# Introduction to the Theory of Computation Homework #8 Brian Gianforcaro

# 1 Venn Diagram:



2 Show the following is decidable:

Given a CFG G, is L(G) non empty?

#### **Proof:**

3 Sipser, exercise 4.6

Assume B is countable and that  $f: \mathbb{N} \to \mathbb{B}$  is a functional correspondence. Let  $f_i(j)$  denote the  $i^{th}$  symbol in f(j). Consider the string s whose  $i^{th}$  element differs from  $f_i(i)$ , then the  $i^{th}$  symbol in s is 1 and vice versa. Then s cannot be in the image of f since it differs from every string in the image of f by at least one symbol. Furthermore, s is in B since it is an infinite sequence over  $\{0,1\}$ . Therefore, B is uncountable.

4 Sipser, exercise 4.12

# Definition of the given Turing machine:

M = "On input  $\langle R, S \rangle$  where R and S are regular expressions

- 1. Convert R to DFA A and S to DFA B
- 2. Construct DFA C such that L(C) = L(B)?L(A)
- 3. Submit  $\langle A, C \rangle$  to the decider for EQDFA

- 4. If it accepts, accept.
- 5. If it rejects, reject."

M is a decidable since steps 1, 2, 4, and 5 will not create and infinite loops and step 2 calls a decider. Also, M accepts  $\langle R, S \rangle$  if and only if L(R) = L(R)? L(S). Therefore, M is a decider for A so A is decidable.

- 5 **Problem:** Given a CFG G, is  $L(G) = \Sigma^*$
- (a) CFGs are strictly more powerful than REs, this problem is in both RE and  $\overline{RE}$ .

(b)

6 Sipser, exercise 5.9

## **Proof:**

We show that the language T is undecidable by showing that  $H_{TM} \geq T$ . The reduction function f takes as input (M, w) where M is a Turing Machine and w is a string, and outputs  $f(M, w) = (N_{M,w})$ , where  $N_{M,w}$  is the Turing Machine that does the following:

- On input x:
  - 1. If x = 01, then accept.
  - 2. Else if  $x \neq 10$ , then reject.
  - 3. Else then simulate M on w. If M halts on w, then accept.

Clearly, the function f is computable. If  $(M, w) \in H_{TM}$  or M halts on w then  $L(N_{M,w}) = \{01, 10\}$ , thus  $(N_{M,w}) \notin T$ . We conclude that  $(M, w) \in H_{TM}$  if and only if  $f(M, w) \in T$ . Therefore f is a reduction from  $H_{TM}$  to T. It follows that T is undecidable as  $H_{TM}$  is undecidable.

7 Sipser, exercise 5.13

### **Proof:**

We show that  $USELESS_{TM}$  is undecidable by showing that  $\overline{H_{TM}} \geq USELESS_{TM}$ . The reduction function f takes as input (M, w) where M is a Turing Machine and w is a string, and outputs  $f(M, w) = (N_{M,w})$ , where  $N_{M,w}$  is the Turing Machine that does the following:

- On input symbol 0,  $N_{M,w}$  simply enters all it's states except for a special state  $\overline{q}$ .
- On input symbol 1,  $N_{M,w}$  simulates M on w, if M halts on w, then enters state  $\overline{q}$ .

Clearly, the function f is computable. From the behavior of  $N_{M,w}$  on input symbol 0, it is clear that only the special state  $\overline{q}$  can be useless, and from the behavior of  $N_{M,w}$  on input symbol 1, it is clear that  $\overline{q}$  is useless if and only if M does not halt on w. Therefore  $(M,w) \in \overline{H_{TM}}$  if and only if  $f(M,w) \in USELESS_{TM}$ , and hence f is a reduction from  $\overline{H_{TM}}$  to  $USELESS_{TM}$ . It follows that  $USELESS_{TM}$  is undecidable as  $H_{TM}$  is undecidable.