15. Číselné řady

15.1. Základní pojmy

D: Symbol $a_1+a_2+...+a_n+...$, kde $n\in \mathbf{N},\,a_n\in \mathbf{R},\,$ se nazývá *číselná řada*. Jiná označení: $\sum_{n=1}^{+\infty} a_n$, $\sum a_n$ (vynecháme-li podmínku pro n, uvažujeme členy od nejmenšího $n \in \mathbf{N}$, pro něž má výraz a_n smysl).

Číselnou řadu lze tak považovat za zobecnění součtu konečného počtu reálných čísel. Základními otázkami jsou: jak a kdy přiřadit řadě číslo, které by bylo vhodné nazvat součtem řady, a které z vlastností konečných součtů se přenášejí i na řady, jež lze pak považovat za součty nekonečné.

D: Číslo a_n se nazývá n-tý člen řady;

číslo $s_n = a_1 + a_2 + ... + a_n$ se nazývá n-tý částečný součet; posloupnost $\{s_n\}$ se nazývá posloupnost částečných součtů;

řada $\sum a_n$ se nazývá konvergentní, právě když existuje vlastní limita $s = \lim_{n \to \infty} s_n$;

tato limita s se nazývá součet řady $\sum a_n$ a píšeme $\sum_{n=1}^{+\infty} a_n = s$;

řada $\sum a_n$ se nazývá divergentní, právě když neexistuje vlastní $\lim_{n\to +\infty} s_n$, tj. když tato limita je nevlastní (pak ji též nazýváme součet řady) nebo neexistuje (pak řada nemá

řada $a_{n+1}+a_{n+2}+...$ a též její součet r_n (pokud existuje) se nazývá zbytek řady $\sum a_n$ (po n-tém členu).

Zřejmě pro konvergentní řadu je $s = s_n + r_n$, tedy $r_n \to 0$ pro $n \to +\infty$.

U každé řady vyvstávají dva problémy: zda řada konverguje, a když konverguje, tak stanovit její součet. V některých případech lze k odpovědi na oba problémy využít definice konvergence a součtu řady.

Úloha 15.1.1. Stanovte součet řady
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}.$$

[
$$s_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}$$
, takže $s_n \to 1$, součet dané řady je $s = 1$.]

Dalším příkladem řady, u níž lze snadno rozhodnout o konvergenci a určit její součet, je geometrická řada (a > 0, |q| < 1)

$$a + aq + aq^2 + \dots + aq^n + \dots$$

Její n-tý částečný součet určíme např. takto:

$$s_n = a + aq + aq^2 + ... + aq^{n-1},$$

$$qs_n = aq + aq^2 + ... + aq^{n-1} + aq^n$$
,

po odečtení máme
$$s_n = a \frac{1-q^n}{1-q}$$
 a z toho $s = \frac{a}{1-q}$.

Zbytek po *n*-tém členu je $r_n = \frac{a q^n}{1-q}$.

Pro q > 1 je $s_n \to +\infty$, takže geometrická řada diverguje, $s = +\infty \cdot \operatorname{sgn} a$, pro $q \le -1$ neexistuje lim s_n , řada diverguje, součet neexistuje. Pro q = 1 máme divergentní řadu $a + a + \dots + a + \dots = +\infty \cdot \operatorname{sgn} a$.

Základní harmonická řada je další důležitý příklad číselné řady. Platí

$$s_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \dots + \frac{1}{n},$$

přičemž
$$\frac{1}{3} + \frac{1}{4} > 2$$
. $\frac{1}{4} = \frac{1}{2}$, $\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} > 4$. $\frac{1}{8} = \frac{1}{2}$, atd.,

takže
$$s_1 = 1$$
, $s_2 = 1 + \frac{1}{2}$, $s_4 > 1 + 2$. $\frac{1}{2}$, $s_8 > 1 + 3$. $\frac{1}{2}$,..., $s_{2^n} > 1 + n$. $\frac{1}{2}$;

Ježto vybraná posloupnost $\{s_{2^n}\}$ je divergentní (má limitu $+\infty$), je také posloupnost částečných součtů $\{s_n\}$ divergentní. Tedy:

Základní harmonická řada je divergentní, $s = +\infty$. \square

Tento fakt bychom sotva mohli odhalit neúplnou indukcí z několika prvních členů řady, neboť např. $s_{1\,000} = 7,48...$, $s_{1\,000\,000} = 14,39...$

Ukažme si ještě jeden instruktivní příklad, jak lze dokázat divergenci nějaké řady přímo využitím definice.

Úloha 15.1.2. Dokažte divergenci řady $\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$.

[
$$s_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > n \cdot \frac{1}{\sqrt{n}} = \sqrt{n} \rightarrow +\infty$$
, tedy daná řada je divergentní.]

15.2. Některé vlastnosti číselných řad

 \mathbf{V} (nutná podmínka konvergence): Konverguje-li řada $\sum a_n$, pak $\lim a_n = 0$.

 $D\mathring{u}kaz$: Tvrzení plyne ze vztahu $s_n = s_{n-1} + a_n$ a z toho, že lim $s_n = \lim s_{n-1} = s$. \square

Uvedená podmínka konvergence není postačující, neboť např. základní harmonická řada tuto podmínku splňuje, i když je divergentní.

Některé formulace vlastností řad se zjednoduší, jestliže zavedeme pojem *chování řady*.

D: Říkáme, že dvě řady mají *stejné chování*, právě když jsou obě konvergentní, nebo obě mají nevlastní součet nebo obě nemají součet.

 ${f V}$ (o vynechání prvních k členů): Chování řady se nezmění, vynecháme-li jejích prvních k členů.

Princip důkazu: V původní řadě je $s_n = a_1 + a_2 + ... + a_n$,

v upravené řadě je částečný součet $\sigma_m = a_{k+1} + a_{k+2} + ... + a_{k+m}$.

