微积分习题汇编

目录

第一章	函数]
第二章	极限与连续	3
第三章	导数、微分、边际与弹性	7
第四章	中值定理及导数的应用	13
第五章	不定积分	19

第一章 函数

- **1.** 设 f(x) 的定义域为 [0,1], 则函数 $f\left(x+\frac{1}{4}\right)+f\left(x-\frac{1}{4}\right)$ 的定义域为 ().
 - **(A)** [0,1]
- **(B)** $\left[-\frac{1}{4}, \frac{5}{4} \right]$ **(C)** $\left[-\frac{1}{4}, \frac{1}{4} \right]$ **(D)** $\left[\frac{1}{4}, \frac{3}{4} \right]$
- **2.** 下列两对函数 f(x) 与 g(x) 相同的是 ().
 - (A) $f(x) = \ln x^2$, $g(x) = 2 \ln x$
 - **(B)** f(x) = x, $g(x) = \sin(\arcsin x)$
 - (C) $f(x) = \ln(\sqrt{x^2 + 1} x)$, $g(x) = -\ln(\sqrt{x^2 + 1} + x)$
 - **(D)** f(x) = x, $g(x) = e^{\ln x}$
- 3. 函数 $f(x) = \arcsin(x^2 x 1)$ 的定义域 D =______.
- **4.** 设 f(x) 定义域为 $(-\infty, +\infty)$, 则 $f(\ln x)$ 的定义域为
- 5. 设 f(x)在 $[1,+\infty)$ 上有定义,且 $f(x) = \begin{cases} x-2, & x \ge 10 \\ f[f(x+5)], & x < 10 \end{cases}$,则 f(5) =_____(填 实数).

第二章 极限与连续

- **1.** 函数 $f(x) = \frac{x^2 x}{x^2 1} \sqrt{1 + \frac{1}{x^2}}$ 的第一类间断点的个数为 ().
 - (A) 0
- (B) 1
- (C) 2
- (D) 3

- 2. 下列极限中, 极限不为0 的是 ().
 - (A) $\lim_{x\to\infty} \frac{\arctan x}{x}$
 - (C) $\lim_{x\to 0} x^2 \sin \frac{1}{x}$

- **(B)** $\lim_{x \to \infty} \frac{2\sin x + 3\cos x}{x}$ **(D)** $\lim_{x \to 0} \frac{x^3}{x^5 + x^3}$
- **3**. 下列运算正确的是().
 - (A) $\lim_{x\to 0} \left(\sin x \cdot \cos \frac{1}{x} \right) = 0 \cdot \lim_{x\to 0} \cos \frac{1}{x} = 0$
 - **(B)** $\lim_{x\to 0} \frac{\tan x \sin x}{x^3} = \lim_{x\to 0} \frac{x-x}{x^3} = 0$
 - (C) $\lim_{x \to \infty} \frac{\sin x + 2}{x} = \lim_{x \to \infty} \frac{\sin x}{x} + \lim_{x \to \infty} \frac{2}{x} = 0$
 - **(D)** $\lim_{x \to \pi} \frac{\tan 3x}{\sin 5x} = \lim_{x \to \pi} \frac{3x}{5x} = \frac{3}{5}$
- **4.** 设函数 $f(x) = \frac{x \ln x^2}{|x-1|}$, 则 f(x) 有 ().
 - (A) 两个可去间断点

(B) 一个可去间断点, 一个跳跃间断

(C) 两个无穷间断点

- (D) 一个可去间断点, 一个无穷间断点
- **5.** 当 $x \to 0$ 时, $\sqrt{2+x^3} \sqrt{2}$ 与 x^2 比较是 ().
 - (A) 高阶无穷小量 (B) 等价无穷小量 (C) 低阶无穷小量 (D) 同阶无穷小量
- **6.** 函数 $f(x) = \frac{\sin(x+1)}{x^2-3x-4}$, 下列说法错误的是 ().
 - (A) 有渐近线 y = 0, x = 4

- (B) x = 4 为无穷间断点
- (C) 在区间(1,4)上有界
- **(D)** 若补充定义 $f(-1) = -\frac{1}{5}$, 则 f(x) 在点 x = -1 处连续
- 7. 函数 $f(x) = \frac{\sin(x-1)}{x^2-1}$ 的第二类间断点是 ().
 - **(A)** x = 1

- **(D)** $-\frac{1}{2}$
- 8. 函数 $f(x) = \frac{x}{\cos x}$ 的第一类间断点个数是 ().
 - (A) 0

- (D) 3
- 9. 函数 f(x) 在点 x_0 处有定义是 $\lim_{x\to x_0} f(x)$ 存在的 ().
 - (A) 必要条件
- (B) 充分条件 (C) 充要条件
- (D) 无关条件
- **10.** 函数 $f(x) = \frac{x}{\tan x}$ 的第一类间断点是 ().
 - **(A)** $x = 2\pi$

