Tablá pre kvantifikátory. Viackvantifikátorové tvrdenia

9. prednáška · Matematika (4): Logika pre informatikov

Ján Kľuka, Ján Mazák

Letný semester 2021/2022

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Katedra aplikovanej informatiky

Obsah 9. prednášky

Tablá s kvantifikátormi

Logické vlastnosti a vzťahy

v logike prvého rádu

Dokazovanie s kvantifikátormi

Substitúcia a substituovateľnosť

Formalizácia s viacerými kvantifikátormi

Rovnaký kvantifikátor

Alternácia kvantifikátorov

Postupná formalizácia a parafrázovanie

Závislosť od kontextu

Dodatky k formalizácii s jedným kvantifikátorom

Tablá s kvantifikátormi

Tablá s kvantifikátormi

v logike prvého rádu

Logické vlastnosti a vzťahy

Logické vlastnosti a vzťahy v logike prvého rádu

Minulý týždeň sme zadefinovali, kedy je uzavretá formula a teória (množina uzavretých formúl) pravdivá v danej štruktúre ($\mathcal{M} \models A, \mathcal{M} \models T$).

Použili sme pomocný induktívne definovaný vzťah štruktúra spĺňa formulu pri ohodnotení ($\mathcal{M} \models X[e]$). Je definovaný pre všetky formuly (otvorené aj uzavreté).

Pomocou štruktúr a pravdivosti môžeme pre relačnú logiku prvého rádu skonkretizovať logické vlastnosti a vzťahy, ktoré už poznáme z výrokovologickej časti logiky prvého rádu:

- splniteľnosť a nesplniteľnosť,
- "vždy pravdivé" formuly (vo výrokovom prípade sa volali tautológie),
- vyplývanie/logický dôsledok.

Splniteľnosť a nesplniteľnosť

Ako sme sa dohodli minule, predpokladáme, že sme si pevne zvolili ľubovoľný jazyk relačnej logiky prvého rádu \mathcal{L} . Všetky definície platia pre symboly, termy, atómy, formuly, teórie, atď. v tomto jazyku a štruktúry a ohodnotenia indivíduových premenných pre tento jazyk. Pretože \mathcal{L} je ľubovoľný, dajú sa definície aplikovať na všetky jazyky relačnej logiky prvého rádu.

Definícia 7.1

Nech X je uzavretá formula a T je teória.

Formula X je prvorádovo splniteľná vtt X je pravdivá v nejakej štruktúre (ekvivalentne: existuje štruktúra \mathcal{M} taká, že $\mathcal{M} \models X$).

Teória T je prvorádovo splniteľná vtt T má model (ekvivalentne: T je pravdivá v nejakej štruktúre; existuje štruktúra \mathcal{M} taká, že $\mathcal{M} \models T$).

Formula resp. teória je *prvorádovo nesplniteľná* vtt nie je prvorádovo splniteľná.

Splniteľnosť – príklad

Príklad 7.2

Teória $\{ \forall x (\texttt{\'clovek}(x) \lor \texttt{my\'s}(x)), \forall x (\texttt{\'clovek}(x) \to \neg \texttt{my\'s}(x)) \}$ je prvorádovo splniteľná.

Je to tak preto, že je <mark>pravdivá v štruktúre</mark> (teda jej modelom je)

$$\mathcal{M} = (D, i), \operatorname{kde} D = \{1, 2\}, i(\mathsf{\check{c}lovek}) = \{1\} \text{ a } i(\mathsf{my\check{s}}) = \{2\}.$$

Samozrejme je pravdivá v mnohých iných štruktúrach.

Platné formuly

Formulám, ktoré sú výrokovologicky pravdivé (pravdivé v každom výrokovologickom ohodnotení atómov), sme hovorili tautológie.

Pre formuly, ktoré sú prvorádovo pravdivé (pravdivé v každej štruktúre), sa používa iný pojem:

Definícia 7.3

Nech X je uzavretá formula.

Formula X je *platná* (skrátene $\models X$) vtt X je pravdivá v každej štruktúre (teda pre každú štruktúru \mathcal{M} máme $\mathcal{M} \models X$).

Samozrejme,

formula nie je platná vtt je nepravdivá v aspoň jednej štruktúre.

Platnosť sa ale nedá overiť vymenovaním všetkých štruktúr, lebo tých je nekonečne veľa.

Platné formuly - príklad

Príklad 7.4

 $\mathsf{Formula}\, X = (\forall x\, \mathsf{doma}(x) \to \mathsf{doma}(\mathsf{Jurko}))\, \mathsf{je}\,\, \mathsf{platn\'a}.$

Predpokladajme, že by X nebola platná, teda by bola nepravdivá v nejakej štruktúre $\mathcal{M}=(D,i)$. Potom by v \mathcal{M} bol pravdivý antecedent $\forall x \ \mathrm{doma}(x)$, ale nepravdivý konzekvent $\mathrm{doma}(\mathrm{Jurko})$, teda $i(\mathrm{Jurko}) \not\in i(\mathrm{doma})$.

Ak je ale pravdivé $\forall x \operatorname{doma}(x)$, tak pre každé $m \in D$ máme $m \in i(\operatorname{doma})$. Preto aj $i(\operatorname{Jurko}) \in i(\operatorname{doma})$, čo je spor.

Preto X je platná.

Prvorádové vyplývanie, prvorádový logický dôsledok

Definícia 7.5

Z teórie T prvorádovo logicky vyplýva uzavretá formula X (tiež X je prvorádovým logickým dôsledkom T, skrátene $T \vDash X$) vtt X je pravdivá v každom modeli T (ekvivalentne podrobnejšie: pre každú štruktúru $\mathcal M$ platí, že ak je v $\mathcal M$ pravdivá T, tak je v $\mathcal M$ pravdivá X).

Prvorádové vyplývanie – príklad

Prvorádové vyplývanie sa nedá overiť vymenovaním všetkých štruktúr, rovnako ako platnosť.

```
Príklad 7.6
```

Z teórie $T = \{ \forall x (\texttt{k\acute{r}mi}(\texttt{Jurko}, x) \rightarrow \texttt{škre\check{c}ok}(x)), \\ \neg \texttt{škre\check{c}ok}(\texttt{N\'ufko}) \}$ prvorádovo vyplýva $X = \neg \texttt{k\acute{r}mi}(\texttt{Jurko}, \texttt{N\'ufko}).$

Presvedčíme sa o tom podobnou úvahou ako v príklade platnej formuly.

Prvorádové nevyplývanie a príklad

Samozrejme, formula X nevyplýva z teórie T vtt X nie je pravdivá v aspoň jednom modeli T.

