Correction de Maths ENS - Oraux 2013 - planche 12

Exercice 1

- 1. Pour tout $x \in \mathbb{R}$, on a $e^{-x} > 0$.
 - Si $e^{-x} > 1$, alors $e^{-n^2x} = (e^{-x})^{n^2} \ge (e^{-x})^n$ et $(e^{-x})^n$ est le terme général d'une série géométrique **divergente**, donc par comparaison la série $\sum e^{-n^2x}$ diverge.
 - Si $e^{-x} < 1$, alors $e^{-n^2x} = (e^{-x})^{n^2} \le (e^{-x})^n$ et $(e^{-x})^n$ est cette fois ci le terme général d'une série géométrique **convergente**, donc par comparaison la série $\sum e^{-n^2x}$ converge.

On en conclut que la série converge si et seulement si $0 e^{-x} < 1$, si et seulement si x > 0. Donc $D =]0; +\infty[$.

2. Pour tout $k \in \mathbb{N}$ on a, pour tout t tel que $k \le t < k+1$:

$$e^{-(k+1)^2x} < e^{-t^2x} < e^{-k^2x}$$

donc en intégrant sur l'intervalle [k, k+1] par rapport à la variable t on obtient :

$$e^{-(k+1)^2 x} \le \int_k^{k+1} e^{-t^2 x} dt \le e^{-k^2 x}$$

car le membre de gauche et de droite de l'inégalité de départ sont des constantes dans l'intégrale. Finalement, en sommant pour k allant de 0 à $+\infty$:

$$\sum_{k=0}^{+\infty} e^{-(k+1)^2 x} \le \int_0^{+\infty} e^{-t^2 x} dt \le \sum_{k=0}^{+\infty} e^{-k^2 x}$$

(tout converge car la somme de droite est f(x) + 1 donc converge). Comme $\sum_{k=0}^{+\infty} e^{-(k+1)^2 x} = \sum_{k=1}^{+\infty} e^{-k^2 x} = f(x)$ on a finalement :

$$f(x) \le \int_0^{+\infty} e^{-t^2 x} dt \le f(x) + 1$$

d'où:

$$\int_0^{+\infty} e^{-t^2 x} dt - 1 \le f(x) \le \int_0^{+\infty} e^{-t^2 x} dt$$

3. Pour tout A>1 et pour tout $x\in D$ on a, via le changement de variable $u=\sqrt{x}t$:

$$\int_0^A e^{-t^2 x} dt = \frac{1}{\sqrt{x}} \int_0^{\sqrt{x}A} e^{-u^2} du$$

Puis en faisant tendre A vers $+\infty$ on obtient :

$$\int_0^{+\infty} e^{-t^2 x} dt = \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2\sqrt{x}}$$

donc par encadrement : $f(x) \underset{x \to +\infty}{\sim} \frac{1}{2} \sqrt{\frac{\pi}{x}}$.

Exercice 2

1.
$$E(X_0) = \frac{M+1}{2}$$
 et $V(X_0) = \frac{M^2-1}{12}$ (cours).

2. Alice perd à l'étape k si $X_k \leq X_{k-1}$. Si $X_{k-1} = a$, alors la probabilité d'avoir $X_k \leq X_{k-1}$ au prochain tour est $\mathbb{P}(X_k \le a) = \frac{a}{M}.$

Alice perd donc au prochain tour avec probabilité $\frac{a}{M}$ et gagne avec probabilité $\frac{M-a}{M}$. Si elle gagne (et qu'elle choisit stop au prochain tour), alors elle gagne k+1. Sinon elle gagne 0. Ainsi l'espérance de son gain est $(k+1)\frac{M-a}{M}$.

3. Si Alice choisit "-" à l'étape k, elle perd avec probabilité $\frac{M-a+1}{M}$ et gagne avec probabilité $\frac{a-1}{M}$. Son espérance de gain est donc $(k+1)\frac{a-1}{M}$. Si Alice choisit "Stop" à l'étape k, elle gagne k avec probabilité 1.

