Optimizing Integrated Photonic Neural Networks under Imperfections

Sanmitra Banerjee

Outline

- Background
 - Why integrated photonic Neural Networks (IPNNs)?
 - Sources of imperfections in IPNNs
- Modeling IPNN Imperfections
 - Fabrication uncertainties, quantization errors
 - Thermal crosstalk, insertion loss
- Optimizing IPNNs under Imperfections
 - CHAMP, LTH-Prune, HybridPrune

Al Accelerators

- Accelerators cornerstones of deep-learning
 - Variable precision
 - Optimized matrix multiplication
- Huge energy efficiency gap
 - DianNao: 452 GOPs/W
 - ISAAC: 800 GOPs/W
 - Brain: 500,000 GOPs/W

[Y. Wang et.al, ISCAS,2016 slides]

Silicon Photonics

- Computation in optical domain
 - Inherently parallel, at light speed
 - Matrix multiplication in O(1)

Photonics

- High-speed
- Low-loss
- Bulky
- Expensive fabrication

CMOS

- Reliable fabrication
- Small size
- Low-speed
- Power-inefficient

Silicon-photonics

- High-speed
- Low-loss
- Reliable fabrication
- Less bulky

[P.A. Merolla et al., Science, 2014]
[https://web.stanford.edu/group/brainsinsilicon/neurogrid.html]
[https://groq.com/]

[P. Teich, "Tearing apart Google's TPU 3.0 Al coprocessor," 2018] [A. Reuther et al., HPEC, 2019]

Coherent Photonic NNs

- NNs cascaded multipliers
- Singular value decomposition (SVD)
- Unitary & diagonal transforms
 - Array of Mach-Zehnder interferometers (MZIs)

Coherent Photonic NNs

 \triangleright N×N unitary \rightarrow N(N-1)/2 MZIs

MZIs – Phase shifters and beam splitters

- ▶ Photonic Training
 - Tune phase angles to minimize loss

Imperfections in IPNNs

- Nanometer-scale lithographic variations
 - Waveguide width and thickness
 - Length of phase shifters
- ▶ Thermal crosstalk
- ► Non-uniform MZI insertion loss
- Low precision phase encoding quantization error

Bottom-up Modeling Framework

 μ_{IL}

 σ_{IL}

► Thermo-optic PhS

Lithographic variations

$$\Delta \phi = \frac{2\pi L}{\lambda_0} \frac{dn}{dT} \Delta T$$

Thermal crosstalk, low-precision drivers

- Average error of ~0.21 radians expected
- ▶ 50:50 BeS
 - 1-2% deviation from 50:50 splitting ratio

Component-level
PhS and BeS

Phase angles

Splitting ratios

▶ Fidelity: closeness between transfer matrices

$$T_{MZI}(\theta,\phi) = ie^{i\theta/2} \begin{bmatrix} e^{i\phi} \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \\ e^{i\phi} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \end{bmatrix}$$

$$F(T,\tilde{T}) = \left| \frac{Trace(\tilde{T}^{\dagger}T)}{N} \right|^{2}$$

► Higher phase angles → susceptible to uncertainties

 $ightharpoonup T_{MZI}$ deviates ightharpoonup unitary matrix changes

$$RVD(U,\widetilde{U}) = \frac{\sum_{m} \sum_{n} |U_{m,n} - \widetilde{U}_{m,n}|}{\sum_{m} \sum_{n} |U_{m,n}|}$$

 $U_{5\times5}$ (Unitary)

Layer-level

MZI array

Fidelity of unitary transformations

Relative variation distance

$$\sigma_{PhS} = \sigma_{BeS} = 0.05$$

Mean RVD over 1000 iterations

► Faulty matrix multiplication – lower accuracy

- ► MLP with two hidden layers
 - 16-16-16-10 (3 multipliers)
 - Nom. accuracy = 93.86%

Photonic uncertainties can be spatially correlated

Non-Uniform MZI Insertion Loss

- ► MZIs are lossy devices
 - Non-uniform loss due to variations

$$IL = 10 \log \beta^4$$

$$IL = \mu_{IL} + \aleph(0, \sigma_{IL}^2)$$

Low-Precision Phase Encoding

- Memory, DAC power
- Quantization Error
- Equidistant Voltage Steps (EVS)
- Equidistant Phase Steps (EPS)
- K-Means Clustering (KC)

Why Prune Photonic NNs?

- Pruning NNs reduce parameters with minimal accuracy loss
- Phase Shifters have large footprint
 - O(N²) phase shifters for N bits data

Pruning phase shifters is essential to the scalability of photonic NNs!

[S. Banerjee et al., OFC, 2021]

Challenges

- ▶ DNN pruning: clamp small weights → retrain → sparse weight matrix
- ▶ Sparse weight matrix ≠ sparse phase angles
- Bidirectional many-to-one mapping between weights and phase shifters

Software pruning of weight matrices does NOT reduce overhead

Hardware-Aware Pruning: CHAMP

- [S. Banerjee et al., OFC, 2022]
- ▶ Pruning Aim: Sparse phase angles, not sparse weights
- ▶ Hardware-unaware software pruning does not work
 - Only 30% phase shifters pruned in SOTA

CHAMP: First effective pruning method for photonic NNs

- Photonic training
 - Backpropagation on phase angles, not weights
 - Iteratively clamp phase angles, not weights

Hardware-Aware Pruning: CHAMP

▶ Prune phase angles below threshold → clamp → retrain

Simulation Results - CHAMP

▶ 2 hidden layers with 16 neurons each – 1374 phase angles

One-Shot Pruning

- Fast
- Parallelized

Iterative Pruning

- Gradual
- Low accuracy loss

Simulation Results

Acc. Loss (%)	Sparsity (%)	Power Savings (%)
0	74.86	46.05
1	98.57	97.62
5	99.45	98.23

Lottery Ticket Hypothesis-Based Pruning

Simulation Results – LTH-Based Pruning

Layer-wise

Prune fraction of non-zero weights in each layer

Global

 Prune fraction of non-zero weights in the entire IPNN

Simulation Results – LTH-Based Pruning

Simulation Results – LTH-Based Pruning

σ_{Phs}: Stdev. of Gaussian uncertainties in phase angles

Removing pruned phase shifters improves reliability

In-field Pruning using HybridPrune

Layer-wise LTPrune

Slow but effective

Iterative CHAMP

Quick but less sparse

HybridPrune

Quick and effective

Key Takeaways

- ▶ Photonic NNs: ultra-fast low-energy matrix multiplication
- Correlated uncertainties in PhS and BeS are more critical
- MZIs in the initial IPNN layers are more critical
- Mitigative techniques should target PhS
- Pruning: reliability , power, footprint
- ▶ Pruning for photonic NNs must be hardware-aware

Collaborations

Prof. Mahdi Nikdast's group and Prof. Sudeep Pasricha's group from Colorado State University, Fort Collins

Prof. Krishnendu Chakrabarty

Prof. Mahdi Nikdast

Prof. Sudeep Pasricha

Amin Shafiee

Thank You!

sanmitrab@nvidia.com