Continuous Optimization

Spring 2025

Exercise 2: Gradient Descent

Lecturer: Aurelien Lucchi

Problem 1 (Quadratic function):

Consider a quadratic function $f: \mathbb{R}^d \to \mathbb{R}$ of the form $f(\mathbf{x}) = \mathbf{x}^\top \mathbf{A} \mathbf{x} + \mathbf{b}^\top \mathbf{x} + c$, where $\mathbf{A} \in \mathbb{R}^{d \times d}$ is symmetric invertible and $\mathbf{b} \in \mathbb{R}^d$, $c \in \mathbb{R}$.

- 1. Prove that f is smooth with constant $2\|\mathbf{A}\|$, where we recall that $\|\mathbf{A}\| := \sup_{\mathbf{x} \neq 0} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}$.
- 2. What's the minimum value of f?

Problem 2 (Biased gradients):

Consider the gradient descent update with a bias:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla f(\mathbf{x}_k) + \epsilon_k, \tag{1}$$

where $\eta > 0$ is the step size and $\epsilon_k > 0$ is a bias. We assume that $\eta \leq \frac{1}{L}$.

1. Show that

$$f(\mathbf{x}_{k+1}) \le f(\mathbf{x}_k) + \frac{\eta}{2} \left(-\|\nabla f(\mathbf{x}_k)\|^2 + \|\epsilon_k\|^2 \right).$$

2. Conclude that

$$\min_{k=1...K} \|\nabla f(\mathbf{x}_k)\|^2 \le \frac{\eta}{2K} (f(\mathbf{x}_1) - f(\mathbf{x}^*)) + \frac{1}{K} \sum_{k=1}^K \|\epsilon_k\|^2,$$

Problem 3 (Normalized Gradient Descent):

In this exercise, we consider a variant of gradient descent known as normalized gradient descent. At each iteration, it normalizes the gradient by its norm, which yields the following update step:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla f(\mathbf{x}_k),\tag{2}$$

where $\eta > 0$ is a chosen step size.

We assume that f is convex and L-smooth. Prove that

1.

$$\|\nabla f(\mathbf{x}_k)\| \le \frac{f(\mathbf{x}_k) - f(\mathbf{x}_{k+1})}{\eta} + \frac{L\eta}{2}.$$

2. If we choose $\eta = \frac{2\epsilon}{L}$, how many iterations do we need to obtain $\frac{1}{k} \sum_{i=0}^{k-1} \|\nabla f(\mathbf{x}_k)\| \le \epsilon$?

Problem 4 (Programming):

Complete TODOs in the Jupyter Notebook provided by implementing the Gradient Descent optimizer for a Linear Regression task. Then, study the behavior of the optimizer for different step sizes, initialization, and maximum number of iterations.

1