

Applications

Office automation equipment

Printers, facsimiles, typewriters, photocopiers, FDD head drives, CD-ROM pickup drives, scanners, etc.

Audio-visual equipment

Video cameras, digital cameras, etc.

Measuring instruments

Automotive odometers, various integrating meters and counters

Game equipment

Pachinko machines, etc.

Structure and operation

Stepper motors convert electric pulses into incremental mechanical motions. FDK's stepper motors have a claw-pole yoke structure with a cylindrical permanent magnet rotor, as illustrated below. These motors rotate when a rotating magnetic field is generated and when the rotor magnet is synchronized with the rotating magnetic field.

Specifically, a rotating field is generated by applying alternating current to the solenoid coils of two stators, which are sandwiched between yokes. These yokes have the same number of teeth as the poles of the rotor magnet. The stators are positioned so that their electric phase angles are 90 degrees apart.

■Code names

Rotor magnets

Rotors are the most important component of stepper motors, and FDK uses its original magnets in rotors. The

following types of FDK magnets are used in rotors to match each of the diverse stepper motor applications.

Rotor magnets		B29 Ferrite plastic magnet Pole-oriented anisotropic	B51 Ferrite Anisotropic	N51 Rare earth
Residual induction	Br (Gauss)	_		6500~6900
Coercive force	bHc (0e)		<u> </u>	4400~5000
	iHc (0e)	——————————————————————————————————————	<u> </u>	7800~8500
Max. energy product	(BH) max. (MG0e)		-	8.2~9.0
Density	ρ(g/cm³)	3.7	4.7~5.0	5.7~5.9

■Types and specifications

		No. of ste	eps (step	angle)		Аррі	icable rotor	grade		Mote	or dimens	sions	·
Time	20	24	48	96	100	B29	B51	N51	Weight (g)		(mm)	-	Pin terminal
Туре	(18°)	(15°)	(7.5°)	(3.75°)	(3.6°)		551	1431		Outer diameter	Height	Shaft diameter	iomina
SM8	0					<u>. </u>		•		φ8	9.0	<i>φ</i> 1	•
SM10	•					-		•		φ10	9.7	φ1.5	•
SM15	•							•	12	φ15	10.0	φ1.5	•
SMJ20						•		•	25	φ20	15.4	φ1.5	•
SMP20	•					•		•	28	φ20	18.3	φ1.5	•
SMR30	•					•		•	28	φ30	18.3	φ1.5	
SMB35			•			•		•	80	φ35	14.7	φ2	
SMJ35			•			•		•	80	φ35	14.7	φ2	
SMM35			•			•		•	80	φ35	14.7	φ2	<u> </u>
SMB40				•	•			•	110	φ42	14.4	φ3	
SMJ40			•			•			150	φ42	21.8	<i>φ</i> 3	
SMP42/ SMH42			•	•		•		•	120	φ42	17.6	φ3	
SMP55			•	į		•	•		320	φ55	28.0	φ4	
SMP60			•			•				φ60	39.5	φ4	•
SMG25	Output	axis of ge	ared mot	or : 3.75°/	42			•		φ25	19.0	φ5	•

Note: * "External dimensions" refer to the three measurements shown in the lefthand drawing.

* White circles indicate models under development.

■Shapes and dimensions

These drawings are full-scale. Please see page 8 for shaft length " ℓ ".

Unit: mm

Cutput characteristics

The characteristics of stepper motors widely vary according to such factors as coil conditions, rotor grades, and drive modes. The graphs on this and the next pages indicate the pull-in and pull-out characteristics of only a few

models operated under certain conditions. You are asked to use these data merely as reference for estimating the operational range of some stepper motors.

■Standard flanges

1. Flange shapes

The standard flange shapes of FDK stepper motors are divided into round aperture types and screw types. These standard shapes are intended to shorten the delivery

period and reduce the metal model expenses and other initial costs to customers. Special-shape flanges are available on a customized-design basis.

