

Turingmachine

Berechenbarkeit

1 Turingmachine

Wir Betrachte das folgende, sehr bekannt, berechnunsmodell. Anschaulich lässt es sich wie folht beschreiben.

- Es gibt einen "Speicher" → k unendlich lange Arrays(Bänder)
- Es gibt einen "Arbeitsspeicher" → eine endliche Menge von Zusänden, die die Machine einnehmen kann
- Für jedes Band gibt es einen Schreib- und Lesekopf
- Jeder Schritt ist wie folgt:
 Abhängig von Zustand und gelesenene Symbol, Schreiben die Küpfe genau ein Symbol, bewegen sich nun maximal eine Position und der Zustand der Machine wird geändert.
- Stellt die Machine ihhr schrittweises Arbeiten ein, so wird die Ausgabe entweder den Zustand entnommen oder von einem der Bänder in geeigneter Weise abgelesen.

Figure 1: Turingmachine.

1.1 Definition (Turingmachine, Alan Tuing, 1936)

Sei $k \in \mathbb{N}$ eine **k-Band-Turingmachine**m kurz k-TM, ist ein Tupe $M = (Q, \Sigma, \Gamma, \Delta, s, F)$. Dabei ist:

- Q eine endliche Menge, Zustandmenge
- Σ das **Eingabealphabet**, ein Alphabet $\square \not\in \Sigma$
- Γ das **Bandaphabet**, ein Alphabet mit $\Sigma \subseteq \Gamma$ und $\square \in \Gamma/\Sigma$
- $\Delta \subseteq Q \times \Gamma^k \to \subseteq Q \times \Gamma^k \times L, S, R^k$ die Übergangsrelation
- $s \in Q$ der Startzustand
- $F \subseteq Q$ die Menge der akzeptierenden Zustände

Das Symbol \square heißt **Blank**. Die Elemente von Δ heißen **instruktionen**. Für eine Instruktion $(q_1, a_1, \cdots, a_k, q', a'_1, \cdots, a'_k, B_1, \cdots, B_k)$ **Anweisungteil**. Die TM M ist eine **deterministische k-Band Turingmachine**, kurz k-DTM, wenn es $\forall b \in Q \times \Gamma^k$ höchstens eine Instruktion $i \in \Delta$ mit Bedingungsteil b.

1.2 Definition (Konfiguration)

Sei $M = (Q, \Sigma, \Gamma, \Delta, s, F)$ eine k-TM. Elne **Konfigration** von M ist ein Tupel

$$C = (q, w_1, \cdots, w_k, p_1, \cdots, p_k) \in Q \times (p^*)^k \times \mathbb{N}^k$$

Die **Startkonfiguration** von M zur Eingabe $(u_1, \dots, u_n) \in (\Sigma^*)^n$, wobei $n \in \mathbb{N}$, ist die Konfiguration

$$Start_M(u_1, \dots, u_n) = (s, u_1 \square u_2 \square \dots \square u_n, \square, \dots, 1, \dots, 1)$$

Die Konfiguration C ist eine **Stoppkonfigration** von M, wenn es keine Instruktion $i \in \Delta$ mit Bedingungsteil $(q, w_1(p_1), \dots, w_k(p_k))$ gibt.

1.3 Definition (Nachfolgekonfiguration)