2022-2023 MP2I

26. Groupe symétrique, méthodologie

I. Définition

Définition. Soit $n \in \mathbb{N}^*$. On note S_n l'ensemble des bijections de [1, n] dans [1, n]. Ces bijections sont appelées les permutations de [1, n].

Proposition. Pour $n \in \mathbb{N}^*$, (S_n, \circ) est un groupe fini (non commutatif pour $n \geq 3$) appelé le groupe symétrique. On a $\operatorname{Card}(S_n) = n!$.

(m) Si $\sigma \in S_n$ est une permutation, on la représente en général ainsi :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}.$$

On a donc sur la deuxième ligne les images des éléments des éléments de la première ligne, la première ligne étant ordonnée pour que le tout soit plus lisible. σ étant bijective, tous les éléments de $[\![1,n]\!]$ apparaissent tous exactement une fois dans la deuxième ligne.

 $\underline{\text{m}}$ Pour déterminer σ^{-1} (la fonction réciproque de σ), il suffit de lire le tableau précédent à l'envers, σ^{-1} envoyant les éléments de la deuxième ligne sur les éléments de la première.

Exercice d'application 1. Représenter les permutations suivantes et leurs réciproques :

1)
$$\sigma: \left\{ \begin{array}{ccc} \llbracket 1,7 \rrbracket & \rightarrow & \llbracket 1,7 \rrbracket \\ n & \mapsto & 8-n \end{array} \right.$$

- 2) $\sigma: \left\{ \begin{array}{ccc} \llbracket 1,8 \rrbracket & \rightarrow & \llbracket 1,8 \rrbracket \\ n & \mapsto & 2n \ [9] \end{array} \right.$ On rappelle que $2n \ [9]$ est $2n \ modulo \ 9$.
- 3) $\sigma: [1,2n] \to [1,2n]$ telle que $\sigma(k)=k+1$ si k est impair et $\sigma(k)=k-1$ si k est pair.

II. Cycles

Définition. Soit $\sigma \in S_n$ et $p \geq 2$. On dit que σ est un p-cycle (ou un cycle de longueur p) si il existe $x_1, x_2, \ldots, x_p \in [1, n]$ deux à deux distincts tels que :

$$\begin{cases} \sigma(x_1) = x_2, \ \sigma(x_2) = x_3, \ \dots, \ \sigma(x_{p-1}) = x_p, \ \sigma(x_p) = x_1 \\ \text{et } \forall k \in [1, n] \setminus \{x_1, \dots, x_p\}, \ \sigma(k) = k \end{cases}$$

m En reprenant les notations de la définition d'un cycle, on note $\sigma=(x_1\ x_2\ x_3\ \dots\ x_p)$. Cette notation se lit ainsi : chaque élément du tableau est envoyé sur le suivant et x_p qui est « au bout » du tableau est envoyé sur le premier (ici x_1). Cette notation permet de représenter le cycle de manière plus concise puisque tous les autres éléments de $[\![1,n]\!]$ n'y sont pas représentés (car ils sont fixes par σ). Cette notation n'est cependant pas unique puisque l'on peut « commencer » le cycle par l'élément que l'on veut.

Exercice d'application 2. Écrire la permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 6 & 1 & 5 \end{pmatrix}$ sous forme d'un cycle. De combien de façons différentes peut-on l'écrire sous forme d'un cycle?

Définition. Un cycle de longueur 2 est appelé une transposition. On note $\tau_{i,j} = (i \ j)$ la transposition qui échange i et j.

Exercice d'application 3. Soit $n \geq 3$. Écrire $(1\ 2) \circ (2\ 3)$ et vérifier qu'il s'agit d'un cycle de S_n de longueur 3. Procéder de même avec $(2\ 3) \circ (1\ 2)$.

Exercice d'application 4. Écrire la permutation de S_8 , $\sigma = (3\ 2\ 4\ 6) \circ (8\ 4\ 1\ 5) \circ (2\ 6\ 1) \circ (3\ 8)$.

III. Décomposition d'une permutation

III.1. En produit de cycles à supports disjoints

Définition. Soit $\sigma \in S_n$ une permutation et $k \in [1, n]$. On dit que k est fixe (ou invariant) par σ si $\sigma(k) = k$. Le support de σ est l'ensemble des éléments de [1, n] qui ne sont pas des points fixes de σ .

