Geometrische Aspekte von gemischten Differenzenidealen

Andrés Goens

11. März 2014

Überblick

- Überblick Differenzenalgebra
 - Differenzenalgebra
 - Differenzenpolynomringe
 - Differenzenvarietäten
 - Differenzenalgebraische Ergebnisse
- Motivation
- Mixed Differenzenvarietäten
 - Mixed Differenzenvarietäten
 - Mixed Differenzenideale
 - Weitere Ergebnisse
- Differenzenkerne

Überblick Differenzenalgebra

Differenzenalgebra

Definition

Sei R ein kommutativer Ring mit 1 (Körper) , und sei $\sigma:R\to R$ ein Ringendomorphismus.

- ▶ Dann heißt das Tupel (R, σ) ein *Differenzenring(körper)*, oder σ -*Ring(Körper)*.
- ▶ Ein Ideal $I \subseteq R$ der stabil unter σ ist, d.h. $\sigma(I) \subseteq I$, heißt Differenzenideal oder σ -Ideal. Symbol: $I \subseteq_{\sigma} R$.

Differenzenpolynomringe

Definition

Sei k ein σ -Körper. Der Polynomring in unendlich vielen Variablen $k[y_1, \sigma(y_1), \sigma^2(y_1), \ldots]$ heißt σ -Polynomring in der Differenzenvariable y_1 . Symbol: $k\{y_1\}$. Es wird ein σ -Ring durch

$$\sigma(\sigma^n(y_1)) := \sigma^{n+1}(y_1).$$

Analog für ein Tupel von Variablen $y = (y_1, \dots, y_n)$, ist

$$k\{y\} := k\{y_1, \ldots, y_n\} := k[y_1, \ldots, y_n, \sigma(y_1), \ldots, \sigma(y_n), \sigma^2(y_1), \ldots]$$

Differenzenpolynomringe (Fortsetzung)

Konzepte von Ordnung, Effektive Ordnung:

•
$$f := y_1 \sigma^2(y_2) + \sigma(y_1)\sigma(y_2)\sigma(y_3) \in k\{y_1, y_2, y_3\}$$

$$\operatorname{Ord}(f) = 2, \operatorname{Eord}(f) = 2$$

$$g := \sigma^3(y_1)\sigma^2(y_2) + \sigma(y_1)\sigma(y_2)\sigma(y_3)$$

$$\operatorname{Ord}(g) = 3, \operatorname{Eord}(g) = 2$$

Differenzenvarietäten

Definition

Sei k ein σ -Körper, $F\subseteq k\{y_1,\ldots,y_n\}$ ein Menge von Differenzenpolynomen. Für einen σ -Körper K mit $k\subseteq K$ und $\sigma_{|k}=\sigma$ setzen wir:

$$\mathbb{V}_{K}(F) := \{ x \in K^{n} \mid f(x) = 0 \ \forall \ f \in F \}.$$

Dies ist ein Funktor der Kategorie der σ -Körper wie oben (σ -Körpererweiterungen) in die Kategorie der Mengen und heißt σ -Varietät oder Differenzenvarietät.

Differenzenvarietäten (Fortsetzung)

Definition

Sei k ein σ -Körper, $X=\mathbb{V}(F)$ eine σ -Varietät. Dann ist

$$\mathbb{I}(X) := \{ f \in k \{ y_1, \dots, y_n \} \mid f(a) = 0 \ \forall \ a \in \mathbb{V}_K(F)$$
$$\forall K \supseteq k \ \sigma\text{-K\"{o}rpererweiterung} \}.$$

Definition

Für die Menge F gibt es ein kleinstes σ -Ideal $\{F\} \leq_{\sigma} k\{y_1, \ldots, y_n\}$ das *perfekt* ist $(\sigma^{i_1}(f) \cdots \sigma^{i_n}(f) \in \{F\} \Rightarrow f \in \{F\})$, und F enthält. Dieses heißt der *perfekte Abschluss* von F.

Differenzenvarietäten (Fortsetzung)

Satz

Sei k ein σ -Körper, $F \subseteq k\{y_1, \ldots, y_n\}$. Dann ist $\mathbb{I}(\mathbb{V}(F)) = \{F\}$

Differenzenalgebraische Ergebnisse

Definition

Sei $\mathfrak{p} \trianglelefteq_{\sigma} R$ ein σ -Ideal. Dann heißt \mathfrak{p} σ -prim, falls \mathfrak{p} prim ist und $\sigma^{-1}(\mathfrak{p}) \subseteq \mathfrak{p}$ gilt.

