

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES

PATENTAMT

(12) Offenlegungsschrift
(10) DE 197 09 419 A 1

(51) Int. Cl. 8:
F 16 H 61/16

DE 197 09 419 A 1

(21) Aktenzeichen: 197 09 419.8
(22) Anmeldetag: 7. 3. 97
(43) Offenlegungstag: 30. 10. 97

(66) Innere Priorität:

196 09 924.2 14.03.96

(71) Anmelder:

LuK Getriebe-Systeme GmbH, 77815 Bühl, DE

(72) Erfinder:

Salecker, Michael, Dr., 77815 Bühl, DE;
Zimmermann, Martin, 77880 Sasbach, DE; Stinus,
Jochen, 77855 Achern, DE

(54) Kraftfahrzeug und ein Verfahren zum Betrieb desselben

(57) Die Erfindung betrifft ein Kraftfahrzeug mit einer Vorrichtung und ein Verfahren zum automatisierten Betätigen eines Drehmomentübertragungssystems und zum automatisierten Schalten eines Getriebes.

DE 197 09 419 A 1

Beschreibung

Die Erfindung betrifft ein Kraftfahrzeug mit einem Drehmomentübertragungssystem und einem Getriebe mit einer Vorrichtung zur automatisierten Betätigung eines Drehmomentübertragungssystems und zum automatisierten Schalten eines Getriebes im Antriebsstrang mit einem Antriebsaggregat, mit zumindest einem Aktor zum Schalten des Getriebes sowie zum Betätigen des Drehmomentübertragungssystems, mit einer Steuereinheit zur Ansteuerung des zumindest einem Aktors und mit Detektionseinrichtungen, wie Sensoren, die mit der Steuereinheit in Signalverbindung stehen. Die Erfindung betrifft weiterhin eine Einrichtung zur Steuerung eines Getriebes und eines Drehmomentübertragungssystems, wie einer Kupplung, bei einem Schaltvorgang eines Kraftfahrzeugs. Die Erfindung betrifft weiterhin ein Verfahren zur Verwendung einer solchen Einrichtung zur Steuerung eines Getriebes und eines Drehmomentübertragungssystems, wie einer Kupplung, bei einem Schaltvorgang eines Kraftfahrzeugs.

Solche Vorrichtungen dienen der Automatisierung von Getrieben, wie Stufengetrieben, und Drehmomentübertragungssystemen, wie Kupplungen, beispielsweise im Antriebsstrang von Kraftfahrzeugen. Automatisierte Schaltgetriebe sind in der Regel Schaltgetriebe, die mit einer klassischen Anlenkung per Hand geschaltet werden können, wobei die Anlenkung der Getriebeschaltung auch automatisiert mit einem Betätigungsaktor durchgeführt werden kann. Solche Getriebe können derart ausgestaltet sein, daß eine Zugkraftunterbrechung bei einem Schaltvorgang existiert. Davon zu unterscheiden sind typische Automatgetriebe, die im wesentlichen ohne Zugkraftunterbrechung während des Schaltvorganges realisiert werden. Solche Getriebe sind beispielsweise durch die DE-OS 39 37 302 und die DE-PS 35 07 565 bekannt geworden.

Die automatisierte Betätigung von Drehmomentübertragungssystem, wie Kupplung, und von dem Getriebe weist gegenüber typischen Kraftfahrzeugvollautomaten mit hydraulischem Drehmomentwandler und Planetengetrieben beispielsweise den Vorteil auf, daß das Getriebe ein nur wenig oder ein im wesentlichen nicht modifiziertes Handschaltgetriebe sein kann, wobei statt des üblichen Gestänges zur Übertragung der Schalthebelbewegung zur Handschaltung zumindest ein Aktor eingesetzt wird, um das Getriebe mittels der Steuereinheit automatisiert zu schalten. Der zumindest eine Aktor kann als Baueinheit innerhalb oder außerhalb des Getriebes angeordnet sein. Weiterhin kann auch ein Schaltwalzenaktor innerhalb des Getriebes aufgenommen sein, wobei der erhöhte Aufwand durch die Schaltwalze durch Einsparungen anderer Bauteile zumindest annähernd wieder ausgeglichen werden kann.

Wird ein Schaltvorgang eingeleitet, sei es durch ein vom Fahrer ausgelöstes Signal oder durch ein von der Steuereinheit ausgelöstes Signal, wird das Drehmomentübertragungssystem durch die Steuereinheit zumindest teilweise ausgerückt. Anschließend wird zumindest ein Aktor zur Schaltung des Gänge oder zur Betätigung von getriebeinternen Schaltelementen durch die Steuereinheit angesteuert. Wenn der zumindest eine Aktor im Sinne einer Durchführung eines Schaltvorganges von zumindest einer Steuereinheit angesteuert wird, wird von diesem zumindest einen Aktor eine Kraft aufgebracht, um getriebeinterne Schaltelemente miteinander in Wirkkontakt zu bringen oder um einen Wirkkon-

takt zu unterbinden oder um nacheinander beides zu erreichen, was bei einem Schaltvorgang von einem Gang in den nächsten Gang durchgeführt wird. Nach dem Ende des Schaltvorganges wird das Drehmomentübertragungssystem wieder eingerückt. Der Aktor kann derart ausgelegt sein, daß die Schaltreihenfolge sequentiell oder in einem beliebigen Reihenfolge erfolgt.

Zwischen den getriebeinternen Schaltelementen, welche beispielsweise mit Verzahnungen ausgestaltet sind, ist in der Regel eine Synchroniereinrichtung mit beispielsweise einem Synchronisierring und einem Kupplungskörper vorgesehen, damit vor einem Eingriff der Verzahnungen der einzelnen getriebeinternen Schaltelementen eine Drehzahlsynchronisierung stattfindet und bei im wesentlichen Drehzahlgleichheit mittels des Verzahnungseingriffes ein Wirkkontakt zwischen den getriebeinternen Schaltelementen erzeugt wird. Bei einem hohen Anteil der Schaltvorgänge, tritt beim Einlegen eines Ganges im Getriebe, per Hand oder bei einer angesteuerten Betätigung des Schaltvorganges mittels zumindest eines Aktors, ein problemloses Einspuren der Verzahnungen der getriebeinternen Schaltelemente auf. Bei einem nicht zu vernachlässigenden Anteil der Schaltvorgänge tritt jedoch eine Konstellation auf, bei der beispielsweise die Zahnspitzen der Verzahnungen der getriebeinternen Schaltelemente beim Schalten oder beim Einlegen eines Ganges aufeinander treffen. Diese Konstellation des Aufeinandertreffens der Zahnspitzen beim angesteuerten Schalten mittels eines Aktors kann in ungünstigen Fällen bei einer weiteren Kraftbeaufschlagung zu einer Zerstörung von Bauteilen eines Aktors oder des Getriebes führen.

Aufgabe der Erfindung ist es, ein Kraftfahrzeug, eine Einrichtung und ein Verfahren zu schaffen, welche bei einem automatisierten Schaltvorgang ein das Getriebe schonendes Vorgehen realisiert, wenn bei einem Schaltvorgang zu hohe Kräfte auftreten. Aufgabe der Erfindung ist es weiterhin, ein Kraftfahrzeug, eine Einrichtung und ein Verfahren hierfür zu schaffen, welche eine oben beschriebene Konstellation, bei der beispielsweise die Zahnspitzen der Verzahnungen der getriebeinternen Schaltelemente beim Schaltvorgang oder beim Einlegen eines Ganges aufeinander treffen, erkennt und durch geeignete Maßnahmen in solchen Situationen eine Zerstörung von Bauteilen des Fahrzeugs verhindert. Weiterhin sollen Kraftfahrzeuge und Einrichtungen und Verfahren geschaffen werden, die automatisierte Getriebe nach dem Stand der Technik verbessern.

Die Einrichtung und das Verfahren des Kraftfahrzeugs sollen somit kritische Situationen erkennen und diese durch geeignete Maßnahmen entschärfen oder verhindern oder unterbinden.

Weiterhin liegt der Erfindung die Aufgabe zugrunde, ein Kraftfahrzeug mit einer Einrichtung zum automatisierten Schalten und automatisierten Kuppeln zu schaffen, bei welcher die dafür benötigten Bauteile einfach und kostengünstig realisiert werden können und welche gegenüber bekannten Systemen in der Funktionalität sicherer und verbessert sind. Durch die gezielte Ansteuerung des Aktors der Einrichtung soll trotz einer kostengünstigen Teileauslegung ein erhöhtes Maß an Betriebssicherheit realisiert werden.

Dies wird erfundungsgemäß dadurch erreicht, daß bei einem automatisierten Schaltvorgang ein kritischer Zustand, wie beispielsweise ein Zustand in welchem Zahnspitzen von getriebeinternen Schaltelementen kraftbeaufschlagt aufeinandertreffen, mittels Sensorsignalen zumindest eines Sensors erkannt wird und die Steuer-

einheit eine Ansteuerung des zumindest einen Aktors derart einleitet, daß der Schaltvorgang zumindest zeitweise und zumindest teilweise rückgängig gemacht wird und anschließend wieder fortgesetzt wird. Ein Schaltvorgang ist ein Vorgang, bei welchem die eingelegten Übersetzungen des Getriebes gewechselt werden und somit getriebeinterne Schaltelemente außer und in Kontakt gebracht werden müssen.

Ein kritischer Zustand kann beispielsweise jeder Zustand während des Schaltvorganges sein, bei welchem eine unerlaubt hohe Kraftbeaufschlagung von Teilen beispielsweise des Getriebes resultiert, oder bei welchem ein zu geringer Weg zurückgelegt wird, trotz Kraftbeaufschlagung.

Zumindest zeitweise und zumindest teilweise bedeutet in diesem Zusammenhang, daß der Schaltvorgang zumindest für eine kurze Zeit, im Zeitbereich von 0,1 Millisekunde bis zu 1 Sekunde unterbrochen wird, wobei die getriebeinternen Schaltelemente derart wieder außer Wirkkontakt gebracht werden, daß eine Hinterschneidung oder Berührung oder Synchronisierung verhindert wird.

Eine vorteilhaft ausgestaltete erfundungsgemäße Variante sieht vor, daß der Schaltvorgang zumindest kurzfristig zumindest teilweise rückgängig gemacht wird, wobei das Drehmomentübertragungssystem zumindest kurzfristig derart eingerückt wird, daß die Getriebeeingangswelle zumindest geringfügig verdreht wird und anschließend wird der rückgängig gemachte Schaltvorgang wieder fortgesetzt. Die geringfügige Verdrehung um einen sehr kleinen Winkelbetrag erlaubt beispielsweise eine unproblematische Einspuren der Verzahnung, wobei zur Verdrehung ein Drehmoment von 1 Nm bis 100 Nm appliziert wird, vorzugsweise von 3 Nm bis 20 Nm.

