

MA2501 Numerical Methods Spring 2017

Exercise set 10

Norwegian University of Science and Technology Department of Mathematics

a) Construct the free cubic spline for the following data.

x	$\int f(x)$
0.1	-0.62049958
0.2	-0.28398668
0.3	0.00660095
0.4	0.24842440

b) The data in the previous task were constructed using the function

$$f(x) = x\cos x - 2x^2 + 3x - 1$$

Use the cubic spline to approximate f(0.25) and f'(0.25) and calculate the actual error in both cases.

2 Assume that S is a spline of degree k on [a, b] with $k \geq 2$. Show that S' is a spline of degree k - 1 on [a, b].

 $\boxed{\bf 3}$ Find the linear function f(x)=ax+b that best approximates the following points:

Assume that you are given a number of points x_i , $1 \le i \le n$, and y_i , $1 \le i \le n$, and you want to find a parabola $f(x) = ax^2 + bx + c$ that best approximates these points.

a) Formulate this problem as a least squares problem and derive the corresponding normal equations.

b) Find the parabola that best approximates the following points:

- 5 Let $A \in \mathbb{R}^{n \times m}$ with $m \leq n$ have full rank and let $b \in \mathbb{R}^n$. Show that the following procedure yields a solution of the least squares problem $||Ax b||_2^2 \to \min$:
 - Find an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ and an upper triangular matrix $R \in \mathbb{R}^{n \times m}$ of the form

$$R = \begin{pmatrix} \hat{R} \\ 0 \end{pmatrix}$$
 with $\hat{R} \in \mathbb{R}^{m \times m}$ upper triangular

such that A = QR.

• Compute $y := Q^T b$ and write $y \in \mathbb{R}^n$ as

$$y = \begin{pmatrix} \hat{y} \\ z \end{pmatrix}$$
 with $\hat{y} \in \mathbb{R}^m$ and $z \in \mathbb{R}^{n-m}$.

• Solve the equation

$$\hat{R}x = \hat{y}.$$