PREDICTING ICU Mortality

A Deep Learning Approach

2023 Fall - Data Analytics

정보융합학부 김주혁 장원재

TABLE OF CONTENTS

INTRODUCTION

배경 및 프로젝트 주제

DATA PREPROCESSING

데이터 전처리 과정

03. PROJECT PIPELINE

프로젝트 과정

FORWARD PLAN

향후 일정

O1. INTRODUCTION

배경 및 프로젝트 주제 소개

COVID-19

코로나로 드러난 '참담한' 중환자의료 현실...학회, 각개전투 시작

코로나19 중환자병상 부족에 "무의미한 중환자 줄여야"

오미크론 변이 유행 시 한국만 초과 사망 증가...이유는?

COVID-19

"코로나19 팬데믹이 '후진국 수준'인 우리나라 중환자 의료체계를 수면 위로 끌어올렸다. 하지만 그뿐이었다. 위중증 환자 급증으로 **중환자 병상 부족 문제**가 반복될 때마다 중환자 의료체계를 개선해야 한다는 목소리도 커졌지만 행정명령으로 병상만 확보하면 그만이었다."

"임 회장은 '정부는 중환자 병상을 늘리기 위해 노력하고 있지만 이와 함께 **무의미한 중환자실 입실**도 줄일 필요가 있다'며 '중환자실을 일반병상 만들 듯 만들어낼 수는 없다. 또 만들어진다 한들 의료인력을 쉽게 늘릴 수 있는 것도 아니다'라고 말했다. 임 회장은 '지난 2014년 상급종합병원 연구에 따르면 내과계 중환자실 환자의 10%가 입실 당일 이미 **무의미한 입원**인 것으로 조사됐다'면서 "**무의미한 중환자실 입원**을 줄이면 상당수 중환자 병실을 만들어내는 효과가 있을 것"이라고 했다."

"김영삼 교수 연구결과, 올해 3월 초과사망 1만8000명 발생 폐렴 등 입원 환자 줄어 '비코로나 환자 의료접근성 떨어졌다' '**필요 인원의** 58% 인력으로 중환자실 운영, 사망률 높아'"

- → 코로나19와 같은 전염병이 다시 재발한다면, 현재의 의료 체계로 감당하기에 어려운 부분이 많음
- → 중환자 의료체계 관련 지원이 필요하며, 병실, 인력 등 제한된 자원을 적절히 분배할 수 있도록 환자의 중증도를 정확히 추정해야 함

ICU: Intensive Care Unit, 중환자실

딥러닝 기반 중환자 중증도 추정

- 중환자실에 입원한 환자가 3일 내 사망할 확률은 어떻게 되는가?
- 위중한 환자에 대한 자원 집중
- 적정 간호인력 수요 산정
- 사망 영향 요인 식별

02.

DATA PREPROCESSING

활용 데이터 및 전처리 과정 소개

데이터 확보 과정

중환자실에 입원한 환자가 **3일 내 사망할 확률**은 어떻게 되는가?

- → MIMIC-IV 데이터셋의 Chartevents, Inputevents, Outputevents, Labevents 데이터 사용
- → 입원 후 6시간 내에 발생한 이벤트만을 고려

중환자실에 입원한 환자 한 명을 하나의 샘플(Row, Instance)로 생각하여 딥러닝 모델 학습

→ 샘플의 특성(Column, Feature)은 6시간 내 발생한 이벤트들의 측정치

중환자실 입원 환자가 사망까지 걸리는 시간 계산

3일 내에 사망 여부 확인

Admissions

hadm_id : 환자 입원 식별 id deathtime : 환자 사망 시간

ICU stays

subject_id : 환자 식별 id hadm_id : 환자 입원 식별 id intime : 중환자실 입원 시간

환자의 기본 인적 정보

Patients

subject_id : 환자 식별 id gender : 환자 성별 anchor_age : 환자 나이

입원 후 6시간 내 발생한 event만 사용

ICU stays

subject_id : 환자 식별 id hadm_id : 환자 입원 식별 id intime : 중환자실 입원 시간

Outputevents

hadm_id : 환자 입원 식별 id storetime : 데이터 저장 시각

itemid : Event 식별 id value : Event 측정 값

itemid 식별

d_items

item_id : Event 식별 id label : Event 설명

Outputevents

hadm_id: 환자 입원 식별 id storetime: 데이터 저장 시각 itemid: Event 식별 id value: Event 측정 값

6시간 이내의 데이터 추출

```
outputevents['intime'] = pd.to_datetime(outputevents['intime'])
outputevents['storetime'] = pd.to_datetime(outputevents['storetime'])

outputevents['time_to_store'] = outputevents['storetime'] - outputevents['intime']
outputevents['time_to_store'] = outputevents['time_to_store'].dt.total_seconds()

# 6시간 이내의 데이터
outputevents['time_to_store_in_day'] = (outputevents['time_to_store'] < 86400 / 4) & (outputevents['time_to_store'] > 0)
```

itemid 식별

```
outputevents_in_6hour = outputevents[outputevents.time_to_store_in_day]
outputevents_in_6hour = pd.merge(outputevents_in_6hour, d_items[['itemid', 'label']], on=['itemid'], how='left')
```

hadm_id로 group, sum 및 pivot

```
# 6시간 내 value의 합을 사용

tmp = outputevents_in_6hour.groupby(['hadm_id', 'label'])['value'].sum()

tmp = pd.DataFrame(tmp).reset_index()

outputevents_in_6hour_pivot = tmp.pivot(index='hadm_id', columns='label', values='value')

outputevents_in_6hour_pivot = outputevents_in_6hour_pivot.reset_index()

outputevents_in_6hour_pivot.to_csv('outputevents_in_row.csv')
```

