NASA Contractor Report 194915

Characterization of Spacecraft and Environmental Disturbances on a SmallSat

Thomas A. Johnson, Dung Phu Chi Nguyen, and Vince Cuda CTA Incorporated Hampton, Virginia

Doug Freesland CTA Defense Systems Incorporated McLean, Virginia

Contract NAS1-18936 July 1994

19950710 009

National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001

CHARACTERIZATION OF SPACECRAFT AND ENVIRONMENTAL DISTURBANCES ON A SMALLSAT

Thomas A. Johnson Dung Phu Chi Nguyen Dr. Vince Cuda

CTA INCORPORATED

1 Enterprise Parkway Suite 390Hampton, VA 23666(804) 827-1847

Doug Freesland

CTA Defense Systems Incorporated 1521 Westbranch Drive Mclean, VA 22102-3201 (703) 883-1000

This page was intentionally left blank.

OUTLINE

- · Introduction
- Mission Selection
- · Simulation Techniques
- Disturbances
- Analysis Results
- · Conclusions

Acces	Accesion For	
NTIS	CRASI 748	-51 C
Unannounce Justification	Unannounced Justification) ()
B		
Distribution /	ution /	
<	Availability O	
Dist	Avail and/or Special	
A-1		

This page was intentionally left blank.

INTRODUCTION

Introduction

Commercial development of small satellites (SmallSats) opens up the opportunity to fly more sophisticated payloads in less time and for less money than larger satellites. SmallSats are generally defined as spacecraft that are in the 150 to 500 kilogram weight class and can be launched to orbit with a Pegasus or Scout class launch vehicle. The present environment of limited fiscal resources forces the need for a more cost effective approach to remote sensing missions. SmallSats are being considered for Earth observing and microgravity experiments because they can be launched at a lower cost and developed in less time.

Introduction

- Commercial development of small satellites (SmallSats) opens up the opportunity to fly dedicated payloads
- SmallSats can be launched for lower costs and in less time than larger satellites
- SmallSats are being considered for remote sensing and microgravity experiments
- This study focused on SmallSats (150-500 kg) that could be accommodated by a Scout or Pegasus size launch vehicle

Objectives

issues are common to the Earth observing, imaging, and microgravity communities. A spacecraft may contain dozens of support systems and instruments, each a potential source of vibration. The quality of payload data depends on constraining The objective of this study is to model the on-orbit vibration environment encountered by a SmallSat. Vibration control vibration so that parasitic disturbances do not affect the payload's pointing or microgravity requirement.

mechanical devices and their associated disturbance levels. This study will evaluate a SmallSat mission and will seek to In practice, payloads are designed incorporating existing flight hardware in many cases with nonspecific vibration performance. Thus, for the development of a payload, designers require development of a thorough knowledge of existing answer basic questions concerning on-orbit vibration.

Objective

- This study seeks to characterize to on-orbit vibration environment encountered by SmallSat missions
- This study helps to answer some basic questions:
- Can SmallSat buses provide the pointing precision and jitter control required by "EOS-like" payloads?
- Do SmallSat on-board disturbances exceed payload jitter requirements?
- Can SmallSats take advantage of control for the reduction of on-board jitter?

This page was intentionally left blank.

MISSION SELECTION

This page was intentionally left blank.

13

Mission Selection

- · Payload and spacecraft identification
- · Payload selection
- Spacecraft Bus selection and definition
- Orbit selection

4

Identification of Potential SmallSat User

requirements were matched to spacecraft bus resources of present day SmallSats. From the set of candidate payloads listed Payloads were considered from the Earth observing, microgravity, and imaging communities. Candidate payload in Appendices A and B, a representative payload was selected.

Identification of Potential SmallSat Users

- Payload were considered from the Earth observing, microgravity, and imaging communities
- spacecraft bus resources of present day SmallSats Candidate payload requirements were matched to
- Emphasis was placed upon payloads that could take advantage of a SmallSat flight opportunity

Earth Observing System (EOS)

Selection of a potential EOS payload began by separating the instruments into four weight classes and classifying the placement capability of the spacecraft buses into three categories. An increase in the placement pointing capability expands instrument candidates. These instruments are listed and describe in Appendix A. The instrument data are extractions of the number of candidate spacecraft buses. For example, 5 EOS instruments can take advantage of the 135 kg launch service, however, an increase in placement pointing of 36 arcsec (e.g., via the use of a CSI technology) could provide up to 14 instrument parameters given in the 1993 EOS Reference Handbook.

The following table summarizes the results of the placement capability study.

	I			
>36 arcsec	9	8	12	14
> 360 arcsec	9	8	11	12
> 3600 arcsec	4	5	5	5
Weight Class (kg)	45	0.0	115	135

The following table categorizes the jitter and stability requirements of the manifested EOS instruments into three groups.

_			
Number of Payloads with pointing requirement	2	4	L
(arcsec/sec)	< 10	. < 50	< 100

control was selected to represent a typical EOS payload. The philosophy is that if the tightest jitter requirement was met After evaluating individual instruments and comparing the jitter requirements, the payload that required the tightest jitter then the remaining payloads could be supported on a SmallSat.

Earth Observing System (EOS)

- · Thirty eight EOS payloads were considered
- EOS payloads are good candidates for SmallSat missions due to their modest resource needs
- Payload control requirements ranged from 5400 to 90 arcsecs
- Payload jitter requirements ranged from 360 to 2 arcsecs per second
- Spacecraft jitter appears to be the most significant concern for EOS payloads

Microgravity Sciences

much interest has been expressed in non-recoverable microgravity experiments since the resultant sample from the experiment is in most To date, the majority of microgravity experiments have been performed on manned carriers or recoverable unmanned carriers. Not cases the primary source of data. This is particularly true in the areas of materials science and biotechnology.

opportunities because the experiment data is primarily video and environmental measurements, not a sample. A brief examination of Non-recoverable microgravity experiments may be possible in the area of fundamental science, which includes the study of the behavior of fluids, transport phenomena, condensed matter physics, and combustion science. Experiments in fluids and combustion present existing microgravity experiments shows that there is no available experiment hardware that can be flown on a SmallSat (135 kg class.) It may be possible to adapt particular pieces of experiment hardware to fly on a non-recoverable SmallSat. These experiments would require the addition of certain capabilities such as video and data downlink. Also, certain processes of the experiment may require automation (e.g., the transfer of fluids from one container to another).

