

...more real Amplifiers

OPA277 Noise Performance

Noise Figure

All amplifiers add noise to the thermal noise of the source

$$\sqrt{4k_{B}TR_{S}} < \sqrt{4k_{B}TR_{S} + i_{n}^{2}R_{S}^{2} + v_{n}^{2}} = v_{ni}$$

The "goodness" of the amplifier is how <u>little</u> it makes things worse.

Define
$$NF = \frac{v_{ni}}{\sqrt{4k_BTR_S}}$$
 Usually expressed in dB

$$NF = 20\log_{10}\left(\frac{v_{ni}}{\sqrt{4k_{B}TR_{S}}}\right)dB \qquad \text{Always} > 0$$

Noise figure

The noise figure depends on the amplifier and the source resistance

There is **no** "best" opamp, it depends on what it is being used for.

Four excellent opamps:

Opamp	$v_n(\text{nV-Hz}^{-1/2})$	$i_n(\mathrm{fA}\cdot\mathrm{Hz}^{-1/2})$	R_{OPT}
AD8597	1.07	2400	446Ω
ADA4530	14	0.07	200ΜΩ
OPA827	4	2.2	1.82MΩ
OPA277	12	200	$60 \mathrm{k}\Omega$

Source Resistor matching

Note that the two i_n sources are uncorrelated: Add as squares

Note that the sources go in the same place as bias current and offset voltage

Shot Noise

Due to electrons crossing a potential barrier

- Charge is quantized
- Emission is uncorrelated

Photodiode

Base current

Diode current

Uncorrelated

Shot Noise

No Shot Noise

Shot Noise (2)

$$i_{sh} = \sqrt{2qI_{DC}B}$$

q = electron charge

 I_{DC} = DC current flow

B = Bandwidth (Hz)

Shot noise **only occurs** when current is flowing Shot noise **increases** with current

Signal: Noise ratio =
$$\frac{I_{DC}}{i_{sh}} = \sqrt{\frac{I_{DC}}{2qB}}$$
 improves with I_{DC}