Pro n > k položme n = k + m; pak $s_n = s_k + \sigma_m$, částečné součty s_n , σ_m se navzájem liší jen o konstantu s_k a odsud plyne tvrzení pro všechny tři druhy chování.

V (o lineárních operacích s řadami): Nechť $\sum a_n = s$, $\sum b_n = \sigma$, $c \in \mathbb{R}$, $c \neq 0$. Pak platí

$$\sum (a_n + b_n) = s + \sigma, \sum c a_n = cs$$

ve všech případech, kdy má smysl pravá strana těchto rovností. Navíc pro c=0 je vždy $\sum c \, a_n = 0$.

 $D\mathring{u}kaz$ plyne z věty o lineárních operacích s posloupnostmi, neboť $s = \lim s_n$, $\sigma = \lim \sigma_n$. \square

Tato věta neplatí naopak: Z konvergence řady $\sum (a_n + b_n)$ neplyne konvergence řad $\sum a_n$, $\sum b_n$; uvažte příklad $\sum (1-1)$.

V (asociativní zákon pro řady): Nechť $\sum a_n = s$ a $\{k_n\}$ je libovolná rostoucí posloupnost přirozených čísel. Je-li $c_1 = (a_1 + a_2 + \ldots + a_{k_1}), c_2 = (a_{k_1+1} + \ldots + a_{k_2}), \ldots, c_n = (a_{k_{n-1}+1} + \ldots + a_{k_n}), \ldots,$ pak $\sum c_n = s$.

 $D\mathring{u}kaz$: Je-li $\{s_n\}$ posloupnost částečných součtů řady $\sum a_n$ a $\{\sigma_n\}$ posloupnost částečných součtů řady $\sum c_n$, pak $\sigma=s$, neboť $\{\sigma_n\}$ je posloupnost vybraná z posloupnosti $\{s_n\}$ a má proto tutéž limitu. \square

Věta neplatí naopak: např. konverguje-li řada skupin členů, nemusí být řada po odstranění závorek konvergentní; uvažte opět řadu $\sum (1-1)$.

15.3. Řady s nezápornými členy

Řady $\sum a_n$ s nezápornými členy, $a_n \ge 0$, mají některé význačné vlastnosti, pokud jde o konvergenci a její zjišťování. Jsou založeny zejména na tom, že posloupnost $\{s_n\}$ jejich částečných součtů je neklesající, takže má vždy limitu. Tedy:

Je-li posloupnost $\{s_n\}$ shora omezená, je řada $\sum a_n$ konvergentní, není-li $\{s_n\}$ shora omezená, má řada $\sum a_n$ součet $+\infty$.

V tomto paragrafu pojednáme zejména o kriteriích konvergence nebo divergence (každé kriterium vyjadřuje postačující podmínku a je přizpůsobeno pro praktické využití). Pro všechny řady ve 15.3 nechť tedy platí $a_n \ge 0$ a pokud bude třeba, aby $a_n > 0$, budeme mluvit o kladných řadách.

První skupina tří kriterií je známa pod společným názvem *srovnávací kriteria*. Jejich společným znakem je to, že zkoumanou řadu určitým způsobem srovnáme s vhodnou známou řadou a na základě tohoto srovnání vyslovíme závěr o konvergenci nebo divergenci.

V (1. srovnávací kriterium): Mějme řady $\sum a_n$, $\sum b_n$ a nechť pro skoro všechna n platí $a_n \leq b_n$. Pak z konvergence majorantní řady $\sum b_n$ plyne konvergence řady $\sum a_n$ a z divergence minorantní řady $\sum a_n$ a plyne divergence řady $\sum b_n$.

 $D\mathring{u}kaz$: Předpokládejme, že nerovnost $a_n \leq b_n$ platí již od n=1 (jinak můžeme vynechat členy, kde tato nerovnost neplatí, aniž se změní chování řad). Pak pro částečné součty s_n , σ_n těchto řad platí táž nerovnost $s_n \leq \sigma_n$. Z konvergence $\sigma_n \to \sigma$ a z nerovnosti $\sigma_n \leq \sigma$ plyne $s_n \leq \sigma$, takže také $\{s_n\}$ je konvergentní. \square

Úloha 15.3.1. Rozhodněte o chování řady $\sum e^{\frac{1}{n}-n}$.

[Řada $\sum e^{-n}$ je geometrická řada s kvocientem q = 1/e < 1 a je tedy konvergentní. Ježto $e^{\frac{1}{n}} < 3$ pro všechna n, je $e^{\frac{1}{n}-n} = e^{\frac{1}{n}} \cdot e^{-n} < 3 \cdot e^{-n}$, což je člen konvergentní geometrické řady. Proto také daná řada je konvergentní.]

V (2. srovnávací kriterium): Mějme dvě kladné řady $\sum a_n$, $\sum b_n$ a nechť existuje $\lim_{n\to +\infty}\frac{a_n}{b_n}=K.$ Pak pro $K\in (0,+\infty)$ mají obě řady stejné chování.

Princip důkazu: $\forall \varepsilon > 0$ platí pro skoro všechna *n*:

$$(0<)$$
 $K-\varepsilon<\frac{a_n}{b_n}<$ $K+\varepsilon \implies (K-\varepsilon)b_n< a_n<(K+\varepsilon)b_n$ a tvrzení plyne z 1. srovnávacího kriteria. \square

Kriterium lze doplnit případem K=0 (pak platí stejné tvrzení jako u 1. srovnávacího kriteria) a případem $K=+\infty$ (pak platí analogické tvrzení, ale se záměnou obou řad).

Úloha 15.3.2. Rozhodněte o konvergenci řady $\sum \frac{1}{an+b}$, kde a > 0, an + b > 0.

