Corrigé exercice 63:

1.

a. La parabole est « tournée vers le bas ». Donc, a est négatif.

b. Le point d'intersection de la parabole avec l'axe des ordonnées a pour ordonnées 6.

Donc : c = 6.

Les points d'intersection de la parabole avec l'axe des abscisses ont pour abscisse -3

Donc: $x_1 = -3$ et $x_2 = 1$.

Le sommet de la parabole a pour coordonnées S(-1;8).

Donc: $\alpha = -1$ et $\beta = 8$.

2. D'après les informations précédentes, on peut écrire que :

$$f(x) = a [x - (-1)]^2 + 8$$
, soit $f(x) = a(x+1)^2 + 8$.

Or, on sait que : f(0) = c = 6.

D'où:
$$a(0+1)^2 + 8 = 6$$

 $a \times 1^2 + 8 = 6$
 $a \times 1 + 8 = 6$
 $a + 8 = 6$
 $a = 6 - 8$
 $a = -2$
Ainsi: $f(x) = -2(x+1)^2 + 8$.

Corrigé exercice 64:

1. La fonction carré n'étant pas monotone sur [-2;7], on dresse le tableau de variations :

x	-2	0	7
f	4		49

D'après le tableau de variations précédent, on conclut que : $0 \le x^2 \le 49$.

2. On considère x un réel tel que $4 \le x < 7$.

La fonction carré est strictement croissante sur $[0; +\infty[$.

Donc:
$$4^2 \le x^2 < 7^2$$

 $16 \le x^2 < 49$

3. La fonction carré n'étant pas monotone sur $[-3; +\infty[$, on dresse le tableau de variations :

x	-3	0	$+\infty$
f	9 \		

D'après le tableau de variations précédent, on conclut que : $0 \le x^2$.

4. On considère x un réel tel que x < -2.

La fonction carré est strictement décroissante sur $]-\infty;0]$.

Donc:
$$x^2 > (-2)^2$$

$$x^2 > 4$$

5. La fonction carré n'étant pas monotone sur [-6;3], on dresse le tableau de variations :

x	-6	0	3
f	36		9

D'après le tableau de variations précédent, on conclut que : $0 \le x^2 \le 36$.

6. On considère x un réel tel que $-11 < x \le -2$.

La fonction carré est strictement décroissante sur $]-\infty;0]$.

Donc:
$$(-11)^2 > x^2 \ge (-2)^2$$

$$121 > x^2 \geqslant 4$$

Enfin :
$$4 \le x^2 < 121$$
.

Corrigé exercice 65:

1. On considère x un réel tel que $-4 < x \le 3$.

On ajoute 5 :
$$-4 + 5 < x + 5 \le 3 + 5$$

$$1 < x + 5 \le 8$$

La fonction carré est strictement croissante sur $[0;+\infty[$

Donc:
$$1^2 < (x+5)^2 \le 8^2$$

$$1 < (x+5)^2 \le 64$$

On soustrait 1:

$$1 - 1 < (x + 5)^2 - 1 \leqslant 64 - 1$$

$$0 < (x+5)^2 - 1 \leqslant 63$$

2. On considère x un réel tel que $-4 < x \le 3$.

On soustrait 4:
$$-4 - 4 < x - 4 \le 3 - 4$$

$$-8 < x - 4 \leqslant -1$$

La fonction carré est strictement décroissante sur $]-\infty;0]$

Donc:
$$(-8)^2 > (x-4)^2 \ge (-1)^2$$

$$64 > (x-4)^2 \geqslant 1$$

On multiplie par le nombre négatif(-3):

$$-3 \times 64 < -3(x-4)^2 \leqslant -3 \times 1$$

$$-192 < -3(x-4)^2 \leqslant -3$$

On ajoute 6:

$$-192 + 6 < -3(x - 4)^2 + 6 \leqslant -3 + 6$$

$$-186 < -3(x-4)^2 + 6 \leqslant 3$$

Corrigé exercice 66:

1. On résout :
$$(x-3)^2 \le 36$$

Donc : $-\sqrt{36} \le x - 3 \le \sqrt{36}$
 $-6 \le x - 3 \le 6$

$$-6 \leqslant x - 3 \leqslant 6$$

$$-6 + 3 \leqslant x \leqslant 6 + 3$$

$$-3 \leqslant x \leqslant 9$$

Donc:
$$S = [-3; 9]$$
.

2. On résout :
$$3(x+1)^2 - 8 \le 4$$

D'où:
$$3(x+1)^2 \le 8+4$$

 $3(x+1)^2 \le 12$
 $(x+1)^2 \le \frac{12}{3}$

Donc:
$$-\sqrt{4} \leqslant x+1 \leqslant \sqrt{4}$$
$$-2 \leqslant x+1 \leqslant 2$$
$$-2-1 \leqslant x \leqslant 2-1$$
$$-3 \leqslant x \leqslant 1$$

Donc:
$$S = [-3; 1]$$
.

3. On résout :
$$2(x+1)^2 - 4 \ge 10$$

D'où:
$$2(x+1)^2 \ge 10 + 4$$

 $2(x+1)^2 \ge 14$
 $(x+1)^2 \ge \frac{14}{2}$
 $(x+1)^2 \ge 7$

Donc:
$$x+1 \leqslant -\sqrt{7}$$
 ou $x+1 \geqslant \sqrt{7}$ $x \leqslant -\sqrt{7}-1$ ou $x \geqslant \sqrt{7}-1$

Donc:
$$S = \left] -\infty; -\sqrt{7} - 1\right] \cup \left[\sqrt{7} - 1; +\infty\right[$$

4. On résout :
$$-5(x-2)^2 \ge 10$$

D'où :
$$(x-2)^2 \leqslant -\frac{10}{5}$$
 $(x-2)^2 \leqslant -2$

Un carré est positif sur \mathbb{R} .

Cette inéquation n'admet pas de solution.

Donc :
$$S = \emptyset$$
.

Corrigé exercice 67:

f est d'abord croissante puis décroissante. On en déduit que : a < 0.

L'expression développée de f est : $f(x) = ax^2 + bx + c$.

Le point de \mathcal{C}_f d'abscisse 0 a pour ordonnée -2. On peut donc en déduire que c=-2, soit

$$f(x) = ax^2 + bx - 2$$

Les antécédents de -2 par f sont 0 et 5, soit f(0) = f(5) = -2.

On peut donc écrire :
$$f(5) = -2$$

$$a \times 5^2 + b \times 5 - 2 = -2$$

$$a \times 25 + 5b = 0$$

$$25a + 5b = 0$$

$$5b = -25a$$

$$b = -\frac{25a}{5}$$

$$b = -5a$$

Toutes les fonctions f avec a < 0 et telles que b = -5a répondent aux conditions de l'exercice.

Par exemple, on prend a = -1 et a = -2.

f peut donc avoir comme expression :

•
$$f(x) = -x^2 + 5x - 2$$
 car $b = -5 \times (-1) = 5$

•
$$f(x) = -2x^2 + 10x - 2$$
 car $b = -5 \times (-2) = 10$

Corrigé exercice 68:

1. On considère deux réels a et b tels que : $a < b \le 0$

Alors : $a^2 > b^2$ car la fonction carré est décroissante sur $]-\infty;0]$ $5a^2 > 5b^2$ d'où $5a^2 - 3 > 5b^2 - 3$ donc f(a) > f(b). Donc, la fonction f est décroissante sur $]-\infty;0]$.

2. Voici le tableau de variations de f:

Corrigé exercice 69:

1. On démontre que f est croissante sur $]-\infty;0]$

On considère deux réels a et b tels que : $a < b \leqslant 0$

Alors :
$$a^2 > b^2 \text{ car la fonction carr\'e est strictement d\'ecroissante sur }] - \infty; 0] \\ -4a^2 < -4b^2 \\ -4a^2 + 1 < -4b^2 + 1 \\ f(a) < f(b)$$

Donc, la fonction f est croissante sur $]-\infty;0]$.

2. Voici son tableau de variations :

x	$-\infty$	0	$+\infty$
f			\

Corrigé exercice 70:

1. On considère deux réels a et b tels que : $a < b \le -2$

Alors :
$$a+2 < b+2 \le 0$$

 $(a+2)^2 > (b+2)^2$ car la fonction carré est décroissante sur $]-\infty;0]$
 $4(a+2)^2 > 4(b+2)^2$
 $4(a+2)^2 - 3 > 4(b+2)^2 - 3$
 $f(a) > f(b)$

Donc, la fonction f est décroissante sur $]-\infty;-2]$.

2. Voici le tableau de variations de f:

Corrigé exercice 71:

1.

a. On considère deux réels
$$a$$
 et b tels que : $a < b \le -7$

Alors:
$$a+7 < b+7 \le 0$$

 $(a+7)^2 > (b+7)^2$ car la fonction carré est strictement décroissante sur

$$[a+t] > (b+t) \text{ car la fonct}$$

$$-2(a+7)^2 < -2(b+7)^2$$

$$-2(a+7)^2 - 1 < -2(b+7)^2 - 1$$

$$f(a) < f(b)$$

Done, la fonction f est croissante sur $]-\infty;-7]$.

b. Voici le tableau de variations de f:

x	$-\infty$	-7	$+\infty$
f	/	-1	

2. La fonction f est donnée par sa forme canonique. On remarque que : $\alpha = -7$ et $\beta = -1$. Une équation de l'axe de symétrie de \mathcal{C}_f est donc x = -7. Le sommet S de \mathcal{C}_f a donc pour coordonnées S(-7;-1).

