Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation (arxiv)

Key Highlights

問題

- **主要問題**:本論文旨在解決大型語言模型在訓練和部署過程中的效率挑戰,特別是針對參數共享和自適應計算之間的權衡。
- 現存方法及限制:
 - 。參數共享方法(如層級綁定)減少模型權重,但對所有token應用統一計算
 - 。自適應計算方法(如早退出)動態分配計算資源,但通常需要單獨的訓練階段 和複雜的工程設計
 - 。遞歸變壓器提供權重共享,但通常使用固定遞歸深度,錯失了token級自適應 計算的機會
 - 先前的動態遞歸嘗試面臨諸如專門的訓練過程和部署困難等現實障礙

解決方案

- 提出的解決方案: 遞歸混合(MoR)——一個結合參數共享與輕量級路由器的自適應token級計算的統一框架,為每個token分配不同的遞歸深度
- 核心成分:
 - 。路由策略:專家選擇(每次遞歸選擇top-k)與token選擇(每個token深度 分配)
 - 。 KV 緩存策略:遞歸緩存(每個深度分配獨立緩存)與遞歸共享(重用第一次 遞歸的緩存)
- 靈感來源:基於遞歸變壓器和深度混合路由,通過自適應垂直計算實現潛在推理
- 理論基礎:token有不同的計算需求;該框架允許模型在複雜token上"思考"更久, 而對簡單token快速處理

實驗

- 性能:在各種模型規模(135M-1.7B參數)中,MoR一致優於基本模型和遞歸基線
 - 在相同的16.5e18 FLOPs預算下: MoR以約50%更少的參數實現43.1% vs 42.3%少量樣本准確性
 - 。在相同數據量(20B token)下:MoR使用25%更少的FLOPs同時保持卓越性能
 - 等FLOP分析顯示MoR在更大規模下匹配或超過基本性能

- 吞吐量:通過持續深度分批處理,推理速度最多提升2.06倍
- 限制條件/假設:
 - 在非常小的模型尺寸(135M)下性能下降,由於容量瓶頸
 - 專家選擇路由需要輔助損失以防止因果關係違反
 - ∘ token選擇路由在異構專家具設定中負載平衡困難

革新

- 主要發現:
 - 首個在單一框架中統一參數共享、自適應計算和高效KV緩存的架構
 - 動態遞歸路由從頭訓練,消除了後期訓練階段的需求
 - 。遞歸深度分配與token語義重要性相關
 - 。 MoR通過更深的遞歸步驟實現測試時刻縮放
 - 計算最優縮放有利於更大模型與更短訓練(相比基線模型不需要那麼多數據)

意見/批評

- 限制:
 - 由於計算限制,實驗限於1.7B參數——需要更大規模驗證
 - 。 專家選擇路由帶有輔助損失造成接近二元分離,使得推理時間的容量調整困難
 - token選擇路由在異質專家具設定中受負載平衡問題困擾
 - 某些設計選擇(如KV共享)展示性能降級權衡
- 聲明的支持與反駁:
 - 優勢:全面評估多種模型規模,詳細剖析路由行為,徹底消融研究
 - 。**劣勢**:限於相對小型模型,關於縮放行為的某些聲明需要在更大規模上驗證
 - 論文提供的大部分聲明有強有力的實證證據,但承認需要更大規模的驗證

Comprehensive Analysis

Abstract

摘要

• 本摘要介紹了一個新穎的框架 **混合遞迴 (Mixture-of-Recursions, MoR)**,該框架通過同時實現兩個通常單獨追求的效率目標,解決了擴展語言模型的計算和內存成本。

主要創新: - MoR 在單一的遞歸Transformer架構內結合了參數共享和自適應計算。

核心機制: - 參數效率: 在多次遞歸步驟中重複使用共享的層堆疊。 - **自適應計算**: 利用輕量級路由器根據標記的複雜度動態分配不同的遞歸深度給各個標記。 - 內存優化: 在各遞歸深度僅對活躍標記執行注意力計算,並選擇性地緩存其關鍵值對。 - 關鍵值共享變體:重複使用第一次遞歸的關鍵值對,以減少預處理延遲和內存使用。

