Technické využití rozptylu záření β

• Autor: Filip Plachý 1F/46

Spolupracoval: Adam Babovák
Datum měření: 21. 4. 2022

Úvod:

Beta záření je jedno ze tří záření (alfa, beta, gama), které vznikají rozpadem radioaktivních prvků. Kdy alfa je nejslabší a je schopno být zastaveno i jedním listem papíru. Záření Beta je silnější a pro jeho zastavení je vrstva 1m vzduchu nebo 1mm kovu. Samotné záření beta tedy vzniká rozpadem radioaktivního prvku. Beta částice se pohybují velmi rychle a obsahují elektrický náboj (kladný nebo záporný), tudíž se záření dá ovlivňovat elektrickým i magnetickým polem. I přesto, že záření beta vzniká z radioaktivity, jeho nebezpeční se dá skoro zanedbat oproti třeba záření gama. Využívá se třeba v některých typech radiometrů pro měření radiace nebo v našem případě ho využijeme ke změření podílu prvků ve slitině a k zjištění neznámého prvku.

Využijeme k tomu tzv. "G-M čítač". Tento stroj počítá počet rozptýlených částic, které odráží vložený vzorek. Počet rozptýlených částic roste s protonovým číslem prvku.

Zadání:

- 1. Určete procentuální složení dvou-komponentní slitiny.
- 2. Určete protonové číslo neznámého prvku.

Postup:

Po nastavení čítače, kdy časovač nastavíme na 200 sekund. Měření samotné je poté velmi repetetivní, neboť jediné, co stačí dělat je mačkat start tlačítko a zapsat hodnotu, poté co zhasne červená dioda časovače, která automaticky zastaví počítání.

Jako první změříme počet bez žádného prvku. Tohle děláme z důvodu, neboť objekty a aji člověk jsou samotnými zdroji záření. Tohle provedeme 3x a spočítáme průměr, který budeme odečítat od výsledků. Poté změříme jednou všechny prvky, slitinu a neznámý prvek.

Pro splnění zadání vypočítáme pomocí hodnot složení slitiny a zjistíme protonové číslo a tím i samotný neznámý prvek.

Měření a výpočet:

Naměřené hodnoty bez prvku:

$$N_1 = 239, N_2 = 246, N_3 = 241$$

Průměrná hodnota

$$\overline{N_n} = 242$$

P .											
Prvek	Naměřená	Hodnota po	Prvek	Naměřená	Hodnota po						
	hodnota n	odečtení N_p		hodnota n	odečtení N_p						
Sn	943	701	Zn	727	485						
Slitina - SnZn	921	679	Neznámý prvek	479	237						
Pb	1130	888	Cd	982	740						
S	436	194	Al	434	192						
Fe	715	473	Ni	716	474						

Určení nejistot jednotlivých prvků:

$$\Delta n = 2 * \sqrt{n' + \overline{n_p}/3}$$

Určení procentuální složení dvou-komponentní slitiny:

Hodnoty:

$$Sn = n_1 = 701 \pm 64$$
, $Zn = n_2 = 485 \pm 56$,8, $Slitina\ SnZn = n_{12} = 679 \pm 63$,3

Vzorec pro výpočet první složky (Sn):

$$p_1 = \frac{n_{12} - n_2}{n_1 - n_2} * 100 = 89,81 \%$$

Druhý prvek:

$$p_2 = 100 - p_1 = 10,19 \%$$

Nejistoty $\Delta p_1 \Delta p_2$:

$$\Delta p_1 = \Delta p_2 = \frac{100}{(n_1 - n_2)^2} * \sqrt{[(n_{12} - n_2)\Delta n_1]^2 + [(n_{12} - n_1)\Delta n_2]^2 + [(n_1 - n_2)\Delta n_{12}]^2} = 39,7 \%$$

$$\underline{p_1 = 89,81 \pm 39,7 \%}$$

$$\underline{p_2 = 10,19 \pm 39,7 \%}$$

Měření protonového čísla neznámého prvku:

