Условия за колинеарност и компланарност на вектори чрез линейна зависимост

Определение 1 1. Казваме, че векторът v е *колинеарен* с правата l, и пишем $v \parallel l$, ако v има представител, лежащ на l.

Еквивалентна дефиниция е всеки представител на v да е успореден на l.

- 2. Казваме, че векторите v_1, \ldots, v_k са *колинеарни*, ако съществува права l, такава че v_1, \ldots, v_k са колинеарни с l. При два вектора пишем $v_1 \parallel v_2$.
- 3. Казваме, че векторът v е *компланарен* с равнината π , и пишем $v \parallel \pi$, ако v има представител, лежащ в π .

Еквивалентна дефиниция е всеки представител на v да е успореден на π .

4. Казваме, че векторите v_1, \ldots, v_k са *компланарни*, ако съществува равнина π , такава че v_1, \ldots, v_k са компланарни с π .

Определение 2 Нека е фиксирана единична отсечка за измерване. Дължина на вектора v е дължината на произволен негов представител. Означава се с |v|.

Коректност: Трябва да се провери, че дължината на v не зависи от избора на представителя на v, чрез която тя се дефинира. Но това е ясно, защото всички представители на v са равни и следователно имат една и съща дължина.

Определение 3 Казваме, че векторите u и v са $e\partial$ нопосочни (съответно противопосочни) и пишем $u \uparrow \uparrow v$ (съответно $u \uparrow \downarrow v$), ако един представител на u е еднопосочен (съответно противопосочен) с един представител на v.

Еквивалентна дефиниция е всеки представител на u да е еднопосочен (съответно противопосочен) с всеки представител на v.

Припомняне от алгебрата

По-долу ще използваме следните линейно-алгебрични факти, които са ви известни от курса по алгебра.

Нека V е реално линейно пространство.

Твърдение 1 Един вектор $v \in V$ е линейно зависим $\Leftrightarrow v = 0$.

Твърдение 2 При n > 1: Векторите $v_1, \ldots, v_n \in V$ са линейно зависими \Leftrightarrow някой от тях е линейна комбинация на останалите. При това, ако някои n-1 от тях са линейно независими, то останалият вектор е линейна комбинация на тия n-1 вектора, тоест, ако например v_1, \ldots, v_{n-1} са линейно независими, то v_1, \ldots, v_n са линейно зависими $\Leftrightarrow v_n$ е линейна комбинация на v_1, \ldots, v_{n-1} . (Това твърдение всъщност важи и при n=1, ако се уговорим да считаме, че по дефиниция линейна комбинация на нула на брой вектора е 0.)

Твърдение 3 Ако векторите $v_1, \ldots, v_n \in V$ са линейно независими и векторът $u \in V$ е тяхна линейна комбинация, то тая линейна комбинация е единствена, тоест коефициентите в нея са единствени.

Твърдение 4 Линейното пространство V е n-мерно, ако в него съществуват n линейно независими вектора, но всеки n+1 вектора са линейно зависими.

Всъщност горното твърдение е една от възможните дефиниции на размерност на линейно пространство. Другата често срещана (вероятно и при вас е била дадена тя) е: размерността е броят на векторите в един (а следователно и във всеки) базис.

С това завършва припомнянето от алгебрата.

Условия за колинеарност и компланарност на вектори чрез линейна зависимост

Теорема 1 Нека $u\ u\ v\ ca\ вектори\ u\ u \neq 0$. Тогава $u\ u\ v\ ca\ колинеарни \Leftrightarrow съществува\ <math>\lambda \in \mathbb{R}\ makoba,\ ve\ v = \lambda u$.

Числото λ в това равенство е единствено.

Доказателство: Трябва да се докажат три неща: права посока на еквивалентността, обратна посока на еквивалентността и единственост на λ . Ще ги доказваме в следния ред: обратна посока, единственост, права посока.

1. Обратна посока.

Нека $v = \lambda u$. Тогава от самата дефиниция на умножение на вектор с число следва, че $u \parallel v$: При $\lambda \neq 0$ се конструираше представител на v върху правата, определена от представител на u, а при $\lambda = 0$ имаме v = 0 и той също има представител върху тая права (и дори върху всяка права).

2. Единственост.

Ще дадем две доказателства на единствеността на λ . Първото е чисто линейноалгебрично, като използва вече известния ни факт, че векторите образуват линейно пространство, и е съвсем кратко. Второто използва конкретната дефиниция на умножение на вектор с число и е по-дълго, но затова пък в него се получава формула за λ , която можем да използваме при доказателството на съществуването, тоест на правата посока.

(а) Първо доказателство.

Тъй като $u \neq 0$, то по Твърдение 1 той е линейно независим. Тогава от Твърдение 3 получаваме, че ако $v = \lambda.u$, тоест v е линейна комбинация на линейно независимия u, то това става по единствен начин, тоест за единствено λ .

(б) Второ доказателство.

Нека $v=\lambda.u$. Нека сме фиксирали единична отсечка. От дефиницията на умножение на вектор с число следва: Ако v=0, то $\lambda=0$, защото $u\neq 0$. А ако $v\neq 0$, то $|v|=|\lambda|.|u|$ и тъй като $|u|\neq 0$, защото $u\neq 0$, то $|\lambda|=\frac{|v|}{|u|}$. При това, ако $v\uparrow \downarrow u$, то $\lambda>0$, а ако $v\uparrow \downarrow u$, то $\lambda<0$. Следователно

(1)
$$\lambda = \begin{cases} 0, & \text{and } v = 0 \\ \frac{|v|}{|u|}, & \text{and } v \neq 0, \ v \uparrow \downarrow u \\ -\frac{|v|}{|u|}, & \text{and } v \neq 0, \ v \uparrow \downarrow u \end{cases}.$$

Това показва, че λ еднозначно се определя от u и v и следователно е единствено.

3. Права посока.

Нека $u\parallel v$. Дефинираме λ чрез формулата (1) от второто доказателство на единствеността. Тогава, ако v=0, то $\lambda=0$ и следователно $v=0=0.u=\lambda.u$. А ако $v\neq 0$, то $|\lambda|=\frac{|v|}{|u|}$, тоест $|v|=|\lambda|.|u|=|\lambda.u|$, и $v\uparrow\uparrow\lambda.u$, защото при $\lambda>0$ имаме $v\uparrow\uparrow u\uparrow\uparrow\lambda.u$, а при $\lambda<0$ имаме $v\uparrow\downarrow u\uparrow\downarrow\lambda.u$. Така че и при $v\neq 0$ също $v=\lambda.u$.

Следствие 1 Два вектора са колинеарни \Leftrightarrow са линейно зависими.

Доказателство: Нека двата вектора са u и v.

Ако u = 0, то и двете страни на еквивалентността са изпълнени.

Нека $u \neq 0$. Следователно u е линейно независим (по Твърдение 1). Тогава от Твърдение 2 получаваме

u и v са линейно зависими $\Leftrightarrow v$ е линейна комбинация на u, тоест v е число по u \Leftrightarrow (от Теорема 1) $u \parallel v.$

С това следствието е доказано.

Забележка 1 Горното следствие е условието за колинеарност на вектори от заглавието. Както се вижда от доказателството му, то представлява малко по-обща версия на Теорема 1 (защото в него не се иска единият от векторите да е ненулев).

Следствие 2 Векторите, колинеарни с дадена права, образуват едномерно реално линейно пространство.

Доказателство: Това, че векторите, колинеарни с дадена права, образуват реално линейно пространство, вече го знаем от предишния въпрос. Така че трябва само да докажем, че размерността му е 1.

