Get ready for the 800GE reality

Jonas Vermeulen
Technical Sales, EMEA, Webscale Business

Nokia is taking care of your interconnectivity needs

New interconnectivity needs driven by...

Accelerated data consumption during and after COVID

3x Acceleration in global bandwidth consumption 2022

DDoS traffic is exponential – growing faster than video or any other form of Internet content

>1T

Once rare 1 Tbs attacks now daily occurrence!

Increased focus on power efficiency and sustainability

50% Emissions reduction by Nokia products & operations by 2030

How are routers (re)designed to cope with this?

Routers are simple or not so much?

A router's simple task

- Receive a packet
- Find the next-hop
- Send out the packet

Routers are simple

.... or not so much?

But ...

- Multiple Billion times per second (and growing)
- Preferably without any hick-ups (aka packet drops)

And

- Do it for more than just goodput IPv4

 (also IPv6, MPLS, VLAN, VPN, L2, PW, GRE, SDH, VXLAN, Video, MBH, Multicast, QoS, ... [ever growing list])
- Deal with "not-so-good" traffic (aka DDoS)
- With practical constraints like manageability, cost, power, ...

"From simple, uniform, best-effort IP forwarding to ... Life-over-IP"

How do we build for scale?

Key technology evolutions on the router enabling 800GE

How do we build for scale?

Key technology evolutions on the router enabling 800GE

Pluggables for 400G and Beyond ...

Optical interface technology enablers

Photonics & Drivers

 Optical modulation and number of wavelengths (lambda's) are the key factor affecting cost and performance.

DSP / Multi-Link Gearbox

- Modulation/Demodulation digital signal processing
- One of KEY factors in defining power/thermal envelopes of the module

Attachment Unit Interface (AUI)

 Data transmitted over Electrical SerDes links from module to chipset

Pluggable optics and cage types

Diversity and uniformity

Cage types becoming universal

- Narrow (100G-): SFP, SFP28, SFP56, SDF-DD, SFP112, SFP112-DD
- Wide (100G+): QSFP28, QSFP28-DD, QSFP56, QSFP-DD 400, QSFP-DD 800

Interesting

- **100G Single Lambda**: 800G, higher 100G/400G density, cost reduction
- evolutions... 400G ZR/ZR+: Coherent to enable "Pragmatic IPoDWDM" designs

SFP 'Narrow' cages 1 channel

Eth Speed	10G	25 G	100G	100G
Interface to ASIC (AUI)	1 x 10G XAUI	1 x 25G CAUI-1	2 x 50G 100GAUI-2	1 x 100G 100GAUI-1
Modulation	10G NRZ	25G NRZ	100G PAM4	100G PAM4
Typical optical connection	LC (1 λ)	LC (1 λ)	LC (1 λ PAM4 or BiDi) or MPO LR1, FR1, DR1, SR1.2, SR2	LC (1 λ PAM4) LR1, FR1, DR1
			100G Lambda MULTI-SOURCE AGREEMENT	100G Lambda MULTI-SOURCE AGREEMENT

SFP-DD and QSFP28: 100G Single Lambda

Complementary deployment options

Single Lambda portfolio

- 100G SR1 2 100M MMF
- 100G DR 500m SMF
- 100G FR 2km SMF
- 100G LR 10km SMF

Compatible with 4x100G QSFP-DD

- 4x100G DR / FR / IR
- 8x100G DR / FR / LR

100G future proof investment

• PAM4 forward compatible

QSFP 'Wider' cages 4 channel

QSFP 28 QSFP-DD ::: QSFP-DD800 :::

Eth Speed	100G	25 G	400G	800G
Interface to ASIC	4 x 10G XLAUI	4 x 25G CAUI-4	8 x 50G 400GAUI-8	8 x 100G 800GAUI-8
Modulation	10G NRZ	25G NRZ	100G PAM4	100G PAM4
Typical optical connection	MPO LC (4 λ MUX)	MPO LC (4 λ MUX, or 1 λ)	MPO LC (4 or 8 λ MUX)	MPO LC (8 λ MUX)
			100G Lambda MULTI-SOURCE AGREEMENT	100G Lambda MULTI-SOURCE AGREEMENT

QSFP-DD800G

Introducing 800G

QSFP-DD MSA

Formal announcement of QSFP-DD800 MSA May 24, 2021

- Designed to be backwards compatible with existing QSFP-DD
- Point-to-point or breakout for high density 100G applications

100G SerDes

Architected to leverage the IEEE 802.3 ck work to fit 800G

• 100G PAM4 electrical, using 50Gbaud signaling

Pluggable modules

Initial product release

- QSFP-DD800 DR8 (500 m)
- QSFP-DD800 DR8+ (2 km)
- QSFP-DD800 2x400G FR4 (2 km)

Transceiver

QSFP-DD form-factor

- 0/70°C case temperature
- 25% -43% power savings over 400G
- Price neutral to 400G

Clear economic and power advantages to 800G

How do we build for scale?

Key technology evolutions on the router enabling 400G – 800G - beyond

SerDes

- Serializer/Deserializer
 - Connection between ASICs and towards cage
 - Increasing speeds of an individual lane: 10G, 28G, 56G
- Latest specification: 100G SerDes (802.3ck) for chip-to-chip or chip-to-module communication
 - Use of PAM4 modulation
 - Well-aligned with optics evolution (100G Lambda) resulting in less active components and complexity in the transceivers
- Benefits
 - Higher I/O possible
 - Better power characteristics and cost
- Complex, but necessary evolution

How do we build for scale?

Key technology evolutions on the router enabling 400G – 800G - beyond

MAC ASIC and Packet Processor (NPU)

Evolving the router's data-plane to higher speeds, scale and capabilities

Enabling 800G+ interfaces requires an evolution across the main forwarding components* of the router

MAC

- 800GE and higher
- Enabling 'Universal Ports'
- Optional support for
 - MACSec
 - Flex-E
 - Intelligent Aggregation

Store

- Buffer characteristics
 - Location (ingress, egress, both)
 - Size
 - Bandwidth (full vs partial)

Forward

- Lookup/forwarding speed
- Scale
 - FIB scale
 - ACL scale
 - uRPF impact
- QoS support

^{*} Different implementations/combinations possible

The ease of having Universal Ports

Your choice to use each port at whatever speed and breakout you like

Use of universal ports in Appliance-Based routers

7750 SR-1 (Modular)

600G – 1.5T, up to 3T iA 2 MDA slots, flexibility with SFP-DD, QSFP28, QSFP-DD400 and CFP2

1 x 100GE (S)	1 x 400 GE
2 x 50GE	1 x 200 GE
1 x 50GE	4 x 100 GE
1 x 40GE	2 x 100GE
4 x 25GE	
1 x 25GE (S)	+ CFP2
10 x 10GE	
4 x 10GE	
1 x 10GE (S)	

7750 SR-1 (Fixed)

2.8T or 6.0T, up to 19.2T iA SFP-DD or QSFP-DD800 options

1 x 800 GE

2 x 400 GE

8 x 100GE

1 x 100GE (S) 1 x 400 GE 2 x 50GE 1 x 200 GE 1 x 50GE 4 x 100 GE 1 x 40GE 2 x 100GE 4 x 25GE 1 x 25GE (S) 10 x 10GE 4 x 10GE 1 x 10GE (S) Your choice to use each port at whatever speed and breakout you like

Next-generation packet processing

FP4/FP5: Multi-dimensional, deterministic scale

How do we build for scale?

Key technology evolutions on the router enabling 400G – 800G - beyond

Stacking more linecards into a chassis => Chassis System architecture

Design Considerations

Mechanical design of huge significance

Midplane vs. Orthogonal Direct Cross Connect

Line card pitch & orientation

Cooling design

Power design

Impacts

- Density
- Power consumption
- Optics support

800G Optics Evolution Cooling today's and tomorrow's optics

Optics cooling design

Stacked SFP Cages

- Classic DC design
- Large heat sink only on top cage
- Bottom cage always hotter imbalanced optical performance
- DD Design point ~13W optics in all cages at 40C
- Limits applicability to future optics
- Fans might have to run faster

Dual sided PCB

Belly-to-Belly SFP Cages

- Future proof design
- Large dedicated heat sink per cage
- Even cooling to all cages
- Cooling to 28W+ in all cages at 40C

Enabling 800G and beyond on IP routers Design choices along the datapath

Platform

Mechanical design Power Cooling

Dataplane & chipset interconnect

Forwarding MAC SERDES

Pluggable Optics

SFPDD-100, QSFP28, QSFP56-DD, QSFPDD-800

NOKIA