Část I

Struktura pevných látek

1 Krystalografické soustavy

AAAAAAA

2 Deformace

- typy:
 - tahem/tlakem
 - kroucením
 - ohybem
 - smykem

3 Deformace tahem/tlakem

• Normálové nápětí:

$$\sigma = F/S; [N/m^2] = [Pa]$$

• Změna délky:

$$\Delta l = l - l_0; \ [m]$$

užitečnější většinou relativní prodloužení:

$$\varepsilon = \Delta l/l_0$$
; [bezrozm.]

3.1 Deformační křivka

 \bullet lineární úsek (0 - A)

- pružná deformace
- vratná
- platí Hookův zákon:

$$\varepsilon \propto \sigma$$

tedy slovy: relativní prodloužení je přímo úměrné napětí (ano, to je symbol pro přímou úměrnost, zapamatujte si ho)

$$\sigma = E \cdot \varepsilon$$

E - Youngův modul pružnosti (např. ocel = 220 GPa, cín = 55 GPa, tj. tlak potřebný, abychom objekt roztáhli na dvojnásobnou délku)

- nelineární deformace (A B)
 - plastická deformace
 - protažení bylo dost velké, aby přesunulo atomy v krystalické mřížce na jiné místo
 - materiál tedy ztráci schopnost se po deformaci vrátit do původního tvaru
 - při překročení meze pevnosti se materiál prostě trhá na dva kusy

3.1.1 Příklady

1. O kolik se protáhne ocelový drát když na něj zavěsíme závaží:

$$d = 1mm; l = 5m; m = 30kg; E = 220GPa$$

$$\sigma = \frac{F}{S} = \frac{300}{\pi \cdot 0,0005^2}$$

$$\varepsilon = \frac{\sigma}{E}$$

$$\varepsilon = \frac{F}{S \cdot E} = \frac{\Delta l}{l_0}$$

$$\Delta l = \frac{F \cdot l \cdot 0}{S \cdot E} = 8,7 \cdot 10^{-3} m = 8,7 mm$$

2. Na ocelové lanko zavěsíme závaží. Jak těžké může být, aby se lanko nepřetrhlo:

$$d = 1mm; \sigma_p = 1, 3GPa; K = 5$$

- (a) závaží je v klidu
- (b) závaží se hýbe nahoru

$$a = 1m/s^2$$

(c) jako kyvadlo OBRAZEKOBRAZEK

Část II

Změny skupenství

Př.: OBRAZEKOBRAZEK m=0,2kg a) teplota varu: 50 stupnu b) c(kap.) $c=Q/(m)=200/(0,2\cdot 40)=25$ $Jkg^{-1}K^{-1}$ c) c(plyn) $c=Q/(m)=200/(0,2\cdot 20)=50$ $Jkg^{-1}K^{-1}$ d) L_v – skupenské teplo varu [J] $L_v=300J$ $l_v=$ měrné skupenské teplo varu $l_v=L_v/m$ $[Jkg^{-1}]$ $l_v=300/0,2=1500Jkg^{-1}$

Pozn.: pro vodu: l_t (tání) = $332Jkg^{-1} l_v = 2257Jkg^{-1}$

Př.: 1 kg vody z teploty -20 stupnu - \dot{z} pára 100 stupnu, P=1kW led -20 stupnu - \dot{z} led 0 stupnu: $(c_{ledu}=2100Jkg^{-1})~Q=m\cdot c=42kJ$ -; 42 s led 0 stupnu -; voda 0 stupnu: $L_t=m\cdot l_t=332kJ$ -; 5 min 32 s voda 0 stupnu -
į voda 100 stupnu ($c_{vody}=4180Jkg^{-1}$) $Q=m\cdot c=418kJ$ -
į 6 min 58 s voda 100 stupnu - į pára 100 stupnu: $L_v = m \cdot l_v = 2257kJ$ - į 37 min 37 s (to je šílený)

