EC8395 Communication Engineering

Unit-1-Infromation Theory and Coding

Staff: Dr. R.Kalidoss

Session Objectives

•To understand about source coding techniques-

Algorithm-3-Lempel-Ziv algorithm (LZ).

Solving problems related to source coding techniques-

Lempel-Ziv algorithm (LZ).

Session Outcomes

- At the end of the session, students will be able to
 - Understand Lempel-Ziv algorithm (LZ).
 - To understand the difference between Shannon Fano Huffman coding and LZ algorithm

Lempel-Ziv algorithm (LZ)

- Shannon Fano and Huffman coding requires the symbol probabilities well in advance. But most real life application do not have the symbol probability in advance.
- Also Huffman coding is optimal for DM source (i.e. Occurrence of one symbol does not alter the probability of subsequent symbols.
- LZ algorithm can compress transmission of English text by about 50% whereas the Huffman code compresses by only 43%.

Encoding or Compression

Encode or compress the string "ABBCBCABA" using the LZ algorithm.

Position	Content	Output
1	Α	(0,A)
2	В	(0,B)
3	BC	(2,C)
4	BCA	(3,A)
5	BA	(2,A)

Number of bits transmitted:

Uncompressed string: ABBCBCABA

Number of bits = total number of characters X 8

Compressed string:

$$(0,A)$$
 $(0,B)$ $(2,C)$ $(3,A)$ $(2,A)$

Code word index

1

2

3

4

5

- Each code word consists of an integer and a character.
 The character is represented by 8 bits.
- The number of bits "n" required to represent the integer part of the code word with index "i" is given by

$$n = \begin{cases} 1 & \text{if } i = 1 \\ \lceil \log_2 i \rceil & \text{if } i > 1 \end{cases}$$

Therefore (0,A)(0,B)(2,C)(3,A)(2,A)Code word index 1 2 3 4 5 Number of bits = (1+8)+(1+8)+(2+8)+(2+8)+(3+8) = 49 bits.

Decompression or Decoding

1. Decode or decompress the sequence
 (0,A) (0,B) (2,C) (3,A) (2,A)

1. Encode the following string using LZ algorithm.

1010110110101011

