

The **residual** is $(\mathbf{w} \cdot \phi(x)) - y$, the amount by which prediction $f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x)$ overshoots the target y.

Squared Loss and absdev

$$\operatorname{Loss_{squared}}(x, y, \mathbf{w}) = (\underbrace{f_{\mathbf{w}}(x) - y}_{\text{residual}})^{2}$$

$$ext{Loss}_{ ext{absdev}}(x,y,\mathbf{w}) = |\mathbf{w}\cdot\phi(x) - y|$$

$$egin{align*} \operatorname{Loss}_{\operatorname{absdev}}(x,y,\mathbf{w}) &= |\mathbf{w}\cdot\phi(x)-y| \ & ext{Objective : Minimize the Train Loss} \ &\operatorname{TrainLoss}(\mathbf{w}) &= rac{1}{|\mathcal{D}_{\operatorname{train}}|} \sum_{(x,y)\in\mathcal{D}_{\operatorname{train}}} \operatorname{Loss}(x,y,\mathbf{w}) \end{aligned}$$

$$\min_{\mathbf{w} \in \mathbb{R}^d} \operatorname{TrainLoss}(\mathbf{w})$$

Gradient Descent

Initialize
$$\mathbf{w} = [0, \dots, 0]$$

or
$$t=1,\ldots,T$$

For
$$t = 1, \dots, T$$
:
$$\mathbf{w} \leftarrow \mathbf{w} - \underbrace{\eta}_{\text{step size}} \underbrace{\nabla_{\mathbf{w}} \text{TrainLoss}(\mathbf{w})}_{\text{gradient}}$$

$$\text{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\text{train}}|} \underbrace{\sum_{(x,y) \in \mathcal{D}_{\text{train}}}^{\text{gradient}} (\mathbf{w} \cdot \phi(x) - y)^2}_{\text{train}}$$

$$\nabla_{\mathbf{w}} \text{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\text{train}}|} \sum_{(x,y) \in \mathcal{D}_{\text{train}}}^{(x,y) \in \mathcal{D}_{\text{train}}} \frac{2(\mathbf{w} \cdot \phi(x) - y)\phi(x)}{\text{prediction-target}}$$

Stochastic Gradient Descen

For each $(x,y)\in \mathcal{D}_{ ext{train}}$:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} \mathrm{Loss}(x, y, \mathbf{w})$$

 $ext{Loss}_{ ext{hinge}}(x,y,\mathbf{w}) = \max\{1-(\mathbf{w}\cdot\phi(x))y,0\}$

Gradient of Hinge Loss

$$abla_{\mathbf{w}} \mathrm{Loss_{hinge}}(x,y,\mathbf{w}) = \left\{ egin{aligned} -\phi(x)y & \mathrm{if} \ \mathbf{w} \cdot \phi(x)y < 1 \\ 0 & \mathrm{if} \ \mathbf{w} \cdot \phi(x)y > 1. \end{aligned}
ight.$$

$$\operatorname{Loss}_{\operatorname{logistic}}(x,y,\mathbf{w}) = \log(1 + e^{-(\mathbf{w}\cdot\phi(x))y})$$

The logistic function maps $(-\infty,\infty)$ to [0,1]:

$$\sigma(z)=(1+e^{-z})^{-1}$$

Derivative:
$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$

Approximation error: how good is the hypothesis class? Estimation error: how good is the learned predictor relative to the hypothesis class?

$$\underbrace{\mathrm{Err}(\hat{f}) - \mathrm{Err}(g)}_{\text{estimation}} + \underbrace{\mathrm{Err}(g) - \mathrm{Err}(f^*)}_{\text{approximation}}$$

