Assignment 2

Note: Please include references when applying results from the textbook [Perko].

Problem 1: We shall analyse the system of differential equations

$$\dot{x_1} = f_1(x_1, x_2) = x_2 , \qquad (1)$$

$$\dot{x_2} = f_2(x_1, x_2) = \mu x_1 - \frac{1}{2}x_1^2$$
 (2)

Here the two variables x_1 and x_2 depend on time t. A dot above a time dependent variable denotes differentiation with respect to t. The parameter μ is a real number.

- a) Find all critical points of the two dimensional vectorfield $\mathbf{f} = (f_1, f_2)^T$ in the system (1-2).
- b) Determine the stability of all critical points for the cases of $\mu > 0$ and $\mu < 0$. Classify these critical points according to the list: saddles, centers, cusps, nodes and foci.
- c) Sketch the flow in a phase plane plot for $\mu > 0$ and $\mu < 0$. Use pencil and paper and support your findings using pplane or Maple (hint: you may use the command plotfield in Maple).
- d) For $\mu \neq 0$ there are homoclinic orbits. Similar to finding center manifolds we can determine the homoclinic orbits by introducing a function $h \in C^{\infty}$ mapping $\mathbb{R} \to \mathbb{R}$ according to

$$x_2 = h(x_1) . (3)$$

Which condition must h satisfy? Now show that h is given by

$$h(x_1)^2 = a_1 x_1^2 + b x_1^3 + c . (4)$$

and determine the parameters a, b and c for $\mu > 0$ and $\mu < 0$.

- e) Plot your analytical expression for $h(x_1)$ together with the vectorfield. Does the figure show what you expect?
- Problem 2: The results from problem 1 indicate that a bifurcation occurs at $\mu = 0$ and that μ is a bifurcation parameter. Secondly, for $\mu=0$ the critical point $(x_1,x_2)=(0,0)$ is different compared to the cases where $\mu \neq 0$.
 - a) Construct a bifurcation diagram for the system in (1-2). In doing so sketch in a figure x_1 as function of μ , for each critical point (x_1, x_2) .
 - b) Determine the type of bifurcation you observe.
 - c) Is the critical point $(x_1, x_2) = (0, 0)$ hyperbolic or nonhyperbolic for $\mu = 0$?
 - d) For $\mu = 0$ the system in (1-2) becomes

$$\dot{x_1} = x_2, \qquad (5)$$

$$\dot{x_1} = x_2,$$

$$\dot{x_2} = -\frac{1}{2}x_1^2.$$
(5)

At the critical point (0,0) the system possesses locally a center manifold $W^c(0,0)$. Determine this center manifold by introducing the mapping

$$x_2 = h(x_1) , (7)$$

and find an analytical expression for h. If we strictly follow Theorem 1, p155, in the textbook by Perko, we would choose a function h_c , where $x_1 = h_c(x_2)$ instead of the expression in (7). However, the calculations using the mapping h is more straight forward than using the mapping defined by h_c . By the way they are each others inverse.

e) Plot your analytical expression for $h(x_1)$ together with the vectorfield ${\bf f}$ for $\mu=0$ by using Maple or pplane. Determine the type of the critical point (0,0) at $\mu=0$ and compare to Theorem 3 p151 in section 2.11 of the textbook by Perko.