

BASARA SARASWATHI BHAVAN_MDP N-120

Section: Senior Compounds of d-Block Elements Date: 26-06-2020

I. Compounds of copper:

1) Cupric oxide (CuO):

Preparation: (i)CuCO $_3$.Cu(OH) $_2$ $\xrightarrow{\Delta}$ 2CuO + H $_2$ O + CO $_2$ (Commercial process) Malachite Green

(ii)
$$2Cu + O_2 \xrightarrow{\Delta} 2CuO + Cu_2O$$

 $Cu_2O + \frac{1}{2}O_2 \longrightarrow 2CuO$

(iii)
$$Cu(OH)_2 \xrightarrow{\Lambda} CuO + H_2O$$

(iv)
$$2\text{Cu(NO}_3)_2 \xrightarrow{250^{\circ}\text{C}} 2\text{CuO} + 4\text{NO}_2 + \text{O}_2$$

Properties: (i) CuO is a black powder insoluble in water.

(ii) It readily dissolves in dil. acids

$$\begin{array}{ccc} \text{CuO} + \text{H}_2 \text{SO}_4 & & \longrightarrow \text{CuSO}_4 + \text{H}_2 \text{O} \\ \\ \text{HCl} & & \longrightarrow \text{CuCl}_2 \\ \\ \text{HNO}_3 & & \longrightarrow \text{Cu(NO}_3)_2 \end{array}$$

(iii) It decomposes when, heated above 1100°C

$$4CuO \longrightarrow 2Cu_2O + O_2$$

(iv) CuO is reduced to Cu by H_2 or C

$$CuO + C \xrightarrow{\Delta} Cu + CO -$$

$$CuO + H_2 \xrightarrow{\Delta} Cu + H_2O -$$

(v)
$$CuO + NH_3 \longrightarrow Cu + N_2 + H_2O$$

Uses:

- i) As a pigment
- ii) Abrasive
- iii) Dry cells

2) Cupric chloride (CuCl₂):

$$\begin{array}{c} \text{Preparation: CuO} + 2\text{HCl} & \longrightarrow \text{CuCl}_2 + \text{H}_2\text{O} \\ & \text{Cu(OH)}_2 \cdot \text{CuCO}_3 + 4\text{HCl} & \longrightarrow 2\text{CuCl}_2 + 3\text{H}_2\text{O} + \text{CO}_2 \\ & \text{Cu} + \text{HCl} + \text{O}_2 & \longrightarrow \text{CuCl}_2 + \text{H}_2\text{O} \\ & \text{CuCl}_2.2\text{H}_2\text{O} & \xrightarrow{150^0\text{C}} \text{CuCl}_2 + 2\text{H}_2\text{O} \end{array}$$

Anh. CuCl₂ is yellow brown mass obtained by heating CuCl₂.2H₂O at 150^oC in presence of HCl vapour.

Properties: (i) It is crystallised as blue green CuCl₂·2H₂O.

- (ii) Dil. aq. solution is blue in colour due to formation of $[Cu(H_2O)_6]^{2+}$ complex.
- (iii) In conc. HCl or KCl the colour changes to yellow, owing to the formation of $[CuCl_4]^{2-}$
- (iv) The conc. solution is green in colour having the two complex ions in equilibrium

$$CuCl_2 \cdot 2H_2O + 6H_2O \longrightarrow [Cu(H_2O)_6]^{2+} + [CuCl_4]^{2-} + 4H_2O$$

(v) CuCl₂ is converted to CuCl by no. of reagents

(a)
$$CuCl_2 + Cu \xrightarrow{\Delta} 2CuCl$$

(b)
$$2CuCl_2 + H_2SO_3 + H_2O \longrightarrow 2CuCl + 2HCl + 2H_2SO_4$$

(c)
$$CuCl_2 + SnCl_2 \longrightarrow CuCl + SnCl_4$$

(vi)
$$CuCl_2 + NaOH \longrightarrow Cu(OH)_2 \downarrow + NaCl$$

$$CuCl_2 + Cu(OH)_2 \longrightarrow CuCl_2.3Cu(OH)_2 \downarrow$$

pale blue

(vii)
$$CuCl_2 + NH_4OH \longrightarrow Cu(NH_3)_4Cl_2.xH_2O$$

deep blue solution

Copper (I) halides are insoluble in water. However they dessolve in solutions containing excess of halide ions due to complex formation [CuCl₂]⁻, [CuCl₃]²⁻, [CuCl₄]³⁻