[Danou řadu srovnáme se základní harmonickou řadou. Ježto

$$\lim_{n\to\infty} \frac{\frac{1}{an+b}}{\frac{1}{n}} = \lim_{n\to\infty} \frac{n}{an+b} = \frac{1}{a} > 0, \text{ mají obě řady stejné chování, tedy daná řada je divergentní.}$$

 $\textbf{V} \ (\textit{3. srovnávací kriterium}) : \text{Mějme kladné řady } \sum a_n \ , \ \sum b_n \ \text{ nechť pro skoro všechna } n \ \text{platí} \ \frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n} \ . \ \text{Pak z konvergence řady } \sum b_n \ \text{ plyne konvergence řady } \\ \sum a_n \ \text{a z divergence řady } \sum a_n \ \text{plyne divergence řady } \sum b_n \ .$

Princip důkazu: Nechť uvedená nerovnost platí už od n=1. Pro k=1, 2, ..., n-1 uvažujme n-1 nerovností $\frac{a_{k+1}}{a_k} \le \frac{b_{k+1}}{b_k}$. Jestliže je všechny mezi sebou vynásobíme (pro-

veďte!), dostaneme po úpravě $a_n \le \frac{a_1}{b_1} \cdot b_n$ a tvrzení věty plyne z 1. srovnávacího kriteria. \square

V (podílové, d'Alembertovo kriterium): Nechť $\sum a_n$ je kladná řada.

- 1) Existuje-li číslo $q \in (0,1)$ tak, že pro skoro všechna n je $(D_n =) \frac{a_{n+1}}{a_n} \le q$, pak řada $\sum a_n$ konverguje.
- 2) Jestliže pro skoro všechna n je $D_n \ge 1$, pak řada $\sum a_n$ diverguje.

Princip důkazu: 1. tvrzení dostaneme, když ve 3. srovnávacím kriteriu použijeme jako $\sum b_n$ konvergentní geometrickou řadu $\sum q^n$. Druhé tvrzení vlastně znamená, že řada nesplňuje nutnou podmínku konvergence. \square

Úloha 15.3.3. Rozhodněte o konvergenci řady $1 + \frac{3}{5} + \frac{2}{5} + \frac{3.2}{5^2} + \frac{2^2}{5^2} + \frac{3.2^2}{5^3} + \frac{2^3}{5^3} + \dots$

[Vidíme, že v řadě jsou členy dvou druhů: $a_{2k} = \frac{3 \cdot 2^{k-1}}{5^k}$, $a_{2k-1} = \frac{2^{k-1}}{5^{k-1}}$.

Musíme tedy vyšetřit dva podíly dvou po sobě jdoucích členů:

$$\frac{a_{2k}}{a_{2k-1}} = \frac{3 \cdot 2^{k-1}}{5^k} : \frac{2^{k-1}}{5^{k-1}} = \frac{3}{5}, \frac{a_{2k+1}}{a_{2k}} = \frac{2^k}{5^k} : \frac{3 \cdot 2^{k-1}}{5^k} = \frac{2}{3};$$

V obou případech $D_n \le \frac{2}{3} < 1$, takže řada konverguje.]

Toto kriterium se častěji používá ve své limitní podobě.

V (*limitní podílové kriterium*): Nechť $\sum a_n$ je kladná řada a existuje $\lim \frac{a_{n+1}}{a_n} = A$.

Pak pro A < 1 daná řada konverguje a pro A > 1 řada diverguje.

Princip důkazu: Nechť A < 1, $\varepsilon = (1-A)/2$. Pak pro skoro všechna n je $D_n < A + \varepsilon < 1$, takže podle podílového kriteria řada konverguje.

Pro A > 1 dokážeme podobně divergenci volbou ε = A - 1. \Box

Uvědomíme si, že pro A = 1 nedává toto kriterium odpověď.

Úloha 15.3.4. Rozhodněte o konvergenci řady $\sum \frac{n}{2^n}$.

$$[D_n = \frac{n+1}{2^{n+1}}: \frac{n}{2^n} = \frac{1}{2} \frac{n+1}{n} \to \frac{1}{2} < 1, \text{ rada konverguje.}]$$

 ${f V}$ (odmocninové, Cauchyovo kriterium): Nechť $\sum a_n$ je řada s nezápornými členy.

- 1) Existuje-li číslo $q \in (0,1)$ tak, že pro skoro všechna n je $(C_n =) \sqrt[n]{a_n} \le q$, pak řada $\sum a_n$ konverguje.
- 2) Jestliže pro nekonečně mnoho n je $C_n \ge 1$, pak řada $\sum a_n$ diverguje.

 $D\mathring{u}kaz$: Z nerovnosti $C_n \leq q$ plyne $a_n \leq q^n$, takže konvergence plyne z 1. srovnávacího kriteria (majorantou je konvergentní geometrická řada). Nerovnost $C_n \geq 1$ znamená, že $a_n \geq 1$, takže řada nesplňuje nutnou podmínku konvergence. \square

Úloha 15.3.5. Rozhodněte o konvergenci řady
$$\frac{1}{5} + \frac{1}{7^2} + \frac{1}{5^3} + \frac{1}{7^4} + \dots$$

[Vyzkoušíme podílové kriterium.

Pro *n* liché je
$$D_n = \frac{1}{7^{n+1}} : \frac{1}{5^n} = \frac{1}{7} \left(\frac{5}{7}\right)^n < \frac{5}{7} < 1$$
, ale

pro *n* sudé je
$$D_n = \frac{1}{5^{n+1}} : \frac{1}{7^n} = \frac{1}{5} \left(\frac{7}{5}\right)^n \to +\infty$$
.

Podílové kriterium tedy nedává odpověď, ani jeho limitní verze.

Použijeme odmocninové kriterium.

Pro
$$n$$
 liché je $C_n = \frac{1}{5}$, pro n sudé je $C_n = \frac{1}{7}$ tedy $\forall n \in N$ platí $C_n \le \frac{1}{5} < 1$, řada konverguje.

Jak naznačuje tento příklad, bylo by možno dokázat, že odmocninové kriterium je silnější než kriterium podílové.

V (*limitní odmocninové kriterium*): Nechť $\sum a_n$ je řada s nezápornými členy a existuje $\lim \sqrt[n]{a_n} = A$. Pak pro A < 1 daná řada konverguje a pro A > 1 řada diverguje.

