EVHS Algebra II Unit 3 Handouts

Polynomial relations (Part I)

Contents

Topic 1 Preamble: Review of The Ground Rules of Exponents and Polynomials	3
Topic 2 Factoring Polynomials (Completely)	7
Topic 3 Long Division for polynomials	10
Topic 4 Synthetic division, factor theorem, and remainder theorem	13
Topic 5 Rational Zero Theorem	19

Topic 1 Preamble: Review of The Ground Rules of Exponents and Polynomials

Objectives:

In this topic, you will learn how to use the properties of exponents, and some basic operations of the polynomials.

The Lesson

Objective 1:

Exponent Properties

The following table outlines the properties of exponents:

1. $a^0 = 1$	2. $a^{-1} = \frac{1}{a}$
$3. (ab)^x = a^x b^x$	$4. \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$
$5. a^x \cdot a^y = a^{x+y}$	$6. \frac{a^x}{a^y} = a^{x-y}$
$7.\left(a^{x}\right)^{y}=a^{xy}$	8. if $a^x = a^y$, then $x = y$

Ex1 Find the ratio of the volume of a sphere with radius of r to the surface area of the same sphere

Ex1.5 Use the following properties of exponents as given:

$$a^{0} = 1$$

$$a^x \cdot a^y = a^{x+y}$$

Form a proof to show that $a^{-1} = \frac{1}{a}$

Ex2 Solve the following exponent equations (Find x and/or y)

a. $a^{x+1} = (a^{3x-1})^x$	b. $4^x = 8^{2x-1}$
c. $36 \cdot 6^{3(x+y)} = 2^{4y} \cdot 3^{2x-6}$	d. $2 \cdot 10^{2x+y} = 5^{y+2} \cdot 8^{x-1}$

Objective 2:

Add/multiply polynomials (combine the like terms and distributive properties).

Ex3
$$f(x) = 2x + 3$$
; $g(x) = 3x^3 - x + 1$; $h(x) = x^4 + \frac{1}{2}x^3 - 4x^2 + 2x + 1$; $k(x) = -x + 2x^2 - 1$

Use the given polynomials to find the followings

	T
a. $f(x)g(x)-2h(x)$	b. $h(x) + \frac{1}{2}k(x)$
	$\int_{0}^{\infty} \frac{n(x)}{2} e^{-x(x)}$
c. $f(x)k(x) - g(x)$	d. $f^2(x)$
$e. (f(x) + k(x))^2$	f. $g(x)h(x)$

Exit ticket

$$\text{if } \begin{cases} a(x) + 2b(x) + c(x) = f(x) \\ b(x) - c(x) = g(x) \\ a(x) + 2b(x) = h(x) \end{cases} \text{ , and } a(x), b(x), c(x) \text{ are polynomials, find } a(x), b(x) \text{ and } c(x) \text{ .}$$

Topic 2 Factoring Polynomials (Completely)

Objective:

In this topic, you will learn a couple of techniques to factor a polynomial whenever it is factorable.

The Lesson

If a polynomial can be factored, (How would I know?), then it usually can be factored through the following 3 techniques:

• Factor by grouping: such as the following example,

$$x^3 - 2x^2 + x - 2$$

$$6x^3 - 18x^2 + 2x - 6$$

• Factor by using patterns: Following table lists some of the most common patterns,

$a^2 + 2ab + b^2 = (a+b)^2$	$a^2 - 2ab + b^2 = (a - b)^2$
$a^3 + 3a^2b + 3ab^2 + b^3 = (a+b)^3$	$a^3 - 3a^2b + 3ab^2 - b^3 = (a - b)^3$
$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$	$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$
$a^2 - b^2 = (a+b)(a-b)$	$a^{2}+b^{2}+c^{2}+2ab+2bc+2ca=(a+b+c)^{2}$

