Single-source shortest paths

October 14, 2014

Content

- Weighted graphs and related notions
 - The relaxation method
- Single-source shortest path algorithms:
 - Dijkstra algorithm
 - Bellman-Ford algorithm

A weighted graph is a directed or undirected graph G = (V, E) together with a map $w : E \to \mathbb{R}_+$, where \mathbb{R}_+ is the set of positive real numbers.

• If $e \in E$ then w(e) is the weight of edge e.

A weighted graph is a directed or undirected graph G = (V, E) together with a map $w : E \to \mathbb{R}_+$, where \mathbb{R}_+ is the set of positive real numbers.

- If $e \in E$ then w(e) is the weight of edge e.
- Weights can be used to represent:
 - lengths of connections between nodes
 - duration of a flight connection
 - <u>③</u> ...

A weighted graph is a directed or undirected graph G = (V, E) together with a map $w : E \to \mathbb{R}_+$, where \mathbb{R}_+ is the set of positive real numbers.

- If $e \in E$ then w(e) is the weight of edge e.
- Weights can be used to represent:
 - lengths of connections between nodes
 - duration of a flight connection
 - 3 ...
- The weight of a path $\pi = (v_0, v_1, \dots, v_k)$ is

$$w(\pi) = w(v_0, v_1) + w(v_1, v_2) + \ldots + w(v_{k-1}, v_k) = \sum_{i=1}^k w(v_{i-1}, v_i).$$

We will write $u \stackrel{\pi}{\leadsto} v$ if π is a path from u to v.

A weighted graph is a directed or undirected graph G = (V, E) together with a map $w : E \to \mathbb{R}_+$, where \mathbb{R}_+ is the set of positive real numbers.

- If $e \in E$ then w(e) is the weight of edge e.
- Weights can be used to represent:
 - lengths of connections between nodes
 - duration of a flight connection
 - 3 ...
- The weight of a path $\pi = (v_0, v_1, \dots, v_k)$ is

$$w(\pi) = w(v_0, v_1) + w(v_1, v_2) + \ldots + w(v_{k-1}, v_k) = \sum_{i=1}^k w(v_{i-1}, v_i).$$

We will write $u \stackrel{\pi}{\leadsto} v$ if π is a path from u to v.

The shortest path weight from u to v is

$$\delta(u,v) = \left\{ \begin{array}{ll} \min\{w(\pi) \mid u \overset{\pi}{\leadsto} v\} & \text{if } u \text{ and } v \text{ are connected,} \\ \infty & \text{if } u \text{ and } v \text{ are not connected.} \end{array} \right.$$

The single-source shortest-path problem

Given a weighted graph G = (V, E) and a source node $s \in V$

Find a shortest path from s to every node $v \in V$.

Theorem (Subpaths of shortest paths are shortest paths)

Given a weighted, directed graph G = (V, E) with weight function $w : E \to \mathbb{R}_+$, let $\pi = (v_1, v_2, \dots, v_k)$ be a shortest path from v_1 to v_k , and for any i and j such that $1 \le i \le j \le k$, let $\pi_{ij} = (v_i, v_{i+1}, \dots, v_j)$ be the subpath of π from v_i to v_j . Then π_{ij} is a shortest path from v_i to v_j .

The single-source shortest-path problem

Given a weighted graph G = (V, E) and a source node $s \in V$

Find a shortest path from s to every node $v \in V$.

Theorem (Subpaths of shortest paths are shortest paths)

Given a weighted, directed graph G = (V, E) with weight function $w : E \to \mathbb{R}_+$, let $\pi = (v_1, v_2, \dots, v_k)$ be a shortest path from v_1 to v_k , and for any i and j such that $1 \le i \le j \le k$, let $\pi_{ij} = (v_i, v_{i+1}, \dots, v_j)$ be the subpath of π from v_i to v_j . Then π_{ij} is a shortest path from v_i to v_j .

$$w(\pi) = w(\pi_{1i}) + w(\pi_{ij}) + w(\pi_{jk}).$$

- If there exists a shortest path from s to v of the form $s \stackrel{\pi}{\leadsto} u \rightarrow v$ then $\delta(s, v) = \delta(s, u) + w(u, v)$.
- Provided For all edges (u, v) of a directed graph G = (V, E) we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$.

- If there exists a shortest path from s to v of the form $s \stackrel{\pi}{\leadsto} u \rightarrow v$ then $\delta(s, v) = \delta(s, u) + w(u, v)$.
- ② For all edges (u, v) of a directed graph G = (V, E) we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$.