$$CuF_2 \cdot 2H_2O \longrightarrow light blue$$

 $\mathsf{CuBr}_2 \longrightarrow \mathsf{almost}\;\mathsf{black}$

CuI₂ does not exist

Uses: i) Co-catalyst in Wacker's process

ii) In pyrotechnics (gives blue-green colour)

3) Cupric sulphate (CuSO₄.5H₂O):

Preparation: CuO +
$$H_2SO_4 \longrightarrow CuSO_4 + H_2O$$
(dil)

$$\begin{array}{c} \mathrm{Cu}(\mathrm{OH})_2 + \mathrm{H}_2\mathrm{SO}_4 & \longrightarrow & \mathrm{CuSO}_4 + 2\mathrm{H}_2\mathrm{O} \\ & (\mathrm{dil}) \\ \\ \mathrm{Cu}(\mathrm{OH})_2 \cdot \mathrm{CuCO}_3 + \mathrm{H}_2\mathrm{SO}_4 & \longrightarrow & \mathrm{CuSO}_4 + 3\mathrm{H}_2\mathrm{O} + \mathrm{CO}_2 \\ & (\mathrm{dil}) \\ \\ \mathrm{Cu} + \mathrm{H}_2\mathrm{SO}_4 + \frac{1}{2}\mathrm{O}_2 & \longrightarrow & \mathrm{CuSO}_4 + \mathrm{H}_2\mathrm{O} \ \ [\mathrm{Commercial\ scale}] \\ (\mathrm{scrap}) \\ \\ \mathrm{Cu} + \mathrm{dil}. \ \mathrm{H}_2\mathrm{SO}_4 & \longrightarrow & \mathrm{no\ reaction} \end{array}$$

Properties: (i) It is crystallised as CuSO₄·5H₂O

(ii)
$$CuSO_4 \cdot 5H_2O \xrightarrow{\text{effloresence}} CuSO_4 \cdot 3H_2O \xrightarrow{100^{\circ}C} CuSO_4 \cdot H_2O$$

Blue Pale blue Bluish white

The reaction is used to estimate Cu^{2+} in solution by volumetric analysis. Excess KI is added to an acidified solution and I_2 produced is estimated by acidified solution and I_2 produced is estimated by titrating with standard Hypo.

$$2Cu^{2+} + 4I^{-} \longrightarrow 2 Cu I + I_{2}$$

 $2Na_{2}S_{2}O_{3} + I_{2} \longrightarrow Na_{2}S_{4}O_{6} + 2NaI$

Uses:

i) Fehling's & Benedict's reagent ii) Electroplating iii) Bordeaux mixture

II Compounds of Silver

1) Silver nitrate (AgNO₂)

Preparation:
$$\text{Ag + HNO}_3 \longrightarrow \text{AgNO}_3 + \text{NO + H}_2\text{O}$$

$$\text{dil.}$$

Properties.: (i) It is called as lunar caustic because in contact with skin it produces burning sensation like that of caustic soda with the formation of finely divided silver (black colour)

(ii) Soluble in water

Uses:

- i) $AgNO_3$ is used in the detection of halide ions
- ii) Ammonical AgNO_3 (Tollen's reagent) is used in Analysis of organic compounds.

