OSNOVE UMETNE INTELIGENCE 2022/23

planiranje z regresiranjem ciljev verjetnostno sklepanje z bayesovskimi mrežami

Pridobljeno znanje s prejšnjih predavanj

igranje iger med nasprotnikoma

- dva igralca, MIN in MAX, izmenične poteze v igralnem drevesu
- igralca vplivata na vrednost kriterijske funkcije v listih
- algoritem MINIMAX določa optimalno strategijo, če igralca igrata optimalno
- rezanje alfa-beta vrne isto zaporedje potez kot bi algoritem MINIMAX s to razliko, da ne upošteva vej, ki ne vplivajo na končno odločitev
 - alfa, beta, prenašanje vrednosti v globino, posodabljanje vrednosti navzgor
 - rezultat rezanja odvisen od vrstnega reda vozlišč, časovna zahtevnost?

planiranje

- začetno stanje, akcije, ciljno stanje, akcije imajo: predpogoje, učinke, omejitve
- jezika STRIPS, PDDL
- klasično preiskovanje prostora stanj (kombinatorična eksplozija, uporaba nekoristnih akcij)
- planiranje s sredstvi in cilji (vzvratno izpolnjujejmo predpogoje, da lahko izvedemo akcijo)
- planiranje z regresiranjem ciljev

Pregled

III. PLANIRANJE in razporejanje opravil

- predstavitev problema
- planiranje s "klasičnim" preiskovanjem prostora stanj
- planiranje s sredstvi in cilji
- planiranje z regresiranjem ciljev
- razporejanje opravil

IV. VERJETNOSTNO SKLEPANJE z bayesovskimi mrežami

- definicija
- izračun verjetnosti dogodkov
- vprašanja pri verjetnostnem sklepanju
- odvisnosti v bayesovski mreži
- neodvisnosti v bayesovski mreži
- ekvivalenca bayesovskih mrež

- rešitev za Sussmanovo anomalijo
- vzvratno preiskovanje od cilja proti začetnemu stanju (angl. *goal regression through action*)
- drugačna filozofija:
 - globalno planiranje, ker algoritem za planiranje obravnava vse cilje hkrati
 - ne obravnavamo samo akcij, ki so možne, temveč najbolj smiselne
- postopek:
 - izberemo akcijo, ki doseže čim večjo množico izbranih ciljev (upoštevamo torej celo množico ciljev)
 - izračunamo "predhodne" cilje ob uporabi te akcije (= regresiranje ciljev skozi akcijo)
 - analiziramo veljavnost množice ciljev glede na postopek regresiranja
 - analiziramo protislovja v regresirani množici ciljev
 - nadaljujemo z regresiranjem, dokler ne pridemo do ciljev, ki so izpolnjeni v začetnem stanju

postopek regresiranja ciljev

- regresirani cilji = cilji \cup predpogoji(A) add(A)
- veljati mora cilji \cap del $(A) = \emptyset$
- "stanja" pri preiskovanju so množice ciljev
- **ciljni pogoj:** <u>regresirani cilji</u> ⊆ <u>cilji</u> v začetnem stanju
- uporabimo znane preiskovalne algoritme (neinformirani / informirani algoritmi; A*, hevristika?)

v primeru iz sveta kock velja:

```
stanje: [on(c,a), on(a,1), on(b,3), clear(c), clear(2), clear(b), clear(4)]
cilj: [on(a,b),on(b,c)]
```

rešitev z regresiranjem ciljev najde optimalno rešitev

```
move(c,a,2)
move(b,3,c)
move(a,1,b) %plan zaključen, vsi cilji izpolnjeni
```

vaja regresiranja:

```
Regresiraj cilja C = \{on(a, b), on(b, c)\} skozi akcijo move(a,2,b).
```

```
Regresirani cilji = C \cup predpogoji(A) - add(A)
= \{on(a,b), on(b,c)\} \cup \{clear(a), clear(b), on(a,2)\} - \{on(a,b), clear(2)\} =
= \{on(b,c), clear(a), clear(b), on(a,2)\}
```

```
Pogoj: \{on(a,b), on(b,c)\} \cap \{on(a,2), clear(b)\} = \emptyset
```


- primer: roboti na pravokotni mreži
- začetno stanje: [at(a,1), at(b,2), at(c,3), clear(4), clear(5), clear(6)]
- ciljno stanje: [at(a,3)]
- akcija:

move(Robot,From,To)

predpogoj: [at(Robot,From), clear(To)]

implicitne omejitve: [robot(Robot), adjacent(From,To)]

add: [at(R,To), clear(From)] del: [at(Robot,From),clear(To)]

plan: move(b,2,5), move(a,1,2), move(c,3,6), move(a,2,3)

Pregled

III. PLANIRANJE in razporejanje opravil

- predstavitev problema
- planiranje s "klasičnim" preiskovanjem prostora stanj
- planiranje s sredstvi in cilji
- planiranje z regresiranjem ciljev
- razporejanje opravil

IV. VERJETNOSTNO SKLEPANJE z bayesovskimi mrežami

- definicija
- izračun verjetnosti dogodkov
- vprašanja pri verjetnostnem sklepanju
- odvisnosti v bayesovski mreži
- neodvisnosti v bayesovski mreži
- ekvivalenca bayesovskih mrež

Planiranje in razporejanje opravil

- do sedaj (klasično planiranje): kaj narediti in v kakšnem vrstnem redu
- pristopi:
 - planiranje kot preiskovanje prostora stanj
 - planiranje s sredstvi in cilji
 - planiranje z regresiranjem ciljev skozi akcije
- v realnosti imamo številne dodatne omejitve:
 - <u>časovne omejitve</u> (začetki aktivnosti, trajanja aktivnosti, roki zaključkov)
 - <u>resursi</u> (omejeno število procesorjev, kadra, bencina, denarja, surovin, ...)

- delno urejen plan: vrstni red podmnožice aktivnosti je lahko urejen
- razširimo lahko notacijo (PDDL):
 - Akcija1 ≺ Akcija2: pomeni, da se mora Akcija1 zgoditi pred Akcijo2
 - Resources podaja števila razpoložljivih resursov
 - DURATION opredeljuje trajanje posamezne akcije
 - CONSUME opredeljuje (trajno) porabo določene količine resursov
 - USE opredeljuje (začasno) zasedenost količine resursov med izvajanjem akcije

- za začetek: samo časovne omejitve
- metoda kritične poti
 - kritična pot: pot, ki je najdaljša in določa dolžino trajanja celotnega plana (krajšanje vzporednih poti ne vpliva na trajanje plana)
 - vsaki akciji priredimo par [ES, LS]:
 - **ES** najbolj zgodnji možen začetek (angl. *Earliest Start*)
 - **LS** najbolj pozen možen začetek (angl. *Latest Start*)


```
ES(Start) = 0

ES(B) = \max_{A < B} [ES(A) + Duration(A)]

LS(Finish) = ES(Finish)

LS(A) = \min_{A < B} [LS(B) - Duration(A)]

rezerva(slack) = LS - ES
```


• časovna zahtevnost algoritma: O(Nb), N – število akcij, b – faktor vejanja

- dodatno: upoštevanje tudi resursov
- uvede omejitev, da se aktivnosti, ki potrebujeta iste resurse, ne smeta prekrivati

- sprememba časovne zahtevnosti: $O(Nb) \rightarrow NP$ -težek problem (!)
- primer izziv iz leta 1963 nerešen 23 let:
 - resursi: 10 strojev, 10 nalog, 100 akcij
 - preizkušene metode: simulirano ohlajanje, tabu search, razveji in omeji, ...
- primerna hevristika: algoritem najmanjše časovne rezerve (angl. minimum slack algorithm)
 - na vsaki iteraciji dodeli najbolj zgodnji možen začetek akciji, ki ima izpolnjene vse predhodnike in ima najmanj časovne rezerve,
 - nato posodobi [ES in LS] za celotni graf in ponovi.

