

9. Soit la fonction f définie par $f(x) = \frac{ax^2}{-bx^2 + 6x + c}$ avec a, b, c des réels et (C) sa courbe représentative. La courbe (C) admet pour asymptotes les équations $x - 1 = 0$; $y + 2 = 0$ et $x - 2 = 0$.
Le réel $a + b + c$ est égal à :

1. 6. 2. 1. 3. -2. 4. -4. 5. -42.

10. On considère dans \mathbb{R} la fonction f définie par $f(x) = \sqrt{\frac{x^2 - 1}{x^2 - 4}}$ et f^{-1} sa réciproque. Le réel $f^{-1}(-2)$ est égal à :

1. 2. 2. $\sqrt{7}$. 3. 3. 4. $\frac{1}{2}$. 5. 1.

11. Soit f la fonction définie dans \mathbb{R} par $f(x) = \frac{2x^3}{x^2 - 6x + 9}$ et (C) sa courbe représentative. La courbe (C) admet des asymptotes dont les équations sont :

1. $x - 3 = 0$ et $y = 2x$. 2. $x = 3$ et $y = 2x + 12$. 3. $x = 1$, $x = -1$ et $y = -1$.
4. $x = -1$, $x = 2$ et $y = 0$. 5. $x = 2$, $x = -2$ et $y = 1$.

12. Soit donnée la fonction f dans \mathbb{R} définie par $f(x) = \frac{(x-1)^3}{x^2}$ et (C) sa courbe représentative. La courbe (C) présente un :

1. minimum au point $(1, 0)$.	4. minimum au point $(\frac{1}{2}, \frac{27}{4})$.
2. max au point $(\frac{1}{3}, 0)$.	5. minimum au point $(-1, 0)$ et $(\frac{1}{2}, 27)$.
3. max au point $(-1, 0)$.	

13. Soit f la fonction définie dans \mathbb{R} par $f(x) = \frac{x^2 - 6}{x + 3}$, f' et f'' sont respectivement les dérivées 1^{ère} et 2^{ème} de la fonction f .

Le réel $f'(0)$; $f''(0)$ vaut :

1. $-\frac{14}{9}$. 2. $\frac{2}{9}$. 3. $\frac{2}{3}$. 4. $\frac{20}{27}$. 5. 3.

14. La limite de la fonction $f(x) = \frac{\sqrt{2x+7}-3}{\sqrt{x+3}-2}$ lorsque x tend vers 1 vaut :

1. $\frac{4}{3}$. 2. $\frac{3}{4}$. 3. $\frac{1}{4}$. 4. $-\frac{1}{4}$. 5. $-\frac{3}{4}$.

15. Une pile de force électromotrice égale à 1,40 V, dont la résistance intérieure est de $1,5 \Omega$, débite un courant dans un circuit de résistance $R = 3 \Omega$. La tension aux bornes de la pile vaut :

1. 0,95 V. 2. 0,97 V. 3. 0,93 V. 4. 0,91 V. 5. 0,86 V.

16. Une dynamo dont la résistance intérieure égale à $0,2 \Omega$ débite un courant de 19 A dans un conducteur dont la résistance est égale à $3,6 \Omega$.

La puissance de cette dynamo vaut :

1. 1 ch. 2. 1,3 ch. 3. 1,2 ch. 4. 1,5 ch. 5. 2 ch.