# RISC-V Implementação Monociclo

GEX 612 - Organização de Computadores

Prof. Luciano L. Caimi Icaimi@uffs.edu.br

#### Roteiro



Introdução

Busca da instrução

Instruções aritméticas

Instruções de acesso à memória

Instruções de Desvio

Combinando instruções

Bloco operativo completo

### Introdução: Arquitetura Multinível





### Introdução: RISC-V - ISA



#### Formato das Instruções:

|                        | 5    |    |     |       |       |      |      |    | 3  | 2-bit | RIS  | C-V  | nstru | ıctio | n Fo | rma | ts    |    |       |    |    |     |      |      |     |   |   |    |      |    |   |   |
|------------------------|------|----|-----|-------|-------|------|------|----|----|-------|------|------|-------|-------|------|-----|-------|----|-------|----|----|-----|------|------|-----|---|---|----|------|----|---|---|
| Instruction<br>Formats | 31   | 30 | 29  | 28    | 27    | 26   | 25   | 24 | 23 | 22    | 21   | 20   | 19    | 18    | 17   | 16  | 15    | 14 | 13    | 12 | 11 | 10  | 9    | 8    | 7   | 6 | 5 | 4  | 3    | 2  | 1 | 0 |
| Register/register      |      |    | f   | unct7 | 7     |      |      |    |    | rs2   |      |      |       |       | rs1  |     |       | 1  | unct  | 3  |    |     | rd   |      |     |   |   | op | pco  | de |   |   |
| Immediate              |      |    |     |       |       | imm[ | 11:0 | ]  |    |       |      |      |       |       | rs1  |     |       | 1  | unct  | 3  |    |     | rd   |      |     |   |   | op | oco  | de |   |   |
| Upper<br>Immediate     |      |    |     |       |       |      |      |    | ir | mm[   | 31:1 | 2]   |       |       |      |     |       |    |       |    |    |     | rd   |      |     |   |   | ot | pcod | de |   |   |
| Store                  |      |    | im  | m[11  | :5]   |      |      |    |    | rs2   | 2    |      |       |       | rs1  |     |       | 1  | funct | 3  |    | im  | m[4  | 1:0] |     |   |   | op | pco  | de |   |   |
| Branch                 | [12] |    | - 1 | imm   | [10:5 | ]    |      |    |    | rs2   | 2    |      |       |       | rs1  |     |       | 1  | funct | 3  | i  | mm[ | 4:1] | ]    | [11 |   |   | op | pco  | de |   |   |
| Jump                   | [20] |    |     |       |       | imm[ | 10:1 | ]  |    |       |      | [11] |       |       | į    | mm[ | 19:1: | 2] |       |    | 6. |     | rd   |      |     | ĺ |   | op | pco  | de |   |   |

- opcode (7 bit): partially specifies which of the 6 types of instruction formats
- funct7 + funct3 (10 bit): combined with opcode, these two fields describe what operation to perform
- rs1 (5 bit): specifies register containing first operand
- . rs2 (5 bit): specifies second register operand
- · rd (5 bit):: Destination register specifies register which will receive result of computation

### Introdução: RISC-V - ISA



#### Formato das Instruções:

| 31 30 25 24 21 20 19 15 14 12 11 8                             | 7 	 6 	 0             |
|----------------------------------------------------------------|-----------------------|
| funct7 rs2 rs1 funct3 r                                        | opcode R-type         |
|                                                                |                       |
| imm[11:0] rs1 funct3 r                                         | opcode I-type         |
|                                                                |                       |
| imm[11:5] rs2 rs1 funct3 imm                                   | 4:0] opcode S-type    |
|                                                                |                       |
| [imm[12]   imm[10:5]   rs2   rs1   funct3   imm[4:1]           | imm[11] opcode B-type |
|                                                                |                       |
| imm[31:12]                                                     | opcode U-type         |
|                                                                |                       |
| [imm[20]] $[imm[10:1]$ $[imm[11]]$ $[imm[19:12]$ $[imm[19:12]$ | opcode J-type         |

