[CNN(Convolution Neural Network)]

- ※ CNN에서 사용되는 레이어들
- 1. Convolution Layer(모듈명: Con2D): 특정한 패턴의 특징이 어디서 나타나는지를 확인 하는 도구를 컨볼루션(convolution)이라 하며, 필터로 특징을 뽑아준다.
- 2. Maxpool Layer(모듈명: Maxpool2D): 사소한 변화는 무시하도록 설정한다.
- 3. Flatten Layer(모듈명: Flatten): 영상을 1차원으로 변경한다.
- ※ CNN을 이용한 mnist(손글씨데이터) 학습과정 코딩의 일부

	import tensorflow as tf
	from tensorflow.keras.datasets import mnist # minst 데이터 셋
	import tensorflow.keras.utils as utils # 원 핫 인코딩
(1) 필요한 패키지 import	from tensorflow.keras.models import Sequential # 모델 생성
	from tensorflow.keras.layers import Dense, Activation
	from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten
	import numpy as np
	(x_train, y_train), (x_test, y_test) = mnist.load_data() # 데이터 셋 준비
	x_val = x_train[50000:] # 데이터 총 6만행 중 처음부터 50000행까지 검증 셋 설정
	y_val = y_train[50000:]
(2) 데이터 셋 준비 &	x_train = x_train[: 50000] # 데이터 총 6만행 중 50001행부터 끝까지 훈련 셋 설정
훈련 셋, 검증 셋 분리 &	y_train = y_train[: 50000]
원 핫 인코딩(라벨링 전환)	
	y_train = utils.to_catogorical(y_train) # 원 핫 인코딩
	y_val = utils.to_catogorical(y_val)
	y_text = utils.to_catogorical(y_test)
	model = Sequential()
	model.add(Conv2D(32, (3,3), activation='relu', input_shape=(8, 8, 1)
	# 채널 수: 32, 크기: 3*3 , input_shape(너비, 높이, 채널 수)
	model.add(MaxPool2D(pool_size=(2,2)))
	# pool_size=(): 수직, 수평의 축소 비율 지정
(3) 모델 구성하기	model.add(Conv2D(32, (3,3), activation='relu')
	model.add(MaxPool2D(pool_size=(2,2)))
	model.add(Flatten())
	# 크기가 3*3 이었던 영상을 1차원으로 변경한다.
	model.add(Dense(256, input_dim=w*h, activation='relu')
	model.add(Dense(10, activation='softmax')