TEORIA DA DECISÃO

TRABALHO COMPUTACIONAL

ÍTALO ANDRADE LUIZA ABREU VINÍCIUS ALVES JOÃO PEDRO ARAÚJO

ESCOLA DE ENGENHARIA UNIVERSIDADE FEDERAL DE MINAS GERAIS

14 DE JUNHO DE 2019

INTRODUÇÃO

Introdução

- Problema de alocação de pontos de acesso em rede WLAN
- Espaço: 800 x 800 metros
- Alcance do sinal: 85 metros
- 500 clientes
- 95% dos clientes devem ser atendidos

Introdução

Neste trabalho:

- Problema de otimização biobjetivo
 - ► Modelagem
 - ► Solução via Simulated Annealing
- Problema de Tomada de Decisão
 - Definição de critérios
 - ► AHP
 - ► ELECTREE I

PROBLEMA DE OTIMIZAÇÃO

MODELAGEM

■ Variáveis de decisão:

$$X = [x_1, ..., x_n]$$
 e $Y = [y_1, ..., y_n]$

Coordenadas dos pontos de acesso

- Variáveis auxiliares:
 - ► C = matriz binária; $c_{ij} = 1 \text{ se o cliente } j$ é atendido pelo ponto de acesso i.
 - ► $V = [v_1, v_2, ..., v_n]$ vetor binário de ativação.

MODELAGEM

$$\min \qquad N_{AP}(V) = \sum_{i=1}^{N} v_i \tag{1}$$

$$Dist(X, Y, C, V) = distância euclidiana$$
 (2)

s.a.
$$x_i \in [0, 800]$$
 e $y_i \in [0, 800]$ (3)

$$v_i \in [0,1] \tag{4}$$

$$c_{ij} \in [0,1] \tag{5}$$

$$c_{ij} = o \text{ se } dist(PA_i, C_j) > 85$$
 (6)

$$\sum_{i=1}^{N} C_{ij} \le 1, \forall j \tag{7}$$

$$\frac{1}{500} \sum_{i}^{N} \sum_{j}^{N_{c}=500} C_{ij} \ge 95 \tag{8}$$

$$v_i \sum_{j=1}^{500} c_{ij} d_{ij} \le 150 \tag{9}$$

O ALGORITMO SA

- Solução inicial: 64 PA's distribuídos uniformemente no espaço
- Após 100 perturbações na solução inicial:

$$exp(\frac{\overline{\Delta E}}{t_0}) = \tau_0 \tag{10}$$

$$t_{\rm O} = \frac{\overline{\Delta E}}{\ln \tau_{\rm O}} = 31 \tag{11}$$

Solução Inicial

Figura: Representação Solução Inicial

ESTRUTURAS DE VIZINHANÇA

- Definição de seis estruturas de vizinhança
 - ► Desliga um PA aleatório
 - Desliga dois PA's aleatórios
 - ▶ Liga um PA e desliga outro
 - ▶ Liga dois PA's e desliga outros dois
 - ▶ Move a coordenada x de um PA aleatório
 - Move a coordenada y de um PA aleatório

PRIMEIRO PROBLEMA MONO-OBJETIVO

- minimização do número de pontos
- em cinco execuções: média de 26 pontos como solução ótima
- usadas as vizinhanças de liga/desliga

Figura: Evolução da melhor solução

SEGUNDO PROBLEMA MONO-OBJETIVO

- minimização da distância total entre clientes e pontos de acesso
- em cinco execuções: média de cerca de 23.000 metros
- apenas as estruturas que movem os PA foram usadas

