Aufgaben

Lizenz: Creative Commons CC0

Inhaltsverzeichnis

1	Ana]	l	
	1.1	Konvergenz									-	1

1 Analysis

1.1 Konvergenz

Aufgabe 1.1. Berechne

$$g = \lim_{x \to 0} \frac{\sum_{k=1}^{n} a_k x^k}{\sin(bx)}. \quad (\forall k \colon a_k \neq 0)$$

Lösung: Wegen $x \neq 0$ kann der Bruch mit $\frac{bx}{bx}$ erweitert werden. Damit ergibt sich

$$\frac{\sum_{k=1}^{n} a_k x^k}{\sin(bx)} = \underbrace{\left(\frac{bx}{\sin(bx)}\right)}_{\to 1} \underbrace{\left(\frac{a_1}{b} + \sum_{k=2}^{n} \frac{a_k}{b} x^{k-1}\right)}_{\to a_1/b}.$$

Nach den Grenzwertsätzen ist der gesamte Ausdruck konvergent, wenn die beiden Faktoren konvergent sind und g ist das Produkt der Grenzwerte der Faktoren. Somit ist $g = a_1/b$. \square

Verwende alternativ die Regel von L'Hôpital.

Aufgabe 1.2. Berechne

$$g = \lim_{x \to \frac{\pi}{4}} \frac{1 - \sin(ax)}{(\pi - 2ax)^2}. \qquad (a \neq 0)$$

Lösung: Verwende die Substitution $x=\frac{\pi}{2a}-\frac{u}{a}.$ Nun ist

$$\frac{1-\sin(ax)}{(\pi-2ax)^2} = \frac{1-\sin(\frac{\pi}{2}-u)}{4u^2} = \frac{1-\cos u}{4u^2}$$
$$= \frac{\frac{u^2}{2!} + \frac{u^4}{4!} + \dots}{4u^2} = \frac{1}{4} \left(\frac{1}{2!} + \frac{u^2}{4!} + \dots\right).$$

Wenn $x \to \pi/4$ geht, muss $u \to 0$ gehen. Somit ist g = 1/8. \square