

Statistical Natural Language Processing course 2024 Last lecture: Conclusion

Mikko Kurimo

Learning goals

- To learn how statistical and adaptive methods are used in information retrieval, machine translation, text mining, speech processing and related areas to process natural language data
- To learn how to apply the basic methods and techniques for clustering, classification, generation and recognition by natural language modeling

How to achieve the learning goals (and pass the course)?

- Participate actively in each lecture, read the corresponding material and ask questions to learn the basics, take part in discussions, complete the lecture exercises
- Solve each home assignment by yourself after each lecture to learn how to solve the problems, in practice

 DONE
- Participate actively in project work to learn to apply your knowledge
 Final report DL April 19
- Prepare well for the examination

Course exam April 16

Course grading and the exam

- 60% (or 40% + exam) of the grade is from the weekly home assignments and lecture activities.
- 20% of the grade comes from the **optional exam** organized in 16 April. Exam points are counted on top of the assignment points (see below) which are then cut to 2/3. Examples:
 - 40/60 assignments + 10/20 exam = 50/60 points
 - 50/60 assignments + 15/20 exam = 55/60 points
 - $\tilde{50/60}$ assignments + 5/20 exam = (45/60) 50/60 as without exam
 - Note: The exercise points are scaled to 60 and exam points to 20 for computing the final grade
- 40% of the grade is from the project work: experiments, literature study, short (video) presentation and final report.

About scores, points and grades in 2023

- Max score in home assignments was 161 => 50p
- Max score in lecture activity was 25 => 10p
- Exam points could substitute max 20p of missed points
- In 2023 the points gave non-rounded grades like this:
 - 60p gave 5.6
 - 53p gave 4.6
 - 46p gave 3.6
 - 38p gave 2.5
 - 31p gave 1.5
 - 24p gave 0.6
 - 20p or less gave 0
- The final grade is the average of this (60%) and the project (40%) grade

Course project grading

- See Mycourses for the requirements of an acceptable project report
- Excellent projects typically include additional work such as
 - Exceptional analysis of the data
 - Application of the method to a task or several
 - Algorithm development
 - Own data set(s) (with preprocessing etc to make them usable)
 - Unique and clever solutions for the Kaggle competition,

Exam grading

- The exam will be a remote digital exam
- There are 5 questions in MyCourses open in Tue 16.4. 12:00 15:00
- Max 6 points per question makes total 30 exam points. The points are scaled to 20 assignment points and added to the max 40 from assignments and activities
- You can use any books, course material, internet, calculators and toolkits
- You must write in your own words. If any copy-pasted or LLM generated texts are found, it will be an automatic reject and report to the study admins
- You are not allowed to communicate or collaborate with other people during the exam. If any co-operation is found, it will be an automatic reject and report to the study admins
- All exam questions and course exercise materials are copyrighted. You are not allowed to distribute them in any way.

Reading material

- Manning & Schütze, Foundations of Statistical Natural language processing (1999) http://nlp.stanford.edu/fsnlp/
- Jurafsky & Martin, Speech and Language Processing (3rd ed. Draft, 2024) http://web.stanford.edu/~jurafsky/slp3/

Read the chapters corresponding to the lecture topics

 Do not forget to study the topic-specific reading material (mentioned in slides)

8/

Lecture schedule 2024

- 09 Jan 1 Introduction & course organization / Mikko Kurimo
- 16 Jan 2 Statistical language models / Mikko Kurimo
- 23 Jan 3 Sentence level processing / Mikko Kurimo
- 30 Jan 4 Word2vec / Tiina Lindh-Knuutila
- 06 Feb 5 Neural language modeling and LLMs / Mittul Singh
- 13 Feb 6 Morpheme-level processing / Mathias Creutz
- 20 Feb (exam week, no lecture)
- 27 Feb 7 Speech recognition / Tamas Grosz
- 05 Mar 8 Chatbots and dialogue agents / Mikko Kurimo
- 12 Mar 9 Statistical machine translation / Jaakko Väyrynen
- 19 Mar 10 Neural machine translation / Sami Virpioja
- 26 Mar 11 LLMs in industry / Shantipriya Parida
- 02 April (spring break no lecture)
- 09 Apr 12 Course conclusion / Mikko Kurimo
- 16 April Exam

1. Introduction

- What does language include?
- What makes languages so complex?
- What are the applications of statistical language modeling?