Of the non-recoverable candidates identified, the Interface Configuration Experiment (ICE), a small Spacelab glovebox fluids experiment; the Pool Boiling Experiment (PBE), operated in a Get Away Special (GAS) container in the orbiter cargo bay; and the Phase Partitioning Experiment (PPE), a small middeck fluids experiment, would require minimal resources and the addition of a video system/data downlink for observing the experiment results.

In order to transform the recoverable experiments into non-recoverable experiments; the addition of capabilities may be The recoverable experiments are primarily in the areas of biotechnology and materials science and require the return of a physical required, such as the automation of certain processes of the experiment. Of the recoverable candidates identified, the Protein Crystal Growth (PCG) experiment would require automation of the sample mixing process and a video capability to observe the crystals prior to recovery (a similar commercial experiment is planned for use on the COMET recovery module). The internal Space Acceleration Measurement System (SAMS) would require modification of its data system. Rather than storing data on optical disks that require changeout during the mission, the data would have to be downlinked

Microgravity Sciences

- Microgravity levels are expected to be lower for SmallSats than for Shuttle missions
- Twenty four microgravity payloads were considered during this study
- The microgravity requirement is 10-6 to 10-3 g over the 0.01 to 300 Hz frequency range
- (Automated) Space Shuttle Glove Box experiments show the most promise for conversion to a non-recoverable SmallSat flight
- Crystal growth and combustion experiments are potential candidates for recoverable SmallSat missions

Imaging Payloads

Imaging payloads must also account for spacecraft jitter. Industry has made the call for on-orbit sensing that can provide multi-look, multi-spectral, high-resolution images of both the land and the oceans of this planet. The majority of images are provided by either SPOT or LandSat resources and resolutions are limited to the 10-30 meter range. As demand for more detailed mapping increases, industry is considering imaging that approaches the 1-3 meter range from orbits up to 700 Km. This translates into sub-arcsec pointing requirements that need to be met by on-board imaging instruments. The need for jitter control will be critical for these missions and methods for mitigating disturbances are under consideration by payload Payload designs were solicited by the investigators to evaluate jitter disturbances and instrument requirements. Due to the For the purpose of this study, insufficient description of the imaging payloads has forced us to eliminate them as a candidate mission for the numerical competitive nature of this evolving market, responses to our requests were marginal.

Imaging Payloads

- · Conventional imaging satellites now being flown are large and costly to launch
- Currently, several aerospace companies are considering SmallSats for imaging payloads
- ground imaging (but fast shutter times may bypass the Sub-arcsec pointing is required for high resolution jitter problem)
- · Due to the competitive nature of this market, flight mission scenarios were unavailable for this study

22

Selection of Payload

The requirements of GLAS were considered very stringent for the 150 - 500 kg class of payloads. Once the payload was selected, a generic SmallSat was designed in order to accommodate the payload requirements (weight, size, power, etc.). This study seeks to characterize the on-orbit vibration environment of a SmallSat designed for this type of mission and to determine whether a SmallSat can provide the precision pointing and jitter control required for earth observing payloads.

Selection of Payload

- Selected Geoscience Laser Altimeter System (GLAS) payload to represent a typical mission because of its stringent jitter requirement
- · GLAS has the following pointing and jitter requirements:
- -90 arcsec pointing control
- -2 arcsec/sec jitter control
- Microgravity calculations for SmallSats are deferred to later studies

This page was intentionally left blank.

Selection of Spacecraft Bus

- · Modeled an eight-sided DSI Bus because data was readily available and is typical of SmallSats
- · Modified the DSI Bus to accommodate the GLAS payload and the Attitude Control System (ACS)
- · Modified the UARS ACS to provide spacecraft control
- Sized the solar array to accommodate resource requirements of GLAS and spacecraft
- · Added high gain antenna for additional study
- GLAS requires <200 kbps
- **DSI BUS Telemetry**

Orbit Selection

This table presents the orbital parameters selected for the analysis. The parameters are based upon GLAS payload requirements.

Parameter	Value
	705 km
	64.21964 deg
Orbital Period 9	98.87778 min
Orbital Rate	0.060681 deg/sec
Inclination 9	98.20795 deg
Sun Synchronous Inclination 9	98.20795 deg
	0.9856 deg/day
Eccentricity	0
Max Umbra 3	35.27719 min
Sun Fraction 0	0.643224

Orbit Selection

- Orbital parameters were driven by payload requirements
- Spacecraft orbit was defined to study environmental forces on the spacecraft

This page was intentionally left blank.

SIMULATION TECHNIQUES

Simulation Techniques

evaluate the jitter environment. This allowed direct comparisons of the two simulations and aided in the verification of the Two simulations were used to analyze the jitter environment of a SmallSat. LEO-SIM and EOS-SIM were both used to results. Each simulation has distinct advantages and disadvantages.

Simulation Techniques

- · NASTRAN Finite Element Model
- · Low Earth Orbit Simulation (LEO-SIM)
- · Platform Simulation (PLATSIM)

34

Finite Element Modeling

bus, GLAS experiment, solar array (position corresponding to the ascending node of the spacecraft orbit), and the high gain A finite element model of the spacecraft was built using MSC NASTRAN. The NASTRAN model included the spacecraft antenna. The results of the NASTRAN analysis were used as input to both simulations. The spacecraft center of gravity, mass, and mass moments of inertia were used to characterize the SmallSat in LEO-SIM, and the modes and mode shapes were used to describe the rigid body and flexible response of the spacecraft in EOS-SIM.

Finite Element Model

- · Modeled the spacecraft bus, GLAS experiment, high gain antenna, and the solar array
- · The spacecraft's center of gravity, mass, and mass moments of inertia were used to characterize the spacecraft and payload in LEO-SIM
- The modes and mode shapes were used to define the rigid body and flexible body response of the spacecraft in **PLATSIM**

Finite Element Modeling

The following tables shows a breakdown of the spacecraft weight and the ACS components:

Spacecraft Weight

Element	Weight (lbs)
DSI Bus (includes ACS)	213.815
3LAS Experiment	108.000
3LAS Telescope	75.700
3LAS Truss	187.600
3LAS Electronics	92.600
3LAS Start Trackers	68.300
Solar Array	80.000
Solar Array Support	0.328
Antenna	10.000
Antenna Support	1.520
Propulsion module	100.000
Stiffeners	0.000
lotal	937.863
* Total GLAS Payload weight is 532.2 lbs	ht is 532.2 lbs

ACS Components

Element	Quantity	Weight (lbs)
IMU Electronics	1	6.100
IMU Sensor and Bracket	1	5.200
Horizon Sensor and Bracket	1	6.200
Three Axis Magnetometer	1	0.600
Magnetic Torquer and Bracket	3	16.400
Reaction Wheel and Bracket	4	25.400
ACS Computer		11.400
Dual Wheel Driver	2	4.200
Magnetic Torquer Coil and Driver	1	2.200
Total		77.700
* 2 Star Trackers are supplied with the GLAS Payload	e GLAS Pay	load

The DSI Bus weight includes the spacecraft structure, ACS, power, and data system. The ACS contributes 77.7 pounds to the total weight of the bus.

