BÀI TẬP GIẢI TÍCH 1

Năm học 2019 - 2020

Chương 1. Giới hạn và liên tục

Bài 1. Tính giới hạn

1.
$$\lim_{x \to +\infty} (\sqrt{x^2 + 2x + 5} - x)$$

2.
$$\lim_{x \to -\infty} (\sqrt{x^2 - 5x - 1} - \sqrt{x^2 + 3x + 3})$$

3.
$$\lim_{x \to 0} \frac{\sqrt{\cos x} - \sqrt[3]{\cos x}}{\sin^2 x}$$

4.
$$\lim_{x \to 1} \left(\frac{3}{1 - \sqrt{x}} - \frac{2}{1 - \sqrt[3]{x}} \right)$$

5.
$$\lim_{x\to 0} \frac{1}{x} \left(\frac{1}{x-1} + \frac{1}{x+1} \right)$$

6.
$$\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x}}}{\sqrt{x + 1}}$$

7.
$$\lim_{x \to \infty} x^2 \left(1 - \cos \frac{1}{x} \right)$$

8.
$$\lim_{x \to 0} \frac{\sqrt{1 + 2x^2} - \cos x}{x^2}$$

9.
$$\lim_{x \to 0} \frac{\sqrt{5} - \sqrt{4 + \cos x}}{x^2}$$

10.
$$\lim_{x \to 2} \frac{2^x - x^2}{x - 2}$$

11.
$$\lim_{x \to 0} \frac{e^{x^3} - 1 + x^2}{x \tan x}$$

12.
$$\lim_{x \to 1} (1 - x) \tan \frac{\pi x}{2}$$

13.
$$\lim_{x \to \infty} \left(\frac{3x+1}{3x+2} \right)^{4x}$$

14.
$$\lim_{x \to \infty} \left(\frac{3x^2 + 1}{3x^2 + 5} \right)^{2x^2 + x}$$

15.
$$\lim_{x \to \infty} \left(\frac{2x^2 + 1}{2x^2 - 5} \right)^{x^2}$$

16.
$$\lim_{x \to \infty} \left(\frac{x+2}{x+1} \right)^{3x}$$

17.
$$\lim_{x \to 1} (1 + \sin \pi x)^{\cot \pi x}$$

$19. \lim_{x \to 0^+} \sqrt[x]{\cos\sqrt{x}}$

18. $\lim_{x\to 0} (1-2x^2)^{\cot^2 x}$

$x{ ightarrow}0^+$

Bài 2. Vô cùng bé, vô cùng lớn

1. So sánh các VCB sau:

(a)
$$f(x) = \sqrt{1+x} - \sqrt{1-x}$$
 và $g(x) = x^2$ khi $x \to 0$.

(b)
$$f(x) = x - 1$$
 và $g(x) = \cot \frac{\pi x}{2}$ khi $x \to 1$.

(c)
$$f(x) = 1 - \cos^2 x$$
 và $g(x) = \ln(1 + xx)$ khi $x \to 0$.

(d)
$$f(x) = \sqrt{1+x} - \sqrt{1-x}$$
 và $g(x) = \sin x$ khi $x \to 0$.

(e)
$$f(x) = \cos \frac{2}{x} - \cos \frac{1}{x}$$
 và $g(x) = \frac{1}{x}$ khi $x \to \infty$.

2. So sánh các VCL $f(x) = e^x + e^{-x}$, $g(x) = e^x - e^{-x}$ khi

- (a) $x \to +\infty$.
- (b) $x \to -\infty$.

3. Tìm phần chính dạng Cx^{α} khi $x \to 0$ của VCB:

(a)
$$f(x) = \sqrt{1 - 2x} - 1 + x$$
.

- (b) $f(x) = \tan x \sin x$.
- (c) $f(x) = e^{x^2} \cos x$.
- (d) $f(x) = \sqrt{3} \sqrt{2 + \cos x}$.

