Factoring Symmetric Indefinite Matrices

Voicu Chis

April 17, 2007

Motivation. IPM requires solving:

equivalently:

$$\begin{bmatrix} 0_m & A \\ A^T & -D^{-2} \end{bmatrix} \begin{bmatrix} \triangle \lambda \\ \triangle x \end{bmatrix} = b^* \text{ (Augmented System (AS))}$$

$$\triangle s = -X^{-1}(b^{**} + S \triangle x)$$

$$D = S^{-1/2}X^{1/2} \in M_n(\mathbb{R}) \text{ diagonal } \text{ and } PD, b^* \in \mathbb{R}^{m+n}$$
 the matrix of the system is a $n+m$ square matrix the matrix is symmetric but **indefinite**

equivalently the equations in Yang's introduction that reduces to solving:

 $AD^2A^T \triangle \lambda = b^{***}$, a system with a $n \times n$ PD symmetric matrix

Why solving the AS instead of normal equations?

- lacktriangle the dense columns of A don't destroy the sparsity of the augmented system matrix as they were destroying the sparsity of the matrix in the normal equations-remember Yang's explanation
- ill conditioning occurs in both systems but in the augmented one it is easier to trace the effects on the numerical factorization
- in Quadratic Programming we must solve either a system having the matrix $A^T(D^2+Q)^{-1}A$ or one having the matrix $\begin{bmatrix} Q & A \end{bmatrix}$

 $\begin{bmatrix}Q&A\\A^T&-D^2+Q\end{bmatrix}.$ It is worth working with the second system because the inverse in the first matrix makes it very dense.

Why solving the normal equations instead of the AS?

- one is bigger than the other. More computer time needed.
- "algorithms and software for solving sparse symmetric indefinite systems are not as highly developed or available as sparse Cholesky code"-Stephen J. Wright, 1997

Remark. Symmetric indefinite systems must be solved when dealing with finite element methods for PDEs, nonlinear optimization, electrical network modelling.

Our goal. Solve 'smartly' $\bar{A}x=b$ when \bar{A} is symmetric but indefinite. 'Smart:'

- \blacksquare think about a 'useful' factorization of \bar{A} that always exists and can be numerically stable obtained
- lacksquare use the symmetry of $ar{A}$ to do 'half' work as in Gaussian elimination
- lacksquare use the sparsity of $ar{A}$ when factorizing
- do the factorization in a numerical stable way

In IPM, note:

at each step the diagonal scaling matrix is the only thing changing in the AS matrix. This gives a constant sparsity structure.

How to factorize Symmetric Indefinited Matrices:

- If \bar{A} is symmetric but indefinite there might not exist a permutation matrix P such that $P\bar{A}P^T$ can be LU factorized, i.e. $P\bar{A}P^T = LDL^T$ for some L unit lower triangular and diagonal D. Example. $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (see Gill&Murray&Wright [1])
- lacktriangle Even when exists such P we have numerical stability problems (can not control the growth)

$$\begin{pmatrix} \epsilon & 1 \\ 1 & \epsilon \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1/\epsilon & 1 \end{pmatrix} \begin{pmatrix} \epsilon & 0 \\ 0 & \epsilon - 1/\epsilon \end{pmatrix} \begin{pmatrix} 1 & 1/\epsilon \\ 0 & 1 \end{pmatrix} \text{ (see Gill&Murray&Wright [1])}$$

- lacksquare Cholesky factorization is LDL^T factorization with D=I
- What to do?

Remark. If \bar{A} is symmetric indefinite then a symmetric permutation P exists such that either the first element in $P\bar{A}P^T$ is nonzero or the upper left 2×2 block of $P\bar{A}P^T$ is nonsingular.

Remark. This guarantees the existence of the factorization $P\bar{A}P^T=LBL^T$ where P is a permutation, L is unit lower triangular, B is symmetric and block diagonal with 1×1 or 2×2 blocks.

In the previous slide we said:

Remark. If \bar{A} is symmetric indefinite then a symmetric permutation P exists such that either the first element in $P\bar{A}P^T$ is nonzero or the upper left 2x2 block of $P\bar{A}P^T$ is nonsingular.

More details. If P is a permutation matrix then

- $P\bar{A}P^T$ and \bar{A} have the same elements on the diagonal, just scrambled.
- \blacksquare the upper left 2×2 corner of $P\bar{A}P^T$ (which is symmetric) has on the main diagonal 2 elements from the diagonal of \bar{A} and the other element in the block is some off-diagonal element of matrix \bar{A}
- in other words, given any 2 elements on the main diagonal of \bar{A} $(a_{ii}, a_{jj}, i \neq j)$ there exist a unique permutation matrix P such that the upper left 2x2 block in $P\bar{A}P^T$ is $\begin{pmatrix} a_{ii} & a_{ij} \\ a_{ij} & a_{ij} \end{pmatrix}$

- Step 1. We fix a permutation matrix P that either brings a non-zero element or a 2x2 non-singular block in the upper left corner of $P\bar{A}P^T$. The element or the block is refered to as 'the pivot'. This operation is referred to as 'choosing the pivot'
- Step 2. We write $P\bar{A}P^T = \begin{bmatrix} E & C^T \\ C & T \end{bmatrix}$ where E is our pivot which makes C either $(n-1)\times 1$ or $(n-2)\times 2$ and T is what is left. We can see that

$$\begin{split} P\bar{A}P^T &= \left[\begin{array}{cc} I & 0 \\ CE^{-1} & I \end{array} \right] \left[\begin{array}{cc} E & 0 \\ 0 & T - CE^{-1}C^T \end{array} \right] \left[\begin{array}{cc} I & 0 \\ CE^{-1} & I \end{array} \right]^T \\ \textbf{Note.} \ \ CE^{-1} \ \ \text{is either} \ \ (n-1) \times 1 \ \text{or} \ \ (n-2) \times 2 \ \text{giving us the first} \\ \text{column respectively the first 2 columns} \ \ \left[\begin{array}{c} I \\ CE^{-1} \end{array} \right]) \ \text{in our} \\ L \ \ \text{from the factorization} \ \ P\bar{A}P^T = LDL^T. \ \ \text{Also} \ E \ \ \text{is the first block} \\ \text{in} \ \ D. \end{split}$$

