1.3. Таблица неопределенных интегралов (первообразных)

Ниже представлена таблица наиболее употребляемых неопределенных интегралов. Бо́льшая часть формул получена непосредственно из определения действия интегрирования как действия, обратного дифференцированию. Достоверность остальных формул можно проверить дифференцированием.

A A CONTRACTOR	
1	$\int 0 \mathrm{d}x = C, \ \forall x \in \mathbb{R}$
2	$\int 1 \mathrm{d}x = \int \mathrm{d}x = x + C, \ \forall x \in \mathbb{R}$
3	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \in \mathbb{N}^*, \ x \in \mathbb{R}$
4	$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ \forall x \in (0, +\infty), \ \alpha \in \mathbb{R} \setminus \{-1\}$
5	$\int \frac{1}{\sqrt{x}} \mathrm{d}x = 2\sqrt{x} + C, \ \forall x \in (0, +\infty)$
6	$\int a^x dx = \frac{a^x}{\ln a} + C, \ \forall x \in \mathbb{R}, \ a \in \mathbb{R}_+^* \setminus \{1\}$
7	$\int e^x dx = e^x + C, \ \forall x \in \mathbb{R}$
8	$\int \frac{1}{x} dx = \ln x + C, \ \forall x \in (-\infty, 0) \cup (0, +\infty)$
9	$\int \cos x \mathrm{d}x = \sin x + C, \ \forall x \in \mathbb{R}$
10	$\int \sin x \mathrm{d}x = -\cos x + C, \ \forall x \in \mathbb{R}$
11	$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + C, \ \forall x \in \mathbb{R} \setminus \left\{ (2k+1) \frac{\pi}{2} \middle k \in \mathbb{Z} \right\}$
12	$\int \frac{1}{\sin^2 x} dx = -\operatorname{ctg} x + C, \ \forall x \in \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}\$
13	$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C = -\arccos x + C_1, \ \forall x \in (-1, 1)$
14	$\int \frac{1}{1+x^2} dx = \operatorname{arctg} x + C = -\operatorname{arcctg} x + C_1, \ \forall x \in \mathbb{R}$
15	$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C, \ \forall x \in \mathbb{R}, \ a \neq 0$
16	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C, \ \forall x \in (-a, a), \ a > 0$
17	$\int \frac{\mathrm{d}x}{a^2 - x^2} = \frac{1}{2a} \ln \left \frac{a + x}{a - x} \right + C, \ \forall x \in \mathbb{R} \setminus \{-a, a\}, \ a \neq 0$
18	$\int \frac{\mathrm{d}x}{\sqrt{a^2 + x^2}} = \ln x + \sqrt{a^2 + x^2} + C, \ a \neq 0, \ x \in \mathbb{R}^*$
19	$\int \frac{\mathrm{d}x}{\sqrt{x^2 - a^2}} = \ln x + \sqrt{x^2 - a^2} + C, \ a > 0, \ x \in (-\infty, -a) \cup (a, +\infty)$