Symmetry-adapted Wannier functions hands-on tutorial Wannier 2022 Summer School

Yusuke Nomura, Valerio Vitale

May 1, 2022

PART I: SAWFs for the valence bands of GaAs

Outline: Obtain symmetry-adapted Wannier functions out of four valence bands of GaAs, starting from several different initial conditions. For the theoretical background of the symmetry-adapted Wannier functions, see R. Sakuma, Phys. Rev. B 87, 235109 (2013).

```
Directories: SAWF_As_sp/
SAWF_Ga_p/
SAWF_Ga_s/
SAWF_Ga_sp/
MLWF_As_sp_Saddle/
pseudo/
```

Within each directory you will also find a ref/ folder containing the reference input files for each calculation.

Description of input files

→ DFT Input Files, common to all calculations

```
GaAs.scf.in The PWSCF input file for ground state calculation

GaAs.nscf.in The PWSCF input file to obtain Bloch states on a uniform grid
```

→ Input Files, specific to each calculation. These can be found within each directory and might need to be modified depending on the calculation

```
{\tt GaAs.pw2wan.in} The input file for pw2wannier90 {\tt GaAs.win} The wannier90 input file
```

STEP 1: Run DFT calculations

- ➤ Run PWSCF to obtain the ground state density of GaAs \$> pw.x < GaAs.scf.in > GaAs.scf.out
- ► Run PWSCF to obtain the Bloch states on a uniform k-point grid \$> pw.x < GaAs.nscf.in > GaAs.nscf.out

\blacksquare STEP 2: Compute SAWFs from s-like and p-like orbitals centred on the As atom

Outline: Symmetry-adapted mode: one s-like and three p-like Wannier functions centered at As

► cd into SAWF_As_sp/

- ► Check the additional parameters for the symmetry-adapted mode in GaAs.win and GaAs.pw2wan.in
- ► Run wannier90 to generate a list of the required overlaps (written into the GaAs.nnkp file). \$> wannier90.x -pp GaAs
- ► Run pw2wannier90 to compute the overlap between Bloch states, the projections for the starting guess, and the symmetry information needed for symmetry-adapted mode written in the GaAs.mmn, GaAs.amn, and GaAs.dmn files, respectively. Additionally GaAs.sym file is also created.

 \$> pw2wannier90.x < GaAs.pw2wan.in > GaAs.pw2wan.out
- ► Run wannier90 to compute the SAWFs. \$> wannier90.x GaAs
- ► Compare the results for a 4 × 4 × 4 k-point sampling with those in Table I in "R. Sakuma, Phys. Rev. B 87, 235109 (2013)", which we report here. See also ref/directory, in which one can find the input files (GaAs.win and GaAs.pw2wan.in) and an output file (GaAs.wout).

Ω_I	Ω_D	Ω_{OD}	Ω	Ω_n	
				s	p
6.124	0.012	3.502	9.639	1.450	2.730

Table 1: Spreads of the four As-centered symmetry adapted Wannier functions of GaAs in Å calculated with $4\times4\times4$ k-point sampling. Ω_I denotes the gauge-independent part of the total spread functional Ω , Ω_D denotes the diagonal part, Ω_{OD} the off-diagonal part and Ω_n denotes the spread of one Wannier function.

► Plot the SAWFs using xcrysden. \$> xcrysden --xsf GaAs_0000*.xsf

Figure 1: Four SAWFs from a) one s-like orbital and b)-d) three p-like orbitals centred on the As atom as initial projections. Ga atoms are represented by pink spheres and As atoms by yellow spheres. Isosurface value set to $\pm 1.0 \text{ Å}^{-3/2}$.

