Raspberry Pi Modbus スレーブアプリケーション

RPi-GP10

RPi-GP40

Modbus 通信プロトコル

Rev. 1. 01 ラトックシステム株式会社

1. システム構成

Raspberry Pi Modbus スレーブシステムのシステム構成を以下に記す。

2. 機能詳細

2.1. Modbus 通信プロトコル機能

Modbus/ASCII、Modbus/RTU、Modbus/TCP の通信プロトコルに対応する。設定ファイルにてプロトコルを指定する。

2.2. RS485 通信機能

Modbus/ASCII、Modbus/RTU を使用するときの通信機能。REX-USB70 に対応する。 設定ファイルにて使用するシリアルポートデバイスを指定する。

2.3. TCP/IP 通信機能

Modbus/TCP を使用するときの通信機能。標準で用意されている有線 LAN または無線 LAN を使用する。ポート「5020/TCP」で待ち受ける。このポート番号は設定ファイルにて指定することで変更を可能とする。

2.4. Modbus スレーブ機能

Python の Modbus 通信ライブラリ pymodbus を使用した Python3 ベースのソフトウェアで構築する。Raspberry Pi 上に実装した、RPi-GP10、または RPi-GP40 を Modbus プロトコルの通信プロトコルにより制御を可能とする。

使用するデバイスは設定ファイルにて指定する。RPi-GP10、RPi-GP40 のどちらかまたは両方同時使用を選択できる。また、Modbus のスレーブアドレスも設定ファイルで変更可能とする。

2.5. 設定ファイル機能

スレーブアプリケーションの動作設定は設定ファイルを使用して変更を可能とする。設定ファイルは Python の標準ライブラリ「confignarser」を使用して読み込みを行う。ファイル名は「config.ini」とする。設定値一覧を下記に記す。

項目名	デフォルト値	設定範囲	説明			
SECTION[COMMON]						
protocol	rtu	rtu, ascii, tcp	Modbus プロトコル			
debug	False	True, False	デバッグログの有効化			
SECTION[TCP]	SECTION[TCP]					
host	127.0.0.1	IPアドレス or	待ち受けホスト名			
		ホスト名				
port	5020	ポート番号	待ち受けポート番号			
SECTION[SERIA	AL]					
device	/dev/ttyUSB0	シリアルデバイス	シリアル通信時のシリアルポート			
		名				
baudrate	9600	ボーレート	シリアル通信時のボーレート			
SECTION[GP10]						
enable	True	True, False	RPi-GP10 の有効化			
deviceid	1	1 - 247	Modbus のスレーブアドレス			
slave	0x20	0x20 - 0x27	RPi-GP10 の I2C スレーブアドレ			
			ス			
strobe	14	12,14	ストローブ出力端子 GPIO 番号			
trigger	15	13,15	トリガー入力端子 GPIO 番号			
SECTION[GP40]						
enable	True	True, False	RPi-GP40 の有効化			
deviceid	2	1 - 247	Modbus のスレーブアドレス			
pin_output	12	12, 14	デジタル出力端子 GPIO 番号			
pin_input	13	13, 15	デジタル/アラーム入力端子 GPIO			
			番号			

2.6. RPi-GP10 制御機能

2.6.1. デジタル入出力

8ch のデジタル入力の取得と 8ch のデジタル出力の設定を行う。デフォルトは負 論理のため 0N のときは LOW とする。デジタル入力は 500ms でポーリングを行い取 得した値を返す。

2.6.2. トリガー入力端子

トリガー入力機能を有効にすることで、トリガー端子の変化を検知したときに デジタル入力値を取得して値を返す機能。

2.6.3. ストローブ出力端子

ストローブ出力機能を有効にすることで、デジタル出力が変化したときに LOW 出力を行う。

2.7. RPi-GP40 制御機能

2.7.1. アナログ入力機能

アナログ入力データを AD 変換した結果を取得する。入力レンジはチャンネル毎に $\pm 10V$, $\pm 5V$, $\pm 2.5V$, $\pm 1V$, $\pm 0.5V$ 0-10V, 0-5V, 0-2.5V, 0-1V を選択できる。1 秒のポーリングを行い取得した値を返す。

2.7.2. アラーム機能

指定したチャンネルに対してしきい値の上限下限値を設定する。AD 変換中にアラーム検知することができる。また、アラーム検知と同時にデジタル出力の LOW 出力を行う。

