Step-1

(a)

If,

 $x_1 = x_2$

 $= x_3$ $= x_4$

= 0

Then S is spanned by (0,0,0,0).

The dimension of S = 0.

Step-2

(b)

If $x_1 \neq 0$ and

 $x_2 = x_3$ $= x_4$

= 0

Then S is spanned by $(x_1, 0, 0, 0) = \{(x_1, 0, 0, 0) | x_1 \in R\}$

The dimension of S=1.

Step-3

(c)

If,

 $v_1 = (1, 0, 0, 0)$

 $v_2 = \big(0, 1, 0, 0\big)$

 $v_3 = (0, 0, 1, 0)$

 v_1, v_2, v_3 Are linearly independent

S is spanned by v_1, v_2, v_3 then dimension of S = 3.

Step-4

(d)

$$v_1 = (1, 0, 0, 0)$$

$$v_2 = (0, 1, 0, 0)$$

$$v_3 = (0, 0, 1, 0)$$

$$v_4 = (0,0,0,1)$$

If S is spanned by $\{v_1, v_2, v_3, v_4\}$ then dimension of S = 4.