Domain Name System

History of DNS

- Before DNS
 - ARPAnet
 - HOSTS.txt contains all the hosts' information
 - Maintained by SRI's Network Information Center
 - In SRI-NIC host
 - Problems: Not scalable!
 - Traffic and Load
 - Name Collision
 - Consistency
- Domain Name System
 - Administration decentralization
 - 1984
 - Paul Mockapetris (University of Southern California)
 - RFC 882, 883 → 1034, 1035
 - 1034: Concepts and facilities
 - Updated by: 4033, 4034, 4035, 4343
 - 1035: Implementation and Specification
 - Updated by: 3658, 4033, 4034, 4035, 4343

RFC Sourcebook:

http://www.networksorcery.com/enp/default.htm

DNS Introduction– DNS Specification

- Make domain name system as
 - Distributed database
 - Each site maintains segment of DB
 - Each site open self information via network
 - Client-Server architecture
 - Name servers provide information (Name Server)
 - Clients make queries to server (Resolver)
 - Tree architecture
 - Each subtree → "domain"
 - Domain can be divided in to "subdomain"

- Domain and Subdomain

- DNS Namespace
 - A tree of domains
- Domain and subdomain

 Each domain has a "domain name" to identify its position in database

EX: nctu.edu.tw

EX: cs.nctu.edu.tw

DNS database

DNS

database

com

- Delegation
- Administration delegation
 - Each domain can delegate responsibility to subdomain

- Administrated Zone

Zone

- Autonomously administered piece of namespace
 - Once the subdomain becomes a zone, it is independent to it's parent

Implementation of DNS

JEEVES

 Written by Paul Mockapetris for "TOPS-20" OS of DEC

- Berkeley Internet Name Domain
- Written by Kevin Dunlap for 4.3 BSD UNIX OS

The DNS Namespace (1)

- A inverted tree (Rooted tree)
 - Root with label "."

- Domain level
 - Top-level or First level
 - Child of the root
 - Second-level
 - Child of a First-level domain
- Domain name limitation
 - 63-characters in each component and
 - Up to 255-characters in a complete name

The DNS Namespace (2)

- gTLDs
 - generic Top-Level Domains, including:
 - com: commercial organization, such as ibm.com
 - edu: educational organization, such as <u>purdue.edu</u>
 - gov: government organization, such as <u>nasa.gov</u>
 - mil: military organization, such as navy.mil
 - net: network infrastructure providing organization,
 - such as hinet.net
 - org: noncommercial organization, such as x11.org
 - int: International organization, such as <u>nato.int</u>

ICANN - Internet Corporation for Assigned Names and Numbers http://www.icann.org/

The DNS Namespace (3)

New gTLDs launched in year 2000:

aero: for air-transport industry

biz: for business

coop: for cooperatives

info: for all uses

museum: for museum

name: for individuals

pro: for professionals

The DNS Namespace (4)

- Other than US, ccTLD
 - country code TLD (ISO 3166)
 - o Taiwan → tw
 - Japan → jp
 - Follow or not follow US-like scheme
 - US-like scheme example
 - edu.tw, com.tw, gov.tw
 - Other scheme
 - o co.jp, ac.jp

The DNS Namespace (5)

- Zone
 - Autonomously administered piece of namespace
- Two kinds of zone files
 - Forward Zone files
 - Hostname-to-Address mapping
 - Ex:
 - o bsd1 IN A 140.113.235.131
 - Reverse Zone files
 - Address-to-Hostname mapping
 - Ex:
 - 131.235.113.140 IN PTR bsd1.cs.nctu.edu.tw.

- BIND
 - the Berkeley Internet Name Domain system
- Main versions
 - BIND4
 - Announced in 1980s
 - Based on RFC 1034, 1035
 - BIND8
 - Released in 1997
 - Improvements including:
 - efficiency, robustness and security
 - BIND9
 - Released in 2000
 - Enhancements including:
 - multiprocessor support, DNSSEC, IPv6 support, etc
 - BIND10
 - The next generation of BIND
 - Modularity, Customizability, Clusterization, Integration with customer workflow, Resilience, Runtime control
 - https://www.isc.org/bind10/project

- components
- Three major components
 - named
 - Daemon that answers the DNS query
 - Library routines
 - Routines that used to resolve host by contacting the servers of DNS distributed database
 - Ex: res_query, res_search, ...etc.
 - Command-line interfaces to DNS
 - Ex: nslookup, dig, hosts

- named (1)
- Categories of name servers
 - Based on a name server's source of data
 - Authoritative: official representative of a zone
 - Master: get zone data from disk
 - Slave: copy zone data from master
 - Nonauthoritative: answer a query from cache
 - caching: cashes data from previous queries
 - Based on the type of data saved
 - Stub: a slave that copy only name server data (no host data)
 - Based on the type of answers handed out
 - Recursive: do query for you until it return an answer or error
 - Nonrecursive: refer you to the authoritative server
 - Based on the query path
 - Forwarder: performs queries on behalf of many clients with large cache

- named (2)
- Recursive query process
 - Ex: query <u>lair.cs.colorado.edu</u> → <u>vangogh.cs.berkeley.edu</u>, name server "ns.cs.colorado.edu" has no cache data

