INT303 note

(Big Data Analytic)

1 Introduction tutorial1.html

1.1 Grades

Sequence	Method	Learning outcome s assessed	Duration	Timing	% of final mark	Resit
#1	Project 1: Data Scraping	All	See notice	S2	15%	NO
#2	Project 2: Big Data Competition	All	See notice	S2	15%	NO
#3	Written Exam	All	See notice	S2	70%	NO

1.2 Process

- Ask questions
- Data Collection
- Data Exploration
- Data Modelling
- Data Analysis
- Visualization and Presentation of Results

(Note: This process is by no means linear!)

2 Data tutorial2.html

2.1 Concepts

2.1.1 What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: name, date of birth, height, occupation.
 - Attribute is also known as variable, field, characteristic, or feature
- For each object the attributes take some values.
- The collection of attribute-value pairs describes a specific object
 - Object is also known as record, point, case, sample, entity, or instance

2.1.2 Relational data

- The term comes from DataBases, where we assume data is stored in a relational table with a fixed schema (fixed set of attributes)
- There are a lot of data in this form
- There are also a lot of data which do not fit well in this form
 - Sparse data: Many missing values
 - Not easy to define a fixed schema

2.1.3 Types of Attributes

- Numeric
 - Examples: dates, temperature, time, length, value, count.
 - Discrete (counts) vs Continuous (temperature)
 - Special case: Binary/Boolean attributes (yes/no, exists/not exists)

Objects

Size (n): Number of objects

Dimensionality (d): Number of attributes

Density/Sparsity: Number of populated

object-attribute pairs

Categorical

- Examples: eye color, zip codes, strings, rankings (e.g, good, fair, bad), height in {tall, medium, short}
- Nominal (no order or comparison) vs Ordinal (order but not comparable)
- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points/vectors in a multi-dimensional space, where each dimension represents a distinct attribute. Such data set can be represented by an n-by-d data matrix:

	Temperature	Humidity	Pressure
01	30	0.8	90
02	32	0.5	80
03	24	0.3	95

-			
	30	0.8	90
	32	0.5	80
	24	0.3	95

• Translate the table

0

0

0

150000

2.2 Binning

2.2.1 Concepts

• Idea: split the range of the domain of the numerical attribute into bins (intervals).

1

43

0

0

Every bucket defines a categorical value

1243535

2.2.2 Bucketization

- Equi-width bins: All bins have the same size
 - Example: split time into decades
 - Problem: some bins may be very sparse or empty
- Equi-size (depth) bins: Select the bins so that they all contain the same number of elements
 - This splits data into quantiles: top-10%, second 10% etc
 - Some bins may be very small
- Equi-log bins: log end log start is constant
 - The size of the previous bin is a fraction of the current one
 - Better for skewed distributions
- Optimized bins: Use a 1-dimensional clustering algorithm to create the bins

r Blue: Equi-width [20,40,60,80] Red: Equi-depth (2 points per bin)

Green: Equi-log (end/start = 2)

2.3 Types of data

- Set data: Each object is a set of values (with or without counts)
 - Sets can also be represented as binary vectors, or vectors of counts
- Dependent data:
 - Ordered sequences: Each object is an ordered sequence of values.
 - Spatial data: objects are fixed on specific geographic locations
 - Graph data: A collection of pairwise relationships
- The data matrix:
 - In almost all types of data we can find a way to transform the data into a matrix, where the rows correspond to different records, and the columns to numeric attributes

2.4 The data mining pipeline

2.4.1 Data Collection

For many supervised learning tasks (classification), you need labelled data, which will be used for training and testing

2.4.2 Data Preprocessing

- Reducing the data: Sampling, Dimensionality Reduction
 - Simple Random Sampling
 - Sampling without replacement
 - Sampling with replacement

E.g., we have 100 people, 51 are women P(W) = 0.51, 49 men P(M) = 0.49. If I pick two persons what is the probability P(W,W) that both are women?

