

RELATIONS

Dr. Isaac Griffith

IDAHO STATE UNIVERSITY

Outline

The lecture is structured as follows:

- · Closures of Relations
- Equivalence Relations
- Partial Orderings

CS 1187

Relational Closures

- Idaho State University
- Computer Science

- Three types we will study
 - Reflexive -> Easy
 - Symmetric -> Easy
 - Transitive -> Hard

Reflexive Closure

Idaho State Computer University

- Consider a relation R depicted in the digraph.
 - Note that it is not reflexive
- We want to add edges to make the relation reflexive
- By adding those edges, we have made a non-reflexive relation R into a reflexive relation
- This new relation is called the reflexive closure on R

Reflexive Closure

- Consider a relation R depicted in the digraph.
 - Note that it is not reflexive
- We want to add edges to make the relation reflexive
- By adding those edges, we have made a non-reflexive relation R into a reflexive relation
- This new relation is called the **reflexive closure** on *R*

Reflexive Closure

- In order to find the reflexive closure of a relation R, we add a loop at each node that does not have one
- The reflexive closure of *R* is $R \cup \Delta$
 - Where $\Delta = \{(a, a) \mid a \in R\}$
 - Called the "Diagonal Relation"
 - With matrices, we set the diagonal to all 1's

Symmetric Closure

- Consider a relation R depicted in the digraph
 - Note that it is not symmetric
- We want to add edge to make the relation symmetric
- By adding those edges, we have made a non-symmetric relation R into a symmetric relation
- This new relation is called the **symmetric closure** of *R*

Symmetric Closure

Idaho State Computer Science

- Consider a relation R depicted in the digraph
 - Note that it is not symmetric
- We want to add edge to make the relation symmetric
- By adding those edges, we have made a non-symmetric relation R into a symmetric relation
- This new relation is called the **symmetric closure** of *R*

Symmetric Closure

- In order to find the symmetric closure of a relation *R*, we add an edge from *a* to *b*, where there is already an edge from *b* to *a*
- The symmetric closure of R is $R \cup R^{-1}$
 - If $R = \{(a, b) \mid \ldots\}$
 - Then $R^{-1} = \{(b, a) \mid (a, b) \in R\}$

• A path is a sequence of connected edges from vertex a to vertex b

 No path exists from the noted start location

Dr. Isaac Griffith.

- A path is a sequence of connected edges from vertex a to vertex b
- No path exists from the noted start location
- A path that starts and ends at the same vertex is called a circuit or cycle

- A path is a sequence of connected edges from vertex a to vertex b
- No path exists from the noted start location
- A path that starts and ends at the same vertex is called a circuit or cycle

- A path is a sequence of connected edges from vertex a to vertex b
- No path exists from the noted start location
- · A path that starts and ends at the same vertex is called a circuit or cycle
 - Must have length > 1

More on Paths...

• The length of a path is the number of edges in the path, not the number of nodes

Shortest Paths

What is really needed in most applications is finding the shortest path between two vertices

The Transitive closure would contain edges between all nodes reachable by a path of any length.

• Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- · First take of a definition:

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- First take of a definition:
 - In order to find the transitive closure of a relation R, we add an edge from a to c, when there are edges from a to b and b to c

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- First take of a definition:
 - In order to find the transitive closure of a relation R, we add an edge from a to c, when there are edges from a to b and b to c

$$\textit{R} = \{(1,2), (2,3), (3,4)\}$$

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- First take of a definition:
 - In order to find the transitive closure of a relation R, we add an edge from a to c, when there are edges from a to b and b to c

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- First take of a definition:
 - In order to find the transitive closure of a relation R, we add an edge from a to c, when there are edges from a to b and b to c

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- First take of a definition:
 - In order to find the transitive closure of a relation R, we add an edge from a to c, when there are edges from a to b and b to c

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- First take of a definition:
 - In order to find the transitive closure of a relation R, we add an edge from a to c, when there are edges from a to b and b to c

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- First take of a definition:

Dr. Isaac Griffith.