Regularization

Initialize $\mathbf{w} = [0, \dots, 0]$

 $\mathbf{w} \leftarrow \mathbf{w} - \eta(\nabla_{\mathbf{w}} \left[\mathrm{TrainLoss}(\mathbf{w}) \right] + \lambda \mathbf{w}) \\ \frac{\mathbf{K} \ \mathsf{Means}}{}$

$$\operatorname{Loss}_{\operatorname{kmeans}}(z,\mu) = \sum_{i=1}^n \|\phi(x_i) - \mu_{z_i}\|^2$$

For each point $i=1,\ldots,n$:

Assign i to cluster with closest centroid:

$$oldsymbol{z_i} \leftarrow rg \min_{k=1,\ldots,K} \|\phi(x_i) - \mu_k\|^2$$

For each cluster $k=1,\ldots,K$:

Set
$$\mu_k$$
 to average of points assigned to cluster k :
$$\mu_k \leftarrow \frac{1}{|\{i:z_i=k\}|} \sum_{i:z_i=k} \phi(x_i)$$

Initialize μ_1,\ldots,μ_K randomly.

For $t=1,\ldots,T$:

Step 1: set assignments z given μ

Step 2: set centroids μ given z

Legend: b actions/state, solution depth d, maximum depth D

Algorithm	Action costs	Space	Time
DFS	zero	O(D)	$O(b^D)$
BFS	${\rm constant} \geq 0$	$O(b^d)$	$O(b^d)$
DFS-ID	${\rm constant} \geq 0$	O(d)	$O(b^d)$
Backtracking	any	O(D)	O(1D)

UCS Algorithm

Add $s_{
m start}$ to **frontier** (priority queue)

Repeat until frontier is empty:

Remove s with smallest priority p from frontier

If $\operatorname{IsEnd}(s)$: return solution

Add s to explored

For each action $a \in \operatorname{Actions}(s)$:

Get successor $s' \leftarrow \operatorname{Succ}(s, a)$

If s^\prime already in explored: continue

Update **frontier** with s' and priority $p + \mathrm{Cost}(s,a)$

N total states, n of which are closer than end state

Algorithm	Cycles?	Action costs	Time/space
DP	no	any	O(N)
UCS	yes	≥ 0	$O(n \log n)$

Structured Perceptron Alogrithm

- For each action: $\mathbf{w}[a] \leftarrow 0$
- For each iteration $t=1,\ldots T$:
 - For each training example $(x,y) \in \mathcal{D}_{\text{train}}$:
 - Compute the minimum cost path y' given ${f w}$
 - ullet For each action $a \in y$: $\mathbf{w}[a] \leftarrow \mathbf{w}[a] 1$
 - ullet For each action $a \in y' \colon \mathbf{w}[a] \leftarrow \mathbf{w}[a] + 1$

Run uniform cost search with modified edge costs:

$$\begin{array}{c} \operatorname{Cost}'(s,a) = \operatorname{Cost}(s,a) + h(\operatorname{Succ}(s,a)) - h(s) \\ & \stackrel{\boldsymbol{S}_{\operatorname{start}}}{\bigoplus} \stackrel{\boldsymbol{S}_{\operatorname{end}}}{\bigoplus} \\ & \stackrel{\boldsymbol{A}_{\operatorname{start}}}{\bigoplus} \stackrel{\boldsymbol{S}_{\operatorname{end}}}{\bigoplus} \\ h(s) = 4 & 3 & 2 & 1 & 0 \\ & \text{A heuristic } h \text{ is consistent if} \\ & \cdot \operatorname{Cost}'(s,a) = \operatorname{Cost}(s,a) + h(\operatorname{Succ}(s,a)) - h(s) \geq 0 \end{array}$$

• Cost' $(s, a) = \text{Cost}(s, a) + h(\text{Succ}(s, a)) - h(s) \ge 0$ • $h(s_{\text{end}}) = 0$.

•
$$h(s_{\mathrm{end}}) = 0$$
.

