

CS 224S / LINGUIST 285 Spoken Language Processing

Andrew Maas
Stanford University
Spring 2017

Lecture 4: ASR: Word Error Rate, Training,
Advanced Decoding

Outline for Today

- Word error rate (WER) computation
- Training
 - Baum-Welch = EM = Forward Backward
 - Detailed example in slides appendix
 - How we train LVCSR systems in practice
- Advanced decoding

Administrative items

- Homework 1 due by 11:59pm tonight on Gradescope
- Homework 2 released tonight (due in 2 weeks)
- Project handout released tonight
 - We will compile and post to piazza project ideas over the next 1-2 weeks
 - Proposals due May 1
- Background survey released today. Complete by Friday (part of class participation grade)

Outline for Today

- Word error rate (WER) computation
- Training
 - Baum-Welch = EM = Forward Backward
 - Detailed example in slides appendix
 - How we train LVCSR systems in practice
- Advanced decoding

Evaluation

 How to evaluate the word string output by a speech recognizer?

Word Error Rate

Word Error Rate =

100 (Insertions+Substitutions + Deletions)

Total Word in Correct Transcript

• Aligment example:

```
REF: portable **** PHONE UPSTAIRS last night so HYP: portable FORM OF STORES last night so Eval I S S
```

• WER = 100 (1+2+0)/6 = 50%

NIST sctk scoring software: Computing WER with sclite

- http://www.nist.gov/speech/tools/
- Sclite aligns a hypothesized text (HYP) (from the recognizer) with a correct or reference text (REF) (human transcribed)

```
id: (2347-b-013)
Scores: (#C #S #D #I) 9 3 1 2
REF: was an engineer SO I i was always with **** **** MEN UM and they
HYP: was an engineer ** AND i was always with THEM THEY ALL THAT and they
Eval: D S I I S S
```

Sclite output for error analysis

```
CONFUSION PAIRS
                         Total
                                                 (972)
                         With \geq 1 occurrances (972)
   1: 6 -> (%hesitation) ==> on
   2:
         6 \rightarrow the ==> that
   3:
         5 -> but ==> that
   4: 4 \rightarrow a ==> the
   5:
         4 -> four ==> for
         4 \rightarrow in ==> and
   6:
   7:
         4 \rightarrow there ==> that
   8:
         3 -> (%hesitation) ==> and
         3 -> (%hesitation) ==> the
   9:
  10:
         3 \rightarrow (a-) ==> i
         3 \rightarrow and ==> i
  11:
  12:
         3 \rightarrow and ==> in
  13:
         3 -> are ==> there
  14:
         3 \rightarrow as ==> is
         3 \rightarrow \text{have} ==> \text{that}
  15:
  16:
         3 \rightarrow is ==> this
```

Better metrics than WER?

- WER has been useful
- But should we be more concerned with meaning ("semantic error rate")?
 - Good idea, but hard to agree on
 - Has been applied in dialogue systems, where desired semantic output is more clear

Outline for Today

- Word error rate (WER) computation
- Training
 - Baum-Welch = EM = Forward Backward
 - Detailed example in slides appendix
 - How we train LVCSR systems in practice
- Advanced decoding

HMM for ice cream

The Learning Problem

Learning: Given an observation sequence O and the set of possible states in the HMM, learn the HMM parameters A and B.

- Baum-Welch = Forward-Backward Algorithm (Baum 1972)
- Is a special case of the EM or Expectation-Maximization algorithm (Dempster, Laird, Rubin)
- The algorithm will let us train the transition probabilities $A = \{a_{ij}\}$ and the emission probabilities $B = \{b_i(o_t)\}$ of the HMM

The Learning Problem

- Baum-Welch / EM enables maximum likelihood training of (A,B)
- In practice we do not train A
 - Why?

