Листочек 5. Многомерный. Математический анализ. 1 курс. Решения.

Глеб Минаев @ 102 (20.Б02-мкн)

10 апреля 2021 г.

Содержание	Рейтинговые задачи	7
	Задача 7	7
Базовые задачи	1 Лемма 1	7
Задача 1	1 Задача 8	8
Задача 2	1 Задача 9	8
Задача 3	2 Задача 10	8
Задача 4	3 Задача 11	8
Задача 5	4 Задача 12	8
Задача 6	4 Задача 13	8

Базовые задачи

Задача 1. ТВР

Задача 2. Давайте введём на плоскости два направления:

$$\overrightarrow{u} := \overrightarrow{x} + \overrightarrow{y}$$
 и $\overrightarrow{v} := \overrightarrow{x} - \overrightarrow{y}$

Они образуют базис, координаты по ним пересчитываются по правилам

$$u = \frac{x+y}{2}$$

$$x = u+v$$

$$v = \frac{x-y}{2}$$

$$y = u-v$$

а дифференциалы —

$$du = dx + dy$$

$$dv = dx - dy$$

$$dx = \frac{du + dv}{2}$$

$$dy = \frac{du - dv}{2}$$

Тогда мы имеем, что

$$\left| \frac{\partial f}{\partial u} + \frac{\partial f}{\partial v} \right| (u, v) = 2 \left| \frac{\partial f}{\partial x} \right| (x, y) \leqslant 4|x - y| = 8|v|$$
$$\left| \frac{\partial f}{\partial u} - \frac{\partial f}{\partial v} \right| (u, v) = 2 \left| \frac{\partial f}{\partial y} \right| (x, y) \leqslant 4|x - y| = 8|v|$$

При этом для любых вещественных a, b и c верно

$$\begin{cases} |a+b| \leqslant c \\ |a-b| \leqslant c \end{cases} \iff |a|+|b| \leqslant c$$

Поэтому мы получаем, что условие задачи равносильно тому, что

$$\left| \frac{\partial f}{\partial u} \right| (u, v) + \left| \frac{\partial f}{\partial v} \right| (u, v) \leqslant 8|v|$$

В таком случае заметим, что

$$|f(x,y)| = |f(u,v) - f(0,0)| \qquad \leqslant |f(u,v) - f(u,0)| + |f(u,0) - f(0,0)|$$

$$= \left| \int_0^v \frac{\partial f}{\partial v}(u,t)dt \right| + \left| \int_0^u \frac{\partial f}{\partial v}(s,0)ds \right| \qquad \leqslant \int_0^v \left| \frac{\partial f}{\partial v} \right| (u,t)dt + \int_0^u \left| \frac{\partial f}{\partial v} \right| (s,0)ds$$

$$\leqslant \int_0^v 8tdt + \int_0^u 0ds \qquad = 4v^2 = (x-y)^2$$

Следовательно $|f(5,4)| \leq (5-4)^2 = 1$, а значит $f(5,4) \leq 1$.

При этом равенство достигается. Действительно, возьмём $f(x,y)=(x-y)^2$. Тогда

$$\left|\frac{\partial f}{\partial x}\right|(x,y) = |2(x-y)| = 2|x-y| \qquad \text{if} \qquad \left|\frac{\partial f}{\partial y}\right|(x,y) = |-2(x-y)| = 2|x-y|$$

Задача 3.

а) Вспомним, что для всякой строго монотонной функции f на [p;q] верно, что

$$\int_{p}^{q} f + \int_{f(p)}^{f(q)} f^{-1} = qf(q) - pf(p)$$

Действительно,

$$\begin{split} \frac{d}{dq} \left(\int_{p}^{q} f + \int_{f(p)}^{f(q)} f^{-1} \right) \\ &= \frac{d}{dq} \left(\left(\int f \right) \Big|_{p}^{q} + \left(\left(\int f^{-1} \right) \circ f \right) \Big|_{p}^{q} \right) \\ &= \left(\int f \right)' + \left(\left(\int f^{-1} \right) \circ f \right)' \\ &= f + f' \cdot (f^{-1} \circ f) \\ &= f + f' \cdot q \end{split}$$

$$= \frac{d}{dq} (qf(q))$$

а отсюда и следует заявленное утверждение.