What is in a language?

- Phonetics and phonology:
 - the physical sounds
 - the patterns of sounds
- Morphology: The different building blocks of words
- Syntax: The grammatical structure
- Semantics: The meaning of words
- Pragmatics, discourse, spoken interaction...

Complexity of languages

- A large proportion of modern human activity in its different forms is based on the use of language
- Large variation:
 - morphology and
 - syntactic structures
- Complexity of natural language(s)
 - More than 6000 languages, many more dialects
 - Each language a large number of different word forms
 - Each word is understood differently by each speaker of a language at least to some degree

Application areas

- Information retrieval
- Text clustering and classification
- Automatic speech recognition
- Natural language interfaces
- Statistical machine translation

- Topic detection
- Sentiment analysis
- Word sense disambiguation
- Syntactic parsing
- Text generation
- Image, audio and video description
- Text-to-speech synthesis
- •

2. Statistical language modeling

- N-gram LMs
 - Data sparsity problem
 - Equivalence classes
 - Back-off and interpolation
 - Smoothing methods
- Maximum entropy LMs
- Continuous space LMs
- Neural network LMs

Estimation of N-gram model

$$P(w_i \mid w_j) = \frac{c(w_j, w_i)}{c(w_j)} \qquad \frac{c(\text{"eggplant stew"})}{c(\text{"eggplant"})}$$
$$= P(w_i)b_{w_i} \qquad \text{otherwise}$$

- Bigram example:
 - Start from a maximum likelihood estimate
 - probability of *P("stew" | "eggplant")* is computed from **counts** of *"eggplant stew"* and *"eggplant"*
- works well for frequent bigrams
 - Why not for good rare bigrams?

Zero probability problem

- If an N-gram is not seen in the corpus, it will get probability = 0
- The higher N, the sparser data, and the more zero counts there will be
- 20K words => 400M 2-grams => 8000G 3-grams, so even a gigaword corpus has MANY zero counts!
- Equivalence classes: Cluster several similar n-grams together to reach higher counts
- Smoothing: Redistribute some probability mass from seen N-grams to unseen ones

Smoothing methods

- **1.Add-one**: Add 1 to each count and normalize => gives too much probability to unseen N-grams
- **2. (Absolute) discounting**: Subtract a constant from all counts and redistribute this to unseen ones using N-1 gram probs and back-off (normalization) weights
- **3. Witten-Bell smoothing**: Use the count of things seen once to help to estimate the count of unseen things
- **4. Good Turing smoothing**: Estimate the rare n-grams based on counts of more frequent counts
- 5. Best: **Kneser-Ney smoothing**: Instead of the number of occurrences, weigh the back-offs by the **number of contexts** the word appears in
- 6. Instead of only back-off cases, **interpolate** all N-gram counts with N-1 counts

Weaknesses of N-grams

- Skips long-span dependencies:
 - "The girl that I met in the train was ..."
- Too dependent on word order:
 - "dog chased cat": "koira jahtasi kissaa" ~ "kissaa koira jahtasi"
- Dependencies directly between words, instead of latent variables, e.g. word categories

Continuous space LMs

- Alleviates the data sparsity problem by representing words in a distributed way
- Various algorithms can be used to learn the most efficient and discriminative representations and classifiers
- The most popular family of algorithm is called (Artificial) Neural Networks
 (NN)
 - can learn very complex functions by combining simple computation units in a hierarchy of non-linear layers
 - Fast in action, but training takes a lot of time and labeled training data
- Can be seen as a non-linear multilayer generalization of the maximum entropy model

3. Sentence-level processing

- Tagging words in a sentence
 - Part-of-speech tagging
 - Named entity recognition
 - Solving ambiguities
 - Hidden Markov model, Viterbi, Baum-Welch, Forward-Backward
 - Recurrent neural networks
- Sentence parsing
 - Grammars, trees
 - Probabilistic context free grammar

Part of Speech (POS) tagging

Task: Assign tags for each word in a sentence

Applications: Tool for parsing the sentence

The reaction in the newsroom was emotional.