- named (3)
- Nonrecursive referral
 - Hierarchical and longest known domain referral with cache data of other zone's name servers' addresses
 - Ex:
 - Query lair.cs.colorado.edu from a nonrecursive server
 - Whether cache has
 - Name servers of cs.colorado.edu, colorado.edu, edu, root
 - The resolver libraries do not understand referrals mostly. They expect the local name server to be recursive

- named (4)
- Caching
 - Positive cache
 - Negative cache
 - No host or domain matches the name queried
 - The type of data requested does not exist for this host
 - The server to ask is not responding
 - The server is unreachable of network problem
- negative cache
 - 60% DNS queries are failed
 - To reduce the load of root servers, the authoritative negative answers must be cached

named (5)Root name servers

- - List in named.root file of BIND (/etc/namedb/named.root)

	2600000	IN	NS	A.ROOT-SERVERS.NET.
, DOOT CEDVEDS NET	3600000	ΤIΛ	_	
A.ROOT-SERVERS.NET.	3600000		A	198.41.0.4
A.ROOT-SERVERS.NET.	3600000		AAAA	2001:503:BA3E::2:30
	3600000		ŅS	B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET.	3600000		A	192.228.79.201
•	3600000		NS	C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET.	3600000		Α	192.33.4.12
	3600000		NS	D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET.	3600000		Α	128.8.10.90
	3600000		NS	E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET.	3600000		Α	192.203.230.10
	3600000		NS	F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET.	3600000		Α	192.5.5.241
F.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:2f::f
	3600000		NS	G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET.	3600000		Α	192.112.36.4
	3600000		NS	H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET.	3600000		Α	128.63.2.53
H.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:1::803f:235
	3600000		NS	I.ROOT-SERVERS.NET.
I.ROOT-SERVERS.NET.	3600000		Α	192.36.148.17
	3600000		NS	J.ROOT-SERVERS.NET.
J.ROOT-SERVERS.NET.	3600000		Α	192.58.128.30
J.ROOT-SERVERS.NET.	3600000		AAAA	2001:503:C27::2:30
	3600000		NS	K.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET.	3600000		A	193.0.14.129
K.ROOT-SERVERS.NET.	3600000		AAAA	2001:7fd::1
	3600000		NS	L.ROOT-SERVERS.NET.
L.ROOT-SERVERS.NET.	3600000		A	199.7.83.42
	3600000		NS	M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET.	3600000		A	202.12.27.33
M.ROOT-SERVERS.NET.	3600000		AAAA	2001:dc3::35

- named (6)
- o How to arrange your DNS servers?
 - Ex:

- A set of text files such that
 - Maintained and stored on the domain's master name server
 - Two types of entries
 - Resource Records (RR)
 - Used to store the information of
 - The real part of DNS database
 - Parser commands
 - Used to modify or manage other RR data

- Parser Commands
- Commands must start in first column and be on a line by themselves
- \$ORIGIN domain-name
 - Used to append to un-fully-qualified name
- \$INCLUDE file-name
 - Separate logical pieces of a zone file
 - Keep cryptographic keys with restricted permissions
- \$TTL default-ttl
 - Default value for time-to-live filed of records
- \$GENERATE start-stop/[step] Ihs type rhs
 - Used to generate a series of similar records
 - Can be used in only CNAME, PTR, NS record types

Resource Record (1)

- Basic format
 - [name] [ttl] [class] type data
 - name: the entity that the RR describes
 - ttl: time in second of this RR's validity in cache
 - class: network type
 - IN for Internet
 - CH for ChaosNet
 - HS for Hesiod
 - Special characters
 - ; (comment)
 - @ (The current domain name)
 - () (allow data to spam lines
 - * (wild card character, name filed only)

- Resource Record (2)
- Type of resource record discussed later
 - Zone records: identify domains and name servers
 - SOA
 - NS
 - Basic records:

map names to addresses and route mail

- o A
- PTR
- MX
- Optional records: extra information to host or domain
 - CNAME
 - TXT
 - LOC
 - SRV

THE DNS DATABASE

- RESOURCE RECORD (3)

lika	Туре	Name	Function
ne	SOA	Start Of Authority	Defines a DNS zone of authority
Zone	NS	Name Server	Identifies zone servers, delegates subdomains
	Α	IPv4 Address	Name-to-address translation
	AAAA	Original IPv6 Address	Now obsolete, DO NOT USE
Sic	A6	IPv6 Address	Name-to-IPv6-address translation (V9 only)
Basic	PTR	Pointer	Address-to-name translation
129	DNAME	Redirection	Redirection for reverse IPv6 lookups (V9 only)
	MX	Mail Exchanger	Controls email routing
ty	KEY	Public Key	Public key for a DNS name
Security	NXT	Next	Used with DNSSEC for negative answers
Se	SIG	Signature	Signed, authenticated zone
	CNAME	Canonical Name	Nicknames or aliases for a host
lal	LOC	Location	Geographic location and extent ^a
Optional	RP	Responsible Person	Specifies per-host contact info
О	SRV	Services	Gives locations of well-known services
	TXT	Text	Comments or untyped information

- Resource Record (4)