Figura: Evolução da melhor solução

PROBLEMA BIOBJETIVO

■ Soma Ponderada

min
$$W_1 f_1(x) + W_2 f_2(x)$$

 $W_1 + W_2 = 1$

■ Normalização

$$f_i(x) = \frac{f_i(x) - \min f_i(x)}{\max f_i(x) - \min f_i(x)}$$

PROBLEMA BIOBJETIVO

Geração de soluções candidatas: variação de w

Figura: Fronteira pareto no espaço de objetivos

Problema Biobjetivo-soluções candidatas

Num de PA	Distancia total	Fator de Cobertura	Máx largura de banda
27	26158	0.992	50.951
30	25542	0.992	56.205
31	25110	0.984	57.604
32	24058	0.99	67.259
34	23602	0.982	83.027
37	23108	0.992	56.149
39	22321	0.988	52.168
40	22019	0.998	42.681
40	21048	0.99	66.755
44	20754	0.996	47.2
35	19800	0.962	88.064
45	19115	0.978	58.936
36	18677	0.97	56.346
45	18106	0.97	60.11
38	16989	0.952	77.684
54	16849	0.986	66.861
49	16231	0.972	58.826

TOMADA DE DECISÃO

MÉTODOS DE AUXÍLIO À TOMADA DE DECISÃO

- Analytic Hierarchy Process (AHP)
- ELECTRE I

OS CRITÉRIOS

- Número de PA's
- Distância total
- Fator de cobertura
- Ponto mais sobrecarregado

AHP

- Escola Americana
- Comparações par a par: Escala Saaty
- Consistência dos julgamentos

AHP: TABELA DE CRITÉRIOS

■ Definição dos pesos dos critérios

	PAs	Dist	F. Cobertura	Máx banda
PAs	1	5	7	9
Dist	0.2	1	3	7
F.Cobertura	0.142	0.33	1	5
Máx. Banda	0.111	0.33	0.2	1

Tabela: critérios AHP

AHP: TABELA DE CRITÉRIOS

Obtenção do Vetor Prioridade = [0.618; 0.2184; 0.1162; 0.0474]

Sol/Crit	PAs	Dist	F. Cobertura	Máx banda
Num PA	0.688	0.750	0.625	0.409
Distância	0.138	0.150	0.268	0.318
F.Cobertura	0.098	0.050	0.089	0.227
Máx. Banda	0.076	0.050	0.018	0.045

Tabela: critérios AHP normalizados

AHP: TABELA DE CRITÉRIOS

 Avaliação das soluções candidatas com as prioridades dos critérios em relação ao objetivo

Sol/Crit	PAs	Dist	F. Cobertura	Máx banda	Objetivo
1	0.025	0.016	0.003	0.002	0.047
2	0.028	0.016	0.003	0.003	0.049
3	0.029	0.015	0.006	0.003	0.053
4	0.030	0.015	0.004	0.003	0.052
5	0.032	0.014	0.007	0.004	0.057
6	0.035	0.014	0.003	0.003	0.054
7	0.037	0.014	0.005	0.002	0.057
8	0.038	0.013	0.001	0.002	0.054
9	0.038	0.013	0.004	0.003	0.057
10	0.041	0.013	0.002	0.002	0.058
11	0.033	0.012	0.014	0.004	0.063
12	0.042	0.012	0.008	0.003	0.065
13	0.034	0.011	0.011	0.003	0.059
14	0.042	0.011	0.011	0.003	0.068
15	0.036	0.010	0.018	0.004	0.068
16	0.051	0.010	0.005	0.003	0.069
17	0.046	0.010	0.011	0.003	0.069

Tabela: Tabela Soluções/Resultado AHP

lacktriangle Escalarização dos valores feita com $\delta_j=$ 10

Sol/Crit Objetivo	PAs	Dist	F. Cobertura	Máx banda
1	0	10	1.3043	1.8223
2	1.1111	9.3798	1.3043	2.98
3	1.4815	8.944	3.0435	3.2883
4	1.8519	7.8845	1.7391	5.4157
5	2.5926	7.4247	3.4783	8.8901
6	3.7037	6.9274	1.3043	2.9677
7	4.4444	6.135	2.1739	2.0905
8	4.8148	5.8304	0	0
9	4.8148	4.8527	1.7391	5.3047
10	6.2963	4.5559	0.43478	0.99573
11	2.963	3.5954	7.8261	10
12	6.6667	2.9054	4.3478	3.5817
13	3.3333	2.4642	6.087	3.011
14	6.6667	1.8888	6.087	3.8404
15	4.0741	0.76412	10	7.7128
16	10	0.6227	2.6087	5.3281
17	8.1481	0	5.6522	3.5574

