Краткий конспект лекций по курсу «Игры среднего поля» Лекция 1

Идеи и примеры

Построение моделей игр среднего поля опирается на две идеи: моделирование большого числа взаимодействующих объектов с помощью эмпирической меры и равновесие Нэша.

Проиллюстрируем это двумя примерами.

1) Рассмотрим игру N игроков. Игрок с номером i выбирает точку α_i в некотором компактном множестве $A \subset \mathbb{R}^d$, а затем получает штраф J_i , который зависит от выбранных всеми игроками точек $(\alpha_1, \ldots, \alpha_N)$. При большом N естественно предполагать, что отдельный игрок учитывает лишь эмпирическое распределение всех игроков

$$\mu^N = \frac{1}{N} (\delta_{\alpha_1} + \ldots + \delta_{\alpha_N})$$

и свое положение. Кроме того, будем считать, что игроки действуют одинаково и при изменении позиции одного игрока изменением меры μ^N можно пренебречь, что является разумным допущением при большом N. Таким образом,

$$J_i(\alpha_1,\ldots,\alpha_N) = J(\alpha_i,\mu^N)$$

и в положении $(\widehat{\alpha_1}, \widehat{\alpha_2}, \dots, \widehat{\alpha_N})$ равновесия Нэша, когда никто из игроков не может уменьшить свой штраф, если остальные игроки не меняют своих позиций, позиция $\widehat{\alpha_i}$ игрока i является точкой минимума функции

$$\alpha_i \to J(\alpha_i, \mu^N), \quad \mu^N = \frac{1}{N} (\delta_{\widehat{\alpha_1}} + \ldots + \delta_{\widehat{\alpha_N}}).$$

Заметим, что точки $\{\widehat{\alpha_1}, \widehat{\alpha_2}, \dots, \widehat{\alpha_N}\}$ составляют носитель меры μ^N . Нас интересует мера μ^N , описывающая распределение игроков в ситуации равновесия Нэша. Из рассуждений, приведенных выше, следует, что искомая мера решает следующую задачу теории игр среднего поля: найти вероятностную меру μ на A, носитель которой лежит в множестве точек минимума функции $\alpha \to J(\alpha, \mu)$

2) Рассмотрим теперь дифференциальную игру N игроков, в которой игрок с номером i выбирает измеримую и ограниченную функцию α_i на [0,T], с помощью которой управляет своим положением $y_i(t)$ на числовой прямой, решая уравнение $\dot{y}_i = \alpha_i$ с начальным условием $y_i(0) = x_i$. Каждый игрок получает в момент времени t штраф

$$J_i = \int_t^T \frac{|\alpha_i(s)|^2}{2} + f(\mu_s^N) \, ds + g(y_i(T)), \quad \mu_s^N = \frac{1}{N} (\delta_{y_1(s)} + \dots + \delta_{y_N(s)}).$$

Предположим, что N столь велико, что изменением меры μ_s^N в следствии изменения траектории одного из игроков можно пренебречь. Пусть $(\widehat{\alpha_1}, \widehat{\alpha_2}, \dots, \widehat{\alpha_N})$ — положение равновесия Нэша и $(\widehat{y_1}, \widehat{y_2}, \dots, \widehat{y_N})$ — соответствующие траектории игроков. Функция $\widehat{\alpha_i}$ является решением задачи оптимального контроля, в которой требуется найти управление α , на котором достигается минимум функционала

$$\alpha \to \int_t^T \frac{|\alpha(s)|^2}{2} + f(\mu_s^N) \, ds + g(y(T)), \quad \mu_s^N = \frac{1}{N} \left(\delta_{\widehat{y_1}(s)} + \ldots + \delta_{\widehat{y_N}(s)} \right).$$

Пусть функция $u \in C^1$ является решением уравнения Гамильтона–Якоби–Беллмана

$$-u_t + \frac{1}{2}|u_x|^2 = f(\mu_t^N)$$

с условием u(x,T)=g(x). Известно, что $\alpha(t)=-u_x(y(t),t)$, где y — решение задачи Коши $y'=-u_x(y,t),\ y(0)=x,$ является оптимальным контролем. Следовательно,

можно считать, что для $\widehat{y_i}$ выполнено $y_i' = -u_x(y_i,t), y_i(0) = x_i$. Тогда можно показать (и это будет сделано на следующих лекциях), что μ_t является решением уравнения непрерывности

$$\partial_t \mu_t^N - \partial_x (u_x \mu_t^N) = 0.$$

Таким образом, для описания равновесия Нэша требуется решить следующую задачу $meopuu\ usp\ cped$ него nons: найти пару (u, μ_t) решений системы уравнений

$$\begin{cases} -u_t + \frac{1}{2}|u_x|^2 = f(\mu_t), \\ \partial_t \mu_t - \partial_x (u_x \mu_t) = 0, \end{cases}$$

удовлетворяющих условиям $u(x,T) = g(x), \mu_0 = \nu.$

Если в уравнение $y' = \alpha$ добавить стохастическое слагаемое, то в уравнениях теории игр среднего поля появятся слагаемые с производными второго порядка. Исследование систем уравнений такого вида является одной из центральных задач теории игр среднего поля.

