id: 1715166999-LOLW
Author: Vortex

aliases:
 - CN-U2
tags: []

Domain Naming Service

- Mneumonic names are easier for humans to read. But routers and other network devices prefer fixed length numeric addresses.
- The service that maps these 2 togeather is called DNS.
- Serviced on port 53
- DNS consists of:
 - Bunch of DNS servers containing databases of mappings
 - Client side DNS service that sends the request to the DNS servers
- Other application protocols like HTTP and SMTP use DNS as a way to translate hostnames to IP addresses.
- The Client then receives the IP address corresponding to that hostname and can then proceed to establish a connection.
- Services:
 - Host Aliasing : canonical names can be long and complex. DNS can alias this into a simpler hostname
 - Mail server Alias: DNS can be used by mail applications to obtain the IP address
 of a hostname and also its canonical name. MX records permit mail and webserver
 to have same aliased hostnames.
 - Load Balancing: To reduce latency and traffic many webservers may have multiple server farms with different IP addresses. DNS can map all of these to a single hostname. When DNS is requested for this hostname, it returns a list of IP addresses.
 - DNS rotates this list after every response so that the subsequent requests can be routed to a different server and load is balanced equally.
- Reasons for having Distributed DNS:
 - Single point of failure
 - Traffic volume
 - Distance from servers and clients
 - Maintenence

Figure 2.17 Portion of the hierarchy of DNS servers

- Root level : returns the IP address of the TLD.
- Top level: all top level domains like .com, .org and country level domains like .in, .fr
- Authoritative: Every organisation with a publicly accessible host must have this to map the host to IP address.
- Local level: not part of the heirarchy. Maintained by the ISP very close to the client.
 - Acts as a proxy and sends the request to the DNS heirarchy.
- Types:
 - Iterative: repeatedly exchanges req-res cycles with multiple levels of DNS servers.
 - Recursive: hands off responsibilities to the next DNS server
- DNS caching: DNS requests are cached in the server for some amount of time (TTL)
 - If request to this hostname is made in this time, it won't have to reference the heirarchy and can simply return the cached IP.
- Response Records(RR)
 - DNS servers store data as RRs.
 - response message from DNS server is a 4 tuple value
 - (Name, Value, Type, TTL)
 - Types:
 - A, then Name is the hostname and the value is the IP.
 - CNAME, then Name is the alias name and value is the canonical name.
 - MX, then Name is the mail server name and value is the canonical name
 - NS, then Name is domain and value is the hostname of an authoritative DNS server that knows how to get IP for hosts in that domain.
- DNS Message format

Identification	Flags	
Number of questions	Number of answer RRs	—12 bytes
Number of authority RRs	Number of additional RRs	
Questions (variable number of questions)		Name, type fields for a query
Answers (variable number of resource records)		RRs in response to query
Authority (variable number of resource records)		Records for authoritative servers
Additional information (variable number of resource records)		—Additional "helpful" info that may be used

- Identification: to match requests and responses.
- Flags: multiple flags. One flag indicates whether this is a request or response message.
- Questions: Information about the query.
 - Name
 - Type
- Answer: Request Records
 - there may be multiple since one hostname may have multiple IPs
- Authority: records of other authoritive servers
- DNS records are inserted into the server by the DNS registrar.
- They verify the uniqueness of the domain.

P2P

- Minimal dependence on servers.
- $\begin{aligned} \bullet & D_{C-S} = max(\frac{NF}{u_s}, \frac{F}{d_{min}}) \\ \bullet & D_{P2P} = max(\frac{F}{u_s}, \frac{F}{d_{min}}, \frac{NF}{u_s + \Sigma_{i=0}^N u_i}) \end{aligned}$

BitTorrent

- Has a tracker which is a server keeping track of all the peers in the torrent.
- All the participating peers make up the torrent.
- When a new host joins, it registers itself with the tracker. Then periodically it pings the tracker to let it know that it is still in the network.
- Torrent networks exchange data in chunks(256Kb).
- Initially the peer doesn't have any chuncks.
- The tracker picks a list of 50 peers and gives it to the new machine.
- This new peer then tries to establish simultaneous TCP connections with these peers.

- These are called neighbouring peers.
- While a peer is receiving chunks it can also send chunks.
- When a peer has received all the chunks, it can either selfishly leave the torrent or alturistically continue sharing.
- The peers use a method of rarest first to get chunks.
 - The chunks that are rare in the neighbouring peers are demanded first so that these chuncks are distributed evenly throughout the network.
- A peer is always sharing with 4 peers who are transferring to it at the highest rate.
- Every 30 seconds, this peer picks another peer at random and starts sending data to it.
- This is now said to be optimistically unchoked
- Churn: when a peer leaves or joins the network.

