Московский Государственный Университет имени М.В.Ломоносова Механико-математический факультет Кафедра теории вероятностей

Курсовая работа за 3 курс: Принципы назначения страховых премий.

Выполнила: Александра Токаева, 309

Научный руководитель: проф. Г.И.Фалин

Москва 2020

Содержание

1.	Вве	едение	1
2.	2.1.	щие результаты о случайных величинах Проблема оптимизации	2 2
3.		Двойственная проблема оптимизации	5 6
		Минимизация разности между индивидуальными рисками и индивидуальными премиями при заданной вероятности	
	3.2.	разорения	8
		сти между индивидуальными рисками и индивидуальными премиями	9

Мы применим простые геометрические принципы, чтобы показать, что хорошо известные подходы к назначению премий в страховом контракте минимизируют взвешенные квадраты разностей между индивидуальными премиями и индивидуальными выплатами, а также между суммарными премиями для классов однородных рисков и суммарными выплатами, поступающими из них.

1. Введение

Рассмотрим портфель из n неоднородных независимых страховых рисков. Пусть X_i обозначает размер выплат по i-му риску за рассматриваемый период, S - суммарные потери, связанные с портфелем. При некоторых естественных предположениях (что портфель достаточно большой, не очень неоднородный и распределение размера выплат не очень ассиметричное) распределение случайной величины $\frac{S-ES}{\sqrt{VarS}}$ может быть приближено стандартным гауссовским распределением.

Предположим, что страховщик взимает премию π_i по i-му риску и таким образом собирает суммарную премию $\pi = \sum_{i=1}^{n} \pi_{i}$. Из гаусовости распределения величины $\frac{S-ES}{\sqrt{VarS}}$ получаем, что для гарантии достаточно маленькой вероятности разорения $R = P(S > \pi)$ (например, R=5%) страховщик должен собрать суммарную премию в размере

$$ES + \sqrt{VarS} * z_{(1-R)} \tag{1}$$

, где z_{α} - квантиль гаусовского распределения уровня альфа. Ну действительно: $P(S>\pi)=R\Leftrightarrow P(\frac{S-ES}{\sqrt{VarS}}>\frac{\pi-ES}{\sqrt{VarS}})=R\Leftrightarrow$ $\frac{S-ES}{\sqrt{VarS}} = z_{(1-R)} \Leftrightarrow \pi = ES + \sqrt{VarS} * z_{(1-R)}.$

Йоследнее равенство ничего не говорит о величине индивидуальных премий. Чтобы найти их, мы используем дополнительные принципы.

Вслед за Заксом, Фростигом и Левиксоном мы рассмотрим два подхода к задаче разбиения величины π на n индивидуальных премий $\pi_1 \dots \pi_n$:

- 1) Для заданной вероятности разорения $R = P(S > \pi)$ минимизировать взвешенного квадрата разности $\sum_{i=1}^{n} \frac{1}{s_i} E(X_i - \pi_i)^2$ между индивидуальными рисками X_i и индивидуальными премиями π_i (где s_i -это некоторые известные положительные числа, то есть веса)
 - 2) Для заданной $D = \sum_{i=1}^{n} \frac{1}{s_i} E(X_i \pi_i)^2$ минимизировать вероятность

разорения $P(S > \pi)$

Сейчас мы с помощью простых геометрических рассуждений покажем, что обе задачи минимизации имеют одно и то же решение. Кроме того, мы покажем, что оптимальные премиии π_i минимизируют взвешенную сумму квадратов разностей между индивидуальными премиями и индивидуальными выплатами, а также между суммарными премиями для классов однородных рисков и суммарными выплатами, поступающими из них.

Наше достижение опирается на недавнюю статью, написанную Заксом, Фростигом и Левиксоном, которые исследовали похожие задачи оптимальных цен на неоднородный портфель (который может быть разделен на классы однородных рисков) с помощью алгебраических методов, основанных на теоремах о положительно определенных матрицах.

2. Общие результаты о случайных величинах

$2.1. \;\;\; \Pi$ роблема оптимизации

Пусть ξ_1, \ldots, ξ_N - случайные величины с конечными матожиданиями $a_1 \cdots a_N$ и дисперсиями $Var\xi_1 \ldots Var\xi_N$. Мы предполагаем, что матожидание и дисперсии известны.

