HOMEWORK 3

MATH 2001

SEBASTIAN CASALAINA

ABSTRACT. This is the third homework assignment. The problems are from Hammack [Ham18, Ch. 1, $\S1.3$, $\S1.4$, $\S1.5$, $\S1.6$ $\S1.7$, $\S1.8$]:

- **Chapter 1 Section 1.3**, Exercises: 2, 6, 10.
- Chapter 1 Section 1.4, Exercises: 2, 10, 14, 19.
- Chapter 1 Section 1.5, Exercises: 2, 4, 6.
- Chapter 1 Section 1.6, Exercises: 2.
- Chapter 1 Section 1.7, Exercises: 4, 5, 6.
- Chapter 1 Section 1.8, Exercises: 2, 11, 12.

CONTENTS

Chapter 1 Section 1.3	2
Ch.1, §1.3, Exercise 2	2
Ch.1, §1.3, Exercise 8	2
Ch.1, §1.3, Exercise 12	3
Ch.1, §1.4, Exercise 2	3
Ch.1, §1.4, Exercise 10	3
Ch.1, §1.4, Exercise 14	3
Ch.1, §1.4, Exercise 19	4

Date: January 31, 2020.

Ch.1, §1.5, Exercise 2	4
Ch.1, §1.5, Exercise 4	6
Ch.1, §1.6, Exercise 2	8
Ch.1, §1.7, Exercise 4	9
Ch.1, §1.7, Exercise 5	10
Ch.1, §1.7, Exercise 6	11
Ch.1, §1.8, Exercise 2	12
Ch.1, §1.8, Exercise 11	12
Ch.1, §1.8, Exercise 12	13
References	13

CHAPTER 1 SECTION 1.3

Ch.1, §**1.3, Exercise 2.** List all the subsets of the following sets: $\{1, 2, \emptyset\}$

Solution to Ch.1, §1.3, Exercise 2.

$$\emptyset$$
, {1}, {2}, { \emptyset }, {1,2}, {1, \emptyset }, {2, \emptyset }, {1,2, \emptyset }

Ch.1, §**1.3, Exercise 8.** List all the subsets of the following sets: $\{1, 2, \emptyset\}$

Solution to Ch.1, $\S 1.3$, Exercise 8.

$$\emptyset$$
, { \mathbb{R} }, { \mathbb{Q} }, { \mathbb{N} }, { \mathbb{R} , \mathbb{Q} }, { \mathbb{R} , \mathbb{N} }, { \mathbb{Q} , \mathbb{N} }, { \mathbb{R} , \mathbb{Q} , \mathbb{N} }

Ch.1, §**1.3, Exercise 12.** Write out the following sets by listing their elements between braces. $\{X : X \subseteq \{3,2,a,\} \text{ and } |X| = 1\}$

Solution to Ch.1, §1.3, Exercise 12.

$${3}, {2}, {a}$$

Ch.1, §1.4, Exercise 2. Write out the following sets by listing their elements between braces. $\mathcal{P}(\{1,2,3,4\})$

Solution to Ch.1, §1.4, Exercise 2.

$$\{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\},$$

$$\{2,4\},\{3,4\},\{1,2,3\},\{1,2,4\},\{2,3,4\},\{1,2,3,4\}\}$$

Ch.1, §**1.4, Exercise 10.** Write out the following sets by listing their elements between braces. $\{X \in \mathcal{P}(\{1,2,3\}) : |X| \leq 1\}$

Solution to Ch.1, §1.4, *Exercise* 10.

$$\emptyset$$
, {1}, {2}, {3}

Ch.1, §**1.4, Exercise 14.** Suppose that |X| = m and |X| = n. Find the following cardinalities: $|\mathscr{P}(\mathscr{P}(A))|$

Solution to Ch.1, §1.4, *Exercise* 14.

$$|\mathscr{P}(A)|=2^m$$

$$|\mathscr{P}(\mathscr{P}(A))| = 2^{2^m}$$

Ch.1, §**1.4, Exercise 19.** Suppose that |X| = m and |X| = n. Find the following cardinalities: $|\mathscr{P}(\mathscr{P}(\mathscr{P}(A \times \emptyset)))|$

Solution to Ch.1, §1.4, Exercise 19.

$$|A \times \emptyset| = \emptyset$$

$$|\mathscr{P}(\varnothing)| = 2^0 = 1$$

$$|\mathscr{P}(\mathscr{P}(\emptyset))| = 2^1 = 2$$

$$|\mathscr{P}(\mathscr{P}(\mathscr{P}(\mathcal{O})))| = 2^2 = 4$$

Ch.1, §**1.5, Exercise 2.** Suppose that $A = \{0, 2, 4, 6, 8\}$, $B = \{1, 3, 5, 7\}$ and $C = \{2, 8, 4\}$. Find:

- (a) $A \cup B$
- (b) $A \cap B$
- (c) A B
- (d) A C
- (e) B A
- (f) $A \cap C$
- (g) $B \cap C$

(h)
$$C-A$$

(i)
$$C - B$$

Solution to Ch.1, §1.5, Exercise 2.

