

In [10]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

SETUP NOTEBOOK

In [11]: df = pd.read_csv("titanic_train_dataset.csv")
 df.head()

Out[11]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON, O2 3101282
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450

INITIAL EXPLORATION

In [12]: df.shape

Out[12]: (891, 12)

In [13]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype			
0	PassengerId	891 non-null	int64			
1	Survived	891 non-null	int64			
2	Pclass	891 non-null	int64			
3	Name	891 non-null	object			
4	Sex	891 non-null	object			
5	Age	714 non-null	float64			
6	SibSp	891 non-null	int64			
7	Parch	891 non-null	int64			
8	Ticket	891 non-null	object			
9	Fare	891 non-null	float64			
10	Cabin	204 non-null	object			
11	Embarked	889 non-null	object			
dtypocs float64/2) int64/5) object/5)						

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [14]: df.describe()

Out[14]:

	PassengerId	Survived	Pclass	Age	SibSp	Parch
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000
75 %	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000

In [15]: df.isnull().sum()

0 Out[15]: PassengerId Survived 0 Pclass 0 Name 0 Sex 0 Age 177 SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 2

dtype: int64

```
In [16]: df.duplicated().sum()
Out[16]: np.int64(0)
In [21]: # Safely fill missing Age values
         df['Age'] = df['Age'].fillna(df['Age'].median())
         # Safely drop Cabin column if it exists
         if 'Cabin' in df.columns:
             df.drop(columns='Cabin', inplace=True)
         # Fill missing Embarked values with mode
         df['Embarked'] = df['Embarked'].fillna(df['Embarked'].mode()[0])
In [22]: df.isnull().sum()
Out[22]: PassengerId
                        0
         Survived
                        0
         Pclass
                        0
         Name
                        0
         Sex
                        0
         Age
                        0
         SibSp
                        0
         Parch
                        0
         Ticket
                        0
         Fare
                        0
         Embarked
                        0
         dtype: int64
```

UNIVARIATE ANALYSIS (SINGLE FEATURE)

```
In [23]: # Categorical
    df['Sex'].value_counts().plot(kind='bar', title='Sex Distribution')
    plt.show()

# Numerical
    sns.histplot(df['Age'].dropna(), kde=True)
    plt.title('Age Distribution')
    plt.show()

sns.boxplot(x=df['Fare'])
    plt.title('Fare Boxplot')
    plt.show()
```


BIVARIATE ANALYSIS

```
In [24]: # Survived vs Sex
sns.countplot(x='Sex', hue='Survived', data=df)
plt.title('Survival Count by Sex')
plt.show()

# Age vs Survived
sns.boxplot(x='Survived', y='Age', data=df)
plt.title('Age vs Survival')
plt.show()
```

Survival Count by Sex

MULTIVARIATE ANALYSIS

```
In [26]: # Select only numeric columns for correlation
    numeric_df = df.select_dtypes(include=['number'])

# Plot heatmap
    plt.figure(figsize=(10,6))
    sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm')
    plt.title('Correlation Heatmap')
    plt.show()
```


Summary of Insights:

- Females had a higher survival rate than males.
- · Passengers in 1st class had better chances of survival.
- Fare and Age had weak correlation with survival.
- Most passengers were in the age range 20-40.

In []: