Лекция 5 Рекурсия. Динамическое программирование. Решето

Эратосфена. Расстояние Левенштейна.

Разминка

до 14.05

Еще немного про рекурсию

Когда мы считали числа Фибоначчи через рекурсию, на каждом шаге рекурсии мы делали два рекурсивных вызова

очевидно, это неэффективно – некоторые значения мы высчитываем несколько раз

Чтобы оптимизировать алгоритм, давайте хранить список fibs уже посчитанных чисел, и передавать его во все функции, которые рекурсивно вызываем. Это называется рекурсия с кешированием (или мемоизацией)

```
def fib(N, fibs):
    if N == 1:
        fibs[0] = 0
        return fibs[0]
    if N == 2:
        fibs[1] = 1
        return fibs[1]
    if fibs[N-1] != 0:
        return fibs[N-1]
    fibs[N-1] = fib(N - 1, fibs) + fib(N - 2, fibs)
    print(fibs)
    return fibs[N-1]
```

Динамическое программирование

Решаем задачу не "с конца", а конструируем решение "с начала"

- Состояние динамики подзадачи, к которым мы можем свести исходную задачу;
- Переход правило пересчета, то есть способ вычислить ответ на задачу с помощью ответов на подзадачи;
- База динамики набор тривиальных состояний и значений для них.

```
N = int(input())
fibs = [0 for i in range(N)]

fibs[0] = 0
fibs[1] = 1

for i in range(2,N):
    fibs[i] = fibs[i-1] + fibs[i-2]

print(fibs)
```

Алгоритм решения задач на ДП

- Сформулировать, что будет значить **состояние**. Пример **dp[i]** максимальное число монет, которое можно собрать, дойдя до i
- Определить формулу (формулы) пересчета динамики;
- Определить **порядок**, в котором будут считаться состояния динамики. Например, в данном случае нам надо было перебирать от 0 до n-1 но в других задачах (например, в двумерной динамике) этот порядок может быть менее тривиальным.
- Задать значения для тривиальных состояний;
- Понять, какое состояние соответствует ответу на всю задачу.

Решето Эратосфена

Алгоритм поиска простых чисел.

- 1. Все четные числа, кроме двойки, составные, т. е. не являются простыми, так как делятся не только на себя и единицу, а также еще на 2.
- 2. Все числа кратные трем, кроме самой тройки, составные, так как делятся не только на самих себя и единицу, а также еще на 3.
- 3. Число 4 уже выбыло из игры, так как делится на 2.
- 4. Число 5 простое, так как его не делит ни один простой делитель, стоящий до него.
- 5. Если число не делится ни на одно простое число, стоящее до него, значит оно не будет делиться ни на одно сложное число, стоящее до него.

```
# Создается список из значений от 0 до N включительно
primes = [i for i in range(N + 1)]
# Вторым элементом списка является единица, которую
# не считают простым числом. Забиваем ее нулем
primes[1] = 0
# Начинаем с 3-го элемента
i = 2
while i <= N:
    # Если значение текущей ячейки до этого не было обнулено,
    # значит в этой ячейке содержится простое число
   if primes[i] != 0:
        # Первое кратное ему будет в два раза больше
        j = i + i
        while i <= N:
            # и это число составное,
            # поэтому заменяем его нулем
            primes[i] = 0
            # переходим к следующему числу,
            # которое кратно і (оно на і больше)
            j = j + i
    i += 1
# Избавляемся от всех нулей в списке
primes = [i for i in primes if i != 0]
print(primes)
```

Задача о кузнечике

Пусть кузнечик прыгает на одну или две точки на координатной прямой вперед, а за прыжок в каждую точку необходимо заплатить определенную стоимость, различную для различных точек. Стоимость прыжка в точку і задается значением price[i] списка price. Необходимо найти минимальную стоимость маршрута кузнечика из точки 0 в точку n.

тогда итоговая минимальная стоимость прибытия в точку под номером і будет: dp[i] = min(dp[i-1], dp[i-2]) + price[i]
Нам нужно заполнить этот список до позиции n, ответ будет лежать в dp[n].

Задачу также можно расширить, введя отрицательные стоимости в **price**, тогда аналогичным способом можно решать задачу на максимум.

Если хранить в **dp[i]** не только стоимость, но и оптимальный путь, по которому мы приходим в точку **i**, то в **dp[n]** также получим оптимальный путь минимальной/максимальной стоимости. Это **задача с восстановлением пути**.

Расстояние Левенштейна

Доступно 3 операции: вставка, удаление или замена символа. Найти минимальное количество операций, чтобы получить из одной строки другую.

Это алгоритм на двумерное динамическое программирование. Правило перехода следующее:

$$D(i,j) = egin{cases} 0, & i=0, \ j=0 \ j=0, \ i>0 \ j=0, \ i>0 \ i=0, \ j>0 \ i=0, \ j>0 \ min \{ \ D(i,j-1)+1, \ D(i-1,j)+1, \ D(i-1,j-1)+m(S_1[i],S_2[j]) \ \} \end{cases}$$
 $j>0, \ i>0 \ D(i-1,j-1)+m(S_1[i],S_2[j])$

m(S1[i], S2[j]) – функция равенства символов. если символы S1[i]==S2[j], то m(S1[i],S2[j]) = 0, иначе 1

Интересные ссылки

https://habr.com/ru/articles/207988/

https://habr.com/ru/news/756266/