*

ИЗЛУЧЕНИЕ

Урок 22

Излучение релятивистской частицы. Синхротронное излучение

4.1. (Задача 5.24.) Переходом из системы, где частица покоится, а ускорение её а, в систему, где её скорость $v \sim c$, получить формулу полного излучения 4-импульса:

$$\Delta p^{i} = -\frac{2}{3} \frac{e^{4}}{m^{2} c^{5}} \int \left(F_{kl} u^{l}\right) \left(F^{km} u_{m}\right) \mathrm{d}x^{i}.$$

В частности.

$$\Delta \mathcal{E} = \frac{2}{3} \frac{e^2}{c^3} \int_{-\infty}^{+\infty} \frac{a^2 - \frac{1}{c^2} [\mathbf{v} \times \mathbf{a}]^2}{(1 - \frac{v^2}{c^2})^3} dt$$

или

$$\Delta \mathcal{E} = \frac{2}{3} \frac{e^4}{m^2 c^3} \int_{-\infty}^{+\infty} \frac{\{\mathbf{E} + \left[\frac{\mathbf{v}}{c} \times \mathbf{H}\right]\}^2 - \frac{1}{c^2} (\mathbf{E} \mathbf{v})^2}{1 - \frac{v^2}{c^2}} dt.$$

Решение В системе координат, в которой частица покоится, дипольное излучение приводит к изменению энергии и импульса, которые можно записать в виде классических уравнений.

$$\frac{d\mathcal{E}_0}{dt_0} = \frac{2}{3} \frac{e^2}{c^3} a_0^2,$$

$$\frac{d\mathbf{p}_0}{dt_0} = 0.$$

Здесь индексом "0"обозначены значения величин в собственной системе координат частицы. Производная от импульса равна нулю в силу симметрии излучения. Направим ось X вдоль скорости частицы и применим к полученным соотношениям правила преобразования при переходе из системы координат в систему координат. Преобразование 4x-вектора из собственной системы координат в лабораторную запишем в виде

$$\begin{pmatrix} \frac{d\mathcal{E}}{c} \\ dp_x \\ dp_y \\ dp_z \end{pmatrix} = \begin{pmatrix} \gamma & \beta\gamma & 0 & 0 \\ \beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{d\mathcal{E}_0}{c} \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Отсюда

$$dp_x = \frac{\gamma v}{c^2} d\mathcal{E}_0,$$
$$d\mathcal{E} = \gamma d\mathcal{E}_0.$$

Вспоминая, что $dt=\gamma dt_0$, получим

$$\frac{d\mathcal{E}}{dt} = \frac{d\mathcal{E}_0}{dt_0}, \quad \frac{d\mathbf{p}}{dt} = \frac{\mathbf{v}}{c^2} \frac{d\mathcal{E}_0}{dt_0}.$$

Пусть движение (ускорение) частицы в собственной системе координат определяется внешним электрическим полем в этой же системе координат.

$$\mathbf{a}_0 = \frac{e}{m} \mathbf{E}_0,$$

так как скорость равна 0 и $\mathbf{v} \times \mathbf{H}_0 = 0$.

$$\mathbf{E}_{0} = \mathbf{E}_{0\parallel} + \mathbf{E}_{0\perp} = \mathbf{E}_{\parallel} + \gamma \left(\mathbf{E}_{\perp} + \left[\beta \times \mathbf{H} \right] \right),$$