- SOA: Start Of Authority
 - Defines a DNS zone of authority, each zone has exactly one SOA record.
 - Specify the name of the zone, the technical contact and various timeout information
 - Format:
 - [zone] IN SOA [server-name] [administrator' s mail] (serial, refresh, retry, expire, ttl)

```
Ex:
                                                          means comments
                                                          means current domain name
                                                          allow data to span lines
                                                          Wild card character
   3600:
$ORIGIN cs.nctu.edu.tw.
                         csns.cs.nctu.edu.tw.
                S<sub>0</sub>A
                                                  root.cs.nctu.edu.tw.
                        2009051102
                                                    refresh time for slave server
                                                    expire
                2H
```

Resource Record (5)

NS: Name Server

- Identify the authoritative server for a zone
- Usually follow the SOA record
- Every authoritative name servers should be listed both in current domain and parent domain zone files
 - Delegation purpose
 - Ex: cs.nctu.edu.tw and nctu.edu.tw

```
$TTL 3600;
$ORIGIN cs.nctu.edu.tw.

@ IN SOA csns.cs.nctu.edu.tw. root.cs.nctu.edu.tw. (
2009051102 ; serial number

ID ; refresh time for slave server

30M ; retry

1W ; expire

2H ) ; minimum

IN NS dns.cs.nctu.edu.tw.

IN NS dns2.cs.nctu.edu.tw.
```

- Resource Record (6)
- A record: Address
 - Provide mapping from hostname to IP address
 - Ex:

```
$0RIGIN cs.nctu.edu.tw.
                         dns.cs.nctu.edu.tw.
(d
        ΙN
                NS
                NS
                         dns2.cs.nctu.edu.tw.
dns
                Α
                         140.113.235.107
        ΙN
dns2
        IN
                         140.113.235.103
                         140.113.235.111
        IN
WWW
```

Resource Record (7)

• PTR: Pointer

- Perform the reverse mapping from IP address to hostname
- Special top-level domain: in-addr.arpa
 - Used to create a naming tree from IP address to hostnames

- Resource Record (8)
- MX: Mail exchanger
 - Direct mail to a mail hub rather than the recipient's own workstation
 - Ex:

```
$TTL 3600;
$ORIGIN cs.nctu.edu.tw.
                   S<sub>0</sub>A
                             csns.cs.nctu.edu.tw.
                                                          root.cs.nctu.edu.tw.
                             2009051102
                                                             serial number
                                                             refresh time for slave server
                             30M
                                                             expire
                                                  minimum
                             dns.cs.nctu.edu.tw.
                   NS
                             dns2.cs.nctu.edu.tw.
                       MX 5 csmx1.cs.nctu.edu.tw.
MX 5 csmx2.cs.nctu.edu.tw
                 IN
IN
IN
                                csmx3.cs.nctu.edu.tw.
csmx1
```

- Resource Record (9)
- CNAME: Canonical name
 - Add additional names to a host
 - CNAME record can nest eight deep in BIND
 - Ex:

www penghu-club King	IN IN IN IN	A A CNAME CNAME	140.113.209.63 140.113.209.77 www www
R21601	IN	A	140.113.214.31
superman	IN	CNAME	r21601

Resource Record (10)

TXT: Text

Add arbitrary text to a host's DNS records

```
$TTL 3600;
$0RIGIN cs.nctu.edu.tw.
                 S<sub>0</sub>A
                          csns.cs.nctu.edu.tw.
                                                    root.cs.nctu.edu.tw.
                          2009051102
                                                      serial number
                                                      refresh time for slave server
                          30M
                                                      expire
                 NS
        IN
                          dns.cs.nctu.edu.tw.
                          dns2.cs.nctu.edu.tw.
        ΙN
                 TXT
                         "Department of Computer Science"
```

- Resource Record (11)
- LOC: Location
 - Describe the geographic location and physical size of a DNS object
 - Format:
 - name [ttl] IN LOC latitude longitude [altitude [size [hp [vp]]]]
 - latitude 緯度
 - longitude 經度
 - altitude 海拔
 - size: diameter of the bounding sphere
 - hp: horizontal precision
 - vp: vertical precision

caida.org. IN LOC 32 53 01 N 117 14 25 W 107m 30m 18m 15m

Resource Record (12)

