Sylvain, Raphaël (111 124 564)

 $\begin{array}{c} {\rm Compilation\ et\ interpr\acute{e}tation} \\ {\rm IFT-3101} \end{array}$

Travail pratique 1

Travail présenté à Danny Dubé

Département d'informatique et de génie logiciel Univesité Laval Hiver 2019

(a)

- 1. ϵ
- 2. c
- 3. ca
- 4. car
- 5. cart
- 6. carte

(b)

- 1. er
- 2. oker
- 3. ker
- 4. r

(c)

- 1. a
- 2. ai
- 3. ain
- 4. i
- 5. in
- 6. m
- 7. ma
- 8. mai
- 9. n

(d)

- 1. ϵ
- 2. a
- 3. aa
- 4. aaa
- 5. aaaa
- 6. aaaab
- 7. aaab
- 8. aab
- 9. ab
- 10. b

(e)

- 1. abcabcab
- 2. bcabcabc
- 3. cabcabca

(a)

L'alphabet sur $\{a,b,c\}$ alpha $\rightarrow a|b|c$ Tous mots de l'alphabet $\mathbf{idc} \rightarrow (\mathbf{alpha})^*$ Voit un b, puis un b, plus un c $\mathbf{bbc} \rightarrow \mathbf{idc} \cdot b \cdot \mathbf{idc} \cdot c \cdot \mathbf{idc}$ Voit un b, puis un c, plus un b $\mathbf{bcb} \rightarrow \mathbf{idc} \cdot b \cdot \mathbf{idc} \cdot c \cdot \mathbf{idc} \cdot b \cdot \mathbf{idc}$ Voit un c, puis un c, plus un cvoit un c, puis un c $\mathbf{cbb} \rightarrow \mathbf{idc} \cdot c \cdot \mathbf{idc} \cdot b \cdot \mathbf{idc} \cdot c \cdot \mathbf{idc}$

(b)

```
Tous les mots dont sommes égale 0
         sumZero \rightarrow (0)^*
                        Tous les mots dont sommes égale 1
          \mathbf{sumOne} \rightarrow \mathbf{sumZero} \cdot 1 \cdot \mathbf{sumZero}
                        Tous les mots dont sommes égale 2
          sumTwo \rightarrow sumZero \cdot 2 \cdot sumZero
                        |sumOne \cdot sumOne|
                        Tous les mots dont sommes égale 3
        sumThree \rightarrow sumZero \cdot 3 \cdot sumZero
                        |sumTwo \cdot sumOne|
                        |sumOne \cdot sumTwo|
                        Tous les mots dont sommes égale 4
         sumFour \rightarrow sumZero \cdot 4 \cdot sumZero
                        |sumTwo \cdot sumTwo|
                        |sumThree \cdot sumOne|
                        |sumOne \cdot sumThree|
                        Tous les mots dont sommes égale 5
          sumFive \rightarrow sumZero \cdot 5 \cdot sumZero
                        |sumFour \cdot sumOne|
                        |sumOne · sumFour
                        |sumTwo \cdot sumThree|
                        |sumThree \cdot sumTwo|
                        Les symboles 6 à 9
              other \to (6|7|8|9)
                        Tous les mots possibles sur l'alphabet
                 idc \rightarrow (0|1|2|3|4|5|6|7|8|9)^*
                        Nombre dont nous savons que la valeur plus grande
                        ou égale à 5, entouré de n'importe quoi.
sumAtLeastFive \rightarrow idc \cdot (sumFive | other) \cdot idc
```

(c)

```
\begin{aligned} \mathbf{abc} \to & abc \\ \mathbf{bcd} \to & bcd \\ \mathbf{abcd} \to & abcd \\ \mathbf{idc} \to & (a|b|c|d)^* \\ \mathbf{abcEtbcd} \to & \mathbf{abc} \cdot \mathbf{idc} \cdot \mathbf{bcd} \\ & |\mathbf{bcd} \cdot \mathbf{idc} \cdot \mathbf{abc} \\ \mathbf{result} \to & \mathbf{idc} \cdot (\mathbf{abcd}|\mathbf{abcEtbcd}) \cdot \mathbf{idc} \end{aligned}
```

