انجیبنتری حساب (جلد اول)

خالد خان يوسفر. كي

جامعه کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

vii																																	چ	ديبا.
ix																													چ	کاد یبا	ب	لي كتا	یریا کی جوا	ميرأ
1																											وات	مسا	تفر ق	ساده	وِل	رجدا	,	1
2																													کشی	نموز		1.	1	
14										يولر	<u> </u>	کیر	ر ر تر	ي او	سمت	لی سه	ز ن	يداا	_م	ب	مطل	يائی.	يىش	جيو					<i>x</i> ,			1	2	
23																													، علیحد			1	3	
39																													اساده			1.4	4	
51																												_	, ماره ساده			1.:	•	
68																													ور ی خط			1.0		
																٠	ئىيە	يكتا	اور	بت	بوري	ن وج	س	 د: ح	وات	یں مسا	ی فرقی	رط ر ت تا	ں ئی قیمہ	رر ابتدا		1.		
- 0																													T					_
79																													تفرقی نن			رجه و	•	2
79																									-				ں خط	•		2.	1	
95																																2.	2	
110																																2	3	
114																																2.4	4	
130																																2.:	5	
138	3.																						سكى	وروت	ئى؛	يكتا	<u>ت</u> اور	دين	کی وجو	حل		2.	5	
147	٠.																							إت	مساو	ر قی	ه تفر	ساد)	تجانس	غير.		2.	7	
159	١.																									_	_ گمک	اش.	ار تع	جر ک		2.	8	
165	,																		_	المك	عملي	سر	احيط	ىل ك	ال	ارحا	برقر		2.8	3.1				
169																			. :										ر اد وار			2.9	_	
180) .									عل	26	ت	ماوا) مر	زق	ا ت	باد	ی س	خط)	انس	متجا	،غیر	سے	يق	، طر	_	لنے	مبد	رمعلو	مقدا	2	2.1	0	

iv

نظى ساده تفر قى مساوات		3
متجانس خطی ساده تفرقی مسادات	3.1	
مستقلّ عدد کی سروا کے متجانس خطی سادہ تفرقی مساوات	3.2	
غير متجانس خطی ساده تفرقی مساوات	3.3	
غیر متجانس خطی سادہ تفر قی مساوات	3.4	
	7	4
قالب اور سمتىيە كے بنیادی حقائق		
سادہ تفر تی مساوات کے نظام بطورانجینئر کی مسائل کے نمونے	4.2	
نظرىيە نظام سادە تفرقى مساوات اور ورونسكى	4.3	
4.3.1 نظی نظام		
ستقل عددی سروالے نظام۔ سطح مرحلہ کی ترکیب	4.4	
نقطہ فاصل کے جانچ کڑتال کامسلمہ معیار۔استحکام		
ي في تراكيب برائے غير خطي نظام		
ع د میب ایک در جی مساوات میں تباد کہ		
۱۰۰۲ مارون کو حتایت کا متاس تعطی نظام	4.7	
نادو کرن عرف کے بیر ہو جی من کا من کا ہے۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔	1.,	
2)1		
ں ہے سادہ تفر تی مساوات کاحل۔اعلٰی تفاعل	طاقق تسلسا	5
ى كى مادى مادى مادى ئارى ئارى ئارى ئارى ئارى ئارى ئارى ئار		,
رىي ب ن ى داردى		
مْبْسُوط طاقتى تىلىل ئەرىپ نُورىنىوس		
	5.3	
5.3.1 على استعال	5.3	
مبسوط هاقتى تسلىل ـ تركيب فروبنيوس	5.4	
ساوات بىيل اور بىيل تفاعل	5.4 5.5	
مساوات بىيىل اور بىيىل نفاعل	5.4 5.5 5.6	
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7	
مساوات بىيىل اور بىيىل نفاعل	5.4 5.5 5.6	
مساوات بيمبل اور بيمبل نفاعل	5.4 5.5 5.6 5.7 5.8	6
مساوات ببیل اور ببیل نفاعل	5.4 5.5 5.6 5.7 5.8	6
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7 5.8 لاپل <i>ان</i> تباہ 6.1	6
مساوات بيمبل اور بيمبل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پارس جاد 6.1 6.2	6
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پارس جاد 6.1 6.2 6.3	6
مساوات بيل اور بيل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پياس تباه 6.1 6.2 6.3 6.4	6
مساوات بيل اور بيل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پياس تباه 6.1 6.2 6.3 6.4	6
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7 5.8 الپاس الباد 6.1 6.2 6.3 6.4 6.5 6.6	6

عـــنوان V

لایلاس بدل کے عمومی کلیے	6.8	
مرا: سمتيات	خطيالجه	7
برر. غير سمتيات اور سمتيات	7.1	•
سر سیال از اور سایال ۱۹۵۰ میل ۱۹۵۰ میل ۱۹۵۰ میل ۱۹۵۶ میل	7.2	
سمتيات كالمجموعه، غير سمتى كے ساتھ ضرب	7.3	
ي مناه و خطح تابعيت اور غير تابعيت	7.4	
ل صلاح کا بنیت اور میر مابیت اندر ونی ضرب (ضرب نقط)	7.5	
الدروني شرب فضا	7.6	
ستي ضرب	7.7	
ن رب	7.8	
غير سمق سه ضرب اورديگر متعدد ضرب	7.9	
ير ن شه سرب اورو ير مسرو سرب	1.9	
برا: قالب، سمتىي، مقطع يه خطى نظام	خطىالج	8
قالب اور سمتیات به مجموعه اور غیر سمق ضرب	8.1	
قالبی ضرب "	8.2	
8.2.1 تېدىلىمى كى		
خطی مساوات کے نظام۔ گاو تی اسقاط	8.3	
8.3.1 صف زيند دار صورت		
خطى غير تالعيت در حبه قالب ـ سمتي فضا	8.4	
خطی نظام کے حل: وجو دیت، کیتائی	8.5	
	8.6	
مقطع۔ قاعدہ کریم	8.7	
معكوس قالب_گاوُس جار دُن اسقاط	8.8	
سمتی فضا،اندرونی ضرب، خطی تبادله	8.9	
برا:امتيازي قدر مسائل قالب	خطىالج	9
بردانسیادی خدر مسائل قالب امتیازی اقدار اورامتیازی سمتیات کا حصول	9.1	
امتیازی مسائل کے چنداستعال 🐪 👢 🗓 👢 🗓 👢 🗓 دیں دیا ہے۔ دیا ہے جنداستعال 👚 دیا ہے 672	9.2	
تشاكلي، منحرف تشاكلي اور قائمه الزاويه قالب	9.3	
امتیازی اساس، وتری بناناه دودرجی صورت	9.4	
مخلوط قالب اور خلوط صورتیں	9.5	
ر قی علم الاحصاء ـ سمتی تفاعل 711	سمتی تفر	10
	10.1	
	10.2	
منحتي		
· · · · · · · · · · · · · · · · · · ·	10.4	
•••••••••••••••••••••••••••••••••••••••	10.5	
ستتحار فآراوراسراط	10.6	

	10.7 زنجیری ترکیب اور متعدد متغیرات کے تفاعل کااوسط قیمت
	10.8 سمتی تفرق، غیر سمتی میدان کی ڈھلوان 🛚
	10.9 تباول محددی نظام اور تبادل ار کان سمتیات
	10.10 سمتی میدان کی چھیلاو
777	 10.11 سمتی تفاعل کی گردش
781	11 سمتی تکملی علم الاحصاء۔ تکمل کے مسئلے
, 01	
782	 11.1 خطي کمل
	11.2 خطی تحمل کاحل
796	 11.3 دوهرانکمل . به
810	 11.4 دوہر اُنگل کا خطی تکمل میں تبادلہ
820	 11.5 سطحين
825	 11.6 مماسی سطح_بنیادی صورت اول ـ رقبه ، ، ، ، ، ،
	11.7 سطحي کلمل
845	 11.8 تېراتنمل-گاوس کامسکله تھیلاو
	ہر 11.9 مشکہ چھیلاو کے نتائ کاور استعال
861	11 10 ميرًا سٿو کس
866	 11.10 سکتہ و ل :
869	 11.12 راہ ہے آزاد خطی تکمل
883	12 فورييرُ شلسل
	12.1 دوري تفاعل، تكونياتي تسلسل
889	 12.2 فوريئر تشلسل ـ يولر كليات
902	 12.3 اختيار کي دوري عرصه والے تفاعل
907	 12.4 جفت اور طاق تفاعل
909	ا اضافی ثبوت
913	ب مفدمعلومات
013	ب

میری پہلی کتاب کادیباجیہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلٰی تعلیم کا نظام انگریزی زبان میں رائے ہے۔ دنیا میں تحقیق کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کرتے ہیں۔

جارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔ یہ طلبہ و طالبات زبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہے۔ ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں گی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور پول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کہ اسکول کی سطح پر نصاب میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان موجود نہ تھے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں کھی اس کتاب اور انگریزی میں اسی مضمون پر کھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیرُ نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں برقی انجنیرُ نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی سر زد ہوئی ہیں البتہ انہیں درست کرنے میں بہت اوگوں کا ہاتھ ہے۔میں ان سب کا شکریہ اداکرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور مکمل ہونے پر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیش کمیشن کا شکرید ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر. ئي

28 اكتوبر 2011

فوريئر تشلسل

انجینئری مسائل میں دوری تفاعل عموماً پائے جاتے ہیں جن کو سادہ دوری تفاعل مثلاً sin اور cos کی روپ میں کھنا مفید ثابت ہوتا ہے۔اسی عمل سے فوریئر تشلسل البھر کر سامنے آتی ہے جو سادہ تفرقی مساوات اور جزوی تفرقی مساوات کے حل میں کلیدی کردار ادا کرتی ہے۔

فور بیرُ تسلسل کا نظریہ چیچیدہ ہے جبکہ اس کا استعال نہایت آسان ہے۔ چونکہ بہت سارے غیر استمراری تفاعل کا فور بیر تسلسل حاصل کرنا ممکن ہے جبکہ ان کا ٹیلر تسلسل نہیں پایا جاتا ہے للذا فور بیرُ تسلسل کو ٹیلر تسلسل کی عالمگیر صورت تصور کیا جا سکتا ہے۔

