Einführung in die GIS-Programmierung

Ein praktischer Python-Leitfaden für Open-Source-Geoinformatik-Tools

US-Medianwert von Immobilien
México

nach Landkreis

Einführung in die GIS-Programmierung

Ein praktischer Python-Leitfaden für Open-Source-Geoinformatik-Tools

Contents

Vorwort	
Einführung	
Für wen dieses Buch ist	
Was dieses Buch abdeckt	
Das Beste aus diesem Buch herausholen	
In diesem Buch verwendete Konventionen	
Herunterladen der Codebeispiele	
Video-Tutorials	7
Kontakt aufnehmen	
Danksagungen	7
Über den Autor	
Lizenzierung und Urheberrecht	9
I: Softwareeinrichtung	11
1. Überblick über Software-Tools	
1.1. Einführung	
1.2. Lernziele	
1.3. Wesentliche Software-Tools	
1.4. Tool-Integration und Workflow	
1.5. Code-Beispiele ausführen	
1.6. Wichtige Erkenntnisse	
2. Einführung in das Python-Paketmanagement	
2.1. Einführung	
2.2. Lernziele	
2.3. Installation von Conda (Miniconda)	18
2.4. Conda-Konzepte verstehen	
2.5. Ihre erste Geodaten-Umgebung erstellen	
2.6. Conda-Fehlerbehebung	
2.7. Wesentliche Conda-Befehle	
2.8. Einführung in uv: Die schnelle Alternative	
2.9. Best Practices für Package Management	
2.10. Wichtige Erkenntnisse	
2.11. Übungen	
3. Visual Studio Code einrichten	
3.1. Einführung	
3.2. Lernziele	31
3.3. Visual Studio Code installieren	
3.4. Wichtige Erweiterungen für die Python-Programmierung	
3.5. VS Code für die Python-Entwicklung konfigurieren	
3.6. Wichtige Tastenkombinationen	
3.7. Referenzen und weiterführendes Lernen	
3.8. Wichtige Erkenntnisse	
3.9. Übungen	
4. Versionskontrolle mit Git	
4.1. Einführung	
4.2. Lernziele	
4.3. GitHub-Konto einrichten	

4.4.	Git installieren	41
4.5.	Git konfigurieren	42
4.6.	Git-Konzepte verstehen	42
4.7.	Wesentliche Git-Befehle	43
	GitHub verwenden	
4.9.	Integration mit VS Code	47
	Best Practices für Geospatial-Projekte	
	Wichtige Erkenntnisse	
	Übungen	
	ogle Colab verwenden	
	Einführung	
	Lernziele	
	Erste Schritte mit Google Colab	
	Ihre Geoinformations-Umgebung einrichten	
	Wesentliche Colab-Funktionen	
	Code-Beispiele in Colab ausführen	
	Wichtige Erkenntnisse	
	Übungen	
	beiten mit JupyterLab	
	Einführung	
	Lernziele	
	Installation und Einrichtung von JupyterLab	
	Erste Schritte mit JupyterLab	
	- * * *	
	Wichtige Tastenkürzel	
	Code-Beispiele auf MyBinder ausführen	
	Wichtige Erkenntnisse	
	Übungen	
	cker verwenden	
	Einleitung	
	Lernziele	
	Docker Desktop installieren	
	Grundlegende Konzepte	
	Code-Beispiele in Docker ausführen	
	Häufige Docker-Befehle	
	Wichtige Erkenntnisse	
7.8.	Übungen	72
II: Grur	ıdlagen der Python-Programmierung	75
	riablen und Datentypen	
	Einführung	
	Lernziele	
	Variablen in Python	
	Benennung von Variablen	
	Datentypen	
	Escape-Zeichen	
	Kommentare in Python	
8.8.	Arbeiten mit Variablen und Datentypen	
	Grundlegende String-Operationen	
	Wichtige Erkenntnisse	
0.10.	** TOTALLO LARCHITATIONO	. 00

