Two-Player Perfect-Information Shift-Invariant Submixing Stochastic Games Are Half-Positional

Hugo Gimbert CNRS, LaBRI, Bordeaux.

Meeting FREC, April 2014

Joint work with
Edon Kelmendi (LaBRI, INRIA Bordeaux-Sud-Ouest, Labex CPU)
arXiv: 1401.6575

On the existence of ϵ -subgame perfect strategies

Games with shift-invariant and submixing payoff functions are half-positional

Markov chains (no players)

Mean-payoff: average payoff
$$\lim_n \frac{\sum_{i \leq n} r(s_i)}{n} = \frac{x - \frac{1}{2}}{x + \frac{1}{2}}$$
Counter game: $\lim\inf\sum_{i \leq n} r(s_i) = \begin{cases} +\infty \text{ a.s. if } x > \frac{1}{2} \\ -\infty \text{ a.s. otherwise} \end{cases}$

Two players: Writer and Referee.

Play using actions.

Optimal strategy: Writer should send to conference and referee should write positive reviews.

Players 1 and 2 States S partitioned in S_1 and S_2 , initial state s_0 Actions A partitioned in A_1 and A_2 Transitions $p: S \times A \to \Delta(S)$ where $\Delta(S)$ are probability distributions on S

Goal of player 1 choose actions such that the play $p \in S^\omega$ maximizes the payoff function $f: S^\omega \to \mathbb{R}$ (bounded and Borel-measurable)

Strategy for player 1 $\sigma: S^*S_1 \to A_1$ Strategy for player 2 $\tau: S^*S_2 \to A_2$ Probability measure $\mathbb{P}^{\sigma,\tau}_{s_0}$ on S^ω in the Markov chain induced by σ and τ

Goal of player 1 choose σ that maximizes $\mathbb{E}_{s_0}^{\sigma,\tau}[f]$

A fundamental theorem by Martin

Theorem [Martin 98] for every (concurrent) stochastic game where f is bounded and Borel-measurable,

$$\sup_{\sigma}\inf_{\tau}\mathbb{E}^{\sigma,\tau}_{s_0}[f]=\inf_{\tau}\sup_{\sigma}\mathbb{E}^{\sigma,\tau}_{s_0}[f]\ .$$

and this defines the value $val(s_0)$ of s_0 .

The \leq inequality is trivial.

Corollary: for every $\epsilon>0$ player 1 has an ϵ -optimal strategy σ_ϵ such that:

$$\inf_{\tau} \mathbb{E}_{s_0}^{\sigma_{\epsilon},\tau}[f] \geq val(s_0) - \epsilon.$$

Mean-payoff games [Mertens-Neyman 81].

How do the ϵ -optimal strategies look like? Can we compute them?

Computing payoffs (1)

Parity games

One-counter stochastic games (Brazdil, Brozek, Etessami): each state s is labelled with $r(s) \in \{0, -1, +1\}$. Payoff after play $p = s_0 s_1 s_2 \cdots$ is 0 or 1 depending whether:

Unboundedness:
$$\limsup \sum_{i \le n} r(s_i) = +\infty$$

Divergence:
$$\liminf \sum_{i \le n} r(s_i) = +\infty$$

Computing payoffs (2)

Mean-payoff games and variants: each state s is labelled with $r(s) \in \mathbb{R}$. Payoff after play $p = s_0 s_1 s_2 \cdots$ is:

Mean-payoff game
$$f_{mean}(p) = \limsup \frac{1}{n} \sum_{i \leq n} r(s_i)$$
 Positivity game
$$\begin{cases} 1 \text{ if } f_{mean}(p) > 0 \\ 0 \text{ otherwise.} \end{cases}$$
 Generalized mean-payoff game
$$\begin{cases} 1 \text{ if } \exists k, f_{mean,k}(p) > 0 \\ 0 \text{ otherwise,} \end{cases}$$

where each $f_{mean,k}$ is associated to a different reward mapping $r_k: S \to \mathbb{R}$.

Positionality results

Theorem [several authors¹]: in all these games player 1 has optimal positional strategies. Also player 2 except in the generalized mean-payoff game.

Positional strategy: $\sigma: S \to A$ instead of $\sigma: S^* \to A$.

The generalized mean-payoff game is half-positional, others are positional.

Motivation: positional strategies = main ingredient of many algorithms for stochastic games.

Tools to prove positionality

Fix a payoff function f.

Theorem: [G., Zielonka 07] if every one-player game equipped with f or -f is positional then every two-player game as well.

Theorem: $[G. 07^2]$ if f is prefix-independent and submixing then every one-player game equipped with f is positional.

prefix-independent:
$$\forall u \in S^*, \forall p \in S^\omega, f(up) = f(p)$$
 submixing: $\forall u_1, v_1, u_2, v_2, \ldots \in S^+$,

$$f(u_1v_1u_2v_2\cdots) \leq \max\{f(u_1u_2\cdots), f(v_1v_2\cdots)\}$$
.

Used successfully to study one-counter games.

What about half-positional games?.

Theorem: [Kopczynski, 06] if a game is deterministic, prefix-independent and submixing then it is half-positional.

²Warsaw, -25° Celsius.

Tool to prove half-positionality

Fix a payoff function f.

Theorem: [G., Kelmendi 14] if f is prefix-independent and submixing then every two-player game equipped with f is half-positional.

Generalizes both [Kopczynski 06] and [G. 07].

Covers all examples and many more.

ϵ -subgame-perfect strategies

Optimal strategy for referee: if Referee starts he writes a positive review. If Writer starts and sends to journal (suboptimal) referee writes negative review (suboptimal).

ϵ -subgame-perfect strategies

Play ϵ -optimally whatever happens.

Notation: Strategy σ , finite play $p \in S^*$,

$$\sigma[p]: q \mapsto \sigma(pq)$$
.

Definition:Strategy σ is ϵ -subgame-perfect if $\forall p \in S^*, \sigma[p]$ is ϵ -optimal.

Theorem: [G., Kelmendi 14] In every prefix-independent game, both players have ϵ -subgame-perfect strategies.

Weakness. Given a strategy σ for Player 1, a finite play $p \in S(AS)^*$ is a σ -weakness if $\sigma[p]$ is not 2ϵ -optimal.

Factorizing plays according to weaknesses. Every infinite play $q \in S(AS)^{\omega}$ can be factorized uniquely as a finite or infinite sequence $q = p_0 p_1 p_2 \dots$ such that $\forall p_n$,

- 1. p_n finite $\implies p_n$ is a σ -weakness,
- 2. p_n finite \implies no strict prefix of p_n is a σ -weakness,
- 3. p_n infinite \implies no prefix of p_n is a σ -weakness, and this factorization can be computed online.

The reset strategy

Definition each time a σ -weakness occurs, we reset the memory.

$$\hat{\sigma}(p_0p_1\ldots p_n)=\sigma(p_n).$$

Lemma: if σ is ϵ -optimal and consistent then the reset strategy $\hat{\sigma}$ is 2ϵ -subgame-perfect

Consistent strategies

A strategy is consistent if whenever it plays action a in state s,

$$val(s) = \sum_{t} p(s, a, t) val(t)$$
.

Lemma: player 1 has a consistent ϵ -optimal strategy.

Lemma: if σ is consistent and T is a stopping time with respect to $(S_n)_{n\in\mathbb{N}}$ then

$$\mathbb{E}[\lim_{n} val(S_{\min(n,T)})] \geq val(s)$$
.

Lemma: σ ϵ -optimal, then $\exists \mu > 0$ such that for all consistent τ ,

$$\mathbb{P}_s^{\sigma,\tau}(\exists n, S_0 \cdots S_n \text{ is a } \sigma\text{-weakness}) \leq 1 - \mu.$$

Only finitely many weaknesses occur with the reset strategy

Lemma: If σ is ϵ -optimal,

 $\mathbb{P}^{\hat{\sigma}, au}_{\mathbf{s}}(\exists n\in\mathbb{N}, \text{ there is no } \sigma\text{-weakness after date } n)=1$.

Corollary: If σ is ϵ -optimal then $\hat{\sigma}$ is 2ϵ -subgame-perfect.

Theorem: [G., Kelmendi 14] if f is prefix-independent and submixing then every two-player game equipped with f is half-positional.

Proof: by induction on the size of the arena.

The existence of an ϵ -subgame-perfect strategies τ_0 and τ_1 for player 2 in the subgames G_0 and G_1 is used to build a pair (σ_0, τ_{01}) of optimal strategies in G.

Conclusion

New generic result about half-positionality of games.

Next:

games with compact action spaces. strategies with simple memory structures.