Assignment 2

Instructions:

- Read the questions very carefully and write all the functions as you are instructed in the
 question. You should take the input following the sample input format. Your output should also
 match the sample outputs. Note that your code should work for all reasonable inputs, not just
 sample inputs.
- Adopting any unfair means will result in -100%.
- Submit the codes in ELMS. Name the files 1.cpp, 2.cpp etc. Only submit the .cpp files.

Question 1

There are **n** boxes of **n** different items in a warehouse. Each box has a label that says the name (**m_i**), total weight (**w_i**) in kg and the total value (**v_i**) in taka of that item (**i**). *All items are divisible*. Suppose, **k** thieves have come to steal from the warehouse, each with a knapsack of capacity **W_i**. Given each thief wants to maximize his/her profit, how many thieves will be needed to empty the warehouse?

Write a code to solve this problem using a greedy algorithm.

Sample input	Sample output
n .	
m_1, v_1, w_1	
m_n, v_n, w_n	
k	
<u>W_1 W_2 W_k</u>	T-1.51.4 du-t. 0.0 l 2000 0 t-1
4	Taking gold-dust: 8.0 kg 2000.0 taka Taking silver-dust: 4.0 kg 300.0 taka
silver-dust 300 4	Taking silver-dust: 4.0 kg 300.0 taka
gold-dust 2000 8	Thief 1 profit: 2326.7 taka
salt 80 10	
sugar 89 10	Taking sugar: 7.0 kg 62.3 taka
2	Taking salt: 8.0 kg 64.0 taka
15 15	Thief 2 profit: 126.3 taka
	Total 2 thieves stole from the warehouse.
	Still following items are left
	salt 2.0 kg 16.0 taka
4	Taking gold-dust: 8.0 kg 2000.0 taka
silver-dust 300 4	Thief 1 profit: 2000.0 taka
gold-dust 2000 8	Taking silver-dust: 4.0 kg 300.0 taka
salt 80 10	Taking silver-dust: 4.0 kg 500.0 taka Taking sugar: 6.0 kg 53.4 taka
sugar 89 10	Thief 2 profit: 353.4 taka
4	i '
8 10 6 10	Taking sugar: 4.0 kg 35.6 taka
	Taking salt: 2.0 kg 16.0 taka
	Thief 3 profit: 51.6 taka
	Taking salt: 8.0 kg 64.0 taka
	Thief 4 profit: 64.0 taka
	Total 3 thieves stole from the warehouse.

Question 2

Suppose you were to drive from A to B, which is \mathbf{D} miles away, along a straight road. Your gas tank, when full, holds enough gas to travel \mathbf{m} miles, and you have a map that gives distances between gas stations along the route. Let $\mathbf{d1} < \mathbf{d2} < ... < \mathbf{dn}$ be the locations of all the gas stations along the route where \mathbf{di} is the distance from St. Louis to the gas station. You can assume that the distance between neighboring gas stations is at most \mathbf{m} miles. Your goal is to make as few gas stops as possible along the way. Give the most efficient algorithm you can to determine at which gas stations you should stop.

Write a code to solve this problem using a **greedy algorithm**. Keep the time complexity of your code O(n).

Sample input	Sample output
D	
m	
n	
d1 d2 dn	
20 10 8	stop at gas station 4 (8 miles) stop at gas station 7 (16
2 4 5 8 12 14 16 19 25 10	miles)
5 2 4 5 8 12	