結果: - 在範圍從135M到1.7B參數的模型中,MoR 相較於標準和現有的遞歸模型表現優越,具體表現為: - 較低的驗證困惑度(perplexity)。 - 更好的少樣本準確性。 - 更高的吞吐量。 - 在等效訓練計算量下具有更小的模型規模。

• 該框架展示了一條在不伴隨高計算成本的情況下實現大型模型質量的途徑。

Since the title indicates this is an Abstract section, I must follow the requirements and return $\$

由於標題表明這是摘要部分,我必須遵循要求並返回。

1. Introduction

這篇簡介介紹了**遞迴混合(Mixture-of-Recursions, MoR)**,這是一個新穎的框架,通過統合參數效率與自適應計算,解決大型規模Transformer模型的計算挑戰。

背景與問題: - 大型Transformer模型(包含數千億個參數)能夠實現令人印象深刻的能力,但需要巨大計算資源,限制了在超大規模數據中心之外的部署。 - 目前有兩大主要效率方法:參數效率(權重共享/減少)和自適應計算(動態計算分配)。 - 之前的嘗試試圖結合這些方法,但常受到實際限制,使用固定深度遞迴,對所有token應用統一計算。

MoR的解決方案: - 論文介紹了MoR,其使用輕量化路由器來動態分配token特定的遞迴深度,根據token的複雜度決定共享參數塊應用多少次。

主要創新: 1. **參數效率**:通過共享參數塊進行權重綁定。 2. **自適應計算**:Token層級路由分配計算資源到所需的地方。 3. **記憶體優化**:遞迴級鍵值緩存以減少記憶體流量。

概念框架: - MoR使能"隱含空間推理",允許模型在token解碼期間進行迭代思考而不是生成之前,並根據token的不同使用自適應推理深度而不是統一固定深度。 - 該框架代表了一個統一架構,既優化參數、運算量(FLOPs)和記憶體使用,又允許動態、token層級的計算分配。

"Despite the progress achieved along each of these individual efficiency axes, an architecture that effectively unifies both parameter efficiency and adaptive computation is still missing."

儘管在這些個別效率軸上取得了進展,但仍然缺乏一種能有效統一參數效率與自適應計算 的架構。 "MoR trains lightweight routers end-to-end to assign token-specific recursion depths: it decides how many times a shared parameter block is applied to each token according to its required depth of 'thinking', thereby directing computation to where it is most needed."

MoR端到端訓練輕量級路由器來分配特定標記的遞歸深度:它根據每個標記所需的"思考"深度來決定共享參數塊應用於每個標記的次數,從而將計算集中在最需要的地方。

"Therefore, MoR simultaneously (i) ties weights to cut parameters, (ii) routes tokens to cut redundant FLOPs, and (iii) caches key-values recursion-wise to cut memory traffic—all inside a single architecture."

