

2E102 - Source d'énergie électrique et capteurs

ER2 du 16 novembre 2017, 1 heure. Sans document ni calculatrice.

Notation sur 50 points : deux points pour une réponse juste, moins un demi-point pour une réponse fausse, zéro point en l'absence de réponse. Une réponse au plus autorisée par question (sinon moins un demi-point à la question).

S.I. : unités de base du Système International.

N° étudiant :	
Prénom:	
Nom :	

Énergie (20 points)

- Q1. Dans le domaine de l'énergie, TEP signifie Tonne Equivalent...
- □ Plutonium
- □ Pétrole
- □ Personne
- □ Pollution
- Q2. La puissance instantanée consommée ou fournie par un dipôle dont la tension à ses bornes est $u(t) = U\sqrt{2}\sin(\omega t)$ et le courant le parcourant $i(t) = I\sqrt{2}\sin(\omega t \phi)$ est
- □ u(t)i(t)
- □ Ulcosφ
- □ Ulsinω
- □ 2UI

Q3. La valeur efficace d'un signal s(t) de période T se calcule ainsi (analyse dimensionnelle possible...) :

$$\Box \int_{-T}^{1} \int_{0}^{T} s^{2}(t) dt$$

$$\Box \frac{1}{T} \int_0^T s^2(t) dt$$

$$\Box \frac{1}{T} \sqrt{\int_0^T s^2(t) dt}$$

- Q4. Soit une puissance à acheminer donnée (par exemple d'une centrale électrique à un transformateur). Pour minimiser les pertes en ligne il faut
- □ la tension la plus élevée possible et le facteur de puissance le plus proche de 1 possible
- $\hfill \square$ la tension la plus basse possible et le facteur de puissance le plus proche de 0 possible
- □ la tension la plus élevée possible et la puissance réactive la plus élevée possible
- □ la tension la plus basse possible et la puissance réactive la plus proche de 1 possible
- Q5. Dans le cadre du cours n°5 de 2E102 (par Marc Hélier), « Smart grids » peut se traduire en français par
- □ gestion intelligente de l'énergie
- □ grille élégante
- □ maîtrise de l'énergie nucléaire
- □ utilisation de petites voitures électriques

Q6 à Q10. Les alternateurs présents dans les génératrices éoliennes peuvent être composés d'enroulements réalisés avec du fil de cuivre. Ils sont alors représentés par une résistance montée en série avec une inductance.

$$i(t) = I\sqrt{2}sin(2\pi ft)$$

f = 50 Hz

U = 250 V

 $R = 40 \Omega$

 $L = 3/(10\pi) H$

Q6. L'allure du diagramme de Fresnel relatif à ce circuit est (le courant est pris comme référence ici) :

П

	Q7. Le module de l'impédance complexe de ce circuit vaut							
	\Box 50 Ω	\Box 40 Ω	□ 100	Ω	□ 300 Ω	2		
	Q8. L'intensité e □ 2,5 A	fficace vaut	□ 230	00 A	□ 10 kA			
	Q9. La tension efficace aux bornes de la résistance vaut □ 200 V □ 230 V □ 150 V □ 5,5 V							
	Q10. Le facteur o	de puissance vau	ut	3	□1			
Capteur : généralités (8 p	points)							
Q11. Qu'est-ce que l'erreur dite de finesse dans le domaine Le manque d'épaisseur du capteur Le manque de sensibilité du capteur				pteurs ? fluence du fluence du				
Q12. Soit deux capteurs du même type (capteurs A et B) permettant de déterminer le mesurande m à partir d'une tension mesurée U. Un expérimentateur teste ces capteurs en faisant passer de manière quasi-instantanée le mesurande de 0 S.I. à 3 S.I. et mesure la tension U des deux capteurs (figure 1). Il en déduit que le capteur A □ est plus rapide que le B et a une bande-passante plus grande que le B □ est plus rapide que le B et a une bande-passante plus petite que le B □ est plus lent que le B et a une bande-passante plus grande que le B □ est plus lent que le B et a une bande-passante plus grande que le B □ est plus lent que le B et a une bande-passante plus grande que le B		3,5 3 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O ×	2	o o o o o o o o o o o o o o o o o o o	0 0 0 0 0 x x x x x x	№	
petite que le B			capte	Mesurano ur A (UA) ion du tem	de m (en s et du cap	S.I.), tension oteur B (U		
Q13. Soit un capteur résis divisé par l'unité du mesu ce même capteur usagé utilisateur mesure à l'ohn courbe d'étalonnage d'or d'étalonnage, de (exprim 0,5	urande en S.I. (un (par exemple ap nmètre une résist rigine (état neuf, .	ité omise par la près 1 an d'utili ance de 10 Ω m A = 10). Il fait do	suite). P sation) A ais en dé onc une	our le capt A vaut 5. Éduit la val	teur à l'ét Avec le c eur du me	at neuf A apteur <i>us</i> esurande r	vaut 10 e agé (A = m en utili	et pour 5), un isant la
Q14. Le capteur de la que dans le temps (A reste co numeror moins bonne fidélité di	nstant et vaut 5).	Cette erreur d'é	étalonna	ge (décrite	en Q13)	entraîne u	ine	-
Capteurs de température	e (8 points)							
Q15. Soit la sonde Pt100 délectrique mesurée est sa \square 0,35 Ω /°C				capteur ?		3,5.10 ⁻³ °C⁻ □ ≈3°C	¹ . Si la gra	andeur

Q16. Une sonde Pt100 est utilisée pour déterminer une température connaissant sa courbe d'étalonnage (rappelée à la question 15). Pour mesurer la résistance de la sonde Pt100 *et* éviter le phénomène d'emballement thermique, quel circuit préconisez-vous ? (Vous supposerez que les appareils de mesure sont parfaits.)

- ☐ Générateur de tension, ampèremètre et sonde Pt100 : les 3 en série
- ☐ Générateur de tension, ampèremètre et sonde Pt100 : les 3 en parallèle
- ☐ Générateur de courant, voltmètre et sonde Pt100 : les 3 en série
- ☐ Générateur de courant, voltmètre et sonde Pt100 : les 3 en parallèle

Q17. Soit une CTN dont la résistance a comme expression $R(T) = R_0 \exp[\beta(1/T - 1/T_0)]$ avec $R_0 = 5 \text{ k}\Omega$, $T_0 = 300 \text{ K}$ et $\beta = 1000 \text{ K}$. Quelle est l'incertitude sur la température mesurée pour une température vraie de 27°C si la température est directement déduite de la mesure de R(T) avec un ohmmètre dont l'incertitude sur la résistance vaut $\pm 0.5\%$? (Vous pourrez par exemple calculer dans un 1er temps le TCR.)

□ ≈ ±0,45°C

□ ≈ ± 1 K

□ ≈ ±0,15°C

□ ≈ ±2 K

Fig.2. Coefficient Seebeck pour différents thermocouples (Q18).

Fig.3. Courbe d'étalonnage d'un capteur de champ magnétique (Q19).

Q18. Soit un thermocouple composé d'un matériau A et d'un matériau B. Vous savez que son type est E, J, K, R, S ou T et cherchez à le déterminer. Pour cela vous placez la jonction A-B à une température de 0°C et les deux extrémités du thermocouple à une température de 20°C. Vous mesurez au voltmètre une tension de 0,75 mV. Vous répétez l'opération avec cette fois la jonction A-B à 250°C et les deux extrémités du thermocouple à 270°C. Vous mesurez alors au voltmètre une tension de 1,05 mV. Quel est le type de ce thermocouple ? (Vous pourrez vous servir de la figure 2.)

 $\Box J$

Capteurs de champ magnétique (8 points)

 $\Box T$

Q19. Soit un capteur de champ magnétique dont la courbe d'étalonnage est donnée sur la figure 3. Que vaut B si la tension mesurée est de 3 V ±0,1 V (c'est-à-dire avec une incertitude de mesure) ?

□ 175 ± 20 gauss

 \Box E

□ 200 ± 40 gauss

□ 225 ± 10 gauss

□ 250 ± 30 gauss

 $\Box K$

Q20. Soit un capteur à effet Hall donnant la valeur du champ magnétique B à partir de la mesure de la tension V_{mes} . Rappelons que V_{mes} = $R_H IB/z$ où R_H est la constante de Hall, I le courant injecté par un générateur de courant dans le matériau et z l'épaisseur du matériau. L'utilisateur souhaite améliorer la sensibilité d'un facteur 4 en modifiant I (R_H et z inchangés : on suppose que les variations de température due à la variation de la puissance

dissipée par effet Joule ne sont pas influentes). Quelle est la conséquence sur la puissance dissipée par effet Joule dans le matériau ? Elle va être augmentée d'un facteur									
□ 2	□ 4	□ 8		□ 16					
Q21. Quelle doit-être l'unité de R_H pour que l'équation du capteur à effet Hall $V_{mes} = R_H IB/z$ soit homogène en dimension ?									
□ m³/C	□ Vm/A	□ Vm/T		□ AT/Vm					
Q22. La GMR (MagnétoRésistance Géante) est utilisée dans les disques durs pour									
□ effacer				□ lire, écrire et effacer					
Capteurs d'éclairement (6 points)								
quadrant (I _D et V _D négatifs (HF) est respectivement □ BF : générateur de cour □ BF : résistance, HF : circ	s) quand la fréquence de l' rant, HF : circuit-ouvert cuit-ouvert	'éclairemen	t tend vers zéro BF : générateu BF : résistance	ctéristique : figure 4) dans le 3 ^{ème} o (BF) et quand elle tend vers l'infini ur de courant, HF : court-circuit e, HF : court-circuit					
Q24. Soit la photodiode dont la caractéristique est donnée sur la figure 4. Pour un éclairement ϕ continu constant compris entre 0 et 2 mW/cm ² , quelle est la <i>meilleure</i> relation entre I_D et ϕ dans le 3 ^{ème} quadrant (I_D et V_D négatifs) ?									
□ I _D indépendant de φ			\Box I _D (mA) \approx - ϕ (mW/cm ²)/200						
□ φ(mW/cm²) indépenda	mW/cm ²) indépendant de I _D □ I _D (mA) \approx - ϕ (mW/cl								
sur la figure 4. Que vaut l vous servir de Q24 ou util		V ? (Vous p	ouvez tracer la	dont la caractéristique est donnée droite de charge sur la figure 4 ou □ ≈ 1,7 mW/cm²					
V _D		1	Fig.4. I₀(V₀) d'u pour différents Q23 à Q25).	ine photodiode s éclairements					

Fig.5. Circuit avec photodiode (Q25).