```
In [227]: import pandas as pd

dataset = pd.read_csv("/content/abalone.csv")
    df = pd.DataFrame(dataset)
    df
```

Out[227]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

```
In [228]: from warnings import filterwarnings
filterwarnings("ignore")
```

```
In [229]: df.columns
```

In [230]: df.dtypes

Out[230]: Sex

object Length float64 Diameter float64 float64 Height Whole weight float64 Shucked weight float64 Viscera weight float64 Shell weight float64 int64 Rings dtype: object

In [231]: df.describe()

Out[231]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

In [232]: df.shape

Out[232]: (4177, 9)

```
In [233]: df.isnull().sum()
Out[233]: Sex
                            0
          Length
                             0
          Diameter
          Height
          Whole weight
          Shucked weight
          Viscera weight
          Shell weight
                             0
          Rings
                             0
          dtype: int64
In [234]: df.duplicated()
Out[234]: 0
                   False
                  False
          1
                  False
           2
           3
                  False
                  False
          4
                   . . .
          4172
                  False
                  False
          4173
          4174
                  False
          4175
                  False
                  False
          4176
          Length: 4177, dtype: bool
In [235]: df.duplicated().sum()
Out[235]: 0
```

In [236]: df.head()

Out[236]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

In [237]: df.tail()

Out[237]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

In [16]: import matplotlib.pyplot as plt
import seaborn as sns

In [17]: df.hist(bins=20,figsize=(40,20),color='r')
plt.show()

In [221]: df.plot(figsize=(18, 8))
plt.show()

In [222]: |sns.distplot(df["Sex"])

Out[222]: <AxesSubplot:xlabel='Sex', ylabel='Density'>


```
In [245]: sns.countplot(x="Viscera weight",data=df)
```

Out[245]: <AxesSubplot:xlabel='Viscera weight', ylabel='count'>


```
In [243]: df.groupby('Sex').Sex.count().plot(kind='pie')
    plt.title('Sex')
    plt.show()
```


In [241]: plt.scatter(df['Height'] , df['Rings'], c='k', marker='x')

Out[241]: <matplotlib.collections.PathCollection at 0x1d3d61a3eb0>


```
In [239]: sns.countplot(x='Sex',hue='Whole weight',data=df)
Out[239]: <AxesSubplot:xlabel='Sex', ylabel='count'>
```

In [19]: sns.pairplot(df)
plt.show()

In [23]: corr=df.corr()
corr

Out[23]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	age
Sex	1.000000	-0.036066	-0.038874	-0.042077	-0.021391	-0.001373	-0.032067	-0.034854	-0.034627
Length	-0.036066	1.000000	0.986812	0.827554	0.925261	0.897914	0.903018	0.897706	0.556720
Diameter	-0.038874	0.986812	1.000000	0.833684	0.925452	0.893162	0.899724	0.905330	0.574660
Height	-0.042077	0.827554	0.833684	1.000000	0.819221	0.774972	0.798319	0.817338	0.557467
Whole weight	-0.021391	0.925261	0.925452	0.819221	1.000000	0.969405	0.966375	0.955355	0.540390
Shucked weight	-0.001373	0.897914	0.893162	0.774972	0.969405	1.000000	0.931961	0.882617	0.420884
Viscera weight	-0.032067	0.903018	0.899724	0.798319	0.966375	0.931961	1.000000	0.907656	0.503819
Shell weight	-0.034854	0.897706	0.905330	0.817338	0.955355	0.882617	0.907656	1.000000	0.627574
age	-0.034627	0.556720	0.574660	0.557467	0.540390	0.420884	0.503819	0.627574	1.000000

In [103]: plt.figure(figsize=(20,5))

sns.heatmap(corr, annot=True, vmin=-1, cmap='crest')

Out[103]: <AxesSubplot:>


```
In [220]: plt.figure(figsize=(18,5))
    corr['Sex'].sort_values(ascending=False).plot(color='r')
```

Out[220]: <AxesSubplot:>


```
In [202]: from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

for i in df:
    if df[i].dtype=='object':
        df[i]=le.fit_transform(df[i])
```

```
In [206]: x=df.drop(columns=['Sex'],axis = 1)
y = df.Sex
```

```
In [207]: from sklearn.preprocessing import scale
X_Scaled = pd.DataFrame(scale(x), columns=x.columns)
X_Scaled.head()
```

Out[207]:		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	age
	0	-0.574558	-0.432149	-1.064424	-0.641898	-0.607685	-0.726212	-0.638217	1.571544
	1	-1.448986	-1.439929	-1.183978	-1.230277	-1.170910	-1.205221	-1.212987	-0.910013
	2	0.050033	0.122130	-0.107991	-0.309469	-0.463500	-0.356690	-0.207139	-0.289624
	3	-0.699476	-0.432149	-0.347099	-0.637819	-0.648238	-0.607600	-0.602294	0.020571
	4	-1.615544	-1.540707	-1.423087	-1.272086	-1.215968	-1.287337	-1.320757	-0.910013

```
In [209]: from sklearn.model_selection import train_test_split
X_Train, X_Test, Y_Train, Y_Test = train_test_split(X_Scaled, y, test_size=0.2,random_state=0)
```

```
In [211]: from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=10,criterion='entropy')
```

```
In [212]: model.fit(X_Train,Y_Train)
```

Out[212]: RandomForestClassifier(criterion='entropy', n_estimators=10)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [213]: y_predict = model.predict(X_Test)
In [214]: y_predict_train = model.predict(X_Train)
```

```
In [216]: from sklearn.metrics import accuracy score, confusion matrix, classification report
In [217]: print('Training accuracy: ',accuracy_score(Y_Train,y_predict_train))
          print('Testing accuracy: ',accuracy score(Y Test,y predict))
          Training accuracy: 0.9829392397485782
          Testing accuracy: 0.5179425837320574
In [218]: pd.crosstab(Y_Test,y_predict)
Out[218]:
           col_0
                       1
                           2
             Sex
              0 117 29 103
                  36 211
                          44
              2 139 52 105
In [219]: print(classification_report(Y_Test,y_predict))
                        precision
                                     recall f1-score
                                                         support
                     0
                              0.40
                                        0.47
                                                  0.43
                                                             249
                             0.72
                                       0.73
                                                 0.72
                     1
                                                             291
                                       0.35
                     2
                              0.42
                                                  0.38
                                                             296
                                                  0.52
                                                             836
              accuracy
                                                 0.51
             macro avg
                              0.51
                                       0.52
                                                             836
          weighted avg
                              0.52
                                        0.52
                                                  0.52
                                                             836
  In [ ]:
```