Pozn.: Hranaty graf plati u krystalickych latek, u amorfnich latek (kvuli nedokonalostem v uskupeni) je graf obly OBRAZEKOBRAZEK AAAAAAAA REALNE TOHLE NEMAM SANCI DODELAT

Část III

Kmitání

Oscilátor: cokoliv co kmitá, např. kyvadlo, pravítko (lol)

Kinematika oscilátoru 4

Zjednodušení: uvažujeme tzv. harmonický oscilátor – nemá ztráty, kmitá stále stejně (grafem je sinusoida) Značení: y – okamžitá výchylka y_m – maximální výchylka (max. amplituda), y je z $[-y_m;y_m]$ AAAAAA T – perioda [s] f – frekvence [s^{-1} =Hz], $f \cdot T = 1$ ω – úhlová frekvence (ekviv. úhlová rychlost), $\omega = \frac{\alpha}{t} = \frac{2\pi}{T}$ $2\pi f[s^{-1}]$ v – obvodová rychlost, $v=\frac{s}{t}=\frac{2\pi r}{T}=2\pi r f[ms^{-1}]$ Pozn.: Průmět přímoč. pohybu po kružnici na jedné ose je sinusoida – kmitání je točení v jedné ose Poloha: OBRAZEKOBRAZEK $y=y_m\cdot\sin(\alpha)$, přejmenujeme $\to y_m, \ \alpha = \omega t \Rightarrow y = y_m \cdot \sin(\omega t), \ \text{popř.} \ y = y_m \cdot \sin(\omega t + \phi_0), \ \phi_0$ – počáteční fáze (případný offset na začátku od nul. úhlu) Př.: pružinový oscilátor: $y_m = 10cm, T = 1, 2s$ a) rovnice: $\omega = \frac{2\pi}{T} = \frac{5\pi}{3}s^{-1}$ $y = 0, 1 \cdot \sin(\frac{5\pi t}{3})$ b) poloha v čase t = 0, 5 s: $y = 0, 1 \cdot \sin(\frac{5\pi t}{6})$ POZOR RAD!!! y = 5cm Př.: Rychlost oscilátoru $\cos(\alpha) = v/v_0$ $v = v_0 \cdot \cos(\alpha)$ 1) $\alpha = \omega \cdot t$ 2) $v_0 = \omega \cdot r$ 3) $r = y_m \Rightarrow v = \omega \cdot y_m \cdot \cos(\omega t + \phi_0)$ $v = \frac{2\pi}{1,1} \cdot \cos(t)$

Zrychlení: OBRAZEKOBRAZEK $v_1 = \omega \cdot r \ a_d = \frac{{v_1}^2}{r} = \omega^2 \cdot r = \omega^2 \cdot y_m$ $a = a_d \cdot \sin(\omega t + \phi_0) \ a = \omega^2 \cdot y_m \cdot \sin(\omega t + \phi_0) = \omega^2 \cdot y \Rightarrow$ velikost zrychlení je přímo úměrná okamžité odchylce $a_{max} = \omega^2 \cdot y_m$

AAAAAA hrozně moc pomooc

Př.: Závisí tuhost pružiny na počtu závitů ANO, k vlnovka $\frac{1}{n}$ AAAAAA progresivní pružina (damn liberals)

4.1 Fyzikální kyvadlo

- cokoliv zavěšeného mimo těžiště, tj. v rovnovážné poloze nad těžištěm
- mám těleso, jeho těžiště T, osu otáčení o a délku d mezi nimil

Tlumené kmitání 5

- kromě síly, která je $F \propto -y$ působí i odporová síla, $F_{ODP} \propto -v$, $F_{ODP} \propto -b \cdot v$; b součinitel linearního odporu [kg/s] OBRAZEKOBRAZEK
- $y = y_m \cdot e^{-\frac{bt}{2m}} \cdot \sin(\omega' t + \phi_0)$
- důsledky
 - 1. je-li b malé $(b^2 \ll 4mk)$; AAAA Př.: tlumí se to velmi pomalu
 - 2. Je-li b velké $(b^2 > 4mk)$, kmitání je ztlumeno tak moc, že ani nekmitá, nemá to dost velkou sílu $-\omega = \operatorname{sgrtz}$ áporné číslo OBRAZEKOBRAZEK

6 Energie pružinového oscilátoru

- kinetická: $E_k=\frac{1}{2}mv^2=\frac{1}{2}m\cdot y_m{}^2\cdot\omega^2\cdot\cos^2(\omega t)=\frac{1}{2}k\cdot y_m{}^2\cdot\cos^2(\omega t)$
- $cos(2x) = 2\cos^2(x) 1$; $cos^2(x) = \frac{1 + cos(2x)}{2}$ OBRAZEKOBRAZEK y a Ek
- potenciální: $E_p = W = \frac{1}{2}F \cdot y$

7 Vlnění

• $y(x,t) = y_m \sin\left(\frac{2\pi}{\lambda}x - 2\pi ft + \phi\right)$

7.1 Interference vlnění

- \bullet skládání vlnění, když se vlny potkají, tak se jednoduše sečtou $y=y_1+y_2$ OBRAZEKOBRAZEK
- \bullet pro jednoduchost budeme skládat vlnění se stejnou $\lambda,$ f a s různou fází
- vlny můžeme jednoduše sčítat pomocí fázorů a kosinové věty
- speciální případy
 - fázory jsou identické konstruktivní interference, dvakrát větší amplituda, stejná frekvence, vln. délka
 - fázory jsou protilehlé destruktivní interference, nulová amplituda

7.2 Stojaté vlnění

- interference postupné a odražené vlny
- $y_1 = y_m sin(\omega t kx)$
- $y_2 = y_m sin(\omega t + kx)$
- $y = y_1 + y_2 = y_m(sin(\omega t kx) + sin(\omega t + kx)) = 2y_mcos(kx)sin(\omega t) = Y_msin(\omega t)$ OBRAZEKOBRAZEK
- najdeme tady uzly (vždy 0, čili $\cos(kx)=0$ čili v každém lichém násobku $\frac{\pi}{2}$) a kmitny (kmitají nejvíc, čili $\cos(kx)=\max$. čili v každém násobku π)
- odraz vlnění
 - pevný konec: po odrazu se otočí fáze, interferují tedy destruktivně a pevný konec je uzel (logicky)
 - volný konec: neotáčí se fáze, vznikne tedy kmitna
- Př.: stojaté vlnění na struně g

Část IV

Elektrostatika

• eletkrický náboj – Q [C – Coulomb] (analogie hmotnosti)

8 Elektrické pole

- \bullet intensita elektrického pole $\overrightarrow{E} = \frac{\overrightarrow{F_c}}{Q} \ [\mathrm{N/C}]$
- $\bullet\,$ směr $\overrightarrow{E}=$ směr síly na kladný náboj OBRAZEKOBRAZEK

8.1 Typy elektrického pole

8.1.1 Homogenní pole

• $\overrightarrow{E} = \text{konst. OBRAZEKOBRAZEK}$

8.1.2 Radiální pole

• E =
$$\frac{k \cdot \frac{Q_1 Q_2}{r^2}}{Q_2} = k \cdot \frac{Q_1}{r^2}$$
 OBRAZEKOBRAZEK

8.1.3 Dipólové pole

 $\bullet\,$ dva náboje opačného znaménka – $Q_1=Q_2$ OBRAZEKOBRAZEK

8.2 Potenciál elektrického pole

- $\phi = \frac{E_p}{Q}$ [J/C]; E_p potenciální energie
- ekvipotenciální plochy místa se stejným potenciálem vždy kolmé na siločary

8.3 Práce, energie

•
$$W = F \cdot s = F \cdot s \cdot \cos \alpha$$

8.3.1 V homogenním poli

- $E = \frac{F}{Q} = konst.$
- \bullet F = EQ
- $W = E \cdot Q \cdot s = E \cdot Q \cdot s \cdot \cos \alpha = E \cdot Q \cdot d$; d je vzdálenost kolmá na siločary OBRAZEKOBRAZEK elektricka_prace
- $W = \Delta E_p$
- $\bullet\,$ volba 0 u E_p : na záporné nebo uzemněné desce OBRAZEKOBRAZEK volt_deska
- Potenciál: $\phi = \frac{E_p}{Q} = \frac{W}{Q} = \frac{EQd}{Q} = E \cdot d$
- Rozdíl potenciálů = napětí $U = \Delta \phi ~[\mathrm{J/C}] {=} [\mathrm{V}]$
- Intenzita: $E = \frac{U}{d} \text{ [V/m]}$
- Pozn: elektron urychlený napětím 1 V získá energii: $E=W=U\cdot e=1\cdot 1, 6\cdot 10^{-19}J=1eV$ elektronvolt

5

8.3.2 V radiálním poli

- \bullet OBRAZEKOBRAZEK z A do B: $W=F\cdot s,$ ale F v bodě A je jiná než v B \Rightarrow sílu nahradíme "průměrnou" (geometrický průměrnou) silou mezi A a B
- $F_A = k \cdot \frac{Q}{r_A^2}$; $F_B = k \cdot \frac{Q}{r_B^2} \Rightarrow F_{pr\mathring{u}m} = \sqrt{F_A \cdot F_B} = \frac{kQ}{r_A r_B}$
- $W = F_{pr\mathring{u}m} \cdot s = k \cdot \frac{Q_1Q_2}{r_Ar_B} \cdot (r_B r_A) = -kQ_1Q_2 \cdot \frac{1}{r} = E_p$

Pozn.: $F = k \cdot \frac{Q_1Q_2}{r^2}$; $k = \frac{1}{4\pi\epsilon} \epsilon$ – permitivita prostředí – "prostupnost prostředí pro el. pole" $\epsilon_0 = 8,85 \cdot 10^{-12} C^2 N^{-1} m^{-2} \epsilon >= \epsilon_0 \epsilon_r$ – relativní permitivita vzduch – $\epsilon_r = 1,0006$ olivový olej – $\epsilon_r = 3,1$ sklo – $\epsilon_r = 5 - 16$ voda – $\epsilon_r = 82$

8.4 Látky v elektrickém poli

- A) vodiče: náboje se mohou pohybovat OBRAZEKOBRAZEK vodic.png
 - elektrostatická indukce rozdělím vodič, zůstává trvale nabitý OBRAZEKOBRAZEK skin_effect.png
 - plošná hustota náboje $\sigma=\frac{Q}{S};$ z předch. vzorce: $E=\frac{Q}{S\cdot\epsilon}\Rightarrow\sigma=E\cdot\epsilon$
- B) nevodiče: OBRAZEKOBRAZEK nevodic.png
- \Rightarrow polarisuje se
 - -některé molekuly jsou už "z výroby" polární, např. ${\cal H}_2{\cal O}$

8.5 Kapacita vodiče

• při nabíjení vodiče nábojem Q se zvyšuje jeho napětí U přímo úměrně

 $Q \propto U \ Q = C \cdot U$

• C - kapacita vodiče [C/V] = [F] - farad

Př.: Určete kapacitu koule r = 10 cm $C=\frac{Q}{U}=\frac{Q}{k\cdot\frac{Q}{r}}=\frac{r}{k}=4\pi\epsilon r=4\pi\cdot 8,85\cdot 10^{-12}\cdot 0,1=11pF$

- koule s kapacitou 1 F by měla $9 \cdot 10^9$ m, proto používáme pF, nF, mkF
- $\bullet\,$ samostatný vodič má kapacitu malou \Rightarrow vhodným tvarem ji můžeme zvětšit
- ⇒ KONDENSÁTOR

