Water Quality

<u>Data Mining</u> <u>Project Documentation</u>

Building of Classifier Models

To Predict the Water Potability & Calculate the Error Percentage

• TA. Nourhan Bahnasy

Name	Section	University ID
أحمد ناصر أحمد حسن	1	20191701016
يوسف عصام فؤاد محمد	9	20191701269
مريم عبدالهادي محمد عبدالغفار	9	20191701195
أمانى جمال رسىلان حسن	2	20191701033
جنی هانی أحمد صادق	3	20191701059
عبدالرحمن يسري إبراهيم البابلي	5	20191701124

Used Models

Naive-Bayes Classifier	2
KNN (ver1) Classifier	3
KNN (ver2) Classifier	4
Random-Forest Classifier	5
Gradient-Boosting Classifier	7
SGD Classifier	8
ID3 Classifier	9
Logistic Classifier	10
SVM (ver1) Classifier	11
SVM (ver2) Classifier	12
SVM (ver3) Classifier	13
SVM (new dataset) Classifier	14
XG-Boost Classifier	15

For the first dataset "waterQuality1", the best model that succeeded to get the highest testing accuracy is:

Random-Forest Classifier

1) Naive-Bayes Classifier

- a) Dataset
 - i) Used the first "waterQuality1" dataset
- b) Data Preprocessing
 - i) Sort values
 - ii) Drop duplicates
 - iii) Fill data missing with mean to improve accuracy
 - iv) Shuffling
 - v) Stratify
 - vi) Label Encoder
 - vii) Standard Scaler
- c) Testing Accuracy
 - i) 63.262195121951216 %
- d) Data Separation
 - i) 80% training : 20% testing
- e) Result & Output
 - i) Screen Shot

```
Confusion matrix

[[361 202]

[ 39 54]]

Accuracy ----> 63.262195121951216

Mean square error ----> 0.3673780487804878

Cross validation

[0.61259542 0.63931298 0.63167939 0.60496183 0.60877863]
```

2) KNN (ver1) Classifier

- a) Dataset
 - i) Used the first "waterQuality1" dataset
- b) Data Preprocessing
 - i) Drop NULL values
 - ii) Drop the duplicates
 - iii) Normalization
 - iv) Selection of the important features
 - v) Stratified Sampling
- c) Testing Accuracy
 - i) 62.03473945409429 %
- d) Data Separation
 - i) 80% training: 20% testing
- e) Result & Output
 - i) Screen Shot

```
Feautres: Index(['Solids', 'Chloramines', 'Sulfate', 'Conductivity', 'Organic_carbon',
  'Trihalomethanes', 'Turbidity'],
  dtype='object')
Result is: [00101010101000000000011000000010010
00001000001000001000000000001010010010
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
Prediction Score is: 62.03473945409429
 Mean Square Error 0.37965260545905705
```

3) KNN (ver2) Classifier

- a) Dataset
 - i) Used the first "waterQuality1" dataset
- b) Data Preprocessing
 - i) Dropping NULL values
 - ii) Dropping Duplicates
 - iii) Extraction of the first 5 features
 - iv) Set the neighbors to 5
 - v) Normalization
 - vi) Shuffling
- c) Testing Accuracy
 - i) 71.21588089330024 %
- d) Data Separation
 - i) 80% training: 20% testing
- e) Result & Output
 - i) Screen Shot

```
Confusion Matrix
        [206 47]
        [69 81]

Accuracy = 71.21588089330024

Error = 0.28784119106699757
```

4) Random-Forest Classifier

- a) Dataset
 - i) Used the first "waterQuality1" dataset
- b) Data Preprocessing
 - i) Sort values
 - ii) Drop Duplicates
 - iii) Fill data missing with mean to improve accuracy
 - iv) Shuffle
 - v) Stratify
 - vi) Label Encoder
 - vii) Standard Scaler
- c) Testing Accuracy
 - i) 73.10469314079422 %
- d) Data Separation
 - i) 80% training: 20% testing
- e) Result & Output
 - i) Screen Shot

ii) Plotting

5) Gradient-Boosting Classifier

- a) Dataset
 - i) Used the first "waterQuality1" dataset
- b) Data Preprocessing
 - i) Removing duplicates
 - ii) Replace outliers by NULLs
 - iii) Replace NULLs by mean value
- c) Testing Accuracy
 - i) max: 65.110 %
- d) Data Separation
 - i) 80% training 20% testing
- e) Result & Output
 - i) Screen Shot

