Machine Learning Applications in Asset Management

12/15/20 5:07 PM

Speaker: Tugce Karatas (Columbia University) and Satyan Malhortra (Flexstone Partners)

A. Overview

Machine Learning's base pillars

- Data
 - Needs to be carefully processed to be useful
- Analytical Tools
 - Signals
 - How does price / volume move
 - Which sector / asset is going to outperform
 - What is product's success rate
 - Sentiment
 - Up or down trend
 - What is closing probability
 - Scrapping
 - What is real time impact of news
 - Clustering
 - What should allocation be
 - What are cohorts and replications
 - What are key questions
- Visualization
 - What is best representation for the application

B. Liquid products - Mutual Funds

1. Manager Selection

Which managers may outperform given objective function? (Which funds to be included in our portfolio?)

- Features: alternative data, holding data
 - Alternative data: information about company but published from external sources
 - o Holding data: anything related to the holding of fund (e.g. turning ratio)
- Optimization: LSTM

2. Portfolio Construction / Asset Allocation

How to allocate assets given object functions?

- Traditional: from history return data, optimize expected return for given risk level
- Sample nested clustered optimization
- LSTM for initiate weights, then Reinforcement Learning to decide final weights of portfolio
- Asset allocation visualization

3. Stress testing / Real time impacts

Test the market conditions and portfolios against historic scenarios and news to access impacts

- We can do stress testing in order to see resilience of models under events like 2008 crisis or COVID-19
 - $\circ\quad$ Take our current allocation to go back to the scenarios
 - To see if we have these events again, how our performance will be
- Real time impacts:
 - $\circ\quad$ NLP and sentiment to access potential impacts on sectors, portfolios, and other

4. Market indicators

Identify the relative potential and attractiveness of sectors and sub-sectors, given the economic condition

- Framework
 - Data collection
 - Macroeconomic indicators and performance benchmark data by sector
 - Feature engineering
 - Determine the most important features for each sector
 - Prediction by sectors
 - ML and DL to predict performance benchmark data for each sector
 - **Ranking**
 - Rank sectors based on predicted values
- One example: Echo State Networks Application (Jaeger, Herbert)
- Extensions: Jump prediction, sentiment analysis

C. Illiquid Products - Private Equity

- 1. Manager Selection
- 2. Investment Selection
- 3. Market Indicator

4. Cash Flow Forecasting

- Cash flow questions:
 - O What are the contribution and distributions profiles?
 - What impact do unplanned events have on profile?
 How close is the profile to the generic sectors or sub-sectors profiles?
 - What is the tracking error and reinforcement method?
- Data challenges
 - $\circ \quad \text{Sparse and difficult to access} \\$
 - Not standard
 - o Infrequent updates
- Machine Learning applications: allow building of assumption-free models
- Key challenge: Inconsistent and insufficient data
 - Solution: Brownian interpolation
 - Contributions and distributions are predicted independently

^{*}These three are essentially same with liquid products but with unique datasets