因此,MoR 同時在一個統一架構內實現:(i) 將權重綁定以減少參數,(ii) 路由標記以減少冗餘的FLOPs,(iii) 根據遞歸緩存關鍵值以減少內存流量。

2. Method

摘要

- 本節介紹了遞歸混合 (MoR) 框架,首先解釋遞歸Transformer及其限制。
- 關鍵概念:
- **遞歸Transformer**通過重複使用層來減少模型參數,而不是為每層使用獨特的權重。它們將模型劃分為共享參數的遞歸塊,從而實現更深層的計算而不增加參數數量。
- 參數共享策略包括:
 - **循環**:遞歸塊循環重複使用 [例如,(0,1,2),(0,1,2),(0,1,2)]
 - 序列:同一層連續重複使用 [例如, (0,0,0), (1,1,1), (2,2,2)]
 - 中間變體:僅在第一層或最後一層保持唯一參數
- 遞歸模型的優點:
 - 。 減少內存佔用(參數數量減少至遞歸數量的比例)
 - 。 使用FSDP提高分佈式訓練效率
 - 新的「連續深度批處理」技術提高推理吞吐量
- 現有方法的限制:
 - KV緩存仍需要為每個深度單獨儲存,保持了內存瓶頸
 - 。 固定的遞歸深度應用于所有token,忽略了不同的計算複雜度
 - · 在預訓練期間的動態深度自適應會創建缺失KV對的問題
 - 當前解決方案需要複雜的並行解碼機制
- 本節通過強調現有遞歸Transformer架構中的這些基本挑戰,為MoR的動機奠定了基礎。

"Recursive Transformers (Bae et al., 2024; Fan et al., 2024; Giannou et al., 2023; Yang et al., 2023; Saunshi et al., 2025) aim to reduce

parameter count by reusing layers across depth. Instead of having L distinct sets of weights, they partition the model into Nr recursion blocks, where each block uses a shared pool of parameters Φ' ."

遞歸Transformer (Bae等, 2024; Fan等, 2024; Giannou等, 2023; Yang等, 2023; Saunshi等, 2025) 通過在深度上重用層來減少參數數量。他們將模型劃分為Nr遞歸塊,每個塊使用一組共享的參數池 Φ , 而不是擁有L個不同的權重集。

"Parameter sharing strategies can reduce the number of unique trainable parameters by a factor of the recursion number, effectively amortizing the memory footprint of the model... a recursive model reuses the same gathered parameters across all recursive steps (i.e., Nr iter/gather)."

參數共享策略可以通過遞歸數量因子減少獨特的可訓練參數數量,有效地分攤模型的內存佔用...遞歸模型在所有遞歸步驟中重用相同的收集參數(即Nr迭代/收集)。

"Although model parameters are tied, the distinct KV caches are typically used for each depth. This design fails to reduce the cache sizes, meaning the high retrieval latency still remains a severe inference bottleneck."

儘管模型參數是綁定的,但每個深度通常使用不同的KV高速緩存。這種設計未能減少緩存大小,意味著高檢索延遲仍然是嚴重的推理瓶頸。

2.1. Preliminary Recursive Transformers

這段文字介紹了遞歸變換器作為標準變換器架構的一種演進。

- 雖然標準變換器使用 L 個獨特的層(每層有不同的參數 $\Phi \ell$),遞歸變換器通過將模型划分為 Nr 個遞歸塊來實現參數高效利用,這些遞歸塊共享相同的參數池 Φ' 。
- 這種方法通過重用層來實現更深層的計算,同時保持較小的參數規模——本質上是用記憶體效率換取計算深度,而不必比例增加模型的大小。

"Recursive Transformers (Bae et al., 2024; Fan et al., 2024; Giannou et al., 2023; Yang et al., 2023; Saunshi et al., 2025) aim to reduce parameter count by reusing layers across depth."

"Instead of having L distinct sets of weights, they partition the model into Nr recursion blocks, where each block uses a shared pool of parameters Φ' ."

"This design allows for more computation (by increasing the effective network depth) without increasing parameter size."

遞歸變壓器(Bae等,2024年;Fan等,2024年;Giannou等,2023年;Yang等,2023年;Saunshi等,2025年)旨在通過在深度方向上重用層來減少參數數量。

