Corrigés des exercices

Corrigé exercice 1 :

$$|-5| = 5$$

1)
$$|-5|=5$$

2) $|3-1|=|2|=2$
3) $2-3\pi<0$.

3)
$$2-3\pi < 0$$

Donc:
$$|2 - 3\pi| < 0$$
.
 $|2 - 3\pi| = -(2 - 3\pi) = -2 + 3\pi = 3\pi - 2$

$$\begin{vmatrix} 2 - \frac{2}{3} \end{vmatrix} = \begin{vmatrix} \frac{6-2}{3} \end{vmatrix} = \begin{vmatrix} \frac{4}{3} \end{vmatrix} = \frac{4}{3}$$

Corrigé exercice 2 :

Il est possible de résoudre ces équations et inéquations à l'aide de la représentation graphique de la fonction valeur absolue ou en utilisant la droite réelle graduée.

$$S = \{-6; 6\}$$

2)
$$S = \emptyset$$

$$S = \{0\}$$

$$S =]-2;2$$

2)
$$S = \emptyset$$

3) $S = \{0\}$
4) $S =]-2; 2[$
5) $S =]-\infty; -3] \cup [3; +\infty[$
6) $S = \emptyset$

6)
$$S = \emptyset$$

Corrigé exercice 3 :

On utilise les identités remarquables ou la double distributivité.

a) Pour tout réel
$$x$$
:
$$4(x-3)^2 + 5 = 4(x^2 - 6x + 9) + 5$$
$$= 4x^2 - 24x + 36 + 5$$
$$= 4x^2 - 24x + 41$$

b) Pour tout réel
$$x$$
:
$$2 - \left(x + \sqrt{5}\right)^2 = 2 - \left(x^2 + 2x\sqrt{5} + 5\right)$$
$$= 2 - x^2 - 2x\sqrt{5} - 5$$
$$= -x^2 - 2x\sqrt{5} - 3$$

$$7(x+5)\left(x-\frac{3}{4}\right) = 7\left(x^2 - \frac{3}{4}x + 5x - \frac{15}{4}\right)$$

$$= 7\left(x^2 - \frac{3}{4}x + \frac{20}{4}x - \frac{15}{4}\right)$$

$$= 7\left(x^2 + \frac{17}{4}x - \frac{15}{4}\right)$$

$$= 7x^2 + \frac{119}{4}x - \frac{105}{4}$$

2) On utilise les identités remarquables ou un facteur commun.

a) Pour tout réel
$$x$$
, $x^2 - 9 = x^2 - 3^2 = (x - 3)(x + 3)$

b) Pour tout réel
$$x$$
, $4x^2 - 12x + 9 = (2x)^2 - 2 \times 2x \times 3 + 3^2 = (2x - 3)^2$

c) Pour tout réel
$$x$$
, $x - 5x^2 = x(1 - 5x)$

Corrigé exercice 4:

1)
$$-8 \le x < -3$$

La fonction carré est strictement décroissante sur $]-\infty;0]$

Donc:
$$(-8)^2 \geqslant x^2 > (-3)^2$$

soit
$$64 \geqslant x^2 > 9$$

$$\operatorname{donc} 9 < x^2 \leqslant 64$$

2)
$$2 < x \leqslant 7$$

La fonction carré est strictement croissante sur $[0; +\infty[$.

Donc:
$$2^2 < x^2 \le 7^2$$

$$\operatorname{soit} 4 < x^2 \leqslant 49$$

3)
$$-4 \leqslant x < 2$$

La fonction carré n'étant pas monotone sur l'intervalle [-4;2], on dresse son tableau de variations sur [-4; 2].

x	-4	0	2
x^2	16	\/	4

Donc:
$$0 \leqslant x^2 \leqslant 16$$
.

Corrigé exercice 5 :

1)
$$x^2 = 25$$

 $\Leftrightarrow x = -\sqrt{25}$ ou $x = \sqrt{25}$
 $\Leftrightarrow x = -5$ ou $x = 5$

Donc:
$$S = \{-5; 5\}$$
.

2)
$$3x^2 + 7 = 4$$

$$\begin{array}{l} \Leftrightarrow 3x^2 = -3 \\ \Leftrightarrow x^2 = -1 \\ \text{Donc} : S = \emptyset. \end{array}$$

$$\mathsf{Donc}: S = \emptyset.$$

3)
$$x^2 > 5$$

$$\Leftrightarrow x < -\sqrt{5}$$
 ou $x > \sqrt{5}$

$$\sum_{\text{Donc}: S = \left] -\infty; -\sqrt{5} \right[\cup \left] \sqrt{5}; +\infty \right[.$$

4)
$$6 - 5x^2 \geqslant 1$$

$$\Leftrightarrow -5x^2 \geqslant -5$$

$$\Leftrightarrow x^2 \leqslant 1$$

$$\begin{array}{l}
6 - 5x \geqslant 1 \\
\Leftrightarrow -5x^2 \geqslant -5 \\
\Leftrightarrow x^2 \leqslant 1 \\
\Leftrightarrow -\sqrt{1} \leqslant x \leqslant \sqrt{1}
\end{array}$$

$$\Leftrightarrow -1 \leqslant x \leqslant 1$$

Donc:
$$S = [-1; 1]$$
.