Finite Element Model

• Mass = 937.8635 lbs.

• Xcg = 0.0 in.

• Ycg = -4.48 in.

• Zcg = 24.28 in.

· Mass Moment of Inertia

· I	X	y	Z
X	1.06722E+06	7.21882E-13	-2.97688E-14
y	7.21882E-13	7.58682E+05	2.91771E+05
Z	-2.97688E-14	2.91771E+05	5.74734E+05

This page was intentionally left blank.

Finite Element Model

· Spacecraft natural frequencies with solar array positioned at the ascending node of the orbit

Mode	Frequency (Hz)	Description
16	0	Rigid Body Modes
7	0.47314599	Solar Array 1st Bending
8	0.86984300	Solar Array 1st Torsion about support tube
9	1.78894000	Solar Array Torsion about y
10	1.86325000	Solar Array 2nd Bending
11	2.67163990	Solar Array 2nd Torsion about support tube
. 12	3.29878000	Solar Array Flatwise Bending
13	4.23200000	Solar Array Torsion about support tube
14	4.51895000	Solar Array Bending, Torsion
15	5.12877990	Solar Array Bending, Torsion

40

LEO-SIM Simulation

simulation. Most modifications were in the form of changing input parameters that described the spacecraft to be analyzed. The Figure below shows the processes of the LEO-SIM simulation. Torsional forcing functions are used to perturb the model. The simulation will constraints, only the rigid body response was used for the SmallSat analysis. Few modifications were required to the FORTRAN code simulation is written in FORTRAN and incorporates rigid body and flexible body responses of a spacecraft. Due to time and resource not accept input disturbances in the form of axial forces. Disturbances can be turned on and off at any time in the simulation run. Any The Low Earth Orbit Simulation (LEO-SIM) is a spacecraft simulation initially developed and verified for the UARS platform. The global variable can be output and graphed as part of the analysis. Additional FORTRAN subroutines could be written to implement additional controllers for jitter suppression. The LEO-SIM analysis focused on identifying the rigid body jitter environment for each for this analysis. Some code was added in order to output jitter calculations and incorporate new disturbance models into the disturbance source.

LEO-SIM

- Initially developed and verified for the UARS platform
- Incorporates both rigid body and flexible body responses of the spacecraft (only the rigid body response was analyzed)
- Written in FORTRAN
- Torsional forcing functions are used to perturb the model (simulation will not accept axial forces as input)
- implement additional controllers for jitter suppression Additional FORTRAN codes could be written to

PLATSIM Simulation

be written to implement additional controllers for jitter suppression. The SmallSat analysis focused on identifying the jitter environment implemented when the NASTRAN model of the SmallSat was incorporated into the simulation. The Figure below shows the processes modifying the MATLAB script that describes them. Output is restricted to pre-selected parameters. Additional MATLAB script could simulation via the modes and mode shapes of the spacecraft determined by the NASTRAN finite element analysis. Both rigid body and of the PLATSIM simulation. Torsional forcing functions and axial forces are used to perturb the model. Disturbances are changed by MATLAB script and incorporates rigid body and flexible body responses of a spacecraft. The spacecraft dynamics are input into the The PLATSIM is a spacecraft simulation initially developed and validated for the EOS-AM1 spacecraft. The simulation is written in flexible body responses were used for the SmallSat analysis using PLATSIM. Few modifications to the code were required for this analysis. Some code was added in order to implement the specific ACS that the SmallSat was to use. Most modifications were for each disturbance source.

PLATSIM

- Initially developed and validated for EOS-AM-1
- Incorporates both rigid body and flexible body responses of the spacecraft
- · Written in MATLAB script
- Spacecraft dynamics are input into the simulation via the modes and mode shapes of the finite element analysis
- Torsional forcing functions and axial forces are used to perturb the model
- Output is restricted to pre-selected parameters
- Additional MATLAB script is available to model controllers for jitter suppression

This page was intentionally left blank.

DISTURBANCES

Disturbances

the SmallSat was derived as a set of forcing functions in roll, pitch, and yaw. Forcing functions are derived as a set of axial forces and imbalance. The environmental disturbances are due to solar pressure and aerodynamic forces. The effect of these disturbances upon torques. Since LEO-SIM does not accept axial forces as input, those forces were transformed to torques by selecting an appropriate disturbances were analyzed: environmental, solar array thermal snap, solar array harmonic drive, and momentum wheel dynamic The SmallSat analysis concentrated on determining the effect of individual disturbances upon the spacecraft. The following moment arm. These forcing functions were used to perturb the simulation.

Disturbances

- The analysis determined the effect of individual disturbances upon the spacecraft
- The following disturbances were studied:
- environmental
- aerodynamic
- solar pressure
- solar array thermal snap
- solar array harmonic drive
- momentum wheel dynamic imbalance
- high gain antenna (not required by GLAS)
- cryocooler (not required by GLAS)

Description of the Aerodynamic Disturbance

The model that describes the disturbance on the spacecraft due to aerodynamic forces (drag) was derived from the following equation:

$$Taero = Faero * (Cpa - Cg)$$

Cg - Center of Gravity

CD - Coefficient of drag m - spacecraft's mass

 $Faero = -\frac{1}{2}\rho(\frac{C_DA}{m})V^2$

A - spacecraft's cross sectional area

V - spacecraft's velocity

ρ - atmospheric density

The atmospheric density for this model was derived from the MSIS atmospheric model [Hedin, 1986] with an F10.7 index of 220 (high solar activity). At an altitude of 438 miles (the spacecraft's nominal orbit), the corresponding density is 4.58e-17 slug/ft³.

Aerodynamic Disturbances

- atmospheric density and vehicle cross sectional area The aerodynamic disturbance is a function of
- atmospheric model. An F10.7 index of 220 (high solar The atmospheric density was derived from the Jacchia activity) was used to predict the worst case
- Aerodynamic torques decrease as altitude increases (air density decreases rapidly)

This page was intentionally left blank.