Tabela: soluções/Critérios na escala de o a 10

- 1. Definição de pesos para cada critério considerado:
 - ► Vetor Prioridade = [0.618; 0.2184; 0.1162; 0.0474]
- Comparação entre cada solução na qual se irá utilizar o método, a fim de se formar as matrizes J que contém elementos com as seguintes lógica:

 - $I^{=}(a_{i}, a_{k}) = j \in J | c_{i}(a_{i}) = c_{i}(a_{k})$
 - ▶ $J^+(a_i, a_k) = j \in J | c_j(a_i) < c_j(a_k)$
- 3. As relações das matrizes *J* são convertidas nas matrizes *P* que contém as informações de forma numérica.

Sol	1	2	3		15	16	17
1	Ø	0,2184	0,2184		0,2184	0,2184	0,2184
2	0,6654	Ø	0,2184		0,2184	0,2184	0,2184
3	0,7816	0,7816	Ø		0,2184	0,3346	0,2184
:	:	:	:	٠.	:	÷	:
15	0,7816	0,7816	0,7816		Ø	0,382	0,382
16	0,7816	0,7816	0,6654		0,618	Ø	0,8838
17	0,7816	0,7816	0,7816	• • •	0,618	0,1162	Ø

Tabela: Matriz P+

Sol	1	2	3		15	16	17
1	Ø	0.6654	0.7816		0.7816	0.7816	0.7816
2	0.2184	Ø	0.7816		0.7816	0.7816	0.7816
3	0.2184	0.2184	Ø	• • •	0.7816	0.6654	0.7816
:	:	:	:	٠.	:	÷	:
15	0.2184	0.2184	0.2184		Ø	0.6180	0.6180
16	0.2184	0.2184	0.3346		0.3820	Ø	0.1162
17	0.2184	0.2184	0.2184		0.3820	0.8838	Ø

Tabela: Matriz P-

- É calculada a matriz de concordância que representa a soma das matrizes P^+ e P^- dividias pela soma total dos pesos, o que, neste caso, esta soma é igual a 1.
- É calculada a matriz de discordância:

$$D_{ik} = \begin{cases} \mathsf{O}, & \mathsf{se} \ J^- a_i, a_k) = \emptyset \\ \mathsf{O} & \delta_j \max(c_j(a_k) - c_j(a_i)), j \in J^{^-} - (a_i, a_k), c.c. \end{cases}$$

Sol	1	2	3		15	16	17
1	Ø	0.3346	0.2184		0.2184	0.2184	0.2184
2	0.7816	Ø	0.2184		0.2184	0.2184	0.2184
3	0.7816	0.7816	Ø	• • •	0.2184	0.3346	0.2184
:	•						
•		:	:	•	:	:	:
: 15			: 0.7816				: 0.382
15	0.7816	0.7816		• • •	Ø	: 0.382 ∅	: 0.382 0.8838

Tabela: Matriz Concordância

Sol	1	2	3	• • •	15	16	17
1	Ø	0.0579	0.087	• • •	0.4348	0.5000	0.4074
2	0.031	Ø	0.087	• • •	0.4348	0.4444	0.3519
3	0.0528	0.0218	Ø	• • •	0.3478	0.4259	0.3333
:	:	:	:	٠.	:	:	÷
15	0.4618	0.4308	0.4090		Ø	0.2963	0.2037
16	0.4689	0.4379	0.4161	• • •	0.3696	Ø	0.1522
17	0.5000	0.4690	0.4472	• • •	0.2174	0.0926	Ø

