Mathématiques

Henri LEFEBVRE

15 octobre 2017

Table des matières

1	Ana	${ m alyse~dans}~\mathbb{R}~({ m MT90/MT91/MT12})$	2
	1.1	Propriétés de $\mathbb R$	2
	1.2	Suites réelles $\mathbb{N} \to \mathbb{R}$	3
	1.3	Fonctions réelles $\mathbb{R} \to \mathbb{R}$ (généralités)	4
	1.4	Dérivation	4
	1.5	Théorie de la mesure	5
		1.5.1 Généralités	5
		1.5.2 Exemples de mesures	6
	1.6	Intégration	6
		1.6.1 Définitions	6
		1.6.2 Propriétés	7
		1.6.3 Convergence	9
		1.6.4 Intégrale de Riemann-Stieltjes	9
		1.6.5 Fonctions définies par une intégrale	10
		1.6.6 Introduction au calcul des variations	10
	1.7	Séries dans $\mathbb R$	10
	1.8	Le corps \mathbb{C}	10
	1.9	Distributions	10
		Convolution	10
		Transformées de Fourier	10
	1.12	Transformées de Laplace	10
2	Ana	\mathbf{a} lyse dans \mathbb{R}^n (MT22)	11
3	Alg	èbre linéaire (MT23)	12
4	Ana	alyse numérique (MT09)	13
5	Stat	tistiques (SY02)	14
6	Opt	imisation (RO04)	15
7	For	mulaires	16

Analyse dans \mathbb{R} (MT90/MT91/MT12)

1.1 Propriétés de \mathbb{R}

Structure : $(\mathbb{R}, +, \dot)$ est un corps ordonné

Formule du binôme :

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} \text{ avec } \binom{n}{k} = \frac{n!}{k!(n-k)!}, \forall x, y \in \mathbb{R}, \forall n \in \mathbb{N}$$

Produit scalaire : $\langle x, y \rangle = xy, \forall x, y \in \mathbb{R}$

Norme (\mathbb{R}) (valeur avsolue) : $\mathbb{R} \to \mathbb{R}_+, x \to |x| = \begin{cases} x & \text{si } x > 0 \\ -x & \text{sinon} \end{cases}$

Positivité: |x| > 0 et $|x| = 0 \Leftrightarrow x = 0$

 ${\bf Homoth\acute{e}tie}\,:|ax|=|a||x|$

Inégalité triangulaire : $|x+y| \le |x| + |y|$

Convergence $: f(x) \longrightarrow l \Leftrightarrow |f(x) - l| \longrightarrow 0$

Intervalles: I est un intervalle si $\forall a, b \in I, a < c < b \Rightarrow c \in I$

$$[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$$
$$c \in [a,b] \Leftrightarrow \exists \theta \in [0,1], c = \theta a + (1-\theta)b$$

Densité de $\mathbb Q$:

$$\forall]a,b[\neq\emptyset,\exists\alpha\in\mathbb{Q}\cap]a,b[\text{ et }\exists\beta\in(\mathbb{R}-\mathbb{Q})\cap]a,b[$$

Ensembles bornées : Soit $A \subset \mathbb{R}$

 $\textbf{Majoration} \, : \forall x \in A, x \leq M$

Minoration: $\forall x \in A, x \geq m$

Encadrement: $\forall x \in A, |x| < M$

Borne supérieur : Plus petit des majorants (s'ils existent)

$$s = \sup A \Leftrightarrow \Big\{ \forall x \in A, x \leq s \quad \forall t < s, \exists x \in A \text{ tel que } t < x \Big\}$$

Droite numérique achevée $:\overline{\mathbb{R}}=\mathbb{R}\cup\{\pm\infty\}$

1.2 Suites réelles $\mathbb{N} \to \mathbb{R}$

Définition : $u : \mathbb{N} \to \mathbb{R}, n \mapsto u_n$

Convergence:

$$(U_n) \longrightarrow l, n \longrightarrow \infty \Leftrightarrow (\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \text{ tel que } \forall n \in \mathbb{N}, n > n_0 \Rightarrow |u_n - l| < \varepsilon)$$

