Contrôle TD 2 (45 minutes)

Nom:

Prénom:

Classe:

N.B.: Le barème est sur 10. La note sera ramenée à une note sur 20.

Questions de cours (3 points)

Soit $(a, b) \in \mathbb{Z} \times \mathbb{Z}^*$.

1. Énoncer avec soin le théorème de la division euclidienne de a par b.

- 2. On donne l'égalité : $1208 = 23 \times 51 + 35$.
 - (a) Donner le quotient et le reste de la division euclidienne de 1208 par 23 en justifiant votre réponse.

On a
$$1208 = 23 \times 51 + 35 = 23 \times 51 + 23 + 12 = 23 \times 52 + 12$$

Comme $0 \le 12 < 23$, $9 = 52$ et $r = 12$.

(b) Donner le quotient et le reste de la division euclidienne de −1208 par 51 en justifiant votre réponse.

Exercice 1 (2,5 points)

En utilisant obligatoirement le petit théorème de Fermat que vous énoncerez avec soin, trouver le reste de la division euclidier de $n=39^{129}$ par 7.

Exercice 2 (3 points)

On considère $a = 2 \times 3^2 \times 5 \times 6$ et $b = 2^4 \times 3^3 \times 7$.

1. Trouver $a \wedge b$ le pgcd de a et de b.

$$a = 2^2 \times 3^3 \times 5^4 \times 7^\circ$$
 et $b = 2^4 \times 3^3 \times 5^\circ \times 7^\circ$.
 $D'o c$ and $b = 2^2 \times 3^3 \times 5^\circ \times 7^\circ = 108$

2. Écrire sous forme de facteurs premiers la forme générale d'un diviseur commun (et positif) de a et de b. En déduire le nombre de diviseurs communs (positifs) de a et de b. Expliquer brièvement.

3. Soit $c \in \mathbb{N}^*$ tel que 77 | ac. Montrer avec soin que 77 | c.

Soit
$$c \in \mathbb{N}^*$$
 tel que 77 | ac. Montrer avec soin que 77 | c.

Supposons $77 | ac$
 $77 = 7 \times 11$
 $a = 2^2 \times 3^3 \times 5 \times 7$
 $a = 2^2 \times 3^3 \times 5 \times 7$
 $a = 2^2 \times 3^3 \times 5 \times 7$
 $a = 2^2 \times 3^3 \times 5 \times 7$
 $a = 2^2 \times 3^3 \times 5 \times 7$
 $a = 2^2 \times 3^3 \times 5 \times 7$
 $a = 2^2 \times 3^3 \times 5 \times 7$
 $a = 2^2 \times 3^3 \times 5 \times 7$
 $a = 2^2 \times 3^3 \times 5 \times 7$
 $a = 2^2 \times 3^3 \times 5 \times 7$
 $a = 2^2 \times 3^3 \times 5 \times 7$

Exercice 3 (1,5 points)

Soit $n \in \mathbb{N}^*$. Montrer que la fraction $\frac{n}{2n+1}$ est irréductible.