# 动态路由



# 圖前 言

本课程介绍动态路由协议的基本概念,是后续动态路由协议 原理课程的基础与引入。

#### 静态路由

- 由网络管理员手工 指定的路由。
- 当网络拓扑发生变 化时,管理员需要 手工更新静态路由。

#### 动态路由

- 路由器使用路由协 议从其他路由器那 里获悉的路由。
- 当网络拓扑发生变 化时,路由器会自 动更新路由信息。



#### 路由协议概述:

- 路由器之间交互信息的一种语言。
- 共享路由信息。
- 维护路由表、提供最佳转发路径。

#### 路由协议总览:





#### 路由协议分类:根据作用范围:

|   | IGP (Interior Gateway Protocol)<br>内部网关协议 | 用于一个AS内部交换路由信息<br>RIP、OSPF、IS-IS |
|---|-------------------------------------------|----------------------------------|
| • | EGP (Exterior Gateway Protocol)<br>外部网关协议 | 用于多个AS之间交换路由信息<br>BGP            |
|   | AS ( Autonomous System )<br>自治系统          | 处于单个管理机制下的网络(如:企业、<br>电信、移动、联通)  |



#### 路由协议分类:根据协议算法:

|   | DV ( Distance-Vector )<br>距离矢量 | 基于距离矢量算法,路由器并不了解网络拓扑结构<br>类似路牌,道听途说<br>如:RIP、EIGRP |
|---|--------------------------------|----------------------------------------------------|
| • | LS ( Link-State )<br>链路状态      | 基于SPF(Shortest Path First,最短路径优先)算法,路由器了解完整的网络拓扑结构 |
|   |                                | 类似地图                                               |
|   |                                | 如:OSPF、IS-IS                                       |







#### 路由协议分类:根据发送的更新是否携带掩码:



# 路由协议分类:根据业务应用:

|   | Unicast Routing Protocol<br>单播路由协议   | RIP、EIGRP、OSPF、BGP、IS-IS |
|---|--------------------------------------|--------------------------|
| • | Multicast Routing Protocol<br>组播路由协议 | DVMRP、PIM-SM、PIM-DM      |

#### 路由协议操作规则:

- 协议是在接口上运行的;
- 只能学习和发布相同协议已知的路由信息;
- 如果不同的路由协议间需要交换路由信息,就需要进行注入(import)。



# 路由器收敛:

- 当所有路由表包含相同网络可达性信息
- 网络(路由)进入一个稳定状态
- 网络在达到收敛前无法完全正常工作

# 衡量动态路由协议的一些性能指标:

|   | 正确性 | 能够正确找到最优的路由,且无自环。          |
|---|-----|----------------------------|
|   | 快收敛 | 当拓朴结构发生变化之后,能够迅速作出相应的路由改变。 |
| • | 低开销 | 协议自身的开销(内存、CPU、网络带宽)最小。    |
|   | 安全性 | 协议自身不易受攻击,有安全机制。           |
|   | 普适性 | 适应各种拓扑结构和各种规模的网络。          |