In order to find the transitive closure of a relation R, we add an edge from a to c, when there are edges from a to b
and b to c

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- First take of a definition:
 - In order to find the transitive closure of a relation *R*, we add an edge from *a* to *c*, when there are edges from *a* to *b* and *b* to *c*
- But there is a path from 1 to 4 with no edge!

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- First take of a definition:
 - In order to find the transitive closure of a relation *R*, we add an edge from *a* to *c*, when there are edges from *a* to *b* and *b* to *c*
- But there is a path from 1 to 4 with no edge!

• Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- Second take of a definition:

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- Second take of a definition:
 - In order to find the transitive closure of a relation R, we add an edge from a to c, when there are edges from a to b and b to c

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- Second take of a definition:
 - In order to find the transitive closure of a relation R, we add an edge from a to c, when there are edges from a to b and b to c
 - Repeat this step until no new edges are added to the relation

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- Second take of a definition:
 - In order to find the transitive closure of a relation R, we add an edge from a to c, when there are edges from a to b and b to c
 - Repeat this step until no new edges are added to the relation

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- Second take of a definition:
 - In order to find the transitive closure of a relation R, we add an edge from a to c, when there are edges from a to b and b to c
 - Repeat this step until no new edges are added to the relation

FireOpal means added on the first repeat

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- Second take of a definition:
 - In order to find the transitive closure of a relation R, we add an edge from a to c, when there are edges from a to b and b to c
 - · Repeat this step until no new edges are added to the relation

- FireOpal means added on the first repeat
- Olivine means added on the second repeat

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- Second take of a definition:
 - In order to find the transitive closure of a relation R, we add an edge from a to c, when there are edges from a to b
 and b to c
 - · Repeat this step until no new edges are added to the relation
- We will study different algorithms for determining the transitive closure
- FireOpal means added on the first repeat
- Olivine means added on the second repeat

6 Degrees of Separation

- The idea that everybody in the world is connected by six degrees of separation
 - Where 1 degree of separation means you know (or have met) somebody else
- Let R be a relation on the set of all people in the world
 - $(a,b) \in R$ if person a has met person b
- So six degrees of separation for any two people a and g means
 - (a,b), (b,c), (c,d), (d,e), (e,f), (f,g) are all in R
- Or, $(a,g) \in R^6$

Connectivity Relation

- R contains edges between all the nodes reachable via 1 edge
- $R \circ R = R^2$ contains edges between nodes that are reachable via 2 edges in R
- $R^2 \circ R = R^3$ contains edges between nodes that are reachable via 3 edges in R
- Rⁿ = contains edges between nodes that are reachable via n edges in R
- R* contains edges between nodes that are reachable via any number of edges (i.e., via any path) in R
 - Rephrased: R* contains all the edges between nodes a and b when there is a path of length at least 1 between a and b in R
- R* is the transitive closure of R
 - The definition of a transitive closure is that there are edges between any nodes (a, b) that contain a path between them

Star Closure

• R* is the star closure of relation R, and it is defined as

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

- **Definition:** The transitive closure of a relation R, t(R), is the smallest transitive relation containing R.
- Theorem: $t(R) = R^*$

Finding the Transitive Closure

• Let \mathbf{M}_R be the zero-one matrix of the relation R on a set with n elements. Then the zero-one matrix of the transitive closure R^* is:

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \ldots \vee \mathbf{M}_R^{[n]}$$

Where:

- M_R Nodes reachable with one application of the relation
- $\mathbf{M}_R^{[2]}$ Nodes reachable with two applications of the relation
- $\mathbf{M}_{R}^{[n]}$ Nodes reachable with n applications of the relation

Example

• Find the zero-one matrix of the transitive closure of the relation R given by:

$$\mathbf{M}_R = egin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 1 & 1 & 0 \end{bmatrix}$$

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \mathbf{M}_R^{[3]}$$

$$\mathbf{M}_{R}^{[2]} = \mathbf{M}_{R} \odot \mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \odot \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Example

$$\mathbf{M}_{R}^{[3]} = \mathbf{M}_{R}^{[2]} \odot \mathbf{M}_{R} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \odot \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{M}_{R}^{[3]} = \mathbf{M}_{R}^{[2]} \odot \mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Transitive Closure Algorithm

