Սեղմ նմուշառություն։ IV

Արմենակ Պետրոսյան

«Մաթեմափիկա և Կիրառություններ» 4-րդ ամառային դպրոց

30 \nւնիսի, 2017 թ. Ծաղկաձոր

VANDERBILT VUNIVERSITY

Քովանդակություն

Տիշեցում երեկվանից

r-NSP պայմանլ

Փորձարկումներ

RIP պայմանը

Եզրահանգում

Տրված է $A \vec{x} = \vec{b}$ հավասարումը, որտեղ

Տրված է $A \vec{x} = \vec{b}$ հավասարումը, որտեղ

 $lackbox{ }A ext{-}$ $lackbox{ }M imes N$ sumpply $lackbox{ } (M<< N), \ ec{x} \in \mathbb{R}^N, \ ec{b} \in \mathbb{R}^M$

Տրված է $A \vec{x} = \vec{b}$ հավասարումը, որտեղ

- lacksquare A-ն M imes N մափրից է $(M << N), \ ec{x} \in \mathbb{R}^N, \ ec{b} \in \mathbb{R}^M$
- ▶ x̄-ը r-նոսր վեկտոր է

Տրված է $A \vec{x} = \vec{b}$ հավասարումը, որտեղ

- ightharpoonup Α-m i M imes N մափրից է $(M << N), \ ec{x} \in \mathbb{R}^N, \ ec{b} \in \mathbb{R}^M$
- ▶ x̄-ը r-նոսր վեկտոր է

Գփնել \vec{x} -ը։

Տրված է $A\vec{x} = \vec{b}$ հավասարումը, որտեղ

- lackbox A-ն M imes N մափրից է $(M << N), \ ec{x} \in \mathbb{R}^N, \ ec{b} \in \mathbb{R}^M$
- ▶ x̄-ը r-նոսր վեկտոր է

Գփնել \vec{x} -ը։

Ենթադրենք $A: \Sigma_r^N \mapsto \mathbb{R}^M$ ինյեկտիվ է։ Եթե որևէ q-ի համար (P_q) խնդրի լուծումը r-նոսր վեկտոր է, ապա այն կլինի մեր կողմից որոնվող լուծումը (հետևում է ինյեկտիվությունից)։

Ենթադրենք $A: \Sigma_r^N \mapsto \mathbb{R}^M$ ինյեկտիվ է։ Եթե որևէ q-ի համար (P_q) խնդրի լուծումը r-նոսր վեկտոր է, ապա այն կլինի մեր կողմից որոնվող լուծումը (հետևում է ինյեկտիվությունից)։

▶ *q* < 1 ուռուցիկ չէ

Ենթադրենք $A: \Sigma_r^N \mapsto \mathbb{R}^M$ ինյեկտիվ է։ Եթե որևէ q-ի համար (P_q) խնդրի լուծումը r-նոսր վեկտոր է, ապա այն կլինի մեր կողմից որոնվող լուծումը (հետևում է ինյեկտիվությունից)։

- ▶ q < 1 ուռուցիկ չէ</p>
- ightarrow q>1-ի համար քիչ սպասելի է, որ գտնված լուծումը կլինի նոսր

Ենթադրենք $A: \Sigma_r^N \mapsto \mathbb{R}^M$ ինյեկտիվ է։ Եթե որևէ q-ի համար (P_q) խնդրի լուծումը r-նոսր վեկտոր է, ապա այն կլինի մեր կողմից որոնվող լուծումը (հետևում է ինյեկտիվությունից)։

- ▶ q < 1 ուռուցիկ չէ</p>
- lacktriangledown q>1-ի համար քիչ սպասելի է, որ գտնված լուծումը կլինի նոսր
- ightarrow q=1-ի համար պարզվում է, մատրիցների մեծ դասի համար գտնում է նոսը լուծում

Դիցուք $ec{b}=Aec{x}$ որտեղ $ec{x}\in \Sigma_r^N$ ։ Դիտարկենք

arg min
$$\|\vec{u}\|_q$$
 այնպես որ $A\vec{u}=\vec{b}$ (P_q)

Ենթադրենք $A: \Sigma_r^N \mapsto \mathbb{R}^M$ ինյեկտիվ է։ Եթե որևէ q-ի համար (P_q) խնդրի լուծումը r-նոսր վեկտոր է, ապա այն կլինի մեր կողմից որոնվող լուծումը (հետևում է ինյեկտիվությունից)։

- ▶ q < 1 ուռուցիկ չէ</p>
- ightarrow q>1-ի համար քիչ սպասելի է, որ գտնված լուծումը կլինի նոսր
- ightharpoonup q=1-ի համար պարզվում է, մափրիցների մեծ դասի համար գտնում է նոսը լուծում

Այսպիսով, մեր նպատակը կլինի գտնել պայմաներ որոնց դեպքում

arg min
$$\|\vec{u}\|_1$$
 այնպես որ $A\vec{u} = \vec{b}$ (P_1)

խնդրի միակ լուծումը \vec{x} -ն է։

Պնդում։

 (P_1) խնդիրը գծային ծրագրավորման խնդիր է։

Պնդում։

 (P_1) խնդիրը գծային ծրագրավորման խնդիր է։

Ապացույց.

Դիտարկենք հետևյալ խնդիրը

$$rg \min_{ec{u} \in \mathbb{R}^N} (ec{u}_+ + ec{u}_-)$$
 այնպես որ $Aec{u}_+ - Aec{u}_- = ec{b}$ և $ec{u}_+ \geq 0, ec{u}_- \geq 0$

Նկատենք, որ եթե \vec{x}_+, \vec{x}_- -ը նրա լուծումներ են, ապա նրանց կրիչները չհատվող են, քանի որ ցանկացած վեկտորի համար, նրա բոլոր $\vec{x} = \vec{x}_+ - \vec{x}_-, \vec{x}_+, \vec{x}_- \geq 0$ ներկայացումների մեջ $\vec{x}_+ + \vec{x}_-$ -ն ամենափոքրն է, երբ կրիչները չեն հատվում։

Քովանդակություն

հրչեցում երեկվանից

r-NSP պայմանը

Փորձարկումներ

RIP պայմանը

Եզրահանգում

r-NSP պայմանը

r-NSP պայմանը

Դիցուք
$$ec x\in \mathbb R^N$$
 և $I\subseteq \{1,\dots,N\}$ ։ Նշանականեք $ec x_I(i)=egin{cases} ec x_I(i),& ext{ liph }i\in I\ 0,& ext{ liph }i
otin I \end{cases}$:

r-NSP պայմանը

Դիցուք
$$ec{x}\in\mathbb{R}^N$$
 և $I\subseteq\{1,\dots,N\}$ ։ Նշանականեք $ec{x}_I(i)=egin{cases} ec{x}_I(i),& ext{ եթե }i\in I\ 0,& ext{ եթե }i
otin I : \end{cases}$

Սահմանում։

Կասենք, որ A-ն բավարարում է r-NSP պայմանին (Null Space Property), եթե ցանկացած $I\subseteq\{1,\ldots,N\},\ |I|\le r$ ինդեքսների բազմության և ցանկացած $\vec{x}\in\ker(A)\setminus\{0\}$ վեկտորի համար

$$\|\vec{x}_I\|_1 < \|\vec{x}_{I^c}\|_1$$
:

Համարժեքություն

Տամարժեքություն

Թեորեմ։

Зпіршршй
$$\underline{\zeta}$$
 jnip $\vec{x} \in \Sigma_r^N$ - h li $\vec{b} = A\vec{x}$ - h hun \hat{u} up
$$\underset{\vec{u} \in \mathbb{R}^N}{\arg \min} \, \|\vec{u}\|_1 \quad \text{ш}$$
j \hat{u} u μ tu n $\mu \quad A\vec{u} = \vec{b}$ (P_1)

իսնդիրը ունի միակ լուծումը \vec{x} -ն է այն և միայն այն դեպ ρ ում, երբ A-ն բավարարում է r-NSP պայմանին։

Տամարժեքություն

Թեորեմ։

 ${\it B}$ ուրաքանչյուր $ec x \in \Sigma^{\it N}_r$ -ի и $ec b = {\it A} ec x$ -ի համար

$$\underset{\vec{u} \in \mathbb{R}^N}{\operatorname{arg\,min}} \|\vec{u}\|_1 \quad \textit{uyluylu} \quad \textit{np} \quad \textit{A}\vec{u} = \vec{b}$$
 (P₁)

իսնդիրը ունի միակ լուծումը \vec{x} -և է այն և միայն այն դեպ ρ ում, երբ A-և բավարարում է r-NSP պայմանին։

Ապացույց.

$$(\Rightarrow)$$
 Դիցուք $\vec{x} \in \ker(A) \setminus \{0\}$ և $I \subseteq \{1,\ldots,N\}, |I| \leq r$: $\vec{x}_I \in \Sigma_r^N$, ուստի \vec{x}_I -ը P_1 խնդրի միակ լուծումն է $\vec{b} = A\vec{x}_I$ -ի համար։ Մյուս կողմից $A\vec{x}_I = A(-\vec{x}_{I^c})$, հետևաբար $\|\vec{x}_I\|_1 < \|-\vec{x}_{I^c}\|_1$:

Տամարժեքություն

Թեորեմ։

 ${\it 3}$ ուրաքանչյուր $ec x \in \Sigma_r^{\it N}$ -ի և $ec b = {\it A} ec x$ -ի համար

$$\underset{\vec{u} \in \mathbb{R}^N}{\operatorname{arg\,min}} \|\vec{u}\|_1 \quad \textit{uyμμμμ np} \quad A\vec{u} = \vec{b}$$
 (P₁)

իսնդիրը ունի միակ լուծումը \vec{x} -ն է այն և միայն այն դեպ ρ ում, երբ A-ն բավարարում է r-NSP պայմանին։

Ապացույց.

(⇒) Դիցուք
$$\vec{x} \in \ker(A) \setminus \{0\}$$
 և $I \subseteq \{1, ..., N\}$, $|I| \le r$:

 $ec{x_l} \in \Sigma_r^N$, ուստի $ec{x_l}$ -ը P_1 խնդրի միակ լուծումն է $ec{b} = A ec{x_l}$ -ի համար։

Մյուս կողմից
$$A \vec{x}_I = A(-\vec{x}_{I^c})$$
, հետևաբար $\|\vec{x}_I\|_1 < \|-\vec{x}_{I^c}\|_1$:

 (\Leftarrow) Դիցուք, $\vec{x} \in \Sigma_r^N$, հեպևաբար $\vec{x} = \vec{x_l}$, ինչ որ $I \subseteq \{1,\ldots,N\}, \ |I| \le r$ բազմության համար։

Ենթադրենք, $A\vec{x}=A\vec{y}$ ինչ-որ $\vec{y}\in\mathbb{R}^N$, $\vec{y}\neq\vec{x}$ վեկտորի համար։

Այդ դեպքում, $\vec{v}=\vec{x}-\vec{y}$ -ի համար $\vec{v_l}=\vec{x}-\vec{y_l}$ և $\vec{v_{l^c}}=-\vec{y_{l^c}}$, հետևաբար

$$||x||_1 \le ||\vec{x} - \vec{y_i}||_1 + ||\vec{y_i}||_1 = ||\vec{v_i}||_1 + ||\vec{y_i}||_1$$
$$< ||\vec{v_i}||_1 + ||\vec{y_i}||_1 = ||\vec{y_i}||_1 + ||\vec{y_i}||_1 = ||y||_1:$$

Երկրաչափական մեկնաբանություն

Վափ դեպքը, երբ հպման բազմությունը ոչ նոսը կետեր ունի և NSP-ն ձախողվում է։ Այս դեպքում կորիզի վեկտորի երկու կոորդինատները հավասար են բացարձակ արժեքով։

Քովանդակություն

Տիշեցում երեկվանից

r-NSP պայմանը

Փորձարկումներ

RIP պայմանը

Եզրահանգու

 Օգտվելու ենք I1-magic փաթեթից, որը կիրառում է ներքին կետի մեթոդը ուռուցիկ օպտիմիզացիայի խնդիրը լուծելիս

- Օգտվելու ենք l1-magic փաթեթից, որը կիրառում է ներքին կետի մեթոդը ուռուցիկ օպտիմիզացիայի խնդիրը լուծելիս
- ▶ Մափրիցներ գեներացնելու համար կօգփագործենք Matlab համակրգի պափահական մափրիցների փաթեթից

- Օգտվելու ենք I1-magic փաթեթից, որը կիրառում է ներքին կետի մեթոդը ուռուցիկ օպտիմիզացիայի խնդիրը լուծելիս
- ▶ Մատրիցներ գեներացնելու համար կօգտագործենք Matlab համակրգի պատահական մատրիցների փաթեթից
- ightharpoonup Չափումների մափրիցը գեներացվել է օգտագործելով N(0,1) նորմալ բաշխումը

$$F(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

Քովանդակություն

Տիշեցում երեկվանից

r-NSP պայմանը

Փորձարկումներ

RIP պայմանը

Եզրահանգու

r-RIP պայմանը

Սահմանում։

Կասենք, որ A մատրիցը բավարարում է r-RIP պայմանին, եթե գոյություն ունեն $\alpha, \beta>0$ թվեր այնպես որ ցանկացած r-նոսը վեկտորի համար

$$\alpha \|\vec{x}\|_{2}^{2} \leq \|A\vec{x}\|_{2}^{2} \leq \beta \|\vec{x}\|_{2}^{2}$$
:

r-RIP պայմանը

Սահմանում։

Կասենք, որ A մատրիցը բավարարում է \mathbf{r} -RIP պայմանին, եթե գոյություն ունեն $\alpha, \beta > 0$ թվեր այնպես որ ցանկացած \mathbf{r} -նոսը վեկտորի համար

$$\alpha \|\vec{x}\|_2^2 \le \|A\vec{x}\|_2^2 \le \beta \|\vec{x}\|_2^2$$
:

▶ Նկատենք, որ 2r-RIP ⇒ $A: \Sigma_r^N$ -ը ինյեկտիվ է, քանի որ $\vec{x}, \vec{y} \in \Sigma_r^N$ -ի համար, եթե $A\vec{x} = A\vec{y}$ ապա $\vec{x} - \vec{y} \in \Sigma_{2r}^N$ ուստի $\alpha \|\vec{x} - \vec{y}\|_2^2 \le \|A(\vec{x} - \vec{y})\|_2^2 = 0$:

r-RIP պայմանը

Սաիմանում։

Կասեն ϱ , որ A մատրիցը բավարարում է r-RIP պայմանին, եթե գոյություն ունեն $\alpha, \beta>0$ թվեր այնպես որ ցանկացած r-նոսը վեկտրի համար

$$\alpha \|\vec{x}\|_{2}^{2} \leq \|A\vec{x}\|_{2}^{2} \leq \beta \|\vec{x}\|_{2}^{2}$$
:

- ▶ Նկապենք, որ 2r-RIP ⇒ $A: \Sigma_r^N$ -ը ինյեկպիվ է, քանի որ $\vec{x}, \vec{y} \in \Sigma_r^N$ -ի համար, եթե $A\vec{x} = A\vec{y}$ ապա $\vec{x} \vec{y} \in \Sigma_{2r}^N$ ուսպի $\alpha \|\vec{x} \vec{y}\|_2^2 \le \|A(\vec{x} \vec{y})\|_2^2 = 0$:
- lackbox Մենք ավելին ցույց կփանք, որ $2r ext{-RIP} \Rightarrow r ext{-NSP}$

Նկափառում

Նկափառում

 Մեր նպատակը կլինի ցույց տալ, որ 2r-RIP պայմանին բավարարող մատրիցներ գոյություն ունեն և նրանց քանակը շատ է

Նկափառում

- Մեր նպապակը կլինի ցույց պալ, որ 2r-RIP պայմանին բավարարող մատրիցներ գոյություն ունեն և նրանց քանակը շատ է
- ▶ Նկատենք, որ եթե *A*-ն բազմապատկենք որևէ թվով, ապա դա նույնպես կբավարարի r-RIP պայմանին։ Ուստի բավական է ցույց տալ, որ

$$(1 - \delta_r) \|\vec{x}\|_2 \le \|A\vec{x}\|_2 \le (1 + \delta_r) \|\vec{x}\|_2$$

բավարարող մափրիցների քանակն է շափ

Նկափառում

- Մեր նպապակը կլինի ցույց պալ, որ 2r-RIP պայմանին բավարարող մատրիցներ գոյություն ունեն և նրանց քանակը շատ է
- Նկատենք, որ եթե A-ն բազմապատկենք որևէ թվով, ապա դա նույնպես կբավարարի r-RIP պայմանին։ Ուստի բավական է ցույց տալ, որ

$$(1 - \delta_r) \|\vec{x}\|_2 \le \|A\vec{x}\|_2 \le (1 + \delta_r) \|\vec{x}\|_2$$

բավարարող մափրիցների քանակն է շափ

Փոքրագույն δ_r -ը կոչվում է RIP**-հասպատուն**։ Այս փեսքը ավելի նախընտրելի է, քանի որ պատահական մատրիցները հենց այս պայմանին են բավարարում մեծ հավանականությամբ, երբ գործակիցները ունեն նույն բաշխումը։

Եթե A մատրիցը բավարարում է 2s-RIP պայմանը և $\delta_{2r} < \frac{1}{3}$, ապա P_1 -ը միարժեքորեն վերականգնում է ցանկացած r-նոսր վեկտոր։

Եթե A մատրիցը բավարարում է 2s-RIP պայմանը և $\delta_{2r} < \frac{1}{3}$, ապա P_1 -ը միարժեքորեն վերականգնում է ցանկացած r-նոսը վեկտոր։

 $\delta_{2r} < rac{1}{3}$ պայմանը անհրաժեշտ պայման չէ, կան այլ պայմաններ ևս, որոնց դեպքում P_1 -ը միարժեքորեն վերականգնում է ցանկացած r-նոսր վեկտրո։

Եթե A մատրիցը բավարարում է 2s-RIP պայմանը և $\delta_{2r} < \frac{1}{3}$, ապա P_1 -ը միարժեքորեն վերականգնում է ցանկացած r-նոսը վեկտոր։

 $\delta_{2r} < rac{1}{3}$ պայմանը անհրաժեշտ պայման չէ, կան այլ պայմաններ ևս, որոնց դեպքում P_1 -ը միարժեքորեն վերականգնում է ցանկացած r-նոսր վեկտոր։ Նախնական լեմմա

Եթե A մատրիցը բավարարում է 2s-RIP պայմանը և $\delta_{2r} < \frac{1}{3}$, ապա P_1 -ը միարժեքորեն վերականգնում է ցանկացած r-նոսը վեկտոր։

 $\delta_{2r} < rac{1}{3}$ պայմանը անհրաժեշտ պայման չէ, կան այլ պայմաններ ևս, որոնց դեպքում P_1 -ը միարժեքորեն վերականգնում է ցանկացած r-նոսր վեկտրո։

Նախնական լեմմա

Լեմա։

Եթե $\vec{u}, \vec{v} \in \Sigma_r^N$, $\mathrm{supp}(\vec{u}) \cap \mathrm{supp}(\vec{v}) = \emptyset$ և A-ն ունի 2r-RIP հատկությունը, ապա

$$|\langle A\vec{u}, A\vec{v}\rangle| \leq \delta_{2r} ||\vec{u}||_2 ||\vec{v}||_2$$
:

Եթե A մատրիցը բավարարում է 2s-RIP պայմանը և $\delta_{2r} < \frac{1}{3}$, ապա P_1 -ը միարժեքորեն վերականգնում է ցանկացած r-նոսր վեկտոր։

 $\delta_{2r} < \frac{1}{3}$ պայմանը անհրաժեշտ պայման չէ, կան այլ պայմաններ ևս, որոնց դեպքում P_1 -ը միարժեքորեն վերականգնում է ցանկացած r-նոսր վեկտրո։

Նախնական լեմմա

Լեմա։

 $\mathit{Бр}\mathit{h}\; \vec{u}, \vec{v} \in \Sigma_r^N$, $\mathsf{supp}(\vec{u}) \cap \mathsf{supp}(\vec{v}) = \emptyset \; \mathit{lt}\; A$ - $\mathit{lt}\; \mathit{ntllh}\; 2r$ -RIP $\mathit{humphnpjntln}, \mathit{unyu}$

$$|\langle A\vec{u}, A\vec{v}\rangle| \leq \delta_{2r} ||\vec{u}||_2 ||\vec{v}||_2$$
:

Ապացույց.

2r-RIP պայմանից

$$(1-\delta_{2r})\|\vec{u}\pm\vec{v}\|_2^2 \leq \|A\vec{u}\pm A\vec{v}\|_2^2 \leq (1+\delta_{2r})\|\vec{u}\pm\vec{v}\|_2^2:$$

Եթե A մատրիցը բավարարում է 2s-RIP պայմանը և $\delta_{2r} < \frac{1}{3}$, ապա P_1 -ը միարժեքորեն վերականգնում է ցանկացած r-նոսր վեկտոր։

 $\delta_{2r} < rac{1}{3}$ պայմանը անհրաժեշտ պայման չէ, կան այլ պայմաններ ևս, որոնց դեպքում P_1 -ը միարժեքորեն վերականգնում է ցանկացած r-նոսր վեկտրո։

Նախնական լեմմա

Լեմա։

Եթե $\vec{u}, \vec{v} \in \Sigma_r^N$, $\mathrm{supp}(\vec{u}) \cap \mathrm{supp}(\vec{v}) = \emptyset$ և A-ն ունի 2r-RIP հատկությունը, ապա

$$|\langle A\vec{u}, A\vec{v}\rangle| \leq \delta_{2r} ||\vec{u}||_2 ||\vec{v}||_2$$
:

Ապացույց.

2r-RIP պայմանից

$$(1 - \delta_{2r}) \|\vec{u} \pm \vec{v}\|_2^2 \le \|A\vec{u} \pm A\vec{v}\|_2^2 \le (1 + \delta_{2r}) \|\vec{u} \pm \vec{v}\|_2^2$$
:

Քանի որ $supp(\vec{u}) \cap supp(\vec{v}) = \emptyset$, ուսարի $\|\vec{u} \pm \vec{v}\|_2^2 = \|\vec{u}\|_2^2 + \|\vec{v}\|_2^2$:

Թեորեմ:

Եթե A մատրիցը բավարարում է 2s-RIP պայմանը և $\delta_{2r} < \frac{1}{3}$, ապա P_1 -ը միարժեքորեն վերականգնում է ցանկացած r-նոսը վեկտրը:

 $\delta_{2r} < \frac{1}{3}$ պայմանը անհրաժեշփ պայման չէ, կան այլ պայմաններ ևս, որոնց դեպքում P_1 -ը միարժեքորեն վերականգնում է ցանկացած r-նոսր վեկտոր։

Նախնական լեմմա

Լեմա։

 $\mathit{Бр}\mathit{h}\; \vec{u}, \vec{v} \in \Sigma_r^N$, $\mathsf{supp}(\vec{u}) \cap \mathsf{supp}(\vec{v}) = \emptyset \; \mathit{lt}\; A$ - $\mathit{lt}\; \mathit{ntllh}\; 2r$ -RIP $\mathit{humphnpjntln}, \mathit{unyu}$

$$|\langle A\vec{u}, A\vec{v}\rangle| \leq \delta_{2r} ||\vec{u}||_2 ||\vec{v}||_2$$
:

Ապացույց.

2r-RIP պայմանից

$$(1 - \delta_{2r}) \|\vec{u} \pm \vec{v}\|_2^2 \le \|A\vec{u} \pm A\vec{v}\|_2^2 \le (1 + \delta_{2r}) \|\vec{u} \pm \vec{v}\|_2^2$$
:

Քանի որ $\mathrm{supp}(\vec{u})\cap\mathrm{supp}(\vec{v})=\emptyset$, ուստի $\|\vec{u}\pm\vec{v}\|_2^2=\|\vec{u}\|_2^2+\|\vec{v}\|_2^2$: Օգտագործելով զուգահեռագծի կանոնը

$$|\langle A\vec{u}, A\vec{v}\rangle| = \frac{1}{4}|||A\vec{u} + A\vec{v}||_2^2 - ||A\vec{u} - A\vec{v}||_2^2| \le \frac{1}{4}2\delta_{2r}(||\vec{u}||_2^2 + ||\vec{v}||_2^2) \le \delta_{2r}||\vec{u}||_2||\vec{v}||_2$$

▶ Պետք է ցույց տալ, որ $\vec{x} \in \ker(A) \setminus \{0\}$ վեկտորի և $I \subseteq \{1, ..., N\}, |I| \le r$ բազմության համար $\|\vec{x}_I\|_1 < \|\vec{x}_{I^c}\|_1$, կամ համարժեքորեն $\|\vec{x}_I\|_1 < \frac{1}{2} \|\vec{x}\|_1$

- **>** Պետք է ցույց տալ, որ $\vec{x} \in \ker(A) \setminus \{0\}$ վեկտորի և $I \subseteq \{1, \dots, N\}, |I| \le r$ բազմության համար $\|\vec{x_i}\|_1 < \|\vec{x_i}e\|_1$, կամ համարժեքորեն $\|\vec{x_i}\|_1 < \frac{1}{2}\|\vec{x}\|_1$
- ▶ Բավական է ցույց փալ, երբ /-ն x̄-ի բացարձակ արժեքով ամենամեծ գործակիցների ինդեքսների բազմությունն է։

- ▶ Պետրք է ցույց տալ, որ $\vec{x} \in \ker(A) \setminus \{0\}$ վեկտորի և $I \subseteq \{1, \dots, N\}, |I| \le r$ բազմության համար $\|\vec{x}_i\|_1 < \|\vec{x}_{i^c}\|_1$, կամ համարժեքորեն $\|\vec{x}_i\|_1 < \frac{1}{2}\|\vec{x}\|_1$
- ▶ Քավական է ցույց փալ, երբ /-ն x̄-ի բացարձակ արժեքով ամենամեծ գործակիցների ինդեքսների բազմությունն է։

Դիցուք $I_0=I$, I_1 -ը $\vec{x}_{l_0^c}$ -ի բացարձակ արժեքով ամենամեծ գործակիցների ինդեքսների բազմությունն է, I_2 -ը $\vec{x}_{(l_0\cup l_1)^c}$ -ի բացարձակ արժեքով ամենամեծ գործակիցների ինդեքսների բազմությունն է և այսպես շարունակ մինչև $I_0^c=I_1\cup\cdots\cup I_k$:

- lack
 ightharpoonup Պետք է ցույց տալ, որ $ec x \in \ker(A) \setminus \{0\}$ վեկտորի և $I \subseteq \{1,\ldots,N\}, |I| \le r$ բազմության համար $\|\vec{x}_I\|_1 < \|\vec{x}_{I^c}\|_1$, կամ համարժեքորեն $\|\vec{x}_I\|_1 < \frac{1}{2}\|\vec{x}\|_1$
- ▶ Բավական է ցույց տալ, երբ /-ն x̄-ի բացարձակ արժեքով ամենամեծ գործակիցների ինդեքսների բազմությունն է։

Դիցուք $I_0=I$, I_1 -ը $\vec{x}_{I_0^c}$ -ի բացարձակ արժեքով ամենամեծ գործակիցների ինդեքսների բազմությունն է, l_2 -ր $\vec{x}_{(l_0 \cup l_1)^c}$ -ի բացարձակ արժեքով ամենամեծ գործակիզների ինդեքսների բազմությունն է և այսպես շարունակ մինչև $I_0^c = I_1 \cup \cdots \cup I_k$:

Տետևաբար,

$$\vec{x} = \vec{x}_{l_0} + \sum_{j=1}^{k} \vec{x}_{l_j}$$
:

- ightharpoonup դետք է ցույց տալ, որ $ec x \in \ker(A) \setminus \{0\}$ վեկտորի և $I \subseteq \{1,\dots,N\}, \ |I| \le r$ բազմության համար $\|ec x_i\|_1 < \|ec x_{I^c}\|_1$, կամ համարժեքորեն $\|ec x_i\|_1 < \frac12 \|ec x_i\|_1$
- ▶ Բավական է ցույց փալ, երբ /-ն x̄-ի բացարձակ արժեքով ամենամեծ գործակիցների ինդեքսների բազմությունն է։

Դիցուք $I_0=I$, I_1 -ը $\vec{x}_{l_0^c}$ -ի բացարձակ արժեքով ամենամեծ գործակիցների ինդեքսների բազմությունն է, I_2 -ը $\vec{x}_{(I_0\cup I_1)^c}$ -ի բացարձակ արժեքով ամենամեծ գործակիցների ինդեքսների բազմությունն է և այսպես շարունակ մինչև $I_0^c=I_1\cup\cdots\cup I_k$:

Տեփևաբար,

$$\vec{x} = \vec{x}_{l_0} + \sum_{i=1}^k \vec{x}_{l_i}$$
:

 $\vec{x} \in \ker(A)$, ուսփի

$$A(\vec{x}_{l_0}) = -\sum_{j=1}^k A(\vec{x}_{l_j})$$
:

Քանի որ $\vec{x}_{l_0} \in \Sigma_r^N$, r-RIP պայմանից

$$\begin{split} \|\vec{x}_{l_0}\|_2^2 &\leq \frac{1}{1 - \delta_{2r}} \|A(\vec{x}_{l_0})\|_2^2 = \frac{1}{1 - \delta_{2r}} \langle A(\vec{x}_{l_0}), A(\vec{x}_{l_0}) \rangle = \frac{1}{1 - \delta_{2r}} \langle A(\vec{x}_{l_0}), -\sum_{j=1}^k A(\vec{x}_{l_j}) \rangle \\ &\leq \frac{1}{1 - \delta_{2r}} \sum_{i=1}^k |\langle A(\vec{x}_{l_0}), A(\vec{x}_{l_j}) \rangle| : \end{split}$$

Քանի որ $\vec{x}_{l_0} \in \Sigma_r^N$, r-RIP պայմանից

$$\begin{split} \|\vec{x}_{l_0}\|_2^2 &\leq \frac{1}{1 - \delta_{2r}} \|A(\vec{x}_{l_0})\|_2^2 = \frac{1}{1 - \delta_{2r}} \langle A(\vec{x}_{l_0}), A(\vec{x}_{l_0}) \rangle = \frac{1}{1 - \delta_{2r}} \langle A(\vec{x}_{l_0}), -\sum_{j=1}^{\kappa} A(\vec{x}_{l_j}) \rangle \\ &\leq \frac{1}{1 - \delta_{2r}} \sum_{j=1}^{k} |\langle A(\vec{x}_{l_0}), A(\vec{x}_{l_j}) \rangle| : \end{split}$$

Օգտվելով Լեմմա 1-ից,

$$\frac{1}{1-\delta_{2r}}\sum_{i=1}^{k}|\langle A(\vec{x}_{l_0}),A(\vec{x}_{l_j})\rangle|\leq \frac{\delta_{2r}}{1-\delta_{2r}}\sum_{i=1}^{k}\|\vec{x}_{l_0}\|_2\|\vec{x}_{l_j}\|_2=\frac{\delta_{2r}}{1-\delta_{2r}}\|\vec{x}_{l_0}\|_2\sum_{i=1}^{k}\|\vec{x}_{l_j}\|_2$$

Քանի որ $\vec{x}_{l_0} \in \Sigma_r^N$, r-RIP պայմանից

$$\begin{split} \|\vec{x}_{l_0}\|_2^2 &\leq \frac{1}{1-\delta_{2r}} \|A(\vec{x}_{l_0})\|_2^2 = \frac{1}{1-\delta_{2r}} \langle A(\vec{x}_{l_0}), A(\vec{x}_{l_0}) \rangle = \frac{1}{1-\delta_{2r}} \langle A(\vec{x}_{l_0}), -\sum_{j=1}^k A(\vec{x}_{l_j}) \rangle \\ &\leq \frac{1}{1-\delta_{2r}} \sum_{i=1}^k |\langle A(\vec{x}_{l_0}), A(\vec{x}_{l_j}) \rangle| : \end{split}$$

Օգտվելով Լեմմա 1-ից,

$$\frac{1}{1-\delta_{2r}}\sum_{j=1}^{k}|\langle A(\vec{x}_{l_0}),A(\vec{x}_{l_j})\rangle|\leq \frac{\delta_{2r}}{1-\delta_{2r}}\sum_{j=1}^{k}\|\vec{x}_{l_0}\|_2\|\vec{x}_{l_j}\|_2=\frac{\delta_{2r}}{1-\delta_{2r}}\|\vec{x}_{l_0}\|_2\sum_{j=1}^{k}\|\vec{x}_{l_j}\|_2$$

ուսփի

$$\|\vec{x}_{l_0}\|_2 \le \frac{\delta_{2r}}{1 - \delta_{2r}} \sum_{i=1}^{k} \|\vec{x}_{l_j}\|_2 : \tag{1}$$

 I_j -երի մեր ընփրությունից,

$$|\vec{x}_{l_j}(i)| \leq \frac{1}{|l_{j-1}|} \sum_{l \in l_j} |x_{l_{j-1}}(l)| = \frac{1}{r} ||\vec{x}_{l_{j-1}}||_1$$

 I_j -երի մեր ընփրությունից,

$$|\vec{x}_{l_j}(i)| \le \frac{1}{|l_{j-1}|} \sum_{l \in I_t} |x_{l_{j-1}}(l)| = \frac{1}{r} ||\vec{x}_{l_{j-1}}||_1$$

հեփևաբար

$$\|\vec{x}_{l_j}\|_2^2 = \sum_{i \in I_j} |\vec{x}_{l_j}(i)|^2 \le \frac{|I_j|}{r^2} \|\vec{x}_{l_{j-1}}\|_1^2 \le \frac{1}{r} \|\vec{x}_{l_{j-1}}\|_1^2 :$$

 I_j –երի մեր ընտրությունից,

$$|\vec{x}_{l_j}(i)| \leq \frac{1}{|l_{j-1}|} \sum_{l \in I_i} |x_{l_{j-1}}(l)| = \frac{1}{r} ||\vec{x}_{l_{j-1}}||_1$$

հետևաբար

$$\|\vec{\mathbf{x}}_{l_j}\|_2^2 = \sum_{i \in I_i} |\vec{\mathbf{x}}_{l_j}(i)|^2 \le \frac{|I_j|}{r^2} \|\vec{\mathbf{x}}_{l_{j-1}}\|_1^2 \le \frac{1}{r} \|\vec{\mathbf{x}}_{l_{j-1}}\|_1^2 :$$

Վերջինս համափեղելով (1)-ի հետ, ստանում ենք

$$\|\vec{x}_{l_0}\|_2 \leq \frac{\delta_{2r}}{1 - \delta_{2r}} \sum_{j=1}^k \|\vec{x}_{l_j}\|_2 \leq \frac{\delta_{2r}}{1 - \delta_{2r}} \sum_{j=1}^k \frac{1}{\sqrt{r}} \|\vec{x}_{l_{j-1}}\|_1 \leq \frac{\delta_{2r}}{1 - \delta_{2r}} \frac{\|\vec{x}\|_1}{\sqrt{r}} \leq \frac{\delta_{2r}}{1 - \delta_{2r}} \|\vec{x}\|_2$$

 I_j –երի մեր ընտրությունից,

$$|\vec{x}_{l_j}(i)| \leq \frac{1}{|l_{j-1}|} \sum_{l \in I_i} |x_{l_{j-1}}(l)| = \frac{1}{r} ||\vec{x}_{l_{j-1}}||_1$$

հետևաբար

$$\|\vec{x}_{l_j}\|_2^2 = \sum_{i \in I_i} |\vec{x}_{l_j}(i)|^2 \le \frac{|I_j|}{r^2} \|\vec{x}_{l_{j-1}}\|_1^2 \le \frac{1}{r} \|\vec{x}_{l_{j-1}}\|_1^2 :$$

Վերջինս համափեղելով (1)-ի հետ, ստանում ենք

$$\|\vec{x}_{l_0}\|_2 \leq \frac{\delta_{2r}}{1 - \delta_{2r}} \sum_{j=1}^k \|\vec{x}_{l_j}\|_2 \leq \frac{\delta_{2r}}{1 - \delta_{2r}} \sum_{j=1}^k \frac{1}{\sqrt{r}} \|\vec{x}_{l_{j-1}}\|_1 \leq \frac{\delta_{2r}}{1 - \delta_{2r}} \frac{\|\vec{x}\|_1}{\sqrt{r}} \leq \frac{\delta_{2r}}{1 - \delta_{2r}} \|\vec{x}\|_2$$

(Տյոլդերի անհավասարաթյունից $\|\vec{x}\|_1 \leq \sqrt{r} \|\vec{x}\|_2$)։

 I_j –երի մեր ընտրությունից,

$$|\vec{x}_{l_j}(i)| \leq \frac{1}{|l_{j-1}|} \sum_{l \in I_r} |x_{l_{j-1}}(l)| = \frac{1}{r} ||\vec{x}_{l_{j-1}}||_1$$

հետևաբար

$$\|\vec{x}_{l_j}\|_2^2 = \sum_{i \in I_i} |\vec{x}_{l_j}(i)|^2 \le \frac{|I_j|}{r^2} \|\vec{x}_{l_{j-1}}\|_1^2 \le \frac{1}{r} \|\vec{x}_{l_{j-1}}\|_1^2 :$$

Վերջինս համափեղելով (1)-ի հետ, ստանում ենք

$$\|\vec{x}_{l_0}\|_2 \leq \frac{\delta_{2r}}{1 - \delta_{2r}} \sum_{j=1}^k \|\vec{x}_{l_j}\|_2 \leq \frac{\delta_{2r}}{1 - \delta_{2r}} \sum_{j=1}^k \frac{1}{\sqrt{r}} \|\vec{x}_{l_{j-1}}\|_1 \leq \frac{\delta_{2r}}{1 - \delta_{2r}} \frac{\|\vec{x}\|_1}{\sqrt{r}} \leq \frac{\delta_{2r}}{1 - \delta_{2r}} \|\vec{x}\|_2$$

(Տյոլդերի անհավասարաթյունից $\|\vec{x}\|_1 \leq \sqrt{r} \|\vec{x}\|_2$)։

Մեզ անհրաժեշփ է, որ

$$\frac{\delta_{2r}}{1-\delta_{2r}}<\frac{1}{2}$$

վերջինս փեղի ունի, երբ $\delta_{2s} < \frac{1}{3}$:

Եթե որ A մատրիցը բավարարում է 2r-RIP պայմանին և նրա RIP հաստատունը հավասար է δ -ի, ապա

$$M \ge Cr \log \frac{N}{r}$$

որտեղ C հաստատունը կախված t միայն δ -hg:

Եթե որ A մատրիցը բավարարում t 2r-RIP պայմանին և նրա RIP հաստարունը հավասար t δ -h, ապա

$$M \ge Cr \log \frac{N}{r}$$

որտեղ C հաստատունը կախված ξ միայն δ -ից:

Թեորեմ։ (Candés, Tao, Romberg, 2006)

Դիցուք A-ն պատահական մատրից է, որի գործակիցները անկախ պատահական մեծություններ N(0,1) բաշխումով։ Այդ դեպքում $M \geq Cr \log \frac{N}{r}$ -ի համար, որտեղ C > 0—ն ցանկացած հաստատուն է $\frac{1}{\sqrt{M}}A$ մատրիցը բավարարում է r-RIP պայմանը $1-e^{-cM}$ հավանականությամբ, որտեղ

$$c = \frac{(1 - \log 2)\delta^2}{4} - \frac{\log(\frac{42e}{\delta})}{C}$$
:

Եթե որ A մատրիցը բավարարում է 2r-RIP պայմանին և նրա RIP հաստարունը հավասար է δ -h, ապա

$$M \ge Cr \log \frac{N}{r}$$

որտեղ C հաստատունը կախված ξ միայն δ -hg:

Թեորեմ։ (Candés, Tao, Romberg, 2006)

Դիցուք A-ն պատահական մատրից է, որի գործակիցները անկախ պատահական մեծություններ N(0,1) բաշխումով։ Այդ դեպքում $M \geq Cr \log \frac{N}{r}$ -ի համար, որտեղ C > 0—ն ցանկացած հաստատուն է, $\frac{1}{\sqrt{M}}A$ մատրիցը բավարարում է r-RIP պայմանը $1-e^{-cM}$ հավանականությամբ, որտեղ

$$c = \frac{(1 - \log 2)\delta^2}{4} - \frac{\log(\frac{42e}{\delta})}{C}:$$

Այսինքն, ինչքան մեծ վերցնենք M-ը այնքան ավելի հավանական է, որ պատահական մատրիցը կբավարարի RIP պայմանը, ընդ որում այդ հավանականությունը մոտենում է 1-ի էքսպոնենցիալ արագությամբ M-ի աճման հետ։

Բովանդակություն

Տիշեցում երեկվանից

r-NSP պայմանը

Փորձարկումներ

RIP պայմանլ

ightharpoonup Մեղմ նմուշառության խնդիրը ընդհանուր մափրիցների դեպքում հաշվողական փեսանկյունից անհնար էր լուծել, սակայն որոշ մափրիցների համար սեղմ նմուշառության խնդիրը ℓ_1 մինիմիզացիայի միջոցով բերվում էր գծային օպփիմիզացիայի խնդրի, որի լուծման համար բազմաթիվ թվային մեթոդներ գոյություն ունեն

- ▶ Սեղմ նմուշառության խնդիրը ընդհանուր մափրիցների դեպքում հաշվողական փեսանկյունից անհնար էր լուծել, սակայն որոշ մափրիցների համար սեղմ նմուշառության խնդիրը ℓ_1 մինիմիզացիայի միջոցով բերվում էր գծային օպփիմիզացիայի խնդրի, որի լուծման համար բազմաթիվ թվային մեթոդներ գոյություն ունեն
- Թվային մեթոդներով նկապեցինք, որ պապահակամ մափրիցների համար, որոնք ունեն անկախ Գաուսյան բաշխումով գործակիցներ, այդ պայմանը փեղի ուներ, և այդ փասփի մաթեմափիկական մեկնաբանությունը փրվեց RIP պայմանի միջոցով

- ightharpoonup Մեղմ նմուշառության խնդիրը ընդհանուր մափրիցների դեպքում հաշվողական փեսանկյունից անհնար էր լուծել, սակայն որոշ մափրիցների համար սեղմ նմուշառության խնդիրը ℓ_1 մինիմիզացիայի միջոցով բերվում էր գծային օպփիմիզացիայի խնդրի, որի լուծման համար բազմաթիվ թվային մեթոդներ գոյություն ունեն
- Թվային մեթոդներով նկապեցինք, որ պապահակամ մափրիցների համար, որոնք ունեն անկախ Գաուսյան բաշխումով գործակիցներ, այդ պայմանը փեղի ուներ, և այդ փասփի մաթեմափիկական մեկնաբանությունը փրվեց RIP պայմանի միջոցով
- Ժամանակի սղության պատճառով մենք բաց թողեցին կարևոր թեմաներ ինչպիսիք են սեղմ նմուշառության լուծման այլ մեթոդները (կոմբինատոր, գրիդի և այլն),որոնց որոշը ավելի կիրառելի են քան ℓ_1 մինիմիզացիան։

- ightharpoonup Մեղմ նմուշառության խնդիրը ընդհանուր մափրիցների դեպքում հաշվողական փեսանկյունից անհնար էր լուծել, սակայն որոշ մափրիցների համար սեղմ նմուշառության խնդիրը ℓ_1 մինիմիզացիայի միջոցով բերվում էր գծային օպփիմիզացիայի խնդրի, որի լուծման համար բազմաթիվ թվային մեթոդներ գոյություն ունեն
- Թվային մեթոդներով նկատեցինք, որ պատահակամ մատրիցների համար, որոնք ունեն անկախ Գաուսյան բաշխումով գործակիցներ, այդ պայմանը տեղի ուներ, և այդ փաստի մաթեմատիկական մեկնաբանությունը տրվեց RIP պայմանի միջոցով
- ightharpoonup Ժամանակի սղության պատճառով մենք բաց թողեցին կարևոր թեմաներ ինչպիսիք են սեղմ նմուշառության լուծման այլ մեթոդները (կոմբինափոր, գրիդի և այլն),որոնց որոշը ավելի կիրառելի են քան ℓ_1 մինիմիզացիան։
- Չխոսեցինք նաև վերակագնման ճշտության մասին, երբ չափումներում առկա է աղմուկ կամ վեկտորը նոսր չէ սակայն գրեթե նոսր է

- ightharpoonup Մեղմ նմուշառության խնդիրը ընդհանուր մափրիցների դեպքում հաշվողական փեսանկյունից անհնար էր լուծել, սակայն որոշ մափրիցների համար սեղմ նմուշառության խնդիրը ℓ_1 մինիմիզացիայի միջոցով բերվում էր գծային օպփիմիզացիայի խնդրի, որի լուծման համար բազմաթիվ թվային մեթոդներ գոյություն ունեն
- Թվային մեթոդներով նկապեցինք, որ պապահակամ մափրիցների համար, որոնք ունեն անկախ Գաուսյան բաշխումով գործակիցներ, այդ պայմանը փեղի ուներ, և այդ փասփի մաթեմափիկական մեկնաբանությունը փրվեց RIP պայմանի միջոցով
- ightharpoonup Ժամանակի սղության պատճառով մենք բաց թողեցին կարևոր թեմաներ ինչպիսիք են սեղմ նմուշառության լուծման այլ մեթոդները (կոմբինափոր, գրիդի և այլն),որոնց որոշը ավելի կիրառելի են քան ℓ_1 մինիմիզացիան։
- Չխոսեցինք նաև վերակագնման ճշտության մասին, երբ չափումներում առկա է աղմուկ կամ վեկտորը նոսր չէ սակայն գրեթե նոսր է
- Բազմաթիվ այլ թեմաների, որոնց կարելի է ծանոթանալ հղված աղբյուրներից։

