Worksheet 15 Review

April 1, 2020

Question 1

a. First, we will evaluate the cost of he inner most loop.

Because the loop runs from j = i = 1 to j = n - 1, with each iteration costing 1 step, we can conclude that the inner most loop has cost of at most

$$\lceil (n-1) - (i+1) + 1 \rceil = n - i - 1 \tag{1}$$

steps.

Next, we will evaluate the cost of the outer most loop.

Because the loop runs from i = 0 to i = n - 1 with each iteration costing (n - i - 1) steps, we can conclude the outer most loop has cost of at most

$$\sum_{i=0}^{n-1} (n-i-1) = \left[\sum_{i=0}^{n-1} (n-1) - \sum_{i=0}^{n-1} i \right]$$
 (2)

$$= \left[\frac{2n(n-1)}{2} - \frac{(n-1)}{2} \right]$$
 (3)

$$=\frac{n(n-1)}{2}\tag{4}$$

steps.

Next, we will bring everything together.

Since the lines $\mathbf{n} = \mathbf{len(lst)}$ and $\mathbf{return\ False}$ have cost of 1 step each, the total cost of the algorithm is

$$\frac{n(n-1)}{2} + 2\tag{5}$$

steps.

Then, it follows from above that the algorithm has runtime of $\Theta(n^2)$.

Correct Solution:

First, we will evaluate the cost of he inner most loop.

Because the loop runs from j = i = 1 to j = n - 1, with each iteration costing 1 step, we can conclude that the inner most loop has cost of at most

$$\lceil (n-1) - (i+1) + 1 \rceil = n - i - 1 \tag{6}$$

steps.

Next, we will evaluate the cost of the outer most loop.

Because the loop runs from i = 0 to i = n - 1 with each iteration costing (n - i - 1) steps, we can conclude the outer most loop has cost of at most

$$\sum_{i=0}^{n-1} (n-i-1) = \left[\sum_{i=0}^{n-1} (n-1) - \sum_{i=0}^{n-1} i \right]$$
 (7)

$$= \left[\frac{2n(n-1)}{2} - \frac{(n-1)}{2} \right]$$
 (8)

$$=\frac{n(n-1)}{2}\tag{9}$$

steps.

Next, we will bring everything together.

Since the lines $\mathbf{n} = \mathbf{len(lst)}$ and $\mathbf{return\ False}$ have cost of 1 step each, the total cost of the algorithm is $\mathbf{at\ most}$

$$\frac{n(n-1)}{2} + 2\tag{10}$$

steps.

Then, it follows from above that the algorithm has runtime of $\mathcal{O}(n^2)$.

Question 2