LÓGICA MATEMÁTICA – AULA 02

Precedência Geral dos Operadores Aritméticos

Quando uma expressão aritmética precisa ser avaliada num algoritmo, o analisador processa a expressão dando prioridade para certos operadores. As sub-expressões que contém estes operadores serão avaliadas primeiro e seu valor substituído pela sub-expressão inteira. A seguir a próxima sub-expressão na ordem é avaliada e assim por diante até que toda a expressão corresponda a um só valor. A Tabela <u>4.2</u> mostra a ordem de prioridade na avaliação dos operadores numa expressão aritmética, chamada de precedência de operadores.

Tabela 4.2: Precedência Geral de Operadores Aritméticos

Ordem	Operação	Símbolo
<u>1ª</u>	Parênteses	()
<u>2ª</u>	Potenciação	**
<u>3ª</u>	Multiplicação, Divisão, Resto e Divisão Inteira	*,/,mod,div
<u>4ª</u>	Adição, Subtração	+, -

Conectivo "e": (conjunção)

Proposições compostas em que está presente o conectivo "e" são ditas **CONJUNÇÕES.** Simbolicamente, esse conectivo pode ser representado por "\Lambda". Então, se temos a sentença:

- "Marcos é médico e Maria é estudante"
- ... poderemos representá-la apenas por: $\mathbf{p} \wedge \mathbf{q}$. onde: $\mathbf{p} = Marcos\ \acute{e}\ m\acute{e}dico\ e\ \mathbf{q} = Maria\ \acute{e}$ estudante.

Como se revela o valor lógico de uma proposição conjuntiva? Da seguinte forma: uma conjunção só será verdadeira, se ambas as proposições componentes forem também verdadeiras.

Então, diante da sentença "Marcos é médico e Maria é estudante", só poderemos concluir que esta proposição composta é **verdadeira** se for verdade, ao mesmo tempo, que Marcos é médico e que Maria é estudante.

Pensando pelo caminho inverso, teremos que **basta que uma das proposições** componentes seja falsa, e a conjunção será – toda ela – falsa. Obviamente que o resultado *falso* também ocorrerá quando ambas as proposições componentes forem falsas.

Essas conclusões podem ser resumidas em uma pequena tabela. Trata-se da **tabela- verdade**, de fácil construção e de fácil entendimento.

Retomemos as nossas premissas:

p = Marcos é médico e q = Maria é estudante.

Se tivermos que ambas são verdadeiras, a conjunção formada por elas (*Marcos é médico e Maria é estudante*) será também verdadeira. Teremos:

Marcos é médico	Maria é estudante	Marcos é médico e Maria é estudante
р	q	p∧q
V	V	V

Se for verdade apenas que *Marcos é médico*, mas falso que *Maria é estudante*, teremos:

Marcos é médico	Maria é estudante	Marcos é médico e Maria é estudante
р	q	p∧q
V	F	F

Por outro lado, se for verdadeiro que Maria \acute{e} estudante, e falso que Marcos \acute{e} $m\acute{e}dico$, teremos:

Marcos é médico	Maria é estudante	Marcos é médico e Maria é estudante
р	q	p∧q
F	V	F

Enfim, se ambas as sentenças simples forem falsas, teremos que:

Marcos é médico	Maria é estudante	Marcos é médico e Maria é estudante
р	q	p∧q
F	F	F

Ora, as quatro situações acima esgotam todas as possibilidades para uma conjunção. Fora disso não há outras! Criamos, portanto, a **tabela-verdade** que representa uma **conjunção**, ou seja, a tabela-verdade para uma proposição composta com a presença do conectivo "e". Teremos:

р	q	p∧q
V	V	V
V	F	F
F	V	F
F	F	F

É preciso que a informação constante da terceira coluna (em destaque) fique guardada em nossa memória: uma conjunção só será verdadeira, quando ambas as partes que a compõem também forem verdadeiras. E falsa nos demais casos.

Uma maneira de assimilar bem essa informação seria pensarmos nas sentenças simples como promessas de um pai a um filho: "eu te darei uma bola E te darei uma bicicleta". Ora, pergunte a qualquer criança! Ela vai entender que a promessa é para os dois presentes. Caso o pai não dê nenhum presente, ou dê apenas um deles, a promessa não terá sido cumprida. Terá sido falsa! No entanto, a promessa será verdadeira se as duas partes forem também verdadeiras!