Proposition. Soient $\sigma_1, \sigma_2 \in S_n$ deux permutations à supports disjoints. Alors, $\sigma_1 \circ \sigma_2 = \sigma_2 \circ \sigma_1$.

Théorème. Toute permutation de S_n se décompose de manière unique (à l'ordre des facteurs près) en produit de cycles à supports disjoints.

m Pour déterminer cette décomposition à partir de l'écriture vue dans la première partie d'une permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}$, on commence par regarder où s'envoie 1, puis où s'envoie l'image de 1, etc. , jusqu'à ce qu'on retombe sur 1. Cela constitue ainsi notre premier cycle et on ferme la parenthèse : $(1 \ \sigma(1) \ \sigma(\sigma(1)) \ \dots \ \sigma^p(1))$. On regarde ensuite le premier élément de $[\![1,n]\!]$ non utilisé et on commence un nouveau cycle que l'on termine quand on retombe sur l'élément de départ. On s'arrête quand on a utilisé tous les éléments de $[\![1,n]\!]$.

Exercice d'application 5. Déterminer la décomposition en produit de cycles à supports disjoints de :

1)
$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 7 & 4 & 3 & 2 & 1 & 5 \end{pmatrix}$$
.

2)
$$\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 5 & 7 & 6 & 1 & 10 & 8 & 4 & 9 & 3 \end{pmatrix}$$
.

Proposition. Soit $\sigma = (x_1 \ x_2 \ \dots \ x_p)$ un p-cycle de S_n . Alors $\sigma = (x_1 \ x_2) \circ (x_2 \ x_3) \circ \dots \circ (x_{p-1} \ x_p)$.

Théorème. Toute permutation de S_n se décompose en produit de transpositions.

m Pour déterminer une telle décomposition (il n'y a pas unicité de la décomposition), on commence en général par décomposer la permutation en produit de cycles à supports disjoints et on décompose ensuite chacun des cycles en produit de transpositions.

Exercice d'application 6. Déterminer une décomposition en produit de transpositions de :

1)
$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 7 & 4 & 3 & 2 & 1 & 5 \end{pmatrix}$$
.

2)
$$\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 5 & 7 & 6 & 1 & 10 & 8 & 4 & 9 & 3 \end{pmatrix}$$
.

IV. Signature

Théorème. La signature est l'unique morphisme de groupe $\varepsilon:(S_n,\circ)\to(\{-1,1\},\times)$ telle que $\forall \tau$ transposition de S_n , $\varepsilon(\tau)=-1$. On a donc en particulier :

$$\forall \sigma_1, \sigma_2 \in S_n, \ \varepsilon(\sigma_1 \circ \sigma_2) = \varepsilon(\sigma_1) \times \varepsilon(\sigma_2).$$

Proposition. Soit $\sigma = \begin{pmatrix} x_1 & x_2 & \dots & x_p \end{pmatrix}$ un *p*-cycle de S_n . Alors, $\varepsilon(\sigma) = (-1)^{p-1}$.

m Pour déterminer la signature d'une permutation σ , on la décompose en produit de cycles à supports disjoints. On calcule alors la signature de chacun des cycles et on effectue le produit pour avoir la signature de σ . On peut également décomposer σ en produit de transpositions et compter la parité du nombre de transpositions.

Exercice d'application 7. Déterminer la signature de :

1)
$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 7 & 4 & 3 & 2 & 1 & 5 \end{pmatrix}$$
.

2)
$$\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 5 & 7 & 6 & 1 & 10 & 8 & 4 & 9 & 3 \end{pmatrix}$$
.

Définition. Soit $\sigma \in S_n$. On dit que σ est paire si $\varepsilon(\sigma) = 1$ et qu'elle est impaire si $\varepsilon(\sigma) = -1$.

Proposition. Soit $\sigma \in S_n$. Alors, $\varepsilon(\sigma^{-1}) = \varepsilon(\sigma)$.

Exercice d'application 8. On pose $A_n = \{ \sigma \in S_n / \varepsilon(\sigma) = 1 \}$. Montrer que (A_n, \circ) est un groupe. On l'appelle le groupe alterné.

3

V. Correction des exercices

Exercice d'application 1.

1) On a
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}$$
 et $\sigma^{-1} = \sigma$.

2) On a
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 4 & 6 & 8 & 1 & 3 & 5 & 7 \end{pmatrix}$$
 et $\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 1 & 6 & 2 & 7 & 3 & 8 & 4 \end{pmatrix}$.

