Ch(7): pH-metric titration of weak acids with strong bases and of weak bases with strong acids.

Objectives

- Write the equation of the reaction of weak acid with strong base.
 - Plot the curve pH = $f(V_b)$.
 - Determine the equivalence point from the titration curve.
 - Calculate the concentration C_a.
- Describe the curve pH = $f(V_h)$ and indicate the remarquable points.

I-pH-metric titration of weak acids (HA) with strong bases (OH-)

Consider a solution of weak acid (HA) having unknown concentration $C_a = ?$

A volume $V_{a \text{ taken}} = 10 \text{ mL}$ form this solution is placed in a beaker and titrated with a solution of strong base (NaOH) of known concentration $C_b = 10^{-2} \text{ mol/L}$

The acid/base pair related to HA is: (HA/A-) having a given pKa

The pair related to strong base (NaOH) is : (H_2O/OH^-) : $pK_a = 14$

The equation of titration reaction is:

$$OH^- + HA \rightarrow A^- + H_2O \qquad K_R = 10^{(14-pKa)} > 10^4$$

This reaction is spontaneous (gamma rule), complete and should be quantitative ($K_R > 10^4$) and unique.

The pH of the solution is measured after each mL of NaOH added from the buret by using the pH-meter and the titration curve obtained has the following shape:

Calculation of concentration C_a

The volume $V_{b \text{ equivalence}}$ is determined from the curve pH= $f(V_{b})$ by the two parallel tangents method. At equivalence, acc. to.SR:

$$n(HA)_{taken} = n(NaOH)_{added at equivalence}$$
 $n(HA)_{taken} = n(OH^-)_{added at equivalence}$
 $C_a \times V_{a taken} = C_b \times V_{b eq}$

$$C_a = \frac{C_b \times V_{b eq}}{V_{a taken}}$$

Justification of the value of pH at equivalence point E₂

At equivalence, the two reactants (HA) and (OH⁻) are reacted completely and transformed into products.

The species present in the titration beaker at equivalence are: A-, H₂O and Na+ obtained from NaOH.

Na⁺: is spectator ion that has no effect on the pH.

H₂O: is neutral.

 A^- : is a weak base that reacts with water in a reversible reaction to produce a **little** amount of OH^- ions that gives a pH > 7 according to the following reaction:

$$A^- + H_2O \leftrightarrow HA + OH^-$$

Justification of the value of pH at the half- equivalence point E₁

At the half equivalence : $V_{b \text{ added}} = \frac{V_{beq}}{2}$

At this point, the half of concentration of the acid HA is reacted and the other half is transformed into A^- , thus $[HA]_{remained} = [A^-]_{formed}$

Since the two species are present in the same solution, therefore the pH of the solution is determined by the Handerson relation:

pH = pK_a (HA/A⁻) + log(
$$\frac{[A^-]}{[HA]}$$
) = pK_a + log (1) = pK_a
pH_{1/2 eq} = pK_a (HA/A⁻)

Description of the curve pH = f(V_b)

This curve is an ascending curve that consists of 4 parts and two inflection points:

Part AB: The pH increases relatively rapidly.

<u>Part BC</u>: The pH increases slightly forming a plateau. This part consist of inflection point E_1 which represents the half equivalence.

Part CD: The pH increases rapidly and the curve shows a jump of pH. This part consists of the inflection point E_2 which represents the equivalence point.

Part DE: The pH increases slightly again and the curve tends to reach a limit of pH.

II-Titration of weak base (B-) with strong acid (H₃O+)

The solution of weak base (B^-) of unknown concentration C_b is placed in the beaker and titrated by a strong acid (HCl or HNO₃) of known concentration C_a .

The volume of the base taken is $V_{b \text{ taken}} = 10 \text{ mL}$ is placed in the beaker and the pH-meter measures the pH after each mL of the acid added from the buret.

The acid/ base pair related to B⁻ is: (BH/B⁻) having a given pK_a.