(d)

$$\begin{split} \mathbf{idc} &\to (a|b|c)^* \\ \mathbf{abc} &\to abc \\ \mathbf{result} &\to \mathbf{idc} \cdot \mathbf{abc} \cdot \mathbf{idc} \cdot a \cdot \mathbf{idc} \cdot b \cdot \mathbf{idc} \\ &\quad |\mathbf{idc} \cdot c \cdot \mathbf{idc} \cdot \mathbf{abc} \cdot \mathbf{idc} \end{split}$$

(e)

$$\begin{aligned} \operatorname{bORd} \to & b|d \\ \operatorname{NOTa} \to & c|\operatorname{bORd} \\ \operatorname{OneOrMoreA} \to & a \cdot a^* \\ \operatorname{aNOTc} \to & a \cdot a^* \cdot \operatorname{bORd} \\ \operatorname{aANDc} \to & \operatorname{OneOrMoreA} \cdot c \\ \operatorname{OneOrMoreAC} \to & \operatorname{aANDc} \cdot \operatorname{aANDc}^* \\ \operatorname{cORbORaNOTc} \to & c|b|\operatorname{aNOTc} \\ \operatorname{acaNOTd} \to & \operatorname{OneOrMoreAC} \cdot \operatorname{cORbORaNOTc} \\ \operatorname{acdNOTc} \to & \operatorname{OneOrMoreAC} \cdot d \cdot (a|b|d) \\ \operatorname{begin} \to & \operatorname{NOTa}|\operatorname{aNOTc}|\operatorname{acaNOTd}|\operatorname{acdNOTc} \\ \operatorname{end} \to & \epsilon|a^+| \left(a^+c\right)^+a^*| \left(a^+c\right)^+d \\ \operatorname{result} \to & \operatorname{begin}^* \cdot \operatorname{end} \end{aligned}$$

[Voir page suivante]


```
int lexical_analyser()
       start = 0;
       state = start;
       forward = token_beginning;
       white (true)
       {
           switch(state)
           {
               case 1:
10
                    c := buffer[foward];
                    foward++;
                    if (IsDigit(c)) { state = 2; }
                    else if (c == '-') {state = 3; }
14
                    else { state = fail(); }
                    break;
               case 2:
                    c := buffer[foward];
                    foward++;
19
                    if (IsDigit(c)) { state = 2; }
                    else if (c == '.') {state = 5; }
                    else { state = 4; }
                    break;
               case 3:
                    c := buffer[foward];
                    foward++;
                    if (IsDigit(c)) { state = 2; }
27
                    else { state = fail(); }
                    break;
               case 4:
                    foward--;
31
                    jeton = gettoken();
                    attr = parse_num();
                    token_beginning = foward;
34
                    return jeton;
               case 5:
                   c := buffer[foward];
                    foward++;
                    if (IsDigit(c)) { state = 6; }
                    else { state = fail(); }
                   break;
               case 6:
42
                   c := buffer[foward];
```

```
44
                    foward++;
                    if (IsDigit(c)) { state = 6; }
                    else { state = 7; }
46
                    break;
               case 7:
                    foward--;
49
                    jeton = gettoken();
                    attr = parse_num();
                    token_beginning = foward;
                    return jeton;
           }
       }
56 }
```

Toutes les chaînes de L_5 sont généré par G_5 . Preuve par induction sur le nombre de dérivations.

Case de base

Une dérivation de S en une étape a bien deux fois plus de a que de b.

La preuve, c'est que la seule dérivation possible en une étape est $S \to \epsilon$. Qui contient bien deux fois plus de a que de b:

 $|\epsilon|_a - 2|\epsilon|_b = 0 - 2 \cdot 0 = 0$, donc il y a 2 fois plus de a que de b.

Hypothèse d'induction

Supposons que toutes les chaînes répondant à la spécification de L_5 de longueur inférieure à 3n, pour $n \geq 1$, sont générer par G_5 , alors toute chaîne w de longueur égale à 3n répondant à la spécification de L_5 est aussi générée par G_5 , (Notons aussi que toutes les chaînes de L_5 sont de longueur multiple de 3).