Na hora de formar uma *tabela-verdade* para **duas** proposições componentes (**p** e **q**), saberemos, de antemão, que essa tabela terá quatro linhas. Começaremos, então, fazendo a seguinte estrutura:

р	q

Daí, a coluna da primeira proposição terá sempre a seguinte disposição: dois (V) "vês" seguidos de dois (F) "efes". Assim:

p	q
V	
V	
F	
F	

Enquanto a variação das letras (V e F) para a premissa $\bf p$ ocorre de duas em duas linhas, para a premissa $\bf q$ é diferente: "vês" (V) e "efes" (F) se alternando a cada linha, começando com um V. Assim:

р	q
V	V
V	F
F	V
F	F

Essa estrutura inicial é **sempre assim**, para tabelas-verdade de duas proposições **p** e **q**. A terceira coluna dependerá do **conectivo** que as une, e que está sendo analisado. No caso do conectivo "e", ou seja, no caso da **conjunção**, já aprendemos a completar a nossa tabela verdade:

p	q	p∧q
V	V	V
V	F	F
F	V	F
F	F	F

Se as proposições **p** e **q** forem representadas como conjuntos, por meio de um diagrama, a conjunção "**p** e **q**" corresponderá à **interseção** do conjunto **p** com o conjunto **q**. Teremos:

Conectivo "ou": (disjunção)

Recebe o nome de **DISJUNÇÃO** toda proposição composta em que as partes estejam unidas pelo conectivo **ou**. Simbolicamente, representaremos esse conectivo por "V". Portanto, se temos a sentença:

- "Marcos é médico ou Maria é estudante"
- ... então a representaremos por: $\mathbf{p} \vee \mathbf{q}$.

Seremos capazes de criar uma tabela-verdade para uma proposição disjuntiva? Claro! Basta nos lembrarmos da tal promessa do pai para seu filho! Vejamos: "eu te darei uma bola OU te darei uma bicicleta". Neste caso, a criança já sabe, de antemão, que a promessa é por apenas um dos presentes! Bola ou bicicleta! Ganhando de presente apenas um deles, a promessa do pai já valeu! Já foi verdadeira! E se o pai for abastado e resolver dar os dois presentes? Pense na cara do menino! Feliz ou triste? Felicíssimo! A promessa foi mais do que cumprida. Só haverá um caso, todavia, em que a bendita promessa não se cumprirá: se o pai esquecer o presente, e não der nem a bola e nem a bicicleta. Terá sido falsa toda a disjunção.

Daí, concluímos: uma disjunção será falsa quando as duas partes que a compõem forem ambas falsas! E nos demais casos, a disjunção será verdadeira! Teremos as possíveis situações:

Te darei uma bola	Te darei uma bicicleta	Te darei uma bola ou te darei uma bicicleta
р	q	p V q
V	V	V

Ou:

Te darei uma bola	Te darei uma bicicleta	Te darei uma bola ou te darei uma bicicleta
р	q	p V q
V	F	V

Ou:

Te darei uma bola	i uma bola Te darei uma bicicleta Te darei uma bola ou te darei uma bicicle		
p	q	p V q	
F	V	V	

Ou, finalmente:

Te darei uma bola	Te darei uma bicicleta	Te darei uma bola ou te darei uma bicicleta	
p	q	p V q	
F	F	F	

Juntando tudo, teremos:

p	q	pVq	
V	V	V	
V	F	V	
F	V	V	
F	F	F	

A promessa inteira só é falsa se as duas partes forem descumpridas!

Observem que as duas primeiras colunas da tabela-verdade acima – as colunas do **p** e do **q** – são exatamente iguais às da tabela-verdade da *conjunção* (p **E** q). Muda apenas a terceira coluna, que agora representa um "ou", a disjunção.

Se as proposições \mathbf{p} e \mathbf{q} forem representadas como conjuntos por meio de um diagrama, a disjunção " \mathbf{p} ou \mathbf{q} " corresponderá à **união** do conjunto \mathbf{p} com o conjunto \mathbf{q} ,

Conectivo "Ou ... ou ...": (disjunção exclusiva)

Há um terceiro tipo de proposição composta, bem parecido com a disjunção que acabamos de ver, mas com uma pequena diferença. Comparemos as duas sentenças abaixo:

"Te darei uma bola **OU** te darei uma bicicleta"

"OU te darei uma bola OU te darei uma bicicleta"

A diferença é sutil, mas importante. Reparemos que na primeira sentença vê-se facilmente que se a primeira parte for *verdade* (*te darei uma bola*), isso não impedirá que a segunda parte (*te darei uma bicicleta*) também o seja. Já na segunda proposição, se for verdade que "*te darei uma bola*", então teremos que não será dada a bicicleta. E vice-versa, ou seja, se for verdade que "*te darei uma bicicleta*", então teremos que não será dada a bola.

Em outras palavras, a segunda estrutura apresenta duas *situações mutuamente excludentes*, de sorte que apenas uma delas pode ser verdadeira, e a restante será necessariamente falsa. Ambas nunca poderão ser, ao mesmo tempo, verdadeiras; ambas nunca poderão ser, ao mesmo tempo, falsas.

Na segunda sentença acima, este tipo de construção é uma *DISJUNÇÃO EXCLUSIVA*, pela presença dos dois conectivos "ou", que determina que **uma sentença é necessariamente** verdadeira, e a outra, necessariamente falsa.

E como fica a sua tabela-verdade? Ora, uma disjunção exclusiva só será verdadeira se obedecer à mútua exclusão das sentenças. Falando mais fácil: só será verdadeira se houver uma das sentenças verdadeira e a outra falsa. Nos demais casos, a disjunção exclusiva será falsa.