- SRV: Service
 - Specify the location of services within a domain
 - Format:
 - service. proto.name [ttl] IN SRV pri weight port target
 - Ex:

```
; don't allow finger
                                                 0
finger. tcp
                             SRV
                                       0
                                                           79
; 1/4 of the connections to old, 3/4 to the new
                   SRV
                                                 22
                                                           old.cs.colorado.edu.
ssh. tcp
                   SRV
                                                 22
                                                           new.cs.colorado.edu.
ssh. tcp
; www server
                   SRV
                                                 80
                                                           www.cs.colorado.edu.
_http._tcp
                   SRV
                             10
                                                 8000
                                                           new.cs.colorado.edu
: block all other services
*. tcp
                   SRV
                                       0
                   SRV
*. udp
```

```
x:~ -lwhsu- dig _http._tcp.update.freebsd.org SRV
; <>>> DiG 9.3.3 <<>> http. tcp.update.freebsd.org SRV
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 22121
;; flags: gr rd ra; QUERY: 1, ANSWER: 6, AUTHORITY: 6, ADDITIONAL: 0
:: OUESTION SECTION:
; http. tcp.update.freebsd.org. IN
                                       SRV
:: ANSWER SECTION:
http. tcp.update.freebsd.org. 3595 IN SRV
                                                1 50 80 update5.FreeBSD.org.
http. tcp.update.freebsd.org. 3595 IN SRV
                                                1 5 80 update1.FreeBSD.org.
http. tcp.update.freebsd.org. 3595 IN SRV
                                                1 10 80 update3.FreeBSD.org.
http. tcp.update.freebsd.org. 3595 IN
                                                1 10 80 update6.FreeBSD.org.
                                       SRV
http. tcp.update.freebsd.org. 3595 IN SRV
                                                1 15 80 update2.FreeBSD.org.
http._tcp.update.freebsd.org. 3595 IN
                                        SRV
                                                1 35 80 update4.FreeBSD.org.
;; AUTHORITY SECTION:
                                       NS
                                IN
                                                B0.ORG.AFILIAS-NST.org.
                       35745
org.
                      35745
                                IN
                                        NS
                                                B2.ORG.AFILIAS-NST.org.
org.
                                IN
                                       NS
                      35745
                                                CO.ORG.AFILIAS-NST.INFO.
orq.
                       35745
                                IN
                                       NS
                                                D0.ORG.AFILIAS-NST.org.
org.
                               IN
                                       NS
                                                A0.ORG.AFILIAS-NST.INFO.
                       35745
org.
                       35745
                               ΙN
                                       NS
                                                A2.ORG.AFILIAS-NST.INFO.
org.
;; Query time: 2 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Wed May 13 18:05:25 2009
:: MSG SIZE rcvd: 419
```

Resource Record (13)

- Glue record Link between zones
 - Parent zone needs to contain the NS records for each delegated zone
 - Ex: In zone files of nctu, it might contain:

cs dns.cs dns2.cs	IN IN IN IN	NS NS A A	dns.cs.nctu.edu.tw. dns2.cs.nctu.edu.tw. 140.113.235.107 140.113.235.103
ns.ee dns.ee reds.ee	IN IN IN IN IN	NS NS NS A A	ns.ee.nctu.edu.tw. dns.ee.nctu.edu.tw. reds.ee.nctu.edu.tw. 140.113.212.150 140.113.11.4 140.113.202.1

- Lame delegation
 - DNS subdomain administration has delegate to you and you never use the domain or parent domain's glue record is not updated

BIND Configuration

named in FreeBSD

- startup
 - Edit /etc/rc.conf
 - o named enable="YES"
 - Manual utility command
 - o % rndc {stop | reload | flush ...}
 - In old version of BIND, use ndc command
- Configuration files
 - /etc/namedb/named.conf
 - Configuration file
 - /etc/namedb/named.root
 - DNS root server cache hint file
 - Zone data files
- See your BIND version
 - % dig @127.0.0.1 version.bind txt chaos
 - version.bind.

0

BIND Configuration - named.conf (1)

- o /etc/namedb/named.conf
 - Roles of this name server
 - Master, slave, or stub
 - Global options
 - Zone specific options
- named.conf is composed of following statements:
 - include, options, server, key, acl, zone, view, controls, logging, trusted-keys

BIND Configuration – named.conf (2)

- Address Match List
 - A generalization of an IP address that can include:
 - An IP address
 - Ex. 140.113.17.1
 - An IP network with CIDR netmask
 - Ex. 140.113/16
 - The! character to do negate
 - The name of a previously defined ACL
 - A cryptographic authentication key
 - Example:
 - {!1.2.3.4; 1.2.3/24;};
 - {128.138/16; 198.11.16/24; 204.228.69/24; 127.0.0.1;};

BIND Configuration

- named.conf include
- The "include" statement
 - Used to separate large configuration file
 - Another usage is used to separate cryptographic keys into a restricted permission file
 - Ex:

```
include "/etc/namedb/rndc.key";
```

```
-rw-r--r-- 1 root wheel 4947 Mar 3 2006 named.conf
-rw-r---- 1 bind wheel 92 Aug 15 2005 rndc.key
```

BIND Configuration – named.conf acl

- The "acl" statement
 - Define a class of access control
 - Define before they are used
 - Syntax acl acl_name { address_match_list };
 - Predefined acl classes

};

o any, localnets, localhost, none

```
• Example
acl CSnets {
    140.113.235/24; 140.113.17/24; 140.113.209/24;
140.113.24/24;
};
acl NCTUnets {
    140.113/16; 10.113/16; 140.126.237/24;
```

```
allow-transfer {localhost; CSnets; NCTUnets};
```

BIND Configuration - named.conf key

- The "key" statement
 - Define a encryption key used for authentication with a particular server
 - Syntax key key-id { algorithm string; secret string; }
 - Example:

```
key serv1-serv2 {
    algorithm hmac-md5;
    secret "ibkAlUA0XXAXDxWRTGeY+d4CGbOgOIr7n63eizJFHQo="
}
```

