Homework 1

Question 1

Temperatures are all expresed in degree Celciusb but to have consistent results in MathCad, the are writing in Kelvin, since the calculation of entalphies are based o temperatures differences, results are the same if we express temperatures in either Kelvins or Celsius

$$\begin{split} T_{air_out} &:= 30 \cdot K & T_{air_in} := -10 \cdot K & T_{coolant_in} := 85 \cdot K & T_{coolant_out} := 45 \cdot K \\ V_{air} &:= 30 \cdot \frac{m^3}{min} & kJ := 1000 \cdot J & C_{p_air} := 1 \cdot \frac{kJ}{kg \cdot K} & C_{p_coolant} := 3.3 \cdot \frac{kJ}{kg \cdot K} \\ \rho_{air} &:= 1.2 \cdot \frac{kg}{m^3} & \end{split}$$

$$\sum_{in} \dot{m}_{in} h_{in} - \sum_{out} \dot{m}_{out} h_{out} \longrightarrow \dot{m}_{air} h_{air_in} + \dot{m}_{coolant} h_{coolant_in} = \dot{m}_{air} h_{air_out} + \dot{m}_{coolant_out}$$

The equation above is obtained by considering state state dU/dt = 0, adiabatic process or not heat loss Q=0 (so it is not a energy transport problem) and shaft work $W_s = 0$. Specific enthalpy can be calculated as h = Cp T with units kJ/kg, if T_{ref} is assumed to be $0^{\circ}C$

$$m_{air} := V_{air} \cdot \rho_{air}$$
 $m_{air} = 36 \cdot \frac{kg}{min}$

$$m_{coolant} := \frac{m_{air} \cdot C_{p_air} \cdot (T_{air_out} - T_{air_in})}{C_{p_coolant} \cdot (T_{coolant_in} - T_{coolant_out})} \qquad \boxed{m_{coolant} = 10.9 \cdot \frac{kg}{min}}$$

Question 2

$$\begin{aligned} d_{plyw} &:= 1 \cdot in & T_1 &:= 100 \cdot F & T_2 &:= 50 \cdot F \\ k_{plyw} &:= 0.070 \cdot \frac{BTU}{hr \cdot ft \cdot F} & \end{aligned}$$

Assumptions

- 1D heat flow
- Steady State
- No Convection
- No heat generation

Definetely is a energy transfer process so we can use the equations derived in class for the Flux

Flux :=
$$k_{plyw} \cdot \frac{T_1 - T_2}{d_{plyw}}$$
 Flux = $42 \cdot \frac{BTU}{hr \cdot ft^2}$

$$Flux = 42 \cdot \frac{BTU}{hr \cdot ft^2}$$

Question 3

- (1) two boundary conditions in x and y and one initial condition
- (2) T(x,y,t)
- (3) The equation assumes no convection and no heat genration
- (4) The model is assuming Cartesian coordinates
- (1) two boundary conditions in r
- (2) T(r)
- (3) The equation assumes no convection, no heat heat generation and steady state
- (4) The model is assuming cylindrical coordiates
- (1) One boundary condition in x and two boundary condtions in y
- (2) T(x,y)
- (3) The equation no heat generation, 1D conduction in direction y and and steady state
- (4) The model is assuming Cartesian Coordinates

Question 4

Straight forward proof

Question 5

$$m_p := 85$$
 $h_p := 1.80$ $A_p := 2.5$ $u_p := 1.1$ $h := 25$ $T_{air} := 22 + 273$ $\sigma := 5.676 \cdot 10^{-8}$

Balance of Energy is:

Energy In - Energy Out + Generation = Storage

Let's assume steady state so storage = 0

Energy_in=0

Energy Out= $hA(T_s-T_w)+\sigma A(T_s^4-T_w^4)+0.12u_px13.3xexp(20.4-5132/T_s)=0$

Generation=4mpup

We can use the balance of Energy and construct an equation to estimate T_s

$$\begin{split} f\left(T_S\right) &\coloneqq 4 \cdot m_p \cdot u_p - h \cdot A_p \cdot \left(T_S - T_{air}\right) - \left[\sigma \cdot A_p \cdot \left(T_S^4 - T_{air}^4\right) + 0.12 \cdot u_p^{-0.5} \cdot A_p \cdot \left[13.3 \cdot \left(e^{\frac{20.4 - \frac{5132}{T_S}}{T_S}} - 0\right)\right]\right] \\ &T_S &\coloneqq 300 \\ &T_{Sol} &\coloneqq \text{root}\left(f\left(T_S\right), T_S\right) \qquad T_{Sol} &= 298.499 \end{split}$$

$$\text{Temp_of_body} &\coloneqq T_{Sol} - 273 \qquad \boxed{\text{Temp_of_body} = 25.5} \qquad \text{In Celsius}$$

(b) We can assume that in order to keep stady state all the heat generated by the person must be lost so:

$$h_{eff} := \frac{4 \cdot m_p \cdot u_p}{A_p \cdot \left\lceil 26 - \left(T_{air} - 273 \right) \right\rceil}$$

 $h_{eff} = 37.4$ Units are W/m²