اس باب میں فوریئر تسلسل سے وابستہ تصورات، حقائق اور تکنیکی تراکیب پر غور کیا جائے گا۔اس کے علاوہ ان کی استعال پر غور کیا جائے گا۔اگلے باب میں جزوی تفرقی مساوات کی حل میں ان کا استعال دکھایا جائے گا۔

اس باب کی آخری مصے میں فوریئر کھمل پر غور کیا جائے گا جنہیں اگلے باب میں جزوی تفرقی مساوات کی حل میں استعال کیا جائے گا۔

أفرانسيى رياضي دان اور ماهر طبيعيات حين بينسٹ يوسف فوريئز [1830-1768]

شكل 12.1: دورى تفاعل

12.1 دوري تفاعل، تكونياتي تسلسل

تفاعل f(x) اس صورت دوری کہ کہلاتا ہے کہ جب پورے حقیقی x پر f(x) معین ہو اور ایبا شبت عدو x یا جاتا ہو کہ تمام x پر درج ذیل درست ہو۔

(12.1)
$$f(x+T) = f(x)$$

عددی T کو f(x) کا دوری عرصہ 6 کہتے 4 ہیں۔ T کے برابر f(x) کے کسی بھی وقفے کا ترسیم دہراتے ہوئے ایسے تفاعل کا ترسیم حاصل کیا جاتا ہے (شکل 12.1)۔ عملی استعمال میں عموماً دوری اعمال اور تفاعل پائے جاتے ہیں۔

دوری تفاعل کی مثالیں $\sin x$ اور $\cos x$ ہیں۔اس کے علاوہ مستقل c = c بھی دوری تفاعل کی تعریف (مساوات 12.1 پر ہر مثبت T کے لئے) پورا اترنے کی بنا دوری تفاعل ہے۔

ماوات 12.1 سے ظاہر ہے کہ عدد صحیح ہ کی صورت میں درج ذیل ہو گا۔

$$f(x + nT) = f(x)$$

$$\sum_{i=1}^{n} f(x + nT) = f(x)$$

یوں f(x) نظامل f(x) کا اور f(x) کا اور f(x) کا اور g(x) کا دوری عرصے ہیں۔مزید اگر نظامل g(x) کا اور g(x)

$$h(x) = af(x) + bg(x)$$
 b متقل ه و متقل

periodic²

period³

 $[\]pi$ اور π $\sin 2x$ اور π $\sin 2x$ اگر دوری عرصہ π ویود ہوں اور ویود ہوں اور اور کا کا اقباد ویری عرصہ کہا تا ہے۔ مثلاً π اور π اور π کا اور ویری عرصہ نہیں پایا جاتا ہے۔ π اور کا کوئی دوری عرصہ نہیں پایا جاتا ہے۔

شکل 12.2 : سائن اور کوسائن تفاعل جن کاد وری عرصہ 27 ہے

کا دوری عرصه بھی T ہو گا جہاں a اور b مستقل ہیں۔

اس باب کی شروع میں ہم ایسے مختلف تفاعل جن کا دوری عرصہ 2π ہو کو درج ذیل سادہ تفاعل کی روپ میں خاہر کرنا سیکھیں گے

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, \cdots , $\cos nx$, $\sin nx$, \cdots

جن کا دوری عرصہ 27 ہے (شکل 12.2)۔ہم دیکھیں گے کہ ایبا کرتے ہوئے درج ذیل طرز کی تسلسل حاصل ہو گی

$$(12.2) a_0 + a_1 \cos x + b_1 \sin x + a_2 \cos 2x + b_2 \sin 2x + \cdots$$

جہاں a_1 ہوں گے۔اس شلسل کو تکونیاتی تسلسل ⁵ کہتے ہیں۔ جہاں ہوں گے۔اس شلسل کو تکونیاتی تسلسل ⁵ کہتے ہیں جبکہ a_1 ہوں جبکہ a_1 اور a_1 شلسل کی عددی سر ⁶ کہلاتے ہیں۔ چونکہ اس شلسل کے ہر رکن کا دوری عرصہ a_1 کہنا اگریہ شلسل مرکوز ہو تب یہ ایبا تفاعل ہو گا جس کا دوری عرصہ a_1 ہو گا۔

انجینئری میں واقع نفاعل پیچیدہ ہوتے ہیں جنہیں سادہ دوری نفاعل کی روپ میں لکھنا مدد گار ثابت ہوتا ہے۔ ہم دیکھیں 2π حکمی استعال، مثلاً ارتعاش، میں پائے جانے والا تقریباً ہر دوری نفاعل f(x) جس کا دوری عرصہ π کو کو فور بیر تسلسل کی روپ میں لکھنا ممکن ہو گا۔ ہم مساوات 12.2 کے عددی سر حاصل کرنے کے ایسے کلیات دریافت کریں گے جو f(x) پر منحصر ہوں گے اور جنہیں استعال کرتے ہوئے حاصل تسلسل مرکوز ہوگا جس کا مجموعہ π کے برابر ہوگا۔ اس کے بعد ہم حاصل کلیات کو عمومی شکل دیتے ہوئے ان کو کسی بھی دوری عرصہ کے نقاعل کے لئے قابل استعال بنائیں گے۔ ایسا کرنا نہایت آسان ثابت ہوگا۔

trigonometric series⁵ coefficients⁶ سوالات

سوال 12.1: دیے گئے تفاعل کا کم تر دوری عرصہ دریافت کریں۔

 $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, $\cos \pi x$, $\sin \pi x$, $\cos 2\pi x$, $\sin 2\pi x$

 $2\pi, 2\pi, \pi, \pi, 2, 2, 1, 1$ جوابات:

 $n=2,3,\cdots$ سوال $n=2,3,\cdots$ اگر تفاعل f(x) کا دوری عرصہ T ہو تب ثابت کریں کہ n جہاں f(x) کا دوری عرصہ ہو گا۔

سوال 12.3: ثابت کریں کہ اگر تفاعل f(x) کا اور تفاعل g(x) کا دوری عرصہ T ہو تب تفاعل g(x) کا دوری عرصہ f(x) کا دوری عرصہ g(x) کی دوری عرصہ g(x) کا دوری عرصہ g(x) کا دوری عرصہ g(x) کی دوری عرصہ g(x) کا دوری عرصہ خوری عرصہ خوری

سوال 12.4: ثابت کریں کہ تفاعل مستقل f(x)=f(x) ایبا دوری تفاعل ہے جس کا دوری عرصہ T کوئی مثبت عدد ہو سکتا ہے۔

سوال 12.5: ثابت کریں کہ تفاعل f(x) کا دوری عرصہ T ہونے کی صورت میں x کے دوری تفاعل bT کا دوری عرصہ $f(\frac{x}{b}), b \neq 0$ کا دوری عرصہ $\frac{T}{a}$ ہو گا جبکہ $\frac{T}{a}$ ہو گا۔ان نتائج کی تصدیق f(x) کا دوری عرصہ f(x) کا دوری عرصہ f(x) ہو گا۔ان نتائج کی تصدیق f(x) کے نتاز کریں۔

سوال 12.6 تا سوال 12.12 میں دیے گئے تفاعل کا ترسیم کھپنیں۔

 $\sin x$, $\sin x + \frac{1}{3}\sin 3x$, $\sin x + \frac{1}{3}\sin 3x + \frac{1}{5}\sin 5x$:12.6

 $f(x+2\pi) = f(x)$ اور اور

 $f(x) = \begin{cases} -\frac{\pi}{4} & -\pi \le x \le 0\\ \frac{\pi}{4} & 0 \le x \le \pi \end{cases}$

ہے۔سوال 12.6 کی ترسیم کے ساتھ موازنہ کریں۔

سوال 12.8:

 $\sin 2\pi x$, $\sin 2\pi x + \frac{1}{3}\sin 6\pi x$, $\sin 2\pi x + \frac{1}{3}\sin 6\pi x + \frac{1}{5}\sin 10\pi x$

سوال 12.9:

$$\sin x$$
, $\sin x - \frac{1}{2}\sin 2x$, $\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x$, $f(x) = \frac{x}{2}$, $-\pi \le x \le \pi$, $f(x + 2\pi) = f(x)$

سوال 12.10:

$$-\cos x, \quad -\cos x + \frac{1}{4}\cos 2x, \quad -\cos x + \frac{1}{4}\cos 2x - \frac{1}{9}\cos 3x,$$
$$f(x) = \frac{x^2}{4} - \frac{\pi^2}{12}, \quad -\pi \le x \le \pi, \quad f(x+2\pi) = f(x)$$

$$f(x) = x^2$$
, $-\pi \le x \le \pi$, $f(x + 2\pi) = f(x)$:12.11

$$f(x) = e^{|x|}, \quad -\pi \le x \le \pi, \quad f(x+2\pi) = f(x)$$
 :12.12

سوال 12.13 تا سوال 12.16 میں دوری نفاعل f(x) دیا گیاہے جس کا دوری عرصہ π ہے۔اس کی ترسیم کینجیں۔وقفہ π کے لئے π کے لئے π دیا گیاہے۔

سوال 12.13:

$$f(x) = \begin{cases} x^2 & -\pi \le x \le 0\\ 0 & 0 \le x \le \pi \end{cases}$$

سوال 12.14:

$$f(x) = \begin{cases} 0 & -\pi \le x \le 0\\ \cos x & 0 \le x \le \pi \end{cases}$$

با__12 فورىپ رىسلىل

سوال 12.15:

888

$$f(x) = \begin{cases} \pi + x & -\pi \le x \le 0 \\ \pi - x & 0 \le x \le \pi \end{cases}$$

سوال 12.16:

$$f(x) = \begin{cases} 0 & -\pi \le x \le 0\\ \sin \frac{x}{2} & 0 \le x \le \pi \end{cases}$$

 $n=0,1,2,\cdots$ تا سوال 12.25 میں دیے گئے تکمل جمیں آگے درکار ہوں گے۔ان تکمل میں $n=0,1,2,\cdots$ ہے۔ تکمل کی قیمت دریافت کریں۔

