

"电工电子学实践教程"之

基本电量测量及常用仪器仪表的使用

5.1 基础实验1

一、实验目的

- 了解电工电子综合实验台上仪器仪表的布局, 掌握电压源和电流源的使用。
- 掌握实验台上电压表、电流表以及数字式万用表的使用方法。
- 掌握对测量数据的误差分析。

- 电工电子综合实验台
- 数字式万用表
- 稳压电源
- 实验元器件

电工电子综合实验台

红框内的部分,本次实验暂时用不到

直流电压/电流表

- 精度0.5级;
- 4个量程档: 200mV、2V、20V、200V;
- 量程档对应内阻参考值分别为524.9kΩ、
 502.5kΩ、500.2kΩ、500kΩ。

- · 精度0.5级;
- 4个量程档: 2mA、20mA、200mA、2A;
- 量程档对应内阻参考值分别51Ω、5.1Ω、
 0.51Ω、0.05Ω。
- ✓ 船型开关 (SW) 是仪表的电源开关;
- ✓ 两表均可自动或手动切换量程;
- ✓ 带通信功能。

直流电压表和直流电流表

名称	量程及内阻(4档)			
直流电压表	200mV	2V	20V	200V
	524.9kΩ	502.5kΩ	500.2kΩ	500kΩ
直流电流表	2mA	20mA	200mA	2A
	51Ω	5.1Ω	0.51Ω	0.05Ω
使用时记				

得打开

直流电压表

- ➤ 输出范围0-200mA/0-20mA, 双档 控制(钮子开关切 换);
- ➤ 输出连续可调,调 节精度1%
- ▶ 带开路保护功能
- ➤ 打开船型开关(SW) 即可使用。

直流电流源

测电流插孔

电流测量线

利用测电流插孔和电流测量线测量电流的原理

实物图

利用测电流插孔和电流测量线测量电流的原理

九孔方板

电阻、电容(有无极性)、二极管、开关

单刀双置开关

电阻、电容、二极管、开关

电阻箱

十进制电阻箱

- ▶ 1 Ω 挡
 2. 23A
- ➤ 10Ω挡 0.7A
- ➤ 100 Ω 挡 0.223A
- ➤ 1kΩ挡 0.07A
- ➤ 10k Ω 挡 0.01A

HY63数字万用表

HY63数字万用表

电阻测量

将旋转开关旋至Ω挡位,分别把黑色测试笔和红色测试笔连接到COM输入插孔和Ω输入插孔,用测试笔两端测量待测电路的电阻值,由液晶显示器读取测量电阻值。注意:

- 1、当已经被测电阻大致阻值(或标称值),选择的量程 比被测电阻大,且最接近被测电阻值
 - 2、当被测电阻大小未知时,从大量程往小量程逐渐变换。

导线测量 • 11)

如果被测线路电阻小于50 Ω, 仪表内附蜂鸣器将发声。 导线相当于电阻比较小的电阻(实验中一般小于50 Ω)

直流电压源:连接输出引线>打开电源>电压设置>打开输出

本次实验用到的实验台相应模块

实线: 内部有导线相连!

三、实验原理

将一个阻值与电压表内阻 R_V (使用说明书或表面上有其标称值)相近的已知电阻R与电压表串联后接到电压源上。测量时,先闭合开关S,调节电压源输出到接近电压表满量程,记为 U_S ;然后断开S,此时电压表读数为 U_V 。由分压关系,有

$$U_{\rm V} = \frac{R_{\rm V}}{R + R_{\rm V}} U_{\rm S}$$

故电压表内阻为

$$R_{\rm V} = \frac{U_{\rm V}}{U_{\rm S} - U_{\rm V}} R$$

图 5.1-1 分压法测量电压表内阻

将一个阻值与电流表内阻 $_R$ 相近的已知电阻 $_R$ 及串联开关S与电流表并联后接到电流源上,如图5.1-2所示。测量时,先断开开关S,调节电流源输出到接近电流表满量程,记为 $_I$ 。然后闭合S,此时电流表读数为 $_I$ 。可求得电流表内阻为

