	statement	assumptions	step type
0.	$0 \in \mathbb{N}$		modus ponens
1.	$((0 \in \mathbb{N}) \land [\forall_{n \in \mathbb{N}} ((n+1) \in \mathbb{N})]) \Rightarrow (0 \in \mathbb{N})$		specialization v
			$\{A_{\square}:(),\ B:0$
2.	$(0 \in \mathbb{N}) \wedge [\forall_{n \in \mathbb{N}} ((n+1) \in \mathbb{N})]$		modus ponens
3.	$\forall \dots, A_{\square}, \dots, B, \dots, C_{\square}, \dots ((\dots \land A_{\square} \land \dots \land B \land \dots \land C_{\square} \land \dots) \Rightarrow B)$	theorem: prove	it.logic.boolean.co
4.	$(\mathbb{N} = \mathbb{N}) \Rightarrow ((0 \in \mathbb{N}) \wedge [\forall_{n \in \mathbb{N}} ((n+1) \in \mathbb{N})])$		specialization v
			${A: \mathbb{N} = \mathbb{N}, \ B}$
5.	$\mathbb{N}=\mathbb{N}$		specialization v
			$\{x:\mathbb{N}\}$
6.	$\forall_{A,B \mid (A \Leftrightarrow B)} (A \Rightarrow B)$	theorem: prove	it.logic.boolean.in
7.	$(\mathbb{N} = \mathbb{N}) \Leftrightarrow ((0 \in \mathbb{N}) \wedge [\forall_{n \in \mathbb{N}} ((n+1) \in \mathbb{N})])$		specialization v
			$\{S:\mathbb{N}\}$
8.		axiom: proveit.	logic.equality.equa
9.	$\forall_{S \mid (S \subseteq \mathbb{N})} ((S = \mathbb{N}) \Leftrightarrow ((0 \in S) \land [\forall_{n \in S} ((n+1) \in S)]))$	axiom: proveit.	number.sets.integ
10.	$\mathbb{N}\subseteq\mathbb{N}$		specialization v
			${A: \mathbb{N}, \ B: \mathbb{N}}$
11.	$\forall_{A,B \mid (A=B)} (A \subseteq B)$	theorem: prove	$it.logic.set_theory.$