Tento model je kontrapríkladom vyplývania.

```
Príklad 7.7
```

```
Z teórie T = \{ \neg \exists x \, \text{väčš}\text{i}(\text{Chrumko}, x), \\ \neg \exists x \, \text{väčš}\text{i}(x, \, \text{Ňufko}), \\ \text{väčš}\text{i}(\text{Belka}, \text{Fúzik}) \} prvorádovo nevyplýva X = \text{väčš}\text{i}(\text{Ňufko}, \text{Chrumko}). Napríklad štruktúra \mathcal{M} = (D, i), kde D = \{1, 2, 3, 4\}, i(\text{Chrumko}) = 1, i(\text{Ňufko}) = 2, i(\text{Belka}) = 3, i(\text{Fúzik}) = 4, i(\text{väčš}\text{i}) = \{(3, 4), (4, 3)\}, je kontrapríkladom toho, že T \models X, pretože \mathcal{M} \models T, ale \mathcal{M} \not\models X.
```

Výrokovologické, prvorádové a logické vyplývanie

Podobne ako výrokovologické vyplývanie, aj prvorádové vyplývanie je špeciálny prípad logického vyplývania v prirodzenom jazyku.

Logické vyplývanie v prirodzenom jazyku je bohatšie ako prvorádové vyplývanie. Tvrdenie zodpovedajúce formule X logicky vyplýva z tvrdení v T — keď rozumieme vzťahu "väčší".

Logika prvého rádu ale "nevidí" význam predikátov. Pozerá sa na ne len pomocou formúl, v ktorých vystupujú.

Dohoda 7.8

Nateraz budeme stručne ale nepresne hovoriť "logický dôsledok" a "vyplývanie" namiesto "prvorádový logický dôsledok" a "prvorádové logické vyplývanie".

Viac o vzťahu výrokovologického, prvorádového a logického vyplývania neskôr.

Platnosť a vyplývanie

Medzi platnými formulami a prvorádovým vyplývaním je podobný vzťah ako medzi tautológiami a výrokovologickým vyplývaním.

Tyrdenie 7.9

Nech X je uzavretá formula.

Nasledujúce tvrdenia sú vzájomne ekvivalentné:

- X je platná ($\models X$);
- X vyplýva z prázdnej teórie ($\emptyset \vDash X$);
- X vyplýva z každej teórie (pre každú teóriu T máme $T \vDash X$).

Tvrdenie 7.10

Nech $T = \{A_1, \dots, A_n\}$ je konečná teória a nech X je uzavretá formula.

Nasledujúce tvrdenia sú vzájomne ekvivalentné:

- formula $(\bigwedge_{i=1}^n A_i \to X)$ je platná (t.j., $\models (\bigwedge_{i=1}^n A_i \to X)$);
- X vyplýva z teórie T (t.j., $T \models X$).

Tablá s kvantifikátormi

Dokazovanie s kvantifikátormi

Dôkazy a tablá pre logiku prvého rádu

Dôkazy s kvantifikovanými formulami sformalizujeme pomocou rozšírenia tabiel na logiku prvého rádu.

Tablá budú obsahovať označené formuly prvého rádu.

V tablách dovolíme aj otvorené formuly.

Tablové pravidlá budú zachovávať splniteľnosť tabla.

Označené formuly logiky prvého rádu

Podobne ako vo výrokovej logike môžeme zaviesť označovanie formúl logiky prvého rádu znamienkami **T** a **F**.

Definícia 7.11

Nech $\mathcal M$ je štruktúra, e je ohodnotenie indivíduových premenných a X je formula. Potom

- \mathcal{M} spĺňa označenú formulu $\mathbf{T}X$ pri ohodnotení e vtt \mathcal{M} spĺňa formulu X pri ohodnotení e, skrátene: $\mathcal{M} \models \mathbf{T}X[e]$ vtt $\mathcal{M} \models X[e]$;
- \mathcal{M} spĺňa označenú formulu $\mathbf{F}X$ pri ohodnotení e vtt \mathcal{M} nespĺňa formulu X pri ohodnotení e, skrátene: $\mathcal{M} \models \mathbf{F}X[e]$ vtt $\mathcal{M} \not\models X[e]$.

 \mathcal{M} spĺňa množinu označených formúl S^+ pri ohodnotení e vtt \mathcal{M} spĺňa každú označenú formulu A^+ z S^+ pri ohodnotení e, skrátene: $\mathcal{M} \models S^+[e]$ vtt pre každú $A^+ \in S^+$ máme $\mathcal{M} \models A^+[e]$.

Splniteľnosť označených formúl a ich množín

Definícia 7.12 (Splniteľnosť označených formúl a ich množín)

Ozn. formula X^+ je splniteľná vtt pre nejakú štruktúru $\mathcal M$ a nejaké ohodnotenie indivíduových premenných e máme $\mathcal M \models X^+[e]$.

Množina ozn. formúl S^+ je **splniteľná** vtt pre nejakú štruktúru $\mathcal M$ a nejaké ohodnotenie indivíduových premenných e máme $\mathcal M \models S^+[e]$.

Dôkaz s pozitívnou všeobecnou kvantifikáciou

Príklad 7.13

Dokážme neformálne, že z teórie

 $T = \{ \forall x (\texttt{k\'mi}(\texttt{Jurko}, x) \to \texttt{škre\'cok}(x)), \, \neg \texttt{škre\'cok}(\texttt{\~Nufko}) \} \, \text{prvor\'adovo} \\ \text{vypl\'yva} \, X = \neg \texttt{k\'mi}(\texttt{Jurko}, \texttt{\~Nufko}).$

Sporom: Nech sú formuly (1) $\forall x (\text{k\'mi}(\text{Jurko}, x) \rightarrow \text{škrečok}(x))$ a (2) $\neg \text{škrečok}(\text{Nufko})$ pravdivé v nejakej štruktúre. Predpokladajme, že

(3) ¬kŕmi(Jurko, Ňufko) by v nei bola nepravdivá.

Potom (4) kŕmi(Jurko, Ňufko) je pravdivá.

Navyše (5) škrečok(Ňufko) je nepravdivá.

Pretože podľa prvého predpokladu (1) je formula $(k\acute{r}mi(Jurko, x) \rightarrow škrečok(x))$ splnená pre každý objekt x,

musí byť splnená aj pre objekt označený konštantou Ňufko.

Teda (6) (kŕmi(Jurko, Ňufko) → škrečok(Ňufko)) je pravdivá.