Так как в рассматриваемых задачах существенно используются свойства вероятностных мер, то мы в начале курса обсудим некоторые свойства пространства вероятностных мер и слабой сходимости.

Вероятностные меры

Пусть X — полное сепарабельное метрическое пространство.

Вероятностной мерой μ на борелевской сигма-алгебре $\mathcal{B} = \mathcal{B}(X)$ называется отображение $\mu \colon \mathcal{B} \to [0,1]$, удовлетворяющее двум условиям: 1) $\mu(X) = 1$ и 2) μ — сигма аддитивно, т.е. $\mu(\sqcup_i B_i) = \sum_i \mu(B_i)$, где $\sqcup_i B_i$ — объединение попарно непересекающихся множеств.

Сигма-аддитивность μ равносильна непрерывности относительно объединений и пересечений вложенных множеств: если $B_n \subset B_{n+1}$, то $\lim_{n\to\infty} \mu(B_n) = \mu(\cup_i B_i)$, а если $B_{n+1} \subset B_n$, то $\lim_{n\to\infty} \mu(B_n) = \mu(\cap_i B_i)$.

Из свойства непрерывности немедленно следует, что для всякого $\varepsilon > 0$ найдется такой шар B(0,R), что $\mu(B(0,R)) \geq 1 - \varepsilon$.

Предложение 1. Пусть μ — вероятностная мера на X. Для всякого $\varepsilon > 0$ существует такой компакт K_{ε} , что

$$\mu(K_{\varepsilon}) \ge 1 - \varepsilon$$
.

Доказательство. Пусть $\{s_n\}$ — счетное всюду плотное множество в X. Для каждого натурального числа k имеет место равенство

$$X = \cup_n \overline{B}(s_n, 2^{-k}).$$

Следовательно, найдется n_k , для которого $\mu(F_k) \geq 1 - \frac{\varepsilon}{2^k}$, где $F_k = \bigcup_{n=1}^{n_k} \overline{B}(s_n, 2^{-k})$. Множество $K_\varepsilon = \bigcap_k F_k$ замкнуто и для каждого $\delta > 0$ имеет конечную δ – сеть. Следовательно, K_ε является компактом. Более того,

$$\mu(X \setminus K_{\varepsilon}) \le \sum_{k} \mu(X \setminus F_{k}) \le \sum_{k} \frac{\varepsilon}{2^{k}} = \varepsilon.$$

Предложение 2. Пусть μ — вероятностная мера на X. Для всякого борелевского множества B и всякого $\varepsilon > 0$ найдутся замкнутое множество F и открытое множество U, для которых выполняются условия:

$$F \subset B \subset U$$
, $\mu(U \setminus F) < \varepsilon$.

Доказательство. Если B — замкнутое множество, то F=B и

$$U = B^{1/n} = \{x : dist d(x, B) < 1/n\}$$

для достаточно большого n. Рассмотрим теперь семейство E всех борелевских множеств B, для которых для всякого $\varepsilon > 0$ существуют замкнутое множество F и открытое множество U, удовлетворяющие условиям $F \subset B \subset U$, $\mu(U \setminus F) < \varepsilon$. Семейство E является сигма-алгеброй и содержит все замкнутые множества. Следовательно, оно совпадает с борелевской сигма-алгеброй.

Следствие 1. Если две вероятностные меры μ и σ совпадают на всех замкнутых (открытых) множествах, то они совпадают на всех борелевских.

Следствие 2. Пусть μ и σ — вероятностные меры. Если для всякой функции $\varphi \in C_b(X)$ верно равенство

$$\int \varphi \, d\mu = \int \varphi \, d\sigma,$$

то $\mu = \sigma$ на \mathcal{B} .

Доказательство. Пусть F — замкнутое множество. Покажем, что $\mu(F) = \sigma(F)$. Пусть $\delta > 0$ и I_F — индикатор множества F. Положим $\psi_{\delta}(t) = 1$ при $t \leq 0$, $\psi_{\delta}(t) = 1 - \frac{t}{\delta}$ при $0 \leq t \leq \delta$ и $\psi_{\delta}(t) = 0$ при $t \geq \delta$. Ясно, что

$$\lim_{\delta \to 0} \psi_{\delta}(\operatorname{dist}(x, F)) = I_F(x).$$

По теореме Лебега о мажорируемой сходимости

$$\int \psi_{\delta}(\operatorname{dist}(x,F)) d\mu = \int I_F(x) d\mu = \mu(F).$$

Аналогичные равенства верны для σ . Остается заметить, что функция $\psi_{\delta}(\mathrm{dist}(x,F))$ ограничена и непрерывна. На самом деле это липшицева функция.

