Advanced Machine Learning

Integral Calculus

Riemann Integration, integration by parts, gaussian integrals

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Riemann Integral

• Integrals represent area beneath a curvel

Outline

- 1. Defining Integrals
- 2. Doing Integrals
- 3. Gaussian Integrals

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Linearity of Integration

• Integration is a linear operator

$$\begin{split} \int_{a}^{b} (rf(x) + sg(x)) \, \mathrm{d}x &= \lim_{\delta x_{i} \to 0} \sum_{i=0}^{n-1} (x_{i+1} - x_{i}) \, (rf(x_{i}) + sg(x_{i})) \mathbb{I} \\ &= \lim_{\delta x_{i} \to 0} \left(\sum_{i=0}^{n-1} (x_{i+1} - x_{i}) rf(x_{i}) + \sum_{i=0}^{n-1} (x_{i+1} - x_{i}) sg(x_{i}) \right) \mathbb{I} \\ &= \lim_{\delta x_{i} \to 0} \left(r \sum_{i=0}^{n-1} (x_{i+1} - x_{i}) f(x_{i}) + s \sum_{i=0}^{n-1} (x_{i+1} - x_{i}) g(x_{i}) \right) \mathbb{I} \\ &= r \lim_{\delta x_{i} \to 0} \sum_{i=0}^{n-1} (x_{i+1} - x_{i}) f(x_{i}) + s \lim_{\delta x_{i} \to 0} \sum_{i=0}^{n-1} (x_{i+1} - x_{i}) g(x_{i}) \\ &= r \int_{a}^{b} f(x) \, \mathrm{d}x + s \int_{a}^{b} f(x) \, \mathrm{d}x \mathbb{I} \end{split}$$

Adam Prügel-Bennett COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

Fundamental Law of Calculus

Let

$$I(a,x) = \int_{a}^{x} f(z) dz = \lim_{\delta z_{i} \to 0} \sum_{i=0}^{n-1} (z_{i+1} - z_{i}) f(z_{i}) \mathbf{I}$$

ullet Now for small δx

$$I(a, x + \delta x) = \int_{a}^{x + \delta x} f(z) dz = \lim_{\delta z_{i} \to 0} \sum_{i=0}^{n-1} (z_{i+1} - z_{i}) f(z_{i}) + \delta x f(x)$$

Thus

$$\frac{\mathrm{d}I(a,x)}{\mathrm{d}x} = \lim_{\delta x \to 0} \frac{I(x+\delta x) - I(x)}{\delta x} = \lim_{\delta x \to 0} \frac{\delta x f(x)}{\delta x} = f(x) \mathbf{I}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Indefinite Integrals

- So far we have considered **definite integrals** where we integrate between two points (a and b)
- However, when think about integration as an anti-derivative, it is useful to think of a function $F(x)=\int f(x)\mathrm{d}x$
- So that F'(x) = f(x)
- However the function F(x), F(x)+1, $F(x)+\pi$, etc. all have the same derivative so F(x) is only defined up to an additive constant
- Note that the definite integral is given by

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

The Other Way Around

Consider

$$\begin{split} \int_a^b & \mathrm{d} f(x) \\ & \mathrm{d} x = \int_a^b \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x} \mathrm{d} x \\ &= \lim_{x_{i+1} - x_i \to 0} \sum_{i=0}^{n-1} (x_{i+1} - x_i) \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} \\ &= \lim_{x_{i+1} - x_i \to 0} \sum_{i=0}^{n-1} (f(x_{i+1}) - f(x_i)) \mathbb{I} \\ &= (f(x_1) - f(x_0)) + (f(x_2) - f(x_1)) + (f(x_3) - f(x_2)) + \cdots \\ &+ (f(x_{n-1}) - f(x_{n-2})) + (f(x_n) - f(x_{n-1})) \mathbb{I} \\ &= f(x_n) - f(x_0) \mathbb{I} = f(b) - f(a) \mathbb{I} \end{split}$$

 We can think of integration as an anti-derivative it undoes differentiation

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Multiple Integrals

- For functions involving many independent variables (e.g. f(x,y), f(x,y,z), f(x)) we can integrate over multiple dimensions
- For example

$$\iint\limits_A f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

 It gets tedious writing multiple integral signs and I tend to write just one

$$\int \cdots \int f(x_1, x_2, \dots, x_n) dx_1 dx_2 \cdots dx_n = \int f(\boldsymbol{x}) d\boldsymbol{x}$$

Adam Prügel-Bennett

Outline

- 1. Defining Integrals
- 2. Doing Integrals
- 3. Gaussian Integrals

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Is Integration Straightforward?