■ Step 3. Note that $T - CE^{-1}C^T$ is symmetric and indefinite but of dimension $n-1 \times n-1$ or $n-2 \times n-2$. We repeat Step 1 and Step 2 to this matrix adding columns (1 or 2) to L and another block to D

Freedom to choose PIVOTS

Keep in mind: numerical stability and sparsity.

Freedom to choose PIVOTS

Keep in mind: numerical stability and sparsity.

1. Dealing with numerical stability

Remember. The added colon(s) in L and the new matrix. Numerical stability means controling the growth of elements in CE^{-1} and $T-CE^{-1}C^T$.

Freedom to choose PIVOTS

Keep in mind: numerical stability and sparsity.

1. Dealing with numerical stability

Remember. The added colon(s) in L and the new matrix. Numerical stability means controling the growth of elements in CE^{-1} and $T-CE^{-1}C^T$.

Freedom to choose PIVOTS

Keep in mind: numerical stability and sparsity.

1. Dealing with numerical stability

Remember. The added colon(s) in L and the new matrix. Numerical stability means controlling the growth of elements in CE^{-1} and $T-CE^{-1}C^T$.

Bunch-Parlett algorithm-Complete Pivoting

Examines all elements in \bar{A} (the new \bar{A} at each step (remaining matrix)) and identify the largest diagonal element, denoted a_{kk} , and the largest off-diagonal element, denoted a_{ij} .

Freedom to choose PIVOTS

Keep in mind: numerical stability and sparsity.

1. Dealing with numerical stability

Remember. The added colon(s) in L and the new matrix. Numerical stability means controling the growth of elements in CE^{-1} and $T-CE^{-1}C^T$.

- Examines all elements in \bar{A} (the new \bar{A} at each step (remaining matrix)) and identify the largest diagonal element, denoted a_{kk} , and the largest off-diagonal element, denoted a_{ij} .
- The preferred 1×1 pivot is a_{kk}

Freedom to choose PIVOTS

Keep in mind: numerical stability and sparsity.

1. Dealing with numerical stability

Remember. The added colon(s) in L and the new matrix. Numerical stability means controlling the growth of elements in CE^{-1} and $T-CE^{-1}C^T$.

- Examines all elements in \bar{A} (the new \bar{A} at each step (remaining matrix)) and identify the largest diagonal element, denoted a_{kk} , and the largest off-diagonal element, denoted a_{ij} .
- The preferred 1×1 pivot is a_{kk}
- The prefered 2×2 pivot is $\begin{bmatrix} a_{ii} & a_{ij} \\ a_{ij} & a_{jj} \end{bmatrix}$

Freedom to choose PIVOTS

Keep in mind: numerical stability and sparsity.

1. Dealing with numerical stability

Remember. The added colon(s) in L and the new matrix. Numerical stability means controlling the growth of elements in CE^{-1} and $T-CE^{-1}C^T$.

- Examines all elements in \bar{A} (the new \bar{A} at each step (remaining matrix)) and identify the largest diagonal element, denoted a_{kk} , and the largest off-diagonal element, denoted a_{ij} .
- The preferred 1×1 pivot is a_{kk}
- The prefered 2×2 pivot is $\begin{bmatrix} a_{ii} & a_{ij} \\ a_{ij} & a_{jj} \end{bmatrix}$
- a rigorous way and analysis for choosing 2×2 pivot instead of 1×1 pivot and the bound for growth can be found p.117 [1]-modest growth

Bunch-Kaufman algorithm-Partial Pivoting

- Selecting the pivot comes after analysing just 2 columns of the remaining matrix. Lower cost
- See algorithm description pg. 119 in [1]

2. Dealing with sparsity

Goal. Not create to much fill-in in the remaining matrix, $T-CE^{-1}C^T$.

- Fourer&Mehrotra [2] modify the Bunch-Parlett strategy adding a sparsity preserving criterion
- they count the number of zeros in $T CE^{-1}C^T$ for all 1×1 and 2×2 pivots
- we start with the pivot producing the maximum number of zeros and go down until a certain stability condition is checked.

References:

- 1 P. Gill, W. Murray, M.H. Wright Numerical Linear Algebra and Optimization (1991)
- 2 R. Fourer, S. Mehrotra Solving symmetric indefinite systems in an interior-point method for linear programming, Mathematical Programming, 62 (1993)
- 3 Stephen J. Wright: "Prima-Dual Interior-Point Method"
- 4 Andersen E.D., J. Gondzio, C. Meszaros, and X. Xu, Implementation of Interior Point Methods for Large Scale Linear Programming, in: Interior Point Methods in Mathematical Programming, T. Terlaky (ed.), Chapter 6, pp. 189-252, Kluwer Academic Publisher, 1996 -can be found on the web.
- 5 Vanderbei R., Carpenter T. Symmetric Indefinite Systems for IPM, Mathematical Programming 58 (1993), 1-32
- 6 J.R. Bunch, B.N. Parlett Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations, SIAM Journal on Numerical Analysis 8 (1971), 639-655