Bài 3. Xét tính liên tục

1.
$$f(x) = \begin{cases} \frac{2x}{e^{2x} - e^{-x}} & \text{v\'oi} \ x \neq 0\\ a & \text{v\'oi} \ x = 0 \end{cases}$$

2.
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{n\'eu } x \neq 1\\ a & \text{n\'eu } x = 1 \end{cases}$$

3.
$$f(x) = \begin{cases} \arctan \frac{1}{|x|} & \text{v\'oi} \ x \neq 0 \\ a & \text{v\'oi} \ x = 0 \end{cases}$$

4.
$$f(x) = \begin{cases} (x^2 - 1)\sin\frac{\pi}{x - 1} & \text{n\'eu } x \neq 1 \\ a & \text{n\'eu } x = 1 \end{cases}$$

5.
$$f(x) = \begin{cases} \frac{\sqrt[3]{1+2x}-1}{x} & \text{n\'eu } x > 0\\ a+x^2 & \text{n\'eu } x \le 0 \end{cases}$$

6.
$$f(x) = \begin{cases} x \ln x & \text{v\'oi} \ x > 0 \\ a & \text{v\'oi} \ x \le 0 \end{cases}$$

7.
$$f(x) = \begin{cases} \frac{1 - \cos\sqrt{x}}{x} & \text{n\'eu } x > 0\\ a & \text{n\'eu } x \le 0 \end{cases}$$

8.
$$f(x) = \begin{cases} \frac{1 - e^{\sin x}}{x - \pi} & \text{n\'eu } x > \pi \\ a + x^2 & \text{n\'eu } x \le \pi \end{cases}$$

Chương 2. Đạo hàm và vi phân

Bài 1. Tính đao hàm

- 1. Tính đạo hàm của các hàm số sau:
 - (a) $y(x) = |(x-1)^2(x+1)|$.
 - (b) $y(x) = |\pi^2 x^2| \sin^2 x$.

(c)
$$f(x) = \begin{cases} \arctan x & \text{v\'oi} \ x \ge 0 \\ x^2 + x & \text{v\'oi} \ x < 0 \end{cases}$$

(d)
$$f(x) = \begin{cases} x^2 - 2x & \text{n\'eu } x < 2\\ 2x - 4 & \text{n\'eu } x \ge 2 \end{cases}$$

2. Tính y'(0) bằng định nghĩa. Biết:

$$y = x(x-1)(x-2)...(x-2019)(x-2020)$$

3. Tính
$$f'_{+}(0)$$
, $f'_{-}(0)$ của:
$$f(x) = \begin{cases} \frac{x}{1 + e^{1/x}} & \text{nếu } x \neq 0 \\ 0 & \text{nếu } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{1 + e^{1/x}}{1 + e^{1/x}} & \text{neu } x \neq 0 \\ 0 & \text{néu } x = 0 \end{cases}$$

4. Tính y'(x), y''(x) của hàm số cho dưới dạng tham

(a)
$$\begin{cases} x = a \cos^3 t \\ y = a \sin^3 t \end{cases}$$

(b)
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$

(c)
$$\begin{cases} x = 2e^t \cos t \\ y = 3e^t \sin t \end{cases}$$

(d)
$$\begin{cases} x = t + e^t \\ y = t^2 + 2t^3 \end{cases}$$

Bài 2. Xét tính khả vi

1.
$$y = (x+2)|x-1|$$
.

2.
$$f(x) = \begin{cases} \frac{\sqrt{x} - 1}{\sqrt{x - 1}} & \text{n\'eu } x > 1\\ \sin(x - 1) & \text{n\'eu } x \le 1 \end{cases}$$

3.
$$f(x) = \begin{cases} 1 - \cos x & \text{n\'eu } x \le 0\\ \ln(1+x) & \text{n\'eu } x > 0 \end{cases}$$

4.
$$f(x) = \begin{cases} \frac{x-1}{4}(x+1)^2 & \text{n\'eu } x \ge 1\\ x-1 & \text{n\'eu } x < 1 \end{cases}$$

5. Xét tính khả vi tai x = 1 của hàm số:

$$y(x) = \begin{cases} x^2 e^{1-x^2} & \text{n\'eu } x \le 1\\ \frac{1}{x} & \text{n\'eu } x > 1 \end{cases}$$

6. Xét tính khả vi tại x = 0 của hàm số:

(a)
$$f(x) = \begin{cases} x^2 & \text{n\'eu } x \le 0\\ \ln(1+x) - x & \text{n\'eu } x > 0 \end{cases}$$

(b)
$$f(x) = \begin{cases} \frac{e^x - \sqrt{1+x}}{x} & \text{n\'eu } x \neq 0\\ 0 & \text{n\'eu } x = 0 \end{cases}$$

(c)
$$f(x) = \begin{cases} x^2 \arctan \frac{1}{x} & \text{n\'eu } x \neq 0 \\ 0 & \text{n\'eu } x = 0 \end{cases}$$

