

Redes de Computadores

Ricardo José Cabeça de Souza

ricardo.souza@ifpa.com.br

Camadas Conceituais da Arquitetura Internet TCP/IP ricardo.souza@ifpa.edu.br

CAMADA DE INTERFACE DE REDE (ENLACE)

- Fornece interface de serviço a camada de rede
- Endereçamento Físico
- controle de
- Controle de acesso ao meio de transmissão
- Determina como os bits da camada física serão agrupados em quadros (framing)
- Controle de erros de transmissão
- Controle de fluxo de quadros

- CAMADA DE INTERFACE DE REDE (ENLACE)
 - Possíveis Serviços:
 - Sem conexão e sem confirmação
 - Envio de quadros independentes
 - Destino n\u00e3o confirma recebimento
 - Sem conexão
 - Apropriado quando taxa erros baixa
 - Aplicação em tráfego de tempo real

- CAMADA DE INTERFACE DE REDE (ENLACE)
 - Possíveis Serviços:
 - Sem conexão e com confirmação
 - Sem conexão
 - Quadros enviados são individualmente confirmados
 - Caso quadro n\u00e3o tenha chegado dentro de um intervalo de tempo espec\u00edfico, acontece o reenvio
 - Útil em canais não confiáveis (Ex: sem fio)

- CAMADA DE INTERFACE DE REDE (ENLACE)
 - Possíveis Serviços:
 - Orientado à conexão
 - Estabelecimento de conexão
 - Quadros são numerados
 - Garantia de recebimento
 - Três fases:
 - » Conexão, transferência e Desconexão

- CAMADA DE INTERFACE DE REDE (ENLACE)
 - Controle de erros/fluxo
 - FCS (Frame Check Sequence)
 - Identificar se a confirmação será com ou sem erro
 - Transmissor não deve enviar mais dados do que o receptor for capaz de processar
 - Regras de quando o transmissor pode enviar o quadro seguinte
 - Bits de paridade

CAMADA DE INTERFACE DE REDE (ENLACE)

- Controle de erros/fluxo
 - Uso de temporizadores na camada de enlace (timeout)
 - Desativado com chegada da confirmação
 - Terminado o tempo sem confirmação indica problema em potencial
 - Quadros são numerados para receptor distinguir quadros originais das cópias
 - Algoritmo de bit alternado (stop-and-wait)
 - Janela n com retransmissão integral (go-back-n)
 - Janela n com retransmissão seletiva (selective repeat)

- CAMADA DE INTERFACE DE REDE (ENLACE)
 - Controle de fluxo

- CAMADA DE INTERFACE DE REDE (ENLACE)
 - Controle de fluxo

CAMADA DE INTERFACE DE REDE (ENLACE)

- Controle de erros/fluxo
 - Algoritmo de bit alternado (stop-and-wait)
 - Primeiro quadro recebe numeração 0, segundo 1, terceiro 0, e assim sucessivamente
 - Transmissor só envia novo quadro quando recebe reconhecimento do quadro anteriormente enviado
 - Se não receber confirmação, reenvia quadro anterior
 - Ineficiente por deixar canal ocioso ao esperar confirmação

Algoritmo de bit alternado (stop-and-wait)

Fonte: https://www.researchgate.net/profile/Sunil Mandiwal/publication/275043653/figure/fig1/AS:294550712143878@1447237770575/Link-utilization-and-working-process-of-stop-and-wait-ARQ.png

- CAMADA DE INTERFACE DE REDE (ENLACE)
 - Algoritmo de bit alternado (stop-and-wait)

CAMADA DE INTERFACE DE REDE (ENLACE)

- Controle de erros/fluxo
 - Janela n com retransmissão integral (go-back-n)
 - Envio de diversos quadros sem esperar reconhecimento
 - Número máximo de quadros, devidamente numerados, determina largura da janela de transmissão
 - Transmissor identifica problema quando n\u00e3o recebe reconhecimento do quadro
 - Todos os quadros a partir do que não foi reconhecido são retransmitidos
 - Janela n com retransmissão seletiva (selective repeat)
 - Apenas o quadro que não foi reconhecido é retransmitido

