(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平9-295922

(43)公開日 平成9年(1997)11月18日

最終頁に続く

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ			技	術表示簡所
A61K 7/08	1		A61K	7/06			
COSK 5/20			C08K	5/20			
C08L 83/04	LRW		C08L 8	3/04	LRW		
			審查請求	未請求	請求項の数2	FD (全 9 頁)
(21)出願番号	特願平8-132843		(71)出顧人	0000041	78	<u></u>	
				日本合品	えゴム株式会社		
(22)出顧日	平成8年(1996)4	月30日		東京都中	中央区築地2丁	目11番24号	₹
			(72)発明者	志保 剂	告司		
				東京都中	中央区築地2丁	目11番24年	引 日本合
				成ゴム	朱式会社内		
			(72)発明者	川橋(計夫		
				東京都中	中央区築地2丁	目11番24年	子 日本合
	•			成ゴム	朱式会社内		
			(72)発明者	森川明	明彦		
				東京都中	中央区築地2丁	目11番24 ^年	子 日本合
				成ゴムは	朱式会社内		

(54) 【発明の名称】 重合体粒子および毛髪化粧料

(57)【要約】

【目的】 造膜性、タンパク吸着性に優れた重合体を提供する事を目的としている。さらには、皮脂吸収能、使用感に優れ、毛髪の油性感を軽減するのに適しするため、特に毛髪化粧料を提供する。

【構成】 ポリオルガノシロキサンとアミノ酸系重合体を含む重合体粒子。

【特許請求の範囲】

【請求項1】 ポリオルガノシロキサンとポリアミノ酸を含む重合体粒子。

【請求項2】 請求項1の重合体粒子を含むことを特徴とする毛髪化粧料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ポリオルガノシロキサンとポリアミノ酸とが複合した重合体粒子およびその重合体粒子を含んでなる造膜性、タンパク吸着性、皮脂吸収性、使用感に優れ、毛髪の油性感を軽減するのに適し、かつ柔軟性が持続する毛髪化粧料用基剤に関する。

[0002]

【従来の技術】皮質は、その分泌が適度な場合には、皮 盾、毛髪につや、なめらかさを与えるが、分泌が過剰と なるとギラつきやベタつきの原因となり、さらには、皮 盾にあっては化粧崩れの原因となり、また毛髪にあって は毛髪のボリュームが出ず、スタイル保持を困難とする 原因となる。この過剰に分泌された皮脂は洗浄によって 容易に除去する事ができるが、皮膚では数時間以内に、 毛髪でも数日以内には、皮膚・毛髪表面上の皮脂量は一 定量に回復してしまうため、頻繁に洗浄を行わなければ ならない。このため、皮脂分泌を薬効剤を用いて生理的 に抑制したり、過剰に分泌された皮脂を粉体等に物理的 に吸収させる方法は安全上の問題は少ないものの、皮脂 吸収能、使用感等の有効性において問題があった。例え ば、特開昭61-65807号公報には、粘土鉱物、酸 化物等の無機粉体を用い、皮脂をコントロールする方法 が開示されている。しかしながら、一般に多孔性もしく は層状の無機物質は汗や汚れが存在すると著しく吸油能 が低下するという欠点がある。特開昭59-14471 O号公報には、シラン化シリカゲルを用いて皮脂の吸収 能を改善する試みがなされているが、これは無機粉体の 表面を疎水化し、一次粒子の凝集物の粒子空間隙に皮脂 を吸収するものであり、高い吸収能は望めない。米国特 許第4,489,058号明細書には皮脂との相溶性が 高いステアリルメタクリレートとスチレンとの共重合体 を用い、膨潤により皮脂を吸収し、にきびの発生を抑制 する方法が開示されている。この方法は、汗や汚れが存 在しても皮脂を吸収する点で優れているものの、吸収量 が未だ十分ではなく、さらには単純な膨潤によるため、 皮脂吸収後の感触が良くないという欠点があった。さら に、平均粒径が150μm前後のものを用いているた め、特に毛髪用として用いると毛髪に付着しにくいとい う欠点があった。

[0003]

【発明が解決しようとする課題】上述の問題点を解決すべく、皮脂吸収能、使用感に優れ、毛髪の油性感を軽減するのに適し、かつ柔軟性が持続する重合体粒子および

それを用いた毛髪化粧料用基剤を開発することを目的と する。

[0004]

【課題を解決するための手段】すなわち本発明は、ポリ オルガノシロキサンとポリアミノ酸を含む重合体粒子お よび該重合体粒子の水分散体からなる毛髪化粧料用基剤 を提供する。以下、本発明について詳細に説明する。本 発明におけるポリオルガノシロキサンとポリアミノ酸を 含む重合体粒子は、次の3種類を挙げることができる。 I.ポリアミノ酸を主成分とするポリマーエマルジョン (a) (以下、(a) 成分という) にオルガノシロキサ ン(b)(以下、(b)成分という)を吸収させた後、 該オルガノシロキサンの重合反応を進行させることによ り製造されるポリシロキサン複合重合体粒子(I)。 II. ポリオルガノシロキサンの水性分散体(c)(以 下、(c)成分という)の存在下にアミノ酸-N-炭酸 無水物(以下、アミノ酸-NCAという)を重合して製 造されるポリオルガノシロキサン系粒子(II)。 III. 片末端アミノ変性ポリオルガノシロキサン(d) (以下、(d)成分という)存在下に、アミノ酸−NC Aを乳化重合して製造されるシリコーンポリアミノ酸共 重合体粒子(III)。

