International Rectifier

MBRB16..PbF

SCHOTTKY RECTIFIER

16 Amp

$$I_{F(AV)} = 16Amp$$

 $V_R = 35 - 45V$

Major Ratings and Characteristics

Characteristics	Values	Units
I _{F(AV)} Rectangular waveform	16	Α
V _{RRM}	35-45	V
I _{FSM} @ tp=5 µs sine	1800	Α
V _F @16Apk, T _J =125°C	0.57	V
T _J	-65 to 150	°C

Description/ Features

The MBR16.. Schottky rectifier has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 150° C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- 150° C T_J operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free ("PbF" suffix)

Bulletin PD-21044 rev. A 06/06

Voltage Ratings

Part number	MBRB1635PbF	MBRB1645PbF	
V _R Max. DC Reverse Voltage (V)			
V _{RWM} Max. Working Peak Reverse Voltage (V)	35	45	

Absolute Maximum Ratings

	Parameters	MBR16	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	16	Α	\textcircled{T}_{C} = 134 °C, (Rated V_{R})	
I _{FSM}	Non-Repetitive Peak Surge Current	1800		5μs Sine or 3μs Rect. pulse Following any rated load condition and with rated V _{RRM} applied	
		150	Α	Surge applied at rated load condition halfwave single phase 60Hz	
E _{AS}	Non-RepetitiveAvalancheEnergy	24	mJ	T _J = 25 °C, I _{AS} = 3.6 Amps, L = 3.7 mH	
I _{AR}	Repetitive Avalanche Current	3.6	Α	Current decaying linearly to zero in 1 μ sec Frequency limited by T _J max. V _A = 1.5 x V _R typical	

Electrical Specifications

	Parameters	MBR16	Units	(Conditions
V_{FM}	Max. Forward Voltage Drop(1)	0.63	V	@ 16A	T _J = 25 °C
		0.57	V	@ 16A	T _J = 125 °C
I _{RM}	Max. Instantaneus Reverse Current	0.2	mA	T _J = 25 °C	Detect DC velters
	(1)	40	mA	T _J = 125 °C	Rated DC voltage
C _T	Max. Junction Capacitance	1400	pF	V _R = 5V _{DC} (test signal range 100Khz to 1Mhz) 25°C	
L _s	Typical Series Inductance	8.0	nH	Measured from top of terminal to mounting plane	
dv/dt	$\begin{array}{l} \text{Max. Voltage Rate of Change} \\ (\text{Rated V}_{\text{R}}) \end{array}$	10000	V/ µs		

(1) Pulse Width < 300µs, Duty Cycle <2%

Thermal-Mechanical Specifications

	Parameters		MBR16	Units	Conditions
T _J	Max. Junction Temperature Ra	ange	-65 to 150	°C	
T _{stg}	Max. Storage Temperature Ra	inge	-65 to 175	°C	
R _{thJC}	Max. Thermal Resistance Junto Case	ction	1.50	°C/W	DCoperation
R _{thCS}	Typical Thermal Resistance, C to Heatsink	Case	0.50	°C/W	Mounting surface, smooth and greased
wt	Approximate Weight		2(0.07)	g(oz.)	
Т	Mounting Torque	Min.	6(5)	Kg-cm	
		Max.	12(10)	(lbf-in)	
	Marking Device		MBRB16		Case style D ² Pak

Bulletin PD-21044 rev. A 06/06

100 Tj = 150°C 10 100°C 100°C 75°C 0.001 0.0001 0.0001 0 5 10 15 20 25 30 35 40 45 Reverse Voltage-V_R(V)

Fig. 2-Typical Values of Reverse Current Vs. Reverse Voltage

Fig. 1 - Maximum Forward Voltage Drop Characteristics

Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage

Fig. 4-Max. Thermal Impedance Z_{thJC} Characteristics

Bulletin PD-21044 rev. A 06/06

Fig. 5-Max. Allowable Case Temperature Vs. Average Forward Current

Fig. 6-Forward Power Loss Characteristics

Fig. 7-Max. Non-Repetitive Surge Current (Per Leg)

Fig. 8 - Unclamped Inductive Test Circuit

 $\begin{aligned} \textbf{(2)} \ \ &\text{Formula used: } \textbf{T}_{\text{C}} = \textbf{T}_{\text{J}} - (\textbf{Pd} + \textbf{Pd}_{\text{REV}}) \textbf{x} \, \textbf{R}_{\text{IhJC}}; \\ & \textbf{Pd} = \textbf{Forward Power Loss} = \textbf{I}_{F(AV)} \textbf{x} \, \textbf{V}_{FM} \textcircled{0} \, (\textbf{I}_{F(AV)} / \textbf{D}) \ \ (\text{see Fig. 6}); \\ & \textbf{Pd}_{REV} = \textbf{Inverse Power Loss} = \textbf{V}_{R1} \textbf{x} \, \textbf{I}_{R} \, (\textbf{1} - \textbf{D}); \, \textbf{I}_{R} \textcircled{0} \, \textbf{V}_{R1} = \text{rated } \textbf{V}_{R} \, \text{applied} \end{aligned}$

Outline Table

Part Marking Information

Tape & Reel Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 06/06