Практика 1 (решали 12.02).

СОМВ 1. (0.5 балла) Доказать, что $\kappa(G) < n-1$ для всех графов G, отличных от K_n .

[COMB 2.] (0.5 балла) Доказать, что у k-связного графа, построенного на n вершинах, должно быть как минимум $\lceil kn/2 \rceil$ ребер.

СОМВ 3. (1 балл) Привести пример графа G с $\kappa(G) = 2$, $\lambda(G) = 3$, $\delta(G) = 4$.

[COMB 4.] (1,5 балла) Пусть у нас задана тройка натуральных чисел $\kappa < \lambda < \delta$. Привести алгоритм построения графа G, у которого $\kappa(G) = \kappa$, $\lambda(G) = \lambda$, а $\delta(G) = \delta$.

COMB 5. (1,5 балла) Доказать, что для любого простого графа G с $\Delta(G) \leq 3$ реберная и вершинная связность совпадают.

СОМВ 6. (1,5) балла) Доказать, что для любого 3-регулярного простого графа G реберная и вершинная связность совпадают.

[COMB 7.] (1,5 балла) Построить наименьшие по количеству вершин 3-регулярные графы G_2 и G_3 , для которых $\kappa(G_2) = 2$, $\kappa(G_3) = 3$.

COMB 8. (1,5 балла) Предположим, что в связном графе G, построенном на $n \ge 2$ вершинах, нашлась пара вершин, не лежащих на одном цикле. Доказать или опровергнуть следующие утверждения:

- 1. Возможна ситуация, когда все ребра графа похожи.
- 2. Существует полный граф с описанным в задаче свойством.
- 3. Если граф построен на трех вершинах, то ровно одна из них является точкой сочленения.
- 4. При числе ребер m>1 каждое ребро обязано быть похожим хотя бы на одно другое.
- 5. В графе обязательно найдется вершина степени 1.
- 6. Граф может быть двусвязным.
- 7. Если граф построен на десяти вершинах, то в нем есть непохожие ребра.

[COMB 9.] (0,5) балла) Выразить количество n вершин односвязного графа G через количество n_i этих вершин в каждом из k блоков B_1, \ldots, B_k графа G.

COMB 10. (0.5 балла) Выразить количество остовных деревьев односвязного графа G через количество остовных деревьев в каждом из k блоков B_1, \ldots, B_k графа G.

COMB 11. (1,5 балла) Граф называется кактусом, если каждый его блок представляет собой либо одиночное ребро, либо единственный цикл. В частности, любое дерево является кактусом. Предъявить кактусы, построенные на 2k+1 и 2k вершинах соответственно и имеющие максимальное количество ребер. Доказать, что кактусы с большим количеством ребер при фиксированном k построить невозможно.

[COMB 12.] (1 балл) Доказать, что любая вершина односвязного графа G имеет четную степень тогда и только тогда, когда любой блок B_i такого графа Эйлеров.

СОМВ 13. (1 балл) Доказать, что односвязный граф G является реберно k-связным тогда и только тогда, когда любой блок B_i такого графа реберно k-связный.

СОМВ 14. (1,5) балла) Модифицировать алгоритм Хопкрофта-Тарьяна для поиска мостов в односвязном графе G. Реализовать алгоритм поиска всех блоков и точек сочленения в односвязном простом графе G.

СОМВ 15. (1 балл) Описать разложение на ручки для графа Петерсена.

[COMB 16.] (1,5 балла) Доказать, что граф G является реберно двусвязным тогда и только тогда, когда его можно представить в виде

$$G = G_0 \cup G_1 \cup \ldots \cup G_k,$$

где G_0 — произвольный цикл в графе G, а $G_i, i>0$, представляет собой либо ручку, либо замкнутую ручку для подграфа $G_0\cup G_1\cup\ldots\cup G_{i-1}$ графа G.