Calcul Différentiel II

MINES ParisTech

22 septembre 2021 (#c1a798e)

Question 1 (réponses multiples) Cochez la case s'il est possibe d'expliciter une dépendance fonctionnelle de la forme $x=\psi(\lambda)$ par le théorème des fonctions implicites quand :
□ A: $x\lambda^2 + x^2\lambda - 1 = 0$ au voisinage de $(x, \lambda) = (1, 1)$, □ B: $\sin(\lambda x_1) + \sin(\lambda x_2) = 0$ au voisinage de $(x_1, x_2, \lambda) = (0, 0, 0)$, □ C: $\lambda x_1^2 + x_2 = x_1 + \lambda x_2^2 = 2$ au voisinage de $(x_1, x_2, \lambda) = (1, 1, 1)$.
Question 2 La méthode de Newton appliquée à la recherche d'une solution de
$x^2 - 1 = 0, \ x \in \mathbb{R}$
produit une suite de valeurs réelles \boldsymbol{x}_k définies par la récurrence
□ A: $x_{k+1} = x_k^2 - 1$, □ B: $x_{k+1} = 1/x_k$, □ C: $x_{k+1} = 0.5(x_k + 1/x_k)$.
Question 3 Une fonction $f: \mathbb{R}^2 \mapsto \mathbb{R}^2$ continûment différentiable et dont la matrice jacobienne est inversible en tout point est un C^1 -difféomorphisme de \mathbb{R}^2 sur son image $f(\mathbb{R}^2)$.
□ A: vrai,□ B: faux.
Question 4 (réponses multiples) Le symbole ε désigne l'epsilon machine des doubles. Le nombre d'or $x=(1+\sqrt{5})/2\approx 1.618$ peut être représenté par un double x avec une erreur $ \mathbf{x}-x $:
\square A: de l'ordre de $1.618 \times \varepsilon$, \square B: de l'ordre de ε , \square C: de l'ordre de $\varepsilon/2$.

$$y = ((1.0 + x) - 1.0) / x$$

et la valeur attendue 1.0

 \square D: nulle.

 $\hfill\Box$ A: augmente (de façon monotone),

\square B: augmente (en tendance générale),
\square C: diminue (en tendance générale).
Question 6 Appliquée à une fonction d'une variable, la méthode de différen-
tiation automatique:
☐ A: produit une fonction dérivée exacte,
•
☐ B: produit une fonction dérivée correctement arrondie,
☐ C: produit une fonction dérivée sans erreur de troncature.