Reg no:721921243047

Name: Hariprasad P

Introduction:

- ☐ Certainly, using time series analysis and machine learning models to predict future energy consumption patterns is a promising approach.
- ☐ Here's how you can explore these techniques for energy consumption prediction.

Objective

sumption

	Explore innovative techniques such as time series analysis and machine learning models to predict future energy consumption patterns
	In PHASE 1 we discussed about the problem definition and
	their application used in artificial intelligence.
Phas	e 2:
	Consider Certainly, using time series analysis and machine
	learning models to predict future energy consumption patterns is a promising approach.
	Here's how you can explore these techniques for energy
	consumption predictionHere is the following contents.
	Here are some key components and methods commonly
	used in such solutions:
1.Data	a Collection:
	Gather historical energy consumption data.
	This data should include information about the time and
	date of measurements, energy usage, and potentially other relevant factors like temperature, holidays, or special events.
	Dataset link is below here:
	https://www.kaggle.com/datasets/robikscube/hourly-energy-co

2. Data Preprocessing:

- ☐ Data preprocessing is an important step before applying machine learning methods for energy or load prediction.
- ☐ It improves accuracy and reliability.
- ☐ There are four types of data processing
 - 1. Data cleaning
 - 2. Data integration
 - 3. Data transformation
 - 4. Data reduction

- 3. Exploratory Data Analysis (EDA):
 - ☐ Perform EDA to gain insights into the data.
 - ☐ Learn everything you need to know about exploratory data analysis, a method used to analyze and summarize data sets.
 - ☐ Exploratory data analysis (EDA) is used by data scientists to analyze and investigate data sets and summarize their main characteristics, often employing data visualization methods.
 - ☐ Visualize trends, seasonality, and correlations between energy consumption and other variables.

4. Time Series Analysis:

- ☐ It comprises of ordered sequence of data at equally spaced interval.
- ☐ In particular, a time series allows one to see what factors influence certain variables from period to period.
 - 1. Decomposition:

Decompose the time series data into its trend, seasonal, and residual components to understand underlying patterns.

2. Smoothing:

Apply smoothing techniques like moving averages or exponential smoothing to reduce noise in the data.

Time Series Analysis

5. Feature Engineering:

- ☐ Create additional features that could impact energy consumption, such as holidays, weather data, day of the week, and time of day.
- ☐ This includes the use of electricity, gas, diesel, oil, and biomass. The concept of energy consumption is directly related to energy efficiency since higher consumption results in lower energy efficiency.
- ☐ TEE includes three core components
- 1.Resting metabolic rate, or resting energy expenditure (REE)
 - 2. The thermic effect of food (TEF)
 - 3. Diet-induced thermogenesis DIT)

- 6. Machine Learning Models:
- A) Regression Models:
 - ☐ Utilize linear regression, decision trees, or random forests to build models that predict energy consumption based on relevant features.
- B) Time Series Forecasting:

☐ Implement specialized time series forecasting models like ARIMA, Prophet, or LSTM (Long Short-Term Memory) neural networks.

C)Ensemble Methods:

☐ Combine multiple models to improve prediction accuracy.

7. Model Evaluation:

- ☐ Energy consumption modeling seeks to determine energy requirements as a function of input parameters.
- ☐ Models may be used for determining the requirements of energy supply and the consumer consumption variations while an upgrade or addition of technology exist.
- ☐ Use appropriate metrics such as
 - I. Mean Absolute Error (MAE)
 - II. Mean Squared Error (MSE)
 - III. Root Mean Squared Error (RMSE)

8. Hyperparameter Tuning:

- ☐ Optimize model hyperparameters to enhance predictive accuracy.
- ☐ Hyperparameter tuning allows data scientists to tweak model performance for optimal results.

9. Cross-Validation:

- ☐ Employ cross-validation techniques to assess the model's generalization performance.
- ☐ Cross-validation is a statistical method used to estimate the performance (or accuracy) of machine learning models.

☐ It is used to protect against overfitting in a predictive model, particularly in a case where the amount of data may be limited.

10. Monitoring and Updating:

☐ Continuously monitor the model's performance and update it as needed with new data.

11.Deployment:

☐ Once you have a reliable model, deploy it in a real-world environment to make real-time predictions.

12.Interpretability:
☐ Understand the factors driving energy consumption by examining feature importance and model explanations.
13.Integration:
☐ Integrate the energy consumption prediction model into
your energy management system to optimize resource allocation and reduce costs.