Eine weitere erfundungsgemäße Ausgestaltung sieht bei einem Kraftfahrzeug mit einem Drehmomentübertragungssystem und einem Getriebe, mit einer Vorrichtung zur automatisierten Betätigung eines Drehmomentübertragungssystems und zum automatisierten Schalten eines Getriebes, mit zumindest einem Aktor zumindest zum Betätigen des Drehmomentübertragungssystems oder zumindest zum Schalten eines Getriebes, mit zumindest einer mit Sensoren und gegebenenfalls anderen Elektronikeinheiten in Signalverbindung stehenden Steuereinheit zur Ansteuerung des zumindest einen Aktors, mit einer Einrichtung, wie beispielsweise Sensor, zur Ermittlung einer Größe, die eine zum Schalten der Gänge durch zumindest einen Aktor aufgebrachte Kraft repräsentiert in vorteilhafter Weise vor, daß bei zuvor gezielt ausgerücktem Drehmomentübertragungssystem bei einem automatisierten Schaltvorgang eine Überschreitung der eine Kraft zumindest repräsentierenden Größe im Vergleich zu einem Referenzwert ermittelt wird und im Falle der Überschreitung der Schaltvorgang zumindest zeitweise und zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem zumindest kurzfristig derart betätigt wird, daß zumindest ein geringfügiges Drehmoment übertragen wird und anschließend der Schaltvorgang weiter durchgeführt wird.

Gemäß eines weiteren erfunderischen Gedankens kann es bei einem Kraftfahrzeug mit einem Drehmomentübertragungssystem und einem Getriebe und einer Vorrichtung zur automatisierten Betätigung eines Drehmomentübertragungssystems und zum automatisierten Schalten eines Getriebes im Antriebsstrang eines Kraftfahrzeuges, mit zumindest einem Aktor zumin-

dest zum Betätigen des Drehmomentübertragungssystems und/oder zumindest zum Schalten eines Getriebes, mit zumindest einer mit Sensoren und gegebenenfalls anderen Elektronikeinheiten in Signalverbindung stehenden Steuereinheit zur Ansteuerung des zumindest einen Aktors, mit einer Einrichtung, wie beispielsweise Sensor, zur Ermittlung einer Größe, die eine beim Schalten der Gänge durch zumindest einen Aktor veränderbare Position eines Elementes zumindest repräsentiert, vorteilhaft sein, wenn bei zuvor gezielt ausgerücktem Drehmomentübertragungssystem bei einem automatisierten Schaltvorgang diese Größe in Abhängigkeit der Zeit überwacht wird und bei Vorliegen einer vorgebaren Zeitdauer mit einer nur geringen oder keiner Änderung der eine Position repräsentierenden Größe der Schaltvorgang zumindest zeitweise und zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem zumindest kurzfristig derart betätigt wird, daß zumindest ein geringfügiges Drehmoment übertragen wird und anschließend der Schaltvorgang weiter durchgeführt wird.

Vorteilhaft kann es weiterhin sein, wenn bei einem Kraftfahrzeug mit einer Einrichtung zum Steuern von Schaltvorgängen, mit einem Antrieb, mit einem Drehmomentübertragungssystem und einem Getriebe, mit einer Vorrichtung zur automatisierten Betätigung eines Drehmomentübertragungssystems und zum automatisierten Schalten des Getriebes, mit zumindest einem Aktor zumindest zum Betätigen des Drehmomentübertragungssystems oder zumindest zum Schalten des Getriebes, mit zumindest einer mit Sensoren und gegebenenfalls anderen Elektronikeinheiten in Signalverbindung stehenden Steuereinheit zur Ansteuerung des zumindest einen Aktors, mit einer Einrichtung, wie beispielsweise Sensor, zur Ermittlung einer Größe, die eine zum Schalten der Gänge durch zumindest einen Aktor aufgebrachte Kraft repräsentiert, bei zuvor gezielt ausgerücktem Drehmomentübertragungssystem bei einem automatisierten Schaltvorgang ein kritischer Zustand innerhalb des Getriebes, wie z. B. ein Zustand in welchem Zahnpitzen von Schaltelementen kraftbeaufschlagt aufeinandertreffen durch Überschreitung der eine Kraft zumindest repräsentierenden Größe im Vergleich zu einem Referenzwert ermittelt wird und im Falle der Überschreitung, der Schaltvorgang zumindest zeitweise und zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem zumindest kurzfristig derart betätigt wird, daß zumindest ein geringfügiges Drehmoment übertragen wird und anschließend der Schaltvorgang weiter durchgeführt wird.

Ebenso kann es vorteilhaft sein, wenn bei einem Kraftfahrzeug mit einer Einrichtung zum Steuern von Schaltvorgängen, mit einem Antrieb, mit einem Drehmomentübertragungssystem und einem Getriebe, mit einer Vorrichtung zur automatisierten Betätigung eines Drehmomentübertragungssystems und zum automatisierten Schalten eines Getriebes im Antriebsstrang eines Kraftfahrzeuges, mit zumindest einem Aktor zumindest zum Betätigen des Drehmomentübertragungssystems und/oder zumindest zum Schalten eines Getriebes, mit zumindest einer mit Sensoren und gegebenenfalls anderen Elektronikeinheiten in Signalverbindung stehenden Steuereinheit zur Ansteuerung des zumindest einen Aktors, mit einer Einrichtung, wie beispielsweise Sensor, zur Ermittlung einer Größe, die eine beim Schalten der Gänge durch zumindest einen Aktor veränderbare Position eines getriebeinternen Schaltele-

mentes zumindest repräsentiert, bei zuvor gezielt ausgerücktem Drehmomentübertragungssystem bei einem automatisierten Schaltvorgang ein kritischer Zustand innerhalb des Getriebes, wie z. B. ein Zustand in welchem Zahnspitzen von Schaltelementen kraftbeaufschlagt aufeinandertreffen durch diese Größe in Abhängigkeit der Zeit überwacht wird und bei Vorliegen einer vorgebbaren Zeitdauer mit einer nur geringen oder keiner Änderung der eine Position repräsentierenden Größe der Schaltvorgang zumindest zeitweise und zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem zumindest kurzfristig derart betätigt wird, daß zumindest ein geringfügiges Drehmoment übertragen wird und anschließend der Schaltvorgang weiter durchgeführt wird.

Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht nach einem erforderlichen Gedanken vor, daß je eine Einrichtung, wie beispielsweise Sensor, zur Ermittlung einer ersten Größe, die eine zum Schalten der Gänge durch zumindest einen Aktor aufgebrachte Kraft zumindest repräsentiert und zur Ermittlung einer zweiten Größe, die eine beim Schalten der Gänge durch zumindest einen Aktor veränderbare Position eines Elements zumindest repräsentiert, vorhanden ist und daß bei ausgerücktem Drehmomentübertragungssystem bei einem automatisierten Schaltvorgang eine Überschreitung der eine Kraft zumindest repräsentierenden ersten Größe im Vergleich zu einem Referenzwert ermittelt wird und die zweite Größe in Abhängigkeit der Zeit überwacht wird, wobei bei einer Überschreitung des Referenzwertes durch die erste Größe und bei Vorliegen einer vorgebbaren Zeitdauer mit einer nur geringen oder keiner Änderung der eine Position repräsentierenden zweiten Größe der Schaltvorgang zumindest zeitweise und zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem zumindest kurzfristig derart betätigt wird, daß zumindest ein geringfügiges Drehmoment übertragen wird und anschließend der Schaltvorgang weiter durchgeführt wird.

Weiterhin kann es vorteilhaft sein, wenn bei einem automatisierten Schaltvorgang eine Überschreitung der eine Kraft zumindest repräsentierenden Größe im Vergleich zu einem Referenzwert als Funktion der Zeit ermittelt wird und im Falle einer Überschreitung des Referenzwertes über zumindest eine vorgebbare Zeitdauer, der Schaltvorgang zumindest zeitweise und zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem zumindest kurzfristig derart betätigt wird, daß zumindest ein geringfügiges Drehmoment übertragen wird und anschließend der Schaltvorgang weiter durchgeführt wird.

Es kann insbesondere zweckmäßig sein, wenn die Dauer der vorgebbaren Zeitdauer abhängig von dem Wert der Überschreitung der Größe über den Referenzwert ist. Ebenso kann es zweckmäßig sein, wenn die Dauer der vorgebbaren Zeitdauer abhängig von dem einzulegenden Gang des Getriebes ist.

Weiterhin kann eine erfundengemäße Ausgestaltung vorsehen, daß ein Aktor die Betätigung des Drehmomentübertragungssystems ansteuert und dadurch das von dem Drehmomentübertragungssystem übertragbare Drehmoment bestimmt. Zweckmäßig kann es sein, wenn zumindest ein Aktor das Schalten der Gänge des Getriebes ansteuert. Ebenso kann es zweckmäßig sein, wenn zwei Aktoren das Schalten der Gänge des Getriebes ansteuert.

Eine weitere zweckmäßige Weiterbildung der Erfindung sieht vor, daß ein Aktor, welcher zum Schalten der

Gänge des Getriebes eingesetzt wird, ebenfalls die Betätigung des Drehmomentübertragungssystems ansteuert.

5 Weiterhin kann es zweckmäßig sein, wenn der Aktor zum Schalten der Gänge des Getriebes eine Schaltwalze umfaßt, wobei die Schaltwalze innerhalb oder außerhalb des Getriebes angeordnet ist.

10 Ebenso kann es zweckmäßig sein, wenn zumindest ein Aktor ein elektromotorisches Antriebselement, wie beispielsweise Elektromotor, zur Betätigung des Drehmomentübertragungssystems oder zum Schalten des Getriebes aufweist.

15 Zweckmäßig kann es sein, wenn zumindest ein Aktor ein elektromagnetisches Antriebselement zur Ansteuerung der Betätigung des Drehmomentübertragungssystems oder des Schaltens des Getriebes aufweist, wie umfaßt.

20 Zweckmäßig kann es sein, wenn zumindest ein Aktor ein druckmittelbetätigtes Antriebselement zur Betätigung des Drehmomentübertragungssystems und/oder zum Schalten der Gänge des Getriebes aufweist.

25 Ebenso kann es vorteilhaft sein, wenn das druckmittelbetätigtes Antriebselement ein hydraulisches, hydrostatisches, pneumatisches oder hydropneumatisches Antriebselement ist.

30 Eine weitere erfundengemäße Ausgestaltung kann vorsehen, daß zwischen dem Antriebselement und einem Betätigungsselement des Drehmomentübertragungssystems eine mechanische Übertragungsstrecke, wie Gestänge, Bowdenzug oder Walze, oder eine druckmittelbetätigte Übertragungsstrecke, wie hydraulische oder pneumatische oder anderweitige Übertragungsstrecke angeordnet ist. Weiterhin kann sie vorsehen, daß zwischen dem Antriebselement und einem Betätigungsselement des Getriebes zum Schalten eine mechanische Übertragungsstrecke oder eine druckmittelbetätigten Übertragungsstrecke nach den obigen Charakteristiken angeordnet ist.

35 Eine weitere zweckmäßige Ausgestaltung sieht vor, daß zumindest ein Kraftsensor die von zumindest einem Aktor aufgebrachte Kraft zum Schalten der Gänge detektiert.

40 Zweckmäßig ist es weiterhin, wenn bei Verwendung eines Aktors mit elektromotorischem Antrieb eine elektrische Kenngröße, wie elektrischer Stromfluß der elektrische Spannung, als kraftproportionales Signal oder als die eine Kraft repräsentierende Größe detektiert wird. Weiterhin kann es zweckmäßig sein, wenn zumindest ein Sensor, wie Druck-, Kraft- oder Wegsensor ein kraftproportionales oder wegproportionales oder repräsentierendes Signal erzeugt.

45 Weiterhin ist es zweckmäßig, wenn die Steuereinheit aus zwei Untereinheiten besteht, wobei die eine Untereinheit die Ansteuerung des Drehmomentübertragungssystems und die andere Untereinheit die Ansteuerung des Schaltens des Getriebes durchführt. Ebenso kann es zweckmäßig sein, wenn beide Untereinheiten in einem Steuergerät aufgenommen oder integriert sind. Es kann aber auch zweckmäßig sein, wenn die eine Steuereinheit im Aktor des Drehmomentübertragungssystems und die andere Untereinheit im Getriebeaktor oder im Getriebesteuergerät integriert ist.

