

Indice de Refração do vidro de um Prisma pelo método do Desvio Mínimo.

Poder Dispersivo e Poder de Resolução do Vidro.

1 Princípio do método

Um prisma de um meio transparente, homogéneo e isótropo de índice de refração, n, colocado no percurso de um feixe luminoso incidente produz um desvio angular no feixe emergente que depende do ângulo de incidência. Pode provar-se facilmente que esse desvio angular apresenta um ponto de estacionariedade (i.e., derivada nula) que é um mínimo se n>1. Essa situação acontece quando as direções dos dois feixes são igualmente inclinadas em relação às faces do prisma, i.e. quando o ângulo de incidência é igual ao ângulo de transmissão emergente (ver Apêndice). Nesse caso (Figura 1) o índice de refração, n, pode ser calculado simplesmente através da expressão seguinte:

$$n = \frac{\sin\left(\frac{\alpha + \delta_{min}}{2}\right)}{\sin\left(\frac{\alpha}{2}\right)} \tag{1}$$

em que α e δ_{min} são os ângulos, respetivamente, do prisma e do desvio mínimo referido. Este desvio mínimo depende do comprimento de onda da radiação incidente, λ , e por consequência n depende de λ . Define-se *poder dispersivo* dum material como a derivada de n em ordem a λ . Como esta função não é linear, deve indicar-se o valor do poder dispersivo relativo a um determinado valor de comprimento de onda incidente, λ_i , e escreve-se como $\left(\frac{\mathrm{d}n}{\mathrm{d}\lambda}\right)_{\lambda_i}$.

O poder separador ou poder de resolução de um instrumento óptico¹, $R_{\lambda} = \frac{\lambda}{\Delta \lambda}$, é a capacidade que possui de poder permitir que se observem separadamente dois comprimentos de onda muito próximos, afastados de $\Delta \lambda$, na vizinhança de um valor médio λ . Esta grandeza é adimensional e quanto maior for o seu valor, melhor é a resolução do instrumento.

No caso de um prisma obtém-se para R a seguinte expressão (ver Apêndice), se a fonte é linear e se dispõe paralelamente à aresta do prisma:

$$R_{\lambda} = l \left(\frac{\mathrm{d}n}{\mathrm{d}\lambda} \right)_{\lambda} \tag{2}$$

em que l é o maior percurso do feixe luminoso no interior do prisma.

Uma rede de difração permite também observar separadamente dois comprimentos de onda muito próximos. No entanto para uma rede de difração linear a resolução além de variar com o comprimento

¹Optical Resolution

Figura 1: Esquema da reflexão do feixe incidente num prisma colocado na plataforma do goniómetro de Babinet. As direções dos dois raios refletidos fazem entre si um ângulo θ que é o dobro do ângulo α do prisma.

de onda depende da ordem de difração, m

$$R_{\lambda} = m N \tag{3}$$

sendo N o número de linhas da rede iluminadas pelo feixe.

2 A experiência

2.1 Equipamento

- 1. Goniómetro de Babinet com prisma,
- 2. Lâmpada espetral de Mercúrio ou Hélio.

Quando se coloca o prisma na plataforma de modo a poderem observar-se as reflexões nas faces que delimitam o prisma óptico, as direções dos raios refletidos fazem um ângulo θ , que se mede com o goniómetro, que é o dobro do ângulo α do prisma. Pode assim determinar-se facilmente o ângulo do prisma e com uma precisão muito melhor do que com um goniómetro de funcionamento mecânico, ou transferidor.

Pode determinar-se o ângulo δ_{min} medindo a direção do raio incidente (sem prisma) e a direção do raio emergente segundo o ângulo i_2 em relação à normal (que corresponda ao desvio mínimo) para cada comprimento de onda (Figura 2). Mas devem fazer-se observações para os raios que emergem das duas faces que definem o ângulo do prisma. Neste caso, e como é facil provar que o ângulo formado pelos dois raios emergentes (para a mesma côr) é o dobro do ângulo de desvio, não é necessário determinar a direção do raio incidente, i_1 .