We will present 2 algorithms to find the single-source shortest-path problem a weighted, directed graph G = (V, E):

- If there exists a shortest path from s to v of the form $s \stackrel{\pi}{\leadsto} u \rightarrow v$ then $\delta(s, v) = \delta(s, u) + w(u, v)$.
- ② For all edges (u, v) of a directed graph G = (V, E) we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$.

We will present 2 algorithms to find the single-source shortest-path problem a weighted, directed graph G = (V, E):

Dijkstra algorithm

- If there exists a shortest path from s to v of the form $s \stackrel{\pi}{\leadsto} u \rightarrow v$ then $\delta(s, v) = \delta(s, u) + w(u, v)$.
- Provided For all edges (u, v) of a directed graph G = (V, E) we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$.

We will present 2 algorithms to find the single-source shortest-path problem a weighted, directed graph G = (V, E):

- Dijkstra algorithm
- Bellman-Ford algorithm

- If there exists a shortest path from s to v of the form $s \stackrel{\pi}{\leadsto} u \rightarrow v$ then $\delta(s, v) = \delta(s, u) + w(u, v)$.
- ② For all edges (u, v) of a directed graph G = (V, E) we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$.

We will present 2 algorithms to find the single-source shortest-path problem a weighted, directed graph G = (V, E):

- Dijkstra algorithm
- Bellman-Ford algorithm

Both algorithms rely on the relaxation method.

Relaxation Method

Related data structures and initial values

Auxiliary technique for the computation of all shortest paths from a source node *s*

Relaxation Method

Related data structures and initial values

Auxiliary technique for the computation of all shortest paths from a source node *s*

Related data structures:

Relaxation Method

Related data structures and initial values

Auxiliary technique for the computation of all shortest paths from a source node s

Related data structures:

1 $d: V \to \mathbb{R}^+$ (shortest path estimate) d[v] := upper bound on the weight of a shortest path from s to v.

Auxiliary technique for the computation of all shortest paths from a source node s

Related data structures:

1 $d: V \to \mathbb{R}^+$ (shortest path estimate) d[v] := upper bound on the weight of a shortest path from s to v.

② $\pi: V \to C \cup \{NIL\}$ $\pi[v] := \text{predecessor of } v \text{ on the path from } s \text{ to } v$ Auxiliary technique for the computation of all shortest paths from a source node s

- Related data structures:
 - **1** $d: V \to \mathbb{R}^+$ (shortest path estimate) d[v] := upper bound on the weight of a shortest path from s to v.
 - 2 $\pi: V \to C \cup \{NIL\}$ $\pi[v] := \text{predecessor of } v \text{ on the path from } s \text{ to } v$

Initialization step (pseudocode)

InitializeSingleSource(G, s) for each $v \in V[G]$ $d[v] \leftarrow \infty$ $\pi[v] \leftarrow s$ $d[s] \leftarrow 0$ $\pi[s] = NIL$

Relaxation Method Relaxation step

The relaxation method performs edge relaxation steps.

- Relaxing an edge (u, v) means:
 - 1 Testing if we can improve the length of $\pi[v]$ by going through u
 - 2 If so, update d[v] and $\pi[v]$

The relaxation method performs edge relaxation steps.

- Relaxing an edge (u, v) means:
 - Testing if we can improve the length of $\pi[v]$ by going through u
 - ② If so, update d[v] and $\pi[v]$
- Pseudocode for relaxation step

```
RELAX(u, v)

if d[v] > d[u] + w(u, v)

d[v] \leftarrow d[u] + w(u, v)

\pi[v] \leftarrow u
```

The relaxation method performs edge relaxation steps.

- Relaxing an edge (u, v) means:
 - Testing if we can improve the length of $\pi[v]$ by going through u
 - ② If so, update d[v] and $\pi[v]$
- Pseudocode for relaxation step

RELAX
$$(u, v)$$

if $d[v] > d[u] + w(u, v)$
 $d[v] \leftarrow d[u] + w(u, v)$
 $\pi[v] \leftarrow u$

Relaxation method

INITIALIZESINGLESOURCE(G, s)

Relax(s, u)

Relaxation method Example

INITIALIZESINGLESOURCE(G, s)