Pretože už vieme (4), že ľavá strana je pravdivá, musí byť pravá strana

(7) škrečok(Ňufko) tiež pravdivá. To je ale v spore so skorším zistením (5), že táto formula je nepravdivá. □

Tablo pre dôkaz

Na väčšinu krokov v predchádzajúcom dôkaze stačia doterajšie tablové pravidlá.

```
    T∀x(kŕmi(Jurko, x) → škrečok(x))
    T¬škrečok(Ňufko)
    F¬kŕmi(Jurko, Ňufko)
    T kŕmi(Jurko, Ňufko)
    F škrečok(Ňufko)
    T kŕmi(Jurko, Ňufko) → škrečok(Ňufko)
    T škrečok(Ňufko)
    T škrečok(Ňufko)
    T škrečok(Ňufko)
```

Špeciálny prípad pravdivej všeobecne kvantifikovanej formuly

Doterajšie pravidlá ale nestačia na kľúčový krok, v ktorom sme z pravdivej všeobecne kvantifikovanej formuly (1)

$$\forall x (k \acute{r}mi(Jurko, x) \rightarrow \check{s}kre\check{c}ok(x))$$

odvodili jej špeciálny prípad (inštanciu) (6) pre konštantu Ňufko:

$$(k\acute{r}mi(Jurko, \check{N}ufko) \rightarrow \check{s}kre\check{c}ok(\check{N}ufko))$$

Táto formula, ale aj každá iná, ktorá vznikne analogicky dosadením hocijakého termu za premennú x, je logickým dôsledkom formuly (1).

Pravidlo pre pravdivé všeobecne kvantifikované formuly

Na tento krok potrebujeme nové pravidlo:

$$\frac{\mathsf{T}\,\forall x\,A}{\mathsf{T}\,A\{x\mapsto t\}}\,\,\gamma$$

pre každú formulu A, každú premennú x a každý $\operatorname{term} t$, ak spĺňajú dôležitú dodatočnú podmienku — viac o nej neskôr.

 $\{x\mapsto t\}$ označuje substitúciu — zobrazenie premenných na termy (v tomto prípade je toto zobrazenie iba jednoprvkové).

 $A\{x\mapsto t\}$ označuje aplikáciu substitúcie $\{x\mapsto t\}$ na formulu A – je to formula, ktorá vznikne z formuly A nahradením všetkých voľných výskytov premennej x termom t.

Špeciálny prípad nepravdivej existenčne kvantifikovanej formuly

Veľmi podobná situácia nastáva pre nepravdivú existenčne kvantifikovanú formulu, napr.

$$\mathbf{F} \exists x (\text{k\'rmi}(\text{Jurko}, x) \land \text{my} \S(x)).$$

Inštancia

$$\mathbf{F}(\texttt{k\acute{r}mi}(\texttt{Jurko},\texttt{Chrumko}) \land \texttt{my\check{s}}(\texttt{Chrumko}))$$

je logickým dôsledkom pôvodnej označenej formuly.

Rovnako je jej logickým dôsledkom každá iná inštancia a môžeme sformulovať pravidlo:

$$\frac{\mathbf{F} \exists x \, A}{\mathbf{F} \, A \{x \mapsto t\}} \, \gamma$$

pre každú formulu A, každú premennú x a každý $\operatorname{term} t$, ak (opäť) spĺňajú dôležitú dodatočnú podmienku.

Dôkaz s $\mathbf{T} \forall x A$ a $\mathbf{F} \exists x A$

Pomocou nových pravidiel môžeme dokázať napr.

```
 \{ \forall x (\texttt{k\'rmi}(\texttt{Jurko}, x) \to \texttt{škre\'cok}(x)), \, \forall x (\texttt{my\'s}(x) \to \neg \texttt{škre\'cok}(x)), \, \\ \texttt{my\'s}(\texttt{N\'ufko}) \} \vDash \exists x (\texttt{my\'s}(x) \land \neg \texttt{k\'rmi}(\texttt{Jurko}, x)) :
```

```
1. T \forall x (k \acute{r}mi(Jurko, x) \rightarrow \check{s}kre\check{c}ok(x))
                                                                            S^+
                                                                            S^+
 2. T \forall x (my \check{s}(x) \rightarrow \neg \check{s}kre\check{c}ok(x))
                                                                            S^{+}
 3. Tmvš(Ňufko)
                                                                            S^+
 4. \mathbf{F} \exists x (mv \check{s}(x) \land \neg k \acute{r}mi(Jurko, x))
  5. T(mvš(Nufko)) \rightarrow \neg škrečok(Nufko)
                                                                           \nu 2\{x \mapsto \text{Nufko}\}
 6. T¬škrečok(Ňufko)
                                                                            MP5, 3
 7. F škrečok(Ňufko)
                                                                            \alpha6
 8. T(k\acute{r}mi(Jurko, \check{N}ufko) \rightarrow \check{s}kre\check{c}ok(\check{N}ufko)) \gamma 1\{x \mapsto \check{N}ufko\}
 9. F kŕmi(Jurko, Ňufko)
                                                                            MT8.7
10. F(mvš(Ňufko) ∧ ¬kŕmi(Jurko, Ňufko))
                                                                           \gamma 4\{x \mapsto \text{Nufko}\}
```

Dôkaz s pozitívnou existenčnou kvantifikáciou

Príklad 7.14

Dokážme neformálne, že z teórie

 $T = \{ \forall x (\text{k\'rmi}(\text{Jurko}, x) \rightarrow \text{škre\'cok}(x)), \exists x \neg \text{škre\'cok}(x) \}$ prvorádovo vyplýva $X = \exists x \neg \text{k\'rmi}(\text{Jurko}, x).$

Sporom: Nech sú formuly (1) $\forall x (\text{k\'mi}(\text{Jurko}, x) \rightarrow \text{škre\'cok}(x))$ a (2) $\exists x \neg \text{škre\'cok}(x)$ pravdivé v nejakej štruktúre. Predpokladajme, že (3) $\exists x \neg \text{k\'mi}(\text{Jurko}, x)$ by v nej bola nepravdivá.

Podľa druhého predpokladu existuje objekt x, pre ktorý je \neg škrečok(x) splnená. Zoberme si teda takýto objekt a označme ho napríklad premennou z. Potom je (4) \neg škrečok(z) je splnená, a teda (5) škrečok(z) je nesplnená. Podľa prvého predpokladu (1) je formula (6) (kŕmi(Jurko, z) \rightarrow škrečok(z)) splnená. Pretože už vieme (5), že pravá strana je splnená, musí byť aj ľavá strana (7) kŕmi(Jurko, z) nesplnená. Podľa predpokladu dôkazu sporom (3) je však aj jeho inštancia (8) \neg kŕmi(Jurko, z) nesplnená, teda (9) je splnená kŕmi(Jurko, z), čo je v spore so skorším zistením (7), že táto formula je nesplnená.