где индексы \parallel и \perp означает параллельность и перпендикулярность вектору ${\bf v}$. Квадрат ускорения можно записать через компоненты электромагнитного поля в лабораторной системе отсчета в виде

$$a_{0}^{2} = \frac{e^{2}}{m^{2}} \left\{ \mathbf{E}_{\parallel}^{2} + \gamma^{2} \left(\mathbf{E}_{\perp} + [\beta \times \mathbf{H}] \right)^{2} + \gamma^{2} E_{\parallel}^{2} - \gamma^{2} E_{\parallel}^{2} \right\} =$$

$$= \frac{e^{2}}{m^{2}} \gamma^{2} \left\{ \mathbf{E}^{2} + [\beta \times \mathbf{H}]^{2} + 2 \mathbf{E}_{\perp} \cdot [\beta \times \mathbf{H}] + \frac{1 - \gamma^{2}}{\gamma^{2}} \mathbf{E}_{\parallel}^{2} \right\} =$$

$$= \frac{e^{2}}{m^{2}} \gamma^{2} \left\{ (\mathbf{E} + [\beta \times \mathbf{H}])^{2} - (\beta \mathbf{E})^{2} \right\}.$$

Таким образом, полная интенсивность излучения

$$\frac{d\mathcal{E}}{dt} = \frac{d\mathcal{E}_0}{dt_0} = \frac{2}{3} \frac{e^4}{m^2 c^3} \gamma^2 \left\{ \left(\mathbf{E} + \left[\beta \times \mathbf{H} \right] \right)^2 - \left(\beta \mathbf{E} \right)^2 \right\},\,$$

а полные потери энергии на излучение

$$\Delta \mathcal{E} = \frac{2}{3} r_e^2 c \gamma^2 \int \left\{ \left(\mathbf{E} + \left[\beta \times \mathbf{H} \right] \right)^2 - \left(\beta \mathbf{E} \right)^2 \right\} dt.$$

4.2. (Задача 5.26.) Найти мгновенное угловое распределение интенсивности излучения $\mathrm{d}I/\mathrm{d}\Omega$, полную мгновенную интенсивность излучения I и суммарную (по всем направлениям) скорость потери энергии $(-\mathrm{d}\mathcal{E}/\mathrm{d}t')$ релятивистской частицы, скорость которой \mathbf{v} параллельна её ускорению $\dot{\mathbf{v}}=\mathbf{w}$ (в момент t'=t-r/c). Показать, что ультрарелятивистская частица излучает главным образом внутри конуса с углом раствора $\theta \sim 1/\gamma$.

Решение Поле релятивистской частицы, движущейся в лабораторной системе отсчета со скоростью ${\bf v}$ и ускорением ${\bf w}$ на больших расстояниях от нее (приближение волновой зоны для потенциала Лиенара-Вихерта см., например, Мешков, Чириков , т.2 стр.120) имеет вид

$$\mathbf{E} = \frac{e}{c^2 R_p} \frac{\left[\mathbf{n} \times \left[\left(\mathbf{n} - \frac{\mathbf{v}}{c} \right) \times \mathbf{w} \right] \right]}{\left(1 - \frac{\mathbf{n} \cdot \mathbf{v}}{c} \right)^3}.$$

Используя условие ${f v}\parallel {f w}$ и выбирая ось z вдоль скорости (ускорения) запишем интенсивность излучения в угол ${
m d}\Omega$

$$\frac{\mathrm{d}I}{\mathrm{d}\Omega} = \frac{e^2 w^2 \sin^2 \theta}{4\pi c^3 \left(1 - \beta \cos \theta\right)^6},$$

где θ — угол между ${\bf v}$ и ${\bf n}$ (направлением излучения) . Полная мгновенная интенсивность излучения

$$I = 2\pi \int_{0}^{\pi} \frac{e^{2}w^{2} \sin^{2} \theta}{4\pi c^{3} (1 - \beta \cos \theta)^{6}} \sin \theta d\theta =$$
$$= \frac{2}{3} \frac{e^{2} \dot{v}^{2}}{c^{3}} \frac{1 + \beta^{2} / 5}{(1 - \beta^{2})^{4}}.$$

Для нахождение угла, в котором достигается максимум мгновенной интенсивности возьмем производную от $dI/d\Omega$ по θ и приравняем ее 0.