Fonte: http://images.slideplayer.com/33/8175417/slides/slide_4.jpg

Projeto do protocolo Go-Back-N ARQ

selective repeat

Fonte: https://3.bp.blogspot.com/-sugKH2Q-5EA/VMTZddlOtpI/AAAAAAAAAZDA/fQznmvsz1zU/s1600/selective%2Brepeat01.jpg

Janela Deslizante

- Go-back-n
- Selective Repeat

Links Simuladores:

http://www.ccslabs.org/teaching/rn/animations/gbn sr/

https://wps.pearsoned.com/ecs_kurose_compnetw 6/216/55463/14198702.cw/index.html

PROTOCOLOS NÍVEL DE ENLACE

- Ethernet
- ATM (Asynchronous Transfer Mode)
- FDDI (Fiber Distributed Data Interface)
- HDLC (High-level Data Link Control)
 - Protocolo síncrono, orientado a bit, de caráter geral para canais full-duplex (ponto-a-ponto ou multiponto)
 - HDLC é o tipo de encapsulamento padrão para cada porta serial em roteadores

PROTOCOLOS NÍVEL DE ENLACE

- SLIP (Serial Line IP)
 - Conectar estações por meio de linhas discadas conectadas a modem
- PPP (Point-to-Point Protocol)
 - Enlaces de dados para linhas ponto-a-ponto
 - Trata da detecção de erros
 - Um quadro PPP (um datagrama IP, IPX ou Appletalk) é empacotado com um cabeçalho GRE (encapsulamento de roteamento genérico) e um cabeçalho IP
 - O cabeçalho IP contém os endereços IP de origem e destino que correspondem ao cliente e ao servidor VPN.

PPP(Point-to-Point Protocol)

Fonte: https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQdGblsHjHpiVaz00VGCilzO5AVgl6eHYQ3nRtQDLeV9cy6vmAL

PPP(Point-to-Point Protocol)

Fonte: https://jonnytyers.files.wordpress.com/2016/11/basic_firewall_ppp.png

PONTE (BRIDGE)

- É um repetidor inteligente, pois faz controle de fluxo de dados
- Ela analisa os pacotes recebidos e verifica qual o destino
- Se o destino for o trecho atual da rede, ela não replica o pacote nos demais trechos, diminuindo a colisão e aumentando a segurança.

PONTE

Fonte: https://i.ytimg.com/vi/OBIJ3QuEt9k/maxresdefault.jpg

PONTE

An Ethernet Bridge Connecting Two Segments

Fonte: https://s.hswstatic.com/gif/ethernet5.gif

ENDEREÇAMENTO DA CAMADA DE ENLACE

- NIC tem endereçamento MAC (Media Access Control)
- Número com 48 bits
- Três primeiros segmentos:
 - OUI(Organizationally Unique Identifier) atribuído pelo IEEE(Institute of Eletrical and Eletronics Engineers) -> Fabricante

Três últimos: Código OUI definido pelo IEEE (identifica o fabricante) Definido pelo fabricante 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte

ENDEREÇAMENTO DA CAMADA DE ENLACE

Fonte: http://www.bosontreinamentos.com.br/wp-content/uploads/2017/07/endere%C3%A7o-MAC-address-redes.jpg


```
LogandoT
C:\Windows\system32\cmd.exe
Microsoft Windows [versao 6.1.7600] www.logandoti.com
Copyright (c) 2009 Microsoft Corporation. Todos os direitos reservados:
C:\Users\7virtual\ipconfig /all
Configuração de IP do Windows
                                       LogandoTi-win?
  Tipo de nó. . . . . . . . . . . . : híbrido
  Roteamento de IP ativado. . . . . . . . . . . . .
  Adaptador Ethernet Conexao local:
  Sufixo DNS específico de conexao. . . . . :
  Descrição . . . . . . . . . . . : Intel(R) PRO/1000 MT Network Co
  Endereco Físico . . . . . . . . . . . . : 00-0C-29-85-73-A7
 Servidores DNS.
  NetBIOS em Topip. .
Adaptador Ethernet VirtualBox Host-Only Network:
  Sufixo DNS específico de conexao. . . . .
  Descrição . . . . . . . . . . . . . . . . . . VirtualBox Host-Only Ethernet A
  Endereço Físico . . . . . . . . . . . : 08-00-27-00-0C-98
  192.168.56.1(Preferencial)
                                        255.255.255.0
  Gateway Padrao. . . .
                                        Habilitado
```

