

Data Science in football: Player performance Analysis

Table of contents

Data Modeling

01	Topic Idea
02	Team and Roles
03	Data Collection
04	Data Preprocessing
05	Data Exploration

Main idea

Objectives:

- Analyze the performance of football players based on data collected from websites
- Identify relationships between data variables and determine the factors that affect player performance.
- o Build a model to predict player performance.

• Reason for choosing the Topic:

- o Football is a popular sport around the world.
- Player performance is a key factor that determines the success of a team.
- Data analysis can help to better understand player performance and develop strategies to improve player performance.

Overview:

- Data was collected from websites of professional football leagues.
- Data includes information about player name, season, team name, player performance metrics, goal-related metrics and injury data.

Table of contents

Data Modeling

UΤ	l opic idea
02	Team and Roles
03	Data Collection
04	Data Preprocessing
05	Data Exploration

Team members

Name	Student ID	Role
Huynh Duc Thien	21127693	Team leaderData preprocessingData modelling
Bui Vu The Minh	21127107	Data collectingData explorationData modeling
Le Phuoc Thinh Tien	21127700	Data collectingData modellingReport
Pham Khanh Toan	21127704	Data explorationData modellingReport

Working space

- · Github: Source code repository
 - o Easy access and share source code.
 - o Track the history of code changes.
 - Create branches and versions of the code.
- Google Meet: Weekly group meetings
 - High-quality video and audio calls
 - Sharing screens and documents
- Trello: Task management, assignment
 - o Create cards, lists, and boards
 - Track task progress
 - Assign tasks to team members
- · Messenger: Communication,
 - Send text messengers, images, videos.
 - o Create chat groups.

Table of contents

01	Topic	Idea
----	-------	------

- Team and Roles
- Data Collection
- Data Preprocessing
- Data Exploration
- Data Modeling

Data source: FBref

- Fbref website: Football Statistics and History | FBref.com
- Reason for choosing: The website provides a variety of football data, from general to detailed, from teams to individual players.
- Data collected: Standard statistics for the latest 10 seasons for each player in the Premier League 2023/2024
- Data collection method: Sending requests to the website's server and parsing HTML text.

Cristiano Ronaldo

Cristiano Ronaldo dos Santos Aveiro Position: FW-MF (WM) - Footed: Right 187cm, 83kg (6-1½, 184lb)

