微分積分学 A 中間試験問題

2019年6月6日第2時限施行

担当 水野 将司

学生番号

名前

注意事項: ノート・辞書・参考書・教科書・コピー・雷卓の使用を禁ず 問題用紙、解答用紙の両方を提出すること、

問題1は全員が1枚両面の答案用紙を用いて答えよ.問題2以降につ いて、2題以上を選択して1枚片面の答案用紙を用いて答えよ、なお、必 要におうじて x > 0, $n \in \mathbb{N}$ に対して,

(*)
$$(1+x)^n \ge 1 + nx + \frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{6}x^3$$

を用いてよい.

問題 1.

次の各問いに答えよ、ただし、答えのみを書くこと、

- (1) 実数の部分集合 $A \subset \mathbb{R}$ について、次の問いに答えよ、
 - (a) A が上に有界であることの定義を述べよ.
 - (b) A の上界のなす集合を A_u と書くとき, $a \in \mathbb{R}$ が A の上限で あること、つまり $a = \sup A$ であることの定義を A_{ii} を用い て述べよ
 - (c) 有理数の部分集合 A で $\sup A$ が有理数とならない A の例を
- (2) 実数列 $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ について、次の問いに答えよ. (a) $\{a_n\}_{n=1}^{\infty}$ が $a \in \mathbb{R}$ に収束すること、すなわち、 $a_n \to a$ $(n \to \infty)$ となることの ε -N 論法による定義を述べよ.
 - (b) $\{a_n\}_{n=1}^{\infty}$ が $-\infty$ に発散すること、 すなわち、 $a_n \to -\infty$ $(n \to \infty)$ となることの ε -N 論法による定義を述べよ.
 - (c) $\{a_n\}_{n=1}^{\infty}$ が(広義)単調減少であることの定義を述べよ.
- (3) 有理数と実数の違いに関係する次の定理の主張をそれぞれ述べ よ.
 - (a) 実数の連続性¹
 - (b) Bolzano-Weierstrass の定理
 - (c) 実数の完備性
 - (d) Archimedes の原理
- (4) 有理数の稠密性とは何か? 主張を述べよ.
- (5) 自然対数の底の定義を述べよ.

¹実数の切断についての連続性は答えとして認めない、講義ノートで述べた「実数 の連続性」を述べよ.

- (6) \mathbb{R} の部分集合 $\left\{2-\frac{1}{n}:n\in\mathbb{N}\right\}$ の上限を求めよ.
- (7) 次の性質をみたす数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ の例をあげよ. (a) 任意の $n \in \mathbb{N}$ に対して $a_n < b_n$ であり, $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 2$ となる.
 - (b) 任意の $n \in \mathbb{N}$ に対して $b_n > 0$ であり, $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ はと もに発散するが、 $\lim_{n\to\infty} \frac{a_n}{b_n}$ は収束する.
- (8) 次の極限を求めよ. なお, 答えのみを書くこと.

 - (a) a > 1 に対して $\lim_{n \to \infty} \frac{a^n}{n^2}$ (b) $\lim_{n \to \infty} \left(1 + \frac{2019}{n}\right)^n$.
 - (c) $\lim_{n \to \infty} \sum_{k=0}^{n+2} r^k$. ただし 0 < r < 1 は定数.
 - (d) $\lim_{n\to\infty} \frac{\sin\sqrt{3n}}{n}$.
 - (e) $a_1 = 1$, $a_{n+1} = 1 + \frac{1}{1+a_n}$ $(n \in \mathbb{N})$ で定義される数列 $\{a_n\}_{n=1}^{\infty}$ における $\lim_{n\to\infty} a_n$.

問題 2.

 $\inf(-3.4) = -3$ を示したい. 次の問いに答えよ.

- (1) $\inf(-3.4) = -3$ を示すためには、[-3] が下界であること | と [-3]が下界の中で最大であること」の二つを示す必要がある。それ ぞれについて、論理記号を用いて表せ、
- $(2) \inf(-3,4) = -3$ を示せ.

問題 3.

自然数 n に対して $a_n = \frac{19n-5}{3n-1}$ とおく. $\lim_{n\to\infty} a_n = \frac{19}{3}$ を ε -N 論法を 用いて示したい.次の問いに答えよ.

