1

CLAIMS

What is claimed is:

l	1. A method comprising:			
2	forming at least one metal layer having a standing-wave structure to distribute			
3	clock signal to receiver end points from a clock source such that the receiver end points			
1	are substantially electrically equivalent with respect to the clock source; and			
5	embedding the metal layer in a dielectric layer made of a thick film using a			
5	wafer-level thick film (WLTF) process.			
l	2. The method of claim 1 wherein forming comprises:			
2	forming at least the metal layer having the standing-wave structure in one of a			
3	M-ary tree and a combination of M-ary trees of different degrees M.			
1	3. The method of claim 1 wherein forming comprises:			
2	forming at least the metal layer having the standing-wave structure in one of a			
3	two-dimensional configuration and a three-dimensional configuration.			
1	4. The method of claim 1 wherein forming comprises:			
2	forming at least the metal layer having the standing-wave structure in a stacked			
3	die configuration.			
1	5. The method of claim 1 further comprising:			
2	forming a via layer below the metal layer.			
1	6. The method of claim 5 further comprising:			
2	forming a back end of line (BEOL) layer below the via layer and on a substrate.			
1	7. The method of claim 6 wherein forming the BEOL layer comprises:			
2	forming a BEOL layer made of copper and dielectrics.			
1	8. The method of claim 1 wherein forming comprises:			
2	forming at least one power delivery area on the metal layer.			
1	9. The method of claim 1 wherein embedding comprises:			

2

3	(BCB).			
1	10. The method of claim 1 wherein forming comprises:			
2	forming the metal layer having a thickness between 10 microns to 50 microns.			
1	11. A device comprising:			
2	dielectric layers made of thick film; and			
3	at least one metal layer embedded in the dielectric layers and having a standing-			
4	wave structure to distribute a clock signal to receiver end points from a clock source			
5	such that the receiver end points are substantially electrically equivalent with respect to			
6	the clock source.			
1	12. The device of claim 11 wherein the standing-wave structure is one of a			
2	M-ary tree and a combination of M-ary trees of different degrees M.			
1	13. The device of claim 11 wherein the standing-wave structure is in one of			
2	a two-dimensional configuration and a three-dimensional configuration.			
1	14. The device of claim 11 wherein the standing-wave structure is in a			
2	stacked-die configuration.			
1	15. The device of claim 11 further comprising:			
2	a via layer below the metal layer.			
1	16. The device of claim 15 further comprising:			
2	a back end of line (BEOL) layer below the via layer and on a substrate.			
1	17. The device of claim 16 wherein the BEOL layer is made of copper and			
2	dielectrics.			
1	18. The device of claim 11 wherein the metal layer comprises:			
2	at least one power delivery area.			
1	19. The device of claim 11 wherein the dielectric layers are made of			
2	benzocyclobutene (BCB).			

embedding the metal layer in dielectric layers made of benzocyclobutene

1	20.	The device of claim 11 wherein the metal layer has a thickness between		
2	10 microns to 50 microns.			
1	21.	A die comprising:		
2	a substrate; and			
3	a meta	allization layer on the substrate, the metallization layer comprising:		
4		dielectric layers made of thick film, and		
5		a metal layer embedded in the dielectric layers and having a standing-		
6		wave structure to distribute a clock signal to receiver end points from a		
7		clock source such that the receiver end points are substantially		
8		electrically equivalent with respect to the clock source.		
1	22.	The die of claim 21 wherein the standing-wave structure is one of an M-		
2	ary tree and a combination of M-ary trees of different degrees.			
1	23.	The die of claim 21 wherein the standing-wave structure is in one of a		
2	two-dimensional configuration and a three-dimensional configurations.			
1	24.	The die of claim 21 wherein the standing-wave structure is in a stacked-		
2	_			
1	25.	The die of claim 21 wherein the metallization layer further comprises:		
2				
1	26.	The die of claim 25 wherein the metallization layer further comprises:		
2	a back end of line (BEOL) layer below the via layer and on a substrate.			
1	27.	The die of claim 26 wherein the BEOL layer is made of copper and		
2	dielectrics.			
1	28.	The die of claim 21 wherein the metal layer comprises:		
2	a powe	er delivery area.		
1	29.	The die of claim 21 wherein the dielectric layer is made of		
2	henzocyclobu	tene (RCR)		

- 1 30. The die of claim 21 wherein the metal layer has a thickness between 10
- 2 microns to 50 microns.