The pair related to the strong acid (HCl or HNO_3) is: (H_3O^+/H_2O) having a $pK_a = 0$

The equation of titration reaction is:

$$B^- + H_3O^+ \rightarrow H_2O + BH$$
 $K_R = 10^{(pKa-0)} = 10^{pKa} > 10^4$

This reaction is spontaneous (gamma rule), complete and should be quantitative ($K_R > 10^4$) and unique.

The titration curve obtained has the following shape:

Curve : $pH = f(V_a)$

Calculation of concentration C_b

The volume $V_{a \text{ equivalence}}$ is determined from the curve pH = $f(V_a)$ by using the two parallel tangents method.

$$n(B^{-})_{taken} = n(HCI)_{added at equivalence}$$
 $n(B^{-})_{taken} = n(H_{3}O^{+})_{added}$
 $C_{b} \times V_{b taken} = C_{a} \times V_{a equivalence}$
 $C_{b} = \frac{C_{a} \times V_{a eq}}{V_{b taken}}$

Justification of the value of pH at the equivalence point E₂

At equivalence, the two reactants (B⁻) and (H₃O⁺) are reacted completely and transformed into products.

The species present in the titration beaker at equivalence are: BH, H₂O and Cl⁻ obtained from HCl.

Cl : is a spectator ion that has no effect on the pH.

H₂O: is neutral.

BH: is a weak acid that reacts with water in a reversible reaction to produce a little amount of H₃O⁺ ions that gives a pH <7 according to the following reaction:

$$BH + H_2O \leftrightarrow B^- + H_3O^+$$

Justification of the value of pH at the half equivalence point E₁

At the half equivalence : $V_{a \text{ added}} = \frac{V_{a eq}}{2}$

At this point, the half of concentration of the base B⁻ is reacted and the other half is transformed into BH, thus [B⁻]_{remained} = [BH]_{formed}

Since the two species are present in the same solution, therefore the pH of the solution is determined by the Handerson relation:

pH = pK_a (BH/B⁻) + log (
$$\frac{[B^-]}{[BH]}$$
) = pK_a + log (1) = pK_a
pH_{1/2 eq} = pK_a (BH/B⁻)

Description of the curve pH = f(V_a)

This curve is an descending curve that consists of 4 parts and two inflection points:

Part AB: The pH decreases relatively rapidly.

Part BC: The pH decreases slightly forming a plateau. This part consist of inflection point E_1 which represents the half equivalence.

<u>Part CD</u>: The pH decreases rapidly and the curve shows a jump of pH. This part consists of the inflection point E_2 which represents the equivalence point.

Part DE: The pH decreases slightly again and the curve tends to reach a limit of pH.

III- Acid/base indicators

An acid base indicator is an acid/base pair (HA/A⁻) having a given pKa where the conjugate acid HA has a color different than that of its conjugate base A⁻.

For example: HA has a yellow color and A- has a blue color.

Three cases are possible:

First case

If the indicator is placed in a solution having a pH< pKa-1, thus HA predominates in the solution and the color of the solution becomes yellow.

Second case

If the indicator is placed in a solution having a pH > pKa + 1, thus A^- predominates in the solution and the color of the solution becomes blue.

Third case

If the indicator is placed in a solution having a pH that ranges between pKa-1 and pKa+1 (pKa-1 < pH < pKa+1), thus [HA] \approx [A⁻] and the color of solution is a mixture of yellow and blue (green).

Examples of acid/base indicators

Indicators	рКа	Color of the acid species (HA)	pH change range	Color of the base species (A ⁻)
Methyl orange	3.6	Red	3.1 – 4.4 Orange	Yellow
Methyl red	5.1	Red	4.2 – 6.2 Orange	Yellow
Bromothymol blue	6.8	Yellow	6 – 7.6 Green	Blue
Phenolphtalein	9	Colorless	8.2 – 10 Pink	Purple