Modeling Part Summer School on Modeling

Philosophy of the School

We expect homogeneous learning outcomes

for the conceptual

irrespective of part knowledge We encourage peerassisted learning

- We accept heterogory for the technical str
 - some people will m
 - this is difficult to av heterogeneous bac

If we are here, we are available (even if we appear to be busy)

Interaction with mentors: Start at 3pm today

Computational Modeling									
				Track 1	Track 2				
12	Tue.	3	AM	Overview and Principles of Modeling		Ch. 1, 2 F&L	SL, JJ		
			PM	From Verbal Theories to Computational Models		Ch. 1, 2 F&L	KO, MN		
			3 PM	Project Time: Meet with Supervisors			All		
13	Wed.	4	AM	Parameter Estimation, From Basics to Maximum Likelihood		Ch. 3, 4 F&L	GB, CL, LF		
			PM	Parameter Estimation & Maximum Likelihood Exercises: Memory and Judgment/Decision-Making Models			GB, CL, LF		
			4 PM	Project time			All		
14	Thurs.	5	AM	Model Selection and Drawing Inferences from Models		Chapter 10 F&L	CD & SL		

Overview for Today (Tuesday)

Time	Instructor	Topic
9:00 – 10:45	Stephan Lewandowsky	why models? inside a simulation
10:45 – 12:00	Jana Jarecki	scope, falsifiability, explanations, some terms
12:00 – 1:00	Klaus Oberauer	from models to instantiations
1:00 - 2:00		lunch
2:00 – 3:30	Michael Nunez	from models to instantiations
3:30 – dinner	All	meet mentors and discuss projects
6:30		dinner

Yes, there will be breaks

Why Models?

Why Computational Models?

Why Cognitive Science?

We seek to understand how the mind works

- Models are indispensable
- Nothing can be understood without a model

A Stellar Example

1,300 Years of Modeling ...

... and Modernity

Conclusions (I.)

- Data never speak for themselves
- Nothing can be understood without a model
- There are always multiple possible models
- Choice between models based on
 - quantitative comparison
 - and intellectual judgment

A Cognitive Example

A Cognitive Example

CLASSIFICATION "CONFIDENCE"

Uncovering a Hidden Relationship

Conclusions (II.)

- Computational models can reveal relationships between psychological measures that would otherwise escape detection
- The model then explains performance in two disparate tasks
 - psychological model
 - explains rather than just describes data
- But not all models always explain....

Classes of Models

- Data description
 - focuses on data only
 - may have psychological implications
- Process models
 - look inside the "black box"
 - explain

Primary focus

Data Description: The Case of the "Power Law"

Exponential implies constant relative rate of learning

Power implies reduction in learning rate with practice

Conclusions (III.)

- Data description can have psychological implications
 - "laws" of learning or practice
 - forgetting function
 - utility functions

Where Does the Model Come From?

- Suppose we have a verbal theory
- We recognize the limitations of verbal theories
- We seek to instantiate the theory in a computational model
 - this forces us to be explicit about everything
 - and many decisions h

Klaus & Michael: Later today, in-depth look at this process

Inside a Simulation

How Do People Make Decisions?

- Account for latencies and accuracies simultaneously
- Sequential sampling models
- "Random Walk"

Random Walk Model

What is average latency (RT) for each type of response?

Random Walk Model

Random Walk and Errors

 What happens to error latencies if there is a non-zero drift rate?

Testing our intuitions

RW: Why?

- Bottom boundary crossed only if series of samples, by chance, works against the drift
 - more time = more chance to drift to top
 - RW model agnostic about prior history (time already passed)

Speed of Errors: Data

- Errors can be fast
 - faster than correct responses
 - when under time pressure and discriminability of stimuli is high
- Errors can be slow
 - slower than correct responses
 - when time pressure is relaxed and task more difficult
- Sequential sampling models?

From Data to Model ...

Speed of Errors in Random Walk

- Starting point trial-to-trial variability
 - fast errors when starting point by chance close to wrong boundary
- Drift rate trial-to-trial variability
 - low drift rate: slow errors and slow corrects
 - high drift rate: fast errors and fast corrects

50% errors

10% errors

Over to Jana ...