Born: February 5, 1985 (Age: 38-306d) in Funchal, Portugal

More Player Info ▼

2023-2024 Pro League

^{*} see our coverage note

					Playing Time						Perfo	rman	ce				Expect		d	Progression		ion		
Season	Age	Squad	Country	Comp	LgRank	MP	Starts	Min	90s	Gls	Ast	G+A	G-PK	PK	PKatt	CrdY C	rdR	xG	npxG	xAG	npxG+xAG	PrgC	PrgP	PrgR
2002-2003	17	Sporting CP	POR.	z. Primeira Liga	3rd	25	11	1,080	12.0	3	3	6	3	0	0	1	0							
2003-2004	18	Manchester Utd	+ ENG	z. Premier League	3rd	29	15	1,555	17.3	4	4	8	4	0	0	5	1							
2004-2005	19	Manchester Utd	+ ENG	1. Premier League	3rd	33	25	2,423	26.9	5	4	9	5	0	0	3	0							
2005-2006	20	Manchester Utd	+ ENG	1. Premier League	2nd	33	24	2,286	25.4	9	6	15	9	0	0	8	1							
2006-2007	21	Manchester Utd	+ ENG	I. Premier League	🙎 1st	34	31	2,781	30.9	17	8	25	14	3	4	2	0							
2007-2008	22	Manchester Utd	+ ENG	z. Premier League	🙎 1st	34	31	2,747	30.5	31	6	37	27	4	5	5	1							
2008-2009	23	Manchester Utd	+ ENG	1. Premier League	🙎 1st	33	31	2,742	30.5	18	6	24	14	4	4	7	1							
2009-2010	24	Real Madrid	ESP	1. La Liga	2nd	29	28	2,461	27.3	26	7	33	22	4	5	4	2							
2010-2011	25	Real Madrid	ESP	1. La Liga	2nd	34	32	2,914	32.4	40	9	49	32	8	8	2	0							
2011-2012	26	Real Madrid	6 ESP	1. La Liga	1st	38	37	3,350	37.2	46	12	58	34	12	13	4	0							
2012-2013	27	Real Madrid	6 ESP	1. La Liga	2nd	34	30	2,716	30.2	34	10	44	28	6	7	9	0							
2013-2014	28	Real Madrid	e ESP	1. La Liga	3rd	30	30	2,534	28.2	31	9	40	25	6	6	4	1							
2014-2015	29	Real Madrid	ESP	z. La Liga	2nd	35	35	3,100	34.4	48	16	64	38	10	12	5	1							
2015-2016	30	Real Madrid	e ESP	1. La Liga	2nd	36	36	3,183	35.4	35	9	44	29	6	9	2	0							
2016-2017	31	Real Madrid	€ ESP	1. La Liga	🙎 1st	29	29	2,539	28.2	25	6	31	19	6	8	4	0							
2017-2018	32	Real Madrid	6 ESP	z. La Liga	3rd	27	27	2,285	25.4	26	5	31	23	3	4	1	0	25.2	22.0	5.0	27.0	118	99	29
2018-2019	33	Juventus	ITA	1. Serie A	1st	31	30	2,688	29.9	21	8	29	16	5	6	3	0	22.2	17.5	4.6	22.1	145	130	35
2019-2020	34	Juventus	ITA	z. Serie A	1st	33	33	2,917	32.4	31	5	36	19	12	13	3	0	28.6	18.4	6.4	24.7	167	118	32
2020-2021	35	Juventus	ITA	1. Serie A	4th	33	31	2,802	31.1	29	2	31	23	6	8	3	0	27.7	21.4	3.8	25.2	154	117	27
2021-2022	36	Juventus	ITA	1. Serie A	4th	1	0	31	0.3	0	0	0	0	0	0	1	0	0.2	0.2	0.1	0.2	1	2	
2021-2022	36	Manchester Utd	+ ENG	1. Premier League	6th	30	27	2,456	27.3	18	3	21	15	3	3	8	0	17.7	15.4	2.9	18.2	67	64	19
2022-2023	37	Manchester Utd	+ ENG	1. Premier League	3rd	10	4	525	5.8	1	0	1	1	0	0	2	0	1.9	1.9	0.4	2.3	9	12	3
2022-2023	37	Al-Nassr	KSA	1. Pro League	2nd	16	16	1,433	15.9	14	2	16	9	5	5	3	0							
2023-2024	38	Al-Nassr	** KSA	1. Pro League	2nd	14	14	1,254	13.9	15	7	22	12	3	3	0	0							

Data Source: Transfermarkt

- Transfermarkt website: Football transfers, rumours, market values and news | Transfermarkt
- **Reason for choosing:** The website provides player injury data, a necessary component for the project.
- Data collected: Injury data for the latest 10 seasons for each player in the Premier League 2023/2024
- Data collection method: Sending requests to the website's server and parsing HTML text.

Table of contents

$oldsymbol{01}$ Topic Ide	а
---------------------------	---

- Team and Roles
- Data Collection
- Data Preprocessing
- Data Exploration
- Data Modeling