Тъй като по Твърдение 1 един вектор е линейно независим ⇔ е ненулев, а очевидно съществува ненулев вектор, който е колинеарен с дадената права, то съществува един линейно независим вектор, колинеарен с дадената права. Освен това всеки два вектора, които са колинеарни с правата, са колинеарни и значи са линейно зависими по Следствие 1. Така от Твърдение 4 получаваме, че размерността на линейното пространство на векторите, колинеарни с дадената права, е 1. □

Теорема 2 Нека u, v, w са вектори, като u u v не са колинеарни. Тогава u, v, w са компланарни \Leftrightarrow съществуват $\lambda, \mu \in \mathbb{R}$ такива, че $w = \lambda u + \mu v$. Числата λ u μ ϵ това равенство са единствени.

Доказателство: Трябва да се докажат три неща: права посока на еквивалентността, обратна посока на еквивалентността и единственост на λ и μ . Ще ги доказваме в следния ред: обратна посока, единственост, права посока.

Нека O е произволна точка, а точките P, Q, R са такива, че $\overrightarrow{OP} = u$, $\overrightarrow{OQ} = v$, $\overrightarrow{OR} = w$. Тъй като u и v не са колинеарни, то точките O, P, Q не са на една права и следователно задават равнина.

1. Обратна посока.

Нека $w=\lambda u+\mu v$. Тогава от дефинициите на умножение на вектор с число и събиране на вектори следва, че R лежи в равнината OPQ. Значи $u,\,v,\,w$ имат представители в равнината OPQ, тоест компланарни са с нея. Следователно $u,\,v,\,w$ са компланарни.

2. Единственост.

Тъй като u и v не са колинеарни, то по Следствие 1 те са линейно независими. Тогава от Твърдение 3 получаваме, че ако $w=\lambda u+\mu v$, тоест w е линейна комбинация на линейно независимите u и v, то това става по единствен начин, тоест за единствени λ и μ .

3. Права посока.

Нека u, v, w са компланарни. Тъй като равнините, с които u и v са компланарни, са равнините, които са успоредни на равнината OPQ, то и w е компланарен с тях. Следователно представителя \overrightarrow{OR} на w е успореден на равнината OPQ и тъй като началото му O лежи в нея, то и краят му R лежи в нея.

Нека R' е пресечната точка на правата OP с правата през R, която е успоредна на правата OQ. Означаваме векторите с представители $\overrightarrow{OR'}$ и $\overrightarrow{R'R}$ съответно с w' и w''. Следователно w=w'+w''.

Имаме, че u и w' са колинеарни (защото имат представители върху правата OP) и $u \neq 0$ (защото иначе u и v биха били колинеарни), така че по Теорема 1 съществува $\lambda \in \mathbb{R}$ такова, че $w' = \lambda.u$.

Също така имаме, че v и w'' са колинеарни (защото имат представители съответно върху правата OQ и върху успоредната на нея права през R) и $v \neq 0$ (защото иначе u и v биха били колинеарни), така че по Теорема 1 съществува $\mu \in \mathbb{R}$ такова, че $w'' = \mu.v$.

Следователно
$$w=w'+w''=\lambda.u+\mu.v.$$

Следствие 3 Три вектора са компланарни \Leftrightarrow са линейно зависими.

Доказателство: Нека трите вектора са u, v, w.

Ако u и v са колинеарни, то u, v, w са компланарни, а освен това u и v са линейно зависими (по Следствие 1), така че и u, v, w са линейно зависими. Значи в тоя случай и двете страни на еквивалентността са изпълнени.

Нека u и v не са колинеарни. Следователно u и v са линейно независими (по Следствие 1). Тогава от Твърдение 2 получаваме

- u, v, w са линейно зависими
- $\Leftrightarrow w$ е линейна комбинация на u и v, тоест $w = \lambda u + \mu v$ за някои $\lambda, \mu \in \mathbb{R}$
- \Leftrightarrow (от Теорема 2) u, v, w са компланарни.

С това следствието е доказано.

Забележка 2 Горното следствие е условието за компланарност на вектори от заглавието. Както се вижда от доказателството му, то представлява малко по-обща версия на Теорема 2 (защото в него не се иска два от векторите да са неколинеарни).

