RESPOSTAS LISTA DE EXERCÍCIOS ELD I – PROF. JEFERSON.

01 - Quantos dígitos hexa são necessários para representar os números decimais até 1 milhão?

$$1.000.000_{10} \Rightarrow F4240_{16} \Rightarrow 5 DÍGITOS$$

02 – Qual é o maior valor decimal que pode ser representado com um número binário de 8 bits? E por um número de 16 bits?

$$2^{8}$$
=256 (0 a 255) => MAIOR VALOR = 255

$$2^{16}$$
=65536 (0 a 65535) => MAIOR VALOR = 65535

03 – Sabendo que 1 byte = 8 bits, qual o maior número hexadecimal que pode ser representado com quatro bytes?

1 byte = 8 bits, LOGO, 4 BYTES = 32 BITS

CADA HEXA OCUPA 4 BITS, LOGO 32/4 = 8 DÍGITOS HEXA

O MAIOR VALOR PARA CADA HEXA É F₁₆, LOGO, PARA 4 BYTES, O MAIOR HEXA É: **FFFFFFFF**₁₆

04 - Sabe-se que a produção de um dia para um grupo de 3 máquinas é de 111110100_B peças. A metade da produção foi feita pela máquina 1 e o restante dividido, em partes iguais, em mais duas máquinas, a máquina 2 e a máquina 3.

Determine a produção de cada máquina. Apresente o resultado em hexadecimal.

$$1111110100_{\rm B} = 500_{10} \dots 500/2 = 250 \text{ PEÇAS MÁQUINA } 1 \Longrightarrow \mathbf{FA_{16}}$$

$$250/2 = 125 \text{ PEÇAS MÁQUINAS } 2 \text{ E } 3 \Rightarrow 7D_{16}$$

	Máq. 1 = FA_{16}	Máq. $2 = 7D_{16}$	Máq. $3 = 7D_{16}$
--	--------------------	--------------------	--------------------

Se cada peça é vendida por R\$ 25,00 qual é o **faturamento mensal (30 dias)** para o grupo de máquinas? Apresente o resultado em R\$.

 $25,00 \times 30 \times 500 = 375,000,00$

Valor total em R\$ = **375.000,00**

05 - Em uma linha de produção existe um sistema de verificação que apresenta a contagem em dois displays na base hexadecimal, mostrando respectivamente, o número de peças aprovadas e o número de peças rejeitadas produzidas por uma máquina. No primeiro display aparece o valor 1BA e o segundo display está

queimado. Sabe-se, que a produção total da máquina, no sistema decimal, é de 487 peças.

a) Qual a quantidade de peças aprovadas produzidas?

b) Qual a quantidade de peças rejeitadas produzidas?

$$487 - 442 = 45$$
 PEÇAS

c)Que valor deveria estar sendo mostrado no segundo display caso ele estivesse funcionando?

$$45 = 2D_{16}$$

06 - Um sistema digital tem seu endereçamento de memória indexado na base hexadecimal e os conteúdos de cada endereço são gravados na base binária, conforme a tabela da próxima página.

Um programador recebeu a seguinte tarefa de seu supervisor: realizar a soma dos valores armazenados nos endereços 127₁₀ e 255₁₀ e armazenar o resultado da soma no endereço 256₁₀, porém o supervisor desconhecia a base hexadecimal e informou os endereços de memória na base decimal.

Além disso, o programador também deveria mostrar o mesmo resultado da soma em um display, porém o display está na base decimal.

Escreva na tabela o valor da soma no endereço de memória indicada pelo supervisor e escreva no display qual o valor da soma dos conteúdos dos dois endereços.

$$\begin{array}{l} 127_{10} >> 7F_{16} >> 1110001100110011_2 >> 58163_{10} \\ 255_{10} >> FF_{16} >> 0000111100001111_2 >> \underline{+3855}_{10} \\ 256_{10} >> 100_{16} & 62018_{10} >> 1111001001000010_2 \end{array}$$

ENDEREÇO	VALOR	ENDEREÇO	VALOR
(Hexadecimal)	(Binário)	(Hexadecimal)	(Binário)
00	000000000001110	01	
0A	1111001111001101	0B	
0F	0000110000000111	10	
14	1110001110001110	100	1111001001000010_2
1E	00110011111111100	1F	
20	11111111111111111	21	
2C	00000000000000001	2D	
7 F	1110001100110011	80	
FF	0000111100001111	15	

Display: 62018 (Decimal)

07 - O sistema digital da figura abaixo permite que letras e números apareçam em um display de acordo com a combinação de chaves de entrada. A seleção das chaves

estarem abertas ou fechadas deve obedecer ao sistema binário, onde a chave no estado fechado indica nível lógico alto (1) e a chave no estado aberto indica nível lógico baixo (0). A seqüência com que devem ser selecionadas as chaves é da direita para a esquerda (CH0 para CH7) e deve obedecer ao código onde, para cada letra ou número temos um código hexadecimal equivalente. Escreva na tabela 2 quais os estados das chaves (código binário) para que apareçam as seguintes seqüências vistas nos displays:

Apresentar todas conversões feitas. (se necessário faça os cálculos no verso)

SEQUÊNCIA VISTA NOS DISPLAYS		ESTADO DAS CHAVES
DISPLAY 2	DISPLAY 1	CÓDIGO BINÁRIO
A	3	10100011
F	A	11111010
7	D	01111101
С	1	11000001
Е	0	11100000
0	F	00001111
F	F	11111111