SBML Model Report

Model identifier: "MPhase"

February 28, 2009

1 General Overview

This is a document in SBML Level 2 Version 1 format. Table 1 gives an overview of the quantities of all components of this model.

Table 1: The SBML components in this model. All components are described in more detail in the following sections.

8			
Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	20
events	0	constraints	0
reactions	11	function definitions	0
global parameters	0	unit definitions	0
rules	0	initial assignments	0

2 Unit Definitions

This is an overview of five unit definitions. All units are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

			*				
Id	Name	SBO	Spatial	Size	Unit	Constant	Outside
			Dimensions				
default			3	1	litre		
c1	cell		3	1	litre	$\overline{\mathbb{Z}}$	default

3.1 Compartment default

This is a three-dimensional compartment with a constant size of one litre.

3.2 Compartment c1

This is a three-dimensional compartment with a constant size of one litre that is surrounded by default.

Name cell

4 Species

This model contains 20 species. Section 6 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi-
- 2	ContinD		$\operatorname{mol} \cdot \operatorname{l}^{-1}$		tion
s3	CyclinB	c1	$mol \cdot l^{-1}$		
s5	PP2A	c1			
s6	Kinase X	c1	$\text{mol} \cdot 1^{-1}$		
s7	CAK	c1	$\text{mol} \cdot 1^{-1}$	\Box	
s10	Nim1	c1	$\operatorname{mol} \cdot 1^{-1}$		\Box
s11	Lamin	c1	$\text{mol} \cdot l^{-1}$		
s12	M-Phase	c1	$\text{mol} \cdot l^{-1}$	\Box	\Box
s21	Lamin	c1	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
s4	Cdc25	c1	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
s8	Mik1	c1	$\operatorname{mol} \cdot 1^{-1}$		\Box
s9	Wee1	c1	$\operatorname{mol} \cdot \operatorname{l}^{-1}$		\Box
s22	Cdc25	c1	$\operatorname{mol} \cdot 1^{-1}$		\Box
s24	Wee1	c1	$\operatorname{mol} \cdot 1^{-1}$		
s25	Mik1	c1	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
s26	a33_degraded	c1	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
s2	Cdc2	c1	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
s27	Complex(CyclinB,Cdc2)	c1	$\text{mol} \cdot l^{-1}$		\Box
s28	Complex(CyclinB,Cdc2)	c1	$\operatorname{mol} \cdot 1^{-1}$		\Box
s29	Complex(CyclinB,Cdc2)	c1	$\operatorname{mol} \cdot 1^{-1}$		\Box
s 30	Complex(CyclinB,Cdc2)	c1	$\text{mol} \cdot 1^{-1}$		

5 Reactions

This model contains eleven reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by one or more modifiers, the identifiers of the modifier species are written above the reaction arrow.

Table 4: Overview of all reactions

No	Id	Name	Reaction Equation	SBO
1	r1		$s21 \xrightarrow{s29} s11$	
2	r2		$\mathtt{s11} \longrightarrow \mathtt{s12}$	
3	r 7		$s4 \xrightarrow{s5} s22$	
4	r8		$\mathtt{s22} \xrightarrow{\mathtt{s6}} \mathtt{s4}$	
5	r11		$s25 \xrightarrow{s10} s8$	
6	r12		$s24 \xrightarrow{s10} s9$	
7	r13		$s27 \xrightarrow{s7} s28$	
8	r14		$s28 \xrightarrow{s22} s29$	
9	r15		$s30 \xrightarrow{s24, s25} s27$	
10	r17		$s29 \longrightarrow s2 + s26$	
11	r18		$s2 + s3 \longrightarrow s30$	

5.1 Reaction r1

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$s21 \xrightarrow{s29} s11 \tag{1}$$

Reactant

Table 5: Properties of each reactant.

Id	Name	SBO
s21	Lamin	

Modifier

Table 6: Properties of each modifier.

Id	Name	SBO
s29	Complex(CyclinB,Cdc2)	

Product

Table 7: Properties of each product.

Id	Name	SBO
s11	Lamin	

Kinetic Law

$$v_1 = \text{not specified}$$
 (2)

5.2 Reaction r2

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$s11 \longrightarrow s12$$
 (3)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
s11	Lamin	

Product

Table 9: Properties of each product.

Id	Name	SBO
s12	M-Phase	

Kinetic Law

$$v_2 = \text{not specified}$$
 (4)

5.3 Reaction r7

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$s4 \xrightarrow{s5} s22$$
 (5)

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
s4	Cdc25	

Modifier

Table 11: Properties of each modifier.

