

კანფეტების განაწილება

დეიდა ჰონგმა გადაწყვიტა მის საცხოვრებელ სახლთან ახლოს მდებარე სკოლის მოსწავლეები ტკბილეულით დაესაჩუქრებინა და ამისათვის რამდენიმე კანფეტებიანი ყუთი მოემზადებინა. ყუთები გადანომრილია 0-დან (n-1)-მდე და თავიდან ყველა მათგანი ცარიელია. i-ურ ყუთში ($0 \le i \le n-1$) ეტევა c[i] რაოდენობის კანფეტი.

დეიდა ჰონგს კანფეტებიანი ყუთების მოსამზადებლად q რაოდენობის დღე სჭირდება. j-ურ დღეს ($0 \le j \le q-1$) ის ასრულებს მოქმედებას, რომელიც სამი მთელი $l[j],\ r[j]$ და v[j] რიცხვით მოიცემა, სადაც $0 \le l[j] \le r[j] \le n-1$ და $v[j] \ne 0$. ყოველი k-ური ყუთისათვის, სადაც $l[j] \le k \le r[j]$:

- თუ v[j]>0, დეიდა ჰონგი თითო-თითოდ ამატებს კანფეტებს k-ურ ყუთში მანამ, სანამ გუსტად v[j] რაოდენობის კანფეტს არ დაამატებას ან ყუთი არ გაივსება. სხვანაირად, თუ თავიდან ყუთში p რაოდენობის კანფეტი იყო, დეიდა ჰონგის მიერ ჩატარებული მოქმედების შემდეგ მასში $\min(c[k], p+v[j])$ რაოდენობის კანფეტი იქნება;
- თუ v[j] < 0, დეიდა ჰონგი თითო-თითოდ იღებს კანფეტებს k-ური ყუთიდან მანამ, სანამ ზუსტად -v[j] რაოდენობის კანფეტს არ ამოიღებს ან ყუთი არ დაცარიელდება. სხვანაირად, თუ თავიდან ყუთში p რაოდენობის კანფეტი იყო, დეიდა ჰონგის მიერ ჩატარებული მოქმედების შემდეგ მასში $\max(0,p+v[j])$ რაოდენობის კანფეტი იქნება.

თქვენი ამოცანაა დაადგინოთ კანფეტების რაოდენობა თითოეულ ყუთში q დღის შემდეგ.

იმპლემენტაციის დეტალები

თქვენ უნდა მოახდინოთ შემდეგი პროცედურის იმპლემენტაცია:

```
int[] distribute_candies(int[] c, int[] l, int[] r, int[] v)
```

- $oldsymbol{c}$: c: n სიგრძის მასივი. c[i] ($0 \leq i \leq n-1$) აღნიშნავს i-ური ყუთის ტევადობას;
- $l,\ r$ და v: q სიგრძის სამი მასივი. j-ურ დღეს ($0 \le j \le q-1$) დეიდა ჰონგი ასრულებს მოქმედებას, რომელიც მთელი $l[j],\ r[j]$ და v[j] რიცხვებით მოიცემა ისე, როგორც ეს ზემოთაა აღწერილი.
- ამ პროცედურამ უნდა დააბრუნოს n სიგრძის მასივი. ავღნიშნოთ ეს მასივი s-ით. ($0 \le i \le n-1$)-სათვის s[i] უნდა იყოს კანფეტების რაოდენობა i-ურ ყუთში q დღის შემდეგ.

მაგალითი

განვიხილოთ შემდეგი გამოძახება:

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

ეს ნიშნავს, რომ 0-ვანი ყუთის ტევადობაა 10 კანფეტი, 1-ლი ყუთის ტევადობაა 15 კანფეტი, ხოლო მე- 2 ყუთის ტევადობაა 13 კანფეტი.

0-ვანი დღის ბოლოს 0-ვან ყუთში $\min(c[0],0+v[0])=10$ კანფეტია, 1-ლ ყუთში $\min(c[1],0+v[0])=15$ კანფეტია და მე- 2 ყუთში კი - $\min(c[2],0+v[0])=13$ კანფეტი.

1-ლი დღის ბოლოს 0-ვან ყუთში $\max(0,10+v[1])=0$ კანფეტია, 1-ლ ყუთში კი - $\max(0,15+v[1])=4$ კანფეტი. რადგანაც 2>r[1], მე- 2 ყუთში კანფეტების რაოდენობა არ შეიცვლება. ყოველი დღის ბოლოს ყუთებში კანფეტების რაოდენობა ნაჩვენებია ქვემოთ მოცემულ ცხრილში:

დღე	ყუთი 0	ყუთი 1	ყუთი 2
0	10	15	13
1	0	4	13

ამგვარად, პროცედურამ უნდა დააბრუნოს [0,4,13].

შეზღუდვები

- $1 \le n \le 200000$
- 1 < q < 200000
- ullet $1 \leq c[i] \leq 10^9$ (ყველა ($0 \leq i \leq n-1$)-თვის)
- ullet $0 \leq l[j] \leq r[j] \leq n-1$ (ყველა ($0 \leq j \leq q-1$)-თვის)
- ullet $-10^9 \leq v[j] \leq 10^9, v[j]
 eq 0$ (ყველა ($0 \leq j \leq q-1$)-თვის)

ქვეამოცანები

- 1. (3 ქულა) $n,q \leq 2000$
- 2. (8 ქულა) v[j]>0 (ყველა ($0\leq j\leq q-1$)-თვის)
- 3. (27 ქულა) $c[0] = c[1] = \ldots = c[n-1]$
- 4. (29 ქულა) l[j]=0 და r[j]=n-1 (ყველა ($0\leq j\leq q-1$)-თვის)
- 5. (33 ქულა) დამატებითი შეზღუდვების გარეშე.

სანიმუშო გრადერი

სანიმუშო გრადერს შეაქვს მონაცემები შემდეგი ფორმატით:

- სტრიქონი 1: n
- სტრიქონი 2: c[0] c[1] \dots c[n-1]
- სტრიქონი 3: q
- ullet სტრიქონი 4+j ($0\leq j\leq q-1$): $\ l[j]\ r[j]\ v[j]$

სანიმუშო გრადერს გამოაქვს თქვენი პასუხები შემდეგი ფორმატით:

• სტრიქონი 1: $s[0] \; s[1] \; \dots \; s[n-1]$