Tabela: Matriz Discordância

■ Por fim é feita a sobreclassificação seguindo o seguinte parâmetros:

$$a_i S a_k \Leftrightarrow \begin{cases} C_{ik} \geq \tau_c \\ D_{ik} \leq \tau_d \end{cases}$$

Os limiares de concordância e discordância foram calculados utilizando a ideia de umbral de comparação. Eles podem ser calculados da seguinte maneira:

$$\tau_{c} = \frac{\sum_{i} \sum_{j} c_{ij}}{n(n-1)} = 0.5067$$

$$\tau_{d} = \frac{\sum_{i} \sum_{j} d_{ij}}{n(n-1)} = 0.2285$$

SOLUÇÕES ORDENADAS

Saldo	Solução	Num de PA	Distancia	F. Cobertura	Máx largura de banda
7	13	36	18677.0772	0.9700	56.3458
7	1	27	26158.0956	0.9920	50.9512
6	2	30	25542.4384	0.9920	56.2048
5	3	31	25109.7969	0.9840	57.6043
3	4	32	24057.9610	0.9900	67.2587
1	6	37	23107.8320	0.9920	56.1494
0	15	38	16989.3071	0.9520	77.6839
-1	11	35	19800.0059	0.9620	88.0637
-1	8	40	22018.7989	0.9980	42.6809
-1	7	39	22321.1397	0.9880	52.1684
-2	10	44	20753.5419	0.9960	47.1998
-2	5	34	23601.5438	0.9820	83.0266
-4	17	49	16230.7396	0.9720	58.8256
-4	14	45	18105.7842	0.9700	60.1096
-4	12	45	19115.0121	0.9780	58.9355
-4	9	40	21048.1735	0.9900	66.7551
-6	16	54	16848.9138	0.9860	66.8611

Tabela: Resultado

COMPARAÇÃO ENTRE OS MÉTODOS

Sol	Rank AHP	Rank ELECTRE I
1	1	13
2	2	1
3	4	2
4 5	3	3
5	8	4
6	6	6
7	5	15
8	7	11
9	9	8
10	10	7
11	13	10
12	11	5
13	12	17
14	14	14
15	15	12
16	17	9
17	16	16

Tabela: Resultado comparativo dos métodos

Análise

- Semelhança entre os resultados dos dois métodos
- Preferência de ambos por soluções com menos PA's (peso do critério)
- Preferência do ELECTRE pela solução 13, com 36 pontos e 18677 metros de distância total
- A melhoria na qualidade do sinal pode compensar a instalação de 9 pontos a mais

CONCLUSÃO

- Importância dos métodos de auxílio à decisão: analisar as alternativas seria improdutivo e inconclusivo
- A definição dos critérios e sua relação de importância é fundamental: deve ser feita por quem conhece a fundo o domínio do problema
- Usar mais de um método pode ser útil para se avaliar a consistência dos resultados, confrontar alternativas e tomar a decisão

Perguntas?

REFERENCES

Introdução à Identificação de Sistemas.

Editora UFMG, 2015.

MODELAGEM E SIMULAÇÃO DE PROCESSOS INDUSTRIAIS E DE SISTEMAS ELECTROMECÂNICOS.

Acadêmica. Edusp, 2. ed. rev. e ampl., 2 reimpr edition, 2013.

BRUNO OTÁVIO SOARES TEIXEIRA.

REVISÃO DE MÉTODOS DE ESTIMAÇÃO DE PARÂMETROS DE SISTEMAS DINÂMICOS LINEARES DE PRIMEIRA E SEGUNDA ORDENS.

Notas de Aula, 2009.

ROBERTO ZANASI AND LUIGI BIAGIOTTI.

LECTURE NOTES ON SYSTEM AND CONTROL THEORY.

Notas de Aula, 2017.