2023-10-11

A variant of Helly's theorem

Recall the following definitions from [1]:

Definition 1. The diameter of a point set Q is $\sup_{p,q\in Q} d(p,q)$. The set Q is bounded if its diameter is finite, and is unbounded otherwise. A point set Q in a metric space is compact if it is closed and bounded.

Definition 2. Given a finite collection of sets $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in A}$, we define the nerve of the set \mathcal{U} to be the simplicial complex $N(\mathcal{U})$ whose vertex set is the index set A, and where a subset $\{\alpha_0, \alpha_1, \ldots, \alpha_k\} \subseteq A$ spans a k-simplex in $N(\mathcal{U})$ if and only if $U_{\alpha_0} \cap U_{\alpha_1} \cap \ldots \cap U_{\alpha_k} \neq \emptyset$.

Consider now the following definition from Scribe Notes 4 (Definition 8),

Definition 3. Let X be a metric space, and U a finite family of closed subsets of X. We call U a good cover, if every non-empty intersection of sets in U is contractible (i.e., homotopy equivalent to a point).

Additionally consider the following proposition:

Proposition 1. Given a finite family of compact convex sets it holds that

- 1. The sets of the family are closed,
- 2. The intersection of sets of the family is convex,
- 3. If the sets of the family are non empty, they are contractible.

Proof 1.

- 1. Follows from Definition 1
- 2. Follows from Proposition 2.2.6 in [2]
- 3. Let X be a convex set. let $x_0 \in X$ be non empty, convex. We define the following homotopy:

$$\mathbf{H}: X \times I \to X, \quad \mathbf{H}(\mathbf{x}, t) = t \cdot x_0 + (1 - t) \cdot \mathbf{x}.$$

This yields a homotopy between the identity map id_X (with t = 0) and the constant map x_0 (with t = 1). Since X is convex, \mathbf{H} takes values in X and is a continuous function (polynomial in both \mathbf{x} and t).

Let $\mathcal{F}=\{\mathcal{F}_1,\ldots,\mathcal{F}_n\}$ be a finite family $(n<\infty)$ of compact convex k-dimensional subsets of \mathbb{R}^d . By assumption we know that any subfamily $\mathcal{F}'\subseteq\mathcal{F}$ of k+2 or fewer sets has a non-empty intersection, i.e., $\cap \mathcal{F}'\neq\emptyset$.

Let now \mathcal{F}^* be the subfamily of \mathcal{F} whose elements (i.e the sets) are build by taking unions and intersection from the sets of \mathcal{F} such that they have a non empty intersection (i.e \mathcal{F}^* contains all the sets with non empty intersection).

Remark 1. We know that \mathcal{F}^* will contain at least all the subfamilies of \mathcal{F} formed by taking maximum k+2 elements. Since every intersection of k+2 or less sets in not empty, the nerve of \mathcal{F}^* , i.e $N(\mathcal{F}^*)$ will contain all the j-1 simplicies spanned by any j-ple of vertices with $j \leq k+2$ (this follows from Definition 2).

Moreover, it holds that the subfamility F^* is a cover of $\bigcup \mathcal{F}$, since each of the sets \mathcal{F}_i , with $i = 1, \dots, m$ can be written as a finite union of sets of \mathcal{F}^*

$$\mathcal{F}_i = \underbrace{(\mathcal{F}_i \cap \mathcal{F}_1)}_{=(*)_1} \cup \cdots \cup \underbrace{(\mathcal{F}_i \cap \mathcal{F}_m)}_{=(*)_m}.$$

Remark 2. Every of the $(*)_i$ is in \mathcal{F}^* because of the first phrase in Remark 1 and the fact that k+2>2.

From Proposition 1 it follows that \mathcal{F}^* is a good cover of $\bigcup \mathcal{F}^*$. Recall from [1] the Nerve Theorem

Theorem 1 (Nerve Theorem). Given a finite cover \mathcal{U} (open or closed) of a metric space M, the underlying space $|N(\mathcal{U})|$ is homotopy equivalent to M if every non-empty intersection $\bigcap_{i=0}^k U_{\alpha_i}$ of cover elements is homotopy equivalent to a point, that is, contractible.

