Physics 474 – Applied Solid State Physics - Course Notes

Tobias Faehndrich

This document was typeset on June 23, 2025

Introduction:

Notes written while following Dr. Alannah Hallas's PHYS 474 UBC lecture notes. If any errors are found in the notes, feel free to email me at tobias.faehndrich@gmail.com. Overleaf formatting was copied from Rio W.

Contents

1	Introduction	2
2	Heat Capacity Models I — Boltzmann and Einstein	3
3	Heat Capacity Models II — Einstein Revisited and Debye	6

1 Introduction

This lecture talked about the course structure, grading and basic questions about solid state physics and why it is important.

2 Heat Capacity Models I — Boltzmann and Einstein

Chapter 2 covers the Specific Heat of Solids Recall:

• Heat capacity of material is how much energy (heat) you need to add to change the temp (by 1K).

$$C = \frac{d\langle E \rangle}{dT} \tag{2.1}$$

- Solids are incompressebile so $C_v \simeq C_p$
- "specific heat" and "heat capacity" are used interchangeably
- strictly we are speaking about molar heat capacity (per mol of material) with units of $[J/\text{mol} \cdot K]$

$$1 \, \text{mol} = N_A = 6.022 \times 10^{23}$$

Why do we care?

- gives us info about thermally excited states and so we can look for phase transitions
- largest factor in specific heat is atomic vibrations

Heat capacity of an ideal monoatomic gas at constant volume (3-D)

- Equipartiion theorem: each quadratic degree of freedom in the energy contributes $\frac{1}{2}k_BT$ to $\langle E\rangle$
- Ideal Gas only has kinetic energy with x, y, and z components so we get

$$\langle E \rangle = \frac{3}{2} k_B T \tag{2.2}$$

per atom

$$\langle E \rangle = \frac{3}{2}RT \tag{2.3}$$

per mol

$$C = \frac{d\langle E \rangle}{dT} = \frac{3}{2}R\tag{2.4}$$

• Note that:

$$R = N_A \cdot k_B = 8.314 J/\text{mol } K$$

Experimental observations from 1820-1910

• Dulong-Petit Law:

$$C = 3k_B \tag{2.5}$$

per atom (or C = 3R per mol)

- Boltzmann made classical statistical model that explained the Dulong-Petit result
 - It treated each atom as a simple harmonic oscillator
 - each of which were held in place in each direction by a spring vibrating t a frequency, ω .

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{k\hat{x}^2}{2} \tag{2.6}$$

where $\omega = \sqrt{\frac{k}{m}}$ which you will show on HW1 that it gives C = 3R

- But this still does not explain diamond or any solid significantly below room temperature
- Thermodynamics refresher
 - The probability of finding a system, S, that is in thermal equilibrium with a reservoir, R, at some temperature, T, in a given energy state, E_i ,

is given by

$$\mathbb{P}(E_i) \propto e^{-\beta E_i}$$

where $\beta = \frac{1}{k_B T}$ with units of $\left[\frac{1}{\text{energy}}\right]$

Note that the exponential term is the Boltzmann distribution

- We can use the **partition function (Z)** to normalize our probabilities. i.e. so that we get $\sum_{i} \mathbb{P}(E_i) = 1$

$$\mathbb{P}(E_i) = \frac{e^{-\beta E_i}}{e^{-\beta E_1} + e^{-\beta E_2} + \dots} = \frac{e^{-\beta E_i}}{Z}$$

where $Z = \sum_{i} e^{-\beta E_i}$

- The **expecation value (or thermal average)** for a given quantity is the sum of the possible values weighted by their normalized probabilities.

$$\langle x \rangle = \sum_{i} x_{i} \mathbb{P}(E_{i}) = \sum_{i} x_{i} \left(\frac{e^{-\beta E_{i}}}{Z} \right) = \frac{1}{Z} \sum_{i} x_{i} e^{-\beta E_{i}}$$

where $Z = \sum_{i} e^{-\beta E_i}$

– Taking the **derivative of the partition function with respect to** β we uncover a useful trick.