- Elle a donc intérêt à jouer "+" lorsque $(k+1)\frac{M-a}{M}>k$, c'est à dire lorsque M-(k+1)a>0 donc lorsque $a < \frac{M}{k+1}$.
- Elle a intérêt à jouer "-" lorsque $(k+1)\frac{a-1}{M} > k$, c'est à dire lorsque $a > \frac{Mk}{k+1} + 1$.
- Elle a intérêt à jouer "stop" lorsque $\frac{M}{k+1} \le a \le \frac{Mk}{k+1} + 1$. À noter que dès qu'on a $k \ge M$ on a $\frac{M}{k+1} < 1$ et $\frac{Mk}{k+1} + 1 = \frac{M(k+1) - M}{k+1} + 1 = M+1 - \frac{M}{k+1} > M \text{ donc quel que soit le résultat du k-ème tirage Alice devra raisonnablement s'arrêter selon cette stratégie, donc le nombre d'étape jouées est au plus M.}$

Notons Y le gain d'Alice, Y est égal au nombre d'étape jouées donc $Y(\Omega) = \{1, ..., M\}$.

Pour M=2: quelle que soit la valeur de X_0 , Alice arrête de jouer. En effet, si $X_0=1$ alors $1=\frac{2}{1+1}$ et si $X_0=2$ alors $2 = \frac{2 \times 1}{1+1} + 1$ donc elle va choisir "stop" dans les deux cas. Ainsi, E(Y) = 1

- étape 1 : Si $X_0 = 1$ ou $X_0 = 3$, Alice continue à jouer en pariant "+" dans le premier cas et "-" dans le second. Si $X_0 = 2$, alors $\frac{3}{1+1} < 2$ et $\frac{3 \times 1}{1+1} + 1 > 2$ donc Alice a intérêt à jouer "stop".
- étape 2 : si $X_1 = 1$ alors $\frac{3}{2+1} = 1 \ge 1$ donc Alice a intérêt à jouer stop, et de même si $X_1 = 2$ et si $X_1 = 3$. Le jeu s'arrête donc à l'étape 2 et Alice gagne 2

Ainsi
$$E(Y) = \mathbb{P}(X_0 = 1) \times \mathbb{P}(X_1 > 1) \times 2 + \mathbb{P}(X_0 = 2) \times 1 + \mathbb{P}(X_0 = 3) \times \mathbb{P}(X_0 < 3) \times 2 = 2 \times \frac{1}{3} \times \frac{2}{3} \times 2 + \frac{1}{3} = \frac{11}{9}$$
.

- 4. Avec cette variante, la probabilité de gagner à l'étape k avec "+" si $X_{k-1}=a$ est $\frac{M-a+1}{M}$, et la probabilité de gagner avec "-" est $\frac{a}{M}$.
 - Alice a intérêt à jouer "+" si $(k+1)\frac{M-a+1}{M}>k$ c'est à dire si $a<\frac{M}{k+1}+1$.
 - Alice a intérêt à jouer "-" si $(k+1)\frac{a}{M} > k$ c'est à dire si $a > \frac{Mk}{k+1}$

En reprenant pour M=2 la stratégie sera simplement de jouer "+" si $X_{k-1}=1$ et "-" si $X_{k-1}=2$, et il n'y a aucun risque de jamais perdre, l'espérance de gain est infinie.

Pour M=3 Alice jouera naturellement "+" si $X_{k-1}=1$ et "-" si $X_{k-1}=3$ et ne perdra jamais dans ces cas là. Si $X_{k-1}=2$, on aura $\frac{M}{k+1}+1=\frac{3}{k+1}+1<2$ dès que $k\geq 3$ et $\frac{Mk}{k+1}=\frac{3k}{k+1}>2$ dès que $k\geq 3$ donc à partir de k=3 Alice aura intérêt à s'arrêter au premier 2 obtenu.

