Measures of dispersion

Dispersion is all about the amount of the spread or scatter in a distribution. Measures of dispersion fall into two categories:

Measures of absolute dispersion

- (i) Range
- Quartile deviation (ii)
- (iii) Mean deviation
- Standard deviation and variance (iv)

Measures of relative dispersion

- (i) Coefficient of quartile deviation
- (ii) Coefficient of mean deviation
- (iii) Coefficient of variation

Range

It is simply the difference between the largest and the smallest values in a distribution.

Quartile Deviation

$$QD = \frac{Q3 - Q1}{2} = \frac{68.07 - 41.2}{2} = 13.435$$

Mean Deviation

$$MD = \frac{\sum |X - \overline{X}|}{n} forrawdata$$

$$\sum f |X - \overline{X}|$$

$$MD = \frac{\sum f \mid X - \overline{X} \mid}{n}$$
 for frequency table

Example

Scores	X	f	$x - \overline{x}$	$ \mathbf{x} - \mathbf{x} $	$f x-\overline{x} $	fx				
40-44	42	2	-15	15	30	84				
45-49	47	5	-10	10	50	235				
50-54	52	8	-5	5	40	416				
55-59	57	12	0	0	0	684				
60-64	62	7	5	5	35	434				
65-69	67	4	10	10	40	268				
70-74	72	<u>2</u>	15	15	<u>30</u>	<u>144</u>				
		40			225	2265				
$\bar{x} = 57, MD = \frac{225}{40} = 5.63$										

Variance and Standard Deviation

$$Sample Variance(S^{2}) = \frac{\sum (x - \overline{x})^{2}}{n - 1} for raw data$$

$$Sample Variance(S^{2}) = \frac{\sum f(x - \overline{x})^{2}}{n - 1} for frequency data$$

$$Sample S \tan dard Deviation(S) = \sqrt{\frac{\sum (x - \overline{x})^{2}}{n - 1}} for raw data$$

$$Sample S \tan dard Deviation(S) = \sqrt{\frac{\sum f(x - \overline{x})^{2}}{n - 1}} for frequency data$$

$$PopulationVariance(\sigma^{2}) = \frac{\sum (x-\mu)^{2}}{n} for raw data$$

$$PopulationVariance(\sigma^{2}) = \frac{\sum f(x-\mu)^{2}}{n} for frequency data$$

$$StdDev(\sigma) = \sqrt{\frac{\sum (x - \mu)^2}{n}} forrawdata$$

$$StdDev(\sigma) = \sqrt{\frac{\sum f(x - \mu)^2}{n}} for frequency data$$

Short cut method

$$\sigma^{2} = \left[\frac{\sum fu^{2} - \frac{\left(\sum fu\right)^{2}}{n}}{n} \right] C^{2}$$

$$\sigma = \sqrt{\sigma^{2}}$$

$$S^{2} = \left[\frac{\sum fu^{2} - \frac{\left(\sum fu\right)^{2}}{n}}{n-1} \right] C^{2}$$

$$S = \sqrt{S^{2}}$$

Note – For large sample sizes ($n \ge 30$) the population standard deviation formula may be used to obtain standard deviation for sample. In such case, we use the sample mean to replace the population mean.

Example

•						
Class	f	X	u	u^2	fu	fu^2
1 – 10	6	5.5	-3	9	-18	54
11 – 20	6	15.5	-2	4	-12	24
21 – 30	12	25.5	-1	1	-12	12
31 – 40	11	35.5	0	0	0	0
41 – 50	10	45.5	1	1	10	10
51 – 60	<u>5</u>	55.5	2	4	<u>10</u>	<u>20</u>
	50				-22	120
[₁₂₀₋	$(-22)^2$	7				

$$\sigma^2 = \left[\frac{120 - \frac{(-2)^2}{50}}{50} \right] x 10^2 = 220.64$$

$$\sigma = \sqrt{\sigma^2} = \sqrt{220.64} = 14.85$$