$$\frac{\mathrm{d}Z}{\mathrm{d}\beta} = \sum_{i} (-E_i) \,\mathrm{e}^{-\beta E_i}$$

Divide by -Z and we get

$$\frac{-1}{Z}\frac{\mathrm{d}Z}{\mathrm{d}\beta} = \frac{1}{Z}\sum E_i \mathrm{e}^{-\beta E_i} = \langle E \rangle$$

Thus we get the equation that relates the average internal energy to the partition function.

$$\langle E \rangle = \frac{-1}{Z} \frac{\mathrm{d}Z}{\mathrm{d}\beta}$$

which is useful because we want to calculate $C = \frac{d\langle E \rangle}{dT}$

- Bose-Einstein and Fermi-Dirac Statistics to describe the energy distribution of quantum particles
 - * BE: photons, cooperes pairs, He⁴, atomic vibrations (phonons)

- · The Bose occupation factor n_B gives the number of bosonic particles occupying a given energy state at a given temperature.
 - As $T \rightarrow 0$, all particles occupy the ground state.

$$n_B = \frac{1}{e^{(E-\mu)\beta} - 1}$$

- · where in the high T limit looks identical to Boltzmann distribution.
- · as $T \rightarrow 0$, $\beta \rightarrow$ and only the lowest E state ($E \approx \mu$) is occupied
- \cdot and μ is the chemical potential (energy cost to add a particle to the system
- * FD: electrons, other leptons, He³
 - · The Fermi factor n_F gives the number of fermionic particles occupying a given energy state at a given temperature where each state can only be single occupied due to the Pauli exclusion principle.

$$n_F = \frac{1}{\mathrm{e}^{(E-\mu)\beta} + 1}$$

· also looks identical to the Boltzmann distribution in the high T limit

3 Heat Capacity Models II — Einstein Revisited and Debye

Einstein's model for specific heat

• Einsten improved upon Boltzmann's model by treating each atom as a quantum mechanical simple harmonic oscillator, still being held in place in each spatial direction by a spring that vibrates at a frequency, ω .

$$E_n = \hbar\omega\left(n + \frac{1}{2}\right)$$

where ω is the frequency of the spring, and n is the quantum number.

- Note that in this model the atoms are still not connected to each other.
- You can follow the steps:
 - 1. Find Z
 - 2. $\langle E \rangle = \frac{-1}{Z} \frac{dZ}{d\beta}$,
 - 3. $C = \frac{d\langle E \rangle}{dT}$

and then you get

$$C = 3R(\beta\hbar\omega)^2 \cdot \frac{\mathrm{e}^{\beta\hbar\omega}}{(\mathrm{e}^{\beta\hbar\omega} - 1)^2}$$

Note that this expression depends on temperature!

• For HW1:

$$\sum_{n} x^{n} = \frac{1}{1-x} \quad \text{for } |x| < 1$$

and

$$\sinh\left(x\right) = \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{2}$$

• The high T limit of Eistein's model gives the expected Dulong-Petit value

As
$$T \to \infty$$
, $\beta \to 0$

You can taylor expand for the exponential term in the denominator

$$C \approx 3R(\beta\hbar\omega)^2 \cdot \frac{(1+\beta\hbar\omega)^{2}}{(\beta\hbar\omega)^2}$$

C = 3R which is the Dulong Petit value!

• The **low** T **limit** accounts for the observation that specific heat decreases with T

As
$$T \to 0, \beta \to \infty$$

$$C \approx 3R(\beta\hbar\omega)^2 \cdot \left(\frac{1}{\mathrm{e}^{\beta\hbar\omega}}\right)$$

6

As
$$T \rightarrow 0$$
, $C \rightarrow 0$

And also the discrepancy for diamond where C increased to 3R above room temp.

But incorrectly suggests an exponential decrease at low T. The data (Einstein's 1907 paper) showed that at low T, $C \sim T^3$.

• Einstein temperature is then defined as

$$T_E = \frac{\hbar\omega}{k_B}$$

where you can think of a materials hardness to be related to the stiffness of the spring holding it in place

$$T_E \propto \omega$$
, and $\omega = \sqrt{\frac{k}{m}}$

so that the the mass of the atom also determines this temperature.