\blacksquare STEP 3 (optional): Compute MLWFs from s-like and p-like orbitals centred on the As atom + small perturbation

Outline: Maximally-localized Wannier functions starting from As-atomic-centered projections (+ small perturbation)

Nomura & Vitale 2 May 1, 2022

- cd into MLWF_As_sp_Saddle/
- ► Modify GaAs.win to turn off symmetry-adapted mode. Comment out the following two lines in GaAs.win

```
site_symmetry = .true.
symmetrize_eps= 1d-9
```

- ► Modify GaAs.pw2wan.in to turn off symmetry-adapted mode by setting write_dmn = .false.
- ightharpoonup Put small perturbation to the center(s) of the initial projection(s).
- ► Run wannier90 to generate a list of the required overlaps (written into the GaAs.nnkp file). \$> wannier90.x -pp GaAs
- ▶ Run pw2wannier90 to compute the overlap between Bloch states and the projections for the starting guess written in the GaAs.mmn and GaAs.amn files, respectively.
 \$> pw2wannier90.x < GaAs.pw2wan.in > GaAs.pw2wan.out
- ► Run wannier90 to compute the MLWFs. \$> wannier90.x GaAs
- ► Compare the results with those in ../SAWF_As_sp.
- ► Plot the MLWFs using xcrysden. \$> xcrysden --xsf GaAs_0000*.xsf

Figure 2: Four MLWFs for valence bands in GaAs, starting from a) one s-like and b)-d) three p-like orbitals centred slightly off the As atom. Ga atoms are represented by pink spheres and As atoms by yellow spheres. Isosurface value set to ± 1.0 Å^{-3/2}.

\blacksquare STEP 4: Compute SAWFs from s-like and p-like orbitals centred on the Ga atom

Outline: Symmetry-adapted mode: one s-like and three p-like Wannier functions centered at Ga

- ► cd into SAWF_Ga_sp/
- ► Set num_wann=4 and fill out the projection part in GaAs.win.

► Modify GaAs.win to turn on symmetry-adapted mode. Uncomment the following two lines in GaAs.win

!site_symmetry = .true.
!symmetrize_eps= 1d-9

- ► Modify GaAs.pw2wan.in to turn on symmetry-adapted mode by setting write_dmn=.true.
- ► Run wannier90 to generate a list of the required overlaps (written into the GaAs.nnkp file). \$> wannier90.x -pp GaAs
- ► Run pw2wannier90 to compute the overlap between Bloch states, the projections for the starting guess, and the symmetry information needed for symmetry-adapted mode written in the GaAs.mmn, GaAs.amn, and GaAs.dmn files, respectively. Additionally GaAs.sym file is also created.

 \$> pw2wannier90.x < GaAs.pw2wan.in > GaAs.pw2wan.out
- ► Run wannier90 to compute the SAWFs. \$> wannier90.x GaAs
- ► Compare the results for a 4 × 4 × 4 k-point sampling with those in Table I in "R. Sakuma, Phys. Rev. B 87, 235109 (2013)", which we report here. See also ref/directory, in which one can find the input files (GaAs.win and GaAs.pw2wan.in) and an output file (GaAs.wout).

Ω_I	Ω_D	Ω_{OD}	Ω	Ω_n	
				s	p
6.124	0.151	7.648	13.924	2.448	3.825

Table 2: Spreads of the four Ga-centered symmetry adapted Wannier functions of GaAs in Å calculated with $4 \times 4 \times 4$ k-point sampling. See caption in Tab. 1 for definition of symbols.

► Plot the SAWFs using xcrysden. \$> xcrysden --xsf GaAs_0000*.xsf

Figure 3: Four SAWFs from a) one s-like orbital and b)-d) three p-like orbitals centred on the Ga atom as initial projections. Ga atoms are represented by pink spheres and As atoms by yellow spheres. Isosurface value set to $\pm 1.0 \text{ Å}^{-3/2}$.

STEP 5: Compute SAWFs from one s-like orbital centered on the Ga atom

Outline: Symmetry-adapted mode: one s-like Wannier function centered at Ga

- ► cd into SAWF_Ga_s/
- ▶ Set num_wann=1 and fill out the projection part in GaAs.win.
- ► Modify GaAs.win to turn on symmetry-adapted mode. Uncomment the following two lines in GaAs.win

```
!site_symmetry = .true.
!symmetrize_eps= 1d-9
```

- ► Modify GaAs.pw2wan.in to turn on symmetry-adapted mode by setting write_dmn=.true.
- ► Run wannier90 to generate a list of the required overlaps (written into the GaAs.nnkp file). \$> wannier90.x -pp GaAs
- ► Run pw2wannier90 to compute the overlap between Bloch states, the projections for the starting guess, and the symmetry information needed for symmetry-adapted mode written in the GaAs.mmn, GaAs.amn, and GaAs.dmn files, respectively. Additionally GaAs.sym file is also created.