Pozitívna existenčná kvantifikácia a jej vlastná premenná

Kľúčovým krokom v predchádzajúcom dôkaze je označenie objektu (svedka), ktorý existuje podľa pozitívnej existenčne kvantifikovanej formuly

$$T \exists x \neg \check{s}kre\check{c}ok(x),$$

dočasným menom - voľnou premennou z a odvodenie:

T
$$\neg$$
škrečok(z).

🛕 Táto premenná sa predtým na vetve nesmie vyskytovať voľná. 🛕

Musí to byť nová, vlastná premenná pre formulu $\mathbf{T} \exists x \neg \mathtt{škrečok}(x)$.

Vo všeobecnosti:

$$\frac{\mathsf{T}\,\exists x\,A}{\mathsf{T}\,A\{x\mapsto y\}}\,\,\delta$$

pre každú formulu A, každú premennú x a každú novú premennú y, ak (opäť) spĺňajú dôležitú dodatočnú podmienku.

Prečo vlastná premenná?

Prečo potrebuje každá pozitívna existenčná formula vlastnú premennú?

Pravidlá musia zachovávať splniteľnosť vetiev v table.

Konštanty a iné voľné premenné v table môžu označovať objekty s konfliktnými vlastnosťami.

Ich dosadením za existenčne kvantifikovanú premennú by sme dospieť k falošnému sporu.

Prečo vlastná premenná? – príklad

```
Vetva
  n+1. Tškrečok(x)
  n+2. \mathbf{T} \exists x \neg \hat{\mathbf{s}} kre \hat{\mathbf{c}} ok(x)
ie splniteľná (napr. je splnená štruktúrou \mathcal{M} = (\{1, 2\}, i), i(\mathtt{škrečok}) = \{1\} pri
ohodnotení e = \{x \mapsto 1, ...\}.
Vetva
                                                                     Chybná vetva
 n+1. Tškrečok(x)
                                                                      n+1. Tškrečok(x)
 n+2. T \exists x \neg škrečok(x)
                                                                      n+2. \mathbf{T} \exists x \neg \hat{\mathbf{s}} k \operatorname{re} \hat{\mathbf{c}} ok(x)
 n+3. \mathbf{T} \neg \mathbf{\tilde{s}kre\check{c}ok}(z) \bigcirc \delta 2\{x \mapsto z\}
                                                                      n+3. \mathbf{T} \neg \mathsf{skrečok}(\mathbf{x}) \otimes {}_{\mathsf{n}} \delta^{\mathsf{n}} 2\{\mathbf{x} \mapsto \mathbf{x}\}
ie splniteľná (napr. je splnená
                                                                     by bola nesplniteľná.
štruktúrou \mathcal{M} = (\{1, 2\}, i),
i(\check{s}kre\check{c}ok) = \{1\} pri ohodnotení
e = \{ x \mapsto 1, z \mapsto 2, ... \} \}
```

Negatívna všeobecná kvantifikácia a jej vlastná premenná

Negatívna všeobecne kvantifikovaná formula

$$\mathbf{F} \forall x \, \text{škrečok}(x),$$

znamená, že pre niektorý objekt x (kontrapríklad) je jej priama podformula škrečok(x) nepravdivá.

Tento objekt teda môžeme opäť označiť novou vlastnou premennou formuly $\mathbf{F} \forall x \, \text{skrečok}(x)$, napríklad u, a môžeme odvodiť:

$$\mathbf{F}$$
 škrečok (u) .

Táto premenná sa predtým na vetve nesmie vyskytovať voľná.

Vo všeobecnosti:

$$\frac{\mathbf{F}\,\forall x\,A}{\mathbf{F}\,A\{x\mapsto y\}}\,\,\delta$$

pre každú formulu A, každú premennú x a každú novú premennú y, ak (opäť) spĺňajú dôležitú dodatočnú podmienku.

Dôkaz s pravidlami pre kvantifikátory

```
\{\exists x \, \forall v (\text{k\'rmi}(x, v) \rightarrow \text{škrečok}(v)).
\forall x (mv\check{s}(x) \rightarrow \neg \check{s}kre\check{c}ok(x)) \} \models \forall x (my\check{s}(x) \rightarrow \exists y \neg k\acute{r}mi(y,x)):
                                          1. T \exists x \forall y (k \acute{r} mi(x, y) \rightarrow \check{s} kre \check{c} o k(y)) S^+
                                         2. \mathbf{T} \forall x (mv \check{s}(x) \rightarrow \neg \check{s}kre\check{c}ok(x))
                                                                                                                                     S^+
                                          3. \mathbf{F} \forall x (\mathsf{mv} \check{\mathsf{s}}(x) \to \exists v \neg k \acute{\mathsf{r}} \mathsf{mi}(v, x))
                                                                                                                                     S^+
                                         4. \mathbf{F}(\text{my}\check{\mathbf{s}}(u) \to \exists v \, \neg k \acute{\mathbf{r}} mi(v, u))
                                                                                                                              \delta 3\{x \mapsto u\}
                                          5. Tmyš(u)
                                                                                                                                      \alpha 4
                                         6. \mathbf{F} \exists \mathbf{v} \neg \mathbf{k} \hat{\mathbf{r}} \mathbf{m} \mathbf{i} (\mathbf{v}, \mathbf{u})
                                                                                                                                      \alpha 4
                                         7. \mathbf{T} \forall v (\text{krmi}(z, v) \rightarrow \text{škrečok}(v)) \delta 1\{x \mapsto z\}
                                         8. T(mv\check{s}(u) \rightarrow \neg \check{s}kre\check{c}ok(u))
                                                                                                                                   \gamma 2\{x \mapsto u\}
                                         9. \mathbf{T} \neg \mathbf{\tilde{s}kre} \mathbf{\tilde{c}ok}(u)
                                                                                                                                      MP8.5
                                       10. \mathbf{F} škrečok(u)
                                                                                                                                      \alpha 9
                                       11. T(k\acute{r}mi(z, u) \rightarrow \check{s}kre\check{c}ok(u))
                                                                                                                                     \nu7{\mathbf{v} \mapsto \mathbf{u}}
                                       12. \mathbf{F} \mathbf{k} \mathbf{r} \mathbf{m} \mathbf{i} (z, u)
                                                                                                                                      MT11.10
                                       13. \mathbf{F} \neg \mathbf{k} \hat{\mathbf{r}} \mathbf{m} \mathbf{i}(z, u)
                                                                                                                                     \gamma 6\{v \mapsto z\}
                                       14. T \text{kŕmi}(z, u)
                                                                                                                                      \alpha 13
                                                 * 12.14
```