- What we did (or rather, could have done):
 - Compute the next matrix $\mathbf{M}_{R}^{[i]}$, where $1 \le i \le n$
 - Do a Boolean join with the previously computed matrix
- · For the example:
 - Compute $\mathbf{M}_R^{[2]} = \mathbf{M}_R \circ \mathbf{M}_R$
 - Join that with \mathbf{M}_R to yield $\mathbf{M}_R \vee \mathbf{M}_R^{[2]}$
 - Compute $\mathbf{M}_R^{[3]} = \mathbf{M}_R^{[2]} \circ \mathbf{M}_R$
 - Join that with $\mathbf{M}_R \vee \mathbf{M}_R^{[2]}$ from above

Transitive Closure Algorithm


```
procedure TRANSITIVE_CLOSURE(\mathbf{M}_{R}: zero-one n \times n matrix)
    A := \mathbf{M}_{P}
    B := A
    for i := 2 to n do
         A := A \odot \mathbf{M}_R
         B := B \vee A
    return B
```

• What is the time complexity? $O(n^4)$ bit operations due to the product and join operations within the loop

Roy-Warshall Algorithm

• Uses only $O(n^3)$ bit operations procedure Warshall (M_R : rank-n 0-1 matrix) $W := M_R$ for k := 1 to n do for i := 1 to n do $w_{ij} := 1$ to n do $w_{ij} := w_{ij} \lor (w_{ik} \lor w_{kj})$ return W

⊳ represents R*

- $w_{ij} = 1$ means there is a path from i to j going only through nodes $\leq k$.
- Indices i and j may have index higher than k

CS 1187

Introduction

- · Certain combinations of relation properties are very useful
- In this section we will study equivalence relations:
 - A relation that is reflexive, symmetric, and transitive
- In the next section we will study partial ordering:
 - A relation that is *reflexive*, *antisymmetric*, and *transitive*
- The difference is whether the relation is symmetric or antisymmetric

Equivalence Relations

We can group properties of relations together to define new types of important relations

- **Definition:** A relation R on a set A is an equivalence relation iff R is
 - reflexive
 - symmetric
 - transitive
- Two elements related by an equivalence relation are called equivalent
- Example: Consider relation $R = \{(a,b) | len(a) = len(b)\}$, where len(a) means the length of string
 - It is reflexive: len(a) = len(a)
 - It is symmetric: if len(a) = len(b), then len(b) = len(a)
 - It is transitive: if len(a) = len(b) and len(b) = len(c), then len(a) = len(c)
 - Thus, R is an equivalence relation

Equivalence Relation Example

- Consider the relation $R = \{(a, b) | a \equiv b \pmod{m}\}$
 - Remember that this means that $m \mid a b$
 - Called "congruence modulo m"
- Is it reflexive: $(a, a) \in R$ means that $m \mid a a$
 - a a = 0, which is divisible by m
- Is it symmetric: if $(a,b) \in R$ then $(b,a) \in R$
 - (a,b) means that $m \mid a-b$

Dr. Isaac Griffith.

- Or that km = a b. Negating that, we get b a = -km
- Thus, $m \mid b a$, so $(b, a) \in R$

Equivalence Relation Example

- Consider the relation $R = \{(a, b) | a \equiv \overline{b(\mod m)}\}$
 - Remember that this means that $m \mid a b$
 - Called "congruence modulo m"
- Is it transitive: if $(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R$
 - (a,b) means $m \mid a-b$, or that km = a-b
 - (b, c) means $m \mid b c$, or that lm = b c
 - (a, c) means that $m \mid a c$, or that nm = a c
 - Adding these two, we get km + lm = (a b) + (b c)
 - Or (k+1) m=a-c
 - Thus, m divides a c, where n = k + l
- Thus, congruence modulo *m* is an equivalence relation

