

Soal

- 1 Misalkan fungsi f non-negatif dan kontinu apda [a, b] yang memenuhi $\int_a^b f(x) dx = 0$. Buktikan bahwa f(x) = 0 untuk setiap $x \in [a, b]$.
- Diandaikan fungsi g naik pada [a, b], $a \le c \le b$, g kontinu di c dengan f(c) = 1 dan f(x) = 0 jika $x \ne c$. Buktikan bahwa f terintegral Riemann-Stieljes terhadap g dan

$$\int_{a}^{b} f \, \mathrm{d}g = 0.$$

- (a) Misalkan (X, d_1) dan (Y, d_2) merupakan ruang metrik, himpunan $E \subset X$ dan untuk setiap $n \in \mathbb{N}, f_n : E \to Y$. Tuliskan definisi f_n konvergen seragam pada E.
 - (b) Tentukan fungsi limit barisan f untuk barisan $\langle f_n \rangle$ dengan

$$f_n(x) = \begin{cases} 1 - nx, & 0 \le x < \frac{1}{n}, \\ 0, & \frac{1}{n} \le x \le 1 \end{cases}$$

untuk $0 \le x \le 1$ dan $n \in \mathbb{N}$. Masing-masing f_n kontinu pada [0,1], apakah f juga kontinu? Apakah $f_n \to f$ seragam pada [0,1]?

4 Buktikan bahwa deret

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + x}{n^2}$$

konvergen seragam pada setiap selang tertutup dan terbatas.

Misalkan fungsi f non-negatif dan kontinu apda [a, b] yang memenuhi $\int_a^b f(x) dx = 0$. Buktikan bahwa f(x) = 0 untuk setiap $x \in [a, b]$.

Solusi:

Andaikan terdapat $c \in [a, b]$ yang memenuhi f(c) > 0. Karena f kontinu di c, untuk setiap $\varepsilon > 0$ terdapat $\delta > 0$. sehingga untuk setiap $x \in [a, b]$ dengan $|x - c| < \delta$ berlaku $|f(x) - f(c)| < \varepsilon$.

Lemma. Terdapat p > 0 sedemikian sehingga $f(x) > \frac{f(c)}{2}$ untuk setiap $x \in [a, b]$ dengan |x - c| < p.

Bukti. Pilih $\varepsilon = \frac{f(c)}{2} > 0$, terdapat $\delta_1 > 0$ sehingga untuk setiap $x \in [a, b]$ dengan $|x - c| < \delta_1$ berlaku $|f(x) - f(c)| < \frac{f(c)}{2}$. Ini berakibat

$$\frac{f(c)}{2} > |f(x) - f(c)| = |f(c) - f(x)| \ge |f(c)| - |f(x)| = f(c) - f(x)$$

sehingga $f(x) > \frac{f(c)}{2}$. Jadi, untuk setiap $x \in [a,b]$ dengan $|x-c| < \delta_1$ berlaku $f(x) > \frac{f(c)}{2}$.

Pilih $w = \frac{1}{2} \min\{\delta, \delta_1, c - a, b - c\} > 0$. Akan dibagi menjadi tiga kasus.

- Jika $c \in (a,b)$, dengan kondisi f tak negatif berlaku

$$0 = \int_{a}^{b} f \, dx = \int_{a}^{c-w} f \, dx + \int_{c-w}^{c+w} f \, dx + \int_{c+w}^{b} f \, dx \ge 0 + \int_{c-w}^{c+w} f \, dx + 0 = \int_{c-w}^{c+w} f \, dx.$$

Perhatikan bahwa untuk $c-w \leq x \leq c+w$ berarti

$$|x - c| \le w \le \frac{1}{2}\delta_1 < \delta_1$$

sehingga menurut lemma berlaku $f(x) > \frac{f(c)}{2}$. Ini berarti

$$\int_{c-w}^{c+w} f \, dx \ge \int_{c-w}^{c+w} \frac{f(c)}{2} \, dx = \frac{f(c)}{2} ((c+w) - (c-w)) = 2wf(c).$$

Diperoleh hubungan

$$0 = \int_{a}^{b} f \, \mathrm{d}x \ge 2wf(c) > 0$$

sehingga kontradiksi.

• Jika c=a, pilih $w=\frac{1}{2}\min\{\delta,\delta_1,b-a\}>0$. Dengan cara yang sama berlaku

$$0 = \int_{a}^{b} f \, dx = \int_{a}^{a+w} f \, dx + \int_{a+w}^{b} f \, dx \ge \int_{a}^{a+w} \frac{f(a)}{2} \, dx = \frac{wf(a)}{2} > 0$$

sehingga kontradiksi.