O símbolo que designa a disjunção exclusiva é o "\(\mathbf{Y}\)". E a tabela-verdade será, pois, a seguinte:

р	q	p <u>V</u> q	
V	V	F	
V	F	V	
F	V	V	
F	F	F	

Conectivo "Se ... então ...": (condicional)

Estamos agora falando de proposições como as que se seguem:

- Se Pedro é médico, então Maria é dentista.
- o Se amanhecer chovendo, então não irei à praia.

Muita gente tem dificuldade em entender o funcionamento desse tipo de proposição. Convém, para facilitar nosso entendimento, que trabalhemos com a seguinte sentença.

Se nasci em Fortaleza, então sou cearense.

Cada um de vocês pode adaptar essa frase acima à sua realidade: troque *Fortaleza* pelo nome da sua cidade natal, e troque *cearense* pelo nome que se dá a quem nasce no seu Estado. Por exemplo:

- o Se nasci em Apodi, então sou potiguar.
- o Se nasci em Russas, então sou cearense.

E assim por diante. Pronto?

Agora me responda: qual é a única maneira dessa proposição estar incorreta? Ora, só há um jeito desta frase ser falsa: se a primeira parte for verdadeira, e a segunda for falsa. Ou seja, se é verdade que eu nasci em Apodi, então necessariamente é verdade que eu sou potiguar. Se alguém disser que é verdadeiro que eu nasci em Apodi, e que é falso que eu sou potiguar, então este conjunto estará todo falso.

É importante salientar que o exemplo trabalhado acima (*Se nasci em Russas então sou cearense*) foi escolhido exclusivamente para fins didáticos. Na realidade, não é preciso que exista qualquer conexão de sentido entre o conteúdo das proposições componentes da condicional. Por exemplo, poderíamos ter a seguinte sentença:

"Se a baleia é um mamífero então o papa é alemão"

O que interessa é apenas uma coisa: a primeira parte da condicional é uma **condição suficiente** para obtenção de um resultado necessário.

Percebam, pois, que se alguém disser que: "Pedro ser rico é condição suficiente para Maria ser médica", então nós podemos reescrever essa sentença, usando o formato da condicional. Teremos:

- o "Pedro ser rico é condição suficiente para Maria ser médica" é igual a:
- o "Se Pedro for rico, então Maria é médica"

Por outro lado, se ocorrer de alguém dizer que: "Maria ser médica é condição necessária para que Pedro seja rico", também poderemos traduzir isso de outra forma:

- o "Maria ser médica é condição necessária para que Pedro seja rico" é igual a:
- o "Se Pedro for rico, então Maria é médica"

Não podemos, pois esquecer disso:

o Uma condição suficiente gera um resultado necessário.

Pois bem! Como ficará nossa tabela-verdade, no caso da *proposição condicional*? Pensaremos aqui pela via de exceção: só será falsa esta estrutura quando houver a condição suficiente, mas o resultado necessário não se confirmar. Ou seja, quando a primeira parte for verdadeira, e a segunda for falsa. Nos demais casos, a condicional será verdadeira.

A sentença condicional "Se p, então q" será representada por uma seta: $p \rightarrow q$.

Na proposição "Se p, então q", a proposição p é denominada de antecedente, enquanto a proposição q é dita consequente. Teremos:

p	q	p → q	
V	V	V	
V	F	F	
F	V	V	
F	F	V	

Se as proposições **p** e **q** forem representadas como conjuntos, por meio de um diagrama, a proposição condicional "**Se p então q**" corresponderá à **inclusão** do conjunto **p** no conjunto **q** (p está contido em q):

Conectivo " ... se e somente se ...": (bicondicional)

A estrutura dita *bicondicional* apresenta o conectivo "se e somente se", separando as duas sentenças simples. Trata-se de uma proposição de fácil entendimento. Se alguém disser:

"Eduardo fica alegre se e somente se Mariana sorri".

É o mesmo que fazer a conjunção entre as duas proposições condicionais:

 "Eduardo fica alegre somente se Mariana sorri e Mariana sorri somente se Eduardo fica alegre".

Ou ainda, dito de outra forma:

 "Se Eduardo fica alegre, então Mariana sorri e se Mariana sorri, então Eduardo fica alegre".

São construções de mesmo sentido!

A bicondicional é uma conjunção entre duas condicionais. Haverá duas situações em que a bicondicional será verdadeira: quando antecedente e consequente forem ambos verdadeiros, ou quando forem ambos falsos. Nos demais casos, a bicondicional será falsa.

Sabendo que a frase "p se e somente se q" é representada por " $p \leftrightarrow q$ ", então nossa tabelaverdade será a seguinte:

р	q	p↔q	
V	V	V	
V	F	F	
F	V	F	
F	F	V	

Se as proposições **p** e **q** forem representadas como conjuntos, por meio de um diagrama, a proposição bicondicional "**p** se **e** somente se **q**" corresponderá à **igualdade** dos conjuntos **p** e **q**.

