Network Layer

Assignment Project Exam Help

https://powcoder.com COMP90007 Internet Technologies Add WeChat powcoder

Lecturer: Ling Luo

Semester 2, 2021

Outline

- Network layer in the Internet
- Types of services
- InternetwoAssignment Project Exam Help
 - Tunneling
 - Fragmentation https://powcoder.com
 - Path MTU discover
 WeChat powcoder
- Internet Protocol
 - Addressing
 - Subnetting
- Routing algorithms

Routing

Consider the network as a graph of nodes and links:

- Routing is the process of discovering network paths
- Decide what to optimise: hops, delay, etc.
- Update routes for shanger in toppole by a p. Hopter failures)

Routing Algorithms (1)

- The routing algorithm is responsible for deciding on which output line an incoming packet should be transmitted Assignment Project Exam Help
- Non-Adaptive Mtgoritpovscoder.com
 - Static routing, static decision-making process
 Add WeChat powcoder
- Adaptive Algorithms
 - Dynamic routing, dynamic decision-making process
 - Changes in network topology, traffic, etc.

Routing Algorithms (2)

- Non-adaptive
 - Shortest path routing
 - Flooding Assignment Project Exam Help
- Adaptive
 - Distance vector https://powcoder.com
 - Link state routing Add WeChat powcoder
- Hierarchical routing
- Broadcasting routing
- Multicasting routing

Optimality Principle

If router B is on the optimal path from router A to router C, then the optimal path from B to C also falls along the same routexsignment Project Exam Help

Sink Tree

- Sink Tree: the set of optimal routes from all sources to a given destination forms a tree rooted at the destination
- Goal of a routing algorithm: discover and utilise the sink trees for afficient Project Exam Help

Sink tree of best paths to router B

Shortest Path Routing

- A non-adaptive algorithm
- Shortest path can be determined by building a graph with each redegraprese Ptinge at Datem 4161 pach arc representing a communication link
- To choose a path between 2 routers, the algorithm finds the shortest path between them on the graph
- Metrics: number of hops, distance, delay etc.

Shortest Path: Dijkstra's Algorithm (1)

- Computes a sink tree on the graph:
 - Each link is assigned a non-negative weight/distance

 - Shortest path is the one with lowest total weight Assignment Project Exam Help Using weights of 1 gives paths with fewest hops
- Algorithm: https://powcoder.com
 - 1) Create a set P, tracking the nodes added in the tree. Initialise it as empty.
 - 2) For each node, assign a distance trapper of the node to sink. Initialise the distance for all nodes as infinity.
 - 3) Start from the sink node, assign distance as 0.
 - **4)** Repeat when *P* doesn't include all nodes:
 - For all the nodes not in *P*, compare distance *d*
 - Pick a node v with min distance and add it to P
 - Update d for all the adjacent nodes of v (newly added node)

Shortest Path: Dijkstra's Algorithm (2)

. . .

Flooding

- A non-adaptive algorithm
- Every incoming packet is sent out on every outgoing line except the anean Publish i Earing the lp
- Inefficient: generates a large number of duplicate packets
 https://powcoder.com
- Selective floodinglis areimpreyed variation
 - Routers send packets only on links which are approximately in the right direction

Distance Vector Routing (1)

A dynamic algorithm

- Each router maintains a table which includes the best-known distance to each destination and which line to use to get there Assignment Project Exam Help
- Tables are updated by exchanging information with neighbouring routers
 https://powcoder.com
- Global information shared locally

Algorithm: Add WeChat powcoder

- 1) Each node knows distance of links to its neighbors
- Each node advertises vector of lowest known distances to all neighbors
- 3) Each node uses received vectors to **update** its own
- 4) Repeat periodically

Distance Vector Routing (2)

JA = 8, JI = 10, JH = 12, JK = 6

Vectors received from neighbors A, I, H and K

New vector for J

Link State Routing

- A dynamic algorithm
 - An alternative to distance vector: too long to converge after the network topology changed
 - Widely used in the Internet, e.g. Open Shortest Path First (OSPF)

 Assignment Project Exam Help

 More computation than distance vector

 - Local information shared globally using flooding
- Algorithm: each router has to
 - 1) Discover neighbord and Carath DWW Raddiesses
 - 2) Measure delay or cost to each neighbour
 - 3) Build link state packet
 - 4) Send this packet to all other routers
 - 5) Compute the shortest path to every other router, e.g. using Dijkstra's algorithm

Building Link State Packets

 Link State Packet (LSP) for a node lists neighbours and the distance to reach them

- When to build new LSP?
 - Periodically at regular intervals
 - Build them when some significant event occurs

Hierarchical Routing (1)

- As networks grow in size, routing tables expand and this impacts CPU and memory requirements
- Dividing all routers into regiens increases efficiencies
 - Each router knows everything about other routers in its region but nothing about routers in other regions
 - Routers which connect to two regions act as exchange points for routing decisions

Hierarchical Routing (2)

 Hierarchical routing reduces the work of computation but may result in slightly longer paths than flat routing

Broadcast Routing (1)

- Broadcast routing allows hosts to send messages to all other hosts.
 - Single distinct packet to each destination: inefficient, and source needs all destination addresses https://powcoder.com
 Multi-destination routing: a router copies the packet
 - Multi-destination routing: a router copies the packet for each outgoing MeChae pandwidth more efficiently, but source needs to know all the destination addresses
 - Flooding
 - Reverse path forwarding

Broadcast Routing (2)

Broadcast Routing (3)

- Reverse path forwarding
 - The router checks if the broadcast packet is arrived on the line normally size the more packets like the source of the broadcast
 - Yes: there is a high probability that the route used to transmit this packet/isother best and forwards them onto all other lines.
 - No: the packet is discarded as a likely duplicate.

Multicast Routing (1)

- Multicast routing allows hosts to send a message to a well-defined group within the whole netwoignment Project Exam Help
- Each router quippytes a spanning tree covering all other routers
 - Spanning tree: subset of the graph that includes all nodes, but no loops.
 - Prunes the spanning tree to eliminate all lines which do not lead to members of the group

Multicast Routing (2)

Summary

- Network layer in the Internet
- Types of services
- Internetworkingnment Project Exam Help
 - Tunneling
 - Fragmentation https://powcoder.com
 - Path MTU discovery WeChat powcoder
- Internet Protocol
 - Addressing
 - Subnetting
- Routing algorithms