# Introdução: RISC-V - modos de endereçamente

1. Immediate addressing



2. Register addressing



3. Base addressing, i.e., displacement addressing



4. PC-relative addressing



UFFS - Universidade Federal da Fronteira Sul - Organização de Computadores



- ISA simplificado contendo somente:
  - Instruções de referência a memória: lw, sw
  - Instruções lógico-aritméticas: add, sub, and, slt
  - Instruções de controle de fluxo: beq, j
- Implementação do Ciclo de Instrução Básico
  - 1) Busca de instruções da memória
  - 2) Decodifica a instrução a partir do OpCode
  - 3) Acessa o Banco de Registradores (BR) para ler os dados
  - 4) Executa a instrução
  - 5) Armazena o Resultado (na memória ou no BR)

### Introdução: RISC-V - ISA



### Instruções RV32I

| LUI | 0110111 | rd          |     |       | imm[31:12]     |              |
|-----|---------|-------------|-----|-------|----------------|--------------|
| AUI | 0010111 | rd          |     |       | imm[31:12]     |              |
| JAL | 1101111 | rd          |     | 9:12] | n[20]10:1 11 1 | imn          |
| JAL | 1100111 | rd          | 000 | rs1   | )]             | imm[11:0     |
| BEQ | 1100011 | imm[4:1 11] | 000 | rs1   | rs2            | imm[12 10:5] |
| BNE | 1100011 | imm[4:1 11] | 001 | rs1   | rs2            | imm[12 10:5] |
| BLT | 1100011 | imm[4:1 11] | 100 | rs1   | rs2            | imm[12 10:5] |
| BGE | 1100011 | imm[4:1 11] | 101 | rs1   | rs2            | imm[12 10:5] |
| BLT | 1100011 | imm[4:1 11] | 110 | rs1   | rs2            | imm[12 10:5] |
| BGE | 1100011 | imm[4:1 11] | 111 | rs1   | rs2            | imm[12 10:5] |
| LB  | 0000011 | rd          | 000 | rs1   | )]             | imm[11:0     |
| LH  | 0000011 | rd          | 001 | rs1   | )]             | imm[11:0     |
| LW  | 0000011 | rd          | 010 | rs1   | )]             | imm[11:0     |
| LBU | 0000011 | rd          | 100 | rs1   | 0              | imm[11:0     |
| LHU | 0000011 | rd          | 101 | rs1   | 0]             | imm[11:0     |
| SB  | 0100011 | imm[4:0]    | 000 | rs1   | rs2            | imm[11:5]    |
| SH  | 0100011 | imm[4:0]    | 001 | rs1   | rs2            | imm[11:5]    |
| SW  | 0100011 | imm[4:0]    | 010 | rs1   | rs2            | imm[11:5]    |

