Concepto de solución de una EDO

Dados un conjunto abierto $D \subset \mathbb{R} \times \mathbb{R}^d$ y una función continua $f: D \to \mathbb{R}^d$, consideramos la ecuación diferencial ordinaria (EDO):

$$(*) \quad x' = f(t, x)$$

¿Qué es una solución de (*)?

Es una función definida en un intervalo abierto $\varphi: J \to \mathbb{R}^d$ que verifica:

- $oldsymbol{9} \ \varphi$ es continua y derivable en J,

Ejercicio

Calcula algunas soluciones de la EDO $x' = x^2$.

Soluciones maximales

Una solución $\varphi: J \to \mathbb{R}^d$ es *prolongable* si existe otra solución $\tilde{\varphi}: \tilde{J} \to \mathbb{R}^d$ tal que:

- $\tilde{\varphi}|_{J} = \varphi.$

Una solución que no es prolongable recibe el nombre de maximal.

Ejemplo

$$\varphi: (-\infty,1) \to \mathbb{R}, \; \varphi(t) = \frac{1}{1-t} \text{ es solución maximal de la EDO } x' = x^2.$$

Concatenación de soluciones

Dadas dos soluciones de la EDO (*):

$$\varphi_1: J_1 \to \mathbb{R}^d \qquad \qquad \varphi_2: J_2 \to \mathbb{R}^d$$

tales que existe $\tau \in J_1 \cap J_2$ tal que $\varphi_1(\tau) = \varphi_2(\tau)$ se verifica que la función definida a trozos

$$\psi: J_1 \cap J_2 o \mathbb{R}^d, \quad \psi(t) = egin{cases} arphi_1(t) & \mathsf{si} & t \leq au \ arphi_2(t) & \mathsf{si} & t > au \end{cases}$$

también es solución de (*).

Ejemplo

Comprueba si $\varphi_1(t) = t \cdot |t|$ y $\varphi_2(t) \equiv 0$, definidas ambas $\forall t \in \mathbb{R}$, son soluciones de la EDO

$$x' = 2\sqrt{|x|}$$

y en caso de serlo, concaténalas.

Solución de un PVI

Dados un conjunto abierto $D \subset \mathbb{R} \times \mathbb{R}^d$, un punto $(t_0, x_0) \in D$ y una función continua $f: D \to \mathbb{R}^d$, consideramos el problema de valores iniciales

$$(P)\begin{cases} x' = f(t,x) \\ x(t_0) = x_0. \end{cases}$$

¿Qué es una solución de (P)?

Es una función $\varphi: J \to \mathbb{R}^d$ donde

- lacksquare $J \subset \mathbb{R}$ es un intervalo abierto tal que $t_0 \in J$,
- **9** φ es solución de la EDO x' = f(t, x).

Ejercicio

Calcula algunas soluciones maximales del PVI $\begin{cases} x' = \sqrt[4]{x^2} \\ x(1) = 1 \end{cases}.$

Unicidad de solución de (P)

Existen varios conceptos de unicidad:

Unicidad global

El PVI (P) verifica la propiedad de *unicidad global* si para cualquier par de soluciones de (P)

$$\varphi_1: J_1 \to \mathbb{R}^d \qquad \qquad \varphi_2: J_2 \to \mathbb{R}^d$$

se cumple $\forall t \in J_1 \cap J_2$ que $\varphi_1(t) = \varphi_2(t)$.

Unicidad local

El PVI (P) verifica la propiedad de *unicidad local* si para cualquier par de soluciones de (P)

$$\varphi_1: J_1 \to \mathbb{R}^d$$
 $\varphi_2: J_2 \to \mathbb{R}^d$

existe un intervalo abierto $I \subset \mathbb{R}$ tal que $t_0 \in I \subset J_1 \cap J_2$ de manera que $\varphi_1(t) = \varphi_2(t)$ para todo $t \in I$.

Unicidad en un intervalo $K \subset \mathbb{R}$

El PVI (P) verifica la propiedad de *unicidad en un intervalo K* si para cualquier par de soluciones de (P)

$$\varphi_1: J_1 \to \mathbb{R}^d \qquad \qquad \varphi_2: J_2 \to \mathbb{R}^d$$

se cumple $\forall t \in J_1 \cap J_2 \cap K$ que $\varphi_1(t) = \varphi_2(t)$.

Unicidad en el futuro

El PVI (P) verifica la propiedad de *unicidad en el futuro* si verifica la propiedad de unicidad en el intervalo $[t_0, +\infty)$.

Unicidad en el pasado

El PVI (P) verifica la propiedad de *unicidad en el pasado* si verifica la propiedad de unicidad en el intervalo ($-\infty$, t_0].

Teorema de unicidad de Peano

Dados un conjunto abierto $D \subset \mathbb{R} \times \mathbb{R}$, un punto $(t_0, x_0) \in D$ y una función continua $f: D \to \mathbb{R}^d$, consideramos el problema de valores iniciales escalar

$$(P) \begin{cases} x' = f(t, x) \\ x(t_0) = x_0. \end{cases}$$

Teorema

- Si para todo $t \ge t_0$ la sección $x \mapsto f(t, x)$ es decreciente, entonces (P) verifica la propiedad de unicidad en el futuro.
- ② Si para todo $t \le t_0$ la sección $x \mapsto f(t,x)$ es creciente, entonces (P) verifica la propiedad de unicidad en el pasado.

Ejercicio

Estudia la unicidad del PVI
$$\begin{cases} x' = -t\sqrt[3]{x} \\ x(0) = 1 \end{cases}$$
 .