée par le micro-contrôleur Wipi2.0

Référence de l'exigence : EXIG_ROBOT_ENCODEUR

Descriptif de l'exigence : Le robot comporte un encodeur pour compter le nombre de tours par minutes des moteurs 3,7V. Il doit être compatible a la tension 3,7 V

5.1.4. Exigences de traitement de l'information.

Référence de l'exigence : EXIG_ROBOT_µc

Descriptif de l'exigence : Le robot comporte un micro-contrôleur python Wipi2.0.

Référence de l'exigence : EXIG ROBOT STOCKAGE

Descriptif de l'exigence : Le robot aura la possibilité de stocker ses données sur une carte SD à une fréquence minimum de 0.1Hz.

Commentaires sur l'exigence : L'extension du micro-contrôleur Wipi2.0 permet de stocker des données sur une carte SD.

5.1.5. Exigences d'action.

Référence de l'exigence : EXIG_ROBOT_MOTEUR

Descriptif de l'exigence : Le robot comporte deux moteurs situés sur les roue avant.

Référence de l'exigence : EXIG_ROBOT_PUISSANCE

Descriptif de l'exigence : Le robot comporte deux ponts en H pour pouvoir actionner les moteurs dans les deux sens de rotations. Le pont en H devra être compatible avec une tension de 3.7V.

Référence de l'exigence : EXIG_ROBOT_INDICATEUR

Descriptif de l'exigence : Le robot comporte un indicateur lumineux informant l'utilisateur qu'il est sous tension.

Commentaires sur l'exigence : La couleur verte pour cet indicateur est la couleur habituellement utilisée en modélisme.

Référence de l'exigence : EXIG_ROBOT_COMUNICATION (optionnel)

Descriptif de l'exigence : Le robot comporte un indicateur lumineux informant l'utilisateur qu'il communique avec un périphérique.

Commentaires sur l'exigence : La couleur bleue pour cet indicateur est la couleur habituellement utilisée en modélisme.

5.2. Exigences de coût et de délai.

Référence de l'exigence : EXIG_ROBOT_DELAI

Descriptif de l'exigence : Le temps alloué pour réaliser le développement du robot est

Référence : Tuto_Python_CDC

Page 8 de 10

constitué de quatre phases :

- -La phase de conception d'une durée d'environ 3,5 mois
- -La phase de fabrication d'une durée d'environ 2 semaines
- -La phase de vérification d'une durée d'environ une semaine
- -La phase de présentation/démonstration d'une durée d'environ 2 heures

Référence de l'exigence : EXIG_ROBOT_COUT

Descriptif de l'exigence : Le coût total de l'ensemble des composants (mécaniques et électroniques) nécessaires pour la fabrication d'un seul prototype du robot est inférieur à 120 \in (+/-60 \in)TTC.

Commentaires sur l'exigence : Le respect de cette exigence nécessite :

- * une budgétisation initiale
- * un suivi de l'évolution du coût du projet au cours de la conception détaillée
- * la réalisation d'une nomenclature

6. Matrice de vérification du produit à développer

Ce chapitre synthétise par l'intermédiaire d'un tableau les méthodes de vérification qui devront être appliquées sur chacune des exigences client, dans le but d'apporter la preuve de la conformité du produit développé.

Élément	Référence de l'exigence		
	allau (Méthodes de vérification	Doc.
concernés	client		
		par inspection documentaire	DDV
Robot	EXIG_ROBOT_DIMENSIONS	par mesure	DDF
Robot	EXIG_ROBOT_COMUNICATION	par observation visuelle	DDV
		par analyse et calculs	DDC
Robot	EXIG_ROBOT_ENERGIE	par essai	DDV
		par analyse	DDC
Robot	EXIG_ROBOT_INTERRUPTEUR	par inspection documentaire	DDF
		Vérification	DDV
Robot	EXIG_ROBOT_PUISSANCE	par essai	DDV
Robot	EXIG_ROBOT_COUT	par analyse	DDC
Robot	EXIG_ROBOT_DELAI	par analyse	DDC
Robot	EXIG_ROBOT_STOCKAGE	par analyse	DDC

	Référence : Tuto_Python_CDC	
POLYTECH*	Page 9 de 10	

	Γ	par essai	DDV
Robot	EXIG_ROBOT_MOTEUR	par observation visuelle	DDV
Robot	EXIG_ROBOT_µC	par observation visuelle	DDV
Robot	EXIG_ROBOT_ENCODEUR	par essai	DDV
		par essai	DDV
Robot	EXIG_ROBOT_BUS	par analyse	DDC
Robot	EXIG_ROBOT_RECHARGE	par observation visuelle	DDV
		par observation visuelle	DDV
		Par essai	DDC
Robot	EXIG_ROBOT_PLUG&PLAY	Fabrication	DDF
		par essai	DDV
Robot	EXIG_ROBOT_ROUE	par analyse	DDC
		par observation visuelle	DDV
Robot	EXIG_ROBOT_CHASSIS	Par analyse	DDC

Référence : Tuto_Python_CDC

Page 10 de 10