Midterm Review Notes: Key Definitions and Theorems

These notes summarize the key definitions, theorems, and concepts relevant to the sample midterm problems, primarily based on Ross's *Elementary Analysis*. Examples are drawn directly from the sample problems and solutions provided, rephrased for clarity and rigor.

1 Continuity

1.1 Definitions

Definition 1.1 (Continuity at a Point [1]). Let f be a real-valued function whose domain is a subset S of \mathbb{R} . The function f is **continuous at** $x_0 \in S$ if, for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $x \in S$ and $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \epsilon$.

Definition 1.2 (Continuity on a Set [1]). If f is continuous at every point of a set $S' \subseteq S$, then f is said to be **continuous on** S'.

Definition 1.3 (Uniform Continuity [2]). Let f be a real-valued function defined on a set $S \subseteq \mathbb{R}$. Then f is **uniformly continuous on** S if for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $x, y \in S$ and $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$.

Remark 1.1. The key difference from pointwise continuity is that δ depends only on ϵ and not on the specific points $x, y \in S$. Uniform continuity is a global property on the set S.

Definition 1.4 (Bounded Function [4]). A function f defined on a set S is **bounded** if its range $f(S) = \{f(x) : x \in S\}$ is a bounded subset of \mathbb{R} . Equivalently, there exists a constant $M \geq 0$ such that $|f(x)| \leq M$ for all $x \in S$.

1.2 Theorems

Theorem 1.1 (Intermediate Value Theorem (IVT) [3]). If f is a continuous function on a closed interval [a,b], and if y_0 is any value between f(a) and f(b) (i.e., $f(a) < y_0 < f(b)$ or $f(b) < y_0 < f(a)$), then there exists at least one $c \in (a,b)$ such that $f(c) = y_0$.

1.3 Examples

Example 1.1 (Application of IVT - Sample Problem 5). **Problem Statement:** Suppose f is continuous on [0,2] and f(0)=f(2). Prove that there exist $x,y \in [0,2]$ where |x-y|=1 and f(x)=f(y).

Solution: We seek points x and y such that y = x + 1 (or x = y + 1) and f(x) = f(y). This suggests considering the difference f(x) - f(x + 1).

Define an auxiliary function $g:[0,1]\to\mathbb{R}$ by g(x)=f(x)-f(x+1). Since f is continuous on [0,2], and $x\mapsto x+1$ is continuous, the composition $x\mapsto f(x+1)$ is continuous on [0,1]. Therefore, g is continuous on [0,1] as the difference of continuous functions.

Evaluate g at the endpoints of its domain [0, 1]:

$$g(0) = f(0) - f(1)$$

$$g(1) = f(1) - f(2)$$

Using the given condition f(0) = f(2), we can rewrite g(1):

$$g(1) = f(1) - f(0) = -(f(0) - f(1)) = -g(0)$$

Now consider two cases for the value of g(0):

- 1. Case 1: g(0) = 0. If g(0) = 0, then f(0) f(1) = 0, which means f(0) = f(1). We can choose x = 0 and y = 1. Then $x, y \in [0, 2]$, |x y| = |0 1| = 1, and f(x) = f(y). The condition is satisfied.
- 2. Case 2: $g(0) \neq 0$. If $g(0) \neq 0$, then g(1) = -g(0) implies that g(0) and g(1) have opposite signs. Since g is continuous on the closed interval [0,1], and 0 is a value between g(0) and g(1), the Intermediate Value Theorem guarantees the existence of some $c \in (0,1)$ such that g(c) = 0. By definition of g, g(c) = f(c) f(c+1) = 0, which means f(c) = f(c+1). Let x = c and y = c+1. Since $c \in (0,1)$, we have $x \in (0,1)$ and $y \in (1,2)$, so both $x, y \in [0,2]$. Also, |x-y| = |c-(c+1)| = |-1| = 1, and f(x) = f(y). The condition is satisfied.

In both cases, we have found $x, y \in [0, 2]$ such that |x - y| = 1 and f(x) = f(y).

2 Convergence of Numerical Series

2.1 Definitions

Definition 2.1 (Convergence of a Series). A series $\sum_{n=1}^{\infty} a_n$ converges to a real number S if the sequence of partial sums (s_k) , where $s_k = \sum_{n=1}^k a_n$, converges to S. If the sequence of partial sums diverges, the series **diverges**.

