Groupwork2

Kuan

2023-03-10

```
library(readr)
library(moderndive)
library(gapminder)
library(sjPlot)
library(stats)
library(jtools)
library(janitor)
library(areaplot)
library(dplyr)
library(skimr)
library(kableExtra)
library(gridExtra)
library(ggplot2)
library(stringr)
```

Data pre-processing

Remove missing value

In the raw dataset, there are some missing data about mean altitude and harvested, so before analysis data we remove missing values.

```
dataset13 <- read_csv("dataset13.csv")
dim(dataset13)

[1] 1145 8

#remove NA
newdataset<- na.omit(dataset13)
dim(newdataset)</pre>
```

[1] 935 8

data cleaning

The boxplot about mean altitude shows that there are some outliers. Four of them are more than 10000 metres, obviously they are wrong datas, so we remove them. From the boxplot about Aroma, we find there is a wrong value which equals zero and remove it from the dataset.

Figure 1: Boxplots of mean altitude of the growers farm/left, aroma values/right in different qualityclass

Suitable numerical summaries and visualizations

Table 1: Summary statistics on the different numerical explanatory variables of coffee.

Variable	n	Mean	SD	Min	Median	Max	IQR
aroma	930	7.58	0.31	5.08	7.58	8.75	0.17
flavor	930	7.53	0.32	6.17	7.58	8.67	0.17
acidity	930	7.53	0.31	5.25	7.50	8.58	0.25
$category_two_defects$	930	3.64	5.35	0.00	2.00	47.00	2.00
$altitude_mean_meters$	930	1325.65	484.31	1.00	1310.64	4287.00	289.36

Table 1 shows that the mean values of Aroma grade, Flavor grade and Acidity grade are both approximately 7.5. There are large differences of category two defects between different coffee beans, as some have no defective product, but some have 47 in the batch of coffee beans tested. Similarly, the difference in mean altitude is distinct.

```
#summary of categorical explanatory variables
#country of origin
data_country<- newdataset %>%
   group_by(country_of_origin) %>%
   summarise(n=n())
data_country
```

```
# A tibble: 33 x 2
  country_of_origin
                        n
   <chr>
                    <int>
 1 Brazil
                       91
 2 Burundi
                        2
3 China
                        14
 4 Colombia
                       127
5 Costa Rica
                       36
6 Cote d?Ivoire
                        1
7 Ecuador
                        2
8 El Salvador
                       18
9 Ethiopia
                       23
10 Guatemala
                      127
# ... with 23 more rows
```

```
newdataset %>%
  tabyl(country_of_origin, Qualityclass) %>%
  adorn_percentages() %>%
  adorn_pct_formatting() %>%
  adorn_ns() %>%
  kable(caption = '\\label{tab1:origin} Summary statistics on country of origin.') %>%
  kable_styling(latex_options = "HOLD_position")
```

Table 2: Summary statistics on country of origin.

country of origin	Good	Poor
Brazil	51.6% (47)	48.4% (44)
	\ /	(/
Burundi	50.0% (1)	50.0% (1)
China	64.3% (9)	35.7% (5)
Colombia	82.7% (105)	17.3% (22)
Costa Rica	55.6% (20)	44.4% (16)
Cote d?Ivoire	0.0% (0)	100.0% (1)
Ecuador	50.0% (1)	50.0% (1)
El Salvador	72.2% (13)	27.8% (5)
Ethiopia	100.0% (23)	0.0% (0)
Guatemala	52.0% (66)	48.0% (61)
Haiti	20.0% (1)	80.0% (4)
Honduras	26.1% (12)	73.9% (34)
India	50.0% (5)	50.0% (5)
Indonesia	57.1% (8)	42.9% (6)
Kenya	90.0% (18)	10.0% (2)
Laos	0.0% (0)	100.0% (2)
Malawi	9.1% (1)	90.9% (10)
Mauritius	0.0% (0)	100.0% (1)
Mexico	26.0% (52)	74.0% (148)
Myanmar	0.0% (0)	100.0% (6)
Nicaragua	23.1% (3)	76.9% (10)
Panama	75.0% (3)	25.0% (1)
Peru	0.0% (0)	100.0% (1)
Philippines	40.0% (2)	60.0% (3)
Taiwan	40.4% (23)	59.6% (34)
Tanzania, United Republic Of	48.3% (14)	51.7% (15)
Thailand	57.1% (8)	42.9% (6)
Uganda	76.7% (23)	23.3% (7)
United States	66.7% (6)	33.3% (3)
United States (Hawaii)	100.0% (1)	0.0% (0)
United States (Puerto Rico)	33.3% (1)	66.7% (2)
Vietnam	57.1% (4)	42.9% (3)
Zambia	0.0% (0)	100.0% (1)

