

PATENT APPLICATION

ASSAYS FOR TASTE RECEPTOR CELL SPECIFIC ION CHANNEL

Inventors:

Charles S. Zuker, a citizen of the United States, residing at
4778 Thurston Place
San Diego, CA 92130

Yifeng Zhang, a citizen of China, residing at
4083-D Miramar Street
La Jolla, CA 92037

TOWNSEND and TOWNSEND and CREW LLP
Two Embarcadero Center, 8th Floor
San Francisco, California 94111-3834
(415) 576-0200

PATENT

Attorney Docket No.: 02307E-114910US

ASSAYS FOR TASTE RECEPTOR CELL SPECIFIC ION CHANNEL**CROSS-REFERENCES TO RELATED APPLICATIONS**

5 The present application claims priority to USSN 60/259,379, filed December 29, 2000, herein incorporated by reference in its entirety.

**STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER
FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT**

10 This invention was made with Government support under Grant No. 5R01 DC03160, awarded by the National Institutes of Health. The Government has certain rights in this invention.

FIELD OF THE INVENTION

15 The invention identifies nucleic acid and amino acid sequences of an ion channel protein that is specifically expressed in taste cells, antibodies to the taste cell specific ion channel protein, methods of detecting such nucleic acids and subunits, and methods of screening for modulators of said taste cell specific ion channel.

BACKGROUND OF THE INVENTION

20 Taste transduction is one of the most sophisticated forms of chemotransduction exhibited by animals, from simple metazoans to the most complex of vertebrates. See, e.g., Avenet & Lindemann, *J. Membrane Biol.* 112:1-8 (1989); Margolskee, *BioEssays* 15:645-650 (1993); Gilbertson, T. *The physiology of vertebrate taste reception* 3, 532-539 (1993); Kinnamon, S.C. and Margolskee, R.F. (1996), *Curr. Opin. Neurobiol.*, 4. 506-513; Roper, S.D. *Ann. Rev. Neurosci.* 12, 329-353 (1989); Hoon *et al.* (1999), *Cell* 96, 541-51; Adler *et al.* (2000), *Cell* 100:693-702; Chandrashekhar *et al.* (2000), *Cell* 100:703-711. It enables animals to reliably detect and appropriately respond to chemical compounds present in their environment: for example, avoid toxic substances, foods, environments and enemies; or identify edible foods or sources of food, livable environments, and familiar or compatible individuals.

Higher organisms generally are able to discriminate between four basic types of taste modalities: salty, sour, sweet, and bitter. Mammals reportedly have five basic taste modalities: sweet, bitter, sour, salty and umami (the taste of monosodium glutamate) (see, e.g., Kawamura & Kare, *Introduction to Umami: A Basic Taste* (1987);

- 5 Kinnamon & Cummings, *Ann. Rev. Physiol.* 54:715-731(1992); Lindemann, *Physiol. Rev.* 76:718-766 (1996); Stewart *et al.*, *Am. J. Physiol.* 272:1-26 (1997)). Each of these modalities is thought to be mediated by distinct signaling pathways leading to receptor cell depolarization, generation of a receptor or action potential, and the release of neurotransmitter and synaptic activity (see, e.g., Roper, *Ann. Rev. Neurosci.* 12:329-353
- 10 (1989)).

Extensive psychophysical studies in humans have reported that different regions of the tongue display different gustatory preferences (see, e.g., Hoffmann, Menchen. *Arch. Path. Anat. Physiol.* 62:516-530 (1875); Bradley *et al.*, *Anatomical Record* 212: 246-249 (1985); Miller & Reedy, *Physiol. Behav.* 47:1213-1219 (1990)).

- 15 Also, numerous physiological studies in animals have shown that taste receptor cells may selectively respond to different tastants (see, e.g., Akabas *et al.*, *Science* 242:1047-1050 (1988); Gilbertson *et al.*, *J. Gen. Physiol.* 100:803-24 (1992); Bernhardt *et al.*, *J. Physiol.* 490:325-336 (1996); Cummings *et al.*, *J. Neurophysiol.* 75:1256-1263 (1996)).

In mammals, taste receptor cells are assembled into taste buds that are distributed into different papillae in the tongue epithelium. Each taste bud, depending on the species, contain 50-150 cells, including precursor cells, support cells, and taste receptor cells (see, e.g., Lindemann, *Physiol. Rev.* 76:718-766 (1996)). Receptor cells are innervated at their base by afferent nerve endings that transmit information to the taste centers of the cortex through synapses in the brain stem and thalamus.

- 25 Circumvallate papillae, found at the very back of the tongue, contain hundreds (mice) to thousands (human) of taste buds and are particularly sensitive to bitter substances. Foliate papillae, localized to the posterior lateral edge of the tongue, contain dozens to hundreds of taste buds and are particularly sensitive to sour and bitter substances. Fungiform papillae containing a single or a few taste buds are at the front of
- 30 the tongue and are thought to mediate much of the sweet taste modality.

Elucidating the mechanisms of taste cell signaling and information processing are critical for understanding the function, regulation, and “perception” of the sense of taste. Although much is known about the psychophysics and physiology of taste

cell function, very little is known about the molecules and pathways that mediate these sensory signaling responses (reviewed by Gilbertson, *Current Opn. in Neurobiol.* 3:532-539 (1993)). Electrophysiological studies suggest that sour and salty tastants modulate taste cell function by direct entry of H⁺ and Na⁺ ions through specialized membrane channels on the apical surface of the cell. In the case of sour compounds, taste cell depolarization is hypothesized to result from H⁺ blockage of K⁺ channels (see, e.g., Kinnamon *et al.*, *PNAS USA* 85: 7023-7027 (1988)) or activation of pH-sensitive channels (see, e.g., Gilbertson *et al.*, *J. Gen. Physiol.* 100:803-24 (1992)); salt transduction may be partly mediated by the entry of Na⁺ via amiloride-sensitive Na⁺ channels (see, e.g., Heck *et al.*, *Science* 223:403-405 (1984); Brand *et al.*, *Brain Res.* 207-214 (1985); Avenet *et al.*, *Nature* 331:351-354 (1988)). Most of molecular components of the sour or salty pathways have not been identified.

Sweet, bitter, and umami transduction are believed to be mediated by G-protein-coupled receptor (GPCR) signaling pathways (see, e.g., Striem *et al.*, *Biochem. J.* 260:121-126 (1989); Chaudhari *et al.*, *J. Neuros.* 16:3817-3826 (1996); Wong *et al.*, *Nature* 381:796-800 (1996)). Confusingly, there are almost as many models of signaling pathways for sweet and bitter transduction as there are effector enzymes for GPCR cascades (e.g., G protein subunits, cGMP phosphodiesterase, phospholipase C, adenylate cyclase; see, e.g., Kinnamon & Margolskee, *Curr. Opin. Neurobiol.* 6:506-513 (1996)). Identification of molecules involved in taste signaling is important given the numerous pharmacological and food industry applications for bitter antagonists, sweet agonists, and modulators of salty and sour taste.

The identification and isolation of taste receptors (including taste ion channels), and taste signaling molecules, such as G-protein subunits, ion channels and enzymes involved in signal transduction, would allow for the pharmacological and genetic modulation of taste transduction pathways. For example, availability of receptor, ion channels, and other molecules involved in taste transduction would permit the screening for high affinity agonists, antagonists, inverse agonists, and modulators of taste cell activity. Such taste modulating compounds could then be used in the pharmaceutical and food industries to customize taste. In addition, such taste cell specific molecules can serve as invaluable tools in the generation of taste topographic maps that elucidate the relationship between the taste cells of the tongue and taste sensory neurons leading to taste centers in the brain.

SUMMARY OF THE INVENTION

The present invention demonstrates, for the first time, taste cell-specific expression of nucleic acids encoding an ion channel subunit. The taste cell-specific ion channel subunits that are specifically expressed in taste cells can thus be used to screen for modulators of taste cell function and to control taste perception. The compounds identified by these assays would then be used by the food and pharmaceutical industries to customize taste, *e.g.*, as additives to food or medicine so that the food or medicine tastes different to the subject who ingests it. For example, bitter medicines can be made to taste less bitter, and sweet substance can be enhanced.

Using isolated, hand-dissected taste buds and papillae from the rat circumvallate papillae, subtracted cDNA libraries against non-taste lingual tissue were generated and screened for sequences preferentially expressed in taste receptor cells. Clones representing differentially expressed genes were isolated, mapped by *in situ* hybridization to single taste receptor cells, and used as probe to isolate and characterize full length cDNA sequences. This procedure led to the isolation of a novel taste-specific ion channel.

In one aspect, the present invention provides a method for identifying a compound that modulates transduction of taste signals in taste cells, the method comprising the steps of: (i) contacting the compound with a eukaryotic host cell or cell membrane in which has been expressed a taste cell-specific ion channel subunit having (a) greater than about 70% amino acid sequence identity to a polypeptide having a sequence of SEQ ID NO:2, SEQ ID NO:5 or SEQ ID NO:8; and (b) specifically binding to polyclonal antibodies generated against SEQ ID NO:2, SEQ ID NO:5 or SEQ ID NO:8; and (ii) determining a functional effect of the compound upon the cell or cell membrane expressing the taste cell-specific ion channel subunit.

In one embodiment, the functional effect is determined by measuring changes in intracellular cAMP, cGMP, IP₃, DAG, or Ca²⁺.

In another embodiment, the functional effect is determined by measuring changes in the level of phosphorylation of taste cell specific proteins.

In another embodiment, the functional effect is determined by measuring changes in transcription levels of taste cell specific genes.

In another embodiment, the taste cell specific ion channel subunits are recombinant.

In other embodiments, the taste cell-specific ion channel subunit have an amino acid sequence of SEQ ID NO:2, SEQ ID NO:5 or SEQ ID NO:8.

- 5 In another aspect, the present invention provides a method identifying a compound that modulates taste signaling in taste cells, the method comprising the steps of: (i) expressing a taste cell-specific ion channel subunit in an HEK 293 host cell, wherein the taste cell-specific ion channel subunit: (a) has greater than about 70% amino acid sequence identity to a polypeptide having a sequence of SEQ ID NO:2, SEQ ID NO:5 or SEQ ID NO:8; and (b) specifically binds to polyclonal antibodies generated against SEQ ID NO:2, SEQ ID NO:5 or SEQ ID NO:8; (ii) contacting the host cell with the compound that modulates taste signaling in taste cells; and (iii) determining changes in intracellular calcium levels in the host cell.
- 10

15 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a picture of an *in situ* hybridization of a nucleic acid of the present invention to a tissue section, demonstrating that the nucleic acid is specific for taste cells.

20 DETAILED DESCRIPTION OF THE INVENTION

I. Introduction

The present invention relates to nucleic acids that encode taste cell-specific ion channel subunits that are specifically expressed in taste cells. These nucleic acids and the polypeptides that they encode are referred to as “TC-ICS” for “taste cell specific ion channel subunit.” These taste cell specific nucleic acids and polypeptides are components of the taste transduction pathway.

The invention provides methods of screening for modulators, *e.g.*, activators, inhibitors, stimulators, enhancers, agonists, and antagonists of TC-ICS. Such modulators of taste transduction are useful for pharmacological and genetic modulation of taste signaling pathways. These methods of screening are used to identify high affinity agonists and antagonists of taste cell activity. These modulatory compounds can then be used in the food and pharmaceutical industries to customize and/or regulate taste. The

modulatory compounds typically would be added to a food or medicine, thereby altering its taste to the subject who ingests it.

Thus, the invention provides assays for taste modulation, where TC-ICS acts as a direct or indirect reporter molecule for the effect of modulators on taste transduction. TC-ICS are used in assays, *e.g.*, to measure changes in ion concentration, membrane potential, current flow, ion flux, transcription, signal transduction, receptor-ligand interactions, second messenger concentrations, *in vitro*, *in vivo*, and *ex vivo*. In one embodiment, a TC-ICS is recombinantly expressed in cells, and modulation of taste transduction is assayed by measuring changes in Ca²⁺ levels (*see Example II*). Methods of assaying for modulators of taste transduction include oocyte or tissue culture cell expression of TC-ICS; transcriptional activation of TC-ICS; phosphorylation and dephosphorylation of TC-ICS; ligand binding assays; voltage, membrane potential and conductance changes; ion flux assays; changes in intracellular second messengers such as cAMP and inositol triphosphate; changes in intracellular calcium levels; and neurotransmitter release.

These nucleic acids and proteins also provide valuable probes for the identification of taste cells, as the nucleic acids are specifically expressed in taste cells. For example, probes for TC-ICS are used to identify subsets of taste cells such as foliate cells and circumvallate cells, or specific taste receptor cells, *e.g.*, sweet, sour, salty, and bitter. They also serve as tools for the generation of taste topographic maps that elucidate the relationship between the taste cells of the tongue and taste sensory neurons leading to taste centers in the brain. Furthermore, the nucleic acids and the proteins they encode are used as probes to dissect taste-induced behaviors.

Finally, the invention provides for methods of detecting TC-ICS nucleic acid and protein expression, allowing investigation of taste transduction regulation and specific identification of taste receptor cells. TC-ICSs also provide useful nucleic acid probes for paternity and forensic investigations. TC-ICSs are useful nucleic acid probes for identifying subpopulations of taste receptor cells such as foliate, fungiform, and circumvallate taste receptor cells. TC-ICS polypeptides can also be used to generate monoclonal and polyclonal antibodies useful for identifying taste receptor cells, *e.g.*, in immuno histochemical assays. Taste receptor cells can also be identified using techniques such as reverse transcription and amplification of mRNA, isolation of total RNA or poly A⁺ RNA, northern blotting, dot blotting, *in situ* hybridization, RNase

protection, S1 digestion, probing high density oligonucleotide arrays, western blots, and the like.

Functionally, TC-ICS represents a subunit of an ion channel involved in taste transduction. Structurally, the nucleotide sequence of TC-ICS (including SEQ ID NO:1, SEQ ID NO:4 or SEQ ID NO:7, and also any sequence that encodes SEQ ID NO:2, SEQ ID NO:5, or SEQ ID NO:8) encodes a polypeptide of approximately 1125 amino acids. Related TC-ICS genes from other species share at least about 70% amino acid identity over an amino acid region at least about 25 amino acids in length, preferably 50 to 100 amino acids in length. *In situ* hybridization demonstrates tissue and cell-type specificity in taste buds.

Specific regions of the TC-ICS nucleotide and amino acid sequences are used to identify polymorphic variants, interspecies homologs, and alleles of TC-ICS. Especially useful are unique subsequences of SEQ ID NO:1, SEQ ID NO:4 and SEQ ID NO:7 that are at least 20, preferably at least 30, more preferably at least 50, most preferably at least 100 nucleotides long and that have at least 90-95% sequence homology with a subsequence present in SEQ ID NO:1, SEQ ID NO:4 and SEQ ID NO:7. Also especially useful are unique subsequences of SEQ ID NO:3 and SEQ ID NO:6 that are at least 20, preferably at least 30, more preferably at least 50, most preferably at least 100 nucleotides long and that have at least 90-95% sequence homology with a subsequence present in SEQ ID NO:3 and SEQ ID NO:6. This identification are made *in vitro*, e.g., under stringent hybridization conditions or with PCR and sequencing, or by using the sequence information in a computer system for comparison with other nucleotide or amino acid sequences. Typically, identification of polymorphic variants and alleles of TC-ICS is made by comparing an amino acid sequence of about 25 amino acids or more, preferably 50-100 amino acids. Amino acid identity of approximately at least 70% or above, preferably 80%, most preferably 90-95% or above typically demonstrates that a protein is a polymorphic variant, interspecies homolog, or allele of TC-ICS. Sequence comparisons are performed using any of the sequence comparison algorithms discussed below. Antibodies that bind specifically to TC-ICS or a conserved region thereof can also be used to identify alleles, interspecies homologs, and polymorphic variants.

Polymorphic variants, interspecies homologs, and alleles of TC-ICS are confirmed by examining taste cell specific expression of the putative TC-ICS polypeptide. Typically, TC-ICS having the amino acid sequence of SEQ ID NO:2, SEQ

ID NO:5, or SEQ ID NO:8 is used as a positive control, *e.g.*, in immunoassays using antibodies specifically directed against a protein having the amino acid sequence of SEQ ID NO:2, SEQ ID NO:5, or SEQ ID NO:8, in comparison to the putative TC-ICS protein to demonstrate the identification of a polymorphic variant or allele of TC-ICS.

5 Alternatively, TC-ICS having the nucleic acid sequences of SEQ ID NO:1, SEQ ID NO:4, or SEQ ID NO:7 is used as a positive control, *e.g.*, in *in situ* hybridization with SEQ ID NO:1, SEQ ID NO:4, or SEQ ID NO:7, in comparison to the putative TC-ICS nucleotide sequences to demonstrate the identification of a polymorphic variant or allele of TC-ICS.

10 TC-ICS nucleotide and amino acid sequence information may also be used to construct models of taste cell specific polypeptides in a computer system. These models are subsequently used to identify compounds that can activate or inhibit TC-ICS. Such compounds that modulate the activity of TC-ICS are used to investigate the role of TC-ICS in taste transduction or are used as therapeutics.

15 Identification of taste cell specific expression of TC-ICS provides a means for assaying for inhibitors and activators of taste cell activity. TC-ICS is useful for testing taste modulators using *in vivo* and *in vitro* expression that measure, *e.g.*, transcriptional activation of TC-ICS; ligand binding; phosphorylation and dephosphorylation; binding to G-proteins; G-protein activation; regulatory molecule binding; voltage, membrane potential and conductance changes; ion flux; intracellular second messengers such as cAMP and inositol triphosphate; intracellular calcium levels; and neurotransmitter release. Such activators and inhibitors identified using TC-ICS are used to further study taste transduction and to identify specific taste agonists and antagonists. Such activators and inhibitors are useful as pharmaceutical and food agents
20 for customizing taste.

25 Methods of detecting TC-ICS nucleic acids and expression of TC-ICS are also useful for identifying taste cells and creating topological maps of the tongue and the relation of tongue taste receptor cells to taste sensory neurons in the brain. Furthermore, these nucleic acids are used to diagnose diseases related to taste by using assays such as northern blotting, dot blotting, *in situ* hybridization, RNase protection, and the like.
30 Chromosome localization of the genes encoding human TC-ICS can also be used to identify diseases, mutations, and traits caused by and associated with TC-ICS.

Techniques, such as high density oligonucleotide arrays (GeneChip™), are used to screen for mutations, polymorphic variants, alleles and interspecies homologs of TC-ICS.

II. Definitions

As used herein, the following terms have the meanings ascribed to them unless specified otherwise.

“Taste receptor cells” are neuroepithelial cells that are organized into groups to form taste buds of the tongue, *e.g.*, foliate, fungiform, and circumvallate cells (*see, e.g.*, Roper *et al.*, *Ann. Rev. Neurosci.* 12:329-353 (1989)).

“Taste cell specific” genes or proteins refer to those which are expressed exclusively, or preferentially, in the taste receptor cells but not in non-taste cells, or in subsets of Gustducin positive cells.

“Taste cell-specific ion channel subunit” or “TC-ICS” refers to a family of taste cell-specific ion channel subunits that are specifically expressed in taste receptor cells such as foliate, fungiform, and circumvallate cells. The family includes proteins having the amino acid sequences of, *e.g.*, SEQ ID NO:2, SEQ ID NO:5, or SEQ ID NO:8, and they are encoded by cDNAs having the sequences of SEQ ID NO:1, SEQ ID NO:4, or SEQ ID NO:7 and by genomic sequences such as, for example, SEQ ID NO:3 or SEQ ID NO:6. Such taste cells can be identified because they express molecules such as Gustducin, a taste cell specific G-protein (McLaughlin *et al.*, *Nature* 357:563-569 (1992)). Taste receptor cells can also be identified on the basis of morphology (*see, e.g.*, Roper, *supra*). TC-ICS nucleic acids encode a taste cell-specific ion channel subunit with the ability to form a functional ion channel.

The term TC-ICS therefore refers to polymorphic variants, alleles, mutants, and interspecies homologs that: (1) have about 70% amino acid sequence identity, preferably about 85-90% amino acid sequence identity to SEQ ID NO:2, SEQ ID NO:5, or SEQ ID NO:8 over a window of about 25 amino acids, preferably 50-100 amino acids; (2) bind to antibodies raised against an immunogen comprising an amino acid sequence of SEQ ID NO:2, SEQ ID NO:5, or SEQ ID NO:8 and conservatively modified variants thereof; or (3) specifically hybridize (with a size of at least about 500, preferably at least about 900 nucleotides) under stringent hybridization conditions to a nucleic acid having SEQ ID NOS: 1, 4, or 7, and conservatively modified variants thereof.

“TC-GPCR” refers to a G-protein coupled receptor that is specifically expressed in taste receptor cells such as foliate, fungiform, and circumvallate cells. Such taste cells can be identified because they express molecules such as Gustducin, a taste cell specific G-protein (McLaughlin *et al.*, *Nature* 357:563-569 (1992)). Taste receptor cells
5 can also be identified on the basis of morphology (*see, e.g., Roper, supra*). TC-GPCR generally have seven transmembrane regions that have “G-protein coupled receptor activity,” *e.g.*, they bind to G-proteins in response to extracellular stimuli and promote production of second messengers such as IP₃, cAMP, and Ca²⁺ via stimulation of enzymes such as phospholipase C and adenylyl cyclase (for a description of the structure and
10 function of G-protein coupled receptors, *see, e.g., Fong, supra, and Baldwin, supra*).

A “host cell” is a naturally occurring cell or a transformed cell that contains an expression vector and supports the replication or expression of the expression vector. Host cells may be cultured cells, explants, cells *in vivo*, and the like. Host cells may be prokaryotic cells such as *E. coli*, or eukaryotic cells such as yeast, insect,
15 amphibian, or mammalian cells such as CHO, HeLa, HEK 293 and the like.

“Biological sample” as used herein is a sample of biological tissue or fluid that contains nucleic acids or polypeptides of TC-ICS. Such samples include, but are not limited to, tissue isolated from humans, mice, and rats, in particular, tongue. Biological samples may also include sections of tissues such as frozen sections taken for histological purposes.
20 A biological sample is typically obtained from a eukaryotic organism, such as insects, protozoa, birds, fish, reptiles, and preferably a mammal such as rat, mouse, cow, dog, guinea pig, or rabbit, and most preferably a primate such as chimpanzees or humans. Preferred tissues include tongue tissue, isolated taste buds, and testis tissue.

The phrase “functional effect” in the context of assays for testing compounds that modulate TC-ICS-mediated taste transduction includes the determination of any parameter that is indirectly or directly under the influence of TC-ICS. It includes changes in ion flux, membrane potential, current flow, transcription, G-protein binding, GPCR phosphorylation or dephosphorylation, signal transduction, receptor-ligand interactions, second messenger concentrations (*e.g.*, cAMP, IP₃, or intracellular Ca²⁺), *in vitro*, *in vivo*, and *ex vivo* and also includes other physiologic effects such increases or decreases of neurotransmitter or hormone release.
30

A “pharmacologically effective amount of a composition that modulates taste signaling by an ion channel subunit” is an amount of a composition (which may

consist of a single chemical compound or a mixture of chemical compounds, preferably combined with a carrier such as a solvent) that is effective to detectably alter a measurable property or a functional effect of a TC-ICS. The TC-ICS may be in solution, or expressed in a naturally occurring cell, in a tissue cultured cell, in a recombinant cell, 5 or in a wild type or recombinant organism. In a main embodiment, the TC-ICS is present at least at the surface membrane of a cell which may be in a tissue culture or in a tissue of a live multicellular organism, especially a mammal. The precise value of the effective amount varies according to the compound and the species, age, sex, condition and health of the cells or organism that contains the TC-ICS. In solution, typically the effective 10 amount is an amount sufficient to yield a concentration of at least 10 nM – 10 mM, preferably at least 0.1 μ M to 1 mM, and more preferably 10 to 100 μ M. When administered to a subject, the effective amount is from about 1 ng/kg to 10 mg/kg for a typical subject.

“Determining the functional effect” denotes assays for a compound that 15 increases or decreases a parameter that is indirectly or directly under the influence of TC-ICS. Such functional effects are measured by any means known to those skilled in the art, *e.g.*, patch clamping, voltage-sensitive dyes, whole cell currents, radioisotope efflux, inducible markers, oocyte or tissue culture cell expression of TC-ICS; transcriptional activation of TC-ICS; ligand binding assays; voltage, membrane potential and 20 conductance changes; ion flux assays; changes in intracellular second messengers such as cAMP and inositol triphosphate (IP₃); changes in intracellular calcium levels; neurotransmitter release, and the like.

“Inhibitors,” “activators,” and “modulators” of TC-ICS refer to inhibitory or activating molecules identified using *in vitro* and *in vivo* assays for taste transduction, 25 *e.g.*, ligands, agonists, antagonists, and their homologs and mimetics. Inhibitors are compounds that decrease, block, prevent, delay activation, inactivate, desensitize, or down regulate taste transduction, *e.g.*, antagonists. Activators are compounds that increase, open, activate, facilitate, enhance activation, sensitize or up regulate taste transduction, *e.g.*, agonists. Modulators include genetically modified versions of TC-ICS, 30 *e.g.*, with altered activity, as well as naturally occurring and synthetic ligands, antagonists, agonists, small chemical molecules and the like. Such assays for inhibitors and activators include, *e.g.*, expressing TC-ICS in cells or cell membranes, applying

putative modulator compounds, and then determining the functional effects on taste transduction, as described above. Compounds identified by these assays are typically combined with food or medicine and used to alter its taste to the subject (mammalian, preferably a human) who ingests it.

- 5 Samples or assays comprising TC-ICS that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition. Control samples (untreated with inhibitors) are assigned a relative TC-ICS activity value of 100%. Inhibition of TC-
10 ICS is achieved when the TC-ICS activity value relative to the control is about 80%, preferably 50%, more preferably 25-1%. Activation of TC-ICS is achieved when the TC-
ICS activity value relative to the control (untreated with activators) is 110%, more
preferably 150%, more preferably 200-500%, more preferably 1000-3000% higher.

15 The terms “isolated,” “purified” or “biologically pure” refer to material that is substantially or essentially free from components which normally accompany it as found in its native state. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein that is the predominant species present in a preparation is substantially purified. In particular, an isolated TC-ICS nucleic acid is separated from open reading frames that flank the TC-ICS gene and encode proteins other
20 than TC-ICS. The term “purified” denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Particularly, it means that the nucleic acid or protein is at least 85% pure, more preferably at least 95% pure, and most preferably at least 99% pure.

25 “Nucleic acid” refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form. The term encompasses nucleic acids containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides. Examples of such analogs include,
30 without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs).

Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (*e.g.*, degenerate codon

substitutions) and complementary sequences, as well as the sequence explicitly indicated. The term nucleic acid is used interchangeably with gene, cDNA, mRNA, oligonucleotide, and polynucleotide.

The terms “polypeptide,” “peptide” and “protein” are used interchangeably

- 5 herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an analog or mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. Polypeptides are modified, *e.g.*, by the addition of carbohydrate residues to form glycoproteins. The terms “polypeptide,” “peptide” and “protein” include
- 10 glycoproteins, as well as non-glycoproteins.

The term “amino acid” refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, *e.g.*,

- 15 hydroxyproline, carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, *i.e.*, an carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group., *e.g.*, homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (*e.g.*, norleucine) or modified peptide
20 backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.

- Amino acids may be referred to herein by either their commonly known
25 three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes (A, T, G, C, U, etc.).

- “Conservatively modified variants” applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively
30 modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more

(*see, e.g.*, Creighton, Proteins (1984) for a discussion of amino acid properties).

A “label” or a “detectable moiety” is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For example, useful labels include ^{32}P , ^{45}Ca , fluorescent groups, molecules or dyes, electron-dense reagents, enzymes (*e.g.*, as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins for which specific detectable ligands (such as antibodies) exist or can be made (*e.g.*, by incorporating a radiolabel into the ligand).

A “labeled nucleic acid probe or oligonucleotide” is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the probe may be detected by detecting the presence of the label bound to the probe.

As used herein a “nucleic acid probe or oligonucleotide” is defined as a nucleic acid capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, usually through hydrogen bond formation. As used herein, a probe may include natural (*i.e.*, A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, so long as it does not interfere with hybridization. Thus, for example, probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. It will be understood by one of skill in the art that probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions. The probes are preferably directly labeled as with isotopes, chromophores, lumiphores, chromogens, or indirectly labeled such as with biotin to which a streptavidin complex may later bind. By assaying for the presence or absence of the probe, one can detect the presence or absence of the select sequence or subsequence.

The term “recombinant” when used with reference, *e.g.*, to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found within

the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all.

The term “heterologous” when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences from unrelated genes arranged to make a new functional nucleic acid, *e.g.*, a promoter from one source and a coding region from another source. Similarly, a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (*e.g.*, a fusion protein).

A “promoter” is defined as an array of nucleic acid control sequences that direct transcription of a nucleic acid. As used herein, a promoter includes necessary nucleic acid sequences near the start site of transcription, such as in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. A “constitutive” promoter is a promoter that is active under most environmental and developmental conditions. An “inducible” promoter is a promoter that is active under environmental or developmental regulation. The term “operably linked” refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.

An “expression vector” is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid in a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment. Typically, the expression vector includes a nucleic acid to be transcribed operably linked to a promoter.

The terms “identical” or percent “identity,” in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence over a comparison window, as measured using one of the following sequence comparison algorithms or by manual alignment and visual inspection. Such sequences are then said

to be "substantially identical." This definition also refers to the complement of a test sequence. Preferably, the percent identity exists over a region of the sequence that is at least about 25 amino acids in length, more preferably over a region that is 50 or 100 amino acids in length.

- 5 For sequence comparison, one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated.
- 10 The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

A "comparison window," as used herein, includes reference to a segment of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, *Adv. Appl. Math.* 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, *J. Mol. Biol.* 48:443 (1970), by the search for similarity method of Pearson & Lipman, *Proc. Nat'l. Acad. Sci. USA* 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection.

25 One example of a useful algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments to show relationship and percent sequence identity. It also plots a tree or dendrogram showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle, *J. Mol. Evol.* 35:351-360 (1987). The method used is similar to the method described by Higgins & Sharp, *CABIOS* 5:151-153 (1989). The program can align up to 300 sequences, each of a maximum length of 5,000 nucleotides or amino acids. The multiple alignment procedure begins with the pairwise alignment of the two most similar sequences,

producing a cluster of two aligned sequences. This cluster is then aligned to the next most related sequence or cluster of aligned sequences. Two clusters of sequences are aligned by a simple extension of the pairwise alignment of two individual sequences. The final alignment is achieved by a series of progressive, pairwise alignments. The program
5 is run by designating specific sequences and their amino acid or nucleotide coordinates for regions of sequence comparison and by designating the program parameters. Using PILEUP, a reference sequence is compared to other test sequences to determine the percent sequence identity relationship using the following parameters: default gap weight (3.00), default gap length weight (0.10), and weighted end gaps. PILEUP can be obtained
10 from the GCG sequence analysis software package, *e.g.*, version 7.0 (Devereaux *et al.*, *Nuc. Acids Res.* 12:387-395 (1984)).

Another example of algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described in Altschul *et al.*, *J. Mol. Biol.* 215:403-410 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (<http://www.ncbi.nlm.nih.gov/>). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood
15 word score threshold (Altschul *et al.*, *supra*). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value;
20 the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLAST program uses as defaults a word length (W) of 11, the BLOSUM62 scoring matrix (*see* Henikoff & Henikoff, *Proc. Natl. Acad. Sci. USA*
25 89:10915 (1989)) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.
30

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (*see, e.g.*, Karlin & Altschul, *Proc. Nat'l. Acad. Sci. USA*

90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability ($P(N)$), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest 5 sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001.

An indication that two nucleic acid sequences or polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is 10 immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid, as described below. Thus, a polypeptide is typically substantially identical to a second polypeptide, for example, where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to 15 each other under stringent conditions, as described below.

The phrase “selectively (or specifically) hybridizes to” refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent hybridization conditions when that sequence is present in a complex mixture (e.g., total cellular or library DNA or RNA).

20 The phrase “stringent hybridization conditions” refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acid, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in 25 Tijssen, *Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Probes*, “Overview of principles of hybridization and the strategy of nucleic acid assays” (1993). Generally, stringent conditions are selected to be about $5-10^{\circ}\text{C}$ lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m is the temperature (under defined ionic strength, pH, and nucleic concentration) at 30 which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T_m , 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium

ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C for short probes (*e.g.*, 10 to 50 nucleotides) and at least about 60° C for long probes (*e.g.*, greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is at least two times background, preferably 10 times background hybridization. Exemplary stringent hybridization conditions can be as following: 50% formamide, 5x SSC, and 1% SDS, incubating at 42° C, or, 5x SSC, 1% SDS, incubating at 65° C, with wash in 0.2x SSC, and 0.1% SDS at 65° C.

Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, for example, when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary “moderately stringent hybridization conditions” include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37° C, and a wash in 1X SSC at 45° C. A positive hybridization is at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency.

A further indication that two polynucleotides are substantially identical is if the reference sequence, amplified by a pair of oligonucleotide primers, can then be used as a probe under stringent hybridization conditions to isolate the test sequence from a cDNA or genomic library, or to identify the test sequence in, *e.g.*, a northern or Southern blot. Alternatively, another indication that the sequences are substantially identical is if the same set of PCR primers can be used to amplify both sequences.

“Antibody” refers to a polypeptide encoded by an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively.

An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each

pair having one “light” (about 25 kDa) and one “heavy” chain (about 50-70 kDa). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

5 Antibodies exist, *e.g.*, as intact immunoglobulins or as a number of well characterized fragments produced by digestion with various peptidases. Thus, for example, pepsin digests an antibody below the disulfide linkages in the hinge region to produce $F(ab)'_2$, a dimer of Fab which itself is a light chain joined to V_H-C_{H1} by a disulfide bond. The $F(ab)'_2$ may be reduced under mild conditions to break the disulfide
10 linkage in the hinge region, thereby converting the $F(ab)'_2$ dimer into an Fab' monomer. The Fab' monomer is essentially an Fab with part of the hinge region (*see Fundamental Immunology* (Paul ed., 3d ed. 1993)). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized *de novo* either chemically or by using recombinant DNA
15 methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies or those synthesized *de novo* using recombinant DNA methodologies (*e.g.*, single chain Fv).

20 A “chimeric antibody” is an antibody molecule in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, *e.g.*, an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity.
25

For preparation of monoclonal or polyclonal antibodies, any technique known in the art can be used (*see, e.g.*, Kohler & Milstein, *Nature* 256:495-497 (1975); Kozbor *et al.*, *Immunology Today* 4:72 (1983); Cole *et al.*, pp. 77-96 in *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc. (1985)). Techniques for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce
30 antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab

fragments that specifically bind to selected antigens (*see, e.g.*, McCafferty *et al.*, *Nature* 348, 552-554 (1990); Marks *et al.*, *Biotechnology* 10, 779-783 (1992)).

An “TC-ICS” antibody is an antibody or antibody fragment that specifically binds a polypeptide encoded by the TC-ICS gene, cDNA, or a subsequence thereof.

The term “immunoassay” is an assay that uses an antibody to specifically bind an antigen. The immunoassay is characterized by the use of specific binding properties of a particular antibody to isolate, target, and/or quantify the antigen.

The phrase “specifically (or selectively) binds” to an antibody or “specifically (or selectively) immunoreactive with,” when referring to a protein or peptide, refers to a binding reaction that is determinative of the presence of the protein in a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay conditions, the specified antibodies bind to a particular protein at least two times the background and do not substantially bind in a significant amount to other proteins present in the sample. Specific binding to an antibody under such conditions may require an antibody that is selected for its specificity for a particular protein. For example, polyclonal antibodies raised to TC-ICS from specific species such as rat, mouse, or human can be selected to obtain only those polyclonal antibodies that are specifically immunoreactive with TC-ICS and not with other proteins, except for polymorphic variants and alleles of TC-ICS. This selection may be achieved by subtracting out antibodies that cross-react with TC-ICS molecules from other species. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select antibodies specifically immunoreactive with a protein (*see, e.g.*, Harlow & Lane, *Antibodies, A Laboratory Manual* (1988), for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity). Typically a specific or selective reaction will be at least twice background signal or noise and more typically more than 10 to 100 times background.

The phrase “selectively associates with” refers to the ability of a nucleic acid to “selectively hybridize” with another as defined above, or the ability of an antibody to “selectively (or specifically) bind” to a protein, as defined above.

III. Assays for taste modulation

A. Assays for taste cell-specific ion channel subunit activity

TC-ICS and its alleles, interspecies homologs, and polymorphic variants participate in taste transduction. The activity of TC-ICS polypeptides can be assessed using a variety of *in vitro* and *in vivo* assays, *e.g.*, measuring second messenger (*e.g.*, cAMP, cGMP, IP₃, DAG, or Ca²⁺), ion flux, phosphorylation levels, transcription levels, neurotransmitter levels, and the like. Furthermore, such assays can be used to screen for activators, inhibitors, and modulators of TC-ICS. Such activators, inhibitors, and modulators of taste transduction activity are useful for customizing taste.

Biologically active TC-ICS polypeptides, either recombinant or naturally occurring, are used to screen activators, inhibitors, or modulators of taste. The TC-ICS polypeptides are isolated, *e.g.*, expressed in a cell, expressed in a membrane derived from a cell, expressed in tissue or in an animal, either recombinant or naturally occurring. For example, tongue slices, dissociated cells from a tongue, transformed cells, or membranes are used. Taste transduction can also be examined *in vitro* with soluble or solid state reactions. Preferably, TC-ICS of the assay will be selected from a polypeptide having a sequence of SEQ ID NO:2, SEQ ID NO:5, or SEQ ID NO:8, or conservatively modified variant thereof. Alternatively, TC-ICS of the assay will be derived from a eukaryote and includes an amino acid subsequence having amino acid sequence identity to SEQ ID NO:2, SEQ ID NO:5, or SEQ ID NO:8. Generally, the amino acid sequence identity will be at least 70%, preferably at least 85%, most preferably at least 90-95%.

Samples or assays that are treated with a test compound which potentially activates, inhibits, or modulates TC-ICS are compared to control samples that are not treated without the test compound, to examine the extent of modulation. Control samples (untreated with activators, inhibitors, or modulators) are assigned a relative TC-ICS activity value of 100%. Inhibition of TC-ICS is achieved when the TC-ICS activity value relative to the control is about 90% (*e.g.*, 10% less than the control), preferably 50%, more preferably 25-5%, most preferably 5-0%. Activation of TC-ICS is achieved when the TC-ICS activity value relative to the control is 110% (*e.g.*, 10% more than the control), more preferably 150%, more preferably 200-500%, more preferably 1000-2000%, or more than 2000% (*e.g.*, 10,000%).

In one embodiment, the activity of TC-ICS polypeptides is assessed by measuring, *e.g.*, changes in intracellular second messengers, such as cAMP, cGMP, IP₃,

DAG, or Ca^{2+} . Therefore, the second messenger levels are used as reporters for potential activators, inhibitors, and modulators of TC-ICS polypeptides.

Ion channel modulation typically initiates or inhibits subsequent intracellular events via, *e.g.*, G-proteins and/or other enzymes, such as adenylate cyclase or phospholipase C, which are downstream from the ion channel-mediated events in taste transduction pathways. For example, ion channel activation may result in a change in the level of intracellular cyclic nucleotides, *e.g.*, cAMP or cGMP, by activating or inhibiting enzymes such as adenylate cyclase by G-protein α and $\beta\gamma$ subunits. These intracellular cyclic nucleotides, in turn, may modulate other molecules, such as, cyclic nucleotide-gated ion channels, *e.g.*, channels that are made permeable to cations by binding of cAMP or cGMP (*see, e.g.*, Altenhofen *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 88:9868-9872 (1991) and Dhallan *et al.*, *Nature* 347:184-187 (1990)). Cells for this type of assay are made by co-transfection of a host cell with any one or a combination of DNA encoding a cyclic nucleotide-gated ion channel, GPCR phosphatase, DNA encoding TC-ICS, and DNA encoding a G-protein coupled receptor. The receptor may be, *e.g.*, metabotropic glutamate receptors, muscarinic acetylcholine receptors, dopamine receptors, serotonin receptors, and the like, which, when activated, causes a change in cyclic nucleotide levels in the cytoplasm.

In response to external stimuli, certain ion channels may activate other effectors, such as phospholipase C, through G-proteins, GPCRs, modulating enzyme activities, or other ion channels. Activation of phospholipase C results in the production of inositol 1, 4, 5-triphosphate (IP_3) and diacylglycerol (DAG) from inositol 4,5-biphosphate (PIP_2) (Berridge & Irvine, *Nature* 312:315-21 (1984)). IP_3 in turn stimulates the release of intracellular calcium ion stores. Cells may exhibit increased cytoplasmic calcium levels as a result of contribution from both intracellular stores and via activation of ion channels, in which case it may be desirable although not necessary to conduct such assays in calcium-free buffer, optionally supplemented with a chelating agent such as EGTA, to distinguish fluorescence response resulting from calcium release from internal stores. Thus, a change in the level of second messengers, such as IP_3 , DAG, or Ca^{2+} can be used to assess TC-ICS function. Furthermore, a change in the level of these second messengers are used to screen for activators, inhibitors, and modulators of TC-ICS polypeptides.

In one embodiment, the changes in intracellular cAMP or cGMP are measured using immunoassays. The method described in Offermanns & Simon, *J. Biol. Chem.* 270:15175-15180 (1995) may be used to determine the level of cAMP. Also, the method described in Felley-Bosco *et al.*, *Am. J. Resp. Cell and Mol. Biol.* 11:159-164 (1994) may be used to determine the level of cGMP. Further, an assay kit for measuring cAMP and/or cGMP is described in U.S. Patent 4,115,538, herein incorporated by reference.

In another embodiment, phosphatidyl inositol (PI) hydrolysis are analyzed according to U.S. Patent 5,436,128, herein incorporated by reference. Briefly, the assay involves labeling of cells with ³H-myoinositol for 48 or more hrs. The labeled cells are treated with a test compound for one hour. The treated cells are lysed and extracted in chloroform-methanol-water after which the inositol phosphates were separated by ion exchange chromatography and quantified by scintillation counting. Fold stimulation is determined by calculating the ratio of cpm in the presence of agonist to cpm in the presence of buffer control. Likewise, fold inhibition is determined by calculating the ratio of cpm in the presence of antagonist to cpm in the presence of buffer control (which may or may not contain an agonist).

In another embodiment, intracellular Ca²⁺ levels are analyzed, *e.g.*, using fluorescent Ca²⁺ indicator dyes and fluorometric imaging (*see, e.g.*, Hall *et al.*, *Nature* 331:729 (1988); Kudo *et al.*, *Neuros.* 50:619-625 (1992); van Heugten *et al.*, *J. Mol. Cell. Cardiol.* 26:1081-93 (1994)).

In another embodiment, the activity of TC-ICS can also be assessed by measuring changes in ion flux. Changes in ion flux may be measured by determining changes in polarization (*i.e.*, electrical potential) of the cell or membrane expressing TC-ICS. One means to determine changes in cellular polarization is by measuring changes in current (thereby measuring changes in polarization) with voltage-clamp and patch-clamp techniques, *e.g.*, the “cell-attached” mode, the “inside-out” mode, and the “whole cell” mode (*see, e.g.*, Ackerman *et al.*, *New Engl. J. Med.* 336:1575-1595 (1997)). Whole cell currents are conveniently determined using the standard methodology (*see, e.g.*, Hamil *et al.*, *Pflugers. Archiv.* 391:85 (1981)). Other known assays include: radiolabeled ion flux assays and fluorescence assays using voltage-sensitive dyes (*see, e.g.*, Vestergaard-Bogind *et al.*, *J. Membrane Biol.* 88:67-75 (1988); Gonzales & Tsien, *Chem. Biol.* 4:269-277 (1997); Daniel *et al.*, *J. Pharmacol. Meth.* 25:185-193 (1991); Holevinsky *et al.*, *J.*

Membrane Biology 137:59-70 (1994)). A method for the whole-cell recording from non-dissociated taste cells within mouse taste bud is described in Miyamoto *et al.*, *J. Neurosci Methods* 64:245-252 (1996). Therefore, changes in ion flux are used to screen for activators, inhibitors, and modulators of TC-ICS. Generally, the compounds to be tested 5 are present in the range from 1 pM to 100 mM.

Assays for measuring changes in ion flux include cells that are loaded with ion or voltage sensitive dyes to report TC-ICS activity. Assays for determining activity of these polypeptides can also use known agonists and antagonists for these polypeptides as negative or positive controls to assess activity of tested compounds. In assays for

10 identifying modulatory compounds (*e.g.*, agonists, antagonists), changes in the level of ions in the cytoplasm or membrane voltage will be monitored using an ion sensitive or membrane voltage fluorescent indicator, respectively. Among the ion-sensitive indicators and voltage probes that may be employed are those disclosed in the Molecular Probes 1997 Catalog.

15 In another embodiment, phosphorylation of taste cell specific proteins are measured to assess the effects of a test compound on TC-ICS function. This can be achieved by using a method disclosed in, *e.g.*, U.S. Patent 5,834,216, herein incorporated by reference. A duplicate cell culture containing expressed TC-ICS is prepared. One of the duplicate cultures is exposed to a test compound. Cell lysates from the duplicate

20 cultures are prepared. The cell lysates are contacted with ATP wherein the ATP has a gamma-phosphate having a detectable label, or an analog of a gamma phosphate (*i.e.*, having a label capable of being transferred to a phosphorylation site such as gamma S³⁵). The level of phosphorylated taste cell specific proteins may be measured by precipitating the cell lysates with an antibody specific for taste cell specific proteins. After

25 precipitation, phosphorylated (labeled) taste cell specific proteins may be separated from other cellular proteins by electrophoresis or by chromatographic methods. By way of example, labeled taste cell specific proteins may be separated on denaturing polyacrylamide gels after which the separated proteins may be transferred to, for example, a nylon or nitrocellulose membrane followed by exposure to X-ray film.

30 Relative levels of phosphorylation are then determined after developing the exposed X-ray film and quantifying the density of bands corresponding to the taste cell specific proteins, for example, densitometry. The autoradiograph may also be used to localize the bands on the membrane corresponding to labeled taste cell specific proteins after which

they may be excised from the membrane and counted by liquid scintillation or other counting methods. Using this method, a test compound which effects the function of TC-ICS is identified by its ability to increase or decrease phosphorylation of taste cell specific proteins compared to control cells not exposed to the test compound.

5 In another embodiment, transcription levels are measured to assess the effects of a test compound on TC-ICS function. A host cell containing TC-ICS is contacted with a test compound for a sufficient time to effect any interactions, and then the level of TC-ICS gene expression is measured. The amount of time to effect such interactions may be empirically determined, such as by running a time course and
10 measuring the level of transcription as a function of time. The amount of transcription may be measured by using any method known to those of skill in the art to be suitable. For example, mRNA expression of TC-ICS may be detected using northern blots or their polypeptide products may be identified using immunoassays. Alternatively, transcription based assays using reporter gene may be used as described in U.S. Patent 5,436,128,
15 herein incorporated by reference. The reporter genes can be, e.g., chloramphenicol acetyltransferase, firefly luciferase, bacterial luciferase, β -galactosidase and alkaline phosphatase. Furthermore, TC-ICS can be used as indirect reporters via attachment to a second reporter such as green fluorescent protein (*see, e.g.,* Mistili & Spector, *Nature Biotechnology* 15:961-964 (1997)).

20 The amount of transcription is then compared to the amount of transcription in either the same cell in the absence of the test compound, or it may be compared with the amount of transcription in a substantially identical cell that lacks TC-ICS. A substantially identical cell may be derived from the same cells from which the recombinant cell was prepared but which had not been modified by introduction of
25 heterologous DNA. Any difference in the amount of transcription indicates that the test compound has in some manner altered the activity of TC-ICS.

Other physiological change that affects TC-ICS activity are used to assess the influence of a test compound on the polypeptides of this invention. When the functional consequences are determined using intact cells or animals, one can also
30 measure a variety of effects such as transmitter release, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., northern blots), changes in cell metabolism such as cell growth or pH changes, and the like.

In one preferred embodiment, TC-ICS activity is measured by expressing TC-ICS in a heterologous cell with a taste cell specific G-protein receptor (TC-GPCR; see U.S.S.N. 60/094,465 filed July 28, 1998; U.S.S.N. 60/095,464 filed July 28, 1998; U.S.S.N. 60/112,747 filed December 17, 1998) and a promiscuous G-protein that links
5 the receptor to a phospholipase C signal transduction pathway (see Offermanns & Simon, *J. Biol. Chem.* 270:15175-15180 (1995); see also Example II). A TC-GPCR, such as GPCR-B3 or GPCR-B4, can be used in the assays (see U.S.S.N. 60/094,465 filed July 28, 1998 for the description of GPCR-B3 and U.S.S.N. 60/095,464 filed July 28, 1998 and 60/112,747 filed December 17, 1998 for the description of GPCR-B4). G α 14 or G α 15
10 can be used as a promiscuous G-protein alpha subunit (Wilkie *et al.*, *PNAS USA* 88:10049-10053 (1991)). Such promiscuous G-proteins allow coupling of a wide range of receptors. Alternatively, a taste cell specific G-protein alpha subunit can be used, such as the G α subunit described in copending application U.S.S.N. 60/117,367, TTC ref. no. 02307E-092600, filed 1/27/99, and U.S.S.N. 60/117,404, TTC ref. no. 02307E-092700,
15 filed 1/27/99, herein incorporated by reference. Preferably the cell line is HEK-293 (which does not naturally express GPCR-B4) and the promiscuous G-protein is G α 15 (Offermanns & Simon, *supra*). Modulation of taste transduction is assayed by measuring changes in intracellular Ca²⁺ levels. Changes in Ca²⁺ levels are preferably measured using fluorescent Ca²⁺ indicator dyes and fluorometric imaging.
20

B. Modulators

The compounds tested as modulators of TC-ICS can be an ion, any small chemical compound, or a biological entity, such as a protein (*e.g.*, a GPCR or a GPCR binding protein), sugar, nucleic acid or lipid. Alternatively, modulators can be genetically
25 altered versions of TC-ICS. Typically, test compounds will be small chemical molecules and peptides. Essentially any chemical compound can be used as a potential modulator or ligand in the assays of the invention, although most often compounds that can be dissolved in aqueous or organic (especially DMSO-based) solutions are used. The assays are designed to screen large chemical libraries by automating the assay steps and
30 providing compounds from any convenient source to assays, which are typically run in parallel (*e.g.*, in microtiter formats on microtiter plates in robotic assays). It will be appreciated that there are many suppliers of chemical compounds, including Sigma (St.

Louis, MO), Aldrich (St. Louis, MO), Sigma-Aldrich (St. Louis, MO), Fluka Chemika-Biochemica Analytika (Buchs Switzerland) and the like.

In one preferred embodiment, high throughput screening methods involve providing a combinatorial chemical or peptide library containing a large number of potential therapeutic compounds (potential modulator or ligand compounds). Such “combinatorial chemical libraries” or “ligand libraries” are then screened in one or more assays, as described herein, to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional “lead compounds” or can themselves be used as potential or actual therapeutics.

A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis, by combining a number of chemical “building blocks” such as reagents. For example, a linear combinatorial chemical library such as a polypeptide library is formed by combining a set of chemical building blocks (amino acids) in every possible way for a given compound length (*i.e.*, the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks.

Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (*see, e.g.*, U.S. Patent 5,010,175, Furka, *Int. J. Pept. Prot. Res.* 37:487-493 (1991) and Houghton *et al.*, *Nature* 354:84-88 (1991)). Other chemistries for generating chemical diversity libraries can also be used. Such chemistries include, but are not limited to: peptoids (*e.g.*, PCT Publication No. WO 91/19735), encoded peptides (*e.g.*, PCT Publication No. WO 93/20242), random bio-oligomers (*e.g.*, PCT Publication No. WO 92/00091), benzodiazepines (*e.g.*, U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs *et al.*, *Proc. Nat. Acad. Sci. USA* 90:6909-6913 (1993)), vinylogous polypeptides (Hagihara *et al.*, *J. Amer. Chem. Soc.* 114:6568 (1992)), nonpeptidal peptidomimetics with glucose scaffolding (Hirschmann *et al.*, *J. Amer. Chem. Soc.* 114:9217-9218 (1992)), analogous organic syntheses of small compound libraries (Chen *et al.*, *J. Amer. Chem. Soc.* 116:2661 (1994)), oligocarbamates (Cho *et al.*, *Science* 261:1303 (1993)), and/or peptidyl phosphonates (Campbell *et al.*, *J. Org. Chem.* 59:658 (1994)), nucleic acid libraries (*see*

Ausubel, Berger and Sambrook, all *supra*), peptide nucleic acid libraries (*see, e.g.*, U.S. Patent 5,539,083), antibody libraries (*see, e.g.*, Vaughn *et al.*, *Nature Biotechnology*, 14(3):309-314 (1996) and PCT/US96/10287), carbohydrate libraries (*see, e.g.*, Liang *et al.*, *Science*, 274:1520-1522 (1996) and U.S. Patent 5,593,853), small organic molecule libraries (*see, e.g.*, benzodiazepines, Baum C&EN, Jan 18, page 33 (1993); isoprenoids, U.S. Patent 5,569,588; thiazolidinones and metathiazanones, U.S. Patent 5,549,974; pyrrolidines, U.S. Patents 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent 5,506,337; benzodiazepines, 5,288,514, and the like).

Devices for the preparation of combinatorial libraries are commercially available (*see, e.g.*, 357 MPS, 390 MPS, Advanced Chem Tech, Louisville KY, Symphony, Rainin, Woburn, MA, 433A Applied Biosystems, Foster City, CA, 9050 Plus, Millipore, Bedford, MA). In addition, numerous combinatorial libraries are themselves commercially available (*see, e.g.*, ComGenex, Princeton, N.J., Asinex, Moscow, Ru, Tripos, Inc., St. Louis, MO, ChemStar, Ltd, Moscow, RU, 3D Pharmaceuticals, Exton, PA, Martek Biosciences, Columbia, MD, etc.).

In one embodiment, the invention provides solid phase based *in vitro* assays in a high throughput format, where the cell or tissue expressing TC-ICS is attached to a solid phase substrate. In the high throughput assays of the invention, it is possible to screen up to several thousand different modulators or ligands in a single day. In particular, each well of a microtiter plate is used to run a separate assay against a selected potential modulator, or, if concentration or incubation time effects is to be observed, every 5-10 wells can test a single modulator. Thus, a single standard microtiter plate can assay about 100 (*e.g.*, 96) modulators. If 1536 well plates are used, then a single plate can easily assay from about 100- about 1500 different compounds. It is possible to assay several different plates per day; assay screens for up to about 6,000-20,000 different compounds is possible using the integrated systems of the invention. More recently, microfluidic approaches to reagent manipulation have been developed, *e.g.*, by Caliper Technologies (Palo Alto, CA).

30 C. Computer-based assays

Yet another assay for compounds that modulate TC-ICS activity involves computer assisted drug design, in which a computer system is used to generate a three-dimensional structure of TC-ICS based on the structural information encoded by the

amino acid sequence. The input amino acid sequence interacts directly and actively with a pre-established algorithm in a computer program to yield secondary, tertiary, and quaternary structural models of the protein. The models of the protein structure are then examined to identify regions of the structure that have the ability to bind, *e.g.*, ligands.

- 5 These regions are then used to identify ligands that bind to the protein.

The three-dimensional structural model of the protein is generated by entering amino acid sequences of at least 10 amino acid residues that are present in IC-ICS (for example, SEQ ID NO:2, SEQ ID NO:5, or SEQ ID NO:8 or conservatively modified versions thereof) or corresponding nucleic acid sequences encoding a TC-ICS 10 polypeptide (for example, SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6 or SEQ ID NO:7 or conservatively modified versions thereof) into a computer system.. The amino acid sequence represents the primary sequence or subsequence of the protein, which encodes the structural information of the protein. At least 10 residues of the amino acid sequence (or a nucleotide sequence encoding 10 amino acids) are entered into the 15 computer system from computer keyboards, computer readable substrates that include, but are not limited to, electronic storage media (*e.g.*, magnetic diskettes, tapes, cartridges, and chips), optical media (*e.g.*, CD ROM), information distributed by internet sites, and by RAM. The three-dimensional structural model of the protein is then generated by the interaction of the amino acid sequence and the computer system, using software known to 20 those of skill in the art. The three-dimensional structural model of the protein is saved to a computer readable form and be used for further analysis (*e.g.*, identifying potential ligand binding regions of the protein and screening for mutations, alleles and interspecies homologs of the gene).

The amino acid sequence represents a primary structure that encodes the 25 information necessary to form the secondary, tertiary and quaternary structure of the protein of interest. The software looks at certain parameters encoded by the primary sequence to generate the structural model. These parameters are referred to as “energy terms,” and primarily include electrostatic potentials, hydrophobic potentials, solvent accessible surfaces, and hydrogen bonding. Secondary energy terms include van der 30 Waals potentials. Biological molecules form the structures that minimize the energy terms in a cumulative fashion. The computer program is therefore using these terms encoded by the primary structure or amino acid sequence to create the secondary structural model.

The tertiary structure of the protein encoded by the secondary structure is then formed on the basis of the energy terms of the secondary structure. The user at this point can enter additional variables such as whether the protein is membrane bound or soluble, its location in the body, and its cellular location, *e.g.*, cytoplasmic, surface, or nuclear. These variables along with the energy terms of the secondary structure are used to form the model of the tertiary structure. In modeling the tertiary structure, the computer program matches hydrophobic faces of secondary structure with like, and hydrophilic faces of secondary structure with like.

Once the structure has been generated, potential ligand binding regions are identified by the computer system. Three-dimensional structures for potential ligands are generated by entering amino acid or nucleotide sequences or chemical formulas of compounds, as described above. The three-dimensional structure of the potential ligand is then compared to that of the TC-ICS protein to identify ligands that bind to TC-ICS. Binding affinity between the protein and ligands is determined using energy terms to determine which ligands have an enhanced probability of binding to the protein. The results, such as three-dimensional structures for potential ligands and binding affinity of ligands, can also be saved to a computer readable form and is used for further analysis (*e.g.*, generating a three dimensional model of mutated proteins having an altered binding affinity for a ligand).

Computer systems are also used to screen for mutations, polymorphic variants, alleles and interspecies homologs of TC-ICS genes. Such mutations are associated with disease states or genetic traits. As described above, high density oligonucleotide arrays (GeneChip™) and related technology can also be used to screen for mutations, polymorphic variants, alleles and interspecies homologs. Once the variants are identified, diagnostic assays are used to identify patients having such mutated genes. Identification of the mutated TC-ICS genes involves receiving input of a first nucleic acid or amino acid sequence encoding selected from the group consisting of, *e.g.*, SEQ ID NOS: 1, 4 or 7, or SEQ ID NOS: 2, 5 or 8, and conservatively modified versions thereof. The sequence is entered into the computer system as described above and then saved to a computer readable form. The first nucleic acid or amino acid sequence is then compared to a second nucleic acid or amino acid sequence that has substantial identity to the first sequence. The second sequence is entered into the computer system in the manner

described above. Once the first and second sequences are compared, nucleotide or amino acid differences between the sequences are identified. Such sequences can represent allelic differences in TC-ICS genes, and mutations associated with disease states and genetic traits.

5

III. Isolation of the nucleic acid encoding TC-ICS

A. General recombinant DNA methods

This invention relies on routine techniques in the field of recombinant genetics. Basic texts disclosing the general methods of use in this invention include 10 Sambrook *et al.*, *Molecular Cloning, A Laboratory Manual* (2nd ed. 1989); Kriegler, *Gene Transfer and Expression: A Laboratory Manual* (1990); and *Current Protocols in Molecular Biology* (Ausubel *et al.*, eds., (1994)).

For nucleic acids, sizes are given in either kilobases (kb) or base pairs (bp). These are estimates derived from agarose or acrylamide gel electrophoresis, from 15 sequenced nucleic acids, or from published DNA sequences. For proteins, sizes are given in kilodaltons (kDa) or amino acid residue numbers. Proteins sizes are estimated from gel electrophoresis, from sequenced proteins, from derived amino acid sequences, or from published protein sequences.

Oligonucleotides that are not commercially available can be chemically 20 synthesized according to the solid phase phosphoramidite triester method first described by Beaucage & Caruthers, *Tetrahedron Letts.* 22:1859-1862 (1981), using an automated synthesizer, as described in Van Devanter *et. al.*, *Nucleic Acids Res.* 12:6159-6168 25 (1984). Purification of oligonucleotides is by either native acrylamide gel electrophoresis or by anion-exchange HPLC as described in Pearson & Reanier, *J. Chrom.* 255:137-149 (1983).

The sequence of the cloned genes and synthetic oligonucleotides can be verified after cloning using, *e.g.*, the chain termination method for sequencing double-stranded templates of Wallace *et al.*, *Gene* 16:21-26 (1981).

30 B. Cloning methods for the isolation of nucleotide sequences encoding TC- ICS

In general, the nucleic acid sequences encoding TC-ICS and related nucleic acid sequence homologs are cloned from cDNA and genomic DNA libraries by

hybridization with a probe, or isolated using amplification techniques with oligonucleotide primers. For example, TC-ICS sequences are typically isolated from mammalian nucleic acid (genomic or cDNA) libraries by hybridizing with a nucleic acid probe, the sequence of which can be derived from SEQ ID NOS: 1, 3, 4, 6, or 7. A 5 suitable tissue from which TC-ICS and cDNA can be isolated is tongue tissue, preferably taste bud tissue, more preferably individual taste cells. For example, circumvallate, foliate, fungiform taste receptor cells are used to isolate RNA and cDNA.

Amplification techniques using primers are also used to amplify and isolate TC-ICS from DNA or RNA (see, e.g., Dieffenbach & Dveksler, *PCR Primer: A 10 Laboratory Manual* (1995)). These primers are used, e.g., to amplify either the full length sequence or a probe of one to several hundred nucleotides, which is then used to screen a mammalian library for full-length TC-ICS.

Nucleic acids encoding TC-ICS can also be isolated from expression 15 libraries using antibodies as probes. Such polyclonal or monoclonal antibodies can be raised using the sequence of SEQ ID NO:2, SEQ ID NO:5, or SEQ ID NO:8.

TC-ICS polymorphic variants, alleles, and interspecies homologs that are substantially identical to TC-ICS are isolated using TC-ICS nucleic acid probes and oligonucleotides under stringent hybridization conditions, by screening libraries. Alternatively, expression libraries are used to clone TC-ICS and its polymorphic variants, 20 alleles, and interspecies homologs, by detecting expressed homologs immunologically with antisera or purified antibodies made against TC-ICS which also recognize and selectively bind to the TC-ICS homolog.

To make a cDNA library, one should choose a source that is rich in TC-ICS mRNA, e.g., tongue tissue, or isolated taste buds. The mRNA is then made into 25 cDNA using reverse transcriptase, ligated into a recombinant vector, and transfected into a recombinant host for propagation, screening and cloning. Methods for making and screening cDNA libraries are well known (see, e.g., Gubler & Hoffman, *Gene* 25:263-269 (1983); Sambrook *et al.*, *supra*; Ausubel *et al.*, *supra*).

For a genomic library, the DNA is extracted from the tissue and either 30 mechanically sheared or enzymatically digested to yield fragments of about 12-20 kb. The fragments are then separated by gradient centrifugation from undesired sizes and are constructed in bacteriophage lambda vectors. These vectors and phage are packaged *in vitro*. Recombinant phage are analyzed by plaque hybridization as described in Benton &

Davis, *Science* 196:180-182 (1977). Colony hybridization is carried out as generally described in Grunstein *et al.*, *Proc. Natl. Acad. Sci. USA.*, 72:3961-3965 (1975).

An alternative method of isolating TC-ICS nucleic acid and its homologs combines the use of synthetic oligonucleotide primers and amplification of an RNA or 5 DNA template (see U.S. Patents 4,683,195 and 4,683,202; *PCR Protocols: A Guide to Methods and Applications* (Innis *et al.*, eds, 1990)). Methods such as polymerase chain reaction (PCR) and ligase chain reaction (LCR) are used to amplify nucleic acid sequences of TC-ICS directly from mRNA, from cDNA, from genomic libraries or cDNA libraries. Degenerate oligonucleotides can be designed to amplify TC-ICS homologs 10 using the sequences provided herein. Restriction endonuclease sites can be incorporated into the primers. Polymerase chain reaction or other *in vitro* amplification methods may also be useful, for example, to clone nucleic acid sequences that code for proteins to be expressed, to make nucleic acids to use as probes for detecting the presence of TC-ICS encoding mRNA in physiological samples, for nucleic acid sequencing, or for other 15 purposes. Genes amplified by the PCR reaction can be purified from agarose gels and cloned into an appropriate vector.

Gene expression of TC-ICS can also be analyzed by techniques known in the art, e.g., reverse transcription and amplification of mRNA, isolation of total RNA or poly A⁺ RNA, northern blotting, dot blotting, *in situ* hybridization, RNase protection, and 20 the like. In one embodiment, high density oligonucleotide arrays technology (e.g., GeneChip™) is used to identify homologs and polymorphic variants of the TC-ICS of the invention (see, e.g., Gunthand *et al.*, *AIDS Res. Hum. Retroviruses* 14:869-876 (1998); Kozal *et al.*, *Nat. Med.* 2:753-759 (1996); Matson *et al.*, *Anal. Biochem.* 224:101-106 (1995); Lockhart *et al.*, *Nat. Biotechnol.* 14:1675-1680 (1996); Gingeras *et al.*, *Genome Res.* 8:435-448 (1998); Hacia *et al.*, *Nucleic Acids Res.* 26:3865-3866 (1998)). 25

Synthetic oligonucleotides are used to construct recombinant TC-ICS genes for use as probes or for expression of protein. This method is performed using a series of overlapping oligonucleotides usually 40-120 bp in length, representing both the sense and nonsense strands of the gene. These DNA fragments are then annealed, ligated 30 and cloned. Alternatively, amplification techniques are used with precise primers to amplify a specific subsequence of the TC-ICS nucleic acid. The specific subsequence is then ligated into an expression vector.

The nucleic acid encoding TC-ICS is typically cloned into intermediate vectors before transformation into prokaryotic or eukaryotic cells for replication and/or expression. These intermediate vectors are typically prokaryote vectors, *e.g.*, plasmids, or shuttle vectors.

5

C. Expression in prokaryotes and eukaryotes

To obtain high level expression of a cloned gene or nucleic acid, such as those cDNAs encoding TC-ICS, one typically subclones TC-ICS into an expression vector that contains a strong promoter to direct transcription, a transcription/translation 10 terminator, and if for a nucleic acid encoding a protein, a ribosome binding site for translational initiation. Suitable bacterial promoters are well known in the art and described, *e.g.*, in Sambrook *et al.* and Ausubel *et al.* Bacterial expression systems for expressing the TC-ICS proteins are available in, *e.g.*, *E. coli*, *Bacillus sp.*, and *Salmonella* (Palva *et al.*, *Gene* 22:229-235 (1983); Mosbach *et al.*, *Nature* 302:543-545 (1983)). Kits 15 for such expression systems are commercially available. Eukaryotic expression systems for mammalian cells, yeast, and insect cells are well known in the art and are also commercially available.

The promoter used to direct expression of a heterologous nucleic acid depends on the particular application. The promoter is preferably positioned about the 20 same distance from the heterologous transcription start site as it is from the transcription start site in its natural setting. As is known in the art, however, some variation in this distance can be accommodated without loss of promoter function.

In addition to the promoter, the expression vector typically contains a transcription unit or expression cassette that contains all the additional elements required 25 for the expression of the TC-ICS encoding nucleic acid in host cells. A typical expression cassette thus contains a promoter operably linked to the nucleic acid sequence encoding TC-ICS and signals required for efficient polyadenylation of the transcript, ribosome binding sites, and translation termination. The nucleic acid sequence encoding TC-ICS may typically be linked to a cleavable signal peptide sequence to promote secretion of the 30 encoded protein by the transformed cell. Such signal peptides would include, among others, the signal peptides from tissue plasminogen activator, insulin, and neuron growth factor, and juvenile hormone esterase of *Heliothis virescens*. Additional elements of the

cassette may include enhancers and, if genomic DNA is used as the structural gene, introns with functional splice donor and acceptor sites.

In addition to a promoter sequence, the expression cassette should also contain a transcription termination region downstream of the structural gene to provide for efficient termination. The termination region may be obtained from the same gene as the promoter sequence or may be obtained from different genes.

The particular expression vector used to transport the genetic information into the cell is not particularly critical. Any of the conventional vectors used for expression in eukaryotic or prokaryotic cells may be used. Standard bacterial expression vectors include plasmids such as pBR322 based plasmids, pSKF, pET23D, and fusion expression systems such as GST and LacZ. Epitope tags can also be added to recombinant proteins to provide convenient methods of isolation, *e.g.*, c-myc.

10 Expression vectors containing regulatory elements from eukaryotic viruses are typically used in eukaryotic expression vectors, *e.g.*, SV40 vectors, papilloma virus vectors, and vectors derived from Epstein-Barr virus. Other exemplary eukaryotic vectors include pMSG, pAV009/A⁺, pMTO10/A⁺, pMAMneo-5, baculovirus pDSVE, and any other vector allowing expression of proteins under the direction of the SV40 early promoter, SV40 later promoter, metallothionein promoter, murine mammary tumor virus promoter, Rous sarcoma virus promoter, polyhedrin promoter, or other promoters shown effective for expression in eukaryotic cells.

15 Some expression systems have markers that provide gene amplification such as thymidine kinase, hygromycin B phosphotransferase, and dihydrofolate reductase. Alternatively, high yield expression systems not involving gene amplification are also suitable, such as using a baculovirus vector in insect cells, with a TC-ICS encoding sequence under the direction of the polyhedrin promoter or other strong baculovirus promoters.

20 The elements that are typically included in expression vectors also include a replicon that functions in *E. coli*, a gene encoding antibiotic resistance to permit selection of bacteria that harbor recombinant plasmids, and unique restriction sites in nonessential regions of the plasmid to allow insertion of eukaryotic sequences. The particular antibiotic resistance gene chosen is not critical, any of the many resistance genes known in the art are suitable. The prokaryotic sequences are preferably chosen

such that they do not interfere with the replication of the DNA in eukaryotic cells, if necessary.

Standard transfection methods are used to produce bacterial, mammalian, yeast or insect cell lines that express large quantities of TC-ICS, which are then purified using standard techniques (see, e.g., Colley *et al.*, *J. Biol. Chem.* 264:17619-17622 (1989); *Guide to Protein Purification*, in *Methods in Enzymology*, vol. 182 (Deutscher, ed., 1990)). Transformation of eukaryotic and prokaryotic cells are performed according to standard techniques (see, e.g., Morrison, *J. Bact.* 132:349-351 (1977); Clark-Curtiss & Curtiss, *Methods in Enzymology* 101:347-362 (Wu *et al.*, eds, 1983)).

Any of the well known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, polybrene, protoplast fusion, electroporation, liposomes, microinjection, plasma vectors, viral vectors and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Sambrook *et al.*, *supra*). It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at least one gene into the host cell capable of expressing TC-ICS.

After the expression vector is introduced into the cells, the transfected cells are cultured under conditions favoring expression of TC-ICS, which is recovered from the culture using standard techniques identified below.

IV. Purification of TC-ICS

Either naturally occurring or recombinant TC-ICS can be purified for use in functional assays. Preferably, recombinant TC-ICS is purified. Naturally occurring TC-ICS is purified, e.g., from mammalian tissue such as tongue tissue, and any other source of a TC-ICS homolog. Recombinant TC-ICS is purified from any suitable expression system.

TC-ICS may be purified to substantial purity by standard techniques, including selective precipitation with such substances as ammonium sulfate; column chromatography, immunopurification methods, and others (see, e.g., Scopes, *Protein Purification: Principles and Practice* (1982); U.S. Patent No. 4,673,641; Ausubel *et al.*, *supra*; and Sambrook *et al.*, *supra*).

A number of procedures can be employed when recombinant TC-ICS is being purified. For example, proteins having established molecular adhesion properties can be reversible fused to TC-ICS. With the appropriate ligand, TC-ICS can be selectively adsorbed to a purification column and then freed from the column in a relatively pure form. The fused protein is then removed by enzymatic activity. Finally TC-ICS could be purified using immunoaffinity columns.

A. Purification of TC-ICS from recombinant bacteria

Recombinant proteins are expressed by transformed bacteria in large amounts, typically after promoter induction; but expression can be constitutive. Promoter induction with IPTG is a one example of an inducible promoter system. Bacteria are grown according to standard procedures in the art. Fresh or frozen bacteria cells are used for isolation of protein.

Proteins expressed in bacteria may form insoluble aggregates ("inclusion bodies"). Several protocols are suitable for purification of TC-ICS inclusion bodies. For example, purification of inclusion bodies typically involves the extraction, separation and/or purification of inclusion bodies by disruption of bacterial cells, *e.g.*, by incubation in a buffer of 50 mM TRIS/HCL pH 7.5, 50 mM NaCl, 5 mM MgCl₂, 1 mM DTT, 0.1 mM ATP, and 1 mM PMSF. The cell suspension can be lysed using 2-3 passages through a French Press, homogenized using a Polytron (Brinkman Instruments) or sonicated on ice. Alternate methods of lysing bacteria are apparent to those of skill in the art (*see, e.g.*, Sambrook *et al.*, *supra*; Ausubel *et al.*, *supra*).

If necessary, the inclusion bodies are solubilized, and the lysed cell suspension is typically centrifuged to remove unwanted insoluble matter. Proteins that formed the inclusion bodies may be renatured by dilution or dialysis with a compatible buffer. Suitable solvents include, but are not limited to urea (from about 4 M to about 8 M), formamide (at least about 80%, volume/volume basis), and guanidine hydrochloride (from about 4 M to about 8 M). Some solvents which are capable of solubilizing aggregate-forming-proteins, for example SDS (sodium dodecyl sulfate), 70% formic acid, are inappropriate for use in this procedure due to the possibility of irreversible denaturation of the proteins, accompanied by a lack of immunogenicity and/or activity. Although guanidine hydrochloride and similar agents are denaturants, this denaturation is not irreversible and renaturation may occur upon removal (by dialysis, for example) or

dilution of the denaturant, allowing re-formation of immunologically and/or biologically active protein. Other suitable buffers are known to those skilled in the art. TC-ICS is separated from other bacterial proteins by standard separation techniques, *e.g.*, with Ni-NTA agarose resin.

- 5 Alternatively, it is possible to purify TC-ICS from bacteria periplasm. After lysis of the bacteria, when TC-ICS is exported into the periplasm of the bacteria, the periplasmic fraction of the bacteria can be isolated by cold osmotic shock in addition to other methods known to skill in the art. To isolate recombinant proteins from the periplasm, the bacterial cells are centrifuged to form a pellet. The pellet is resuspended in
10 a buffer containing 20% sucrose. To lyse the cells, the bacteria are centrifuged and the pellet is resuspended in ice-cold 5 mM MgSO₄ and kept in an ice bath for approximately 10 minutes. The cell suspension is centrifuged and the supernatant decanted and saved. The recombinant proteins present in the supernatant can be separated from the host proteins by standard separation techniques well known to those of skill in the art.

15

B. Standard protein separation techniques for purifying TC-ICS

Solubility fractionation

- Often as an initial step, particularly if the protein mixture is complex, an initial salt fractionation can separate many of the unwanted host cell proteins (or proteins derived from the cell culture media) from the recombinant protein of interest. The preferred salt is ammonium sulfate. Ammonium sulfate precipitates proteins by effectively reducing the amount of water in the protein mixture. Proteins then precipitate on the basis of their solubility. The more hydrophobic a protein is, the more likely it is to precipitate at lower ammonium sulfate concentrations. A typical protocol includes adding
20 saturated ammonium sulfate to a protein solution so that the resultant ammonium sulfate concentration is between 20-30%. This concentration will precipitate the most hydrophobic of proteins. The precipitate is then discarded (unless the protein of interest is hydrophobic) and ammonium sulfate is added to the supernatant to a concentration known to precipitate the protein of interest. The precipitate is then solubilized in buffer
25 and the excess salt removed if necessary, either through dialysis or diafiltration. Other methods that rely on solubility of proteins, such as cold ethanol precipitation, are well known to those of skill in the art and can be used to fractionate complex protein mixtures.
30

Size differential filtration

The molecular weight of TC-ICS are used to isolate them from proteins of greater and lesser size using ultrafiltration through membranes of different pore size (for example, Amicon or Millipore membranes). As a first step, the protein mixture is

5 ultrafiltered through a membrane with a pore size that has a lower molecular weight cut-off than the molecular weight of the protein of interest. The retentate of the ultrafiltration is then ultrafiltered against a membrane with a molecular cut off greater than the molecular weight of the protein of interest. The recombinant protein will pass through the membrane into the filtrate. The filtrate can then be chromatographed as described

10 below.

Column chromatography

TC-ICS can also be separated from other proteins on the basis of its size, net surface charge, hydrophobicity, and affinity for ligands. In addition, antibodies raised against proteins can be conjugated to column matrices and the proteins immunopurified. All of these methods are well known in the art. It will be apparent to one of skill that chromatographic techniques are performed at any scale and using equipment from many different manufacturers (*e.g.*, Pharmacia Biotech).

20 **V. Immunological detection of TC-ICS**

In addition to the detection of TC-ICS genes and gene expression using nucleic acid hybridization technology, one can also use immunoassays to detect TC-ICS, *e.g.*, to identify taste receptor cells and variants of TC-ICS. Immunoassays can be used to qualitatively or quantitatively analyze TC-ICS. A general overview of the applicable technology can be found in Harlow & Lane, *Antibodies: A Laboratory Manual* (1988).

A. Antibodies to TC-ICS

Methods of producing polyclonal and monoclonal antibodies that react specifically with TC-ICS are known to those of skill in the art (*see, e.g.*, Coligan, *Current Protocols in Immunology* (1991); Harlow & Lane, *supra*; Goding, *Monoclonal Antibodies: Principles and Practice* (2d ed. 1986); and Kohler & Milstein, *Nature* 256:495-497 (1975)). Such techniques include antibody preparation by selection of antibodies from libraries of recombinant antibodies in phage or similar vectors, as well as

preparation of polyclonal and monoclonal antibodies by immunizing rabbits or mice (*see, e.g.*, Huse *et al.*, *Science* 246:1275-1281 (1989); Ward *et al.*, *Nature* 341:544-546 (1989)).

A number of TC-ICS-comprising immunogens may be used to produce
5 antibodies specifically reactive with TC-ICS. For example, recombinant TC-ICS or an antigenic fragment thereof, is isolated as described herein. Recombinant protein are expressed in eukaryotic or prokaryotic cells as described above, and purified as generally described above. Recombinant protein is the preferred immunogen for the production of monoclonal or polyclonal antibodies. Alternatively, a synthetic peptide derived from the
10 sequences disclosed herein and conjugated to a carrier protein can be used as an immunogen. Naturally occurring TS-ICS may also be used either in pure or impure form. The product is then injected into an animal capable of producing antibodies. Either monoclonal or polyclonal antibodies are generated, for subsequent use in immunoassays to measure the protein.

15 Methods of production of polyclonal antibodies are known to those of skill in the art. An inbred strain of mice (*e.g.*, BALB/C mice) or rabbits is immunized with the protein using a standard adjuvant, such as Freund's adjuvant, and a standard immunization protocol. The animal's immune response to the immunogen preparation is monitored by taking test bleeds and determining the titer of reactivity to TC-ICS. When
20 appropriately high titers of antibody to the immunogen are obtained, blood is collected from the animal and antisera are prepared. Further fractionation of the antisera to enrich for antibodies reactive to the protein can be done if desired (*see* Harlow & Lane, *supra*).

Monoclonal antibodies may be obtained by various techniques familiar to those skilled in the art. Briefly, spleen cells from an animal immunized with a desired
25 antigen are immortalized, commonly by fusion with a myeloma cell (*see* Kohler & Milstein, *Eur. J. Immunol.* 6:511-519 (1976)). Alternative methods of immortalization include transformation with Epstein Barr Virus, oncogenes, or retroviruses, or other methods well known in the art. Colonies arising from single immortalized cells are screened for production of antibodies of the desired specificity and affinity for the
30 antigen, and yield of the monoclonal antibodies produced by such cells may be enhanced by various techniques, including injection into the peritoneal cavity of a vertebrate host. Alternatively, one may isolate DNA sequences which encode a monoclonal antibody or a

binding fragment thereof by screening a DNA library from human B cells according to the general protocol outlined by Huse *et al.*, *Science* 246:1275-1281 (1989).

Monoclonal antibodies and polyclonal sera are collected and titered against the immunogen protein in an immunoassay, for example, a solid phase immunoassay with the immunogen immobilized on a solid support. Typically, polyclonal antisera with a titer of 10^4 or greater are selected and tested for their cross reactivity against non-TC-ICS proteins or even other related proteins from other organisms, using a competitive binding immunoassay. Specific polyclonal antisera and monoclonal antibodies will usually bind with a K_d of at least about 0.1 mM, more usually at least about 1 μ M, preferably at least about 0.1 μ M or better, and most preferably, 0.01 μ M or better.

Once TC-ICS specific antibodies are available, TC-ICS are detected by a variety of immunoassay methods. For a review of immunological and immunoassay procedures, *see Basic and Clinical Immunology* (Stites & Terr eds., 7th ed. 1991).

Moreover, the immunoassays of the present invention are performed in any of several configurations, which are reviewed extensively in *Enzyme Immunoassay* (Maggio, ed., 1980); and Harlow & Lane, *supra*.

B. Immunological binding assays

TC-ICS are detected and/or quantified using any of a number of well recognized immunological binding assays (*see, e.g.*, U.S. Patents 4,366,241; 4,376,110; 4,517,288; and 4,837,168). For a review of the general immunoassays, *see also, Methods in Cell Biology: Antibodies in Cell Biology*, volume 37 (Asai, ed. 1993); *Basic and Clinical Immunology* (Stites & Terr, eds., 7th ed. 1991). Immunological binding assays (or immunoassays) typically use an antibody that specifically binds to a protein or antigen of choice (in this case the TC-ICS or antigenic subsequence thereof). The antibody (*e.g.*, anti-TC-ICS) may be produced by any of a number of means well known to those of skill in the art and as described above.

Immunoassays also often use a labeling agent to specifically bind to and label the complex formed by the antibody and antigen. The labeling agent may itself be one of the moieties comprising the antibody/antigen complex. Thus, the labeling agent may be a labeled polypeptide of TC-ICS or a labeled anti-TC-ICS antibody.

Alternatively, the labeling agent may be a third moiety, such a secondary antibody, that

specifically binds to the antibody/TC-ICS complex (a secondary antibody is typically specific to antibodies of the species from which the first antibody is derived). Other proteins capable of specifically binding immunoglobulin constant regions, such as protein A or protein G may also be used as the label agent. These proteins exhibit a strong non-immunogenic reactivity with immunoglobulin constant regions from a variety of species (see, e.g., Kronval *et al.*, *J. Immunol.* 111:1401-1406 (1973); Akerstrom *et al.*, *J. Immunol.* 135:2539-2542 (1985)). The labeling agent can be modified with a detectable moiety, such as biotin, to which another molecule can specifically bind, such as streptavidin. A variety of detectable moieties are well known to those skilled in the art.

Throughout the assays, incubation and/or washing steps may be required after each combination of reagents. Incubation steps can vary from about 5 seconds to several hours, preferably from about 5 minutes to about 24 hours. However, the incubation time will depend upon the assay format, antigen, volume of solution, concentrations, and the like. Usually, the assays will be carried out at ambient temperature, although they can be conducted over a range of temperatures, such as 10°C to 40°C.

Non-competitive assay formats

Immunoassays for detecting TC-ICS in samples may be either competitive or noncompetitive. Noncompetitive immunoassays are assays in which the amount of antigen is directly measured. In one preferred "sandwich" assay, for example, the anti-TC-ICS antibodies can be bound directly to a solid substrate on which they are immobilized. These immobilized antibodies then capture TC-ICS present in the test sample. TC-ICS is thus immobilized and then bound by a labeling agent, such as a second TC-ICS antibody bearing a label. Alternatively, the second antibody may lack a label, but it may, in turn, be bound by a labeled third antibody specific to antibodies of the species from which the second antibody is derived. The second or third antibody is typically modified with a detectable moiety, such as biotin, to which another molecule specifically binds, e.g., streptavidin, to provide a detectable moiety.

Competitive assay formats

In competitive assays, the amount of TC-ICS present in the sample is measured indirectly by measuring the amount of a known, added (exogenous) TC-ICS displaced (competed away) from an anti-TC-ICS antibody by the unknown TC-ICS present in a sample. In one competitive assay, a known amount of TC-ICS is added to a sample and the sample is then contacted with an antibody that specifically binds to TC-ICS. The amount of exogenous TC-ICS bound to the antibody is inversely proportional to the concentration of TC-ICS present in the sample. In a particularly preferred embodiment, the antibody is immobilized on a solid substrate. The amount of TC-ICS bound to the antibody may be determined either by measuring the amount of TC-ICS present in a TC-ICS/antibody complex, or alternatively by measuring the amount of remaining uncomplexed protein. The amount of TC-ICS may be detected by providing a labeled TC-ICS molecule.

A hapten inhibition assay is another preferred competitive assay. In this assay the known TC-ICS is immobilized on a solid substrate. A known amount of anti-TC-ICS antibody is added to the sample, and the sample is then contacted with the immobilized TC-ICS. The amount of anti-TC-ICS antibody bound to the known immobilized TC-ICS is inversely proportional to the amount of TC-ICS present in the sample. Again, the amount of immobilized antibody may be detected by detecting either the immobilized fraction of antibody or the fraction of the antibody that remains in solution. Detection may be direct where the antibody is labeled or indirect by the subsequent addition of a labeled moiety that specifically binds to the antibody as described above.

25 Cross-reactivity determinations

Immunoassays in the competitive binding format can also be used for cross-reactivity determinations. For example, a protein at least partially encoded by SEQ ID NO:2, SEQ ID NO:5, or SEQ ID NO:8 can be immobilized to a solid support. Proteins (*e.g.*, TC-ICS proteins and homologs) are added to the assay that compete for binding of the antisera to the immobilized antigen. The ability of the added proteins to compete for binding of the antisera to the immobilized protein is compared to the ability of TC-ICS encoded by SEQ ID NOS: 1, 3, 4, 6 or 7 to compete with itself. The percent cross-reactivity for the above proteins is calculated, using standard calculations. Those

antisera with less than 10% cross-reactivity with each of the added proteins listed above are selected and pooled. The cross-reacting antibodies are optionally removed from the pooled antisera by immunoabsorption with the added considered proteins, *e.g.*, distantly related homologs.

- 5 The immunoabsorbed and pooled antisera are then used in a competitive binding immunoassay as described above to compare a second protein, thought to be perhaps an allele or polymorphic variant of TC-ICS to the immunogen protein (*i.e.*, TC-ICS of SEQ ID NO:2, SEQ ID NO:5, or SEQ ID NO:8). In order to make this comparison, the two proteins are each assayed at a wide range of concentrations and the
10 amount of each protein required to inhibit 50% of the binding of the antisera to the immobilized protein is determined. If the amount of the second protein required to inhibit 50% of binding is less than 10 times the amount of the protein encoded by SEQ ID NO:2, SEQ ID NO:5, or SEQ ID NO:8 that is required to inhibit 50% of binding, then the second protein is said to specifically bind to the polyclonal antibodies generated to a TC-
15 ICS immunogen.

Other assay formats

- Western blot (immunoblot) analysis is used to detect and quantify the presence of TC-ICS in the sample. The technique generally comprises separating sample
20 proteins by gel electrophoresis on the basis of molecular weight, transferring the separated proteins to a suitable solid support, (such as a nitrocellulose filter, a nylon filter, or derivatized nylon filter), and incubating the sample with the antibodies that specifically bind TC-ICS. The anti-TC-ICS antibodies specifically bind to the TC-ICS on the solid support. These antibodies may be directly labeled or alternatively may be subsequently
25 detected using labeled antibodies (*e.g.*, labeled sheep anti-mouse antibodies) that specifically bind to the anti-TC-ICS antibodies.

- Other assay formats include liposome immunoassays (LIA), which use liposomes designed to bind specific molecules (*e.g.*, antibodies) and release encapsulated reagents or markers. The released chemicals are then detected according to standard
30 techniques (*see Monroe et al., Amer. Clin. Prod. Rev. 5:34-41 (1986)*).

Reduction of non-specific binding

One of skill in the art will appreciate that it is often desirable to minimize non-specific binding in immunoassays. Particularly, where the assay involves an antigen or antibody immobilized on a solid substrate it is desirable to minimize the amount of
5 non-specific binding to the substrate. Means of reducing such non-specific binding are well known to those of skill in the art. Typically, this technique involves coating the substrate with a proteinaceous composition. In particular, protein compositions such as bovine serum albumin (BSA), nonfat powdered milk, and gelatin are widely used with powdered milk being most preferred.

10

Labels

The particular label or detectable group used in the assay is not a critical aspect of the invention, as long as it does not significantly interfere with the specific binding of the antibody used in the assay. The detectable group can be any material
15 having a detectable physical or chemical property. Such detectable labels have been well-developed in the field of immunoassays and, in general, most any label useful in such methods can be applied to the present invention. Thus, a label is any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means. Useful labels in the present invention include magnetic beads
20 (e.g., DYNABEADSTM), fluorescent dyes (e.g., fluorescein isothiocyanate, Texas red, rhodamine, and the like), radiolabels (e.g., ³H, ¹²⁵I, ³⁵S, ¹⁴C, or ³²P), enzymes (e.g., horse radish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and colorimetric labels such as colloidal gold or colored glass or plastic beads (e.g., polystyrene, polypropylene, latex, etc.).

25

The label may be coupled directly or indirectly to the desired component of the assay according to methods well known in the art. As indicated above, a wide variety of labels may be used, with the choice of label depending on sensitivity required, ease of conjugation with the compound, stability requirements, available instrumentation, and disposal provisions.

30

Non-radioactive labels are often attached by indirect means. Generally, a ligand molecule (e.g., biotin) is covalently bound to the molecule. The ligand then binds to another molecules (e.g., streptavidin) molecule, which is either inherently detectable or covalently bound to a signal system, such as a detectable enzyme, a fluorescent

compound, or a chemiluminescent compound. The ligands and their targets can be used in any suitable combination with antibodies that recognize TC-ICS, or secondary antibodies that recognize anti-TC-ICS.

The molecules can also be conjugated directly to signal generating compounds, *e.g.*, by conjugation with an enzyme or fluorophore. Enzymes of interest as labels will primarily be hydrolases, particularly phosphatases, esterases and glycosidases, or oxidotases, particularly peroxidases. Fluorescent compounds include fluorescein and its derivatives, rhodamine and its derivatives, dansyl, umbelliferone, etc. Chemiluminescent compounds include luciferin, and 2,3-dihydrophthalazinediones, *e.g.*, luminol. For a review of various labeling or signal producing systems that may be used, see U.S. Patent No. 4,391,904.

Means of detecting labels are well known to those of skill in the art. Thus, for example, where the label is a radioactive label, means for detection include a scintillation counter or photographic film as in autoradiography. Where the label is a fluorescent label, it may be detected by exciting the fluorochrome with the appropriate wavelength of light and detecting the resulting fluorescence. The fluorescence may be detected visually, by means of photographic film, by the use of electronic detectors such as charge coupled devices (CCDs) or photomultipliers and the like. Similarly, enzymatic labels may be detected by providing the appropriate substrates for the enzyme and detecting the resulting reaction product. Finally simple colorimetric labels may be detected simply by observing the color associated with the label. Thus, in various dipstick assays, conjugated gold often appears pink, while various conjugated beads appear the color of the bead.

Some assay formats do not require the use of labeled components. For instance, agglutination assays can be used to detect the presence of the target antibodies. In this case, antigen-coated particles are agglutinated by samples comprising the target antibodies. In this format, none of the components need be labeled and the presence of the target antibody is detected by simple visual inspection.

30 VI. Kits

TC-ICS and its homologs are a useful tool for identifying taste receptor cells, for forensics and paternity determinations, and for examining taste transduction (*e.g.*, generating a topographical map between the taste cells of the tongue and the

corresponding taste centers in the brain). Specific reagents that specifically hybridize to TC-ICS nucleic acid, such as its probes and primers, and specific reagents that specifically bind to the TC-ICS protein, *e.g.*, their antibodies are used to examine taste cell expression and taste transduction regulation.

5 Nucleic acid assays for the presence of TC-ICS DNA and RNA in a sample include numerous techniques known to those skilled in the art, such as Southern analysis, northern analysis, dot blots, RNase protection, high density oligonucleotide arrays, S1 analysis, amplification techniques such as PCR and LCR, and *in situ* hybridization. In *in situ* hybridization, for example, the target nucleic acid is
10 liberated from its cellular surroundings in such as to be available for hybridization within the cell while preserving the cellular morphology for subsequent interpretation and analysis (see Example I). The following articles provide an overview of the art of *in situ* hybridization: Singer *et al.*, *Biotechniques* 4:230-250 (1986); Haase *et al.*, *Methods in Virology*, vol. VII, pp. 189-226 (1984); and *Nucleic Acid Hybridization: A Practical Approach* (Hames *et al.*, eds. 1987). In addition, TC-ICS protein can be detected with the various immunoassay techniques described above. The test sample is typically compared to both a positive control (*e.g.*, a sample expressing recombinant TC-ICS) and a negative control.
15

20 The present invention also provides for kits for screening for modulators of TC-ICS. Such kits can be prepared from readily available materials and reagents. For example, such kits can comprise any one or more of the following materials: TC-ICS, reaction tubes, and instructions for testing TC-ICS activity. Preferably, the kit contains biologically active TC-ICS. A wide variety of kits and components can be prepared according to the present invention, depending upon the intended user of the kit and the
25 particular needs of the user.

VII. Administration and pharmaceutical compositions

Taste modulators can be administered directly to the mammalian subject for modulation of taste *in vivo*. Administration is by any of the routes normally used for
30 introducing a modulator compound into ultimate contact with the tissue to be treated, preferably the tongue or mouth. The taste modulators are administered in any suitable manner, preferably with pharmaceutically acceptable carriers. Suitable methods of administering such modulators are available and well known to those of skill in the art,

and, although more than one route can be used to administer a particular composition, a particular route can often provide a more immediate and more effective reaction than another route.

Pharmaceutically acceptable carriers are determined in part by the 5 particular composition being administered, as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of pharmaceutical compositions of the present invention (*see, e.g., Remington's Pharmaceutical Sciences*, 17th ed. 1985)).

The taste modulators, alone or in combination with other suitable 10 components, can be made into aerosol formulations (*i.e.*, they can be "nebulized") to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.

Formulations suitable for administration include aqueous and non-aqueous 15 solutions, isotonic sterile solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. In the practice of this invention, compositions can be administered, for example, by orally, topically, intravenously, intraperitoneally, 20 intravesically or intrathecally. Preferably, the compositions are administered orally or nasally. The formulations of compounds can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials. Solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described. The modulators can also be administered as part a of prepared food or drug.

The dose administered to a patient, in the context of the present invention 25 should be sufficient to effect a beneficial response in the subject over time. The dose will be determined by the efficacy of the particular taste modulators employed and the condition of the subject, as well as the body weight or surface area of the area to be treated. The size of the dose also will be determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of a particular compound 30 or vector in a particular subject.

In determining the effective amount of the modulator to be administered in a physician may evaluate circulating plasma levels of the modulator, modulator toxicities,

and the production of anti-modulator antibodies. In general, the dose equivalent of a modulator is from about 1 ng/kg to 10 mg/kg for a typical subject.

For administration, taste modulators of the present invention can be administered at a rate determined by the LD-50 of the modulator, and the side-effects of the inhibitor at various concentrations, as applied to the mass and overall health of the subject. Administration can be accomplished via single or divided doses.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to one of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

EXAMPLES

The following examples are provided by way of illustration only and not by way of limitation. Those of skill in the art will readily recognize a variety of noncritical parameters that could be changed or modified to yield essentially similar results.

Example I: Taste cell specific expression of TC-ICS and cloning

Taste bud isolation:
Subtraction libraries made from rat circumvallate cells were used to isolate the TC-ICS nucleic acids of the invention. Briefly, single taste receptor cells were isolated from dissociated circumvallate papillae from the rat tongue as generally described by Bernhardt *et al.*, *J. Physiol. (Lond)*, **490**, 325-336 (1996). Amplified single cell cDNA was Southern and dot-blotted and probed with radiolabeled probes to identify potentially similar cell types. Gustducin, a G-protein specifically expressed in a subset of taste receptor cells was chosen as a marker for taste cells (McLaughlin *et al.*, *Nature*

357:563-569 (1992)). Tubulin and N-Cam were chosen to confirm the integrity of the cells and validate the amplification reactions. Bacteriophage lambda cDNA libraries were then constructed from individual Gustducin positive cells and were plated at low density on LB/Agar plates.

5

Subtraction and library generation:

Total RNA was extracted from circumvallate papillae using standard procedures(Trizol method; GibcoBRL); approximately 2 µg of Poly A+ RNA were purified using Qiagen's Oligotex mRNA Kit and used to prime cDNA synthesis following standard protocols. Samples were stored in media containing RNase inhibitors to prevent degradation of mRNA.

10 Suppression subtraction was performed according to Clontech's PCR-Select cDNA Subtraction protocol using circumvallate cDNA as tester and non-taste cDNA prepared from non-taste lingual tissue as driver. The efficiency of the subtraction procedure was monitored by probing the subtracted product with two known taste-specific genes (Lunch and Repeater); both of these genes were enriched greater than 50 – fold in the subtracted cDNA compared to the unsubtracted circumvallate cDNA.

Sequence analysis and in situ hybridization:

20 Subtracted cDNAs were cloned into pBluescript-based plasmid vectors to generate a subtracted cDNA library. 930 clones from the subtracted library were then chosen for sequence analysis. DNA sequences were mined using Blast searches against nucleotide and protein databases (<http://www.ncbi.nlm.nih.gov/BLAST/>). All sequences were also analyzed for the presence of potential transmembrane segments
25 (<http://dot.imgen.bcm.tmc.edu:9331/seq-search/struc-predict.html>). cDNAs encoding novel sequences were used in *in situ* hybridizations to tongue tissue sections to examine taste cell expression.

Results

30 Clone 501-PCR46 showed selective expression in subsets of taste receptor cells of circumvallate and fungiform papillae. This clone was chosen for detailed characterization, including full-length cDNA isolation and sequencing. The results show

that Clone 501-PCR46 represents a mRNA specifically expressed in circumvallate, foliate and fungiform taste receptor cells . This is a relatively rare cDNA found in approximately 1/100,000 cDNAs from an oligo-dT primed circumvallate cDNA library (Hoon *et al.*), *Cell* 96: 541-51(1999) and in approximately 1 /300 cDNAs in our subtracted library. The cDNA sequence from clone 501-PCR46 is shown in SEQ ID NO:1 and the predicted amino acid is in SEQ ID NO:2. The corresponding *in situ* hybridization to a tissue section demonstrating taste cell specificity is shown in Figure 1.

Clone 501-PCR46 encodes a novel member of the TRP family of ion channels (Harteneck *et al.*, “*From worm to man: three subfamilies of TRP channels,*” *Trends Neurosci.* 23(4):159-66(2000)). A related gene known as Mtr1 was previously reported to be associated with chromosomal imprinting (Enklaar *et al.* “*Mtr1, a novel biallelically expressed gene in the center of the mouse distal chromosome 7 imprinting cluster, is a member of the Trp gene family,*” *Genomics.* 67(2):179-87; Esswein *et al.*, 2000)), and a chromosomal interval implicated in the Beckwith-Wiedemann syndrome region on human 11p15.5 (Yatsuki *et al.* “*Sequence-based structural features between Kvlqt1 and Tapa1 on mouse chromosome 7F4/F5 corresponding to the Beckwith-Wiedemann syndrome region on human 11p15.5: long-stretches of unusually well conserved intronic sequences of kvlqt1 between mouse and human.*” *DNA Res.* 7(3):195-206 (2000); Paulsen *et al.*, “*Sequence conservation and variability of imprinting in the Beckwith-Wiedemann syndrome gene cluster in human and mouse,*” *Hum Mol Genet.* 9(12):1829-41 (2000)). However, no function, cell-type specific expression, or role had been assigned to this “orphan” ion channel. Clone 501-PCR46 appears to be a splice variant of Mtr1 (aka LTRPC5; Paulsen *et al.*, 2000), and is a component of the taste signaling machinery.

25

Example II: Functional Analyses of TC-ICS proteins expressed in a heterologous cell

TC-ICS encoding nucleic acids (e.g., SEQ ID NO:1, SEQ ID NO:4 or SEQ ID NO:7) are expressed in a heterologous cell, alone or with other cell transduction proteins such as a G-protein α subunit and/ or a taste cell specific G-protein coupled receptor such as GPCR-B3, GPCR-B4 (*see U.S.S.N. 60/094,465 filed July 28, 1998 for the description of GPCR-B3 and U.S.S.N. 60/095,464 filed July 28, 1998 and 60/112,747 filed December 17, 1998 for the description of GPCR-B4*), $\text{G}\alpha 14$ or $\text{G}\alpha 15$ (Wilkie *et al.*,

PNAS USA 88:10049-10053 (1991)). These transformed cells are used to screen for activators, inhibitors, and modulators of TC-ICS, including modulators of its interaction with GPCRs or G-proteins. Different assays for ion channel mediated functions are performed as generally described above and in PCT 99/06307, incorporated by reference

5 herein.

In particular, modulation of taste transduction is assayed by measuring changes in intracellular Ca^{2+} levels, which change in response to modulation of the TC-ICS signal transduction pathway via administration of a molecule that associates with TC-ICS. Changes in Ca^{2+} levels are preferably measured using fluorescent Ca^{2+} indicator dyes and fluorometric imaging. The amount of $[\text{Ca}^{2+}]_i$ is then compared to the amount of $[\text{Ca}^{2+}]_i$ in either the same cell in the absence of the test compound, or it may be compared to the amount of $[\text{Ca}^{2+}]_i$ in a substantially identical cell that lacks TC-ICS.

10

SEQUENCE LISTING

SEQ ID NO:1

Rat L-TRP taste cDNA sequence

CAAAAGCCTCTGGAGAGCTGTGTCGAGGGTGTGGAATCCAGATGCCCGG
5 AGTCGAAAAGTCACAATGCCATGGCCCAGAGCTCTGTCCTGGAAAGCC
CCCCAGATACTGGGGATGGATGGAGCCAGTCCTATGCAAGGGAGAGGTC
AACTTCGGAGGGTCTGGAAAAAGCGAAGCAAGTTGTGAAGGTGCCAAG
CAATGTGGCCCCCTCCATGCTCTTGAACTCCTGCTCACCGAGTGGCACC
TGCCAGCCCCAACCTGGTGGTGTCCCTGGTGGCGAGGAACGGCTTTT
10 GCTATGAAGTCCTGGCTTCGGATGTCTTGCACAGGGCTGGTAAAGC
AGCTCAGAGCACAGGTGCCTGGATCCTGACCAAGTGCCTCCATGTGGCC
TGGCACGCCATGTGGACAGGCTGTACGTGATCACTCTGGCTAGCACG
TCCACCAAGGTCCGTGTGGGCCATCGGAATGGCCTCTGGACCGAAT
CCTTCACCGCCAACCTCTAGATGGTGTCCAGGAGGACTCCATCCACT
15 ACCCAGCAGATGAGGGCAGCACTCAGGGACCCCTGCCCTGGACAGC
AATCTCTCCCACCTCATCCTCGTGGAGCCAGGCACCTTGGAGTGGAA
CGACGGACTGGCAGAGCTGCAGCTGAGCCTGGAGAAGCACATCTCAGC
AGAGGACAGGTTATGGGGTACCAAGCAGCATCCAGATACTGTCCCTTGC
TTGCTAGTCAATGGTACCCAGCACCTAGAGAGGATGTCCAGGGCAGT
20 GGAGCAGGCTGCCCATGGCTGATCCTGGCAGGTCTGGGGCATTGCTG
ATGTACTCGCTGCCCTGGTGGGCCAGCCTCATCTCCTGGTCCCCAGGTG
ACCGAGAACGAGTCAGAGAGAAATTCCAAGCGAGTGTTCCTTGGGA
AGCCATTGTACACTGGACAGAGCTGCTACAGAACATTGCTGCACACCCCC
ACCTGCTCACAGTGTACGACTTGGAGCAGGAGGGTCCGAGGACCTGGAC
25 ACCGTATCCTCAAGGCACITGTGAAAGCCTGCAAGAGTCACAGCCGAGA
CGCACAAAGACTACCTAGATGAGCTCAAGTTAGCAGTGGCCTGGATCGCG
TGGACATTCCAAGAGTGAATCTCAATGGGACGTGGAGTGGAAAGTCC
TGTGACTTGGAAAGAGGTGATGACAGATGCCCTAGTGAGCAACAAGCCTGA
CTTCGTGCGCCTTTGTGGACAGTGGTGTGACATGGCCGAGTTCTI+A
30 CCTATGGCGGCTGCAGCAGCTTACCACTCTGTGTCCTTCAAGAGCCTC
CTCTTGAACTGCTGGAGCGTAAGCATGAGGAGGGTGGCTGACACTGGC
TGGCCTGGGTGCCAGCAGACCCGGAAGCTGCCGTTGGTCTGCCTGCCT
TTTCACTCCATGAGGTCTCCGAGTTCTCAAAGATTCTGCATGACGCC

TGCCGTGGCTTCTACCAGGATGGCGCAGGATGGAGAAGAGAGGGCCACC
 CAAGCGGCCCTGCAGGCCAGAAATGGCTGCCGGACCTCAGTCGGAAGAGTG
 AAGACCCATGGAGGGACCTGTTCCCTTGGGCTGTGCTGCAGAACCGTTAT
 GAGATGGCCACATACTCTGGCCATGGGCCGGAGGGTGTGGCTGCTGC
 5 TCTGGCGGCCCTGCAAGATCATCAAGGAAATGTCCCACCTGGAGAAAGAGG
 CAGAGGTGGCCCGCACTATGCGTGAGGCCAAGTATGAGCAGCTGGCCCTC
 GATCTTTCTCAGAGTGCTACAGCAACAGTGAGGACCGTGCCTTGCCCT
 GTTGGTGCGCAGGAACCACAGCTGGAGCAGGACCCACTGCCTGCACCTGG
 CCACTGAGGCCGATGCCAAGGCCCTTTGCCATGATGGTGTGCAAGCA
 10 TTCCTGACGAAGATCTGGTGGGAGACATGCCACAGGCACACCCATCTT
 ACGACTTCTGGGTGCCTCACCTGCCAGCCCTCATCTACACAAATCTCA
 TCTCCTCAGTGAGGATGCCCGCAGAGGATGGACCTGGAAGATCTGCAG
 GAGCCAGACAGTTGGATATGAAAAGAGCTTCTGTGCAGCCATGGTGG
 CCAATTGGAGAAGTTAACAGAGGCCAAGGGCTCCTGGCGATCTAGGCC
 15 CACAAGCTGCCTCCTGCTCACACGGTGGAGGAAGTTCTGGGGCGCTCCT
 GTGACTGTGTTCTGGGAATGTGGTCATGTACTTGCATT CCTCTTCC
 ATTCTCCTACGTCCCTGCTGGTGGATTCAGGCCACCACCCAGGGGCCAT
 CTGGGTGCGAAGTTACCTGTATTCTGGGTCTCACACTGGTGTGGAG
 GAAATCCGACAGGGATTCTCACAAACGAGGACACCCGTCTGGTGAAGAA
 20 GTTCACTCTGTACGTAGAACAGACAACGGAAACAAATGTGACATGGTGGCCA
 TCTTCCCTGTTCATGGTGGTCACCTGTAGAACATGGTGCCTCCGTGTT
 GAGGCTGGCCGGACTGTTCTGCCATTGACTTCATGGTGTTCACACTTCG
 GCTCATCCACATCTTGCTATTACAAGCAGCTGGGTCTTAAGATCATCA
 TTGTAGAGCGGATGATGAAAGATGTCTTCTTCCCTCTTCCCTGAGC
 25 GTGTGGCTCGTGGCCTATGGCGTACCACTCAGGCCCTGCTGGACCCCCA
 CGATGGCCGTCTGGAGTGGATTTCCGCCGTGTGCTCTACAGGCCCTACC
 TGCAGATCTTGGCAAATCCCTCTGGATGAAATTGATGAGGCCGGTGTG
 AACTGCTCTTCAACCGTTGCTGGACAGCTCAGCTCCTGCCCTAA
 TCTCTATGC AACTGGCTGGTCATTCTCCTGCTGGTACCTCCTCCTCG
 30 TCACTAATGTGCTACTTATGAACCTCTGATGCCATGTTAGCTACACA
 TTCCAGGTGGTGCAGGGCAATGCAGACATGTTCTGGAAGTTCAACGCTA
 CCACCTCATCGTTGAATACCAACGGAAGGCCGGCTGGCCCCGCCCTCA
 TCCTGCTCAGGCCACCTGAGCCTGGTGTCAAGCAGGTCTTCAGGAAGGAA

GCCCAGCACAAACAGCAACACCTGGAGAGAGACTGCCTGACCCCGTGA
CCAGAAGATCATTACCTGGAAACAGTTCAAAAGGAGAACCTCCTGAGTA
CCATGGAGAAACGGAGGAGGGACAGTGAGAAGGAGGTGCTGAGGAAAACG
GCACACAGAGTGGACTTGATTGCCAAATACATCGGGGGTCTGAGAGAGCA
5 AGAAAAGAGGATCAAGTGTCTGGAGTCACAGGCCAACTACTGTATGCTCC
TCTTGTCCCTCATGACTGACACACTGGCTCCTGGAGGCACCTACTCAAGT
TCTCAAAACTGTGGTCGCAGGAGTCAGCCAGCCTCTGCTAGAGACAGGGA
GTACCTAGAGGCTGGCTTGCCACACTCAGACACCTGAAATGGAGAAACCA
CTTGCCTAGAGCTCCAGACCTGGCCAGATTGAGGTTTGGGTACATCA
10 ACCTTCCCCCTGCCCGCAGCAGCCCCGAGACCTTGCCGCAGACCATGTCTT
GGACACCTCTTCCTATGAAAATGAGACTCATGTCTTGGCATCTATCTGG
GAGCCCCAGGCGTCCTCTCCAGCAGGGGAAGTTTCTCATGTCCCTACCTA
AAACTTCAACCAGCTAACAGACTGGACAGCTGGAACCTGGCCAAGTCCCACAT
GGGATACCATCTGCCTGGATGGGGCTACTTACGTCTAGCCTGTCTTACCC
15 TGAGTTCAAAGAGGCCAACCTCTAAACACTAGAGGTTCTTCTTGTCTGTC
CTCTGATCCATCCATCAGCCGACCAGCTCTAGAGGGCAGGACTCAGATC
TACTGTAATCAGCTCCATCCTCAGCCCCACAGCATAATTGTGTGAT
TGTCTGGCACAAACCCCAAGATACTGCTCAAGGGTACCCAATGCTATTT
TACTTCTATAAAGCCTGTAGACCACCTCAACTAACAGCTAAACTGGACCAC
20 AGGGGTGGCTAAACCAACATTCAAACACCTGGGGAACATGGAGTTATCT
GACCCAAAAA

SEQ ID NO:2

Rat L-TRP taste predicted protein sequence

MPGVRKV TMPMAQSSCPGSPPDTGDGWE PVLC GEVNFGGSGKKRSKFVKVPS
NVAPSMLFELLTEWHPAPNLVVSLVGEERLFAMKSWL RDVLRKGLVKA AQS
5 TGAWILTSALHVGLARHVGQA VRDHSLASTSTKVRVVAIGMASLDRILHRQLLD
GVQEDTPIHYPADEGSTQGPLCPLDSNLSHFILVEPGTLGSGNDGLAELQLSLEKH
ISQQRTGYGGTSSIQIPVLCLLVNGDPSTLERMSRAVEQAAPWLILAGSGGIADVL
AALVGQPHLLVPQVTEKQFREKFPSECFSWEAIVHWTELLQNIAAHPHLLTVYDF
EQEGSEDLLTVILKALVKACKSHSRDAQDYLDELKLAVAWDRV DIAKSEIFNGD
10 VEWKSCDLEEVMTDALVSNKPDFVRLFD SGADMAEFLTYGRLQQLYHSVSPK
SLLFELLERKHEEGRRTL AAGLGAQQTRKLPVGLPAFSLHEVSRVLKDFLHDACRG
FYQDGRRMEKRGPPKR PAGQKWL PDL SRKSEDPWRDLFLWAVLQNRYEMATY
FWAMGREGVAAALAACKIIKEMSHLEKEAEVARTMREAKYEQLALDLFSECYS
NSEDRAFALLVRRNHSWSRTTCLHLATEADAKAFFAH DGVQ AFLTKIWWGDMA
15 TGTPILRLLGAF TCPALIYT NLI SFSEDAPQRMDLEDLQEPDSLDMEKSFLCSHGG
QLEKLTEAPRAPGDLGPQAAFLLTRWRKF WGAPVTVFLGNVVMYFAFLFLFSYV
LLVDFRPPPQGPSGSEVTLYFWVFTLVLEEIRQGFFT NEDTRLVKKFTLYVEDNW
NKCDMVAIFLFI VGT CRMVPSVFEAGRTVLAIDFMVFTLRLIHIFAIHKQLGP KIII
VERMMKDVF FFLFSVWL VAYGVT TQALLDPHDGRLEWIFRRVLYRPYLQIFG
20 QIPLDEIDEARVNCSLHPLL DSSASCPNLYANWL VILLVTFL VTNVLLMNLLI
AMFSYTFQVVQGNADMFWKFQRYH LIVEYH GRPALAPPFILL SHLS VLKQVFR
KEAQHKQQHLERDLPDPVDQKIITWETVQKENFLSTM EKRRDSEKEVLRKTAH
RV DLI AKYIGGLREQEKRIKCLESQANYCM LSSMTDT LAPGGTYSSSQNC GRR
SQPASARDREYLEAGLPHSDTZ

SEQ ID NO:3

Mouse genomic sequence of the region that contains ltrpc5

(gi|8574073|emb|AJ251835.1|MMU251835 Mus musculus Kcnq1, Ltrpc5, Mash2, Tapa-1, Tssc4 and Tssc6 genes, alternative transcripts)

5 GTGCCTTGGCTCAAGCTTCCACCTCTCCATCTGGAAAAGGGCTCTCTCCTGA
CCTCAAGTACTGAGGTCCAACATACATTGTGCTTTAGTCAGGTGCC
CTCCACCCAGGACTGCATCTGGCAAAGTCTCTCCTCCCTGCCTTGGGAGA
GTGGTTCCCTGGGCTGCCCAATTCATGGGTACTCTGATCCCTAGATAAAATG
GCATAGCATTGCGGAGAACCTGCTTGTACGTCTCATGACACCTCCGATT
10 TTTAGAAGAGGAACCTCACGTAATAGTCTGAAACAGATTGAGTCAGAGGA
TGAAGAACCTGTGGATGCTGGATGTCTGGACTATTGCCTTAGCATA
AGCTCTGGAGGAAACAGCCAGCAGGACAGTGTAAAGGGCTCCAGGAGATGCT
AGCAAAAGGTATA CGGTGACATGGGCCACATCCCAGGCCTAGCTACA
AGCTTACTATCTCGATA CCCATACTTTCAAGGGAAAGGAAAAGACCAGAAC
15 GTTCAAACATTGAGTTAGACAGCTGCTAGAGTCATTACCCCTGAGGTGG
CTGAAGTTTAGAGATATGAGAAACTACAGGGAAAGTCCCTCCACAGCC
ACCTATGCTGTCTCCAGGGTTATGCTGTAAACTCAGGAGACACTGCTGCAC
ACACACTGTTGGTCTCAACCTTAGTTCACACTCTACCAAGCATCCA
TTGCCTCCTCCGCCAGGCACAAGACCTGGCCATGTGGCACATGAGGCTGG
20 CATGACTCTTAGTGGCCCAGATACTGAAAGGAGTGTCCAGTCTCAA
GACTGTACATCCACATCTGAGACCAAGAAATGTGAAAACCCAGACCC
GCCCTGTCTCCGGACAATGCTTGACCGTATGTCTCATAATGGAAACAGCA
CCCGTACCTCCTGAGAAATCTCTGGTAAGGAGACCTTTACTCCTGCTGT
GTCCCCCTCCAGTCCAGAGGAAGGATATGAAGAGTGCCCTGCCTATCTGCTT
25 TGTAACTGGTACCCAGAGGGACTCTAGGAGCATGCCATTCTCA
GGTCTGGAAAATATGCTTAACCTCTGAGTTCCCTATCACAGAGCCT
ATGACCTTACAGAGGAAAAGCTAACTAGGGCCAAAGCATGCAA
AGGCCTGCGGTCTTATCACTATGTCCATGGCTGGCCTCACCC
GAAGGAAAGATA CAGGGATATAGGATGGTATGCTAGATAGAA
30 CTGTATAAGAAATGTATCCATCAAGACATTGACCCCTACAAAATGCC
GTTTCACCAAGCTAGCCACTGATCCCCCAGGGCCTGCAGAGACT
CCACCCCTCACTCTGGCTCCCCATCAGTGGCAAACCTCCAAGAGGT
ACAGCCATCTTCAAACAAAGACCTTGGGTGCTAAAGGAGAAGCCCAGTGA

ATAGAACACACATGTCACCTCCCTTATGGCCAGGTCAAGGCATGCTGACC
 CTCAACATTCTAAACCAGTAGTAGGTATCCCTCAACAGACTGCATAGTGATT
 ACCACCTGAAACAGACTAGGAGAGCACGGCTCAAAGCCGCCAGAAGCTTCT
 AAGTCTAGTCCAGTAGCAGAGACCTCAAGACATGCATCGTTCCAAGGTAGG
 5 CAAGTGACTGTGTATGTGCTCTGCCCTTATGGACAGAGTGCAGGGGAGG
 ACTAGGGACAGGTGGCATGGAAGCTCCCCACAGCCAGGTTGACCCTGCTGTA
 GGGTCAGCACTGAATGTCCTGCCCTGCACACATGGTAGCTGCTTACCTGAG
 CTGTCATAGCCATCAATGGAGAAATGGTCTGGCCTCTATCCTCTGGGGGATC
 ATAAGTGATGTGAGGAACATTGAACATCTCTCTCCAGGACTCATCCCATTAT
 10 CCTTATCCAGCTTGAACCTCTCTTACCTAAAAAGTCCACATGAGGAGT
 AGCAGTTCTGAGCACTGTCCTGCCAGATCTTAACCAACCCAGAGCACCCGT
 GGAGTCCCGAATCCAGGCTGAAATGTATACCCTGAGGGAACTGGTAAA
 GGGGCTGAGCTCCAGTCCTGCAGATATTGATGAAATGGGCTTCAGTGTGTT
 AGTGTGCTGGAGGGTTTCGGGGGTTGCTGGCCAGTGTGGCCCTATGA
 15 GCCACAGCCTAAGAAAGGCAAGCAAACAAAAATCCAATAGACTGTAAATAT
 GCAGGCTTGCACCAGGGCAGTAGGGCTGAAGGCCAAGGCAGCAAAGAGGCA
 CTGGGGCCTCTTAAAGAGGTCTCTCAGAGAAAGTGGGAAGCAGGTTGTGT
 GAAACCATGGAGAGGGAAAGTCAAGTTCAAGGGTCCAGTGACAGTTGGATGC
 TGAGAAGGTTGTTTCAGGAGGGGGAGCAAGGAAATGGAAGAGCCCCA
 20 ACCTTTCTCACTATTCCAGGCCAATGGCAGGACTCTGTCCATAGCTACTG
 GAACTTGACTCTGTGGCTAGAGTCCAACACCTCCTGTTCTGTCTGCTTAC
 CCAGTAAGGAAAGCCCAGCACCAGGGCTCTCAAGAGCTCCTACAGCAG
 CTGATGGAGCTGCCCTCCTATTCCAGAAGTACTCTTCTAGGCCTATCATAT
 CCTGGTCTGGCAGTCCAATCTGGCTCCAAGGGTGGAGGAAATGAAGTCAAC
 25 ATGGATCAGGCATGGAGTAGACATCCTCTGACTTCAGAATGATGTGGGCACC
 CTAATGAGCAGTACACGGAGTGGCAGTGCCAGAGTCTCACACACCCGCTCTC
 CAGCTTCCGTCTGCTAACATGTAGTCCCTCTGATGCCAGTGAGGCTG
 CTTACCATGACAGACTTTAGGTTGGGCTGGGGACAGAAGCGTGTGACT
 CCGAGCAGGCTTCCAGACATGTCAGTCCAAAGTGGCTGAGTCAGGGTTCTCA
 30 GCGGCATAGCACCTCCATGCAGTCTGAAATCAGGCAGAGGGAAAGGAAAG
 AAGGCTATTGGTCCAGCCACTCAGCAGTACCTCTCAAAAAATCTCATGTCC
 TCCCCGAGCCCCAAGCCCAGCTTCCAAGGCCCTCCCTGACATCAAGGC
 TTAGCCCTCTAGAGGGCTAGGAAGGAGAAGGCCTATTCAACTATCTGTT

ACCTGAGCCACTCCTAAAGAGAGCCTGAGCAAGTCCCAGACATACAGAGAT
 GCTCAACTAAGGCAGAGTTAGATAACCAGACTGACTCAGAGGACAGTAGAA
 AAGGACTGCCTGAGCCTTGTGAGCACCAGCAGGTTGTGGAGGGTAGAGCC
 CCAGGGACCAGTGGCGATGAGGCCTCTGGACTTCAAGGGCTAGACTGTG
 5 GCTACGAGGAGTCTCTGGTCACTACAGATGAAACTCTTGGCCAACATTCTAGA
 GGGAAATGCCCTCCCCATAGTCATCACATCAAGATGACCTGGGAAGACACT
 GGAGGGCCTAAAGGAGCCAAGGGAGCAAGAAGGGGAAGGAACAGATAAC
 CAAAGCCTCTTATGGGACATACCATGGTACTCTGTCAATTATAGGCCATG
 GGCATGAGAAAAGTAAAACAGTTGAAAGTCTCTATGCTGGCCAGGCTCTG
 10 AGTGACAGCCCCATGCTATGACAGAACCTAGCATAGACACACAAATCCAGGC
 AGGGATACTTATGACCTGGACAGTTGGAGCCCCTCGAAGGGTTTATGTCC
 CATGTATATGCCCTATCTGGCAGCTCCATACCTCATGCAGCCTGCAGCTCCT
 CCCAGCACACTCCATGTTGCCTGTGTTCCAACCTCCACCAGTAAGATCCCTG
 GCACATCTCCACTGTGGGTATAGCTCTGAAGGAGTCTGTCCACAGACCAT
 15 GCAGTTCTGAGCAGTGGCCTCTGTGCTCAGCCAGGAACATACATAACTGCCT
 GACTATGTTAATGTGGCCAAGGCAGGTTAGTGGTCTGATTAAGGTTTCCA
 AGAATGAGAAGCTGTGGGTCAAGCCAGGCCTGGAAAGCCCACAAC TGCA
 ACTGCTGGCCTCGTGGCTGTTGCTGTCAGTGGCCAGGTAAATGGCTCTGGAAAG
 GGCATCAGAGGAACAAAGCTGGGCCAGAACACTGTGCTAGAAGCTTAGATAAG
 20 ACCATGAGAGCTACGAGCTTGAGAAGGGCTGCCATGCCCTCATCCAGGGT
 TCTGTCCAGATCAGAGAAGTCAGGAAACTGAGGCTGACCAGCAGAGTACAGA
 CTGGCTAAGTAGCCATGGTCAGGCCTGCCCTAGTCTGCAAGTATGCCCTCA
 GTGGGAACAGCATGAGGAGCAGTGGCCTGCATCCCTGCCACCCATCAT
 CCTAATAGTGAGTACTTCCCAGAGAGCCACCTCACCATGGGAAGAGCCGAA
 25 GCAAAGGGATCCATGCCTCTCAAGTAGTGGCATGGCTGGAGTGGTCCAA
 CACCCAAATGGATGTAAGTACACAGCACTGATAGCCTGCCGGCGCACCGCA
 TACCTGGATGAGTGAGGCTGCAGCTGGATCTGCCGGTTGAAGTGCTCTGCC
 TCTGCTTCTGCTGGACCTCAGCGCGAACCCAGAGCCAAGTATCCCCTGGTAA
 GGGACAGAAGGTGCCCACTGTTACATAA + CCATGCTAGCCAGTGCCAGCAG
 30 AGGATGAGGGTCCAATGAAGAGCAAGAAGCAAAAGCATCTGGATACCAGG
 TTTGCACAGTGCCAGGGCTGTGCCAGGCAGGCACATCAGAAGGTGGTT
 TGAGACAGCAGATGTCACATGCCGGCAGTCTCCAGGCTCAGCCTGCC
 TTGCCAGCTGGGAGGCAGAATCCATTCTCAGAGTCGACTAACATGAAGC