8.11.	Übungen	. 83
9. Py	thon-Datenstrukturen	. 84
9.1.	Einführung	. 84
9.2.	Lernziele	. 84
9.3.	Tupel	. 84
9.4.	Listen	. 85
9.5.	Mengen (Sets)	. 88
	Wörterbücher (Dictionaries)	
	Leitfaden zur Auswahl von Datenstrukturen	
9.8.	Wichtige Erkenntnisse	. 94
9.9.	Übungen	. 94
10. St	ring-Öperationen	. 97
10.1	Einführung	. 97
10.2	Lernziele	. 97
10.3	Erstellen und Manipulieren von Strings	. 97
	String-Methoden für Geodaten	
	String-Formatierung	
10.6	Entscheidungshilfe für String-Operationen	105
	Wichtige Erkenntnisse	
10.8	Übungen	106
11. Sc	chleifen und bedingte Anweisungen	108
11.1.	Einführung	108
11.2	Lernziele	108
11.3	For-Schleifen	108
11.4	While-Schleifen	110
11.5	Steuerungsanweisungen: Entscheidungen in Ihrem Code treffen	111
11.6	Kombination von Schleifen und Steuerungsanweisungen	113
11.7	Entscheidungshilfe für Schleifen und Steuerungsanweisungen	115
11.8	Wichtige Erkenntnisse	115
11.9	Übungen	116
12. F	unktionen und Klassen	118
12.1.	Einführung	118
12.2.	Lernziele	118
12.3	Funktionen: Erstellen wiederverwendbarer Code-Blöcke	118
12.4	Klassen: Organisation von Daten und Verhalten zusammen	124
12.5	Kombination von Funktionen und Klassen	126
12.6	Richtlinien für Funktions- und Klassendesign	126
12.7	Wichtige Erkenntnisse	127
12.8	Übungen	127
13. A	rbeiten mit Dateien	129
13.1.	Einführung	129
	Lernziele	
13.3	Erstellen einer Beispieldatei	129
13.4	Lesen und Schreiben von Dateien	130
13.5	Ausnahmebehandlung	132
13.6	Kombination von Dateiverarbeitung und Ausnahmebehandlung	133
13.7	Arbeiten mit verschiedenen Dateiformaten	135
13.8.	Wichtige Erkenntnisse	137

13.9.	Übungen	137
14. Da	tenanalyse mit NumPy und Pandas	140
14.1.	Einführung	140
14.2.	Lernziele	140
14.3.	Einführung in NumPy	141
14.4.	Einführung in Pandas	151
14.5.	NumPy und Pandas kombinieren	159
14.6.	Wichtige Erkenntnisse	160
14.7.	Weiterführende Literatur	160
14.8.	Übungen	160
III: Geoi	nformatik-Programmierung mit Python	163
	of ührung in Geospatial Python	
	Einführung	
	Das Geospatial Python-Ökosystem	
	Verständnis der Bibliotheksbeziehungen	
	Einrichtung Ihrer Umgebung	
	Verifikation und erste Schritte	
15.6.	Lernpfad und Kapitelübersicht	168
15.7.	Wichtige Konzepte zum Merken	169
15.8.	Hilfe erhalten und Ressourcen	170
	Nächste Schritte	
	Übungen	
	ktordatenanalyse mit GeoPandas	
	Einführung	
	Lernziele	
	Grundkonzepte	
	Installation von GeoPandas	
	Erstellen von GeoDataFrames	
	Lesen und Schreiben von Geodaten	
	Projektionen und Koordinatenreferenzsysteme (CRS)	
	Räumliche Messungen und Analysen	
	Visualisierung von Geodaten	
	Erweiterte geometrische Operationen	
	Räumliche Beziehungen und Abfragen	
	Best Practices und Leistungsüberlegungen	
	Wichtige Erkenntnisse	
	Übungen	
	beiten mit Rasterdaten mit Rasterio	
	Einführung	
	Lernziele	
	Rasterio installieren	
	Rasterdaten lesen	
	Rasterdaten visualisieren	
	Zugriff auf und Manipulation von Rasterbändern	
	Rasterdaten schreiben	
	Wichtige Erkenntnisse	
	Ühungen	208

<i>18</i> .	Me	hrdimensionale Datenanalyse mit Xarray	211
18	3.1.	Einführung	211
18	3.2.	Lernziele	211
18	3.3.	Xarrays Datenmodell verstehen	212
18	3.4.	Einrichten Ihrer Umgebung	213
		Laden und Erkunden echter Klimadaten	
		Arbeiten mit DataArrays	
		Intuitive Datenauswahl und Indizierung	
		Durchführung von Operationen auf mehrdimensionalen Daten	
		Datenvisualisierung mit Xarray	
		Arbeiten mit Datasets: Mehrere Variablen	
		Die Kraft label-basierter Operationen	
		Erweiterte Indizierungstechniken	
		Hochrangige Rechenoperationen	
		Datenein- und -ausgabe	
		Wichtige Erkenntnisse	
		Weiterführende Literatur	
		Übungen	
		steranalyse mit Rioxarray	
		Einführung	
		Lernziele	
		Einrichten Ihrer Rioxarray-Umgebung	
		, e e	
		Laden und Erkunden georeferenzierter Rasterdaten	
		Grundlegende Geodatenoperationen	
		Arbeiten mit räumlichen Dimensionen und Auflösung	
		Visualisierung von Geodaten-Rasterdaten	
		Datenspeicherung und Dateiverwaltung	
		Koordinatensystem-Vergleiche	
		Einführung in Bandmathematik	
		Wichtige Erkenntnisse	
		Übungen	
		eraktive Visualisierung mit Leafmap	
		Einführung	
		Lernziele	
		Installation und Einrichtung von Leafmap	
20		Erstellen interaktiver Karten	
		Ändern von Basemaps	
		Visualisierung von Vektordaten	
		Erstellen von Choropleth-Karten	
		Visualisierung von GeoParquet-Daten	
		Visualisierung von PMTiles	
20	0.10.	Visualisierung von Rasterdaten	279
20).11.	Zugriff auf und Visualisierung von Maxar Open Data	286
20	0.12.	Wichtige Erkenntnisse	292
20	0.13.	Übungen	293
<i>21</i> .	Geo	overarbeitung mit WhiteboxTools	296
21	1.1.	Einführung	296
21	1.2.	Lernziele	296