7. Tìm a, b để hàm số sau khả vi trên \mathbb{R}

(a)
$$f(x) = \begin{cases} x^2 - 3x + 4 & \text{n\'eu } x < 2\\ ax + b & \text{n\'eu } x \ge 2 \end{cases}$$

(b)
$$f(x) = \begin{cases} 1 - x^2 & \text{n\'eu } x \ge 1\\ ax + b & \text{n\'eu } x < 1 \end{cases}$$

(c)
$$f(x) = \begin{cases} ax + b, & \text{v\'oi} \ x \ge 0\\ \sin x, & \text{v\'oi} \ x < 0 \end{cases}$$

Bài 3. Tính gần đúng

1.
$$A = \sqrt{(2,037)^2 + 5}$$

2.
$$C = \sin 29^{\circ}$$

$$3. D = \frac{1}{\sqrt[4]{0,983}}$$

4.
$$F = e^{-0.03}$$

Bài 4. Đạo hàm cấp cao

1. Tính đạo hàm cấp n của hàm số

(a)
$$f(x) = \frac{x-1}{x^2 + 5x + 6}$$
.

(b)
$$f(x) = \frac{12x+7}{6x^2+7x+2}$$
.

(c)
$$f(x) = \frac{1+x}{1-x}$$
.

(d)
$$f(x) = \ln \sqrt[3]{1 - 4x}$$
.

(e)
$$f(x) = \cos^4 x + \sin^4 x$$
.

(f)
$$f(x) = e^{2x}(x^2 + 3x + 5)$$
.

(g)
$$f(x) = x^3 \sin x$$
.

2. Cho hàm số $f(x) = \ln(1 - 3x)$. Tính $f^{(n)}(0)$.

3. Cho
$$y = \frac{x^4}{2-x}$$
. Tính d^4y .

Bài 5. Các định lý giá trị trung bình và ứng dụng

- 1. Hàm số $f(x) = \sqrt[3]{x^2}$ có thoả mãn định lý Rolle trên [-1;1] không? Tại sao?
- 2. Cho f(x) = (x-1)(x-2)(x-3)(x-4). Dùng định lý Rolle, chứng minh rằng phương trình f'(x) = 0 có 3 nghiệm thực phân biệt trên [1, 4].
- 3. Kiểm tra các điều kiện của định lý Lagrange đối với hàm số sau trên [0; 3]

$$f(x) = \begin{cases} 4x + 1 & \text{n\'eu } 0 \le x \le 2\\ x^2 + 5 & \text{n\'eu } 2 < x \le 3 \end{cases}$$

4. Áp dụng định lý Lagrange, chứng minh rằng:

(a)
$$\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b}$$
, $0 < b < a$.

- (b) $|\arctan x \arctan y| \le |x y|$.
- (c) $|\sin x \sin y| \le |x y|$.
- (d) $n(b-a)a^{n-1} < b^n a^n < n(b-a)b^{n-1}$ với $0 < a < b, n \in \mathbb{N}$.

Bài 6. Tính giới hạn

1.
$$\lim_{x \to 0} \frac{\ln(1+x) - x}{x^2}$$

$$2. \lim_{x\to 0} \frac{e^x - 1 - x}{x \cdot \sin x}$$

3.
$$\lim_{x\to 0} \frac{4\arctan(1+x) - \pi}{x}$$

4.
$$\lim_{x\to 0} \frac{\arctan x - x}{x^3}$$

5.
$$\lim_{x \to +\infty} \frac{\ln^3 x}{x}$$

6.
$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1/x^2}$$

7.
$$\lim_{x \to +\infty} x \left(\frac{\pi}{4} - \arctan \frac{x}{x+1} \right)$$

8.
$$\lim_{x\to 0+} (\sin x)^{\tan 2x}$$

9.
$$\lim_{x \to +\infty} x(\pi - 2 \arctan x)$$

10.
$$\lim_{x\to 0} \frac{x-\sin x}{\sqrt{1+2x}-e^x}$$

$$11. \lim_{x \to 0^+} x^2 \ln x$$

12.
$$\lim_{x \to 0} \frac{x^2}{\sqrt[5]{1+5x} - (1+x)}$$

$$13. \lim_{x \to +\infty} \frac{x^{2017}}{e^x}$$

14.
$$\lim_{x\to 0} \left(\frac{1}{x^2}\right)^{\sin x}$$

15.
$$\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right)$$

Bài 7. Công thức Taylor và Maclaurin

- 1. Khai triển Maclaurin đến cấp n của $f(x) = \frac{x+1}{x^2-3x+2}$.
- 2. Khai triển Maclaurin đến cấp n của $f(x) = \ln \sqrt[5]{1+2x}$.
- 3. Khai triển Taylor đến cấp 3 hàm số $f(x) = \frac{x}{x-1}$ tại điểm $x_0 = 2$.