 \$> pw2wannier90.x < GaAs.pw2wan.in > GaAs.pw2wan.out
- ► Run wannier90 to compute the SAWF. \$> wannier90.x GaAs
- ▶ Plot bands.

```
$> gnuplot
gnuplot> load "GaAs_band.gnu"
gnuplot> replot "../DFT_band.dat" w l lt -1, "GaAs_band.dat" lt 1
```

See also ref/ directory, in which one can find the input files (GaAs.win and GaAs.pw2wan.in) and an output file (GaAs.wout)

- ► Compare the results with those in Figure 1 and Table I in "R. Sakuma, Phys. Rev. B 87, 235109 (2013)".
- ▶ Plot the SAWF using xcrysden.
 \$> xcrysden --xsf GaAs_00001.xsf

\blacksquare STEP 6: Compute SAWFs from three p-like orbitals centred on the Ga atom

Outline: Symmetry-adapted mode: three p-like Wannier functions centered at Ga

- ► cd into SAWF_Ga_p/
- ▶ Set num_wann=3 and fill out the projection part in GaAs.win.
- ► Modify GaAs.win to turn on symmetry-adapted mode. Uncomment the following two lines in GaAs.win

```
!site_symmetry = .true.
!symmetrize_eps= 1d-9
```

► Modify GaAs.pw2wan.in to turn on symmetry-adapted mode by setting write_dmn=.true.

Nomura & Vitale 5 May 1, 2022

- ► Run wannier90 to generate a list of the required overlaps (written into the GaAs.nnkp file). \$> wannier90.x -pp GaAs
- ► Run pw2wannier90 to compute the overlap between Bloch states, the projections for the starting guess, and the symmetry information needed for symmetry-adapted mode written in the GaAs.mmn, GaAs.amn, and GaAs.dmn files, respectively. Additionally GaAs.sym file is also created.

 \$> pw2wannier90.x < GaAs.pw2wan.in > GaAs.pw2wan.out
- ► Run wannier90 to compute the SAWFs. \$> wannier90.x GaAs
- ► Plot bands.

```
$> gnuplot
gnuplot> load "GaAs_band.gnu"
gnuplot> replot "../DFT_band.dat" w l lt -1, "GaAs_band.dat" lt 1
```

See also ref/ directory, in which one can find the input files (GaAs.win and GaAs.pw2wan.in) and an output file (GaAs.wout)

- ► Compare the results with those in Figure 1 and Table I in "R. Sakuma, Phys. Rev. B 87, 235109 (2013)".
- ► Plot the SAWFs using xcrysden. \$> xcrysden --xsf GaAs_0000*.xsf

PART II: SAWFs for Cu

Outline: Compute symmetry-adapted Wannier functions for Cu. By symmetry-adapted mode, for example, we can make atomic centered s-like Wannier function, which is not possible in the usual procedure to create maximally localized Wannier functions. For the theoretical background of the symmetry-adapted Wannier functions, see R. Sakuma, Phys. Rev. B 87, 235109 (2013).

▶ Directories: pseudo/

Description of input files

→ DFT Input Files, common to all calculations

```
Cu.scf.in The PWSCF input file for ground state calculation

Cu.nscf.in The PWSCF input file to obtain Bloch states on a uniform grid
```

→ Input Files, specific to each calculation. These might need to be modified depending on the calculation

```
Cu.pw2wan.in The input file for pw2wannier90
```

Cu.sym pw2wannier90 reads this file when "read_sym = .true." in Cu.pw2wan.in. By default, "read_sym = .false." and Cu.sym is the output of pw2wannier90, in which the symmetry operations employed in the calculation are written for reference.