Corrigé exercice 72:

Pour tout réel
$$x$$
, on a :
$$(x+3)^2\geqslant 0 \ \operatorname{donc} -(x+3)^2\leqslant 0 \ \operatorname{d'où} -(x+3)^2+5\leqslant 5 \ \operatorname{donc} f(x)\leqslant 5.$$

De plus : f(-3) = 5.

Done, la fonction f admet 5 pour maximum sur \mathbb{R} . Il est atteint pour x=-3 .

Corrigé exercice 73:

Pour tout réel x, on a :

$$(x-2)^2 \geqslant 0$$

$$6(x-2)^2 \geqslant 0$$

$$6(x-2)^2 - 7 \geqslant -7$$

$$f(x) \geqslant -7$$

De plus : f(2) = -7.

Donc, la fonction f admet -7 pour minimum sur \mathbb{R} . Il est atteint pour x=2.

Corrigé exercice 74:

Pour tout réel x, on a :

$$(x+4)^2 \geqslant 0 \text{ donc } -3(x+4)^2 \leqslant 0 \text{ d'où} -3(x+4)^2 - 2 \leqslant -2 \text{ soit } g(x) \leqslant -2$$

De plus : g(-4) = -2.

Donc, la fonction g admet -2 pour maximum sur $\mathbb R$. Il est atteint pour $x=\!\!-2$.

Corrigé exercice 75:

1. On considère deux réels a et b tels que : $a < b \le 1$

Alors: $a - 1 < b - 1 \le 0$

$$\frac{\text{donc}\,(a-1)^2 > (b-1)^2}{\text{donc}\,(a-1)^2 > 5(b-1)^2} \text{ car la fonction carr\'e est strictement d\'ecroissante sur }] - \infty; 0].$$

$$\frac{\text{d'où}}{\text{d'où}} \frac{5(a-1)^2 > 5(b-1)^2}{\text{soit}} \frac{5(a-1)^2 - 3 > 5(b-1)^2 - 3}{\text{donc}\,f(a) > f(b)}$$

Donc, la fonction f est décroissante sur $]-\infty;1]$.

2. Voici le tableau de variations de f:

3. Pour tout réel x, on a :

$$(x-1)^2 \ge 0$$
 soit $5(x-1)^2 \ge 0$ soit $5(x-1)^2 - 3 \ge -3$.

De plus : f(1) = -3 donc, la fonction f admet -3 pour minimum sur \mathbb{R} . Il est atteint pour x = 1.

Corrigé exercice 76:

- 1. Affirmation fausse: f(-10) > 0
- 2. Affirmation vraie: $f(-9) \ge f(1)$.

En effet : f(1) < 0 < f(-9), soit f(1) < f(-9). Donc : $f(1) \le f(-9)$

- 3. Affirmation fausse : 0 > f(0), donc $f(0) \neq 2$. Par contre : f(2) = 0.
- 4. Affirmation fausse : a > 0 puisque f est d'abord positive puis négative.
- 5. Affirmation vraie: L'ensemble des solutions de l'équation f(x) = 0 est $S = \{-8, 2\}$, puisque f(-8) = f(2) = 0.
- 6. Affirmation fausse: L'ensemble des solutions de l'inéquation f(x) < 0 est S =]-8; 2[.

Corrigé exercice 77:

1. Pour tout réel
$$x$$
, on a :
$$f(x)=2(x-3)^2-8$$

$$=2(x^2-6x+9)-8$$

$$=2x^2-12x+18-8$$

$$=2x^2-12x+10$$
 La forme développée de f est donc $f(x)=2x^2-12x+10$.

Autre possibilité :
$$f(x) = 2(x-5)(x-1) = 2(x^2 - x - 5x + 5) = 2(x^2 - 6x + 5)$$

= $2x^2 - 12x + 10$

2.

- a. En utilisant la forme canonique de f, $f(x) = 2(x-3)^2 8$, on conclut que la droite d'équation x = 3 est l'axe de symétrie \mathcal{P} . Son sommet a pour coordonnées S(3; -8).
- b. En utilisant la forme factorisée de f, f(x) = 2(x-5)(x-1), on connaît les solutions de f(x) = 0, soit $x_1 = 1$ et $x_2 = 5$. De plus : a > 0. f est donc d'abord positive, puis négative et de nouveau positive. On peut dresser le tableau de signes suivant :

x	$-\infty$		1		5		+∞
f(x)		+	0	-	0	+	