Week 3 – Data Link Layer

Assignment Project Exam Help

https://powcoder.com COMP90007 Internet Technologies Add WeChat powcoder

Lecturer: Ling Luo

Semester 2, 2021

Flow Control

- Principles to control when sender can send next frame
 - Feedbackibased flowecontrol (Hispally used in Data Link layer)

 https://powcoder.com

 Rate based flow control

Add WeChat powcoder

A Very Simple Protocol

Acknowledged Transmission

 Case: fast sender vs. slow receiver, the receiver's buffer space constrained

Requires acknowledgement Help

Noisy Channel Protocol

- Case: frames can be lost either entirely or partially
- Requires timeout function to determine arrival or non-arrival of complete frames
- Requires distinction between frames already sent/received and thouse being de-transmitted

Stop and Wait Protocol

- ARQ (Automatic Repeat reQuest)
 - Ack and Timeout

se Assignment Project Exam Help

Link Utilisation in Stop and Wait Protocols

Link Utilisation (U) measures the efficiency of communication.

T_f = Transmission delay, time needed to transmit a frame of length L;

 T_p = Propagation delay;

T_a= Time for transmitting an Ack, and we can assume T_a= 0.

Assignment Project Exam Help

 $T_f = T_f + 2T_p$

 $U = \text{(Time of transmitting a frame)/(Total time for the transfer)} = T_f / T_t \\ \text{https://powcoder.com}$

Given bit rate B and $T_f = L/B$, we have $U = T_f / (T_f + 2T_p) = (L/B) / (L/B + 2T_p) = L/(L+ 2T_p B)$.

Link Utilisation in Stop and Wait Protocols

For a link with B=1 Mbps, T_p =50ms and frame size 10Kb, what is the link utilisation?

$$U = L/(L + 2T_p B)$$

$$Assignment(0) \frac{1}{2} \frac$$

Sliding Window Protocols

- Sending window: Sender maintains a set of sequence numbers corresponding to frames allowed to send
- Receiving Window: Receiver Fxam Help a set of sequence numbers/powesponding to frames allowed to accept Add WeChat powcoder
 What is the window size of Stop and Wait
- What is the window size of Stop and Wait protocol?

Sliding Window Protocols

Link Utilisation:

Go-Back-N

 Senders don't need to wait for acknowledgement for each frame before sending next frame

Receiver window size =1, Sender window size is N

 Long transmission time needs to be considered when programming timeouts e.g., low bandwidth or long distance

Selective Repeat

- Receiver accepts frames anywhere in receive window
 - NAK (negative ack) triggers the retransmission of a missing frame before a timeout
 - Cumulativexack; indicates highest in-prograftame 1p

Go-Back-N vs Selective Repeat

- Go-Back-N: receiver discards all subsequent frames from error point, sending no acknowledgement, until receiving the next frame in sequence
- Selective Repetit Projetter Spood Ithalmes after an error point, and relies on sender to resend oldest unacknowledged Itames Powcoder.com
- Trade-off between efficient was pot bandwidth and data link layer buffer space

Examples of Data Link Protocols

- Point-to-Point Protocol (PPP)
- Packet over SONET
- PPP overAdopsiment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Point-to-Point Protocol

- PPP is a standard protocol for delivering packets across links
 - Framing uses a flag (0x7E) and byte stuffing Assignment Project Exam Help
 Default is unnumbered mode: connectionless
 - Default is unnumbered mode: connectionless unacknowledgessepvicecoder.com
 - Errors are detected with a checksum Add WeChat powcoder

Packet over SONET

- Packet over SONET: carry IP packets over SONET optical fibre links
- Uses PPR (Point-to-Point Protocol) for framing

ADSL

- Widely used for broadband Internet over local loops
 - ADSL runs from modem (customer) to DSLAM (ISP)
 Assignment Project Exam Help
 IP packets are sent over PPP and AAL5, ATM

ADSL

- PPP data is sent in ATM cells over ADSL
- ATM uses short, fixed-size cells (53 bytes); each cell has a virtual circuit identifier. Help
 - 1) PPP frame is converted to an AAL5 frame (PPPoA)
 - 2) AAL5 frame is converted to A Fine cells

Structure of AAL5 frame

It will be divided into 48-byte pieces, each of which goes into one ATM cell with 5-byte header