Rappel: racine carrée

Si a est un nombre positif, on note \sqrt{a} et on appelle **racine carrée de** a le nombre <u>positif</u> tel que : $(\sqrt{a})^2 = a$.

La racine carrée d'un nombre négatif n'existe donc pas puisqu'un carré est toujours positif.

Rappel: racine carrée

Si a est un nombre positif, on note \sqrt{a} et on appelle **racine carrée de** a le nombre <u>positif</u> tel que : $(\sqrt{a})^2 = a$.

La racine carrée d'un nombre négatif n'existe donc pas puisqu'un carré est toujours positif.

Rappel: racine carrée

Si a est un nombre positif, on note \sqrt{a} et on appelle **racine carrée de** a le nombre <u>positif</u> tel que : $(\sqrt{a})^2 = a$.

La racine carrée d'un nombre négatif n'existe donc pas puisqu'un carré est toujours positif.

Rappel: racine carrée

Si a est un nombre positif, on note \sqrt{a} et on appelle **racine carrée de** a le nombre <u>positif</u> tel que : $(\sqrt{a})^2 = a$.

La racine carrée d'un nombre négatif n'existe donc pas puisqu'un carré est toujours positif.

Rappel : racine carrée

Si a est un nombre positif, on note \sqrt{a} et on appelle **racine carrée de** a le nombre <u>positif</u> tel que : $(\sqrt{a})^2 = a$.

La racine carrée d'un nombre négatif n'existe donc pas puisqu'un carré est toujours positif.

Rappel : racine carrée

Si a est un nombre positif, on note \sqrt{a} et on appelle **racine carrée de** a le nombre <u>positif</u> tel que : $(\sqrt{a})^2 = a$.

La racine carrée d'un nombre négatif n'existe donc pas puisqu'un carré est toujours positif.

Rappel: racine carrée

Si a est un nombre positif, on note \sqrt{a} et on appelle **racine carrée de** a le nombre <u>positif</u> tel que : $(\sqrt{a})^2 = a$.

La racine carrée d'un nombre négatif n'existe donc pas puisqu'un carré est toujours positif.