Санкт-Петербургский политехнический университет Петра Великого

Физико-механический институт Кафедра «Прикладная математика»

ЛАБОРАТОРНАЯ РАБОТА: 9 ПО ДИСЦИПЛИНЕ «**МАТЕМАТИЧЕСКАЯ СТАТИСТИКА**»

Выполнил студент Можаев Александр Анатольевич группы 5030102/90101

Проверил к. ф.-м. н., доцент Баженов Александр Николаевич

Санкт-Петербург 2022

Содержание

1	Пос	становка задачи	2
2	Teo 2.1 2.2 2.3 2.4 2.5	рия Представление данных Линейная регрессия 2.2.1 Описание модели 2.2.2 Метод наименьших модулей Предварительная обработка данных Коэффициент Жаккара Процедура оптимизации	3 3 3 3 4 4 4
3	Pea	киравил	5
4	Рез	ультат	6
5	При	иложение	10
6	Спи	исок литературы	11
C	Спис	сок иллюстраций	
	1 2 3 4 5 6 7 8	Схема установки для исследования фотоэлектрических характеристик. Исходные данные из экспериментов	
	9	Гистограмма объединнённых данных при оптимальном значении R_{21} .	9

Список таблиц

1 Постановка задачи

Исследование из области солнечной энергетики [1]. На рис 1 показана схема установки для исследования фотоэлектрических характеристик.

Рис. 1: Схема установки для исследования фотоэлектрических характеристик.

Калибровка датчика $\Phi\Pi1$ производится по эталону $\Phi\Pi2$. Зависимость между квантовыми эффективностями датчиков предполагается одинаковой для каждой пары измерений

$$QE_2 = \frac{I_2}{I_1} * QE_1$$

QE - квантове эффективности эталонного и исследуемого датчиков, I - измеренные токи.

Исходные данные. Имеется 2 выборки данных с интервальной неопределенностью. Одна из них относится к эталонному датчику $\Phi\Pi 2$, другая - к исследуемому датчику $\Phi\Pi 1$.

Задача. Треубется определить коэффициент калибровки

$$R_{21} = \frac{I_2}{I_1}$$

при помощи линейной регрессии на множестве интервальных данных и коэффициента Жаккара.

2 Теория

2.1 Представление данных

В первую очередь прдставим данные таким образом, чтобы применить понятия статистики данных с интервальной неопределенностью.

Один из распространённых способов получения интервальных результатов в первичных измерениях - это "обинтерваливание" точечных значений, когда к точечному базовому зачению x_0 , которое считывается по показаниям измерительного прибора, прибавляется интервал погрешности ϵ :

$$\mathbf{x} = \dot{x} + \epsilon$$

Интервал погрешности зададим как $\epsilon = [-\epsilon; \epsilon]$

В конкретных измерениях примем $\epsilon = 10^{-4} \text{ мВ}.$

Согласно терминологии интервального анализа, рассматриваемая выборка - это вектор интервалов, или интервальный вектор $x = (x_1, x_2, ..., x_n)$.

2.2 Линейная регрессия

2.2.1 Описание модели

Линейная регрессия - регрессионная модель зависимости одной переменной от другой с линейной функцией зависимости: $y_i = X_i b_i + \epsilon_i$ где X - заданные значения, у - параметры отклика, ϵ - случайная ошибка модели. В случае, если у нас y_i зависит от одного параметра x_i , то модель выглядит следующим образом:

$$y_i = b_0 + b_1 * x_i + \epsilon_i$$

В данной можели мы пренебрегаем прогрешностью и считаем, что она получается при измерении y_i .

