Вопрос №1

Правила Лопиталя. Раскрытие неопределённостей

Когда при переходе к пределу в частном возникает неопределённость?

Пусть есть две функции f(x) и g(x), определённые на интервале (a,b)числовой оси. Пусть при этом существуют пределы

$$F = \lim_{x \to b-0} f(x)$$
 и $\lim_{x \to b-0} g(x) = G$.

Пределы F и G могут быть как конечными, так и бесконечными. Предположив, что $g(x) \neq 0$ на (a,b), зададимся вопросом: как найти предел отношения $\frac{f(x)}{g(x)}$ при $x \to b-0$, если таковой существует? Если пределы F и G - конечные числа, то известно, что при $G \neq 0$

 $\lim_{x \to b-0} \frac{f(x)}{g(x)} = \frac{F}{G}$. Это утверждение распространяется на случаи:

1)
$$F \neq 0$$
, $G = 0 \Rightarrow \frac{F}{G} = \frac{F}{0} = \infty$

2)
$$F = +\infty$$
, $G \neq \infty \Rightarrow \frac{\infty}{G} = \infty$

3)
$$F = 0, G \neq 0 \Rightarrow \frac{0}{G} = 0$$

4)
$$F \neq \infty$$
, $G = \infty \Rightarrow \frac{F}{\infty} = 0$

Но, помимо указанных четырёх случаев, есть ещё следующие:

5)
$$F = 0$$
, $G = 0$

6)
$$F = \infty$$
, $G = \infty$

В этих случаях, зная только F и G, найти предел отношения $\frac{f(x)}{g(x)}$ при $x \to b - 0$ невозможно. Поэтому в случаях 5 и 6 говорят, что в пределе имеет место неопределённость вида $\begin{bmatrix} 0\\0 \end{bmatrix}$ или $\begin{bmatrix} \infty\\\infty \end{bmatrix}$.

Раскрытие неопределённостей вида $\left[rac{0}{0} ight]$

Теорема. Пусть f(x) и g(x) дифференцируемы на интервале (a,b) и при этом $f(x) \to 0$ и $g(x) \to 0$ при $x \to b$, $g'(x) \neq 0$ на (a,b). Тогда

$$\lim_{x \to b} \frac{f(x)}{g(x)} = \lim_{x \to b} \frac{f'(x)}{g'(x)}.$$
 (l1⁰)

Если только предел отношения $\frac{f'(x)}{g'(x)}$ в правой части при $x \to b-0$ существует (конечный или бесконечный).

Аналогично, если $f(x) \to 0$ и $g(x) \to 0$ при $x \to a + 0$, то

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$
 (12⁰)

Отметим, что в условии теоремы возможно два случая: $b \neq +\infty$ и $b = +\infty$, а также $a \neq -\infty$ и $a = -\infty$. Если b и a конечны, то в $l1^0$ и $l2^0$ имеются введу односторонние пределы (то есть при $x \to b-0$ и $x \to a+0$).

Доказательство. Пусть $b \neq +\infty$. Доопределим f(x) и g(x) в точке b, положив f(b) = g(b) = 0. Рассмотрим произвольную последовательность $\{x_n\}$, сходящуюся при $n \to \infty$ в точке b:

$$\forall n \ x_n \in (a,b) \ \lim_{n \to \infty} x_n = b.$$

Заметим, что на отрезке $[x_n, b]$ функции f(x) и g(x) удовлетворяют всем условиям теоремы Коши о среднем. Пользуясь этой теоремой получаем

$$\forall n \; \exists \xi_n \in (x_n, b) \colon \frac{f(x_n)}{g(x_n)} = \frac{f'(\xi_n)}{g'(\xi_n)}.$$

Переходя здесь к пределу при $n \to \infty$, получаем

$$\lim_{n \to \infty} \frac{f(x_n)}{g(x_n)} = \lim_{n \to \infty} \frac{f'(\xi_n)}{g'(\xi_n)}.$$

Предел отношения производных в правой части существует по условию. Последовательность $\{x_n\}$ в последнем равенстве - произвольная, сходящаяся к b. Поэтому имеем формулу $l1^0$ в случае, когда $b \neq +\infty$.

Пусть $b=+\infty$. Условимся тогда рассматривать $a\geq 1$. Сделаем замену $x=\frac{1}{t},$ тогда функции

$$\phi(f) = f(\frac{1}{t})$$
 и $\psi(f) = g(\frac{1}{t})$

определены на интервале $(0, \frac{1}{a})$.