Le gain d'Alice est donc égale à Y où Y est le rang d'apparition du premier 2 à partir du rang 3.

Pour tout $k \geq 3$, $\mathbb{P}(Y = k) = \left(\frac{2}{3}\right)^{k-3} \times \frac{1}{3}$. Y - 2 suit une loi géométrique de paramètre $\frac{1}{3}: \forall k \in \mathbb{N}^*, \mathbb{P}(Y - 2 = k) = 0$

Correction de Maths ENS - Oraux 2013 - planche 10

Exercice 1

1.
$$R_{\theta}X_{\theta'} = \begin{pmatrix} \cos\theta\cos\theta' - \sin\theta\sin\theta' \\ \sin\theta\cos\theta' + \cos\theta\sin\theta' \end{pmatrix} = \begin{pmatrix} \cos(\theta + \theta') \\ \sin(\theta + \theta') \end{pmatrix}$$

2.
$$R_{\theta}R_{\theta'} = \begin{pmatrix} \cos\theta\cos\theta' - \sin\theta\sin\theta' & -\sin\theta\cos\theta' - \cos\theta\sin\theta' \\ \sin\theta\cos\theta' + \cos\theta\sin\theta' & \cos\theta\cos\theta' - \sin\theta\sin\theta' \end{pmatrix} = \begin{pmatrix} \cos(\theta+\theta') & -\sin(\theta+\theta') \\ \sin(\theta+\theta') & \cos(\theta+\theta') \end{pmatrix} = R_{\theta+\theta'}.$$
Comme $I_2 = R_0$ on a $R_{\theta}R_{-\theta} = R_{\theta-\theta} = R_0 = I_2$ donc R_{θ} est inversible d'inverse $R_{-\theta}$, et on observe (par parité du

cosinus et imparité du sinus) que :

$$R_{-\theta} = \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} = {}^{t}R_{\theta}$$

3. On cherche les valeurs de $\lambda \in \mathbb{R}$ pour lesquelles $R_{\theta} - \lambda I$ n'est pas inversible.

$$\lambda \in Sp(R_{\theta}) \iff R_{\theta} - \lambda I \text{ n'est pas inversible}$$

$$\iff \det(R_{\theta} - \lambda I) = 0$$

$$\iff (\cos \theta - \lambda)^2 + \sin^2 \theta = 0$$

$$\iff \lambda^2 - 2\cos \theta \lambda + \cos^2 \theta + \sin^2 \theta = 0$$

$$\iff \lambda^2 - 2\cos \theta \lambda + 1 = 0$$

 $\Delta = 4\cos^2\theta - 4$, or pour tout $\theta \in \mathbb{R}$, $0 \le \cos^2\theta \le 1$ donc $\Delta \le 0$ avec égalité si et seulement si $\cos^2\theta = 1$, si et seulement si $\theta = 0 + k\pi$ avec $k \in \mathbb{Z}$.

Lorsque $\cos \theta = 1$, la seule valeur propre est $\lambda = 1$ (on a alors $\theta = 0 + 2k\pi$ avec $k \in \mathbb{Z}$ et $R_{\theta} = I$).

Lorsque $\cos \theta = -1$, la seule valeur propre est $\lambda = -1$ (on a alors $\theta = \pi + 2k\pi$ avec $k \in \mathbb{Z}$ et $R_{\theta} = -I$.