Data preprocessing process

• First, we preprocess fbref_data and transfermarkt_data

	Name	Position	PreferredFoot	Season	Age	Squad	Country	Comp	LgRank	MP	Starts	Min	90s
0	William Saliba	DF	Right	2018- 2019	17	Saint- Étienne	FRA	Ligue 1	4	16	13	1277	14.2
1	William Saliba	DF	Right	2019- 2020	18	Saint- Étienne	FRA	Ligue 1	17	12	11	992	11.0
2	William Saliba	DF	Right	2020- 2021	19	Nice	FRA	Ligue 1	9	20	20	1800	20.0
3	William Saliba	DF	Right	2020- 2021	19	Arsenal	ENG	Jr. PL2 Div. 1	10	6	6	526	5.8
4	William Saliba	DF	Right	2021- 2022	20	Marseille	FRA	Ligue 1	2	36	36	3240	36.0

	Name	Season	Injury	from	until	Days	Games missed
0	Ederson	2020-2021	Virus	2020-12-27	2021-01-12	16	3
1	Ederson	2019-2020	III	2019-12-30	2020-01-07	8	3
2	Ederson	2019-2020	III	2019-12-08	2019-12-14	6	1
3	Ederson	2019-2020	muscular problems	2019-11-06	2019-11-22	16	4
4	Ederson	2017-2018	Facial injury	2017-09-10	2017-09-12	2	0

Then, we merge fbref_data and transfermarkt_data into merged_data

Overview about merged data

- Basic Player Information:
 - o Name, Position, PreferredFoot, Season, Age, Squad, Country.
- Performance Information:
 - o Comp, LgRank, MP, Starts, Mins, 90s, Gls, Ast,...
- Expected Information:
 - o xG, npxG, xAG, npxG+xAG,...
- Injury data:
 - o Injury, from, until, Days, Games missed.

	-	lf.head()																
~	0.0s																	
	Name	Position	PreferredFoot	Season	Age	Squad	Country	Comp	LgRank	MP	Starts	Min	90s	Gls	Ast	G+A	G- PK	PK
0	William Saliba	DF	Right	2018- 2019	17	Saint- Étienne	FRA	Ligue 1	4	16	13	1277	14.2	0	0	0	0	0
1	William Saliba	DF	Right	2019- 2020	18	Saint- Étienne	FRA	Ligue 1	17	12	11	992	11.0	0	0	0	0	0
2	William Saliba	DF	Right	2020- 2021	19	Nice	FRA	Ligue 1	9	20	20	1800	20.0	1	0	1	1	0
3	William Saliba	DF	Right	2020- 2021	19	Arsenal	ENG	Jr. PL2 Div. 1	10	6	6	526	5.8	0	0	0	0	0
4	William Saliba	DF	Right	2021- 2022	20	Marseille	FRA	Ligue 1	2	36	36	3240	36.0	0	0	0	0	0

