

Perceptron algorithm: application to classification tasks

Formative objectives

- To implement linear classifiers
- To code the Perceptron algorithm
- To apply the Perceptron algorithm to classification tasks

Contents

1	Linear discriminant functions						
2	Perceptron algorithm	5					
3	Application to classification tasks: OCR	7					
	3.1 Training	8					
	3.2 Error estimation	10					
	3.3 Effect of α	11					
	3.4 Effect of b	12					
	3.5 Training the final classifier	13					
4	4 Exercise: application to other tasks						

1 Linear discriminant functions

Any classifier can be represented as:

$$c(x) = \underset{c}{\operatorname{arg\,max}} \ g_c(x)$$

where each class c uses a **discriminant function** $g_c(x)$ that measures to which extent the object x belongs to class c

The most common discriminant functions are *linear* (with x):

$$g_c(m{x}) = m{w}_c^t m{x} + w_{c0}$$
 where $m{x} = egin{pmatrix} x_1 \ dots \ x_D \end{pmatrix}$ and $m{w}_{m{c}} = egin{pmatrix} w_{c1} \ dots \ w_{cD} \end{pmatrix}$

using *homogeneous* notation:

$$g_c(\mathbf{x}) = \mathbf{w}_c^t \mathbf{x}$$
 where $\mathbf{x} = \begin{pmatrix} 1 \\ \boldsymbol{x} \end{pmatrix}$ and $\mathbf{w}_c = \begin{pmatrix} w_{c0} \\ \boldsymbol{w}_c \end{pmatrix}$

linmach.m

```
function cstar=linmach(w,x)
   C=columns(w); cstar=1; max=-inf;
   for c=1:C
      g=w(:,c)'*x;
      if (g>max) max=g; cstar=c; endif; end
endfunction
```

```
w=[-4 -36; 4 12];
for x=1:8;
printf("c(%d)=%d\n",x,linmach(w,[1 x]')); end
```


Perceptron algorithm

Input:
$$\{(\mathbf{x}_n,c_n)\}_{n=1}^N$$
, $\{\mathbf{w}_c\}_{c=1}^C$, $\alpha\in\mathbb{R}^{>0}$ and $b\in\mathbb{R}$

Output:
$$\{\mathbf{w}_c\}^* = \underset{\{\mathbf{w}_c\}}{\operatorname{arg\,min}} \sum_n \left[\underset{c \neq c_n}{\operatorname{max}} \mathbf{w}_c^t \mathbf{x}_n + b > \mathbf{w}_{c_n}^t \mathbf{x}_n \right]$$

Method:

Pthod:
$$[P] = \begin{cases} 1 & \text{if } P = \text{true} \\ 0 & \text{if } P = \text{false} \end{cases}$$

repeat

for all data sample \mathbf{x}_n

$$err = false$$

for all class c different from c_n

if
$$\mathbf{w}_c^t \mathbf{x}_n + b > \mathbf{w}_{c_n}^t \mathbf{x}_n$$
: $\mathbf{w}_c = \mathbf{w}_c - \alpha \cdot \mathbf{x}_n$; $err = \text{true}$

if
$$err$$
: $\mathbf{w}_{c_n} = \mathbf{w}_{c_n} + \alpha \cdot \mathbf{x}_n$

until there are no misclassified data samples (or until the pre-defined maximum number of iterations is reached)

perceptron.m

```
function [w,E,k]=perceptron(data,b,a,K,iw)
  [N,L] = size(data); D=L-1;
  labs=unique(data(:,L)); C=numel(labs);
  if (nargin<5) w=zeros(D+1,C); else w=iw; end
  if (nargin<4) K=200; end;
  if (nargin<3) a=1.0; end;
  if (nargin<2) b=0.1; end;
  for k=1:K
   E=0;
    for n=1:N
      xn = [1 data(n, 1:D)]';
      cn=find(labs==data(n,L));
      er=0; g=w(:,cn)'*xn;
      for c=1:C; if (c!=cn \&\& w(:,c)'*xn+b>g)
        w(:,c)=w(:,c)-a*xn; er=1; end; end
      if (er)
       w(:,cn)=w(:,cn)+a*xn; E=E+1; end; end
    if (E==0) break; end; end
endfunction
```

```
data=[0 0 1;1 1 2];
[w,E,k]=perceptron(data);
disp(w); printf("E=%d k=%d\n",E,k);
```


