SKD 出货建议算法文档

1. 概述

本算法旨在解决 SKD (半散件) 需求的库存分配问题。

在 CKD (全散件) 基础上,进一步考虑库存仓库的优先级,严格遵循 BOM 结构的物料分配规则,并确保需求齐套,不允许超量出货。

每个 site 作为一个独立的出货单元,不同 site 之间的需求和库存不共享。通过合理分配库存,算法主要优化目标包括:

- 1. 最大化需求满足率,确保尽可能多的需求被满足
- 2. 优先满足较早周次的需求,确保早期需求不会被后期需求挤占库存
- 3. 优先使用入库较早的库存,避免库存老化

通过建立混合整数规划模型,在满足约束条件的前提下,优化出库计划。

2. 问题描述

库存类型

- 库存分为小箱、大箱和Open PO
 - 。 小箱不可拆分,需整箱出库
 - 。 大箱由多个小箱组成,同一site内可共享
 - 。 Open PO为未装箱库存,按量出库,仅包含散料

库存分配规则

- 优先使用与需求 kitting_location 匹配的stock库存和open po, 次之使用与需求 ship_location 匹配的 stock 库存
- 其中与需求 kitting_location 匹配的stock库存下严格按照 bom 结构优先级出库,即先出库半成品,再出库散料

3. 数学模型

3.1 符号说明

符号	描述
【需求属性】	
i	需求编号, $i=1,2,\cdots,I$
Q_i	需求 i 的需求量
W_i	需求 i 的周次
B_i	需求 i 的 BOM 结构, $B_i=\{b_{i,1},b_{i,2},\dots\}$, $b_{i,j}$ 是一个物料节点
sl_i	需求 i 的ship_location
kl_i	需求 i 的kitting_location
【BOM属性】	
$b_{i,j}$	需求 i 的第 j 个物料节点,引入一个虚拟成品节点 $b_{i,0}$
$pn_{i,j}$	物料编号
$parent_pn_{i,j}$	父物料编号 (为空表示最上层物料)
$unit_qty_{i,j}$	单位用量,表示成品需要的当前物料数量
$alt_pn_{i,j}$	主料∪替代物料列表
【库存属性】	
8	库存(小箱)编号, $s=1,2,\cdots,S$
p_s	库存 s 的物料号
q_s	库存 s 的物料数量
d_s	库存 s 的入库日期
l_s	库存 s 的库位
m_s	库存 s 的合箱号, $m_s=c$ 表示 s 属于大箱 c (为空表示未合箱)
【Open PO 属性】	

符号	描述
k	Open PO 编号, $k=1,2,\cdots,K$
pn_k	Open PO k 的物料编号
q_k	Open PO k 的物料数量
l_k	Open PO k 的kitting_location
【决策变量】	
$x_{i,s}$	$x_{i,s} \in \{0,1\}$,是否使用小箱子 s 满足需求 i , $x_{i,s} = 1$ 表示使用,否则为 0
y_i	$y_i \in \{0,1\}$,需求 i 是否被满足 , $y_i = 1$ 表示完全满足,否则为 0
z_c	$z_c \in \{0,1\}$, 是否在出货单元中使用大箱 c , $z_c = 1$ 表示使用,否则为 0
$m_{i,k}$	$m_{i,k} \in \mathbb{Z}$,Open PO k 用于满足需求 i 分配的物料数量, $m_{i,k} = 0$ 表示未使用
【辅助变量】	
$Supply_{i,j}$	$Supply_{i,j} \in \mathbb{Z}$,bom 节点 $b_{i,j}$ 的实际出货量
$o_{i,j}$	$o_{i,j} \in \mathbb{Z}$,bom 节点 $b_{i,j}$ 的下层物料供应量
$l_{i,j}$	$l_{i,j} \in \{0,1\}$, bom 节点 $b_{i,j}$ 是否考虑下层散料供应

3.2 约束条件

1. 需求满足约束:

• 需求必须齐套才允许出库, 即要么完全满足, 要么不满足

$$Supply_{i,0} = Q_i \cdot y_i \quad orall i \in I$$

2. Bom 结构约束:

所有 BOM 物料都齐套时,需求才会被满足

- 对于有下层展开的物料节点
 - 。 对于半成品物料节点(机头),其供应量= 当前物料的 kitting_location 供应量+该物料的下层供应量

$$Supply_{i,j} = \sum_{p_s \in alt_pn_{i,j}} x_{i,s} \cdot q_s + o_{i,j} \quad orall i,j$$

其中, 下层供应量= 下层子物料的供应量/单位用量

$$o_{i,j} = rac{Supply_{i,k}}{unit_qty_{i,k}} \quad orall i, j, parent_pn_{i,k} = b_{i,j}$$