- We saw due to the product and chain rules that we can differentiate almost anything! Given integration is the anti-derivative can we integrate anything?!
- Products and compositions

$$\int f(x)g(x)dx = ? \qquad \qquad \int f(g(x))dx = ? \mathbf{I}$$

- Unfortunately, unlike differentiation we don't have a small parameter we can expand in
- In general integration is hard

Performing Integration

- A key method for performing integrals is through knowledge of the anti-derivative!
- If we know F'(x) = f(x) then $F(x) + c = \int f(x) dx$
- E.g. we know that $dx^n/dx = nx^{n-1}$ therefore

$$\int x^{n-1} dx = \frac{1}{n} \int \frac{dx^n}{dx} dx = \frac{x^n}{n} + c$$

and

$$\int_{a}^{b} x^{n-1} \mathrm{d}x = \frac{b^n}{n} - \frac{a^n}{n}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Integration by Parts

- \bullet Recall the product rule $\frac{\mathrm{d}f(x)g(x)}{\mathrm{d}x} = \frac{\mathrm{d}f(x)}{\mathrm{d}x}g(x) + f(x)\frac{\mathrm{d}g(x)}{\mathrm{d}x}$
- Integrating we get

$$\begin{split} \int_a^b & \frac{\mathrm{d}f(x)g(x)}{\mathrm{d}x} \mathrm{d}x = \int_a^b & \frac{\mathrm{d}f(x)}{\mathrm{d}x}g(x) \mathrm{d}x + \int_a^b f(x) \frac{\mathrm{d}g(x)}{\mathrm{d}x} \mathrm{d}x \\ & = \left[f(x)g(x) \right]_a^b \mathbb{I} = f(b)g(b) - f(a)g(a) \mathbb{I} \end{split}$$

• Unfortunately we get two integrals, but we can turn this around

$$\int_a^b f(x) \frac{\mathrm{d}g(x)}{\mathrm{d}x} \mathrm{d}x = [f(x)g(x)]_a^b - \int_a^b \frac{\mathrm{d}f(x)}{\mathrm{d}x} g(x) \mathrm{d}x$$

whether this is helpful depends on f(x) and g(x)

Adam Prügel-Bennett COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

12

Example of Integration by Parts

Consider

$$\begin{split} \Pi(z) &= \int_0^\infty x^z \mathrm{e}^{-x} \mathrm{d}x = \int_0^\infty x^z \frac{\mathrm{d}(-\mathrm{e}^{-x})}{\mathrm{d}x} \mathrm{d}x \\ &= \left[x^z (-\mathrm{e}^{-x}) \right]_0^\infty - \int_0^\infty \frac{\mathrm{d}x^z}{\mathrm{d}x} (-\mathrm{e}^{-x}) \mathrm{d}x \\ &= \int_0^\infty (zx^{z-1}) \mathrm{e}^{-x} \mathrm{d}x = z \int_0^\infty x^{z-1} \mathrm{e}^{-x} \mathrm{d}x = z \Pi(z-1) \end{split}$$

• Thus $\Pi(z)=z\Pi(z-1)$, but

$$\Pi(0) = \int_0^\infty e^{-z} dz = \left[-e^{-x} \right]_0^\infty = -e^{-\infty} - (-e^0) = 1$$

• Now $\Pi(n) = n\Pi(n-1) = n(n-1)\Pi(n-2) = n(n-1)(n-2)...1 = n!$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Example of Integration by Substitution

- We consider $I(n) = \int_{0}^{\infty} x^n e^{-x^2/2} dx$
- Let $u(x) = x^2/2$ or $x(u) = \sqrt{2u}$ so that

$$\frac{\mathrm{d}x(u)}{\mathrm{d}u} = \frac{1}{\sqrt{2u}} \qquad u(0) = 0 \qquad u(\infty) = \infty$$

Thus

$$I(n) = \int_0^\infty \left(\sqrt{2u}\right)^n e^{-u} \frac{1}{\sqrt{2u}} du$$
$$= 2^{\frac{n-1}{2}} \int_0^\infty u^{\frac{n-1}{2}} e^{-u} du = 2^{\frac{n-1}{2}} \Pi\left(\frac{n-1}{2}\right) \mathbf{I}$$

• I(1)=1, $I(3)=2\times 1!=2$, $I(5)=2^2\times 2!=8$, but $I(0)=\Pi(-1/2)/\sqrt{2}$, $I(2)=\sqrt{2}\Pi(1/2)=\Pi(-1/2)/\sqrt{2}$.