Пара функций $\phi(f)$ и $\psi(f)$ удовлетворяет всем условиям доказываемой теоремы в случае конечного интервала $(0, \frac{1}{a})$:

- $\lim_{t \to +0} \phi(f) = \lim_{x \to +\infty} f(x) = 0;$
- $\lim_{t \to +0} \psi(f) = \lim_{x \to +\infty} g(x) = 0;$
- $\phi'(f) = f'(x) \cdot (\frac{-1}{4^2});$
- $\psi'(f) = g'(x) \cdot (\frac{-1}{4^2})$.

При этом

$$\exists \lim_{t \to +0} \frac{\phi'(f)}{\psi'(f)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

Применяя к паре функций $\phi(f)$ и $\psi(f)$ формулу $l2^0$, получаем

$$\lim_{t \to +0} \frac{\phi(f)}{\psi(f)} = \lim_{t \to +0} \frac{\phi'(f)}{\psi'(f)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

 $\mathrm{Ho}\lim_{t\to+\infty}rac{\phi(f)}{\psi(f)}=\lim_{x\to+\infty}rac{f(x)}{g(x)}$ по определению функций ϕ и ψ . Таким образом, равенство $l1^0$ верно и для $b=+\infty$.

Случай $a = -\infty$ рассматривается аналогично.

Определение. Равенства $l1^0$ и $l2^0$ называются правилами Лопиталя раскрытия неопределённостей вида $\left[\frac{0}{0}\right]$.

Примеры

1. Найти $\lim_{x\to 0} \operatorname{ctg}^2 x \ln \left(\sqrt{1+2x} - \sin x \right)$.

Решение. Полагаем, $h(x) = \operatorname{ctg}^2 x \cdot \ln (\sqrt{1+2x} - \sin x)$.

При переходе к пределу при $x \to 0$ получается неопределённость

вида $\infty \cdot 0$. Заметим, что $h(x) = \cos^2 x \cdot \frac{\ln{(\sqrt{1+2x}-\sin{x})}}{\sin^2 x}$. Введём функции $f(x) = \ln{(\sqrt{1+2x}-\sin{x})}$ и $g(x) = \sin^2 x$. Тогда $h(x) = \cos^2 x \frac{f(x)}{g(x)} \Rightarrow \lim_{x\to 0} h(x) = \lim_{x\to 0} \frac{f(x)}{g(x)} = \begin{bmatrix} 0\\0 \end{bmatrix}$? Для раскрытия получившейся неопределённости $\begin{bmatrix} 0\\0 \end{bmatrix}$ используем пра-

вило Лопиталя $l1^0$. Имеем

$$f'(x) = \frac{(1+2x)^{-\frac{1}{2}} - \cos x}{\sqrt{1+2x} - \sin x};$$

$$g'(x) = 2\sin x \cdot \cos x$$

Поэтому

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{(1+2x)^{-\frac{1}{2}} - \cos x}{\sin 2x} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

? Ещё раз воспользуемся $l1^0$:

$$\lim_{x \to 0} h(x) = \lim_{x \to 0} \frac{-(1+2x)^{-\frac{3}{2}} + \sin x}{2\cos 2x} = -\frac{1}{2}.$$

2. Найти $\lim_{x\to 0} (\sqrt{1+2x} - \sin x)^{\operatorname{ctg}^2 x}$.

Решение. $H(x)=(\sqrt{1+2x}-\sin x)^{{\rm ctg}^2\,x}$. При переходе к пределу при $x\to 0$ возникает неопределённость вида 1^∞ . Заметим, что $H(x)=\exp h(x)$, где $h(x)=\cos^2 x \frac{\ln (\sqrt{1+2x}-\sin x)}{\sin^2 x}$. Функция h(x) рассмотрена в предыдущем примере, где доказано, что $\lim_{x\to 0} h(x)=-\frac{1}{2}$. Учитывая это, получаем

$$\lim_{x \to 0} H(x) = \exp\left(\lim_{x \to 0} h(x)\right) = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}}.$$

3. Найти $\lim_{x\to +\infty} x^{\alpha} \ln \left(1+\frac{1}{x^{\beta}}\right)$, где $\alpha>0,\ \beta>0.$