 $\int_{0}^{\pi} \sin nx \, dx \quad :12.17$

جواب: طاق n کے گئے $\frac{2}{n}$ اور جفت n کے گئے صفر۔

 $\int_{\pi}^{0} \cos nx \, dx \quad :12.18$

 $\frac{1}{n} \sin \frac{n\pi}{2}$ جواب: جفت n کے لئے صفر اور طاق n کے لئے n

 $\int_{-\pi}^{\pi} x \sin nx \, dx \quad :12.19$ $(-1)^{n+1} \frac{2\pi}{n}$ $(2\pi)^{n+1} \frac{2\pi}{n}$

 $\int_{\pi}^{\frac{\pi}{2}} x \sin nx \, dx \quad :12.20$

 $(-1)^{\frac{n+2}{2}\frac{\pi}{n}}$ يعنى $\frac{1}{2}^{\frac{n+2}{2}\frac{\pi}{n}}$ يعنى $\frac{1}{2}^{\frac{n+3}{2}\frac{\pi}{n^2}}$ يعنى $\frac{1}{2}^{\frac{n+3}{2}\frac{\pi}{n^2}}$ $\frac{1}{2}^{\frac{n+3}{2}\frac{\pi}{n^2}}$ $\frac{1}{2}^{\frac{n+3}{2}\frac{\pi}{n^2}}$ $\frac{1}{2}^{\frac{n+3}{2}\frac{\pi}{n^2}}$ $\frac{1}{2}^{\frac{n+3}{2}\frac{\pi}{n^2}}$ $\frac{1}{2}^{\frac{n+3}{2}\frac{\pi}{n^2}}$ $\frac{1}{2}^{\frac{n+3}{2}\frac{\pi}{n^2}}$

 $\int_{-\pi}^{\frac{\pi}{2}} x \cos nx \, dx \quad :12.21$

$$\int_{0}^{\pi} x \sin nx \, dx \quad :12.22$$
 يوال
$$\frac{\pi}{n} (-1)^{n+1} \quad :$$

$$\int_{-\pi}^{0} e^{x} \sin nx \, dx \quad :12.23$$
 سوال $\frac{n}{n^{2}+1}[(-1)^{n}e^{-\pi}-1]$ جواب:

$$\int_{0}^{\pi} e^{x} \cos nx \, dx \quad :12.24$$

$$\frac{1}{n^{2}+1} [e^{\pi} (-1)^{n} - 1] \quad :2$$
جواب:

$$\int_{-\pi}^{\pi} x^2 \cos nx \, dx \quad :12.25$$
 يوال $\frac{4\pi}{n^2} (-1)^n$

12.2 فوريئر تسلسل - يولر كليات

فرض کریں کہ دوری تفاعل f(x) جس کا دوری عرصہ 2π ہے کو درج ذیل تکونیاتی تسلسل سے ظاہر کیا جا سکتا ہے۔

(12.3)
$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

$$-a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

$$-a_0 + \sum_{n=1}^{\infty} a_n$$

$$-a_0 + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

$$-a_0 + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

$$\int_{-\pi}^{\pi} f(x) dx = \int_{-\pi}^{\pi} \left[a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \right] dx$$

اگر تسلسل کے ارکان کا جزو با جزو تکمل لینا جائز ہو7، تب درج ذیل لکھا جا سکتا ہے۔

$$\int_{-\pi}^{\pi} f(x) \, dx = a_0 \int_{-\pi}^{\pi} dx + \sum_{n=1}^{\infty} \left(a_n \int_{-\pi}^{\pi} \cos nx \, dx + b_n \int_{-\pi}^{\pi} \sin nx \, dx \right)$$

دائیں ہاتھ پہلارکن 2 πa_0 کے برابر ہے۔بائیں ہاتھ باقی تمام ارکان صفر کے برابر ہیں، جیساکہ تکمل لے کر ثابت کیا جا سکتا ہے۔ یوں پہلا کلیہ درج ذیل ماتا ہے۔

(12.4)
$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx$$

ہم اب a_2 ، a_2 ، a_3 ، a_4 نیاں۔ ہم مساوات 12.3 کو a_5 ہیں۔ ہم مارہ نیج ہوئے، a_5 ہم اب کوئی مقررہ مثبت عدد صحیح ہے، دونوں اطراف کا a_5 تا a_5 کمل لیتے ہیں۔

(12.5)
$$\int_{-\pi}^{\pi} f(x) \cos mx \, dx = \int_{-\pi}^{\pi} \left[a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \right] \cos mx \, dx$$

جزو در جزو حکمل لیتے ہوئے دائیں ہاتھ کو درج ذیل لکھا جا سکتا ہے۔

$$a_0 \int_{-\pi}^{\pi} \cos mx \, dx + \sum_{n=1}^{\infty} \left[a_n \int_{-\pi}^{\pi} \cos nx \, \cos mx \, dx + b_n \int_{-\pi}^{\pi} \sin nx \, \cos mx \, dx \right]$$

پہلا تکمل صفر کے برابر ہے۔ ضمیمہ - ب میں دیا گیا مساوات 11. ب استعمال کرتے ہوئے درج ذیل لکھا جا سکتا ہے۔ $\int_{-\pi}^{\pi} \cos nx \, \cos mx \, dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos(n+m)x \, dx + \frac{1}{2} \int_{-\pi}^{\pi} \cos(n-m)x \, dx$ $\int_{-\pi}^{\pi} \sin nx \, \cos mx \, dx = \frac{1}{2} \int_{-\pi}^{\pi} \sin(n+m)x \, dx + \frac{1}{2} \int_{-\pi}^{\pi} \sin(n-m)x \, dx$

n=m کمل لینے سے ثابت ہوتا ہے کہ بالائی دائیں جزو کے علاوہ تمام کمل صفر کے برابر ہیں۔بالائی دایاں جزو n=m کی صورت میں π ضرب کرتا ہے (جس کو π مساوات 12.5 میں اس جزو کو π ضرب کرتا ہے (جس کو π کی صورت میں π کی بنا π کھا جا سکتا ہے) لہذا مساوات 12.5 کا دایاں ہاتھ π π کے برابر ہو گا۔یوں دوسرا کلیہ درج ذیل حاصل ہوتا ہے۔

(12.6)
$$a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos mx \, dx, \qquad m = 1, 2, \cdots$$

⁷ایساجائزہے، مثلاً استمراری مرتکز صورت میں۔

m ہم آخر میں b_1 ، b_2 ، b_3 ، b_4 ہم آخر میں a_1 ہم آخر میں a_2 ، a_3 ہم آخر میں a_4 ہم آخر میں a_5 ہم تا a_5 ہم

(12.7) $\int_{-\pi}^{\pi} f(x) \sin mx \, dx = \int_{-\pi}^{\pi} \left[a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \right] \sin mx \, dx$

جزو در جزو حمل ليتے ہوئے داياں ہاتھ درج زيل لکھا جا سكتا ہے۔

 $a_0 \int_{-\pi}^{\pi} \sin mx \, dx + \sum_{n=1}^{\infty} \left[a_n \int_{-\pi}^{\pi} \cos nx \, \sin mx \, dx + b_n \int_{-\pi}^{\pi} \sin nx \, \sin mx \, dx \right]$

n=n پہلا تکمل صفر کے برابر ہے۔ دوسرے تکمل کی طرز کی تکمل پر ہم غور کر چکے ہیں اور ہم جانتے ہیں کہ تمام n=n کی اس کی قیت صفر ہے۔ آخری تکمل کو ہم درج ذیل لکھ سکتے ہیں۔

 $\int_{-\pi}^{\pi} \sin nx \, \sin mx \, dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos(n-m) \, dx - \frac{1}{2} \int_{-\pi}^{\pi} \cos(n+m) \, dx$

آخری جزو صفر کے برابر ہے۔ دائیں ہاتھ پہلا جزو $m\neq m$ کی صورت میں صفر جبکہ n=m کی صورت میں $m\neq m$ کی صورت میں m=m کی بنا m=m کی بنا m=m کی جزابر ہے۔ چونکہ مساوات 12.7 میں اس جزو کو m=m ضرب کرتا ہے (جس کو m=m کی بنا m=m کی جا سکتا ہے) لہذا مساوات 12.7 کا دایاں ہاتھ m=m کے برابر ہو گا۔ یوں آخری کلیے درج ذیل حاصل ہوتا ہے۔

(12.8) $b_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin mx \, dx, \qquad m = 1, 2, \dots$

اب m كى جبَّه اكلي موك ان كليات كو، جنهين يولر كليات 8 كتبي، ايك جبَّه اكلي كرت بين م

(12.9)
$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad n = 1, 2, \cdots$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx, \qquad n = 1, 2, \cdots$$

 $0 \leq x \leq 2\pi$ پونکہ منگل دوری ہیں للذا مساوات 12.9 میں وقفہ کلمل کو 2π کے برابر کسی بھی وقفہ، مثلاً $x \leq 2\pi$ ، $x \leq 3\pi$ ، $x \leq 3\pi$

Euler formulas⁸

بابہ ۔ 12 فوریٹ شکیل 892

دوری تفاعل f(x) جس کا دوری عرصہ 2π ہو کو استعال کرتے ہوئے مساوات 12.9 کی مدد سے عددی س اور b_n حاصل کر کے ہم درج ذیل تکونیاتی شکسل کھتے ہیں۔ a_n

(12.10)
$$a_0 + a_1 \cos x + b_1 \sin x + \dots + a_n \cos nx + b_n \sin nx + \dots$$