Нам бы хотелось заменить случайные величины ξ_1, \ldots, ξ_N на неслучайные числа A_1, \ldots, A_n таким образом, чтобы взвешенная сумма

$$D \equiv \sum_{i=1}^{n} \omega_i E(\xi_i - A_i)^2 \tag{2}$$

была бы минимальна. Здесь $\omega_i, \ldots, \omega_N$ - это известные числа(веса). Используя элементарные свойства случайных величин, мы можем переписать D следующим образом:

$$D = \sum_{i=1}^{n} \omega_i E(\xi_i - A_i)^2 = \sum_{i=1}^{n} \omega_i (Var(\xi_i - A_i) + (E(\xi_i - A_i))^2)$$

 $\sum_{i=1}^{n} \omega_i (Var(\xi_i - A_i) + (a_i - A_i)^2) = \sum_{i=1}^{n} \omega_i Var(\xi_i + \sum_{i=1}^{n} \omega_i (a_i - A_i)^2)$ (3)

Поскольку ω_i и $Var\xi_i$ фиксированы, то изначальная задача минимизации превращается в задачу нахождения минимального значения функции

$$f(A_1, \dots, A_N) = \sum_{i=1}^n \omega_i (a_i - A_i)^2$$
 (4)

Очевидно, оптимальным значением являются

$$A_1^* = a_1, \dots, A_N^* = a_N$$

и минимальное значение этой функции равно нулю. Соответственно, минимальное значение величины D равно $\sum_{i=1}^n \omega_i Var \xi_i$

Более интересной задача становится, если мы накладываем дополнительные ограничения на переменные A_1, \ldots, A_N . Принимая во внимания последующее приложение этой задачи к страхованию, мы рассматриваем следующую задачу:

Задача 1

Найти минимальное значение D при условии, что

$$A_1 + \ldots + A_N = C \tag{5}$$

, где С-известная константа.

Благодаря (3), достаточно найти минимальное значение функции(4) на множестве(5).

Для решения этой задачи введем новые переменные $x_i=\sqrt{\omega}_i(A_i-a_i),$ то есть $A_i=a_i+\frac{1}{\sqrt{\omega_i}}x_i.$ Тогда задача 1 превращается в:

Задача 2

Найти минимальное значение функции

$$g(x_1, \dots, x_N) = \sum_{i=1}^{n} x_i^2$$
 (6)

при условии, что

 $\sum_{i=1}^{n} \frac{1}{\sqrt{\omega_i}} x_i = C - \sum_{i=1}^{n} a_i \tag{7}$

.

Последовательности $X=(x_1,\ldots,x_N)$ и $Y=(\frac{1}{\sqrt{\omega_1}},\ldots,\frac{1}{\sqrt{\omega_N}})$ можно понимать как N-мерные евклидов векторы в пространстве R^N . Соответственно, левая часть равенства (7) есть скалярное произведение X и Y, а функция $g(x_1,\ldots,x_N)$ есть $||X||^2$, где

$$||X|| = \sqrt{x_1^2 + \ldots + x_N^2}$$

- это длина вектора Х.

Последующие рассуждения основаны на неравенстве Коши-Буняковского-Шварца, согласно которому для любых двух векторов $X,Y\in R^N$ верно

$$|X \cdot Y| < ||X|| \cdot ||Y||$$

, причем равенство достигается тогда и только тогда, когда X и Y линейно зависимы(в частности, если вектор Y ненулевой, линейная зависимость означает, что X пропорционален Y: $X = t \cdot Y$ для некоторого $t \in R$)

Применяя это неравенство, получаем:

$$g(x_1, \dots, x_N) = ||X||^2 \ge \frac{|X \cdot Y|^2}{||Y||^2} = \frac{(C - \sum_{i=1}^n a_i)^2}{\sum_{i=1}^n \frac{1}{\omega_i}}$$
(7.5)

Поэтому для (x_1, \ldots, x_N) , удовлетворяющих (7), имеем:

$$ming(x_1, \dots, x_N) \ge \frac{(C - \sum_{i=1}^n a_i)^2}{\sum_{i=1}^n \frac{1}{\omega_i}}$$
(8)

