BECA / Dr. Huson / 10.3 Geometry 30 May 2019

Name:

Do Now: Graphing practice

1. Graph the line  $y = \frac{1}{3}x - 2$  after filling in the values in the blanks.

$$y$$
-intercept = \_\_\_\_\_



In the following two problems, solve for the value of x.

2. 
$$2x - 10 = 4x - 4$$

$$3. \ \frac{2}{3}(3x - 9) = 16$$

4. Graph the two inequalities. Mark a point in the solution set and label it as an ordered pair.

$$y \ge \frac{1}{2}x + 3$$

$$-2x + y < 3$$



5. Solve each equation for y.

$$(a) -x + 2y = 6$$

(a) 
$$2x - y = 5$$

Name:

## Fitting linear models and interpreting correlation

6. Her points scored increased as a player practiced during the year. The table shows how many points were scored at specific games in the season.

| Game number | 4  | 6  | 7  | 10 |
|-------------|----|----|----|----|
| Points      | 23 | 24 | 25 | 32 |



Calculator

ax + b

a =

b =

 $r = \underline{\hspace{1cm}}$ 

Games

State, to the *nearest tenth*, the linear regression equation that approximates the points scored versus the game's number.

Explain what the y-intercept means in the context of the problem.

Explain what the slope means in the context of the problem.

## Simplifying polynomials, standard form

7. Simplify the expresion 2x + 4(x - 6) + 2.

8. Write the expression  $2x^3 + 2x^2 - 5x^2 + 2x + 2 + 3x$  as a polynomial in standard form.

9. Write the expression  $x + 2x^2(5x - 3) - 7x^2 - 3x$  as a polynomial in standard form.

## Graphing quadratic functions

10. Given the quadratic function  $f(x) = x^2 + 1$ , find the row differences.

| x  | f(x) |
|----|------|
| -3 | 10   |
| -2 | 5    |
| -1 | 2    |
| 0  | 1    |
| 1  | 2    |
| 2  | 5    |
| 3  | 10   |
|    |      |

Graph the function as a line over the domain  $-3 \le x \le 3$ .



## Rate of change

11. Find the slope of the function from the ratio of the line differences.

| (a) | x  | f(x) |
|-----|----|------|
|     | -2 | -1   |
|     | -1 | 1    |
|     | 0  | 3    |
|     | 1  | 5    |
|     | 2  | 7    |

| -4 7     |  |
|----------|--|
|          |  |
| (b) -2 4 |  |
| 0 1      |  |
| 2 -2     |  |
| 4 -5     |  |

Change in  $y = \underline{\hspace{1cm}}$ 

Change in  $y = \underline{\hspace{1cm}}$ 

Change in x =

Change in  $x = \underline{\hspace{1cm}}$ 

Slope = \_\_\_\_\_

Slope = \_\_\_\_\_

12. Find the slope of the function. If the rate of change is not constant, write, "Non-linear. The rate of change is not constant."

| (a) | x  | f(x) |
|-----|----|------|
|     | -3 | 0    |
|     | -1 | 2    |
|     | 0  | 3    |
|     | 1  | 4    |
|     | 3  | 6    |

Slope = \_\_\_\_\_

Slope = \_\_\_\_\_

13. Fill in the T-chart, plot the points, and draw the line.



Write down the slope and y-intercept of the line.

m =

b =

Circle the row for the y-intercept.