Equivalence Classes

- An equivalence class of an element x:
 - $[x] = \{y \mid (x, y) \in R\}$
 - [x] is the subset of all elements related to [x] by R
 - The element in the bracket is called a representative of the equivalence class.
 - We could have chosen any one.
- Theorem: Let R be an equivalence relation on A. Then either

$$[a] = [b] \text{ or } [a] \cap [b] = \emptyset$$

• The number of equivalence classes is called the *rank* of the equivalence relation

Example: Let $A = \{a, b, c\}$ and R be given by the shown digraph, then

$$[a] = \{a, c\}, \ [b] = \{b\}, \ [c] = \{a, c\}$$
 rank = 2

Equivalence Classes

- Consider the relation $R = \{(a, b) \mid a \mod 2 = b \mod 2\}$ on the set of integers
 - Thus, all the even numbers are related to each other
 - As are the odd numbers
- The even numbers form an equivalence class
 - As do the odd numbers
- The equivalence class for the even numbers is denoted by [2] (or [4], or [784], etc.)
 - $[2] = \{\ldots, -4, -2, 0, 2, -4, \ldots\}$
 - 2 is representative of its equivalence class
- There are only 2 equivalence classes formed by this equivalence relation

Equivalence Classes

- Consider the relation: $R = \{(a, b) \mid a = b \lor a = -b\}$
 - Thus, every number is related to additive inverse
- The equivalence class for an integer a:
 - $[7] = \{7, -7\}$
 - $[0] = \{0\}$
 - $[a] = \{a, -a\}$
- There are an infinite number of equivalence classes formed by this equivalence relation

Equivalence Class and Partitions

- Theorem: Let R be an equivalence relation on a set A. The equivalence classes of R partition the set A into disjoint nonempty subsets whose union is the entire set. This partition is denoted A/R and called
 - The quotient set, or
 - the partition of A induced by R, or
 - A modulo R

Equivalence Class and Partitions

- Definition: Let S_1, S_2, \dots, S_n be a collection of subsets of a set A. Then the collection forms a partition of A if the subsets are nonempty, disjoint and exhaust A
- $S_1 \neq \emptyset$
- $S_i \cap S_j = \emptyset$ if $i \neq j$
- $||S_i| = A$

- Note that $\{\{\}, \{1,3\}, \{2\}\}$ is not a partition of $\{1,2,3\}$ (it contains the empty set)
- Note that $\{\{1\}, \{2\}\}\$ is not a partition of $\{1, 2, 3\}$ as none of blocks contain 3

Equivalence Relations and Digraphs

- It is easy to recognize equivalence relations using digraphs:
 - The equivalence class of a particular element forms a universal relation (contains all possible edges) between the elements in the equivalence class
 - The (sub)digraph representing the subset is called a complete (sub)digraph, since all edges are present
- Example: All possible equivalence relations on a set A with 3 elements

Induced Equivalence Relations

- Theorem: If R_1 and R_2 are equivalence relations on A, then $R_1 \cap R_2$ is an equivalence relation on A
- **Definition:** Lt R be a relation on A. Then the reflexive, symmetric, transitive closure of R, tsr(R), is an equivalence relation on A, called the **equivalence relation induced** by R
- Example:

• Theorem: tsr(R) is an equivalence relation

$$A = [a] \cup [b] = \{a\} \cup \{b,c,d\}$$

$$A/R = \{\{a\}, \{b, c, d\}\}$$

Introduction

- An equivalence relation is a relation that is reflexive, symmetric, and transitive
- A partial ordering (or partial order) is a relation that is reflexive, antisymmetric, and transitive
 - Recall that antisymmetric means that is $(a, b) \in R$, then $(b, a) \notin R$ unless b = a
 - Thus, (a, a) is allowed to be in R
 - But, since it's reflexive, all possible (a, a) must be in R

Partially Ordered Set (POSET)

- Definition: A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R)
- Example: Let $S = \{1, 2, 3\}$ and $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (3, 1), (3, 2)\}$

Partially Ordered Set (POSET)

• In a poset the notation $a \leq b$ denotes that $(a, b) \in R$

This notation is used because the "less than or equal to" relation is a paradigm for a partial ordering. (Note that the symbol \leq is used to denote the relation in *any* poset, not just the "less than or equals" relation.)