 $\mathsf{RELAX}(s, u)$

Properties shared by the single-source shortest-path algorithms

- Both algorithms Dijkstra and Bellman-Ford call INITIALIZESINGLESOURCE(G, s) and then repeatedly perform relaxation steps.
- Relaxation is the only means by which the shortest-path estimates d[v] and predecessors $\pi[v]$ can change.
- Dijkstra and Bellman-Ford algorithms differ in
 - how many times they relax each edge
 - Dijkstra's algorithm relaxes each edge exactly once
 - ▷ Bellman-Ford algorithm relaxes edges several times
 - the order in which they relax edges

Properties of relaxation

- ASSUMPTION. G = (V, E) is a weighted digraph.
- (P_1) Immediately after the execution of RELAX(u, v), we have $d[v] \le d[u] + w(u, v)$.
- (P_2) $d[v] \geq \delta(s, v)$ for all $v \in V$ holds after INITIALIZESINGLESOURCE(G, s), and is maintained by all relaxation steps produced by executing Relax(u, v).
- (P_3) If v is not connected to s then $d[v] = \delta(s, v) = \infty$ after initialization. Also, this property is maintained by all relaxation steps produced afterwards.
- (P_4) Suppose $s \stackrel{\pi}{\leadsto} u \rightarrow v$ is a shortest path from s to v in G, and
 - G was initialized with INITIALIZESINGLESOURCE(G, s).
 - A sequence of relaxation steps, including Relax(u, v), was performed afterwards.

If $d[u] = \delta(s, u)$ was true before the relaxation step Relax(u, v), then $d[v] = \delta(s, v)$ is true at all times afterwards.

Shortest-path trees

- Algorithms based on the relaxation method compute a parent $\pi(v)$ for every node $v \in V$.
 - G_{π} : the tree with nodes V and edges $E_{\pi} = \{(\pi(v), v) \mid v \in V \text{ and } \pi(v) \neq NIL\}.$

PROPERTIES OF RELAXATION

Shortest-path trees

- Algorithms based on the relaxation method compute a parent $\pi(v)$ for every node $v \in V$.
 - G_{π} : the tree with nodes V and edges $E_{\pi} = \{(\pi(v), v) \mid v \in V \text{ and } \pi(v) \neq NIL\}.$

PROPERTIES OF RELAXATION

- Relaxation steps cause the shortest path estimates to descend monotonically towards the actual shortest-path weight.
- After a sequence of relaxation steps has computed the actual shortest path weights, the graph G_{π} is a shortest-path tree for G, which means that:
 - The branches from s to any v in the tree G_{π} are shortest paths from s to v in G.

 Maintains a set S of vertices whose final shortest path weights from source s have already been found. This means that

$$d[v] = \delta(s, v)$$
 for all $v \in S$.

- The algorithm repeatedly selects $u \in V S$ with d[v] minimum, inserts u into S, and relaxes all edges leaving u.
- This implementation of the Dijkstra's algorithm assumes that G is represented by adjacency lists:

```
DIJKSTRA(G, w, s)
1 INITIALIZESINGLESOURCE(G, s)
2 S \leftarrow \emptyset
3 Q \leftarrow V[G]
4 while Q - S \neq \emptyset
5 u \leftarrow \text{EXTRACTMIN}(Q - S)
6 S \leftarrow S \cup \{u\}
7 for each node v \in Adj[u]
8 RELAX(u, v)
```


Configuration produced by INITIALIZESINGLESOURCE(G, s)

$$S = \emptyset \\ Q = \{s, u, v, x, y\} \\ \text{select node } s$$

$$S=\{s\}, Adj[s] = \{u, x\}$$

 $Q = \{u, v, x, y\}$

RELAX(s, u) changes: d[u] := 10

$$S=\{s\}, Adj[s] = \{u, x\}$$
$$Q = \{u, v, x, y\}$$

RELAX(s, x) changes d[x] := 5

Illustrative example: while loop 2

$$S = \{s\}$$

 $Q = \{u, v, x, y\}$
select node x

RELAX(x, v) changes: $d[v] := 14, \pi[v] := x$

Illustrative example: while loop 3

RELAX(y, s) changes: none

RELAX(y, v)changes: $d[v] := 13, \pi[v] := y$

Illustrative example: while loop 4

RELAX(u, x) changes: none

RELAX(u, v)changes: $d[v] := 9, \pi[v] := u$

Illustrative example: while loop 5

Final configuration:

RELAX(v, y) changes: none

The shortest-path tree

- $\pi[s] = NIL, \pi[x] = s, \pi[u] = \pi[y] = x, \pi[v] = u$ d[s] = 0, d[x] = 5, d[u] = 8, d[y] = 7, d[v] = 9
- G_{π} is

NOTE. G_{π} is shortest-path tree for G.