他們將模型分成Nr個遞歸模塊,而不是具有L個不同的權重集合,每個模塊使用共享的參數 $\Delta\Phi'$ 。

這種設計允許在不增加參數量的情況下進行更多計算(通過增加有效的網絡深度)。

2.2. Mixture-of-Recursions

- 本節介紹了一個新穎的框架**遞歸混合(Mixture-of-Recursions, MoR)**,通過根據單個token的複雜性動態分配不同數量的處理步驟來優化計算效率。
- 關鍵組成部分:
 - 路由機制 智能地為不同的token分配不同的遞歸步驟,允許模型在處理簡單的token時更高效地利用計算資源,而在處理困難的token時花費更多的計算資源。
 - 。 KV緩存策略 管理在每個遞歸處理步驟中如何存儲和選擇性地訪問鍵值對。
- **核心創新:** MoR並非對所有token應用統一的處理,而是適應每個token的計算深度,在訓練和推斷階段集中計算資源於最需要的地方。

'We propose Mixture-of-Recursions (MoR)—a framework that dynamically adjusts recursion step for each token during pretraining and inference.'

我們提出了 Mixture-of-Recursions(MoR)——一個在預訓練和推理過程中為每個 token動熊調整遞歸步驟的框架。

'The core of MoR lies in two components: a routing mechanism that assigns token-specific recursion steps to adaptively concentrate computation on more challenging tokens, and a KV caching strategy that defines how KV pairs are stored and selectively utilized for attention at each recursive step.'

MoR的核心在於兩個組成部分:一個分路機制,為每個token分配特定的遞歸步驟,以自 適應地集中計算更具挑戰性的token;以及一個KV緩存策略,它定義了KV對如何存儲並 在每個遞歸步驟中選擇性地應用於注意力。

2.1. Routing Strategies: Expert-choice vs. Token-choice

摘要

• 本節描述了**專家選擇路由**,這是一種計算策略,其中不同的遞歸深度作為"專家"有 選擇性地處理標記。 **主要機制:** - 每一個遞歸步驟成為一個專家,選擇其偏好的前k個標記進行處理。 - 在每一步,路由器使用隱藏狀態和學習參數為標記計算標量分數。 - 只有在分數超過百分比門檻的標記才能通過遞歸塊進行額外的計算。 - 分層過濾系統確保標記必須在步驟r被選擇後才能進入步驟r+1的考慮範圍。

目的和好處: - 模擬訓練期間的提前退出行為。 - 將計算資源集中在最需要深度處理的"高需求"標記上。 - 利用更深層編碼更抽象、更稀疏信息的原理。 - 提供自適應計算資源分配,而不是對所有標記進行均勻處理。

• 這種方法旨在通過避免不需要深度遞歸處理的標記進行不必要的計算來提高效率。

"At each recursion step r, the corresponding router uses the hidden state $\Re r$ t (input to the r-th recursion block) and its routing parameters $\Re r$ to compute a scalar score $\mathop{gr} t = \mathcal{G}(\Re \mathsf{T} \ r \ \Re r \ t)$ for token t."

在每個遞迴步驟r中,相應的路由器使用隱藏狀態Hrt(輸入到第r個遞迴區塊)及其路由參數 θr 來計算標量分數 $qrt = \mathcal{C}(\theta \top r Hrt)$ 用於標記t。

"To ensure coherent progression through steps, we adopt hierarchical filtering: only tokens selected at recursion step r can be re-evaluated at r+1."

為確保步驟之間的連貫進展,我們採用階層過濾:只有在遞迴步驟r中被選中的標記才可以在r+1步驟中重新評估。

"As deeper layers tend to encode increasingly abstract and sparse information (Li et al., 2022; Yang et al., 2024; Nawrot et al., 2024), this mechanism prioritizes computation for only the most demanding tokens."

