Appendix to Lecture 9: Sufficient Completeness Theorem (for $B = \emptyset$)

José Meseguer, CS Department, UIUC

Theorem. Let (Σ, E) be an equational theory such that for each equation u = v in E $vars(v) \subseteq vars(u)$ holds, and the rules \vec{E} are terminating. Then (Σ, \vec{E}) is sufficiently complete with respect to a constructor subsignature $\Omega \subseteq \Sigma$ iff $D \setminus (Red \cup Ctor) = \emptyset$, where:

- $Ctor = T_{\Omega}$
- $Red = \{t \in T_{\Sigma} \mid t \neq t!_{\vec{E}}\}$
- $D = \{ f(u_1, \dots, u_n) \in T_{\Sigma} \mid n \ge 0 \land u_i \in T_{\Omega}, \ 1 \le i \le n, \land f \in \Sigma \setminus \Omega \}.$

Proof: The (\Rightarrow) implication is proved by contradiction. Suppose that (Σ, \vec{E}) is sufficiently complete but $f(u_1, \ldots, u_n) \in D \setminus (Red \cup Ctor), n \geq 0$. Then, by construction, $f(u_1, \ldots, u_n) \notin T_{\Omega}$, and $f(u_1, \ldots, u_n) = f(u_1, \ldots, u_n)!_{\vec{E}}$, contradicting the sufficient completeness assumption that $f(u_1, \ldots, u_n)!_{\vec{E}} \in T_{\Omega}$.

The (\Leftarrow) implication is also proved by contradiction. Suppose that $D \setminus (Red \cup Ctor) = \emptyset$ but (Σ, \vec{E}) is not sufficiently complete. Then there is a term $t \in T_{\Sigma}$ such that $t!_{\vec{E}} \notin T_{\Omega}$. But then there exists a subterm $u \unlhd t!_{\vec{E}}$ such that $u \notin T_{\Omega}$ and u is a smallest possible subterm with that property in the \unlhd order. Of course, $u = u!_{\vec{E}}$. Then either, (i) u = a, with a constant $a \in \Sigma \setminus \Omega$, or (ii) u is a term of the form $u = f(u_1, \ldots, u_n)$, where, by \unlhd -minimality, $u_i \in T_{\Omega}$, $1 \le i \le n$, and, by $u \notin T_{\Omega}$, $f \in \Sigma \setminus \Omega$. Therefore, in cases either (i) or (ii), $u \in D$. But since $u \notin T_{\Omega}$ and $u = u!_{\vec{E}}$, $u \in D \setminus (Red \cup Ctor)$, contradicting $D \setminus (Red \cup Ctor) = \emptyset$. \square

When the constructors Ω are free, a smaller subset D of reducible terms can be chosen, as shown by the following corollary.

Corollary. Let (Σ, E) be an equational theory such that for each equation u = v in E $vars(v) \subseteq vars(u)$ holds, and the rules \vec{E} are terminating. Assume, furthermore, that the constructors Ω are free, that is, for each $u \in T_{\Omega}$, $u = u!_{\vec{E}}$. Then (Σ, \vec{E}) is sufficiently complete with respect to a constructor subsignature $\Omega \subseteq \Sigma$ iff $D \setminus (Red \cup Ctor) = \emptyset$, where:

- $Ctor = T_{\Omega}$
- $Red = \{u\theta \in T_{\Sigma} \mid (u = v) \in E \land \theta \in [vars(u) \to T_{\Omega}]\}$
- $D = \{ f(u_1, \dots, u_n) \in T_{\Sigma} \mid n \ge 0 \land u_i \in T_{\Omega}, \ 1 \le i \le n, \ \land f \in \Sigma \setminus \Omega \}.$

Proof: The (\Rightarrow) implication is proved by contradiction. Suppose that (Σ, \vec{E}) is sufficiently complete but $f(u_1, \ldots, u_n) \in D \setminus (Red \cup Ctor), n \geq 0$. Then, by construction, $f(u_1, \ldots, u_n) \notin T_{\Omega}$, and $u_i \in T_{\Omega}$, $1 \leq i \leq n$. By the free constructor assumption we also have $u_i = u_i!_{\vec{E}}$, $1 \leq i \leq n$. Furthermore, $f(u_1, \ldots, u_n) = f(u_1, \ldots, u_n)!_{\vec{E}}$, because, otherwise, we should have a rewrite $f(u_1, \ldots, u_n) \to w$ at the top position ε , forcing $f(u_1, \ldots, u_n) \in Red$, wich is impossible, since $f(u_1, \ldots, u_n) \in D \setminus (Red \cup Ctor)$. But $f(u_1, \ldots, u_n) = f(u_1, \ldots, u_n)!_{\vec{E}}$ and $f(u_1, \ldots, u_n) \notin T_{\Omega}$ contradict the sufficient completeness assumption that $f(u_1, \ldots, u_n)!_{\vec{E}} \in T_{\Omega}$.

The (\Leftarrow) implication is also proved by contradiction. Suppose that $D \setminus (Red \cup Ctor) = \emptyset$ but (Σ, \vec{E}) is not sufficiently complete. Then there is a term $t \in T_{\Sigma}$ such that $t!_{\vec{E}} \notin T_{\Omega}$. But then there exists a subterm $u \leq t!_{\vec{E}}$ such that $u \notin T_{\Omega}$ and u is a smallest possible subterm with that

¹Constructor freedom can be guaranteed by checking that for each u = v in E and for each variable specialization ρ of vars(u), $u\rho \notin T_{\Omega(X)}$.

property in the \leq order. Of course, $u=u!_{\vec{E}}$. Then either, (i) u=a, with a constant $a\in\Sigma\setminus\Omega$, or (ii) u is a term of the form $u=f(u_1,\ldots,u_n)$, where, by \leq -minimality, $u_i\in T_\Omega,\ 1\leq i\leq n$, and, by $u\not\in T_\Omega,\ f\in\Sigma\setminus\Omega$. Therefore, in cases either (i) or (ii), $u\in D$. And since $u\not\in T_\Omega$, $u\in D\setminus Ctor$. Furthermore, since $u=u!_{\vec{E}}$ and constructors are free, reasoning as in the proof of (\Rightarrow) we must also have $u\in D\setminus Red$, and therefore $u\in D\setminus (Red\cup Ctor)$, contradicting $D\setminus (Red\cup Ctor)=\emptyset$. \Box