	21.3.	Warum Whitebox?	. 297
	21.4.	Nützliche Ressourcen für Whitebox	. 298
	21.5.	Installation von Whitebox	. 299
	21.6.	Einzugsgebietsanalyse	. 299
		LiDAR-Datenanalyse	
		Wichtige Erkenntnisse	
		Übungen	
2:		-Kartierung mit MapLibre	
		Einführung	
		Lernziele	
		Nützliche Ressourcen	
		Installation und Einrichtung	
		Interaktive Karten erstellen	
		Hinzufügen von Kartensteuerelementen	
		Hinzufügen von Ebenen	
		Verwendung von MapTiler	
		3D-Kartierung	
		č	
		Visualisierung von Vektordaten	
		Visualisierung von Rasterdaten	
		Hinzufügen benutzerdefinierter Komponenten	
		Visualisierung von PMTiles	
		Hinzufügen von DeckGL-Ebenen	
		Export nach HTML	
		Wichtige Erkenntnisse	
		Übungen	
2.		oud Computing mit Earth Engine und Geemap	
		Einführung	
		Lernziele	
		Einführung in Google Earth Engine	
		Einführung in interaktive Karten und Tools	
		Der Earth Engine Datenkatalog	
		Earth Engine Datentypen	
	23.7.	Earth Engine Rasterdaten	. 382
		Earth Engine Vektordaten	
		Weitere Tools zur Visualisierung von Earth Engine-Daten	
	23.10.	Vektordatenverarbeitung	. 397
	23.11.	Rasterdatenverarbeitung	. 399
	23.12.	Exportieren von Earth Engine-Daten	. 406
	23.13.	Erstellen von Zeitrafferanimationen	. 408
	23.14.	Darstellung von Earth Engine-Daten	. 414
		Wichtige Erkenntnisse	
		Übungen	
2		perspektrale Datenvisualisierung mit HyperCoast	
		Einführung	
		Lernziele	
		Umgebungseinrichtung	
		Finden hyperspektraler Daten	
		Herunterladen hyperspektraler Daten	
			1

24.6.	Lesen hyperspektraler Daten	451
24.7.	Visualisierung hyperspektraler Daten	452
24.8.	Erstellen von Bildwürfeln	453
24.9.	Interaktives Schneiden	454
24.10	. Interaktive Schwellenwertbildung	456
	. Wichtige Erkenntnisse	
	. Übungen	
	ochleistungs-Geospatial-Analytik mit DuckDB	
	Einführung	
	Lernziele	
	Installation und Einrichtung	
	SQL-Grundlagen für räumliche Analysen	
	Python API-Integration	
	Datenimport	
	Dateminport	
	-	
	Arbeiten mit Geometrien	
	Räumliche Beziehungen	
	Räumliche Joins	
	. Großangelegte Datenanalyse	
	. Wichtige Erkenntnisse	
	. Übungen	
	ospatiale Datenverarbeitung mit GDAL und OGR	
	Einführung	
	Lernziele	
26.3.	Installation und Einrichtung	497
26.4.	Beispieldatensätze	497
26.5.	Verstehen Ihrer Daten	498
26.6.	Koordinatentransformation	498
26.7.	Formatkonvertierung	499
26.8.	Beschneiden und Maskieren	500
26.9.	Rasteranalyse und Berechnungen	
	. Konvertierung zwischen Raster und Vektor	
	Geometrieverarbeitung	
	Verwaltung von Feldern und Ebenen	
	. Kachelung und Datenverwaltung	
	Fortgeschrittene Rasterverarbeitung	
	Geländeanalyse	
	. Wichtige Erkenntnisse	
	Referenzen und weiterführende Literatur	
	. Übungen	
	teraktive Dashboards mit Voilà und Solara erstellen	
	Einführung	
	Lernziele	
	Installation von Voilà und Solara	
27.4.	6 66 6 I	
	Erstellen einer grundlegenden Voilà-Anwendung	
	Erstellen einer erweiterten Webanwendung mit Solara	
27.7.	Wichtige Erkenntnisse	. 532

	27.8.	Übungen	533
28	3. Ver	teiltes Computing mit Apache Sedona	534
	28.1.	Einführung	534
	28.2.	Lernziele	535
	28.3.	Installation und Einrichtung von Apache Sedona	535
	28.4.	Herunterladen von Beispieldaten	537
	28.5.	Kernkonzepte und Datenstrukturen	538
		Räumliche Operationen und Funktionen	
	28.7.	Räumliche Joins und Indizierung	544
		Erweiterte räumliche Analyse	
	28.9.	Lesen von Vektordaten	549
	28.10.	Visualisierung von Vektordaten	552
	28.11.	Schreiben von Vektordaten	555
	28.12.	Lesen von Rasterdaten	555
	28.13.	Visualisierung von Rasterdaten	557
	28.14.	Raster-Kartenalgebra	558
	28.15.	Raster-Zonal-Statistiken	559
	28.16.	Schreiben von Rasterdaten	560
		Integration mit GeoPandas	
	28.18.	Reale Anwendungsfälle	564
	28.19.	Wichtige Erkenntnisse	566
	28.20.	Referenzen und weiterführende Literatur	567
	28 21	Ühungen	567