TTGGCTCTAGAAGAGACCTGAGACTCTACACATTCTGGCACCACCTGTGGG
 AATCCAGGTAATTAGCCATCACCCCTGCCCTGGGCAGAGGATTCTAAC
 CCTAGGAGAGGGGAGTTGAGGCTGTCCTCAGCAAGAACCTACAGCTACT
 GTAGCCAGCAGTGGCAGAGATGGAATACTGACTCTGCAGCTGGGACACACA
 5 CTGTGTGTCATGACCCATATATATGTGTCACACATGCACATATAACAGACACT
 TGAACACATATCATCTCCATGTGTTACAGAAACTCATGAAACATAAAATAATA
 TATGGATAACGGAACATGTGCAAATATAGGTATATACATGACATACATGGA
 ATCACAAATACACACACATACATATGTATATATGTACACATAAACAGTACAT
 ATGGTAAACATGCTATTCAAATGTAATACAGACACTGTACATGTAACACATG
 10 TATACAGTATATGCACACAAACATGTATAAGACACACACCTACAATGACAGATAT
 ATACAAGTAACCACTATTCTCCACCTAGCACACATGTGTTAGACATAGGTT
 GTGATTTTGAAAAGTCACAAGACAGAGGCCACTCCTGGCTATAGAGCAGAC
 CTGCAGGTTCTGCCAGTCTGCTCCCCTGTACCTTGCGCTCTGTGAAGTACC
 ACAACAAGGCCTCCTACTCTACTCAAGGAATGCCTAGAAGTTGGGCAAG
 15 GGTGAGTGGAAACAAGGGAAAGGGCTCTAATAGGTACCCACCGCTGGGA
 GTGCAAAGAAGGATATGGCGAAGACAGAGAAACAGGAGGCGATGGTCTTCC
 CAACCCACGTCTGAGGTACCTTATCCCCTAGCCAATGGTAGTGACTGTGACC
 TGCAAGGAAGAAGGACTGCAGTCAGTGGTGGGCTGGCTGAGAGCCTCAGAA
 AAGACACCTGCCAGCCCCAACACACAGCGGCTTGATGACAAAAGAGACCAACT
 20 AAAACCTGCCTACCAGGATAGTGAGGCCGGTTCTGAGAAAGTACCAAGGAA
 CAGCAATATGGTGAGITGGTTCAAGCTCTGAGTCCTAAGTCCTCAACTC
 TGATTACCACAGATGGCACAGCCCTAGGCTTACAGATAGATTGGGGTGTGCA
 GGACAGGCAAAGAGCTCAGAGCCCACCCACAGGGACCAGGCTCCTGCCCA
 TCGAAAAGATCCCTCTCCTGGCCACCAAGTTGCAGTGCAGTGCAGTGGCCCCAGG
 25 AGGCCGGAAGCTCCACTGAGGCCAGCGGTCCACAAAGCCCCAGGATGGGC
 TGACATGCTGCTCCTGCCACCAGCCAGGGATCCAGATGTTTATTTCTT
 TTCAGAGAGAATAAGGCAAGGCTCAGCCTCTTCTAGTGGGGAGCAGCG
 TCCAGGGTGTGCAGTGGACAATAGGAGTGAGGGCTGCCCTGGGGAGCAG
 TCCCCTGCTGACATCTGAGGTTGCTCCTGGGCCCTGATGAGTGACTTGGG
 30 GGCCCACCCCTGGCTGCTTAAGTGCAGGTCACACCATGAGGCTGCCCTGGG
 CCTGCTGGAGAACAGGGTGGTCACATTCACTAACACGAAGCCCTGGGTG
 ACAACACACTGTCCAGATCAGGCCATCAGTGAAGGCAGGTCAGTGTGATGGG
 ATACCCTGCCCACTCAAGGTCTTAAAGTCTGATCACTCTAGACACCTCAGCT

GTCACCCCTGGGCCAGGTGACAACCACCCAGCCAAGACCTATATGAGAAC
 CTCTAAGTGAACCTCTGCCAACAAAGATGGGCCTGGGAACACCATCGAA
 TAGACTCCAACCAAAGTGAGGCCAGAGAGGAAGCCTCAAGATCCCCACACT
 ATCCAAGCCCAGGCCATCACTACCCACTCCATTCCAGATGGACTTCTGTGG
 5 ACCACAACTGTTCCCCAGTGGCCACTGAAGAGGAAGGGAAAGGAAAGAGAGG
 CATGGGGTCAGAAGTTAATATGTACATATCGTGAGCATAGAGATAAGTGCT
 CAGAGCCTAGGCAAGCACTCTGACCAACTCAGCAGGGAGCAGAGGACAA
 GGACAGCAAGAGTGACCCCACAGTGCCAAGTCTGTTGGCCAGTATGTT
 AACAGGTCAATGAAACAGGTCAATTTCCTGGATGGCAAACACAGAGC
 10 AGGCTACAGCTGGGCCAGGCCATCACTGGCCACCCCTCAGTGCTGTACCAT
 TAAATAAGAGGCTGCATGCATACTGGTGTTCCTCCAATTGCCACATGAAA
 TCTTCCCCACAATGTCATTATCCTAAAAAAATCCACACCCCTACATGAACAGA
 GGACATAGCAAACCATCATGTGAAATCTTCCCCACAATGTCATTATCCTTAAA
 AAAATCCACACCCCTACATGAACAGAGGACATAGCAAACCATCATGATGGCTG
 15 GCCCTTAAAGGGACCAACCTGGTCTACATATGTGGCATACTGGTAAA
 CATGCTTCACATGGAGACAAGGACACCCATTACACTCATATGCACACGAGG
 GAACATGGGCCACTGAGTGAGCTGAGGCACCATGAGGGTGCACATACACAC
 TCGTAAGTTCACAAAGGGTCTAGAGGTATACTCAGGACTGACAGCCAGG
 GCACGTGCTGTCCAGACATCTTACACACACCTGAAACCAACTCACATGATGT
 20 AAGTTGAAGACAAGCCATTCCAGGGACGGAGACATGGCTGCCTGCAGGCTG
 TGGGATGAGAGGGCTCAGGAGAGCTGAAGCTCCTCACAAAGTGACGTCTCCC
 AGAGGGTGTGCACCCACATGTGAGAGCTAACCCACAGCTGCCTCTTAGG
 GAGACAGGCACATGACAGGAGCTACTTGTGAAAGCAGACCTGGCTGGAGCC
 AGCAAGAGTTCAAGATCACCTGGATATATGGCTATTGAGGCTAGCCTTGG
 25 CTATATGAAACCCCATCCAAAAATGGGGATGGGAGGAAAACATCTACAAA
 GGTGGAGGGAGAATGGCCTAGAGGGCAAGCTGGGAAGAAGCATGGTGAAT
 TGAGAGGAAACTCCTATGTAGTAAAAACCTGAGGCCATGCCCTTCCCT
 ATAGGCTTAGCTGCTCCCTCCACTCCTGGATCAGTAGGAGAAAGGGCCAGT
 GCACTGGCCTGAGTGCTGGTCAGTTGTCTGTTGGAAGGCACCTAACCAACTAG
 30 GACCCCTTTCTCCTGGGCCACCACAGAGCTCCGAATCTAGTTATGAGTCCT
 CTCTCCCAAGTAGCCTGCTCCATCAAGTTGTTCCCCAAGTCACAGACTC
 AGCAACTCAGGAATGGATCATTATAGAGCTGTTGGAACCTGTCCCCAATG
 GCTAGATCTGCAAGTCTTGGCCAATGAACAGAGGGACCTTCAAGGGC

CCAACTAACAAATAGGTACCTGAGTCATAACACACTTGAGTCATAGATTGCTG
 TCCCAGTGACAGAACCTGTCGGGCAGGCTCTGTATAGTCATGGCTCTCCTCG
 TCCCCCTGAACAGGCCCTGGGAAGGATTTCAGAACTAGTAGTACCTAGTCT
 CCTCCTTTGAGTCTAGAGGTAGCCTGGCTGAGAATCTCCAACCACAACCATT
 5 CCTGAAGCTCACCTCTGCATGCTCACTGACTTAACCTGTCTATATCTATTAAC
 TAGCTGTGCCCAAAGAGGCTAGTGGCATGCCATGGCTCACAGCTGATGCC
 TGGTGGACATGGGAGGTGAGTACAGATTGGCTCTGTGTTGACCTCACAGCGT
 GTCAACCTTGTACCTTATGCTTCACTACTCCTGATGCTGTGCTTCCCTCGTG
 GTGAAAGGGTTCTGGGAAGCTCTATTCTGAGATTACACAGGCAACTCCTC
 10 AATAACATGATTCAACCCATGTTAGCACCACTAACCTGCTGAGTCTGTAT
 AATAACTCTAGGCAGTGCTTACTGAATAGCAGCTACAAAAAGATGGACATGC
 TTTGTAGAGACTCCTCATCATTCTATAAGGCCAACTATAAGATTCCCTCCTC
 CTTGGGAAGAGCTTACTAGCAAGGAGTCTGGCAGGCCTCAGCCTTGCTGCA
 TAATTCTCATAGAACCAACACAGAACAGAGAGGAGAGGGCTTAGTGCTACCAGCCC
 15 TGACCCCTGCTCTGCCCTCACTTCTCCATAGTCAGATCAATCCTGAAGAATA
 ACGTCTCTCGTGGATAGTCCACGAGGCTTGCATGTGACTATCTAAGAGACTT
 CCTCAACTCCAAGGCCCTCTGTCTAGCTGTGCAGGATGCAGCCCAGCCTGG
 GAGGTGGAACTTCCAGAGCCTCCAGGTGAGGAATGAAGAGCCGTAGACT
 GGGTTTTAAGGGACTGAAATACAGGGTGGGTTCAAGCCTGCTCACTGAA
 20 GTTCTGTATTAGCCACTCAAGGTAAACAGAGGCCAGCAGCCGCTGTTCA
 GAGACCCCCAGGCATTAACACAGAGGAGCCATGTTGCAGAAATGCCATT
 CCTGCACTCAAACGTAAATACAAACAAATGCATTCTGTTCAAGGGTAAAGG
 AAAGCTTGAGGGCTCCAAATACTTCCAGCCCACACTGGACATT
 AGGGGGTTCTGGGTTCCAGGGACCTCACACCCATGTGGGTATTCCACTGGA
 25 GAAAGGGGATGCAGTCCATGAAGTTGCTTCCAGCTGTAGGAACCTACAAT
 CTATGAAGACAGGCCACCTCACAAATGCTGCCTGGATACCTACATTCTGG
 ACTTATCTGTGTCACCATGGCTCACCCAGCCTCACCCAGATTATGGCCT
 TCCTTCTGGGTCTCCTGGGTGGACCTAATCCAATGCTGCATGTCCATGGGAA
 ACACATAGGAGCGACACA, GATCCTAGGGTACCAAGAAACTTAACCTAAC
 30 TAAAAGTCCCTCCCAGAGTCTACCAAGTGAAGTGTGGCCTGCCATGCCTCGG
 CTTCAGACTCTGGTGTGGAGCAGAACAGGACATACTGAATCCACCTATTGG
 CAGTGAACAGGCTTCTGCCCTCTCACAAATCTGGTTACTTACTCAGTGA
 ATAAGCACTAGTCAGAGAGGACCCCTCAGTTCATAGGCTCTGCAGGCTA

ACAGGGTGAGAACATTCCCTCATGCAGGCATGCCTCTATGCCAATGCCT
 ACCTCAGTGTACCTAGGGGAAAGCTAGTCCAACCTCTCAGGGACAACATTCTCT
 GGGTAGGGACAGGGCTTGAGGCCTAGTCCAGGACAGGGACATCAGACAG
 AGAGGGGCCTGGTITTAGAAAATGCTCTGCCTGAGGGTATGCACATCACC
 5 CCCACATTAAACAGATGAGGAACCCAGGGACAAGGTCGGGAGGGGCCATAC
 TTCCCTTATGGAATGAGGGAGACAAAGGAGATGCCTGTTATTGGCTCAGGG
 CTACAGAACTCTGAAGCCTGGCTGTCCTGTACAGGGCTCAAGTTCTGATTA
 CCCTAGAGGTGCCAGGAACCCAGTCTTGGCTGCTCCACTAGACAGCTGCA
 GAGACAGCCACTGAATGAATGAGGGTACTGGGGGCCCTGGGCAGCCAAG
 10 GGCACAGGGCCTCACAGGAACAATGCCAGGCCAGGGTGCCTGTGGTCGAG
 GCCTGGGCTGCAGCTGACGGAGTAGGCCAGACAGAGCACCGGTGCCAAGCTG
 GGCACAAAGGGGCCGTGTTCCCGCTGGCGGGCGATGTTGCACAGGTGCC
 GGAGTGGGGCACCTTCTGCCGAGGGCTGGGGGCCAGGGCTGGGGGCT
 GGGAAATAGTTCCCTGCAGGAGGCTGGAACATAGGCAGGGCAGCATCAAGG
 15 CTGGGTACTGCTAACGGCTGGCATCACTTATCAGCCACACTGTAGGTAGTCAC
 CCATTACTCCTGCTGTACCTCAGCTAACACTGCCATCTCCACCAGAGAA
 TTCTGGTTGGAGTTGCCTGGCCCCATGCAGGCCCTGCTACATCCCTGGGAT
 GTGTCCTCTTCCACAGGCAAGCTTCTAACCTTCCTACTGATTTCTACCA
 ACCCTGTTGGTCTATCATGCTAGGGTATCGGGGACATTGGCCCAAGAAG
 20 GGTAGGCAGCATTGACCTGGGCCGTCCAACCTGGAAGCTCTCAGGGT
 ACCCTTACCTCCTGAGGCTGTTAGGATGCTAGAAACTTCTAGAAAACGGACT
 GATTGGCCAATGTCAAGAGGTCTGCTATGTGCCCTGCTCCTGCAGGCACT
 TGGGCATTGTGAGAACATGTGTTATTCAAGCTCCATTCTAACCCCAGTCTA
 GAAGCTCTGAGAGTAAGCAGGCCCTGGAGACTGCTCAGTCCTGGTCGGGTG
 25 GGGCAGTATTCAAGGCCAGGGCCTGATGCAATCATCATCACCATGGATGGCT
 GCTTGTCTGAATCAGGTTCCCAGAGTCTGTGCTGGCCCTTCTATAGGATGC
 CACAGCCCACCCAACCTCTCACCAAGCCTAGTGAACCCCAGTCAACAGAC
 TGAGAATGCCATTAGGATCGTATTGAAATCCTCGCTGCCTACCCAGGGTGCC
 AGCCCTGGCAGCTCCTCCGGTATGATGGCATAAAGCATCTGGACAGTCTATT
 30 GCTCTGAAACTGAGGGAGGAGATAGAGTTAATCGAGGGCAGACCATAAC
 ATGCTCTGAACTGCTTGCTCCTGTTAGGTCTTGTGTTCTGCAGCTAGAGG
 GCCCCAAAGCTCAGTGGCTGGATAAAGCCTGCCTCCAGAGGAGGTACGAAG
 GCCATGTAGCAGCTATCCCATAGGCTTCTAGGCCATGAGCAATGGTTGCTAGG

TCATGGAGTACACCTGGATTCTTCAGCATCACTCTCACCAAGAACCTCTCCCT
 CCTCTACCTGTTATCTGACACCCAAGGAGCCACATAACCTCTACACACACACAC
 AC
 5 ACACAGTATCATCATACTTGGGACATTAGCCCTAGCACGAGAGGTCACTGT
 CACACACCAGACTCCACACAGACTGGCAGCTCAGTGAGTTGGAGTTGCCCT
 AACCGAGCGGTTATGGCCATCTTATGACCTTAGGGCCTGACTGGCACTCA
 TACTACTGCTGCCTGGGGCAGCGGAAGCCTTGAGACCTCATATCCAAAAG
 CCCCTGTGTCTTCTCTTAGCTACAAGGTTAATGGTAGTATGGCATTGTGT
 GCCTTGATCTCTGGCACAGGTGTGCTCCCTGGTCAACATAGACACCACAAAC
 10 ATGCAAAGTATGTTTGACCCCTCCTGCACCCCTAAACCCAGGATCCCTCAG
 GGTAAGGATCACCACAAGGCTGAGATATGAAGTTCCAGGTTGCAATCCCTG
 TCCCATCAGCCTCCCTCCAAAACAGAAGTTGAAAGATAACAATGCTCAAAT
 TTCAAGACAGGGACTGGAGAACGCTTACTGTAGTATACATTGTAAGCTGTA
 AGTACACATTGGTGGTCAAAAGTTTAAAACGGGTTAGTAACCTCAGT
 15 GGAGAAGGTAAAACATTGAGCAAGTAGAGTTCAATATCCTAACCCACTGC
 CCAGATCCATGTATCTCCACCTGAGACCCCCAGTAAAGACCCCAACTTACCA
 CCCCCCACACAGAGCATCTCGTAGCTGCCAAACTCGATCGGCCGGACTC
 GTTCACCGCATCTTCTCAGCCAAGTAGACAAAGTAGGAGGAGAAGATAAGG
 CCCAGAAAGCCAATGTACAGGGTGGTATCAGCTCCTAGGGACAGACAACAC
 20 AGAGGCCATGGTACATACCCCTGGTGGTCCACATGAGTATGGTGAGAGGAGG
 AAAGTTCCAGAATTGCTGTTAGATTGTACTGTGTTGACTGTAGCATGTTATA
 CACACAGAATCACCTCCAGAGTAACCTAGCTTGTCAATTCAAAAGTGGC
 AATGAAGAAGTCTCAGCTATTACCTTAAGTCAGCCATTGGGTCATGCAGTC
 TCCCTGTACCCATGACAAGATAGTACTTAGAGCCAGCTGTCCCCAGCAGCCT
 25 CTCAGACAGAGTGTCCCTGGAAAGTGTCTGAGGCACCACCCCTGATTCTA
 GGTTGATTCTAGAGCTTCATAAATCTGTTGTCATCTACATTCTACAAGA
 TGCAATGGCTTTGTCCTAACGCCCCAGTGAAGGTGGCGGCAGCTCTGCACTG
 TTAAGAAGCCAAGTATTGCCCCATCATGAATGTGGGTTAGGCTCAGGCTGGG
 AAGGCTCTGGGTCCTGGACCCCTGCTCAGACTCACATGTCTGGTATCAGC
 30 CTAGACCTGGTCCACTCAGCTGGGTCCAGGTACTAAGATATCACCACACTG
 CATCCTGACCTCATAAGTCTCCAGACACCTCCTGTTATAGGCTGGCCAGCTTCT
 GTTCTGCCACACCAGGCTTACTCACCTGGCGGTGAATGAAGACTACAGAGC
 CCAGGAGCCTCCAGGTACCCCCCTGGCGATCGACATGCAGCATCCGCAGGAT

CTGAAGGAAGCGGATACCCCTAAGAACAGCAAGAACGGAGAGGTCAAGAGGGC
 TGTGGTGGACACAAGCATTTGCTCCTATGTCCTGTCACCAGCTTCCA
 ATGGGTAGAGAACATGTACATGACACTTGACTGGAGCCATCTGCTCC
 TATAAGGTGCCTGAGAACCCCTCTCCAGGAGCCCTTATATGCCCTTTGG
 5 GGGAGACCAGAAACCCAGGGTCACCCATATGGCAACCACACAGTCAGGCTAT
 CATCTAAGTCTTAGAAGCTAGGAAGTACTGGGGTCAAACCTGAACTCAGGG
 TTGCATACTGTTCAATATGATGAACATGGCCACCCCTCCCCTGTGCCACTC
 ACCATGAAAGAGACAGGTAGAGGGAGGGAGAGACTACAGCTAGGAGGAAA
 GGGCTTGTAGTGGGCTTCTCACAGGAAGAAATGGAAGAGCCAACATAC
 10 CTGATAGCTGATGTGGCGAACACTTGTCTTGGAACCCACGCAGAGGACAA
 CCATAGAGGCTACAACCACGATGAGGTCTGTGGAGGGCAGGGGTATGA
 CTTCTGGTAACCAGGAATCTGGGAGGGTAGGCTACCACCCACACCTGAGGG
 TTATGCCACTAAAGCAAGATGGACCCAATAACCAAGGGCACAGGAATAATC
 TAGGGTCTCCATCCATGGAGATTCTCTGGGGATGACTGTAATGGGAATGTCC
 15 TTCTGGACCCATGAATGTGTGGAATGGAATGTCAGGATGTGTAGGCAGG
 ACTCACCAATGATGGAAATGGCTCCGGCAAAACGTAGCCGGCCCCAGAT
 GCCCACGTACTTGCTCGGCAGCCTGCAGACCAGAGGGGACACATATTCT
 GTCCCAAAGAACACCACAAGGACAATCTCTGAGAAAGAAAGCAATAAGCCT
 GTGTTAGAGGCTATGACCACTCAGGCTAGAGCACCTACACCAAGCTACCATG
 20 CCAGGAGCCTCTGCTGAGACACAAACCGTACTAGCAGGCTCAGGTATCCATC
 TGTGGTAACTCATAGTACCTATAACAACTGTCCAGAGAGGTTAACACACTGA
 GCCCAGGGATGCTAACAGTAGACAGTGTCAAGCTGTTATTGCTGGGAAGAC
 TCCACACCAGGGTTGGGTTAACATGATCTGGCTGGTAACATAGTGTGACAT
 TTGTGTTGTCTAGCTTACATGGAATCAACAGAGCTAACAGTTCTATCTGAAAA
 25 TGAGGGTTCAAGGACATGTGTCTTGAGGACTGTCTCCCTAGAGCATAGCT
 CACAGCTCTGCCTCACACTGGAGACACCGTACCCACCACATAGCCTCTATT
 GAGGTTGGGTACAAAAGTCCCCCAATCCATCCAGAGGCAGTAGAGGAATC
 AAGCAAGGGCACGGCAGCAACGGATGTGAAATAACTCTCTAGGTCAATT
 ACACAGACC. GACCTCTCCCAATGTATCCACACATACACTCTGAAGTCAGAGTG
 30 CACTGAAAGGGAGGCTTACAAGCTAGAGAACCCAGGCTGTCACTCCAGGTT
 ACTTACTGCAGTGGATGGACAGATCAACACAAAGGTGGATGGATAGAAGAG
 GAGATGGGTGAGTGGACAAATGGATAGGCATGTGAGTGGATGGATAGATGG
 ATGAATGGAAGAACATGGATGGATAGGTAGATGGATGGATGAATGAGAAGGTG

GGAGGATGGAAAGTGGAGAGATGGACAGATGGATAGATGGACAGATGGAT
 GGATGGATGGATGGATGGATGGATGGATGGACGGATGGATAGATGGA
 TGGGTGTGTCGATGGTGGTTGAGTAGATGAATAGGAAGGTAATAAAT
 TGCAGGTGACTGGTGTGAGAACCAAGTTAAAAAAAAACAAAGTGGAT
 5 TCCATTAGCTCTCAATAAAAACAGACTCAGCCTCTGACCATGATTATAAT
 TCAGCTAGCAGCAATCTGGGGCCTCCCAGTCTGTGACAGCACTGGGTGAG
 AGCAACTGTACTGCTTGTGTTCACACAGCCTGACACAAACTGAAGGGACG
 GTCGCTGGCGGCCTGGCAATCACCATGAGAGAAGTCAAGGTAAGCCTGGGC
 CTTGCCTTGATTGGTGAATAGCCTCCTCCCTAGCCTCACTATCTGCC
 10 TTCAATGAAACACCAAAGACCTGTACATGCACAGTATCTGGAGGGTGAGG
 CATGGCTGGCTTGCTATGGCATAGTGTGAGAAGGTCTGGTCTGGGATAC
 CCATACTCTGCTGCCAGTTCCGTTCTCCAGCTTGCACAGGGTCATTG
 TCAGGGACTGGCTGCCCTGAGTGAGAATCCCTCCTGCTTCCACCCCTG
 GGCAGCTCAGGTCTGATCCTCAGCCTGCTATGGCGTAAAAATGTGAGTAGCC
 15 GCACCACAAGTGGGTGATGGGAGGATTGAAATAAGTATAACATTCCATGCGA
 ACTACAGCCTATGGTGGCCTCCAGGTCTCCAGCCCTGTCCCAGACCTGTTCCC
 CAGCTCCAGCCAGCCTCTTGGTATGAGGCCCTGGGAAGGCCTGGGTG
 AGGAGGTGAAACCACCTCCACATATGTTAGGGACTGTGCAAAGCCACAAAC
 CCGAGAAGCCACAAAGCATTGTGCTCAGGCCTGCTCCAGCTGGCTCC
 20 GCCTGGCCTCCCTCAGGAGCCTGGCCCTGGAGGGAACTTCCTCTTGAAAGGGT
 GACACATGCTGGCCCTGCCACCTGTCGGCTGCTGGAGAGTCACCATGA
 GTGAGGGCTGAATACTGCACATCATATAATGCTTTAATTAAAGACAAAAT
 AGTACACCACCTGGCTGTGTTGGCATGAGCAGTGACTGATGGAAGGAG
 TGAGCTGGAGATCATAGCCTCCTGTGAGAAAAGCATTTGGCCATGA
 25 AGTGAACTCATTGGAATGGGGGGGGGTGGCTATGTGTGGAGAGCGAGA
 GAGTGCTGGCAATGATGGGCCAGTTGGCTGAGCATAACAGGGAGGAGCCA
 TAGTCTCGTTCACTCCAGTCAGAGCTCAATATTGGCCTGTTGAATGAATGAAT
 GATGAGTGAATGAATGAACGGGCAAATGAACAATCTTGAGCAGCTGGCTTG
 CAGGGATATTGATTCATTTGTT CTTGAGAATCTGGGTCTGTAGGGCTGTT
 30 GCCCAAAGTACTGTGTATCTTGGCCAACATGAAAAACATACTCCAAATCC
 CCAGCACAGGATATGACTTCATGGGAGACAGCATGCCTGACCATGAGAAGTC
 CCAATATTAGTTACAGTGCTAGCCCAGGCAGAAGGCCTCTGTTCCAATTCA
 TGGCCATACATCACCCAGCTGGCTGATCATCTAGTGAGTTCTCTATTGCA

GATGTTGTCATTATTCAAATATCTCCTAGCAATGGCTCTGATGGCTACAG
 GTGCCCTGACCTAGTACTGGAGGGAAACCCATTGGAATTGGCTATGTG
 AAACAGCAAGATCCCCTACACAGATCTCAATTAGCATGTGAACACAGTG
 TGAAGCCTGGATTAGCGGACTTGAGCCCCATCCCCTGAAAATGTCTGGC
 5 TAGTTATGTCCAGGGCAGGCCAGGCTGAGTTAATCAGTAAGGCTCAGGGCT
 TCTAGGAAAGAGACATAGGAAAACAACCCCTGTCCTAGGTAGAATGTAGCCAT
 ATCTAGTGTITAGACAGAGATAAAATGGTTTACCAAGCTTGACATATACT
 GGACCTAGGAGGAGTAGCCCTCAGACCAAAGGTACACTGGAACCTCAGTGA
 AGAATTAGCATTAGCAGTAGTGTGAGTCTGTAGGAGACACACTGTGGGGGA
 10 CAGTTAACATTAGGTAACAAACACCCCTAGTCCATAGCAGGGTTAGTGGGGCGA
 GCTTAGCCCTGTATAACAGACCACAGGGTGTACCAAGCTGTTCCAGCA
 TAGTCACCCCTGCTCAGTCAGGCCAGGCCTGAAGCTCACCTGTCTTATAGAC
 ATAATCCAATGCAACCCCAGTGTGAATGATAGGCCTCAAATTCTAACAG
 AACACATAAAACCTGTTACCCCTCCCTCACCCCCATGCCTGCTCCTGCTGTC
 15 CACTGAGGTCAAAGGTTATGGGCTATCACCCAAAGGGTCTCATGGCCAGT
 GCACCCAAAGCCTCCCTAGACCCCCAGACACATTGCATCCTCTGGGTTCTCCA
 TGTCCTCAGAGGCTTAGTGTGGGGTGTACTCTCACCCCCACCTTCCAACCC
 CTTGCCTATTTAGACCATCCCAGCATCCCCAGACCTTGTAAACAGCCACCTAA
 AAAGCTAGCATGCTCCCCCACCACAAAAAGTACCAAGCCTAATGCACCAAGTA
 20 TTGTCCAGCTCCCTAAAGGGCTCCCTGAGAAATCCACATGCTGCTGCCAGAA
 CCAAGGACTCAAGGCCAGGGACATTGATGGAGTGTGGCCCTGAGCTCTGTC
 CCAGAGATATAAAAGAAAGGGCTGTCCTGGCCAATGAGCTGGCTGAGACTCCTG
 CAAAAGGCAAGAGAACACAGTGGCCCTCCCACCATGACCATTGTCCTGT
 ACTAGAGTTAGGCTAAATCCTGGCTGCAGAGGGTTGTGGCTGAGACTCCTG
 25 CGTCAGGGATAAACAGCGAGCACAGAGCCTGCAGCTTCTGTATCCACCA
 AGGCAGGAACCCCTGTGCCTCTTCTATACACAGGGAGGAAAGCCCATGAGAA
 TAGGAGAATACCTGCCAAGGATTGATGGAGGAATAGACTGACATGGCAC
 AAGGCAGAGGATCACACAGGCTCTCAGGTTGGAGTGGACTCTGGCAAGTG
 AGGCTAGTTGCCTCTGGAGGGCTGACTACTGATAACGTCAGTACATCTGGGA
 30 ACATGAGGACAGAACAGAGGTTGGGAATGGCTGTGAGTAGGGGTGTATAGA
 TGAGACAGGGTCTTGAGTGATCAGGGACAGAAACCAAGGTGAAAAGGAAA
 TGGCCTAGGATGGAGGGTGACCTAGAGGCATAAGAGCCATTACCAAGGCCAG
 CTGTGACACGAAGTGTCCAGGGTAAGGACAAAGATGAGCCTGGACCATGTG

CAGGTCTGGTACCCATCCTGGTAACCTCTGTGCATGGCAGGAGAGCTAGC
 ATTTATGCAGGTGAGTCTGGGATTATAAGTGGGTGTGAAGAGCCCTGGGGAGA
 TACAATAATCCTGGCTCTAACATACGTGTGCTGTCTCCTCTAGGTCTTGAA
 GAGCTGGAGGAGAGCAGAGGGCCAGAGTCTGAGTGCTGCCACTCCTCTG
 5 AAGCTGTCAGAGAAAAAAAGAGGGGCTTGTCTAATGGCATAACGAGTGCCAGA
 GCCATGAACAAGAGGTCGGACAGGCTCTGAAAGCAACAATCTAGAGTGT
 ACCCCTGCAGCATCCTGTAGCCTGTCACTTGCCATGTGCTGGTCCCAACC
 CACATGATATACTCTGACACACTCTGCTTATTCCTATGCAGTAAATGTTG
 AGAGTTGTATCTCAATGGAGTGAGAGTCCCATAATTGAAAACAATTAAAGG
 10 GCTGGCGAGGTGGCTCAGTGGTAAGAGCACTGACCACTCTTCCGAAGGTCC
 TGTGTTCGAACATCCAAGCAACCACATGGTGGCTCACAAACCATTATAATGAGAT
 CTGCCACCCCTCTGGTGCATCTGAAGCCAGCTACAGTGTACTTATGTATAA
 TAAGAAATAAAATCTTGGGCTGGAGCAAGCAGGGACTAAATGAGCAGAGTG
 ACCGGAGTGAGCGGGGTTGGCTGGAACAAGCAGGGCTCTAAAAAATTCAAT
 15 TCCCAACAACCACATGAAGGCTCACAAACCATCTGTACAGCTACAATATACTC
 ACATACATAAAATAAAATAAAATAAGTCTTTTAAAAACTATTTAAAAAGCAA
 AGCTGCTGGCACTGAGGCTCAGTTGATAATGTGCTTGCCCTAGCATGCATGAAG
 CCCTGGTTATTCTCAGAACTGTATAAACCAAGGTGTGGTACTAGATACCTG
 GACTCCCAGCACTAGGAGGATAGAGACAGGAAGATCAGAAGTTCAAGGTCTA
 20 CCCTGGCTATGTAGAAAATTGAATCCAGCCTAGATTAATGAGACCCCTGTTT
 AAAATAAAATACCGAAGAAGGAGGAAGAGGAGGAGAGGAGGAGGAAGAG
 GAGGGGAGGAGGAGAGGAAGAGGAGGAGGAGGACAAATGTTTAGAAAGGT
 AGAGAACCTGAATAGGCAGCAATTGGAGAAGACATACAACGTGAGAAAAGA
 TGCCCCACAGAAACAGTTATTCTATGCCACTAAGTGGAAATACAAATCAA
 25 ACAGAGGCTGCTGTATCCCTCTAGCAAAACACAGGCAATGACTACAGTGGCC
 AAGGAGGCAGAGAGGGCAGGGCTATTATACATGGCTGCCTGAGGGAGACACC
 AGACCCATGATCCTGGAAAGCATGGTCAATGGTCCCTAAGTCATGAAGAAT
 GGAGTTACCATCCACTCAATTCTGCTCTAAACAAGGATCTATCTTAAAAAAA
 AAAAGTACAGTGTGGACTGGGATATAAAAGTATATAAAAGTATATCCCCA
 30 GTCCCCACAACGTAGAGCACTTGTCTGGTGTGCCTGAGGCCCTGTTAACCCC
 CAGCATTACACAGAAATACATCAATAAAAACAGAAAGATCATTATTTCTA
 AAAACAAAAAGAACCTCCACAGAGGCCAGCAATTCTACTACATCCTGAAAGA
 GAGGCAGGGTTTGAGAAGCTATGTCCACCGTGTACTTGGCAAAGTAC

ACAATAGCTAAAGGCAATGTCCATCAAGAGGACAGAGAAAACAGGCTCCAG
 ATACTAGAGGGCACATAATATTCCCTCAGAAGGATGTATGCTCCAACACAAC
 ACAGCATGGACAGACCTTGGAACCTCTGTGAGACAAAAGTCCTGAAAGA
 TCCCCCTCATAGTATAACTGCAGGGCCCCAAGTTACCAAAGCCACAGGGACA
 5 CAAAGCAAGATGAGGTGGCAGGGATGGGGTGGCGGGGTGGGGTGAGTG
 TTTAACAAAGACCAGAGTCATCTGTGAAGATGGAAAGTTCTCAAGGTACGTGG
 TAAGGACTACTACAGTGTGAATGAGCTTCATGCCACTCAGCTGAGCACTCAG
 ACATAGCCAAGGTGAGACACCTTACCTCATAACATATTCAAGGAAGGGAGTG
 GGGACAAGATGGCTCAGCAAGGAAAGGCACCTGCTATTGTCAAGCCTATTGG
 10 CTCAAGTTGATCCCCAACCCCACACGATGGAAGAACAAAATGACCAATGC
 AAATTGTTTCTGACTACCACGTGCACACACAGACACACACACACACACACA
 CACACACACGTACCTGAGAAATAAGGAATACTTGTAAATAAAAGAAGAAAG
 AGACAGGAGGGGAAGATGACATGGAGTCACAAGGCTCACAGGATCTACGG
 CCTGCAAAGGACCAAGTGGACCCCTCACTGTGGCTCCCATTGTAAAGATAAGA
 15 AAGACGGTAGAGCAAAGACAGGAAGCATCCAAGGTCAATTAGTCCTT
 TGTCACTCATCTCACTATGGCAATGCTGGAACTCACTGAGGCACAGGCTCGG
 TGGCATCCTGGCTCTGGATCCTGGCAGGGACATCTGGGAAGAGACACGCTG
 CCTCTGAAAACCTCACAGTGGAACTGAAAGTTCTCATTGACAGGTGGAC
 TCAGTACCCCCAAACTGAACCCAAGTGATTCAAGGGATGCAGAAGACAAAAG
 20 CTTGGCATGACAGAATCTCTGACTGGCCGGAACACCTATCACACATGCATA
 CCTACTACACATGTGCCTCAGGTGCTGGGGTAAGCACAGCAAAGCAGAGA
 TCTGCCGTATGTAAACCTAAAGGGCCGAGATAACAAGTAAGGGAGATGCTCT
 ATCTGTCAACAGAGGAAAGGCCAGTGCAGAGTTCACAGCCTCCGAGGCCCTT
 CCTTGAAGGCTGTGGGTCTTATCTATTCTTTATCAGCTGGTGAATC
 25 CCATTCTGAAGGGTGGGTTCAGCTACTACAATCCACCTGTGGCCACA
 GCAAAGCCAGGGCAGGGCAGACTGCCTGGATCCTCAGATGAAAGACACTTA
 TTTTTTCTGGCTCTGTTCTTTGTTAACATCAAGGGAGCTCAAAGATG
 CTTATCGTAGTATTCACTGTCTGTATGTTACTATTTATAATCTTCTTAATA
 AAAGAATAATTGAATCTGACTGGAAGATTAACATTTCAAGATGAAGGGT
 30 TGGCCCATGGAATAGGGCCCTGCAAGAGAGCCGGCAAATCCAGGCCATCA
 GGCCAAAGGGCCGGCTGGTCTCCCTGAGGCCCTCTAAACACTGGACAGGGC
 AGTTCTAGAGAGTTAGATACCTCTAGGCCTCTGTAGGCTACCAATCAGCAT
 AGGGTGCCTGGGAAGCTAGGGCTCAGACCCTCCCTCTCATAACTAGG

AACCTGTAAGATGGCATTCTGAGCCAGGGGCTCCTGTGGGAGGACA
 GTGCCCTCTCAGCACACAGACAGCCAGCAGACTTGGGCCAGCTGTCTGAC
 TCTACACGGGCCAAATAAGCCATAGAGAGGGCAGCCTGCATTCTCGGA
 GGGCAGCTGGCCGGAGGCTCGTGCCGGCATGTAAGCTGCTCAAAGCACCC
 5 TTTGTCAGGTCTGCCTGTGGCCAGCTGCTCCCAGCCGCCAGCCTATGCTGA
 GAGCCCATGGGCCCCCCCAGTGACATGTGCTGGCACAGCTGGAACCCTAG
 GCCATGCTCACTGCCAACCTGGGATTGTCAGCTCCCAGGCCACCAGCTA
 GTCCCAGGTGACACAAAGCCTCAGAGACTCTAAGGAGGCACAGAGTCAGGG
 CCTAATGGCAGTAGACAGAACAGAGGACCTGTAGAGACATGATCCCTTCTAT
 10 AACAGTCCACTCTCTCCAAATGTCTTAGGAGTCATGGGTACCTACTACTGGT
 GGGGTTCTGGGGGCACACAGCACAAACACAGCCAGGAAGCAGGGCATTCCAC
 CAGCCACCATGAÀAGTTAGTGAGCTATAAGATAGAGCTAGAGGCAGAACCCC
 CAGTCCTGGAGTGGCAGCAGAGTCCCACACACGCCCTTCAATAGCCAG
 TTCTTAATGGCACTGGCACAGATCAGCAGCTGCTATGTCCACACTTATTAGG
 15 GTAGACCCAATTGGGGCAACTTCTAGGAGATGCAGGGTGTCTTCCCTGAG
 AACCCATCCCACTGCCAGCTGTCCAGGCAGCCATTCTCCACAGTGGCAGA
 AGAGGCAGATGAGGCTTGCTCAGTCACCATGGGACAAGCTTCCATCCACC
 GGGTAGCCAGGCTCTGAAAGTGGCAACAACTGTCACCTGGCCTCTAATCA
 TAGACCTACTTCAGCAGGTGGCATGAGGCCAGTGTCCACTGCTGAAGTTA
 20 CAGGGGACCAAAAGCAGAGGGAGTGCCTGAAGACTAATTGTTCTCCTGAT
 CATGTTCTAAATCCATACTGCCCATGTAAGACTCCTAAAGGGTGTAAAGGCC
 CATGTCTCCCTTCTATATGATCTAGAGGCCACCTCAGGCCAAAGCTCAGC
 CACATAGGGTCCCTGGTATCATCCCTGACCCACATTATCATGTTACAGGT
 ATAGAGGCTACCACAAACAGGATGTTGGACATCCGACAGACTGTCTTGAGA
 25 GCTTCCTAACAGCTGGATGTCCAACAATCTTAGGAAACAATAAAAGTATA
 ATCGGGTTGCCAGGAGGTACCTCTGAGCACACTGTGCCCTCAGGTCAAGG
 CTCAAGACCTTCTGCCCAACCAAATTCCAAAGCCCTACTAACACTTACTG
 ACACTAGGTCTAACACAGGAGGCAGATGGGCAGAGTGAGGATAAAGCAAGG
 AGGCTTGGCCCACACTAGTGGCTAGCCCA TCTTGGCCCATTATCATTAGG
 30 AAAATCCTCTCAGATTGGAGGCTCTAGGCCCTAACCTGGAATAAAGGCT
 ACCCACCCACAGTGGAGGAGAGCAGGCCCTGTGGTCACTTAATTACATG
 TTTCGCTGGTGCAGGGCTGTGTGGTACTGACTAGAGTTACATGCGGTTCCGGT
 GGTTAATGAGCTGCCTCCAGCTGAGACCCAGCTGCTGCAAGCTGGCAAG

GTGGGGGTCTTCATACCCGCCACTCCCTCCTCCCTGCCTGGGTGTTCTAGA
 GGTCAAGGAGGTGAACATGGGGGTTCACTGGCCTCCCAATGCCTGGTAGGGGG
 CTGGCAGATGGGCCAGGATATGCACATAGACCAGCCCAGGAAATCCCTGC
 CCAGAATTGCCTCATCAGCAGATTCAAACCAAGCAAATTATGCTATCCCTTA
 5 GACGCCCTCCAGTTGTGAGCCAGTGCCTGACAGAGAGAAGGCAGCCTGGGTGC
 TCTGTAAGTGTGTGCCTGCATAGGACAGGGGCTATGATTTTATTCATGA
 ATTTCAAACCTAGGTGGAGGTACAAACACCAGCCAGCAACTGAGAACATGG
 TGACAGGCAGGGTGGAAATGAAGTATCTGCAACACTGGGGAAAGGGGGCA
 GTCAGAGCCTCACTGGGGCAGGACGGATAGTGTCTTCATTAACAGAAGT
 10 CAGCTCTACATAGCTGTTCACAGCTGCCCTGCTTCCCTCACCCGTTGAGTT
 CCCAGCTATTAGGAGAGTACCTCTATTCCCTGCTAAGACTCTTTCCCT
 CTCAATATTTAACCATTTGTTCCATGTTCGAGTTTATTCAATTCTTTCTCC
 CCTTTTAAAATTAATTAAATTATTTATTGTTATTGTTGTTGCTATTGC
 TGGGGCAGAGTCTCATGGAGCCTGGCTGACCTCAAACCTATGTAGCCAAG
 15 GATAACCTTGACCTTCAGTGCTCCTCTCTCTTCATCTCCCAGCACTAGGAT
 CACAGGTGTACACTGTGCACAGTTATACAGACTGGAGATTGAACCCAGG
 GATTCAATGTATGCCAGGAAACACTAGCAGCCCTGCACTAAGTTGGATCA
 GAGAACACCCACATCTGTCATAGTGTAAAGGCATGCATGTCCTTCTTTA
 ATAGGAGCTCCATGGGTGATGGCTCAGAAGTCTTCATGGTCCTCTAAAG
 20 AGACAGAGAATACCCACTATCAGGCTCCAAATCACAATGATAGCTGAAAA
 CCTGCTCCCCATACACCTGCCACTCCTGTCCTGGAATCTGGCTTAAGATT
 AAGAGAGTCAGTCTCAGTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTC
 TC
 TTGCTCCACCCCTGATCTGTGGACATTTTCTCTCTGGAATGTTCAATT
 25 TAAAGTAGAGCAACCCAAACAGGCATAACAGCCCTAGAGGAGGGTTCCCCAC
 ACTGTTGCCCTGTGCTAAGTAGAGAGGTGCCAGTCCCAGAGCTGTGCAGCCT
 ACAGGCTTAGAAGCTGTGCTGGTTGTAGGTGGTTTTGTTGGGTAGC
 ATGGCTAGGGATAATAGCAACAGTCGTTCAAGGTCTGTTACAGATTCTGAA
 CCACCTACCTGCCTATGTTCTGACCCCTGCATCTAACTCAAAGACATTCTGA
 30 AAGAATTGCCTAATGGCATCTGTGATGCTTAGGGTTGTCAGCCTGACAAAATC
 TAGAATCACCTAGAGTCTGGCTCAGAGTACACCTGTGGGGCCTCTCTGA
 TTATGTTGTTGATGTGGAGAGACCTAGGTTGTCTAGGTGGAACAGCGAGC
 AGGACAATAGCAAGTACTTCTCATTGTTGCTCTGATGTGACATAGTG

TGATCGGATGTTCAGGCTCCTGCTGCCCTGACTGCCTACCTCAATGGACCT
 GTGAGGCAAGATAAAACCCTTCTCCTTGTCAAGGGTGTAAATCATAACAACA
 GGAAAAGCTAATCCCTCATAGTCACCATGGTAACCCTCTTCCACATACCA
 TGTGATTTTCACAAGTGTATGATGTATGCTGTCTCATATTAAATAACTAGGC
 5 TTCGTCCACACAAACTCAACCTGCTGGCCTGCAAGTCTTGTCTATTTT
 GCGTGCAATTCTTGCATAGTTGGCTATCCTTTTTTCAACTGTCCAT
 TATGTCTTCTTACTAAATGTACTGGACACACCTGCTTTGTAAAAAAA
 AATCATAGTGGGCCATAGGGTACCAAGTAATATGCTTATCTGGCATGCACA
 AGGCCTGAGTTATATCCCTACTACCACAAAATTAATTCTTTAAAAGAATA
 10 AAACCTATATATTAGTCCTCTACTTTGTGAGATTTGCATATCTTCTTTG
 GAAGATGAATTAGGACATTAATATTAAATATAAAATTGAATACACCTGACTA
 CATTCCATCCTCACTTGTATGGTTCTTCCCTGACCCCCCTTCCGG
 GCTGCTACGTTGGTCAGCACCAACCTCCCTTATCTCATGGAAGAGGACAT
 TTTACTGTTCTTCCATTCTACCAAGACCCCTAAATACATCTTATCTAAAAA
 15 AACTTCCATAGCACTGATTCTTGAGATTTCTCTGGCAAGCCAGCAATCTG
 TGTATGGCTCTATTCTTGCACCTCCATCATCAAGGGCTCTGGAGAAAGG
 CACAGTTAAAACATCTTGTAAAAAAGGATGGACCATCTAGAGACTGCCAT
 ATCCAGAGATCCATCCCATAATATGCCCTCAAACGATGACACCATTGCATATA
 CTAGCAAGATTTGCTGAAAGGACCCGTATAGATGTCTTGTGAGACTAG
 20 GCCGGGGCTAGCAAACACATAAGTAGATGCTCACAGTCAGCTACTGGATGG
 AGCACAGGAGGAGCTAGAGAAAGTATCCAAGGAGCTAAAGAGATCTGCAAC
 CCTGTAGGTGCAACAACATTATGAACTAACCAAGTACCCAGAGCTCTAACTC
 TAGCTGCATATGTATCAAAGATGGCTAGTCGGCCATCACTGGAAAGAGAG
 GCCCATTGGACAGGCAAACATTATGCCCTAGTACAGGGAAATGCCAGGGC
 25 CAAAAAAATGGAATGGGTGGTAGGAAAGTGTGTGGGGGGAGGGTATG
 GGGGACTTTGGATAGCATTCTAAATGTAATTGAGGAAAATATGTAATAAT
 AAAAAAATATTAAAAAAAAAAAAAGAACGTCTGACAAAGGCCAGGCAAT
 TGATGCCTAAGGCTCTGGCTCATGGCCTCCACCCGTAAAGTGGAAAGCGAC
 AAGAGCAGTACATCCACAAGAATTATGCTATGTACTCATAAAACCTGATT
 30 GTATAGACATACAGGCAGAGAGGGCCAAGTTCACAGACTTCCGGTCTCA
 TCTTCTGGTGGGTGAGCGTTATCAGGTAAATGCCATCAACACAAATTCTGTC
 AATATCCCACCCCTCAGGATGTCAGTATGTGACCGTATTAGAAACAGGGTCTT
 TTGCAGATGTAATTATGATGAAGCAACAATAGCATGCAGTGTGCTCCTCACC

CAACATGACTGACAGCTTACAGCAAAGGGACAGTAAAATCCAAAAACAATG
 GGAGAAGGGAAACCAAGTGCATGAGGGCAGATGTGTTTTACAATGTT
 TTGTAACAGAACATCAAGGATTGCCATCTCCAGAGACCAGTCGGGAATGG
 AATGGGTTCTCTCACGGCTGGAAGGAACCTACCCTATCTTGACTGCATG
 5 CTAGAAAGAGTGGCCCCTAATCAGATGTAAGCTGTCACTCAGACCATCTCAG
 AAGCTGTATCTCTAGAGATGTCTTCCATCAGGCCAGAAATGACACCAAATC
 ATCTTCTCCTGTAGGCATATTGGCCCACTGCTCCTCACACCCACAGTGAAA
 TGTGGGCTTGAAGAACAAACCCAAGGCAGTGAAGGCTAGCAAGGCCAGG
 TGTACTGCTCTGCCAGACAGAAGGGGAGCTTAACCCCTATCCAGTCCCAC
 10 TCTGCATAGACCCCTGAGAATGCCTTGCATATAGGATCAACCCAGTTGTCC
 ACCCTGAAATCTGTGCTAATTGCGGGCAGTGGCCCAATATTGCTCATACCTG
 AACTCCTAGTCATCTCACATGAATTAAAGCAGGTCTCACCTCTGCCAGGA
 AAGTTATGCCATCTCAACCCAGTTACGTGGGTTTACTCTTAGATCCTGA
 CTTCACTACCAATGGCTGCCAACCCCCATGGAGAGACATCCAAAGATGCGTG
 15 CCTTAACTGAGTCTGGATGCATTTCATGTGTAGGGAGGCCACACTTCTAAA
 ACTACCTCGATCAAGAATTCCACAGGACTAGGAGTTAGTGAAGCTGAGAC
 CCTCAGGGTGAGCACCCCTCACCATAGCTGTGGCCTAGGCAAGCCAGTTGA
 GCCACTGCCTGAATTCTATCTTGCTGGGTCTAGGGACTGAACCTATTCAAGG
 CAGGCCTGAGACCCACAGGGCATGGGATGAGTGGACCACCTGACCACAGGT
 20 TGTTCTTGGCTTTGAGCATGTGGGGACACAGTGCTGTACCTGGCTT
 ATTCAATTGTCGTTGATTGCACATAGTCATTGTCAAATTAGACATCTTAAT
 GAGGGGAGAATTAAACAGTACTTCTTCTGTATGAATGTTAAGGGA
 CTGAGGAAATTGTGCACGAATTGCTGTTAGGAGATGGTAAGTCAACAACT
 TCGGGGAAAGTATACTACTCAGGGCATATGTTACACAGTTCTGGAGATG
 25 TAAAAGTGCCTACCAAGGATTCTGAGTGCTCATCTTCACTCCTGAGTTTC
 ATTCCCTGGAGAAGGGCGACTCCTGGAGAGTCCAGCAAAGGTCCACTCTC
 TGCCCTTCCCCGTGCTGCCAACAGGGTGCCTGCAAGACTCTGGATGG
 TAGACAGCAGAGAGCATGGGATAGGAAAGGAGCAACTCTGATGCCATAGTT
 AAGCCTGAGTCCTCTCAGAGTCTGTGGGTGGACTCTGAAGAGGATGTCAT
 30 GTACACACACACACACACACACACACACACACACACACAAAGTTAAGCTTAGAAACA
 CCCCCAAGATGGACTTTGTGTTTAAGATGGGTATTGTTATATATAGCC
 CTGGCTGGCCTCTCAGTCGGTATAAGCCCAGCTTGGCCTAGAACCCATGGCT
 GTCTTCTGACTCAGTCTCTAAGAACTATGTGCTACCACACCCAGCTCAAG

ATGCCCTGCTTAAACTCAGGATGAAGTCCTTGCTTTGGGGATCGAT
 GCATTCCAGGATGAGAGTGGCCAAAATTGGCCAAGGAGAAATTCAAAATTC
 ATGGGTCCAATGTTACTAATTATGCAAAAAAAAAACAAAAAAA
 AACAAAAAGCAAAACCTTCCTGCTAGGAAAAAATGCAGATGAAATTAAATT
 5 CGTGGGTCTGTCTAATGTGGAAAAGAGAAATAGAAGACATTATACAAACC
 TGAGTGAAGGAGCAGGGGTACCTCCCTCACCGACTCACCCCTGGGTACCAA
 AGCAGAGCACCGCAGGACAATTAGGACTGCTCCAACGTGAGCATAGACGT
 AAATACTTGACTTAGAATCTCGGTGATGTATGTTATAGGCATTGTGATGGAC
 ATGGCTTGTGACAAATGCGAGGGTTGTTCTTACAGATCAATGA
 10 GCACAACTCATAGTCTAGAGAGGAAAAGGTTCAACTATCTAACAGGAAAG
 GCATTGGGTACCGCCCAACAGTAACGTACAGTCCCCAGGCCCTGGAGACT
 AGTAAAAAAACAAAGAACACACCCCTGATTACCATCACAGAACCTCACACCC
 GTCAGTTTGTGCTATCAGACACCAGCCCTAAGGACCACTTGGCCCTCTCT
 GCCAAACTGAATGTCGGTGCAAGGTCCCCACTGGGCCATGAGGCAAAAC
 15 CAAGAAATAAAAGAGATGTGGACCAAAAAGGAAAAGTGTCAATGGTTTATT
 TAGGTTGACCAGACATCTCCATAGAGAACCCCTAAAGAACCTACAGCGAGCAA
 ACAAAAGCAAGTGTAGTAGCTTCCCCTCCTAGTCATAAGTAAGGTGAAC
 ACAAGAAACAACCGCTATCCTATAGCCGAACAACAACCCCCAAAATACATTG
 AGGACAGCAGTGTCCGTAAAGGAGCTAAAACCACAAAGGATAAAGAAGCA
 20 GCCTAATGGGTGGGCCCTGGAGATTGCATGGCACTCACAAACCTGCACTGA
 AGATTCTCACCAAGGTAGAGAGAGAAAGCACAGTGCAGTTCAGATGGACATG
 AAACCCATGCATTTACCCCTCCCAACATGCCAGTCAAATGCCAAGA
 GGGCTGGGTATTGGTTGATTGGGATTGTTAAAAACTGACAGCCAGAT
 TCTCTGATTTCTGAGATTGTGAAGGGCCAGCAGAGCATCACACTTGAA
 25 AATGAACCAAATTGGAGGATTAACAAGGCCTGACTCAAGGCTTAGAGTAGA
 AGTCACAGCAATCAAGGCTGTGCTGGCACAAACAGCTTACAAAGTCCAGAAAT
 TGGAGCCAGTGCATGCCAAGTGCATTTCATCAAAGGCGCCAAAGTCATCTC
 ATGAAAAAAAAGTCACAGGGACATGAGGGTAACCACATGCAAAAG
 AGACTTAGTCCGATTGTCACCTGTCTCCAGGCATAAGATTAAACTTGGAAGG
 30 AATTACAAATCTAAACAAGAAACATGAAACGATAAAGTTCTACAGAAAACA
 GGAGAAAGGCTTGTAAAGCTCACATTAGGCAAATATTCTTAGACAGGACAC
 AAAACACATGAATCTTACAGGAAAAGGGGGCATGGAAAACACCCTGATGAA
 ATGAGTTCATAAAATTAAAAACTGCTTCTGAACGATCTGCTAAGAAGAAT

CAAAGACGAGACCAGGGAGGAAGACCTGAGCAACACAGATCCCCGTGAA
 AGACAGAGTCATGGACACCATCTCCTCAATTAGCACAGAAGAGACATAGAAT
 CATTAAAACAAACAAACCAACAGAAAAGCTACGGTCTCTGCAAGAGCATCC
 AGTGCTCTAACCACTGAGCCATCTGCCAGCACCAAAGCAGACAATTCTCA
 5 GTGCTAGTGAGAACCCACAGTTACCATGCTGGCACCTAGGATGGTATAGCA
 GTCAGGAGCAGCCATCTGCCAAAGGGCTGGCAGCTCTGAGCATGCAGTA
 CTCCCACTCAGGGACAGGCAGGGATAACCAGCGAGCAATAGAGGCAAGTA
 ACAACTCCAGAGCCTGTGCAGTGCTGTGGCAGCTTAATCATAATAACCA
 AGCCTAGAGACGGCTCAGATGTCCATCAGCCTGTGGACGGTAAACAAGCT
 10 GCAGTACACTTATCCTTCCAATGAGAGAAGAATCAACCAGAACACAGAC
 CAGAACAGACGGCCTCAAGTGAGTCTGCAAAGTGTAGAGAGCCAGACCC
 GGGCTTCATGCTGCAGAACTGCGTTCTCAGGGGACAGGACAGTCCCAGGT
 GCAGGTGCAGGGATGGCTGTGGTACAGGGCGTACAGAGCGTGTGAAGGAA
 CTCAACTTGGCCTAGGAATTGCCAGAACTCACTGAACCGGACATCTCACATG
 15 AGAGAGAGTTTGCTGCACATAACTAAACCTACAAAGCTAAAACCTAAGA
 CAAGAAAACAGAAAATAATAAGAGAACGCTAGGAGATGGGTGCATCACTG
 GTTACTTTAAAATGTTGAAAGAGGAGCTGGCAAGATGGCTCGGTGGTAAA
 GACATTGTCGCACAGGCCTGGGACCCCGAGTTGGATCCTGAATTCCATTAA
 AAGGTAGAAGGAGAAAACCAATTCTACAAAGTCTTCCCTTAATCTCTGTGGG
 20 TACAACATGGCACGCATGCCATATGTATGCATAGACAGGCACACACAATAA
 TAGTAAGTAAAATTCTTAAAATGCCTAGAGTTAAGTGCTAAAAAGAGAA
 ACAAGCTAACATACTGGAGACTTAAAAGGAACCCACCACCAACACAT
 TAGGTTGGCTGTAGACACTCATCTGTCACAGCTCGTAGCAGTCAGTGCTG
 TCCCCAGCATGGCCACTAACCTCCTCCAGCCCCCTCCCTCAGCCTCTGCGAA
 25 TCCAGCCCAGCTGTGACTCCTCAGCCATTTCTGGAGGAGACAGCCAAAT
 GACATTATGTTGGCTAACCTTACTGGCTCTGCACCTGTACAAACTCTCA
 AGTGCAGCTGGCCACAGTCATGTCTGGCCTGGTACCCAAAGACATGGGT
 GCCGCAGACTAAAGGGGGTGAATATCACCCGTATCTGTATTTGGTCCCCAG
 CTGAGTATGCACTATGCACTATGCAAGCTGTACAGCAGCCAAAAGAGCTAA
 30 TAAGGATCACAAAGAGTTCCGACACTCTGGTATCTGCTGCTTGGCCTCCT
 AGGCCCTCTAGTTAACCTCCAGTGACACTGAAATGGAGACCAGGAGGTGA
 TAGCAAGAGTGGAGAACCCACAAATGCAAAACTACAACCTGTGTTGGT
 TCCTCCCTGTTGAAGTCAAGCTGGCCAGGAAGTCTGCTCCTGTAGGACA

GGGCTGCTGGAGGCCAAATCCAGAGCCAACCAGGGTACAGGGTAAAGCTA
 GCTTCACTGCCAGCTGTCCCAGCCTGATAACCTCTGAACCTTGATAGCTTAC
 ATAGGGTGGCCCTACTCTAACATTGCTGAGGGTATCAGGAACCATGACTCCT
 CCTCACTTCTAAGGTCTGTCCCACCCAGGCATGCCACTGCCTTCCTAATAT
 5 CTGTGGGCTCAATACCTCCCAGTGACTATCCTAGGGCTCTGCTTGGAACACC
 AGAGTCCCTGTGACTCTGCAGAGCATACACTGGGTGTCAGGCCACCAGCCCA
 CATGGTCCACATTCTACATGGTAGGATGCACAGGGTCACATGGGTATATGGC
 ACCATATGCAGCTACTTACATCCATGCCCATAAAGACACCCCAAGGCCTATCA
 GGCCCCAGGCAGCTGGAATGCAGCAGTGCACACAGGGCTTTTCTCCCC
 10 AAGTACTGAGATGGAGGCCACCCCTGGCAGTCACATTGGCATGGTTACT
 GGAAGTATCCAAGACCTCCGGACTTAGACTGGTAGGCACTTGCCTCCATCC
 TGTCTCTGTGAGCCCCAAGGGTCATAGATCACCTCAAATTCAGGTGGAAAAA
 CCAGGACTCCAAAGTGCTCCAAAGGCAGGAAGAGTAGAAAAAAAGATGGC
 AGACTGAAAAAACAGATCCAGCCAACAAGAGATCCAGGTGCCAACCAACCAG
 15 GTGTCCAGGCTACGGACACCTATCGTGGAGACAACATCTAACACAGAAAGCA
 ATCTGCCTCCCTGTGATCTGACACCACAGGCTCACGGTACCCAACAAGATGCC
 AGGGCTCGATAATGGTCACTACAATGTGGAAGACCAAGGGGTTCAAAATGAA
 TATGGCTGCTGGAATCAGCCCTCCTGGGAGAGGAGCTCTGACACCTAGCCT
 GGAGACAGCCCTGCGATTAGGACACCTAGTTCTTCTGGGTACCCAGTACCTG
 20 TCACGGAACATCCTCCAAAGTGCTGGTTGAGCCATAACAGCTCACAGGA
 GTTGGGTATGGCAAGGAACAGAGGCCCTTGTCCCTCCAAATATGTCCTC
 ACTTACCCCAAGTTGAGAGTGGCACTTCCACATCAGGTGGCCAGCTCTC
 TCCCTCTCCCTCCCTCCCCATCCCTGTCTCTGTATGTGTTCACATGTGTG
 ACATCCCAAGTTCATTAGCCTATGTCCAGAGCCCAGAGCTTTATGTGTG
 25 AAGCAATCTCTCTCTCTCTCTCTCTCTCTCACACACACACACACAC
 ACACACACACACACACACACACACACACACAGAGTCAAAGAGTGTGATG
 GAATGAGACACTCCCCCTCAAGGGGATCATTGTATCCAGGCTCCTCCAT
 ATACCTGCAAACCTGTATTAAGAAAAAATTCCCCAAGGTATTGGCGAACTCT
 GAAGATGTCTCCAGCGCTGGCATTGGCAAATGTGCCCCCTGGGTACCC
 30 CAACTACATCTACAAGTCTAAAAAGAATGAGAATCCAAGCAGTCCAGAGA
 CATTGGTTACTTAGGAATTCTTGTGACCTGTGATGGTCTGAGTAAGT
 ATAAGAATGCAGTCGGTTACATGACAGATTATGTATGCATGTGTCCACTCC
 ATCTCTGATTCCTCACACAGCCAAATTGGTTCTGATGGCGAATGTAAACC

TGTAGAATCAGTGCAGCCTCTGGATCCCTGAGTCCAGCCTGGCCAG
 GTGTGCCTGCATGATGCATGTAGGCAGTGACCTCGGGACAGTGATGTTCA
 TAAAATAAACAAACAATCAAAAAAAAAACCTGTGCCATGCCACTTA
 AATTCTACTTACAACCTTCATGGAGAGTAGTTGGGTGCAGATGGCATCAGG
 5 ATAAAGCTCACTAAATAACAAGAAAATTATCCTATGACAACCACACACAAGGT
 AGGCATGTGCATGAACACACACTAAAGAAATAATCTAAATTAGTAAA
 TAAAGAAATTAAAGATCAAGATGTGTTATGTATTACCAAGATGCTAATTCC
 CCCAAGCTGACCTCCAGATTGTATCCCCAATAAAACTCACTCTGCTTTCA
 TAAAAATGAGCAAGCTATTCTAAAGTTATGAAACAGGCAAAAGACCCAG
 10 AAATAGCCAAAACACTTAAAGAATAAAACTGAACGTCACGAATGACTGTTT
 TGCAGCCCTGTCTCAATGCTAGTAAGCACAGAGTTGGCATTTCAGGATGACA
 GGTCAGTGACTCAGAACAGTCTGGCAGATTCTTGTGGCACACTGGACTT
 TAAAAGGGATGGCAGGAGACTCAGGAAGTAAAGAATATCGTCCAGAAAAT
 GCTACTCAACCAATTCAAGCTTCTACATAAAGACACATAGACTGCCAGCCACAT
 15 TTAGTACAAGGACATGGAAAGGACTCTGGAGTTCTAGTGCCTATGCAAGCAT
 GAGGGGCTAAGTTCAAGTTCAGGTCCCCAGCTCCCAGGCATGGCTACATGTG
 AACTCTGACCCCAGGACTAACAGACTGGTGGATCCAGTGGCCCTCTAGGTGG
 ACTGTTAGCTCCACGTGCAATGAGAGACAGAACATAGAGAACAAATGGGGGA
 GGGTTCTAACATCTGTCTACCTCTGGCTCCACAAACACCAGAACATGGGTGAGTA
 20 CCCCCATCACGTGTACACACACACACACACACACACACACACACACACACA
 CACACAAGCACACACTCACATGCACACACACACACTCACGTACATCACAAATC
 TAAAACATAGAACGACAATAAGAAAATTTATGTCACACTTATATATA
 TGATTACTAAGTATGAATTAAAGGTAAATTAAACACAGAACAGATATAAATT
 TGACCTCACAAAATTGAAAATTCTTTGGGGTGATAGGAATGAAATCTGA
 25 GGCCTTGTGCACAGTAGGCAAGTGCTCTAGAACTGGGTACACTCCAAGACC
 CAAACATTGTTTTGTTGTTGTTAAACACACTGTTAAATAAAT
 GAGAAGGCAAGCCACAGTATGGAAGAAGGTGGAAATTCTAAGGTCAAGGCCT
 GGCTTCAGCTCCAGGCTCTGGAACAAACCGCTACGTCCAGGGAACTGTCTGTT
 GTCAATATGAAGCAATGAGCAGGGATCAAGCCTCATCCGTGAGCAGGAAGAG
 30 ACACAGCCATGGTAAAGAACGCAATGTAGTTAGTGTGATAGTGTCTGCCT
 AGCTTGAGGAGGCCCTGGGTTAATCTCAACAGCACATAAACTGGATGTG
 GCAAAGTAGGGCTGTAATCCAGCAGTGATGAGCTGAGGGCAGGGGATCAA
 CTCAAGATCATTTCAGCCTCAGAGGGAGCTAGGAAATAGAACACACGTTAAG

AAATGAAAGAGAGGGAAAGAGATGAAGTGAGGAAGGAAGGAAGGAAGGAA
 GGAAGGAAGGAAGGATGGAAGGATGGATGGAAGGAAGGAAGGAAGGAAGGAA
 AAGGAAGGAAGGAAGGAAGGAAGGATGGATGGATGGAAGGAAGGATGGATGGAT
 GGATGGATGGATGGATGGATGGATGGATGGAAGGATGGATGGATGGATGGATGGA
 5 TGGATGGATGGATGGATGGAAGGATGGATGGATGGATGGAAGGATGGATGGATGG
 ATGGAAGGAAGGATGGATGGATGGATGGAAGGATGGATGGATGGAAGGATGG
 GATGGATGGATGGATGGATGGATGGATGGATGGATGGATGGATGGATGGATGG
 AAATTAAATGTGAAAGAACCCCCCAGGCCTCCAGAGAGCTCCACAGCACTCA
 GACACTGACCAGCTCCACTCTGCAGAATTAGGCTCTAATCCACGTGTGACA
 10 GTTCTCATCCAGGCTCCTCGTGTAGTTCTGAATTCAATGTGCAAATGG
 AACGGGCCCAAGGGCAGGGGTGTCCTCCACTCCGGCAGGCTCGGATCCAAGC
 ACAGCATTCAAACACTGCATAAGTGCCTGACTCCAAAGTATGTGCAGATAAGAG
 AAGTGCACACAGGTATGCACATGTGTCCTCACACATCTGTGCATGTAT
 GTGTGGATGTGTATGCCCAACCCCTACCCCCCTGAACGTGCATATCACA
 15 CAGCGTCCCAGCTGTGCTCGGCTGCCTTCTTCCAACCTGCTATTAACACTC
 CTGAGCAAGTGTGGAAGCCATTGTTACTACTCACAGTCCCAGCCTCTTGC
 AGACCACAAGTGTGGTCCACCTGCACAGCCCCAGAGGCCACATCTCCC
 GAGAAGAGTCTGTGTTATAAAACCCACGAGAACACAAAGCTTGACACCAG
 AGGCCAGGGCTTGCTTCTCAAGCATGCCACATAGGGGAGGAGAGCACGG
 20 CCCCTGGTTGCCACGACCTGAAGGTACTTGAGGACATACTCCATTCTCAAG
 CCCAGCAGTCCAGACACACTGAGATGGCTCTGGGTAGAGCACCTCCCACA
 GCTATTGAAGAGGCTGCCATAGCCCAGCCCCAGCCCCAGCCCCAGCCCTGG
 CCCCCAACCCCCAGTCCAAAAACACCACTGCTCCACCCAGAGACCCCCAGTC
 GCCATGCAGCCTGTCACCAGGAGACAGACAGTCTACAGGAAGCTGCTGCTG
 25 GAGCCTCCCTACCGGTAGCTAAAAAGCAAGGGCCAAGGGCCTGGG
 TGCTCAAGTGTGCCTCTCGACCCCTGAGAGGCTGCCCCAGCCCCCTCCCTCCC
 TCCCACTGCGAAGTCACACAATGACATGCTCAATAGCACACAGCCCAGGC
 CTCTGGTTCTGAGTGACCTGGGAGGCCAAGAACGTGATGGGAGAC
 CCGTCTGAGTGTGATGCCCTGGGGACACTCAGGCCCCA^GCCCTGCCACTT
 30 AGGCAGCCCGCTCCAGGCAGACAGCTGGCGGACTCCACCGAGCTGTGCC
 CCTCAGCCATGAGGCCCTGCGGCTCATCCTCTTACCCCCAACGCAGCCCCAA
 GCAGCCCCCAGGTGCCACTGCAGAGGGGTGCCAGGGCAGCCTACTCAGC
 CCACCCCCACTATATTATGTCAGCTGTTAGCCTGCACTAAAGCGAAGTGTCC

AGCTGGCCAGGGTCAGATGTAAAAACAAGGGCCTAACAAAACCCGGCCACCC
 CCCCCCCCAGCTACTCTGAACTGGAGACCCCCACCGCATGCAGCACTCACTGA
 GGAGACTCTGTCCAGCCTGGCAGAGCATAAAGGAAACACCTGTCCCTGGC
 CGGCACACTCTAATCCCCTAAACCCGAGTGGAGAACCCACCCCCAGCAGGCA
 5 GCTCCCACCCAGGTCTGACTTTGTGCTGGGCCTAAAGGAAGGATGGTCCA
 GAAGGAAACCCCTCTGATCTCAGGAATGGAAGCCTCCTGGGCCAGCCAGA
 TCCAGGTCACTGAAAGCACAGTGCCTGATGACAGTACCCCCCTACCCCTCACC
 CCAACACACACCCCTAGTTCTGGAGTCTGAATAGGAACCAGCCTGCCTGG
 GGTCTTGGCTCTGAACGGTTGTCTCCTTAGAAGGACAGGAGGCTCTGC
 10 CACAGAAAGACCTTCCTACCGACACGGGAGCCCCATGTAACCCCTGCCATAA
 GCCAGGACCCCTCAAATAACCCCTGGGAGCCCCACACTGGCCACCCAGGCTG
 ATTTATCACTACTTACCAACCTGGAGCTGAGTCAGCACAATTGTTAGAAAAGG
 GCAGGGGGAGTAGGGGGTGAAGAGAGGGGAGTATAAGACCACCCAGATAAC
 TGGAGGCCCTGGGAGGGGCCAGGAAACTATGTACACACTACACATGAGTCA
 15 CGCGCGCGCGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGCTCGCGC
 ACAGCATTAT
 CCTGATGCTGTCTCAGTCTCCCTTGAGATCTCCTAATGAACTGGTACAGGG
 AATGGTAAGCTCCAGGAAGGTAGATCTTGGGGCTAAAACAGAACTGTAGAT
 TTGGGGTGGGGTGGAGGCAGGGGGGGGGGGTAAAAGGGTCGCTCCAT
 20 TGATTCTGTCCCCATGACAAGATGTAGTACAGGAGTGGAAACTGACCACACG
 CCCACAAGGAACAGTGAGAGCTAGTGCCAAGGGTCTTCTTGAGGCCATGA
 GACCCTGCTGCCAAGCACATGCTCTTCCCTTGGCTCAGAGTCACCAG
 GAAAGGGTGTGGAGAAGAGCCTGGAGGGAGAGAAACAGGAAGCAGGCCCTG
 CAAACCCAGGTAGGCCATGGCTTGACCTACAGAGCCAACCACAGGCAGGC
 25 CCTGCCTGCATTGCGCCACCCCTGCCTGGAAAGCCTCCAATTAATCCCCACATG
 CCAGGTAGCGAGGAATGGGTGGCATCCTCTAGAAGGTTCCACCATGTCTTA
 CTGTCTCTCCTCTGCCCCAGGCTCTCAGGATTATCCGGTTCTGAACAAA
 TGTGCTACGTGACGATTCTGCCACTGCACACGGCTCGCTGGTTACAGA
 AGATGCAGACACCAGAGCTATGTCTGCAAGACCCCTCACGCTAAGGCCTAG
 30 GAGGCTCAGGAAATCTGGTGGCAGCTGAGGATGCTGGCTTCTGCTCTTACA
 GTGTGCAGGCCTTGTAAAAGGAAGCCGCTGCCCTCAGGGCAGGGTATGGCC
 AGTTAAACCCATAAACCTGAGGACCTAGGATCCATGGCTCTAAACTGTGT
 CCACTGTGATAGAGAAGGCCTGACCTGCCATTCCACCCAGATATGTCC

CATGCATCCTACTTCAAAAATAAAAGCAATAAAGGAAAGGAAGAGAAAA
 GCTGTATTCAGTTACAATTCCAAGTTACAGTCCATTGTTGCAGGGGAAGTCC
 AAGTGGGAACCTCAGTCAGAGTCGAGAGCAGAGTGCAGAAAGAATGCATACTG
 CTTGCTTGCTTGTGCTCAGCTTCAGTTCTCCCCTACCAGTCAGACCAAGA
 5 5 GGTCCCTACCACATCCACAGTGGGCTTCCCACATCAATTAACTTAGTTAACACAAT
 TACCCCCACAAACACACCCCACAGATCAGCCCAATGCAGACCATCCCCACTGG
 GAGTCTTCCAAGCAATCCTAGGTTGTTGAGTTGACCATTAAAGCCAACATAT
 TACAGTAACGAGGGAGAGCGCCTTCTTAGGAGCATACACTGACTTCTAA
 AGATAAGGGACAGGGACATAGTCCCAGCATTTGGAAAGCCCCACAAGATG
 10 10 TATTAAAGAGAGAGAAAAGTACACAGATGGAGTAGAGAAAACCACCTAG
 TGGCCCCAGGCAGAGTCATCTGAAGTGGCATGAACTAAGAACAAAGTGTGCGT
 TGTGTCAACATGGAAATACAGAAGAAAGACACTGTGAAACCAAAAGTATCCAC
 AAGCCATCCTGAGCCGCAAAGACCAGTGTGGACAGTGCAGCACACCCATGT
 GGTCCAGACACATTGCAACTTAAGTGCCATTAGTGTCCATGGATCATTAG
 15 15 AAACCAAGAGGGTCAGGAGTTCAAGGCCATTCAAAGTTGCCAGATGTGGTGG
 CACATGCCTCCAATCTCAGCACTAGGGAGGCAGGGCAGGTAGAGCTTTG
 AGTTGGAGCCACTCTGAACTACACAAGGTGTTGTCAGAACGACAACAAAC
 AACAAATAAAATAAACATACCAAGCAACCACCAATTCTGCACATTCTCCTCTGA
 ACAGAACATGAGGATTGGACAACTTCTCGAAGGCCATAAAACACGTGCTGTAG
 20 20 GTTTAAGGCCACACAGTCTCTATCCTGGTTGGAAAACAACCAACCAAC
 ACAGAGGAGTCCACAAGCCTGCTGGCTATGTGCTACCATGCCCTTCTAGCCC
 CTAGCAGGCAGGGTTTCAGCACTCCAGCAACCCCTACATTCTCTAGCAGCTG
 AAATGGAGAAGATATTGGATCCGCCACCGTTCTGCCAGCTCATGGC
 ACCATAACAGCATGTGAAAGATGCTGGCAGGTAGGAGGAAAAGGCTTGC
 25 25 TGCGCCCCAACATAGCAGGCATTCTAGCAATCCAGCAGGACATATAAGCTC
 TGTGCCAACCAACAGTGGACTTTTGCACAGCTGGAGATCTTGAGGTCTT
 AGAACGAGCCAGCCCCATCCATTCAACCCATGTCACCCACCCATCCCCAGACT
 AGGTGTGACATCCTCCCACCTAGACTAACGCCACAGAGCAGCTGTCTCCTGG
 GAGAGGCACCAACAGTTGGAGA
 30 30 TGCCCTGGGGCTACAAGCAGAGCTGAGCCATGTCTGTTCCATTATCCCCAA
 CAGCCCTCCAGGGACTACACGCAGATGGCATGTGGCTTCCATGTCTACAGGA
 CCCCAAGGTGTGAGTTCTGGTAGGAACCTGAAGCCCTGTCCCATTAGCACA
 CAGCCTGAAACACAGTTGGAGCTCACAGCTACTCTTCTCAATGAATGTA

GGAGAAAACAAC TCAATCAAAAAAGGTGGCATCTCGTGGGAATATCTTT
 AAAGTGGCAAATGACAGCTGGGCAATAGGAACCTTGTGCTGAGGACGT
 AGAAAGTCTGGTCCAGCTGGCAGTGATGGAGCACACCTTAATCCCAGCA
 CTTGGGAGGCAGAGGCAGGCAGTCAGTGGTACAGGCCAGCCTGGTCTAC
 5 AAAGTGAGTCCAGGACAGCCGGGGTATACAGAGAAACCTGTTCGAAAA
 ACAAAAAACCAAAACCAAAACCAAAAAAAGAAAGAAAG
 AAAGTAAGTTCTAGTCCTGAGAGGGACACAATGTTCTCAGAGGACCCAGG
 AGCCCAGGAGAGAGCTGGCAACACTACTGGGTACACGGTAGCTGGACAGCA
 TCTCTAAAGAGGCCCTGAGAACTAGATCTCTCCAAGCAGGGCTGGGCCCA
 10 CAGGAAGTCAGATCTGGGTTGGTGGTAAA ACTCAAGCTCCCTGCTGGTCT
 CCTGACCTTGTGCTGCAGCAGTGACTCAACCTGCAGAAGTCTTCTCCCT
 CGGCTGCAA ACTÄGTCTTCAGGGACAGGGATAGAGTAAGCATACTGACTCTC
 ACGAGTGCAGCTAACAGGTGTGATATTAAATGCCCCATAAGAGATCTCAGAC
 AGAACAAACAGACCAGGCAGTGGACACATGCCAAATACAGTGCAAGCAGC
 15 AACGGTACACTAGGTACAACCCAAAGGCGTCTCAGCCAAAAACAGAACAA
 CCCGCTGTGACTCCAAGCAACAGAAGATGGAGAGCTAAGAGCAAGCTCTACA
 ACAGATAGACCGTGAAAACAAACTAAACCAAAGCAAAACCTAGACACAGCA
 CCAAGACATGAAGCTAGGCCTGAATTAAACGCCAATAAGTCTCCACTGGC
 AGGAAAGGGTGTGAAAACGAATGCAAGAACATGTGAGGCCCTGCTGAGTGT
 20 GAACGAGGGTCTGGACCTGGGAGCTGACCTGTTCCACTTGAAAGTAGGA
 CCCAGCAAGGGCTTTAAGGGCTCAGAGAGCCCACCGATCTCATTGCG
 CCTGGAAACTGAGGCCTGCCAAGAGAGTTACAGAAAGCAAGGGCGGCCA
 GGAAGGGTCCAGCTGCAGGGAGGTGGTCGCCCTGCCAGGGAGCCT
 CACAGTAAGGGAGGAAACTGGAGAGATGACCTCATCCCCAGGCCTCCGGCC
 25 GCGCGGCTCACGGTTTAACCGCAGGCATGGCGGGACAGTCCCTGGTATG
 CGGGCTGTGGGCTCACGGAGCTGGAGTGTGCTAGGACTTTCAATGCA
 GCTGTCTTGTGGATTGAAAACAAGCTGGGTTGAGAGACAAAAAAC
 AGCCCTGCACCTGGCCTGCCAGGGTCTCCTATTGCAAGGAGGGTGGGTG
 GGTTGGCGCGTGCATGCACATT CAGCAGACTGCAC
 30 CACACATGTGCCACGTCTACAGATGTACATACAGCTTGCTCTAGATTAGA
 GGCGGATTGGGGCTGGCGGGAGGGGGTGTCCCTCCTGGGCCAC
 AAACAAGTTCAAGGCCAAGCACACCTATAACACCCCTGATCAAAGTTCTAG
 CCAGACCCTGGCCTGGCAGGGCCAGTTCTCCAAGAACAGCTTTCAGACC

CACAGAATATGCCTGGCTAGCAGAATGCTTAATCCCTCGGAGGCCGCTGG
 CTTCTTGGCCCTGGCTGAGATAACAGGGCTCTGGCACCAAGAAAGCCAGGC
 GCTGAGGCAGGAGTACCGGCGCTGGGTTGGGAACACAGCCTCGCGTGACT
 TCTTCTCCACCATTACCCAATGTGCTCCCAGAATCCCTCACAGAGCTCCCTG
 5 CCCTGGGCCCCGTGGGACCGCGGGCTGIGGTTGGCTCCCGCGCTCGGC
 ACTCTGGGCTCGGCCAAGGGCTGCTGGAATGTGTACAAGAGCGCCACC
 TGGTGTCTCCACAGCTCGTCAGAGGCTGCCCTGTCCTAGCTCAAAGGCTGAA
 ATAAACATCTTGTTCACCCAACCTCCGTCCACAGCATGTAGCAGCTGCA
 TTCTACACTATGTCCCCAGCCTGAGGCTCCAACAGCCATTCTCACCCTAGAG
 10 GCCTGGAATCCACAACCATGATATCTCGTGGCCTAGGACACATGCACCTT
 CGGAGGCCATGAGCCATCTGCAACAGCACACAACCTCCCTAACCTAACCTT
 TGACCAATCATCATGTCTTAGGAAAATATCACCACCCATATACAAGGTCC
 TTTGAGCCATACACTTCTCACTGGCCATATGTCCAGGCTGGACACACGCCA
 GCCTCACATCTGCTCCCCAACACCATGGTCATGACTCTGAAGTAAGCCACTA
 15 GACACAGCCAGCTCAAATCTGGAAGGTATGGCCTCTAAAGGCTAGCATGTG
 AGGATACAGCTTACGAACATGGCAAAGTTGGGACAGACAATGGCTAGCAG
 TTAAGATCCCTCTACGCTGGCAGAGGTTCTAAGTTGGTTGGTACGCATGT
 TGGGCTGTTACAATCGTCTGTTACTCCATCTAGGGGATCTGCCACATTAT
 CTTCTGGATTCTGTGGCATTGAGCACACACACACAGGGAGGCGGCAGG
 20 GAGAGAGAGGCTTAAAATAATGTGGCAAAGCCAATGGGAGGTTAAGAC
 TAAAGCCAACATACACTTCTACCCCTACTTACAGTTGGAGACACTGAGGTT
 CAGGGGTATCATTGTATCCTACTCCATATACACTCTGAGCAGCCGGGTGTT
 GAAGGGGGTTCTGTATCCTACTCCATATACACTCTGAGCAGCCGGGTGTT
 GAGCCTCCCTCTGCATAGTAGAAAAGTGTGAAAGAGATGTGAGCCTACTCAA
 25 AGAAGCCCACATCACATCCAGGTTGCCAGAAAAGAGCAGAGGGAGTTCC
 AGAAGGGAGTGTGCAGCGTTGACCGGAGGTCACTCTAATAGTAGGAAAGCA
 ACCCTGCTGGATATATAGTGTGAAAGGTCTGAGGCAGTTGGAG
 GGAGAGATGGGAGGGAGGGAGGTTGGAGATGGGGGGGGTGTATGCTT
 AAATGTGTGACACTCTGAAGACCATGAGGGAGAAATTGGAAATTATCCCAA
 30 CCACCCAGGGAGCGTCTGGACACTCAGGTTTGTCTATAAAATCTCTTCT
 TAGCTGTTGTGGGCAGGGAGGGTCCAGGAAACGAGAAGGGACAAAGAG
 GTAATGAGGTCACTGCCCTCACAGTGGTGGACAAAGAGCCACTTCTGGGAAG
 CAGAACAGACTGGGAGGGCTGCCTGGAGTGGGACCGCTCACACTGAG

GGAATGGAGGAGGGTGGGTCCCACCCACGCCTGCCTTGCTTAGGGTTGTT
 GGATCTGTGTTACAATTCCAAAAGTAGCCACAAGATGGCAAGCAGGCCCA
 GAAAGAGCCTGGCTGAGGGAGGCAGCAGAAGCCACCAGGAAAGGGAGCCT
 AAGCCAAAAATTACTGGGTAACCACCCCAAGTCTGGAGCTACCAGATGAGA
 5 AATGGAGTAGGTGCATTCACAGGCCACACACATGTGAACATGTGTTGACAC
 ATGAACATACAGTACCATCTACACGTAGGCATGAACATAGCTACACATGAAG
 ATACACAATACAATGCATTCACTACAAGTGCACAAGAACATACACAAACCAA
 GCACAAGGCCTAATATGGATATTACACATGTAAATGTCCACTACACTCTCAC
 ACATGCTCAGACACAAACACACACTTACCTGAAGACACAGCTATATATAGGAA
 10 TGTGTCCATTGAATACATGGGTCTGTGCATATGTGAATACATTACGTAAAGT
 GCATATATAGACTTGTACTTGGAGGCCTCCCAGGGAAATGTTCTGACACAC
 AGGCCCTCTCAGCATAGGAGCCATTGGGCCAGGCTCTCCAGACCAAGTCC
 CAAACTAAGAACTACAGAACCTAGTTCTGGAAAAGAACCTGGGCCATT
 CCCTCAGCAGTAACCAGGAGCTATGCTCTCATAACATATCCAGAGACTTGA
 15 CCTCATCCGTGTAGCAGCCACCTCTGTACTGGCAAGGGAACAAATTCTGACA
 GGAACCTGTGGGATAGCATCACACATAAAACTAAGGAACCCAGGGCCCTCT
 TCCCCACCTTGGTTCTATAAGGGATACAAGGGCATGTGAAATTCCCCAAC
 ATATCTAAGAGCTCCATCAGACAGGTCTGAAAGATTATACTCTGGACTAA
 GGGGTGTCCAGGAAACTGAGGCTAATCAGCTAACACATCACAGAGAGAT
 20 GCCAGCTAAGATTGGTGGCATTTCCAGCCACATGGAACCAACTAGGGAA
 TAGGCAGACTGGCTGGATTTGCTTGGAAAAACTTGAGGCCCTGACCCCG
 ACTTGAAGCCCAGGAACCATAAGGTACAGGAATTGGCACCTCTGTTAAGTGTG
 GGGACATCATAGGCTAAGGCCACATTGAAAAGTCCCAGAAAACCTCAGAAG
 AGAAGTCGCCCTCTAGTGACCACAACCTCCAATCACAGCTTGTACTGTCTGT
 25 TAGCAGCTGCCTAAACCACATGTGCCTAAACCACAGTGACATCCCAACCCCA
 GAGGTAGGCACACTGCTGGCTGGCACCAAGCCATCATAGTTAAACTTGGT
 ACCAGGTGTGCCCTGGATTGAATGCATTGACTTTGGATGGAGTAAGGAA
 CAAGAAAATTGCCAGGTGCCCTGAATTGCTACAGAGCTCACTGTAGGGTA
 TGAACCCCTCCAGTGGCTGTAGAGAACTAGGTACTACCAGGCAAGCCTCATG
 30 TTTGATTGGTCTACAGTGAAAACACGTGTCTATGGAGTTGGAAAGGGG
 GCCGTTGGATGAGCAGCAGGGATGGAACAGAGCAGTGCCTGCCTCATGCTT
 CCCTGGAGACTCCTAAAAGCCATTGACAGTATCACACGTGAATACTCAAACCT
 GAGGAAGAAGGCACCCACCACTCAGGCCAGGACCAGAGAGCTCTATAATC

CAGGAAAAGGATCTTCCTGTGGCTCAGTCTCTAGAAGCCATAAAGGAAAGA
 TAAAGTGGACACAAGATAAAAAGGGTGTGGCTGAGCAGCCACCACTGTGCTTC
 AAGACTTAGCAGGACAAGCTGCCAGCTGACAGAGGCTGTATATAGATAACA
 CTGAGAAACACCTAACAGACCCCCGTGCAGAAGGTGAAGGGCAGCTAAATGTG
 5 GCCCTGTTCCCTGTAAGGGTAGGAAACATCCCACAGAAAAGCAAACACA
 AGTGCACCCAAGCAGAAAGACACTAGGCTGCACCATTCTGGGCTTACCA
 TGTTGCTATCTTGTCCCCATAGTCCCAGCCATGCTGGCCTCACCCATCTTCCC
 AGAACATCATAGATCCATCAGCATTGCTCTAAAGGCCACATCTGGCCCAG
 CAGAGAATGGTACATGGGTGTCTACCCATGGCTCTTGATTGCCCTCA
 10 CAGAACAGGGTCTGCCCTCAGTTGCTCAGTGGATCCTAGCCCTGTTAGGG
 CTCATATCTACCAGATCAACAGTACCTCAGCCCTCAAAGCATTGAGTTCAC
 ACACAAACAGGGCACCCCTGAAGACACAGTTGGCTTTCACAGAGTCAGGGTC
 ACATGAGACAGTCCTCATGCCCTCACAGAGTGTGGAATCCTAAAGACATC
 TAAGCCTCTCACAGTACATGGTCCCACAAGACAGTCCCCAAGCTCCTCGGA
 15 GTGTAGCTGGAACCTGGTATTGGAAATTCCATTCCCAAATTGCTCTATACT
 GGGACAGGGCACACACTCATGTCTGGCCTGCAGAGAGCTATGTACAAAGGTA
 GTTGTGGTACCCACTAGGACTGCCACGATGGCCTGCCAGAAATGATACATG
 AAAGTCCCCTGAGCTGAAAGGCCACCCAGTGACTGAGTTAGAATTGGGCT
 AGGACACCAGCAGGGCCATGAGTCAGTCAGCAATGGCACACACAAGAAC
 20 ACCCCACCCCTCAGTGCCTACTGTACCCATGTCCTCTGTCTCTGGGCCT
 AGGTCAAAATTCCCCATACAAAGGGACCCCTTCTATTCTCCTGCATCTTC
 ACACACGGCCCAGGGCCTGATAGGCATGGATGCAGGGAAATTGCCCTGTCT
 GATAGCCCAGTAGCAGGGTGGTAGAGACCAAGGAGTGGTGGTCTACCCCTC
 CCAGCCCTCCACCTCTTCCAGTTGCAGTGATGACATTACTGATGGCCCC
 25 GGGTGCCTACATACCATCCAGAAGAGGGTCCCGGTGCCAGAGCGGCATACT
 GCTCAATAGTGGACAGGACACTGAAGATGAGGCAGACCAGAACATGAGGA
 AGCTGTGAGACAGGGACATACGGTCAATGCCATGGCAGTCCAGCTCCCTGCCAC
 CTCCCTCTCACCCAAACACCCACATGCAAGATCTTAGTGCTGGCATTCCAG
 GTATTCCCTAGCTAATGCACTCAAACATGCCATGGATGGATGGAACCAATT
 30 ACCATGTTAGGACTGACCCAGATTGGTGTCTCAATACACACTGACCTGAAC
 ATGCCACACTGTGCCATCTAAAAGCAGCCAATACTCAGGGACGGTACACAG
 CCTGGTGGCCATGCCCTAGGGACAATGGTCAGTATATCCAATTATTCAGTA
 TAACCCCCAGTATATCCAAGAACCTGGTGTACAATTGAAGTCAGAAGTACT

ATTTTACAAAACAGGAGCCTCATCCCCAGGAGTGCAGGGGGATAGAGTCC
 CTTAGCCAAGGGGGAGACACAAGAAAGGAAGGCCAAGCACAGCCTGAACCT
 GTGCCCTGAGGACACCCAGAACGTCAAGCTTTACACTGAGGGCACAGTTGC
 TGCCTGCTCTGATTCCAAGGGCACTGGGAAGATAAGTCTCCCTCCACTAAGC
 5 TCTCCATCCCTGGGTGTCATCATCCAAGGTGCCCTCAAAGTTGCTTCCACTTT
 GGGGAGGGTGCAAGATTATTAGAGAGGGGGATGCTTGGGAGCTCAGAGAC
 TCTACGTACCCCTCGGCATGTTCTGGGATCAGAACATAGAACAGTGGGAGCTG
 ATGCATTGTCCCAGGGCTACAAGAGGGCAGACAGAGAACAGGTATACACAAA
 GTCATCAGGGCCCCAGCACAGACCCCTGTCTCAACAAAGGAACCCACACAC
 10 TCCATCAATCCTATATCAGGTTTCCCAGTATGTAAGGCCAGACCACAGCC
 TCAGGCTCAGCCTCCCAGAGGGCACACAGCAGCAGTAGCCTGACTCAGCCAC
 CATTCCCTGGGAGAGGCACAACTCAGATCTCCACACCTCTTAAGATTGATT
 CATCCATTCCCTGGCCTCTGCAGCCACCGTTAGAGGCTCAGAACAGAACAGG
 CAAAGCCCCCCCCATTGCCCTCTTACCTGCTGTGCCAGGTCAAAGCCTGAA
 15 GTCATAGCTTACTATGCCTCCCCAAGACAGACACTCTTGTCATGCCATT
 GCTCTGCGATGCACAGCACGTTCCAGCCTCCTCTTGTCTCCTCACCCCG
 GCCCAGGTGCCAACTCTACCACCTCCAGATCCCCACATCATGCCAGTGTGG
 TACTCCAGTGGTACCCCTGTCCCCCTTTACTGGTATTGAGGACCTGATGTTACT
 GCCCTGTCTAAAGGCAGAGACTCAGGTTCTACAGTGTGGTCCATATCATCT
 20 GCAGAAGTTGCTCAGTACCCACCCGTCCCCATGACACCTAAACACAACA
 CTTATGGCCAAACAGCTCTGCCAAGTCCTAGTGCCTACAGCCACGCCAGGC
 AGTGAGCATCCTCAGAACAGGTGACTAATATAGAGCTTGGTATACAGAGGTC
 TTGGTACCCACCATACATACCTCCATTAAATCCAAACTCTTACCCACT
 CACCACACCTATAGTAACCTCACATCACAGTAGGCAACGTCTCCATTGGCAC
 25 TGATCCCTGGCCAACACCCACACCAGGATTCTCACATAGAGCACACATCTGAT
 TTGGCCCCAGCAGAGCCTCCAGGTGGCTTCAGTCCTGCCACTCCCCATCTC
 TACCACCATGAATTCTCATAGGCCTAGAGCTCTGACAGCAGCCAGCCTCTAA
 CCCTGGCACCCAAATGCACTACACAGTATTGTTCTCATGTCCACTCTCCACA
 TGGACTTAAGGACTCCCCAGAACAGCACGCAGCACAGGACATGCAGG11CTCCTT
 30 GGTCCCCCAGTAGTGTCTCCTGACCAGTGGTAACCATACTGACTGTTGGCC
 CACATCTATCTCCTGGCGCTGATCATATGGAAGCCCCTGTAAGCTGAACAAG
 CCACATCAGATCCTCAGGAAGCCATGGCTTTATGTGGACACAGCAAACACT
 AGGTTAGGTTGGAGCCCCCTGCTGTCCATCCACAGATTAGATGTCCATCCAT

GCCTGCTAGAGAAGTCTAACCTTAGCCATGTATCCTCAACTCTTCAGAGAC
 CGTTGTGGCCTTTGAGACTCAGTTCCCGCTGACTAGGGCTCTGCTCTCCCTC
 AGACTGACTCTCACAGAGTGGGCCTCACTAATCCAGGGTGTGTTGTTT
 GATTCCAGCAGGCAGGGAAAGTAGGGTTGGGCTCATCTCTAGGCAATCGAGA
 5 GTAGATGCCCAACCCCAGACCATGGTTACACATGGAGCCAGAGAGCGACTA
 GCATGAAGAAACGCAGCCTTTCTGGCTGCCCTCCACAGTGACATAGTCAG
 GCAGCCCTACTTCAGATTCCAATTGGAACATTAGCAGCTAGGTCTACCCCC
 CTCTTGGAACTGTGGTTGGCACAGTGCACAGCCCTCAGTGTCTCAGCACC
 TAGAAGTGGGGAGTGACTTACCCCAAGGTCTTGAGAAGCCCCAAGCTCC
 10 TGGCATCAGCACACATGCAAAGATATGGTAAAACCTCCTGCTGCTCCCTGG
 GTGCCCTAAAGCTTACACACACACACACACACACACACACACACACACCCCCAGGGCAC
 AATGTAGCCAGGTCCGGTCACCTGCCACAGTTGACAGAATAGCACTAGTC
 CCTCAAGAATCTGACAGGTACAGTGTACCGTGCTAAAACCCAGCTCCTATT
 TCAGAGGGGGACATTGAGGTTCTGGAGCTCTGAGGTCACTCAGGTGGAAT
 15 CACAGTGGTCCAATGATAGCTCTTAATGGACTTCAATTCTTACTGCTAGG
 GTGACAACTTGGTCTTCAGGCCCTCAGAGCCTCGGCTCCAATATGGAATAT
 AATAGCACCAGCACCTGAGGACCAGAGAGCTATGTGTAGCAAGGTAACAGA
 GATCTCAAATAGGCCACAGGGAGAGGAATGGCTGTCAAGGCCACCCCTGCC
 CATGTCTGCAGGGGATCAGGCCAGCAGGGCAGCAGCTGCAGCCTCGG
 20 GTGGAAAATCCAATGCTTGGAAAGGAAGGTATCAAAACAAGGAGGCTGTGT
 AGAAGCCCCGCCTCTCCAGTAACCTCCACACGGCAGTAGGAAAGGCCATGG
 ATGCACAGACCAATCCTGGGTAGAGGTACAGAGCAGATAAGTCCCCAGTGC
 AGACAGGAAACCACCTAGTTCTCCACAAGGCTGGCAGGGCTAGGCAACACA
 ACCACCAAAGACAGCCATGCTAACCTGCCAGGAACCTTGAAGTTGGGAC
 25 AATGGTGGCAATCTCCCCCATGTGCTGGCTGCCCTTAGCCTCGAGTATTCC
 GAAAGCTAACAGTTCTCAAATATTGAACTCATTGGCTGTCCGAGAAAG
 GGTTATATAGCATAGTTATTTTATCTACTCCTGATAAAATGAGTTTATCT
 TATTGCTACTTATCTGTTCTGCCCTGGATAGGGCTGAGAGCCTCAGAGAG
 GCCGAATCAAGGGTCCCTGCCCTGGAGCTCGTGGCCAGATGCCAGGT
 30 CACCCACTCCTGCCTTTAGGACAGTTGCCATCCCTCCACCGTACCTCCATA
 ACCCAGAGCCGCAAGGTCAAGGCTATCATAAGGTGCTCTCCATATCCCCCACCC
 CCAGCAGCAGCAGAGGAAACTGAGGCCGGGAAATGCCAGTGTCCCTGGTT
 ACAGACTACATGTTCTAAGAGGGTCACTGTGCAGGGTATGAAACAGAAGG

TTCTCGGGAACAAATACCCCTGCTTGTCCGCTCTCACCAAATCAAACATCGG
 CCGTGACCGCAGCCCAGCCCTGAGGGACGTCCAAATGCCTTATCGGACATCA
 CTTCAATATCTCTGTGCCAGGTGCCCTGGAACCCAGAAGAAGATGGCATC
 CAGCCAACCCCGTATGGCTGCCAGCAGAAGGTATGGGAGCACAAGGAACA
 5 GTGTCGGGAGTACGGACAGGCCAGCTATGGCAAACCTGGAGATCTCTTCCAT
 ACATGTTAGGCCCTGACCAGTAACTGATCTTAAAAAGCCAGAGCTGGTTCT
 AGACCCATGGCAACCAGACCTGCTCAGGCACAGGCCTGATGGTATACTGT
 CCCATCCCACAGCCATTGAGGGAGGGCAGTACTCTATGCATGCAAATAGCAA
 GGGTCTCCCCAGATAAAGGGGTAGCCTAGCCACCATCAAATTCCAGCACT
 10 CAAAACATGGCAGTGAAACATCTCAAGAGGTCTCAAACCAATTGTATCTGCAT
 ATACAATCATAGTGTGAAGTCCCTAAAACGTGTTAGGCTGGGCTGGAG
 GTACTGTGCACAAAAGGGTAGAACCTGAGGATACTGGGAAGATAAGCCAGG
 GATGAGATGACACATATTCAGGATCAGAGACCCCTGGGTTACCAGGTCTG
 CAGAGACAGAAGGCAGGATGGGTGCCAGGGATTGGAACAGTTCACTG
 15 AAATGACAGAAAGTTCTGGAGGTGGAGGTGAGAATGGCTAGCTACACATTCT
 GTGGGTGAGCTTCACACTACTGGCATAAGCACACAGACAGCCAGGCCTG
 TGTCTCACCACAACAAAATAGATTAAAGAAAGAAAACCAGGGCTGGGGC
 ATGACTCCATGGCAAAAGTGCTTGTCTCTCCCAGATGGTCAAAGGTTCA
 TTCCCAATGCCCTGTTGGTGGCCTCCAGCTCCAGAGGCTCTGATGCCCTG
 20 TTTGGCATCAACCAGTTGGTCACTCATACATGCATGCACATGTGTACAAAC
 AAATTAAAAAAGAAAGAAAACCAAGCAAATGGATTGATAATAGAATTGAG
 TTGGCTAAGTACACTGGCCATGGCTATAATTGAAGCTATCAACATCCAAAG
 GCCCCTGGGGCAGCTCTCACAGGCCAGAAACAGTCAACTAAAAAAATC
 TAAGGTACCATGAGCCTTGTATGCACGACACCCATGGACTAAATCCTATGT
 25 GTGAGCCCTGAGCCATGTGTTGCTATTGTATGTGTAACGCTGACTTTGCTATT
 GTTCCACAGAGAGTGACTTGGAAAGATTCCACACTAACCCCTCACATCGCTA
 CCTGGAAAGGGAAAGCCTAGAGGGGACCCCTACTAACTCACTGCCATCACCC
 CCCTCATGGCCACCTGGACTCCAGCTGCCCTGGCTTCAGGTTAGATATAGACA
 TGTCCCAGGATACTGGACTTTAGAGGGGACAATAGGCTAGGGATATCCCA
 30 GGAAGGATGGTACCAATAGCAACTGTCAGATGAATAGAGTTGGCAGGGTTAG
 AAGACTTCAAGGTAGCCACTTGCTCACAAACACAAACCTCTCCAATGTGCTGCAC
 AAGGTAGAGCCTAGGCCAGGGTTACCTCCTAAAGGGACACACCTCAGTGCAT
 GCTGAAAACCCAAGGTGTGCCAGAGACTGATCAGTTCCCTTAACTAAGCCTT

GGGTGGAAGAAGTCCAGGGAGACACAGGGAGTGATGGTGGTCTCAGGTT
 CAATCCACTTATGCATATTAGAACAGTCCTGGATTAGGGACAACAAGATATA
 CCACTTGTGGGCGAATAAGGTCCAACATTGTATAGAGCACACACAGGGCCA
 CGTAAACAGTGAGCTCAGGCTGGCTATACAGACCACAATGCTCAGAATAGGA
 5 GAGCCACCTCATTCTACATGCTATTCTAGGCTACCTCACCTCCTCTATCTGAAT
 GGCCACCTCCTGTTCACTCAGATCTCATTGGGCACCTCTGAAGGGACAGTTG
 ACCTTGGTTGGGTATACAGATAGCCCAGGTTTACATCCTAGTGGCAA
 GAGCTTGCTACATGAGGCCACACCACAGGCTCAAGAATATCTTGAGGCC
 TTTGAGTTCATCATGTAACCTACGTCAAACACCACCCATCAACAGTGATTCTCAG
 10 AGGATCACGAATTCTAAACATCAAGATCAGTTGGTCAAAGCACACATACTGC
 TGTACAAGCTTACGGGTGCTCAACCTTTGACTCCATGGCAGCATAATTGTCA
 TCTATAAAAGTCCACACAGAACTGTGGACTAACAGCAAGCAAAAAGAAATCTAA
 AATCTTAAGTAAGTTATGATTGTGGAGGGCACATTCATAGCTGTGTTGG
 GCCACACAAAGCCTGCAAGTTGTGGTGGGAGGTGCTACATAAGTTAGGGGA
 15 GACCCAAACCAGTTTGCCTCCCACACACCTAGGCCTATACAAGGTAGCCC
 TTGCCTGCCTCCCTGAGGGCCTGGCCTCAGGCTGGTGCCTTGCCTATGGCT
 AGAGCTTCTAGGCCTGAGATTCTCCTGGCCAGCCACTGCCTACTCCCTGAGA
 CTACACTGGCTCTAAACCTTTAGGCCTGGCTCTGCCATAGTTCATTCATT
 AAAATGTTCTGGTAGGAAACACCAGCAGTGGTACTTATCACCGAGGAAGT
 20 GAGCGTACTAATCCATTGTCTTGGGAGCCCTAAATGTGCTGATCTGGAAATG
 CAAACCTATCAGGAGATTAGCCTCAGCCCTGCACTGAGAGGGCTGCCTCACCT
 CATAGCACCAAGCTGACACTGTTCCATGATCTGGCTAGAAACCCAGAAAA
 GCAGGACATTCACCTGGCTCTGCAGAGCCCCCAACCTCTGTGCCTATGCACC
 CCCCCCAAGGCTACAGGGCAGAAACCCAGTGCATTTGTGCCCTATTCTAGG
 25 GCAGCATCCTCAGTCATCACAGAGTCCTAAGAAATGAGTGGCCCTACCTTCCC
 AGGTATCTATGTCTGGTGTCTCCAGCCCAGTGATTGCTGAAAACCTCTGTT
 CTAGCAGAGAAGCTTGGCCAGTAGGGGACCCATTGGCTGGCACACATC
 TGAAAGCCAAGCAGTAGGCCAAAAACACTGTGTGTGTGTGTGTGTG
 TGTGTGTGTGTGTGTGTGTGTGTGTCTAGATTGCTGACCGAGTG
 30 AGCAATTGTTAAGCTGAGAGGAAGTCTCTGGCCTCTACGGAAACCCATT
 GTGCACCTGCTCTGAATCTCTAGCTCAGGCAAGCTTACAGCCTCTGAAC
 GGGTCAGTGCAGGATACAGGACAAACCCAGACCTGATGCTGGCCAAGTCAT
 TAGCACTGGTCATGAGCAGATGAATGTCCTGGTGGCTCTCCAGATTAACA

GGTTAAGGGTGGCAGTACATCCTATGTCATACACATGACCAAGCCAGGTCT
 TCTAAAGGCTGCAGAGGTTGAGGCCACCAGGTCACTGAGTCAATGGAACACTCC
 ATAGCCACTCTCCATTCACTAGCTAGACTGCTAGTAACAATTAGAACACATGATT
 CCATTTGGAGTACCTCCAAGAACTCAGTGTCCCTGTCCCTAACACTCAGA
 5 GCAGCACCTAGCATTAGACATCCCACCTAGTAGCACCACCATGTGTGACCCA
 GAGAAGCTGACCCCTCCAAGCCACTGTCAGGCAAGGCAACATCCCCAAG
 CCTGGGTCTCACCTTAATCACACATGTCCACAGCTGGCTCGTAATTATCCC
 AGCTCTCAGAATCCAAACTTACTTCAGCAGAGTCCCCAAGAACATGGCAATG
 GTGTCACTGTTACCCCTCTCAGGGAGCGTCTAGTCTCCTCTCCTAGGTTAG
 10 CATTCAAGATAGGTGAAGACCATCCTGGCAAGGGTTCAAGCCATCTGCACT
 ATCATTGAAACCTTTTGAGGCTGGGGAGAGCAGCAAGGTACTGGTCCA
 TAGCATGATGACCCGAGTCTGACCCCTAAAACCTTGTGAAAAAACAGG
 CATGGTGATGTGTGCTTATAATTCCAGCTGGAGAGACAGAGAGGCAAGCA
 GATTCCCTGGACTCGGTAGCCAGCTGGTTAGCCTAATTAGCAAGCCTGGC
 15 CAACAAAAAGACCCATCTCAAAACCAAGACTGACAACCCCTGAAGAGGG
 ATTCTTTGGTTACCTCTGGTCACCACACACACACACACACACACACACAC
 AC
 GGATAGGACAGATTGGGGGAAGATATGCTCAGATAATGTGCTCAGAGCAG
 GGAGGCAGGAACATTAGCCAGAGTCAGAGGAAGAGACTGGGAGCACAGCTG
 20 CGCTCGTGGCTAGTGGTTGTATCTGCAGCTCGGAGAGCCTGTGGTGGTCAGT
 GTGTTGACCTCTATCCCAGAGCAACTCAGGTTGAGAGTTGTGTCTGAAGATC
 TGCA GCCTAATAGGATCTGCCTGTAGGGCCAGACATACATGACTCCCACAAG
 GAACAGAAACTGCAGCACCTGCCCTGGAGCAGCTGGCACCTGCCCTGGAAC
 GCTAGTTTCAGACATGTAAGAGCCCCCTGGGCTACCCAGCTGGATGGCAC
 25 CACATAGGGCCAGACTCAAGAATTCAAGTTAGCTAGCGCTCTCTTATTCTGCT
 TCTCTCCCTGCCTCTGCCCTTGCTCCCCCTCCATCCCCCACCCACTCA
 CGTGGTCATGCCAGCCTCTACTCTACTCTCCCTCTCTGCCTTCT
 CTGCCTCTGCTACTCTCTTAACCTCCCTCCCCATGCCCTAAATAAACTCTATT
 TATACTAAAAAAAGAAAAAAAGAATTCAAGTTAGCAAACAGATCTGAGTC
 30 CTTACGAGGTACAATGGCACCCCCCCCCACCCCCAGAACATATGAACCAGAAC
 CTCAGGTATGGAAAAAGGAAATGAACCAGCTAGGAACCAATGTCTCCTGT
 CAATTAGGAGGTACGTAGAGATGGCCTGTCTTATTACAGGATTGAAAAG
 AGAAGCTCAGAGAGGGTTATGCCCTCCAAAGTCCCACAGCAATCAGTAG

TTAGTGAGATCAGGGCACACAGGATAGATCTCCTCCAAATATCTCAAAACC
 TCTAGGAAAGCCATACCCCAGAAGGGGAGCCAGGCATCTCCAAACACCTGG
 CCCTCAAGGAAAGGCTCTGGAAGAAAGGTAGTTAGTAGGCCTGGTGGAAAGG
 CCCGTGATCTCTCCCACACCCAGGGCTCAGAGCTGCACTGCTGGGTGGCTG
 5 AGTACTCCAAAGACAACCAACAGCCTATGAGTAAGGAAGCATGCCATTCTC
 TAGGGACCTGAGGAGGCCAGGGCAGTCAGTACTCTAGAGTGTGTGTCCT
 TGGCGTCGGCACACCCAGCCTGCTCCCCCAGGCTCCATGATAAGATGCCAT
 AGTGAECTATTTAGAATGTGTGGTGGGACAGGCTTGTATGACACATGCTTG
 GGACCTGTCAGTGAAGGCATTGTTCTCAGCGTGATGTGGGCCACA
 10 TGCTCCCCATACATATTCCCCACTTGGGACATGGCCTCTGTATCTGGAGATG
 TCTCTACCCAGGACAGTGTGGCCAGCAGCCTCATCTGGCTCAGAAAGTGG
 GTATTGACTACTTAGGCAACTCACTGGCTGATACATCCCTGCAGCCAGCCAT
 ATACCTGTATATGTCTACGTTCTCACAGTTAGTCCTATTGGAAATTCCCTCG
 TTACATCAAGCTCAAGTCTCTTGTCTTGGCCCCATTCCAGAGGTTT
 15 TAAGGAATCTCTGTCCACCAAGCCATTGCACAACCTCTGAGCCTCCGTTCCC
 CCACGGAGGAACTGGAACACATCAGACTGTTAGCAGCAGCTGTGTGTTAGT
 AAAGGCAGGGACAGTTCCACGGTGCCAATCCAACCATACTGATATTCTA
 ATAATGGTATCAACACCCCTGGGATCTGACACAACAGAGGTTCAAGGGCACA
 TGGCCAGCATCCCTGGCAGAAACCTGCTCAGGTTCCACTGTCTTGGTAC
 20 AACCTTCAATAAGGTGACTCCAACAGTGTGGCCATAACAAAGGGGAGCTGG
 CTTTGGCTATGAGGGTGACCCAAAGTTAGAGAATTGACAAGGTAGCCAGGG
 GTAACCTACCACCCGCTCCAGGAATAGGCACCCACAGTTGTCTGTAGGGTT
 TGGGCACTGCCATGCTCTGATCAGCTGTATGGTACTGAGATAATGTGGGTA
 ACCCTAATATCCCCTCCACATGGTGGATCATAGGGCTGGAACAGGCAATGC
 25 TTCCAGTTAGGCAGGTTAGTCCCCATCTCTCACACTCTCTGTAAAGGCATGG
 TGGTGGCAGAAGGCTTCTAAGATGTGGAGACTGATGAAGAGGACATGGGTC
 TTTAGGACAGGGTGGGTGAGTGGATCTCCTGACCTGTGCCCTGACCTCCTC
 CAGCTGAATGGAATTCTAAAGTGACATTGCCATGCTGACAGCAGAGGGCA
 CCAGTGAGAGCAATAATGACACCAAACAGTGACAGCCTGCAAATAGAGAC
 30 AGCCACAAAGACCCAAATCACCCAGGGAGCAATTGAGCTACAGATTATCGGG
 GTCCCCAAAGCTACTTGTATAGATGTCCCCTAGGGTAGGGTACAACACAG
 TAGTAGTAGTGGCCCCACAGAAGCCCTGAGCAGCAGACAGTATACTAGTG
 TGACTATGCAGAGCCCAGGGCTAGTCTTGCCTACCTAGAGAAACTGAAC

CTGAGAAGGATAGGATCTACCTACATGTTGTCATGACAACAAAGACATGGT
 CTCTGATTCTTGACTCAAAACCTCAGCCTGGGTCACTAGGGTAGAGCTGTACT
 GTTGGAGATGGATAGGCTGGCTTCCTGACAAGAAGGAGCCTCAGGTCAGGG
 AGAAGAGCTGCCAGTCCAGAGTATGAAATGACCACAGTCACATCTCAGCAGC
 5 TTCTGCCCTCCTGGTAAGGGCCTGTGAGGATCAAGTACATGTGCTGGCA
 CAGGTGGCTTACTTCCCCTGGCATCATTGAGAGACCTACATGTCACCTG
 TCCACTTGACAGACCCCTGACCTGATGTTGAGTGATCTGGTGCCTGG
 TCAGAAGTGACCTGGAGTCACATACTGGAACAAAGAAGGAATATCCTGGTC
 CCTGCAGCCATGGTCATGGCTCAGGAGATCTGATGGCCCAAAACCCACTCA
 10 ACTCTGTGGTTCTCTTCTGAGGACCCCTCCCTCTCACTAAGAGCCAGTCAGG
 CTGGAGACCCCAGAGCAGCCACAGGTCTTCCCTGAATCAGGAACCTCAGCC
 TCCTGAGATCCTGCCTCAGTGCCAGGCACCCCTCCGGAGTTCTACTGCTGTTGC
 CCAAGTGACTTGGACCAAGAAAAGCCTCTGATGACAAAACAAGATGGTCACA
 TTCACTTCAGTGCAGCCTCAGCAACACACAGCCTCAGGCAGTGCCATCAATG
 15 GGACTGTTCTCTGGTCACAGGCAAGTCTCGATCTTGACAGATGTCTGCA
 CCACCGACCATAAGACAGAGGACCTCAGGATCATGTGGACAGTGTCCTTGT
 CAGTTTACGGTGTGACCACGCACATGGATGGGCTTCCTAGAAGAGTACA
 AGAGAGTACAGTAAGCAAGGCACAGGGATGAGGGACATGCATATATGGCTAC
 AGGGATGGGGGGAGGGAGGGAGAGAGAGAGAGAGAGAGAGGTGTGAAGGGCA
 20 AGGATGGGGAGGGACAGGATGTAGAGGGTACACATGTCAAAGGAGATGTA
 CCAGACACACAGTTCCCTGACCACCCATCGCAGAAACACTACCCATGTGCC
 ACTATCCTCAAGTCCAACCCCAAGCCACACTCTGCAGAGCCACCGATACCTT
 AGGGAGCCAACCAGGCCACACCCACAGCTACTGCCCTCCACTCACAGGC
 CAGACCCAGTGAAATCTATTAGTCACTAGGGATTGCTGGCTCCCTAGCTATC
 25 AGCCACTGTCCTGTGCCAGACCCCCACCCCGTGGCTGCTGCCTCATCCCAGGC
 CTTCTGCTCTCACCAAGCCACCCACCCAGCCATAGCTCATCCACTAGGGCCCT
 GGCAGGGTTGCTCTGGGGACCAAGAACTCACTGGACTGAGGAAGTAAGGT
 CCTTCCCACCCCTAACATCTCAGCTTACTCTCAAGGGCTGAACATGGCAGCTGGT
 ATGGTGGCACTAAAGCAGACAGAAGAACCTGGCAGAGCCCTCAGGAGGAG
 30 GAATAGGAGCAGCAATGGCATGCCTAGGCCACTGCTAGAAGTCAGTGGCC
 AAATGCCTAGGCTCAAATGACACCCCTCAGACACAAACTCCTAGGGACTAGA
 GGAAGGCCAAGAGTAGCTGAAGGCCCTTGTCAACCCAGCAGGCTCAAGAT
 ATATGCAGTACTTGGGTCACTGCCTGGGCAGAACCATAAACTCAAAGG

CCCTGAAGCCCACATGCCTATGTATGAAAGGCTGATAGCACTGAGTGT
 5 GCCTGGAAAGGACCCCTGGCCAGCTGGCACATGACAGACACTGAACCCTGG
 GTTTCTGTCATCACAGTGGGCAAGACCCAGAGCGGTCTCAGGAAGCCATC
 CCACTCCCCCGCCTGCCTGCCAGGACACACTTCATTCCCTGAGCCTCTTC
 10 CTCGGCTACCACACTCAGCTCTGACCTGTGCCCTCCCTGGAAAGCCAAGTA
 TCCTTGGGAGCTTTCTGGCGTTGAGCTGAGGCTGAGGCCACGCTACACA
 TCAGTGCCCTCCCTCCCTGACTCTGAGGCTCTGGGACTTCCAAAAGCTGCCAG
 CCCTACCCCTCTATAGGCCACTACCCCTAGCCACCAAGCCTCAAAGTGAGGA
 ATGTACTAGGTGTGGAGAGAATGACTGTTCTCCAGGGCAGGAGTGAGGCAG
 15 TGACAATAATAATTACCATGGCAGAGTCCTCAGGCTGAGTGTCCATCC
 TACATGGGGCTCTGCCACAGGGCCCCATGCCAGTGGACTAAATGATACT
 CACCCAGTACTCAGACTCTGTGGAATTCCCTGGACCTAACTAACACTGCC
 TGACACAGAGGACAGCTGCACCTGGCTAGGCTACACTAGCTCTGGGAAGCT
 TTTGGAGACAGGTGGCAATTGGTATCATGTTTCACTTCACAGTGCCTCTGG
 20 TAATGCTGGCTTTAGAAGGAAAGGCATTAGCCTAAAGCTACTGCCAGAC
 CTGGCTCCACCCCTTCAAGGGCCATAAGGAACCTAGCCTTGGTACACCT
 CGGCTGTCATCCTAAATGGCTCCACCCAGAAAGTACCAACTGTGTGTACCA
 TGAGGCTCTACAGATGCAACAACCGACAACATAGACACCGAATACTGTGGG
 GGAAGGGGTGTACTAACAAATAACACAATGGAAAAACACAAGATGAGGTC
 25 ACAGTGAATAGTGGCTCAGGAAGGGCTAGGTACCCAGAATGATAGGCCAGA
 GACAACAAGGGAGGTATGTGAGTGGTGGGCCAGGAAGCCTCATGGGCAG
 CAATGTTGAAGCTGTTCATTAGAGCTGGAGACAGGTGATCCAGGTAGAATT
 AACTGCATGTGCCAAGGCCCTGGACATCTAGAGACCAGAGTAGCAACAAGTG
 TGATGGGTGAGGACACCCCTTCATAACAGAGTCAGAAGGAAGGAGATTCTCA
 30 CAGGCTAATAAAATACAGAGAAGTTGGTGGCACTGCAGATGGCTGCTGTC
 CAATGAAGTACCATGCCACTATGTGCGGGGTGTTGGATACATTGGAG
 AGCATGTTGCAGTGGCTGTCTTCTAGAACCCCCAAGGCCTGCCCTATGCCACA
 TTCCCTCAGACCCCTCCAGCACCCCTGCCACACCTGTTACCTGGCTCAGCC
 AATGCCACCAAGCTCCTTCAGGGAGCCCCCTCATT~~T~~TTTTCTTCCT
 GTCTCTGAATACCCAGAGCCAGAAGTTGACAGAACAGAACATGGGCATGCG
 CTGAAGCAAAGGAAAGGGTCCAGACATGAAGATGAGGCAGGAATGCCAGCA
 TGTCCACCACATGTGGGAGCTCCATAATACCCCTGTATATAAGTGGAA
 CTGCTATTTGCTGCCCTGGCTGGGATAGCCTCTGCACAAGACCTGGCTT

CCTTGGGCTGAGGATTGAGTCTCCTCTCCAGACCACTGATCCCCAGGCTCAAG
 GACCCAGCCTCCTGTCAGACCAGTTGGCCAGAGGACAGTGTTGCCAG
 GCAGCAGAGACTCTGACCCCTGACCATGGAACAGAGGAAGGCATAACTGG
 GATAGGAACCTGGCTCTCATCAACCCCATTCTCCAAGCCAAGTTAATGAAC
 5 ATATGCTGTTAAAATAAAACCTTGAGGTTAACGACCATGGCTCAGGATATA
 AAGCACTTGCTACACAAGGATGAGGACCTAACGTTCAAACCCCTGAGGACCCAT
 GTAAAAAATTCAAGGTATGGCTATGCATGCCTATAACCCCTAGAACTGGGGAGGC
 ATAGACAGGTGGGATCCTGGAGCCCCCTGGTCCGCTGATCAAGATGAATGGA
 CGAGCTTCAGTTCTAACGACATCCTGTCAAAAAAAAATAAGGTGTGGAGTGA
 10 TAGAGGAACACACTGATTCAACCTCTGGTCTCCACGCACACACATGTGTACA
 GCCCTATGTACACGCACATACGCTGCAAACAAAATAAAATAAAACCTTTG
 GTGGTTCTCTGTCCTCAAGCCATGCTCCTATAGTACAGTGGTATCTGCTCA
 TTGGGAACCTCCAAGTCCCCATTAGAACGCTCCAGACCATTGCTCAAACCT
 GTTGGGGACATGACTCACAGTCATGATGCGTGTCTCCTCCATGACCCCTC
 15 TCTCCCCACTGCAGGTATGTCCTGGTTGATGACTTAAGTGTACTGGAC
 ATATATTGGGGTAGAAACTGAACAAGTAACCATCCTCAGCCCTCACAGATCT
 CGTGGGAACTAGGAATATGATGGTCTTCTCCTAAAAACACCCCTGCCACC
 TGTACAATAGTCTCTACTGGAACGCCAGGAGGGTCATCCTCTAGGGCC
 TGTAAGGCTATCTATGAGACTCGAGTCACAGTCTGTGGAGTCTGCTTACTA
 20 ACCTCCCCCTGCAATCTCATTCTGTCTAACATAAAGGATGCTTATTCCAGG
 ACCCATTGCTGTTCTGTGAGAACACTCAATTCAAATCTGCCAGATCCCC
 AGTGTAGTCTCAAGGATATCCTGGAGAGGCCAGGCTCCAGATGTGTGCCTG
 TAAGGCTATATTGTAACAAGGTTGCCACTGTACTGATAACATACCTACACAG
 TTGTGGTTGTAACCCGTCAAATACTCCAGATAATGAGATTATACTTCGCA
 25 ACTTTACCTCTCTTTTTTTAAGATTATTCTTTATGTATGTGAGTAC
 ACTGTAGCTGTACAGATGGTTGTGAGCCTCATGTGGTTGTTGGAAATTGAAT
 TITGGGACCTCTGCTTGCTCGATCGACCCCGTTCACTCTGGTTAACTCTGCTC
 AGTCCCTGCTTGCTGTCCAAAGATTATTCTTATTGTACATAAGTACACT
 GTGCTGACTTAGACGCACCAGAACAGAGGGCATCAGATCTCATTAGGGTGGT
 30 TGTGAGCCACCATGTGGTTGCTGGGATTGAAGTCAGGACCTTGGAAAGAGC
 AGTCAGTGCTCTTACCGGCTGAGCATCTGCCAGCCCGCAACTTATCTCTA
 AGGCAGCTACTAGAAAAATCTAATTGCCACACAGAGGTGAATATGCATGCC
 CTACACCACTAGGCGACCTGAAAATAATGGTAGATCTCAACTAACCAATG

