

Corso di Robotica 1

Cinematica dei robot

Prof. Alessandro De Luca

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Cinematica dei robot manipolatori

- "Studio degli aspetti geometrici e temporali del moto delle strutture robotiche, senza riferimento alle cause che lo provocano"
- Robot visto come

"catena cinematica (aperta) di corpi rigidi connessi da giunti (prismatici o rotanti)"

Motivazioni

- specifiche funzionali
 - determinazione dello spazio di lavoro (workspace)
 - calibrazione
- specifiche operative

modalità di esecuzione (attuazione) del compito

definizione del compito e sua valutazione

in due "spazi" diversi connessi da legami cinematici/dinamici

- pianificazione delle traiettorie
- programmazione
- schemi di controllo

Cinematica: formulazione e parametrizzazione

- scelta della parametrizzazione q
 - caratterizza in modo univoco e minimale la particolare configurazione del robot
 - n = # gradi di libertà (dof) = # giunti (rotatori o traslatori) del robot
- scelta della parametrizzazione r
 - caratterizza in modo compatto le componenti di posizione e/o orientamento di interesse per il compito (task)
 - m ≤ 6, e solitamente m ≤ n (ma non è necessario)

STATE OF THE PARTY OF THE PARTY

Catene cinematiche aperte

- m = 2
 - puntamento nello spazio
 - posizionamento nel piano
- m = 3
 - orientamento nello spazio
 - posizionamento e orientamento nel piano

Classificazione tipi cinematici (primi 3 gradi di libertà)

P = giunto ad 1 dof prismatico (traslatorio) R = giunto ad 1 dof rotatorio

Cinematica diretta

 La struttura della funzione cinematica diretta dipende dalla scelta di r

$$r = f_r(q)$$

- Metodi per ricavare f_r(q)
 - geometrico/per ispezione
 - sistematico: assegnando SR solidali con i bracci del robot e usando matrici di trasformazione omogenea

Esempio: cinematica diretta 2R

in casi più generali occorre un "metodo"!

 $\phi = q_1 + q_2$

Numerazione bracci/giunti

A DOWN WAR

Relazioni tra assi di giunto

 $a_i = distanza AB$ (sempre univocamente definita)

 α_i = angolo di twist tra gli assi di giunto [proiettati sul piano π normale all'asse di braccio]

con segno (pos/neg)!

STORYM VE

Relazioni tra assi di braccio

 $d_i = CD$ (distanza variabile se giunto i è prismatico)

 θ_i = angolo (variabile se giunto i è rotatorio) tra gli assi dei bracci [proiettati sul piano σ normale all'asse di giunto]

con segno (pos/neg)!

Assegnazione SR secondo Denavit-Hartenberg

STORYM VE

Parametri di Denavit-Hartenberg

- asse z_i lungo l'asse di giunto i+1
- asse x_i lungo la normale comune agli assi di giunto i e i+1 (verso: i \rightarrow i+1)
- a_i = distanza DO_i orientata con x_i (costante = "lunghezza" braccio i)
- $d_i = distanza O_{i-1}D$ orientata con z_{i-1} (variabile se giunto i PRISMATICO)
- α_i = angolo di twist tra z_{i-1} e z_i intorno a x_i (costante)
- θ_i = angolo tra x_{i-1} e x_i intorno a z_{i-1} (variabile se giunto i ROTATORIO)

STONE STONE

Ambiguità nella definizione dei SR

- per SR₀: origine e asse x₀ sono arbitrari
- per SR_n : l'asse z_n non è determinato (ma x_n deve essere incidente e ortogonale a z_{n-1})
- quando z_{i-1} e z_i sono paralleli, la normale comune non è univocamente determinata (O_i può essere scelto arbitrariamente su z_i)
- quando z_{i-1} e z_i sono incidenti, il verso di x_i è arbitrario (spesso però $x_i = z_{i-1} \times z_i$)

Trasformazione omogenea da SR_{i-1} a SR_i

rototraslazione intorno e lungo z_{i-1}

$$^{i-1}\!A_{i'}\left(q_i\right) = \begin{bmatrix} c\theta_i - s\theta_i & 0 & 0 \\ s\theta_i & c\theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c\theta_i - s\theta_i & 0 & 0 \\ s\theta_i & c\theta_i & 0 & 0 \\ 0 & 0 & 1 & d_i \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

giunto rotatorio $\Rightarrow q_i = \theta_i$ giunto prismatico $\Rightarrow q_i = d_i$

rototraslazione intorno e lungo x_i

$$i'A_{i} = \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & c\alpha_{i} & -s\alpha_{i} & 0 \\ 0 & s\alpha_{i} & c\alpha_{i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \leftarrow \text{costante nel tempo}$$

