

Implementation of Vehicle Dispatching and Monitoring in a Self-Driving Delivery Emulation System for Urban Areas

Kang Yen (顏慷)

Institute of Computer and Communication Engineering
National Cheng Kung University

Tainan, Taiwan

2019-07-23

Unmanned Delivery of Takkyubin

Motivation

- 1. The **last mile delivery** is one of the most expensive stages of the entire e-logistic chain.
- 2. In the last mile delivery, the most widespread delivery mode is **home delivery**.
- 3. In the area of home delivery, there is no complete self-driving delivery system.
- 4. The thesis develops the software part of a self-driving delivery emulation system.
- 5. Thus, the self-driving development company can apply the implementation into the actual self-driving cars for achieving the goal of system integration directly.

Related Work- Delivery Modes

	Aerial vehicles [7]	A joint ground and aerial delivery service framework [8]	Cargo bikes [9]	Self-driving Vehicles [11]
Rapidity	0	\triangle	×	Δ
Scalability	×	\triangle	×	(a)
Reliability	×		Δ	(a)
Computati on time	Δ	×		Δ

 \bigcirc Excellent, \triangle Ordinary, \times Poor

Introduction

- 1. The thesis implements a **vehicle dispatching and monitoring system** to simulate the parcel delivery process.
- 2. The system develops a dispatching mechanism to deal with the order requests and arranges the routes dynamically and immediately.
- 3. This study utilizes the SUMO simulator with the map of the downtown area of Tainan.
- 4. The simulation is performed with five scenarios of the parcel delivery service.

System Architecture with Self-Driving Truck

A Whole System Overview

Traffic Control Interface

SUMO Simulator Retrieve and Display and manipulate return Real-time I/O Data Interface TraCI (Traffic Control Interface) TraaS (TraCI as a Service) Android Client

Vehicle Monitoring and Dispatching System

- Real-time I/O Interface communicate between the simulation and the user application bi-directionally.
- TraCI retrieves the values of vehicles and manipulates their behaviors.
- The service binds on a specific IP address with a specific port.
- TraaS communicates with the Android Client.

Manipulation of Vehicle Routing

After

Map Address Conversion

Sender ______ longitude, _ address Google Map API latitude

convertRoad function in SUMO API of SUMO

Flow Chart of Parcel Delivery Process in Sender's Part

Flow Chart of Parcel Delivery Process in Receiver's Part

DCL

Dispatching Mechanism

211

Vehicle ID Small size Container number

	V1	V2	V3
small	111 112		
medium		221	
large			

After the small box insertion, v1,v2 and v3 exists

	V1	V2	V3	V4	V5
small	111				
medium	121	221	321	421	
	122		322	422	
	123		323		
large					

After the medium box insertion, v2, v4 and v5 exists

Case One: Simple Time Scheduling Stage (1)

Current Time=09:05

	V1	V2	V3
09:30	S1:Taiwan Tainan District Court, small(111)		
10:00			
10:30			
11:00	S2:Anping Fort, small(112)	S3:Durban Department Store, medium (221)	
11:30			

Case Two: Simple Time Scheduling Stage (2)

Current Time:09:15

	V1	V2	V3
09:30	S1:Taiwa n Tainan District Court, small(111)	S4:Hayashi Departmen t Store, small (211)	
10:00			
10:30			
11:00	S2:Anpin g Fort, Small (112)	S3:Durban Departmen t Store, medium (221)	
11:30			

Case Three: Simple Time Scheduling Stage (3)

Current Time:09:20

	V1	V2	V3
09:30	S1:Taiwan Tainan District Court, small (111)	S4:Hayashi Department Store, small (211)	
10:00	S5:Tainan Chenggong Road Post Office, medium (121)		
10:30			
11:00	S2:Anping Fort, small (112)	S3:Durban Department Store, medium (221)	
11:30			

Sender Scenario

Time	V2
09:30	S4:Hayashi Department Store
10:00	
10:30	
11:00	S3:Durban Department Store
11:30	

Receiver Scenario (1)

Time	V2
09:30	S4:Hayashi
	Department Store
10:00	R4:National
	Cheng Kung
	University
	Hospital
10:30	
11:00	S3:Durban
	Department Store
11:30	

Receiver 4 selects the arrival time of the parcel at 09:37.

Vehicle 2 forwards to the receiver's address at 09:40.

Receiver 4 gets the coming notification 09:55.

Receiver Scenario (2)

Time	V2
09:30	S4:Hayashi Department Store
10:00	R4:National Cheng Kung University Hospital
10:30	
11:00	S3:Durban Department Store
11:30	

Parameters of Simulation

Parameters	Value
Simulation area	50.07 km ²
The number of junctions	6785
The number of roads	25069
The number of trucks	3
Vmax	5.0 [m/s]=18 km/hr
Average speed of truck	3.8 [m/s]=13.68 km/hr
Simulation time	09:00~15:00 (6 hours=21600 seconds)

Average Vehicle Speed Estimation

Simulation Result-Initialization

Simulation Result- Sender Request

Current Timeseconds:1203 (09:20:03)

Current Timeseconds:1218 (09:20:18)

Simulation Result- Loading Process

Current Timeseonds:2104 (09:35)

Simulation Result- Receiver Request

Current Timeseconds:2104 (09:35:04)

Current Timeseconds:2176 (09:36:16)

Simulation Result- Unloading Process

Conclusion

- 1. The study implemented a vehicle dispatching and monitoring system to simulate the package delivery process.
- 2. This system used Traffic Control Interface to manipulate the vehicle's behavior and retrieve values in SUMO simulator.
- 3. With the proposed dispatching mechanism, the system can detect whether the order is established.
- 4. The simulation result showed the whole parcel delivery process with the parking scenario.

Future Work

Scalability: The system would be used in larger map and have more trucks into different areas according to the number of parcels.

Quantity: The system has to deal with a larger batch of orders in a brief period of time in the future.

Accuracy: The accuracy of the estimated vehicle speed should be measured by the real-time road conditions.