CAAGCCATCTACTAACCAAGAAGAGCAGAAAGCAAAGCCTATGTATGGCTCC
 TTGACAGGTGGTGCCGGACAAACTGGGACTCTGCATGCAAAAGAAGAACACC
 AGACTCTTACACTTCATAACCCATAACCAAAGGCCTGCATGTAAAGTCTAAAAC
 TACCAAACCCCTAGAAGAAAGCCTGGGACAAATGCTTCATGATATTAAATT
 5 AGCAATGATTATTTATATGACACCAAAGGCCTGGCCACTACAGGGAAAA
 CAGATTCAATTACACTTCATGAAAATGTAAATGTTGTGGCAAAAGGCAATGT
 CGACAAAATGGGAGATTTCGGATCTTCTATCTAATAAGAGCTTAGTATCCG
 GAATAAACAAAGAGTAACTAAGGCAGGCAGAAATAGAATTCTGAGCACCTCA
 ACATTAGTGTCTCACTCCTTACTCACATCCTTAAATCAGCAAGCCCTGAAC
 10 CCACTCAGGATGGGGCACCAGGATGAATCACAGCCTCATGCCAATGCAGCA
 CCCAATAGGGTCACACCAAGTGTGTGGGGGGGGAGGGGACAGGAAGGCC
 CAACCTGAGCAGAGCCACTGTAGCCAGCAGGGATCCAGGGTACACTGAGGCT
 AATGGCAGAAGGCTGTACACACACAGACATTGGTGCCCCACCCCTGGATG
 CTCAAAGAGAAGTGGCAACCTGGAACATCACGTGTGTGTGTGGAC
 15 CCAACAAGCAAGTCTCATGCCAGGAGCCATTCACACAGTGGAAAGCAGCTG
 CTACAGTTGTCTTGACAGCCTGGAATTGAGCTAGCAGTACGAGGGCATACAT
 GTATTCATGCATCCAGGAAAGGGACACAGAGCAGAGAAGGCAGGCACACTG
 CAGTGTCCCACCAATAACACAAGGCAGGGTAGGGGTTGCAAGCTCGGCT
 TTAGGGGACTGGATTCCAATACGAGGAACCTAGCTACTGGGAGAAGAGCT
 20 GGATTTGGACTGGACAGGGAAATCCCAGAGGAGTCTGCAGCCTAGGAA
 TAAGAGACAGGATCCAAGTAAAACAAAACAAAACAGAAATAATAG
 AAACAAACAGAAACCCCTAAAACAGGGCCACCATGTGACTTAAAGGGTTACCT
 AAGAGACCTGGATGCCAAAGCCACAGTATTGAACAACAGAAATAAGAGT
 ACAGAGCTGGCATGGTGGTACACCCGTACCCAGGACTCTGAGATGGAG
 25 GAGGGAGAGGGAGGGCAACACAAATTATTCTGAGGCCTACTTGGGATACCTGA
 GACACTCTCTTATGTCTAAAACAAAACAAGACCCACAGGGCTGGAGAGATG
 AATTGAGCAGGAGTGCTTGAAACATAAGGACCTGACTTCAGAT
 CCCAGTGCCTACCCAAAACCCACATGAGTGTGACACCCAGTGTATGGGGA
 ATAAAGGGAGCAGGAGGATCAGAGGACCTGCTACCCACCCAGCCTAGCTCCA
 30 GGGTAGGTGAGAGATTCTGTCTTAAAGGAATAAGCTGGAGAGTGTAGAGGA
 CGCACTCACCCCATGCCCTTTGGGACCTTACACGTGTATACATATACCACA
 CATAATTATAAC
 GCAGCACACCACAACCAAATAACAAAACCCAAATTGAAACAAAACAAATGA

ACAAACATTAAATAGCAGTTGAAGTGTGCCATAAAGTAAATATCCTTAGGT
 TGCAC TGATCTGAATCTATCCAGGGAAAGTAGCTGGAGGGCTTTAGGGAGA
 CCCTCAATTCTGAGACACAGGAGGAAACTGGAAACAGATGCCCTGCTCAGC
 AACACATTCCAGAAAGAACATCACAGATAAGGCCACACACGGGACAGGAGA
 5 AATAGCTCAGTAGTTAAAGCACAACACTGTCTGTAGACCTGGATTCAATACCGA
 ACACACTCACACGGCAGCTCACAACTGTAACCTCCAGTTCTAGGAGGTCCAATGTC
 CTTTATAGTTCTATAGGCACCAGACACACAGGTGGTACATAGACATGCATG
 CAGGCAAAACATCCATACACATAAAAACAAATCTAAAATATAGGAGATCTACA
 GAAGTCCTGTGTCACTGACTTGTATGTCTGAAGGTGTCTCCCCAGGATGG
 10 TTTCTGAGGATAAAATAGTGGCACAACAGCCCCACAGGGTAGCCAAAGTCA
 ATGTGACACATGAGGGGACAGCACAGTCCAGCAGCCCTGCTCAGCTATACTC
 CTGGGACCCAAACTGCAGCTCCTGGCTGACCTTCCTGCAAGTTACAATTTC
 TATCTGATCACAGAGTCCATCAGATTGGAGGCATGGACGCCAACAGCTGGC
 ATTCCCTCAAATGCCAAGGTCAAGGATGAGAGACAAAGATGGAGCTTCATGAGTG
 15 GTAGGAAACAAGGCAGATGTAACACCTGTCTGTGGTAGAGATCGAAAAGA
 GAAAAATATATTTGGTGGATGGCATAAGTCACTTACTGGTAGACTCTCC
 TGGCTTAGTCACATGGCCAAATGATAGAATTGCTGAGACTATGGAGCAG
 CTGGAGAACTCTACACTACCCCTGGAACATTCTCAAGCCAAGATTATCTGAA
 ATAAAAAGCAAGAACAGCTGGCGGTGGCACACGCCCTTATCCCAGCA
 20 CTTGGGAGGCAGAGGCAGGTGGATTCTGAGTTGAGGCTAGCCTGGTCTAC
 AGAGTGAGTCCAGGACAGCCAGAGCTACAGAGAAATCCTGTCTCAAAAAA
 ACCAAAACAAACAACAACAAAAACCAACCAACCAACCAACCAACAAACAA
 ACAAAACACAAAAACAAAAAAACAAAAACAAGAACCTGTACGGATGCTG
 AGAAAACCAATCTTAGCACCTGTTACTGACCCCTCACTTATTCCTGGTGGT
 25 CTGAGCCACAGCCAGTGGCCATCTACTGCCACCTTCTCTCTAACCC
 ACCTCCCTCAGCCCATCTACTCCAGCCCTGTCCCCCTGCTGCTCCCACAGGTG
 TCAAGCTTACATCCACAGGGCCTTGCACACCTGATGAGCTTCCAGAAAAAA
 GAATGGCTCACCTCTATTGACCCGGTTGAGGTGGTGGCTCCCTGGCTA
 CCTTCCAGAAGGATGCTGGTTCTCCACTGCTGCTGTATGTGGTTCTG
 30 GGGGTCTTGCCTCTCCTGCATATCTGTTGCATCTGTGTACTCCTGGAGT
 ATCACTTCTGTCTCATTACCTCAGCTTCCCACAATTCCAAGGGCCAATGG
 GAGGGCAGTGGGATGGTAATGAATAGGACATGAAACAGAACAGCATATCGACA
 ATGTGCCTTCACTGAATGTTGAGAAAAAAACTGCACTATGTAGCCTGG

CTGGCCTGGAAC TTGCTATGTAGACCAGTCTGGCCTCAGACTCACAAAGAACT
 TGCCTCTGCCACTATATTCA GTGAGATTCTATATTAAAATTGTGCACATGTG
 TGCATACTCAGGTGTGGGGTGTACTGCACAAGTGTGCATGGAGCCAGAGG
 ACAAGCTGGAGATTCATCCTCAGGAATGCTGCACACAGACTT GAGACAGGG
 5 TCTCTCCTGGGCCAGAGCTCATCTATTGTTGAGGCTGATTGACCATTGAGCA
 CCAAACATCCTCCCCCTGCCTCTGCATCCCCACTACATCCAGCATTATATGTAA
 ATTGAGGATCAAAC TCTGGCCTCAGAAGCACTTGCTGACTGAGTCCTTCC
 TCCAAACCTGAGGTTCTAATT TGCTTCATCAAATTAAATGAAGTGTAGGT
 GGTGATCCCCAGTTTAGAGGTAGACGTCAATGATGTCTCACAAGGTGGGTG
 10 GAGATAGGT CAGGGCATT CCTGCAGGCCAGTGTGACTTGGGTCCAGAGTC
 ATAAAGCCGTGGGAAGTCTTGATCCTATCAGTCTCCTGCAGATGATGCCAA
 GGACGCAATCCTGAGT CCTGTTGA ACTGTGAGGATTGCATCAGAGT GCTAT
 TTTTAATAGTCAGTGAGGAAGTGGTCCAGGTGTCCACAGGAGAGAGTCAAAC
 AAGCTACATCAAGACCACAGTGGAAAGGCAAGGACCATGCAGGAATGTAAA
 15 CAAAAC TTTAAAAAGCAGGTCAAAGCAAAGGCCAGCATTGAGATT CCTCA
 AATGTCTGCATGAATGTT CAGACACAGATTGCTAGTGTGCCTAGTGCTGATGA
 GTGTCCTGCTGCTCTGATGACCTGCTGTCCCTCAGTTCACTGCCTCACCC
 CAAACACAGGT CATGGACTCCCACAGT CCTCAGGAGAAACTGAGACACAAC
 CAGGAAGATGATGCTAAAGAGCTGCAGTTTGAAAATTGCCTCCTGGTTCA
 20 ACATCATTCCCGTTCTCAAGGCTGTGATAAAACACTTGACTGGAGC ATC
 TTAGAGGAGGAAAGGGTTATTGACTTATTCCAGGT CACAATT CATC AT
 TGAGGGTAGTCAGGGCAGGAACCC AAGGCAAGGCAGAGGCCTGAAGGTAGGAAC
 AGGAGGAGTGCACCTGCTGGCTCTCACAGGCTCACACTCACTAGCTTCT
 TATATAGGCTGCCAGGGAAATGGTGTATT CAGACCCCCAGGACCACCTGCCTA
 25 AGGAATGGGCTGGATCCTCCTACATCAATAATAAGACAATCCCCCACAGAC
 ATGCCTACATGCCAAACTGGCTGTGAGCAATCCCTCTATTAGATATCCTCCCCA
 GGTGATTCTAGGCTGTATCATGTTGATAATTAAAGCAAAGAAAGGAAATCAG
 AGTGTGCCCTGTGTATACACAAGACCTCAAGTATGTGCATACACACACAAAAA
 AGAAGAGAAAAAAATTGTGCAACCACTTACATTAACAAGTCACAT GAAAAAA
 30 ATCACCAAAGGACCTCCAGTTAGCCTCGATAGCTTCTTACAACGAATTAAT
 GTTAATGTCTCCTTGAAATTCCCCAATGTTCTGTGCTGAGCATTCTGGATT
 TTTTTTTTTTTTTGATCAGAAGAACTAACAGAAAACCATGAGTGCCATT
 TGGCAGGGAGATGTT CAGATA CATCAGGGTGGCATCACCCTGGCTCTGA

CTAGGGCAGTGACACAATTGTTATCTGTCCTGGCTCAGAAAAGGAACGTGCA
 GGGGTTATATGACCTTCTAGCTTATCAATCAAATGTGTGGAAACCACAA
 GTCGCAAACCTTTAAGTTGTTACAATATGACTTACCAAACTGGAA
 CTTTTCTACATCTGTAGCTAAATGCCGTATTTTTTTTTTTTTTTTT
 5 TAGGAATAAGACTGGAATTATGATGTGCATTAGTTAACTCCCTCATCCAAT
 CAATACCTCCAAGAACGAACTTATGGAGGAGGAGTTATTTAACTCAAGGT
 TTGAGATGTGCAGTCATCCTGGCAGAGAAGGCTGTGGCAGGGGAATGCTTC
 TCAGCTCTAAGTTGTCATGTGACACACACACACTGTAGCATGCATGCATAC
 AAGCCCATTAGACAAATAAATAAATAAATAAATAAATAAATAAATAAATAA
 10 TAAATGTAAGACCTGCACACACATGTCCACAGCTCTGTGACTCTCAACAGCC
 TAGAAAACGTCCCAGGACCTGTAAGATGAGAAACCAGAAAAATGAAACAGG
 AAGCCACACAATAGCTTGAGTTTGTGTTGCTTGTGTTGCAAACA
 AGAGTATTAAATTATTTACAAAGTACACCACAAAATTGATTCACTCTAAC
 AGGAATATCGGGGACTGGTGAGATGGCTCAGTGGTAAAAATGCTCACCAT
 15 GTAAACCTGACAACCTGAGTTGATCCCCAGATCCCACATTAAGATAGAAGA
 AGAGAACTGATTGCCAGTGAGCCAGCAATCCTCTGACCACACACACACA
 CACACACACACACACACACACACACACAAATAAAAGTGAATTCTTTCAA
 TGGGAAAGATGGGCTCAGTGGTAAAGTACTGCCACACAAGCCAAAGACCT
 GAGTCAGATCTGAACCTGTAAAAAGCCAGGCATGGCTGTCTATAATCC
 20 CAGCACTGGGAGGTAGAGATGGGTGGACCCCTGGAACCTGTTGGTCAGAGA
 GTCTAGCCTAATGGTAAACTCTAGGATCAGTGAGGGATTCTGTTCAAAT
 CTATGGAGGATAGGGTTGAAGAAGACAGCTGATATTGGCTCTCCATACAC
 ACACACACAATCTCAATGCTAAACAACAAAGTTCCACCAGTTGGCTAAT
 ACTAGCTGAGCACACATGCCCTCAGTTCTCATCTGTGAAAGGGAGGCTGTGG
 25 TGACATTCCATGAGCAACACTGCATGAAGCATGTGATTCACTGCTCATCATA
 CTTCCAAGAGCTGGAATCATCTAGACAAGTCATATCACCTCTTGGTACCTA
 CCCAGGTCCCAGAAACTACAGTAAGCTGCCCATGAAGGCAAGATACTCAGT
 CAATACACCTACCTGCATCCTCAATGCCACTGTCCTCAGAGCTCTGGAT
 CCCTCC/CCAGCTAATATGTGAGTCGGATATTCTGACTCAATGCTCTATTGT
 30 TTGGGTGGGAAAGCACCTAGAGAGCTAACACACAGAAAACAGAAATGTTCA
 AAGGCTGAGAGCCATCTGTCTGTCCTGGACCCACCTCTCAAGCTCTTACA
 CCTTCAATTGGAACCTTGTGTAATGACTGAGCATCTGTGAGCCCCACCTTCC
 CTACCTCCTGAGGTTGTCCTATACAATTGCACCTGGTGTCCAAATCCAGC

ACTATTGTGATAGGACTAGGCTGGACACCCATGTCCACTGCTTGTGCATAACCT
GGGCACCTCAGCCCCAGGTAGAGCTTCTGAAGGCTCTGCCAGCTCTGTG
AGGAGGAGCCTGGATTCACTGGGGAGGGATCTCAGGGATGTGAGAACT
TGTGCCTCTGCCTGGAAGGTGCCATCTTGAAGGCCAGGATTAGGGAT
5 GATGATGGAAAGGCCCTGGAAAGACTCCAGTCATGGCTCAGCATCACGAG
TCACTGTCTGCTTGTGTCATCCCTGTGTGAAGGTATTGAGGTCCCTGAGTGTC
AGGATGGCAGCCCTGAAGCTGAGATAGAGGTAGGAGCCATAGACTCATCCAT
GCTCAGTGCACACGATGCTCCTGAAAGCAGAATGCCACCACGCTGAGTTCAA
AACAAAGGACAATCACTACTCAGGCAAGTGGAGGTACAGGGCAGGTATGGTCC
10 CCGTACACTCTGAATGATGAAGGGCCCAGCAAAGGACAGCAGCCTAGTTAG
GTTGACACAAGCAGGGAGCCTGAGTCACACAGCAGCATCCCATCCCATAGTC
CCCACCCAACGCTCACAGTGTGTTGAGCCAGAAACTCTAACACAGCCCTC
TATCCTCCAAATCAGGATCTAATGAGGAGAGAGGTAGGAACCAGCTCAGCT
TACAAAGCAGCTGAGCTGTGGCCTTGCCTAACAGTGCAGGTAGCTGATCCCAA
15 TATACACAGACCTTCTGGGGTCTGCACCCCACAGGTCTGTACCTGAAAGTG
AGGATGTGCGCACGTGTGCACACACACACACACACAGAGAGAGAG
AGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAAACACAATATGGATG
AGGAAGCAGGCTGACTAGCATGTATGAAGTTGAATGGATCCTGTCTGTAAT
CAGATCCTTAGTGGGACTGCTAATCCCAGCTCTGCTGCCACAGGGCTAGCC
20 TATGCTCCAACCGTGTGGTCTCTCTTCTCCCTACGTGGTCCCAGGGATC
AAACTCAGTCATCAGGCTTGTGCAGCAAGTGTCTAACTGCCATGGATCTG
GCTCCTGTATTCACTTTAAATCTTCCATGAGTGCCTCATGGACAGGGCTC
CAGAAGCAACTCACCAGTAGTGTGGAGTCTCATCTACCACGTTTATGGT
CACAGTGGGAGGGCTGTTATTGGTTCTACCAGGGATGGTGCATAACTCC
25 ACACGGACTCTCATCACAATAGACAATGTCACCATTTGGCAGTGAAGAAC
TGCCTCTATGAACTAGACCATCATGAAGCCAGATCCCATTAAAGCTGAGTC
CACAGAGGCTAAGTAAGTACTGCTAGGCACAGAGCCAGCCCCCTGCTACCTGG
CCTGAAATGATACTGCCAGCATTCTACAACCCAGCGGGCTGCTGGCCCCAT
GCTCACCGAAGGAGCTAGATCATAGGGTAGTTCTCCTGGGGAGGT
30 GACCCAGCCCAGATATTCCCAGGCCAGGTAGAAGGGCAGCTGCCACCTGTT
CACACTCCAGGACCAGCTAGGGATGACAGCAGAAAGCCTGCCGCTGCTCCA
TGGTAACCCTAGCCAGGCCCTCACTTTACCCCTGATTTCAGGCCATACAC
ATTCTGCTTCTGAGCCCCCAGACTTCCCTGCCAGAGAGGAGACCTCTGGCCT

AGGCAGGGGAATCAACCACCTCCACATGGACACAATACCCACGAAAGCAGA
 ACCCTCGACAAAGAGTCACCTCTTCTTGAAGGCTTACTCTGGACCTCAGT
 CTTGACAGCTATAAAATGGGACATCTGGGCCTGAGCTGTCTGTGGCCTCC
 AGCAACCACGGCCGGGCCACGCTGTGAATTGACATGCCTTAAGCAAGAGG
 5 CTCCAGAAAAGATTGAGTCCCCCTGGGCCAGCTATAAGTGGCAGGTTCCAT
 CAGGCTTCTCCGTTAGCCTCTGCACCTCCCCAAGAGGGTCTGACTTCCA
 AAGAGGTGGCCAACCCAGTAGCTGCAGAGCTCCAGGGGAGGGGTGGATC
 AGGTTACAGCCAGCAGGTACGATCTGGAGCCATCTGGTAGAGCCCAGCTCC
 CTGCAGGCTCTCAGGAATGCTGCCAGCCATTTCAGGGGTGTGACCAGCCA
 10 TGGCGTGGTCCCAGCCTACCCAGCCAGCATCAGGATGCAAAGCAGACCAGTG
 AGAGGCTCTAGGCTACCCCTGCATTACCTGAAGCTCTGGAAACACAGGGCT
 GCCCTGTCCCTGGAAAGAGAGGGCTAGTAGAATCCACTCCCTCATCCTCACACAG
 GCCTGGCCAGTTCCCCAGTGTAGGGAAATGCCTCTGGCTTGAGCCCGCTCT
 GCTGAGGTACCCACAGAGGATGAGGCTCCCTGGGTGTGAAGAAAACCTGC
 15 TTTAGTCTTAGCTGGACAAGCCACCGGGCAGCAGTCTGCCAAAAACAGGTG
 CTTGTGCAATGTACTCTCCTGAGCAGTGAGTGGGACAGGGTGGGCTGCAC
 AAAGCTACCCAAGCTGTATCAGACAAAGGGCCACCCAGTAGGCCCTAACGCC
 ACAGCTTCTGCCACTGCCCTGGTCCTCACTAACGACAAGCCATAGAGGCAA
 GGGGCCCTGGTGGGGCAAAGTCCCTATGGCTCATACCCCTCAGATGGCCT
 20 GCTACATGCTGGCAGAGAGCAGCATTGGCTGCACAGGAACCTCAGGCCT
 TCTATCCAGATGAGGGACTTGTGACCCCTGGCTGGCCACTCAGGAGAGGGCCA
 CACAACAGCACAAGTCTAGTATTAGGTTAGAACACTTTCTTCTTGAAG
 CCTCTGGATAAAAGCGATCCTATCACTGCCTGGAGGGTGCAGTGCTCTTCTG
 TCCCTTGTGACAAAGAGAAGGTAAAGAGGTGGGTCCCAAACCCCTGTATCTCT
 25 GGGCAAGCCTTAGAATGGTACCTGCCCTTAGTTCAAGCCTACTTGTGAGC
 TACCTGCCCAACCTGCCTAGGCTTCTCAACTGCCCAAGGCTTCCAGAT
 CCCAGAGATCACTGGCTCCTGGTATGAAGCATGTACTAGTTAGTCCCAA
 AGAAAAGCTGGCTTCTTCAGACCACAGCTCTGCCACGCACATCATGCTAAC
 CCCAGACTCCCTAAGGATAGGACCTAGGACTCAGG
 30 AGACAGTGCTTGGGCCAGGAGCCTATGGGACCCCTCCTCAAGCATCTATC
 TATCCCTACCCCAACACCTCTCAAGGATCAAAGCTCATTCAAGAGTTT
 CCACCTAAAATATCAGGAAACACTCCCCACCACATGGGGTGGGGCAGGTG
 TCTTATTAGCTTTTTTTTAATGGGGAGCTGTTAATTATCCAAAATA

CAGAAATACCTCTGTTGTTTGGGTTTGTGTTGTTGTTGTT
 TTTTGTTTTTTTTTTGTAAACACAACAGGGATTCTTAATGTCCCTT
 CTGGCTCTTCATGTTAGATGACCATGTATCCTGACCCCAGGGTAAGCATCC
 TGTCACTTACCAAAGTGAGGGACACTTTCCATGAGTGTCAAACCCAGCCCTA
 5 ACTGTTCTTCACATGCCCTGACCTGACCTGAGTCCTGTCTGAGCACAGT
 ATTACAGTGCCTGCAGACAGAACCTGCGGCTTGGGTTAATCTGCAGCCA
 GTTCACTTGTCAAGGAGCCCCAGGTGCTGCTCATACACTGAAAAGTTGCTTAG
 CTAGGAGTATATGCTGACCAAGGATGAAGTTGATAACCTCACAGGCCCTGC
 AGTGGCTAGTTCTGCCCAAGCCTCCAGCTGAGGCCCTCCAGGAGACACAGT
 10 GAGAGCACACTTAGGTGCCTGTGAGCCTGGTACCCCTGAACCTCTGTGAGC
 CTGCTGTGCCTGTTCAATAGGTGCCTGGCACTTAAGCATAACCCACACATG
 ACAGCCATTGTCCCCAACCTGGAAGAGGCTGGCTGCCAAGGACACCCG
 CCCAGGGCGGTATGACTTGAGGCCACAGGCAGCCAGGAAGCCTTGA
 TAAGCACAGTAGAGGTTGGGCCGTCTGGGAACCAGCTGGGAAGCCGCA
 15 GAGCCCCCAGTCTCCCCCTAACCTCCCCACCCAGCCCTGTGCCAAGGACAG
 CCAGAACATTCTCACTAGCCTGGGAGGTGCCACACCTCAAAATGCTAAC
 CAGGGACCTTGGTCTGGACAGAGAGGGCAAGTTACACTTAGCAGGGAAACC
 ATCATTACTGCACAGGTTGGCAGGGACTCTCAAAGGCCCTTGTATAACCTGT
 CTTGTGTTTACCTCCTGGCCAAGTGAGGTGGGATCAGGTGTCCAGGAACA
 20 AAGCGGGGTGTCACCAGGTACCCAAGATCATGGATGGCCTGGACAGAG
 TGCCAGCCCCACTGTTCTGTCAAATGCACACCTGGGCCCTGGAACCCACC
 ACCACTCCCCTGCTTCTGTGGCGGTGAGACATTCCCTGGAGGTTCCCTGT
 GGCCCTTGCAATTGGTCTGCTGCCCTAGCTCTGTGCACAGCTGTACAC
 CGGCAGTGACACCAGCAGTGTACAGATTAAAGTCGGTTGCAACCCCTCACC
 25 AACTAAGACACTTCATAGCTGCTCAGCTAACTAGGAAGGATTCTGGGTGTCG
 GGTCTGGCCCAACTGCAAGGACAGAGAGTTCTGCCCTCTTACAGCACCCGT
 CACCCATGCCATTGGTGGAGAGTCTCCTTGTGTTCTGTGAACCAACTGGCCA
 GTTCTCCCTCATTTACCTCTCAGCTGCTGTTACTATTGCACTACCCTGGT
 CTTTGGCCTGCTAGGCTCTCACCTGCCAGGCCACCCAGGCCAGAGTTCTCT
 30 GTGAGACTGGTCCACTGGTGCCCTAGAAACTCATATTCTCTCATGGAAAG
 GGTTTCTGAGGACATGGTGGGATACAACAGCTGCTGCAGATCACAGTGAG
 AGCCTGAGAGGGCTGCTCACTGCTTGGTACCCAGGAACAGCCTTCTAGAAA
 CCCAGAGCTCTCCCCAGGCACTCACTCCCAGGCAAGTGAAATGTCAGGGG

AGGGGTACAAGAAAGATAGTAACCTGACATGACACCCCTGCCCTGACATA
 CACACCCATACCCCTGTCCATCTTCCTCTCACAGGAACACCACATCCAAT
 CAACCAACACACCCACTGATCCAGACATGCATCCACCCATGCATCCTGTGATA
 GTCTAACACTCCAACCTCCTGAGCCCTAGAAGCCGGACTTGGGAGCAGGGC
 5 CACATAGAAATAGCCATTAGTATTGTGGACTGCCACACTGCCACCCAACA
 CACATGTGCACACATGGAAATATGGACTCCCCTCTGGGCCTCTCCTACTCAGT
 GAGTGTATGGAAAGCTATCTGGACAGAGTTAGAGGAAGCGTGTCTCAGCCC
 TACTCCAGATCAGCTTATATGGTGCCTAGCTTATCTCCTCTAAGCTCTGGA
 GAACAGCCTCTACAGACCTTATTCCAGAATATTCTCAACATTACAAGGA
 10 GATGACTAGTCATATGTCCACTTAGAAATAACTCCCTCCAATGCCAGAGACA
 CAGAGGTGTTGGGCAGTGAGAGGGTAGCCTGGGGCCTTAAATGGTCATA
 CATAGCAAGATGAGGAGCCAAACGCATGATCACATGACCTGTTAGCATCCC
 TGAGATAGAGGCCAGACCCATCCACATGTGGGAAACAGCCCCAAAGCAA
 GGTGACCTCCCAGGCCACACAACCCAGTACGAAGTCTCTGGATGGTCCA
 15 CACCCATCTCAACTGCCGCTGCCACTACTACTTGCTCAGGAGAGGACATTCT
 GCAATCCAGCAAAGGCAGAGGCCAGCTGTACATGAAGACTTCCCTGTT
 CTCCAGTGTACCTGAGAGACCAAGTCCACAGCTGTACCTGATTCCCTTC
 CACAGAGTCCCCCAGAAAGATGCCATTGTATCTGTCTGCTCAGAGAAACA
 CAGGCCAAACCATGTTGCCCTTGCTGCCCTGGCTGTCTTGTCTATCGTCTTC
 20 CCAGGGACTAGGTCACTTGAGGGTCACTGCCATTCTGCTTCTACTTGGC
 TGGGAGGATCTGGTTTATGGTTCTCTGGAAACCTCCACTGTGTACTGCAT
 ACAGAACCTAGAAGGTGAACCCACAACCTGTCTGGGTGCTCAGTGAATCCC
 AGCCTCCTGGATCAGAGAGCTTGTGAGAGTACCAAGGCAGGGCTCCTGAA
 CTATGAAGCTAGTGTGCCAGTCATTGTAGCCAGGTGTTCAATCTGGTCTGA
 25 CTCAGAACACCAAATTCTGTGGTTTGTACACATCCCTGGCCTTCAGG
 TTCTCACAAAGAATAACCACGCCATCTGGCTAAAGCAATTCTAGGACCCAG
 ATGTGGTGTAGACTACAGCTCCCCGCTGAGCCATGGAAGGAAGGCAAGC
 CATATTGGATTCTGTCAGCCCTGAATCACCTAGCCAGGGTACAGAACAAAGAA
 CACAGGCTTCCAGACTCTGCCCTGCATAGAGGGAACTGTCTGAAAGCAG
 30 GCAGTCTCACTGCTCAAGGAGGGCAGAACCATGTGGGTGACAACAGGTAGC
 AATCCACTCCAGGCTGTCCCTAGAGGACCTGTGGAGTAAACAGCAAACCTCA
 CTGTGCCCTGGCCAAGCACCACATGATATTATAGCCCGCCCCAGAGAGGGAGA
 GAGGGACTCTGTAGGAGTGACCCCTACAGAACAAAACCACCTCAAAGACTTT

TATGCATGCCTCATTACTGGAAACTGGGAAGGGCCTGCCAGTTACCAAGT
 GAAAAACTTCAGGCAGGGGGAGGAGGAGAGAAGAGGGAGGAGGAGGAAG
 TAGGGAAAGGTAAAGGGAGGTGGGGAAAGGGTAGGGAGGGAGGGAGGAAGT
 AGGAAAGGAAGGAAGAGGGAGAGGAGGGGATGGGAAGGGAGAAGGAGGA
 5 AATGGAAGGTGGAGGAGAAGGGAGAAATAGAGGAAGTAAAAGCATGAC
 AGGAGAGGAGGAGTTGAAGGGGTGGGAATCCTGCCACTTCCAGACAAC
 GATCGCTGGACTTCAGGTCACTGAAGGCAGCTGCAAGCCTGGCTGTCT
 ACAGATAGGACCACAGACTTGCTGTATGGAAAGTTGAAAAACACTAGGCATT
 TCTTCCCTTCAAGAAAGTATAAGATAGAGCCAGGGTGGCACACCGGCC
 10 TTTAATCCCAGCACTCGGGAGGCAGAGGCAGGCCGGATTCTGAGTCGAGGC
 CACCCCTGGTCTACAAAGTGAGTCCAGGCAGCAGCTATACAGAGAAC
 CCTGTCTAAAAAAGCAAGAAGTGCAAGATAGACACCCAGACCATAGGAGAT
 ATGTAAGTGGCTTCAGCAAAGTCAGGTGGCTCTGACTTAGAAATGTGAT
 CTCCACCCCCACCCCCACATTCCCTGGGGCCTCCAGCAGGCCAGGGCAGCT
 15 GTAAGTAAGCTGTAAGCTGTACATCTCCAAGGTTACCAACAGCCCTCTGG
 TTTCCCTCCCTGACTCTGCCCTAACATTCTACATCCCTCTGTCTCCTCAC
 AACTCTCTGAGCCAGGTGGCATGCTACTGCTCCTGAGCACTGGTAGCTCCC
 CAATGTTAGTCCTCCAGAGTTCCAGGTACATGAACAGGGCCAATTCCAGGC
 AGCACTCAGCTCCTATGCTCATGCCACATAACAACTTGTAAGCACAGATAAC
 20 GATGGGCCATTCTGGTTAGGTCCCTCAAGTATTCCAGAAGCCTGGCCTTCC
 CATCTCCCTGCCAATATTACAGGGCTGGCATGAAGGAGCACTAGAGCACTGG
 GCATAAGCCTCAGTCTATGCTCCATCCCTGCATTTCTGGCATCCTGTCCT
 CAGGGAGCAAGGAACTGACCACAGAAGGATCATGCCACCTCACCCCTCT
 CACTGGGCAGAGCCAGTTCACACAGCAGACATAGACCCAACAGGTGACACCC
 25 ACTGCAGAATGGAGCATACTCGAGCAAGGTAATCTCAAACACTGGGTTTGC
 AATTGTTAATCAGGACCCAAGAGAGGGCACATGCTACACACTCTCCCAGTC
 CTTCTACCCATCTCCTCCCTGCATATTGGTCCTAGGCCTACAGGTCCC
 CTCCATCTTAACCTGCACACCTCAATTCCACCATGAGCACCAAAGCATGCTCC
 TCTTGCCACAGTATTCCAAAAGCTGATCAGGAGGCTGTACTCAGCTCATT
 30 TACTCCTCCAGTAGTGATGCCAATGTAGGTCCCTGGTTGAACAATTCTACCCAA
 TACCTGCTGCCCACCCATCTAGATTGGACAAGTTGGTAACTGAGACCCCTC
 AAGGCCGAATCTGTGATTCCACCAAGGACCCATGATGGTAGATCAGCCCTG
 AGGGGCTTTGACATTAGCAGGATTGGCAAGGAACCTCCCCCAACCCCCC

ACCCAAAGCTGGGACCTCTCAGTGCCTGGTTCCCCGTTACTGTTACAGTG
GGAAGCAAGACAGGTGTATGCTGGGTGAGTTGTGGCTATCACCTATTATCT
CTGAAAGAGATGGAAGGT CCTGTCCCTAGTCACTAGGACAACGGGATCT
GAGTTCTGCAATGCATTGGACCCACTCCAACAAGACACACACCTCAAGTCTT
5 CTCCAGTCCTGTGCTGTGCCCTGGCATCCACTGCCATTCCACCTCCTGCT
CCAGGAATGACTTGGGCACCTGCTGTGGCTGAGGCTCAGCCATTCCCTAGGA
GTTAGATCTCTAGAGTTAAGGGAATTGGGATAGGTAGGCTCACAGCTCTG
AGGAGACCTTGTACTGCCATTCCAGAAAACAGAAAAGTCCAATCATAGTG
AACGAATACTGATAACTGTCAATTATGCCAGCCATTGGGATCAATGCC
10 TCTAACTGTTGTCATGATAACTATGCACTAGCCCTACCCACAACTCACAAAC
AGTAAATAGCCTCAGAGCAACGAGAGAAACAATGCCACCCATGGCATGGAC
TCTGGAGCCTTGCATTGCTGAAGAAGTGA CTTGTAGATGTGAGAGTCC
ACATTGCCTCTGGTACACTGCTTGGATCAAAGGGCTGTTCTTT
TTATTTCTAGTTGAGAATCATTCTCAGTATGGTAGTACATCTTAATCCAAGC
15 ACTCAGGAAACAGAGGCAGCTGACTCTCTGACTT GAGGCCAGCCTGGTCT
TACCTATCTAGAGCCAGGCAAGCCAGAGGAAGTCTTGTCTCAAAAACAAG
CAAGCAAAACAAACAGCCCCATACACATCAACACCACAACAAATTGCAGC
TTTAGCAGGTCTTTCTTCTTACAATATGTTATTTAGACAAATCCCCA
GTAGAGGGAGCAAACAAGGATTGATCATTCTCCTCTGGTCTTTAGG
20 CAATTTTATTGTTGCTTGGTTGAGACAATGTCCTGATATGTAGCCAGGG
CTGGCCTCAACTGTGGAAAGCCTCTGCCTCAGCCTCCCACGCATTGGGATT
GCAGATGTGTTCTACAAGCCTGGGCCATGATGATGTTCACTAAAGACTC
ACCTAAACCTGGGTGGTCCCTGTGGCACGTGTCATGTGGACTCCCCA
CATAACTGTTCTCCGGCCACTAGGAAGTGA CTCAGCATGCTCGTGACCA
25 GTGAGCCCCATCTGACTATTGCTTAGCCATCTGATGATGGGACATCT
GGTTGAGATGCTGCATTCTTAATATGGATTAAAGGCTCAGTGCCTGG
CTACCAAGCTCTAACGACATCACTCTGGAGTGCTAGGCACAAATGGACT
TCCTCTGGCCCCAGGTCTCCCTGTCAAGGTGGATGGGAATCTGGTGAAG
GAAACATGGGATAAGGGTCTCTTTCTGGGAAGCTGCAA CAACATGGA
30 AAAAATTGTA CTCAGGAAAGATAAGTGGGGTCCCTGGCTGCTGGAG
GGGGTTCTCTATAAAGGTAACCTGAAGAAAGTTGGAGGTGGCTTGGCCT
CTAGGCAGCTGAGGAAATCTGACTGTGGCTTCTTTGTTGTTGTTTAT
TTTATTTCAAGACAGGATTCTGTATAGCCCTGGCTATCCTGGAACTCACT

CTGTAGACCAGGCTGGCTTGAACTCAGAAATCCTCCTGCCTCTGCCTCCAA
 GTGCTAGGATTAAAGGCATGCACCACCGCTGCCAGCAAAATGATACTTCA
 GACAGCTATAAGTCATCAAACGGTTACTGGGATTGAACCAGAGTCCATAGG
 ATCCACAGTCAGTGCTCTTAATGACTGAGCCACTGCTCCAGCACTGACTGTGG
 5 CTTCTAATTGCAAGTTCCATGAGGAGGTGCTGGAGAGTTACTCTGAGTGGT
 TTTCGATTGCCAAGAACATAGTTAAAGAGGGTACAGAGAAAGGCATCC
 ACCAGCAAGAACAGCATAGAGGACAAACCTAAAGGTCTCTCCTTATAGATGAGG
 TGGCCAGATATAAGGTAGCACCTAGTATTGGAAAGGAACAGCCATCAGCAG
 TGCTCCTGGGCTTATGGATAGAGGCCAGGCAGAGAGAGGGTGCTGTGG
 10 GAACATGGTACACCTGAGGTTGAGAGCAGAGCATCTCCTGCTGGAGAACAC
 TACATCGTAAAGTCCTCTGGCAAATCGAAGGAGCCAAAGGAACATAGTAAT
 TCTCTAGCAGTACATCCAAAGAACAGAGAAAAAGATAGCCTGCCTGACAAAG
 AATTCAAACACTAGTGTCCCCAAAGAACACTTAATATGATAAAACAGATTATAG
 CAAGATAATATAAAGAAATTAGGAAATTTGTGATGATGAATGAGAA
 15 ATTAGCAGAAGGCCAGATTGGGTAGGGATCTGGACTGAAAGAGCAAGAT
 ATATGAAGTAAAGTATAACAATTAGGAGTCTGATGCAGAACAGATCAGACAG
 AAGAGTTCTGAGCCTGAATACAAGTCTAACAAAAAGGAAAGTCAGACCAA
 GATATGCAAAGGAAAGGAAAACCTCAAGACCTATAGGAGAGCAGAAAGTG
 AGTAAACAGATACTTGTGGATGTTCAAGGATAAGGAGAGACAGGAAGAAG
 20 CAGAAATAAAATTGTTACAAAGTAATTACTGAAAAACCTCACAAATTTGGG
 TGAAATACAGACATTAAAGCCAGTGAAGGAAGCTCTAACGGACCCCTATAGAT
 ACAACCAAAAGCACTACAGGGATGGACAGACTGTTAGTGGTTGAAAGCACT
 GCCTGCTCTCTAGGGAGCCTGGTTGATTCCAGTATCCACATCAGAACATGT
 GCATCAGTTCTATGGATCTAGCACCCCTCTGGACTCTGCAGGCACTGCACA
 25 CATGTTATACACAAACACACATGCTGGAAAAATATCCATACACATAAAGT
 AAAAAAAATTAAAGATACTTACAAGGAACATTATCATCAAACACTACCAAAA
 ATACAAGGCAAAGAATTCCAAACATAGTAAGAGAGAAGTCCAAGTTACATA
 AAAGGGAATCTTCAGTATAACTAACAGTGAGAAGCCTTTAACGCCAGGAAAGA
 ATA-GATGATACCAACCAGAGTTAAAGGAAATGAATGAATGAATGAATAC
 30 CCATCAACCAGGAATATGATACCCAGCAAAACTATCCTACAGAAAAAA
 GTCTTCTAAAGCAAGCAAAACTAAAAGAACTCATCAATAGATTAGTCCTAT
 AAGAAAGGCTTCAAGTAGTGCTCAGAAAAACAAATATTGTCTCTGGCTTT
 CCTAGCTCAAACGTAAAGCCAAAATAAATTCTTCTAAATTGCTCTGTCAG

GGATTATATCATTGCAGTGATAAAAATAACTAACACCGGAGACTGAAAGTTCA
 GGGATGGGAAACACAACCTCAGGCAAATGAAAGCAAAAGCAAGCAGTAGGCAC
 CACTTACATCAGGAAAGTCAACTGTCACTGAAAGACTAAATAGAGACAGGGA
 AGCCTGGCCAAGGGATGGAGTCACAGGTGAATTCTGCACCCATTAGATCT
 5 CAAAGGAGAAACATTATCTAACAGAATGACAGTTAAGGACAAACTGTATCAA
 TGGACAAGTAGTCCAGGAAAATGTCAGTGCAAAATGCTGGAGTTAAAATAC
 ACTATAGACTAAAAGGATCTACAAGTTGTCACAAAATACCTCTCACAGCA
 CAGGGATGGCCTACAGTATAGACCACATGGGAGACCACAAAGTCTCACACA
 CACACACACACACACACACACACACACACACACAGAGAGAGAGAGAG
 10 AGAGAGAGAGAGAGAGAGAGAGTTAGAACTGGTCATTGAAGTTAACAAAGA
 TGTACGAACAAAATGCATGTTAAAACCTCATAGAGCTCCATATCTGACCACT
 AACTTGCTAGGACTAAAATCATGATAGAGCCTGCTCATATTAGATACAAAAG
 GACAGATATGGGTAACTAAAAGGCAGATATCTCTACAGTGAACATTACAAT
 GACAAGAAATTGAAGAGTGTGCAGAAGATGGTCATAGCATGTTGTGGCTCC
 15 AAAGGAAAATGTTAAATGTCCATCACGGCACAAAGCAATGTACAGATTCAA
 TGCAGCTACTAACAGAATATCAGTGGCATTTCACAGGACTAAAATAAGTC
 CGAAGATTGGTATGGGCCACAGAAGAACCAAATGGATCAGGAAATTGCAT
 TCCCAAAGAGCAATGCTGAAGATAGCATAATAGACAACTTGAAAATATCCTC
 AGGCTGGGACGTGGCTAGCTGACAGAATGCTGCCTAGCATGCACAAGAT
 20 TCTGGGTTCAATCTGAGGCAGAAAGGAGAGGCTAGGGTTAAAACAGATGGG
 ATAGTATCTATTACAGGGTGTTCAGTCACATCTGTAATCCCAGCAGTTGGGA
 TGTAGTGAAGGGAGAATCAAGAGTCTAAGGTCACTCCTGGCTACATAGTCTG
 AGTCTGAGGTCACTACATTACATTAGACCCCTGTTAAAAACAAACAATGC
 TTCACTAGCTGAACAACCAAAACAGCATGAACCTAGCATAGAAATAGACACA
 25 ATATGAGGCTGAAGAGATGACCCAGTAGTTAAATCCACCTGTTGTTGGTT
 AGGACTAGGGTTCACTCAACACCCCTCATGGTAACTCAACTGCCTGTAAC
 CCAGTTCCAGAGATCTGAAACCCCTTTATTACTCTAAGGTAAATTGGAGTGA
 GCATACTCAGGTGCACCGTGCATACACACACACACACACACACACACT
 CATTCACTCACTCCTGCTAAGACGGATGGGTGGCAATTACAAATGGTC
 30 TCTTTCCAGGACACAATGCCCTTGCTGGATCTTCTGGAACCACATCCAGG
 TGTGTTCTGCTCAGTCCCCACAACCAGACCTGGGACTTCCAAGAAGTAGCC
 AGAAAGTGGGCAAGCACCATGTGAGTGCTTACCTCAGATCTGCCTGTGCTC
 AGTCAGGGCAGTAGCTAACAGACAGAACGCCCTGGTTATTAGAACATTAATGG

GTTAGGAACCTCAGGACTATCCCCAGGCCACTGAAAAGCCCTCTGGCAGCCTT
TGCATCTACCCACCACCTTCTCAAGCTCAGGAATGCCACTGGATAAAAATACT
GCAGGGCAGATGTATCAGTCTGGCCTGCGTGGGGCTTAGAGTTTCCAGGCA
GCAGTTGCCACAGCCCAGGCTGTGAGGGTGGGTAAAGTAAAAGGTGAAGA
5 AAGCCTTGAAAGGAGCCAGACAGCTCTAGGTGGCCCTGCCTGTATGGCCTCT
TAGCACTCAGGAACATCAAGATACTTGCTAACACACACACACACACA
CACACACACACACAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGACAGA
CAGACAGACAGACAGACAGACAGACAGACAGACAGACAGTTTACCAATGGATTCT
TTATGTGCTGAAGGCAAGGCAAGGCAAGGGACAAAGACAGAGGGACTGA
10 GCACATATGTGCCTGGAAAGGCTTCCCTGGAGGAAGCAGCTTCTGAACATTTG
ACAGAGTGTGTATTGCGTCTGACATTGTCATGTCAGACTCCAACTCATTCCC
ACAGGACAAGATCCTTCCATTCAAGAGACTCTACTCCCAGAAGAATAGCAATC
CACTCCTTACTGGTTGATCAGCGTGTGGTTATGAGGAGGGAGCTCCTGGA
TTCTGGGCATAGCCAACGTGTGACCTTAGGCAGATAAGCTACTGTCTCAA
15 GTTCCAGGGTCCCAGATGCACACAGCAAGTAGCCATATTGACAGGCCCTG
ACAGAGCCACTGCTACAGTCCCCTCACCTCTCAAGAGGCCCTGGGCAGGG
CCAGGGAACGGGGCTGGGCCACACAGCAGAAGATAACGTGTTCACAGAGGC
AGTCCTTCACGGCTCTGAAGCCTCATGAAAAGTCAGGTCTTGTGATGGCCA
CAGTCACCCTGCTGATAGAGCAACCACTGGCTCCTCTGAGGCTTGCAGAAA
20 TCTGGGGCTCTGCATGCTCCAAGGGTTATGAAAAGGGATTCCCATGAGGAA
GAGCAAGGAGGATAACATCCCTGAGTGCCTCAGGTAGGATGAGCAGAGCTAG
ATGGCATAATCTATTAAGTAGCACCACTTACTCTTGGCCCTAAGGCCCTGCA
GGGCCACAGCCTACCTCCTGCTCACCTATTACTCTTATGCTTCCCCACAGTG
TCAAAAGGGCTGCACCTCCCTCTGCAACTATTCTTAGTTCAGCATCCAA
25 GTGGCCCTGTGGCCAGCACTTAATTCTTCATTCTCCCTACCAGAGGCATA
AGAGCTTCTAGAAGCTTCTCACACCTTCTATTGGACAGACCACCCATCCC
CATACCACCTGGACTCCCTTGGCTGGAACATGCCCTGGTGTCTGCCAG
CCTGTCAATCTCATGAAGAGGGAAATGAATCACAGCAAGGTACATAGGAGGC
AACAGCTGGACTGGAATGTCAGAGCCAGGAG GACCAGGGCTAATCAGG
30 GTCCACTTCCTAGATAAGGGTGCAGAAGAGAGAGGGTGGGAGGAGCAGGGG
CCCTTACACTGGCCATGACCAGAACTGTGCATCTTATTACTCAGGAGCCACTT
GATAGAGACAGCTGCAGCTCCTCACTGCTAGGCAGACCTGCTGTGGATGC
CACCCCTGCACTGTGCTTGTAAAGTAAGCACTGTTGCAAAGGGGACACCACA

CCCAGGAAGCATGAGCTGGACACTACCTTGCCACCAGAGGGCTCTAAC
 ACCAAACTCCCTGAGAAACAGAGGCCATAGCAGCTGGCCTGACAATGCCCTG
 TCCTTGTGACACCAGGGCTCTCCCTGCCTCAGCAGCTCCCAGTACTACCTT
 AGCCTGGCATAGGTCCCCATGCCCTCATGTCCAGGGTAGGGAGGCTTTCTC
 5 AGGTCGGAGTTCCATGGGATTGTCTCTCCTACTACCCAGCTGGGAGCCTTGC
 CACAAGGGATGTTATGCCACCCAACACTAGAACAAACCAAGATGAAGTGCT
 CCACACACAGGCACACAGTGTACACAGAAATGCCAGGCTGGGTCTGAGGACA
 GGTGAGGGGTTATGTGTACCTGGAAAGTCAAGATGCCAAGAGAGTTAGCTG
 ATGACACCAAGGGACCAGGCCAGAGGAGATGGCATGTGGAGAAGCTTCA
 10 AATTTATCTAGGGTGAAGAATAGGTAGAGGTGTTATAGTAACCAGAAGG
 AAAGACTTGGTCATCTACACAGCCCTCACTGCTCTGCCCCATCATCCTGACA
 GCCATCTCCTAGGTCTGCTAACTAATTGCCACTGCCACTCCATGAGAGTC
 ATAACCAATACACTGCAGCCCTGCAATAAAAAGGCCAGCCCATTGACTA
 CCAGGAGTAGCTGTAAGCTCCACTCACGATCAACTCCCTGAGGTACTAGCAA
 15 AAGCCACCAAAAAGTTCTCAGGAACTGAGCAAGCCAGAACTGTGAGAGGA
 TAGAGACAGGATGATCAAGTTAGGTTCAAAAGTGAGGGAGGTGGTAGTAT
 CTCTTAAACCCCTCTGGTCACAACCAGGGTCTCCAAGCAGCTTGACAGTC
 AGAGTAGATAGTTGAAACATCTGCCCAACCCCTGCCAAGGCCAACAGC
 AAGGCAGCTGGACCCCTGTGACCTGGCTAGGAAGGGGCTGCTCTATGG
 20 GAACTCAAAGAGCCACAAGATAGGATTAGGGTGAGGGGGTGGGGGGAAAC
 CCAAGCAGCAGAGGGCAGTGCCTGGGACCAAGTGTCCCTGACCCGTCAAGCA
 GGGGAGGTCAAGCACAGACACAGGAAGAGCCGCTCTACTGGCCAAGGCAG
 GGGTCCCCCAAGGAGGGCCAGGATGTCCGGTCTGTTCCCCATACGCATG
 TGGGAAAGCATACCCAGAGACTGCAGGACACTGGCTCTCACCCCTCCACCC
 25 CCTCCACCCACACATTGCCCCCTGCTTCAAAAGCAGGCTGTCCCTTG
 GGCCACAGAACCATCCCTGTATGTTAAGGGTCCATCTTACCAAGTGCAGGAG
 CTCACAGTTGCCAGCCACATTGCTCTAGAACATCACCAAGGGACAACCAG
 CATGACCACACATTATAAAAGATGTTAGGCTCCAACTGCTGGCCATGACTC
 TTTCTGGAAACTGCCTGACCCAGAGGGCCTGCCACCTCTGAAGG-GATG
 30 GAGATGAGATCCCTCCCCCTAGTGTCTGAGCAAACCAACATGCTGTACCCAGC
 AGGGTCCCTCCAGCTTACCTACCCCTCCCTTTGTAACAAACTCCATGGGC
 AGCCAGGGCTGGCAAGATTACCGACCACACTCAGGAGCTAGCATCTCTC
 TCCCTCTCCTGACAAAGAAGATCTTAGACCACCAATCTAGAACGCCACCAAGG

GCTCAGTGGCTCCTGGCTCCTGGCTCCTGGCTCCTGGCTCCTGAGGAGGCTGG
 GCAAAGGCAAGCTCTGCTGAGCAAACATTCCGAGGGCTGAACAATCCAATTC
 AGGAAGAAGCACAGTGTAAAGCACAGACTTCCTCTGGGCAGGACAAGCCCT
 CTTCCACCAGGTCCAGGCCACCAGAGTCAGGAACCTAACAAACGCTCATTC
 5 TAATGACCTGCATCCCCAGGAGGATTCCATGCAAGTGTCTGAAGGCTGCCA
 CCTTGGCAAATGGGCTCCTGCACAAAAAGGTAAACAGAGTAGCGGCTTCTCC
 AGCACCTTCATCTCAGGGATCTAGGATCCAGCAGGCAAGTTATAGAAAGC
 AGCAAGCCATGTTGCTAGACATTCTACAGTGGTTAAGGTTAAGGCCCTTG
 GGGCTTTATGCCCTGAGAAAAGCCCACCTCTGCTGCAAACACATGCAGTGCC
 10 TCCATCCTCGAAAGACCAGCAATGAAGCCTCAGGGCTCTGGCACTTGGGA
 GGTAAGGCAGGGGTTGGTGGCCTAAGGACATAACAAAGAATGCCAGTGGG
 GACAGGGTGTCCAGAGACTGCCCTGGATACCCCTGGCAATCGTCTCCCTTG
 CAAGGCAAACAGCCATCCGAATTCACTTTGTGAGCCTGGTTCTGCTGTGCC
 TCAGAGGCATAAACACAGACCTCTGGACAACCAGTGGAGGTCTCCCTGCCA
 15 GGTGGCAAGACTAGCCACAAGGAGGTACCTAGTGGAAACATCTAAAGCAATT
 AGCTGCGGGGTGGTTGAGTAGAATCCTGAGCCAGAGGCTGGCAGGGCACCA
 AGAAAACTAGGCAGCCAGGAAGTGCTGCCTCGAGGTGGCCAGGGGAGGCAGC
 AAGGAGGGCAGCCAGCCCATTCTGGAGATGACTTCTGTGACCTGCCCTTG
 AAAAATGAAGTGCCCTGCCCTCTCAGGCAGCCTGTGAGAATAAGAGCCACC
 20 TGGTAGCAGTGAGGCCAGGTGCAGCTCAGCTCCCTCTCCTGTTCCCTAAAGC
 AGGTGCTGTTCTCGACAATGTCTACTGGGCTCGCTCAGGGCATCAAGCCTGC
 TTTCATCAGCCTGGTTATTGAAGCTGTGGCACTCCCTGTGGACATCTGGG
 CAACACCAGTGCACCTGCTAATCTATCCTGTTGCTCTGAGTGCCTAAGACACA
 GACACCAGCCAAGGCCTGGATGGCCTGACACAGACACCAGTCACCTCTGG
 25 AGGCTCCTGAGTCTCTCTGTCACAACGTGACCCACACCAAAAGGTGGCTTCC
 AGCTTGCTTACTCCTCTGTAGAGACTAACATCTAAGCGCTGCCCTCTATCC
 CAAGTGAATGCCCTGGGGATCTCTAGGTTGGTGTACTGCAAGTGTCCCCCT
 CCACAAGCCACAGCAGAGTCCCTGAGTTAAGGGACCGACTCTCAGTCTGGT
 TTCTGCTTGTGATTAGCCCTCCTGCCTCCCTAGGGTCAAGTGGCACC
 30 AGCCCTAACAGAGTCGTGCGTGCAGGGAGGTTACTCACACGGTGAAGTGGTACA
 CGAAACACTCCAACCCGTGGGGCGCTCGAGGAAGTTGTAGACTCGGCCCTG
 GATGTGGGTGCGGCCAGCAGCGGGCGCGCACTGTAGATGGAGACCCGC
 GGGTCAAGGCTACCCGCGGACGTGGCCGAGGTCTGCAGGGCCGGCG

GGCAGACACTGGGGTCGACATGGGGGGCGCGAGCCGGGGCTCCGGTTGGCG
 CGATGGGCCATAGACCGTGCTGCCCTCAGGGCACCTCGGCCAGCTCCAG
 TGAGAAGGGACACTTCTTGACCACCGCGCTGCCCGCCGGCGCCTAGCAGG
 CGGCTCCAACCCGCGCGCTCCTTCAGCACTGGGCGGGACGAGGCCGTGT
 5 CCATGGCCAGACAGGACCCCTGACCCCGCTGCTCCTCGGAGCTGAGGTGAAG
 GCAGCGCAGAGCGCAGGGCGCAGCGCGGGTAGCCACTGCTGCCAGCCCAGCC
 ACGGGGGGCCGCTGTCTGCTCCGCCTGGGGCGGGGGCGGGTTGGTCCCCG
 GGGATGGCATGTCCGCCCGAGGACGCCCGCCCTGGCGCCACCGCGCG
 CCTACCTGCGGCCTGCTCAGCCAGCGGTTACCTGTCCGCCAAGCCAAGTCA
 10 GGCTATCTCCGCGTCCGGCTGGCGCACCTGCTGGCGACGTGCTTCCCC
 GCACCCCGAGGACCGCCCGCCTGCTGGCTCTAGGGCCTCAAACCTGGGACC
 AGCAGATAACCACCAACGAATACAAGCACCCCTTCCTCGCTATCTGAACC
 TACCCCTAGAGAGGGAGCGGGAGGCAGAAAAGGGCATCCCAGGCCACGCATG
 GACACTTCCGGCACAGAATGAGGAAGTGTAGCCCAGCGGACACTGAGCAC
 15 CCTGGGTGTCCAGAACGCCTCTGTTGGCGGGAGAACATGCGAAAATCTCTTCC
 CAGTAGTTAACGCAAGCCCATAAGACAGCGGGATGGAGGAGATGGAACAG
 ACCAAGAGTGGTGCTCACTAAGAGTGGGTCAAAGGCAAGTGCTAGATTGCG
 GTTTTACAGGTAGACACCGCCCGGGCTGCCTGAGCGTTACATGTTAC
 ACTCCCTTAAGTTGTACCTCTCAGAGTACACAGAAGGAGCTTATGTCC
 20 CGTGGTGGTGTAGGATAGTCAGAAAGTTGTGCAGCTGGCTTGTACACT
 GCCCTTGTGTGGATGGAAGGGCACCTGCATCCCAGGACAATTCCAAAATC
 CCATTCTCCTGTGATCCGCCACACCCACCTCTCACACCACTCACAAGAATAAC
 TTTCAGATACCGCCTGTTAGCTCAGTTGCAACTGACACAGCCTAGGGTC
 ATCTGAGAAGGAATCAGTAGGAGGACTGCCTAAATTGGATTAGACTGTGGG
 25 TGTGTCTGAGGAAGATTGTCTGATTGTCTTAGTTGATGTGGGAAGACACAGC
 CCACTGTGGCCGTGTCTGTTCTGGCAGGTGGCCTAAGCTATATAAGAA
 AGTAGCTGGCATGAGCCTGAGAACAAACAAACAAGCAAGCAGCGCTCCTC
 TGGGTTCTGCTCAACTCCTGGTGTGAATGAGTTCTTGTATGGAGTTGG
 TGCTATGTAGAATATTGAGCAGGCTGCCTCCAGGTCCCTGGTGTAGGTCTT
 30 CTCTGGCCCCCTTGAAGATGGCTGTAATTGTAAGCTGAAATAAACCCCTT
 TCCTCACCCAAAGCTGCTTGGCCTGGTGTATCGCAGTGATGGAAGGATA
 CGAGAACAGGTGGATCAAAGGCTTGGTGAAGCTGTGCAGAAAGAACAAA
 GGTGAGGGGCCATTGCTATAACCAGAGGTAGAGTGTGTGCCTGGTGTATGCA

AGGACCTAGGTCTGATGAGGATGTGGGGAAGAGCACCTGCCTCAAGAAACT
 GTCACTAAGGAAAACATTCCAAGTGTGCTGTGAAATCCGGAAGCGGCAGAT
 AAAGCAGAAAGTTGCCGCAGGGGAAGTAGGAGATAGGAGACAAGGCCGTT
 TCACCACACAGGCAAAGGATTAATAATAATCATTACATACATAAGGACCATC
 5 TAAAGCCTGGGCAGACTGCCGCAGCCAGTGTGCTGGGAGAGTGGCTGAAAA
 CAGGATCCGAACACAGGGAAAGAGGCATGCAGCCTGGTGCCCTCAGGGGGA
 AACATTCTCAGCCTCACTCATAATAAGAAAATGCAAATTAAAAGTACACTC
 TGATACCAGCGGCCACTATCTGATTGGCAAAACTCCAGATGTTGACGGCAC
 AATCTTGGGAGAGGCCAGGGTGGCAGGTGCTTCTTAATCACCCGTGGGAA
 10 GGGCATCTTGGCAGCCTAGCAAGAGCGTATGTGCCTTGACCTGGAAATCC
 CACCACTAATGCCAACCCAAAGACAAACGAGAAAAACAGAAGATGAAGGT
 GGGCATGGTGGAGCACACCTGTAATCTGAGTACTTGAGAGGTAGGAGTTAC
 AAGAGTATTAGGAATTCAAGGCCATCCTCACCGACATAGTAAGTTCAAGGCC
 AACCTGGGCTATGTATGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA
 15 GAGAGAATACATAAGCATATAAACCTGTGCTTACTGCAACGTGGCTTATAT
 TAGCAAAAGATAAGCAGCTGAAATGATGGCTCAGGGTTAAGAGAACTGCC
 TCTCAAGCATGAAGACTAGTGTAAAGAATCCATCACTCATATAATGCCAAGT
 GTGACCCCTCTGCATGCTGTGTGGGGGGGGGGCAAAGACTCTGGACTT
 CTGGCTCCAGCCTAACTGAAAAACTCAAACCTAAGGTTGAACAAGGGACCC
 20 TGCCAAGGCAAAGAGTGTATATAATAGGACACCAGAGACCCCTGCTGCCTTC
 TGCAAATGCTCACACGCGCATGTTCACACACCTGTGAGTCCATCACACACACA
 CACACACACACACACACACACAAAGACAAACACATTGCGGTTCTGTTGGTTG
 ACTTATACTCTAACAGAGGCCACACAATAAAGGTTCATGACAGTCATTATCACT
 AATATCCAAAGGAAAAAAATAATTGAACCATAGGTAAATAATATTGGTAGGTT
 25 CCTACTCCAGATGACCCCCCAGGCTAAAATTCTCAGTGCTCAAGTCTTCACGT
 AAAGTAGGGGAGTCTGTGTTAGAAACTATGTGCATCCTCCAGTGTAGCTCAA
 CCCATCTCTAGATTCTCAAAATACCGAGCACAATGGGAATGTTAGGTGGAG
 TAGTCTACATTATATTGTTGGGAAAGAATAAGAGAGCTGTGCTAGTCCAATCCA
 GAAGTAATTGTTTCAAATATCTCCATCTGGTGTGGGTTGCAGAACCTGG
 30 AGATTGCAGCACCAAGCTGTGAACAAATCAAACATATATGTTACATATCA
 AATAAGCAATCCTTGAGTCTCTAGGAACCAAGATATAAAAGATACAGAT
 GTAAAATCAAAGAAGTAAAAACAAATCTTAATGTGAGTTAAAATATTACC
 ATAATCTCCTCTGTTCTTCAAGATTACTTACAGCTATATCCGACTAA

AAACTTGGAAAGATCAGGGTGAGGATGGCCTGGTGGTAATTGCTTGCTT
 GGACAAGCATGAAGACTGAGTCAGTCCCAGAACCCACATAAAAATGTGGGA
 CATATACCAGGCATAGTAGCCCGTGCCTTAATCCAGCACTGGGAGACAG
 AGGCAGGTGGATCTCTGTGAGTGCAAGGTCAGCCTCTCACACAGTGAGTTC
 5 CAGGACAGTCAGAGATGTAGAGAGACCTTGTCTCAAAAATCAAGATGGACTG
 CCACCGAGGAACAAACACCAAAATTGTCTCTGGTTTCACACACATGTACA
 CACAGACACACACACCCTGTGCACCACACATACTCCACACATACAAATATAT
 ACCCATGTTGTGTAAACTCCACCCCCCAAACACACACACTGGAAAAGTCTG
 AGCAAGAGCAGAATTCAAGCAGCACAGCTGCACAGAGAGACTCGAATCTGTA
 10 ATCCCTGAATCCAAGACGCTGAGGCAGGAGGATTGCCATGAGTTCAAGGTTT
 ACAGAGTGAGCTCCTATCTCCAAAAACAAACAAATATATCAATTGAAGCATG
 CCTAATATCCTAAACCCAGTTGTTCATATAAGACTTGCAAAGTCCTCGTT
 GCCCTGGACTGTTGCTTGGCTTTGTTCTGAAAATGAGAGGGGGTAGGGTA
 AGATGTGGCCTGCCTGCCTCTGCACCAGCTCAGGGTGTGAGGAGGCCA
 15 TGCCTGCCAAAGGTTACACACAGAACGTGTGGATAGAAGTCTGATGTTT
 TGAAACCATCAACAGGAAGAGGATGGAGTCAGGTGCAGATTAAACCATACT
 GCCTCTGAATTAGGAATTGTTGAACTATAGTGAATGCACGAATTAACTGAG
 CTATTTACTTCATGTGTGTTCCATTTTTAAATATACTCATAACTGTCCA
 GGTCTGTCCTGGGGAAAGATAAGAAGAACATGCTCCTAGGACCTTGAG
 20 ATGTGGCTCAATGGGTGAAGTTGCTGCCACCAAGTCTGACAGTCAGGTTGT
 ATTCCCTGGGATTCGTATGGAAGGAGAGAACAGACAACCCCTAACCTGCTCT
 GACCTCCACACACATGCCATGGTACAAGCATTACATACAACAAATAAGGG
 GTTTTGTGTTGTTGTTGGTTGGTTGGTTGGTTAGGGCTCTT
 GGGGATGCCTGCCCTACCCCTGGACAAGGAATCTGTTCTGAAGGACACTGAGG
 25 CAGAGAGGAGGCTGGCAAGGGCTGCTATGAGGTCTTGCCCTCTCCAAAA
 AGCTGGACAGAGAACATGTCTGTGTGTGTGTGTGTGTGTGTGTGTGT
 GTGTGTGTGTGTGTGTGTGGGGAAACAGAACAGGGTGGAACCAAAGA
 GAGGGACTCTAGGTATTCTAGGTATACTGTTGAGCACGGAACTAACAGAGGGC
 GGGCTCAGGGTGGACTGAAGTTGAAGCTGAGGAAATAAAATCTAGTGGCT
 30 CCGAACAGGAAACACAAAAAGTCCTGCATATGGGTGGGTATCATGAAGAG
 ACCAAACCCATGACGACTGTGGAAGTGGTAAGGATCCTTGAGGGCACATC
 AGCCAAGAAGAGAAAATCTCTGTGGTAGAGTCTGAGTAGATTGCTTAGGC
 CATGGAGGTCTGTTACTCTGGGTATGGGACTCTGGGTGCCACCTGCTCTG

CCGGACTCCTGCTTATCAAGGAAGCACCTCCCACTCCACAGTCATTGAGTG
 GGTGCACACATCCCATCAGGCTGCCTCCTGGAAGATCACCCCTCACTACCTG
 TCTCCAAGCCTGGAATGTTAGAAATCTGGTGCCTGCCCTTACATGCTG
 ACTCTCTAAGGACTCTTGCAATTCTGCACCCCCCTGCCCACTTACTCCT
 5 CGTTCATCTGGTGAAGTCAGAGGGTAACAATGGGGGGGTGCGTTGAGACT
 ATCATGACGGTAAAACTAGGGCTGATGTCTCTATAAGGACCAGAGTCTACC
 AGCCAAGAGGCCTTGGAGCAGTCTGACTCCAAAGGTTCCAGATGTCA
 TCTTTTTCTGATTAATTCCATAATTAAATTAGTCATTCAATCCTAAAATC
 TTGTATGCAGTGCCTGGAGCCATTAGGTAGAGTTGAGCAAAAATAGTGAGC
 10 AGACTGGAGGTGCCACTATCCTAGACAATGTTAACCATCAACATGGCACAA
 CCTAGAATTACCTGAGATACAAAACCCAATTGATGAATTGCCTAGACCAGA
 CTGGCCTTTAGCATGTCTATTAGGGATTGCTTGATTGTTAATAGATTGGAA
 AGAACTAGCTCAGGGTAGTGGCACCATCCCTGGCAGATGGCCTGGACTG
 TGTAAGAAAGCCTGTTAATCATGAGTCTGAGTGAACCAGCAAGCTCTGTTCC
 15 CTGTGATTCTGCTCAAATGCCCTGAGTTACCTCAATGATGGACCTGGAAGG
 TGAAATAAACCTTTCCCTCCCTTAAGTTGCTCTGGCAGTGTAAATCACAG
 AACATAAAATCAAACAGAACACTCAATTAAAGGGCTAAAGTGTCTCCACAG
 AGTCGCTTCAGTTAGCCCTGATGTGGAAACTTCTAGTCCTTGAAAGTTAGTT
 ATGTCAAATGATGTTTGCTGGGCACACAGGTGAAAGGATGTTTGATATA
 20 GCAAACACATGAAAGGACCTTGGTAAGGAGTATGTATTGGCCCCACAGA
 CAGTGGAGGAGAAGCTCTGCATCACTCTCTCTAATGACACACATGCATT
 GGTTGCCTTATATAGCATTATTGAACCTGATAACGCTGCCATTGA
 GAGAAACTCGCCAAGAGCTGCTCATGGGTTCTGCCACAGCTGCTGCCTT
 CATGGCCTCTCCTGGCTGGTGGCAGCCTGCAAGTCCTTCAGGATTGCA
 25 CTATAGCTGCTAGTCGTGCCTGATGTCTGCCGAAAGGACTGGACTGAA
 GCTAATGGGTTGTGTGGTATCTCCTGCCTAGAGGACTTGTCTGCAGCTG
 CTGAGTCATATTGGTGGCTACAGGACAGAACGGCTGCCAAAGAACAGATC
 AGGCTACCCCCAGAGAACCTGCTGAGCAGCTCCACTTCCCCACATCCTA
 ATAACCTTCTCTTCAACTACCTCTGGTGGTAGACTAGAGGAGACGTTG
 30 AACTCTTATTAAAAGTAGGTTGCAAAGAACATCTATGCCATAGCCTGGGG
 AGAATTGCTGGCAAAGCTCTTCATGCAGTAGTCACTCAATCTAACAGC
 TGGGTGGTGGAGGAGGCAGGAGGGAGGGGTATGAGGAATGGAGCTCCCA
 CTGTGAACCACTGATATCTCTGTAGCCCCCTCCCCCCACTGGTACTATTGT

CTATCCTTGTGGATGGAACAGGCAGCAGTAAGGCTGTACTCCATCTCTCCTG
CATCTTACAGGCAGATGCTGGGTGTCCTCTCCTCATCTGGCACATAAAGAT
CTGTCCTCTCAATCAGCTTGCTCTCCAGCCTGGAAAGGGCATCTAGTCCTT
CTCTATGCAAACACTGGGTGGTGTGCTATTCCCTCCCATGAAGGGACCCCA
5 GAGTCGGTAGGACAAAAACAATTGGGCTTGCCAGCATCCTTGGCCCTGAT
ATCTTATCCTCCCTCCCACGCACACTGTATCTGAAGTCATCTCACTAGGTGCA
CCAAGAACCCACTGTGCTCTGCTCTGAGGAGAAGGCTGGACAGTCATTGTG
AAGAAAAGTTCCCTCTGAGCCAGTCCATATGCAGAATAGAAGGAGCTAGGCA
TGCTGTCACTCCGCCACTCCTTACCCATAGGCCACACCCACCCACTCTCCT
10 CTTCCAAGATGCCAAGCTGGTAACCGGCTGAGAATACTGAGGGTTGTGCA
AGTGTGTGCAGTGTGCATGTATGTCAGACACATTCAAACAGCCTTGTGAGC
TCCCTTTGTGACTGCTCCAAGGACAGTCTCTTAAGAACACAGTGGAGGAT
GTGTTCAGAGGGAGACCAGCAGCCAAATAAGGCACCAGGAACCACCCATG
GGGCCACAGTTATACACAATTAAACAAAGTTGTGAGGGTTAATGGTGTGAC
15 CAGGCTGTCTGCAAATGATAACCTGTCATTCCCTCACCAAGCAGCAG
TGCTAGTGAGGTATCAGAACTTACTTTAGTCTTACATAGTGTACTTTAGTCT
GAAGTTGAGACCTGTGGTAAAGCTGCCTAACAGATCTGCTCAGGTCTAGAA
AGCCACACATACCCCTGAGGCCCATCTAACGATGAAAAGCACTCTAGGCA
GGAGGGCTGTTGGCACTTGGCTATGCTGATAGATTCAAGTTCTAGCAAATACT
20 GAAGGGCCCCCTCCAGGGAGCTACCACCATCTGCCACAGAACATTCACTCCT
CCTACCAAGTGGTATCCTAGGAGCAGCCCCGGGACCTCAAAGGTCTCAGACC
TCCACCAGAGCATGAGGTAATAGCCTGCTAAAAGCACAGCCCACACTAC
AGGATCCCTAGCTGGTAGCATCCCTGACACCTCTAGCCCAACAGTACTCCAT
CTTAGACATTGCTAACGCCACGAAGCCTCACTGGTGGATAGAAATGTATTG
25 GGTATTCTAGCCAAATCCAATGCCATGGTAGCAGCTCCAGTCAGAACATT
GTCCGTATCCATGATATCAAATGGCAACACAGCTGGAGGGCTACCATGCC
AAACCACCATGACCCACACAAGGCTGAAGGCCAGAACAGGGCAGGGCAA
CTGAGGAACAGAACAGAGAAGGCAGGAACGACTCAGTTGCTGGCAGAACATT
AGGCACCCACTGCTCTAGTTACACTGTGGGAAGGCTGGAACAAATAGACAG
30 AAAGGCCCAATTAGGAGATACAGATCACATCTGTGAGATGTACAGATGGA
GGGAGGAAGCACATGAAAACCTCACATGCCACTCATGTGCTTGACCCAGCCC
CAGCCCTATGTGACCCAGAGCCTGAGAACAGCAGCTGCCGACATTCCATGTG
GGGCATCGTGTAAACAGGGAGTTGATTCACCTATGAGTCTAGGCACAGAGG

CTCCTGACTATGAGTGAATAACTGGAGAGAAATGAGTGGGTGGCTTATAGG
 TGGGTGGGTGCTGGATGGTATGGAGGGAAAGTGGTAGTAGGTGGAACTTGT
 ATAGATGAATGAGTGGATGAATGGATGGTAGTCAGCTGATTGGATGGATGG
 AGGGATGGATGAATGGATGGTGTATCTGGTAGATAGATGTATAAATGGT
 5 AAATGGATGAATAGCTAGTGGACAGGAGGATGAATGGATAGATGGATGGTA
 ATAATGAGATAGAGGCATGAGTTGGTAGACATAAGGATAGATGGATAATTAG
 ATGGATGATGGATGGTAGACAAGTAGTAGAGTTGATACGTAGATAGAATGAAA
 ATAGCCCCTATAGGCTCATAGAAATTAGCACTATTAGGAGGTATGGTCTTGT
 GGAGGAAGTATGTCACTGAGGGTGGTTTGATGTTCAGAAGTTCAAGCCA
 10 AGCCCAAGTGTCTGTCACTCCTGATGCTGATGCCCTGCTGACCCAAATATCC
 TTCTCCAGCATTATGGCTGCCCTGCATGCCACCATGCATTCTATCATGACAATA
 ATGAACCTAACCTTGAATCTGTAAGGAAGCCCCAATTAAACGTTTCTTAA
 TAAGAGTTCCATGGTCATAGTGTCTTCACAGCAATAGAAACCCTAACTAA
 GTCAGATGTATAGCAAGATAGATGGATGGTAGATGAATGGTAAATCGGTGG
 15 ATGGATCAGTAGGTGGACGGACGGATGGATGGATCGATTAATTGATCAGTGA
 GTGAATGGCTGATTAGTCTTGATTGTCAACTTGACAAGATTAGAATCGCTT
 TAGGAGAACTGTCTCTGGCATGTCAGAGGATTAAGATTGGGGAGGATCC
 ACACCCAGAAAGTAATCCTGGTCTAAAGAGGTCCAAGGAAAGAGCAATGGCC
 ACTTCCCTGCTTCTCCTCCTGAGCAAGTGTGTCCATCACTGCTGTTGCTGT
 20 CCTCTGTTGACTTCAGACTCCAGCTACTTGGTTTCCAACATGAACATGAACA
 GCAGTGATTCTCCAGGGATCTTCTAAGACTGATTGGAACCAGACTGGGCTTAC
 TGAGGTGGCTGACTGACTTCCTGGCTCTGCAGACACTGGTCTTAGTTCTGC
 AGCATGTAGATGGTCATTGTTAGACTACTTGGTACCTATCATGTAAGCAACCC
 TATAAAATCTCATTAATATGTATATATTCTATGAGTTCTGCTCCTCTGGAGAAG
 25 GCTGCTGAACCTTAGATGGATGGATGGATGATGATAACACAGATTAATGTGTCTGGA
 GGCTTGGCTGGTAGGGACATAGGCAGAAAGAAGGTGGTGGGTGTCAGTTAG
 ATGCCCTCATAGGAACAGGGACAGTGGCTCAGTGATAAAACATTGCTACAC
 AAGCATAACAGACAAGTTCAGAGTCCTGGAACCCAGATAAAACTATACATAGT
 GTGTATCTGTGATCTAATACTCCTACAATAAGTTGGGAGGTGAAAGCAAGA
 30 GAATCCCAGGAAGCACAAGTTCCAGAAAGTCTAGTGTATGTGATGGCAAAGA
 AGAGACCCCTGTCTCAAACAGGGCAAGGCAAGGGATGACATATGGCATGCATG
 CATCTGCACGCATACACACACACACACACACTATAAAACAAGATGCCT
 GGGTGGATGGGTATTGATGAATGGGTGGATGTGGTCAGTTCAAGATATCC

TGGGTGCTAACCTAACGATACTCACCTGGTATGTCCTCATTGAATCCTAGGA
 AATGCTCATCATGATCACTGTCCTCATTGCCTGACAGGACCTGGAACAGGTTC
 AGGGCTGGTAGTTGATGCCACACTGAGGCTGGTACCGGTCTGTAACGGCT
 CTGCATAATGTAGAAGCATAACACATTCTATAGACAGCATGTACAGGGGGCAC
 5 AGATGTGTGCATGGAAGACAAGTACAGGCCATGGGCCAGGAAACCATTAGT
 TTCCATTAGAGGCCTGGCAGGAACCTTGAGTTGGTCCCTCAGCCCCTGGCT
 TTGGTCTACAACACTGTGGGATAGCACCAGGTCCAGTGTCAAGACTAATAGACAG
 AGCTCAGGCGTAAGGCCTGTGATGCTCTGCTCTTCTCTCCCAGACCATTGT
 CTCCAACCTAGAGACCACAGACACGAGTCCAACACGTTGTAAAAAATCCTGG
 10 GCCAAGAGGGTACTAAGGTCACTGAGAGCAACATTGGTGGCCTAGAATTGCT
 GTGGGAAGGAAAGGCCCTGATTCCCTGAGTGTCAATGCTGGAGATGCAGAC
 TTTCTGGGCCTGCAGAGTGCATCTCTCCACAGAAGGCAGTCAGAGACAGAAT
 TGAGTCTAAGGGCAGAATGGACAGGGCATTGAGCTAGTGTCTGATCCTAG
 GAGGTAGTTCTCTCCAAAAGCATGCTGGAGTGGGGAGGCTTGAGTTAA
 15 ATTCTGCAGGGTGGGGAGACTTGAAGGCCTGCCAGACTTGGCCTTCTGCT
 CCAGTCAAACCTAGGTGTCAGCCTCAGAGATCGTCAGGCTACTTAAGAAC
 ACTGGCCCTCAAAGAACACTAGCCCTCATGGATGCTAGACGTGGCTTGAGC
 AGGTGGGCATGGAAGGCAGCTAGTGAGACTGTACAGTAGGTGGTGGGAAGG
 AAAACTGCTACCCTGGGACACAAACTGGGTGGAGCAGCCCTGCTGGAG
 20 ACTTGCTCTGGAACACAGCCTGCCAAGAGGAAATATCTCCTGGCACCA
 GTCAGAGCAACCACAAGAGAGACAGACACAGCTACCAGCCAAGCCATGGTG
 ATCAATGTAGGGAACAGCAGCTGTTGAGGGCAATTAGGTATCCCTCCATGGCA
 CCTTGATTCTCTGTCCTCATCACAGTGCTCGTAATGAGAGCATACGGCAA
 TTGAGCCTGCCAATGTCTATCTGCCAGGGCCTGGAATGGTTGGAAAGCTG
 25 CTTCCCCACTAAATGGCTATCTCCCCAGACCCACTTATGCCTCATATGGCTC
 ATGACTATGCACATGCTCAGGCACACAACACTGCCCTGGCACATGTTCTGTAT
 ACTTCTATATTCTGCACCTGGGTTGGCTGGGCTGCCAGGGTCCAGCAGAA
 CTATGGGGGAAGTGGCTGTTGATGGCAAATGAGGAAGCAAAGGTCAATTCA
 GATGA! AAAGCAGCACTGAGCAACGCTGCTGGGTGCCTGGGAAGTGAN
 30 TAGGGGATGTGCCCTGTGTGGGTGTCAGGGCTGGTGAAGGGTCCTGAAAG
 ACATGGGAGCCTGTGGTGACAAGCCTGCAGGAGATGCTCAAGGAGTGGTGC
 CCCAAGGGAGCAAAGAAAAGTGTCAAGGGCTTCTGGTTGATTATTAG
 GATCACAGGGGTCCATGAAAGGTTGGTAAGGAGAACATAATGGTAT

TGGCCTAGAACGGTTAGGAATATTGGTGCAGTCCTCGAGTGTCCAAAAG
ATGGAGGTAAAGGGCAGCAGCAGATGAAGGAAGGGTCTGGAAGCACTCC
TATTCTCACCTAGTCCTCAGACATAGGAAGGCTAGGCTTGGATTGCTGGT
GGACATGAACCTAGGCTAGATTCTAGAATCCAGTGAACCTGGCCTGTTCT
5 ATACTGAGATCCGCCATTCCACCTAGGCCCCGCTATGTACCCCTCCAGA
GCTGTACCCCACAGCTCTCAAGCACTCAAGGCTTATAGTCCTGCTCTCAGG
GCTCAAGTGGCTAGAGCTGGTCTGAGCCCCAGCCAGCTTGTAAATTAGAA
GGGCATCAAATGGCATGGCTTATGTCAAGGTAACATGACAGGTATGCTAGG
GGACATGCTAGCTAGATGGTATGTAACGTGGCCCTTGTCTTAGGACAAA
10 GCCAGAGGGAGACCCCTCTCCCTGCCCAACCCAGGTCTGTTTGCTGTGA
TCTTGGCGCCCTCTGGTGGCTAATGTTGGTCTGGCTGCTGCCAACCCCT
ATCCTCCTACCCCTGGGTTCATGGCAAAGTAATGAAAGCCAGATCCTGTGGT
CTCTGGGGAAAGGGCTCACAGAACACTGTCAAGAGCTGTATCGGTCTACAG
CCCCAGTTATTACAACCGCCTGGAAGCTTGGCATGAGTATCTCGGTCTACAG
15 GAAGAGAAACCGGGACTTCGTGTTGAAGGAGCTGGATAGATCAACAGGAAA
AAAGCCAGTGTACAGCCATGAGAACATCACGAGCAACAGCCCTGAGCCTC
AATTGGAGGCAGTCCTCATGCAGTCCAAGGCAGTGCCTGACTGGTAA
GTAGCTAGTACTCAGCTACTCACACCATAAGGATTCTCCAGGAGTGTGGCACA
CCACAGATCAGGGCAGACATCTCCAGACCTCTGGACCTCAGGAGACAGTT
20 CATCTGCTTGCCTATCATCATTGGGACCACTGTCAGACACCCCTTATGGAT
CATGTGCTTAAGGCAGTTCTGTTCTCAACTAGAGAAACTGAGGCTTGG
TGAGAAATGAAGCAGAATTCCATCTGACCTCTGATCTCATGTTAGAGTACAG
ACACCCAGGCCGTACTCATCGTCTGCCAGGCAGAGCCCAGGGAGGAAAGG
ACCCATGTTCATGTAACCCCTTCTCATGTAACAGTGGCTTGGCCAGCCT
25 GGATGTGCTCTCAGACCAGTGGCACCAATCTAGCCCTGGTGGATGGGTGGT
ACCCCTAGGTTCACTCATGCCAGCTTCTAAGACATCATTGGCTGCCAGGTGC
TGGGTGTGGCATGGGTGGATCGAGGGAGGAACACAGCCTGCAGTAGGTAA
GTGCCCTAACACTCAGCACCAAGTCAGCTTGCATAGGAGTGGGCCAGAAA
GGGCAGGTAAGCTCACACCAAGTCAGCTTGCATAGGAGTGGGCCAGAAA
30 GTCGCTCAGTCCTCTGCTGAGAACGGTAGGAAGGGCAAGCAGGAGCTATGTC
TAGGCCACATTCTACCTCATGTTCTCCATCAGGGATGGCATCATGAGGACAAG
TCTGCCATGAGCAAGGGAAAGGGCTACCCATTGTTGGGAGGGTCTGGGTGG
AGGGCAATCCAAACTGTGAGCCTCAGACTGGAGATTACATCAGCCGAGCA

CCTTGGAAACTCAGCCCAGCTCAGGGGCTGCAGGAGGGAGGGGTGAGGG
 GTGGGGACCCAGCTCCTCATAGTTATCTACGTCTGCTCTGTCAGCAATGT
 CAGGTCTCTCACCAAGGGATGAGGGTGCATGCTAATTGATGCATGCAG
 TGACCTTCTTAGTTACCCACATATCACTGTAAGCTGGCACAGAGAGTTAG
 5 GGACAAGTACGTTAGGACCCCAGGATTGGGTGCCAGATCTGTCGTGCTCTG
 GGCTCTCCTATCTTAGGGCGGAGAAGTACATTTTCAGGCTCTTCTGT
 GACCGTCTCAGCTAGTAAGAGCCTCCAAGGTCTCCACTGCCTGGGATTAAGA
 ATCTGTTTTGTCTTCAGAATTCAAGGCATAGGATAATGATCAGGGTCATGT
 AGCTCCCCCCCACCCCCGCAAAAAAACCCACCAACAAAGGGGGCATTTAG
 10 ACCTAGACACCTGCACATGCAAATCCTATTGCATGCCCTCCCTTTGTGGC
 CACATTGCCTGGTGCCTGGCACATGCCAAATGCCCTTCACCTCAGCCTGGT
 GGGGAGAGCAAGGCCTAGTGCTCCTGGTGTTCACCTCCATGGCAT
 CCAGGAGTCTGGACCATCCATCCAGTCTATACTGAAGCAAGGCAAGGTGATC
 TGGTCTACAGGGTCTAATCCATTGTCATGAGTGGGGTGCCTGTTGAACCTC
 15 CATCTGAAAGGCACTCTCTAGGGCCTAGACCTTGGAAAAGAAAACCTCCAGA
 GACTCAGGAGCCCCAGAGTACTCCTCCCCAGCCAAATGAACCTGTCCATG
 ACTTCCCCTGGAACTAAGTGGAAAGAAGAGTAGGAGGTCCCATTCCAG
 TCCAAAGACTGAGGACAAACAGCATGGCTCCCTACTTCAAGCCAGAGCACA
 CATACTGAGTTACCTCTTATTGCAGAGCACAAGTCCAGATGTGACTG
 20 GGAACCTCTTCCCAATAGTGAGATTACTGCTAGCAGCATGTTTCACATT
 GACCTAAGACAGTAGCTTGTCTAGAAATGGGTCTTGTAGATGAGATGC
 AGGAAGGTGGGGCCTGTCCTAGTTATGAGGTTCTTATAGGAAGAAGAAA
 GTACAGACACACACAGGCATAAGTCCCTGACCACAGAGGTAGGGACTGAGCC
 CACATAGCTCTAAACAAAGGGATGCCTGGAGGCCCTGGAGTTGAAAGTTGT
 25 CCTCAGAGCCCTGGAAAGGCCCATAGCCTATCCATTCTGGATTGGTTT
 TTGTCCCTAACACTCAGGAGTGCACCTCAGTGGTCAGGCCCTCCAGCTT
 GGTCCGTGTTCCAGCACACAGGGACATGCCTGTGACTCTAGCCAGATCCTAC
 GGGAAAACCATCAGCTGTTATTCTGTGGCTGGAGGACTTATTCAAATCTT
 GACCTCCACAGGCCCTGGGTGTGAACTCCTGGTGTGGTAGGTGAATTAC
 30 ATCTCCCACAACGGGCAGGATGGCTGCAGGGACCCAGTAATCAAAGA
 GCTGAGCCTGGCTATAAGAACCAAGATACAAGGGAGAGGGCTGCCTGTGACC
 ACACAGTGACCCATGGTGGCTACCTCATATAGGCCATACACTGGAAAATC
 AGGGTGACATGACTCTTGGTCTGGAGGCCAGGTGAAGCCCAGGTGCTCCT

AGGTCTGTTCTGCCACTGAGATAAAATACCATGGCCAAAAGCAACTGGAT
 AGGAAAGGGTAATTTCACTGCACCATGCAGTCATCATGAAGGGAATCC
 AGGGCAGGGAGAGGCAGGAATGTGGAGGCAGAACGTGCAGGCAGGAAC
 GAAGCAAAGTCCACAAAGGCATGCTCGTACTGGCTGCACTTCATGGTTCC
 5 TGACTTGATTGTCTTATAGAACTCAGGACAGCCTGTCCAGGGTGGTACTGTT
 TCCAGTGAGCTGGATCTCCCAGCCATCATTAATCAATAAAATGTCCCTCC
 TCCCAAATGACCTTAGCTTATGTCAAGTCGACAGAAAAAAACTAAGCAGTTCA
 TCGGGTAAGGGAAGCCACAAAAACCAAAACCAAAACAAAACAAAACCCCT
 GTCATAGCGTAGACCTAGAGCAGACCCCCAAGAAGCCCCACATCTTCCCAAGC
 10 CAGACAAGGCACAAAGAGGAGCCTCCTACCTCTGCCTCTGAGGGTCCTA
 CCTGCAATTCTCCCTTCTGCCGCACACCTGCCTGGTAAAGAGCATGTCC
 TACTCCACCCAATGGCTTAGCATATCCCAGTTACACCTACATCAAATGCAACA
 AGACTTAGTTTATACTGAGCTAAGTATGAGCAACTGTATGTAGCTAATGAGAC
 CCCAAGGGATGTGTTGACTGTGACCATGGTACAATAACCTTGCAACTTT
 15 GTTGTACAGAAATGATAACAGTAAGTCAAGGCATTATCAAATACATTAGT
 GGGATAACCAGGTTAGGTAGGTTACAGCTAAGGGAGCAATTCTGCTATAGG
 CCTCAGATGCTGTGATGACATTTGGCATTGGCTGGTGGAGGAACCT
 TGAGGTTGCTAAGAATACAGGCTAAAGGTTTGCTGGAGATGGATGTT
 TGACAATAGAAGTGGTAAATAATGTGTGCTGAAGACAGCCAAAGATAATT
 20 AGCTAGAGAATCTGTAACATTCACTGGACATTCTAATGAGC
 CAGTCATCTGCAGAACCTTCATCGGAGGTAAACATCAGTTCACATCTGCAA
 GCCTGAACTCTGTAGAACAGGTACAATGTACAGTACAGGAGCTAGGGATCA
 GGTGTATCTTGAGATACACTGTCTGGAGTCACACTATAAGCATGCTGG
 CTCCAGCGGTGTAGGGAGAACCTTGACTCAACTCTGCCAGGGTAGCCAC
 25 AAGAGGCTGAGAATTAGTCCCTCATATTACCATCCTATACCCCTCTT
 CTCAGCCCCCTATGTGCACAGGTATCCACTGTAAAAAGTACAGATTCTGAAG
 TGCTATCATGTGGCACCCAAAGCTGGCAGATGGACAGCCATGAAGACC
 TGGGAAGTGGTATATAAGTGTCTCCATGTCACTGTAGGTCTACCTACA
 GTGGAGCCAAGGGAGGGCCTCAGTATGTTCTCCTCCCTGGCTGGACAC
 30 CTTAGGATCCAAGGCATGGTGAAGTAGGACCAATGAATAGGAAGGGTT
 TTGACATTCAAAAGAAACACAGGGGTTAGGAAACCCAGCTGCATACCACA
 CAGGTCCCTGAAGTGAAGGGTAGGGCTGAGGGGCCTAGCCTGCCTGGGTGG
 TGGGAGAGGACCTGAGCTCAGCCAGGGTGAGGGATGCTGCAGGCAGCCTCTT

CATCCTCTATTACCAACGGTGGGAATGTGGAGGGAAAGAGCCTGGTGGGTCT
 TTCTCTCCCTGTTCCACCTGTTCTCCCCCTGCCCTTCACCTGCACCCCCA
 GTGGACTTCCCTCCTGGACTTCTTGCCTCTGTTCTGCTTCCCTCCTGCACTC
 AACCTTCCTACCCCTGGACTTCCAGTTCTACCAAGGTCCCTCCTGCACTC
 5 TGTCCCTGAACTAGATCAACTGCCTCTCACCTAACCTACCCAGGCAAAAAAC
 CCTGGGACTTGTCTGGAGCAGTCTAGGGTAGCTCCCAGGGTGGAA
 ATGAATTCCCTACTGTCTTGAGGTTCCAGGAACCCCTGCAAAAGCCTCT
 GAGAACGGTGTAGTGTAGAATCCAGATGCCCGAGTTGGTTAAGTG
 TGGGAAACAGAGACAGGCAGGTGGTTGCTGTGCCCTCACACCAGTGGAG
 10 AAGGAGCCTGACTTTAGTTAGCTACTGAGAGGGAGGTGAGCTCAGGTGG
 GCCAGGAGATGGCAGCTGCCTCACATGCCAGATGGACAGGTCTCCTTA
 TGAAGAGGAGAAGAGGGTGGCTAGTCCATCCTGTGGTTCCATCATATAT
 GTTACAGGAAAGCCACCATGCAAACAACCCAGAGCTCCTGCCCGGCAGC
 CCCCCAGATACTGAGGATGGCTGGAGCCATCCTATGCAGGGAGAGATCA
 15 ACTTCGGAGGGTCTGGGAAGAACGAGGCAAGGTAGGGCAATACATGCCT
 GAGTGAAGTCCACCATGCCTGGAATCCCCAAGTCTTACTTCGTCTTAAAGCC
 CAGTCCTGGGCCTGCTCACTCTGTGTCGTTCTATGAGCTGAGTGCAGAG
 ACCCTGACCAAGATGGACAAAAGTCGAGAGTTGCTCCTGCCCTGGTATAAT
 GAGAACCTTGAGGTTCAAGGACTCCTGCCTCACTCTCACTCACAGGGGAGG
 20 ATATATTGCAATGACTATACCAACACAGAACGCCCTGCCCAAGGGAGGAATGT
 CTAAAGCCTGCCTCCTGTGGCCTGCCCTGTTCCATAAGCCCAGCCTCCTCCCC
 CATGATCAGAGTCCCACAACCCAGTGCTGTACCAACCTGGAACCCACCAAGC
 CCCTTACCTGCAGTTGTGAAGGTGCCAACGAGTGTGGCCCCCTCCGTGCTT
 TTTGAACCTCTGCTCACCGAGTGGCACCTGCCAGCCCCAACCTGGTGGTGT
 25 CCTGGTGGGTGAGGAACGACCTTGGCTATGAAGTCGTGGCTCGGGATGTCC
 TCGCAAGGGCTGGTAAAGCAGCTCAGAGCACAGGTAAGGCTGGCTCCCC
 CTGCCCTCAGTGGTGAGGTCTCCACATCACTTACGACCAAGACAATCCA
 TCACAGACACACCCACTGGCTCATCTGATCGAGGCTAACGATTCCCTCCAGG
 TGATTCTGGG11GTTCAAGTTGATGGAACTAAGCATCAGAGAGATGCTAAA
 30 AGCAAGCATGTGCTGCCCTGCAGGGATCTGCAGGTCTGTTCTCAGCACCCAC
 GCCAGGCAGCTGGAAGCTGTTGTAACCTCCTGCTCCAGGGAGACTAACACC
 TCTGATCTCCTCAGGCAGCTCACCCATGCATATACTGACATACACTAAATA
 ATTTACAAAGAAATTAAACTAACCAACATAGTGAGATAACTCAATGGCTA

AAGACAAGAGTCCCAGTCCCAGCACCCACACAGGAAGTTGGACATGGAGGC
ATGTGCTTGTAGTCCCAGTGCTAGGGAAAACAGGCAAGTCCCTGTAGCATA
TGACAGTGGCCTTCCAGAGTTGCCAACCAGTAAGCTTCAGGTTCATCAGAA
ACCATCTTACAGAGACAAGGTGAATGGCACCTCTGGCCTCACATACACCCG
5 TCCCCTGACACAGGTGTGCTGCACACATGAACATACACCCACAAGGGGGTCA
GAAGTTCTGAGTCTCTCTCATTGCAGAAGTGGTTATAATAAAGGAATAGTTA
CAGTTGGATGCAGATGAGACCTTGTCAATTAGATCCTGCCAGAACAAAGCT
GCAGGACAGCATCTAGGATAAAATCTGGAAAAGGTCACTGTCTGCCACACAT
ATATCCCCCTGAGCCTACTATTCCCGTCACTGTCAAAGTGTCCCTGTAGCT
10 GGGCACGGTGGTACATACTGTATTCCAGTTCACGGAACACATGGAATGACTT
AAGTTGACGAATAGCCTGCATTGTAGAAACCTGTCTGGAGGAAAGAAAAAAA
AAGTATTTCCACTACTTGATTCCCTGGTCAGCCAGCTGTGAGGACTCCAGGA
CCCTTCTCTCCCCCTCCCATAAGGTGCCGGATCCTGACCAGTGCCCTCACGT
GGGCCTGGCCGCCATGTTGGACAAGCTGTACGTATCTCTGGCTAGCA
15 CATCCACCAAGATCCGTGTAGTGGCCATCGGAATGGCCTCTGGATCGAATC
CTTCACCGTCAACTCTAGATGGTGTCCACCAAAAGGTAGTACAGGTCAC
AGGACCACAGCTGATAGGGTTAGTGAGCTGGTAGGGTAGAGGAAGCCATA
GGCAGGCCGAAGAATTGTGCCACTCCGAGAGGCCCTGAAACTATTGAGAGGT
GAGAGGTGGGAGGATGGGCTGCAGTGGGAAGATGTGGTTCCATGGCCA
20 AAACCTCCCACCAGGTGGCAGCATCTCTCAGGAATAAGAGTGGCACACCTGCT
GTACTCCCTATGGAAAGCCAGACCTATAACGCTCTAGGCCAGCCTGGCTGG
ACGGCTGTCCCTCAAGTCCCAGAAAGCCCTGCCAGGTGGCTTGGCTCTGG
TATTCAACACACCCCCCCCCACCCCTGGTCTGTGAAGGCAGAACCAATGAG
AAGCCCAGGAGGCCCACTGAGGTGAAGTCTGGACCCCAGCCCAGAACAGTC
25 TGGAAGGTGGAGCTGCAAAGCCCTGGCCCCAGCTGTTCCATGGTCACTCA
TTCCAGGGAGGCCCTGGCCCAGCGGTCCAGCCTCCCTGCCTGAGGGGTG
GGAACCTGAGGCCTTGCTGAAGCCTCTCCAGGGCCCCAGCATGGCGTGCA
CAGCACAGCAAGGCCAGCCAAGCTGCTCTGAGGTCTGCCTCCCCCTCT
CTCCTGGCACAGGAGGATACTCCCA
30 ATTCAGGGACCCCTCTGCCCTGGACAGCAATCTCTCCACTTCATCCTGT
GGAGTCAGGCGCCCTGGGAGTGGGAACGACGGCTGACAGAGCTGCAGCTG
AGCCTGGAGAAGCACATCTCAGCAGAGGACAGGTTATGGGGTAAGGCTT
GCTCTAGCTGCCCATCTACAGCATCTGGGGATGTAGACATGGAGATGTGGC

ACACACCAGTAAGAACCTTATAGAGAGAGCGGGAAAAGGCCTCCAGGAAGT
 GGGGGAGGGCCTGCATGCCTGAGTGTACAAGGCCAGGGAAAGAAGAGCTGTT
 GGTGTGGATGGAAGAGTGACACAGCTGGCAGTGTGACCTGGCTAGGCAG
 CAGCTACCTCCTGGCAGACGACAGGCAGTTGCCACTGTTAAATGGTGCT
 5 GCTCTGGCTGCAGACTCTGATGCCAATAGCTTCCCAGAGGTGCAGTCCCC
 TTACTGCCACCAGGGAGCAGAATTGCCTGAGGGATGGGTATATCTGTGGCT
 AATGGTGGGTGTGAAAGAGAGATACTAGGACAATATTAAGGGACAAAAAAA
 TATTATAAGCTACAATGTCATTGCTTAGAAATTGGTAAAGCCAGTGCAC
 TTTAACAGTGGAAACAGATCTGTGTTGATACCACAAAGGTCTCAATAGAAC
 10 CACTGCAGATTGGGCTGATCCCACCAGCTTGTGGCTTGTGGCTGGTG
 TGTCTCTACAATGCAGAGCAACTCTGTCTATGCTTATAGAGTGACTACCTA
 GCCACAGTGTATCTGCTTGGCTGTGGCAGGTACAACCTAGGCTTCTTCT
 CTTAAGTTACTTGTGTTAATGCCAGCTGGACAGTGCAGATGTAAGGTGT
 GGGCCCACAGCTCAGGGATTGATAACACTATTGGGTTGGGTCACCCTGG
 15 GGGGGAAAAGCCACTGTGGCTGGGATGTAGCTCAGTTAGTAGAGTGCTTG
 CCTTTGTGCACAATGCTCTGGATTAATCCCCAGCACAGAATAAACAGGCT
 CTGTGGCACATGCCTGTAACTCTAGCACTTAGAGATGCAAGCAGGGATCA
 CCCTAAACTATATTCAAAATTAAAGACTAGACTGGGCAGGGAGATGGCT
 CAGCGGTTAAGAGCACTGACTGCTCTAGAGGTCTGAGTTCAATTCCAG
 20 CAACCACATGGTGGCTCACACCACATCTGTAACAGGATCTGATGCCCTTCTG
 GTGTGTCTGAAGACAGCTACAGTGTACTCATACATTAATAATAATAATA
 ATAAATAAAATTGTTTAAAGACTAGATTAGGGAAAAAAAGCTTTGC
 CAGGCCAGGCCAGGGCGTGCAGAACATGGCACCCAAGGATGCCTGAAGTTG
 GAGTTGGAGATGGCCTGAGTTCTCACATTCTGAGCATCAAATGGCCTCATGG
 25 CTGCTCTGCCACAGGCACCAGCTGCATCCAGATACCTGTCTTGCCTGTG
 GTCAATGGTACCCAACACCCCTAGAGGTAAAGGCAGAAAGAAAAGAAACTC
 CCCCTCCCTGGCTGGAGCCCTGAAGGATATGGTAGTTCTCAGGGCATCTAC
 AGGGTGGTGTGGAGGGCTAAGGCACCTCTAACGCATTCTGGTGTCAACC
 TTCTTGCCTCCCCCAGAGGATGCCAGGGCAGTGGAGCAGGCTGCCCATGG
 30 CTGATCCTGGCAGGTTCTGGTGGCATTGCTGATGTACTCGCTGCCCTGGTGAG
 CCAGCCTCATCTCCTGGTGCCTCAGGTGGCTGAGAAGCAGTTCAGAGAGAAA
 TTCCCCAGCGAGTGTCTCTGGGAAGCCATTGTACACTGGACAGAGCTGGT
 ATGTGCTGCTGGGCTGCCTCTGCCTCCAGCCTCCCTGGTGGGATGCT

CTTCTGAAAGTCCTGTGGCCTAGCCTATGACCTCTTCCATATAACCTCAG
 AATTATCCAGGTCTTGTGTAGCAGAGAGACCAGACAACTAGCCTGGTAGGC
 AGTCTGAGCTAGGTTGTGGTCAGCAGGGCAAAGTGGTCCATCTGAGGA
 CTCTCCAGGACATATTCAAGATCTCAAGGCTCTCCTGGCTTAGTTACAGA
 5 ACATTGCTGCACACCCCCACCTGCTCACAGTATATGACTCGAGCAGGAGGGT
 TCGGAGGACCTGGACACTGTCATCCTCAAGGCACITGTGAAAGGTGAGCAA
 GTAGACCTGCCCTCAGAGGCTGCAGACTAGCAGTGTACAGGGATACCT
 GTCAGCCCTCCAGGTAGGAGAGATGACTACAAATTCAAGTGTTCAGT
 TCAGTAGCTTATAATCTAGCCTCAGGGCATTGTAACCACACATCCCCAGTTCTGGAA
 10 ATTTCTATTAACCCCACCCCCACCCCCACACACATCCAATTGCCTTAG
 CAATAACTCACCTGTCCCTCAGGTAATAGTCCCCTGTTTCTGTCTAAGAATG
 TGGGCTTAGGGCAGTTACATAAATGGAATTACAGTCCATGTTATTGTAC
 CCAGCTCCTTCTTGAAGCACTCTGCCACAGACCCATCCCCTGGAAGTCTG
 TGCCCGGAAGTCCTCCCTTTATGGCTGAGTCTGATGTCTACTGTAGATG
 15 TTCCATAGGTCTGTACATTCCACTGGTGGATATGTTGGATTGTCACCCAG
 GCTTGTCCATGTGGCAGGGCAGACCTGGAGCACGTGTGCACAGGCTGGAATC
 TGGGAGAGACCATGCTGGGAAGGGATGGGACATACCTGAGGAAGGGGCC
 ACTCTAAGAGAGCCTGGGCATGGGGCTGCGATGTGGCTCATTTGGTAA
 AATGTTGTGTGCCATATACAAAGCCCTGGGTCATGTCAATGCCACATAAA
 20 CCAGATGTCATAGCTTCTACCTGTTAGACAGGGAGGATTGGCTGCTCAAGCAA
 ATCGGCTACATAGTAATCTCACAGTCAGCCCAGACTATAAAGGGCAGCTCT
 GGATTGGTCATTCCCTGCCTGAGATAGTGAGGCCAGGAAGAGATACAGG
 ACCACATGTGGTTTCAGTGAGTCACACTCCATGGAGGAAAAGCCTGCTG
 GTCTCACTCTGGGCTTGTGGTAAGTGGCTCCAGTGAAAGTGTCAAGGC
 25 ATTCCCATGGAAGAAGTGTGCTTGTATGAGAACATGTACAGCCTGTCCCTGCTCT
 TGGGCAAGAAGATGCTGCCAAATTGCTATATTCCCGAGAGCATGTTCTGCC
 TCTCCAGACTATGTCCAGGGATTCTGGGTGTTGCCCTGAGCACTCAGTCC
 TATGTCACTTGCTGCTGTTAGAGGCAGCTGCCAACCCCCATCAAGTCCTCGC
 AGAGTTCTAGTCCCTCCCTCCAGCTCTGTGGACTCAACCCCCACAGCCT
 30 GCAAGAGCCACAGCCAAGAAGCCCAAGACTACCTAGATGAGCTCAAGTTAGC
 AGTGGCCTGGATCGCGTGGACATTGCCAAGAGTGAAATCTCAATGGGAC
 GTGGAATGGAAGGTGCTCTCCCCGCTCCCTGGCCAACTTGGAACACCAAG
 GCAGGGAATACACTGAAGCCTGAAGTAGTAGGATTCAATGGGTAGCATCTGG

GTCCATCCTGTCTCAGATATTGCCCTGGAGGGGGTCAAGATGATACTAGGGA
 ACACTCAAAGTCCAAATGGGCAGAGGAATCCTAACACTCCTAATGTTAA
 CTCACCAAACCTTCTTATCCCTGGCACCTGAGGCCAGCATGCTCTGCTGACC
 CATGCCTGCCCAAGCTTCAGGAAATATGTTGGGGTGTCCAGGGAGGATGT
 5 TCACCCCTCTTCCCTCCCTTATTGTCCTGATCTCTACTGGGTGAATCCA
 GTCCTGTACTTGGAAAGAGGTGATGACAGATGCCCTCGTGAGCAACAAGCCT
 GACTTTGTCCGCCTCTTGTGGACAGCGGTGCTGACATGCCGAGTTCTGAC
 CTATGGGCGGCTGCAGCAGCTTACCAATTCTGTGTCCCCAAGAGCCTCCTCT
 TTGAACGTGCTGCAGCGTAAGCATGAGGAGGGTAGGCTGACACTGGCCGGCCT
 10 GGGTCCCAGCAGGCTCGGGAGCTGCCATTGGTCTGCCCTCTCACTCC
 ACGAGGTCTCCCGCGTACTCAAAGACTTCCCTGCATGACGCCGCCGGCTTC
 TACCAGGACGGGCGCAGGATGGAGGTGAGTAGAGCCAGGTTAGGCCAGGGC
 GTACTGGATAGGCTGAATGTTGATGCCCTGTCAGGAGAGAGGGCCACC
 TAAGCGGCCCGCAGGCCAGAAGTGGCTGCCAGACCTCAGTAGGAAGAGTGA
 15 AGACCCCTGGAGGGACCTGTTCCCTGGGCTGTGCTGCAGAATCGTTATGAGA
 TGGCCACATACTCTGGGCATGGTGAGCAGCCACCTCAGTCCACGGCTTCCT
 TGAGCATCTCAAGAGGCAGACTGGGAATGTCGGATGGTCCGCCACCTCC
 TAAAACCTGTCCTCCATCTCCAGGGCCGGGAGGGTGTGGCTGCTGCTCTG
 GCTGCCTGCAAGATCATAAAGGAATGTCACCTGGAGAAAGAGGGCAGAG
 20 GTGGCCCGCACCATGCGTGAGGCCAAGTATGAGCAGCTGCCCTGGGTGAGT
 CACAGGCAGAGGGCGTGCCTCTGGTCCCCTGCAGATATCTCTGATAACCAC
 GTGGCCCAAGGTAACCCCCATGCCCTGTCAGAACAGAACACAGAGCAC
 TTCCTCTGGGATGGAAATTGTTAGGAAGTCCTGACCGGGAGGTAGAGTCC
 CTCACAATCCAAGGGAGAAGGGAAAGGGCCAGAGGTCAAAGGTTGGGAAG
 25 GGCTCTAAGGTCACTGGACTCTCAGTGGCTGTAGCATGGAGGCCTGGC
 TAAACCTAGGAAGTTGATTCAAGGCATACACTGCAGATGGCACGGGGGAG
 GGGGGCAGTAGGGGAGAGGGGTTCCAGGGACTGGACATCAGCACTCCATCC
 CAGCAGCTGATTTGTTACAGATCTTCAGAGTGCTACGGCAACAGTGA
 GGACCGTGCCTTGCCTGCTGGTGCAGGAAGAACACAGCTGGAGCAGGAC
 30 ACGTGCCTGCACCTGGCACTGAAGCTGATGCCAAGGCCTTCTTGCCTGA
 CGGTGTGCAAGTAAGTAGTTGACCAGCCTAAGAATGCCAGGGCAAAGAG
 GGTTGGCAGGGCCAGGCTACCCACATAGGATACTGAGGTCACTCCATGAAT
 GTCCCAGCCTGAAGCTCTAGCCATGTTGCAGCTACACAGGGAGGGACCA

GAAGAGTGGCTGAATTCAAGCTCCTCCATCAAGAACACTTCCTAGCTTGGT
 TCTTGGGCCAGCAACACCTGGTCTCAGTTGGTGGCTGTAACCCAATCCA
 TAATCCTGTTATTGAAAGGTACAACAGGGCTGGGGTGTGGCTCATTAATG
 GTGTGTCCAGCATGCTGAAGACCTGGGTTCAATACCCAGCACTCTATAAGGC
 5 AGGTGTAGTGGCACATGCCAGCAATCTTATCACTATGGTGGTAGAAACAGAA
 GGCTCAGGAGTTCCAGGCCATCTTGGGTATGAAGTTGATAGTGTAGTTTT
 CTGGGTTACAGGAGACTCCTCAAAGAAAAAGAAGAAAAGCAGGCAGGCT
 GCAAGACAATCAACCACATTCTCTATAAAGAGGATGCTCTGCCAGAGCGG
 GTGCTCCAGGAGGGGCTTGAGAAGGGTCTGGGAAGGGTATCTCAGGCACAC
 10 ATCCCTACATGAGATAAAAGTGTGGTACAGGCAGCCACAACATATGACTTTA
 TTCCAGGCATTCTGACCAAGATCTGGTGGGAGACATGCCACAGGCACAC
 CCATCCTACGGCTCTGGGTGCCTCACCTGCCAGCCCTCATCTACACAAAC
 CTCATCTCCTTCAGGTAGGTGGACACAGGGGGCAGCAGGTACCAAGTCTCGAT
 GTTCTCATGTCTCACGGCCTTATGTCTGATTGGCTATGTGAGCCCCCTCT
 15 CCCCCATGTGGACTTTCTTCCGTCTACGTGCTTGGATATTCTCTGTGTT
 GCAGTGAGGATGCCCGCAGAGGATGGACCTAGAAGATCTGCAGGAGGCCAG
 ACAGCTGGATATGGAAAAGAGCTCCTATGCAGCCGGGTGGCCAGTAAGG
 AGTAGCTGGGGGGGTGAAGGGATAAAGGGGGCAGGAAGGATGCAAGAA
 ATAGGGAAGGAGGGAAAGGAAGTAAACAGAAAGATAGAGTGGCCTGGA
 20 AAGATAGAGCACAGACAAATGGAGGGAGACTGAGCTAGAAGGGATAGCGCA
 GGGCTAAGAAGGTAGGGAGGGTGACGGTTAGGAAGAATGGAGAATGCTGG
 GATGGATGGAGAGAGTCAGGGCTACCACTAGGCAGTGGCCAGCTCTAGACA
 CACGGTAGACAGAGTCAGGCTCCATGGAGTACCATGGTTGGTATCTCCTCA
 CCATGGTACCTCTGCACTCACACAGATTGGAGAAAGCTAACAGAGGCCACAA
 25 GGGCTCCAGGCAGTCTAGGCCACAAGCTGCCCTCGCTCACACGGTGGAG
 GAAGTTCTGGGCGCTCTGTGACTGTGTTCTGGGAATGTGGTATGTACT
 TCGCATTCTCTGTTCACCTATGTCCTGCTGGTGGACTTCAGGCCACCAC
 CCCAGGGCCGTCTGGATCCGAGGTTACCTCTATTCTGGGTGTTCACACTG
 GTG: TGGAGGAAATCCGACAGGTCACTGGCCGGCATGGCCTCTCCTGGCT
 30 CTGCAACTCAGGCTGTGTTATGTGCCTCAGGTGGACCTGTTCCGGGGAG
 GTAGGACTTTAATCCATTAGAACAAAGACCACTGTGTCCTGGTACAGAGTGA
 CCACTCTACTGAGTCCTGGCCTGGTACAGAGTGAAGCCCCAATCCCAGATCC
 AGACCAAGCCCCAATCTTAATCAGACTAAGTCCTGATCCTAGTCACAATCCTA

GAGCCAACCTGAGCTGATTCAAGCACCATCTGACCTCTGATCTCTGCTCCAG
 ATTGATCTGATTCTGATAACCCCTAGTCAGAGTCTGAACCCCTGACCTGAGTCAC
 TGACTAAGTCCAGACTCTGAGTTAGTCACAGACAGTCCTGACCTAAGTT
 GGATTGACCTCATTTCCTGCCCCAGACTTATCCCTGAAATATCTCAGTTG
 5 ATATCTCCATTCCCTAGCCATACAGAGAGTGCTAGTCATCAATTGATTCTGATA
 AACTTGGAAACTGAGTTCTGATTCATGCAGATTCCACCCCTGGTCTCAGCAAGA
 AAGACACGGTGCTGCAACCAGGCTTCTCCCTTGCCAGGGCTTCTCACAGA
 TGAGGACACGCACCTGGTGAAGAAATTCACTCTGTATGTGGAAGACAACCTGG
 ACAAAGTGTGACATGGTGGCCATCTCCTGTTCATTGTGGGAGTCACCTGTAG
 10 GTATGTGGCAGGCTCTAGGGTCCTACTTATCCCTTGAAACCCAAGTGTGG
 TCCTGGAACCTGGTTTGGCCAGCTGACTAGCATACTTGTGTCTTGGGGGA
 AACCTCCTGTCTACATGGGCACCAGCAGCCTTACCCAGCCTCCGTCCCTCTC
 CAGAATGGTGCCCTCGGTGTTGAGGCTGGCAGGACCGTTGGCCATTGACT
 TCATGGTGTTCACACTCGGCTCATCCACATCTTGCTATTACAAGCAGTTG
 15 GGTCTTAAGATCATCATTGTAGAGCGAATGGTGGCTTGGGACCCCTGACCC
 TTGAGGGGGCTGAGGTACCGGGAACCCCACCCCTGGATAGATGGGAACCTAG
 ATTATTCACTGGATGGTACCCCTAACCTGTTGTGGGGGGGGTGAGCCCTT
 GGGATCCCAGCTGGATAGCTGCAGAGTCAAAGGAAAAGTCAACTCATAGA
 TGGGAAGGGCACTGAGCTTGAATGGGATGAGGAGTATCCAGCTT
 20 TGGATAGGTGGTAGCCCATGGGACCCCTAGCCTGGGTGAGATGAGCTCCCCA
 GAACCCCTAACCTGGGTTAGGGGTGAGCCCTATTGGACCTTGACCTGGGTGGT
 GGTGAGCCCCGTGGTCTCAACCCGGTAGCAGTGAGAATCCTGGGACCT
 CCGACCCCTGGATAGGGTAAGTACTAAAACCCAAACCAAGGTAATGGTGAAG
 ACCCTAACACCTCAGGCCTGGGAGGGATGACTCCCTGGGACCCCTAACCT
 25 AGGTTGAGGTAAAAACCCCTAGAACTCCAACCCCTAAGTGAGGGTAAACTCTCT
 GAACTCCACCCCTGGGGTAGAGTGAGCCCTTCTGTGACCCCTGAGGGCAAGTTC
 CCACCTAGGCCATGCCCTGTGACCCCTCCCTGCAGATGAAGGATGTCTTCTT
 TTTCCCTCTTCTGAGCGTATGGCTTGTGGCTATGGTGTGACCACTCAGGC
 CCTGCTGCATCCCCATGA^TGGCCGTTGGAGTGGATTTCGCCGTGTGCTAT
 30 ACAGGCCTTACCTGCAGATCTTGGCAAATCCCTCTGGATGAAATTGATGGT
 TTGTGCTGCCAGGAAGGGTGGCTGATGGCGGGTGGCTAGAATATG
 TGCTCCACTGGACTTCTGGGTACCCAGGTCCCTGGCTGAAAATGGCTGACAC
 AACAGCACCTAAGTCTAGGCCACAGGCCTTGCAACCTCCTAGGCTGAGGT

CCAGAGTAGGGTAAGACACAGCCAGCGTGGAGCCCTCAACCATTCTCTGGC
 TGGGAAGTAGGCCATGGAGATCCTGAATATGCAGGCCTGGCTTCTTAGG
 GAAGTCAGTGATGCAATGGCTCAACTTGTGTGTTGCCTGTTGATGTCA
 GTGGTATGAGGCTTGTCTGTAGACATGAGTGTCCCCTCAAGCTAGGCCCTAAA
 5 CCTAGTTAGGGCTGATGGAGATTCTAGGGACTTCATGACAAGTGGACACAGC
 TCTGTACTTACTGCAGGGCTTGTGGTAGTGGAGGAAGAAAAACCCCTGGA
 GACAGAGTGGGACCCAGGCAGACCTAAGGTGGCTAAGATTGGCAAACAT
 AGAGATTCACTCATTAGGCCGAAAGAGGCCTAGAGAGTGGGGATCAGA
 ACAGAGGCTCCATATGTCCATATGTGTAGGCTTAGAGATAGGATGCAGATT
 10 AGGCACTGGGGAGGTGTCAGTATTCTGGCTAGTGTCAAGGGACTTAGTGT
 ATACAGCTTGGATGGTCAATAGAGACCTGACCCAGCCATTCTGGGGAGGC
 CAGTAATGAGGCCAGGTCAAGCAATTACAACACTGGATGAATATTGTCAACA
 GATGACAGTGAGATTGGAGCAAGCCCAGGCCTCCAGGGACAGACGGCTGG
 AAATTAACCTCTAATTGGGGTCTCCAAGCCATACCCCTGGCTTTCTTCT
 15 CCCCACACATTGCTTGGTGTGCTCAACTGAGCCATCACTTTCTAGGCC
 ATTAGCTAAACAGACATTGCCGCTCTCCCTCCCTGAGCCATATGGCCT
 CATGGCCTCAGTCCCTGGGCCAGGAAGAGGAAGGTGAGTACCCAGCCAGG
 GCAGCTCTGGGTCTGAGTCCATAGTAACATAATTCTGGTTCTCCAC
 AGGAATTGGGAACAAGCTCAGGCCACCTGGCAGTTAGAAGGGTAGCAGG
 20 GTGGCCTTAGTCTAGGTATGGAGGCCACTGCAGGGTCAGCAGAACCACTAT
 AGATGTGGCAGGCAGAGTGAGCAGTGAAATAGCATTGCCAGTCCCTACACTG
 TGTCTACTATGCTGGAGTGGCTGGTATTCTCTAACATGCCGTGCTCAGAG
 GGAAACTGGACTGGAGAGATGGCTCAGTGGTTAAGAGCAGTAACGTCT
 CCAGAGGTCTGAGTTCAATTCCAGCAACTACATAACCATTGTGGCTCACA
 25 ACCATCTGTAGTGGATCCGATGCCCTCTGGTGTGTTAAGATAGCTAC
 AGTGTACTCAGAGGGAAACTGAGGCCTGGTAGTTCTGGCCAGTCTGCAGG
 GTAGTCCTCACCTCTCCACATTACGCACCTCCCCCTTCCCACCAAGGC
 TCTGGCTCAGGCCAAACTTGTGTTCAACCAGGTCAAGGCAGGCCTCTCAG
 GCCTCAGGCAGGATTATGCTTTCAAGGCCTCTGCTCTAAGGGCTTG
 30 GCCACCCCTGGGGCACCTAGAGAAGGGAAAGAGAGCTGGAGAAACAGAAC
 TGGAGCAGATTCAAGGGTGGGAATGGAGTGACTGCTAAAGCAGCCTTGG
 GGGGGCAAGGCAGGATCTGGCACTCCCAGATGACTGATTGCATCCCTCCATA
 TGATAGAACACTCTACATCTCACATGGGTTGACTGGTCATAATAACTCACTGG

