Modeling and simulation of Power Consumption on Heterogenous CPU Cores under varying workloads and operating conditions

Atharv Arun Desai

Department of CSA

Indian Institute of Science (IISc)

Bangalore, India

atharvarun@iisc.ac.in

Boul Chandra Garai

Department of CSA

Indian Institute of Science (IISc)

Bangalore, India

chandraboul@iisc.ac.in

Himanshu Srivastava

Department of CSA

Indian Institute of Science (IISc)

Bangalore, India
himanshusriv@iisc.ac.in

Vaisakh P S
Department of CSA
Indian Institute of Science (IISc)
Bangalore, India
vaisakhp@iisc.ac.in

Abstract—This document serves as phase-1 report for E0-240 - Modeling and Simulation course project delivery. The main objective of this project is to apply concepts learned in E0-240 course in to Modeling and simulation of a real-world system, which in this case is Multi-core, Heterogenous CPU. This project, will focus on developing a Power Consumption Model for simulated Full-System [1] under varying workloads. This model will be developed taking in consideration various operating conditions of the CPU such as Dynamic Frequency Scaling, Heterogenous Cores [2]

Index Terms—Modeling, simulation, heterogenous CPU cores, power consumption

I. BACKGROUND

II. METHODOLOGY

As mentioned in previous work [3], a similar method is followed, wherein a ODROID-XU4 [4] Big-Little development board is chosen as first target for experimentation, data gathering and validation efforts. An overview of this hardware is show in Figure. 1.

A. Data Gathering

test

Fig. 1. ODroid XU4 board overview

Fig. 2. Experiment setup for power data gathering from ODROID-XU4 [4] hardware

TABLE I
POWER AND PERFORMANCE FEATURE GATHERED FROM MENTIONED
EXPERIMENT SETUP

Feature/Statistics	Feature details		
Type	Source	Details	
CPU Clock Cycles	perf[x]	CPU cycles, us cycles, instruc-	
		tions, CPU frequency, CPU idle	
		state statistics	
Instruction Branches	perf[x]	Branch instruction and speculative	
		operation statistics	
Caches	perf[x]	Data/Instruction cache references,	
		misses at L1, Last-Level-Cache	
		levels	
Board Level Power	SmartPower3	Current, Power drawn from power	
	[5]	supply.	
Misc. Performance	perf[x]	CPU Migrations, Context	
		switches, Virtual memory	

III. PHASE-2 PROGRESS

test

IV. PHASE-2 OBSERVATIONS AND RESULTS

test

TABLE II
LIST OF WORKLOADS BEING USED FOR DATA GATHERING AND VALIDATION

Workload	Workload details and status of integration		
Type	Workloads	Status	
Stress Test	stress command [6]	√	
Video Encoding	ffmpeg encode [6]	√	
File Compression	gzip, bzip2, xz on complex datasets	√	
	[7]		
Benchmark Suite	SPEC2017 CPU Benchmarks [8]	Planned	

V. DISCUSSION ON PHASE-2 OUTCOMES

VI. NEXT STEP

- A. Modeling and Empirical Model generation
- B. Power Model Integration to Gem5

REFERENCES

- A. Akram and L. Sawalha, "A survey of computer architecture simulation techniques and tools," *IEEE Access*, vol. 7, pp. 78 120–78 145, 2019.
- [2] A. Inc., ""big. little technology: The future of mobile", white paper," ONLINE, 2013. [Online]. Available: https://www.arm.com/
- [3] B. K. Reddy, M. J. Walker, D. Balsamo, S. Diestelhorst, B. M. Al-Hashimi, and G. V. Merrett, "Empirical cpu power modelling and estimation in the gem5 simulator," 2017 27th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS), pp. 1–8, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:10100084
- [4] O. Wiki, "Odroid-xu4: Big.little development board," ONLINE, Apr 2023. [Online]. Available: https://wiki.odroid.com/odroid-xu4/odroid-xu4
- [5] —, "Smartpower3: Power monitor," ON-LINE, May 2023. [Online]. Available: https://wiki.odroid.com/accessory/power_supply_battery/smartpower3
- [6] A. L. Wiki, "Stress testing," ONLINE, Aug 2023. [Online]. Available: https://wiki.archlinux.org/title/Stress_testing
- [7] P. PeaZip project TOS, "Compression benchmark: 7-zip, peazip, winrar, winzip comparison," ONLINE, Aug 2023. [Online]. Available: https://peazip.github.io/peazip-compression-benchmark.html
- [8] J. Bucek, K.-D. Lange, and J. v. Kistowski, "Spec cpu2017: Next-generation compute benchmark," in *Companion of the 2018 ACM/SPEC International Conference on Performance Engineering*, ser. ICPE '18. New York, NY, USA: Association for Computing Machinery, 2018, p. 41–42. [Online]. Available: https://doi.org/10.1145/3185768.3185771