50 Zweckmäßig ist es insbesondere, wenn die eine Untereinheit in einem Steuergerät des Drehmomentübertragungssystems und die andere Untereinheit in einem Steuergerät des Getriebes aufgenommen sind.

55 Vorteilhaft kann es sein, wenn ein kritischer Zustand, insbesondere ein Zustand, in welchem bei einem Schalt-

vorgang eine unerlaubt hohe Kraftbeaufschlagung seitens des Aktors resultiert, mittels zumindest eines Sensors detektiert wird, wobei dieser zumindest eine Sensor ein kraftrepräsentierendes oder wegrepräsentierendes Signal erzeugt. Ebenso kann es zweckmäßig sein, wenn — ein kritischer Zustand, insbesondere ein Zustand, in welchem bei einem Schaltvorgang eine unerlaubt geringe Wegänderung pro Zeitintervall resultierte mittels Sensoren detektiert wird.

Ebenso kann es zweckmäßig sein, wenn eine unerlaubt hohe Kraftbeaufschlagung oder eine unerlaubt geringe Wegänderung pro Zeiteinheit im Vergleich zu Referenzwerten der Kraft oder des Weges ermittelt werden.

Nach einem weiteren erforderlichen Gedanken kann es zweckmäßig sein, wenn eine Einrichtung zur Steuerung eines Getriebes und eines Drehmomentübertragungssystems, wie einer Kupplung, bei einem Schaltvorgang eines Kraftfahrzeugs geschaffen wird.

Nach einem weiteren erforderlichen Gedanken, kann es bei einem Verfahren zur Ansteuerung einer Vorrichtung eines Kraftfahrzeugs mit zumindest einem Aktor zur Einstellung des von einem Drehmomentübertragungssystem übertragbaren Drehmoments und zur Be-tätigung des Schaltvorganges eines Getriebes vorteilhaft sein, wenn zumindest einzelne der folgenden Verfahrensschritte bei einem Einlegen einer gewünschten Getriebeübersetzung oder Gang durchgeführt werden:

- bei Vorliegen eines Schaltsignales wird das übertragbare Drehmoment des Drehmomentübertragungssystems auf einen vorgebbaren, jedoch variabel wählbaren Wert von im wesentlichen null reduziert,
- der Schaltvorgang wird durch eine Steuereinheit aktiviert und mittels des zumindest einen Aktors werden getriebeinterne Schaltelemente in Richtung auf die Getriebeneutralposition betätigt,
- durch zumindest einen Aktor werden getriebeinterne Schaltelemente gewählt und in Richtung auf eine eingelegte Gangposition betätigt,
- zumindest eine Größe des Schaltvorgangs wird mittels zumindest eines Sensors als Funktion der Zeit detektiert, die eine zum Schalten der Gänge des Getriebes durch zumindest einen Aktor aufgebrachte Kraft oder eine Position von getriebeinternen Schaltelementen repräsentiert,
- die zumindest eine Größe wird mittels zumindest einer Vergleichseinrichtung mit einem Referenzwert verglichen,
- bei Überschreitung der zumindest einen Größe über oder bei Unterschreitung der Änderungsgeschwindigkeit der einen Größe unter zumindest einen Referenzwert wird der Schaltvorgang unterbrochen und die Betätigung der getriebeinternen Schaltelemente kurzzeitig zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem kurzzeitig zumindest teilweise wieder eingerückt wird, damit zumindest eine geringfügige Verdrehung der Getriebeeingangswelle erfolgt und anschließend der Schaltvorgang fortgesetzt wird bis der neu einzulegende Gang eingelegt ist.
- es wird zumindest zeitweise eine andere als die gewünschte Getriebeübersetzung gesteuert eingelegt und es wird anschließend wieder die gewünschte Getriebeübersetzung gesteuert eingelegt,
- das Drehmomentübertragungssystem wird kurzzeitig zumindest teilweise wieder eingerückt, damit zumindest eine geringfügige Verdrehung der Getriebeeingangswelle erfolgt
- der Schaltvorgang wird fortgesetzt.

Die gewünschte Getriebeübersetzung oder der ge-

wünschte Gang ist die Getriebeübersetzung oder der Gang, welche/welcher als nächstes gesteuert eingelegt werden soll. Die Auswahl kann der Fahrer über ein Signal von einer Handhabe, wie beispielsweise Schalter, an die Steuereinheit weiterleiten oder die Steuereinheit wählt diesen nächsten einzulegenden Gang automatisch, beispielsweise anhand von Sensorsignalen und Systemeingangsgrößen und beispielsweise anhand von Schaltkennlinien oder Kennfeldern und/oder Funktionen. Der gewünschte Gang kann beispielsweise bei einem Sechsganggetriebe mit einem Rückwärtsgang jeder Gang dieser sechs Vorwärtsgänge oder der Rückwärtsgang sein. Eine andere als die gewünschte Getriebeübersetzung kann beispielsweise einer der anderen Gänge sein, die nicht aktuell eingelegt werden sollen. Es kann aber auch ein anderes Getriebe, wie ein Viergang- oder Fünfganggetriebe Verwendung finden.

Weiterhin kann es zweckmäßig sein, wenn zumindest bei Überschreitung der eine Kraft repräsentierenden einen Größe während einer vorbestimmten Zeitdauer über einen Referenzwert, der Schaltvorgang unterbrochen und die Betätigung der getriebeinternen Schaltelemente kurzzeitig zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem kurzzeitig zumindest teilweise wieder eingerückt wird, damit zumindest eine geringfügige Verdrehung der Getriebeeingangswelle erfolgt und anschließend der Schaltvorgang fortgesetzt wird bis der neu einzulegende Gang eingelegt ist.

Ebenso kann es erfundengemäß vorteilhaft sein, wenn zumindest bei Unterschreitung der Änderungsgeschwindigkeit der eine Position repräsentierenden einen Größe während einer vorbestimmten Zeitdauer unter einen Referenzwert, der Schaltvorgang unterbrochen und die Betätigung der getriebeinternen Schaltelemente kurzzeitig zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem kurzzeitig zumindest teilweise wieder eingerückt wird, damit zumindest eine geringfügige Verdrehung der Getriebeeingangswelle erfolgt und anschließend der Schaltvorgang fortgesetzt wird bis der neu einzulegende Gang eingelegt ist.

Ebenso kann es zweckmäßig sein, wenn bei Unterschreitung der Änderungsgeschwindigkeit der eine Position repräsentierenden einen Größe über eine vorbestimmte Zeitdauer unter einen Referenzwert und bei Überschreitung der eine Kraft repräsentierenden einen Größe während einer vorbestimmten Zeitdauer über einen Referenzwert, der Schaltvorgang unterbrochen und die Betätigung der getriebeinternen Schaltelemente kurzzeitig zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem kurzzeitig zumindest teilweise wieder eingerückt wird, damit zumindest eine geringfügige Verdrehung der Getriebeeingangswelle erfolgt und anschließend der Schaltvorgang fortgesetzt wird bis der neu einzulegende Gang eingelegt ist.

Ebenso ist es vorteilhaft, wenn die eine Kraft oder eine Position repräsentierende Größe mittels eines Sensors, wie Positions-, Weg-, Druck-, Beschleunigungs- oder Kraftsensors detektiert wird. Zweckmäßig ist es ebenfalls, wenn ein elektrischer Strom oder eine elektrische Spannung der in den Aktoren eingesetzten Elektromotoren als ein kraftrepräsentierendes Signal verwendet wird.

Im weiteren kann es vorteilhaft sein, wenn eine Drehzahl eines mit einem in dem zumindest einen Aktor eingesetzten Elektromotoren als ein positionsrepräsen-

tierendes Signal verwendet wird.

Ebenso ist es zweckmäßig, wenn der zumindest eine Referenzwert aus zumindest einem Speicher ausgelesen wird. Weiterhin ist es zweckmäßig, wenn der zumindest eine verwendete Referenzwert für alle Gänge des Getriebes gleich ist oder abhängig von dem aktuell einzulegenden Gang gewählt wird. Dabei kann es weiterhin vorteilhaft sein, wenn daß die zumindest eine Zeitdauer für alle Gänge des Getriebes gleich ist oder abhängig von dem aktuell einzulegenden Gang gewählt wird.

Die Erfindung sei anhand der Figuren näher erläutert. Dabei zeigt:

Fig. 1 eine schematische Darstellung eines Kraftfahrzeugs,

Fig. 2 ein Blockschaltbild.

Fig. 3 ein Blockschaltbild.

Fig. 4 ein Blockschaltbild und

Fig. 5 ein Blockschaltbild.

Die Fig. 1 zeigt eine schematische Darstellung eines Kraftfahrzeugs 50 mit einer im Antriebsstrang angeordneten Antrieseinheit 1, wie Verbrennungsmotor, mit einem Drehmomentübertragungssystem 2, wie beispielsweise Reibungskupplung, Lamellenkupplung, Magnetpulverkupplung, Drehmomentwandler mit Wandlerüberbrückungskupplung oder sonstigem Drehmomentübertragungssystem, mit einem Getriebe 3, einem Differential 4 und einer angetriebenen Achse 5, über welche Räder 6 angetrieben werden.

Die Motorabtriebswelle 1a steht mit einem Schwungrad 2a und mit einem Drehmomentübertragungssystem 3 in Wirkverbindung, wobei eine Kupplungsscheibe 2b mit einer Getriebeingangswelle 3a im wesentlichen drehfest verbunden ist, so daß über den Einrückzustand einer Druckplatte 2c das übertragbare Drehmoment des Drehmomentübertragungssystems 2 gesteuert werden kann.

Weiterhin erkennt man eine zentrale Steuereinheit 7, wie Computereinheit, die mit Sensoren und gegebenenfalls anderen Elektronikeinheiten in Signalverbindung steht. Die Steuereinheit kann durch zwei Untereinheiten aufgebaut sein, wobei die eine das Drehmomentübertragungssystem und die andere Betätigungsseinheiten zum Schalten des Getriebes, wie Aktoren 8 und 9, ansteuert.

Der Aktor 8 betätigt über die Verbindung 10 ein Element 11 zum Ausrücken des Drehmomentübertragungssystems, wobei der Aktor 8 einen Geberzyylinder beinhaltet kann, die Verbindung 10 eine Hydraulikleitung sein kann und das Ausrückelement 11 ein hydraulischer Zentralausrücker sein kann. Weiterhin kann die Verbindung aber auch eine rein mechanische Verbindung sein, die über einen Hebel oder ein Gestänge auf das Drehmomentübertragungssystem einwirkt. Ebenso können Bowdenzüge verwendet werden. Der Aktor kann aber auch ein anderes Druckmittel zur Übertragung der Bewegung/Kraft vorsehen, wobei die Übertragungsstrecke 10 entsprechend eine Druckmittelverbindung ist.

Der Aktor 9 dient der automatisierten Betätigung des Getriebes 3, wobei beispielsweise eine zentrale Schaltwelle innerhalb des Getriebes vorhanden ist und der Aktor 9 die zum Schalten des Getriebes bzw. der Gänge notwendigen Bewegungen in axialer Richtung und/oder in Umfangsrichtung der zentralen Schaltwelle ansteuert. Ebenso kann der Aktor andere getriebeinterne Schaltelemente betätigen, wie beispielsweise drei Schaltstangen zum Schalten eines Fünfganggetriebes mit Rückwärtsgang.