Důkaz se provádí stejně jako u limitního podílového kriteria. □

Úloha 15.3.6. Určete, zda řada $\sum \frac{1}{(\ln n)^n}$ je konvergentní.

[
$$C_n = \frac{1}{\ln n} \rightarrow 0 < 1$$
, tedy daná řada konverguje.]

Všimněme si, že na řadu z úlohy15.3.5 nelze použít limitní odmocninové kriterium, neboť posloupnost $\{C_n\}$ nemá limitu. Každé kriterium je zpravidla vhodné pro určité typy řad, bez ohledu na jeho "sílu". Takto budeme chápat i náš výběr kriterií. Existuje však celá posloupnost kriterií konvergence, v nichž každé další je "silnější" než předchozí. Ovšem "silnější" kriterium je zpravidla složitější na formulaci a používání. Jako ukázku uveďme ještě:

V (*Raabeovo kriterium*): Nechť $\sum a_n$ je kladná řada.

- 1) Existuje-li číslo r > 1 tak, že pro skoro všechna n je $(R_n =) n \left(\frac{a_n}{a_{n+1}} 1 \right) \ge r$, pak řada $\sum a_n$ konverguje.
- 2) Jestliže pro skoro všechna n je $R_n < 1$, pak řada diverguje.

I toto kriterium má svou limitní verzi (viz následující úlohu).

Úloha 15.3.7. Rozhodněte o konvergenci řady $\sum_{n=1}^{+\infty} \frac{(2n-1)!!}{(2n)!!} \frac{1}{2n+1}.$

[(Uvědomíme si definici dvojných faktoriálů, např. 6!! = 6.4.2, 9!! = 9.7.5.3.1.)

Při použití Raabeova kriteria je vhodné stanovit (a upravit) nejprve D_n . Po zkrácení je tedy $D_n = \frac{(2n+1)^2}{(2n+2)(2n+3)} \to 1$, takže podílové kriterium nedává odpověď. Ale

$$R_n = n\left(\frac{1}{D_n}-1\right) = \dots = \frac{6n^2+5n}{4n^2+4n+1} \rightarrow \frac{3}{2}$$
, řada konverguje podle limitního Raabeova kriteria.]

Uvědomíme si, že podle žádného z uvedených kriterií nelze rozhodnout o divergenci základní harmonické řady. Tuto schopnost má však integrální kriterium.

V (*Integrální kriterium*) Nechť členy řady $\sum a_n$ jsou hodnotami kladné nerostoucí funkce f, která je integrace schopná na každém intervalu $\langle 1, K \rangle$, $K \in \mathbb{R}$; tedy $a_n = f(n)$. Pak řada $\sum a_n$ a nevlastní integrál $\int\limits_{1}^{+\infty} f(x) \, dx$ současně konvergují nebo divergují.

 $D\mathring{u}kaz$ plyne z porovnání $\int_{1}^{n} f(x) dx$ s vhodnými částečnými součty řady. \Box

Úloha 15.3.8. Rozhodněte o konvergenci řad $\sum_{n=1}^{+\infty} \frac{1}{n^s}$, kde $s \in \mathbb{R}$.

[Řady $\sum_{n=1}^{+\infty} \frac{1}{n^s}$ se nazývají *harmonické*. Pro $s \le 0$ jsou zřejmě divergentní, protože nesplňují nutnou podmínku konvergence. Nechť tedy dále s > 0. Pro s = 1 dostáváme *základní harmonickou řadu*, která je dle 15.1 divergentní. Je-li s < 1, je $n^s < n$, takže $\frac{1}{n^s} > \frac{1}{n}$, takže dle 1. srovnávacího kriteria jsou harmonické řady pro s < 1 rovněž divergentní.

Použijme integrální kriterium: funkce f: $\frac{1}{x^s}$ je pro s > 0 nerostoucí kladná funkce, která je integrace schopná (protože je spojitá) na každém intervalu $\langle 1, K \rangle$, $K \in \mathbf{R}$ a $\forall n \in \mathbb{N}$ je $(a_n =)$ $\frac{1}{n^s} = f(n)$. Pro $s \neq 1$ je nevlastní integrál

$$I = \int_{1}^{+\infty} \frac{dx}{x^{s}} = \lim_{K \to +\infty} \left[\frac{x^{-s+1}}{-s+1} \right]_{x=1}^{K} = \lim_{K \to +\infty} \left(\frac{K^{1-s}}{1-s} - \frac{1}{1-s} \right).$$

Vidíme, že pro s < 1 je $K^{1-s} \to +\infty$, nevlastní integrál a tedy i harmonické řady jsou divergentní. Pro s > 1 je $K^{1-s} \to 0$, nevlastní integrál a tedy i harmonické řady jsou konvergentní. Pro s = 1 je $I = \lim_{K \to +\infty} \ln K = +\infty$, tedy základní harmonická řada je divergentní.

15.4. Řady s libovolnými členy, absolutní konvergence

V číselné řadě $\sum a_n$ mohou být některé členy kladné a některé záporné (nulové nejsou zajímavé, protože pro zjišťování konvergence řady nebo součtu řady je lze vynechat). Je-li záporných členů jen konečný počet, zacházíme při zjišťování konvergence s řadou, jako by měla jen kladné členy (podle věty o vynechání prvních k členů). Jsou-li všechny členy řady záporné, lze konvergenci zjišťovat pro kladnou řadu $-\sum a_n = \sum -a_n$ a takto lze vyřídit i případ konečného počtu kladných členů. Proto zbývá jediný podstatný případ, tj. že řada $\sum a_n$ má nekonečně mnoho kladných členů a nekonečně mnoho členů záporných. Z praktických důvodů však nebudeme vylučovat ani existenci nulových členů, neboť důležité číselné řady vznikají často z funkčních (mocninných) řad po dosazení za nezávisle proměnnou a některé členy mohou být tedy nulové.