Lexicon

w ah n one two t uw three th r iy four f ao r f ay v s ih k s five six seven s eh v ax n eight ey t nine n ay n z iy r ow zero oh OW

Phone HMM

HMM for the digit recognition task

The Learning Problem

- Baum-Welch / EM implicitly does "soft assignment" of hidden states when updating observation/emission model parameters
- In practice we use "hard assignment" / Viterbi training

Estimating hidden states in training

ah _f	0	0.1	0.1	0.95
ah _m	0	0.15	0.5	0.05
ah _b	1.0	0.8	0.4	0
	01	02	03	0 ₄

- Updating parameters in EM/Soft Assignment
 - $B_{ahm}^{\sim} 0*o_1 + 0.15*o_2 + 0.5*o_3 + 0.05*o_4$
- Updating parameters with Viterbi/Hard Assignment
 - $B_{ahm} \sim O_3$

Typical training procedure in LVCSR

- Generate a forced alignment with existing model
 - Viterbi decoding with a very constrained prior (the transcript)
 - Assigns observations to HMM states
- Create new observation models from update alignments
- Iteratively repeat the above steps, occasionally introducing a more complex observation model or adding more difficult training examples

Outline for Today

- Word error rate (WER) computation
- Training
 - Baum-Welch = EM = Forward Backward
 - Detailed example in slides appendix
 - How we train LVCSR systems in practice
- Advanced decoding

Advanced Search (= Decoding)

- How to weight the AM and LM
- Speeding things up: Viterbi beam decoding
- Multipass decoding
 - N-best lists
 - Lattices
 - Word graphs
 - Meshes/confusion networks
- Finite State Methods

What we are searching for

 Given Acoustic Model (AM) and Language Model (LM):

AM (likelihood) LM (prior)
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
(1) $\hat{W} = \underset{W \mid L}{\operatorname{argmax}} P(O | W) P(W)$

Combining Acoustic and Language Models

We don't actually use equation (1)

(1)
$$\hat{W} = \underset{W \mid L}{\operatorname{argmax}} P(O | W) P(W)$$

- AM underestimates acoustic probability
 - Why? Bad independence assumptions
 - Intuition: we compute (independent) AM probability estimates; but if we could look at context, we would assign a much higher probability. So we are underestimating
 - We do this every 10 ms, but LM only every word.
 - Besides: AM isn't a true probability
- AM and LM have vastly different dynamic ranges

Language Model Scaling Factor

 Solution: add a language model weight (also called language weight LW or language model scaling factor LMSF

(2)
$$\hat{W} = \underset{W \mid L}{\operatorname{argmax}} P(O \mid W) P(W)^{LMSF}$$

= $\underset{\operatorname{argmax}}{\operatorname{argmax}} \log P(O \mid W) + LMSF * \log P(W)$

- Value determined empirically, is positive (why?)
- Often in the range 10 +/- 5.
- Kaldi uses an acoustic model scaling factor instead, but it achieves the same efffect

Language Model Scaling Factor

- As LMSF is increased:
 - More deletion errors (since increase penalty for transitioning between words)
 - Fewer insertion errors
 - Need wider search beam (since path scores larger)
 - Less influence of acoustic model observation probabilities

Word Insertion Penalty

- But LM prob P(W) also functions as penalty for inserting words
 - Intuition: when a uniform language model (every word has an equal probability) is used, LM prob is a 1/V penalty multiplier taken for each word
 - Each sentence of N words has penalty N/V
 - If penalty is large (smaller LM prob), decoder will prefer fewer longer words
 - If penalty is small (larger LM prob), decoder will prefer more shorter words
- When tuning LM for balancing AM, side effect of modifying penalty
- So we add a separate word insertion penalty to offset (3) $\hat{W} = \operatorname{argmax} P(O|W)P(W)^{LMSF}WIP^{N(W)}$

Word Insertion Penalty

- Controls trade-off between insertion and deletion errors
 - As penalty becomes larger (more negative)
 - More deletion errors
 - Fewer insertion errors
- Acts as a model of effect of length on probability
 - But probably not a good model (geometric assumption probably bad for short sentences)

Log domain

- We do everything in log domain
- So final equation:

(4)
$$\hat{W} = \underset{W \mid L}{\operatorname{argmax}} \log P(O \mid W) + LMSF \log P(W) + N \log WIP$$

Speeding things up

- Viterbi is O(N²T), where N is total number of HMM states, and T is length
- This is too large for real-time search
- A ton of work in ASR search is just to make search faster:
 - Beam search (pruning)
 - Fast match
 - Tree-based lexicons

Beam search

- Instead of retaining all candidates (cells) at every time frame
- Use a threshold T to keep subset:
 - At each time t
 - Identify state with lowest cost Dmin
 - Each state with cost > Dmin+ T is discarded ("pruned")
 before moving on to time t+1
 - Unpruned states are called the active states

Viterbi Beam Search

Viterbi Beam search

- Most common search algorithm for LVCSR
 - Time-synchronous
 - Comparing paths of equal length
 - Two different word sequences W1 and W2:
 - We are comparing P(W1|O_{0t}) and P(W2|O_{0t})
 - Based on same partial observation sequence O_{0t}
 - So denominator is same, can be ignored
 - Time-asynchronous search (A*) is harder

Viterbi Beam Search

- Empirically, beam size of 5-10% of search space
- Thus 90-95% of HMM states don't have to be considered at each time t
- Vast savings in time.