The notation $a \prec b$ denotes that $a \preccurlyeq b$, but $a \neq b$

• Example: Let $S = \{1, 2, 3\}$ and $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (3, 1), (3, 2)\}$

2	\preccurlyeq	2

$$3 \stackrel{\cdot}{\prec} 2$$

Comparable / Incomparable

- Definition: The elements a and b of a poset (S, \preceq) are called comparable if either $a \preceq b$ or $b \preceq a$. When a and b are elements of S such that neither $a \leq b$ nor $b \leq a$, a and b are called incomparable
- Example: Consider the power set of $\{a,b,c\}$ and the subset relation. $(P(\{a,b,c\}),\subset)$

$$\{a,c\} \not\subseteq \{a,b\}$$
 and $\{a,b\} \not\subseteq \{a,c\}$

So, $\{a, c\}$ and $\{a, \}$ are incomparable

Totally Ordered

- Definition: If (S, ≼) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and ≼ is called a total order or a linear order.
 - A totally ordered set is also called a chain

Greatest/Least Elements

- **Definition:** Let R be a total order on A and suppose $S \subseteq A$. An element $s \in S$ is a **least element** of S iff sRb for every $b \in S$.
 - Note: this implies that (a, s) is not in R for any a unless a = s. (There is nothing smaller than s under the order R)
- **Definition:** Let R be a total order on A and suppose $S \subseteq A$. An element $s \in S$ is a **greatest** element of S iff bRs for every $b \in S$
 - Note: this implies that (s, a) is not in R for any a unless a = s. (There is nothing larger than s under the order R)

Well-Ordered Set

- **Definition:** (S, \preceq) is a well-ordered set if it is a poset such that \preceq is a total ordering and such that every nonempty subset of S has a *least element*
- Example: Consider the ordered pairs of positive integers, $\mathbb{Z}^+ \times \mathbb{Z}^+$ where $\overline{(a_1,a_2)} \preccurlyeq (b_1,b_2)$ if $a_1 < b_1$, or if $a_1 = b_1$ and $a_2 \leq b_2$

- Example: (\mathbb{Z}, \leq)
 - Is a total ordered poset (every element is comparable to every other element)
 - It has no least element
 - Thus, it is not a well-ordered set
- Example: (S, \leq) where $S = \{1, 2, 3, 4, 5\}$
 - Is a total ordered poset (every element is comparable to every other element)
 - Has a least element (1)
 - Thus, it is a well-ordered set

Lexicographic Order

- Definition: This ordering is called lexicographic because it is the way that words are ordered in the dictionary
- Given two posets (A_1, R_1) and (A_2, R_2) we construct an *induced* partial order R on $A_1 \times A_2$: $(x_1, y_1) R(x_2, y_2)$ iff
 - $x_1R_1x_2$, or
 - $x_1 = x_2$ and $v_1 R_2 v_2$
- Example: Let $A_1 = A_2 = \mathbb{Z}^+$ and $R_1 = R_2 =$ 'divides', then
 - (2,4)R(2,8) since $x_1 = x_2$ and $y_1R_2y_2$
 - (2,4) is not related under R to (2,6) since $x_1 = x_2$ but 4 does not divide 6
 - (2,4)R(4,5) since x_1Rx_2 . (Note that 4 is not related to 5)

Example: Let \sum be a finite set and suppose R is a partial order relation defined on \sum . Define a relation \leq on \sum^* , the set of all strings over \sum , as follows:

- For any positive integers m and n and $a_1a_2 \dots a_m$ and $b_1b_2 \dots b_n$ in \sum^*
 - 1. If $m \le n$ and $a_i = b_i$ for all i = 1, 2, ..., m, then

$$a_1a_2\ldots a_m \preccurlyeq b_1b_2\ldots b_n$$

2. If for some integer k with $k \le m$, $k \le n$, and $k \ge 1$, $a_i = b_i$ for all i = 1, 2, ..., k - 1, and $a_k R b_k$ but $a_k \ne b_k$, then

$$a_1a_2\ldots a_m \preccurlyeq b_1b_2\ldots b_n$$

3. If ϵ is the null string and s is any string in \sum^* then $\epsilon \preccurlyeq$ s.

Well-Ordered Induction

Principle of Well-Ordered Induction:

• Suppose that *S* is a well-ordered set. Then P(x) is true for all $x \in S$, if:

BASIS STEP: $P(x_0)$ is true for the least element of S, and

INDUCTIVE STEP: For every $y \in S$ if P(x) is true for all $x \prec y$, then P(y) is true

Hasse Diagrams

- Given any partial order relation defined on a finite set, it is possible to draw the directed graph so that all of these properties are satisfied.
- This makes it possible to associate a somewhat simpler graph, called a Hasse diagram, with a partial order relation defined on a finite set.
- Start with a directed graph of the relation in which all arrows point upward. Then eliminate:
 - 1. The loops at all the vertices
 - 2. All arrows whose existence is implied by the transitive property
 - The direction indicators on the arrows

Example: Let $A = \{1, 2, 3, 9, 19\}$ and consider the "divides" relation on A

 $\forall a, b \in A$, $a \mid b \leftrightarrow b = ka$ for some integer k

- Eliminate the loops at all the vertices
- Elminiate all arrows whose existence is implied by the transitive property
- Eliminate the direction indicators on the arrows

Hasse Diagram

• For the poset $(\{1, 2, 3, 4, 6, 8, 12\}, |)$

Hasse Diagram

• Example: Construct the Hasse diagram of $(P(\{a,b,c\}),\subseteq)$

The elements of $P(\{a,b,c\})$ are:

- Ø
- {a}, {b}, {c}
- {a,b}, {a,c}, {b,c}
- {a,b,c}

Maximal and Minimal Elements

- **Definition:** a is a maximal in the poset (S, \preceq) if there is no $b \in S$ such that $a \prec b$.
- **Definition:** a is a minimal in the poset (S, \preceq) if there is no element $b \in S$ such that $b \prec a$
 - Note: it is possible to have multiple minimals and maximals

GLEs and ULBs

Computer Science

- **Definition:** a is the greatest element in the poset (S, \preceq) if $b \preceq a$ for all $b \in S$.
- **Definition:** a is the **least element** in the poset (S, \preceq) if $a \preceq b$ for all $b \in S$.
- Sometimes it is possible to find an element that is greater than all the elements in a subset A of a poset (S, ≼).
- There may also be an element less than all the elements in A

LUB/GLB

- **Definition:** The element *x* is called the **least upper bound** (lub) of the subset *A* if *x* is an upper bound that is less than every other upper bound of *A*
- **Definition:** The element *y* is called the **greatest lower bound** (glb) of the subset *A* if *y* is a lower bound of *A* and *z* ≼ *y* whenever *z* is a lower bound of *A*.

Lattices

• Definition: A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a lattice

Lattice Example

Example: Determine whether the posets represented by each of the following Hasse diagrams are lattices.

Solution: both the first and third Hasse diagrams are latices, however the second is not since both b and c do not have least upper bounds.

Topological Sorting

- A total ordering \leq is said to be compatible with the partial ordering R if $a \leq b$ whenever aRb. Constructing a total ordering from a partial ordering is called **topological sorting**
- If there is an edge from v to w, then v precedes w in the sequential listing

Topological Sorting

- A total ordering \leq is said to be compatible with the partial ordering R if $a \leq b$ whenever aRb. Constructing a total ordering from a partial ordering is called **topological sorting**
- If there is an edge from v to w, then v precedes w in the sequential listing

Example: Consider the set $A = \{2, 3, 4, 6, 18, 24\}$ ordered by the "divides" relation. The Hasse diagram follows:

The ordinary "less than or equal to" relation \leq on this set is a topological sorting for it since for positive integers a and b, if $a \mid b$, then $a \leq b$