Proved'me nejprve několik induktivních úvah. Zaved'me označení $a^+ = \max\{a,0\},\ a^- = \max\{-a,0\}.$ Pak zřejmě platí: $a = a^+ - a^-$, $|a| = a^+ + a^-$. K řadě $\sum a_n$ tak lze vytvořit řady $\sum a_n^+ \sum a_n^- \sum |a_n|$; všechno to jsou řady s nezápornými členy. Označme $s' = \sum a_n^+$, $s'' = \sum a_n^-$, přičemž $0 < s', s'' \le +\infty$.

Z lineárních vlastností řad plyne: Konvergují-li řady $\sum a_n^+$, $\sum a_n^-$, pak konvergují i řady $\sum a_n$, $\sum |a_n|$ a platí $\sum a_n = s' - s''$, $\sum |a_n| = s' + s''$. První z těchto vztahů platí i ve všech dalších případech, kdy má smysl rozdíl s' - s'' (tj. mimo případu $\infty - \infty$), druhý platí vždy.

Víme, že lineární operace neplatí obráceně, tedy z konvergence $\sum a_n$ neplyne konvergence řad $\sum a_n^+$, $\sum a_n^-$. Ovšem z konvergence $\sum |a_n|$ plyne, že částečné součty řady $\sum \left(a_n^+ + a_n^-\right)$ jsou omezené, takže jsou omezené i částečné součty obou řad $\sum a_n^+$, $\sum a_n^-$, obě tyto řady jsou tedy konvergentní a také řada $\sum a_n^-$ je konvergentní. Tak jsme dostali:

V (o konvergenci řady absolutních hodnot):

1) Řady
$$\sum a_n^+$$
, $\sum a_n^-$ konvergují, právě když konverguje řada $\sum a_n^-$.

2) Z konvergence řady
$$\sum |a_n|$$
 plyne konvergence řady $\sum a_n$.

Tato věta je základem pro definici významného pojmu absolutní konvergence.

D: Řada
$$\sum a_n$$
 se nazývá *absolutně konvergentní*, právě když konverguje řada $\sum |a_n|$ a nazývá se *neabsolutně konvergentní*, právě když je konvergentní a přitom řada $\sum |a_n|$ je divergentní.

Vyšetřování absolutní konvergence tedy znamená zabývat se řadou $\sum |a_n|$ s nezápornými členy, k čemuž lze použít kriteria konvergence uvedená v předchozích

paragrafech. Zbývá tedy zejména případ neabsolutně konvergentních řad s libovolnými členy.

15.5. Alternující řady

Jde o důležitý a často se vyskytující zvláštní případ řad s libovolnými členy:

$$c_1 - c_2 + c_3 - c_4 + \dots + (-1)^{n-1} c_n + \dots$$

kde $\{c_n\}$ je posloupnost kladných čísel. Základní kriterium konvergence alternujících řad je překvapivě jednoduché.

V (*Leibnizovo kriterium konvergence*): Nechť $\{c_n\}$ je monotónní nulová posloupnost

kladných čísel. Pak řada $\sum_{n=0}^{+\infty} (-1)^{n-1} c_n$ konverguje. Přitom pro zbytek r_n řady platí:

 $c_{n+1} - c_{n+2} \le |r_n| < c_{n+1}$ a sgn $r_n = (-1)^n$.

 $D\mathring{u}kaz$: Nejprve ukážeme, že posloupnost $\{s_{2k}\}$ sudých částečných součtů vybraná z posloupnosti $\{s_n\}$ částečných součtů je neklesající:

$$s_{2k+2} = s_{2k} + c_{2k+1} - c_{2k+2} > s_{2k}$$
.

Dále vidíme, že posloupnost $\{s_{2k}\}$ je shora omezená:

$$s_{2k} = c_1 - (c_2 - c_3) - (c_4 - c_5) - \dots - (c_{2k-2} - c_{2k-1}) - c_{2k} < c_1.$$

Z toho plynou dva závěry:

- 1. $\exists s = \lim s_{2k}$,
- 2. $c_1 c_2 < s < c_1$.

Dále ukážeme, že s je také limitou posloupnosti lichých částečných součtů:

 $s_{2k-1} = s_{2k} - c_{2k}$; pravá strana konverguje k rozdílu s - 0, tedy k s, proto $s_{2k-1} \to s$, takže $s_n \to s$, tedy řada je konvergentní a má součet s.

Zbytek po n-tém členu je opět alternující řada; tvrzení o jejím součtu r_n plyne z výše uvedeného 2. závěru. \square

Úloha 15.5.1. Rozhodněte o konvergenci řady

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{n-1} \frac{1}{n} + \dots$$

[Daná řada je alternující a posloupnost $\{c_n\} = \left\{\frac{1}{n}\right\}$ je monotónní nulová, takže po-

dle Leibnizova kriteria je daná řada konvergentní.]

Alternující řada z příkladu 15.5.1 je příkladem neabsolutně konvergentní řady, neboť řada absolutních hodnot je divergentní základní harmonická řada.

Řadám, které splňují předpoklady Leibnizova kriteria, se též říká *řady leibnizovské*. Leibnizovské řady se často a s výhodou používají při numerických výpočtech (při přibližném výpočtu konstant, které jsou součtem číselné řady), neboť umožňují velmi jednoduchý odhad chyby metody.

15.6. Přerovnávání číselných řad

Sčítání konečného počtu čísel je asociativní a komutativní. Je tedy otázka, v jaké formě tyto dvě vlastnosti přecházejí nebo nepřecházejí na řady jakožto zobecněný součet. V článku 15.2 je ukázáno, že asociativnost se v jisté podobě zachovává: členy řady lze "závorkovat", ale obecně v řadě nelze závorky odstraňovat.

