

Implicit Neural Network

Jongwon Choi

Contents

- What is Implicit Neural Network?
- Partial Differential Equation (PDE)
- PDE and Implicit Neural Network
 - o PINN (a.k.a FEM)
 - NeRF
 - o LIIF
 - VideoINR
- Limitation & Conclusion

O1What is Implicit Neural Network?

Conventional Neural Network (NN)

- A function trasforming the given input to the target output
- Ex. Convolutional Neural Network for Image, Recurrent Neural Network for Text

Convolutional Neural Network

Recurrent Neural Network

Conventional Neural Network (NN)

- A function trasforming the given input to the target output
- Recently, the transformer-based neural networks

Conventional Neural Network (NN)

 x_n

 x_{n^2}

Definition & Limitation

- The conventional neural network trains the relation between the input data and the output labels
- Thus, it needs numerous data to obtain the distinctive features for the output labels
- Also, it is inefficient to contain the generative information of the respective input

Extension of Conventional NN

Definition & Limitation

- The conventional neural network trains the relation between the input data and the output labels
- Thus, it needs numerous data to obtain the distinctive features for the output labels
- Also, it is inefficient to contain the generative information of the respective input

Extension

- Focus on the intra-relation of informations contained in the specific target input
- Reconstruct the original signal (Continuous domain) from the sampled signal (Discrete domain)
- Solve the partial derivative equations!

Implicit Neural Network!

Definition

- Train the target signal itself using the sampled signal values
- Assume that the non-linearity between the sampled values can be generalized by neural network
- Or, reduce the discontinuity through the additional regularization term or the boundary conditions
- Very simple to implement a network when we can design a partial difference equation for our tasks

Implicit Neural Network!

Example

• For the image, we can train the intra-relation by learning a function given input coordinates

Implicit Neural Network!

What??

• Then, how can we handle the other image? - We cannot...

Definition

- Generally, PDE is used in Physics and system design
- The equation represents the relations among the target function and its derivatives
- Solution of partial differential equation = Reconstructed target function

Example - Difference Equation & z- transform

Example - Difference Equation & z- transform

Example - Difference Equation & z- transform

Vehicle Dynamics = Differential Equation!

Example - Difference Equation & z- transform

Example - Difference Equation & z- transform

$$\sum_{k=0}^{N} b_k y[n-k] = \sum_{k=0}^{M} a_k x[n-k]$$
 ,where $M \leq N$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} a_k z^{-k}}{\sum_{k=0}^{N} b_k z^{-k}}$$

Property	Time Domain	Z Domain	ROC
Linearity	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(z) + a_2X_2(z)$	At least $R_1 \cap R_2$
Translation	$x(n-n_0)$	$z^{-n_0}X(z)$	${\it R}$ except possible addition/deletion of 0
Modulation	$a^n x(n)$	$X(a^{-1}z)$	a R
Time Reversal	x(-n)	X(1/z)	R^{-1}
Upsampling	$(\uparrow M)x(n)$	$X(z^{M})$	$R^{1/M}$
Downsampling	$(\downarrow M)x(n)$	$\frac{1}{M}\sum_{k=0}^{M-1} X\left(e^{-j2\pi k/M}z^{1/M}\right)$	R^M
Conjugation	$x^*(n)$	$X^*(z^*)$	R
Convolution	$x_1 * x_2(n)$	$X_1(z)X_2(z)$	At least $R_1 \cap R_2$
Z-Domain Diff.	nx(n)	$-z\frac{d}{dz}X(z)$	R
Differencing	x(n)-x(n-1)	$(1-z^{-1})X(z)$	At least $R \cap z > 0$
Accumulation	$\sum_{k=-\infty}^{n} x(k)$	$\frac{z}{z-1}X(z)$	At least $R \cap z > 1$

Property	
Initial Value Theorem	$x(0) = \lim_{z \to \infty} X(z)$
Final Value Theorem	$\lim_{n\to\infty} x(n) = \lim_{z\to 1} [(z-1)X(z)]$

