Modellierung und Optimierung mit OPL

6 Einfache techniken der stochastischen Optimierung

Andreas Popp

Dieser Foliensatz ist lizenziert unter einer Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 6 Einfache techniken der stochastischen Optimierung

> CC-BY-SA A. Popp

6.1 Szenarienmethode

lichkeitsbeschränk te Optimierung

6.1 Szenarienmethode

6.2 Wahrscheinlichkeitsbeschränkte Optimierung

6.1 Szenarienmethode

CC-BY-SA A. Popp

6.1 Szenarienmethode

6.2 Wahrscheinlichkeitsbeschränkte

6.1 Szenarienmethode

Beispiel: Relieve Äthiopien

Langfristige Lagerhauskapazität: 8

Lagerhausbedarf:

Ressource	Szenario I (30%)	Szenario II (30%)	Szenario III (25%)	Szenario IV (15%)
Nahrung	4	2	3	4
Trinkwasser	3	5	3	5
Medikamente	3	3	1	4

Kurzfristige Lagerhauskosten

- ▶ 3500\$ für ein Nahrungsmittel-Lagerhaus
- ▶ 1600\$ für ein Trinkwasser-Lagerhaus
- ▶ 5200\$ für ein Lagerhaus für Medikamente

6 Einfache techniken der stochastischen Optimierung

CC-BY-SA A. Popp

6.1 Szenarienmethode

Zweistufige stochastische Optimierung

6 Einfache techniken der stochastischen Optimierung

CC-BY-SA A. Popp

6.1 Szenarienmethode

5.2 Wahrscheinichkeitsbeschränk-

Optimierur

Szenarienmethode

- Spezialfall der zweistufigen stochastischen Optimierung
- ► Zufallsereignis = Eintritt eines von endlich vielen Szenarien
- stochastische Zielfunktion wird meist durch deren Erwartungswert ersetzt

- ► Indexmenge / der Szenarien
- Parameter p₁: Eintrittswahrscheinlichkeit von Szenario i ∈ I
- Szenariounbhängige Parameter und Here-and-Now-Entscheidungsvariablen haben keinen Szenarioindex
- Szenarioabhängige Paramter und Wait-and-See-Entscheidungsvariablen haben einen Szenarioindex
- Erwartungswert der Zielfunktion ist bei endlichen
 Szenarien eine Konvexkombination und damit linear

Modell: Stochastische Ressourcenplanung

Indexmengen:

- I Menge der Szenarien
 - R Menge der Ressourcen

Parameter:

- p_i Eintrittswahrscheinlichkeit von Szenario $i \in I$
- c_r Kosten für kurzfristige Zusatzkapaztität von Ressource $r \in R$
- d_{ri} Bedarf an Ressource $r \in R$ in Szenario $i \in I$
- k Zu verteilende Kapazität für langfristige geplante Ressourcen

Entscheidungsvariablen:

- x_r Langfristig eingeplante Kapazität für Ressource $r \in R$
- y_{ri} Kurzfristige angeschaffte Zusatzkapaztität für Ressource $r \in R$ in Szenario $i \in I$

Modellbeschreibung:

min
$$\sum_{i \in I} p_i \cdot \left(\sum_{r \in R} c_r \cdot y_{ri} \right)$$
s.t.
$$\sum_{r \in R} x_r \le k$$
 (I)
$$x_r + y_{ri} \ge d_{ri} \quad \forall r \in R, i \in I \quad (II)$$

$$x_r, y_{ri} \in \mathbb{Z}^+ \quad \forall r \in R, i \in I$$

6 Einfache techniken der stochastischen Optimierung

CC-BY-SA A. Popp

- 6.1 Szenarienmethode
 - 6.2 Wahrscheinlichkeitsbeschränkte
- Optimierun

lichkeitsbeschränkte Optimierung

Verkaufspreise und Kapazität

	<i>I</i> ₁	<i>I</i> ₂	<i>I</i> ₃	Kapazität
R_1	3,2	2,4	2,6	600
R_2	6,5	8,3	7,8	800
VP	1,4	1,6	1,5	

Nachfrageschätzer

6 Einfache techniken der stochastischen Optimierung

> CC-BY-SA A. Popp

6.1 Szenarienmethode

Modell: Stochastisches Produktionsproblem (Variante 1)

Indexmengen:

- I Menge der Produkte
- R Menge der Ressourcen

Parameter:

- v_i Verkaufspreis von Produkt $i \in I$
- c_r Kapazität von Ressource $r \in R$
- a_{ri} Kapazitätsbedarf von Produkt $i \in I$ an Ressource $r \in R$
- D_i Nachfrage nach Produkt $i \in I$ (Zufallsvariable)
 - α α -Servicegrad

Entscheidungsvariablen:

 x_i Produktionsmenge von Produkt $i \in I$

Modellbeschreibung:

min
$$\sum_{i \in I} v_i \cdot x_i$$

s.t. $\sum_{r \in R} a_{ri} x_i \le c_r$ $\forall r \in R$ (I)
 $P(D_i \le x_i) \ge \alpha$ $\forall i \in I$ (II)
 $x_i > 0$ $\forall i \in I$

6 Einfache techniken der stochastischen Optimierung

CC-BY-SA A. Popp

6.1 Szenarienmethode

CC-BY-SA A. Popp

6.1 Szenarienmethode

6.2 Wahrscheinlichkeitsbeschränkte Optimierung

Am Beispiel des stochastischen Produktionsproblems:

- ▶ $P(D_i \le x_i) = F_{D_i}(x_i)$ (Verteilungsfunktion)
- ▶ $P(D_i \le x_i) \ge \alpha \iff x_i \ge F_{D_i}^{-1}(\alpha)$ (Konstante)

Vorberechnete Konstanten des Beispiels

i	<i>I</i> ₁	<i>I</i> ₂	<i>I</i> ₃
$F_{D_i}^{-1}(0,95)$	41,4	18,2	29,5

Modell: Stochastisches Produktionsproblem (Variante 2)

Indexmengen:

I Menge der ProdukteR Menge der Ressourcen

Parameter:

 v_i Verkaufspreise von Produkte $i \in I$

 c_r Kapazität von Ressource $r \in R$

 a_{ri} Kapazitätsbedarf von Produkt $i \in I$ an Ressource $r \in R$

 $F_{D_i}^{-1}(\alpha)$ α -Quantil der Nachfrage nach Produkt $i \in I$

Entscheidungsvariablen:

 x_i Produktionsmenge von Produkt $i \in I$

Modellbeschreibung:

min
$$\sum_{i \in I} v_i \cdot x_i$$
s.t.
$$\sum_{r \in R} a_{ri} x_i \le c_r \qquad \forall r \in R \qquad \text{(I)}$$

$$x_i \ge F_{D_i}^{-1}(\alpha) \qquad \forall i \in I \qquad \text{(II)}$$

$$x_i \ge 0 \qquad \forall i \in I$$

6 Einfache techniken der stochastischen Optimierung

CC-BY-SA A. Popp

6.1 Szenarienmethode