- **(D)** $x = \pi$

- 11. $\lim_{x\to 1} \frac{\sin(1-x^2)}{x-1} = ($).
 - **(A)** $-\frac{1}{2}$ **(B)** 2
- **(C)** −2
- **(D)** $\frac{1}{2}$

- 12. 下列函数在其定义域内连续的是(
 - **(A)** $f(x) = \frac{1}{x}$

- **(B)** $f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$
- (C) $f(x) = \begin{cases} \frac{1}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}$
- **(D)** $f(x) = \begin{cases} \sin x, & x \neq 0 \\ \cos x, & x = 0 \end{cases}$
- **13.** 若 $\lim_{x \to x_0} f(x) = a$, 则必有 ().
 - (A) f(x) 在点 x_0 的某一个去心领域内有定义;
 - (B) f(x) 仕点 x_0 处有定义;
 - (C) f(x) 在点 x_0 的任意一个去心领域内有定义;
 - **(D)** $a = f(x_0)$.

14. 函数 $f(x) = \frac{x}{\sin x}$ 的第一类间断点是().

(A)
$$x = \frac{\pi}{2}$$
; (B) $x = -\pi$; (C) $x = 0$; (D) $x = \pi$.

(B)
$$x = -\pi$$

(C)
$$x = 0$$

(D)
$$x = \pi$$
.

15.
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\sin x} =$$
______.

- **16.** 设函数 $f(x) = \begin{cases} (1 \frac{3x}{2})^{\frac{1}{x}}, & x \neq 0 \\ A, & x = 0 \end{cases}$ 在点 x = 0 处连续,则 A =______.
- 17. 当 $x \to 0$ 时, $1 \cos kx$ 与 x^2 是等价无穷小量, 则 $k = _____.$

18.
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\sin x} = \underline{\hspace{1cm}}$$

19. 设 $f(x) = x \sin \frac{3}{x} + \frac{\sin x}{x}$, 则 $\lim_{x \to \infty} f(x) =$ ______.

20.
$$\lim_{x\to 0} \frac{x}{e^x - e^{-x}} =$$
______.

21.
$$\lim_{x \to 0} \left(\frac{\sin x}{x} + x \sin \frac{1}{x} \right) = \underline{\hspace{1cm}}$$

22. 若
$$\lim_{x \to \infty} \left(\frac{x+1}{x-1} \right)^{kx} = 9$$
,则 $k =$ ______.

23.
$$\lim_{x \to \infty} \left(\frac{\sin x}{x} + x \sin \frac{1}{x} \right)$$
等于______.

24. 求极限
$$\lim_{n\to\infty} (1-\frac{1}{n})^{\sqrt{n}}$$
.

第三章 导数、微分、边际与弹性

1. 设 Q = f(p) 为需求函数,其中 p 为价格 (单位:元/吨), Q 为需求量 (单位:吨).

				100) = 0.25, 则当价格	
	调整为 101 元 / 吨时, 需求量将约 () .				
	(A) 增加 25%	(B) 增加 0.25%	(C) 减少 25%	(D) 减少 0.25%	
2.	函数 $y = \sin x $ 在 z	x = 0 处是 ().			
	(A) 无定义		(B) 有定义,但不是	生 续	
	(C) 连续但不可导		(D) 连续且可导		
3.	设 $y = x + \sin x$, dy	是 y 在 x = 0 点的微	数分,则当 $\Delta x \rightarrow 0$ 阳	寸,有().	
	(A) dy 与 ∆x 相比是	是等价无穷小			
	-	是同阶 (非等价) 无穷	小		
	· (C) dy 是比 △x 高降				
	(D) dy 是比 Δx 低[
4.	设函数 $y = (1 + \cos x)$	x) ^{arcsin x} ,则微分 dy	x=0 = ().		
	$(\mathbf{A}) - 2 \mathrm{d} x$	(B) $-\ln 2 dx$	(C) $2 dx$	(D) $\ln 2 \mathrm{d} x$	
5 .	设需求函数 Q = 30	00e ^{-0.125p} ,则当价格	p = 10 , 且上涨 1% 🗈	寸,需求量 Q 约()	
	•				
	(A) 减少 1.25%	(B) 增加 1.25%	(C) 减少 125%	(D) 增加 125%	
6.	设函数 $f(x) = \sin 2$.	x+3 ^x ,则导数值 f′(0	0)=().		
	(A) $\ln 3 - 2$	(B) $\ln 3 + 2$	(C) 1	(D) $\ln 3 + 1$	
7 .	设 $f(x) = 3^x + x^2 + 1$	ln3 , 则).		
	(A) 3ln3	(B) $\frac{1}{3}$	(C) $\frac{3}{\ln 3} + 2$	(D) $3 \ln 3 + 2$	
	(2) 31110	3	ln3	(2) 0110 2	

- 8. 设 f(x) 在 x = 1 处可导,则 $\lim_{x \to 0} \frac{f(x+1) f(1-x)}{x} = ($). **(A)** f'(1)**(B)** 2f'(1)**(D)** f'(2)
- 9. 某需求函数为 Q = -100P + 3000,那么当 P = 20 时需求的价格弹性 $E_d = ($).
 - **(A)** 2
- **(B)** 1000
- **(C)** -100
- **(D)** -2

- **10**. 设 $f(x) = 2^x + \ln 2$, 则 f'(1) 等于 ().

- (A) $2 \ln 2$; (B) $2 \ln 2 + \frac{1}{2}$; (C) $\frac{2}{\ln 2}$; (D) $\frac{2}{2 \ln 2} + \frac{1}{2}$.
- **11.** 设函数 $f(x) = (1 + \cos x)^{\frac{1}{x}}$, $dy|_{x=\frac{\pi}{2}} = _____.$
- **12.** 设 $\begin{cases} x = f'(t) \\ y = t f'(t) f(t) \end{cases}$,其中 f(t) 具有二阶导数,且 $f''(t) \neq 0$,则 $\frac{d^2 y}{dx^2} =$ ______.
- **13.** 设函数 $f(x) = x(\sin x)^{\cos x}$, 则 $f'(\frac{\pi}{2}) =$ ______.
- **14.** 设商品的需求函数为 Q = 100 5P, 其中 Q, P 分别表示需求量和价格. 如果商 品需求弹性的绝对值大于1,则商品的价格的取值范围是
- **15.** 设曲线 $f(x) = x^n, n \in \mathbb{N}$ 在点(1,1)处的切线与 x 轴相交于(ξ_n ,0),则极限 $\lim_{n \to \infty} f(\xi_n)$
- **16.** 由参数方程 $\begin{cases} x = 2\cos t \\ v = 2\sin^3 t \end{cases}$ 所确定的曲线在 $t = \frac{\pi}{4}$ 处的切线方程是______.
- **17**. 设 $y = f(\sqrt{x})f^2(x) + f(e)$, 其中 f(x) 在 R 上可导,则 y' = x
- **18.** 设函数 $y = xe^x$, 对正整数 n, n 阶导数 $y^{(n)} =$ _____.
- 19. $\lim_{x \to 0} \frac{x^2 \cos \frac{2}{x}}{\arcsin x} =$ _____.
- **20**. 某商品的需求函数为 Q = 400 100P,则 P = 2 时的需求弹性为
- **21.** 为使函数 $f(x) = (1-x)^{\frac{2}{x}}$ 在点 x = 0 处连续, 应定义 f(0) =

- **22.** 设函数 $y = \frac{x}{\ln x}$, 则导数 y' =______.
- 23. 曲线 $\begin{cases} x = \ln(1+t^2) \\ y = \arctan t \end{cases}$ 在 t = 1 的对应点处的切线方程是______.
- **24.** 设 $y = (1 + \sin x)^x$, 则 $y'|_{x=\pi} =$ ______.
- **25.** 已知某商品的需求函数为 $Q = 16 \frac{P}{3}(P)$ 为价格, Q 为需求量), 当价格 P = 8 时, 若价格上涨 1%,则需求量将下降约
- **26.** 曲线 $y + xe^y = 1$ 在点 P(0,1) 处的切线方程是
- **27**. 已知某商品的需求函数为 Q = 3000 100P,(P 为价格,Q 为需求量),当价格 P = 20 时,若价格上涨 1%,则需求量将下降_______.
- **28.** 设函数 $f(x) = xe^x$,对正整数 n,则 $f^{(n)}(0) = ______$.
- **29**. 设函数 $y = \frac{x \sin x}{1+x}$, 则微分 dy =______.
- **30.** 曲线 $y = xe^x$ 在点 (0,0) 处切线的方程是 _____.
- **31.** 设某种商品的总收益 R 关于销售量 Q 的函数为 $R(Q) = 104Q 0.4Q^2$,则销售量 Q 为 50 个单位时总收益的边际收入是 .
- **32.** 设生产某产品 Q 单位的总成本为 $C(Q) = 1100 + \frac{Q^2}{1200}$,则生产 1800 个单位产品时的边际成本是______.
- **34.** 设某种商品的总收益 R 关于销售量 Q 的函数为 $R(Q) = 104Q 0.4Q^2$, 则销售量 Q 为 50 个单位时总收益的边际收入是_____.
- **35.** 设 f(x) 是可导函数, 求函数 $y = f(\tan x) \cdot \arcsin[f(x)] + e^2$ 的导数.
- **36.** 求由方程 $y^5 + 2y = x + 3x^7$ 所确定的隐函数 y(x) 在点 (0,0) 处的切线方程并求 $\frac{d^2y}{dx^2}$.

37. 设函数
$$f(x) = \begin{cases} \frac{\varphi(x) - \cos x}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$$
 , 其中 $\varphi(t)$ 具有连续的二阶导数,且 $\varphi(0) = x = 0$

1.

- (1) 确定 a 的值, 使 f(x) 在点 x = 0 处可导, 并求 f'(x);
- (2) 讨论 f'(x) 在点 x=0 处的连续性.