Fonte: https://www.palpitedigital.com/wp-content/uploads/2011/01/endereco-mac.jpg

Ethernet

- Bob Metcalfe 1973 Xerox PARC
- Alto Aloha Network
- Ethernet
 - Ether espaço luminífero
 - A ideia de Éter surgiu entre as discussões a respeito da natureza da luz, onde alguns defendiam que esta seria corpuscular, ou seja, dotada de matéria, já outros defendiam que a natureza da luz seria ondulatória. Com isto o éter veio a contribuir com a ideia de que a luz seria uma onda, uma vez que precisaria de um meio material onde se propagar, e este meio foi chamado de éter
 - Net Recurso essencial ao sistema: meio físico
- Patente Ethernet: 1977 Multipoint Data
 Communication System With Collision Detection

- EVOLUÇÃO
- Lançamento Padrão DIX Ethernet 10 Mbps
 - -1980
 - DEC / Intel / Xerox (DIX)
 - Cabo coaxial grosso

- EVOLUÇÃO
- Padronização IEEE (LAN e MAN)
 - -1985
 - -802
 - Carrier Sense Multiple Access with Collision Detection -CSMA/CD (802.3)
 - Token Bus (802.4)
 - Token Ring (802.5)
 - DQDB (802.6)

EVOLUÇÃO ETHERNET

- 10Base5
- 10Base2
- 10BaseT
- 10BaseF
- 100BaseTX (Fast Ethernet)
- 100BaseFX (Fast Ethernet)
- 1000BaseT (Gigabit Ethernet)
- 1000BaseX (Gigabit Ethernet)
- 10 Gigabit Ethernet
- 40 Gigabit Ethernet
- 100 Gigabit Ethernet

• EVOLUÇÃO ETHERNET

Ano	Nome Comercial	Nome Técnico	IEEE	Taxa	Cabo UTP (100m)
1990	Ethernet	10BASE-T	802.3	10 Mbps	Cat 5
1000	Latoriot	TOD/ (OL 1	002.0	10 111000	Outo
1995	Fast-Ethernet	100BASE-TX	802.3u	100 Mbps	Cat5e
1999	Gigabit-Ethernet	1000BASE-T	802.3ab	1 Gbps	Cat6
2006	10GbE	10GBASE-T	802.3an	10 Gbps	Cat6A

Fonte: https://2.bp.blogspot.com/-KWcntX5B1Po/V_J4JWXMsri/AAAAAAAAAAGQ/INO3zz1PBBoRbc3j9W5EYvd_KDbLhCkgwCLcB/s1600/Conhe%25C3%25A7a%2Bo%2Bnovo%2Bpadr%25C3%25A3o%2BNBASE-T%2Bde%2BGigabit%28Ethernet.png

Fonte: https://image.slidesharecdn.com/pptcarlossperaenterprise20octubre-111021135823-phpapp01-120907122727-phpapp02/95/data-center-convergentes-carlos-spera-20-de-octubre-uy-20-728.jpg?cb=1347021104

Fonte: https://packetpushers.net/wp-content/uploads/2016/04/ethernet-alliance-module-sfp-types-1.png ricardo.souza@ifpa.edu.br

High-speed Ethernet standards

Standard	Media	Distance	
40GBase-SR4	MMF, four fibers (OM3)	100 m	
40GBase-LR4	SMF, four wavelengths	10 km	
40GBase-CR4	Copper	10 m	
40GBase-KR4	Backplane	1 m	
100GBase-SR10	MMF, 10 fibers (OM3)	100 m	
100GBase-LR4/ER4	SMF, four wavelengths	10 km	
100GBase-CR10	Copper	10 m	