Toplogical Sorting


```
procedure TOPOLOGICALSORT((S, \preccurlyeq): finite poset) k := 1 while S \neq \varnothing do a_k := a minimal element of S S := S - \{a_k\} k := k+1 return a_1, a_2, \ldots, a_n
```


- Example: A development project at a computer company requires the completion of seven tasks. Some of these tasks can be started only after other tasks are finished. A partial ordering on tasks is set up by considering task *X* ≺ task *Y* if task *Y* cannot be started until task *X* has been completed.
 - The Hasse diagram for the seven tasks, with respect to this partial ordering is shown below.
 - Find an order in which these tasks can be carried out to complete the project.

- Example: A development project at a computer company requires the completion of seven tasks. Some of these tasks can be started only after other tasks are finished. A partial ordering on tasks is set up by considering task *X* ≺ task *Y* if task *Y* cannot be started until task *X* has been completed.
 - The Hasse diagram for the seven tasks, with respect to this partial ordering is shown below.
 - Find an order in which these tasks can be carried out to complete the project.

- Example: A development project at a computer company requires the completion of seven tasks. Some of these tasks can be started only after other tasks are finished. A partial ordering on tasks is set up by considering task *X* ≺ task *Y* if task *Y* cannot be started until task *X* has been completed.
 - The Hasse diagram for the seven tasks, with respect to this partial ordering is shown below.
 - Find an order in which these tasks can be carried out to complete the project.

Solution:

• A

- Example: A development project at a computer company requires the completion of seven tasks. Some of these tasks can be started only after other tasks are finished. A partial ordering on tasks is set up by considering task *X* ≺ task *Y* if task *Y* cannot be started until task *X* has been completed.
 - The Hasse diagram for the seven tasks, with respect to this partial ordering is shown below.
 - Find an order in which these tasks can be carried out to complete the project.

Solution:

A

C

- Example: A development project at a computer company requires the completion of seven tasks. Some of these tasks can be started only after other tasks are finished. A partial ordering on tasks is set up by considering task *X* ≺ task *Y* if task *Y* cannot be started until task *X* has been completed.
 - The Hasse diagram for the seven tasks, with respect to this partial ordering is shown below.
 - Find an order in which these tasks can be carried out to complete the project.

- Example: A development project at a computer company requires the completion of seven tasks. Some of these tasks can be started only after other tasks are finished. A partial ordering on tasks is set up by considering task *X* ≺ task *Y* if task *Y* cannot be started until task *X* has been completed.
 - The Hasse diagram for the seven tasks, with respect to this partial ordering is shown below.
 - Find an order in which these tasks can be carried out to complete the project.

- A
- (
- B
- E

- Example: A development project at a computer company requires the completion of seven tasks. Some of these tasks can be started only after other tasks are finished. A partial ordering on tasks is set up by considering task *X* ≺ task *Y* if task *Y* cannot be started until task *X* has been completed.
 - The Hasse diagram for the seven tasks, with respect to this partial ordering is shown below.
 - Find an order in which these tasks can be carried out to complete the project.

- A
- C
- B
- E
- F

- Example: A development project at a computer company requires the completion of seven tasks. Some of these tasks can be started only after other tasks are finished. A partial ordering on tasks is set up by considering task *X* ≺ task *Y* if task *Y* cannot be started until task *X* has been completed.
 - The Hasse diagram for the seven tasks, with respect to this partial ordering is shown below.
 - Find an order in which these tasks can be carried out to complete the project.

- Α
- C
- B
- E
- F
- D

- Example: A development project at a computer company requires the completion of seven tasks. Some of these tasks can be started only after other tasks are finished. A partial ordering on tasks is set up by considering task *X* ≺ task *Y* if task *Y* cannot be started until task *X* has been completed.
 - The Hasse diagram for the seven tasks, with respect to this partial ordering is shown below.
 - Find an order in which these tasks can be carried out to complete the project.

- Α
- С
- B
- E
- F
- D
 - $G \qquad A \prec C \prec B \prec E \prec F \prec D \prec G$

Are there any questions?