- This key is used to
 - Sign DNS request before sending to target
 - Validate DNS response after receiving from target

BIND Configuration - named.conf option (1)

- The "option" statement
 - Specify global options
 - Some options may be overridden later for specific zone or server
 - Syntax:options {option;option;
- There are about 50 options in BIND9
 - version "There is no version."; [real version num]
 version.bind.
 O CH TXT "9.3.3"
 version.bind.
 O CH TXT "There is no version."
 - directory "/etc/namedb/db";
 - Base directory for relative path and path to put zone data files

BIND Configuration – named.conf option (2)

```
notify yes | no
                                                           [yes]

    Whether notify slave sever when relative zone data is changed

also-notify 140.113.235.101;
                                                           [empty]

    Also notify this non-NS server

recursion yes | no
                                                           [ves]

    Recursive name server

    allow-recursion {address match list };

                                                           [all]

    Finer granularity recursion setting

check-names {master|slave|response action};

    check hostname syntax validity

    Letter, number and dash only

    64 characters for each component, and 256 totally

    • Action:
       ignore: do no checking
                log bad names but continue
       o warn:
       o fail:
                log bad names and reject

    default action

    master fail

       slave
                warn
                           ignore

    response
```

BIND Configuration – named.conf option (3)

listen-on port ip port address match list; [53, all] NIC and ports that named listens for guery Ex: listen-on port 5353 {192.168.1/24;}; query-source address ip addr port ip port; [random] NIC and port to send DNS query forwarders {in_addr; ...}; [empty] Often used in cache name server Forward DNS query if there is no answer in cache forward only | first; [first] • If forwarder does not response, queries for forward only server will fail allow-query address match list; [all] Specify who can send DNS query to you allow-transfer address match list; [all] Specify who can request zone transfer to you blackhole address match list; [empty] Reject queries and would never ask them for answers

BIND Configuration – named.conf option (4)

- transfer-format one-answer | many-answers; [many-answers]
 - Ways to transfer data records from master to slave
 - How many data records in single packet
- transfers-in num; [10]
- transfers-out num; [10]
 - Limit of the number of inbound and outbound zone transfers concurrently
- transfers-per-ns num; [2]
 - Limit of the inbound zone transfers concurrently from the same remote server
- transfer-source IP-address;
 - IP of NIC used for inbound transfers
- serial-queries num; [4]
 - Limit of simultaneous inquiries for serial number of a zone

BIND Configuration – named.conf_server

- The "server" statement
 - Tell named about the characteristics of its remote peers
 - Syntax

```
server ip_addr {
  bogus no|yes;
  provide-ixfr yes|no; (for master)
  request-ixfr yes|no; (for slave)
  transfers num;
  transfer-format many-answers|one-answer;
  keys { key-id; key-id};
};
```

- ixfr
 - Incremental zone transfer
- transfers
 - Limit of number of concurrent inbound zone transfers from that server
 - Server-specific transfers-in
- keys
 - Any request sent to the remote server is signed with this key

BIND Configuration

- named.conf zone (1)
- o The "zone" statement
 - Heart of the named.conf that tells named about the zones that it is authoritative
 - zone statement format varies depending on roles of named
 - Master or slave
 - Basically

```
Syntax:
zone "domain_name" {
    type master | slave| stub;
    file "path";
    masters {ip_addr; ip_addr;};
    allow-query {address_match_list};
    allow-transfer { address_match_list};
    allow-update {address_match_list};
    [all]
    allow-update {address_match_list};
};
```

BIND Configuration – named.conf zone (2)

Master server zone configuration

```
zone "ce.nctu.edu.tw" IN {
   type master;
   file "named.hosts";
   allow-query { any; };
   allow-transfer { localhost; CS-DNS-Servers; };
   allow-update { none; };
};
```

Slave server zone configuration

```
zone "cs.nctu.edu.tw" IN {
    type slave;
    file "cs.hosts";
    masters { 140.113.235.107; };
    allow-query { any; };
    allow-transfer { localhost; CS-DNS-Servers; };
};
```

BIND Configuration - named.conf zone (3)

Forward zone and reverse zone

```
zone "cs.nctu.edu.tw" IN {
  type master;
  file "named.hosts";
  allow-query { any; };
  allow-transfer { localhost; CS-DNS-Servers; };
  allow-update { none; };
};
zone "235.113.140.in-addr.arpa" IN {
   type master;
   file "named.235.rev";
   allow-query { any; };
   allow-transfer { localhost; CS-DNS-Servers; };
   allow-update { none; };
};
```

BIND Configuration - named.conf zone (4)

Example

In named.hosts, there are plenty of A or CNAME records

•••			
bsd1	IN	Α	140.113.235.131
csbsd1	IN	CNAME	bsd1
bsd2	IN	Α	140.113.235.132
bsd3	IN	Α	140.113.235.133
bsd4	IN	Α	140.113.235.134
bsd5	IN	Α	140.113.235.135

In named.235.rev, there are plenty of PTR records

131.235.113.140	IN	PTR	bsd1.cs.nctu.edu.tw.
132.235.113.140	IN	PTR	bsd2.cs.nctu.edu.tw.
133.235.113.140	IN	PTR	bsd3.cs.nctu.edu.tw.
134.235.113.140	IN	PTR	bsd4.cs.nctu.edu.tw.
135.235.113.140	IN	PTR	bsd5.cs.nctu.edu.tw.

BIND Configuration - named.conf zone (5)

- Setting up root hint
 - A cache of where are the DNS root servers
 zone "." IN {
 type hint;
 file "named.root";
- Setting up forwarding zone
 - Forward DNS query to specific name server, bypassing the standard query path zone "nctu.edu.tw" IN {

```
zone "nctu.edu.tw" IN {
    type forward;
    forward first;
    forwarders { 140.113.250.135; 140.113.1.1; };
};

zone "113.140.in-addr.arpa" IN {
    type forward;
    forward first;
    forwarders { 140.113.250.135; 140.113.1.1; };
};
```

BIND Configuration

- named.conf view (1)
- The "view" statement
 - Create a different view of DNS naming hierarchy for internal machines
 - Restrict the external view to few well-known servers
 - Supply additional records to internal users
 - Also called "split DNS"
 - In-order processing
 - Put the most restrictive view first
 - All-or-nothing
 - All zone statements in your named.conf file must appear in the content of view

BIND Configuration - named.conf view (2)

```
    Syntax
        view view-name {
            match_clients {address_match_list};
            view_options;
            zone_statement;
        };
```

Example

```
view "internal" {
     match-clients {our_nets;};
     recursion yes;
     zone "cs.nctu.edu.tw" {
          type master;
          file "named-internal-cs";
     };
view "external" {
match-clients {any;};
     recursion no;
     zone "cs.nctu.edu.tw" {
          type master;
          file "named-external-cs";
     };
```

BIND Configuration

- named.conf controls
- The "controls" statement
 - Specify how the named server listens for control message

```
    Syntax
    controls {
        inet ip_addr allow {address_match_list} keys {key-id;};
};

Example:

key "rndc_key" {
        algorithm hmac-md5;
        secret "GKnELuie/G99Np0C2/AXwA==";
};

include "/etc/named/rndc.key";

controls {
    inet 127.0.0.1 allow {127.0.0.1;} keys {rndc_key;};
}
```

```
SYNOPSIS

rndc [-c config-file] [-k key-file] [-s server] [-p port] [-V]

[-y key_id] {command}
```

Updating zone files

Master

- Edit zone files
 - Serial number
 - Forward and reverse zone files for single IP
- Do "rndc reload"
 - "notify" is on, slave will be notify about the change
 - "notify" is off, refresh timeout, or do "rndc reload" in slave

Zone transfer

- DNS zone data synchronization between master and slave servers
- AXFR (all zone data are transferred at once, before BIND8.2)
- IXFR (incremental updates zone transfer)
- TCP port 53

Non-byte boundary (1)

- In normal reverse configuration:
 - named.conf will define a zone statement for each reverse subnet zone and
 - Your reverse db will contains lots of PTR records
 - Example:

```
$TTL
         3600
$ORIGIN 1.168.192. in-addr. arpa.
         ΤN
                  SOA
                           lwhsu, csie, net lwhsu, lwhsu, csie, net.
                           2007050401
                                             : Serial
                           3600
                                             : Refresh
                           900
                                              ; Retry
                           7D
                                              : Expire
                           2H )
                                              : Minimum
         IN
                  NS
                           ns. 1whsu. csie. net.
254
                  PTR
         ΤN
                           ns. lwhsu. csie. net.
                  PTR
        ΤN
                           www. lwhsu. csie. net.
                  PTR
         ΤN
                           ftp. lwhsu. csie. net.
```

```
zone "1.168.192.in-addr.arpa." {
   type master;
   file "named.rev.1";
   allow-query {any;};
   allow-update {none;};
   allow-transfer {localhost;};
};
```

Non-byte boundary (2)

- What if you want to delegate 192.168.2.0 to another subdomain
 - Parent
 - **Remove** forward db about 192.168.2.0/24 network
 - Ex:
 pc1.lwhsu.csie.net. IN A 192.168.2.35
 pc2.lwhsu.csie.net. IN A 192.168.2.222
 - Remove reverse db about 2.168.192.in-addr.arpa
 - Ex:

```
35.2.168.192.in-addr.arpa. IN PTR pc1.lwhsu.csie.net. 222.2.168.192.in-addr.arpa. IN PTR pc2.lwhsu.csie.net.
```

• • •

- Add glue records about the name servers of sub-domain
 - Ex: in zone db of "lwhsu.csie.net"

```
sub1 IN NS ns.sub1.lwhsu.csie.net.
ns.sub1 IN A 192.168.2.1
```

• Ex: in zone db of "168.192.in-addr.arpa."

```
2 IN NS ns.sub1.lwhsu.csie.net. ns.sub1 IN A 192.168.2.1
```

Non-byte boundary (3)

- What if you want to delegate 192.168.3.0 to four subdomains (a /26 network)
 - 192.168.3.0 ~ 192.168.3.63
 - ns.sub1.lwhsu.csie.net.
 - 192.168.3.64 ~ 192.168.3.127
 - ns.sub2.lwhsu.csie.net.
 - 192.168.3.128 ~ 192.168.3.191
 - ns.sub3.lwhsu.csie.net.
 - 192.168.3.192 ~ 192.168.3.255
 - ns.sub4.lwhsu.csie.net.
- It is easy for forward setting
 - In zone db of lwhsu.csie.net

```
    sub1
    ns.sub1.lwhsu.csie.net.
    ns.sub1
    IN
    A 1921.68.3.1
    sub2
    IN
    NS ns.sub2.lwhsu.csie.net.
    ns.sub2
    IN
    A 192.168.3.65
```

o ...

Non-byte boundary (4)

- Non-byte boundary reverse setting
 - Method1

```
$GENERATE 0-63 $.3.168.192.in-addr.arpa.
                                                     IN
                                                         NS
     ns.sub1.lwhsu.csie.net.
$GENERATE 64-127 $.3.168.192.in-addr.arpa.
                                                     IN
                                                        NS
     ns.sub2.lwhsu.csie.net.
$GENERATE 128-191 $.3.168.192.in-addr.arpa.
                                                     IN
                                                         NS
     ns.sub3.lwhsu.csie.net.
$GENERATE 192-255 $.3.168.192.in-addr.arpa.
                                                          NS
                                                     IN
     ns.sub4.lwhsu.csie.net.
And
zone "1.3.168.192.in-addr.arpa." {
  type master;
  file "named.rev.192.168.3.1":
};
: named.rev.192.168.3.1
       SOA sub1.lwhsu.csie.net. root.sub1.lwhsu.csie.net.
  (1;3h;1h;1w;1h)
        NS
             ns.sub1.lwhsu.csie.net.
```

Non-byte boundary (5)

Method2

```
$ORIGIN 3.168.192.in-addr.arpa.
$GENERATE 1-63
                                        ΙN
                                             CNAME
                                                        $.0-63.3.168.192.in-addr.arpa.
0-63.3.168.192.in-addr.arpa.
                                             NS
                                                          ns.sub1.lwhsu.csie.net.
                                        IN
$GENERATE 65-127 $
                                                        $.64-127.3.168.192.in-addr.arpa.
                                        ΤN
                                             CNAME
64-127.3.168.192.in-addr.arpa.
                                             NS
                                                          ns.sub2.lwhsu.csie.net.
                                        ΙN
$GENERATE 129-191
                                             CNAME
                                                        $.128-191.3.168.192.in-addr.arpa.
                                        IN
128-191.3.168.192.in-addr.arpa.
                                             NS
                                                          ns.sub3.lwhsu.csie.net.
                                        IN
$GENERATE 193-255
                                                        $.192-255.3.168.192.in-addr.arpa.
                                        ΙN
                                             CNAME
192-255.3.168.192.in-addr.arpa.
                                             NS
                                                          ns.sub4.lwhsu.csie.net.
                                        IN
zone "0-63.3.168.192.in-addr.arpa." {
   type master;
   file "named.rev.192.168.3.0-63";
};
```

```
; named. rev. 192. 168. 3. 0-63
@ IN SOA subl. lwhsu. csie. net. root. subl. lwhsu. csie. net. (1;3h;1h;1w;1h)
IN NS ns. subl. lwhsu. csie. net.

1 IN PTR www. subl. lwhsu. csie. net.
2 IN PTR abc. subl. lwhsu. csie. net.
```


Security

named.conf security configuration

Security configuration

Feature	Config. Statement	comment
allow-query	options, zone	Who can query
allow-transfer	options, zone	Who can request zone transfer
allow-update	zone	Who can make dynamic updates
blackhole	options	Which server to completely ignore
bogus	server	Which servers should never be queried

Security

- With TSIG (1)

- TSIG (Transaction SIGnature)
 - Developed by IETF (RFC2845)
 - Symmetric encryption scheme to sign and validate DNS requests and responses between servers
 - Algorithm in BIND9
 - HMAC-MD5, DH (Diffie Hellman)
 - Usage
 - Prepare the shared key with dnssec-keygen
 - Edit "key" statement
 - Edit "server" statement to use that key
 - Edit "zone" statement to use that key with:
 - allow-query
 - allow-transfer
 - allow-update

Security

- With TSIG (2)

- TSIG example (dns1 with dns2)
 - 1. % dnssec-keygen a HMAC-MD5 b 128 n HOST cs

```
% dnssec-keygen -a HMAC-MD5 -b 128 -n HOST cs
Kcs. +157+35993
% cat Kcs. +157+35993. key
cs. IN KEY 512 3 157 oQRab/QqXHVhkyXi9uu8hg==
```

```
% cat Kcs. +157+35993. private
Private-key-format: v1. 2
Algorithm: 157 (HMAC_MD5)
Key: oQRab/QqXHVhkyXi9uu8hg==
```

Edit /etc/named/dns1-dns2.key

```
key dns1-dns2 {
    algorithm hmac-md5;
    secret "oQRab/QqXHVhkyXi9uu8hg=="
};
```

Edit both named.conf of dns1 and dns2

```
Suppose dns1 = 140.113.235.107
```

```
include "dns1-dns2.key"
server 140.113.235.103 {
    keys {dns1-dns2;};
};
```

```
dns2 = 140.113.235.103
```

```
include "dns1-dns2.key"
server 140.113.235.107 {
    keys {dns1-dns2;};
};
```

