Aman Hogan-Bailey

University of Texas at Arlington

CSE-5351: Parallel Processing

Contents

Performance Analysis: MPI vs MPI+OpenMP Implementation of 3D Heat Equation	
Runtime Performance	2
Scaling Behavior	2
Process Count Impact	3
Conclusions	3
Tables	

Performance Analysis: MPI vs MPI+OpenMP Implementation of 3D Heat Equation

Since the runtime for N=400 always takes around 20-30 minutes on lower processor counts a lower N value was used. Here are the values of N respectively:

- 1. Pure MPI implementation with N=120
- 2. Hybrid MPI+OpenMP implementation with N=80

Runtime Performance

- The hybrid implementation starts significantly faster, with 2 processes taking only 0.96s
- Pure MPI with single process takes 126.95s, indicating substantial sequential overhead

Scaling Behavior

- 1. Pure MPI shows strong scaling:
 - a. 8.2x speedup from 1 to 8 processes
 - b. 11x speedup from 1 to 50 processes
- 2. Hybrid implementation shows performance degradation:
 - a. Runtime increases from 0.96s (2 processes) to 31.69s (50 processes)
 - b. Performance worsens by approximately 33x from 2 to 50 processes

Process Count Impact

- 1. Pure MPI benefits from increased processes, though with diminishing returns
- 2. Hybrid approach shows inverse scaling, performing worse with more processes

Conclusions

- 1. Implementation Preferences
 - a. For small process counts: Hybrid MPI+OpenMP is superior
 - b. For large process counts: Pure MPI shows better stability
 - c. The crossover point appears to be between 8-10 processes
- 2. Scaling Characteristics
 - a. Pure MPI shows expected scaling behavior with increased processes
 - b. Hybrid implementation's performance degradation suggests serious resource contention or synchronization issues
- 3. Problem Size Considerations
 - a. Hybrid implementation handles N=80 more efficiently at low process counts
 - b. Pure MPI manages N=120 with better scaling but higher absolute runtimes

Figures

Plots Runtime and efficiency for splitting and processor counts for the MPI+OMP combination.

Tables

Hybrid MPI+OpenMP Implementation (N=80)

NProcs	Runtime (s)
2	0.960819
10	4.054080
50	31.688322

Pure MPI Implementation (N=120)

NProcs	Runtime (s)
1	126.951661
8	15.463419
50	11.481844