| ADDI   | 0010011 | rd               | 000 | rs1   |       | nm[11:0]    | in      |  |
|--------|---------|------------------|-----|-------|-------|-------------|---------|--|
| SLTI   | 0010011 | rd               | 010 | rs1   |       | nm[11:0]    | in      |  |
| SLTIU  | 0010011 | rd               | 011 | rs1   |       | nm[11:0]    | in      |  |
| XORI   | 0010011 | rd               | 100 | rs1   |       | nm[11:0]    | in      |  |
| ORI    | 0010011 | rd               | 110 | rs1   |       | nm[11:0]    | in      |  |
| ANDI   | 0010011 | rd               | 111 | rs1   |       | nm[11:0]    | in      |  |
| SLLI   | 0010011 | rd               | 001 | rs1   | shamt |             | 0000000 |  |
| SRLI   | 0010011 | $_{\rm rd}$      | 101 | rs1   | shamt | )           | 0000000 |  |
| SRAI   | 0010011 | $_{\rm rd}$      | 101 | rs1   | shamt | )           | 0100000 |  |
| ADD    | 0110011 | $_{\rm rd}$      | 000 | rs1   | rs2   |             | 0000000 |  |
| SUB    | 0110011 | $_{\rm rd}$      | 000 | rs1   | rs2   |             | 0100000 |  |
| SLL    | 0110011 | $_{\rm rd}$      | 001 | rs1   | rs2   |             |         |  |
| SLT    | 0110011 | rd               | 010 | rs1   | rs2   | *****       |         |  |
| SLTU   | 0110011 | rd               | 011 | rs1   | rs2   | 0000000 rs2 |         |  |
| XOR.   | 0110011 | rd               | 100 | rs1   | rs2   |             | 0000000 |  |
| SRL    | 0110011 | rd               | 101 | rs1   | rs2   | )           | 0000000 |  |
| SRA    | 0110011 | rd               | 101 | rs1   | rs2   |             | 0100000 |  |
| OR     | 0110011 | $_{\mathrm{rd}}$ | 110 | rs1   | rs2   |             | 0000000 |  |
| AND    | 0110011 | $_{\mathrm{rd}}$ | 111 | rs1   | rs2   |             | 0000000 |  |
| FENCE  | 0001111 | 00000            | 000 | 00000 | succ  | pred        | 0000    |  |
| FENCE. | 0001111 | 00000            | 001 | 00000 | 0000  | 0000        | 0000    |  |
| ECALL  | 1110011 | 00000            | 000 | 00000 |       | 000000000   | 0000    |  |
| EBREAR | 1110011 | 00000            | 000 | 00000 | 3     | 000000001   | 0000    |  |
| CSRRW  | 1110011 | $^{\mathrm{rd}}$ | 001 | rs1   | - 1   | csr         |         |  |
| CSRRS  | 1110011 | rd               | 010 | rs1   | - 3   | csr         |         |  |
| CSRRC  | 1110011 | rd               | 011 | rs1   |       | csr         |         |  |
| CSRRWI | 1110011 | rd               | 101 | zimm  |       | csr         |         |  |
| CSRRSI | 1110011 | rd               | 110 | zimm  | - 8   | csr         |         |  |
| CSRRCI | 1110011 | rd               | 111 | zimm  | - 3   | csr         |         |  |

UFFS - Universidade Federal da Fronteira Sul -



 Todas as instruções usam a ALU após a leitura dos registradores

Porque? Referência a memória!

Aritmética!

Controle de fluxo!

 Contador de Programa (PC) para endereçar instruções a serem executadas



Elementos de armazenamentos gatilhados na borda de subida do clock



- Valor é armazenado no final do ciclo de clock anterior e lido no início do clock seguinte
- Saída é igual ao valor armazenado no elemento (não é necessário permissão para ler o valor)



Visão Geral



UFFS - Universidade Federal da Fronteira Sul - Organização de Computadores

Address

Write

data

MemRead



Banco de Registradores:



UFFS - Universidade Federal da Fronteira Sul - Organização de Computadores

# Busca da Instrução



- Três elementos são necessários para executar uma busca de instrução
  - a memória onde estão armazenadas as instruções
  - o contador de programa (PC) para armazenar o endereço da instrução
  - um somador é necessário para calcular o endereço da próxima instrução



UFFS - Universidade Federal da Fronteira Sul - Organização de Computadores

# Busca da Instrução



- Lê Instrução na memória de programa e atualiza PC
  - O contador de programa (PC) contém o endereço da instrução a ser executada

O endereço da próxima instrução é obtido pela soma de 4 posições ao

contador de programa (PC)

instrucao ← [PC];