GTAAACAAGGCAGGGATTGAGAAACAAGGCAGGTCAAGAAGAACATGCCAGTA
CATATACTAGACTTCAAATATCCAAAATTGTACCTCAAGGCAGCCT
CGCCTAGAGCATACCCATAATTCTGAGAGCCGGAAGAACAGAACATCAATAAT
AACTCACTGAAGTGTACAGGTGGTACAGCTGCATGCATACATGCATATATGC
5 CCACACCTACTTACAGACAGTTATGTGCCAGCATACAGCCTGGAGAACAGAC
AGGGGATGGAGCCAGGAGGGAGGATAGCAATCTCAGCCTATGCTTCCCTGCA
GGCTTGGCAGGGTAAAGCCCTGCAGGCAGGGAGAACAGAACATAAGGGG
ATGACATTATAAGGGGCTAGCATTGTACTCAGAGTCCTGGGGATGCC
AGGGATCTGGTACTCCCATTATGGCAGAGGTACCCAGAACAGCTGCAGGTT
10 TGCATCCCACATCTGAGAGCACTAGGTGAGAAAGGCATGGACAGGAGATCTAAA
GGGCTCTATGGCTCTTGTCTCACTCCTCACATGGACTGGCTTGCCCTCCATG
GAATCCCAGCAGAGGAGGCAGAACAGATGAACCTGTTGGCTGGTAACTAGG
GCTGGTACTTTGGTCTAAACTAGCTAGCCCCATGTTAACCAAGGCCCTGG
CCACCTACCTGGCACCCACAGCCTGCGCCTCAGCTTGAACCACACTCCA
15 GTCTGAAGGTGTCTGTTGCCTTACAGAGGCTCGTGTGAACTGTTCTTCAC
CCTCTGCTGCTGGAAAGCTCGGCTTCCCTGCCCTAATCTCTATGCCAACTGGCT
GGTCATTCTCCTGCTGGTTACCTCCTGCTGTCACTAATGTGCTGCTCATGAA
CCTTCTGATGCCATGTTAGGTAACCTCCTGCTTCACTTCTGCCATCTGCC
CTCGCCAATCCATGCTCCATCTTAGTAGGGCTGGTTCAAGGGTGTGACAGAG
20 ACAGGACCCATGTCTGGTATTTGCTGCTGTGTCCAGTGGCTGGACCTGCA
GTAGAGAGCCAACACTACAGGTATGGACACACTGTGAGCACACCCCTGCTGT
TTATCCTGTTAGGAAGGAAGATGGGTCTACAGGGTGGGGACTCAGAGCTGT
GTAAATACCCACTGAGGAAGCTCCACTGCAGTACACCTGAGAACATGTGTTG
AGGGTGCCAGACCCCCATCCAAGCCTCTTCTGTTGCTGTGATAAAACTAA
25 TTGAAAACAATGTAGGACAAGAAAAGGCTTATTCATCTTACACTCCTGGATC
ACAGTCTGCCACTGAGGGAAAGTCAGGGCAGGAGCTCAAGGCAGGAACCACA
GAGGAGTGTGTTGCTAACCTCCTCAGGCTCATGTTACCTAGACTCTTACA
CAACTCAAGACCTCTGCACAGGAATGGTCAGGCCATAGGGACTAACATCC
CCCAGAGACACGCCACAGGTCACTATGATCTGACAGTCCCTCTATTGTGTT
30 TCCCTCTCAGGTGACTCTAGGCTGTCAAGTTGAGAGTTAAAGCTAACTAT
TAGCCTCTATCTTCTGAAAGGGCTCCAGCACAGCCAAGCTACCAACTGGAT
GCAATGGGGATGACATATAAGGAGTGGAGGTGGAGGGGTGAGATGAAAG
ATGGGAAATGGGATACAGGGCGTTGTGTGGGGTGGAGGTAGATGCTGG

GTTGAGGTAGGGTCTTCATGGCAGGTAGAGCAGCTTATAAGGCAAGGGCT
TGGCTATGTGCTCTGTAGCTACACATTCCAGGTGGTGCAGGCAATGCAGAC
ATGTTCTGGAAGTTCAACGCTACCACCTCATCGTTGAATACCATGGAAGACC
AGCTCTGGCCCCGCCCTCATCCTGCTAGCCACCTGAGCCTGGTGCTCAAGC
5 AGGTCTTCAGGAAGGAAGCCCAGCATAAGCGACAACATCTGGGTGAGGCC
AGGCTGGATGCCACTGCTCCGAGGGGAGGGTCCAATTGACAGAGGAGACC
ATAGAAGGGACTGGGGTCTTGTCTAGGCCCTGTCCAGGTTAACCAAAGCTC
CAGGTAGACTTGAGACTAGACAGCCACAAGGCCAGCCTGTCTCCTTGCAGCC
TGAAATCCCTGCATAGGGCTTATTCTGTACACCTTGTGCCCTGCCTGGTG
10 GCATCTGCCCTCAGTCTCCCTTGCATCAGCCTGGCCTAGACTTCCCTAGAG
GTCCACACCACTCTCCAAAGCTTGCTGCTGTCTCCACATTGCCAGAGAGAGA
CTTGCCTGACCCCTTGGACCAGAAGATCATTACCTGGAAACGGTTCAAAG
GAGAACTCCTGAGTACCATGGAGAACGGAGGAGGGACAGCGAGGGGAG
GTGCTGAGGAAAACGGCACACAGGTGGGCAGCCTGTGGGACAGCAGGCAT
15 ATGAGGCTCAGGCTGGCAGGTGTCTTGCATGAGCTGCCAGAGATGT
AGAAAGGGCTCTGACAGGAGGGAGGTAAACTCAGATGCAGCAGGGCTGGC
TGACCTTGATCAGCTGGGTATTGAGGGCAGTAAGTCTAGGAGGGCTCCC
CATTGTGAACATGTGGAAATGGGGGATATCTAGCCTTTCAGTAATAGGTG
GGGTTTCTGAACCACCTTAAGGCTGGTGAGACCATCTAGTCCAATAACA
20 GGACCTCTGAGCTGGGAAACATGGCTGGTCACAAGACCCAGCCCTTGC
CCTAGGAGTGTGTATATGTGTGGGTGAGAGCATAAGTCATAATTAGGC
ATCTCTCTCCAATGGACTCTTCCTCTCTCAGGTCTGAAGATCCACGCC
CAGTTGGTGCTAGATGGTGGAGGGCTTCTGAATGCTTATAGGGATGACC
TAGTGTTCATCCTATTGCTTGGTGGCCTATTCCAAGCAGGGAGGGATCTCAA
25 TCTCTTGAGGGTACAGCAGTGTCCATATCCATAGACAGGCCAGATAAA
GAUTGGAAGGGCAGTAAAGCAAGAGGCCAACAGTTAACTGAGGCCCTGAGA
AAGCAGTTAGGACAAAAAGCTCCCCCTGTGGAGTGACATGAAAGTGTCA
ACTGAGGCTGACCCCTGCTTCTACAGAGTGGACTTGATTGCCAAATACATCGG
GGGGCTGAAGAGCAAGAAAAGAGGGATCAAGTGTCTGGAATCACAGGCAAG
30 CTAGCAACTCACTATCCATCTTCTTCTGGGTGGGGCATCCTCTGGTCC
ATGGGAACTACCACAGCCCTGTACCAAGCATCCTGGTGGTAGCATTAGGGCC
TGGATAGAGTGGCCTGCCCTGCCCAACTCACTTCGAGACTCATTGTTGTT
CTAGAGCTGGTCCAACAAACCTAGGTTAGCAGCACCATCCGGTCACTATCCC

TTATCATGCACTATGGGAGGACCTGGTCCAGAGTGTGGAGTCCCAGGGCAGC
AGTAGCCCTGGCAGGAGGGCAATCACATGGGAGGAAACCAACCCGGTCCCCC
CAGTCCCCACCGAAGTCTCAGTACCTCCCTGGCTCTCCAGGCCAACTACT
GTATGCTCCTCTTGTCCCTATGACGGATACTGGCTCCAGGAGGCACCTAC
5 TCAAGTAAGTATGGGTTCAGGCCATGGGAATGAGATGGGTATGGGCTCCTCC
CTTCAGGCCACTAGATTAGGGCAAGAGCAAAGCTGCCGGCTGTGTATTGTATT
AGGCCTGCCTCTCCACCTGTGCTAGAGGTCGGTTACCCCTGCCAGGCCACT
GTTCCCTAGTGTCCAAGGCTCTGCCTAGCACTGCCCTGCTAGCCTGCCAC
TTTCCATGTCCTGGCCCTGCCTCACTCCTGCCCTGCCCAAGCTGAGGCTCTCC
10 AGCTGAGGGTCCTTCTCCCTTCTTGCTCCAGGCTCTCAGAACTGTGGTTGC
AGGAGTCAGCCAGCCTCTGCTAGAGACAGGGAGTACCTAGAGTCTGGCTTGC
CACCCCTGACACCTGAAATGGAGAAACCACCTGCTCTAGAGCCCCAGACCT
GGCCACATCGAGTTTGGGCACATCAACCTCCCCACTCCCAGCAGCCCC
AAGAAATGGTCTTCAAGGCCTGCTACAGATCACTTCTGGACATCCCTCCT
15 AAGAGAATGAAACTCATGTCCTTGGCATCTATTGGAGCCTCAGAAAGTATCC
TCTCCAGCAGGGCAAGATTTCATGTCCTAAAGCTTCACTGGCTTGG
CTGGACAGCTGGATCTGCCAAGTCCTACATAGGACACCCTGCCTGGATG
GGGCTATTAGGTCTAACCCCTGTCTTACCCCTGAGTTCTAAGAAGCCAACCT
CTTAAACACTAGGTTCTTGACCCCTGACCCACTCATTAGCTGACCAGCT
20 CCTAGAGGGCAGGACTCAGATCTATTGTAATTACCTCCATTTACCCCCC
ACAGCATTATCTGTCATCATTCTGGCAGAAACCCCAAGATATTGCTCAAGG
GTACCCAAATGCTACTTACTTCTATAAAGCCTGTAGACCACCTCAAATCAGC
TAAACTGGCCACAATGGTGGCTAAACGGACATTCAAACACCCGGGAAT
ATGGAGGATTGTCAGCTAGTGAAGGCATCTCCGTTCCACTGCTCCT
25 CAAATTAAATGACCATCCAGGTCTTTAGAGGAACTCAGAGAATGGGAC
TACAGAGGCTGGGCAGACCTGGTCTTAGCAGGTCTAGCTAACTGGTCCA
AGTCCCTGGCCTCACAGGAAACATTGCTCATGCATCCTCCCTGCATCCTC
TCTTCTCTGGCTCAGCTCAGTGAATGACCCAGCATCAGCTGTGCTTAC
ACACACAAGTCCTGGAGACACACAGACACCACATGCTGCTTCACAA
30 CTCATCCTCTTCCATAACCTGTGGTCTGTACAGGCCAGTGTGGGCTGCA
TTGGTTCTGGGGTGGGGTGGGGTGGGGTGTGCAGATTATGCTCATTAC
TACCATCAGGGCACAAGGCTGAACACAGCTAAGAGCCCAGTCCCTG
AGTTTCATCAGTGAACAAATGAAATGACCATGGCAAACCTCACGGCAGTCCT

CACTGGAGTGGGAAAGGCAAGGTGAGGCTGCCAGAGATGCAGTCCTGTAGTT
 GGCTGCCAGGACTGTTGGACAGAACTCTTGAGTGGGGCCCGGAAAAAGC
 CACACAATTCAAGAAATATTCAAACGTTATTATTCATCCTAACACTGGGG
 CACAAAGGCCTCGAGGTCCCCTGACCCACAATTCCCACAGTCTGCCAGAG
 5 CGGCTGCACACATCCCCCTACCACAGACAGCCCACACCTTCCACTGGACTA
 GCAGGTGAGGGTAGAGTGATAGCACTGCAGTCACACTGAGGGCCTCTCTC
 AGACCCCGCCCCCCCAGGGTTACCGTCCCTGTCGGAAGTGGTCTGCTCC
 GCTTCTTGCTGCCATGGAAACCAACAGCCTCACACCTATGGGCCTGATGAG
 GACTCAGGATGGGCAGCTCTGAAGGTACCACCACCTCTGGCTGCCCTGGTG
 10 GCCACTCCATTCTCAGCCTCAGGTCCAGCGAGATGGCTAGCTCACAGCG
 GCCTCACCCCCCGCACCTGACCCAACCCCTCTTAGGACCCCTTCCCTCTCA
 GCCCTAGCCTCACTGTCCCTCACTGGTTGGTAAGACCACTCTCCCTCCCC
 ACAGCTAGAGGGCCTGGTGAAAGAAGGCACATAGTCTGTGTGGACACC
 TGGCTCGAGAGCTCAGGAAGGCCAGGGCAGCATCACGATTGCTCTGCTCAC
 15 TGGCTTCAGACACATCCTCAGACTGTATTGGTCCAACGCTCAGGGTGTGAC
 ACATAGTCAGGGACTGGAGTACCCCTAGTCGGGCCAGTGTCCCAGTCAC
 GCTCAGGCCCTGCTGGAGTCTGACTTGGGGAGTCACGGGCCCTGAAG
 CTGCCATTGTCACTCACACTGGTTGGGAGCAGAGCACGGTGCCTGCCGG
 CTGCACTCTCCAGACAATCAAAGATGCTGTGGCTCGCTGGAGAAGGTAGA
 20 ACTCATGCCTCGGAGGTGGAATGGCTGACTGCAGTGGTGGAGGGTCCCCGTG
 GGGGGCGATGGAGGGCCTCAGGGCCGGAGTCCTCCTGGCCCTCCGAAA
 GCCTCTCTGGGACAACACTTGGACCTCCACACCACAGGTAAGCTAAGGTC
 CGAGTCCGAGTCGCTGAGGGAGACGGTGTAGAAGGCAGGGTGTACCTCG
 GTGGGTTCATCAGCCTCCAGGCCAGCCTCTGCTCCGCCATACGACCTGACAC
 25 CCGTCCCACCTGTAGCGAAGCAGTCCCAGTCCGCCGTGAGGGTGTATTAA
 GGCCTCATCCCTCCCCGTCTCCCAGGCTCCCGTCTTCACCTCCACTATGTGT
 CAAGTGCCTCTACTCACAGCCGGACGGGAGGCCTCGCGAAGCTGGGTGGTTA
 AAGGGTATCCTAGCGCGCACAGATAACAGGAGCTGCAGGTTAGGTGGGTTAA
 GGAGAGAGTCACCATGAGATCATAACAGTGTGGACAACAATAGATGAGCA
 30 CTGGGAGATGCTGGTACAGGGAGATCTCCATCAGCTGCTTGTCCCACACGG
 GCTCTCAGTAAAGCGCAGCCTCTAGGTACAAGCGCCACCCGGTCCGGAC
 GAAGGGCTGGCAGAACAGGCACGGAATGCCCTGGCCGCGGCCCTAGGGA
 GGCCAGTGCTCACCGTCCAGCGTCCGTACACGCCCTCAATACCCCTGCCGCTT

TCTCGCAGCGTCCGCCAGTTCCCCGGGATTGGTCTGTCCAGTCTCGCTCG
 GGTTCTGGAAACCGAGTCTCGGCGATCAGATTCGTGGCTCAGCGCCC
 GAGAAACTACAACCTCCAGAAGGCAATGGGTTCCCGCTAACAGCGACACGGAAACCCACCC
 ACTTGTAACTTAACAAGCGTGCCAACCCGGAGCGCACACGGAAACCCACCC
 5 AGAAAATGACGAAAAAGGAAAAGGCGGAGCCACGGTCCACAATACTCCAG
 GGCTAACTGCCAATCGCAAAGGGTTGAGGCCTGCAGCTCGCCTGTCGAAG
 CCGTCCCGGCCGGTCCGACACAAGGAGGAAGTGCCTGACCGACTGTGA
 GCGCCAACCAGTTCTAGACATTCCGGCCCTGGCGGAAGTGGTGTGGTC
 TTGTGCTTGTGGCTTCTGGAGTGAGGCGGGCCAAGGTCTGGTGGCTC
 10 TTGGCATGAAGAGACGTAGTGGTCCCTGGGTTGGTTGGGCTTCAGA
 GATTGAAAGCCGCTATCCTGGCTCTGCCTGTGCTGCTCCTGACGCAGGAA
 CGGACACTTAGTGCAGGACGCCCTACTAGTCAAGGCCACACATAAT
 CCTCCTCCAGGCGTGGGCTGTTCTGTATCCTAGGGATCAGAGTCTGAG
 ACACCATGGGCTGCTGCATGCGCCTCTCCTTCTATGTTCTGAAGCTGTG
 15 CAGCAGGCCTCCAACAGCTTGGCCTGGTGCCATGGACCTCATAACATAGG
 ATATAAAGGGCTCCTCAGACCAGAAACCAACCAAGCACGGAACAGGTGCAT
 AGGCGTGGGAGGTAGAGGTGGCGGAGACCTAGAATGTCCTAGTACAAGCTTG
 GGGTTCACCGACAAATAAGCTACTGGAGGCTGCTAGAAGCTGGCCATGA
 ATCTTGGCTAGGGCGTCTCCTCTAGTGGCCAATTAACATATGCCAGCAGCCT
 20 GGGGGAGGGCGCAGACAGGAGACAAAGGAAAGAGACAGTGGTGGTGCCT
 CCTGGCGTCCGGAGGTTGCTTAGCCTGATCCTCAGTTCACAGGGTAAGTGA
 ACTGCCATCTGCCTTTACTTATTGAGACACAAGCCAGGCCACCCAGCTCC
 GTGGAATCTTCTTGAGATGGATGGTAATGGCTAACCTTACTGTCTTG
 TCCCTGAAAAGGAGGGTGTCTGCAGCTATCTCCATCATTCTGTGCTGAAT
 25 TTCCCTGCTTAGGTGGCTCCTCCTACCCACTCAGCCTGACCTGTATGTCCA
 ACAGATGAGTGGAAATGAGGTCAAGGCTGGGTAAAGTCAGCATTGAGCTCC
 CAGTATAAGGAGGTACAAATGAGGGAGGACCCATATGGAGTGCTCCAGGGT
 CCCAGCCCTCCCCACCCACTGTGTTCCACAGCCTCTATTGGACCTGCTCACCC
 TGTGCCTGGCAAAGTTCAGAGCTGATGAGCCAGGTCTGTACACCCGCTAGCA
 30 CAGGAAGAGGTCTGGCAGTCCATTAGCATGCCTGATTTTCTCCTTATT
 AAATGACTGTTCAAGATTAAATTACAGTTGAAGGTGACACGTTAGAAAGAA
 TAAGTGCATTGAAGGCATAAGAGGGCTTACAAACCCAGCTCTGAAATGGAG
 GCAGGAAAGGAACAAAGATAAAAAGATGTGAGCAATGTGACCCACAGTGG

GTTGAGTGGGTGGCATGGCCCTCTAGCTAGGCTACAAAGCCTCTGGCAAG
 TAGCTGTAGAGGAGGTTGGCTCAGCAGGCAGAACTCTCCAGGGTCCCAGA
 CGTACAGGGCCCTGCAGGCCAGGGCAGCTCCACCCCTACATCCCACATATG
 CCACCCATGTGTGATGTCAGCTCCAAAAGGTAACAGGAAAAGTCAGGACA
 5 AAAAAAAACTAAAACAAAAACAAAACAAAACAAAACAAAAACTCAA
 AGTAAAAGACTAAGTGTAGCAGAGTGTACAGAAATATTATACACAGGC
 CATGTCCCCAAGGTGGCCTCTGGTCACTCCAGGGATCCTCTGGTGAATGCA
 AAGGGCCTCAGTACACGGAGCTGTTCCGGATGCCACAGCACAGCACCATGCT
 CAGAACATCTCAAAGATCTGCAGGAGGGAGGGCATAGTCAGCACCTAAGG
 10 CCCTGGGAAGGATCCCACCCACCCACCAGAGACCCGTGCTTACCATATAATGA
 CAGCTACCACAATGGCTGCAATTCCAATGAGGTACAGCTCCAGAGAAGAG
 CTCATCGATTTCTGATGACAATCTGCTGCAGGGATGGCAAGAGCGTGGTTA
 ACCATCAGTGGCTAAGTCACGCCACCCACTCAGTACAGGACCTATG
 TATCACAGCTTATCTCCACCCAAAACAAATTAAAGACACACACGGACCTGCTG
 15 CCTGCAGCCTTGTACAGGGAGTGTGTTTACCTCACTAGCACCTAGG
 GTCACCAGGGTATGAGGGACCACTCAAGAGAACAGTTCTGGATGTTGCA
 GGGGTTAACTCAAGCTGTGAGGACCCGGTACCCAGTAATAGAGATGGTCTA
 TGGGACTTCTGAGGTCTGCTCAAAGTGCTGATCTCCTGATTGCCACACCA
 CCCTACCGACCACCACCCACCTCATCCCCACTCCATGCTACCTGCAGTAAG
 20 GGGGTGAGTATGTTGCCCTGAGGGACACAGGCTGTCCTCAGTATGGTGG
 TAGTCAGTGTGGTCAGTGCCTGGAGGCCACAACAGTTGAGCTGCAGGGACCA
 AGAACAAACACTGTCAGCTTGGAGCTCAGGAGACAAGGGAAAGATCAGGCA
 CACAGCACACCGTCACCCAAAATACACTTGGAGTTGCCCTGAGGGACCA
 TGTCACCCCTGCACAGGAGCCCTGTCCTCAAACCCCTGGAAAATGAGGCC
 25 ATTAGATTCTACCTGAGGACCCACAAATCATAGAGGAGACCCCTTCCTAGGC
 CCTGTTGTGGAAAGAAAGGAGACCCATGCCCTCACACACTAGGAACCC
 ACAGCCTCCCTCCTGCTGAGCCTAGCTATACCGTCTCATGGAAAGTCTCA
 CCACAGCCTGGCATTGTTGGCATCATCATCACAGCTGCTGAAGGGCC
 TGGTCATAGAACTCATTTCACATCCTGGCGATCTGGGGAGAATCATAGTCAC
 30 ATACAGTGTGGGGTACGCCAAGAGCACTCAACTTCCCAGGGCTCAGC
 CTGATGCCACCTCTCCACTGAGCTCCAAGACCCCTGCCCAACCCAGCAGC
 AGGTCCAAGAAATTCAAAAAGCACCCTATAACTATGGGCTCAGAGCAACCC
 CATCTGTTGGAGGGCAGAGGGCATATCTCCACTCGGTGAACCTAGGCTTACC

TGGTCTTGTTACGAAGCCCCAGATGCCTGCAGCCACCTCACAGGCAAACAG
 GATCACAAGGCAGGTGAAGAACTAGGGAAAGAAGAGGTCAAGAGCCTTGAC
 CAGCAAGCCCAGGCCTAGCCCACATGACCAACAGCTATGTGCCAAGGGGTT
 GGCCATATCCACCAACCATGTCTGATTAAGCATGCCACACAGAGCCATT
 5 GAGAGACAAGAGCCTGATACAGTCCTGCACTGAGATGTTCAAGTTCTCATAG
 CCTCACCTTGCATCCTACTTTGCAGGATGTGGCTGGTAGAAATGCAGTTGA
 CAAAGTGTCCACAGCCTCACTGAGGCACATGCAGCAAGACACTCCCCAAC
 CTAACCTCAGTTCTCACCTCTTATCCTACATTCTATGACGTGTGCTGCCT
 TTCCCCAGCTTCTGATACTGGCAGCGCTCCCTCCAGGCTGCCAGATTCTG
 10 GCAAATCTGGATTTCAGCTTCACCAGCAGCTAGTGTGCCAGGAGCACTAAG
 GTTGGCTTAGGGGTGAGACACCCCTCTGGAGTTATGCTTTTAAACAGAA
 ACCCCCTTTCCAACATGTATATTCTACACTCAGATTCAATGGAAATCAAGCCC
 CTAGGAAAACCAAAACCTGGGAAGACATATAAGTTGCTAGGAACCCCTGCT
 CCCAGCCCTCAGCCCTTACTTACCGTCCCCAGCAGACACTGGACTCC
 15 TGGATGGCCCCATAGCACCCAGGAAGCCTACAAACATCATCACAGCTCCA
 CAGCAATGAGAATGTAGATGCCTGGGAAGGGAAAGACCTGAGTGAGCAGGC
 TGCATGAATCACACAGGAAGGCCTAACTCACAACCACAGCAGGCAGAGTTA
 GCAATGTGCGCCGTTATGCCTCCGTGCTGGAGGAGCTGCCACTGCCA
 CCAGGGGACAAAGCAGCAATTCACTGACCAAGAGAACATGGGTGGCTCCATT
 20 TCACAGGTATGCTCTGCTCTGGAGCCAGTCTCCCACCACCTGCATCTGAGAAC
 AGGAACCCCTCAGCACGCACGTAAAGGGCTGAGACGGACTATCCGTTCACT
 TAGGGGAAGTGGCTGGGTGTCAGGAGCCAATGCCAAGACTCCCAATACTC
 GGTGAGTGTGAAATCAAGGGTAAGCTATGGCAGTAACCAACTCCAGGCACCT
 CATCTCAGGAACACTGGTGTATAACTGTTGGCTACCTAACTCTAAGGACGG
 25 GATCCTGTGTGGGTGGATGGCTAACAGAGAACATGGTAGGGGAAGCTAACAG
 AGCACCCAAATGTCTGTCACAGTTACAGGGAGCACTGTAGCCCCTGAGGTA
 CCAACTGGGCCATGTCCCTGCCCTAGTGCCACAATACCCCTCTGCCCTG
 GGAAAGCCCAGTGTCTTGATGAGCGTCCATCTGGTCCCTGGCAGA
 AGCCGTCCATCCCCCAGTCTCCACGGCAAACTGTAGGGCAGTCCAAGCTTCC
 30 TTGCACAAAGTCAGGCCATTGTCCTGCCCTGGCCAGACCAAGAGGAGAAC
 CACCATGGCCTGGACCTGCTGCCAGACTAAAAATAGGCCAAATCCTTGGCC
 TCACTAAACACGTCTGGTCCGGGAAGGCCTCCCACCAGGGCTGCCTAGAAA
 CTGTTTCCCCCTGCCCTCCAACTGGCAGAGCACCCAGTTGTCAGGCCCTA

AAACCCCAACCTCACTCTGTCTAACAGGAGGCTGTCTAACAGGAGGAT
 ACATACAGGGCACCAACACACAGGCAGTGTCCCAGGACTTCTAGGCCCTA
 GGCACCCTCCTATGTCTAGCACATGTCTCATGAAGCCCCTGTGGTGTGTC
 TGGGATGTTAGCAAGCTCTGAATGAACACTCTCTAACGACTAAATAAGACAC
 5 CTTTCAGGGCACATCTGCTCTAGAGGGACTCAGTACAGGGCAGCATG
 GGGCTCCAGAAAGCCAATTCAAGATTGCCAGGGACATGGCAGCCAGAGTAGC
 TTCTACCCATAGGTAGAAGAACCTGCTACAGGGTCCAGTCCCTAACGACTATT
 CCCCAGTACCCAGGAGGCCATAACCAGACAGGCAGGTGGCTGAGCCGCTCTG
 GAACCTGGAGCCTGGTATAGACTATTATGAGAACATTAGGATAGAGACTTGCT
 10 TCCTAACCAACCTATCTGGCTCTGCAGGGTAGCCAGCCTCTGCCATACC
 TGTGCAGAGTGGGAGCACAGCCTCCCTGTGGAGGGCCACCGGCCAGTT
 CTACCCCTGTCTGTCTCTGATTCCAGATTCCCTGTGAAGATGCCTACCAAGT
 TGCCACAATCCAGTTCTATGAGCTGGAGGGCATCCTCCTCTGAAGGTAC
 CAGATAGAAGGAGGGATAGCTAGTGTGGCCCTCCCTAACAAACAAAC
 15 CTGAAAATGCTACCCCTCATGGCTTCCTCAAAGGAGACCAGGTTCTGCC
 TGCCCATATTGCCTGGACTCCACTGCTGTCCATTACCCATGCTAAGGCTGT
 GGACAGAGTATAGGGAGGAAGGAAACAGAGCGAGCCATGGGTAACCAAAA
 GCCCTGTCTGCTCTGAGGCAATTGGCAGAAAGGGAGAATATTCAGACCTC
 CTGGTCCCCCACTCAGCCTCAAGCATGCCTCCAAAGCCTCTTAGGCTCCAC
 20 AGGAGGAGAAGGAAGATCCACATCAGGCCCTGATGAAGGTAGGAGCTTG
 GAAGGGTAAAGACATCTCAAATACTTCTCAGTTCTCAGGACACCAGGTCCC
 TCTTCAGGGAGGAAAGAGGAAAGTTTCTCCTCAGCACAGTGTAGTGGAC
 CAGAGCATAGGACCACACAGCACAAACAGCCATCATCTTACTTAGGAGGGAGG
 GTGTTCAGCCCTACAGGCAGCAAATAAGGCAGGTGTAACAGTCTGGCTG
 25 TGTGCTGGTGGGGTGGGGTGGGGTGTCTGAGTCATTCACTGTGCGC
 CCAGTCTCCAGCCCTCCAACTCAGGACTCCTGGAGCCTCAGCTGTTGCTAG
 CCCAGGCATCCTGCCCAACCCCTGCCAGGGAGGTTCACTAGAAATGCCATGT
 TAAAAATAAGCAAGGTCTACAAGGCCCTGCCCCACCCGTTGCTCCTTCT
 GCCTAGTCTAGTCTCAGATCTGTGGGTCAACCAGCAGCACCAACACCAACTC
 30 ATTCTCCTTTAGGCAGCCTCCCTACCCAGCTCATACTAGGCCTAGGCCAC
 TCCCAGCTCTAACGCCCTACCCACCAGATTGGACCATCAGCCTCTTGGAA
 AGCCCTCCCTGACTGTTCTGCACTGTGACTGGAACCCGTCCTGGTACTCA
 CCCACGTAGAAGGTGTTGGGTGCCGGTTGTTCCAGTCCAGGTACAGCAG

GCTGGTGGTCTGTGGATCATGACGCAACCACAGAGCTACACCTAGGATCACG
 CCTCCAGCCAGCTAGAAAAAAAAAAAAGAAAGAAAGAAATGAAAACC
 AGAACAGTGTATAGAGGCCAGACTGGGGCCAATGGAAGCCTACAA
 TGCTTATCATGTAGAGCCCTCACTTCAGTTGTGGAGCCAGATGCCAAGCAGT
 5 TGTCTGAGCCACTGCCACTGAGCCCTGGGTCCCACCAGCTCCTCTGGTTGTA
 ACTCCAGAACAGAACATTCAAGTGTACCTCCAATAGCGCAAGACACATACAAGA
 AGTTGGTCTGAAAAATATGGCTCAGTGATAAGAGTACTTGGCATGTAGG
 GAGCCCTGGGTTCAATCCCCAGTACCGTAGGGTTGGTGGCAATTGTTGT
 CATCCCAGCACTGAGAGGTAGAGGCAGGAGGATCAGGAATTCAAGGTATG
 10 TGAGTTGAGACTAGCCTGGCTATATGAAACCTTGTCTCCAAAATCAGCAGG
 AACATCCCCCCCCCTACTGTTCCAGATTGACCAACTATGCAACATTTTA
 CCGTAGAAATGGCCACAGTGAGGCCAGCCACTCAGGATGCTGGTGGCTCT
 CCTCAGGTACCCCTGTCCCAACAGTCCTGGGATTGATTAGAGACTGCTTCAGGC
 AGGATACTGGGAACCTCTGTGGTGGAGACACCAAGTCCTCAGGGTGACCATG
 15 TGATGCCACCAGGCCCGCAGAGAGAACAGCAGGTACCTGGGAGCAGAAGCTG
 GGCCTCAGAACAGACCAAGGAAGGCAGTCTCCTCCCCAGCGCCAGGTCTCCT
 CTTCTGAAGGGTCAGTGGCACTCCCCAGCAGAACAGCAAATAGAAACCAA
 AACCTGGGTCTAAAAAAAGTATCTGCTCTCACTCTGGGATCCAGGCCAG
 AACACAAGCTCAAGAAAGCTCTGGGAGAAATTGCAAGCAGGCTGGTCAGG
 20 AAAGAAGACCTATGGACCCATCTGCCCTCTTCTACCCCTAGGATCATGTCCGCT
 GCTTAACCCTCAGAGAGGAAGCTGGGGAGGGTACTTCCTGATCACCATCT
 CCCTCTCCCTCCACCCCTTCTTCAGTTCTCAGACTCCTCTTAAGTGCTTA
 ATTCGTTTCACACTCCAATCCAGGAGGGATGAGCCCCAACCTCCACCAG
 GGCCTGAGAGAACAGAGGGTGTGATACAGCAATCAAAGTCACACCCGGGCAC
 25 CCGTTGCCAAACCACAAATGGCATGAAGGCTGAGACTCTGACAGTGCCTTC
 ACATGTAACGGCCCTAGCGATGCCAGGGATCCCCAGAATTCCAGCATGTTA
 CACTGACAGCTTTATCCATCTGCCCTTAAGAACCTCGCTCGAATCAGCTTG
 GGCAACAGAACAGCAGGAGGGTGGGAGGTGACGGGTCTGAGTTGCCCTGGTAA
 CCAGCTTCCTTGCAGCTTAAACATCCTATATTGTTAAGATCTGGTCT
 30 GGAGGCTGCTCTGAGATGTCCCAGGGCAGGAGAACCAAGGTGGCACACCTGTT
 CCCCATCCTCCCTCATTGATAACATGACCCCTGGTGACAATCCCTGATAGTCA
 CAGAGGCTAAGGGCAGCTGGTGGGTACCTGCTTCAGTCTGTGCT
 TACCTGTAAAACAGCTGAGCATGCAACCAGTCCTGACTCTGGCTCTCAATG

GTACGGGAATACTGTCTGTGAGCTGAGGGCAAAGGGGAGTGAGGCATGCTG
 TTCAGCCGAGCCCCAAAGGCTGCTAATGTGGGTGTCGCCAAGCCACCACTA
 GAGCCGGGTTTATGAAAGAGGTGGATGAGGACGTTACTCTAGAAAAGTC
 TCTGGGCTTATTCACTAACAGTCCTGAATGGGGGTGCACGGGGGG
 5 GGGGGCTAAGGATCTGTGACTGTCAATCAGAAGAGAGGCAAACACTGGGTGG
 GGGTAGGCAAGGCATCTGAAATGGGACTTGGCCACTCACCCATTGTCCC
 AGGGGCAATCAGAGCTGAGTGGGAAGGAATGCCAGGTACTGAGATGGCTCC
 TCCAGCAAAGTGACCGTCTACCTGCTACTCTAGGGAGAGGTAGAGGGAGTT
 CTGGAGTTCTAGTCCAGTCAGTGAATGCACAGGCCCTGGTCCATCGAATGG
 10 TAGAATCTCCAGGGAAAAGACAGACCCGTGAGAGAGCACGGAGGACAGTTC
 AATCATGGGGAGCAAAAGGAGGACACAGAACGCTGAAGCAGCTAGCGCCTTC
 TGACCCCTGCTCAGATGAAAGCAGAATTCAAAGGTGTTCAAGATACTACAGT
 GATAACCCAATGGAAGTTCTGGGTTAGACCACAAAGAGGCCAGGGTACTCT
 CCTGATGGTGCTAAGTTCATGGGGTGTAAATGCCAAGCACAGCTACAGAA
 15 AGCTACTTACCCCCCTCCACTCCACGGTCCCTGGATCAGTGGCTCTGCTCAAG
 TATATTCCCCAGGCCAAGAACGGGTATAGGGGTCCAGTATTAGCAGCAA
 TTAGGAATACACCTGTTACAGAACCATAGGTAGAACATGATCTGCAAATCT
 GGGCAACACTCATTAAAAAAACGAAAAAAAGAAATAGAAAGAAAGA
 AAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAGGAGGGAGG
 20 GAGAGTGTGAGTCCAATGTCCATGGGAATATGGAGTAGTGCCATTAGATG
 GAGGTCCAGGAAAGGGTAAAGATGGCTGAATCTCTATCTGTGTCATATCGG
 AGCTAGGGTGTACAAATCCATCTCTATCTCCTCACCCCTATGGTCATTGTA
 AACAGGGGAAGTAATACACAAAGGCTGCTAAGTGTGATGTCACTGTATTAG
 CTCTGACAGAGCTGAGGAAGTGATCCACAAAGCAGAACCTGGCATTCTTC
 25 CCGAATCCACTCAGGGCTCTAACGATACCTCTGCCAAAGCTCCTTCTCCA
 GGTGGCCCTGCCACCTGCTCCTGCAGCCTAAAGACCTCTGTTAGAGGTGG
 GGGTGGGACGCACCCAGGTGGCATGTCCAGGTTCTGGAGCTCCTCCCTGGC
 ACAAAAGGATGCATTGACTCTACAGGATTGTGTTGCTCCTCCTCTT
 AAGGGCTAACCCATAACAGACTCAAACCTTAACAAGTCGAGGAGCTGCCAAG
 30 CATGCTGGTCCCTGCCAGCTGCTCTGTGGTTCCAGAACGACTGAAAG
 GGTACAGGCTTGGGACAGCATTCTACCCCTGTGCTAGCTGCCACTGCCAGCC
 TTGCCAGACTCAGATAGGGCTCTGAAGCATTCTATTGCTACCCATAT
 GAAGTTCTCTAGGAAGGGACAGGGCTCTGAAACCAGCTGGTAGGTATGAA

TGGTCACCACAAAGCACCCAAAATGCTCCTGGAGGCCTGGCTGTAAACAGCAG
 CTTGTTCCCTTGAGTTACCATTGGGCCGCAAGAGAAGAACCAAAGGCAGAG
 GCAGACAGGGTTGGGGCTTACTCAAAGCCTCCTGAGTACATGATGCAAGCTA
 GAAGGTGCACCACAAAGTGCTCACCCACCTAACGAATTGGAGGTGCTGAGG
 5 GGCCCCAAGAACCTCTCCTGTGATGGCAGAGGTTGTGAAGACCCCTGGGCAGCT
 GGGATAAGTCAGAGTAAAGAGGCTCAGACTGGTTTAGGGCATTGGTTAGG
 TAGAGGCTGACTTAGGTGCTGCCTCTAGCTGGGCTGGGCCTGGTCTGG
 GGTATAGAGGATGGGACAAGGCCAGATTCTCTTGAGAGACAATGGATCT
 TGCTCAGGCCTTCCTAGGAGAGGTAAAGACTTACAGTCTACCAAAGGAAGCT
 10 CAGGAAGGAAGCTGGAGAGAGGGCAGGAATCCTCGCCTGGCAGGAAGC
 ATGGTTCCCTTCACAAGGCCCTCGTCTCAGGAAGCCACTGTCAAGCATCTA
 AAAATAGGCAGCAAAGCAAATGCCTAGCTCTGGGCCCAACTGACAGGCTAG
 GGGCAGTGGTGTGAATGGCCCAGGCATGGCATGGGAGAATATACTGCTGTC
 TTGAGGTTCAAGAGATTGGCTGGCCACCCAGCTGGGCCCTTCCAGGGCC
 15 AGACTACATGGCTCCTCTCAGGCAAGGAAACTAGAAGGCAAGGACCTTCCC
 CATCTATCCCGACTTGCCTCTAGGAAGGCCAATGTCTCGTGAGACCCC
 ATAGGGAGACTGTGTGGACCCAGCCGCCACAGCAGTCTGCCAGAGATAAGT
 GCTGCAGGGAGTCCTGGTACCCAGAAAAAGGAACAAAGGGAGGCAGGGAC
 TGAGAGTGGGTAGAAGAGCTATGTAGTTCTGGCATCACCACCAAGCAC
 20 CAAAGGACTTCTATCTGTTCCAGGCTGGCATAGCCCTCTGTCCCAGGTCA
 GCTGTGGGCTGGCAGGGCTTACAGGCCACTTGACTATGGAACATGGTGG
 CAGAGTGGAGTGTAGTTCTACCCGATCCTACTACTTCCGAACGTGGTAGCTAG
 TTGCTTGGAAACCTCAGTCCCTTATCACCCGAACGGGTCTGATAACAGCCC
 AACGGAGTGTACTTCGGTGAGCTGAATGAGCTGTTATCACGGACTCCAGA
 25 GTACAGGAGAAGACTGTTCCAGGGCAAAGGCCATGTCATGCCCAACCAT
 GAGGATTTAGCCATGAAAGTAATGAGAGTCCAGGCAATGGTGGCACAGG
 CCTTAATCTCAGCCCTGGGAGGCAGAGGAGGCAGGATCTTGAGTTGAG
 CCCAGCCTGGTTACAGAGTGTGAGTCAAGGATGGCTAGAAAAGCTCTGCCT
 GAAAACAGACAAACAAACAAAAAGTTGTGAGAGGTGAGTTAACACTAG
 30 TGGGTTGGTGGCAGTGACAATATGTCCTGTCACCCACAGTATGTCCTGCC
 ACACTCCACAGTATGTGTTGTCACACTCCACAAGCCCTGCAACACAAGGTC
 CTACTCTAGAGCTCAGGGATGGCTTCAGGAGGACAGGTGGCCTGGCTTCC
 TCATTACTGCTCCCCGTACACGGGACATCTTAAACACCATTGGAACCCCTC

ACTGTTAGCTGCAGTACAGAGCCAACATTGATGCTGACCATGGGTAAAAG
 CACAGCTAAATGAGTCATAGGATGCCACAGACCCACCCCTGAGAAAGTTCTGA
 AGACCCAAGCTGACATCATGTATGGAGTGATCCGAGAGATAGTCAAGGAAA
 CACAGGACACTCGGGGCCCTGTTACTCAGCAGCTCTGCCAAGCTGCCTGG
 5 CAACCAGGCTCTGGCTCGTTACCAACTCAGTGCTATGGGGCTATAAAACT
 ATGGGTGCCCTGGTTCTAATGCACTCCCCCCCACACACACTCCAGACTTCATA
 TGAAGGAAGGCAGGTGCCCTCTCCCAACATCCCCTGCAGTTACTTGGTAGC
 CATTCCAGGATGCCACCACCAAGCTAGCTGCTCACTGGCCAACCCCTGTGAA
 CAGTTCCCTCAAAGGTTGAGCCCACTCAGAACAGCCCCAAATAGTTTGAATG
 10 GCATAGCCTATGCCCTGCAGCTAGCCAGGGAGAGTAGCTTAGACTGGATCTA
 GAAGTGATCTCTCTCTCTCTCTCTCTCTCTCTCTCTGTGTGTGTGTGTGTG
 TGTGTGTGTGTGTGTGTGTGTGTGTGTGAGGGAGGTACTAGGGGT
 CACAGTCAAGTCACTGGCATGCCAGGTCAAGACTGAACAGTTGAAGGCTA
 CTGAAGGCCAGTTCTCAGGACACCTGGTTCTAGCAACAGTCCTAGGAACA
 15 AAATGGCCCTACCTATAGGGTCTCAGAGTCACCCAACACTCACACTCAGAGT
 CACCCAACACTCACACCGTGCCTACCTGGTCCCTGGCATCAGGGCCAGAGC
 CACAGGTACCTTGACTTCTCCATAACTCTGCCAACCCACTGCCCTCTTGTG
 TACAAGGATGATTGCTCTCCCTAGGGCAGCTGGACTCTAAGGCTAGAGGTT
 TAATAACTGAGGTTCCAATCCCCTGGCAGGACTCTGGTTCTGGAATCAAGG
 20 TTGGCAGTTGGTCCCTCTAGAGCATCACAGAACGCTCCGTTGAGGTAG
 GACTGAGCTAGAAGGCAAGTGCCAGAGAGAACGCTAAAGGGTCGGAAAGA
 ATGGGGGTGGGGCTTTATTATGAGGTCGCAGTGTGTGGCACCAGAGTAG
 AGGCTGCCAGGTCTACTCCAGCTGTGCCCAACTGTTGGATGTCCTTTTT
 TGAAGCCAGCCCAGGGATGAACCACAGACTTCCCCTTGCAGGCCAATGATT
 25 GTCTTCCCAAAGCCGGCGGAGCAGACAGCCCCAGGAGCAAGGGCAAGTC
 ACAGGAAGTGCTCATTCCACCCCTGAGCCCACAGAACATTAGAGCCCTCTGCCG
 GAAGGCAGCCAGCAGACCACTATGTGACAGACAGTCACGTATGTGTGTGCT
 GAAGCGAGCACACAGACAGTCATGTCAGTCTGGAGAACATTAAATGCCAGTT
 GAGAGGCTGTAATCAGCCTTGTGGTGGCTGGCTGCCCTGGCTACTC
 30 GGGGCCACCAGCAGCCTAGGCTGGAGGAACAGCCTGTTCTGTCGGGAAC
 ACAGTGAAGATTCTCTCCTTAAC TGACTACTCCTATGGAGACATTGTCACAC
 AAAGCTCCTACAGACCCACCCGAGGCCATAGGCTGGCACAGTGATAAACCAT
 CCCCTGCTCTCCTGCCCTATTGCCAGCCGGTGACTATTGCCAGAGGAGACTGG

ACCCTTAATCCCAGACCTGTCAGGGGATGAGTAACCACCCCTGCTTCAAGA
 GCATCTTACATGGTCTCTGCTGCTCACCGCTCATCTTCAGGTTGTGCCTGC
 CCCATATATCTGGGAGTCCAGAACTCTGCTGGCCCCAATATAGGTTCTGAAC
 TCAAGCCAAGGAGGACTGGTGGGAGTGACAGCAGGCAGGTTAGTGTGCCCG
 5 GAATGTCCCCCTCCCACAGAGAAACCACCTTAATCTCAAACACTGGAAATTAA
 AAAGTGTCCATCGAAACATTACTGTCAACCAAATCTCCCTCTTAGAGCTCT
 TAGCCCCCGCCCCCACCACGGCCAAAGGACCTCTCAGCCCCCTCCTTAGGCC
 CTTCTGACATCATTGCTCAGCTCCTTGGCCCCACTCCCTTTGGAGACTGTG
 TCCAGTGTCCATTCTGAGCCTCTGCTCCAAGCCCCCTGCCCACTCTGG
 10 AGTACATTAGCTAGTCTACACACAATCCTAGGAGACAGAGACCCCCAACAAAC
 TCCCACTTAGAGGGAGGAAGTGAAGACTAAGGGCCAGAGTGGTGGGTGG
 GCTCCCCAAAGGTCAATTGATGATCATGAGGAACTATCAGCCACAGTACA
 AACCTGCCACACGAGGGACAAAGGAGTCCCTCTGCCAGGGTGGTCCAC
 CAGTTGTAGCCTGGTCTGCTCCACATCCACTGTGGGCCAACATGA
 15 GTAGGGAGGGAGAGGTCTGTTGATTGTGAAAGGCTACAGTTCACTGTTCT
 GCAGTCAGTAGGCAGGTCCCTGGGAGCAGGGAGAGGCTTCAGAACCGTTCC
 TGGAGCCTCAATAGAGACCCCAGGGACATGTTGGACTCCACCCAGCTGCC
 TGGGAAACGAGCAGCTCACCCAGCCTCAGCACTCCAGGGAGTCTGAGGGTC
 TAGCGCTTGGATCAGGTGGGTGAGCAAAAAAAAGAAAAAAAAGAAAGAAAGA
 20 AATACCCTACAGGATCCTGACATCCCACATCTGAAGAATAATGGGGGTGGGG
 TGGGGTGGATAACACACTTCTTGAGGGTGCATTCAATTCTGCATGGTTCAG
 AGTAGGCAAGCACTGTCCAACATGACTACCCAGTCGAGACCCCCAAGGCATGC
 CCGGGCAGAGCAAGTTAACCCCATGCCATGCTGCTCCCTAGAATGTGTC
 TCTGGAGTCACCGTGAUTGACAATCTGGTCCCTGCAGCACCGCGTGAGCATA
 25 CATAGCCCCAGCTGAGTTCAAGCCCAGTTCCCTGCCATCCCCAACGTCTTATT
 CCCTCCACCCACCCCTGACCCGCCCTGGGATCTCAGCAGTCCTCGATGGAAA
 ACAGGTGTCCCTGTCCAACACACTCACTCCAGGGGCCGTTGTACAAGTTGC
 CCTCTCAGGAACAACTTAGAGAAACATTGTCTGGCATAACCTCATTCTTC
 CTGGGAAGGAAGGTGGTGGGAACAGCAGTCTGTGCACTGCAGCAGGGAGGG
 30 TGGCACCACTGTCCAGAGGAGTGGCCAGCACTGCTCACTCAAGTGCCCGAG
 GCAGGTCTGTTAAGACTCCCCATTCCAACCCAGTTAGGAAATGGAAAGAAG
 CCCATACCAACCAATGGCTACTCCCCAGCAGTGAAGACAGTCAGGACCCAGGG
 ACACCTGGAGACCCTTATACCCATGTCTCCTTCCAAGATGACCAAATGGG

TGTGCACTTCTTCAAAGTGGAGAGCCCAGCTTAGATCCTGTATATAGGAAA
 AGATCCTAACGCTCCTGGTTGTACAGATCCCAGATCTTGCAACACCCCTGGCC
 TTCACCAACTCAGAACTGCATACCCTCTCCTCTCAGGATCTAAGGGTCAGGC
 CGGGGCTGTAATCTGTGCAGGAGACGACAGGCAAGGAGGAGGGCAGCTGG
 5 GGGAAATGGGGTGGGGTGGCCAAGAACTGGGGCACCGTGCAGCAGCAC
 GCGGCCCGGGCTGCCCTGCCTCTAGGCCTGGAGCTCGAGCCCCAGGGTGG
 CAATACCAAGCTGGAGGGTAAGCAAGGGTGGAGTAATAGTGGGGTTGAGGTC
 TCCGAGGCAAGTACGGAGCGTGCACCACTTCGAGGCCCTATCCAGG
 GGCGTGGCTAGGATGAGCTCATGGGGCGGGGCCAAGATCCGCCCTTC
 10 TCGACCCCCCTCACTGCTCGATGCAGGATGGTCCCCAAAACAACATTCA
 GAGGGTGCAGTACCCCTTCATAGCTGAGGGCTTGTGATTACCTGGCTCTAG
 CCCGAGACTCTGCAACCAGTCCCAGCACTCAGAGGGACAGGCCAGCGAT
 CCCCTGATTCCCGCCCCAGAAGCCCCTCGAGCCGAGGCCAGAAGCTCAG
 CCCTCGGCCTCAACCCGCTGGCGAGGGGCCAGGACCCGATGGCGCACG
 15 GAGCCCACAGGTGGCGCCGCAACTCGCGTTGCGCTGCCCTCTCAGCAG
 GGCTAGCGCGCTGCCAGCCTGGTACCGTGGGTGCGCCCTGTCCCCAGTG
 GCTGCTCACCCAGAAGACGAAATTGAAGACGAAGAGCAGGTATTGATGCAT
 TTGGTGCAGCCCTCCACCCCATGGCGGTGCGCGGCCCTGCGGAGCTGGATTG
 GTCCTGGAGCGGGCGGTATGGGACGCAGTACCGGGTCCGGACTGGCAGA
 20 TAGCCTGGAGCGCTGCGGGCGAGAACTGCGTTGCGGAGAATGAGACGTA
 GGGTAGAGAAGGGCTGGAGGCCTAGCCGGAGGCAGAGTCACATCTCTT
 TGAAGCAAGGACGCGCTCGCTCGGACCGGGCGCGCCTAGCTCCTCACT
 CTTTATAGACCTCTAGGTCCCCTCCGAGGCCCCGCCAGAGGACGCTCC
 ACCCCTGGCCCCGCCCTCCGCGGGTGCCGGACCAGGGTACTGGG
 25 TGGGTGCTGCCACCTCAGTCCCAGAGTAAGCGTTCTGGAACCTGGTGCAGCTG
 GTTCTGGGACTCGGTGCACTGTGCGTGCAGGATGAATCTCAAGTTCT
 TAAGGGTCCAACCCCTGGGCAGGCTCTGGGTGCGACTAAGAACTGGC
 CACAAGATACTGCCCAAAGAACGCCACACTTACTTCCTCCGGTACTCGGACG
 CCTTGGACTTCCCGGAGGTACCCAGTGGAGGTGTCTCGACAGTAAAGAGTC
 30 TTAAAAGTTAACATGTTGTGTATTGATCTCCAGGCAGCAACTCCGTGG
 GCCTGAAGGTCTAGAATGGAATTCTTGTAGCCTGCTAATCCCCTATCTCAC
 AGATAGAGTTCTGGCTGCAGTCTGGAGGCTGCATTGGGAAGGTCAATAG
 TGTACCCAATGTCTTAGCCAGTCTTAGGCTCGAGAACCCCTCAGGGCACCT

TCAAATATTCATGCCATCCTGGCTGCCCCAAGAGTCCATCCTCCATCCTC
 TAGCTGGTTCCCTGAAAGCTGGGATTAATAAGGAAGTGAGGAAAGATTCA
 GGGCAGAGGTGCTCCTCCGGGTGAGGAATGGCTGCTGTCATCATAGATG
 ATATTCTGTGAAATCTTGGCATTCCCTCCCCAAACTGAAGGGCAATGGGGC
 5 TGCTTCATTAGACTCACTGGGAACCATGGAAGGACCAGTCCCAAGACTCAG
 CCTTTCCAGGTCACTCCATGTTAAATCTTGGCAGTTAAGGACATTGTT
 CCCTATGGAGATCACACCTGGCACCCCTCTGGCTACAGGACACTGGAAATAT
 GTTTAAAAAGGAATAGATATACATATATATTAAACAAAGGAAAGGAATATC
 TATAATATATATGTGGAGAGAGAGACAGACAGACAGAGACAGACAGACAGA
 10 CAGAGAATGAGAATCTCACAATGTAGCCCTGGTTCCTGGAACAGAGCTCTGT
 CTACTTTGCTCCTAACGTGCTGAGACTGTAGGTTAGGACACCATGCCAGT
 TGTCTAAAGGGCGAAAATTGAACATATGTATAATTACATGTAAACCTGATGA
 TTGGCCAGTAGCTGCCTGGGTGGAGCTATCTACTCGGCTAGGCTAGTAGGC
 TTCTTGAGAGTTAATTGTGCATTGTTGGCTCAGGCTGGTATAGCTGCTA
 15 CAGTGAAGGATTGTGTCCACATTATAGTTCTGGAGGCTGAAGTGGTGTCA
 AACAAAAGTAACACTAGTCACCAAAATGCTGGAGTAATATCACACTAAAAGTC
 ATTTGAGTCTCCAGGAGGGAGTCTCTAGGATTCTTTATTAAAAGTGGGC
 AAGAATAGTTCTGCACGTGCAGAGATGGGGACCTGCTTCTTCAGATCTC
 CACTGTCTCCAGTGTGGGATACCTCATGCCCTAAAGTGGGTTACACATTGA
 20 ACGTCATGCAGGGCCAGCTTTGTTATGTACTGTGTGATACATCTGGGTT
 TAGTGAATGCCATTGTGTTCTGGAACTGTTCCAAGGGCTATGGACAGCCTAG
 AAACCAAGGCTGCTCTTGGGCCCTAGGTTCTGGTCACATACATGCTATG
 GAGAGAGTTCCATGATGTTGACCAATCATGGTAGGAAATTGGTAAAG
 CAGTTTCTCCAAATTAAAACATCCCTTCTGGAGGGAAAGTATTAAGACTC
 25 CGGAAATGAACAACTAACAAAGTTAGACGTTCTGAAACTAACAGGTCCCT
 TCCTCCCTAAAGATACATAATTAGGAAGACAGCCCAGCTTGTGACCTATTCAA
 GTGCCATTCTCCAGGGTTCCAGCTTGTGAGCCATCACCTATGCTGAGGTTT
 TGGTGACACAGCTCCCTTGAGTTGTCTGATGCTGTAAGTAACCCCTCACC
 CATACTTTGTAAGTAACCTAAATCAACTAACGTTTACAAAGTTGGACTTT
 30 GGTAGGAAGCTTGGATCAGGAACAGATATGGGCAGAAGGCCAGACAGGT
 CTGAGTTAGGTGGAAGGCAGACTTAGGCTGCATTCTGTTCCATTGAAGGGGT
 TGGGGTAGGGAACAATCTCATAGGCCAGGAGACTGCTGAGATGACTGGTT
 GGTTGCAAGAGTACAAGGGTGCCTGAGAGCCTGCACCTGTGAGCACTAC

TACACGTACATGCTATAGCATGTGGCATGTGTGTGGAGGTAGAGGACAGCT
 AGATTCTCTGCTTCCACCATGTGGGTGCTAGGGATTGACCTTAAGGAATCAAG
 CTTGGCGTCAAGCTCCTTACCCACTGAACATCTTGCAAGACCTGACCCCTAA
 ATTACACAGGGAAAGGTAAAGGACTAAGGATAGCCAAAACAATTTGGAAAAA
 5 GAACAAAGATGGAGGGCTTATACTCTTGATTACAGTACAAAGCTAGAGTA
 GTCAGGAGAGTATTGTTCTAAAGTCTAGTATGGTAAAATATGGCTGACTCCC
 AGCATGCAAAGGGTGAAGGCAGGAGAGTGGAGTTCAAAGCCAGCCTTGA
 CTATATGAGACATTGTCTTCAAAAGGGAGGTGGGGAGACAGAGGGATAGC
 ATAAGGATAGCTATTTAGTCGGCTTCTACTACTGTGATAAAATACCAGAAC
 10 AAAAGCAATTAGGGTGTGTTGGTAGGGTGCTATTGCTGTGATGAAACC
 CTATGACCGAAGCAACTAGGGAGGAAGGTGCTATTGGCTTATACTCCAG
 ATAACGTGAATCACCAATGAGGTTGGACAGGAATCAAAACAGGGCAGG
 AGCCTGGAGGCCCTGCTGATGCAGAGGCCATGGAGGGTGTCTGGCTT
 GTTCCTCATAGCTTGCCTGCCTTCTTATAGAAACCCAGGGCTGGCATC
 15 ACCCACATTGGCTGAGCCCTCCCCATCAGTCACTAATTAAAGAAAATGCC
 ATAGGCTTGCCTATCTTATGAAACCTAATCTTATGGAGGCATTTCTTCTT
 TTTTTTCTTTCTTTATTTAAAATTGAGGTTCCCTCTCAGATGACTTC
 AGCTTATGTCAGTTGACATAAAACTGTCCAGCACACAGAGGAAAGAGTTAT
 TTGGCTTATGCATGCCAGCCATAGTCATCATTGTGAAAGCCAAGGCAGGA
 20 ACGGAAGCAGAGGCTATGGAGGGATGCTGCTTACTGACTTGCTCCTCAAAGC
 TTCCTTAATTGCTATTTATGTAGCCCAGGACCACTCACTCTGGGTGGCAC
 CAACCACTATCTGAGCCCTCCCATATCCATAATTAAAAAGAAAATGTTCAA
 AGACCTGCCTACAGGCCAATAGGTTCCCTCTCCAGGTGACTCTACCTGTG
 TCAGGTTGACAAAAGCAAAACTACCAACAAACAAACAAAACAAAAACTAA
 25 CACAATAACAAACAGAGATCAATGGAATAATAGAATTGAAATTCTAGGAATA
 GATCTTCATTTAAATGAGAGGACAAGACAGTCATGGGGGAAGGAATG
 GTCTTTAAACATGGTCTAGTATTGCTATCCTGTACACAGAAAAACGAAG
 ACAAAATCTATCCAGTGTAAATACCTGCCAACATTATGATGAAAATGAGAC
 GGGGATAGGCCATGACTCAATGACTAAGAGCACTGGCTGTTCTCAAGGGG
 30 ACCTGGATTCATTCAGCACTCACATGGCAGCTCACACCACCTGTAAC
 CAGTTCCAGGAGATCTGAAGCTCTCATATGGCTCCATTGGCACTGGTGTGCA
 GACATGTATGCAGACAAAACACCTATACATAAAATAGTTAAAATTAATT
 AGGCAAAAATAATCTTAAAGAATGAGCCCTAGATCTGAAGGTAAGAGCTAA

ACCTTAGCTGGCATGGTACACACACACCTCAGTCCAGCACTGGGAGGCA
 GAGGCAGGCAGAGCTTGAAGCCAGCATTGCCACAGAGCAAGTT
 TCAGGACATCCAAGATGAATTTTACAAAACAAAGAAAGGAAGGAAGGAA
 GGAAGGATGGATGGATAGATGCATGCATTGGTATCTGCCTAAAATAGCA
 5 ATTCCTATCTATGATACCAAGCACACAAGTGCATGGACTTGGACCCAGGTTG
 CATGAAAGAAGAGAGGGAGATGACTGAGCGCCAGCATTCTGTGTGCTAA
 CTGTGAACGTGATGTGACCCGCTGCCATCTCCCTGCTGCCCTGCCCTGCTG
 CAGGAGCCTCAATCAGGAGCCAAATAACTCCTGAAGTTAGTTGACAAC
 TATTTGTACGATGAGAAAGCTAACTCAATATTGTACTGAAACAGGAAGTC
 10 CCAACATTGTATTGGCAGGAGATTGGCTCTGTTGAGAAAAGGGGAATT
 GAAAGACGTATTGTAATATGTCATGCTATCAGAACACAGCCAAGCACCAG
 CCTAAAGGATGCCCTTAATGGGCTGCCCTGGAGGAATGAATATCCCTGCC
 TCTCTTGGTTATCAGTCTGAGACAATGGGCCAAATAATTAGATTTC
 CCCAGAAATCTGGGCAGCGGGGGGGGGGGGGGGGGGAGAAAAGGTGT
 15 AAGTGCTGCAACAACTGGGAGAGGATTTGTCCTGAAGAAAGATTACAA
 CTTGTCCAAGGACACTGTAGGAAAGACTTGGGAGCTGAAATAACCGTGGGCC
 AAGGAGCCATACTTGATCAGGGCTGCACAGTTATGCATACCTGACCTCTCGA
 CCTTAAGCTCATGTCAGCGTCTAGAAGATGGACTTGGGCAGAGGATTGCTG
 GATCCCACATCCTCTCCAATGTAGCCATGGTGGATAAATCGCTCCCTTC
 20 TGTTTATTAATTGTCCTCTTGAAGGTGTATTCCATTCCATTATGTAT
 AAATGTGTCGTGTGAGTGTATGCTCTGTCTGTCTGTTCTGTGCTCTGTC
 TCTCTGTCTCTGTCTCTGTCTCTGTCTCTGTCTGTGTGTGTGTGTGT
 GTGTGTGTGTGTGTGTGTGTGTGTGTGTGGATGTGTGGGTGC
 CTATAGAGACCCGTAAGGGGTGTAGAACCCACTGGAGTTGAATTGCAAGTT
 25 GTTGTGAGCTGTCGACATGGCTCTACAAAAGCAGCCGCTCTTGCACCA
 CTGAGCCATCTCTCTGCGCCTGACTTGGCATTTAACGAGTTAAGGATG
 AGCAGCCCAATCTGGCTTGTGGACTCAGGCAGTGAATCTAAATCCAGTAAT
 ATCTCTATGCATGCAAGTACCCAGATACCCAAAGTGTTCACCTCTACTTG
 AAGAGTAAATAGAGACCAAAATATGAGCTGA^{ACTTGCAATAACCACGGTCC}
 30 CACACTCTGTAATTGTATGTGTGATATACTTCACTGAAAATACTCATT
 TCTAAAAGATACCTGTGACAACAAATAGCCATCTTGCACGTGATGAGAGG
 AAAGTCTATCGTCATAAAACTCTAAATTCCCCAAAGGAATCTGATTGT
 CTTGAGGTGGGTTGATAATCAAGACATTGGCTCAAGGATTACCCATATGT

TGAAACATGTGTATGTCACCAAGAGCAATGAAAACACATCCATACAAGAA
CAGATCCACATACTTTGTATGTGCATTGTTATCATAGCCAAAAAGTAGAG
CCAGGGCTGGTGAGATGCCAGAAGTTCAGAGAGCTGCTCTCAAACACA
GGAACCTGAGTGTGGTTCTTATAATGTTCTGTAGTTCAGCTCAGAGGGATC
5 TAATGCCCTCTGGCCTTGACAGGCACTGCAAGCATAATGATGCACATACAT
GCAGGCAAGGCATCCATCCATACACTTGTAAATGACTAACTTGGCTGTTAAC
TTGACTATATCTGGAATCAACTAAAACACTCAAGCAGCTGAGCATTCTTGAGG
GATTTACTTGGTTGCTTCAGTTAGGAGGGAGACCTAACTCTGGTCATACCT
CCTGGTAGCAGGTCAATAAAAGAACATGGAAGAAGGAAACTTGCTTCCTCC
10 CCTGCCCCATTTCCTCACTCTTATTGGCTTGTCACTGTTTGTGGTGA
GTCATTCTTGCTGGTGTAGGATCTACTTTTTTTTTAGGATTCAA
CATAGACCAAAGACCAGCATCTCTCAGGAATCCTCTAGGACTCCAGCACTA
GATGGTACTGCTGAGACACCCAGTCTGGGACTGAACAACTGCCAGATTCTT
GGCCTTCCACTGGAATACTGCTATTGTTGAATACCAGGCTACAGCCGGTAA
15 GTCATTCTAATACTCTTTAATATATTGATATATATTCACTTATCAGTTCTGT
TCCTTAGATAACCCAAGGCAAACATAAAAGTAAAATAATATATTAAAGTA
CAAAAACAAAGATGCCATCAAGTGACAAATGTGTCCACATGACATTGTCC
AGACCACAGAGTGTAAATGCAGCCATTGAAATGAAGGAAGCCATGATACTGG
TATAACTCAGACGGGTCTGAAAATGCTGAGTCAGGTATTGTGACATATGAGT
20 GTAACCTGGAAGACAGAGACAGGAGGATCTCCACAGGTTCCAGGCCAACCAG
GCCTATAAAAGTAAGACCCTGTCTCAAAACAAAGACAAAACAAAACCC
TTAAATGTTGTTGATGAAAAAGGCCAGGTGTAAAAGACCTTATATTGATG
CTTCCTTAAATGCTGAGAAAGTCAAATGTATGCATTCTCGATTCCAG
CACTTAGGAAGCAGAGGCAGACAGGTTCTGTGAGCTCAAGGCCAGCCAGCA
25 TTGTCTACACAGAGAGTTCAGAATAGCAAGACTTCATAAAAGAGACCCATCT
AGGCAGGCAGTGGAGGTGCACACCTTAATCCCAGCACTGGGAGGCAGAGA
CAGGTGGATTCTGAGTTCAAGGCCAGTCTGGTCTACAAAGTGAGTTCCAGG
ACAGCCAGGGCTATACAGAGAAACCTGTCTCAAAGAAGAAGAAGAAGAA
GGAGGAGGAGGAGGAGGAAGAAGAAGAAGGAAGAAGAAGAAGAAGAAGAAGA
30 GAAGAAGAAGAGGAGGAGGAGGAAGAGGGAGGAGGAGGCAGCAGCAGCA
GCAGCAGCAGCTGAGAGTATGTAACATAATAGTGGTAGAATAATAGAGG
TAGAAGGGAGGCTTGCCTTGTCTGGAGCTGTGAAGGTGGTGTCAATGCTAC
CCTGAGAGGTCTTATCACAAACACATCTTGGGGTTTGGCTGCATACATCTGG

TTTCTGCCTCAATGATAGGCTGTGAACCTCGAAGTATAGCCAACGTTAACATT
 TCTTCCCCTAAGTTGCCTGTTGATCATAATGTTTATCACAGCAACAGAAAAA
 CAAACTAGAACAGGGAGGCCTCTGTCATTCTGGTCATCACATTAGCAAACCT
 AGGAGAGCTCTGGGGTAGAGAGGACCTGTCAGCAAGCTAGGAAATTGGGAG
 5 GAGCCAAAGGGATGAGGAAAAAGTAATCACTACCCATCAGTGGTTAACTGA
 ATGACTAAGCAGAGACGTAACTGAAGTGAAGCCTATGTCTGACACTGGTCA
 GCGTGTGGACAAAACCCCCAAACCAGACAGCATAGGAAGTGAGAGAGAGAG
 AGAGAGAGTAAAGGCTAGAGTCTGAGCCTGCCCTGGGACCTGGAGGGTCA
 AGCTCTGGACTGTACTTCAAGTGTCTCTGGTGGAAAGGGAACCGACAGG
 10 GAGTCAGACAAACCCACAAGGGCAGTAATACAGGTCCAGGAAGAGGCCACCA
 CAGTGACTGGCATATGGCAGAGATAGTAAAAAGGTACCGGAAGACAGAC
 CTTCCCTGCTTCAGGGACAATCAACAGCCCTAACCTGTGAGGTTTCAAAAGA
 CTCAAGTCTCCATAGTCAAGGAAGAAAAGGAGCTCAAAGCAGGCCTGTGTA
 TGAGAGACTACAAGTACCAAGGGCTCAGCGCTTGCCGTGGCCTGCAGTTG
 15 CCTATGGAATGGTTGCAGTGAGGTGCTGTCCCTGGTATTGGGAGGCCTAGACT
 TGCTGTGCCAGGAAAGTACCTTGGCATCTTCTGGAATCCTGTGATGCCAGA
 TCCAGTCAACTCTCAGGGAGCTTGTGGAGGTACCTATGAGCCAGGATGAGT
 CTTCCAGGATGTGCAGGGACTAAAGTCCCCCTTAGTCCAGCTGTGGAGGA
 AGAGGGCAACAACAATTCTGGATACCTTGGGTTGGTGGACACTGCAGCT
 20 GTGAAGGAAAAAAAGGCCTGTCTGGCCTCTGGAGAGCTGTGACCCGTACCG
 TAACTGGCAGGACATTGCAGCTGCCCTACTGTGGGACCCCTGCCCTTGGAT
 GGTGCAGTCCAAGGTTGGCCAAGTGCACACAGTTCTGGTCAGAGAGGG
 CTGGCTAGAGTTCTATATTATTCCACCTCCGACTCCTGGCAAGCAATGGAA
 TCCGGAAATCTGGGCTGAGCCAGAAAAGGAGGCCCTGCCCTGAGGAGAGGG
 25 TCAGATAGTCCACTGTCTGGCTGGGGTGGAGCTTCAGCCTACAAGGCTAG
 TCCTGTCTTCATGGTCTCTGTGTCACTCTGTGCAAAGACCCAGCAGTGCTGC
 TAATAAGAGGCCAAGGCTGTCTCACCATCTACCTAGGAGTGCCTGCTCAGCA
 CTGCGAGTGTAGCCTGTTAAGACCCATCCCCTGAGGAGAGAGGGTTCTGGG
 AAGTGA`CAGGGCTGGCTGGATGCTCTGGTGCCTCATTCTGTGGAATAT
 30 AACCTAGGGAGGCCAACAGCCTCTGTCTGTCTCCCACCTCTGTCCCACATC
 CATGGATTAGAGGGCTAGAGGGGCTGAAGGGAAAGAGTCTGAAGAAATCA
 TCTCTGGCTTCTGCAGTGACTIONGCTCACACAGGGCTGATGCCACCTATCCC
 AGACATTCTGGTCAGAGCCAGGCTGCCCAAACATAGCCTTGTCCCCCTT

CCCCAGACTAGATTCTGAGAGCACAAAGGGCACATTAAGACATCAGGACAT
TTGCTTGTCGCAGGGACACTCCTCATCTATTCTTACTGTTAGACTATC
AGGGGCTGCCCTGCCTTGACACATTGCCACTTCCATGTGACGAGGCC
ACAGGGGAGGCCAACCTCTGAAGGAAATTCTGAAGTTCTCACAGAGAGGC
5 TGCTAGATGAGACCTGAAGAAGTGGCAATGCTTAGGAAAAGAAGGCCTCCA
GCCTAGACCTGATAGGTTAAGGGGGTCACTGGCCTGGTGGGAGACCAC
AGCAGGATGGAGTAGACTGTAGGAGGGTGGACTTCTCAACAGAGAACCTAA
AGTTGGATTGAAGGCAAGTCTTCAAAGCAAGGAAGTAGCTGGAAACTC
AGGGAAAGCCAGGAAGGGAGGATGTGGTGGAGAGAAAAGTCTGGAATCTAA
10 CTATTCTGCTTCCTATTCTCAAGCGTGAGTGGATGGCCAAGCCAGCTTGT
GTAAGGCTGTGGAGAAGGAAGTGGGAAGGTGCTCACAGTGAGTCAGTGG
CTGGGGGATGGAGCTAGGTCTCAGGACTGATGGTGAGTGGTGGGTATG
GCTGGGGTCAAGACATAACATTACGGAAAGTGAATAACCATAAGCGCTGCTG
GCTATTAACTCTTGCACTGGAACGGCTCTGGTTCCAGATCAATACGTAG
15 TAATTAAGAGAGAAAAATTATTAAATAAGACTCAGAGGCCTAAATTCTTGG
CAGATAAGAGAGTCAGAGGACTCACAAAGGACATTGCCACAGGATGGG
GACCGGGGAGCTGTGATGAAGACAGGTCTGAGTGAAGATTTGGAGTCCAG
GCAGGCAAGAGGATGCTGAATGGTTGAGGGCTCTAACAGGGCACTGCTT
GGAGAGGGTAAGAAGGAAGGATGTGCAGGTTCAAGGCCACTAGAGAGGG
20 GCAGGGGCAGGGATGAGCCAGGAAGGGTAGGATAGGGCTCCAGCAAGGT
GTCCGCCTCTGGCCTTATCCGCCTCCTAGCCTGCCAGGGCTGGGAATGC
TTGCTATCCAAGTTAAGGCAAGACCCACTGTGCACAAGGCTAATCATAGC
AGGCCAGCCAGTGTGTGGATCAGCATCTGCAGGACACATGACTCTGAGT
CCCAGTGTCACTGCTGAGTGGAGGTGCAAGGTGCAGATGCAGCACCTAGTGG
25 GGCAGACTATTCTCAATATCTGTCCTGACTCAGTGCCAGATTGCACATGTA
TTGAGATAGATAGAGCCCACGATGAGGATGGAACATAGGCCTGCAAGTCTC
TGTGGCATCTGTTCTAGCCATATCAGGCTCTGGCTCCTTGCTCTAC
TAGGAAATCCAGGGTTATGTTCTGGCCTGCAAGGAGGCTCTCCACA
ATAGTGTCCAGGTTAACCCAGGCTTGGTCCCTAGTCTGGCAGGCCCTGC
30 AGCATCTGCCTAGGGCAGGCTCCTGTAAACCATAATGCCAAGGCCAGG
GACAGCTCCACCCACTGTTGAGCAAAGGAGTAGATCAGCCTTCAAGAGAG
CTTCAATGTCTGAGGCCATCTTGGAGCTGATTCACTCCCTTAGAGACACTG
GGAACATGATGAAGATGGTGTCTTGTCCCTCCATCAATCACTGCAAGGA

CACACACAGGTGGCCCTAGAAGGAACAAGAACTCAGGTGAGACAACTCCTAT
 GAGCTGGAGCATCTCTAGTGAGGAGAGCCTCTCCATTGACTACAGCTCCAC
 CCCAAGACACAGAGAAAAGATGATAGGGACTTGTAGGGAGATTAGCTAATCT
 CCCTAATATGGCTGTGGACACAGAACAGTCTCATGACATCTGAAGACTGGGAA
 5 ATAGCTAGTGAAGTCTAAATTGCCTAGAACCAAGGGGAGCCAATGAATTAAT
 ACACAACCCAAGACTGAGGGCCTAAAGCCAGGGTCAGGGTATCAGTGAA
 GGGCCTAGATCCAAAGGCTCTCCCAGAGAGCCTGATTCTAGAGAGGTCTT
 ATGTCCATGGCAAAAGAAATCTACCTGGAGGAGGGCCTAGGGGAGGGGA
 GGACCTCACTGTTCCATGTGGACCCTTAACTCAGTCAGATGCTGCTGCC
 10 ACATTGGCGAGGTAGGTCTCCCCACAACCACTGATTCAAGTTCAATATCT
 TCCAGAAAAACTCCAGAAACCTATTCAACAGCAGAGCTTCTCACCTATCTG
 GACAGCCCATAACCAGAGTCAGGCTGACACCCCTAAACTCCAAGTCCACCCA
 TGTCAACATGACTAGCAACATCCCCCTAAATCTCCCTTATCTCCAGTAAAG
 ACTGCAAGGCCATGGTTGTACACAACATGAGCTAGCCATGTGGTGTATTCCA
 15 GGTATCCCCTGAACCCCTGCACCAAAGGAGAATGTGTGATTCTGGTGTGATGTTT
 GCTGCCCCCTGACATCCATAACTCAAAGACTATGGGTATGTGATTGAGGAA
 TAAGCTAGGGAAAGATACATGAAGAAAACAGGTACTGTGTCCCTATGTGAC
 TACCTACCCACAGATACCCTTTTAAACAAAAGATTAATTTCTGGGTGT
 GGGGTGCACAGTTTAATCCCAGAACTCAGGAGGCAGAAGCAGGTGGATCTT
 20 TGTGAATTCAAGGCCAGCTGGCTACATAGAAAGTTCTGAGCCAGCCAGAG
 CTATACAGCAAGAAACACTGAGAATTAAAACCTTCACTTTGTGTATGT
 GCGTTTGCCTGCATATGTGTGTGTGTGTGTGTGTAGTGCCATG
 GAGGCCAGAACTAGAGTTAGGCAATTGTGAGCTGGCATGCAGGTACTGTG
 AACCAAATCCAGGACCTCTGCATATACCACTGCTTAACTGCTGAGCCAT
 25 GGTTCCAGACACATTCTAAAAGAGGAAGTGTGTGCCACCAGAACATCTTCT
 CTGGTCACATGATCTTAGCTAGCAGTCAGAAATCCCCCTTCCACACCCACC
 CCTATTCTGCAGCCCATTGCCCTCAGCAACTCAGCTAGCTTGGCTTTATCT
 GACAAGTAACCTATACCTTCCCTGGCTGAGAGCCCTATGGTAGCATTGAC
 TTTAACCCATGGCGTGGTAACACTACGGACACATCAAGGGAGCCATGAAC
 30 GCAGATCTCTCCTGGTAGTCAGGGTCAGGCATTCAACCAACCCCAATTCTC
 CTCAGCCTCAGAACAGCTCAGATTGCGGTGTAGATTCTTACATCCAATTCAAT
 GTAGTGTGTTGTATCTCCTTGCAGAAGTGTCCCTCATTCTGGAGCCAAAATT
 TCTAGGCCAGCAGAGCATAACACTGTGCAAAAAGGAAGTAGAAATTGCTT

AATGGGTCTTGGGGTTGGTAGTAGTCATTCTATCCCCATGCCACCCCTG
 ATTTCTGGATTCATGACTCATGACTATGGAAGAAATAGTGCTGGACACTGAAC
 ACTGAGGCAGAGAACATTAGCCTCTGGAGAATTCTGCTTCAGCTCTATT
 GCCACTCAGTACCTTATTCAAGTCAGCTGCTCAGAGTGATGGAGACACAG
 5 ATTGTGAGTCACATGGATGTAGCCTCTGCCGTGCTTAATTGTTGGCAAG
 TGTATTCTTCTCAGAGACACAGCAGTATCACTGAGGTTGAAGTGTCTGAAC
 ACAAACACAGTGGTATAAAGATGGCCTTGGGGAGGTGACTCATTAGGAGG
 GCAGAGTCCTGACAAATGGCCTCATGTTCTATAGAAGGAGTGAGGGATGG
 ATCCACTCTCCCTCCTGCTAGGGTACAGCAGGGAGGCACCCTAAGAGG
 10 AACAGGTCTTCTCAAACACATTGATCTCAACTTCTCACCTTCAGAAGCCC
 AAGAGACAAATTCTGTTTGAGTAAGCAGTTAGGGCTGGGAGGAAA
 GCCCAGTTGGTAGTATTGCTTAAAGCATGAAGTCTGAATTCAATCCCCA
 TAACCCACATTAAAAAAAGCATGGCATGCTGGTGTGCTTATAACCC
 CAGTGCTGAAGAGGCAGAAATGGAGGTGGGCTGCCCTGGACTCACTGGC
 15 TAGCTGGATTAGCTGTAGTAGTTCAATTAGAAATGTCCTTATAGGCACTGA
 TATTGAAACACTTGTCCCCAGCTGGTGTGCTGATTGGGAAGTTCAGAAGA
 TGCAGCCTGCTGGAGGGTGCAGACAGACTTGAGGGTTATAGCCTGCTCT
 GCTTCCAACTTACTCTTCCGCTGTGCTTACAGTCAAAGATCTGATCTGTCC
 GTGGTTAAAGATGTGAGCTGCCATGTCTTCACTTGTGCTATGCCCTCTGC
 20 GATGATGGACTCGCATCCCTCTGGAACGGTGAGCCAAAATAACCCCTCTCC
 CATAAGTTGCTTGGTCATGGTATTGATCACAGCAACAGAAAGTGCAGTGC
 ACAGCTGCTGAGCTGCATCTCAGCTCCATGTTGCATCTCACATTCCCTGC
 CATTCAATTCTTCTTCTGTTTTAAAATTAAATTAAATTAAACACTCCA
 TATTATTCCTCCATCCTACTGATCCACATCCCACACTCCCTCTC
 25 CATTCCCTGTCTCCACGTGGATGTCCTACCCCCCTACCCACCTGACCTCTAA
 ACTCCCTGGGGCCCTAGTCTCTGAGGGTAGATGCATCATCTGAATGAA
 CACAGACCTGGCAGCCCTACATGTACGTACATGTATGTCAGTGGCTGGTGT
 ATGCTGTCTGTTGGTAGTCCAGTGTGAGAGATCTCGTGGTCCAGATTAA
 TTGAGACTGCTGGCCTCCTACAGGGTACCTCCTCAGCTCTTCTAA
 30 CAACAACAGGGTCAGTGCTCTGCCATTCACTGGTACAACATCTGCC
 CTGACACTTCAGCTGTTGGTCTCTGGAGGGCAGTCATGCTAGGTCC
 CTTTGTGAGGGCTCCATAGCCTCAGTAATAGTGTCAAGCCTGGACTTCCC
 CTTGAGCTGGATCCCTTTGGCCTGTCAGTGACTCCTTCTCAAGCTCC

TCTCCATTCCATTCCGTAAATTCTTCAGACAGGAACAAATGGATCAGAG
 TTGTGACTGTGGGATGCCCTCCCTCATTTATGCCCTGTCTCCTGCTGGAG
 GTGGGCTCTATAAGTCCCTCCGGCATTCTAAGGTCTTGAGTCCT
 GAGAATCTCTCACCTCCCAGGTCTGGTGCATTCTGGAGGGCCCCCAATCT
 5 CCTACCTCCGAGGTTGCCTGTTCCATTCTTCTGCTGGCCCTCAGGGCTTCA
 GTTCTTTCCCTCACCAATACCAGACAGATTCCCTCTCCCTCCACTCCAC
 CCCCCCCCCATCCACTTTCTCCGGTCCCTCCCTCCACTTGTGATT
 GCTTCTTCTCCTCCCAAGTGGAACTGAGGCGTCCTCACTAGGGCAGTCAG
 CTTGTTGACCTTTGAGTTCTGTGGACTATATTTGGGTATTCTGTACTTTT
 10 GTTTTTTTAGGCTAATATCCACTTATGATAGTATAACATAAGCGACCTCAA
 AATTCTACCAGAGAACTCTCCAGCTGATAAACAAACTCAGCAAAGTGGCCG
 GATATAAAATTACTCAAATAATCAGCAGCCTCCTTATAACAAATGATGATA
 AACAGGCTGAGAAAGAAATTAGGGAAACAACCCCTCACAATAGCCACAAA
 TAATATAAACTATCTGGGTAACTCTAACCAAACAAGTGAAGAGACCGGTAT
 15 GGCAATATCTCAAGTCTCTCAAGAAAGATATCGAAGAAGATCTCAGAAAAT
 GGAGAGATCTCGATGCTCATGGATTGCCATTCTAACCAAGTTCAATT
 TTAAGTTCTAACCAATTAGCGAAACCAACTAGACATAGTCCGAGAACTGGCCT
 ATAATCCAGATCTGCCGTTCTCTCCCAAGCCAATGGCATAGCAAGTTCAC
 TGGCCAAGGCTCTGCGCACTGAGAGGGTCCCTCCACTGTCCTGGAGTGTT
 20 GTTCAAAATGGAGCAATAGTCAGCTGCATTAGAGGGTGTGCCTGCACAAAC
 CCTGTTGTCTTACTTAGGATTCTATTGCAATAGAACACCAAGACCAAAACAA
 CCTGGGAGAAAGAGGTTATTCATCTTCATCTTCCATGTCACAGCTC
 ATCAGTGAGAGAAATCAGGGCAGGAACCTAACACAGAGCAGGAAGCTAGAGG
 CAGGACCTGAAGCAGAAGTCACGGAGGAGTGCCTCACTGGCTGCTCATC
 25 CTTCTTCTTATACCATCCAGGACCGTCCACCCAAAGCGTGGCACTGCCGCCGG
 TGGGATGAATCCACTTACATCAATCATCAGTCAGAGAAATGTACCAACAGG
 CTTCATGGGCCAGACTGTTGGGATATTTCTTAATTGATGTTCCCTCTCC
 AAAGTGATTCTAGCCATGTCAAGTTGACATAAAACTAGTTCATGATGGACA
 GCTCAGGATGCAAGTAACGTGTGAGGCAGTGCCTATGAATACCCAGTAGC
 30 AGTCAAGATCAAACCTCTCATAAGGGCAGGGCCTCTTACAATCAAACCC
 ACAATCTGGCAGGACAGTCTGCAGCTATTCCCTGTGGAATCAAGCCAAAGC
 CTCCTCCACTACAATCCCAGCATAGAACCCCATGGAGAACATCTAAACCTT
 TTGGGAATCCTTCCCTGTTGTGCCACACAAATCTAGAGGCCATTAGCAT

AGCTTAGTAAATGCTTAAGCAACACACCCAAGTAAGGAATATGAATAGAGGC
 TGTGCTTTTTTTGGCTTGAGAAGCATGGTCATGTGCAATGACTTATCT
 TTCCTGTAAAGAGATGTGTTGACGTGCCTAGATATCTTATGTTAAAATTCA
 GAATTGACTCCTGTCCGTACACATCAGTGTCTACCAAGAACAGTCAGTAGTTG
 5 CTAATTATTTCTTAACATCAATTCTTGTGAATTACATCATTACCCCCA
 GTCCCCACTCATCTCCCTCCTCATATCCACTCTGCCCTGCAACCTCCCTGC
 AAAAAGAAAAAGAAAAGATAGAATTAAAAACATCTGTTGCAGAACAGCTGTAG
 TGTGTCAAGTGTGCCCACAACATAACCCTTGTCTACACATCTTACTTCCA
 AATATTCACTGCAATGAGGCATTGGCTAGTTCAAGGTTCTGGCTCTGTTA
 10 CACCAATCAAACTGTATCCTCATGGGAACCTCCTGGCTATCCTGTTGTC
 CCTGTGTCATGGAGATCCCACAGCTAGGACCTGCAGGATTGACCTTTCACA
 CACTCTAGCAGATCAAAACCTCCATGGGCTCATTATGTCTTACATTCTGTT
 TATTTAATGCTCATCAGATGAAGCATCCTGCAGGGAAACTGGTGGTTAGTC
 GCTGTCGACTCTAAATTCTAGATTGTGTATGGGTAGCTAGGAGGGTTT
 15 GGATATATTGGGTCTGAGAAGAGACTAGCTGACTAGCAAGTGTAGCAAT
 GGACTGATGTTCTGTCATTAGTAACGGACTTAAGCTGCTCAGGGCTCA
 TTTGGAAATGAACATCAGATTTATTCTAACAGATGTTCCAGAGCGGTCT
 AACCTGGGCAGGAGTGAGCACTTCCAGCAAGTGGCTGAGTACTAAAAGGTG
 GCCCAGTCTAAAGAAAAAGCAGTGTGGCTGCCTGCCTCCCTGGGTCT
 20 GGAGCCAGTGTGTCATCTGCTGCCACTGTCTTGTACGTCAGACTGAAG
 TTTCTCAGCCTCTAACAAAGAACGAAACACCAGTGACTCTCAGGAATT
 TCCAGGCCTTCAGCACCAAGACTGAGACTGCTGAAGCGATCAGCTTGGACT
 AAACAGCCTGTTAGTGTGTAAGTCAATCTAACAAATCCTCCTTATAAC
 ACACATTCTCTATTAGTCTGTCTCAAAGAACCCATTTCATCCATATTGA
 25 GGTACCACTAGTAGGTTCTAGAGAGGGCAGAACTCTAAGGATGAATTCTCTA
 GTGGGCTGATGGTGTGACTTAGCTCTCCAATTCTACACTTGGAAATTG
 CAAAGACTCTACACTCTGGTAGTGTAGAGAGAGAGCATTACCAATCCGTCTT
 AGGCGTCCAAGAACGTACAGTGAGTTCACACATACACACGCATACATGTGC
 ACACATGTATAAATAAACAAACAAATAAATAAATAATGTAACCTAAAAAT
 30 TAAAAGGAAAGAGAATGGCTTCCCAAGAACATGGATGTGGCTGAGAGG
 TAGCAAAGGTTGAATCTCTGATGGTGTGAGGCCAGAACAGTCATGAGCCTCT
 GTGGGTACATAGTACTCACATAGTACCCACATGCTCCACATTGGAGCATAA
 AGGGCAGGAGCTTCCTCGGGGTGCTGTGCCTGGTATGTGTCCTTGTAA

TATGTTCCAGCCTCTGTTACCATTGGTCTCTCTATATGCTAATCTTCATCCT
 CCTTCCCCAACATGCCATGCTAATGGACAGCAGAGACAAACAGTGTCCA
 TAACTGATCCAACTTGGGTATCTCAGTGGTGTGTCCCTAAAAGTGAATAG
 ATGGGGTTGGGGAGGAGCTACTAAACACTACTCCATCTGTAGACAAA
 5 TTACAGAGCAAATGAAACATTACCTTGAAAGACTGGAGAGGCAGCTCAGTG
 TTTAAGAGCACTGGCTACTCTTCAGAGAGCCTGGGTTCAATTCCCCCAC
 CCATATGGCAGTTACAACAGTCTAATGGCTGTAGTCCTATGGCCTCAAT
 GTCCTCTTGACTTCTGCAAGCACCAGGCATGCAAGTGGTACACAGATAGGC
 ATGCAGGCATACCACGCATAACACATAAAATAAAGATTTAAAAGTT
 10 TAGTTGAATTGTAGCAACAGAGAACATCTCAGTCCTCAACCAGTTCCCACACA
 AGTCATCTTATAGACAGAACCCCCCTGACAACACTGTGTACACTCCAAAAAGTT
 TTATGCCAGGTGGTTGTAGTCATACCTTAATCCCAGCACTCAGAACAGAG
 GCAGGTGGATCTCTATGAGTTCAAAGCCAGCCTGATCTACAGAGTGGTAC
 GGACAGCCAGGGCTACACAAAGAAACCTTCTCAAAAACCAACCAAACAAA
 15 GTTTATAGTCATCAAGCCAATCCATCTTCTCCAAAAGAACATCATGAGATT
 TGATTAGGGTAACTGTGCATCCAGGAAAAGGAAAACAAAACAAAACAAAC
 AAACAAAAAAACTAGAATTATGGCCTACTAGATACTGGCTCTGAATTGAC
 ACTGATTCTGGAGACCCCCCTCAGAGCACTGTGGCCCTCCAGTTAAGTGGGT
 GCTTAGAGATGTGATTAATGGAGTTTCAGCTGATGTCTGACTCATAGGGATC
 20 CATTGGGCCAGGAACTCACCCAGTCCCAGAGTGTATCATTGGACAGATA
 TATTAGAGCTTGGCAAAATCCAACATCGGTTGTAGATGTGTGGAATGAG
 AGCTATTATGGTCTAAAAGGCCAAATGGAAGCCATTAGTGCCTCTACCAAA
 GAAAATAGTGAATGAAAGAAGAAAATTCCCTGGAGGTATTATAGAAATTAGT
 GCCACCACTAAGGCCTTGCAAGATGCTGGGATGGAGTGGGTGAGAAAATG
 25 GCTCAAGGGTAATGGCACTAGCTGCTCTGGCATAGGACTCAGGTTGAGTC
 ACAGCACCCACTTGGTGGCTTATGGGTATCCATAATTCCAGTCCAGGAGGCC
 CCTTCTATGTGGTTCATAGACACACTGTAGGTAAAACACCATACACTTTTT
 TTAATGAGAGGTACTGGAGAGGTGAGTTAGAGGTAAAGAGCATTGGCTGCTC
 TTCCAAAGGACCTAGTTCAATTCTCAGCATACCATAGCGCTCTCACAAACAG
 30 TCTGTAGTTCCAGTTCCAGGAGATCTAATGCCCTCTCCATATGGTACCGAGC
 ACACATGTGGTGCAGTCATATGTGCAGGAAAACACGCATAAGCAAAGAGGT
 ATAATACATAAACAAATCTGAAAAAATTAGAAAGATGCAGGGTGTGGTTA
 CACCTACATGCCCTTAACTCTCCCTTATTCTGTGCAGAACAGACAGATGGA

TCATAGAGAAAGACAGTTGACTATGGCAAACCTTAATCAAGTAGTGACTCCAA
 TCACAGATGCCAACTTCCTATTGAGCACATTAACATATCTTCTGGCATCTG
 GTATGCAGCTATTGGTCTGGCAAGTTCTTTCTGAAACCTGTCTGCAAGG
 GCAACCCAGAAACAATCCGCTTCAGTGCCAAGGGTAGCAGTATACTTAC
 5 CTCAAGGGTATATTAACCTTCTAGCCCTGTGTCATAGTTAGTTGCAGGGAT
 CCTGATACACAAGGTATTACGTTGGCCCATTACATCGATGGCATTACATTGA
 TAGGACTAAGTGACAGGGAAATGACAGGCACITGGACTTGTAGTAAAACA
 TTTGGATTTGGTGGCAGAAAGCTCCGTACTGGGTGTGCTCCAGGCCA
 TTCACCAAATAAACTCAGAAAGCTGCTAGTTGAGTGGGACCCAGCTGCTGT
 10 GCCAGTTGCTCTGTCACTGGATCATATGATGCGAGCCCACTTGATGGTTACTT
 AAGGTGGCAATGGCAGATAGGGATGCTGTTGGAATCTTGGCAGGCCCTTA
 TAGGTGAGTCACAGTGGAGACCCTGGGATTTGGAGCGGGCCCTATGACCA
 TCTGTAGACAACCATCCTCCCTTGTGGATAACTCTGGCTTGCTATTGGC
 CTTAGTGGAAACTGACATTAAACAATGGGATGTCAAGGTCTGTATTATGTT
 15 ATAGTTCTCAGCCCTAAATGGGATATCCTTAATGTCGATTACCCAGGGCCAG
 GGTTATATGCAGAACAGGTGACTGAAAGATTTAAGATCCAGAGGTGGTAGA
 AACAGGGTTTCCAGACAAGAACAGATGGAGTCACATATGAACACTCACAGAACT
 GTGTGACAGCACACACAAGATCTACACAGGTTGAATTAGACATTGTCCCAG
 CACTGAGAACGGAAAGTGGACCAAAGCTAACCAAGAAGCTATTAAACAAC
 20 ATAGGGCTGAGAACAGGGATAATTAGTTCTCCAATCGAGTATAGGTATATC
 AACACATTCCAGGAGAGGCCCATGCCAGGAGTGGTTGGCCAACACAAAT
 CAGTCTCTAGTTGTTTGTGGTTGGTTGGTTGTGCTGTTATTGGTTGGTT
 GGTTGGTTGGTTGGTTGGTTGGTTGGTTGTGTTATCATTGGAGAGCTGG
 ATTTATTGAGCTGAGTGTGCTGAAGAACAGCAGCTGTAGTACTGAAAACCA
 25 AGAAACGGTGTGAAGGCAGGGAGCAAAAGGTCTGAGCAGAGACTGAATGG
 ACAGTGGGAGCTGTGAGAGAGGCCAGCCAAGGACTTCTTGGAAAAGATGA
 AGTCTAGCAAAGCAAATCACAAACCCCCAACAGCACTGGAAAGGACA
 AGGGGACAGAGAGATAGCAGGTTGAATAGAACTAGCGGTTCTTAGGAATGA
 CTTAAATATGTAGCTGCCACATCCAGCAAATGCAGTCTGGACATTGTCCC
 30 AACGAAATGAAACTCTGTATCCACTAAGATGCACATTACGCCGGAGAGTC
 AGGCTCTCCTCTCACATCCTCTGCCAGCCAGGGCTTACCCCTAAAGGCCAG
 ATTTCCCTGCACTTAGTCTGTAGTCATGTTGGCTTCAACGCATAGGAAC
 TCTGCCCTAGCCTCATGGACGCTAGGATCCTAAGTGTGAGTCCGTAACATCTA

TGTTTGTTGACAATGTCATGCATGGCTACTGTATCTATATCATTAACTTT
 CCAGCTCCAGCTCCTCTGCACCCATTCCGCACCCCTCAAATCGTGACCTC
 TTCTTAAGGATTATTGTTTATATGTAGGTGCATAAATATACATGTATTTA
 AGTAAACAGAATAATATGTTCTTATTACCTGTAAAAAAATTCTCCTTTT
 5 TTCATAATAACCCATGTGTAATAGATGAAAATGTGCCCTAAAAGATTAATGG
 TTGGCTAAGTATATTCACTACAGCTGCTATCCCAGAACCTTGTGGGTAGAGGC
 AGGAGGATCAGTCAAAGCCATCGTCAGCTACAGAGGGAGTTCAAGGCCAGC
 CTGGGCTATAGGAGACCCTGTGCCAGTCCTCCAAAGGAAGATGGAGAATG
 TAGAGATGAGGAGCAGATTAGTGGTTGTGTAAGAGAGGTGGAACTGTGGCT
 10 TTATTTGGAAAGCATCAGGGATAAACACACACATGCACACACACACACACATAC
 ATGCACACATACACATACATGCACACACATAGCACACATACACATACACATACA
 TGCATACACACATAGCACACACATACACATACACTGCATACACACACACA
 CACATATACATATATGCACACACAGCATACTCATACACATCCATGTATA
 CACACAGCACACACATAATAACACACACATACACATACACATACACATACACA
 15 CACACAGCACACACACACACATTCACATGTACATGCACACACAAATACACACAT
 ATACATGCTTGCACACATAAATACCCACGAATGCGAGGTGAATCTGCTGAAGT
 CTGAGTCATCTGTATGCATTGGACAAATGTCGATTCTGCTTATCATGGTA
 TGTACGCAAGATGTCTGCCTGGAGGAGGCCTGAAGGAATAATGAACTAAGA
 CTTCCGTGTACTTCTGGAAATCTATAATTGTCTAAAATATAGTGTCAAGC
 20 TAGACTTCAGGCCATGAAAGTTGAAAATGTCAACCAAAATCAAAATATTGCTG
 GAAAAAAATGTAATGGACAAAGTTAACTCAAAATAGATAAAATGGGGCTGG
 AGAGATGCTTCAGTGGTTAAGAGCACTTGCACTTACAGAATACCTGAGTTC
 GGTTCCCAGCACCCAGGTGGGCATCTCACCACTCATAACTCCAGCTGGGG
 AATCTAATGCCCTAGGGCCACCTTGGAGGGAGTCAGGCTGTGAGGTTAGGG
 25 TTGCTGCTCCTGTGTTGTCCTGTGTTCTGGTCCATGAAGATAGAGCGAGTA
 GCTGCTACTTGCCCCTGCAGTGGTCCAGTGTGACACCTCCCTGACACATG
 CTCCATCTGACAGACTCTGCCATCTTAATCCATGAGCCAGCACAAACCCCTC
 TTTCTTCTGCTTTCTCAAGCACATAGTCATGGCACTAAAAGAAATATCTA
 ACAGAGGGGGAAATGATAAACATTCACACAGGAAAGGGAAATGTGCAGCTG
 30 ACCCCTGGTACTTCAGCAGATACTGGTACCTGGCGTGAGCTGTGAGGAG
 CATGGAGCCTCATCAGGGGAACCCACACTCTCACCCGTGACAAGGAAGCAG
 AAAGAAGGGAGTACTGCGGAGAGGCCAGGCCAGCTGCTGAGCCAGCCT
 CCTGCAGCAGGGCCGTGTTGAGGGACAGGGTTGAGGGTAGGTGAGAGAG

GAAACTGGCATAGATGTTAGACAGAGGAGGCATGCTCACGGTCAGCTGGT
 TGGGTCTGGGCTTGAGGAAATCAGCAGCAAGAGCCATCTGGGCCATGGAA
 AACTGAATTGGGTTATGTTCAATGTGACTAGAGAGTTATTATGAACATAG
 CAGATGTGACAGTGATGGATTGCAGCTCTGGAGCACACCCCTCCATATTG
 5 GAGGTGACTGCTGGATTGCTAAACGAACATATGTGTGTTACAATTACTTT
 AATCCTAAATGCTTAGTGCCATTACATTTAGGAACACAGACATACGCAGAG
 AGAAAAGCGAGACAGAGAGAGACAGAAAGACGACAGACACAGGCAGAGAGA
 CACAGACAAACACAGACACACACATGCACTTACATGCATACACACATACCCA
 CACACAGAGAAACACACACATGCTTCTGAAGGGCTGGCACCTATCACAG
 10 TGAGCTGGCAAATATACTCTGCATATTAGGCCAGCAGACTGGAAACTCAAG
 TGCGGTTTTTATGGCTCAGGCTGACATCAAATTGCTTATCTGGAAATGAA
 AGTGTCTGCCCTCAGGCTCCATACACTGGACAAGATGCTCTGGGATCACC
 TGATGTCCCAGGTTGATTCTATTGGTGTGACAAATACTATAACCAAAACCAC
 TATAACCTAGGAACAAAGATTGATTTCACCTTACAGCTTCAAGTCCCTTA
 15 CGGAGGGAAGCCAGGCAAGAAACTCAAGGCAGGAGCTGAAGAACAGGCCAT
 AGAGGAACAATGTTATTGGCTGCTCCTCATGGCTGGACAGCCTGCTTCT
 TATACAACCCAGGACCACCTGTCCATGAATGGTGCCACTCACAGTGGCCTGG
 CCCCTCTCAATCATTAATCAAGAAAATGCCAACAGAAATTGCCTACAGGCC
 CATGGGATGGCAGGTCTTCTTCCATGTGACTTAGTTGTGTTGATGAAAT
 20 CTAACCAGCACCTGCCTAGTTATTCCCTACITGGATAAAACATGCTCACAG
 CAGCAAGGTTCGAACCCGCATCTGGCAGCATGTCCTGGCCAATAGTTACT
 TCTCTGTGTTGGCCAATAACTGACAAACATCAACTAAAGGAAGAA
 GGATTGTTGGCTCACAGTCAGAGAATGTAGCGTGTACCTTGACAGAGA
 GCCCCTGGTCCATGGTGTGGCTAGACAGCAGAGAGATGGAAACTCCCAAC
 25 TCAGCTGGCTTCTCCTTTACTTTATTAGTTGGAAGCCGGCTATGG
 GATGGTGTGGCCACATTCAAGGGTGTATCTCTCTTGTAGTAACACCAGAAAC
 ACCAAAGGTACTCGTTAATGCCCTTCAAGTGTGTTATTAGTTGTATTAA
 TTTATTGTATGTGATGCCATGAAGAGAGTGGAAAGGAGCCGCCATGATGG
 CACACAGCTTAATCCCAGCAATTGGGAGGTAGAGGTAAAGGGACCTCTGTG
 30 AGTTCCAGGATGTTATGGCAGCACTGTGATCTATGGAGATACTAGCA
 TCCCCCATGAACCAGCAAGACAAGATGCATTATCCCATCCATCAGTTGACAG
 GAAGCACAGCAGGTGGCTTGTGAAATGGAAACAGACATGGCCAAAACCTGTG
 CAAACTTAGTTAACCAAGCAGAGAAATGGAAATCAAACCCAGAAAGCAATA

GCAATTATACCAATGACTGACATACACAAGTCTAAATGTGTAAGTAAGAG
 CACATATGGACCGGGGCACCCGCATGTGGCTGGCATTTCATCTGTAACC
 AACACTTGGAAACAATTGGCAGCTCCTTGGGTGCAAGCTGACACCTGC
 CAGTGAECTCAGTCTCCTGTTGTCACCACCCCTGAAGGGAGGTGCTTCTTAGA
 5 TTTGTGAGATGTTCTGGAGGACTTCCAGTTGCTTAATGTAAGGCCACTGGC
 TCCCTTTATCTGTGTTGACATTCTAGCAAATGATTACCCCTGTGCCCTATA
 TGCCCTTATTCTGCTTCTGGCCAAGCTATTTTCCAGATCATTGTAT
 CCTGGGATCCTTGCTCCTGAGCCTGTTAATCTGAGAGAAAGCACTCATTGAA
 ACTGTTCTGACTCATTCTGCTGAAGTGAATGCCTTGACAAGCAAAACC
 10 ACTTAGGGAAGAGAAAGGTTATTGGCTAGAAATTCAAGTCACCGCCTATC
 ATTCAGGGAAGTCAACGCAGGAATGTAAGTAGGTGGTAACATCACATCCAT
 AGTCAAGAGAACAGGAAATCAACTCGTCAGGCCTCCTGGTTGATAGCCC
 TCAAATAGTTCTCTCTTATTGTTAGGATCACCTGCCTAGGGAATGG
 TGCCGCCTGCAGTGGCTGGGTCTCCACACCAATAGGCAACCAAGACAATT
 15 CCTCACAGACATGTCTACTGGCCTACCTGAGCTAGATAATTCTCATTACAAC
 CCTTGCCAAAATGTTAAGTTGGCAATTCAAAGTAACCAGCATAGGATTGCA
 GAGGGAGCTCAGTAGCTAGGAGCACATCCTGCTTTGAGAGAACAGAGTT
 TGATTCTAGCACCTACATTATGTGGCTTACCCACCTACAACACTCCACTTCA
 GAAGATCTAACTCCCTTACTCGTCTTGTGGGTCCACATATACGGCAT
 20 ATACACATGCGCGCGCACACACACACACACACTGGTGTCAAAT
 GCCCGAGTCTATGGGATGTATCTCTCATTGAAACCACCAAAACCAACAGTTCA
 AACACTTATGCCACATCTGAATGCTGTACCAAGGTTGAGATTCTCCAGTAAA
 CAAACACGTTCTACTCTTACTCCACTCTCCATAGAACCTCAGCTCATAGAC
 AAGAGCCATCCAAGTTCTTGCTGCAAGTTAAAGATGCTGGTCTCAGTTCAA
 25 GTGCAATCCTCATTCTAACAGAGATCTCATTAGACTGGCCTTAACGTACAAA
 GTTCTTCTGCCTGCATCTAACATTACAACCATGTTAGTCAGTCCTTAACATGTCC
 TTGCTCTTCTGATCTCTGTCTTGTGCCTTACCAAGAATTATCTACATTGC
 CCCACTCAAAACAGTTAGTCTCTTCTTAAAGGAGTTGAATTCCCTAG
 ATATGGTGTCACTGTATGCATGTAAGACCAGAGAGGGAGTTGAATTCCCTAG
 30 AGCTGAAGAAAGGTATGAACCACCACCCAGCCTGAAAATAGATCCCCCCC
 TCAGTAATATATTATGATTGGTTCTTCATTCTCCAGTTCTCTTAAAGAAACAAACAGGGCT
 ACCCCTATCTAGAACCGCCCACTTCTGTCTCTTAAAGAAACAAACAGGGCT
 TCTAGGGATAATAGTAAAAATATAACAAAGTACAATATAATGAGATAAAAC

AAAAATTATGTCATTGGGGTTGGACAAGACAAACCAACAAAAGGAAAAGAA
 CCCAGGAGAGGCACAAGAGTCAGAGACCCACTCATTGCTCACTCAGGAATC
 CCACAAAGCTCTGTGCCACCATTCCCCTAGCATATCTGCAGCATGGACACCA
 TTGCAGATCAAAGGGTTTAGCTGGTCGGTATTGATGTTCTTTGGTA
 5 GCATGCAGAGTACCTCCTGTACTAAAGATGCTAGGATGTGGGATGAAGGCT
 CTTATAGACACTAGCTGACTTGTCCATATTCAATGAGTTCTGTAGGTGTTGTC
 TTCAGCAATAGGGTTTGCTCTCAAGTTTGGGGAGCAACCTACTGTT
 TGGCAACAGCCTGGTTGTTGGGTTCCATGGGACCCCTTGGCCAACAA
 CTTAATTAGATGTAACCCAATTCTGTTATTGGAAGCTCATTGGTATCAAGA
 10 GATGCCAGATGAGACTGTCTCCCTTATTATTGATATTCACTTAGATTGCTT
 TCATATGTTCTCCCTCATCCGCTTCTCCACCCCCCTCCCCACTGATCCTCTT
 GTTCAGCACCTCCCCATCCATTCAACTATCTTCTACTTCCCTTTAA
 ATGAGAACTACTTGTAGTACCAAGTTCTATCAGTGGCATTACATCAGC
 ATGATGAAATACCTGTGCTTGAGGAAATTAAATTGTTCATGATTGAAA
 15 GGGCAAGGTTAAGGGGCTTCCTCTGGTGATGGCCTCCTGCTCAGAGTCCT
 GGGACACCAAAGGGCATTCCCACAACAAGAACAGGGATGAGTGTAAATCAG
 TCAGGAAACTTAAGGGGCCTTACCCCTCAGACCCTATTATCACATCATCTGA
 CCTGTGGGCATGACTGTTAGGGGTTATGTGGAAAGACCTGGCCACTGTG
 GGCAATACCATTCCCTAGGCAGGTGGTCCAGAACAAATAACAGGAAGGACAAG
 20 GTGATCTGAGAGCAACCAAGCAAATAGACCTGCATACATTATTCTCTGT
 TCCCAGGGGCCCTGTTCTGAACACCAACAGTCAGATTAAGTTGTATCCTTT
 AATCCTCACAAACGAAGATCAAACCTGGAGACAACATTAAACTCAATTCAAC
 TGCACTCAAATCATATAATTACTAAAGGACTAATCTAAAGCCAAAGGCAGA
 AGAGCACGGGAGGCTGCCCTGGGATTCACTGAAGTTGCCATTACAGCT
 25 AATGATCAGGGCACTCTGGAATGTGACTTCTTAGGAATCATTAAAGATCG
 CATTGGGAGATTGCATTGCAAAATTACATGGTGTCCGTGGCATATAATATGT
 GTAGCCAATGTGTGGTGTGATGCTTCCCGCAAACCAAGAACATCCCCAGCTGGA
 AGCCTCAGGGTAGCTGTGGGGCACCACTCTTCAATAAGAGCGAATGAA
 CCATTCTAG~~G~~AGTTATGTATGCTCACGCCTCAAAGACATTTCCTGTGTTGG
 30 AACTCCTAGTAGCCAACAAAGGAAGATCCTGGTCAGAGAACAGAACAG
 CAGAGCTGGACACCCGGTGGCACCTGGCTGCTTGGCTCCATGCTGGGT
 TAAGAGACCCACAAGAGTGGCTGAGTCGTGCTAAAATGAAGAACATAAGG
 GTGCTGCTGATGCTCATTCTAGGCAGGTTGGTAGTCTGGCTCTGGGCC

TGTGCACTTGAATGTGGTCAAATGGTCAGTGTCAAGGCACAGTCATTACCA
 GCATTAGAAGAAAGAATTCTTGTTCAGACAAGGAGATCATCATGTGCCCTT
 AAGAGCTTCACCAGATGGTGGGAGCCAGAGAATGAGCAGCATAACAGGAAGG
 CTCAGCCAGCCCTATGGGATGGAGCAGAGTGAACCAGAGTCACAGAGCAG
 5 AAAGCAGTCACCAAGGAGAGAAGGGCCACAAGCCCACAGCTGCAATAAATT
 AGCTTCTTCCAGCAGCCAGAGTGAGCCCAGATGGGGATCTTCTAGAACGCC
 TCTAAGTAAGGCCAGCTAACATGTCCTCTGCCTCATGCCCTTGGCCTCA
 TGAGAGGTTGAGTGGAGAACCTGCCCTCATGGCTCTGACCCACAATCAA
 ACCTAGTGGATGGTGCTACTTGTACTGTTATGAGAACACACATACACACA
 10 CCATATGTATATCACACACACACACATACACACTACACATATGTATGTA
 CACTGCACATACATACCACATACACACCCACACATACATACACAATATACCA
 TATAGCACACACCTACTCACACACTGTGCATATAACACCACATACACTACA
 CACATACAGACATACACATACACCACACCACACATGCACCCAGACACA
 CCACACACACATACACACACTACACTTACACACCACACACATATAC
 15 ATACACTACATACACAGACACACCACACACATACACACATACACATAC
 CACCACATGCATTACACACACACCACATACACATACACACACATAC
 ACACACTACACATATACAACCACACACATACACTGCACACCACATATACA
 CATAACATCACAGACATACACACCACATATACACACATACACAAACAC
 ACACCCACATACACACACACACACACACACACAAACATACACTCATTGCTATA
 20 GGCATCCCCCCCCACTAGGGAAAGTGTTCAGGGCTGGATTCTTGGAAAGTGA
 TTAGATTGTGAGAACTGTGACCTAACCAAGTGGATTAATTGATGGAGGGTCAT
 AATGCAATGATATTTAAAAAGAAGACTAGAAGGAGAGGCAACTTGAGGA
 AGAGGTCACTGGCTGTGCCTTGAGAAGGGATACCCCTCCCTGGCCCTT
 CTCTCTGAATATGGCCTATTGTGGGCTGTAGGAAGTGGGTCTGGCTGAC
 25 AGAAGTAGATCAGAAGGGTGGCTTGAAGGTTAACCTACCCCTCGTCCGT
 TCTACCTGTTCTGCACACTTTCTCTGGGAACATGAGCAAGAAACTGGT
 CACCCAGGTGAGGCCATGGACAGTAGACCAAAAGAAAGGATTCTACCCAAGT
 TTCAATTAGAATCAATGGTTATTAGGGAGAGGAGTTACTATAAGGAGTGT
 GGGTAATCCAAACACGCATCAACTAAACGCCCTCACTCAGGGATTCTGGAT
 30 CATGGAGTCCTGGCTTCAGCTAACCTGTCACAGTCCAGCATCTCCAAAGTCCC
 TAACAGTTACTGAGCAGGAGGGAGAGGTAGCTGGAAATCCAGGTGAAGATAAC
 AGTGCACCTCTAAACTAGGAAGCATTAGCAGCCCCATGGCCATTCCAAAACA
 TGGCTGTCACCAGGGTTCTGCACATTCACTGACTACAGAGCCAAA

GTCATGCTTTCTCCATGATGACCCACAGGAAATTGGTGACCTCAACATCTA
 GCTTCAACCTTATGTTCTGATGCCATAGACATAGCCACTCCTCCATGCCTCC
 CCTGTTGTGATGGACCAGAGTCTGTCTGAAATCATGAGCCAGAATAAATCG
 TTCCTGTTCTGGTAAGTATCTGGCCATAACAATGTAAGATTAACACACAC
 5 CTGGTGGGATATTCTCCCCCTCTTGCCTCACCATGTGCAAGACAGAGTTA
 TCTACTCCTTGAGGATCATGTGAAGCCAAGAACACTTCATCTGTGGCAAGC
 AGGCAGCAAGCATCCTGCTAGACCCAATTGTCAGCAAACACTCATGCTTAG
 AGGGTTGTTGAACAGTTAGCAAACATGTGCACTTCAGCAGGGCATTGAGGCA
 CCAGCCCCATCCTAGGTCCATCTGAAGAGGCTGGGTTCTGGGTCTGGAAACC
 10 ATGGGATCTGAGAAGCAAAAGGAGACAGTGAGGTTGTTCTACATGTACCA
 AAGAACTGGGGATCTGTTCTGAGAGTTTGCAAGGACTATGAGGCTGATGT
 AGAACATTGGAAGAACTGCAAATCCATCCCAGAATGGATGAGAGGGGATG
 GTGAGGCTGCTAGAATGCCCTAGAAGGTACTGTAAGAGGGACTGGGTATA
 ATTAGTCAGAGGCATGCACACATGCCCTTCCTGCCATTAAATAAATAA
 15 TTAATGAATAAATGTAGAAAATACTGCCTGCCAGCATAAGGTTCTCAGTT
 GATCACTAAAGCCATAAAATGCCAGGCATGGTGGTCATGCTTGTAAATTCC
 AGTATTGGGAGGTAGAGATAGAAAGCTCTGGGCTCTCAACCAGTCAG
 TCTAGTTAACTGGTGAGCTCCAGGCCAGTGAAAGACTCTATTAAAGCAGG
 ACAGCATTCTGGAAGATGACAATCAGTATTGTCACCAACATGTGTGCAC
 20 AATATGGGCATTTAAAAATATGTCCTAAATGCTCTGATGGGAATGGAGAGG
 CTATTTCAAAACATAGAGAGGCAATGAAGATGCTGGACATAGGGATCCAGA
 TGCTAGGGCATGGGGGTGGGGTGGTAAATCTGCCCTACCAACCCACCAAG
 GAAGGTCAAGTGCTCTGGAACAGAAATTCTGGCTGCTGACACTGGTCC
 TTCTTGACTCTGTGCATTAAGAGTCCTGGTCTTAAGACCAAGATGTCCTGG
 25 TCTGGGAATTCTACTGGCAGTTGGGGTGGGTGGAGGGGCTGGAATC
 TTCATATCTGTGTTGGTGGCAGGGTACATCAGGTCTATCAGAGACTGGAA
 GTGCTCAGAACAGAGAAGAGGGCATGGAGGCCACCTGCTTCCAGGGCAG
 AGGTAACACATCGGTGGTGGAGAGAAAGATAACCCAGGATGCTGGTGCT
 GTACGACCCCTCTGGAAAGAGAGAGGGCCTACCTTGGTGGTGCAGGGAGT
 30 CTGCCTTTCTATCCAAGCCATGGTAGGAGTGAATGGCAAACCACAGGAAGG
 CACAGAGCATCATAGCATACCTGGGACAGTCAGAACAGAGATGTCAAGGAGT
 CAATAGCCACCAACAACCCCTGGGGAGATTCTTACCAACTCCAGGGAAGT
 CCTAGGATTGGAAAATGGAGGGCAAGAGCTAGCCACTGGGCCGCTCCCTGG

GTCAGGGCTGGTCCACCTGCCTACTGGGTCTGGAAGATCCTGGTAGTGCC
 ACGACTAGAGCATTGGCCTGGGGCAATAACCCAGGGACTGCTTCTACCTGG
 GAAGGGCAAGGCAGGGCAGGATAGAGGGAGGGCCAGGAAGGAACTGGTG
 GCTACCGTGAGGCCAGGCTGGTCAGGTCAAGGATGGAAGCAAACTGTAGT
 5 GTGTCCACAGAACGTTCTGATGCTCTGGAGGCAGTCCTGGACAAAGGCAGC
 ATGCATGGTTGCCTACCCTGGCTGGCTCCCTGCACAGTGTGCTCAGCTCC
 CCCAGTTCCACGCTCCTCCCAGAAGCCTCTGGAGCTGCATGGTTGCTCAACC
 AGTGCTGAGGCCAGGACAGTCACGGTATGCACCTTCCAAGCAGAACTACTG
 AGCACTCTGGAAAGAGGCTCATGAACCTTGAGCCTGGGGCATGGAGCCT
 10 GTCTGTGGGTACAGTGGCCTACTCCCTGGGGGACAGGTAGGACCTCCTCTT
 TTGTTCTAGCTGCCCGAGCTCCTCCAGTTGCCACTGTTGTCCCCAGGCAG
 TCGGGGAAGGGGAATGTACACAGTCCCCAGAGGGCTGCTGTGGAGGGTA
 GAAAATTGATGCTGCAGGTTCTCATTGTAGGTATGACATTAACAGTCCCT
 CCCTCTCCTCGCCCCCTCCCCCTCCCTCCCCCTTCTCCTCCCTCT
 15 CCTCCTCCCTCCCTTCCCTCTCCCTCCCCCTCCCTCCCCCTCCCTCT
 TCCCTCTCAACAGGGAGGTGACCATTGGCATCTGGACATTCATATGCTGG
 CATTGTTGGTTAGGTTGAAATGTTGGGGAGGGTGAGGATGGGATGGA
 CCGAGTGGAGCCGCACAGGGTGCCTATTGCATTGGCAAGCAAGTGGT
 CCTTCGGCCCTTACTGGCTTGAGCTGGCTTGTCTCTCCACCAGGGATC
 20 CTTTGCAACCAGCTGTGGTACCTGCCACCCCTGGGGTAGGAGGCAGGCACT
 GAACTATTCTGTATTGGGACCCGTGGACTGTTCTGGGTGGATGGGCTCCC
 TGACTCAGCCCCATCCCAGCAGGCCAGCAGCTCCCTCCCTCTGGCCTTGA
 GCCATTCCCCACCCTTGTCTGGAGGGTAGCCAGACATCTCTCCCCATG
 AGATAGGGCTGGTTGTTCCAGAACAGCAGGGGATGGGACAAAGAGGGG
 25 GCTGGTAAGAAGAGAGAGGCCAGGAGGGAGGTGAGTCAGCCTAGCCC
 TTAGGGTAGAAGGGCTATTCCATGCTCTTACCCTAGTACTTCTGCTTTGG
 GATCCCTGGGGACCCCTTCACTCTCTAAATACCTGATCACCTGTTATGT
 AGAGCCTTAGCTTGAGCTCTAGATGCTCAGAGGGAGGGAGGG
 GAGATTCTGA!GGCCTGGGGAGCCTCATAAAGGAGGAATGAGTGGGTGGG
 30 GCCCATGCCTGCTGCTAGCCTGCAAAAGAGAGTTGGCCTAGGGTAAAGTC
 AAGCTGGCCATCCCATTAGTTCCCTCCCTGTGGCCCCCTATCAAGGGTGGG
 GTGCATTCTAAGACTCTAGGGTAGGTCCCAAGATGTGAGGGGCCAAAGAAG
 ATGAAGATGTCCTTCAGAGGTAGAACCTGAAGTGCCAGCCCTTACCAAGAC

CGACCTGAGTCCAGAAGCATTATCCCCCCCCTCCTCACCTCTCATGG
 CCTCCCGGCCCTGACACATGATGGCTCCAGTGCTCACAGAAGGCCAAAAGG
 AGATTCTTCCCACAAACACAGAAACTGCAAGACAGACCAGGGAGGAGCATAG
 CGTAGGTAGGACTGATTGATGGCAAAACTAAGGCATCAAACACAAGTACTTT
 5 GGGTGATTCTGCAAACACTGGCTCCCAAAGACCAGAGCCAGGGCTTAGGATC
 ACAGCTGCTCCTGGAAAAATAGCCACCAGTGGTTGGCCTGGTAATAGAATA
 GCCTGGCTTCTTAGGACTACTTCCCTTACAGCAGGGCCCTGCTACTTGCCT
 GGTGGCTAACACACCTACTTCCTGAAGAATACCCAATTCTTCTTGGAAATTCT
 CAGTCCCTACTGAACAGGGCATTGCCTTTATTTGCACTAGCCATACATT
 10 GGGTAGCCAGTCCTATTGGGGTGGAGGGGAATGGGTGGGAGCTCAGTCATC
 TACTCAAAATGAACCTGCGTTCTGAGACCTCCTCTGAAGCCTGCCAGGATG
 GCTGACTCTACAGGATTCTGGCATCCTTCTGGAGCACAGCAAGTATGAC
 TACCCCTGCCTTAGCTCACCGTGCCTGGATGACGCCAGCTCCTGCCACCAG
 TTGCTAGATGGCTTCTCATGCCTGATCATACACGAAGTCATAGGTGTCCAA
 15 CACCGCATCCTCACCTGCACCAAGACATAGGAGGCAATGCCCTGAGAG
 AGACCCAGGGAAAGCCCACATCCTGGACTCCTCTCAAAGACTTCCCTCTA
 CCATGGCAATCCTGTGGCTGCCTATTGCCCTGGGCTCCAAAGGTTAAAG
 AAGAGGTCAAGCAGAACCTAGCTACCCACCCCTCAGTGGTAGCTCTGGTAGC
 ATAGAGTGGTATCCTGGTACTGCTGGCCTGGATATAGGCAATAAGCCA
 20 GCTTGCTGAGAAGTGTGGATAGAGGCCTGGACTAGTCCTGCTACCTAATG
 TACTTGAGGGCTTCTCCAGAACTACCCAGAATACTGGGAAGATAAGCTCTA
 AGTCTGGACCAAGGAAGGTAAAAGTATCTGGCATCAGATACAGGTAGCCAA
 GGAAAGAGGAAGAAGGATGTTGGCCTGCCTTGCTCTACACACAGAAAGCCT
 AGACTGTTTGCTCCTATCTCCTAGCTCTTCCCTATTCTGTTCAATCCCTAC
 25 CCTAAGATGCTGTCCCCCAGGCCAAGTATGTTTCAAGAGACAAGCTGGAATT
 AATCTCTTCCAGGAATGCATCCTGGATATGTGGGCTCACTGGCTCCTGACC
 TAGGGTAAGTCCTTACATCTTTCGCCTGAAGACCCCTGAGTCCTCCCTACA
 CCCAGCCTCATGCCAGGCCAGCAGCCAGGTACACAAATGGTGTCTAAAT
 GAGTGGAGTGGTGTGAAGTCCTATACTCTGGTAACTCATGCTTTCAGAA
 30 AGGCAGGGTGTCTGTTCCATGGCTGGTGTCTATGGGCCTCACTGCCAG
 CTGCCTGCAGGTACAGTGGACAGGTGGACAGTTAGAGGTCTTAGTTAGTCC
 AGCCTGGGCCAAGGCCCTGCAGGAGCCAGGGAACTCCTGCTAACTGCT
 GATCCTGGCACCGATTCCCTCTCCATGCAACAAAGCCAGACATCCC