Using Theorem 1 and Proposition 1, we have that the underlying space $|N(\mathcal{F}^*)|$ is homotopy equivalent to $\bigcup \mathcal{F}^* = \bigcup \mathcal{F}$.

Let's now assume by contradiction that $\bigcap \mathcal{F} = \emptyset$. Then it exists a k' that satisfies $k+2 < k' \le m$ and a subfamily $\{\mathcal{F}_1, \ldots, \mathcal{F}_{k'}\}$ of \mathcal{F} such that their intersection $\mathcal{F}_1 \cap \cdots \cap \mathcal{F}_{k'} = \emptyset$. This means that $|N(\mathcal{F}^*)|$ does not contain the k'-1 dimensional simplex spanned by the correspondent vertices $\{v_1, \ldots, v_{k'}\}$. Consider now the following proposition

Proposition 2. If $|N(\mathcal{F}^*)|$ does not contain the k'-1 dimensional simplex spanned by the vertices $\{v_1,\ldots,v_{k'}\}$, it holds that $|N(\mathcal{F}^*)|$ contains a k'-2 cycle $c^*=\sum_{i=1}^{k'}\langle v_1,\ldots,\hat{v}_i,\ldots,v_{k'}\rangle$ that is not a boundary (notation of the c^* is the same used in the Scribe Notes).

Proof 2. We first note that if c^* was a border, it would have been the border of k' dimensional simplex spanned by the vertices $\{v_1, \ldots, v_{k'}\}$ but since this is not in $|N(\mathcal{F}^*)|$, this cannot be the case. Therefore it remains to prove that c^* is indeed a k'-2 cycle. From the Scribe Notes 6 Definition 2 we have that c^* is a k'-2 cycle if $\delta(c^*)=0$. We compute:

$$\delta(c^*) = \delta\left(\sum_{i=1}^{k'} \langle v_1, \dots, \hat{v}_i, \dots, v_{k'} \rangle\right)$$
(1)

$$= \sum_{j=1, j\neq i}^{k'} \sum_{i=1}^{k'} \langle v_1, \dots, \hat{v}_i, \dots, \hat{v}_j, \dots, v_{k'} \rangle$$
(2)

$$=0 (3)$$

where the last equality holds since every tuple of (\hat{v}_i, \hat{v}_j) appears exactly two times (severy possible chains in Equation 2 appears two times) and thus applies what is written after Observation 3 in Scribe Notes 5.

From the Proposition 2 is follows that $H_{k'-2}(|N(\mathcal{F}^*)|) \not\cong 0$. By Corollary 4 of Scribe Note 8 we have that the homology groups of $\bigcup \mathcal{F}$ are isomorphic to the homology groups of $|N(\mathcal{F}^*)|$.

Proposition 3. Let X be a k dimensional topological space. Then we have that

$$H_p(\mathcal{X}) \cong 0, \quad \forall p > k.$$

Proof 3. A proof has been given in class for the d-dimensional sphere. Intuitively this holds in general because in X (which is k dimensional) there cannot exists non-trivial p-dimensional holes with p > k.

Since we can assume that $\bigcup \mathcal{F}$ is k dimensional (it is the union of k dimensional sets) and k' > k + 2, from Proposition 3 we have that $H_{k'-2}(\bigcup \mathcal{F}) \cong 0$. We arrived so at a contradiction. It must so hold that all the sets have a common intersection, i.e., $\bigcap \mathcal{F} \neq \emptyset$.

Literatur

- [1] Tamal Krishna Dey and Yusu Wang. *Computational Topology for Data Analysis*. Cambridge University Press, 2022.
- [2] Niels Lauritzen. LECTURES ON CONVEX SETS. https://users.fmf.uni-lj.si/lavric/lauritzen.pdf, 2010.