 $PC \leftarrow PC + 4$ 







### Formatos das instruções do RISC-V

| 31      | 30 25     | 5 24 21 | 20      | 19  | 15 14 1  | 2 11 8   | 7       | 6 0    |        |
|---------|-----------|---------|---------|-----|----------|----------|---------|--------|--------|
| f       | unct7     | rs      | 2       | rs1 | funct3   | ro       | i       | opcode | Tipo R |
|         |           |         |         |     |          |          |         |        | _      |
|         | imm[1     | 1:0]    |         | rs1 | funct3   | ro       | i       | opcode | Tipo I |
|         |           |         |         |     |          |          |         |        | _      |
| im      | m[11:5]   | rs      | 2       | rs1 | funct3   | imm[     | [4:0]   | opcode | Tipo S |
|         |           |         |         |     |          |          |         |        | _      |
| imm[12] | imm[10:5] | rs      | 2       | rs1 | funct3   | imm[4:1] | imm[11] | opcode | Tipo B |
|         |           |         |         |     |          |          |         |        |        |
|         |           | imm[3   | 1:12]   |     |          | ro       | i       | opcode | Tipo U |
|         |           |         |         |     |          |          |         |        | -      |
| imm[20] | imm[10    | 0:1]    | imm[11] | imn | n[19:12] | ro       | i       | opcode | Tipo J |

### Instruções de formato R



|                        |             |    |    |       |        |     |    |           |    |     |     |    |        |     |     |    |        |           |      |      |     |           |        |   |       |    |              |   | _     |    |          |              |  |  |    |    |  |
|------------------------|-------------|----|----|-------|--------|-----|----|-----------|----|-----|-----|----|--------|-----|-----|----|--------|-----------|------|------|-----|-----------|--------|---|-------|----|--------------|---|-------|----|----------|--------------|--|--|----|----|--|
| Instruction<br>Formats | 31          | 30 | 29 | 28    | 27     | 26  | 25 | 24        | 23 | 22  | 21  | 20 | 19     | 18  | 17  | 16 | 15     | 14        | 13   | 12   | 11  | 10        | 9      | 8 | 7     | 6  | 5            | 4 | 3     | 2  | 1        | 0            |  |  |    |    |  |
| Register/register      |             |    | fı | unct7 | 7      |     |    |           |    | rs2 |     |    |        |     | rs1 |    |        | f         | unct | 3    |     |           | rd     |   |       |    |              | С | ppco  | de |          |              |  |  |    |    |  |
| 00000                  | 000         |    |    |       |        | rsí | 2  |           |    |     | rs  | l  |        |     | 000 | )  |        | ·         | r    | d    |     |           |        | 0 | 11(   | 00 | 11           |   |       | A  | D        | D            |  |  |    |    |  |
| 01000                  | 000         |    |    |       |        | rsi | 2  |           | Τ  |     | rs  | l  |        |     | 000 | )  | T      |           | r    | d    |     | $\neg$    |        | 0 | 110   | 00 | 11           |   |       | SI | UI       | 3            |  |  |    |    |  |
| 00000                  | 000         |    |    |       |        | rsi | 2  |           |    |     | rs  | l  |        |     | 00  | 1  |        |           | r    | d    |     | $\exists$ |        | 0 | 11(   | 00 | 11           |   |       | SI | LI       |              |  |  |    |    |  |
| 00000                  | 000         |    |    |       |        | rsí | 2  |           | T  |     | rs  | 1  | $\neg$ |     | 010 | )  | T      |           | r    | d    |     | $\neg$    |        | 0 | 11(   | 00 | 11           |   |       | SI | $\Gamma$ | 1            |  |  |    |    |  |
| 00000                  | 000         |    |    |       |        | rsí | 2  |           | T  | rs1 |     |    | $\neg$ |     | 013 | l  | T      |           | r    | d    |     | $\neg$    |        | 0 | 11(   | 00 | 11           |   |       | SI | $\Gamma$ | TU           |  |  |    |    |  |
| 00000                  | 000         |    |    |       |        | rsí | 2  |           | T  |     | rs  | l  | $\neg$ |     | 100 | )  | T      |           | r    | d    |     | $\neg$    |        | 0 | 11(   | 00 | 11           |   |       | X  | 0        | $\mathbf{R}$ |  |  |    |    |  |
| 00000                  | 000         |    |    |       |        | rsí | 2  |           |    |     | rs  | l  |        | 101 |     |    | rd     |           |      | 0110 |     |           | 110011 |   | 10011 |    | 10011        |   | 10011 |    | 110011   |              |  |  | SI | RI |  |
| 01000                  | 0100000 rs2 |    |    |       | 1      |     | l  | $\exists$ |    | 10  | l   | T  |        | r   | d   |    | $\neg$ |           | 0    | 11(  | 00  | 11        |        |   | SI    | RA | 4            |   |       |    |          |              |  |  |    |    |  |
| 00000                  | 0000000 rs2 |    |    | rs1   |        | rs1 |    | rs1 110   |    |     | 110 |    | rd     |     | rd  |    |        | $\exists$ |      | 0    | 11( | 00        | 11     |   |       | O  | $\mathbf{R}$ | 5 |       |    |          |              |  |  |    |    |  |
| 00000                  | 0000000 rs2 |    | 2  |       | $\top$ |     | rs | 1         |    |     | 11: | 1  |        |     | r   | d  |        | $\dashv$  |      | 0    | 11( | 00        | 11     |   |       | A  | N            | D |       |    |          |              |  |  |    |    |  |