【0005】まず、ポリシロキサン複合重合体(I)に ついて述べる。(a)成分は、Φα-アミノ酸-N-炭 酸無水物(以下、アミノ酸-NCAと略す)を乳化重合 する方法、②アミノ酸-NCAを溶液重合した後再乳化 する方法、などを挙げることができるが、好ましくはOD の方法である。②の方法では、ポリマー溶液の調製、水 系媒体へのポリマー溶液の乳化、および有機溶剤の除 去、という合計3段階にわたる工程を経なければ目的と するボリーαーアミノ酸粒子を得ることができず非効率 的であり好ましくない。本発明において、アミノ酸-N CAは、常温で固体状のものであれば、いずれのα-ア ミノ酸から導かれるものであってもよい。ただし、側鎖 にカルボキシル基、水酸基、チオール基、アミノ基、グ アニジル基などの官能基を有するα-アミノ酸を原料と してアミノ酸-NCAを製造する場合には、これらの官 能基を適当な保護基を用いて保護した後にアミノ酸-N CAに導く必要がある場合がある。 α-アミノ酸の具体 例としては、(イ)グリシン、アラニン、バリン、ノル バリン、ロイシン、イソロイシン、ノルロイシン、フェ ニルアラニン、メチオニン、プロリンなどの中性アミノ 酸類、(ロ)グルタミン酸-ア-エステル、アスパラギ ン酸-β-エステルなどの酸性アミノ酸-ω-エステル 類(ここでエステルとは、メチルエステル、エチルエス テル、プロピルエステル、ブチルエステル、オクチルエ ステル、2-エチルヘキシルエステル、シクロヘキシル エステル、フェニルエステル、ベンジルエステルなどを 示す。)、(ハ) N-カルボベンゾキシリシン、N-カ ルボベンゾキシオルニチン、N-アセチルリシンなどの N-アシル塩基性アミノ酸類、(ニ)セリン、トレオニン、システィン、チロシンなどの水酸基含有α-アミノ酸のエステル類(ここでエステルとは、メチルエステル、エチルエステル、プロピルエステル、ブチルエステル、オクチルエステル、2-エチルヘキシルエステル、シクロヘキシルエステル、フェニルエステル、ベンジルエステルなどを示す。)が挙げられる。

【0006】これらのα-アミノ酸より得られるアミノ 酸-NCAは、光学活性体またはラセミ体あるいはこれ らの混合物であってもよく、また、必要に応じて2種類 以上組み合わせて用いることができる。また、アミノ酸 -NCAは、水に添加する前に粉砕しておくこともでき る。上記アミノ酸-NCAを乳化重合してボリーα-ア ミノ酸粒子を製造する方法において、反応媒体としては 水および/または有機溶媒が使用できる. 水と有機溶剤 との使用割合は、水:有機溶剤が重量比で100:0~ 50:50であることが好ましい。また、有機溶剤を使 用する場合、1気圧、25℃の条件下における水の溶解 度が10g/100ミリリットル以下、好ましくは5g /100ミリリットル以下のものが好ましい。 当該水の 溶解度が10g/100ミリリットルを超える有機溶剤 を使用する場合には、粒子状のポリマーが得られない場 合がある。このような、アミノ酸-NCAを乳化重合し てポリーα-アミノ酸粒子を製造する際に使用される有 機溶剤(α)の具体例としては、クロロメタン、ジクロ ロメタン、クロロホルム、1,1-ジクロロエタン、 1, 2-ジクロロメタン、1, 1, 2-トリクロロエタ ンなどの脂肪族ハロゲン化炭化水素類: クロロベンゼ ン、o ージクロロベンゼン、1,2,4-トリクロロベ ンゼンなどの芳香族ハロゲン化炭化水素類; 酢酸エチ ル、酢酸ブチル、酪酸エチルなどのエステル類;エチル エーテル、ブチルエーテル、ヘキシルエーテル、オクチ ルエーテル、アニソール、エトキシベンゼン、テトラヒ ドロフラン、ジオキサンなどのエーテル類;ペンタン、 ヘキサン、ヘプタン、オクタン、シクロヘキサン、ベン ゼン、トルエン、キシレンなどの炭化水素化合物類、そ の他が挙げられる。これらの有機溶剤(α)は、勿論単 独で用いることができるが、2種類以上を組み合わせる ことにより、水の溶解度およびアミノ酸-NCAの溶解 度などの重要な特性が好ましく調節された有機溶剤を得 ることができる。

【0007】また、アミノ酸-NCAと重合反応媒体である水との使用割合は、アミノ酸-NCA:水の重量比で1:0.5~1:100、好ましくは1:1~1:50である。本発明において、重合開始剤は、アミノ酸-NCAの重合反応を生起させることのできる化合物であれば特に限定されるものではない。その具体例としては、(イ)メチルアミン、エチルアミン、イソプロビルアミン、ブチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミンなどの1級アミン類、(ロ)ジメチ