Sockets

UDP

- No reliability
- Each packet contains:
 - IP address of destination
 - Destination Port
 - IP and port of source(added by the OS)


```
#Client
from socket import *
servername = <hostname>
serverport = 12000
newsock = socket(AF_INET, SOCK_DGRAM)
msg = raw_input("Enter something")
newsock.sendto(msg.encode(), (servername, serverport))
reply, serveraddress = newsock.recvfrom(2048)
print(reply.decode())
newsock.close()
```

```
#Server
from socket import *
serverport = 12000
serversocket = socket(AF_INET, SOCK_DGRAM)
serversocket.bind('', serverport)
while True:
    msg, clienaddress = serversocket.recvfrom(2048)
    x = msg.decode().upper()
    serversocket.sendto(x.encode(), clientaddress)
```

• Client port is assigned by OS and doesn't need to be explicitly specified.

TCP

- Connection oriented and reliable.
- Server must be running well before the client and ready to accept connections.
- No need to mention destination port and IP as data can just be dropped across the socket as connection is already established.
- For each client TCP duplicates the socket and makes one just dedicated to this one client.
- The 2 processes (from the perspective of the application layer are connected through a direct pipe)


```
#Client
from socket import *
servername = <hostname>
serverport = 12000
newsock = socket(AF_INET, SOCK_STREAM)
newsock.connect((servername, serverport))
msg = raw_input("Enter something")
newsock.send(msg.encode)
reply = newsock.recv(1024)
print(reply)
newsock.close()
```

Application Layer Protocols

1. FTP

- File Transfer Protocol
- Exchange large files over TCP
- Invoked from CLI or GUI
- used to delete, rename, move or copy files in the FTP server
- Port 20 data connection; Port 21 Control Connection

2. SMTP

- Simple Mail Transfer Protocol
- standard way of exchanging emails over TCP
- messages encrypted using SSL
- messages are stored and then forwarded to destination
- Port 25

3. DHCP

- Dynamic Host Configuration Protocol
- assigns IP addresses to hosts in a network dynamically
- sometimes IP addresses may change even when computer is in network(DHCP leases)
- based on discovery, offer,request,ACK
- Port 67 server ; Port 68 client

4. SNMP

- Simple Network Management Protocol
- exchanges management info between network devices
 - SNMP manager
 - Managed Devices
 - SNMP Agents
 - Management Information Base(MIB)
- Port 161 & 162

5. Telnet & SSH

- Remote access protocols
- Port 22 SSH; Port 23 Telnet

Transport Layer Services

- Layer between the Application and Network layers
- Provides the illusion that hosts are directly connected to each other even when they are not
- Segment : data + headers
- Passed to network layer where it is encapsulated and sent to the network
- At the destination system it is passed to the transport layer where the segment is unpacked and data becomes available for application
- IP is unreliable by default. It makes a best ditch effort to pass data from source to destination but doesn't guarantee delivery intact.
- Transport layer protocols try to extend on IP functionality.
- UDP:
 - process to process delivery
 - error checking
- TCP:
 - Flow Control
 - Congestion Control
 - reliable connection

Multiplexing and Demultiplexing

- The action of receiving data from sockets and packaging that into a segment by attaching headers is called multiplexing.
- The action of taking the datagram from the network layer on the destination system and detaching the headers and passing the data to the application socket is called

demultiplexing.

- We need to be able to address each socket specifically as a system may have multiple open sockets to multiple processes.
- Requirements:
 - Unique identifier for sockets
 - Fields in header that dictate where to deliver data
- Source and Destination port numbers are used as identifiers.

- Port numbers are 16 bit values that range from 0-65535. But 0-1023 are reserved as well known ports and can't be assigned
- Connectionless Mux and DeMux : sockets are addressed as 2-tuples (destination port, destination IP). Uses UDP.
 - Drawback: if 2 segments from 2 different sources have the same destination port and IP they go to the same socket.
- Connection Oriented Mux and DeMux : Overcomes the drawback as it's sockets are addressed using 4-tuple(source IP, source Port, Destination IP, Destination Port)

UDP

- Connectionless protocol
- No prior Handshaking
- Best effort protocol.
 - No guarantee of delivery to destination
- Advantages:
 - Low Latency no handshaking so reduces delay
 - No congestion control UDP can send data segments without waiting for decongestion

- Simple No need to store connection state
- Smaller header than TCP
- Used for applications involving large number of hosts and where real time error correction isn't necessary.
 - DNS lookup
 - SNMP
 - Trivial FTP(TFTP)
 - Real time video streaming
- If needed congestion control, error correction and reliability can be added in the application level

Figure 3.7 UDP segment structure

• each header field is 2 bytes long

UDP Checksum

- For error detection
- All 16-bit words added. If there is carry, add that to the sum.
- Then take 1's complement
- This is the checksum
- At the receiver we add all the words with the checksum. If there is no error, sum should be 1111111111111...