Heuristic is admissible if $h(s) \leq ext{FutureCost}(s)$

A **relaxation** $P_{\rm rel}$ of a search problem P has costs that

$$\operatorname{Cost}_{\operatorname{rel}}(s,a) \leq \operatorname{Cost}(s,a).$$

Given a relaxed search problem P_{rel} , define the relaxed heuristic $h(s) = \text{FutureCost}_{\text{rel}}(s)$, the minimum cost from \boldsymbol{s} to an end state using $\operatorname{Cost}_{\operatorname{rel}}(s,a)$.

And also that means h(s) is consistent.

Note: Heuristic Tradeoff: efficiency(relaxed) vs

tightness(not too relaxed)

Note: if h1 and h2 are consistent then max (h1,h2) is too.

satisfy:

Search State plus Reward and Transition Prob, Disc factor A **policy** π is a mapping from each state $s \in \operatorname{States}$ to

an action $a \in Actions(s)$.

Path:
$$s_0$$
, $a_1r_1s_1$, $a_2r_2s_2$, ... (action, reward, new state). The **utility** with discount γ is
$$u_1=r_1+\gamma r_2+\gamma^2 r_3+\gamma^3 r_4+\cdots$$

Let $V_{\pi}(s)$ be the expected utility received by following policy π from state s.

Let $Q_{\pi}(s,a)$ be the expected utility of taking action afrom state s, and then following policy π .

Policy Evaluation: recurrences and Algorithm

$$V_{\pi}(s) = egin{cases} 0 & ext{if IsEnd}(s) \ Q_{\pi}(s,\pi(s)) & ext{otherwise.} \end{cases}$$
 $Q_{\pi}(s,a) = \sum T(s,a,s') [ext{Reward}(s,a,s') + \gamma V_{\pi}(s')]$

Initialize $V_{\pi}^{(0)}(s) \leftarrow 0$ for all states s. For iteration $t=1,\ldots,t_{\mathrm{PE}}$:

For each state s:

For each state
$$s$$
:
$$V_x^{(l)}(s) \leftarrow \underbrace{\sum_{s'}^{t} T(s, \pi(s), s') [\operatorname{Reward}(s, \pi(s), s') + \gamma V_x^{(t-1)}(s')]}_{Q^{(l-1)}(s, \pi(s))} \\ = \max_{s \in \operatorname{States}} \left| V_\pi^{(t)}(s) - V_\pi^{(t-1)}(s) \right| \leq \epsilon$$
 Convergence:

$$\max_{s \in \operatorname{Skoton}} |V_{\pi}^{(t)}(s) - V_{\pi}^{(t-1)}(s)| \leq \epsilon$$

Optimal value and Policy The optimal value $V_{
m opt}(s)$ is the maximum value attained by any policy.

$$egin{align*} Q_{ ext{opt}}(s,a) &= \sum_{s'} T(s,a,s') [ext{Reward}(s,a,s') + \gamma V_{ ext{opt}}(s')]. \ V_{ ext{opt}}(s) &= egin{cases} 0 & ext{if IsEnd}(s) \ ext{max}_{a \in ext{Actions}(s)} Q_{ ext{opt}}(s,a) & ext{otherwise}. \ \pi_{ ext{opt}}(s) &= rg \max_{a \in ext{Actions}(s)} Q_{ ext{opt}}(s,a) \ ext{Value Iteration Algorithm:} \ \end{array}$$

Initialize $V_{ ext{opt}}^{(0)}(s) \leftarrow 0$ for all states s .