Limite infinie:

$$(U_n) \longrightarrow l, n \longrightarrow \infty \Leftrightarrow (\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \text{ tel que } \forall n \in \mathbb{N}, n > n_0 \Rightarrow u_n > \varepsilon)$$

Convergences connues:

$$\lim_{n \to \infty} \frac{k^n}{n!} = 0; \lim_{n \to \infty} \frac{n^{\alpha}}{k^n} = 0; \lim_{n \to \infty} \frac{(\ln \beta)^{\beta}}{n^{\alpha}} = 0$$

Propriétés de convergence : Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ avec $u_n \longrightarrow l$ et $v_n \longrightarrow l'$ quand $n \longrightarrow \infty$

Combinaison : $u_n + \lambda v_n \longrightarrow l + \lambda l'$ quand $n \longrightarrow \infty$

Produit: $u_n v_n \longrightarrow \infty$ quand $n \longrightarrow \infty$

Quotient : Si $l' \neq 0$, $u_n/v_n \longrightarrow l/l'$ quand $n \longrightarrow \infty$

Vers zéro : Si $u_n \longrightarrow 0$ et v_n bornée, alors $u_n v_n \longrightarrow 0$ quand $n \longrightarrow \infty$

Ordre: Si $u_n \leq v_n$ alors $\lim_{n\to\infty} u_n \leq \lim_{n\to\infty} v_n$

Suites adjacentes : (u_n) et (v_n) sont dites adjacentes si et seulement si

$$(u_n)$$
 est croissante; (v_n) est décroissante; $\lim_{n\to\infty}(v_n-u_n)=0$

Suite arithmétique :

Définition récursive : $u_{n+1} = u_n + r$

Définition générale : $u_n = u_0 + nr$

Somme des termes:

$$\sum_{k=0}^{n-1} u_k = n \frac{u_0 + u_{n-1}}{2}$$

Suite géométrique :

Définition récursive : $u_{n=1} = qu_n$

Définition générale : $u_n = q^n u_0$

Somme des termes:

$$\sum_{k=0}^{n-1} u_k = u_0 \frac{1 - q^n}{1 - q}$$

Suites récurrentes : $u_{n+1} = f(u_n)$

Si $\exists l \in \mathbb{R}$ point fixe de f (i.e. f(l) = l) et f contractancte (i.e. f k-lipschitzienne avec 0 < k < 1) alors $(u_n) \longrightarrow l$

3

1.3 Fonctions réelles $\mathbb{R} \to \mathbb{R}$ (généralités)

Définition : $f : \mathbb{R} \to \mathbb{R}, x \mapsto f(x)$

Image: $\forall A \subset \mathbb{R}, f(A) = \{y | \exists x \in A, y = f(x)\}$

Image réciproque : $f^{-1}(B) = \{x \in D_f | f(x) \in B\}$

Support : supp $\varphi = \overline{\{x | \varphi(x) \neq 0\}}$

Correspondances : Pour $f : E \to F$

 $\mathbf{Surjection}\,: \forall x, x' \in E, f(x) = f(x') \Rightarrow x = x'$

Injection: $\forall y \in F, \exists x \in E \text{ tel que } y = f(x)$

Bijection: $\forall y \in F, \exists ! x \in E \text{ tel que } y = f(x) \text{ (} f \text{ injective et surjective)}$

Composée : $f \circ g(x) = f(g(x))$ Fonction identité : $id : x \mapsto x$

Bijection réciproque : Si f bijective, alors $\exists f^{-1}$ tel que $f \circ f^{-1} = f^{-1} \circ f = id$

Convergence : $f(x) \longrightarrow l, x \longrightarrow a$

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in \Omega, |x - a| < \eta \Rightarrow |f(x) - f(a)| < \varepsilon$$

Limite à droite :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in \Omega, a < x < a + \eta \Rightarrow |f(x) - f(a)| < \varepsilon$$

