

Fuerza Bruta

Espacio de búsqueda

- ☐ Está formado por todos los candidatos a ser solución de un problema.
- ☐ Por ejemplo, si queremos abrir una puerta, nuestro espacio de búsqueda estaría conformado por el manojo de llaves.

Fuerza bruta / Búsqueda exhaustiva

- ☐ Enfoque para resolver un problema analizando todo el espacio de búsqueda hasta encontrar la solución requerida.
- □ Podemos realizar un "prune", es decir omitir algunas partes del espacio de búsqueda, si es posible determinar que éstas no tendrán la solución requerida.

Fuerza bruta

Generalmente se hace fuerza bruta cuando:

- ☐ El espacio de búsqueda es pequeño.
- ☐ No existe otro enfoque o algoritmo que aplique al problema.

Fuerza bruta

En nuestro día a día lo aplicamos:

- Cuando no sabemos el password de una computadora.
- Cuando no sabemos cual es la llave de una puerta.
- Cuando llenamos un sudoku.
- Cuando armamos nuestro horario en la universidad.
- ...

Problemas

Codeforces 122A - Lucky Division

Codeforces 479A - Expression

Codeforces 460B – Little Dima and Equation

Codechef – Chef and Numbers

Permutación de un Arreglo

Una permutación de un arreglo es un cambio en el orden sus elementos.

```
{ 1, 2, 1 }
```

{1,1,2}

{ 2, 1, 1 }

Siguiente Permutación Lexicográfica

- ☐ Las permutaciones de un arreglo tienen la misma cantidad de elementos.
- Comparar lexicográficamente dos arreglos es similar a comparar dos cadenas (elementos por elemento)
- ☐ La siguiente permutación lexicográfica de una permutación P es la menor de todas las permutaciones P' tal que P' > P.

Siguiente Permutación Lexicográfica

Permutaciones del arreglo {1, 2, 3} en orden lexicográfico.

{1, 2, 3}

{1, 3, 2}

{2, 1, 3}

 $\{2, 3, 1\}$

{3, 1, 2}

 ${3, 2, 1}$

Next Permutation

- ☐ Función incluida en la STL.
- ☐ Devuelve verdad si existe una siguiente permutación lexicográfica del arreglo.
- ☐ Reordena el arreglo y lo transforma en la siguiente permutación lexicográfica.

Next Permutation

De esta manera podemos obtener la siguiente permutación lexicográfica del arreglo

```
int A[] = { 5, 6, 7};
bool existe = next_permutation( A, A+3);
if( existe ){
    for( int i=0; i<3; ++i ) cout<<" "<<A[ i ];
}</pre>
```

Generar todas las permutaciones

Entonces para generar todas las permutaciones, debemos partir de la menor lexicográfica y a partir de ahí ir generando la siguiente mientras exista. $\mathbf{0}(n * n!)$

```
int A[] = { 5, 6, 7};
sort( A, A + 3 );
do{
    for( int i=0; i<3; ++i )cout<<" "<<A[ i ];
    cout<<endl;
}while( next_permutation( A, A + 3 ) );</pre>
```

Problemas

<u>UVA 146 – ID Codes</u> <u>Codeforces 431B – Shower Line</u>

Máscara de Bits

- ☐ Si tenemos un conjunto de n elementos, entonces tenemos $2^n 1$ subconjunto.
- □ Todos los subconjuntos pueden ser representados con los enteros en el rango $[0, 2^n 1]$.

Número	Máscara	Subconjunto
0	000	{}
1	001	{1}
2	010	{3}
3	011	{1,3}
4	100	{8}
5	101	{1,8}
6	110	{ 3, 8 }
7	111	{ 1, 3, 8 }

Generar todos los subconjuntos

Podemos generar todos los subconjuntos usando los operadores bitwise en $O(2^n * n)$

```
int n = 3;
for( int mask=0 ; mask< (1<<n); mask++ ){
    cout<<mask<<" :";
    for( int i=0; i<n; ++i ){
        if( (mask>>i) & 1 == 1 ) cout<<" "<<i;
    }
    cout<<endl;
}</pre>
```

Problemas

<u>UVA 12406 – Help Dexter</u> <u>Codeforces 202A - LLPS</u>

Referencias

- ☐ Halim, Steven and Halim, Felix. Competitive Programming 3
- ☐ Topcoder, A Bit of Fun: Fun with Bits

i Good luck and have fun!