Trig Final (Practice v38)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The radius is 11 meters. The angle measure is 0.88 radians. How long is the arc in meters?

Question 2

Consider angles $\frac{-8\pi}{3}$ and $\frac{9\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\cos\left(\frac{-8\pi}{3}\right)$ and $\sin\left(\frac{9\pi}{4}\right)$ by using a unit circle (provided separately).

Find $\cos(-8\pi/3)$

Find $sin(9\pi/4)$

If $\sin(\theta) = \frac{-21}{29}$, and θ is in quadrant III, determine an exact value for $\cos(\theta)$.

Question 4

A mass-spring system oscillates vertically with a midline at y = -3.97 meters, an amplitude of 7.44 meters, and a frequency of 5.67 Hz. At t = 0, the mass is at the midline and moving down. Write an equation to model the height (y in meters) as a function of time (t in seconds).