$$\frac{d}{d\theta}\frac{dI}{d\Omega} \sim \frac{d}{d\theta} \frac{\sin^2 \theta}{(1 - \beta \cos \theta)^6} = 0,$$

откуда

$$\theta_{max} = \arccos \frac{\sqrt{1 + 24\beta^2} - 1}{4\beta}.$$

 Π ри eta o 1 угол $heta_{max} o 1 - rac{1-eta}{5}$. Очевидно, что при eta = 1 угол $heta_{max} = 0$, тогда можно вблизи $heta_{max} \sim 0$ записать

$$1-rac{ heta_{max}^2}{2}pprox 1-rac{1-eta}{5}, \ {
m t.e.} \ heta_{max}^2pprox rac{2}{5}(1-eta),$$

Зависимость распределения интенсивности по углу от β

и учитывая, что при β близких к 1 можно заменить в этом выражении $2\approx (1+\beta)$, а $1-\beta^2=1/\gamma^2$, окончательно получаем

$$\theta_{max} pprox rac{1}{\sqrt{5}\gamma} \sim rac{1}{\gamma}.$$

4.3. (Задача 5.27.) То же, что и в предыдущей задаче в случае, когда скорость \mathbf{v} и ускорение $\dot{\mathbf{v}}$ частицы перпендикулярны друг другу.

Решение Если ${f v}$ направлена вдоль оси Z, а $\dot{{f v}}$ — вдоль оси X, то

$$\frac{\mathrm{d}I}{\mathrm{d}\Omega} = \frac{e^2}{4\pi c^3} \frac{\left(1-\beta\cos\theta\right)^2\dot{v}^2 - \left(1-\beta^2\right)\dot{v}^2\sin^2\theta\cos^2\alpha}{\left(1-\beta\cos\theta\right)^6}.$$

Диаграммы направленности в плоскостях YZ и XZ показаны на рисунке. Отношение интенсивностей излучения вперед-назад равно $\left[\left(1+\beta\right)/\left(1-\beta\right)\right]^4\simeq 2^8\gamma^8.$

4.4. (Задача 5.30.) а) Найти интенсивность излучения заряженной частицы, равномерно движущейся по окружности в поле со скоростью $v\sim c$. б) Показать, что основная часть излучения сосредоточена в области частот, где $\omega\sim\omega_0\gamma^3=e\frac{H\gamma^2}{mc}$.

Решение Основное релятивистское уравнение движения в лабораторной системе имеет вид

$$\frac{d\mathbf{p}}{dt} = \frac{e}{c} \left[\mathbf{v} \times \mathbf{B} \right].$$

Поскольку $\mathbf{p} \parallel \mathbf{v}$, то домножив это уравнение слева скалярно на импульс, получим

$$\mathbf{p}\frac{d\mathbf{p}}{dt} = \frac{1}{2}\frac{d\mathbf{p}^2}{dt} = 2\frac{e}{c}\mathbf{p} \cdot [\mathbf{v} \times \mathbf{B}] = 0.$$

Из полученного выражения следует, что модуль импульса и модуль скорости не меняются и уравнение движения можно записать в виде

$$\frac{m}{\sqrt{1-\beta^2}}\frac{d\mathbf{v}}{dt} = \frac{e}{c}\left[\mathbf{v} \times \mathbf{B}\right].$$

Предполагая, что осуществляется движение по окружности радиуса rho с частотой omega получим, что $v=\omega\rho$ и $\frac{d\mathbf{v}}{dt}=\omega^2\rho\mathbf{e}_r$. Тогда получаем

$$\frac{m}{\sqrt{1-\beta^2}}\omega^2\rho = \frac{e}{c}\omega\rho B,$$

откуда

$$\omega = \frac{eB}{mc}\sqrt{1 - \beta^2} = \frac{eB}{\gamma mc}.$$

Полная интенсивность излучения

$$I = \frac{2}{3}cr_e^2\gamma^2B^2.$$

Потери энергии за 1 оборот

a)
$$I = -\frac{\mathrm{d}\mathcal{E}}{\mathrm{d}t'} = \frac{2e^4H^2v^2}{3m^2c^3(1-\beta^2)} = \frac{2}{3}c\left(\frac{e^2}{mc^2}\right)^2H_{\perp}^2\left(\frac{\mathcal{E}}{mc^2}\right)^2$$
 .

