

Engineering Chemistry

F. Y. B. Tech.

Lecture – [7-11]

Dr. Jitendra Satam

Softening Methods

- 1. Lime-Soda Method
- 2. Zeolite Softener method
- 3. Ion Exchange Method

1. Lime-Soda Method

- In this method, calculated quantity of Lime [Ca(OH)₂] and Soda [Na₂CO₃] mixture is added to hard water.
- Precipitates of CaCO₃ and Mg(OH)₂ are formed due to reactions of hardness causing salts with lime and soda.
- These precipitates gets settled down in the form of sludge.
- This settling of precipitates is faster in hot lime soda method compared to cold Lime soda method.
- Hence for quick settling of particles of CaCO₃ and Mg(OH)₂, coagulants such as Alum [Al₂(SO₄)₃], sodium meta aluminate [NaAlO₂], or FeSO₄ could be used in cold lime soda method.

K J Somaiya	College of	Engineering
-------------	------------	-------------

Constituent	Reaction			Need
Ca ²⁺ (Perm. Ca)	$Ca^{2+} + Na_2CO_3$	\longrightarrow	CaCO ₃ + 2Na ⁺	S
Mg ²⁺ (Perm. Mg)			$Mg(OH)_2 + Ca^{2+}$ $CaCO_3 + 2Na^+$	L+S
HCO ₃ ⁻ (e.g., NaHCO ₃)	2HCO ₃ ⁻ + Ca(OH) ₂		$CaCO_3 + H_2O + CO_3^{2-}$	L -5
Ca(HCO ₃) ₂ (Temp. Ca)	$Ca(HCO_3)_2 + Ca(OH)_2$	\longrightarrow	$2\mathrm{CaCO_3} + 2\mathrm{H_2O}$	Ĺ.
Mg(HCO ₃) ₂ (Temp. Mg)	$Mg(HCO_3)_2 + 2Ca(OH)_2$	\longrightarrow	$2\mathrm{CaCO}_3 + \mathrm{Mg}(\mathrm{OH})_2 + 2\mathrm{H}_2\mathrm{O}$	2L
CO ₂	$CO_2 + Ca(OH)_2$	>	$CaCO_3 + H_2O$	1
H ⁺ (free acids HCI,	$2H^{+} + Ca(OH)_{2}$ $Ca^{2+} + Na_{2}CO_{3}$	\longrightarrow	$Ca^{2+} + 2H_2O$ $CaCO_3 + 2Na^+$	L+S
Coagulants:	$Fe^{2+} + Ca(OH)_2$		Fe(OH) ₂ + Ca ²⁺	
FeSO ₄	$2Fe(OH)_2 + H_2O + O_2$ $Ca^{2+} + Na_2CO_3$	>	2Fe(OH) ₃	L+S
Al ₂ (SO ₄) ₃	$2A1^{3+} + 3Ca(OH)_2$ $3Ca^{2+} + 2Na_2CO_3$		$2A1(OH)_3 + 3Ca^{2+}$	L+S
NaAlO ₂	NaAlO ₂ + H ₂ O		3CaCO ₃ + 6Na ⁺ A1(OH) ₃ + NaOH	-1

From the above table it can be seen that 100 parts by mass of CaCO₃ are equivalent to 74 parts of Ca(OH)₂ and 106 parts of Na₂CO₃.

Lime requirement for softening

$$= \frac{74}{100} \begin{bmatrix} \text{Temp. } \text{Ca}^{2+} + 2 \times \text{Temp. } \text{Mg}^{2+} + \text{Perm. } (\text{Mg}^{2+} + \text{Fe}^{2+} + \text{Al}^{3+}) \\ + \text{CO}_2 + \text{H}^+ (\text{HCl or H}_2\text{SO}_4) + \text{HCO}_3^- - \text{NaAlO}_2 \\ \text{all in terms of CaCO}_3 \text{ eq.} \end{bmatrix}$$

And Soda requirement for softening × Volume of vode × 100 Kg

$$= \frac{106}{100} \left[\text{Perm. } (\text{Ca}^{2+} + \text{Mg}^{2+} + \text{Al}^{3+} + \text{Fe}^{2+}) + \text{H}^{+}(\text{HCl or H}_{2}\text{SO}_{4}) - \text{HCO}_{3}^{-} \right]$$
all in terms of CaCO₃ eq.