Observação: Uma proposição bicondicional "**p se e somente se q"** equivale à proposição composta: "**se p então q e se q então p**", ou seja,

"
$$\mathbf{p} \leftrightarrow \mathbf{q}$$
" é a mesma coisa que " $(\mathbf{p} \rightarrow \mathbf{q})$ e $(\mathbf{q} \rightarrow \mathbf{p})$ "

.

Partícula " não": (negação)

Veremos algo de suma importância: como negar uma proposição.

No caso de uma proposição simples, não poderia ser mais fácil: basta pôr a palavra **não** antes da sentença, e já a tornamos uma negativa. Exemplos:

- o João é médico. Negativa: João não é médico.
- o Maria é estudante. Negativa: Maria não é estudante.

Reparemos que caso a sentença original já seja uma negativa (já traga a palavra *não*), então para negar a negativa, teremos que excluir a palavra *não*. Assim:

- João não é médico. Negativa: João é médico.
- o Maria não é estudante. Negativa: Maria é estudante.

Pronto! Em se tratando de fazer a *negação* de proposições simples, já estamos *craques*!

O símbolo que representa a negação é uma pequena *cantoneira* (¬) ou um sinal de til (~), antecedendo a frase. (**Adotaremos o** *til*).

A tabela-verdade da negação é mais simplificada que as demais já vistas. Teremos:

р	~p
V	F
F	V

Podem-se empregar, também, como equivalentes de "não A", as seguintes expressões:

- o Não é verdade que A.
- o É falso que A.

Daí as seguintes frases são equivalentes:

- o Lógica não é fácil.
- o Não é verdade que lógica é fácil.
- o Éfalso que lógica é fácil.

Negação de um proposição composta

Já sabemos negar uma proposição simples. Mas, e se for uma *proposição composta*, como fica? Aí, dependerá de qual é a estrutura em que se encontra essa *proposição*. Veremos, pois, uma a uma:

→ Negação de uma proposição conjuntiva: ~(p e q)

Para negar uma proposição no formato de conjunção (p e q), faremos o seguinte:

- Negaremos a primeira parte (~p);
- 2. Negaremos a segunda parte (~q);
- 3. Trocaremos e por ou.

E só!

Daí, a questão dirá: "Não é verdade que João é médico e Pedro é dentista", e pedirá que encontremos, entre as opções de resposta, aquela frase que seja logicamente equivalente a esta fornecida.

Analisemos: o começo da sentença é "não é verdade que...". Ora, dizer que "não é verdade que..." é nada mais nada menos que negar o que vem em seguida. E o que vem em seguida? Uma estrutura de conjunção!

Daí, como negaremos que "João é médico e Pedro é dentista"? Da forma explicada acima:

- 1. Nega-se a primeira parte (~p) = João não é médico;
- Nega-se a segunda parte (~q) = Pedro não é dentista;
- 3. Troca-se E por OU, e o resultado final será o seguinte:

JOÃO NÃO É MÉDICO OU PEDRO NÃO É DENTISTA.

Traduzindo para a linguagem da lógica, dizemos que:

$$\sim (p \land q) = \sim p V \sim q$$

Como fomos chegar à essa conclusão? Ora, por meio da comparação entre as tabelasverdade das duas proposições acima. Vejamos como foi isso. Primeiro, trabalhemos a tabelaverdade do $\sim (p \land q)$.

Tudo começa com aquele formato básico, que já é nosso conhecido:

p	q
V	V
V	F
F	V
F	F

Daí, faremos a próxima coluna, que é a da conjunção (e). Teremos:

p	q	p∧q	
V	V	V	
V	F	F	
F	V	F	
F	F	F	

Por fim, construiremos a coluna que é a negativa desta terceira. Ora, já sabemos que com a negativa, o que é verdadeiro vira falso, e o que é falso vira verdadeiro. Logo, teremos:

p	q	p∧q	~(p ∧ q)
V	V	V	F
V	F	F	V
F	V	F	V
F	F	F	V

Guardemos, pois, essa última coluna (em destaque). Ela representa o *resultado lógico* da estrutura \sim ($p \land q$). Agora, construamos a tabela-verdade da estrutura \sim $p v \sim$ q, e comparemos os resultados. No início, teremos:

p	q	
V	V	
V	F	
F	V	
F	F	

Faremos agora as duas colunas das duas negativas, de p e de q. Para isso, conforme já sabemos, quem for V virará F, e vice-versa. Teremos:

р	q	~p	~q
V	V	F	F
V	F	F	V
F	V	V	F
F	F	V	V

Agora, passemos à coluna final: $\sim p \ v \ \sim q$. Aqui nos lembraremos de como funciona uma disjunção. A disjunção é a estrutura do ou. Para ser verdadeira basta que uma das sentenças também o seja. Daí, teremos:

р	q	~p	~q	~p V ~q
V	V	F	F	F
V	F	F	V	V
F	V	V	F	V
F	F	V	V	V

Finalmente, comparemos a *coluna resultado* (em destaque) desta estrutura ($\sim p \lor \sim q$) com aquela que estava *guardada* da estrutura $\sim (p \land q)$. Teremos:

~(p ∧ q)	~p V ~q
F	F
V	V
V	V
V	V

Resultados idênticos! Daí, do *ponto de vista lógico*, para negar \mathbf{p} \mathbf{e} \mathbf{q} , negaremos \mathbf{p} , negaremos \mathbf{q} , e trocaremos \mathbf{e} por \mathbf{ou} .