4.5. При какой энергии электрона (в электрон-вольтах), движущегося по круговой орбите в магнитном поле H, его синхротронное излучение имеет максимум, соответствующий красному цвету ($\lambda=6\cdot 10^{-5}$ см)? $H=17\cdot 10^3$ Э, $e=4,8\cdot 10^{-10}$ CGSE, $m=0,9\cdot 10^{-27}$ г, $c=3\cdot 10^{10}$ см/с, 1 эВ $=1,6\cdot 10^{-12}$ эрг.

Решение
$$\gamma \simeq \sqrt{2\pi \frac{mc^2}{eH\lambda}} \simeq 100, \mathcal{E} \simeq 50$$
 МэВ.

4.6. При какой энергии электрона, движущегося по окружности радиуса R=10 м, в его синхротронном излучении имеется значительное количество фотонов с энергией $\mathcal{E}_{\gamma}=250$ эВ? (Постоянная Планка $\hbar=6\cdot 10^{-16}$ эВ· с.)

Решение
$$\gamma \simeq \left(rac{E_{\gamma} R}{\hbar c}
ight)^{1/3} \simeq 2400$$
, $\mathcal{E} \simeq 1, 2$ Гэв.

4.7. а) Определить закон изменения энергии со временем для заряда, движущегося по круговой орбите в постоянном однородном магнитном поле и теряющего энергию путём излучения. б) Показать, что энергия, теряемая за один оборот, равна $\mathcal{E}_{\text{изл}} = \frac{4\pi}{R} \frac{e^2}{R} (\frac{\mathcal{E}}{mc^2})^4 (\frac{v}{c})^3$. в)Найти траекторию заряда, если энергетические потери за оборот много меньше полной энергии заряда.

Решение a)
$$\mathcal{E}(t) = mc^2 \coth\left(\frac{2e^4H^2}{3m^3c^5}t + \frac{1}{2}\ln\frac{\mathcal{E}_0 + mc^2}{\mathcal{E}_0 - mc^2}\right);$$

6) $r(t) = \frac{1}{eH}\sqrt{\left(\mathcal{E}(t)\right)^2 - m^2c^4}.$

4.8. (Задача 5.41.) Определить полное излучение релятивистской частицы с зарядом e, пролетающей на прицельном расстоянии ρ без изменения траектории в следующих полях: а) ядра Ze; б) монополя Дирака с магнитным зарядом $g\simeq 70~e$; в) точечного электрического диполя ${\bf p}$, перпендикулярного траектории; ${\bf r}$) бесконечного тока J, перпендикулярного траектории. Получить ограничения на параметры неискривляющейся траектории. Найти нерелятивистский предел.

Решение Рассмотрим подробно решение первого пункта. a) Согласно решению задачи 5.24 полные потери на излучение при пролете релятивистской частицы в электромагнитном поле

$$\Delta \mathcal{E} = \frac{2}{3} r_e^2 c \gamma^2 \int \left\{ \left(\mathbf{E} + \left[\beta \times \mathbf{H} \right] \right)^2 - \left(\beta \mathbf{E} \right)^2 \right\} dt.$$

Поскольку в данном варианте в лабораторной системе магнитное поле отсутствует, то формулу потерь можно переписать в виде

$$\Delta \mathcal{E} = \frac{2}{3} r_e^2 c \gamma^2 \int \left\{ \left(\mathbf{E} \right)^2 - \left(\beta \mathbf{E} \right)^2 \right\} dt = \frac{2}{3} r_e^2 c \gamma^2 \int \left\{ \mathbf{E}_{\perp}^2 + \mathbf{E}_{\parallel}^2 (1 - \beta^2) \right\}.$$

Поскольку по условию задачи траектория частицы остается неизменной — это прямая с прицельным параметром rho, то при нахождении частицы на расстоянии x от точки наибольшего сближения кулоновское поле ядра имеет компоненты

$$\mathbf{E}_{\parallel} = Ze \frac{x}{(x^2 + \rho^2)^3 / 2},$$
 $\mathbf{E}_{\perp} = Ze \frac{\rho}{(x^2 + \rho^2)^3 / 2}.$

Заменив в интеграле интегрирование по времени на интегрирование по расстоянию x с помощью соотношения $dt=\frac{dx}{v}$, т.е. считая что скорость частицы не меняется и равна v, получим

$$\begin{split} \Delta\mathcal{E}_{\perp} &= \frac{2}{3\beta} r_e^2 \gamma^2 Z^2 e^2 \rho^2 \int\limits_{-\infty}^{\infty} \frac{dx}{\left(x^2 + \rho^2\right)^3} = A \gamma^2 \rho^2 \int\limits_{-\infty}^{\infty} \frac{dx}{X^3}, \\ \Delta\mathcal{E}_{\parallel} &= \frac{2}{3\beta} r_e^2 Z^2 e^2 \int\limits_{-\infty}^{\infty} \frac{x^2 dx}{\left(x^2 + \rho^2\right)^3} = A \int\limits_{-\infty}^{\infty} \frac{x^2 dx}{X^3}. \end{split}$$

Интеграл в выражении для $\Delta \mathcal{E}_{\perp}$ вычисляется по известным правилам и

$$\int_{-\infty}^{\infty} \frac{dx}{X^3} = \frac{x}{4\rho^2(\rho^2 + x^2)^2} \mid_{-\infty}^{\infty} + \frac{3x}{8\rho^4(\rho^2 + x^2)} \mid_{-\infty}^{\infty} + \frac{3\arctan(x/\rho)}{8\rho^5} \mid_{-\infty}^{\infty} = \frac{3}{8} \frac{\pi}{\rho^5}.$$

Интеграл для $\Delta \mathcal{E}_{\parallel}$ вычисляется аналогичным образом с использованием приведенных выше формул. Тогда, подставляя все константы, получаем

$$\Delta \mathcal{E} = \frac{\pi}{12} \frac{Z^2 e^2 \left(e^2 / mc^2\right)^2}{\rho^3 \beta} \frac{4 - \beta^2}{1 - \beta^2};$$

в нерелятивистском пределе $(\beta \ll 1) \Delta \mathcal{E} = \frac{\pi}{3} \frac{Z^2 e^6}{m^2 c^3 \rho^3 v};$

6)
$$\Delta \mathcal{E}=rac{\pi}{4}\left(rac{e^2}{mc2}
ight)^2rac{g^2\gamma^2v}{c
ho^3};$$
 в нерелятивистском пределе $(\gamma\simeq 1);$

в)
$$\Delta \mathcal{E} = \frac{1}{8} \left(\frac{e^2}{mc^2}\right)^2 \frac{\gamma^2 p^2}{\beta \rho^5} \left(7 - \frac{15}{8} \beta^2\right)$$
 при $\gamma \simeq 1 \,\, \Delta \mathcal{E} = \frac{7}{8} \left(\frac{e^2}{mc^2}\right)^2 \frac{p^2 c}{v \rho^5};$

r)
$$\Delta \mathcal{E} = \frac{4\pi}{3} \left(\frac{e^2}{mc^2}\right)^2 \frac{J^2 \gamma^2 \beta}{c^2 \rho}$$
.

Во всех случаях отклонение на заметный угол возможно лишь при $\rho \sim \mathcal{E}/mc^2$, где $\mathcal{E}-$ энергия взаимодействия частицы с «рассеивателем».