Corrigé exercice 6:

Dans la suite, on considère que les fonctions affines sont de la forme $x\mapsto mx+p$ avec m et p réels.

1) Cette expression est l'expression d'une fonction affine.

On résout donc : 5x-8=0 si et seulement si $x=\frac{8}{5}$.

Le coefficient directeur $m=5\,\mathrm{est}$ positif.

On dresse ensuite le tableau de signes :

x	$-\infty$		$\frac{8}{5}$		$+\infty$
5x-8		_	0	+	

2) Cette expression est l'expression d'une fonction affine.

On résout donc : 6 - 3x = 0 si et seulement si x = 2.

Le coefficient directeur m=-3 est négatif.

On dresse ensuite le tableau de signes :

x	$-\infty$		2		$+\infty$
6 - 3x		+	0	_	

3) Cette expression est le produit de deux fonctions affines.

On résout donc :

$$2x-3=0$$
 si et seulement si $x=\frac{3}{2}$ (avec $m=2>0$)

$$x = \frac{7}{5}$$
 (avec $m = -5 < 0$)

On dresse ensuite le tableau de signes :

x	$-\infty$		$\frac{7}{5}$		$\frac{3}{2}$		$+\infty$
2x - 3		_		-	0	+	
7 - 5x		+	0	_		_	
(2x-3)(7-5x)		_	0	+	0	-	

4) Pour tout réel x, x^2 est positif ou nul, et nul en x=0.

Donc, $-\frac{1}{2}x^2$ est négatif ou nul pour tout réel x, et nul en x=0. On obtient donc :

x	$-\infty$		0		$+\infty$
$-\frac{1}{2}x^2$		_	0	_	

5) Pour étudier le signe d'une telle expression, on résout :

$$12-3 |x| = 0$$
 si et seulement si $-3 |x| = -12$ si et seulement si $|x| = 4$

si et seulement si
$$x = -4$$
 ou $x = 4$

$$12-3\,|x|<0 \qquad \qquad \text{si et seulement si } -3\,|x|<-12$$
 si et seulement si $|x|>4$

si et seulement si
$$x<-4$$
 ou $x>4$

On obtient donc:

x	$-\infty$		-4		4		$+\infty$
12 - 3 x		_	0	+	0	_	

Corrigé exercice 7:

Dans la suite, on considère que les fonctions affines sont de la forme $x\mapsto mx+p$ avec m et p réels.

1) a) On étudie le signe de l'expression 5-x.

Cette expression est l'expression d'une fonction affine.

On résout donc : 5 - x = 0 si et seulement si x = 5.

Le coefficient directeur m=-1 est négatif.

On dresse ensuite le tableau de signes :

x	$-\infty$		5		$+\infty$
5 – <i>x</i>		+	0	-	

Donc:

$$\begin{aligned} \operatorname{Si} x < 5, \operatorname{alors} |5-x| &= 5-x \\ \operatorname{Si} x \geqslant 5, \operatorname{alors} |5-x| &= -(5-x) = x-5 \\ |5-x| &= \left\{ \begin{array}{ll} 5-x & \operatorname{si} & x < 5 \\ x-5 & \operatorname{si} & x \geqslant 5 \end{array} \right. \end{aligned}$$

b) On étudie le signe de l'expression 2x-6. Cette expression est l'expression d'une fonction affine.

On résout donc : 2x - 6 = 0 si et seulement si x = 3.

Le coefficient directeur m=2 est positif.

On dresse ensuite le tableau de signes :

x	$-\infty$		3		+∞
2 <i>x</i> – 6		-	0	+	

Donc:

2) 1° cas : On considère x tel que $x \leq 3$.

Alors:
$$|5-x| + |2x-6| = 5 - x + 6 - 2x$$

= $11 - 3x$

2° cas : On considère x tel que $3\leqslant x\leqslant 5$

Alors:
$$|5-x| + |2x-6| = 5 - x + 2x - 6$$

3° cas : On considère x tel que $x \ge 5$.

Alors:
$$|5-x| + |2x-6| = x-5+2x-6$$

=3x-11

3) a) |2x - 6| = 0si et seulement si 2x - 6 = 0

si et seulement si 2x = 6si et seulement si x=3

 $Donc: S = \{3\}.$

|2x - 6| < 2si et seulement si -2 < 2x - 6 < 2

 ${\rm si\ et\ seulement\ si}\ 4<2x<8$

si et seulement si 2 < x < 4 $Donc \cdot S = [2; 4[$

Corrigé exercice 8 :

1) Le volume d'un cylindre est $V=\pi r^2 h$ où r est le rayon du cylindre et h sa hauteur.

D'après l'énoncé, on sait que $h=15\,\mathrm{cm}$ et $r=\frac{10}{2}=5\,\mathrm{cm}$.

Donc : $V = \pi \times 5^2 \times 15 = 375\pi \approx 1178$

Le volume est donc d'environ $1178 \,\mathrm{cm}^3$, soit environ $1,178 \,\mathrm{L}$.

2) Le volume d'un cylindre est $V=\pi r^2 h$ où r est le rayon du cylindre et h sa hauteur. D'après l'énoncé, on sait que $h=15\,\mathrm{cm}$. Le volume est de $500\,\mathrm{mL}$, soit 500 cm³. On obtient donc : $\pi r^2 \times 15 = 500$