- Sampling with replacement: P(W,W) = 0.512
- Sampling without replacement: P(W,W) = 51/100 * 50/99
- Stratified sampling
 - Split the data into several groups; then draw random samples from each group.
- Biased sampling
 - When sampling temporal data, we want to increase the probability of sampling recent data: recency bias
- Reservoir sampling
 - For the first k numbers, we retain them all.
 - For the i-th (i>k) number, we retain the i-th number with a probability of k/i
 - Replace with any one of the previously selected k numbers with a probability of 1/k.
 - Every item has probability 1/N to be selected after N items have been read
- <u>Data cleaning</u>: deal with missing or inconsistent information
 - Deal with missing values:
 - Ignore the data
 - Replace with random value
 - Replace with the mean
 - Replace with nearest neighbor value
 - Replace with cluster mean
 - Infer the value
 - · Deal with outliers:

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	NULL	60K	No
7	Yes	Divorced	220K	NULL
8	No	Single	85K	Yes
9	No	Married	90K	No
9	No	Single	90K	No

- Remove them
- Try to correct them using common sense
- Transform the data
- When using the data, we should be careful of cases where our results are too good to be true, or too bad to be true
- Feature extraction and selection: create a useful representation of the data by extracting useful features

2.4.3 Data Analysis

- Sample mean
- Sample median
- Sample range
- Sample variance
- Sample standard deviation

2.4.4 Result Post-processing

. . .

3 Data Grammar tutorial3.html

3.1 Data Normalization

3.1.1 Column Normalization

In this data, different attributes take very different range of values. For distance/similarity the small values will disappear:

Temperature	Humidity	Pressure
30	0.8	90
32	0.5	80
24	0.3	95

So, divide (the values of a column) by the maximum value for each attribute:

Temperature	Humidity	Pressure
0.9375	1	0.9473
1	0.625	0.8421
0.75	0.375	1

(Brings everything in the [0,1] range, maximum is 1)

3.1.2 Row Normalization

Some data which are similar:

	Word 1	Word 2	Word 3
Doc 1	28	50	22
Doc 2	12	25	13

Divide by the sum of values for each document (row in the matrix):

	Word 1	Word 2	Word 3
Doc 1	0.28	0.5	0.22
Doc 2	0.24	0.5	0.26

(New value = old value / Σ old values in the row)

Z-score:

$$\operatorname{mean}(x) = \frac{1}{N} \sum_{j=1}^{N} x_{j}$$

$$\operatorname{std}(x) = \sqrt{\frac{\sum_{j=1}^{N} (x_{j} - \operatorname{mean}(x))^{2}}{N}}$$

$$z_{i} = \frac{x_{i} - \operatorname{mean}(x)}{\operatorname{std}(x)}$$

Logistic function:

$$\phi(x) = \frac{1}{1 + e^{-x}}$$

- Maps reals to the [0,1] range
- Mimics the step function
- In the class of sigmoid functions

Softmax function:

If we want to transform the scores into probabilities that sum to one, but we capture the single selection of the user.

e^{x_i}	
$\sum_{i} e^{x_i}$	

	Restaurant 1	Restaurant 2	Restaurant 3
User 1	5	2	3
User 2	1	3	4

	Restaurant 1	Restaurant 2	Restaurant 3
User 1	0.72	0.10	0.18
User 2	0.07	0.31	0.62

Logarithm function:

- Sometimes a data row/column may have a very wide range of values. Normalizing in this case will obliviate small values.
- We can bring the values to the same scale by applying a logarithm to the column values.

User id	Income	Log Income
1	6000	3.778151
2	6500	3.812913
3	7000	3.845098
4	4000	3.60206
5	8000	3.90309
6	9000	3.954243
7	18000	4.255273
8	36000	4.556303
9	600000	5.778151
10	1000000	6

3.2 Exploratory Data Analysis (EDA)

- 1. Store data in data structure(s) that will be convenient for exploring/processing (Memory is fast. Storage is slow)
- 2. Clean/format the data so that:
 - Each row represents a single object/observation/entry
 - Each column represents an attribute/property/feature of that entry
 - Values are numeric whenever possible
 - Columns contain atomic properties that cannot be further decomposed*
- 3. Explore global properties: use histograms, scatter plots, and aggregation functions to summarize the data
- 4. Explore group properties: group like-items together to compare subsets of the data

3.2.1 Pandas (Python package) <u>User Guide — pandas 2.1.1 documentation (pydata.org)</u> Pandas Data structure

Import pandas library code:

```
import pandas as pd
dataframe = pd.read_csv("yourfile.csv")
```

Common Pandas functions:

- head() first N observations
- tail() last N observations
- columns() names of the columns
- describe() statistics of the quantitative data
- dtypes() the data types of the columns
- df["column_name"]
- Df.column_name
- .max(), .min(), .idxmax(), .idxmin()
- <dataframe> <conditional statement>
- .loc[] label-based accessing
- .iloc[] index-based accessing
- .sort_values()
- .isnull(), .notnull()
- groupby(), .get_groups()
- .merge()
- .concat()
- .aggegate()
- .append()

```
# input
state = np.random.RandomState(100)
ser = pd.Series(state.normal(10, 5, 25))
```

```
# using pandas
ser.describe()
count
         25.000000
mean
         10.435437
          4.253118
std
          7.709865
50%
         10.922593
75%
         13.363604
max
         18.094908
dtype: float64
```

Rebuild Dataset:

data.isna().sum()

+

DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None)

+

DataFrame.drop_duplicates(subset=None, keep='first', inplace=False, ignore_index=False)

GroupBy Dataset:

In [28]:	<pre>dfcwci.groupby("state").sum()</pre>				
Out[28]:		zip	amount	candidate_id	
	state				
	AK	2985459621	1210.00	111	
	AR	864790	14200.00	192	
	AZ	860011121	120.00	37	
	CA	14736360720	-5013.73	600	
	co	2405477834	-5823.00	111	
	СТ	68901376	2300.00	35	
	DC	800341853	-1549.91	102	
	FL	8970626520	-4050.00	803	

Merge Dataset:

DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)

•		last_name_x	first_name_x	candidate_id	id	last_name_y
	0	Agee	Steven	16	16	Huckabee
	1	Akin	Charles	16	16	Huckabee
	2	Akin	Mike	16	16	Huckabee
	3	Akin	Rebecca	16	16	Huckabee
	4	Aldridge	Brittni	16	16	Huckabee

3.3 Data Mining

3.3.1 Similarity

- Numerical measure of how alike two data objects are.
 - A function that maps pairs of objects to real values
 - Higher when objects are more alike.
- Often falls in the range [0,1], sometimes in [-1,1]
- Desirable properties for similarity
 - 1. s(p, q) = 1 (or maximum similarity) only if p = q. (Identity)
 - 2. s(p, q) = s(q, p) for all p and q. (Symmetry)
 - 3. s(p, q) = 0.5 and s(p, x) = 0.5, then s(q, x) = 0.5
- The Jaccard similarity (Jaccard coefficient) of two sets S_1 , S_2 is the size of their <u>intersection</u> divided by the size of their <u>union</u>.

JSim
$$(S_1, S_2) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}$$

- Extreme behavior:
 - JSim(X, Y) = 1, iff X = Y
 - JSim(X, Y) = 0, iff X, Y have no elements in common
- JSim is symmetric
- Similarity between vectors:

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	30	60	0	0
D3	60	30	0	0
D4	0	0	10	20

Documents D1, D2 are in the "same direction"

Document D3 is on the same plane as D1, D2

Document D4 is orthogonal to the rest

- Cosine Similarity
 - Sim(X, Y) = cos(X, Y)
 - If the vectors are aligned (correlated) angle is zero degrees and cos(X, Y) = 1
 - If the vectors are orthogonal (no common coordinates) angle is 90 degrees and cos(X, Y) = 0
 - If x and y are two vectors, then:

$$\cos(x, y) = \frac{x \cdot y}{\|x\| \|y\|}$$

Example:

$$x = 3 \ 2 \ 0 \ 5 \ 0 \ 0 \ 2 \ 0 \ 0$$

$$y = 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 2$$

$$x \cdot y = 3 \cdot 1 + 2 \cdot 0 + 0 \cdot 0 + 5 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 + 2 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 = 12$$

$$||x|| = \sqrt{3^2 + 2^2 + 0^2 + 5^2 + 0^2 + 0^2 + 2^2 + 0^2 + 0^2} = \sqrt{42} = 6.481$$

$$||y|| = \sqrt{1^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 0^2 + 2^2} = \sqrt{6} = 2.245$$

$$\cos(x, y) = 0.315$$

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	30	60	0	0
D3	60	30	0	0
D4	0	0	10	20

$$Cos(D1,D2) = 1$$

$$Cos(D3,D1) = Cos(D3,D2) = 4/5$$

$$Cos(D4,D1) = Cos(D4,D2) = Cos(D4,D3) = 0$$

• Correlation Coefficient

• If we have observations (vectors) $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_n)$ is defined as:

$$CorrCoeff(X,Y) = \frac{\sum_{i} (x_i - \mu_X)(y_i - \mu_Y)}{\sqrt{\sum_{i} (x_i - \mu_X)^2} \sqrt{\sum_{i} (y_i - \mu_Y)^2}}$$