Example - Maxwell Equation

Name	Integral equations	Differential equations		
Gauss's law		$ abla \cdot \mathbf{E} = rac{ ho}{arepsilon_0}$		
Gauss's law for magnetism	$\oint \!$	$ abla \cdot {f B} = 0$		
Maxwell–Faraday equation (Faraday's law of induction)	$\oint_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d}m{\ell} = -rac{\mathrm{d}}{\mathrm{d}t} \iint_{\Sigma} \mathbf{B} \cdot \mathrm{d}\mathbf{S}$	$ abla imes \mathbf{E} = -rac{\partial \mathbf{B}}{\partial t}$		
Ampère's circuital law (with Maxwell's addition)	$\oint_{\partial \Sigma} \mathbf{B} \cdot \mathrm{d} oldsymbol{\ell} = \mu_0 \left(\iint_{\Sigma} \mathbf{J} \cdot \mathrm{d} \mathbf{S} + arepsilon_0 rac{\mathrm{d}}{\mathrm{d} t} \iint_{\Sigma} \mathbf{E} \cdot \mathrm{d} \mathbf{S} ight)$	$ abla imes \mathbf{B} = \mu_0 \left(\mathbf{J} + arepsilon_0 rac{\partial \mathbf{E}}{\partial t} ight)$		

Example - Material Derivative

· Conservation of mass

$$rac{\partial}{\partial t} \iiint_V
ho \, dV = - \, \oiint_S \,
ho {f u} \cdot d{f S} \qquad \qquad \Longrightarrow \qquad rac{\partial
ho}{\partial t} +
abla \cdot (
ho {f u}) = 0$$

Conservation of energy

$$horac{Dh}{Dt} = rac{Dp}{Dt} +
abla \cdot (k
abla T) + \Phi$$

Solution of PDE

Finite Difference Method (FDM)

Discretize the target space & Approximate the differential values

$$f(x+\delta) = f(x) + \delta f'(x) + \frac{\delta^2}{2} f''(x) + \frac{\delta^3}{6} f'''(x) + \cdots$$

$$\frac{[f(x+h) - f(x)]/h = f'(x) + O(h)}{\frac{f(x+h) - f(x-h)}{2h}} = f'(x) + O(h^2).$$

$$\frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

- 1. We need to set the grid size (h) 2. We need the initial value

Boundary Condition

Dirichlet boundary condition

• Constraint for the function value upon a surface/volume boundary

$$u(x,y) = 0, \quad (x,y) \in \partial \Omega.$$

Neumann boundary condition

Constraint for the function derivative value upon a surface/volume boundary

$$-\Delta u(x,y) = 1, \quad (x,y) \in \Omega,$$

03 PDE and Implicit Neural Network

PDE and Implicit Neural Network

01

PINN

Solve PDE for Physics

02

NeRF

Learn PDE for 3D Rendering

03

LIIF

Learn PDE for image super-resolution

04

VideoINR

Learn PDE for video manipulation

PDE and Implicit Neural Network

PINN
Solve PDE for Physics

NeRF
Learn PDE for 3D
Rendering

LIIF
Learn PDE for image super-resolution

VideoINR

Learn PDE for video manipulation

*** "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations", JCP, 2019

Target Problem

Diffusion equation

$$\frac{\partial u}{\partial t} = \lambda \frac{\partial^2 u}{\partial x^2}$$

Subject to

$$-\Delta u(x,y) = 1, \quad (x,y) \in \Omega,$$

$$u(x,y) = 0, \quad (x,y) \in \partial \Omega.$$

$$\Omega = [-1,1]^2 \setminus [0,1]^2$$

Name	Integral equations	Differential equations		
Gauss's law	$\oiint_{\partial\Omega}\mathbf{E}\cdot\mathrm{d}\mathbf{S}=rac{1}{arepsilon_0}\iiint_{\Omega} ho\mathrm{d}V$	$ abla \cdot \mathbf{E} = rac{ ho}{arepsilon_0}$		
Gauss's law for magnetism	$\oint_{\partial\Omega} \mathbf{B} \cdot d\mathbf{S} = 0$	$ abla \cdot {f B} = 0$		
Maxwell–Faraday equation (Faraday's law of induction)	$\oint_{\partial \Sigma} {f E} \cdot { m d} {m \ell} = -rac{{ m d}}{{ m d} t} \iint_{\Sigma} {f B} \cdot { m d} {f S}$	$ abla extbf{ iny E} = -rac{\partial extbf{B}}{\partial t}$		
Ampère's circuital law (with Maxwell's addition)	$\oint_{\partial \Sigma} \mathbf{B} \cdot \mathrm{d}\boldsymbol{\ell} = \mu_0 \left(\iint_{\Sigma} \mathbf{J} \cdot \mathrm{d}\mathbf{S} + \varepsilon_0 \frac{\mathrm{d}}{\mathrm{d}t} \iint_{\Sigma} \mathbf{E} \cdot \mathrm{d}\mathbf{S} \right)$	$ abla extbf{X} extbf{X} extbf{B} = \mu_0 \left(extbf{J} + arepsilon_0 rac{\partial extbf{E}}{\partial t} ight)$		

Framework

- Build the loss terms for the PDE and the constraints (Like penalty loss term)
- Remind the back-propagation algorithm for neural network!

Experimental Result

• Similar results to the conventional solution of Maxwell equation

PINN vs. FEM

• Constraint for the function value upon a surface/volume boundary

	PINN	$_{ m FEM}$		
Basis function	Neural network (nonlinear)	Piecewise polynomial (linear)		
Parameters	Weights and biases	Point values		
Training points	Scattered points (mesh-free)	Mesh points		
PDE embedding	Loss function	Algebraic system		
Parameter solver	Gradient-based optimizer	Linear solver		
Errors	\mathcal{E}_{app} , \mathcal{E}_{gen} and \mathcal{E}_{opt} (subsection 2.4)	Approximation/quadrature errors		
Error bounds	Not available yet	Partially available [14, 26]		

$$\frac{f(x+h) - f(x-h)}{2h} = f'(x) + O(h^2).$$

$$\frac{f(x+h) - 2f(x) + f(x-h)}{h^2} = f''(x) + O(h^2).$$

PDE and Implicit Neural Network

01

PINN

Solve PDE for Physics

NeRF
Learn PDE for 3D
Rendering

03

LIIF

Learn PDE for image super-resolution

04

VideoINR

Learn PDE for video manipulation

Previous Studies – Synthetic new view

Teaser

Target Problem

Framework

Positional Encoding

- Enlarge the information for the position values
- Effectively represent the high-frequency information (Like Fourier transform)

Positional Encoding

Standard fully-connected net

With "embedding"

Complete Model

No View Dependence No Positional Encoding

Experimental Result

• Rendering quality – quantative comparison

	Diffuse Synthetic 360° [41]			Realistic Synthetic 360°			Real Forward-Facing [28]		
Method	PSNR↑	$\mathrm{SSIM} \!\!\uparrow$	LPIPS↓	PSNR↑	$SSIM\uparrow$	LPIPS↓	PSNR↑	$SSIM\uparrow$	LPIPS↓
SRN [42]	33.20	0.963	0.073	22.26	0.846	0.170	22.84	0.668	0.378
NV [24]	29.62	0.929	0.099	26.05	0.893	0.160	-	-	-
LLFF $[28]$	34.38	0.985	0.048	24.88	0.911	0.114	24.13	0.798	0.212
Ours	40.15	0.991	0.023	31.01	0.947	0.081	26.50	0.811	0.250

NeRF

Experimental Result

• Qualitative comparison

NeRF

Experimental Result

• https://www.matthewtancik.com/nerf

NeRF - Improved

Implicit Neural Representations with Periodic Activation Functions

- SIREN sine-function-based activation function instead of tanh and ReLU
- Much better performance than P.E.

PDE and Implicit Neural Network

01

PINN

Solve PDE for Physics

02

NeRF

Learn PDE for 3D Rendering

LIIF

Learn PDE for image super-resolution

04

VideoINR

Learn PDE for video manipulation

*** "Learning Continuous Image Representation with Local Implicit Image Function", CVPR, 2021

Teaser

LIIF

Target Problem

$$I^{(i)}(x_q) = f_{\theta}(z^*, x_q - v^*)$$

Framework

LIIF

Experimental Result

• Constraint for the function value upon a surface/volume boundary

Experimental Result

• Constraint for the function value upon a surface/volume boundary

Method	In-	distribut	ion	Out-of-distribution				
Wethod	$\times 2$	$\times 3$	$\times 4$	×6	$\times 12$	$\times 18$	$\times 24$	$\times 30$
Bicubic [24]	31.01	28.22	26.66	24.82	22.27	21.00	20.19	19.59
EDSR-baseline [24]	34.55	30.90	28.94	-	-	-	-	-
EDSR-baseline-MetaSR [‡] [15]	34.64	30.93	28.92	26.61	23.55	22.03	21.06	20.37
EDSR-baseline-LIIF (ours)	34.67	30.96	29.00	26.75	23.71	22.17	21.18	20.48
RDN-MetaSR [‡] [15]	35.00	31.27	29.25	26.88	23.73	22.18	21.17	20.47
RDN-LIIF (ours)	34.99	31.26	29.27	26.99	23.89	22.34	21.31	20.59

Table 1: Quantitative comparison on DIV2K validation set (PSNR (dB)). \sharp indicates ours implementation. The results that surpass others by 0.05 are bolded. EDSR-baseline trains different models for different scales. MetaSR and LIIF use one model for all scales, and are trained with continuous random scales uniformly sampled in $\times 1-\times 4$.

PDE and Implicit Neural Network

01

PINN

Solve PDE for Physics

02

NeRF

Learn PDE for 3D Rendering

03

LIIF.

Learn PDE for image super-resolution

04

VideoINR

Learn PDE for video manipulation

*** "VideoINR: Learning Video Implicit Neural Representation for Continuous Space-Time Super-Resolution", CVPR, 2022

Teaser

Target Problem

$$\mathcal{M}(x_s, x_t) = f_t(x_s, x_t, I_0, I_1)$$

$$\mathcal{F}_{st}(x_s, x_t) = \mathcal{F}_s(x'_s) = \mathcal{F}_s(x_s + \mathcal{M}(x_s, x_t))$$

$$\mathcal{F}_s(x_s) = f_s(z^*, x_s - v^*)$$

$$\mathcal{M}(x_s, x_t) = f_t(x_t, \mathcal{F}_s(x_s))$$

Framework

Experimental Result

Table 1. **Quantitative comparison on benchmark datasets** including Vid4 [23], GoPro [29] and Adobe240 [41]. The best three results are highlighted in red, blue, and **bold**. We omit the results of Zooming SlowMo and VideoINR-*Fixed* on GoPro-*Average* and Adobe240-*Average* as the two models are trained for synthesizing frames only at fixed times.

