M - 183 - 2015

골절기의 안전작업에 관한 기술지침

2015. 11

한국산업안전보건공단

안전보건기술지침의 개요

- o 작성자: 서울과학기술대학교 이근오 교수
- o 제·개정 경과
 - 2015년 11월 기계안전분야 제정위원회 심의(제정)
- o 관련규격 및 자료
 - 한국산업안전보건공단 / 식품가공기계의 안전성 향상 방안 연구 -골절기 사용 사업장 중심으로, 이홍석·이관형
 - 한국산업안전보건공단 / 교육미디어 2010-S-914 조리사의 안전보건
- 고용노동부 / 위험 기계·기구 및 설비 가이드북
- CFR Section 1910.212(a)(3)(ii), Acceptable Guarding for Circular Meat Cutting Saws
- EN 12268:2003+A1:2010 "Food processing machinery-Band saw machines-Safety and hygiene requirements"
- BGR 299(Berufsgenossenschaft Regelwerk: 노동조합규정) "Arbeiten in der Fleischwirtschaft:(육류산업에서의 작업)"
- BGHW(Berufsgenossenschaft Handel und Warendistriution: 소상공인 및 유통 에 관한 노동조합) "Sicher arbeiten in der Fleischvorbereitung und an der Bedientheke(육류 가공 산업에서 안전)"
- KS C IEC 60204-1:2015
- o 관련법규·규칙·고시 등
 - 자율안전확인신고(육절기는 신고대상, 골절기는 비대상)
- 0 기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지(www. kosha.or.kr)의 안전보건기술지침 소관분야별 문의처 안내를 참고하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2015년 12월 7일

제 정 자 : 한국산업안전보건공단 이사장

M - 183 - 2015

골절기의 안전작업에 관한 기술지침

1. 목 적

이 지침은 식품가공기계 중 골절기를 사용하는 작업에 있어서 안전작업에 관한 기술적 사항을 정함을 목적으로 한다.

2. 적용 범위

- 이 지침은 고기를 포함한 뼈를 자르는데 사용되는 띠톱 구조로 된 기계의 사용에 적 용한다.
- (1) 목재나 그와 유사한 재질을 자르는데 사용하는 띠톱은 적용되지 않는다.
- (2) 가정의 주방에서 사용되는 골절기는 적용되지 않는다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "골절기(Band saw machine for food processing)"라 함은 절단날의 회전력을 이용하여 육류, 조류 또는 어류 등을 일정 크기로 자르는 기계를 말한다.
 - (나) "하부 톱바퀴(Bottom saw wheel)"라 함은 톱날을 구동하기 위한 테이블 밑의 톱바퀴를 말한다.
 - (다) "분할판(Dividing plate)"이라 함은 절단 두께를 조절 가능한 지지판을 말한다.

M - 183 - 2015

- (라) "블레이드 가이드(Blade guide)"라 함은 톱날을 안내하는 고정쇠를 말한다.
- (마) "띠톱 긴장장치(Band saw strain system)"라 함은 톱날 장력을 조이고 풀 수 있는 장치를 말한다.
- (바) "손가락 보호 바"라 함은 자르는 영역에 도달하는 손을 보호하기 위한 테이블 뒤쪽 벽에 있는 장치를 말한다.
- (사) "슬라이딩 이송 테이블(Sliding transfer table)"이라 함은 제품을 공급하기 위한 테이블 뒤쪽 벽까지 이동할 수 있는 테이블 표면을 말한다.
- (아) "절단라인"이라 함은 롤러컨베이어 또는 컨베이어 벨트를 가진 일체형 절단기 구를 말한다.
- (자) "안전밀대(Pusher)"라 함은 절단 영역으로 제품을 수동으로 밀 수 있는 장치를 말한다.
- (차) "공급대(Product pusher)"라 함은 수동으로 제품을 공급하기 위한 테이블 표면을 말한다.
- (카) "연동(Interlock)"이라 함은 제어 설비가 있는 (방호)장치 및/또는 기계에 공급되는 전기 에너지의 일부 또는 전체가 상호 연결 되도록 하는 배치를 말한다.
- (2) 그밖에 용어의 정의는 이 지침에서 특별히 규정하는 경우를 제외하고는 산업안 전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전보건기준에 관한 규칙에서 정하는 바에 따른다.

4. 골절기 형태에 따른 분류

골절기는 Type A, B, C, D 의 4가지 형태로 구분한다. 이중에서 한국에서 가장 많이 사용되는 형태는 B형으로 절단높이(SH)가 250 mm 이상 420 mm까지인 중형 골절기가 정육점 등에서 가장 많이 사용되고 있다.

<그림 1> 골절기

(1) Type A

- (가) 공급대, 고정된 안전밀대가 있다.
- (나) 절단 높이는 SH < 250 mm(그림 2)이다.
- (다) 탁자위에 얹어 놓고 쓸 수 있는 기계와 기초부가 없는 것으로 설계된 띠톱기 계이다
- (라) 바닥용 기계로 설계된 띠톱기계
 - 절단선 일체형의 띠톱기계 바닥에서 공급대의 표면까지 거리 A는 800 mm부터 1,050 mm까지이다.

M - 183 - 2015

- 1. on / off 스위치
- 2. 안전밀대(Pusher)
- 3. 분할판(Portioning Plate)
- 4. 테이블(Table)

- 1. on / off 스위치
- 2. 안전밀대(Pusher)
- 3. 분할판(Portioning Plate)
- 4. 지지대(Base)

<그림 2> Type A, 안전밀대가 있는 골절기

(2) Type B

- (가) 공급대, 방호덮개가 있다.
- (나) 절단 높이는 250 mm ≤ SH ≤ 420 mm이다.
- (다) 바닥에서 공급대의 표면까지 거리 A는 800 mm ~ 1,05 0mm이다.

M - 183 - 2015

- 1. ON / OFF 스위치
- 2. 개폐기(Door)
- 3. 방호레일(Protective Rail) / 공급대(Product Pusher)
- 4. 이송 테이블(Feed Table)
- 5. 기계 받침대(Machine Rack)

<그림 3> Type B, 방호레일과 고정 이송테이블이 있는 골절기

(3) Type C

- (가) 슬라이딩 공급대, 방호덮개가 있다.
- (나) 절단 높이는 250 mm ≤ SH ≤ 420 mm이다.
- (다) 바닥에서 슬라이딩 공급대의 표면까지 거리 A는 800 mm~ 1,050 mm이다.

M - 183 - 2015

- 1. ON / OFF 스위치
- 2. 개폐기(Door)
- 3. 방호레일(Protective Rail) / 공급대(Product Pusher)
- 4. 손가락 보호 바(Finger Protection Bar)
- 5. 슬라이딩 이송 테이블(Sliding Feed Table)
- 6. 기계 받침대(Machine Rack)

<그림 4> Type C, 방호레일과 슬라이딩 이송테이블이 있는 골절기

(4) Type D

- (가) 공급과 제거 기구(예. 롤러 컨베이어, 운송 컨베이어); 절단설비 안에 통합되어 있다.
- (나) 절단 높이는 SH < 550 mm이다.
- (다) 바닥에서 이송면까지의 거리 A는 800 mm ~ 1,050 mm이다.

KOSHA GUIDE M - 183 - 2015

1. 롤러 컨베이어 또는 운송 컨베이어

<그림 5> Type D, 이송 및 제거유닛이 있는 골절기

5. 골절기의 유해위험

5.1 기계적인 위험

<그림 6> 골절기의 위험영역

M - 183 - 2015

5.1.1 톱날 영역에서의 위험

(1) 1 영역

- (가) 자르는 범위 밖의 톱날에 의한 위험이 존재한다.
- (나) 손가락을 베이거나 절단되는 위험이 존재한다.
 - 안전조치: 절단날 및 동력전달부 등 구동부에는 덮개를 설치하고 연동회로를 구성해야 한다.

(2) 2 영역

- (가) 자르는 범위에서 톱날에 의한 위험이 존재한다.
- (나) 손가락을 베이거나 절단되는 위험이 존재한다.
 - 안전조치: 톱바퀴, 및 띠톱에 들러붙는 고기, 뼈 조각 등을 제거할 수 있는 부착물 제거판을 구비해야 한다.

(3) 3 영역

손가락이 끼임되는 위험이 존재한다.

- 안전조치: 손가락 끼임위험을 피하기 위해 덮개를 설치한다.