=> DT NN IN DT NN VBD JJ

(determiner)

(noun) (preposition)

(determiner) (noun)

(verb past tense) (adjective)

Named entity recognition

- Detect names of persons, organizations, locations
- Detect dates, addresses, phone numbers, etc
- Applications: Information retrieval, ontologies
- UN official Ekeus heads for Baghdad.
- LOC => ORG - PER
- (organization) (person) (location)

₂**2**2/

A general approach

- 1. Generate candidates
- 2. Score the candidates
- 3. Select the highest scoring ones

A simple scoring method

- Count the frequency of each tagging by listing all appearances of the word in an annotated corpus
- Select the most common tag for each word
- How well would this method work?

Estimation of HMM parameters

- For corpora annotated with POS tags
 - Just count each tag observations P(y(t)|x(t)
 - And tag transitions P(y(t)|y(t-1))
- For unknown data use e.g. Viterbi to first estimate labels and then re-estimate parameters and iterate

Even better POS tags? Discriminative models

- Use previous words and tags as features
- The context is computed from a sliding window
- Train a classifier to predict the next tag
 - Jurafsky: Maximum entropy Markov model (MEMM)
 - Support vector machine (SVM)
 - Deep (feed-forward) neural network (DNN)
 - Conditional random field (CRF) is a bidirectional extension of MEMM that uses also tags on right

4. Word2vec

- Vector space models, distributional semantics
 - word-document and word-word matrices
 - Constructing word vectors
 - stemming, weighting, dimensionality reduction
 - similarity measures
 - Count models vs. predictive models
 - Word2vec
- Information retrieval

How to build a vector space model?

- 1. Preprocessing
- 2. Defining word-document or word-word matrix
 - choosing features
- 3. Dimensionality reduction
 - choosing features
 - removing noise
 - easing computation
- 4. Weighting and normalization
 - emphasizing the features
- 5. Similarity / distance measures
 - comparing the vectors

To count or predict?

Count-based methods

- compute the word co-occurrence statistics with its neighbor words in a large text corpus
- followed by a mapping (through weighting and dimensionality reduction) to dense vectors

Predictive models

 try to predict a word from its neighbors by directly learning a dense representation

Statistical semantics

- **Statistical semantics hypothesis:** Statistical patterns of human word usage can be used to figure out what people mean (Weaver, 1955; Furnas et al., 1983).
- **Bag of words hypothesis:** The frequencies of words in a document tend to indicate the relevance of the document to a query (Salton et al., 1975).
- **Distributional hypothesis:** Words that occur in similar contexts tend to have similar meanings (Harris, 1954; Firth, 1957; Deerwester et al., 1990).
- **Latent relation hypothesis:** Pairs of words that co-occur in similar patterns tend to have similar semantic relations (Turney et al., 2003).

Modifying the vector spaces

The basic matrix formulation offers lots of variations:

- window sizes
- word weighting, normalization, thresholding, removing stopwords
- stemming, lemmatizing, clustering, classification, sampling
- distance measures
- dimensionality reduction methods
- neural networks

5. Neural Network LM and LLMs

- Feed-Forward and Recurrent NNLM
- LSTMs, Transformers
- Masked LMs, Bidirectional LMs, BERT
- Reinforcement Learning, ChatGPT

Transformers for Language Modelling

- RNNs: Process tokens one-by-one
 - Chain of dependencies built using a single token
- Transformers LM: Process a segment of tokens
 - Dependencies within the segment
 - Within segment position is given by the positional encoding

Reinforcement Learning

Explain reinforcement

learning to a 6 year old.

We give treats and

C

Step 1

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.

Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

A new prompt is sampled from the dataset.

The PPO model is initialized from the supervised policy.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

6. Morpheme-level processing

- Morphemes
 - morphological complexity, processes, models
- Morphological clustering
 - stemming, lemmatization
- Morphological analysis and generation
 - Finite-state methods, transducers
- Morphological segmentation
 - Morfessor

Types of morphemes

- **Stem:** a root, or compound of roots together with derivational affixes (buildings (building))
- Affix: a bound morpheme (does not occur by itself) that is attached before, after, or inside a root or stem
 - Prefix (un-happy)
 - Suffix (build-ing, happi-er)
 - Infix (abso-bloody-lutely)
 - ...

