## Honors Report Unsupervised Recurrent Attention Model

Vidit Jain (201501021)

## How to run the code

- For training the unsupervised recurrent attention model
  - o python3 main.py
- For seeing the glimpses
  - python3 plot\_glimpses.py
    - --plot\_dir=PATH\_TO\_THE\_PLOT\_DIR
    - --epoch=EPOCH\_NUMBER
  - eg.: "python3 plot\_glimpses.py --plot\_dir=./ram\_9\_6x6\_2/ --epoch=1"
  - Here the data while training is saved for each epoch in the plot/ directory with model name as :
    - ram\_NO\_OF\_GLIPMSES\_SIZE\*SIZE\_SCALE.
  - Here different different data is saved for each epoch like locations as I\_EPOCH\_NO, glimpses data as gp\_EPOCH\_NO, formed images, and original images.
  - To see the results we can parallelly see the output by running the above command after that particular epoch is done.
- For testing
  - python3 main.py --is\_train=false--model epoch=PRETRAINED SAVED MODEL EPOCH NO
  - o eg.: python3 main.py --is\_train=false --model\_epoch=9

 Note: If the data download fails for some reason (it won't but happens with me once) add the cifar-10-python.tar.gz in the data directory.

## Sample results

Of plot\_glimpses.py



- Here in the first row it shows the bounding box of size\*size (here in this case it is 6\*6) at the location where it is looking.
- In the second row it shows the extracted patch of size\*size (here 6\*6)
- In third row it is a scaled down version of (scale\*size)\*(scale\*size)
   patch centered at the locations of the glimpse to size\*size patch (here scale = 2 so 12\*12 patch to 6\*6 patch)
- In fourth row it is a scaled down version of (scale<sup>2</sup>\*size)\*(scale<sup>2</sup>\*size) patch centered at the locations of the glimpse to size\*size patch (here scale = 2 so 24\*24 patch to 6\*6 patch)
- Last row is the cumulative sum of predicted image at each at each glimpse. (Note: This output result is the output of the 1st epoch hence very noisy results of the predicted image)



Another example for different data (horse image)