Exact trig values 1

To calculate the exact trig value, we can use a combination of the ratio triangles and compound angle rules.

The ratio triangles are provided in the formula sheet:

The compound angle rules are:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan A \pm B = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

For example, calculate the exact value of $\sin\left(\frac{\pi}{12}\right)$

Consider that
$$\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$$

$$\sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \sin\frac{\pi}{3}\cos\frac{\pi}{4} - \cos\frac{\pi}{3}\sin\frac{\pi}{4}$$

Consider that
$$\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$$

 $\sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \sin\frac{\pi}{3}\cos\frac{\pi}{4} - \cos\frac{\pi}{3}\sin\frac{\pi}{4}$
From the ratio triangles, we can work out the exact values of each part: $\sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{\pi}{3} - \sin\frac{\pi}{4}\right) = \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}} - \frac{1}{2} \times \frac{1}{\sqrt{2}}$
 $\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{3}-1}{2\sqrt{2}}$

Rationalising by multiplying by $\frac{\sqrt{2}}{\sqrt{2}}$:

$$\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}$$

Harder: using algebra and trig identities

For angles that where we can't simply use the ratio triangles, we can calculate exact values by forming a quadratic. When the angle we are finding is a factor of 90 or 180, we can rewrite the equation to be sine or cosine of $n\theta$, where $n\theta$ multiplies to 90 or 180.

This then enables us to rearrange using identities and simplify by evaluating sine or cosine of 90 or 180 (or π or 2π).

For example, find the exact value of sin 18.

Since 18 is a factor of 90, we can rewrite this as below. (Note that while it is also a factor of 180, we use the lower value as that requires less working):

$$5\theta = 90$$

$$2\theta + 3\theta = 90$$

$$2\theta = 90 - 3\theta$$

$$\sin(2\theta) = \sin(90 - 3\theta)$$

$$2\sin\theta\cos\theta = \sin 90\cos 3\theta - \cos 90\sin 3\theta$$

Evaluating $\sin(90) = 1$ and $\cos(90) = 0$, we get:

$$2\sin\theta\cos\theta = \cos 3\theta$$

Splitting the 3θ into a sum:

$$2\sin\theta\cos\theta = \cos(2\theta + \theta)$$

$$2\sin\theta\cos\theta = \cos 2\theta\cos\theta - \sin 2\theta\sin\theta$$

Using identities to change the equation so each term has a common factor of $\cos \theta$:

$$2\sin\theta\cos\theta = (1-2\sin^2\theta)\cos\theta - 2\sin^2\theta\cos\theta$$

Divide through by $\cos \theta$

$$2\sin\theta = (1 - 2\sin^2\theta) - 2\sin^2\theta$$

$$2\sin\theta = 1 - 4\sin^2\theta$$

Turn into a quadratic and solve using the quadratic equation:

$$4\sin^2\theta + 2\sin\theta - 1 = 0$$

$$\sin \theta = \frac{-2 \pm \sqrt{20}}{8} = \frac{-2 \pm 2\sqrt{5}}{8} = \frac{-1 \pm \sqrt{5}}{4}$$

Since we know sin 18 is positive (from out knowledge of the graph), $\sin 18 = \frac{-1+\sqrt{5}}{4}$

Questions

(Answers - page ??)

1.