

CD4048BMS

CMOS Multifunction Expandable 8 Input Gate

December 1992

Features

- High-Voltage Type (20V Rating)
- · Three State Output
- Many Logic Functions Available in One Package
- Standardize, Symmetrical Output Characteristics
- 100% Tested for Quiescent Current at 20V
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package Temperature Range):
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- 5V, 10V and 15V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- Selection of Up to 8 Logic Functions
- · Digital Control of Logic
- General Purpose Gating Logic
 - Decoding
 - Encoding

Description

CD4048BMS is an 8-input gate having four control inputs. Three binary control inputs - Ka, Kb, and Kc - provide the implementation of eight different logic functions. These functions are OR, NOR, AND, NAND, OR/AND, OR/NAND, AND/OR and AND/NOR.

A fourth control input, Kd, provides the user with a 3-state output. When control input Kd is high, the output is either a logic 1 or a logic 0 depending on the inner states. When control input Kd is low, the output is an open circuit. This feature enables the user to connect this device to a common bus line.

In addition to the eight input lines, an EXPAND input is provided that permits the user to increase the number of inputs into a CD4048BMS (see Figure 2). For example, two CD4048BMS's can be cascaded to provided a 16-input multifunction gate. When the EXPAND input is not used, it should be connected to VSS.

The CD4048BMS is supplied in these 16 lead outline packages:

Braze Seal DIP H4S
Frit Seal DIP H1E
Ceramic Flatpack H6W

CD4048BMS TOP VIEW J (OUTPUT) 1 16 VDD Kd 2 15 EXPAND 14 A 13 B 12 C INPUTS F 5 12 C 11 D Ka VSS 8 9 Kc

Functional Diagram

Reliability Information Absolute Maximum Ratings Thermal Resistance nermal Resistance θ_{ja} Ceramic DIP and FRIT Package 80° C/W DC Supply Voltage Range, (VDD) -0.5V to +20V $_{20^{o}\text{C/W}}^{\theta_{jc}}$ (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V Flatpack Package 70°C/W 20°C/W DC Input Current, Any One Input±10mA Maximum Package Power Dissipation (PD) at +125°C Operating Temperature Range.....-55°C to +125°C For TA = -55° C to $+100^{\circ}$ C (Package Type D, F, K).....500mW For TA = $+100^{\circ}$ C to $+125^{\circ}$ C (Package Type D, F, K) Derate Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Linearity at 12mW/°C to 200mW Lead Temperature (During Soldering) +265°C Device Dissipation per Output Transistor 100mW For TA = Full Package Temperature Range (All Package Types) At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	0.5	μΑ
				2	+125°C	-	50	μΑ
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	0.5	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	(Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0).5V	1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	1.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.	6V	1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μA	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	4	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VDD or GND VDD = 20V, VIN = VDD or GND VDD = 18V, VIN = VDD or GND		7	+25°C	VOH >	VOL <	V
				7	+25°C	VDD/2	VDD/2	<u> </u>
				8A	+125°C	1		
		VDD = 3V, VIN = VDD	or GND	8B	-55°C	1		
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V
Tri-State Output	IOZL	VIN = VDD or GND	VDD = 20V	1	+25°C	-0.4	-	μА
Leakage		VOUT = 0V			+125°C	-12	-	μА
			VDD = 18V	3	-55°C	-0.4	-	μΑ
Tri-State Output	IOZH	VIN = VDD or GND	VDD = 20V	1	+25°C	-	0.4	μА
Leakage		VOUT = VDD		2	+125°C	-	12	μА
			VDD = 18V	3	-55°C	-	0.4	μА
		I						1

NOTES: 1. All voltages referenced to device GND, 100% testing being implemented.
3. For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max.

2. Go/No Go test with limits applied to inputs.

10s Maximum

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A LIMITS		IITS		
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	600	ns
Ka to Output	TPLH		10, 11	+125°C, -55°C	-	810	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTLH		10, 11	+125°C, -55°C	i	270	ns

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55° C and $+125^{\circ}$ C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	0.25	μΑ
				+125°C	-	7.5	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	0.5	μΑ
				+125°C	-	15	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	0.5	μΑ
				+125°C	-	30	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	7	-	V
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	300	ns
Ka to Output	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	240	ns

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL2	VDD = 5V	1, 2, 3	+25°C	-	600	ns
Inputs to Output	TPLH2	VDD = 10V	1, 2, 3	+25°C	-	300	ns
		VDD = 15V	1, 2, 3	+25°C	-	240	ns
Propagation Delay	TPHL3	VDD = 5V	1, 2, 3	+25°C	-	450	ns
Kb to Output	TPLH3	VDD = 10V	1, 2, 3	+25°C	-	170	ns
		VDD = 15V	1, 2, 3	+25°C	-	110	ns
Propagation Delay	TPHL4	VDD = 5V	1, 2, 3	+25°C	-	280	ns
Kc to Output	TPLH4	VDD = 10V	1, 2, 3	+25°C	-	100	ns
		VDD = 15V	1, 2, 3	+25°C	-	80	ns
Propagation Delay	TPHL5 TPLH5	VDD = 5V	1, 2, 3	+25°C	-	380	ns
Expand Input to Output		VDD = 10V	1, 2, 3	+25°C	-	180	ns
		VDD = 15V	1, 2, 3	+25°C	-	130	ns
Propagation Delay	TPHZ, LZ	VDD = 5V	1, 2, 4	+25°C	-	160	ns
3 State Kd to Output	TPZH, ZL	VDD = 10V	1, 2, 4	+25°C	-	70	ns
rta to Gatpat		VDD = 15V	1, 2, 4	+25°C	-	50	ns
Transition Time	TTLH	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTHL	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7	pF
3 State Output Capacitance	СО		1, 2	+25°C	-	10	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 4. CL = 50pF, RL = 1K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - SSI	IDD	±0.1μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFO	RMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A, RONDEL10
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A, RONDEL10
Interim Test	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A, RONDEL10
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A, RONDEL10
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND RECORD		
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD	POST-IRRAD	
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4	