Satz

Sei R ein σ -Ring und $F \subseteq R$ eine Teilmenge. Dann gilt:

$$\{F\} = \bigcap_{\substack{F \subseteq \mathfrak{p} \trianglelefteq_{\sigma} R, \\ \mathfrak{p} \text{ σ-Prim}}} \mathfrak{p}.$$

Differenzenalgebraische Ergebnisse (Fortsetzung)

- ▶ Die Menge aller σ -primen σ -Ideale eines σ -Rings R bezeichnet man mit $\operatorname{Spec}^{\sigma}(R)$. Sie ist ein topologischer Raum, der noethersch ist für $R = k\{y\}$.
- Spec $^{\sigma}(R)$ ist quasi-kompakt.
- ▶ Die σ -primen σ -Ideale von R stehen in Bijektion zu den irreduziblen, abgeschlossenen Mengen in Spec $^{\sigma}(R)$.

Motivation

Motivation

Sei k ein Körper. Dann haben die Polynome y, y^2 die Gleichen Nullstellen:

$$y^2 = 0 \Leftrightarrow y = 0$$

Aber: y^2 hat die Nullstelle 0 "doppelt". Wie kann man sie unterscheiden?

Suchen der Nullstellen:

Sucht man nicht in einen Körper, sondern zum Beispiel in der k-Algebra $k[y]/(y^2)$, dann ist

$$y^2 = 0 \not\Leftrightarrow y = 0$$

Dimension:

$$\dim_k(k[y]/(y)) = 1, \dim_k(k[y]/(y^2)) = 2$$

Motivation (Fortsetzung)

→ Suche Analogie für Differenzenfall

Differenzengleichungen $\sigma(y)=0, \sigma^2(y)=0$ haben die gleichen Lösungen über Differenzenkörper, verschiedene "Vielfachheit". Wie kann man sie unterscheiden?

$$\{\sigma(y)\} = \{\sigma^2(y)\} = (y, \sigma(y), \sigma^2(y), \ldots) \leq_{\sigma} k\{y\}$$

Gleichungen liefern gleiche Differenzenvarietät. Neuer Konzept: suche nicht nur in σ -Körper

Mixed Differenzenvarietäten

Mixed Differenzenvarietäten

Definition

Sei k ein σ -Körper und B ein σ -Ring, der ein Integritätsbereich ist mit $k \subseteq B$, $\sigma_{|k} = \sigma$. Weiter sei $F \subseteq k\{y_1, \ldots, y_n\}$ eine Menge von σ -Polynomen. Setze

$$\mathbb{V}_B(F) := \{ b \in B^n \mid f(b) = 0 \ \forall \ f \in F \}.$$

Durch $B \mapsto \mathbb{V}_B(F)$ ist ein Funktor der Kategorie solcher Ringe in die Kategorie der Mengen gegeben. Wir nennen ihn eine *Mixed* σ -Varietät über k, oder k- σ -m-Varietät.

Andere Möglichkeiten: Perfekt-reduzierte σ -Ringe, σ -Integritätsberreiche \to Wieder Differenzenvarietäten.

Mixed Differenzenideale

Definition

- ▶ Ein Ideal $\mathfrak{a} \trianglelefteq_{\sigma} k\{y\}$ heißt mixed, wenn $fg \in \mathfrak{a} \Rightarrow f\sigma(g) \in \mathfrak{a}$.
- ▶ Für $F \subseteq k\{y\}$ gibt es ein kleinstes radikales, mixed σ -Ideal, das F enthält. Bez: $\{F\}_m$.

Mixed Differenzenideale (Fortsetzung)

$\begin{tabular}{ll} Verbindung:\\ mixed Differenzenideale \leftrightarrow mixed Differenzenvariet "atten".\\ \end{tabular}$

Mit \mathbb{I}_m analog zu \mathbb{I} für mixed Differenzenvarietäten:

Satz

Sei k ein σ -Körper, $F \subseteq k\{y_1, \ldots, y_n\}$, und $X = \mathbb{V}(F)$ eine σ -m-Varietät. Dann:

$$\mathbb{I}_m(\mathbb{V}(F)) = \{F\}_m$$

Weitere Ergebnisse

Satz

Sei R ein σ -Ring und $F \subseteq R$. Dann:

$$\{F\}_m = \bigcap_{\substack{F \subseteq \mathfrak{p} \leq_{\sigma} R \\ \mathfrak{p} \text{ Prim}}} \mathfrak{p}.$$

Offen: Endlich viele \mathfrak{p} für $R = k\{y\}$?

