Braille Oral Reading Fluency – The Role of Phonological Processing

Amanda McKerracher

Vancouver Island University

Val Morash

The Smith-Kettlewell Eye Research Institute

Outline

- 1. Overview of the larger study and goals
- 2. Overview of Reading Development/Reading Disability
- 3. Results
- 4. Discussion
- 5. Instructional Implications

- Data from 18 high-school students
 - Academically achieving: expect diploma by age 21
 - No additional disabilities
 - Used braille as primary literacy medium
 - Located in CA or BC
 - 9 female
 - Average age 15.6 years (min 13, max 21)
 - Average onset 1.6 years (15 congenital, 1, 2, 5)

Participants	Condition				
5	Retinopathy of prematurity (ROP)				
3	Anophthalmia or microphthalmia				
2	Glaucoma				
2	Retinal detachment				
2	Unknown				
2	Leber congenital amaurosis (LCA)				
1	Norrie disease				
1	Optic nerve hypoplasia (ONH)				
1	Familial exudative vitreoretinopathy (FEVR)				

- Tested on 26 measures
 - 11 math achievement (KeyMath braille)
 - 15 accessibility, exposure, and cognitive measures
 - Including: DIBELS ORF, Complete CTOPP

KeyMath Math Assessments

Numeration

Rational Numbers

Geometry

Addition

Multiplication

Mental Computation

Measurement

Time and Money

Estimation

Interpreting Data

Problem Solving

Accessibility

Nemeth Code Math Notation

Tactile Graphics

Exposure

Shape Familiarity

Math-Related Language

Cognition

Working Memory

Fluid Reasoning

Processing Speed

Block Design

General Intelligence

Mental Rotation

Current Study

Goals

- Is phonological processing (3 subcomponents) a good predictor of Oral Reading Fluency for contracted braille?
- 2. If not, what are the important subskills necessary to becoming a fluent reader of contracted braille?

Reading Achievement

Reading Disability

- "Unexpected difficulty in reading in children and adults who otherwise possess the intelligence, motivation, and schooling considered necessary for accurate and fluent reading" (Shaywitz, 1998 p. 307).
- Search for the core deficit(s)
 - Vocabulary
 - Auditory Processing
 - Working Memory
 - Phonological Processing

Phonological Processing

- Auditory processing skills that are relevant to the phonological nature of language
- Three main subdomains of phonological processing relevant to reading disability:
 - Phonological awareness
 - Phonological memory
 - Rapid automatic naming

Phonological Awareness

 The ability to attend explicitly to the phonological structure of spoken words, rather than just to their meanings and syntactic roles." (National Research Council, 1999 p. 111).

Phonological Awareness

- Greaney and Reason (1999)
 - Children. Better than expected on PA, worse than expected on ORF, Reading Comp
- Simon and Asensio (1997)
 - Adults. Poor PA and poor ORF/Comprehension, but PA overpredicts ORF
- Gillon and Young (2002)
 - Children. Equally delayed in their reading/PA

Sample Phonological Awareness Tasks

Elision

PRACTICE ITEMS: a. Say toothbrush. Now say toothbrush without saying tooth. brush

If correct say, "That's right. Let's try the next one."

If incorrect say, "That's not quite right. Toothbrush without saying tooth is brush."

Continue to give correct/incorrect feedback as before. Say, "Let's try some more."

- b. Say airplane. Now say airplane without saying plane.c. Say doughnut. Now say doughnut without saying dough.airnut
- 8. Say time. Now say time without saying /m/.
- 9. Say tiger. Now say tiger without saying /g/.

tie

slit

13 fist

19. Say split. Now say split without saying /p/.20. Say fixed. Now say fixed without saying /k/.

Sample Phonological Awareness Tasks

Blending Words

b.	What word do these sounds make?	
C.	What word do these sounds make?	
d.	What word do these sounds make?	
е.	What word do these sounds make?	
f	What word do these sounds make?	

hăm-ár
s-ŭn
t-āk
n-ō
m-ă-d

hammer sun take no mad

Phonological Memory

- The ability to hold and manipulate verbal information in memory
- Beginning readers
 - Decode each letter
 - Blend letters
 - Compare to lexicon

Phonological Memory

- Tillman (1967)
 - Stronger digit span skills than CA matched sighted, overpredicts IQ
- Smits and Mommers (1976)
 - Stronger digit span skills that CA matched sighted, overpredicts IQ
- No known research comparing these skills to reading outcomes

Sample Phonological Memory Tasks

Memory for Digits

1	16	
2	7 2	
3	9 4	
4	521	
5	648	
6	836	
7	5318	
8	3741	-
9	7596	,
10	41839	
11.	63258	

4 - e - e		
12	92483	_=
13	849713	
14	641397	
15	438975	
16	3197426	
17	9251638	
18	7145283	
19	46359271	
20	97412536	
21	49673165	
	Total Raw Score	

Sample Phonological Memory Tasks

Nonword Repetition

PRACTICE ITEMS: Say, "I want you to listen to some made-up words on the CD player. After you hear each made-up word, I want you to say it exactly as you heard it and as clearly as you can. Even if it's hard to say, give it your best try. Listen carefully because I can't repeat the words. Okay? Let's try some." Start CD.

```
If correct say, "That's right. Now try the next word."

If incorrect say, "That's not quite right. The word was _____. Let's try another word."
```

- a. ral (răl)
- b. sart (särt)
- c. ballop (băl-ōp)

Rapid Automatic Naming (RAN)

- More loosely defined
- Letters only?
 - Numbers? Colors? Objects?

Rapid Automatic Naming (RAN)

- Bliss, Kujala, and Hamalainen (2004)
 - Adults. Rapid naming for braille letters for adults who are blind indistinguishable as rapid naming for print letters for sighted adults
- Kikuchi, Yamashita, Sagawa, and Wake (1979)
 - More opportunities for reversal errors than in printed English
- Barlow-Brown & Connelly (2002)
 - Knowledge/familiarity with braille letters correlated with phonological awareness

Sample RAN Tasks

Rapid Letter Naming

S	Ť	n	а	k	С	†	S	С	Time
k	а	n	С	k	†	а	n	S	Errors
†	k	С	S	n	а	†	С	n	
k	а	S	n	С	k	S	†	а	

Sample RAN Tasks

Rapid Digit Naming

4 7 8 5 2 3 7 4 3 **Time**_____

8 2 5 3 5 7 2 8 4 **Errors**____

7 5 3 4 8 2 7 3 8

2 4 8 3 5 4 7 2

Assessment of Reading Disability in Sighted Population

- Most widely used assessment tools include subtest(s) in all three domains
- Caveat: 3 areas of phonological processing are predictive of RD in alphabetic languages
 - Syllabic (Japanese Kana)
 - Logographic (Mandarin)

Braille

*****Alphabetic

*****Syllabic

*****Logographic

English Braille, American Edition

Assessment of Reading Disability Among Braille Readers

• ???

- Not just important for the sake if diagnosing/SpEd eligibility
 - Need to understand what's going wrong for kids who are struggling to learn to read so we know where to intervene

Measures

- DIBELS Oral Reading Fluency (ORF) braille
 - 2 passages
 - Score = correct words per minute
 - All participants used sixth grade level passage (contracted)
- CTOPP (Comprehensive Test of Phonological Processing) Core Battery
 - Phonological Awareness (Elision, Blending Words)
 - Phonological Memory (Memory for Digits, Nonword Repetition)
 - Rapid Automatic Naming (Letters, Digits)*

CTOPP Validity with Sighted Students

- CTOPP Composites vs. the Woodcock Reading Mastery Test-Revised (WRMT-R)
 - after one year in kindergarten: .71 for Phonological Awareness, .42 for Phonological Memory, and .66 for Rapid Naming
 - assessed after first grade, showed better values:
 .80, .52, and .70 respectively
- Among adults, CTOPP vs. ORF
 - .70 for RAN, .57 for Phonological Awareness, .59 for Phonological Memory

Results – Phonological Awareness

Phonological Awareness Composite vs DIBELS ORF

Results – Phonological Memory

Phonological Memory Composite vs DIBELS ORF

r = .388p = .100

29

Results - Rapid Automatic Naming

Rapid Automatic Naming Composite vs DIBELS ORF

$$r = -.500$$

 $p = .029$

Stepwise Regression and Model Selection

- Stepwise Regression
 - regression models in which the choice and ordering of predictive variables in the model is carried out by an automatic procedure
- Best predictive model includes RAN only

Shared Variance

Phonological Awareness vs Phonological Memory

Shared Variance

RAN vs Phonological Awareness

$$r = -.380$$

 $p = 0.09$

Shared Variance

Discussion

 Phonological Awareness, Phonological Memory, and Rapid Automatic Naming are all more weakly correlated with Oral Reading Fluency in our sample than among previously reported sighted samples

Discussion

- Weak and non-statistically significant correlations between phonological awareness/phonological memory and oral reading fluency
 - Not that they're not important, but they do not capture the "core" underlying skill of contracted braille reading as they do for reading printed English or other alphabetic languages

Discussion

- Moderate correlation between Rapid Automatic Naming and Oral Reading Fluency
- Best model for predicting Oral Reading
 Fluency included only Rapid Automatic Naming
 - Captures the importance of speeded symbol recognition in contracted braille reading
 - Likely need RAN tasks that measure symbol recognition in a more complex/subtle way

Instructional Considerations

- Phonological awareness/memory likely quite important for students learning uncontracted braille (either first or only)
- If a student is struggling to master uncontracted braille, it likely IS due to phonological awareness/memory
- If a student is struggling to master contracted braille, it's likely due to other factors
 - "Visual" memory/sight words

Instructional Considerations

Psychoeducational assessment

- Be sure when your students are assessed as part of initial or triennial assessments, psychologist is aware of limitations of their instruments for braille reading students
- Need to consult with school psychologists with a deep knowledge of this population
- TVI will probably have a better understanding of underlying skill deficits when children are struggling to learn to read

Questions/Comments?

Thank you!

Amanda McKerracher

Vancouver Island University

Val Morash

The Smith-Kettlewell Eye Research Institute

Results and slides at: www.valeriemorash.com