Aritmética da Computação

Trabalho Para Casa 1 (TPC1)

António Esteves e António Pina

			Ant	onio est	eves e	Antoni	o Pina					
Introduçã	0											
	exercícios prop a dos números 			guião a	borda	os sis	temas	de r	nume	ração	o, a r	epresentação e
Exercícios	s sobre siste	emas d	e num	eração	e rep	resen	tação	de i	nteir	os		
1. Efectue	as seguintes	conver	sões									
a)	Para decimal:	1101.0)12				; e	e 10	. 012			
b)	Para octal: 11	01110	11101	2			;	e 11	1111	12		
c)	Para hexadec	imal: 10	011 00	10 110	0 ₂ <u>0</u> 2	(
d)	Para binário: 0	xFF1F	·				_					
e)	Para ternário:	174										
	ta o número - ntações:	-233 pa	ara um	na repre	esenta	ção bi	inária	usar	ndo 1	0-bit	s, co	m as seguintes
a) :	Sinal e amplitu	ude										
b) (Complemento	para 1										
c) (Complemento	para 2										
d)	Excesso 2 ⁿ⁻¹											
	Bit#	9	8	7	6	5	4	3	2	1	0	
	Valor	512	256	128	64	32	16	8	4	2	1	

Bit#	9	8	7	6	5	4	3	2	1	0
Valor	512	256	128	64	32	16	8	4	2	1
a)										
b)										
c)										
d)										
e)										

- 3. Converta para decimal o valor em binário (usando apenas 10-bits) **10 0111 0101**₂, considerando as seguintes representações:
 - a) Inteiro sem sinal
 - b) Sinal e amplitude
 - c) Complemento para 1
 - d) Complemento para 2
 - e) Excesso 2ⁿ⁻¹

Nome: Turma:	Nº	Nome:	Turma:
--------------	----	-------	--------

. ,

Bit#	9	8	7	6	5	4	3	2	1	0	Resultado
Valor	512	256	128	64	32	16	8	4	2	1	
a)	512	0	0	64	32	16	0	4	0	1	629
b)											
c)											
d)											
e)											

- 4. A maioria das pessoas apenas consegue contar até 10 com os seus dedos; contudo, computer scientists podem fazer melhor! Como? Cada dedo conta como um bit, valendo 1 se esticado, e 0 se dobrado.
 - a) Com este método, até quanto é possível contar usando ambas as mãos? ______
 - b) Considere que um dos dedos na extremidade da mão é o bit do sinal numa representação em complemento para 2.

Qual a gama de valores que é possível representar com ambas as mãos?

5. Considere que está a executar código num computador de **6-bits**, o qual usa complemento para 2 para representar valores do tipo inteiro. Um inteiro "*short*" é codificado usando 3-bits. Complete a tabela, considerando as seguintes definições:

```
short sy = -3;
int y = sy;
int x = -17;
unsigned ux = x;
```

Nota: TMin e Tmax representam, respectivamente, o menor e o maior valor representável

Expressão	Decimal	Binário
Zero	0	
	-6	
		01 0010
ux		
У		
x>>1		
TMax		
-TMin		
Tmin+TMin		

Nº Nome: Turma:

Exercícios sobre aritmética de inteiros

6.	Efectue os seg	uintes cálo	culos usando	aritmética	binária de	8-bits en	n complemento	para 2:

a)	4 + 120	Res.:	_+	_=
b)	70 + 80	Res.:	_+	=
c)	100 + (- 60)	Res.:	+	=

7.	Qual a gama de valores inteiros nas representações binárias de (i) sinal e amplitude,	(ii)
	complemento para 1, e (iii) excesso 2 ⁿ⁻¹) para o seguinte número de bits:	

a)	6	Res.: (i)	(ii)	(iii)
•		.,	•	•