アラーム検知したときはアラームを無効へ変更し、その時の結果としてアラーム検知した要因と AD 値を返す。

3. Modbus 通信データアドレス仕様

3.1. RPi-GP10

3.1.1. データアドレス

	アドレス	データ形	データ名称
		式	
	1 - 8		DO DO
	9 - 16		デジタル出力極性反転
コイル(OX)	17 - 24		デジタル入力極性反転
	25		トリガー入力機能
	26		ストローブ出力機能
入力ステータス	1 - 8		DI
(1X)	9 - 16		DI(トリガー入力機能)
入力レジスタ(3X)	-		
保持レジスタ(4X)	1	I16	ストローブ端子の保持時間

[※]データ形式 I16:16 ビット長整数、I32:32 ビット長整数、F:16 ビット長浮動小数点

3.1.2. コイルデータ

3.1.2.1. DO

8ch のデジタル出力データの設定取得を行う。デフォルトは負論理で、ON のときLOW 出力となる。

3.1.2.2. デジタル出力極性反転

8ch のデジタル出力の極性を反転する。ON で DO を ON のとき HIGH 出力となる。

3.1.2.3. デジタル入力極性反転

8ch のデジタル入力の極性を反転する。ONでDIがHIGTのときONとなる。

3.1.2.4. トリガー入力機能

トリガー入力機能を有効にする。有効設定後にトリガー端子の立ち下がりを検知したときにデジタル入力を取得し、DI(トリガー入力機能)で結果を取得できる。一度検知したら機能は OFF になる。

3.1.2.5. ストローブ出力機能

ストローブ出力機能を有効にする。DO 設定更新毎にストローブ端子を LOW 出力

する。

3.1.3. 入力ステータスデータ

3.1.3.1. DI

8ch のデジタル入力データを取得できる。デフォルトは負論理で、LOW のとき ON となる。

3.1.3.2. DI (トリガー入力機能)

トリガー入力検知したときのデジタル入力データを取得できる。

3.1.4. 入力レジスタデータ

データなし

3.1.5. 保持レジスタデータ

3.1.5.1. ストローブ端子の保持時間

ストローブ端子の LOW 出力の保持時間を設定できる。設定値 x100ms の時間保持する。設定範囲は、 $1\sim100$ 。デフォルトは 1。

3.2. RPi-GP40

3.2.1. データアドレス

	アドレス	データ形	データ名称
		式	
コイル(OX)	1		アラーム設定
入力ステータス	1		アラーム検知ステータス
(1X)	2 - 17		アラーム検知結果
入力レジスタ(3X)	1 - 8	I16	AD データ
	9 - 16	I16	アラーム検知したときの AD データ
保持レジスタ(4X)	1 - 8	I16	入力レンジ
	9 - 32	I16	アラームしきい値

※データ形式 I16:16 ビット長整数、I32:32 ビット長整数、F:16 ビット長浮動小数点

3.2.2. コイルデータ

3.2.2.1. アラーム設定

アラーム機能の有効/無効を設定する。アラーム検知したら自動で無効となる。

3.2.3. 入力ステータスデータ

3.2.3.1. アラーム検知ステータス

アラームを検知したときに ON となる。

3.2.3.2. アラーム検知結果

各チャンネルのアラーム検知結果を取得できる。検知したときに ON となる。ch0 の下限/上限、ch1 の下限/上限・・・の順に割り当たる。

3.2.4. 入力レジスタデータ

3.2.4.1. AD データ

1秒毎に取得した AD 変換値を取得できる。

3.2.4.2. アラーム検知したときの AD データ

アラーム検知したときに取得した AD データを取得できる。

3.2.5. 保持レジスタデータ

3.2.5.1. 入力レンジ

各チャンネルの入力レンジを設定できる。

設定値	入力レンジ
0(デフォルト)	±10V
1	±5V
2	±2.5V
3	±1V
4	±0.5V
5	0 - 10V
6	0 - 5V
7	0 - 2.5V
8	0 - 1V

3.2.5.2. アラームしきい値

各チャンネルのアラームしきい値を設定できる。 ch0 のヒステリシス/下限値/上限値、ch1 のヒステリシス/下限値/上限値・・・の順に割り当たる。

以上