Применение метода локальной аппроксимации для построения интеллектуальных торговых систем

Постановка задачи прогнозирования

Необходимо найти функции F_{τ} :

$$x_{i+\tau} = F_{\tau}(\mathbf{x}_i), \qquad (1)$$

где

 \mathbf{x}_i – вектор в реконструированном ф.п. в момент t_i $F_{ au}$ - зависимость будущего значения $x_{i+ au}$ от предыдущих \mathbf{x}_i

Метод локальной аппроксимации

Главная идея ЛА состоит в построении обучающего набора данных из векторов-соседей, выбранных по некоторому критерию в реконструированном ф.п.

Алгоритм следующий:

- Реконструкция
- Выбор соседней
- Аппроксимация выбранных данных
- Построение прогноза

Реконструкция фазового пространства

Необходимо перейти от скалярного временного ряда $\{x_n\}$ к его многомерному представлению:

$$\{\mathbf{x}_n = (x_n, x_{n-p}, ..., x_{n-(d-1)p})\},$$

где

p — временная задержка d — размерность вложения траектории исходного ф.п. в \mathbb{R}^d

Поиск соседей

Чтобы предсказать будущее значение необходимо задать метрику в пространстве состояний $\|\cdot\|$ и k соседей вектора \mathbf{x}_i , т.е. k векторов прошлых состояний $\{\mathbf{x}_k\}$.

Критерий близости:

$$\|\mathbf{x}_i - \mathbf{x}_k\| \to min$$