2.2 Convergence Tests

Theorem 2.1 (Comparison Test [5]). Let $\sum a_n$ and $\sum b_n$ be series such that $0 \le a_n \le b_n$ for all n sufficiently large.

- 1. If $\sum b_n$ converges, then $\sum a_n$ converges.
- 2. If $\sum a_n$ diverges, then $\sum b_n$ diverges.

Theorem 2.2 (Limit Comparison Test [6]). Let $\sum a_n$ and $\sum b_n$ be series with positive terms $(a_n > 0, b_n > 0 \text{ for } n \text{ sufficiently large}).$

- 1. If $\lim_{n\to\infty} (a_n/b_n) = L$ where $0 < L < \infty$, then $\sum a_n$ and $\sum b_n$ either both converge or both diverge.
- 2. If $\lim_{n\to\infty} (a_n/b_n) = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- 3. If $\lim_{n\to\infty} (a_n/b_n) = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Theorem 2.3 (Alternating Series Test [7]). Let (a_n) be a sequence such that

1. $a_n \ge 0$ for all n (sufficiently large),

2. $a_{n+1} \le a_n$ for all n (sufficiently large) (i.e., (a_n) is eventually non-increasing),

3. $\lim_{n\to\infty} a_n = 0.$

Then the alternating series $\sum (-1)^n a_n$ and $\sum (-1)^{n+1} a_n$ converge.

Remark 2.1 (Important Series). • The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges [8].

• The **p-series** $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$ [9].

2.3 Examples

Example 2.1 (Applying Convergence Tests - Sample Problem 4a). **Problem Statement:** Determine whether the following series converge or diverge:

$$S_1 = \sum_{n=2}^{\infty} \frac{1}{\sqrt{n^2 - 1}}, \qquad S_2 = \sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n^2 - 1}}$$

Solution:

1. **Analysis of** S_1 : Let $a_n = \frac{1}{\sqrt{n^2-1}}$. The terms a_n are positive for $n \ge 2$. We compare a_n with $b_n = \frac{1}{n}$. The harmonic series $\sum b_n = \sum \frac{1}{n}$ diverges. Let's use the Limit Comparison Test:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1/\sqrt{n^2 - 1}}{1/n} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 - 1}}$$

$$= \lim_{n \to \infty} \frac{n}{\sqrt{n^2(1 - 1/n^2)}} = \lim_{n \to \infty} \frac{n}{n\sqrt{1 - 1/n^2}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 - 1/n^2}} = \frac{1}{\sqrt{1 - 0}} = 1$$

Since the limit is L = 1, and $0 < L < \infty$, and $\sum b_n$ diverges, the series $\sum a_n = S_1$ also **diverges** by the Limit Comparison Test.

2. **Analysis of** S_2 : This is an alternating series $\sum (-1)^n a_n$ with $a_n = \frac{1}{\sqrt{n^2-1}}$. We check the conditions of the Alternating Series Test:

• $a_n = \frac{1}{\sqrt{n^2 - 1}} > 0$ for $n \ge 2$. (Condition 1 satisfied)

• Is (a_n) non-increasing? Consider $f(x) = \sqrt{x^2 - 1}$ for $x \ge 2$. Since $x^2 - 1$ is increasing for $x \ge 2$, $\sqrt{x^2 - 1}$ is increasing. Therefore, $a_n = 1/f(n)$ is decreasing for $n \ge 2$. (Condition 2 satisfied)

• Does $a_n \to 0$?

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{\sqrt{n^2 - 1}} = 0$$

(Condition 3 satisfied)

Since all three conditions are met, the series S_2 converges by the Alternating Series Test.

3 Sequences and Series of Functions

3.1 Definitions

Definition 3.1 (Pointwise Convergence [10]). A sequence of functions (f_n) defined on $S \subseteq \mathbb{R}$ converges pointwise to f on S if, for each $x \in S$, $\lim_{n \to \infty} f_n(x) = f(x)$.

Definition 3.2 (Uniform Convergence [10]). A sequence of functions (f_n) defined on $S \subseteq \mathbb{R}$ converges uniformly to f on S if, for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ (depending only on ϵ) such that for all n > N and for all $x \in S$, we have $|f_n(x) - f(x)| < \epsilon$.

Definition 3.3 (Uniformly Cauchy [11]). A sequence of functions (f_n) on S is **uniformly Cauchy** if, for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all m, n > N and for all $x \in S$, we have $|f_n(x) - f_m(x)| < \epsilon$.

3.2 Key Theorems

Theorem 3.1 (Cauchy Criterion for Uniform Convergence [12]). A sequence of functions (f_n) converges uniformly on S if and only if it is uniformly Cauchy on S.

Theorem 3.2 (Continuity of the Limit Function [13]). If (f_n) is a sequence of continuous functions on S and $f_n \to f$ uniformly on S, then f is continuous on S.

Theorem 3.3 (Uniform Continuity of the Limit Function (cf. Sample Problem 1)). If (f_n) is a sequence of uniformly continuous functions on an interval I, and $f_n \to f$ uniformly on I, then f is uniformly continuous on I.

Theorem 3.4 (Interchange of Limits [14]). Let (f_n) be a sequence of continuous functions on [a,b] converging uniformly to f on [a,b]. If (x_n) is a sequence in [a,b] with $x_n \to x \in [a,b]$, then $\lim_{n\to\infty} f_n(x_n) = f(x)$.

Theorem 3.5 (Boundedness of the Limit Function [15]). If (f_n) is a sequence of bounded functions on S and $f_n \to f$ uniformly on S, then f is bounded on S.

Theorem 3.6 (Weierstrass M-Test [16]). Let (f_n) be functions on S. If there exist constants $M_n \geq 0$ such that $|f_n(x)| \leq M_n$ for all $x \in S$ and $\sum M_n$ converges, then $\sum f_n$ converges uniformly on S.

3.3 Examples

Example 3.1 (Uniform Convergence \implies Uniformly Cauchy - Sample Problem 6). **Problem Statement:** Let $f_n \to f$ uniformly on S. Prove (f_n) is uniformly Cauchy on S.

Proof. Assume $f_n \to f$ uniformly on S. Let $\epsilon > 0$ be given. By the definition of uniform convergence, there exists $N \in \mathbb{N}$ such that for all k > N and for all $x \in S$,

$$|f_k(x) - f(x)| < \frac{\epsilon}{2}$$

Now, let m > N and n > N. For any $x \in S$, we use the triangle inequality:

$$|f_n(x) - f_m(x)| = |(f_n(x) - f(x)) + (f(x) - f_m(x))|$$

$$\leq |f_n(x) - f(x)| + |f(x) - f_m(x)|$$

Since n > N and m > N, both terms on the right are less than $\epsilon/2$.

$$|f_n(x) - f_m(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

This inequality holds for all $x \in S$ whenever m, n > N. Therefore, the sequence (f_n) is uniformly Cauchy on S.

Example 3.2 (Uniform Continuity Preservation - Sample Problem 1). **Problem Statement:** Let (f_n) be uniformly continuous functions on (a, b), and $f_n \to f$ uniformly on (a, b). Prove f is uniformly continuous on (a, b).

Proof. Let $\epsilon > 0$ be given. We need to find a $\delta > 0$ such that for all $x, y \in (a, b), |x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$.

1. Use Uniform Convergence: Since $f_n \to f$ uniformly, there exists $N \in \mathbb{N}$ such that for all n > N and for all $z \in (a, b)$,

$$|f_n(z) - f(z)| < \frac{\epsilon}{3}$$

Let's fix one such index, say n = N + 1. So, for all $z \in (a, b)$, $|f_{N+1}(z) - f(z)| < \epsilon/3$.

2. Use Uniform Continuity of f_{N+1} : Since f_{N+1} is uniformly continuous on (a, b), for the value $\epsilon/3 > 0$, there exists a $\delta > 0$ such that for all $x, y \in (a, b)$,

$$|x - y| < \delta \implies |f_{N+1}(x) - f_{N+1}(y)| < \frac{\epsilon}{3}$$

3. Combine using Triangle Inequality: Now, let $x, y \in (a, b)$ such that $|x - y| < \delta$ (using the δ from step 2). Consider |f(x) - f(y)|:

$$|f(x) - f(y)| = |(f(x) - f_{N+1}(x)) + (f_{N+1}(x) - f_{N+1}(y)) + (f_{N+1}(y) - f(y))|$$

Applying the triangle inequality:

$$<|f(x)-f_{N+1}(x)|+|f_{N+1}(x)-f_{N+1}(y)|+|f_{N+1}(y)-f(y)|$$

Using the bounds derived in steps 1 and 2:

$$<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon$$

Thus, for any $\epsilon > 0$, we found a $\delta > 0$ such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$. This proves f is uniformly continuous on (a, b).

Example 3.3 (Limit Interchange - Sample Problem 3). **Problem Statement:** Let f_n be continuous on [a,b], $f_n \to f$ uniformly on [a,b]. If $x_n \in [a,b]$ and $x_n \to x \in [a,b]$, show $\lim_{n\to\infty} f_n(x_n) = f(x)$.

Proof. Let $\epsilon > 0$ be given. We want to show there exists N such that $n > N \implies |f_n(x_n) - f(x)| < \epsilon$.

- 1. Continuity of Limit Function: Since f_n are continuous and $f_n \to f$ uniformly on [a, b], the limit function f is continuous on [a, b] (by Theorem 3.2).
- 2. Use Continuity of f: Since f is continuous at $x \in [a, b]$ and $x_n \to x$, there exists $N_1 \in \mathbb{N}$ such that for all $n > N_1$,

$$|f(x_n) - f(x)| < \frac{\epsilon}{2}$$

3. Use Uniform Convergence: Since $f_n \to f$ uniformly on [a, b], there exists $N_2 \in \mathbb{N}$ such that for all $n > N_2$ and for all $y \in [a, b]$,

$$|f_n(y) - f(y)| < \frac{\epsilon}{2}$$

In particular, this holds for $y = x_n$ (since $x_n \in [a, b]$), so for $n > N_2$, $|f_n(x_n) - f(x_n)| < \epsilon/2$.

4. Combine using Triangle Inequality: Let $N = \max\{N_1, N_2\}$. If n > N, then both conditions from steps 2 and 3 hold. Consider $|f_n(x_n) - f(x)|$:

$$|f_n(x_n) - f(x)| = |(f_n(x_n) - f(x_n)) + (f(x_n) - f(x))|$$

Applying the triangle inequality:

$$\leq |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)|$$

Using the bounds derived in steps 3 and 2:

$$<\frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Thus, for any $\epsilon > 0$, we found N such that $n > N \implies |f_n(x_n) - f(x)| < \epsilon$. This proves $\lim_{n \to \infty} f_n(x_n) = f(x)$.

Example 3.4 (Boundedness Preservation - Sample Problem 7a). **Problem Statement:** Let (f_n) be bounded functions on S, and $f_n \to f$ uniformly on S. Prove f is bounded on S.

Proof. We need to show there exists $M' \geq 0$ such that $|f(x)| \leq M'$ for all $x \in S$.

1. Use Uniform Convergence: Since $f_n \to f$ uniformly, for $\epsilon = 1$, there exists $N \in \mathbb{N}$ such that for all n > N and for all $x \in S$,

$$|f_n(x) - f(x)| < 1$$

Let's fix one such index, say n = N + 1. So, $|f_{N+1}(x) - f(x)| < 1$ for all $x \in S$.

2. Use Boundedness of f_{N+1} : Since f_{N+1} is a bounded function on S, there exists a constant $M \geq 0$ such that

$$|f_{N+1}(x)| \le M$$
 for all $x \in S$

3. Combine using Triangle Inequality: For any $x \in S$, consider |f(x)|:

$$|f(x)| = |f(x) - f_{N+1}(x) + f_{N+1}(x)|$$

Applying the triangle inequality:

$$\leq |f(x) - f_{N+1}(x)| + |f_{N+1}(x)|$$

Using the bounds from steps 1 and 2:

$$< 1 + M$$

Let M' = M + 1. We have shown that |f(x)| < M' for all $x \in S$. Therefore, f is bounded on S.

Example 3.5 (Pointwise Limit Need Not Be Bounded - Sample Problem 7b). **Problem Statement:** Give an example of a set $S \subseteq \mathbb{R}$ and a sequence of bounded functions (f_n) on S such that $f_n \to f$ pointwise on S, but f is not bounded on S.

Solution: Let S = (0, 1]. Consider the sequence of functions $f_n : S \to \mathbb{R}$ defined by

$$f_n(x) = \min\left\{n, \frac{1}{x}\right\} = \begin{cases} n & \text{if } 0 < x \le 1/n\\ 1/x & \text{if } 1/n < x \le 1 \end{cases}$$

We verify the properties:

- f_n is Bounded: For any fixed n, the value of $f_n(x)$ is either n or 1/x. If $1/n < x \le 1$, then $1 \le 1/x < n$. So, in all cases, $0 < f_n(x) \le n$. Thus, each f_n is bounded on S (by $M_n = n$).
- Pointwise Convergence: Let $x \in (0,1]$ be fixed. Consider the limit $\lim_{n\to\infty} f_n(x)$. Choose an integer N such that N>1/x. Then, for all n>N, we have n>1/x, which implies x>1/n. According to the definition of f_n , for n>N, $f_n(x)=1/x$. Therefore, the sequence $(f_n(x))$ eventually becomes constant $(1/x,1/x,\ldots)$ and converges to 1/x. So, $f_n\to f$ pointwise on S, where the limit function is f(x)=1/x.
- f is Unbounded: The limit function f(x) = 1/x is not bounded on the interval S = (0,1]. As $x \to 0^+$, $f(x) \to +\infty$. There is no constant M such that $|f(x)| \le M$ for all $x \in (0,1]$.

This example demonstrates that pointwise convergence does not preserve boundedness.

Example 3.6 (Application of M-Test - Sample Problem 2b Alternative). **Problem Statement:** Show that $f_3(y) = \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{y}{1+y^2} \right)^n$ converges for all $y \in \mathbb{R}$.

Solution using M-Test: Let $f_n(y) = \frac{1}{n^2} \left(\frac{y}{1+y^2}\right)^n$. We want to apply the Weierstrass M-Test.

1. **Find a Bound** M_n : We need to bound $|f_n(y)|$ uniformly for all $y \in \mathbb{R}$. Let $g(y) = \frac{y}{1+y^2}$. We find the maximum value of |g(y)|. If y = 0, g(0) = 0. If $y \neq 0$, $|g(y)| = \frac{|y|}{1+y^2}$. Consider $h(t) = \frac{t}{1+t^2}$ for t > 0. $h'(t) = \frac{(1+t^2)(1)-t(2t)}{(1+t^2)^2} = \frac{1-t^2}{(1+t^2)^2}$. h'(t) = 0 when t = 1. h(1) = 1/2. Since $\lim_{t \to 0^+} h(t) = 0$ and $\lim_{t \to \infty} h(t) = 0$, the maximum value for t > 0 is 1/2. Since g(-y) = -g(y), the maximum value of |g(y)| for all $y \in \mathbb{R}$ is 1/2. Therefore, for all $y \in \mathbb{R}$,

$$|f_n(y)| = \frac{1}{n^2} \left| \frac{y}{1+y^2} \right|^n \le \frac{1}{n^2} \left(\frac{1}{2} \right)^n$$

Let $M_n = \frac{1}{n^2} \left(\frac{1}{2}\right)^n$.

- 2. Check Convergence of $\sum M_n$: The series is $\sum_{n=1}^{\infty} \frac{1}{n^2 2^n}$. We can use the Comparison Test. Since $0 < 1/2^n \le 1$ for $n \ge 1$, we have $0 < M_n \le \frac{1}{n^2}$. The series $\sum \frac{1}{n^2}$ is a convergent p-series (p=2>1). By the Comparison Test, $\sum M_n$ converges.
- 3. Conclusion: Since $|f_n(y)| \leq M_n$ for all $y \in \mathbb{R}$ and $\sum M_n$ converges, the series $\sum f_n(y)$ converges uniformly on \mathbb{R} by the Weierstrass M-Test. Uniform convergence implies pointwise convergence for all $y \in \mathbb{R}$.