8.5.1 Kondensátor

- \bullet deskový
- válcový OBRAZEKOBRAZEK kondensator.png

Př.: Deskový kondensátor: S = $20cm^2$, d = 5 cm, C = ? $C = \frac{Q}{U} = \frac{\ddot{Q}}{E \cdot d} = \frac{Q}{\dot{Q} \cdot d} = \epsilon_{pr.mezideskami} \cdot \frac{S}{d}$

- Spojování kondensátorů
 - a) paralelně:
 - $\ast\,$ shodné napětí $U=U_1=U_2$
 - *náboj se rozdělí $Q=Q_1+Q_2; \frac{Q}{U}=\frac{Q_1}{U_1}+\frac{Q_2}{U_2}; C=C_1+C_2$

- b) seriově:
 - * shodný náboj $Q = Q_1 + Q_2$
 - *napětí se rozdělí $U=U_1+U_2; \frac{U}{Q}=\frac{U_1}{Q_1}+\frac{U_2}{Q_2}; \frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_2}$
- $E = W! = Q \cdot U$ platí jen je-li U = konst.
- v kondensátoru je napětí přímo úměrné náboji, tedy v grafu "trojúhelník", tedy $E=W=\frac{Q\cdot U}{2}=\frac{C\cdot U^2}{2}$

Část V

Elektrodynamika

9 Elektrický proud

- usměrněný pohyb nosičů náboje (elektrony, ionty)
- $I = \frac{Q}{t}$; [C/s] = [A]

Př.: Rychlost elektronu ve vodiči způsobená tepelným pohybem je asi milion m/s (neuspoř. pohyb). Určete unášivou rychlost elektronu (driftová rychlost) při průtoku proudu 1 A měděným vodičem s průřezem 1 mm^2 . ρ (Cu) = 8300 kg/ m^3 , A_r (Cu) = 63,5 a 1 elektronu z každého atomu mědi vede el. proud.

Za 1 s projde průřezem 1C (protože vedeme 1 A), což je $\frac{1}{e} = \frac{1}{1,6\cdot 10^{-19}} = 6\cdot 10^{18}$ ks elektronů Hmotnost $6\cdot 10^{18}$ atomů mědi:

```
1 atom: A_r \cdot u = 63, 5 \cdot 1, 66 \cdot 10^{-27} = 10^{-25} \text{ kg}
 6 \cdot 10^{18} atomů: 6 \cdot 10^{-7} kg ... objem: V = \frac{m}{\rho} \Rightarrow h = \frac{m}{\rho \cdot S} = 7 \cdot 10^{-5} m
 \Rightarrow v = 10^{-4} \text{ m/s}
```

Pozn.: I je skalár, ale má def. směr (a ten je proti směru toku elektronů, tedy z kladného na záporný) Pozn.: Proud měříme ampérmetrem, který se zapojuje sériově

Část VI

Elektrodynamika?

- $R_i 10^{-1} 10^1 \omega$ (baterie) měkké zdroje
- $R_i 10^{-3}\omega$ (olověný akumulátor) tvrdé zdroje

achjo mi toho tak moc chybí

katodové záření – proud elektronů ve vakuu OBRAZEKOBRAZEK katodove_zareni.png, když tento
obvod zapojíme v opačném směru elektrony se nám nahromadí a nebudou proudit – máme elektronku
(diodu), využití katodového záření jako CRT monitorů, elektronek, jako jeden z typů elektronového
mikroskopu, jako způsob výroby rentgenového záření