For iteration $t=1,\ldots,t_{\mathrm{VI}}$:

For each state
$$s$$
:
$$V_{\mathrm{opt}}^{(i)}(s) \leftarrow \max_{a \in \mathrm{Actions}(s)} \sum_{s'} T(s, a, s') [\mathrm{Reward}(s, a, s') + \gamma V_{\mathrm{opt}}^{(t-1)}(s')]$$

Note: converges if mdp is acyclic or disc factor < 1

Reinforcement Learning: no T or R defined in MDP. Model based Monte Carlo(optimal policy)

$$\hat{T}(s,a,s') = rac{\# ext{ times } (s,a,s') ext{ occurs}}{\# ext{ times } (s,a) ext{ occurs}}$$

$$\widehat{ ext{Reward}}(s,a,s') = r ext{ in } (s,a,r,s')$$

$$\hat{Q}_{ ext{opt}}(s, a) = \sum_{s'} \hat{T}(s, a, s') [\widehat{ ext{Reward}}(s, a, s') + \gamma \hat{V}_{ ext{opt}}(s')]$$

 $\begin{array}{l} {\color{red} \underline{\mathsf{Model Free Monte Carlo}} \atop s_0; a_1, r_1, s_1; a_2, r_2, s_2; a_3, r_3, s_3; \ldots; a_n, r_n, s_n \\ u_t = r_t + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \cdots \end{array}$ $\hat{Q}_{\pi}(s,a) = ext{average of } u_t ext{ where } s_{t-1} = s, a_t = a$

(and s,a doesn't occur in s_0,\cdots,s_{t-2}) On each (s,a,u):

$$\hat{Q}_{\pi}(s,a) \leftarrow \hat{Q}_{\pi}(s,a) - \eta [\hat{Q}_{\pi}(s,a) - \underbrace{u}_{ ext{prediction}}]$$

Bootstrapping Methods: SARSA

The main advantage that SARSA offers over model-free Monte Carlo is that we don't have to wait until the end of the episode to update the Q-value.

$$\begin{aligned} &\text{On each } (s, a, r, s', a') \text{:} \\ &\hat{Q}_{\pi}(s, a) \leftarrow (1 - \eta) \hat{Q}_{\pi}(s, a) + \eta \underbrace{\left[\underbrace{r}_{\text{data}} + \gamma \hat{\underline{Q}}_{\pi}(s', a') \right]}_{\text{estimate}} \end{aligned}$$

Q-Learning Algorithm(Off Policy and no Succ States reqd) On each (s,a,r,s^\prime) :

$$\begin{split} \hat{Q}_{\mathrm{opt}}(s,a) &\leftarrow (1-\eta) \underbrace{\hat{Q}_{\mathrm{opt}}(s,a)}_{\mathrm{prediction}} + \eta \underbrace{(r+\gamma \hat{V}_{\mathrm{opt}}(s'))}_{\mathrm{target}} \end{split}$$

$$\mathsf{Recall:} \ \hat{V}_{\mathrm{opt}}(s') &= \max_{a' \in \mathsf{Actions}(s')} \hat{Q}_{\mathrm{opt}}(s',a')$$

Recall:
$$\hat{V}_{\mathrm{opt}}(s') = \max_{a' \in \operatorname{Actions}(s')} \hat{Q}_{\mathrm{opt}}(s', a')$$

Exploration Policy: Exploration vs Exploitation(RL tmplat) For t = 1, 2, 3, ...

Choose action $a_t = \pi_{\mathrm{act}}(s_{t-1})$ (how?) Receive reward r_t and observe new state s_t

Update parameters (how?)

$$\pi_{\text{act}}(s) = \begin{cases} \operatorname{arg\,max}_{a \in \text{Actions}} \hat{Q}_{\text{opt}}(s, a) & \operatorname{probability} 1 - \epsilon, \\ \operatorname{random\,from\,Actions}(s) & \operatorname{probability} \epsilon. \end{cases}$$

Function Approx. :Large State Spaces, hard to explore

Define **features**
$$\phi(s,a)$$
 and **weights w**: $\hat{Q}_{\mathrm{opt}}(s,a;\mathbf{w}) = \mathbf{w} \cdot \phi(s,a)$

On each (s,a,r,s^\prime) :

$$\mathbf{w} \leftarrow \mathbf{w} - \eta[\hat{\underline{Q}}_{\mathrm{opt}}(s, a; \mathbf{w})] - \underbrace{(r + \gamma \hat{V}_{\mathrm{opt}}(s'))}]\phi(s, a)$$

