Problem 2.2 - Uncertainty Analysis, Case A

Get["UCAnalysis.m", Path → {NotebookDirectory[]}]

$$\mathbf{v}_1 \ \left(\frac{\mathbf{d}_1}{\mathbf{d}_2}\right)^2 \ \mapsto \ \left(\begin{array}{cccc} \mathbf{d}_1 & 0.5 \times 25.4 \pm 0.5 \times 25.4 \times 0.05 & \text{Uniform} \mathcal{D} \\ \mathbf{d}_2 & 2.0 \pm 0.05 & \text{Uniform} \mathcal{D} \\ \mathbf{v}_1 & 2.0 \pm 0.05 & \text{Uniform} \mathcal{D} \end{array}\right)$$

Evaluated Functional Relationship

QAnalysisEnvironment

$$\mathbf{y} = \frac{\mathbf{x}_1^2 \, \mathbf{x}_3}{\mathbf{x}_2^2}$$

Variable		Uncertainty Interval	Distribution	$ \partial f/\partial x_i $
\mathbf{x}_1	d_1	$(1.2700 \pm 0.0635) \times 10^{1}$	Uniform	1.27×10^{1}
x ₂	d_2	$(2.00 \pm 0.05) \times 10^{0}$	Uniform	8.0645×10^{1}
x ₃	\mathbf{v}_1	(2.00 ± 0.05) × 10°	Uniform	4.03225×10^{1}

У	80.645	
Ymin Ymax	67.5431859012493 95.8673402366864	= y - 13.1018 = y + 15.2223
ε_{max} $y \pm \varepsilon_{\text{max}}$	14.112875 $(8 \pm 2) \times 10^{1}$	= 17.5% = $8(2) \times 10^{1}$
u _c y ± u _c	5.3341653620201 $(8.1 \pm 0.6) \times 10^{1}$	= 6.61% = $8.1(6) \times 10^{1}$

Absolute Maximum Uncertainty

$$\varepsilon_{\text{max}} = \sum_{i=1}^{n} |\partial_{\mathbf{x}_{i}} \mathbf{f}[\mathbf{x}]| \varepsilon_{i}; \mathbf{f}[\mathbf{x}] \pm \varepsilon_{\text{max}} // \text{QUCE}$$

```
80.645 \pm 14.1129

\in [66.53; 94.76]

\approx (8 \pm 2) \times 10^{1} = 8(2) \times 10^{1}
```

Combined Standard Uncertainty

$$u_c = \left(\sum_{i=1}^{n} (\partial_{x_i} f[x])^2 u_i^2\right)^{1/2}; f[x] \pm u_c // QUCA$$

```
80.645 ± 5.33417

\in [75.311; 85.979]

\simeq (8.1 \pm 0.6) \times 10^{1} = 8.1(6) \times 10^{1}
```

Monte Carlo Simulation

```
Block \left\{ data, trials = 10^6 \right\},
  data = f@@ Table[RandomReal[fDist[i], {trials}], {i, 1, n}];
  Mean[data] ± StandardDeviation[data] ] // QUCA
   80.7601896443237 ± 5.34317
     ∈ [75.417; 86.103]
     \simeq (8.1 ± 0.6) \times 10<sup>1</sup> = 8.1(6) \times 10<sup>1</sup>
```