اس شلسل کو f(x) کی فوریئر تسلسل f(x) کہتے ہیں جبکہ مساوات 12.9 سے حاصل عددی سر f(x) کو ے فہ رہ عددی سے 10 کتے ہیں۔

f(x) تطعی تکمل کی تعریف سے واضح ہے کہ اگر f(x) استمراری یا ٹکڑوں میں استمراری (جہاں وقفہ تکمل پر میں محدود تعداد کے چھلانگ بائے جاتے ہوں) ہو تب مساوات 12.9 میں دیے گئے تکملات موجود ہوں گے لہذا ہم f(x) کے فوریئر عددی ہم وں کو مساوات 12.9 کی مدد سے حاصل کر سکتے ہیں۔اب سوال پیدا ہوتا ہے کہ آیاایں طرح حاصل کیا گیا فوریئر تسلسل مر کوز ہو گا اور آیا تسلسل کا مجموعہ f(x) کے برابر ہو گا؟ ان سوالات پر اسی جھے میں آگے جا کر غور کیا جائے گا۔

آئیں مساوات 12.9 کی استعال کو ایک سادہ مثال کی مدد سے سمجھیں۔

مثال 12.1: کچور موج کچور موج کے فوریئر عددی سر کو مساوات 12.9 سے حاصل کریں۔ کچور موج کو شکل 12.3-الف میں دکھایا گیا ہے۔ چکور موج کی تحلیلی روپ درج ذیل ہے۔

$$f(x) = \begin{cases} -k & -\pi < x < 0 \\ k & 0 < x < \pi \end{cases} \quad \text{of} \quad f(x+2\pi) = f(x)$$

اس طرز کے تفاعل میکانی نظام میں بطور بیرونی قوت با برقی ادوار میں بطور داخلی دباو پائے حا سکتے ہیں، وغیرہ۔

حل: مساوات 12.9-الف سے $a_0=0$ ملتا ہے۔ یہ بتیجہ بغیر تکمل کے یوں حاصل کیا جا سکتا ہے کہ چکور موج کا رقبہ π تا π صفر ہے۔ مساوات 12.9- ب سے

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \left[\int_{-\pi}^{0} (-k) \cos nx \, dx + \int_{0}^{\pi} k \cos nx \, dx \right]$$
$$= \frac{1}{\pi} \left[-k \frac{\sin nx}{n} \Big|_{-\pi}^{0} + k \frac{\sin nx}{n} \Big|_{0}^{\pi} \right] = 0$$

Fourier series⁹ Fourier coefficients¹⁰

شكل 12.3: چكور موج اور فورييرُ تسلسل سے حاصل امواج (مثال 12.1)

با<u>__</u>12. فوريت رتسلىل

ماتا ہے جہاں تمام $n=1,2,\cdots$ کیا گیا ہے۔اس طرح $n=1,2,\cdots$ ماور $n=1,2,\cdots$ ماوات $n=1,2,\cdots$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \left[\int_{-\pi}^{0} (-k) \sin nx \, dx + \int_{0}^{\pi} k \sin nx \, dx \right]$$
$$= \frac{1}{\pi} \left[k \frac{\cos nx}{n} \Big|_{-\pi}^{0} - k \frac{\cos nx}{n} \Big|_{0}^{\pi} \right]$$

ملتا ہے۔ چونکہ $\cos 0 = 1$ اور $\cos (-\alpha) = \cos \alpha$ ہوتا ہے لہذا اس سے درج ذیل حاصل ہوتا ہے۔

$$b_n = \frac{k}{n\pi} [\cos 0 - \cos(-n\pi) - \cos n\pi + \cos 0] = \frac{2k}{n\pi} (1 - \cos n\pi)$$

اب $\cos 2\pi = 1$ ، $\cos 2\pi = 1$ ، $\cos \pi = -1$ ، اب $\cos \pi = -1$ ، $\cos 2\pi = 1$ ، $\cos \pi = -1$

$$\cos n\pi = egin{cases} -1 & n \ \emph{dit} \ 1 & n \end{cases} \implies 1 - \cos n\pi = egin{cases} 2 & n \ \emph{dit} \ 0 & n \end{cases}$$
 بنت ہوت

یوں bn درج ذیل ہوں گے۔

$$b_1 = \frac{4k}{\pi}$$
, $b_2 = 0$, $b_3 = \frac{4k}{3\pi}$, $b_4 = 0$, $b_5 = \frac{4k}{5\pi}$, ...

يو کله $a_n=0$ بين للذا دې گئي چکور تفاعل کې فوريئر تسلسل

(12.11)
$$\frac{4k}{\pi} \left(\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right)$$

ہو گی جس کے جزوی مجموعے درج ذیل ہیں۔

$$S_1 = \frac{4k}{\pi}\sin x$$
, $S_2 = \frac{4k}{\pi}\left(\sin x + \frac{1}{3}\sin 3x\right)$, ...

شکل 12.3 میں جزوی مجموعہ میں ارکان کی تعداد بتدر نج بڑھاتے ہوئے تسلسل کا ترسیم کھینچا گیا ہے جہاں سے ظاہر ہے کہ تسلسل کے زیادہ ارکان استعال کرنے سے ترسیم کی شکل اصل تفاعل (چکور موج) کی زیادہ قریب ہوتی ہے۔ چکور موج π ، 0 ، $-\pi$ ، وغیرہ پر غیر استمراری ہے یعنی یہاں تفاعل میں چھلانگ پائی جاتی ہے۔ یوں ہم نہیں کہ سکتے کہ آیا 0 ، 0 پر چکور تفاعل کی قیمت 0 ہے یا کہ ان دونوں قیمتوں کے مابین ہے۔ اس کے برعکس فوریئر تسلسل کے تمام جزوی مجموعے ان نقطوں پر صفر کے برابر ہیں جو 0 اور 0 کی اوسط قیمت ہے۔

مزید فرض کریں کہ اس تسلسل کا مجموعہ f(x) کے برابر ہے۔ شکل 12.3-الف سے ظاہر ہے کہ $x=\frac{\pi}{2}$ پر کور تفاعل کی قیمت k کے برابر ہے۔ یوں $x=\frac{\pi}{2}$ پر کرتے ہوئے

$$f(\frac{\pi}{2}) = k \frac{4k}{\pi} \left(1 - \frac{1}{3} + \frac{1}{5} - + \cdots \right)$$

لعيني

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$

ککھا جا سکتا ہے۔ یہ مشہور نتیجہ لیبنٹز نے 1673 کے لگ بھگ جیومیٹریائی اصولوں سے حاصل کیا۔اس سے آپ د کیچہ سکتے ہیں کہ مستقل ارکان کی کئی تسلسل کی قیمت کو مختلف نقطوں پر فوریئر تسلسل کی قیمت سے حاصل کیا جا سکتا ہے۔

ایسے تفاعل جنہیں فوریئر تسلسل سے ظاہر کرنا ممکن ہو کی تعداد غیر یقینی طور پر زیادہ ہے۔ انجینئری میں استعال ہونے والی تقریباً ہر ممکن تفاعل کو فوریئر تسلسل کی صورت میں ظاہر کرنے کے لئے درکار (کافی) شرائط درج ذیل مسلہ 12.1 میں بیان کیے گئے ہیں۔اس مسلہ میں چند تصورات کی ضرورت ہے جن پر پہلے بات کرتے ہیں۔

نقطہ x_0 پر نفاعل f(x) کی بائیں ہاتھ حد x_0 سے مراد x_0 کی وہ حد ہے جو x_0 تک بائیں ہاتھ سے پہنچتے ہوئے حاصل ہو گی۔یوں بائیں ہاتھ حد جس کو x_0 سے ظاہر کیا جاتا ہے درج ذیل ہو گ

$$f(x_0 - 0) = \lim_{h \to 0} f(x_0 - h)$$

جہاں h مثبت قیمت ہے۔ ای طرح x_0 پر x_0 کی دائیں ہاتھ حد 12 ہے مراد f(x) کی وہ حد ہے جو دائیں ہاتھ سے آگر x_0 تک پہنچتے ہوئے حاصل ہو گی۔ یوں دائیں ہاتھ حد جس کو $f(x_0+0)$ سے ظاہر کیا جاتا ہے

$$f(x_0 + 0) = \lim_{h \to 0} f(x_0 + h)$$

ہو گی جہاں h مثبت قیمت ہے۔شکل 12.4 میں غیر استمراری تفاعل

$$f(x) = \begin{cases} x^2 & x < 1\\ \frac{x}{2} & x > 1 \end{cases}$$

left hand $limit^{11}$ right hand $limit^{12}$

ب_12. فريئ رئسلل

شكل 12.4 : بائيس ہاتھ اور دائيس ہاتھ حد، بائيس ہاتھ اور دائيس ہاتھ تفرق

 $x_0=1$ وکھایا گیا ہے۔نقطہ $x_0=1$ پر اس تفاعل کی بائیں ہاتھ حد اور دائیں ہاتھ حد درج ذیل ہیں

$$f(1-0) = 1$$
, $f(1+0) = \frac{1}{2}$

جن میں فرق $(1-\frac{1}{2}=\frac{1}{2})$ کو چھلانگ 13 ہیں۔

نقطہ x_0 یر بائیں ہاتھ تفوق 14 سے مراد

$$\frac{f(x_0-h)-f(x_0-0)}{-h}$$

اور دائیں ہاتھ تفرق¹⁵ سے مراد

$$\frac{f(x_0+h)-f(x_0+0)}{h}$$

اور $f(x_0-0)$ ہے جہال f(x) مثبت قیمت ہے۔ ظاہر ہے کہ اگر نقطہ x_0 پر تفاعل f(x) استمراری ہو تب $f(x_0-0)$ اور $f(x_0+0)$ ہی کے برابر ہوں گے۔

مسكه 12.1: (تفاعل كا فوريئر تسلسل كي روب مين اظهار)