Substitution

• We can make a transformation from x to u = u(x)

$$\begin{split} \int_{a}^{b} f(x) \, \mathrm{d}x &= \lim_{\delta x_{i} \to 0} \sum_{i=0}^{n-1} f(x_{i}) (x_{i+1} - x_{i}) \mathbb{I} \\ &= \lim_{\delta u_{i} \to 0} \sum_{i=0}^{n-1} f(x(u_{i})) \frac{x(u_{i+1}) - x(u_{i})}{u_{i+1} - u_{i}} (u_{i+1} - u_{i}) \mathbb{I} \\ &= \int_{u(a)}^{u(b)} f(x(u)) \frac{\mathrm{d}x(u)}{\mathrm{d}u} \mathrm{d}u \mathbb{I} \end{split}$$

 \star where u_i is such that $x(u_i)=x_i$ or $u_i=u(x_i)$ where u(x) is the inverse of x(u)

the inverse of x(u) . \star using $\lim_{\delta u_i \to 0} \frac{x(u_{i+1}) - x(u_i)}{u_{i+1} - u_i} = \frac{\mathrm{d}x(u_i)}{\mathrm{d}u}$.

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Changing Variables in Multidimensional Space

ullet When changing variables in many dimensions x o u the change of variables involves the Jacobian

$$\int f(\boldsymbol{x}) d\boldsymbol{x} = \int f(\boldsymbol{x}(\boldsymbol{u})) |\det(\mathbf{J})| d\boldsymbol{u}, \qquad \boldsymbol{J} = \begin{pmatrix} \frac{\partial x_1}{\partial u_1} & \frac{\partial x_1}{\partial u_2} & \dots & \frac{\partial x_1}{\partial u_n} \\ \frac{\partial x_1}{\partial u_2} & \frac{\partial x_2}{\partial u_2} & \dots & \frac{\partial x_2}{\partial u_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial u_1} & \frac{\partial x_n}{\partial u_2} & \dots & \frac{\partial x_n}{\partial u_n} \end{pmatrix}$$

• E.g. transforming from Cartesian coordinates (x,y) to polar coordinates (r,θ) then $x=r\cos(\theta)$ and $y=r\sin(\theta)$

$$\begin{aligned} |\det(\mathbf{J})| &= \left| \det \begin{pmatrix} \frac{\partial r \cos(\theta)}{\partial r} & \frac{\partial r \cos(\theta)}{\partial \theta} \\ \frac{\partial r \sin(\theta)}{\partial r} & \frac{\partial r \sin(\theta)}{\partial \theta} \end{pmatrix} \right| \mathbf{I} = \left| \det \begin{pmatrix} \cos(\theta) & -r \sin(\theta) \\ \sin(\theta) & r \cos(\theta) \end{pmatrix} \right| \mathbf{I} \\ &= r \left(\cos^2(\theta) + \sin^2(\theta) \right) \mathbf{I} = r \mathbf{I} \end{aligned}$$

• That is, $dxdy = rdrd\theta$

dam Prügel-Bennett COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

16

Change of Variables in Pictures

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Cumulant Generating Function

- \bullet Note that $\mathrm{e}^{\ell x}=1+\ell x+\frac{1}{2}\ell^2 x^2+\frac{1}{3!}\ell^3 x^3+\cdots$
- So

$$Z(\ell) = \int_{-\infty}^{\infty} e^{\ell x} f_X(x) dx = 1 + \ell M_1 + \frac{1}{2} \ell^2 M_2 + \frac{1}{3!} \ell^3 M_3 + \cdots$$

• Now using $\log(1+\epsilon) = \epsilon - \frac{1}{2}\epsilon^2 + \frac{1}{3}\epsilon^3 + \cdots$

$$G(\ell) = \log(Z(\ell)) = \ell M_1 + \frac{1}{2} \ell^2 \left(M_2 - M_1^2 \right) + \frac{1}{3!} \ell^3 \left(M_3 - 3 M_2 M_1 + 2 M_1^3 \right) + \cdots$$

• So that $\kappa_n=G^{(n)}(0)$, with $\kappa_1=M_1$ (the mean), $\kappa_2=M_2-M_1^2$ (the variance), $\kappa_3=M_3-3M_2M_1+2M_1^3$ (the third cumulant related to the skewness)

Differentiating Through the Integral

• A trick that sometimes works is differentiating through an integral, e.g. consider finding moments

$$M_n = \mathbb{E}[X^n] = \int_{-\infty}^{\infty} x^n f_X(x) dx$$

• We can define a momentum generating function

$$Z(\ell) = \int_{-\infty}^{\infty} e^{\ell x} f_X(x) dx$$

• Then $M_n = Z^{(n)}(0)$

$$\left.\frac{\mathrm{d}^n Z(\ell)}{\mathrm{d}\ell^n}\right|_{\ell=0} = \int_{-\infty}^{\infty} \frac{\mathrm{d}^n \mathrm{e}^{\ell x}}{\mathrm{d}\ell^n} \left| f_X(x) \mathrm{d}x \right| = \int_{-\infty}^{\infty} x^n f_X(x) \mathrm{d}x = M_n \mathbf{I}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

More Integration

- Although we have a few tricks, integration is hard
- Surprisingly integration sometimes is easier when carried out in the complex plane!
- This is a beautiful part of mathematics (due largely to Cauchy) beyond the scope of this course
- Interestingly, also there is an algorithm that allows us to integrate
 a lot of function. It is sufficiently complicated that you need to
 write a computer algorithm of considerable complexity to
 implement it. Most symbolic manipulation packages (e.g.
 Mathematica) have implemented some part of this algorithm.

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

20

Special Functions

- There are integrals with no known closed form solution
- We saw that $\Pi(z)=\int\limits_0^\infty x^z{\rm e}^{-x}{\rm d}x$ satisfies $\Pi(z)=z\Pi(z-1)$
- For integer n then $\Pi(n) = n!$ but for general z, the integal $\Pi(z)$ can't be written in terms of elementary functions
- We consider $\Pi(z)$ as a special function in its own right
- Although, history has left us with the gamma function instead

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx = \Pi(z-1)$$

• Other special function defined by integrals exist (e.g. the Bessel , Aire, hypergeometric, elliptic, error functions, . . .)

Gaussian Integrals

Adam Prügel-Bennett

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

• Gaussian integrals are integrals involving e^{-x^2} , e.g.

$$\int_{-\infty}^{\infty} e^{-x^2} dx$$

$$\int_{-\infty}^{\infty} e^{-x^2} dx \qquad \int_{-\infty}^{\infty} x^4 e^{-ax^2 - bx} dx$$

• They are important in computing integrals with respect to the normal distribution

$$\mathcal{N}(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}$$

- The great news is that these integrals are all doable
- The bad news is that they are quite tricky to dol

Outline

- 1. Defining Integrals
- 2. Doing Integrals
- 3. Gaussian Integrals

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

The Gaussian Integral

• The integral over a Gaussian is surprisingly difficult

$$I_1 = \int_{-\infty}^{\infty} \mathrm{e}^{-x^2/2} \, \mathrm{d}x$$

• There is a nice trick which is to consider

$$I_1^2 = \int_{-\infty}^{\infty} e^{-x^2/2} dx \int_{-\infty}^{\infty} e^{-y^2/2} dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)/2} dx dy$$

• Making the change of variables $r=\sqrt{x^2+y^2}$ and $\theta=\arctan(y/x)$ (so that $x=r\cos(\theta),\,y=r\sin(\theta)$ and $x^2+y^2=r^2$)

$$I_1^2 = \int_0^{2\pi} d\theta \int_0^\infty r e^{-r^2/2} dr = 2\pi \int_0^\infty r e^{-r^2/2} dr$$

COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

The Gaussian Integral Continued

• From before

$$I_1^2 = 2\pi \int_0^\infty re^{-r^2/2} dr$$

• Finally let $u=r^2/2$ so that du/dr=r or du=rdr we get

$$I_1^2 = 2\pi \int_0^\infty e^{-u} du = 2\pi$$

- So that $I_1 = \sqrt{2\pi}$
- Incidentally, $I_1 = \sqrt{2}\Pi(-1/2)$ so $\Pi(-1/2) = \Gamma(1/2) = \sqrt{\pi}$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Multi-dimensional Gaussians

Consider

$$I_3 = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{2} ||\boldsymbol{x}||_2^2} dx_1 \cdots dx_n$$

where $x = (x_1, x_2, ..., x_n)^{\mathsf{T}}$

• Note that $\|m{x}\|_2^2 = x_1^2 + x_2^2 + \dots + x_n^2$ and using $\mathrm{e}^{\sum_i a_i} = \prod_i \mathrm{e}^{a_i}$

$$\begin{split} I_3 &= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2} \sum\limits_{i=1}^{n} x_i^2} \mathrm{d}x_1 \cdots \mathrm{d}x_n \\ &= \prod_{i=1}^{n} \int_{-\infty}^{\infty} \mathrm{e}^{-x_i^2/2} \mathrm{d}x_i \\ &= \prod_{i=1}^{n} \sqrt{2\pi} = (2\pi)^{n/2} \end{split}$$