- 对于无下层展开的物料节点
 - 。 对于没有下层展开的物料节点(包材/机头散料),其供应量= 当前物料 stock 供应量和open po供应量

$$Supply_{i,j} = \sum_{p_s \in alt_pn_{i,j}} x_{i,s} \cdot q_s + \sum_{pn_k \in alt_pn_{i,j}} m_{i,k} \quad orall i,j$$

3. Bom 库存使用顺序约束:

半成品库存优先,库存不足时才向下层展开

对于有下层展开的物料节点,只有 kitting_location 对应的 stock 仓库中存在半成品库存,所以对于有下层节点的物料, stock
 必须优先分配再考虑下层供应。

$$o_{i,j} \leq M \cdot l_{i,j} \quad \forall i,j$$

$$Supply_{i,j} \cdot (1 - l_{i,j}) \leq \sum_{p_s \in alt_pn_{i,j}} x_{i,s} \cdot q_s \quad orall i,j$$

其中:

。 $l_{i,j}=1$,表示只有 $\sum_{p_s \in alt_pn_{i,j}} x_{i,s} \cdot q_s$ 库存不足时允许下层供应

。 $l_{i,j}=0$,表示仅使用半成品库存

4. **小箱出库约束**:

• 每个小箱 s 只能分配给一个需求

$$\sum_{i=1}^{I} x_{i,s} \leq 1 \quad orall s \in S$$

5. 大箱出库约束:

• 大箱出库时, 所有小箱必须一起分配

$$x_{i,s} = z_{u,c} \quad orall c, m_s = c, i \in I$$

6. OPEN PO 使用约束:

• 每个 Open PO k 的分配量不能超过其库存量

$$\sum_{i=1}^{I} m_{i,k} \leq q_k \quad orall k \in K$$

3.3 目标函数

采用加权多目标优化,将各目标函数通过加权求和转化为单个优化目标求解

$$\min lpha_1 f_1 + lpha_2 f_2 + lpha_3 f_3 + f_{priority}$$

1. 最大化需求的满足数量:

优先满足更多的需求,最小化未满足的需求量

$$f_1 = I - \sum_{i \in I} y_i$$

2. 最小化需求被满足的周次:

优先满足较早周次的需求

$$f_2 = \sum_{i \in I} y_i \cdot W_i$$

3. 最小化出库物料的库存日期:

优先使用较早的库存

$$f_3 = \sum_{s \in S} \sum_{i \in I} x_{i,s} \cdot d_s$$

4. 最小化仓库出库优先级惩罚:

对于每个物料,如果 kitting_location 不存在可用库存,才考虑 ship_location 的库存。添加惩罚项,如果违反顺序,目标函数值会大幅增大。

计算出库优先级惩罚项:

$$f_{priority} = \sum_{i \in I} \sum_{j \in B_i} \left(\sum_{s \in S} x_{i,s} \cdot loc_{priority}(l_s, sl_i, kl_i)) + \sum_{k \in K} rac{m_{i,k}}{q_k} \cdot loc_{priority}(l_k, sl_i, kl_i))
ight)$$

其中,

 $loc_{priority}(l_s, sl_i, kl_i)$ 是库位匹配优先级,强制 kitting_location 先于 ship_location

$$loc_{priority}(l_s, sl_i, kl_i) = egin{cases} 10000 & \text{如果 } l_s = sl_i \ 100 & \text{如果 } l_s = kl_i \ ext{且库存来源为 Open PO} \ 1 & \text{如果 } l_s = kl_i \ ext{且库存来源为stock} \end{cases}$$

权重设置

权重系数的设置是多目标优化中的关键环节,需要根据数据规模动态调整

1. 量纲对齐

实时计算当前问题的目标范围,动态缩放,保证目标函数的量纲一致性,获取对齐后的目标函数

目标函数	原始范围	归一化范围
f_1 (未满足需求)	0~I	0~1
f_2 (需求周次)	0 ~ $max(W_i)$	0~1
f_3 (库存日期)	$0 extstylength{\sim} max(d_s)$	0~1

2. 业务优先级权重

目标函数	业务优先级	归一化后权重
f_1	高	100
f_2	中	10
f_3	低	1

3. 验证和调整

通过测试数据模拟不同的权重组合,观察优化结果,确定合理的权重值

4. 总结

通过为库存库位和 BOM 结构中的物料节点分配合理的优先级,确保严格的库存使用顺序控制。 通过建立混合整数规划模型,算法能够在满足约束条件的前提下,最大化需求满足率,并优先使用早期 库存和较早周次的需求。

注:

- 1. 需求齐套的一个数量 等于 一个机头(或机头展开一层的物料)+ 包材物料,只有kitting location中存在半成品。
- 2. 库存分配具体到bom层。