Introduction: This report presents the comprehensive analysis of cosmetic mixtures using various analytical techniques. Each combination of ingredients was treated as a single test sample, thoroughly analyzed, and recorded. The techniques utilized include X-Ray Diffraction, Mass Spectrometry, NMR Spectroscopy, Liquid Chromatography, Ion Chromatography, and Viscosity Measurement.

Sample Analysis and Observations:

Sample Set A: Coconut Oil, Gum, Glycerin-X-Ray Diffractometer (XRD-6000):Operating Conditions: 45, CelsiusThe crystalline structure exhibited notable peaks which correspond to common triglyceride configurations.

Sample Set B: Coconut Oil, Beeswax, Glycerin-NMR Spectrometer (NMR-500):Chemical shift registered at 15, ppmThe spectrum highlights interactions suggestive of hydrogen bonding within the mixture.

Sample Set C: Jojoba Oil, Gum, Glycerin-Liquid Chromatograph (LC-400):Measured concentration of 200, ug/mLElution profile indicates synergy between gummy substances and glycerin, attributed to their retention time overlap.

Additional Notes:-Viscometer VS-300:Test 1: Pure Coconut OilMeasured Viscosity: 4910.84, cPThe viscosity is consistent with natural coconut oil properties under controlled conditions.

Test 2: Coconut Oil, Cetyl Alcohol, Glycerin MixtureMeasured Viscosity: 4987.77, cPThe addition of cetyl alcohol results in a slight viscosity increase, indicative of altered flow properties.

Detailed Results & Discussion:

Table 1: X-Ray Diffraction and Mass Spectrometry Data

	Sample Combination	Instrument	Condition Value	Unit	Observation Summary	
С	oconut Oil, Gum, Glycer	n XRD-6000	45	Crystatine peaks of	orrelated with typical trig	lycerid
С	oconut Oil, Gum, Glycer	n MS-20	800	Mediu rm ⁄achain fatty	acids presence confirme	d via fı

Table 2: NMR and Liquid Chromatography Analysis

	Sample Combination	Instrument	Measurement	Unit	Analytical Insight	
Cod	onut Oil, Beeswax, Glyc	erin NMR-500	15	Ppesence of hyd	lrogen bonding inferred f	rom pe
·	lojoba Oil, Gum, Glycerir	n LC-400	200	ug/ rEl ution over	lap suggests component	intera

Table 3: Additional Data Including Irrelevant Mentions

	Description	Method	Result	Unit
	Viscosity of Pure Coconut Oil	Viscometer VS-300	4910.84	сР
Coconu	t Oil, Cetyl Alcohol, Glycerin V	iscosit/jiscometer VS-300	4987.77	сР
oconut	Oil, Cetyl Alcohol, Vitamin E D	etection IC-2100	0.05	mM

Conclusion: The analysis determined varying interactive behaviors among cosmetic ingredients, significantly influenced by their molecular structure and bonding potential. This report accentuates the necessity for integrative testing when developing complex cosmetics, ensuring stability and desirable physical properties. Visibility into the chemical nuances provided herein shall guide future formulation processes.