DALL-E 2: Text-to-Image Generation

Mustafa Hajij June 20, 2025

What is DALL-E 2?

- A text-to-image model that generates images from natural language prompts.
- Built on CLIP and a diffusion-based Decoder with a Unet.
- Produces diverse, high-quality images aligned with text descriptions.

Objective

Transform text into visually coherent images using advanced deep learning.

CLIP: Contrastive Language-Image Pre-training

- Role: Encodes text and images into a shared latent space.
- Structure:
 - Text encoder: 512-dim, 8 heads, 256 seg len.
 - Visual encoder: 512-dim, 256x256 images, 32x32 patches.
- **Training**: Contrastive loss to align text-image pairs.
- **Usage**: Provides embeddings for conditioning the decoder.

Key Feature

Enables semantic understanding of text prompts for image generation.

Unet: The Core Generator

- Design: U-shaped network with encoder-decoder and skip connections.
- Purpose: Generates images from noise in the diffusion process.
- Configuration:
 - dim = 128: Base feature dimension.
 - image_embed_dim = 512: Matches CLIP's image embeddings.
 - dim_mults = (1, 2, 4, 8): Scales features across layers.

Strength

Balances local details and global context in image synthesis.

Decoder: From Text to Image

- Components: Integrates Unet and CLIP.
- Process: Diffusion over timesteps = 100 steps.
- **Conditioning**: Text and image embeddings guide the generation.
- Output: Images conditioned on CLIP embeddings.

Mechanism

Iteratively refines noise into images guided by text semantics.

Training Process of DALL-E 2

- Overview: Two-stage process involving a prior and a decoder, both using diffusion models.
- · Stage 1: Prior Training
 - **Goal**: Map text embeddings $c_t = \text{CLIP}_{\text{text}}(t)$ to image embeddings $c_i = \text{CLIP}_{\text{image}}(x)$.
 - · Method: Diffusion model in embedding space.
- Stage 2: Decoder Training
 - **Goal**: Generate images x from image embeddings c_i .
 - Method: Unet-based diffusion model in image space.

Distinction from Imagen

DALL-E 2 uses a separate diffusion prior to generate image embeddings from text, whereas Imagen directly conditions the diffusion process on text embeddings.

Prior Training Loss: Explained

Loss Function:

$$\mathcal{L} = \mathbb{E}\left[\|\epsilon - \epsilon_{\phi}(c_{i,t}, t, c_{t})\|^{2}\right]$$

- c_{i.t}: Noisy image embedding at time step t.
- ϵ : Actual noise added to the image embedding.
- $\epsilon_{\phi}(c_{i,t},t,c_t)$: Noise predicted by the prior model ϕ , given $c_{i,t}$, time t, and text embedding c_t .

· Idea Behind It:

- Measures the difference between the actual noise and the model's prediction.
- Trains the model to denoise embeddings by learning the noise distribution.

Why It's Key:

- Enables the prior to generate image embeddings that align with text prompts.
- Captures the semantic relationship between text and images in the embedding space.
- Foundation for the decoder to produce coherent images.

Decoder Training: Detailed Loss Explanation

Loss Function:

$$\mathcal{L} = \mathbb{E}\left[\|\epsilon - \epsilon_{\theta}(\mathbf{x}_t, t, c_i)\|^2\right]$$

- x_t : Noisy image at time step t in the diffusion process.
- ϵ : True noise sampled from a Gaussian distribution, added to the clean image.
- $\epsilon_{\theta}(x_t, t, c_i)$: Noise predicted by the Unet model θ , conditioned on x_t , time t, and image embedding c_i .

· Mathematical Intuition:

- · Mean squared error (MSE) between actual and predicted noise.
- \mathbb{E} averages over noise samples and timesteps, ensuring robust learning.
- Minimizing this loss trains the Unet to reverse the diffusion process.

Diffusion Process Connection:

- x_t is derived from x_0 (clean image) via $x_t = \sqrt{\alpha_t}x_0 + \sqrt{1 \alpha_t}\epsilon$, where α_t controls noise level.
- Unet learns to predict ϵ to recover x_0 step-by-step.

· Conditioning Role:

• c_i (from prior) embeds text semantics, aligning the denoising with the prompt.

Key Outcome

The Unet effectively denoises images, producing results consistent with the text input.

Decoder Training Loss: Explained

Loss Function:

$$\mathcal{L} = \mathbb{E}\left[\|\epsilon - \epsilon_{\theta}(\mathbf{x}_{t}, t, c_{i})\|^{2}\right]$$

- x_t: Noisy image at time step t.
- ϵ : Actual noise added to the image.
- $\epsilon_{\theta}(x_t, t, c_i)$: Noise predicted by the Unet model θ , given x_t , time t, and image embedding c_i .

Purpose:

- Trains the Unet to accurately predict the noise in the image at each diffusion step.
- Ensures effective denoising to generate a coherent image that aligns with the image embedding c_i .

Conditioning:

• c_i : Image embedding generated by the prior from text embedding c_t , guiding the image generation.

Key Insight

The loss ensures the generated image is semantically consistent with the text prompt via the image embedding.

9

Inference: Text to Image

- · Input: Text prompt processed by CLIP.
- · Steps:
 - 1. Generate text embedding via CLIP.
 - 2. Use prior to generate image embedding from text embedding.
 - 3. Initialize random noise (e.g., 256x256).
 - 4. Denoise iteratively using the decoder to produce the image.
- Result: Image reflecting the prompt's meaning.

Flexibility

Stochastic diffusion allows multiple outputs per prompt.

Applications and Challenges

Applications:

- · Art and design creation.
- · Visual prototyping and storytelling.
- · Synthetic data generation.

· Challenges:

- High computational cost.
- · Limited handling of complex prompts.
- · Data bias risks.

Next Steps

Optimize efficiency and improve robustness.