Fonte: https://aemstatic-ww2.azureedge.net/content/lw/en/articles/print/volume-26/issue-10/applications/40100-gigabit-ethernet-watching-the-clock/_jcr_content/leftcolumn/article/headerimage.img.jpg/1327014707812.jpg

40 Gigabit Ethernet

Intel® Ethernet Converged Network Adapter Family

Fonte: https://www.pcper.com/files/imagecache/article_max_width/news/2014-09-08/intel-40gb-nic-01.png

100 Gigabit Ethernet

Fonte: https://i.pinimg.com/originals/c4/fa/b7/c4fab7a378a9c11cf51e3d5c0bd9e17d.jpg

OS ELEMENTOS BÁSICOS DO ETHERNET

- QUADRO(Frame)
 - Conjunto padronizado bits usados para transporte dados
- Protocolo MEDIA ACCESS CONTROL(MAC)
 - Regras de acesso
- COMPONENTES DE SINALIZAÇÃO
 - Dispositivos eletrônicos para enviar e receber dados
- MEIO FÍSICO
 - Cabos ou outros meios

O QUADRO ETHERNET

PRE = Preamble

SFD = Start-of-frame delimiter

DA = Destination address

SA = Source address

FCS = Frame check sequence

Fonte: http://docwiki.cisco.com/w/images/4/46/CT840706.jpg

O QUADRO ETHERNET

Fonte: https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTE_i1rl4mFej3l5L7b6t7PLs-kKmzLjeFOZYWCb5SzmdZATUJ_SA

Preâmbulo/SFD

– 64 bits

- Sincronização do stream de dados
- Interfaces 10 Mbps
- Permite perda dados iniciais
- SFD Start Frame Delimiter
- Mantido em Fast e Gigabit Ethernet (sinalização constante)

Endereço de Origem e Destino

- Controlado pelo IEEE-Standards Association
- OUI (Organizationally Unique Identifier) do Fabricante – 24 bits
- 24 bits seguintes atribuído pelo fabricante
- Endereço MAC (Media Access Control)
 - Interface(NIC) lê endereço destino
 - Trata o quadro ou ignora

Cabeçalho de marcação de VLAN (Virtual LAN)

- Entre origem e campo de tamanho/tipo
- 4 bytes de extensão
- Usado por hubs de comutação para direcionar tráfego para membros de uma determinada VLAN

- Campo de Tipo/Tamanho
 - Se valor campo <= tamanho máx quadro (1.518 decimal)
 - Então campo Tipo/Tamanho = campo de tamanho
 - nº octetos dados LLC
 - <u>Senão</u> valor campo Tipo/Tamanho > tamanho máx
 - tipo de protocolo dos dados

16 bits

Length/Type

Campo de Dados

- Mínimo de 46 bytes e Máximo de 1500
- Se dados < 46 bytes</p>
 - São usados dados de preenchimento(PAD)

46 a 1500 bits

Data/PAD

FCS (Frame Check Sequence)

- CRC (Cyclic Redundancy Check)
- Verificar integridade quadro (sem preâmbulo)
- CRC gerado na transmissão com campos: destino, origem, tipo/tamanho e dados

CRC (Cyclic Redundancy Check)

- Código Polinomial
- Cadeias de bits
- Polinômio Gerador G(x)
- Quadro M(x)
- Aritmética Módulo 2

32 bits

FCS

Cálculo do FCS (Frame Check Sequence)

- Adicionar um conjunto de bits (Frame Check Sequence) à mensagem original a transmitir
- FCS(x) é igual ao resto da divisão inteira entre duas funções polinomiais M(x) e G(x) onde:
 - M(x) é a nossa mensagem original sem código de erros
 - G(x) o polinômio gerado pré-definido (chave da nossa codificação).