Caractérisation de la limite (par les suites) :

$$\lim_{x \to a} f(x) = l \Leftrightarrow \left(\forall (x_n)_{n \in \mathbb{N}}, \begin{cases} \lim_{n \to \infty} x_n = a \\ \forall n \in \mathbb{N}, x_n \in \Omega - \{a\} \end{cases} \Rightarrow \lim_{x \to \infty} f(x_n) = l \right)$$

Continuité:

$$\lim_{x \to a} f(x) = f(a)$$

Théorème des valeurs intermediaires (TVI) : Soit $f \in C^0([a,b])$ et $y \in \mathbb{R}$

$$f(a) < y < f(b) \Rightarrow \exists x \in [a, b], f(x) = y$$

Condition de Lipschitz:

$$\exists k \in \mathbb{R}, \forall x, y \in \mathbb{R}, |f(x) - f(y)| < k|x - y|$$

1.4 Dérivation

Dérivabilité : f est dérivable si et seulement si

$$\exists d \in \mathbb{R}$$
, tel que $f(x+h) = f(x) + hd + |h|\epsilon(h)$

Taux de variation:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Théorème de Rolle : Soit $f \in C^0([a,b])$

$$f(a) = f(b) \Rightarrow \exists c \in [a, b] \text{ tel que } f'(c) = 0$$

Théorème des accroissements finis : Soit $f \in C^0([a,b])$

$$\exists c \in [a, b] \text{ tel que } f'(c) = \frac{f(b) - f(a)}{b - a}$$

Formule de Leibniz:

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$$

Opérations:

$$(f+\lambda g)'=f'+\lambda g', \lambda\in\mathbb{R}; \ \left(\frac{f}{g}\right)'=\frac{f'g-fg'}{g^2}; \ (f\circ g)'=g'\times(f'\circ g)$$

Fonction réciproque :

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}$$

Dérivées connues :

$$(x^q)' = qx^{q-1}, q \in \mathbb{Z}; (e^x)' = e^x; (\ln|x|)' = \frac{1}{x}; (\cos x)' = -\sin x; (\sin x)' = \cos x; (\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

Saut d'une fonction:

$$\sigma_m = f^{(m)}(0^+) - f^{(m)}(0^-), m \ge 0$$

1.5 Théorie de la mesure

1.5.1 Généralités

Fonction indicatrice (ou caractéristique):

$$1_A(x) = \begin{pmatrix} 1six \in A \\ 0six \in /A \end{pmatrix}$$

 σ -algèbre (tribu) : Une famille A de sous-ensemble de X est une tribu si :

- 1. $X \in A$
- 2. A est stable par complémentarité
- 3. A est stable par union dénombrable

Espace mesurable: Ensemble muni d'une tribu (X, A)

Tribu borélienne : Plus petite tribu de $\mathbb R$ contenant tous les intervalles

Mesure: Une mesure μ sur (X, A) est une application de $A \to [0, \infty]$ telle que

- 1. $\mu(\emptyset) = 0$
- 2. Si $(An)n \ge 1$ est une suite dénombrable de A deux à deux disjointes alors : $\mu\left(\bigcup_{n\ge 1}A_n\right) = \sum_{n>1}\mu(A_n)$ (σ -additivité)

Espace mesuré : Le triplet (X,A,μ) est appelé un espace mesuré Proposition : soit \bar{x} une tribu de X

- 1. Si $A, B \in \bar{x}$ et $A \subset B$ alors $\mu(A) \leq \mu(B)$
- 2. Si $A_1 \subset A_2 \subset ... \subset A_n \subset ..., A_k \in \bar{x}$ alors $\lim_{n \to \infty} A_n = \bigcup_n A_n$ et $\mu(\bigcup_n A_n) = \lim_{n \to \infty} \mu(A_n)$
- 3. Si $A, B \in \bar{x}$ alors $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$

Ensemble négligeable : A est dit négligeable si $\mu(A) = 0$

Proposition vraie presque partout (pp) : Une proposition est dite vraie (μ -)presque partout sur X si elle est vrai sur X E avec $\mu(E) = 0$

Ensemble de mesure nulle : Un sous-ensemble A de \mathbb{R} est dit de mesure nulle si pour tout $\varepsilon > 0$, il existe une suite d'intervalles ouverts et bornés (I_n) telle que :