Source code:

Int[1]:

Import numpy as np Import pandas as pd Import matplotlib.pyplot as plt Import matplotlib.dates as mdates %matplotlib inline Import seaborn as sns **Import warnings** Warnings.filterwarnings("ignore") From pandas.plotting import lag plot From pylab import rcParams From statsmodels.tsa.seasonal import seasonal_decompose From pandas import DataFrame From pandas import concat

Int[2]:

Df=pd.read_csv("../input/hourly-energy-consumptio n/AEP_hourly.csv",index_col='Datetime',parse_date s=True)

Df.head()

Out[2]:

	AEP_MW
Datetime	
2004-12-31 01:00:00	13478.0
2004-12-31 02:00:00	12865.0
2004-12-31 03:00:00	12577.0
2004-12-31 04:00:00	12517.0
2004-12-31 05:00:00	12670.0

Int[3]:

df.sort_values(by='Datetime', inplace=True)

print(df)

Int[4]:

df.shape

Out[4]:

```
(121273, 1)
Int[5]:
df.info()
Out[5]:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 121273 entries, 2004-10-01 01:00:00
to 2018-08-03 00:00:00
Data columns (total 1 columns):
# Column Non-Null Count Dtype
0 AEP_MW 121273 non-null float64
dtypes: float64(1)
memory usage: 1.9 MB
Int[6]:
df.describe()
Out[6]:
                         AEP_MW
```

count	121273.000000
mean	15499.513717
std	2591.399065
min	9581.000000
25%	13630.000000
50%	15310.000000
75%	17200.000000
100%	25695.000000

Int[7]:

df.index = pd.to_datetime(df.index)

Int[8]:

```
# Extract all Data Like Year MOnth Day Time etc
df["Month"] = df.index.month
df["Year"] = df.index.year
df["Date"] = df.index.date
df["Hour"] = df.index.hour
df["Week"] = df.index.week
df["Day"] = df.index.day_name()
```

df.head()

Out[8]:

	AEP _M W	Mon th	Year	Date	Hour	Wee k	Day
Date time							
2004 -10-0 1 01:0 0:00	1237 9.0	10	2004	2004 -10-0 1 1	1	4	Frid ay
2004 -10-0 1 02:0 0:00	1193 5.0	10	2004	2004 -10-0 1 1	2	4	Frid ay
2004 -10-0 1 03:0 0:00	1169 2.0	10	2004	2004 -10-0 1 1	3	4	Frid ay

2004 -10-0 1 04:0 0:00	1159 7.0	10	2004	2004 -10-0 1 1	4	4	Frid ay
2004 -10-0 1 05:0 0:00	05:0 0:00	10	2004	2004 -10-0 1 1	5	4	Frid ay

Int[9]:

```
df.plot(title="PJME Energy use in MegaWatts",
    figsize=(20, 8),
    style=".",
    color=sns.color_palette()[0])
```

plt.show()

Out[9]:

Int[10]:

from pandas.plotting import autocorrelation_plot autocorrelation_plot(df['AEP_MW']) plt.show()

Out[10]:

Int[11]:

```
#Train Arima Model

train_arima = train_data['AEP_MW']

test_arima = test_data['AEP_MW']
```

```
history = [x for x in train_arima]
y = test_arima
# make first prediction
predictions = list()
model = sm.tsa.arima.ARIMA(history,
order=(5,1,0))
model_fit = model.fit()
yhat = model_fit.forecast()[0]
```

```
predictions.append(yhat)
history.append(y[0])
# rolling forecasts
for i in range(1, len(y)):
  # predict
  model = sm.tsa.arima.ARIMA(history,
order=(5,1,0))
  model fit = model.fit()
  yhat = model fit.forecast()[0]
  # invert transformed prediction
  predictions.append(yhat)
  # observation
  obs = y[i]
  history.append(obs)
plt.figure(figsize=(14,8))
plt.plot(df.index, df['AEP MW'], color='green',
label = 'Train Energy AEP MW')
plt.plot(test_data.index, y, color = 'red', label = 'Real
Energy AEP MW')
plt.plot(test data.index, predictions, color = 'blue',
label = 'Predicted Energy AEP MW')
```

```
plt.legend()
plt.grid(True)
plt.show()
plt.figure(figsize=(14,8))
plt.plot(df.index[-600:], df['AEP_MW'].tail(600),
color='green', label = 'Train Energy AEP MW')
plt.plot(test data.index, y, color = 'red', label = 'Real
Energy AEP MW')
plt.plot(test data.index, predictions, color = 'blue',
label = 'Predicted Energy AEP MW')
plt.legend()
plt.grid(True)
plt.show()
print('MSE: '+str(mean squared error(y,
predictions)))
print('MAE: '+str(mean absolute error(y,
predictions)))
print('RMSE: '+str(sqrt(mean_squared_error(y,
predictions))))
Out[11]:
```


Conclusion:

- Remember that the accuracy of your predictions will depend on the quality and quantity of data, as well as the choice of the most appropriate modeling techniques.
- Regularly updating the model with new data is crucial to ensure it remains accurate as consumption patterns evolve.