Aerodynamic Disturbance

Description of Solar Pressure Disturbance

The model that describes the disturbance on the spacecraft due to solar pressure torques was derived from the "Solar Activity Inputs for Upper Atmosphere Models," MSFC, 6 April, 1993. The worst case scenario of the solar flux was used to calculate the torque. For this analysis, a launch date of 1/1/95 was assumed.

Solar Pressure Disturbances

- · Estimate was derived from the "Solar Activity Inputs for Upper Atmospheric Models," MSFC, 6 April, 1993
- Assumed a launch date of 1/1/95
- · A worst-case solar flux for this time period was used to calculate the torque

This page was intentionally left blank.

Solar Pressure Disturbance

Thermal Snap

The model of the disturbance caused by the thermal snap of the solar array as it enters and leaves the penumbra is based upon a similar analysis performed for the UARS solar array. For this type of an array, the thermal snap is more of a bending phenomena.

Description of Thermal Snap Disturbance

TROLL =
$$-\text{Tn} * \text{COS(PANG} * \frac{2\pi}{360}$$

The forcing function which describes the torsional disturbance caused

by the thermal snap of the solar array is calculated as follows:

TPITCH = 0

$$TYAW = Tn * SIN(PANG * \frac{2\pi}{360})$$

Tn - Torque normal to the solar array (ft 1b)

PANG - Angle that the normal of the solar array makes with the sun (degrees)

The torque normal to the solar array surface due to thermal snap (Tn) is calculated as follows:

$$T_n = \frac{T_{mag} * t_d}{t_r * (t_p - t_r)} * \left(sign + FAC \right)$$

Tmag - Magnitude of the reference torque (ft lb)

The Torque normal to the solar array panel can be expressed as follows:

td - decay time of exponential function (sec)

t_r - rise time (sec)

tp - time spent in penumbra (sec)

The values for SIGN and FAC are defined on the next facing page. A full derivation of the thermal snap disturbance will be included in an AIAA paper authored by T. Johnson and C. Nguyen by July 1994.

Thermal Snap Disturbance

- Estimate of disturbance torque was based on the thermal snap analysis performed for UARS
- The following parameters were modified to correct for changes in the spacecraft
- Panel dimensions
- Spacecraft altitude
- Location of the sun (beta angle)
- · Net effect changed magnitude of the torque normal to the solar array from 0.005 ft lbs to 0.0017 ft lbs
- The torque occurs over a short period (100 sec) when the spacecraft enters and leaves the penumbra

Description of Thermal Snap Disturbance (Continued)

The values for SIGN and FAC are defined for each time interval as follows:

$$[0 < t < t_{\rm T}] \qquad \qquad \text{FAC} = - \text{EXP} \left(\frac{-t}{t_d}\right)$$

$$\text{SIGN} = 1$$

$$[\operatorname{tr} < t < (\operatorname{tp-t_T})] \qquad \text{FAC} = -\operatorname{EXP}\left(\frac{-t}{t_d}\right) + \operatorname{EXP}\left(\frac{-(t-t_r)}{t_d}\right)$$

$$\operatorname{SIGN} = 0$$

$$[(t_{\mathbf{p}}-t_{\mathbf{r}})< t < t_{\mathbf{p}}] \qquad \text{FAC} = -\operatorname{EXP}\left(\frac{-t}{t_d}\right) + \operatorname{EXP}\left(\frac{-(t-t_r)}{t_d}\right) + \operatorname{EXP}\left(\frac{-(t-t_p+t_r)}{t_d}\right)$$

$$\operatorname{SIGN} = -1$$

FAC =
$$-\exp(\frac{-t}{t_d}) + \exp(\frac{-(t-t_r)}{t_d}) + \exp(\frac{-(t-t_r+t_r)}{t_d}) - \exp(\frac{-(t-t_r)}{t_d})$$

SIGN = 0

 $[t_p < t]$

Thermal Snap Disturbance

High Gain Antenna (HGA)

The model of the disturbance caused by the return sweep of the high gain antenna is taken directly from the collaborative study between Structure Integration technologies to the EOS AM-1 spacecraft. The model was developed from information supplied by the "T9: A4 Internal Disturbances Document" and reviewed by the pointing performance team consisting of GSFC, LaRC, McDonnell Douglas, the Goddard Space Flight Center (GSFC) and the Langley Research Center (LaRC) that investigated the application of Control-Martin Marietta, and Swales and Associates, Inc.

The HGA has a elevation and azimuth gimbal that produce torques on the spacecraft. The azimuth scan produces a torque about the z axis. The torque profile is a rectangular pulse with magnitude of 0.002667 in-lbf and period of 290 seconds.

High Gain Antenna Disturbance

- · Estimate of disturbance torque was based on the analysis performed for EOS
- · Disturbance due to the antenna's azimuth gimbal (the model does not include tracking and dithering of the antenna)
- Disturbance torque is a pulse in the spacecraft's yaw axis
- The torque occurs over a short period (600 sec) when the antenna sweeps to capture the next relay satellite

High Gain Antenna Disturbance

64

Momentum Wheel Dynamic Imbalance Model

similar momentum wheels. Momentum wheel imbalances are measured for each half of the wheel and are characterized as a point mass at a specific radius. The momentum wheels were modeled after the momentum wheels used by the COMET ACS. Typical imbalances analysis, the momentum wheel imbalance was modeled as a single 50 mg point mass at a 1 inch radius. The following Figure displays The model that describes the disturbance caused by a dynamic imbalance of the momentum wheels is based upon measured values of for the COMET momentum wheels are characterized as a 25 mg point mass at a 1 inch radius for each half of the wheel. For our the model of the momentum wheel dynamic imbalance.

Model of a Dynamic Imbalance of a Momentum Wheel

Momentum Wheel Dynamic Imbalance Disturbance

- · A momentum wheel package similar to the package used on COMET was selected
- measured and characterized as a 25 mg point mass at a 1 inch · Imbalances for each half of the COMET wheels were radius
- The wheel imbalance was modeled as one 50 mg point mass at a 1 inch radius
- Applied the imbalance to the roll-axis momentum wheel
- wheel speed, which changes through the spacecraft's orbit, and The torque due to the wheel imbalance is a function of the the wheel location

Description of Momentum Wheel Dynamic Imbalance Disturbance

torque. This is done because LEO-SIM does not allow for axial forces as input. The force (F) due to the centrifugal acceleration of the The forcing function that describes the disturbance caused by the dynamic imbalance of the momentum wheel is calculated as a function of the mass and position of a point mass and the speed that the wheel is rotating. For EOS-SIM, this disturbance is represented as an axial force due to the angular acceleration of the point mass. For LEO-SIM, the force is coupled with a moment arm to produce a point mass is calculated as follows:

$$F_x = 0$$

$$F_{\rm r}=0$$

$$H_Y = 0$$

$$F_{i} = M(0)^{2}I$$

The wheel's angular velocity is calculated as follows:

$$\frac{H}{I} = 0$$

The force (F) is transformed from a reference frame that is fixed to the rotating wheel to the spacecraft reference frame. For LEO-SIM, I - wheel's inertia (slug ft²)

the force is transformed to a torque by selecting an appropriate moment arm.