ルアミン、ジエチルアミン、ジブチルアミン、ジヘキシルアミン、ジへプチルアミン、ジオクチルアミンなどの2級アミン類、(ハ)トリメチルアミン、トリエチルアミン、トリブチルアミン、トリヘキシルアミン、トリへアミン、トリオクチルアミンなどの3級アミン類、(ニ)エタノールアミン、バージメチルエタノールアミンなどのアルコールアミン類、(ホ)エチレンジアミン、ヘキサメチレンジアミン、N.Nージメチルー1、3ープロパンジアミン、トリエチレンジアミンなどのボリアミン類、その他が挙げられる。これらの重合開始剤は、単独でもしくは2種類以上を組み合わせて用いることができる。

【0008】重合開始剤の使用割合は、モノマーである アミノ酸-NCAの1モルに対し、1/2~1/500 0モル、好ましくは1/5~1/1000モルである。 この範囲において重合開始剤の使用量を調節することに より、目的とする大きさの分子量を有するポリマー粒子 を得ることができる。本発明において、乳化剤として は、用いられるアミノ酸-NCAの重合反応を阻害しな いものであれば特に限定されるものではないが、特にノ ニオン系乳化剤が好ましい。ノニオン系乳化剤の具体例 としては、ポリオキシエチレンアルキルエーテル、ポリ オキシエチレンアルキルフェノールエーテル、ポリオキ シエチレンポリオキシプロピレンアルキルエーテル、ポ リオキシエチレン脂肪酸エステル、ポリエチレングリコ ールアルキルエステル、ソルビタン脂肪酸エステル、ポ リオキシエチレンソルビタン脂肪酸エステル、グリセリ ン脂肪酸エステルなどが挙げられる。これらの乳化剤 は、単独で若しくは2種類以上を組み合わせて用いるこ とができる。

【0009】乳化剤の使用割合は、用いられるアミノ酸 -NCAの1重量部に対して0.1~100重量部であ り、好ましくは1~50重量部である。この乳化剤の使 用割合が0.1重量部未満である場合には、生成するポ リマー粒子の分子量が十分に大きなものとならないおそ れがある。本発明においては、アミノ酸-NCAが乳化 剤により安定的に分散する状態が得られる限り、重合開 始剤、乳化剤およびアミノ酸-NCAの添加順序が限定 されるものではない。すなわち、本発明においては、ア ミノ酸-NCAが加水分解する前にアミノ酸-NCAを 乳化状態とすることが必要である。具体的には、重合開 始剤および乳化剤が含有された水中に、上記のアミノ酸 -NCAを添加して重合することが好ましい。このと き、水を反応器中で撹拌することが好ましく、そのため に機械的に攪拌する手段、または超音波照射による手段 を利用することができ、それらを併用してもよい。この ような方法によれば、モノマーであるアミノ酸-NCA が添加される水よりなる重合反応媒体においては、当該 アミノ酸-NCAがそのまま直ちに重合するために必要 な条件が整った状態とされているため、アミノ酸-NC Aが添加されると同時にその表面から重合反応が生成するが、この重合反応は加水分解反応に対して優先的に行なわれるために加水分解反応によって重合反応が阻害されることがなく、実際上、有用なポリーα-アミノ酸よりなるポリマー粒子が生成され、その結果、当該重合反応系はそのままポリーα-アミノ酸のポリマー粒子によるエマルジョンとなる。

【0010】アミノ酸-NCAの重合反応は、アミノ酸 -NCAが水中の重合開始剤と接触することにより、自 発的に生ずる。重合温度は、アミノ酸-NCAの種類、 重合開始剤の種類によっても異なるが、通常、0~10 0℃、好ましくは5~90℃である。この重合温度を調 節することによって、目的とする大きさの分子量を有す るポリーαーアミノ酸のポリマー粒子を製造することが できる。なお、重合圧力は特に限定されるものではな い。重合反応中は、系を撹拌して乳化状態を保つ必要が ある。この攪拌は、例えば反応器中で機械的に攪拌する 手段によって行うことが好ましく、その回転数は、通 常、20~3000r.p.m.である。また、上記に おいて得られるポリーαーアミノ酸の粒子は、次のよう な方法により変性することもできる。例えば、モノマー のアミノ酸-NCAとして、グルタミン酸エステル、ア スパラギン酸エステルなどの酸性アミノ酸エステルのN -炭酸無水物、またはN-カルボベンゾキシリシン、N カルボベンゾキシオルニチンなどの塩基性アミノ酸の N-炭酸無水物を用いた場合に得られる粒子、あるいは ポリマー粒子が、それらのNー炭酸無水物と中性アミノ 酸のN-炭酸無水物との共重合により得られる共重合体 よりなる粒子である場合には、これらの粒子表面を加水 分解処理してアミノ基またはカルボキシル基を生成させ ることにより、粒子表面の親水化を行うことができる。 また、ポリーαーアミノ酸粒子をエタノールアミン、プ ロパノールアミン、ブタノールアミンなどのアルコール アミン類と反応させることにより、粒子表面の親水化を 行うことができる。さらに、ポリーαーアミノ酸粒子を エチレンジアミン、プロピレンジアミン、ヘキサメチレ ンジアミン、オクタメチレンジアミンなどのジアミン 類、エチレングリコール、プロピレングリコールなどの グリコール類、またはマロン酸、コハク酸、アジピン酸 などのジカルボン酸類と反応させることにより、ボリマ 一粒子の架橋を行うことができる。