(a)
$$A \cup B$$

$$A \cup B = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

(b)
$$A \cap B$$

$$A \cap B = \emptyset$$

(c)
$$A - B$$

$$A - B = \{0, 2, 4, 6, 8\}$$

(d)
$$A - C$$

$$A-C=\{0,6\}$$

(e)
$$B-A$$

$$B-A=\emptyset$$

(f)
$$A \cap C$$

$$A \cap C = \{2, 8, 4\}$$

(g)
$$B \cap C$$

$$B \cap C = \emptyset$$

(h)
$$C-A$$

$$C-A=\emptyset$$

(i)
$$C - B$$

$$C - B = \{2, 4, 8\}$$

Ch.1, §**1.5, Exercise 4.** Suppose that $A = \{a, b, c\}$, $B = \{a, b\}$. Find:

(a)
$$(\mathbf{A} \times \mathbf{B}) \cap (\mathbf{B} \times \mathbf{B})$$

(b)
$$(\mathbf{A} \times \mathbf{B}) \cup (\mathbf{B} \times \mathbf{B})$$

(c)
$$(\mathbf{A} \times \mathbf{B}) - (\mathbf{B} \times \mathbf{B})$$

(d)
$$(A \cap B) \times A$$

(e)
$$(A \times B) \cap B$$

(f)
$$\mathscr{P}(A) \cap \mathscr{P}(B)$$

(g)
$$\mathscr{P}(A) - \mathscr{P}(B)$$

(h)
$$\mathscr{P}(A \cap B)$$

(i)
$$\mathscr{P}(A) \times \mathscr{P}(B)$$

Solution to Ch.1, §1.5, Exercise 4.

(a)
$$(\mathbf{A} \times \mathbf{B}) \cap (\mathbf{B} \times \mathbf{B})$$

$$A \times B = \{(b,a), (b,b), (c,a), (c,b), (d,a), (d,b)\}$$

$$\mathbf{B} \times \mathbf{B} = \{(a, a), (a, b), (b, a), (b, b)\}$$

$$(\mathbf{A} \times \mathbf{B}) \cap (\mathbf{B} \times \mathbf{B}) = \{(b, a), (b, b)\}\$$

(b)
$$(\mathbf{A} \times \mathbf{B}) \cup (\mathbf{B} \times \mathbf{B})$$

$$(A \times B) \cup (B \times B) =$$

$$\{(b,a),(b,b),(c,a),(c,b),(d,a),(d,b),(a,a),(a,b)\}$$

(c)
$$(\mathbf{A} \times \mathbf{B}) - (\mathbf{B} \times \mathbf{B})$$

$$(A \times B) - (B \times B) = /(c, a), (c, b), (d, a), (d, b)/$$

(d) $(A \cap B) \times A$

$$A \cap B = \{b\}$$

$$(A \cap B) \times A = \{(b,a), (b,c), (b,d)\}$$

(e) $(A \times B) \cap B$

 \emptyset

(f)
$$\mathscr{P}(A) \cap \mathscr{P}(B)$$

$$\mathscr{P}(A) = \{\emptyset, \{b\}, \{c\}, \{d\}, \{b,c\}, \{b,d\}, \{c,d\}, \{b,c,d\}\}\$$

$$\mathscr{P}(B) = \{\emptyset, \{b\}, \{a\}, \{a, b\}\}\$$

$$\mathscr{P}(A)\cap\mathscr{P}(B)=\{\emptyset,\{b\}\}$$

(g)
$$\mathscr{P}(A) - \mathscr{P}(B)$$

$$\mathscr{P}(A) - \mathscr{P}(B) = \{\{c\}, \{d\}, \{b,c\}, \{b,d\}, \{c,d\}, \{b,c,d\}\}$$

(h) $\mathscr{P}(A \cap B)$

$$\mathscr{P}(A\cap B)=\{\varnothing,\{b\}\}$$

(i)
$$\mathscr{P}(A) \times \mathscr{P}(B)$$

$$\mathscr{P}(A) \times \mathscr{P}(B) =$$

$$\emptyset, \emptyset \{\{b\}, \{a\}\}, \{\{b\}, \{b\}\}, \{\{b\}, \{a,b\}\}, \emptyset, \{\{c\}, \{a\}\}, \{\{c\}, \{b\}\},$$

$$\{\{c\},\{a,b\}\},\varnothing,\{\{d\},\{a\}\},\{\{d\},\{b\}\},\{\{d\},\{a,b\}\},\varnothing,\{\{b,c\},\{a\}\},$$