2) Silver oxide (Ag₂O)

 $\textbf{Preparation:} \ 2 \text{AgNO}_3 + 2 \text{NaOH} \longrightarrow \text{Ag}_2 \text{O} + 2 \text{NaNO}_3 + \text{H}_2 \text{O}$

Properties: Brown solid - sparingly soluble in water

Uses:

- i) Batteries
- ii) mild oxidant in organic syntheisis

$$R - CHO \xrightarrow{Ag_2O} RCOOH$$

III. Compounds of Iron.

1) Ferrous oxide (FeO):

Preparation:
$$FeC_2O_4 \xrightarrow{\Delta} FeO + CO + CO_2$$

Properties: Black powder. Non-stoichiometric

It is stable at high temperature and on cooling slowly

disproportionates into Fe₃O₄ and iron

$$4\text{FeO} \longrightarrow \text{Fe}_3\text{O}_4 + \text{Fe}$$

2) Ferric oxide (Fe_2O_3) :

Preparation: (i)
$$Fe(OH)_3 \longrightarrow Fe_2O_3 + H_2O$$

(ii)
$$FeSO_4 \longrightarrow Fe_2 O_3 + SO_2 + SO_3$$

(iii) FeS +
$$O_2 \longrightarrow Fe_2O_3 + SO_2$$

Properties: Deep red powder - Insoluble in water-slightly amphoteric oxide (largely basic)

Reactions : (i)
$$Fe_2O_3 + HC1 \longrightarrow FeCl_3 + H_2O$$

(ii)
$$Fe_2O_3 + NaCO_3$$
 (or) $NaOH \xrightarrow{fusion} NaFeO_2$

(iii)
$$2Fe_2O_3 + 3C \longrightarrow Fe_3O_4 + CO_2$$

(iv)
$$Fe_2O_3 + CO \longrightarrow Fe_3O_4 + CO_2$$

(v)
$$Fe_2 O_3 \xrightarrow{1400^0 C} Fe_3 O_4 + O_2$$

(vi)
$$Fe_2O_3 + H_2 \longrightarrow Fe + H_2O$$

S NaFeO₂ is better considered as mixed oxide rather than ferrite(Na₂O. Fe₂O₃)

Uses: i) Pigment

- ii) Removes phosphates in aquaria
- iii) As Jeweler's rogue
- iv) Production of Iron & steel.

3. FERRIC CHLORIDE (FeCl₃.6H₂O)

Preparations:

Anhydrous ferric chloride is dark black solid while hydrated salt, $FeCl_3$. $6H_2O$ is yellowish-brown deliquescent crystalline solid and exists as trans- $[Fe(H_2O)_4Cl_2]Cl.2H_2O$. Both are soluble in water as well as in ether forming solvated species,

$$[\text{Fe}(\text{H}_2\text{O})_4\text{Cl}_2]\text{Cl }.\text{ }2\text{H}_2\text{O}\text{ and } \overset{\text{C}_2\text{H}_5}{\text{C}_2\text{H}_5}\text{O} \ \longrightarrow \ \text{Fe}\text{Cl}_3 \text{ respectively}.$$

It is sublimed at 300°C giving a dimeric gas, CI Fe CI Fe CI.

FeCl₃ gives blood red colour with SCN-, colour is due to formation of mixture of

 $\left[\text{Fe(SCN)}_4\right]^{\!\!\!-}\text{, Fe(SCN)}_3\text{ \& [Fe(SCN)}\text{ }(\text{H}_2\text{O})_5]^{\!\!\!+2}$

Uses:

- i) Flocculating agent
- ii) etching copper in PCBs
- iii) As a Lewis Aci
- iv) Detection of phenols

4) Ferrous chloride (FeCl₂):

Preparation: i. Fe + 2HCl $\xrightarrow{\text{heated in}}$ FeCl₂ + H₂

ii. $\operatorname{FeCl}_3 + \operatorname{H}_2 \xrightarrow{\Delta} 2\operatorname{FeCl}_2 + 2\operatorname{HCl}$

Reactions:

Properties: (i) Paramagneitc, off white solid, tetrahydrate is greenish.

