Data Provided: None

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Spring Semester 2013-14 (2.0 hours)

EEE345 Engineering Electromagnetics

Answer **THREE** questions. **No marks will be awarded for solutions to a fourth question.** Solutions will be considered in the order that they are presented in the answer book. Trial answers will be ignored if they are clearly crossed out. **The numbers given after each section of a question indicate the relative weighting of that section.**

1. **a.** Using both Maxwell equations for the rotation operators of the electrical and magnetic fields, the materials equations relating corresponding fluxes and fields, and the mathematical identity **rot rot** $\underline{E} = \mathbf{grad}$ div $\underline{E} - \nabla^2 \underline{E}$ show that in vacuum the electric field vector \underline{E} obeys a wave equation.

(10)

b. Use Maxwell's equation for the rotation of the magnetic field, together with Ohm's Law and complex expressions for both the dielectric constant ε_r and a planar wave of form $\underline{E} = \underline{E}_0 \exp(j\omega t)$ to derive an expression for ε_r . Interpret the imaginary part of ε_r physically: what does it mean?

(6)

c. Using Maxwell's modification of Ampere's Law calculate the divergence of the current density and interpret the result in terms of changes of the electrical charge.

(4)

2. a. Sketch and annotate a short elementary length dx of a lossy transmission line where the only resistive component to be considered is the Ohmic resistance R^* per unit length along the line.

Show that the propagation constant k' for a fixed frequency source ω is approximately given by the expression

$$k' = \omega (L^*C^*)^{1/2} [1-j R^*/(2\omega L^*)]$$

where ω is the angular frequency, L^* the inductance per unit length and C^* the capacitance per unit length.

(9)

b. A 50Hz signal is fed into the lossy transmission line with the characteristic given in Question 2a above which has $C^*=1nF/m$, $L^*=1mH/m$, $R^*=1\Omega/m$. Over what length can the signal be transferred so that at the end of the cable at least 95% of the voltage of the input signal arrives?

(4)

c. A 30cm short coaxial cable with inner and outer cable diameters of 0.5mm and 3mm, respectively, and a non-magnetic dielectric with a relative permittivity (dielectric constant) of ε_r =2 is to be used for high frequency measurements.

Write down equations for and calculate:

- i) its capacity,
- ii) its inductance,
- iii) its approximate real-valued impedance in the lossless case and
- iv) the voltage reflection coefficient for Ohmic loads of $Z_L=50$ or $Z_L=75\Omega$.

Which of the two loads would be the better termination choice and why?

(7)

EEE345 2 CONTINUED

3. a. The electric potential in a region of free space may be given as:

$$V(x,y,z) = (x^3 + 2y^3 + 2z^2) \times 100$$
V.

- (i) Determine whether the expression above satisfies the Laplace equation.
- (ii) Calculate the electric field strength E and the charge density ρ at the point (x,y,z)=(1,2,3)m for a permittivity of $\varepsilon_0=8.8542\times10^{-12}$ As/(Vm).

(6)

b. Show that the function:

$$V(x) = (2ax - x^2) \rho_{\text{free}}/(2\varepsilon_0 \varepsilon_{\text{r}})$$

solves the 1-dimensional Poisson equation for a semiconducting pn-junction of total depletion layer width 2a along the x-direction.

(7)

c. The potential of a static electric dipole consisting of a pair of two charges -q and +q is given by the equation

$$V(\underline{r}) = \underline{p} \underline{r} / (4\pi \varepsilon_0 r^3)$$

where $r = |\underline{r}|$ is the distance from charge +q and $\underline{p} = q \underline{ds}$ is defined as the dipole moment where the vector \underline{ds} points from -q to +q.

Provide a sketch of the dipole geometry and calculate its electric field vector, using the identity $\operatorname{grad}(\underline{r}^n) = \operatorname{nr}^{n-1}\underline{e}_r$ where $\underline{e}_r = \underline{r}/r$ is the radial unity vector pointing outwards. Compare the electric field along and perpendicular to the dipole axis.

(7)

EEE345 3 TURN OVER

- **4. a.** Indicate which of the following f(x,t) functions (where x= spatial coordinate, t=time, a,b,c=constants, h=any function) represent travelling or standing waves? Explain your answers.
 - (i) $f(x,t) = \sin(4xt+a)$

(ii)
$$f(x,t) = b \cos(2x+t^2)$$

(iii)
$$f(x,t) = \exp j(3at-bx)$$

$$(iv) f(x,t) = \sin(4x) \exp(-3x)$$

(v)
$$f(x,t) = [g(bt-x)]^2$$

$$(vi) f(x,t) = g(at+x^2)$$

b. Show explicitly by double differentiation that the function

$$f(r,t)=[\exp i(\omega t-kr)]/r$$

fulfils the wave equation, using the mathematical operator identity

$$\nabla^2_{\rm r} = 1/r^2 \left[\partial/\partial r \left(r^2 \partial/\partial r \right) \right]$$

for the radial component of the second derivative ∇^2 in spherical coordinates.

What is the physical meaning of f(r,t) if \mathbf{r} is the usual radial vector with $r=|\mathbf{r}|$?

(7)

(5)

c. For an oscillating electric dipole \underline{p} the magnetic flux in the far field at position \underline{r} is given by the equation

$$\underline{\boldsymbol{B}}_{\mathrm{f}} \approx \mu_0 \left(\stackrel{\cdot \cdot}{\boldsymbol{p}} \times \underline{\boldsymbol{e}}_{\mathrm{r}} \right) / \left(4\pi c r \right)$$

where $\ddot{p} = \partial^2 \underline{p}/\partial t^2$ and $\underline{e}_r = \underline{r}/r$ is the radial unity vector.

Using the additional relationships

$$E_f = cB_f \times e_r$$

and

$$\underline{\boldsymbol{B}}_{\mathrm{f}} = \underline{\boldsymbol{e}}_{\mathrm{f}} \times \underline{\boldsymbol{E}}_{\mathrm{f}}/c$$

between the electrical field and the magnetic flux in the far field, calculate the Poynting vector.

Express the result in terms of the angle θ between \underline{p} and \underline{r} and interpret the result physically.

(8)

TWALT/ IR/ MH