- Problem with Viterbi search
 - Doesn't return best sequence til final frame

 This delay is unreasonable for many applications.

- On-line processing
 - usually smaller delay in determining answer
 - at cost of always increased processing time.

- At every time interval I (e.g. 1000 msec or 100 frames):
 - At current time tcurr, for each active state qtcurr, find best path P(qtcurr) that goes from from t0 to tcurr (using backtrace (ψ))
 - Compare set of best paths P and find last time tmatch at which all paths P have the same state value at that time
 - If tmatch exists {
 Output result from t0 to tmatch
 Reset/Remove ψ values until tmatch
 Set t0 to tmatch+1
 }
- Efficiency depends on interval I, beam threshold, and how well the observations match the HMM.

• Example (Interval = 4 frames):

- At time 4, all best paths for all states A, B, and C have state B in common at time 2. So, tmatch = 2.
- Now output states BB for times 1 and 2, because no matter what happens in the future, this will not change. Set t0 to 3

 Slide from John-Paul Hosom

- Now $t_{match} = 7$, so output from t=3 to t=7: BBABB, then set t_0 to 8.
- If T=8, then output state with best δ_8 , for example C. Final result (obtained piece-by-piece) is then BBBBABBC

Problems with Viterbi

- It's hard to integrate sophisticated knowledge sources
 - Trigram grammars
 - Parser-based or Neural Network LM
 - long-distance dependencies that violate dynamic programming assumptions
 - Knowledge that isn't left-to-right
 - Following words can help predict preceding words
- Solutions
 - Return multiple hypotheses and use smart knowledge to rescore them
 - Use a different search algorithm, A* Decoding (=Stack decoding)

Multipass Search

Ways to represent multiple hypotheses

- N-best list
 - Instead of single best sentence (word string), return ordered list of N sentence hypotheses
- Word lattice
 - Compact representation of word hypotheses and their times and scores
- Word graph
 - FSA representation of lattice in which times are represented by topology

Another Problem with Viterbi

The forward probability of observation given word string

$$P(O|W) = \sum_{S \in S_1^T} P(O, S|W)$$

The Viterbi algorithm makes the "Viterbi Approximation"

$$P(O|W) \approx \max_{S \in S_1^T} P(O, S|W)$$

- Approximates P(O|W)
 - with P(O|best state sequence)

Solving the best-path-not-bestwords problem

- Viterbi returns best path (state sequence) not best word sequence
 - Best path can be very different than best word string if words have many possible pronunciations
- Two solutions
 - Modify Viterbi to sum over different paths that share the same word string.
 - Do this as part of N-best computation
 - Compute N-best word strings, not N-best phone paths
 - Use a different decoding algorithm (A*) that computes true Forward probability.

Sample N-best list

Rank	Path	AM logprob	LM logprob
1.	it's an area that's naturally sort of mysterious	-7193.53	-20.25
2.	that's an area that's naturally sort of mysterious	-7192.28	-21.11
3.	it's an area that's not really sort of mysterious	-7221.68	-18.91
4.	that scenario that's naturally sort of mysterious	-7189.19	-22.08
5.	there's an area that's naturally sort of mysterious	-7198.35	-21.34
6.	that's an area that's not really sort of mysterious	-7220.44	-19.77
7.	the scenario that's naturally sort of mysterious	-7205.42	-21.50
8.	so it's an area that's naturally sort of mysterious	-7195.92	-21.71
9.	that scenario that's not really sort of mysterious	-7217.34	-20.70
10.	there's an area that's not really sort of mysterious	-7226.51	-20.01

N-best lists

- Again, we don't want the N-best paths
- That would be trivial
 - Store N values in each state cell in Viterbi trellis instead of 1 value
- But:
 - Most of the N-best paths will have the same word string
 - Useless!!!
 - It turns out that a factor of N is too much to pay

Computing N-best lists

- In the worst case, an admissible algorithm for finding the N most likely hypotheses is exponential in the length of the utterance.
 - S. Young. 1984. "Generating Multiple Solutions from Connected Word DP Recognition Algorithms". Proc. of the Institute of Acoustics, 6:4, 351-354.
- For example, if AM and LM score were nearly identical for all word sequences, we must consider all permutations of word sequences for whole sentence (all with the same scores).
- But of course if this is true, can't do ASR at all!

Computing N-best lists

- Instead, various non-admissible algorithms:
 - (Viterbi) Exact N-best
 - (Viterbi) Word Dependent N-best
- And one admissible
 - A* N-best

Word-dependent ('bigram') N-best

- Intuition:
 - Instead of each state merging all paths from start of sentence
 - We merge all paths that share the same previous word
- Details:
 - This will require us to do a more complex traceback at the end of sentence to generate the N-best list

Word-dependent ('bigram') N-best

- At each state preserve total probability for each of k
 N previous words
 - K is 3 to 6; N is 100 to 1000
- At end of each word, record score for each previous word hypothesis and name of previous word
 - So each word ending we store "alternatives"
- But, like normal Viterbi, pass on just the best hypothesis
- At end of sentence, do a traceback
 - Follow backpointers to get 1-best
 - But as we follow pointers, put on a queue the alternate words ending at same point
 - On next iteration, pop next best

Word Lattice

Word Graph

Timing information removed

Converting word lattice to word graph

- Word lattice can have range of possible end frames for word
- Create an edge from (w_i,t_i) to (w_j,t_j) if t_{j-1} is one of the end-times of w_i

Slide from Bryan Pellom

Lattices

- Some researchers are careful to distinguish between word graphs and word lattices
- But we'll follow convention in using "lattice" to mean both word graphs and word lattices.
- Two facts about lattices:
 - Density: the number of word hypotheses or word arcs per uttered word
 - Lattice error rate (also called "lower bound error rate"): the lowest word error rate for any word sequence in lattice
 - Lattice error rate is the "oracle" error rate, the best possible error rate you could get from rescoring the lattice.
 - We can use this as an upper bound

Posterior lattices

We don't actually compute posteriors:

$$\hat{W} = \underset{W \in \mathcal{L}}{\operatorname{argmax}} \frac{P(O|W)P(W)}{P(O)} = \underset{W \in \mathcal{L}}{\operatorname{argmax}} P(O|W)P(W)$$

- Why do we want posteriors?
 - Without a posterior, we can choose best hypothesis, but we can't know how good it is!
 - In order to compute posterior, need to
 - Normalize over all different word hypothesis at a time
 - Align all the hypotheses, sum over all paths passing through word

Mesh = Sausage = pinched lattice

Summary: one-pass vs. multipass

- Potential problems with multipass
 - Can't use for real-time (need end of sentence)
 - (But can keep successive passes really fast)
 - Each pass can introduce inadmissible pruning
 - (But one-pass does the same w/beam pruning and fastmatch)
- Why multipass
 - Very expensive KSs. (NL parsing, higher-order n-gram, etc.)
 - Spoken language understanding: N-best perfect interface
 - Research: N-best list very powerful offline tools for algorithm development
 - N-best lists needed for discriminant training (MMIE, MCE) to get rival hypotheses

Weighted Finite State Transducers for ASR

- The modern paradigm for ASR decoding
- Used by Kaldi
- Weighted finite state automaton that transduces an input sequence to an output sequence
- Mohri, Mehryar, Fernando Pereira, and Michael Riley. "Speech recognition with weighted finitestate transducers." In *Springer Handbook of Speech Processing*, pp. 559-584. Springer Berlin Heidelberg, 2008.
- http://www.cs.nyu.edu/~mohri/pub/hbka.pdf

Simple State Machine

Weighted Finite State Acceptors

Weighted Finite State Transducers

WFST Algorithms

Composition: combine transducers at different levels. If G is a finite state grammar and P is a pronunciation dictionary, P ° G transduces a phone string to word strings allowed by the grammar

Determinization: Ensures each state has no more than one output transition for a given input label

Minimization: transforms a transducer to an equivalent transducer with the fewest possible states and transitions