Тогда

$$\int_{-a}^{a} \frac{dx}{\sqrt{a^2 + 2bx + b^2}} = a \int_{-a}^{a} \frac{d(x/a)}{\sqrt{a^2 + 2ab(x/a) + b^2}} = a \int_{-1}^{1} \frac{dt}{\sqrt{a^2 + 2abt + b^2}}$$

При этом функция $f(t)=1/\sqrt{a^2+2abt+b^2}$ строго монотонна, а обратная равна $f^{-1}(s)=(1/s^2-a^2-b^2)/2ab$. Следовательно

$$\begin{split} \int_{-1}^{1} \frac{dt}{\sqrt{a^2 + 2abt + b^2}} &= x f(x)|_{-1}^{1} - \int_{f(-1)}^{f(1)} \left(\frac{1}{2abs^2} - \frac{a^2 + b^2}{2ab}\right) ds \\ &= f(1) + f(-1) + (f(1) - f(-1)) \frac{a^2 + b^2}{2ab} - \frac{1}{2ab} \int_{f(-1)}^{f(1)} \frac{ds}{s^2} \\ &= f(1) + f(-1) + (f(1) - f(-1)) \frac{a^2 + b^2}{2ab} + \frac{1}{2ab} \frac{1}{s} \Big|_{f(-1)}^{f(1)} \end{split}$$

Заметим, что f(1) = 1/(a+b), а f(-1) = 1/|a-b|. Следовательно

$$f(1) + f(-1) + (f(1) - f(-1)) \frac{a^2 + b^2}{2ab} + \frac{1}{2ab} \frac{1}{s} \Big|_{f(-1)}^{f(1)}$$

$$= \frac{1}{a+b} + \frac{1}{|a-b|} + \left(\frac{1}{a+b} - \frac{1}{|a-b|}\right) \frac{a^2 + b^2}{2ab} + \frac{(a+b) - |a-b|}{2ab}$$

$$= \frac{(a+b)^2}{2ab(a+b)} - \frac{(a-b)^2}{2ab|a-b|} + \frac{(a+b) - |a-b|}{2ab}$$

$$= \frac{(a+b) - |a-b|}{ab} = \frac{2\min(a,b)}{ab} = \frac{2}{\max(a,b)}$$

Таким образом ответ: $2a/\max(a,b)$.

б) ТВР

Задача 4. Давайте возьмём функцию тождественно равную нулю и будем рассматривать только квадрант $\{x \ge 0 \land y \ge 0\}$; если мы испортим её на данном квадранте, что все условия выполнятся, тогда функция и на всей плоскости подойдёт.

Рассмотрим кривые $y=e^{-1/x}$ и $y=2e^{-1/x}$. Они пересекаются только в нуле. Поэтому давайте в пространстве между ними будем выделим последовательность окрестностей, сходящуюся к (0;0), и в каждой из этих окрестностей заменим нашу функцию на что угодно непрерывное, достигающее по модулю 1 и равное на границе 0 (чтобы "вклеивалась" в оставшуюся функцию): например, можно вклеить конусы высоты 1.

Покажем, что всякая кривая $c_1x^m=c_2y^n$ (из условия) в некоторой окрестности (0;0) не попадает в область между $y=e^{-1/x}$ и $y=2e^{-1/x}$. Действительно, если c_1 или c_2 равно 0, то мы получаем ось абсцисс или ординат, которая по понятным причинам не лежит в области между экспоненциальными графиками. Если же они оба не равны 0, то мы имеем дело с кривой $y=\lambda x^{\alpha}$, где λ и α — положительные константы. Тогда при $x\to 0$

$$2e^{-1/x} = o(\lambda x^{\alpha})$$

что и означает, что в некоторой окрестности (0;0) рассматриваемая кривая лежит вне выделенной области.

