

Transformers

Attention is All you need

By Shivam Mishra Anup Joseph Akansha Goyal

Agenda

Background and Motivation

Architecture

Main ideas

Training

Results

Background

Former techniques are not good at parallelization

- RNN,LSTM techniques have been SOTA in sequence modeling.
- The sequential nature prevents parallelization especially when sequence length is long

Challenge of Computational Cost

Difficulty in learning dependencies between distant positions

Motivation

- The Transformer architecture is aimed at the problem of sequence transduction where the goal is to design a single framework to handle as many sequences as possible.
- It reduces the number of sequential operations to relate two symbols from input/output sequences to a constant number of operations.

Motivation

- Transformer achieve parallelization by replacing recurrence with attention and encoding the symbol position in sequence, which in turn leads to significantly shorter training time.
- It eliminates not only recurrence but also convolution in favor of applying self-attention, additionally providing more space for parallelization

Transformers Architecture

It's complicated!

Self-Attention

Multi-headed Self-Attention

Positional Encoding

Residuals

Self-Attention

Self- Attention is the mechanism used by Transformers to associate one word with another

I am a student

In this sentence self-attention allows the model to relate I to student

Self-Attention Calculation

Self-Attention Calculation

Multi-headed Self-Attention

ATTENTION HEAD #0

 Z_0

ATTENTION HEAD #1

 Z_1

• • •

ATTENTION HEAD #7

 Z_7

Multi-headed Self-Attention

1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

=

Positional encoding is the Transformers technique to account for the order of words in the sequence

Positional Encoding

$$\begin{split} PE_{(pos,2i)} &= sin(pos/10000^{2i/d_{\rm model}}) \\ PE_{(pos,2i+1)} &= cos(pos/10000^{2i/d_{\rm model}}) \end{split}$$

Residual Connections

Decoders

Almost the same as encoders with a twist

Lookahead Mask

Decoders

Softmax Linear DECODER#2 Add & Normalize **DECODER #1** Feed Forward Feed Forward Add & Normalize **Encoder-Decoder Attention** Add & Normalize Self-Attention

Coming back to decoders

Final Classification

Final Architecture

Training

- The objective was the translation task, performed for translations from English to French and German.
- Sentence Pairs 4.5M, 36M; Tokens 37 K, 32 K
- Sentence pairs batched together by approximate sequence length
- Base model trained for 100,00 steps and big models trained for 300,000 steps.
- Varied learning rate; optimizer parameters are nearly the same as default ones .
- Two residual dropouts, and label smoothing

Results

- For the English German translation task, the big transformer model outperformed every other model, establishing a new BLEU score.
- The base models surpassed other previous models and ensembles with relatively less training cost.
- For the English French translation task, the big model outperformed previous models at 1/4th the relative training cost, with dropout 0.1 (rather than 0.3).
- Hyperparameters such as beam size (4), penalty length (0.6) are chosen after experimenting on the development set.
- Maximum output length during inference is ip_length +
 50, but terminate early when possible.

Model Variations, Performance

Varied the base model to evaluate importance of different components. Single head attention is 0.9 BLEU worst than best setting, quality drops off with too many heads.

	N	d_{model}	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	$\begin{array}{c} \text{params} \\ \times 10^6 \end{array}$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
(A)				1	512	512				5.29	24.9	
				4	128	128				5.00	25.5	
				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(B)					16					5.16	25.1	58
					32					5.01	25.4	60
(C)	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
(D)							0.0			5.77	24.6	
							0.2			4.95	25.5	
								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)	positional embedding instead of sinusoids									4.92	25.7	
1. *	-	1004	1007	17			0.2		20017	4.22	27.4	212

Training	WSJ 23 F1
WSJ only, discriminative	88.3
WSJ only, discriminative	90.4
WSJ only, discriminative	90.4
WSJ only, discriminative	91.7
WSJ only, discriminative	91.3
semi-supervised	91.3
semi-supervised	91.3
semi-supervised	92.1
semi-supervised	92.1
semi-supervised	92.7
multi-task	93.0
generative	93.3
	WSJ only, discriminative Semi-supervised semi-supervised semi-supervised semi-supervised semi-supervised multi-task

References

[1]. Attention is All you need

https://arxiv.org/abs/1706.03762

[2]. The Illustrated Transformer - Jay Alammar

https://jalammar.github.io/illustrated-transformer/

[3]. Illustrated Guide to Transformers- Step by Step Explanation - Micheal Phi

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