三、实验原理

$$R_{\rm A} = \frac{I_{\rm S} - I_{\rm A}}{I_{\rm A}} R$$

图 5.1-2 分流法测量电流表内阻

- 1. 直流电压、电流和电阻的测量
- (2) 按图接线,用数字式万用 表的直流电压档测量电源电压U和电阻电压 U_1 、 U_2 ,记入表5.1-1;
- (3) 用直流电流表测量电流I, 将测量结果记入表5.1-1。

表5.1-1 直流电压、电流和电阻的测量

<i>U</i> /V	<i>U</i> ₁ /V	<i>U₂</i> /V	//mA	R_{1}/Ω	R_2/Ω

实验一参考实验连线

2. 电压表电流表内阻的测量

(1) 万用表内阻测量

按图接线,R=5.1MΩ, U_s

约12V,测量万用表直流60V

档内阻,将测量结果记入表

5.1-2°

振歌内阻: 10MΩ

表5.1-2 直流表内阻测量

被测电压表	<i>U_s/</i> V(S 闭合)	<i>U_v/</i> V(S 断开)	<i>R</i> /Ω(标称 阻值)	$R_{\scriptscriptstyle m V}/\Omega$
万用表60V			5.1ΜΩ	
直流电压表20V			500kΩ	

2. 电压表电流表内阻的测量

(2)直流电压表内阻测量 按图接线, R=500kΩ, U_s
 约12V,测量直流电压表20V 档内阻,将测量结果记入表5.1-2。

振脉内阻: 500.2kΩ

表5.1-2 直流表内阻测量

被测电压表	<i>U_s/</i> V(S 闭合)	<i>U_v/</i> V(S 断开)	<i>R</i> /Ω(标称 阻值)	$R_{ m v}/\Omega$
万用表60V			5.1ΜΩ	
直流电压表20V			500kΩ	

- 2. 电压表电流表内阻的测量
- (3) 直流电流表内阻测量 按图接线,分别测量直流 电流表2mA档和20mA档内阻, 并联电阻采用电阻箱, 电流源 设置为1.8mA和19mA。将测量 结果记入表5.1-3。

添称内阻: 50Ω (2mA档) 5Ω (20mA档)

图5.1-2

表5.1-3 电流表内阻测量

被测表量程/mA	/ _s /mA (S断开)	/ _a /mA(S 闭合)	R/Ω	$R_{\!\scriptscriptstyle extsf{A}}\!/\Omega$
2				
20				

五、MWOKS仿真-软件下载

- 一、MWORKS下载
- 1) MWORKS可直接在同元软控官网下载,系统建模仿真平台 MWORKS.Sysplorer替代Simulink, 下载地址: https://www.tongyuan.cc/download。
- 2) 或百度网盘下载MWORKS.Sysplorer
- https://pan.baidu.com/s/14sLpKBDDgNwUd89Lbtgpnw?pwd=TYRK

五、MWOKS仿真软件教育版激活

- 目前MWORKS教育版授权提供两种方式:
- ●方式一: 同元账号激活(适用于个人电脑软件激活)个人直通过学校邮箱(后缀edu.cn的邮箱)注册同元账号并进行认证,申请教育版许可,系统会通过账号发放License, 具体激活方式可参考下方安装激活说明。
- 上述部分可参考钉钉群里上传的实验一MWORK文件夹里文档: MWORKS.Sysplore2024a教育版安装与配置说明书_Windows

五、MWOKS仿真软件实验一使用-常用库

• 建模-检查-翻译-仿真设置-仿真

五、MWOKS仿真软件实验一使用-输出结果

五、MWOKS仿真软件实验一使用-输出结果

四、实验总结

- 1. 根据表5.1-1中电压、电流测量值分别计算 R_1 、 R_2 值,与标称值、万用表电阻档所测值进行比较。
- 2. 根据表5.1-2和表5.1-3的测量数据,分别计算相应电压表和电流表的内阻值。
- 3. 如何在不改变测量仪表的情况下,减少因测量仪表的影响所造成的误差,提高测量准确度?
- 4. 熟悉并学会用MWORKS仿真软件,实验报告中需包含实物实验和仿真实验内容