由於較深層往往會編碼出越來越抽象和稀疏的信息(Li et al., 2022; Yang et al., 2024; Nawrot et al., 2024),這種機制優先計算最具需求的標記。

3. Experiments

以下是翻譯成繁體中文的說明:

- 本實驗部分概述了訓練和評估所提出模型的方法。作者:
 - 架構:使用基於Llama的Transformer架構,遵循SmolLM模型配置。
 - **訓練:**從頭開始在去重的FineWeb-Edu數據集子集上預訓練模型,數據集來自SmolLM-Corpus。
 - **評估:**在FineWeb-Edu驗證集和六個少量訓練基準上測試模型。

- 文檔:在附錄中提供了訓練、評估和吞吐量測量的詳細流程。
- 本節建立了一個使用既定架構和數據集的標準實驗設置,通過跨多個基準的全面評估來評估模型性能。

3.1. Main Results

3.1節摘要:主要結果

- 本節展示了遞歸混合模型 (Mixture-of-Recursions, MoR) 有效性的核心實驗結果。
- 主要結果包括:
 - 。**參數效率**:在相等的訓練計算量 (16.5e18 FLOPs) 下,MoR 使用約50%更少的參數,達到43.1%的少量樣本準確率,而普通Transformer為42.3%,並且保持較低的驗證損失。
 - **計算效率**:在控制訓練數據 (20B tokens) 的情況下,具有2個遞歸層 (Nr=2) 的MoR 比普通及遞歸基線模型表現更佳,使用25%更少的訓練 FLOPs,實際上訓練時間快19%,峰值內存使用量降低25%。
 - 。**可擴展性**:隨著遞歸層數增加 (Nr=3或4),模型仍能保持競爭力,一直優於 遞歸基線,並且與全容量普通模型競爭。
 - 技術優勢:優越的效率歸因於MoR的層級過濾和遞歸注意力機制,這使得在預訓練期間通過處理較短序列來實現更好的計算-準確性權衡。

"MoR model, using an expert-choice router and two recursions, achieves a lower validation loss and surpasses the vanilla baseline in average few-shot accuracy (43.1% vs. 42.3%). Remarkably, this superior performance is achieved despite using nearly 50% fewer parameters."

MoR 模型使用專家選擇路由器和兩次遞歸,取得較低的驗證損失並超越普通基線模型的平均少樣本準確率 (43.1% 對 42.3%)。值得注意的是,這種卓越性能是在使用將近50% 更少參數的情況下實現的。

"our MoR model with Nr= 2 outperforms both vanilla and recursive baselines—achieving lower validation loss and higher accuracy—despite using 25% fewer training FLOPs. This theoretical efficiency translates into significant practical gains: compared to the vanilla baseline, our model reduces training time by 19% and cuts peak memory usage by 25%."

我們的 MoR 模型,設置 Nr = 2,在驗證損失和準確率方面都超越了普通和遞歸基線模型,儘管使用了減少 25% 的訓練 FLOPs。這種理論上的效率轉化為顯著的實際收益:與普通基線模型相比,我們的模型減少了 19% 的訓練時間,並減少了 25% 的峰值內存使用量。

"These improvements stem from our hierarchical filtering and recursion-wise attention mechanism, which shortens sequence lengths to achieve a superior compute-accuracy trade-off, even during pretraining."

這些改進來自於我們的層次篩選和按遞歸的注意機制,通過縮短序列長度來實現卓越的計 算-準確度平衡,即使在預訓練期間也是如此。

3.2. IsoFLOP Analysis

這一部分評估混合遞迴(MoR)架構的可擴展性,通過在不同模型大小和計算預算下將 其性能與Vanilla和遞迴變壓器進行比較。

實驗設計:- 測試了四種模型大小:135M、360M、730M 和 1.7B 參數 - 對遞迴和 MoR模型使用了3次遞迴(導致約1/3獨特參數) - 在三種FLOP預算下進行評估: 2e18、5e18 和 16.5e18

主要發現: -在所有尺寸和預算中,MoR均穩定地超越遞迴基準 -在最小尺寸(135M)時,由於遞迴容量限制,MoR表現不如Vanilla變壓器 -對於大於360M參數的模型,MoR的性能與或超過Vanilla變壓器,尤其是在低至中等計算預算下 - MoR展現出強大的參數效率,以顯著較少的參數實現競爭性能

結論: - 分析證明MoR是一種可擴展且參數高效的標準變壓器替代品,使其適用於預訓 練和大規模部署場景。

"A core criterion for evaluating a new model architectural design is whether performance continues to improve as model and compute scales grow"

評估新模型架構設計的核心標準之一是隨著模型和計算規模的增長,性能是否能夠繼續提高。

"MoR consistently outperforms recursive baselines across all model sizes and compute budgets. While it underperforms the vanilla model at the smallest model size (135M)—likely due to a recursive capacity bottleneck—this gap closes rapidly at scale."

