MARKETING BOOST

Mini project presentation: First review

Guided by : Ms. Jabin Mathew

Presented by:

Aleena Roy -SJC20AD010

MARCH 13, 2023

OUTLINE

- Introduction
- Problem Statement
- Social Relevance
- Literature Survey
- Proposed Methodology
- Detailed Working of Model
- Data Collection
- Work Done

- Result
- Plan of Work
- Conclusion
- References

INTRODUCTION

• This project ensures that each no matter small scale or large scale supermarket can utilize this software easily to predict their consumer behavior and shopping patterns.

• Most of the small scale supermarkets and local markets are unable to implement these steps because they don't have data/ sales analytics to study these.

INTRODUCTION

PROBLEM STATEMENT

- Most of India's grocery retail happens at kiranas small- and mid-sized mom-and-pop outlets which account for 75-78% of the consumer goods market, Ambit Capital estimates. But it has only a smaller contribution to the retail sector
- Read more at:
 https://economictimes.indiatimes.com//industry/services/retail/india-retail-a-nearly-900-billion-market-dominated-by-mom-and-pop-stores/articleshow/81625591.c
 ms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst
- The pandemic served a severe blow to India's physical retailing business in fiscal year 2021 that led the small and medium scale retailing in the country to shrink by 8.5% that year.
- Most Local Shops doesn't utilize their sales data and consumer patterns to improve their sales
- These shop owners fail to use complex systems and methods used by large companies to boost their retail.

Social Relevance and Application

- Target small- and mid-sized supermarket, mom-and-pop outlets and help them grow.
- It can be used to support local business and create a local economic stimulus.
- Provide various tips and details based on the study of their goods and consumer data.
- Provide an easy to use interface so anyone can benefit from our model.

Review of Literature

[1] Tim Bowen proposed an article on april 2023 on How big Supermarkets Are Using Big Data & Predictive Analytics To Win. We were able to propose this idea of using this data analytics and predictive methods on a smaller scale shops

[2]Richard Farnworth wrote an article on July 2020 on How Data Science and AI are changing Supermarket shopping . Using this we realised we could use the knowledge we learned in our past semesters to build a model combined of multiple algorithms

[3] National investment promotion & facility agency of India proposed a study on the retail industry of india and in it they stated that The Indian e-commerce industry is expected to cross the \$350 Bn in GMV by 2030. By pursuing this project we can further study how these e-commerce companies utilize AI and DS in real time to improve their market

Proposed Methodology

- To generate a system which can help small-mid scale supermarket and local shops to improve their sales
- Provide an easy interface to the user so anyone can easily input datas easily to the system
- Provide a good amount of tips and tricks to the user and emphasis
- On how to manage their goods like for example:
 - Store distribution
 - Efficient inventory management
 - Segmentation

Proposed Methodology

- For Store Distribution
 - This can be achieved using different classification algorithms to group together similar products into a section
 - Classification algorithms can include
 - Apriori Algorithm
 - K-means classification algorithm
 - Naive Bayes algorithm

24/04/2023

Proposed Methodology

- For Efficient Inventory Management
 - Create a database system to store the datas provided by the user
 - Should be create this with either sql or pandas
- For Segmentation
 - We can use the above mentioned algorithms in store distribution to categorise the goods based on customer preference

Detailed Working of Model

Data Collection

- We have preprocessed the data that are collected from different sources, which contain both legitimate and malicious query
- Drive link to collected datasets:
 https://drive.google.com/drive/folders/1UXK4DiC8PMZmNbsUSpw-efFtsKvF4L3y?usp=share_link
- Overview of one of the datasets collected

Head values description

- Basic Front-end user interface successfully developed
 - Login page

24/04/2023

o Main menu

INVENTORY MANAGEMENT

• Data processing has been done to remove null and incorrect values and sort them according to transactions

In [8]: 1 df.head (10)									
		Member_number	Date	itemDescription					
	0	1808	21-07-2015	tropical fruit					
	1	2552	05-01-2015	whole milk					
	2	2300	19-09-2015	pip fruit					
	3	1187	12-12-2015	other vegetables					
	4	3037	01-02-2015	whole milk					
	5	4941	14-02-2015	rolls/buns					
	6	4501	08-05-2015	other vegetables					
	7	3803	23-12-2015	pot plants					
	8	2762	20-03-2015	whole milk					
	9	4119	12-02-2015	tropical fruit					

['frankfurter', 'curd'],
['sausage', 'whole milk', 'rolls/buns'],
['whole milk', 'soda'],
['beef', 'white bread'],
['frankfurter', 'soda', 'whipped/sour cream'],
['frozen vegetables', 'other vegetables'],
['butter', 'whole milk'],
['tropical fruit', 'sugar'],
['butter milk', 'specialty chocolate'],
['sausage', 'rolls/buns'],
['root vegetables', 'detergent'],
['frozen meals', 'dental care'],
['rolls/buns', 'rolls/buns'],
['dish cleaner', 'cling film/bags'],
['canned beer', 'frozen fish']]

[['sausage', 'whole milk', 'semi-finished bread', 'yogurt'],

['whole milk', 'pastry', 'salty snack'],
['canned beer', 'misc. beverages'],
['sausage', 'hygiene articles'],
['soda', 'pickled vegetables'],

Before processing

After processing

Results

• The results of the algorithm are shown below. This gives us a rough idea regarding the relation between each products

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(rolls/buns)	(other vegetables)	0.110005	0.122101	0.010559	0.095990	0.786154	-0.002872	0.971117
1	(other vegetables)	(rolis/buns)	0.122101	0.110005	0.010559	0.086481	0.786154	-0.002872	0.974249
2	(other vegetables)	(whole milk)	0.122101	0.157923	0.014837	0.121511	0.769430	-0.004446	0.958551
3	(whole milk)	(other vegetables)	0.157923	0.122101	0.014837	0.093948	0.769430	-0.004446	0.968928
4	(rolls/buns)	(whole milk)	0.110005	0.157923	0.013968	0.126974	0.804028	-0.003404	0.964550
5	(whole milk)	(rolls/buns)	0.157923	0.110005	0.013968	0.088447	0.804028	-0.003404	0.976350
6	(soda)	(whole milk)	0.097106	0.157923	0.011629	0.119752	0.758296	-0.003707	0.956636
7	(whole milk)	(soda)	0.157923	0.097106	0.011629	0.073635	0.758296	-0.003707	0.974663
8	(yogurt)	(whole milk)	0.085879	0.157923	0.011161	0.129961	0.822940	-0.002401	0.967861
9	(whole milk)	(yogurt)	0.157923	0.085879	0.011161	0.070673	0.822940	-0.002401	0.983638

Results

- Confidence
 - Confidence (x => y) signifies the likelihood of the item y being purchased when item x is purchased. This method takes into account the popularity of item x.
- Lift
 - Lift (x => y) is nothing but the 'interestingness' or the likelihood of the item y being purchased when item x is sold. Unlike confidence (x => y), this method takes into account the popularity of the item y.
- We utilize these two components to identify what set of items compliment each other the best

Plan of work to get the results

- Need to integrate more classification algorithm to classify the goods
- Create a database to store the inventory
- Need to Integrate the front end to the back end code. The model and the interface should work aside
- Have to improve the User interface to be more easy to use ,secure and better design.

Conclusions

- Our model utilize different Machine learning and data science algorithm to come up with an optimal method to classify the goods and organise them efficiently
- This model ensures that any person from the local small to medium scale markets can implement it and understand how taking certain steps can hugely impact on their revenues.
- Furthermore during the development it enables us to deeply understand how our field AI and DS are vastly used in the ever-advancing world of business and commerce.
- Integrating this system on other premises like, such as social media and demographic data can provide a complete picture of customer behavior and preference

REFERENCES

- 1. Tim Bowen proposed an article on "How big Supermarkets Are Using Big Data & Predictive Analytics To Win."
- 2. **National investment promotion & facility agency of India** proposed a study on the retail industry of india and in it they stated that The Indian e-commerce industry is expected to cross the \$350 Bn in GMV by 2030.
- 3. Joseph Eckert wrote an article on how Analysis of receipt data shows the super bowl can have a significant impact on sales and consumer behavior.

QUESTIONS?

THANK YOU