Conclusion : R_{θ} est diagonalisable si et seulement si $\theta = 0 + k\pi$ avec $k \in \mathbb{Z}$. Elle est diagonalisable et même diagonalisable dans ces cas, avec $R_{\theta} = I$ si $\theta = 0 + 2k\pi$, $k \in \mathbb{Z}$ et $R_{\theta} = -I$ si $\theta = \pi + 2k\pi$, $k \in \mathbb{Z}$

4. Lorsque θ parcourt \mathbb{R} , Y_{θ} décrit le cercle de centre O et de rayon ||X|

On a, en choisissant $\alpha \in \mathbb{R}$ tel que $\cos \alpha = \frac{X_1}{\sqrt{X_1^2 + X_2^2}}$ et $\sin \alpha = \frac{X_2}{\sqrt{X_1^2 + X_2^2}}$:

$$\begin{split} |(Y_{\theta})_{1}| + |(Y_{\theta})_{2}| &= |\cos \theta X_{1} - \sin \theta X_{2}| + |\sin \theta X_{1} + \cos \theta X_{2}| \\ &= \sqrt{X_{1}^{2} + X_{2}^{2}} \left(\left| \cos \theta \frac{X_{1}}{\sqrt{X_{1}^{2} + X_{2}^{2}}} - \sin \theta \frac{X_{2}}{\sqrt{X_{1}^{2} + X_{2}^{2}}} \right| + \left| \sin \theta \frac{X_{1}}{\sqrt{X_{1}^{2} + X_{2}^{2}}} + \cos \theta \frac{X_{2}}{X_{1}^{2} + X_{2}^{2}} \right| \right) \\ &= \sqrt{X_{1}^{2} + X_{2}^{2}} \left(|\cos \theta \cos \alpha - \sin \theta \sin \alpha| + |\sin \theta \cos \alpha + \cos \theta \sin \alpha| \right) \\ &= \sqrt{X_{1}^{2} + X_{2}^{2}} \left(|\cos (\theta + \alpha)| + |\sin (\theta + \alpha)| \right) \end{split}$$

Il suffit donc de trouver la valeur maximale et la valeur minimale de $|\cos x| + |\sin x|$ pour répondre à la question. Par symétrie sur le cercle, il suffit de trouver le maximum sur $[0; \pi/2]$ de $f: x \mapsto \cos x + \sin x$: cette fonction est dérivable et sa dérivée est $f'(x) = -\sin x + \cos x$ qui s'annule et change de signe lorsque $\sin x = \cos x$ c'est à dire lorsque $x = \frac{\pi}{4}$.

Ainsi la valeur maximum de $|\cos x| + |\sin x|$ est $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \sqrt{2}$, et la valeur minimale est 1.

On a donc:

$$\max_{\theta \in \mathbb{R}} \{ |(Y_{\theta})_1| + |(Y_{\theta})_2| \} = \sqrt{2} \sqrt{X_1^2 + X_2^2}$$

$$\min_{\theta \in \mathbb{R}} \{ |(Y_{\theta})_1| + |(Y_{\theta})_2| \} = \sqrt{X_1^2 + X_2^2}$$

et ces deux valeurs sont supérieures ou égales à $\sqrt{X_1^2 + X_2^2}$

Exercice 2

1. On a d'une part :

$$(1+x)^{n+p} = \sum_{k=0}^{n+p} \binom{n+p}{k} x^k$$

et d'autre part :

$$(1+x)^n (1+x)^p = \left(\sum_{\ell=0}^n \binom{n}{\ell} x^\ell\right) \left(\sum_{i=0}^p \binom{p}{i} x^i\right)$$
$$= \sum_{\ell=0}^n \sum_{i=0}^p \binom{n}{\ell} \binom{p}{i} x^{\ell+i}$$

donc pour $k \in [0, n+p]$ donné, en identifiant les termes de degré k dans chacun des deux polynômes précédent on a :

$$\binom{n+p}{k} = \sum_{\ell=0}^{k} \binom{n}{\ell} \binom{p}{k-\ell}$$

avec comme convention $\binom{n}{\ell} = 0$ si $\ell > n$

2. S_{n+p} compte le nombre de X_i qui valent 1 donc suit la loi binomiale de paramètres n+p et $\frac{1}{2}$. De même, S_n suit la loi binomiale de paramètres p et $\frac{1}{2}$. De plus, S_n et S_p' sont indépendantes d'après le lemme des coalitions et $S_n + S_p' = S_{n+p}$.

