数理社会学I 第10回目 血縁淘汰2

2014年6月20日

東工大•文系科目

担当:中丸麻由子

前期授業スケジュール・予定

回	日にち	講義内容		
1	4/11	ガイダンス		
2	4/18	進化生態学基礎		
3	4/25	進化ゲーム		
4	5/2	進化ゲーム		
5	5/9	進化ゲーム・採餌行動		
6	5/23	採餌行動		
7	5/30	性比	進	化生態学の基本
8	6/6	性転換·性選択	+,	人への適用例
9	6/13	性選択·血縁淘汰		
10	6/20	血縁淘汰		
11	6/27	人の性選択・人の血縁淘汰		
12	7/4	協力の進化		
13	7/11	協力の進化		
14	7/18	予備日・テスト範囲説明		
15	7/25	テスト日		

参考文献

- 長谷川真理子・他 「行動・生態の進化」 シリーズ 進化6 岩波書店
- 酒井聡樹、高田壮則、近雅博(1999)「生き物の進化 ゲーム」共立出版
- 長谷川寿一、長谷川真理子(2000)「進化と人間行動」東大出版会
- 嚴佐庸(1990)「数理生物学入門」共立出版
- McElreath, R. & Boyd, R. 2007. Mathematical models of social evolution, Univ of Chicago Press

利他行動(協力行動)

利他行動とは:

自らの適応度を下げてまで相手の適応度を上げる行動

社会的相互作用: 2個体間の場合

利他行動(協力行動)

-血縁淘汰

-非血縁間の協力

互恵的利他行動

--繰り返し囚人のジレンマゲーム

間接的互恵性

--評判、噂の影響

非協力者への罰行動 --利他的罰行動

共同繁殖の進化条件

単独(Single)で繁殖 VS. 共同(Joint)で繁殖

共同繁殖の進化条件

- 劣位者は優位者に比べて子供の数が少ないとする
 - (理由)縄張り無い、メスを獲得しにくい、生息環境が悪い (良い食べ物にアクセスしにくい)など

共同繁殖の進化条件

- 共同(Joint)で繁殖
 - 優位者は劣位者にも 繁殖機会を確率 p 与える
- ・ 共同繁殖の結果、全体 の適応度が(1+j)となる。
 - 劣位者の適応度 V_S(J) = p(1 + j)
 - 優位者の適応度

$$V_D(J) = (1 - p)(1 + j)$$

共同繁殖の進化

単	独	繁	殖
---	---	---	---

共同繁殖

優位者 Dominant

$$V_D(S) = 1$$

$$V_D(J) = (1 - p)(1 + j)$$

劣位者 subordinate

$$V_{S}(S) = 1 - s$$

$$V_S(J) = p(1 + j)$$

共同繁殖の進化

劣位者からすると、共同繁殖のほうが単独繁殖よりも進化的 に有利になる条件

劣位者と優位者が血縁が無い場合(r=0):

$$V_S(J) = p(1 + j) > V_S(S) = 1 - s$$

劣位者と優位者の血縁関係(r)の時:

$$V_S(J) + rV_D(J) > V_S(S) + rV_D(S)$$

共同繁殖の進化

s = 0.75, j = 0.5

共同繁殖

優位者者からすると、共同繁殖のほうが単独繁殖よりも進化 的に有利になる条件

劣位者と優位者が血縁が無い場合(r=0):

$$V_D(J) = (1 - p)(1 + j)$$
 > $V_D(S) = 1$

$$p < j/(1 + j)$$

劣位者と優位者の血縁関係(r)の時:

$$V_D(J) + rV_S(J) > V_D(S) + rV_S(S)$$

$$p < (j - r(1 - s))/((1 + j)(1 - r))$$

共同繁殖

s = 0.75, j = 0.5

共同繁殖

優位・劣位者にとって、共同繁殖が有利:

s = 0.75, j = 0.5

ハミルトンルールの算出2

V(自分、相手): 自分と相手がゲームしたときの、自分の利得

出典 McElreath & Boyd (2007)

ハミルトンルールの算出2

Pr(相手/自分): 自分が相手が出会う、条件付き確率

$$Pr(A/A) + Pr(N/A) = 1$$

$$Pr(A/N) + Pr(N/N) = 1$$

協力(A)の平均利得

$$W(A) = w_0 + Pr(A/A)V(A,A) + Pr(N/A)V(A,N)$$

非協力(N)の平均利得

$$W(N) = w_0 + Pr(A/N)V(N,A) + Pr(N/N)V(N,N)$$

ハミルトンルールの算出2

利得を平均利得の式へ代入すると・・

$$W(A) = w_0 + Pr(A/A)(b - c) + Pr(N/A)(-c)$$

$$W(N) = w_0 + Pr(A/N)b - Pr(N/N)(0)$$

協力が進化するためには・・ W(A) > W(N)

Pr(A/A)b - c > Pr(A/N)b

$$(Pr(A/A) - Pr(A/N))b > c_{...式(1)$$

ハミルトンルール

r:同じタイプの出会いやすさ

p:集団中の協力(A)の頻度、1-p:集団中の非協力 (N)の頻度

$$Pr(N/A) = r \times 0 + (1 - r)(1 - p)$$

$$Pr(N/N) = r \times 1 + (1 - r)(1 - p)$$

$$Pr(A/N) = r \times 0 + (1 - r)p$$

r = 0の時 ランダムに人と出会う状況 r = 1の時 同じタイプにしか会わない

ハミルトンルール

式(1):(Pr(A/A) - Pr(A/N))b > c

代入すると・・・

$$\begin{cases} Pr(N/A) = r(0) + (1 - r)(1 - p) \\ Pr(A/A) = r(1) + (1 - r)p \end{cases}$$

$$((r + (1 - r)p) - (1 - r)p)b > c$$

rb > c

一方で・・血縁者間の葛藤?!