- (ii) It is deliquescent like FeCl₃
- (iii) It is soluble in water, aq. solution is acidic.
- (iv) It volatilises at about 1000°C and vapour density indicates.
- (v) It undergoes oxidation when heated in air.

$$12 \mathrm{FeCl}_2 + 3\mathrm{O}_2 \longrightarrow 2 \mathrm{Fe}_2\mathrm{O}_3 + 8 \mathrm{FeCl}_3$$

(vi) H₂ evolves on heating in steam.

$$3 \mathrm{FeCl}_2 + 4 \mathrm{H}_2 \mathrm{O} \longrightarrow \mathrm{Fe}_3 \mathrm{O}_4 + 6 \mathrm{HCl} + \mathrm{H}_2$$

(vii) It can exist in different hydrated forms.

 $FeCl_2 \cdot 2H_2O$: colourless $FeCl_2 \cdot 4H_2O$: pale green $FeCl_2 \cdot 6H_2O$: green

5. FERROUS SULPHATE (FeSO₄.7H₂O)

Preparation:

i) Fe +
$$H_2SO_4 \longrightarrow FeSO_4 + H_2O$$

ii)
$$2\text{FeS}_2 + 7\text{O}_2 + 2\text{H}_2\text{O} \longrightarrow 2\text{FeSO}_4 + 2\text{H}_2\text{SO}_4$$

Pyrite

- ♦ Light green & soluble in water
- ♦ Exists as [Fe(H₂O)₆]SO₄.H₂O
- ♦ Hydrated ferrous sulphate is a green crystalline compound, effloresces on exposure to air. Anhydrous FeSO₄ is colourless.
- Diffcult to obtain pure as it undergoes aerial oxidation.
- ♦ Reaction with NO:

$$FeSO_4 + NO \longrightarrow FeSO_4.NO$$
 (brown)

$$[Fe(H_2O)_6]SO_4 + NO \longrightarrow [Fe(H_2O)_5 NO]SO_4$$

- The above reaction is used for identification of nitrite and nitrate radicals (Brown Ring test)
- ♦ Impure NO is passed into FeSO₄ to get the adduct [FeSO₄.NO], NO is recovered by heating the adduct.
- ♦ Mohr's salt $\{\text{FeSO}_4(\text{NH}_4)_2\text{SO}_4.6\text{H}_2\text{O}\}\$ is preferred over FeSO_4 in volumetric analysis as Mohr's salt prevents aerial oxidiation of FeSO_4 . Unlike simple FeSO_4 .

Uses:

- i) Treatement of Iron deficiency
- ii) Mordant

IV. Compounds of Zinc

1) Zinc oxide (ZnO):

It is called as philospher's wool due to its wooly flock type appearance

Preparation:

ii)
$$ZnCO_3 \xrightarrow{\Delta} ZnO + CO_2$$

iii)
$$2\text{Zn(NO}_3)_2 \xrightarrow{\Delta} 2\text{ZnO} + 4\text{NO}_2 + \text{O}_2$$

iv)
$$Zn(OH)_2 \xrightarrow{\Delta} ZnO + H_2O$$

v)
$$Zns + O_2 \longrightarrow ZnO + SO_2$$

vi)
$$4ZnSO_4 + 4Na_2CO_3 + 3H_2O$$
 $^3/4$ ® $ZnCO_3 \cdot 3Zn(OH)_2$ $^- + 4Na_2SO_4 + 3CO_2$ white basic zinc

carbonate

$$\int_{\Delta}^{\Delta}$$
 4ZnO + 3H₂O - + CO₂ - pure

Properties: i)ZnO $\stackrel{\triangle}{\Longrightarrow}$ ZnO - Colour is due to crystal defect

(cold)

(hot)

white

yellow

- ii) It is insoluble in water
- iii) It sublimes at 400°C
- iv) It is amphoteric oxide

Reactions:

i)
$$ZnO + 2HC1 \longrightarrow ZnCl_2 + H_2O$$

ii) ZnO +
$$H_2SO_4 \longrightarrow ZnSO_4 + H_2O$$

iii) ZnO + 2NaOH
$$\longrightarrow$$
 Na $_2$ ZnO $_2$ + H $_2$ O

iv) ZnO is reduced by heating with H₂ & C.

$$ZnO + H_2 \xrightarrow{>400^{\circ}C} Zn + H_2O$$

 $ZnO + C \longrightarrow Zn + CO$

v) It forms Rinmann's green with Co(NO₃)₂

$$2\text{Co(NO}_3)_2 \longrightarrow 2\text{CoO} + 4\text{NO}_2 + \text{O}_2$$

$$6\text{CoO} + 7\text{PO} \longrightarrow 6\text{CoO} 7\text{PO} \text{ or } 6\text{OO} 7\text{PO}$$

$$CoO + ZnO \longrightarrow CoZnO_2$$
 or $CoO \cdot ZnO$

Rinmann's green

Uses: i) As white pigment, it is superior than white lead because it does not turn into black.