- (1) $\lim_{n\to\infty} a_n = \frac{19}{3}$ の ε -N 論法を用いた定義を述べよ.
- (2) $\lim_{n\to\infty} a_n = \frac{19}{3}$ を ε -N 論法を用いて示せ.

問題 4.

数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ はそれぞれ $a,b \in \mathbb{R}$ に収束するとする. このと き,数列 $\{3a_n-2b_n\}_{n=1}^{\infty}$ が3a-2bに収束することを ε -N論法を用いて 示したい、次の問いに答えよ、

- (1) 数列 $\{3a_n 2b_n\}_{n=1}^{\infty}$ が 3a 2b に収束することの ε -N 論法を用 いた定義を述べよ
- (2) 数列 $\{3a_n-2b_n\}_{n=1}^\infty$ が 3a-2b に収束することを ε -N 論法を用 いて示せ

問題 5.

数列 $\{a_n\}_{n=1}^{\infty}$ は a>0 に収束するとする. 次の問いに答えよ.

- (1) ある $N \in \mathbb{N}$ が存在して、すべての $n \in \mathbb{N}$ に対して、n > N ならば $|a_n| < 2a$ となることを示せ.
- (2) 数列 $\{a_n^2\}_{n=1}^{\infty}$ が a^2 に収束することを ε -N 論法を用いて示せ.

問題 6.

数列 $\{a_n\}_{n=1}^{\infty}$ は有界かつ単調増加とする.

- (1) 数列 $\{a_n\}_{n=1}^{\infty}$ が有界であることの定義を述べよ. (2) 数列 $\{a_n\}_{n=1}^{\infty}$ が単調増加であることの定義を述べよ.
- (3) 数列 $\{a_n\}_{n=1}^{\infty}$ は収束列であることを示せ.

問題 7.

数列 $\{a_n\}_{n=1}^{\infty}$ について,以下の問いに答えよ.

- (1) 数列 $\{a_n\}_{n=1}^{\infty}$ が Cauchy 列であることの定義を述べよ. (2) 数列 $\{a_n\}_{n=1}^{\infty}$ が収束列であれば, Cauchy 列となることを示せ.

微分積分学 A 中間試験問題

2019年6月6日第3時限施行 担当水野将司

学生番号

名前

注意事項: ノート・辞書・参考書・教科書・コピー・雷卓の使用を禁ず 問題用紙、解答用紙の両方を提出すること、

問題1は全員が1枚両面の答案用紙を用いて答えよ.問題2以降につ いて、2題以上を選択して1枚片面の答案用紙を用いて答えよ、なお、必 要におうじて x > 0, $n \in \mathbb{N}$ に対して,

(*)
$$(1+x)^n \ge 1 + nx + \frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{6}x^3$$

を用いてよい.

問題 1.

次の各問いに答えよ、ただし、答えのみを書くこと、

- (1) 実数の部分集合 $A \subset \mathbb{R}$ について、次の問いに答えよ.
 - (a) A が下に有界であることの定義を述べよ.
 - (b) A の下界のなす集合を A_i と書くとき. $a \in \mathbb{R}$ が A の下限で あること、つまり $a = \inf A$ であることの定義を A_i を用い て述べよ
 - (c) 有理数の部分集合 A で $\inf A$ が有理数とならない A の例を
- (2) 実数列 $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ について、次の問いに答えよ. (a) $\{a_n\}_{n=1}^{\infty}$ が $a \in \mathbb{R}$ に収束すること、すなわち、 $a_n \to a$ $(n \to \infty)$ となることの ε -N 論法による定義を述べよ.
 - (b) $\{a_n\}_{n=1}^{\infty}$ が ∞ に発散すること, すなわち, $a_n \to \infty$ $(n \to \infty)$ となることの ε -N 論法による定義を述べよ.
 - (c) $\{a_n\}_{n=1}^{\infty}$ が(広義)単調増加であることの定義を述べよ.
- (3) 有理数と実数の違いに関係する次の定理の主張をそれぞれ述べ よ.
 - (a) 実数の連続性²
 - (b) Bolzano-Weierstrass の定理
 - (c) 実数の完備性
 - (d) Archimedes の原理
- (4) 有理数の稠密性とは何か? 主張を述べよ.
- (5) 自然対数の底の定義を述べよ.