Weitere Ergebnisse (Fortsetzung)

Topologischer Raum:

$$\mathsf{Spec}^\sigma_m(R) := \{ \mathfrak{p} \unlhd_\sigma R \mid \mathfrak{p} \mathsf{ prim } \} \supseteq \mathsf{Spec}^\sigma(R)$$

- Spec $_m^{\sigma}(R)$ ist Quasi-Kompakt.
- ▶ Die primen σ -Ideale von R stehen in Bijektion zu den irreduziblen, abgeschlossenen Mengen in Spec $_m^{\sigma}(R)$.
- ▶ Offen: noethersch für $R = k\{y\}$?

Differenzenkerne

Differenzenkerne

- Problem: σ-Polynomring hat unendlich viele Variablen, nicht noethersch.
- ▶ Idee: Untersuche σ -Ideale in noethersche Unterringe.

Definition

Sei k ein Differenzenkörper. Wir setzen

$$k\{y\}[d] := k[y, \sigma(y), \dots, \sigma^d(y)] \subseteq k\{y\} \text{ und } k\{y\}[-1] := k.$$

Für ein σ -Ideal $\mathfrak{a} \leq_{\sigma} k\{y\}$ sei

$$\mathfrak{a}[d] := \mathfrak{a} \cap k\{y\}[d].$$

Definition

Sei $\mathfrak{a} \subseteq k\{y\}[d], d \ge 1$. Dann heißt \mathfrak{a} ein *Differenzenkern der Länge d*, wenn $\sigma(\mathfrak{a}[d-1]) \subseteq \mathfrak{a}$. Er heißt ein primer Differenzenkern, falls zusätzlich \mathfrak{a} ein primes σ -Ideal in $k\{y\}[d]$ ist. Weiterhin wird \mathfrak{a} reflexiv genannt, falls $\sigma^{-1}(\mathfrak{a}) = \mathfrak{a}[d-1]$.

Beispiel

Sei $\mathfrak{p} \trianglelefteq_{\sigma} k\{y\}$ ein primes σ -Ideal, $d \geq 1$. Dann ist $\mathfrak{p}[d] \trianglelefteq k\{y\}[d]$ ein primer Differenzenkern. Ist \mathfrak{p} auch σ -prim, dann ist $\mathfrak{p}[d]$ auch reflexiv.

Satz

Sei $\mathfrak{a} \subseteq k\{y\}[d]$ ein reflexiver, primer Differenzenkern. Dann existiert ein σ -primes Ideal $\mathfrak{p} \trianglelefteq_{\sigma} k\{y\}$ mit $\mathfrak{p}[d] = \mathfrak{a}$.

Frage: Gilt das auch für prime Differenzenkerne? (mit primen Differenzenidealen)

Proposition

Sei $\mathfrak{a}\subseteq k[y,\ldots,\sigma^d(y)]$ ein primer Differenzenkern und sei $k[y,\ldots,\sigma^d(y)]/\mathfrak{a}=:k[a,\sigma(a),\ldots,\sigma^d(a)]$. Betrachte die Abbildung

$$\sigma: k[a, \ldots, \sigma^{d-1}(a)] \to k[a, \ldots, \sigma^d(a)].$$

Dann existiert ein primer Differenzenkern \mathfrak{a}' der Länge d+1 mit $\mathfrak{a}'[d]=\mathfrak{a}$ genau dann, wenn das von $\ker(\sigma)$ erzeugte Ideal, $(\ker(\sigma))\subseteq k[a,\ldots,\sigma^d(a)]$, Folgendes erfüllt:

$$(\ker(\sigma)) \cap k[a,\ldots,\sigma^{d-1}(a)] = \ker(\sigma).$$

Für reflexive, prime Differenzenkerne ist einmal Fortsetzen äquivalent zu beliebig oft Fortsetzen. Ohne Reflexivität ist das i.A. nicht der Fall.

