Homework 2

Due: Monday, October 19, 2020

Question 1. Suppose X and Y are random variables on (Ω, \mathcal{F}, P) and let $A \in \mathcal{F}$. Show that if we let $Z(\omega) = X(\omega)$ for $\omega \in A$ and $Z(\omega) = Y(\omega)$ for $\omega \in A^c$, then Z is a random variable.

We want to show that

$$Z^{-1}(B) = \{\omega : Z(\omega) \in B\} \in \mathcal{F}$$

for B in an arbitrary measurable space. Note that

$$Z^{-1}(B) = \{\omega : Z(\omega) \in B\} = \{\omega \in A : Z(\omega) \in B\} \cup \{\omega \in A^c : Z(\omega) \in B\}$$
$$= \{\omega \in A : X(\omega) \in B\} \cup \{\omega \in A^c : Y(\omega) \in B\}$$
$$= (X^{-1}(B) \cap A) \cup (Y^{-1}(B) \cap A^c)$$

Since $X^{-1}(B)$, $Y^{-1}(B)$, A, $A^c \in \mathcal{F}$ and \mathcal{F} is closed under countable intersections and unions, $Z^{-1}(B) \in \mathcal{F}$.

Question 2. Suppose X is a continuous random variable with distribution function F_X . Let g be a strictly increasing continuous function. Define Y = g(X). a) What is F_Y , the distribution function of Y? b) What is f_Y , the density function of Y?

Since g is strictly increasing, g^{-1} exists.

- a) $F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \le g^{-1}(y)) = F_X(g^{-1}(y))$
- b) Since g and X are both continuous, Y is also continuous, then we have $f_Y=F_Y'=F_X'(g^{-1}(y))=f_X(g^{-1}(y))\frac{dg^{-1}(y)}{dy}$

Question 3. Suppose X is a continuous random variable with distribution function F_X . Find F_Y where Y is given by a) X^2 b) $\sqrt{|X|}$ c) $\sin X$ d) $F_X(X)$.

a)
$$F_Y(y) = P(Y \le y) = P(X^2 \le y) = \begin{cases} P(-\sqrt{y} \le X \le \sqrt{y}) = F_X(\sqrt{y}) - F_X(-\sqrt{y}) & y \ge 0 \\ 0 & y < 0 \end{cases}$$

b) $F_Y(y) = P(Y \le y) = P(\sqrt{|X|} \le y) = \begin{cases} P(-y^2 \le X \le y^2) = F_X(y^2) - F_X(-y^2) & y \ge 0 \\ 0 & y < 0 \end{cases}$
c) $F_Y(y) = P(Y \le y) = P(\sin(X) \le y) = \begin{cases} 0 & y < -1 \\ \text{See below } -1 \le y \le 1 \\ 1 & y > 1 \end{cases}$

Figure 1: Question 3(c) drawing

When $-1 \le y \le 1$ (See Figure 1 for a graph explanation)

$$P(\sin(X) \le y) = \sum_{n=-\infty}^{+\infty} P((2n-1)\pi - \sin^{-1}(y) \le X \le 2n\pi + \sin^{-1}(y))$$
$$= \sum_{n=-\infty}^{+\infty} F_X(2n\pi + \sin^{-1}(y)) - F_X((2n-1)\pi - \sin^{-1}(y))$$

d)
$$F_Y(y) = P(Y \le y) = P(F_X(X) \le y) = P(X \le F_X^{-1}(y)) = F_X(F_X^{-1}(y)) = y$$
 when $0 \le y \le 1$. $F_Y(y) = 1$ when $y > 1$ and $F_Y(y) = 0$ when $y < 0$.

Question 4. Let $X : [0,1] \to \mathbf{R}$ be a function that maps every rational number in the interval [0,1] to 0, and every irrational number to 1. We assume that the probability space

where X is defined is ([0, 1], $\mathcal{B}[0, 1]$, P), where $\mathcal{B}[0, 1]$ is the Borel σ -algebra on [0,1], and P is the Lebesgue measure. Is X a random variable (and why)? If it is, what are its distribution function and expectation? Does X have a density function? Is X discrete?

Yes it is. X is an indicator function:

$$X(\omega) = \begin{cases} 0 & \omega \in A \\ 1 & \omega \notin A \end{cases}$$

where $A = \mathbf{Q} \cap [0, 1]$. For any Borel set B, we have

$$X^{-1}(B) = \{ \omega \mid X(\omega) \in B \} = \begin{cases} A & 1 \in B, 0 \notin B \\ A^c & 1 \notin B, 0 \in B \\ [0, 1] & 1 \in B, 0 \in B \\ \emptyset & 1 \notin B, 0 \notin B \end{cases}$$

Therefore X is a random variable. Then $EX = \int_{[0,1]} X dP = 0 \cdot P(A) + 1 \cdot P(A^c) = P(A^c) = 1$. Its distribution function is

$$F_X(x) = \begin{cases} 0 & x < 1\\ 1 & x \ge 1 \end{cases}$$

X does not have a density function. Suppose a density function f(x) exists, we would have

$$P(X=1) = \lim_{\epsilon \to 0} \int_{1-\epsilon}^{1+\epsilon} f(x)dx = 0$$

But in our example $P(X = 1) = P(A^c) = 1$. Therefore X does not have a density function. X is dicrete because it only takes a finite set of values.