Putting Bayes to sleep

Wouter M. Koolen Dimitri Adamskiy Manfred Warmuth

How a beautiful and intriguing piece of technology provides new insights in existing methods and improves the state of the art in expert tracking and online multitask learning

Point of departure

We are trying to predict a sequence y_1, y_2, \ldots

Definition

A **model** issues a prediction each round. We denote the prediction of model m in round t by $P(y_t|y_{< t}, m)$.

Say we have several models m = 1, ..., M. How to combine their predictions?

Bayesian answer

Place a **prior** P(m) on models. Bayesian **predictive distribution**

$$P(y_t|y_{< t}) = \sum_{m=1}^{M} P(y_t|y_{< t}, m) P(m|y_{< t})$$

where posterior distribution is incrementally updated by

$$P(m|y_{\leq t}) = \frac{P(y_t|y_{< t}, m)P(m|y_{< t})}{P(y_t|y_{< t})}$$

Bayes is **fast**: predict in $\mathcal{O}(M)$ time per round.

Bayes is **good**: regret w.r.t. model m on data $y \le T$ bounded by

$$\sum_{t=1}^{T} \left(-\ln P(y_t|y_{< t}) + \ln P(y_t|y_{< t}, m) \right) \leq -\ln P(m).$$

Specialists

Definition (FSSW97,CV09)

A **specialist** may or **may not** issue a prediction. Prediction $P(y_t|y_{< t}, m)$ only available for **awake** $m \in W_t$.

Say we have several specialists m = 1, ..., M. How to combine their predictions?

Specialists

Definition (FSSW97,CV09)

A **specialist** may or **may not** issue a prediction.

Prediction $P(y_t|y_{< t}, m)$ only available for awake $m \in W_t$.

Say we have several specialists m = 1, ..., M.

How to combine their predictions?

If we imagine a prediction for the sleeping specialists, we can use Bayes

Choice: sleeping specialists predict with Bayesian predictive distribution

That **sounds** circular. Because it **is**. \$%!#?

Bayes for specialists

Place a **prior** P(m) on models. Bayesian **predictive distribution**

$$P(y_t|y_{< t}) = \sum_{m \in W_t} P(y_t|y_{< t}, m)P(m|y_{< t}) + \sum_{m \notin W_t} P(y_t|y_{< t})P(m|y_{< t})$$

Bayes for specialists

Place a **prior** P(m) on models. Bayesian **predictive distribution**

$$P(y_t|y_{< t}) = \sum_{m \in W_t} P(y_t|y_{< t}, m)P(m|y_{< t}) + \sum_{m \notin W_t} P(y_t|y_{< t})P(m|y_{< t})$$

has solution

$$P(y_t|y_{< t}) = \frac{\sum_{m \in W_t} P(y_t|y_{< t}, m) P(m|y_{< t})}{\sum_{m \in W_t} P(m|y_{< t})}.$$

Bayes for specialists

Place a **prior** P(m) on models. Bayesian **predictive distribution**

$$P(y_t|y_{< t}) = \sum_{m \in W_t} P(y_t|y_{< t}, m)P(m|y_{< t}) + \sum_{m \notin W_t} P(y_t|y_{< t})P(m|y_{< t})$$

has solution

$$P(y_t|y_{< t}) = \frac{\sum_{m \in W_t} P(y_t|y_{< t}, m) P(m|y_{< t})}{\sum_{m \in W_t} P(m|y_{< t})}.$$

The **posterior distribution** is incrementally updated by

$$P(m|y_{\leq t}) = \begin{cases} \frac{P(y_t|y_{< t}, m)P(m|y_{< t})}{P(y_t|y_{< t})} & \text{if } m \in W_t, \\ \frac{P(y_t|y_{< t})P(m|y_{< t})}{P(y_t|y_{< t})} = P(m|y_{< t}) & \text{if } m \notin W_t. \end{cases}$$

Bayes is **fast**: predict in $\mathcal{O}(M)$ time per round.

Bayes is **good**: regret w.r.t. model m on data y < T bounded by

$$\sum_{t : 1 \le t \le T \text{ and } m \in \frac{W_t}{W_t}} \left(-\ln P(y_t|y_{\le t}) + \ln P(y_t|y_{\le t}, m) \right) \le -\ln P(m).$$

The specialists trick

Specialists just a curiosity?

The specialists trick

Specialists just a curiosity?

Specialists trick:

- Start with input models
- Create many derived virtual specialists
 - Control how they predict
 - Control when they are awake
- Run Bayes on all these specialists
- Carefully choose prior
 - Low regret w.r.t. class of intricate combinations of input models.
 - Fast execution. Bayes on specialists collapses

Application 1: Freund's Problem

In practice:

- Large number M of models
- Some are good some of the time
- Most are bad all the time

We do not know in advance which models will be useful when.

Goal: compare favourably on data $y_{\leq T}$ with the best alternation of $N \ll M$ models with $B \ll T$ blocks.

Bayesian reflex: average all partition models. NP hard.

Application 1: sleeping solution

Create partition specialists

Bayes is **fast**: $\mathcal{O}(M)$ time per trial, $\mathcal{O}(M)$ space

Bayes is **good**: regret close to information-theoretic lower bound

Application 1: sleeping solution

Create partition specialists

Bayes is **fast**: $\mathcal{O}(M)$ time per trial, $\mathcal{O}(M)$ space

Bayes is **good**: regret close to information-theoretic lower bound

- Bayesian interpretation for Mixing Past Posteriors
- Faster algorithm
- Slightly improved regret bound
- Explain mysterious factor 2

Application 2: online multitask learning

In practice:

- Large number M of models
- Data y_1, y_2, \ldots from K interleaved tasks
- Observe task label $\kappa_1, \kappa_2, \ldots$ before prediction

We do not know in advance which tasks are similar.

Goal: Compare favourably to best clustering of task with $N \ll K$ cells

cluster model, N = 3 cells

Bayesian reflex: average all cluster models. NP hard.

Application 2: sleeping solution

Create cluster specialists

Bayes is **fast**: $\mathcal{O}(M)$ time per trial, $\mathcal{O}(MK)$ space Bayes is **good**: regret close to information-theoretic lower bound

- Intriguing algorithm
- Regret independent of task switch count

Conclusion

The specialists trick

- NP-hard offline problem
- Ditch Bayes on coordinated comparator models
- Instead create uncoordinated virtual specialists
- Craft prior so that
 - Bayes collapses (efficient emulation)
 - Small regret

Conclusion

The specialists trick

- NP-hard offline problem
- Ditch Bayes on coordinated comparator models
- Instead create uncoordinated virtual specialists
- Craft prior so that
 - Bayes collapses (efficient emulation)
 - Small regret

Thank you!