$$FCS(x) = resto[\frac{M(x)x^n}{G(x)}]$$

Cálculo do FCS (Frame Check Sequence)

- Transformar a mensagem binária em polinômio
- Multiplicar o polinômio da mensagem pelo elemento de maior expoente do polinômio gerador
- Dividir o resultado pelo polinômio gerador, em operação aritmética módulo 2

$$\frac{M(x)x^n}{G(x)}$$

- M(X)bin=1101011 → $M(X)=X^6+X^5+X^3+X+1$
- $G(X)=X^4+X^3+1$
- O resto da divisão será o FCS, com a mesma quantidade de bits do maior expoente do gerador, incluído na mensagem a ser transmitida

Cálculo do FCS (Frame Check Sequence)

- No receptor:
 - Chegada de M(X) em binário, com o FCS
 - Transforma em polinômio
 - Divide (aritmética módulo 2) pelo polinômio gerador
 - Se o resto for zero
 - A mensagem chegou sem erros
 - Caso contrário, a mensagem com erros é descartada

Polinômios Geradores

Tabela 3: Polinômios de CRC comuns

CRC	G (x)
CRC-8	$x^8 + x^2 + x + 1$
CRC-10	$x^{10} + x^9 + x^5 + x^4 + x + 1$
CRC-12	$x^{12} + x^{11} + x^3 + x^2 + 1$
CRC-16	$x^{16} + x^{15} + x^2 + 1$
CRC-CCITT	$x^{16} + x^{12} + x^5 + 1$
CRC-32	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$

Fonte: PETERSON; DAVIE, 2004, p.70

Fonte: https://www.teleco.com.br/tutoriais/tutorialcrc1/pagina 6.asp

PROTOCOLO MAC (Media Access Control)

- Não existe controlador central
- Entrega por broadcast
- Canal compartilhado
- CSMA/CD
 - Carrier Sense escutar canal
 - Multiple Access prioridade igual de acesso ao canal
 - Collision Detect sentir a colisão no canal

REGRAS GOVERNAM TRANSMISSÃO

- Sem portadora, tempo >= IFG
 - TRANSMITA
 - Vários quadros
 - Intervalo IFG
- Com portadora
 - Ouvir até fim portadora
- Detectada colisão
 - Transmitir + 32 bits (Sinal de Engarrafamento de Imposição de Colisão)
 - Espera e reprograma transmissão

Camada Enlace CSMA/CD

Tempo t atingir outra extremidade

A medida que a velocidade cresce, o comprimento do quadro mínimo deve aumentar ou o comprimento do cabo diminuir.

BACKOFF EXPONENCIAL

- Antes de tentar uma retransmissão, o adaptador espera um tempo aleatório depois de m colisões (exponential backoff), isto é, acesso aleatório
- Escolhe K entre $\{0,1,...2^{m-1}\}$
- Espera K x 512
- -Volta a tentar acesso ao meio

CONTROLE DE ACESSO AO MEIO (MAC)

- Gerência do controle de acesso ao meio de transmissão
- Protocolos de Acesso:
 - CSMA/CD (Carrier-Sense Multiple Access with Collision Detection) (802.3)
 - CSMA/CA (Carrier-Sense Multiple Access with Collision Avoidance)
 - Estação avisa sobre a transmissão e em quanto tempo a mesma irá realizar a tarefa (802.11)
 - Polling
 - Somente transmite quando interrogado pelo controlador
 - Slot
 - Anel segmentado com bit indicando se cheio ou vazio
 - Token Bus (802.4)
 - Token Ring (802.5)
 - TDM/FDM

CSMA/CD E CSMA/CA

Link Simulador:

https://wps.pearsoned.com/ecs_kurose_compnetw 6/216/55463/14198702.cw/index.html

Ethernet Full-Duplex

- Comunicação simultânea entre duas estações
- Estações ligadas segmentos ponto a ponto
- Dobra a capacidade agregada do link
- Limite: recursos de mídia
- Especificação IEEE 802.3x

