Reminders

Representations of Lattices, Part II

Athar Abdul-Quader

Purchase College, SUNY

CUNY Models of Peano Arithmetic Seminar April 9, 2024 Eid Mubarak!

Representations

Let X be a set and L a finite lattice. Then:

- **1** Eq(X) is the lattice of equivalence relations on X, with top element $\mathbf{1}_X = X \times X$ (trivial relation) and bottom element $\mathbf{0}_X = \{(a, a) : a \in X\}$ (discrete relation).
- ② $\alpha: L \to Eq(X)$ is a representation if it is one to one and:
 - $\alpha(0_L) = \mathbf{1}_X \ (\alpha(0) \text{ is trivial}),$
 - $\alpha(1_L) = \mathbf{0}_X \ (\alpha(1) \text{ is discrete})$, and
 - $\alpha(x \vee y) = \alpha(x) \wedge \alpha(y)$.

That is, a representation picks out specific equivalence relations on X, one for each $r \in L$. Ensure that if $x \leq y$, then $\alpha(y)$ refines $\alpha(x)$.

Definitions

Reminders

00000

Let $\alpha: L \to Eq(X)$ be a representation. Then:

- **1** If $Y \subseteq X$, then $\alpha | Y : L \to Eq(Y)$ is defined by $(\alpha|Y)(r) = \alpha(r) \cap Y^2$ for each $r \in L$.
- ② If $\Theta \in Eq(X)$, Θ is canonical for α if there is $r \in L$ such that for all $x, y \in X$, $(x, y) \in \Theta$ iff $(x, y) \in \alpha(r)$.
- **3** α has the 0-canonical partition property, or is 0-CPP, if for each $r \in L$, $\alpha(r)$ does not have exactly two classes.
- **1** α is (n+1)-*CPP* if, for each $\Theta \in Eq(X)$ there is $Y \subseteq X$ such that $\alpha | Y$ is an *n*-CPP representation and $\Theta \cap Y^2$ is canonical for $\alpha | Y$.

More definitions

- **1** $\alpha: L \longrightarrow \text{Eq}(X)$ is an \mathcal{M} -representation if α and X are \mathcal{M} -definable.
- ② If $X \in \text{Def}(\mathcal{M})$, then by $\text{Eq}^{\mathcal{M}}(X)$ we mean the lattice of \mathcal{M} -definable equivalence relations on X.
- ③ $\mathcal C$ is an $\mathcal M$ -correct set of representations of L if each $\mathcal C$ is a nonempty set of 0-CPP $\mathcal M$ -representations of L and whenever $\alpha: L \longrightarrow \operatorname{Eq}(X) \in \mathcal C$ and $\Theta \in \operatorname{Eq}^{\mathcal M}(X)$, there is $Y \subseteq X$ such that $\alpha|Y \in \mathcal C$ and $\Theta \cap Y^2$ is canonical for $\alpha|Y$.

00000

Let $\mathcal{M} \models \mathsf{PA}$ be countable and $X = \{\langle x, y \rangle : x < y \}$. Define $\alpha: \mathbf{B}_2 \to \mathrm{Eq}(X)$ as:

- $\alpha(0)$ is trivial,
- $(\langle a_1, a_2 \rangle, \langle b_1, b_2 \rangle) \in \alpha(a)$ iff $a_1 = b_1$,
- $(\langle a_1, a_2 \rangle, \langle b_1, b_2 \rangle) \in \alpha(b)$ iff $a_2 = b_2$, and
- $\alpha(1)$ is discrete.

Enumerate the \mathcal{M} -definable equivalence relations on X as $\Theta_0, \Theta_1, \dots$ Let $X_0 = X$, for each i, find $X_{i+1} \subseteq X_i$ such that $\alpha | X_{i+1} \cong \alpha$ and $\Theta_i \cap X_{i+1}^2$ is canonical for $\alpha | X_{i+1}$.

Define $p(x) = \{\phi(x) \in \mathcal{L}(\mathcal{M}) : \text{ for some } n < \omega, X_n \subseteq \phi(\mathcal{M})\}$. If c realizes p(x), then $Lt(\mathcal{M}(c)/\mathcal{M}) \cong \mathbf{B}_2$.

Theorem (Schmerl 2024)

Let $\mathcal{M} \models PA$ and L a finite lattice.

- If there is $\mathcal N$ such that $\mathcal M \prec \mathcal N$ and $\mathsf{Lt}(\mathcal N/\mathcal M) \cong \mathsf L$, then there is an $\mathcal M$ -correct set of representations of $\mathsf L$.
- ② If \mathcal{M} is countable and there is an \mathcal{M} -correct set of representations of L, then there is $\mathcal{N} \succ \mathcal{M}$ such that $\mathsf{Lt}(\mathcal{N}/\mathcal{M}) \cong \mathsf{L}$.

Ranked lattices

A ranked lattice (L, ρ) is a lattice L equipped with a function $\rho: L \longrightarrow L$ such that for all x and y in L

The *rankset* of a ranked lattice (L, ρ) is $\{\rho(x) : x \in L\}$. If $\mathcal{M} \prec \mathcal{N}$, the rank function we use is $\mathrm{rk}(\mathcal{K}) = \overline{\mathcal{K}}$, where $\mathcal{K} \preccurlyeq_{\mathsf{cof}} \overline{\mathcal{K}} \preccurlyeq_{\mathsf{end}} \mathcal{N}$. Then $\mathrm{Ltr}(\mathcal{N}/\mathcal{M}) = (\mathrm{Lt}(\mathcal{N}/\mathcal{M}), \mathrm{rk})$.

Ranking **B**₂

What is the rankset for the \mathbf{B}_2 extension we constructed?

Figure: Lt($\mathcal{M}(c)/\mathcal{M}$) \cong \mathbf{B}_2

First: $\mathcal{M} \prec_{end} \mathcal{M}(c)$. (Exercise.)

$\mathcal{M}(a)$ and $\mathcal{M}(b)$

Reminders

Notice: because $\mathcal{M}(c)$ is a minimal extension of each of $\mathcal{M}(a)$ and $\mathcal{M}(b)$, by Gaifman's Splitting Theorem, each extension is either a cofinal or an end extension. In fact: exactly one of $\mathcal{M}(a)$ and $\mathcal{M}(b)$ must be cofinal in $\mathcal{M}(c)$. Why?

$\mathcal{M}(a)$ and $\mathcal{M}(b)$

Notice: because $\mathcal{M}(c)$ is a minimal extension of each of $\mathcal{M}(a)$ and $\mathcal{M}(b)$, by Gaifman's Splitting Theorem, each extension is either a cofinal or an end extension. In fact: exactly one of $\mathcal{M}(a)$ and $\mathcal{M}(b)$ must be cofinal in $\mathcal{M}(c)$. Why?

Suppose they were both cofinal in $\mathcal{M}(c)$. Then \mathcal{M} would also be cofinal (Blass).

Suppose $\mathcal{M}(a) \prec_{\mathsf{end}} \mathcal{M}(c)$ and $\mathcal{M}(b) \prec_{\mathsf{end}} \mathcal{M}(c)$. Then we ask: is a < b? If so, then because $\mathcal{M}(b) \prec_{\mathsf{end}} \mathcal{M}(c)$, we have $a \in \mathcal{M}(b)$ (and vice versa if b < a).

$\mathcal{M}(a)$ and $\mathcal{M}(b)$

Since
$$X = \{\langle x, y \rangle : x < y\}$$
, then $\pi_1(x) < \pi_2(x) \in \operatorname{tp}(c)$, so $\mathcal{M}(c) \models a < b$. Hence: $\mathcal{M}(a) \prec_{\operatorname{end}} \mathcal{M}(c)$ and $\mathcal{M}(b) \prec_{\operatorname{cof}} \mathcal{M}(c)$.

The rankset must be $\{\mathcal{M}, \mathcal{M}(a), \mathcal{M}(c)\}$. How did the representation α imply this?