Vorwort

Einführung

Geographische Informationssysteme (GIS) und geospatiale Analysen sind zu grundlegenden Werkzeugen in zahlreichen Disziplinen geworden, von der Umweltwissenschaft und Stadtplanung bis hin zur Geschäftsanalytik und öffentlichen Gesundheit. Da das Volumen und die Komplexität geospatialer Daten exponentiell weiter wachsen, ist die Fähigkeit, diese Daten programmatisch zu verarbeiten, zu analysieren und zu visualisieren, zu einer wesentlichen Fertigkeit für Forscher, Analysten und Fachkräfte geworden, die mit räumlichen Informationen arbeiten.

Python hat sich als führende Programmiersprache für geospatiale Analysen etabliert und bietet ein reichhaltiges Ökosystem von Bibliotheken und Werkzeugen, die komplexe räumliche Operationen sowohl für Anfänger als auch für Experten zugänglich machen. Dennoch kann der Weg vom Python-Anfänger zum selbstbewussten geospatialen Programmierer entmutigend erscheinen, mit zahlreichen Bibliotheken, die es zu erlernen gibt, und Konzepten, die es zu beherrschen gilt.

Dieses Buch überbrückt diese Lücke, indem es einen strukturierten, praxisorientierten Ansatz zum Erlernen der geospatialen Programmierung mit Python bietet. Anstatt Sie von Anfang an mit fortgeschrittenen Techniken zu überfordern, konzentrieren wir uns darauf, ein solides Fundament wesentlicher Fertigkeiten aufzubauen, das Ihnen während Ihrer gesamten geospatialen Programmierreise dienen wird. Jedes Kapitel baut auf den vorherigen auf und stellt sicher, dass Sie sowohl theoretisches Verständnis als auch praktische Expertise entwickeln.

Der in diesem Buch verwendete Ansatz ist praxisorientiert und beispielgesteuert. Sie werden mit echten geospatialen Datensätzen arbeiten, praktische Probleme lösen und Projekte erstellen, die die Kraft von Python für geospatiale Analyse und Visualisierung demonstrieren. Am Ende dieses Buches werden Sie das Vertrauen und die Fertigkeiten haben, Ihre eigenen geospatialen Programmierherausforderungen anzugehen.

Für wen dieses Buch ist

Dieses Buch ist für eine vielfältige Zielgruppe von Lernenden konzipiert, die die Kraft von Python für geospatiale Analyse und Visualisierung nutzen möchten:

Studierende und Forscher in Geographie, Umweltwissenschaften, Stadtplanung, Datenwissenschaft und verwandten Bereichen, die räumliche Daten als Teil ihrer Studien oder Forschung analysieren müssen. Es werden keine Programmiererfahrungen vorausgesetzt, obwohl grundlegende Vertrautheit mit Computern und Datenanalysekonzepten hilfreich ist.

GIS-Fachkräfte, die derzeit Desktop-GIS-Software verwenden und ihr Toolkit um Programmierfähigkeiten erweitern möchten. Wenn Sie mit ArcGIS, QGIS oder ähnlichen Werkzeugen gearbeitet haben und Arbeitsabläufe automatisieren oder Analysen durchführen möchten, die in traditioneller GIS-Software herausfordernd sind, wird Ihnen dieses Buch bei diesem Übergang helfen.

Datenwissenschaftler und Analysten, die mit standortbasierten Daten arbeiten und räumliche Analysefähigkeiten zu ihrem Skillset hinzufügen möchten. Wenn Sie sich mit Python-Grundlagen auskennen, aber neu in geospatialen Konzepten sind, führt Sie dieses Buch in das räumliche Denken und die Werkzeuge ein, die Sie benötigen.

Softwareentwickler, die sich für die Entwicklung von Anwendungen interessieren, die mit geospatialen Daten arbeiten. Egal, ob Sie Web-Mapping-Anwendungen, mobile Apps mit Standortfunktionen oder Datenverarbeitungs-Pipelines entwickeln, dieses Buch bietet das Fundament, das Sie benötigen.

Selbstlerner und Karrierewechsler, die sich für das wachsende Feld der geospatialen Datenwissenschaft interessieren. Das Buch setzt keine Vorkenntnisse in Python-Programmierung oder GIS-Konzepten voraus und macht es für motivierte Anfänger zugänglich.

Fachkräfte in Regierung und Industrie, die räumliche Analysen in ihre Arbeit einbeziehen müssen, wie Stadtplaner, Umweltberater, Marktforscher, Logistikkoordinatoren oder Beamte im öffentlichen Gesundheitswesen.