CATGAGTCATCCCAGCTCAGCCTGCCCAAGCCCTCCCCACTGGAAGCAGGTG
CCAAGCTGGCCTTGGTTGCTGGTCAGTCAAGCCCAGAACCCATTATGGGCTC
AGCTTCTTGAGCTTATGGGCTACTGTGTCTTAAGGAAACAAATCCTGGGG
AAGGCTGAGAACTGTCTGGAGTTATTCTGGAATGGGTGGGCAGGTAGCAGA
5 GTCGAGCAGGCCCGATTGAACTAGCCCTTTGCATCACTCCCTAGCACAAATT
GAATTCATTCCATGAGTTCTACCACTTTCAAGGATGTCCAGTGCAGGCCGG
GCCCTCTGTCCACTGTCATTCTACAGGACAATAGGGATGACATCAGCTGTAG
AGCTCAGCTCAGCTGGTCAGCATCCCACCCCCAATGTGCAGAACAAAC
AGAGCCCCGCCCTAGACCTTAGAACCTGATCTGGAGCTGTACAGACCAGGCT
10 GAACTCTCTGCAGAGCCCAAGCACTGGGCAGGGGTAGTGCATGCCGT
CTGGCATTGGCATCCAGAGTGCTCTGTAAGAGACTGATGCTGGAGTTTT
CATGGGAATAGGGAGGGTGGACCAGAGGCTCCTAAACCAGGGCCACAAAG
CCTCCACACCATTGTCCAGAACGACTCCCTCTAAAGAACATACAGACTGCAGGG
CTGGCAAGCAGCTCTGGTTACAAACTCTCCCTGTAAGTGTGTTGTCCAGG
15 GTAGAGGGTGGAGGAAACCCCTGAGTGTATGAAGTCCTGAGTGGGTATTGTT
GTCAAGGACTACAGCCTCATGAGAACGACTGGCAAAGCCATCCACTGTGTGAGT
CTCACTAAGAACAGCTAAAGCTGCCTCTGTCAGCTGTATAACATAAACCTG
TCTTCTGTTATCTGTATGTAATAACCCCTGCCTTTATTCAAGCTGTATATAA
TAAACACACCGAGCTGCTGGGAAAGCAGTTTCCATCCGAGAGTTCAAGC
20 CACCTGATGCCAGCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTC
TCTCTCTCTCTCTCTCTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT
GTGTTGCACACATGCGCACCTGTCCTTCTTAGTCCTTGTCAACCCTAGCC
CCCATCAGGCTAACCTTGAGCCAAAGTTATTGAGATTGAGACCTCATGTC
CAGGGTACTACCCTATCTTCTATCTGCCTGGCTGGTACTCCCCCCCCA
25 TGTTGCCTGCTAGGGTATAGATAGATGGGCCACACAGCCAAGGTAGGAGGA
CCCCATGTGGAGCTGCAGGCAGCTGTGGACCAGCAGTGGCCTGAGGCTG
CAGAGGCAAGCCTGTTATGCTGGCTTGACATGAATTATTAAGGAGAGCT
AAACAATTCACTTCCCTCTAACGGACACTGGGAGATTGTGGCAAAGTGG
CTCTGCAGCCACCGGGAGGGTGAATGAATAGCCCTATCACCTGCATTATC
30 ACATAGCAGGCTAACGCCGACTGCCATCCTCACCAACCTGGATGCCTGCCA
AGGCTGGAAGGGAGACCAGGAAGAAGCACCCTCCTACTTCATGCCGGAGC
CTGTGTGTGCAGACACAGTCAAGGTCTTCCCTGTGTGCTTCATCCTCTG
TTAGACCCTGTTCAAGGATGTCTGAGAATCTTCCACGGAGGTTAGGGGG

GACTATGGGGACTTCAAGTAGTATCAGTTGACTCCTGTATCCTTCTTACCC
 ATGGGACTGGAGGTAGCTAGGATGACCAAGTTCAAGGCTGTTGGCCTTGCC
 CACCCGTACAAAGATGGTGGATGATGGGAGGATGTTGGTGTCTGTCTGT
 GCTTAGTGTACACATAGGACCTCATTCCAGCCCAGGAAAGGCCAGAACTAGAT
 5 CCACATTCCAGACCACCTGAGAGTAGAGAGGAGCCTGACTGCCCCCTCCCTGC
 CACCCCTCCCTCCCATCCTCCACCCCTCCCATCCCCCCCACCCCCACCCCGCTGG
 CTCATCTATATAATGCAGTAGCCCTCCAGCAGGGCCTCTACTCTCTCACAG
 AAGCAGACACAGAGGTCTGGGGAGGATAAAAGACATGCTCACGTCTGTCCCT
 CTACCCCTGAGTTCAAACACTCAAGATGTCTTGACCCAGGCTACCTCCAGGTATC
 10 TCAACAGGGCTCACATGGGCACTGCTGGAATTCAAACCTCCAAAGATTGGCC
 CGCAGGCCAGAGTCCAGGAGGAAGCCCTACCCCGCCCAGGGTCAGGCAGGG
 CGTAGAGAATTGCCCTAGTAGCCAGTCTATGGGACTGGAGTAAAGGACCC
 TTTCTTCTCTAGACTAACGCCCCCTGGTTGTTACTGTCTGTTCTTGGTTCCCTCTGA
 GGCCCTCTGCCCATTTGGACCCCTAACGTTAGGGCTCAGAATGTTAACATAACT
 15 TTAGAACAGGGGGACGGGCAGCAGCTGCTGCAGGCCAACCAAAGGCCAGCC
 CCTGATACTGCCAGCTGTCTACTGAGGCCACCCATGCTGTGACCCATCC
 TCCAGCCATCCAGACCACCCCTCAGGGACAGGGATGTTCTGTCAAAATGCT
 GCTTAGCTGTGTTGCCCTAACGAGAACCTCTGGACACCCATGCCCTCAAGCTA
 TTATGGAGGTTCAACTCCCTTTAGGTCCCTGGGGCATAGATAATCATTTC
 20 CTCTCTAACCTTTAGGATTGATATGAGCCTGGGGATTTCTGGCAGGGAA
 GACAAGCAGAAATTCTGGCAAAGCATCTGGCTGGTCCAGGTAGAGGGTCCT
 GGCAGCACTCACCTGGTGGGTTGAGAATCTCCAGAAGGCCACCTGCACC
 AGGATGCAGAATGACAGGGCAAAGCACAGGAAACCCCTGGGACAGAGGTGT
 TCTTGTCACTGCATAGCCAGGTAGGTGGCCTGGAGAGGCAGGTGGCTAGCTT
 25 CCCAGCTGGCGGGGCTGAGGTGCAGGTTGAGACCCAGTCCCTCTGCCTG
 GGGCAGGAGGCTCTTCTGGAAATTCTCCCCAGGCTCTGTGTGCTTCTGA
 GGATCTGTGACCTAACGGGCTACACTGCTTCTGAGAATGGCAGGCTTTCC
 AGTGTGGTGGAGACCCCTACCCATGGGAGAAACAGTGACCCAGAAAGGGCAG
 GCTGCAACTCTCCGTATCTGAAATCCTGGCAGCAGAACCTCTACCCCTTAAA
 30 CATAAAATGGGCCAGCATCTATGTTTATTTATTTAAATTACATGTATTGTG
 TGTGCATGTATAGGGAGGCCTGGGGAGGCCAGAAGAATGATGTTGCACATGG
 AGCCACAGGCTCTGGATCCTGGAACTAAACTGGGTCCCTGGAAAGAGC
 AGGCATCCCTCATTGCTGAGCTGTTCTCCAGCATTCTCATACCTAACAC

CCATCCTTGAGGTAGAGTCTATGAAGCCCAGGCTGGCCTGAACCTCATGAT
 CCTCTCACTTCCGTTTCTCAGTCTATGATTCCAGGTGTGCACAACCCTGTG
 TTTTATTCAAGCGTTGTGACTGAACAAGGATGTCATGCATGCTAGGCAAACAC
 TCTACCAACTGTCCCACATCCCCAGCCGCAAACCTCTCTTGAAGGTAGGGA
 5 ATAGCCACTTCATATAGGGTACCTCTGCTAGTTCTTGTGTTCTGAAAC
 ACGTTCCAAGGAGACCCTAACGCTATAGCCTGACTCATCCACAACCCCAGC
 CCACAACCCCAGCCACAACCCCAGCCATTGGTTGACACCCAAAGACCCT
 GGCTTCCCTCCTCCTGTGAGTTCTACCCCTCTATACCAACTGCATGGGG
 CTCTGTGGTTACCCAACCTCCAAACCCCTACCCAGAGTGCAAAAAGGGTCATCT
 10 TCACACACTCAGCCTTCTTTCTTCTTAGTTGGGTACAGACTTCTGACTT
 CTTTACAGAAGCCAGTGGACAATGCAGATGTCCTCCCTGACCATGTA
 CAAGTCCCTACACTTGTGGTAGTTCTAGAGGGTCATTCTGTTGAGGAAAC
 CTGTTCCCCAGCAGTGCCACCAAAGTCTACCTAGTGACCTCGGATCTGGGT
 ACCCTGGAGCCTCTGCCTGGCGCTTGTGATCGTCAGTCAGTCCAGGGCCCTG
 15 CACATAGGTCCACCCACTCCTGTGACCATCGAGCCCTCCATTGACCCAC
 CTCCCCACTCCAAAGTGTCACTGTCATGTCGCTCAATAAATATGGCAGCTAT
 GGCCTGGCTGTCTCAACCCAGCACCACTCAGGGTAGCCCCAAGTGACCA
 TATGCAGAATGACCTATAGTCATTGCCAGGGTGCTAGGTCCATGCCAGGGC
 TAGCTTAGGTTACAAAGTGTGGAAAGAGAGCTGGGTACCAAGTACTGGTC
 20 CTCAGACTTGGCTGGGTGTGCTCTGCAGGAATGGGAATTCCCTCTGCC
 AGTTCCAGAGCCTGTCTTAGAGCTGCCCTGGGTTGCCTGCTGCTCTGCTT
 TCTTTGCCTTATTCCCTCCTCTCCCCCTCCTCTTCCCTCTCTCTCTCT
 CCCCCCTCCTCCTCTTCCCTCCTCTCCCTCTCTCTCTCTCTCTCT
 ACCTTTCTCCCTCTTCTCCCTCATCTTCCCTTGTGGCAGTTGA
 25 GGGCTGTTCCCCATCTGGAAGCCATTCTCAACTCTGCCTCCGGCTGAGG
 CTGTGAGCCAGCCCAGTCCAGCCCTCTCCAGAAACCACTCATCACTCAAGAG
 GGAGTCTCCCCCTCTCCCCACCAGCCCCCCCCCGTGTGTGTGTGT
 GTGTGTGTGTGTGTGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG
 AGAGAATGTGTGTGTGAAAGGGCTTAAGGCCACATAGAGCAGAGAGA
 30 GGTTGGCCAGACCTAACTGTGACCATTTCTCCCTCCTCATTCTAAATGAAA
 ATAAATGAATAAAACTCGTAAACAGCTGAATTGGCTTGCAGCCAGCCGG
 CTCTTCATTCCCTGTGTGTGGAAGGCAGGGCAGGAAAGAGCAGGGAGGGA
 GCAGTGGGCACAGAGGTGTTGGGTTGTTCCATTCCCTCCCCCTTGCCT

TTATATGTACTTGTATGTGTTCTGACACACAGGCAGCACAGATCCATGGGACA
 GACAGATGCAGACAGCGCCCACCATACGCACAGGCACAAAGTACACAAAG
 AGACTGTAACCACCAGGGAGCTCCAGTGACTCTGTGGTGACCGAGCTGGG
 CATACTATCCATGCTCAGGTAGAGGATCATGGCTTAGCAAAGTGCAGAGCC
 5 AGCACTGGGCCGGAGTAGCCTTGGAGCACAGCTCTGTACAGGAGGAGTCT
 AGATGTGCCTTTAGCCTAACCTGCACAACAGTACCGCACCAAGGCCCTGAGTC
 TTGTTAGAGCTGTGGAATTGAAGCTTGGAAAGCCTGGATGGGTTCTAATGCT
 CCCGAAATCCTTGCCCACAAATCAAGTGCCAAGCAGGGACATGGGAGGAGCT
 TGGGAATGCTGAGATGGGCTAAGCTGCGCAGGAGCTGGGCCTCTGGCCAC
 10 CTGTTTACTGCCTTCAGCTTACGGTCTCTCGCTGACCTGGTCCCCCTGGT
 GGCGATGTTACTTGGCGCAGGCCTCACATGCTGCCTCTGCGTCCCCCT
 GCCTCCATTTGTCTGCTTACATGCTCCCTAGCAAGGCACAAATTCTCTG
 GGATCACAGCCAACCAGCCCACAGTGCCTTCACTAGGGCTCCATCTGGG
 CTCTAAATCTCGGTTGTTTGTAGTGCTTATTCAATGGCCAGCCTGTCCCT
 15 GCCCTGCCTGGTGAGGTCTGAGCTGCCAGGTCTACTTACTCCGTACCCGGG
 CCCACCCAGGACTGGCTGGTCCCTGCAGCGGCTCTAGGATGTGACTCTGCC
 TGGTTCTGGAGACCACGGTCATCAGCAAATGTAUTGAGCACGAAGACAAGG
 TTGCAAAGGGTAGATTGGGTCTACCCAGGAAGCAAAGCTCAGGTTCTGAGG
 GCTCCTGGATCCCCCAGTCTCTCACAGGTAGAGTTGGAGGTCTGCAAACA
 20 GGGCGCTGGATGGACGGCGGAGGGGACAGGAATGCCTGGAATGGGAG
 GGTAGGTAAGAGAGCAAGGTCTCAGGAAGGAACGGCCCACATTAGATGACT
 GGGAAAGCCTGGTGAAACAGGAACAGGGTGGCCATGGGGAGGGCCCTGGG
 AGGGAGAATCTGGATTAGCCATTGAGGGTTGTGGGGCACACTGAGGCACCC
 ATATGGAGAACTGGATACGGCAGCAACAAGAGCTTCTTGGGTTGTG
 25 AAACGTCTCTCAATGGCTAGGAAGGACAGTGGATCTCTGACAAGGAAGCC
 CAGGGTGCAGAAACAGCTTAGGGACTGCCTGGTCACTTTGGTCTTCTAATG
 AGAAAGTGGAAATTCAACCAGTCCTGCTCCAGACCTGGCTAGGTATCAGAAC
 AAGCCCTCTGGGTTTAGAGATAACCCAGGGCAGAGAGGGCCAATTCT
 CTCTTCAAGGGCCCTGCAGCACCCAGGTAGA³GTTTTTTTTTTTTTT
 30 GACTGGTCCAGGTAGGAGGGCCTGATTGAGCAAGTGGAAAGGTCTGACTGT
 GTAAGTGGAGGGACTCACTGGTCTATATCCCTGACCTTGCTTCTTCTGGA
 TACTTCTGCTGGGTCAAGGCAGCTCCCTGGTCTTATTCCCTCCAGCTTGTG
 CCCGTCTGAGGTCTGGAGGCCGGGTGTCAGCAGCACATGGAACCTACCG

CAGCCATGAGGCCATGGGCCTCCCTCACAGTGGCTATGGTGCTCAGAGCAGC
TCCCAGGCTCAGGAGCCCCGCTAGGCTGATCCCCACATAGAAGGCTGTGGGA
AGAGAAAGACAGAGGGTATGGAATCTAGCCTGGGACTGGGCATAGAGGTT
GGATCTGAAATCTATCTACTTGGGAGTCACAGAGCTAGAACTGACCTCGGG
5 GAGGTCCAAAAGGCACATATCTCTGGCTAAAAGAAGGAATGTCCATAGCC
CAATAGCCTGTCCTCCTGAGGCTGAGAAGGAAGGGGGAGAGAAGGTAGCT
AAGAGACAGTACTCTTCCCCATTCCCTGTCCTCCCTGCCTCACAGACTAT
CTTAAGGACATCCCCATACTCTAGTGACAGGTGACAGTGTAGGCTGTACCTT
ATCAGTGCAGGCCAGGCCAGGCCAGGCTCCTGCCTAACGGAGGCCTAGTGCCT
10 TGGAAGGCAGGGACTGGGCTACCCATCCCCATTAGGGCCTCAGTTCC
ACTTTTCCTACTGGGTGGTGACCTCTAGATTCTGCATTCTTTATTAA
AGTGGCCTTGTCTTGTGGAAGTGAGGCACCCCTGGCAGGTTGGTCCTAGCTG
CACATTTCTGCCCTGTATATGGTATTCCCTGCCAACACCCCCACAGGCCAC
CTGAGTGGGCCAGGAGATCCCTGCCCTGAACACATAGATCTGGGCCCTGC
15 CACAGCTTCAACCCTGCTATGGGCAGGCGAATCAAGGCAGGAGTGCCTGCT
GTCGCCTAACCTCCCCACCTTGTAGTCCAACCCAGACACTGGGCTGCCT
CTCCCTACTCCTGACCTCTGGTTTGGCAAAGCCAGCTCCTCTGGCAGCC
TAGGGCTGGGAGTAAGGTCTGTTCTCCAGATGTGTTGGCCCTGGAGGCC
TCTCACTCCACTCCACAGCCATTCTGGTCTCACTTACCCAAATAGCGCAGT
20 GTTCATAGGGTTCTCTCCAACGATGCATGGCAATCACAGTAAAGTGGTC
TCCAAAGTGAATGACAACCACCATGGTGGCCATAGAGAGGCCAGCAGCTGA
GGGTGAAGTGGCTCACTGTCAGCGCTGGGAGTTGCAGAGGCCCTCACCC
TGACAGAATATAGGGTCTGGCTTCTAGGCCCCCAGCCTGGCTCCCTCCAGC
TTCCTGGTGCACAGGAACAAGGCAGCTACAGGAGGCCTACATATTCTGTG
25 GGCAGGCACTCACAGATAGTGTACTACACACAGAGATAAGTAGAAAACACAC
TAGCCAGTCCCCATGGTGCTCAGCTCCTCTCCTCTCCTCTCCCCCTCCC
TTCACCTCCTCTCCTCCCTTCTCTTACTCTCCTCCCTGTGGTTCACCA
GTGAGTGGGACCTCAGACCCACAGCAGACACAGTAGGTATCGCTGTGCCTC
CCATCTGAAGACCCAGGAGCTCATATCAAACGTCTGCAGAGACTCGCTG
30 AGTCCCTGACCTGGCAGTCCCAGTCTCTGGTCCCAAGCAGCACCCCTCCGG
GTAGTCCTGCACACTCTAAGTCACCAGCCAACCTAGGTTCCAGGCTCT
TCACTGACCCCTGCCTACAAGGACATCAGGTACAGATGTTCACAGTCCTCTAA
AGGTGGCCACCAGGGACCCAGAACCAAGTCTGAGGGACTGTGGTGTGGCAGGA

GGGAAAGACCACAGTGCTGGAAGCCGGCATGGTGAACATTTCCTCTCCTG
 CCTGCCCAACCATCCACTCCTGCCACATGCATGTTACCAAGACTAGGAAGT
 TGGTGATCAGTATCTGGCATTGGCAATCTGATTGATTCCAGTGCCCCATG
 GTGCTCAGCTCCTCTCCTCTGCCCTCGTCTCCTCTCCTCTCTCCCCTCCC
 5 TTCACCTCCCTCTCCTCCCTCCCTCTTACTCTCCTCCCTCTGTGGTTCCCCA
 GTGGGTGGGGACCTCAGACCACAGCAGACACAGTAGGTATCATTGTGTCTC
 CTATCTGTCAAGCAACCCCTGTAACCTAGTGGCTGTGGGGAAAGGAAGAA
 GGGCAGGCCGGAAGGGGGCAGTTCTATACCACTGTTGCTCTGGCCTGGC
 CCAAGATAACTGGATTTTAGGCATGAGGCCTCCCTTGGTAGGCTGGC
 10 TACACTGCAGCATGGGAGGGTGGAGTCTTGAGGGAGCAGAAAGAGAAG
 GACCTATGGTTATAAGGCATGGCATTGGTTGTAAGGGTGTACTAACCTGTAAC
 TGTCCAGCTACGTAAAAACCTTAGTGGTTAGACCTCATGTCCCAAAGT
 CCTCCTGGACTAACCCCCAACAGGACTCTGCAAGTGGCAAATGTGTCTCA
 TGACCGACCTGATGGCATTAAACCAATTATAACTGGCACAGAGGGAAAGGGT
 15 GTGATAGAGTCAAATCTCAGGAAATGTCCAGGGTTGGCAAACAGGCATAG
 GCGTTCAAGATGGAGGAAGTCTGTTGATTGACCTCGGTGAACTAGCCAT
 ATTTGATTGAAAAACAAAAGCAGAGCATGCTCCCACAGCCAGCACCTGGGA
 GGCTGAGGCAGGAAGGTATTAGCAAGTCAGAGGCTAACCTAACACACTCAGT
 GAGACCCCCACCTCAAAATACACAGGCTGGGACAGGGCTCAGTTGAAGTGT
 20 TTGCAAGTCAAGCATGAGGACCTGAGGTGGATAACCCAGAACCCATGTTAA
 AGAAGTCAGGCATGGCAGCGATGCTGTAATCCCAGTGCCATGGAGGGCTGA
 GGCAGGACGATGCTGCCGGACTCACTGGCCAGCCAGCCAGTGACACCTGAG
 GTGACCTCTGGCTTCCACGTGCCTCCACCTACACCCCTGCCAGGAACACAT
 ACATAAAATCAATACACGATAAGAAAGAGCCATCTGAAACTCTGTCAAGCCACT
 25 TTTGAAAAGGAGCAAGTGTGTTACTTCAGAAACTGGAGCCCCCCCCAAG
 AGGGTCGGTCCCCACTCCATAGGCTCTGTCAAAATGTGCGTCTGCAATA
 ACACACAGGATGATGTAAGCCACGGAATGGCAGTACTGCAAATTCAAATAT
 ATGCAGGCCATGCTAAGTGGCTTGGAGAGTATAACATGAGTGTTCACCTTA
 AACACCTGCTATGCTAAGCCTGTCCAGATATCTGAGGCTGTTCTGGTACC
 30 CAGAAAAGGATGCATGGCCCTTTACACCCCTGTAATGTAGGGTCTCCTA
 GTCAGGGGGCATCTGGTAGGAAAAAGAGGTAACGTGGAAGTGTGATCCCTGG
 GCCTCTAGAAGCCAGTGAAATAGGGCTGTGTTCTGGGCTGTCAATGTTGCTG
 CTGGGAAGATTGTCAAGTGGCCACCCATTCAAGGAAGACTGACATTGGAGCCT

CCTGCTGTAGTCCCCCTTTCTCCTCTCCTAAGGGGCTTCAGCACTCC
 AGGTGTCTCCTCTGCAGCCTGCATTCCCAGAGTCTAGTCTCAGCCTGTAG
 GGTAGGTGAGGGTGACCACTATATCACTCAGGAAAGACTCCAAGACCCAGC
 CAGGGTGCAGAGCAGCTTAGGTGCAGCCAAGTCTCAGGGTGTGGCCTAAGCT
 5 TCATGTGTGCCAGGCCCTGCAGCAGAGCCTCCTGCTGCTCAATCCTAAC
 CACCTTCTCTACCTGCATGGAAGAAAGAGTCAGGCAGCCTCCAGGACCCAA
 GATGGGCCTGGAACCACCTAGAACCCCTCCTCAATTACTCCGTGCCTAGGAC
 AAGAGTGGAGCCAGCGCTTCCTCAGACAGCCTCACTTGTCTCAGAGC
 GGTAGGGACCCTAGGCTTGTCCCTCCAATACTAGGTCTGTCAACCCTCTTC
 10 CCCGAGGTACCACTGGGCCAGGAATCCATGTGTTGTGGACACATAGCA
 ATGTGCCCTCTGGATACCTTGCCTCCACCCCTCTGCTCTGACACTCTGT
 AGGAGGAAATGGTATGTCAGAGGAGCTGCTGGCCTGCCTGCCTACCTCA
 GGGCGTTGGCTATGGCTCATCCCAGTAGAGGGCAGTGCTGGCTCTGAA
 GTCAGGGAGGGGCCAAAGCTGGACATGATTTGCCAGCAGCAGATAGTT
 15 TCTGTACTGTGTATGTTGGAATTCTTGGACATTCAAAGGGTATAATG
 CTAGGGCTCCGAGAGGTTGGGTGGGTGGTATTGATTGCTGTTGGTCATGGT
 TTGTTGAGTAGCCCTGCGAAAGAAGAGAAAAGAAAGAAGAAGGAAGAG
 AAGGGGAAGAAGGAAGAAGGAAGAAGGAAGAGAGGGGAGGGGAGGGGG
 AGAAGAAAAGGAGAAGGAGGAGGAGGAAGGAAGAGGAGGAGGAATTATT
 20 TTATTATTATTATTATTATTATTATTATTATTATTATTATTATATATCCTGA
 TGGCAAAGATCAAACCTGCCCAAGGAACCAGATGCCCTATTCAGCAGGA
 AGCAGTCTAATGATAACACTACCCCTTCTATCCTTTCTCTCCT
 ACCTAGTGTAGGGTTGAAAGGGTGAAGAAAAGGGTGGAGAAGGGTA
 GAAGAAAGAGGAACCTACAAAGTAGCCAAAGTCCAGCTACAAGTGGCACTC
 25 AGATGTAGGCCTAGGCAGAATGGAAATTGATTTCATGGCAGGGACAAAG
 GAATGGGTATTTATTCAAGACACCAGCAAAAAATTATTGTGGCTGCTACCA
 CTGGGATATACTCCTTGCCTCCAGAGAGGGTTCTGGTTTCTCTCT
 TCTTATATTCTGTTCAAAAAAGGTTGGAGAATGGTAAGTGGTTGGAAAAAA
 TTTGGGTAGAAGTGGAGGGTCTGAGAAACAAACAGTGTCAAGGAAAGGGA
 30 AAACAAAAGGTGTCACTCTGCTCTGACGTCTGCAAGGGTGCAGAGTGG
 CTGCAGCTGGAAAACCTGCAGGTGGAGGTGGAAGCGCCGGGGAGGGCAGGA
 ACACCAGAAAAGGGAGAACAGAAGACTCAGTCCTGGGACTGAGCAAGAA
 AGCAGGAGTTCTGCAGGAGGAAAGAGGGATAGAAACTGTGCCAGAGGGC

AGTCGGGTCAAGAGAAAAGCTGGCAAGGAGGGAGAAAAGCTGAATGGCTGGT
GAAAACAGTCCATTCAAAAGAAAGGGTAATCTCAAACACTAAGCTGCC
AGAGTAGGAAGAGAAGTGGCTGGGCTGGAGATCACCACAGCTTCCA
ATAGTCTACAGCATATGCCTGCTAATGGTGTGCAACAGGGTTATGACAAGAT
5 AGGATGGTATCCTATGAAATGATGGTCGAAGAGGCCATGGCTCATATGG
GAGACACAAGCCTCACATGAAACAACGGCCACTCAAATGATTGCCTAAG
ACTGAAAGGAAATGGTACAGTTACTAGAAGCTGGCTGTAATTGCAATA
GATAACATGATGAAAGGAAGAAGCTTGAATATTAAACAGGGAAACATAGTG
ACGGGGAGGGATATAGTCAAAGAACAGTTGCTAGGCAAAGGGCCCTGCTCAG
10 ATATGCAAGAACAGAGTCATTGATGATGCTACAGTGGAACAAATGTTGCTT
AGTCCTTAAGAGCTGGACAAAGTTGGAGAACCTGGAGAAAGGTCCATC
TTGTTACAAAGATACAAACATTCACTTAAAAAAAAAAAAACAAAAAAA
ACAAAGATTAGTCTCAGCTGTGAATGAAGCTGTATCAGACCCGATGAAAGA
CAAGTATTGATAGAGACCTGGTGGAAATGGAAACTGAATGTAAAG
15 TGCTATTAGACCATTAAAGGCATGTGCAGTGCTTATGCATGAGTGAATAAGG
GATACAACCGGTATCAGTCTAATATGTACCATGTAATATCATAGGTCAAAC
ATAGCTAGAGATCTGATATCAAATTCTAGTACTCAATTGCAGGAAATA
AAGTCATTCCAAGAGACTGTGACCAAGCCACTAAAGAGCTCAAATCTCAA
AATGCTCAGTGTCTTAATTGTGGGAATCGTAGTCATTGCAACAAAATTGTGA
20 ATAAGGCATCTCTAAGGGCAACAATTTCTAAATATAAACAGAAAGAAGG
CCTAGGCTTCCAGGAGTGTGTTAAGCAACGTGGCAAGGGTGCCTTGGACCA
GTGAGTGTAAAGTCCAAGAGAGACAGTCAGGCAATTGGCCATTGGAAA
TGAAATGAGGGGAGCTGGCTCGAGGCCACAGCAAAAGTACAAGCTGTT
TTGAAACAGCAGCTGAGAGACACTGGGTATAGAAAAACTGCAGAATTAAAT
25 CAGTCTATATACTATAAGGATGTGTTAACATCAGAACGGAGCTACAAAG
TTTACAATGGGATGCAGGTTGTTACATTCCACGGAAATGAAAAGCTGT
GGATATTATCCAAACTGATAAAAGATTAGAATTGAGCAGATTAGATTTCAGA
ACACCTTGGCCACTGATCAGAAAACACTTATTAAATTGAAAATGTCTGTTAT
AATTCCAGCTACATCCAGCACAATTATGACGTAAAAAGGGGGAAATGT
30 AGTGACAATTGGTGTGATTGTGAAATTCTAAACACAGAAATATTATTAGA
ACATTAAATTCAATCCCAGATGTAGGGTATGGGCTGCTCAGATTGTCCA
CAGCAGCTGTCTATGATTGCCTCGTCTAGCAGGGCATGATTACCAAG
TGGCAGATAGTCTGTGATTGTGAAATTCTAAACATTTCAGAA

GGTATATAAATGCTAAGGCTTGAGAGGCAGGGTGGGTGTTGGTGGTTG
 TTTGTTCTGGTCAAGGTTAACAGTAGTAGTGGTGCACAAAGAAGAAAGAAGAAGA
 AATTAGATATTCTGATGGCAAAGATCAAACCTGCTCCAATGAATTAGATGCTT
 CTAACCAGTAGGAAGTAATTAAATGGTAATGTTGCCCTTCCTTCTATCCT
 5 TTTTTCTCTCCTAGCTAGTGTAGGGTGGAAAGGGTGGAAAAGGGCTGGA
 GAAGGGTGGAAAGATTGTGTATGTGCGTGTGAGCATGTGTACCTATGCAT
 GTGTGTTATCTGTGTATCATCTTCATGTATGTGTGTATCTATGTATGTT
 TCTGTGTTGTATATACATGTATTGTGTATAGGTTATGTGTACGTGTG
 TATTGTGTGTGTATTTGTTCTATGTATATATGTGTGCTTGTGTATA
 10 TTTATGTATATATGTTATTGTGTGTTAGTGTGTGTACATTGTGTGTATT
 ATATGTGTGTTATATATGTTGTGTATATCTGTGTGCGTTGTATATCATGC
 TTGTTCTTGTATGTGTGTTCTATGTATATGTGCTATGTTAACGTTAT
 ATATTGTGTGTGTGTGTTGTATGTGTCTGTGTGTTATGTGTATGTGT
 CCATGTGTGTATATTGTTATGTGTGTTGTATATATCTATATCTGTGT
 15 GTGTGCCTGTGTGTATTGTTATGTGTATGTGTCCATGTGTATGTGT
 CCAGTTATGTATATGTTGTCATATCTGTGTGTGTGTGTGTGTGTG
 TGCGCGCGTGTGCGCATGTGTGTATGCACTGCACTCACAAACAGTGTACTTACT
 GCTGGAGTACAACATCCTACTTCTCGCCTCCTCATCTAATAATGAGTTA
 GTTGAATTTGGGTTGATCCAAAAGATAGCCAACAGAACATTATGAA
 20 TAGTGTAGATTCAATTACCATATTAAAAAAAAAAATCAATGACCTGAGAG
 ATGACTCAGTGGCAAAGGCAGATGCCACCAAGCCTGATGACCTGAGCTCAAT
 TCTGGAGCTACATGGTAGAAGGAGGGGATTCTGCAAGCTGTCCCCCTAAC
 GCACCTCCATATGTGTGCTGTGGCCAGCCCAACCCACTGTGGATCCATGCC
 AGCACAGGGAAATGATAGGCTATATCAGTGAGTGAGGAAGAAGAGAACAGA
 25 TCTCCCATCCGGAGGAACCCAGAGAAACCATGCTAGGGCCCCACCCCTCTG
 GAATTAGGGCAGATGTCAGCACTCATAGGCTTTGTGTATTGGACAGTGCAG
 ACAGTCCAGCCATAACACTTAGGGACAAATCCTGCAGATGGGGGACCTGT
 GGTGGGAGGTAAGGAGTGAGGTATCTCCATAACTTATGACCCCCATCTAAT
 - ACAAAAAAAAGGTGGGGACATCTGCCAGCTCGGGCCCTGCAGGACACCTGAA
 30 CAGCTCCCTCAGAACCCATGGTCACATCAAGAACAGTAAGAACAGTCTTCTAGT
 CCAGAACAGATGCAAGGTATGTAGGATCCTGGATGGACCTTGGGGCCAGACAAG
 GATAATCAGGGACACAGAACAGATGGGTATAGTTGACAGCAATACATTAATAC
 GGGTGACAGCTTCCCTCATCAATGTTACATGTTGCTGTGAAATGTAGTTCC

TGGCCAAGTCTTACCATATGTGCCAACCTGTGGCTGTATGCGACTGAGG
 ACAGCTAGCTATAACATATGGCTGAACATAAAATTGTGAGTATACTTAATACAT
 TGAGACTTTTCAGTTGTGCATGCGCGCGTGTGTGTGTGTGTGTGTGT
 GTGTGTGCACGCGGTCAAAGGTCAACATTAGGTGTCTTCTGATCACTCTGC
 5 ACCCTTTCTCTTTAGATTTAAAATTGTGTATGGGCTTCTCTG
 AACACCACATATAAGTGCCTGAAGAGATCTCCAGAACTAGAGCTACAGTTG
 GCAGTGTGCCCTTATAAGCATTCTAGAAACCAAGCCTGGTCCTTGAGACGA
 GCAGCCGGTGCTCTGCAGCTGGTGTCTGCACCGGTGCTTGACTGCTGA
 GTCATCTCTCCAGTCCTCACACCTAGTTAAGATGACTTCTGGGTTCAAAC
 10 TCAGGTCTCATTATGCATAACTCACTTACTAACTAAGCCATCTTCCAGCCC
 CATGGTGGAGGGTGTCTTGGTCTGTTGTTATAATTCAATTGTAAGGCTG
 CCACACATGTGGTGACAAGATTGTGCCATGATGAACATAACCTAAAACCCCTT
 GACCTCCAGAGTGGCAGGAATGTCATTGATCATTAGCTAGTAGTGGTCCCCAG
 GCACCCAGGTTGCCTCAGGCTGTGGCTGTGACCCAGGAAGTTGAAGATAGGT
 15 TGGGAGGTTGGGAATGTCAGTCCTGCCCTCCCCAGCCTCTAGGGAGGGG
 AGAGCAACTGGAGGCCAGTGATGGCATCAGCCTGACTGTGCATTAAACCACT
 TAAAAGGACAGTGTAGGAATATCCAAACAGCTGACCATGGGAGGTGCTGAGG
 GCAGTGGGACACCTCCTCCCACATTCTGTTCTGAGGCACACTGGTGCCGTA
 GCTGTAGTCACTCTCATGGCTTTATAGTAAAGTAGTGGGCAGATATAA
 20 GCCAGAGCTCCTGAGTTCTATGGGCTATGCCAACAGTGACAGACATGAG
 GAGGATCCTAAAGGAACCCCTAACACATAGGTTACAATCTGAAGCTATGATTG
 GCACCTGCAGAGGGCTGGGTGTGCACTCTTATTGGGCGGAGCTTCTGCCTC
 AGGATCTGATGGCATCTTGAGCAGGCTGTGCAGAATTGAATGGAATTAGGG
 CACCCAGCCAGTTGTGGAAATGCTGGTGTGGGTCAAGCTGGTC
 25 CTATGCTAAGAGCATTGGAAGGACATAGTTATTATTTTTATGATCCCAGC
 TGTAATAGAGGCTTGAGGGGGTCTTGTGAACCTAGCACACCTCAGCATC
 CCCATAAACTCCAAAGAGGTTCAATTCAAAGCATGTTTGTCTGTCCCCAG
 GTTGTCTCGCTGAGGCCACATCCTCTGGCCTACCCCCCTACTTCTCCTCCCC
 CTGCTCCTCTGCACTTAGAGGGGAGAGGACAACACCTGCTACCTGTCCACC
 30 CACCCACCACCAAGCTTGTCCCTCACCCCTCCCTCATGCAGTTGTCATCTGTTCT
 TGTGTAGCTTCACTCACTGGTGCCTCAGTTACCTACACAATTGCCTCCAGG
 AACCCCTGGTGGAGATAGAGACACTTGGCCTAAGAGCAGGCTCTGCAGTT
 GGAAGTGGTTACTCTCCTCTTGTCCCTTAAGAGCCACCTGGATGGAGAAC

GTGTGTTGTGTGTTCTAGGTCCCCCAGCACCAAGGTGTTGCTAGT
 GTCCCTGACTCTGGCCATTCTCATAGGCAATGATGTCCTTATTGTTAAACT
 GCAGCTCTCCAATTCTGTGAGATGGTAGAGACTGCTGTGATAGCTGCAG
 GTCTCCTGGTGAAGTATCTACATCTTAAATGACTGTTTATTATTCATA
 5 TTTAGGGTCTTGATATTGGATAGGGACCTTAATATCTAAAATATA
 TTTGAGGGTGCAGAGGGATGTATCAATGGTAAGAATACTTACTGCTCTGT
 AGAGGACCCAGCTTGTTCAGCACCCATCTGGTACTCATCGTCATCAGT
 AACTCCGGGCCATGGAATCCAGTGCATCTCTGGCCTCTGCAGGCCAGG
 CATGCACATGGCACACATACATGCACATAAAGCACTAACATACATAAAAATAA
 10 TAAATCTTAAAAATTGGCAAAGATATCCAGGCTGTCTCTTTCTCT
 CTTGTCCTCTCCTCTTAAAGAATTATTATTATTATGTCTATGTG
 AGTGTGACACTGTGTAGGTACACATATCAATACCTCCATGGAAAGGC
 CAGAAGAGTGTATTAGGTATCATTATATCACTCTCACCATGCCTTGAA
 GCAGGCTTCTGCTAGATTGGCAACTAACAGTCCCAGTGATCCTGTCTG
 15 AGCCCCCTCAGAGCTGAGGTACAGGTGTACAAGGAACCTCCAGATTACTAT
 GTGGATGCTGCGATCTGAACCTCTGGCTTCAGATTGTAGAGCAAGTCCTCTT
 AATGACTGGGCCATATCTCCAGCTCCCCAAAATCCTGACCCCTCTCTTGAT
 ACATATCTCATGTATCCGGCTAGCCTGAGTCACTGCATGATCTGAGCT
 TCTCCTGACACCCTCCAAAGACAGGTACATTACACGTCTAATTCCCTG
 20 TCATTCTTCTGAGCATTGTCACAGCAGATACTGGTTAGGCATGAAAT
 CCCTCCTGCTGGCTATGTATTGAGCACCTAGTTCCAACCTGGGGTATTGT
 TTTGGGAGGTTCCAGAACCTTAGGAAGTAAGTCCTCACCGGAGGAAGTAGG
 GCACAGTGGGGTGGACATAGAATGTCATAGCATGGCCACACTTCTAACCTA
 TCTCTGCTCCTGATCCATCCAGATGTGAACAGGCTGTCTCATGTTCTGCTGC
 25 AACGGTTATGAGCTGCTCCATTGCTATGACTGACTGGGAGCCAACACAAAT
 CGTCCTCCCTACTACAGTTGTTCTATCAGGTATTGTCAAAGCAACAGGT
 AAGGTGACTAAAACAACAGAAGTCTCAATTAAATAAGTCCAATCTCTTG
 TTATTGACCTGGTGAGTACACTGGGTTCTGTGTACATCTTATTAAACTTACC
 AGGACATTAAAGCTGCTATTCAACTAGCAAGAACACACCAATTCCGTCT
 30 ACCTCGGGCTGGAAATACCTCATTAGGCTCCAGCCCTAGGGGTCTCTATTAA
 CTTCTTCTGGAGGCACCACGCTGCTGCTGCTCCATAGACAAAGCTCTG
 CTTCTGGCTCTGAGCAGGAAGCTGTAGGCATCTCCCTAGTTTATT
 GCAGCTGTGATTGAAAGCCTGACAAAAAGCAGGGAGAAAAGAGTTATT

AGCTTACAATTCCAGGTACAGTCCCGTATTGTGGGGAAAGTCAGGCAGG
 GACTTTAACAGCTAGTTACATCTCATGCCAAGAGCAGAGAAAAATGAATGC
 ATGCATACTTGCTTGCCCAGCTGTATGCCTCTGTTACCATACTCA
 GAAGCCCCCTCCTGCAGGTGATGGTGTACCCATGGTGGCTGGTCTCCCAC
 5 AATTAATTAAGACAGTCCCCAAAGACATGCCATGGCCAATCCAAAGTACA
 AAAATCCCTCACTGAGACTTCTCCCAGTCAACAACTCTAGGGAGTATCAAG
 TTGACATTAAAGCTGATTTCATAATATCTTAAGATGGCTGGTACATGGT
 ATGTGTTGAAGGTCAAGGTGATCAAATCCAACAGGATTGGGGAGGTTCT
 GCCTTGATGATATTGTTAGTGTACATTGACTGGTCAAGTACATGGCTTTC
 10 CTACTCTGTAAGATAACAGCACAGTGTCTAGTGGCTCTTTGGATTCCAGT
 TAGCAGATAACATATTAATATCTCAAAGGGTATTATCAATTTCAGTGAGGC
 CCAAATTAGAAGAGGTTCTGCAACAGGCCAGGCTGCTGTAAACCTCTTAG
 TGGCATGAGCGGCTCTGAGCAAAGTGCTATGGGAGGTAGGACGTTCTTG
 GGGCTGTTGGGCTCTGAAAGGACTTCACAGTCTACCACCCCTGGTCTGTGA
 15 GGCTGAGCCCTGCCATCCTCTATGGATGCTTCTCAAATCTGGATTACCTCTA
 GGCTCCACAGAGCATGTGGCACGTGACACCAACTGACCACATGACCTGAAC
 TGTCCATTATAAAAGAGCCATTGCTGACCTGTGATCCATTGAGATTGGGAA
 ACACAGGTGTGTCAACCATTGTAGAGGCAGTGGATGCAAGGCAAGCCTG
 ATAACTAACAACCCCGTGTAGTTACTGCACTCATTCTGGACAAGATATT
 20 CGAAAAGCAACTTACAGGAGGGTTACTCTGATTACCATTGAGAGTAGA
 GTCCATCGTGGTGAGGACTGAAGTGTGGTGGAGTACGAGGCAGCTAGCAGC
 ACTCAGCTAAGAACAGAGCAAGATGGTTCTGGCTTCCCTTGCTGCTT
 TTTTCATTCACTGCCCTGCCAGGGATGGTGTACCCACATTAGGGTG
 AATCTGTTGATCTAACTGAAAAAAAAATCACCTTCAGACTGCCCTGAGA
 25 TTTGTTCTGTTGATTCTAAATCCAGTAGGTTGTAATCAAGATTAACCA
 CTGCATACTACAAAGCTCCATCCAGCTTTGAAGAGCTCCACGATGCTGG
 TAGCTGTTCTGCTTCTTCCAGTGCCTCCAGGCAGCACCTGCACATTCA
 CAATTCTATTACTCGGTCACTGATAGAGAACAGTCTGGATCCGCTTCCA
 ATTGTTGGATCCGCTCTAATTGCTTGCTGTACGGGTGACCTGCAGC
 30 CTCCTATGAGGAATGGAAGCACCGAACAGCAGACAGGACTGGAGCAATCATCC
 TGGTTATTCTACTTGACCTAGAGGAGAGATAAGGTTACAAGTTCCATGCTT
 GGTGGCCATTAGGTCACTGATGATCAGGGATTGGAAGGAAAGCATTGGGG
 GGGGAATGGTGGTACGAGGAGGTTAGAGCAAAGGTTATCTCTCACAGTG

CACAGCACAGAGGGAAAGGACTATATCTCTCATGCAGTGCACAGCACAAGG
 TGTGAAGAGACCTATGTCCCATAAGGATGTTGGCACAGAAATAAACCCATG
 GGCTGAAGGGAGCTCTATGGTGGATGAGCCCCAGATATCACTGTCAGTCCA
 AAAGGGCTTGAGGAGGGCATGACCTGGAGATCACATGTGGACTGGATGGTGC
 5 ATGGTTGCCATTGAGGTTCATCTGCTAGGGTCCTGCTGGCACTCACT
 GATGGGTGATATTGGAGTGCTGTCACCAGAGAGACTCTCTGCTGTCAGT
 GACACCAAGGCATAACCTGAATGTGAGCTGGCCTTCAGGTCCAGGGTGCCTTC
 TTAGTATACTTGACACTCTGCTGTATCTCTGGTTTCTTCTGAACAGGGAC
 TCAGCACAGGCAGAGAGTGCAAGCTCAGAGAATCGCTGTCCTATCATTCTC
 10 ATCACCCCAGCCTGAGGACAGAAGACTGCATTTCTGCACCCCAAGGAGCTG
 GAACAATGTCCTCTGAATCCATCAATGCAATCGGTTCCCTGAGCCACTGCTC
 ATGTTCCCTGGAAACACAGAGGTTCCCATCACCCATCAATGATTATTTGT
 TCTTCATGGAAAATCCACCAAGTGACTGGCAGATGGAACCCAGGGCTCTGCA
 TACATTAGGCAAGCACCCCTGCTACCAAAGTTATATCCATCTATGCCAATA
 15 ACATTATCTTCTGTTCTACAACCTAGGTTCTTGGTTAAACTTCTACC
 ATAGGCACTACACTGACTCCTGGTACCCCTGGAGGTTGAGGAGACCATGGTC
 CACTTGAGGTACTCCTGTAAGAGAACCAACAGGATGCAAAGGGATGATTCC
 AGGCTGGTACAGCTAGAACACAGGCTGTGGTTACAATAGAATGCCTAGAGT
 GTACATGATAACCTGAGCTCTGGCCTGTGATTAACATCAGTGGAAAGAACTC
 20 CACTGCCAATCCAGGCAGGACTGCCGAGGGCGCAGACTCTCAGGAATGAA
 GGCTTAGGTACCCACCAGGTAAAGGGCCACAGTCGGCTAAAGCAGTCGCTG
 AAGCACAAAGACTTCAGGAAGATGGTTATAAATACCAGCCAGGCCATGTGA
 CCAGCTGCAGCCCTGAGCCTATAAGATTACAGAATTCTCCCTATGCTCTGA
 GCAAACAGGGCTGAGTGATTCTCCTCCCTGCAGACTCCTGCACCTAG
 25 TATTATGAGTCCTAGAGTTGCTAATTTCTCTCTGGATTGCTGCAGCTC
 AGCTAGAAGGGAAATGGATAAGGACACAGGACCTCCATCTCTGTGGGGGTG
 TGGACGTGCATCTGGCTATGCAGTGTGGACGTGCATCTGGCTATGCAGTGTGG
 ACGTGCATCTGGCTATGCAGTCCAGCTGTGTCAGGTGAAAGTGGAACCTTACT
 30 TGGTTTATTAGAAATCTCACCAAAAGGGTTCATTTGTAAGGAGCTAAA
 ACAGGCAGACCCCTAGAGGCAGAAAAACGGCTTCCCTGGTGGAGAGGGAC
 TACCAAGGAAGAGTGGGTGCTAATGGCAGTAGGGAAATAGGATCTGGTAAGCT
 AGGAACATTACACACCAAGATGTGGTGGTCTGGTGGAGTTACTGAAAAA

CCACAGATGGGTGTTACTCAGAGCAAATCAGATCCCATGCCAATCAAAT
 GCAATGGAGTTCTGTTTCAAAGGGAAAGTTATCTGTGCATTCCAGGGGGAG
 GGGAAATCTGCATGATGTCACCTCACAGAACTGAGGGTGGCAGCCATGGGTG
 TGGAGGTGAAGTGGGGACCCCTTTATGCCTCACATTGTTCTGCCTGGCTC
 5 CCTAGAGCTTCTCCCTGAAGTCTGGGTGCTGGCCTCCTACCGTGCTATTAC
 AGGTTGGTCTGTTCCAGATTCTGGGAGCCCAGCAATATAGAGCCTGACCTC
 CTGCTTCCCACCTCTCGGCCACTGGGACTCCAGATGGCTACTGTGCCAGCCAG
 GACATGTTCCAGGAGCCACCAGCACCCCCCTCCCATAAAGGGTTCTGTCT
 TGGCCTAGCCTCCCTATAAAGGGCCGGGAAGTGGGGGGGGGGGTATC
 10 TGTCCCCAGCTCTGGTACCAAGTACGTGACCATTCTGGTCTTATGCCTGCTCT
 CCTCTTCTTCCTCAAGTGCAGACTACAGCAGAACCCGAGATCATCAGAG
 ACCCCATCCAGTCCCCAGCAACCTGTACAGACACTCTGTGCCCTGTGGTAAAG
 CACACAGTTGAATTGTTCATCTTGCTGTGACTCAATGATAGGTTGGCGGTAT
 TCACTATCTGTCGCGATCCTCCAAACAGAAACTCTGTCTCTGAAAAAAATGG
 15 ATCCTCCGTCCCTCTCAGCCCCATCATCCGACCTGCTTCTATCTGTAG
 ACCTGAAGTCTCCTGGAACTCTCAGGAGAGGAATCCTATACCCATGTATCT
 GTGGTAGGCTTCTTCTCTGGCAGTGTCTAGAATGTTCTGTGCCCTCCATA
 CCTCTCCCCAAGCCTGTGCAGGCCATCACTCTGCTCACCTCCCAGCAG
 TCTTCTCCATGCTCCTGGTCATCCCTCCATCTAATCTAGCTACACAGC
 20 CAGTAGGATGACCATCTTACTGGTAGTGGTGGGCAGCATGGTGGCTTACC
 TAGACTGTGGTCCCATTCCCCAACCTCTAAAGACAGGGAGGAAAAGCCAGAA
 ACAACCAAATTCTAAAGACTCTGTGTGTGTGTGTGTGTGTGTGTGT
 ATGTACATGTGTGTAGGCATTATAGATGTATATGGTTATGTATGTGT
 CATGCCTGGCATGTGTGTATGTGCCAGGCACATGTATATTATGTATGTGT
 25 CAAACCTGTCGTGTGGTATGTGTGGTGTGTGTGTGTGTGTGTGTGT
 AATATGCCCTGGATCATAGTCACTTGTGTTCACCTCAGTCTAGGACAAGTGT
 CCAACCTGTCCTGGCCATTCTCACTATGTTAAACTCTGAATCTGGG
 AAAAGTGGAAAGAAAAGAGATTAAGGGCATGACAAATTGCATCAGTTGGCTT
 TGGTGAAGATGGTGTACGATGGCTGTAGGTGAGGTGGGAAGTGAGAGAGTG
 30 GGGAGGGTCAGAGTTGTTGTGTGTGAGCAAATATGGACAGGATTA
 TGTGTTTAGGGATGTTGTGCACGTGCCTTGCAGAGGTAGAGATCAAG
 CTCTGCTGTCTGCATTCCATAGGAGCCAGTCACCTCTGGTTGAGATAGGG
 TGTCTTGCTGAAACCCACAAGTTGGAGGAGATAAGGCTAAATTGACTGTGCA

GTGAGCCCTGGGGCCCCACCTGTCTCCCAGCGCATTGATATCAAGCCTGAT
 ACACTGGATCTGGTTCTAGTGAGCATCAGGAATAGAACTTAGACCACATGC
 TTGTTGGGGCAAGCATTACCTGGGCTAGCGCATCTGTTGCTTGTGTTG
 TTTGTTGGTTTGTGTTGGTGGTGTGTTACAACAATCTTCTTGAGA
 5 AGCCAGCTGGTATCCTGACGTCTACTTAATCCCTCCAAGAACATTGTCCTA
 GAGATACTAGCTCTGAATCTTTTTTTTTGGTTTCGAGACA
 GGGTTCTCTGTGTATCCCTGGCTGTCCTGGAACACTCACTCTGAGACCAGGTT
 GGCCTCAAACCTCCGAAATCTGCCTGCCTGCCCTCCAAGTGCTGGGATTAAA
 GTGGTGTGTGCCACCACTGCCCGGCAGTAGCTCTGAATCTAAAGACCCAG
 10 GACCTCTGACAGAGCCACAATGAAGACCAAGCCTCAAACACAGAAACTTTG
 AGAGGAATTAAAGCTACACTCAAACACAGAACCCAAACCCCTCCTCCTAT
 AAGAGGCTTTACTGGGGTCAAGGAGTCAGCAGAGCTGTTGAAGGCGGCAT
 TTGACCTGAGAGACTCCTGAGGACTTTGCTGCATTATGATAAAATGTTAGTT
 TGTAATGACACAATTCCAGGTATGTATACAGGTGGGATGAACATTCTGCC
 15 AGTGTCTCAAAGGCAGTGCAGGGATCTGCAGCACACTGCCTCTGCCGCTCTT
 CCTTCCTCTCCTCTCTTTCCCTCCCTCTCCTCTCTCTCTCTCCCAATCTCT
 CTGTCATCCTCTTTCTCCTCCCTCTCTCTCTCTCTCTCTCTCTCCCTCCT
 TCCTCCCTCCTCTTCCCTCCACCCCCACCTCTGCTCTCCTCTCCCTCTCCCT
 CTTGTCTCTGCTTCCCTCCTCTTTCTTCCCTCCTCTCCCTCGCTCTCCCCCT
 20 TTCTCCTCCCCCTCCTCCTCTCCTTCCCTCCCCACTTCCACTCAGCCTCCTCC
 CTTCCCCCAGGTATCTCCACCTCTGGAGCCCTCTCAAGGGAGCCTCAGG
 TCCCTGGACGCTTCGGGCCTGCTGGCTTCCCTGCTGCTGCCGCTGCCGGAGG
 CTATTGTTCCACCTGGGTGAGATCACGTCCTGTTTCAAGGTCTTGGAAAGTGG
 CAGGCACGTGTGGTCTGCCATTCACTCTCCAAAAGGAATCACAGGGA
 25 GGACTGAGTGTGGATAAAAGTTGAGCCAGGAGCTTCTTCACTGCAGTGCT
 GCCTTCCCTGGACATCCACCCACTGGGAAGCCCTGAGCCACCTGAGGGCCC
 CAATACAACCGCATTTCACCTATTGGCTACTTCAGTATTATGGTATTGCTA
 AGTGAAGGCTTCTAACCCCTATCCCTCCCTGACGTTATTAGCTGACACTCTG
 CTGCAAAACAAACAAAAACAAAAACCCAGCCTTCCCTCCATGACA
 30 AAGTAAGCAATAGACTACCTTACAATGGACCCACTGTCAACTGCTGTGATGT
 CATTACCTGAAGCTAAGGACAATCCCTGTCCCCAGTGTGTCAGCAGCAGGCGG
 CTGTCCTCAGATCTAGCTCCTTGTCTGACAGTGCCTGCACCTGACTC
 ACTCACTTCTGAGATGTCATTCAAGGTATTCTGCCTGCTGGTGGAAATTAGT

ATCACTGTAAGGAACCTCCCTTTATCAGAAAATGATGATTTAGGGAC
 CGTGAGATGGCTCAGCATGTAAAGAGACCTATCACCAAGCCCTGATGACCTGA
 GGTCAACACCTGGAACTCATAAATGGAAAACGAGAAGTACATCCTGAAAGTT
 GTTCTCTGACCTCTCCGAACACACATCACACACACACACACACACACA
 5 CACACACACACACACACAGCGCGAGAGCACCTGCACACAGATTTAAGG
 TGTGCTGTTGACCATCAACAACCCAGGCTTCAAATGACGACTGGTAACC
 TATGCATATCCTCATTACATGCTGCATCTTATCCAGCTAAATGCTGACGG
 ATCCAAGATAAAAACAAACTTAAGTTAACCTGAGCTGTGATTCCGGCCC
 AGTCGCTGGTAGTGTCTAACGCTCACCTGACATTGCCTGTCATTATCTCT
 10 GTGATAAGACATGGGGCTCCCTCATCCTCAGTGTGCCAACCATGTCTCCATT
 TTCCTGGCCATGCTGTGGGTACTTGCCTGACTATATTCTGGACCCAGCAG
 ACTGTAGCTTCTCAGCCCTGACCCCCAGCCCTGTTCCCTGTGTCCTAGCT
 CTTAGCATTACACAACTTAAAGAAAAGAAAGTGAAGTGGAGAAAAGCAG
 TAAGAATGTAAGTATGTTGTAACTATGGAAAAAAGGAAGTGGGAGAAGAT
 15 GAACCCCAGTCCACTCCCCAGTCAGGAGGACCTGCATCCTAGCTTGTCCAT
 GCACATGGCCAGGCAGAGTGCCTAAAGTTGACCAGGGACGGAGCTCCCAGC
 TCCATGACTGAGAAAGGGAGCAACCTCTAACCCCCCCCACACTGTACCAGG
 TAGCATCACTGACGGGGACAGAGGCCACGCCGGTGGTCCAGTGGAGACTTATC
 ATGGAAGACCATCATCAGAAGTAGCATTAAAGATGCCATTAGAGAAACCAAG
 20 GGGATCTAGTTGAGAGAAGATGGCCACTGACAAACCTGATGTGGGGGGCTG
 TGAAGAGGTGGGTGAGGAGGAGGAGTGGTCAGGTGGTAGTGTCCAGAGCA
 GGAGTTCTAGCCTCCCTCATCCTGTCCTTAATACAGTTCCTCAATGCTG
 TGGTGGCCCCAACCATAAAATTATGTCCTGCTACTTATAACTGAAAGTT
 ACTACTATTAGGAATCGTAATGTGAATATCTGATATGCAACCCCTGTGGTAGT
 25 CGTGACACAGGTTAAGAACATGGCTCTAGAAGCTCAGGAAGAACATAGGCTG
 GGGCTGGAGCTGGATATGGGAGAAAAGCAGGCCAGGTGCGGGAGCTCATGA
 AAGAAAGAGGGAAACCAGCAGGAAGGAGATACCTGGAGAACAGAGAGGACAC
 CAGGATTCAAGCAGCTCAGGGAAGTACCTTGGAGGACAAGAGAGGACAC
 ACATGCTAGAATGCTACATTGTCAGAGTTCTAAACTGGTCCCAGCAAACACA
 30 CTCTGCACCTCGAGAATAATGCTGGGGCGAGCAGGAAGGCTCAGCGGGTTAA
 GGTGCTTGTGAAACCTGAGAGGCCAGGGTTGAGCCTTGGGACCCATATGATG
 AGAGAGAACCAACTCTGTAAGTTACCTCTGATCTCCACTGTAATCTCTGAC
 ACTGTAGCACTTGAGCATGGCTTGAGCATGTACCTCTACCACAAATACA

TGCAGTGCTA
 GATGTGGGAAAATAAGTCTATAGTTCTGGTGTATGTGCATGCGTCATGCTG
 GTATACATGCATGTGCATGTGCATGTGCATGTGTGTGTGTGTATCTG
 TGAATGTGGAAGCTGAGGTCCATGAGTTCTTGTATGGCTTCCTCTCATT
 5 GTTGAAATGGGCTCTCACTGAACCTGGGTTACCAACTGGCAAGGCTG
 GCTGCCAGCAGGCCCTAGGGCCTCCGTTCACGCTCCCCAGCCCAGGGGG
 ATTGCACCACATCTGGCTTTACATGGATCCTGGACATCAAACTCAGGTCTC
 GTGCTGTGTAAGCACTTGCTGACTGGGACTCTCCCCAGTCCATACGTGAG
 TTTTATAGGCTGTAACTATGATTAAC TGCA GATGGAATAAAAAATAAGTT
 10 CAGGCACACTTAGCTAGGGCATGCTACAGAGATCTGCTTCAGAAAGAGCCAC
 TGTACCA GTCCTTAAAAGATGTATTCAAGCAACCAGAGAAGTGAGTCCTGG
 AAGGTGATGGAGGCATCCAGAAGGAGGCAACCTGGAGAAGATGCCATTCA
 CAGTATAAAGAACCTGGAAGTTCTAGAAATCATGGTTTTCTTATGCTG
 ATGAGTGTGTTGCCTGCATGTATATATTATTATTTATGTTAATGAGTGTGTT
 15 GCCTGCATGTATTTATGTACACCAGTATGTGCAGTGCCCTGGGAGGCCAG
 AAGAGGGGTTAGATCTCCTGGACTGGAATTACAGCTGGTGGTAACCACCG
 GGTAGGTCCCTGTAAAGAGGAGCCAGTTCTCTTAGTTGCTGAGCTTCTC
 AGCCCCAATCAAGTCATTTAAATGCAAAGTAACAGTGCACCCAAGGAC
 AAACCACACTCTATAGGTAGTTGGATTGGTAAGTTCTATTAGAATTCT
 20 TACATCCACAGCTACGAGGAACAAAGACTATGGTTATCTGGTTGGGATC
 TGAGCCATGCTGGCGTTATTAGACAATTAGGATGGCTGTATCTGTAGGCATA
 CTTTGGGGCTCTGTATTGGCTTACACCTCTACCATCCCTCCAACCCTT
 ATTCTACCCATACTCCCTCCAACCCTCCAACACTAGGTAGGAGAGAAAGGTTA
 GAGAGGAATGGGGGTGAGACTTCTTAGACTACTTCCTGCTGATTAGGGCAC
 25 TGAGTTCTGAGGCTAGTCCAGTCTCATCGTCAGGCTATCCTATTCTTCTT
 CTTGTCCTTGCTCTGACCACTTACAACCAGTGCAGCAGCAGGGAGCAG
 CAGCTCCCTGGCCCTCTGGGGCTCTCACATTACCCCTCTCAAGAGTCC
 CCAGAATTCCAGTCATAAGCTATCTGCAGCTGGCAAAATCATGGCCCTCTA
 GAGTAGAGTATGAGACCAATCATAGTGTCAGCTGGAGCAATCTGAAGCAG
 30 TCCCATACTCCACATCTGGGATTAAAAAAACATATTCACATACCATACTGGG
 TTTTTTTTAAAAAGAAACCATAATTCTCACTACAGCATCCTTCAAGGTT
 TTCTGGATGGTCGGCTTATTGGCTTGTGTTGTGATAAACACCGTG
 GCCAAAAGCAACTTGGGAAGGACAGGGTTATTACAGTTACAATC

CGTCACAGAGAAGACAGGTCAAGTTAACGAACTGAAGCAGGAAC
 TGGGGCAGAGGCCATGGAAGAACATGCTGCTTACTGGCTTGCTCCATATGGTCA
 CTCAAACACTGCCTCTTTCTTTAAGTTGGATGGTGGATATATTATT
 TCATTTGTGGACACATGGGAATTTCACAATAAAAATTAAAAAGAAGTGC
 5 AGTTCTAGAAGAGCTTCTTATGAAGATTACACCTTGTTCAC TGCCCTCA
 AACTCTTTCGTAGTTGATTGTCCCAGCCAAGGGTTGGCTTAAACAATGA
 AACCATATAAGCAAAATCTGAGTGTGAAATGCCACAGGGATCATATATT
 TTTAACCTTGCCCCCCCCCCCCACTGAGAAGGGTGTAAAGACTTTAGGA
 GAGGGAGCCCTGCTGGAGTTAGCGGATCACTGGAGATGGGCTTGAGGCTT
 10 ATAGCCAATCTCACCCCTGTTCCCTTAGCTTCTGACCGTGGATACAGTGC
 ATTAACCAACTCTTCCTGCTGCTTCCATGTCGTCCCCATACGATGAACCT
 TCTCTGAACTGTGAGCCAAATAAACACTTCCTTAGCTGCATCATTGAG
 GGATTTTATCATATGGTAACAGAAAATGAAGCAAGACATAGGATGTCTAAA
 TTTGGTGCTGTTAGTATCTGACTGAATAATTATGGTGCCATTGTTGTTG
 15 TTTGTTTAATTTGAGGGAGGTCTGCTTCAACCTGCTTCTTATACAACAC
 AAACCTCCTGCTCAGGGTGGTACCTCATAACAGAGGGCTGTGCCCTCCCACATC
 AATCACTAATTAAACAAGTCCCCACAGGCAGGAGTAGGGGAGCACACTTT
 ATTCCCAGCACTGGGAAGCAGAGGCAGGCTAGTGTGGTAGTTCAAGGCC
 AGCCTGGTCTACATAATTACACTGTTCAAAAAACAAAACAAGCAAAAAAA
 20 GGAAAGAAGGGAGAGGGACAAGGGAGAGGGAGAAGGACCAGGGGAGGGG
 GAGAGGCCACAGATGTGCCAGCAGGCAGCCTGGTAGGTGAGTTCTCAGTT
 GACTCTAGTTGTGTCAAGTTGATAAAAAAAAAACTAACTGCGTCCCCACA
 AATTAAATTACTGAGTAGATATGGACTATCATGTTATCTGCTTCTTATGAA
 AATTCTGCTAGTTGTGTCTTCAGGAAATATTCTATTCAGCTAAGTTGATA
 25 CATTAAATGGCACAAAGTTAGATGTGTTCTGATCCATGGGCCTGTGGTCT
 GTTCTCACTCACTCCTGCTGTTGAGGCCTAGTGAGTTCTCCTCTCCTCTC
 CTCTCCTCACCTCTCCTCTCCTCTCCTCTCCTCTCCTCTCCTCTCCTC
 CCCTCCCTTCCCTTCCCTTGTCAATATGGCTTTGTAAAT
 CATATTTAACTTCTAAAGCCAGTGCTGGCTTCTAGCTCAAGTTCAAGTCAGAG
 30 GACACAGCCTGTCATGGAGTAATGGCAGGAGTGACTTCAGCTGTTCTGG
 GGTGTGATGGGAGGGTCCATATCTTATAATGAACAAGCAAAAAGAAAG
 AAGGACTAAGTTATCAATCTCAAGATCTACCTCTCAGAAACCCACTCCCTCCA
 GCTAGTCCCTATATCTCAAAGTTCTACAAACCTCCCTGAACCGTGCCAACAGC

TGGGGACCAAATGTTCCATACGTGAGTCTGTGAAGGGACATTCACCTTAA
 GCCATACATTCTACCTCTGGGCTCCAAGGCTCATTACGGCGTCTCACATAA
 TAAAATGAACTATGTTCTAAAGTCCCTACAGTTGTTGTCAGAAAGTATAGC
 ATCACCTCTGACATACAAGGCAATCTTAACGTGAAGCCGTAAAATAAG
 5 ATAAAAAAATAAGTTCACACTGTTAACAAATAATATCTTGAAGCCAAATGGC
 ACGGGCAGGCAGAGGACATCCAGAGGCTGCTATGATGTGCATGTATGTGGTG
 GACAGATGAGAGAGAGAAAGAGTAGCAGAACCATTTGAGCACTATGAAGAGAG
 ATGGAACGGAGACAAGAGGGTGAAGAGGAATAGCCTGTTGAGTAACCTG
 CCCTGCCACCTGGGTCTTGGTGAAGTCCGGCTATACTGCTACTGAGGGCC
 10 ATGTCTGGTCCATGGCTGTGAGGCAGTATGGTTCTATGTCTACGTCCGTGGC
 TCACATTACCACTAATGACCATGCAGACATCCCTGGTCTGGCTGCTCCTGG
 GACCATGTTGATGTCCAAGGCTGGCAAAATAAGCAGCCTGACCCTACTCTT
 GTCCAGTGTCTCATTGTGAAATAAGAGTGCTCTTATTATAAAATAAGGATCA
 CTATTCTCATATATACTTCCAACACACAATGGCACAGAGTAAACCTCCGAAT
 15 TCCAAAGGGAGGGATAGGGACCAAGCAAGAAGAGACTGAAGTCCAACCTGA
 AAAACAACCATGTAGCTCCATGTTCAGCATTAGGACTAATGATAAAACCAT
 CTGAGGTCCAACAGCCATGGGTGGCCCTGCTTCCCCAGCCCCCTCACTTGC
 CTGACGCCATTCACTTGAGCTTCCTTAGTGGAGCCCCATGGTTCTGG
 TATATCTAACCTCCTGAAGCCTGTAATGCAATCTAGGCTCCTCTTACAGCTT
 20 CACATAATAGTCTAAAGTACTTCTGAAGAGAATCCAATCCTGCCACACAT
 AGTTGGTGGTTTCTGAACCTGGGCAAATGTCTGTGACCTAATAATTTTC
 AATTTGCATGTTGCAAAACCAGCTCTATGAGATCACAACTGCCAAGTCTG
 TTGCCAGCTCTACATGCACTTGATAGCCTGGACCACACCTGCTGTGACCTC
 TGTGTCTGTCCAGCATAATCCTGGAAAAACACTCCTAGATAGTTAAAACA
 25 AAGAGGGGACACTGTGCCACCTTCTATTCAAGCATTCTCTTCCAGTACAT
 TTACATTTATACATTGTAGGTCGATGGGTGCGGTCTGCCTCAATATATCTT
 TTCTATTGTCCAAGTACAGAGTCTGGCTCTTTACTGAATTAAATTCTTT
 AGTAATTAGTGTGCTGTTGTCCATAGCTGCCTTATCTGCAGCCATAAATTCA
 TCTGCTCCTTCATCGATGCTACACATTTCATACCTTCTACCCGTATTTT
 30 ACTTTCTCTCACTGTAATCTTAGTAAATACAGAAAAAATAACCAACTTTGTTA
 TCTTAAATGTCCTCTGCCAACAAACTTAGTCTATTATTATTATTATTATT
 ATTTCACTTTCAAGATGAGGTTCTATGTAGCCTGCCTGTGAAAC
 TCCTCAGTAGACCAGACTGGCCTCAAACACTCACAGAGATCCACTGCCCTGC

CTCCTGAGTGCTAGGATTAAAGGAGTACAGCACCATGCCAGCTATTCTATT
 ATTTTCAATTCAAGCCATATTCAAGTACTAAGAATAAAGACAGTCCTGTCAA
 AATGTAACACAAATGGCTTAGCTCAATTCTAATGGAGTCCTTATTCTCTG
 AAACCACATGCACACAGTCTCGGTGCTAAGTTATTATGGCATTAGGTCT
 5 TCAGGGCTCCAACTCGAGTTGCCAGTGAGTCTTCTTACAGTATTCTAGAG
 CTTGTTAGCTACAACACTACAAACTCAACCATGTCCACCTCTAAACCCAATCC
 CTAAAGCCTGTGCAGTACATGCCAGGTTAACACAGAAACTACTTCTGCC
 ACTTCTGGTACCAAGTATTCTGTATTAGTTACTTTGTTGCTTGACAGAATAC
 CTAATAGAAGCAACTAAAGGAGAATTGTTATTGGAGTTATAATTCTGGGG
 10 ATACAATCCATCATAAGAGGAATGGAATGCAGAGGGAGGGCTATGTTGGT
 CCTTACTTCTTACCAAGTTAAGAACAGAGATAGGACAGGAAGTGAACAGAG
 CTAGAATATACAACACTCAAGACTTGACCTCCAGTGACCCACTGTGCC
 ACTGACTTCACCTCTCAAAGGGCACAAACATCCCACACTCTCTGGG
 GAATTAAGTGTCAATACATTACATTCAAACCATAGCATCTTATCCATT
 15 AAGGTGCAGAGTTCAAGGGAAAACCAAAACAAACAAATTCACATTGCTGTACA
 GTTATCACTGCCATCTGATTCCAGAGTGTCTACCTTCAAAATTACGGTCC
 ATTAAGCCTGAAGTACAATTCTCTTCAGCCCCGCCCCACCATCTATT
 GTGATGGTTAATCTGACTGTCAACTGGACAGGGTATAGAATCACTTAGGAA
 ACACCTCCATCTGTCTGTGGTCCATGATGTTCTAGAGATGCTTAACCAA
 20 GAGGGAAAGATCTACCCCTGAATATGTAACACCTCCTAACGTTCTGAGTTCTC
 ATAGACTAAAAAGAAAGGAAGCCAAGTGCCAGCATCCATCCTCTGCCTCTT
 GACTTAGATACAATGTGACCAGGTGCTCAGGATCCTGCTGCTAACGTTCA
 CCACTGCAATGAGCTGTGCTCCTGGCTGTGCCCTGTGCTGAGCCAGACAA
 ACGCTTCCTCCTTAAGTTGCTTCTGTCAGACACTTGGGCATAACAGTAAGG
 25 CAATTATCTGGTACTCATCCACCTTATGTGTCCTGAATATGATGGCTCTAG
 GGACCTCATAGAGACTGAGTCACATGGTACCTCCCCCTTATTTTAGAA
 TTTATTTGTAGAAAAACGCAAAATAAGTAAATAAAATTATTT
 TGTGTTCTATCATCTATCTATCTATCTATCTATCTATCTATCTATCCTCC
 TTCCATCTATCTATTCTACTCCATCCATCCATCCATCCATCCATC
 30 CATCCATCTACCTATCTATTTACTTGGGCTGTCACTCCCCATGGA
 CTTGTACATGAGGGTGGCTATTGAGCAGGTGCTGGTGGAGTC
 GGGTGAAGAGCAAGTGCTCTAACCACTGAGTCATCTCTAGTGCTTGCCT
 TTTGTGATTAGCTTTGCATTGAGTATTGTCCTAAAAGCCTATCAATT
 C

CCACATTTCCCTCTCTTCTTCTGCCTCACTATGTAGACTAGGCT
 AGTCTCAAACCTGTGATCCTCTGCCCTGGCCTCCTATGTGTTGGATTTAGGTA
 TGCATCACCATGTGGCTAGATGCCCTGCCCTCTCCCTCTCCCTCCCTTC
 CTTCCATCTGTCTTCTTGAAAAAAAGAACATAACATATCTCAGGCTGGCCTT
 5 GAACTCATTAAGTAGCCAAGGATGACCTCTGCTCCATCTTGAGTGCTGA
 GATGACAGGCATGAGTACTGTGCCGGTTATGGAGTGTCAAGGACTGAACCC
 AGGGCTTAGTGCATGCTAGGTAAACATCGTCACACCGAGTCACATCTCCAG
 ACCTTCTCACCTTAAAAATTATACTGATTGGTTGGTAGGTATGTGTGTATA
 TGTGTACCACAACACACATGTCAAGGTAGAGGACAACTAATTGATTATCTTC
 10 TTCCACTATATGGGTCCTGGTATCTAACTCAGATTGTCAGGCTTGGCAA
 GCACCATTACCTACTGAGCCATCTCAATGACCTACACCATTAAAAGGGA
 GTTATTCTTCTATATGTATGGGGGTTGCCCTGTATGTCTGTGCCCATG
 CCCATGAAGTCCCCACAGAGACCAGAGAGAGCATAGAGTCTCTGTAACTGG
 AATTACAGATAGTGGATCTATCAAGTGGAGGTTAGGAACCTAACTCAGGT
 15 CTTCTGCAAGAGTAGCAGTCACGGAGCCATCTTCAGTCCCCTCTCCCTT
 CATTGAAAGAATAGGCCAAACTACATTCTGCTTATCCATTACCCACCAAGTG
 GATGTAGGCTTGCATGCATATGCCTATTAAAGAAATGCTGCTGTGGACAGA
 TGTATGAGTATTGTGTCATCTCCTCTAGTGTCTGCATACAAATGATTGTT
 CTGCATGTATGCATATGTATCATTCTCTGACTAAGAATGTTTCTCCTTC
 20 CTGGTTCACATAATGCGATTGCGATGTATCTCTTGTCTCAGATTGCTG
 AGCTCTCTGGATCTGTGAGCTTATGATTATCTAGTTGGAAATTTTCA
 TCTTTCTCTCCAGTTGTATTTCTGCCATTCTGTTCTCATTAGGAGTG
 TGTTGGCACCATGCTCTCCTCACCGTGCCTGTGCTGACCTTGGATGC
 CACCCACTCTATGCCTCAAATTCAATTACCTTCTTCACAGCATCCAATT
 25 TGCCACTGGTGCATTCCATTCCAGATGCTGGCGTCTTGTCTCATCTCCAGAA
 CTTAGGGCTTGTCTCGCTATGAAATACCTCTGTGCCGCCACTCACCTT
 CAGCCTGTGAAACCCAGTCACAGTAATATTGCTGACCTGTCTATGACTG
 GTGATACTGTCACCCACATAGTTCTTGTACAGAAATGAAAAAAAGTTA
 CTGAGACAGTGGTATTAGACACTGCAACGTAAATCTAAAAATATATAT
 30 TTTAAGATTAGGATGTGTGTGTGTGTGTGTGTGTACA
 CATGTACATATGGATGCCACAGAGTGCAGAAGAAGGCATTGGATCCCCTAG
 AGCTAGAGTGTAGGAATTGTAAGCCACTTACATAGGTATGGGAACTGA
 CCTCTGGCCTCTTGCATAACTAACTGTTCTTAACACTAAGCTATCTCTC

TAGCTCCTTTCTTTAACCTTGATTTATTCCTTATTTCCCTCCCCCTGT
 GTGTGTGTGTGTGCGCATATTGTGTTGGACATTAAAGTCGTATCTAT
 GTGTGTATATGTTGTGTGTATATGTATGTAGATCTTATATATGTGTGT
 GCATGTTGTATGTATATGCACATATGTGTTGTAGCATGTATATGTGTGA
 5 TTTATGTATGTTGTGTGTTCATGTGCACATAAAAGAAGCATGTGCACACA
 GAAGCAAGTGCATGTTGTGCATATATGTGTATATGTTGCATATAGGTATAT
 GTGTGTATATATTTGTATGTGCACACATGTTGTGTGTGCGTGTGCGCA
 CGCACATGCACAGAGACCAGAAATCAAACACTCAGGTGTATTCCTCTGAAAGTG
 AGGCTTTGAGCATAGTCTCTGGGACCTAGGGCCTGCAAGCTCCAGGGATC
 10 CACCTGTCTCTGTTCCCCAGCACTGAGGGTTCTGGAGATCTTGCCTGCATGG
 CAAGCACTTACTGACTGAGCCCTCCTCAAGTCCTCTTGCCTTATTGCAT
 GACTTCAGAGTGAGCTACATGTCACCTGGATCTCCTTCTGCCATTGCAT
 CTAGCCTGTGCTTGGGACACTTGCTTCCAGGATGTCTGCCATCGGTAAAGGA
 CACCCTAGAATATTGCTGTTGTATATGGCAGCTGGTCCAATGTCTGATG
 15 ATTTGGTAAAGGTGTCCTACTAGCAGGCCAAGTGGCTCTCCCAGTGGCA
 CTGTCCACTTCCAGGGCATGGCTTGAACCAAGCTGTCTCTCCAAGGTGTCAG
 TGAGGGTTTCAGGGTGTATAATGGTAGGCCATCTATGCTGAGCCAGCTGATC
 CTCTGCCTGTCAATTACCAAGTAAACTGGGAGTGTCCCCTTTGTTCCATGA
 GACCCAGGCATGTTAGAATGTAGACTCCATTGTTGAGTGCCTCAGAGCCAC
 20 CTGATAGAGGTTGAAAGATGGCTGGGTCTGCGCCATTCCAAGGGGATG
 GAATGGACAAGGGAGCCACACAGGCAGATGGCTCTCAGAACAGCATGTGGA
 AAGCTGAGACTGAATGCCAAGGGCTGGTCTCATCTGACTGGGTTGTCCAG
 GTTGCCTACTGGAGATGGAGCTCAGAGAGTGGGAGGCAAACCTCCATTCT
 CAGGAATCCAGAGTAGACGTGGGCATCCTCCAAGGGCAGAGTGGAAATCTA
 25 GCTGGAGAAGAGGTCTGCCACAGATGGACAACTAGAGGGAAAGAACAG
 ATGGTACTGATGTCATGAGTATGGAGACTTCCCTGTGAAGGAAACATGGGAG
 TGACATGGGCTGAGGGAAAAGGAGGACAAGATCAGCCTGCCATGAATTAAAGT
 TTGGGAAGCTGTGGAGCATTGAGGTTCACTCCACATGTCACATGGATAAAAAA
 CTGTGGCTTGTACCAAGCTTGCCTGCGTTAGTCTGTCCAAAGCTAAAG
 30 GGGTAGGGGAGATGGTCACTGGTTCTATTTCCTTCTTCTTCTTCTTCTT
 TTGTGACAGGGTTCTGTATAGCCCTGGCTATCCTGGAACACTCACTTGTAG
 ACCAGGCTGGCTTGAACTCAGAAATCCGCCTGCCTGCCTCCAAAGTGCTG
 GGATTAAAGGCATGTGCCACCACCGCCGGCAAGAACACTAGTTCTAACGG

CTCTCCAGAGGACCCAGTTCACTTGTGCTCTCCAGTATAACACAGCTCA
 GTTCCCAGCACCCATGTAGTAGCTACAACCCTCCAGTCCAGAGAACCTGA
 GTCTCTCTTGCCTCTGGATACTGCACATATATACATGCAAGCAAACCA
 CCCACACTACAAACATAAAATAATTGGATTTAAAATTAAACCATTAAA
 5 GCAGTTAAAAAAGGTAAAAATTCAAGGCTGAGATAGCTAAGTGGTCATGTGC
 TGGCTGTGCATGAGAACCTGGCTTGAACCTCCAGAGTCTACTTCTAAAAGCCA
 GGGATGCTAGCTTGAATCCCCTCACTGGGAAGACAGAGTCAAAGGATCCCT
 GGCACCAGCTGGCTAGTGAGCCCCGTATAAGCCAGTAAGAATCCCTGTCT
 TAAAGTTGGAGCTGAGACGAAAGGATGGACCATGTAGAGACTGCCATATCC
 10 AGGGATCCACCCATAATGAGCTTCAAACCGCTGACACCATTGCATGCACTA
 GCAGGATTTATCGAAAGGACCCAGATGTAGCTGTCTTGTGAGACTATGCC
 GGGCCTAGCAAACACAGAAGTGGATGCTCACAGTCAGCTATTGGATGGATC
 ATAGGGCTCCAATGGAGGAGCTAGAGAAAGTACCCAAGGAGCTAAAGGGA
 TCTGCAACCCCTAGGTGGAACAAACATTATGAACTAACCACTACCCGGAGC
 15 TCTGACTCTAGCTGCATATGTATCAAAGATGGCCTAGTCAGCCATCACTGG
 AAAGAGAGGCCATTGGACTTGCAAACACTGTATATGCCCTAGTACAGGGAAAC
 GCCAGGGCAAAAAAAATGGGAATGAGTGGTAGGGAAGTGGGGGGAGG
 GTATGGGGACTTTGGATAGCATTGAAATGTAATTGAGGAAATATGTA
 ATAAAAAAATAAAATAATTAAAAAAATCCCTGTCTAAAACAAAACAAAAA
 20 CAAAACAAACAAAAACCCAAACAAACAACAAAAGGATAATGGCACAACAC
 CCAAGGTTGCCTCTGGCACATATTCTACACACAGTGCATGTGCACCGATA
 CACCCCTCACACACATACTCTTATGCACACAGTATAACATATGCACCCACACATC
 CTCACACACACTCTTACACACAGCGTACATATGCACTCACACAACTCATA
 TGCAACTCTTATGCACACAGTATAACATATGCATCCACACACCCCTCACACACA
 25 CTGTTCTACACACAATGCACATATGCACCCACACACACTCACATACATACTCT
 TATGCACACAGTATAACATATGCATCCACACACCCCTCACACACAGTCTTCTACA
 CACAGTTCACGTATGCACCCACACACTCACACACATACTCTTATGCACACAG
 TATACATATGCACCCACATCCATACAAACATGTATAACACACACACACACA
 CACACACACATCAACATTAAACATTGGTAGTACAT AACAGGACCAG
 30 AAGTTCCAGACAGTGTCTATACTTCTTGTGGAAACATTATGGTGTGTTT
 GTAATGTCTGTGGCAGCATTGCTCCCTAGCATGTGACACTGACTGTATAGCC
 TGCAAAGCATGACAGATTGCTAACAGGTCCCTCAGAAAAAGCTGTTGCC
 ATGCTGAAAGCTCAAGGATGGAGTCACACAGCCAGGGATAATGACCCCTG

CAAAGGAGAGGTGCCAAGGAGCAGGCAGGGACAAGCCATGTCAAAATCTT
 CCAGCTGATTTGAGACATAATCATGCACCACACACTCATTGAACCATTAA
 ACCACAGCCATGTAAACTGTAGCATAGTCAGCTTGTGCATGTATGTGCCAT
 AGCCAATTGTCCAGATTGTGTGGAGATCAGATTCTCCAGAATATCAGTCCTG
 5 CCTGCTACCTTCTGAGACAAGGTCTCTGTTGTTGTATTCTAAGCTA
 ACTGACCCTTGAGCTTACAGTGAGTGTGTCGTCCTCGTCTCCCATTGTGTCATAG
 CAATGCTGAGGTTACAGGAATGTGTCCTGCCAGGCTTACATGGTTCTG
 GGGATTCAACTTCAGGCCACTGTGCTGCATGGCAAGCACTTATCTGCTGAG
 CCATTCCCCAAGCTCCTAGAACATTGTGATTAAAAGGAAATTCAACCCTG
 10 TAGCCAGTACCTCCCCCTCATTCTGTCCTCGTCTATTCTGTCTGTGGA
 TTGGCCTGTTCTGGACAGTTCTGAAATGACATCATGTAATATGTGGCTTTC
 GGTTTTCTTCTTCACTCACTCATGTCTACCAACACCATGATGCCAGTCAGT
 GTTTATTCTTCTTGGCTGAACAATATTCTGAGTCAGTCATGCTTT
 ATCCATCCATTGTCTGATGGACATCTGGCTTTCAAACATTAAATG
 15 AAGATCACATGGCTAAGGATAGAGCCAGAGCCCCAAGCCCCAAAAGAGAT
 GTATGAAACTCTTATGATCAGGGGAGAACTGCTCTGGAGCAAGAGAACTGC
 CACCAGGATGGTAGAGGATGTGGGTACGTGAAGTTAAGAAATGAAGGGGC
 ACACCTAGGGAGACGCCAATCCCTAGGAACGTACACCTTAAGCTGAGGAA
 GGTAGGTTGGGCTTGCAGAAAGTACGAGGGCCAGGATGGGGAGGGGCAA
 20 GGTGGAAAGGTGCTGAGTAGGATGAGATGCTGGCTTATAGAAGTAGGGTA
 TGTACCAGCCTGAGAGGAAGGAAATATGGTGAGACCCCTGAAAGAGTCGTGA
 GTCTTACACACACACACACACACACACACACACACACACACACAGAC
 ACACACACAGACACACGGTATGTAACCTAAGTTGCTAGATTGCCTAGAATGC
 ACCACATTGTCTAGCATGTATCATATGAAGCCCTGGGTTCCATCTCCAGCA
 25 TCACATACAATGAGTGTGACGGTGCATGCCTATAATCTATCTGGAGATATAAG
 AAGAAGATAGACGTTCTGAAGTTCACAGTCATCCTAGCTATGTAGTGAATT
 AGGGCTAACCTAACGCTCAGGAGACTCTCCACCAACCCCTAAATGGAGG
 AAAAGTACAAAAAACAACTTAGGGAAAGGCAGGGAGGAAACAGGGCAGCAG
 TGGTCTCCGTACAGTGAGGGTTGCAGATCAAACCTCCTCAGGGCACCAGGA
 30 TACAAACTGTTCCATCTCTGTATATGTGTGCATGCTGCGTGTGCAAGG
 ATGAGCACAGCAGTGTATGGAGGGTGGAGGATATCTGGATGTTGGCCTT
 CCCTTCCAGCCTGTTAACGATAGACGTTGTTCAATTATTGCAGTCCTGGGG
 CTAGCTGGCCTGGAAGTTGAAGGAATTCTCTTGGCATCTGGGTTCTAT

GGGTTCTGAGGATTGAACTCAGGTCTCACACTGCACAGCAAGTGCTTAC
 TTAACAATCTCCCCAGACCAACTGGATTGCTCAAACAGCAGAGAAGTGACT
 AGACTTATCCAAGTGCTCTAGCAGACACCCGGAAATTGACTCACTGCC
 ACTTCCCACAGCAAGGTTATCAAAAGGCTGGATTAGGATGATA
 CGAACATCCTGGAGAGTCATGGAACCTGCAGGCAGCCCCACACTGGCAGTACAT
 GCTCCAAGGCAGTGCAGAACAGCAGAGAGAAGCCTGGTTGGTAGCCCTCCCC
 CAGTCGGATATTACAAAGAAAAGTAACCTCAGGTTACTACCCACAGGATAGA
 CCACCTGAACCCCTATAGGTCTGCTTGGCTCCAAGCACCTACCTAGTCCTT
 GAGGGAAAAATTGGGCTTGTACGGCCTTGAGAGCACACTTCTGGGACAATG
 10 GGGCAAAACTGAGACTTGACAAGGTCAGTGCATTCCCTCCCTCAACCT
 TCCCTCCACCGGCCTCAGGGGAAGGATGGGACTGAGAGGTCTGCTGGAATCC
 GAAGAAGTGTATTGAACAAAAAGTCCAGGAACCGAACAAAAACTAGTCTGG
 GTAGATTACCATTAGGAAAAGAGACCCAGACTTGGAGAGCTGGCTGTAAGG
 TGCAAGATGGGTGACAGTGTGAGAAAGGAGTGGACTTGATTGTATTCTCTCAG
 15 GTCAGGGCAACCGGTCTGGGATTCTGAAAACACAGAGGCATGGGTGTG
 CATGAGGGCTAAATGGGTACAGGTGCCAGGAACATGAAATTCCATTAC
 TGGTCTGAACCACTCCTCAAGCCCTCTCACACTCAAGGGCACAGGTGTGCT
 CCTGCAATGCGTGGACACCGGGTCTGGAGGGAGCAGGGTGGGGCGGAGT
 GGGCGTGGAGCCTTGTGCGAGACACTCCCCATCTGGAGGCCACGCCAG
 20 GCGTACGCTCCTCTGGCCCCGGCATAGGACCGGCCAATTGTCATTGCCA
 AACGGCGATCCCAGATTGGCTGAGACCCGGCTCCGCCTCCGCCAGG
 GGGAGGGACGTGGTGCAGGCTTGTGAGGCTCGTCTACCCCTAGGGGTCGCGC
 TCTTCTGCCTCCTACCTCTGGTACCGCAAAGCTTGGTCCGGTTCTCATCCG
 GCTGCAAGCGCTAGGTGTGCGGAGACCTGGCAGCTCTGGGCTTAAGGGCT
 25 GAGCACCAGGACGGTGGAGGTGCCTGTAGAGTACATTGGACCCCTCTCG
 GACCCCTCTCAGCCCTGAGTGTGCGGGACCTGCGGAGCGCAGTCGGGAT
 CTGCACTCGAGGATTTCGAGGACGCAATAAGCTAAGCATCTGCCCGGAGC
 ATGGAAGCACGTCAGTAGGCCATGAACACTGCACCCGGAGGGTGGGGTGG
 AAGCGCACGGTGTCACTTGCAGAATGTGTACGCCAAGGGGAGGGTGAAGC
 30 GTGGCGGGAGGGCGAGGCGAAGGAAGGAGGGCGTGAGAAAGGAGGCCGTG
 GCAGGGCGGAGGAGAGTTATCTACCTTTAAAAAAAAAGGAGGCCCTGAGC
 CGCGTAAAGGGAGACTTGGGAGCGCCTGACAGCACGCGCGGACACGAGA
 GTACCAACGCTCCCTACTCTTCAGACCTGACTGGTACGGGTCCAGGACT

GCAGGAGGCCAGCGACCGTGCCTAGGGAGTCCTGCAGCAGTGCCTGCCT
 GAGGCCGTGAAGGTGCAAACGTCCACTTCCCACCGCACCCGGTCTCGCG
 AGCACTTTCTGTGCCGCACCAGAACTCGTAGCAGGGGCCAGGGCTGAA
 TGCAAGCTTGTATGGACGGCGCGCTGCCAGACTCATGCCACCTCGTCTG
 5 GAGTCGCTGGAGCCTGCGCTGCTCGCGAGACAAGCGTCTCCGAATTGCT
 GCGCTGCAGCCGGCGCGATCTGGAGCAACCGAGGCCAGCAGCAGCTCG
 GCTGCCGTGGCACGCCGAATGAGCGCAGCGAACCGCGTAAAGCTGGTAA
 ACTTGGGCTTCCAGGCGCTCGGCAGCACGTGCCACGGCGGCCAACAA
 GAAGCTGAGTAAGGTGGAGACGCTGCCTCCGCGTAGAGTACATTGCG
 10 CTGCAGCGGCTGCTCGCAGAGCACGACGCCGTGCGTGCCGCGCTCGCTGGGG
 GGCTGTTAACACCCGCTACTCCGCCGTCCGATGAGTGCACGCCGCTCGCC
 TCCCGCCAGCGCGTCTGTCCCTGCCCTACGTCTCCGCCGACCG
 CCTGGGCTGCTCTGAGCCTACCTCCCCCGCTCCGCCACTCGTGGAGGAAA
 GCAGCTGCGAGGGAGAGCTAAGCCGATGGAGCAGGAGCTGCTGACTTTTC
 15 CAGTTGGTTAGGGGCTACTGAGCATCCCACCCCCCTAAGGTAAGTCCAGG
 ACGGCGGGGAGGCGAAGCAGTAAGGGAGACACGTGGTGGCGGGCTGACA
 CTTAGCGCCACGGGGACCCTGTGCAGCCAGGACTCAGCTGGGCGATCACTT
 GGATTCGCGCACGCTTCAACCTTTCAAGCCTGAGCAAGAC
 CGCGTTGTTGTCCGGATTGCAAAACTCCTCTCAGAGCTTGCTGTGGG
 20 TGGGGGAAGGGGAGGCCAGGGGAGGGAGCGGCCAGGGCCCTCAGGGCCGGCG
 AGGTCCCAGTGTGTCAGAGCCTGGCCAGTCGGGTGCTGGAGGCGGGTGA
 GTTGCATTGCAAATCGCGTCTAGGCCGGGTGCGGAGTGAGTCGGCTGGA
 GCGGGCCCTGAGTCACGGGGCAGGTCTGAGCGTGCGCCCGCCCCGT
 CGCGCCTCTGAGCGGATCGAGGCACCCATGAGTTGAGACTCCAAAATAAT
 25 CAAGCAAACGAAACTGCCTACTGCCCTGGGAGGTGGGGCGGTGTCCTAC
 ACATTGACACCTTATCTTCTCACAGCTGCATCCCTGGGTGACTCCTGGTGG
 ACCTACCTGCTCTAGCCAAGAACCTGGCCTATGCCCTACCCATGCTGTC
 TAGTGCAGCCTGACCAAATGCCAAGTGCTGACTGACCTCTGCTGCCCTCAC
 GCCGCGGAATGACATCTCCATCTCCGGACATTGCAGCATCAGGACTTGGAA
 30 ATTTCTCAGGATAAAGATTTACAATGACAATCTACTTTATCAATTAACTT
 GAACTGTTGAGGACTCTACTGAAAATATGAAGAATTATTTATACAAAGGA
 TCCTTAAGCTGGAGCACAATAAGATGACCTCTGCTCCCTCACCCCCACTGTC
 TAGAACTTCCAACCTGGCAAAGTGTGGACCGGTTGGCCCTGAGGGCAAG

ATGCCTGGCTGCACCCCTTCTCCTCTGAAGCCTATACTGACGCTGATGTT
 GGCCAGTGTGGAACCCCTGCTGTTGCAAAGTGTACTATTCTATAAAAGTTGTT
 TTTCATTGGTGTTCAGTGCTGCTTGTACCTCTCACCTGCATCTGTCACC
 CTTGTTCCCCAGGTGCGGTCTAAGCTGGGTGGATAGTACTAGCCCAGATT
 5 TCTCGAGACCTGTATTGCATGGTGGATACAAAGGTATTGGGTGCCTACTCTA
 GCCATCTCTCCAGAGATGGAAAAGCAATTACAGACACCTAGGAAGGCAAGGTA
 GCTGTCTGTGAGCCTGTGTGCTGCCCTCCAGGGTGGCTCTCCCTGGGAAGGAT
 CTGTGTAAGAGGGCAAGTGCAGGGTGTAGGCTGAAGGCAGAGCTGGAT
 TGTGGGCATCTCTAGGCCAGGTCTCTTACCACTGGTGGCCCTTG
 10 GCAAATTGCCTTATTGCAAATGGTATTGAGCTAAAGCTCCCTCCCAGGTT
 TGGATAACCTGCCATGAGCTTGAGCCAGTGTGTGCTAGGCACCCGTGCTGA
 CTGCTAGGGTCAGTGGCCATCGTGAGGCCCTGCAGATAGATCTTACTTAAG
 ATTCTCTAGTGAGCAAGGAAGACCTGGAAGCTCCTCAGTACTCCCCACACA
 AGTCCCTAGCCTAGGGAGCCAAGCTGTGATTGCTAAGATATTACCTGGCTCC
 15 ACCTTGACCCCCGAGCCTCCGAAGCTTGAAGTCTCCGTGTGTCAGGCTC
 CCTTTATTGCAGGGTTGGGAGGGCTGAGGGATCCCCAGGTGGTTTAG
 GGTGCTTCAGGCATCCCTCAGAAGGGAGTGGTCAGGGCACAACC GTGGAG
 CTATGGGAATCAGGAAGTGCTGTGCAATGGAGCAGATGCCTCCAGGTACCT
 GTGGTGGCTATACAGAAGGCAGTATACAAGAAGCTCAATCTGTATTATGATA
 20 GCTGGGCTCCCTGCAGGACCCAGAACCCCAAAGCCAGGGTCAAAGTTG
 AATCTGTAACCTTGCCCCAGCTGTGTCAGCTCTGTGATGAAGGTAGGCTCA
 GTTGGGTCAGGCCAAGCACAGCTGGAGCCACAAACTGAGTGGACCTGCC
 TTAGAGGACAAATGGGCATGGCAAGGCCATTGAGGGAGGGCCACCCCTT
 CCCAGGAGCCGTTGCCAGCCAGTGTGTTACTGAACTAGGGACCTGAATT
 25 GTCCCCCTGATTCTTCTGTTCTAAAGTGGCTATGGGAATGGAGGGT
 TGCTGGAAGCGTGAGCTCCCTGTGTCATAAATTCCAGTGGTGTCAATGGT
 GTGCCCTGTTGATTATGGATATCTCTGAAGTCTCATTAAACAACCTTATT
 GGCTCACATCTGTAATCTGAACACTTAGGAGACTGAGATAGGAGGACAGTCC
 AAGCTCAAAGGGTAGGGATGAGGATGGGGCTAGGAAGGAGGAA~~GGCAG~~
 30 ATGGCTCAGTAGGTGACAGTGCTGCTGTGAGAGTATAAGGGCCGCATTGA
 ACTCTCAAAACCCACAGAGAAATTGGATATAAGCACATCTGTAATCCCGG
 TGCTCCTATGGAAAGAAGGGAGGCAGAGACAGGGGAATCTCAGGAGGTATG
 CAAGCCAGCTAGGCTGGCACACACACAGGAAAAACAAGAGCCTCTATGTCA

AACAAAGGTGGAAGGTGAGGAACAAACACTGATGTTGTCCTCCGATCTTCATG
 CATGAGTAGGTGCATAACACAACCCAGGCACAAAGGAACCCCTCTGCTTCAGG
 AACTGAGGGTGTACTGCTGTCTGACAGAAACTCCAACCTTAGGGAACCTTA
 CTTTCTGCTGGAGATGAGCCTATTGGCAAGAGGCATGTACCAGCTCATGGGTA
 5 ATCAAGTGAAAGAAACTGCTTAAGCCCAGGCCGGTTGTGGCTTAAGGAGG
 CTTCTGCAACTCCACCCCTGCTGTCTCCTCCACGTGGTTTGAAGCATCTCCAG
 ACTGCACAATTCTGCCTAAGGAAACCCCTTATCACCCATGGTATGAAAG
 TGCAGCTGCCAGCCAGTGGCACCGTTCTTCTGATGTATAGAACCCAGGGT
 CCATCCCAGTCTAAACACCAAACCTGCAAGGTCTTAAGCCTTGGAAAGC
 10 AATTGTCAGGGATCACGTGCCACACGAAGCATAAGACACACCACACTGGGA
 GACCAATCTCGGGTGGATGCCAGCTCCAGACAGATAATGTGTCTTGTATA
 CCAGTCTAGGGGCTGCCAGGCTACAGCAGAAGTCTGGAACTGTATCCATCT
 GTCTATATAGTGTGACCTCGTGGGTAGTCACGTGTCCTGTGATACCCAGG
 GTTCAGCTGAGCTTAGGTTAGTCTGTCAATCAAGGCTATGTTACTCAAGGT
 15 GTCTTCATTCCCGGGCAGCACCATTGAAGACACAATACTCCCCAGATACTGT
 CTTCCAAAGGGGCCAGGCAGTCCTGGAGGCCAGCTATCAATCAGCCTT
 AGAGTCCCAGAACCCCTGAGCTCTACAGGGACATAGAAACAATCCTCCTGCTG
 CAATATGCAGGCTGCCAGGGCAGCTTGAGAAATGTCTGAGGCACAGAGCAA
 AGCAAGTGGAGTTCAGCAGGTTCTGTCATCTTCTTGGTTTGAGC
 20 AGCCTTCTCTGCCATGTGCCCCATCATGCTGTGGCCCGAAACGTCAGAG
 CTCACAGACTGATTATTCAAGTCTTATATTGTAGTGACAGGAAGCCGGCTG
 AGGCCACGTCTACTCTAAAAGGGCAAAGGAGTAGCGTGAGAGGATTAAA
 ATGCAAAGCTCTTTCTTGGTCTTCTGCTGCACTCACTAATTAAATG
 CCATTGTCAGGAAAGGAGCCATTAAATGGCAGTTGGTCTCTATATCCAAGGG
 25 CTCTCCATCCATAGTTGAAAATGTTGTGTGCATGCATGCATGTATAAGT
 ATAGTACATGTGCATGTGTGAATGTGTGGAGGGCAGAGGCTGACGTTGGCG
 TCTTCATTATTCTGCACCTTAGCTTGAGACAGGGCTCACTGGGCTGAA
 GCTCATTATAGGGTATATTGGCTGCCTGGAAAGCCTGGTTTATATGGGT
 GCAGAGCTCAAACTCATGTGTGTTAGTACTAAATGTTGAGCT
 30 ATCTTCAGCCCCATTGAAAATATTGAGATGTTGGGTATGGTGGTGCAGA
 CCTTTAATTCACTGCAGCACTCAGAAGGCAGTGGCACGGCAATCTGATTTCAGA
 TCAGCCTGGTTATAGCTCTAGTCCAGGACAACCAGAGCTACAAAGAAAAC
 AAAATGACCTCTAAAAACAAAACAAAATGTTGAGAAACAATTTCAGA

ACTCATCGTAAACATGTGGGGACCTTCCCTGTCACATACTACAGTGTCTGTT
 TCGTGGTGCAGGGTCAGTCCCTGCAGGAGGATTAAAGCACAGGAGGGTACAT
 GTAGGCTCTGTAACATACTACAGACTCGACAGAAAGAGTTGAGAAGTCCTT
 TTTGGTATCTCAAAAAGGTGGTAGTTCCCAAATCGGTACCCCTCAAGTATAA
 5 AAGACCAACCAGAATAAGTGGCATGCATGTTGCCATCTGTCTTTGTT
 GCATAATGCCAGTTAGACGTGCAAATGCCAGAACATTAGCTAGCATAACAGA
 AACTAAGACAGGACATAGTCCCAGTACCCAGAGGTACCTCATGCCAAAG
 TCCAGTAGTTCATAGTGTGCCAGTACTGTCCATCCTGCTACTGGTGGGA
 AAGAGAAGGACAAGACAGGCTGGCACATGCTTTAAACCCAGCACTGA
 10 GGGTGGAGTGGGGGGGGCAGGGCTCTATGAATTAAAGGTACCTGATCTA
 CATAGTAAGTCCAGGTCAACCAAGGTGTACAGTAAGACTGTGTCTCAAAC
 AACAGCCACGACAAAGAGAGACTGGGATGACCTGCTCCTGTCAATATC
 TTCAGCATAAGAAGTTGTCCGTTGATGTAGGGAAAGTCTCTTCCGAGAGATA
 GATGTAGTCCCTGTCCCTTAACCTTCATGCTTACTTCATCTCTTCCGCCTT
 15 TGAAGCCAAGTTCTGGTTGAATGGAAATGTGGCCTGGACACTGAGCTTG
 CTCAGCTCTGGTTAACTAGGAGACTTATGGTGTGGTGGCAAGACTGGAC
 ACAAACAGAGCAACAATGTCTCCTATTGAACAAGTATACTCCAGAGTCTCCT
 GACCTTCACCCCTCCACTAGGGTCAAAGGTAAAGAGTAGCAGGAATTCAAG
 ATAGGGATACTGTGGGGCCATGGGCTGCAGAGGTCTGATGCCATAAGAAC
 20 TGGCCTCAAATCACCACAGAACTGCCGTGTGAAGAGACCCACATATCAC
 TTGCTTCCCTGCCCTCTTGAGACCACAGCCCTGTAGACAGTGACACCCAGG
 CATGTCCAGCAGCAGAAGGGATGTGACATGGATCACTTGTCAATGGGCC
 CTGTTACTCTTACACACCCCTCCCTCTCATAAGATTGGTACCTCAGAGACG
 TGGGTACCAAAGCAGCACGTCTGTCCAGAAGTAACTGGCCTGATGACAGG
 25 CTGGGCAAACCTAGTGTGGAGTGAGGCTGAAGGGCCCTGATCTAGGGCTGTC
 AAGAGCGAAGGTAGGGCTGTAGGACAGGGAGGGCCTGGAGGCTTCACAG
 CACAGGTAGGCCCTGGTAGGTGCATGTTGCCGCCTGCTCTGAAAGA
 GGGGTCTGGCCCGGTGAGTGGCTCTCAGATTCACTGAGTGGTTGGTTGG
 CTTGGCTCTGAGTTCTGAGGGCCTGGGAATGGCTTCTGTTCTGGAGGCCTAG
 30 AGGAGATGAGAGAGAGGAAGAAAGGATCCAGAAGCTGATTGTATGGGTCT
 AGGCTGTAAGGGCAGGTGACTAGGGAGGGTGGAGGATGCTGCCAGGGAGA
 AGACACAGCACAAAGACACAGAAAGTTCCAACCTCCCCGGGGGCACATCCT
 CCTGGACTCTTGAAGGGTTTACCCATCTAACAGCCATAGGTACCCAGAGA

AAGACTCCATGTGAACAGGCCACACACCCCCTATGCCTGCCTGAGGCAGGG
CTGGATTTGCTGTTCTGCTTACGTAGAGGGACTGGTCTGCCAGTTAGAG
AGGAGCCAGGACCCAGCTCAGACCTCTAGGACACTCTAACCCCTCCAAGCA
TGTGAGGAAAAGGCCATGCTCTGAGCCTGGAGACCAGAGCCAGGTGCTCGG
5 GGCTCAGGAAGGACTCCCTAAAAGGCCACTGGAAGAGGTAACCTGCTCTG
ACCACCAGGCCCTGCTTCACCTCAGATCTTCTCCTGGTGAGCACAAGGAAAG
GATGAAGAGGAAAGAGATGGACTGAAAGTAGGTATGGTCCACTCAGGGCTG
ATT CCTGTTCCGGGTCGCCAGAACCTATGGGTTCTGCCCTATTGGTCCGGC
CTTATAACCTCCCTGGCTCCAAGTTGGAGGTGATTGCCAGAGGCCTGAAGGC
10 AGAGAATCCTGCCTCCTACCACCAAATGCTTAGCAGGACCCCTGCTGAGATTA
TGAGCTTCTGCTCCCTCCCCCACCCCTTCCAGTTACATATTGGAGTAGTCCA
CAGAGTTCTGAGCTGCCAGATGCGTAGGTGGCTCCAGATGTGCAGTCCCAG
CTACCGGAGGGCAGGGACCACCTGACACTCCCCAGAGTGACTCTGCCAAG
GCCACTCAGCTATAGGAAGCAGGGCAGGGTATGCTGCCAGCCCCCGTTCTC
15 TACCCCTGCCCACCCCTCCGGGCACCTACACTCTGTTAGCCTATCAGA
GAGGGTTGTGGACATCCAGCTGGGTGCTGCTGCCATACCACCAGGACCAAG
GAAAAAGCTGGCCCATTTACTAATGCCGGAGCGGGGGCACATTGCGGAGCA
GCAGAAGGACCTAGGAGCATGACAGCTGCAGAGGCCGAGGTGAGTCAGCTG
GACCCGGGGTCCAGGGACAGTACCTAGCATCTCTAAGGGATATTCTCTGC
20 GTCTAGAAGTCCAAGGTAGAGGTGTTACAAAGTGTACATGGCAGATGGTGT
CTTCTTGTGTCCTCATATGATCATTGCTGTGCTGCTGTGTTCTGGCCTTT
TACAAGGAACCAAGTCATATGGAGCAAGGCCACCCCTAGTGACCTCCTTTA
AAAGACCAGTACTCTGGATGATCCGGTGGTTGTGGCTTCAGCTGACAAGTGT
GTGTGTATAGGCAACAGTGTAGCCCCATCAGACAGGAAGGGCGGGCTTC
25 TACATAGCTGTATCTGAGGCCACACCTCTCCTTCACTGCTATCCTACCCCTGGA
GAAGCAGGTACTTCTTGGTCAAGTCTGGTGGATGGTAACTAGAACTGAGGA
CAGAGATATCTCGGTTCTGTCAGCCATGGAGAGATATCTCCCTGAGACT
AGGTTGTCTATGACCAGACCAGAGAGTAAAGCTACTTCTAATATCCCAGCC
TGGCAAGATGGAGCTTAGGAGAGTAGGTTGGACTCCCCTCCCTCCCCAGGGGG
30 TTGCATAGCTAAGAAGGATCCTTCTAGCTGTGACATCATGTGACAGTGGCTC
CAGACAGGTGACAGTACCCCTGGCTCCAGCTATGGGTGTTGGAACCCATT
AACACAGGGATGTTGACCTCCCCCACCTGTCGGTAGATTGCAGTTCTGTGTA
GCTTGTCCCTGGGCCGTTCTCTAAGTGTGTTGGCTACTGTGCTGATTGTG

CTGTGATGCTATCTGGAGGTGGGGCAGCCCTAGGCTCTAATGACCCGTGTC
 TTCCCTGCACCTGGTGCCTGCCCTGGGAGCCCCAGGCTTAGTCCAGTCCCCAG
 AGGTGGCTGCATTGATAAACATGCAAATTCCAAAATGAATGCAATTAAATA
 CCCAAATGAAAGCCGGGAGTGGTAGAGGCTGGACTGGATCGTATCTGGAG
 5 CATCAAATATTGTCTCTTATTGAATGCATTTGTAGGCTGGAGGGTGGGC
 CTTAACTCAGACAACAGCTGTTTATAAGCTAGGTTGGGAGATCTGTGCT
 GGATTTATATATCCAACACTACACCTATGCCCTAGCTCCCTCCAACTACATCC
 AATTGTGCCCATAGGCTGGCTATTCTATAAACACACCCCTCTGCATGGTGGG
 CACAGAAAGTAGAGACCTACTTGTACAGACAGTAGGACTGAGGCCTGAGGGTA
 10 GACAGCTTGCCTAAAAATGTAGTTGGAGGGTCAGGTGAGCAGATGTCTGG
 GGTTCTTATCCCAGTCTGAAGCCAAGACTCAAGGACGTGATTATGGCAGCCA
 GGCAGGCAGACAGTTCTCAGGACTGACATGGACGCCTGGGTGCACAAACAC
 ATGTGTCTGATGGCTCTCCAGTCCTTCTATTGAGCCCACCTGTGTAT
 AGCTAGTCTGACTTCCCATGGGGTGACAGCCTGACCACCCCTGGGACTT
 15 GGTTGGGATCCTGGTTACTTCTCTAGTCATATTCTCTAAACATGCTTAGAA
 CTAACAGGGTGCTTAGAGGCCAGTTTCAGAGCAGAGAGCTTCTCCTCAGTT
 TACCCCTGCTGGGTACCAGGCTTGAGGTGTTCTGCTTACTCTTGCCGTG
 CCATTTACAGGTGGAGGCTGAGCCTGGTTGTCTCCCCCGGACCACTCT
 GGTTGTCACCTCTTCTGAATACCAATGTGATTCTATAGCTGGCCTGTA
 20 GCTGGTAGAACTGAGTCCTAGGATTGGCAAGAGCAGTGGTCTCAACCTTC
 CTAATGCTGCAACACTTAATACAGTCCTCATGTTGTGGTATCTCCAACCA
 CAAAATTATTTATTGCTACTTCATAACTATAATTGCTACTGCTATGAATC
 ATAATGAAATATCTATTGATGGTCTTAGGCAAGCCCTTGAAAGGGTC
 ATATGACTTCAAAGGGTCTCAAACCACAGGTTGAGAACCACTGCTGTAGA
 25 GGCTAGGAAAGGCTGTAGGTTCTACAGTCTAGGGTTAAGGAGTGGATGAG
 TGCTGGGGTTGTCTGGCATTTCTGACAGTCATCCCTCCTCACTCTGTATC
 TCCAGCACATTCCAGTCATCCCTCCTCACTCTGTATCTCCAGCACATTCCA
 GTCATCTCTCCTCATTCTGGATCTCCAGCGTGTCCCCAGTTCACCCCTGGCAG
 AGCCATCTATAATGATGCAACTTACATTCACTTGCTGAGGGCTCCTCCTG
 30 CAGCCTTCCAAGAGATGCCCTTCTCCATCCCAGCCCTCAGATGTACTCTT
 AGAGAGCAGTTAGAAGAGAGGGCTAAGTTGGGTGAGGCACGCCTTCCAT
 CCATCCAAAAGGCAGGGTCTGGTAGGGCCCTGCTCACTCCTCACCTACCCATC
 CTTCTATTCTCTTAATGTGCTTACCCCTGCCTCTATCTGGGATACCA

GGTGCTGAGGGAGCAGCAGATTGAGCTTGGTCACCTGCGCAGCTGGCAGG
 AGGAACCCTAGAGGCCATGGTCAGCTGGGCCTGGAATGAAGGAAGGTGTA
 GTAGAAGGAGAGCAAGTGAATGGAGAGGTGCAAGTTCAGACCTGTGCCA
 ATGTCCTGTCCCAGCCATCTGTATCCACCCCTGTTGAGGTAGGGTTACTG
 5 GAACCCTGTTGGCCTCCCTAAAGCTATTACATTCTGACTGTCTCTGGTGTAA
 AAAGAAGAGGGGACACTAGAGGATTCCCTAGGGTTATGAAGATTGGAGATT
 GGGCTGGACTGAGGCATGATCCTGGCTTAATCTAGGGGCGCCAAGACA
 CATGACAATCCGTTGGCTCCAAACTCTGAAGCAAGGGCCTTTGGGAC
 AGTGTACAAACCCCCACCCCCATGAGTGTGCCCTCAGTCAATTGTCTC
 10 AGGGACACAAGCCTGCCATTACCATACCCCTCTCCAAGATACTCTGGATCT
 ATAAGTCTCGGGGAGGTCAAGGAAATGGCTGACATGGTTCATTTGAGGTATCC
 TTCTGAGCAGGAGTCTGATGTGCACACTGATGAAATCTTCATTCATCTATGTT
 TGGACAATCCCTCAGTCACCACACCAAATGTTCCAGAGCCACAGGCTCCCT
 GAGACTTGGCCCAATCCTGCCATGTTCTGATATCTGTTACCACACCTAGGGG
 15 CTGTTCTGAATTACATGAACAAAGCACACACATGTTCTCAAGCCATTA
 ACTGCTGTGGTCTCTAAAGATGACCACTGGTGACCTCATAAAGTTCTACCCCTC
 TTCTTGCTTCTGACAATGGCCTTGGTCAACTGTTAGACGATGCTATAAA
 CAGGCCTTCTGGTAGTGCAAATCGACCCAGTCTCCTGACGTTCTAT
 GTTGGTACCCAAAAGGGATAAAAGCTAGAGGGATATCTTGAGTTCAATCAA
 20 GATGCCACTGAGAGCCCATTGGCAGAGCTGTAGGTAGTTACTGGGCTTGAC
 TTCCATCTGAGATATTAGGGCATTGGGTGATGCCAGAAAGTATGAGTTGA
 GAGACACTGGTCAATGGATGGCTCCATTGGTCTTATCACCCATCCTGG
 CTGCTGGGAAGTCCTGTGGTGGATTGGCTATGCTGGCTCTCATTGC
 AGCCTGGAACAGGCATCTGGTGGAGATGCCCTATTCTAATGGTCAAAGAG
 25 ATCTTCCTGGTGTGATTAACCTCTGAGGCAGATTCACTGCATAGTGGTACTA
 GTGCTTAGGAGGCTGTGGCACAAAGATGGGAGTTCAAGGCTAGTTGGAA
 ACCAACTAGCCTTCTTCAACCAACCAACCAACCAACCAACCAACCAA
 CCGACCGACCAACCAACATCAGACAGACAAATCAATCACCTAACAGATCTT
 CTACTTTAAAAGAAGAGGCCAGGTCAATTATTCTCTAGAGCGTTGATGGGTC
 30 GAGTAGGTTGGACACACAGACTAGTAGGGCACCTCCCTACCATATTGG
 CTCTGGACTGAGATATTGGGATCACTGGCCTTCTAAATTCTATGAACCC
 TTGTGAGTTGTTAATGACCTAGTATCTAGGTTCCAGAGCTCAGCCAAGAACAA
 CCTGGAGACAGGGCACATCTGGAGTGGACATAGGGTACCTGTAGGTGGAAA

TAGAACTTGAGTGGCTGGTATGGTAGGATAGGCTAGTTGACCTGCCCGGG
 CACAGTCATTGCCCAAGAGGAAACTTGAATTGTGCAGAGCTGACAGGCAG
 AGTCAGGGAGGTCCGGGGTTCAGCTGGTTGGGACTTCAGGGCTGGTGA
 ACTTAGGATCAGCAAGACAGACAGAGAGATGACAGGCAGTAGGCAACAGAC
 5 CTGGACACAGCCCAGCACACCTCTAAGGCCTGGCCTCCCCCTCCCTGTGGT
 GGCAGCCACCCACCCCCAACGAGCACCAGGGTGGATTCCAGCTCTGCTCTGCTT
 CTGGGCAGGCCACCACTGGGGTGGATTCCAGCTCTGCTCTGCTT
 CATCTGAAGCTGGAAACGCCTGGCCAGCCCTGGCCACTCAAGCCCAGCCCT
 CAGCCCCAGGGCTCTGCTGACAAGACACCAGGCAGCCAAGTGCTGCCCTCC
 10 CTTCTTCATGAGCAGGGGAATGGCACAGGCACAAAGACCCGTGGTGGTGCA
 CCATGCACACATAACACAGGCAGAGACATTACCAACACACACATATTACATA
 CCCAGATAACCGCAGAGATATCCTGAAGCAAGCATATGTACATGTACACACC
 CAGATACACCCAGACACTTAAAAACACACACCCAGAGACATGCCAGACATC
 ACAAAACACATATGCTCAGATATATACAGAGACACTCCAAAACACATATAAA
 15 TACACACACCCAGATACATGCAGACACCCCAAACACACACACCTACATGCACAC
 ACCCAGATACTACTAGGCCTCCAAAATCTCCAGATACTGGGAGACTAG
 TTTGGGCAACCAGCTAGCCTTCTTAACCAACCAACAACCAACCAACCAACC
 AACCAACTAACATCAGACAGATAAACCATCCATTGTAACAGATCTTCCACTTT
 TAAAAGAGGTAGGTCAACTGGACTCCCTGTCAGCAGGTGAAACACACACAC
 20 AC
 ACACACACACACACACACACACACTACACACACACACACACACACACACA
 CACACACACAG
 GAGAGAGAGAGAACATGCACACATCCAGTGTTGGTGGTTGAATAAGAATGGT
 CCCCCATAGGCTCATCTGTTGAATGCTGGTCACCTGTTGATGGAACGTGTTG
 25 GGAAGGATGAAGAGGGAGGTGTGCCACTGGAGGTGGCTTGAAGTCCAAA
 ACCCCACACCATTCTACTTAGCTCTGCTGCAGCGTGAGGGAGTCAT
 TTTATTTATTTATGTACATTGGTATTTGCCTGCAGCGTGAGGGAGTCAT
 ATCCCTGGAACAGGAGTGTAGACAGTTGAGCTGCCATGTGGTGCTGGG
 AATTGAACTCAGGTTCTAGAAGATCAACCCAGTGCTTTAACAGCTGGCCA
 30 TTTCTCCAGCCTGTCGCCTGTTCTTATAGATTAATATGTGAGCTCTCATTTC
 AATGCTATTGCCTGTCATTACCATACCTCTCACATGATGGTCATGGATTCTAA
 CTTTATGATACCTAACGCCATAAAACTACACTACCTTATAAGTTGACTTG
 GTCATGGTGTGTTATCACAGCAGTAGAAAAGTTACTTAGACACCCAGATAAA