Since
$$X = \{\langle x, y \rangle : x < y\}$$
, then $\pi_1(x) < \pi_2(x) \in \operatorname{tp}(c)$, so $\mathcal{M}(c) \models a < b$. Hence: $\mathcal{M}(a) \prec_{\operatorname{end}} \mathcal{M}(c)$ and $\mathcal{M}(b) \prec_{\operatorname{cof}} \mathcal{M}(c)$.

The rankset must be $\{\mathcal{M}, \mathcal{M}(a), \mathcal{M}(c)\}$. How did the representation α imply this?

For each $r < s \in \mathbf{B}_2$, look at how the $\alpha(r)$ classes split into $\alpha(s)$ classes:

- Each $\alpha(b)$ class is \mathcal{M} -bounded (splits into boundedly many $\alpha(1)$ classes).
- There are $\alpha(a)$ classes that are \mathcal{M} -unbounded (splits into unboundedly many $\alpha(1)$ classes)! (All of them are, actually.)
- There is an $\alpha(0)$ class (the only one) which contains \mathcal{M} -unboundedly many $\alpha(a)$ classes.

Other rankings?

Reminders

What other ranksets could work? How could we realize them?

Possibilities

Suppose $\operatorname{Lt}(\mathcal{N}/\mathcal{M}) = \{\mathcal{M}, \mathcal{M}(a), \mathcal{M}(b), \mathcal{N}\} \cong \mathbf{B}_2$. As before, we cannot have both $\mathcal{M}(a) \prec_{\operatorname{end}} \mathcal{N}$ and $\mathcal{M}(b) \prec_{\operatorname{end}} \mathcal{N}$, so assume $\mathcal{M}(b) \prec_{\operatorname{cof}} \mathcal{N}$. Then the possible ranksets are:

- $② \ \{\mathcal{M}, \mathcal{M}(a), \mathcal{N}\} \ (\text{if} \ \mathcal{M} \prec_{\mathsf{end}} \mathcal{M}(a) \prec_{\mathsf{end}} \mathcal{N}), \ \mathsf{or},$

Can each of these be realized? Yes! (We already did (2).)

Example: Realizing (3)

Let $m \in M \setminus \omega$ and $X_0 = \{\langle x, y \rangle : x < m \text{ and } x < y\}$. Define α as before. Then, for each $n \in \omega$, if $\Theta \in \text{Eq}(X_n)$, find $X_{n+1} \subseteq X_n$ such that:

- **1** $\alpha(a) \cap X_{n+1}^2$ has nonstandardly many classes.
- 2 There is an $\alpha(a) \cap X_{n+1}^2$ class which is unbounded.
- **③** $\Theta \cap X_{n+1}^2$ is canonical for $\alpha | X_{n+1}$.

Exercise: with the same construction as before,

$$\mathcal{M} \prec_{\mathsf{cof}} \mathcal{M}(a) \prec_{\mathsf{end}} \mathcal{N} \text{ and } \mathcal{M} \prec_{\mathsf{end}} \mathcal{M}(b) \prec_{\mathsf{cof}} \mathcal{N}.$$

Definition

Definition (Schmerl 2024)

Let $\mathcal{M} \models \mathsf{PA}$ and (L, ρ) a finite ranked lattice.

- If $A \in \text{Def}(\mathcal{M})$ and $\Theta \in \text{Eq}^{\mathcal{M}}(A)$, a set \mathcal{E} of Θ classes is \mathcal{M} -bounded if there is a bounded $I \in \text{Def}(\mathcal{M})$ such that $I \cap X \neq \emptyset$ for each $X \in \mathcal{E}$.
- ② $\alpha: L \to \operatorname{Eq}(A)$ is an \mathcal{M} -representation of (L, ρ) if α is an \mathcal{M} -representation of L and whenever $r \leq s \in L$, $s \leq \rho(r)$ if and only if every $\alpha(r)$ -class is the union of an \mathcal{M} -bounded set of $\alpha(s)$ -classes.
- **3** \mathcal{C} is an \mathcal{M} -correct set of representations of (L, ρ) if \mathcal{C} is an \mathcal{M} -correct set of representations of L and each $\alpha \in \mathcal{C}$ is an \mathcal{M} -correct representation of (L, ρ) .