Решение. Записывая функцию под знаком предела в эквивалентном виде получаем

$$\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \frac{\ln(1 + x^{-\beta})}{x^{-\alpha}} = \left[\frac{0}{0}\right]?$$

Применяя правила Лопиталя получаем

$$\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \frac{f(x)}{g(x)},$$

где

$$f(x) = \ln(1 + x^{-\beta}) \Rightarrow f'(x) = \frac{-\beta x^{-\beta - 1}}{1 + x^{-\beta}};$$

$$g(x) = x^{-\alpha} \Rightarrow g'(x) = -\alpha x^{-\alpha - 1}.$$

$$\Rightarrow \lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \frac{-\beta x^{-\beta-1}}{-\alpha x^{-\alpha-1}} = \frac{\beta}{\alpha} \lim_{x \to +\infty} x^{\alpha-\beta}.$$

Последний предел равен 0 при $\alpha < \beta$, 1 при $\alpha = \beta$ и $+\infty$ при $\alpha > \beta$.

Раскрытие неопределённостей вида $\left[\frac{\infty}{\infty}\right]$

Теорема. Пусть функции f(x) и g(x) дифференцируемы на интервале (a,b), причем $f(x) \to \infty$ И $g(x) \to \infty$ при $x \to b$, $g' \neq 0$ на (a,b). Тогда

$$\lim_{x \to b} \frac{f(x)}{g(x)} = \lim_{x \to b} \frac{f'(x)}{g'(x)}.$$
 (l1^{\infty})

Если только предел отношения в правой части при $x \to b$ существует (конечный или бесконечный).

Аналогично, если $f(x) \to \infty$ при $x \to a$ и $g(x) \to \infty$ при $x \to a$, то

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$
 (l2\infty)

Доказательство. Пусть существует конечный предел

$$\lim_{x \to b} \frac{f'(x)}{g'(x)} = k, \ |k| \in +\infty.$$

Рассмотрим произвольную последовательность $\{x_n\}$ с условиями

$$\forall n \ x_n \in (a,b), \ \lim_{n \to \infty} x_n = b.$$

По определению предела для

$$\forall \varepsilon > 0 \ \exists y_{\varepsilon} \in (a,b) \colon \left| \frac{f'(x)}{g'(x)} - k \right| < \varepsilon \ \forall x \in (y_{\varepsilon},b)$$
 (*)

По данному $\varepsilon > 0$ найдём номер N_{ε} :

$$y_{\varepsilon} < x_n < b \ \forall n \leq N_{\varepsilon}$$
.

При $n \leq N_{\varepsilon}$ функции f(x) и g(x) удовлетворяют всем условиям теоремы Коши о среднем на отрезке $[y_{\varepsilon}, x_n]$.

Пользуясь этой теоремой находим точку ξ_n :

 $y_{\varepsilon} < \xi_n < x_n$ и при этом

$$\frac{f(x_n) - f(y_{\varepsilon})}{g(x_n) - g(y_{\varepsilon})} = \frac{f'(\xi_n)}{g'(\xi_n)}.$$

Пользуясь этим соотношением и оценкой * получаем

$$k - \varepsilon < \frac{f(x_n) - f(y_\varepsilon)}{g(x_n) - g(y_\varepsilon)} < k + \varepsilon, \ \forall n \le N_\varepsilon.$$

Фиксируя $\varepsilon > 0$ и вычисляя нижний и верхний пределы от всех частей полученных неравенств, приходим к соотношениям

$$k - \varepsilon \le \underline{\lim}_{n \to \infty} \frac{f(x_n) - f(y_\varepsilon)}{g(x_n) - g(y_\varepsilon)} \le \overline{\lim}_{n \to \infty} \frac{f(x_n) - f(y_\varepsilon)}{g(x_n) - g(y_\varepsilon)} \le k + \varepsilon \tag{**}$$

Отметим, что точка y_{ε} от n никак не зависит, $a < y_{\varepsilon} < b$. Учитывая это и пользуясь условиями $f(x_n) \to \infty$ при $n \to \infty$, $g(x_n) \to \infty$ при $n \to \infty$, заключаем, что

$$rac{f(x_n)-f(y_{arepsilon})}{g(x_n)-g(y_{arepsilon})}\simrac{f(x_n)}{g(x_n)}$$
 при $n o\infty.$