【0011】上記のボリー α -アミノ酸の平均粒子径は、通常 $0.01\sim100\mu$ m、好ましくは、 $0.05\sim50\mu$ mであり、該平均粒子径の変動係数は通常 $1\sim30\%$ 、好ましくは $1\sim20\%$ である。平均粒子径が 0.01μ m未満であると、後述する複合エマルジョン(I)を安定的に製造できない場合がある。また、 100μ mより大きくしようとすると粒子状をなさなくなる場合がある。本発明で使用されるボリシロキサン複合重

合体粒子 (1) の製造において用いられるオルガノシロキサン (b) は、一般式R n S i (OR¹) $_{4-n}$ (式中、R は炭素数 $1\sim8$ の有機基、R¹は炭素数 $1\sim5$ のアルキル基または炭素数 $1\sim4$ のアシル基、n は $0\sim2$ の整数を示す) で表されるアルコキシシラン、または、一般式R²mS i $O_{(4-n)/2}$ (式中、R²は置換または非置換の 1 価の炭化水素基であり、mは $0\sim3$ の整数を示す) で表される構造単位を有する直鎖状、分岐状または環状構造を有するオルガノシロキサンである。本発明で使用されるポリシロキサン複合重合体粒子 (I) の製造において用いられるオルガノシロキサン (b) は、好ましくは、R n S i (OR¹) $_{4-n}$ で表されるアルコキシシランである。

【0012】以下、(b) 成分として、アルコキシシラ ンを用いる場合について述べるが、その他のオルガノシ ロキサンを用いる場合も同様に製造できる。アルコキシ シランRnSi (OR!) 4-nの式中、Rは炭素数1~8 の有機基であり、例えばメチル基、エチル基、n-プロ ピル基、i ープロピル基などのアルキル基、その他ャー メルカプトプロビル基、アークロロプロビル基、ビニル 基、3、3、3ートリフロロプロピル基、ケーメルカプ トプロピル基、フェニル基、3,4-エポキシシクロへ キシルエチル基、アーアミノプロピル基などが挙げられ る。また、式中、R1は炭素数1~5のアルキル基もし くは炭素数1~4のアシル基があり、例えばメチル基、 エチル基、n-プロピル基、n-ブチル基、sec-ブ チル基、セーブチル基、アセチル基などが挙げられる。 【0013】これらのアルコキシシランの具体例として は、テトラメトキシシラン、テトラエトキシシラン、テ トラプロポキシシラン、テトラブトキシシラン、メチル トリメトキシシラン、メチルトリエトキシシラン、エチ ルトリメトキシシラン、エチルトリエトキシシラン、n ープロピルトリメトキシシラン、n ープロピルトリエト キシシラン、n-プロピルトリメトキシシラン、n-プ ロピルトリエトキシシラン、iープロピルトリメトキシ シラン、iープロピルトリエトキシシラン、アークロロ プロピルトリメトキシシラン、ケークロロプロピルトリ エトキシシラン、i-ブチルトリメトキシシラン、ビニ ルトリメトキシシラン、ビニルトリエトキシシラン、 3, 3, 3-トリフロロプロピルトリメトキシシラン、 3, 3, 3-トリフロロプロピルトリエトキシシラン、 アーグリシドキシプロピルトリメトキシシラン、アーグ リシドキシプロビルトリエトキシシラン、アーメタクリ ルオキシプロピルトリメトキシシラン、アーメタクリル オキシプロピルトリエトキシシラン、ァーメルカプトプ ロピルトリメトキシシラン、ァーメルカプトプロピルト リエトキシシラン、フェニルトリメトキシシラン、フェ ニルトリエトキシシラン、ケーアミノプロピルトリメト キシシラン、3,4-エポキシシクロヘキシルエチルト リメトキシシラン、3,4-エポキシシクロヘキシルエ

チルトリエトキシシラン、ジメチルジエトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン などを挙げることができ、好ましくはジメチルジメトキシシラン、ジメチルジエトキシシラン、iーブチルトリメトキシシランなどである。これらのアルコキシシラン は、1種単独または2種以上を併用することができ、他の例えばチタン、アルミニウムなどの金属アルコキシドを併用することもできる。