→Negação de uma proposição disjuntiva: ~(p ou q)

Para negar uma proposição no formato de disjunção (\mathbf{p} ou \mathbf{q}), faremos o seguinte:

- 1. Negaremos a primeira parte (~p);
- 2. Negaremos a segunda parte (~q);
- 3. Trocaremos OU por E.

E só!

Se uma questão de prova disser: "Marque a assertiva que é logicamente equivalente à seguinte frase: Não é verdade que Pedro é dentista ou Paulo é engenheiro".

Pensemos: a frase começa com um "não é verdade que...", ou seja, o que se segue está sendo negado! E o que se segue é uma estrutura em forma de disjunção. Daí, obedecendo aos passos descritos acima, faremos:

- 1. Nega-se a primeira parte (~p) = Pedro não é dentista;
- 2. Nega-se a segunda parte (~q) = Paulo não é engenheiro;
- 3. Troca-se OU por E, e o resultado final será o seguinte:

PEDRO NÃO É DENTISTA E PAULO NÃO É ENGENHEIRO.

Na linguagem apropriada, concluímos que:

$$\sim (p V q) = \sim p \land \sim q$$

Se formos curiosos, poderemos fazer a comprovação – via tabelas-verdade – desta conclusão acima. Somos curiosos? Claro! Tomemos a primeira parte: ~(p V q). Teremos, de início:

р	q
V	V
V	F
F	V
F	F

Daí, construindo a coluna da disjunção (p ou q). Teremos:

p	q	p V q
V	V	V
V	F	V
F	\mathbf{v}	V
F	F	F

Finalizando, fazendo a negação da coluna da disjunção, teremos:

p	q	p V q	~(p V q)
V	v	V	F
V	F	V	F
F	V	V	F
F	F	F	V

Guardemos essa *coluna resultado* para o final. E passemos à segunda parte da análise: a estrutura $\sim p \land \sim q$. Teremos, a princípio, o seguinte:

р	q
V	V
V	F
F	V
F	F

Construindo-se as colunas de negações de ${\bf p}$ e ${\bf q}$, teremos:

р	q	~p	~q
V	V	F	F
V	F	F	V
F	V	V	F
F	F	V	V

Finalizando, fazendo a conjunção ~p e ~q, teremos os seguintes resultados:

р	q	~p	~q	~p ∧~q
V	V	F	F	F
V	F	F	V	F
F	V	V	F	F
F	F	V	V	V

Concluindo, comparemos a *coluna resultado* (em destaque) desta estrutura ($\sim p \land \sim q$) com aquela que estava *guardada* da estrutura $\sim (p \lor q)$. Teremos:

~(p V q)	~p ∧~q
F	F
F	F
F	F
V	V

Resultados idênticos! Daí, do *ponto de vista lógico*, para negar **"p ou q"**, negaremos **p**, negaremos **q**, e trocaremos **ou** por **e**.

→Negação de uma proposição condicional: ~(p → q)

Como é que se nega uma condicional? Da seguinte forma:

- 1º) Mantém-se a primeira parte; e
- 2º) Nega-se a segunda parte.

Por exemplo, como seria a negativa de "Se chover, então levarei o guarda-chuva"?

р	q	~p	~q
V	V	F	F
V	F	F	V
F	V	V	F
F	F	V	V

Finalizando, fazendo a conjunção ~p e ~q, teremos os seguintes resultados:

р	q	~p	~q	~p ∧~q
V	V	F	F	F
V	F	F	V	F
F	V	V	F	F
F	F	V	V	V

Concluindo, comparemos a *coluna resultado* (em destaque) desta estrutura ($\sim p \land \sim q$) com aquela que estava *guardada* da estrutura $\sim (p \lor q)$. Teremos:

~(p V q)	~p ∧~q
F	F
F	F
F	F
V	V

Resultados idênticos! Daí, do *ponto de vista lógico*, para negar **"p ou q"**, negaremos **p**, negaremos **q**, e trocaremos **ou** por **e**.

→Negação de uma proposição condicional: ~(p → q)

Como é que se nega uma condicional? Da seguinte forma:

- 1º) Mantém-se a primeira parte; e
- 2º) Nega-se a segunda parte.

Por exemplo, como seria a negativa de "Se chover, então levarei o guarda-chuva"?

Tabelas-verdade

Trataremos agora um pouco mais a respeito de **TABELA-VERDADE**. Trata-se de uma tabela mediante a qual são analisados os valores lógicos de proposições compostas.

