Data Mining

CSCI-6674-01

DAT (Data Analysis Team)

UNIVERSITY OF NEW HAVEN TAGLIATELA COLLEGE OF ENGINEERING, WEST HAVEN, CT.

SUBMITTED TO:

Prof. Reza Sadeghi

DAT (Data Analysis Team)

Head of Team:

Anuj Parikh <u>apari6@unh.newhaven.edu</u>

Team Members:

Anuj Parikh <u>apari6@unh.newhaven.edu</u>

Rahul Akkineni <u>rakki1@unh.newhaven.edu</u>

TABLE OF CONTENTS

1. Research Question	3
1.1 Objective	3
2. Data Modeling	3
2.1 List of Modeling Techniques	3
2.2 Hardware	3
2.3 Parameter and Hyperparameter	4
3. Performance Matrix	4
4. Conclusion	8

1. Research Question:

Predicting the 5-year career longevity of the NBA Rookies.

That is, we try to predict whether if a rookie stays for 5-years after coming to the NBA based on his performance during his time.

1.1 Objective:

By predicting longevity of NBA Rookies, our objective is to predict which player is going to last long in NBA and how much score he can make in a single game. At the same time, Coach can choose healthy players for greater winning strategy and energetic game.

2. Data Modeling:

2.1List of Modeling Techniques:

- Classification Methods
 - Logistic Regression
 - Naïve Bayes
 - o Gaussian
 - o Bernoulli
 - SGD (Stochastic Gradient Descent)
 - K Nearest Neighbors
 - Decision Tree
 - Random Forest
 - Extra Tree Classifier
 - Support Vector Machine
 - Bagging
 - Gradient Boosting
 - AdaBoost
 - XGBoost
 - LGBM
 - Multi-Layer Perceptron Neural Networks

2.2Hardware:

• **Processor:** Intel Core i7 – 10510U @ 1.8GHz 2.30GHz

• **RAM:** 8.00 GB

• **System Type:** 64-bit Operating System, x64-based processor

2.3 Parameter and hyperparameter:

- Following hyperparameters are used in above mentioned classification methods:
 - Logistic Regression: We used bfgs (Broyden–Fletcher–Goldfarb–Shanno) algorithm for nonlinear optimization. While setting maximum iteration up to 1000.
 - Naïve Bayes: We set hyperparameter of variance smoothing to 1e-9 for achieving stability.
 - **SGD classifier:** In SGD (Stochastic Gradient Descent), we used hinge loss based 12-norm penalty. We performed SGD with boundary of 1000 maximum iterations.
 - **KNN classification:** We set deciding neighbours to 5 As odd number is easier to deal with when it comes to same votes for new classification object.
 - Decision Tree, Extra-Tree Classifier and Random Forest: We set decision tree's max depth unbounded, so we can leverage all the branches split data in decision tree as well as random forest.
 - SVM: We used radial basis kernel in Support Vector machine.
 - Bagging and Boosting Classifier: We set 10 and 100 for bagging and boosting algorithms' estimators, respectively.
 - AdaBoost: we used SAME.R algorithm for optimizing adaboost with 50 estimators.
 - **LGBM classifier:** We leverage lgbm gradient boosting classifier on 200000 bin-sample-size and 50 estimators with having upto 31 leaves for base learners.
 - Multilayer Perceptron Neural Networks: We used relu activation function with adam optimizer with batch-size set to 200. We set learning rate to 0.001.

3. Performance Metric

• We get best accuracy of 72.56 % using Logistic Regression on all available features from dataset. Graph 1 shows other classification method comparisons followed by Table 1 which describe values compared in graph.

Figure 1 After Standardization with All features

Model	Train Accuracy	Test Accuracy
Logistic Regression	0.708	0.7256
Gaussian Naïve Bayes	0.626	0.6555
Bernoulli Naïve Bayes	0.656	0.6890
Stochastic Gradient Descent	0.636	0.6555
K Nearest Neighbors	0.646	0.6646
Decision Tree	0.583	0.6250
Random Forest	0.688	0.6799
Extra Classifier	0.692	0.6860
Support Vector Machine	0.702	0.6951
Bagging	0.652	0.6860
Gradient Boosting	0.686	0.6677
Ada Boost	0.676	0.6555
XGBoost	0.681	0.6646
LGBM	0.670	0.6524
Multi -Layer Perceptron	0.682	0.6890

Table 2 Accuracy Table

• We try several hyperparameter setting with variations of features passes to learning model. 2 variations are depicted in Graph 2 and 3 Followed by table to describe value compared in graphs.

Figure 2 After Standardization with 5 features

Model	Train Accuracy	Test Accuracy
Logistic Regression	0.700	0.6982
Gaussian Naïve Bayes	0.668	0.7226
Bernoulli Naïve Bayes	0.683	0.7073
Stochastic Gradient Descent	0.622	0.7226
K Nearest Neighbors	0.651	0.6707
Decision Tree	0.582	0.5854
Random Forest	0.642	0.6524
Extra Classifier	0.630	0.6677
Support Vector Machine	0.701	0.7043
Bagging	0.622	0.6402
Gradient Boosting	0.667	0.6738
Ada Boost	0.673	0.6921
XGBoost	0.674	0.6738
LGBM	0.648	0.6280
Multi -Layer Perceptron	0.701	0.7012

Table 2 Accuracy Table

Figure 3 After Standardization with 10 features

Model	Train Accuracy	Test Accuracy
Logistic Regression	0.703	0.7195
Gaussian Naïve Bayes	0.632	0.6616
Bernoulli Naïve Bayes	0.661	0.6860
Stochastic Gradient Descent	0.671	0.5183
K Nearest Neighbors	0.639	0.6463
Decision Tree	0.605	0.6128
Random Forest	0.676	0.6707
Extra Classifier	0.674	0.6524
Support Vector Machine	0.696	0.6921
Bagging	0.663	0.6555
Gradient Boosting	0.694	0.6585
Ada Boost	0.674	0.6433
XGBoost	0.688	0.6768
LGBM	0.666	0.6494
Multi -Layer Perceptron	0.688	0.6982

Table 3 Accuracy Table

4. Conclusion:

After analysing assortment of learning model experimented on various hyperparameters, we get 70+% accuracy on learning methods, which strongly support the argument of relating player historical performance to longevity of player. However, 72.56% is not good enough to use it in practical manner, But It is pretty good to deduce that pattern exist in asked research question. We strongly believe that Data Model with larger data can more accurately pinpoint relations between performance and longevity.

GitHub link: https://github.com/Anuj-parikh/DAT