٠,

【0014】また、必要に応じて公知のシランカップリ ング剤を併用することもできる。さらに、これらのアル コキシシランは、必要に応じて有機溶媒に溶解して使用 することもできる。(b)成分の使用量は、(a)成分 100重量部(固形分)あたり、好ましくは0.1~5 00重量部、さらに好ましくは0.5~250重量部で ある。本発明において、ポリシロキサン複合重合体粒子 (I)を製造するにあたり、(a)成分のポリマー粒子 中に(b)成分を吸収させることが好ましく、その方法 としては、(a)成分の存在下に(b)成分を一括もし くは連続分割して添加し、よく攪拌することにより達成 される。(a)成分のポリマー粒子に吸収される(b) 成分は、使用される全(b)成分の5重量%以上、好ま しくは10重量%以上、さらに好ましくは30重量%以 上である。また、(b)成分の吸収が充分でない状態で 反応が進むのを避けるために、反応系はpH4~10、 好ましくは70℃以下、さらに好ましくは50℃以下、 特に好ましくは30℃以下の条件で、(b)成分を添 加、吸収させることが好ましい。(a)成分のポリマー 粒子に吸収された(b)成分の縮合反応は、R1の炭素 数、反応温度および水素イオン濃度を変えることにより 容易に制御され、ポリシロキサンの重合度を調製するこ とができる。(b)成分の縮合反応は、温度30℃以 上、好ましくは50℃以上、さらに好ましくは70℃以 上で行うことができる。このようにして得られるポリシ ロキサン複合重合体粒子(I)の平均粒子径は、通常 $0.01 \sim 100 \mu m$ 、好ましくは、 $0.05 \sim 50 \mu m$ であり、該平均粒子径の変動係数は通常1~30%、好 ましくは1~20%である。

【0015】次に、ボリオルガノシロキサン重合体の水性分散体(c)の存在下に、アミノ酸-NCAを重合して製造されるボリオルガノシロキサン系粒子について述べる。ボリオルガノシロキサン系粒子(II)の製造で用いられるボリオルガノシロキサン重合体の水性分散体(c)は、オルガノシロキサンをアルキルベンゼンスルホン酸などの強酸性乳化剤の水溶液中で、ホモミキサーまたは超音波混合機などを用いて混合し、縮合させることによって製造することができる。このとき、必要によって公知のグラフト交叉剤を共縮合させても良い。ここで、使用されるようなオルガノシロキサンは、ボリシロキサン複合粒子(I)で使用されるような一般式RnSi(OR!)4-nで表されるアルコキシシラン、または、

例えば一般式R²mSiO_{(4-m)/2} (式中、R²は置換ま たは非置換の1価の炭化水素基であり、mは0~3の整 数を示す)で表される構造単位を有する直鎖状、分岐状 または環状構造を有するオルガノシロキサンであるが、 好ましくは環状構造を有するオルガノシロキサンであ る。このオルガノシロキサンの有する置換または非置換 の1価の炭化水素としては、例えばメチル基、エチル 基、プロピル基、ビニル基、フェニル基、およびそれら をハロゲン原子またはシアノ基で置換した置換炭化水素 基などを挙げることができる。オルガノシロキサンの具 体例としては、ヘキサメチルシクロトリシロキサン、オ クタメチルシクロテトラシロキサン、デカメチルシクロ ペンタシロキサン、ドデカメチルシクロヘキサシロキサ ン、トリメチルトリフェニルシクロトリシロキサンなど の環状化合物の他に、直鎖状あるいは分岐状のオルガノ シロキサンを挙げることができる。

【0016】また、必要によって共重合される上記グラ フト交叉剤は、例えば、pーピニルフェニルメチルジメ トキシシラン、2-(m-ビニルフェニル) エチルメチ ルジメトキシシラン、1-(m-ビニルフェニル)メチ ルジメチルイソプロポキシシラン、2-(p-ビニルフ ェニル) エチルメチルジメトキシシラン、3-(P-ビ ニルフェノキシ) プロピルメチルジエトキシシラン、3 - (p-ビニルフェノキシ)プロピルメチルジエトキシ シラン、3-(p-ビニルベンゾイロキシ)プロピルメ チルジメトキシシラン、1-(o-ビニルフェニル)-1.1,2-トリメチル-2,2-ジメトキシジシラ ン、1-(o-ビニルフェニル)-1, 1, 2-トリメチルー2, 2ージメトキシジシラン、1-(p-ビニル 7x=1, 1-3, 2x=1, 3-x+1, 3ージエトキシジシロキサン、mービニルフェニルー (3) - (トリエトキシシリル)プロピル)ジフェニルシラ ン、〔3-(p-イソプロペニルベンゾイルアミノ)プ ロピル〕フェニルジプロポキシシラン、ビニルメチルジ メトキシシラン、テトラビニルテトラメチルシクロシロ キサン、アリルメチルジメトキシシラン、ケーメルカプ トプロピルメチルシクロシロキサン、アーメタクリロキ シプロピルメチルジメトキシシランなどを挙げることが できるが、好ましくはp-ビニルフェニルメチルジメト キシシラン、2-(p-ビニルフェニル)エチルメチル ジメトキシシラン、3-(p-ビニルベンゾイロキシ) プロピルメチルジメトキシシラン、3-(p-ビニルベ ンゾイロキシ) プロピルメチルジメトキシシランであ り、さらに好ましくはpービニルフェニルメチルジメト キシシランである。

【0017】以上のグラフト交叉剤の使用割合は、上記オルガノシロキサン成分とグラフト交叉剤の合計量中、好ましくは0~50重量%、さらに好ましくは0~10重量%、特に好ましくは0~5重量%である。縮合に使用される強酸性乳化剤は、オルガノシロキサンの乳化剤