La preuve,

Si w commence par un b, alors deux a doivent le suivre selon la seule dérivation permettant un b au début : $S \to bSaSa$. Alors w peut être écrite sous la forme w = bxayaz, où x, y et z sont tous de longueur inférieure à 3n et dont leur concaténation est de longueur 3n-3 et donc répondent aux critères de L_5 .

Si w fini par un b, alors deux a doivent le précédé selon la seule dérivation permettant un b à la fin : $S \to aSaSb$. Alors w peut être écrite sous la forme w = xaxayb, où x, y et z sont tous de longueur inférieure à 3n et dont leur concaténation est de longueur 3n-3 et donc répondent aux critères de L_5 .

Si w commence et fini par un a, alors un b doit se trouver entre les deux selon la dérivation $S \to aSbSa$. Alors w peut être écrit sous la forme axbyz où a et y sont tous de longueur inférieure à 3n et dont leur concaténation est de longueur 3n-3 et donc répondent aux critères de L_5 .

Tous les cas possibles de w ont été énumérés, donc $L_5 \subseteq L(G_5)$

Dérivation à gauche d'abord.

Dérivation à droite d'abord.

$$\Rightarrow \\ \overrightarrow{rm} \qquad \langle S \rightarrow aSbSa \rangle$$

$$aSbSa$$

$$\Rightarrow \\ \overrightarrow{rm} \qquad \langle S \rightarrow bSaSa \rangle$$

$$aSbbSaSaa$$

$$\Rightarrow \\ \overrightarrow{rm} \qquad \langle S \rightarrow \epsilon \rangle$$

$$aSbbSaaa$$

$$\Rightarrow \\ \overrightarrow{rm} \qquad \langle S \rightarrow \epsilon \rangle$$

$$aSbbaaa$$

$$\Rightarrow \\ \overrightarrow{rm} \qquad \langle S \rightarrow \epsilon \rangle$$

$$abbaaa$$

Elle est ambiguë, prenons par exemple abaaba. Il est possible d'avoir l'arbre de dérivation suivante :

Mais, il est aussi possible d'avoir un autre arbre de dérivation, comme par exemple, celui-ci :

Éliminons les récursions à gauche de la grammaire suivante :

$$E
ightarrow E \operatorname{ou} T \mid T$$
 $T
ightarrow T \operatorname{et} F \mid F$
 $F
ightarrow \operatorname{faux} F \mid A$
 $A
ightarrow (E) \mid \operatorname{faux} \mid \operatorname{vrai} \mid \operatorname{id}$

Ordonnons les non-terminaux ainsi : E, T, F, A Sommaire :

	$\dots \to E \dots$	$\ldots \to T \ldots$	$\ldots \to F \ldots$	$\dots \to A \dots$
$E \rightarrow \dots$	$E \rightarrow E$	$E \to T$	$E \to F$	$E \to A$
$T \rightarrow \dots$	$T \to E$	$T \to T$	$T \rightarrow F$	$T \to A$
$F \rightarrow \dots$	$F \rightarrow E$	$F \rightarrow T$	$F \rightarrow F$	$F \rightarrow A$
$A \rightarrow \dots$	$A \rightarrow E$	$A \rightarrow T$	$A \rightarrow F$	$A \rightarrow A$

Avec i = 1

j est vide

Il faut éliminer toutes les récursions à gauche de E vers le non-terminal précédent, mais il n'y en a aucun.

Cas de base

Éliminons la récursion à gauche directe du non-terminal E.

$$\begin{split} E &\to T \, E' \\ E' &\to \mathbf{ou} \, T \, E' \mid \epsilon \\ T &\to T \, \mathbf{et} \, F \mid F \\ F &\to \mathbf{faux} \, F \mid A \\ A &\to (E) \mid \mathbf{faux} \mid \mathbf{vrai} \mid \mathbf{id} \end{split}$$