On peut donc exprimer $\mathbb{P}(S_{n+p}=k)$ de deux façons différentes :

$$\mathbb{P}(S_{n+p} = k) = \binom{n+p}{k} \frac{1}{2^k} \times \frac{1}{2^{n+p-k}} = \binom{n+p}{k} \frac{1}{2^{n+p}}$$

et

$$\mathbb{P}(S_{n+p} = k) = \mathbb{P}(S_n + S_p' = k)$$

$$= \sum_{\ell=0}^k \mathbb{P}(S_n = \ell, S_p' = k - \ell)$$

$$= \sum_{\ell=0}^k \mathbb{P}(S_n = \ell) \mathbb{P}(S_p' = k - \ell)$$
par indépendance
$$= \sum_{\ell=0}^k \binom{n}{\ell} \frac{1}{2^\ell} \times \frac{1}{2^{n-\ell}} \times \binom{p}{k-\ell} \frac{1}{2^{k-\ell}} \times \frac{1}{2^{p-k+\ell}}$$

$$= \sum_{\ell=0}^k \binom{n}{\ell} \binom{p}{k-\ell} \frac{1}{2^{n+p}}$$

donc on en déduit que :

$$\sum_{\ell=0}^k \binom{n}{\ell} \binom{p}{k-\ell} = \binom{n+p}{k}$$

3. $\operatorname{card}(\mathcal{E}) = \operatorname{card}(\mathcal{E}_1) + \operatorname{card}(\mathcal{E}_2) = n + p$ donc il y a $\binom{n+p}{k}$ sous ensemble de \mathcal{E} à k éléments.

Choisir une partie à k éléments de \mathcal{E} contenant exactement ℓ éléments de \mathcal{E}_1 revient à choisir d'abord une partie de \mathcal{E}_1 à ℓ éléments puis une partie de \mathcal{E}_2 à $k-\ell$ éléments.

Il y a $\binom{n}{\ell}$ façons de choisir une partie de \mathcal{E}_1 contenant exactement ℓ éléments, et pour chacune d'entre elles il y a $\binom{p}{k-\ell}$ façon de choisir une partie de \mathcal{E}_2 contenant exactement $k-\ell$ éléments. Il y a donc $\binom{n}{\ell} \times \binom{p}{k-\ell}$ façons de choisir une partie de \mathcal{E} contenant exactement ℓ éléments de \mathcal{E}_1 .

Chaque partie à k éléments de \mathcal{E} peut se décomposer en l'union d'une partie de \mathcal{E}_1 à ℓ éléments et une partie de \mathcal{E}_2 à $k-\ell$ éléments, avec $\ell \in \{0,...,k\}$, donc :

$$\binom{n+p}{k} = \sum_{\ell=0}^{k} \binom{n}{\ell} \binom{p}{k-\ell}$$

4. En appliquant la formule démontrée avec n=p on obtient :

$$\binom{2n}{n} = \sum_{\ell=0}^{n} \binom{n}{\ell} \binom{n}{n-\ell}$$

Or pour tout $\ell \in \{0,...,n\}$, $\binom{n}{n-\ell} = \binom{n}{\ell}$ donc :

$$\binom{2n}{n} = \sum_{\ell=0}^{n} \binom{n}{\ell}^2$$

Correction de Maths ENS - Oraux 2016 - planche 3

Exercice 1

- 1. $x^x = e^{x \ln x}$ et $\lim_{x \to 0} x \ln x = 0$ par croissance comparée, donc par composition : $\lim_{x \to 0} x^x = 1$.
- 2. Suivant l'indication de l'énoncé, écrivons :

$$\int_0^{1/n} x^{x+1} dx = \int_0^{1/n} (x^{x+1} - x + x) dx$$
$$= \int_0^{1/n} x(x^x - 1) dx + \int_0^{1/n} x dx$$

