11.03 Notes

Math 403/503

November 2022

1 From Last Time...

Pythagorean Theorem generalized: Suppose $v_1,..,v_n$ is a family of pairwise orthogonal vectors: $\langle v_i,v_j\rangle=0, i\neq j$. Then $||v_1||^2+||v_2||^2+...+||v_n||^2=||v_1+...+v_n||^2$

Projection in inner product space: If $u, v \in V$, then u may be written as u = cv + w where $\langle v, w \rangle = 0$ by setting $c = \langle u, v \rangle / ||v||^2$. Proof is the same as it was for dot products.

We next present two major inequalities that are repeatedly useful in working with inner product spaces.

- Cauchy-Schwarz Inequality: $|\langle u, v \rangle| \le (||u||)(||v||)$
- Triangle Inequality: $||u+v|| \le ||u|| + ||v||$

Proof of Cauchy-Schwarz: Project u onto the line through v to write $u = \frac{\langle u,v \rangle}{||v||^2}v + w$ where $\langle v,w \rangle = 0$. By Pythagorean Theorem: $||u||^2 = ||\frac{\langle uv \rangle}{||v||^2} + ||w||^2 = \frac{|\langle u,v \rangle|^2}{||v||^4}||v||^2 + ||w||^2 = \frac{|\langle u,v \rangle|^2}{||v||^4}||v||^2 + ||w||^2$

 $||w|| = \frac{|\langle u, v \rangle|^2}{||v||^4} ||v||^2 + ||w||^2$ $= \frac{|\langle u, v \rangle|^2}{||v||^2} + ||w||^2$ $\geq \frac{|\langle u, v \rangle|^2}{||v||^2}$

Proof of Triangle: Calculate: $||u+v||^2 = \langle u, v \rangle + \langle u+v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle = ||u||^2 + \langle u, v \rangle + \langle v, u \rangle + ||v||^2 \le ||u||^2 + ||\langle u, v \rangle + \langle v, u \rangle|| + ||v||^2 \le ||u||^2 + |\langle u, v \rangle| + |\langle v, u \rangle| + ||v||^2 = ||u||^2 + |\langle u, v \rangle| + |\overline{\langle u, v \rangle}| + ||v||^2 \le ||u||^2 + 2||u||||v|| + ||v||^2 = (||u|| + ||v||)^2$ Therefore, $||u+v||^2 = ||u|| + ||v||$.

2 Today's Notes

We next use orthogonality to create a very nice bases for inner product spaces... Recall the standard basis of F^n is not only an independent list but in fact the vectors are orthogonal and of unit length.

Definition: Let V be an inner product space and $v_1, ..., v_n$ in V. We say $v_1, ..., v_n$ is an <u>orthonormal list</u> if $\langle v_i, v_j \rangle = 1$ if i = j or j = 0 if $i \neq j$. In other words, they are pairwise orthogonal and of unit length. j = 0 if j = 0 if an orthonormal basis (ONB) if it is an orthonormal list and a basis of j = 0. Note: The standard basis is orthonormal.

Example: The basis $\begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}$, $\begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}$, $\begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{-2}{\sqrt{6}} \end{bmatrix}$ is an ONB.

Proposition: An orthonormal list is always independent. Thus to be a basis it only needs to have the right length, namely dim V. Note - this is a very strong form of independence.

Proof: Let $v_1, ..., v_n$ be orthonormal. Suppose $a_1v_1 + ... + a_nv_n = 0$, then $||a_1v_1 + ... + a_nv_n||^2 = 0$. The Pythagorean Theorem says: $||a_1v_1||^2 + ... + ||a_nv_n||^2 = 0$ $\rightarrow |a_1|^2 + ... + |a_n|^2 = 0$ $\rightarrow a_1 = a_2 = ... = a_n = 0$. QED.

We now take up the mission of finding an ONB in a given V. Specifically we will start with any basis $v_1, ..., v_n$ and apply projections repeatedly to convert it into an orthonormal basis.

Given $v_1, ..., v_n$ a basis of V. First replace v_1 with $e_1 = \frac{v_1}{||v_1||}$. Next we want to replace v_2 with something orthogonal to e_1 : project v_2 onto line through e_1 : $v_2 = \frac{\langle v_2, e_1 \rangle}{||e_1||^2} e_1 + w$ where $\langle e_1, w \rangle = 0$. Set $e_2 = \frac{w}{||w||} = \frac{v_2 - \langle v_2, e_1 \rangle e_1}{||v_2 - \langle v_2, e_1 \rangle e_1||}$. Third, we replace v_3 with something orthogonal to e_1 AND e_2 by projection: $v_3 = ce_1 + de_2 + w_3$ where $\langle e_1, w_1 \rangle = 0$ AND $\langle e_2, w_3 \rangle = 0$. We need to solve for the constants c, d: $\langle v_3 - ce_1 - de_2, e_1 \rangle = 0$

$$\leftrightarrow < v_3, e_1 > -c < e_1, e_1 > -d < e_2, e_1 > = 0$$

$$\leftrightarrow c = \langle v_3, e_1 \rangle$$

$$\langle v_3 - ce_1 - de_2, e_2 \rangle = 0$$

$$\leftrightarrow d = < v_3, e_2 > .$$

So $v_3 = \langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2 + w_3$. Set $e_3 = \frac{v_3 - \langle v_3, e_1 \rangle e_1 - \langle v_3, e_2 \rangle e_2}{||v_3 - \langle v_3, e_1 \rangle e_1 - \langle v_3, e_2 \rangle e_2||}$ The rest of the process is the analog of this formula.

Gram-Schmidt Process: Given a basis $v_1, ..., v_n$. We produce an orthonormal basis $e_1, ..., e_n$ using the iterative definition: $e_j = \frac{v_j - \langle v_j, e_1 \rangle e_1 - ... - \langle v_j, e_j - 1 \rangle e_{j-1}}{||v_j - \langle v_j, e_1 \rangle e_1 - ... - \langle v_j, e_{j-1} \rangle e_{j-1}||}$

In the process we also learned how to project a vector v onto a subspace spanned by orthonormal vectors $e_1, ..., e_j$. The projection of v to span $(e_1, ..., e_j)$

is: $p=< v,e_1>e_1+...+< v,e_j>e_j.$ If you have an ONB $e_1,...,e_n$ then $v=< v,e_1>e_1+...+< v,e_n>e_n.$