Dijkstra's algorithm How does it work?

- Line 1 performs the usual initialization of the values of d and π .
- Line 2 initializes S to the empty set.
- Line 3 initializes the priority queue Q to contain all the vertices in $V S = V \emptyset = V$.
- Each time through the **while** loop of lines 4-8, a vertex u is extracted from Q = V S and inserted into set S. In the first loop, u = s.
- Lines 7-8 relax each edge (u, v) leaving u, thus updating d[v] and the predecessor π[v] if the shortest path to v can be improved by going through u.
- NOTE. Vertices are never inserted into Q after line 3, and each vertex is extracted from Q and inserted into S exactly once
 ⇒ the while loop of lines 4-8 iterates exactly |V| times.

Dijkstra's algorithm: Properties

greedy: it always chooses the "lightest" node in ${\it V}-{\it S}$ to insert into ${\it S}$.

correct: Upon termination on a weighted directed graph with weight function

 $w: E \to \mathbb{R}_+$, $d[u] = \delta(s, u)$ for all vertices $u \in V$.

Dijkstra's algorithm: Properties

greedy: it always chooses the "lightest" node in $\mathit{V}-\mathit{S}$ to insert into S .

correct: Upon termination on a weighted directed graph with weight function

 $w: E \to \mathbb{R}_+$, $d[u] = \delta(s, u)$ for all vertices $u \in V$.

Dijkstra's algorithm: Properties

greedy: it always chooses the "lightest" node in V-S to insert into S.

correct: Upon termination on a weighted directed graph with weight function $w: E \to \mathbb{R}_+, d[u] = \delta(s, u)$ for all vertices $u \in V$.

CORRECTNESS PROOF: Let S_k and $d_k[v]$ be the values of S and d[v] before **while** loop k. We prove by induction on k that

- 1. $d_k[v] = \delta(v)$ for all $v \in S_k$.
- 2. $d_k[v] = \min\{\delta(u) + w(u, v) | | u \in S_k\}$ for all $v \in V S_k$.

Dijkstra's algorithm: Properties

greedy: it always chooses the "lightest" node in V-S to insert into S.

correct: Upon termination on a weighted directed graph with weight function $w: E \to \mathbb{R}_+, d[u] = \delta(s, u)$ for all vertices $u \in V$.

CORRECTNESS PROOF: Let S_k and $d_k[v]$ be the values of S and d[v] before **while** loop k. We prove by induction on k that

- 1. $d_k[v] = \delta(v)$ for all $v \in S_k$.
- 2. $d_k[v] = \min\{\delta(u) + w(u, v) | | u \in S_k\}$ for all $v \in V S_k$.

Assume v is the node added to S_k , that is, $S_{k+1} = S_k \cup \{v\}$ and $d_k[v] = \min\{d_k[x] \mid x \in V - S_k\}$.

Dijkstra's algorithm

Correctness proof

First, we show that $d_{k+1}[v] = \delta(s, v)$. Proof by contradiction: If $d_{k+1}[v] \neq \delta(s, v)$ then there is a path π' shorter than $s \stackrel{\sim}{\sim} u \rightarrow v$.

- π' must have a node not in S_k before ν .
- Let y be the first node of π' not in S_k . Path π' is depicted below:

Then $w(\pi') = w(\pi_1) + w(x,y) + w(\pi_2) < d_k[v]$. But then $d_k[w] > w(\pi') > w(\pi_1) + w(x,y) = d_k[y]$, which contradicts the fact that $d_k[v] = |\{d_k[x] \mid x \in V - S_k\}$. Next, we can show that $d_{k+1}[y] = \min\{\delta(u) + w(u,y) \mid u \in S_{k+1}\}$ for all $y \in V - S_{k+1}$

... Easy proof by contradiction.

Dijkstra's algorithm: Complexity analysis

Assumption. Q = V - S is implemented as a linear array.

- The extraction of a certain element from Q takes time proportional with the length of Q, which is $\leq |V|$. Thus, every operation $\mathsf{EXTRACTMIN}(Q)$ takes time O(|V|).
- There are |V| such extractions \Rightarrow total time for EXTRACTMIN is $O(|V|^2)$.
- Each node $v \in V$ is inserted into S exactly once, so each edge in Adj[v] is examined in the **for** loop of lines 4-8 exactly once. Since the total number of edges in all the adjacency lists is |E|, there is a total of |E| iterations of this **for** loop, with each iteration taking constant time, O(1).

