Data Analytics 1

Vikram Pudi vikram@iiit.ac.in IIIT Hyderabad

Data Systems Evolution

- Traditional Database Systems
 - Indexing
 - Query languages
 - Query optimization
 - Transaction processing
 - Recovery ...
- Relational / SQL

Post-Relational Revolution

- New organizations of data
 - Object oriented (OO) [Zope] and object-relational (OR) systems [SQLAlchemy]
 - Semi-structured [XML, JSON] and unstructured data (Text)
 - Vertical / Column stores [Cassandra]
 - Unnormalized relations: Document Databases [MongoDB]
 - Key-value Stores [Redis]
 - Graph Databases [Neo4j]
- · New functionality
 - Distribution & Heterogeneity (multi-databases, interoperability)
 - Active databases (triggers) and deduction
 - ERP packages (application-oriented tasks common to many organizations)
 - Data analysis (data warehouses and data mining)
- More complex data domains (e.g., design, geography, molecular biology, social networks)
- Relaxation of ACID test for DBMS

Data Mining

- = Automated discovery of interesting patterns in large datasets
- Researchers identified several kinds of interesting patterns in an adhoc manner
 - classification and regression models, clusters, association rules, frequent patterns, sequential patterns, time-series patterns, summaries, cyclic patterns, hierarchical patterns, max-patterns, closed patterns, multi-dimensional patterns, etc.

Types of Patterns

- Associations
 - Coffee buyers usually also purchase sugar
- Clustering
 - Segments of customers requiring different promotion strategies
- Classification
 - Customers expected to be loyal

Association Rules

That which is infrequent is not worth worrying about.

Association Rules

D

	Transaction ID	Items
	1	Tomato, Potato, Onions
):	2	Tomato, Potato, Brinjal, Pumpkin
	3	Tomato, Potato, Onions, Chilly
	4	Lemon, Tamarind

Rule: Tomato, Potato Onion (confidence: 66%, support: 50%) Support(X) = |transactions containing X| / |D| Confidence(R) = support(R) / support(LHS(R))

Problem proposed in [AIS 93]: Find all rules satisfying user given minimum support and minimum confidence.

Association Rule Applications

- E-commerce
 - People who have bought Sundara Kandam have also bought Srimad Bhagavatham
- Census analysis
 - Immigrants are usually male
- Sports
 - A chess end-game configuration with "white pawn on A7" and "white knight dominating black rook" typically results in a "win for white".
- Medical diagnosis
 - Allergy to latex rubber usually co-occurs with allergies to banana and tomato

Types of Association Rules

- Boolean association rules
- Hierarchical rules

More Types of Association Rules

- Cyclic / Periodic rules
 - Sunday vegetables
 - Christmas gift items
 - Summer, rich, jobless ticket to Hawaii
- Constrained rules
 - Show itemsets whose average price > Rs.10,000
 - Show itemsets that have television on RHS
- Sequential rules
 - Star wars, Empire Strikes Back Return of the Jedi

Classification

To be or not to be: That is the question.

- William Shakespeare

The Classification Problem

Outlook	Temp (F)	Humidity (%)	Windy?	Class
sunny	75	70	true	play
sunny	80	90	true	don't play
sunny	85	85	false	don't play
sunny	72	95	false	don't play
sunny	69	70	false	play
overcast	72	90	true	play
overcast	83	78	false	play
overcast	64	65	true	play
overcast	81	75	false	play
rain	71	80	true	don't play
rain	65	70	true	don't play
rain	75	80	false	play
rain	68	80	false	play
rain	70	96	false	play
sunny	77	69	true	?
rain	73	76	false	?

Play Outside?

Model relationship between class labels and attributes

Assign class labels to new data with unknown labels

Applications

- Text classification

 - Classify emails into spam / non-spam
 Classify web-pages into yahoo-type hierarchy

 - NLP Problems
 Tagging: Classify words into verbs, nouns, etc.
- Risk management, Fraud detection, Computer intrusion detection
 - Given the properties of a transaction (items purchased, amount, location, customer profile, etc.)
 - Determine if it is a fraud
- Machine learning / pattern recognition applications

 - VisionSpeech recognitionetc.
- All of science & knowledge is about predicting future in terms of
 - past

 So classification is a very fundamental problem with ultra-wide scope of applications

The Clustering Problem

Outlook	Temp (F)	Humidity (%)	Windy?
sunny	75	70	true
sunny	80	90	true
sunny	85	85	false
sunny	72	95	false
sunny	69	70	false
overcast	72	90	true
overcast	73	88	true
overcast	64	65	true
overcast	81	75	false
rain	71	80	true
rain	65	70	true
rain	75	80	false
rain	68	80	false
rain	70	96	false

Find groups of similar records.

Need a function to compute similarity, given 2 input records

Unsupervised learning

Applications

- Targetting similar people or objects
 - Student tutorial groups
 - Hobby groups
 - Health support groups
 - Customer groups for marketing
 - Organizing e-mail
- Spatial clustering
 - Exam centres
 - Locations for a business chain
 - Planning a political strategy

Take Home

- Data mining is a mature field
- Don't waste time developing new algorithms for core tasks
- Focus on applications to challenging kinds of data
 - Streams, Distributed data, Multimedia, Web, ...
- Most effort is in how to map domain problems to data mining problems
- And how to make sense of the output.

Grading Plan (Tentative)

Normal Semester

10% Assignments

- 30% Mid

25% Endsem

30% Projects

Online Semester

20% Assignments

- 10% Quiz

- 25% 30 Min Quiz

45% Projects