3 Application to classification tasks: OCR

The corpus OCR_14x14 is a matrix data with 1000 rows (samples) and 197 columns (196 features plus class label):

Each sample represents a grey-scale image of a handwritten digit normalised to 14x14 and read from left to right and top to bottom:

```
load("OCR_14x14");
[N,L]=size(data); D=L-1;
I=reshape(data(1,1:D),14,14)';
imshow(1-I);
rand("seed",23); data=data(randperm(N),:);
for n=1:1000
    I=reshape(data(n,1:196),14,14)';
    imshow(1-I); pause(0.5);
end
```


3.1 Training

```
load("OCR 14x14"); [N,L]=size(data); D=L-1;
ll=unique(data(:,L)); C=numel(ll);
rand("seed",23); data=data(randperm(N),:);
[w,E,k]=perceptron(data(1:round(.7*N),:));
save precision(4); save("percep w","w");
output precision(2); w
w =
-39.00 -30.00 -31.00 -35.00 -34.00 -27.00 -33.00 -30.00 -46.00 -31.00
               0.00 0.00 0.00 0.00 0.00
  0.00
       0.00
                                                        0.00 0.00
                                                                        0.00
       0.00
               0.00 0.00 0.00 0.00 0.00 0.00 0.00
  0.00
                                                               -2.00 0.00
       0.00 - 2.00 \quad 0.00 - 1.00 \quad 2.00 \quad 0.00 \quad 0.00
 -1.00
 -1.38 \quad -1.69 \quad -2.53 \quad -1.84 \quad -1.53 \quad 0.69 \quad -0.69 \quad 4.15 \quad -3.22
                                                                      -1.69
 -1.69 \quad -1.77 \quad 0.54 \quad -3.46 \quad -1.46 \quad -3.00 \quad -2.00 \quad 5.15 \quad -3.46
                                                                      -3.00
 -3.54 \quad -7.48 \quad -1.15 \quad -3.00 \quad 0.25 \quad -6.71 \quad -5.08
                                                       1.77
                                                               -1.85
                                                                      -8.41
```

The score that \mathbf{x} (with $x_0 = 1$) belongs to class (digit) c is $g_c(\mathbf{x}) = \mathbf{w}_c^t \mathbf{x}$, where \mathbf{w}_c is the (c+1)-th column of \mathbf{w} :

```
load("OCR_14x14"); load("percep_w"); [N,L]=size(data); D=L-1;
for n=1:N; xn=[1 data(n,1:D)]';
  for c=0:9 printf("g_%d(x_%d)=%.0f ",c,n,w(:,c+1)'*xn); end
  printf("\n"); end
```


Weigths $\{w_{cd}\}$ with greater variability in c possess a more significant discriminative effect than those with lower variability. Right: $\sigma(\{w_{1d}, \ldots, w_{Cd}\})$ for each d > 0.

```
load("percep_w"); sw=std(w(2:197,:),1,2);
I=reshape(sw,14,14)'; imshow(I,[,]);
```


Weights in class c comparatively greater than those of other classes (above average) point features discriminating class c against other classes (grey pixels on left image). Right image is the opposite.

```
load("percep_w");
mw=mean(w(2:197,:),2);
for c=0:9
  wc=w(2:197,c+1);
  pw=max(0,wc-mw);
  I=reshape(pw,14,14)';
  imshow(I,[,]); pause(3);
  nw=-min(0,wc-mw);
  I=reshape(nw,14,14)';
  imshow(I,[,]); pause(3);
end
```


3.2 Error estimation

Estimation of classification error using the samples not devoted to training (*test samples*):

```
load("OCR_14x14");
[N,L]=size(data); D=L-1;
ll=unique(data(:,L));
C=numel(ll); rand("seed",23);
data=data(randperm(N),:);
M=N-round(.7*N); te=data(N-M+1:N,:);
load("percep_w"); rl=zeros(M,1);
for m=1:M
   tem=[1 te(m,1:D)]';
   rl(m)=ll(linmach(w,tem)); end
[nerr m]=confus(te(:,L),rl)
```

```
17
nerr =
m =
 37
                           0
                           0
       1 26 0 2 0 0 0
                           0
            27
                           0
             0 26
                           0
                0 28
                           0
       0 0 0 0 0 27
                     0
                        24
                        0
```

