Want more revision exercises? Get MathsFit - New from projectmaths.

2013

What is the derivative of $\frac{x}{\cos x}$?

(B)
$$\frac{\cos x - x \sin x}{\cos^2 x}$$

(A)
$$\frac{\cos x + x \sin x}{\cos^2 x}$$
 (B) $\frac{\cos x - x \sin x}{\cos^2 x}$ (C) $\frac{x \sin x - \cos x}{\cos^2 x}$ (D) $\frac{-x \sin x - \cos x}{\cos^2 x}$

(D)
$$\frac{-x \sin x - \cos x}{\cos^2 x}$$

Using the quotient rule,

Let
$$u = x$$
, $u' = 1$

$$u' = 1$$

Let
$$v = \cos x$$
, $v' = -\sin x$

$$v' = -\sin x$$

$$\frac{d}{dx} \left[\frac{x}{\cos x} \right] = \frac{v.u' - u.v'}{v^2}$$
$$= \frac{\cos x.1 - x. - \sin x}{(\cos x)^2}$$
$$= \frac{\cos x + x \sin x}{\cos^2 x}$$

State Mean: 0.70

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.