Morphology affects the vocabulary size

Vocabulary size as a function of corpus size

Morphological processes

Inflection:

- cat cats
- slow slower
- find found

Derivation:

- build (V) building (N)
- do (V) doable (ADJ)
- short (ADJ) shorten (V)
- write rewrite
- do undo

Compounding:

- fireman (fire + man)
- hardware (hard + ware)

3 main approaches to deal with rich morphology

1. "Canonical" forms of a word

- Stemming is relatively simple and implementations are available, for English: e.g., Porter (1980), Snowball: http://snowball.tartarus.org
- Lemmatization is more complex and needs morphological analysis
- Applications: Information retrieval etc.

2. Morphological analysis

- Hand-crafted morphological analyzers/generators exist for many languages, e.g. Tähtien => tähti N Gen Pl
- Applications: Spell checking, syntactic parsers, machine translation, etc.

3. Segmentation into morphs

- Pragmatic approaches that work well enough in practice.
- Applications: Speech recognition, language modeling etc.

Morfessor

- Instead of sending over the vocabulary as it is, we split it into two parts:
 - 1. a fairly compact lexicon of morphs: "aamu", "aurinko", "ksi", "lla", ...
 - 2. the word vocabulary expressed as sequences of morphs
- Since we are doing unsupervised learning, we do not know the correct answer.
- Our target is to minimize the combined code length of:
 - 1. the code length of the morph lexicon
 - 2. plus the code length of the word vocabulary expressed using the morph lexicon.

7. Speech recognition

- Acoustic features
- Gaussian mixture models
- Hidden Markov models
- Deep neural networks for acoustic modeling
- Phonemes, pronunciation of words
- Decoding with language models
- End-to-end neural networks
- Encoder, Attention, Decoder

Traditional Components of an ASR system

- Task of an automatic speech recognition: Find the most likely word sequence given the observations (speech) and the models for acoustics and language
- Speech acoustics are matched with a statistical model
- Language model is also typically a statistical model (n-gram, RNN), but in simple tasks it can be a fixed grammar or just a vocabulary

End-to-end ASR

End-to-end ASR systems

- CTC
- RNN transducer
- Attention-based Encoder-Decoder
- Transformers
- Self-supervised pre-training
 - Wav2vec
 - ~ HuBERT

8. Chatbots and dialogue agents

- True chatbots vs task-oriented dialogue agents
- Text processing steps in chatbots
- Chatbot architectures
- Evaluation of chatbots

Definitions

Chatbot:

- A system that you can chat with
- Discussion topics can be fixed, but there is no specific goal except for fun and keeping company

Dialogue agent:

 A system that helps you to reach a specific goal by giving and collecting information by answering and asking questions

In popular media both are often called chatbots, but here only the first one.

Comparison of chatbots and dialogue agents: required operations

Chatbot

- Detect the discussion topic
- Ask typical questions
- React to human input, be coherent with previous turns
- World knowledge, persona

Dialogue agent

- Detect the user's intent
- Ask the required questions
- Parse and use human input

Chatbot architectures

Rule-based

- Pattern-action rules: Eliza (1966)
- Mental model: Parry (1971)

Corpus-based

- IR: Cleverbot
- DNN encoder-decoders etc

Turing's test (1950) for machine intelligence: Can you judge between a real human and a chatbot?

Evaluation of chatbots

Automatic evaluation

- Lack of proper evaluation data and metrics
- N-gram matching evaluations such as BLEU correlate poorly with human evaluation
 - Too many correct answers
 - Common words give a good score
- Perplexity measures predictability using a language model
 - Favours short, boring and repetitive answers
- ADEM classifier trained by human judgements
- Adversarial evaluation trained to distinguish human and machine responses

Human evaluation

e.g. research challenges (competitions):

- ConvAl (NeurIPS)
- Dialog Systems
 Technology Challenge
 (DSTC7)
- Amazon Alexa prize
- Loebner Prize

9. Statistical machine translation

- Sentence, word and phrase alignment methods
- Re-ordering models
- Translation methods
- Full SMT systems