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4571 entries, 0 to 4570
Data columns (total 43 columns):
    Column
                    Non-Null Count Dtype
                    4571 non-null
                                    object
     Position
                    4571 non-null
                                    object
     PreferredFoot
                   4571 non-null
                                    object
     Season
                    4571 non-null
                                    object
                    4571 non-null
                                    int32
     Age
                    4571 non-null
     Squad
                                    object
     Country
                    4571 non-null
                                    object
     Comp
                    4571 non-null
                                    object
     LgRank
                    4571 non-null
                                    int32
                    4571 non-null
                                    int32
 10 Starts
                    4571 non-null
                                    int32
 11 Min
                    4571 non-null
                                    int32
 12 90s
                    4571 non-null
                                   float64
 13 Gls
                    4571 non-null
                                    int32
 14 Ast
                    4571 non-null
                                    int32
 15 G+A
                    4571 non-null
                                    int32
                    4571 non-null
 16 G-PK
                                    int32
 17 PK
                    4571 non-null
                                    int32
 18 PKatt
                    4571 non-null
                                    int32
 19 CrdY
                    4571 non-null
                                    int32
 41 Davs
                    2601 non-null
                                   float64
 42 Games missed
                   2601 non-null
                                  float64
dtypes: datetime64[ns](2), float64(17), int32(16), object(8)
memory usage: 1.2+ MB
           merged df.shape
                                             Python
```

Table of contents

01	Topic	Idea
----	-------	------

- Team and Roles
- Data Collection
- Data Preprocessing
- Data Exploration
- Data Modeling

Analyzing Postion, Season

Analyzing PreferredFoot, Squad

Distribution of PreferredFoot

Analyzing Country & Comp

Analyzing Injury

	count
count	178.00000
mean	14.61236
std	35.97019
min	1.00000
25%	1.00000
50%	3.00000
75%	9.75000
max	309.00000

Distribution of Numerical Data

Analyzing Expected & Playing Time

Expected

Playing time statistics

Analyzing Performance & Per 90 Minutes Per 90 Minutes

Performance

Analyzing Progression & Age

Making questions about data

- A possible question is: Are players more prone to injuries as they age?
- Answering this question will explore if there's a relationship between a player's age and the likelihood of sustaining injuries.
- How we answer this question: Analyze the frequency and types of injuries across different age.

- A possible question is: What is the relationship between expected goals (xG) to actual goals (Gls) for penalty kicks (PK)?
- **Answering this question will** help us understand the efficiency of players in converting penalty kicks compared to their expected goals.
- How we answer this question: Calculate the ratio of 'xG' to 'Gls' specifically for penalty kicks.

- A possible question is: What is the distribution of goals scored by players across different positions in the dataset?
- Answering this question will help us understand how goals are spread across various playing positions.
- How we answer this question: Create a breakdown of the number of goals scored (Gls Goals scored or allowed) by players for each position.

- A possible question is: How does the number of injuries vary across player positions?
- Answering this question will help us understand if there are differences in the injury rates based on player positions.
- How we answer this question: Analyze and aggregate the number of injuries for each playing position.

Distribution of Injuries by Position

- A possible question is: How many times have the top 100 players with the most minutes played experienced injuries?
- Answering this question will help us understand the overall injury frequency for the highest-minutes players.
- How we answer this question: Collect and calculate average the injury occurrences for each player in the top 100 highest-minutes players.

Table of contents

06	Data Modeling
05	Data Exploration
04	Data Preprocessing
03	Data Collection
02	Team and Roles
01	Topic Idea

Model 1: Ridge Linear Regression

The running process of training and testing Ridge Linear Regression Model

Hyperparameter tuning and Feature Engineering Stage

Model 2: Random Forest

- Each Decision Tree is a unit
- Each tree built base on different training data and different predictors from every other tree (private information)
- The last step is to take either the mean (regression) or mode (classification)

Linear regression vs Random forest

Best Hyperparameters:
 n_estimators: 50
 min_samples_split: 10
 min_samples_leaf: 2
 max_features: None
 max depth: 15

Best Hyperparameters: alpha: 10 fit_intercept: False max_iter: 500 solver: svd

Linear regression vs Random forest

Model 3: Fully-Connected Neuron Network

- Model 1
 - \circ Neurons = 100
 - \circ Layers = 2
 - Learning rate = 0,001

- Model 2
 - Neurons = 100
 - o Layers = 3
 - o Initial Learning rate = 0,001
 - o Learning rate schedule: Exponential decay

Model 3: Fully-Connected Neuron Network

• Model 3:

- \circ Neurons = 200
- \circ Layers = 3
- Initial Learning rate = 0,001
- Learning rate schedule: RMSprop
- o Momentum applied

Test Loss: 0.088 Test MSE: 0.028 Test MAE: 0.088

Test R-squared: 0.98

Test Adjusted R-squared: 0.978

Conclusion

- It can be concluded that the models have successfully addressed the initial problem of predicting the performance of players.
- It can be observed that all models, including Random Forest Regressor, Ridge Linear Regression, Fully-connected models, yield very high accuracy results. However, the difference between the two machine learning models (Random Forest Regressor, Ridge Linear Regression) and deep learning models is not significant, but the processing time of the neural network models is much higher.
- Therefore, it can be said that for the given problem, the Random Forest Regressor model produces the best results.

Thanks For Listening!