There are two types of lime-soda process. x volume of water x 100 % Ring

(1) Cold lime-soda process

(2) Hot lime-soda process and

A. Cold Lime-Soda Method

- In cold lime-soda method, hard water is treated with mixture of lime, soda and coagulants at room temperature about 25-30 °C.
- Inner cylindrical reaction tank equipped with stirrer, which ensures complete mixing of lime, soda and coagulants with hard water.
- In outer conical sedimentation vessel, sludge settles down
- Wood fiber filters ensures the complete removal of sludge particles from softened water.

Cold Lime-Soda Method

Continuous cold lime soda softener

- 1. Carried out at 25 °C to 30 °C
- 2. Coagulants required
- 3. Stirring is essential as the reaction is operated at low temperature
- 4. Slow process
- 5. Dissolved gases are not removed
- 6. Filtration is not easy
- 7. Residual hardness is 50-60 ppm
- 8. Low softening capacity

B. Hot Lime-Soda Method

In Hot lime-soda process hard water is treated with soda and lime at 94-100℃

Hot lime-soda plant essentially consists of three parts

- → A 'Reaction tank' in which raw water, chemicals and steam are thoroughly mixed.
- → A 'Conical sedimentation vessel' in which sludge settles down, and
- → A 'sand filter' which ensures complete removal of sludge from the softened water.

Hot Lime-Soda Method

- 1. Carried out at 95 °C to 100 °C
- 2. Coagulants are not required
- 3. Stirring is not essential as the reaction is operated at high temperature
- 4. Fast process
- 5. Dissolved gases gets removed due to high temperature
- 6. Filtration is easy, hence sand filter is sufficient
- 7. Residual hardness is 15-30 ppm
- 8. High softening capacity

Advantages of hot lime-soda method over cold lime-soda method

- Economical process
- pH value of softened water is high (Decrease corrosion)
- Alkaline nature of treated water reduces pathogens, bacteria in water
- Fe (II) and Mn (II) can also be removed to certain extent

Disadvantages of Lime-soda method

- Softened water is 50 ppm hardness in cold limesoda method and 15-30 ppm hardness in hot limesoda method.
- Such water can not be used in high pressure boilers
- Disposal of large quantity of sludge is a big problem

2. Zeolite Softener method

- Sodium-Zeolites which are hydrated sodium alumino silicates, capable of exchanging their sodium ions with hardness producing ions are used.
- Chemically sodium zeolites are $Na_2O.Al_2O_3.xSiO_2.yH_2O$ (Where, x=2-10 & y=2-6).

Principle: hard water passed over zeolite, it exchanges its own sodium ions with hardness causing ions.

2Na⁺ ions are generally exchanged with each bivalent hardness producing ions.

Process

- For softening, hard water is passed over zeolite bed at specific rate
- The hardness causing ions will be retained on zeolite and they are exchanged with equivalent sodium ions
- After certain usage zeolite gets exhausted as all the sodium ions got exchanged
- Such exhausted zeolite is regenerated by passing 10 % brine solution over it
- This regenerates the zeolite by replacing hardness causing ions with Na⁺ ions to become Na-zeolite
- Hence softening and regeneration are exactly opposite reactions

Reactions

• Softening:

For softening of hard water, it is passed over sodium zeolite bed. Exchange of hardness causing ions takes place with sodium ions present on zeolite. The following reactions takes place.

$$\begin{array}{c}
CaCl_2 + Na_2Ze \\
MgSO_4 + Na_2Ze
\end{array}$$

$$\begin{array}{c}
CaZe + 2NaCl \\
MgZe + Na_2SO_4
\end{array}$$

• Regeneration:

For regeneration of exhausted zeolite, 10 % brine solution is passed over used zeolite.

$$\begin{array}{cccc} CaZe + 2NaCl & & & & & \\ MgZe + 2NaCl & & & & \\ MgCl_2 + Na_2Ze & & & \\ \end{array}$$

Zeolite water softener

Advantages

- Water obtained after treatment is about 10 ppm hardness
- No sludge formation is taking place
- Equipment is compact and easy in operation
- Equipment occupies less space and low in maintenance

Numerical

A zeolite softener was completely exhausted and was regenerated by passing 100 liters of NaCl solution containing 100 g/litre NaCl. How many liters of water of hardness 500 ppm can be softened by this softener?

• Solution:

Limitations and Disadvantages of Zeolite softener method

Limitations

- Suspended impurities blocks the pores of zeolite
- Colored ions such as Fe³⁺ and Mn²⁺ forms strong bonds with zeolite hence can not be removed while regeneration from zeolite
- Mineral acids can destroy zeolite

Disadvantages

- The treated water is high in sodium salts
- Only cations could be removed leaving behind anions in water

3. Ion Exchange softener method (De-mineralization Process)

• Ion exchange resins are insoluble, cross-linked, long chain organic polymers with micro-porous structure. The functional groups attached to the chains are responsible for ion exchanging property.

Cation Exchanger resins (RH⁺):

Resins containing acidic functional groups (-COOH, -SO₃H etc.) are capable of exchanging their H⁺ ions with other cations in hard water.

• Anion Exchanger resins (ROH-):

Resins containing basic functional groups (-NH₂-OH, =NH-OH, -NMe₂-OH etc.) are capable of exchanging their OH with other anions in hard water.

R J Somaiya College of Engineering Process - Softening

- For **softening**, hard water is first passed over cations exchanger resin column at specific rate, which removes cations like Ca²⁺, Mg²⁺ etc. from hard water.
- The hardness causing ions will be retained on cation exchanger resin and they are exchanged with equivalent amount of H⁺ ions
- Further, the softened water from cation exchanger column is passed through anion exchanger column, which removes anions like, SO_4^{2-} , Cl^- , CO_3^{2-} etc. with equivalent amount of OH^- ions from the resin.
- H⁺ and OH⁻ ions from resin columns combines to form water.

Softening

Process - Regeneration

- After certain usage both cation and anion exchanger resins gets exhausted and they can not exchange any more cations or anions.
- Exhausted cation exchanger resin is regenerated by passing dil. HCl solution
- Exhausted anion exchanger resin is regenerated by passing dil. NaOH solution
- This regenerates both the resins making the method reusable.

Regeneration

Ion Exchange Softener

(Commercial plant)

Advantages

- The process can be used for highly acidic or alkaline water.
- It produces water of very low hardness (less than 2 ppm).
- Softened water can be used in steam generation boiler.

Disadvantages

- The equipment is costly and expensive resins are required.
- Turbid water could decrease the efficiency of the method. Hence turbidity need to be removed first by coagulation and then water could be passed over the resin.

Numerical

 100000 L of hard water was softened by Ion exchange column. The exhausted cation exchanger resin column was regenerated by 200 L of 0.1 N HCL and anion exchanger resin column by 0.1 N NaOH. Calculate hardness of water sample in ppm.

Solution:

100000 L of hard water is softened by 200 L of 0.1 N HCL/NaOH

Quantity of HCl used = $200 \times 0.1 = 20 \text{ L eq. CaCO}_3$

If, 1 L of 1 N $CaCO_3 = 50$ gms

 $20 \text{ L of } 1 \text{ N CaCO}_3 = 50 \text{ x } 20 \text{ gms}$

Therefore 100000 L water = 1000 g of $CaCO_3$

Hardness of 1 L water = $1000 \times 1000/100000 = 10 \text{ ppm}$