Vyšetřování komutativnosti je složitější a snad i zajímavější. Samozřejmě, zaměníme-li pořadí třeba u prvních dvou členů řady (nebo u prvních n – např. milionu – členů řady), nestane se nic, pokud jde o chování řady resp. o její součet, protože jde vlastně o uplatnění komutativnosti v konečném součtu s_n . Budeme se proto zajímat o případy, kdy "změna pořadí" členů řady zasahuje nekonečně mnoho členů řady.

D: Říkáme, že řada $\sum b_n$ vznikla přerovnáním řady $\sum a_n$, právě když existuje bijekce $\beta(N \to N)$ tak, že $\forall n \in N$: $b_n = a_{\beta(n)}$.

Definice tedy říká, že n-tý člen přerovnané řady je $\beta(n)$ -tým členem řady původní. Obráceně n-tý člen původní řady je $\beta'(n)$ -tým členem v řadě přerovnané, kde β' je bijekce inverzní k β .

Např. alternující řadu $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ lze přerovnat tak, že vezmeme střídavě vždy 3 členy kladné a 1 záporný:

$$1 + \frac{1}{3} + \frac{1}{5} - \frac{1}{2} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} - \frac{1}{4} + \dots$$

Zde $\beta(n) = \{(1,1), (2,3), (3,5), (4,2), (5,7), (6,9), ...\}.$

V (o přerovnání řad s nezápornými členy): Nechť $\sum a_n$ je konvergentní řada s nezápornými členy. Potom každá řada, která vznikne přerovnáním řady $\sum a_n$, je konvergentní a její součet je roven součtu řady původní.

 $D\acute{u}kaz$: Pro řadu $\sum a_n$ je n-tý částečný součet $s_n \to s$. Označme $\sum b_n$ řadu, která vznikne přerovnáním řady $\sum a_n$, a σ_n její n-tý částečný součet; zřejmě $\{s_n\}$, $\{\sigma_n\}$ jsou neklesající posloupnosti. Uvažujme σ_n a $m = \max\{\beta(1), \beta(2), ..., \beta(n)\}$. Pak $\sigma_n \leq s_m \leq s$, takže řada $\sum b_n$ je konvergentní a má součet $\sigma \leq s$. Přerovnáním se tedy součet řady nezvětší.

Jestliže nyní řadu $\sum b_n$ přerovnáme zpět na $\sum a_n$, pak podle 1. části důkazu se součet opět nezvětší, takže $s \leq \sigma$. Proto $\sigma = s$, součet přerovnané řady je týž..

V (o přerovnání absolutně konvergentních řad): Nechť $\sum a_n$ je absolutně konvergentní řada. Potom každá řada, která vznikne přerovnáním řady $\sum a_n$, je konvergentní a její součet je roven součtu řady původní.

 $D\mathring{u}kaz$: Označme $\sum b_n$ řadu, která vznikne přerovnáním řady $\sum a_n$; pak $\sum |b_n|$ vznikne přerovnáním konvergentní řady $\sum |a_n|$, takže podle předchozí věty je $\sum |b_n|$ konvergentní, tedy $\sum b_n$ je absolutně konvergentní; její součet označme σ . Je-li $s=\sum a_n$, pak s=s'-s'', kde $s'=\sum a_n^+$ a, $s''=\sum a_n^-$ jsou součty řad s nezá-

pornými členy. Podobně $\sigma = \sigma' - \sigma''$, kde $\sigma' = \sum b_n^+$, $\sigma'' = \sum b_n^-$. Přerovnání řady $\sum a_n$ na řadu $\sum b_n$ indukuje přerovnání řady $\sum a_n^+$ na řadu $\sum b_n^+$ a přerovnání řady $\sum a_n^-$ na řadu $\sum b_n^-$. Je tedy $\sigma' = s'$, $\sigma'' = s''$, takže $\sigma = s$.

Předchozí věta potvrzuje rozšíření platnosti komutativního zákona pro sčítání konečného počtu čísel na řady absolutně konvergentní. U řad neabsolutně konvergentních nastává nový jev. Nejprve však připomeňme, že u těchto řad je $s' = +\infty$ a též $s'' = +\infty$ i když i zde je $a_n \rightarrow 0$.

V (*Riemannova* - *o přerovnávání řad neabsolutně konvergentních*): Je-li řada $\sum a_n$ neabsolutně konvergentní, pak pro každé $B \in \mathbb{R}^*$ lze řadu přerovnat tak, že přerovnaná řada $\sum b_n$ má součet B.

 $D\mathring{u}kaz$: Z řady $\sum a_n$ vytvoříme dvě řady: $\sum p_n$ a $\sum q_n$ a to tak, že do 1. řady dáme bez změny pořadí všechna nezáporná a_n a do druhé řady dáme absolutní hodnoty záporných členů a_n . Jde vlastně o řady $\sum a_n^+$ a $\sum a_n^-$ po vynechání nadbytečných nulových členů. Pak každý člen řady $\sum a_n^-$ padne právě do jedné z řad $\sum p_n^-$ a $\sum q_n^-$ v původním uspořádání. Je $\sum p_n^- = +\infty$ a $\sum q_n^- = +\infty$. Dále se důkaz vede konstruktivně, tedy k libovolně zadanému B zkonstruujeme přerovnání tak, že součet přerovnané řady bude B.

- a) Necht' B je reálné číslo (např.kladné).
- (1) Nejprve vezmeme právě tolik kladných členů, aby

 $p_1+p_2+...+p_{r_1}>B$ (tj. bez p_{r_1} je součet $\leq B$). To lze vzhledem k tomu, že $\sum p_n=+\infty$.

(2) Dále vezmeme právě tolik záporných členů, aby

 $p_1+p_2+\ldots+p_{r_1}+q_1+\ldots+q_{s_1}\leq B$ (tj. bez q_{s_1} je součet >B). To lze vzhledem k tomu, že $\sum q_n=+\infty$.

(3) Pak vezmeme právě tolik kladných členů, aby pro částečný součet platilo $\sigma_{r_2+s_1} > B$, atd.