多くの鳥類やほ乳類

ある程度の養育期間を越えると、 子供に対して攻撃的になる

➡ おそらく親子間の対立が原因?!

親と子の対立

親から見た 血縁度

<u>1</u>

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

1 2

(b) 子の立場

大きなヒナから 見た血縁度

 $\frac{1}{2}$

1 2

1

 $\frac{1}{2}$

2

1

「生き物の進化ゲーム」より

図 11.1 親と子の立場の違い

血縁者間の葛藤: simple case

Trivers (1974):親の投資期間中の投資量をめぐる親と子の葛藤

B: 親の投資量に対する利益→投資を受ける子の生存率の増加

C:親の被るコスト→親が他の子をつくるチャンスの減少分

親の正味の利益: B-C

子の正味の利益: B - rC

親子の血縁度 *r* = 0.5 なので、 子は母親の投資コストを半分に しか見積もらない

母親が与えようとする投資以上 を子供は要求する

具体例を挙げて説明

一個体の子供に投資するエネルギー量をどうやって決定するか?

子へ与える餌量 分配する同化産物量 養育へかける時間など

親の総投資量=一定

S:親の子供一個体への投資量

W(S):子供の生存率曲線。凸型関数。

親にとっては・・・・

子は同等

同じだけの投資量を与えて、適応度を最適にする 親の総投資量:一定

以下の式を満たす最適投資量S*が 自然選択の結果選び取られる

$$W'(S) = \frac{W(S)}{S}$$

※式の導出は後ほど

最適資源投資戦略

図 2.3 最適な卵の大きさ

W'(S)は、関数 W(S)の S における接線の傾きである。W(S)/S は、原点から W(S) に引いた直線の傾きである。だから、W'(S) = W(S)/S となるのは、原点から引いた直線が W(S) に接する点(S^*)である。

「生き物の進化ゲーム」より

子にとっては・・

親から投資をしてもらうほど、自分の生存率は高まる

利にとっての最適投資S*と、子にとっての最適投資 (+ 型ナンスナジスラ は異なるだろう

例)5人兄弟

自分:S*より50ほど多く投資を要求すると 生存率の増加分:B = $W(S^*+50)$ - $W(S^*)$

残りの兄弟4個体:

親からの総投資量は一定 →各個体50/4 = 12.5 ほど親からの投資は減少

各兄弟の生存率の減少分: C = W(S*) - W(S*-12.5)

子にとっては・・続き

自分の適応度の正味の増加分: $B-4 \times \frac{1}{2} \times C = B-2C$

兄弟4個体とは血縁度1/2

兄弟の適応度の損分 4C のうち、1/2を被る

B-2C>0 であると、自分は親へもつと投資を要求

B'-2C'=0 の時の投資量 (S_{max}) が要求する上限となるだろう。

子供一個体あたりにかけるエネルギー投資量と生存率の関係

図 | 1.2 子ども | 個体あたりにかけるエネルギー投資量と生存率の関係

親の最適投資

「生き物の進化ゲーム」より

再び、親にとっては・・・

子の一個体だけ適応度を増やした時、親にとっては:

親と子の血縁度 1/2 なので

$$\vec{F}$$
子一個体の適応度の増加分: $\frac{1}{2} imes B$

子一個体の適応度の増加分: $\frac{1}{2} \times B$ 他の子ども4個体の適応度の減少分: $4 \times \frac{1}{2} \times C$

親からすると、一個体の子の $\frac{1}{2} \times B - 4 \times \frac{1}{2} \times C$ 適応度の正味の増加分は: $\frac{1}{2} \times B - 4 \times \frac{1}{2} \times C$

$$\frac{1}{2} \times B - 4 \times \frac{1}{2} \times C$$

$$=\frac{1}{2}(B-4C)<0$$
 常に成り立つ

親と子の投資量に関する対立が生じる!

B-4C<0 が常に成り立つ理由は?

W(S)が凸関数である限り、成立

親と子の対立の拡張。。

異父兄弟のときは?

異父兄弟では: 1/4

ある子の適応度の正味の増分: $B-4 \times \frac{1}{4} \times C = B-C$

□ 同父兄弟と比べて、より多くの投資を要求する!

母親の繁殖齢 老齢ほど、将来に子供を産む確率が減少 →現在の子供に多く投資する傾向

例)カルフォルニアカモメ

老齢の親ほど給餌頻度が高い

例) ヒヒ 老齢の親ほど子離れが遅くなる