²実数の切断についての連続性は答えとして認めない. 講義ノートで述べた「実数 の連続性」を述べよ.

- (6) \mathbb{R} の部分集合 $\left\{x \in \mathbb{Q} : x > 0, x^2 < 3\right\}$ の下限を求めよ.
- (7) 次の性質をみたす数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ の例をあげよ.

 (a) $\{a_n + b_n\}_{n=1}^{\infty}$ は収束するが, $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ は発散する.

 (b) $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ は収束して $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$ となり, かつ任 意の $n \in \mathbb{N}$ に対して $b_n - a_n > 0$.
- (8) 次の極限を求めよ. なお, 答えのみを書くこと.
 - (a) $\lim_{n \to \infty} \frac{7^{n+1} 5^n}{7^{n+2} + 4^n}.$
 - (b) $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+2)}$.
 - (c) $\lim_{n \to \infty} \sum_{k=3}^{n+2} r^k$. ただし 0 < r < 1 は定数.
 - (d) $\lim_{n\to\infty} \frac{\sin \sqrt{10}n}{n}$.
 - (e) $a_1 = 1$, $a_{n+1} = \sqrt{1 + a_n}$ $(n \in \mathbb{N})$ で定義される数列 $\{a_n\}_{n=1}^{\infty}$ に おける $\lim a_n$.

問題 2.

 $\sup(-5,2) = 2$ を示したい. 次の問いに答えよ.

- (1) $\sup(-5,2) = 2$ を示すためには、「2が上界であること」と「2が 上界の中で最小であること」の二つを示す必要がある。それぞ れについて、論理記号を用いて表せ、
- $(2) \sup(-5,2) = 2$ を示せ.

問題 3.

自然数 n に対して $a_n = \frac{13n-2}{5n-1}$ とおく. $\lim_{n\to\infty} a_n = \frac{13}{5}$ を ε -N 論法を 用いて示したい.次の問いに答えよ.

- (1) $\lim_{n\to\infty} a_n = \frac{13}{5}$ の ε -N 論法を用いた定義を述べよ. (2) $\lim_{n\to\infty} a_n = \frac{13}{5}$ を ε -N 論法を用いて示せ.

問題 4.

数列 $\{a_n\}_{n=1}^\infty$, $\{b_n\}_{n=1}^\infty$ は, それぞれ $a,b\in\mathbb{R}$ に収束するとする. このとき, 数列 $\{2a_n-3b_n\}_{n=1}^\infty$ が 2a-3b に収束することを ε -N 論法を用いて 示したい、次の問いに答えよ.

- (1) 数列 $\{2a_n 3b_n\}_{n=1}^{\infty}$ が 2a 3b に収束することの ε -N 論法を用 いた定義を述べよ
- (2) 数列 $\{2a_n-3b_n\}_{n=1}^\infty$ が 2a-3b に収束することを ε -N 論法を用 いて示せ

問題 5.

0でない実数からなる数列 $\{a_n\}_{n=1}^{\infty}$ が a>0 に収束するとする. 次の 問いに答えよ.

- (1) ある $N \in \mathbb{N}$ が存在して、すべての $n \in \mathbb{N}$ に対して、 $n \ge N$ ならば $|a_n| > \frac{1}{2}a$ となることを示せ.
- (2) 数列 $\left\{\frac{1}{a_n}\right\}_{n=1}^{\infty}$ が $\frac{1}{a}$ に収束することを ε -N 論法を用いて示せ.

問題 6.

数列 $\{a_n\}_{n=1}^{\infty}$ は有界かつ単調減少とする.

- (1) 数列 $\{a_n\}_{n=1}^{\infty}$ が有界であることの定義を述べよ.
- (2) 数列 $\{a_n\}_{n=1}^{\infty}$ が単調減少であることの定義を述べよ.
- (3) 数列 $\{a_n\}_{n=1}^{\infty}$ は収束列であることを示せ.

問題 7.

数列 $\{a_n\}_{n=1}^{\infty}$ について,以下の問いに答えよ.

- (1) 数列 $\{a_n\}_{n=1}^{\infty}$ が Cauchy 列であることの定義を述べよ. (2) 数列 $\{a_n\}_{n=1}^{\infty}$ が収束列であれば, Cauchy 列となることを示せ.