MAXIMUM-SUBARRAY SUM

Divide - and - conquer (recursive approach)

Given array a: ana...an (h=2 for largele)

We do the following:

- in a... a let L, be the result.
- We compute the maximum-subarray sum in a... an let Lz be the result.
- (3) We compute the meximum subarray sum of $a_1, ..., a_5$ such that $i \in \frac{h}{2}$, $j > \frac{h}{2}$. (et M be the result.

FINAL ANSWER: mex(L1, L2, M)

Graphically:

C1:= Maximum subarray

Sum oh "the left"

Sum on "the right"

M:= Maximum subarrey sum starting on "the left" and ending on "the right".

Questions: how to compute (4, 62 and H)

Cet's start with M. Example -10 2 5 3 1 -8 M is maximum subarray sum starting on the left and choling on the right. How do we compute it? let's compute the prefix sum array on the right" And the suffix - sum array on the left maximum element in the prefix-sum array suffix-sum alley 1. this case 4+7 = 11

How do we compute prefix/suffix sum array? We illustrate the algorithm to compute the prefix/suffix sum array on bo...bn. For our problem we compute the prefix sum on an and the suffix sum on an analyse.

 $preFix[O] \leftarrow b$ o $sufFix[O] \leftarrow b$ n for i = 1...n $preFix[i] \leftarrow preFix[i-1] + b$; $sufFix[i] \leftarrow sufFix[i-1] + b$ n-i

Compute "piefix"

O(n) compute "suffix"

O(n) find mex in prefix

Suffix

O(n) sum of meximum

suffix and meximum

prefix

O(n) total

How do we compute (, and Lz? RECURSIVELY

The idea of recursion is that we "trust" our algorithm:
it will call itself multiple times until it hits a base
case. Let's Look at it graphically (in red the recursive calls)

In pink the best-cases

In pseudo-code our algorithm is the following: AL GO (a) if a has length 1: return max(0,a) else Ly + ALGO (a,... an/2) RECURSION. -
Creative that ALGO will eventually hit the base case and return the we compute it Correct Solution with prefix/suffix sun erreys as explained return mex (L, L, h)

Total runtime T(n)? Here we prove only for $n=2^k$, k, k.

The generalization is technical (but similar in spirit).

recursive computation of n

$$T(h) = 2T(\frac{h}{2}) + c \cdot h$$

$$= 2(2T(\frac{h}{u}) + ch = 4T(\frac{h}{u}) + 2ch$$

$$= 4(2T(\frac{h}{8}) + c\frac{n}{4}) + 2ch = 8T(\frac{h}{8}) + 3ch$$

$$= 2^{\mu} T\left(\frac{h}{2^{\mu}}\right) + \mu ch$$

That's the informal idea, now we are going to prove it (via induction)

$$T(\Lambda) = \tilde{C}$$
 (1) $\frac{Cl-im}{T(2^n)} T(2^n) = 2^n T(\Lambda) + kc2^n(3)$
 $T(h) = 2T(\frac{h}{2}) + ch(2)$

Induction ouc, u.

$$BC, u=0$$
 $T(z^{\circ})=T(x)=2$ $T(z^{\circ})=2$ $T(x)=2$

1H Claim holds for a h

$$T(2^{n+1}) \stackrel{(2)}{=} 2T(\frac{2^{n+1}}{2}) + C \cdot 2^{n+1}$$

$$= 2T(2^n) + C \cdot 2^{n+1}$$

$$\stackrel{(2)}{=} 2C 2^n T(1) + K c 2^n + C \cdot 2^{n+1}$$

$$= 2^{n+1} T(1) + K c 2^{n+1} + C \cdot 2^{n+1}$$

My suggestion: Try to implement it yourself and then check the solution on the Gittlub of the exercise session!

= 2 "T(1) + c.2 " (h+1)