	$\dots \to E \dots$	$\ldots \to T \ldots$	$\ldots \to F$	$\dots \to A \dots$
$E \rightarrow \dots$	$E \rightarrow E$	$E \to T$	$E \to F$	$E \to A$
$T \rightarrow \dots$	$T \to E$	$T \to T$	$T \rightarrow F$	$T \to A$
$F \rightarrow \dots$	$F \rightarrow E$	$F \rightarrow T$	$F \rightarrow F$	$F \rightarrow A$
$A \rightarrow \dots$	$A \rightarrow E$	$A \rightarrow T$	$A \rightarrow F$	$A \rightarrow A$

Avec i=2

Avec j = 1

Éliminons toutes les récursions à gauche de types $T \to E....$ Il n'y en a aucun

	$\dots \to E \dots$	$\ldots \to T \ldots$	$\dots \to F \dots$	$\dots \to A \dots$
$E \rightarrow \dots$	$E \to E$	$E \to T$	$E \rightarrow F$	$E \rightarrow A$
$T \rightarrow \dots$	$T \to E$	$T \to T$	$T \to F$	$T \to A$
$F \rightarrow \dots$	$F \rightarrow E$	$F \to T$	$F \to F$	$F \rightarrow A$
$A \rightarrow \dots$	$A \rightarrow E$	$A \rightarrow T$	$A \rightarrow F$	$A \rightarrow A$

Cas de base

Éliminons toutes les récursions à gauche directes du non-terminal T.

$$\begin{split} E &\to T \, E' \\ E' &\to \mathbf{ou} \, T \, E' \mid \epsilon \\ T &\to F \, T' \\ T' &\to \mathbf{et} \, F \, T' \mid \epsilon \\ F &\to \mathbf{faux} \, F \mid A \\ A &\to (E) \mid \mathbf{faux} \mid \mathbf{vrai} \mid \mathbf{id} \end{split}$$

	$\dots \to E \dots$	$\dots \to T \dots$	$\dots \to F \dots$	$\dots \to A \dots$
$E \rightarrow \dots$	$E \to E$	$E \to T$	$E \to F$	$E \to A$
$T \rightarrow \dots$	$T \to E$	$T \to T$	$T \to F$	$T \to A$
$F \rightarrow \dots$	$F \rightarrow E$	$F \to T$	$F \to F$	$F \rightarrow A$
$A \rightarrow \dots$	$A \rightarrow E$	$A \rightarrow T$	$A \rightarrow F$	$A \rightarrow A$

Avec i = 3

Avec j = 1

Éliminons toutes les récursions à gauche de types $F \to E....$ Il n'y en a pas.

	$\dots \to E \dots$	$\ldots \to T \ldots$	$\ldots \to F \ldots$	$\dots \to A \dots$
$E \rightarrow \dots$	$E \to E$	$E \to T$	$E \to F$	$E \to A$
$T \rightarrow \dots$	$T \to E$	$T \to T$	$T \rightarrow F$	$T \to A$
$F \rightarrow \dots$	$F \to E \dots$	$F \to T$	$F \rightarrow F$	$F \rightarrow A$
$A \rightarrow \dots$	$A \rightarrow E$	$A \rightarrow T$	$A \rightarrow F$	$A \rightarrow A$

Avec j=2

Éliminons toutes les récursions à gauche de types $F \to T....$ Il n'y en a pas.

	$\dots \to E \dots$	$\ldots \to T \ldots$	$\dots \to F \dots$	$\dots \to A \dots$
$E \rightarrow \dots$	$E \rightarrow E$	$E \to T$	$E \rightarrow F$	$E \rightarrow A$
$T \rightarrow \dots$	$T \rightarrow E$	$T \to T$	$T \rightarrow F$	$T \rightarrow A$
$F \rightarrow \dots$	$F \to E \dots$	$F \rightarrow T$	$F \rightarrow F$	$F \rightarrow A$
$A \rightarrow \dots$	$A \rightarrow E$	$A \rightarrow T$	$A \rightarrow F$	$A \rightarrow A$

Cas de base

Éliminons les récursions à gauche directe de F. Il n'y en a pas.

	$\dots \to E \dots$	$\ldots \to T \ldots$	$\dots \to F \dots$	$\dots \to A \dots$
$E \rightarrow \dots$	$E \rightarrow E$	$E \to T$	$E \to F$	$E \to A$
$T \rightarrow \dots$	$T \to E$	$T \to T$	$T \rightarrow F$	$T \rightarrow A$
$F \rightarrow \dots$	$F \to E \dots$	$F \to T$	$F \to F$	$F \rightarrow A$
$A \rightarrow \dots$	$A \rightarrow E$	$A \rightarrow T$	$A \rightarrow F$	$A \rightarrow A$

Avec i = 4

Avec j = 1

Éliminons toutes les récursions à gauche de types $A \to E...$. Il n'y en a pas.

	$\dots \to E \dots$	$\ldots \to T \ldots$	$\ldots \to F$	$\dots \to A \dots$
$E \rightarrow \dots$	$E \rightarrow E$	$E \to T$	$E \to F$	$E \to A$
$T \rightarrow \dots$	$T \to E$	$T \to T$	$T \rightarrow F$	$T \rightarrow A$
$F \rightarrow \dots$	$F \to E \dots$	$F \to T$	$F \to F$	$F \rightarrow A$
$A \rightarrow \dots$	$A \rightarrow E$	$A \rightarrow T$	$A \rightarrow F$	$A \rightarrow A$

Avec j=2

Éliminons toutes les récursions à gauche de types $A \to T....$ Il n'y en a pas.

	$\dots \to E \dots$	$\dots \to T \dots$	$\ldots \to F\ldots$	$\ldots \to A \ldots$
$E \rightarrow \dots$	$E \to E$	$E \to T$	$E \to F$	$E \to A$
$T \rightarrow \dots$	$T \to E$	$T \to T$	$T \to F$	$T \to A$
$F \rightarrow \dots$	$F \to E \dots$	$F \to T$	$F \rightarrow F$	$F \rightarrow A$
$A \rightarrow \dots$	$A \rightarrow E$	$A \to T$	$A \to F$	$A \rightarrow A$

Avec j = 3

Éliminons toutes les récursions à gauche de types $A \to F...$. Il n'y en a pas.

	$\dots \to E \dots$	$\ldots \to T \ldots$	$\dots \to F \dots$	$\dots \to A \dots$
$E \rightarrow \dots$	$E \to E$	$E \to T$	$E \to F$	$E \to A$
$T \rightarrow \dots$	$T \to E$	$T \to T$	$T \to F$	$T \to A$
$F \rightarrow \dots$	$F \to E \dots$	$F \to T$	$F \to F$	$F \rightarrow A$
$A \rightarrow \dots$	$A \rightarrow E$	$A \rightarrow T$	$A \rightarrow F$	$A \rightarrow A$

Cas de base

Éliminons toutes les récurrences à gauche directe de A. Il n'y en a pas.

	$\dots \to E \dots$	$\ldots \to T \ldots$	$\dots \to F \dots$	$\dots \rightarrow A \dots$
$E \rightarrow \dots$	$E \rightarrow E$	$E \to T$	$E \rightarrow F$	$E \to A$
$T \rightarrow \dots$	$T \to E$	$T \to T$	$T \to F$	$T \to A$
$F \rightarrow \dots$	$F \to E \dots$	$F \to T$	$F \rightarrow F$	$F \rightarrow A$
$A \rightarrow \dots$	$A \rightarrow E$	$A \rightarrow T$	$A \rightarrow F$	$A \rightarrow A$

Fin de l'algorithme.

$$\begin{split} E &\to T \, E' \\ E' &\to \mathbf{ou} \, T \, E' \mid \epsilon \\ T &\to F \, T' \\ T' &\to \mathbf{et} \, F \, T' \mid \epsilon \\ F &\to \mathbf{faux} \, F \mid A \\ A &\to (E) \mid \mathbf{faux} \mid \mathbf{vrai} \mid \mathbf{id} \end{split}$$

```
void S()
       {
           if (peekToken().type == 'a')
               // S -> aSa
               readToken('a');
               readToken('a');
           else if(peekToken().type == 'b')
               // S -> bSb
               readToken('b');
               S();
               readToken('b');
           }
           else
               // S -> c
               readToken('c');
           }
       }
19
```

