Enhancing Aspect-Based Sentiment Analysis with Supervised **Contrastive Learning**

Bin Liang^{1*}, Wangda Luo^{1*}, Xiang Li¹, Lin Gui², Min Yang³, Xiaoqi Yu⁴, Ruifeng Xu^{1†} ¹School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), China ²Department of Computer Science, University of Warwick, Coventry, U.K. ³SIAT, Chinese Academy of Sciences, ⁴China Merchants Securities Co., Ltd. Shenzhen, China

INTRODUCTION

Problem Definition: Aspect-based sentiment analysis (ABSA) aims to detect the sentiment polarity (e.g. positive, negative, or neutral) towards a specific aspect from a sentence. For example, given a sentence "great food but dreadful service" and aspects "food" and "service", the polarity of "food" is positive, while of aspect "service" is negative.

Main Challenge:

- There are about 60% of the testing aspects in commonly used public datasets are unknown to the training set.
- Some sentiment features carry the same polarity regardless of the aspects, which props up the high accuracy of existing ABSA models.

MOTIVATION & CONTRIBUTION

Motivation: In Example (a), the aspect-invariant sentiment expression carries the same polarity regardless of the aspects. In Example (b), the aspect-dependent sentiment expression only takes effect on the specific aspect. So we propose a novel BERT-based supervised contrastive learning (BERT-SCon) framework to leverage the correlation and difference among both different sentiment polarities and patterns.

service, people, etc. Pizza was a little soggy.

(a) aspect-invariant example

(b) aspect-dependent example

Key Contributions:

- The ABSA task is approached from a new scenario that leveraging the roles of sentiment features to focus on the ABSA improvement for unknown testing aspects.
- A novel BERT-based supervised contrastive learning (BERT-SCon) framework is deployed to discriminate sentiment features from both sentiment polarity and pattern perspectives.
- Experimental results on 5 benchmark datasets show that the proposed framework achieves state-of-the-art performance.

Method

Framework Architecture of Supervised Contrastive Learning(BERT-SCon)

The architecture of the proposed **BERT-SCon** framework mainly contains four components: 1) Data augmentation, 2) Feature extractor, 3) Sentiment classification, 4) Contrastive learning.

Data Augmentation:

We attempt to discriminate the aspect-invariant and aspect-dependent sentiment features by automatically supplying a sentiment pattern label (aspect-invariant/dependent) for each training instance. We first train a BERT-based ABSA model \mathcal{M} with the training data \mathcal{D} , and the training accuracy is close to 100% for each dataset. Then, we deploy two ways to construct augmentation data for each training instance.1) We replace the aspect with a special token "[MASK]" and derive a masked synthetic instance s_i^M . 2) We randomly select another aspect to replace the aspect and derive an aspect-based synthetic instance s_i^A . Then s_i^M and s_i^A are fed as testing instances into \mathcal{M} to acquire the prediction results. If both the results are the same as the ground-truth label, we supply a sentiment pattern label for the instance with "aspect-invariant", or else with "aspect-dependent".

Feature Extractor:

For each instance s_i , we adopt pre-trained BERT as the Feature Extractor to acquire a d_m -dimensional hidden vector $\boldsymbol{h}_i \in \mathbb{R}^{d_m}$:

$$\boldsymbol{h}_i = \text{BERT}([CLS]s_i[SEP]a_i[SEP]) \tag{1}$$

For a mini-batch sample set \mathcal{B} , the hidden vectors of the samples can be defined as: $\mathcal{B} = \{h_i\}_{i=1}^{N_b}$, N_b is the size of mini-batch.

Sentiment Classification:

We feed the hidden vectors of the mini-batch \mathcal{B} into a classifier with a softmax function to produce the predicted sentiment distribution:

$$\boldsymbol{p}_i = \operatorname{softmax}(\boldsymbol{W}\boldsymbol{h}_i + \boldsymbol{b}) \tag{2}$$

Based on the predicted sentiment probability, we employ a cross-entropy loss between predicted and ground-truth distribution y_i to train the classifier:

$$\mathcal{L}^{cla} = -\sum_{i=1}^{N_b} \sum_{j=1}^{d_p} y_i^j \log p_i^j \tag{3}$$

Contrastive Learning:

For an anchor h_i , we refer to 1) $h_i, h_j \in \mathcal{B}$ with the same sentiment polarity as a positive polarity pair, 2) $h_i, h_j \in \mathcal{B}$ with the same sentiment pattern as a positive pattern pair. While the samples $\{h_k \in \mathcal{B}, k \neq i\}$ are treated as negative instances towards this anchor. The contrastive losses \mathcal{L}^P and \mathcal{L}^A are as follow:

$$\mathcal{L}^{P} = \frac{1}{N_b} \sum_{\mathbf{h}_i \in \mathcal{B}} \ell^p(\mathbf{h}_i), \qquad \mathcal{L}^{A} = \frac{1}{N_b} \sum_{\mathbf{h}_i \in \mathcal{B}} \ell^a(\mathbf{h}_i) \tag{4}$$

$$\ell^{p}(\mathbf{h}_{i}) = -\log \frac{\sum_{j=1}^{N_{b}} \mathbb{1}_{[j\neq i]} \mathbb{1}_{[y_{i}=y_{j}]} \exp(\sin(\mathbf{h}_{i}, \mathbf{h}_{j})/\tau)}{\sum_{k=1}^{N_{b}} \mathbb{1}_{[k\neq i]} \exp(\sin(\mathbf{h}_{i}, \mathbf{h}_{k})/\tau)}$$
(5)

$$\ell^{a}(\mathbf{h}_{i}) = -\log \frac{\sum_{j=1}^{N_{b}} \mathbb{1}_{[j\neq i]} \mathbb{1}_{[z_{i}=z_{j}]} \exp(\sin(\mathbf{h}_{i}, \mathbf{h}_{j})/\tau)}{\sum_{k=1}^{N_{b}} \mathbb{1}_{[k\neq i]} \exp(\sin(\mathbf{h}_{i}, \mathbf{h}_{k})/\tau)}$$
(6)

Learning Objective:

We train the proposed framework by jointly minimizing the sum of the aforementioned three losses \mathcal{L}^{cla} , \mathcal{L}^{P} and \mathcal{L}^{A} :

$$\mathcal{L} = \mathcal{L}^{cla} + \mathcal{L}^P + \mathcal{L}^A + \lambda ||\Theta||^2 \tag{7}$$

 Θ denotes all trainable parameters of the framework, λ represents the coefficient of L_2 -regularization.

Experimental Results & Conclusion

Main Experimental Results:

Model		REST14	LAP14	REST15	REST16	MAMS
Attention	ATAE-LSTM	78.60 [‡]	68.88 [‡]	78.48 [‡]	83.77 [‡]	77.05^{\dagger}
	MGAN	81.25 [‡]	75.39 ^{\(\beta\)}	79.36 [‡]	87.06^{\natural}	75.98
	CapsNet	80.79*	_	_	_	79.78*
Graph	ASGCN	80.77*	75.55*	79.89*	88.99*	76.27
	R-GAT	83.30*	77.42*	80.57	88.79	77.50
	BiGCN	81.97*	74.59*	81.16*	88.96*	80.07
	InterGC	82.23*	77.86*	81.76*	89.77*	79.25
BERT	BERT	84.11 [‡]	77.59 [‡]	83.48 [‡]	90.10 [‡]	82.22 [†]
	CapsNet-BERT	85.93*	_	_	_	83.39*
	R-GAT+BERT	86.60*	78.21*	83.27	89.91	82.07
	BERT-KVMN	85.98*	79.78*	84.14*	90.52*	-
Ours	BERT-SCon	87.62	82.94	85.42	92.53	85.78

Experimental Results of Model Generalizability:

Model	REST14	LAP14	REST15	REST16	MAMS
TD-LSTM	78.00	71.83	76.39	82.16	74.60
TD-LSTM-SCon (ours)	79.75	72.63	78.04	85.71	76.18
MGAN	81.25	75.39	79.36	87.06	75.98
MGAN-SCon (ours)	82.96	77.85	81.75	89.42	78.33
InterGCN	82.23	77.86	81.76	89.77	79.25
InterGCN-SCon (ours)	83.25	79.33	83.05	91.07	81.22

Experimental Results of Ablation Study:

Model	REST14	LAP14	REST15	REST16	Mams
BERT-SCon	87.62	82.74	85.42	92.53	84.78
BERT-Multi	83.96	77.62	82.81	90.57	82.53
w/o \mathcal{L}^P	85.39	79.10	84.10	91.17	83.61
$w/o \mathcal{L}^A$	85.07	79 22	83.93	91.05	83 45

Experimental Results of Unknown Aspect-based Data:

Model	REST14	LAP14	REST15	REST16	MAMS
TD-LSTM	73.25	60.57	74.79	80.70	61.08
MGAN	75.28	61.34	76.32	81.21	60.23
InterGCN	75.99	67.78	79.70	88.09	65.71
BERT	77.98	71.05	81.33	88.31	68.66
BERT-SCon	82.26	78.98	84.09	92.40	77.82

Experimental Analysis of Visualization:

(a) BER1

Conclusion:

We propose to deploy a novel contrastive learning framework BERT-SCon, in which the aspect-invariant and aspect-dependent sentiment representations can

be discriminated to improve the sentiment learning for the testing instances.