Linear Algebra

주재걸 고려대학교 컴퓨터학과

Lecture Overview

- Elements in linear algebra
- Linear system
- Linear combination, vector equation, Four views of matrix multiplication
- Linear independence, span, and subspace
- Linear transformation
- Least squares
- Eigendecomposition
- Singular value decomposition

Linear Combinations

• Given vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p$ in \mathbb{R}^n and given scalars c_1, c_2, \cdots, c_p ,

$$c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p$$

is called a **linear combination** of $\mathbf{v}_1, \dots, \mathbf{v}_p$ with weights or coefficients c_1, \dots, c_p .

 The weights in a linear combination can be any real numbers, including zero.

From Matrix Equation to Vector Equation

Recall the matrix equation of a linear system:

Person ID	Weight	Height	ls_smoking	Life-span	[60	5.5	1]	$[x_1]$		[66]	
1	60kg	5.5ft	Yes (=1)	66	65	5.0	0	$ x_2 $	=	74	
2	65kg	5.0ft	No (=0)	74	L55	6.0	1	$[x_3]$		[78]	
3	55kg	6.0ft	Yes (=1)	78		_				_	
						$\boldsymbol{\sqcap}$		A		IJ	

A matrix equation can be converted into a vector equation:

Existence of Solution for Ax = b

Consider its vector equation:

$$\begin{bmatrix} 60 \\ 65 \\ 55 \end{bmatrix} x_1 + \begin{bmatrix} 5.5 \\ 5.0 \\ 6.0 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} x_3 = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix}$$

$$\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 = \mathbf{b}$$

• When does the solution exist for Ax = b?

Span

- **Definition**: Given a set of vectors $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^n$, Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is defined as the set of all linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_p$.
- That is, Span $\{v_1, \dots, v_p\}$ is the collection of all vectors that can be written in the form

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 \cdots + c_p\mathbf{v}_p$$

with arbitrary scalars c_1, \dots, c_p .

• Span $\{v_1, \dots, v_p\}$ is also called the subset of \mathbb{R}^n spanned (or generated) by v_1, \dots, v_p .

- If \mathbf{v}_1 are \mathbf{v}_2 nonzero vectors in \mathbb{R}^3 , with \mathbf{v}_2 not a multiple of \mathbf{v}_1 , then Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ is the plane in \mathbb{R}^3 that contains \mathbf{v}_1 , \mathbf{v}_2 and $\mathbf{0}$.
- In particular, Span $\{v_1, v_2\}$ contains the line in \mathbb{R}^3 through v_1 and 0 and the line through v_2 and 0.

Geometric Interpretation of Vector Equation

Finding a linear combination of given vectors a₁, a₂, and a₃ to be equal to b:

$$\begin{bmatrix} 60 \\ 65 \\ 55 \end{bmatrix} x_1 + \begin{bmatrix} 5.5 \\ 5.0 \\ 6.0 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} x_3 = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix}$$
$$\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 = \mathbf{b}$$

• The solution exists only when $\mathbf{b} \in \text{Span } \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}.$

Matrix Multiplications as Linear Combinations of Vectors

 Recall: we defined matrix-matrix multiplications as the inner product between the row on the left and the column on the right:

• e.g.,
$$\begin{bmatrix} 1 & 6 \\ 3 & 4 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 13 & 5 \\ 11 & 1 \\ 9 & -3 \end{bmatrix}$$

• Inspired by the vector equation, we can view $A\mathbf{x}$ as a linear combination of columns of the left matrix:

•
$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3$$

Matrix Multiplications as Column Combinations

- Linear combinations of columns
 - Left matrix: bases, right matrix: coefficients

One column on the right

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} 1 + \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} 2 + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} 3 \quad \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} x_1 y_1 \\ x_2 y_2 \\ x_3 y_3 \end{bmatrix} = [\mathbf{x} \mathbf{y}]$$

Multi-columns on the right

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{bmatrix} = [\mathbf{x} \ \mathbf{y}]$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} 1 + \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} 2 + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} 3$$

$$\mathbf{y} = \begin{vmatrix} y_1 \\ y_2 \\ y_3 \end{vmatrix} = \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} (-1) + \begin{vmatrix} 1 \\ 0 \\ -1 \end{vmatrix} 0 + \begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix} 1$$

Matrix Multiplications as Row Combinations

- Linear combinations of rows of the right matrix
 - Right matrix: bases, left matrix: coefficients

One row on the left

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix} = \begin{array}{c} 1 \times \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ +3 \times \begin{bmatrix} 1 & -1 & 1 \end{bmatrix} \end{array}$$

Multiple rows on the left

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix} = \begin{bmatrix} \mathbf{x}^T \\ \mathbf{y}^T \end{bmatrix}$$

$$\mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} = 1 \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} + 2 \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} + 3 \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$$

$$\mathbf{y}^T = \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} = 1 \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} + 0 \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} + (-1) \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$$

Matrix Multiplications as Sum of (Rank-1) Outer Products

• (Rank-1) outer product

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$

Sum of (Rank-1) outer products

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 4 & 5 & 6 \\ -4 & -5 & -6 \\ 4 & 5 & 6 \end{bmatrix}$$

Matrix Multiplications as Sum of (Rank-1) Outer Products

- Sum of (Rank-1) outer products is widely used in machine learning
 - Covariance matrix in multivariate Gaussian
 - Gram matrix in style transfer