WFST-based decoding in Kaldi: HCLG

- Represent the following components as WFSTs:
 - H: HMM structure
 - C: Phonetic context dependency
 - L: Lexicon (Pronunciation dictionary)
 - G: Grammar (Language model)
 - The decoding network is defined by their composition:

H°C°L°G

 Successively determinize and combine the component transducers, then minimize the final network

G (Language model)

L (Pronunciation dictionary)

GoL

min(det(L o G))

Advanced Search (= Decoding)

- How to weight the AM and LM
- Speeding things up: Viterbi beam decoding
- Multipass decoding
 - N-best lists
 - Lattices
 - Word graphs
 - Meshes/confusion networks
- Finite State Methods
 - For a more thorough introduction to WFST decoding in Kaldi:

http://danielpovey.com/files/Lecture4.pdf

Appendix: Baum-Welch Training

Input to Baum-Welch

- O unlabeled sequence of observations
- Q vocabulary of hidden states

- For ice-cream task
 - $O = \{1,3,2,...,\}$
 - $Q = \{H,C\}$

Starting out with Observable Markov Models

- How to train?
- Run the model on observation sequence O.
- Since it's not hidden, we know which states we went through, hence which transitions and observations were used.
- Given that information, training:
 - B = $\{b_k(o_t)\}$: Since every state can only generate one observation symbol, observation likelihoods B are all 1.0
 - $A = \{a_{ij}\}:$

$$a_{ij} = \frac{C(i \to j)}{\sum_{q \in Q} C(i \to q)}$$

Extending Intuition to HMMs

- For HMM, cannot compute these counts directly from observed sequences
- Baum-Welch intuitions:
 - Iteratively estimate the counts.
 - Start with an estimate for a_{ij} and b_k, iteratively improve the estimates
 - Get estimated probabilities by:
 - computing the forward probability for an observation
 - dividing that probability mass among all the different paths that contributed to this forward probability

The Backward algorithm

• We define the backward probability as follows:

$$b_t(i) = P(o_{t+1}, o_{t+2}, ...o_T, | q_t = i, F)$$

• This is the probability of generating partial observations O_{t+1T} from time t+1 to the end, given that the HMM is in state i at time t and of course given Φ .

The Backward algorithm

1. Initialization:

$$\beta_T(i) = a_{i,F}, \quad 1 \leq i \leq N$$

2. **Recursion** (again since states 0 and q_F are non-emitting):

$$\beta_t(i) = \sum_{j=1}^N a_{ij} b_j(o_{t+1}) \beta_{t+1}(j), \quad 1 \le i \le N, 1 \le t < T$$

3. **Termination:**

$$P(O|\lambda) = \alpha_T(q_F) = \beta_1(0) = \sum_{i=1}^{N} a_{0i} b_i(o_1) \beta_1(j)$$

Inductive step of the backward algorithm

• Computation of $\beta_{t}(i)$ by weighted sum of all successive values $\beta t + 1$

Intuition for re-estimation of aij

• We will estimate \hat{a}_{ij} via this intuition:

$$\hat{a}_{ij} = \frac{\text{expected number of transitions from state } i \text{ to state } j}{\text{expected number of transitions from state } i}$$

- Numerator intuition:
 - Assume we had some estimate of probability that a given transition i→j was taken at time t in observation sequence.
 - If we knew this probability for each time t, we could sum over all t to get expected value (count) for i→j.

Re-estimation of aij

• Let ξ_t be the probability of being in state i at time t and state j at time t+1, given $O_{1..T}$ and model Φ :

$$X_{t}(i,j) = P(q_{t} = i,q_{t+1} = j \mid O, I)$$

• We can compute ξ from not-quite- ξ , which is:

$$not_quite_X_t(i,j) = P(q_t = i, q_{t+1} = j, O | /)$$

Computing not-quite-ξ

The four components of $P(q_t = i, q_{t+1} = j, O \mid I)$: (a, b, a_{ij}) and (b_j)

not-quite-
$$\xi_t(i, j) = \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$$

$$a_{ij} b_j(o_{t+1})$$

$$a_{t}(i)$$

$$b_{t+1}(j)$$

$$b_{t+1}(j)$$

$$b_{t+2}(i)$$

From not-quite- ξ to ξ

• We want:

$$X_{t}(i,j) = P(q_{t} = i,q_{t+1} = j \mid O, I)$$

• We've got:

$$not_quite_X_t(i,j) = P(q_t = i, q_{t+1} = j, O | I)$$

• Which we compute as follows:

not-quite-
$$\xi_t(i,j) = \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$$