Adversarial Games: search state plus these

 $\mathrm{Utility}(s)$: agent's utility for end state s

 $Player(s) \in Players:$ player who controls state s

Game Evaluation Recurrence(Generic)

$$V_{\text{eval}}(s) = \begin{cases} \text{Utility}(s) & \text{IsEnd}(s) \\ \sum_{a \in \text{Actions}(s)} \pi_{\text{agent}}(s, a) V_{\text{eval}}(\text{Succ}(s, a)) & \text{Player}(s) = \text{agent} \\ \sum_{a \in \text{Action}(s)} \pi_{\text{opp}}(s, a) V_{\text{eval}}(\text{Succ}(s, a)) & \text{Player}(s) = \text{opp} \end{cases}$$

Expectimax Recurrence(opponent takes average)

$$V_{\min\max}(s) = \begin{cases} \text{Utility}(s) & \text{IsEnd}(s) \\ \max_{a \in Actions(s)} V_{\min\max}(\text{Succ}(s, a)) & \text{Player}(s) = \text{agent} \\ \min_{a \in Actions(s)} V_{\min\max}(\text{Succ}(s, a)) & \text{Player}(s) = \text{opp} \end{cases}$$

Relationship between game values

V(Ex,pi7) >= V(max,pi7) >= V (max,pimin) >= V(Ex,pimin) **Expectiminimax Algorithm**

$$V_{\text{expt-minmax}}(s) = \begin{cases} \text{Utility}(s) & \text{IsEnd}(s) \\ \max_{\mathbf{k} \in \text{Actions}(s)} V_{\text{expt-minmax}}(\text{Succ}(s, a)) & \text{Player}(s) = \text{agent} \\ \min_{s \in \text{Actions}(s)} V_{\text{expt-minmax}}(\text{Succ}(s, a)) & \text{Player}(s) = \text{opp} \\ \sum_{s \in \text{Actions}(s)} \pi_{\text{coin}}(s, a) V_{\text{expt-minmax}}(\text{Succ}(s, a)) & \text{Player}(s) = \text{coin} \end{cases}$$

Speeding up minimax : Eval func and Alpha Beta pruning Depth Limited Search

$$V_{\text{minmax}}(s,d) = \begin{cases} \text{Utility}(s) & \text{IsEnd}(s) \\ \frac{\text{Eval}(s)}{\text{max}_{u \in \text{Actions}(s)}} V_{\text{minmax}}(\text{Succ}(s,a),d) & d = 0 \\ \text{max}_{u \in \text{Actions}(s)} V_{\text{minmax}}(\text{Succ}(s,a),d - 1) & \text{Player}(s) = \text{agent} \end{cases}$$

AlphaBeta Pruning

alpha: lwr bound on val of max node beta: uppr bound on val of min node

(store
$$lpha_s = \max_{s' \preceq s} a_s$$
 and $eta_s = \min_{s' \preceq s} b_s$)

TD Learning(On policy and need Succ states)

On each (s, a, r, s'):

$$\mathbf{w} \leftarrow \mathbf{w} - \eta [\underbrace{\hat{V}_{\pi}(s; \mathbf{w})}_{\text{prediction}} - \underbrace{(r + \gamma \hat{V}_{\pi}(s'; \mathbf{w}))}_{\text{target}}] \nabla_{\mathbf{w}} \hat{V}_{\pi}(s; \mathbf{w})$$

$$V(s; \mathbf{w}) = \mathbf{w} \cdot \phi(s)$$

$$abla_{\mathbf{w}}V(s;\mathbf{w}) = \phi(s)$$

Simultaneous Games(Rock paper scissors)

For every simultaneous two-player zero-sum game with a finite number of actions:

$$\max_{\pi_\mathrm{A}} \min_{\pi_\mathrm{B}} \, V(\pi_\mathrm{A}, \pi_\mathrm{B}) = \min_{\pi_\mathrm{B}} \max_{\pi_\mathrm{A}} \, V(\pi_\mathrm{A}, \pi_\mathrm{B}),$$

where $\pi_{\mathrm{A}},\pi_{\mathrm{B}}$ range over **mixed strategies**.