Část VII

Magnetismus

Magnetická indukce: $B = \frac{F_n}{I \cdot l}$ [T] – Tesla Magnetická síla: $\overrightarrow{F_n} = I \cdot (\overrightarrow{l} \times \overrightarrow{B})$ $\Rightarrow F_n$ kolmé na l; F_n kolmé na B; B, l svírají lib. úhel $\Rightarrow \overrightarrow{l} \parallel \overrightarrow{B} \Rightarrow \overrightarrow{F_n} = 0$ jinak $F_n = B \cdot I \cdot l \cdot \sin \alpha$ OBRAZEKOBRAZEK indukce_1.png

směr F_n : Flemingovo pravidlo LEVÉ ruky: prsty – směr proudu; do dlaně – vstupující siločary; palec – směr F_n

Náboj v mag. poli:
$$\overrightarrow{F_n} = I \cdot (\overrightarrow{l} \times \overrightarrow{B}) = \frac{Q}{t} \cdot (\overrightarrow{l} \times \overrightarrow{B}) = Q(\frac{\overrightarrow{l}}{t} \times B)$$

$$\overrightarrow{F_n} = Q \cdot (\overrightarrow{v} \times \overrightarrow{B})$$

Př.: částice vlétne rychlostí v do mag. pole

- a) ve směru siločar $F_n = 0$ (\overrightarrow{v} a \overrightarrow{B} rovnob.)
- b)kolmo na siločáry udělá půlkroužek a poletí ven OBRAZEKOBRAZEK urychlovac_castic.png využití
 - vychylování el. svazku v CRT
 - kruhové urychlovače částic (cyklotrony) OBRAZEKOBRAZEK cyklotron.png

Př.: 2 rovnoběžné vodiče se stejným směrem proudu – budou se přitahovat velikost síly prvního na druhý: $F_{12} = B_1 \cdot I_2 \cdot l = \frac{\mu I_1}{2\pi d} \cdot I_2 \cdot l$ velikost síly druhého na první: $F_{21} = \frac{\mu I_2}{2\pi d} \cdot I_1 \cdot l \Rightarrow F_{12} = F_{21} = \frac{\mu}{2\pi} \cdot \frac{I_1 I_2 l}{d}$

velikost síly druhého na první: $F_{21} = \frac{\mu I_2}{2\pi d} \cdot I_1 \cdot l \Rightarrow F_{12} = F_{21} = \frac{\mu}{2\pi} \cdot \frac{I_1 I_2 l}{d}$ Př.: Smyčka s proudem v magnetickém poli OBRAZEKOBRAZEK civecka_1.png, civecka_2.png magnetické pole cívky se natočí tak, aby bylo souhlasné s polem magnetů – když ale potom cíku přeopoluju bude se točit dál – mám motor!

10 Látky v magnetickém poli

- každá látka složená z atomů, které v sobě mají pohybující se elektrony, o kterých můžeme uvažovat
 jako o hýbajících se nosičích náboje každá látka tak bude mít nějakou reakci na magnetické pole
 (většina ale velmi slabou), podle reakcí se látky dělí do skupin:
 - diamagnetické nátačí své pole opačně, tedy mag. pole trochu zeslabuje (tj. snižují permeabilitu
 realtivní permeabilita jako kladný násobek permeability vakua), těmito látkami je asi polovina látek v periodické tabulce (např. zlato, rtuť)
 - paramagnetické natáčí své pole shodně, tedy mag. pole lehce zesilují (tj. zvyšují permeabilitu), druhá polovina periodické tabulky (např. chrom)
 - feromagnetické realtivní permeabilita v řádech 10⁵ drasticky zesilují magnetické pole, těmito jsou železo, kobalt a nikl, zesilují pole tak moc, protože se v nich nenatáčejí do vnějšího magnetického pole jednotlivé atomy, ale tzv. domény skupiny atomů se shodně natočeným magnetickým polem
- využití paramagnetických látek podle hysterezní křívky materiály dělíme na mag. tvrdé a mag. měkké látky OBRAZEKOBRAZEK hysterezni_krivka.png
 - magneticky tvrdé látky permanentní magnety, HDD zápis pomocí magnetace disku

11 Nestacionární pole

nechapu to ne ok trochu to chapu