Unit: mm

Type name	Flange type	Fixing screw	d	s	P	L	D	R
SM15	1	M2	2.2		20 ±0.1	24.5	15	2.25
SMJ20	1	M2	2.2	_	25 ±0.15	29.5	20	2
SMP20	1	M2	2.2	_	25 ±0.15	29.5	20	2
SMR30	1	M2	2.2		25 ±0.15	29.5	20	2
SMB35 SMM35	1	МЗ	3.2	_	42 ±0.2	50	35	4
SMJ35	2	МЗ	_	мз	42 ±0.2	50	35	4
SMB40 SMJ40	†	МЗ	3.5		49.5±0.2	57.7	42	2
SMP42 SMH42	2	МЗ		МЗ	49.5±0.2	57.7	42	2
SMP55	1	M4	4.5		66.7±0.25	79.3	52	6.3

2. Flange angle

■Shaft length

The shaft length is measured from the outer flange surface, and is determined through consultation between the customer and our engineers.

Lead wire length

The lead wire length is measured from the outer circumference of the stepper motor to the near-end of the connector (or to the end of the core wire of the lead wire when there is no connector). The normal tolerance is ±10 mm.

Lead wires

FDK also provides standard lead wires with regard to wire color, thickness, stepper motor rotational directions, and other aspects. Examples are shown below.

1. Standard colors and rotational directions (in two-phase excitation)

①Standard Type 1 ("Clockwise" or "counterclockwise" rotation is as seen from the shaft side.)

Unipolar Mode

Bipolar Mode

	CW					
:	-	CC	W			
Red	+	+	+	+		
Red	+	+	+	+		
Black	1	_				
Brown		:	_			
Yellow	_			_		
Orange		_	_			

	CW					
	CCW					
Black	1	_	+	+		
Brown	+	+		ı		
Yellow	1	+	+	1		
Orange	+	1	_	+		

②Standard Type 2 ("Clockwise" or "counterclockwise" rotation is as seen from the shaft side.)

Unipolar Mode

Bipolar Mode

•		CW					
	•	CC	W				
Blue	1	1	+	+			
Yellow	+	+	1	1			
Red	ı	+	+	1			
White	+	1	1	+			

2. Standard lead wires

●: standard ○: semi-standard

				UL stan	dard wires	·	<u> </u>	
T	: 		Wire d	ameter				
Туре	UL1007	UL1061	UL1685	UL3265	UL1430	UL1571	AWG 28 equivalent	AWG 26 equivalent
SMJ20		0	0		<u> </u>	•	•	
SMP20		0	0					<u> </u>
SMR30		0	0					<u>, </u>
SMM35	•	0	0			0		<u> </u>
SMB35	•	0	0			0		
SMB40	•			0	0	0		0
SMJ40	•			1 0		0		
SMP42	0		<u> </u>		0			
SMP55	•		<u>.</u>	0			<u> </u>	
SMJ35	•	· · · · · · · · · · · · · · · · · · ·	 .	0	0	0		
SMH42	0			0	<u> </u>			

3. UL electric wire standards

Style number	Rate	ed	insulation		
	Temperature	Voltage	Materials	Min. thickness (mm)	Remarks
UL1571	80°C	30V	PVC, cross-linked PVC	0.05~2.54	· · · · · · · · · · · · · · · · · · ·
UL1061	80°C	300V	Semi-hard PVC	0.229	CSA AWM
UL1685	105°C	30V	Cross-linked PVC	0.05~2,54	<u> </u>
UL1007	80°C	300V	Thermo-resistant PVC	0.381	CSA TR-64(90°C)
UL1430	105°C	300V	Cross-linked PVC	0.4	CSA REW
UL3265	125℃	150V	Cross-linked PE	0.254	CSA AWM

■When ordering stepper motors

How to place orders

When ordering our stepper motors, please provide the following information so we can recommend the most suitable models.