Non Zero Sum Games(Prisoner's dilemma)

In any finite-player game with finite number of actions. there exists at least one Nash equilibrium.

A **Nash equilibrium** is $(\pi_{\mathrm{A}}^*, \pi_{\mathrm{B}}^*)$ such that no player has an incentive to change his/her strategy:

$$V_{
m A}(\pi_{
m A}^*,\pi_{
m B}^*) \geq V_{
m A}(\pi_{
m A},\pi_{
m B}^*)$$
 for all $\pi_{
m A}$ $V_{
m B}(\pi_{
m A}^*,\pi_{
m B}^*) \geq V_{
m B}(\pi_{
m A}^*,\pi_{
m B}^*)$ for all $\pi_{
m B}$

Variables:

 $X=(X_1,\ldots,X_n)$, where $X_i\in \mathrm{Domain}_i$

$$f_1,\ldots,f_m$$
 , with each $f_j(X)\geq 0$

Scope of a factor f_j : set of variables it depends on. **Arity** of f_i is the number of variables in the scope. Unary factors (arity 1); Binary factors (arity 2). Each assignment $x=(x_1,\ldots,x_n)$ has a weight

$$\mathrm{Weight}(x) = \prod^m f_j(x)$$

Objective $\argmax_x \operatorname{Weight}(x)$

A CSP is a factor graph where all factors are

$$f_j(x) \in \{0,1\}$$
 for all $j=1,\ldots,m$
The constraint is satisfied iff $f_j(x)=1$.
An assignment x is **consistent** iff $\mathrm{Weight}(x)=1$ (i.e., **all** constraints are satisfied).

- (i.e., all collisiums are satisfied).

 Backtrack(x, w, Domains):

 If x is complete assignment: update best and return

 Choose unassigned VARIABLE X_i

 Order VALUES Domain, of chosen X_i

 For each value v in that order:

$$\bullet \; \delta \leftarrow \prod_{f_j \in D(x,X_i)} f_j(x \cup \{X_i : v\})$$

- If $\delta=0$: continue
- Domains' \leftarrow Domains via LOOKAHEAD Backtrack $(x \cup \{X_i : v\}, w\delta, \text{Domains'})$

Let $D(x,X_i)$ be set of factors depending on X_i and xbut not on unassigned variables.

Forward Checking(Look Ahead)

- After assigning a variable X_i , eliminate inconsistent values from the domains of X_i 's neighbors.
- · If any domain becomes empty, don't recurse.
- When unassign X_i , restore neighbors' domains. Least constrained value: useful when all factors are constraints (all assignment weights are 1 or 0) Most constrained variable: useful when some factors are constraints (can prune assignments with weight 0) Forward checking: need to actually prune domains to make heuristics useful!

Arc Consistency: eliminate values from domains-> reduce branching

A variable X_i is $\operatorname{ extbf{arc}}$ consistent with respect to X_j if for each $x_i \in \operatorname{Domain}_i$, there exists $x_j \in \operatorname{Domain}_j$ such that $f(\{X_i:x_i,X_j:x_j\})
eq 0$ for all factors f

whose scope contains X_i and X_j . EnforceArcConsistency (X_i, X_j) : Remove values from Domain $_i$ to make X_i arc consistent with respect

AC 3 Algorithm

Add X_i to set.

While set is non-empty:

- Remove any X_k from set.
- ullet For all neighbors X_l of X_k :
 - Enforce arc consistency on X_l w.r.t. X_k .
 - If Domain_l changed, add X_l to set.