として作用するほか、縮合開始剤となる。この乳化剤の 使用量は、オルガノシロキサンおよび必要に応じて使用 されるグラフト交叉剤の合計量に対して、通常、0.1 ~10重量%、好ましくは0.5~5重量%程度であ る。なお、この際の水の使用量は、オルガノシロキサン および必要に応じて使用されるグラフト交叉剤の合計量 100重量部に対して、通常、100~500重量部、 好ましくは200~400重量部である。また、縮合温 度は、通常、5~100℃である。(c)成分中のポリ オルガノシロキサン重合体粒子の平均粒径は、上記乳化 剤および水の量、縮合温度、ホモミキサーまたは超音波 混合機などを用いて混合したときの分散の程度によって 容易に制御することができる。(c)成分中のポリオル ガノシロキサンの分子鎖末端は、例えば水酸基、アルコ キシ基、トリメチルシリル基、メチルフェニルビニルシ リル基、メチルジフェニルシリル基などで封鎖されてい ても良い。

٠,

【0018】このようにして得られるポリオルガノシロキサンの水性分散体(c)中の粒子の平均粒子径は、通常 $0.01\sim100\mu$ m、好ましくは、 $0.05\sim50\mu$ mであり、該平均粒子径の変動係数は通常 $1\sim30\%$ 、好ましくは $1\sim20\%$ である。ポリオルガノシロキサン系エマルジョン(II)の製造において、アミノ酸-NCAを構成する $\alpha-$ アミノ酸は、(a)成分を重合する際に用いられるものと同様である。水系分散媒中に分散したポリオルガノシロキサン重合体粒子(c)の存在下で、アミノ酸-NCAを重合する際の仕込み組成は、

- (c) 成分(固形分)が100重量部に対し、アミノ酸-NCAが5~500重量部、好ましくは10~400重量部、さらに好ましくは20~300重量部である。ポリオルガノシロキサン系エマルジョン(II)は、
- (c)成分の存在下に、(d)成分を乳化重合する事によって実施することが好ましい。乳化重合に際しては、(a)成分の重合の際と同様の方法が用いられる。なお、(c)成分中のポリオルガノシロキサン粒子表面にアミノ基を導入すると、上述のアミノ酸-NCAの重合の際に開始剤となるアミン類を加えなくても重合を開始させることができる

【0019】このようにして得られるポリオルガノシロキサン系粒子(II)の平均粒子径は、通常0.01~100μm、好ましくは、0.05~50μmであり、該平均粒子径の変動係数は通常1~30%、好ましくは1~20%である。つぎに、片末端アミノ変性ポリオルガノシロキサン(d)(以下、(d)成分という)存在下に、アミノ酸ーNCAを乳化重合して製造されるシリコーンポリアミノ酸共重合体粒子(III)について述べる。片末端アミノ変性ポリオルガノシロキサン(d)は分子鎖の片末端に1級あるいは2級アミノ基を有するポリオルガノシロキサンであり、平均分子量が300~300.000のものが好ましい。この片末端アミノ変性

シリコーンの平均分子量が300より小さいと、これを用いて合成したシリコーンポリアミノ酸共重合体がシリコーンとしての特徴を発揮し難くなり、また、300.00より大きいとその形態がゲル状となり、シリコーンポリアミノ酸を合成する反応において、その反応性に著しい低下を示すことから好ましくない。これら片末端アミノ変性シリコーンは公知の方法にて合成することができる。(例えば、USP第3360526号、USP第3337947号、J. Amer. Chem. Soc., 78, 2278(1956))。また、本発明において用いられる片末端アミノ変性シリコーンとして、特開平2-91083号公報に開示され、市販されているものを使用することもできる。

【0020】アミノ酸ーNCAは、(a)成分を製造する際に用いられるものと同様のものを使用することができる。アミノ酸ーNCAの重合反応は、片末端アミノ変性ポリオルガノシロキサンとアミノ酸ーNCAとが接触することにより生じる。すなわち、片末端アミノ変性ポリオルガノシロキサンのアミノ基が重合開始剤として、アミノ酸ーNCAはその開環および二酸化炭素の離脱を繰り返しながら重合し、これにより、シリコーンポリアミノ酸エマルジョンが生成する。上記のシリコーンポリアミノ酸エマルジョンの製造は、片末端アミノ変性ポリオルガノシロキサンの存在下、アミノ酸ーNCAを乳化重合することにより達成されるが、アミノ酸ーNCAの重合は、イストリーのアンドラスを含むまたでである。

(a) 成分のポリアミノ酸の製造と同様の方法にて行う ことができる。

【0021】以上において、片末端アミノ基変性ポリオ ルガノシロキサンの使用割合は、用いられるアミノ酸ー NCA1重量部に対して、通常0.0001~1重量 部、好ましくは0.001~0.1重量部であり、ポリマ 一粒子の要求特性に応じて当該使用割合を選択すること ができる。本発明の方法によればポリーα-アミノ酸よ りなるポリマー粒子のエマルジョンが得られるが、当該 ポリマー粒子は、エマルジョンの状態のままで使用する こともできるし、また水から分離して使用することもで きる。当該エマルジョンにおけるポリマー粒子を水から 分離する手段としては、スプレードライヤーなどを用い て一挙に水を蒸発させる手段、エマルジョンを遠心分離 処理することによりポリマー粒子を沈降させて分離し、 得られる固形物を乾燥させる手段、当該エマルジョンを 水分離膜を用いて混縮した後に固形物を乾燥する手段な どが挙げられる。また、必要に応じて、ポリマー粒子を 水などにより洗浄して乳化剤を除去することも可能であ る。このようにして得られるシリコーンポリアミノ酸共 重合体エマルジョン(III)中の粒子の平均粒子径は、 通常0.01~100µm、好ましくは、0.05~50 μmであり、該平均粒子径の変動係数は通常1~30 %、好ましくは $1 \sim 20\%$ である。