Hodnoty neznámého prvku:

$$n = 237 + 47.3$$

Vztah mezi protonovým číslem (Z) a počtem odrazů (n)se dá zjistit pomocí vzorce:

$$n = K * Z^a$$

K výpočtu jsou potřeba 2 konstanty (K a a), které vyplívají z měření. K určení použijeme grafický postup Pro x/y souřadnice použijeme následující vztah:

$$x = \log Z$$
 $y = \log n$

Všechny prvky dáme do grafu a mezi nejmenším a největším protonovým číslem vytvoříme přímku a zjistíme její předpis.

$$y = K + ax$$

V našem případě je tedy

$$K = 1,357$$
 $a = 0,831$

Upravená rovnice pro výpočet protonového čísla:

$$Z = 10 * \frac{\log n - K}{a} = 12,24$$

Nejistota protonového čísla ΔZ :

$$\Delta Z = \frac{Z}{n * a} \Delta n = 2,94$$

Protonová čísla jsou pouze celá čísla, tudíž výsledek po zaokrouhlení je následující:

$$Z = 12 \pm 3$$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	$_{1}\mathrm{H}$														2			₂ He
2	₃ Li	₄ Be											5B	₆ C	₇ N	₈ O	9F	₁₀ Ne
3	₁₁ Na	₁₂ Mg											₁₃ Al	₁₄ Si	₁₅ P	₁₆ S	₁₇ Cl	₁₈ Ar
4	19 K	₂₀ Ca	₂₁ Sc	₂₂ Ti	23V	₂₄ Cr	₂₅ Mn	₂₆ Fe	₂₇ Co	₂₈ Ni	₂₉ Cu	₃₀ Zn	31Ga	₃₂ Ge	33As	34Se	35Br	₃₆ Kr
5	37 R b	38 S r	39Y	40Zr	41Nb	₄₂ Mo	43Tc	44Ru	45Rh	₄₆ Pd	47Ag	₄₈ Cd	₄₉ In	₅₀ Sn	51 S b	₅₂ Te	53I	₅₄ Xe
6	55Cs	₅₆ Ba	57La	₇₂ Hf	₇₃ Ta	74W	75Re	₇₆ Os	77 I r	78 P t	79 A u	₈₀ Hg	81Tl	₈₂ Pb	83Bi	₈₄ Po	₈₅ At	86Rn
7	87Fr	88Ra	₈₉ Ac	₁₀₄ Rf	₁₀₅ Db	₁₀₆ Sg	₁₀₇ Bh	₁₀₈ Hs	₁₀₉ Mt	₁₁₀ Ds	111 R g							

₅₈ Ce	59 P r	₆₀ Nd	₆₁ Pm	₆₂ Sm	₆₃ Eu	₆₄ Gd	₆₅ Tb	₆₆ Dy	67Ho	₆₈ Er	₆₉ Tm	70Yb	₇₁ Lu
₉₀ Th	91 P a	92U	93Np	₉₄ Pu	₉₅ Am	₉₆ Cm	97 B k	₉₈ Cf	99Es	₁₀₀ Fm	₁₀₁ Md	₁₀₂ No	₁₀₃ Lr

Závěr:

o Procentuální složení dvou-komponentní slitiny:

$$Sn = 89,81 \pm 39,7\%$$

$$Zn = 10,19 \pm 39,7\%$$

Výsledek je kvůli velmi vysoké nejistotě nepřesný.

o Měření protonového čísla neznámého prvku

Z měření jsme zjistili interval protonového čísla:

$$Z = 12 + 3$$

Což je interval od 9 do 16.

Fluor (F) a neon (Ne) jsou plyny. (9,10)

Sodík (Na) a hořčík (Mg) jsou sice kovy, ale v čisté podobě velmi reaktivní. (11,12)

Hliník (Al) a síru (S) jsme měřili (13, 16)

Fosfor (P) je vysoce reaktivní a jedovatý (15)

Zbývá nám tedy **Křemík (Si)** s protonovým číslem 14.