Semana 2 Control de Lectura

Capítulo 3: Notación Asintótica

Objetivo del Capítulo

Comprender y aplicar la notación asintótica para analizar la eficiencia de algoritmos en términos de tiempo y espacio, ignorando constantes y términos de menor orden.

Secciones Clave

1. Introducción a la Notación Asintótica

Propósito: Comparar el crecimiento de funciones que representan el costo de algoritmos.

Enfoque: Comportamiento de algoritmos cuando el tamaño de entrada (n) tiende a infinito.

2. Definiciones Fundamentales

O-grande (O) - Límite Superior

Definición: $f(n) \in O(g(n))$ si existen constantes c > 0 y $n_0 \ge 0$ tales que:

 $f(n) \le c \cdot g(n)$ para todo $n \ge n_0$

Interpretación: El algoritmo no es peor que g(n).

Ejemplo: $3n^2 + 5n \in O(n^2)$ con c = 4, $n_0 = 2$

Omega (Ω) – Límite Inferior

Definición: $f(n) \in \Omega(g(n))$ si existen constantes c > 0 y $n_0 \ge 0$ tales que:

 $f(n) \ge c \cdot g(n)$ para todo $n \ge n_0$

Interpretación: El algoritmo no es mejor que g(n).

Ejemplo: $n \log n \in \Omega(n)$

Theta (0) - Límite Ajustado

Definición: $f(n) \in \Theta(g(n))$ si $f(n) \in O(g(n))$ y $f(n) \in \Omega(g(n))$

Interpretación: El algoritmo tiene un crecimiento exacto como g(n).

Ejemplo: $2n^2 + n \in \Theta(n^2)$

3. Otras Notaciones

o-pequeña (o): Límite superior estricto (ejemplo: $n \in o(n \log n)$)

ω-pequeña: Límite inferior estricto (ejemplo: $n^2 ∈ ω(n)$)

4. Propiedades y Operaciones

Transitividad: Si $f(n) \in O(g(n))$ y $g(n) \in O(h(n))$, entonces $f(n) \in O(h(n))$

Suma y Multiplicación:

$$O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$$

$$O(f(n)) \cdot O(g(n)) = O(f(n) \cdot g(n))$$

5. Aplicaciones en Algoritmos

Búsqueda binaria: O(log n)

Ordenación por inserción: $O(n^2)$ en caso peor, $\Theta(n)$ en caso mejor

Mergesort: Θ(n log n) en todos los casos

6. Análisis de Casos

Caso peor: Máximo tiempo posible (ejemplo: Quicksort \rightarrow O(n²))

Caso medio: Esperado en entradas aleatorias (ejemplo: Quicksort $\rightarrow \Theta(n \log n)$)

Caso mejor: Mínimo tiempo posible (ejemplo: Ordenación por inserción $\rightarrow \Theta(n)$)