Tablové pravidlá pre logiku prvého rádu

Definícia 7.15

Pravidlami tablového kalkulu pre logiku prvého rádu sú pravidlá typu α a β pre výrokovú logiku a pravidlá:

$$\gamma \qquad \frac{\mathbf{T} \forall x \, A}{\mathbf{T} \, A \{x \mapsto t\}} \qquad \frac{\mathbf{F} \, \exists x \, A}{\mathbf{F} \, A \{x \mapsto t\}} \qquad \text{jednotne: } \frac{\gamma(x)}{\gamma_1(t)}$$

$$\delta \qquad \frac{\mathbf{F} \, \forall x \, A}{\mathbf{F} \, A \{x \mapsto y\}} \qquad \frac{\mathbf{T} \, \exists x \, A}{\mathbf{T} \, A \{x \mapsto y\}} \qquad \text{jednotne: } \frac{\delta(x)}{\delta_1(y)}$$

kde A je formula, x je premenná, t je term **substituovateľný** za x v A a y je premenná **substituovateľná** za x v A.

Pri operácii rozšírenia vetvy tabla π o dôsledok niektorého z pravidiel typu δ navyše musí platiť, že premenná y nemá voľný výskyt v žiadnej formule na vetve π .

Korektnosť pravidiel γ a δ

Tvrdenie 7.16 (Korektnosť pravidiel γ a δ)

Nech S^+ je množina označených formúl v jazyku \mathcal{L} , nech x a y sú premenné, nech t je term.

- Ak $\gamma(x) \in S^+$ a t je substituovateľný za x v $\gamma_1(x)$, tak S^+ je splniteľná vtt $S^+ \cup \{\gamma_1(t)\}$ je splniteľná.
- Ak $\delta(x) \in S^+$, y je substituovateľná za x v $\delta_1(x)$ a y sa nemá voľný výskyt v S^+ , tak S^+ je splniteľná vtt $S^+ \cup \{\delta_1(y)\}$ je splniteľná.

Princíp tablových dôkazov ostáva nezmenený:

- Ak chceme dokázať, že formula X je platná, hľadáme uzavreté tablo pre $S^+=\{\mathbf{F}X\}$. Predpokladáme teda, že v nejakej štruktúre a nejakom ohodnotení je X nesplnená a ukážeme spor.
- Podobne pre prvorádové vyplývanie T ⊨ X predpokladáme, že v nejakej štruktúre a nejakom ohodnotení sú splnené všetky formuly z T (T A pre A ∈ T), ale X je nesplnená (F X) a ukážeme spor, teda hľadáme uzavreté tablo pre S⁺ = {T A | A ∈ T} ∪ {F X}.

Častá chyba pri pravidlách γ a δ

Vetva:

- 1. $\mathbf{F} \operatorname{mys}(u)$
- 2. $\mathbf{T} \operatorname{pes}(u)$
- 3. $\mathbf{T}(\forall x \operatorname{pes}(x) \to \forall y \operatorname{mys}(y))$

je splniteľná (napr. je splnená štruktúrou $\mathcal{M} = (\{1,2\},i)$, kde

$$i(mvš) = \{1\}, i(pes) = \{2\}$$
 pri ohodnotení $e = \{u \mapsto 2, ...\}$.

V table:

- 1. $\mathbf{F} \operatorname{mv} \check{\mathbf{s}}(u)$
- 2. **T** pes(u)
- 3. $\mathbf{T}(\forall x \operatorname{pes}(x) \to \forall y \operatorname{my}\check{\mathbf{s}}(y))$
- 4. $\mathbf{F} \forall x \operatorname{pes}(x) \otimes \beta 3$ 5. $\mathbf{T} \forall y \operatorname{mys}(y) \otimes \beta 3$ 6. $\mathbf{F} \operatorname{pes}(v) \otimes \delta 4$ 7. $\mathbf{T} \operatorname{mys}(u) \otimes \gamma 3$ *7. 1
- je ľavá vetva <mark>splniteľná</mark> (napr. je splnená

tou istou štruktúrou \mathcal{M} ako pôvodná vetva pri ohodnotení $e = \{u \mapsto 2, v \mapsto 1 \dots \}$).

Chybná vetva:

- $1. \ \mathbf{F} \ \mathtt{myš}(u)$
- 2. $\mathbf{T} \operatorname{pes}(u)$
- 3. $T(\forall x \operatorname{pes}(x) \to \forall y \operatorname{mys}(y))$
- 4. $T(pes(u) \rightarrow \forall y my \check{s}(y)) \otimes _{n} \gamma 3$ "
- 5. $\mathbf{T} \forall y \operatorname{mys}(y)$ MP4, 2

 ν 5

6. **T**myš(*u*)

je nesplniteľná.

Tablá s kvantifikátormi

Substitúcia a substituovateľnosť

Substitúcia

Definícia 7.17 (Substitúcia)

Substitúciou (v jazyku $\mathcal L$) nazývame každé zobrazenie $\sigma:V\to \mathcal T_{\mathcal L}$ z nejakej množiny indivíduových premenných $V\subseteq \mathcal V_{\mathcal L}$ do termov jazyka $\mathcal L$.

Príklad 7.18

$$\begin{split} & \text{Ked'} \ \mathcal{V}_{\mathcal{L}} = \{u, v, \dots, z, u_1, \dots\}, \ \mathcal{C}_{\mathcal{L}} = \{\texttt{Klárka}, \texttt{Jurko}\}, \\ & \text{napríklad} \ \sigma_1 = \{x \mapsto \texttt{Klárka}, y \mapsto u, z \mapsto x\} \text{ je substitúcia}. \end{split}$$

Problém so substitúciou

Vetva

```
n+1. \mathbf{T} \forall x \neg pozná(x, x)
 n+2. \mathbf{T} \neg pozná(y, y) \gamma 1\{x \mapsto y\}
 n+3. \mathbf{T} \forall x \exists y \operatorname{pozná}(x, y)
je splniteľná (napr. je splnená štruktúrou \mathcal{M} = (\{1,2\},i), i(pozná) = \{(1,2),(2,1)\}
pri ohodnotení e = \{y \mapsto 1, ...\}).
Ale vetva
                                                                Oprava: Vetva
n+1. \mathbf{T} \forall x \neg pozná(x, x)
                                                                 n+1. \mathbf{T} \forall x \neg pozná(x, x)
                                                                 n+2. \mathbf{T} \neg pozná(z, z) \gamma 1\{x \mapsto z\}
n+2. \mathbf{T} \neg pozná(v, v) \gamma 1\{x \mapsto v\}
n+3. \mathbf{T} \forall x \exists y \operatorname{pozná}(x, y)
                                                                 n+3. \mathbf{T} \forall x \exists y \operatorname{pozná}(x, y)
n+4. \mathbf{T} \exists y \operatorname{pozn} \hat{a}(z, y) \bigcirc \gamma 3\{x \mapsto z\}
ie nesplniteľná.
                                                                ie splniteľná.
```

Definícia 7.19 (Substituovateľnosť, aplikovateľnosť substitúcie)

Nech A postupnosť symbolov (term alebo formula), nech $t, t_1, ..., t_n$ sú termy a $x, x_1, ..., x_n$ sú premenné.