Momentum Wheel Dynamic Imbalance Disturbance

89

Solar Array Harmonic Drive Model

were equal to those for the UARS harmonic drive. We chose the UARS harmonic drive because it has a higher disturbance frequency UARS harmonic drives. For the analysis, it was assumed that the solar array rotates at a constant rate and that the torque variations induced on the spacecraft by the harmonic drive are sinusoidal. For this analysis, we assumed the parameters of the harmonic drive The model of the disturbance caused by the solar array harmonic drive is based upon a similar analysis performed for the EOS and and less of an impact on the spacecraft than the EOS harmonic drive. The following Figure depicts the model of the solar array harmonic drive.

Solar Harmonic Drive Disturbance

- Estimate of disturbance torque was based on the analysis performed for EOS and UARS
- Assumed that the solar array rotates at a constant rate and the torque variations are sinusoidal
- Assumed the parameters of the harmonic drive were equal to those for the UARS harmonic drive
- Adjusted the magnitude of the torque based on the reduced size of the solar array
- disturbance torque (had a smaller impact on the spacecraft) The UARS harmonic drive produces a higher frequency

Description of Solar Array Harmonic Drive Disturbance

The forcing function which describes the torsional disturbance of the solar array harmonic drive is represented by a magnitude (THD) and a frequency (wHD). The position error of the harmonic drive is characterized by the following equation:

$$\Delta \theta = \frac{4}{PD * GR} * \frac{2\pi}{360}$$

 $\Delta\theta$ - Drive position error (rad); difference between actual and desired position GR - gear ratio of the harmonic drive (non-dimensional)

PD - (non-dimensional)

The torsional disturbance results from a periodic position error of the harmonic drive. The magnitude of the harmonic drive disturbance is calculated as follows:

$$THD = K * \Delta \theta$$

where

 $K = J * \omega_{SA}^2$

K - Stiffness associated with the solar array (ft lb/rad)

J - Solar array inertia (slug ft^2)

ω_{sa} - Solar array torsion frequency (rad/sec)

The frequency of the harmonic drive disturbance is calculated as follows:

$$\omega_{HD} = 2*(RPM * \frac{1 \min}{60 \text{ sec}})$$

MHD - Frequency of the harmonic drive disturbance (Hz)RPM - input RPM of the harmonic drive (rev/min)

Solar Harmonic Drive Disturbance

Cryocooler

supplied by the instrument principal investigators and reviewed and agreed upon by the pointing performance team consisting of GSFC, application of Control-Structure Integration technologies to the EOS AM-1 spacecraft. The model was developed from information The model of the disturbance caused by the cryocooler is taken directly from the collaborative study of the MOPITT Cryocooler disturbance between the Goddard Space Flight Center (GSFC) and the Langley Research Center (LaRC) that investigated the LaRC, McDonnell Douglas, Martin Marietta, and Swales and Associates, Inc.

compressor produces forces in the y and x directions and a torque in the pitch axis. These forces and torques act at frequencies of 46, 92, and 138 Hz. The cryocooler displacer produces forces in the y and x (or z) and a torque in the pitch axis. Again, the forces and The MOPITT cryocooler has a compressor and displacer that produce forces and torques on the spacecraft. The cryocooler torques act at 46, 92, and 138 Hz.

Cryocooler Disturbance

- · Estimate of disturbance torque was based on the analysis performed for EOS
- "Evaluation of CSI Enhancements for Jitter Reduction on · Model was not changed from the one presented in the the EOS AM-1 Spacecraft", NASA/LaRC CSIO Memorandum 93-09-01
- analyzed (disturbance frequencies at 46, 92, and 138 Hz) Cryocooler compressor and displacer disturbances were

Cryocooler Disturbance

Cryocooler Disturbance (Displacer)

ANALYSIS RESULTS

Summary of Results

arcsec/sec). For this spacecraft, the jitter associated with the pitch and yaw-axis momentum wheels will not exceed the jitter body analysis is not satisfied by the generic satellite used for this study. The results of the SmallSat simulation are listed by requirement of 2 arcsec/sec by themselves: the solar array harmonic drive, the thermal snap of the solar array when the array associated with thermal snap is negligible except for 150 seconds when the spacecraft enters and leaves the penumbra. The for the most jitter (approximately 50 arcsec/sec in pitch and 30 arcsec/sec in yaw). The next largest disturbances were the enters and leaves the penumbra, and the return sweep of the high gain antenna. The solar array harmonic drive accounted smallest disturbances were the cryocooler and the dynamic imbalance of the roll-axis momentum wheel (on the order of 1 The results of the SmallSat simulations show that a payload requirement of 2 arcsec/secfor both rigid body and flexible thermal snap of the solar arrays, and the return sweep of the high gain antenna (on the order of 5 arcsec/sec). The jitter the amount of jitter that the disturbance produces (largest to the smallest). Three disturbances exceed the payload jitter of the roll-axis momentum wheel. The jitter associated with the environmental disturbances is also negligible.