Já vimos que uma *Tabela-Verdade* que contém **duas** proposições apresentará exatamente um número de **quatro** linhas! Mas e se estivermos analisando uma proposição composta com três ou mais proposições componentes? Como ficaria a tabela-verdade neste caso? Generalizando para qualquer caso, teremos que o número de linhas de uma tabela-verdade será dado por:

Nº linhas da Tabela-Verdade = 2nº de proposições

Ou seja, se estivermos trabalhando com duas proposições **p** e **q**, então a tabela-verdade terá 4 linhas. Se estivermos trabalhando com uma proposição composta que tenha **três** componentes **p**, **q** e **r**, a tabela-verdade terá **2**³ **= 8**. E assim, por diante.

→ Tabelas-verdade para p e q:

Trabalhando com duas proposições componentes, a estrutura inicial da tabela-verdade será sempre aquela que já aprendemos. Qual seja:

p	q
V	V
V	F
F	V
F	F

E a próxima coluna (ou próximas colunas) da tabela-verdade dependerá dos conectivos que estarão presentes na proposição composta.

Já sabemos construir, pelo menos, cinco tabelas-verdade de proposições compostas! A tabela-verdade da **conjunção**, **da disjunção**, **da disjunção exclusiva**, **da condicional e da bicondicional**. Com este conhecimento prévio, já estamos aptos a construir as tabelas-verdade de qualquer outra proposição formada por duas proposições componentes (**p** e **q**). Designaremos tal proposição composta da seguinte forma: **P(p, q)**.

Tabelas-verdade

Trataremos agora um pouco mais a respeito de **TABELA-VERDADE**. Trata-se de uma tabela mediante a qual são analisados os valores lógicos de proposições compostas.

Já vimos que uma *Tabela-Verdade* que contém **duas** proposições apresentará exatamente um número de **quatro** linhas! Mas e se estivermos analisando uma proposição composta com três ou mais proposições componentes? Como ficaria a tabela-verdade neste caso? Generalizando para qualquer caso, teremos que o número de linhas de uma tabela-verdade será dado por:

Nº linhas da Tabela-Verdade = 2nº de proposições

Ou seja, se estivermos trabalhando com duas proposições **p** e **q**, então a tabela-verdade terá 4 linhas. Se estivermos trabalhando com uma proposição composta que tenha **três** componentes **p**, **q** e **r**, a tabela-verdade terá **2**³ **= 8**. E assim, por diante.

→ Tabelas-verdade para p e q:

Trabalhando com duas proposições componentes, a estrutura inicial da tabela-verdade será sempre aquela que já aprendemos. Qual seja:

p	q
V	V
V	F
F	V
F	F

E a próxima coluna (ou próximas colunas) da tabela-verdade dependerá dos conectivos que estarão presentes na proposição composta.

Já sabemos construir, pelo menos, cinco tabelas-verdade de proposições compostas! A tabela-verdade da **conjunção**, **da disjunção**, **da disjunção exclusiva**, **da condicional e da bicondicional**. Com este conhecimento prévio, já estamos aptos a construir as tabelas-verdade de qualquer outra proposição formada por duas proposições componentes (**p** e **q**). Designaremos tal proposição composta da seguinte forma: **P(p, q)**.

Suponhamos, pois, que estamos diante da seguinte proposição composta: **P(p, q)=~(p v ~q)** e desejamos construir a sua tabela-verdade. Como seria? O início da tabela é, conforme sabemos, sempre o mesmo. Teremos:

р	q
V	V
V	F
F	V
F	F

Agora olhemos para a proposição que estamos trabalhando [~(p v ~q)] e comparemos o que já temos na tabela acima com o que ainda precisamos encontrar. Já temos o ~q? Ainda não! Então, é nosso próximo passo: construir a coluna da **negação de q**. Teremos:

p	q	~q
V	V	F
V	F	V
F	V	F
F	F	V

Seguindo adiante, construiremos agora a coluna referente ao parênteses ($\mathbf{p} \mathbf{v} \sim \mathbf{q}$). Trata-se pois, de uma disjunção, cujo funcionamento já é nosso conhecido (só será falsa se as duas partes forem falsas!). Colocaremos em destaque (sombreado) as colunas de nosso interesse para a formação desta disjunção. Teremos:

p	q	~q	p v ~q
V	V	F	V
V	F	V	V
F	V	F	F
F	F	V	V

Por fim, concluindo a análise desta proposição composta, resta-nos construir a coluna que é a própria proposição: **~(p v ~q)**. Ou seja, faremos a **negação** da *disjunção* acima. Para isso, quem for VERDADEIRO vira FALSO e vice-versa. Teremos:

p	q	~q	p v ~q	~(p v ~q)
V	V	F	V	F
V	F	V	V	F
F	V	F	F	V
F	F	V	V	F

É este, portanto, o resultado final da *tabela-verdade* para a proposição **~(p v ~q)**. Uma coisa muito importante que deve ser dita neste momento é que, na hora de construirmos a *tabela-verdade* de uma proposição composta qualquer, teremos que seguir uma certa **ordem de precedência** dos conectivos. Ou seja, os nossos passos terão que obedecer a uma seqüência. Começaremos sempre trabalhando com o que houver **dentro dos parênteses**. Só depois, passaremos ao que houver fora deles. Em ambos os casos, sempre obedecendo à seguinte ordem:

- 1. Faremos as negações (~);
- 2. Faremos as conjunções ou disjunções, na ordem em que aparecerem;
- 3. Faremos a condicional;
- 4. Faremos o bicondicional.

Para fixar nossos conhecimentos vamos construir a tabela-verdade da seguinte proposição composta: $P(p,q) = (p \land \neg q) V (q \land \neg p)$.

SOLUÇÃO: Observamos que há dois parênteses. Começaremos, pois, a trabalhar o primeiro deles, isoladamente. Obedeceremos à *ordem de precedência* dos conectivos:

1º passo: Negação de q

p	q	~q
V	V	F
V	F	V
F	V	F
F	F	V

2º passo: Conjunção

p	q	~q	p∧~q
V	V	F	F
V	F	V	V
F	V	F	F
F	F	V	F

4º passo: Conjunção

p	q	~p	q∧~p
V	V	F	F
V	F	F	F
F	V	V	V
F	F	V	F

 $\mathbf{5}^{\mathbf{o}}$ passo: uma vez trabalhados os dois parênteses, faremos a disjunção que os une.

p∧~q	q∧~p	(p∧~q)V(q∧~p)
F	F	F
V	F	V
F	V	V
F	F	F

Se quiséssemos, poderíamos ter feito tudo em uma única tabela maior, da seguinte forma:

p	q	~q	p∧~q	~p	q∧~p	$(p \land \sim q) V(q \land \sim p)$
V	V	F	F	F	F	F
V	F	V	V	F	F	V
F	V	F	F	V	V	V
F	F	V	F	V	F	F

Pronto! Concluímos mais um problema. Já estamos craques em construir tabelas-verdade para proposições de duas sentenças. Mas, e se estivermos trabalhando com três proposições simples (**p**, **q** e **r**)? Como é que se faz essa tabela-verdade? A primeira coisa é definir o número de linhas que esta tabela-verdade terá. Conforme já aprendemos, este cálculo será dado por **N**^o **linhas = 2 n** de **proposições**. Logo, haverá oito linhas (**2 3=8**) numa **tabela-verdade** para três proposições simples. Para duas proposições, a tabela-verdade se inicia sempre do mesmo jeito. O **m** mesmo ocorrerá para uma tabela-verdade de três proposições. Terá sempre o mesmo *início*. E será o seguinte:

p	q	r

A coluna da proposição \mathbf{p} será construída da seguinte forma: quatro \mathbf{V} alternando com quatro \mathbf{F} ; a coluna da proposição \mathbf{q} tem outra alternância: dois \mathbf{V} com dois \mathbf{F} ; por fim, a coluna da proposição \mathbf{r} alternará sempre um \mathbf{V} com um \mathbf{F} . Teremos, portanto, sempre a mesma estrutura inicial:

p	q	r
V	V	V
V	V	F
V	F	V
V	F	F
F	V	V
F	V	F
F	F	V
F	F	F

Saber construir esta tabela acima é **obrigação**. Ela corresponde à estrutura inicial de uma tabela-verdade para três proposições simples.

Suponhamos que uma questão de prova peça que construamos a tabela-verdade da proposição composta seguinte: $P(\mathbf{p},\mathbf{q},\mathbf{r})=(\mathbf{p} \land \sim \mathbf{q}) \Rightarrow (\mathbf{q} \ \mathbf{v} \sim \mathbf{r})$. A leitura dessa proposição é a seguinte: Se \mathbf{p} e não \mathbf{q} , então \mathbf{q} ou não \mathbf{r} .

Vamos fazer esse exercício? Começaremos sempre com a estrutura inicial para três proposições. Teremos:

p	q	r
V	V	V
V	V	F
V	F	V
V	F	F
F	V	V
F	V	F
F	F	V
F	F	F

Daí, já sabemos que existe uma *ordem de precedência* a ser observada, de modo que trabalharemos logo os parênteses da proposição acima. Começando pelo primeiro deles, faremos os seguintes passos:

1º passo: Negação de q

р	q	r	~q
p V	V	V	F
V	V	F	F
V	F	V	V
V	F	F	V
F	V	V	F
F	V	F	F
F	F	V	V
F	F	F	V

2º passo: Conjunção do primeiro parênteses

р	q	r	~q	p ∧ ~ q
V	V	V	F	F
V	V	F	F	F
V	F	V	V	V
V	F	F	V	V
F	V	V	F	F
F	V	F	F	F
F	F	V	V	F
F	F	F	V	F

3º passo: Negação de r

р	q	r	~q	p ∧ ~q	r
V	V	V	F	F	F
V	V	F	F	F	V
V	F	V	V	V	F
V	F	F	V	V	V
F	V	V	F	F	F
F	V	F	F	F	V
F	F	V	V	F	F
F	F	F	V	F	V

4º passo: Disjunção do segundo parênteses

p	q	r	~q	p ∧ ~q	~r	qv~r
V	V	V	F	F	F	V
V	V	F	F	F	V	V
V	F	V	V	V	F	F
V	F	F	V	V	V	V
F	V	V	F	F	F	V
F	V	F	F	F	V	V
F	F	V	V	F	F	F
F	F	F	V	F	V	V

5º passo: Finalmente, vamos fazer a condicional.