The summary table shows that there are total 33 countries in the dataset, and 200 observations are from Mexico, which is the most, but some countries have only one observation. We also note that there are 6 countries like Laos only have poor qualityclass of coffee, the qualityclass of Ethiopia and United States(Hawaii) are all good. There also have 3 countries' qualityclass is half and half.

```
#harvested
data_harvested<- newdataset %>%
  group_by(harvested) %>%
  summarise(n=n())
data_harvested
# A tibble: 9 x 2
  harvested
                n
      <dbl> <int>
       2010
               26
1
2
       2011
               30
3
       2012
              255
4
       2013
              134
5
       2014
              194
6
       2015
              118
7
       2016
              103
8
       2017
               52
9
       2018
               18
newdataset %>%
  tabyl(harvested, Qualityclass) %>%
  adorn_percentages() %>%
  adorn_pct_formatting() %>%
  adorn_ns() %>%
  kable(caption = '\\label{tab1:harvested} Summary statistics on
harvested.') %>%
  kable_styling(latex_options = "HOLD_position")
```

Table 3: Summary statistics on harvested.

harvested	Good	Poor
2010	76.9% (20)	23.1% (6)
2011	73.3% (22)	26.7% (8)
2012	39.2% (100)	60.8% (155)
2013	53.7% (72)	46.3% (62)
2014	50.0% (97)	50.0% (97)
2015	54.2% (64)	45.8% (54)
2016	55.3% (57)	44.7% (46)
2017	48.1% (25)	51.9% (27)
2018	72.2% (13)	27.8% (5)

The summary table shows that the information is collected from 2010 to 2018, and 255 observations is from 2012 which is the most. We also note that in 2010 the proportion of good qualityclass is highest, which is 76.9%. The lowest is 39.2% in 2012.

Country of origin

```
ggplot(newdataset, aes(x=Qualityclass, y=..prop.., group=country_of_origin, fill=country_of_origin))+
  geom_bar(position = "dodge", stat="count")+
  labs(y="Proportion")
```


Figure 2: Propotion of Qualityclass by countries of origin.

The plot shows the proportion of Good qualityclass vs poor qualityclass between different country of origin. we can see some countries are all good quality, some are all poor quality. So we can fit a logistic regression model to determine whether the qualityclass of coffee can be predicted from their country of origin.

Aroma, Flavour and Acidity

```
#boxplot of Aroma grade
ggplot(data = newdataset, mapping = aes(x = factor(Qualityclass), y = aroma, fill = Qualityclass)) +
   geom_boxplot() +
   labs(x = "Qualityclass", y = "Aroma",
        title = "Aroma in different qualityclass")
```

Aroma in different qualityclass

Figure 3: Boxplot of aroma in different qualityclass

Flavor in different qualityclass

Figure 4: Boxplot of aroma in different qualityclass

Figure 5: Boxplot of aroma in different qualityclass

The features of these three quality scores are similar. The boxplots show that coffee with good quality have higher grade in Aroma, Flavour and Acidity than poor. So we can fit a logistic regression model to see whether Aroma, Flavour and Acidity are significant predictors of the odds of qualityclass of coffee beans.

Count of defects

Figure 6: Boxplot of Count of category 2 type defects in different qualityclass

The boxplot shows that the poor quality coffee beans have more defective products than good quality ones, and there are more outliers in poor quality coffee beans. So we can fit a logistic regression model to see whether count of category 2 type defects is a significant predictor of the odds of quality class of coffee beans.

Mean altitude

Figure 7: Boxplot of mean altitude of the growers farm in different qualityclass

The boxplot shows that the mean altitude of good quality coffee beans are higher than poor quality ones. we can notice that the poor quality have more outliers. So we can fit a logistic regression model to see whether mean altitude of the growers is a significant predictor of the odds of qualityclass of coffee beans.

harvested

```
ggplot(newdataset, aes(x=Qualityclass, y=..prop.., group=harvested, fill=harvested))+
  geom_bar(position = "dodge", stat="count")+
  labs(y="Proportion")
```


Figure 8: Propotion of Qualityclass by Harvested.

```
prop<-newdataset %>%
  tabyl(harvested, Qualityclass) %>%
  adorn_percentages() %>%
  adorn_pct_formatting() %>%
  adorn_ns()
prop$Good<-str_sub(string=prop$Good, start=1, end=5)
prop$Good<-as.factor(prop$Good)
ggplot(prop, aes(x=harvested, y=Good, group=1))+
  geom_line()+
  labs(y="Proportion")</pre>
```


Figure 9: Propotion of Qualityclass by Harvested.

The line plot shows the propotion of Good quality class is highest in 2010, which is about 75%. We can fit a logistic regression model to determine whether the quality class of coffee can be predicted from harvested years.