Pedro Covelo Rodríguez --- 39493020L Trabajo Computadores 1. Álvaro García Sánchez-----70924450V Grupo A3.

Índice:

1. <u>DISEÑO DEL CONTADOR:</u>

- . Diagrama de estados.
- . Tabla de transiciones.
- . Mapas de Karnaugh.

2. <u>DISEÑO DEL CIRCUITO.</u>

3. <u>DISEÑO DEL CONVERSOR:</u>

- . Tabla del conversor.
- . Mapas de Karnaugh del conversor.

4. <u>VERILOG:</u>

- . Biestable JK.
- . Creación del módulo principal del contador de 4 bits con biestables JK.
- . Puertas.
- . Declaración de los biestables.
- . Cambios en la circuitería
- . Módulo de pruebas.
- . Salida en el terminal.

5. GTKWAVE

6. PRESUPUESTO Y COSTES DEL CIRCUITO

1. DISEÑO DEL CONTADOR

. DIAGRAMA DE ESTADOS:

Se le asignan otros números a los números que no se encuentran en la lista:

. TABLA CON LAS TRANSICIONES NECESARIAS:

Tabla con las transiciones del biestable JK

	Salida	Sgte.	J3 K3	J2 K2	J1 K1	J0 K0
0	0000	1011 (11)	1x	0x	1x	1x
1	0001	0000 (0)	0x	0x	0x	x1
2	0010	1010 (10)	1x	0x	x0	0x
3	0011	1111 (15)	1x	1x	x0	x0
4	0100	0010 (2)	0x	x1	1x	0x
5	0101	0100 (4)	0x	x0	0x	x1
6	0110	0101 (5)	0x	x0	x1	1x
7	0111	0011 (3)	0x	x1	x0	x0
8	1000	1010 (10)	x0	0x	1x	0x
9	1001	0001 (1)	x1	0x	0x	x0
10	1010	0011 (3)	x1	0x	x0	1x
11	1011	0110 (6)	x1	1x	x0	x1
12	1100	0100 (4)	x1	x0	0x	0x
13	1101	1111 (15)	x0	x0	1x	x0

14	1110	1111 (15)	x0	x0	x0	1x
15	1111	0001 (1)	x1	x1	x1	x0

. MAPAS DE KARNAUGH:

A partir de la tabla de transiciones obtenemos los siguientes mapas de Karnaugh y de ellos se pueden sacar las ecuaciones.

2. <u>DISEÑO DEL CIRCUITO:</u>

3. DISEÑO DEL CONVERSOR:

. TABLA DEL CONVERSOR:

	Salida (Q3Q2Q1Q0)	Q3*	Q2*	Q1*	Q0*
jj 0	0000	0	1	0	0
1	0001	0	0	0	1
2	0010	0	0	1	0
3	0011	0	0	1	1
4	0100	0	1	0	0
5	0101	0	0	0	0
6	0110	0	0	1	0
7	0111	0	1	1	1
8	1000	1	0	0	0
9	1001	1	0	0	1
10	1010	1	0	1	0
11	1011	1	0	1	1
12	1100	1	1	0	0
13	1101	1	1	0	1
14	1110	1	1	1	0
15	1111	1	1	1	1

. MAPAS DE KARNAUGH DEL CONVERSOR.

4. VERILOG

. BIESTABLE JK.

Creación de un módulo de un único biestable JK:

```
module JK (output reg Q, output wire NQ, input wire J, input wire K, input wire C);
not(NQ,Q);
initial
begin
    Q=0;
end

always @(posedge C)
    case ({J,K})
    2'b10: Q=1;
    2'b01: Q=0;
endcase
endmodule
```

<u>. CREACIÓN DEL MÓDULO PRINCIPAL DEL CONTADOR DE 4 BITS CON</u>BIESTABLES IK:

```
// Creacion del modulo principal del contador de 4 bits con biestables JK

27
28 module Contador4bits(output wire [3:0] Q, input wire C);

29
30 wire [3:0] nQ; // Cables correspondientes a las salidas negadas de los biestables

31
32 wire Qt0, nQt0; // Cables que almacenan la salida temporal del biestable jk0

33
34 wire Qt2, nQt2; // Cables que almacenan la salida temporal del biestable jk2

35
36
37 wire j3,j2,j1,j0,k3,k2,k1,k0; // Cables de entrada a los biestables

38
39
40 wire nq0nq2, q1nq2, nq1nq0q2, q0nq2, q1q0, nq1nq0nq3, nq0nq3q2, q0q3q2, nq1nq3, q1q3, nq3q2, q1q3nq2; // Cables in 42

41
42
42
```

. PUERTAS:

Se procede a la implementación de las puertas lógicas correspondientes a las entradas y a las salidas de los biestables:

```
42 // Implementacion de las puertas logicas correspo 44 45 46 and a1 (nq@nq2, nQt0, nQt2); and a2 (qinq2, Q[i], nQt2); or J3 (j3, nq@nq2, qinq2); 48 and J2 (j2, Q[i], Qt0); 51 and a3 (nq@nq3, nQt0, nQ[3]); and a4 (nq@nq2, nQt0, nQt2); or J1 (j1, nq@nq3, nq@nq2, q@q3q2); 56 and a6 (nqinq3nq2, nQ[i], nQ[3], nQt2); and a7 (qiq2, Q[i], Qt2); and a8 (qiq3, Q[i], Q[i], Qt2); and a8 (qiq3, Q[i], Q[i], vi); or J0 (j0, nqinq3nq2, qiq2, qiq3); 61 and a10 (q@nq2, Qt0, nQt2); and a11 (qinq2, Qt1, nQt2); and a12 (qiq0, Q[i], nQt2); and a12 (qiq0, Q[i], nQt2); and a13 (nqinq@nq3, nQ[i], nQt0, nQ[3]); or K3 (k3, nqinq@nq3, nQ[i], nQt0, nQ[3]); and a14 (qiq0, Q[i], Qt0); or K2 (k2, nqinq@nq3, qiq0); and a15 (nq@nq3q2, nQt0, nQ[3], Qt2); and a16 (q@q3q2, Qt0, Q[3], Qt2); or K1 (k1, nq@nq3q2, q@q3q2); and a17 (nqinq3, nQ[i], nQ[i], nQt2); or K0 (k0, nqinq3, qiq3nq2);
```

<u>. DECLARACIÓN DE LOS BIESTABLES :</u>

Procedemos a la implementación de los 4 biestables necesarios para la realización.

```
36

87  JK jk0 (Qt0, nQt0, j0, k0, C);

88  JK jk1 (Q[1], nQ[1], j1, k1, C);

89  JK jk2 (Qt2, nQt2, j2, k2, C);

90  JK jk3 (Q[3], nQ[3], j3, k3, C);

91
```

. CAMBIOS EN LA CIRCUITERIA:

Procedemos a los cambios necesarios en la circuitería cambiando el 0 por el 4, el 6 por el 2 y el 5 por el 0

```
93
94 //
95 // Circuiteria que cambia el 0 por el 4, el 6 por el 2 y el 5 por el 0
96
97
    and a19 (nq1nq0nq3, nQ[1], nQt0, nQ[3]);
98    and a20 (q3q2, Q[3], Qt2);
99    and a21 (q1q0q2, Q[1], Qt0, Qt2);
100    or Q2 (Q[2], nq1nq0nq3, q3q2, q1q0q2);
101
102    and a22 (q0nq2, Qt0, nQt2);
103    and a23 (q0q3, Qt0, Q[3]);
104    and a24 (q1q0, Q[1], Qt0);
105    or Q0 (Q[0], q0nq2, q0q3, q1q0);
```

<u>. MÓDULO DE PRUEBAS:</u>

```
module testContador;
  reg I, C;
  wire [3:0] Q;
  Contador4bits counter(Q,C);
  always
  begin
    #10 C=~C;
  initial
  begin
    $dumpfile("Contador arbitrario.dmp");
    $dumpvars(2, counter, Q);
    $display ("Initial 1010");
$monitor ($time, " %d", Q);
    C=0;
    #500 $finish;
  end
endmodule
```

. SALIDA EN EL TERMINAL:

Finalmente esta sería la salida en el terminal con el módulo de pruebas.

```
alvaro@alvaro-X541UJ:~/Escritorio/Trabajo_contador$ iverilog FUNCIONA.v -o fun alvaro@alvaro-X541UJ:~/Escritorio/Trabajo_contador$ ./fun VCD info: dumpfile Contador_arbitrario.dmp opened for output.
Initial 1010
                         0
                              4
                        10
                            11
                        30
                              2
                        50
                              0
                        70
                        90
                               2
                       110 10
                       130
                              3
                       150 15
                       170
                       190
                       210 11
                       230
                              2
                       250
                       270
                       290
                       310 10
                       330
                              3
                       350
                              15
                       370
                               1
                       390
                       410 11
                       430
                       450
                              0
                       470
                       490
alvaro@alvaro-X541UJ:~/Escritorio/Trabajo_contador$
```

5.GTKWAVE

<u>. GTKWAVE:</u>

6. COSTES DEL CIRCUITO

Analicemos brevemente los costes del circuito y el precio total de sus componentes:

MATERIAL	CANTIDAD EMPLEADA	PRECIO POR UNIDAD	PRECIO TOTAL	
Biestable JK	4	0,647 €	2,588€	
Puerta AND	25	0,537€	13,428€	
Puerta OR	9	0,497€	4,473€	
		TOTAL	20,489€	

JK:SN74LS112AN-Biestable,PresetyClear,SalidaComplementaria,74LS112,JK, 15 ns, 30 MHz, 8 mA AND:SN74LS08N-PuertaAND,74LS08,2Entradas,8mA,4.75Va5.25V,DIP-14

OR: SN74LS32N - Puerta OR, 74LS32, 2 Entradas, 8 mA, 4.75 V a 5.25 V, DIP-14