 10^{-16} اگر دوری نفاعل f(x) جس کا دوری عرصہ 2π ہو، وقفہ π جس کھڑوں میں استمراری π ہو اور اس وقفے کے ہر نقطے پر نفاعل کا دایاں ہاتھ تفرق اور بایاں ہاتھ تفرق موجود ہو تب نفاعل کی فور بیر تسلسل، مساوات 12.10، جس کی عددی سر مساوات 12.9 سے حاصل کیے گئے ہوں، مر تکز ہو گی۔تسلسل کا مجموعہ π میں مساوات نقطہ π پر جہال نفاعل غیر استمراری ہو۔نقطہ π پر تسلسل کی قیمت، نقطہ π پر جہال نقاعل غیر استمراری ہو۔نقطہ π پر تسلسل کی قیمت، نقطہ π پر جہال بھی حد کی اوسط ہو گی۔

jump¹³

left hand differential¹⁴

right hand differential 15

¹⁶ ککڑوں میں استمراری کی تعریف حصہ 6.1 میں دی گئی ہے۔

دائیے ذنی: اگر تفاعل f(x) کی فور پڑ تسلسل مر تکز ہو اور اس تسلسل کا مجموعہ f(x) کے برابر ہو (جیسا مسلہ 12.1 میں بیان کیا گیا ہے) تب اس تسلسل کو f(x) کی فور پڑ تسلسل کھتے ہیں جس کو ریاضی میں درج ذیل لکھا جاتا ہے

$$f(x) = a_0 + a_1 \cos x + b_1 \sin x + \dots + a_n \cos nx + b_n \sin nx + \dots$$

اور ہم کہتے ہیں کہ f(x) کو یہ فوریئر تسلسل ظاہر کرتی ہے۔اب چونکہ کسی بھی مر تکز تسلسل میں قوسین لگانے سے ایک نئی مر تکز تسلسل ملتی ہے جس کا مجموعہ اصل تسلسل کے مجموعے کے برابر ہوتا ہے للذا ہم درج بالا مساوات کو درج ذیل لکھ سکتے ہیں۔

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

ثبوت: استمراری نفاعل f(x) جس کا استمراری ایک در جی اور دو در جی تفرق پایا جاتا ہو کی مرکوزیت (مسئلہ 12.1) کا ثبوت ۔ مساوات 12.9 ب کا حکمل بالحصص لیتے ہوئے

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \left. \frac{f(x) \sin nx}{n\pi} \right|_{-\pi}^{\pi} - \frac{1}{n\pi} \int_{-\pi}^{\pi} f'(x) \sin nx \, dx$$

ملتا ہے۔ دائیں ہاتھ پہلا جزو صفر کے برابر ہے۔ دوبارہ حکمل بالحصص لینے سے

$$a_n = \frac{f'(x)\cos nx}{n^2\pi} \bigg|_{-\pi}^{\pi} - \frac{1}{n^2\pi} \int_{-\pi}^{\pi} f''(x)\cos nx \, dx$$

ماتا ہے۔ چونکہ f'(x) دوری اور استمراری ہے لہذا دائیں ہاتھ پہلا جزو صفر ہو گا۔ وقفہ تکمل میں f''(x) استمراری ہے لہذا

$$\left| f''(x) \right| < M$$

ہو گا جہاں M ایک موزوں متنقل ہے۔مزید $|\cos nx| < 1$ ہے۔ یوں

$$|a_n| = \frac{1}{n^2 \pi} \left| \int_{-\pi}^{\pi} f''(x) \cos nx \, dx \right| < \frac{1}{n^2 \pi} \int_{-\pi}^{\pi} M \, dx = \frac{2M}{n^2}$$

اب<u>1</u>2. فریت رسلل الله 898

ہو گا۔ای طرح تمام n کے لئے $\frac{2M}{n^2} < |b_n| < 3$ ہو گا۔اس طرح فوریئر تسلسل کی ہر رکن کی زیادہ سے زیادہ قیمت درج ذیل تسلسل کی مطابقتی رکن کی قیمت کے برابر ہو سکتی ہے جو مر سکز تسلسل ہے۔

$$|a_0| + 2M(1 + 1 + \frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{3^2} + \cdots)$$

یوں فوریئر تشکسل بھی مریکز ہو گی۔

نگڑوں میں استمراری تفاعل f(x) کی صورت میں فوریئر تسلسل کی مرکوزیت اور مسکلہ 12.1 کے آخری جملہ کا ثبوت اس کتاب میں بیش نہیں کیا جائے گا۔

سوالات

سوال 12.26 تا سوال 12.42 میں دیے گئے دوری تفاعل f(x) جس کا دوری عرصہ π 2 ہے کا فوریئر تسلسل دریافت کریں۔پہلے تین جزوی مجموعوں 17 کا ترسیم کھینجیں۔

سوال 12.26: تفاعل كو شكل 12.5-الف مين ديا گيا ہے۔

 $\frac{1}{2} + \frac{2}{\pi}(\cos x - \frac{1}{3}\cos 3x + \frac{1}{5}\cos 5x - + \cdots)$:

موال 12.27: نفاعل کو شکل 12.5-ب میں دیا گیا ہے۔ $\frac{1}{2} + \frac{2}{\pi} (\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x \cdots)$ جواب:

موال 12.28: تفاعل كو شكل 12.5-پ مين ديا گيا ہے۔ $\frac{4}{\pi}(\sin x + \frac{1}{3}\sin 3x + \frac{1}{5}\sin 5x + \cdots)$ جواب:

N=1,2,3 جال $a_0+\sum_{n=1}^N(a_n\cos nx+b_n\sin nx)$ جال N=1,2,3

شكل 12.52: تفاعل برائے سوال 12.26 تاسوال 12.29

سوال 12.29: نفاعل کو شکل 12.5-ت میں دیا گیا ہے۔
$$\frac{2}{\pi}(-\cos x - \sin 2x + \frac{1}{3}\cos 3x - \frac{1}{5}\cos 5x \cdots)$$
 جواب:

سوال 12.30:

$$f(x) = \begin{cases} 1 & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ -1 & \frac{\pi}{2} < x < \frac{3}{2}\pi \end{cases}$$

 $\frac{4}{\pi}(\cos x - \frac{1}{3}\cos 3x + \frac{1}{5}\cos 5x - + \cdots)$ يواب:

سوال 12.31:

$$f(x) = \begin{cases} 1 & -\frac{\pi}{2} < x < 0 \\ 0 & 0 < x < \frac{3}{2}\pi \end{cases}$$

 $\frac{1}{4} + \frac{1}{\pi} (\cos x - \sin x - \sin 2x - \frac{1}{3}\cos 3x - \frac{1}{3}\sin 3x \cdots)$ جاب:

سوال 12.32:

$$f(x) = x, \quad -\pi < x < \pi$$

 $2\sin x - \sin 2x + \frac{2}{3}\sin 3x - \frac{1}{2}\sin 4x + \frac{2}{5}\sin 5x \cdots$

سوال 12.33:

$$f(x) = \begin{cases} 0 & -\pi < x < \frac{\pi}{2} \\ 2 & \frac{\pi}{2} < x < \pi \end{cases}$$

 $\frac{1}{2} + \frac{2}{\pi} (-\cos x + \sin x - \sin 2x + \frac{1}{3}\cos 3x + \frac{1}{3}\sin 3x \cdots)$ جواب:

سوال 12.34:

$$f(x) = x^2, \quad -\pi < x < \pi$$

$$\frac{\pi^2}{3} - 4\cos x + \cos 2x - \frac{4}{9}\cos 3x + \frac{1}{4}\cos 4x - \frac{4}{25}\cos 5x \cdots$$
 :باب

سوال 12.35:

$$f(x) = |x|, \quad -\pi < x < \pi$$

سوال 12.36:

$$f(x) = \begin{cases} \pi & -\pi < x < 0 \\ \pi - x & 0 < x < \pi \end{cases}$$

 $\frac{3\pi}{4} + \frac{2}{\pi}\cos x - \sin x + \frac{1}{2}\sin 2x + \frac{2}{9\pi}\cos 3x - \frac{1}{3}\sin 3x + \frac{1}{4}\sin 4x \cdots$ جواب:

سوال 12.37:

$$f(x) = \begin{cases} -\pi - x & -\pi < x < 0 \\ \pi - x & 0 < x < \pi \end{cases}$$

 $2\sin x + \sin 2x + \frac{2}{3}\sin 3x + \frac{1}{2}\sin 4x + \frac{2}{5}\sin 5x$:بواب:

سوال 12.38:

$$f(x) = \begin{cases} 1 & 0 < x < \frac{\pi}{2} \\ 2 & \frac{\pi}{2} < x < \pi \end{cases}$$

 $\frac{3}{4} + \frac{1}{\pi} (-\cos x + 3\sin x - \sin 2x + \frac{1}{3}\cos 3x + \sin 3x \cdots)$:بواب:

$$f(x) = x$$
, $0 < x < \frac{\pi}{2}$:12.39 عوال $\frac{\pi}{16} + \frac{1}{\pi} [(\frac{\pi}{2} - 1)\cos x + \sin x - \frac{1}{2}\cos 2x + \frac{1}{4}\sin 2x \cdots]$:جواب:

$$f(x) = \sin x$$
, $-\pi < x < \pi$:12.40 عوال $\sin x$:جواب

سوال 12.41: نصف لهر سمت كار

$$f(x) = \begin{cases} 0 & -\pi < x < 0\\ \sin x & 0 < x < \pi \end{cases}$$

 $\frac{1}{\pi} + \frac{1}{2}\sin x - \frac{2}{\pi}(\frac{1}{3}\cos 2x + \frac{1}{15}\cos 4x + \frac{1}{35}\cos 6x + \cdots)$ جواب:

$$f(x) = |\sin x|$$
 , $-\pi < x < \pi$ کال لېر سمت کار $\frac{2}{\pi} - \frac{4}{\pi} (\frac{1}{3}\cos 2x + \frac{1}{15}\cos 4x + \frac{1}{35}\cos 6x \cdots)$: جواب:

سوال 12.43: مسئلہ 12.1 کے آخری جملہ کی سوال 12.26 کے لئے تصدیق کریں۔

سوال 12.44: سوال 12.26 کی حاصل تسلس سے سوال 12.27 کی فوریئر تسلس حاصل کریں۔

kf(x) اور b_n ہوں تب ثابت کریں کہ تفاعل f(x) کی فوریئر عددی سر a_n اور b_n ہوں تب ثابت کریں کہ تفاعل kb_n ہوں گے۔

سوال 12.46: ثابت کریں کہ اگر تفاعل f(x) کے عددی سر b_n ، a_n اور تفاعل g(x) گے عددی سر b_n ، a_n ہوں گے۔ سر b_n ، b_n ، a_n ہوں گے۔ b_n ، a_n ہوں تب تفاعل a_n ہوں کے عددی سر a_n ہوں گے۔