Pile	Entrée	Sortie
S \$	bbbaabdccddd\$	S o b S d
b S d $\$$	bbbaabdccddd\$	(Consommer le terminal ь)
S d $$$	bbaabdccddd\$	S o b S d
b S dd $\$$	bbaabdccddd\$	(Consommer le terminal b)
S d d $$$	baabdccddd\$	S o b S d
b S ddd $\$$	baabdccddd\$	(Consommer le terminal b)
S d d d $$$	aabdccddd\$	S o a S c
a S cddd $\$$	aabdccddd\$	(Consommer le terminal a)
S c d d d $$$	abdccddd\$	$S o \mathtt{a}S$ c
a S ccddd $\$$	abdccddd\$	(Consommer le terminal a)
S c c d d d $$$	bdccddd\$	S o b S d
b S dccddd $\$$	bdccddd\$	(Consommer le terminal ь)
S d c c d d d $$$	dccddd\$	$S \to \epsilon$
dccddd\$	dccddd\$	(Consommer le terminal d)
ccddd\$	ccddd\$	(Consommer le terminal c)
cddd\$	cddd\$	(Consommer le terminal c)
d d d \$	ddd\$	(Consommer le terminal a)
d d \$	d d \$	(Consommer le terminal a)
d \$	d \$	(Consommer le terminal d)
\$	\$	(Succès)

Calcul de l'ensemble first(S)

$$\begin{aligned} & \text{First}(S) \\ &= & \left\langle \text{ Toutes les productions de } S \right. \right\rangle \\ & \text{First}(\epsilon) \cup \text{First}(aSaSb) \cup \text{First}(aSbSa) \cup \text{First}(bSaSa) \cup \text{First}(SS) \\ &= & \left\langle \text{First}(SS) = \text{First}(S) \right. \right\rangle \\ & \text{First}(\epsilon) \cup \text{First}(aSaSb) \cup \text{First}(aSbSa) \cup \text{First}(bSaSa) \\ &= & \left\langle \text{First}(\epsilon) = \{\epsilon\} \right. \right\rangle \\ & \left\{ \epsilon \right\} \cup \text{First}(aSaSb) \cup \text{First}(aSbSa) \cup \text{First}(bSaSa) \\ &= & \left\langle \text{First}(a\alpha) = \{a\} \right. \right\rangle \\ & \left\{ \epsilon \right\} \cup \left\{ a \right\} \cup \left\{ a \right\} \cup \text{First}(bSaSa) \\ &= & \left\langle \text{First}(b\alpha) = \{b\} \right. \right\rangle \\ & \left\{ \epsilon \right\} \cup \left\{ a \right\} \cup \left\{ a \right\} \cup \left\{ b \right\} \\ &= & \left\langle \text{Union } \right\rangle \\ & \left\{ a, b, \epsilon \right\} \end{aligned}$$

Calcul de l'ensemble Follow(S)

La première règle. S est le symbole de départ.

$$FOLLOW(S) \supseteq \{\$\}$$

Calcul des 2^e règles

Symbole		Contraintes identifiées					
S	$\rightarrow a\underline{S}aSb$	$\mathtt{FOLLOW}(S)$	$\supseteq \mathtt{FIRST}(a)$	$-\left\{\epsilon\right\}$	$= \{a\}$	$-\{\epsilon\}$	$= \{a\}$
$\mid S \mid$	$\rightarrow aSa\underline{S}b$	${ t FOLLOW}(S)$	$\supseteq \mathtt{FIRST}(b)$	$-\left\{ \epsilon ight\}$	$=\{b\}$	$-\left\{ \epsilon ight\}$	$= \{b\}$
S	$\rightarrow a\underline{S}bSa$	$\mathtt{FOLLOW}(S)$	\supseteq FIRST (b)	$-\{\epsilon\}$	$=\{b\}$	$-\{\epsilon\}$	$=\{b\}$
$\mid S \mid$	$\rightarrow aSb\underline{S}a$	${ t FOLLOW}(S)$	$\supseteq \mathtt{FIRST}(a)$	$-\left\{ \epsilon ight\}$	$= \{a\}$	$-\left\{ \epsilon ight\}$	$= \{a\}$
S	$\rightarrow b\underline{S}aSa$	$\mathtt{FOLLOW}(S)$	$\supseteq \mathtt{FIRST}(a)$	$-\{\epsilon\}$	$= \{a\}$	$-\{\epsilon\}$	$= \{a\}$
$\mid S \mid$	$\rightarrow bSa\underline{S}a$	$\mathtt{FOLLOW}(S)$	$\supseteq \mathtt{FIRST}(a)$	$-\left\{ \epsilon ight\}$	$= \{a\}$	$-\left\{ \epsilon ight\}$	$= \{a\}$
S	$\rightarrow \underline{S}S$	$\mathtt{FOLLOW}(S)$	$\supseteq \mathtt{FIRST}(S)$	$-\{\epsilon\}$	$= \{a, b, \epsilon\}$	$-\{\epsilon\}$	$=\{a,b\}$
$\mid S \mid$	$\rightarrow S\underline{S}$	$\mathtt{FOLLOW}(S)$	$\supseteq \texttt{FIRST}(\epsilon)$	$-\left\{ \epsilon ight\}$	$= \{\epsilon\}$	$-\left\{ \epsilon ight\}$	$=\{\}$