Die wichtigste Voraussetzung ist Neugier und Lernbereitschaft. Obwohl Programmiererfahrung hilfreich ist, ist sie nicht notwendig. Wir beginnen mit den Grundlagen und bauen systematisch auf.

Was dieses Buch abdeckt

Dieses Buch ist in drei progressive Abschnitte gegliedert, die Sie von der Software-Installation über Python-Grundlagen bis hin zur fortgeschrittenen geospatialen Programmierung führen:

Software-Installation bereitet Ihre Entwicklungsumgebung mit allem vor, was Sie für die geospatiale Programmierung benötigen. Sie lernen, wie Sie wesentliche Werkzeuge installieren und konfigurieren, einschließlich Miniconda für das Paketmanagement, VS Code für die Entwicklung, Git für die Versionskontrolle und cloudbasierte Alternativen wie Google Colab und JupyterLab. Dieser Abschnitt stellt sicher, dass Sie ein solides Fundament haben, bevor Sie in die Programmierung eintauchen.

Python-Programmiergrundlagen baut Ihre Kernprogrammierfähigkeiten durch sieben umfassende Kapitel auf. Beginnend mit Python-Grundlagen meistern Sie Variablen und Datentypen, Datenstrukturen (Listen, Wörterbücher, Mengen), String-Operationen, Kontrollfluss mit Schleifen und Bedingungen, Funktionen und Klassen, Dateienhandhabung und Datenanalyse mit NumPy und Pandas. Diese Fertigkeiten bilden das Fundament für alle geospatialen Programmieraufgaben.

Geospatiale Programmierung mit Python umfasst vierzehn spezialisierte Kapitel, die Sie zu einem selbstbewussten geospatialen Programmierer transformieren:

- Einführung in Geospatial Python Kernkonzepte und das Python-geospatiale Ökosystem
- Vektordatenanalyse mit GeoPandas Arbeiten mit Punkten, Linien und Polygonen
- Rasterdaten mit Rasterio Verarbeitung von Satellitenbildern und Rasterdatensätzen
- Mehrdimensionale Datenanalyse mit Xarray Umgang mit komplexen wissenschaftlichen Datensätzen
- Rasteranalyse mit Rioxarray Fortgeschrittene Rasterverarbeitung und -analyse
- Interaktive Visualisierung mit Leafmap Erstellen dynamischer, interaktiver Karten
- Geoprozessierung mit WhiteboxTools Fortgeschrittene räumliche Analyseoperationen
- 3D-Kartierung mit MapLibre Erstellung dreidimensionaler Visualisierungen
- Cloud Computing mit Earth Engine und Geemap Nutzung von Google Earth Engine für großskalige Analysen
- Hyperspektrale Datenvisualisierung mit HyperCoast Arbeiten mit hyperspektralen Daten
- Hochleistungs-Geospatiale Analytik mit DuckDB Hochleistungs-räumliche Datenverarbeitung
- Geospatiale Datenverarbeitung mit GDAL und OGR Arbeiten mit verschiedenen geospatialen Datenformaten
- Erstellung interaktiver Dashboards mit Solara Erstellen interaktiver Dashboards für geospatiale Anwendungen
- Verteiltes Rechnen mit Apache Sedona Verarbeitung großer geospatialer Datensätze in einer verteilten Umgebung

Jedes Kapitel folgt einer konsistenten Struktur:

- Klare Konzepterklärungen mit realweltlichem Kontext
- Schritt-für-Schritt-Codebeispiele mit detaillierten Anmerkungen
- Praktische Übungen mit authentischen geospatialen Datensätzen
- Häufige Fallstricke und Fehlerbehebungsanleitung
- Verweise auf zusätzliche Ressourcen und weiterführende Literatur

Die Progression ist sorgfältig so gestaltet, dass jedes Kapitel auf vorherigen Konzepten aufbaut und gleichzeitig neue Fähigkeiten einführt, wodurch sichergestellt wird, dass Sie sowohl Breite als auch Tiefe in der geospatialen Programmierung entwickeln.

Das Beste aus diesem Buch herausholen

Um Ihre Lernerfahrung mit diesem Buch zu maximieren, beachten Sie die folgenden Empfehlungen:

Richten Sie eine ordnungsgemäße Entwicklungsumgebung ein: Installieren Sie Python und die erforderlichen Bibliotheken wie im ersten Abschnitt des Buches beschrieben. Eine gut konfigurierte Umgebung wird Ihnen Zeit und Frustration während Ihrer Lernreise ersparen. Ziehen Sie die Verwendung von conda oder uv zur Verwaltung Ihrer Python-Pakete in Betracht, da dies die Installation geospatialer Bibliotheken vereinfacht.

Folgen Sie den Codebeispielen: Dieses Buch ist interaktiv konzipiert. Lesen Sie nicht nur den Codetippen Sie ihn ab, führen Sie ihn aus und experimentieren Sie mit Änderungen. Verständnis kommt durch Übung, und jedes Beispiel baut Fertigkeiten auf, die Sie später benötigen werden.

