

MR Acquisition-Invariant Representation Learning

Wouter Kouw 29-05-2018

Data integration

 In order to create large data sets, data sets from multiple medical centers are often joined together.

 However, combining data sets without taking scanner variation into account is not a good idea.

MRI acquisition-based variation **TU** Delft

- Medical images contain many factors of variation:
 - Anatomical: age, gender, etc.
 - Pathological: lesions, tumors, etc.
 - Environmental: temperature, humidity, etc.
- However, there are also factors caused by the scanner:
 - Different vendors
 - Different scan sequences
 - Different positioning of gradients

Removing scanner variation

- Goal: represent the data such that the following occurs:
 - Patches from the same class across different scanners are supposed to be similar.
 - Patches from different classes across either the same or different scanners are supposed to be dissimilar.

Generating pairs

MRAI-net

MRAI representation

- Patches from either scanner can be fed through the network.
- The network maps the patches to a 2D feature vector representation.
- In this new representation, a linear classifier is sufficient to perform tissue classification.

MRAI representation

- A new image can be segmented by:
 - Extracting all patches
 - Feeding all patches through MRAI-net
 - Applying the trained classifier
 - Mapping predictions back into an image

- 1 labeled target sample per class:

- 1 labeled target sample per class:

- 100 labeled target samples per class:

Questions

Brainweb1.5T -> MRBrains

Sacrificing human interpretability **TU**Delft

- Removing scanner-specific variation while maintaining human interpretability is difficult, because different forms of variation requires different types of transformation / normalization.

- Considering that the images are to be used by a classifier, we sacrifice human interpretability.
 - This means that we map the image into a vector space representation.