Learning rate:	0.1	Training Accuracy: 0.626 Validation Accuracy: 63.736 %
Learning rate:	0.2	Training Accuracy: 0.634 Validation Accuracy: 63.599 %
Learning rate:	0.3	Training Accuracy: 0.648 Validation Accuracy: 63.324 %
Learning rate:	0.4	Training Accuracy: 0.657 Validation Accuracy: 64.698 %
Learning rate:	0.5	Training Accuracy: 0.664 Validation Accuracy: 65.110 %
Learning rate:	0.6	Training Accuracy: 0.673 Validation Accuracy: 62.500 %
Learning rate:	0.7	Training Accuracy: 0.673 Validation Accuracy: 64.148 %
Learning rate:	0.8	Training Accuracy: 0.672 Validation Accuracy: 63.324 %
Learning rate:	0.9	Training Accuracy: 0.672 Validation Accuracy: 64.560 %
Learning rate:	1	Training Accuracy: 0.680 Validation Accuracy: 63.324 %

6) SGD Classifier

- a) Dataset
 - i) Used the first "waterQuality1" dataset
- b) Data Preprocessing
 - i) Removing duplicates
 - ii) Replace outliers by nulls
 - iii) Replace nulls by mean value
- c) Testing Accuracy
 - i) 62.8%
- d) Data Separation
 - i) 80% training 20% testing
- e) Result & Output
 - i) Screen Shot

Accuracy: 62.80487804878049

7) ID3 Classifier

- a) Dataset
 - i) Used the first "waterQuality1" dataset
- b) Data Preprocessing
 - i) Dropping NULL values.
 - ii) Normalization.
 - iii) Shuffling data.
 - iv) Random Sampling.
- c) Testing Accuracy
 - i) 61.36645962732919 %
- d) Data Separation
 - i) 60% training: 40% testing
- e) Result & Output
 - i) Screen Shot

Test Accuracy: 61.49068322981367 %

Mean Square Error: 0.38509316770186336

8) Logistic Classifier

- a) Dataset
 - i) Used the first "waterQuality1" dataset
- b) Data Preprocessing
 - i) Removing rows that has NULL values.
 - ii) Normalization.
 - iii) Shuffling data.
 - iv) Random Sampling
- c) Testing Accuracy
 - i) 60.12422360248447 %
- d) Data Separation
 - i) 60% training: 40% testing
- e) Result & Output
 - i) Screen Shot

Test Accuracy: 60.12422360248447 %							
Mean Square Error: 0.3987577639751553							
Barrata							
Report:							
	precision	recall	f1-score	support			
Θ	0.61	0.97	0.75	492			
1	0.28	0.02	0.03	313			
accuracy			0.60	805			
macro avg	0.44	0.49	0.39	805			
weighted avg	0.48	0.60	0.47	805			

9) SVM (ver1) Classifier

- a) Dataset
 - i) Used the first "waterQuality1" dataset
- b) Data Preprocessing
 - i) Scaling feature data using MINMAXScaler
 - ii) Handling NULL values with Median in the same column.
 - iii) Using a Simple Imputer.
 - iv) Shuffling data.
 - v) Random Sampling.
- c) Testing Accuracy
 - i) 61.35531135531136 %
- d) Data Separation
 - i) 50% training: 50% testing
- e) Result & Output
 - i) Screen Shot

Train Accuracy : 60.62271062271062 %

Test Accuracy : 61.35531135531136 %

Mean Square Error : 0.38644688644688646

ii) Plotting

10) SVM (ver2) Classifier

- a) Dataset
 - i) Used the first "waterQuality1" dataset
- b) Data Preprocessing
 - i) Remove null values
 - ii) Dropping for PH and Sulfate features
 - iii) Remove Duplicates
- c) Testing Accuracy
 - i) 65.1603498542274 %
- d) Data Separation
 - i) 80% training: 20% testing
- e) Result & Output
 - i) Screen Shot

Accuracy: 65.1603498542274

11) SVM (ver3) Classifier

- a) Dataset
 - i) Used the first "waterQuality1" dataset
- b) Data Preprocessing
 - i) Used Stratified-kFold, cross-validator
 - ii) Removing duplicates
 - iii) Replace NULLs by mean value
 - iv) Replace outliers by NULLs
- c) Testing Accuracy
 - i) max: 61.16207951070336 %
- d) Data Separation
 - i) 80% training 20% testing
- e) Result & Output
 - i) Screen Shot

```
Number of Possible Accuracies: 10

Maximum Accuracy: 61.16207951070336 %

Accuracy: 60.98903557842918 %

Minimum Accuracy: 60.85626911314985 %

Standard Deviation is: 0.0010339986558718815
```

12) SVM (new dataset) Classifier

- a) Dataset
 - i) Used the Second "waterQuality2" (new dataset)
- b) Data Preprocessing
 - i) Convert objects data types into float & integers
 - ii) Normalization
- c) Testing Accuracy
 - i) 90.0 %
- d) Data Separation
 - i) 80% training: 20% testing
- e) Result & Output
 - i) Screen Shot

Accuracy: 0.9

13) XG-Boost Classifier

- i) Data PreprocessingNormalization
- ii) Remove duplicates
- iii) Replace null values by mean
- b) Testing Accuracy
 - i) 65.88072122052705 %
- c) Data Separation
 - i) 80% training : 20% testing
- d) Result & Output
 - i) Screen Shot

Testing Accuracy: 65.88072122052705 %