3) On a
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & \dots & 2k-1 & 2k & \dots & 2n-1 & 2n \\ 2 & 1 & 4 & 3 & \dots & 2k & 2k-1 & \dots & 2n & 2n-1 \end{pmatrix}$$
 et $\sigma^{-1} = \sigma$.

Exercice d'application 2. On a $\sigma = (1\ 3\ 4\ 6\ 5)$. Puisque l'on peut commencer par l'élément que l'on veut, on a 5 manières différentes de l'écrire :

$$(1\ 3\ 4\ 6\ 5) = (3\ 4\ 6\ 5\ 1) = (4\ 6\ 5\ 1\ 3) = (6\ 5\ 1\ 3\ 4) = (5\ 1\ 3\ 4\ 6).$$

Exercice d'application 3. On a $(1\ 2)\circ(2\ 3)=(1\ 2\ 3)$ (car 1 est fixe par la première transposition et la seconde l'envoie sur 2, 2 est envoyé sur 3 par la première transposition et est laissé fixe par la seconde et enfin 3 est envoyé sur 2 par la première transposition qui est ensuite envoyé sur 1. Tous les autres éléments sont fixes par les deux transpositions et restent donc fixes). De la même façon, on a :

$$(2\ 3)\circ(1\ 2)=(1\ 3\ 2).$$

Exercice d'application 4. On a $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 6 & 1 & 8 & 5 & 7 & 2 \end{pmatrix}$. Par exemple, pour calculer l'image de 3, on voit que la première transposition l'envoie sur 8. 8 est ensuite laissé fixe puis il est envoyé sur 4 (par (8 4 1 5)). Enfin, 4 est envoyé sur 6 ce qui permet d'affirmer que $\sigma(3) = 6$.

Exercice d'application 5.

- 1) On a $\sigma_1 = (1\ 6) \circ (2\ 7\ 5) \circ (3\ 4)$. Par exemple, 2 s'envoie sur 7 qui s'envoie sur 5 qui s'envoie sur 2 donc cela donne bien le cycle $(2\ 7\ 5)$.
- 2) On a $\sigma_2 = (1\ 2\ 5) \circ (3\ 7\ 8\ 4\ 6\ 10)$. Ici 9 s'envoie sur lui même donc on ne le met pas dans la décomposition.

Exercice d'application 6. On reprend l'exercice précédent.

- 1) On en déduit que $\sigma_1 = (1 \ 6) \circ (2 \ 7) \circ (7 \ 5) \circ (3 \ 4)$.
- 2) De même, $\sigma_2 = (1\ 2) \circ (2\ 5) \circ (3\ 7) \circ (7\ 8) \circ (8\ 4) \circ (4\ 6) \circ (6\ 10)$.

Exercice d'application 7. Avec les deux exercices précédents :

- 1) σ_1 se décompose en produit de 4 transpositions donc $\varepsilon(\sigma) = (-1)^4 = 1$. Avec la décomposition en cycles à supports disjoints, on a aussi $\varepsilon(\sigma) = (-1) \times (-1)^2 \times (-1) = 1$.
- 2) De même, σ_2 se décompose en produit de 7 transpositions donc $\varepsilon(\sigma) = (-1)^7 = -1$. Avec sa décomposition en cycles à supports disjoints, on a aussi $\varepsilon(\sigma) = (-1)^2 \times (-1)^5 = -1$.

Exercice d'application 8. On a $\operatorname{Id}_{\llbracket 1,n\rrbracket} \in \mathcal{A}_n$ car $\varepsilon(\operatorname{Id}_{\llbracket 1,n\rrbracket}) = (-1)^0 = 1$. Si $\sigma_1,\sigma_2 \in \mathcal{A}_n$, alors :

$$\varepsilon(\sigma_1 \circ \sigma_2) = \varepsilon(\sigma_1)\varepsilon(\sigma_2) = 1 \times 1 = 1$$

4

donc $\sigma_1 \circ \sigma_2 \in \mathcal{A}_n$. Enfin, si $\sigma \in \mathcal{A}_n$, alors σ est inversible et $\varepsilon(\sigma^{-1}) = (\varepsilon(\sigma))^{-1} = 1$ d'où $\sigma^{-1} \in \mathcal{A}_n$. Ceci entraine \mathcal{A}_n est un sous-groupe de S_n (il n'est pas utile de remontrer l'associativité de \circ puisqu'elle est associative sur S_n et donc sur \mathcal{A}_n car $\mathcal{A}_n \subset S_n$).