Chương 3. Tích phân

Bài 1. Tính các tích phân suy rộng

$$1. \int_{1}^{+\infty} \frac{dx}{x^2(x+2)}$$

2.
$$\int_{0}^{+\infty} \frac{dx}{(x+1)^{2}(x+2)}$$

3.
$$\int_{0}^{+\infty} \frac{xdx}{(x^2+1)^3}$$

$$4. \int_{1}^{+\infty} \frac{dx}{x\sqrt{x^4 + 1}}$$

$$5. \int_{0}^{+\infty} \frac{dx}{(\sqrt{x}+1)^3}$$

$$6. \int_{2}^{+\infty} \frac{dx}{x\sqrt{x^2 - 1}}$$

$$7. \int_{1}^{+\infty} \frac{dx}{x\sqrt[4]{1+x^3}}$$

$$8. \int_{1}^{+\infty} \frac{\ln x}{x^2} dx$$

$$9. \int_{1}^{+\infty} \frac{\ln x}{x^3} dx.$$

10.
$$\int_{1}^{+\infty} \frac{\arctan x}{x^2} dx$$

$$11. \int_{0}^{+\infty} e^{-\sqrt{x}} dx$$

$$12. \int_{1}^{+\infty} \frac{x^3}{e^{x^2}} dx$$

$$13. \int_{0}^{+\infty} x^2 e^{-x} dx$$

14.
$$\int_{0}^{+\infty} \frac{x \cdot \arctan x}{\sqrt{(1+x^2)^3}} dx$$

15.
$$\int_{0}^{1} \frac{dx}{(2-x)\sqrt{1-x}}$$

Bài 2. Xét sự hội tụ của tích phân suy rộng

$$1. \int_{1}^{+\infty} \sqrt{x} \ln\left(1 + \frac{1}{x^2}\right) dx$$

$$2. \int_{1}^{+\infty} \frac{\sqrt{x} dx}{x^2 + \sin x}$$

$$3. \int_{1}^{+\infty} \frac{\ln(1+x^2)}{x} dx$$

4.
$$\int_{1}^{+\infty} \frac{\arctan x}{x} dx$$

$$5. \int_{1}^{+\infty} \frac{\arctan x}{x\sqrt{x}} dx$$

$$6. \int_{1}^{+\infty} \left(1 - \cos\frac{1}{x}\right) dx$$

$$7. \int_{1}^{+\infty} \frac{dx}{x\sqrt{x^4 + x^2 + 1}}.$$

8.
$$\int_{4}^{+\infty} \frac{dx}{x(\ln x)^p}.$$

$$9. \int_{1}^{+\infty} \frac{x}{1+x^p} dx$$

10.
$$\int_{0}^{1} \frac{dx}{e^{x} - e^{-x}}$$

11.
$$\int_{0}^{1} \frac{dx}{\sqrt{\tan x}}$$

12.
$$\int_{0}^{1} \frac{\sin x}{\sqrt{1-x^2}} dx$$

13.
$$\int_{0}^{1} \frac{\sin\sqrt{x}}{\sqrt{1+x} - e^x} dx$$

$$14. \int\limits_{0}^{1} \frac{\sqrt{x}}{e^{\sin x} - 1} dx$$

15.
$$\int_{0}^{1} \frac{dx}{e^{\sqrt[4]{x}} - 1}$$

$$16. \int_{0}^{1} \frac{xdx}{\tan x - \sin x}$$

17.
$$\int_{0}^{3} \frac{dx}{\sqrt{|4-x^2|}}$$

18.
$$\int_{0}^{1} \frac{\arctan x}{\sqrt{1-x^2}} dx$$

19.
$$\int_{0}^{1} \frac{\sqrt{x}}{e^{\sin 2x} - 1} dx$$

$$20. \int_{0}^{1} \frac{\arctan x}{x - \sin x} dx$$

21.
$$\int_{0}^{1} \frac{\ln(1+x^2)}{x-\sin x} dx$$

22.
$$\int_{0}^{1} \frac{\sin \sqrt{x}}{e^{\sqrt[3]{x^2}} - 1} dx$$

$$23. \int_{0}^{\pi/2} \frac{dx}{\sqrt{\cos x}}$$

$$24. \int_{0}^{1} \frac{1 - \cos x}{x^{\alpha}} dx; \quad \alpha > 2.$$

25.