- Kakšen je rezultat simulacije algoritma najmanjše časovne rezerve na obravnavanem problemu?
- Ali je rešitev enaka optimalni? Zakaj?
- Kako upoštevati omejitve v zaporedju akcij pri pristopih za planiranje?
- Kako upoštevati omejitve v omejenem številu resursov?

Primer izpitne naloge

• 3. izpit, 2. 9. 2019

2. NALOGA (10t):

Podan je naslednji delno urejen plan s trajanji akcij, njihovimi odvisnostmi in uporabo resursov:

```
Jobs (Zajtrk<Kosilo<Vecerja, Kava<Caj)
Resources(Salica(1), Lonec(1))
Action (Zajtrk, DURATION:10, USE:Salica(1))
Action (Kosilo, DURATION:15)
Action (Vecerja, DURATION:10, USE:Lonec(1))
Action (Kava, DURATION:30, USE:Salica(1))
Action (Caj, DURATION:15, USE:Lonec(1))
```

- a) (7t) Na zgornjem planu simuliraj algoritem najmanjše časovne rezerve (angl. minimum slack algorithm) in z njim določi plan izvajanja (grafično).
- b) (3t) Ali je algoritem v točki a) našel optimalno rešitev? Če ne, predlagaj boljšo (na pamet, brez simulacije algoritma).

Pregled

III. PLANIRANJE in razporejanje opravil

- predstavitev problema
- planiranje s "klasičnim" preiskovanjem prostora stanj
- planiranje s sredstvi in cilji
- planiranje z regresiranjem ciljev
- razporejanje opravil

IV. VERJETNOSTNO SKLEPANJE z bayesovskimi mrežami

- definicija
- izračun verjetnosti dogodkov
- vprašanja pri verjetnostnem sklepanju
- odvisnosti v bayesovski mreži
- neodvisnosti v bayesovski mreži
- ekvivalenca bayesovskih mrež

IV. SKLEPANJE

Bayesovske mreže

- so verjetnostni model, s katerim predstavimo odvisnosti med slučajnimi spremenljivkami
- pristop za **obravnavo negotovosti** v bazah znanja, ki je matematično dobro utemeljen v verjetnosti
- model je predstavljen z usmerjenim acikličnim grafom:
 - vozlišča: slučajne spremenljivke (dejstva, hipoteze),
 - povezave: odvisnosti med spremenljivkami (vpliv starša na naslednika)
- primeri uporabe:
 - splošno: za predstavitev verjetnostnega znanja in verjetnostno sklepanje
 - medicina: povezave med boleznijo in simptomi (diagnostika), napovedovanje izida operacije
 - ekspertni sistemi: ocenjevanje kvalitete vode, ...
 - sklepanje: kako verjetno so določene trditve, če vemo, da so druge trditve resnične?

Primer iz medicine

Bayesovske mreže

- stanje sveta povzamemo z vektorjem (logičnih) spremenljivk
- inteligentni agent (program) sklepa na verjetnost resničnosti določene spremenljivke
- upoštevamo lahko, da so določene spremenljivke med seboj neodvisne, kar predstavimo z bayesovsko mrežo, ki odraža te neodvisnosti (nepovezana vozlišča niso odvisna)
- primer:
 - senzor se sproži ob vlomu v hišo
 - včasih lahko tudi udar strele nehoteno sproži senzor
 - senzor ima nalogo, da sproži alarm in izvede opozorilni telefonski klic
- odvisnosti, ki izhajajo iz mreže:
 - senzor je odvisen od vloma in strele
 - alarm je odvisen od senzorja
 - klic je odvisen od senzorja