Normal Distribution

• We consider

$$I_2 = \int_{-\infty}^{\infty} e^{-(x-\mu)^2/(2\sigma^2)} \mathrm{d}x$$

• Making the change of variables $z=(x-\mu)/\sigma$ so that $\mathrm{d}z=\mathrm{d}x/\sigma$ or $dx = \sigma dz$. Then

$$I_2 = \sigma \int_{-\infty}^{\infty} e^{-z^2/2} dz = \sigma I_1 = \sqrt{2\pi} \sigma$$

• Note that the probability density function (PDF) for a normally distributed random variable is given by

$$\mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Full Multi-variate Normal

Consider

$$I_4 = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^\mathsf{T}} \mathbf{E}^{-1}(\boldsymbol{x} - \boldsymbol{\mu}) \, \mathrm{d}x_1 \cdots \mathrm{d}x_n$$

- ullet Let $oldsymbol{\Xi}^{-1} = \mathbf{V} oldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}}$ and make the change of variables $oldsymbol{y} = \mathbf{V}^{\mathsf{T}} (oldsymbol{x} oldsymbol{\mu})$
- ullet The Jacobian $oldsymbol{\mathsf{J}}$ has elements (note that $x = \mathbf{V} y + \mu$)

$$J_{ij} = \frac{\partial x_i}{\partial y_j} = \frac{\partial}{\partial y_j} \left(\sum_{k=1}^n V_{ik} y_k + \mu_i \right) = V_{ij}$$

ullet So that J=V and consequently $|\det(J)|=|\det(V)|=1$ then

$$I_4 = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2} \mathbf{y}^\mathsf{T} \mathbf{\Lambda}^{-1} \mathbf{y}} \, \mathrm{d}y_1 \cdots \mathrm{d}y_n. = \prod_{i=1}^n \int_{-\infty}^{\infty} \mathrm{e}^{-y_i^2/(2\lambda_i)} \, \mathrm{d}y_i = \prod_i \sqrt{2\pi \lambda_i} \mathbf{I}_i$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Determinants

 \bullet Using the facts, that $\Xi = V \Lambda V^{\mathsf{T}}$ then

$$\det(\boldsymbol{\Xi}) = \det(\boldsymbol{V}\boldsymbol{\Lambda}\boldsymbol{V}^\mathsf{T}) \boldsymbol{\mathbb{I}} = \det(\boldsymbol{V})\det(\boldsymbol{\Lambda})\det(\boldsymbol{V}^\mathsf{T}) \boldsymbol{\mathbb{I}} = \det(\boldsymbol{\Lambda}) \boldsymbol{\mathbb{I}} = \prod_{i=1}^n \lambda_i \boldsymbol{\mathbb{I}}$$

using $\det(\mathbf{A}B) = \det(\mathbf{A})\det(B)$ and $\det(\mathbf{V}) = 1$

• Recall $I_4 = \prod_i \sqrt{2\pi\lambda_i} = (2\pi)^{n/2} \sqrt{\det(\Xi)}$

Adam Prügel-Bennett

 \bullet We note for an $n \times n$ matrix ${\bf M}$ then $\det(c{\bf M}) = c^n \det({\bf M})$ so that

$$I_4 = (2\pi)^{n/2} \sqrt{\det(\mathbf{\Xi})} = \sqrt{\det(2\pi\mathbf{\Xi})}$$

 \bullet Finally, we get that for the PDF of a normal to integrate to 1

$$\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Xi}) = \frac{1}{\sqrt{\det(2\pi\boldsymbol{\Xi})}} \mathrm{e}^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^\mathsf{T} \boldsymbol{\Xi}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})}$$

COMP6208 Advanced Machine Learning

• Integration is extra-ordinarily useful as a tool of analysis

Summary

- It occurs when you work with probabilities densities for continuous random variables
- Integration is beautiful, but hard—often impossible
- Normal distributions lucky almost always give raise to integrals that can be computed in closed form! although often it requires quite a bit of work!
- Making friends with integration will give you a super-power that not too many people share

Adam Prügel-Bennett COMP6208 Advanced Machine Learning