VFI	SR	V	id4	GoPro	-Center	GoPro-	Average	Adobe	-Center	Adobe-	Average	Parameters
Method	Method	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	(Million)
SuperSloMo [18]	Bicubic	22.42	0.5645	27.04	0.7937	26.06	0.7720	26.09	0.7435	25.29	0.7279	19.8
SuperSloMo [18]	EDVR [45]	23.01	0.6136	28.24	0.8322	26.30	0.7960	27.25	0.7972	25.95	0.7682	19.8 + 20.7
SuperSloMo [18]	BasicVSR [6]	23.17	0.6159	28.23	0.8308	26.36	0.7977	27.28	0.7961	25.94	0.7679	19.8+6.3
QVI [18]	Bicubic	22.11	0.5498	26.50	0.7791	25.41	0.7554	25.57	0.7324	24.72	0.7114	29.2
QVI [18]	EDVR [45]	23.60	0.6471	27.43	0.8081	25.55	0.7739	26.40	0.7692	25.09	0.7406	29.2 + 20.7
QVI [18]	BasicVSR [6]	23.15	0.6428	27.44	0.8070	26.27	0.7955	26.43	0.7682	25.20	0.7421	29.2+6.3
DAIN [2]	Bicubic	22.57	0.5732	26.92	0.7911	26.11	0.7740	26.01	0.7461	25.40	0.7321	24.0
DAIN [2]	EDVR [45]	23.48	0.6547	28.01	0.8239	26.37	0.7964	27.06	0.7895	26.01	0.7703	24.0+20.7
DAIN [2]	BasicVSR [6]	23.43	0.6514	28.00	0.8227	26.46	0.7966	27.07	0.7890	26.23	0.7725	24.0+6.3
Zooming Slo	wMo [47]	25.72	0.7717	30.69	0.8847	-	-	30.26	0.8821	-	-	11.10
TMNet	[48]	25.96	0.7803	30.14	0.8692	28.83	0.8514	29.41	0.8524	28.30	0.8354	12.26
VideoINF	R-fixed	25.78	0.7730	30.73	0.8850	-	-	30.21	0.8805	-	-	11.31
Videol	NR	25.61	0.7709	30.26	0.8792	29.41	0.8669	29.92	0.8746	29.27	0.8651	11.31

Experimental Result

Table 2. **Quantitative comparison for out-of-distribution scales** on GoPro dataset. Model performances are evaluated by PSNR and SSIM. Some results of TMNet are bolded as it does not support generalizing to out-of-training-distribution space scales.

Time Scale	Space Scale	SuperSloMo [18] + LIIF [7]	DAIN [2] + LIIF [7]	TMNet [48]	VideoINR
×6	$\times 4$	26.70 / 0.7988	26.71 / 0.7998	30.49 / 0.8861	30.78 / 0.8954
$\times 6$	$\times 6$	23.47 / 0.6931	23.36 / 0.6902	-	25.56 / 0.7671
$\times 6$	×12	21.92 / 0.6495	22.01 / 0.6499	-	24.02 / 0.6900
×12	×4	25.07 / 0.7491	25.14 / 0.7497	26.38 / 0.7931	27.32 / 0.8141
$\times 12$	$\times 6$	22.91 / 0.6783	22.92 / 0.6785	-	24.68 / 0.7358
$\times 12$	$\times 12$	21.61 / 0.6457	21.78 / 0.6473	-	23.70 / 0.6830
×16	$\times 4$	24.42 / 0.7296	24.20 / 0.7244	24.72 / 0.7526	25.81 / 0.7739
×16	$\times 6$	23.28 / 0.6883	22.80 / 0.6722	-	23.86 / 0.7123
×16	×12	21.80 / 0.6481	22.22 / 0.6420	-	22.88 / 0.6659

Experimental Result

Repetitive training for each sample

"NeRF in the Wild", CVPR2021

"Disentangling Geometry and Appearance", NIPS2020

No bound for detected error

	PINN	FEM
Basis function	Neural network (nonlinear)	Piecewise polynomial (linear)
Parameters	Weights and biases	Point values
Training points	Scattered points (mesh-free)	Mesh points
PDE embedding	Loss function	Algebraic system
Parameter solver	Gradient-based optimizer	Linear solver
Errors	\mathcal{E}_{app} , \mathcal{E}_{gen} and \mathcal{E}_{opt} (subsection 2.4)	Approximation/quadrature errors
Error bounds	Not available yet	Partially available [14, 26]

Sometimes, large computation

Implicit Neural Network!

Definition

- Train the target signal itself using the sampled signal values
- Assume that the non-linearity between the sampled values can be generalized by neural network
- Or, reduce the discontinuity through the additional regularization term or the boundary conditions
- Very simple to implement a network when we can design a partial difference equation for our tasks

Thanks!

Do you have any questions?

<u>choijw@cau.ac.kr</u> Jongwon Choi

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik and illustrations by Stories