2.2.2 Метод наименьших модулей

Для наиболее точного приближения входных с фотоприемников данных y_i линейной регрессией $f(x_i)$ используется метод наименьших модулей. Этот метот основывается на минимизации нормы разности последовательности:

$$||f(x_i) - y_i||_{l^1} \to min$$

В данном случае ставится задача линейного программирования, решение которой дает нам коэффициенты b_0 и b_1 , а также вектор множителей коррекции данных w. По итогу получается следующая задача линейного программирования

$$\sum_{i=1}^{n} |w_i| \to min$$

$$b_0 + b_1 * x_i - w_i * \epsilon \le y_i, i = 1..n$$

$$b_0 + b_1 * x_i + w_i * \epsilon \le y_i, i = 1..n$$

$$1 \le w_i, i = 1..n$$

2.3 Предварительная обработка данных

Для оценки постоянной, как можно будет увидет далее, необходима предварительная обработка данных. Займемся линейной моделью дейфа.

$$Lin(n) = A + B * n, n = 1, 2, ...N$$

Поставив и решив задачу линейного программирования, найдем коэффициенты A, B и вектор w множителей коррекции данных для каждого из фотоприемников ФП1 и ФП2: для данных c первого фотоприемника $A=4.74835,\,B=9.17308*10^{-6},\,a$ для данных со второго - $A=5.18171,\,B=1.10476*10^{-5}.\,B$ последствии множитель коррекции данных необходимо применить к погрешностям выборки, чтобы получить данные, которые согласовывались с линейной моделью дрейфа:

$$I^{f}(n) = \dot{x}(n) + \epsilon * w(n), n = 1, 2, ...N$$

По итоге необходимо построить "спрямленные" данные выборки: получить их можно путем вычитания из исходных данных линейную компоненту:

$$I^{c}(n) = I^{f}(n) - B * n, n = 1, 2, ...N$$

2.4 Коэффициент Жаккара

Коэффициент Жаккара - мера сходства множеств. В интервальных данных рассматривается некоторая модификация этого коэффициента: в качестве меры множества (в данном случае интервала) рассматривается его длина, а в качестве пересечения и оъединения - взятие минимума и максимума по включению двух величин в интервальной арифметике Каухера соответственно. Можно заметить, что в силу возможности минимума по включению быть неправильным инервалом, коэффициент Жаккара может достишать значения только в интервале [-1; 1].

$$JK(x) = \frac{wid(\wedge x_i)}{wid(\vee x_i)}$$

2.5 Процедура оптимизации

Чтоб найти оптимальный параметр калиброфки R_2 1 необходимо поставить и решить задачу максимизации коэффициента Жаккара, зависящего от парамертра калибровки:

$$JK(I_1^c(n) * R \cup I_2^c(n)) = \rightarrow max$$

где I_1^c и I_2^c - полученные спрямленные выборки, а R - параметр калибровки. Найденный таким образом R и будет искомым оптимальным R_{21} в силу наибольшего совпадения, оцененного коэффицентом Жаккара.

3 Реализация

Лабораторная работа выполнена на языке Python версии 3.8. Использовались дополнительные библиотеки:

- 1. scipy
- 2. numpy
- 3. matplotlib

4 Результат

Рис. 2: Исходные данные из экспериментов

Рис. 3: Интервальное представление исходных данных

Рис. 4: Линейная модель дрейфа данных

Рис. 5: Гистограммы значений множителей коррекции w

Результаты линейного приближения токов:

• Первый фотоприемник

$$A_1 = 0.0562721$$

$$B_1 = 4.51634 * 10^{-6}$$

• Второй фотоприемник

$$A_2 = 0.0612211$$

$$B_2 = 3.86184 * 10^{-6}$$

Рис. 6: Скорректированные модели данных

Рис. 7: Гистограммы скорректированных данных

Рис. 8: Значение коэффициента Жаккара от калибровочного множителя от R_{21}

$$JK(x) = -0.00128924$$

$$R_{opt} = 1.08792$$

Рис. 9: Гистограмма объединнённых данных при оптимальном значении R_{21}

5 Приложение

Код программы GitHub URL:

https://github.com/Ref434/Math_Statistic

6 Список литературы

1. М.З.Шварц. Данные технологических испытаний оборудования для калибровки фотоприемников солнечного излучения. 2022.