Theorem

Theorem

Suppose $\mathcal{M} \models \mathsf{PA}$ and (L, ρ) is a finite ranked lattice.

- If there is \mathcal{N} such that $\mathcal{M} \prec \mathcal{N}$ and $\mathsf{Ltr}(\mathcal{N}/\mathcal{M}) \cong (L, \rho)$, then there is an \mathcal{M} -correct set of representations of (L, ρ) .
- ② If \mathcal{M} is countable and there is an \mathcal{M} -correct set of representations of (L, ρ) , then there is $\mathcal{N} \succ \mathcal{M}$ such that $\mathsf{Ltr}(\mathcal{N}/\mathcal{M}) \cong (L, \rho)$.

The lattice N_5

Figure: The Pentagon lattice N_5 .

Which ranksets can be realized?

Ranks

Reminders

First: $\rho(c) \neq c$. Why? Gaifman condition: if $x < y < x \lor z$, $z = \rho(z)$, and $x \wedge z = y \wedge z$, then x = y.

Then: since $\rho(c) = 1$, Blass Condition: if $\rho(b) = \rho(c) = 1$, $\rho(c) = \rho(c \land b) = \rho(0) = 1$. So if $\rho(0) < 1$, then $\rho(b) = b$.

Next: $\rho(0) \neq b$ (Theorem 4.6.1 TSoMoPA)

Therefore, the possible ranksets are:

- {1} (cofinal extension)
- **2** {0, *b*, 1} (end extension).
- $\{0, a, b, 1\}$ (end extension), or
- $\{a, b, 1\}$ (mixed extension).

Can these all be realized? Surprisingly no!

Results

Say $\mathcal{M} \prec \mathcal{N}$ is mixed, denoted $\mathcal{M} \prec_{\mathsf{mixed}} \mathcal{N}$, if the extension is neither an end extension nor a cofinal extension.

- ① (Wilkie 1977) For every countable \mathcal{M} there is $\mathcal{M} \prec_{\mathsf{end}} \mathcal{N}$ such that $\mathsf{Lt}(\mathcal{N}/\mathcal{M}) \cong \mathbf{N}_5$.
- ② (Schmerl 1986?) For every countable, nonstandard \mathcal{M} there is $\mathcal{M} \prec_{\mathsf{cof}} \mathcal{N}$ such that $\mathsf{Lt}(\mathcal{N}/\mathcal{M}) \cong \mathbf{N}_5$.
- $\textbf{ (Schmerl 2024) If } \mathcal{M} \prec_{\mathsf{mixed}} \mathcal{N}, \ \mathsf{then} \ \mathsf{Lt}(\mathcal{N}/\mathcal{M}) \not\cong \mathbf{N}_5.$
- $\textbf{(Schmerl 2024) Every countable, recursively saturated \mathcal{M} has an expansion $\mathcal{M}^* \models \mathsf{PA}^*$ for which there is \mathcal{N}^* such that $\mathcal{M}^* \prec_{\mathsf{mixed}} \mathcal{N}^*$ and $\mathsf{Lt}(\mathcal{N}^*/\mathcal{M}^*) \cong \mathbf{N}_5$. }$

Representation?

Let $X = \{ \langle x, y \rangle : x < y \}$. Define $\alpha : \mathbf{N}_5 \to \mathsf{Eq}(X)$ by:

- $\alpha(0)$ is trivial,
- $(\langle a_1, a_2 \rangle, \langle b_1, b_2 \rangle) \in \alpha(a)$ iff $a_1 = b_1$,
- $(\langle a_1, a_2 \rangle, \langle b_1, b_2 \rangle) \in \alpha(c)$ iff $a_2 = b_2$,
- $(\langle a_1, a_2 \rangle, \langle b_1, b_2 \rangle) \in \alpha(b)$ iff $a_1 = b_1$ AND $a_2 \equiv b_2$ (mod a_1), and
- $\alpha(1)$ is discrete.

(Wilkie 1977.) This generates the rankset $\{0, b, 1\}$ (notice that each $\alpha(a)$ class is a union of boundedly many $\alpha(b)$ classes).