Calcul des 3^e règles

Symbole	Justification	Contraintes identifiées		
$S \rightarrow a\underline{S}aSb$	-	-		
$S \rightarrow aSa\underline{S}b$	-	-		
$S \rightarrow a\underline{S}bSa$	-	-		
$S \rightarrow aSb\underline{S}a$	_	-		
$S \rightarrow b\underline{S}aSa$	-	-		
$S \rightarrow bSa\underline{S}a$	_	-		
$S \rightarrow \underline{S}S$	Suivi d'un symbole annulable	$\mathtt{Follow}(S) \supseteq \mathtt{Follow}(S)$		
$S \rightarrow S\underline{S}$	Situé à la fin	$ $ FOLLOW (S) \supseteq FOLLOW (S)		

Plus petite solution : $\mathrm{follow}(S) = \{a\,,b\,,\$\}$

Production Étape		Information	Table d'analyse	
$A \rightarrow B$	2a	$FIRST(B) = \{a, b, c\}$	$M[A,a] \ni A \to B$	
	2b	$\epsilon \notin \mathtt{FIRST}(B) \Rightarrow N/A$	$M[A,b] \ni A \to B$	
			$M[A,c] \ni A \to B$	
$A \rightarrow dB$	2a	$FIRST(dB) = \{d\}$	$M[A,d] \ni A \to dB$	
	2b	$\epsilon \notin \mathtt{FIRST}(dB) \Rightarrow N/A$		
$B \to cA$	2a	$FIRST(cA) = \{c\}$	$M[B,c] \ni B \to cA$	
	2b	$\epsilon \notin \mathtt{FIRST}(cA) \Rightarrow N/A$		
$B \to Cb$	2a	$\operatorname{FIRST}(Cb) = \{a, \epsilon\}$	$M[B,a] \ni B \to Cb$	
	2b	$\mathtt{FOLLOW}(B) = \{b,\$\}$	$M[B,b] \ni B \to Cb$	
			$M[B,\$] \ni B \to Cb$	
$B \to a$	2a	$FIRST(a) = \{a\}$	$M[B,a] \ni B \to a$	
	2b	$\epsilon \notin \mathtt{FIRST}(a) \Rightarrow N/A$		
$C \to aB$	2a	$FIRST(aB) = \{a\}$	$M[C,a] \ni C \to aB$	
	2b	$\epsilon \notin \mathtt{FIRST}(aB) \Rightarrow N/A$		
$C \to \epsilon$	2a	$FIRST(\epsilon) = \{\epsilon\} \Rightarrow N/A$	$M[C,b] \ni C \to \epsilon$	
	2b	$\operatorname{follow}(C) = \{b\}$		

	a	b	c	d	\$
A	$A \rightarrow B$	$A \to B$	$A \to B$	$A \rightarrow dB$	
B	$B \rightarrow a$	$B \to Cb$	$B \to cA$		$B \to Cb$
	$B \to Cb$				
C	$C \to aB$	$C \to \epsilon$			