Results

- The payload requirement of 2 arcsec/sec is not satisfied by the generic satellite used for this study
- · Jitter due to Environmental disturbances was negligible
- · Three disturbances (harmonic drive, thermal snap, and high gain antenna) exceeded the requirement by themselves
- (Jitter associated with the solar array harmonic drive must · The worst offender was the solar array harmonic drive be reduced by two orders of magnitude)
- · Jitter associated with thermal snap and the high gain antenna must be reduced by one order of magnitude

Results

	7770	, , , , , , , , ,	
Disturbance/	allic	Jiller (drosec/sec)	င်
Simulation	Roll	Pitch	Yaw
Solar Array Harmonic Drive			
LEO-SIM	0.03	52.00	0.10
EOS-SIM (Rigid Body)	0.00	60.03	30.08
EOS-SIM (50 Modes)	0.00	29.60	30.12
Solar Array Thermal Snap			
LEO-SIM	4.00	00'0	7.80
EOS-SIM (Rigid Body)	2.55	0.02	0.07
EOS-SIM (50 Modes)	2.54	0.05	0.07
High Gain Antenna Return Sweep			
LEO-SIM	0.50	0.08	5.00
EOS-SIM (Rigid Body)	00:00	1.69	6.96
EOS-SIM (50 Modes)	0.00	1.69	96.9
Cryocooler			
EOS-SIM (Rigid Body)	0.32	0.46	0.68
EOS-SIM (50 Modes)	0.67	0.65	0.90
Momentum Wheel Dynamic Imbalance			
LEO-SIM	0.04	0.70	0.07
EOS-SIM (Rigid Body)	0.05	0.09	0.07
EOS-SIM (50 Modes)	0.14	60'0	0.14

Solar Array Harmonic Drive Jitter Time History

(from EOS-SIM with all 50 modes and control system on @ 0.07 rad/sec bandwidth)

87

High Gain Antenna Jitter Time History

(from EOS-SIM with all 50 modes and control system on @ 0.07 rad/sec bandwidth)

Solar Array Thermal Snap Jitter Time History

(from EOS-SIM with all 50 modes and control system on @ 0.07 rad/sec bandwidth)

CONCLUSIONS

Conclusions

and flight dynamics. Even with a simple hardware configuration, on-board disturbances can exceed payload jitter requirements and reduce instrument science return. Over time, spacecraft buses and payloads have become smaller in size due to advances in microelectronics, however, mechanical devices have not matured as rapidly. Devices (e.g., pumps, gimbals, fans) that are normally associated with large mission masses (e.g., UARS, EOS, HST), are now being proposed for SmallSats. The disturbances associated with these components will contribute more significantly to SmallSats as there is less inertia to overcome when the component induces This study shows the importance of identifying and quantifying on-board vibrational disturbances associated with operating machinery vibration.

The selection of quiet hardware should be considered for spacecraft designs. There appears, however, that even with the best designs of the best hardware. These investigators have concluded that active control technologies will be needed to fill this gap for some future remote sensing missions. Control technologies have the potential to enhance existing hardware performance and image resolution, and and the quietest equipment, the science objectives of current and proposed imaging sensors may conflict with the engineering capability can create opportunities that otherwise would have been unavailable.

Conclusions

- · This type of analysis is needed to address vibration issues when designing remote sensing payloads
- · Hardware routinely used on large spacecraft may be unacceptable for SmallSats
- · SmallSats outfitted with vibration monitoring instruments would greatly add to the understanding of SmallSat jitter
- · Control Technologies may be useful (and in some cases essential) in jitter reduction for SmallSats

Reference

1. 1993 EOS Reference Handbook, March 1993.

APPENDICES

APPENDIX A -- EOS INSTRUMENT RESOURCE REQUIREMENTS

		Flight	Mass	Mass Mass	Thermal	Power (Watts)	(Watts)	Data Rate (kbps)	e (kbps)
Instrument Name	Acronym	Assignment	(kg)	(lb)	Range (C)	Avg.	Peak	Avg.	Peak
Earth Observing Scanning Polarimeter	EOSP	AM	19	42	0 40	14	22	4	88
Lightning Imaging Senor	LIS	TRMM1	20	44	0 40	33	33	9	9
Solid State Altimeter	SSALT	ALT	25	55	(-5)35	49	49	1.375	11.5
Active Cavity Radiometer Irradiance Monitor	ACRIM	CHEM	39	98	10 30	35	40		
Stratospheric Aerosol and Gas Experiment	SAGEIII	AERO	40	88	10 30	15	09	100	100
Doppler Orbitography and Radiopositioning Integrated by Satellite	DORIS	ALT	44	26	(-10) 50	17.6	17.6	0.03125	0.03125
TOPEX Microwave Radiometer	TMR	ALT	50	110	5 40	26	26	0.125	0.125
Microwave Humidity Sounder	MHS	PM	99	146	0 40	85	190	4.2	4.2
Clouds and Earth's Radiant Energy System	CERES	AM/PM	06	198	(-15) 39	95	171	20	20
Solar Stellar Irradiance Comparison Experiment	SOLSTICE II	CHEM	100	220	0 30	34	42	5	8
Advanced Microwave Sounding Unit	AMSU	PM	100	220	0 20	125	125	3.2	3.2
Multi-Angle Imaging SpectroRadiometer	MISR	AM	106	234	(-20) 40	29	107	3800	6500
Measurements of Pollution in the Troposphere	MOPITT	AM	120	265	25	200	200	9	9
Geoscience Laser Altimeter System	GLAS	ALT	125	276	0 25	175	175	<200	<200
Atmospheric Infrared Sounder	AIRS	PM	140	309	20 25	224	224	1420	1420
High-Resolution Dynamics Limb Sounder	HIRDLS	CHEM	150	331	20 30	180	230	40	40
Moderate-Resolution Imaging Spectroradiometer	MODIS-T	AM/PM	170	375	0 40	130	155	3076	3076
Multifrequency Imaging Microwave Radiometer	MIMIR	PM	223	492	(-10) 50	171.4	200	29	67
Moderate-Resolution Imaging Spectrometer-Nadir	MODIS-N	AM/PM	250	551	0 40	225	275	6200	11000
NASA Scatterometer	NSCAT II	ADEOS II	270	595	5 50	290	290	5.1	5.1
Tropospheric Emission Spectrometer	TES	AM	340	750	0 30	430	460	3240	19500
Advanced Spaceborne Thermal Emission and Reflection Radiometer	ASTER-VNIR	AM	400	882	10 28	449	674	8300	89200
Advanced Spaceborne Thermal Emission and Reflection Radiometer	ASTER-SWIR	AM	400	882	10 28	449	674	8300	89200
Advanced Spaceborne Thermal Emission and Reflection Radiometer	ASTER-TIR	AM	400	882	10 28	449	674	8300	89200
Microwave Limb Sounder	MLS	СНЕМ	500	1102	10 35	540	540	5	S
EOS-COLOR	EOS-COLOR	COLOR	TBD	TBD	TBD	TBD	TBD	TBD	TBD

