Last name	
First name	
Group	

Grade	
Grade	

Algorithmics Undergraduate 2^{nd} year (S3) Midterm #3 (C3) 24 October 2016 - 14:45 Answer Sheets

1	
2	
3	
4	
5	
6	

Answers 1 (Linear probing – 2 points)

Present the collision resolution using the linear probing principle with an offset coefficient d = 4:

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Answers 2 (Hashing: Valid tables – 3 points)

Surround the tables which can not be the result of insertion of the keys (regardless of arrival order of these keys).

Answers 3 Hashing: Questions...(3 points)

- 1. Three properties: (a) _____ (b) _____ (c) ____
- 2. What is the cause of a secondary collision?
- 3. Collisions set apart, what phenomenon is caused by the linear probing and what do we envisage to solve it?

Answers 4 (Average Arity of a General Tree – 4 points)

Answers 5 (Equality – 5 points)

Answers 6 (B-Trees and Mystery – 3 points)

1.

	Returned result	Call number
(a) mystery(B_1 , 1, 77)		
(b) mystery(B_1 , 10, 30)		

2	What	does	mystery(B,	a	h)	calculate?
⊿.	vviout	uocs	mystery (D,	ω,	0,	carcarare: