Diagrammatic semantics for digital circuits

George Kaye
University of Birmingham
Conference of Research Skills 2020
January 27

Introduction

There are two main modelling methodologies in computer science:

Software: Operational semantics

Hardware: Simulation

Simulation obfuscates the design of hardware... could we use operational semantics instead?

Outline

- Operational semantics
- Graphs and hypergraphs
- Circuits as hypergraphs
 - How to construct them
 - How to reduce them

Operational semantics

Use syntactic reductions with the aim of reaching a value.

We can also use **partial evaluation** to only perform some of the steps.

So how could we bring this to hardware?

```
int triple (int x) {
   return x + x + x;
triple(2 * 3)
 = triple(6)
 = 6 + 6 + 6
 = 12 + 6
 = 18
```

Circuits as equations?

We could represent circuits as equations...

$$1 \otimes \curlywedge \cdot \curlywedge \otimes 2 \cdot 1 \otimes \times_{1,1} \otimes 1 \cdot \oplus \otimes \land$$

... but this is very confusing!

It's also computationally difficult to identify where we can perform reductions.

Graphs

A collection of nodes and edges that can connect at most two nodes.

We are only concerned with the connections between nodes.

Hypergraphs

A graph with *hyperedges* that can connect to multiple nodes.

Hyperedges can have source nodes and target nodes.

So how do we make a circuit hypergraph?

Values are what we can feed to our circuits:

To apply a circuit to values, we replace the input edge:

To apply a circuit to values, we replace the input edge:

We can also **fork** (д) wires:

This represents the duplication of a value.

And **swap** wires:

Making bigger circuits

We can compose hypergraphs sequentially...

We can compose hypergraphs sequentially...

We can compose hypergraphs sequentially...

We can compose hypergraphs sequentially...

...or in **parallel**!

Reducing circuit hypergraphs

The purpose of operational semantics was to be able to reduce circuits to some value.

Reducing circuit hypergraphs

We can use **graph rewrites** to perform reductions:

This is **efficient** since we can identify rewrites in linear time.

Example Half-adder

Α	В	Sum	Carry
0	0	0	0
1	0	1	0
0	1	1	0
1	1	1	1

true **XOR** false = true

true **XOR** false = true

Α	В	Sum	Carry
0	0	0	0
1	0	1	0
0	1	1	0
1	1	1	1

it's correct!

Conclusion

We want to use **operational semantics** for circuits so we can reduce circuits to a value step by step

Can we do this? Yes!

Conclusion

We can represent circuits as hypergraphs

We can use graph rewrites to reduce them

Conclusion - what else?

Conclusion - what next?

$$1\otimes \curlywedge \cdot \curlywedge \otimes 2 \cdot 1 \otimes imes_{1,1} \otimes 1 \cdot \oplus \otimes \land$$

