IWDSC 2021 INTERNATIONAL WORKSHOP ON DISTRIBUTED SMART CAMERAS 11TH OCTOBER 2021

Where Did I See It? Object Instance Re-Identification with Attention

VAIBHAV BANSAL

GIAN LUCA FORESTI

NIKI MARTINEL

Problem

Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T. and Nießner, M., 2017. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *Proceedings of the EEE Conference on Computer Vision and Pattern Recognition* (pp. 5828-5839).

Appearance-based: Using Foreground

Appearance-based: Using Background

Better Approach: Foreground-Background

Approach – Stage 1

Approach - Vision Transformer (ViT)

Approach – Stage 2

Triplets

Experimental setup

Type	Pre-trained ViT	Input images		Fine tuning	Feature concatenation
		Full	Mask		Concatenation
no_train	✓	~	×	×	×
full	~	~	×	✓	×
concat	✓	×	~	✓	✓

Training data

- ScanNet: Over 800 scans of rigid indoor scenes
- Total number of objects detected by Mask-RCNN: 646,156
- Number of object classes: 29
- Number of Valid detections: 58876 or 9.11% of the total
- Criteria for *Valid* detections: Bounding box overlap ratio > 60% and matching labels

Results - Matching Accuracy

Type	Rank-1 (%)	Rank-5 (%)	Rank-20 (%)	Rank-50 (%)
no_train	68.7	77.06	81.78	92.71
full	75.79	88.0	91.22	96.25
concat	83.89	94.61	99.42	100

Visualization

Visualization

Results – Comparison with SOTA

Туре	Rank-1 (%)	Rank-5 (%)	Rank-20 (%)
deepsort	49.60	-	-
re-OBJ	77.85	91.55	98.36
ours	83.89	94.61	99.42

[•] Wojke, N., Bewley, A. and Paulus, D., 2017, September. Simple online and realtime tracking with a deep association metric. In 2017 IEEE International Conference on Image Processing (ICIP) (pp. 3645-3649). IEEE.

[•] Bansal, V., James, S. and Del Bue, A., 2019, September. re-OBJ: Jointly learning the foreground and background for object instance re-identification. In International Conference on Image Analysis and Processing (pp. 402-413). Springer, Cham.

Results – Comparison with Person ReID methods

Method	Rank-1 (%)	Rank-5 (%)	Rank-20 (%)
OSNet	69	85.7	91.3
DGNet	58.3	76	92.4
Ours	83.89	94.61	99.42

[•] Kaiyang Zhou, Yongxin Yang, Andrea Cavallaro, and Tao Xiang. Omni-scale feature learning for person reidentification. CoRR, abs/1905.00953, 2019.

[•] Zhedong Zheng, Xiaodong Yang, Zhiding Yu, Liang Zheng, Yi Yang, and Jan Kautz. Joint discriminative and generative learning for person re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2138–2147, 2019.

Thank You