Id	Name	SBO
s5	PP2A	

Product

Table 12: Properties of each product.

Id	Name	SBO
s22	Cdc25	

Kinetic Law

$$v_3 = \text{not specified}$$
 (6)

5.4 Reaction r8

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$s22 \xrightarrow{s6} s4$$
 (7)

Reactant

Table 13: Properties of each reactant.

Id	Name	SBO
s22	Cdc25	

Modifier

Table 14: Properties of each modifier.

Id	Name	SBO
s6	Kinase X	

Product

Table 15: Properties of each product.

Id	Name	SBO
s4	Cdc25	

Kinetic Law

$$v_4 = \text{not specified}$$
 (8)

5.5 Reaction r11

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$s25 \xrightarrow{s10} s8 \tag{9}$$

Reactant

Table 16: Properties of each reactant.

Id	Name	SBO
s25	Mik1	

Modifier

Table 17: Properties of each modifier.

Id	Name	SBO
s10	Nim1	

Product

Table 18: Properties of each product.

Id	Name	SBO
s8	Mik1	

Kinetic Law

$$v_5 = \text{not specified}$$
 (10)

5.6 Reaction r12

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$s24 \xrightarrow{s10} s9 \tag{11}$$

Reactant

Table 19: Properties of each reactant.

Id	Name	SBO
s24	Wee 1	

Modifier

Table 20: Properties of each modifier.

Id	Name	SBO
s10	Nim1	

Product

Table 21: Properties of each product.

Id	Name	SBO
s9	Wee1	

Kinetic Law

$$v_6 = \text{not specified}$$
 (12)

5.7 Reaction r13

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$s27 \xrightarrow{s7} s28 \tag{13}$$

Reactant

Table 22: Properties of each reactant.

Id	Name	SBO
s27	Complex(CyclinB,Cdc2)	

Modifier

Table 23: Properties of each modifier.

Id	Name	SBO
s7	CAK	

Product

Table 24: Properties of each product.

Id	Name	SBO
s28	Complex(CyclinB,Cdc2)	

Kinetic Law

$$v_7 = \text{not specified}$$
 (14)

5.8 Reaction r14

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$s28 \xrightarrow{s22} s29 \tag{15}$$

Reactant

Table 25: Properties of each reactant.

Tueste 25: 1 repetites et euen reuetant.		
Id	Name	SBO
s28	Complex(CyclinB,Cdc2)	

Modifier

Table 26: Properties of each modifier.

Id	Name	SBO
s22	Cdc25	

Product

Table 27: Properties of each product.

Tueste 277 Treperiore er euem preducti		
Id	Name	SBO
s29	Complex(CyclinB,Cdc2)	

Kinetic Law

$$v_8 = \text{not specified}$$
 (16)

5.9 Reaction r15

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Reaction equation

$$s30 \xrightarrow{s24, s25} s27 \tag{17}$$

Reactant

Table 28: Properties of each reactant.

	Name	SBO
s30	Complex(CyclinB,Cdc2)	

Modifiers

Table 29: Properties of each modifier.

Id	Name	SBO
s24	Wee1	
s25	Mik1	

Product

Table 30: Properties of each product.

Id	Name	SBO
s27	Complex(CyclinB,Cdc2)	

Kinetic Law

$$v_9 = \text{not specified}$$
 (18)

5.10 Reaction r17

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$s29 \longrightarrow s2 + s26$$
 (19)

Reactant

Table 31: Properties of each reactant.

	Name	SBO
s29	Complex(CyclinB,Cdc2)	

Products

Table 32: Properties of each product.

Id	Name	SBO
s2	Cdc2	
s26	a33_degraded	

Kinetic Law

$$v_{10} = \text{not specified}$$
 (20)

5.11 Reaction r18

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$s2 + s3 \longrightarrow s30$$
 (21)

Reactants

Table 33: Properties of each reactant.

Id	Name	SBO
s2	Cdc2	
s3	CyclinB	

Product

Table 34: Properties of each product.

Id	Name	SBO
s30	Complex(CyclinB,Cdc2)	

Kinetic Law

$$v_{11} = \text{not specified}$$
 (22)

6 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

The identifiers for reactions, which are not defined properly or which are lacking a kinetic equation, are highlighted in red.