$$\int_{0}^{1} \frac{\ln(1+\sqrt{x})}{e^{\sin x} - 1} dx$$

Bài 3. Ứng dụng của tích phân xác định

1. Tính độ dài của các đường cong sau:

(a)
$$x = \frac{1}{4}y^2 - \frac{1}{2}\ln y$$
, $1 \le y \le e$.

(b)
$$x^{2/3} + y^{2/3} = a^{2/3}, \quad a > 0.$$

(c)
$$r = a(1 + \cos \varphi), a > 0.$$

(d)
$$y = \arcsin(e^{-x})$$
; $0 \le x \le 1$

(e)
$$r = 2\varphi$$
, $0 \le \varphi \le 2\pi$.

2. Tính diện tích hình phẳng giới hạn bởi:

(a) (E):
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

(b) Một cung (một nhịp) Xicloit

$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} \quad (0 \le t \le 2\pi)$$

và truc Ox.

(c)
$$x^{2/3} + y^{2/3} = a^{2/3}, \ a > 0.$$

(d)
$$r = a(1 + \cos \varphi)$$
; $0 \le \varphi \le 2\pi$, $a > 0$.

(e)
$$y = x^2$$
, $y = 4x^2$, $y = 4$.

(f)
$$(x^2 + y^2)^2 = a^2(x^2 - y^2)$$
.

(g)
$$y = -\sqrt{4 - x^2}$$
 và $x^2 + 3y = 0$.

(h)
$$y = |x^2 - 1|, y = |x| + 5.$$

3. Tính thể tích của vật thể tạo thành khi quay hình phẳng giới hạn bởi:

(a)
$$y = 2x - x^2$$
, $y = 0$ quanh trục Ox .

(b)
$$x^{2/3} + y^{2/3} = a^{2/3}$$
, $a > 0$ quanh trục Ox .

(c)
$$x^2 + (y-2)^2 = 1$$
 quanh Ox .

(d)
$$y = x$$
, $x = 0$, $y = \sqrt{1 - x^2}$ quanh trục Oy .

(e)
$$x^2 + y^2 = 4x - 3$$
 quanh trục Oy .

(f)
$$y^2 + x = 9$$
 và $x = 0$ quanh trực Oy .

Chương 4. Chuỗi

Bài 1. Xét sự hội tụ của chuỗi số

1.
$$\sum_{n=1}^{+\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n})$$

2.
$$\sum_{n=1}^{+\infty} \frac{\ln n}{n^3 + n^2 + 2}$$

3.
$$\sum_{n=2}^{+\infty} \frac{n \ln n}{n^2 - 1}$$

4.
$$\sum_{n=1}^{+\infty} \frac{n^n}{(n+1)^n \cdot 2^{n-1}}$$

$$5. \sum_{n=1}^{+\infty} \frac{1}{n \cdot \sqrt[n]{n}}$$

6.
$$\sum_{n=1}^{+\infty} \frac{3.5.7...(2n+1)}{2.5.8...(3n-1)}$$

7.
$$\sum_{n=1}^{+\infty} \frac{3^n \cdot n!}{n^n}$$

8.
$$\sum_{n=1}^{+\infty} \frac{1}{2^n} \left(1 + \frac{1}{n+1} \right)^{n^2}$$

9.
$$\sum_{n=1}^{+\infty} \frac{\ln(n^5 + n)}{\sqrt{n^5 + n}}$$

10.
$$\sum_{n=1}^{+\infty} \left(\operatorname{tg} \frac{1}{3n} - \sin \frac{1}{3n} \right)$$

11.
$$\sum_{n=1}^{+\infty} \frac{(n+1)^{n^2}}{n^{n^2} 3^n}$$

12.
$$\sum_{n=1}^{+\infty} \frac{\ln n}{\sqrt{2n^5 + 3n}}$$

13.
$$\sum_{n=1}^{+\infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^p} \right)$$