4 Power Series

4.1 Definitions and Basic Properties

Definition 4.1 (Power Series [17]). A **power series** centered at 0 is a series of the form $\sum_{n=0}^{\infty} a_n x^n$.

Theorem 4.1 (Radius of Convergence [18]). For any power series $\sum a_n x^n$, let $\beta = \limsup_{n \to \infty} |a_n|^{1/n}$. The radius of convergence R is defined as

$$R = \begin{cases} 1/\beta & \text{if } 0 < \beta < \infty \\ \infty & \text{if } \beta = 0 \\ 0 & \text{if } \beta = \infty \end{cases}$$

The series converges absolutely for |x| < R and diverges for |x| > R.

Remark 4.1 (Ratio Test for R). If $\lim_{n\to\infty} |a_{n+1}/a_n| = L$ exists, then $\beta = L$ and R = 1/L (with $R = \infty$ if L = 0, R = 0 if $L = \infty$).

Remark 4.2 (Endpoint Convergence). The convergence or divergence of the series at the endpoints x = R and x = -R must be checked separately using numerical series tests.

Theorem 4.2 (Uniform Convergence of Power Series [19]). If a power series $\sum a_n x^n$ has radius of convergence R > 0, then for any c such that 0 < c < R, the series converges uniformly on the interval [-c, c].

Corollary 4.1. The function $f(x) = \sum a_n x^n$ defined by a power series is continuous on the open interval of convergence (-R, R).

4.2 Examples

Example 4.1 (Calculating Radius of Convergence - Sample Problem 2a). **Problem Statement:** Find the radius of convergence R for:

$$f_1(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}, \qquad f_2(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{2^n}$$

Solution:

1. For $f_1(x)$: The coefficients are $a_n = 1/n^2$ for $n \ge 1$. We use the Ratio Test limit:

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{1/(n+1)^2}{1/n^2} \right| = \lim_{n \to \infty} \frac{n^2}{(n+1)^2}$$
$$= \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^2 = \lim_{n \to \infty} \left(\frac{1}{1+1/n} \right)^2 = \left(\frac{1}{1+0} \right)^2 = 1$$

The radius of convergence is $R_1=1/L=1/1=1$. (Alternatively, using root test: $\beta=\limsup|1/n^2|^{1/n}=\limsup\sup(1/n^{1/n})^2=(1/1)^2=1$, so $R_1=1/\beta=1$.)

2. For $f_2(x)$: This series involves only even powers of x. Let $y=x^2$. The series becomes $\sum_{n=0}^{\infty} \frac{y^n}{2^n} = \sum_{n=0}^{\infty} \left(\frac{1}{2^n}\right) y^n$. This is a power series in y with coefficients $b_n = 1/2^n$. Find its radius of convergence R_y . Using the Ratio Test:

$$L_y = \lim_{n \to \infty} \left| \frac{b_{n+1}}{b_n} \right| = \lim_{n \to \infty} \left| \frac{1/2^{n+1}}{1/2^n} \right| = \lim_{n \to \infty} \frac{2^n}{2^{n+1}} = \lim_{n \to \infty} \frac{1}{2} = \frac{1}{2}$$

The radius of convergence for the series in y is $R_y = 1/L_y = 2$. The series in y converges for $|y| < R_y$, i.e., |y| < 2. Substituting back $y = x^2$, the original series converges when $|x^2| < 2$, which means $x^2 < 2$, or $-\sqrt{2} < x < \sqrt{2}$. The radius of convergence for the series in x is $R_2 = \sqrt{2}$.

Example 4.2 (Using Endpoint Behavior for R - Sample Problem 4b). **Problem Statement:** Find R for $\sum_{n=2}^{\infty} \frac{5^n x^n}{\sqrt{n^2 - 1}}$, given that $\sum \frac{1}{\sqrt{n^2 - 1}}$ diverges and $\sum \frac{(-1)^n}{\sqrt{n^2 - 1}}$ converges.

Solution: Let the power series be $S(x) = \sum_{n=2}^{\infty} a_n x^n$ with $a_n = \frac{5^n}{\sqrt{n^2 - 1}}$.