Поскольку вектор $Y=(\frac{1}{\sqrt{\omega_1}},\dots,\frac{1}{\sqrt{\omega_N}})$ ненулевой, то равенство в (8) достигается тогда и только тогда когда существует такое t что

$$x_i = \frac{1}{\sqrt{\omega_i}} \cdot t, i = 1, \dots, N \tag{9}$$

Подставляя, что $X = t \cdot Y$ в (7.5), получаем, что

$$t^* = \frac{C - \sum_{i=1}^n a_i}{\sum_{i=1}^N \frac{1}{\omega_i}}$$

,

$$x_i^* = \frac{1}{\sqrt{\omega_i}} \cdot t^*$$

$$A_i^* = a_i + \frac{1}{\sqrt{\omega_i} x_i^*} = a_i + \frac{1}{\omega_i} t^* = a_i + \frac{1}{\omega_i} \frac{C - \sum_{j=1}^N a_j}{\sum_{j=1}^N \frac{1}{\omega_j}}$$
(10)

$$D_{min} = \sum_{i=1}^{N} \omega_i Var \xi_i + \frac{(C - \sum_{j=1}^{N} a_j)^2}{\sum_{j=1}^{N} \frac{1}{\omega_j}}$$
(11)

2.2. Двойственная проблема оптимизации

Такой же подход может быть применен для изучения двойственной задачи оптимизации:

Задача 3 Найти максимум суммы $A_1 + \ldots + A_N$ если задано

$$D = \sum_{i=1}^{n} \omega_i E(\xi_i - A_i)^2$$
(12)

Заметим, что из (3) следует, что константа D должна быть больше или равна чем $\sum_{i=1}^n \omega_i Var \xi_i$

Как и раньше, перепишем

$$\sum_{i=1}^{n} \omega_{i} E(\xi_{i} - A_{i})^{2} = \sum_{i=1}^{n} \omega_{i} Var \xi_{i} + \sum_{i=1}^{n} \omega_{i} (a_{i} - A_{i})^{2}$$

Ограничение (12) превращается в равенство

$$D' = \sum_{i=1}^{n} \omega_i (a_i - A_i)^2$$

, где

$$D' = D - \sum_{i=1}^{n} \omega_i Var \xi_i \ge 0$$

Вводя $x_i = \sqrt{\omega_i}(A_i - a_i)$, мы сводим задачу 3 к следующему виду:

Задача 3 Найти максимум суммы $\sum\limits_{i=1}^n \frac{1}{\sqrt{\omega_i}} x_i$ если задана сумма

$$D' = \sum_{i=1}^{N} x_i^2 \tag{13}$$

Аналогично задаче 2, применяем неравенство Коши-Буняковского-Шварца:

$$\sum_{i=1}^{N} \frac{1}{\sqrt{\omega_i}} x_i = X \cdot Y \le ||X|| \cdot ||Y|| = \sqrt{D'} \sqrt{\sum_{i=1}^{N} \frac{1}{\omega_i^2}}$$
 (14)

Равенство в (14) достигается тогда и только тогда, когда существует t такое что

$$x_i = \frac{1}{\sqrt{\omega_i}} \cdot t, i = 1, \dots, N \tag{15}$$

Подставляя выражение $X=t\cdot Y$ в (14), получаем единственное решение

$$t^* = \sqrt{\frac{D'}{\sum_{i=1}^{N} \frac{1}{\omega_i^2}}}$$

$$x_i^* = \frac{1}{\sqrt{\omega_i}} \cdot t^* = \frac{1}{\sqrt{\omega_i}} \sqrt{\frac{D'}{\sum_{i=1}^{N} \frac{1}{\omega_i^2}}}$$

Соответственно, такие A_i задают решение оптимизационной задачи 3:

$$A_i^* = a_i + \frac{1}{\sqrt{\omega_i}} \cdot t^* = \frac{1}{\sqrt{\omega_i}} \sqrt{\frac{D'}{\sum_{i=1}^N \frac{1}{\omega_i^2}}}$$
 (16)

3. Приложение к модели индивидуального риска

В этом разделе мы применим полученные выше результаты к задаче оптимального назначения премий для неоднородного портфеля, рассмотренной Заксом, Фростигом и Левиксоном.

Рассмотрим модель индивидуального риска:

$$S = X_1 + \ldots + X_n,$$

где n - это общее число рисков в портфеле, случайная величина X_i обозначает потери по i-my риску за рассматриваемый период, а S - это общие потери по портфелю.