Следствие 3. Пусть μ и σ — вероятностные меры на $X = \mathbb{R}^d$. Если для всякой функции $\varphi \in C_0^\infty(\mathbb{R}^d)$ верно равенство

$$\int \varphi \, d\mu = \int \varphi \, d\sigma,$$

то $\mu = \sigma$ на \mathcal{B} .

Доказательство. Достаточно непрерывную ограниченную функцию приблизить гладкими функциями с компактным носителем, а это можно сделать с помощью умножения на «срезающую» функцию и свертки с гладким ядром.

Носителем меры $spt(\mu)$ называется множество всех таких x, что $\mu(B(x,r)) > 0$ для всякого шара B(x,r). Носитель меры является замкнутым множеством.

Пусть (X, \mathcal{A}_X) и (Y, \mathcal{A}_Y) — абстрактные измеримые пространства, отображение $f \colon X \to Y$ измеримо относительно сигма алгебр \mathcal{A}_X и \mathcal{A}_Y и μ — вероятностная мера на (X, \mathcal{A}_X) . Тогда на (Y, \mathcal{A}_Y) определена вероятностная мера $\mu \circ f^{-1}$, заданная равенством

$$\mu \circ f^{-1}(B) = \mu(f^{-1}(B)).$$

Верна следующая абстрактная формула замены переменной.

Теорема 1. Для всякой функции $g: Y \to \mathbb{R}$, измеримой относительно \mathcal{A}_Y , выполняется равенство

$$\int_Y g(y)\,d\mu\circ f^{-1}=\int_X g(f(x))\,d\mu,$$

в котором существование одного из интегралов влечет существование другого.

Доказательство. В силу определения интеграла Лебега равенство достаточно проверить для индикатора $g(y) = I_B(y)$:

$$\int_Y I_B(y) \, d\mu \circ f^{-1} = \mu \circ f^{-1}(B) = \mu(f^{-1}(B)) = \int I_B(f(x)) \, d\mu.$$

В заключение данного раздела приведем без доказательство полезное обобщение теоремы Фубини.

Теорема 2. Пусть μ — вероятностная мера на $X \times Y$, где X и Y — полные сепарабельные метрические пространства. Тогда существует такое семейство вероятностных мер μ^y на X, что $y \to \mu^y(B)$ — измеримая функция для всякого борелевского множества B и для всякой измеримой функции f на $X \times Y$ верно равенство

$$\iint_{X \times Y} f(x, y) \,\mu(dxdy) = \int_{Y} \left(\int_{X} f(x, y) \,\mu^{y}(dx) \right) \mu_{Y}(dy),$$

где μ_Y — проекция меры μ на Y, т.е. $\mu_Y(B) = \mu(X \times B)$.

Меры $\{\mu^y\}$ называют условными мерами.

Слабая сходимость

Последовательность вероятностных мер μ_n слабо сходится к μ , если для всякой ограниченной непрерывной функции φ верно равенство

$$\lim_{n\to\infty} \int \varphi \, d\mu_n = \int \varphi \, d\mu.$$

Из доказанного выше следует, что предельная мера μ определена однозначно.

Важнейшим утверждением о слабой сходимости является теорема Ю.В.Прохорова. Напомним, что мы рассматриваем вероятностные меры на полном сепарабельном метрическом пространстве X.

Теорема 3. Если последовательность вероятностных мер μ_n слабо сходится κ вероятностной мере μ , то для всякого $\varepsilon > 0$ существует такой компакт K_{ε} , что

$$\mu_n(K_{\varepsilon}) > 1 - \varepsilon \quad \forall n.$$

Обратно, если последовательность вероятностных мер μ_n удовлетворяет этому условию, то существует слабо сходящаяся подпоследовательность μ_{n_k} .