$$\{\{b,c\},\{b\}\},\{\{b,c\},\{a,b\}\},\emptyset,\{\{b,d\},\{a\}\},\{\{b,d\},\{b\}\},$$

$$\{\{b,d\},\{a,b\}\},\emptyset,\{\{b,d\},\{a\}\},\{\{b,d\},\{b\}\},\{\{b,d\},\{a,b\}\},\emptyset,$$

$$\{\{b,c,d\},\{a\}\},\{\{b,c,d\},\{b\}\},\{\{b,c,d\},\{a,b\}\}$$

Ch.1, §**1.6, Exercise 2.** Let $A = \{0, 2, 4, 6, 8\}$ and $B = \{1, 2, 5, 7\}$ have universal set $U = \{0, 1, 2, ..., 8\}$. Find:

- (a) \overline{A}
- (b) \overline{B}
- (c) $A \cap \overline{A}$
- (d) $A \cup \overline{A}$
- (e) $A \overline{A}$
- (f) $\overline{A \cup B}$
- (g) $\overline{A} \cap \overline{B}$
- (h) $\overline{A \cap B}$
- (i) $\overline{\overline{A} \cap B}$

Solution to Ch.1, $\S 1.6$, Exercise 2.

(a) \overline{A}

$$\overline{A} = \{1,3,5,7\}$$

(b) \overline{B}

$$\overline{B} = \{0, 3, 4, 6, 8\}$$

(c) $A \cap \overline{A}$

$$A \cap \overline{A} = \emptyset$$

(d)
$$A \cup \overline{A}$$

$$A \cup \overline{A} = U$$

(e)
$$A - \overline{A}$$

$$A - \overline{A} = A$$

(f)
$$\overline{A \cup B}$$

$$A \cup B = \{0,1,2,4,5,6,7,8\}$$

$$\overline{A \cup B} = \{3\}$$

(g)
$$\overline{A} \cap \overline{B}$$

$$\overline{A} \cap \overline{B} = \{3\}$$

(h)
$$\overline{A \cap B}$$

$$A \cap B = \{2\}$$

$$\overline{A \cap B} = \{0, 1, 3, 4, 5, 6, 7, 8\}$$

(i)
$$\overline{\overline{A} \cap B}$$

$$\overline{\overline{A} \cap B} = \{1, 5, 7\}$$

Ch.1, §1.7, Exercise 4. Draw a Venn Diagram for ($A \cup B$) -C .

Solution to Ch.1, §1.5, Exercise 4.

Ch.1, §1.7, Exercise 5. Draw a Venn Diagram for $A \cup (B \cap C)$ and $(A \cup B) \cap (A \cup C)$. Base on your drawing, do you think $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$?

Solution to Ch.1, §1.7, Exercise 5.

$$(A \cup B) \cap (A \cup C)$$

Ch.1, §1.7, Exercise 6. Draw a Venn Diagram for $A \cap (B \cup C)$ and $(A \cap B) \cup (A \cap C)$. Base on your drawing, do you think $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$?

Solution to Ch.1, §1.7, Exercise 6.

$$(A \cap B) \cup (A \cap C)$$

CASALAINA

Ch.1, §1.8, Exercise 2. Suppose $\begin{cases} A_1 = \{0, 2, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24\}, \\ A_2 = \{0, 3, 6, 9, 12, 15, 21, 24\}, \\ A_3 = \{0, 4, 8, 12, 16, 20, 24\}. \end{cases}$

(a)
$$\bigcup_{i=1}^{3} A_i$$

(b) $\bigcap_{i=1}^{3} A_i$

Solution to Ch.1, §1.8, Exercise 2.

(a)
$$\bigcup_{i=1}^{3} A_i$$

 $\{0, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24\}$

(b)
$$\bigcap_{i=1}^{3} A_i$$

 $\{0, 12, 24\}$

Ch.1, §**1.8, Exercise 11.** $\bigcup_{\alpha \in I} A_{\alpha} \subseteq \bigcap_{\alpha \in I} A_{\alpha}$ always true for any collection of sets A_{α} with index set I?

Solution to Ch.1, §1.8, Exercise 11.

It is always true that $\bigcup_{\alpha \in I} A_{\alpha} \subseteq A_{\alpha}$ and $A_{\alpha} \subseteq \bigcap_{\alpha \in I} A_{\alpha}$, so $\bigcup_{\alpha \in I} A_{\alpha} \subseteq \bigcap_{\alpha \in I} A_{\alpha}$ is always true.

Ch.1, §**1.8, Exercise 12.** $\bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} A_{\alpha}$, what do you think can be said about the relationships between the sets A_{α} ?

Solution to Ch.1, §1.5, Exercise 4.

They are all equal.

REFERENCES

[Ham18] Richard Hammack, Book of Proof, 3 ed., Creative Commons, 2018.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309-0395

Email address: casa@math.colorado.edu