O prisma que se usa é em geral de seção reta triangular equilátera e, se nenhuma face está despolida, podem fazer-se leituras envolvendo cada um dos três ângulos. A aresta do ângulo definido pelas

Figura 2: Esquema da transmissão do feixe incidente num prisma colocado na plataforma do goniómetro de Babinet. A direção do feixe transmitido desvia-se da direção do feixe incidente do ângulo δ .

superfícies planas onde se produz a reflexão e transmissão deve ficar paralela à fenda(vertical). A lâmpada espetral é uma fonte de luz policromática e discreta que contem dois elétrodos situados no interior de um invólucro (vidro em geral) onde existe uma substância "ativa" em muito pequena quantidade numa atmosfera rarefeita. A alimentação que em geral é dedicada à lâmpada é de alta tensão e produz entre os elétrodos uma descarga que vaporiza, excita e ioniza a substância ativa. As diferentes excitações permitem transições radiativas que dão origem à emissão de um feixe constituido por diferentes comprimentos de onda bem definidos e que se encontram já muito bem identificados na Literatura. Todas as lâmpadas espetrais emitem no ultravioleta que é nocivo para a pele e olhos dos observadores, mas o vidro no interior do qual se dá a descarga absorve a maior parte destas radiações perigosas. Para reduzir os riscos, a lâmpada tem um invólucro em geral metálico apenas com uma abertura para permitir iluminar a fenda do goniómetro.

²Que dá o nome à lâmpada, e.g. Mercúrio, Hélio, Néon, etc.

2.2 Questões a responder ANTES da sessão de Laboratório:

- 1. Descreva quais os objectivos do Trabalho que irá realizar na sessão de Laboratório. Indique as expressões que irá utilizar para obter as grandezas experimentais, bem como as expressões para calcular as incertezas. Inclua esta parte também no Relatório Impresso. Este irá constituir o ÚNICO meio de consulta na Prova Individual.
- 2. Obtenha uma imagem típica da dispersão da Luz Branca num prisma triangular. A partir dessa figura pode concluir que índice de refração, $n(\lambda)$, é uma função crescente ou decrescente?
- 3. Nessa figura de dispersão como pode identificar qual é a côr que está na posição de *desvio mínimo*?
- 4. Se na montagem de laboratório substituir a lâmpada de descarga pela luz Solar que imagem observaria na luneta do goniómetro?.
- 5. O espectro de emissão do Hidrogéneo, na série de Balmer (transição eletrónica de nível $3 \rightarrow 2$) tem duas riscas no c.d.o. vermelho, respetivamente a $\lambda = 656.272\,nm$ e $\lambda = 656.2852\,nm$. Qual a Resolução mínima de um Instrumento (Espectrómetro) capaz de distinguir estas duas linhas? Supondo que tem um prisma com aresta de $10\,cm$, calcule o o valor absoluto mínimo para $\left(\frac{dn}{d\lambda}\right)$?

3 Protocolo Experimental

- 1. Ligue a lâmpada espetral e espere 10 a 15 minutos até que se estabeleça o equilíbrio térmico no seu interior.
- 2. Enquanto espera comece por regular a ótica do goniómetro tal como descrito no Guia do Trabalho anterior.
- 3. Verifique o nivelamento horizontal do goniómetro e da plataforma onde vai colocar o prisma com a ajuda de um nível de bolha.
- 4. Utilize o valor do ângulo, α , entre as faces polidas prisma obtido no trabalho anterior.
- 5. Observe agora a transmissão das várias côres através do prisma com o feixe incidente numa das faces, na posição da Figura 3 do guia do trabalho anterior. Deve observar uma série de imagens da fenda, uma por cada côr (i.e. comprimento de onda).
- 6. Escolha uma dessas côres. Rodando o prisma obtenha um conjunto de valores que permita fazer um gráfico do ângulo de desvio, $\delta(i_1)$, em função do ângulo de incidência, i_1 . Verifique que existe de facto um mínimo no ângulo de desvio, min $\delta(i_{min})$. Atenção que o ângulo i_{min} e min $\delta(i_{min})$ são sempre diferentes para cada côr.
- 7. Em seguida, para medir o desvio mínimo tem de se colocar o prisma para posição correspondente, para cada côr. Pode finalmente medir os ângulos de desvio, $\delta_{min(esq,dir)}(\lambda)$, à esquerda e direita, com o auxílio do parafuso micrométrico associado à plataforma. De seguida, com o outro parafuso micrométrico associado à luneta, centrar no retículo a imagem colorida da fenda. Cada observador deve efectuar as suas medidas. Calcule os desvio mínimos:

$$\delta_{min}(\lambda) = \frac{|\delta_{esq} - \delta_{dir}|}{2}$$

8. Com os desvio mínimos e identificando valores dos comprimentos de onda das riscas visíveis, represente graficamente o índice de refração, $n(\lambda)$. Ajuste uma função polinomial à curva obtida. Através da derivada desta função, calcule o poder dispersivo do vidro para o comprimento de onda médio, $\overline{\lambda}_{amare}$, das duas riscas amarelas do sódio ($\lambda \approx 589 \, nm$).