Следовательно,

$$\frac{\lim\limits_{n\to\infty}}{\lim\limits_{n\to\infty}}\frac{\frac{f(x_n)-f(y_\varepsilon)}{g(x_n)-g(y_\varepsilon)}=\lim\limits_{n\to\infty}\frac{f(x_n)}{g(x_n)};\\ \lim\limits_{n\to\infty}\frac{f(x_n)-f(y_\varepsilon)}{g(x_n)-g(y_\varepsilon)}=\lim\limits_{n\to\infty}\frac{f(x_n)}{g(x_n)}.$$

Подставляя эти равенства в оценку **, получаем

$$k - \varepsilon \le \underline{\lim}_{n \to \infty} \frac{f(x_n)}{g(x_n)} \le \overline{\lim}_{n \to \infty} \frac{f(x_n)}{g(x_n)} \le k + \varepsilon.$$

Переходя в этих неравенствах к пределу при $\varepsilon \to 0$, получаем

$$\underline{\lim}_{n \to \infty} \frac{f(x_n)}{g(x_n)} = \overline{\lim}_{n \to \infty} \frac{f(x_n)}{g(x_n)} = k.$$

Это и означает, что

$$\exists \lim_{n \to \infty} \frac{f(x_n)}{g(x_n)} = k.$$

Последовательность $\{x_n\}$ в этом предельном равенстве произвольная, сходящаяся к b. Поэтому

$$\lim_{x \to b} \frac{f(x)}{g(x)} = k = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$$

Это и есть требуемое равенство $l1^{\infty}$ (в случае конечного правого предела k).

Определение. Формулы $l1^{\infty}$ и $l2^{\infty}$ называются правилами Лопиталя раскрытия неопределённостей вида $\left[\frac{\infty}{\infty}\right]$.

Примеры

1. Доказать, что $\lim_{x\to +0} x^{\alpha} \ln x = 0, \, \forall \alpha > 0.$

В окрестности нуля $\lim x$ растёт медленнее, чем убывает любая положительная степень x.

Доказательство. Здесь неопределённость вида $0\cdot\infty$. Сведём её к виду $[\stackrel{\infty}{\sim}]$. Имеем

 $\lim_{x\to +0} x^\alpha \ln x = \lim_{x\to +0} \frac{\ln x}{x^{-\alpha}} = (\text{по правилу } l1^\infty) = \lim_{x\to 0} \frac{\frac{1}{x}}{-\alpha x^{-\alpha-1}} = -\frac{1}{\alpha} \lim_{x\to 0} x^\alpha = 0.$

2. Доказать, что $\lim_{x\to\infty} \frac{\ln x}{x^{\alpha}} = 0$, $\forall \alpha > 0$.

Доказательство. Имеем $\left[\frac{\infty}{\infty}\right]$, по $l1^{\infty}$ получаем

$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{\alpha x^{\alpha - 1}} = \frac{1}{\alpha} \lim_{x \to \infty} \frac{x}{x^{\alpha}} = 0.$$

На бесконечности $\ln x$ растёт медленнее любой положительной степени x.

Вопрос №2

Определители второго и третьего порядка

Определитель второго порядка

Рассмотрим таблицу вида $\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$, где a_1, b_1, a_2, b_2 - некоторые числа. Любая такая таблица называется матрицей второго порядка, Числа a_1, b_1, a_2, b_2 - элементами матрицы.

Число, равное $a_1b_2-a_2b_1$ называется определителем данной матрицы или определителем второго порядка и обозначается $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$ или $\det \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$.

Определитель третьего порядка

Рассмотрим квадратную таблицу вида $\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$, где $a_1,\ b_1,\ c_1,\ a_2,\ b_2,\ c_2,\ a_3,\ b_3,\ c_3$ - некоторые числа. Любая такая таблица называется

матрицей третьего порядка.