В таком случае на рассматриваемой кривой функция тождественно равна 0, а тогда и предел по ней в (0;0) равен 0. При этом во всякой окретсности (0;0) будут точки вылетающие за 1-окрестность 0, да и в целом принимающие все значения либо из (0;1), либо (0;-1), поэтому никакой сходимости в (0;0) быть не может.

Ну и напоследок, очевидно, что полученная функция непрерывна везде кроме (0;0), так как мы постарались и вклеили функции с нулём на краю.

Задача 5. Давайте обозначим $\alpha:=1+\frac{1}{n^2}$ и $m=n^3$. Тогда от нас требуют найти асимптотику

$$\sum_{k=1}^{m} \alpha^{-k^2}$$

Заметим, что $\alpha > 1$, а следовательно функция α^{-x^2} убывает. Значит

$$\sum_{k=1}^{m} \int_{k-1}^{k} \alpha^{-x^{2}} dx \geqslant \sum_{k=1}^{m} \alpha^{-k^{2}} \geqslant \sum_{k=1}^{m} \int_{k}^{k+1} \alpha^{-x^{2}} dx$$
$$\int_{0}^{m} \alpha^{-x^{2}} dx \geqslant \sum_{k=1}^{m} \alpha^{-k^{2}} \geqslant \int_{1}^{m+1} \alpha^{-x^{2}} dx$$

При этом

$$\int_{a}^{b} \alpha^{-x^{2}} dx = \int_{a}^{b} e^{-\left(\sqrt{\ln(\alpha)}x\right)^{2}} dx = \frac{1}{\sqrt{\ln(\alpha)}} \int_{a}^{b} e^{-\left(\sqrt{\ln(\alpha)}x\right)^{2}} d\left(\sqrt{\ln(\alpha)}x\right) = \frac{1}{\sqrt{\ln(\alpha)}} \int_{a\sqrt{\ln(\alpha)}}^{b\sqrt{\ln(\alpha)}} e^{-t^{2}} dt$$

Следовательно

$$\frac{1}{\sqrt{\ln(\alpha)}} \int_0^{m\sqrt{\ln(\alpha)}} e^{-x^2} dx \geqslant \sum_{k=1}^m \alpha^{-k^2} \geqslant \frac{1}{\sqrt{\ln(\alpha)}} \int_{\sqrt{\ln(\alpha)}}^{(m+1)\sqrt{\ln(\alpha)}} e^{-x^2} dx$$

Заметим теперь, что

$$\sqrt{\ln(\alpha)} = \sqrt{\ln\left(1 + \frac{1}{n^2}\right)} \approx \sqrt{\frac{1}{n^2}} = \frac{1}{n}$$

Следовательно $\alpha \to 0^+$, а

$$m\alpha \approx n^3 \frac{1}{n} = n^2 \to +\infty$$

Значит

$$\int_0^{m\sqrt{\ln(\alpha)}} e^{-x^2} dx = \frac{\sqrt{\pi}}{2} + o(1) \qquad \text{ if } \qquad \int_{\sqrt{\ln(\alpha)}}^{(m+1)\sqrt{\ln(\alpha)}} e^{-x^2} dx = \frac{\sqrt{\pi}}{2} + o(1)$$

Таким образом

$$\sum_{k=1}^{m} \alpha^{-k^2} \approx \frac{\sqrt{\pi}}{2} \cdot \frac{1}{\sqrt{\ln(\alpha)}} \approx \frac{\sqrt{\pi}}{2} n$$

Задача 6. Для начала будем считать, что количество переменных равно n, а не d.

