C Brown: El. procesy 1 1961

КРУКСОВО ТЕМНОЕ ПРОСТРАНСТВО И КАТОДНОЕ ПАДЕНИЕ ПОТЕНЦИАЛА

стве называется катодным щих разпяло разряда ностью покрыт свечением. когда ток тлеющем возбуждение стояние, напряжение Катодному разрядов растет которое разряде в трубке повышается, темному C ионизацию. остается ростом «нормальный» проходят катод прост тока. не постоянным. Поэтому падением. электроны прежде, Падение полностью ранству При аномальном разряде катод пол-Z плотность ИН «аномальный». потенциала в Ħ ток, Таким покрывается уществуют трубке тока ИН чем образом, соответствует плотность на два типа тлею-ИНО В катоде ЭТОМ свечением, нормальном производят пространплощадь TOKa падает, pac-

ния, Если образом, электронов, тируются остаются постоянными с изменением приложенного напряжения. Тлеющий разряд поддерживается электронами, которые эм TO n_0 <u>n</u> $n/n_0 =$ при число $-n_{0}$)достигающих $(1+\gamma)/\gamma = \exp$ бомбардировке число образованных электронов поддерживается плазмы αdx . катода выходящих B конце ионов электронами, положительными области Z C $n_0 = \gamma(n-1)$ катода, катодного которые $-n_0$). 7 ионами. Таким число -THME паде-

Катодное падение удовлетворяет соотношению

$$\exp \int_0^{\infty} \alpha dx = 1 + 1/\gamma,$$

OIOTE Tak ожидать, aZ явления. материала толщина круксова OTh катодное Результаты катода. падение Были проведены темного прос хите является опытов ранства функцией приведены обширные Іоэтому Kak ₿ исследования табл. рода следует rasa. 14.1

Нормальное катодное падение в вольтах

Ø

=

μИ

 σ

New Ser	(атод
229 280 280 280 280 280 266 266 277 277 277	Воз- дух
100 130 130 130 130 130 130 130 130 130	Ar
140 162 165 165 167 177 177 188 177 178 188 177 177	He
170 216 216 240 240 240 211 211 220 250 276 276 276 278	H ₂
245 318 318 318 318 318 318 318	Hg
120 150 150 150 150 150 150 150 150 150 15	N _e
180 233 233 157 210 157 216 216 216 216 216 216	22
35	02
8	6
410 45 1 1 1 1 1 1 1 1 1	CO2
275	2

Tосложняющих изучения этого зависит от рода газа и не зависит первом должно было условий соударения электронов, Поскольку приближении толщина d круксова обы быть величиной факторов. Оказалос соотношения приведены выполняется, Оказалось, OT TO постоянной, темного материала произведение причем TO табл. соотношение пространства величина катода. если нет на Результаты константы dp =давление никаких зависит =cons

Толщина области катодного падения ($d_n p$ в см.мм pm. ст.

Zn	Ъ,	D 7	Mg	Cu Fe	Čď	C A	Катод
				0,23 0,52		0,25	Воздух
	}			0,33		0,29	ÞΓ
0,8	1,0	0,0	0,61 0,9	0,8 	0,87	0,72	H_2
			1,45	1.30		1,32	He
	# 	0,4		0,6 0.34	-,09	0,33	Hg
			0,35	0 49]]	0,31	Z ₂
				n 79		0,64	Ne
	1		0,25	ာ ၁၂		0,24	02

BOM обнаружили Многие темном исследователи пространстве поле линейно Kak функцию измеряли зависит OT расстояния величину расстояния КГОП $^{\circ}$ катода. И OTP B круксоонжом Они

Рис. 14.4. Экспериментальное определение электрического поля в круксовом темном пространстве.

потенциала тальная написать кривая имеет вид ана Дe рис. константа. 14.4. При Типичная **بر** Q распределение эксперимен-

$$V_x = \int_0^x E dx = K \int_0^x (d-x) dx = K \left(xd - \frac{x^2}{2}\right).$$

 V_{3} граничного условия $V_{x}{=}V_{c}$, где $V_{c}{-}$ катодное падение потенциала, получим

$$K = \frac{2V_{\uparrow}}{d^2}; \qquad (14.5)$$

$$V_x = \frac{V_{cx} (2d - x)}{d^2}; \qquad (14.6)$$

$$E_x = \frac{dV_x}{dx} = \frac{2V_c (d-x)}{d^2}.$$
 (14.7)

Согласно уравнению Пуассона (в абсолютной системе единиц)

$$\frac{d^2V}{dx^2} = -\frac{2V_c}{d^2} = -4\pi\varrho.$$

Отсюда видно, что плотность тока постоянна и равна $V_c/2\pi\,d^2$

Предположим, что все электроны, входящие в круксово темное пространство, образуются в результате бомбардировки катода положительными ионами. Тогда для плотности тока имеем

$$j_{0-} = \gamma j_{0+}.$$
 (14.8)