Мы предполагаем, что случайные величины X_1,\ldots,X_n независимы и имеют конечные матожидание μ_1,\ldots,μ_n и дисперсии $\sigma_1^2,\ldots,\sigma_n^2$ соответственно. Тогда случайная величина S имеет конечные матожидание $\mu=\mu_1+\ldots+\mu_n$ и дисперсию $\sigma^2=\sigma_1^2+\ldots+\sigma_n^2$. Мы также предполагаем, что для достаточно больших п функция распределения центрированной и нормированной величины полных потерь $\frac{S-\mu}{\sigma}$ может быть приближена функцией распределения стандартной гауссовской величины $\Phi(x)=\int\limits_{-\infty}^{\infty}exp^{-\frac{t^2}{2}}dt$, то есть:

$$P(\frac{S-\mu}{\sigma} < x) \approx \Phi(x)$$

Предположим, что страховщик взимает премию π_i по і-му риску, то есть всего собирает сумму $\pi = \sum_{i=1}^n \pi_i$. Тоогда вероятность разорения (это вероятность того, что S будет больше собранной суммы π дается формулой $R = P(S > \pi)$. Используя гаусовость $\frac{S-\mu}{\sigma}$, получаем, что:

$$R = P(\frac{S - \mu}{\sigma} > \frac{\pi - \mu}{\sigma}) \approx 1 - \Phi(\frac{\pi - \mu}{\sigma}). \tag{17}$$

Предположим, что страховщик готов принять достаточно маленький риск разорения R (например, R=1%). Тогда равенство (17) дает следующую (приближенную) формулу для суммарной премии:

$$\pi = \mu + \sigma \cdot z_{(1-R)} \tag{1)(18)}$$

, где z_{α} - квантиль гаусовского распределения уровня альфа, то есть $\Phi(z_{\alpha})=\alpha.$

Равенство (18) ничего не говорит про величины индивидуальных премий π_i . Чтобы найти их, нам придется применить дополнительные принципы.

3.1. Минимизация разности между индивидуальными рисками и индивидуальными премиями при заданной вероятности разорения

Рассмотрим взвешенную сумму

$$D = \sum_{i=1}^{N} \frac{1}{s_i} E(X_i - \pi_i)^2$$

между индивидуальными рисками X_1, \ldots, X_n и индивидуальными премиями π_1, \ldots, π_n (где s_1, \ldots, s_n - это некие известные положительные числа(веса)) и найдем минимум D:

$$D \equiv D(\pi_1, \dots, \pi_n) \to min. \tag{19}$$

Применяя формулу(10) для $N=n, \xi_i=X_i, a_i=\mu_i, A_i=\pi_i, \omega_i=\frac{1}{s_i}, C=\mu+\sigma\cdot z_{(1-R)}$ мы можем утверждать, что минимизационная задача (19) с ограничением (18) имеет единственное решение

$$\pi_i^* = \mu_i + \frac{s_i}{\sum_{j=1}^n s_j} \cdot \sigma \cdot z_{(1-R)}.$$
 (20)

Теперь рассмотрим постановку задачи, рассмотренной Заксом, Фростигом и Левиксоном. Пусть портфель можно разбить на к классов однородных рисков с одинаковыми статистическими характеристиками потерь (обычно риски из одного класса принадлежат одному и тому же сектору бизнеса). Пусть і-й класс состоит из n_i рисков с одинаковым средним μ_i и одинаковыми дисперсиями σ_i^2 . Тогда общее количество потерь S_i в і-м классе имеет среднее значение $ES_i = n_i \mu_i$ и дисперсию $VarS_i = n_i \sigma_i^2$. Общее число потерь от всего портфеля есть $S = S_1 + \ldots + S_k$, причем

$$\mu \equiv ES = \sum_{i=1}^{k} n_i \mu_i$$
, $\sigma^2 \equiv VarS = \sum_{i=1}^{k} n_i \sigma_i^2$

Благодаря однородности рисков внутри отдельного класса і, страховщик должен взимать со всех рисков в этом классе одну и ту же премию π_i . Тогда общая премия за все риски в портфеле равна $\pi = \sum_{i=1}^k n_i \pi_i$.

Рассмотрим

$$D = \sum_{i=1}^{k} \frac{1}{r_i} E(S_i - n_i \pi_i)^2$$

между суммарными потерями по разным секторам бизнеса S_1, \ldots, S_k и суммарными премиями $n_1\pi_1, \ldots, n_k\pi_k$ от этих классов (где r_1, \ldots, r_k - это некоторые известные положительные числа) и минимизируем D:

$$D = D \equiv D(\pi_1, \dots, \pi_k) \to min. \tag{21}$$

Для того, чтобы получить предписанную вероятность разорения, нужно, чтобы (18) выполнялось.