Cu.win The wannier90 input file

STEP 1: Run DFT calculations

- ► Run PWSCF to obtain the ground state of Cu pw.x < Cu.scf.in > Cu.scf.out
- ► Run PWSCF to obtain the Bloch states on a uniform k-point grid pw.x < Cu.nscf.in > Cu.nscf.out

STEP 2: Compute SAWFs for Cu from five *d*-like orbitals centred on Cu and one *s*-like orbital centred in the interstitial site

Outline: Symmetry-adapted Wannier functions for Cu (s-like Wannier function centered at (1/4,1/4,1/4) + atomic-centered d-like Wannier functions)

- Modify Cu.win to turn on symmetry-adapted mode. Uncomment the following two lines in Cu.win !site_symmetry = .true.
 !symmetrize_eps= 1d-9
- ► Modify Cu.pw2wan.in to turn on symmetry-adapted mode by setting write_dmn=.true.
- ▶ Modify Cu.pw2wan.in to use customized symmetry operations compatible with site-symmetry group at (¹/4,¹/4,¹/4). N.B. inversion symmetry needs to be removed! In Cu.pw2wan.in set read_sym=.true. (then pw2wannier.x will require Cu.sym)
- ▶ Prepare Cu.sym file.
 \$> cp ../GaAs/SAWF_As_sp/GaAs.sym Cu.sym (symmetry operations taken from the GaAs example. N.B. GaAs does not have inversion symmetry!)
- ► Run wannier90 to generate a list of the required overlaps (written into the Cu.nnkp file). wannier90.x -pp Cu
- ► Run pw2wannier90 to compute the overlap between Bloch states, the projections for the starting guess, and the symmetry information needed for symmetry-adapted mode (written in the Cu.mmn, Cu.amn, and Cu.dmn files, respectively).

 pw2wannier90.x < Cu.pw2wan.in > Cu.pw2wan.out
- ► Run wannier90 to compute the SAWFs. wannier90.x Cu
- ▶ Plot bands.

```
$> gnuplot
gnuplot> load "Cu_band.gnu"
gnuplot> replot "DFT_band.dat" w l lt -1, "Cu_band.dat" lt 1
```

See also ref directory, in which one can find the input files (Cu.win and Cu.pw2wan.in) and an output file (Cu.wout)

► Compare the results with those in Fig.3 and Table II in "R. Sakuma, Phys. Rev. B 87, 235109 (2013)", which we report here

Energy window $[E_f$ -10 (eV): E_f +10 (eV)]						
Ω_I	Ω_D	Ω_{OD}	Ω		Ω_n	
				s	t_{2g}	e_g
3.968	0.107	0.511	4.587	2.042	0.534	0.471

Table 3: Spreads of six symmetry adapted Wannier functions (from one s-like + five d-like oribtals) in Cu in Å calculated with $8\times 8\times 8$ k-point sampling. See caption in Tab. 1 for definition of Ω symbols. From crystal field theory we know that the 5 d orbitals split into two sets (3+2). t_{2g} is the Mulliken symbol for the three-fold degenerate subspace. e_g is the Mulliken symbol for the doubly-degenerate subspace.

Figure 4: Bandstructure of Cu. DFT bands (solid lines), Wannier-interpolated bands (red plus).

- ➤ Plot the SAWFs using xcrysden. \$> xcrysden --xsf Cu_0000*.xsf
- Change the upper bound of the disentanglement window as $E_f + 20$ (eV) and leave the lower bound equal to E_f 10 (eV) and recompute the bandstructure and the SAWFs.

Nomura & Vitale 8 May 1, 2022

Figure 5: Six SAWFs from a) one s-like orbital and b)-f) 5 d-like orbitals centred on the Cu atom as initial projections. Cu atoms are represented by orange spheres. Isosurface value set to $\pm 1.0 \text{ Å}^{-3/2}$.

PART III: SAWFs for H₃S

Outline: Compute symmetry-adapted Wannier functions for H_3S . For the theoretical background of the symmetry-adapted Wannier functions, see R. Sakuma, Phys. Rev. B 87, 235109 (2013).

