COMP9417 - Week 10 Tutorial notes

Unsupervised Learning + Revision

Unsuperised Learning

Leaning without any labels

For example, - cluster analysis (i.e grouping users of a social media, classifying similar events/data without knowing any other information) - Signal separation (i.e PCA, SVD)

Revision (Identifies)

Some general identities which may be useful for this course:

Vector Calculus:

If x is an arbitrary vector, and c is any constant (vector or scala),

$$\frac{\partial(xc)}{\partial x} = c^{T} \qquad \frac{\partial(x^{T}cx)}{\partial x} = 2cx$$

The First Question

What is this problem, and how do we solve it?

$$\hat{\beta} = \operatorname{argmin} \| y - x^{\beta} \|_{\epsilon}^{2}$$

Describe Ridge and LASSO regression and how they differ

Lhear Methods

None this algorithm and what it represents:

$$\hat{p} = \sigma(x\beta)$$

$$= \frac{1}{1 + e^{-x\beta}}$$

Dual Perception

Recall the primal perception:

Converged ← 0

whitenot converged ← 1

Converged ← 1

for xi ∈ X, yi ∈ y do

if yiw. xi ≤ 0 then

w ← w + nyixi

converged ← 0

Pseudovode

- · Handid we derive the dual perception?
- · What is the kernel trick?
- · What problem does the SVM solve?

endit

end for

enduhile

Ensemble Methods

Describe the difference between bagging and boosting

Why does bagging reduce our model's variance?

Neural Learning

Given the following diagram, derive expressions for de for k=0,..., k where

 $\Theta_{k} = \{A_{k}, b_{k}\}$

Gradient Descent Question

Given
$$\omega = (\omega_0, \omega_1, \omega_2, \omega_3)^T$$
, $\chi^{(i)} = (1, \chi_1^{(i)}, \chi_2^{(i)}, \chi_3^{(i)})$ for another:

$$\hat{y}^i = \omega_0 + \omega_1 \chi_1^{(i)} + \omega_2 \chi_2^{(i)} + \omega_3 \chi_3^{(i)} \hat{y}^i = \omega^T \chi^{(i)}$$

We define the mean -loss of our model as:

$$L_{c}(y,\hat{y}) = \frac{1}{n} \sum_{i=1}^{n} L_{c}(y^{(i)},\hat{y}^{(i)}) = \frac{1}{n} \sum_{i=1}^{n} \left[\sqrt{\frac{1}{c!}(y^{(i)} - \langle \omega^{(i)}, x^{(i)} \rangle)^{2} + 1 - 1} \right]$$

PARTA

Calculate
$$\frac{\partial L_c(y,\hat{y})}{\partial u_k}$$
, where $k=0,...,4$

PARTB

Take c=2, what are the GD updates to w for a leaning rate n? What are the GD updates? $w_k^{(++1)} = w_k^{(4)} - n \cdot \frac{1}{n} \sum_{i=1}^n \frac{x_k^{(i)}(y_i - \langle w^{(i)}, x^{(i)} \rangle)}{2\sqrt{(y_i - \langle w^{(i)}, x^{(i)} \rangle)^2 + 4}}$

$$W_{k}^{(++1)} = W_{k}^{(+)} - n \cdot \frac{1}{n} \sum_{i=1}^{n} \frac{X_{k}^{(i)}(y_{i} - \langle \omega^{(i)}, \chi^{(i)} \rangle)}{2\sqrt{(y_{i} - \langle \omega^{(i)}, \chi^{(i)} \rangle)^{2} + 4}}$$

For SGD.

$$\omega_{\mathbf{k}}^{(t+1)} = \omega_{\mathbf{k}}^{(t)} - \frac{X_{\mathbf{k}}^{(i)}(\mathbf{y}_{i} - \langle \mathbf{w}^{(t)}, \mathbf{X}^{(i)} \rangle)}{2\sqrt{|\mathbf{y}_{i}| - \langle \mathbf{w}^{(t)}, \mathbf{X}^{(i)} \rangle^{2} + 4}} \qquad \text{for a random } i \in [1, n]$$