

Introduction

- Purpose:
 - to partition an image into meaningful regions with respect to a particular application
- Goal:
 - to cluster pixels into salient image regions, i.e., regions corresponding to individual surfaces, objects, or natural parts of objects.
- The segmentation is based on the feature measurements taken from the image:
 - grey level, color, texture, depth or motion...

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Chapter 5. Segmentation

- · Introduction to image segmentation
- Segmentation based on pixel classification
 - Thresholding
 - Clustering techniques
- · Region-based segmentation
 - Region growing algorithm,
 - Split and merge algorithm
- Edge-based segmentation

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Introduction

Source : Jean-Christophe Baillie, ENSTA, uei.ensta.fr/baillie/assets/ES322%20-%20Segmentation.ppt

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

.

Introduction

• Entity can be extracted from images using mask

Source : Pascal Bertolino, Cours de Traitement d'images. LIS, INPG (France)

File Edit View Go Communicator Help

File Edit View Go Communicator Help

Gesture Importance:

Georgia Godor Scatture Recutation Shape

File Edit View Road DEDITE

Query Manage 108019

And India India India India

New Query Manage 108019

A 108009 (score = 0.98)

New Query

A 108009 (score = 0.98)

New Query

A 108009 (score = 0.97)

Applications

- Image segmentation
 - is usually an initial and vital step in a series of processes aimed at overall image understanding of computer vision
- Segmentation applications:
 - Object recognition;
 - Image retrieval;
 - Medical image analysis;
 - Boundary estimation within motion or stereo systems;
 - Tracking of objects in a video;
 - Classification of terrains visible in satellite images

- . . .

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Approaches for image segmentation

- · Segmentation is usually based on:
 - discontinuities: edges
 - sudden changes, borders (frontiers) between regions...
 - homogeneous zones: regions
 - · same color, texture, intensity, ...

_

Approaches for image segmentation

- Pixel-based approach
- Region-based approach:
 - look for homogeneous areas in the image
- Edge-based approach :
 - look for discontinuities in the image
 - · A closed edge is equivalent to a region
- Hybrid (Dual) approach (region + edge)

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY =

Pixel-based approach

- Pixel-based approach
 - Thresholding
 - Clustering
- It is not a region segmentation technique
 - But we often in segmentation looking for regions
 - Need some post-processing

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Examples

Original images

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thresholding

- Thesholding is a simple and popular method for object segmentation in digital images
- Thresholding can be
 - Global: one threshold for the whole image
 - Local: one threshold for a part of the image
 - Adaptive: one threshold ajusted according to each image or each image part

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

_

Basic global thresholding

- · Basic thresholding (2 classes) main idea :
 - IF value(pixel) >= threshold THEN value(pixel) = 1 (or 255)
 - IF value(pixel) < threshold THEN value(pixel) = 0
- · The result is a binary image
- It is also possible to use n thresholds to split the image in n+1 classes
- Problem: choosing the threshold(s)!

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

1.5

Basic global thresholding

- · Threshold value: not difficile if
 - Controled environment
 - Industrial applications

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Basic global thresholding

 Find the threshold on histogram of gray level intensity (histogram thresholding)

$$g(x,y) = \begin{cases} 0, & f(x,y) < T \\ 1, & f(x,y) \ge T \end{cases}$$

SOICT

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Multi-thresholds

- n thresholds to split the image in n+1 classes:
 - IF value(pixel) < threshold_1</p>
 - THEN value(pixel) = 0
 - IF value(pixel) >= threshold_1 && value(pixel) <
 threshold_2</pre>
 - THEN value(pixel) = 1
 - **–** ...
 - IF value(pixel) >= threshold_n
 - THEN value(pixel) = n
- Problems: How many thresholds?

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOG

Multi-thresholds

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY =

19

Choice of thresholds (optimal)

- · 2 surfaces (background and object) in an image
 - We suppose mathematical models for distributions (gaussians, etc.)
 - We determine the probability of error in the classes 1 and 2 (surfaces 1 et 2)
 - We search for a threshold T resulting in a minimum error
 - · Several methods for achieving this

source: www.iro.umonurear.ca/~um2/30

Threshold value

- Global thresholding: How to find the value of the threshold T?
 - Value obtained by tests
 - The mean value of gray values
 - The median value between the min gray level and the max one
 - One value balancing both sections of the histogram
 - · automatic thresholding

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY =

20

Example: Global automatic thresholding

- One possible algorithm:
 - Choose an initial value for the threshold T (mean, median, ...)
 - We obtain 2 groups of pixels
 - G1 where $f(x,y) \ge T$ and G2 where f(x,y) < T
 - Compute the gray level means for G1 and G2 -> μ 1 and μ 2
 - Compute a new value for T
 - $T = 1/2 (\mu 1 + \mu 2)$
 - Repeat until T is ~ constant
- There exist many other global automatic methods
 - Otsu, Kittler, K-means, ...
 - No solution on which one to use
 - Must be tested for each new application

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Example: Otsu algorithm

- Sweep all possible threshold value for T
- For each value of T.
 - Compute the mean and variance for each
 - We look for the intraclass variance
 - Means: μ_1, μ_2
 - Variances: σ_1^2 , σ_2^2

• It is based on the idea that classes are $\,^{\mu_2=}$ well defined and well grouped

Source: www.iro.umontreal.ca/~dift2730/

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Global threshold: problem

- Problem:
 - Global thresholding cannot be used in that case
 - Solution: adaptive local thresholding

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Example: Otsu algorithm

• Threshold found by the algorithm:

$$-T = 125$$

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOG

Example of adaptive thresholding

- · Split the image in sub-images and process each sub-image with its own threshold
- · The main decision is to choose the size of the sub-images
- · Before processing each sub-image, check the variance to make sure that the sub-image contains two regions, and not only one.
 - Example: no thresholding for a sub-image if variance<100

Example of adaptive thresholding

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

27

Clustering-based segmentation

- Image is considered as a set of N image pixels.
- · Attributes (property) of the pixels
 - gray level of single-band gray tone images,
 - color values of three-band color images: (r, g, b)
 - values of multi-band images, ...
- Based on the similar attribute, pixels classification operators partition an image into homogeneous regions.
 - Clustering provides a grouping of the pixels that is dependent on their values in the image but not necessarily on their locations in the image unless location is a specified property
 - Classifier provide the pixel classes which should be homogeneous regions.

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Example of adaptive thresholding

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

20

Clustering algorithms

- · Image segmentation approaches including:
 - Feature space clustering approaches
 - Graph-based approaches
- · Clustering algorithms:
 - K-Means clustering
 - Mean-Shift Clustering
 - Expectation-Maximization Clustering
 - Watershed Segmentation
 - Graph Cuts (Spectral clustering)
 - Normalized cuts

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOG

K-means Clustering

- Let $X = \{p_1, \ldots, p_N\}$ be a set of N image pixels:
 - V(p_i): the property vector associated with pixel p_i
 - The clustering algorithm is to partition the image into K clusters (K regions)
- The K-means algorithm:
 - Initialization step: An initial property vector of each class C_k is chosen randomly from the set of all property vector, note $\mu_k(0)$
 - Interactive step: Assignment of image pixels to K clusters

- Pixel p_i is assigned to the closest cluster, using a distance between 2 property vectors.
- Update the property vector of each class: μ _k(t) is computed as the mean of {V(p_i) | x_i ∈ C_k}.
- * 2 Steps above are repeated until algorithm convergence. each class C_k should be a region R_k

TION AND COMMUNICATION TECHNOLOGY —

21

K-means Clustering

Input image

K-means on gray level

K-means on color

Source: D.A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice-Hall, 2002.

25 SOICT

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

22

_

Example

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOG

Pixel-based approach: Pros & cons

- Pros
 - Simple, fast
- Cons: thresholding is mainly an operation on pixels
 - It does not give connected regions → can add more features
 - we need to « clean » the results
 - · erase lonely pixels, keep regions
- Other segmentation methods exist
 - that can keep the integrity of regions (connected pixels)

Example

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOG

Features for segmentation

- · Intensity, Color?
- Position
- Texture
- ...

Segmentation as clustering

Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on **intensity** similarity

Feature space: intensity value (1-d)

Slide credit: Kristen Grauman

SOICT

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Segmentation as clustering

Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on **texture** similarity

 F_{24} Feature space: filter bank responses (e.g., 24-d)

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY =

Slide credit: Kristen Grauman

Segmentation as clustering

Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on **intensity+position** similarity

Both regions are black, but if we also include **position** (x,y), then we could group the two into distinct segments; way to encode both *similarity & proximity*.

Segmentation with texture features

- Find "textons" by clustering vectors of filter bank outputs
- Describe texture in a window based on texton histogram

Malik, Belongie, Leung and Shi. IJCV 2001.

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Adapted from Lana Lazebnik

Image segmentation example

Slide credit: Kristen Grauman

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY =

Region-based segmentation

- · Region-based approaches provide :
 - All pixels must be assigned to regions
 - Each pixel must belong to a single region only
 - Each region must be uniform
 - Any merged pair of adjacent regions must be nonuniform
 - Each region must be a connected set of pixels
- Region-based approaches:
 - Different methods
 - Common point: homogeneity criteria

OOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Region-based segmentation

- Finding region based on the criterion of homogeneity and connectivity of pixels (region)
 - Each region is homogeneous (i.e., uniform in terms of the pixel attributes such as intensity, color, range, or texture, etc.)
 - and connected

Algorithms:

- Region growing
- Split and merge algorithm
- Hierarchical clustering

— .

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY -

Region growing

- Start from a point (seed) and add neighbor pixels following a given criteria
- The seeds can be manually or automatically chosen
 - automatic seeds in very homogeneous zones for example

4

Region growing algorithm

- Algorithm:
 - Choose K random pixels in K regions
 - Use 8-connected and threshold to determine
 - Repeat a and b until almost points are K classified.
- Example illustrated:

Example

Simulation of region growing (90% pixels

Region growing with multi-seeds

Split-and-merge

- Split (step 1)
 - Recursively split all non-homogeneous regions following a given criteria
 - · variance, max-min, ...
 - Dividing one region gives 4 subregions
 - Subregion attributes are re-computed
- Merge (step 2)
 - Group all homogeneous adjacent regions following a given criteria

Split-and-merge: split

Split-and-merge

Split-and-merge: merge

Phase 1: Create homogeneous zones (split) Phase 2: Group homogeneous zone (merge)

Connect homogeneous adjacent regions

 $Source: Jean-Christophe\ Baillie.\ Cours\ de\ segmentation.\ ENSTA\ Paris Tech\ (France)$ Source : Jean-Christophe Battile.

Edge-based segmentation

· Finding region based on edges

- · Algorithms:
 - Basic Edge Detection
 - The Marr-Hildreth edge detector (LoG)
 - Short response Hilbert transform (SRHLT)
 - Watersheds

Watershed segmentation

 We consider the image as a 3D shape using the gray level as the third dimension

2D image

Visualization in 3D

SOICT

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Watershed segmentation

Next we fill in the holes with water

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Watershed segmentation

 After we reverse (upside down) the values to create « holes » in the shape

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Watershed segmentation

. .

Watershed segmentation

https://docs.opencv.org/master/d3/db4/tutorial_py_watershed.html

Segmentation – advices

- · Image segmentation
 - No method works for all images
 - No miracle, no warranty!
- · One of the main problem is to define the goal of segmentation:
 - What exactly are we looking for in the image?
 - · Global regions or small details?
 - · Presence or not of persons details in the face?
- · It is good to think in advance what we will do with this segmentation results
 - This helps to define the level of precision needed

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Watershed segmentation

Segmentation – advices

- Image Pre-processing:
 - -good selection of sensors and energy source, and controled image acquisition conditions help to make segmentation easier and more efficient
- · For some applications, we realize today that we can avoid to segment the image. It is often better like this.

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Limits of segmentation

Image segmentation alone cannot find all image objects as we can interpre them

Motion segmentation

Image Segmentation

Motion Segmentation

Motion Segmentation

A.Barbu, S.C. Zhu. Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities, IEEE Trans. PAMI, August 2005. Credit: Kristen Grauman, UT Austin

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Segmentation vs. grouping

- Term 'segmentation':
 - less used
 - segmentation, which let think about an exact image splitting into regions
- · 'Pixel grouping'
 - which refers only to a notion of similarity between pixels without relation on the content of regions.

Source: [Malik 2001].

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