The correlation coefficient takes values in [-1,1]
 (-1 negative correlation, +1 positive correlation, 0 no correlation)

Normalized vectors

document	Apple	Microsoft	Obama	Election
D1	-5	+5	0	0
D2	-15	+15	0	0
D3	+15	-15	0	0
D4	0	0	-5	+5

$$CorrCoeff(X,Y) = \frac{\sum_{i}(x_i - \mu_X)(y_i - \mu_Y)}{\sqrt{\sum_{i}(x_i - \mu_X)^2}\sqrt{\sum_{i}(y_i - \mu_Y)^2}}$$

CorrCoeff(D1,D2) = 1

CorrCoeff(D1,D3) = CorrCoeff(D2,D3) = -1

CorrCoeff(D1,D4) = CorrCoeff(D2,D4) = CorrCoeff(D3,D4) = 0

3.3.2 Distance

- Distances for real vectors:
 - Vectors $x = (x_1, ..., x_d)$ and $y = (y_1, ..., y_d)$
 - L_p-norms or Minkowski distance:

$$L_p(x,y) = [|x_1 - y_1|^p + \dots + |x_d - y_d|^p]^{1/p}$$

• L2-norm: Euclidean distance:

$$L_2(x,y) = \sqrt{|x_1 - y_1|^2 + \dots + |x_d - y_d|^2}$$

• L₁-norm: Manhattan distance:

$$L_1(x, y) = |x_1 - y_1| + \dots + |x_d - y_d|$$

• L_∞-norm:

$$L_{\infty}(x, y) = \max\{|x_1 - y_1|, ..., |x_d - y_d|\}$$

• The limit of L_p as p goes to infinity.

Green: All points y at distance $L_1(x, y) = r$ from point x

Blue: All points y at distance $L_2(x, y) = r$ from point x

Red: All points y at distance $L_{\infty}(x, y) = r$ from point x

- Similarities into distances:
 - Jaccard distance: JDist(X, Y) = 1 JSim(X, Y)
 - Cosine distance: Dist(X, Y) = 1 cos(X, Y)
- Hamming distance:
 - Hamming distance is the number of positions in which bit-vectors differ.
 - Example:
 - p1 = 10101
 - p2 = 10011
 - $d(p_1, p_2) = 2$ because the bit-vectors differ in the 3_{rd} and 4_{th} positions.
 - The L₁ norm for the binary vectors
- · Variational distance:
 - Variational distance is the L₁ distance between the distribution vectors

document	Apple	Microsoft	Obama	Election
D1	0.35	0.5	0.1	0.05
D2	0.4	0.4	0.1	0.1
D3	0.05	0.05	0.6	0.3

$$Dist(D2,D3) = 0.35+0.35+0.5+0.2 = 1.4$$

$$Dist(D1,D3) = 0.3+0.45+0.5+0.25 = 1.5$$

- Information theoretic distances:
 - KL-divergence (Kullback-Leibler) for distributions P,Q:

$$D_{KL}(P||Q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

• KL-divergence is asymmetric. We can make it symmetric by taking the average of both sides:

$$\frac{1}{2} \big(D_{KL}(P\|Q) + D_{KL}(Q\|P) \big)$$

• JS-divergence (Jensen-Shannon):

$$JS(P,Q) = \frac{1}{2}D_{KL}(P||M) + \frac{1}{2}D_{KL}(Q||M)$$
$$M = \frac{1}{2}(P+Q)$$

- · Ranking distances:
 - The input in this case is two rankings/orderings of the same n items.

For example:

$$R_1 = \langle x, y, z, w \rangle$$

$$R_2 = \langle y, w, z, x \rangle$$

	х	у	Z	w
R_1	1	2	3	4
R_2	4	1	3	2

• Spearman rank distance: L1 distance between the ranks

$$SR(R_1, R_2) = |1 - 4| + |2 - 1| + |3 - 3| + |4 - 2| = 6$$

4 Web Scraping tutorial4.html

4.1 Role

Instead of people repeatedly querying the browser for website data, use tools like python to quickly get data directly from the website.