Индексы «плюс» и «минус» относятся к положительным ионам и электронам. Плотность тока на катоде равна

$$j_0 = j_{0+} (1+\gamma).$$
 (14.9)

v₀₊ = Так как плотность тока положительных и $=\mu_{+}E_{0},$ E_0 -- поле Y катода, TO мы можем ОНОВ q авна написать 0+ $Q_{0+}v_{0+},$ где

$$j_0 = \varrho_{0+} v_{0+} (1 + \gamma).$$

Положив в уравнении для E_x x=0, имеем

$$E_0 = \frac{2V_c}{d} \,, \tag{14.10}$$

и из уравнения Пуассона

$$Q_{0+} = \frac{E_0}{4\pi d} \tag{14.11}$$

мы получим следующее выражение для плотности тока в функции от катодного падения:

$$j_0 = \frac{V_c^2 \mu_+ (1+\gamma)}{\pi d^3}$$
 (14.12)

Катодное падение можно вычислить, предположив, что выполняются условия самоподдерживающегося разряда:

$$\ln\left(1+\frac{1}{\gamma}\right) = \int_{0}^{d} \alpha dx. \tag{14.13}$$

Таблина 20

OBJACIB KATOJHOLO HAJISHI

 $\mu \mu \mu \mu \mu \mu D P$ Harb HW Death Million of Var in the ____

	gamente en gal mai de de gamente produce de gamente		A Secret Secretary		<u> </u>	
	50					-·
1 5%				· - · · · · · · · · · · · · · · · · · ·		
					manusco man	
	Tagan and Tagan		23	: '	-	!
				C Z		
		235	13 53 51 E			<i>y</i> :
			Og - 280 Og - 310	() ₂ = 354 ()() = 480	((c)) 484 ((c)) 484	. 10 1 M 1 N d 1

ье. попизации в газе можно ожидань VRCHING ANA रेक्ट में इंडियमिमिसिम 30ac физиче -**CKOH** 11111

58

BURROWER RECARRANT IN · • ..

17111

1 21 12 02		
		() 2 () () () () () () () () (
		<u>-</u>
グモ 記書 EI		A.C.
		31.17
	φ	
		\frac{7}{2}
	Here is the Lagrangian	

iz. phyny / moskia 1959

чены в табл. 26. CHMOCTH оказывается ния в молекуляр для А1 в парах терналом 0.1h говоря, Ней Эмиссин модействия OQUIP-O RONDA и больной СІ_з п ряд оря, что Г_л энергии п нергии попизации в газе 7 и коэффициента вторичной ин на поверхности катода 7. Этим объясияется тот факт, пом для катода может служить и напретое выше 300°С в табл. 26. Пормальная илотность тока j_n (табл. 27) вается малой в инертных газах (за исключением Ar) и больной в молекулярных газах, слегка меняясь в завии Лля системы -либо определенного катода Молекулярных газах, нежели $\prod_{i=1}^{n} (i)$ п ряду Межу 7.7 Ну веточны на-за сильного химического взаи-слу катодом и газом; то же самое относится к других. Выражение (8.3) ноказывает, грубо является произведением двух функций: средо, жанода V_и имеет бо; х, нежели в инертных. имест большие значе-- свыше 500 Значения У S. наблю-Для

пений Данные эти не особенно точны, главным образом из-за загряз-" 2 неоднородностей. Согласно (8.5) H

причиный

КРТИОЛ HELE. Ha Bileminen Pd III albard Koane EGEL 7000 W. je letter i SCH13 O TOBLET PIX GOLD CRCHCHIII (CM) SICKIPHI SWITE EMOR BoxIII(). является, RI OH возника-Bepo.

Pac TO BERTHANDER TO BE TO B 1 1111 The Market of 7 2 3 1 --HAM BELLIN BELLEVIER BELLEVIER WELL OF THE BELLEVIER BEL

Obopor. Sabhemach, d_n коэффлинент вторичной эмиссии. KaKубыванин Нормальная инрана 910 CHETWOR Нитененвности нолизации . 2: (F'S) EFRACE PH =] [например. Ат и N₂ име матернала пространства п (8.22). S Kanoma Mence Buses HMCIOT $a = d_n$ (raon. Bospacraer 12 козффициента выражена. йошчилой ифи

 $H_{PHSCO,MHH}$ пиприма $BL^{2}MHO.7O$ 1511111 WO HOURD & 1 こ シ THE OCH PRINCE

· - · · · · · · · · · · · · · · · · · ·			

= <u>`</u>) MCHCHIIC женственно на рис. 1 жерастает примерно исисние катодного надення $j\,p^2$ и проч π K1 17 порядка. различных произведения d_P ПфП 113 возрастании Fa sor **H H** Hops tok ---() $\frac{1}{C}$ \overline{z} Œ BCHIE вависимости THURSH KAIOTHOFO HA-1 CMHOC ETHER. BHJHO, матода приводит пространств Tio, $\mathbb{C}^{\mathbb{N}}$ меняется KOT 10171 <u>-----</u>

ния j/p^2 118. Завасиместь апомального карессия разрада С экслевани кагодом в радия разрада с экслевана малам кагодом в ра XPHEG 1 No. 7. H 1 No. 7. H

ва и при дальнейшем ужается примерно на конец 0.тну возрастании ченвернь 0011 Supvanbyoğ \leq нен элечным - 110/11111

21 22 MUHHALPÄSHISE KOLOLÄGOROL веченнем, Пення илопиаль является одинаковой при наблюде катода, покрытой отринательным свечени Пзигрение параметров плотности тока на като је если опо существует. При этом пр 111.11 - () иографическим Kamondoro Ha Плеющего EP0.1 H 16168, измереннем BILL разряда объящо •--- \mathbf{z} IN HON OBOID KU] Marc -odino **MERBIN** --