(4) 4 영역

- (가) 하부와 상부 톱바퀴의 바퀴살에 의한 위험이 존재한다.
- (나) 손에 충격위험을 주는 위험이 존재한다. 안전조치: 톱바퀴의 위험으로부터 벗어나기 위해 덮개를 설치한다.
 - ① 톱바퀴 덮개의 재료는 두께 1 mm 이상의 강판 또는 이와 동등 이상의 강 도일 것

M - 183 - 2015

- ② 톱바퀴의 윗면 및 전·후·좌·우의 면을 덮는 구조일 것
- ③ 상부의 톱바퀴 덮개는 톱바퀴를 하한 위치까지 낮추었을 경우에도 톱바퀴의 아래 끝까지 덮히는 구조일 것
- ④ 피트의 덮개를 겸하는 하부 톱바퀴 덮개의 재료는 두께 3 mm 이상의 강판 또는 이와 동등 이상의 강도일 것
- ⑤ 상부 톱바퀴의 덮개에는 띠톱의 파단에 의한 띠톱 및 파편의 비산을 방지하기 위하여 유효한 완충재로 라이닝할 것
- ⑥ 상부 톱바퀴의 상부와 덮개의 라이닝 표면과의 간격이 100 mm 이상일 것
- ⑦ 상부 톱바퀴의 덮개에는 내면 톱니쪽의 적당한 장소에 톱바퀴로 부터 이탈 된 띠톱을 받아 멈추게 하기 위한 톱 받이를 설치할 것
- ⑧ 상부 톱바퀴의 덮개에는 톱바퀴와 띠톱의 위치 관계를 확인하는 투시창을 설치할 수 있다. 다만, 이 경우 투시창은 충분한 강도를 유지해야 한다.

(5) 5 영역

- (가) 미끄러지는 공급대에 의한 위험이 존재한다.
- (나) 손이나 발의 충격이나 끼임위험은 슬라이딩 이송 테이블 가이드 밖에 속해야 한다.
 - 안전조치: 제품을 톱날까지 밀어 넣을 수 있는 안전밀대를 설치한다.

5.1.2 구동장치에 의한 위험

(1) 6 영역

(가) 상부와 하부 톱바퀴의 구동장치에 의한 위험이 존재한다.

M - 183 - 2015

- (나) 손가락 또는 손의 끼임위험이 존재한다.
 - 안전조치: 상부 톱바퀴 경사장치를 두어 톱바퀴의 경사가 변화되지 않는 구조로 한다.

5.2 전기적인 위험

충전부와 직접 또는 간접적인 접촉에 의해 인체의 감전위험이 존재한다.

5.2.1 불충분한 안전수준의 전기 부품

전기 부품의 오작동에 의한 인체의 손상 위험이 존재한다.

5.3 안전성 상실로 인한 위험

7 영역

- (1) 바퀴가 고정된 골절기와 탁자 위에 얹어놓고 쓸 수 있는 기계에 의한 위험이 존재한다.
- (2) 기계가 넘어졌을 때 신체에 충격을 주거나 끼일 수 있는 위험이 존재한다.
 - -안전조치: 바닥면이 평평하도록 고르기를 하며 장애물이 없도록 한다.

5.4 소음위험

소음으로 인해 작업자는 다음과 같은 신체적/정신적 손실을 입을 수 있다.

- (1) 영구적인 청력손실
- (2) 귀에서 울림(이명)
- (3) 피로, 긴장 등

M - 183 - 2015

5.5 인체공학 원칙들의 불이행에 의한 위험

- (1) 불안전한 몸의 자세나 신체에 가해지는 노동 과부하에 의한 위험
- (2) 물리적 손상 위험이 존재하는 영역에 대해 인간공학적 기계의 설계 오류로 인한 손·팔 또는 발·다리에 가해지는 과부하에 의한 위험

5.6 육류 / 어류 / 조류 제품의 비위생적인 처리에서 초래하는 위험

5.6.1 세균의 원인들

- (1) 육류·어류 제품의 부패
- (2) 식중독을 통한 소비자 건강의 피해
- (3) 조작하는 사람의 감염

5.6.2 화학적 원인들

- (1) 청소 시에 사용하는 소독제의 잔여물을 통한 식품의 오염 및 소비자에게 피해를 야기하는 위험이 존재한다.
- (2) 소비자에게 피해를 야기하는 원료, 기계 부품 또는 다른 원인에서 비롯되는 위험 물질에 의한 위험이 존재한다.