- 9. Faça uma estimativa da maior distância percorrida pelo feixe luminoso no prisma e calcule aproximadamente o poder de resolução do prisma para o $\overline{\lambda}_{amare}$, referido no ponto anterior.
- 10. Substitua no centro da plataforma do goniómetro o prisma por uma rede de difração de 600 linhas por milímetro. Compare a separação angular, $\Delta \delta_{rede}$, das duas riscas mais próximas, observadas com a rede com a que obteve para as mesmas riscas, usando o prisma. Comente, utilizando a expressão (3).

Apêndice

Ângulo do Prisma

Considere-se a incidência nas condições da Figura 1. A figura plana quadrangular ABEC tem dois ângulos retos ABE e ECA. Assim o ângulo CAB, α , é suplementar do ângulo BEC e portanto o ângulo externo em E (assinalado na figura) tem o mesmo valor do ângulo do prisma. Na figura plana quadrangular DBEC está definido um ângulo que é o ângulo formado pelas direções dos raios refletidos na face AB e AC. Entre os ângulos de incidência e existe a relação

$$2\beta + 2\gamma + \theta = 2\pi \tag{4}$$

e entre os ângulos de DBEC

$$\beta + \gamma + \theta + \pi - \alpha = 2\pi \tag{5}$$

O sistema destas duas equações permite obter

$$\alpha = \theta/2 \tag{6}$$

Desvio mínimo

Supondo um prisma que tem um índice de refração que em relação ao meio em que está imerso n, na configuração da Figura 2, os feixes que são transmitidos através do mesmo sofrem um desvio $\delta(\lambda)$. Os ângulos α e de desvio δ são exteriores respetivamente aos triângulos BCD (em D) e BEC (em E) e portanto

$$\delta = (i_1 - t_1) + (t_2 - i_2) \tag{7}$$

$$\alpha = t_1 + i_2 \tag{8}$$

o que permite obter

$$\delta = i_1 + t_2 - \alpha \tag{9}$$

Estes ângulos satisfazem à lei de Snell-Descartes da transmissão.

$$n = \frac{\sin i_1}{\sin t_1} = \frac{\sin t_2}{\sin i_2} \tag{10}$$

No caso geral o ângulo δ depende do ângulo de incidência i_1 e pode provar-se que a função envolvida tem uma estacionariedade. Para encontrar o *desvio mínimo* δ_{min} , calculemos a derivada de δ em relação a i_1 (expressão 9).

$$\frac{\mathrm{d}\delta}{\mathrm{d}i_1} = 1 + \frac{\mathrm{d}t_2}{\mathrm{d}i_1} \tag{11}$$

Obtendo $\sin i_1$ e $\sin t_2$ da relação (10) e aplicando-lhe derivada em ordem a i_1 é-se conduzido a

$$\cos i_1 = n \cos t_1 \cdot \frac{\mathrm{d}t_1}{\mathrm{d}i_1} \tag{12}$$

$$\cos t_2 \cdot \frac{\mathrm{d}t_2}{\mathrm{d}i_1} = n \, \cos i_2 \cdot \frac{\mathrm{d}i_2}{\mathrm{d}i_1} \tag{13}$$

Mas atendendo à relação (8)

$$\frac{\mathrm{d}t_1}{\mathrm{d}i_1} = -\frac{\mathrm{d}i_2}{\mathrm{d}i_1} \tag{14}$$

e combinando (12), (13) e (14) obtém-se

$$\frac{\mathrm{d}t_2}{\mathrm{d}i_1} = -\frac{\cos i_2 \cos i_1}{\cos t_2 \cos t_1} \tag{15}$$

e a relação (11) vem

$$\frac{\mathrm{d}\delta}{\mathrm{d}i_1} = 1 - \frac{\cos i_2 \, \cos i_1}{\cos t_2 \, \cos t_1} \tag{16}$$

Esta função admite um zero para

$$\cos i_2 \cos i_1 = \cos t_2 \cos t_1 \tag{17}$$

Atendendo a (10) e à relação entre coseno e seno obtém-se

$$\sin^2 t_1 \cdot (1 - n^2) = \sin^2 i_2 \cdot (1 - n^2) \tag{18}$$

que para os ângulos considerados ($\leq \pi/2$) e para $n \neq 1$ implica que

$$t_1 = i_2 = t (19)$$

$$i_1 = t_2 = i \tag{20}$$

Assim para $\frac{\mathrm{d}\delta}{\mathrm{d}i}=0$ (que provaremos ser um mínimo)

$$\delta_{min} = 2i - 2t = 2i - \alpha \tag{21}$$

o que permite calcular t a partir do ângulo do prisma ($t=\alpha/2$) e i a partir do ângulo de desvio mínimo e do ângulo do prisma ($i=(\alpha+\delta_{min})/2$) e consequentemente obter a relação (1) para o cálculo do índice de refração.

É necessário calcular $\frac{d^2\delta}{di^2} = 0$ e verificar se é uma quantidade positiva ou negativa para os valores que anulam a primeira derivada com o objetivo de saber se a estacionariedade é um mínimo, máximo ou um ponto de inflexão. Aplicando derivada em ordem a i à expressão (16) obtém-se

$$\frac{\mathrm{d}^2 \delta}{\mathrm{d}i_1^2} = \frac{\mathrm{d}}{\mathrm{d}i_1} \left(-\frac{\cos i_2 \cos i_1}{\cos t_2 \cos t_1} \right) \tag{22}$$

em que todos os argumentos das funções coseno dependem de i_1 . obtém-se 4 parcelas que são:

$$\frac{\cos i_1}{\cos t_2 \cos t_1} \frac{d}{di_1} \cos i_2 = \frac{\cos i_1}{\cos t_2 \cos t_1} (-\sin i_2) \frac{di_2}{di_1}$$
(23)

$$\frac{\cos i_2}{\cos t_2 \cos t_1} \frac{d}{di_1} \cos i_1 = \frac{\cos i_2}{\cos t_2 \cos t_1} (-\sin i_1)$$
 (24)

$$\frac{\cos i_2 \cos i_1}{\cos t_1} \frac{\mathrm{d}}{\mathrm{d}i_1} (\cos t_2)^{-1} = \frac{\cos i_2 \cos i_1}{\cos t_1} \sin t_2 (\cos t_2)^{-2} \frac{\mathrm{d}t_2}{\mathrm{d}i_1}$$
(25)

$$\frac{\cos i_1}{\cos t_2 \cos t_1} \frac{d}{di_1} \cos i_2 = \frac{\cos i_1}{\cos t_2 \cos t_1} (-\sin i_2) \frac{di_2}{di_1}$$

$$\frac{\cos i_2}{\cos t_2 \cos t_1} \frac{d}{di_1} \cos i_1 = \frac{\cos i_2}{\cos t_2 \cos t_1} (-\sin i_1)$$
(24)
$$\frac{\cos i_2 \cos i_1}{\cos t_1} \frac{d}{di_1} (\cos t_2)^{-1} = \frac{\cos i_2 \cos i_1}{\cos t_1} \sin t_2 (\cos t_2)^{-2} \frac{dt_2}{di_1}$$

$$\frac{\cos i_2 \cos i_1}{\cos t_2} \frac{d}{di_1} (\cos t_1)^{-1} = \frac{\cos i_2 \cos i_1}{\cos t_2} \sin t_1 (\cos t_1)^{-2} \frac{dt_1}{di_1}$$
(25)

Atendendo a (12) e (14) substituidos em (23) e em (25) e a (15) substituido em (26), as 4 parcelas conduzem respetivamente às expressões seguintes que são simplificadas quando se substitui n (10) e se impõem as condições que foram obtidas para o zero de $\frac{d\delta}{di_1}$

$$\frac{\cos i_1}{\cos t_2 \cos t_1} \left(-\sin i_2\right) \frac{\cos i_1}{n \cos t_1} = \frac{\sin^2 t}{\cos^2 t} \frac{\cos i}{\sin i} \tag{27}$$

$$\cdots = -\frac{\sin i}{\cos i} \tag{28}$$

$$\cdots = -\frac{\sin i}{\cos i} \tag{29}$$

$$\cdots = -\frac{\cos i}{\cos i} \tag{29}$$

$$\cdots = -\frac{\sin^2 i}{\cos^2 i} \tag{30}$$

Assim obtém-se

$$\frac{\mathrm{d}^2 \delta}{\mathrm{d}i_1^2} = -2 \tan^2 t \, \frac{1}{\tan i} + 2 \tan i = 2 \, \tan i \, \left(1 - \frac{\tan^2 t}{\tan^2 i} \right) \tag{31}$$

Esta expressão é positiva para $\tan^2 t < \tan^2 i$ o que implica t < i $(i, t \le \pi/2)$, ie, para n > 1 e é negativa para n < 1. No caso do prisma de vidro imerso no ar n > 1 e portanto (31) será positiva o que confirma que a condição de estacionariedade corresponde a um mínimo.