14.
$$\sum_{n=1}^{+\infty} \frac{1}{n^p} \sin \frac{\pi}{n}$$

15.
$$\sum_{n=1}^{+\infty} \frac{1}{(n+1)\ln(n^2+n+1)}$$

16.
$$\sum_{n=2}^{+\infty} \frac{1}{n \cdot \ln^k n}$$

17.
$$\sum_{n=2}^{+\infty} (-1)^n \frac{n}{n^2 - 1}$$

18.
$$\sum_{n=1}^{+\infty} (-1)^n \cdot \left(\frac{3n+2}{2n+7}\right)^n$$

19.
$$\sum_{n=1}^{+\infty} (-1)^n \cdot \frac{3^n}{n^3}$$

20.
$$\sum_{n=1}^{+\infty} (-1)^n \cdot \left(\frac{n}{n+1}\right)^n$$

Bài 2. Xét sự hội tụ tuyệt đối, hội tụ tương đối

1.
$$\sum_{n=1}^{+\infty} \frac{\cos(n\pi)}{(n+1)(n+2)}$$

2.
$$\sum_{n=1}^{+\infty} (-1)^{n-1} \cdot \frac{2^n}{n!}$$

3.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n \ln(n^2+1)}$$

4.
$$\sum_{n=1}^{+\infty} \sin \frac{\pi n^2}{n+1}$$

5.
$$\sum_{n=1}^{+\infty} (-1)^n \left(\frac{1+n}{n^2} \right)$$

6.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{\ln(n+1)}$$

7.
$$\sum_{n=1}^{+\infty} (-1)^n (\sqrt{n+1} - \sqrt{n-1})$$

Bài 3. Tìm miền hội tụ của chuỗi hàm

1.
$$\sum_{n=0}^{+\infty} \frac{(-4)^n \arcsin^n x}{\pi^n (n+1)}$$

2.
$$\sum_{n=1}^{+\infty} \frac{1}{n2^n} \left(\frac{x}{x+1} \right)^n$$

3.
$$\sum_{n=1}^{+\infty} \frac{(-\ln x)^n}{2n+1}$$

4.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n n^2}{3^n} e^{nx}$$

5.
$$\sum_{n=1}^{+\infty} \frac{1}{n(\ln x)^n}$$

$$6. \sum_{n=1}^{+\infty} \frac{2^n \sin^n x}{n^2}$$

7.
$$\sum_{n=1}^{+\infty} \frac{n}{n+1} \left(\frac{x}{2x+1} \right)^n$$

8.
$$\sum_{n=1}^{+\infty} \frac{2^n \sin^n x}{(n+1)^2}$$

9.
$$\sum_{n=1}^{+\infty} \frac{2^n (\sin x)^n}{n}$$

10.
$$\sum_{n=1}^{+\infty} \frac{1}{n^2 \ln^n x}$$

11.
$$\sum_{n=1}^{+\infty} \frac{1}{2^n} \left(\frac{2x+1}{x+2} \right)^n$$

12.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{2n+1} \left(\frac{1-x}{1+x}\right)^n$$

13.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n(2x-3)^n}$$

14.
$$\sum_{n=1}^{+\infty} \frac{(x-1)^{2n}}{n4^n}$$

15.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n x^{2n}}{n(2n-1)}$$

$$16. \sum_{n=1}^{+\infty} x^n \tan \frac{1}{n}$$

17.
$$\sum_{n=1}^{+\infty} \frac{(-2)^n}{n\pi^n} x^n$$

18.
$$\sum_{n=1}^{+\infty} \frac{\ln n}{n^2 + 1} x^n$$

19.
$$\sum_{n=1}^{+\infty} (-1)^n \left(\frac{1+n}{n^2}\right) x^n$$

20.
$$\sum_{n=1}^{+\infty} \frac{(x+1)^n}{2^n(2n+1)}$$

21.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n x^n}{n(2n+1)}$$

22.
$$\sum_{n=0}^{+\infty} \frac{(-1)^n (x+2)^n}{\sqrt{n^2+1}}$$

Bài 4. Tìm miền hội tụ và tính tổng

1.
$$\sum_{n=1}^{+\infty} (-2)^n x^{n+1}$$

2.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n x^{n+1}}{n+2}$$

3.
$$\sum_{n=0}^{+\infty} \frac{x^{2n}}{2n+1}$$

4.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n x^{n+1}}{n}$$

5.
$$\sum_{n=1}^{+\infty} (-1)^n nx^{n+1}$$

6.
$$\sum_{n=0}^{+\infty} (n+2)x^n$$

7.
$$\sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^{n+1}}{n+2}$$