La fonction $f: x \mapsto x \ln x$ est dérivable sur]0,1[et $f'(x) = \ln x + 1$ donc f est décroissante sur $]0,e^{-1}[$ et croissante sur $]e^{-1},1[$:

x	0	e^{-1}	1
$x \ln(x)$	0		0

On en déduit que $x^x - 1$ est négatif sur]0;1[et que pour n assez grand, lorsque $\frac{1}{n} \le e^{-1}$, on a :

$$1 - x^x \le 1 - \left(\frac{1}{n}\right)^{1/n}$$

On peut alors écrire :

$$\left| n^{2} \int_{0}^{1/n} x(x^{x} - 1) \, \mathrm{d}x \right| \leq n^{2} \int_{0}^{1/n} x|x^{x} - 1| \, \mathrm{d}x$$

$$\leq n^{2} \int_{0}^{1/n} x(1 - x^{x}) \, \mathrm{d}x$$

$$\leq n^{2} \int_{0}^{1/n} x \left(1 - \left(\frac{1}{n} \right)^{1/n} \right) x$$

$$\leq n^{2} \left(1 - \left(\frac{1}{n} \right)^{1/n} \right) \int_{0}^{1/n} x \, \mathrm{d}x$$

$$\leq n^{2} \left(1 - \left(\frac{1}{n} \right)^{1/n} \right) \times \frac{1}{n^{2}} \qquad \leq \left(1 - \left(\frac{1}{n} \right)^{1/n} \right)$$

et le membre de droite tend vers 0 d'après la question 1 donc par comparaison :

$$\lim_{n \to +\infty} n^2 \int_0^{1/n} x(x^x - 1) = 0$$

De plus, $n^2 \int_0^{1/n} x \, dx = n^2 \times \frac{1}{n^2} = 1$ donc :

$$n^{2} \int_{0}^{1/n} x^{x+1} dx = \underbrace{n^{2} \int_{0}^{1/n} x(x^{x} - 1) dx}_{n \to +\infty} + \underbrace{n^{2} \int_{0}^{1/n} x dx}_{=1}$$

6

donc $\lim_{n \to +\infty} n^2 \int_0^{1/n} x^{x+1} dx = 1$.

Exercice 2

1. $Y_i(\Omega) = \{0, 1/\sqrt{p_i}\}\ \text{et}\ \mathbb{P}(Y_i = 1/\sqrt{p_i}) = \mathbb{P}(X = i) = p_i.$ On a donc $E(Y_i) = 0 \times \mathbb{P}(Y_i = 0) + \frac{1}{\sqrt{p_i}}\mathbb{P}(Y = 1/\sqrt{p_i}) = \frac{\mathbb{P}(X = i)}{\sqrt{p_i}} = \frac{p_i}{\sqrt{p_i}} = \sqrt{p_i}.$ Calculons $E(Y_i^2)$:

$$E(Y_i^2) = 0^2 \mathbb{P}(Y_i = 0) + \frac{1}{\sqrt{p_i}^2} \mathbb{P}(Y_i = 1/\sqrt{p_i}) = \frac{\mathbb{P}(X = i)}{p_i} = 1$$

donc d'après la formule de Koenig-Huygens :

$$V(Y_i) = E(Y_i^2) - E(Y_i)^2 = 1 - \sqrt{p_i}^2 = 1 - p_i$$

2. $C_{i,j} = \text{Cov}(Y_i, Y_j)$ et on sait d'après la formule de Koenig-Huygens que $\text{Cov}(Y_i, Y_j) = E(Y_i Y_j) - E(Y_i) E(Y_i)$.