Term t je substituovateľný za premennú $x \vee A$ vtt nie je pravda, že pre niektorú premennú y vyskytujúcu sa v t platí,

pre niektorú premennú y vyskytujúcu sa v t platí, že v nejakej oblasti platnosti kvantifikátora $\exists y$ alebo $\forall y$ vo formule A sa premenná x vyskytuje voľná.

Substitúcia $\{x_1 \mapsto t_1, ..., x_n \mapsto t_n\}$ je *aplikovateľná* na A vtt term t_i je substituovateľný za x_i v A pre každé $i \in \{1, ..., n\}$.

Príklad 7.20

 $\frac{1}{1000} \frac{1}{1000} = \frac{1}{1000} \frac{1}{10$

- Nech $A = \exists \underline{y} \text{ pozná}(\underline{x}, \underline{y}).$ Substitúcia $\{\underline{x} \mapsto \underline{y} \mid \underline{z} \mapsto \exists$
- Substitúcia $\{x \mapsto y, z \mapsto Jurko\}$ nie je aplikovateľná na A, lebo term y nie je substituovateľný za premennú $x \lor A$.

• Substitúcia $\{x \mapsto z, y \mapsto Jurko, z \mapsto y\}$ je aplikovateľná na A.

Substitúcia do postupnosti symbolov

Definícia 7.21 (Substitúcia do postupnosti symbolov)

Nech A je postupnosť symbolov, nech $\sigma = \{x_1 \mapsto t_1, ..., x_n \mapsto t_n\}$ je substitúcia.

Ak σ je aplikovateľná na A, tak $A\sigma$ je postupnosť symbolov, ktorá vznikne súčasným nahradením každého voľného výskytu premennej x_i v A termom t_i .

Príklad 7.22

Nech
$$A = \exists \underline{y} \text{ pozná}(\underline{x}, \underline{y}) \text{ a } \sigma = \{\underline{x} \mapsto z, \underline{y} \mapsto u, z \mapsto \underline{y}\}.$$

Substitúcia σ je aplikovateľná na A. V A je voľná iba premenná x, dosadíme za ňu term z, ktorý neobsahuje viazanú premennú y. Všetky výskyty y sú viazané, za ne sa nedosádza.

Premenná z sa v A nevyskytuje, nie je za čo dosadzovať.

$$A\sigma = \exists \underline{y} \operatorname{pozná}(z, \underline{y})$$

Substitúcia do termov a formúl rekurzívne

Tvrdenie 7.23

Pre každú substitúciu $\sigma = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$, každú premennú $y \in \mathcal{V}_{\mathcal{L}} \setminus \{x_1, \dots, x_n\}$, každý symbol konštanty $a \in \mathcal{C}_{\mathcal{L}}$, každý predikátový symbol $P^k \in \mathcal{P}_{\mathcal{L}}$,

každé $i \in \{1, ..., n\}$, každú spojku $\diamond \in \{\land, \lor, \rightarrow\}$, všetky formuly A a B a všetky termy $s_1, s_2, ..., s_k \in \mathcal{F}_{\mathcal{L}}$ platí:

$$x_{i}\sigma = t_{i} \qquad y\sigma = y \qquad a\sigma = a$$

$$(s_{1} \doteq s_{2})\sigma = (s_{1}\sigma \doteq s_{2}\sigma) \qquad (P(s_{1}, ..., s_{k}))\sigma = P(s_{1}\sigma, ..., s_{k}\sigma)$$

$$(\neg A)\sigma = \neg (A\sigma) \qquad ((A \diamond B))\sigma = (A\sigma \diamond B\sigma)$$

$$(\forall y A)\sigma = \forall y (A\sigma) \qquad (\exists y A)\sigma = \exists y (A\sigma)$$

$$(\forall x_{i} A)\sigma = \forall x_{i} (A\sigma_{i}) \qquad (\exists x_{i} A)\sigma = \exists x_{i} (A\sigma_{i}).$$

kde $\sigma_i=\sigma\setminus\{x_i\mapsto t_i\}$, za predpokladu, že σ je v danom prípade aplikovateľná.

Formalizácia s viacerými

kvantifikátormi

Viacnásobné použitie rovnakého kvantifikátora

Použitím jedného kvantifikátora vo formule sme minulý týždeň dokázali vyjadriť pomerne komplikované tvrdenia.

Ale už v príklade tabiel sme videli, že niektoré tvrdenia zodpovedajú viacerým kvantifikátorom vo formule.

Rozoberme si niekoľko typických prípadov.

Formalizácia s viacerými

kvantifikátormi

Rovnaký kvantifikátor

Viacnásobné použitie rovnakého kvantifikátora

Najjednoduchšie sú opakované použitia rovnakého kvantifikátora na začiatku formuly:

- $\exists x \, \exists y ((\check{\mathsf{clovek}}(x) \land \check{\mathsf{skrečok}}(y)) \land \check{\mathsf{krmi}}(x,y))$
- $\forall x \, \forall y ((\check{\mathsf{clovek}}(x) \land \check{\mathsf{skrečok}}(y)) \to \check{\mathsf{krmi}}(x,y))$

Význam je ľahké uhádnuť, aj keď je možno zrejmejší v alternatívnej forme, ktorá priamo zodpovedá aristotelovským formám obmedzenej kvantifikácie:

- ∃x(človek(x) ∧ ∃y(škrečok(y) ∧ kŕmi(x, y)))
 Nejaký človek (má vlastnosť, že) kŕmi nejakého škrečka.
- $\forall x (\check{\operatorname{clovek}}(x) \to \forall y (\check{\operatorname{skrečok}}(y) \to k \acute{\operatorname{mi}}(x,y))$ Každý človek kŕmi každého škrečka.

Prenexové vs. hlbšie vnorené formy

Dve uvedené formy každého typu tvrdenia sú vzájomne ekvivalentné, majú rovnaký význam.

Prvé formy sú prenexové — kvantifikátory sú na začiatku formuly.

