Complemento a closes febricos 16 y 14.

Dublisis II - Alionsis Matematico II - Matematico 3-

& Repago

Entrolougacion de soluciones.

-> Kecordeness:

Ecuaciones dif ordinavias

orden 1 $x' = f(t_1 x)$

orden 2 _ x = $f(t_1x_1X)$

orden = $f(t_1, x_1, \dots, x_{(m-1)})$

Vara ecuaciones dif. N'diluderas de Ndeu 1 vieron existencia y militad.

Existencia. 3L70/19/4x)-9/4xy

leorema:

Sea ICIR me interrator, f. IXIR -DIR lupschitz en la raniable 21, FET y EER.

Si res interior a I a]] > y x: [r->,r+] -> i? de close 6º /

 $|X(H)| = f(t_1 \times (H))$ Hte [r- λ r+ λ] |X(r)| = 3

El teorema van para F: IXIL—PR m campo local mente lipschitz en X. Ejemplo importante: F(tix) = A(ti)X + b(t) con AltieR, b(tieR continues.

UNICDAD

Teareura

IEIR intervall, f: IXIR -DIR lipschitz en 2, FEI, $E \in \mathbb{R}$. Sea el sistemo $\int X = f |f(x)|$ $\times |f(x)| = \overline{\xi}$.

à XI es solución del sisteme en el nuterralo J1 ST con redi y

X2 es sol. del sistemo en el intervalo 72 EI WW FE ZZ => X1 = Xz en J1 NJ2 y

X3(t):= X1(t) teJi es solución en Ji VJZ.

X2(t) teJz

Observacion importante.

X= F(tix) es us sistema du l'é orden

 $T = (F_{\perp_1, \dots, T_m}) \qquad X = (X_{\perp_1, \dots, X_m})$ $= \sum_{i=1}^{n} (X_{\perp_1} = F_i(t_i | X_{\perp_1, \dots, X_m}))$ $X_{\perp_2} = F_2(t_i | X_{\perp_1, \dots, X_m})$

(Xm = Tm(t1X1, - Xm)

hay existencia y micidod!

Los poduciones vocates para resolver levaciones dif. de orden m.

```
L'jemblo:
```

 $X_{11} = f(f'x'x)$ Orden 2

eauxion de voleu 2.

1 La transf. en Sistema 2x2 de orden 1.

$$X^{1}(f) = X(f)$$

 $X^{0}(f) = X(f)$

$$= \sum_{X_1(t)} (X_1(t)) = f(t, X_0(t), X_1(t))$$

$$X = (X_0, X_1), \quad X = (X_1, f(t, X_1, X_2))$$

•
$$X^{(1)} = f(f^1 X^1 X^1, X^1)$$

$$\overline{X} = (X_{0_1}X_{1_1}X_{2}) \wedge \overline{T}(t_1\overline{X}) = (X_{4_1}X_{2_1}f(t_1X_{0_1}X_{4_1}X_{2})).$$

$$\overline{X} = T(t_1\overline{X}) = (X_{4_1}X_{2_1}f(t_1X_{0_1}X_{4_1}X_{2})).$$

Earciones clif. Ordinarian

de order sup.

Sistemes de la volunt

dif. de volunt

Prolongación de soluciones
Seo ICIR INT, f: IXIR - DIR lipochutz en
\times , $\Gamma \in \mathbb{T} \land \mathbb{Z} \in \mathbb{R}$ \mathcal{Y} $\mathcal{X} = \mathcal{F}(\mathcal{L}_{1} \times)$. $\mathcal{X} = \mathcal{F}(\mathcal{L}_{1} \times)$.
=> Si XI es solución de (X) en J1 9 X2 es solución de (X) en J2 >>
X1=Xz en J1 n J2. (mm) oz > Esto permite definir une solución de (X)
en Jiudz: (XI(t) te Ji X3lt)= (X2lt) tedz.
Def: Sea $\begin{cases} x' = f(t_1 x) \\ x(r) = z \end{cases}$ con $f: I \times IR \rightarrow IR$
lipschitz en z. Definitues la Solución moximal del sistema armo la solución
moximal del sistema armo la solución
définite en Jo:= Uff: JEI julervolle au [Ed
hay solución f.
Tenemos: Hay solución en Jo. 7'5 Jo.
De solución es vuica.
no es posible extendes la tol. més

alla de Jo.

Nouberl: Craudo $J_0 = I$, la solución se Maura Global. Roposición: Sea f: IXIR - DIR, IER interralio / H+1, t2 / [t+1,t2] CI, f| [t+1,t2] xIR -DIR es lipschitz eu x. Entouces, la solución moximal de $\chi(t) = f(t_1 \times t + 1)$ $\chi(t) = z$

es global.

Dem: Sean tytz/[t1,tz] SI y re[t1,tz]. eamos que existe solución en [t1, tz].

· L'audannes La la constante du lipschitz en [t1,tz] |f(t,x)-f(t,g)| \le L|x-7| \te Fatz] te[tatz]

Sabemer (du teo. du existencea) que 3 270

y X1:[r-x, r+x] c [t1, tz] - DIR, B, solución

y recordenist que 25. $\frac{1}{2} = \frac{1}{2} (\frac{1}{2} \times \frac{1}{2})$ $\frac{1}{2} = \frac{1}{2} (\frac{1}{2} \times \frac{1}{2})$

JXZ: [r, r+Z] = [t1,tz] - DIR Si [+] < tz =]

6 solución de oc トナソーソ トナソナソ

(x * x) (x + x) = f(t, x) < $(x + x) = x_1(r + x) <$

