import the packages

Read the data

In [2]: visa_df=pd.read_csv(r"C:\Users\omkar\OneDrive\Documents\Data science\Naresh IT\N
 visa_df.head(2)

Out[2]:		case_id	continent	education_of_employee	has_job_experience	requires_job_training
	0	EZYV01	Asia	High School	N	N
	1	EZYV02	Asia	Master's	Υ	N
	4					•

Standardization

- Standardization is a technoliue scale all the data under one scale
- Different columns has different values also different units
- Some column values has bigger values, some column values has lesser values
- So it is important to keep all the values under one scale
- We have two methods are there
 - Standardization
 - Normalization
- Standarization
 - Z-score
 - Z score varies values from -3 to 3

$$Z=rac{x-\mu}{\sigma}$$

- Normalization
 - min max scalar
 - values ranges from 0 to 1

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

task

- step-1: take prevailing wage column : visa_df['prevailing_wage']
- step-2: calculate the mean valye prevailing wage:mean= visa_df['prevailing_wage'].mean
- step-3: calculate the standard deviation of prevailing vage:std=
 visa_df['prevailing_wage'].std
- step-4: Calculate the Nr: step-1 step-2:Nr= visa_df['prevailing_wage']-mean
- step-5: divide the step4/step3

Out[6]:		case_id	continent	education_of_employee	has_job_experience	requires_job_1
	0	EZYV01	Asia	High School	N	
	1	EZYV02	Asia	Master's	Υ	
	2	EZYV03	Asia	Bachelor's	N	
	3	EZYV04	Asia	Bachelor's	N	
	4	EZYV05	Africa	Master's	Υ	
	•••					
	25475	EZYV25476	Asia	Bachelor's	Υ	
	25476	EZYV25477	Asia	High School	Υ	
	25477	EZYV25478	Asia	Master's	Υ	
	25478	EZYV25479	Asia	Master's	Υ	
	25479	EZYV25480	Asia	Bachelor's	Υ	

25480 rows × 13 columns

task-2

- Compare the two columns
- Get the maximum value and minimum value of the indexes
- The both indexes should match

idxmax- idxmin

```
In [10]: maxx=visa_df["prevailing_wage"].idxmax(),visa_df["prevailing_wage_z"].idxmax()
    minn=visa_df["prevailing_wage"].idxmin(),visa_df["prevailing_wage_z"].idxmin()
    maxx,minn

Out[10]: ((21077, 21077), (20575, 20575))

In [12]: max_val=visa_df["prevailing_wage"].max(),visa_df["prevailing_wage_z"].max()
    min_val=visa_df["prevailing_wage"].min(),visa_df["prevailing_wage_z"].min()
    max_val,min_val
```

StandardScalar

• StandardScalar same as Z-score but by using pacakge

Out[12]: ((319210.27, 4.634101837909902), (2.1367, -1.4096818992891214))

- It is under sklearn package
- In the sklearn we have preprocessing

- Read the package
- Save the package
- Apply fit transform
- Compare 3 coumns
 - One is original
 - Manually we did z-score
 - Column with package

```
In [13]: from sklearn.preprocessing import StandardScaler
    ss = StandardScaler()
    visa_df['prevailing_wage_ss']=ss.fit_transform(visa_df[['prevailing_wage']])
```

- Single square bracket is series
- Double square bracket is Data frame
- Whenever you see the shape error apply double square bracket

In [14]: \	<pre>visa_df[['prevailing_wage','prevailing_wage_z','prevailing_wage_ss']]</pre>					
Out[14]:	prevailing_wage prevailing_wage_z prevailing_wage_ss					

	prevailing_wage	prevailing_wage_z	prevailing_wage_ss
0	592.2029	-1.398510	-1.398537
1	83425.6500	0.169832	0.169835
2	122996.8600	0.919060	0.919079
3	83434.0300	0.169991	0.169994
4	149907.3900	1.428576	1.428604
•••			
25475	77092.5700	0.049923	0.049924
25476	279174.7900	3.876083	3.876159
25477	146298.8500	1.360253	1.360280
25478	86154.7700	0.221504	0.221509
25479	70876.9100	-0.067762	-0.067763

25480 rows × 3 columns

Normalization

- Read the data agian
- step-1: take prevailing wage column : visa_df['prevailing_wage']

- step-2: calculate the min value prevailing wage:min= visa_df['prevailing_wage'].min
- step-3: calculate the min value prevailing wage:max=visa_df['prevailing_wage'].max
- step-4: Calculate the Nr: step-1 step-2:Nr= visa_df['prevailing_wage']-min
- step-5: DR= step-3-step-2
- step-6: divide the step4/step5

```
In [15]: x_max = visa_df['prevailing_wage'].max()
    x_min = visa_df['prevailing_wage'].min()
    Nr = visa_df['prevailing_wage'] - x_min
    visa_df['prevailing_wage_min_max'] = Nr/(x_max - x_min)
    visa_df[['prevailing_wage', 'prevailing_wage_min_max']]
```

Out[15]:

	prevailing_wage	prevailing_wage_min_max
0	592.2029	0.001849
1	83425.6500	0.261345
2	122996.8600	0.385312
3	83434.0300	0.261371
4	149907.3900	0.469616
•••		
25475	77092.5700	0.241505
25476	279174.7900	0.874579
25477	146298.8500	0.458311
25478	86154.7700	0.269895
25479	70876.9100	0.222033

25480 rows × 2 columns

package name: MinMaxScalar

```
In [16]: from sklearn.preprocessing import MinMaxScaler
    mms = MinMaxScaler()
    visa_df['prevailing_wage_min_max_ss'] = mms.fit_transform(visa_df[['prevailing_w
    visa_df[['prevailing_wage','prevailing_wage_min_max','prevailing_wage_min_max_ss
```

	=00.000		
0	592.2029	0.001849	0.001849
1	83425.6500	0.261345	0.261345
2	122996.8600	0.385312	0.385312
3	83434.0300	0.261371	0.261371
4	149907.3900	0.469616	0.469616
•••			
25475	77092.5700	0.241505	0.241505
25476	279174.7900	0.874579	0.874579
25477	146298.8500	0.458311	0.458311
25478	86154.7700	0.269895	0.269895
25479	70876.9100	0.222033	0.222033

25480 rows × 3 columns