- 1. $A \subset \cup_{i \geq 1} I_i$
- 2. $\sum_{i>1} |I_i| < \varepsilon$

Propositions:

- 1. Tout ensemble dénombrable est de mesure nulle
- 2. Si A est de mesure nulle et $B \subset A$, alors B est de mesure nulle
- 3. Si $A \bigcup_{n>1} A_n$ avec chaque A_n de mesure nulle, alors A est de mesure nulle

Fonction mesurable : $f:(X,\bar{x})\to(\mathbb{R},B)$ est mesurable si $f^{-1}(B)\subset\bar{x}$

1.5.2 Exemples de mesures

Mesure de Lebesgue : Il existe une unique mesure λ sur $(\mathbb{R}, B(\mathbb{R}))$ telle que $\forall I = [a, b]$ borné, $\lambda([a, b]) = \lambda([a, b]) = b - a$

Mesure de Dirac : $\delta_a : T \to \{0,1\}$ avec T une tribu et $\delta_a = \begin{cases} 1 \text{ si } a \in A \\ 0 \text{ si } a \notin A \end{cases}$

Mesure de comptage (cardinal) : Pour un ensemble dénombrable de \mathbb{R} , $\forall n, \mu(\{n\}) = 1$

1.6 Intégration

1.6.1 Définitions

Fonction en escalier : Fonctions constantes sur des intervalles

Intégrale de Riemann : Soit

$$f = \sum_{i=1}^{n} \alpha_i 1_{I_i}$$

une fonction en escalier, on définit l'intégrale de f par

$$I(f) = \int_a^b f(t)dt = \sum_i \alpha_i (x_{i+1} - x_i)$$

Pour une fonction quelconque, s'il existe, pour tout $\varepsilon > 0$, deux fonctions en escalier f_{ε} et F_{ε} telle que $f_{\varepsilon} \leq f \leq F_{\varepsilon}$ et $I(f_{\varepsilon}) - I(f_{\varepsilon}) < \varepsilon$), alors f est dite Riemann-intégrable et on a :

$$\int_{a}^{b} f(t)dt = \sup \{I(g)|g \text{ fonction en escalier et } g \leq f\}$$

Fonction étagée : Fonction dont l'image est constituée d'un nombre fini de valeurs réelles

Théorème : Toute fonction à valeur dans \mathbb{R}^n est limite de fonctions étagées

Intégrale de Lebesgue : Soit

$$f = \sum_{i=1}^{n} \alpha_i 1_{A_i}$$

une fonction étagée, on définit l'intégrale de f par rapport à la mesure μ par

$$\int_X f d\mu = \sum_{i=1}^n \alpha_i \mu(A_i)$$

et pour $E \subset X$

$$\int_{E} f d\mu = \int_{X} f 1_{E} d\mu$$

Pour f une fonction positive,

$$\int_X f d\mu = \sup \left\{ \int s d\mu | s \text{ \'etag\'ee et } s \leq f \right\}$$

Enfin pour une fonction quelconque, on définit : $f^+ = \max(0, f)$ et $f^- = \max(0, -f)$ de sorte que :

$$\int f d\mu = \int f^+ d\mu + \int f^- d\mu$$

1.6.2 Propriétés

Lien Riemann-Lebesgue : Si f est Riemann-Intégrable, alors f est Lebesgue-intégrable Ensemble de fonctions intégrables (au sens de Lebesgue) :

$$L^p(A) = \left\{ f : \mathbb{R} \to \mathbb{R} | \int_A |f|^p < \infty \right\}$$

Fonctions localement intégrables : $f : \mathbb{R} \to \mathbb{R}$ Lebesgue-intégrable sur tout intervalle borné $(L^1 \subset L^1_{loc})$

Intégration et dérivation :

$$f(x) = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t)dt$$

Egalité d'intégrales:

$$f \stackrel{pp}{=} g \Leftrightarrow \int f(t)dt = \int g(t)dt$$

Linéarité:

$$\int (f(t) + \lambda g(t))dt = \int f(t)dt + \lambda \int g(t)dt$$

Relation de Chasles : Qui implique aussi $\int_a^b f(t)dt = -\int_b^a f(t)dt$

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

Relation d'ordre:

$$f \le g \Leftrightarrow \int f(t)dt \le \int g(t)dt$$

Fonction périodique : Soit f une fonction T-périodique,

$$\int_0^T f(t)dt = \int_c^{c+T} f(t)dt$$

Inégalité triangulaire :

$$\left| \int f(t)dt \right| \le \int |f(t)|dt$$

Cauchy-Schwartz:

$$\left| \int f(t)g(t)dt \right| \leq \sqrt{\int f^2(t)dt \times \int g^2(t)dt}$$

Inégalité de Holder:

$$\frac{1}{p} + \frac{1}{q} = 1 \Rightarrow \int f(t)g(t)dt \le \left(\int |f(t)|^p dt\right)^{\frac{1}{p}} \left(\int |g(t)|^q dt\right)^{\frac{1}{q}}$$

Théorème de la moyenne :

$$\forall x \in [a, b], m \le f \le M, \Rightarrow m \le \frac{1}{b - a} \int_a^b f(t) dt \le M$$

Inégalité de la moyenne :

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \le \sup_{x \in [a,b]} |f(x)| \times \int_{a}^{b} |g(x)|dx$$

Intégrale sur un ensemble négligable : Soit μ une mesure alors

$$\mu(E) = 0 \Rightarrow \int_{E} f d\mu = 0$$

Théorème fondamental:

$$f(x) = f(a) + \int_{a}^{x} f'(t)dt$$

Intégration par partie (IPP) :

$$\int_{a}^{b} u'(t)v(t)dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u(t)v'(t)dt$$

Changement de variable :

$$\int_{a}^{b} f(x)dx \stackrel{x=u(t)}{=} \int_{u^{-1}(a)}^{u^{-1}(b)} f(u(t))u'(t)dt$$

Propositions sur l'intégrabilité :

- -f monotone $\Rightarrow f$ Riemann-intégrable
- f continue $\Rightarrow f$ Riemann-intégrable
- f pp-continue et bornée $\Rightarrow f$ Riemann-intégrable
- f pp-continue $\Rightarrow f$ Lebesgue-intégrable
- |f| < g, g Lebesgue-intégrable $\Rightarrow f$ Lebesgue-intégrable
- f Lebesgue-intégrable $\Leftrightarrow |f|$ Lebesgue-intégrable

1.6.3 Convergence

Convergence (Riemann):

$$f_n \stackrel{unif}{\longrightarrow} f \Rightarrow \int f_n(t)dt \stackrel{unif}{\longrightarrow} \int f(t)dt$$

Théorème de convergence monotone (Beppo-Levi) :

$$\begin{cases} (f_n) \text{ suite croissante de fonction} \\ f_n \longrightarrow f, n \longrightarrow \infty \end{cases} \Leftrightarrow \int f_n \longrightarrow \int f, n \longrightarrow \infty$$

Théorème de convergence dominée :

$$\begin{cases} f_n \xrightarrow{pp} f \\ |f_n| < g, g \in L^1 \end{cases} \Rightarrow \int f_n \longrightarrow \int f \left(\text{et même} : \int |f_n - f| \longrightarrow 0 \right)$$

Inversion somme-integrale:

$$(f_n)$$
 suite de fonction positive $\Rightarrow \int \sum_{n=0}^{\infty} f_n(x) dx = \sum_{n=0}^{\infty} \int f_n(x) dx$

Théorème de Fubini:

$$f \in L^1 \Rightarrow \iint f(x,y) dx dy = \int \left(\int f(x,y) dx \right) dy$$

Théorème de Fubini-Tonnelle :

$$f \ge 0 \Rightarrow \iint f(x,y) dx dy = \int \left(\int f(x,y) dx \right) dy$$

Définition: intégrale de fonction discontinue, intégrale sur un intervalle non bornée, etc.