Arbeiten Sie die Übungen durch: Jedes Kapitel enthält Übungen, die darauf ausgelegt sind, die erlernten Konzepte zu verstärken. Diese sind keine optionalen Extras - sie sind ein integraler Bestandteil des Lernprozesses. Beginnen Sie mit den angeleiteten Übungen und fordern Sie sich dann mit eigenen Projekten heraus.

Verwenden Sie echte Daten: Während das Buch Datensätze für Beispiele und Übungen bereitstellt, versuchen Sie, die Techniken auf Daten aus Ihrem eigenen Bereich oder Ihren Interessen anzuwenden. Dies wird Ihnen helfen zu verstehen, wie die Konzepte auf realweltliche Szenarien angewendet werden, und Vertrauen in Ihre Fähigkeiten aufbauen.

Erstellen Sie Projekte: Während Sie durch das Buch voranschreiten, ziehen Sie es in Betracht, an einem persönlichen Projekt zu arbeiten, das Sie interessiert. Dies könnte die Analyse von Daten aus Ihrer Forschung, die Erstellung von Karten für Ihre Gemeinde oder die Lösung eines Problems sein, dem Sie bei Ihrer Arbeit begegnet sind.

Haben Sie Geduld mit sich selbst: Programmieren kann frustrierend sein, besonders wenn Sie lernen. Erwarten Sie, auf Fehler zu stoßen, Zeit mit dem Debuggen zu verbringen und sich gelegentlich festgefahren zu fühlen. Dies ist normal und Teil des Lernprozesses. Machen Sie Pausen, wenn nötig, und denken Sie daran, dass sich Expertise allmählich durch konsequente Übung entwickelt. Wenn Sie feststecken, zögern Sie nicht, um Hilfe im GitHub-Repository des Buches zu bitten.

Üben Sie weiter: Die Fertigkeiten in diesem Buch erfordern regelmäßige Übung zur Aufrechterhaltung und Entwicklung. Planen Sie regelmäßig Zeit für die Arbeit an geospatialen Programmierprojekten ein, auch wenn es kleine sind.

In diesem Buch verwendete Konventionen

Dieses Buch verwendet mehrere Konventionen, um Ihnen bei der Navigation durch den Inhalt und dem Verständnis der Codebeispiele zu helfen:

Code-Formatierung: Aller Python-Code erscheint in Monospace-Schriftart innerhalb von Codeblöcken. Wenn Code im regulären Text erscheint, ist er so formatiert. Datei- und Verzeichnisnamen sind ebenfalls in Monospace-Schriftart formatiert.

Codebeispiele: Die meisten Codebeispiele sind vollständig und ausführbar. Sie enthalten Kommentare, die die wichtigsten Konzepte und demonstrierten Techniken erklären. Zeilennummern können zur Referenz im begleitenden Text enthalten sein.

```
# Dies ist ein Beispiel für einen Codeblock
import leafmap
m = leafmap.Map()
m.add_basemap("OpenTopoMap") # eine Basiskarte zur Karte hinzufügen
m
```

Befehlszeilenanweisungen: Befehle, die in der Befehlszeile oder im Terminal eingegeben werden sollen, sind mit einem \$ -Prompt dargestellt:

```
$ pip install leafmap
$ python script.py
```

Herunterladen der Codebeispiele

Alle Codebeispiele, Datensätze und ergänzenden Materialien für dieses Buch sind kostenlos auf GitHub verfügbar:

https://github.com/giswqs/intro-gispro

Um die Materialien herunterzuladen, können Sie eine der folgenden Methoden verwenden:

• **Repository klonen** (wenn Sie Git installiert haben):

```
$ git clone https://github.com/giswqs/intro-gispro.git
```

- Als ZIP herunterladen (wenn Sie Git nicht verwenden möchten):
 - Besuchen Sie die GitHub-Repository-Seite
 - ► Klicken Sie auf den grünen **Code**-Button
 - ► Wählen Sie **Download ZIP**
 - Extrahieren Sie die Dateien an Ihren bevorzugten Ort
- Einzelne Dateien durchsuchen online über die GitHub-Oberfläche, wenn Sie nur spezifische Beispiele benötigen

Das Repository wird regelmäßig mit Korrekturen, Verbesserungen und zusätzlichen Beispielen aktualisiert. Schauen Sie regelmäßig nach Updates oder **verfolgen** Sie das Repository auf GitHub, um über Änderungen benachrichtigt zu werden.

Wenn Sie Fehler im Code finden oder Verbesserungsvorschläge haben, öffnen Sie bitte ein Issue oder reichen Sie einen Pull Request auf GitHub ein. Community-Beiträge helfen dabei, diese Ressource für alle besser zu machen.

