4. PRAKTIKA: *Grafoak*

Grafo baten erpinak lotzen dituzten arkuak definitzeko honako notazio hau erabiliko dugu: (P, Q): $P \rightarrow Q$. Arku guztiak zerrenda baten definituko dira.

Praktika honetan erabiliko ditugun Mathematica-ko funtzioak Combinatorica paketean daude eta bertan sartu beharko da:

Needs["Combinatorica`"]

GraphPlot[grafo, aukerak] Esandako grafoa adieraziko du azaldutako aukerekin. Aukeren artean honako hauek ditugu:

VertexLabeling→True Erpinak etiketatzen ditu.

DirectedEdges→True Grafoa zuzendua da.

RegularQ[g] True agertuko da g grafoa erregularra bada.

DeleteEdges[g, zerrenda] Zerrendan adierazitako g-ren arkuak ezabatzen ditu.

DeleteVertex[g, v] g grafoaren v erpina ezabatuko du.

DeleteVertices[g, zerrenda] Zerrendako g-ren erpinak ezabatuko ditu.

TreeQ[g] True agertuko da g grafoa zuhaitza bada

EulerianQ[g] True agertuko da g grafoa euleriarra bada.

RegularGraph[q, n] n erpineko q-erregularra den grafo bat lortuko du.

ExactRandomGraph[n, e] n erpineko eta e arku dituen zorizko grafo etiketatu bat lortuko da.

EulerianCycle[g] Existitzen bada, g grafoaren zirkuitu euleriarra aurkituko du.

Degrees[g] g grafoaren erpin bakoitzaren gradua lortuko du. Zuzendua den kasuan irteera graduak lortuko ditu.

FromAdjacencyMatrix[matrizea, baldintzak] grafo baten auzokidetasun matrizea definituko du. Pisuen bidez definitzerakoan **EdgeWeight** baldintza jarri beharko dugu pisuak onartzeko. Grafoa zuzendua den kasuan **Type→Directed** baldintza jarri beharko da.

MinimumSpanningTree[grafoa] Grafoaren zuhaitz estaltzaile minimala aurkituko du.