Stelsels

Stelsels van lineaire congruenties

Beschouw het stelsel:

$$\begin{cases} x \stackrel{m_1}{=} a_1 \\ x \stackrel{m_2}{=} a_2 \\ \dots \\ x \stackrel{m_n}{=} a_n \end{cases}$$

Met $a_i \in \mathbb{Z}$, $m_i \in \mathbb{N}_0$, m_i onderling priem, $x \in \mathbb{Z}$

Bemerk: de coëfficiënten van x zijn allemaal 1 (= algemene vorm van lineaire congruentie)

Chinese reststelling:

Dit stelsel bezit een unieke oplossing modulo $M=m_1\cdot m_2\cdots m_n$

Stelsels van lineaire congruenties

Bewijs:

1. Constructie van een oplossing

Stel
$$M_i = \frac{M}{m_i}$$
 voor alle i
 $\Rightarrow \gcd(m_i, M_i) = 1$
 \Rightarrow de lineaire congruentie $M_i \cdot y \stackrel{m_i}{=} 1$ heeft een oplossing y_i

$$\begin{cases} x \stackrel{m_1}{=} a_1 \\ x \stackrel{m_2}{=} a_2 \\ \dots \\ x \stackrel{m_n}{=} a_n \end{cases}$$

Definieer nu $x = a_1 M_1 y_1 + a_2 M_2 y_2 + \cdots + a_n M_n y_n$ Dan is x inderdaad een oplossing van het stelsel

$$\Rightarrow x = (a_1M_1y_1 + a_2M_2y_2 + \dots + a_nM_ny_n) \bmod M \text{ is een oplossing van het stelsel}$$

en $x \in \{0, 1, 2, \dots, M - 1\}$

Stelsels van lineaire congruenties

Bewijs:

2. De gevonden oplossing is uniek

Ongerijmde: stel dat er twee oplossingen mod M zijn: x_1 en x_2

$$\Rightarrow z = x_1 - x_2$$
 is een oplossing van

$$\begin{cases} z \stackrel{m_1}{=} 0 \\ z \stackrel{m_2}{=} 0 \\ \dots \\ z \stackrel{m_n}{=} 0 \end{cases}$$

$$\begin{cases} x \stackrel{m_1}{=} a_1 \\ x \stackrel{m_2}{=} a_2 \\ \dots \\ x \stackrel{m_n}{=} a_n \end{cases}$$

 $\Rightarrow z = x_1 - x_2$ is een veelvoud van m_1 , van m_2 , ...

 $\Rightarrow z = x_1 - x_2$ is een veelvoud van M (want alle m_i onderling ondeelbaar)

Dus: x_1 en x_2 moeten minstens een veelvoud van M verschillen: contradictie

Beschouw het stelsel:

$$\begin{cases} x \stackrel{3}{=} 2 \\ x \stackrel{5}{=} 3 \\ x \stackrel{7}{=} 2 \end{cases}$$

3, 5 en 7 zijn onderling priem, dus er is één unieke oplossing modulo $M = 105 = 3 \cdot 5 \cdot 7$ We vinden:

$$M_1 = 35, M_2 = 21, M_3 = 15$$

De unieke oplossing in $\{0,1,2,...104\}$ is:

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + a_3 M_3 y_3 \mod M = 2 \cdot 35 \cdot y_1 + 3 \cdot 21 \cdot y_2 + 2 \cdot 15 \cdot y_3 \mod 105$$
 waarbij y_i de inverse is van M_i modulo m_i

Beschouw het stelsel:

$$\begin{cases} x \stackrel{3}{=} 2 \\ x \stackrel{5}{=} 3 \\ x \stackrel{7}{=} 2 \end{cases}$$

De unieke oplossing in {0,1,2, ... 104} is:

 $x = a_1 M_1 y_1 + a_2 M_2 y_2 + a_3 M_3 y_3 \mod M = 2 \cdot 35 \cdot y_1 + 3 \cdot 21 \cdot y_2 + 2 \cdot 15 \cdot y_3 \mod 105$ waarbij y_i de inverse is van M_i modulo m_i

Via Euclides vinden we deze inversen (reken na of programmeer): $y_1 = 2$, $y_2 = 1$, $y_3 = 1$

En dus: $x = 2 \cdot 35 \cdot 2 + 3 \cdot 21 \cdot 1 + 2 \cdot 15 \cdot 1 \mod 105 = 23$

Controleer door x = 23 terug in te vullen in het stelsel!