Давайте попробуем посмотреть на локальные изменения максимизируемой функции в точке искомого максимума. Заметим, что

$$\operatorname{grad}\left(\sum_{l=1}^{n-1} x_l x_{l+1}\right) = (x_{l-1} + x_{l+1})_{l=1}^n$$

где под x_0 и x_{n+1} подразумеваются нули, а

$$\operatorname{grad}\left(\sum_{l=1}^{n-1} x_l^2\right) = (x_l)_{l=1}^n$$

При этом если эти градиенты не будут сонаправлены, то можно будет "сдвинуться" по сфере немного в сторону первого градиента и тогда значение увеличится. Значит мы получаем, что эти два вектора сонаправлены. Повторим, что это вектора

$$(x_1,\ldots,x_n)$$
 и $(x_2,x_3+x_1,\ldots,x_n+x_{n-2},x_{n-1})$

Причём про первый мы знаем, что он ненулевой (это буквально совпадает с условием нахождения на единичной сфере), поэтому

$$(x_2, x_3 + x_1, \dots, x_n + x_{n-2}, x_{n-1}) = \lambda(x_1, \dots, x_n)$$

для некоторого $\lambda \in \mathbb{R}$. Тогда мы получаем, что $x_2 = \lambda x_1, x_{n-1} = \lambda x_n$ и для всякого $k \in \{3; \dots; n\}$ верно

$$x_n + x_{n-2} = \lambda x_{n-1}$$

Последнее значит, что мы получили линейную рекуренту на x_l , и следовательно

$$x_l = a\alpha^{l-1} + b\beta^{l-1}$$

где α и β — корни (возможно, комплексные) многочлена $t^2 - \lambda t + 1$ (пока будем считать, что $\alpha \neq \beta$), а a и b — некоторые комплексные числа. Тогда по теореме безу мы имеем, что $\alpha\beta = 1$, а $\alpha + \beta = \lambda$. При этом из первых двух условий мы имеем, что

$$a\alpha + b\beta = \lambda(a+b)$$
 и $a\alpha^{n-2} + \beta\alpha^{n-2} = \lambda(a\alpha^{n-1} + b\beta^{n-1})$

Следовательно

$$\begin{cases} a(\lambda - \alpha) + b(\lambda - \beta) = 0 \\ a(\lambda \alpha^{n-1} - \alpha^{n-2}) + b(\lambda \beta^{n-1} - \beta^{n-2}) = 0 \end{cases} \qquad \begin{cases} a\beta + b\alpha = 0 \\ a\alpha^{n-1}(\lambda - \beta) + b\beta^{n-1}(\lambda - \alpha) = 0 \end{cases}$$
$$\begin{cases} a\beta + b\alpha = 0 \\ a\alpha^{n-1}(\lambda - \beta) + b\beta^{n-1}(\lambda - \alpha) = 0 \end{cases}$$
$$\begin{cases} a\beta + b\alpha^{2} = 0 \\ a\alpha^{2n} + b\beta^{2n} = 0 \end{cases}$$
$$\begin{cases} a + b\alpha^{2n} = 0 \\ a\alpha^{2n} + b = 0 \end{cases}$$
$$\begin{cases} a^{2n} + b^{2n} = 0 \\ a\alpha^{2n} + b = 0 \end{cases}$$

Ho $\binom{a}{b} \neq \overrightarrow{0}$ (так как иначе все $x_l = 0$), следовательно

$$0 = \begin{vmatrix} 1 & \alpha^2 \\ \alpha^{2n} & 1 \end{vmatrix} = 1 - \alpha^{2(n+1)}$$

Значит α является корнем степени 2(n+1) из 1. Но α является корнем $t^2 - \lambda t + 1$ — многочлена с вещественными коэффициентами, следовательно α имеет вид либо r, либо ri, где $r \in \mathbb{R}$, а i — мнимая единица. Значит $\alpha \in \{1; -1; i; -i\}$.