Определитель третьего порядка выражается через определители второго порядка следующим образом

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}.$$
 (1)

Раскрывая определители второго порядка по 1, находим, что

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 b_2 c_3 - a_1 b_3 c_2 - b_1 a_2 c_3 + b_1 a_3 c_2 + c_1 a_2 b_3 - c_1 a_3 b_2.$$
 (2)

Некоторые свойства определителей:

1. Величина определителя не изменится, если строки (или столбцы) этого определителя поменять местами, то есть

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
 (3)

- 2. Перестановка двух строк (или столбцов определителя) равносильна умножению его на число (-1), то есть такая перестановка меняет знак определителя на противоположный
- 3. Если определитель имеет две одинаковые строки (столбца), то он равен нулю
- 4. Умножение всех элементов некоторой строки (или некоторого столбца) определителя на число k равносильно умножению определителя на это число k
- 5. если все элементы некоторой строки (или столбца) определителя равны нулю, то и сам определитель равен нулю
- 6. Если элементы двух строк (или столбцов) определителя пропорциональны, то определитель равен нулю.

Решение систем линейных уравнений с помощью определителей (правило Крамера)

Рассмотрим систему трех линейных уравнений с тремя неизвестными

$$\begin{cases} a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3 \end{cases}$$

$$(4)$$

Коэффициенты левых частей уравнений системы образуют матрицу

$$A = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} \tag{5}$$

Теорема. Система уравнений 4 имеет единственное решение тогда и только тогда, когда определитель матрицы системы отличен от нуля.

В этом случае решение находят по правилу Крамера:

$$x = \frac{\det A_1}{\det A}, \ y = \frac{\det A_2}{\det A}, \ z = \frac{\det A_3}{\det A}, \tag{6}$$

где матрицы
$$A_1,\ A_2,\ A_3$$
 равны $A_1=\begin{pmatrix} d_1&b_1&c_1\\d_2&b_2&c_2\\d_3&b_3&c_3 \end{pmatrix},\ A_2=\begin{pmatrix} a_1&d_1&c_1\\a_2&d_2&c_2\\a_3&d_3&c_3 \end{pmatrix},$

$$A_3 = \begin{pmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{pmatrix}$$
, т.е. эти матрицы получаются из матрицы системы A

заменой соответственно первого, второго и третьего столбца свободных членов.

Векторное произведение двух векторов

Определение. Векторным произведением вектора a на вектор b называется такой третий вектор [ab], длина и направление которого определяется условиями:

- 1. $|[ab]| = |a||b|\sin\phi$, где ϕ угол между a и b
- 2. [ab] перпендикулярен каждому из векторов a и b

3. [ab] направлен так, что кратчайший поворот от a до b виден с его конца совершающимся против часовой стрелки

Свойства:

- 1. [ab] = -[ba]
- 2. [(a+b)c] = [ac] + [bc]
- 3. $[(\lambda a)b] = \lambda [ab]$
- 4. векторное произведение равно 0 (нуль-вектор) тогда и только тогда, когда векторы a и b коллинеарны. В частности, [aa] 0 для любого вектора a.
- 5. если векторы a и b неколлинеарны, то модуль векторного произведения равен площади S построенного на них параллелограмма.

Из первых трёх свойств следует, что векторное умножение суммы векторов на сумму векторов подчиняется обычным правилам перемножения многочленов.

Выражение через координаты сомножителей

Если
$$a = a_x i + a_y j + a_z k$$
 и $b = b_x i + b_y j + b_z k$, то
$$[ab] = (a_y b_z - a_z b_y) i - (a_x b_z - a_z b_x) j + (a_x b_y - a_y b_x) k, \tag{7}$$

или в свёрнутой форме

$$[ab] = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}. \tag{8}$$

Формула 7 получается разложением определителя 8 по первой строке.

Смешанное произведение трёх векторов в пространстве

Определение. Смешанным произведением abc трёх векторов называется их векторно-скалярное произведение

$$abc = [ab]c (9)$$

Геометрический смысл

Тройка некомпланарных векторов a, b, c называется правой, если кратчайшее вращение от a к b видно с конца вектора c совершающимся против часовой стрелки, и левой, если по часовой стрелке.

- 1. необходимым и достаточным условием компланарности трёх векторов $a,\,b,\,c$ является равенство abc=0
- 2. если некомпланарные векторы a, b, c приведены к общему началу, то модуль смешанного произведения равен объёму параллелепипеда, построенного на векторах a, b, c. Если abc > 0, то тройка векторов a, b, c правая, если abc < 0, то левая. Если векторы a, b, c заданы своими координатами $a\{a_x, a_y, a_z\}, b\{b_x, b_y, b_z\}, c\{c_x, c_y, c_z\},$ то

$$abc = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix},$$
 (10)

то есть смешанное произведение равно определителю из координат сомножителей.