Beschouw het stelsel:

$$\begin{cases} x \stackrel{3}{=} 2 \\ x \stackrel{6}{=} 5 \end{cases}$$

3 en 6 zijn **niet** onderling priem, dus het stelsel moet eerst gereduceerd worden naar een vorm waarbij alle m_i onderling priem zijn

De laatste vergelijking valt uiteen in $x \stackrel{2}{=} 5$ en $x \stackrel{3}{=} 5$ wat equivalent is met $x \stackrel{2}{=} 1$ en $x \stackrel{3}{=} 2$ Het stelsel wordt dus:

$$\begin{cases} x \stackrel{3}{=} 2 \\ x \stackrel{2}{=} 1 \\ x \stackrel{3}{=} 2 \end{cases} \Leftrightarrow \begin{cases} x \stackrel{3}{=} 2 \\ x \stackrel{2}{=} 1 \end{cases}$$

Beschouw het stelsel:

$$\begin{cases} x \stackrel{3}{=} 2\\ 3x \stackrel{9}{=} 12 \end{cases}$$

3 en 9 zijn **niet** onderling priem, dus het stelsel moet eerst gereduceerd worden naar een vorm waarbij alle m_i onderling priem zijn

In de laatste vergelijking kunnen we alle getallen delen door 3: $x \stackrel{3}{=} 4$ of nog $x \stackrel{3}{=} 1$ Het stelsel wordt dus:

$$\begin{cases} x \stackrel{3}{=} 2 \\ x \stackrel{3}{=} 1 \end{cases}$$

Dit is duidelijk een strijdig stelsel

Toepassingen

Residu-talstelsels

Probleem:

```
bewerkingen + en × bij enorm grote gehele getallen m.b.v. computer mogelijke manieren : gewone methode (decimaal, binair of hexadecimaal): sequentieel... parallelle methode?
```

Residu-talstelsels

Beschouw $m_1, m_2, ..., m_n$ allen onderling priem, en $M = m_1 m_2 \cdots m_n$

Chinese reststelling: elk getal x < M kan nu op unieke wijze voorgesteld worden als $(x \mod m_1, x \mod m_2, ..., x \mod m_n)$

Bijvoorbeeld:

Kies $m_1 = 99$, $m_2 = 98$, $m_3 = 97$ en $m_4 = 95$

Dan kan men alle getallen < 89 403 930 voorstellen

Het getal 123684 wordt uniek voorgesteld door (33, 8, 9, 89)

... want $33 = 123684 \mod 99$, enz.

Residu-talstelsels

Vergelijking met gewone talstelsels :

- + bewerkingen + en × veel eenvoudiger en dus sneller (let wel op voor overflow)
- + bewerkingen + en × inherent parallel (parallel computing)
- enkel in \mathbb{Z} , niet in \mathbb{R}
- andere bewerkingen veel complexer (dus enkel specifieke toepassingen)

Cryptologie

Versleutelen van berichten

Symmetrische encryptie: er is één sleutel om te encrypteren en decrypteren – '**private key**' Asymmetrische encryptie: er zijn twee verschillende sleutels – '**public key**'

Private key: Caesar's encryptiemethode

Encryptie:

Elke letter A ... Z wordt omgezet in een getal n = 0 ... 25

$$f(n) = (n + k) \mod 26 \ (k = \text{sleutel})$$

Decryptie:

 $g(n) = (n - k) \bmod 26$

Elk getal $n = 0 \dots 25$ wordt terug een letter A ... Z

A B C D E F G H I

Voordelen en nadelen:

- + heel eenvoudig
- eenvoudig te kraken (bijv. door afluisteren van de sleutel, of door frequentieanalyse)

Voorbeeld: "brexit" met k = 24 wordt "zpcvgr"

Public key: RSA

Idee: de afzender kiest/berekent een sleutel en verspreid deze publiekelijk De sleutel is dus gekend door iedereen, maar enkel de afzender kan deze decrypteren

RSA-encryptie (1976, MIT)

ontvanger kiest 2 grote priemgetallen p en q en een exponent e [ggd(e, (p-1) x (q-1)) = 1] ontvanger berekent n = p x q ontvanger stuurt sleutel (n, e) naar afzender afzender encrypteert het bericht M tot de code C: $C = M^e \mod n$ ontvanger berekent d = inverse van e modulo (p-1) x (q-1) ontvanger decrypteert code C tot bericht M: $M = C^d \mod n$ (zonder bewijs: gebaseerd op de kleine stelling van Fermat)

Tegenwoordig wordt aangeraden om voor n een getal met 2048 bits \approx 600 cijfers te nemen De sterkte van RSA is gebaseerd op het moeilijk kunnen ontbinden van een groot getal

RSA: voorbeeld

We wensen het karakter 'Y' te verzenden, met ASCII-code 89

- 1. Kies twee priemgetallen p = 11 en q = 29 en exponent e = 3 [ggd(3, 10 x 28) = 1]
- 2. Bereken $n = p \times q = 319$
- 3. Stuur de sleutel (n, e) = (319, 3) naar de afzender
- 4. Afzender encrypteert M = 89 als volgt: $C = M^e \mod n = 89^3 \mod 319 = 298$
- 5. Afzender stuurt C = 298 over het communicatiekanaal naar de bestemmeling
- 6. Bestemmeling berekent inverse van e modulo $(p-1) \times (q-1) = d = 187 \mod 280$
- 7. Bestemmeling decrypteert het bericht als volgt: $M = C^d \mod n = 298^{187} \mod 319 = 89$
- 8. 89 als ASCII-code komt inderdaad overeen met de oorspronkelijke letter 'Y'