Homework 5 - The Perceptron

Recall from the notes that the Perceptron model has a single artificial neuron which can have multiple inputs but with a single binary output. Suppose that we are interested in training the algorithm to determine if a point (x,y) lies above or below the x-axis. Assume that each input (x,y) has a corresponding weight w_x , w_y which satisfies $-1 \le w_x$, $w_y \le 1$.

- 1. What do you think the exact values for the weights should be? (Hint: Should both weights play a role in the final solution?)
- 2. For the algorithm we assume that the output is -1 if the point is below the x-axis and +1 if it is on or above the x-axis. We set the threshold to be 0 and calculate $t = xw_x + yw_y$ and check it against the threshold; for simplicity we ignore the bias here. We calculate the signed error as actual value predicted value. For the learning rate use 0.01. For starting weights take $w_x = .2$ and $w_y = -.1$. Use the training set

$$\{(1,-1), (1,2), (.5,-2), (0,3)\}$$

Compute one iteration of the algorithm using the data above; output your results in a table like the one below. I have completed the table for the first point in the dataset so you can see what we are asking for.

Point	Actual	t	Predicted	Error	w_x	w_y
(1 1)	1	(1)(2)+(-1)(-1)>0	1	2	2 2(1)(01)— 18	1 2(1)(01) — 08
(1,-1)	-1	(1)(.2) + (-1)(1) > 0	1	-2	.2-2(1)(.01)=.18	1-2(-1)(.01) =