 $\rightarrow \ \mathsf{Gegenbeispiel}.$

Vermutung

Sei k ein σ -Körper und $\mathfrak{a}\subseteq k\{y\}[d]$ ein primes Differenzenkern. Weiter sei $a_1=y_1+\mathfrak{a},\ldots,a_n=y_n+\mathfrak{a}$. Für $r\geq 1$ betrachte die Abbildung

$$\sigma^r: k[a, \sigma(a), \ldots, \sigma^{d-r}(a)] \to k[a, \ldots, \sigma^d(a)], f \mapsto \sigma^r(f).$$

Dann existiert ein primes σ -ideal $\mathfrak p$ mit $\mathfrak p[d]=\mathfrak a$ genau dann, wenn

$$(\ker(\sigma),\ldots,\ker(\sigma^r))\cap k[a,\ldots,\sigma^{d-r}(a)]=\ker(\sigma^r).$$

[&]quot;⇒" klar.

Theorem

Sei k ein σ -Körper und sei $\mathfrak{p} \leq_{\sigma} k\{y\} = k\{y_1, \ldots, y_n\}$ ein primes σ -Ideal. Setze

$$d_i := \dim(k\{y\}[i]/\mathfrak{p}[i]).$$

Dann existieren ganze Zahlen $d, e \in \mathbb{N}$, so dass $d_i = d(i+1) + e$ für $i \gg 0$.

Definition

- ▶ Die Zahl d heißt die σ -Dimension von \mathfrak{p} (Bez.: σ -dim(\mathfrak{p})).
- ▶ Die Zahl e heißt σ -Grad von \mathfrak{p} (Bez.: σ -deg(\mathfrak{p})).

Satz

Sei k ein σ -Körper und $f \in k\{y_1, \ldots, y_n\}, f \notin k$ ein irreduzibles σ -Polynom, so dass $\operatorname{Eord}(f) = \operatorname{Ord}(f)$. Dann hat die σ -Varietät $\mathbb{V}(f)$ eine irreduzible Komponente X, so dass σ -dim(X) = n-1 und σ -deg $(X) = \operatorname{Ord}(f)$.

Satz

Sei k ein σ -Körper und $f \in k\{y_1, \ldots, y_n\}, f \notin k$ ein irreduzibles σ -Polynom. Dann hat die σ -m-Varietät $\mathbb{V}(f)$ eine irreduzible, abgeschlossene Teilmenge X so, dass σ -dim(X) = n-1 und σ -deg $(X) = \operatorname{Ord}(f)$.

Beispiel

Betrachte den σ -Polynomring $\mathbb{Q}\{y_1\}$, und das irreduzible σ -Polynom $f:=\sigma(y_1)-1\in\mathbb{Q}\{y_1\}$. Weiter seinen $X:=\mathbb{V}(f)$ als σ -Varietät, und $Y:=\mathbb{V}(f)$ als σ -m-Varietät. Beide haben nur eine Primkomponente:

$$[y_1 - 1] = {\sigma(y_1) - 1}, \ [\sigma(y_1) - 1] = {\sigma(y_1) - 1}_m$$

Vielen dank für ihre Aufmerksamkeit!

Referenzen I

- Wibmer, Michael Algebraic Difference Equations (Lecture Notes), Available online: http://www.algebra.rwth-aachen.de/de/Mitarbeiter/
 - http://www.algebra.rwth-aachen.de/de/Mitarbeiter/Wibmer/Algebraic%20difference%20equations.pdf
- Lang, Serge, Algebra, Revised Third Edition, Springer, 2005
- Eisenbud, David Commutative Algebra with a View Toward Algebraic Geometry, Springer, 1995
- Hartshorne, Robin Algebraic Geometry, Springer, 1977
- Cohn, Richard *Difference Algebra*, Interscience Publishers, 1965
- Levin, Alexander Difference Algebra, Springer, 2008
- Hrushovski, Ehud *The Elementary Theory of the Frobenius Automorphism*, arXiv:math/0406514

Referenzen II

- Bourbaki, Nicolas Commutative Algebra, Hermann, 1972
- Grayson, Daniel R. and Stillman, Michael E., Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/
- Levin, Alexander, On the ascending chain condition for mixed difference ideals, arXiv:1207.4721
- Cox, Little and O'Shea, *Ideals, Varieties and Algorithms*, Second Edition, Springer, 1997