ATCAGATACCCAACACACATAACACACACGAGACACACACACACACACACA
 CACACACACACACACACACACAGAATTATGTAAAGACATCCTGACACACAGA
 CACACTCTAATACATACACACAGACACACACTCATACACACACACACACA
 CACACATACACACACTCTCTCTGAGAGACAAATGGATACATAACACGT
 5 ACACAGACACATTGAGACAGATAACATAACAAATTACAAGACGAGTTGAAACA
 CACACCCATAGATAACACAGCATAACATGCACAGACTAAACATGTGTGTGA
 GGTAGACACACAAGCACACACACCTGCACAGACATGAACGTGCGTAAGGTT
 GGACTGTAGCCTGGACAGTATAGATAACAGGCATGGTGGCTCATGCTGAT
 TACAAAGTCCCCATGTTGTTCCCTACTTCTCATGGTTTCTTACCCGTTC
 10 ATTACAAGTGCCTACTCAGACATCCCTACTCCTGACACCCCACGAAGCAGA
 GCCAACTCCATCACACAAATCGACCTACACCTTTATGGCATCCTGCATGGTG
 GCACCGACACCCCCAAACCCACCCCTTACCATCTCCTCTCCATCTATCCATAG
 TGTTGGATGAAAAGGCAGGTTTAGATCAATGGAGCAGAGCAGATCTAAGG
 GGTAGACCCGTAAACATGCCAGCTGAGCTGGCAAGATGTGAAAGAAC
 15 TGGATGGAAAGAATGGCATATGTCTAGAGCTTGGTCTAGCTGCCATCAT
 TTCTCTAATTCAAGCCTAACATAAGTCTACAGGCAGCTGAGGAGCAAGGCA
 CTGAGCTCACGTCTTAACATCTGATGAAATAGAATGCCATCGCAGCCATTAC
 TTTGCCGTACATATCTCTTGTGGATGTTGTTAAGCCCTTGCAATT
 TGTTGTTGTTATTATTGTGATTATGATTATTATTGTGGGTGTGCATGATGTG
 20 TGGTGTGCATGCTGTGTGGTCAGAGTATAACTCTGTAGAGTCGATT
 CCTCTTACCAACCTTACATGGGTCAGGGATCAAACACTCAGGTGACTAAGCCT
 GTGCAAAGCTACCTTACTGGCTGAGCCATCTCAATGGTGCAGGTGT
 GTGTGTGTGTGTGTGTGTGTGCACGTGCAAGCACATGAGCACT
 GCCAGAGGATCATCTCAGGCATCTTACAGATATTATCCAACTTAAAAC
 25 TATTTCTGGCTGGGAGATGTACATTCAAGGTACAGAAATTAGCATCATAGT
 ACATAGCAACACATTCTGCAGCCCCATGATGGTGGCTTCTGTTGCTGTTGT
 TAGAGTTCTCTGTATGCCAGCTGAAGCCCTGGCCAGCTGTGTGCTTACG
 AACACTTTGCCAGACTTCATTCTCTAGCATTGCCGTACATTAAACG
 TAACGAAATCCAGCATGTAAGTTCTGTTATGGATTGTGTAGAGTATT
 30 TGGTGGGAAGCCTTGCTATCTTAGTTGTCAGCTCTGGCTGCTGCTTCTC
 CAGTAGATGTTGACAGTGTGAGAAGTGTGGCTCACGTTATAT
 CCTCGTGACACAGAGCAAAACAACCCATAGCAGAGAGATGAATGAGTCT
 CTAAAAGGCAAGGGAGAGGATGGGAACTTAACTACCCTAAAGCTAGTTAT

AAGTTATAGTTTTCTGATGCAAACCTTGAGTCACCCATGCACTCATAGG
 TAATCCTCATCCATCTCACAGCACCCCTGGCTGCCATTCCGTAAGTCATCC
 AAGCTGGTCAGTTATTTACTTCTACTGACACAAGTTAGGGTCATCTGG
 GGAGAGAGAATCACCACTGAGAAAACCTCCAGCAGATTGGCCTGTAGGCAA
 5 GTTGTGGTCAGTTCTGGTAATGGTTATGTGGGAGAACCCATCCATGT
 GGATGGTGGAACCGCTGTGCAGGCAGTTCTGGGTTCTATAAGAAAGTAGGCT
 GGACCAACCAGTGGAGCAAGCCAGTGAACAGCATCCTTATGATTCTGCC
 TCCAGGTTCCCTGCCTTGAGTCCTGCCCTGATTCTCTCCAAGATTGACCACAA
 ACTGTAACATGATACAAACCCCTTCCCAAGCTGCTTGGTCATGGTGT
 10 TATCAAGTGACCGAAAGCAAACTAAGAAAACAAATTCAGTGGCTTGCTAGAC
 TAGACTTGGTGGTCTGTTGGTGCCTATCTGGGCAAATGGACATCTGTT
 TGAGCCTCGCAGGAAAGTCTCACAGCAGCATTCTCCATCATCTCTTTG
 GCATCTGCCAGACTCACCTGATCACATTACAGGGATCCACTCTGGGATC
 CAGTGGAAATAATCGTAATGTGGTGAATGAAATCCTAGTGAGTGCTGGGCT
 15 GGGTCCTCGCTTCTGAGTTCTTGCTATCAACAGCTATGGTCATACAC
 ACAGAAAATCATGTTGGATTAAAGATCAATTGGAAATATTGATCATC
 TTGAGAACGACTGATATCTAAAAGTGAATCACACCCATGGTGTCTGTT
 TTATTAAGACCGTTATTAATTCTATCATCAATGTTATATTGGTAGTATT
 TTTCTTTCCACTGCATGTGTGAGAGTGTGCATGTATGCATACATGT
 20 ATTTGTGCATGTTGCATATATGTGCATTGTGTGCAAATGCATGTGCGGG
 TGTACATGGGTATGTTGTGTGCACGTGTGTTGTATATGTGTATCTGTG
 TGAGCATATACATGTATGTGTGCATTGGAGGTAGAGGCTCTGGAGACT
 CATCCATCATTGCTTTCACTTTCATCAAGACTTCAATCAAGCCCAGAG
 CTCACTGATACAGCTAGTCTACTCTGGAGATGTCCTGCCTGCCTCCAAA
 25 TATGGAGATATTGGTGGCTACCATGTAGGCCTGAGGACCCACACTGAG
 TGGCAAGTGCTTAACCACCAAGCTATTCCCTCAGCCCCAGTGTGTTGTAATT
 TAATCTTATAGGTGATACATGTTGTTAGCTATTGCTGCTCTAAGTTG
 AGCTTTGGAAAAATGAGTTCTAATAGCTTACAGATATTGAGAACATGC
 TTCACTTCTCGACATTAATACACACTAGTTCCCTGGTGAGCTTTGTTGTT
 30 CTGGTGGTGGGTACTACTTAACATCCATAATCCATGCCACTGGGAATAGA
 GATAATTTATTCTCCCTAAAATATATGTTAAAATGTTACTGGT
 TGAGCCTCCAGTAAAAATGTAAGTCAGAGAGGCAAGAGAGAAACCCAT
 GCCTCTCTAATCATAAGGAGAGCACCAGTGTGGCCTTCACCATTGAACATG

CTAGCTTCCTTTGAGATCCTAGTTATTATTCAGTGTAGGGGCTTAATCTA
 AGACTCTGCACATACTAAGCAAGTATACTAGCCGTCACTGACTGTAACCTCA
 GTTCTTTCCACTGAAAAAAATAATGTAGTGTGTGTGTGTGTGTGTG
 TGTGTGTGTGTGTGTGAAGTTCTCATAGTGACCAGAAGATGGTGT
 5 CAAATCCCTGAACTGGAGTGACAAGACAGTTCTGAGCTTCATGTGGGTGCT
 GGGAAATTGAACCCAGGTCCCTGCAAGAGCAGTAAGTGTCTGACCACTGA
 GATATCTTCTGACCCCATGGATTTTTTATTGTACCATTGTTCCCATT
 TTGGCTTATTAAAGTCATCTTCTATTGTTGTTGAGATTGAACCT
 AGGATCTTGTGCATAGTGGCAAGTACTCTAGTACAGAACTACATCCCTAATC
 10 CTGGTTTATTATACCCCTTGATAAAAAATTGCCTGGATTATTTATTTAT
 CATAACATATTATGCAATATCACACACATACATGTGCAAACACAAACTTAGTT
 ATTTAATCAATGGCTACCAAGATAATAATATCACACTGTTTATGTATCATGGT
 AGGAATATTAAAGATTGGTCTTCTTCTTCTTCTCCTCTCCTCTCTCTCT
 TCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTC
 15 TCTCTCTCTCTCTCTCTCTCTCTCTCTCTGTGCGTGTGTGTATGTGT
 GTGTGTGTGTGCCACCTGTGTAGGTGATTGCAGAACATCCAATAGATGGTA
 TTAAATCCCTGGAACTGGAGTGGCAGATGTTGTCTGCACTCTCTTAGG
 CTTCTATTCTGAGATCTCAATTAAATATGCGTTAGAGTTAAATATCAAAGCTC
 TGTCAGTGCAGGAGGATGGGGTGGGCGCCGGTCTGTTTATGGCTATCCC
 20 TGTATTCCATGTCCGTGGACCCAGCCTCAGAGTTCTCCTCCCCCTCCT
 GCTGTGGTTCCGGGGTGCACAGCTCACTCCTCACCACAGGTTGTGGCTTCT
 AGAATTCCCCGGATGGCTGTTCTCGATGGCACCTAACGCTGGATGGTTTC
 TTTCTCCCCCTCAGGGAGAGCCTCTCTGCAGTAGCAAGCAGCTTCCCCC
 CAGGAGCAAATAAAACTAAGTGGCTGAGTTGCGCCCTGGCAGTGTGTTAGT
 25 CACCTTCTGTGATTGCTCGACAAAATCTGAGAAAAACAACTGAGAAA
 GGATTAGTTGGCTGGTGGTTAGTCTCCTGGTGGGGTGGGGACTGGCTGC
 ATTGTTCTGGCCAGTTGTGGGGTGGGGGGTGGGGGGAAAGACAG
 CCTCGTGACAGAAGGGTGTGGCAGAGCAGACCTGCTCTAGTCAAGGTGGTGG
 GGAAGCAGGAAGCAGAGTGGACAGTGCTGAGGCTAAGTATACCTTAAA
 30 GTCACACTCCCAGTGACCTACTTCCCCATCCAGGCCCTCCTCTAACAGAGCC
 CAGCTAATTGTGAGTTCATCAGTAGATTCACCCCTGGATTAGTCAACTAATG
 AGCCAATCACCTCTCAGTAGTGTCAATTGCTGGGGCCAACCTCTGTAACCCCT
 TTTTGTGGGGGGGGATATTAAATTGAAGAGCTATGGACACTTGATGTCT

CCTGGGAGAAGGAGAGTCAGCTATCTATCTAAATATCTATCTGGAGTCA
 AAGGGTTATTAAAAAAAAAAAAACAAAAACCCAGCCAAACATCATGG
 TGACACATGCCTTAATCCAATACTTGAAGGTAGAGGCAGGCAGATCTCT
 GTGAGTTGGAGACCAGTCTGGTCTACATAGAAAGTCCCTGAACAGTCATGGTT
 5 ACATAGAAAGACCTGTCTTAAAAAGAAAAATTAGACAGGAAGTTGATGGGT
 GTGGGTGGGAAGATGGGTGGATCTAAGGAATTAGGGGAAGACTTGGGG
 GGATAATTATGATCAAATGCATTGTATGAACCTCTCAAAGAATTAAACGAA
 TATTTTAAAGTAGCTATAATTCAAGGTTGTCTGGGTCTGGATACCAAGGGG
 TCCTGGACATTGAGTTGCAGGGCAAGACACCACAAGAGACAGGCAGCTGATCAA
 10 CTATGTCCAGAGAGCTGCAGTGTGGCCTGACTTCTGTCAGAGAGAGAGAGAG
 AGAGAGAGACAGACAGACAGACAGACAGACAGACAGAGAGACTTTAA
 AGGATCTGTAACCTGACACACAGTATGGGGATCCAAGATAACCCACTAATC
 CCCTTGTAAGTATCCAAGATATGCATGGACACTCTCAGTGGTGGCAT
 GTATCAATGCACTCCAAATTGAAGCAAACCTAACGCTGCTTAGGTTCTGTCAA
 15 CTTGACACAAAGCTAGAGTCATCAGGGAAAGAACCTAACGAGAAAATG
 ACACCACTTTTTCTGGTAGGCAAGTCGGTGGTCATTTCTGATTAAAG
 ATTAGCTCACTGTGGTGGTACACACCTGGACAAGCGGTCTGGGTGT
 AAGAAAGCTGGCTGATCAAGACAGAACAGCCAGTAAGCAGTGTCTCCAT
 GGCCTCTGTTCACTGGCTGGCTGCCTGAGTTACTGCTGTGACTCCCTCCC
 20 GATAAACTGTAAGATGAAATAACCCCTTCCTCCAAGTTGCTTGAGCCAG
 TGTTTATCACAGCAAGGGAACCTAGAAAGGGAGTGGTGTAAAGATCCAGGAA
 GATGGGGAAAGTTAGAGGGTCAGAAGCAGCAAATAGTAACACTGACTAGAGGC
 GCTGCCTACAAGCTGGCAGGGAGCTCCAGTGACACAGATTTGTGAGTTAT
 GGCCATGTGGATTAGGCTTCAGTGATGTACCTGCCTCTGAGTCCCCGT
 25 GCTTCTGTGTAACTGTAATAAGCTTAGAGGCTGAACTAGACTCACGAGGA
 ATCCTTCTCTGGTCTGTAATGGGTGGCCTTCCAGTGAGTGAGAAGATATTGTT
 ACACCTTCTCCCCCAGGGAGAACTCACACATGTTACAACCCAGGGATTCTATG
 TCATCTTGATAACCAATTGGCTTCAGAGATGCAAAGCTGGTGTGGCTGAATT
 TTTCTCGGATGCTCGGCCTCACGGGCTTGGGT¹; TCTTGTGCTGGTATTCTC
 30 ATGGCTGCTGCTGCCCTCCCTGCAATTCAAGCTTGGTGGATTGGCCTGTG
 AGCTCAACTTGACTATTCAAGGGAGAGTTGTAAGCCTGGGCGGGGTCGGG
 GGAGAGAAGCATTGGCTCTGCTTAGGTTGGTGTAGAATGGGAGTGGCTTT
 ATAAGTCCCTGTGGAAGCTAACGAG

Mouse ltrpc5 cDNA sequence

AAGCATCACGAGAACAGCCCTGAGCCTCAATTGGAGGCAGT
 CCTCATGCAGTCCAAGGCAC TGACTGCCTGACTGGAAAGCCACCATGCAAAC
 5 AACCCAGAGCTCCTGCCCGGCAGCCCCCAGATACTGAGGAATGGCTGGGAG
 CCCATCCTATGCAGGGGAGAGATCAACTTCGGAGGGTCTGGGAAGAACGAG
 GCAAGTTGTGAAGGTGCCAAGCAGTGTGGCCCCCTCCGTGCTTTGAAC
 CTGCTCACCGAGTGGCACCTGCCAGCCCCAACCTGGTGGTGTCCCTGGTGG
 TGAGGAACGACCTTGGCTATGAAGTCGTGGCTCGGATGTCCCTGCGCAAG
 10 GGGCTGGTAAAGCAGCTCAGAGCACAGGTGCCTGGATCCTGACCAGTGCC
 TCCACGTGGCCTGGCCCGCCATGTGGACAAGCTGTACGTGATCACTCTG
 GCTAGCACATCCACCAAGATCCGTGTAGTGGCCATCGGAATGGCCTCTGG
 ATCGAATCCTCACCGTCAACTCTAGATGGTGTCCACCAAAAGGAGGAACT
 CCCATCCACTACCCAGCAGATGAGGGCAACATTAGGGACCCCTTGCCCCCT
 15 GGACAGCAATCTCTCCCAC TTCA TCCTGTGGAGTCAGGCGCCCTGGGAGTG
 GGAACGACGGGCTGACAGAGCTGCAGCTGAGCCTGGAGAACGACATCTCTCA
 GCAGAGGACAGGTTATGGGGCAC CAGCTGCATCCAGATA CCTGTCCCTTGC
 CTGTTGGTCAATGGTGA CCCCCAACACCCCTAGAGAGGATTCCAGGGCAGTGG
 AGCAGGCTGCCCATGGCTGATCCTGGCAGGTTCTGGTGGCATTGCTGATGTA
 20 CTCGCTGCCCTGGTGAGCCAGCCTCATCTCCTGGTGCCCCAGGTGGCTGAGAA
 GCAGTTCAGAGAGAAATTCCCCAGCGAGTGTTCCTTGGAAAGCCATTGTAC
 ACTGGACAGAGCTGTTACAGAACATTGCTGCACACCCCCACCTGCTCACAGT
 ATATGACTTCGAGCAGGAGGGTTGGAGGACCTGGACACTGTCACTCCTCAAG
 GCACTTGTGAAAGCCTGCAAGAGCCACAGCCAAGAACGCCAAAGACTACCTAG
 25 ATGAGCTCAAGTTAGCAGTGGCCTGGGATCGCGTGGACATTGCCAAGAGTG
 AATCTCAATGGGACGTGGAATGGAAGTCCTGTGACTTGGAAAGAGGTGATG
 ACAGATGCCCTCGTGAGCAACAAGCCTGACTTGTCCGCCTTTGTGGACAG
 CGGTGCTGACATGGCCGAGTTCTGACCTATGGCGGCTGCAGCAGCTTAC
 ATTCTGTGTCCCCAACAGAGCCTCCTTTGAAC TGCTGCAGCGTAAGCATAG
 30 GAGGGTAGGCTGACACTGGCCGGCCTGGTGCCCAGCAGGCTGGAGCTGC
 CCATTGGTCTGCCTGCCTCTCACTCCACGAGGTCTCCCGCGTACTCAAAGAC
 TTCCTGCATGACGCCTGCCGTGGCTTCTACCAAGGACGGCGCAGGATGGAGG
 AGAGAGGGCCACCTAACGCGGCCGCAGGCCAGAAGTGGCTGCCAGACCTCA

GTAGGAAGAGTGAAGACCCTGGAGGGACCTGTTCCCTCTGGGCTGTGCTGCA
 GAATCGTTATGAGATGCCACATACTCTGGCCATGGGCCGGAGGGTGTG
 GCTGCTGCTCTGGCTGCCTGCAAGATCATAAAGGAAATGTCCCACCTGGAGA
 AAGAGGCAGAGGTGGCCCGACCATGCGTGAGGCCAAGTATGAGCAGCTGG
 5 CCCTGGATCTTCAGAGTGCTACGGCAACAGTGAGGACCGTGCCTTGCC
 CTGCTGGTGCGAAGGAACCACAGCTGGAGCAGGACCACGTGCCTGCACCTGG
 CCACTGAAGCTGATGCCAAGGCCTCTTGCCATGACGGTGTGCAAGCATTG
 CTGACCAAGATCTGGTGGGGAGACATGCCACAGGCACACCCATCCTACGGC
 TTCTGGGTGCCTCACCTGCCAGCCCTCATCTACACAAACCTCATCTCCTTCA
 10 GTGAGGATGCCCGCAGAGGATGGACCTAGAACAGATCTGCAGGAGGCCAGACA
 GCTTGGATATGGAAAAGAGCTTCCTATGCAGCCGGGTGGCCAATTGGAGAA
 GCTAACAGAGGCACCAAGGGCTCCAGGCATAGGCCACAAGCTGCCTTC
 CTGCTCACAAAGGTGGAGGAAGTTCTGGGCGCTCCTGTGACTGTGTTCTGGG
 GAATGTGGTCATGTACTTCGATTCCCTTCCGTTCACCTATGTCCTGCTGGT
 15 GGACTTCAGGCCACCACCCAGGGCCGTCTGGATCCGAGGTTACCCCTATT
 TCTGGGTGTTCACACTGGTGCTGGAGGAAATCCGACAGGGCTTCTCACAGAT
 GAGGACACGCACCTGGTAAGAAATTCACTCTGTATGTGGAAAGACAACGTGA
 ACAAGTGTGACATGGTGGCCATCTCCTGTTGAGGCTGGCAGGACCGTCTGGCCATTGACTTCAT
 ATGGTGCCCTCGGTGTTGAGGCTGGCAGGACCGTCTGGCCATTGACTTCAT
 20 GGTGTTCACACTTCGGCTCATCCACATCTTGCTATTACAAGCAGTTGGGTC
 CTAAGATCATCATTGTAGAGCGAATGATGAAGGATGTCTTCTTTCCCTTCT
 TCCTGAGCGTATGGCTTGTGGCTATGGTGTGACCACTCAGGCCCTGCTGCAT
 CCCCATGATGCCGTTGGAGTGGATTTCGCCGTGTGCTATACAGGCCCTA
 CCTGCAGATCTTGGCAAATCCCTCTGGATGAAATTGATGAGGCTCGTGTGA
 25 ACTGTTCTCTCACCCCTGCTGGAAAGCTCGGCTTCCCTGCCCTAATCTCT
 ATGCCAACTGGCTGGTCATTCTCCTGCTGGTACCTTCCGTGTTGACTAATG
 TGCTGCTCATGAACCTCTGATGCCATGTCAGCTACACATTCCAGGTGGTG
 CAAGGCAATGCAGACATGTTCTGGAAGTTCAACGCTACCACCTCATCGTGA
 ATACCATGGAAGCCAGCTGGCCCCGCCCTCATCCTGCTCAGCCACCTGA
 30 GCCTGGTGCTCAAGCAGGTCTCAGGAAGGAAGGCCAGCATAAGCGACAACA
 TCTGGAGAGAGACTTGCTGACCCCTGGACAGAAGATCATTACCTGGGAA
 ACGGTTCAAAAGGAGAACTTCCTGAGTACCATGGAGAAACGGAGGAGGGAC
 AGCGAGGGGGAGGTGCTGAGGAAAACGGCACACAGAGTGGACTTGATTGCC

AAATACATCGGGGGGCTGAGAGAGCAAGAAAAGAGGGATCAAGTGTCTGGAA
TCACAGGCCAACTACTGTATGCTCCTCTTGCCTCTATGACGGATACTGGC
TCCAGGAGGCACCTACTCAAGCTCTCAGAACTGTGGTTGCAGGAGTCAGCCA
GCCTCTGCTAGAGACAGGGAGTACCTAGAGTCTGGCTTGCCACCCTTGACAC
5 CTGAAATGGAGAAACCACTTGCTCTAGAGCCCCAGACCTGGCCACATCGAGT
TTTGGGGCACATCAACCTCCCCACTCCCAGCAGCCCCAAGAAATGGTCTT
CAAGGCCTGCTACAGATCACTCTGGACATCCCTCTTAAGAGAATGAAAC
TCATGTCAG

Predicted mouse ltrpc5 amino acid sequence

(translation from GI9754868)

MQTTQSSCPGSPPDTEDGWEPILCRGEINFGGSGKKRGKFKVVPSSVAPSVLFELL
5 LTEWHLPAPEVLVSLVGEERPLAMKSWLKDVLRKGLVKAAQSTGAWILTSALH
VGLARHVGQAVRDHSLASTSTKIRVVAIGMASLDRILHRQLLDGVHQKEDTPHIY
PADEGNIQGPLCPLDSNLSHFILVESGALGSGNDGLTELQLSLEKHISQQRTGYGG
TSCIQIPVLCLLVNGDPNTLERISRAVEQAAPWLILAGSGGIADVLAALVSQPHLL
VPQVAEKQFREKFPSECFSWEAIVHWTELLQNIAAHPHLLTVYDFEQEGSEDLDT
10 VIKALVKACKSHSQEAQDYLDELKLAVALDRVDIAKSEIFNGDVEWKSCDLEE
VMTDALVSNKPDFVRLFVDSLGADEMAEFLTYGRLQQLYHSVSPKSLLFELLQRKH
EEGRLTLAGLGAQQARELPPIGLPAFSLHEVSRLKDFLHDACRGFYQDGRRMEE
RGPPKRPAQKWLPLSRKSEDPWRDLFLWAVLQNRYEMATYFWAMGREGVA
AALAACKIIKEMSHLEKEAEVARTMREAKYEQLALDLFSECYGNSEDRAFALLV
15 RRNHWSRTTCLHLATEADAKAFFAHGDGVQAFLTKIWWGDMATGTPILRLLGA
FTCPALIYTNLISFSEDAPQRMDLEDLQEPDSLDMEKSFLCSRGGQLEKLTEAPRA
PGDLGPQAAFLTRWRKFVGAPVTFLGNVVMYFAFLFLFTYVLLVDFRPPPQG
PSGSEVTLYFWVFTLVLEEIRQGFFTDEDTHLVKKFTLYVEDNWNKCDMVAIFLF
IVGVTCRMVPSVFEAGRTVLAIDFMVFTLRLIHIFAIHKQLGPKIIVERMMKDVF
20 FLFFLSVWLVAYGVTIQALLHPHDGRLEWIFRRVLYRPYLQIFGQIPLDEIDEARV
NCSLHPLLLESSASCPNLYANWLVILLVTFLVTNVLLMNLLIAMFSYTFQVVQ
GNADMFWKFQRYHLIVEYHGRPALAPPFILLSHLSLVLKQVFRKEAQHKRQHLE
RDLPDPLDQKIITWETVQKENFLSTMKRRRDSEGEVLRKTAHRVDLIAKYIGGL
REQEKRIKCLESQANYCMLLLSSMTDTLAPGGTYSQQNCGCRSQPASARDREYL
25 ESGLPPSDT

SEQ ID NO:6

Human genomic sequence of the region that contains ltrpc5

gi|3687269|gb|AC003693.1|AC003693 Human Chromosome 11p15.5 PAC clone

pDJ915f1 containing KvLQT1 gene, complete sequence [Homo sapiens]

5 CTAAAAGTGCACCTCAAGGACGCCGGCTCGGTGTTCCCATGCCGCTGCTTG
 CCCCTGGGAAGCGTGGCTCGCCTCGGAAGAAGTTAGCGCCAAGATGGCAG
 CCTGGGTCTTGGGCCAGAACAGAAACTGGCCCCGGGAGTCAGTCAT
 CAGGGACTTAGGATGTGGGGCTTTCAAACAGCTTATTAGACGTGATTGA
 CACACAGTAAATACAGATGTTAAGGGTACAACCTGGTAAGTTTGACAAATT
 10 TATACCCCCGTGAACCATCACCAACTCCCCAGGTGCCCTGGGCCCTGGG
 ATCTCTGCTTCCTGCCCTCCCTCCCCGTCCCAGGGCAACCACGGGCCGTCGCT
 GTGGGTGCACACAGCATGCATTCTCAACAAGCGGACTCAGAAGGCAC TTG
 CACATCGTTGCTGTTCTGCCTCTTGCTCAGCATGATTACCCAGAGGCGCAC
 CCGTGCCGTGGCCTGCCGTGTCTATGCACCCGTGCTGTGGCGTGCCGTGCG
 15 TCTGTGTGGCATGCCTGTCGTGCACCCGTGCTGTGGCGTGCCGTGCGTCTGT
 GTGGCATGCCTGTCGTGCACCCGTGCTGTGGCGTGCCGTGCGTCTGTGCACC
 CGTGCCTGTTGTGCCGTGTGCACCCGTGCCGTGGCGTGCCGTGCGTCTGT
 CTGTGCACCCGTGCTGTGGGTGCCCTCGTCTGTTCTTATTGCCGGGAG
 GGTTGCACCCACATGTGCAAGCCAGCGACGGACCCAGGTTACCCGTTCAC
 20 CGGTCA GTGGCATATGGGTGTTCAGTTGGGCATTACAAGAAACGTGC
 TAGAACATTGTGTACAAGTCTGTGAACCTAACAGTTCAATTCTCTGGTA
 AATACCTGTGCGTGGAGCAGCTGGGTCA TGTTGAATGTGGGTTCACTGCT
 TAAGCAGCAGTTACATAACTGCCAAACTGTTATTCAAGGTGGCTGGACCGT
 TTTACAGCCCCGTTGATGCGTCCCAGTGCCCTCCCCAGCAGCATGTGGT
 25 TGGTTGGTCTTTCGTGGCAGCCAGTCCACTGGGTGCGCTGGCATGTGGCT
 GCAGCTTGACCTGGGTTCTGGCCCTGGCAAGGTGGAGCATTCTCATGT
 GCTTTTGCTGTGTGGATCTGCGGGGAAGGGTCTGTTCTGTTGGCT
 CATCTTCAAAGATTGGGTGCCAGTTCTGCTGTTGAGTTGGAAAGCTCT
 GCATACGTTCAGGGCACAGGTCTTACCAAGGCTCTGCCCAAGGTCTTCGGA
 30 GAGCAGGTGTCTTCGCATTCTGACTCTGGGAACCTCTAGCCCTGCCACAT
 GGGGTTGTTATGGGGCAGGGGCACCTGTGCCCTCCACCAACGGGCTTGGG
 GATTGGTGCTGCCATTGCCCTCCCTCGTAGGTGGCCCTAGGGGGTCCCTCC
 GCCTCCGTTCTCATCCAGAAACGGCAGTGACCATCACCACCATTGTTGFC

ACCTAGCTCCAGCTCAAGGTCCCTGCTGAAGGTGGAGAGCTGGCATGGCC
 CCGTTGTCCATGCTAGGGCTGGGAAGACCAAGGCTCAGGTGAGGCCTCTGC
 CCAGTGCCTGGCACTCCTCTGCCCATTTCCACCCAGGGTGGCTCCGA
 CTACTTCTGGTAGCCTCGGGGACAGTTGAGGTGGACAGGCTGGCGTCACCCC
 5 CATTCCGGCTGTCCCTCCCACCCCTCCTGGCCCAGCTGTTCTGCCCTATTAA
 AAGTCACATGGGCCCTCGGGCCTCCTGGTGTGGGCCAGGCTTTCAGGC
 CCTGCAGGCCAGGACCAGCCTCCCTGCAACCCCTGGCAGAGGCCCTGGGCC
 GGGGCTTGTCTAGGGCAGCCTCCCCATACGCCCTGGAGTCTGAACAGAAG
 CCCCTCCCAGAGCACAGCAAGAAGCTGCAACGTGCCCTGAAGTCCCACCAT
 10 TAGCAGGTTGGGTTAGGCTGAGCTTGCCATCACTACCTTCTGTTAGGA
 CGGTATGCCATTAGATGGGATCATCCCTCAGGCCAGGCTAGAGGAGGG
 GTGGTCCCTGCCAGCCAGGGAGGGCTGGGGTGGATGGCCTCTACAGAGC
 AGCTCCGAGCCAGGCACGGTCCATGATCAGCTCTGTTATAGAGGGGAC
 ACTGAGGAACCAGGGAGCCTGGGACCTCCAGTGGCCCCACAGCTCCTGTGG
 15 CTGAGTCAGGGTTGTCACCAGGCCTCTGTGGGATGAGGCTCCCCATCCAC
 CTGCCCACTCTGCTCTGGAACAGCTCTCAAACGGTCTCTGGACCACAGTT
 CAAAAGAAAATAAGCAATGTTCAAAGGCCCTGGAGGAAGCCAGAGTTACC
 ACGGCAACTCTGGCCTGCCACCTCCTCCGCCAGGCTGCATCTGGAGCCAG
 CTCAGGAGGGCAGCAGGGTGGAGGACAGCCAGGCTCTGGGCCACCCCCA
 20 GCCCCCACCCCTCCTGCCTCTCCTGCACTGTCCACGGCCCTCCCTGTGCTCCCA
 CGGGTATAATGGGCACAGAAGAACAGGAGCTGTCTGCCCTGCAGGATTCT
 GGAAGCCAGGGGCCCTGGCCTCCCTGGGCCTTGTATGTGAGGGCACAC
 GTGGGGTCCCAGCTGCCACATGGCTCCAGCGCTGCCGCAGGTGTATGTTGG
 GCCCTGGTGACTIONGCACCTCCACTCGCACAGAAGAGCTCAGTCTG
 25 GGGCCTGGCGGGGGAAAGTAGGCTGCCATCCTCGCTAAACCAAAGTGTGAAA
 ATTGAGTTGAAACTCCATAGGAGGGCAGGAGGCACAGCTCCTCAGAAGAAG
 GTCTGAGAAACCACAGCCCAGGTGTTGGGTGTGTGGAGAAGGTGCT
 CTGGCAGTCCTGCTACAGGGGACCATCACAGCCCTTGGGTGAGAGCC
 CCGTGGCTGGCACCGAGCCCTATGAGGCTTATTTATTTGAGACA
 30 GGGTCTGCTCTGTCACCGAGGCTGGAGTGCAGTGGCACAAATCATAACTCACT
 GTAGCCTCAACCTCCTGAGCTCAAGCGATCCTCCTGCCCTCAGCCTCAAAGGT
 GCTGGGATTACAGGCGCTTGCTACCACGCCAGCCCCCTGGCCTATTGTT
 TGCCAGGCCAGCTCAGGTCCCGAGGAGGGAGACAGGAGTGTGAGGGAA

AGGGGGAAGAGGTATAGAGCCCCCAGCTCCTCCACCCACCGAACCCCTCACC
 GAGGCCCTAGACCTAGACCGGCCTGACCGGGGGTCCTCAGGCCGGGACT
 TGGGTGCAGGCCATGGTCTGGGCCTGAAGCTCACGCTTGCTGAGCACAG
 CCCCCCTGCCAACCCCCACCCCTGGGCCCTGCTCCCTGCCAGGGCCATTGGA
 5 ACAGGAGTGGGCTGTCCAGGTGGTGTCTGGTCCAGCCCTCAGTTCTCT
 TCTGCAGTTGACCGGCAGCCCTGCATCTGTGGTGGGTCGGCGCTGGTCTG
 GTGAGGCAAGGCCTCAGCTGCTGGACAGGACCTGCCTGGCACCCAGCTGGT
 GGCAGAGCCAAGCATTCCGACTCAGCTCTGGAGCAGCTGCCTCTGGCTG
 GCATTCTCCGCCAGGGGGTTGTGCCCTCGTGGCCCCCCCAGGTGCCCTCCTC
 10 ACCTGGCTGATTCATCTCCTGTCCCCCTGCCTCCTCCAGGAAGCCCCA
 GGGCCTGGCCCTCCTGAGAGTGGCATGGAGGAGGAAGAAGACTCGCCCAGG
 CCCATGGGAGTCGGATGGTGGCCGCACCTGTGGGCCCTGACCCATAGGCT
 TCTTCAGCACGCCCTGGCTGGTGATCCCTGCCTGAGGGCTGTGCACGGCTC
 ATCTGCCAGACCAGATTAGGGATTCTGTACTGTCCCTCTGGAGCAGCAG
 15 GGGGTAAAGCCTGACCCACCCAGACTGTCCAGCAACAAGGGCCTCTGCTGT
 GGGCCAGGGACCCCTGGAAGTACCAATTGTGTCCTAGGGACGCAGAGTCCCC
 AGGCTGCTAGAGGGCTGTGGGCCCTGTTCATGCCTGAAGCAGGAAGAAC
 CCCAGGAGAGGTCTGAAGGGACCCAGCCCCACCCCTGTCTAGCAGGGAGGA
 GCCTCTGCAAGAGGCCAGGGGTGCTGAAGTGGAGGAGGATAGAGGCAGCA
 20 GGACTCAGGGTCACTGGTCATTATGGGATCACACGGCTGCAGTGTGCCCTG
 CATGGTGCTAGGCACCAGGGACAGCAGAGGACAAGCCTGTGTCCTCTCCCAC
 CACCAGAGGGCTGGCACTGCCCTAGGGAGAGAGGGGCCCTGGTGTGCG
 AGAGGGGGCCTGGGCACGTGCCTGGCTGGTCAGATGATCAGAGTGGCT
 GGGCTGGCCTGGTCTGGGCCAGTCTCAAGGGCAGACCCACCTGGCTAG
 25 AGTTGATTGTGTGCACACCGGATGACCCGGCGTTGAAGGCCTCTCCTCTGT
 GAGCCTCATCCCCACCTGCCAGACTCCCAGCACAGCCTGCTCCTGCCAGC
 TGCTGAGCGACAGCGCTGGCCGGCTCTGCGCGCCCCCTCCCCAGCCCATC
 TTGGAAACCACAGCAGCGTCTCCCTCCAAAGTCCCTCCCAGGGCTGACATC
 CCACAGCAGGGATGTATCCCACAAACCCCGCAAGCCCTGGTGCCTACAGCTT
 30 GGCCTGGTAACATCAAATCCTACCCCTCCTCCTGGCAGCAAAGATGGGTGC
 CCCCCACCCAGAGTTCTCAGCACCCCCAGACAGAACAGCAGTCCCCCAGCGACC
 TCAGAACTCTGGGCCTGCCACACCCCTGCAGGAGGGGCAGTGTCCCTG
 GGATGCTCAGGTCTGGTATCACCTCTGCCAGATAACGGAAGGTGAAACTAC

AGGGCATCCAATTCACCTGAACCTCAGATAAACACCAGATTATTTTTGTA
 TGTCCCGTCAATATTGGGACACACTTACCTAAAGAAGTATTCTGTTCA
 TCTGAGAGGCAGATTAAACCGCGTCCCGTCTTCCTGGCAGTCCTGCCCTG
 GAGTCACACTCCACAGGTGCAGGGCAGGCCAGGCTCCAAGTAGATGGCGGC
 5 CAAAGCACCCGCCCATGCTCCTGACTCCCAGGGCTTCAGGGATTGCGAA
 AACCAAGCAGCAGAGCTGACACCTGGTCCCTGCTCGGGAGGCCAGCAAGGCAGG
 AGGCTGCTTAGGCCTGCGTGTGGGTGGCGCACTCCCTGCTGCAGTGCTCT
 TCGTACATGTGACACTGTTCCCGCTTTCCCAGCTGGCTGGAGGCGTGATCC
 TGGGTGTGGCCCTGTGGCTCCGCCATGACCCGCAGACCACCAACCTCCTGTAT
 10 CTGGAGCTGGAGACAAGCCCGCCCAACACCTCTATGTAGGTGAGTGCA
 CATGTGGCCGCAGACGCATTCAAGGGAGGGCTCTAGGAGGAGGCAGGTCTA
 GCCTTTGGATGGGACATGGAGGGTGAAGAACAGTCGGCATGGCGTGTCC
 GGGCAGGGAGGCAGGCCCTGAAAGGGCTCTGGGCACAAGGGTTGAGATGGA
 GGTGGGCCTGTGGCCTGCTGGCCCTCTGGTCTGAGCCAGGGCAGGGGTGG
 15 CAGCTAGGCCTGGCAGGGACTGTGTGGAGACCTGCTTATTTAAGTGTGGG
 GTTATITCGGGGAGGCTCCCTGAGAACAGGTGGCTGGATGCCTGGCCAC
 ACAGAGCAGCCGAGGCAGCTGGCGCTGTGGAGCCCAGGGAGGGAGGGAGGG
 TGGAGCTCAAGGGATGGAACCCAGTGAGGGGTGGAGACGGGGCAGGGGAGG
 GGTGGAGAGGGGTGGAGACGCCAGAGGCCGTGTGACTCAGCTGCCCTGC
 20 AGGCAGCTGCACCTGCTGCCTTATTAGGCTGCGTGTGGGGACTGGCTGCC
 CTCCCTGCCCTGGCAGGAGCAGGAGCAGGAGTGTGGAGGAGGAGGGAG
 GGGCAAGGCCAGGAGGAGGAGGAGGCCATCTCACTGTGAGAGAGCAGCA
 CCCTCCTCCTGGTGCCTGGCAGGGCTGGTGTGGGGCTCTGGAGCA
 TTTGTTGAGATGCTTCTGGCCTGAAAGGAGGCCCTGGATGGCTCTGTTGC
 25 CCTCACAGGCTGAGGGTGGGTGAGGTGGCAGCCTGTGTCCCCAGTCCT
 CAGGGCTTCCCTCAGCCGGCAGGTGCCCTGGAGCTGCAGGGCCAG
 GCCCCCTGCCAGTTACGGAGGCTGCTGGCTGGTGTGAACCAGGGCCCA
 GGAGGCCGAAATAGCCCCACACCTGCGCCGTCCCACCTCTTGCCAGTCACC
 CCAGGGCCAGGTGAGGGCCCTGGCACACAGCGTGCCGTTCTTCTTCTTCTT
 30 TGCCCCGCTCATGGTCAGAGGGCCGGTGTGGGTCCAGATGGTGTCAACA
 GGGATGGTCCCTGTCCCTCCCCAGAGACAGAACGCCTGTGGCCACGGAGGGT
 TCTGGGCCAGCCGATCCTAGGGAGGGTCCCATGGCCCTGCCATAGGTTCT
 GGCTCTCTGGGCCGTGGTCCCTCACAGGTGGTGTAGGAAGGACGGGA

AAGGCTGCTTGTCCCAGGGCTCATGTGGAGACCACCCCTGCACGCAGCTG
 GGGCGCTCCTGCCCTGTCCTCAGAACGCACTCGGCTTAGCTTGCCATGTGC
 CTGGGCTGTGGGTGGCAGAGCCCGGCCAGCATTCTCCGATCTCCAAGGGTGC
 ATCTCTACTGGAGGCCCTCCTGGGCCTCTGCTCCCCGCTTCCCAGATCATTA
 5 GGATATTGGGGTCCAGAAGGGCCTCCCAGCCATCCTGGGCCTGTCCCTCCGG
 GCCACCAAGTCCAGCCAGTGACAACCACAGCATCCCCGGCCTGGAACGAGGC
 TGCCCCCAGCACGTTCTCGTACTCCTGTCCAGGGACAGGAGGGCTGCCCT
 GCCACCGAGTCCCCTCTCCAGGACCTGGGCCTGTGGGTGTGAGGCAGGTG
 TTCTTGGAAAGGGTCACTCTCCAGGCACCCGGGCCAAGGCTTGTGGCTGG
 10 AGCAGCTCCCGCTGTGGGTCGGCGTCGGGCCCGTGTGGCCGGAGAGGAGC
 TGAAGGGTCACTTAGCTTCGGCTGGGCAGGGACAGGGACACCCAGAGA
 GGTATGCCAGGCCTCCTCTGCAGCCCCACTCTGGCAGAACAGAGGTCAC
 AGGCTGTGCTGAGGCCCATGGTGTGCCCCATGATGCCAGGGTGAGGCTG
 GCGTTGGAAGCAGGTGTCTGACCTGCATGGTGTACCGTGGCACATCAGAG
 15 CTCCAGCCCCAGAGCCGCCACCTCGGTCTTGGCTGTGGTTCCCTGGCT
 GGAGGAGCCTGCCGTGTGTTGCCACACGACCACAGGACCTGCCACCCCG
 ACCTGGGCTCTGCCTGGGCCACTGGACAGGGACCCCTGGAGCTCCTCTG
 GCCACCAAGTCCTGCCATTCCAGAACGCCCTCTGGAGCCTCTGCTGTC
 CCTGATGCCGGCTGGCCTGCCAAGGGCTTTTCTGCCGGAACAGG
 20 GTGGATTGCTGGCTCACTCCCTCAGAGACGCTGCCGGTGCAGGGTAG
 GCCCAAGGGCGTTAAGAGAGAGGAGGCTGGGTGGGCTGGGCTGGCAGGG
 GGTCTGGCAGCCCTGGCCTCCCACCTCTGTCAAGGACCAAAAAAGGCAACG
 CGCCTCTCTGACCTGTACCCGGAGTGAACCCAACCTGCAACCCAGGAGTG
 TCAGGGCCTGAGGGAGGGAGACCTGGCTCCTGGTGCCTGCCGTGTAAGGA
 25 GGTGGCCACCTGCAGGGCATTCTGGCAGAGGCTTCACTGCCAGGTAGGA
 GGCTGGGTGGCGAGCCCCAAATCTGGGTGTGTTCTCTGCCTGGCGGTGGTC
 CTGCCCTAGGCACCTCTCTGGCTGGCTGGCAGGGACAATGGGCTG
 GCTGCGAGGAGGGGGCTGGCTGCCTCTGCATTGCCCTGGTACGGGAGA
 TGGCCCCGCCTGCTGAGGGATAGGGAGTGGCAGGCAGTGAGAGACACTG
 30 ACAGCTGTCCCGCGGGTACAGGGCCCTGTCTGGTGGCCAGGCCATGTCTC
 GGGCCACAGTGCAGCCCCCACCCTGGACGGCGCCTCTCCCTCCCCAGGTG
 CATGCTGCCAGCCAGGGAGCGTGGGGAGTCGGGAGGGCTGGCCTACACG
 CCCTGGTCCAGCTGTCCCAGGTGGGTGCTGGCTTCAGCCCTCAGCCCAGGG

CCTAGGAATCCAAC TTGATCCTCCCCACACAGCAGCCAGGTTCAAATGCAGG
 TCCCGTAACGGAAAGTGCTGCTGTGCAGCCCAGATTGGGGGGCAGGAGCCAGC
 AGGGCCCCCCCACCCCTTCCTCGCACCACTGGGGAGGCAGCATTGGTCCA
 GTTCCGGTTCTGGCTGCCCTCTCAACCCCGGCCTACAGTGGGCCCACCC
 5 GTGCCTCTGATGCCACTCCCACCCACGCCAAGTCCCAGAGGGCTTGGGAGC
 GGGTGAAGGC GGTTGGGTGGCGGGTGGCAGGTGCAGGC GGTTGGTGGGT
 GTGGCAGGTGGCGGGCCCCACCGCAGGTGTATCCCTGCGAACGACCTGTG
 CCAGCACTCAGAGCGCTCATGAGGTGCCAGTCCCCATGTGGCCTCTTAGTC
 TCCGTCCTGTGTATGGAAGAGGTAAGT GAGGCACAGAAA ACTCACCAGGCC
 10 AGGCTGGATGTGAGGTCCCTGCTGCTCATCCCTGGCAGTCAGCAACCC
 ATCTTCCCAGCTGGCGGCCGTGGTGGTCTGGCACCCAGGACCC
 GTCTTGGGCTGTGGCGAGTGTGTAGGCACCCACCTGGTGTCTCTCCCC
 AGGCATCTACATCCTCATCGCTGTGGCGCTGTATGATGTTGTTGGCTTCC
 TGGGCTGCTACGGGCCATCCAGGAATCCCAGTGCCTGCTGGGACGGTAAG
 15 GCAGGGAGGC GGCGCTGTGCCTGGGCCGGGAGGGCTGGGGCTGCGTCTG
 GCCCTGAGGAGGGGGCAGAGCTGGTGCCTAGGGCGAGCCTAGAATTCTGGG
 GGAGGTGGCTCCTGTGCCCTGCTTTCCGTTGGTTAAATTAAATCCCAC
 CGTCTGGTCTCCATCGTGGCCAGTCCTACGTGACCGCTTCTTGTCAAA
 AAATAGCCACAAATAAACAGGGAGCAAGCCTCAGCTCTGAGGCCAGCCTCG
 20 GCGTCCC GGACACCGCCCCCTGTGGGAAGCCCAGGCCTGGCTGTGCCATC
 CAGGGCCTGGCCAGTCCAGGAAGAGGGAGCCTATGCCGTGTCCAGTGGG
 GGAAACTGAGGCAGATCCCATGGCTCCCCCTCCGTGGGAGCAGGAACAAG
 GGGTGGGAAGATCAGTCAGGGCTATGCTGCTGCACACGCCCTGGGG
 GCTGCAGACATCCTGGACTCACCAGCCTGTGACCCAAACCACAGCCCC
 25 CCCATCCACCCCGTCTGTGGAGCCTGGTGCCTGGGGACATCCTGGGCTT
 TGACGGCTCCTCCCTGCGCTGAGTTAGCCTCTGTGCCCTGGGCTCCACAC
 AAGCCGCTACTCCTGGTCAGGCGTGGCTGGCTGGCTCCACTAGCCCTCA
 CAGACACGCCCTGCTGGCACCTGGGTGTGTGCCTTGGGCCCGCCTACAGCC
 TGCCCTTTCCCTCCCTGGC ACTGCCCGGCTCCAGTTCTCACCTGCC
 30 TCATCCTGTTGCCTGTGAGGTGGCCCGGCATCTGGGCTTGTCAACAAG
 GACCAGGTGAGCCTGGGTGTGCAGGGACAGGGTGGGTGGGTGACGGGGC
 ACCCTCCCTCCTGTGC CGGGTGGGGTGGCTGACTCATGGCTGTGGGAG
 CTCTTGGGCTCTCCTGGTCCACTGCCAGGAGATCTCCAGGGCTTTA

TGGAGGAGGCAGCATTGGGCTGAGCACCAAGGCCAGCCTCCGTGTCCCAGC
 ACTCCCAGGGCAGCTGAGAGTCAGAGTCCTGTCCCTGGGGTAGCCTCG
 AAGCCACCCCTGCCAAGGGAGAGCCTGGAAAAGTGCCTGGGGCTGGCGGG
 GCAGGGTAGGGGGCAAGGAGGGGAGGTTCCCCCTGTGCATGTGACCGCACCC
 5 CTCCCCCAGATGCCAAGGATGTGAAGCAGTTCTATGACCAGGCCCTACAGC
 AGGCCGTGGTGGATGATGACGCCAACAACGCCAAGGCTGTGGTAAGACCTT
 CCACCGAGACGGTGCGGCCCGGGGGCGAGGGCGGGGAGCAGGGCCCCGGG
 AACCCGGCGGGGTGTGTCTCGTCCCTGGATGAATCCTGCCTACGCCAGACCTC
 AGGAGCAGGAGGTGCCCTGGACCTCCAGGACCCCTGGTCTCAACTGGTCC
 10 TCGGGTGGAACCTAGTGGGCCAGGGTGGCCAGGGTGCAGAAAGCTCTGAG
 CAGCGCAGCTGAGGAGGAAGAAGGCTGGCCCTGGATGCATTCTGCAGTGGG
 GAGCGCTGCGTACCCCCTGGCCACCTCCCCATGGTCCCTAGAGCCACCGTCC
 CCCTGGGCACATCCAGGGCTGACCTGCACCCCTGCTCTGCAGCTGACTG
 CTGTGGCTCCAGCACACTGACTGCTTGACCACCTCAGTGCTCAAGAACAAATT
 15 TGTGTCCCTCGGGCAGCAACATCATCAGCAACCTCTCAAGGTGCGCGAGGC
 CGGTGGGCCGCGCTGACCCCCCGCATGTCCCGCCCTGGGTGGGTCCCTA
 GGGTGGGCAGGTACACGGCAGCCCCACAGGGAGCGACCACACTGGGTGG
 CATGGCCCTGTCAGGGCTGCTCTGCTGGAGGGTTGGGTGGGACCGCATC
 TGGCCCACGAGGAAGGCAGGCGCCCTGTGCTGCGCATTGGGTGAAGAACAGG
 20 TGGAGGCTCTGGGGGTGGAACTCACCTGCACCCCCAGCTCCACGTGTGCA
 CTCGTGGGTGTGGACGCCCTGACAGCCTGTAGCTGGCAGGGCCTGCAGGCC
 ATATAGTGCCTGTGGAAGTTCTGCTGAGGCCTCAGTGGAAAGTCGTCA
 GTGATGCTTAGGGTCTAGTGACACCAATGACCGTGATCTCAGTGGAAAAG
 GGCACAGTGTGCCCAGGCATTGCGTTATGTTAAAACGGGTGGAAGATA
 25 GCAAGCCGGCAGAGGCCGGCGCTGCACCCGCTGTTCCGAGGTGGTAGG
 GGGTGGGGGCTGTTCCAGGATTCCCTCTACGCTTCTGTGGTGACCACGG
 ATTACTGCGTGACAACGGGAAGCCGGAGGCCGAGGCCGGTCCCTGACCA
 CGTGCCTGCCACCCCTGCAGGAGGACTGCCACCAGAACATCGATGACCTCT
 TCTCCGGGAAGCTGTACCTCATGGCATTGCTGCCATGTGGTCGCTGTGATC
 30 ATGGTGAGCGGGCGGGGGCGAGGGCCTGCTCTCTGGCTGCCCTCCGCG
 GGGCCTGTGCTGACTGCGCCCCCACCACCCCTGCAAGATCTCGAGATGA
 TCCTGAGCATGGTGTGCTGTGGCATCCGAAACAGCTCCGTACTGAGGC
 CCCGCAGCTCTGCCACAGGGACCTCTGCAGTGCCCTAAGTGACCCGGAC

ACTTCCGAGGGGCCATACCGCCTGTATATAACGTTCCGGTATTACTCT
 GCTACACGTAGCCTTTACTTTGGGGTTTGTGTTCTGAACCTTCCTGT
 TACCTTTCAAGGCTGACGTACATGTAGGTGGCGTGATGAGTGGAGACGG
 GCCTGGGTCTGGGACTGGAGGGCAGGGCCTCTGCCCTGGGTCCCAG
 5 GGTGCTCTGCCTGCTCAGCCAGGCCTCCTGGAGCCACTCGCCCAGAGACT
 CAGCTTGGCCAACTTGGGGCTGTGTCACCCAGCCGCCGTCCTGTGGC
 TGCACAGCTCACCTGTTCCCTCCTGCCCGGTTGAGAGCCGAGTCTGTGG
 CACTCTCTGCCTCATGCACCTGTCCTTAACACACGTCGCCTCAACTGTAAT
 CACAACATCCTGACTCCGTATTAAATAAAGAACATCAGGCATGCTAC
 10 CAGGCCTGTGCAGTCCCTCAGTGCCAGTGGTGTCTGAGACCTAGGGGTTGGCC
 GGAGGGCAGGGAAATCTGACATCGGTGGGCTTGGCTCTGTGGACTCTGTGG
 GGTCCAGGGTGAAGGGTGGTGGTCGGGATCCCTGGTGTACCAAAGGAGT
 CACTCTGTAAAATTGGGAGTTATTATTCTGAGCCAAATATGAGCACCGGT
 GCCCTGTGACACAGCCCCAGGTCTGAGAACCTGTGCCAAGGCGGTCTGGC
 15 TACTTAATTGTATACATTAGGGACATAGGACATTGATCATTACATCTAAGA
 TGTACGTTGGTTAGTCGAAAGGTGGACGATTGAAGGGAGGGACTTTC
 AGGTCAAGGCAGGATTAAAAGATGTTCTGATTAATAATTGGTTGATTTATCT
 AAAGACCTGAAATCAATAGAATGGACTATCTGGGTTAAGAGGAGTTGTGGAG
 ACCAAGATTATTATGCAGATGAAGCCGCCAGATTGAAATGTTCTTATCAGA
 20 CTTAAAAAGGTACCAGAATCTTAGTTAATTCTCTGGATCAGGAAATAGAC
 CTGGAAAGGGAGGGGATTCTCTATAGAATGTAGATTCCCAGAGACAGC
 TTTGCAGGGCATTCAAAATACATCAGAGAAATATATTGGGTAAAATAC
 TTCGGTTCTTCAGGGCCTGTCACGTTGATCTTATTACTACAGAGTCT
 GTTTGTGAGTCTTAAGGTCTTTATTAGACAGAGTTGCTCTGTCAC
 25 CCAGGGTGGAGTGCAATGGCGTGTCTCAGCTCACTGCAGCCTCCCTCCACC
 TCCCAGGTTCAAGCGATTCTCCTGCCTCAGCCTCCTGAGTAGCTGGACAAACA
 GGCATGCACCACCCACCCAGCTAATTGTATTTAGTAGAGACGGTGT
 CGCCACGGTGGCCAGGCTAGTCTCGAACCTGACCTCACGTGACACACCAG
 GTTTGGGATTACAGGTGTGAGCCACACCCGGACTAAGGTCTCTGTTA
 30 TGTGAATGCTGGTCAGCTGTGCCTATGAGGCATGTTGGCCACCCACAGTCAT
 CATGGCCTCAACGAGCTTCAGGTTACTTAAAGATGCATTGCCAAGAGG
 TGCCCATTCAAGTTGGTGGGTTGCTTAGAATTACTTGGGTTAAACCAG
 GGAGCAACTCCAGGTAGCAAGGGCCCTTGGAGCGTTCTCTATTCTCT

TTTGGGAGAGGCCCTGTGTCCTGCAGCCACTTCCACCCCTGCCCTGGGCA
 CACAAGGGCACACAGTGAAGCAGGTGGCAGGAGGGTGGGCAGCCAG
 GGAATGCAGTGAGATGGCTGGGTAGGGCTGGTGCCTGCAGGACTCC
 TCTTCCTCCTGAGGGATGGTAAAGGATGGACACACTGCCCTCCGAGCATT
 5 TGAGGGTCTCTGCCCTGCCCATCTGTTACCTGTAAATGTTCTTGAGGAGCT
 GATGGCTCAGGCCTGAGCCACATCTCAGAGGGTCTGGAGGGAAAGAAAGACC
 TCATCCTACTAGGGAGCCCCCCCAGCCCACCAGCGAGCGGTGGTTGGGGCA
 GACAGGCTGTGGGCTAAGGAGCCCCTGCACTCCCCGTCCTTCCCTTGT
 CTGAGCACCTCCAGCCAGTGGCTTGGTAGACTCTCCTATTTCCCCACA
 10 TCGTGGGGTGGGCTGCTCTGGTTAGGCTACTTTCCCTAGTTGTGGGAG
 GGGGGTGGCTGGCACATTCACTGTTCCCTGGAGGAAATGAGTGCCTGGGAAT
 TCATATCTAGGGCTCCAGCAGCCTTTGCAGGCCAATTGGAAACTGTCCC
 CAGCCCTGCATTTAGGGGTTACAGAGTCTCTCAGCAGGCCCTCCCTG
 CTGCTCCCAACTGCAAGCCTGCACTGGTGGAGAACATAATGGTCCAAGG
 15 AGCCCCCTCTACTTTCCGCTGTGTTCCCTGTGGGGAGGGAAAGAGCAGTTA
 AGAAATAAGGAATCCCAAAGGCGCACAGCAGACCGGGGGCCGAGGAGTGG
 TCCTGCTTCCCTCCTTTCTAGGCTGAGCCACAGCAGGTCTTGAATCCTA
 TTTCCCAGCGGATGCCAGGACAGCAGGCCCTGGGGAGTTCTCTCGAGCCT
 TTCAGAGGGACCAGAGGTCTAGCAGCCAAGGAGAACACTCAGAATCCTTGAGTG
 20 TGTGGGGCAGGAACTCTCCAGCTGAGAAGGGCACAAGGTGCCAACCATCT
 AGGGCCAGTGGCCAAGGAAGACGCGGCTGTCGCAGGGAGAACATCTGGGCC
 TGGTCCTCCCTTCAGGGCGGGCAGCTGACCTGCCCTGCTGCGGACAGGCG
 AGGCCAGGCTGCTGGCTCGCAAGCATGGCGAGGCCAACCTCCCTGCTGC
 CGCCCGCCCAGCCACGGCTGACTTGAAGCTTGAAGGAGCGTTCAGCAGCCTC
 25 CATCCTGCCGGGAGGACCGGGACCTGGAAGGGCCTGGCCCTCGCTCCCT
 GCAGCGCCCTAGGGGACGTCTCAGTGCCTCCGGAGCCGGACCAATGCAC
 CAGAGCTGAGGGCCAAGGGTGTGAGGGTGGCCGGCAGTGGCCCCGAGGA
 CGGCGCCCCACAAGTTGCGGCCAGGGCCAGCAAACCCCTAGGGTGGAA
 AGCGTCGGCCAAGCTAGCGGGTCCAGCAGGGCTGCCCTCACCGTGGCCC
 30 AGCGGTCACGACCCCCACGTCTCATCGCGGGCTGGACTGCCTCTGCGTCTGG
 CCTGAGCGGGACCGTGGATCCTGGGAGCCCCGCTCGGTGCAGTACAGA
 GCCCAGAAGGAGTGACGGTTACCGCTCCGGTCAGGACCGGAAGTGCCGGGA
 ACGGCATTGTCCTCCGTGCGAGATGACGCACCTCCTGCCTGAGGCGGCCGCT

GTTCTCGCGGCTCCGGCAGGTGGCGCTGAGACCACGGGAAGGCCAGCCTGGC
 TGTGGTTAGCCCTCGAGCATTCTGGGAATTGCAGGCCTGGCCCCCTCCTCTTC
 CTGTTCTGGTCAATTCCGGTCTTGTTCCTCAACAAATGCCGTGTTCCGGG
 GCTGCTTCCGAGCCGGACCCAAGGGCCGGGGCGTAGGAGTAGAGGGGCG
 5 AGCGCATGCGCACAGGACTACACGTCCCGACAGGCCTGGAGCGCGGGCCC
 AGTTCTTGTGGAGCTGTAGTTCTGCAGGCGCGGAAGCCGTGGTGCTCGGCC
 GGCAGAGCACTCGGTTCTCCAGAGGGCTGAGCGCGCCGACGGAGGTGCGGC
 GCCGACCAAGATGGAGACTGCCGAGCAGCCTGAGCCGTAGGTTGTGGTG
 AGGGAGGACGGGCCGCGCGGGCCGAGCCTCCGGGAGGTACCCGAGCG
 10 CAGCTTAATACCTGAGCTCGAAGGCCCCGCTGTGCTGCCGACCCCCGTACC
 TCGCGGCCGGGCCCTGGGACCCACAGCATCCTGTGAGGCCGGAGGCCTG
 TCCAGCCCGACTGGACAGTGCCGAGGGCACCGAGAGCCAGCTGGCACCGA
 GAGTCGTTGTTCTGGCGGGAGGTCTTGCTGGCACATATAGTGAGAAA
 GGCCGGCTCTCGTTCATGTGGAGAAAGAGACGGCTCCTCAGCCTACGG
 15 ACATGAAGGAGTCAACTCTACCTTCACTCGTGCCTGGCTTCGCCGAGAAC
 CCGAGAAACGGACTACCGGAGTCCCTATCTTGAGCCCGATCCCCGCTACCC
 GTCGGAGTCCCCGCTGACCAGGCTGCTCTGGCCGGCGGTCCGCTGC
 AGAGGACGGAGTGCATCTGGGAAGCAGGGTTCTGGTGAACCTCCAGCTT
 CGTCTGCAACATACTGTGTGACTTGGCAAATTATTCCTCCGCCCCGTTCT
 20 GCCAGCTTAAACGGTCACTCAGTGGGGGTGCTCGTATCCCTTCACTGG
 GGTGGCTTCTCACTGAGGAGAGTCGCGCCTCAGAGGAAGTGGCTGCC
 TGTGTCGACCTGGTGGGGGCACTAACAGAGCCCTGATAGTACCCCTGACCCC
 ATCCTTATTGGGTGACAAGACACAGGTCACTCTGGCGGGCAAGGAGTTT
 GGTAGCAGGAGAGGAGTCGGTGGATGGATGGCTGAGGACAGTGCAGAAGGG
 25 TGTGGCTGGCCGTCTTTTGCTGGAAATTCAAGTTCTGAGGCACCCAGT
 CACTCCAGCACTAAATGGGTGCAGGAGGCAGCACTGTCTGCCAGCTGGAA
 AGGCAGGGTATGTGCTGAGTGTACAGGTGGAAGGCCACTGGAGGTGCTCC
 AGGAGCCGGGGATTACCTCTGCCTAACAGGGCTGCTCAAGGTGATGGTC
 GACACCCCACTTCTGAGAGGCTGACAGATGCCAGGGCTTGGCTGCA
 30 GATTCTGGAGCTCCGGGATCTCCAGCAAATAGGAGCAAATCTTCTC
 CCGTGGATCAGGAAGGTGCACGCTCTTGGAATACGACTGCTCACCCGC
 ACAGCAAGCAGCTATAAGTGGCCCTGCCTGATTCAAGCCCTGGGTTCAA
 GCCCTGGGTGGCTGCTTACTACCAAAATCGCTCAGTAGCTCCAAGCCTGCCTG

CAGAGGGTGGCACCATTAAATGAGGTAACGAGTCAAAAGTCCCTACCTGG
 GTCCTAGCCTGTCAAGGGCTCCGAAAACCCAGGCTCAGGTGGTCTGCCCG
 GCACCTGTTCACACATGTACACTCCGGTCTGAGGTTGGTCTCTCCCCCACC
 CCACCCACCTGCAGTGAGCAGCTGAACAGAGGCCATGCCGGGCACTCCGA
 5 GGCCTGAGACGACCACGCCTGTGCCGCTGAGGACCTTCATCAGGGCTCCGTC
 CACTTGGCCCGCTTGGCTGTCCAATCACACTCCAGTGTCAACCACGGCACCC
 AGCAGCCAAGAGAGAGGTGAGAGGGAGGGCTGGAGGGGGAGGCAGGACTCCAC
 CCTGTGTGGGACAGTTCTGTCAAGTTGACCCCTCCACTTGTCCAGGGCAGTGGA
 TCTGCAGGGGGAACTCATTCTCAATACTGTTCTCCTGAGAAACAAATTTCT
 10 GGGCTGTTGGTTAGGTGTGGCGTGGCCCTGGGACGCATGGCTGAGGCA
 GGAACAGGTGAGCCGTCCCCAGCGTGGAGGGCGAACACGGGACGGAGTAT
 GACACGCTGCCTTCCGACACAGTCTCCCTCAGTGACTCGGACTCTGACCTCAG
 CTTGCCCGGTGGTGCTGAAGTGGAAAGCACTGTCCCCGATGGGCTGCCTGGG
 GAGGAGGATTTCAGGTCTGATGAGCCGCCCTCACCCCGTCAGGCCTCCTCCC
 15 AGCCACGGTGCAGCCATTCCATCTGAGAGGCATGAGCTCCACCTCTCCAGC
 GCAGCCGTGACATCTTGACTGCCTGGAGGGGGCGGCCAGACGGCTCCATC
 CTCTGTGGCCCACACCAGCATGAGTGACAACGGAGGCTCAAGCGGCCCTA
 GCGCCCTCAGGCCGGTCTCCAGTGGAAAGGCCTGGCAGGGCCATCGGAGCC
 CTGCCTCACCAAGGGTGCCTCCGGTCCCCGACTACGTGGCACACCCCGAGCG
 20 CTGGACCAAGTACAGCCTGGAAGATGTGACCGAGGTCAAGCAGAGCAAT
 CAGGCCACCGCCCTGGCCTTCTGGCTCCCAGAGCCTGGCTGCCCAACTGA
 CTGCGTGTCCCTCAACCAGGATCCCTCAGCTGTGGGGAGGGGAGGGTC
 ATCTCACCAAACCAGTCCGAGGGTCGAAGCCAGACACGAGAGGAAGAGG
 GTCTGGGAAGGTGGAGAGCCAGGCAGGGCGGCCCTGGGAATCCTGCCA
 25 CAGACAGGGCGAGGGCCCTGTGGAGCTGGCCATCTGGCCGGCCGGAG
 CCCAGAGGCTGAGGAGTGGGCAGCCACCATGGAGGCCTGCAGGAGGTGGA
 GGCACTGTCAAGGTCTGTCCACAGTGGTCTGTGCCAGGTCTCCGCCGGTGG
 AAACTGTTGGCTCCATGGCAGCAGGAAGCGGAGTCGAGACCACCTCCGGAA
 CAAGAGCAGCAGCCCCGAGGACCCAGGTGCTGAGGTCTGACAGGGAGATGG
 30 CCCAGCCTGACCCACTGGCCACTGCCATCCTGCTGCCCTCCAGTGGGCTG
 GTCAGGGGGCAGCCTGGCCACTGCCTAGCTGGAATGGGAGGAAGCCTGCAGG
 TGGCACCGGTGGCCCTGGCTGCAGTTCTGGCAGCATCCTCCCAAGCAGAGA
 CCTTGCTGAAGCTCCTGGGTGTGGGCTGGAAGCAGTGGCTCCCTG

GTAGGGACAATAAAGGTTTGGGTCTTCTGAGACTTGTGTATCTGGGCC
 CTGCTTACCCAAAGGGCTCAGTGGCAGCAAGAGCTCCCCACACCTGACCCTC
 GGTGCCGGACCACTCGAGGGTGGCTGACACCTGCATCCCTCACAGCACATC
 ACCCAGGTGACAGTGAGAATTGAAACCCCAGGCCTCCTAGGGCTTGTGG
 5 CTCAGTGGCAGGTGTCCAGTGAGTGCCCTCAATGGGCTGAGTGGGTACAGA
 ATCTGCCCTCCCCAACCAAAGCCCACATGATGCCATCAGCCCCAGGCCTAGT
 GCAGACCACAGCTTGGGAAGCGAAAGGGAGATGACAAAATGGGTGTGGACA
 GAGGAGGTGGGTGAGTGGGCAGTTGGGGCCTGGCAGGTGTTGAGCC
 TGGGGTCCAGTTATCTGGGCCACGTGGGTACAGTGTTCAGGCTCCAC
 10 TGAAGATAAAGCAGCCACTGGTGCAGCAGGGCTTGTCTGGGCCATAA
 ACACCAGTGTGCTGTACTGCCATCGGGTGTCAAGGGGACAGCTGACAGA
 TGCAGTGGATGCCAGCCCTGTCTCCAGGAGCCAGTCACCTGAGCCCCAAA
 GGACCTTTGGGTCTTAAGTACAGAAATTCTAACCAACCAGTGTTCAAAAAA
 AGATGAGTCTCTGTCAAGCAACACAAGTCAGGGCAGGGTGGTGCAGACC
 15 CCAGAGCAGCTCGCAGTCTGGATGGGGTGTCTCCCCGTACGCCACAGGG
 CCAGCTTTCCACAGTGCAGGCTGGTCAGTTCCAGGTAGGGATGCCGTGG
 GCACGTTTCTGCCCGGGAGTTGTGCCTGTCAAGGGAGACAGCCCCATGAC
 ACTGCTGTGCCTCCGGGGAGGCCAGGAGGGACAAGGAGCGGTTCTGGGT
 GAGGGTCTGTGGTGAGGCACCAGGAGGGCATTGTCTGCTGGGGCTGGT
 20 CCCCTGGGGGTTCCGCTGGAGGTGGCAAAGGTAGTGCACAACGTGCAG
 GGTGCCAGCTGAGGAGAGGTGGCCCCACACGTGGCAGGCCAAGCAGCTCA
 GGTGTCCGAGGGAGGCTGCCAGCCCCGGTTGTCAGGCCATCTAACCCA
 CCTCTGTGGTCAGCAGCCACCAGCTGGCTCCCTGCCACAGTGCTGAGAGCC
 TGCTGGGAAGGAAGGCCCCCTGAGCGGTGGGAACCAGCAAGGCAGGCCA
 25 GGAAGGGAGAGGTAGCTGGCTCAGAGGCAAGGGCAGGACGCCGTGGCTC
 TCAGAGTGAGTCCCCACAGGCCAGCCTGGGAAGATGGGAGGCCAGAGAC
 AACCAAGGCCCTGCCTGCACTCCTGGACTAGGAAAGCAGCCCCCTGAGGC
 CGAGGGGCCGTTGCTGAGCAGGACAGTCCAATAGGGCCCACGCCAG
 GCAAGGCCTCAAGAGTCTGAGTGAAGCACATTGCCCTGGCCAAGGCAGGG
 30 ACTCCGTAGAGGGACCCACACCACCTGAAGAGGCCGTCCAGCCAAGGC
 CTCCTGAGACTCCCAGGCCAGGCAGGGAGGCAGAGCACACAGCACAGCTA
 CGGCCCTAGGCCGTGCAGAGTGGGTGCCCATGCCACCCCTCATCCCACGCT
 CCCCAAACAGGTTACTCCGGGGGCCACCCCTGGGCCAGCACGTCAAGCCA

CGGAGGGACACGAGCACCAGCAGTAGTTGATCTGGAGAAGGGAAACACGTC
 CGGGAAAGCTCCAGGGCTCTCAGGACAGCAGGGGACAGGCAGCCTCCCCAT
 CTCCCCCTCTGCCAGGGCCCCGCTGCCCTGTGACTCCTCCCTTGAGAGC
 TGCCGCTCACAGGCAGGGTGAGTGAGGCTCCGTGAGGCAGTAGAGTGA
 5 AGGCGAGGGGTCTTCAATGTGAGACCCCTATTAAAGGCTGTAGCCTCCAA
 GTGGCAGGGTGGGAGGAGGCACAGGTGGGACGGCCTGTCTCCCCAGAACG
 CTCCTCTGCCACTGGGTGCTCCTGTCCCTGGCTCTGGCCTGCCTCATCTGT
 GAGTGACCGGGCAGGGCTGTGGACCCATCCCAGTAGCCCCACGCAGCCA
 GCCTCCCATCAGGGAGAGGAGCTCTGGGCTCGCTGTGACTCCAGAC
 10 ACTTGATGCGCTTTCTGCTCTCAGACCCCCGAGGTACTTGGCAATGAAG
 TCCACTCTGCGGCAGGAGCAGGTGGTCAGGCTGTGGATGGCCACGCGGTGCT
 CTGCGTGTGGGAGCCTCCCCATCCCCCAGGCCTCCCTGTGTGCCCAGIT
 GGGGTGCCCTGGCCCTTCCCTCCCTCATGCCAGATCTGGTGGCACCA
 GGACCCCTCAAAGTGCACCTGGTGCAGTACAGAGCGCTCTATGCCCTCCAGT
 15 AGGGCTAGGGTGCCATCCCTGCCTGGCGCACCAACCCAGAAAGACGGTGCAG
 GGCAGGCAGTCGGGACAGGCCCTGGAGGCCAGGGCTGGAGGGAAAGCCAGG
 GGTGGGTAGTCCAACCCCTGAGACCACAGCAGGGAGGGGCCACGGTCACTG
 TGCACGCTCCCTTTGCCTGCCAGGCGTCCAGCAGGTCCCTGCACAGGTC
 AGGCTGGAAAGCTAGGCCCTGGCTGGCCAGAGCCCTGCCCTACCCCTT
 20 CAGCTTCAGTCGCCAGCTCAGATCCTCTGTCACTGGGCCAATGGCACATCC
 CCGCTTAAAGACAGCCCATAACCCACCAAGTGATCAGGACAGGCCCGCACC
 TGTGGCGGTTTCCGCAGCACCTCCCCCTCGCTGTCCCTCCGCTTCCA
 TCTTGCTCAGGAAGTTCTCCTCTGGACTGTCTCCAGGTGACGACCTCTGGT
 CCAGGGGGCTGGCAGGTCTCTCTGGAAAGCCAGGTGGCAGCCAGCATT
 25 ACTAGAGCATGTGGCGTCAGTGGCAGAGCCCAGGCCTGGTCCGGCGAG
 GTGGGCCAGGCAGAAGGAGTGAGTGGGCCAGCCAGGGATGGAGGGCAAG
 CATGGCCCTGTCAAGGACGCCAAGCTGCGGGTGGACGGCTCAGCTGTG
 CAGCCTGCACAGAGCCCAGCTGAGGACCCACAGGGCTGAGGAGGGTCCAG
 GTCTCTCCAGACCTGCCAGCGCACAGCCCCGCCCTGGACCCGCCACCTC
 30 GGCCTCACCCAGGTGCTCCGCTTGTGCTGCCCTCACCCAGGTGCTCCGCT
 TGTGCTAGCCTCTTCTGAAGACCCGGCGAGCGTCAGGCTCAGGTGGCTG
 AGCAGGATGAAGGGCGGGCCAGGGCGGGCGCTGTGGTACTCCACAATC
 AGGTTGTAGCGCTGGAACCTCCAGAACATGTCTGCGTTGCCCTGCACCACTG

GAACGTGTAGCTGCAGGGCACAGCTGAGCCGTACCTACCGGCTCCCCACG
 ACCACTGGGGACGCATCCCCCTGCACCTGATTGCTGTTGGGAGCCCTT
 TTGAAACTGAGGCCAGCACTGCTCTGCCTCTGGGTGTGTACGAG
 GGGTCCACTCTCCTGGTCTTCCCCTGTCCACTCTGCTCTCCTGGACAAGCCC
 5 AGAGTTCTGCCACAGCACCGGCCCCAAAGACCCAGGCCCTGCTTCCTGGG
 ACTGGGAGGGTGGCCCACAGAGTTCCGGTCTGGGAGGCAAAGCCCTGCA
 GTCCAGGCTATGCCACCTCTATCTGCCCTGAGGCACCAAGCCTCACCCCTTG
 CAGCACACCAGGTGGGTTGCAAAGGAGGCGGTGTTGGGAATGACCCCTG
 TCCCTCCGCTCCAGGGCTCTCCTCCAGGGTTGGGTGGAGTCACCTGAACA
 10 TGGCGATGAGCAGGTTCATGAGCAGCACATTGGTACCAACAGGAAGGTGAC
 CAGCAGGAGGATGACCAGCCAGTTGGCATAGAGGCTGGGCAGGATGGTGA
 GTCCTCCAGCAGCAGTGGTGGGTGGAGCAGTTCACACGGGCTCTGGAAAG
 CAAGGGTGTGTGGGACCAAGACCGGGGCAGCCACAAGGGCGGCCTTAGG
 CAAATGCCCGAGATAGAGCGCTGAGTCCTGGTGTGAACCCAGGGACGGG
 15 GTGCTGGTTGGGTACCCACTGTCCAGTTCACCCAGGGCGGCCTGGTTTA
 GCAGTGAAAGCCCCATCACAGCAAACCAGAACAGACGGGTGGTGAGCCCC
 ACCCTGGGCCCCCTTGCCATGTCTGCTGAGCTCCACCAGGGCTGGAGTC
 GCCAAGATCACAGGCCCTGGAAGTAGAGCCAAGACCCCTGGAGGGATGGAA
 GGTGGGGACAGAGGGTCACGGGACCCAGGTTCTCCTGGTTGGATGT
 20 GTTAAAACCTCCACCCCTCTCGAAAAAAGCCTCTGCTGTTGAAGGTTGGG
 GAGAGCTGCCGAGGAAAGGGAGATGGGCCCAGGACTTCTCAGAGCCTCTAC
 AGCACTAATGCCGTGATTAAACCCCAAGCTGGCAAGTAATTCCGCCACCTT
 CCAAAATGTATTGAGCCAGCAGGCTCCAGACTGGCTTGCTGCAAGCTCTGA
 GGGCACCGATCCCGCACTGGCCACTCAAGTCAAGAACATTCTCAGGCGGC
 25 ACACTCTGGGAGCTGCAGGCTGAGCTCCCTGGGCCTGGGCAGGGACACCC
 TGGAGGGGTGGCAGATCTCACTCCAGTCCCTAAAACCAGACCCCTCACACCT
 GCTTCTCCCTTGTAGGGCTCAACCCCTGGACCCCTACCCCAACCCAGCCTGCGG
 GGCAGGAGGAGGGAGGAGGAAGGAGGCCAGTGGCTCAGGGTGCT
 CAGGGTCCCAGCCAGAGGCCAGAGTGTGCCCTGCCGTCCAGGACCACATAT
 30 CCCCTCCATATCGAATGGGAGCTCCGCTCTCTCCCTCCCCAGCCTGCAC
 GCTGGCGTGTGTGAGCTGCCTGAGCCTGTACATGTGATTGGATGTGCCTGGCACAC
 ATGCTCATGTGTGAGCTGCCTGAGCACACTGGCACACACGGGCACATT
 AAGTGTATCTTAGTGCCTGCCAGCTCCAGGTTGCCCTGCGGTGGTTCTGGGG

GGTCTCCTTGTCCCAGGTT CCTGCCTCTGTGCCTGGTCCTGAGCTGGAGGG
 GTCCGTTCTCCCTCCTAGGGTGAATT CCTGCCTTGTGAGTTACTGAGTGTCTGTGCACGGCA
 TGTGACGCGTTGGCCCCGTGTGAGTTATTGAGTGTCTGTGTGCACGGCA
 GTCAGTGAGCGCCAGCCCTCCCCACGCTCCCACCCCTAGGCCTGCCCTCCTCT
 5 GTCCGCCCTGGCCACCTCCAGCCCATGAATCTGTTCTGGCAGACTGATGAC
 CCCCTCTCCTCCCTGCACCTGGAGGAGCAGGGCCGGGCCAGCCTGGAGAGC
 CTGTTGTGAAGCCGTAAATCTGTCGATAAAGGCAGCTCTGAGGAATGAGA
 CCCCCACACCCCTCCCCGACTCTGTGATTGGAAAGGCAGGCCACCAGGCCGGCT
 GGAAATTAAATTGTCCCTGGGGCCTGGAGACCCAGAGAACAAAGCTCGTCACC
 10 ACAGCTCAACCCCAGCTCCGGCTCGGCACGAGTGCAGAGTGGGCAGGGGTC
 TGTTCTGGCTCTGAGGAGACCTGCAGGCTGTACAGGAACACTGTCTGAGCCTCA
 GTCTCCCTCTCAGCCCAGCATGTGTTAGTGAATAACTCCCTGCCTAGCAGCAT
 GAGGGGCTGGTCACAGTGAGTGGCTGGGTTCAACCTGAAGGGCCAGATA
 CTTGCTCGGCAGCTGAACGGAGCCAAGGAATTGCAGCTCAGGGAGGGGAAG
 15 TGACAAGTCTGAGACTCTCAGTGGCGGCCGGGCTGGCCCTGTTGCAGGCG
 TTTCAGCACGGGCTCTGAGATCCCCCAGCACCGCAGACCTCCCTGAGGCA
 GCACTCGGAGCAGGGCCCTCGGGAGTCTGTTCCCTGCCTCTCCGTCGA
 GAAGGAGGCTATGCCAGGCCTGTCTCCTCATACGAGTCGCTGAGACTGCC
 CACCAAGAGATGCAGCCACTCAAGAAAGAGGGACCCCCAACCTGCCCTGGC
 20 TGGAGGCGCCGTCTAGAGCTCCTGCCCGAGGGGCCCTGCGGACGGGC
 AGTGCTGGAGGCCGTATGGTGAGGGCGAGGTGGGTCGCAGGCAGGCAGGG
 TCTGGTTAAACTAATGCCCTGGAAAATGAATGCCTGTGATGAGCAAACACCA
 AAATGTCAGGAGGGCTGCCGGGCTGAGAAAACAGCCAAGGAAATGAGC
 CGCGCTGGAGAGGCCGGTTCCATCACGGCGTCGCCCGCCTGTCCCCGGA
 25 GGCCTGTGTTGCTCCGGTCTGGCGTCATCCCCCTCAACAAATATTATCGAG
 GGTCTGAGCGCCACTCCACAGAGGTGGGTCAGGCCTGGCAGCACGTTG
 TGCCATGACTGCCCGTGCAGGGCAGCCCCAGCCGCCTGACACCCGCTGAGC
 AGTTTCCCTGCACCTCTCTGCCGGTCTCAAGTCTGCGGCACCCCTCGAGG
 GCCCCAGGGCGGGCTGGCTGCTGGTCCACCTCCAGAGGGGTGCCTCCCT
 30 TCCAGGTTGGGCTCCTCACTGAGTCCCAGCCATCCCAGGGGCCCTGCACAGGT
 CCCTGCCAACCCAGAGCTCCCCACCAACCCATCACTACAGAGGCCCATG
 GCCAAGCGGCTCTGACCCCCGCCCTCCCCACTGCAGTGGCTATGAAAAAG
 TTTCCAGAGCCTCCACCAGCCCCAGCCAGCTACAGGGTGGCCTGGGACA

CCCATAGGCATGGCAGGCCACACACACACATTGGGGTGGGTCCCCAGGAGC
 AGCCAGGGTGCCTTAGGAGCGGCCAAATGGCGAAGGGGCCTGCCAGCAGG
 ACGCGTAGGGCTCTGGTGGGTGCCCTAGGCCAACAGCAGGCCCTGTGGGAG
 GGCAGAGGCCAGGGCTGTGAGGAGAGCTGGAGGGCCCAGACCCCGGATGA
 5 TGGCTGGGACAGCCTTGGGCCACTCTGTGCCCTAGTGCCTGCCTATCCCT
 TCCCCACCGATAGACCACCCCCAGAGCAAGACTTGCTGCTTGGCCTCCCCAAG
 CAGGAGGCAGCCCTGGCTGCCCTGGGTCTCCTGTGTCTCCTTCCCAGCCA
 AGGCCCCAGGTCCCAGGTGGGCTCCGTACTGGAGCTGCCCTACCTCAG
 GAACCAGGCCTGGCCCTTGGGTGTGGGGCCTGGGACCAGGCCTCAGC
 10 CACTTCTCCCATCTCTGCTCCAGGCTGGGTCTCCATGGCCCCAACAGACCTC
 TCTGGAGAGCCTCATGCCAGGGCTTGTGCACACAGGGCTCCAATTCTCCCT
 GCCCTGCCCGCTGGCTGTGCAAACCATCAATCTGTCCAGTGGATCT
 GGCGAAGATCTGCAGGTAGGGCCGGTAGAGCACCCGGCGAACATCCACTC
 CAGGCGGCCGTATGGGTGCAGCAGGCCCTGGTGGTACACCGTAGGCC
 15 ACGAGCCACACGCTCAGAAAGAAGAGGAAGAAGAACGTCCATCTCCA
 CGGGCAGGGCAGAGAGAGAGGGACGTCAGCGGCCAGCCGGTGGGCCAG
 GCAGGGATTGCTGTCCCTCCAGGGCCAGGGCCAGGGCCCCGGGGCTCAC
 CATGCGCTTACACCGATGATCTTGGGCCAGCTGCTGTGTATGGCAAAGA
 TATGGATCAGCCGAGCGTAACACCATGAAGTCCATGGCGAGGACTGTGCG
 20 GCCAGCCTAAACGCCGACGGCAGCATTGGAGGATGGGAGGCTGATGCCG
 CTGCGGGGCCAGAGAGGGCAGAGGCTTCCCCAGGGCACACAGCATGCTG
 GCTGCGGCCAGGGCAGGGCAGGCCAGGACTCCTGGCCCTGAGTGGCTT
 CATTTTGTATTAAAGAGACAGGGCTTGTCTGTCACTCAGGCT
 GGAGTGCAGTGGCATGATCACGGCTTGCTGCCTCAACTCCCTGGCTCAA
 25 GTGACCCACCCACCTCAGCCTCTGAGTAGCTGGGACCAAGTGCACCGC
 CACACCCAAACCTGAGTGGCTCATCTGGAAAGCCTGCCACAAGCCGCCCTGA
 GGCCACACGGCCTCTGGGCCACAGACCTGCAGGTGACACCCACGATGAAC
 AGGAAGATGGCCACCATGTACACTTGTCCAGTTGTCCCCACATACAGTGT
 GAACTTCTCACCAAGGTGTGTCTCGTGTGAAGAACGCCCTGGGAGGGA
 30 GGTGGCAGTCCACTGACAGCTGCCAGGCCCTCGCTGGGACAGCCCTA
 CCTGGACAAGCTGGATCTGTAAGGATCAGGGTCCATCTATGACCAGGGCC
 GAGGCTACCAGTGGACTAGGGTCCACTGAAGCTATTCCAGGGCTGTCTGG
 GGACAGAAGGTGAGGTCACTCCACTTGGGCCAGGGCCTTTGTGCCCA

GGGTCTAGGGATCAGTTATGCAGTGTCTGGACTCAGTCCGTGATAACAGGTCA
 GGGTCAGACTCTGACGAGGGAGACCATGGTCATGCTCAGTCTGGAGCAGGG
 CTCAGGGCTCGGTCTTGACCAGGATCATGGCCGCTGGTACTGGGAAGATG
 GGAGGCCCCATGCTGTTCTGTTACAGTTGGGAGCCCCACCCCTGCGAGG
 5 GCAGGACCCAGCTTAGGTTGCCAACCTGAAGCTGCAGAGTGGAGGGGACCT
 AGGCTAGTGTGGCCACCGACCTGCCGGATTCCCTCCAGCACCGCGTAAAGA
 CCCAGAAGTAGAGGGTGACCTCGGGCCCTGAGGGGCCCTGGGGGGCGGCCT
 GAAGTCCACCAGCAGGACGTAGGTGAACAGGAAGAGGAAGGCGAAGTACAT
 GACCACGTTCCCCAGGAACACAGTCACGGAGCGCCCCAGAATTCCGCCAG
 10 CGTGTGAGCAGGAAGACAGCACGTGGCCTCGGTACCCCTGAGCCCTCGCG
 CCTCCACCAGCTCCTCCACCCTGTGCCGCAGAGAAGTCGAGTGGTGAGGCT
 GGCGCCAGCCGGTGCCCAACCAGAGTCAGCCTCCCAGCCACCACCCGCC
 AGTCCCCTCCACCCTGCCTGCCCTGTGCCTCGCACCGCTCTGCAGGCCATA
 CAGCGGGCTTCTCCGTGTCCAGGCTGTCCAGGTCTGCAGGTCTCAGGC
 15 CTGTCCCTCAGGGAGCTCCTCACTGCGAGCACAGGAGAGCTCAGGGCCCGC.
 AGGAAGGGCTCCCAGAGGCCCTGCCCTGGCTCCAGGCCTGGCCATCAAAG
 TGCCCCTGGGATGCAGGGCTGTGGGGAGTGGGACCCGCAGGGAGGCTGG
 ACTTGGGGCTACAGAGTCAGGCTACCACCAAGCACCTGCGAGGCCAGGCC
 TCCCCGTAGCTCCGGCACTCGCACTGCTGCCTGCCCTGGCCGGCAGCTCACA
 20 GGCCTCACCCACCTGAAGGTGATGAGGTTGGTATAGACGAGGGGGCAGA
 GGAAGGCTCCTAGCAGCCGCAGGATGGCGTGCCTGCCCTGGCCATGTCCCCCA
 CCAGATCCTGGTCAGGAAGGCCTGAGGTGAAGGAAAAGTGTGGCTCCAAC
 TCTGCACCTTGCCCAGGCTGCCCTGCCCAAGGAATGCCCTCCCCAGGT
 GCCTGGCCCACGTGAGCTGAAGGGTGCCCAGCCAGCCCTCCCTCCGGAG
 25 CCCCCGTCTGGTGGCATGTGCTCCTGGCCACTCATCCCAGGGTGTGGG
 TTGAGCTGCTGTACCCCTCACTAGGGAAAAGATTGGGCTGGGGTTGGGA
 GGACTGAGAGGAGGAAGTGCCACTTCCACTGAGGCCAGAGGCAGGGAGT
 GTGCCTGGTGGAGGAAGCCAGGTGGCGCCTCCAGGAACAGAACAGCCCCACC
 CCGCCCCCTGTGCTGAGGACGGAGTGACAGGGCAGCTGCAGGCTGGAA
 30 GTCAACTCAAGCTGGCCCAGCTGCCGCCACCCACCCCTGGCAGCTCT
 CCTCGAGGACAGCTGGCACTCACCTGAACGCCGTGGCAAAGAACAGGCCT
 TGGCGTCAGCCTCGGTGGCCAGGTGCAGGCAGGTGGTCTGCTCCAGCAGCG
 GTTCCGGCGACCAGCAGGGCGAAGGCGCGGGCCTACTGTTGCTGTAGCAC

TCGGAGAAGAGGTCTGCCCGGAGGCCCTGGCGCTAGGACGAGACGCCGA
 TGCCCGCCGGCCCCGACGCCCTCCATCCCCTGCCAGACCTGGGCT
 CTGCAGCCGCACCCCTCGTTAACACCGCAGGGCCAGCCAGGCCTCTGCC
 CTCCGGCCTGCTCCGGCCCTCCTGAACCTCCGTCTTCTCCGGCTCTGTCCC
 5 TCCCCCAGCAGGACAAAGGAACCTCTGCCACGCTAAATGTCCCTCGCCTGC
 GGCAGGGCCCAGTGTATGCCCGGGTGTGAGGCTGTATCGTCCTCACCACT
 GCACAGCGTCCCACACTCAGGGTCTGGGCCCTCCACCCCAGGCAGAGC
 CGTCTGTCCCTCCTATGGAGGAGGCCCTGAGGGCACCTGGAGGCCACGG
 CGGTAACAGGCAGCCCTGGCGAGGCCAGGACCCCTCGTCCGACCCCTCCGT
 10 CACATCCTCCCCCGCGCGGGCCCGGCCAGCCGCCGGTCACTACCAAG
 GGCCAGCCGCTCGTATTCGCCTCGCGCGTGGCTCGGCCGCTCGGCCTCCG
 TCTCCAGGTGCGACATCTCTTGAGGATTTCAGGCGGCCAGTGCAGGCTGCC
 ACACCTTCCTGGCCCTACGAGACCTGGTCTCAGGAGGCCGCCCTCCCTGCC
 CCCCGCTGGGCCCGGCCCTGGCTCACCATGGCCAGAAGTAGGTGGCCA
 15 TCTCGTGGCGGTCTGCAGCACGGCCACAGGAACAGGTCCCGCCAGGGGTT
 CTCGCTCTCTGGTCAGGTCCAGCAGCCACTCTGGCCGTGGCCGCTTGG
 CCGGCCCTCTCCTGGAGGACACGGCGTCGGCCTCCTGCTGCGGCCAGC
 CTCGCCCTCCATCCCCACGGAGCCCCGCTCACCGCCCTCCTGCGGTCCCTG
 GCCGGCGTCTGGTAGAAGCCTGGCAGGCGCTGCAGGAAGTCCTTGAG
 20 TACGCGGGAGACCTCGTGCAGGGAGAAGGCCGGTGGCCCCGCCGGTGGCTCC
 CGGGCCTGCTGGTGCAGGCCAGCGTCAGCCGGCCTCCTGCTT
 CCGCTGCAGCAGGTGAAGAGCAGGCTCTGCGTGACACGGAGCGTAGAGC
 TCCTGCAGCCGCCATACGTCAAGAACGTCAGGACAGTCGGCCACGTC
 AAAGAGGCGCACAAACTCGGCTTGTGCTGACCAGGGCGTCCACCATCACC
 25 TCCTCCAGGTACAGGACTTGGCGGCCATGGCACCCGAGGGAAAGGGGACA
 AGAGAGTGAGCGAGAGACAGGAGGAGGGGCTCAAGGAAGGAGAGAGCAG
 GGAGCATGGGATCCATCCCCAGGGCCAGGTACGCAGACCCCTCGCTCTC
 CTGCACCCAGCCTGCCCTGCATTGGGCGGGCACAGAGGGCCAGTCGT
 GAGCAAATGCTGAGGGTGTACAACCCCTTGGCTTGGGACAGAGGGACAGCCGGCA
 30 CCCAGCCAGCTCTGCCCTGGCCAGTGAGCGAGGCAGAACGCCGGCAGAAC
 GTGGCCTGGTCTGCCCGGACCTTGGGACAGCTGGGAGAACGGCTCAGC
 CAAGCAGCCCACAGGGTGCAGGAGCAGGCAGCGTGGCAGCTCGGGCAGTG
 CCATGATGGGAGGTGGTAGGCAGGGCTGGGAGGCACCTCACTCCACGT

CCCCATGAAAGATCTCACTCTGGCGATGTCCACGCCGGTCCCAGGCCACGGCC
 AGCTTGAGCTCATCCAGATAGTCCTGAGGCTCTGGCTGTGGCTCTGCAGGC
 TGTGGCAGAGCAGGCAGGCACTGGTGAGGGTGGAGCTGAGGGCCTCACAG
 AGCCGGGGCACAGGGTCCCCAAAGGTGCGCTGCCTAGAGACGCCAACGG
 5 GAACTTCACGCTGGGACTTGAGGGGCACATGCCACCTCTGAGCACCAGC
 AGGAGGCACGAGACTTTGTACAAACCGCAGGAGAAAGCGTGCTGCCCTGGTC
 TCGTCGGGACGGCCCGTCTGCTCCATGTGAGGCAACTTCCTGGCTGCAAC
 GGGGTACCCAGCTAACACCTGGCCTCGAGGCCACTTCCTGGCACTGAAG
 GTCCAGGACACCCCTCCTGGATGTTGTCGGGGAGCAAGCTGGCACGTTTC
 10 CTCCACGGCAAGGGATTGGCCATGACTTGGTGAGGTACCCAGGGTCACT
 CAAGGGGGGCTGCAGCACCTGGCTGGTGCGCCTGCTGGAAACCGCTGTC
 CTCACCAGACTCGCACGTGAGGCTCACCAGCCTCAGCCTCCACAACCATGGA
 CCCCGTAAGACTACGGTGCCTCTCAGGCCACTGGGACCAAACGTGAGACTG
 GTGAGAAGAGGGGGAGTCCTAACACGGGAGGTTCTTGACCTCCTG
 15 TCCTGGTGAGGTTCTAACCCAGAGCCACCGCAGTCCAGACACCCCTCCA
 GAGCGTCCCCCAAGGTGTCCCCAGCCCTGCTTAGCAGTGCCTCTCCCTGCT
 GGGGCTGTCTGCCTGCCAGCGTCCAGCCCTCAGCACGCGTCTCCAG
 CAAAAAGCACATCAAATGCTCATCAAAATTTCATCAGCGGGTGAACAGAC
 GCATCAACCACGGTCTGCCACAGGCTGGAACCTGACTCCGCCTACAAAAG
 20 GAATGAAGCATGGAATGGCATACGCTTCAACACGGAGGAACCGTCAAACCC
 CCCGCTGCCTGCAGGGAACCATGGACACGAAATGCCGTAGCAAATCTATA
 GAGACAGGAAGCAGATCGATGGTCCAGGGCTGGGGAAATGGGGAGTG
 AGTGCCAAGGGTATGGCTTTCTGGCGATGAAGGTTCTGGAATTAG
 ATAAAAGTGTGGCGCCCCACCTCACGAATATACTAAAAACCACTGAATTG
 25 GCTAGTGCCTGGCTACGCCGTAAACCTCAGCACTTGGAGGCCAGGCA
 GGCGGATCACGAGGTCAAGGAGATCGAGACCATCCTGGCTAACACGGTAAAC
 CCCGTCTCTACTAAAAACAAAAACAAAATTAGCCGGCATGGTGGGGTGC
 ACCTGTAATCCCAGCTACTTGGAAAGGCTGAGGCAGGAGAATCACTCAACTC
 GGGAGGTGAGCTTGCACTGAGCCAGATCGCAGCACTGCACTCCAGCCTGG
 30 GCGACAGTGCAGACTCCGTCTCAAAAAACCGAAAACCAAAACAAACAAAA
 AACAAACCCCCCACCACCAAAACTACCACTGAATTGAGAGCTTAAGTATAGT
 TTAAAGTTGTGGTAAAAAACACGTCTACCAACTGCAAATACAGACAGCTT
 CATGAATCATGTGTCACTTCTGGGAAGGGCAGGCCAGCGTCACA

AACATTGGCCAGGCTGCCAAACCCCCAAGCGGCTTGAGCATGAAGCCCCC
 AATGGCGCCTGCCTGCCAACCTGCCGCCCTCACCTTCAACCAGCGCCTC
 AGGATGACCGTGTCCAGCTCCTCGGAGCCCTCCTGCTCGAAGTCATAACCGT
 GAGCAGGTGCTGGTGTGAGGTGATGTTCTGCAGCTGGGACCAGAACAGAGC
 5 CCCCATGGGCCGCCTCAGCCAGGACGGGGCAGAGGCAGGCCGTGGTAGA
 CACCAGCGTAGGCACAGGCAGCGTCCCAGGTGAGCCTGCAGCCTGCATGC
 CCACCGCCCACCGGGCCGGCCTGGGACCACCCGAGACCAAGGGCTGCCT
 GGGTCTCTCTGCTCCCTGTGGGCTGAAGCGAGAGTGGTGGGGGCCAGC
 AGCCTGAGGTGGGAGGAGTGGGCTGGAGGCTGCATTGCAGGAACCTCCCCAG
 10 AGGACCAGCCCCACCCCGGAGGAGGGTCGGAGGACAGGGAGGGGCA
 GCACATACCAAGCTTGGTCCAGCGCACGATGTCCTCCAAAGAGAAATGCTGCT
 GGGGAACCTCTCCTTAAACTGCTTCTGCCACCTGGGACCAGGAGGTGGG
 GCTGGTCACTAGGGCAGCAAGCACATGGCGATGCCCGAGCCTACCAAG
 GATCAGCCACGGGGCAGCCTGCTCCACGGCCCTGGAGATCCTCTGAGACGGG
 15 GAGGGAGGGAGAGCGGACCCAGATTAGCCCACGACATCTGGATGCAGG
 TGTCAAGGGTGCCCCATCCCTCAGCCCTGTCAGGGTGGCCAGAACCCA
 CCGCACCCCTCCACAAGGCTCGGCCAGCCAGGGGCTCAGCCAGGCCCT
 ACCTCCAAGGTGTTGGATCACCATTGACCAGCAAGCAGAGGACAGGGATCT
 CGATGCTGCCAGTGCCTGTGGACAGGGCACCCGTGAGGCCTGAGGACCCCTCC
 20 GCCTGGGTGACCACCCGGATCTCAGGCTCTCAGGCCACCACATTTCTGGCC
 AAAAGCTGGCTTCCGAATAAAAGTGTGGCTCGTCTGGCCACGTGACAC
 AGGCTGCTTATTACAGCCCTGCCATATGAGGGCCGAGGGCTCCAATGCTAA
 CCTACACTACCCAGCACGCGCACTTGTGGAACAGCTGGCATATGGCTGTTA
 AAACACAAAGTGAAGTGGAAAGAAACGGAGCACCCAGCCCTACAGGTGCACT
 25 GCCACACTGCACCGCCTCATGCTGAGCATGGCAGAGGCAGCATCTCGACCAT
 CGAGGGAGCTGCTGGTGGCTGCCCTGACCACTCAGCAAACAGTGGAAATGAGA
 GTACAGGAGGGAGTCTCAGGTTCTCCCCAACAGAAGCTGGAAATGAGA
 TGTCTATATGTGAAGCCCCCAGAGAGGGCTGGACCTGCCCTGTCTTGTGA
 GGGAGTGAAGTGCCTGGAGGTGCTTAGAATACCCACAGGGAACTGGCTC
 30 GCAGGGGGCCCTGACTTGAAGGTGCCTCCTGATTGAATCTGGAGGATA
 AATCAGGCCTGGCAAACGGTGCCTGGCCAGCAGGGCTCCGCAGAGCAGA
 GCCAGACCCCTCCGCCTGTGTCCTAGAGTTGACGAGACTTGTGTTCAAT
 TCTAAAGAGTGCAGTTGACGGGCACAGTGGCTCATGCCTGTAATCCCAGC

ACTTTGGGAGGCCAAAGCAGGCAGATCACCTGAGATCAGGAGTTCAAGACCA
 GCCTGGCCAACATGGTGCAACCCCGTCTACTGGGAAAAAAAAAAAAAAA
 AAAGAGCCGGCATGGTGGCACATGCCATAATCCCAGCTACCCGGGAGGCT
 GAGGCAGGAGAATTGTTGGAACCTGGGAGGTGGAGGCTGCAGTGAGCCGAG
 5 ATTGCACTCCTGCACTCCAGCCTGGGGATGGGGACAGAGTGAGATTCTGC
 CTCAAAAAAAAAAAAAACAGAGGGCTCAGTTGGCCTGCCAAGAAAT
 TACAATTCTGTTCTAAATATTGTATATTGTTCATAGATGTTAAATAATTAT
 ATGCTTGTTATGAATATTACACACTAGCGTTCTTAGTAAGTCCAGC
 TTTGAACGTGCGACTGCCAGAGGTGCCATTCTCGGGTGACGCTGCCCTC
 10 TGGCGGCAGCATACTCACGCCCTGGCGGCCGGAAAGTAGCCCTTTCAACTC
 ACGATCTCATTTGCCTCTAGAGTCCCGAGCCTCTGACCACGGCAAGGCC
 AGTAAAACAGAACTGCACCTGCTCTGGTGGAAATGTCAGTGTCCAGTCAGA
 GCCACTCTGTCCAGCTGTGCCTCCTCACCACCTGCCAGACAGCTCCTCCTC
 CCAGGCCCCCACGGCCCAGGCCCCACGGCCAGGTCTCGGTGCTCAGGCAT
 15 GCGGGGTGCGTTCTGCCCTGGAAAGCCCTCCCCCTTCTCCCTGGCGGTACCCCC
 CACTCTCCCACAGGCGGGTCCCTGGATCCCCACTGGTCCCAAGGCTCCCTG
 GGTGGCTGGGCGGGTCTCACCCCCGTAGCCCGCCCTTGCTCCGAGATGTGC
 TTCTCCAGCCTCAGCCGCAGCTCCGTAGCCCATGCCCTCCCCGGGGGCC
 TGGCTCCACCAGGATGAAGTGGGAGAGGTTGCTGTCCAGTGAACAGAGGGGG
 20 CCCTGGCTGCCGCCGTACCTCAGGGTAGTGGACAGGAAAATCCTCCTGCGC
 CCATGCAGGGAGACGAGGCTGAGCCCTCGAGAGGGCAGCTGGCTGGCCCG
 CTGCGGGATCCTCCCTGCCAGGCCGTGCACACCACGCCATGGGGCCCCGCAC
 AAGGCTTCTGCCCGAGCCTGGTTCCCCACCCCTCAGACAAAAGGAGGGAC
 GAACAGCTGGGGCCGGGACCCCTCCCGACAGTCAGGGCAGGGCGGTG
 25 GGGAGCGGGTTCTTACAGACAGAACCATGGAGACAGCCCAGGCTGCCGGAG
 CACCTCCTCCCGACTCTAGGGCTGGCGTCAAACATCCACCAGGGCTGCC
 GGGCCTCCCTCGGTAGTGCCTAGACAGACCCAGCATGGGGACGGAAGCT
 GCTTGCCCAGGCTTGGAAAGGGCTGGGGCCTGGGCCGTGTGGTACAGGAG
 GGGGTGAGGGCCCGGCCACAGTCTACGCTGCCGTCCCTATGCGGTACTG
 30 CCACCTGCCGGCCGTGTGCTGGCTCTGCCGCTCCCTGCTCTCCTCCAGCTG
 AGTCCTGTCCCTCCAGAGCTCTGCCCGCTGCCAAACCCCTCTGAGCCCTGC
 CTCCAGGCCCCCAGCGGTGCTGGTGGAGCTGGACGTGCACCTGGCCT
 CCTCCAGAATGCGGCGGTGCAGGACGCGGCCAGCGAGGCCATGCCGACAGC

AACCACACGGACCTTGGTGGACGTGCTGCCAGCGAGTGGTCGCACGGCC
 TGCCCGACATGCCTGCCAGGCCACGCCGGAGGGCACTGGTCAGGATCCAGG
 CTCCTGTGGGATGGAAGAGGGCCTCGTGTGCCGACGCCAGGTCTCCC
 TAGCTGGCCCCACGCCCTAACCCCTAGGCCAATCAGCAGCCAGTTACCTGG
 5 GAGCCAGGGGTGGGTGCTGGGAATGCCTCACGGTGGGTGGGAAGCCGA
 GGCCCAGAGAGGGCAAGGCACCCACCAAGGCTGCTCAGCAGCAGAACTGG
 CTGGGCCAGAACCTGTGAAGTGGCACCCCCACCCACCTGGAGCGCACAAA
 CTGGGGTCCAGTCCCCCACCCTGCTCCCTCCGGACACATCCGACACAAC
 TGTCCAGCTGCCTCTGCTGGTGAGAATCCCAGGATTTTCCAAATGACAA
 10 AGCCCTCGGCCCTGTCTGGCTGGAAGATCTCTTGGTTGCCACAGTCATT
 TAGTGAGGGATCCTGAAACCTCAAGTCCTTCTCCTGGTGTATAGGCC
 AAGCTGCCTCAAACAGCCCAGCCATTGGACTCTGGCCCTGCAGCTGGC
 GGCCCAGTCTCCCCAAGGGTCCCACCCCTGTATAACACCCGGTGCTCTGG
 TCCCAGGTGAGTGGGAGCAGGGACATCTCATGGCGCCCATGGCCCTGCTA
 15 GTGGAGGGGGCAGCTCTAACCGAAGGCCAGGCCAGCTGGGGAGGTCTG
 GTCCAGTACGTAGGCCTGCTGCACCTGTGGTACTGCAGAGGACGGCTGA
 GAGTTCGGGAAATGTTCTCGTGTGGCTGGAGAGTCAGGGGTCTGGCTG
 CCGTGTGGGTGGGAGCATTGCCTGTGCCGGTGGGGGACAGTCAGGGGT
 CTGGCTGCCCTGTGGGTGGGAGCAGTGCCTGTGCCGGTTGCCGGGACAGT
 20 CAGGGGGTCGGCTGCCCTGTGGGTGGGAGCGCTGCCCTGTGCCGGGG
 CCTCACCTGTGCTCTGAGCCGCCCTCACAGCCCTGCGCAGCACATCCGC
 AGCCAGGACTCATGGCGAAAGGCTGCTCCTCACCCACCAAGGGACACCA
 GGTTGGGGCCGGCAGGTGCCACTCAGCAAGCAGCAGGTCAAAGAGCACAG
 ACGGGGCCACTCCGCTGGCACCCGTACAAACTGCAAGGCAGGTCTGCAGCT
 25 CAGGGCTTCGGGGCACGGGCATGGGAGCTGCTGGCATTGGGGGGCTG
 GACACAAGGGGCACTGGGAGGTGCTGAGCATGGGGGACACTGGCACT
 GGGAGGTGCTGGCATCAAGGGGCTGGACACAGGGGTACCGGGGAGGTG
 CTGGCATTGGGGCAGGTAGCAGGAGGAGAGTGGCCCCAATATCCCTCT
 GGGACAGGGCCAGTCCTCCCTGACCTGCTGTGACCTGGCAGTCCTGAC
 30 CCTCTCTGGCTGGCATCCCCCTCAGTGAGCCGAGGGCGCTGGACAGAGGTG
 GGGCCCTGGATGCACTTGACCTGACCTCCAAATCTCTGGGGGGACTTCAG
 GGGTCCCAGGTATTGCAGGGAGGTAGGAGGCCAGAGCCACTCCTCCA
 GCTCTGGAACTCTGCCTGTCTGGGGCTCTGAATATGCCCAAGGGAGCAG

ACCCCAGGGGTGAGGAGGACCCTGGCACTCAGCTTCCAGGGAAAGGAAATGG
 GGCCTCATGGGTTCCAGGTCAAGGCGGACATCACCTGAGGCCTGGGCCTGC
 CCTTACCTTGCCTCGCTTCTTCCCAGACCCCTCAAAGTTGACCTCGCCCCGTG
 CAAGCCCAGCTCCGCCGGTCTTCAGCATCCCCGGGCTTCCGGGACGGGGG
 5 CTTGGACATCCTGCATGGTGGCCTCTAGAGCTGCAGGGATAACCTGGCCCTT
 GAGGGCTGAGAAGGCCATCCCCACCTCCCTCCCTCAGGGGGCTGGCTCTG
 CTTTCCCCTGGGAAGCCCCTCTCCAGCCAACATGCACAAGGAGACCTGGGG
 CTGCCCCCAGGCATCTCTGCCAACCTCTCCAGGCCAGGCCCTGCC
 AGCGACCCCCCTGCAGCTCCGACACTCGCTGTAGCACCGCCCCAACCAAGCTC
 10 CTTCCCAGGTGAGGATGGGATGTGTGGGGCTCCGCTGTCAGCGCCTGGTCCT
 CTACTCACCCCACTCAGGGCACCTCAGGTGCCACACCTGCAGACATTCTC
 CAGAGGCCTTTGTGGGATGACCTGAAACTCCGAAAGACTCAGCAGAGGC
 CTTGCAGTCCCCTGCCACACAGCCCACCGCTCCAGGACAGGGATGTGGA
 GACCCTGGGTGCACCTGGTAGAGGTGAAAAGGTGAGACAGGTGCCCTCAGC
 15 TCAAGTGCAGGAGGCCGGTGTGGACGAGAGACCACCTCCTGCCAGGAGGT
 CCAGGAGGCCAGGACACACAGAGAGAGGAGGCCTGCCCGGCCACACA
 GCATCAGCAGCAGAGCTATTCCGTGGCGCTCCACATCAGCAAGCBBBBB
 AGAAGAGGCCCGTGCCTCAGCCATTCCCTAACCTCATGGGCTCAT
 GTCTCCCAGCTGCCCGTGAGGTGGCATCTCAGCCCTCTCTATGTGGCAG
 20 GGATCCAAGGATCGGCACTGGCCCTCAGGCCCTGGCTCCGCCCTGCCAC
 AGCCTCATCTGTCAGCTGCCAGCCCCAGCCTGGCTGACCTCGGTCTGGCTTG
 GTCCCACCTCCCTCCGATTGCTCTTGAAACTCAATATTGGAAGCTGGTGC
 TTGAGGACAAGCCCTGGCAGGCCAGGGCACCTGCTCCTCTGTCTGCCCTCCT
 GGAACCACCGCTGGTCACAGGCCCTGGCAGAGGTCTCCGTGGCCCC
 25 AGCCACCCCTACCCCTGTCGACCTGGGCTACCTGGCAGCTCCTGATCCCACAG
 GGCTGTCCCTGGTTCTCCTGCCCCACCTGTACCCAGGCCTCTGGCTGT
 GTCCACACAGAACGCCCTTGAGAAGACAATGGACCGTTCTGTAAAAAACC
 TTCATTCCTAGAGAGGGGCCACCTGTGACCCAGGAGGGATAACAGGAGT
 TGGGGGAACCTTAGAGATGAGAGGGAGTGTGTCTGGACCCCTGGGCTG
 30 GCTTGGGCAGAGGCTAAGGCCAAGGCCCTCCCCATTAGGCCTCTGGAGCC
 AGCACAGTTACTGCATCCCCAACAGGTATGTCCAAGTCCAAACCCAGGA
 CCTGGGAATGTGACCTTGGAAACAGGCCCTTGAGATGTATTAAGATGTAA
 GTAAAGATGAGGCCATGCTGGAGCAGGGGAGCCCTGATTCCAGGTTCTGA

TAGAGAAAGGGGACATTGGACGTAGAGACAGACCGCAGGGAAAAACACC
 CTTAAGACACAGGGGAGGGTGAAGGCAGTGGTGGGTATGTGCCACAA
 GCCAAGGGACACCTGGAGCCCCGAAGCTGGAAGAGGCAGGAAGGATCCCC
 TCGAGGGCTTGGCTTGCGACAGTTGACTTAGGACTCAGCACTGGTGGCCT
 5 CCAGAACCATGAGAGAATCAATTGCCATTGTTAAGATGCCAGCTCAGGCT
 GGTTGTCTTGGCTGCCAGGGCCCCCTGTGAGGCCAAGTCAACCCGGCAC
 GACTTCTGGTACTGCCAGCCCCAGGCAGGACCCACCCACGGGCTCAGCCC
 CCTCCTCCGGCCAGGCCTGTGGAGGCCCTGATGCCCTCAGCACCGTGG
 GCCTCAGCTGTCCCTGCAGGGTATGCAAATCCTCCGCACCTCTGCCCTCAG
 10 AGCAGGAACCAGCCCGGGACCGCAGAGAGGCAGGATTGAATAACGGCCTCC
 CGCGCTGGTGGAGACGCCTGGTGGTTCTGTGTTGGAGCTGGTGTCTGTGG
 CCAGGCCCCAGGTGGGGCTGGAGGCAGGCTGGACAAGGCTGGCATTGCTGTTG
 TGTCGGGGCTGCCAAAACAAAGGCCACACTCTGGGGCTCAAAACAAC
 AAATGGATGATCTCATAGTTCTAGAGCCCAGACGTCCAAATCCAGGCATCG
 15 GCAGGGCCGTGCTCCCCCTGGAAGCTCTCAGAGCGGGCCTTCCCACCCCTTC
 CAGGTTCTGAGGCCAGGTGTTCTGGCTGTGGCCCGTGGCTCCAGCTTC
 TGCCTTGGTTGCCGCATGGTCTGCCTCGCCTGTCTGTGTCCTCTGCAATCATTG
 ATTGCCAGGCCGCCCTACCCAGCGTGGCTCATCTTATGGTGCGCCATC
 TGCAAGGACCCCACCTCAAACGAGGTATATTCTAAGGTTCCAGTGGACA
 20 GTATCCAACCATTAGTGTGCCCATCTGGGAGGACACCACTTAATGCAGAA
 CAGGCAGGGAGGTGGATGTGTGCTTGTAGCCCTGGCGGGAGTCCTCACCC
 TGGCGGGGGCTCAGGCTGGCTTCACTCCCACCAAGGCCCTGCCACACCTG
 GTCACCCGCTGGGTCAATCCTGGCTACGTGTGGACATGTGCCCTGCAGCTGG
 GGATGCATGCCAGCGTGTCCCCAGCACAGGGTGTAGGGGCTGGGGTT
 25 GCCATGACCTCAGCCTGGGGACGGACTGGCTGGACAACACTGTTATC
 CTCGCCTCCCCATGACTCTTAGGCCATAGATGGGGACTCCTCTCTTCC
 CTTCGTCCCTGGTGGGAAGCTAATGGAGGGCTGGCCTGGAGGGTCC
 TACAGGGCTCCCTGGCCCTGAATTGCTTCCAGTGAGCCTCAGCTTGCCTCT
 TGGAAAGTTCTGGGATAGGACATCCGGGAGTACCTCAGCCTGGAGCTCGC
 30 AGTGCCTCCCTGACTCTATGCAAGACCCCCGGACGACCAGCAGCCATCAGA
 GGTGGAAGCAGCCACAACAAAGCTCTGGCCCTCCAGGGCCACAGCACC
 TCCTTCCCTCCGAGGACGGGACAGAGCTGGGCACCCAGCAGCTGAGGTAGG
 GAAGCCGAGTAGCAGCGTGGGCAGCCTCACCTCCTGGTGGCCGCAACCAC

CCCTTGCCCCATGCCAAGGCTGGTCCCCCGCCCCGCCGGCCAGCCCAGG
 GACTAAGGAGGCATTGCCAGGTGCTAGGCACCAGGCAAATGGGCCAGAG
 GGAGGTGATGCAAACAGCTGGATTGCATGAGCAGGTGCCAGGTCTCTG
 CACCCCTCCCTGTGCATCCCAGGGTGGGCAGGGAGCCCAGGACAGCCAGGG
 5 GCCATCGTACCCCTGGCCAGAACAGTCCACCCAGAACACTCCAAGAGGCAAAA
 CTGAGGCAGCCCCCAGACGGTAAGGCCTGGGCTCCAGGGCAGCGGG
 GCACCTGTAGCCGCAGCCAAGAGCAAATGTGGCTTCCTGGCTCCCCAAGA
 CCAGCTCAGGGCAGAGCTGGATGACCAGGCCCTGGGTCCAGCCCCGCTCA
 TCCCCACCAGGCTGTAACTTGGCAGGTCCCTAGCCTCCCTGGCCTGC
 10 CTCATTGTGAGATTGGGAAACGCCAGTCACAAGGGAGGGGCCAGAA
 AGGTCCCTGCGTGCAGCAGGCTGGAAGTCAGCTGTGTGTCCTGTGTCCTCCC
 TATGAGGATGCCCATCTCCCTGGCTGCAGTGGAGGACACGGCTAGGGAA
 GTGGTGGCAAGAGGACACAGTAGTGACCTGGTACCCAGACCCCTCCACT
 GCCCCACTCCCTGCCCTAGCTCTGAGCCGCACCTGCCTTGCAGGCTGC
 15 TGGCCAGACACTGCCCTGAAGTCTCAGATCCAGAGGCCGTGGGCTGGCCC
 TCCTGCCAGACCCCTTCCAGCACTGGCAGCCCTTCCAGAACATGCCCAAC
 TCACCCAGTGGGCCGCCCCTCACAGCCAGGGAAAGCGGGATCCTCCCT
 GCTAAAGATAAGGAAACTGAGGCAAGAGGCAGGGGTGTGGCAAAGCCGCA
 CTGTCCTGGTCCCCACTCCTCTCATGCCACCTGCCCTCCCACCTGGAGGA
 20 GGAGGTACAATCCTGCTCCTCTCCCCACCTGGCTGTCAGCGGTGTGAGGGT
 CCCTACCTGTCTGCCTCTCCCCAGCACCCAGCACCGGCTGCTGGCCAAGG
 CGCGGGTGGAGCCGTCTGCCTACCTGCAGGGTGTGCCTGTGGCCAACTCT
 CAAGCCTCTCCTCCTCTCCCCGCCACAACCTCCTGGCACCTGGCAGCC
 AATGCCAGCCCTAGGGAGCTGCCATGAACCAACACAGGGCACCACCTCACC
 25 TGCTCCACACGGCGAGCCCACAGGCCGTGTCTCAAAGCCACCCAGACA
 CCAAGGGCTGGCCGTCCCTCAGGTGTATTGGCACCAAGGCCCTGGGGCATG
 TCCGATTGACTGGGAGAGGGAGACCCCTGTGTGGACGTGGCTCTAGGCCACTT
 AGATTGCTGTCGTTGCCTCCTTGGCGATGTCTGGGGGTGGCCGGGACCG
 ATGCAGCTGAAATCCACCCCTGAAATGTGATGGACAGGGCTTTCACCTCAG
 30 TTTCCACAGTAAGTAGGAACAGGAGCTGCCTCAAGAGCACACGTCTCATGCC
 GGGGTGCTGGCCCAGCTGTCCGTGGAGGACAGGGAGGCAGAGGGACTGTC
 TCCTCCCTGCTGTGGCCCTGCGAGGCCGTGGGCATGGCCCCCATGGTGTCT
 CATCTGTGCTGGAAAGGCTGCACAGCCGTGGCCAGCTGTGAGTGTCCA

TTCACCGGTCA GCACCAGGGATGCTCTGTGAGGA CTCGCATCCGGAGT
 CAGGACAGGGTGC CAGTGGGACAGAGTGTGCCCTGGAATCCCGCAGTCCTG
 GGATTGGATCCTGC ATAGCTGTTGAGCTACTTAGCCACTTGGGCCTCAGTACC
 TTGGAGTGTCAAACAGGGACTCTAATAGCCTGGCTCTGGGAGGTTGCAGGT
 5 AACACATGAGGGAGAACAGAGCCTGGGGATA CCTCTGTGTGCCCTCCAA
 AGAGACTCCAAGGACCCCTGTTGGGCCCTCAAACCATAAACTCCAGGA
 ATGGTGGGGACAGTATCTGGACTTGCTCTGGGACCCCTGGTGGCCTCTCT
 AGTCTGGCCTGTCAGCCACCAGAGGGCGCTAAAGGACCATGGCAGAGTCTG
 AGGCAGTGGTGGTAACGGGTGAAGGTGATGGTGGTGGTGGTATGATGGTGG
 10 CAGTAGTGGTGGTGGTGGT GATGATGATATTGATGGTCATGATGGTGGTGGT
 GACAATGATCATGGGGACCGTGCTGATGGCGGTGTTGTGATGATGGTGGCG
 GTGGTGGT GATGGTGGTGGCATGAGGGTAGTTGGGTTGGT GATGGCATTAC
 CGTTGATGAGGGTGGT GATGATAGT GATGGT GATGGTGGTGGGAATGATGAC
 GAAGATGATGATGATGATAGTGGT GCAAATGGCAGTGGTGGTGGTAGTGACTGTG
 15 GTGTTGTTGATGGTATTAGTGCTGATAAAGGTGGT GATGATGATGATGGTGGT
 GGGTGACGAAGGTGGTGGTGGT GATGATTGTTGGTGGGATAATGGTGGT GAT
 GGTGGTTATTGCA GTGGTAGTGTTGATCATGGTGGTGGTAGTGATGGTGGTCA
 TGATGTTGGTGGT GTTGGTGGTATTGGTGGT GATGGTGGTGGTAGTGATGGTGGT
 GTAATAATCATGGGATGATGATAGTAGTCATGGTGGTAGTGACAATGGTGAC
 20 AGTGGAGGGGATGGTGGTGGT GATAATGATTGTTGGTGGTAGTGATGGT GATAGTG
 TTGGTACTGGTGGTGGT GATGATGGTGGTGGTAGTGATGATAGTGAGGTT
 GGTAGTAATGATGATGGTGGTGGTAGCTGGTAGTGTTGGCAGTGGTGGTAGTG
 GGTGATGATTGTTGGT GATGGTGGTAGGGTAGTGTTGGT GATGGTGGTGGTAGTG
 TGTTATGGTGGTAGTGATGATCATGGTGGTGGTAGTATAGTCAGTGGT GATG
 25 CTGGTGGTCA TGGT GATGGTGGTAGTGATGATAGTGTTGGTGGTAGTGATGGCAGTGCT
 GCTGCTGATGGTGGTGGTAGTGATGATGAGGGTAGTGATGACAATGAGTGATG
 ATGGTGGTGGTAGTGATCGTGGTTGGTGTGTTGATGGTGGTGGTAGTG
 GCGGTGATGATGATAGTGTTAATAATTGTTGATGTTGGT GATGGTGGTAGTG
 GG GACGATGATGGTGGTAGTGATTGACTGGTGGTGGTAGTGATGGTGGTAGTG
 30 GATGGTGGTGGTAGGGCATGATGGTGGTGGGGTAGATAATGATCCTGGTG
 GTGGCCATGGTGGTGGTTTGATAACGTGATAATGTTGGAGATGGTGGTAGTG
 GTGGTGGTAGATAATGGTGGTCA TGGT GATGGTGGTAGTGATGTTGGTGGTAGTG
 AGTGGTGGGGATGGTCAGATGTTGGT GATGGTGGTGGTAGGGCAGTGATA