The total running time of Dijkstra's algorithm is $O(|V|^2 + |E|) = O(|V|^2)$.

- Dijkstra's algorithm was designed to work for positive weight $w: E \to \mathbb{R}_+$
- Bellman-Ford algorithm is designed to work also with negative weights; In general, we assume $w: E \to \mathbb{R}$
 - Given a weighted, directed graph G = (V, E), a source s, and a weight function $w : E \to \mathbb{R}$
 - Return a boolean value indicating whether or not there is a negative-weight cycle that is reachable from the source. If there is no such cycle, produce the shortest paths and their weights.

The algorithm returns true if and only if G has no negative weight cycles that are reachable from the source node s.


```
BELLMANFORD(G, w, s)
1 INITIALIZESINGLESOURCE(G, s)
2 for i \leftarrow 1 to |V[G]| - 1
3. for each edge (u, v) \in E[G]
4. Relax(u, v)
5. for each edge (u, v) \in E[G]
6. if d[v] > d[u] + w(u, v)
7. return false
8. return true
```

```
BELLMANFORD(G, w, s)
1 INITIALIZESINGLESOURCE(G, s)
2 for i \leftarrow 1 to |V[G]| - 1
3. for each edge (u, v) \in E[G]
4. Relax(u, v)
5. for each edge (u, v) \in E[G]
6. if d[v] > d[u] + w(u, v)
7. return false
```

Example

8. return tirue

Suppose s = z and G is the graph

Bellman-Ford algorithm Execution of first for loop

Overall execution of Bellman-Ford algorithm

Figure 25.7 The execution of the Bellman-Ford algorithm. The source is vertex z. The d values are shown within the vertices, and shaded edges indicate the π values. In this particular example, each pass relaxes the edges in lexicographic order: (u,v),(u,x),(u,y),(v,u),(x,y),(y,v),(y,z),(z,u),(z,x). (a) The situation just before the first pass over the edges. (b)–(e) The situation after each successive pass over the edges. The d and π values in part (e) are the final values. The Bellman-Ford algorithm returns TRUE in this example.

- $\pi[z] = NIL$, $\pi[x] = z$, $\pi[v] = x$, $\pi[u] = v$, $\pi[y] = u$ d[z] = 0, d[x] = 7, d[v] = 4, d[u] = 2, d[y] = -2
- G_{π} is

NOTE. G_{π} is shortest-part tree for G.

Bellman-Ford algorithm How does it work?

- After performing the usual initialization, the algorithm makes |V| 1 passes over the edges of the graph.
- Each pass is one iteration of the for loop of lines 2-4 and consists of relaxing each edge of the graph once. Figures (b)-(e) show the outcome of the algorithm after each of the four passes of the edges.
- After making |V|-1 passes, lines 5-8 check for a negative-weight cycle and return the appropriate boolean value.

Bellman-Ford algorithm Complexity analysis

- The initialization in line 1 takes $\Theta(|V|)$ time
- Each of the |V| − 1 passes over the edges in lines 2-4 takes O(|E|) time
- The **for** loop of lines 5-7 takes O(|E|) time
 - \Rightarrow Bellman-Ford algorithm runs in time O(|V||E|).

Bellman-Ford algorithm Main properties

- If G contains no negative-weight cycles that are reachable from s, then at the termination of BellmanFord(G, w, s), we have $d[v] = \delta(s, v)$ for all nodes v reachable from s
- **②** For each $v \in V$ there is a path $s \stackrel{\pi}{\leadsto} v$ if and only if BellmanFord(G, w, s) terminates with $d[v] < \infty$. (This is a corollary of the previous property).

Theorem (Correctness of Bellman-Ford algorithm)

Let BellmanFord(G, w, s) run on a weighted, directed graph G with source s and weight function $w : E \to \mathbb{R}$.

- If G contains no negative-weight cycles reachable from s, then the algorithm returns true, we have $d[v] = \delta(s, v)$ for all $v \in V$, and G_{π} is a shortest-path tree rooted at s.
- 2 If *G* contains a negative-weight cycle reachable from *s*, then the algorithm returns false.

References

- Chapter 25 of
 - T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms. MIT Press, 2000.