<MNE> rd, rs1, rs2 # reg[rd] ← reg[rs1] MNE reg[rs2]

# Instruções de formato R



- Dois elementos são necessários para executar instruções de formato R (R-format)
  - o Banco de registradores para ler os operandos e armazenar o resultado da instrução

a Unidade Lógica/Aritmética (ALU) que será utilizada para executar as

instruções



## Instruções de formato R



- Caminho de dados do formato R (R-format)
  - A instrução contém o endereço de três registradores
  - Dois registradores são lidos e seus valores vão para a ULA
  - O resultado da operação na ULA é armazenado em um terceiro registrador

O controle da ULA determina a operação que será realizada (a partir

do código da instrução - Opcode)

rd ← rs1 operation rs2

| 31     | 25 24 | 20 19 15 | 5 14 12 | 2 11 7 | 6 0    |
|--------|-------|----------|---------|--------|--------|
| funct7 | rs2   | rs1      | funct3  | rd     | opcode |





# Instruções de formato I



- Caminho de dados das instruções de formato I utilizam:
  - módulo de extensão de sinal (valor imediato presente na instrução)
  - banco de registradores (registrador de origem e destino
  - ALU (cálculo da instrução)



## Instruções de formato I

UFFS

- Caminho de dados para R-Format + I-Format
  - MUX inserido na 2ª entrada da ULA





### Instruções de acesso a memória



- Caminho de dados das instruções de acesso a memória utilizam:
  - memória de dados (onde o dado é lido ou escrito)
  - módulo de extensão de sinal (valor imediato presente na instrução)
  - banco de registradores (registrador apontador e registrador origem (SW) ou destino (LW)
  - ALU (cálculo do endereço de acesso)



### Instruções de acesso a memória: SW



- Caminho de dados para R-Format + I-Format + SW
  - Endereço de acesso é dado pela soma do registrador base (rs1) com a extensão de sinal (saída ImmGen)



### Instruções de acesso a memória: LW



- Caminho de dados para R-Format + I-Format + SW + LW
  - Endereço de acesso é dado pela soma do registrador base (rs1) com o deslocamento (saída ImmGen)
  - Valor lido na memória é escrito no BR conforme rd





# Instruções de desvio B-Format : BEQ



- Caminho de dados para Branch (beq)
  - Novo PC é calculado pela soma de PC atual com imm (deslocado)
- PC calculado só é transferido se rs1 é igual a rs2 Add Sum 25 24 20 19 15 14 12 11 imm[12] imm[11] imm[10:5] rs2 imm[4:1] opcode Shift rs1 funct3 left 1 Read **ALU** operation register 1 Instruction Read data 1 Read register 2 ALU Zero BEQ rs1, rs2, imm Registers Write register Read data 2 if (rs1 = rs2)Write data  $PC \leftarrow PC + (ImmGen(imm) << 1)$ RegWrite 32 Imm Gen