Phrase-based SMT system

- Training data and data preprocessing
- Word aligment, phrase aligment
- Estimation of translation model scores
- Estimation of reordering model scores
- Estimation of language model scores
- Decoding algorithm and optimization of the model weights
- Translation, recasing, detokenization
- Evaluation, quality estimation
- Operational management

Translation methods

- Phrase-based beam-search decoder (e.g. Moses)
- Weighted finite state transducer (WFST) based translation models
- Extended word-level representations, e.g., hierarchical phrasebased models and factored translation models with words augmented with POS tags, lemmas, etc.
- Syntax-based translation models, which take syntax parse trees as input.
- Feature-based models, where translation is performed between features. E.g., discriminative training or exponential models over feature vectors

Evaluation of machine translation

- Human evaluation
 - Assessment, ranking, agreement, efficiency
- Automatic evaluation
 - Challenges?
 - Edit distance metrics
 - Precision & recall, BLEU
 - Beyond word-based metrics
- Meta-evaluation
 - Evaluation of evaluation metrics

10. Neural machine translation

- Why NMT is the mainstream * approach?
- How are the current NMT systems build?
- What are the challenges and limitations for the systems?
- Transfer learning
- Massively multilingual machine translation
- Using monolingual corpora
- Large language models as translators

Why NMT?

- Generalization
- Flexibility
- Integration

Building NMT

- Encoding variable-length sequences
- Sequence decoding
- Sequence-to-sequence models
- Recurrent neural networks
- Attention model, Transformer model
- Modeling units

Building NMT

- Encoding variable-length sequences
- Sequence decoding
- Sequence-to-sequence models
- Recurrent neural networks
- Attention model, Transformer model
- Modeling units

Future of NMT

If LLMs are already so good translators, do we need separate NMT models?

- Multiple questions: Architecture, size, training.
- Size: "GPT-scale" LLMs have NMT challenges multiplied: computation, memory, ...
 - Only large corporations have resources for training.
 - Not possible to run the models locally.
 - Environmental impact.
- Training: Adapting conversational LLMs to specific tasks and domains is not simple (prompt engineering)

11.Large Language Models (LLMs) In Industries

- Overview
 - Generative Al
 - Language Model
 - Large Language Models
- LLMs in Industries
- Use Cases
- Case Study

Capability of Generative Al

LLMs Use Cases Across Industries

- Customer Experience and Support
 - Chatbots
 - Personalized recommendation
- Banking and Finance
 - Financial analysis and research
 - Fraud detection
 - Risk assessment
- E-commerce and Retail
 - Product description and reviews
 - Inventory management and demand forecasting

- Healthcare
 - Clinical documentation automation
 - Patient assistant
 - Compliance management
- Cybersecurity
 - Threat detection and analysis
 - Incident response
- Marketing and advertising
 - Personalized marketing
 - Generating creative text

Can large language models replace humans?

People in industries are going to lose their jobs?

- adopt a human-in-the-loop approach rather than replacing everyone with an LLM
- LLMs often referred to as black boxes and important to continually evaluate and test the results of LLMs.
- subject matter experts are the best candidates to judge the quality of an LLM's output.

Lecture schedule 2024

- 09 Jan 1 Introduction & course organization / Mikko Kurimo
- 16 Jan 2 Statistical language models / Mikko Kurimo
- 23 Jan 3 Sentence level processing / Mikko Kurimo
- 30 Jan 4 Word2vec / Tiina Lindh-Knuutila
- 06 Feb 5 Neural language modeling and LLMs / Mittul Singh
- 13 Feb 6 Morpheme-level processing / Mathias Creutz
- 20 Feb (exam week, no lecture)
- 27 Feb 7 Speech recognition / Tamas Grosz
- 05 Mar 8 Chatbots and dialogue agents / Mikko Kurimo
- 12 Mar 9 Statistical machine translation / Jaakko Väyrynen
- 19 Mar 10 Neural machine translation / Sami Virpioja
- 26 Mar 11 LLMs in industry / Shantipriya Parida
- 02 April (spring break no lecture)
- 09 Apr 12 Course conclusion / Mikko Kurimo
 - 16 April Exam