REQUISITOS FULL DUPLEX

- Sistema de mídia com percurso de transmissão e recepção independentes: par trançado e FO
- Duas estações ligadas por links ponto a ponto fullduplex (CSMA/CD é desativado)
- Duas estações configuradas e são capazes de utilizar o modo de operação full-duplex

Obs:

O IFG continua a existir

HUB (NÍVEL FÍSICO)

- REPETIDOR
 - Nível de sinal
 - Não toma decisões baseada em endereços
 - Retransmite sinal
 - Limite 1.024 estações
- FUNÇÕES
 - Impor colisões a todos os segmentos
 - Restaurar amplitude sinal
 - Fragmentar a extensão

HUB(CONCENTRADOR)

Fonte: https://acco-product-images.s3.amazonaws.com/mbank247376_w1400_h1400.jpg

Fonte: https://images-na.ssl-images-amazon.com/images/I/715NRWW6N0L.gif

DOMÍNIO DE COLISÃO

 Sistema Ethernet cujos elementos (cabos, repetidores, interfaces de estação e outros) fazem parte do mesmo domínio de temporização do sinal.

Fonte: http://s3.amazonaws.com/magoo/ABAAAgZe8AE-10.jpg

• DOMÍNIO DE COLISÃO

(a) Repeater-based CSMA/CD network

Fonte: http://www.bb-elec.com/Images/Managed-Ethernet-Switches-Dia1.aspx

SWITCH (COMUTADORES)

- Agiliza o tráfego e alivia gargalos do backbone
- Divide o tráfego da rede em segmentos menores
- Separam domínios de colisão
- Ligam segmentos de velocidades diferentes
- Controlam o fluxo
- Aumentam largura de banda

• HUBS DE COMUTAÇÃO (SWITCH)

Fonte: https://s.hswstatic.com/gif/lan-switch-cisconetwork.gif

Fonte: https://brain-images-ssl.cdn.dixons.com/6/6/10156166/u_10156166.jpg

SWITCH (COMUTADORES)

- Baseada no endereço MAC
- Criação de LANs separadas
- Não há limites ao tamanho possível de uma LAN quando são usados comutadores para interconectar segmentos
- Quando o quadro deve ser encaminhado num segmento, usa o CSMA/CD para acessá-lo
- Plug-and-play, self-learning (auto aprendizado)

SWITCH - Domínio de Colisão

(b) Switch-based CSMA/CD network

Fonte: http://www.bb-elec.com/Images/Managed-Ethernet-Switches-Dia2.aspx

HUBS DE COMUTAÇÃO FUNCIONAMENTO

- Aprendizagem dos endereços dos quadros
- Decide encaminhamento do quadro
- Portas em modo "promíscuo"
 - Interface lê todos os quadros
 - Inclui endereço em uma tabela (porta x estação)
- Endereços não vistos broadcasting
- Desaprender período 5 min

• HUBS DE COMUTAÇÃO - RECURSOS

- Gerenciamento (SNMP)
- Porta de span (port mirroring port analyzer)
- Filtros personalizados
- Gerenciamento de Tráfego (prioridade)
- LANs Virtuais

Porta de "span" (port mirroring)

Fonte: https://msdnshared.blob.core.windows.net/media/2016/05/clip_image001_thumb1.png

SWITCH: ISOLAMENTO DE TRÁFEGO

Fonte: https://slideplayer.com.br/slide/1760063/7/images/49/Switch%3A+isolamento+de+tr%C3%A1fego.jpg

• HUBS DE COMUTAÇÃO - VANTAGENS

- Aceitar várias conversações simultâneas entre as portas
- Melhora desempenho da rede
- Oferece maior largura de banda e muitas portas
- Simples de instalar e operar
- Transparentes à operação Ethernet
- Ligação de segmentos em velocidades diferentes

MODEM

- Modulador / Demodulador
- São sempre utilizados aos pares, um em cada extremidade do caminho de transmissão
- É um dispositivo eletrônico que modula um sinal digital numa onda analógica, pronta a ser transmitida pela linha telefônica, e que demodula o sinal analógico e reconverte-o para o formato digital original

MODEM

- Família xDSL (*Digital Subscriber Line*, ou linha de assinante digital)
- ADSL é um padrão de comunicação digital que utiliza o par trançado de cobre (linha telefônica comum) como meio de transmissão.

