D. Izomorfizm

Dostępna pamięć: 256 MB

Dla danych dwóch n-wierzchołkowych drzew T_1 i T_2 należy stwierdzić, czy są one izomorficzne. Zbiory wierzchołków tych drzew oznaczamy przez $V(T_1)$ i $V(T_2)$. Drzewa te są izomorficzne, jeśli istnieje bijekcja $f:V(T_1)\to V(T_2)$, taka że dla dowolnych dwóch wierzchołków $u,v\in V(T_1)$ są one połączone krawędzią w T_1 wtedy i tylko wtedy gdy f(u) i f(v) są połączone krawędzią w T_2 .

Wiele instancji problemu w jednym teście

Zauważmy, że program, który zawsze odpowiada "TAK" (lub program który zawsze odpowiada "NIE") udzieliłby wielu poprawnych odpowiedzi. Dlatego też dane wejściowe są pogrupowane; pojedynczy test zawiera wiele instancji problemu opisanego powyżej. W pierwszym wierszu wejścia podana jest jedna liczba naturalna D ($1 \le D \le 20$) oznaczająca liczbę podanych instancji. Każda z instancji jest zgodna ze specyfikacją określoną w części "Specyfikacją pojedynczej instacji".

Specyfikacja pojedynczej instancji

W pierwszym wierszu znajduje się jedna liczba naturalna $2 \le n \le 5 \cdot 10^5$, będąca liczbą wierzchołków w drzewie T. Wierzchołki są numerowane liczbami naturalnymi od 1 do n. Kolejne n-1 wierszy zawiera opis drzewa T_1 , zaś jeszcze następne n-1 wierszy — opis drzewa T_2 . Każdy z wierszy opisujących drzewo zawiera parę liczb naturalnych a i b oddzielonych pojedynczą spacją. Liczby te spełniają $1 \le a \ne b \le n$ i oznaczają, że w drzewie istnieje krawędź między wierzchołkami a i b.

Specyfikacja danych wyjściowych

Twój program powinien wypisać D wierszy. W i-tym wierszu powinno znaleźć się słowo TAK, jeśli zadane w i-tej instancji drzewa są izomorficzne i słowo NIE w przeciwnym przypadku.

Przykład A

Wejście:	Wyjście:
2	NIE
4	TAK
1 2	
2 3	
3 4	
1 2	
1 3	
1 4	
2	
1 2	
2 1	

Przykład B

Wejście:	Wyjście:
1	TAK
5	
1 2	
1 3	
3 4	
3 5	
1 2	
1 3	
2 4	
2 5	

Przykład C

Wejście:

1
5
1 2
1 3
4 3
5 3
1 2
2 3

Wyjście: NIE