Contents

1	Template	2
2	Search 2.1 Ternary Search	2 2
3	Algebra	2
•	3.1 All divisors	2
	3.2 Primality test	3
	3.3 Binary exponentiation	3
	3.4 Greatest common divisor	4
	3.4.1 Least common multiple	4
	3.4.2 Extended Euclides Algorithm	4
	3.5 Linear Diophantine Equations	4
	3.5.1 Any solution	4
	3.6 Fast Fourier Transform	5
	5.0 Tast Tourier Transform	9
4	Graphs	5
	4.1 DFS	5
	4.2 BFS	5
	4.2.1 Shortest path on unweighted graph	6
	4.3 Flood Fill	7
	4.4 Topological Sort (Directed Acyclic Graph)	7
	4.4.1 DFS Variation	7
	4.4.2 Kahn's Algorithm	7
	4.5 Bipartite Graph Check (Undirected Graph)	8
	4.6 Cycle Check (Directed Graph)	8
	4.7 Dijkstra	9
	4.7 Dijksua	3
5	Math Formulas	10
	5.1 Sum of an arithmetic progression	10
	5.2 Permutation with repeated elements	10
	5.3 Check if is geometric progression	10
	5.4 Bitwise equations	10
	5.5 Cube of Binomial	10
	5.5.1 Sum of Cubes	11
	5.5.2 Difference of Cubes	11
	5.6 Binomial expansion	11
	o.o Dinoma expansion	11
6	Facts	11
-	6.1 XOR	11
	6.1.1 Self-inverse property	11
	6.1.2 Identity element	11
	6.1.3 Commutative	11
	6.1.4 Associative	11
		_

1 Template

```
#include <bits/stdc++.h>
using namespace std;
using 11 =
                       long long;
#define vll
                       vector<11>
#define vvll
                       vector <vll>>
#define pll
                       pair<ll, ll>
                       vector <pll>
#define vpll
#define vvpll
                       vector < vpll >
#define endl '\n'
#define all(xs)
                       xs.begin(), xs.end()
#define found(x, xs) (xs.find(x) != xs.end())
```

2 Search

2.1 Ternary Search

 $O(\log n)$

Function f(x) is unimodal on an interval [l, r]. Unimodal means: the function strictly increases first, reaches a maximum, and then strictly decreases OR the function strictly decreases first, reaches a minimum and then strictly decreases

```
double ternary_search(double 1, double r) {
       double eps = 1e-9; // error limit
2
       while (r - 1 > eps) {
           double m1 = 1 + (r-1) / 3;
           double m2 = r - (r-1) / 3;
            double f1 = f(m1);
            double f2 = f(m2);
            if(f1 < f2)
10
                1 = m1;
            else
               r = m2;
       }
14
15
       return f(1);
   }
17
```

3 Algebra

3.1 All divisors

 $O(\sqrt{n})$

3.2 Primality test

 $O(\sqrt{n})$

```
bool isPrime(ll n)
{
    if(n!=2 && n % 2==0)
        return false;

    for(ll d=3; d*d <= n; d+=2)
    {
        if(n % d==0)
            return false;
    }

    return n >= 2;
}
```

3.3 Binary exponentiation

 $O(\log n)$

3.4 Greatest common divisor

 $O(\log \min(a, b))$

3.4.1 Least common multiple

3.4.2 Extended Euclides Algorithm

```
11 gcd(ll a, ll b, ll& x, ll& y) {
       if (b == 0) {
2
           x = 1;
           y = 0;
           return a;
       }
6
       ll x1, y1;
       11 d = gcd(b, a \% b, x1, y1);
       x = y1;
       y = x1 - y1 * (a / b);
10
       return d;
11
12
```

3.5 Linear Diophantine Equations

 $O(\log \min(a, b))$

3.5.1 Any solution

```
bool find_any_solution(ll a, ll b, ll c, ll &x0, ll &y0, ll
    &g) {
       g = gcd(abs(a), abs(b), x0, y0);
       if (c % g) {
            return false;
       }
}
```

```
x0 *= c / g;

y0 *= c / g;

if (a < 0) x0 = -x0;

if (b < 0) y0 = -y0;

return true;

}
```