APPENDIX A -- EOS INSTRUMENT RESOURCE REQUIREMENTS

Instrument		Flight	Mass	Aass	Thermal	Power (Power (Watte)	Data Dat	(1-4-0)
Mosso	,	D				10110	(vialls)	Dala Kale (Kops)	(kpps)
allia	Acronym	Assignment	(kg)	(Jb)	Range (C)	Avg.	Peak	Avg.	Peak
lonospheric Plasma and Electrodynamics Instrument	IPEI	NONE	12	92	(-10) 50) -	S	1 - 0	
GPS Geoscience Instrument	GGI	NONE	09	132	10 20	105	105	202	1:1
X-ray Imaging Experiment	XIE	HNON	1.	157	(50)	3 5	33	3	200
Gaomamatic Obcamina Control		7,10,11	1	3	(07-) (00-)	77	34	∽	10
Commagnetic Coserving Dystem	GOS	NONE	96	212	(-10) - 40	67.3	673	20	20
Stratospheric Wind Infrared Limb Sounder	SWIRLS	NONE	150	331	TRD	250	07.0	3	2
Altimeter				;	100	4.30	0/7	?	~n
,	ALT	NONE	275	909	0 35	232	250	80	80
Stick Scatterometer	STIKSCAT	HNON	707	227	2	000		3	8
Gancolanos I agas Daning Contract		717017	727	3	J JU	790	220	5.2	5.2
Coordinate Laser Manguig System	GLRS	NONE	350	772	15 25	450	099	400	800
Spectroscopy of the Atmosphere using Far Infrared Emissions	SAFIRE	NONE	407	897	(-10) 30	165	165	0100	0000
High-Resolution Imagina Spectromater	TIME	1.01.			20 /21	S	5	0/00	8 / 00
Injamoranda graduma	FIRES	NONE	450	992	0 40	300	009	3000	10000
Laser Amosphene Wind Sounder	LAWS	NONE	800	1764	TBD	2200	Tan	0000	1000
EOS Synthetic Aperture Radar	EOS SAR	NON	_	3070	Car	200	1 5	7007	10000
	2000	11011		C7+7	IBD	1900	2800	15000	18000

Instrument	Placer	Placement (arcsec)	rcsec)	Knowl	Knowledge (arcsec)	rcsec)	Stabi	Stability (arcsec/sec)	/sec)	Jitte	Jitter (arcsec/sec)	sec)
Name	Roll	Pitch	Yaw	Roll	Pitch	Yaw	Roll	Pitch	Yaw	Roll	Pitch	Yaw
EOSP	3600	3600	3600	150	150	150	100/10	100/10	100/10	100/10	100/10	100/10
	none	none	none	293	293	293	TBD	TBD	TBD	TBD	TBD	TBD
SSALT	720	720	720	360	360	360	TBD	TBD	TBD	TBD	TBD	TBD
ACRIM	360	360	360	180	180	180	360	360	360	360	360	360
SAGE III	3600	3600	3600	006	006	006	30	30	30	TBD	TBD	TBD
DORIS	5400	5400	5400	720	720	720	TBD	TBD	TBD	TBD	TBD	TBD
TMR	1080	1080	1080	1800	1800	1800	1800	1800	1800	1800	1800	1800
MHS	3600	3600	3600	360	360	360	74	74	74	TBD	TBD	TBD
CERES	720	720	720	180	180	180	9.9/62	9.9/62	9.9/62	TBD	TBD	TBD
SOLSTICE II	±360	±360	+ 360	09	09	09	15/900	15/900	15/900	15	15	15
AMSU	720	720	720	360	360	360	360	360	360	360	360	360
MISR	240	240	240	108	108	108	16/420	16/420	16/420	7/1	7/1	7/1
MOPITT	200	500	200	500	200	500	322/12.47	322/12.47	322/12.47	TBD	TBD	TBD
GLAS	96	90	8	5	5	5	2	2	2	\$	\$	2
AIRS	006	900	006	906	006	900	360/60	360/60	360/60	TBD	TBD	TBD
HIRDLS	006	006	006	250	250	250	30	30	30	TBD	TBD	TBD
MODIS-T	3600	3600	3600	141	141	141	28	28	28	1031	47	1031
MIMR	720	720	720	108	108	108	36	36	36	TBD	TBD	TBD
MODIS-N	3600	3600	3600	141	141	141	28	28	. 82	1031	47	1031
NSCAT II	324	324	324	216	216	216	396/1800	396/1800	396/1800	TBD	TBD	TBD
TES	108	108	108	108	108	108	36	36	36	TBD	TBD	TBD
ASTER-VNIR	293	293	293	123	123	123	8.8	8.8	15	8.8	4.4	52
ASTER-SWIR	293	293	293	123	123	123	8.8	8.8	15	8.8	4.4	52
ASTER-TIR	293	293	293	123	123	123	8.8	8.8	15	8.8	4.4	52
MILS	1800	1800	1800	180	180	180	100/30	100/30	100/30	10/0.5	10/0.5	10/0.5
EOS-COLOR	TBD.	TBD	TBD	293	293	293	TBD	TBD	TBD	TBD	TBD	TBD

Instrument	Placement (arcs	t (arcsec)	Know	Knowledge (arcsec)	rcsec)	Stabi	Stability (arcsec/sec)	c/sec)	Jitte	Jitter (arcsec/sec)	sec)
Name	Pitch	Yaw	Roll	Pitch	Yaw	Roll	Pitch	Yaw	Roll	Pitch	Yaw
IPEI	1800	1800	360	360	360	3600	3600	3600	360	360	360
GGI	3600	3600	123	123	123	TBD	TBD	TBD	TBD	TBD	TBD
XIE	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600
GOS	TBD	TBD	10	10	10	N/A	N/A	N/A	N/A	N/A	N/A
SWIRLS	2700	3900	120	09	36	1.3	1.3	1.3	TBD	TBD	TBD
ALT	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
STIKSCAT	324	324	216	216	216	396/1800	396/1800	396/1800	TBD	TBD	TBD
GLRS	06	96	10	10	10	TBD	TBD	TBD	TBD	TBD	TBD
SAFIRE	750	750	10	10	10	1/9.0	1/9.0	1/9.0	TBD	TBD	TBD
HIRIS	293	293	117	117	117	1.08	1.08	1.08	7.2/1000	7.2/1000	7.2/1000
LAWS	36	36	TBD	TBD	TBD	7.2/1000	7.2/1000	7.2/1000	1	1	
EOS SAR	30	30	3	3	3	9.0	9.0	9.0	TBD	TBD	TBD

