3.3.4 Эффект Холла в проводниках

Александр Романов Б01-107

1 Введение

1.1 Цель работы

Измерение подвижности и конуентрации носителей заряда в проводниках.

1.2 В работе используются

Электромагнит с регулируемым источником питания; вольтетр; амперметр; миллиамперметр; милливебберметр; источник питания $(1.5~{
m V})$; Образец легированного германия.

2 Работа

2.1 Подготовка приборов

Проверим, что ток через образец не превышает 1 mA.

Измерим калибровочную кривую электромагнита (Учитывая параметр милливебберметра $S\cdot N=72cm^2$):

I, A	B, T
0.27	0.21
0.54	0.42
0.81	0.625
1.08	0.79
1.35	0.94
1.62	1.04
1.89	1.125
2.13	1.16

Получим зависимость:

$$B = k \cdot I + b$$

$$k = (0.52 \pm 0.04)T/A$$

$$b = (0.16 \pm 0.02)T$$

Вставим образец в зазор выключенного электромагнита и определим напряжение ($U_0=-0.017~{
m V}$) между Холловскими кантактами при минимальном точке через образец ($I=0.3~{
m mA}$). Примем это значение за начало отсчёта напряжения.

2.2 Измерения ЭДС Холла

Снимем зависимость холловского напряжения U_{34} от тока электромагнита I_M для разных токов I через образец:

I, mA	U0, mV	Ім, А	U34, mV	I, mA	U0, mV	Ім, А	U34, mV
0.3	-0.017	0.27	-0.04	0.7	-0.037	0.27	0.017
		0.54	-0.065			0.54	0.074
		0.81	-0.089			0.81	0.128
		1.08	-0.111			1.08	0.175
		1.35	-0.130			1.35	0.214
		1.62	-0.140			1.62	0.240
		1.89	-0.150			1.89	0.257
		2.11	-0.155			2.04	0.265
		0.27	0.013	0.8	-0.042	0.27	0.019
		0.54	0.044			0.54	0.086
	-0.017	0.81	0.074			0.81	0.145
0.4		1.08	0.102			1.08	0.203
0.4		1.35	0.123			1.35	0.240
		1.62	0.138			1.62	0.270
		1.89	0.148			1.89	0.292
		2.08	0.153			2.04	0.3
	-0.025	0.27	0.013	0.9	-0.05	0.27	0.022
		0.54	0.052			0.54	0.096
		0.81	0.094			0.81	0.165
0.5		1.08	0.127			1.08	0.222
		1.35	0.152			1.35	0.275
		1.62	0.170			1.62	0.306
		1.89	0.183			1.89	0.328
		2.07	0.190			2.03	0.339
0.6	-0.03	0.27	0.016	1	-0.055	0.27	0.027
		0.54	0.064			0.54	0.103
		0.81	0.110			0.81	0.180
		1.08	0.151			1.08	0.250
		1.35	0.184			1.35	0.302
		1.62	0.205			1.62	0.340
		1.89	0.220			1.89	0.365
		2.06	0.228			2.03	0.375

Изобразим все графики U(B) на одном чертеже:

Угловые коэффициенты полученных прямых $U=k\cdot B+b$:

I, mA	k, mV/T
0.3	0.135 ± 0.006
0.4	0.139 ± 0.007
0.5	0.168 ± 0.008
0.6	0.204 ± 0.01
0.7	0.244 ± 0.01
0.8	0.264 ± 0.007
0.9	0.302 ± 0.011
1.0	0.340 ± 0.015

Построим график k(B):

Получилась зависимость $k=a\cdot I+b,$ где

$$a = (0.31 \pm 0.014) \frac{V}{T \cdot A}$$

$$b = (0.025 \pm 0.003) \ mV/T$$

Отсюда по формуле:

$$a = \frac{U34}{B \cdot I} = \frac{R_H}{h}$$

Можно вычислить величину постоянной Холла (Учитывая h=1.5mm):

$$R_H = a \cdot h = (0.47 \pm 0.02) \ 10^{-3} \frac{V \cdot m}{T \cdot A}$$

Тогда отсюда согласно формуле

$$R_H = \frac{1}{n \cdot e}$$

Получим значение концентрации n свободных носителей заряда в образце:

$$n = (1.33 \pm 0.31) \ 10^{-22} m^{-3}$$

Расчитаем теперь Удельную проводимость образца. По формуле:

$$\sigma = \frac{I \cdot L_{35}}{U_{35}al}$$

Взяв измеренные значения $(I=1.0\ mA, U_{35}=1.681\ mV)$ и учтя параметры образца $(L_{35}=3.0\ mm, h=1.5\ mm, l=1.7\ mm)$ получим:

$$\sigma = (699.8 \pm 81) (\Omega \cdot m)^{-1}$$

Расчиатем подвижность носителей заряда по формуле:

$$b = \frac{\sigma}{en} = \sigma \cdot R_H = (3285 \pm 395) \frac{cm^2}{V \cdot s}$$

3 Выводы

В ходе выполненной работы был исследован эффект Холла в полупроводнике, а именно в легированном германии.

- 1. Была экспериментально определена постоянная Холла для исследуемого образца $R_H=(0.47\pm0.02)~10^{-3}\frac{V\cdot m}{T\cdot A}$ и концентрация свободных носителей заряда $n=n=(1.33\pm0.31)~10^{-22}m^{-3}$.
- 2. Была измеренна Удельная проводимость образца: $\sigma = (699.8 \pm 81) \; (\Omega \cdot m)^{-1}.$
- 3. По направлению тока в образце и направлению силовых линий электромагнита можно заключить, что образец обладает электронной проводимостью.
- 4. Была расчитана подвижность носителей заряда в образце: $b=(3285\pm395)~\frac{cm^2}{V\cdot s}$. Полученный результат отличается от табличного значения $b_0=3900\frac{cm^2}{V\cdot s}$. Это может свидетельствовать о наличии примесей в нашем образце. Также на полученное значение могло повлиять изменение характеристик образца и контактов при нагреве от прохождения электрического тока.