【0022】本発明のシロキサンとボリアミノ酸を含む 粒子の吸油量は、スクワレンを用い、JIS K 51 01(1978年)に限定される顔料の吸油量測定法に 準拠して測定する。すなわち、粉体1gをガラス板上に 取り、スクワレンを少量ずつ滴下しながらへラを用いて 練り込み、粉体が全体的にペースト状になった時を終点 とし、粉体1gあたりの所要スクワレン量(m1)を吸 油量とする。JIS法では、油として煮あまに油を用い るが、本法では皮脂との類似性からスクワレンを用い る。本発明に係わる重合体粒子の吸油量は1m1/g以 上、好ましくは2m1/g以上である。

【0023】本発明のポリシロキサンとポリアミノ酸を含む粒子は、水、低級アルコールあるいはこれらの混合物に分散させて懸濁液とした毛髪化粧料として用いることができる。本発明の毛髪化粧料の最も好ましい基剤は水/エタノールの混合系であり、重量比で99/1~20/80、より好ましくは、95/5~40/60として用いる。ポリシロキサンとポリアミノ酸を含む粒子の好ましい配合量は、毛髪化粧料の0.05~5重量%、より好ましくは、0.1~2重量%である。本発明の毛髮化粧料には、分散安定化、あるいは整髪の為に各種の水溶性高分子を用いることができる。水溶性高分子の具体的としては、ポリビニルアルコール、ポリビニルピロ

リドン、ヒドロキシエチルセルロースなどの非イオン性 水溶性高分子、カルボキシメチルセルロー、架橋ボリア クリル酸(カルボキシビニルボリマー)、キサンタンガム、グアーガムなどのアニオン性水溶性高分子を用いることができる。これら水溶性高分子の配合量は毛髪化粧料の0.01~5重量%、特に0.05~1重量%であることが好ましい。本発明の毛髪化粧料には、上記の成分に加えて、一般的に配合されるその他の成分、例えば、グリセリン、ジプロピレングリコール、1,3-ブチレングリコールのような多価アルコール、ノニオン活性 剤、カチオン活性剤、アニオン活性剤、染料、防腐剤、香料、酸化防止剤、キレート剤、殺菌剤、ビタミン、ホルモンなどの薬剤、養毛料、抗フケ剤などを本発明の効果を損なわない質的、量的範囲内で配合することができる。

[0024]

【実施例】以下、本発明の実施例について詳細に説明するが、本発明はこれらの実施例に限定されるものではない。以下の実施例におけるポリマー粒子の平均粒子径は、透過型電子顕微鏡により観察して測定したものであり、ポリマー粒子のC V値は、下記数1で表される式から算出した値を示す。

【0025】数1

ポリマー粒子の粒子径の標뚹偏差

CV值(%) =--

- X 100

ポリマー粒子の平均粒子径

【0026】実施例1

٠,

丸底セパラブルフラスコに精製水2リットルを入れ、こ こに乳化剤 (ポリオキシエチレンソルビタンモノラウレ ート「Tween 20」(花王(株)製)1.5g、 トリエチルアミン14.4ミリモルを加えて攪拌し、こ の中に1、2ージクロロエタンを100gに溶解したァ ーベンジルーLーグルタメート-N-炭酸無水物(以 下、「BLG-NCA」という。)の粉末100g(3 80ミリモル)を加え、撹拌を続けながら、室温で5時 間BLG-NCAを重合することによりPBLG粒子に よるエマルジョンを得た。この粒子の平均粒子径は0. 8μm、CV値は19%であった。反応後、iーブチル トリメトキシシラン30gを入れ、約1時間にわたり強 く攪拌し、さらに80℃に昇温し、3時間攪拌を続け反 応させた。アルコキシシランの縮合転化率は99%であ った。その後冷却し、200メッシュの金網で沪過し、 ポリシロキサン複合重合体エマルジョン(I-1)を得 た。以上において得られたポリシロキサン複合重合体工 マルジョン(I-1)の粒子の平均粒子径は1µm、C V値は19%、スクワレン吸油量は2.0±0.1ml /gであった。