Vidíme, že takto se "čerpají" jak kladné členy, tak záporné, takže každý člen a_n původní řady se dostane do přerovnané řady $\sum b_n$. Ježto $a_n \to 0$, je $p_n \to 0$ i $q_n \to 0$, tedy $b_n \to 0$. Z uvedené konstrukce přerovnání plyne $|\sigma_n - B| \le |b_n| \to 0$, tedy $\sigma_n \to B$.

b) Nechť $B=+\infty$. Předchozí konstrukci nelze přímo použít, protože nelze vzít tolik kladných členů, aby částečný součet byl větší než $+\infty$. A je třeba též zajistit "čerpání" záporných členů. Postupujeme tedy takto:

Nejprve vezmeme právě tolik kladných členů, aby

 $p_1 + p_2 + ... + p_{r_1} > 1$, pak jeden záporný, pak tolik kladných členů, aby částečný součet $\sigma_{r_2+1} > 2$, pak opět jeden záporný, atd. Ježto $q_n \to 0$, lze již jednoduchou úvahou (proveďte ji!) dospět k závěru, že $\sigma_n \to +\infty$. \square

Z důkazu Riemannovy věty plyne, že i z některých divergentních řad lze přerovnáním vytvořit řady (neabsolutně) konvergentní s libovolně předem zadaným součtem. Jde o řady, které splňují nutnou podmínku konvergence a kde

$$s' = +\infty$$
 a $s'' = +\infty$.

Úloha 15.6.1. Přerovnejte neabsolutně konvergentní řadu $\sum a_n$ tak, aby přerovnaná řada neměla žádný součet, ani nevlastní.

15.7. Mocninné řady

Geometrická řada $a + ax + ax^2 + ... + ax^n + ...$ je příkladem mocninné řady. Tato řada je konvergentní pro všechna $x \in (-1, 1)$; toto je tzv. *obor konvergence* geometrické řady.

D: Necht' $a_0, a_1, a_2, ..., a_n, ...$ je číselná posloupnost. Pak řada

$$a_0 + a_1 x + a_2 x^2 + ... + a_n x^n + ... = \sum_{n=0}^{+\infty} a_n x^n \left[\left(\text{stručně} \sum_{n=0}^{+\infty} a_n x^n \right) \right]$$

se nazývá *mocninná řada*.

V (o konvergenci mocninných řad): Jestliže mocninná řada $\sum a_{\parallel} x^n$ konverguje pro $x = x_1 \ (\neq 0)$, pak konverguje absolutně pro všechna x z intervalu $(-|x_1|, |x_1|)$. Jestliže mocninná řada $\sum a_{\parallel} x^n$ diverguje pro $x = x_2$, pak diverguje pro všechna x vně intervalu $(-|x_2|, |x_2|)$.

 $D\mathring{u}kaz$: Z konvergence řady $\sum a_n x_1^n$ plyne, že $\left|a_n x_1^n\right| \to 0$, tedy $\exists M$ tak, že $\forall n$ je

$$\left|a_n x_1^n\right| \le M$$
. Pak pro $|x| < |x_1|$ platí $\left|a_n x^n\right| = \left|a_n x_1^n\right|$. $\left|\frac{x}{x_1}\right|^n \le M$. $\left|\frac{x}{x_1}\right|^n$. První tvrzení

plyne z 1. srovnávacího kriteria, neboť na pravé straně je člen konvergentní geometrické posloupnosti. Druhé tvrzení plyne z nepřímého důkazu užitím tvrzení prvního.

Pro každou mocninnou řadu tak nastává jedna z možností:

- konverguje jen v bodě 0,
- konverguje pro všechna x,
- existuje pro ni číslo R zvané poloměr konvergence tak, že uvnitř intervalu (-R,R) řada konverguje (absolutně) a vně intervalu (-R,R) řada diverguje.

(V předchozích dvou případech klademe R = 0, resp. $R = +\infty$.) *Obor konvergence* pak dostaneme tak, že k intervalu (-R,R) přidáme ten z krajních bodů intervalu konvergence, v němž řada konverguje. Tato konvergence může být i neabsolutní.

Úloha 15.7.1. Stanovte obor konvergence řady
$$\sum_{n=1}^{+\infty} \frac{x^n}{n \cdot 2^n}$$
.

Vyšetříme absolutní konvergenci užitím Cauchyova limitního kritéria:

$$C_n = \sqrt[n]{\frac{|x|^n}{n \cdot 2^n}} = \frac{|x|}{2 \cdot \sqrt[n]{n}} \rightarrow \frac{|x|}{2} < 1 \implies |x| < 2 \implies R = 2.$$

Ještě vyšetříme krajní body intervalu konvergence, tj. body 2 a -2. Dosadíme-li do členů řady x=2, dostaneme po zkrácení základní harmonickou řadu, která je divergentní. Dosadíme-li x=-2, dostaneme alternující neabsolutně konvergující řadu (neboť řadou absolutních hodnot je základní harmonická řada). Oborem konvergence je tedy interval $\langle -2, 2 \rangle$.

15.8. Násobení řad

V odstavci 15.2 byly připomenuty lineární operace s řadami: sčítání řad a násobení řady reálným číslem. Viděli jsme, že vlastnosti konečných součtů se na řady přenášejí s jistými výhradami: např. konvergentní řady lze sečíst a součet je opět konvergentní řada, ale konvergentní řadu ve tvaru součtu nelze obecně rozdělit na součet konvergentních řad.