Here are some applications of these patterns

$$x^{6} + 1$$

$$16x^4 - 81$$

• A mixed of the previous two strategies, such as

$$x^4 - 2x^3 + 2x - 1$$

$$-x^4 + x^3 - x + 1$$

Practice: Factor completely the following polynomials

	- (1) ² 1
1. $4-9x^2$	2. $(x+1)^2-1$
3. $4x^2 + 4x(x+1) + (x+1)^2$	4. $x^2 - 4 + 2(x+2)^2$
3. $4x + 4x(x+1) + (x+1)$	4. x - 4 + 2(x + 2)
$5. 1 - x^2 + (2 + 2x)^2$	6. $(x+1)^2 - 15(x+1) + 56$

7. $x(y+2)-x-y-1$	$8. \ 4x^2 + 4xy + y^2 - 4x - 2y - 3$
9. $x^2y^2 - x^2 - y^2 - 6xy + 4$	10. $3ax^2 - 2x + 3ax - 2$
11. $a(b^2-c^2)-c(a^2-b^2)$	12. $xy^2 - 2xy - 3x - y^2 - 2y - 1$

Exit Ticket:

Factor completely: $x^5 - 3x^4 - 16x + 48$

Topic 3 Long Division for polynomials

Objective:

In this topic, you will learn how to use the long division to divide two polynomials

The Lesson

When you divide f(x) by a divisor d(x), you will get a quotient q(x) and a remainder r(x), and the result of your division should be represented in the following format:

$$\frac{f(x)}{d(x)} = q(x) + \frac{r(x)}{d(x)}, \text{ where } \deg(r(x)) < \deg(d(x))$$

Example: Use long division to divide $f(x) = 2x^6 - 3x^5 + 7x^4 - 11x^3 + 5x^2 - 6x + 4$ by $d(x) = x^2 - 2x + 1$

Examples:

1. $(3x^4 - 5x^3 + 4x - 6) \div (x^2 - 3x + 5)$	5)
---	----

2.
$$(2x^4 + 2x^2 + 1) \div (-2x + 1)$$

3.
$$(6x^2 - 4x + x^3 - 2x^5) \div (x + x^2)$$

4.
$$(x^3 + 5x^2 - 7x + 2) \div (x + 2)$$

5 2 2	
5. $(4x^5 - 5x^3 + 4) \div (x^2 - 3x - 2)$	6. $(4x^6 + 3x^4 + 4x^2 - 2) \div (2x - 1)$
4 2 2	2
7. $(x^4 + 4x^3 + 16x^2 - 36) \div (1 - x)$	8. $(4x^3 + 2x + 5) \div (8x - 2)$
	4 2 2
9. $(3x^4 - 2x^3 + \frac{16}{3}x^2 - 6x + 12) \div (6x + 4)$	10. $(7x^4 - 4x^3 + 5x^2 - 6x - 2) \div (x^2 - 2x + 1)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Topic 4 Synthetic division, factor theorem, and remainder theorem

Objectives:

In this topic, you will learn how to use synthetic division to divide a polynomial by a divisor $x\!-\!a$

Objective 1: Use synthetic division to divide a polynomial by x-a

$$(4x^4 + 3x^3 - 5x + 1) \div (x + 2)$$

$$(2x^4 - x + 1) \div (x + 3)$$

Practice:

1.
$$(2x^3 + x^2 - 8x + 5) \div (x+3)$$

2.
$$(\frac{2}{3}x^3 - 4x + x^2 + 1) \div (x + 6)$$

3.
$$(x^4 + x^3 + 2) \div (x - \frac{1}{2})$$

4.
$$(x^4 + 5x^3 - 2x^2 + x - 1) \div (x - 5)$$

Objective 2: Remainder theorem and Factor theorem

Remainder theorem:

If f(x) is divided by x-a, then the remainder of the division is R(x) = f(a) [which is a constant]

Factor theorem:

If f(x) is divided by x-a, and the remainder of the division is 0, then x-a is a factor of f(x).

Example 2:

If x+1 is a factor of $f(x) = 2x^2 + ax + 3$, Find variable a

What are the zeros of f(x) = 0 ?