3.6 Integer Factorization

3.6.1 Pollard's Rho

 $O(\sqrt[4]{n}\log n)$

```
/**
       @param a first multiplier
       @param b second multiplier
       @param mod
       @return a * b mod n (without overflow)
       @brief Multiplies two numbers >= 10^18
       Time Complexity: O(log b)
   ll mult(ll a, ll b, ll mod) {
10
       11 result = 0;
       while (b) {
           if (b & 1)
               result = (result + a) % mod;
           a = (a + a) \% mod;
           b >>= 1;
16
       return result;
17
18
19
   /**
20
    * Oparam x first multiplier
      @param c second multiplier
       @param mod
       Oreturn f(x) = x^2 + c \mod (mod)
       Obrief Polynomial function chosen for pollard's rho
       Time Complexity: 0(1)
26
   11 f(11 x, 11 c, 11 mod) {
       return (mult(x, x, mod) + c) % mod;
29
   }
30
31
   /**
32
      @param n number that we want to find a factor p
       @param x0 number where we will start
       Oparam c constant in polynomial function
       Oreturn fac
```

```
Obrief Pollard's Rho algorithm (works only for composite
37
         numbers)
       if (g==n) try other starting values
38
       Time Complexity: O(n^{(1/4)} \log n)
39
   */
   ll rho(ll n, ll x0=2, ll c=1) {
41
       11 x = x0;
42
       11 y = x0;
43
       11 g = 1;
44
       while (g == 1) {
45
           x = f(x, c, n);
           y = f(y, c, n);
47
           y = f(y, c, n);
48
           g = gcd(abs(x - y), n);
49
50
       return g;
51
```

4 Graphs

4.1 DFS

```
O(n+m)
```

```
void dfs(ll at, ll n ,vpll adj[], bool visited[]) {
   if(visited[at])
      return;

visited[at] = true;

vpll neighbours = adj[at];
for(auto nex: neighbours)
   dfs(nex.first, n, adj, visited);
}
```

4.2 BFS

```
O(n+m)
```

```
void bfs(ll s, ll n, vll adj[]) {
   bool visited[n] = {0};
   visited[s] = true;

queue<ll> q;
   q.push(s);
   while (!q.empty())
   {
      vll neighbours = adj[q.front()];
}
```

```
for(auto nex: neighbours) {
                 if(!visited[nex]) {
                      visited[nex]=true;
12
                      q.push(nex);
13
                 }
14
15
            }
            cout << q.front() << '\n';</pre>
16
17
            q.pop();
        }
18
   }
19
```

4.2.1 Shortest path on unweighted graph

O(n+m)

```
vll solve(ll s, ll n, vll adj[]) {
       bool visited[n] = {0};
2
       visited[s] = true;
       queue <11> q;
       q.push(s);
       vll prev(n, -1);
       while (!q.empty())
            vll neighbours = adj[q.front()];
10
            for(auto nex: neighbours) {
11
                if(!visited[nex]) {
                     visited[nex]=true;
13
                     q.push(nex);
14
                     prev[nex] = q.front();
15
                }
16
            }
17
            q.pop();
18
19
20
       return prev;
21
   }
22
23
   vll reconstructPath(ll s, ll e, vll prev) {
24
       vll path;
25
       for(ll i=e; i!=-1; i=prev[i])
26
            path.push_back(i);
27
28
       reverse(path.begin(), path.end());
29
30
       if (path [0] == s)
31
            return path;
32
        else {
33
            vll place;
```

4.3 Flood Fill

```
O(n+m)
```

```
int dir_y[] = {};
  int dir_x[] = {};
   int ff(int i, int j, char c1, char c2) {
       if ((i < 0) || (i >= n)) return 0;
       if ((j < 0) || (j >= m)) return 0;
6
       if (grid[i][j] != c1) return 0;
       int ans = 1;
       grid[i][j] = c2;
10
11
       for (int d = 0; d < 8; ++d)</pre>
           ans += floodfill(i+dir_y[d], j+dir_x[d], c1, c2);
13
14
15
       return ans;
  }
```

4.4 Topological Sort (Directed Acyclic Graph)

4.4.1 DFS Variation

O(n+m)

```
void dfs(ll at, ll n ,vpll adj[], bool visited[], vll &ts) {
   if(visited[at])
      return;

visited[at] = true;

vpll neighbours = adj[at];
for(auto nex: neighbours)
   dfs(nex.first, n, adj, visited);
ts.push_back(at); // Only change
}
```

4.4.2 Kahn's Algorithm

```
priority_queue<11, v11, greater<11>> pq;
   for(11 at=0; at<n; at++)</pre>
                                     // Push all sources of
       connected components in graph
       if(in_degree[at] == 0)
           pq.push(at);
5
   while(!pq.empty()) {
6
       11 at = pq.top(); pq.pop();
       vll neighbors = adj[at];
       for(auto nex: neighbors) {
           in_degree[nex]--;
10
           if(in_degree[nex]>0) continue;
11
           pq.push(nex);
       }
  }
14
```