Пусть $\alpha=i$ (случай $\alpha=-i$ аналогичен), тогда $\beta=-i,\,\lambda=0,\,n+1$ і 2 и a+b=0. И тогда

$$x_l = ai^{l-1} - a(-i)^{l-1} = ai^{l-1}(1 - (-1)^{l-1})$$

Тогда при чётных l мы имеем $x_l = 0$, что значит, что

$$\sum_{l=1}^{n-1} x_l x_{l+1} = 0$$

Теперь осталось рассмотреть случаи когда $\alpha = \beta = \pm 1$, т.е.

$$x_l = (a + (l-1)b)(\pm 1)^{l-1}$$

для некоторых вещественных а и b. Но заметим общий факт, что

$$\sum_{l=1}^{n-1} x_l x_{l+1} \leqslant \left| \sum_{l=1}^{n-1} x_l x_{l+1} \right| \leqslant \sum_{l=1}^{n-1} |x_l x_{l+1}| = \sum_{l=1}^{n-1} |x_l| |x_{l+1}|$$

Поэтому если максимум достижим, то он достижим набором неотрицательных чисел, что значит, что нужно считать x_l положительными. Но тогда случай $\lambda = -1$ отпадает, так как оба вектора-градиента содержат неотрицательные значения, и следовательно

$$x_l = a + (l-1)b$$

Тогда

$$1 = \sum_{l=1}^{n} x_l^2 = \sum_{l=1}^{n} (a + (l-1)b)^2 = a^2n + 2ab\frac{(n-1)n}{2} + d^2\frac{(n-1)n(2n-1)}{6}$$

a

$$S = \sum_{l=1}^{n-1} x_l x_{l+1} = \sum_{l=1}^{n-1} (a + (l-1)b)(a + lb)$$

$$= \sum_{l=1}^{n-1} (a + lb)^2 - b(a + lb) = \sum_{l=1}^{n} (a + (l-1)b)^2 - a^2 - ab(n-1) - b^2 \frac{(n-1)n}{2}$$

$$= 1 - a^2 - ab(n-1) - b^2 \frac{(n-1)n}{2}$$

Но также заметим, что

$$\frac{1}{n} = \frac{1}{n} \left(a^2 n + 2ab \frac{(n-1)n}{2} + d^2 \frac{(n-1)n(2n-1)}{6} \right) = a^2 + ab(n-1) + d^2 \frac{(n-1)(2n-1)}{6}$$

Следовательно

$$S = 1 - a^{2} - ab(n-1) - b^{2} \frac{(n-1)3n}{6}$$

$$= 1 - \left(a^{2} + ab(n-1) + d^{2} \frac{(n-1)(2n-1)}{6}\right) - b^{2} \frac{(n-1)(n+1)}{6}$$

$$= 1 - \frac{1}{n} - b^{2} \frac{(n-1)(n+1)}{6} \geqslant \frac{n-1}{n}$$

И по данной формуле мы, действительно, сразу получаем пример: если $x_l=1/\sqrt{n},$ то

$$\sum_{l=1}^{n} x_l^2 = \sum_{l=1}^{n} \frac{1}{n} = 1 \qquad \text{if} \qquad \sum_{l=1}^{n-1} x_l x_{l+1} = \sum_{l=1}^{n-1} \frac{1}{n} = \frac{n-1}{n}$$

Таким образом ответ: 1 - 1/n.

P.S. Мы несколько раз пользовались тем, что $n \ge 2$ и один раз, что $n \ge 3$, но для них задача решается очевидно. Если n=1, то задачи нет, так как

$$\sum_{l=1}^{n-1} x_l x_{l+1} = 0$$

Если же n=2, то

$$\frac{1}{2} - \sum_{l=1}^{n-1} x_l x_{l+1} = \frac{x_1^2 + x_2^2}{2} - x_1 x_2 = \frac{(x_1 - x_2)^2}{2} \geqslant 0$$

т.е. $\frac{1}{2} \geqslant \sum_{l=1}^{n-1} x_l x_{l+1}$; и тот же пример $x_l = 1/\sqrt{n}$ подходит, и получается ответ 1/2. Значит 1-1/n верен для всех n.

Рейтинговые задачи

Задача 7.