Intégrales Riemann-impropre de références :

$$\int_0^1 \frac{dt}{t^{\alpha}} \text{ converge si } \alpha < 1; \int_1^{\infty} \frac{dt}{t^{\alpha}} \text{ converge si } \alpha > 1; \int_0^1 \ln t dt = -1$$

Riemann-impropre et Lebesgue : Si f est Riemann-intégrable au sens impropre et de signe constant alors f est Lebesgue-intégrable

1.6.4 Intégrale de Riemann-Stieltjes

Définition : Si α est une fonction croissante, alors elle définit une mesure. On appelle intégrale de Riemann-Stieltjes l'intégrale par rapport à cette mesure : $\int f(x)d\alpha(x)$ et on a :

$$\begin{split} &\alpha([a,b]) = \alpha(b^+) - \alpha(a^-) \\ &\alpha([a,b[) = \alpha(b^-) - \alpha(a^-) \\ &\alpha(]a,b[) = \alpha(b^-) - \alpha(a^+) \\ &\alpha(]a,b]) = \alpha(b^+) - \alpha(a^+) \end{split}$$

Calcul:

$$\int f(x)d\alpha(x) = \int f(x)\alpha'(x)dx$$

1.6.5 Fonctions définies par une intégrale

Définition: Soit $f:(x,t) \to f(x,t)$, si f est continue en t pour presque-tout x et $|f(t,x)| \le g(x)$, $g \in L^1$ alors la fonction suivante est défini et est continue

$$F(t) = \int f(t, x) dx$$

Dérivabilité : Si $\frac{\partial f}{\partial t}(x,t)$ existe et est continue et $\left|\frac{\partial f}{\partial x}(x,t)\right| < g(x), g \in L^1$ alors F est dérivable et

$$\frac{dF}{dt}(t) = \int \frac{\partial f}{\partial t}(t, x) dx$$

Formule:

$$\begin{split} F(t) &= \int_{[u(t),v(t)]} f(x,t) dx \\ \frac{dF}{dt}(t) &= f(t,v(t)) \frac{dv(t)}{dt} + f(t,u(t)) \frac{du(t)}{dt} + \int_{[u(t),v(t)]} \frac{\partial f}{\partial t}(x,t) dx \end{split}$$

1.6.6 Introduction au calcul des variations

Problème de variation : Trouver u^* telle que

$$u^* = \min_{u \in K} J(u)$$
 avec $J(u) = \int_{\alpha}^{\beta} \varphi(u, \dot{u}, t) dt$

Équation d'Euler-Lagrange : u solution du problème de variation, alors

$$\frac{\partial}{\partial u}\varphi(u,\dot{u},t) - \frac{d}{dt}\left[\frac{\partial}{\partial \dot{u}}\varphi(u,\dot{u},t)\right] = 0$$

Intégrale première d'Euler-Lagrange : $\varphi(u, \dot{u}, t) = \varphi(u, \dot{u})$

$$\varphi(u,\dot{u}) = \left[\frac{\partial}{\partial \dot{u}}\varphi(u,\dot{u})\right]\dot{u} + k, k \in \mathbb{R}$$

Condition aux limites:

- Deux extrémités fixes : $u(\alpha) = a$ et $u(\beta) = b$
- Une extrémité libre : $u(\alpha) = a$ et $\frac{\partial}{\partial \dot{u}} \varphi(u(\beta), \dot{u}(\beta), \beta) = 0$
- Deux extrémités libres : $\frac{\partial}{\partial \dot{u}} \varphi(u(\alpha), \dot{u}(\alpha), \alpha) = 0$ et $\frac{\partial}{\partial \dot{u}} \varphi(u(\beta), \dot{u}(\beta), \beta) = 0$

1.7 Séries dans \mathbb{R}

1.8 Le corps \mathbb{C}

1.9 Distributions

1.10 Convolution

1.11 Transformées de Fourier

1.12 Transformées de Laplace

Analyse dans \mathbb{R}^n (MT22)

Chapitre 3
Algèbre linéaire (MT23)

Chapitre 4

Analyse numérique (MT09)

Chapitre 5
Statistiques (SY02)

Optimisation (RO04)

Formulaires