4.5 Bipartite Graph Check (Undirected Graph)

O(n+m)

```
bool isBipartite(ll s, ll n, vll adj[]) {
       queue <11> q;
       q.push(s);
       vll color(n, -1); color[s]=0;
       bool flag = true;
       while (!q.empty())
6
       {
            vll neighbours = adj[q.front()];
            for(auto nex: neighbours) {
10
                if(color[nex] == -1) {
                    color[nex] = 1-(color[q.front()]);
11
12
                    q.push(nex);
                }
                else if(color[nex] == color[q.front()]) {
14
                    flag = false;
15
                    break;
                }
            }
18
            q.pop();
19
20
21
22
       return flag;
   }
```

4.6 Cycle Check (Directed Graph)

O(n+m)

```
enum { UNVISITED = -1, VISITED = -2, EXPLORED=-3};
2
   void cycleCheck(ll at, ll n ,vll adj[], int visited[], ll
3
      dfs_parent[]) {
       visited[at] = EXPLORED;
       vll neighbours = adj[at];
       for(auto nex: neighbours) {
           if(visited[nex] == UNVISITED) {
               // Tree edges (part of the DFS spanning tree)
               dfs_parent[nex] = at;
               cycleCheck(nex, n, adj, visited);
           else if(visited[nex] == EXPLORED) {
13
               if(nex == dfs_parent[at]) {
14
                    // Trivial cycle
                    // Do something
16
               }
17
               else {
                    // Non trivial cycle - Back Edge ((u, v)
19
                       such that v is the ancestor of node u but
                        is not part of the DFS tree)
                    // Do something
20
21
           else if(visited[nex] == VISITED) {
               // Forward/Cross edge ((u, v) such that v is a
25
                   descendant but not part of the DFS tree)
               // Do something
26
27
28
30
       visited[at] = VISITED;
31
32
```

4.7 Dijkstra

 $O(n\log n + m\log n)$

```
void dijkstra(ll s, vll & d, vll & p) {
    d.assign(n, LLONG_MAX);
    p.assign(n, -1);

d[s] = 0;
```

```
priority_queue<pll, vpll, greater<pll>> q;
6
       q.push({0, s});
       while (!q.empty()) {
            11 v = q.top().second;
9
            ll d_v = q.top().first;
10
            q.pop();
11
            if (d_v != d[v])
                continue;
13
14
            for (auto edge : adj[v]) {
15
                11 to = edge.first;
                11 len = edge.second;
17
18
                if (d[v] + len < d[to]) {</pre>
19
                     d[to] = d[v] + len;
20
                     p[to] = v;
21
                     q.push({d[to], to});
22
                }
            }
24
       }
25
   }
26
```

5 Math Formulas

5.1 Sum of an arithmetic progression

$$S_n = \frac{n}{2}(a_1 + a_n)$$

5.2 Permutation with repeated elements

$$P_n = \frac{n!}{n_1! n_2! \dots n_k!}$$

5.3 Check if is geometric progression

$$a_i^2 = a_{i-1} a_{i+1}$$

5.4 Bitwise equations

$$\begin{aligned} a|b &= a \oplus b + a\&b \\ a \oplus (a\&b) &= (a|b) \oplus b \\ (a\&b) \oplus (a|b) &= a \oplus b \\ \\ a+b &= a|b+a\&b \\ a+b &= a \oplus b + 2(a\&b) \\ \\ a-b &= (a \oplus (a\&b)) - ((a|b) \oplus a) \\ a-b &= ((a|b) \oplus b) - ((a|b) \oplus a) \end{aligned}$$

$$\begin{array}{l} a-b=(a\oplus(a\&b))-(b\oplus(a\&b))\\ a-b=((a|b)\oplus b)-(b\oplus(a\&b)) \end{array}$$

5.5 Cube of Binomial

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

5.5.1 Sum of Cubes

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

5.5.2 Difference of Cubes

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

5.6 Binomial expansion

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

6 Facts

6.1 XOR

6.1.1 Self-inverse property

To cancel a XOR, you can XOR again the same value because $a\oplus a=0,$ so $(value\oplus a)\oplus a=value$

6.1.2 Identity element

$$a \oplus 0 = a$$

6.1.3 Commutative

$$a\oplus b=b\oplus a$$

6.1.4 Associative

$$(a \oplus b) \oplus c = a \oplus (b \oplus c)$$