П

Следствие 4 Векторите, компланарни с дадена равнина, образуват двумерно реално линейно пространство.

Доказателство: Това, че векторите, компланарни с дадена равнина, образуват реално линейно пространство, вече го знаем от предишния въпрос. Така че трябва само да докажем, че размерността му е 2.

Тъй като по Следствие 1 два вектора са линейно независими ⇔ са неколинеарни, а очевидно съществуват два неколинеарни вектора, които са компланарни с дадената равнина, то съществуват два линейно независими вектора, компланарни с дадената равнина. Освен това всеки три вектора, които са компланарни с равнината, са компланарни и значи са линейно зависими по Следствие 3. Така от Твърдение 4 получаваме, че размерността на линейното пространство на векторите, компланарни с дадената равнина, е 2. □

Теорема 3 Нека u, v, w са некомпланарни вектори. Тогава за всеки вектор t съществуват единствени $\lambda, \mu, \nu \in \mathbb{R}$ такива, че $t = \lambda u + \mu v + \nu w$.

 $\overrightarrow{OP} = u, \overrightarrow{OQ} = v, \overrightarrow{OR} = w, \overrightarrow{OS} = t$. Тъй като u, v, w не са компланарни, то точките O, P, Q, R не лежат в една равнина.

Нека S' е пресечната точка на равнината OPQ с правата през S, която е успоредна на правата OR. Означаваме векторите с представители $\overrightarrow{OS'}$ и $\overrightarrow{S'S}$ съответно с t' и t''. Следователно t=t'+t''.

Имаме, че u, v, t' са компланарни (защото имат представители в равнината OPQ) и u и v са неколинеарни (защото иначе u, v, w биха били компланарни), така че по Теорема 2 съществуват $\lambda, \mu \in \mathbb{R}$ такива, че $t' = \lambda.u + \mu.v$.

Също така имаме, че w и t'' са колинеарни (защото имат представители съответно върху правата OR и върху успоредната на нея права през S) и $w \neq 0$ (защото иначе u, v, w биха били компланарни), така че по Теорема 1 съществува $v \in \mathbb{R}$ такова, че t'' = v.w.

Следователно $t = t' + t'' = \lambda . u + \mu . v + \nu . w$. С това съществуването е доказано.

Единственост: Тъй като u, v, w не са компланарни, то по Следствие 3 те са линейно независими. Тогава от Твърдение 3 получаваме, че ако $t = \lambda.u + \mu.v + \nu.w$, тоест t е линейна комбинация на линейно независимите u, v, w, то това става по единствен начин, тоест за единствени λ, μ, ν .

Следствие 5 Всеки четири вектора в пространството са линейно зависими.

Доказателство: Нека четирите вектора са u, v, w, t.

Ако u, v, w са компланарни, то u, v, w са линейно зависими (по Следствие 3), така че и u, v, w, t са линейно зависими.

Нека u, v, w не са компланарни. Тогава от Теорема 3 следва, че $t = \lambda.u + \mu.v + \nu.w$ за някои $\lambda, \mu, \nu \in \mathbb{R}$, тоест t е линейна комбинация на u, v, w, и значи от Твърдение 2 получаваме, че u, v, w, t са линейно зависими.

П

С това следствието е доказано.

Забележка 3 Както се вижда от доказателството на горното следствие, то представлява малко по-обща версия на Теорема 3 (защото в него не се иска три от векторите да са некомпланарни).

Следствие 6 Векторите в пространството образуват тримерно реално линейно пространство.

Доказателство: Това, че векторите в пространството образуват реално линейно пространство, вече го знаем от предишния въпрос. Така че трябва само да докажем, че размерността му е 3.

Тъй като по Следствие 3 три вектора са линейно независими ⇔ са некомпланарни, а очевидно в пространството съществуват три некомпланарни вектора, то в пространството съществуват три линейно независими вектора. Освен това всеки четири вектора в пространството са линейно зависими по Следствие 5. Така от Твърдение 4 получаваме, че размерността на линейното пространство на векторите в пространството е 3. □