Применяя формулу(10) для $N=k, \xi_i=S_i, a_i=n_i\mu_i, A_i=n_i\pi_i, \omega_i=\frac{1}{r_i}, C=\mu+\sigma\cdot z_{(1-R)}$ мы можем утверждать, что минимизационная задача (19) с ограничением (18) имеет единственное решение

$$n_i \pi_i^* = n_i \mu_i + \frac{r_i}{\sum_{j=1}^k r_j} \cdot \sigma \cdot z_{(1-R)} \Leftrightarrow \pi_i^* = \mu_i + \frac{r_i}{n_i \sum_{j=1}^k r_j} \cdot \sigma \cdot z_{(1-R)}.$$
 (22)

Теперь вернемся к минимизационной задаче (19) с ограничением (18) и положим для всех рисков из і-го класса одинаковое значение параметра s равным $\frac{r_i}{n_i}$. Тогда из (20) видно, что оптимальное решение для минимизационной задачи (19) совпадает с оптимальным решением минимизационной задачи (21). Таким образом, одни и те же значения премий минимизируют взвешенную сумму квадратов разностей как между индивидуальными премиями и индивидуальными потерями, так и между суммарными премиями для классов однородных рисков и суммарными потерями для этих блоков.

3.2. Минимизация вероятности разорения при заданной разности между индивидуальными рисками и индивидуальными премиями

Задача 5 Для модели индивидуального риска

$$S = X_1 + \ldots + X_n$$

минимизировать вероятность разорения $R = P(S > \pi)$ при заданной величине

$$D = \sum_{i=1}^{n} \frac{1}{s_i} E(X_i - \pi_i)^2$$

Поскольку $P(S>\pi)$ уменьшается при увеличивающемся π , то задача состоит в нахождении максимального значения суммарной премии

$$\pi = \pi_1 + \ldots + \pi_n.$$

Применяя формулу(16) для $N=n, \xi_i=X_i, a_i=\mu_i, A_i=\pi_i, \omega_i=\frac{1}{s_i},$ мы можем утверждать, что минимизационная задача 5 имеет единственное решение

$$\pi_i^* = \mu_i + s_i \sqrt{\frac{D - \sum_{i=1}^n \frac{1}{s_i} \sigma_i^2}{\sum_{i=1}^n s_i}}$$
 (23)

Теперь опять предположим, что портфель может быть разделен на k классов однородных рисков с одинаковыми статистическими свойствами потерь. Пусть і-й класс состоит из n_i рисков с одинаковым средним μ_i и одинаковыми дисперсиями σ_i^2 . Тогда общее количество потерь S_i в i-м классе имеет среднее значение $ES_i = n_i \mu_i$ и дисперсию $VarS_i = n_i \sigma_i^2$. Общее число потерь от всего портфеля есть $S = S_1 + \ldots + S_k$, причем

$$\mu \equiv ES = \sum_{i=1}^{k} n_i \mu_i , \sigma^2 \equiv VarS = \sum_{i=1}^{k} n_i \sigma_i^2$$

Благодаря однородности рисков внутри отдельного класса i, страховщик должен взимать со всех рисков в этом классе одну и ту же премию π_i . Тогда общая премия за все риски в портфеле равна $\pi = \sum_{i=1}^k n_i \pi_i$.

Рассмотрим оптимизационную задачу:

Задача 6 Минимизировать вероятность разорения $R = P(S > \pi)$ при заданной величине

$$D = \sum_{i=1}^{k} \frac{1}{r_i} E(S_i - n_i \pi_i)^2$$

Поскольку $P(S > \pi)$ уменьшается при увеличивающемся π , то задача состоит в нахождении максимального значения суммарной премии $\pi = n_1 \pi_1 + \ldots + n_k \pi_k$.

Применяя формулу(16) для $N=k, \xi_i=S_i, a_i=n_i\mu_i, A_i=n_i\pi_i, \omega_i=\frac{1}{r_i},$ мы можем утверждать, что минимизационная задача 6 имеет единственное решение

$$\pi_i^* = \mu_i + \frac{r_i}{n_i} \sqrt{\frac{D - \sum_{i=1}^k \frac{1}{r_i} n_i \sigma_i^2}{\sum_{i=1}^k r_i}}$$
(24)