Bayesovske mreže

- z zapisom P(X) okrajšamo P(X = true), z zapisom P(XY) pa konjunkcijo
- za opis stanja sveta, ki ima n spremenljivk, bi morali poznati **popolno verjetnostno porazdelitev** $(2^n 1 \text{ podatkov} \text{možnih stanj vseh logičnih spremenljivk})$
 - spremenljivke: V, St, Se, A, K
 - popolna verjetnostna porazdelitev:

$$P(V St Se A K) = ...$$

$$P(\sim V St Se A K) = ...$$

$$P(V \sim St Se A K) = ...$$

$$P(\sim V \sim St Se A K) = ...$$

- potrebujemo $2^5 1 = 31$ verjetnosti
- nepraktično ali nemogoče za veliko število spremenljivk

• verjetnost pojubnega dogodka (npr. P(VK)) izračunamo z vsoto vseh kombinacij vrednosti spremenljivk St, Se, A (pozitivna ali negirana) pri vrednostih V = true in K = true.

Pogojne verjetnosti

ker bayesovska mreža opredeljuje odvisnosti spremenljivk, lahko opredelimo problem samo s
pogojnimi verjetnostmi:

```
P(vlom) = 0,001

P(strela) = 0,02

P(senzor | vlom \land strela) = 0,9

P(senzor | vlom \land \sim strela) = 0,9

P(senzor | \sim vlom \land strela) = 0,1

P(senzor | \sim vlom \land \sim strela) = 0,001

P(alarm | senzor) = 0,95

P(alarm | \sim senzor) = 0,001

P(klic | senzor) = 0,95

P(klic | \sim senzor) = 0
```


- podamo torej 10 podatkov namesto $2^5 1 = 31$
- za spremenljivke, ki niso med seboj odvisne, ne potrebujemo vseh kombinacij verjetnosti:
 - če sta X in Y odvisna, v splošnem velja $P(XY) = P(X) \cdot P(Y|X)$ (potrebujemo P(Y|X))
 - če sta X in Y neodvisna, velja: $P(XY) = P(X) \cdot P(Y)$ (P(Y|X) ne potrebujemo, ker zaradi neodvisnosti velja P(Y|X) = P(Y))

Pogojne verjetnosti

pogojne verjetnosti lahko predstavimo tudi s tabelami pogojnih verjetnosti

P(vlom)	
0,001	

P(strela) 0,02

vlom	strela	P(senzor)
true	true	0,9
true	false	0,9
false	true	0,1
false	false	0,001

senzor	P(alarm)
true	0,95
false	0,001

senzor	P(klic)
true	0,95
false	0

 verjetnostni značaj modeliranja z bayesovskimi mrežami: podane verjetnosti nakazujejo, da obstajajo za X tudi drugi, neopredeljeni razlogi, ki niso zajeti v predstavitvi problema s podano mrežo (pri modeliranju se omejimo na relevantne vplivne dejavnike = predpostavka zaprtega sveta)

Primer s podanimi verjetnostmi

Izračun verjetnosti dogodka

- s pogojnimi verjetnostmi preprosteje izračunamo verjetnost dogodka iz popolne verjetnostne porazdelitve
- primer: kakšna je verjetnost $P(V \sim St \ Se \ A \ K)$? $P(V \sim St \ Se \ A \ K) = P(V) \cdot P(\sim St \ Se \ A \ K|V) = P(V) \cdot P(\sim St \ |V) \cdot P(Se|V \sim St) \cdot P(A|V \sim St \ Se) \cdot P(K|V \sim St \ Se \ A)$
- zaradi neodvisnosti, podanih v mreži, velja:

$$P(\sim St|V) = P(\sim St)$$

$$P(A|V \sim St Se) = P(A|Se)$$

$$P(K|V \sim St Se A) = P(K|Se)$$

• torej:

$$P(V \sim St \ Se \ A \ K) = P(V) \cdot P(\sim St \ Se \ A \ K|V) =$$

= $P(V) \cdot P(\sim St) \cdot P(Se|V \sim St) \cdot P(A|Se) \cdot P(K|Se)$
= $0,001 \cdot 0,98 \cdot 0,9 \cdot 0,95 \cdot 0,9 = 0,00075$

v splošnem velja:

$$P(X_1X_2 ... X_n) = \prod_{i=1}^n P(X_i|star\check{s}i(X_i))$$