GTTAGGATGATGGT GATGATGATGATGGCATGGGTGCTTGATATGGTTGGCT
 CTGTGTCCTCCAAGTTGTAATCACCAATAATCCCCATGTGTCAAAGGCAGGG
 ACCAGGTGGAGGTAATCGGATCATGGGGTGGTTCCATGCTGTTCTCAT
 GATAGTGAGTGAGTTCTCATGAGATCTGATGGTTTATAAGCATCTGGCATT
 5 CCCCTCACTCCATCCTGCTGCCCTGTGAAGAAGGTGCCTCTAAGTCTATGGAG
 TTGGGGGGCACAGTCCTCATCTATCCTGGTCCTCCCTCCACCTCTGTCCT
 GGACACCCAAAAAAACTGCAGAAGTCTTCCCCAGCCAACCTCTGGTTCAGTG
 CCAGGT CATGTTCCCTCCCCGCCTACAACCTCATGGCTCCCTATTACCCGTAC
 AATAAAAACCCAAAGAACGCTTGGAGCCTTGGCTTCTGGT GATCTGCTAGGAT
 10 CACTTTCTTGGAACTCCTGCTGGCTCCCTTGCCACTCAGATACTGGCAG
 AACCTGGAGTGGGTGCTGGCTTGCACTCACTCCATCCTGCTGCCCTGTGAAGA
 AGGTGACTTGCTTCCCTCATCTCCGTATGATTGTAAGTTGCTGAGGCCA
 CCCCAGCCATACTGAACTGTGAGTCAACTCAACCTCTTCCTCGGTAAATTAC
 TCAGTCTCAGGCAGTTCTAATACAGTGGT GATACTAGTGGTGGTGGTGGTGGT
 15 GGTGGTGGCTGGTTGGTAATTACAGTGGTAGTGGT GATGGTGGTAGTAAT
 GATGATGATAGTGCTGGTGGT GATGTTGGTGGCAGCGGTGAGGGTGGTGGCG
 GTGATGGT GACGGTGGT GATGGTGGTGGTTTGGTGGTGGT GATGTTGGT
 GGCAGTGATGAGGGTGGTGGCAGTGATGGT GACAGTGTTGATGGTGGTGGT
 GTTTGGTGGTGGT GATGGAGGCGGTGTTGGTGGTGGTGGTGGTGGTGGC
 20 GGTGATGGT GATGGTGGTGGTGGTGGTGGTGGTGGTGGT GATGGTGGTGGT
 TGATGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGT GATGGTGGTGGT
 GTGGTTTGGTGGTGGT GATGGAGGTGGTGGTGGTGGTGGTGGTGGTGGTGGT
 GGTGACGGTATTGGTGGTGGTGGTGGTGGTGGTGGT GATGGAGGTGGTAGTG
 ATGATGGTGGTCATGTTATGGTAGTGATGACAGGGATGATGCTGGTCGTGGT
 25 AATAGTGGTTATGGTAGCAGGCCATGTTATAACGCTAGCAGCTTGCTCTGGA
 TGGGAAGGCTCCAGGTACTCCAAAGTAGGCACCTATGGGCTGCTCTGTAAA
 TGTCCCTTGTCCCCTAGCATGGCTGAAACCCATCCTGAGAGGGAGAACGAG
 ATATCAGCTCCTCAGTAAATGCAGGGTGGTGGT GAGCTCAGAAACCCAGAA
 CTTGGCTCTGAGCAAATGGACTCAGACCAGGGACCCCACAAGCCCTCAGGC
 30 CTGAGACCCTAAAATCCTAGTTCTGAGAGCGAGGGGCATCTGGGGGCC
 TGGGCAAGGCGGAGGGTCCACTAGACCCTGAAAGTCCAGCCTAAGCTCACAT
 CCACTCCTCTAGCCTGTGTCGTTGCCCTACAGCAGGGTCTGCCAGTGTCTGTG
 GTATGTGAATAATGAGGAGGTTCCCCAGATCCTCTAAGCCTATGGGGTTGG

GAGGCACAGTCCTCCTATCCTGGCCTGCCCTCACCTCCATCTCCTGGAC
 ACCCAAAAGACTACAGAAGTTCTTCCCCAGCCACCCCTGGTCAGTACCAGGT
 CATGTTCCCTCCCTGCCTACAACCTCATGGCTCCATTACCCCTGACAATAA
 AACCCAAAGAACGCTTGGAACCTGGCTCTGGTGCCTACCAGGAGCACTCT
 5 TCCTTGGAGCTCCTGCTGGCCCCCTTCCCCTCAGATCTCAGCTCTCATGTC
 CTTCCCTCAGAGACCCCTCACCCCTAGACCACATCAGCACAGGGTGCCTCCCTC
 GGTCTCTTCCCTGTGATCTGGTGTAGTTTCAGTATGCCTCACCCCTGAAA
 GGTCTTCATTACTTTGCTTGTCTGTCCCCTGCATGAGACTATGGCCT
 GAGCATTCCCTGCCACCTCCCTGGGGCCCAGAACACGCAGGTACAGACCACA
 10 TGTTCTAAAGTCAATGAATGAATGAGTGAATCAATGGGTGAGTGTCCAGGCG
 TGTCTCTGTGAGCACTGCCATCAAGGCAGAGACGGAGGTGTCTAGGGGAG
 GCTGCATTTGCAAGGAGCAACTCCTGGCCCACACTCACGCCCTGGGTGGA
 AGGGCAGACACTGGGCCGGGCTCCACTGTCTGCCGCTCTAGCCATGGCA
 CTGCTGCCAGGGAGGAGGTGCCAGGCGCTCACCTGCGTCCATGCGTGCTG
 15 TCATGAGGGACATCCCAGCTGCCGACAGAGCAGCCTCTGCCTGCCCTCTACA
 GCAGGGTTTCCCTCCAGCGGCCTCTGTCTTCTTGTACAGTTGGCCCCGGCAG
 GCTTACGTTGGAACTCCTTGGAGGAGAGGCCACGCCAGTAGAGCAGGAC
 TCCAACAGGGCCCAGCCCTGCCACGGGCCTCTATCCCTGGACAGCA
 GATCCCCTTGGATCTCCAGCAACCCCAATGGCTGACTGCAGAGGCTCAGCTC
 20 TCTCCTGCCAAGCCCTGCCATGCGAGGCTGGGCCACAGGCTCAGAAGCTGA
 CCCCAGTGTCCAGGAGAGCGTGAGCCGTCCCTGACCGGGGTCTCGGGCTC
 TGCTGAGAGAGAAGGAGCTGCAGGCTGGCTCCCCACCTGCACCACAGGCAGC
 CTCCCCCCCAGGCACATCCTGGGTGCCATGTGGCATTATTTACAGAAAGAT
 TTGCAACCCACTTCTTGTCTTAGAGGGAGAAACCACCCAGAGTAG
 25 GGCCCCGCTGGCCCAGGGTCCCCATGCCAGTGTGGTGGCGCCCCAACCCAG
 CATCTCCCTCTGAACCACACACAGTCTAGCCCCAGGTGGGAGGGAAAGCAGCC
 CGGAGCCCCCTCAGACAGGAAAGCTGATGGTGGGGCGTCAGGTCTGACCCCT
 CGGGGGGCAGCCGAAGCCATGCAGTGGGCAGCAGGGCATGGCAAGCT
 CTGCCAGTGGTGCCTGTGTCCAAGGCCTCCGCAGATCCTGAGTGCCAGC
 30 AGTGGAGACCAGGAGTCGGGAACCAAGTGGAGCCGACGTCCGTCCCCACTC
 CATTAAGTTCCCTGGCCCGGGCAGCGCCTGCAGCGTGCCTACTGTCTCGGC
 ACCATCCTGCAGCATCACCTTGCCTGTCTACTCTGGGAGGGCAACC
 TTGACCCCATCACAAGATGTGAACAGAGGTAGAGGCCGTAGGGGCCAGCGAG

GCCAAATGACCTGCCCATAGCAATGCCGCCATGAGGCAAGGCCACGCCCTC
 TCCCCTGCTGTCCTGTCCTGGAGCTTCCACAGCTGCAGGAAGACGTCCCCCTA
 CCCTGCTCCCCGCAGAGGGTCTGGCGATCAGACAGCAGATCTGCAAAGGA
 AGGTGTAGCCTCTTAGTGTGCGCAAGGGCTGCCGCCAACTCCACCATTGA
 5 GGGCAGATGCTGGCTGTGGAGAGGCCAGCGCTGCCGCCAGTGGCTGG
 GGTAGGGGGCTCCATGCACTGTCCATGAGGGCATGTCCATCTGGCATATGTGC
 ACCTGTGTGAGTGTGCTGTGGAGCGGGCACTGGCCAGTGGTCAAGGC
 TGCAGTAGGACTTCAGTGATTCCAGATCCTGTCTGGAAATGGGATCATGAG
 AATTCCCTCACTGAAGGGTGCCTGAAGGCCTGAGCCAGTGTGCCTGGAACGT
 10 CCTGAGGACCAGCGGGCCGGGCAAGACCTGGACAGGGCTGGTAATTG
 CGAGAACAGGACCAGCGTGTGCCTGTGTGTCACTGTGCGCACATGGTG
 TGTGTGTGCATGCATATGTGTGGACACCGTGGCATTCTGTGTGGATGTT
 GTGTGTGTAGCTGCACTGTGTGCAGCAGCAGGTGTGCCTGTGGTGTG
 TCTGTGTGACACTGTATATGAGTGTATGTAGACATTGTGTGGCTGTGTG
 15 GACACAGTGTGTGAGTGTATATGTGTGTAGGTGGACTGTATGTGTCTGTG
 GGATCTGTGTGGATGCTGTGTGTGTATGTAGACACTGTGTGTGGCTGTG
 TGTGGACGCAGTGTGCGCGTGCATGTTGTGTAGGTGCACTGTGTGTCTGT
 GTGGATGCTGTGTGAGTGTATGTAGACACTGTGTGTGGCTGTGTGTGGA
 GGCTGTGTGTAGGTGTACCATGTGTCTGTGTGGACGGTGTATGTGTGTGA
 20 TGTGCACCATGTGTCTGTGTGGACGCTGTGAGTGCATGTGTGCGTGGAC
 ACTGTGTGCGTCTGTGTGGACACTGTGTGACTGCATGTGTGGCTGCACT
 GTGTGTGTGGACACTGTGTGCAAATGCTGTGTGTGAATGTGTGTA
 GGTACACCGTGTGTCTGTGTGGATGCTGTTGTGAGAGTGTGTGTG
 AGGTGCACTGTGTGCGGACACTGTGTCCGGCTGTGTGTGTGTGGACA
 25 CTGTGTGAGTGCATGTGTATAGCCGACTGTGTGTGTGTGGATGCTG
 TGTCTGTGAGAATGCTGTATGAGTGTGTGAGTGTATGTGTAGGTACGCT
 GTGTCTGTGTGGACGCTGTATGTGAAAGTGTATGTGTGTGTGTAGGTGCAC
 TGTGTGTGTGGACACTGCATGTGTCTGTGTGGAAACTGTGAGTGCATGT
 ATGTGTAGCTGCACTGTGTGTGTCTGTGTGGACACTG^TGTTG
 30 TGTGTCTGTGGTGTGCAGGTGCTGGAAGGCAGGCTCTGCAGGTGCAGCTGGA
 GCTTCAAAGTGTGAGCATTGGGCCAGGAGGACACAGCCTGGCTGATCCAGG
 GGAGAGAAGTCGTTCTGAGGTTCTGGAAATGACAGCCATTGGGAAGCACCA
 CACCGCCACTCATCCATGAACCAACCATCCGATCACCCATCAGTTCATGCAG

TCATTGGATACAGATTGTATTCACTTACTTACTTTGAGAGATGT
 GGTCTCACTATGCTGCCAGACTGGCTCAAACACTGGACTGAGCAATCCT
 CCCACCTCGGCCTCCCACAGCACTGGATTACAGGCATGAGCCACCACAGCCG
 GCCTGGGGAGAGATTATTGAGCGACTTCTATGTGCCAGGACTGTGTCAGG
 5 GGGAGACACAGACAACAAGCAAGGGATACGTGAGAAAGAAGGAAGATCAA
 TCGATGATTAAGATGGCTATGGAGAAAATAAGCAGGGAGGCCAGCGG
 CTGCAAGATTTATTAAATGGCGGGTCGAGGAAGAATTATGGAGAGG
 CTGCCATCTGTGCAAATAACTGGACGAAGGGCGGCCATCTGCTGGTCTATCC
 ACCCACTCACTCACCCACCCACTCATGCACACATCCACCAGCACATATGCACC
 10 TCCTCACCCATCACCAACCCACCCAGCCATCCAGCCTCCACCAGCCTGCCAC
 CTGTCATTACCCATGCACCCATGGCAATCCATCCATCCATCCGTCCATCTGTC
 CATTCTGTCTGTCCATCCATCCACCCGTCTGTCTGATTCCATCCATCTCG
 TCCATCTGTCTGTCCATCCATCCATCCATCCATCCATCCATCCATCCACC
 CATCCACCAATCTATCCATGCATCCATCTGTCTGTTCATCCATCTGTCCATGTG
 15 CATCTGTCCATCTGTCCATCTATCCATCCATCCACCAATCTGTGTATCCA
 TGTATCAAACGTCCATCTGTCCACCCACCCACCCATCCATCCATCTGTCCATC
 TCTCTACCCGTCTGTCCATCACTCACCCACCTGTTCTCCTCTCCAGTTA
 CCCACTCACCACCTACTAACTTCTCACAGTGCCTAGTCTCTCCAGGATGGCG
 AGTCAGTCTCTGGTCTCAGGATGCCACACTCTGGGAACAGGCAGCAGGTA
 20 GCCATGGGGATTGCCAGAGCACCCAAAGAGCGTAGGCAGTTCTCGTGTT
 TCTCCCCAGCCAGCGTATCTCCAGAACAGAGGTCACTATCCTCGAGGCCAGGA
 GCCTCACCTCCGCTCCCTGACCTCCCCACACCGTAACCCAGCAAGGCTGG
 GAATTCACTAGGTGCCAATAATCCGGCAGGCTGGCTGAGTCATCCCACC
 TCCTCCTCCCTACTGATCACCCATTCAAGCTCCTGGCCCCATTGCCAAACCT
 25 GCCAGCCTTGGGTGATCTGCTCAGCCGCCACCTCACATCCACTCTCAGCTCG
 GGGCCAGCTCTGGCTCCAGCCGTGATGGCCATGGTGGCTTCAGAGGGT
 GAGCCCCCACACCATTGTACCACTGGCAAGACGGATGAGTGCCTGGTC
 AGTAGTGGCCCACCTTGGCCTGGAAGGATGTAGGGACAGGCTGCCACCC
 ATTTGCCCTCTGAGTGGCTAGGACAGCCACCACACTCTCCAGGGAG
 30 GGGAGGGCTGGCCTGTCACACGTCCGGACAGGCCTGCCTGGCCCAGGAA
 AGGGCTATGTGTAGGTGGCAGGCTGCTGCCCTGGCAGGGGCCAG
 GGCTGGGGAGGCCTCAGACCTTAGATTGTGGCTGGTCCCCAGCACTCCC
 ACTGGGGGTGGGAAGCTTGGCGGCCAGTGACGGAGGGTCAGCAGAGGGC

CCGTGCTCCTGGCTGAAGCCAACCTCCCACACAAGGTGATGCCGACAACACTCC
 AAGAATCGATGCTGTGCAGGAGCAGTCTCCGGAAAGTGATTCCGCCAGATG
 GGCTGGGCCAGGTGGGAATCTGGGAGCTTCCCCAGAACAGGGAGCATGAGA
 CCAGCTCAGAGAGTCTGCAGTGACATCAGATGACCTAACCTCAGATCAAAGT
 5 GAACGCAGCCAGAACGACACCCGCTCGCCCACCTGGCACTGGCCGAGACCC
 TGGGTCTGGCTGGGAGGAGTGAGTGTGGGTGTGACCTCAGGGAGGGC
 CCCGCCACCAGCCATGAGCCCACAGGGTAGCTCCCCACCTCTACTCTGC
 CCCACTGCTTCTGTCTGGGTGCACCTTCCCAGCCTGCTGGATCCTGCTGCT
 TTAAGGCTGCCTGTCTTAGGAGAACGGATGGGGATCCCCAGGTCTTCATG
 10 GTGACAAAAAGGCTTTCACACATGCACACACTACATACTGCACACATGT
 GGGCAGACACACATACAGCCTCAGTCTCCCTGGCTGGTCCAGCTTGTGCT
 CTTGGAAGAGGAGGAGGTGGGTACACCCAAGCTGTGAATTGGGAGACAGG
 TCATGACACACCCATCTCCTACATCTCCTGATTACAGGTGAGAAAATTGCC
 TTGGTGGGGAGCCCTGGCTCAGTGTGCATGTGGACCTGCTCTGGTGGGG
 15 GTGCCTTCTCTATGAAGGTGTCTGTCTGCACCACTGTGGGATTCAAGGAA
 GGCAAGGCCTTGTGCAGTGTGTGGGCACAGTCATGCCGGTGTGACTG
 TGGAGTGACCATCTGACATAGCCTGCAATCAGGAAGGACCATGTCAAGGCAG
 AACTGAAGGACCCCTGAGCTAGTTCTGGCTCTGTCTGCTGTGGTGCCAAACT
 TGGGGACCCCTCAGGACATTCAAACCTCAGGGTCTCCTGCACAGGAGAGAGG
 20 GGAGTACACTAAAATGCAGATTCTGGGCCACCCAGCCCCACTGTACTGG
 GTCTGCATTAGAGGCTGTTACAGAGCCCCCAGGCAACTGCCCTGGGTCCCC
 TCCCAGACCTGCTGGTAGGGTGGGTCTGAGCTGACCGGTCTTATGAGCATG
 CGGGGGCAGGTAGTTAGGAATAGGTGAGGCAGTGATGAACCAGGAACCGC
 CTGTGGGTTAGGATCAAGAACAGGGCTGCTGATGAACGTAATATAAAA
 25 ATCCTCAACAAATACTAGCAAACCAAATCCAGAAACACATCAAAAAATTAAT
 TCACCACAGTCAAATAGACTTCATTCTGGATGCAAGGTGGTCAACATAT
 GCAAATCAATAATGTGGTTGTACATAAACAGAACAAAAAAACCATATGG
 TCCTCTCAATAGATTCAAGAAAAAGTCTTGAAAAAATCCAAACATCCCTTCAT
 GATAAAAACCTGCAACAAACTAGCATCAAAGGAACATACCTCAAAATAATA
 30 AGAGCTGTCTATGACAAACCCACAGTCAACATCATATTGAACGGGAAAAGC
 TGGCAAAAGCATTCCCTTAAGAACAGGAATAAGACAAGGATGTACACTCTC
 ACCACACAAAAAAATTACCTAGGAATACATCTAACCCAGGAGATGACGCATC
 TCCACAAGGAGAACACTCCTGAAAGAAATTGGCTGGATGCAGTGGCTCACA

CCAGTAATCCTAGCATTTGGGAGGCTGAAGCGAGCGGATCACTGAATCCA
 GGAGTCGAGACCAGCCTGCCAATATGGTAAAACCCCAACTCTACAAAAA
 AATACAAAAAATTAGCCAGGCATGGTGGCATATGCCTGTAGTCCTAGCTACTG
 GGGCGGTTAAGGTGGGAGGATCACCTAACGCCTGGGAGGTTGAGGCTGCAGTG
 5 AACCAGGACTGTGTCACTGCACCTCAGCCTGGTGACAGAGTGAGACCCCTGT
 CTTAAAAAAATTACAGATGACACAAATGGAAACACATTCCATGCTCATGG
 ATAGGAAGAACATCAGCATCATTAAAGATGGTCACATTGTCAAAGCAATCTACA
 GATTAAGCGCTATT CCTATTAAACTACCAACGTCACTTTCACAGAATTAGAA
 AAACTACTCTAAAATTCAATATGGAACCAAAAAAGAGGCCAGAACAGCAAGGC
 10 AATCCTAACGAAAAAGAACAAAGCCAGAGGCATCACATTACCTGACTTC
 CTAATGTTCAAGGCGACTATAACCAAACCAAGCATAGTACTGGTACAAAAATA
 GACACATAGACCAATGGAACAGAACAGAACAGAGGCCAGAAGTAAAGCCACACA
 CCTACAGTAATCTGATCTTCAACAAAGTCACACAAAAATAGGAAATGGGAAA
 AGACTCCATATTCAATAAATGGTGTGAGACAGCTGGCTGCCATATGCAGA
 15 AGAATGAAAATGGACCCCTAACATTTCACCATATGCACAAAGTGACACAAGATG
 GATTAAAGATTAAATGCGAGACCTCAAACATATAAGACTACTAACAGAGAAAAC
 ATCGGAAATACCATTCTGGACATCAGCGCTGGAAAGAATTATGATTAATT
 CTCAAAAGCCATTGCCACAAAAATATACATTGACAAGTGGACCTAAC
 CTAAAGAGCTCTGCACAGCAAAAGAAACTATCACACAGAGTAAACAGAAC
 20 CTACAGAACGGAGAAAATATTGCATCTGCATCTGACAAAGGTCTAAC
 TCCAGAACATCTATAAGGAACCTCAAACAAATTCAACAAAGAAAAATAAAQCC
 CCGTAAAAATTGCTCAAAGGAGATGAACAGATGCTCTCAAAGGAAGACATC
 CATGCGGTCAACAAAGCATATAAAAGAAAGCTCAACATCACTAAC
 AAATGCAAATCAAAACCATAGTGAGATACCATCTCACACCAGTCAGAAC
 25 CTTTGTAAAATATCAAAACAAATACATGCTGGCAAGAGTGAGCAGAACAG
 GGAACGCTTACACTGTGGGTGGAAATGTAAATTAGTCCAGCCACTGTGGA
 AAGCAGTTGGAGATTCCAAAGAACTCAAAACAGAACAGTTCCATTGACCC
 AGCAATTCCATTAATT CCTGGATACATATAACAAAAGAAAAATCATTCTACCAA
 AAAGACACCTGCACCTCCATGTCATCGCAGCACTATTCAACAAAGAAC
 30 CCTGGAATTAAACCAAGGTGCCAACAGTGGTAGACTGGTAAAGAAAATGT
 GGTATATACACACCATGGAATACTATGCAGCCATGAAAAAGAACATAAA
 GTCATCTGCAGCAACATGGTCCAGCTGGACACCATTATCCTAAC
 ACTGAGGAACGGAAAACCAAAATACCACATGTTCTACTTATAAGTGGAAAG

TGGGAACATAATGATGGGTGCTCATAGACATAGAGGGACAACAATAGACACT
 GGGGACTGGTAGATGGTGGGGAGCAAGCGTGAAAAACTATTGGCTACCAT
 TGTCACTATCTGGGTGATGGGATCATCCATACCCAAACCTCAGCATCACGCA
 ATATAACCTATGTAACAAACCTGCACACATACCCCTGAATCTAAAAAAGAAC
 5 AGCAGGGCCTTAAATGGGTGATGCCTTACAGATGTAGGGCATCATATCCAT
 AGGAGACATTGCCAGGCATAAGGATCCTCTGGAGAGACACATCAGCTTGAG
 GAATACAGGGTGGTGGCTCTGTCCAGCCACCCTGCCCATCTCCTACCCCTCCC
 ATCCATTCTGCATTGGGTGCCTCCTGCATGCAGAGTCCTCCTCCAACAGCAA
 TGCCTCCCAGATTGCTGAAGGGCTGCTCCAGGGTCTGTGGAGACGCC
 10 TGGGACCCTTGCTGACCACCCCTCCACAATCTGCACCCCCATCCTGTGCC
 TCGTTTTTTGTCCCACCACTACCTGGTGGTGAGACAGCTCTGTAACCTGCGC
 CTAGAACAGCGCTGGCACTCAGCCGGTCTGCGAGGATCTGGGGAATG
 AACGAATGATTGAATGAATGAATAGGTAGGAAGACTACCTGAAGGAGGATGT
 TGGCCAGGAAGCCTGTGGTGGCTGGCTGTCTAGCAGCCCAGCCCTGGCC
 15 GCAGATGCTGATCTCACAGCAGCCACACACCCCTCCCTGGTCAGCCTCAGCT
 TCCCCATTCCCTCATGCATTCTGGTACTTCTGAGGCTCCTCCACTGTGGGCC
 TCTGACCCCTGCTGGAGGAACATGAGGTGAGCCTGGTGAGCTGAGGGATGCG
 GCAAACAGCCCTGGAAGGTTGGTGTGAGGTAGATTGAGTGCCATGTTCCAG
 AAGGTTCTGAGGCTCTGGACAGCCTGAGAGCCTGAGAGGCTGGAGAGGGT
 20 TGCCTCCTGTTCATGCTGGTGTAGGTCTGTCAGTCAGTCTTGATCTAGGACA
 GCCAGGGCTGGACATGTGCACCCACCGGAATGATAGAGGAGGGCTTCCTC
 AGTGGAGGGTGTGTCCTGGAGAGAGCAGGTGGCAGCTGGAGGCTACAACCC
 TCGGGCCTGCTCCCTCAGCTGATGGGGCCCTCCTCACCTCCTGCTCACAC
 AGAGAGTGGCCACTGGCTGGCAGGCCACTTGTATTGTCTGTCCTACCA
 25 GCCATCCACCCCTACTCCCCACCCCTCAGCCCTGGCCTCACCTGAGCCCAC
 ACCCAGCCCAGCCCCACCTCACCTCACCTGCGCACCTGGCCTACTCC
 CTCCTCTCAGTCCCCACCCATCCCCCTCAGCTCCTGGAGGCTGAGGGAG
 CTTGAAGACAATCCCTGTCAGTCTCTCCTGCCTCAGTGTCCCCAAGCCA
 ATGGGACCCATACCCCCAGAGCAGCAGCAGGCTGTGGCACAGCTCAGGGCCAC
 30 GAGACAGCCCTGGGGCCTCCAAGAACGCTCCCTAGTGAGTTATTAGAATT
 TTTTTTTAGATGGAGTTCGCTTGTCAACCCAGGCTGGAGTGCAGTGGTGC
 GATCTCAGCTCACTGCAGCCTGCCTCCGGTCCAAGTGATTCTCCTGCCT
 CAGCCTCCTGAGTAGGTGGATTACAGGTGTGCCACCACACCCAGCTAATT

TTGGATTTCAGTAGAGGCGGGTTTACCATGTTGACCAGGCTGGTCTAAA
 CTCCTGACCTCAAGCGATCAGCCTGCCTCGGCCTCCAAAGTGCTGGGATTAC
 AGGTGTGAGCCACTGCATCCGGCCTAGAATTAAAATATGGAGGCTTGACC
 TGCCTGACCGCCCTGCCTTTCACTCGTTTCAAAGATAATGAGCAAAGCAACC
 5 TGCAGAAGATCAAATAGGATTTCACTATTATCATGAATGCATGGGCTTTCA
 AGCTATTGATGTGTTTCACTCCATGACTCTTCTGATGCTCAAATTGCCCCAT
 TGTTGATCAGCCCCTCTCAAACCTGACAATGAACAATAGTAGGATACCTT
 TTTCTTAAGATAAAAATAGCTGAGGAGTCTATGCTAATATAGTCCATTCAATT
 AAGGACTGGTTGTACTTCTTGATTTAAATCTGTATCCTTACTTAACTGAA
 10 AAATCTGGTCCAAGGAATTAGCATCATTCTTGATACACACACACACACAC
 ACACACACACACACACACACACACACACAGAGTTCTTGGGATCCTTGG
 TTGAGTATTAGTGTATGATCATATTGATCATGGCACTCCATCGTGTGACTGTAC
 AGCACAGCTGAAGCGATTGAAGGACATTGTGATTGTCTCTAGACTTTGCTAA
 TATAAAAAATGCTGTTGACTATCATTATGTATATGACTTTCTATTTC
 15 TACATATCTTGGTTATTCTAGAAGTGGGTTCTGTGTCAAATGATACA
 TTTAGTAATATCGCTAGGTCTCTTCTACCAAGTGTGAGGAGTGCACCTGTG
 CCTGCTGCCTCTCCCACAGAGTTGCCATAAAAGTCTGGATTTGCCAATCT
 GATAAGCAAGCAGTGGTATCAGAGTGTACTTTCTATTGCATTTCTGTTAT
 AAATGAGGTTGAACATTTCTATAAGTGCAGAGTCATGAACCCATTCC
 20 ATGAAC TGCTCATGTTCTGCTCCCTTCTATAGGACTGTCTGGCAGGTCC
 TCACCTCAGTTGATGTTCTTATGTATCAGTGTATTAATCCTTGTGATCG
 AAACTGCAAATACCTTCCCATTGGTCATTGTCTCCTTACTTGCTAATGG
 TGCTTCTATTAAATTCTTATTTATCTGTTGCTTGGATTCAAGTCATA
 GTTGGAAATGTTCCCGATTACAGGTTCTGAGGAATTGACCTGTACATT
 25 TTGTAGAATTGCATGGCTTCATCTCACCTTACACTTGAGCCTCTGATT
 TTGAGATTATTCTCGTGTGCGGTGAGATGGACCCAAAGGTATGCTTTCTTC
 TTTATGACTGTCCAGTTGTCAAACGCTGCTTATTCAAAGCTCACCTCCT
 GCTGAGGTGGGAGGGGAAGGCAGAGACTCCATGCAGGTGTATGTATGTCAC
 CGGGAAAGTAACCTGAATGCGTGCTGTGCCCTGCAGAGCTGACTGACT
 30 GCCCCCACCTCTGACCCGCTGCCCTCTGCACCTCACTGATATGCTCCAG
 GAAGGTACCCCTCCTCGGCCTCCCTGTGTTATCACAGCGCCAGCACAAGC
 TGGGACCCACTCCATCCACTCTGCTGCAAATACAGACTGTGCACCTGTG
 GGCACCTCACTAGGGTGGGGAGTCAGGCGTCAAGGGCTGGACTCCG

TCCACGATAAAAGAGCAGACTTTGGCAGGGGTGGTAGATACATCAAATTG
 ACCCAGGGTGCTCAGGGACGACCTGGAAGTGTACATGAGTTATGGGTCTCC
 TGGCGGGGCGGAGAGTCACCGCTGAGCTCCACCTTACTGCTCTGGCTGCCCTCAGGG
 CTGTGTGCAGTATCCTGAAAAAAAGCCGGTCTCTCTGTTGGCTGCCCTCAGGG
 5 CCCCCCCCCAAGCCTGAGACGTGCTGAGACCCAAATGCCAGTAGCGGGCGGGGA
 GGCAGTGCAGAGACCTGTGAAAATCTTCCGATGTGACCAACCCACCCACC
 CAGGGGAATCCACGGGGCGCAGCGGCAGCGCGGTCTGACGGTGGGGAGGA
 CAAGGCGCCCATTCTCCAAGTTACTAGGGTGGCGCAAGCGCCTCTCCCTTAA
 CTGCCCAGGCAGCCCCGCCTGCTATGCCCGCAGTCAAACCAGGTCCAGACC
 10 CGGGCTGTGCCGCCCTACCCCCCAGCAGCCCTGCCGGCTCCCCACCCACACA
 GCTCCCACTGGGAGGTACCTGACAGTGGTGGTCCCCTCTCACCCCTCCGGTCC
 AAGGGCCCTGGTGGGAAGCGACCCGAGCGTATTGCCGCCAGCTCGCGC
 GCCTGGGCACCCGGGGCGCTCACAGTGATCGCGGGCCAGCACACCCCTCAC
 CCAGGACATCCCTTCCCTCCCCCAACCCAACTCCGGAGTGGCTAGAGGGA
 15 GGGAAAGTAGATGCCGGCACCCCTACCCCGCCCTCCTGCCCGCTGTGCCGT
 TCTCGGTCTGGTATCGGCCAGGCCTTACCCCTCCCTGGCGCAGCTGGG
 GTCCCTCCCGGGCCAGGCAGAGCAGGCAGGGCATCAGAAGTGGGGCCAAGC
 AGGTGGGTGAGGGCAGGGCAGGAGCAAGCAGGGAGATGCAGACGGGCGG
 GGCCAAAGCAGGTGGGTGAGGGCAGGGCAGGGCAAGCAGGTGGCGGGAGGGG
 20 GGGGCCAGGCAGGGTAAATGCACACTGGAACGGGCCAACAGGTGGCGA
 GGAGGGGGCGGGGCCAAGCGGGATAGATGACACGAGCGGGCTAACAGGT
 GGGCTCGGGCGGGGTGGGGTGGGGCGGGGGCGCAGGCGGGGGCGGGGG
 CGCGGACAGGCCAAGCCAGGGGTGAGGCAGGAGCAGGGCCAGGCCGGTCC
 GTGAGGGAGAGGGCGGGCCAAGCCGGTGGCGCGGGCAGGGACGCCCTGTG
 25 CGCGCCGGACCAGGGGGGGCGGGCGTGCAGGCAGGGGGCGGGCACGCCGT
 CCCATGGGACCGGCCCTCGGCCACTGCCCTCCGGCCCCGCCCCGAGCGCCC
 GGGCTGGGCCGGCAGCGGCCCGGGCGGGCTGGCAGCAGTGGCTGCC
 GCACTGCGCCCGGGCGCTGCCCTCGCTGCAGCTCCGGTGCAGGCCGCTCGGG
 CCGGCCCCCGGCAGGCCCTCGTTATGCCGCCCTCCCTCCCCGCCAG
 30 GGCGAGAGGAAGCGCTGGGTTGGGGCGCCTGCCAGGCAGGGGGGG
 CAGCGCGGGCCTGGCCAAGAAGTGCCTCTCGCTGGAGCTGGCGGAGGGC
 GGCCCGGGCGGGCGCGCTACCGGCCATCGCGCCGGCGCCCCAGGTC
 CCGCGCCCCCTGCGTCCCCGGCCGCCGCCGCCAGTTGCCTCCGAC

CTTGGCCCGCGGCCGCGGTGAGCCTAGACCCGCGCGTCTCCATCTACAGCAC
 GCGCCGCCCGGTGTTGGCGCGCACCCACGTCCAGGGCCCGTCTACAACCTCC
 TCGAGCGTCCCACCGGCTGAAATGCTCGTTACCACCTCGCCGTGTGAGTA
 TCGCCACCGGCGACGGCCGGCACGAAGGTGCTCCTGAGAGCTGGTGTGGGG
 5 GAGCTCTGTCCCAGCGCCACCTGCCCCGTCGGAGCTGCGACCCCGGAGCAGA
 GGAGGGAAAGGAAGTGGGGAAACGCAGAAACACAAACTCTGCACTCTCCCTTG
 AAGTTCAGAGGCGCTGCTGTGTCTGGGGTGCATCTCTCGCAGGCCCGGC
 GTGGGGAGGGAGCCGGCTGGGAGGGGACCATGGAGGCCAGAATTGGC
 TCCACACCTCCGGGAGGGTAGTCCAGGTGTGAATCCTCTGGGAAGAGAAC
 10 GTGCTGGGAGCGCACCTGGGTGCAGTAAGATAACTCCTCAAGGTCGGCT
 GAGACTCGAGGCTCAGGAGCCCCAAGAGAGAAGGCCCCTGATGTCCGGTGC
 CGCATCTCAGACCCCCCTGAGGCCAGGTGGACTCTGGGCAGGGGCTGTCC
 AGGATAGGAAGGTGACGGTGGCGGTGCTCCCTGAGGGCTAGCATGCCACGG
 GCCGTCCCCACGGGCCCCACATTAACATTGAACCAAGCTCATGAAAACCT
 15 GGCTTGATGCAGAGAGCGGAGAGGACGTTGCAGCTCTCACTAAGAGGCAG
 CTGTGCTCCCGAGAAAGCAGCGCTGGTAGCAGAGGCACCTGGCCCCCTGT
 TACCAGGTGGTTCCAATTCCCGGTACAGCGTGCCTGAGCAGGGCTGGCACT
 GGATTCTCAGGGACAGGCCTGGGAAGTCACCTCCGGGAAGGTCCAGGCTGC
 TCTCCTCCATGCCTGCCTGGGCCTCCCCGCTGCCAGTGGCCCTACTTCC
 20 TGGCTGCCAGCCAGCGGCCTTGGTGTGGTGCAGCCTCTGGCCTGGGAGC
 CTCTACCCAGACATCCCAGGCTGATGGCTGTGGGCTCACCTGAGGGCTGA
 AGGGTGGTCTCCCTGAGCGTCTCAGGTGGAAGCATCTCCTGCCTCGGGCA
 GGCTCAGTAGAGAACTGGCTGGAGGGCATCCAGAGGCCTGTCCATGCCTGCT
 GGCAGCTGCCACCAGGGCTCAGGGGGTGACAGCAGGAGCCAGGCCCA
 25 AATGGCTTCAAGCATCGTCTCAGGTGAGGGGGTGGGTAGGGTCGCAGGGC
 TACTGCCTCCTGCTAACAGGGTGGCCTCCACATCAGGAAGGGAAAGTCTTA
 CCCACCTCCCTCCTCAAAGATGTGGTGGGGGTGATCTGGAGACTTTCCC
 CACCCCCAGCTCCAAGCCCCGTCTCAGGTGACATGTCAGTGGTGCCTGAGCCA
 CAGCCGCTGCTGGTCTGTGAGAGGAGCTGGCTCTGCTCGTGGCT
 30 GGGGGCTGGCTTGGGTTGGAGATATTGTGTGCAGTGACCCAGGGAA
 ACCCAGTCCGATGCCACTGTGCAAATGTCTAGCAGATGCCAGGTTACAGGT
 GCTGTGTGCTGGTGGCCACCTGCCTCCGGACCCAGACTCTGAGATGTCC
 AAGGGTGGGAAGACCTCCTCAGCCAGAGGCCAAGGCAAAGTGCAGGAC

CCCCTCAATTCTCACTTGTATTCAGGTTGTGGACACATGCCTCCGGGCTCACT
 GCAGCCACCGTGTGGAGGAAGAGGGAGGAAGAGGGCTGCCACGCCAGA
 GGAAGTCTCTGCTTGCACTTGTGTTCTCCTCATTTGGATTGTTAGGTCTC
 GGAAGTTGCTCAGCAAGAGTCTACCTCGCCAGCCTCCGCAGAGCTGGCA
 5 AGGCAGGGTGGCTCTGGGGACAGGGCAGGATGGCTCTGTGAAGGGTG
 GCCAGGAAAGGGATGCTCTGTGAAGTGGCCAGATCTGGGCTGGTCTTC
 CAGTTCTGGGTCTGCTTGTAAAGACGTGTGCCTGGCCCTGGGAAGTTGTCA
 TGAACAGCCTCCAACCCAGGTACCTCATGTGGGTGGACTGGAGGTGGAC
 CCTGACTGGCAGGACATGTGGCTTGGCTGGGAGATGCGCTCCCA
 10 CCCTCAGTGCCCTAGGAGGTGGCAGGACCAGTCTTGAGGGGAGACCTGG
 TCATAGAACCAAGGATGGCAGAGTAGCTGGAGGCCACCTGCAGCCTCACGAAA
 TCAGGTCCAGCCTGCGCCAGTCCAGCCTGTGCTGTAAGAAGTCTTGGC
 AATGGTGGCGGAGACAGGGCCCTGTCTTAGGTGGATTGTGAAATGAGAAAT
 ATTGTGGTTCTGGCTGAAGACGACAAGCCTGGCCTGAAGAGCCAGGGCC
 15 CAGGCATGTGTGCAGGGGGTTGAGGCAGGAGGCCGGTGTCCGCTGACCC
 CAGGGCTAGGGCGAACTCTCCTGTGTGCGCCTGGGAAGCCAGCCAGGATAT
 CCTGTCCCCCTCCTGGGAACCCCCCCTCCCCAGGAGAGCAGCTCTCCTGTG
 TTCCTTCTGGCCTCCCTGGCTGGCCGGGTGGACACGGCACCTGGGCCACAA
 CTCTTGGCCGCTTAGGCTTCCCTGCCCCAACACCCCCAGTTATCTGTGGTGCT
 20 TGCGCCCCACTGGGGCAGCTCCCACCTAGCTGAGGGATGGGGTCCAT
 ACAGCCCTGCTGCACCCAGCGGTCTAGCTCCCTGCTGTGAGCCTAGCCAG
 GGGTGGACATCCAGGTGGCATCTACTCTGGTGCTGAGATGCTGGAGATC
 CTGGTTGTGGCCAAGGAGAGGGATTGAGGGGGACCTGCAGTCATGGAGA
 CTGCCCCCTGTAGGCTCTCAAACCTAAGTCTGGCTCAGCAGCCCTGTTCCCG
 25 CTCCTACAGCCTGGCTTCCCTGTTCCAAGAACTTCCAGGGTGTGGC
 AGAACCCCTCGCGGGTGCCTGTTAATCAACAATGGAGCCAGAACAGGTCCA
 GAGGTGGATGGGCTGATCTGGCTGCCCTCCCCAAAGACAAGGCCATGCAGA
 GCCAGCTCTCAGGGTGCAGCACCCAACTTGTGGACTCCAGTGCCTCCTATC
 TCCA GCTCTGGCATTGGAGTCTGAAGCAGCTGCTGGCAGTTGTTCTGCAGC
 30 TGGGCAGGGAGGCCAGAGGCCAAGGCAGGTGGTGGGCTGGGCACAGAGGA
 GGACGGGGCTCTGAGCCATCAGGTCTCTTCTCCATCTTAAAGATCT
 GTCCACCCACTCCTCAGCCCTAGATTCCAGGAAAATGGGAAATTCTTTGG
 GGCTTTCCCAGTGCTACCTTGTGGGCATGAGCCCTGGTCTCATCCCCCTG

GCTGTCTGGGTCCCCTCACCTACATCGCAGACCCGGCCAGTGTTCAGAT
 CCGCTCTGCCAACATGTCGAGTGCCTAACTGTGGCTCGTACTAGTTGGGG
 GAACACAGGCATCCCTACCCCTGGCGTCAGCTGGGAGGGGGTAGTCCAG
 GTGGCAAGAGCCTAGAGCCTGGGAGAAAGGGCTCCCCAGCCTGTGTGGGA
 5 CAGGGATCAGGAGGGTGGTAGGGACTTGGGTCTGCAGGTGGCCTGGCA
 GTGCCTGGTGGCATGGATCAGGTGGCAGGGCTTGTCTGGCATGGCCT
 GTGGCTGGCTGCCTGGCCAGGGCCTGGCCTCTGAGTCTGCGTCTCATT
 CTCTGTGGCAGGCTCCTGGTCTGGCACCTCAGTGCAGGGTGCCTCGGTTGG
 AGGGAACATTACCCGTGCCTGGCACTGAAGCCACAGCTCCCTGTGGCATG
 10 GTGCCCGCAGCTTGAGCCTACAACCCTGGGTACTGGGGCAGGAGGGTCCC
 TTTTGCTTGGCAGTTGCGAGGTACTGGAACCTTGACATATAACGTGCGGGCT
 GCGTTGTGTACAGGGCCGGTCTGAGGGAGGGCTTGCGGGGACACTCCT
 GGGTACCGATGGGATGAACTTCCGCTGGCCTGAAGGCCTGGATGCTTTG
 GGCGGCCAGTGCAGGTCAAGGTGGTGGAGCCAGGGAGCTGGCACGTCAGC
 15 TGCTGCTATGAGTTCTGCCACGTGCCATCCTGGCATGTGGCACGTCTGCAGA
 GGACAGGAAGGGTGAACAGCTCAAACCCACCCATGTGTGCTCCAGAGCTG
 GAAACAGGCTGTGCGGAGCTGAGTGCCTTGGGGCAGCTGAGATGGCAGG
 AGCACCGTGCCACCGAGGGTGTCAAGGTGACAGGGTTGCCAGGCAACTCC
 ACCCGGGTGGCTGATGCCCGTTTAAAGGCCTGGTGCCGAGAATTCCC
 20 CTCCTGCTGCTAGGCTGGTTCAAGTCTGCTCCTCTGCACTTGACGTCTTGC
 CAGTGTGATCCAGAGCTGCTCACACGAGCAAGCGCCTCGAGTCCTAGGGAT
 GCTGTTAACAGGGCAGCGGGCCAGGGAGCTGGCCTGACGCAGGGCCTG
 ATGCAGCGGGTCCAGGGAGCTCATGCCCTCAGCGATGGGAATGCCACCGGT
 CCCTGTAGCCAAGGTGCAGATGCACACGTCTGGCCTGAGCCCCTGCTCGGC
 25 CCTAGGCAGGGCCCCCAGTCCCTGCATTCCACCCGCTTGTCTGGGAGGTGG
 ACGAGCCCTCCGTAGCCCTGACATTCAAACCTGGCTTTGGCCCTGCGATAT
 CTTGCTGTGATTCAAGACTCTGTCCACGGCAAGAACACAACAGGCTGGGACA
 ATCTCATCTCAGGCATCTGTGGGAGGAGACAGCTCCAAGGGCGGTGATGCC
 AGGAGAACATTCCAGGCCAGGAAGAGCTGAGAGACAGCAGATGCCAAGA
 30 CGAGTTGCTGGTGTGGCCAGTGCTGGAGAGCATGGTGTGGCCAGGGAGGAA
 GATGCCGCAGAGAACGCTCCAGAACGCCAACATCTGCTGCTGGAGGGAGAA
 TGAGGCAATGAATATCACCATCCTGGGCCACTTGACCCAGACCCCAAGGAT
 TTGGTTACAGAGGGAGGGCGGCAGCGTCTGGCTCACTCTGGGAGGTGCC

TTGGGGCTGCCAGTATGGGATTGCTGTCACTGTGGTCACTCCAGCCCCGGA
 TGCTCCTACACCATGCTCTGCTGCATCTGGGTCCTGCACGTCGGTG
 AGACCGTCCTGGCCTCCACACCCCTCCTGGTGGTAGCTGTCTCTCCAGC
 AGCTCCTCCAACCACCATGAGAAACCCAGACCTCACAGATGAAAATTATC
 5 GTGGTTGACAAAGGGAGGCGGCTGGTGTCTGGTACTGGCTGGGTGACCAAC
 AGGGATGCCCGTGACCCTAGTCCAGGGGCGCTTTACACGAGGCATCTG
 ACCATGTGATAGGGTGTGGCTTCTGCTGCCTGGCCCAGCCCTCTCTGGGAGC
 CCCACGTGGGTGGGTGCTGGCTGGGAGGGGCTTCTCTGGGGAGCAGGCC
 CTGGCTGGAGGTGGGAAGATCCATGATGGGACCCAGGTGTCTCCACCTCT
 10 CGACCATCTCCTGGGAAGTTCTAATGTTGGTCAGGGTGTGGGTCCATCTG
 AGCAGGCATGGTGCTTCCAGAACAGGATCCAGGTTAAGGGTGGTGGTCCAAGG
 GGGTGCCTGAGCCCTCTGCAGAAACACCGTCCCCTAGAGCAGCAGTCCC
 CAACCTTTAGTACCAAGAGACCTGTTATGGAAGAAAGATTTCCACCCG
 GGCAGTGGTGTCTGGATGAAACTGTTCCATCTCAGATCATCAGGTATTAG
 15 ATTCTCATAAGAACGCGTCAACCTAGATCCCTGTGTGCGCAGTCACAATAG
 GATTGTGCTCCTGTGAGAACCTAATGCCACCGCTGATCCAACAGGAGGTAG
 AGCTCAGGTGGCCGTGCACATTACCTGACGCTCACTCACTGCTGTGCGGCCT
 GCTCCCTAACAGGCCACGGACCCGGGGTTGGAGAACCCGTCTTAGAGGATT
 GAGGCTGGGCCATGGATCGGCACTGTCATTGCCCTGGAGGGTTCTGAG
 20 CACTGGAAGGACCTGGCTGTGGTCCCAGGCACTGGTGGATGGACCAGCAGA
 AAGGCTCCCAGGAGGGCGTGGCTCCCTCATCGGCACCGGACTCTCAGGATG
 AGCCGCCTGGAGTCTGTTGGCATCTGCCCTGGCCGCTCTGGCAGGAACCTCTC
 CTGATGGAAGAGCCGGCTGGGAGCTGACTCCAGGACAGGCCCTGCCGC
 TCTGGACCTGGGCCCTGGCTCTGCTCCCCATTGCTCCTCCACTCACAGA
 25 TGAGGACATTGGTCGCCCTACAGATGAGACAACTAGGCCTGGCCACTTGC
 TCATGCCACACCCAGAAAGCCCTCAGGACACCCAGAACGCCCTAGGATGCC
 AGAACCCCTAGGATGCTGTGGTCTCAAGTGAGGTGGTGCACATTGCC
 TCAGGCCAGTTGTATCCATGGCACCCCCACTCCCACCTAGCACTTGCCAC
 CAGGAAGCACCCTGAGGACTGTCCCCTTGAGA TTGGCTCTCAAAGCCTTGG
 30 TCTGTGCCCTGCGCCTGGCAGCGGGTGAGCTACGGCTGCCCTACCCAGAGA
 GTGCAGGTTCCCTGGGGCGGGGCTCTAGCTTCCCTCCATATGCTAAG
 GTGCACACCTTCTGCTGCCCTCCAAAATCATACTCTGGGGCGCACTGAAA
 GGGTGCTCTGAGTAGCTCCCCGGCTGGCTGAACCTGCTCCAGGCAGAG

ATTTGAAGAGATTAGAAAGCAGGAACCACAGGCAGAGCAGCTGGACAGGG
 ACCCCCACCCCTGTACTCCCTCGGCCCTGGAATGCTCCTCTGCATGGAGACA
 GCCCAGCTGCACTGGGACCCCTACCCCCACCCCTGGGCCAGGGCTGTGTCCT
 CGACTTCCACGCAGAGCAGCCCAGCTTAGAGGAGGGAGCAGAAGGAG
 5 CTCTGACTGAGAGGGTAGACCCCTCCCAGAGGCATCCCCACCCCTGCCCCAA
 AGAGGGAGCAGCTGGAGACGGGGCGGAACCTCCTCTGGCTATATCTAAGC
 AGCCCCGGGAACCATGCGCTCAAGCGTTGATCTTGACGGGCCCTGGCTTG
 GCATTCTATTCCGTGACGTCTCCAGCTGTTGAAAGAGTCACGTCTGTG
 CTCTGGCTAGGATGGCTCAAATATTATAAACATACAGCTTGCTAATTAAA
 10 ACAGCATGACATTGCCTTATAGGCAGGCAGATACCAATGGAACAGCTTTT
 AAAAACCGCATGTAACCTCATTGTATATGAAGTTCGTAAAGAGGCAGCAT
 CTCCAACCAGTGGGAACAGATGGCGGCTTCATGCGTGTGCGGGGTGGGT
 GGGTGGCCATGTGGAAAGTGACCAACTGCACCCACTGTCACATCACACAC
 CAGGATAGACTCCCAGTGGTCAGAAAACCACCTGGTACCTAAAGAAAGCG
 15 CCTGGAATTCTTACCCCTGAGAGCGAAGAAACTTTCTATGACTGAATGCTA
 GATGCGTGGAGGAGATTATGTGTTGACCACATAAGAAAGAAGCAACCTTG
 GCTGGGTGCGGTGGCTCACGCCGTAAATCCAGCACTTGGGAGGCAAGGC
 GGGCGGATCACCTTAGGTGGAGTCGAGACCAAGCCTGACCAACGTGGTGA
 AACCTGTCTACTAAAAATACAGAATTAGCCGGCGTGGTGGTGCATGCCT
 20 GTAATCCCAGCTACTTGGAGGCTGAGGCAGGAGAACACTGAACCCGGGA
 GGTGGAGGTTGCAGTGAGCCGAGATCACGCCGTGCACTCCAGCCTGGCAA
 TAAGAGTGAAATTCCATCTCAGGGAAAAAAAAAAATCTTAATGGGAAACAGC
 CAATTGCCAGGCTGGGGAAAGATGTGATGTTCACGAAGGGTAATCTGTTA
 CTACAGAAAGAGTTCTGAAAACAGAAGAAAACCCACAGCCAGCAGGAGAT
 25 GTGAATACCACTCACAGGACAGTGACCCACAGGGGACCTGAACATGTGAG
 AAGGTGCCGCCCTCACTCCTGGCGAGAGGGGTGTCGAGGAAATGTCACTGA
 GGTCCCTCTGGCTGGCAGAAATCCTTGGCATTGCTGGTAGGCATGCAAGA
 GGGTAGACTCTGTGAGGAAGGGATTGGCACACATCTAGCAAAACTGTCTTCA
 CTGACCTGTGACCCAGCAACCCCTCCCCAGAACCTACCTGAAGGCACCTGC
 30 AAAGGCAGGAGAAGCTGCGTGTGCAGGGCTGTTGTGAAAGTACTGTTGGA
 AAACTGCAAATGCCATTGTAGGAGACTGGTTGAATCAGAGATTGTGGAAT
 ATTATGCAGCTGTAAAAAGGAATGCATAGATCTCTCTTATTATGAAGTGATT
 ATCAGGATTATTAATTATTTTCAGGCAGGGCTTGCTGTGGCAAGG

GTGGTCTGAAATCTTGGCCTCAAGCAGTCCTCCCACCTCAGCCTCCCAAAGT
 GCTTAGATTACAGGTATGAGCCACCACACCTGGCGTATCAGGATGCTTTAA
 GTGAAAAAGCACAGTGAATAAAAATATAGCAGCTATTCTCATCTGATAAAG
 GGGAGGGATGCAAGTCTGGATGTATATTAAAACGAAAGCAATGGAAGCCTCC
 5 AAATCTTAAAAGTTACCTCAAAAGGGTGGGGGGGGGGAGGTGGCATATGG
 AATCAAGATGCCTCTGAATGTACCTGGTTATAGATTCACTTGAAAGCCAT
 GTAAATCAATAGCTTGCCTAATTTAAAAGCTGTTGTAATCGCTTGGTGA
 AAAATCCCTAAATAATCTAACCAAGAAAAAGTAGTCCCTCAAAATTGAAAT
 GAAACAAATGAGCCTAAAAATGTGTGCTGAATTAGTGGCTAACCAACCCAGA
 10 AGGACTGATTTCAGGTGACATATTCTAGCGGGTTACTGCTGAAGACAAATA
 GAGCTGCATGCAGTGGCCACATAATTGTTGTGATACTATTGTTATATTCT
 AAGAGTGCTGCATGGGAATTGCAGGTTAAGGTAAAGTAATTGTTGGTATCA
 CCAAGAATGGAGGTTTACAAAATATGATTACATGTAAACAGAATTAAAAA
 CAAAAACCGTATGATCATCTCAATAGATGTAGAAAAAAACTTTGATAAAAT
 15 TCATCATCCCTTCATTAAAAAACCTCAACAAAAATAGGCATCAAAGGAACA
 TATCTCAATAAGAGCCATCTATGACAAACCCATGGTAAATGTGGTACTGAAT
 GGGTAAAAGCGAGACACATTCCCCTTAAGAATAGGAACAAGACAAGGATGC
 CCACTTCACCACTCCTATTCAAAATAACTGGAGGTCTAGTCAGAAAAAT
 CAGGCAAGAGAGAAAGAAATAAAAGGGATCCAAATAGGAAAGAGGAACCTCA
 20 AATCATCTCCCTTCACCGATGATGATAAGATTCTACACCTAGAAAACCTAAA
 GAGTCTGCCAAAAGCCTCTGGAACGTAAAGTGAAGTCTCAGGATAACAAAT
 CCATGTACAAAATCAGCAGCTTTTTTTGAGATGGAGTCTCACTCT
 GTCACCCAGGCTGGAGTGCAGTGAATGAGATCTGGCTCACTGCAAGCTCTGCC
 TCCCAGGTTCACACCATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGACAACA
 25 GGCCTCTGCCACCACGCCGGCTAATTGGTATTTTAGTAGAGACGGGG
 TTTCACCGTGTAGCCAGGATGGCTTGATCTCCTGACCTGTGATCCACCCG
 CCTTGGCCTCCAAAGTGCTGGATTCAAGGCTTGAGCCACCGTGCCTGCCAA
 TCAGCAGCATTCTTACACCAATGATGTTCAAACTCAGAGCCAATCAAGA
 ATGCAATTCCATTATAAGACACAAAAAGAATAAAATACCCAGGAATACA
 30 TCTAACCAAGGAGGTGAAAGATCTCTACACAAGAGTTACAAAACACTGCTGA
 AAGAAATCATAGATGACAGAAATGGAAAAACATTCCATGCTGATGGGTTGGA
 AGAATCAATATTGTTAAATGCCATACGCCAAAGCAATCTACAGATTCA
 ATGCTATTCTATCAAACCTACCAATGCCACTTTCATAGAATTAGAAAAACT

ATTCTAACATTCATGTAGAACCAAAAAAGAGCCGAAATAGCAAAAAGGAA
 CTAAGCCAGAGGCATCACATTACCTGACTTCAAACATACATTCAAGGCTACAG
 TAGCCAAAACAGCATGGTATTGGTACATAGACATATAGACCAATGGAACAGA
 ATAGAGAACTCAGAAATAAGCCACACACCTACAGCCATCTGATCATCAATA
 5 AAATCAACAAAAATGCCATGGGAAAAGACTTCATATTCAATAATGGCAC
 AGGGATAACTGGCTCCCCATATGCAGAGGAATGAAGTCAGACTCCTATCTAT
 CACCATAACAAAAATTAAAGACAGATTAGACGTGGCCAGGCACAGTGGCTC
 ATGCCTGTAATCCTAGCACTTGGGAGGCCAAGGTGGTGGATCATGGGTC
 AGGAGTTGAGACCAGCTTGGCCAAGGTGGTGAAACCCCCTACTACTAAAA
 10 ATACAAAAATTAGCTGGGTGGTGGTACGCACCTGTGGTCCCAGCTACCCG
 GGAAGCTGAGGCAGGAGATTGCACCACTGCGCTCCAGCCTGGTGACAAGAG
 CAAAACCTATCTCAAAACAAAAAAATTAAAAAGATTAGATGTAA
 ACATTAGATTACAAACTGAAAAAATCCTGGAAGAAAATAGTCCTCAATAT
 TGGCCTTGGCAAATAATATAGCTAATAAGTCCTCAAAAGCAATTGCAACA
 15 AAACTAAAAATTACAAGTGGGACCTAATTAAAGAGCTGCTGCACAGCAAGA
 GAGACTGCCAAGGAATAAACAGATAACCTACAGAATGGGAGAAAATATTA
 GCAAACACTTGAACTGACAAAGGCCTAATATTCAAAGTCTACAAAGAATTAAC
 AAATCAACAAAGCAAAAAACAAACCCATTAAAAAGTGGGCAAAAGGGCCGG
 GCGCGGTGGCTCACGCCGTAAATCCCAGCACGTTGGGAGGCCAAGGTGGCA
 20 GATCACCAGGTCAAGGAGATCGAGACCATCCTGGCTAACATGGTGAAACCCCTG
 TCTCTACTAAAAATACAAAAAAACAAAAAAATTAGCCGGCG
 TGGGGGTGGCGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAAT
 GGCCTGAACCCAGGAGACGGAGCTTGCAGTAAGCCGAGATCACGCCACTGCA
 CTCCAGCCTGGTGACAGAGCAAGACTCGGTCTCAAAAAAAAAAAAAA
 25 AAAAAAAACACAAAAACAAAAAGTGGCAAAAGATATGGTAGACAGT
 TCTTAAAAAGAACATACAAACAGTCACACATGAAAAATGCTCATCAC
 TGATCATCAGAGAAATGCAAATCAAAGTCACAATGAGATACCATCTCACGCC
 AGTCAGAAATGCCCTTGTAAAAAGTCTCAAACACAGATGCTGGAGAGG
 CAGTAGAGAAAGGGAACACTTACACCCCTGTTGACGGGAGTGTAAATGAGTC
 30 CAGCCACCATGGAAGGCAGTTGGAGATTCCCAAAGAACCAAGAGTTGAAC
 TACCATTGATCCAGCAGTCCCCTGTGCTGAGTTATACCCAAAGAAAAATT
 GTCGTTCTACCAAAAAGACATATGCACCTAAACATTCAATGGCAGAAAGACAT
 GAGTCAACTCAGGTGCCTGTCAATGGTAGATCGAATAAGCAAATGTGATAT

ATATAACCATGGAATACTATGCAGACGTAAAATCATGTCCTTGAGCAA
 CATGGATGCAGCTGGAGGTGTTATCCTAAGTGAATTAAATGCAGAAACTGAA
 AACCAAATACTGCGTGGTCTCATGGATTATAAGTGAGGGCTAACATCAAAT
 CCATGTGGACATAATGATGAGAACAGAGACACTGGGGATACAAGAGTGG
 5 GGAGGGGGGAAGGGGAGCAAGGTTGAAAAGTTACCTGTGGGTGCTGTGCGC
 ACTACGTGGGAGACCGGATCGTTGTACTCCAAACCTCAGCATCATGCAATAT
 ACCTTGTGACAAACCTGCACTGTACCTCCTGAACCTATTAAAAAAAGTTGAA
 TAAAATGGAAACTTTGGCATGGAGAAAAAAAAAAACAGATGTAAGT
 TAGAAGAGGTTACGCAAAACCTCCATCCCTGCATTGAATGAGGACTATC
 10 AGTATGCATCCAGGATGACGTTACTAAATATCTCTGTTCTGGAAAGGCC
 CAGGACCAAGGACCACTCAGCAGCTAACAGAGCATCTCTAGACCCCCAGACTGTG
 GCCTCTAGGTACCATTCCCCCTGAAAGAAACCAGGGCCCTGGCGGATTCCA
 GGTCTGTGGCAGAAGATGTGCAAGCTAACGCCTGGAGTATTCATCACAGCAGA
 AGGCAGGGAAAGTTATCAGAGGCCCCCTAGGCCATGCACTGGAACITGAAG
 15 GGGTCCTTGTCTTCCCCCTCTCCCCAAGCTGAAGATGCAGTGGTAAGCCTC
 ACTGAAAATAACAGAGGAAGTGGATGAGCTGCATTGATGGGTTCAAGATCCC
 AAGTCATCCTGATACTGAGGGCAAAACCAGTGGACTTGATTTGCATTCT
 CTAAAGATCTGTGGAGGTCAATAGGGAGACCGCTCATGATGTTGAATCCTGG
 CAAGCAAACGGAGAGAATCTGACATGTGCTCCAGTCGTGATTAACCTGTGAA
 20 CTGTAACTCGGGAAACCCAGTAGCTGATGGGTTGCGTCCTCTTGGACT
 CCCGCAGATGCCTGAGGCAGGCTGCTGAAGTCCTGCCAGGCTCCAGCT
 CCTGGTGAGGTCAAGGATTCCGCATGCAGCGTCACAGCTGCCAACCTCTCCA
 AAGCAGTAAAGGCCTCGGACAGTGCACAGAAAGTGCCTCCATCCACAATGC
 TTCCTGCCTGGATGGATGGATGGATGGATGGATGGATGGATGGATGG
 25 ATGGATGGATCGATCGATCTACCAAGCCTCGTCTAAGTACAAGTTACT
 GGAAATACTCGGGCCAGAGGAACGCGCTAAATGATACTACAGGAGGCCACTT
 GCAGAATCCCAGTGGGGGATGGCTCTGTAGGACACATGACCTGATTCC
 TCAGTAAGTCAATGACCAAGAAATAACGGAGAGAAGGAGGAAAGAACATCACC
 TATCCACCAATTGTGACATATGGCCTTAGTTAGGTCTCAAATAAATGATGACA
 30 AATATTGGATTAATTACTCTGGTTGCTGCATGTTCCATTGGCCATGCC
 GCACCTGCCATGGTGCATTCTGATTCCCGTGCCAGTTGGGAGGCTTGGGG
 TTGTTGGATGCTTGTGAATGGCTTCCCTCCAGGCACAGGGCTTAA
 TGGGGCTCTGGAGCAGACAGACAGAGTTGCACCCAGCTCCAGCTGGCCA

TGTTACCTCAACTGCAAAACGAGAGACGGACTCCTGGGACGC GG TG GT GG
 GGACACTGTGGTCTGTCTCCTCTGGCGCCCGTGGCGCCCGGTGGTGAGG
 TTAGGATGTGGGCGTGGTGTCCAGGGACTGTGTGGCTGCCTGGAGCTGGG
 CAGAGACAAAGCATGCATGTGACACTCCCTGACTTCAGGCCATAACAGGGC
 5 AGGGTGGGGGCAATCAGGGTCTAGAGGACAACCCATGTAGTCCTCA
 CTGCAGGGCTTGGAGGGAGCAGGTGAAGGCTTACCTGTCTTAGTAATGAGG
 AGCTGTGCGGGTCTGAGACAGCTCTGGTCTTAAGGGTATGTAGGGTCAC
 TGCCAGTCTGTAGCTCCCTCTGTGGGGCAGGCTGTGGCACTGTGGCACTGG
 CAGTACTGACTTCCTCTAAGCCAACCAGGGCAGGGACAAGTCAGCTTGTGTT
 10 CGTCCACAGTAGAGGGCGGCCCTGGGGTGAAACGGCTGACCGTGAGGGCGTG
 GTCCCTCCCCCAGACCACCCGGAGGCCCCCTCCGCCCTGCCTACAAAG
 AGTTCCCCCTTGTGTTGAGAGGCCTGGTCTCAGAGGTAGATGAATGGAGTC
 GTGAAATCAGGCAGGGATTCCCTCTGCTAAAACCCACTCTCCTCCCCATGC
 AGCACAGGTGGCCAAAACCTGCGGCTGGTCAGAGGACTGGTTAGTAAGAA
 15 TTTTTTTTTTAAATGTGGTATCTGCTAGCCAGAAAAGGTGTGTGGTTTCG
 CAGTCTTCAGACAAACTGAATTAAATAGTAGCTGACGTGAACCCCTGTTCT
 CCTCTAGGCTCCAGAGCCGCACCCAGTGCAGGTGTGGAAGCTCAGTTCTCC
 AAAACCCAGACAGGCCTGGTCCTGACTGCCACCCCCAGGGGGCCCTCA
 CTCGAGTCCTGCTGCAGTGCCATGGCAGCAGAGGTGTCCGGAGATGCA
 20 ACAGGGCCCAGACCCCTACCAGCCTGTGGCCAGCTGGGGCAGGACTCCGG
 GGCAGGGTGAGTCCCTGCGTGACCTGATTCTCTGTGGCAGGCCGGCAGGG
 TGGCTGCAGGGCGGCGGAGCCTGTGCTGCTGCCATTTCTCTGGCTGGAC
 AGATACTGCCCATATCCCTGGTCTTCAAAGGGCTCTGTGGCTGGAGG
 GCAGCAATGCCCAAGGGAGGAGCAGGTGCCAAGCCCCCAGGTGGCCCTGC
 25 GGGTACAGGTACTTGTACTCTGTGGCATCAGTCCTGCTCCAGCTCAAGG
 CCCTGGCCTCCACAGGCCTCCCTCCCTCCCTCCCTCCCTCCCTTTT
 CCTGTGGCTCCAAGGCCACAGTAGAAAGGCTCCAGTCTGTGTCATGTGTT
 TGGAGGCCTCTCAGGTACAGGGACTGTCAGCCCAGCTGTAAGTGGACCTGG
 ACCGCAAATTGCATGGGCCCTTGCCAAAGCCCTGTGCCACTGCTGGGA
 30 ACGCTGGGACTCCGCTTGTGGGCAGTGGGCTGGTGGAGCAACCC
 CCATCCGGTGGCTGGCCGAGGCCCTATGAGAGGGTGGTAGGTGTCT
 CCACAGTGGGGACCAGATCTCTCTGGCCCCAAAGACTGCTCAAGCCTCT
 GGAGGAGCAGTGGGCCAGGCTGGCGTGACTGCTCTGGTTGAGGGTTG

CTGCCTGTGCAGGTGGCCCTTGTGGTCTGCTGCATGGGGGTGG
 CCTCCTGTGGATGGCCCTGTCCCTGGGTGGTACTGCTGCAGGACCTGGTTTC
 CGGGGGTGTCCGGGAGTCGGATGGCCTCACTCTCCTGGCCTCCACTGGTCC
 AGGAGTGGCGATCTGTGAGCCAATGGCGTGGCTGGGGCAGCCTGGGTGT
 5 TGAGAGGCCCTGGGCAGCCACCTGCCCTCTGAGTTGTCCCATGTGTCTC
 TGGGGCTGGAACCTGGTGTCCGACCTGGTATGGTCAGGTGTATCAGGTG
 TGTGGGCTGGTCTGCATGTGCAGGGCTGTTGAAGGCCTGTGGGCCATCT
 GATGCCCCCTTTCTCAGCCTGGAGAGGATGGCTTCAGGCCGCTCGC
 AGCAGATTGTAGTCTGGTGTGAAATAGCCTCTGAAGCTCTG
 10 TCCGGGAAGGGAACCTTGAGTGTGGAGGAGATAAGCCTGCTGACTGGTGAG
 CCGGCCGGGGCGGGGGTGGCCCTCTCCCTCCCTGCAGCTCCATGG
 CCTGGGCTGTGAGAGGCCGGAAAGGCACGTGCTTGCACATGTG
 TGTGTCTGGAGTGTAGGATGGCACTGGTGCAGGTGGATTACTCAGCCA
 GATCACGGCTGCTTGTACGTGGCCCTGCTCTACCCACAACCTCCAGGT
 15 TTCTGGCTCTGGGAATTGAGGCCTGTGGCTGCTGTGGACCCCTGGAAAGAG
 CCTGTGCTTCTGAGCCAGTGCAGGTGGCATGGAGTAGGTACCCGGGG
 GTGGACAGATAGGCAGAGGAAGGGATGGGCAGGTGGATGGGGCTGAATT
 GTGGTCAGTTATGGGTGGCGGGTAGATGGTGGACAGCTGGATAGATGAAGT
 ACTGGGTGGGTGGAGAGAGAAAGGGTGGGTGGACGGAGGGATGGCAGGG
 20 AGAGAAATGGATGGGCATGCTGCTCCAGCACCCACTGGTGCAGCTGTCT
 GCTGTCTGCTGTCCCTGGGGAAAGGTCTGGAGAGGCCCTCGGTGAGTGTGG
 ACTCAGCCAGCCTAGTCCAAATACAGCTGGATGCATTGCTGCTCCTCCGCC
 ATCCCAGCAGCTGTCCAGAGATGAGACCCAGCCCCACTGTGTCTTCTGGAT
 TCACAAGAATCCTCCCTGGCTGAGGGGCGTGCTGTGGGTGTATCTCATG
 25 GAGAGCCCCAAGGAGCCAGGGAGGAGCCTCTGGTGGTTGGGTCTGGATT
 GGTGGGTGCTGGTGGGTCTTCATGGCTGTTGGCTGCCAGGCCTGCAA
 GGTAGACAGGCCTCTGGACTTGAGTGTGGCTGTGGACGAGGGCAGCGTCGCC
 ATCAGAGGCGATGTCTAGGCCACCCCTCTGACTTGCTCCTCCTCTG
 ACTTGCTCCTCTCTGACGGCCTGCTCTGAGCTGACACCTGCCTGGGG
 30 GCTCCGGCGAAGGCCGCTGGTTCTAGAATGCACCATCTCTCCTGGCATGA
 CGGGAAACCACCTGTGACATTGCCACCCACCTCGCTGTAATCTGGCAGCAGCT
 GTCATGATCCCACCATGTGCCCGGGGACCTGTTACTGAGTGGC
 AGGGACGTGCTCCCACACCCCATGCGCATCCTGCAGGTGCTTCTGCTGAC

TTCTGTGTGCCCTGGGGCCTGCTCTTGGTAGGGTTGACCCCTGCCTGTGAC
 TTAGACAGCTGGAGGGCCAGGAAGTGAGGGGAGGGGGCGGTGGAGTGAAGG
 GGAGGGTGGCGCTGGCAAGAACACAGGCAAAGAGGGTGCCTGGGGGC
 AGGGAAAGGCCTGGAGGTTGAGGAGCAGAAAGTAGACCCCTGACCCCTCCCTG
 5 GGCTGGTGAGTCGGGCCAGCCCAGACTGACAGGGACCAAACCTGGTCCA
 TGTGCCGTGCCAGCCTGGGTTCAAGGTTCTCCCCGTGAGCTGAGCAGACA
 GGGAGGGTCTGGGGAAAGGCTGTGGGCCCTGGTGGAAAGAGTCTGGGTG
 AGGCCCTGAACGGTAAGCGGGCAGCGCGCAGGGGCCAGGGAAAGT
 GGGGCCAGTCGGGGCCTCAGGGTCCTCAGGGATATACTGCTGTCAGG
 10 GTGTGGGAGTGGAAAGTGGGACGGGTGGATTCCAGGATTCCGGTTGT
 GCTTGGTCAGAGTGGGAACTGGACGCTCCGTCCCTGGCTCAGCCTCTCCCG
 CTGTGACCTGGGGACCATTGACTTACTGTGTGCCTGGAGAGCCTAATCCC
 TACCTGCCAGTGGTGACACAGAAGGCAGGAATGCAGAAGGCCCTTCAGAAG
 TTCTCACTGCCCTGCAAGGTAGAGGCTGTTCTGCTGAGGATACATTGCC
 15 CCTCTATCCCCCAGATCGCGGCTGCTCAAGGAGCCTGGTACAGCTGCACGG
 AGGCGCAGCACCCACAGGACAAGTGGTGGAAATGTTCTGGTGTCCCTGGTGC
 AGGTGGCGGGCGGGCTGGGGCTCTGTAGCCTCCTGGCTCGTCCCTG
 GACAGGCTCCACCTCCCTTATCGTGGCCCTTGGCAGGCTGCCTGCCACC
 TCAAAGTCACGCTGCCCTGGCACCCCTGCCTCTCCGGGACTGGGCTGGG
 20 GCTGGGCAGCTGTGTTATGGGTGTACTCCCTGTGCTGGCACTGCGCTGAG
 CTCAACACACAGGGCTCGGGAGGTCTGTGGGTGCCAGGCCAGATGTGA
 ACCCTGAGTTGTGCAACTCGAGTTCAAGAGTGGCGGCCTGCTCCTCACAA
 GACATTGCCCTGCGAGGGGTCAGCCCTGAAGCCGGATGGCCGGCCCCCGC
 TACCACGTGGAGGCTCCCTGTAGGTGCTGTAGATGCCCGTGCAGGGGAC
 25 TTGTTGGCTGATGGATCAGGGGAAGGTTCTCCCCACGGTGTGAGGCAGCA
 CCGAGGGCTCCGTGCCAGCAGGCTCACTGTGGCAGTTGGTCTGGTTGAT
 AACCGTGGACCGGGGTGACAGGCCCTGACTCTGCAGAGCAGGACTGTGGAAA
 ATGGACACTGATGCTGCCCGGTGGATCCAGGCAGGGCCGGATGTTGCAGG
 ACCCACGGGACAATTAGAACGACTGGGCCTACTGGCACAGGGATGTGGACT
 30 ACGGTGCTGCCATCAGCAGATAACAGCTGTACGCAGTGGCCGCAGGCCT
 CCCTGGGCCAGAACACATGGACGTCCAGGTGTGGAATGCCCGGACAGCAGA
 TAACAAGCCTCGTCGTGGTACCCCTGGGTGGCTGTGGGTTAATCTT
 TTCATTTGCTCATCTGAATTCTAATTAAAAATATTGCTTTAAAAAT

AATAAAAGATCATTAAATTAAAATATAAGTGAGGAGAGGCTGGTAAGAG
 GATTCTGGAGTCCCTGGAGTGTCTTCTGGCATCGATGGATGAGAACTCTGAA
 TGAATTGAGTGTGATTGACCTAGGAGAGTGCCGGGGTGGGGGCAGGTGCAC
 TGTGGTCCTGGGTCCACATGGTGTAGGGTCCCATGGGCTCCTGGCCCCCTGGC
 5 TGCTGCCCCCACATTGGGCCCTGCACCAGGCATGAGTCCCATGTCCCTGTCCCT
 GGGGAGGCCTGGGGACAGGAGTTGGGGGGTGGGCAGTGCCTCTGTGTGGC
 AGATTCCAGCTCTCAGGGGCCAGGATTACATGGTCCGTGTGGACTCTGG
 GATGCTGGTGGGAAGAACAGTCTGGCGAGGAGGAAAGGGTGGCTCTGCTG
 ACCCCTCCTAGGTGGCTGGGCTGAGGCCATCCCACGTGGGAGCTGCC
 10 CAGAGATGGAAGGAGCTGGAGTCCACAGGGCGTTCTCTCTTTCTGTG
 TGTAAAGGTAGTTCAAAGTCCTCCTGCCGAGGAAGTAAGACAGCAATCTCT
 GGGGTCCCTGGGCACCAACTCTGGCACTGATGGCTGGTCCAGTGCAGGGAG
 CTGCCCGGCCGCCGTGGTGCAGGCCATGGCTCTGTTCTTCCCC
 CATCTGTAAAATGGTAACGGCGCTCCTCAGGGCTGTTAGCCACATGCTT
 15 AGACCGCACCGAGAAAATGCAGTCCCTCCAGAGCTCCTAACCTCCATGGC
 CACAGGCCCTCCAGAAGTTTTTATTTTTATTTTTGAAGCAGGGT
 CTCACTCTGTCGCCTAGGTTAGAGTGCAGTGGCACAGTCATCACTCACTGCAG
 TGCACCTCCTGGCTCAAGCTGGCACCGTGACCCCTCTCCAAGGCCCTGCCA
 GGCTGGCCTCCAGTCCAGGTGTGAGGCCCTGAGGCCCTGGCTGCAGCTGGAA
 20 GCTCTGGGAGTGCACGTCCCCACAGCGGACTGCCCTGCAGCCAGGTGG
 CCTTAGGTGATCCTCCAAGGTCCAGCCAGGCAGGATCTGAGTCAGGAGGAAC
 CACGGCCCCCACCAGGGCTGAGACTCCTCTGAGCTCGTCACTTGTCTGGTTG
 GGTAGAGGCCTGAGAGGGTGGACACTGCCAGGGTACACAGCTTGTGCGT
 AGCAGAGCTCCCTGTCCGGCCCTGCCGTGCTGGCCCTCTCACACCTTGC
 25 TCACGCTAGGTGCCTGTACCAAGTGCCTGCTGGGGTGGATTGGAGAGGG
 GAGGGTGGCGCCGAGCTCGCCTCCCACCAGCATGCTCCAGAGCTTCC
 GGGAGAAGGTTACGGAGGAGTGGCCTGTCTGGTCCCTCTGGTAGAGC
 CTGTGTTCCGGCAGGCTGGAAACAATGAATGGTACAGATCCACGGCTCCCC
 TTGGGCCTTGGTGGCTCCAGCCATGCCCTGGAAAGGCCATTGG; GCCTGG
 30 CTGGCAGGCAGGAGCTGTGTGCTGCCAGGCAGGTCTAGATGTGGTGGTCCCT
 GGCTGCACCTGCCGGCTCATGACCTGCCCTGCTTCCCTGGAGCTGG
 TGACGGCTCAGGTCGACTCCCAGGGGCCCTCAGGGCCTGCATGAGTG
 TTCTCGGGCTGGCTATGGGGCATTGCTTCTGTCCCTAGCCGGACCTGC

CCATCCACCCAGGGGGCTCAGGGACGTTTGAGTTTCTGAGGCTTGCT
 AGGGAGTGTGCGTGAGGAAGCTGGAACAGTGACCTCGTTGGGGAGGA
 GATGCAGGCAGGCTGTGGCCCAGCTGCCCATTTTAGCTGGGGAAACTGA
 GGCCCAGAGTGGAGAAGCGATCTCAAAGGGGAGGTGACACATGGCTGAGC
 5 CCCGCCTGATGGGTGCTGCTGGGGGAGAAGTCCTGGCTGGACTTCCCCTC
 CCCAGGGCTGGGTTTGTCCCCTACTTGCAGGAGGAGGGGGCTCCAGAAG
 AGAGTGAGTTGAGGGAACACAGTGCTGGGGTCCCTCCTGGGCCTGGGG
 CTGTGGTTCTTAGAGGGCAAGGGCTGCCCTGTTGCTGGCTGTGGCAGCC
 ACAGCCTTCTGACCCCTGCTGCCCTGCGAGTGGGTTCAAGATGCTATC
 10 ACTGACATCTGCCAGGCTCGGGGCTCTGTGTGGTGCAGCCTGCCGGG
 GGCACAGCCATCAGCAGGCCAGAAGTCCTCAGGAGAGCTGCTGCCAGGCTG
 CTGCCTGGGCCAGGCTTCAGATATGCTGCCAGCCTGTCCAGGGGCCTCC
 TGCCAGGTGGCAGAGGGAGAGGGCTTCCTGCCTCATGAGAACAGGGCTG
 AGCTCCATGTTCTTAGCCTCCCTGCCCTCAGTCATCCTATCTGAAACAGG
 15 GATCATAATAGTTAGTTATAGAGAGCGAGGGCCTGGCCCTGCGCTCTTC
 CTCTGTGGTCTCCTCTGCCCTCCCAGAACACCTGGCCCTGCTCTGAGGG
 CCAGCCCTGGGTTGCAGCAGTGAGCATGACCTGCCACAGTCTAGGGCTTT
 GGGGTGGGTTGTGGCAGCTGGCTGCAGGGGGCTGTGGAGCCTGAGGGA
 GTGCCCTCCAGGGAAAGCCGACAGATGGGGCACTCCAGGCAGGGCAGG
 20 AGGTGACCTGGAGGTGGAGGAGCAAGCTGTGGCTGGAGAGGCCGGGAGGG
 TTGGTCAGCAGGTCCGAGGGCCTGGCCTCCCTGGGTGAGGGCCAGGGTGC
 CTCTGCAGGGTGGAAAGTGGCTGTGAGGGGTCTGGTTATCTCCCCATTG
 CACAGGGCTCCATGGGTGGCTGAGCCATGAGGCCCTCGTGGCACCTG
 GTGTCCGGCAGGGAGGCAGGGCCCAGGAGGAGGGCAGGACTGGCTCAAC
 25 GGTGTCGGCCTCTACCCCTTGGCCTCACGGAGGAGGCTGCTCCCTTCCCT
 GGAGCAGCCAGGGATGGTGTGGGCCCTGGTCCCTGGCTTGATATAGGCTT
 CTGCAGAGGATATGGTGTGGCGGGGCTCAGCTGAGAACGCCACCAGGAGAC
 AGATACAGCCTCAGGAAGTGGTTGTATCTGCTGAGAACCCACAATCCGA
 GTCACATGGGACCATTGAGATCACGTCAAGGTGCAGGCTGGGAAGGCTGG
 30 AGCTGGGTTGGCAAAGGCGTTGGCTCTGTGCTGGACAGGCTGCTG
 CCCACCGGGCCTGGCCCAGGTGAGGTGAGAGACACCTGCCACCGTCAAT
 GCCTGGGCACACGGGCCAGTGCACACAGCCAGCAGCGTGCCTTGCAAT
 GGGGGCTGTGGGACCCCTTGCTCCCTGATCCCTGCCAGACCCAGGC

CAGGTGGATTCAAGGTGTGGGCAGGGTAGGAGCTGGGACTGCTGGATGGC
 ATGGGCCACCGCACTGGGCTGCTGACCTCCGAGTCCAGGCAGTCCTTC
 CACCTGGTTAGGGACAGGGCAGGGAGGCTGATGGGCTGGCCAGCGTGGGG
 ACCTGCCAGTGGCCCTGTGGGTGCAGGCCATGTGCCTCTGCATTCCCTTAC
 5 CCCATCTGTAAAATAGGGATAAACAGCAGCTCTAAAGGGCTGTAGCCACG
 TGCTTAGACTGTGCCCGGAAAATGCACTGTCTCCTGGCTCCAACCTTC
 ACAGGCCACAGGCCATTCCCAGAAGTTATTTTATTTTGAGACAGGGT
 CTCCCTCTGTCACTTAGGCTAAGAGTGCAGTGGTGTATCTGGTCACTGCA
 GCCTCGACCTCCCTGGCTCAAGAGATCCTCCGCCTCAGCCTCCTGAGTAGCT
 10 GGGACTACAGATGCACACCACGCCCTGGCTAATTTGTATTTTGAGA
 GATGGGGTCTGCTATATTGCCAGTCTAGTCTCAAGCTCTGAGCTCAAGCG
 ATCTGCCTGCCTCAGCCTCCCAAAGTGCTGGATTACAGGCATGCACTTTTT
 TTTCTAAGTAGCTTACGGAGGCCTGGCATACGGTAAACTGCCAGTT
 TAAAGCAGACAGTCCATGAGTCCTGACATTGGAGGCCCTGTGAAGCCAGC
 15 ATCAGCAGAGTGGGCACACCCATCACCCACAGCGTCCCCCTGTCCCCACG
 ACCAGGCCACTGCTGCCCTACCATCAGGCACGATGGATGGCTTGTGCCTGT
 GGAATTITATTGGATGGACTCTGGCAGCCAACGCTGGTTCTGGCTTCT
 TTTATTCAAGCGTCATGATTGAGCTGTGTCTGTTGTGTGTCGGCTGTT
 GTTGGGTAGAGCCTACTTGCCGATCCATGCACCTGTTGATGGACATGTGGG
 20 CGGCTGTATCCCATTGGCTCTCACAAATGATACTGCTAGGAATAGCTGGAG
 TCTCTGTGCGAGCAAATGCTTTGCTTCTTGTGCAAGCAAGTGGTTGAAC
 GCTCTGCAGCCGCTGGAAAGTGGAACGGCTGTGTCATGGGGTGGGTGAGGG
 CTTCACTTCTAGGACACTGACAAACCGTTCTAAAGCAGCAATCCCCTTT
 GCAGTCCAGCAGCTCCGTGCGACAGCTCTAGTCCTCTGTCTCCTGTCAACA
 25 CTTGGTGTGGCGGTCTTAATTAGCCAATCTAACAGGTGTGTCGGGCC
 TCCCTGGCATTCTGGTGAECTCACTGTGTGGGTCTTCTGCTGTTAGT
 TGTTGTCCACATATCTCTTGGTAAAGTGTCTGTCAAATTGTCTGTTAAGAAA
 ACGTGGGTGGTTTCATTGAATTCAAGAGTTTTTTCTTATTTGAG
 AGAGAATCTCACTCTCCGTCCTCCAGGTTGTAGTGTGGTGGCGTGTCT
 30 TGGCTCACTGCAACCTCTGCCTCCGGTTCAAGTGAATTCTCCTGCCTCAGCC
 TCCCAAGTAGTTGGACTACAGATGCCGCCACCATGACTGGCTAATATTGT
 ATTAGTAGAGACAGGGTTCAACCACGTTGGCCAGGCTGGTCTCTAACTCCT
 GACCTCGTGTACCCACCTGCCTCGGCCTCCCAAAGTGCTGGATTACAGGCATG

AGCTACGGCTCCGGCCGAGATGTTACATGTTCTATTCTGGACCAAGTCC
 TCTATCAGATACCTGCTCTGTGAAGCCTCCCTATCCCTGCTAGTCCTCAG
 TTCTTTAAACAATTTTTTCTTTTGAGACGGAGTCTCGCTCTGCACC
 CAGGCTGGAGTGCAGTGGCGCATCTGGCTCACTGCAAGCTCCGCCCTCG
 5 GGTCATGCCATTCTCCTGCCTCAGCCTCCGAGTAGCTGGACTACAGGC
 CCGCCACTGTATCCAGCTGATTTTGATTTTATAGAGACAGGGTTCACCG
 TGGCTCCATCTCCTGACCTCGTATCCGCCCTCAGCCTCCAAAGTGCT
 GGGATTACAGGCATGAGCCACCACGCCGCCCTTAAACAACTTGTTTA
 GAGCTGCGGTCTCACTCTGTCGCCAGGTTGAAGTGCTGGTCTATGACGG
 10 TCACTGCAGTCCAACCTCTGGCTCAAGCCATCCTCCGTCTCAGCCTCCTA
 AGTAGCTGGGACCACAGGCGATGTCACCACGCCGGCTGATTGTTAAATT
 TTGTAGAGCTGGGTCTGGCTATGTCGCTGACAATAAAATGAGGACTTGAA
 GCATACTCCTCAAATCATCGAGGTTATTGAGCCAACGTGAGGGCACGCC
 GGAAAAAACTCCAGTCACAGAACGATCTGTCGGCTGTTTCAAAGAGGTGC
 15 GTAGGAGGTTCATTCATATTATGTTTCTGAAAAGGGGAGGGGCATCA
 AGTGAGACAAATGATTATATACTTGCAGACTTGTAGAGCCCAGTAAAT
 CTACATTTACAGAACGTATATTGGAGGAAAGAGGGAGCATGGAAGCGTA
 TATCCCAGGGAGGCCGAAGAACATCTCGTTATCTGTCGCCCTTGTCTGT
 GCCTGGGAAGGAAGACAAGCCGGCTTATGAAAAGGCTGGTTCTGTTCA
 20 GCCCTTGGGAAGAAAACCAATGACAGTTCAAGGGAGGGGGTGTGATGA
 TACGTATCCAACCGCACATCCATCATGGCCCTGAACTCAGCTCCAGGGTTTC
 TCTGGGGTCCCTCGCCAAGTGGGATCCACTCAGTTAGGTGGGGGGGGGG
 GTGCTTAGAATTATTTATTCTCATTGCCAGACTGGTCTCAAACCCCTG
 GTCTCGATCAATCCTCCCACCTCAGCCTCCATTCTCTTAATAGTGCCCTTTA
 25 GAGAGCAAACGTTTGACTTGATGAAGTCCAGTTATCAACTTGTTCCCTA
 TGGATTGTGTTTGGTCTCTCAGAAATCTTCCCTAAACCAAGGGCACAG
 ATTTCTGTTTCTCAGAAATTGTAGTGTCAAGGTTCACACTGAGGTGGA
 TATTCTTTGAGTTAATGTCTGACCAGCTGGAGGTGTCGGTGGAGGCTCCC
 TTTCTGCCGCCGGTCTCCAGCACATTGCTGGAT[?]GCCCTCCCTCCACA
 30 GCAGAGTTCTACCCGCCCTCACCAACCTGTATCAACTCATCTCATCGATATCT
 CCCAACGGCTGGGAACAAGGGCTGACTCGGCTGCAATCATCCTGCAGCCAG
 ACTCGGGGACCTAGGACTCTGAACCTCAACTGGTGTGGCTCAGGGCCCCA
 ACTTTCAAGACCCACCTCTGTTGCTCTGCAAGTGGGATCAGCAGGGCTG

TACCCCAAATGCTGCTTGCCTCTCCGCCCTCCTCCCTCTCCCCATCTGCTCTT
 GGCTGCACCCCCAACCTGACCCAAGTGTCTTCACGCTCAGCAACGCCACA
 GCCTCTGACACTCCACGGCACTAAAGTGTCAAGAGACCCAGGGACCTGCGA
 GATCCATCTGCCACACACCACAGGTCCCCAGGACTTGGAGGATGCTGA
 5 TGCCCCAGCTCTGGGTCTAACGATGGCAGTATCACAGCCTCACAGGCACAT
 GTGTATGTGTGTGTGCACGTGTATGGGTGCGTGTGCACCTGTGTATATG
 GGTGTGTGCACGTATGCACGGATGTGTACACATGTGTATGGGTGCGTGCAT
 GGGTGTGCACATGTGTATGGGTGCGATGTGTATAGGTGTGTATGTGTG
 CATGGGCGTGTGTATGTGTGCATGGCGTGTGTACTTGTGTATGGGTGTT
 10 GCATGTGATTGGGTGTGTGCATGTGTATATAAGGTGTGTGCACGTGTATGGG
 TCGTGTGCACCTATGTGTATAGGTGTGTGCACCTATGTGTATAGGCGTGT
 GCACATGTGTATAGGTGTGTATGCACCTATGTGTATAGGCGTGT
 TGTGTGCGCGTGTGTAGGTGTGTGCATATATATGGGTGTGTGCACCTAT
 GTGTATAAGTGTGTGCACATGTGTATAGGTGTATGTATGGGTGTGTGC
 15 TAGGTATGTATGTGTGCACATGTGTAGGTGTGTGCATGTATATATGG
 GTGTGTGTGCACCTATGTGTATAAGTGTATGTGCACATGCGTATAGGTGTG
 TGTTTATGTATGGGTGTGTGCACCTTGCGTGTATATGTGCATGTCTATGT
 GTGCACATGTGTGTAGGTGTGTGCATGTATATATGGGTGTGTGCACCT
 CATGTGTATAAGTGTATGTGCACATGTGTATAGGTGTGTGCACCT
 20 TGTGTGTGCACCTTGCGTATACGTGCATGTCTGTGTGTGCACCT
 TGTGTACCTATGTCTGTATAGGTGTGTGCACCTTGCGTGTGCACCT
 TATGGGTGTGTGTATGCATGTGTGCATGTCCCTCACAGGGCAGAGCTGG
 AAAGAACTGGAGAGGCTGAGGCTGGCTCCCTCATCTCAGGGTAAGCACCT
 TACCCAGAGAAGGAGGGCTGGCTGGCTACTTGCGTGGAGTCCTG
 25 GTCTCTGTCACTGAAAAAGCAAGGCAGAGCGTCTGGGAGGGGTGT
 GGGCTTCTGAGTCACTGGCTGCGTGAGATGTGAGTAGGTCTGTGGGATAGG
 GAGCTGGCCAGGGACTTGAGCTCCCTGCCTGCTATGACCTCAGTCAGCCCCTG
 CCCATTGTCAGGCTCCTCCCTGTCTAGGGTACCCAGTAGAGCTGCCAGCC
 CTGCCACTCCAGCTTGTGAGGAAAAAGTGCACCATGCTGTGGGTTGG
 30 CAGATGTGATTCTGTCTCAGAGGCATGGGGTACTCCATGGCTCTGAGCCA
 AGTTGCAGCTCTGGGCCCTCTGTGATACTCCAGGGCCCCCATCACCCAGC
 ACCGAGATGGGCATGAGCAGAGGGCTCATGGTATGGGTGGCGTGGCTG
 GGAGAAGCCTGCATATGAAGGCCTGTGTCATTGGAGGAGACTGTCCC
 ATGTC

CCTCCAGATCATGTCCCTGAGTGGGGAGCGCCTCTGGCAGAGTGGCACAC
 AGGGTCCCACCCATCTCAAGTCATGGATTAACTCCCCTGTGCTGGAAGCTG
 CAGGAGCTGCTGCCGTGGCTGAGGAGAGGCCAGGACGGGCCAAGGAGAGC
 AGGCAAGAGAAGGGTGGGCTGGCAGGGAGGGGCTCCATTAATTCTGAT
 5 GTCATTATTGCTGTTCTATATTGTATAATAAATGGAAGAAAATAGTGGTT
 GGGGGCTTGCTGGGACTCAGGGAGGGTTGGGACCTCCAGGGCTTCCATTG
 GACCTGAGGCCATGGTGCAGTGAGTCCTGCCGTGGAGTCCCCTCCAGGTGAG
 GGCAGGAGAGCTGGTGGAGATGTGAGGGCTGGCCCTCCAGGTGAG
 CGGGTTGGGAAAGGAAAGGGTCTGTGCTGGAAATCCAAGGGCAAGGCCG
 10 TTTCCCGTCCGGTCCGTCGTTGAGTCCCCTGCCGTGGGACAGCGCTCAGCAT
 GGCACAGACGCTCAGCCGTGTCATGTGGCTTAGAGCGAGGGTGTGCGGCC
 GGCATCATCCTCAGGAACTCTGGAGGGACTGGCCTCAGTTGGCCTGGCCT
 GGCGCGGGGCTGCCAGCCAAGAGCCTCCATCCATTGAGAGGCCAGGGC
 AGGTCCCTGGAGATGGCAGCCTGCAGGTTGAAGCCCCGACAGCTGGGGAGG
 15 CATTGCTCTGCACAGGTAGGCCATGGGCCGCTGCCAGGGTGGCCATTG
 CTCAGTGGCACCAAGCTGGCAGACAGCCGATGCGCTCACCACCTGCCCTCC
 ACAGATGGGAGCCTGGAGAGGCCCTGCCTCCCGAACGGACATCCTCCTTCA
 CCAAATCCGCAAATAGGCCTGATGCCAGGAACGGGCACTGCAGGGCCCTT
 GGGAGGGAGGTAAGCGGGCAGCCGGCAACCTGCTGCTGGGAAGGGCT
 20 GTGGCTGGCCCCAGCCTCCTACCGCTGGCCCAGTGGTCTCTCACACATCACC
 CAGTGTGGAGTGGTTTTGTCTTCTTCGAAACAGGCTTCCTCACTGAGGG
 CTCACCATGGGGCTGTGCTGGGACACTGGATGTGTCCAGGGTCCGTCAAGA
 AGCGTTGGGGTAGTCAGGGCTCAGGGACCACTCTGCTGTCCAGTCTCC
 TGGTGGTACCAAGTGGTACTCTGTGGCGCCGGCACAGCTACTTGTTC
 25 ACCTCCTAGGAGGGAAAGAGGGCGAGGGTGAGCCTAGGGCAGATGCCAGGGC
 AGTGAGGCTACGTGGCTCTTGCCTGATGTGCCGGTGTCCAGGCTGCAGT
 GGGCACCCGAGCCCTGTGGGAAGCCTCCTGGGTCTGCAGCTGAGCAAACAG
 CAGCCGCCAGATGATGGCCCTAAGTGGCTGCAGATAGCAGGCACCATTAAA
 TGCAGAGGCCA, CTGAGGCTGCAGGCTCAGCACAGGTGGCTTGGTGCCCTT
 30 AGGGAGGGCAGCGGTGGAGCCCAGGTCTCTGAAACATTATGACTTCATGC
 GTCAGCTGGAGGCTTTCACCGCCCAGACAAAAGGCCCTGCGTCAGAGTG
 TTCCATGTGGGGCGGGAGCTGGCTGAGAGCTGGCCCTGCTCCAGAG
 AGGCCAGAGCTGGGTGGCACACCTGCTGGGAATGCTGCTGGTGGACTA

GGTTAAGGCGAGAAGGAGGTGTCCATGCCAGGTGGATTAGTCAGATTGTG
 ATGGTGTGGTGGTGCACGGTGGGGACTGCCTATGGAACCTCATCACA
 GCCCCACATCGGCCCTTACAGATGGAAAAGTGGCATGGGTGCATA
 GCTAGTGAGGAGCAGAGCCAGATGGAACCAAGCGTCGACTCAGAGCTGAC
 5 CTTGTGCATTGTGCATTGTTGTGTGATAAAACACGTAACGTAAAA
 TTGACCTTTAACCATGTTCATGGTCTCGGTTACTCGCAGTGCTAGGCG
 TCCGACACGTCTTCTAATTCCATCATCCGAAGAGGAAATT
 AGCAGTCACCCCTTCCCCATGCCCGAGCTCCTGACAACCACAAGCCCAC
 TTCTGCCCTGGATTAGCTATTCTGGATGTTCATGTGCCTGAAATCATGGCA
 10 AACGTGGCCCTGTGTCTGGTTCTCACCGAGCGTCCTGTCTTCACTGTCC
 GCCGTGTTATAACACGCAAGGAAATTCCCTTCTGAGCTGAGTAGTGGT
 CTGTGGTGTGGATGGACTACGTGCAGCTGTCTGCCTTGGCTGTTGGCT
 AGAGGCTCCTCCTGAAAGCCTGATACTAGAATGGATTAAAAACAAATT
 AAATGTGTGTTGCTTATGAAAATCACAAATTAAAGTATGATGCCATCAAAT
 15 GAAAAAAATGGCTAAAGATTTCAAGCACACACACCTAAAGATAGCAGACATT
 CCATTCAACCTTCATCTCAAAGAATTAGGGCAAGGAGGGCGATTCTAAATGG
 CTGGAGACATAGTCAGCTGTGAAGCTGTAACCTTCTGAAGACAGTGACGTG
 GTTGTCACTGCCGGATCTCATCTGAATTCCCTGTGTTGGAGGGACCT
 GGTGGGGGGTAATTGAATCACGGGACGAGTCTTCTGTGCTGTTCTCGTAA
 20 TAGTGAATACGTCTCATAGATCTGATGGTTAAAAAGAGGCATTCCGCTAC
 ACAAGCTCTCATGTTGCCTGCCACCATCCACGTAAGATGGACTTGGTC
 CTCCTGCCTCCGCCATGATTGTGAGGCTTCCCAGCCACATGGAACGTAA
 GTCCAATTAAACCTTTCTTGTACATTGCTCAGTCTGGTATGTCTTA
 TCAGCAGTGTGAAAACGGACTAATACTGACAATAAAATTAAAAACTATTTAAA
 25 ATGCAAAGGAAAATATAAATTAAATCACCTCTCGAGTCTCTGGTAGATCAA
 GAAAACAAAAATACTGAATTATTGATATAGTTAAATTAAAGATATATCA
 AACTTTGTAACTAAAGCAAAAGATGTACCTTACAGTGTCTGGAACAC
 TCACAAACATTGATCATATACTAGACTGCAAAACTCAAGACATTCTAAAAT
 TAAGAACCTATGCTGGATATCTGATTCAACGTATGTTAAAATATATGTT
 30 ATTAATTACAAGTTAATTAAATGAAAGTCTAAAGAAGAAAAGTCTACTTAGA
 AGTAAAAACATCAGCAATATTACTGTGTAATAGATCTGAACATTAAAGGGC
 ATATATGCATATCTGTACACCGAGGCAAATTAGCTACAGGCATTCCCT
 TTTGAAAAAAAGTAAATATGTAAGTAAAAAGTTCACAGTAAGAAAAGTGA

TGTAAATAAGAGATAAAGAATAGAAAATAATAGGAAACAGGAAAACAGACTT
 GAGGGTTCTTTGGGAGGTGATTCTGGTTCTTGAGGAAAACAATATATAT
 CTTATAATTCAATCATGGAAAAACCCCAAGTATATATCTAAATTAGACATG
 AGAAGGCTCTTGGCAATCGATTAGAAAAGTTTGTGTTTAAGACA
 5 GAGTCTCACTCAATCACCCAGGCTGGAGTCAGTGGTCAATCTGGCTTACA
 GCAACGTCTACCTCCGGGTCAAGCGCTCCTCCCCCTCAGCCTCCAAGTA
 GCTGGGTTACGGGCATGTGCCACCACCCCTGGCTAACCTTTGTATTAGT
 AGAGACAAAGGTTTCATTATGTTGCCAGGCTGGTATTGAACCTGAGCAC
 AAGTGATCCACCCACCTCGGCCCTCCAAAGTGCTGGATCACAGGCATGAGC
 10 CACTGCACCCAGCCCAGTTTAATGTGACAGTACTTTGTAAAATTGTACTCC
 AGTGAATTGAAAAATGTTGTGAGATGGCTTATTCTTGGGAAAAAATGTTAA
 GTCAAAATTAGGAAGAAGTGGAGACAAATCTAGTATGTGAGATGAATCTG
 AACCCCTCATCAGAACGTCCACAGCTGACGGTGAACACATTGGCAGGTGAGAT
 ATGTGGAGACATGGCACGTGGTAAAAATGCTGGCAAAGTGTCAAGGCAGG
 15 ATGGAGATACCGTATGGCATTCACTGGACAGTGTTCATCCGTATGTTG
 AACAAATTAAATGTGGGATCAAAGGTAGGAAATGCTTTACAAAGTCATCA
 AAAAGTTTCTGGAAAAGCCTCCAGCCCACGGTACCTAGGTTCTCCAC
 CATTGAATTAGGATGCCGTCTGCTACTGAGAGAGCCAGTCATGTTAGTGGCTC
 AATGGGCAGGGTGCCAGGTTAGCTGTGAACAAAGTGTACCTCTGCTGCCTC
 20 ACTAGCAGAGAGAAAAGAAAACACAGACCAAGTGTACACAGAGAGC
 AATGAAAATCCTCATTATGATGGCAGACTAAACCCATAGTGTGTTAAAATG
 ACCACACATGTAGGCTAGGCACAGTAGTTCATGCCTGTAATCCCACCACTTG
 GGAGGCTAAGGTGGAGGATTGCCTGAGCTCAGGAGACCAGCCTGGGTGACA
 TAGTGAGACCCATCTTTTATTAAAAAAAAAAAGACCATACATACA
 25 CACATGCACACACAACAGTGGTAATGGATTATAATTCAAAAAAGAATCT
 ATGCATCCACAGGGACACACCCATGTATATAACAAATAAGTGGAAAGAAAGG
 AATCCAGTTCTCACGTTAGAATCAACAGGGCTGGAAAGGCCATCAAGGAAACC
 CCGTGGCAGGGCAGGGTTCAAAGAGCTGGTGGTTGAGTCAGTGTCTC
 CCACCACTTACTAGTTACAAAGGAAAAGAATGACTTTCTAGAGGCAA
 30 GCTGGCGACACCACCCGAGCCAAGTGTACCAAGTTAACATCACCAGGAATGG
 GACAGGCCAGCTTCACCACCCCTCCGGATGGACAGCCTCGGTAGCAGAACTCC
 TGCCAAAGACACAGCTGTCCAGGGTGAATCATCCGGAGACACAGGGCAAAC
 CCACATGGAGGGAGACACACAGTGGCCTGAATACTTGAAAATGCCAGGG

CCAAAAAACGTAGAAGGCTAAATAAAGTACCGTTAGGGTGAAGGGGAAGG
 AAGAAAATGTGATGCCCTAACGTGGGAGTCTATGATTCCACTATGTTATGTATTAG
 TCCATTTCAAATTACTGATAAAAGACATACCTGAGACTGGATAATTATAAAG
 GGAAGAGGTTAATTGACTCACAGTCCACATGGCTGGGAGGCCTACAAT
 5 CACAGCAGAAGATGAAGGAAGAACAAAGGAACATCTTACATGATGACAGGC
 AAAGAGATAATGAAAAGTGGACACAAAGGGTTCCCTTATAAAACCACATCAG
 ATCTCGTGAGACTTATTCTTACCATGAGAACAGCATGGAGGAAACCACCCC
 CATGATTCAATTATCTCCACGAGGTCCCTCCATGACACGTGGATTATGG
 GAGCTACAATTACGATGAGATTGGGTGGGACACAGCCAAACCACATCAT
 10 TCCACCCCGCCCCCTCCCTAACATCTCATGTCCTCACATTCAAAACCAATCATG
 CCTTCCCAACGGTCCCCAAAGTCTTAACTCATTCACTTCACTTCAAAAT
 CTGCAGTCCAAAGTCTCATCTGAGACCAGGCAAGTCCCTCACCTATGAGCC
 TGTAATCAAAAGCAAGTTAGTTAATTCTAGACACACAATTAGGGTACAGGC
 CTTGGATAAAATACACCCATTGAAATGGGAGTAATTGCCAAACGAAGGGG
 15 CTAAAGGCCCATGCAAGTCGAAATCCAGTGGGCAGTTAAATCTTAATGC
 TCCAAAATGATCTCCATTGACTCCATGTCTCACATCTAGGTATGCTGATGCA
 AGAGGTGGGTCCCATAGTCTTGAGCAGCTGCCCCCTGGCTTGCAGGGT
 ACAGCCTCCCTCTGGCTGTTCACAGGCTGGCATTGAGTGTCTGCAGCTT
 TCCAGGCACATGGTCAAGCTGTTAGGATCTATCATTCTGGATCTGGAGG
 20 ACAGTGGCCCTTCACAGCTCCACTAGGCAGTCCCCAGTGGGACTTTG
 CATGGGGCTCCAACCCACTTTCCCTCCTACTGCCCTAGCAGAGGTCT
 CCATGAGGACCCCACCCCTGCAGCAAACCTCTGCCTGGACATCCAGGCATT
 CATACTCTGAAATCTAGGCAGAGCTTCCATACCTCAATTCTGACTTCT
 GTGCACCCACAGGCTAACACCATGGAAGCTACCAAGAGTTGGGCTTGC
 25 ACCCTCTGAAGCCACAGCCAAAGCTGTACCTGACACCTTAGCTATGGCTA
 GAGCGGCTGGGACACAGGGACCAAGTCCCTAGGCTGCACACAGCATGGAG
 GCCCTGGGCCAGTCCAGGAAACCATTTCCTAGGCTCTGGGCTGG
 GATGGGAGGGCTGCTCTAACGGTCTGACATGCCCTGGAGACATTTC
 ATTGTCTTAGTGAATTACATTGGCTTCTGTTACTTATGCAAATTCTGCAC
 30 CTGCTTGACTTCTCCTCAGAAAATGGGTTTATTCTATCACATTTCAGA
 CTGCAAATTCTGAACCTTATCTCTGTTCCCTTCAAAACTGAATGCTTT
 AACAAACACCAAGTCACCTCTGAAAGCTTGCAGCTAGAAATTCTCCAC
 CAAATACCCCTAAATCATCTCCCTCAAGTTCAAAGTCCACAAATCTCTAGGGC

AGTGGTAAAATACTGCCAGTCTCTTGCTAAAACATAGCAAGAGTCATCTTA
 ATCCACTTCCAAAAAGTTCTCATCTCCATCTGAGACCACCTCAGCCTGGAT
 TTCATTGTCCATATCATTATCAGAATTGGTCAAGCCCTCAACAAGTTCTA
 GGAAGTTCCAGACTCTCCCACATTTCTGTATCTTGAGGCCCTCAAACCTG
 5 TCCAACCTCTGCCTCTACCCAGTTCCAAAGTTGCTTCCACATTTGGGTATC
 TTTACAGCCGCACCCACTCCCAGTACCAATTACTGTATTAGTCATTTCAT
 GCTGCTGATAAAGACATACCTGAGACTGGTAATTATAAAGGGAAAGAGGT
 TAATTGACTCACAGTCCACATGGCTGGGAGGTCTCACAATCATGGCGAA
 GATGAAGAAAGAGCAAAGGCACATCTTACGTGGCAGCTGGCAAAGAGAGAA
 10 TGAAAACAGAGTGCAAGGGTTCCCCCTTATAAAACCATCAGATCTCATGAG
 ACTTAATTCACTACCACGAGAACAAATATGGGAGAAACTGCCCCATGGTCA
 ATTATCTCCACTGGTCCCTCCCACAACACATGGAAATTATGGGAGCTACAG
 TTCAAGATGAGATTGGGTGGGACACAGCCAAACCATATCAGAGTTGAATC
 CTGTCTGGGAAGAGATGGCTGCAATAGCCAGTGTCTGGCAGCTGATGATGT
 15 GAGAGTGTGAGGTAGAGAACTGTAGTGTGCAATAGAGACCTGTAGTGTGCAT
 GTCAGTGTGTTCCCGATTTGACAACAGTACCACTGGTTACAGAAGAGAA
 CACCCCTATTCTTAAGAAATCCATGAGGAGGCAGTTAGCAGAAAACAGGCAT
 GGTGTCTCCAAGGGCTCAGAAAGATTCAACCAAAAGAGGGAAAGTCTGGAGA
 GGGACAGGATGGAGCAGGACGGACGGGGCAGTGTAGAAACCGCAGGCAAGTCTA
 20 AGCAGAGCACGTTGGAGTTCTCTGCTATTGCAACTTCTCTATAAGTT
 TGAAATGAAATCATATAATCGAAAGTTAGAAGAGAATTACCAACATCATGTT
 GGATTCACTCATGCCACGAGAACGGTGGTCTCTCTGCAGTGAAGTGCAGT
 ATGCGATGTGTGATGTCACTAGTCTCATCCAAAGCAGATGACAATTCCAGTT
 ACTCCTCACCAAGACATAAGAAAATGCTTTAGTAGATCAGTTTCTGATTGT
 25 AAAGTTCAGAAATGTTAATCAGAGAACGTGCAGAAATTAAAGAAGAAAA
 GTAAAATGACTCATCGTACCAAAAGCCAGAGATGCCAGCTTAGTTCTGC
 TAGTCTTTCTCGCGTGTGTGCGCGCGTGCATGCACATGTTCTACTT
 GGTCTTGTGTGTTAAGGGCGTGTACACACACAGTGCAGTCAGGAGTG
 AGTTGCACGTCAGAGCTAGGCTGCTCCCCGAGGCTGTGGCCATCAGCCA
 30 GGCGTCCCCAACCCCCAGGCCATGAAGCACTACCAGTCCATGCCCTGTTAGG
 AACCAAGGCTGCACAGCAGGAGGTGAGTGGCAGGTGAGCAAGTGAAGCTTCAT
 CTGTATTACAGTCACTCCCCATCACTCGCATTACCGCGTGAGCTCTGCCTCCT
 ATCAGATCAGTGGCGGCATTAGATTCTCACAGGGGTGTACCCCTGTTGCAA

CTATGCATGTGAGGGATCTAGGTTGCCTCCTTATAAGAATCTAATGCCTG
 ATGATCTGTCAGTCTCCCACCCCCAGATGGGACTGTCTAGTTGCAGGA
 AAACAAGCTCAGGGCTCTCACTGATTCTACATTATGGTAGTTGTATAATTAT
 TTAATTCTATATTACAATGTAATAATAGTAGAAATAAAAGTGCCCAATGCAAGT
 5 AATGTGCTTGAATCATCCCAGAACCAACCCACACCACTGGTCTGTGGAAAAAC
 TGTTTCCATGAAACCAGTCAGTCACTGGTCCAAAAGGTTGGGGACCACGGCCA
 TCGGCTGTTGCTTATGAATTGTGCCCTCAGTTCTCATCTGAAACGGGA
 ACGATGGGAGCCCTCACCTCGTATGGGGTTGAGGATTGAATGAACCTCATTG
 TCCAGCACCCCTAGCTTCTGCCAGCTCAGGAAGTGCTGAGCAGGGTAACCCC
 10 TATCACTGCGTGTGTGTGTATGTGTGTGTGCATACTTGCCTATGTG
 TGTCTGTGCAAATACTGGTAAAATTGAGAGGGTACTAGACAACTCATTGTA
 TCTTCTTACCTTTGACACATGGCAGACATGTCTCACATCTGTTCTCCTCCAA
 ATGTGACCTTCAATGGCTGCCGGCATTCCCTGTGTTATTGAACGTAATC
 AACTCTCTATTGACGGCTGGGTATTCCTAATTGACTGCTGTAAATAGCATT
 15 GTGATGCAAATCCTGTACACTCATTTCGCCTGGAACCTCAAGATTATTCCTT
 GGGTCACATTGCAGGAGAAGACTGACAGGATCAAAGGGTCTGCATT
 ATGGCTCTGACACCTTGGCAAATCACCTCCGGAGTGTTCCTAATT
 GCTTCTACTGTGCTGGACATCACTGACTCCCCCGCCAACCCCCACCCC
 AACTGCACCACAAAGCTGGGTATTATCATAAAACACTGCCATTATGATGA
 20 AGCAAAATAGAATATCCTCCTCTTAGTGAGGGGAGTATGTTATGTT
 GTTGAGCTTTGTATTTAGCCACCCATTCACTGGCCCACCTGCCCTGGTGC
 ACCTGCAGCAGCAAGACTGTCATCTAGGTTGGGGAAACCAGGAGTGAGT
 GGAGCACGAGGGTCACCCCTCAGGAAGTGACCTGCAAGAGAATGGAGAGAG
 TCATGGACCAGCATGGCGTGGTAATGCATGGTGCCTCTTAGCAGTAAG
 25 ACCTTGAGAAGGAGCCAGGCAGGGAGGAATGGGAGGGTAAGGAGTGCTT
 TTGTGGAGGGAGTCGGACACAGATGGGATTCTCAGCAGAGACCTGATGGAAT
 TGAGGGAGTGGGTGGTGTGCTTCTGCAGGAAGAGCACCAGACAGAGGGC
 ATGGCACATGCAAAGGTCTGTGTTGGAACGTGCTGGTGCATGTGAAGAA
 CTGTGCAGGGAAAGGTGCTGGAGATAGACGGGAGGGCCACGAGGGTTAAGA
 30 TCCTGAGAGCAATGCGGGGGGTGTGAGTGATGAGGGACAACATCAGTCCT
 CTTGGCTTCTGTACTTAAAAAAATCATTGTTGAAGCAATTAGACCTA
 CAGAAAAGTTCCACGACAGTACTGAGAGTTCCGTGGACTCCTAGTATTAAC
 ATCTTAATAACGGGGTGTATTGACCAAAACCGACACCTGATACATTACCGTG

AACTCAACTGCAGATCTGATTCAAATCCCGCGTTTCTAGCATCCGGTTCT
 GTTCTGTGATCCCCACGTTGCTTCAGCTGCCAGGTCTCCTTCGTGTCCCTGCA
 GCCTGTGCCAGCTCCTCAGTCTCTCTTGTCTTCGTGACCTTGATGTTTAGA
 TAAGTACTGGGCGGCTGTTGTAGAACGTCCCTCGGTTGGATTCTCTGATA
 5 TGCTCTCATGATTAGATCAAGATTGTGCATTTGGCAAGAACACCGCGGGAG
 TGTGTTGGGCCCCGAGGAGTCCCTGTGGCAGGGCTGTGTGAGGTAGCATGT
 CTTAGGGCGGGTTCAATTGACCTTGACCACTCAGGTAGGAGTGTGTAGCTGG
 GCTTCTCAGCTGTAAATTAAACCATTTCGCTTCATAATTAGTAAACACCTTG
 AGGAAGCTACATTGAGACATTGCAGCTGCCTTTCTCCTGAGATTGCCC
 10 CGCTGATTTAGTGCCTCATCAGCTGGTTTGCTTGTGACAGGCAAAGTCTGTG
 GTGCTGCCAAATGGGGATTGTTATTCCCACTTCTTCTATGTTGTTAA
 TTTGGATTCTCTCCAGGAAGAGCTGTCCCCCTTGTCTGGTTATGTATCCAGT
 GGCTTATGTATATCAGCATGGTTCATAGATACTTCTTGTGTATGGGCTAT
 AAGCCAATGCTATTATTATTATTATTCTCCATTATTATTATTAGAGACG
 15 GAGTTTACTCTGCACAGGCTGGAGTGCAGTGGCATGATCTGGCTCACTGA
 AACCTCTGCCCTCGGGGTTCAAGTGATTCTCCTGCCTCAGCCTGAGTAGC
 TGGGATTACAGGCACGTACCACCAACGCCAACTAATATTGTATTAGTG
 GAGACGGGGTTTCATCATGTTGCCAGGCTGGTCTGAACCTAACCTCAGG
 TGATCCACCCGCCTGGCCTCCAAAGTGCAGGGATTACAGGTGTGAGCCACT
 20 GCACCCAGCCTCATTATTATTTCATTGCTCAAATTGTGCTGGCTTTGCC
 AGAAACAAACCTTCATTCAAGCTCCATGCCCTTGGTGGCCCTGTCTTCT
 TGGACACTGCCCTGGCACCCCAAGATGCTCTGGCTCAGCTGTATTCC
 TTGCCTCAGTCTGAAATCACCCACTCTCCAAGGAGCCAGGGTTCCAT
 TGGAGAGTGGCTTAGAAACCCAGGCCTGGGTGCATGGTGTGCTCATGCC
 25 ACTGTGGACCTGCTGCTCTGCCACTCGGCCACGGCAGGGAGCTGGGAATATG
 TGTATGGCACCCCCACGTCTACGCTTGTGTTCATCTGCAGATATATTCAAC
 ATGAGTGGGCTCATACTGTCTCCAACCTCAGTTCTGCCAGTGGGCAATT
 CTCTCTTTGTTGTAACACCTTCTCAATAGTGA
 GAAACCTGGCTCTCAC
 CTTCACCTGCTCGTCCAACCCAGCTGCAAGGGAACCTGGCTCTC
 30 ATGCGTGCCTCATGAGAAGTGA
 CTGACCAACCCAGAGCCTGGCGCCTGTGCA
 TGGCGTCTGTGCACGGCGTCTGTCTTCAGCCTCACTGCGTCCCATCAGTG
 CTTTCCCCACGGTGA
 CTTGAGTATTCTTACTCTGACTCCCTCAGTGT
 GATTATGTCATTGACATGTTAGATTATCTGTTAGGGTGGTATTCC

ATTTGGGTGCCCCGATTCTGATTGTTTAGTTACTTATCTGGGGTCTGT
 GTGAAGGAATGTAAAGCTGCTGTGACTCCTGGAGTCAGAGGTGCACAAAGA
 GTGTCCCTCAGAGGAGAGCCAGGCGCCCACCCCTGCCAGCCCTCCCTCCCCACT
 CCATCCCCCACCCCCCACCCTGGACAAAACCAGCTCTCAGCCTTCATGTC
 5 TCTCTGCAGGCCTCTCGCACAGATGAGAAAATACACGTGTGTTCTGTAT
 CCCCTTTCTTACAAAAAGGGAAGCACACTATCAATACTCTGTAGATCTT
 AATTGCGGTAAAGATAACTAATGAAAATTACCATTTAACTATTTAAGC
 ACACAGTTCACTGGCATGAAGTACATTGATTGTTATGCAACCATCACCACC
 ATCCATTCTAGAATTCTCATCCTCCAAACTGAAACTCCATCCCCATTAAA
 10 CACCAACTCCCCATTCTCTCTTCCCAGCCCTGGCACCTACCATTACCTT
 CGTCCTATGGATTGACTAACCTCAGGAACCTCATAAAAGTGGATCATTGAG
 TACTCTATTGTCTTGTACTGGTTATTCACTTGGCATAATGCTCTGAA
 AGTCACTCATGCTGTAGCATGTGTAGAATTCCCTTCAAGGCTGA
 ATAATATTCCACTGTATGGATAGACCACATTGCTATCCATTCACTTTGA
 15 TGAACATTGGGTGCCTCCATGTTAGCTATTGTGAATAATGCTACTATGA
 ATATGGGTGTACAAATATCTTCAACGCCCTGCTTCAATTCTTGGTATA
 TACCCAGAAGTGGATTCTGGATTATGGTAATTATAGTTAATTCTTG
 AGGAACCACTATGCCGTTTCCACAGTAGCTACCACATCCTCACCAACACTG
 TAATTCTGGGGTTTTAATAGTAGCCATTCTAGTGGGTGTGCAGTGGTATCT
 20 CATTATAGTTGATTACATTCTTATGAGTAGTGTGATGTTGAGTATCTTTC
 ATGCTCTTATTAGCCATTGTATCTTGGAGAATATCTCCTCAGCTCTT
 TTGCCCACTTCATTAAATTGAGAGGTTGTTGCTGTTGAGTTAGAACTT
 CTCTATATATTCTGGATATTAATCCCTATCAGATATAGGATTGCAAATATT
 TCTCTCATTCTGTGGGTGCCTTTACTCCGTGATAGTGTCTTGTACAAAAA
 25 ATTTTAATGTCACGAAGTCCAAGTTGTCTACTTTGTTGTCAGCTGC
 CTTGGTCTTGTGTTAGCCATTAGCATTGCTATAAAGGAATACCTGAGGC
 TGGTAATTATAAAGAAAAGAGGTTAATTGGCTATGGTCTGCAGGCTGTA
 CAAGAAACATGGTGCCAGCACCTGCTTGGCGAGAGCCTCAGGAAGCTCC
 AAACACGGCAGAAGGTGAAGCGGGAGTAGGTGTCTCATATGATGAGACAGG
 30 GAGCAAGAGAAAGGAGGTTCCAGTCTCCTTTAACAAACCAGATCTGCATGA
 ACTCATTACCTAATCATGGGAATCTGCCCTATGACCCAAACAGCACCCACC
 AGGCCCAACCTCCAACGCTGGGATCACATTCAACATGAGAGTTGGAGGGG
 ACAAAATATCTGAACCTATCAATGTTATCCAGAAATCATAGCCAAATCCA

ATGTCATGAAGCTTGCCCTATGTTCTTAAGATTTATAGTTACGT
 TGCACATTAGATATTGATCCATTTGAGTTAATTTGTATATGGTGTGAAG
 TAAGGGTCCAGCTCCCTCTGCATGGATTCCAGTTCCCAGCACCAATT
 GTGAAAAGACAGTCCTTCTCATGAAATAGTCTTCCAACCCTAGTCAAAAAA
 5 TCATTAACCATTATGCCACGGTTATTCTGGCTGTCTCATGTTCCATTGG
 TTTATATGTCTGTCTTGCCTGTGCACACTGTCTGATTACTGTAAGTTAT
 AGTAAAGTTGAAATCAGAAAGTGTAGGCTCCAGCTGGCTTCTTTTC
 AATATTGCTTGGCTATTAAAGTCCCTGAGATTCCATATGAATTTAGGAT
 GGGTTTCTATTGCAAAAAGTGTCAATTGGGATTGAGAGGGATTGCAC
 10 TGAATCTATAAATCACTTGGTAGTATTGATATCTAACATTGTCTCTAAC
 CATGAACATGGGATATGTTCCATTATTGCATCTTTAAGTTCTTCAGT
 AATGTTTGTGGGTTTGCTGCAGAAGTCTTACCTCCTGGTTAAGTTAATT
 CCTAAGTATTCTACTTGATGCTATTAAATTAAATTGTTCTAATTCTATT
 TTTAGATTGTTCAATTGTTAGCATATAGAAATGCAACTGATTGATGTTACC
 15 TTAGATTCTGTAACTTGCTGACTTCATTATTAGCTCTAACATTGTTGTGG
 AATCTTAGGGTTCTACATATGAGATTATGTTATCTGTGAATAGAAATAGT
 TTTACGTCTTTTCCATTCTGGATGCCTTATTCTTTAATTGTTCTG
 CCAAATTGCTCTGGCTAGAATTTCAGTACAATGTTGAATAGAAGTGGTAAA
 GTGGTCACCCCTGGCTTATTCTGACCTTAGAGGGAAAAATTCACTGTCATC
 20 ATTATGATGTTAGCTGTGGATTTCACATATGGTTTATTATGTTAAGGTAGT
 TTCCTCTATTCTAGTTGTTGAGAGTTTAATAAGGATGTTGAATTGTC
 AAATGCTTTGTATCAATTGAGATCATGTGATCATGTGAGTGTATTCTCA
 TTCTGTTAATATGCTCTTACATGGATTATTGTTATGTTGAACCATCCTT
 GCATTCCAGGACTAAATCTCACATGGCATGATATGTAATACTTAACTATGT
 25 TTCTGAACTCAGTTGCTATTGTTGAGAATTGATCAGTTCTAACAGGG
 ATATTGGTCTGTAGTTCTGTAGTCTTGTGGCTTAGTACAGAGTAAT
 GCTCTCCTCATAGAATGAGTTAGAAACCTTCCCTCTTTAATTGTTGGG
 AAAGATTGAGAAGGATGGGAGTTATTCTTAAATATTGGTAGGATTCAATTG
 GGGAGGCCATCAGGTCCAGGCTTCTGTTGAGAGTTTTGATTACTGATT
 30 CAATCTCCTCACTAGTTAGGTCCATGAAGATTGTTATTCCTTGTGATT
 GTTTGGTAGGTTCTGTTCTCAGAATTGTCATTCTAGGTTATCCA
 ATTGTTGATACACAATTGTCACAATCTCTTATAATCCTTTATTCTG
 TAGAATTGATAGTCATGTCCTATTCTGATTCACTGAGTACTGTTCTC