Следствие 4. Последовательность мер μ_n на \mathbb{R}^d сходится слабо к вероятностной мере μ тогда и только тогда, когда

$$\lim_{n \to \infty} \int \varphi \, d\mu_n = \int \varphi \, d\mu \quad \forall \varphi \in C_0^{\infty}(\mathbb{R}^d).$$

Доказательство. Пусть $\psi_N(x) = \psi(x/N)$, где $\psi \in C_0^\infty(\mathbb{R}^d)$, $0 \le \psi \le 1$, $\psi(x) = 1$ при |x| < 1 и $\psi(x) = 0$ при |x| > 2. Так как $\psi_N(x) \to 1$ при $N \to \infty$, то для всякого $\varepsilon > 0$ существует N, при котором

$$\int \psi_N \, d\mu \ge 1 - \frac{\varepsilon}{2}.$$

Тогда найдется такое n_0 , что для всех $n > n_0$ верны оценки

$$\mu_n(\overline{B}(0,2N)) \ge \int \psi_N d\mu_n \ge 1 - \varepsilon.$$

По теореме Прохорова во всякой подпоследовательности μ_{n_j} существует дальнейшая подпоследовательность $\mu_{n_{j_k}}$, которая слабо сходится к некоторой вероятностной мере $\widetilde{\mu}$. Так как интегралы от φ по μ и по $\widetilde{\mu}$ совпадают для всякой $\varphi \in C_0^\infty(\mathbb{R}^d)$, то $\mu = \widetilde{\mu}$. Следовательно, μ_n слабо сходится к μ .

Следствие 5. Пусть $V \in C(\mathbb{R}^d)$, $V \ge 0$, $\lim_{|x| \to \infty} V(x) = +\infty$. Предположим, что для последовательности вероятностных мер μ_n на \mathbb{R}^d выполняется неравенство

$$\sup_{n} \int V(x) \, d\mu_n < \infty.$$

Тогда существует слабо сходящаяся подпоследовательность μ_{n_i} .

Доказательство. Достаточно применить неравенство Чебышёва:

$$\mu_n\Big(\{x\colon V(x)>R\}\Big)\leq \frac{1}{R}\int V(x)\,d\mu_n.$$

Метрика Канторовича-Рубинштейна

Пусть $X = \mathbb{R}^d$, а μ и σ — вероятностные меры на X. Величина

$$d_{KR}(\mu, \sigma) = \sup \left\{ \int \varphi \, d(\mu - \sigma) \colon |\varphi(x)| \le 1, |\varphi(x) - \varphi(y)| \le |x - y| \right\}$$

называется метрикой Канторовича-Рубинштейна.

Теорема 4. Функция $(\mu, \sigma) \to d_{KR}(\mu, \sigma)$ является метрикой на пространстве вероятностных мер $\mathcal{P}(X)$ и задает слабую сходимость.

Доказательство. Пусть $\varphi \in C_0^\infty(\mathbb{R}^d)$. Если $d_{KR}(\mu_n,\mu) \to 0$, то

$$\left| \int \varphi \, d\mu_n - \int \varphi \, d\mu \right| \le (\max |\varphi| + \max |\nabla \varphi|) d_{KR}(\mu_n, \mu)$$

и интегралы от φ по μ_n сходятся к интегралу от φ по μ . Следовательно, μ_n сходится слабо к μ .

Предположим, что последовательность μ_n сходится слабо к μ . Тогда существует такой компакт K_{ε} , что $\mu_n(K_{\varepsilon}) \geq 1-\varepsilon$ для всех μ_n и $\mu(K_{\varepsilon}) \geq 1-\varepsilon$. Семейство функций

$$\Phi = \{ \varphi \colon |\varphi| \le 1, \quad |\varphi(x) - \varphi(y)| \le |x - y| \}$$

является равномерно ограниченным и равностепенно непрерывным семейством функций в $C(K_{\varepsilon})$. По теореме Арцела–Асколи это семейство является вполне ограниченным. Пусть $\varphi_1, \ldots, \varphi_M - \varepsilon$ -сеть множества Φ . Пусть N таково, что для всех n > N и для всех $1 \le i \le M$ верна оценка

$$\left| \int \varphi_i \, d\mu_n - \int \varphi_i \, d\mu \right| \le \varepsilon.$$

Пусть φ — произвольная функция из Φ . Для некоторой функции φ_i верно неравенство $|\varphi(x)-\varphi_i(x)|\leq \varepsilon$ при $x\in K_\varepsilon$. Так как

$$\int \varphi \, d(\mu_n - \mu) \le \int \varphi_i \, d(\mu_n - \mu) + \int_{X \setminus K_{\varepsilon}} (\varphi - \varphi_i) \, d(\mu_n - \mu) + \int_{K_{\varepsilon}} (\varphi - \varphi_i) \, d(\mu_n - \mu),$$
TO
$$\int \varphi \, d(\mu_n - \mu) \le 7\varepsilon.$$

Получаем, что $d_{KR}(\mu_n,\mu) \leq 7\varepsilon$ для всех n > N, т.е. $d_{KR}(\mu_n,\mu) \to 0$.

Можно показать, что $\mathcal{P}(X)$ с метрикой d_{KR} является полным сепарабельным метрическим пространством.