From not-quite- ξ to ξ

• We want:

$$X_{t}(i,j) = P(q_{t} = i,q_{t+1} = j \mid O, I)$$

• We've got:

$$not_quite_X_t(i,j) = P(q_t = i, q_{t+1} = j, O | /)$$

• Since:

$$P(X|Y,Z) = \frac{P(X,Y|Z)}{P(Y|Z)}$$

• We need:
$$X_t(i,j) = \frac{not_quite_X_t(i,j)}{P(O \mid I)}$$

From not-quite- ξ to ξ

$$X_{t}(i,j) = \frac{not_quite_X_{t}(i,j)}{P(O \mid I)}$$

not-quite- $\xi_t(i,j) = \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$

$$P(O|\lambda) = \alpha_T(q_F) = \beta_T(q_0) = \sum_{j=1}^N \alpha_t(j)\beta_t(j)$$

$$\xi_t(i,j) = \frac{\alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)}{\alpha_T(q_F)}$$

From ξ to a_{ij}

 $\hat{a}_{ij} = \frac{\text{expected number of transitions from state } i \text{ to state } j}{\text{expected number of transitions from state } i}$

- The expected number of transitions from state i to state j is the sum over all t of ξ
- The total expected number of transitions out of state i is the sum over all transitions out of state i
- Final formula for reestimated a_{ii} :

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i,k)}$$

Re-estimating the observation likelihood b

• This is the probability of a given symbol v_k from the observation vocabulary V, given a state j: $\hat{b}_j(v_k)$.

$$\hat{b}_{j}(v_{k}) = \frac{\text{expected number of times in state } j \text{ and observing symbol } v_{k}}{\text{expected number of times in state } j}$$

We'll need to know $\gamma_t(j)$: the probability of being in state j at time t:

$$\gamma_t(j) = P(q_t = j | O, \lambda)$$

$$\gamma_t(j) = \frac{P(q_t = j, O | \lambda)}{P(O | \lambda)}$$

$$\gamma_t(j) = \frac{\alpha_t(j)\beta_t(j)}{P(O|\lambda)}$$

Computing y

$$\gamma_t(j) = \frac{P(q_t = j, O|\lambda)}{P(O|\lambda)}$$

$$\gamma_t(j) = \frac{\alpha_t(j)\beta_t(j)}{P(O|\lambda)}$$

$$\hat{b}_j(v_k) = \frac{\sum_{t=1s.t.O_t=v_k}^T \gamma_t(j)}{\sum_{t=1}^T \gamma_t(j)}$$

Summary

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i,k)}$$

The ratio between the expected number of transitions from state i to j and the expected number of all transitions from state i

$$\hat{b}_{j}(v_{k}) = \frac{\sum_{t=1s.t.O_{t}=v_{k}}^{T} \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)}$$

The ratio between the expected number of times the observation data emitted from state j is v_k, and the expected number of times any observation is emitted from state j

The Forward-Backward Algorithm

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden state set Q) **returns** HMM=(A,B)

initialize A and B iterate until convergence

E-step

$$\gamma_t(j) = \frac{\alpha_t(j)\beta_t(j)}{\alpha_T(q_F)} \,\forall t \text{ and } j$$

$$\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{\alpha_T(q_F)} \,\forall t, i, \text{ and } j$$

M-step

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i,k)} \qquad \hat{b}_j(v_k) = \frac{\sum_{t=1s.t. O_t = v_k}^{T} \gamma_t(j)}{\sum_{t=1}^{T} \gamma_t(j)}$$

return A, B

Summary: Forward-Backward Algorithm

- Intialize Φ =(A,B)
- Compute α , β , ξ
- Estimate new $\Phi' = (A,B)$
- Replace Φ with Φ'
- If not converged go to 2

Applying FB to speech: Caveats

- Network structure of HMM is always created by hand
 - no algorithm for double-induction of optimal structure and probabilities has been able to beat simple handbuilt structures.
 - Always Bakis network = links go forward in time
 - Subcase of Bakis net: beads-on-string net:

- Baum-Welch only guaranteed to return local max, rather than global optimum
- At the end, we through away A and only keep B