Chapter 4

Higher Order Differential Equations

4.1 Method of Undetermined Coefficients

Table 4.1: Particular Solutions for Undetermined Coefficients

$\mathbf{g}(\mathbf{x})$		Form of y _p	
1.	1 (any constant)	A	
2.	5x + 7	Ax + B	
3.	$3x^2 - 2$	$Ax^2 + Bx + C$	
4.	$x^3 - x + 1$	$Ax^3 + Bx^2 + Cx + E$	
5.	$\sin 4x$	$A\cos 4x + B\sin 4x$	
6.	$\cos 4x$	$A\cos 4x + B\sin 4x$	
7.	e^{5x}	Ae^{5x}	
8.	$(9x-2)e^{5x}$	$(Ax+B)e^{5x}$	
9.	x^2e^{5x}	$(Ax^2 + Bx + C)e^{5x}$	
10.	$e^{3x}\sin 4x$	$Ae^{3x}\cos 4x + Be^{3x}\sin 4x$	
11.	$5x^2\sin 4x$	$(Ax^{2} + Bx + C)\cos 4x + (Ex^{2} + Fx + G)\sin 4x$	
<u>12.</u>	$xe^{3x}\cos 4x$	$(Ax+B)e^{3x}\cos 4x + (Cx+E)e^{3x}\sin 4x$	

Chapter 6

Series Solutions of Linear Equations

6.1 Solving Linear DE's without constant coefficients

Table 6.1: Maclaurin Series Representations

	Maclaurin Series	Interval of Convergence
$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty}$		$(-\infty,\infty)$
$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty}$	$\frac{(-1)^n}{(2n)!}x^{2n} (6.2)$	$(-\infty,\infty)$
$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^n}$	$\frac{1)^n}{(6.3)}x^{2n+1}$	$(-\infty,\infty)$
$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n^n}$	$(6.4)^n \frac{(-1)^n}{(-1)^n} x^{2n+1}$	[-1,1]
$ \cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}$	$\frac{1}{(2n)!}x^{2n}$ (6.5)	$(-\infty,\infty)$
$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{1}{(2n)^n}$	$\frac{1}{(6.6)}x^{2n+1}$	$(-\infty,\infty)$
$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{n=1}^{\infty} \frac{(x^n)^n}{2^n}$	$\frac{(-1)^{n+1}}{n}x^n \qquad (6.7)$	(-1,1]
$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x_n^n + x^2 + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x_n^n + x^2 + x^$	$\sum_{n=0}^{\infty} x^n \tag{6.8}$	(-1,1)

Chapter 7

Method of Laplace Transforms for Solving DE's

7.1 Definition of Laplace Transform

Table 7.1: Transforms of Some Basic Functions

$$\mathcal{L}\left\{1\right\} = \frac{1}{s} \qquad (7.1)$$

$$\mathcal{L}\left\{t^{n}\right\} = \frac{n!}{s^{n+1}} \qquad (7.2)$$

$$\mathcal{L}\left\{e^{at}\right\} = \frac{1}{s-a} \qquad (7.3)$$

$$\mathcal{L}\left\{\sin kt\right\} = \frac{k}{s^{2}+k^{2}} \qquad (7.4)$$

$$\mathcal{L}\left\{\cos kt\right\} = \frac{s}{s^{2}+k^{2}} \qquad (7.5)$$

$$\mathcal{L}\left\{\sinh kt\right\} = \frac{k}{s^{2}-k^{2}} \qquad (7.6)$$

$$\mathcal{L}\left\{\cosh kt\right\} = \frac{s}{s^{2}-k^{2}} \qquad (7.7)$$

7.2 Solving I.V.T by using Laplace Transform