Hieu Le

Problem 1. Algorithm A performs $10n^2$ basic operations, and algorithm B performs $300 \lg(n)$ basic operations. Which algorithm is better, and at what value of n does the better algorithm start to show its better performance? Illustrate your answer with a graph generated by a program such as gnuplot or wolfram alpha.

Answer: As depicted in the following graph:

Algorithm B is better than algorithm A. Algorithm B begins to show superior performance at n = 10.

Problem 2. Using the definitions, show that

$$6n^2 + 20n \in O(n^3)$$

but

$$6n^2 + 20n \not\in \Omega(n^3)$$

Answer:

Let c = 30 and $n_0 = 1$. Since $6n^2 + 20n \le cn^3$ for all $n \ge n_0$, $6n^2 + 20n \in O(n^3)$.

Since $6n^2 + 20n$ is of smaller degree than n^3 , $6n^2 + 20n$ is asymptotically smaller than n^3 . Subsequently, there does not exist any pair of positive numbers c and n_0 such that $6n^2 + 20n \ge cn^3$ for all $n \ge n_0$. Hence, $6n^2 + 20n \notin \Omega(n^3)$.

Problem 3. Given the following algorithm, and assuming that n is an even number, calculate the exact number of times statement foo runs, and analyze the algorithm using the the rules (e.g., polynomial).

```
j = 1;
while( j <= n/2 )
{
    i = 1;
    while( i <= j )
    {
        foo;
        i++;
    }
    j++;
}</pre>
```

Answer:

The number of times statement foo runs is:

$$T(n) = \sum_{j=1}^{n/2} (\sum_{i=1}^{j} 1) = \sum_{j=1}^{n/2} j$$

$$= 1 + 2 + 3 + \dots + n/2$$

$$= (1 + n/2)(n/2)/2$$

$$= (2n + n^2)/8$$

Since $(2n + n^2)/8$ is a polynomial of degree 2, $(2n + n^2)/8 \in \Theta(n^2)$ by the polynomial rule.

Problem 4. Solve the recurrence relation $t_n = 2nt_{n-1}$ where $t_0 = 1$.

Answer: Using the given relation, we have:

$$\begin{split} t_n &= 2nt_{n-1} \\ &= 2n(2(n-1)t_{n-2}) \\ &= 2^2n(n-1)t_{n-2} \\ &= 2^{n-(n-2)} \times n!/(n-2)! \times t_{n-2} \\ &= 2^{n-(n-2)} \times n!/(n-2)! \times (2(n-2)t_{n-3}) \\ &= 2^{n-(n-3)} \times n!/(n-3)! \times t_{n-3} \\ &\vdots \\ &= 2^{n-(n-k)} \times n!/(n-k)! \times t_{n-k} \\ &\vdots \\ &= 2^{n-(n-k)} \times n!/(n-n)! \times t_{n-n} \\ &= 2^n n! t_0 \end{split}$$

and therefore $t_n = 2^n n!$ for $n \ge 1$.

Problem 5. Analyze a program whose time complexity is $T(n) = 7T(\frac{n}{4}) + n$.

Answer:

We have: $n \in \Theta(n^1)$.

Applying the Master Theorem, let a=7, b=4, d=1. Since $a>b^d$, $T(n)\in\Theta(n^{\log_47})\approx\Theta(n^{1.404})$.