Directories: MLWF_12band/
SAWF_12band/
SAWF_7band/
pseudo/

Description of input files

→ DFT Input Files, common to all calculations

H3S.scf.in The PWSCF input file for ground state calculation
H3S.nscf.in The PWSCF input file to obtain Bloch states on a uniform grid

→ Input Files, specific to each calculation. These can be found within each directory and might need to be modified depending on the calculation

 ${\tt H3S.pw2wan.in}$ The input file for pw2wannier90 ${\tt H3S.win}$ The wannier90 input file

STEP 1: Run DFT calculations

- ► Run PWSCF to obtain the ground state of H₃S pw.x < H₃S.scf.in > H₃S.scf.out
- ► Run PWSCF to obtain the Bloch states on a uniform k-point grid pw.x < H3S.nscf.in > H3S.nscf.out

\blacksquare STEP 2: Compute MLWFs for H₃S for 12 bands

Outline: Maximally-localized Wannier functions: H₃S, 12 band model

- ► Run wannier90 to generate a list of the required overlaps (written into the H3S.nnkp file). wannier90.x -pp H3S
- ► Run pw2wannier90 to compute the overlap between Bloch states and the projections for the starting guess (written in the H3S.mmn and H3S.amn files, respectively).

 pw2wannier90.x < H3S.pw2wan.in > H3S.pw2wan.out
- ► Run wannier90 to compute the MLWFs. wannier90.x H3S
- ► Check Wannier centers and spreads (see H3S.wout).
- ► Plot bands.

```
$> gnuplot
gnuplot> load "H3S_band.gnu"
gnuplot> replot "../DFT_band.dat" w l lt -1, "H3S_band.dat" lt 1
```

See also ref directory, in which one can find the input files (H3S.win and H3S.pw2wan.in) and an output file (H3S.wout)

STEP 2: Compute SAWFs for H₃S for 12 bands

Outline: Symmetry-adapted Wannier functions: H₃S, 12 band model

▶ Modify H3S.win to turn on symmetry-adapted mode. Uncomment the following two lines in Cu.win

```
!site_symmetry = .true.
!symmetrize_eps= 1d-9
```

- ► Modify H3S.pw2wan.in to turn on symmetry-adapted mode by setting write_dmn=.true.
- ► Run wannier90 to generate a list of the required overlaps (written into the H3S.nnkp file). wannier90.x -pp H3S
- ► Run pw2wannier90 to compute the overlap between Bloch states, the projections for the starting guess, and the symmetry information needed for symmetry-adapted mode (written in the H3S.mmn, H3S.amn, and H3S.dmn files, respectively).

 pw2wannier90.x < H3S.pw2wan.in > H3S.pw2wan.out
- ► Run wannier90 to compute the SAWFs. wannier90.x H3S

Figure 6: Bandstructure of H₃S. DFT bands (solid lines), Wannier-interpolated bands (red plus).

- ▶ Check Wannier centers and spreads (see H3S.wout) & Compare the results with those in "../MLWF_12band/".
- ▶ Plot bands.

```
$> gnuplot
gnuplot> load "H3S_band.gnu"
gnuplot> replot "../DFT_band.dat" w l lt -1, "H3S_band.dat" lt 1
```

STEP 3: Compute SAWFs for H₃S for 7 bands

Outline: Symmetry-adapted Wannier functions: H_3S , 7 band model (atomic-centered s-like orbital at H and atomic-centered s-like and p-like orbitals at S)

- ► Set num_wann=7 and fill out the projection part in H3S.win.
- ► Modify H3S.win to turn on symmetry-adapted mode. Uncomment the following two lines in H3S.win

```
!site_symmetry = .true.
!symmetrize_eps= 1d-9
```

- ► Modify H3S.pw2wan.in to turn on symmetry-adapted mode by setting write_dmn=.true.
- ► Run wannier90 to generate a list of the required overlaps (written into the H3S.nnkp). \$> wannier90.x -pp H3S
- ▶ Run pw2wannier90 to generate H3S.amn, H3S.mmn, H3S.dmn, and H3S.eig files (additionally H3S.sym file is also created).
 - \$> pw2wannier90.x < H3S.pw2wan.in > H3S.pw2wan.out

- ► Run wannier90 to construct SAWFs. \$> wannier90.x H3S
- ► Check Wannier centers and spreads (see H3S.wout).
- ▶ Plot bands.
 \$> gnuplot
 gnuplot> load "H3S_band.gnu"
 gnuplot> replot "../DFT_band.dat" w l lt -1, "H3S_band.dat" lt 1