2. 线性映射与矩阵表示

在线性代数中,对映射 T 选取一个基后, T 可以表示为一个矩阵 [T] 。如果 V 是 V_1,V_2,\ldots,V_k 的直和,并且每个 V_i 都是 T — 不变的,那么我们可以选取各个 V_i 中的基,将这些基拼接组成 V 的一个整体基。在这种基下, T 的矩阵表示会呈现一种特殊形式——分块对角矩阵。

3. 分块对角矩阵的构造原理

由于 $V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$, 线性变换 $T \in V$ 上的作用可以分解为在每个 V_i)上的作用。

具体来说:

■ $T(V_i) \subseteq V_i$, 因此 T 在 V_i 上的作用可以用一个小矩阵 A_i 表示。

• (

$$T$$
在直和 $V_1 \oplus V_2 \oplus \cdots \oplus V_k$ 上的整体作用可以组合成一个分块对角矩阵。 $[T] = egin{bmatrix} A_1 & 0 & \cdots & 0 \ 0 & A_2 & \cdots & 0 \ \vdots & \vdots & \ddots & \vdots \ 0 & 0 & \cdots & A_k \end{bmatrix},$ 原介对角块 $A_1 \oplus T$,在子宫间 $V_1 \oplus V_2 \oplus \cdots \oplus V_k$,如何是咖啡

其中每个对角块 A_i 是 T 在子空间 V_i 上的矩阵表示,而非对角块的位置上为零,因为 T 不会将 V_i 的向量映射到 V_j ($i \neq j$)。

这种形式的矩阵称为分块对角矩阵。

4. 为什么可以分解

这种分块对角形式依赖于 (V) 能够分解为 (T)-不变子空间的直和。这种分解在很多情况下是可以实现的,常见的有以下几种情形:

(1) 单纯不变子空间分解 (对角化)

如果 T 是对角化的,即有足够多的线性无关特征向量,那么 V 可以分解为特征向量生成的子空间的直和: $V = \operatorname{span}(\mathbf{V}_1) \oplus \operatorname{span}(\mathbf{V}_2) \oplus \cdots \oplus \operatorname{span}(\mathbf{V}_n)$,每个子空间都是 T — 不变的,因为它是特征向量生成的空间。在这种情况下,矩阵 [T] 是完全对角化的,即每个块是 1×1 的矩阵。

(2) 广义特征子空间分解 (Jordan 标准形)

如果T不能完全对角化,但仍有足够的特征向量和广义特征向量,可以将V分解为广义特征子空间的直和: $V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_k}$,其中 V_{λ_i} 是对应特征值 λ_i 的广义特征子空间,每个 V_{λ_i} 是 V_{λ_i} 是 V_{λ_i} 是 V_{λ_i} 是对应特征值 V_{λ_i} 是 V_{λ_i}

(3) 任意不变子空间分解

更一般地,只要V可以分解为T—不变子空间的直和,不要求特定为特征子空间或广义特征子空间,就可以构造分块对角形式,块的大小和形状取决于子空间的维数和T在子空间上的限制。