6.1 Species s3

Name CyclinB

Initial amount 0 mol

This species takes part in one reaction (as a reactant in r18).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}3 = -\nu_{11} \tag{23}$$

6.2 Species s5

Name PP2A

Initial amount 0 mol

This species takes part in one reaction (as a modifier in r7).

$$\frac{\mathrm{d}}{\mathrm{d}t}s5 = 0\tag{24}$$

6.3 Species s6

Name Kinase X

Initial amount 0 mol

This species takes part in one reaction (as a modifier in r8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}\mathbf{6} = 0\tag{25}$$

6.4 Species s7

Name CAK

Initial amount 0 mol

This species takes part in one reaction (as a modifier in r13).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}7 = 0\tag{26}$$

6.5 Species s10

Name Nim1

Initial amount 0 mol

This species takes part in two reactions (as a modifier in r11, r12).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}\mathbf{10} = 0\tag{27}$$

6.6 Species s11

Name Lamin

Initial amount 0 mol

This species takes part in two reactions (as a reactant in r2 and as a product in r1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}\mathbf{1}\mathbf{1} = \mathbf{v}_1 - \mathbf{v}_2 \tag{28}$$

6.7 Species s12

Name M-Phase

Initial amount 0 mol

This species takes part in one reaction (as a product in r2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}12 = \mathbf{v}_2\tag{29}$$

6.8 Species s21

Name Lamin

Initial amount 0 mol

This species takes part in one reaction (as a reactant in r1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}21 = -\nu_1 \tag{30}$$

6.9 Species s4

Name Cdc25

Initial amount 0 mol

This species takes part in two reactions (as a reactant in r7 and as a product in r8).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{s} 4 = \mathbf{v_4} - \mathbf{v_3} \tag{31}$$

6.10 Species s8

Name Mik1

Initial amount 0 mol

This species takes part in one reaction (as a product in r11).

$$\frac{\mathrm{d}}{\mathrm{d}t} s8 = v_5 \tag{32}$$

6.11 Species s9

Name Wee1

Initial amount 0 mol

This species takes part in one reaction (as a product in r12).

$$\frac{\mathrm{d}}{\mathrm{d}t} s9 = v_6 \tag{33}$$

6.12 Species s22

Name Cdc25

Initial amount 0 mol

This species takes part in three reactions (as a reactant in r8 and as a product in r7 and as a modifier in r14).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}22 = v_3 - v_4 \tag{34}$$

6.13 Species s24

Name Wee1

Initial amount 0 mol

This species takes part in two reactions (as a reactant in r12 and as a modifier in r15).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}24 = -v_6 \tag{35}$$

6.14 Species s25

Name Mik1

Initial amount 0 mol

This species takes part in two reactions (as a reactant in r11 and as a modifier in r15).

$$\frac{\mathrm{d}}{\mathrm{d}t} s25 = -v_5 \tag{36}$$

6.15 Species s26

Name a33_degraded

Initial amount 0 mol

This species takes part in one reaction (as a product in r17).

$$\frac{\mathrm{d}}{\mathrm{d}t} s26 = v_{10} \tag{37}$$

6.16 Species s2

Name Cdc2

Initial amount 0 mol

This species takes part in two reactions (as a reactant in r18 and as a product in r17).

$$\frac{d}{dt}s2 = v_{10} - v_{11} \tag{38}$$

6.17 Species s27

Name Complex(CyclinB,Cdc2)

Initial amount 0 mol

This species takes part in two reactions (as a reactant in r13 and as a product in r15).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}27 = \mathbf{v}_9 - \mathbf{v}_7\tag{39}$$

6.18 Species s28

Name Complex(CyclinB,Cdc2)

Initial amount 0 mol

This species takes part in two reactions (as a reactant in r14 and as a product in r13).

$$\frac{\mathrm{d}}{\mathrm{d}t} s28 = v_7 - v_8 \tag{40}$$

6.19 Species s29

Name Complex(CyclinB,Cdc2)

Initial amount 0 mol

This species takes part in three reactions (as a reactant in r17 and as a product in r14 and as a modifier in r1).

$$\frac{d}{dt}s29 = v_8 - v_{10} \tag{41}$$

6.20 Species s30

Name Complex(CyclinB,Cdc2)

Initial amount 0 mol

This species takes part in two reactions (as a reactant in r15 and as a product in r18).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}30 = \mathbf{v}_{11} - \mathbf{v}_{9} \tag{42}$$

 $\mathfrak{BML2}^{d}$ X was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d, Wolfgang Müller^d, and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States of America

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany