1 Benchamrk week 5

Context: 30×15 SC with open boundary conditions.

We have a phase gradient of 117°. Starting from $\pi/2$. $T = 10^{-3} K$ and we iterrate until a relative change in both the real and imaginary part of Δ reach 0.001%.

The way matlab deals with the eigenvectors and eigenvalues seams strange. So if we take χ_n along with E_n like the theory does, the algorithm dosnt converge for:

1. Real guess of Δ and all parameters are free

Figure 1

From this we can read the following parameters: $\mu = \pm 1.75 - > 0.0651$, $\mu = \pm 2.75 - > 0.02836$, $\mu = \pm 3.75 - > 0.00568$.

2. Fixed norm of Δ on the side according to 1.

Figure 2

And we try with a longer SC to try to minimise the fluctuations.

Figure 3

Until now everything works as expected :) so we can stick with the model of SC30 which is faster to compute.

3.Fixed $|\Delta_0|$ and a phase of $\pi/3$ on the sides.

Figure 4: using a start of $\pi/3$ on the sides

The algorithme doesn't seam to converge and the relative change sattles at 0.00285%.

4. Fixed phase of $\pi/3$ on the sides left and a gradient of 117° .

Figure 5: using a start of $\pi/3$ on the sides

Figure 6: using a start of $\pi/3$ on the sides.

Figure 7: using a start of $\pi/3$ on the sides.

Figure 8: using a start of $\pi/3$ on the sides.

And the current map:

Figure 9: using a start of $\pi/3$ on the sides. V1 $\mu = 2.75$.

Figure 10: using a start of $\pi/3$ on the sides. V2 $\mu = 2.75$.

Figure 11: using a start of $\pi/3$ on the sides. V1 $\mu = -2.75$.

Figure 12: using a start of $\pi/3$ on the sides. V2 $\mu = -2.75$.

And the continuity maps:

Figure 13: using a start of $\pi/3$ on the sides. V1 $\mu = 2.75$.

Figure 14: using a start of $\pi/3$ on the sides. V2 $\mu = 2.75$.

Figure 15: using a start of $\pi/3$ on the sides. V1 $\mu = -2.75$.

Figure 16: using a start of $\pi/3$ on the sides. V2 $\mu = -2.75$.