$$\begin{split} E(Y_iY_j) &= \sum_{\ell=0}^1 \sum_{\ell'=0}^1 \ell \ell' \mathbb{P}(Y_i = \ell, Y_j = \ell') \\ &= \mathbb{P}(Y_i = 1, Y_j = 1) \\ &= \left\{ \begin{array}{ll} 1 & \text{si } i = j \\ 0 & \text{sinon} \end{array} \right. \end{split}$$
 car tous les autres termes sont nuls

De plus d'après la question précédente :

$$E(Y_i)E(Y_j) = \frac{\mathbb{P}(X=i)\mathbb{P}(X=j)}{\sqrt{p_i}\sqrt{p_j}} = \frac{p_i p_j}{\sqrt{p_i}\sqrt{p_j}} = \sqrt{p_i p_j}$$

d'où:

$$C_{i,j} = \begin{cases} 1 - p_i & \text{si } i = j \\ -\sqrt{p_i p_j} & \text{sinon} \end{cases}$$

- 3. VV^T est la matrice définie par $(VV^T)_{i,j} = V_i(V^T)_j = V_iV_j = \sqrt{p_ip_j}$ pour tout $(i,j) \in [1,n]^2$. Ainsi, $I - VV^T$ est la matrice dont le coefficient (i,j) vaut $1 - p_i$ si i = j et $-\sqrt{p_ip_j}$ si $i \neq j$, c'est bien la matrice C.
- $4. \ \ C^2 = (I VV^T)^2 = I^2 2VV^T + (VV^T)^2 = I 2VV^T + (VV^T)^2 = (I VV^T) + (VV^T)^2 VV^T = C + (VV^T I)VV^T = C + ($

Or $V \in \text{Ker}(C)$: en effet le *i*-ème coefficient de la colonne CV est :

$$\sqrt{p_i}(1 - p_i) - \sum_{\substack{j=1\\j \neq i}}^n p_j \sqrt{p_i} = \sqrt{p_i} \left(1 - p_i - \sum_{\substack{j=1\\j \neq i}}^n p_j \right) = \sqrt{p_i} \left(1 - \sum_{j=1}^n p_j \right) = 0$$

 $\operatorname{car} \sum_{j=1}^{n} p_{j} = \sum_{j=1}^{n} \mathbb{P}(X=j) = 1.$

Finalement : $C^2 = C$.

- 5. C est la matrice d'un projecteur d'après la question précédente, donc d'après le cours $\mathbb{R}^n = \mathrm{Ker}(C) \oplus \mathrm{Im}(C)$.
- 6. Soit $X \in \text{Ker}(C)$. Alors $(I VV^T)X = 0$ donc $X = VV^TX$ donc $X \in \text{Im}(VV^T)$ qui est de rang 1 (toutes les lignes sont multiples de V^T) donc $X \in \text{Vect}(V)$.

Réciproquement on a vu à la question précédente que $V \in \text{Ker}(C)$ donc finalement Ker(C) = Vect(V).

7. D'après le cours sur les projecteurs : $Y \in \text{Im}(C) \iff CY = Y$. Si $Y \in \text{Im}(C)$, on a donc Y = CY c'est-à-dire $Y = Y - VV^TY$ donc $VV^TY = 0$. On en déduit que pour tout i, $\sqrt{p_i} \sum_{j=1}^n y_j \sqrt{p_j} = 0$ donc $\sum_{j=1}^n y_j \sqrt{p_j} = 0$ car au moins l'un des p_i est non nul. Réciproquement, si $\sum_{j=1}^n y_j \sqrt{p_j} = 0$ alors $V^TY = 0$ donc CY = Y donc $Y \in \text{Im}(C)$. Finalement on a bien :

$$\operatorname{Im}(C) = \left\{ (y_1, ..., y_n) \in \mathbb{R}^n : \sum_{i=1}^n y_i \sqrt{p_i} = 0 \right\}$$

(note : il aurait été plus convenable d'écrire : $\operatorname{Im}(C) = \left\{ \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R}) : \sum_{i=1}^n y_i \sqrt{p_i} = 0 \right\}$)