BIND Debugging and Logging

Logging (1)

- Terms
 - Channel
 - A place where messages can go
 - Ex: syslog, file or /dev/null
 - Category
 - A class of messages that named can generate
 - Ex: answering queries or dynamic updates
 - Module
 - The name of the source module that generates the message
 - Facility
 - syslog facility name
 - Severity
 - Priority in syslog
- Logging configuration
 - Define what are the channels
 - Specify where each message category should go
- When a message is generated
 - It is assigned a "category", a "module", a "severity"
 - It is distributed to all channels associated with its category

Logging (2)

- The "logging" statement
 - Either "file" or "syslog" in channel sub-statement
 - o size:
 - o ex: 2048, 100k, 20m, 15g, unlimited, default
 - o facility:
 - ex: local0 ~ local7
 - severity:
 - o critical, error, warning, notice, info, debug, dynamic

```
logging {
    channel_def;
    channel_def;
    ...
    category category_name {
        channel_name;
        channel_name;
        ...
    };
}
```

```
channel channel_name {
    file path [versions num|unlimited] [size siznum];
    syslog facility;

    severity severity;
    print-category yes|no;
    print-severity yes|no;
    print-time yes|no;
};
```

Logging (3)

Predefined channels

default_syslog	Sends severity info and higher to syslog with facility daemon
default_debug	Logs to file "named.run", severity set to dynamic
default_stderr	Sends messages to stderr or named, severity info
null	Discards all messages

Available categories

default	Categories with no explicit channel assignment
general	Unclassified messages
config	Configuration file parsing and processing
queries/client	A short log message for every query the server receives
dnssec	DNSSEC messages
update	Messages about dynamic updates
xfer-in/xfer-out	zone transfers that the server is receiving/sending
db/database	Messages about database operations
notify	Messages about the "zone changed" notification protocol
security	Approved/unapproved requests
resolver	Recursive lookups for clients

Logging (4)

Example of logging statement

```
logging {
   channel security-log {
       file "/var/named/security.log" versions 5 size 10m;
       severity info;
       print-severity yes;
       print-time yes;
   channel query-log {
       file "/var/named/query.log" versions 20 size 50m;
       severity info;
       print-severity yes;
       print-time yes;
   category default
                          { default syslog; default debug; };
                          { default syslog; };
   category general
                          { security-log; };
   category security
   category client
                          { query-log; };
   category queries
                         { query-log; };
                          { security-log; };
   category dnssec
};
```

Debug

- Named debug level
 - From 0 (debugging off) ~ 11 (most verbose output)
 - % named -d2
 - % rndc trace
 - % rndc trace 3
 - % rndc notrace

(start named at level 2)

(increase debugging level by 1)

(change debugging level to 3)

(turn off debugging)

- Debug with "logging" statement
 - Define a channel that include a severity with "debug" keyword
 - Ex: severity debug 3
 - All debugging messages up to level 3 will be sent to that particular channel

Tools

nslookup

- Interactive and Non-interactive
 - Non-Interactive
 - % nslookup cs.nctu.edu.tw.
 - % nslookup -type=mx cs.nctu.edu.tw.
 - % nslookup -type=ns cs.nctu.edu.tw. 140.113.1.1

Interactive

- % nslookup
- > set all
- > set type=any
- > set server host
- > set lserver host
- > set debug
- > set d2

```
csduty:~ -lwhsu- nslookup
Default server: 140.113.235.107
Address: 140.113.235.107#53
Default server: 140.113.235.103
Address: 140.113.235.103#53
Default server: 140.113
Address: 140.113.1.1#53
Set options:
                                          nod2
                         nodebug
  novc
 search
                         recurse
  timeout = 0
                         retry = 3
                                          port = 53
  querytype = A
                         class = IN
 srchlist = cs.nctu.edu.tw/csie.nctu.edu.tw
```

Tools

dig

- Usage
 - % dig cs.nctu.edu.tw
 - % dig cs.nctu.edu.tw mx
 - % dig @ns.nctu.edu.tw cs.nctu.edu.tw mx
 - % dig -x 140.113.209.3
 - Reverse query
- Find out the root servers
 - % dig @a.root-servers.net . ns

Tools

- host

- host command
 - % host cs.nctu.edu.tw.
 - % host t mx cs.nctu.edu.tw.
 - % host 140.113.1.1
 - % host v 140.113.1.1

Miscellaneous

SSHFP record

- o RFC4255
- ssh_config
 - VerifyHostKeyDNS ask
- dns/sshfp

DNS Accept filters

- accf_dns(9)
 - buffer incoming DNS requests until the whole first request is present

```
options INET
options ACCEPT_FILTER_DNS
kldload accf dns
```

Currently only on 8-CURRENT

Other references & tools

- Administrator's Reference Manual
 - https://www.isc.org/software/bind/documentation
- FAQ
 - https://www.isc.org/faq/bind
- DNS for Rocket Scientists
 - http://www.zytrax.com/books/dns/
- Swiss army knife internet tool
 - http://www.robtex.com/
- DNS Network Tools
 - http://dnsstuff.com/