Poder de resolução do prisma

A capacidade de observar separadamente dois comprimentos de onda muito próximos está relacionada com a variação do ângulo de desvio δ com o comprimento de onda λ que se designa por dispersão angular $\frac{d\delta}{d\lambda}$ e que depende do coeficiente de dispersão $\frac{dn}{d\lambda}$ na forma

$$\frac{\mathrm{d}\delta}{\mathrm{d}\lambda} = \frac{\mathrm{d}\delta}{\mathrm{d}n} \frac{\mathrm{d}n}{\mathrm{d}\lambda} \tag{32}$$

Atendendo a (9) $\frac{d\delta}{dn} = \frac{dt_2}{dn}$ (para α e i_1 constantes). Derivando a relação (10) em ordem a n obtém-se

$$\cos t_2 = \frac{\mathrm{d}t_2}{\mathrm{d}n} = \sin t_2 + n \, \cos i_2 \frac{\mathrm{d}i_2}{\mathrm{d}n} \tag{33}$$

$$0 = \sin t_1 + n \cos t_1 \frac{\mathrm{d}t_1}{\mathrm{d}n} \tag{34}$$

Obtém-se assim

$$\frac{\mathrm{d}\delta}{\mathrm{d}n} = \frac{\sin i_2}{\cos t_2} + \frac{\sin t_1 \cos i_2}{\cos t_2 \cos t_1} = \frac{\sin \alpha}{\cos t_2 \cos t_1} \tag{35}$$

$$\frac{d\delta}{dn} = \frac{\sin i_2}{\cos t_2} + \frac{\sin t_1 \cos i_2}{\cos t_2 \cos t_1} = \frac{\sin \alpha}{\cos t_2 \cos t_1}
\frac{d\delta}{d\lambda} = \frac{dn}{d\lambda} \frac{\sin \alpha}{\cos t_2 \cos t_1}$$
(35)

Considerando um feixe paralelo de largura l_1 como se indica na Figura 3, que incide no prisma segundo um ângulo i_1 e que emerge segundo t_2 com largura l_2 , fazendo um percurso máximo no prisma l, pode provar-se (os senos dos ângulos de um triângulo são diretamente proporcionais aos lados opostos) que

Figura 3: Trajeto de um feixe luminoso paralelo num prisma.

$$\frac{\sin \alpha}{l} = \frac{\sin(\pi/2 - t_1)}{AC} \tag{37}$$

e atendendo a que $l_2 = AC \cos t_2$ obtém-se que

$$\frac{\mathrm{d}\delta}{\mathrm{d}\lambda} = \frac{\mathrm{d}n}{\mathrm{d}\lambda} \frac{l}{l_2} \tag{38}$$

Assim uma pequena variação de comprimento de onda $\Delta\lambda$ produz uma variação do ângulo de desvio $\Delta \delta$ tal que

$$\Delta \delta = \frac{\mathrm{d}n}{\mathrm{d}\lambda} \frac{l}{l_2} \Delta \lambda \tag{39}$$

Figura 4: Critério de Rayleigh da resolução de duas riscas espetrais (a vermelho a soma da intensidade das riscas.

O critério de Rayleigh para que dois comprimentos de onda estejam resolvidos, ie possam ser detetados separadamente, é que o máximo de intensidade (de ordem $n \ge 1$) de um deles coincida com o mínimo de intensidade do outro (Figura 4)

Pelas leis de Difração o primeiro mínimo de intensidade da figura de difração de uma fenda de largura l_2 dista angularmente do máximo principal de: $\sin\theta = \lambda/l_2$. Para dois comprimentos de onda muito próximos, $\sin\theta \approx \theta$, que neste caso é o desvio angular $\Delta\delta$. Assim $\Delta\delta = \lambda/l_2$ e obtém-se para a resolução do prisma:

$$R_{\lambda} = \frac{\lambda}{\Delta \lambda} = l \left(\frac{\mathrm{d}n}{\mathrm{d}\lambda} \right)_{\lambda} \tag{40}$$