Matrice di Denavit-Hartenberg

$$^{i\text{-}1}A_{i}\;(q_{i})=^{i\text{-}1}A_{i'}\;(q_{i})\;^{i'}A_{i}=\begin{bmatrix}c\theta_{i}&-c\alpha_{i}\;s\theta_{i}&s\alpha_{i}\;s\theta_{i}&a_{i}c\theta_{i}\\s\theta_{i}&c\alpha_{i}\;c\theta_{i}&-s\alpha_{i}\;c\theta_{i}&a_{i}s\theta_{i}\\0&s\alpha_{i}&c\alpha_{i}&d_{i}\\0&0&1\end{bmatrix}$$

notazione compatta: $c = \cos$, $s = \sin$

Cinematica diretta di manipolatori

Esempio: robot SCARA

Passo 1: assi di giunto

tutti paralleli (o coincidenti)

 $\begin{array}{c} \text{twists } \alpha_{\ i} = 0 \\ \text{oppure } \pi \end{array}$

Passo 2: assi di braccio

le "quote" verticali degli assi dei bracci sono (per ora) arbitrarie

$$a_3 = 0$$

Passo 3: terne

assi **y**_i non riportati (non servono; completano terne destre)

STONE STONE

Passo 4: tabella di DH

i	α_{i}	a _i	d _i	θ_{i}
1	0	a_1	d_1	q_1
2	0	a_2	0	q_2
3	0	0	q_3	0
4	π	0	d ₄	q_4

N.B. d_1 e d_4 si potevano scegliere = 0 ! inoltre qui $d_4 < 0$!!

Passo 5: calcolo trasformazioni

$${}^{0}A_{1}(q_{1}) = \begin{vmatrix} c\theta_{1} & -s\theta_{1} & 0 & a_{1}c\theta_{1} \\ s\theta_{1} & c\theta_{1} & 0 & a_{1}s\theta_{1} \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$${}^{1}A_{2}(q_{2}) = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & a_{2}c\theta_{2} \\ s\theta_{2} & c\theta_{2} & 0 & a_{2}s\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}A_{3}(q_{3}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$q = (q_1, q_2, q_3, q_4)$$

= $(\theta_1, \theta_2, d_3, \theta_4)$

$${}^{2}A_{3}(q_{3}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{3}A_{4}(q_{4}) = \begin{bmatrix} c\theta_{4} & s\theta_{4} & 0 & 0\\ s\theta_{4} & -c\theta_{4} & 0 & 0\\ 0 & 0 & -1 & d_{4}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Passo 6: cinematica diretta

$${}^{0}A_{3}(q_{1},q_{2},q_{3}) = \begin{bmatrix} c_{12} & -s_{12} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12} & c_{12} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & 1 & d_{1} + q_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{3}A_{4}(q_{4}) = \begin{bmatrix} c_{4} & s_{4} & 0 & 0 \\ s_{4} & -c_{4} & 0 & 0 \\ 0 & 0 & -1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{c}
R(q_{1},q_{2},q_{4}) = [\text{ n s a }] \\
0A_{4}(q_{1},q_{2},q_{3},q_{4}) = \begin{bmatrix}
c_{124} & s_{124} & 0 \\
s_{124} & -c_{124} & 0 \\
0 & 0 & -1
\end{bmatrix}
\begin{bmatrix}
a_{1}c_{1} + a_{2}c_{12} \\
a_{1}s_{1} + a_{2}s_{12} \\
d_{1} + q_{3} + d_{4}
\end{bmatrix} p = p(q_{1},q_{2},q_{3})$$

$$\begin{bmatrix} a_1c_1 + a_2c_{12} \\ a_1s_1 + a_2s_{12} \\ d_1 + q_3 + d_4 \end{bmatrix} p = p(q_1, q_2, q_3)$$

6 dofs: 2R-1P-3R (polso sferico)

- offset di spalla
- è mostrata "una possibile" assegnazione di terne di D-H
- determinare
 - tabella dei parametri di D-H
 - matrici di trasformazione omogenea
 - cinematica diretta
- scrivere un programma per la cinematica diretta
 - numerico (Matlab)
 - simbolico (SM toolbox Matlab, Maple, Mathematica, etc.)

Tabella di DH per lo Stanford manipulator

6 dofs: 2R-1P-3R (polso sferico)

le variabili di giunto sono in rosso: è il riportato il loro valore corrente nella configurazione mostrata

STONE STONE

Esercizio: KUKA KR5 Sixx R650

6R (offsets sia di spalla che di gomito, polso sferico)

- determinare
 - terne e tabella dei parametri di D-H
 - matrici di trasformazione omogenea
 - cinematica diretta

disponibile nel Laboratorio di Robotica del DIS