سوال 12.47: سوال 12.33 میں دیے گئے تفاعل کی فوریئر تسلسل سوال 12.46 کو استعال کرتے ہوئے شکل 12.5 کی نتائج سے حاصل کریں۔

12.3 اختیاری دوری عرصه والے تفاعل

 $\frac{3}{4}$ میلی استعال میں پائے جانے والے دوری نفاعل کا دوری عرصہ شاذ و نادر 2π ہوتا ہے۔ 2π دوری عرصہ کے نفاعل کی کلیات تفاعل کی کلیات کی x ناپ تبدیل کرتے ہوئے کسی بھی دوری عرصہ T کے نفاعل کی کلیات عاصل کی جا سکتے ہیں۔ فرض کریں کہ نفاعل f(t) کا دوری عرصہ T ہے۔ ہم نیا متغیر x متعارف کرتے ہیں جس کا دوری عرصہ π ہے۔ ہوں درج ذیل لکھا جا سکتا ہے

(12.12)
$$(الغ) t = \frac{T}{2\pi}x (ب) x = \frac{2\pi}{T}t$$

 2π کا دوری عرصہ $x=\mp\pi$ للذا $x=\pm\pi$ کا دوری عرصہ $t=\pm\frac{T}{2}$ مطابقتی قیمتیں $x=\pm\pi$ ہوں گی۔اس طرح $x=\pm\pi$ کا دوری عرصہ $x=\pm\pi$ ہو گا۔یوں اگر $x=\pm\pi$ کی فور بیئر تسلسل موجود ہو، اس کی صورت درج ذیل ہو گ

(12.13)
$$f(t) = f\left(\frac{T}{2\pi}x\right) = a_0 \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

جہاں پولر عددی سر مساوات 12.9 سے حاصل ہوں کے لینی:

$$a_0=rac{1}{2\pi}\int_{-\pi}^{\pi}f\left(rac{T}{2\pi}x
ight)\mathrm{d}x,$$
 $a_n=rac{1}{\pi}\int_{-\pi}^{\pi}f\left(rac{T}{2\pi}x
ight)\cos nx\,\mathrm{d}x, \quad b_n=rac{1}{\pi}\int_{-\pi}^{\pi}f\left(rac{T}{2\pi}x
ight)\sin nx\,\mathrm{d}x$ $y=1$ من کلیات کو استعال کر سکتے ہیں لیکن متغیر کو $y=1$ میں تبدیل کرنے سے آسانی پیدا ہوتی ہے۔ یوں $y=1$

استعال کرتے ہوئے اور x محور پر π تا π تا کمل کو t محور پر $\frac{T}{2}$ تا $\frac{T}{2}$ تکمل کھتے ہوئے یولر مساوات درج ذیل کھے جا سکتے ہیں۔

(12.14)
$$a_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$$

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos \frac{2n\pi t}{T} dt$$

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin \frac{2n\pi t}{T} dt$$

مزید مساوات 12.13 میں دی گئی فور بیر تسلسل میں x متغیر کی جگہ t متغیر پر کرنے سے

(12.15)
$$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos \frac{2n\pi}{T} t + b_n \sin \frac{2n\pi}{T} t)$$

 $-rac{T}{2} \leq t \leq rac{T}{2}$ فور بیئر تسلسل حاصل ہوتی ہے۔ چونکہ تفاعل f(t) دوری ہے للذا مساوات 12.14 میں تکمل کو f(t) کی بجائے T کے برابر کسی بھی وقفہ مثلاً $t \leq t \leq T$ پر حاصل کیا جا سکتا ہے۔

مثال 12.2: درج زیل چکور تفاعل (شکل 12.6)، جس کا دوری عرصه T=4 ہے، کی فوریئر تسلسل حاصل کریں۔

$$f(t) = \begin{cases} 0 & -2 < t < -1 \\ k & -1 < t < 1 \\ 0 & 1 < t < 2 \end{cases}$$

باب 12. فوریت ر تسلیل

شكل 12.7: نصف لبرست كار (مثال 12.3)

حل: مساوات 12.14 سے درج ذیل ملتا ہے۔

904

$$a_0 = \frac{1}{4} \int_{-2}^{2} f(t) dt = \frac{1}{4} \int_{-1}^{1} k dt = \frac{k}{2}$$

$$a_n = \frac{2}{4} \int_{-2}^{2} f(t) \cos \frac{2n\pi}{4} t dt = \frac{1}{2} \int_{-1}^{1} k \cos \frac{n\pi}{2} t dt = \frac{2k}{n\pi} \sin \frac{n\pi}{2}$$

$$b_n = \frac{2}{4} \int_{-2}^{2} f(t) \sin \frac{2n\pi}{4} t dt = \frac{1}{2} \int_{-1}^{1} k \sin \frac{n\pi}{2} t dt = 0$$

 $n=3,7,11,\cdots$ يول جفت $a_n=rac{2k}{n\pi}$ اور $n=1,5,9,\cdots$ جبك $a_n=0$ اور $n=3,7,11,\cdots$ يول جفت $a_n=-rac{2k}{n\pi}$ اور $a_n=-rac{2k}{n\pi}$ ك ك ك $a_n=-rac{2k}{n\pi}$ بو گا جن سے درج ذیل فور بیر تسلسل ملتی ہے۔

$$f(t) = \frac{k}{2} + \frac{2k}{\pi} \left(\cos \frac{\pi}{2} t - \frac{1}{3} \cos \frac{3\pi}{2} t + \frac{1}{5} \cos \frac{5\pi}{2} t - + \cdots \right)$$

مثال 12.3: سائن نما برقی دباو $v = E \sin \omega t$ کو نصف لہر سمت کار سے گزارا جاتا ہے۔ نصف لہر سمت کار کی خارجی برقی دباو u(t) u(t) درج ذیل ہے۔

$$u(t) = \begin{cases} 0 & -\frac{T}{2} < t < 0 \\ E \sin \omega t & 0 < t < \frac{T}{2} \end{cases}$$

طل: یہاں $T=rac{2\pi}{\omega}$ کے برابر ہے۔ یوں مساوات 12.14-الف سے

$$a_0 = \frac{\omega}{2\pi} \int_0^{\frac{\pi}{\omega}} E \sin \omega t \, dt = \frac{E}{\pi}$$

ملتا ہے جبکہ مساوات 12.14-ب میں ضمیمہ ب کی مساوات 11.ب استعال کرتے ہوئے

 $a_n = \frac{\omega}{\pi} \int_0^{\frac{\pi}{\omega}} E \sin \omega t \cos n\omega t \, dt = \frac{\omega E}{2\pi} \int_0^{\frac{\pi}{\omega}} [\sin(1+n)\omega t + \sin(1-n)\omega t] \, dt$

ے $n=2,3,\cdots$ کے گئے صفر جبکہ n=1

$$a_n = \frac{\omega E}{2\pi} \left[-\frac{\cos(1+n)\omega t}{(1+n)\omega} - \frac{\cos(1-n)\omega t}{(1-n)\omega} \right]_0^{\frac{\pi}{\omega}}$$
$$= \frac{E}{2\pi} \left(\frac{-\cos(1+n)\pi + 1}{1+n} + \frac{-\cos(1-n)\pi + 1}{1-n} \right)$$

ملتی سے جو طاق n کے لئے صفر اور جفت n کے لئے

$$a_n = \frac{E}{2\pi} \left(\frac{2}{1+n} + \frac{2}{1-n} \right) = -\frac{2E}{(n-1)(n+1)\pi}$$
 $(n = 2, 4, \cdots)$

وی ہے۔ اس طرح مساوات 12.14 - پ سے $b_n=0$ جبکہ $b_1=\frac{E}{2}$ جبکہ $b_n=0$ کے گئے $b_n=0$ ملتے ہیں۔ اس طرح فور بیرُ تسلسل درج ذیل ہو گی۔

$$u(t) = \frac{E}{\pi} + \frac{E}{2}\sin\omega t - \frac{2E}{\pi} \left(\frac{1}{1 \cdot 3}\cos 2\omega t + \frac{1}{3 \cdot 5}\cos 4\omega t + \cdots \right)$$

سوالات

سوال 12.48: اس بات کی تصدیق کریں کہ مساوات 12.15 میں تمام ارکان کا دوری عرصہ T ہے۔

سوال 12.49: اس بات کی تصدیق کریں کہ مساوات 12.14 میں T کے برابر کسی بھی وقفے پر کمل حاصل کیا جا سکتا ہے۔

سوال 12.50: مثال 12.3 کی چکور تفاعل کی شلسل کو سوال 12.26 کی شلسل سے سیدھ و سیدھ بذریعہ تبدیلی سننیر حاصل کریں۔

سوال 12.51: نصف لهر سمت کار کو $v=E\cos t$ و اخلی دباه مهیا کی جاتی ہے۔خارجی دباه کی فور پیرُ تسلسل عاصل کریں۔ $\frac{1}{\pi} + \frac{1}{2}\cos t + \frac{2}{\pi}(\frac{1}{3}\cos 2t - \frac{1}{15}\cos 4t + \frac{1}{35}\cos 6t - + \cdots)$ جواب:

سوال 12.52 تا سوال 12.62 میں تفاعل f(t) کا دوری عرصہ T ہے۔اس کی فور بیرُ تسلسل دریافت کریں۔تفاعل f(t) اور اس کی تسلسل کے اولین تین جزوی مجموعوں کے خط کیپنیں۔آپ دیکھیں گے کہ تسلسل کی زیادہ ارکان استعمال کرنے سے اصل تفاعل سے زیادہ قریبی مشابہت رکھنے والا خط حاصل ہوتا ہے۔

f(t) = -1 (-1 < t < 0), f(t) = 1 (0 < t < 1), T = 2 :12.52 يوال $\frac{4}{\pi}(\sin \pi t + \frac{1}{3}\sin 3\pi t + \frac{1}{5}\sin 5\pi t + \cdots)$ يواب :

f(t)=1 (-1 < t < 2), f(t)=0 (2 < t < 3), T=4 :12.53 والى: $\frac{3}{4}+\frac{1}{\pi}(\cos\frac{\pi t}{2}+\sin\frac{\pi t}{2}-\sin\pi t-\frac{1}{3}\cos\frac{3\pi t}{2}+\frac{1}{3}\sin\frac{3\pi t}{2}\cdots)$:20.53

f(t)=1 (-1 < t < 1), T=4 :12.54 وال $\frac{1}{2}+\frac{2}{\pi}(\cos\frac{\pi t}{2}-\frac{1}{3}\cos\frac{3\pi t}{2}+\frac{1}{5}\cos\frac{5\pi t}{2}\cdots)$:باب

f(t)=t (-1< t<1), T=2 :12.55 سوال $\frac{1}{\pi}(2\sin \pi t - \sin 2\pi t + \frac{2}{3}\sin 3\pi t - \frac{1}{2}\sin 4\pi t \cdots)$ جواب:

 $f(t) = t^2 \quad (-1 < t < 1), \quad T = 2 \quad :12.56$ يوال $\frac{1}{3} + \frac{1}{\pi^2} (-4\cos\pi t + \cos 2\pi t - \frac{1}{9}\cos 3\pi t + \frac{1}{4}\cos 4\pi t \cdots)$

f(t) = -t (-1 < t < 0), f(t) = t (0 < t < 1) T = 2 :12.57 والى $\frac{1}{2} - \frac{4}{\pi^2} (\cos \pi t + \frac{1}{9} \cos 3\pi t + \frac{1}{25} \cos 5\pi t \cdots)$.

 $f(t) = -1 \quad (-1 < t < 0), \quad f(t) = t \quad (0 < t < 1) \quad T = 2 \quad :12.59$ يوال $-\frac{1}{4} - \frac{2}{\pi^2} \cos \pi t + \frac{3}{\pi} \sin \pi t = \frac{1}{2\pi} \sin 2\pi t - \frac{2}{9\pi^2} \cos 3\pi t \cdots$ يواب:

$$f(t) = 1$$
 $(0 < t < 1)$, $f(t) = 2$ $(1 < t < 2)$ $T = 3$:12.60 سوال $1 - \frac{3\sqrt{3}}{2\pi}\cos\frac{2\pi t}{3} + \frac{3}{2\pi}\sin\frac{2\pi t}{3} \cdots$:بوال

$$f(t) = -t$$
 $(-1 < t < 0)$, $f(t) = 2t$ $(0 < t < 1)$ $T = 2$:12.61 والى $\frac{3}{4} - \frac{6}{\pi^2}\cos\pi t + \frac{1}{\pi}\sin\pi t - \frac{1}{2\pi}\sin2\pi t - \frac{2}{3\pi^2}\cos3\pi t \cdots$:4.61 والى الم

$$f(t) = cos(\pi t)$$
 $(-1 < t < 1)$, $T = 2$:12.62 موال $cos(\pi t)$:2.62

سوال 12.63: مکمل لہر ست کار کی فوریئر تسلسل سوال 12.58 میں حاصل کی گئی۔سوال 12.42 میں حاصل کی گئی۔سوال 12.42 میں حاصل کی گئی۔سوال 12.42 میں حاصل کی تسلسل میں متغیر تبدیل کرتے ہوئے یہی جواب دوبارہ حاصل کریں۔

12.4 جفت اور طاق تفاعل

اضافی ثبوت

صفحہ 139 پر مسکلہ 2.2 بیان کیا گیا جس کا ثبوت یہاں پیش کرتے ہیں۔

ثبوت: کیتائی (مئله 2.2) تصور کریں که کھلے وقفے I پر ابتدائی قیت مئلہ

$$(0.1) y'' + p(x)y' + q(x)y = 0, y(x_0) = K_0, y'(x_0) = K_1$$

کے دو عدد حل $y_1(x)$ اور $y_2(x)$ یائے جاتے ہیں۔ہم ثابت کرتے ہیں کہ $y_1(x)$

$$y(x) = y_1(x) - y_2(x)$$

کمل صفر کے برابر ہے۔ یوں $y_1(x) \equiv y_2(x)$ ہو گا جو کیتائی کا ثبوت ہے۔

چونکہ مساوات 1.1 خطی اور متجانس ہے لہذا y(x) پر y(x) جمی اس کا حل ہو گا اور چونکہ y_1 اور ونوں یکسال ابتدائی معلومات پر پورا اترتے ہیں للذا الله ورج ذیل ابتدائی معلومات پر پورا اترے گا۔

$$(0.2) y(x_0) = 0, y'(x_0) = 0$$

ہم تفاعل

$$(1.3) z = y^2 + y'^2$$

910 ضميه المنافي ثبوت

اور اس کے تفرق

$$(0.4) z' = 2yy' + 2y'y''$$

پر غور کرتے ہیں۔ تفرقی مساوات 1.1 کو

$$y'' = -py' - qy$$

لکھتے ہوئے اس کو z' میں پر کرتے ہیں۔

$$(1.5) z' = 2yy' + 2y'(-py' - qy) = 2yy' - 2py'^2 - 2qyy'$$

اب چونکه بر اور بر حقیقی تفاعل بین للذا ہم

$$(y \mp y')^2 = y^2 \mp 2yy' + y'^2 \ge 0$$

لعيني

(1.7)
$$(1.7) 2yy' \le y^2 + y'^2 = z, -2yy' \le y^2 + y'^2 = z,$$

لکھ سکتے ہیں جہاں مساوات 3.1 کا استعال کیا گیا ہے۔مساوات 7.1-ب کو z=-z کلھے ہوئے مساوات 1.7 کھو سکتے ہیں جہاں مساوات 5.1 کے دونوں حصوں کو z=-z کھا جا سکتا ہے۔یوں مساوات 5.1 کے آخری جزو کے لئے

$$-2qyy' \le \left| -2qyy' \right| = |q| \left| 2yy' \right| \le |q| z$$

کھا جا سکتا ہے۔اس نتیج کے ساتھ ساتھ ساتھ $p \leq |p|$ استعال کرتے ہوئے اور مساوات 1.7-الف کو مساوات 1.5 کھا جا سکتا ہے۔اس نتیج کے ساتھ ساتھ کو مساوات 5.1 کے 2yy'

$$z' \le z + 2|p|y'^2 + |q|z$$

ماتا ہے۔اب چونکہ $y'^2 \leq y^2 + y'^2 = z$ ہنتا اس سے

$$z' \leq (1+\big|p\big|+\big|q\big|)z$$

ملتا ہے۔ اس میں 1 + |q| + |p| = h کھتے ہوئے

$$(1.8) z' \leq hz x \not \subset I$$

حاصل ہوتا ہے۔اسی طرح مساوات 1.5 اور مساوات 1.7 سے درج ذیل بھی حاصل ہوتا ہے۔

(i.9)
$$-z' = -2yy' + 2py'^2 + 2qyy' \\ \leq z + 2|p|z + |q|z = hz$$

مساوات 8. ا اور مساوات 9. ا کے غیر مساوات درج ذیل غیر مساوات کے متر ادف ہیں
$$z'-hz \leq 0, \quad z'+hz \geq 0$$

جن کے بائیں ہاتھ کے جزو تکمل درج ذیل ہیں۔

 $F_1 = e^{-\int h(x) dx}, \qquad F_2 = e^{\int h(x) dx}$

چونکہ h(x) استمراری ہے للذا اس کا تکمل پایا جاتا ہے۔ چونکہ F_1 اور F_2 مثبت ہیں للذا انہیں مساوات 1.10 کے ساتھ ضرب کرنے سے

 $(z'-hz)F_1 = (zF_1)' \le 0, \quad (z'+hz)F_2 = (zF_2)' \ge 0$

حاصل ہوتا ہے۔اس کا مطلب ہے کہ I پر zF_1 بڑھ نہیں رہا اور zF_2 گھٹ نہیں رہا۔مساوات zF_1 تحت z=1.2 کی صورت میں z=1.2 کی صورت میں عرب کے خت

$$(.11) zF_1 \ge (zF_1)_{x_0} = 0, zF_2 \le (zF_2)_{x_0}$$

ہو گا اور اسی طرح $x \geq x_0$ کی صورت میں

$$(0.12) zF_1 \leq 0, zF_2 \geq 0$$

ہو گا۔اب انہیں مثبت قیتوں F₁ اور F₂ سے تقسیم کرتے ہوئے

$$(0.13)$$
 $z \le 0$, $z \ge 0$ $z \ge 0$ $z \le 1$

 $y_1 \equiv y_2$ کی $y \equiv 0$ پ $y \equiv 0$ ہاتا ہے جس کا مطلب ہے کہ $y \equiv 0$ پ $z = y^2 + y'^2 \equiv 0$ پر $y \equiv 0$ ماتا ہے جس کا مطلب ہے کہ $y \equiv 0$ باتا ہے جس کا مطلب ہے کہ $y \equiv 0$ باتا ہے جس کا مطلب ہے کہ ایک مطلب

صميمه ب مفيد معلومات

1.ب اعلی تفاعل کے مساوات

(شکل e^x الف e^x الف الف عنائى تفاعل e^x

e = 2.718281828459045235360287471353

(4.1)
$$e^x e^y = e^{x+y}, \quad \frac{e^x}{e^y} = e^{x-y}, \quad (e^x)^y = e^{xy}$$

قدرتی لوگارهم (شکل 1.ب-ب)

(ب.2)
$$\ln(xy) = \ln x + \ln y, \quad \ln \frac{x}{y} = \ln x - \ln y, \quad \ln(x^a) = a \ln x$$

$$- \ln x = e^{\ln \frac{1}{x}} = \frac{1}{x} \quad \text{in } x = x \quad \text{in } x = x \quad \text{in } x = x$$

 $\log x$ اساس دس کا لوگارهم $\log_{10} x$ اساس دس کا لوگارهم

(....3) $\log x = M \ln x$, $M = \log e = 0.434294481903251827651128918917$

$$(-.4) \quad \ln x = \frac{1}{M} \log x, \quad \frac{1}{M} = 2.302585092994045684017991454684$$

شكل 1. ب: قوت نمائي تفاعل اور قدرتي لو گار تھم تفاعل

شكل2.ب:سائن نما تفاعل

 $10^{-\log x} = 10^{\log \frac{1}{x}} = \frac{1}{x}$ اور $10^{\log x} = 10^{\log x} = 10^{\log x}$ کیا الٹ 10^x

سائن اور کوسائن تفاعل (شکل 2.ب-الف اور ب)۔ احصائے کملات میں زاویہ کو ریڈئی میں ناپا جاتا ہے۔ یوں $\sin x$ اور $\cos x$ کا دور کی عرصہ $\sin x$ ہو گا۔ $\sin x$ طاق ہے لیخی $\sin x$ $\sin x$ ہو گا۔ $\cos x$ ہو گا۔ $\cos x$ ہو گا۔ $\cos x$

 $1^{\circ} = 0.017453292519943 \text{ rad}$ $1 \text{ radian} = 57^{\circ} 17' 44.80625'' = 57.2957795131^{\circ}$ (-.5) $\sin^2 x + \cos^2 x = 1$

$$\sin(x + y) = \sin x \cos y + \cos x \sin y \sin(x - y) = \sin x \cos y - \cos x \sin y$$
$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$
$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

$$(-.7) \sin 2x = 2\sin x \cos x, \cos 2x = \cos^2 x - \sin^2 x$$

(...8)
$$\sin x = \cos\left(x - \frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2} - x\right)$$
$$\cos x = \sin\left(x + \frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2} - x\right)$$

(-.9)
$$\sin(\pi - x) = \sin x, \quad \cos(\pi - x) = -\cos x$$

(-.10)
$$\cos^2 x = \frac{1}{2}(1 + \cos 2x), \quad \sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\sin x \sin y = \frac{1}{2} [-\cos(x+y) + \cos(x-y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$$

$$\sin u + \sin v = 2\sin\frac{u+v}{2}\cos\frac{u-v}{2}$$

$$\cos u + \cos v = 2\cos\frac{u+v}{2}\cos\frac{u-v}{2}$$

$$\cos v - \cos u = 2\sin\frac{u+v}{2}\sin\frac{u-v}{2}$$

$$(-.13) A\cos x + B\sin x = \sqrt{A^2 + B^2}\cos(x \mp \delta), \tan \delta = \frac{\sin \delta}{\cos \delta} = \pm \frac{B}{A}$$

(.14)
$$A\cos x + B\sin x = \sqrt{A^2 + B^2}\sin(x \mp \delta)$$
, $\tan \delta = \frac{\sin \delta}{\cos \delta} = \mp \frac{A}{B}$

$$(-.15) \tan x = \frac{\sin x}{\cos x}, \cot x = \frac{\cos x}{\sin x}, \sec x = \frac{1}{\cos x}, \csc = \frac{1}{\sin x}$$

$$(-.16) \tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}, \tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

شكل 3.ب: ٹينجنٺ اور كو ٹينجنٺ

بذلولي تفاعل (بذلولي سائن sin hx وغيره - شكل 4.ب-الف، ب)

$$(-.17) sinh x = \frac{1}{2}(e^x - e^{-x}), cosh x = \frac{1}{2}(e^x + e^{-x})$$

(-.18)
$$\tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}$$

$$(-.19) \qquad \cosh x + \sinh x = e^x, \quad \cosh x - \sinh x = e^{-x}$$

$$\cosh^2 x - \sinh^2 x = 1$$

$$(-.21) sinh^2 = \frac{1}{2}(\cosh 2x - 1), cosh^2 x = \frac{1}{2}(\cosh 2x + 1)$$

$$\sinh(x \mp y) = \sinh x \cosh y \mp \cosh x \sinh y$$
$$\cosh(x \mp y) = \cosh x \cosh y \mp \sinh x \sinh y$$
$$\cosh(x \mp y) = \cosh x \cosh y \mp \sinh x \sinh y$$

(23)
$$\tanh(x \mp y) = \frac{\tanh x \mp \tanh y}{1 \mp \tanh x \tanh y}$$

گیما تفاعل (شکل 5.ب) کی تعریف درج ذیل کمل ہے
$$\Gamma(\alpha)$$

$$\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha - 1} dt \qquad (\alpha > 0)$$

-2 coth x ہے۔ نقطہ دار خط tanh x ہے۔

(الف) تھوس خط sinh x ہے جبکہ نقطہ دار خط cosh x ہے۔

شكل 4.ب: ہذلولی سائن، ہذلولی تفاعل۔

جو صرف مثبت ($\alpha>0$) کے لئے معنی رکھتا ہے (یا اگر ہم مخلوط α کی بات کریں تب یہ α کی ان قیبتوں کے لئے معنی رکھتا ہے جن کا حقیقی جزو مثبت ہو)۔ حکمل بالحصص سے درج ذیل اہم تعلق حاصل ہوتا ہے۔

$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$

مساوات 24.ب سے $\Gamma(1)=1$ ملتا ہے۔ یوں مساوات 25.ب استعال کرتے ہوئے $\Gamma(2)=1$ حاصل ہوگا جسے دوبارہ مساوات 25.ب میں استعال کرتے ہوئے $\Gamma(3)=2\times1$ ملتا ہے۔ای طرح بار بار مساوات 25.ب استعال کرتے ہوئے κ کی کئی بھی عدد صحیح مثبت قیت κ کے لئے درج ذیل حاصل ہوتا ہے۔

$$\Gamma(k+1) = k!$$
 $(k = 0, 1, 2, \cdots)$

مساوات 25.ب کے بار بار استعال سے درج ذیل حاصل ہوتا ہے

$$\Gamma(\alpha) = \frac{\Gamma(\alpha+1)}{\alpha} = \frac{\Gamma(\alpha+2)}{\alpha(\alpha+1)} = \cdots = \frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k)}$$

جس کو استعال کرتے ہوئے ہم می کی منفی قیمتوں کے لئے گیما تفاعل کی درج ذیل تعریف پیش کرتے ہیں

$$(-.27) \qquad \Gamma(\alpha) = \frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k)} \qquad (\alpha \neq 0, -1, -2, \cdots)$$

جہاں k کی ایسی کم سے کم قیت چی جاتی ہے کہ $\alpha+k+1>0$ ہو۔ مساوات 24. ب اور مساوات 27. ب مل کر α کی تمام مثبت قیمتوں اور غیر عددی صحیحی منفی قیمتوں کے لئے گیما تفاعل دیتے ہیں۔

سمیما تفاعل کو حاصل ضرب کی حد بھی فرض کیا جا سکتا ہے لیتن

$$\Gamma(\alpha) = \lim_{n \to \infty} \frac{n! n^{\alpha}}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+n)} \qquad (\alpha \neq 0, -1, \cdots)$$

مساوات 27.ب اور مساوات 28.ب سے ظاہر ہے کہ مخلوط α کی صورت میں $\alpha=0,-1,-2,\cdots$ پر علی انقاعل کے قطب یائے جاتے ہیں۔

e کی بڑی قیت کے لئے سیما تفاعل کی قیت کو درج ذیل کلیہ سٹرلنگ سے حاصل کیا جا سکتا ہے جہاں e قدرتی لوگار تھم کی اساس ہے۔

(
$$\downarrow$$
.29)
$$\Gamma(\alpha+1) \approx \sqrt{2\pi\alpha} \left(\frac{\alpha}{e}\right)^{\alpha}$$

آخر میں گیما تفاعل کی ایک اہم اور مخصوص (درج ذیل) قیت کا ذکر کرتے ہیں۔

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

نا مكمل گيما تفاعل

$$(-.31) P(\alpha, x) = \int_0^x e^{-t} t^{\alpha - 1} dt, Q(\alpha, x) = \int_x^\infty e^{-t} t^{\alpha - 1} dt (\alpha > 0)$$

(...32)
$$\Gamma(\alpha) = P(\alpha, x) + Q(\alpha, x)$$

بيٹا تفاعل

$$(-.33) B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt (x>0, y>0)$$

بیٹا تفاعل کو سیما تفاعل کی صورت میں بھی پیش کیا جا سکتا ہے۔

(ب.34)
$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

تفاعل خلل(شكل 6.ب)

(-.35)
$$\operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

ماوات 35.ب کے تفرق $x=rac{2}{\sqrt{\pi}}e^{-t^2}$ کی مکلارن شکسل

$$\operatorname{erf}' x = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \cdots \right)$$

کا تمل لینے سے تفاعل خلل کی تسلسل صورت حاصل ہوتی ہے۔

$$(-.36) \qquad \text{erf } x = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \cdots \right)$$

ے۔ مکملہ تفاعل خلل $erf\infty=1$

(ب.37)
$$\operatorname{erfc} x = 1 - \operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt$$

فرسنل تكملات (شكل 7.س)

(.38)
$$C(x) = \int_0^x \cos(t^2) dt, \quad S(x) = \int_0^x \sin(t^2) dt$$

شكل 7.ب: فرسنل تكملات

1
اور 1 $S(\infty)=\sqrt{rac{\pi}{8}}$ اور $C(\infty)=\sqrt{rac{\pi}{8}}$

$$c(x) = \frac{\pi}{8} - C(x) = \int_{x}^{\infty} \cos(t^2) dt$$

$$(-.40) s(x) = \frac{\pi}{8} - S(x) = \int_{x}^{\infty} \sin(t^2) dt$$

تكمل سائن (شكل 8.ب)

$$(-.41) Si(x) = \int_0^x \frac{\sin t}{t} dt$$

برابر ہے۔ تکملہ تفاعل Si $\infty = \frac{\pi}{2}$

(.42)
$$\operatorname{si}(x) = \frac{\pi}{2} - \operatorname{Si}(x) = \int_{x}^{\infty} \frac{\sin t}{t} dt$$

complementary functions¹

تكمل كوسائن

$$(-.43) si(x) = \int_{x}^{\infty} \frac{\cos t}{t} dt (x > 0)$$

تكمل قوت نمائي

تكمل لوگارتهمي

$$\operatorname{li}(x) = \int_0^x \frac{\mathrm{d}t}{\ln t}$$