HTTP STATUS CODES:

200 OK:

Means that the server did whatever the client wanted it to, and all is well.

400: Bad request

The request sent by the client didn't have the correct syntax.

401: Unauthorized

Means that the client is not allowed to access the resource. This may change if the client retries with an authorization header.

403: Forbidden

The client is not allowed to access the resource and authorizaton will not help.

404: Not found

It means that the server has not heard of the resource and has no further clues as to what the client should do about it. In other words: dead link.

500: Internal server error

Something went wrong inside the server.

501: Not implemented

The request method is not supported by the server.

4.2 Python data scraping

4.2.1 **Legal**

Respect the Robots Exclusion Protocol also known as the `robots.txt` (add this to the website url tail to see which element you can scrap)

e.g.: http://google.com/robots.txt

4.2.2 Step 1: Inspect Your Data Source

Example website for exercise: <u>Fake Python (realpython.github.io)</u> https://realpython.github.io/fake-jobs/ Developer tool:

```
• Mac: **Cmd + Alt + I
• Windows/Linux: ^Ctrl + **Shift + I
```

4.2.3 Step 2: Scrape Html Content From A Page

```
Python
import requests

URL = "https://realpython.github.io/fake-jobs/"
page = requests.get(URL)
print(page.text)
```

4.2.4 Step 3: Parse Html Code With Beautiful Soup

```
import requests
from bs4 import BeautifulSoup

URL = "https://realpython.github.io/fake-jobs/"
page = requests.get(URL)

soup = BeautifulSoup(page.content, "html.parser")
```

• Find elements by ids:

```
HTML

<div id="ResultsContainer">
    <!-- all the job listings -->
    </div>
```

• Beautiful Soup allows you to find that specific HTML element by its ID:

```
Python

results = soup.find(id="ResultsContainer")
```

find VS findAll

```
import bs4
## get bs4 object
soup = bs4.BeautifulSoup(source)
## all a tags
soup.findAll('a')
## first a
soup.find('a')
## get all links in the page
link_list = [l.get('href') for l in soup.findAll('a')]
```

• Find elements by HTML class name:

```
python

job_elements = results.find_all("div", class_="card-content")

Python

for job_element in job_elements:
    print(job_element, end="\n"*2)
```

```
for job_element in job_elements:
    title_element = job_element.find("h2", class_="title")
    company_element = job_element.find("h3", class_="company")
    location_element = job_element.find("p", class_="location")
    print(title_element)
    print(company_element)
    print(location_element)
    print()
```

```
HTML

<h2 class="title is-5">Senior Python Developer</h2>
<h3 class="subtitle is-6 company">Payne, Roberts and Davis</h3>
Stewartbury, AA
```

• What if we just want the text content of the extract data? Use the .text script and you can .strip() the superfluous whitespace:

```
for job_element in job_elements:
    title_element = job_element.find("h2", class_="title")
    company_element = job_element.find("h3", class_="company")
    location_element = job_element.find("p", class_="location")
    print(title_element.text.strip())
    print(company_element.text.strip())
    print(location_element.text.strip())
    print()
```

Find elements by class name and text content:

```
Python

python_jobs = results.find_all("h2", string="Python")
```

• Use a lambda function to filter the data by substring "python" and <h2> tag:

```
python

python_jobs = results.find_all(
    "h2", string=lambda text: "python" in text.lower()
)
```

• HTML is a tree

```
* tree = bs4.BeautifulSoup(source)

* ## get html root node

* root_node = tree.html

*## get head from root using contents

* head = root_node.contents[0]

*## get body from root

* body = root_node.contents[1]

*## could directly access body
```

• Access parent elements:

· tree.body

```
python

python_jobs = results.find_all(
    "h2", string=lambda text: "python" in text.lower()
)

python_job_elements = [
    h2_element.parent.parent for h2_element in python_jobs
]
```

• Extract attributes from HTML elements

```
Python

for job_element in python_job_elements:
    # -- snip --
    links = job_element.find_all("a")
    for link in links:
        link_url = link["href"]
        print(f"Apply here: {link_url}\n")
```

(Start by fetching all the <a> elements in a job card. Then, extract the value of their href attributes using square-bracket notation)

4.3 Training website

Any API: https://any-api.com/

5 To Be Continue

...