• Jika c=b, pilih $w=\frac{1}{2}\min\{\delta,\delta_1,b-a\}>0$. Dengan cara yang sama berlaku

$$0 = \int_{a}^{b} f \, dx = \int_{a}^{b-w} f \, dx + \int_{b-w}^{b} f \, dx \ge \int_{b-w}^{b} \frac{f(b)}{2} > \frac{wf(b)}{2} > 0$$

sehingga kontradiksi.

Jadi, f(x) = 0 untuk setiap $x \in [a, b]$.

Diandaikan fungsi g naik pada [a,b], $a \le c \le b$, g kontinu di c dengan f(c) = 1 dan f(x) = 0 jika $x \ne c$. Buktikan bahwa f terintegral Riemann-Stieljes terhadap g dan

$$\int_{a}^{b} f \, \mathrm{d}g = 0.$$

Solusi:

Karena g kontinu di c, untuk setiap $\varepsilon > 0$ terdapat $\delta > 0$ sedemikian sehingga untuk setiap $x \in [a,b]$ dengan $|x-c| < \delta$ berlaku $|g(x)-g(c)| < \frac{\varepsilon}{2}$. Akan dibagi menjadi tiga kasus.

Kasus 1. Jika $c \in (a, b)$.

Pilih $h = \frac{1}{2} \min\{c - a, b - c, \delta\}$ dan partisi

$$P := \{x_0 = a, x_1 = c - h, x_2 = c + h, x_3 = b\}$$

Diperoleh

$$M_1(f) = 0, M_2(f) = 1, M_3(f) = 0, \quad m_1(f) = m_2(f) = m_3(f) = 0.$$

Dari sini diperoleh

$$U(f;g,P) - L(f;g,P) = \sum_{i=1}^{3} (M_i(f) - m_i(f)) \Delta g_i = \Delta g_2 = g(x_2) - g(x_1) = g(c+h) - g(c-h).$$

Perhatikan bahwa

$$|(c+h)-c|=|h|\leq \frac{1}{2}\delta<\delta$$

sehingga berakibat $|g(c+h)-g(c)|<\frac{\varepsilon}{2}$. Dengan alasan yang sama, $|g(c-h)-g(c)|<\frac{\varepsilon}{2}$. Akibatnya,

$$|g(c+h) - g(c-h)| = \left| \left(g(c+h) - g(c) \right) - \left(g(c-h) - g(c) \right) \right|$$

$$\leq |g(c+h) - g(c)| + |g(c-h) - g(c)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

sehingga $U(f;g,P)-L(f;g,P)<\varepsilon$ yang membuktikan $f\in\mathcal{RS}(g)[a,b]$. Maka terdapat $\delta'>0$ sehingga untuk setiap $P\in\mathcal{P}[a,b]$ dengan $\|P\|<\delta'$ berlaku $|S(f;g,P)-A|<\varepsilon$. Dengan memilih $t_i\neq c,$

$$\varepsilon > \left| \sum_{i=1}^{n} f(t_i) \Delta g_i - A \right| = \left| \sum_{i=1}^{n} 0 \cdot \Delta g_i - A \right| = |-A| = |A| \ge 0.$$

Karena berlaku untuk sebarang $\varepsilon > 0$, maka A = 0.

Kasus 2. Jika c = a atau c = b.

Akan ditinjau jika c=a, sedankan kasus c=b dapat dibuktikan secara analog. Pilih $h=\min\left\{a+\frac{\delta}{2},b\right\}$. Karena $a+\frac{\delta}{2},b>a$, ini berarti h>a. Diperoleh pula

$$|h-a| = h-a \le a + \frac{\delta}{2} - a = \frac{\delta}{2} < \delta$$

sehingga berlaku $|g(h) - g(a)| < \varepsilon$. Oleh karena itu,

$$U(f;g,P) - L(f;g,P) = (M_1(f) - m_1(f))\Delta g_1 + (M_2(f) - m_2(f))\Delta g_2$$

$$= (1 - 0)(g(h) - g(a)) + (0 - 0)\Delta g_2$$

$$= g(h) - g(a)$$

$$\leq |g(h) - g(a)|$$

$$\leq \varepsilon$$

Ini berarti $f \in \mathcal{RS}(g)[a,b]$ dan dengan cara yang sama seperti kasus sebelumnya, diperoleh $\int\limits_{-b}^{b} f \; \mathrm{d}g = 0.$