- ii) Rinmann's green is used as green pigment
- iii) It is used as zinc ointment in medicine

2) ZINC CHLORIDE (ZnCl₂):

Anhyd. ZnCl₂ cannot be made by heating ZnCl₂·2H₂O because

$$ZnCl_2 \cdot 2H_2O \xrightarrow{\Delta} Zn(OH)Cl + HCl + H_2O$$

$$Zn(OH)C1 \xrightarrow{\Delta} ZnO + HC1$$

Anhydrous ZnCl2is obtained by following methods

i)
$$Zn + Cl_2 \longrightarrow ZnCl_2$$

ii) Zn + 2HCl(dry)
$$\longrightarrow$$
 ZnCl₂ + H₂

iii) Zn +
$$\operatorname{HgCl}_2 \longrightarrow \operatorname{ZnCl}_2 + \operatorname{Hg}$$

Properties: i) It is deliquescent white solid (when anhydrous)

ii)
$$ZnCl_2 + H_2S \longrightarrow ZnS + 2HCl$$

iii)
$$ZnCl_2 + NaOH \longrightarrow Zn(OH)_2 \xrightarrow{excess} Na_2[Zn(OH)_4]$$

iv)
$$ZnCl_2 + NH_4OH \longrightarrow Zn(OH)_2 \xrightarrow{excess} [Zn(NH_3)_4]^{2+}$$

Anhydrous $\mathbf{ZnCl_2}$ absorbs ammonia gas to from $\mathbf{ZnCl_2.4NH_3}$

Uses:

- i) Used for impregnating timber to prevent destruction by insects
- ii) As dehydrating agent when anhydrous
- iii) ZnO·ZnCl₂ used in dental filling
- 3) Zinc Sulphate $(ZnSO_4.7H_2O)$:

Preparation:

i)
$$\operatorname{Zn} + \operatorname{H_2SO_4} \longrightarrow \operatorname{ZnSO_4} + \operatorname{H_2}$$

dil
ii) $\operatorname{ZnO} + \operatorname{H_2SO_4} \longrightarrow \operatorname{ZnSO_4} + \operatorname{H_2O}$
dil

iii) $ZnCO_3 + H_2SO_4 \longrightarrow ZnSO_4 + H_2O + CO_2$

iv)
$$ZnS + 2O_2 \longrightarrow ZnSO_4$$

 $ZnS + \frac{3}{2}O_2 \longrightarrow ZnO + SO_2$
v) $ZnS + 4O_3 \longrightarrow ZnSO_4 + 4O_2$

Properties: white, crystalline, efflorescent solid & soulble in water. It is isomorphous with Epsom salt (MgSO₄ . 7H₂O), exists as [Zn(H₂O)₆]SO₄.H₂O.

Reactions:

Uses: i) In eye lotion

ii) Lithophone (ZnS + BaSO₄) as white pigment

V. POTASSIUM DICHROMATE (K2Cr2O2)

Preparation:

$$4\mathrm{FeCr_2O_4} + 8\mathrm{Na_2CO_3} + 7\mathrm{O_2} \xrightarrow[\mathrm{red\,hot\,in\,presence\ of\ air}]{1000^\circ - 1300^\circ\mathrm{C}}} 8\mathrm{Na_2CrO_4} + 2\mathrm{Fe_2O_3} + 8\mathrm{CO_2}$$

$$2\mathrm{Na_2CrO_4} + \mathrm{H_2SO_4} \longrightarrow \mathrm{Na_2SO_4} + \mathrm{Na_2Cr_2O_7} + \mathrm{H_2O}$$

Solubility of Na_2SO_4 increases upto 32°C and then decreases Hence, suitable temperature is to be employed to crystallise out Na_2SO_4 first. Then $Na_2Cr_2O_7$ is crystallised out as $Na_2Cr_2O_7 \cdot 2H_2O$ on evaporation.

$$Na_2Cr_2O_7 + KC1 \xrightarrow{double} K_2Cr_2O_7 + 2NaC1$$

hot conc.