Runtime O(ED^3). D -> largest domain E-> number of edges

N ARY constraints

Auxiliary Variables hold intermediate computation.

pack A_{i-1} and A_i into one variable B_i

Initialization: $[B_1[1] = 0]$

 $\begin{array}{l} \text{Processing: } [B_i[2] = B_i[1] \vee X_i] \\ \text{Final output: } [B_4[2] = 1] \\ \text{Consistency: } [B_{i-1}[2] = B_i[1]] \end{array}$

Variables: B_i is (pre, post) pair from processing X_i

Pruning Techniques only useful for constraints, does not

Finding Maximum Weight Assignments: Greedy Algorithm Partial assignment $x \leftarrow \{\}$ For each $i = 1, \dots, n$: Extend:

Compute weight of each $x_v = x \cup \{X_i : v\}$

Prune: $x \leftarrow x_v$ with highest weight Beam Search Algorithm:

Initialize $C \leftarrow [\{\}]$ For each $i=1,\ldots,n$:

Extend:
$$C' \leftarrow \{x \cup \{X_i : v\} : x \in C, v \in \mathrm{Domain}_i\}$$
 Prune:

 $C \leftarrow K$ elements of C' with highest weights Running time: $O(n(Kb)\log(Kb))$ with branching factor b = |Domain|, beam size KIterated conditional modes

$$X_1$$
 C_1 C_2 C_2 C_3 C_4 C_4 C_5 C_5

 $o_1(x_1)t_1(x_1,v)o_2(v)t_2(v,x_3)o_3(x_3)$ x1,v,x3

Initialize x to a random complete assignment Loop through $i=1,\ldots,n$ until convergence:

Compute weight of $x_v = x \cup \{X_i : v\}$ for each v $x \leftarrow x_v$ with highest weight

Gibbs Sampling: Sample an assign. Prop. to its weight Note: The Gibbs update depends on the Markov blanket

Initialize \boldsymbol{x} to a random complete assignment Loop through $i=1,\ldots,n$ until convergence:

Compute weight of $x_v = x \cup \{X_i : v\}$ for each vChoose $x \leftarrow x_v$ with probability prop. to its weight

Algorithms for max-weight assignments in factor graphs: Backtracking search: exact, exponential time Beam search: approximate, linear time

Iterated conditional modes: approximate, deterministic

Gibbs sampling: approximate, randomized Conditioning Algorithm

To **condition** on a variable $X_i=v$, consider all factors f_1,\ldots,f_k that depend on X_i . Remove X_i and f_1,\ldots,f_k .

Add $g_j(x) = f_j(x \cup \{X_i : v\})$ for $j = 1, \dots, k$. Conditionally Independent: conditioning on C, makes A and B independent

Let $A \subseteq X$ be a subset of variables.

Define $\operatorname{MarkovBlanket}(A)$ be the neighbors of Athat are not in A.

Elimination Algorithm

To **eliminate** a variable X_i , consider all factors f_1,\ldots,f_k that depend on X_i . Remove X_i and f_1,\ldots,f_k .

Add
$$f_{
m new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

Running time: $O(n \cdot |\mathrm{Domain}|^{\mathrm{max\text{-}arity}+1})$

The treewidth of a factor graph is the maximum arity of any factor created by variable elimination with the best variable ordering.