Es sind Detektionseinrichtungen, wie Sensoren, vorgesehen, welche die Kraftbeaufschlagung oder eine Belastung von Getriebebauteilen und/oder anderen Elementen detektieren oder zumindest eine Größe detektieren, die eine solche Belastung repräsentieren. Der Sensor 12 detektiert eine Größe, die eine Kraft zumindest repräsentiert, die notwendig ist, um den Schaltvorgang durchzuführen. Diese Kraft wird von dem Aktor 9 auf ein Betätigungsselement des Getriebes 3 ausgeübt,

um einen Gang einzulegen oder einen Gang zu wechseln bzw. um in die Neutralstellung zu schalten. Der Sensor 12 kann aber auch eine Position von getriebeinternen Schaltelementen detektieren, wobei die Steuereinheit den Weg-Zeit-Verlauf dieser Schaltelemente be-

stimmt und anhand von Auffälligkeiten im Weg-Zeit-Verlauf eine hohe Kraftbeaufschlagung von Bauteilen registriert. Eine solche Auffälligkeit kann beispielsweise bei angelegter Betätigungs Kraft ein zu geringer Betätigungs weg über eine gewisse Zeitdauer sein. Durch die hohe angelegte Kraft müßte eine höhere Betätigungs geschwindigkeit ergeben und somit muß ein kritischer Zustand vorliegen.

Die Akto ren 8 und 9 stehen mit der neutralen Steuereinheit 7 in Signalverbindung, wobei sowohl Informationen von den Akto ren als auch Steuerbefehle an die Akto ren ausgetauscht werden können. Der Sensor 12 steht ebenso mit der Steuereinheit 7 in Signalverbindung. Weiterhin kann beispielsweise die Motorelektronik mit der Steuereinheit in Signalverbindung stehen.

Das Drehmomentübertragungssystem ist mit einem Sensor 20 ausgerüstet, welcher entweder am Drehmomentübertragungssystem 2 oder an der Übertragungsstrecke 10 oder am Aktor 8 angeordnet ist. Dieser Sensor detektiert direkt oder indirekt den Einrückzustand oder das von dem Drehmomentübertragungssystem übertragbare Drehmoment. Mittels dieses Sensorsignals des Sensors 20 regelt oder steuert die Steuereinheit 7 den Einrückzustand der Kupplung 2 während der Schaltvorgänge und auch in anderen Betriebssituatio nen, wie zum Beispiel bei einem Anfahrt- oder Anhalte vorgang des Fahrzeugs.

Die Steuereinheit 7 kann in Untereinheiten 7a, 7b realisiert sein, die räumlich getrennt oder zusammengefaßt sein können. Die Steuereinheit 7b kann ebenfalls in einer Getriebesteuerung integriert sein. Weiterhin kann die Steuereinheit 7, 7a, 7b mit einer Motorelektronik 30, einer Antischlupfregelung 31 oder einer Traktionssteuerelektronik 32 oder einer Elektronik eines Anti-Blokiersystems 33 zusammenwirken. Die Signalleitungen sind allgemein mit 51 bezeichnet. Sie dienen der Daten kommunikation zwischen den Sensoren und den Steuereinheiten oder zwischen den Steuereinheiten untereinander.

Die Steuereinheit 7, 7a kann alle Umfänge von elektronischen Kupplungsmanagement-Systemen aufweisen, wie sie beispielsweise in der DE-OS 195 048 47 bekannt geworden sind. Der Inhalt dieser DE-OS 195 048 47 soll hiermit voll inhaltlich zum Offenbarungsgehalt und zum Umfang der vorliegenden Erfindung auf genommen sein.

Die Steuereinheit 7 steuert mittels der Akto ren 8 und 9 die automatisierte Betätigung des Drehmomentübertragungssystems 2 und des Getriebes 3, wobei die Auswahl der Gänge oder der Getriebübersetzung zum einen per Knopfdruck vom Fahrer des Fahrzeugs vorgegeben werden kann oder vollautomatisch von der Steuereinheit selbst gewählt und durchgeführt wird. Das für den Fahrer zu betätigende Element, wie Knopf,

ist nicht näher dargestellt. Im Falle einer Vorgabe der Gangpositionen durch den Fahrer muß ein Gangpositionsschaltelement innerhalb der Fahrgästzelle des Fahrzeugs vorhanden sein, wie beispielsweise im Lenkrad integriert, damit der Fahrer bequem die Gänge des Getriebes wählen kann.

Wird durch einen Knopf- oder Tastendruck eine nächsthöhere Gangstufe angewählt, so wird dieses Signal an die Steuereinheit 7 weitergeleitet, welche die Kupplung mittels des Aktors 8 automatisiert zum Öffnen ansteuert und das Schalten der Gänge im Getriebe mittels des Aktors 9 einleitet.

Im Falle einer automatisierten Betätigung des Getriebes durch die Steuereinheit wird zum Beispiel anhand von Drehzahl- und Drehmomentdaten des Motors und/oder Raddrehzahlen des Fahrzeugs oder Geschwindigkeiten des Fahrzeugs und/oder Getriebeeingangs- und/oder Getriebeausgangsdrehzahlen anhand von mathematischen Gleichungen oder Kennfeldern bestimmt, in welchem Gang das Getriebe geschaltet werden sollte, um bei den ermittelten Daten einen hohen Komfort und/oder ein hohes Beschleunigungsvermögen und/oder einen geringen Kraftstoffverbrauch aufzuweisen.

Der Aktor 9 zum Schalten des Getriebes ist beispielsweise ein Schaltwalzenaktor, bei welchem durch Rotation einer Schaltwalze getriebeinterne Schaltelemente angesteuert werden, um die jeweiligen Gänge des Getriebes einzulegen oder aus dem eingelegten Zustand herauszunehmen. Der Aktor kann aber auch ein Aktor sein, welcher die zentrale Schaltwelle des Getriebes betätigt.

Die Fig. 2 zeigt ein Blockschaltbild zur Durchführung des erfundungsgemäßen Verfahrens. In Fig. 2 wird das Verfahren bei 100 gestartet. Anschließend wird in Block 101 der Schaltvorgang nach einem Schaltsignal ausgelöst.

Das Schaltsignal, welches einen Schaltvorgang auslöst oder einleitet, kann zum einen fahrerseitig abgegeben werden oder zum anderen von der Steuereinheit ausgelöst sein. Automatisierte Schaltgetriebe können zum einen mittels beispielsweise Schaltern oder Tastern oder Hebeln derart ausgestaltet sein, daß fahrerseitig ein Schaltwunsch an die Steuereinheit weitergeleitet wird. So kann beispielsweise ein sequentielles Schalten durch den Fahrer ausgelöst werden. In einer weiteren Ausgestaltung der Erfindung kann es vorteilhaft sein, wenn der automatisierte Schaltvorgang vollautomatisch von der Steuereinheit gesteuert wird. Zu diesem Zwecke wird innerhalb der Steuereinheit beispielsweise ein Kennfeld oder eine Funktion abgelegt, nach welcher in Abhängigkeit von Fahrzeugparametern das Getriebe geschaltet wird.

Somit gibt die Steuereinheit in Abhängigkeit von Betriebsparametern vor, in welchen Gang geschaltet wird oder ob im aktuellen Gang weiter verblieben werden soll.

In Abhängigkeit des verwendeten Aktors zum Schalten der Gänge des Getriebes kann eine sequentielle oder nichtsequentielle Schaltung vorgenommen werden, wobei bei einem fahrerseitig ausgelösten Schaltvorgang entsprechend Schaltbefehle mittels oben beschriebener Mittel eingeleitet werden.

Bevor ein Schaltvorgang nach einem Schaltsignal in Block 101 ausgelöst wird, kann zuvor eine Plausibilitätsprüfung erfolgen, d. h. ob ein Schalten in einen anderen Gang möglich ist und/oder ob ein Schalten in einen anderen Gang zweckmäßig ist. So kann beispielsweise überprüft werden, ob die Motordrehzahl nach dem

Schaltvorgang einen kritischen Wert überschreitet oder unterschreitet.

Weitere Plausibilitätsentscheidungen sind möglich, um den Sicherheitszustand des Motors und/oder des Getriebes respektive des Fahrzeuges zu gewährleisten.

Nachdem der Schaltvorgang nach einem Schaltsignal in Block 101 ausgelöst wurde, wird das Drehmomentübertragungssystem in Block 102 ausgerückt, was bedeutet, daß der Aktor zur Betätigung des Drehmomentübertragungssystems von der Steuereinheit zum Ausrücken angesteuert wird.

Das Drehmomentübertragungssystem wird zum einen entweder vollständig ausgerückt oder aber nur so weit ausgerückt, daß ein Schaltvorgang möglich ist. Dies bedeutet, daß die Kupplung in einer Position geöffnet wird, welche gegenüber dem Greifpunkt in Richtung Öffnen um einen gewissen Betrag versetzt ist. In einer solchen Position ist die Kupplung zumindest so weit geöffnet, daß kein Schleppmoment übertragen wird und ein Schaltvorgang durchgeführt werden kann. Eine andere Position zwischen dem Greifpunkt und der voll geöffneten Position ist ebenfalls möglich.

In Block 103 wird der Schaltvorgang durchgeführt, indem zumindest ein Aktor von der Steuereinheit derart angesteuert wird, daß eine Kraftbeaufschlagung auf ein Element zur Betätigung des Schaltvorganges durchgeführt wird und getriebeinterne Schaltelemente betätigt werden. Bei diesem Schaltvorgang wird je nach Ausgangssituation bei einem eingelegten Gang oder bei einem Neutralgang zuerst die bestehende Verzahnung von getriebeinternen Schaltelementen aufgehoben, bevor über den Neutralbereich eine andere Gruppe von getriebeinternen Schaltelementen ausgewählt werden kann, welche anschließend in Wirkkontakt gebracht werden.

Die Beaufschlagung der getriebeinternen Schaltelemente erfolgt durch den zumindest einen Aktor, wobei zur Betätigung die beaufschlagende Kraft zumindest im wesentlichen unterhalb eines Schwellenwertes oder Grenzwertes bleibt und die Entwicklung der Position der getriebeinternen Schaltelemente ebenfalls als Funktion der Zeit einen Grenzwert oder Schwellenwert nicht unterschreitet oder nicht übersteigt. Dies bedeutet, daß die Bewegung der getriebeinternen Schaltelemente aufgrund der Kraftbeaufschlagung eine gewisse Geschwindigkeit aufweist, welche von der Betätigung des Aktors und von der Art und Weise der Ansteuerung abhängt.

In seltenen Fällen tritt es bei einem Schaltvorgang auf, daß die Zahnspitzen oder andere Elemente der getriebeinternen Schaltelemente aufeinander treffen und ein Einrasten der Schaltverzahnung nicht stattfinden kann. In einem solchen Fall geht die Geschwindigkeit der getriebeinternen Schaltelemente quasi auf Null zurück und die Betätigungs Kraft zur Beaufschlagung der getriebeinternen Schaltelemente steigt an.

In Block 103 werden Sensoren ausgelesen oder abgefragt, welche beispielsweise eine Größe detektieren, welche die Betätigungs Kraft repräsentiert oder welche eine Größe detektieren, welche den Betätigungs weg repräsentiert, wobei die Sensordaten als Funktion der Zeit ermittelt werden und über Differenzen-Quotienten, beispielsweise auch Geschwindigkeiten und Änderungs geschwindigkeiten von Größen mittels der Steuereinheit numerisch bestimmt werden können.

In Block 104 sind die Sensoren dargestellt, welche in Block 103 abgefragt werden. Bei einer elektromotorischen Betätigung kann beispielsweise der Strom bzw. die Spannung als Signal dienen, um die Kraft oder den

Weg oder ein diese Größen repräsentierendes Signal zu detektieren. Weiterhin können Druck- oder Kraftsenso- ren eingesetzt werden oder Wegsensoren.

Anhand der Daten der Sensoren wird in Block 105 die Kraftinformation des Sensors 104 ausgewertet, d. h. es wird die Kraft berechnet oder in ein kraftproportionales Signal umgewandelt. Bei anderen Ausführungsbeispie- len kann das Ausgangssignal der Sensoren auch direkt verglichen werden, ohne daß es in eine Kraftinforma- tion umgerechnet wird.

In den Blöcken 106 und 107 wird das Signal des Sen- sors 104 bewertet.

In Block 106 wird abgefragt, ob die Kraft einen Grenzwert überschreitet. Ist dies der Fall, so wird ent- sprechend des Pfeiles 108 mit dem Block 109 fortgefah- ren. Ist dies nicht der Fall, so wird über den Weg 110 bei Block 104 fortgefahren. In Block 7 wird detektiert, ob für eine Zeitspanne D_t eine hohe bzw. zu hohe Kraft die internen Schaltelemente beaufschlagt. Liegt die Kraft über die Zeitspanne D_t über einem Referenzwert, so wird entlang des Pfeiles 111 bei Block 109 fortgefah- ren, wobei bei einer Verneinung der Abfrage in Block 107 entlang des Pfeiles 112 bei Block 104 fortgefahren wird. In Block 109 wird abgefragt, ob zumindest eine der Bedingungen aus Block 106 und Block 107 erfüllt ist. Ist dies nicht der Fall, wird bei Block 113 abgefragt, ob der Schaltvorgang abgeschlossen ist. Ist dies der Fall, wird bei Block 114 das Verfahren beendet. Der Block 113 kann ebenso in der Folge des Blockes 109 an der Stelle 115 sowie im Bereich des Pfades 112 weiterhin angeord- net sein.

Erfolgt die Abfrage in Block 109 mit ja, so werden die getriebeinternen Schaltelemente in Richtung neutral zumindest zeitweise oder zumindest teilweise betätigt, was in Block 120 durchgeführt wird. Im Block 121 wird das Drehmomentübertragungssystem mittels des Aktors zumindest kurzzeitig geschlossen und anschließend wieder geöffnet, wobei das Schließen zumindest derart erfolgt, daß ein geringes Drehmoment übertragen werden kann und eine zumindest kurzzeitige Verdrehung der Getriebeeingangswelle erfolgt. Weiterhin kann das Drehmomentübertragungssystem auch kurzfristig komplett geschlossen werden oder teilgeschlossen werden.

Nach dem Öffnen werden die internen Schaltelemente nach Block 102a betätigt, um einen erneuten Schaltvorgang vorzunehmen.

Die Fig. 3 zeigt ein der Fig. 2 ähnliches Blockschalt- bild, wobei die Blöcke 100, 101, 102, 102a und 103 sowie 104, 109, 120 und 121 gleich sind. In Block 150 wird eine Weginformation abgefragt, wobei in Block 105 der Fig. 2 eine Kraftinformation abgefragt wurde. In den Blöcken 151 und 152 wird abgefragt, ob eine Zeitspanne D_t ein zu geringer Verfahrweg existiert oder ob für eine Zeitspanne D_t kein Verfahrweg realisiert ist. Ist dies jeweils der Fall, so wird entsprechend den Pfeilen 153 und 154 der Block 109 als nächster Block angesteuert. Werden die Abfragen der Blöcke 151 und 152 mit nein beantwortet, so wird bei Block 104 fortgefahrene. Wird die Abfrage im Block 109, ob zumindest eine der Bedingungen erfüllt ist, mit nein beantwortet, wird in Block 155 abgefragt, ob der Schaltvorgang abgeschlossen ist, bevor das Verfahren bei Block 156 abgeschlossen wird. Wird die Abfrage des Blockes 109 positiv bewertet, so werden die getriebeinternen Schaltelemente in Rich- tung auf neutral betätigt, wie es Block 120 darstellt und das Drehmomentübertragungssystem wird zumindest kurzzeitig zumindest zeitweise geschlossen und anschließend wieder geöffnet, wie es Block 120 darstellt.

Die Fig. 2 verdeutlicht somit ein Verfahren, welches eine Kraftinformation auswertet, wobei die Fig. 3 ein Verfahren darstellt, das eine Weginformation auswertet.

Die Fig. 4 zeigt ein Verfahren, das sowohl eine Weg- als auch eine Kraftinformation auswertet.

Das Verfahren wird bei Block 200 gestartet, wobei der Schaltvorgang nach einem Schaltsignal in Block 201 ausgelöst wird. Anschließend wird das Drehmoment- übertragungssystem in Block 202, wie bereits oben be- schrieben, ausgerückt und in Block 203 werden die inter- nalen Schaltelemente mittels eines Aktors betätigt. In Block 204 werden die Sensoren abgefragt, wobei als Sensoren die Sensoren 205 und 206 in Frage kommen. Der Sensor 205 detektiert eine kraftrepräsentierende Größe und der Sensor 206 detektiert eine Wegproportionale oder eine einen Weg repräsentierende Größe.

Dies wird durch die Blöcke 207 und 208 verdeutlicht. Das Signal des Sensors 1 (205) wird in eine Kraftinfor- mation, z. B. einen elektrischen Strom oder einen hy- draulischen Druck oder eine weitere Größe umgewan- delt und das Sensorsignal des Sensors 2 (206) wird in eine Weginformation (Block 208) umgewandelt. In den Blöcken 209 und 210 wird abgefragt, ob für eine Zeit- spanne D_t eine zu hohe Kraft oder für eine Zeitspanne D_t kein oder nur ein geringer Verfahrweg realisiert ist. Ist dies der Fall, so wird über die Pfeile 211 und 212 als nächster Block der Block 213 abgefragt. Der Block 213 fragt ab, ob beide Bedingungen erfüllt sind. Ist dies der Fall, werden die getriebeinternen Schaltelemente in Richtung nach Getriebeposition neutral betätigt, wie es in Block 214 dargestellt ist. Weiterhin wird in Block 215 das Drehmomentübertragungssystem zumindest kur- zeitig geschlossen und anschließend wieder geöffnet, damit eine Verdrehung der Getriebeeingangswelle er- folgen kann. Wird die Abfrage bei 213 negativ beant- wortet, so wird in Block 216 abgefragt, ob der Schalt- vorgang abgeschlossen ist. Ist dies nicht der Fall, so wird entsprechend bei den Blöcken 205, 206 fortgefahrene, wobei bei einem abgeschlossenen Schaltvorgang bei Block 217 das Verfahren beendet wird.

Die Abfrage, ob der Schaltvorgang abgeschlossen ist, kann weiterhin in den Pfaden 218 und 219 erfolgen. Dies kann beispielsweise dadurch erfolgen, daß ein analoger oder digitaler Sensor abgefragt wird, welcher das Ende des Schaltvorganges sensiert, wobei ein Wegsensor ebenfalls ein geeigneter Sensor ist, welcher die Endlage der getriebeinternen Schaltelemente detektieren kann.

Bei einem Schaltgetriebe insbesondere mit Zugkraft- unterbrechung bei einem Gangwechsel unterteilt sich der Schaltvorgang in im wesentlichen vier Phasen, in das Synchronisieren, das Entsperren, den Freiflug und das Einspuren. Um eine prinzipielle Betrachtung eines Schaltvorganges durchführen zu können, ist es zweck- mäßig, sich den Aufbau eines Getriebes darzustellen. Wichtigste Bauteile sind dabei das jeweilige Gangrad mit Verzahnung, der Synchronring mit Verzahnung und die Schiebemuffe mit Verzahnung.

Beim Synchronisieren wird der Synchronring oder Synchroniserring auf den Konus des Kupplungskörpers aufgeschoben. Das entsprechende Reibmoment führt zu einem Drehzahlausgleich, d. h. zu der Synchronisierung der Drehzahlen von getriebeinternen Bauelementen. In der Phase des Entsperrens nach der Synchronisierung verdreht die Schiebemuffe die reibschlüssig miteinander verbundenen Partner, Synchronring und Kupplungs- körper. Im Augenblick des Eintauchens der Synchron- ringverzahnung in die Schiebemuffenverzahnung also direkt nach dem Entsperren, beginnt die Freiflugphase.

Beim Einspuren der letzten Phase des Schaltvorganges trifft die Schiebemuffenverzahnung in zufälliger Stellung auf die Kupplungskörperverzahnung auf. Die Funktionsweise des Synchronisierens bei einem Schaltvorgang kann beispielsweise dem VDI-Bericht Nr. 681, S. 177 bis 206 entnommen werden.

Wird ein Gang eingelegt, so wird der Schaltvorgang in mehrere Phasen unterteilt und die Bauteile, die an dem Schaltvorgang beteiligt sind, werden in unterschiedlichen Positionen, beispielsweise als Funktion der Zeit, angeordnet sein. Diese Phasen werden wie folgt dargestellt: In einer ersten Phase wird beispielsweise ein Spiel überwunden, anschließend findet eine Vorsynchronisierung statt und danach eine Synchronisierung. Anschließend erfolgt ein Entsperrnen, ein Freiflug, ein Einspuren von Verzahnungen, ein Erreichen der Hinterlegung und ein Erreichen einer Endlage eines beim Schaltvorgang beteiligten Elementes. Bei dem Einspuren einer Verzahnung kann es auftreten, daß Spitzen von Verzahnungen aufeinandertreffen, ein Einspurkratzen auftritt oder eine Einspurhemmung auftritt. Diese Ereignisse stellen Fehlfunktionen dar, die beim automatisierten Schalten zufällig auftreten können. Bei einem Auftreffen von Verzahnungsspitzen kann bei erhöhter Kraftbeaufschlagung eine Beeinträchtigung des Getriebes bis zu einer Zerstörung des Bauteiles erfolgen. In diesem Falle kann die Aktorkraft bis zu einer Maximalkraft ansteigen und der Aktor kann trotz maximaler Kraftbeaufschlagung zum Stehen kommen, so daß der Schaltvorgang zumindest zeitweise unterbrochen ist. In dieser Phase liegt eine Fehlfunktion vor, die verhindert werden sollte und/oder auf welche bei ihrem Auftreten reagiert werden sollte. Die obengenannten Fehlfunktionen treten nur zufällig auf, d. h. eine Vorgehensweise zur Verhinderung solcher Fehlfunktionen kann nicht in jedem Falle durchgeführt werden. Es ist somit zweckmäßig, bei einem Eintritt einer solchen Fehlfunktion diese zu detektieren und bei einem Vorliegen einer solchen Fehlfunktion entsprechend zu reagieren, damit der Zustand der Fehlfunktion nur eine sehr kurze Zeitspanne vorliegt. Das Ereignis der Fehlfunktion ist in der Regel nicht auf eine vorgebbare Position eines Getriebebauteiles festgelegt, sondern solche Positionen, in welchen Fehlfunktionen, wie beispielsweise das Auftreten von Verzahnungsspitzen eintreten, können beispielsweise durch Verschleiß von Bauteilen variabel sein.

Beim Einspuren der Verzahnung können Probleme auftreten, wenn beispielsweise bei einer ungünstigen Lage der Zahnflanken zueinander zu hohe Reibkräfte auftreten, was beispielsweise als Einspurhemmung bezeichnet wird. Ebenso können die Verzahnungsspitzen direkt in Kontakt treten, so daß ebenfalls ein Einspuren verhindert wird. Die Spitzen der Verzahnungen sind in der Regel abgerundet, d. h. der Spitz-Spitze-Kontakt herrscht, wenn sich die Rundungen der Spitzen der Verzahnung derart treffen, daß der Kontaktwinkel zwischen den Zahnspitzen sehr klein ist und zu einer Selbsthemmung führt. Bei dieser Konstellation ist ein Einspuren nicht möglich. Es kann zu keiner Hinterlegung oder Überdeckung der Zahnflanken kommen, der Gang kann nicht eingelegt werden und die Übertragung eines Drehmoments ist somit nicht möglich.

Der Erkennung einer solchen Fehlfunktion kommt eine entscheidende Bedeutung zu. Über Sensoren werden Kraft- und/oder Weginformationen detektiert und beispielsweise als Funktion der Zeit verarbeitet, woraufhin als Funktion der Zeit eine Analyse stattfinden kann, ob eine Fehlfunktion, wie beispielsweise eine

Hemmung oder ein Zahn-Zahn-Kontakt vorhanden ist. Bei einer Kraftbeaufschlagung ohne Zurücklegung eines entsprechenden Betätigungswege des getriebeinternen Schaltelementes steigt die Betätigungsgröße an und bei Überschreitung der Betätigungsgröße über einen typischen Wert bei einem normalen Schaltvorgang ohne Fehlfunktion kann auf eine Fehlfunktion geschlossen werden. Ebenso kann auf eine Fehlfunktion geschlossen werden, wenn der Betätigungsweg sich als Funktion der Zeit nicht im Bereich des üblichen Betätigungswege ändert oder der Betätigungs weg gar über einen gewissen Zeitraum Null ist.

Bei Problemen beim Einspuren der Verzahnungen müssen grundsätzlich vier Ausgangssituationen analysiert werden. Zum einen kann das Fahrzeug stehen oder rollen und zum anderen kann der Motor des Fahrzeugs laufen oder auch nicht laufen. Dadurch ergeben sich durch Permutation dieser Zustände vier Möglichkeiten von stehendem Fahrzeug mit stehendem Motor über stehendes Fahrzeug mit laufendem Motor oder rollendes Fahrzeug mit stehendem Motor bis hin zum rollenden Fahrzeug mit laufendem Motor. Wenn das Fahrzeug steht und der Verbrennungsmotor oder der Antriebsmotor des Fahrzeugs nicht läuft, kann bei einer Einspurhemmung die folgende Vorgehensweise in Abhängigkeit von dem aktuellen Gang und/oder dem Zielgang durchgeführt werden.

Liegt aktuell ein Gang zur Erreichung einer Parksperrre, wie beispielsweise der 1. Gang oder der Rückwärtsgang, geschaltet vor und ist der Zielgang bei einem Schaltvorgang ein anderer Gang, so kann bei einem Einspurproblem bei einer Getriebeeverstellung zumindest kurzfristig in einen anderen Gang geschaltet werden, um das Getriebe zu verdrehen, um das Einspurproblem zu beseitigen.

Liegt als aktueller Gang der Neutralgang vor und soll als Zielgang in einen beliebigen anderen Gang X geschaltet werden, so kann bei einer Einspurhemmung beispielsweise n-mal versucht werden, in den Gang X zu schalten, d. h. den Gang X einzulegen, wenn jeweils eine Einspurhemmung vorliegt. Ist nach einem n-maligen Versuch, den Gang X einzulegen, es nicht möglich, diesen Gang einzulegen, so kann ein Einlegen eines Ganges Y durchgeführt werden, um zu erreichen, daß sich die Verzahnung der Getriebebauteile verdreht. Anschließend kann erneut versucht werden, den Gang X einzulegen. Ist das Einlegen von Gang X weiterhin nicht möglich, und es liegt eine Einspurhemmung vor, so kann mehrfach wiederholt werden über das Einlegen des Ganges Y die Verzahnung von Getriebebauteilen zu verdrehen, so daß bei einem erneuten Einlegen des Ganges X dies auch erreicht werden kann. Ist es anschließend nicht möglich, den Gang X einzulegen, so kann beispielsweise wieder n-mal versucht werden, einen Gang Z einzulegen, um anschließend erneut den Gang X einzulegen. Ist auch dies nicht möglich, so kann beispielsweise versucht werden, jeden Gang des Getriebes einzulegen, um anschließend zu versuchen, den Gang X einzulegen.

Die Gänge X, Y, Z können beliebige Gänge des Getriebes sein, wie einer der Gänge 1 bis 6 oder R.

Dieses Vorgehen bei einer Einspurhemmung bewirkt durch das Einlegen eines Ganges Y oder Z, daß sich Getriebebauteile verdrehen und durch die Verdrehung der Getriebebauteile die Einspurhemmung aufgehoben wird, wenn das Einlegen des Ganges X erneut durchgeführt oder versucht wird. Eine solche Vorgehensweise wird in der Fig. 5 als Blockschaltbild 300 dargestellt. In

Block 301 wird das Verfahren zur Durchführung eines Schaltvorganges gestartet. In Block 302 wird detektiert, ob ein Neutralgang eingelegt oder vorhanden ist und die Zähler Z1 und Z2 werden initialisiert und auf Null gesetzt. Anschließend wird in Block 303 versucht, den Gang X, wie beispielsweise den ersten oder zweiten oder dritten oder einen beliebigen Gang oder Rückwärtsgang eines Schaltgetriebes einzulegen. In Block 304 wird abgefragt, ob eine Einspurhemmung vorliegt. Dies kann beispielsweise dadurch erfolgen, daß, wie oben beschrieben, ein Kraftsensor abgefragt wird und bei Vorliegen einer überhöhten Kraft oberhalb einer Kraftschwelle dieses Signal als Vorliegen einer Einspurhemmung gewertet wird. Ebenso kann ein Wegsensor den Betätigungs weg eines getriebeinternen Schaltelementes detektieren, und bei Vorliegen eines zu geringen Betätigungswege als Funktion der Zeit kann ebenso auf eine Einspurhemmung geschlossen werden. Liegt in Block 304 keine Einspurhemmung vor, so wird in Block 305 der Gang X als eingelegt bewertet und in Block 306 wird das Verfahren beendet. Liegt in Block 304 eine Einspurhemmung vor oder werden die Sensorsignale des Kraft- und/oder des Wegsensors derart interpretiert oder ausgewertet, daß eine Einspurhemmung als vorliegend bewertet wird, so wird der Zähler Z1 in Block 307 abgefragt. Ist der Zähler Z1 größer als ein Wert n, so wird in Block 308 fortgefahre. Ist der Zähler Z1 nicht größer als der Wert n, so wird in Block 309 der Schaltvorgang derart unterbrochen, daß der Gang X nicht mehr eingelegt werden soll und statt dessen ein Einlegen des Ganges Y angesteuert wird. Anschließend wird der Zähler Z1 um eine Einheit inkrementiert und es wird mit Block 303 fortgefahre. In Block 308 wird abgefragt, ob der Zähler Z2 größer als ein Wert m ist. Ist dies nicht der Fall, so wird im Block 310 das Einlegen des Ganges X unterbrochen, und es wird anschließend der Gang Z eingelegt. Anschließend wird der Wert von Z2 inkrementiert. Danach wird mit Block 303 fortgefahre. Ist der Wert von Z2 größer als m in Block 308, so wird der Wert von Z1 und der Wert von Z2 jeweils auf Null gesetzt, und es wird mit Block 303 fortgefahre.

Damit wird erreicht, daß bei einer Einspurhemmung beim Einlegen des Ganges X zuerst ein anderer Gang, wie beispielsweise der Gang Y oder der Gang Z eingelegt wird, um eine Verdrehung von Bauteilen zu erreichen, was ihrerseits eine Aufhebung der ursprünglichen Einspurhemmung bewirken sollte.

In Falle, daß das Fahrzeug steht und der Verbrennungsmotor oder der Antriebsmotor des Fahrzeugs läuft und beispielsweise ein beliebiger Gang eingelegt ist und die Kupplung geöffnet ist oder der Neutralgang eingelegt ist bei geöffneter oder bei geschlossener Kupplung und als Zielgang der Rückwärtsgang gewählt ist, kann bei einer Einspurhemmung bei Einlegen des Rückwärtsganges beispielsweise wie folgt vorgegangen werden: Die Kupplung wird zumindest kurzzeitig zumindest teilweise geschlossen und anschließend wieder geöffnet ohne ein Zurückfahren der Schiebemuffe. Hierdurch wird das Gangrad verdreht und der Gang kann möglicherweise eingelegt werden. Ebenso kann die Kupplung geschlossen werden ohne Zurückfahren der Schiebemuffe. Hierdurch verdreht sich das Gangrad und die Schiebemuffenverzahnung gleitet in die Hinterlegung. Weiterhin kann ein Zurückfahren der Schiebemuffe in Richtung Neutral durchgeführt werden, aber nicht bis zur Synchronposition. Danach kann ein erneuter Versuch zum Einlegen des Rückwärtsganges durchgeführt werden. Weiterhin kann nach dem Zurückfah-

ren der Schiebemuffe in Richtung Neutral die Kupplung zumindest kurzzeitig zumindest zeitweise geschlossen und anschließend wieder geöffnet werden, um anschließend den Rückwärtsgang erneut einzulegen. Weiterhin kann ein Zurückfahren der Schiebemuffe bis zur Neutralposition erfolgen und anschließend kann der Rückwärtsgang wieder eingelegt werden. Ebenso können andere Gänge eingelegt werden, ohne dabei die Kupplung zu schließen, um anschließend erneut den Rückwärtsgang wieder einzulegen. Weiterhin kann im Neutralbereich die Kupplung geschlossen werden, damit ein Verdrehen der Getriebeeingangsseite erreicht wird, um anschließend erneut bei geöffneter Kupplung den Rückwärtsgang einzulegen. Weiterhin können auch Kombinationen der oben beschriebenen Verfahrensweisen durchgeführt werden. Diese Vorgehensweisen können auch bei einem eingelegten Rückwärtsgang und geöffneter Kupplung oder bei eingelegtem Neutralgang erfolgen, wenn der Zielgang ein Vorwärtsgang ist. Ebenso können diese oben genannten Vorgehensweisen durchgeführt werden, wenn das Fahrzeug gerollt und der Verbrennungsmotor oder der Antriebsmotor des Fahrzeugs nicht läuft und der aktuelle Gang der Neutralgang ist und der Zielgang ein Vorwärtsgang oder Rückwärtsgang ist. Ebenso kann diese Vorgehensweise durchgeführt werden, wenn das Fahrzeug rollt und der Verbrennungsmotor läuft und aus einem beliebigen Gang oder Neutralgang in einen beliebigen Vorwärtsgang und/oder Rückwärtsgang geschaltet werden soll.

Die oben dargestellte Vorgehensweise entspricht bei einer Einspurhemmung in einem vorgegebenen einzulegenden Gang, daß zwischenzeitlich zumindest ein anderer Gang versucht wird einzulegen und daß der ursprünglich einzulegende Gang anschließend wieder versucht wird einzulegen. Ist dies nicht erfolgreich, kann der andere Gang mehrfach eingelegt werden und/oder es kann ein zweiter anderer Gang versucht werden einzulegen um anschließend wieder zu versuchen, den Zielgang wieder einzulegen.

Die mit der Anmeldung eingereichten Patentansprüche sind Formulierungsvorschläge ohne Präjudiz für die Erzielung weitergehenden Patentschutzes. Die Anmelderin behält sich vor, noch weitere, bisher nur in der Beschreibung und/oder Zeichnungen offenbart Merkmale zu beanspruchen.

In Unteransprüchen verwendete Rückbeziehungen weisen auf die weitere Ausbildung des Gegenstandes des Hauptanspruches durch die Merkmale des jeweiligen Unteranspruches hin; sie sind nicht als ein Verzicht auf die Erzielung eines selbständigen, gegenständlichen Schutzes für die Merkmale der rückbezogenen Unteransprüche zu verstehen.

Die Gegenstände dieser Unteransprüche bilden jedoch auch selbständige Erfindungen, die eine von den Gegenständen der vorhergehenden Unteransprüche unabhängige Gestaltung aufweisen.

Die Erfindung ist auch nicht auf das (die) Ausführungsbeispiel(e) der Beschreibung beschränkt. Vielmehr sind im Rahmen der Erfindung zahlreiche Abänderungen und Modifikationen möglich, insbesondere solche Varianten, Elemente und Kombinationen und/oder Materialien, die zum Beispiel durch Kombination oder Abwandlung von einzelnen in Verbindung mit den in der allgemeinen Beschreibung und Ausführungsformen sowie den Ansprüchen beschriebenen und in den Zeichnungen enthaltenen Merkmalen bzw. Elementen oder Verfahrensschritten erforderlich sind und durch kombinierbare Merkmale zu einem neuen Gegenstand oder

zu neuen Verfahrensschritten bzw. Verfahrensschrittfolgen führen, auch soweit sie Herstell-, Prüf- und Arbeitsverfahren betreffen.

Patentansprüche

5

1. Kraftfahrzeug mit einem Drehmomentübertragungssystem und einem Getriebe, mit einer Vorrichtung zur automatisierten Betätigung eines Drehmomentübertragungssystems und zum automatisierten Schalten eines Getriebes im Antriebsstrang des Fahrzeugs mit einem Antriebsaggregat, mit zumindest einem Aktor zum Schalten des Getriebes sowie zum Betätigen des Drehmomentübertragungssystems, mit einer Steuereinheit zur Ansteuerung des zumindest einem Aktors und mit Detektionseinrichtungen, wie Sensoren, dadurch gekennzeichnet, daß bei einem automatisierten Schaltvorgang, bei zuvor geöffnetem Drehmomentübertragungssystem, ein kritischer Zustand, wie beispielsweise ein Zustand in welchem Zahnspitzen von getriebeinternen Schaltelementen kraftbeaufschlagt aufeinandertreffen, mittels Sensorsignalen zumindest eines Sensors erkannt wird und die Steuereinheit eine Ansteuerung des zumindest einen Aktors derart einleitet, daß der Schaltvorgang zumindest zeitweise und zumindest teilweise rückgängig gemacht wird und anschließend wieder fortgesetzt wird.

10

2. Kraftfahrzeug nach Anspruch 1, dadurch gekennzeichnet, daß der Schaltvorgang zumindest kurzfristig zumindest teilweise rückgängig gemacht wird und das Drehmomentübertragungssystem zumindest kurzfristig derart eingerückt wird, daß die Getriebeeingangswelle zumindest geringfügig verdreht wird und anschließend der Schaltvorgang weiter fortgesetzt wird.

20

3. Kraftfahrzeug mit einem Drehmomentübertragungssystem und einem Getriebe, mit einer Vorrichtung zur automatisierten Betätigung eines Drehmomentübertragungssystems und zum automatisierten Schalten eines Getriebes, mit zumindest einem Aktor zumindest zum Betätigen des Drehmomentübertragungssystems oder zumindest zum Schalten eines Getriebes, mit zumindest einer mit Sensoren und gegebenenfalls anderen Elektronikeinheiten in Signalverbindung stehenden Steuereinheit zur Ansteuerung des zumindest einen Aktors, mit einer Einrichtung, wie beispielsweise Sensor, zur Ermittlung einer Größe, die eine zum Schalten der Gänge durch zumindest einen Aktor aufgebrachte Kraft repräsentiert, dadurch gekennzeichnet, daß bei zuvor gezielt ausgerücktem Drehmomentübertragungssystem, bei einem automatisierten Schaltvorgang eine Überschreitung der eine Kraft zumindest repräsentierenden Größe im Vergleich zu einem Referenzwert ermittelt wird und im Falle der Überschreitung, der Schaltvorgang zumindest zeitweise und zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem zumindest kurzfristig derart betätigt wird, daß zumindest ein geringfügiges Drehmoment übertragen wird und anschließend der Schaltvorgang weiter durchgeführt wird.

30

4. Kraftfahrzeug mit einem Drehmomentübertragungssystem und einem Getriebe, mit einer Vorrichtung zur automatisierten Betätigung eines Drehmomentübertragungssystems und zum auto-

20

matisierten Schalten eines Getriebes im Antriebsstrang eines Kraftfahrzeugs, mit zumindest einem Aktor zumindest zum Betätigen des Drehmomentübertragungssystems und/oder zumindest zum Schalten eines Getriebes, mit zumindest einer mit Sensoren und gegebenenfalls anderen Elektronikeinheiten in Signalverbindung stehenden Steuereinheit zur Ansteuerung des zumindest einen Aktors, mit einer Einrichtung, wie beispielsweise Sensor, zur Ermittlung einer Größe, die eine beim Schalten der Gänge durch zumindest einen Aktor veränderbare Position eines Elementes zumindest repräsentiert, dadurch gekennzeichnet, daß bei zuvor gezielt ausgerücktem Drehmomentübertragungssystem bei einem automatisierten Schaltvorgang diese Größe in Abhängigkeit der Zeit überwacht wird und bei Vorliegen einer vorgebbaren Zeitspanne mit einer nur geringen oder keiner Änderung der eine Position repräsentierenden Größe der Schaltvorgang zumindest zeitweise und zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem zumindest kurzfristig derart betätigt wird, daß zumindest ein geringfügiges Drehmoment übertragen wird und anschließend der Schaltvorgang weiter durchgeführt wird.

5. Kraftfahrzeug mit einer Einrichtung zum Steuern von Schaltvorgängen, mit einem Antrieb, mit einem Drehmomentübertragungssystem und einem Getriebe, mit einer Vorrichtung zur automatisierten Betätigung eines Drehmomentübertragungssystems und zum automatisierten Schalten des Getriebes, mit zumindest einem Aktor zumindest zum Betätigen des Drehmomentübertragungssystems oder zumindest zum Schalten des Getriebes, mit zumindest einer mit Sensoren und gegebenenfalls anderen Elektronikeinheiten in Signalverbindung stehenden Steuereinheit zur Ansteuerung des zumindest einen Aktors, mit einer Einrichtung, wie beispielsweise Sensor, zur Ermittlung einer Größe, die eine zum Schalten der Gänge durch zumindest einen Aktor aufgebrachte Kraft repräsentiert, dadurch gekennzeichnet, daß bei zuvor gezielt ausgerücktem Drehmomentübertragungssystem bei einem automatisierten Schaltvorgang ein kritischer Zustand innerhalb des Getriebes, wie z. B. ein Zustand in welchem Zahnspitzen von Schaltelementen kraftbeaufschlagt aufeinandertreffen durch Überschreitung der eine Kraft zumindest repräsentierenden Größe im Vergleich zu einem Referenzwert ermittelt wird und im Falle der Überschreitung, der Schaltvorgang zumindest zeitweise und zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem zumindest kurzfristig derart betätigt wird, daß zumindest ein geringfügiges Drehmoment übertragen wird und anschließend der Schaltvorgang weiter durchgeführt wird.

6. Kraftfahrzeug mit einer Einrichtung zum Steuern von Schaltvorgängen, mit einem Antrieb, mit einem Drehmomentübertragungssystem und einem Getriebe, mit einer Vorrichtung zur automatisierten Betätigung eines Drehmomentübertragungssystems und zum automatisierten Schalten eines Getriebes im Antriebsstrang eines Kraftfahrzeugs, mit zumindest einem Aktor zumindest zum Betätigen des Drehmomentübertragungssystems und/oder zumindest zum Schalten eines Getriebes, mit

zumindest einer mit Sensoren und gegebenenfalls anderen Elektronikeinheiten in Signalverbindung stehenden Steuereinheit zur Ansteuerung des zumindest einen Aktors, mit einer Einrichtung, wie beispielsweise Sensor, zur Ermittlung einer Größe, die eine beim Schalten der Gänge durch zumindest einen Aktor veränderbare Position eines getriebekontrahierten Schaltelementes zumindest repräsentiert, dadurch gekennzeichnet, daß bei zuvor gezielt ausgerücktem Drehmomentübertragungssystem bei einem automatisierten Schaltvorgang ein kritischer Zustand innerhalb des Getriebes, wie z. B. ein Zustand in welchem Zahnspitzen von Schaltelementen kraftbeaufschlagt aufeinandertreffen durch diese Größe in Abhängigkeit der Zeit überwacht wird und bei Vorliegen einer vorgebbaren Zeitdauer mit einer nur geringen oder keiner Änderung der eine Position repräsentierenden Größe der Schaltvorgang zumindest zeitweise und zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem zumindest kurzfristig derart betätigt wird, daß zumindest ein geringfügiges Drehmoment übertragen wird und anschließend der Schaltvorgang weiter durchgeführt wird.

7. Kraftfahrzeug nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß je eine Einrichtung, wie beispielsweise Sensor, zur Ermittlung einer ersten Größe, die eine zum Schalten der Gänge durch zumindest einen Aktor aufgebrachte Kraft zumindest repräsentiert und zur Ermittlung einer zweiten Größe, die eine beim Schalten der Gänge durch zumindest einen Aktor veränderbare Position eines Elementes zumindest repräsentiert, vorhanden ist und daß bei zuvor gezielt ausgerücktem Drehmomentübertragungssystem bei einem automatisierten Schaltvorgang eine Überschreitung der eine Kraft zumindest repräsentierenden ersten Größe im Vergleich zu einem Referenzwert ermittelt wird und die zweite Größe in Abhängigkeit der Zeit überwacht wird, wobei bei einer Überschreitung des Referenzwertes durch die erste Größe und bei Vorliegen einer vorgebbaren Zeitdauer mit einer nur geringen oder keiner Änderung der eine Position repräsentierenden zweiten Größe der Schaltvorgang zumindest zeitweise und zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem zumindest kurzfristig derart betätigt wird, daß zumindest ein geringfügiges Drehmoment übertragen wird und anschließend der Schaltvorgang weiter durchgeführt wird.

8. Kraftfahrzeug nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß bei einem automatisierten Schaltvorgang eine Überschreitung der eine Kraft zumindest repräsentierenden Größe im Vergleich zu einem Referenzwert als Funktion der Zeit ermittelt wird und im Falle einer Überschreitung des Referenzwertes über zumindest eine vorgebbare Zeitdauer, der Schaltvorgang zumindest zeitweise und zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem zumindest kurzfristig derart betätigt wird, daß zumindest ein geringfügiges Drehmoment übertragen wird und anschließend der Schaltvorgang weiter durchgeführt wird.

9. Kraftfahrzeug nach einem der vorhergehenden Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die Dauer der vorgebbaren Zeitdauer abhängig von dem Wert der Überschreitung der Größe über den

Referenzwert ist.

