Проблема поиска 3-раскраски \mathcal{G}_3

Задан неориентированный граф без кратных ребер и петель G = (V, E) с n вершинами. Гарантировано, что в нем существует 3-раскраска.

Необходимо найти множества V_1, V_2, V_3 такие, что $V_1 \sqcup V_2 \sqcup V_3 = V$ и $\forall x, y \in V_i, i \in \{1, 2, 3\} \implies (x, y) \notin E$

Подпроблема поиска 3-раскраски $\mathcal{G}_3(\gamma)$

Рассмотрим бесконечную последовательность графов $\gamma = \{G_1, G_2, ..., G_n, ...\}$ такую, что G_n имеет п вершин $\forall n \in \mathbb{N}$.

Для каждой последовательности графов γ определим подпроблему поиска 3-раскраски как ограничение исходной проблемы на множество входов $\{G: G \cong G_n, G_n \in \gamma\}$.

Пемма 1. Если не существует полиномиального вероятностного алгоритма для решения проблемы \mathcal{G}_3 , то найдется последовательность графов γ такая, что не существует полиномиального вероятностного алгоритма для решения проблемы $\mathcal{G}_3(\gamma)$.

Доказательство. Пусть P_1, P_2, \ldots — все полиномиальные вероятностные алгоритмы. Если не существует полиномиального вероятностного алгоритма P_n найдётся бесконечно много графов, для которых P_n не может решить \mathcal{G}_3 . Из этого следует, что можно выбрать такую последовательность $\gamma' = \{G_1, G_2, \ldots, G_n, \ldots\}$, что алгоритм P_n не может решить \mathcal{G}_3 для G_n для всех п. Более того, γ' упорядочена по возрастанию числа вершин в графах. Теперь можно расширить последовательность γ' до последовательности графов γ с графами G_n для всех размеров п. Из построения γ следует, что не существует полиномиального вероятностного алгоритма для решения проблемы $\mathcal{G}_3(\gamma)$. \blacktriangleright

Для изучения генерической сложности проблемы 3-раскраски графов будем использовать представление графов с помощью матриц смежности. Под размером графа будем понимать число вершин.

Теорема 1. Пусть γ - произвольная последовательность графов. Если существует генерический полиномиальный алгоритм, решающий проблему $\mathcal{G}_3(\gamma)$, то существует вероятностный полиномиальный алгоритм, решающий эту проблему на всём множестве входов.

Доказательство. Допустим, что существует генерический полиномиальный алгоритм A, решающий проблему 3-раскраски графов $\mathcal{G}_3(\gamma)$. Построим вероятностный полиномиальный алгоритм B, решающий эту проблему на всем множестве входов. На графе G с n вершинами алгоритм B работает следующим образом:

- 1. Запускает алгоритм A на G.
- 2. Если $A(G) \neq ?$, то B выдает ответ A(G) и останавливается, иначе идёт на шаг 3.
- 3. Генерирует случайно и равномерно перестановку π на вершинах $\{1,\ldots,n\}$ и вычисляет граф $G'=\pi(G)$.
- 4. Запускает алгоритм A на (G').
- 5. Если A(G')=?, выдает $V_1=\{1,2,...,\lfloor n/3\rfloor\}, V_2=\{\lfloor n/3\rfloor+1,...\lfloor n\cdot 2/3\rfloor\}, V_3=\{\lfloor n\cdot 2/3\rfloor+1,...,n\}$ возможно, неправильный.

6. Пусть $A(G') = \{V_1, V_2, V_3\}$ — решение задачи 3-раскраски для графа G'. Тогда

$$\pi(V) = \pi^{-1}(V_1) \sqcup \pi^{-1}(V_2) \sqcup \pi^{-1}(V_3)$$

является решением задачи 3-раскраски для исходного графа $G = \pi^{-1}(G')$.

Для доказательства корректности работы вероятностного алгоритма надо показать, что вероятность того, что A(G') = ?, меньше 1/3. Заметим, что $\pi(G)$ при варьировании перестановки π пробегает всё множество входов размера n. Множество $\{G: A(G) = ?\}$ пренебрежимо, поэтому вероятность того, что A(G') = ?, стремится к 0 при увеличении n.

Теорема 2. Если $P \neq NP$ и P = BPP, то существует последовательность графов γ такая, что для решения проблемы 3-раскраски $\mathcal{G}_3(\gamma)$ не существует генерического полиномиального алгоритма.

Доказательство. Покажем сначала, что при условиях $P \neq NP$ и P = BPP не существует полиномиального вероятностного алгоритма для решения проблемы \mathcal{G}_3 . Действительно, пусть такой алгоритм существует. Так как проблема \mathcal{G}_3 является NP-трудной, то существует полиномиально эквивалентная ей NP-проблема распознавания A. Из полиномиального вероятностного алгоритма для \mathcal{G}_3 легко получается полиномиальный вероятностный алгоритм для решения проблемы A. А так как P = BPP, то существует и детерминированный полиномиальный алгоритм для A, откуда P = NP. Противоречие.

Теперь нужное утверждение следует из леммы 1 и теоремы 1.