• You can calculate the typical frequency scale using a typical Einstein temperature using

$$f = \frac{\omega}{2\pi}$$

Debye's model for specific heat

• Debye took Einstein's calculation one step further by realizing that **the atomic vibrations in solids are sound waves** and therefore – not only should the energy levels be quantized – but the energy should vary as a function of the wave vector, k.

7

– Einstein: $\omega = \text{constant}$

- Debye: $\omega(\vec{k}) = v |\vec{k}|$

• How should we think about the wavevector, k? e.g. 2D plane wave?

k-space is useful because solids are periodic other names:

- momentum space
- reciprocal space
- Q space

Normal space is called " real space "

Periodic (Born-von Karman) boundary conditions (equivalet to particle in a box, but easier)

- Rather than treating our solids as having fixed end points, it is very convenient to apply **periodic boundary conditions**.
- In 1D this means taking a very long chain and attaching the ends together.
- Surfaces account for only a tiny fraction of a material so this is a reasonable thing to do.

$$L = N \cdot a$$

- This imposes a condition on the possible k-values: the values of k are quantized!
- A wave e^{ikr} must have the same value at r and r + L:

$$e^{ikr} = e^{ik(r+L)} \Rightarrow e^{ikL} = 1 \Rightarrow k \cdot L = 2\pi n \quad (n = integer)$$

$$k = \frac{2\pi}{L}n$$

k is quantized! and $\Delta n = 1 \Rightarrow \boxed{\delta k = \frac{2\pi}{L}}$ so that $L \gg 1$, then $\delta k \ll 1$.

ullet In 3D ($v=L^3$) we can use the same trick excep the solid gets folded into a hypertorus.

8

- allowed k states $\vec{k} = \frac{2\pi}{L}(n_x, n_y, n_z)$
- Volume of a k-point ($\Delta n_i = 1$: $\delta k = \left(\frac{2\pi}{L}\right)^3$
- Since the number of allowed wave vectors is discrete, we can count them:

#k-points =
$$\sum_{k}$$
 = $\frac{\text{volume of k space}}{\text{volume of k point}}$ = $\frac{\int d\vec{k}}{\left(\frac{2\pi}{L}\right)^3}$

• We can convert the sum over all k to a 1D integral (assume spherical symmetry).

$$\int_{-\infty}^{\infty} d\mathbf{k} \to \int_{0}^{\infty} d\varphi \int_{0}^{\pi} d\theta \sin(\theta) \cdot \int_{0}^{\infty} k^{2} dk$$

For the 3D. Can check 2D and 1D too.

- Now pulling the pieces together for Debye's model, we can calculate the specific heat by starting with an expression analogous to Einstein's except where ω depends on k.
 - Einstein:

$$\langle E \rangle = 3\hbar\omega \left[n_B(\beta\hbar\omega) + \frac{1}{2} \right]$$

(from
$$\langle E \rangle = \frac{-1}{Z} \frac{dZ}{d\beta}$$
)

- Debye:

$$\langle E \rangle = 3 \sum_{\mathbf{k}} \hbar \omega(\mathbf{k}) \left[n_B(\beta \hbar \omega(\mathbf{k})) + \frac{1}{2} \right]$$

(where
$$\omega = v |\vec{k}|$$
)

- We can use the relationship above to then convert our sum to an integral $-\xi$ Then, it is preferable to evaluate this integral with respect to ω instead of k.
 - 1. Convert $\sum_{\vec{k}}$ to $\int d\vec{k}$
 - 2. Convert 3D integral to 1D
 - 3. 3 Change of variable , $k = \frac{\omega}{v}$, $dk = \frac{1}{v} d\omega$
 - 4. Result:

$$\langle E \rangle = \int_0^\infty d\omega \cdot \left[L^3 \cdot \frac{12\pi\omega^2}{(2\pi)^3 v^3} \right] \hbar\omega \left(n_B(\beta\hbar\omega) + \frac{1}{2} \right)$$

Note the velocity term!