Example 3:

Given
$$f(x) = \frac{7}{3}x^5 - \frac{3}{2}x^4 + \frac{5}{6}x^3 - \frac{4}{3}x^2 + 3x - \frac{1}{6}$$

Evaluate

(1)
$$f(\frac{3}{2})$$

(2) f(6)

Practice:

1. $f(x) = 3x^3 + 4ax^2 + 2a^2x + 1$ has a factor	2. From question 1, find all the zeros for $f(x) = 0$
(x+1). Use factor theorem to find a.	
3. Divide $g(x) = x^3 + 4ax^2 + ax - 1$ by x+2, the	4. Use g(x) from question 3, calculate
remainder is -2, Find a.	$g(x) \div (x^2 + x + 1)$
, , , , , ,	
5. Use $f(x)$ from question 1, find $f(-2)$	6. Use $g(x)$ from question 3, find $g(-\frac{1}{2})$
	2'

7. Let $h(x) = f(x) + g(x)$. Now find the remainder, if $h(x)$ is divided by $(x+2)$?	8. find $f(-\frac{1}{2})$
9. Combine the results from question 6 and 8, and use the experience you have with question 7, predict the remainder, if h(x) is divided by (x+2) without performing the division.	10. Form an opinion (Mathematically, this is called a "conjecture") about the experience you have from question 7 through question 9.

Prove your conjecture:

Objective 3:

With slight modification of the synthetic division, one can generalize the division process for divisors with the structures of ax + b.

Example: Use synthetic division to divide $f(x) = 4x^4 - 2x^2 + 5x - 6$ by (2x - 3)

Step 1: divide all coefficients by $\it a$.

Step 2: use synthetic division to divide the modified f(x) from step1 by $x - \frac{b}{a}$

Step 3: multiply the remainder by a.

Mr. Chen, please explain why this modification works? (Please.)

Practice: use synthetic division to find the quotient and the remainder of the operation

1. $(8x^2 -$	-34x - 1	1) \div (4x - 1)
--------------	----------	--------------------

2. $(10x^3 - 81x^2 + 71x + 42) \div (2x - 3)$

3.
$$(3x^3 + 34x^2 + 72x - 64) \div (3x - 2)$$

4. $(3x^3 - 2x^2 - 61x - 20) \div (3x + 2)$

5.
$$(2x^3 - 15x^2 + 34x - 21) \div (2x - 5)$$

6. $(2x^3 + 17x^2 + 46x + 40) \div (2x + 5)$

7.
$$(30x^3 + 7x^2 - 39x + 14) \div (3x - 2)$$

8. $(4x^3 - 2x^2 + x - 1) \div (2x - 1)$

Topic 5 Rational Zero Theorem

In this topic, you will learn the	rational zero theorem	and use the theorem	to find all possible
rational zeros (or all the zeros)			

The Lesson

Given that (2x+3) is a factor of $f(x) = 56x^3 + 46x^2 - 97x - 60$.

Find all the zeros of f(x).

Now observe the leading coefficient and the constant of f(x), and the zeros you just found, to the table below:

leading coef =	all possible factors of the leading coefficient:
constant =	all possible factors for the constant

zero1 = zero2 = zero3 =

Conclusion of the observation:

Rational Zero Theorem:

If $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0$ has integer coefficients, then every rational zero of f has the following form:

$$\frac{p}{q} = \frac{\text{factors of } a_0}{\text{factors of } a_n}$$

Ex 1 For the following polynomials, (a) List all possible rational zeros and (b) Find all zeros (including complex zeros)

a.
$$f(x) = x^3 + 2x^2 - 11x + 12$$

b.
$$g(x) = 4x^4 - x^3 - 3x^2 + 9x - 10$$

c.
$$h(x) = x^3 - 8x^2 + 11x + 20$$

d.
$$k(x) = x^3 - 4x^2 - 15x + 18$$

Practice:

1.
$$f(x) = 2x^3 + 7x^2 + 7x + 12$$

2.
$$f(x) = 2x^5 + 9x^4 + 11x^3 - 21x^2 - 76x - 60$$

3.
$$f(x) = 12x^4 - 52x^3 + 45x^2 + 13x - 12$$

4. $f(x) = 30x^3$	$+7x^2 - 39x + 14$
-------------------	--------------------

5.
$$f(x) = 2x^6 - x^5 + 11x^4 - 6x^3 + 4x^2 - 5x - 5$$