1) Model	SM	·				Rotor material	Specify If any: [· · · · · · · · · · · · · · · · · · ·
2) Voltage		DC[····] V		r	1stone / var.
4) Excitation		_				3) Number of steps	1]steps / rev.
 		z-prias	·	phase • 1/2 step		5) Drive mode	Unipolar · Bipola	r
6) Winding	resistance	[] 	Ω/phase (at	25℃) 		
7) Current		[<u> </u>	mA/phase I	MAX. (at	pps)
8) Holding	torque	[]	g-cm Mil	N. (2-phase • 1-phase)		
9) Dynami	ctorque	F	PULL-	— (OUT · IN)	[] g-c	m MIN. (at	pps)
		F	PULL-	- (OUT · IN)	[] g-c	m MIN. (at	pps)
		F	PULL-	(OUT • IN)	<u> </u>		m MIN. (at	pps)
10) Drive o	ircuit	Consta	ant vo	ltage/Chopper (Plea	se attach ad	ditional information mate	erial on chopper cu	rrent, electronic chips, etc.)
11) External	dimensions	·	 .	<u> </u>			·····	Round hole ϕ
-					()		Tapped hole M
— Pinio	n gear			()	()		() .	. Tepped noie: 141
Needed/N	ot needed				n			
Not needed	for sample	9 S			<u> </u>			
Modules	L]			 +		• • • • • • • • • • • • • • • • • • •) — - — -
No. teeth	<u> </u>]		· · · · · · · · · · · · · · · · · · ·	- <u> </u>	<u> </u>		
dditional information	on gear specifica	ition	- ,	()	_	→		Å,
		·	, 1	4		<u>+ 1111111</u>] /////	<i>,</i> , .
		location		5				Lead wire length: L
Accuracy	JGMA 6		3	6	-			mm
* Please pr	ovide spec	ific value	sin ſ]. If these values a	re not aiven	we will apply our standa	rd values. Note tha	at, for des an reasons, it
				your specified value		The trin apply our oldride		a, tor doo git rodoono, it
12) Connec	ctor	Needed/N	lot need	ed/Not needed for samples	Model [<u></u>
13) Lead w	ire	Specify	/ If a	ny: [· · · · · · · · · · · · · · · · · · ·
14) Select	from (1) the	ough 🕖 4	o indi	oate the meet imper	tant factor:-	doolding angelfications		<u> </u>
_				cate the most impor rque and current)		deciding specifications.		
	•		•		~	(priority over resistance		

- * Information items 1)~5), or 6)~9), provide us with the minimum data needed to know your requirements. Please be sure to fill in these items.
- In case you have not selected a specific stepper motor model, indicate the acceptable ranges of the motor's external dimensions. (For example, \$\phi\$42 max.)
- * To speed up the delivery of samples, we would prefer to apply our standard specifications to the samples insofar as possible, and omit the gears and connectors from them.
- * We cannot produce an approved specification paper, unless we reach an agreement with our customers on major specifications.

■Driving

FDK's stepper motors also offer selections in excitation modes, drive modes, and circuit formats. Below are examples of popular options.

1. Drive modes

Mode	Stepper motor	Basic circuit	Remaks
Unipolar drive	Lead wires: 6	A Motor A B B B B B B B B B B B B B B B B B B	Widely used because of simple drive circuit design.
Bipolar drive	Lead wires: 4 Bidirectional current	A B B B B B B B B B B B B B B B B B B B	 Motor windings are used efficiently. Large torque is obtained relative to motor size. Increasingly used due to availability of monolithic IC drive circuits.
Chopper drive		Coil Converter Current detection resistance Reference voltage	Chopper control enables application of a high voltage to the coil. A quick current start is realized. A low power loss is ensured. The switching period of current is determined by the following excitation modes: Self excitation The ON-OFF frequency is dependent on the time constant of the coil. Separate excitation Also called "PWM mode," this separate excitation mode can vary the ON time within the switching period of a high-frequency reference oscillator. Example of voltage/current waveforms Voltage

2. Excitation modes

Mode	Explanation	Excitation sequence (H: on, L: off)
	Only one phase excited at a time. Low power consumption.	A
Single-phase excitation		B
		B
Two-phase	 Two phases excited at a time. Large torque output, although consuming 2 times more power than single phase. Small damping oscillation, and wide-range responses. Most popularly used excitation mode. 	A
excitation		B
Half-step excitation	 Alternating single- and two-phase excitation modes. Consumes 1.5 times more power than single phase. Step angle equal to half of single- and two-phase step angles, thus called "half-step drive". Two times wider response frequency range. 	A
W half-step excitation	 Also called "microstep" drive, this excitation features finer step angles through the control of current. Its step angle is half of the half- step excitation, and quarter of the two-phase excitation. This excitation mode is used to obtain finer step motions or smoother rotations. 	

■When using stepper motors

- 1. The characteristics of stepper motors are affected by their drive circuits. Please disign the circuit carefully.
- 2. Temperature is also an influential factor. Be sure to operate the stepper motors within the permissible temperature range.
- 3. When test-driving stepper motors, check their service life, vibration, noise, etc.

■Stepper motor terminology

Term	Meaning
Holding torque	The maximum torque generated to counter an external torque, which is applied to the sh
Holding torque	when the motor is in a stationary excited state.
Detent torque	Same as holding torque, except the motor is left in a stationary non-excited state.
	Relation between the displacement T (torque)
θ – T (stiffness)	angle and torque when an external Holding torque
characteristics	torque is applied to the shaft of the θ (angle)
	motor in a stationary excited state.
Dynamic characteristics	Relation between the drive frequency and torque, as shown by lines (A) and (B) in the gra
(torque vs. frequency)	below.
	Torque (g cm) B Frequency (pps)
Pull-in characteristics	© D pps: pulses per second
Puli-in range	Pull-in (starting) characteristics:
Pull-in torque	Relation between the input frequency and the maximum (pull-in) torque capable
	starting the motor at this input frequency level.
Pull-out characteristics	Pull-out (slewing) characteristics:
Pull-out range	Relation between the input frequency and the maximum torque obtainable
Pull-out torque	synchronizing the motor rotation with this input frequency, which has be
	gradually increased after the start of the motor in the pull-in range.
1	The area shaded by solid lines /// indicates the "pull-in range." Stepper motors can be operated with
	problem as long as the operation characteristics are in this range. The area marked by dots indica
	the "pull-out range." If the operation characteristic is in the area, the motor speed must be properly adjusted.
Maximum starting rate	The highest frequency at which the motor can be started and halted in synch with the inp
· · · · · · · · · · · · · · · · · · ·	signals under a no-load condition (indicated by point © in the above graph).
Marinerane elevador el cont	The highest frequency at which the motor can be rotated in synch under a no-load condition
Maximum slewing rate	when the starting frequency is gradually increased (indicated by point ® in the above graph)
•	The maximum positive or negative error caused when the motor has rotated one step from
Otana	holding position to the next position, and is expressed in angular measure or the ratio of t
Step position error	error angle to the step angle.
	Step position error = [Measured step angle] - [Theoretical step angle] (Note: Max. value)

Position error	The motor is stepped N times (N = 360°/ step angle) from any initial position, and the angle from the initial position is measured. This routine is repeated for all the different initial positions. If the measured angle to the N-step position is θ_N and the error is $\Delta\theta_N$, then we have: $\Delta\theta_N = \theta_N - (\text{step angle}) \times N$ The position error is equal to the differential of the maximum and minimum $\Delta\theta_N$, and is normally expressed with a ± sign. That is: $ \text{Position error} = \pm \frac{1}{2} \ \Delta\theta(\text{max}) - \Delta\theta(\text{min}) \ $
Hysteresis position error	The values obtained from the above position errors, when the measurement is taken in both clockwise and counterclockwise stepping directions.
Moment of inertia	The inertia of matter rotating around an axis is expressed as: $J = \int \rho r^2 dv \ (\rho : density, r: distance from axis, dv: cubic factor)$ For example, the inertia of the righthand cylinder rotating around its own central axis obtained by: $J = \frac{\pi}{32} \rho \ell \ (D_1^4 - D_2^4)$ Although the motor has its own inertia, its pull-in characteristics are changed when the load is given a large inertia. The larger the load inertia, the smaller the pull-in area, as shown in the graph below. ©Pull-in characteristics when there is no load inertia. ©Pull-in characteristics when linked to a large load inertia.
Single step response/ Indicial response	While the stepper motor performs its stepping operation whenever the excitation condition is switched, it comes to a complete halt only after the attenuation of vibration. Pulse Angle Angle tr: Rise time ts: Settling time
Stepping rate/	The revolving speed of the stepper motor is usually expressed in pps (pulses per second), or sometimes in the number of steps per second. The relationship between the drive frequency and the rotational speed is as follows:

① Rotational speed (rps: revolutions per second)
=frequency (pps) ÷ $\left(\frac{360^{\circ}}{\text{single-step angle}}\right)$

② Rotational speed (rpm: revolutions per minute) = rps × 60

Stepping rate/

revolving speed (rps, rpm)

Appendix

1. Inertia conversion table

A B	kg⋅cm²	kg-cm-s²	g-cm²	g⋅cm⋅s²	lb∙in²	lb·in·s²	oz∙in²	oz·in·s²	lb-ft²	lb-ft-s²
kg-cm²	1	1.01972 ×10³	10³	1.01972	0.341716	8.85073 ×10⁻⁴	5.46745	1.41612 ×10-2	2.37303 ×10⁻°	7.37561 ×10⁻⁵
kg-cm-s²	980.665	1	980.665 10³	10³	335.109	0.867960	5.36174 ×10 ³	13.8874	2.32714	7.23300 ×10 ⁻²
g-cm²	10⁻³	1.01972 ×10-6	1	1.01972 ×10⊸	3.41716 ×10⁴	8.85073 ×10-7	5.46745 ×10³	1.41612 ×10⁻⁵	2.37303 ×10⊸	7.37561 ×10⁴
g·cm·s²	0.980665	10⊸	980.665	1	0.335109	8.67960 ×10 ⁻¹	5.36174	1.38874 ×10 ⁻²	2.32714 ×10 ⁻³	7.23300 ×10⁵
lb-in²	2.92641	2.98411 ×10⁻³	2.92641 ×10 ³	2.98411	. 1	2.59009 ×10-3	16	4.14414 ×10 ⁻²	6.94444 X10 ⁻³	2.15840 ×10⁴
lb·in·s²	1.12985 ×10³	1.15213	1.12985 ×10°	1.15213 ×10³	386.088	1	6.17740 ×10 ⁹	16	2.68117	8.33333 ×10 ⁻²
oz∙in²	0.182901	1.86507 ×10⁴	182.901	0.186507	0.0625	1.61880 ×10⁴	1	2.59009 X10 ⁻³	4.34028 ×10⁴	1.34900 ×10⁻⁵
oz·in·s²	70.6157	72.0079 ×10-3	70.6157 ×10°	72.0079	24.1305	6.25 ×10-²	386.088	1	0.107573	5.20833 ×10⊸
Ib-ft²	421.403	0.429711	421.403 X10 ³	429.711	144	0.372972	2304	5.96756	1	3.10810 ×10 ⁻²
lb⋅ft⋅s²	1.35582 ×10 ⁴	13.8255	1.35582 ×10 ⁷	1.38255 ×10 ⁴	4.63305 ×10³	12	7.41289 ×10⁴	192	32.1740	1

To convert an A unit into a B unit, multiply the A-unit value with the corresponding number listed in the above table.

Example: 5g-cm²=5×5.46745×10⁻³oz-in²

2. Torque conversion table

В	N∙m	dyn⋅cm	kg⋅m	kg⋅cm	g₊cm	oz∙in	lb-in	lb∙ft
N-m	1	10 ⁷	0.101972	10.1972	1.01972 ×10⁴	141.612	8.85074	0.737562
dyn₊cm	×10-7	1	1.01972 ×10⊸	1.01972 ×10⁴	1.01972 ×10⁻³	1.41612 ×10⁵	8.85074 ×10 ⁻⁷	7.37562 ×10⁴
kg⋅m	9.80665	9.80665 ×10 ⁷	1	10²	10⁵	1.38874 ×10 ³	86.7962	7.23301
kg-cm	9.80665 ×10 ⁻²	9.80665 ×10⁵	10 ⁻²	1	10³	13.8874	0.867962	7.23301 ×10 ⁻²
g.cm	9.80665 ×10⁴	9.80665 ×10²	10-⁵	10-³	1	1.38874 ×10-²	8.67962 ×10⁻¹	7.23301 ×10⁵
oz∙i⊓	7.06155 ×10³	7.06155 ×10⁴	72.0077 ×10⁻⁵	72.0077 X10³	72.0077	1	6.25 ×10²	5.20833 ×10⁻³
lb-in	0.112985	1.12985 ×10 ⁶	1.15212 ×10-²	1.15212	1.15212 ×10°	16	1	8.33333 ×10 ⁻²
lb-ft	1.35582	1.35582 ×10 ⁷	0.138255	1.38255 ×10	1.38255 ×10 ⁴	192	12	1

To convert an A unit into a Bunit, multiply the A-unit value with the corresponding number listed in the above table.

Example: 100g-cm=100×9.80665×10⁻⁵N·m