Theorem: Central Limit Theorem

If I have X_n that are iid $w \not = x_n = u$ and $Var(X_n) = \sigma^2 < \infty$ then

 $\sqrt{N}\left(\frac{X-M}{6}\right) \xrightarrow{d} N(0,1).$

Other forms: $\sqrt{N(X-\mu)} \rightarrow N(0,6^2)$

 $\overline{X} \sim AN(\mu, 6^2 \mu)$

Ex. Xn iid Exp(x)

Here $\mathbb{E} X_n = \frac{1}{\lambda} = \mu$, $Var(X_n) = \frac{1}{\lambda^2} = 6^2$

and so

$$\sqrt{X} = \frac{1}{X}$$

$$\sqrt{\frac{1}{X^2}}$$

$$\sqrt{\frac{1}{X^2}}$$

$$\sqrt{\frac{1}{X^2}}$$

$$\sqrt{\frac{1}{X^2}}$$

 $Q: \text{ What about } g(\bar{X})? \frac{1}{\bar{X}}, \log \bar{X}, \dots$

Theorem: First-Order Delta Method If In is a seg of RVs where $\sqrt{N}(\gamma_h - \theta) \xrightarrow{d} N(0, \psi^2) = \psi(\theta)$ Obvious example is $1/n = \overline{X}$, $\theta = \mu$, $\Psi = 6^{-2}$ then we have such a seg of Ins. then if g is a differtiable function and 9(0) \$ 0, then $\sqrt{N(g(y_n) - g(0))} \xrightarrow{e} N(0, [g'(0)] \Psi^2)$ Another way: $\psi_n \sim AN(\theta, \Psi^2/N)$ then $g(1/n) \sim AN(g(0), [g'(0)]^2 \psi^2/N)$

Color-coded Page 3

$$\sqrt{N}(\overline{X}-\mu) \xrightarrow{d} N(0,6^{2})$$
If $g(x) = \log(x)$ then $g'(x) = \frac{1}{x^{2}}$

$$\Rightarrow \left[g'(x)\right]^{2} = \frac{1}{x^{2}}$$
and so the Δ -method Says $\left[g'(\mu)\right]^{2}$

$$\sqrt{N}\left(g(\overline{X})-g(\mu)\right) \xrightarrow{d} N(0,\frac{1}{\mu^{2}}\overline{0}^{2})$$
I.e. $\overline{X} \sim AN(\mu,6^{2}h)$ then $\log \overline{X} \sim AN(\log\mu,6^{2}h^{2})$

Etat χ_n iid $Pois(\lambda)$ then the CLT supposed $JN'(X-\lambda) \stackrel{d}{\Rightarrow} N(o,\lambda)$ Consider $g(x) = \frac{1}{\chi}$ then $g'(x) = -\frac{1}{\chi^2}$ so $\left[g'(x)\right]^2 = \frac{1}{\chi^4}$ and thus the Δ -Nethed supposed $M(g(x)-g(\mu)) \stackrel{d}{\Rightarrow} N(o, \left[g'(\mu)\right]^2 \sigma^2)$

VN(g(x)-g(µ)) = 1V(0, L(µ)) 0)

i.l.

$$\sqrt{N}\left(\frac{1}{X} - \frac{1}{\lambda}\right) \stackrel{d}{\to} N\left(0, \left(\frac{1}{\lambda}\right)^{4} \lambda\right)$$
 $= N(0, \frac{1}{\lambda^{3}})$

l.e. $X \sim AN(\lambda, \frac{1}{N}N)$ then $\frac{1}{X} \sim AN(\frac{1}{\lambda}, \frac{1}{N}\frac{1}{N})$

Ex. Varione-Stabilizing Transformation

Generically: $\sqrt{N} \sim AN(0, \frac{1}{N}\frac{1}{N})$ $\sqrt{N} \sim AN(0, \frac{1}{N}\frac{1}{N}\frac{1}{N})$ $\sqrt{N} \sim AN(0, \frac{1}{N}\frac{1}{N}\frac{1}{N}\frac{1}{N})$ $\sqrt{N} \sim AN(0, \frac{1}{N}\frac{1}{N}\frac{1}{N}\frac{1}{N}\frac{1}{N}\frac{1}{N}$ $\sqrt{N} \sim AN(0, \frac{1}{N}\frac{1}{N$