Instrument	Stowed	Stowed Dimension (cm.)	on (cm.)	Deploy	Deployed Dimension (cm.)	sion (cm.)
Name	Length	Width	Height	Length	Width	Height
EOSP	51	26	81	51	99	81
CIS	30	20	30	30	20	30
SSALT	36.5	28.8	23.2	36.5	28.8	23.2
ACRIM	38	14	18	38	14	18
SAGE III	25	25	42	34	74	•
DORIS	33	35	21	39	32	21
TMR	35	51	19	30	91	
MHS	77.4	66	99	77.4	66	56
CERES	09	9	9.72	09	09	70
SOLSTICE II	121	88	19	121	88	61
AMSU	65.5	29.9	59.2	65.5	29.9	59.2
MISR	127	78	92	127	78	92
MOPITT	102.9	72.9	43.6	102.9	75.1	43.6
GLAS	100	100	80	100	100	80
AIRS	116.5	80	95.3	116.5	158.7	95.3
HIRDLS	130	80	100	130	96	120
MODIS-T	140	125	. 56	140	125	87
MIMR	180	170	130	300	170	170
MODIS-N	95.2	158.3	133.6	95.2	158.3	133.6
NSCAT II	122	91	25	318	91	25
TES	140	130	100	220	130	100
ASTER-VNIR	53.8	65.1	83.2	53.8	65.1	83.2
ASTER-SWIR	73	124	95	73	124	95
ASTER-TIR	54	140	120	54	140	120
MLS	160	180	160	160	180	160
EOS-COLOR	TBD	TBD	TBD	TBD	TBD	TBD

EOS	Stowe	Stowed Dimension (cm)	n (cm)	Deplo	Deployed Dimension (cm)	nsion (cm)
Instrument	Length	Width	Height	Length	Width	Height
IPEI	25	41	39	25	41	39
GGI	20.32	30.48	38.1			•
XIE	20	120	20	20	120	20
GOS	80	160	30	24	65	29
SWIRLS	160	140	120	160	140	120
ALT	TBD	TBD	TBD	TBD	TBD	TBD
STIKSCAT	122	91	25	122	91	25
GLRS	150	150	95	150	150	95
SAFIRE	160	160	160	160	160	160
HIRIS	98	33	98	98	33	98
LAWS	1	160	160	1	160	160
EOS SAR	150	150	150	150	260	1080
						7

APPENDIX B -- MICROGRAVITY EXPERIMENT CANDIDATE SUMMARY

(Sorted by payload weight less than 136 kg)

Payload	Mass	Mass	Power (Watts)	Watts)	Din	Dimension (cm)	(E	Acceleration	D. T.	
Name	(kg)	(db)	Average	Peak	Length	Width	Height	Level (a)	(hours)	Nonrecoverable
PPE	1	2	n/a	n/a	14	3.3	0	(8)	(smorr)	Candidate
ICE	2	3	n/a	n/a	6	6	18.4	1	7 -	1
Candle Flames	4	8	2	12	12.1	12.1	19.1		30	۲ >
HPCG	4	6	n/a	n/a	35	2	13	-		T
FEA	12	26	,		47	37	19	1		• >
IBSE	25	55	125	125	47	40	18		Continuone	T
IEF	29	49	7.3	30	53	48	23		1.5	
SAMS (internal)	31	68	59	100	53	46	27	none	Continuous	
PCG	32	71	110	110	20	51	788	1 x 10(-2)	2000	
ADSF	36	79	150	260	,	45 (dia)	49			
GBX	45	. 100	257	257					24	*
DCE	54	119	-	160	•		,			
CFTE	62	137	200					,		1
SSCE	64	141	1	160	56	92	53	1 x 10(-3)	0.7	1
MLRS	7.1	1.57	75	382	27	35	41		3) 6	I
PBE	75	165	210	300		15 (dia)	101	1 x 10(-3)	3 "	• >
SAAL	82	181	2600	3100	,	40.5 (dia)	8		,	7
MSC	91	200	06	210	1	•		1 x 10(-2)	4	>
GAAS/GAS	91	201	200	280	•	50 (dia)	59	-		T
SAMS (external)	91	201	85	100	68	49	30	none	Continuone	· >
VCGS	100	221	300	450	-	,			200	7
AADSF	120	265	920	920	•	43 (dia)	130	1 x 10(4)	continuone	
IDGE	120	265	480	480	45	09	45		-	
GFFC	133	293	262	,		,		1		•
										•

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank	k) 2. REPORT DATE	2 DEDOOT TVO	AND DATES COVERED
I. AGENUT USE UNLT (Leave Diank	July 1994	Contractor F	
4. TITLE AND SUBTITLE	J July 1994	Contractor	5. FUNDING NUMBERS
	eraft and Environmental Distu	rbances on a	NAS1-18936 WU 233-01-01-01
6. AUTHOR(S)			
Thomas A. Johnson, Dung and Doug Freesland	Phu Chi Nguyen, Vince Cuc	ia,	
7. PERFORMING ORGANIZATION NA	AME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
CTA Incorporated 1 Enterprise Parkway Suite Hampton, Virginia 23666	2 390		REPORT NUMBER
9. SPONSORING / MONITORING AGE	ENCY NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING
National Aeronautics and S Langley Research Center Hampton, Virginia 23681-00			AGENCY REPORT NUMBER NASA CR-194915
11. SUPPLEMENTARY NOTES			
Langley Technical Monitor:			
12a. DISTRIBUTION / AVAILABILITY S	STATEMENT		12b. DISTRIBUTION CODE
Unclassified - Unlimited			
Subject Category 18			
13. ABSTRACT (Maximum 200 words	s)		
The objective of this study is to are common to the Earth obse systems and instruments, each so that parasitic disturbances of designed incorporating existing development of a payload, designed incorporating existing development of a payload, designation. Payloads were considered to representative payload GLAS considered very stringent for the designed in order to accommon the on-orbit vibration environment provide the precision pointing at 14. SUBJECT TERMS	o model the on-orbit vibration enerving, imaging, and microgravity in a potential source of vibration. do not affect the payload's pointing flight hardware in many cases signers require a thorough knowy evaluates a SmallSat mission a sidered from the Earth observing a spacecraft bus resources of proceedings of the 150 - 500 kg class of payload and the payload requirements of a SmallSat designed for the and jitter control required for ear	r communities. A space The quality of payloading or microgravity requivith nonspecific vibratifiedge of existing mechand seeks to answer base, microgravity, and imagesent day SmallSats. Estern) was selected. This. Once the payload with the serving payloads.	anical devices and their associated sic questions concerning on-orbit ging communities. Candidate payload rom the set of candidate payloads, the
Smallsat, Pointing Jitter, Co	ontrols Structures Interaction		106 16. PRICE CODE
			A06
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICA OF ABSTRACT	TION 20. LIMITATION OF ABSTRACT