Nie je vždy dobré snažiť sa o prenexovú formu, v zložitejších prípadoch môže byť zavádzajúca.

Rôznosť objektov označených premennými – všeobecný prípad

Tento typ tvrdení je väčšinou bezproblémový až na jeden prípad:

$$\forall x \, \forall y ((\texttt{zvieratko}(x) \land \texttt{zvieratko}(y)) \rightarrow \\ (\texttt{väčši}(x,y) \lor \texttt{menši}(x,y)))$$

nezodpovedá tvrdeniu: Pre každé zvieratká x a y platí, že x je väčšie od y alebo x je menšie od y.

Slovenské *každé zvieratká x a y* znamená, že *x* a *y* označujú naozaj viacero zvieratiek. Ale v logike prvého rádu je každá premenná kvantifikovaná samostatne a rôzne premenné môžu označovať ten istý objekt. Rôznosť musíme zapísať explicitne:

$$\forall x \, \forall y ((\texttt{zvieratko}(x) \land \texttt{zvieratko}(y) \land x \neq y) \rightarrow \\ (\texttt{väčši}(x,y) \lor \texttt{menši}(x,y)))$$

Pre ľubovoľné termy s, t je $s \neq t$ je skratka za $\neg s \doteq t$.

Rôznosť objektov označených premennými – existenčný prípad

Podobne formula

$$\exists x \,\exists y (zvieratko(x) \land zvieratko(y))$$

neznamená, že existujú aspoň dve zvieratká (je ekvivalentná s $\exists x \text{ zvieratko}(x)$).

Existenciu aspoň dvoch zvieratiek zabezpečí formula:

$$\exists x \, \exists y (z \text{vieratko}(x) \land z \text{vieratko}(y) \land x \neq y)$$

Podľa dohody zo 4. prednášky do seba vnorené vľavo uzátvorkované konjunkcie skrátene zapisujeme bez vnútorných zátvoriek.

Teda ($zvieratko(x) \land zvieratko(y) \land x \neq y$)

je skrátený zápis (($zvieratko(x) \land zvieratko(y)$) $\land x \neq y$).

Podobne skracujeme do seba vnorené disjunkcie.

Formalizácia s viacerými

kvantifikátormi

Alternácia kvantifikátorov

Existencia pre všetky

Časté formuly, v ktorých sa vyskytujú oba kvantifikátory, sú ako

$$\forall x (z vieratko(x) \rightarrow \exists y (\check{c}lovek(y) \land k\acute{r}mi(y, x)))$$

Hovorí, že každé zvieratko má vlastnosť, že nejaký človek ho kŕmi, teda každé zvieratko niekto kŕmi.

Ekvivalentne sa to dá vyjadriť aj (v menej vernej) prenexovej forme:

Poradie kvantifikátorov

Pri rovnakých kvantifikátoroch v prenexovej forme na ich poradí nezáleží:

- $\forall x \forall y \text{ má_rád}(x, y)$ je ekvivalentné $\forall y \forall x \text{ má_rád}(x, y)$;
- $\exists x \exists y \text{ má_rád}(x, y)$ je ekvivalentné $\exists y \exists x \text{ má_rád}(x, y)$.

Pri rôznych kvantifikátoroch zmena poradia vážne mení význam:

- ∀x∃y má_rád(x, y) Každý má rád niekoho.
- $\exists x \, \forall y \, \text{má_rád}(x, y) \text{Niekto má rád všetkých}$

Poradie kvantifikovaných premenných

Záleží aj na tom, ako sa kvantifikované premenné použijú vo formule, ktorá je kvantifikovaná.

Porovnajme:

- $\forall x \exists y \text{ má_rád}(\underline{x}, y) Každý má rád niekoho.$
- $\forall x \exists y \text{ má_rád}(y, \underline{x}) \underline{\textit{Každého}} \text{ má niekto rád.}$

а

- $\exists \underline{x} \, \forall y \, \text{má_rád}(\underline{x}, y) \underline{\textit{Niekto}} \, \textit{má rád všetkých}.$
- $\exists \underline{x} \, \forall y \, \text{má_rád}(y, \underline{x}) \underline{\textit{Niekoho}} \, \textit{majú radi všetci.}$

O neekvivalentnosti týchto formúl sa dá ľahko presvedčiť pomocou štruktúr.

Unikátna existencia

Kombináciou oboch kvantifikátorov s rovnosťou môžeme vyjadriť existenciu práve jedného (unikátneho) objektu s danou vlastnosťou:

$$\exists x (\check{s}kre\check{c}ok(x) \land \forall y (\check{s}kre\check{c}ok(y) \rightarrow x \doteq y))$$

Neformálne: Nejaký škrečok je jediným škrečkom.

Podobne sa dá vyjadriť existencia práve k objektov pre každé prirodzené číslo k.

kvantifikátormi

Formalizácia s viacerými

Postupná formalizácia a parafrázovanie

Postupná formalizácia

Na formalizáciu zložitých tvrdení je najlepšie ísť postupne.

Sformalizujme: Každého škrečka kŕmi nejaké dieťa.

 Rozpoznáme, že tvrdenie má tvar Všetky P sú Q, pričom P je atomická vlastnosť. Môžeme ho teda čiastočne sformalizovať na:

$$\forall x (\check{s}kre\check{c}ok(x) \rightarrow nejaké dieťa kŕmi x)$$

2. Sformalizujeme nejaké dieťa kŕmi x: Má formu: Nejaké P je Q:

$$\exists y (\mathtt{dieťa}(y) \land \mathtt{k\acute{r}mi}(y,x))$$

3. Dosadíme:

$$\forall x (\check{s}kre\check{c}ok(x) \rightarrow \exists y (die \check{t}a(y) \land k\acute{r}mi(y, x)))$$

Systematickým prístupom sa dajú správne sformalizovať aj veľmi zložité tvrdenia.

Viacnásobná negácia — nesprávne možnosti

Opatrnosť je potrebná pri formalizácii tvrdení s viacnásobnou negáciou, napríklad: *Nijaké dieťa nechová žiadnu vretenicu*.

Tu sa ľahko stane, že pri neopatrnej postupnej formalizácii skončíme s chybnou formulou:

- Nie je pravda, že nejaké dieťa nemá vlastnosť, že chová nejakú vretenicu, teda Každé dieťa má vlastnosť, že chová nejakú vretenicu, teda Každé dieťa chová nejakú vretenicu.
- ¬∃x(dieťa(x) ∧ ¬∃y(vretenicu(y) ∧ ¬chová(x, y))) −
 Nie je pravda, že nejaké dieťa nemá vlastnosť,
 že nechová nejakú vretenicu, teda
 Každé dieťa nechová nejakú vretenicu (ale môže chovať iné).