TTTTTTACTTAGTCATCTAGCTAAAGGTTGTCAATTCTAAAATCTTCAG
 AGAAGCAACTTGATTAATTGATTTCTCTATTGTTTCTATTCTCTATT
 GTTGGTCTCTGCTGTGGTATTATTATCTTCTTCTGCTAGCTTGGGTTA
 GTTCTTTGCTAGTCCTAACAGTGGTAAAGTTAGGTTATTACTGGAGATCTT
 5 CTTGTTATTAATGTAACAATTATAGGGAGGGAGTGGAGCAAGATGCCAA
 ATAGAAGCCTCCAATTGTCCTCCCCAACAGGAACACCAAATTGAGAACTAT
 CTACACAAAAAAGCACCTTCATAAGAACCAAAATTCAAGATAAGCAATCACAG
 TATCTGCTTTAACTTATATTGCTGGAAGAGGGACTGAAGAGGGCAAGAGA
 GACAGTACTGAATCACTGACAGCACTGTGCCTCCATCCCCCAGCTATGTGGC
 10 ATGGAGAGAGAATCTGAGAGCTGGGGAGGGAAAGTGCAGTGCTTGGGAA
 CTGTCCATCGAGCTCAGTGATTCCCTGTTGCCACAGAAAGCAGAACCAAGGCT
 AAATTCAAGCCCACACCCAGCACAGAGGGAGCATTAAACCAGCCCTAGCCAG
 AGGGGAATCACATATCTCAGGGGTCAAGAAACTGAGTCCAGAAAACCTTGCC
 ACCACGGGCTAAAGTGCCTGGGTTCTAAATAAAACTGTAAGGCAGTCTAG
 15 GCCACAATAACTGCAATTCTAGGCAAGTCCTATTGCTGAGATGGCAGTCAGA
 GCCAGTGGATGTGGGGGCACACAACCTAGTGAGACACCAGCCAGGGTGGCT
 AACCCCAAGGCAGCACAGCTCACAGAAACAAAGTGAUTCTTCTGCTTA
 AAGAGAGGAGATGGAGCAGTAAAGAGAACATTGTCTGCATCTGGATACCA
 GCTCAACCACAGTAGGGAGAGGACACTGGCAGAGTCATGGCACACATTTC
 20 AGGCCCTGGCTTTGGACATTCCAGACACACCCCTGGGCCAGAAGGGAAATCC
 ACTGCCTTGGAGGGAAAGGACCTAGTCTTGTCAAGATTCATCATCAGCTGACTA
 AAGAGCCCTTGGACCCCTGAACAAACCAAGCAGTGCCAGGTAGTATCCTGTGGC
 CTTGAATGAGATTCTGAAATATACTGGCTTCAGGTACCAAGCTTGACCACAGTG
 GGGTAGAGCACCAATGGCCTTGGGTCCCTGATTCCAGGCCTGGCTCTT
 25 GGACAGCATTCTGGACCTGCTCTAGGCCAGAAGGGAGCCCAGTCACCTGAA
 AGGTGAGTCCACAGCCTAGAACAGCCTCACCAAGCTGACTGAAGAGCCCTC
 AGGCCTTCAGTGGACAACCATTGGTAGCCTGACAGTACTGCCTATGGCCTGT
 AGTGGTGGTGGCCACAGGGAGAGGCTCTTGCCTATGGAAAGGAGAAGGAA
 TTCTGGGTATGACTTTGTCTTGTGCTACTACTGA; TGCCAGCTAGCCTCTGTA
 30 GTATACCACACCAGGTAGGTTCTAAGGTCTTGAATCAGACCCCTGCTCCT
 GGATGGCATCTGGACCCACCTGGACTGGGGAACTCACCAACCCCTAAAG
 TGAAGGACAAAAGCCTGGCTGGCTTACCATTGCTAATTGTAGAGCCCTGGG
 GCTTGAGTGAACATAGGTGGTAGCCAGGTAGTGCTACAGCGGGCTTGGG

TGAAACCCAGTGTGTTGGCTTCAGGTCTGACCAGCACAGTCCCAGTGGTG
 GTGGCCACAGGTAAAGCTTGTCACTCCTCCCCAAGCTTCAGGTGGCTTAGCA
 TAGAGAGAGAGTCCATTCTTGGGAGAAAGTAAGAGAAGAAAACAAGAGT
 CTCTGCCTCGTAATGCAGAGAATTCTTCTGGATCTTATCTAACGACCAAGG
 5 CAGTATTTTTTAATATTATTTGAAACAGAGTTCACTCTTGTGCCAA
 GGCTAGAGCGCAATGGTGTGATCTCAGCTACCGCAACCTCTGTCTCCGGGT
 TTAAGCGATTCTCCTGCCTCAGTCTCTGAGTAGCTAGGATTATAGGCATGTG
 CCATCATGCCTGGCTAATTTGTTGTTGTTGTTGTTAGTAGAG
 ACAGGGTTCTCCATGTTGGTCAGGCTGGTCTGAACCTCCGACCTCAGGTGA
 10 TCTGCCCGCCTCGGCCTCCAAAGTGCTGGGATTACAGGCGTGAGCCACTGCG
 CCTGGCCCCAAGGCAGTATTTATGAGTCTGCAAGAACACAGTGTACTGG
 GCTTGGGATGCTGCCTAATGCAGATAACGGCTTAGATCACAAACACCCAAGTCC
 CTTGAATACTGGAAAGCTTACCAAGAAAGATGGGTACAAACAAGCCCAG
 ACTGCAAAGGCTACAATAAACCTAACTCTTAATGCCTAGACACCAATGA
 15 ACAAGACCATCTAGGAAAACATGACCTGACCAAACAAACTAAATAAGCATC
 AGGGACCAATCCTGAAGAAAAGAGATATGTGACCTTCAGAGAGAGAATTAA
 AAATAGCTTTATGAGAAAACCTCAAATTCAAGATAACACAGCGAAGGAATT
 AGAATTCTATCAGATAAAATTAAATAAAAGAGATTAAAATAAGAATCAAGCAGA
 AATTCTGGAGTTGAAAAATGCAGCTGACATATTGAAGAATGTATCAGAATCT
 20 CTTGATAACAGCATTGATCAAGAACAAAAAGAATTAGTAAGCTTGAAGACA
 GGATATTGTAAATACACAGAGGAGACAGAATAAGAACGAATGAAGCATGA
 TCTAGAAAATAGCCTCAAAAGGGCAAATCTAAGATTATTGACCTTAAAGAG
 GAGGTAGAGAAAGAGATAGGGGTAGAAAGCTTATTCAAAGGGATACTAAC
 TAGAACTTCCAAACCTAGAGAAAGATACCAATTCAAATACAAGAAGATT
 25 CTAGAATACCAAGCAGATTAAACCCAAAGAACAGACTACCTCAAGGTATTAAT
 AGTCAAAGTTCCAAAGGTCAAGGATAAAAGAAAGGATCCTAAAAGCAGCAAG
 AAAAGACTTATAATTGAACCTCATTATCTGGCAGCAGAGTTTCAAT
 GGAAACTTATGGGCCAGAAGAGAGTGGCAGGACATATTAAAGGTGCTGAAG
 GAAAAAAAAGAAAAAAACTTTGCTAGAATAGTATCTGGTGAAATAT
 30 CCTTCCAACATGAAGGAGAAATACAGACCTCCAGACAAACAAAAGCTGAG
 GATGTCATCAACACCAGAGCTGTCTTACAAGAAATGCTAAAGGGATTCTTC
 AATCTGAAAGAAAAGGGTGTAAATAAGCAACAAGAAATGATGTGAAGGTAC
 AAAACTCACTGGTAATACATACACAGAAATACAAATAGTATTATAACACTGT

AATTATGGTGTAAACTACTCATATTAAGTAGAAGGATGAAAAGAAGAA
 CTGATAAATAATGACTACAACAACTTTGCAGTACAATAGGCAGTACAATAA
 GATATAGAGACAAAAAAACTAAAAAGCGGAGAGACAAAAGTTGAAGTGTA
 GAGATTTTGTACTTAAGTTCTGGAATACGTGTGCTGAACGTGCAGGTT
 5 TGTTACATACGTATACTGCCATGGGGTTGCTGCACCTATCAACCCATCA
 TCTAGGTTTAAGCCTACATGCATTAGGTATTGCTCTAATGCTCTCCCTCCC
 CTTGGCCCCCATCTCCCCACAGATCCGGTGTGATGTCCTCCCTGTGTC
 CGTGTATTCTCATTGTTCAACTCCACTTATGAGTGAGAACATATGGTGTGTTG
 GTTTCTGTTCTGTGTTAGTTGCCGAGAATGGTTCCAGCTTCATCCCCACA
 10 AAAGACATGAACATCATTCTTTTATGGCTGCATATTATTCCATGGTGTATAT
 GTGCCACATTCTTATCCAGCCTATCATTGATGGGCATTGGGTTGGTCCA
 AGTCTTGCTATTGAAATAGGGCAGTAAACATATGTGTGCATGTGTCTT
 TATAGTAGAATGATTATAATCCTTGGGTATATACCCAGTAATGGGATTGCT
 GGGTCAAATGGTATTCTAGTTCTAGAATCTAGTTCTAGAATCACACGCTGT
 15 CTTCCACAATGGTGAACTAATTACACTCCCACCAACAGTGTAAAAGCGTTC
 CTATTCTCCACATCCTCTCCAGCATCTGTTCTGATTGATGATCG
 CCATTCTAACTGGCATGAGATGGTATCTCCTGTGGTTGATTGCATTCTC
 TGATGACCAGTAATGATTAGCTTTTCCATATGTTCTGGCCACATAAAT
 GTCTCTTTGAGAAGTATCTGTCGATCCTTACCCACTTTGATGGGTT
 20 GTTTTTCTTGTAAATTAAAGTTCTGTAGATTGGATATTAGACCTTGTC
 AGATGGATAGATTGCAAATATTCTCCATTCTGTAGGTTGCCTATTCACTCT
 GATGCTAGCTCTTTACTGTGCAGAAGCTCTTAGTTAATTAGATCCCATT
 GTCAATTGGCTTGCAATTGCTCTGGTGTAGTCATGAAGTCCTT
 GCCCATGCCTATGTCCTGAATGGTATTGCCTGGTATTCTCTAGGGTTCCGT
 25 GGTTTAGGTTTACATTAAAGTCTTAATCATCTTGAGTTAATTATATAA
 GTGTAAGGAAGGGTCCAGTTCTGTTCTGCATATGACTAGCCAGTTTC
 CCAGCACCAATTATAAAATAGAGAACCTTCCGCATTGCTTTGTCAAGGTT
 GGTCAAAGATCAGATGATTAGGTGAGTGGTGTATTCTGAGGTCTCTGTT
 CTGTTCCAATGGTTATATATCTGTCCTACACAGTACCATGCTGTTCTGTT
 30 ACTATAGCCTGTAGTATAGTTGAAGTCAGGTAGTGTGATGCCCTCAGCTT
 GTTCTTTACTTAGGATTGTCTGGCTATATGGGCTCTTTGGTCCATAT
 GAAATTAAAGTAGTTCTAATTCTGTGAAGAAAGTCAATGATAGCTGA
 TGGGAATAGCATTGAATCTATAAATTACTTGGCAGTATGCCATTTCATG

ATACTGATTATTCCATGCCAGCATGGAATTTTCCATTGTTGTGTCC
 TTTCCCTTCCTCAGCAGTGGTTGTTCTCCTGAAGAGGCCTCACATC
 CCTTGTAAGTGTATTCTAGGTATTTCTCTTGTAGCAATTATGAATGG
 GGATTCACTCATGATTGGCTCTGCTGTCTATTGGGTATAGGAATGC
 5 TTGTGAATTTGCACATTGATTTGTATCCAAGACTTGCTGAAGTTGGCTAT
 CAGCTTAAGGAGTTTGGGCTGAGACAATGGGTTCTAAATATAACATCA
 TGTCACTGCAAACAGAGAAAATTGACTCCTCTTCTATTGAATACTCT
 TTATTTTCGCTGCCTTATTGTCCTGCCAGAACCTCCAATACTATGAA
 TGGGAGTGGTGAGAGAGGGCATCCTGTCTGTCTGGTTCAAAGTGAATG
 10 CTTCCAGTTGCCGTTCACTGATATTGCCGTGGGTTGTCAAAATAG
 CTCTGTTATTGAGATATGTCATCAATTCTAGTTATTGAGAGTTTG
 GCATGAAGGGATGTTGAATTGTCAAAGGCTTCTGCATCTATTGAGATA
 ATCATGTGGTTTGTCAATTGGTCTGTTATGTGATGTTAGTGAATTACATA
 TGTTGAATCAGCCTTGCATCCCAGGGATGAAGCCCACCTGATCACCATGGATA
 15 AGCTTTGATGTGCTGGATTCACTTGCAGTATTGAGATTTTATTGAAGATT
 GCATCGGTGCTCATCAGGGATTGGCCTGAAGTTCTTTGTGTGTCGC
 TGCCAAATTGGTATCAGGATGATGCTGCCCTATAAAATGAGTAGGGAG
 GGGTCCCTTTCTACTGTTGAATAGTTCAGAAGGAATGGTACCAAGCT
 CCTCTTGTGCCTCTGGTAGAATTGGGTGTGAATCCGCTGGCCTGGCTT
 20 TTTGGTGGCAGGCTATTAATTACTGCCATTCAGAACTGTTGGC
 TATTCAAGGATTCACTTTCTGGTTAGTCTGGAGGGTGTATGTGTCAG
 GAATTATCCATTCTAGATTCTAGTTATTGCATGGAGGTGTTTA
 GTATTCTCTGATGGTAGTTGTATTCTGTGGATCAGGGTATCCCCTT
 ATCATTTTATTGCATCTATTGATTCTCTCTTCTTGTAGTCTG
 25 GCTGGCAGTCTATTGTTAATCTTCAAAAAACCAGCTCTGGATTCAATTG
 ATTGTTGGAAAGGGTTTCATGTCATCTCAGTTCTGCTCTGATCTT
 AGTTATTCTGTCTGCTAGCTTGAATTGTTGCTCTGCTCTAGT
 TCTTTAATTGATGTTGGGTGTCAGTTCAAGATCTCTAGCTTCTGATA
 TGGGCATTAGTGCATAAATTGCTCTAAACACTGCTTAGCTGTGCCCCA
 30 GAAATTCTGGTACGTTGTCCTTGTTCATTGTTCAAAAGAATTCTTATT
 TCTGCCATTGATTGTTATTACTCAGTAGTCATTCACTGAGGTTGTTCAAT
 TTCCATGTATCTGTGGTTTAGTGAGTTCTCATCCTGAGTTCTAATTG
 ATCGTACTGTGTTCTGAGAGACTGTTGTTATGATTCCATTCTGGCATTG

CTGAGGAGTGTACTTCCAGTTATGTGGTCAATTAGAATAAGTGCTATG
 TGATGCTGAGAACAAATGTACATTCTCTGATTGGGGTGGAAAGTTCTGTAGA
 TGTCTATTAGGTCCCGCTGGTCCAGAGCTGAGTCAGTCCTGAATATCCTG
 TTAATTCTGTCTCATTGATCTGTCTAATATTGACAGTGGAGTGTAAAGTCT
 5 CGCACTGTTATTGAGTAGGAATATAAGTCTCTTGTAGGTCTAAGAACTTG
 TTTATGAATCTAGGTGCTCCTGTATTGGGTGCATTATTAGGATAGTTAGCT
 CTTCTGTTGCATTGATCCCTTACCATATGTAATGCTCTTGTCTTTT
 TATCTTCTTAGTTGAAGTCTGTTATCAAAGGCTAGGATCTGGCCGGGTG
 CAGTGGCTCATGCCTGTAATCCCAGCACTTGGGAGGCTGAGGTGGTGGATC
 10 ACGAGATCAGGAGATCGAGACCACCTGGCTAACACGATGAAACCCATCTC
 TACTAAAAATACAAAAAAATTAGTCAGGCATGGTGGCGGGCACCTGTAGTCC
 CAGCTACTCGGCAGGCTGAGGCAGGAGAATGGCGTGAACCCGGGAGGTGGA
 GCTTGCAGCGAGCCAAGATAGGCCACTGCAGTCAGTCTGGCCTGGCAAAGAGT
 GAGACTCCATCTCAGAAAAAATAAAAATAAAAATAAAATTAAAAAAAT
 15 GGCTAGGATCACAAACCCCTGCTTTTTTTTTTTTTGCTTCCAT
 TGCTGGTAAATATTCCCTCCATCCCTTATTGAGCATATGTGTGTCTTGCA
 CATGAGATGGATCTCCTGAATAAGCACACTGATGGCCTTAACCTTATCC
 AGTTGCCAGTCTGTCTTTAATTGGGCATTAGCCATTACATTAAACG
 TTAACATTGTTATGTGTGAATTGGCCTGTCGTATGATGCTAGCTGGTTATT
 20 CTGCACATTAGTGATGCAGTTCTCATAGTCATTGGCTTATTTGG
 TGTGGTTTGCACTGGCTGATACTGCTTTCCATGTTAGTGCTTCCCTT
 CAGGAGCTCTGTAAGGCAAGCCTCAGCATTGCTTGGAAAGGATTAA
 TTTATCCTTACTCATGAAGCTAGTTGGCTGGATATGAAATTCTGCTTGAAA
 ATTCTTTCTTATGAATGTTGAATATTGGCTCCACTCTCTGGCTTGTAG
 25 GGTTCTGCAGAGAGATTGCTGTTAGTCTGATGCACCTCTTGTAGGTAA
 CCTGACCTTCTCTGGCTGCCCTAACGTTGCTTCAATTAAACCTTGG
 AGAATCTGACAATTATATGTCTGGGGTGCTCTCTGAGGAGTATCTTAGT
 GGTGTTCTCTGTATTCCCTGAATTGAATGCTAGCCTGCTGTAGGGGG
 AAGTTCTGGATAATATCCTGAAGTGTGTTCCAACCTGGTCCATTCTCC
 30 CCGTCACTTCAGGTACAGCAATCAATTGATAGGTTGGCTTTCATATAGTCC
 CATATTCTGGAGGTTGTTGTCCTTTCATCATTCTCTAATCTGT
 CTGCATGCCTTATTCGTTAAGTGTGATCTCAATCTGATATCCTTCTCCA
 CTTGATTGCTATTGGCTATTGATACCTGTATGCATCACAAAGTTCTCATGCTG

TGTTTTCAGCTCCATGAGGTCAATTATGTT CCTCTCTAAACTGGTTATTCTAG
 TTAGCAGT CCTGTAAACCTTTATCAGGTTCTAGCTCCTGCATTGGGTTAG
 AACATGCTCTCTAGCTCAGAGGAATTGTTATTACCCACCTCTGAAGCCTA
 CTTCTGTCAATT CGTCAGTCTCATTCTCCGTCCAGTTGTGCCCTGCTGGAG
 5 AGGAGATGTGATCATTTGGAGGGAGAACAGGGCATTCTGGTTTTAGAATGTTCT
 AGCATTGCTGGCTGGTTTCTCATCTTGTTGATTATCTGCCTTGCTCTT
 TGAGGCTGATGACCTTGGATGGGTTTGTGTGGGGGGTCCCTTTGTTGA
 TGTGATTGTTGCTTCTGTTGCTAGCTTCTTAAGAGTCAGCCTGC
 AGTCCTGCAGGTCTGCTGCAGTTGCTGGAGGTCCACTCCAGACCCTGTTGC
 10 CTGGGTATCACCAAGTGGAGGCTGCAGAACAGCAAAGATTGCTGCCTACTCCT
 TCCTCTGGAAGCTTGCCCAGAAGGGCACCAGCCTGATGCCAACCAGAGCT
 CTCCTGTTGAGGTGCTGTTGACCCCTGTTGGAGGTCTGCCTGCTCAGGA
 GGCATGGGGCTCAGGGACCCACTTGAGGAGGCAGTCTGCCCTAGCAGAGC
 TCATGCACTGTGCTGCGAGAACATCCCCCTGTCAGGATCAGCTGCTCTTCAG
 15 AGCCAGCAGGCAGGAGAGTTCAAGTCTGCTGAAGCTGTGCCACAGCCACCC
 CTTCTCCAGGTGCTCTGCCCAGGGAAATGGGAGTTTATCTATAATCCCCCTG
 ACTGGGGCTGCTGCCCTTCTTCAGAGATGCCCTGCCAGTGAGGAGGAATCT
 AGAGAACGAGTCTGCCCTCAGCTGCTTGCTGTGCTTGGTGAATTCTGCCCA
 GTCCAAGCCTCCCAGCCTCTAGCACTATCAGGGAAAACCGCCTACTAAA
 20 GCCTCAGTAATACCAAATGCCCTCCGCCACCAAGCTTGAGCATCCAGGTC
 AACTTCAGACTGCTGTGCTGGCAGTGAGAATTGAAGCCAGTGGTTCTAGCT
 TGCTGGCTCCATGGGAGTGGGACCCACTGAGTGAGACCACTGGCTTCTG
 GCCTCAGCCCCCTTCCAGGGAGTAAATGATTCTGCTTGCTGGGTTCCAG
 GCACCACTGGGGTACAGAAAAACTCCTGCAGCTAGTTCAATGTCTGTCCAA
 25 ACAGCAACTCAGTTTGCTTGAAACCCAGGGCCCTGGTGGTATAGGCACAT
 GAAGGAGTCTCCTGATCTGCAGATTGCAAAACCCATGGAAAAGCATAGTAT
 CCAGGCCGGTATCACAGTCCGGTATCACAGATGACGGGTGATGGGTGC
 AGCAACTGCATGCAAAC TGCACTGCTTGAGTTCCCTGGCTGGGGAGGGAG
 GTCTCCCGGCTCCTGCACCTCCAGGTGAGGCGATGCCACCTGCTTCTGT
 30 GTGCCCTCCGTGGCTGCACCCACTGCCTAATCAGTCCCAATGAGATGAACCT
 GGTACCTCAGTCAGAAATGCAGAAATCACCCAGTGTGATCTCACTGACAGC
 TACAGACTGGAGCTTCCATTCTGCCATCTGCCAGATGTAAAGTGTAGAA
 TTTTGATTGTTTGTGCTTATGCAATTAGTGTAAAGTCATCATCAGT

TTAAAATAATGAGTTGAAGATATTTCAAGCCTCATGGTAACCTCAGATCTA
 AACATATGGCAGACACACAAATAAAAAGCAAGAAATTAAAGCATGCCACT
 AGAGAAAATCACCTCACTAAAAGGAAGACAGAAGGGAAAGTAACAAAGGAA
 GAGAATATCTCACCCAGAAAACAATAATAAAATGGCAAGAGTGAGTCCTTA
 5 CGTATCAATAATAATATTAAATGTAAATGGGCTAACCTGCCAATCAAAAGA
 CAGAGTGGTTGAATGGACCCCCGCCACAAAAAAAGACCCAATTATCTGT
 TGCTTACAAGAAACACATTCAACCTATAAAAATACACATAGACTGAAAATT
 AAGGGCTGAAAAAAAGATATTCCGTGCCAATAGAAACCAGAAAAGATCAGG
 AGTAGCTATACTTGTATTAGGCAAAGTAGAGTTCAAGATAATAACTATAAGA
 10 AGAGACAAAGAAGGTCAATTACATCATGATAAAGGGATCAATTCAAGACG
 ATATAACAATTCAAAGAAACATCTAACCTTAATCTGCACTGTAGACCAAATAT
 ACCTAACAGATATTACAGGACATTCACTCCAGCAATTCCAAGAGAAGAATA
 CACATTCTCCTCAGCACATAGCTCATTCTCAAGGATAGACCATATGTTAGATC
 ACAAAACAAGTCTGAAACATTCTAAAAAATTGAAATACTATCAAGCATCTT
 15 CTCTGACCAAGTACAGAATAAAACTAGAAGTTAATAATGAGACATTGGAAA
 CTATACAGACATACACATAGTAATTAAACAATATGCTCCTGAATGACCAGAG
 GGTCAAGGAAGAAATTAGAAGGAAATTGAAAATTTTATTGAAATAAATTAC
 AATGGAAACACAACCTACCAAAACCTGTGGGATTGTTGTGTCTTTTACT
 TCCTTGAGCAGTGGTTGTAGTTCTCCTGAAGATATGAACAGACACTCTCA
 20 AAAAAGACATTATGCAGCCAAAAACATATGAAAATGTGCTCATCATCA
 CTGGTCATTAGAGAAATGCAAATCAAAACCACAATGAGATAACCATCTCACAC
 CAGTTAGAATGGCGATCATTAAAAATCAGGAAACAACAGATGCTGGAGAG
 GATGTGGAGAAATAGGAACGCTTTACACTGTTGGGGAGTGTAAATTAGT
 TCAACCATTGTGGAAGACAGTGTGGCAATTCTCAAGGATCTAGAACCCAAA
 25 TACCATTTGACCCAGTGATCCCATTACTGGGTATATACCCAAAGGATTATAAA
 TCATTGTATTATAAGACACATGCACACATATGTTATTGCACCACTATTCAC
 AATAGCAAAGACTTGGAACCAACCCAAATGCCCATCAATGATAGGCTGGATA
 AAGAAAATGTGGCACATATACACTGTGAAGTACTATGCAGCCATAAAAAAAG
 ATGAGTTATGTTCTTCAGGGACACGGATGAAGCTGGAAACCATCATTCTC
 30 AGCAAACTAACACAAGAACAGAAAACCAAACCCACATGTTCTCACTCATAA
 GCAGGGAGTTGAACAAGGAGAACACATGGACACAGGGAGGGAAACATCACAC
 ACCGGGGTCTGTTGGGGGTGGGGGCAAGGGGAGGGAGGGAAATTAGGAGA
 AATACCTAATGTAGATGACGGGTTGATGGGTGCAGCAAACCAACCATGGCACG

TGTATGCCTATGTAACAAAAGTCATGTTCTGCACATGTACCCAGAACTTAT
 AAAAATCCTGTGGGATAACAGCAAAAGCAGTATTAGAGGGAAAGTTCTAGTT
 AAAAGCACCTGCATCAATAAGAGAAAAACTCAAGTAAACAAACCTAATGAT
 CTTAAAGAACAGAAAAGCAAGAGTAAGTCAACCTAAAATTAGTAGAAGAA
 5 ATAATAAAAGCTTAGAGCAGAAATACATGAAATTGAAGTGAAGAAAACAAGA
 CAAAAGATCAACAAAATAAAAAGTTGGTTTTTTTAAAAGATAAAATTGA
 CAAACCTTAGCCAGACTAAGAAAAGAAGAGGGAAAGATCCAAGTAACCTAAA
 GTCAGAGACAAAAAAGGAGACATTACAACGTACATGACACCACAGAAATTCAAAGG
 ATAATTAGTGGCTGCTATGAGCAACTCTATGCCAATAATTGGAAAATCTGG
 10 AAGAAATGGATACATTCTAGACATGTGCAACCTACCAAGATTGAACCAGGA
 AGAAAATGCAAACCTGAACAGACCACTAACGAGTAATGAGATTGAACCTGTAA
 TTTAAAAATCTTCCAACAAAGAAAACCTGAGACTTGATGGCCTCACTGCTAA
 ATTCTGCCAAAGATTCAAGAACTAATACTAATCCTCTGAAACTATTATGAA
 AAATAGAGGAGGAGGGAAATACCTCCAAACTCATCTACAAGGCCGTATTACC
 15 CTGTTACCAAAACCAGACAAAGATAACATCAAAAAAAAAAAAAAAAAAAAA
 AAAAAAGGAACCACGGGCCAATATCCCTGATAAAATTGATGCAAAAATCC
 TCAACAAAATACTAGCAAAGCAAATTCAACACCTTAAAAAGATCACTC
 TTCATGACCAAGTGGAGTTATCCCAGGAATGCAAGGATAGTTCAACATATG
 CAAATCACTTATGTGATACATCGTATCAACAGAATGAAGGACAAACAC
 20 TGAGCATTCAATTGATGCTAAAAAGCACTTGATAAAATTCCACATCCCTC
 AACATAAAAATGTCAAAAACCTAGGTATAGAAGGAACATACCTCAACATAA
 TAAAAGCCATATATGACAGACCCACAGCTAGTAACATACTGAATGGGAAAA
 ACTGAAGGCCTTCCTCTAACGACCTGGAACATGACAAAGATGCCACTTCAT
 CACTGTTATTAAACACAGTAGTGGAAATCCTAGCTAGAGCAATCAGACAAGA
 25 GAAGAAAATAAAGGCATCCAAGTTGGAAAGAAAAGAAGTCAAATTATCCTG
 TTTGCAGATGATGTGGCTTATATTGGAAAAATCTAAAGACCCCACAAAAA
 AACTATTAGAACTGATAAATTCAAGTAAAGTTGCAGGATACAAAGTCAACATA
 CAAAAATCAGTAGCATTCTATATGCCAACAGTGAACAACTGAAAAACAAA
 TCAAGAAAGTAATCCCATTAAAATAGCTACAAATAAAACCTAGGAATAA
 30 ACTTAACCAAAGAAGTGGAGAGATCTCTACAAATGAAAATTATAACACTGAT
 GCAAGAAAATTGAAGAGGACCCAAAATGGTAAGATATTGATGTTGAC
 TGGAAGAATCAATATTGTTAAAATGTCATGTTCTAAAGCAATCTACAGAT
 TCAGTGCACCCCTATCACAATACCAATGACATTCTCACAGAAATAGTAAAA

ACACTCCTCAAACCTATATGGAATCACTAAAGTCCCAGAATAGTCAGCTAT
 CCTGAGCAAAAGAACAAAACGGAGGGAGCACATTACCTGAGTTCAAATTAT
 ACTACAGAGTCATAGTAACCAAAACAGTATGTACTGACATAAAACAGACAC
 GTAGACCAATGGAACAGAATAGAAAACCCAGCAAACAAATCCATATGTCTAC
 5 GACAAACTCATTITGACAAAGGTGCCAAGAACATGCATTGGAAATGGACA
 GTCTCTCAATAAACGATGCTGGAAAATGGATGTCCATATGCAGAAGAAT
 GAAACTAGACCCCTATCTCTACCATAAAAAAAACAAATCAAAGTGAATT
 CAAGAATTAAATCTAAGACTCAAACATATGAAACTACTAAAAAGACATTGGA
 GAAACTCTCCAGGACATTGGAGTGGCAAAGACTGCTTGAGTAATCCCTACA
 10 AGCACAGGCAACCGAACAGCAAAATGGACAAATGGATCACATCAAGTTAAA
 AAGCTTCTGCACAGCAAAGGAAACAATGAGACAGCCTGCAGAATGGAGAA
 AATATTGCAAAGTCCCCATCTGACAAGGGACTAATAACCAGAATATGTAAG
 GAGCTCAAACAACCGCACAAGGAAACATCTAATAATCCAATTAAAGATGG
 GCAAAAGACCTGAATAGACATTCTGAAAGAACAAATGGATGAAACTGG
 15 AAACCATCATTCTCAGCAAACATCGCAAGGACAGAAAACCAAACCCGCAT
 GTTCTCACTCATAGGTGGAACTGAACAATGAGAACACATGGACACAGGAAG
 GGGAACATCACACACTGGGACTGTTGTGGGTTGGGGGAGGGGGAGGG
 ATAGCATTAGGAGATATACTAATGCTAAATGACGAGTTAATGGGTGCAGCA
 CACCAACATGGCACATGTATACATATGTAACAAACCTGCACATTGTGCACAT
 20 GTACCTAAAACCTAAAGTATAATAATAAAAAAAACAAATGACAAATAAA
 TAAATGAAAATGTACTCAACGTCACTGATCATCAGAGAAATGCAAATGAAAA
 CTATAATGAGATATGACCCCACCCCTGGCAATATAGCTTTATCCAAAAGATA
 GGCAATAATGGATGCTAGTGAGGATGTGGAGAAAAGGGAATCCTGTACACT
 GTTGGTGGGAATGTAAGTTACTACAACCACCGTGGAGGACAGTTCGAGGTT
 25 CCTCAAACCTAAAAATAGAGCTACCTCTGATCCAGCAGTCCCACCTAGTTAT
 ATATCCAGAACAGAAAATCAGTCCAGCAGAGAAGGATCCGCACTCCTGTG
 TTTATTGCAGCACTATTACAATAGCCAAGATTGGAGCAAACACTGAGTGTCC
 ATCAACAGATGAATGGATAAAGAAAATGCTGTGTATACACGCAACGGTATAC
 TAGTTAGCCATGAAAAAGAATGAGAACGTGTCAATTGCAACAAATGGATGG
 30 AACTGGAGGTCACTATATTAAGTGAATAAGCCAGGCACAGAAAGACAAACT
 TTGCATGTTCTCACTTATTGTGGAGATAAGATTAAAACAATTGAACCTCGA
 GATAGAGTAAAGGATGGTTACCAGAGGCTGGGAAGGGTAGTGGGGTTGT
 GAGGGAAAGTAGAGATGGTAATGGAAACAAAAAAATAGAAAAATGATT

AAAACCTGGTATTCAGTAGCACAACAGGGTGAATAGTCATGATTAA
 TACATTAAAAATAACTAAAAGAGAGCTGGGCACAGTGGCTCACAGCTGTAA
 TTTCAGCACTTGGGAGGCCGAGTCATATGACTCACTTAAGGCCAGGAGTTCG
 AGGCCTGCCTGGCCAACATGGTAAACACCCCCCTCTACAAAAAACAGGAAA
 5 ATTAGCTGGACTTGGTGGCATACACCTGTAATCCCAGCTACTTGGTGGCCGA
 GGCATGAGAATCACTCGAACTCAGGAGGCCGAGGTGCAGTGAGCTGAGATC
 GCGCCACTGCACCTCCAGCCTGGTAACAGAGTGAGACTGTCTCAAATAAAAT
 AAGACGAAAAGAGTATAATGAGGTTGTTGTAAGACAAGGGTAAATGTTG
 AGTAGTAGATAACCCCCATTACCTCTATGTGATTATTATGTAUTGTCTGTCTA
 10 TGTTAGAATATCTCATGGACCCCATAAACCTATACACCTACTATGTACCCACA
 AAAAGCAAAAAGAAAAAGAGCTTATGGGTATCAATTTCCTGTTAGTAACGC
 TTTTGGTGTGCCCCAGCAAGTTGGTACATTGTCTCATCTTATTGCATT
 TAAGTATTCTAATTCCCTCTGATTTTTTTAATTAAAGTCCCAGG
 ACACATGTGCAGGACATGCAGGTTGTTACGTAGGTAAATGTGTGCCACGGT
 15 GGTTGCTGCACCTGTCAACCCATCACCTAGGTGTTAACGCCACATGCATTA
 ACTATTATACTGATGCTCTCTCCCTCTGCCCTTTCTTGTATTGATTGATTG
 GTTAAGAGTATGTTGTTCAATTCCATACATTGTTAATTTCCTTACTTC
 TATTATTGATTCTAAGCTTACCCATTATCGTGGAGAAGATCCTTGTATGA
 CTGGCATCTTTGAGTACTTGAGACTTAATTGTGCCCTGATCTCCTGGG
 20 AACATTCCACGTGCACTGGGATGCACATGCATGCTGTGGTCATGGTCGAG
 TGTCTCTGCATGTTGGTAGATCTAGGTGGCTTATTGTGTTAACGTCCCTATT
 CTGTAACCTATCTCTGCCTGGTTCTATTCAATTAGAGAACATGTTACTG
 AAGTCTCTCACCATCATTGAGAACATTCTCCCTCGGTTCTGTAATT
 CCTTTGTGTCTTGATCGTTAGCTGTAGAGGCATAATTGTTATAATTGTTA
 25 TCTGTAACATCTCTGCAGCCTCGAACCTTAAGTGTGCAGCGCCTCTTGT
 TCTCTGTGACCTTCTAGGTTATTATAAAACCATTGGCTGATGTTAGTG
 TAGCCACTCTGCTTTGTGTTGCCATTGCATGGAACCTCTTCTCCACTCT
 TTCCACCCCTTCACCTCAATTCTTGTGTTGGCTCAACCGAGTCTCT
 AGT/GACAGCATGTAGCTGGATCATGTTATCTATTGCCACTGCCGATATC
 30 ACCTTTGATATAACAGACTTACATTTCATAAAATTAAATTGTCCACGTGCT
 TAGCCCTGTGATCCAGCAATCCCAGTCTAGTTATATCCAAAAAGAAAG
 AAAATCAGTCCAGCAGGGACAGATGCGCACTCCTACGTTACTGCCACTG
 TTCACCGGAGCCTGTGCCTCAATGTCGTATTCAAGAAATCATCCTCAAATCC

AAAGTCTTCTATTTCTCCTATGTGTCCTATTGCTTAGGTCTACATTATA
 CCTTGACCCATATTGAGTTAATTTCATCCAGCTTATTCTTGCATGT
 AGATACTCAGTTATCCCACCATCATTGTCAAAAGACTATACTGAACCTT
 TGAATTGCTTCTCACGTAATAGTATTCTAGAGACCACATACATCAGTT
 5 CGTGGGGCCTTCCATATTCTTTACAGCCACCCACACTTATGGTGGAT
 GTGCCATGCTTATTCAAACCCCTCCTATTATGGCATTAGGTTGTTCTGAT
 ATTGTGCAATGATAAATAATGTTGCAAAGTATAGCCTATACATATGTCTATT
 GTATTCTGAAACAATGTTGCAAAGAATAACTCGTAGGTATGGATGTTCTA
 TTGTTGGAGGTGTTCTCAGGGTAGATTCTAGAAATGGAGTGGTGGCT
 10 GAAAGAGAACGCCGTAGTTGTTGGATGTGACCAAATTCCCTGCAGAACG
 GTTGCACATTGCACTCCCCCAGCAATGCATGAGCATAACCGGTTTCTACA
 GTTGCGCCAGCAGCGTGTACACACCCTTGCAGGTCCATAGCTTGT
 TTTAATCTGTATTCTGAATTACATTGAATTGAATGTTCCCTGTGTCTAA
 AAGTCATGTGTGTGTATTGTAAATCGTCTGTCTCATTCCAACCTCTT
 15 CCATTGGGTTTGGTCTTGGCTCTCAATTAAAGTCATTATATTGTGGG
 AACGTTGTCTGGACTAATGTGAATTGTTCCCAGCTGGTCATTGTCTTGA
 CTTGCTTATGGTGTCTTGTATGAGAAATTGCATGTTATATCATCAA
 TTTATCATGCTTCTTCTACTGACTCCGGATTAGGGCACAGTTGAGAGCTT
 TTCCTCCACCGAGGTTAAGGGATCCACTGTGTTCTCTGGAGGTTGGG
 20 GTCTGTCTTCAGCATTAGCTCCTGTCGTTGGAGTTGCTCTGTGCATG
 ATCTAAGGTAATCTTCTCAGAGAGTGGCCTGAGACCTCTCCTAGAAGTT
 CACCCCCACTGGCTGGGCCTTCACGAGGCCCTCTGGCCTCTAAGTGGAGCAT
 GGAGTGTGGGTATCGGGCAGGACACGAGATGCGCAGGAGGCTGTGACTG
 AGGTGGCTGTGGATGGACGGCGTGGTTGCTCTAGAGGTTGAAGGAAG
 25 GGTGAGAAGTCAGGACCACTGCTGTAGAAAACAGGGTTGCAGGTAGATAAG
 GTGGCGGGTGCAGCGGGAGGAAGAGAAAAGGATGCTGCTGGACCCCTCGC
 ACCTGGGAGGATGCACTTCTGTTCTGACATGGTCAGGGTGGGGCGAAG
 GAGTCCAGCTGGGACATGTTATTGGAGGTGTTGTGAGGCAGCCAGGTG
 AGGTGGTTGAAGGCAGT~~T~~AGACCTGCAGGTGGAGCTCTGGGAGAGAGT
 30 GCAGGGCTGGCTCACAAGTTAGGGGAGGTGTCAGTGTGTAATGACATGAGC
 GCAGGGCTAGACAGGGCCTCCTGTAGCCTGGTGGGTGGAAGGGCAGAGG
 GCAAGGGCAAGTGTGGCAGCTGTGGAGGCTGAGGGCAAGGAAGGCAAGT
 CCAGGGAGGTTGGGTGTCCTGCAGCCTCACAGGGCAATGGAGGAAGAACAA

AGGACTCTGTGTTGAGCCCTCCTGAGAGGTTTGGAACTGGCCTGACTTGGT
 GATGTGGGGTTATGAGTTTATTCCACACACGTATGTGGGAGTCTGGGTCTG
 GTGGGTCCCAGCCCCGTACATGGAGGCTGGACCCTGCCCTGAAACCTCTCA
 GACACAAACACCCAGCTCGGCCCCACAGAGCTGGCCTGGCCCCAGCAGGGG
 5 TCTGTGTTGCCCTGGCCCCACGGCAGTGGAGCTGGGGTTCCAGGGATGCTG
 CTGCTGAAGGTGAGGTTGCAAACACTAGGCATGCATGTTGAGGTACCACA
 ACCTCCACCAACCCATGGTGGTACCAAGGGCTTGGCTCTGTGGGACC
 ATACTGGCTTGTCTGACTTGCCGTACCCGGCGGAGATATGTCTGGAAAGAC
 TTTAGGCCAGGAGCCCATTGTCTGGAACCTGGCTTGGCAGGGCAAGC
 10 TTTGGGGAGCACTGTCCAGACAGTGCCTGGACACTGCACCTCAGGTAGGA
 CACAGCTCCCGAGGCCTGGCTGCTCTGCATGGGGAGGAGTGTGGGTCTGAG
 TGGAGTGTCCCATTGTCTGCAGAGAGGGTGTGATGATAACCAGCTGGGTG
 TTCGCACCTGAGAGGTTGGGGCAGGGTCCCAGCCTCCATGTACGGGCTG
 GGACCCACCAGGACCCAGACTCCCAGACTAGCAGGTGGCTCTCAGAGCAC
 15 AGAGGGTGTGGGTACCCAGATATCCTGTTGCTCAGAGACCCCCAGGGA
 ATCCTTGAAGATGGCAGTGACCACCTGGCTTCTCTATAGAAACTCCCCGAAT
 GGGAGGGATGGAAAGACTGTTGAACTAAGCTTTAGGAAGAAAGCCATCA
 ATTCCCCTGCTCTCATACAGGCTTGAGGAGGGCTAAGGAAAGTCACAGTTGA
 ATGCATGCTCCCTCCACACCCATTGTGCCTGATGCACACAGCCTGGCCCTGTG
 20 GGCACTGGAGGGCACCTACAGTCACAGAGGCAAACGAAGAATGTAGAGCT
 CCAGCTGGATGAGGGCCGTGGGAAGGGGACAGCCTGGCAAGGGTGTG
 CAGAGTCTGCATGGATTGACTGAGCAATCTGGAAAGGCTTGGAGGAGG
 AGCTATTGCTCAGGGTAAATAGAGGTCTTGAATTAGTACAACACATGCC
 CATACTGGGAATTGGGGTCCCTGGGGAAAGGACTCTGTTACCAAAAGCA
 25 CACAGCACAGGTTGGAGAGCAACTATCTCAAGGCTTTATTGCTTTCAT
 GAAACTGAAAATTAAAGTTTAATATCACATATTATTGATGAAGAGTGGCT
 TCGGACTTTGGGTAGGGCTGGTAGGATCCCAGGGCCCTCCCTGGCATC
 ATCATTGTTCCCTCCATGTTCAAGTCAGCATCTGCACCCCTGCTGGC
 AAACCCCATCTCCTGTCACAGGACTTGGCTCCCTTGCTCCAGTGAGT
 30 GGCGTTGGCTGGAGGCTGGGTCTGCTGTGTTGGGGGTGTTGGTGTCT
 AGGAGGAGTCTGTCTGAGCAGAGACAGAGGAAGGCAGGGCAGCCTGCTC
 AGAGGATGAGCCCAGCTATTCTGGAAAGCAGGCAGGAAGTGGCAGCTCCAG
 GTCCGGGTGTGAGGGCAGTAGTGCAGGTGTTGGTCTGAGTGGCCACGGAGG

TGTCAAGCGTTCACTCCCAGCACGTACGCCACGTCCCTTCCTGCTTGT
 CCTCCTCAGCTGTGAACTGTCTGGACTGGGCAGGAGACAGTCCTGGATA
 GGGAAAGAAAAGAGGGGCTTCCGGGGTGGGAGCGGGCTGGCGGCTGC
 TGGCTGAGCCAAGTGGACTGGAGGTGTGGACAGGAACCTGGCGGGCC
 5 GCCAATGGTGGCGTGATGCAGCCTGGCTGGAAATGCCATGGAGGTGAC
 AAGTGACAGCCGGAACAGACCCACTGCCAGGGCTGCCTCTCTTAGATA
 TGTCCTGGCATCTGACTTGGTTCTGGTGTAAAGGCTAATTGGGATCGG
 TCGTGGTGCCTCAGGCCTGTCAATCCAGTACACTGGGAGGCCAAAGTGGAG
 GATTGCTTGAGCCTAGGAGTTCGAGACCAGCCTGGCAACATAGCAAGACCC
 10 CATCTCTAAAAAAAAAAATTAAAATATTAATAACTAGCTGGGTGTGCTGGCAC
 ATACCTGTGGTCCAACTACTCGGGAGGCTGAGGTAGGAGCATCACTGAGC
 CCAGGAGTTCAAGGTTGCAGCAAGCTATGATCTGCCACTGCACTCCAGCCTG
 AGTGACAGAACGAGACCCCTGTGTCTAAAAAAAAAAATTAAATAAAATAA
 ATAAAGGTTGGACATGTTAGCTCACGCCCTGCAATCTCAGCATTGGGA
 15 GGCTGAGGCAAGTGGATTGCTTGAGGCCAGGAGTTGAGACCAGCCTGACCT
 GCCTGGCAACATGGTGAACCCCCGTCCTACTAAAAATAACAAAAATTAGCT
 GGGTGTGGTGGCTCACATCTGAGTCCCAGCTACCCCTGGAGGCTGAGGTGGG
 AGGATCACTTGAGCCCAGGAGTAGAGGTTGCAGTGAGCTCAGATTGCCAC
 TGCACCTCCAGTCTGGGTGTCAAGAACCAAGGCCCTTCTCAAAGGAACAAACAA
 20 GGCTAACATGTTGGCTTCTGCTTCTGGCAATGTCCGTGAAATTGAAGC
 CGCACTGGTGTGTTCCACCCCTCCAGCTGGTCTCTGAGGCCAGGCCA
 GATGCTTCTCTGGTTAGCAGCAGATTCTAGGCCAGAGCCTGCCCTCCAGTCCT
 GGGAAAGGCTGGCACGCTCAGATGCACCTCTGGCGTGGCCTCCCTCCGATCA
 CAGTGTGAGCGAATCTCCCTGCCCATCACTCTGCTCCCTGGCCAGACCAAGG
 25 CCATGCCCTAGGGCTTCTGCACGTGCAAGTTCTCTGCCCTGCAGGGCTGTCC
 CTAGCTCTACCCGATTCAAGATCCCACACCAAGCTCCTGGGCAGCCCTTGT
 CCCTGCCCTCCCCGAGACGTACCCCTTCTCTTCCCTGGTGTCTGTTATCTGCTCTG
 TATGTGTTCAATTACGGTTATTTCTCTCTCCCTGTGTCTGTTATCTGCTCTG
 CACCCCTGGAGCCCAGCGTGGGCCAGGCACACACTACGTGCCCTGGCTT
 30 GGGGGCAGCAGGGACAAAAGCCAGGCATGGGATGTGGCTTGTGGATGC
 ACCTTGGGTGTGACTGTCACGGAAAAGGAGGAGACGTGGGGTGGGAAGGG
 GGCAGCCCTACTGTTCTGGCAGCAGGGCCAGAATTGAGAGCCAGAGGTTG
 CCACTGGAGGGCTTCTGGGAGGCAGCTGGCACCGCCTGATTCTGTTCTG

AATGCCCTCTCACTCTCCCCACCCCATGGAACCAGAACCACTCGTCAGGC
 CCAGCAGCCCTCAGGGTCAGTCTGCATGGGTGGAATATGGCTTACCTGA
 GTCCTGGTCAGTCTGTCAGGCTGGGAGTCCACCCCTCCATGACTAGTGGTTGTG
 GCAGGTGACGGGTGAGTGGTCTCCATGCTCCAGCCGCTGTAGAGGTGCC
 5 AACCTGCCCTCCTGCCAGAGCTGGCTCTGTTGGCGGGACTGAGGATAC
 CGAGACAGAAATAAAACTGCTAAATGCATCTGTTGAATAATTCAATGCC
 CCATGCCAGGCCTGTTGAAAATTAGCCACTTCCTCCCTCCAGGCCATGAGT
 GACTCCTGGATTGGTAAAGCCAGGCCTAGTGGATTGTGGCCCGAAGGT
 TCTCTGGAGCTGGGAACCTCCATGCAGGAGCCCAGGGAGGGGGTCTGG
 10 CCACATGCCGGCCCTCAATCTGCCCTGTGGAGCCCGGCCTGGCCTGCAGCCC
 CCTGTGCAGGGAAAAACCCGCGGTTTCCCTGGTGGAGGGCACAGGTCAAGAG
 CGGGCATGGACAGGCATGAGGAAGCAGTGCAGAGGAAGCGTGAGCATTG
 TCTCGGGCCAGCTGGAGAAAGGAAATGGGGCTGCTCCTGGAGGGCAGAGAC
 ATCAGGGGCTGCGCTGTCGGCTGGCGTGAAGATTGTGTCTCATCCCAGG
 15 GTTAGGTGCCTCCAAATGCCAGGGCTTCCATGGGCCATACACACTCAGTCG
 AACAAAGATTGCACAAAACCTGGGCATAAGCTCGCTGAGCAGTGGCCTGC
 CCAGCCGGTGACAATGAGAACCGCACATGCTCAGCCTCCCTGGACTCAGGG
 CCCTACGGGTGCTGGAGCCGGGGGGAGAGGGCCGCAGGCTGCCCTGCCT
 CTGCATCCTCCCCGTCGATGCCTGGGCCACTGGATTGGCAGAAAAGGGAT
 20 GCCCCCGAGATGGGCAGCCAGGAGAACTGTCTGTCTCCTATCCAATATGCC
 ACCTCCCTCTGAATCCCCATTCCCTCATCCTGCCACACACCCAGA
 TTTGCAATGGGACACACGGCCACCTGGATGACAACCCCTCCAGTCTCCCT
 CAAGACAAGTGTGGCCATGACCGCATGGGCCAGCAGGGTGTGAGTTGAAGT
 GTCCCGCAGTGGCTCCGGGATGTGCAGCCCTGCCCTGAGGCCCTGGCCG
 25 CCTCTGCTCTGAGCAGGGATGTCCGTGCCCTGGGCCAGGGCTGAGCTGG
 GCTAGGTCCCTGGGTGCTGGGCCACACTCTCTGGTCCAGCCTGCTGTTACA
 GGGGATGCCTCAGGGCCACCACTGGTCATGGAGGCTGGGGCCCTGCCCTGT
 CTGCCCGCCTGGAGTTCAAGTAAACAACCCACTGAGGAGGCACCCCTAGCC
 GTGGGAGTTGAGTGTGCTCTGCTCCCCAGGGCGGTCTGCTCCCTGGCAGATC
 30 CTTGCTGTGTCAGCAGAGGGTTTCCCTGGCCAGGGCTTGGGAGCAGATGA
 TGGGGCTTAGGAGCTGGCTGGGAAGGCAGTGGACCCCTGGAGCAGGGA
 TCTTGGGAGGATGGAGAGTTGGCGGCTCAGGAAGGAGGCTGCTCAAGCCCG
 GCCTGCTCACTGGGAAGAGCGGTCTGGAGGAGAGCTCCGAGGAGAAA

GCCATGATGCTGTGCTGCGCTCTGGGCCACCAGGTCTTGTCTGGGGGAATCC
 TGACCCCTGTGTGATGTGAGTGCAGGGACTCCCCACCCCTCCGACCAGGACCTT
 TGTACTCTCCTGGCGTGTCAATTGCACAACTCCAGGGCCGTCACTCACCTGA
 GCCCTCTTGCTCTTGGCTGTTCCCTGATATGGCCACGCAGAGACTATCTC
 5 TAAGTGTCAAGTCTGGACTCAGCTGGAAAGGTTCATGACCTCAAGGGACCC
 ATGGGACTTGAGGGTGGGGCAGCTGTTGCCCTGTGGATCAAAGGGAGTGT
 CTGGGATGGGATCCACCTGCCCTGCCCTCAAAGTGCTGGCAGTCCCTCAGA
 GCCATAGAGCCTAGGGGTCTTGGCCCTCTCCCCAGGGATGGCCAGGC
 ACCTGCTGGCCTGAGGTCCCTGCTGGGCCAAGGCATCCCTGCCGTGTCAGA
 10 GTTCCACAGGCACCAGTCCACCATGCTGGGGCTACTGGGAGAGACAGCCAC
 CCGCCTGCTGTCGGGAGCCTCCATCACCAAGGCCTGGGGTGTCCCAGCCAC
 CCTGGCCGCTGTTCTGCCTCCGACCGGCCTCTCTGAGTTCCATCCAT
 CCCTGCAGGTTGGTTCTCCTCTCCTCTGGGATCTGCACAGGTTGCCATTCT
 CTCTGCCTAGACTGGCCTCCACCTCTGAGAACCCCTCCATTGCCCCCTCC
 15 AGTGGGCTGGGAGAGGGAGGAAGGCCAGGTGCAGAAAGAGAACCTGC
 CCGGCTAAAGCCCCACCTGCCTATTCAAGGCCTCTGATGCCCGGCCCTGC
 AAGGTGTGCATGGGCCTGCCCAGTGGCTCACCCAGCTGCTCAGAGA
 GGCAAGTGGCTCCGGCCCCACAGTGACACTGGGGACTCTTGTCTCCATT
 TGGGGGGTGTGCAGGTCACTCCTGGTGCCTGGTCAGCTCCCCAACCTGAGC
 20 TGCCCTCAGCTCCTGGCTTGGCCCTCACGGAGTGGAGATGCCCGCTCCCC
 TGCCATTATCGTACCTTACCTCGCTGGCGGCCATGGAGGCAGTGAGAACAGC
 CGAGGGAGCTGGCCGGGCGCATTCCGTGCAGGACACTGGCTGCCTCCCAG
 CTCACTCTTAGCCTGGTCAAGAGCCCCGGCAGCATCTGCCAGGTGCCTGTGG
 TCCCAGATCCTGGGCTGCCCATCTGGAAATTGAGGTGTGGCTGGGCT
 25 GATCTGAGGATGAATGTGGCTCAGGTTGCCGGTGCCTTGACGCATTCCAT
 GTCCCAGTGGGAAACCAAGGCTCAAGGAGGCCACACAGCAGCTCCATTCC
 AGGGACACCCAGTGTCTCTGTAGTGGTAGGAGGTTCCCTATACAGGAGA
 CCAAGCTACAGCAAGAAAGACTTGGCCGGCGAGGTGGCTCATGGCGCGGT
 GGCTCACGCCTTAATCCCAGCACTTGGGAGGCCAAGGGATCACGAGGTC
 30 AGGAGATCAAGGCCATCCTGGCTAACACTGTGAAACCCATCTACTAAAA
 ATACAAAAAAATTAGCCCAGCGTGGTGGCGGGCGCTGTAGTCCCAGCTACTC
 GGGAGGCTGAGGCAGGAGAATGGCATGAACCCGGGAGGCAGAGCTTGCAGT
 GAGCCGAGATTGCGCCACTGCACTCCAGCCTGGCGACAGAGCCAGACTCCG

TCTCGAAAAGAGACTTGGGCTAGATGTGAGGAGGGACTTCCAAGTAGGGA
 TGAACCTGAGGACCCACACCTGAGCCGCAGTGGTCGTGTTGACCTGGC
 AGCTCCAGGGCACCTGAGGCCTCGCTGTCCTCCGCACCTGCCCTTCCC
 GAGTGGAGGTGCTCTGGGAGCTCTGCCTGCTCCTCAAGTCTTCTTGT
 5 TATGTTATTTATTTAGATTGAGGAGTACACATACTTGTCTGTTACGTGCGT
 AATGGTGGGTTGGGCTCTCGTGCAGCCATCAGCCGGATATTGGACGTTAT
 ACTCAATAGGTAACTTCAACCCTCCCCCTCTCACCCCTCTCCACCTCCC
 GGAGTCCCAGAGTGACCTTCTCCGTCTTGTCCAAGCATCCCACGTCTA
 GCTTCCACTCATGAGTGAGAACGTGCCGTGTTGGTTCTGTTCCGGTAGTT
 10 CACTTAGGATCATGGTCTCCAGATCCATCCGTGTTGCTGCAAAGGACATGATT
 TCATTCACTTCTGGAGGCTTAACGCCCTGCCGTGTGAGGGAGGGCGGAGC
 CCCTGGCCCAGGGCGGGAGGCCTGTCCACCCCTCCCACCCGTCCCCGAGG
 CCCCTGCTGCCAGCAAGACCACCACCTCTGCTCCAGGACAGCGCAGCCGC
 CATCAGTGGGGTGAGGGACAAGGCTGCTGGGACCAAGGCCCTCGCCCAGGCA
 15 GAGCCTGCCATTCTGGGTGGGGGTGCACAGGTGCATCTGGTCTGCCA
 GCCCCTCCTCACCCCTAGGCAGGCCTCTCACAGAGACAAGACGAGTGTCTAG
 GGCAGATAGGCCACATCCATGGGTCACTTCAGTTGTCTCCGGCGCCTT
 CTAAATATACTCTGTGGGTGTCTTATCACAGCCCAGGGAGCCAGGCTTGGT
 GTGGCCGGCCCTGGGAGCACAGAGCCCCGTTCCAGCAGCCCTCGGCCCTGG
 20 GGGGCTTGTGCTCTGCCGGCCACCTGCACCCCTCCGGGCCCCAGGAGAAGCT
 CATGCCCTTCTGCTTGCACCCAGAGCCTGCCACCCCTGTCTGCTGAG
 GCCCTGACCACCTCTATGTGTGCCATGGCTGCAGTGACAGCCCAGACCCAG
 GGGCCGGCATCCCACAGCTCTCCTCACTGAGCCCCCTGGGCCTATCCGCCAC
 GCCCAGGCCAGGGCTCTGCTGGAATCTCCCTGTGGAAGGCCAGGCTGCTG
 25 GATGCCCAACCCTCAGGCTTACTTCTGGGTGTAGTTCTGGGGTGCCTCGA
 GGTGCTGTGGGACCTGTGATGCTGTCAGGGAGACCCGGAGTCCAGTTCTCG
 CCAACCGCTCGATGCTGTGACTTGAGGCAGGTCCCTAACCTCTGAGCT
 TCCTCCTCTCCTGTGAACAAAGGATGGGTCCACTCTCAGGCTTCTCATGAAG
 TTTAGAGGCGACAGGAGGAGGTGGCTTAAATGGCTCAGTCCCAGCGTCCC
 30 CTCATGCCCTGGGACCGCTGACCCACCGGATTCTTGGGGGCCACCATAGAGC
 CTGTTTAAAGGGATGTGGCGGCCAGCTCTGGGGCACACGTTCTGTTG
 AATTCTCAATCTCCGGCTAAAATTGGCCCCAGAAAGCCTTGAGATGGAC
 AGGGAGCTGGACCTCCAAATCGGTTGCCCTGCTGATGTTACATGCCAC

TGTTGGGTGCTCCTGATTGTAGCGGGTCCCTGAAACCAACACACAGGTGC
 AGACACCCACATGCCATCCTGCCAGAGCCCTGGGTCTCAGCAGGACTTTG
 CCGGGATCCTCATGCTACGGCCACCACCTGATTTGTCGATAAAGTTTATTA
 GGACACAGCCATGCCCGGCCAATATTGCCACAGAGGCCACCTGCCACCA
 5 CGCCTAGGACATTCTCTCTGGCCCAGAGGTGTGCCAGGGCTGCACTGGCT
 CTTCTGGTGGGGAGGGACATTGTTCTGGCCCTCCTGATCTCCCCCACCTT
 GCCACGACCCCCCAGAGTTGCCTGGTGTACCGGGAAGCTCCTGGCTGCC
 GAGGGTCCCCCAGCACCTGTCCTCTAGGGCCTCTGAAGGGCTTGACGTGAC
 ACTCGGGATGGCATGGCAGGGCCCTCAAGCACGGCTGTGTTACCCCCCAGG
 10 CTGCTCCTGGAAAGGAGGGATCAGGGCCCAGGCTCCACGCTCCGCACTGAGG
 TGTGGTCGAGGGCCCTGGCGTCCGGTGAGATGGGAATGAGCCCTGGTAG
 GTGCCAGGCAGGGGCCAGCCCTCATCCCCACTGCAAGGCCTGAGCGTCCAGGA
 GCCCGTGCGCAGCTGGACCCATCAGTCCCCACCCCTGCAGGGCCGTGAAGA
 GGGATGCACACCTGTCACCTTGGTGCAGGGCATCCAGGTTCTGGCGAT
 15 GGGGATGGGTGAGATGCACCTGATGGACCTCCAGGTGGGAAGCTCCTGGGA
 CACCTGGAGGGCTCTGGTGGAGACATGGCATTCTGTCTGCACCGAAGGGG
 GCTCAGGGCTGAGAACGCTGGACGGGTTGGATTGGGGCGCGTCCCCAG
 GGCCCCACGCGTGTGAGTCCCCGCTGCGTCACTGTCTGGCCTGTGGCGCCTC
 ACCTCTCTGTCTGGCAGGACTCAGGCAGAATGGAAGTAAAGGCAGGACCTG
 20 TCCCAGGACATCCAGGCATGTGGCGTGGCAACCAGGTGGATGGCAGGGTT
 CCCCCCTGGCAGGATCCCCACCTCCTGCACCTGTCCTGACTTGGTCTTCTGGGG
 CAGCCCCTAAGACGCTTCTCAGGAAAGAGGGACCGGTTGGCCAGTGGAC
 CATGGCCCTGGGAGCATATGCCTGCACGTCTGCCGCTCACACCTGCCTGCT
 GGGGGGCCATGCCTGCGCCCGCAGCTCACGTCAAGAGCCCACCCAGGAGGC
 25 TCCCAGCGATCTGTCAACCTGTGCTTGGCATGCAGCCTGGGGTGAGGGT
 GGCGGAACGCTGCCTCAGTACCAAGTCTGCTCAAAGGCCACTTGCAGCTA
 GGCTGAGCCTGTGGTGTGCGGTGGATAGGAAGGAAAAGAACAGAGTCTAA
 GGAGCCTAACTCATTCCAGATTACCCGGAGGCCTGCATGGAGGAGGCCGGC
 ACTGAGACTTCATTACCGAGCTGAGGGTTACCCCTAACATTCATTACACACC
 30 ATCAGTCATTCAAGCAAACACTTCACAAACGTGCATCCCACGCCTGGCACTGG
 GCCTTCGGAGGGAGGGAAATGCAGCTGGTGGCCCTGCCTGGGGAGCCCCTG
 CTCTGGTGGGGAGGCAGTGGTGGCAGTGGCTGCCTGGCGGTCCATGAACCTG
 GTGCAAGCCAGAGCCGGAGGCCTCTGAGAGCCTGGCAGGGAAAGCCCAGGC

CAGGGCCTCCGAGAAGGAGGGTTGGGTCCAGGCTTATGTGGGGGTCT
 TGTAACATGGGAGGGTAGACGCTGCCTGGACAGGAGAGACAGAGGCAGG
 GGGACCAGGGAGTGGCTGCAGTTGGGTGCAGGCCTGGTGGCCCCGGCAG
 GGGGACCAGCCTCTGGGAGGTGCTGCAGGCACAGGAGTTCTGTGGACCC
 5 AGCGAAAGCTGGCAGGAAGGGACCTGTTCTGGGTCCCAGTCCAGATC
 TGTGTTGGAAAAAGTGTCAAGTGAAACCCCAAGAGGGCTGGGACAGCCTGG
 TCCTGCTGTGGACACAGGTTAACATCTCAGATGGCTCCTGGATAGGCAGGCT
 GGCGCTCTGTCTAACGGGACAGCACACTTGGGCTCAGGAGACAATGAG
 GGCAGAAATCTTACCCACCAGGCCACACCAAGTCACCCATTGTTGTGCCCTG
 10 GGCTGGATCCCATGGCTTCAAGAACCTTTAAAGAAATGAGACTCAGCTGC
 CGCGGAACAAGCCACAGGTAAAGAGTATAAGACAGCGTGAGGCATGGGTG
 GCCACGGGAGCCCTGGCCAAGGAGGCCAGTCTGGTGGGAGGCCTCCATT
 CACCCGGAGCTGGACGGGAGGACCAGGCTGTGGTCTGTGAAGCGGGTGTG
 GGATCACATCCACGCTCCTCTGTGGTTGTGCCCTGTTGTGGCTGCCAGGG
 15 AGGGGCTTCCAAGGCCCTGCCAACCAGCTGGCAGTGTGGACAATGGCAGAC
 AGGGTGTGTGGGGCCTGAGGGCAATGGTGGGGCAGCTGTTGCCG
 TTCTGGTGAGAAGTGGCGGTCCCTGAAGGGCTGGGTGCTAGGGAGCCTCAT
 GGACCTACTCCGACGTGGCAGCTGCCCTGCAGATGGGCCAGCCATGTCC
 CGCCTGTGCCGGAAATCACCACCCCCAGCTCCCTCTCCAACATGACAGGG
 20 TTCGGGTATGCCCTGTGGCTGAATGGTGAGAGAGGGCTCCCTGTGCTGAC
 ACCAGTGGCGTGGACGTGACCTCTTTAAAAGAATTTTCAGATGCAAT
 TCCATTAAGGATCTGGAGGTGAGAGGATGAAAAGGAAACTCTGAGCTTGAG
 TACATTTAATTATGTTAAAAATTAAAGACATGAGGCCGGCATGGTGGCT
 TACGCCCTGTAATCCCAGCACTTGGAGACTGAGTTGGAGGATCGCTTGAG
 25 CCCAGGAAATCGAGGCTGCAGTGAGCCAGGATCATACCACTGTCCTCCAGCC
 TGGGTGACAGAACAGACTCTGTCTAAAAACAAAACAAAACAAAACAAAA
 AACCAAAAAACAAACAACAACTAATATATGTTTGACCAATACCTAATTCTGT
 TGTTAAGAATTCAAATCTACCAATAGTGATCATAAGTAATGTATTAAATAC
 TT₁ CATAGTACAGCAGGTGTTGGCCCCCCCCACAACATTGGTTCCATCCCT
 30 GGAAGCTGCAAATGTGACCTGACATAGAAAACACCCCTTGCAAGCTGAGGCT
 GAGGGTCCCAGAGGGCTGATTGCATTATCCAGGGGCCAAGTCCAGTGAC
 ACGTGTCCCTCTAAAAGACAGGACAGATTCAACAAAGGAGGATCCGGCCACA
 TGCTGCACAGCACGGAGTGATGCCGCCACCCACCCAGGACGCGGGAGCCCG

CAGAGGCTGGAAGGCTGAAAAGGGCCCTGTCGCCCCACCCCCCAGGATGAC
 GTATGGCCTGATGTGGCATTCCCTGCCTCAGGACCATGGCACCAAGTGGTGGC
 GCTGGGGCCCTGGAGTCGCCAGTCTGGCACGTCCCATGCTGTCTGAGC
 CTCAGTGTCCCCATCGATTGGTAGTGCCTCCTGAACCCAATCCAGGGGGCT
 5 CTGGGGGGCAGCCTGGACCAGACGTGCCTCACCAAGGGCTCTGTCTCCTCAC
 CAGGACTTCCATGATGTGACACCTCACATGGGTTAGAGCAGGGAAACCT
 GTGCCTAGTGTCCAGCCCAGCGTGGGCCCTCGGTGTGGGCCAGGGCTCACC
 CCTTGGGAGGGTGGAGATGCCTGGCCAGGCTCCATCCATGCAGAGCC
 AGGAAGCAGGTGAACCTGTGGGACCTTGGCGACCTCCAAACCCCTGCTGAGG
 10 CTGCCTGCTGACAGCCACTGGTGAGGGGGTGACAGCCACTGGTGAGGGGGG
 TGACCAGCTGGTAGCTTTCTGAGGTGCAGATTGCCCTGGGAACAGCCC
 TGGCAGGCTGTGAGACCTCTGCCCTGGCGTCCACATCCCAGGGCTCTGAGC
 TCAGCAGCCCTGGAGGCCGGCAGCCACATCAGGGATGGAGGGAGACCTGCTGG
 TGACCACTGAGTGAGCAGGGGAAGCCTGCTCCAGCGCCAGTGTTCCT
 15 TCCTGGGCACATGGGATTGGAGGCATTGGAGTCTCCCAGGATGACTTTT
 TTTTAAGCCCTAGAAGTGGTTGGGTTAACCGTCAATATTAATCTCTTG
 AAGTTACACATTCAAGGCCCTATCCTGCCTCGGCTTAGGTCGCTCACAA
 ACCCATTGTCTGCTTATCAGCCTGGCGAGGTCCCGTCCCCAGTAGGGTCTT
 GAACATTGCTCGATCTCATTACCAACGGGAACATTGAACCCCTGTA
 20 TGCTTGCTCATGAATGTTGCTTAAAAAAAGTTTTTTATTGTGAT
 AAAATACACATAACACACAATTACCGTCTTAACCTGTGTCAGGTACGGCC
 CAGTGGCAATAGGTACATTACATGGTGTGCAACCGTCACCACCATCCACCC
 CAAAACCTCTCCCAAACGTAAATTCTGCACCCATGAAATCCCACCTCCCT
 CCCCAGGCCCATCCTGCTCTCGCAACCGTGGATCCGTCCTCCCCATGTC
 25 CACAGATCCCCCTCCCTCGGCCCCCGCTGTCGCTTCCCTGCGACGGTGGATT
 TCGCTGCTCTGGCCTTGCCTCTGTGACTGGCACTGTGTGTTATCCGGTGT
 CCTCAAGGTGCCTCTGCTCATGTCCTCCATGCATGATGCTTCAGACTGAC
 AAAACTCTCAAGTATTAACGTAATTAAATGTTACAGATTCAAGAAATT
 AGCATAACGGTCACGAGA-TGCAAAGTTCTGTGAAACGCTCCAGTGGTTACAC
 30 GCCCCGGGTTTCAGCTCGACCCCTGGTGAGTTCCATGGTGCAGTGGCTCC
 AGCTGGAGTTCAAGGGCACCCCTGAGCTGCCACGTGTCTTGCACGTGAA
 GTAGGTGGCTCTCTTAAGGTCCTCAACTTATTGGGAAACATCTCAGGGTT
 ACAAAACGCCCTCATGGCTAAAGAGGCTGTCACTCACTGTGTGGGCC

TGTCCCCGAGTGGGCATGGAAGGCCAGAGTCCCGCACAGCCCCACCCGGA
 CTGGATTGCTTGGCGGGTCACCTGGATCAACCAGGCCATTAGGAGCACCA
 CTCAGGGGCCCTAGTGTGCGGCAGGGCAGGTATGGAGTCTCCAGCCTC
 AGCTCGCGTTAGCCCCAGGCCATCTGAGCCGTGGAGGCCACCCAGGCCGCT
 5 GCCTGCACCCGGGGAGCCCTCCCACAGCGTCTCGGGCATGACCCTGGCA
 GGGTTCTGCATTCTCCTGTGTTCCCGGGCACCCGGGCTGAGATGTTGAAAT
 GATGTCGGATAATTACCGGGTGCCTCGGGCTGGTACTCGCCGTACTGCT
 CCTGAGGCCTATTGCTGTCAAGGGAACACAAGTAGGAGGTTGTTCTGGGGT
 GCGGTGGGCTCCCCGCTCATGCAGCTCCCCGCCCGCATGACCACGCCCTC
 10 TTGGGAGCTCGGGTGGGACAGCATTAGGGACCATGAGCTGGGGGGGG
 GTCGGTGTCTCTCCCCACCCCTCGCTAGCCTGCTGCTCCACTCCG
 AGTCCAAAACACGCATAGGATTGCTCTCCAGGGCTTAGTTCCGGCT
 CTGCAGAGTGGGGGCTGTGACTGCCTGGCCTGGAGCTGAGGCAGAGGGGG
 TGGTAGGTGCCCTGCAGAGGCAGGAGGGACACAGGCACCCAGGCCCTG
 15 AGTGCCTCAAGGGCAGGGACCCAGCTCGCACCTGTGAGGTTCCAGCTCC
 GCCCGAGACAAGAATAGATAAAGCGGTAAATAAGATAAAACTTTTATCT
 GGAGTAGATAAAAGTAAGCTTGTATATAATTCTCTGAGGCTAGCACGGT
 ATATCAAATATCGGAAGAACATCATTAGCCTCAGAATATGGCAAGGCTGAC
 AGCCAGCCTGGCCATGGCACCTGTCCCCACCATCTGCCTGGCCTGCGGGG
 20 GAACGTTCTCAGCCCCCTGCTGGCTCCAACCCCGGGCCTGGAGGCCCTGTCT
 TCTGCCTCAGCCCGATTCCACTGCACGGACTTCCCAGGCACCTCTGCCA
 GGTAGTTGGGGTGGACGCCACTGGGTGCACACTCTGTGGGGCTGGTCCA
 GGACCACCCATGTGCAGTCTCCCTGCCACATCCTGTATTCTCCGCAACGC
 CCAGTCAAGAACATCTCCTGCTGCAGTAACCTCACATATCTGAGCCAGCTGT
 25 CTCCTGAGCACAGGACATGGCAGGAGAGGCCCTGCAGCTGGAATCCGCGC
 CATGAAGCCCAGGCGCGTGGTATTGCAGCCAGTCACCAAGTTCAAGCCCT
 CACCTGCGGCCGTGAGTGCCACCCCTGCACATGGTGCTAACCAAGCATCCATC
 ACTGCTTCTTTAATTAAATTAAATTAAATTCTGGTGGAGTCTTGC
 TCTGTACCCAGGCTGGAGTGCAGTGGCGCGA; CTCGGCTCACTGCAACCTCC
 30 ACCTCCCTGGTTCAAGCAATCCCCCTGCCTCAATCTCCTGAGTGGCTGGATT
 ACAGGAGCACACCACCCACGCCAGTTAATTTCATATTTAGTACA
 GACGGGGTTTACCATGTTGCCAGACTGGTCTCGAACCTGTCCCTCAGGCA
 ATCCTCCCGCCTCGGCCCTCCAAAGTGCTGGATTGCAGGTGTGAGCCGCCGC

GCCCGGCCCCACCACTGCTTCTATGCTGTGCCGAGGTACCAACTGCCACT
 GTGATGGACGGCTGTCACCCAAACAGCACGAGAATCGAAAAGCCGTGATGGC
 AGATGCAGAAGGCAGCGTCGCCTGTTAGAAGGGCAGCTGTGAAGT
 GGGTTATCTCAGCTTCCACATTGCATCACGGTGCCCCGTGAAGGGCAGAG
 5 GAGCTGCAGGTAATTCTGTTCGCTGCCCTGCCTGGAGGAAGTACAGTT
 TTTTTTTTTTTTTGAAAGTTAAAGCTTCAACCTGGGCCTGGAGGCTG
 CAGGGTCAGCAGACCTGGTCCTGCCATGGCCCCCTCCCTCAGGCCTC
 CATTGCTCATCTGAGAGTGGGGAGTGCAGGCCTCCGTGCAGGTCACTG
 AGAGGCTGGGCAGTGGCGTGGATTGGGTGCATGACTCGCAGACATGGCTG
 10 TCGCTGGCTGAACGGTGGCCCTGAGGTGTCTGTGCCTGTGCCTGTGAACA
 AGTTAGGTTGTGTGGCAAAGGGGCTTGCAGGGTACTGAGGGATGGCTCG
 TGAGAGGGAGGTTGCCTGGTTACCCGGGTGAGCCCTACTGTGATTGTG
 AGGATTCTCTAAGAGAACAGGAGGATCTGAGTTGGAGGAAGAGACGGGA
 GGATGGAAGCCAGGCTGGCACGGAAAGCTGCTGTGCCACCCTACCGCA
 15 GCCCTATCCCTGCTCACGTGCACCAAGACCAGAGCCTGGCAAGTCGTCTCATA
 CCGAGGGTCAAAGGGGCCAGGGCCCAGCCTCCAGGGACCCAGCCATGCCG
 GGTCAAGGAACCAGGCTGCAGTCCTGTCTCCTCAGTTACCCAATTG
 TGACCTCAGAACGCCCTGGAGCCTCAGTTCCCTACTTGTAGCATGTGTTGA
 TGATAGTGTGGCAGTGTACAGTGTACAGTCTGGCAGGGTCTCGTGGGGTCTGTG
 20 TACTGTCTGCAAAGCACTGGCTGGCCAGTGGTCAGTGAGCAGGGCGTGGG
 TAGCGGGCAGTGGCCTGCAGTCCCCAGGAGCACTCCTGTTGCTGAACAGAC
 AGCAACTTAGGATCCTCCCAGGGCCCTGGTGGTGGTGGTTTGCCAC
 ATCTTGAGTAGACAGCACTGGCAGCTCCGGCTATCCAAGGCCTCAGGGT
 GAAGTCGACGCTCGCTGCTGATTCCCTGCTGGACGTCAAGTGACACTCCCTC
 25 CACAGCCTGGGAAGAACACCTGTGGGCCACTTCTTGTGTTGATAAGGAAA
 CTGAGGCAGGGGAGCTGCCTGGGTACCAAGTGGGCACTGCATCTCCATGTGC
 AGATGGTGCCTGGCCCTCTGCACGCCGTGGCCTGGGAGCAGGCAGGT
 GGCATCTCTGCCCGGGCAGCCGGCTCTGCTTCCCTCGTGGCTGAGCCAGGC
 TGTGCTAATCTCACTCCCTGCTCACTGCAAATCAAAACAAACAGA₂GTCCA
 30 GGAGGATTAAGTGTGGCAGTCATGGCGGAGGGAGCCCTGGTAGGGTGGAGA
 GAGCCAACAGTTGCACCAGCAAGGGCAGAGACCCAGCCCAGCCCTGGGG
 CTGCAGGGTGTGGGACAGGGCCTGCAGCTGGCACAAAGACTCTTCTAAGA
 ACCTGGAGGGAACCCCTGCTCCGGCAGTGGGCAGCATGCTGTGCAAGGTGA

GCCAGTCTGAGCCCATTCCAGTGCCCGGAATGGTGCCAGTCAGATGGC
 ACTCACCCCTCCAACCAACCTTGCTGTCCCCGTGAGATCCACAGATTCA
 CCCTACGGAGGGCTCCCCACAGGGTGGCCCGGAGGCTCCAGCTGTCTGTT
 GAACAAATTACTCTGCATCCACCGCGTGCTAGCGCTGTGCGGATTATAGTCCC
 5 AGAGACAGATGAGAGCAGGGTGGTCAGTGTAGGAGCACCCAGAGGGAGCC
 TGGCAGGGCCTGGACATCCTGTCCAAGCTGCCAGGAGGAGTCCTCAGAGCC
 AAAGCAGTGTGGAGGGTGGGGTGCAGAGAGCGTCCCTGGCTGGAAGCACC
 GCGTTGCAAATGCCAGGCAGCTTATGCAGCCAGCGCTTGGGCAGGCCAG
 GTCAGGGGACTGAGGCCAAGGAGGGTAGGGCTGCATGCCAGCCTCCAG
 10 GTGCTCCTGGGAACCACGTGGCTGATCAGACTTGTGCTTGGTCGAATGTCC
 CAGTGGGGAGTAACCTCAGGGAGCAGAGGAAGGGCATGGTGGTGGGAT
 GAAGCAGCAGCATTGGGCTTAGAGATTAAATGAAGGAAGTCCCACGGGCT
 GATCACCTACTGTGCACCAGGCTGCGTCCGGCATGGACTGCAGCCCACAG
 CCCCACCTTGGGTGCTCATGGCTAGGGGTGGACAACAGACTCTGGTCCC
 15 AGCGATGATGCTTGAGTATAAAGGACACAGTTGGGTGTTGTGGGGCCAGG
 GTCAGACATCAGAGCTGGCCTCTGCCTATGAGACAGGGCCCGCTGGCAGGAC
 CCTCAAGCTGGCTTTAGGCTGGCAGCAGCAGGTGCACGGCCCTGAGGT
 GGGCCGGCTGGCACAGTCAGGACTGGCAACAAGGGCCGGGAGGAGCTGG
 GGTGATCTGGGCCATCGTGGTGTAAATACTGGGCACGACATGGAGGGTTC
 20 ACTGACTGGCTGGGTGTGGCTGGGGCGCCGAGGGTGGAGGTGGCACT
 GTGGTCAGGGGAGATGAGGATGGATGGATGGCAGGGTGCAGACAGGGCTGGC
 TGGGTCGGCTCTGCAGGTAGAGCTGACCGGTGTGGCAGGGACAGGGTGTG
 GTGAGGCAGGTGGCTGAGGAATGGTAGCTGCAGGTTGGCCAGTCCCA
 GCAGCGGGACTATGGCTGTGGGAGGGAGGAACCCAGGGAGGGGGCCTGAG
 25 CAGGGTCTTGGCTGAGTGAACCTCAAGGGCTTGGTAGGGCTACCA
 GGCCAGGAAAGGATTGTCCCTGTCCACAGGAGCTTGGGAAGGGGTGGGG
 GCCAGAGCCCCACCTCCCCAGAAACCTCCGTGCAGCAGGAGGATGAGCCGA
 GGCAGGGCTGTGCTGGGAGGTAGCCTGTTGTGGCTCTGGGGCCTGGG
 GAGGGTGCCTGGCTGTCCACATCTGGACAGGTGGAAGAGGATGGTTCTG
 30 GGTGGGGCTGACTTCAGGAGGCTGGATGAGAGGCAATGCAGGGGCCTCTG
 GCTGTCTGGGTGGTTAGAACGCCACTCAGGATGGCAGGATCTCAGGGAGC
 GGAGGGAGCCTGGGCACCCATGCCAGGCAGAGGATCTATGCCGGGGCCCC
 CAGGGTCTGTGTGGCTTCTGTTGTCTCCCTGGCCCTGGGGCCAT

GTGGCCATCTCCTGGCTCTCCGGTCGCTGAGGATCCACGGGGTCCCTGGAGT
 CTCCGGAGCCCCTGGGAATCCCCCTAGAGGCAGGAGGAAGGCCGGCGGGC
 CCTGGAGGGTACGTTGCAGTGGCAGCAGCTCCCTATCTTATGGTCCGGCG
 ATCAGAGAAGGCAGGCCGTCTTCTGCAGGGCCCACAGGCCAGAACGTT
 5 GGCCCCAGGGTGGGCTCTGCGCCTCCCTTCATGAGTTCTGTGGCTCGG
 CCTCGGGGCCTGGAAAGGAGGAAGTGAAACTGGAGGAGAGCGGCCACAG
 CCTGCCGCTGGAGGCTCTGGGAAGCAGACGCTGGTGCAGGTGTCAGG
 ACCCCCACCTGGCGGGCTGGCTCTGTGCTGTGACCACCAACACCCCTGCCCT
 GGGCCCTGAACCTGGACAGGGGCGTTGACTGCTCTGGAAAGTGATTGT
 10 AAAATCAGCTTGTAGAGACGTAATTACACACTGCAGTCATTGTGGCTCTA
 GGGCCCTAAGTGGCTCTAGAATGTTAGAGTTGTAGCCACCAACCATCC
 ACATCCAGAACGTTAATTACCCAAAAGAAAACCCACGCCACAGCAGTC
 CCGCCCTGGGCAGCCACCAGCCTGCTTCTGTTCTGTGGCTCTGGCTGTCC
 AGGGCGTAGGCCACACTGCAGGTGGTCAGCAGGTGGCACCTGTCTGTCTG
 15 GCCTTGGCGCCATGTTCTCGGACCCATCCACGTGGCAGCATGTGTTGGTGC
 TCGTCCCTTCCCCTGGCGGGACGGCATCCCTCGTGGACCTACCTCTAGTGT
 GTGCTTACCACTGTAATGGATGACTGGGTTTCGAAGCACTGTCTGTTCTACC
 TGGGGCGGGGCTGAGGCCAGGGCCCTCCACTCCCCAGGTGCATCTGTGG
 GATGGGCAGAGGCCGTGATGCTGACTGCCGTGCTTGCAGCTTCCCTC
 20 ATCGTCCTGGTCTGCCTCATCTCAGCGTGTGTCACCATCGAGCAGTATGC
 CGCCCTGGCCACGGGACTCTCTGGATGGTACGTAGCATCTGAGGGCATG
 GCTGGATGTCATGGCTGCCTTGGAAAGCTGGCATCTCCCTGGCGCTGGGCCCA
 TAAGGTGGGGGCAGAGCCACTCCCAGCCCTGCCACACATTGGTCTG
 CCTGATAACAGGGGCACCTCCCCAGCCCCACACTGCCAAGTGACTTGGGA
 25 TGTATGTGCCACAGGCAGGGGACCAAGGACTGAGGGAACCTGGAGCTG
 GTGGTCTGAAAGGGCTTCCCTGGAGGAGGGCTCCAGGCTGGCTGGAAGGA
 AGGAAGGAGGAGGTAGGGTAGAGCTGGTGTGCCAGCAAAGGCCTGCCGA
 GCCTTCGTGTCCTGGGTCTGGGTACTCTGTTCTGGTTATGGCTGGCAC
 ACAGGCCCTGCTGGTGTCCCAGCAGCAGCCCCACCCAGGCACCTGGATGG
 30 TCCCTCCATTGGCCTGAGCGGTGTGTCATTTCTGCCAGGCAGGTGCTG
 AGAGCAGGGCAGGGCAGGCTCATAGCCTGGTGGAAACCCAAAGTTGATCT
 GGCGTGAGGCTGCCTGGAAAGGTGGGTGCAGGGGCCAGCTGTCTGGAG
 CCCACGGGGTCCCCACGGAAGCCACCTGAATGTGGCCGTGAGCAGCAGGAC

TCTGGCAGGACTGGGTCTAGCACCTCTCGTGGCCAGGCTTTGTGTTTCCT
 GTCTTGTGCGTGGAAATAGTTCTAGTATCTACAAAGGAAGAGAGTGTACGACTC
 AGCTCCCGGCATGCACAGGCAGATCTGGGCTGGTTCATGCTGCTTCTGGCA
 CTGTGTCTCCTGGCCAGGGGAGCCCGTCCCTCCGGGGTCCAGAGTCCTCTCG
 5 CGATGGCCTCGGCAGTGGTATCCGTCATTCTAGGGAGTCCGTTTACCTTT
 CCTTTGTTGCTTCTGGACCTTGAGCCATAGCTGGAAGAACTCACCTGTGGTTT
 CCTCCAGCCCTGACCAGGTTAAGTGTGTGCTCCATGGTGGCTGGAGTTTC
 CTGGGTAAGTGGTGTGAGGCACAGGCCGTGTCAGTCTCCCTCGTCTTCCC
 AGTTCTCCCAGCACTATGTTTCCACAGTCCATCTGTCTGCCGTGACTGGAGG
 10 GGCGGTCTTCTGTAAACCAGACGTCCAGAGGCAGTAGGAAGGGTCTGCTTT
 GGGGTTTTCTATTCTGTCCCCTGGTCTCCTGGACTTTCCCTTACCAAGGGCC
 CTACTGACTTGGTGGTCCCCTGGTACTAAAATCAATTGATGTCACTTGTG
 CCTCGGCAGGGCTTCTTTGGGGGTTCTGGTGGCGCTGCAGCCTGCT
 TTTCCCAAGTGAACGTTGCCATCACCTTATCCAGCCCCGGGAAGAAACTCGAAG
 15 GCCGCGGGTGAATAAAACTGGGGGAGACTGACATCTCGGTGGTCTCCAGGAGC
 ATGGTGTGTGTTATGGGCAGCATTATGGTTCTATTGTAGATTGCAG
 GCAGTTAACGCTATTCTCATCATAATAATTGAGAGAATAAGTTGTTATT
 GTGCCATCACATAGGGAGTTCTAGTCTATCATGTTTCCAGGCACCTTCCTG
 GCGTCTGCGAAAGCTGTTAATTCTGCTACAGCCTGTGGTCTGCTACTTCTC
 20 GTGACTGTGGTCGTAGAAGTTTCCCTGTCTGCCTTGATCTTGCGTTCC
 AGATAAGGGATGCCTTCCAGGAGGGCAGATTGCTGCTGGGTCTGTCCAGAG
 CTGGGGGTGGTACCTGCGGCCAGCGGGGCCCTGGCTCTGTGGCGGGC
 CGGCTGCCAGGCAGGGGTGCGCACCTCCGTGCTCAGGAAGGGCCTCAG
 GTCCGATGCCTGGCGTGGTTACGGTGACCATGTGGATTCTGGTCAAGGGTC
 25 TTTCTGCTTCTGTGAGGTGCTCTGTCACTGAGGGGCCCTTGCGCTTCTG
 GAATAAAACCCCTTGGCCTGGCGTGTGAGTTCTATGTCCTATCACATTGTAC
 TCTCATGCTTGTTCAGACTTTGCACTGCCCTGTGAAGTGGGTGTGTGTC
 ATCTTGTTGGTGCATCTGGTGGGTGAGGCCGTCTCCCCACAGGGCGA
 TGTCCAATACCCCTGGCAGCATGGGCCTCATGTTTATGGTCCCCAAGGTA
 30 CCTGCCAGGATCCCCAAGTCCTCCTACCCACACAGACCTGGCTCTCAGAT
 GAGCACCCAGCCAAGTCTCTGGCCATGTCTAGCAGGAGGATGTTCTGCCCG
 GCCAACTGACAGGGTGGCTCAACTGCAGGAGTGGGCACGGCATGTCCTTG
 CTGGTTCTGCCATGGGGCGGGTCTGTGGGGGCTGACCTGGTAGTTGTCC

CTGGAGGGCCTGGGCCAAGGATGCCAGTGGTCCCAGGCTGTGAGAGCCGC
 GCTGCCAACACATTCCCTGGAGAGTCTCCGTGTGAGGCCTTGTACCTCTGC
 AGGTGTGTACATGTGTATGTGAGTGCCCACATGCACGGGAATGTGTAC
 ACGCATGTGCGTGTATGGGTGAGCTGTGCTTAAGTGTGCATCTGTATCT
 5 GAGTATTATGTAAGTGTGCATACACATGAGCACGTGGGACTTCACGCATGT
 TTGGCTCTGTTCAATGTGTACATGTGTGCACATGTGTATCTGAGCGTGT
 CATGTGTGAATGTGCCACATATAAGGCACATTGAGTGTGCGCCTGTGAGCAT
 GTATTGTATGTTATGCATGGCTGTGTGTATTATGTATAGCTATGTGT
 CGCTGCGTGTGTACCTATGTGTATGTACGTGTGTTCATGCCTGTGCTGTG
 10 TGAGACGTGAGATCCTGCCTGTCCCACCTCACGTACTAACCTGGATCTAGG
 TGGTTAGCCCCCTGCCCGGAGGTGGCCTGGGACTTGCCCTGGTTAAATGGAG
 CCCCCGGTGTAAACGTGAGCCCACCCAGGTGCTCCTGCCAGCCAGGGCTGTCT
 GTCAGCACACAGCGTCCAAGTTCAGGTCTCACTCCTAGGTGGTTATCTCC
 CAGGCAGCTGGGAGGGCGAAGCCTGGAGAACGCTGCACCCAGGCTGGACCT
 15 GCAGGGACCTTCAGACGTGCCCTGGCTCCACATGCCCGTCTGCAGCTCGAG
 AATTAGACGTGCCCTGGCTCCACATGCCCGTCTGCAGCTCGAGAATTAGAC
 GTGCCCTGGGCTCCACATGCCCGTCTGCAGCTCGAGAATTAGACGTGCCCTGG
 GCTTCATGTGCCCGTCTGCAGCCCTAGAACATACCAGCAGCACCCCAAGGGCCCC
 CATGCGGCATCTAAACCAGGCAGGGACAGGGGATGGAGCAGACCAAGGTA
 20 GGGTTGCTCCCTAGGATGCAGCCCTGCCAGGCAGGAGGGCAGACCCCTACAC
 AGTGCTGAGCTGTGCCCGGAGGAAGCCTCCAAGATGGCCTCATCCCAGCA
 GCCCTGCCCACTGTCTGCATCCCTGGGTCTGTGCCACCTGGTGGCTAT
 TTGCTGAACGTGGCCACAAACCCCTGGTCAGCAGGAACCGGCCCTTCACTG
 CCCTGCAGCTCCCTCTCCTCCGGGTGGCATGGCAGAGAACAGCCCAGTGGC
 25 CCCAAGCATAGAGCCCCCTTCTGCTGTAGTCCCCCTGCAGTCCCCTGCCT
 TTTCCACTGCTTGGAAAGGCAGAGAGAACCTGGCCGCCCTTGTCCCTTAT
 CTGTCATGCCAGCTGCCCTGCCACACCTTGCCTCACCAGGCAACCCCTG
 CAAACAGCAGCTGGGAGGACTTCTAAGACAAAAACCTGATCATTCCAGAA
 GCTCCCTGTGACGTTAGGCTACATTCCCCAAGGTGGTGCACGTTCAGGCC
 30 ATCACCTGTAACACTACCCACCCACCTCACCCAGCCTGGCTCAAGCCCTTC
 AGGCCAAGCCTGGACATTCTGGCTGCCAGGGCCTTGCAAGCCCTTC
 TCTGGACCTGGCTGTCCCTGGAGTGTCAAGCACTCAGCCTTTGTCAAGGTTTC
 AGGCCTCTGCTGGCACTATCCTGCACACCACCCGCCGACCTGCCCTGTTTC

TGGGTTCATGGGGCTCTGGGAGGCTACAAGCATCTGTCTGCCCTCAGGCCATT
 CCACACTCCCTGAGGGTGGGACCCCGTGGCTGCCTAACCCCACAAGCTCTG
 CATGGCGCTTCCTGGCCGTGCATGTCCCTCCCTGCATCAAATGCATAGGCCAG
 AGTTGCCAGCGAGGATGACCCAGCTTGGTATGTGCTCCCGGCTCAGCTGCC
 5 CCTGCGTGTGGAGACACCCCTCCCACTCGCCTTGCCACACTTCCCAGCAGTCT
 CTCGAAGCACTGGCCCGTGGAAACAAATCCTCAAGGGGATTGAGGGTCC
 AGCTGTCACTCAGTCATGGCATGGTGGGGCACGTTGGGACACAGCAGAG
 AGTGAGGCAGCCGTGGCCTGGCCTTGACAGGCGGATGTACAGACACATCAG
 GGCCGAGACTGAGGCAGGGCTCTGGGTGGGAGACAGTGACCACTGCTTG
 10 GAGGAGGGGGCGCTCAGGTGGAGGGCACAGTGAGAAGGAGGTAAGCTGG
 TGCTGGCGGGGCAGGCAGGGACCCCTCCCAGGGCTCACAGCTCCAGCGGAC
 AGCAGGCACAGGGCTGTGGGATCAGAGCACAGGAGAACAGTCACCTGACAG
 CAGGTTCCCAGGGCTTCAGGCCTGGAGGAGTGAGGACGGCTGTTGGGTTCTT
 GATTCCAGCAGAGGGAGGCTGTGCAGGGTGCAGGAAGGACGGTTGGGGC
 15 GCTTCGGGGAGGTACGAGAAGCAAAGGTGTTGCAGCCCTGGGCCAGGCG
 GCAGGGAAAGGCCTGTAGACGCCAGAGGGCGCTCGTGTACATGCAACTCAGGA
 GCTGCTGGCACCCGCCAAGGAGTGCTGAGCGCGGGAGCCCCAAACCACAGCC
 TTGGGGAACCCAGGAGGGCCGGCGGGTGCAGGACCCGATGAGGGATT
 CGAGAGCACGATGTTAAATGTTGGGGAAAAAAATGGATCAAAGCGATGTGT
 20 TCCCAGGGAGCCCTGTTCTCGTTCTTGTACGCCAGCTTGCACTG
 CAGAAAGCTGTTATCTCAGCACTGCTAAGGAAACCCAGCGCGGCCCTCGGAG
 GGATTAGGCATTCTGCTGAACCAGGGATATGCGGTGGGCTGAAAAAGCCAT
 TTCGGGAGGAATCTGGTCTCGGCTGGGTCCGGCCGGCACCGTGAACACACCAC
 GTGAACACCACGTCGAAATCTGCTGGCAGGGAGATTCTCAAGGCCTCC
 25 CAGGGAGGAGAGCCACTCCTGGCTGCAAAGAGGGCCCCAACCTGGCTTCT
 GAATTCAAGAGGGGGCTGTGTGCACGTGTACGTACGTGCATGTGCACGT
 CTGTGTACCCATGTCTGTGGAAGTGGCACACGTGTGCATGTGTGCACGT
 TACGTGTGCCTGTGGTAGCTCCGTGCGCACATGCGTACACATATGCCT
 GGTGTGTGTGCAACGTGTCTGACGTGTGTGCTTGCCTGTTCTG
 30 TGGGAAGGAGTTCCCGGTTGGGTGGCTCTCCTGTTCTGCCGAAGCCAGCT
 GCTGCTAGAAACTGGCCCCCTGCTCTGCAGTAAGAGACCCCTGCCCTGGCCC
 AGGTGAGGGCCTGGCTTGTCTCCAGGATCACAGCTTGTCAAACACTCCACA
 CAAAGAGAGAGGCACTAAAAGCACAACACAAACACGGCTAGTCCGCGCCTT

TGGTGGTGAACATACCAGGAATTGCTCTGCAATGCCTGTGGTTAAAAAACC
 CCGTGAGCTCGGGCCCCGGAGGCCTAGGGATGAGGTATCGCTGCGGCTTC
 CTCCCCCTCTGCTGAGGCTCCCTCCGCCCGCCGGTGGCCCACCCCTCCGCC
 AGCTGCAGCCTCCACTGCCTGGTTCTGCTGCGCCTCAGCACACAGCGAGG
 5 CCTCAGTTCCCTCCCAGCTCAGAGCAAGGCCTCAGTTCCCTCCAGCAGCA
 AAGTGAGACCCCTGTAGGGAGTCTCTGGGCCTCCGTGACGGCCCTGGCGGCC
 CTCTCTGTGGAACAAGGTGGCTCTGCCTCAGCGCCCTGGCCTCCACTTGC
 TCAGGGCGCCCGCAGGCCGCAGGTCTCACCTGGTTTTCACCTGGGACC
 CGCAGCTGCTCTGATGAGGAGCCTGCTCTGCGCACGGCCTGGGCGGTTCCC
 10 GCAGCACCATTTCTGCCGCTGCCGGAAAAGACGCAGAGCAAAGGCACCTT
 GCCCAGGTTGGGAACCACTGGGTGACTCAGGATTTCCACCCACCCCG
 AGGTCTGACTCCCTCTGCAGCTGCCGCCGCTGAGGGTTGTCTCCCTGC
 CTGCCTGCCCTGCCTGGTGAGCTCTATGGGTCTGACGAAGCCCCGTCCTGC
 ACACATTGCTTCGGGGCAACTCCCCACTAGACTGGTGCCTAGGGACGGGG
 15 TACCCACTCCCTCCTCAGGGCTGCAGGGTGCCTCTGGAAAGAGTTGTGTCCTC
 TGTGGGCCTGTGGCTCACTGCCTTTGTCCCTGTCACTTGGGAGCTACCCA
 GCTAAGACCGGTCCCCACCACCCAGGCCACTCTGAGGCTTCAGAACGCGGTC
 GTCTTCTCCCTGGCAGGGTTGTTCCGCCTGCATTGTCAGCCAGCAAATCTT
 TATTAAGCACCTACTGTGTGCCAGGATCTATGTCAAGCAGCCATGGGCTCA
 20 TGAAAGGCAGAGCTGGACTGAGATTCCGCACCCCTGGGATCCTCACTGCAGG
 GCCCTGTATGTGCGGGCTGGAGCCCTGGTTCTGTCAGTGAGCCCTG
 GAGCTAGGCCAGAGGACTTGACAGATGTGGGCCCTGTCTGCACAGCCCC
 CAGGGCACGGGTGCCCTGCAGCTGCCAGCCAGACTCAGGTACTGCC
 CCATGAGCCTGTAGGAGAAACTCTCACTCATCTGCTCTGAGACCTGCCTGGA
 25 GCCCACCCAGGGAGACAGAGGCTCTGGAGCCCTGTTCAAGGGTAGCGAAGGTGAAAGT
 CTAGACACTGGCCTGCAGGCTTGGCGGGTAAGGGTAGCGAAGGTGAAAGT
 GGACCAAGGGCAGGTGGAGCAGGGTAGGCCAAGTGTCTGTGGGCAGCT
 GGGGACACCCAGGTGGCTGAACCTCAGCTGCCACCCAGCTCAGCTGCCAA
 GGCTCCTCCGGGTCAAGGTGCACCCCTGATGTCCGGCAAGAGTTCCAAGA
 30 ACAAAAGGCTCAGAACATCCACCAAGCGGAACCTGAAGCCACTGCCCTGTGGGA
 CAGGAGAAGTGAATTGGCCGGCTCTCCGGAGCCAGTGTGATCACTGAGGA
 CCACCGGATACAAGTCCCTCCGCCTCCCTTAGTGACACTGAAGCTGTTG
 AAATCCCCATCCACCAAGGAGCCTGGCCTGGGAGCCCTGTCAACCCACT

CACTGCCTTCAGAGCCCTGTGGCGTCTCTCATGCCTGGCCGTAGAGCTT
 CCTGAAAGCATCTCTATCACCCACTCTGCACCTGAGAGAGGGCGGTAGGTG
 ACTGGTACCCCTGAAGACCTGGGACCAGGCCCTGCCTCTGGGAATCCATC
 AAAATGCTCCCTCTGAGGCCGCTTGTCTGGCGTAGGATCAGCCTGCTTG
 5 AGGGCTGTTAGGAGAGGAACCCCGCGCTGCTGCTCCCCGGAGGCAGCCAG
 TGCTTGTATGGCACCCTGCCTCCAGTGTCTGCTTCAGGGTGTGGATGCA
 CAGCTGGGGCAGGGCGCTGCTGAAGCCACAGTCTCAGAGCCTGAGGCCA
 CGGGGCATGGCATGAAGACCCGGTGGTCTGTTCCCCGGGACAGCCTGGT
 CCAGCCTCACTGCCACATGCTCTGCCAGACACCCGCTGCTGTCCCCAGCC
 10 ACCCAGCCCCATGCACAGGCCACGCCGACAGGGCTGCTGAAGGAAGGCT
 GGTCCGCTCCCTGCCTGTGACAGGAGCTCAGGCTCAGGGCAGCAGGGCGCT
 CAGCTGGGCCGCGCTCCACGGTGTAAAGGATTCTAGAAATTCTGCTGTG
 CCAGGCTGCAGCAGAGACTCCGGCCCCACCAGGCTCCTGTACTGGTGATA
 AACACACCATCCGCACTGCCTGCCGCTTACAGGAGTCTCTCGTGCACCATT
 15 GCTCAACCCCCGAGAGTTATGGAAGGAAGGGAGGCTGGGTGGGTGCCCGA
 GTGCCCTGGAGTGGAGGCTGGCGCTGCCCTGCCACAGGGTGGCTGGC
 AGGGCTCAGCAGTTGCCTGCCGTGGGGCAGAGGACCTGGGAGACATGC
 TGAGCCCTCCCAGCGAGACACTGAGGGTCGGGAGGGTAACATGTGATTTGA
 GGCCACCCGCTACAGCTCTGGGACCTCCCTCTCAGGCGGGTCTGGAACC
 20 CAACAGAGCTGGTTGGGCCACAGCAGTGGCTCCAGGCTGGCTTCAAAA
 CCGGACACAGGGCGTGGCTCCCTCCAGCCTGCCAGAGGGACCGCTGGC
 CTATCTCAGCCACGTGGTCGCGAGAGTCGACCTGGCTGCGTGTGGGG
 ACCCCAGGCTGGCGCTAAACCGTGGAGGTGCCCTCTCACAGCTCTGGA
 CGATGGAGGGCCGAGACCCAGGTGTGGCAGGGCTGGTTCTGAGGCC
 25 TCCCAGCTCTGAGGGTGGCTAGCAACTGTCTTAGATGTAGTACCCCAATC
 CCCCCCAGTCCCTCCCTTACCTCACAGGGCATCCTCCCTGCGTGTGAGTCTG
 GAGCCAATTCCTCTATGTAAGGACACCAGTCTTACTGGATTGGAGGCTA
 CCCTACTCCACTGTGACCCCCCTCTAACACTGATCATATCTGCAGGGACCC
 TTCCAAACAAGGTCTACTCTGAGTACTGGGATTAGGGCTTCATATGAA
 30 TTTGAGGGCAACCCAGGGCTCCAAACCATGGCCACAGGGTGGCTCCCTG
 TGTGTAAATAAGCTTATTAGCACACAGCACCACATACTTGAGGGCTAA
 TGCCTCTGGCTGTTGTGCCATGGCAGATTGAGTCCTGCCATGGAGACCAT
 GCAGCCCACAGGGCTAAGATTCTACTACCTGACCTCCAGGAAAGGTTGC

CACGCTATTATTCAGGATAATTTGGAAAGAGCAGTGCTAGGGCATT
 TAAACTGCAGTCGAATTAGTAACAATTATTTGGGAAAATAGAAGTGG
 GAGAGCGTGTGCCCGGGCCAGCCCACCGTCCCCACGTTCTACAGTCCC
 AGGTTGGCGCAGGGCCTTGGTCCACAGTCTGTCTTCTCCTGGGTGTC
 5 TGAATTGATTAATCTCAGGCTGTCAGAACGAGCAGCTCCCAGGCACCC
 CTGCCAGGTCAAGCAGTGGCTTCATCTCTGCCATTGCTCTGCACGTTCTCT
 CTATATGCAAAAACCTATATGGGTTTGTGGGTTTTGTTGGTTGGTTTA
 TTTTATTTTGAGAGAGAGAGGGTCTGCTGTGTTGCCAGGTTGGAGAG
 TAGTGGCATACTCACGGCTCACTGCAGCCTGGCCTCCTGGCCTCAAGTGT
 10 CCACTTCAGCCTCCTGAGCAGCTGGACTGTGGGTGCGTGCCACCATGCCCCG
 CTAATTGTATTTGTAGAGATAAGGTTTGCCATGTTACCTAGGCTGGT
 CTTAAACTCCTGAGTCAAACAATCCTCCCACCTCGGCCAACCAAAGTGCTG
 AGATTATAGGCATGAACCACACTGCACTCAGCCTGCTTGTGTTATCCTGAGTC
 ATTGAGAGTAAGTGGAGGCAGTATGACCGTTCTCCGTATAAGCCGTG
 15 ATATCCTCTGGAATGAGGACCTCAACTTAGCCAGGGTGTCCGACTCTCAGGA
 CACCGCTGTCCATTCACAGCCTGCATTAAGGCTCGTCACTGGTCCCAGTGA
 GTGTGGCTGGTTTTCTCATTGCACATGGCTGTCACGCCGTTCAGCTTCTT
 GACCTGGAGCAGCCCTGCCCGCCCTCCCTGGTCTCTCTGGCAGG
 GAAGGGCGGTGGACATGGAGGCTGGGGACAGTCCCCTGGCCCCACGGATGT
 20 TGTGTGGACGAGTGGAGGGCTCACAGGCCCTCTGTGGGGCCCAGGGCAGA
 GGCAGCAGGCAGGCTGTCTCCACCACGATGGACATCATTATGCCCAAGCCA
 GGTCCCCTGTCCCAGGACCGCGGTTGACAGGGTTGGATTGGCTGCGTCTG
 TCTGAAGGCAGCTGCTGGAGGAGGACAGCTGACATTCTTATGCGAAAT
 CTGCTTGGAGAGTCGTGAAAGTGGAAATCCTGGCTGGAACCGGAACGT
 25 TCCCCGAGTACATAGGAATCCTGGCTGGAACCGAAACTCCCTGAGTATA
 CGGGGCCTGTGTGGAGGGCCCTACGGTGAATGTTCTGTAACAAAG
 GCTTCCCTGTGCAGCCCACACACGGCCTCACGTTATCTCTGCAGGCCAGA
 ATTGTATATATCAAGTTGTTAGAACAGATGGGTGGGGGGC
 AGTCAGGGCCTGGGCAGGAGGTAGAGGAAACTGCAAGATTTAAACCT
 30 TCTCCAAAAACACGTAACCGATTCTGTCAGCGATTGTGAGAATGGGGTT
 GACACCCCTGGCTGGAACCTGGGAACCACCAAGTCAGCGTCTTCCAGG
 GAGGCTGTGCAGAGGAAGGCAGTGAGCCCCACCTGGGTTGAGGAACCTGG
 GGCTCAAGGGAGGCGGTCTCAGCCATGGTGTCCGCCAGGGTGGGCA

GCCGAGGCATGAGTGGATGATGTCCCGTCGGCAGCCCCTGGTCCCTCTGGGG
 GGCAAGGTGCCTGTTCCCCATTGCTCCTCCACCAGAACACCTCCAGATCT
 CCGCCAGGTGCGCCCTGAAGGAAAAGGGATGGGGCCTGGCTCGTGCCT
 GGTGGCAAGTCCTCTGGGCCAGAAAGACCCCATAATGCCAGGTAGAAG
 5 CTCCTACCTGCTGCCTGAAGAGTCTGGGCCCTGTCGGCTGGTCCATCG
 TCTTCCTGTTCAAGCTACAGGAGCGCAATCTTCAGAGCATTGAGTGGC
 TAGAGGAACGGGCTTACGCTAGGCAGGCGCTGGCATCTTAGACAATACCTGA
 CATCTTGCGGGAGCTCTGGTGAGAGGCCACAAGCGTGTGACCTGTGCG
 GACTCCACCGCGGAGCCCTGGGAGCCAAGCCATGGCTGTGCTGCCGAAGG
 10 GAACACCGCCATGGTCTCTGCTCTGCAGCCCTGGGTCTGGTGGAAAGTTG
 CATCCCTGGTGAAGGGCGGCCGCGGCTTCCAGCTCTCCAGGCCAGTCCCG
 TGTTTCTCTCCCAGCTTCCAGGACAAAAGTCAGACACCTGGTGG
 GGGGTGCGCCTGCTGCAGGGCCCCCAGGCTCTCCATTGGTTAGGG
 TTAGAGTGTGCGGCCATGGGACAGGTGTTCTTATGTTCTGCCTGAGGGC
 15 TGGAAAGAGCCTCATCAGTGAGTGCCACGTTGGTGGGGTCTCTGGTGCAG
 GGGAGCCGGCGGGCCGGTTGGTTATGTCCTGTTCACATCTGACCCCTGG
 CCAGCTGGAGAGCCTCGCTGAAGCGCAGGGCAGCAGCTGACACAACACAC
 GGGACGGGCTGAGCAGGCCGGCGCAGGCAGGCTGGGGAGCTGGCACTG
 GCACTGCACGTGGGCTCTAGGGGCTGCTAGGAAAGTCATTGGGGATAA
 20 TA

SEQ ID NO:7

Human ltrpc5 (mtr1) cDNA sequence

gi|6715116|gb|AF177473.1|AF177473 Homo sapiens MTR1 (MTR1) mRNA,
complete cds, alternatively spliced

5 GAGGCCACCATGCAGGATGTCCAAGGCCCCGTCCCGAAGCCCCGGGATG
 CTGAAGACCGGGCGGGAGCTGGCTTGCACAGGGCGAGGTCAACTTGGAGG
 GTCTGGAAAGAACGAGGCAAGTTGTACGGGTGCCGAGCAGGAGTGGCCCCG
 TCTGTGCTCTTGACCTGCTGCTGCTGAGTGGCACCTGCCGGCCCCAACCT
 GGTGGTGTCCCTGGTGGGTGAGGAGCAGCCTTCGCCATGAAGTCCTGGCTGC

 10 GGGATGTGCTCGCAAGGGCTGGTGAAGGCGGCTCAGAGCACAGGAGCCT
 GGATCCTGACCAGTGCCCTCCCGTGGCCTGCCAGGCATGTCGGGCAGGC
 CGTGCAGCAGCACTCGCTGCCAGCACGCCACCAAGGTCCGTGTGGTTGCTG
 TCGGCATGCCCTCGCTGCCCGTCCCTGCACCGCCGCATTCTGGAGGAGGC
 CCAGGAGGATTTCCCTGTCCACTACCCCTGAGGATGACGGCGGCAGCCAGGGC

 15 CCCCTCTGTTCACTGGACAGCAACCTCTCCACTTCATCCTGGTGGAGCCAGG
 CCCCCCGGGAAAGGGCGATGGGCTACGGAGCTGCCGTGAGGCTGGAGAA
 GCACATCTCGGAGCAGAGGGCGGCTACGGGGCACTGGCAGCATCGAGATC
 CCTGTCCCTCGCTGCTGGTCAATGGTATCCCAACACCTTGGAGAGGATCTC
 CAGGGCCGTGGAGCAGGCTGCCCGTGGCTGATCCTGGTAGGCTGGGGGGC

 20 ATCGCCGATGTGCTTGCTGCCCTAGTGAACCAGCCCCACCTCCTGGTGCCAA
 GGTGGCCGAGAAGCAGTTAAGGAGAAGTCCCCAGCAAGCATTCTGG
 GAGGACATCGTGCCTGGACCAAGCTGCTGCAGAACATCACCTCACACCAGC
 ACCTGCTCACCGTGTATGACTTCGAGCAGGAGGGCTCCGAGGAGCTGGACAC
 GGTATCCTGAAGGCCTGGTAAAGCCTGCAAGAGCCACAGCCAGGAGCCT

 25 CAGGACTATCTGGATGAGCTCAAGCTGGCCGTGGCTGGACCGCGTGGACA
 TCGCCAAGAGTGAGATCTTCAATGGGACGTGGAGTGGAGTCCCTGTGACCT
 GGAGGAGGTGATGGTGGACGCCCTGGTCAGCAACAAGCCCAGTTGTGCGC
 CTCTTGTGGACAACGGCGCAGACGTGGCCACTCCTGACGTATGGCGGCT
 GCAGGAGCTTACCGCTCCGTGTACGCAAGAGCTGCTCTCGACCTGCTGC

 30 AGCGGAAGCAGGAGGAGGCCGGCTGACGCTGGCCGGCTGGCACCCAGC
 AGGCCGGAGCCACCCGCCGGGCCACCGCCTCTCCCTGCACGAGGTCTC
 CCGCGTACTCAAGGACTTCCCTGCAGGACGCCTGCCGAGGCTTACCAAGGAC
 GGCGGCCAGGGACCGCAGGAGGGCGGAGAAGGGCCGGCCAAGCGGCC

ACGGGCCAGAAGTGGCTGCTGGACCTGAACCAGAAGAGCGAGAACCCCTGG
 CGGGACCTGTTCCGTGGGCCGTGCTGCAGAACCGCCACGAGATGGCCACCT
 ACTTCTGGCCATGGGCCAGGAAGGTGTGGCAGCCGACTGGCCCTGCAA
 AATCCTCAAAGAGAGATGTCGACCTGGAGACGGAGGCCAGGGGGCCCAGCC
 5 ACGCGCGAGGCAGAAATACGAGCGGCTGGCCCTGACCTCTTCTCGAGTGCT
 ACAGCAACAGTGAGGCCCGCCTCGCCCTGCTGGTGCACGCCGAACCGCTG
 CTGGAGCAAGACCACCTGCCTGCACCTGGCCACCGAGGCTGACGCCAAGGCC
 TTCTTGCCCACGACGGCGTTCAGGCCTCCTGACCAGGATCTGGTGGGGGA
 CATGGCCGCAGGCACGCCATCCTGCCGTGCTAGGAGCCTCCTGCCCG
 10 CCCTCGTCTATAACCAACCTCATCACCTCAGTGAGGAAGCTCCCTGAGGACA
 GGCCTGGAGGACCTGCAGGACCTGGACAGCCTGGACACGGAGAAGAGCCCG
 CTGTATGGCCTGCAGAGCCGGTGGAGGAGCTGGTGGAGGCCGAGGGCTC
 AGGGTGACCGAGGCCACGTGCTGTCTCCTGCTCACACGCTGGCGAAATT
 TGGGGCGCTCCCGTACTGTGTTCTGGGAACGTGGTATGTACTTCGCCTT
 15 CCTCTTCCTGTTCACCTACGTCCGTGGACTTCAGGCCGCCCGCAGG
 GCCCCTCAGGGCCCGAGGTACCCCTACTTCTGGTCTTACGCTGGTGTG
 GAGGAAATCCGGCAGGGCTTCTCACAGACGAGGACACACACCTGGTGAAGA
 AGTTCACACTGTATGTGGGGACAACACTGGAACAAGTGTGACATGGTGGCCAT
 CTTCTGTTATCGTGGGTGTACCTGCAGGATGCTGCCGTGGCTTGGAGG
 20 CTGGCCGCACGGCCTCGCCATGGACTTCATGGTGTACGCTGCCGTGATC
 CATATCTTGCCATACACAAGCAGCTGGGCCCAAGATCATCGTGGTAGAGC
 GCATGATGAAGGACGTCTTCTTCTTCTTCTGAGCGTGTGGCTCGTGG
 CCTACGGTGTACCAACCCAGGCCTGCTGCACCCCCATGACGGCCGCTGGA
 GTGGATCTTCCGCCGGGTGCTTACCGGCCCTACCTGCAGATCTCGGCCAGA
 25 TCCCACGGACGAGATTGATGAAGCCCGTGTGAACCTGCTCCACCCACCCACTG
 CTGCTGGAGGACTCACCATCCTGCCCAAGCCTCTATGCCAACTGGCTGGTCAT
 CCTCCTGCTGGTCACCTCCTGTTGGTACCAATGTGCTGCTCATGAACCTGCT
 CATGCCATGTTCAGCTACACGTTCCAGGTGGTGCAGGGCAACGCAGACATG
 TTCTGGAAGTTCCAGCGCTACAACCTGATTGTGGAGTACACGAGCGCCCGC
 30 CCTGGCCCCGCCCTCATCCTGCTCAGGCCACCTGAGCCTGACGCTCCGCCGG
 TCTTCAAGAAGGAGGCTGAGCACAAGCGGGAGCACCTGGAGAGAGACCTGC
 CAGACCCCTGGACCAGAAGGTCGTACCTGGAGACAGTCCAGAAGGAGA
 ACTTCCTGAGCAAGATGGAGAAGCGGAGGGACAGCGAGGGGAGGTGC

TGCGGAAAACGCCAACAGAGTGGACTTCATTCCAAGTACCTCGGGGGCT
GAGAGAGCAAGAAAAGCGCATCAAGTGTCTGGAGTCACAGATCAACTACTGC
TCGGTGCTCGTGTCCCTCCGTGGCTGACGTGCTGGCCCAGGGTGGCGGCCCG
GAGCTCTCAGCACTGTGGCGAGGGAAGCCAGCTGGTGGCTGCTGACCACAGA
5 GGTGGTTAGATGGCTGGAAACAACCCGGGCTGGCCAGCCTCCCTCGGACA
CATGAGCTGCTTGGCCTGCCACGTGTGGGCCACCTCTTCAGTTGGCCACC
CTGCACGTTGTGCACTGACCTTGCCGACCTCCAGCGGAACCCCCCAGGGGGC
ACCAGCCCCCAGCAGACAATGGCCCTCCTGGTGCCTCACACAGACCCCTCA
CCCAAAGGAACCGCTCCTTGTCCCTCCTGGCCTCCCCGGAGGCACAGCAGTGT
10 CATGGGGCTGTCTCCCTGACAGGCACAACACTCCCCGGCAGAAAACGTGCC
CACCGCATCCCTACCTGGAAACTGACCAGCCTGCACTGTGGAAAAGCTGGCC
CTGTGGCGTGACGGGGAGCACCCCCATCCAGACTGCGAAGCTGCTCTGGGT
CTGCACCCACCCCTGCCCTGACTTGTGCTGACAAGAGACT

Predicted human ltrpc6 amino acid sequence

translation from GI6716116

MQDVQGPRPGSPGDAEDRRELGLHRGEVNFGGSGKKRGKFVRVPSGVAPSVLF
5 DLLLAEWHPAPNLVVSLVGEEQPFAMKSWLVDLRKGLVKAAQSTGAWLTS
ALRVGLARHVGQAVRDHSLASTSTKVRVVAVGMASLGRVLHRRILEEAQEDFP
VHYPEDDGGSQGPLCSLDNSNLSHFILVEPGPPKGDGTLTELRLRLEKHISEQRAGY
GGTGsieIPVLCLLVNGDPNTLERISRAVEQAAPWLILVGSGGIADVLAALVNQPH
LLVPKVAEKQFKEKFPSKHFSWEDIVRWTKLLQNITSHQHLLTVYDFEQEGSEEL
10 DTVILKALVKACKSHSQEPQDYLDELKLAVAWDRVDIAKSEIFNGDVEWKSCDL
EEVMVDALVSNKPEFVRLFVDNGADVADFLTYGRLQELYRSVSRKSLLFDLLQR
KQEEARLTLAGLGTQQAREPPAGPPAFSLHEVSRVLKDFLQDACRGFYQDGRPG
DRRRAEKGPAKRPTGQKWLLDLNQKSENPWRDLFLWAVLQNRHEMATYFWA
MGQEJVAAALAACKILKEMSHLETEAEAARATREAKYERLALDLFSECYSNSEA
15 RAFALLVRRNRCWSKTTCLHLATEADAKAFFAHGVQ AFLTRIWWGDMAAGTP
ILRLLGAFLCPALVYTNLITFSEEAPLRTGLEDLQDLDSDLTEKSPLYGLQSRVEEL
VEAPRAQGDRGPRAVFLLTRWRKFWGAPVTVFLGNVVMYFAFLFLFTYVLLVD
FRPPPQGPSGPEVTLYFWVFTLVLEEIRQGFFTDEDTHLVKKFTLYVGDNWNKCD
MVAIFLFIVGVTCRMLPSAFEAGRVLAMDFMVFTLRLIHIFAIHKQLGPKITVVER
20 MMKDVFVFFLFFLSVWLVAYGVTTQALLHPHDGRLEWIFRRVLYRPYLQIFGQIPL
DEIDEARVNCSTHPLLLEDSPSCPSLYANWLVILLVTFLVTNVLLMNLLIAMFS
YTFQVVQGNADMFWKFQRYNLIVEYHERPALAPPFILLSHLSLTLLRVFKKEAEH
KREHLERDLPDPLDQKVVTWETVQKENFLSKMEKRRDSEGEVLRKTAHRVDFI
AKYLGGLREQEKRIKCLESQINYCSVLVSSVADVLAQGGGPRSSQHCGEQLV
25 AADHRGGLDGWEQPGAGQPPSDT