Seismic Modeling

Chris Vogl

Applied Mathematics Department

Motivation: Earthquake Generated Tsunamis

- Land mass is added to the Juan de Fuca plate at the ridge
- This pushes the Juan de Fuca plate under the North American plate.
- The locking and unlocking of these plates generate various types of earthquakes
- Subduction zone quakes occur under the ocean floor and generate tsunamis

Cascadia earthquake sources

	Source	Affected area	Max. Size	Recurrence
•	Subduction Zone	W.WA, OR, CA	М 9	500-600 yr
•	Deep Juan de Fuca plate	W.WA, OR,	M 7+	30-50 yr
0	Crustal faults	WA, OR, CA	M 7+	Hundreds of yr?

Image from Wikipedia

Modeling the Sea Surface Deformation

- Geoclaw accomplishes (1) using the Okada solution, which assumes homogeneous half-space
 - What about variable density ground layers?
 - What happen when bathymetry is incorporated?
 - Do time dependent effects matter?
- Geoclaw accomplishes (2) assuming instantaneous motion of water column
 - Do time dependent effects matter?

Current Work and Needs

- SeisClaw? SiesmoClaw? RumbleClaw?
 - Currently have 2D examples to look at seafloor deformation and sea surface deformation
 - Almost completed 3D example to look at seafloor deformation
- Current Needs
 - Coupling output to Geoclaw's initial condition
 - 3D visualization work to view results