Video-Tutorials

Ergänzend zum schriftlichen Inhalt wird dieses Buch durch eine umfassende Serie von Video-Tutorials unterstützt, die wichtige Konzepte durchgehen und zusätzliche Beispiele bieten:

https://tinyurl.com/intro-gispro-videos

Die Videos sind darauf ausgelegt, das schriftliche Material zu ergänzen, nicht zu ersetzen. Sie sind besonders hilfreich für:

- Visuelle Lerner, die davon profitieren, Code geschrieben und ausgeführt zu sehen
- Das Verständnis komplexer Konzepte durch mehrere Erklärungen
- Das Erlernen des Entwicklungsworkflows und bewährter Praktiken
- Das Sehen, wie man Probleme angeht und Probleme debuggt

Die Playlist ist so organisiert, dass sie der Struktur des Buches folgt. Sie können sie der Reihe nach ansehen, während Sie durch das Buch voranschreiten, oder zu spezifischen Themen springen, wie benötigt.

Die Videos wurden im Herbst 2024 erstellt, als ich den Kurs **Introduction to GIS Programming**¹ an der University of Tennessee unterrichtete. Obwohl der Kurs abgeschlossen ist, bleiben die Videos relevant und können als Referenz für das Buch verwendet werden. Zusätzliche Videos werden in Zukunft hinzugefügt.

Kontakt aufnehmen

Ich begrüße Feedback, Fragen und Vorschläge von Lesern. Ihr Input hilft dabei, das Buch zu verbessern und es für die geospatiale Programmiergemeinschaft nützlicher zu machen.

Für buchbezogene Fragen und Diskussionen:

- GitHub Issues: https://github.com/giswqs/intro-gispro/issues
- GitHub Discussions: https://github.com/giswqs/intro-gispro/discussions

Arten von Feedback, die besonders hilfreich sind:

- Fehler oder unklare Erklärungen im Text oder Code
- Vorschläge für zusätzliche Beispiele oder Anwendungsfälle
- Ideen f
 ür neue Themen oder Kapitel
- Berichte über Kompatibilitätsprobleme mit verschiedenen Betriebssystemen oder Bibliotheksversionen
- Erfolgsgeschichten, wie Sie die Techniken aus dem Buch angewendet haben

Danksagungen

Dieses Buch wäre ohne die Beiträge und Unterstützung vieler Einzelpersonen und der breiteren Open-Source-Geospatial-Community nicht möglich gewesen.

Die Open-Source-Community: Dieses Buch baut auf der unglaublichen Arbeit unzähliger Open-Source-Entwickler auf, die das Python-geospatiale Ökosystem geschaffen und gepflegt haben. Besonderen Dank an die Entwickler und Betreuer von NumPy, Pandas, GeoPandas, Rasterio, Xarray, Rioxarray,

¹https://geog-312.gishub.org

Folium, ipyleaflet, MapLibre, GDAL und den vielen anderen Bibliotheken, die geospatiale Programmierung zugänglich machen.

Studierende und Kollegen: Die Fragen, Herausforderungen und Einsichten der Studierenden in meinen geospatialen Programmierkursen an der University of Tennessee haben den Ansatz und Inhalt dieses Buches geprägt. Ihr Feedback darüber, was funktioniert und was nicht, war von unschätzbarem Wert bei der Erstellung von Materialien, die Lernenden wirklich dienen.

Forschungspartner: Kollegen und Mitarbeiter in der geospatialen Forschungsgemeinschaft haben realweltliche Anwendungsfälle, Datensätze und Problemszenarien bereitgestellt, die die praktischen Beispiele im gesamten Buch informieren.

Familie und Freunde: Das Schreiben eines technischen Buches erfordert erhebliche Zeit und Konzentration. Ich bin dankbar für die Geduld und Unterstützung von Familie und Freunden, die die vielen Abende und Wochenenden verstanden haben, die diesem Projekt gewidmet waren.

Die breitere GIS-Community: Das geospatiale Feld basiert auf einem Fundament des Wissens- und Werkzeugaustauschs. Dieses Buch ist Teil dieser Tradition, und ich fühle mich geehrt, zu den verfügbaren Ressourcen für das Erlernen geospatialer Programmierung beizutragen.

Dieses Buch wurde mit MyST Markdown² geschrieben und mit Typst³ und der min-book⁴ Vorlage kompiliert. Danke an die Entwickler und Betreuer der Typst- und MyST Markdown-Projekte. Besonderen Dank an Maycon F. Melo⁵ für die min-book-Vorlage und ihre Hilfe bei der Anpassung der Vorlage für dieses Buch.

Alle Fehler oder Auslassungen in diesem Buch bleiben meine Verantwortung. Ich bin verpflichtet, Probleme anzugehen und den Inhalt basierend auf Leserfeedback zu verbessern.

Über den Autor

Dr. Qiusheng Wu ist außerordentlicher Professor und Direktor der Graduiertenstudien im Department of Geography & Sustainability an der University of Tennessee, Knoxville. Er dient auch als Amazon Scholar. Dr. Wus Forschung konzentriert sich auf geospatiale Datenwissenschaft und Open-Source-Softwareentwicklung, mit Schwerpunkt auf der Nutzung großer geospatialer Daten und Cloud Computing zur Untersuchung von Umweltveränderungen, insbesondere der Dynamik von Oberflächenwasserund Feuchtgebietsüberflutungen. Er ist der Schöpfer mehrerer weit verbreiteter Open-Source-Python-Pakete, einschließlich geemap⁶, leafmap⁷, segment-geospatial⁸ und geoai⁹, die fortgeschrittene geospatiale Analyse und interaktive Visualisierung unterstützen. Seine Open-Source-Arbeit ist bei Open Geospatial Solutions¹⁰ auf GitHub verfügbar.