- (1) k 为何值时, f(x) 有极限;
- (2) k 为何值时, f(x) 连续;
- (3) k 为何值时, f(x) 可导.
- 39. 求由参数方程 $\begin{cases} x = \ln \sqrt{1+t^2} \\ y = \arctan t \end{cases}$,所确定的函数的一阶导数 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 及二阶导数 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$ 。
- **40.** 求由方程 $\sin(xy) + \ln(y-x) = x$ 所确定的隐函数 y 在 x = 0 处的导数 y'(0).
- **41**. 已知 $y = x \ln x$, 求 $y^{(n)}$.

42. 设函数
$$f(x) = \begin{cases} \sin(x^2), & x \le 0 \\ \frac{\ln(1+x)}{1+x}, & x > 0 \end{cases}$$

43. 设
$$f(x) = \begin{cases} b(1+\sin x) + a + 2, & x > 0 \\ e^{ax} - 1, & x \le 0 \end{cases}$$
 在 $(-\infty, +\infty)$ 上可导, 求 a, b 及 $f'(x)$.

44. 已知函数
$$\begin{cases} x = \sin t \\ y = \cos 2t \end{cases}$$
,求 $\frac{d^2 y}{dx^2} \Big|_{t=\frac{\pi}{6}}$.

45. 设
$$y = \cos(f^2(x)) + f(\sin 1)$$
, 其中 $f(x)$ 可微, 求 dy.

46. 求曲线
$$y^3 = (x^2 + 1)^{\sin x}$$
 上 $x = 0$ 处的切线方程.

- **47.** 设函数 $y = f\left(\arcsin\frac{1}{x}\right) + \left(f(\sin x)\right)^3$, 其中 f(x) 在 $(-\infty, +\infty)$ 上具有一阶导数, 求 dy.
- **48.** 设函数 y = y(x) 由方程 $e^y + xy e^x = 0$ 确定, 试求 $\frac{dy}{dx}$ 与 y''(0).
- **49.** 设函数 $y = f(\sin x) + \cos(f(x))$, 其中 f(x) 在 $(-\infty, +\infty)$ 上具有一阶导数与二阶导数,求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 与 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.
- **50**. 设函数 y = f(x) 由参数方程 $\begin{cases} x = t \arctan t \\ y = \ln(1 + t^2) \end{cases}$ 所确定, 试求 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$.
- **51.** 设 $f(x) = \begin{cases} ax + b, & x < 0 \\ e^x, & x \ge 0 \end{cases}$, 确定 a, b 的值使 f(x) 在 x = 0 处可导.
- **52**. 已知函数 $y = x [\sin(\ln x) + \cos(\ln x)]$, 试求 dy.
- **53.** 设函数 y = y(x) 由方程 $x^2y e^{2x} = \sin y$ 所确定, 试求 $\frac{dy}{dx}$ 与 $\frac{d^2y}{dx^2}$.
- **54.** 设函数 y = f(x) 由参数方程 $\begin{cases} x = 1 t^2 \\ y = t t^3 \end{cases}$ 所确定, 试求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 与 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.
- **55**. 设函数 $y = (x^2 + 1)^3(x + 2)^2x^6$, 试求 y'.
- **56**. 已知函数 $y = \arctan e^{\sqrt{x}}$,试求 dy.
- 57. 设函数 y = y(x) 由方程 $\cos(x+y) = y$ 所确定,试求 $\frac{d^2y}{dx^2}$.
- 58. 设函数 y = f(x) 由参数方程 $\begin{cases} x = t \ln(1+t) \\ y = t^3 + t^2 \end{cases}$ 所确定,试求 $\frac{dy}{dx}$.
- **59.** 确定 a, b 的值,使得函数 $f(x) = \begin{cases} 2^x, & x \ge 0 \\ ax + b, & x < 0 \end{cases}$ 在 x = 0 处可导.

- **60**. 已知函数 $y = \ln(x + \sqrt{x^2 + 1})$, 试求 dy.
- **61.** 设函数 y = f(x) 由方程 $x y + \frac{1}{2}\sin y = 0$ 所确定, 计求 $\frac{d^2 y}{dx^2}$.
- **62.** 设函数 y = f(x) 由参数方程 $\begin{cases} x = \ln(1+t^2), \\ y = t \arctan t, \end{cases}$ 所确定, 试求 $\frac{d^2 y}{dx^2}$.
- **63**. 设函数 $y = \frac{(2x+1)^2\sqrt[3]{3x-2}}{\sqrt[3]{(x-3)^2}}$, 试求 $\frac{\mathrm{d}y}{\mathrm{d}x}$.
- 64. 已知函数 f(x) 在 $(-\infty, +\infty)$ 上有定义, 对任意的实数 x_1, x_2 , 有 $f(x_1 + x_2) = f(x_1) f(x_2),$ 且 $f(0) \neq 0$, f'(0) = 1, 证明: f'(x) = f(x).

第四章 中值定理及导数的应用

(1) $\sqrt{1+\tan x} - \sqrt{1+\sin x}$ (2) $\sqrt{1+2x} - \sqrt[3]{1+3x}$ (3) $x - \left(\frac{4}{3} - \frac{1}{3}\cos x\right)\sin x$

1. 当 $x \rightarrow 0$ 时,下列无穷小量

	④ e ^{x4-x} -1 从低的	介到高阶排列顺序为	().	
	(A) 1234	(B) 3124	(C) 4321	(D) 4213
2.	下列函数在给定区	[间上满足罗尔定理:	条件的是().	
	$\textbf{(A)} \ f(x) = \begin{cases} e^{x-1}, \\ e, \end{cases}$	$0 < x \le 2$, $[0,2]$	(B) $f(x) = x^2 - 2x$	-3, [-1,3]
	(C) $f(x) = \frac{1}{(x-1)^4}$		(D) $f(x) = x , [-1,$	
3.	设函数 <i>f</i> (x) 满足的	关系式 $f''(x)+[f'(x)]$	$\Big]^2 = -\mathbf{e}^x$, $\mathbf{H} f'(0) = 0$,	则().
	(A) $f(0)$ 是 $f(x)$ 的	极大值		
	(B) $f(0)$ 是 $f(x)$ 的	极小值		
	(C) 点 (0, f(0)) 是曲	曲线 $y = f(x)$ 的拐点		
	(D) <i>f</i> (0) 不是 <i>f</i> (<i>x</i>)	的极值,点(0,f(0))	也不是曲线 $y = f(x)$) 的拐点
4.	-	x_0 的 δ 邻域 $(x_0 - \delta,$ 0, 则曲线 $y = f(x)$ (↑导数 <i>f‴(x)</i> > 0, 且二
	(A) 在 $(x_0-\delta,x_0)$ 区	内是凹弧 , 在(x ₀ , x ₀ +	δ) 内是凸弧	
	(B) 在 $(x_0 - \delta, x_0 +$	ŕ		
		为是凸弧 , 在(x ₀ ,x ₀ +	δ) 内是凹弧	
	(D) 在 $(x_0 - \delta, x_0 +$	δ) 内是凹弧		
5 .	函数 $f(x) = \arctan$	$ax + \operatorname{arccot} x = ($)	•	
	(A) 0	(B) 2 <i>x</i>	(C) $\frac{\pi}{2}$	(D) π

- **6.** 曲线 $y = e^{-\frac{1}{x}}$,则下列说法正确的是((A) 在 $(-\infty,0)$, $(0,+\infty)$ 内单调减少 (B) 没有极值 (C) 在 $(-\infty, \frac{1}{2})$ 内图形是下凹的 (**D**) 没有拐点 7. 函数 y = f(x) 在点 $x = x_0$ 处连续且取得极小值,则 f(x) 在 x_0 处必有(). (A) $f'(x_0) = 0$ **(B)** $f''(x_0) > 0$ (C) $f'(x_0) = 0 \perp f''(x_0) > 0$ **(D)** $f'(x_0) = 0$ 或不存在
- **8.** 设函数 f(x) 在 [a,b] 上有定义, 在开区间 (a,b) 内可导,则().
 - (A) 当 f(a)f(b) < 0 时, 存在 $x_0 \in (a,b)$, 使得 $f(x_0) = 0$
 - **(B)** 对任何 $x_0 \in (a, b)$, 有 $\lim_{x \to x_0} [f(x) f(x_0)] = 0$
 - (C) 当 f(a) = f(b) 时, 存在 $x_0 \in (a, b)$, 使得 $f'(x_0) = 0$
 - (**D**) 存在 $x_0 \in (a, b)$, 使得 $f(b) f(a) = f'(x_0)(b a)$
- **9.** 函数 $y = x^3 + 12x + 1$ 在定义域内(
 - (A) 图形是凸的 (B) 图形是凹的
- (C) 单调减少
- (D) 单调增加
- 10. 下列函数在给定的区间上满足罗尔定理条件的是(
 - **(A)** $f(x) = x^2 5x + 6$, [2,3]
- **(B)** $f(x) = \sin x, \left[\frac{\pi}{6}, \frac{7\pi}{6} \right]$
- (C) $f(x) = \sqrt{x^2}e^{x^2}$, [-1,1]
- **(D)** $f(x) = \begin{cases} x+1, & x < 5, \\ 1, & x \ge 5. \end{cases}$ [0,5]
- **11**. 当 $x \to 0$ 时, $x \sin x$ 是比 x^2 的 ().
 - (A) 低阶无穷小

(B) 高阶无穷小

(C) 等价无穷小

- (D) 同阶但非等价无穷小
- 12. 下列函数在给定区间上满足罗尔定理条件的是().
 - (A) $f(x) = \begin{cases} e^{x-1}, & 0 < x \le 2 \\ e, & x = 0 \end{cases}$
- **(B)** f(x) = |x|, [-1, 1]
- (C) $f(x) = \frac{1}{(x-1)^4}$, [0,2]
- **(D)** $f(x) = x^2 2x 3$, [-1,3]
- **13.** 若 (0,1) 是曲线 $y = x^3 + (b-1)x^2 + c$ 的拐点,则有 () .
- (A) b = 1, c = 1 (B) b = -1, c = -1 (C) b = 1, c = -1 (D) b = -1, c = 1

14. 下列函数在给定的区间上满足罗尔定理的是().

(A)
$$f(x) = \frac{1}{\sqrt[3]{(x-1)^2}}$$
, [0,2]

(B)
$$f(x) = \sin x$$
, $\left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$

(C)
$$f(x) = xe^x [0, 1]$$

(D)
$$f(x) = \begin{cases} x+1, & x < 5 \\ 1, & x \ge 5, \end{cases}$$
, [0,5]

16. 函数
$$y = x - \ln(1+x)$$
 在区间 _______ 内单调减少.

17. 已知点
$$(1,1)$$
 是曲线 $y = x^2 + a \ln x$ 的拐点,则 $a =$ _____.

18. 设
$$f'(0) = 1$$
, 则 $\lim_{h \to 0} \frac{f(2h) - f(-h)}{h} =$ ______.

19. 设
$$f(x) = \ln \sin x, x \in [\frac{\pi}{6}, \frac{5\pi}{6}]$$
,则满足罗尔中值定理中的数值 $\xi =$ ______.

20. 函数
$$y = x^2 - \frac{16}{x}(x < 0)$$
 的最小值是 ______.

21. 函数
$$f(x) = x \ln x$$
 的单调递减区间是______.

22. 函数
$$f(x) = |x^2 - 3x + 2|$$
 在区间 [-10,10] 上的最大值为 ______.

23. 函数
$$y = 2x^3 - 6x^2 - 18x$$
 的极大值是 _______.

24. 函数
$$y = x^2 - \frac{54}{x}$$
 在区间 $(-\infty, 0)$ 上的最小值是 ______.

25. 设函数
$$f(x) = x(x-1)(x-2)$$
, 则方程 $f'(x) = 0$ 的实根个数为

26. 函数
$$y = 2x^3 - 6x^2 - 18x$$
 在区间 [-2,2] 上的最大值是________.

27. 求
$$\lim_{x\to 0} (3e^{\frac{x}{x-1}}-2)^{\frac{1}{x}}$$
.

28. 求函数
$$f(x) = xe^x - e^x + 1$$
 的单调区间与极值及凹凸区间与拐点.

29. 求极限
$$\lim_{x\to 0} (\cos x)^{\frac{1}{\ln(1+x^2)}}$$
.

- **30**. 把一根长度为 a 的铁丝截成两段,其中一段折成正方形框架,另一段弯成圆周问当如何截取时,可使围成的正方形和圆的面积之和达到最小?
- **31.** 设 y = y(x) 是由方程 $y^2 + xy + x^2 + x = 0$ 所确定的满足 y(-1) = 1 的隐函数,求 y'(-1) 及 y''(-1),并计算极限 $\lim_{x \to -1} \frac{y(x) 1}{(x+1)^2}$.
- 32. (A 班) 计算极限 $\lim_{x\to 0} (e^x + x)^{\frac{2}{\sin x}}$.

计算极限
$$\lim_{x\to 0} \left(\frac{\ln(1+x)}{x^2} - \frac{1}{x}\right)$$
.

- 33. 求 $y = (x-1)e^{\frac{\pi}{3} + \arctan x}$ 的单调区间和极值。
- **34.** $\vec{x} \lim_{x\to 0} (1+\sin x^2)^{\frac{1}{1-\cos x}}$.
- **35.** 一房地产公司有 50 套公寓要出租, 当月租金定为 1000 元时, 公寓会全部租出去, 当月租金每增加 50 元时, 就会多一套公寓租不出去, 而租出去的公寓每月需花费 100 元的维修费. 问房租金定为多少时可获得最大收入?
 - (A 班) 需求函数为 $p = 10 \frac{Q}{5}$,
 - (1) 求当 Q = 20 时的边际收益,并说明其经济意义;
 - (2) 求当 p=6 时的收益弹性,并说明其经济意义.
- **36.** 求极限 $\lim_{x\to 0} (x+e^x)^{\frac{1}{3x}}$.
- **37**. 求曲线 $y = xe^{-x}$ 的凹凸区间与拐点.
- **38.** (1) 求函数 $y = f(x) = 2x^3 9x^2 + 12x$ 的单调区间与极值;
 - (2) 设 a 为实数,试讨论方程 f(x) = a 的不同实数解的个数.
- **39.** 求极限 $\lim_{r\to +\infty} x^{\frac{2}{\ln(1+3x)}}$.
- **40**. 求曲线 $y = x^4 2x^3 + 1$ 的凹凸区间及拐点.
- **41.** 求极限 $\lim_{x\to 0} \frac{x-\sin x}{x^3}$.
- **42.** 求极限 $\lim_{x\to 1} x^{\frac{1}{1-x}}$.

- **43**. 问 a, b 为何值时, 点 A(1,3) 是曲线 $y = ax^3 + bx^2 + 1$ 的拐点?
- **44.** 某商场每年销售商品 a 件,分为 x 批采购进货.已知每批采购费用为 b 元,而未销售商品的库存费用为 c 元/件·年.设销售商品是均匀的,问分多少批进货时,才能使以上两种费用的总和为最省?
- **45.** 求极限 $\lim_{x\to 0} \frac{\sin x x \cos x}{x^2 \arcsin x}$.
- **46.** 求极限 $\lim_{r\to 0^+} x^{\sin x}$
- **47**. 某企业生产某种产品,固定成本 20000 元,每生产一单位产品,成本增加 100 元. 已知总收益 R 是年产量 Q 的函数,即

$$R = R(Q) = \begin{cases} 400Q - \frac{1}{2}Q^2, & 0 \le Q \le 400\\ 80000, & Q > 400 \end{cases}$$

问每年生产多少产品时,总利润最大?最大利润是多少?

- **48.** 求极限 $\lim_{x\to 0^+} (\frac{1}{x})^{\sin x}$.
- **49**. 求曲线 $y = xe^{-x}$ 的出凸区间及拐点.
- **50.** 某企业生产产品 x 件时, 总成本函数为 $C(x) = ax^2 + bx + c$, 总收益函数为 $R(x) = px^2 + qx$, 其中 a, b, c, p, q > 0, a > p, b < q. 当企业按最大利润投产时, 对每件产品征收税额为多少才能使总税额最大?
- **51**. 若 0 < a < 1, 则对于 x > 0, 证明 $x^a ax \le 1 a$.
- **52.** 当 0 < a < b < 1 时, 证明不等式 $\frac{b-a}{\sqrt{1-a^2}} < \arcsin b \arcsin a < \frac{b-a}{\sqrt{1-b^2}}$.
- **53.** (A 班) 设函数 f(x) 在 $[0,\pi]$ 上连续,在 $(0,\pi)$ 内可导,证明: 至少存在一点 $\xi \in (0,\pi)$, 使得 $f'(\xi) = -f(\xi)\cot \xi$.

设函数 f(x) 在 $[0,\pi]$ 上连续, 在 $(0,\pi)$ 内可导, 且 $f(0) = f(\pi) = 0$. 证明: 至少存在一点 $\xi \in (0,\pi)$, 使得 $f'(\xi) = -f(\xi)$.

54. 证明: 当 $x \in \left(0, \frac{\pi}{2}\right)$ 时, $\tan x > x + \frac{1}{3}x^3$.

(A 班) 设 f(x) 在 [a,b] 上可微,且 f(a) = f(b) = 0,试证明:在 (a,b) 内至少存在一点 ξ ,使 $f'(\xi) = 3f(\xi)$.

- **55.** 已知 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(1)=0,证明在区间 (0,1) 内至少有一点 c,使得 $f'(c)=-\frac{f(c)}{c}$.
- **56.** 若函数 f(x) 在 $(-\infty, +\infty)$ 内满足关系式 f'(x) = f(x), 且 f(0) = 1, 则 $f(x) = e^x$.
- 57. 证明: 当 x > 0 时, $(1+x)\ln^2(1+x) < x^2$.
- **58.** 设函数 f(x) 在 [0,2] 上连续, 在 (0,2) 内可导, 且 f(2) = 4. 试证存在一点 $\xi \in (0.2)$, 使得 $2\xi f(\xi) + \xi^2 f'(\xi) = 8$.

第五章 不定积分

1	· f(x)	是连续函数,	E(x) 旦	f(x)	的百念粉	(`
1.	$\mathbf{l} \nabla f(x)$	走洋纵附数.	F(X) 走	f(x)	的原物数	().

- (A) 当 f(x) 是奇函数时, F(x) 必为偶函数
- (B) 当 f(x) 是偶函数时, F(x) 必为奇函数
- (C) 当 f(x) 是周期函数时, F(x) 必为周期函数
- (D) 当 f(x) 是单调增函数时, F(x) 必为单调增函数

2. 已知
$$f'(\cos x) = \sin x$$
,则 $f(\cos x) = ($).

(A)
$$-\cos x + C$$

(B)
$$\cos x + C$$

(C)
$$\frac{1}{2}(\sin x \cos x - x) + C$$

$$\mathbf{(D)}\ \frac{1}{2}(x-\sin x\cos x)+C$$

3. 若
$$\int f(x)e^{x^2} dx = e^{x^2} + C$$
, 则 $f(x) = ($).

(B)
$$e^{x^2}$$

(C)
$$x^2$$

(D)
$$2x$$

4. 下列各式中,与
$$\int \sin 2x dx$$
 不相等的是().

(A)
$$-\frac{1}{2}\cos 2x + C$$
 (B) $\sin^2 x + C$ (C) $-\cos^2 x + C$ (D) $\frac{1}{2}\cos 2x + C$

(B)
$$\sin^2 x + C$$

(C)
$$-\cos^2 x + C$$

(D)
$$\frac{1}{2}\cos 2x + C$$

5. 在区间
$$(-\infty, +\infty)$$
 内, 如果 $f'(x) = g'(x)$, 则下列各式中一定成立的是 ().

$$(A) f(x) = g(x)$$

(B)
$$f(x) = g(x) + 1$$

(C)
$$\int f'(x) dx = \int g'(x) dx$$

(C)
$$\int f'(x) dx = \int g'(x) dx$$
 (D)
$$\left(\int f(x) dx \right)' = \left(\int g(x) dx \right)'$$

6. 函数
$$2(e^{2x} - e^{-2x})$$
 的原函数有().

(A)
$$(e^x + e^{-x})^2$$

(B)
$$2(e^x - e^{-x})^2$$

(C)
$$e^x + e^{-x}$$

(A)
$$(e^x + e^{-x})^2$$
 (B) $2(e^x - e^{-x})^2$ **(C)** $e^x + e^{-x}$ **(D)** $4(e^{2x} + e^{-2x})$

7. 若
$$\int f(x) dx = e^x \sin x + C$$
,则 $f(x)$ 等于 ().

(A)
$$e^x \sin(x + \frac{\pi}{4})$$

(B)
$$\sqrt{2}e^x \sin(x+\frac{\pi}{4})$$

(C)
$$\sqrt{2}e^x \cos(x + \frac{\pi}{4})$$

(D)
$$e^x \cos(x - \frac{\pi}{4})$$

8. 设 e^{-x} 是 f(x) 的一个原函数,则 $\int x f(x) dx = ($).

(A)
$$e^{-x}(1-x)+C$$

(B)
$$e^{-x}(1+x)+C$$

(C)
$$e^{-x}(x-1) + C$$

(A)
$$e^{-x}(1-x)+C$$
 (B) $e^{-x}(1+x)+C$ (C) $e^{-x}(x-1)+C$ (D) $-e^{-x}(x+1)+C$

- 9. 若 $\int f(x) dx = x^2 e^{2x} + C$, 则 f(x) 等于 ().
 - **(A)** $2xe^{2x}$

(B)
$$2x^2e^{2x}$$

(C)
$$xe^{2x}$$

(D)
$$2x(1+x)e^{2x}$$

- **10.** 不定积分 $\int \frac{3x^4 + 3x^2 + 2}{1 + x^2} dx = \underline{\qquad}.$
- 11. 不定积分 $\int \frac{1+xe^{5x}}{x} dx = \underline{\qquad}.$
- **12.** 不定积分 $\int \frac{1}{x^2} \sin \frac{1}{x} dx =$ ______.
- **13**. 不定积分 $\int 5^x e^x dx =$ ______.
- 14. 不定积分 $\int x \ln x dx =$ _____.
- **15**. 不定积分 $\int \frac{1}{x^2(1+x^2)} dx =$ ______.
- **16.** 不定积分 $\int 5^x e^x dx$ 等于_____.
- 17. 求不定积分 $\int \frac{x^2}{\sqrt{4-x^2}} dx$.
- **18.** 设 $f(\ln x) = \frac{\ln(1+x)}{x}$, 求不定积分 $\int f(x) dx$.
- 19. 求不定积分 $\int \frac{1+\ln x}{2+(x\ln x)^2} \,\mathrm{d}x.$
- **20.** 已知 f(x) 的一个原函数是 e^{-x^2} , 求 $\int x f'(x) dx$.

21. 求不定积分
$$\int \frac{\sqrt{1-x^2}}{x^4} dx$$
.

22. 设
$$f(x)$$
 的一个原函数为 $x^2 \sin x$, 计算不定积分 $\int x f'(x) dx$.

24. 设
$$e^{-x}$$
 是 $f(x)$ 的一个原函数, 求 $\int x f(x) dx$.

$$(\mathbf{A}$$
班) 求 $\int x f''(2x) dx$.

25. 求不定积分
$$\int \frac{x^3}{\sqrt{x^2-1}} \, \mathrm{d}x.$$

26. 已知
$$\frac{\sin x}{x}$$
 是 $f(x)$ 的一个原函数, 求不定积分 $\int x f'(x) dx$.

27. 求不定积分
$$\int \frac{2}{x(3+2\ln x)} \mathrm{d}x.$$

28. 求不定积分
$$\int (\sqrt[3]{x} - \frac{1}{\sqrt{x}})(\sqrt{x} + \frac{1}{\sqrt[3]{x}}) dx.$$

29. 设
$$f(\ln x) = \frac{\ln(1+x)}{x}$$
, 试求 $\int f(x) dx$.

30. 求不定积分
$$\int \frac{1}{\sqrt{4x-x^2}} dx$$
.

31. 求不定积分
$$\int \frac{x+1}{\sqrt[3]{3x+1}} \mathrm{d}x.$$

32. 求不定积分
$$\int x^2 \arctan x dx$$
.

33. 求
$$\int \frac{x^3}{1+x^2} dx$$
.

34. 设函数
$$f(x)$$
 的一个原函数是 $\frac{\sin x}{x}$, 试求 $\int x f'(x) dx$.