RECORDANDO: a condicional só será falsa se tivermos VERDADEIRO na primeira parte e FALSO na segunda!!!

p	q	r	~q	p ∧ ~q	~r	q v ∼r	$(p \land \sim q) \rightarrow (q \lor \sim r)$
V	V	V	F	F	F	V	V
V	V	F	F	F	V	V	v
V	F	V	V	V	F	F	F
V	F	F	V	V	V	V	V
F	V	V	F	F	F	V	V
F	V	F	F	F	V	V	V
F	F	V	V	F	F	F	V
F	F	F	V	F	V	V	V

→Tautologia

Uma proposição composta formada por duas ou mais proposições **p**, **q**, **r**, ... será dita uma **Tautologia** se ela for **sempre verdadeira**, independentemente dos valores lógicos das proposições **p**, **q**, **r**, ... que a compõem. Em palavras mais simples: para saber se uma proposição composta é uma *Tautologia*, construiremos a sua tabela-verdade! Daí, **se a última coluna da tabela-verdade só apresentar** *verdadeiro* (e nenhum *falso*), então estaremos diante de uma *Tautologia*. Só isso!

Exemplo: A proposição $(p \land q) \rightarrow (p \ V \ q)$ é uma tautologia, pois é sempre verdadeira, independentemente dos valores lógicos de p e de q, como se pode observar na tabela-verdade.

p	q	p∧q	pvq	$(p \land q) \rightarrow (p \lor q)$
V	V	V	V	V
V	F	F	V	V
F	V	F	V	V
F	F	F	F	V

Observe que o valor lógico da proposição composta $(p \land q) \Rightarrow (p \lor q)$, que aparece na última coluna, é sempre **verdadeiro**. Passemos a outro exemplo de Tautologia: $[(p \lor q) \land (p \land s)] \Rightarrow p$. Construa a tabela-verdade e demonstre que se trata de uma *tautologia*.

→Contradição

Uma proposição composta formada por duas ou mais proposições **p**, **q**, **r**, ... será dita uma **contradição** se ela for **sempre falsa**, independentemente dos valores lógicos das proposições **p**, **q**, **r** ... que a compõem. Ou seja, **construindo a** *tabela-verdade* **de uma proposição composta, se todos os resultados da última coluna forem** *FALSOS***, então estaremos diante de uma** *contradição***.**

Exemplo: A proposição " $\mathbf{p} \leftrightarrow \sim \mathbf{p}$ " é uma contradição, pois sempre é falsa independentemente do valor lógico de \mathbf{p} , como é possível observar na tabela-verdade abaixo:

р	~p	p ↔ ~ p
V	F	F
F	V	F

→Contingência

Uma proposição composta será dita uma **contingência** sempre que não for uma **tautologia** ou uma **contradição**. Somente isso! Você pegará a proposição composta e construirá a sua **tabela-verdade**. Se você verificar que aquela proposição nem é uma **tautologia** (só resultados \mathbf{V}), e nem é uma **contradição** (só resultados \mathbf{F}), então, pela via de exceção, será dita uma **contingência**! **Exemplo:** A proposição " $\mathbf{p} \leftrightarrow (\mathbf{p} \land \mathbf{q})$ " é uma contingência. Por que essa proposição é uma

contingência? Porque nem é uma tautologia e nem é uma contradição. Só por isso! Vejamos sua tabela-verdade a seguir.

p	q	p∧q	$p \leftrightarrow (p \land q)$
V	V	V	V
V	F	F	F
F	V	F	V
F	F	F	V

4º passo: Disjunção do segundo parênteses

p	q	r	~q	p ∧ ~q	~r	q v ~r
V	V	V	F	F	F	V
V	V	F	F	F	V	V
V	F	V	V	V	F	F
V	F	F	V	V	V	V
F	V	V	F	F	F	V
F	V	F	F	F	V	V
F	F	V	V	F	F	F
F	F	F	V	F	V	V

5º passo: Finalmente, vamos fazer a condicional.

RECORDANDO: a condicional só será falsa se tivermos VERDADEIRO na primeira parte e F*I* na segunda!!!

р	q	r	~q	p ∧ ~q	~r	q v ∼r	$(p \land \sim q) \rightarrow (q \lor \sim r)$
V	V	V	F	F	F	V	V
V	V	F	F	F	V	V	V
V	F	V	V	V	F	F	F
V	F	F	V	V	V	V	V
F	V	V	F	F	F	V	V
F	V	F	F	F	V	V	V
F	F	V	V	F	F	F	V
F	F	F	V	F	V	V	V