NaCl crystallises out first and filtered off. Then $K_2Cr_2O_7$ crystallises out on cooling

- # Chromyl chloride test: It is given by ionic chlorides which are soluble in water Eg: HgCl₂ does not give this test
- * Oxidising properties:

K₂CrO₇ acts as a good oxidant in acidic medium in inorganic and organic reactions.

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O; E^o = 1.33V$$

or

$$K_2Cr_2O_7 + 4H_2SO_4 \longrightarrow K_2SO_4 + Cr_2(SO_4) + 4H_2O + 3(0)$$

Its n-factor is taken as six as it accepts 6e- (or) produces three nascent oxygens.

- Reaction of $K_2Cr_2O_7$ with H_2O_2 gives different products at different p^H values
 - (i) Acidic condition \Rightarrow $CrO(O_2)_2$ Chromium diperoxide gives blue colour in ether layer
 - (ii) neutral condition \Rightarrow $\lceil \text{CrO}(O_2)\text{OH} \rceil$ diperoxychromate (violet)
 - (iii) Alkaline solution:

$$(NH_4OH) \Rightarrow (NH_4)_3 [Cr(O_2)_4]$$

VI. POTASSIUM PERMANGANATE (KMnO4)

Preparation : i) $3K_2MnO_4 + 2H_2SO_4 \% 2KMnO_4 + MnO_2 - + 2K_2SO_4 + 2H_2O_4 + 2H_$

ii) 3
$$K_2$$
MnO₄ + 2 H_2 O + 4 CO_2 3/42 K MnO₄ + MnO₂ + 4 K HCO₃

In the above method $\frac{1}{3}$ of Mn is lost as MnO₂ but when oxidised either by Cl₂or by o₃ unwanted MnO₂ does not form.

$$_2$$
MnO₄ + Cl₂ \longrightarrow 2KMnO₄ + 2KCl

$$2K_2MnO_4 + O_3 + H_2O \longrightarrow 2KMnO_4 + 2KOH + O_2$$

Properties:

- i) MnO₄ is coloured due to charge-transfer phenomenon (purple colour)
- ii) MnO₄ is unstable in acidic solution

$$\mathrm{MnO_4^-}$$
 + $\mathrm{H^+}$ \longrightarrow $\mathrm{MnO_2}$ + $\mathrm{H_2O}$ + $\mathrm{O_2}$

above reaction is catalysed by sunlight

- : It is stored in dark bottles
- iii) moderately soluble in water

Reactions of KMnO₄:

i) Action of Heat:

$$KMnO_4 \longrightarrow K_2 MnO_4 + MnO_2 + O_2$$

ii) Action of conc. H₂SO₄:

- iii) Oxidising properties:
- A) In Acidic medium

$$\begin{split} 2KMnO_4 \, + \, 3H_2SO_4 & \longrightarrow K_2SO_4 \, + \, 2MnSO_4 \, + \, 3H_2O \, + \, 5(0) \\ MnO_4^1 \, + \, 8H^+ \, + \, 5e^- & \longrightarrow \, Mn^{2+} \, + \, 4H_2O \, ; \, \, E^o = 1.51V \end{split}$$

B) In alkaline medium

$$MnO_4^- + 2H_2O + 3e^- \longrightarrow MnO_2 + 4OH^-; E = 1.23V$$

* Alkali is formed in the reaction, this makes the medium alkaline even if we start with neutral solution

Uses:

- Oxidising agent i)
- Alk. ${\rm KMnO_4}$ (Baeyer's reagent) used in detection of unsaturation. As an oxidant in Redox titrations. ii)
- iii)