Лемма 1. Пусть дан отрезок [a;b] и непрерывная функция $g:[a;b] \to \mathbb{R}_{\geqslant 0}$. Тогда для всякого $\varepsilon > 0$ есть такая непрерывная функция $f:[a;b] \to \mathbb{C}$, что

- |f(x)| = g(x) dis $g(x) \in [a; b]$,
- $\left| \int_{a}^{b} f(x) dx \right| \leqslant \varepsilon$
- $u \ f(a) = g(a), \ f(b) = g(b), \ m.e. \ f(a) \ u \ f(b)$ вещественны и положительны.

Доказательство. Пусть $A:=\int_a^b g(x)dx$. Тогда разделим наш отрезок на отрезки $[a;a_1],[a_1;b_1]$ и $[b_1;b],$ что

$$\int_{a}^{a_{1}} g(x)dx = \int_{b_{1}}^{b} g(x)dx = \frac{A}{4} \quad \text{if} \quad \int_{a_{1}}^{b_{1}} g(x)dx = \frac{A}{2}$$

Тогда рассмотрим в a_1 и b_1 по таким окрестностям, что

- эти окрестности находятся полностью внутри [a; b],
- эти окрестности не пересекаются
- и интеграл g на каждой из этих окрестностей не больше $\varepsilon/4$.

Тогда давайте зададим функцию на этих отрезках без выбранных окрестностей так: на $[a;a_1]$ и на $[b_1;b]$ f будет равна g, а на $[a_1;b_2]$ — -g. Если не учитывать окрестности, то суммарный интеграл на всём отрезке [a;b] будет равен 0, но функция может быть разрывной в a_1 и b_1 .

Мы же заберём окрестностями немного у отрезков и сделаем непрерывное соединение между ними. Если просто вырезать интервалы, то суммарный интеграл f на всех трёх получившихся отрезках будет в ε /2-окрестности 0, а значит, как бы мы ни задали f на этих окрестностях, интеграл f на всём [a;b] будет в ε -окрестности 0. Поэтому зададим f на вырезанных окрестностях как угодно непрерывно, чтобы соединить отрезки; например, если нужно задать её на интервале (s;t), то можно воспользоваться формулой

$$\pm g(x)e^{\frac{x-s}{t-s}\pi i}$$

В итоге функция построена.

Будем подразумевать под g функцию |g|; тогда нам ставится условие, что |f|=g, как в лемме. Заметим, что если $\int_0^1 g(x)dx$ конечен, то и $\int_0^1 f(x)dx$ сойдётся, какой бы f не была (непрерывности хватит). Поэтому будем рассматривать случай $\int_0^1 g(x)dx = +\infty$.

Тогда давайте со стороны 1 отрезать от (0;1] по полуинтервалу так, что интеграл g на первом равен 1, на втором равен 1/2, на третьем -1/3, и т.д. Заметим, что процесс не прерывается, так как интеграл g на всём отрезке бесконечен, и при этом концы данных полуинтервалов сойдутся (так как это убывающая ограниченная последовательность) и сойдутся к 0 (так как иначе они сойдутся к $a \in (0;1)$, а тогда $\int_a^1 g(x)dx$ конечен, а сумма $1+1/2+1/3+\ldots$ бесконечна и когда-нибудь мы перепрыгнем a). Значит мы разбили весь полинтервал (0;1] на полинтервалы, и чем ближе к нулю, тем меньше интегралы g на них.

Тогда давайте определим функцию f на каждом интервале \mathbb{N} n так, как указано в лемме выше, но в качестве ε возьмём $1/2^n$. Тогда сумма интегралов f на всех полинтервалах сойдётся (пусть к z), и тогда для всякого a на полуинтервале \mathbb{N} n будет верно, что

$$\left| \int_{a}^{1} f(x)dx - z \right| \leqslant \frac{1}{2^{n-1}} + \frac{1}{n}$$

т.е. интеграл $\int_0^1 f(x)dx$ сойдётся.

 Задача 8. ТВР

 Задача 9. ТВР

 Задача 10. ТВР

 Задача 11. ТВР

 Задача 12. ТВР

 Задача 13. ТВР