Tareas de ALEM

curso 2014/2015 grupos: C3

francisco m. garcía olmedo

14 de noviembre de 2014

1. Sea X un conjunto y $S \in \mathcal{P}(X)$. Definimos en $\mathcal{P}(X)$ la relación binaria R_S como sigue:

$$AR_SB$$
 si, y sólo si, $A+B\subseteq S$

- a) Demostrar que para todo A, B, $S \in \mathcal{P}(X)$, $A + B \subseteq S$ sí, y sólo si, $A \setminus S = B \setminus S$.
- b) Demostrar que R_S es una relación de equivalencia.
- c) Dar una biyección entre $\mathcal{P}(X)/R_S$ y $\mathcal{P}(X\setminus S)$.
- d) Comprobar que para cualquier $A \in \mathcal{P}(X)$, hay una biyección entre [A] y $\mathcal{P}(S)$.
- e) Describir el conjunto cociente $\mathcal{P}(X)/R_S$.
- f) Considerando como ejemplo $X = \{0, 1, 2, 3, 4\}$ y $S = \{0, 2, 4\}$, describir las clases de equivalencia de \emptyset y de $\{1\}$.
- g) Sea $X = \{0, 2, 3, 4, 5, 6, 7, 8, 9\}$ y $S = \{2, 3, 5, 7\}$. Dar por extensión los elementos del conjunto cociente (todas las clases, con los elementos de cada una).