CMSE 820 HW6

This HW is due on Oct 26th at 11:59 pm.

Question 1: Implement the classic MDS we learned in the class with input $D_{n\times n}$ and the desired number of dimension d. You are only allowed to use SVD or Eigen decomposition functions from existing packages.

Question 2: MDS of cities: Go to the following website geobytes.com Perform the following experiment.

- (1) Input the following cities: Boston, Chicago, DC, Denver, LA, Miami, New York City, Seattle, and San Francisco, and collect the pairwise air traveling distances shown on the website in to a matrix D_1 ; Also,
- (2) Run your own codes of classic MDS and plot the normalized eigenvalues $\lambda_i/(\sum_i \lambda_i)$ in a descending order of magnitudes, analyze your observations (did you see any negative eigenvalues? if yes, why?);
- (3) Make a scatter plot of those cities using top 2 or 3 eigenvectors, and analyze your observations.
- (4) Now, go to google map, and replace the distance matrix D with driving distance and repeat the analysis. Interpret your results.
- (5) Now, go to google map, and replace the distance matrix D with driving hours and repeat the analysis. Interpret your results.

Question 3: Positive Semi-definiteness: Recall that a n-by-n real symmetric matrix K is called positive semi-definite (p.s.d. or $K \succeq 0$) iff for every $x \in \mathbb{R}^n, x^T K x \geq 0$. Assume $A \succeq 0$ and $B \succeq 0$ $(A, B \in \mathbb{R}^{n \times n})$.

- (1) Show that $K \succeq 0$ if and only if its eigenvalues are all nonnegative.
- (2) Show that $d_{ij} = K_{ii} + K_{jj} 2K_{ij}$ is a squared distance function, i.e. there exists vectors $u_i, u_j \in \mathbb{R}^n$ for $1 \le i, j \le n$ such that $d_{ij} = ||u_i u_j||^2$.
- (3) Show that $A + B \succeq 0$ (elementwise sum), and $A \circ B = \{A_{ij}B_{ij}\} \succeq 0$ (Hadamard product or elementwise product). Show that the eigen values of AB are all positive.
- (4) If $A \succeq 0$ and $c \geq 0$, then $cA \succeq 0$
- (5) If $A \succeq 0$ and C can be written as $C = \{t_{[i]}A_{ij}t_{[j]}\}$ for $\forall t \in \mathbb{R}^n$, then $C \succeq$.
- (6) Show that the Hadamard integral power $A^{\circ p} = \{A_{ij}^p\}$ with $p \in \mathbb{N}$ and Hadamard exponential $\exp(\circ A) = \{\exp(A_{ij})\}$ are p.s.d..

Question 4: Now, let's prove the following claims

- 1 Infinitely Divisible Kernels Let $C = \{c_{ij}\}$ be a symmetric matrix, and define $B = \exp(\circ C)$ that is $b_{ij} = \exp(-c_{ij})$. hen B is infinitely divisible if and only if C is conditionally negative definite. (hint: for the ' \Rightarrow ' part, you can define $a_{ij}(\lambda) = (1 b_{ij}^{\lambda})/\lambda$ and then take limit as $\lambda \to 0$. For the ' \Leftarrow ' part, you can define $F = -H_{\alpha}CH'_{\alpha}$ and write down the element-wise expression of F, and take Hadamard exponetial.)
- 2 Gaussian Kernel Let $D^{(2)}$ be a squared Euclidean distance. Then, for any $\lambda \geq 0$, $\exp(\circ D^{(2)})$ is p.d., and $\tilde{D}_{\lambda}^{(2)} = \{\tilde{D}_{\lambda}^{(2)}[ij]\} = \{1 \exp(-\lambda D^{(2)}[ij])\}$ is a squared Euclidean distance. Namely, $\tilde{D}_{\lambda}^{(2)}$ is c.n.d with a zero diagnoal.

More generally (you don't need to prove the following claim), any mixture of $\tilde{D}_{\lambda}^{(2)} = \{1 - \exp(-\lambda D^{(2)}[ij])\}$ over $\lambda \geq 0$ is still a squared Euclidean distance, leading to the central part of Schoenberg transformation.

$$\phi(D^{(2)}[ij]) = \int_0^\infty \frac{1 - \exp(-\lambda D^{(2)}[ij])}{\lambda} g(\lambda) d\lambda.$$