2.3 Magnitude, Direction, and Components of a Vector

THE MAGNITUDE OF A VECTOR

It is productive to represent the horizontal and vertical components of a vector \vec{v} as v_x and v_y , respectively.

The magnitude (the length) of a vector $\vec{v}=\langle v_x,v_y\rangle$ is $\|\vec{v}\|=\sqrt{{v_x}^2+{v_y}^2}$

The vector $\vec{v} = \langle 5, -8 \rangle$ has magnitude:

$$\|\vec{v}\| = \sqrt{v_x^2 + v_y^2}$$
$$= \sqrt{5^2 + (-8)^2} = \sqrt{25 + 64} = \sqrt{89}$$

Interpret this as the length of the vector $\vec{v} = \langle 5, -8 \rangle$ is $\sqrt{89}$ units.

THE DIRECTION OF A VECTOR

The direction of a vector \vec{v} is the angle the vector makes with the positive *x*-axis.

It is typically represented with the uppercase Greek letter theta θ . We use some trigonometry to determine the angle θ .

$$\tan \theta = \frac{y}{x}$$
 or $\theta = \tan^{-1} \frac{y}{x}$

The angle θ is always between 0° and 360°.

To approximate the direction of the vector $\vec{v} = \langle 5, 8 \rangle$, use $\theta = \tan^{-1} \frac{y}{x'}$, with x = 5 and y = 8.

$$\vec{v} = \langle 5, 8 \rangle$$

$$\theta = \tan^{-1} \frac{y}{x}$$

$$\theta = \tan^{-1}\frac{8}{5}$$

Using a calculator, we get

$$\theta = 57.99^{\circ}$$

$$\theta = 58^{\circ}$$

To approximate the direction of the vector $\vec{v} = \langle 5, -8 \rangle$, use $\theta = \tan^{-1} \frac{y}{x}$, with x = 5 and y = -8.

$$\vec{v} = \langle 5, -8 \rangle$$

$$\theta = \tan^{-1} \frac{y}{x}$$

$$\theta = \tan^{-1} \frac{-8}{5}$$

Using a calculator, we get

$$\theta = -57.99^{\circ}$$

Vertical component is in Quadrant IV and θ must be in the interval [0,360), therefore we calculate θ by

$$\theta = 360^{\circ} - 57.99^{\circ} = 302.005^{\circ}$$

$$\theta = 302^{\circ}$$
.

THE COMPONENTS OF A VECTOR

The lengths of the x- and y- components of a vector $\|\vec{v}\| = \sqrt{{v_x}^2 + {v_y}^2}$ in two dimensions can be found using trigonometric ratios.

$$\vec{v}_x = \|\vec{v}\|\cos\theta$$
 and $\vec{v}_y = \|\vec{v}\|\sin\theta$

 \vec{v}_{x} is the horizontal component of \vec{v} and \vec{v}_{y} is the vertical component.

The angle θ is always between 0° and 360°.

Suppose the magnitude of a vector $\vec{v} = \langle v_x, v_y \rangle$ is 20 units, and that \vec{v} makes a 60° angle with the horizontal. Then, the components of \vec{v} are

$$\vec{v}_x = \|\vec{v}\|\cos\theta \qquad \qquad \vec{v}_y = \|\vec{v}\|\sin\theta$$

$$= 20\cos60^\circ \qquad \qquad = 20\sin60^\circ$$

$$= 20 \cdot \frac{1}{2} \qquad \qquad = 20 \cdot \frac{\sqrt{3}}{2}$$

$$= 10 \qquad \text{and} \qquad = 10\sqrt{3}$$

So, we could write $\vec{v} = \langle v_x, v_y \rangle$ as $\vec{v} = \langle 10, 10\sqrt{3} \rangle$

USING TECHNOLOGY

We can use technology to determine the magnitude of a vector.

Go to www.wolframalpha.com.

To find the magnitude of the vector $\vec{v} = \langle 2, 4 \rangle$, enter magnitude of $\langle 2, 4 \rangle$ in the entry field. Wolframalpha tells you what it thinks you entered, then tells you its answer. In this case, $||\vec{v}|| = 2\sqrt{5}$.

To find the direction of the vector $\vec{v} = \langle 5, 8 \rangle$, enter direction of the vector $\langle 5, 8 \rangle$ in the entry field. Wolframalpha answers $57.9946^{\circ} \approx 58^{\circ}$.

TRY THESE

1. Find the magnitude of the vector $\vec{v} = \langle 3, -4 \rangle$.

ANS:
$$\|\vec{v}\| = 5$$

2. Find the magnitude of the vector $\vec{v} = \langle -3, -3 \rangle$.

ANS:
$$\|\vec{v}\| = 3\sqrt{2}$$

3. Find the components of the vector \vec{v} if the magnitude of \vec{v} is 6 and it makes a 30° angle with the horizontal.

ANS:
$$\vec{v}_x = 3\sqrt{3}$$
 and $\vec{v}_y = 3$

4. Approximate the direction of the vector $\vec{v} = \langle 3, 10 \rangle$.

ANS:
$$\theta \approx 73.3008^{\circ}$$

NOTE TO INSTRUCTOR

1. Remind students of the Pythagorean Theorem.

$$a^2 + b^2 = c^2$$

2. Consider deriving the magnitude of a vector $\vec{v} = \langle v_x, v_y \rangle$ using the Pythagorean Theorem. Note that the v_x and the v_y in $\langle v_x, v_y \rangle$ represent the lengths of the horizontal and vertical components, respectively, of \vec{v} .

Use as an example of the vector $\vec{v} = \langle 6, 3 \rangle$. The magnitude of $\vec{v} = \langle 6, 3 \rangle$ is

$$\begin{split} \|\vec{v}\| &= \sqrt{v_x^2 + v_y^2} \\ \|\vec{v}\| &= \sqrt{6^2 + 3^2} \\ \|\vec{v}\| &= \sqrt{36 + 9} \\ \|\vec{v}\| &= \sqrt{45} \\ \|\vec{v}\| &= \sqrt{9 \cdot 5} \\ \|\vec{v}\| &= \sqrt{9} \cdot \sqrt{5} \\ \|\vec{v}\| &= 3\sqrt{5} \end{split}$$

3. Demonstrate how to find the magnitude of $\vec{v} = \langle -5, 4 \rangle$.

$$\|\vec{v}\| = \sqrt{v_x^2 + v_y^2}$$

$$\|\vec{v}\| = \sqrt{(-5)^2 + 4^2}$$

$$\|\vec{v}\| = \sqrt{25 + 16}$$

$$\|\vec{v}\| = \sqrt{41}$$

4. Find the components of the vector \vec{v} if the magnitude of \vec{v} is 7 and it makes a 30° angle with the horizontal.

$$\vec{v}_x = \|\vec{v}\|\cos\theta$$

$$= 7\cos 30^\circ$$

$$= 7 \cdot \frac{\sqrt{3}}{2}$$

$$= \frac{7\sqrt{3}}{2}$$

$$= \frac{7}{2}$$

$$\vec{v}_y = \|\vec{v}\|\sin\theta$$

$$= 7\sin 30^\circ$$

$$= 7 \cdot \frac{1}{2}$$

$$= \frac{7}{2}$$

So,
$$\vec{v}_x = \frac{7\sqrt{3}}{2}$$
 and $\vec{v}_y = \frac{7}{2}$

5. Approximate the components of the vector \vec{v} if the magnitude of \vec{v} is 16 and it makes a 128° angle with the horizontal.

$$\vec{v}_x = \|\vec{v}\|\cos\theta$$
 $\vec{v}_y = \|\vec{v}\|\sin\theta$
= 16cos128° = 16sin128°
 $\approx 16 \cdot (-0.616)$ $\approx 16 \cdot (0.788)$
 ≈ -9.86 ≈ 12.61

So,
$$\vec{v}_x = -9.86$$
 and $\vec{v}_y = 12.61$

6. Approximate the direction of the vector $\vec{v} = \langle 2, 7 \rangle$.

$$\theta = \tan^{-1} \frac{y}{x}$$

$$\theta = \tan^{-1}\frac{7}{2}$$

Using a calculator, we get

$$\theta = 74.0546041^{\circ}$$

 $\theta = 74.05^{\circ}$

<u>2-3 magnitude direction and components of a vector.pdf</u>, attributed to Denny Burzynski (author) and Downey Unified School District (publisher) is licensed under CC BY-NC 4.0. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc/4.0