Color-coded Page 5

So ar condition is
$$[g'(0)]^2 \psi(0) = C \qquad \text{ODE}$$

$$\frac{CLT}{D(X-X)} \xrightarrow{d} N(0,X) \Leftrightarrow \overline{X} \sim *N(X,Y_N)$$

$$g(\lambda) \frac{\lambda}{N} = c$$

$$\Rightarrow \left(\frac{dg}{dx}\right)^{\frac{2}{N}} = C$$

$$\Rightarrow \frac{dg}{dx} = \sqrt{\frac{CN}{\lambda}}$$

$$\Rightarrow dg = \sqrt{\frac{CN}{\lambda}} d\lambda$$

$$\Rightarrow g = \int dg = \int \frac{JcN}{R} d\lambda \propto \int \frac{1}{\sqrt{x}} d\lambda$$

$$\ll J\lambda^{\prime}$$

$$SO\left(g(x)=J\right)$$

By
$$\Delta$$
-method:
 $g(\bar{\chi}) \sim AN(g(\lambda), [g(\lambda)]^2 Y^2)$

i.e.
$$\sqrt{\chi} \sim AN(\sqrt{\lambda}, (\sqrt{2\sqrt{\lambda}}))$$

$$\frac{1}{4} \frac{1}{\lambda} \lambda = \frac{1}{4}$$

So
$$\sqrt{\chi} \sim AN(\sqrt{\chi}, \frac{1}{4})$$
.

$$If \qquad \qquad \sqrt{N(Y_n - Q)} \xrightarrow{d} N(0, \Psi^2)$$

and if g is twice-differentiable
$$\chi^2$$
 multiply χ^2 (1) but $g(0) = 0$ multiply χ^2

then $N\left(g(\gamma_n) - g(o)\right) \xrightarrow{d} \frac{\psi^2 g''(o)}{2} \chi^2(1)$

$$N(g(\gamma_n) - g(o)) \xrightarrow{q} \frac{1}{2} J(1)$$

$$g(t) = t \log(t/p) - (1-t)\log(\frac{1-t}{1-p})$$

> RL - divergence (dist. measure between (t))
(Bern(p) and Bern(t))

Q: What can I say about g(X)?

$$\underline{CLT}: VN(X-p) \xrightarrow{d} N(0, p(1-p))$$

$$\mathbb{E} X_n = p$$
 and $Var(X_n) = p(1-p)$

notice though that

$$g'(t) = lg(\frac{t}{1-t}) - lg(\frac{P}{1-P})$$

and so
$$g'(p) = \left(of\left(\frac{P}{1-p}\right) - \left(of\left(\frac{P}{1-p}\right)\right) = 0\right)$$

problem fer

First-Order

A method.

Palle Della Man Com landa Manallando

Let's apply the second order
$$\Delta$$
 - wethod
$$g''(t) = \frac{1}{t} + \frac{1}{1-t} = \frac{1}{t(1-t)}$$

$$N\left(g(\bar{x})-g(p)\right) \xrightarrow{d} \frac{\Psi^2g''(p)}{2}\chi^2(1)$$

$$N(g(\bar{x})-g(p)) \stackrel{d}{\to} \frac{p(1-p)}{2} \frac{1}{p(1-p)} \chi^{2}(1)$$

"proof" of Second Order D-wethool

Assurption:
$$\left(\frac{d}{d} N(0, \psi^2) \right)$$

(ecordoder ad g'(0) = 0

Taylor Exponsion:

$$g(\chi) \approx g(0) + g'(0)(\chi-0) + g''(0)(\chi-0)^{2}$$
if $g'(0) = 0$ then this is

if
$$g'(0) = 0$$
 then this is
$$g(x) \approx g(0) + \frac{g''(0)}{2}(x-0)^{2}$$
So $g(Y_{n}) \approx g(0) + \frac{g''(0)}{2}(Y_{n}-0)^{2}$

$$\int g(Y_{n}) - g(0) \approx \frac{g''(0)}{2}(Y_{n}-0)^{2}$$
whitipy by $\int g(0) \approx \frac{g''(0)}{2}(y_{n}-0)^{2}$

$$= \frac{g''(0)}{2}(y_{n}(Y_{n}-0))^{2}$$

$$= \frac{g''(0)}{2}(y_{n}(Y_{n}-0))^{2}$$

$$\int g''(0) (y_{n}(Y_{n}-0))^{2}$$

$$\int g''(0) (y_{n}(Y_{n}-0))^{2}$$

$$\int g''(0) (y_{n}(Y_{n}-0))^{2}$$

$$\int g''(0) (y_{n}(Y_{n}-0))^{2}$$

Back to estimation:

For a finite sample we looked for

tor a finite sample we looked for
estimaters that are unbiased and have
a (on variona
Asymptotically, we wat estimates that
ave
are (i) asymptotically in biased (consistency) A P O
The state of the s
$\theta \rightarrow \theta$
2) asymptotic variona to be small.
(X) Some conditions
Theaem: MLEs are consistent relded
(works fer
If Q is the ME of T(A) House Exp. Fams)
Theaem: MLEs are consistent Some conditions Theaem: MLEs are consistent relded (works fer (works fer) If ô is the MIE of T(0) then Exp. Fams)
Ô 3 T(0)