Viacnásobná negácia — parafráza a správna formalizácia

Na správne sformalizovanie *Žiadne dieťa nechová žiadnu vretenicu.* je lepšie toto tvrdenie parafrázovať:

- Nie je pravda, že nejaké dieťa chová nejakú vretenicu.
- $\bigcirc \neg \exists x (\text{die\'a}(x) \land \exists y (\text{vretenicu}(y) \land \text{chov\'a}(x,y)))$
 - Pre každé dieťa je pravda, že nechová žiadnu vretenicu.
- $\forall x(\text{dieťa}(x) \rightarrow \neg \exists y(\text{vretenicu}(y) \land \text{chová}(x,y)))$
 - Pre každé dieťa x je pravda, že pre každú vretenicu y je pravda, že x nechová y.
- $\forall x(\text{die\'ta}(x) \rightarrow \forall y(\text{vretenicu}(y) \rightarrow \neg \text{chov\'a}(x,y)))$

Odkaz z konzekventu – o sedliakoch a osloch

Už minule sme rozoberali zdanlivo existenčné tvrdenia typu:

Ak nejaký prvák navštevuje LPI, tak (on) je bystrý.

Postupnou formalizáciou by sme mohli dospieť k nesprávnej otvorenej formule:

- $(\exists x (prvák(x) \land navštevuje(x, LPI)) \rightarrow bystrý(x)).$
- $\forall x ((prvák(x) \land navštevuje(x, LPI)) \rightarrow bystrý(x)).$

Vyskytujú sa aj v zložitejších kombináciách. Úderným príkladom je:

Každý sedliak, ktorý vlastní nejakého osla, <u>ho</u> bije.

Na existenčné tvrdenie *vlastní nejakého osla* v antecedente odkazuje zámeno *ho* v konzekvente.

Odkaz z konzekventu – nesprávne možnosti

Postupnou formalizáciou by sme mohli dostať nesprávnu formulu:

$$\forall x ((sedliak(x) \land \exists y(osol(y) \land vlastni(x, y))) \rightarrow bije(x, y))$$

Keby sme sa ju pokúsili "zachránit" tým, že zaviažeme premennú y, mohlo by to dopadnúť rôzne, ale stále neprávne:

- ∀x(sedliak(x) ∧ ∃y(osol(y) ∧ vlastní(x, y) ∧ bije(x, y))) Všetko je sedliak, ktorý vlastní osla, ktorého bije.
- $\forall x (\operatorname{sedliak}(x) \rightarrow \exists y (\operatorname{osol}(y) \land \operatorname{vlastni}(x, y) \land \operatorname{bije}(x, y)))$ Každý sedliak určite vlastní osla, ktorého bije.

Existenčný kvantifikátor teda nefunguje.

Odkaz z konzekventu — parafráza a správna formalizácia

Na správne sformalizovanie je tvrdenie Každý sedliak, ktorý vlastní nejakého osla, ho bije, potrebné parafrázovať na

- Každý sedliak bije každého osla, ktorého vlastní.
- Pre každého osla je pravda, že každý sedliak, ktorý ho vlastní, ho bije.

Z parafráz už ľahko dostaneme správne formalizácie:

- $\forall x \big(sedliak(x) \rightarrow \\ \forall y \big((osol(y) \land vlastni(x, y)) \rightarrow bije(x, y) \big) \big)$
- $\forall x (\operatorname{osol}(x) \to \\ \forall y ((\operatorname{sedliak}(y) \land \operatorname{vlastni}(y, x)) \to \operatorname{bije}(y, x)))$

Formalizácia s viacerými

kvantifikátormi

Závislosť od kontextu

Nejednoznačné tvrdenia

Každú minútu v New Yorku prepadnú jedného človeka.

Dnes nám poskytne rozhovor.

— SNL

Vtip spočíva v potenciálnej nejednoznačnosti prvej vety. Pravdepodobne ste ju pochopili ("slabé" čítanie)

$$\forall x (\min(x) \rightarrow \exists y (\check{c}lovek(y) \land prepadnut \check{y}Po\check{c}as(x,y)))$$

Ale druhá veta vyzdvihla menej pravdepodobný alternatívny význam ("silné" čítanie):

$$\exists y \big(\check{\mathsf{clovek}}(y) \land \forall x \big(\mathsf{min\acute{u}ta}(x) \to \mathsf{prepadnut\acute{y}Po\check{\mathsf{cas}}}(x,y) \big) \big)$$

Závisí od situácie, ktoré z čítaní je správne.

Formalizácia je teda kontextovo závislá.

Formalizácia s viacerými

Dodatky k formalizácii s jedným

kvantifikátormi

kvantifikátorom

Enumerácia — vymenovanie objektov s vlastnosťou

Niekedy potrebujeme vymenovať objekty s nejakou vlastnosťou:

Na bunke č. 14 bývajú Aďa, Biba, Ciri, Dada.
 (býva_v(Aďa, bunka14) ∧ ··· ∧ býva_v(Dada, bunka14))
 Ekvivalentne:
 Každá z Aďa. Biba. Ciri. Dada býva v bunke č. 14.

 $\forall x ((x \doteq Ad'a \lor \cdots \lor x \doteq Dada) \rightarrow by \forall x \lor x (x, bunka 14))$

Na bunke č. 14 bývajú iba Aďa, Biba, Ciri, Dada.
 Každý, kto býva v bunke č. 14, je jedna z Aďa, Biba, Ciri, Dada.
 ∀x(býva_v(x, bunka14) → (x = Aďa ∨ ··· ∨ x = Dada))

Výnimky a implikatúra

Tvrdenia s výnimkami niekedy vyznievajú silnejšie, ako naozaj sú.

Mám rád všetko ovocie, okrem jabĺk.

Toto tvrdenie zodpovedá aristotelovskej forme: $Každé\ P\ je\ Q,$ kde P= ovocie a nie jablko a Q= také, že ho mám rád, teda:

$$\forall x ((\texttt{ovocie}(x) \land \lnot \texttt{jablko}(x)) \rightarrow \texttt{mám_rád}(x))$$

Je veľmi lákavé z tohto tvrdenia usúdiť, že navyše znamená: *Jablká nemám rád*, ale je to iba implikatúra (zdanlivý dôsledok).

K *Mám rád všetko ovocie*, *okrem jabĺk* môžeme síce prekvapivo, ale bez sporu dodať:

- Jablká milujem.
- Z jabĺk mám rád iba červené.

V spore s tvrdením by bol dodatok: Ale slivky nemám rád.

Literatúra