## Bloco operativo monociclo completo



Implementação monociclo básica



## Bloco operativo monociclo completo



Implementação monociclo básica







#### Controle da ULA



| ALU control lines | Function |
|-------------------|----------|
| 0000              | AND      |
| 0001              | OR       |
| 0010              | add      |
| 0110              | subtract |

| Instruction opcode | ALUOp | Operation        | Funct7<br>field | Funct3<br>field | Desired<br>ALU action | ALU control input |
|--------------------|-------|------------------|-----------------|-----------------|-----------------------|-------------------|
| Id                 | 00    | load doubleword  | XXXXXXX         | XXX             | add                   | 0010              |
| sd                 | 00    | store doubleword | XXXXXXX         | XXX             | add                   | 0010              |
| beq                | 01    | branch if equal  | XXXXXXX         | XXX             | subtract              | 0110              |
| R-type             | 10    | add              | 0000000         | 000             | add                   | 0010              |
| R-type             | 10    | sub              | 0100000         | 000             | subtract              | 0110              |
| R-type             | 10    | and              | 0000000         | 111             | AND                   | 0000              |
| R-type             | 10    | or               | 0000000         | 110             | OR                    | 0001              |



#### Formatos das instruções do RISC-V

| 31      | 30 25     | 24 21 | 20      | 19  | 15 14 12 | 2 11 8   | 7       | 6 0    |        |
|---------|-----------|-------|---------|-----|----------|----------|---------|--------|--------|
| f       | unct7     | rs    | 2       | rs1 | funct3   | ro       | i       | opcode | Tipo R |
|         |           |       |         |     | •        |          |         |        |        |
|         | imm[1]    | 1:0]  |         | rs1 | funct3   | ro       | i       | opcode | Tipo I |
|         |           |       |         |     |          |          |         |        | _      |
| im      | m[11:5]   | rs    | 2       | rs1 | funct3   | imm[     | 4:0]    | opcode | Tipo S |
|         |           |       |         |     |          |          |         |        | _      |
| imm[12] | imm[10:5] | rs    | 2       | rs1 | funct3   | imm[4:1] | imm[11] | opcode | Tipo B |
|         |           |       |         |     |          |          |         |        |        |
|         |           | imm[3 | 1:12]   |     |          | rc       | i       | opcode | Tipo U |
|         |           |       |         |     |          |          |         |        | _      |
| imm[20] | imm[10    | ):1]  | imm[11] | imn | n[19:12] | ro       | 1       | opcode | Tipo J |



Unidade de controle

|             |        | Memto- | Reg-  | Mem- | Mem-  |        |        |        |
|-------------|--------|--------|-------|------|-------|--------|--------|--------|
| Instruction | ALUSrc | Reg    | Write | Read | Write | Branch | ALUOp1 | ALUOp0 |
| R-format    |        |        |       |      |       |        |        | -      |
| ld          |        |        |       |      |       |        |        |        |
| sd          |        |        |       |      |       |        |        |        |
| beq         |        |        |       |      |       |        |        |        |





#### Unidade de controle

|             |        | Memto- | Reg-  | Mem- | Mem-  |        |        |        |
|-------------|--------|--------|-------|------|-------|--------|--------|--------|
| Instruction | ALUSTC | Reg    | Write | Read | Write | Branch | ALUOp1 | ALUOp0 |
| R-format    | 0      | 0      | 1     | 0    | 0     | 0      | 1      | 0      |
| ld          | 1      | 1      | 1     | 1    | 0     | 0      | 0      | 0      |
| sd          | 1      | Х      | 0     | 0    | 1     | 0      | 0      | 0      |
| beq         | 0      | Х      | 0     | 0    | 0     | 1      | 0      | 1      |