【0027】実施例2

pービニルフェニルメチルジメトキシシラン1.5gおよびオクタメチルシクロテトラシロキサン98.5gを

混合し、これをドデシルベンゼンスルホン酸2.0gを 溶解した蒸留水300g中に入れ、ホモミキサーにより 3分間撹拌して乳化分散させた。この混合液を、コンデ ンサー、窒素導入口および撹拌機を備えたセパラブルフ ラスコに移し、撹拌混合しながら90℃で6時間加熱 し、5℃で24時間冷却することによって縮合を完成さ せた。得られた変性ポリオルガノシロキサンの水性分散 体を炭酸ナトリウム水溶液でpH7に中和し、ポリオル ガノシロキサン重合体の水性分散体(c-1)を得た。 得られた重合体粒子の平均粒子径は0.2 μmであっ た。この変性ポリオルガノシロキサンラテックス中に、 トリエチルアミン7.2ミリモルを加えて撹拌し、この 中にアーベンジルーレーグルタメートーNー炭酸無水物 (以下、「BLG-NCA」という。) の粉末50g (190ミリモル)を加え、攪拌を続けながら、室温で 5時間BLG-NCAを重合することによりPBLG粒 子によるエマルジョンを得た。この粒子の平均粒子径は 0. 5μm、C V値は19%で、スクワレン吸油量は 2. 0±0. 1ml/gであった。

【0028】実施例3

丸底セパラブルフラスコに精製水1リットルを入れ、ここに乳化剤(ボリオキシエチレンソルビタンモノラウレート「Tween 20」(花王(株)製)1gを添加して充分混合した分散液に、rーベンジルーLーグルタ

メートーNー炭酸無水物(以下、「BLG-NCA」という。)の粉末100gを加え、十分に撹拌して分散させた後、塩化メチレン100g中に、上記化1で表される片末端アミノ変性ポリオルガノシロキサンにおいて、末端Rのうちの1つがnーブチル基で、他の全てのRがメチル基であり、重量平均分子量が4700(ポリスチレン換算値)、アミン化が11.1KOHmg/gであ

【0029】化1

【0030】比較例1

タルク、カオリン、実施例1においてグラフト重合する前の変性ポリオルガノシロキサン粒子の吸油量はそれぞれ、 0.5 ± 0.1 , 0.6 ± 0.1 であった。

実施例4

実施例1~3で得られた重合体粒子を用いて、下記の組成を有するペースト状毛髪化粧料を調製した。それぞれの毛髪料を被験者のほおに塗布し、1時間後に剥離し、吸収された皮脂料を重量法で定量した。結果を表1に示す。

実施例1~3で得られた重合体粒子

15重量%

カルボキシメチルセルロース

0.5重量% 30重量%

エチルアルコール

香料

0.1重量%

精製水にて100重量%とする。

【0031】比較例2

カオリン、タルク、実施例2においてアミノ酸-NCA を重合する前の変性ポリオルガノシロキサン粒子を用いて、実施例4と同様の配合でベースト状毛髪化粧量を調製した。それぞれの毛髪料を被験者のほおに塗布し、1時間後に剥離し、吸収された皮脂料を重量法で定量した。結果を表1に示す。

[0032]

æ	7
æ	1
	_

重合体 粒子	実施例 1	実施例 2	実施例 3	力さリン	9119	ポリオルカ゚ノ シロキサン粒子
皮脂量 (μg/c㎡)	18±6	16±5	17±5	12±8	8±6	4±1

表1から明かな如く、本発明品は比較品と比べ高い皮脂 吸収能を示した。 実施例1~3で得られた重合体粒子を用いて、下記の組成を有する毛髪化粧料を調製した。

【0033】実施例5

実施例1~3で得られた重合体粒子

カルボキシビニルポリマー

0.3重量% 0.04重量%

(カーボボール941,グッドリッチ社)

t -メントール

0.05重量%

香料

0.2重量%

エチルアルコール

48重量%

精製水にて100重量%とする。

この毛髪化粧料を被験者の頭部片側に適用し、もう片側に本発明の重合体粒子未配合の毛髪化粧料を適用した。 1日後、2日後、3日後の左右での油性感の違いをモニターにより官能評価した。なお、評価において〇は油性 感が良好、△は普通、×は不良であることを示す。結果 を表2に示す。

[0034]

表 2

粒子\日数	1日後	2 日後	3日後
実施例1 実施例2	0	0	00
実施例3	0	0	0
なし	0	Δ	×

【0035】実施例6

を有するヘアーコンディショナーを調製した。

実施例1~3で得られた重合体粒子を用いて下記の組成

実施例1~3の重合体粒子

1.0重量%

塩化ステアリルトリメチルアンモニウム

1.5重量%

エタノール

2.3重量%

プロピレングリコール

5.0重量%

メチルパラペン

0.2重量%

ヒドロキシエチルセルロース 背色1号 0.8重量%

香料

適量

精製水で100重量%とする

この毛髪化粧料を被験者の頭部片側に適用し、もう片側には本発明の重合体粒子未配合の比較品を適用し、すす

果を表3に示す。

[0036]

いだ後、経日での油性感を実施例4に従い評価した。結

表3

粒子\日数	1 日後	2日後	3 日後
実施例 1 実施例 2 実施例 3	000	000	000
なし	0	Δ	×

[0037]

【発明の効果】本発明のポリオルガノシロキサンとポリアミノ酸を必須成分とする重合体は、造膜性、タンパク

吸着性に優れた重合体である。さらには、皮脂吸収能、 使用感に優れ、毛髪の油性感を軽減するのに適するた め、特に毛髪化粧料として好適に使用できる。

フロントページの続き

(72)発明者 別所 信夫

東京都中央区築地2丁目11番24号 日本合成ゴム株式会社内