MoR 在所有模型大小和計算預算範圍內,始終優於遞歸基線。雖然在最小模型大小(135M)下,MoR 的性能不如基礎模型,這可能是由於遞歸能力瓶頸,但隨著規模的增長,此差距迅速縮小。

"For >360M parameters, MoR not only matches but often exceeds the Vanilla Transformer, particularly under low and mid-range budgets."

在超過360M參數時,MoR 不僅能夠匹敵,甚至時常超過基礎版Transformer,特別是在低和中等預算範圍內。

3.3. Inference Throughput Evaluation

• 本節評估 MoR (遞歸混合模型) 相較於原始 Transformers 的推理吞吐量性能。

主要技術方法: - MoR 利用連續深度的批次處理結合預先退出機制來提高 GPU 利用率。 - 參數共享的架構允許在解碼過程中即時用新 token 替換已完成的序列。

實驗設置: - 測試了具有 360M 參數和遞歸深度為2、3、4的 MoR 模型。 - 在平均長度為 256 個 tokens 的序列中測量 tokens/秒的吞吐量。 - 比較兩種批次配置:固定批次大小32與自適應最大批次大小。

主要結果: - 所有 MoR 變體在兩種批次設置下均顯著優於原始 Transformer 基線。 - 更高的遞歸深度導致更多的提前退出,減少了 KV 緩存使用並帶來更大的吞吐量提升。 - MoR-4 的速度提升高達基線的 2.06 倍。 - 儘管存在輕微的性能下降,但顯著的吞吐量改進使這一權衡值得。

• 研究結果表明,結合深度批次處理與提前退出機制可以顯著加快 MoR 模型的實際 部署吞吐量。

"MoR can leverage continuous depth-wise batching (Bae et al., 2024) to dramatically boost inference throughput compared to Vanilla Transformers. This maintains high and consistent GPU utilization by immediately replacing completed sequences with incoming tokens during decoding."

MoR 可以利用連續深度批次處理(Bae 等, 2024)來顯著提高推理吞吐量,與標準 Transformer相比。它通過在解碼過程中立即用新進的標記替換完成的序列來保持高且 一致的GPU利用率。

"The early-exiting mechanism in MoR further eliminates bubbles in the computational batch."

MoR中的提前退出機制進一步消除計算批次中的空閒期。

"MoR-4 achieves up to a 2.06 \times speedup with B= Max"

MoR-4 在 B= Max 的情況下達到最高2.06倍的速度提升。

4. Ablation Studies

摘要

- 本節介紹消融研究,系統性地評估Mixture-of-Recursions (MoR)框架的關鍵設計元件。
- 作者分析了三個主要方面:
 - 參數共享策略:在各種模型配置中比較了四種不同的方法(循環、序列、中循環和中序列)。
 - 。 **路由策略**:不同方法在MoR框架內的計算流程方向。
 - 。鍵-值 (KV) 快取方法:對記憶體管理和快取的各種方法。
- 關鍵發現:中循環參數共享策略是最佳選擇,在參數效率和模型性能之間達成了最佳平衡。
- 評估指標包括在多個基準任務中的驗證負對數似然(NLL)和少量樣本準確度,全面驗證了設計選擇的有效性。

"We examine the effectiveness of four parameter-sharing strategies: Cycle, Sequence, Middle-Cycle, and Middle-Sequence, across different model configurations."