1. **Test Endpoint** x = 1/5: Substitute x = 1/5 into the series:

$$S(1/5) = \sum_{n=2}^{\infty} \frac{5^n (1/5)^n}{\sqrt{n^2 - 1}} = \sum_{n=2}^{\infty} \frac{1}{\sqrt{n^2 - 1}}$$

We are given that this series diverges. Since the power series diverges at x = 1/5, the radius of convergence R must satisfy $R \le |1/5| = 1/5$.

2. **Test Endpoint** x = -1/5: Substitute x = -1/5 into the series:

$$S(-1/5) = \sum_{n=2}^{\infty} \frac{5^n (-1/5)^n}{\sqrt{n^2 - 1}} = \sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n^2 - 1}}$$

We are given that this series converges. Since the power series converges at x = -1/5, the radius of convergence R must satisfy $R \ge |-1/5| = 1/5$.

3. Conclusion: Combining the results from both endpoints, we have $R \leq 1/5$ and $R \geq 1/5$. Therefore, the radius of convergence must be exactly R = 1/5.

Example 4.3 (Function Series as Power Series - Sample Problem 2b). **Problem Statement:** Show that $f_3(y) = \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{y}{1+y^2}\right)^n$ converges for all $y \in \mathbb{R}$.

Solution: 1. Identify the Underlying Power Series: Let $x = g(y) = \frac{y}{1+y^2}$. The series becomes

$$f_1(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

This is a power series in x.

- 2. Find Interval of Convergence for Power Series: From Example 4.2 (or Problem 2a), the radius of convergence for $f_1(x)$ is R = 1. We check endpoints:
 - At x=1: $\sum \frac{1}{n^2}$ converges (p-series, p=2>1).
 - At x = -1: $\sum \frac{(-1)^n}{n^2}$ converges (by Alternating Series Test, or absolutely).

So, the power series $f_1(x)$ converges precisely for $x \in [-1, 1]$.

- 3. Find the Range of the Argument Function: Consider the argument $x = g(y) = \frac{y}{1+y^2}$. We need to determine the range of g(y) for $y \in \mathbb{R}$. As shown in the M-test example (Example 3.3), the maximum value of |g(y)| is 1/2. Therefore, the range of g(y) is [-1/2, 1/2].
- 4. **Conclusion:** For any $y \in \mathbb{R}$, the value x = g(y) lies in the interval [-1/2, 1/2]. Since $[-1/2, 1/2] \subseteq [-1, 1]$, and the power series $f_1(x)$ converges for all x in [-1, 1], it follows that the series $f_3(y) = f_1(g(y))$ converges for all values of $y \in \mathbb{R}$.

References

- Ross, K. A. *Elementary Analysis: The Theory of Calculus*. 2nd ed., Springer, 2013, Definition 17.1.
- [2] Ross, K. A. *Elementary Analysis*. Definition 19.1.
- [3] Ross, K. A. *Elementary Analysis*. Theorem 18.2.
- [4] Ross, K. A. *Elementary Analysis*. p. 123.
- [5] Ross, K. A. *Elementary Analysis*. Theorem 14.6.
- [6] Ross, K. A. *Elementary Analysis*. Theorem 14.7.
- [7] Ross, K. A. *Elementary Analysis*. Theorem 15.3.
- [8] Ross, K. A. *Elementary Analysis*. Example 6, Section 14.
- [9] Ross, K. A. *Elementary Analysis*. Example 7, Section 14.
- [10] Ross, K. A. *Elementary Analysis*. Definition 24.1.
- [11] Ross, K. A. *Elementary Analysis*. Definition 25.3.
- [¹²] Ross, K. A. *Elementary Analysis*. Theorem 25.4.
- [13] Ross, K. A. *Elementary Analysis*. Theorem 24.3.
- [14] Ross, K. A. *Elementary Analysis*. Exercise 24.17.
- [15] Ross, K. A. *Elementary Analysis*. Exercise 25.5.
- [16] Ross, K. A. *Elementary Analysis*. Theorem 25.7 (Weierstrass M-Test).
- [17] Ross, K. A. *Elementary Analysis*. Section 23.
- [18] Ross, K. A. *Elementary Analysis*. Theorem 23.1.
- [19] Ross, K. A. *Elementary Analysis*. Theorem 26.1.