Linear Interpolation

A Quick Review

Linear Interpolation

 Interpolation is used when we need to find a "missing value" in a data set

\boldsymbol{x}	0	1	2	3
y	2	4	5	8

- What if we wanted to find y at x = 2.5?
- Can interpolate linearly, quadratically, etc.

To find the interpolated value f(b) at a point b:

- 1) Pick the 2 closest surrounding points, α and c
- 2) Fit a straight line between a and c
- 3) Evaluate f(b) based on the fitted line and similar triangles

To find the interpolated value f(b) at a point b:

- 1) Pick the 2 closest surrounding points, *a* and *c*
 - Corresponding y-values: f(a), f(c)
 - a and c should "sandwich" b

To find the interpolated value f(b) at a point b:

- 2) Fit a (straight) line between *a* and *c*
 - (Simple) Curve fitting!
 - This is as straightforward as it sounds
 - Gets more complex for higherorder interpolations

To find the interpolated value f(b) at a point b:

3) Evaluate f(b) based on the fitted line and similar triangles

Cool Property of Linear Interpolation

• Because of linearity, f(b) is the same distance from f(a) and f(c) as b is from a and c

Aside

- You may have learned to interpolate via a linear system of equations (Ax = b)
- A matrix is called the Vandermonde Matrix
- Be wary in practical applications because A is VERY sensitive
 - Matrix condition number

Food For Thought

- Linear interpolation formula includes a finite-difference approximation of $\frac{dy}{dx}$
 - Where have you seen this before?
- Finite-difference approximations are derived from the Taylor Series
 - What happens to the accuracy if you add more terms of the Taylor Series to the interpolation formula?
- The smaller the interval between data points, the better the approximation. Why?