UGANDA MARTYRS UNIVERSITY

UNIVERSITY EXAMINATION FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCES

SEMESTER II EXAMINATIONS, 2022/2023

SECOND YEAR EXAMINATION FOR BACHELOR OF SCIENCE WITH EDUCATION

PHY 2201 CLASSICAL MECHANICS II

DATE: TIME:

DURATION: 3HRS

Instructions:

- 1. Carefully read through ALL the questions before attempting
- 2. Attempt ANY five questions
- 3. All Questions carry equal marks
- 4. No names should be written anywhere on the examination book.
- 5. Ensure that your Reg number is indicated on all pages of the examination answer booklet.
- 6. Ensure your work is clear and readable. Untidy work shall be penalized
- 7. Any type of examination Malpractice will lead to automatic disqualification
- 8. Do not write anything on the questions paper.

Where necessary assume

Planck's constant	$h = 6.63 \times 10^{-34} J s$
Boltzmann's constant	$K_B = 1.38 \times 10^{-23} J K^{-1}$
Mass of electron	$m_e = 9.11 \times 10^{-31} \text{ kg}$
Electronic charge	$e = 1.60 \times 10^{-19} \text{ C}$
Speed of light	$c = 3.0 \times 10^8 \text{ ms}^{-1}$
Avogadro's number	$NA = 6.02 \times 10^{23} \text{ mot}^{-1}$
Luminosity	$L_0 = 3.9 \times 10^{33} erg/s L_0 = 3.9 \times 10^{26} J/s$
Luminosity Mass	$M_0 = 1.99 \times 10^{30} Kg$
Luminosity Radius	$R_0 = 6.96 \times 10^8 m$
Luminosity Temperature	$T_0 = 5780K$
Astronomical Unit	$AU = 1.496 \times 10^{11} m$
Universal gas constant	$R = 8.31 \ JK^{-1}mot^{-1}$
Acceleration due to gravity	$g = 9.81 \text{ms}^{-2}$
1 standard atmosphere	$= 1:01x10^5 Nm^{-2}$
Radius of Earth	$R_e = 6.38 \times 10^6 m$
Solar constant	$S=1.37 \times 10^3 \text{ Js}^{-1}\text{m}^{-2}$

- 1. (a) Define moment of inertia of a body.
 - (b) A uniform bar has length l, mass M, and rectangular ends of dimensions $a \times b$.
 - (i) Determine the moment of inertia about an axis through the centre of mass. [6]
 - (ii) Use the parallel axis theorem to determine the moment of inertia through an axis Perpendicular to the length of the bar, a distance one quarter of the length of the bar from the centre of the mass. [4]
 - (c). Two 2.0kg ballas are attached to the ends of a thin rod of length 50cm and Negligible mass. The rod is free to rotate in a vertical plane without fricion about a horizontal axis through its centre. With the rod initially horizontal, a 50.0g wad of wet putty drops onto one of the balls, hitting it with a speed of 3.0ms-, and then sticking on it.

(i) What is the angular speed of the system just after the putty wad hits the ball?

[6]

[1]

- (ii) What is the ratio of the kinetic energy of the system after the collision to that of the puttywad before collision? [4]
- 2. (a) Define the following terms as applied to classical mechanics;
 - (i) Number of degree of freedom. [1]
 - (ii) Holonomic constraint. [1]

	(0)	A simple pendulum consists of a mass of a m attached to massless sum	6 01	
		length l . The mass is displaced through an angle θ between the vertical the lenth of the string, and released. Detremine the;	and	
			m	
		(i) Number of degree for the mass using the Euler-Larange formalis	[2]	
		(ii) Lagrangian for the system.	[6]	
		(iii) Equation for the mass using Euler-Lagriange formalism.	[4]	
(c)		Define an ingnorable coordinate and illustrate with an example, a system with		
		ingnorble coordinate .	[3]	
(d)		In a plane, the point (x,y) are written in polar coordinates as (r,θ) , write		
		expressions relating the two corresponding points and list the generalised		
		coordinates.	[3]	
3. (a)		State the condition that must be satisfied in order for the Hamiltonian of a		
		system to be Constant.	[2]	
	(b)	Hamiltonian can be written as		
		$H = \sum_{k} \dot{q}_{k} p_{k} - L$		
		the symbols carry their usual meaning.		
		(i) Show that the summation term equals to twice the kinetic energy.	Tall.	
			[4]	
		(ii) Derive the expression for the Hamiltonian in terms of kinetic and	i	
		potential energy.	[3]	
	(c)	A particle of mass m is moving in a plane under an attractive force, μm_{μ}	$/r^2$	
		towards the origin, Determine the potential energy for mass.	[2]	
	(d)	A mass m oscillates horizontally on a spring of constant k.		
		(i) Set up the Hamiltonian for the system.	[3]	

open end. The wire is 0.330m long and has a mass of 9.60g. It is fixed at both

Determine the Hamilton's equation.

(ii)

[3]

ends and oscillates in its fundamental mode. By resonance it sets the air column in the pipe into oscillation at the column's fundamental frequency. Find,

- (i) The column's fundamental frequency. [2]
- (ii) The tension in the wire. [4]
- (c) A space ship moving with speed . 0.80c fires amessile with a speed of 0.70c in the same direction as the direction in which the space ship is travelling. Find the speed of the missle relative to ground.
- (d) (i) State three properties of a system moving in a central force filed [3]
 - (ii) The relationship between cartesian coordinates and polar coordinates is $x = r \sin \theta$ and $y = r \sin \theta$. If e_r is the radical component which ponts away from the origin, and e_{θ} is the normal to e_r in the direction of increasing θ , State the carstesian components of e_r and e_{θ} . [2]
- (c) A planet moves in an eliptical orbit about the sun as its foucs. Show that acceleration of planet in polar coordinate system is

$$\bar{a} = (\ddot{r} - r\dot{\theta}^2)e_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})e_{\theta}$$
 [6]

- 6. (a) (i) Consider a particle which moves with a constant velocity v, so that in a time t it has covered a distance vt. Derive the wave equation [5]
 - (ii) A string is stretched horizontally between two points a distance, L, apart.

The string is pulled at its mid-point through a small vertical distance, h and released. Find the displacement of the string at any subsequent time.

[6]

(b) The phase velocity of optical waves propagating in a medium of refractive index, n is given by,

$$v_p = \frac{c}{n}$$

Where n is dependent upon the wavelength. Find the group velocity. [2]

- (c) Define an inertial reference frame. [1]
- (d) The relationship between proper time interval Δt_0 and greater time interval Δt is $\Delta t = \gamma \Delta t_0$; where the Lorentz factor $\gamma = 1/\sqrt{1 (\nu/c)^2}$; and other symbols carry their usual meanings.
 - (i) Differentiate between proper time interval and greater time interval.

[2]

ii. Explain the effect of γ on time measurements at low and high values of ν . [4]

END