Part 1: Symmetries of a Regular Triangle

Instructions: Cut yourself a triangle that is this same shape and size. (One is provided on the last page of this document.) Label its vertices (corners) with the numbers 1, 2, 3 on both the front and the back.

In class, we're going to explore the symmetries of this triangle (a regular 3-gon). The group of which is called D_3 .

Let r = clockwise rotation by 120° and f = flip along the vertical axis.

Note that we can think of these r and f as permutations of $\{1, 2, 3\}$.

For example, consider r, then using two-line notation we have.

3

Let's complete the following table

Elt	Two-line	cycle	Symmetry
e	$ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} $	ε	do nothing
r	$ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} $	(1 2 3)	120° clockwise
r^2	$\begin{pmatrix} 1 & 2 & 3 \\ & & \end{pmatrix}$		

$oxed{Elt}$	Two-line	cycle	Symmetry
f	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$		
fr	$ \begin{pmatrix} 1 & 2 & 3 \\ & & \end{pmatrix} $		
fr^2	$ \begin{pmatrix} 1 & 2 & 3 \\ & & \end{pmatrix} $		

- 1. Did we miss any other symmetries? Why or why not? Is this set of symmetries equal to S_3 ?
- 2. Use your cut-out triangle to find the symmetry $r^2frf^3r^4f$, in 2-line notation $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$.
- 3. Use your cut-out triangle to prove that $f^2 = e$, $r^3 = e$, and $frf = r^2$.
- 4. Use the identities in question 3 to reduce $r^2frf^3r^4f$ to r^2f . Can you use an identity to make r^2f look like one of the 6 symmetries in the table?

Part 2: Symmetries of a Regular Rectangle (aka Square)

Instructions: Cut yourself a square that is this same shape and size. (One is provided on the last page of this document.) Label its vertices (corners) with the numbers 1, 2, 3, 4 on both the front and the back.

In class, we're going to explore the symmetries of this square (a regular 4-gon). The group of which is called D_4 .

Let $r = \text{clockwise rotation by } 90^{\circ} \text{ and } f = \text{flip along the vertical axis.}$

Note that we can think of these r and f as permutations of $\{1, 2, 3, 4\}$.

For example, consider r, then using two-line notation we have.

Let's complete the following table

Elt	Two-line	cycle	Symmetry
e	$ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} $	ε	do nothing
r	$ \left[\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \right] $	(1 2 3 4)	90° clockwise
r^2	$ \begin{pmatrix} 1 & 2 & 3 & 4 \\ & & & & \end{pmatrix} $		
r^3	$\left[\begin{pmatrix} 1 & 2 & 3 & 4 \\ & & & \end{pmatrix}\right]$		

Elt	Two-line	cycle	Symmetry
f	$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$		
fr	$ \begin{pmatrix} 1 & 2 & 3 & 4 \\ & & & \end{pmatrix} $		
fr^2	$ \begin{pmatrix} 1 & 2 & 3 & 4 \\ & & & \end{pmatrix} $		
fr^3	$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$		

- 1. Did we miss any other symmetries? Why or why not? Is this set of symmetries equal to S_4 ?
- 2. Use your cut-out square to find the symmetry $rfrfr^{-3}$, in 2-line notation $\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$.
- 3. Use your cut-out square to prove that $f^2 = e$, $r^4 = e$, and $frf = r^3$.
- 4. Use the identities in question 3 to reduce $rfrfr^{-1}$ to r.
- 5. Is $fr^3f = r = r^{-3}$? Is $fr^2f = r^2 = r^{-1}$? Make a conjecture about fr^if for $i \in \mathbb{Z}$.

 $\bf PRINT~AND~CUT$ Then duplicate the numbers on the reverse side of the shape too.