10. Kraftfahrzeug nach einem der vorhergehenden Ansprüche 6 bis 9, dadurch gekennzeichnet, daß die Dauer der vorgebbaren Zeitdauer abhängig von dem einzulegenden Gang des Getriebes ist.

11. Kraftfahrzeug nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß ein Aktor die Betätigung des Drehmomentübertragungssystems ansteuert und dadurch das von dem Drehmomentübertragungssystem übertragbare Drehmoment bestimmt.

12. Kraftfahrzeug nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß zumindest ein Aktor das Schalten der Gänge des Getriebes ansteuert.

13. Kraftfahrzeug nach Anspruch 12, dadurch gekennzeichnet, daß zwei Aktoren das Schalten der Gänge des Getriebes ansteuern.

14. Kraftfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Aktor, welcher zum Schalten der Gänge des Getriebes eingesetzt wird, ebenfalls die Betätigung des Drehmomentübertragungssystems ansteuert.

15. Kraftfahrzeug nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, daß der Aktor zum Schalten der Gänge des Getriebes eine Schaltwalze umfaßt, wobei die Schaltwalze innerhalb oder außerhalb des Getriebes angeordnet ist.

16. Kraftfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest ein Aktor ein elektromotorisches Antriebselement, wie beispielsweise Elektromotor, zur Betätigung des Drehmomentübertragungssystems oder zum Schalten des Getriebes aufweist, wie umfaßt.

17. Kraftfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest ein Aktor ein elektromagnetisches Antriebselement zur Ansteuerung der Betätigung des Drehmomentübertragungssystems oder des Schaltens des Getriebes aufweist, wie umfaßt.

18. Kraftfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest ein Aktor ein druckmittelbetätigtes Antriebselement zur Ansteuerung der Betätigung des Drehmomentübertragungssystems oder des Schaltens der Gänge des Getriebes aufweist.

19. Kraftfahrzeug nach Anspruch 18, dadurch gekennzeichnet, daß das druckmittelbetätigtes Element ein hydraulisches, hydrostatisches, pneumatisches oder hydropneumatisches Element ist.

20. Kraftfahrzeug nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß zwischen dem Antriebselement und einem Betätigungsselement des Drehmomentübertragungssystems eine mechanische Übertragungsstrecke, wie Gestänge oder Bowdenzug, oder eine druckmittelbetätigtes Übertragungsstrecke, wie hydraulische oder pneumatische Übertragungsstrecke angeordnet ist.

21. Kraftfahrzeug nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß zwischen dem Antriebselement und einem Betätigungsselement des Getriebes zum Schalten eine mechanische Übertragungsstrecke, wie Gestänge oder Bowdenzug, oder eine druckmittelbetätigtes Übertragungsstrecke, wie hydraulische oder pneumatische Übertragungsstrecke angeordnet ist.

22. Kraftfahrzeug nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß zumindest ein

- Sensor, wie Kraftsensor, die von zumindest einem Aktor aufgebrachte Kraft zum Schalten der Gänge detektiert.
23. Kraftfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei Verwendung eines Aktors mit elektromotorischem Antrieb zumindest eine elektrische Kenngröße, wie elektrischer Stromfluß oder elektrische Spannung, als kraftproportionales Signal oder als die eine Kraft repräsentierende Größe detektiert wird. 5
24. Kraftfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest ein Sensor, wie Druck-, Kraft- oder Wegsensor ein kraftproportionales oder wegproportionales oder -repräsentierendes Signal erzeugt. 10
25. Kraftfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Steuereinheit aus zwei Untereinheiten besteht, wobei die eine Untereinheit die Ansteuerung des Drehmomentübertragungssystems und die andere Untereinheit die Ansteuerung des Schaltens des Getriebes durchführt. 15
26. Kraftfahrzeug nach Anspruch 24, dadurch gekennzeichnet, daß beide Untereinheiten in einem Steuergerät aufgenommen, wie integriert, sind. 20
27. Kraftfahrzeug nach Anspruch 25, dadurch gekennzeichnet, daß die eine Untereinheit in einem Steuergerät des Drehmomentübertragungssystems und die andere Untereinheit in einem Steuergerät des Getriebes aufgenommen sind. 25
28. Kraftfahrzeug nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, daß ein kritischer Zustand, insbesondere ein Zustand, in welchem bei einem Schaltvorgang eine unerlaubt hohe Kraftbeaufschlagung seitens des Aktors resultiert, mittels zumindest eines Sensors detektiert wird, wobei dieser zumindest eine Sensor ein kraftrepräsentierendes oder wegrepräsentierendes Signal erzeugt. 30
29. Kraftfahrzeug nach Anspruch 28, dadurch gekennzeichnet, daß ein kritischer Zustand, insbesondere ein Zustand, in welchem bei einem Schaltvorgang eine unerlaubt geringe Wegänderung pro Zeitintervall resultiert mittels Sensoren detektiert wird. 40
30. Kraftfahrzeug nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine unerlaubt hohe Kraftbeaufschlagung oder eine unerlaubt geringe Wegänderung pro Zeiteinheit im Vergleich zu Referenzwerten der Kraft oder des Weges ermittelt werden. 45
31. Einrichtung zur Steuerung eines Getriebes und eines Drehmomentübertragungssystems, wie einer Kupplung, bei einem Schaltvorgang eines Kraftfahrzeugs insbesondere nach einem der vorhergehenden Ansprüche 1 bis 30. 50
32. Verfahren zur Steuerung einer Einrichtung eines Kraftfahrzeuges mit einem Drehmomentübertragungssystem und einem Getriebe, mit zumindest einem Aktor zur Einstellung des von einem Drehmomentübertragungssystem übertragbaren Drehmoments und zur Betätigung des Schaltvorganges eines Getriebes dadurch gekennzeichnet, daß zumindest einzelne der folgenden Verfahrensschritte bei einem automatisierten Einlegen einer gewünschten Getriebeübersetzung oder Gang durchgeführt werden:
- bei Vorliegen eines Schaltsignales wird das

- übertragbare Drehmoment des Drehmomentübertragungssystems auf einen vorgebbaren, jedoch variabel wählbaren Wert von im wesentlichen null reduziert,
- der Schaltvorgang wird durch eine Steuerseinheit aktiviert und mittels des zumindest einen Aktors werden getriebeinterne Schaltelemente in Richtung auf die Getriebeneutralposition betätigt,
 - durch zumindest einen Aktor werden getriebeinterne Schaltelemente gewählt und in Richtung auf eine eingelegte Gangposition betätigt,
 - zumindest eine Größe des Schaltvorgangs wird mittels zumindest eines Sensors als Funktion der Zeit detektiert, die eine zum Schalten der Gänge des Getriebes durch zumindest einen Aktor aufgebrachte Kraft oder eine Position von getriebeinternen Schaltelementen repräsentiert,
 - die zumindest eine Größe wird mittels zumindest einer Vergleichseinrichtung mit einem Referenzwert verglichen,
 - bei Überschreitung der zumindest einen Größe über oder bei Unterschreitung der Änderungsgeschwindigkeit der einen Größe unter zumindest einen Referenzwert wird der Schaltvorgang unterbrochen und die Betätigung der getriebeinternen Schaltelemente kurzzeitig zumindest teilweise wieder rückgängig gemacht,
 - es wird zumindest zeitweise eine andere als die gewünschte Getriebeübersetzung gesteuert eingelegt, und es wird anschließend wieder die gewünschte Getriebeübersetzung gesteuert eingelegt,
 - das Drehmomentübertragungssystem wird kurzzeitig zumindest teilweise wieder eingrückt, damit zumindest eine geringfügige Verdrehung der Getriebeeingangswelle erfolgt,
 - der Schaltvorgang wird fortgesetzt.
33. Verfahren in Abänderung von Anspruch 32, dadurch gekennzeichnet, daß zumindest bei Überschreitung der eine Kraft repräsentierenden einen Größe während einer vorbestimmten Zeitdauer über einen Referenzwert, der Schaltvorgang unterbrochen und die Betätigung der getriebeinternen Schaltelemente kurzzeitig zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem kurzzeitig zumindest teilweise wieder eingrückt wird, damit zumindest eine geringfügige Verdrehung der Getriebeeingangswelle erfolgt und anschließend der Schaltvorgang fortgesetzt wird bis der neu einzulegende Gang eingelegt ist.
34. Verfahren in Abänderung von Anspruch 32, dadurch gekennzeichnet, daß zumindest bei Unterschreitung der Änderungsgeschwindigkeit der eine Position repräsentierenden einen Größe während einer vorbestimmten Zeitdauer unter einen Referenzwert, der Schaltvorgang unterbrochen und die Betätigung der getriebeinternen Schaltelemente kurzzeitig zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem kurzzeitig zumindest teilweise wieder eingrückt wird, damit zumindest eine geringfügige Verdrehung der Getriebeeingangswelle erfolgt und anschließend der Schaltvorgang fortgesetzt wird bis

- der neu einzulegende Gang eingelegt ist.
35. Verfahren nach den Ansprüchen 33 und/oder 34, dadurch gekennzeichnet, daß bei Unterschreitung der Änderungsgeschwindigkeit der eine Position repräsentierenden einen Größe über eine vorbestimmte Zeitdauer unter einen Referenzwert und bei Überschreitung der eine Kraft repräsentierenden einen Größe während einer vorbestimmten Zeitdauer über einen Referenzwert, der Schaltvorgang unterbrochen und die Betätigung der getriebeneinternen Schaltelemente kurzzeitig zumindest teilweise wieder rückgängig gemacht wird, das Drehmomentübertragungssystem kurzzeitig zumindest teilweise wieder eingerückt wird, damit zu mindest eine geringfügige Verdrehung der Getriebeeingangswelle erfolgt und anschließend der Schaltvorgang fortgesetzt wird bis der neu einzulegende Gang eingelegt ist.
36. Verfahren nach einem der Ansprüche 32 bis 35, dadurch gekennzeichnet, daß die eine Kraft oder eine Position repräsentierende Größe mittels eines Sensors, wie Positions-, Weg-, Druck-, Beschleunigungs- oder Kraftsensors detektiert wird.
37. Verfahren nach einem der Ansprüche 32 bis 36, dadurch gekennzeichnet, daß ein elektrischer Strom oder eine elektrische Spannung der in den Aktoren eingesetzten Elektromotoren als ein kraftrepräsentierendes Signal verwendet wird.
38. Verfahren nach einem der Ansprüche 32 bis 37, dadurch gekennzeichnet, daß eine Drehzahl eines mit einem dem zumindest einen Aktor eingesetzten Elektromotoren als ein positionsrepräsentierendes Signal verwendet wird.
39. Verfahren nach einem der Ansprüche 32 bis 38, dadurch gekennzeichnet, daß der zumindest eine Referenzwert aus zumindest einem Speicher aus gelesen wird.
40. Verfahren nach einem der Ansprüche 34 bis 39, dadurch gekennzeichnet, daß der zumindest eine verwendete Referenzwert für alle Gänge des Getriebes gleich ist oder abhängig von dem aktuell einzulegenden Gang gewählt wird.
41. Verfahren nach einem der Ansprüche 32 bis 40, dadurch gekennzeichnet, daß die zumindest eine Zeitdauer für alle Gänge des Getriebes gleich ist oder abhängig von dem aktuell einzulegenden Gang gewählt wird.

Hierzu 5 Seite(n) Zeichnungen

- Leerseite -

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