²https://mystmd.org

³https://github.com/typst/typst

⁴https://github.com/mayconfmelo/min-book

⁵https://github.com/mayconfmelo

⁶https://geemap.org

⁷https://leafmap.org

⁸https://samgeo.gishub.org

⁹https://opengeoai.org

¹⁰ https://github.com/opengeos

Lizenzierung und Urheberrecht

Dieses Buch umfasst die Prinzipien der offenen Wissenschaft und offenen Bildung. Zur Unterstützung von Transparenz, Lernen und Wiederverwendung werden die **Codebeispiele** in diesem Buch unter einer Creative Commons Attribution 4.0 International (CC BY 4.0) Lizenz veröffentlicht. Dies bedeutet, dass Sie den Code frei kopieren, modifizieren und verteilen dürfen, auch für kommerzielle Zwecke, solange eine angemessene Anerkennung gegeben wird.

Bitte führen Sie die Codeverwendung auf, indem Sie das Buch zitieren oder auf das GitHub-Repository verlinken:

Wu, Q. (2025). Introduction to GIS Programming: A Practical Python Guide to Open Source Geospatial Tools. https://gispro.gishub.org

Während der Code frei verfügbar ist, sind der **Text, Abbildungen und Bilder** in diesem Buch **urheber- rechtlich geschützt** durch den Autor und dürfen ohne ausdrückliche Genehmigung nicht reproduziert, weiterverteilt oder modifiziert werden. Dies umfasst alle geschriebenen Inhalte, benutzerdefinierten Diagramme und eingebetteten Visualisierungen, sofern nicht anders angegeben.

Wenn Sie nicht-Code-Material aus dem Buch wiederverwenden oder anpassen möchten - zum Beispiel für Lehre, Präsentationen oder Publikationen - kontaktieren Sie bitte den Autor, um eine Genehmigung zu beantragen.

Dieser duale Lizenzierungsansatz hilft dabei, den offenen Zugang zu Lernmaterialien mit dem Schutz originaler kreativer Arbeit in Einklang zu bringen. Vielen Dank, dass Sie diese Bedingungen respektieren und die Open-Source-Geospatial-Community unterstützen.

Einführung in die GIS-Programmierung

Ein praktischer Python-Leitfaden für Open-Source-Geoinformatik-Tools

Da die Nachfrage nach räumlicher Datenanalyse in verschiedenen Disziplinen – von Umweltwissenschaften und Stadtplanung bis hin zu öffentlicher Gesundheit und Wirtschaft – stetig wächst, steigt auch der Bedarf an zugänglichen und skalierbaren Werkzeugen, die mit der Komplexität geospatialer Daten umgehen können. Einführung in die GIS-Programmierung mit Python ist Ihr praktischer Leitfaden zur Beherrschung der räumlichen Analyse.

Ob Studentin, GIS-Fachkraft, Datenanalystin oder Entwickler*in – dieses praxisorientierte Buch bietet einen strukturierten und einsteigerfreundlichen Einstieg in die geoinformatische Programmierung mit Python. Sie beginnen mit den Grundlagen von Python und arbeiten sich schrittweise zu fortgeschrittener räumlicher Analyse und interaktiver Visualisierung vor – unter Nutzung leistungsstarker Open-Source-Bibliotheken wie GeoPandas, Rasterio, Leafmap, Geemap und GDAL.

Was dieses Buch besonders auszeichnet, ist sein beispielorientierter Ansatz: Sie arbeiten mit echten Datensätzen, lösen reale Probleme und erstellen aussagekräftige Ergebnisse – von statischen Karten bis hin zu dynamischen Webanwendungen. Jedes Kapitel ist sorgfältig aufgebaut, um Ihre Fähigkeiten Schritt für Schritt zu entwickeln – mit einer Kombination aus Theorie, kommentiertem Code, praxisnahen Übungen und hilfreichen Tipps zur Fehlerbehebung.

Was Sie lernen werden:

- Wie Sie Ihre Entwicklungsumgebung mit conda, VS Code, Git, Docker und Cloud-Computing-Tools einrichten
- Zentrale Python-Programmierkenntnisse von Variablen und Datenstrukturen bis hin zu Datei-Ein-/Ausgabe und Pandas
- Verarbeitung von Vektor- und Rasterdaten, interaktive Kartierung, 3D-Visualisierung und Geoprozessierung
- Cloudbasierte Geodatenverarbeitung mit Google Earth Engine sowie fortgeschrittene Themen wie hyperspektrale Datenanalyse und r\u00e4umliches SQL

Scannen Sie den QR-Code, um die Buch-Website zu besuchen und die Codebeispiele von https://gispro.gishub.org herunterzuladen