

Assemblages boulonnés l

Principe, procédés de fabrication du filetage, filetage métrique et filetage gaz, règles de conception

Dr. S. Soubielle

Dans ce cours, nous allons...

... Définir le principe d'un assemblage boulonné

- ... Sollicitations mécaniques des pièces mises en jeu
- ... Rôle du filetage

... Décrire les procédés de fabrication du filetage

- ... Pour un filetage extérieur et intérieur
- ... Limitations induites par le procédé

... Définir les principaux filetages normalisés

- ... Filetage métrique, à pas normal et à pas fin
- ... Filetage « gaz », étanche et non-étanche

... Définir les règles d'utilisation d'une vis

... Rigidité de la vis, longueur L_i , longueur L_k , classe de qualité

Pourquoi les assemblages boulonnés '

S. Soubielle

.3

Principe d'un assemblage boulonné

- Maintien par adhérence ($T_{\text{Max}} = \mu_0 N$)
 - Vis sollicitée en traction
 - Pièces sollicitées en compression

Solutions de boulonnage

1. Vis + taraudage → Le + courant

2. Vis + écrou

→ Si taraudage impossible dans la 2ème pièce

→ Si l'utilisation d'une vis est impossible (p. ex. pour raisons d'encombrement)

Rôle du filetage

- Assemblage boulonné = liaison mécanique « par obstacle »
 - Obstacle = le filetage (intérieur ou extérieur)
 - Filet hélicoïdal → Assemblage par vissage + serrage au couple
 - Pas = distance entre deux filets successifs
- Filetages normalisés
 - Un seul filet
 - Pas = avance par tour
 - « À droite » par défaut
- Principaux standards ISO
 - Filetage métrique « M » → Usage général
 - Filetage « G », en pouces → Usage pour tuyauterie

Filet « à gauche » Filet « à droite »

© Guide des Sciences et Technologies Industrielle, J.-L. Fanchon

Fabrication du filetage extérieur

Petites et moyennes séries

- Opération manuelle
 Filière + porte-filière
- Usinage sur CN

Grandes séries → Roulage (forgeage à froid)

- Opération rapide et sans enlèvement de matière
- Ecrouissage
 → augmentation de la limite élastique (Re)

© Tesker MFG (extrait) ->

Fabrication du filetage intérieur

Utilisation d'un taraud

- Opération manuelle→ « tourne-à-gauche »
- Monté sur tour CN

Gamme de fabrication

- 1. Perçage à $D_{\rm B}$ (avant-trou)
- 2. Taraudage

- Forme et longueur de l'avant-trou
 - Avant-trou (perçage) → Fond conique à 120°
 - Taraudage

→ Moins profond que l'avant-trou (différence ≈ 1× D_B)

Filetage normalisé métrique

Profil de base pour filetage métrique

d: diamètre nominal

P: pas

Angle de filet = 60°

← © Extrait de Normes 2018, p. 233, fig. 233/1

- Pas normal et pas fin
 - Pas normal → Le plus courant / à utiliser en première instance
 - Pas fin → Paroi mince, écrou étroit, vis de réglage...

Fabrication plus coûteuse (car tolérances plus fines)

Diamètre d'avant-trou → D_B = d – P

Filetages métriques à pas normal

@ EPFL

- Notation = « M » + d
 - Ex.: M4, M12, M30
 - Suffixe « -LH »si pas à gauche
- Tailles selon
 ISO 262 →

As utilisé pour calculer la contrainte de traction

Diamètre	Pas	Section résistante	Avant-trou de
nominal		de la vis	taraudage
d = D	P	A _S 1) mm ²	D _B ²)
M1	0,25	0,460	0,75
M1,2	0,25	0,732	0,95
M1,6	0,35	1,27	1,25
M2	0,4	2,07	1,6
M2,5	0,45	3,39	2,05
M3	0,5	5,03	2,5
M4	0,7	8,78	3,3
M5	0,8	14,2	4,2
M6	1	20,1	5
M8	1,25	36,6	6,75
M10	1,5	58,0	8,5
M12	1,75	84,3	10,25
M16	2	157	14
M20	2,5	245	17,5
M24	3	353	21
M27	3	459	24
M30	3,5	561	26,5
M33	3,5	694	29,5
M36	4	817	32
M42	4,5	1121	37,5
M48	5	1473	43
M56	5,5	2030	50,5
M64	6	2675	58

© Extrait de Normes 2018, p. 233, Tableau 233/1, partiel >

Filetages métriques à pas fin

- Notation = « M » + d + « ×P »
 - M5×0,5, M8×1, M42×3
 - Suffixe « -LH »
 si pas à gauche
- Tailles selon
 ISO 262 →

As utilisé pour calculer la contrainte de traction

Diamètre nominal	Pas	Section résistante de la vis	Avant-trou de taraudage
d = D	P	A _S 1) mm ²	D _B ²)
M4	0,5	9,79	3,5
M5	0,5	16,1	4,5
M6	0,75	22,0	5,25
M8	1	39,2	7
M10	1,25	61,2	8,75
M12	1,5	88,1	10,5
M16	1,5	167	14,5
M20	1,5	272	18,5
M24	2	384	22
M30	2	621	28
M36	3	865	33
M42	3	1206	39
M48	3	1604	45
M56	4	2144	52
M64	4	2851	60
M72	4	3658	68
M80	4	4566	76
M90	4	5840	86
V100		7280	96

© Extrait de Normes 2018, p. 234, Tableau 234/1, partiel >

Filetages normalisé « gaz » (1/2)

- Variante étanche -> filetage extérieur conique*
- Variante non-étanche -> filetage extérieur droit*

* Le filetage intérieur est toujours droit

© Extrait de Normes 2018, p. 235, fig. 235/1

Filetages normalisé « gaz » (2/2)

Notations

Variante étanche

$$\rightarrow$$
 « R » + d (si filetage ext.)

$$\rightarrow$$
 « Rp » + d (si filetage int.)

