SEMAINE DU 29/01 AU 02/02

1 Cours

Arithmétique

Division dans \mathbb{Z} Relation de divisibilité. Opérations sur la divisibilité. Relation de congruence. Opérations sur la congruence. Division euclidienne.

Diviseurs et multiples communs PGCD : définition, existence et unicité d'un pgcd positif. Opérations sur le pgcd. Algorithme d'Euclide. Théorème de Bézout. Algorithme d'Euclide étendu. Nombres premiers entre eux. Théorème de Bézout (équivalence). Théorème de Gauss. Si a|n et b|n avec $a \land b = 1$, alors ab|n. Si $a \land n = 1$ et $b \land n = 1$, alors $ab \land n = 1$. PPCM : définition, existence et unicité d'un ppcm positif. Relation $(a \lor b)(a \land b) = |ab|$. Opérations sur le ppcm.

Nombres premiers Définition. Lemme d'Euclide. Tout entier n > 1 admet un diviseur premier. Infinité des nombres premiers. Décomposition en facteurs premiers. Valuation p-adique. Lien avec la divisibilité, le pgcd et le ppcm.

Compléments PGCD d'un nombre fini d'entiers. Théorème de Bézout. Entiers premiers entre eux dans leur ensemble. Théorème de Bézout (équivalence).

Espaces vectoriels

Définition et exemples fondamentaux Définition d'un \mathbb{K} -espace vectoriel. Exemples. Si X est un ensemble, on peut munir \mathbb{K}^X d'une structure de \mathbb{K} -espace vectoriel. Conséquence : \mathbb{K}^n , $\mathbb{K}^\mathbb{N}$, $\mathbb{K}^\mathbb{K}$ sont des \mathbb{K} -espaces vectoriels.

Sous-espaces vectoriels Définition. Intersection de sous-espaces vectoriels. Combinaisons linéaires d'une famille de vecteurs. Espace vectoriel engendré par une partie ou une famille.

Somme de sous-espaces vectoriels Somme de deux sous-espaces vectoriels. Somme directe de deux sous-espaces vectoriels. Sous-espaces supplémentaires.

2 Méthodes à maîtriser

- ► Se ramener à des entiers premiers entre eux en factorisant par le pgcd.
- ▶ Résoudre des équations diophantiennes linéaires i.e. du type ax + by = c avec $a, b, c \in \mathbb{Z}$ et x, y des inconnues entières.
- ▶ Caractériser le reste d'une division euclidienne par une relation de congruence.
- ▶ Montrer que deux entiers positifs sont égaux en montrant qu'ils se divisent l'un l'autre
- ► Savoir montrer que deux entiers sont premiers entre eux en exhibant une relation de Bézout.
- ▶ Savoir montrer qu'une partie d'un espace vectoriel en est un sous-espace vectoriel.
- ▶ Savoir déterminer une famille génératrice d'une partie de Kⁿ définie par des équations linéaires (mettre sous forme d'un vect(...)).
- ▶ Dans le cadre de l'algèbre linéaire, se fier à son intuition **géométrique**.
- ► Savoir montrer que deux sous-espaces sont supplémentaires (utiliser éventuellement une méthode par analyse/synthèse).

3 Questions de cours

- Soient F et G deux sous-espaces vectoriels d'un espace vectoriel E. Montrer que F et G sont en somme directe si et seulement si $F \cap G = \{0_E\}$.
- ▶ On pose $E = \mathbb{R}^{\mathbb{R}}$, F l'ensemble des applications paires de \mathbb{R} dans \mathbb{R} et G l'ensemble des applications impaires de \mathbb{R} dans \mathbb{R} . On admet que F et G sont des sous-espaces vectoriels de E. Montrer que F et G sont supplémentaires dans E.

▶ Soit
$$n \in \mathbb{N}^*$$
. Calculer $S_n = \sum_{k=0}^n \binom{2n}{2k}$ et $T_n = \sum_{k=0}^{n-1} \binom{2n}{2k+1}$.

- ▶ Résoudre une équation différentielle linéaire d'ordre 1 au choix de l'examinateur.
- ▶ Déterminer le développement limité de tan à l'ordre 5 en 0.
- $\blacktriangleright \ \, \text{Déterminer la limite de la suite de terme général} \left(1+\frac{1}{n}\right)^n.$
- $\blacktriangleright \ \, \text{Soient} \, \theta \in \mathbb{R} \, \text{et} \, n \in \mathbb{N}. \, \text{Calculer} \, C_n = \sum_{k=0}^n \cos(k\theta) \, \text{et} \, S_n = \sum_{k=0}^n \sin(k\theta).$