Fonte: http://netzapinformatica.com.br/blog/wp-content/uploads/2015/01/liga%C3%A7%C3%A3o-de-roteador-com-modem.png

MODEM

Família xDSL (*Digital Subscriber Line*, ou linha de assinante digital)

Fonte: https://www.tecmundo.com.br/banda-larga/3489-conheca-os-varios-tipos-de-conexao.htm

MODEM

- Família 4G

Fonte:

 $https://s2.glbimg.com/kVeW9UfDkc6NggXjeFjV6nUTpB4=/0x156:1598x1008/1000x0/smart/filters:strip_icc()/i.s3.glbimg.com/v1/AUTH_08fbf48bc0524877943fe86e43087e7a/internal_photos/bs/2017/y/S/REeGjnSTap4B9LDjQYpw/5550001.jpg$

MODEM

– Modem/Roteador

Fonte: http://s.glbimg.com/po/tt/f/original/2013/05/13/modemroteadors witch.jpg

Fonte: http://ria.vienthongquangngai.vn/wp-content/uploads/2017/04/draytek-modem.png

MODEM

Cable Modem/Roteador

Fonte: https://infornandes.files.wordpress.com/2010/04/sem-titulo4.png

http://4.bp.blogspot.com/-EfqFhTTBmHg/UHuMhVG-3-I/AAAAAAAAACw/khEIK4ySDC4/s1600/motorola_sb5100.gif

Referências

- FOROUZAN, Behrouz A. Comunicação de dados e redes de computadores.
 4. ed. São Paulo: McGraw-Hill, 2008.
- KUROSE, Jim F. ROSS, Keith W. Redes de Computadores e a Internet. Uma nova abordagem. 3. ed. São Paulo: Addison Wesley, 2006.
- TANENBAUM, Andrew S. Redes de computadores. 3. Ed. Rio de Janeiro: Campus, 1997.
- COMER, Douglas E. Internetworking with TCP/IP. Principal, Protocolos, and Architecture. 2.ed. New Jersey: Prantice Hall, 1991. v.1.
- OPPENHEIMER, Priscilla. Projeto de Redes Top-down. Rio de Janeiro: Campus, 1999.
- GASPARINNI, Anteu Fabiano L., BARELLA, Francisco Rogério. TCP/IP Solução para conectividade. São Paulo: Editora Érica Ltda., 1993.
- Gigabit Ethernet White Paper by Gigabit Ethernet Alliance (1997) http://www.gigabit-ethernet.org/ technology/whitepapers/gige 0997/papers97 toc.html

Referências

- SPURGEON, Charles E. Ethernet: o guia definitivo. Rio de Janeiro: Carr 2000.
- SOARES, Luiz Fernando G. Redes de Computadores: das LANs, MANs e WANs às redes ATM. Rio de Janeiro: Campus, 1995.
- CARVALHO, Tereza Cristina Melo de Brito (Org.). **Arquitetura de Redes de Computadores OSI e TCP/IP**. 2. Ed. rev. ampl. São Paulo: Makron Books do Brasil, Brisa; Rio de Janeiro: Embratel; Brasília, DF: SGA, 1997.
- COMER, Douglas E. Interligação em rede com TCP/IP. 2. Ed. Rio de Janeiro: Campus, 1998. v.1.
- ARNETT, Matthen Flint. Desvendando o TCP/IP. Rio de Janeiro: Campus, 1997. 543 p.
- ALVES, Luiz. Comunicação de dados. 2. Ed. rev. ampl. São paulo: Makron Books do Brasil, 1994.
- DEFLER, Frank J. Tudo sobre cabeamento de redes. Rio de Janeiro: Campus, 1994
- www.laercio.com.br
- www.feiradeciencias.com.br