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILI	LATOR
FUNCTION	OPEN	GROUND	VDD	9V ± -0.5V	50kHz	25kHz
Static Burn-In 1 Note 1	1	2 - 15	16			
Static Burn-In 2 Note 1	1	8	2 - 7, 9 - 16			
Dynamic Burn- In Note 1	-	8, 15	2, 16	1	9 - 14	3 - 7
Irradiation Note 2	1	8	2 - 7, 9 - 16			

NOTE:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

Logic Diagrams

FIGURE 1. BASIC LOGIC CONFIGURATIONS

FIGURE 2. LOGIC DIAGRAM

CD4048BMS

Logic Diagrams (Continued)

FIGURE 3. ACTUAL CIRCUIT LOGIC CONFIGURATIONS

Applications of Expand Input

FIGURE 4. 12 INPUT OR/AND GATE

IMPLEMETATION OF EXPAND INPUT FOR 9 OR MORE INPUTS

OUTPUT FUNCTION	FUNCTION NEEDED AT EXPAND INPUT	OUTPUT BOOLEAN EXPRESSION
NOR	OR	$J = \overline{(A+B+C+D+E+F+G+H)+(EXP)}$
OR	OR	J=(A+B+C+D+E+F+G+H)+(EXP)
AND	NAND	J=(ABCDEFGH)•(EXP)
NAND	NAND	J=(ABCDEFGH)•(EXP)
OR/AND	NOR	$J=(A+B+C+D)\bullet(E+F+G+H)\bullet(\overline{EXP})$
OR/NAND	NOR	$J = \overline{(A+B+C+D) \bullet (E+F+G+H) \bullet (\overline{EXP})}$
AND/NOR	AND	J=(ABCD)+(EFGH)+(EXP)
AND/OR	AND	J=(ABCD)+(EFGH)+(EXP)

NOTES: 1. (EXP) designates the EXPAND function (i.e., X1 + X2 + . . . XN).

2. Refer to FUNCTION TRUTH TABLE for connection of unused inputs.

CD4048BMS

FUNCTION TRUTH TABLE

OUTPUT FUNCTION	BOOLEAN EXPRESSION	Ka	Kb	Kc	UNUSED INPUT*			
NOR	J=A+B+C+D+E+F+G+H	0	0	0	VSS			
OR	J=A+B+C+D+E+F+G+H	0	0	1	VSS			
OR/AND	J=(A+B+C+D)•(E+F+G+H)	0	1	0	VSS			
OR/NAND	J=(A+B+C+D)•(E+F+G+H)	0	1	1	VSS			
AND	J=ABCDEFGH	1	0	0	VDD			
NAND	J=ABCDEFGH	1	0	1	VDD			
AND/NOR	J=ABCD+EFGH	1	1	0	VDD			
AND/OR	J=ABCD+EFGH	1	1	1	VDD			
Kd = 1 Normal Inverter Action								

Kd = 0 High Impedance Output

EXPAND Input = 0

*See Figures 1, 2, 3, 4 and 5

Typical Performance Characteristics

FIGURE 6. TYPICAL OUTPUT LOW (SINK) CURRENT **CHARACTERISTICS**

FIGURE 7. MINIMUM OUTPUT LOW (SINK) CURRENT **CHARACTERISTICS**

CD4048BMS Typical Performance Characteristics (Continued) DRAIN-TO-SOURCE VOLTAGE (VDS) (V) -15 AMBIENT TEMPERATURE (T_A) = +25°C (SOURCE) CURRENT (IOH) (mA) GATE-TO-SOURCE VOLTAGE (VGS) = -5V -10V -25 OUTPUT HIGH -15V FIGURE 8. TYPICAL OUTPUT HIGH (SOURCE) CURRENT **CHARACTERISTICS** AMBIENT TEMPERATURE $(T_A) = +25^{\circ}C$ 300 SUPPLY VOLTAGE (VDD) = 5V 200 10V 100

FIGURE 9. MINIMUM OUTPUT HIGH (SOURCE) CURRENT **CHARACTERISTICS**

FIGURE 10. TYPICAL PROPAGATION DELAY TIME (LOGIC INPUTS TO OUTPUT) AS A FUNCTION OF LOAD **CAPACITANCE**

FIGURE 11. TYPICAL TRANSITION TIME vs LOAD **CAPACITANCE**

FIGURE 12. TYPICAL POWER DISSIPATION AS A **FUNCTION OF INPUT FREQUENCY**

Test Circuits and Wave Forms

VDD OUTPUT 16 15 CL = 15pF OR 50pF 3 14 INPUT 13 5 12 6 11 10 9 VDD

FIGURE 13. DYNAMIC POWER DISSIPATION TEST CIRCUIT

FIGURE 14. TEST CIRCUIT FOR tPHL, tTHL, AND tTHL (AND) MEASUREMENTS

FIGURE 15. TEST CIRCUIT FOR tPZL, tPZH, tPLZ, AND tPHZ (AND)

FIGURE 16. WAVEFORMS FOR tPZL, tPZH, tPLZ AND tPHZ (AND)

FIGURE 17. WAVEFORMS FOR tPHL AND tPHL (AND)

FIGURE 18. WAVEFORMS FOR tTHL AND tTLH (AND)

Chip Dimensions and Pad Layout

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch)

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000

FAX: (321) 724-7000 FAX: (321) 724-7240

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
Taiwan Limited
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310

FAX: (886) 2 2715 3029

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.