95% confidence interval for the estimated error:

```
nerr=17; M=300; output_precision(2);
m=nerr/M
s=sqrt(m*(1-m)/M)
r=1.96*s
printf("I=[%.3f, %.3f]\n",m-r,m+r);
```

```
m = 0.057

s = 0.013

r = 0.026

I=[0.031, 0.083]
```


3.3 Effect of α

```
#!/usr/bin/octave -qf
load("OCR_14x14"); [N,L]=size(data); D=L-1;
ll=unique(data(:,L)); C=numel(ll);
rand("seed",23); data=data(randperm(N),:);
NTr=round(.7*N); M=N-NTr; te=data(NTr+1:N,:);
printf("# a E k Ete\n");
printf("#----------------\n");
for a=[.1 1 10 100 1000 10000 100000]
  [w,E,k]=perceptron(data(1:NTr,:),0.1,a); rl=zeros(M,1);
  for n=1:M rl(n)=ll(linmach(w,[1 te(n,1:D)]')); end
  [nerr m]=confus(te(:,L),rl);
  printf("%8.1f %3d %3d %3d\n",a,E,k,nerr);
end
```

# a	E	k	Ete
#			
0.1	0	16	20
1.0	0	13	17
10.0	0	8	15
100.0	0	12	16
1000.0	0	12	16
10000.0	0	12	16
100000.0	0	12	16

The parameter α , $\alpha > 0$, does **not** have a notable effect in the behaviour of Perceptron.

3.4 Effect of b

# b	E	k	Ete
#			
0.1	0	13	17
1.0	0	16	20
10.0	0	10	19
100.0	0	22	16
1000.0	0	125	13
10000.0	165	200	10
100000.0	544	200	29

Parameter b does have a notable effect.

If samples are linearly separable, select b comparatively high (i.e. b=1000) so that Perceptron converges (E=0)

3.5 Training the final classifier

Train our *final* classifier with all samples:

```
load("OCR_14x14");
[w,E,k]=perceptron(data,1000); [E k]
save_precision(4);
save("OCR_14x14_w","w");  # filename = corpusname_w
```

Let us check the weights of the final classifier:

```
load("OCR_14x14_w")
output_precision(2); w
```

```
-1847.00 \ -1622.00 \ -1686.00 \ -1847.00 \ -1736.00 \ -1527.00 \ -1643.00 \ -1657.00 \ -2207.00 \ -1853.00
              0.00
                       0.00
                                 0.00
                                           0.00
                                                     0.00
                                                              0.00
                                                                        0.00
                                                                                  0.00
                                                                                            0.00
    0.00
             0.00
                       0.00
                                 0.00
                                           0.00
                                                    0.00
                                                                                  0.00
                                                                                           0.00
    0.00
                                                              0.00
                                                                        0.00
           -14.33
                     -52.08
                               -22.16
                                         -18.16
                                                   48.92
                                                             -4.08
                                                                      -36.67
                                                                                -49.08
                                                                                         -35.08
   -9.00
           -74.45
                     -63.09
                               -52.68
                                        -51.95
                                                    5.93
                                                            -22.55
                                                                      74.31
                                                                                -51.42
                                                                                         -48.13
  -18.68
                                         -22.17
                                                                                -67.45
                                                            -74.11
  -35.28
          -118.40
                      17.82
                                                                      165.60
                               -78.14
                                                  -76.07
                                                                                         -56.44
          -189.10
                               -73.37
                                          21.95
                                                                       66.40
 -109.60
                     -80.59
                                                 -151.10
                                                            -91.60
                                                                                 61.42
                                                                                        -208.20
                                       -193.40
                                                                              -111.50
 -109.80
          -246.70
                    -187.70
                              -130.10
                                                 -319.20
                                                           -255.80
                                                                    -185.80
                                                                                         -88.27
                                                           -325.30
                                                                     -506.00
                                                                              -292.60
 -336.50
          -361.40
                    -458.70
                              -292.30
                                       -415.70
                                                 -458.20
                                                                                         -85.41
                    -491.60
                              -592.10
                                                 -442.80
                                                                              -361.70
                                       -678.20
                                                           -495.90
 -565.50
          -346.70
                                                                     -789.50
                                                                                        -310.00
                                                           -548.10
          -477.40
                    -410.40
                                       -668.20
                                                 -575.40
                                                                              -437.00
 -520.70
                              -508.90
                                                                     -460.10
                                                                                        -346.20
 -533.90
          -472.60
                    -489.30
                             -522.00
                                       -437.60
                                                 -495.90
                                                           -526.70
                                                                     -504.80
                                                                              -579.00
                                                                                        -534.40
 -284.10
                                                                              -282.40
          -120.30
                    -285.90
                             -276.30
                                       -139.90
                                                 -151.00
                                                           -236.40
                                                                    -163.30
                                                                                        -278.80
                                                  148.80
                                                           -154.60
                                                                              -117.00
 -124.00
             34.48
                    -179.10
                              -246.80
                                         -67.34
                                                                    -108.30
                                                                                         -68.68
    0.00
             -2.00
                      -4.00
                                -4.00
                                           2.00
                                                     3.00
                                                              0.00
                                                                        0.00
                                                                                  0.00
                                                                                           0.00
            0.00
                       0.00
                               -24.80
                                           0.00
                                                    0.00
                                                                       24.80
    0.00
                                                              0.00
                                                                                  0.00
                                                                                         -13.64
           -10.15
                      -1.53
                                                             -3.70
                                                                       22.87
                                                                                 -1.46
   -1.52
                               -23.04
                                         11.88
                                                  -10.65
                                                                                         -11.61
  -55.64
           -79.97
                     -18.85
                             -146.60
                                         -60.85
                                                  -31.97
                                                            -77.04
                                                                      121.10
                                                                              -112.10
                                                                                         -82.56
```

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

4 Exercise: application to other tasks

Consider the following 4 data sets stating classification tasks:

- expressions: 225 facial expressions represented by 4096-D vectors and classified into 5 classes (1=surprise, 2=happiness, 3=sadness, 4=anguish and 5=displeasure).
- 2. *gauss2D:* 4000 synthetic samples from two equally-probable classes representing a bidimensional Gaussian distribution.
- 3. **gender**: 2836 facial expressions represented by 1280-D vectors and classified by gender.
- 4. *videos:* 7985 basket and non-basket videos represented by 2000-D vectors computed from local-feature histograms.

Assignment

1. Create a script experiment.m in Octave to automatically apply the Perceptron algorithm to other tasks. This script takes as input a data set, and the range of values for α and b:

```
#!/usr/bin/octave -qf
if (nargin!=3)
printf("Usage: ./experiment.m <data> <alphas> <bes>\n");
exit(1);
end
arq list=arqv();
data=arg_list{1};
as=str2num(arg_list{2});
bs=str2num(arg_list{3});
load(data); [N,L]=size(data); D=L-1;
for a=as
  for b=bs
  [w,E,k]=perceptron(data(1:NTr,:),b,a); rl=zeros(M,1);
```

From the command shell, execute:

```
$ ./experiment.m OCR_14x14 "[.1 1 10 100 1000 10000]" "[0.1]"
```


Assignment

A possible output of results from your script should be:

#	a	b	E	k	Ete	Ete	(%)	Ite (%)
#-								
	0.1	0.1	0	16	20		6.7	[3.8, 9.5]
	1.0	0.1	0	13	17		5.7	[3.1, 8.3]
	10.0	0.1	0	8	15		5.0	[2.5, 7.5]
	100.0	0.1	0	12	16		5.3	[2.8, 7.9]
	1000.0	0.1	0	12	16		5.3	[2.8, 7.9]
1	0.000	0.1	0	12	16		5.3	[2.8, 7.9]

2. Compute a summary table with the best results approximatelly as the following:

task	Ete (%)	Ite (%)
OCR_14x14	4.3	[2.0, 6.6]
expressions	3.0	[0.0, 7.1]
gauss2D	9.0	[7.4, 10.6]
gender	6.1	[4.5, 7.7]
videos	18.7	[17.1, 20.2]

Exam

- The lab exam involves to modify your script experiment.m to carry out an experiment with an already known data set or a new one.
- The day of the exam you must turn in:
 - Original version of experiment.m
 - Modified version of experiment.m
 - Achieved results and comments on the results

