Sequences

- 1. **Quote.** "Life is a full circle, widening until it joins the circle motions of the infinite." (Anaïs Nin, French-American diarist, essayist, novelist, 1903-1977)
- 2. **Quote.**"I don't want to belong to any club that would have me as a member." (Julius Henry "**Groucho**" Marx, American comedian, writer, stage, film, radio, and television star, 1890-1977)
- 3. Mensa Puzzle. What number comes next in this sequence?

1 3 8 19 42 ?

What is the 100th number in the sequence?

Let's call the elements of this sequence a_n , n = 1, 2, 3, ...

Can you see a pattern?

4. Sequence.

A **sequence** is a function whose domain is the set $\mathbb{Z}^+ = \{1, 2, 3, \ldots\}$ of positive integers.

If the function is $s : \mathbb{Z}^+ \to \mathbb{R}$, then the output s(n) is usually written as s_n , we also write the whole sequence as $s = \{s_n\}$.

Note: Sometimes the domain of a sequence is may be taken as $\mathbb{N} = \mathbb{Z}^+ \cup \{0\}$, in which case we write $\{s_n\}_{n=0}^{\infty}$.

5. Examples.

(a) Write out the first few terms of the sequence

$$\{\cos n\pi\}_{n=2}^{\infty}.$$

Is it possible to write this sequence in a different form?

(b) Graph the sequence $\left\{1 + \frac{(-1)^n}{n}\right\}$.

6. Definition: Limit of a sequence.

(Informal definition)

A sequence $\{a_n\}$ has the **limit** L and we write

$$\lim_{n\to\infty} a_n = L \text{ or } a_n \to L \text{ as } n \to \infty$$

if we can make the terms a_n as close to L as we like by taking n sufficiently large.

If $\lim_{n\to\infty} a_n$ exists, we say the sequence **converges** (or it is **convergent**). Otherwise, we say the sequence **diverges** (or is **divergent**). Or even simpler, we say the sequence does not converge.

7. Definition: Limit of a sequence.

(Formal or mathematically rigorous definition, called the " ϵ -N definition")

A sequence $\{a_n\}$ has the **limit** L and we write

$$\lim_{n\to\infty} a_n = L \text{ or } a_n \to L \text{ as } n \to \infty$$

if for every $\varepsilon > 0$ there is a corresponding integer N such that

$$|a_n - L| < \varepsilon$$
 whenever $n > N$.

8. **Example.** Is the sequence $\left\{\frac{2n}{n+3}\right\}$ convergent or divergent?

9. **Example.** Is the sequence $1000 \{(1+0.03)^n\}$ convergent or divergent?

Note: This describes the amount of money in your bank account after year n, if you start with \$1000, never deposit or withdraw anything, and the bank pays you 3% interest. Or, how much you owe after n years if you borrow \$1000 at 3% interest, and don't make any payments.

10. Theorem.

Consider the sequence $f(n) = a_n$ where n is an integer.

If
$$\lim_{x\to\infty} f(x) = L$$
 then $\lim_{n\to\infty} a_n = L$.

11. **Definition.**

$$\lim_{n o\infty}a_n=\infty$$

means that for every positive number M there is an integer N such that

$$a_n > M$$
 whenever $n > N$.

12. Facts about sequences.

If $\{a_n\}$ and $\{b_n\}$ are convergent sequences and c is a constant, then

- (a) $\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n$
- (b) $\lim_{n\to\infty}(ca_n)=c\lim_{n\to\infty}a_n$ (in particular, this means that $\lim_{n\to\infty}c=c$)
- (c) $\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$
- (d) $\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{\lim\limits_{n\to\infty}a_n}{\lim\limits_{n\to\infty}b_n}$, as long as $\lim\limits_{n\to\infty}b_n
 eq 0$
- (e) $\lim_{n\to\infty} (a_n)^p = \left(\lim_{n\to\infty} a_n\right)^p$ only for p>0 and $a_n>0$.
- (f) If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$.
- (g) If $a_n \le c_n \le b_n$ for all $n \ge N$, and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = L$, then $\lim_{n \to \infty} c_n = L$.
- (h) If $\lim_{n\to\infty} a_n = L$ and a function f is continuous at L, then $\lim_{n\to\infty} f(a_n) = f(L)$

13. Examples.

- (a) Show that the sequence $\{\sqrt[n]{n}\}$ converges to 1.
- (b) Is the sequence $a_n = \sin\left(\frac{n\pi}{2}\right)$ convergent or divergent?

14. Examples.

- (a) Does the sequence $\left\{\frac{\cos{(n\pi)}}{n}\right\}$ converge or diverge?
- (b) For what values of r is the sequence $\{r^n\}$ convergent?

15. **Definition.**

A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$, that is, $a_1 < a_2 < a_3 < \dots$

It is called **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$.

It is called **monotonic** if it is either increasing or decreasing.

Note: In many cases it is only important how the sequence behaves for large n. For example, we may call a sequence increasing, if $a_n < a_{n+1}$ for all $n \ge M$, where M is an integer.

16. **Examples.** Decide which of the following sequences is increasing, decreasing or neither.

(a)
$$a_n = 1 + \frac{1}{n}$$

(b)
$$b_n = 1 - \frac{1}{n}$$

(c)
$$c_n = 1 + \frac{(-1)^n}{n}$$

(d)
$$d_n = \left(\frac{1}{2}\right)^n$$

(d)
$$d_n = \left(\frac{1}{2}\right)^n$$

(e) $e_n = \frac{10^n}{n!}$

17. Definition.

A sequence $\{a_n\}$ is **bounded above** if there is a number M such that

$$a_n \leq M$$
 for all $n \geq 1$.

It is **bounded below** if there is a number m such that

$$m \leq a_n$$
 for all $n \geq 1$.

If it is bounded above and below, then $\{a_n\}$ is a **bounded sequence**.

18. Monotonic Sequence Theorem.

Every bounded, monotonic sequence is convergent.

19. **Example.** Investigate the sequence $\{a_n\}$ that is defined recursively by

$$a_1 = \sqrt{6}, \ a_{n+1} = \sqrt{6 + a_n}, \ \text{ for } n \ge 1.$$

Notes.