CS 663, Fall 2023

Assignment 3

Jahanvi Rajput 23D0378 Badri Vishal Kasuba 22M2119 Abhishek Kumar Singh 22M210 Question 1: Consider the two images in the homework folder 'bar-bara256.png' and 'kodak24.png'. Add zero-mean Gaussian noise with standard deviation $\sigma=5$ to both of them. Implement a mean shift based filter and show the outputs of the mean shift filter on both images for the following parameter configurations: ($\sigma_s=2$, $\sigma_r=2$); ($\sigma_s=0.1$, $\sigma_r=0.1$); ($\sigma_s=3$, $\sigma_r=15$). Comment on your results in your report. Repeat when the image is corrupted with zero-mean Gaussian noise of $\sigma=10$ (with the same bilaterial filter parameters). Comment on your results in your report. Include all image ouputs as well as noisy images in the report.

Solution:

Figure 1 shows the original image as well as noisy image of Barbara with zero-mean Gaussian noise standard deviation $\sigma = 5$.

(a) Barbara original images

(b) Noisy Barbara $\sigma = 5$

Figure 1: Barbara

Figure 2 shows the output of a mean shift based filter the parameter configurations: ($\sigma_s = 2$, $\sigma_r = 2$); ($\sigma_s = 0.1$, $\sigma_r = 0.1$); ($\sigma_s = 3$, $\sigma_r = 15$) with zero-mean Gaussian noise standard deviation $\sigma = 5$.

Figure 3 shows the original image as well as noisy image of Kodak with zero-mean Gaussian noise standard deviation $\sigma = 5$.

Figure 4 shows the output of a mean shift based filter the parameter configurations: ($\sigma_s = 2$, $\sigma_r = 2$); ($\sigma_s = 0.1$, $\sigma_r = 0.1$); ($\sigma_s = 3$, $\sigma_r = 15$) with zero-mean Gaussian noise standard deviation $\sigma = 5$.

Figure 5 shows the original image as well as noisy image of Barbara with zero-mean Gaussian noise standard deviation $\sigma = 10$.

Figure 6 shows the output of a mean shift based filter the parameter configurations: ($\sigma_s = 2$, $\sigma_r = 2$); ($\sigma_s = 0.1$, $\sigma_r = 0.1$); ($\sigma_s = 3$, $\sigma_r = 15$) with zero-mean Gaussian noise standard deviation $\sigma = 10$.

Figure 3 shows the original image as well as noisy image of Kodak with zero-mean Gaussian noise standard deviation $\sigma = 10$.

Figure 4 shows the output of a mean shift based filter the parameter configurations: ($\sigma_s = 2$, $\sigma_r = 2$); ($\sigma_s = 0.1$, $\sigma_r = 0.1$); ($\sigma_s = 3$, $\sigma_r = 15$) with zero-mean Gaussian noise standard deviation $\sigma = 10$.

Conclusion:

We have seen that for $\sigma_s = 0.1$, $\sigma_r = 0.1$ filtered image has no changes it is quite same as original image but for ($\sigma_s = 2$, $\sigma_r = 2$) there are very few regions which are smoothened and in case of ($\sigma_s = 3$, $\sigma_r = 15$) there is more smootheness than other two cases.

For higher values of σ_s and σ_r , the number of local maximas of the kernal density estimate decrease which makes more pixels to converge to the same point. For $\sigma_s = 0.1$, $\sigma_r = 0.1$ every feature vector is a local maxima and hence every pixel is a cluster point of itself. We have also observed that the convergence takes more time for higher σ_s , or values because with fewer local maximas, a pixel is at more distant to reach through gradient ascent. The same can be observed for the kodak images.

As we increase the value of σ , here we have increased as by 5, the error in intensity increases. Also the convergence time also reduce.

(a) Barbara ($\sigma_s=2$, $\sigma_r=2)$

(b) Barbara ($\sigma_s = 0.1, \, \sigma_r = 0.1$)

(c) Barbara ($\sigma_s=3,\,\sigma_r=15$)

Figure 2: Mean shift based filtering on Barbara with $\sigma = 5$

(a) Kodak original images

(b) Noisy Kodak $\sigma=5$

Figure 3: Kodak

(a) Kodak ($\sigma_s=2$, $\sigma_r=2)$

(b) Kodak ($\sigma_s = 0.1, \, \sigma_r = 0.1$)

(c) Kodak ($\sigma_s = 3, \, \sigma_r = 15$)

Figure 4: Mean shift based filtering on Kodak with $\sigma=5$

(a) Barbara original images

(b) Noisy Barbara $\sigma=10$

Figure 5: Barbara

(a) Barbara ($\sigma_s=2$, $\sigma_r=2)$

(b) Barbara ($\sigma_s = 0.1, \, \sigma_r = 0.1$)

(c) Barbara ($\sigma_s=3,\,\sigma_r=15$)

Figure 6: Mean shift based filtering on Barbara with $\sigma = 10$

(a) Kodak original images

(b) Noisy Kodak $\sigma=10$

Figure 7: Kodak

(a) Kodak ($\sigma_s=2$, $\sigma_r=2$)

(c) Kodak ($\sigma_s = 3, \, \sigma_r = 15$)

Figure 8: Mean shift based filtering on Kodak with $\sigma=10$