Variante non-étanche

$$\rightarrow$$
 «G»+d

Tailles selon ISO 7-1
 et ISO 228-1 →

Filetage	Diamètre	Nombre de	Longue	ongueur utile de filetage 3)		
Dimension nominale		filets par Inch (25,4 mm)	L ₁ min.	L ₂ min.	L ₃ min.	
1/ ₈	6	28	6,5	7,4	4,5	
1/ ₄	8	19	9,7	11,0	6,8	
3/ ₈	10	19	10,1	11,4	7,1	
1/2	15	14	13,2	15,0	9,2	
3/4	20	14	14,5	16,3	10,2	
1	25	11	16,8	19,1	11,6	
1 ½	32	11	19,1	21,4	13,5	
1 ½	40	11	19,1	21,4	13,5	
2	50	11	23,4	25,7	16,9	

© Extrait de Normes 2018, p. 235, Tableau 235/2, partiel

Le nombre de filets par pouce est toujours un entier

© Extrait de Normes 2018, p. 235, Fig. 235/3 et 235/4

Exercice d'application

Soit la vis différentielle ci-contre, équipée d'un premier filetage en taille M6×0,75 et d'un deuxième en taille M4.

Calculer le déplacement de l'écrou (pièce verte) pour chaque tour de vis.

Profondeur d'implantation L_i

• L_i = longueur de filet en prise

Force de traction F sur la vis

- \rightarrow Contrainte de cisaillement τ dans les filets
- \rightarrow Risque d'arrachage des filets si L_i trop faible

(L_i)_{min} dépend du matériau

Aciers

- \rightarrow $(L_i)_{\min} \approx 1 \times d$
- Fontes et alliages de cuivre → $(L_i)_{min} \approx 1.5 \times d$
- Alliages légers (alu., titane) → $(L_i)_{min} \approx 2 \times d$

•	Va	leurs	pour	la	const	truct	ion

	L _i	taraudage	avant-trou	
Aciers	1,5× <i>d</i>	2×d	$2 \times d + D_{\rm B}$	
Fontes et alliages légers	2×d	2,5× <i>d</i>	$2,5 \times d + D_{\rm B}$	

Profil de cisaillement dans les filets

Répartition logarithmique

Le 1^{er} filet reprend le + de charge

- Plan d'introduction de la charge 0 20 %F_B
- Risques si surcharge locale
 - → Arrachage du filet
 - → Grippage / blocage

Particulièrement vrai avec taraudage dans de l'aluminium

Solution : le filet rapporté (Hélicoïl ®)

Filet métallique en acier que l'on intercale entre la vis et le taraudage

- → Meilleure répartition de la charge
- → Suppression des risques de matage / arrachage / grippage

© Boellhoff (extrait)

Sécurisation des assemblages boulonnes

- Protection contre le desserrage
 - 1. « Assouplir » la vis (en particulier si *F* cyclique et/ou dynamique)
 - \rightarrow Maximiser L_k pour réduire k_{vis}
 - L_k = distance entre l'embase de la tête de vis et le début des filets en prise

 $L_k \ge 3d$ si F cyclique $L_k \ge 5d$ si F dynamique

- 2. Emploi d'une rondelle à obstacle (Grower ou éventail, cf. AB II)
- 3. Collage au frein-filet (Loctite ®)
- 4. Emploi d'un écrou auto-freiné (cf. AB II)
- Protection contre le matage / tassement sous la tête de vis
 - → Par l'emploi d'une rondelle plate (cf. AB II)

Résistance de la vis (1/2)

Paramètres de résistance mécanique

- Limite élastique R_e [MPa]
- Limite à rupture R_m [MPa]
- Classe de qualité
 - Notation = « XX.Y »

• «
$$XX$$
 » = $R_{\rm m}$ / 100

• «Y» =
$$10 \times R_e / R_m$$

- Si classe de qualité ↑
- Charge admissible ↑ et/ou taille de la vis ↓

8.8 = bon compromis

Classe de qualité	4.6	5.6	8.8	10.9	12.9
R _e [MPa]	240	300	640	900	1080
R _m [Mpa]	400	500	800	1000	1200

Résistance de la vis (2/2)

Exercices d'application

- La cuve ci-contre, fermée par 8 vis M6, est soumise à des cycles de pression 0-60 bars.
 - 1. Quelle classe de qualité doit-on choisir pour garantir $\sigma < R_e$ à la limite du décollement ?
 - 2. Cette conception est-elle être pertinente?

Des questions?

Références normatives principales

ISO 7-1	Filetages de tuyauterie pour raccordement avec étanchéité dans le filet — Partie 1: Dimensions, tolérances et désignation
ISO 68-1	Filetages ISO pour usages généraux — Profil de base — Partie 1: Filetages métriques
ISO 228-1	Filetages de tuyauterie pour raccordement sans étanchéité dans le filet — Partie 1: Dimensions, tolérances et désignation
ISO 261	Filetages métriques ISO pour usages généraux — Vue d'ensemble
ISO 262	Filetages métriques ISO pour usages généraux — Sélection de dimensions pour la boulonnerie
ISO 898-1	Caractéristiques mécaniques des éléments de fixation en acier au carbone et en acier allié — Partie 1: Vis, goujons et tiges filetées de classes de qualité spécifiées — Filetages à pas gros et filetages à pas fin
ISO 80000-3	Grandeurs et unités - Partie 3: Espace et temps