TABLE MERGE

Pivot 까지 진행 결과

outputevent = pd.read_csv('./outputevents_in_row.csv', index_col=0)
outputevent

0.1s

0 20000094 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	V 0.15																				Python
1 20000808 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	I	hadm_id		Blakemore										Suprapubic	T Tube			Тар	Void		Wound Vac #2
2 20001305 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	0 2	20000094	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3 20001361 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	1 2	20000808	NaN	NaN	NaN	NaN	NaN	146.0	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4 20001395 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	2 2	20001305	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
59742 29999186 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	3 2	20001361	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
59742 29999186 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	4 2	20001395	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	400.0	NaN	NaN
59743 29999444 NaN NaN NaN NaN NaN NaN NaN NaN NaN												 		***							
59744 29999498 NAN NAN NAN NAN NAN NAN NAN NAN NAN NA	59742 2	29999186	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
59745 29999625 NaN NaN NaN NaN NaN NaN 21.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	59743 2	29999444	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	59744 2	29999498	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	10.0	NaN	NaN
59746 29999828 NAN NAN NAN NAN NAN NAN NAN NAN NAN NA	59745 2	29999625	NaN	NaN	NaN	NaN	NaN	21.0	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	59746 2	29999828	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

59747 rows × 71 columns

입원 후 6시간 내 발생한 event만 사용

ICU stays

subject_id : 환자 식별 id hadm_id : 환자 입원 식별 id intime : 중환자실 입원 시간

Inputevents

hadm_id: 환자 입원 식별 id storetime: 데이터 저장 시각 itemid: Event 식별 id amount: Event 측정 값

patientweight : 환자 체중

itemid 식별

d_items

item_id : Event 식별 id label : Event 설명

입원 후 6시간 내 발생한 event만 사용

ICU stays

subject_id : 환자 식별 id hadm_id : 환자 입원 식별 id intime : 중환자실 입원 시간

Chartevents

hadm_id: 환자 입원 식별 id storetime: 데이터 저장 시각 itemid: Event 식별 id valuenum: Event 측정 값 itemid 식별

d_items

item_id : Event 식별 id label : Event 설명

입원 후 6시간 내 발생한 event만 사용

ICU stays

subject_id : 환자 식별 id hadm_id : 환자 입원 식별 id intime : 중환자실 입원 시간

Labevents

hadm_id: 환자 입원 식별 id storetime: 데이터 저장 시각 itemid: Event 식별 id valuenum: Event 측정 값 itemid 식별

d labitems

item_id : Lab Event 식별 id label : Lab Event 설명 data = pd.read_csv('./DA_data.csv', index_col=0)
data

✓ 22.0s

Warming Blakemore Cath Lab ... WBC_y WBCApachellValue WBCScore_ApachelV WBC_ApachelV Warming Yawning intime gender anchor_age mortality_in_second mortality_in_3days Device WbcApachellScore Yawning (COWS) Status 2154-NaN NaN ... 0 24528534 03-03 M 25 NaN False NaN 04:11:00 2150-1 28960964 06-19 М 42 NaN False NaN NaN NaN ... 13.5 NaN NaN NaN NaN NaN NaN NaN NaN 17:57:00 2138-2 27385897 02-05 М 70 835560.0 False NaN NaN NaN ... 17.8 NaN NaN NaN NaN NaN NaN NaN NaN 18:54:00 2123-3 23483021 10-25 87 NaN NaN NaN NaN M False NaN NaN ... NaN NaN NaN NaN NaN NaN NaN 10:35:00 2200-4 20817525 07-12 M 72 NaN False NaN NaN NaN ... 7.8 NaN NaN NaN NaN NaN NaN NaN NaN 00:33:00 2152-69180 21944963 08-01 75 NaN False NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN 17:53:56 2126-47 69181 27299174 06-13 NaN False NaN NaN NaN ... 8.8 NaN NaN NaN NaN NaN NaN NaN NaN 01:00:00 2177-69182 28911582 11-08 М 60 NaN False NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN 14:09:00 2182-69183 22562812 08-15 M 72 NaN False NaN NaN NaN ... 8.0 NaN NaN NaN 0.0 0.0 NaN NaN NaN 09:37:33 2115-69184 22695803 12-01 M 55 NaN False NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN 00:37:00

Python

69185 rows × 2921 columns

03.

PROJECT PIPELINE

프로젝트 과정 소개

Deep Learning Approach

TabNet을 사용한 이진 분류 문제 vs. Autoencoder를 사용한 이상 탐지 문제

04.

FORWARD PLAN

향후 일정 소개

TABNET

TabNet 모델 훈련

STREAMLIT

예측 결과를 web에서 확인할 수 있도록 streamlit web 설계

23.11.15

23.11.21

23.11.28

23.12.02

23.12.04(06)

프로포절 발표

프로젝트 프로포절 발표

AUTOENCODER

Autoencoder 모델 훈련

최종 발표

프로젝트 최종 발표

THANKS