Relation binaire entre deux ensembles

Définition

Soient deux ensembles E et F, une relation binaire R est une partie du produit cartésien $E \times F$.

On note $R \subseteq E \times F$.

Il s'agit aussi d'un ensemble de couples (e, f) avec $e \in E$ et $f \in F$.

On écrira $(e, f) \in R$ ou eRf.

Exemple (1. Associer une ville à un pays dont elle est la capitale)

```
E_v = \{Paris, Berlin, Rome, Montpellier\}

F_p = \{Allemagne, France, Italie, Espagne\}

R_{vp} = \{(Paris, France), (Berlin, Allemagne), (Rome, Italie)\}
```

Exemple (2. Associer une variété de fleur à une couleur qu'elle peut avoir)

```
\begin{split} E_f &= \{\textit{jasmin}, \textit{muguet}, \textit{petunia}\} \\ F_c &= \{\textit{blanc}, \textit{jaune}, \textit{rouge}, \textit{rose}, \textit{violet}, \textit{vert}\} \\ R_{fc} &= \{(\textit{jasmin}, \textit{blanc}), (\textit{jasmin}, \textit{jaune}), (\textit{muguet}, \textit{blanc}), (\textit{petunia}, \textit{rouge}), (\textit{petunia}, \textit{rose}), (\textit{petunia}, \textit{violet})\} \end{split}
```

Représentation d'une relation binaire pour $E \neq F$ par un graphe

Définition

À une relation binaire $R \subseteq E \times F$, $E \neq F$, on associe un graphe orienté $G = (E \cup F, R)$. Ses sommets sont les éléments de E et les éléments de F et ses arcs sont les couples de la relation R.

Exemple (Graphes associés aux relations R_{vp} (gauche) et R_{fc} (droite))

Relation binaire sur un ensemble

Définition

Soit un ensemble E, une relation binaire R sur E est une partie du produit cartésien $E \times E$.

On note $R \subseteq E \times E$.

Il s'agit aussi d'un ensemble de couples (e_1,e_2) avec $e_1 \in E$ et $e_2 \in E$.

On écrira $(e_1, e_2) \in R$ ou e_1Re_2 .

Exemple (Relation binaire sur un ensemble)

$$E = \{e_1, e_2, e_3, e_4, e_5\}$$

$$R = \{(e_1, e_1), (e_1, e_2), (e_1, e_3), (e_1, e_4), (e_3, e_5), (e_4, e_5), (e_5, e_4)\}$$

Représentation d'une relation binaire sur un ensemble par un graphe

Définition

À une relation binaire sur E, $R \subseteq E \times E$, on associe un graphe orienté G = (E,R). Ses sommets sont les éléments de E et les éléments de E et ses arcs sont les couples de la relation E.

Exemple (Relation binaire sur un ensemble)

$$\begin{split} E &= \{e_1, e_2, e_3, e_4, e_5\} \\ R &= \{(e_1, e_1), (e_1, e_2), (e_1, e_3), (e_1, e_4), (e_3, e_5), (e_4, e_5), (e_5, e_4)\} \end{split}$$

Relation réflexive

Définition

Soient un ensemble E et une relation binaire R sur E, R est réflexive si: $\forall e \in E$, $(e,e) \in R$ (que l'on note aussi eRe)

Exemple

Une relation non réflexive

Relation irréflexive

Définition

Soient un ensemble E et une relation binaire R sur E, R est irréflexive si : $\forall e \in E$, $(e,e) \not\in R$

Relation symétrique

Définition

Soient un ensemble E et une relation binaire R sur E, R est symétrique si: $\forall e_1, e_2 \in E$, si $(e_1, e_2) \in R$, alors $(e_2, e_1) \in R$

Relation antisymétrique

Définition

Soient un ensemble E et une relation binaire R sur E, R est anti-symétrique si : $\forall e_1, e_2 \in E$, si $(e_1, e_2) \in R$ et $(e_2, e_1) \in R$, alors $e_2 = e_1$

Exemple

Une relation non antisymétrique

Relation transitive

Définition

Soient un ensemble E et une relation binaire R sur E, R est une relation transitive si $\forall e_1, e_2, e_3 \in E$, e_1Re_2 et $e_2Re_3 \implies e_1Re_3$

Relation d'équivalence

Définition

Soient un ensemble E une relation binaire R sur E, R est une relation d'équivalence si :

- réflexive
- symétrique
- transitive

Exemple

Une relation d'équivalence

Une relation qui n'est pas une relation d'équivalence

Préordre

Définition

Soient un ensemble E une relation binaire R sur E est un pré-ordre si :

- réflexive
- transitive

Exemple

Une relation qui n'est pas un préordre

Ordre

Définition

Soient un ensemble E une relation binaire R (notée \leq) sur E est un ordre si elle est :

- réflexive
- antisymétrique
- transitive

 (E, \leq) est appelé un ensemble ordonné. On écrit $x \leq y$ plutôt que $(x, y) \in \leq$.

Exemple

Une relation qui n'est pas un ordre

Vocabulaire

- y couvre x si $x \neq y$, $y \geq x$ et $\forall z$, si $y \geq z$ et $z \geq x$, on a x = z ou y = z
- x est un minorant de y si $x \le y$ (resp. majorant si $y \le x$)
- x et y sont comparables si $x \le y$ ou $y \le x$
- x et y sont incomparables si $x \not \leq y$ et $y \not \leq x$ (notation m x||y|)

Exemple

 e_2 majore et couvre e_1 , e_5 majore mais ne couvre pas e_1 , e_2 et e_4 sont incomparables

Diagramme de Hasse

Définition

Soit un ensemble ordonné (E, \leq) son diagramme de Hasse est une représentation graphique de sa relation de couverture telle que chaque élément x de E est représenté par un point p(x) du plan avec :

- si $x \le y$, la droite horizontale passant par p(x) est au-dessous de la droite horizontale passant par p(y).
- lorsque y couvre x, un segment de droite joint p(x) et p(y).

Relation d'ordre strict

Définition

Soit un ensemble E, une relation binaire R sur E est une relation d'ordre strict (notée <) si elle est :

- irréflexive
- transitive

Elle est alors asymétrique : quand xRy, on n'a pas yRx.

Exemple

Un ordre strict

Une relation qui n'est pas un ordre strict

Relation d'ordre total

Définition

Soit un ensemble ordonné (E, \leq) , \leq est un ordre total si $\forall x, y \in E$ on a $x \not\leq y \implies y \leq x$

Isomorphismes et types d'ordre, Morphismes

Définition (isomorphisme d'ordre)

Deux ensembles ordonnés $P=(E_P,\leq_P)$ et $Q=(E_Q,\leq_Q)$ sont isomorphes (on dira aussi qu'ils sont du même type) lorsqu'il existe une bijection b de E_P and E_Q vérifiant : $\forall x,y\in E_P, x\leq_P y\Leftrightarrow b(x)\leq_Q b(y)$. b est appelée un isomorphisme d'ordre. b préserve l'ordre \leq_P et sa réciproque b^{-1} préserve l'ordre \leq_Q .

Définition (morphisme d'ordre)

Soient deux ensembles ordonnés $P=(E_P,\leq_P)$ et $Q=(E_Q,\leq_Q)$, une application a de E_P and E_Q vérifiant : $\forall x,y\in E_P,\,x\leq_P y\implies a(x)\leq_Q a(y)$. a est appelée un morphisme d'ordre. a préserve l'ordre \leq_P .

Exemple

Un isomorphisme d'ordre

Un morphisme d'ordre qui n'est pas un isomophisme

