Formal Verification of Integer Multiplier Circuits

Jonathan Wang University of Utah Salt Lake City, Utah u1306458@utah.edu

Henry Silverman University of Utah Salt Lake City, Utah henry.silverman@utah.edu

Garrett Slack Price College of Engineering Price College of Engineering Price College of Engineering Price College of Engineering University of Utah Salt Lake City, Utah u1315263@utah.edu

Dmitry Panin University of Utah Salt Lake City, Utah dmitry.panin@utah.edu

Abstract—This paper employs advanced mathematical techniques, specifically polynomials, and ideals, to rigorously verify the correctness of an integer multiplier circuit. By leveraging algebraic methods, this approach will provide a deeper understanding of the circuit's behavior and enable a more robust verification process.

Index Terms—polynomials, ideals, multiplier circuit

I. Introduction

The paper presents the testing and verification of a 2-bit, 3bit, 16-bit, and 32-bit integer multiplier circuit. We manually designed the 2-bit and 3 bit multiplier from scratch and derived a polynomial spec. We generated the larger circuits utilizing the ABC synthesis tool.

II. APPROACH

Our approach to generate the 2-bit and 3-bit multiplier is simple for circuit generation,. We added on to the 2-bit multiplier provided by Dr. Kalla using the GEdit text editor. Then ran on command line in VMA RedHat Linux. For the larger 16-bit and 32-bit circuits, we generated the circuits using the ABC synthesis tool shown in Fig. 1.

```
en -N 32 -m 32BitMult.blif
reader flattened 2080 instances of logic boxes and left 0 black boxes
. 90> read lib2.genlib
rnings: genlib library reader cannot detect the buffer gate
           of the supergate-based technology m
nlib library with 5 gates from file
          ite_blif Mapped32BitMult.blif
```

Fig. 1. Steps to generate a 32-bit circuit in ABC.

III. ALGORITHMS AND TECHNIQUES

Before you begin to format your paper, first write and save the content as a separate text file. Complete all content and organizational editing before formatting. Please note sections below for more information on proofreading, spelling and grammar.

IV. SOFTWARE IMPLEMENTATIONS

Before you begin to format your paper, first write and save the content as a separate text file. Complete all content and organizational editing before formatting. Please note sections below for more information on proofreading, spelling and grammar.

V. CONCEPTS LEARNED

Before you begin to format your paper, first write and save the content as a separate text file. Complete all content and organizational editing before formatting. Please note sections below for more information on proofreading, spelling and grammar.

VI. LABOUR DIVISION

Jonathan: a lot Henry: a lot Garrett: a lot Dmitri: a lot

REFERENCES

- [1] D. Ritirc, A. Biere and M. Kauers, "Column-wise verification of multipliers using computer algebra," 2017 Formal Methods in Computer Aided Design (FMCAD), Vienna, Austria, 2017, pp. 23-30, doi: 10.23919/FMCAD.2017.8102237.
- T. Pruss, P. Kalla and F. Enescu, "Efficient Symbolic Computation for Word-Level Abstraction From Combinational Circuits for Verification Over Finite Fields," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 7, pp. 1206-1218, July 2016, doi: 10.1109/TCAD.2015.2501301.