6. 골절기 사용 시 안전요구 사항

- (1) 절단위험이 존재하는 절삭공구(예. 톱날 등)를 취급하거나 또는 청소, 운반할 때는 날카로운 부위와 손 접촉을 예방하기 위하여 날카로운 부위를 둘러싼 박스나 방호울을 부착한다.
- (2) 비위생적인 작업바닥의 미끄러움과 장애물에 의한 위험에 주의를 해야 한다.

M - 183 - 2015

- (가) 피, 고기 잔여물, 기름 잔여물 등
- (나) 장점막 및 장내용물
- (다) 물웅덩이 및 얼음
- (3) 골절기는 습한 환경에 노출되어 있어 습식방식의 청소는 전기 감전의 위험을 증가시키므로 주의해야 한다.
- (4) 자르는 영역 밖에서 톱날에 접근하는 것은 방지 하여야 한다.
- (5) 개폐기(Door) 또는 공급대가 10 mm 이상 열렸으면 날은 정지되어야 하고 정지 시간은 4초를 초과하지 않아야 한다.
- (6) 방호 덮개는 톱날의 덮이지 않는 가장 낮은 위치가 최대 105 mm이다.
- (7) 슬라이딩 이송 테이블은 손가락 보호대를 가진 테이블 후방 벽과 함께 제공되어 야 한다.
- (8) 높이 60 mm 이상의 수형의 조절 가능한 분할판(Portioning Plate)이 준비되어야 하며 분할판은 기울어지거나 뗄 수 있어야 한다.
- (9) 높이 150 mm 이상의 최종 절단장치가 장착되어야 한다.
- (10) 떼어낼 수 있는 안전밀대가 제공되어야 한다.
- (11) 슬라이딩 이송 테이블은 슬라이드나 가이드 레일로부터 튀어나가거나 미끄러져 나가는 것을 방지하기 위해서 설계되어야 한다.
- (12) 하부와 상부 톱바퀴의 물림점에 접근하는 것은 예방되어야 한다.
- (13) 하부와 상부 톱바퀴날에 접근하는 것은 예방되어야 한다.

M - 183 - 2015

- (14) 골절기에 설치된 전기조작부품은 덮개를 덮여야 한다.
- (15) 골절기는 제조자에 의해서 전자기의 방해로부터 충분한 보호력을 가져야 한다.
- (16) 바퀴가 장착된 골절기는 사용설명서를 구체적으로 명시하여야 한다.
- (17) 바퀴가 장착된 골절기는 이동하기 전에 전원을 차단하고 주요 플러그는 뽑아야 한다.
- (18) 전기 공급 케이블은 골절기가 움직일 때 손상되지 않아야 한다.
- (19) 바퀴가 장착된 골절기는 이동시 적절한 위치에 확고히 고정하는 장치가 있어야 한다.
- (20) 골절기는 소음원의 통제 정보와 기계적 조치가 고려되어야 한다.
- (21) 방호울(Casing)에는 개방하지 않으면 톱날에 손가락을 접근할 수 없는 덮개를 설치하고 인터록(Interlock) 한다.
- (22) 인터록을 설치하는 경우 인터록의 안전 관련부의 요구 성능레벨 PL은 KS C IEC 60204-1:2015에 규정된 요구사항을 만족하는 것으로 한다.

KOSHA GUIDE M - 183 - 2015

7. 골절기의 개선된 방호장치

7.1 이송손잡이의 개선

<그림 7> 이송손잡이 변경 전

<그림 8> 이송손잡이 변경 후

M - 183 - 2015

(1) 골절기는 뼈를 깊숙이 넣기 위한 작업자가 톱날과 접촉하는 위험이 발생하고 이에 대한 방호조치로 이송 손잡이가 날과 직각으로 장착되어 고기가 붙은 뼈를 자를 때 더욱 깊숙이 그리고 안전하게 작업을 할 수 있도록 만들어 준다.

7.2 방호덮개의 개선

골절기의 톱날이 위에서 아래로 움직이면서 자르는 과정에서 뼈에 붙어 있는 살이 물고 내려가면서 절단 제품을 당기게 되어 작업물체에 따라 움직이는 방호덮개(<그 림 9> 참조)가 필요하다.

<그림 9> 작업물체에 따라 움직이는 방호덮개

<그림 10> 톱날까지 밀어 넣은 수 있는 안전밀대