- (a) Misalkan (X, d_1) dan (Y, d_2) merupakan ruang metrik, himpunan $E \subset X$ dan untuk setiap $n \in \mathbb{N}$, $f_n : E \to Y$. Tuliskan definisi f_n konvergen seragam pada E.
- (b) Tentukan fungsi limit barisan f untuk barisan $\langle f_n \rangle$ dengan

$$f_n(x) = \begin{cases} 1 - nx, & 0 \le x < \frac{1}{n}, \\ 0, & \frac{1}{n} \le x \le 1 \end{cases}$$

untuk $0 \le x \le 1$ dan $n \in \mathbb{N}$. Masing-masing f_n kontinu pada [0,1], apakah f juga kontinu? Apakah $f_n \to f$ seragam pada [0,1]?

Solusi:

- (a) Barisan $\langle f_n \rangle$ konvergen seragam pada E dengan $f_n \to f$, jika untuk setiap $\varepsilon > 0$ terdapat $N \in \mathbb{N}$ sehingga untuk setiap $n \geq N$ dan setiap $x \in E$ berlaku $d_2(f_n(x), f(x)) < \varepsilon$.
- (b) Untuk setiap $x \in [0,1]$, akan dibuktikan bahwa f(x) = 0. Untuk x = 0, perhatikan bahwa $f_n(0) = 1 n(0) = 1$ untuk setiap $n \in \mathbb{N}$ sehingga $f_n(0)$ konvergen ke 1. Untuk $x \in (0,1]$, akan dibuktikan bahwa f_n konvergen ke 0. Ambil sebarang $\varepsilon > 0$, menurut Archimedes terdapat $N \in \mathbb{N}$ sedemikian sehingga $\frac{1}{x} < N$. Untuk setiap bilangan asli $n \ge N$, yaitu $\frac{1}{n} \le \frac{1}{N} < x$ sehingga berlaku

$$|f_n(x) - 0| = |0 - 0| = 0 < \varepsilon$$

yang menunjukkan $f_n(x) \to 0$. Jadi,

$$\lim_{n \to \infty} f_n(x) = \begin{cases} f(x) = \begin{cases} 1, & x = 0 \\ 0, & 0 < x \le 1 \end{cases}.$$

Ini menunjukkan f tidak kontinu , yaitu tidak kontinu di x=0. Akan ditunjukkan f_n tidak konvergen seragam ke f. Perhatikan bahwa untuk setiap $n\in\mathbb{N}$, dengan memilih $x=\frac{1}{2n}$ yang mana $0\leq x<\frac{1}{n}$ berlaku

$$M_n = \sup_{x \in [0,1]} |f_n(x) - f(x)| \ge \left| 1 - n \cdot \frac{1}{2n} - 0 \right| = \frac{1}{2}.$$

Karena ini berlaku untuk setiap $n \in \mathbb{N}$, $\lim_{n \to \infty} M_n \ge \frac{1}{2}$ yang mana $\lim_{n \to \infty} M_n \ne 0$. Ini menunjukkan f_n tidak konvergen seragam pada [0,1].

SOAL NOMOR

Buktikan bahwa deret

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + x}{n^2}$$

konvergen seragam pada setiap selang tertutup dan terbatas.

Solusi:

Misalkan $f_n(x) = (-1)^n \frac{x^2 + x}{n}$ merupakan barisan fungsi pada interval tertutup [a, b]. Perhatikan bahwa

$$|f_n(x)| = \left| (-1)^n \frac{x^2 + x}{n} \right| = \frac{|x^2 + x|}{n}.$$

Karena x^2+x merupakan fungsi kontinu dan [a,b] kompak, maka x^2+x mencapai nilai minimum dan maksimum di [a,b]. Misalkan p dan P berturut-turut menyatakan nilai minimum dan maksimum dari x^2+x di [a,b], diperoleh $|x^2+x| \leq \max\{|p|,|P|\} = Y$ untuk suatu $Y \geq 0$. Oleh karena itu,

$$|f_n(x)| = \frac{|x^2 + x|}{n^2} \le \frac{Y}{n^2}.$$

Dalam hal ini, $M_n=\frac{Y}{n^2}$ yang mana deret $\sum_{n=1}^\infty M_n=Y\sum_{n=1}^\infty \frac{1}{n^2}$ konvergen. Ini menunjukkan

bahwa $\sum_{k=1}^{\infty} f_k$ konvergen seragam pada [a, b].