Při násobení konečných součtů $a=(a_1+...+a_n)$, $b=(b_1+...+b_m)$ násobíme každý člen jednoho součtu každým členem druhého součtu a při libovolném uspořádání takto vzniklých součinů $a_i b_j$ dostaneme vždy týž výsledek ab. Riemannova věta z 15.6 nás varuje, abychom neočekávali totéž pro libovolné konvergentní řady. V další části odstavce předpokládejme $n \in N_0$, tedy $\sum a_n$ je symbol pro řadu

$$a_0 + a_1 + a_2 + \dots$$

Uvažujeme-li analogii s konečnými součty, očekáváme, že výsledkem násobení dvou řad by měla být řada, v níž jsou všechny součiny, kde každý člen jedné řady násobíme každým členem druhé řady. Toto násobení lze zorganizovat pomocí "čtvercového schématu" (*):

	a_0	a_1	a_2	<i>a</i> ₃	•••
b_0	$a_0 b_0$	$a_1 b_0$	$a_2 b_0$	$a_3 b_0$	•••
b_1	$a_0 b_1$	$a_1 b_1$	$a_2 b_1$	$a_3 b_1$	•••
b_2	$a_0 b_2$	$a_1 b_2$	$a_2 b_2$	$a_3 b_2$	•••
b_3	$a_0 b_3$	$a_1 b_3$	$a_2 b_3$	$a_3 b_3$	•••
•••	•••	•••	•••	•••	

Nyní jde o to, jak všechny prvky tohoto schématu uspořádat. Nelze např. "po řádcích" nebo "po sloupcích" (to bychom nepoužili všechny prvky), ale lze např. "po diagonálách":

$$a_0 b_0 + a_0 b_1 + a_1 b_0 + a_0 b_2 + a_1 b_1 + \dots$$

Pro uspořádání prvků ze schématu však lze použít i pravidlo čtverců ("rámování"), které dá řadu

$$a_0 b_0 + a_0 b_1 + a_1 b_1 + a_1 b_0 + a_0 b_2 + a_1 b_2 + \dots$$

V (*Cauchyova o násobení řad*): Jsou-li řady $\sum a_n$, $\sum b_n$ absolutně konvergentní a mají součet a resp. b, pak řada vytvořená ze součinů dle schématu (*) vzatých v libovolném pořadí je také absolutně konvergentní a má součet ab.

 $D\mathring{u}kaz$: K řadě $\sum a_{i_s}b_{j_s}$ všech součinů ze schématu (*) uvažujme řadu absolutních hodnot: $\sum |a_{i_s}b_{j_s}|$ a její n-tý částečný součet σ_n . Označme $m=\max\{i_s,k_s\}$. Pak platí

 $\sigma_m = |a_0 b_0| + |a_0 b_1| + \dots + |a_m b_m| \le (|a_0| + |a_1| + \dots + |a_m|) \cdot (|b_0| + |b_1| + \dots + |b_m|) < |a_0| + |a$ $< a^*b^*$, kde a^* , b^* jsou součty příslušných řad absolutních hodnot. Ježto posloupnost $\{\sigma_n\}$ je neklesající a shora omezená, existuje její vlastní limita, řada absolutních hodnot součinů je konvergentní, tedy řada součinů je absolutně konvergentní. Podle věty o přerovnání absolutně konvergentních řad nezávisí součet této řady na pořadí členů řady (na jejich uspořádání).

Nyní určíme součet této řady. K tomu lze zvolit libovolné uspořádání členů řady; výhodné se ukáže uspořádání "rámováním", kde navíc sdružíme vždy všechny členy z téhož "rámu":

$$a_0 b_0 + (a_0 b_1 + a_1 b_1 + a_1 b_0) + (a_0 b_2 + a_1 b_2 + \dots) + \dots$$

Posloupnost $\{\bar{s}_p\}$ částečných součtů této řady je vybraná z posloupnosti $\{s_n\}$ částečných součtů řady původní. Označíme-li částečné součty řad $\sum a_n$, $\sum b_n$ jako s_n' , s_n'' , pak zřejmě platí

$$\overline{s}_0 = s_0' \cdot s_0''$$
, $\overline{s}_1 = s_1' \cdot s_1''$, $\overline{s}_2 = s_2' \cdot s_2''$, ..., $\overline{s}_m = s_m' \cdot s_m''$. Ježto $s_m' \to a$, $s_m'' \to b$, je $\overline{s}_m \to ab$, tedy $s = ab$. \square

D: Mějme řady $\sum a_n$, $\sum b_n$. Pak řadu $\sum c_n$ nazýváme *Cauchyův součin* daných řad, právě když platí $c_0=a_0\ b_0\ ,\ c_1=a_0\ b_1+a_1\ b_0\ ,\ c_2=a_0\ b_2+a_1\ b_1+a_2\ b_0,\ ...,\ c_n=a_0\ b_n+...+a_n\ b_0,\ ...$

$$c_0 = a_0 b_0$$
, $c_1 = a_0 b_1 + a_1 b_0$, $c_2 = a_0 b_2 + a_1 b_1 + a_2 b_0$, ..., $c_n = a_0 b_n + ... + a_n b_0$, ...

Vidíme, že sdružením vhodných členů při uspořádání "po diagonálách" dostaneme Cauchyův součin nebo též, že posloupnost částečných součtů v Cauchyově součinu je vybraná z posloupnosti částečných součtů při uspořádání "po diagonálách".

Pokud by nám stačilo tvrzení o Cauchyově součinu řad, mohli bychom oslabit předpoklady na řady $\sum a_n$, $\sum b_n$ a to tak, že jedna je absolutně konvergentní, ale druhá (jen) konvergentní.

Úloha 15.8.1. Najděte řadu se součtem $\frac{3}{2-r-r^2}$ a) užitím sčítání řad, b) užitím násobení řad.

[Rozložíme na parciální zlomky:
$$\frac{3}{2-x-x^2} = \frac{1}{x-1} - \frac{1}{x+2} = -\frac{1}{1-x} - \frac{1}{2} \cdot \frac{1}{1+\frac{x}{2}}$$
.

Rozložíme na součin:
$$\frac{3}{2-x-x^2} = \frac{3}{2} \frac{1}{1-x} \cdot \frac{1}{1+\frac{x}{2}}$$
.

Využijeme pak toho, že $\frac{1}{1-q}$ je součet geometrické řady $1+q+q^2+\ldots+q^n+\ldots$]

_ * _