Bayesian Ntwks: Joint , Marginal (sum) , Conditional (select rows) Distribution: three types for random variables Explaining away: Suppose two causes positively influence an effect. Conditioned on the effect, conditioning on one cause reduces the probability of the other cause

Let $X=(X_1,\ldots,X_n)$ be random variables. A Bayesian network is a directed acyclic graph (DAG) that specifies a joint distribution over X as a product of local conditional distributions, one for each node:

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) \stackrel{\mathrm{def}}{=} \prod^n p(x_i \mid x_{\mathrm{Parents}(i)})$$

All factors (local conditional distributions) satisfy: $\sum p(x_i \mid x_{ ext{Parents}(i)}) = 1$ for each $x_{ ext{Parents}(i)}$

Probabilistic Inference Strategy: $\mathbb{P}(Q \mid E = e)$ • Remove (magning the second

- Remove (marginalize) variables that are not ancestors of ${\cal Q}$ or ${\cal E}.$
- Convert Bayesian network to factor graph.
- Condition on E=e (shade nodes + disconnect). Remove (marginalize) nodes disconnected from Q.

Run probabilistic inference algorithm (manual, variable elimination, Gibbs sampling, particle filtering).

$$\mathbb{P}(H=h,E=e) = \underbrace{p(h_1)}_{\text{start}} \prod_{i=2}^n \underbrace{p(h_i \mid h_{i-1})}_{\text{transition}} \prod_{i=1}^n \underbrace{p(e_i \mid h_i)}_{\text{emission}}$$

Smoothing Query: Lattice Representation:

Forward:
$$F(h_i) = \sum_{h_i} F_{i-1}(h_{i-1})w(h_{i-1},h_i)$$
 Backward: $F(h_i) = \sum_{h_{i+1}} F_{i-1}(h_{i+1})w(h_i,h_{i+1})$

Define
$$S_i(h_i) = F_i(h_i) B_i(h_i)$$

Loop through $i=1,\dots,n$ until convergence: Set $X_i = v$ with prob. $\mathbb{P}(X_i = v \mid X_{-i} = x_{-i})$ (notation: $X_{-i} = X \backslash \{X_i\}$)

Particle Filtering

Initialize $C \leftarrow [\{\}]$ For each $i=1,\ldots,n$: Propose (extend):

 $C' \leftarrow \{x \cup \{X_i: x_i\}: x \in C, x_i \sim p(x_i \mid x_{i-1})\}$

Compute weights $w(x) = p(e_i \mid x_i)$ for $x \in C'$ Resample (prune):

 $C \leftarrow K$ elements drawn independently from $\propto w(x)$

Max Likelihood Learning Algorithm

Input: training examples $\mathcal{D}_{\mathrm{train}}$ of full assignments

Output: parameters $heta=\{p_d:d\in D\}$

	g	r	$p_R(r \mid g)$
Count:	d	1	0
For each $x \in \mathcal{D}_{ ext{train}}$: For each variable x_i :	d	2	0
	d	3	0
$Increment count_{d_i}(x_{Parents(i)}, x_i)$	d	4	2/3
Normalize: For each d and local assignment $x_{\text{Parents}(i)}$:	d	5	1/3
	c	1	1/2
Set $p_d(x_i \mid x_{\text{Parents}(i)}) \propto \text{count}_d(x_{\text{Parents}(i)}, x_i)$			

data = $\{(d, 4), (d, 4), (d, 5), (c, 1), (c, 5)\}$

Regularization:Laplace Smoothing(add 6 for Dice)

just add to the count for each possible value, regardless of

whether it was observed or not.Eg: X = 6 for dice
$$P_{LAP,k}(x) = \frac{c(x)+k}{N+k|X|}$$

Expectation maximization (EM)algorithm

- ullet Compute $q(h)=\mathbb{P}(H=h\mid E=e; heta)$ for each h
- (use any probabilistic inference algorithm) • Create weighted points: (h,e) with weight q(h)

M-step:
 Compute maximum likelihood (just count and normalize) to get θ Repeat until convergence.

Estimate Likely No of Heads and Tails for First Toss

For A -: H=.45*5=2.2 , T=.45*5=2.2

• For B -: H==.55*5=2.8 , T = .55*5=2.8

Max Likelihood of $p^n(1-p)^m = n/(n+m)$

E step: for each missing assume all vals.create virtual bags and find probs. Mstep: find Max likelihood for all params.