我們探討了四種參數共享策略的效果:Cycle、Sequence、Middle-Cycle 和 Middle-Sequence,在不同模型配置下的表現。

"The results demonstrate that Middle-Cycle provides the best balance between parameter efficiency and predictive performance, as highlighted in Section 4.1."

結果顯示,Middle-Cycle 在參數效率和預測性能之間提供了最佳平衡,如第4.1節所述。

"we evaluate different parameter-sharing strategies, routing strategies, and key-value (KV) caching methodologies used within MoR."

我們評估了在 MoR 中使用的不同參數共享策略、路由策略和鍵值 (KV) 快取方法。

5. Analysis

簡要摘要

• 本節分析MoR(混合路由器)模型在不同配置下的性能特徵。

• 主要發現是MoR在固定計算資源(isoFLOPs)限制下展現出獨特的**計算最佳化縮 放行為**。

主要見解:- MoR模型更受益於**增加模型大小**而不是延長訓練時間。 - 與基線方法相比,這種方法**對數據需求較少**。 - 較平緩的縮放曲線表明MoR從額外的參數中獲得的性能提升多於從更多的訓練數據中獲得的性能提升。 - 這是因為共享參數塊的性能變得至關重要,超過了額外訓練數據所帶來的效益。

實際影響:-對於MoR模型,最佳資源分配策略是使用較大的模型並縮短訓練時間,而不是使用較小的模型並延長訓練時間。

• 本節還承諾進一步分析路由行為和測試時間縮放,以展示MoR方法的更多優勢。

"MoR scaling favors model size over training length under isoFLOPs."

MoR 擴展在相同 FLOPs 下偏好模型規模大於訓練時長。

"The flatter slope of MoR's optimal path indicates that it benefits more significantly from increases in parameter count (i.e., less datahungry)."

MoR 最佳路徑的較平緩斜率顯示,它從參數量增加中獲益更顯著(即對數據需求較少)。

"This is likely because the performance of the shared parameter block itself becomes important, even more than feeding in additional data. Therefore, the optimal scaling policy for MoR models favors allocating resources to increasing model capacity by using larger models trained for shorter steps."

這可能是因為共享參數塊的性能變得更重要,甚至超過輸入更多數據。因此,對於 MoR 模型來說,最佳的擴展策略是將資源分配給增加模型容量,通過使用較大的模型進行較短 步數的訓練。

6. Related Work

簡要摘要

• 這篇相關工作的部分定位文章的"MoR"(路由混合)方法在神經網絡效率研究的更 廣泛背景中。

- 作者強調了影響他們工作的四個主要研究領域:
 - · 遞歸變換器 為改進神經網絡效率建立了基礎方法
 - 參數共享方法 直接影響了MoR設計的先前技術
 - · **自適應計算範例** 專注於通過動態資源分配來實現計算效率的研究
 - 。 **路由機制** 類似於在模型內部分配資源優化的架構方法
- 該部分展示了MoR是建立在效率優化、參數共享和智能路由等已確立的研究趨勢之上的,將其定位為現有方法的演變而不是全新的概念。

7. Conclusion

第七章總結

- 這個總結部分概述了論文的主要貢獻:**混合遞歸框架 (MoR)**,這是一個結合三種 關鍵技術的創新框架:
 - · 參數共享 有效地重用模型參數
 - · **自適應遞歸深度** 動態調整使用的遞歸步數
 - 。 **高效KV緩存** 優化鍵值緩存使用
- **主要發現:** MoR 成功地降低了計算成本,同時提高了模型性能,驗證困惑度和少樣本學習準確度均優於標準(vanilla)模型和現有遞歸方法。
- 未來方向: 作者指出了兩個主要的繼續研究領域:
 - 。 優化模型的推理能力
 - 。將MoR擴展到多模態應用(可能涉及到文本、圖像、音頻等)
- 總結強調MoR實現了在不犧牲模型質量的情況下提高計算效率的理想目標 這是深度學習優化中的重大成就。

References

No references found.