Quantum Hacking:

Computer-Simulated Attacks against the BB84 Protocol

NORTHERN ARIZONA UNIVERSITY

Office of Undergraduate Research and Creative Activity

Leo Crowder, Inès Montaño

Applied Physics and Materials Science, Northern Arizona University

Introduction

The Importance of Quantum Key Distribution

Common encryption protocols are vulnerable to quantum computers! (Shor's Algorithm)

Error-free BB84 and other QKD protocols are secure against attacks made possible by quantum computers.

What is BB84?

- Generate a cryptographic key using polarized quantum particles of light (photons).
- Eavesdropper's (Eve) attempts to learn the key will induce detectable errors

Figure 1: BB84 implementation using polarized photons

The Problem

Practical implementation is prone to natural errors which can be exploited by Eve to gain information about the key.

Methods

Strategy

Eve tries to gain as much information as possible while inducing **exactly** the expected QBER and L to go undetected.

Channel-induced Errors

Attack-induced Errors

$QBER_{I\&R} = 0.25$

$$QBER_{SB} = \frac{S^2}{2}$$

 $*|T_{in}\rangle = \frac{\sqrt{1-S^2}+S}{\sqrt{2}}|0\rangle + \frac{\sqrt{1-S^2}-S}{\sqrt{2}}|1\rangle$ is the input state of Eve's entangling probe

$$L_{PNS} = e^{-\langle n \rangle} + \sum_{i} P_{i} \frac{\langle n \rangle^{i}}{i!} e^{-\langle n \rangle}$$

 $*P_i$ =probability that Eve "blocks" a qubit with photon number *i*.

Results

closely match expected channel errors

Attack-induced errors begin to deviate from expected channel errors

Higher drift, loss, and mean photon number ⇒ Eve learns a larger portion of the key.

Conclusion

- Greater errors generally allow Eve to acquire more information.
- Eve's strategy needs refinement:
 - Her induced error closely (but not exactly) matches expected error.
 - Quickly diverges beyond $\theta \approx 0.6$
- The security of BB84 is **highly dependent** on the technology used to implement the protocol.
- Imperfect implementation of BB84 must be supplemented with procedures to prevent or detect potential eavesdropping.

References

-1Vasileios Mavroeidis, Kamer Vishi, Mateusz D. Zych and Audun Jøsang, "The Impact of Quantum Computing on Present Cryptography" International Journal of Advanced Computer Science and Applications(ijacsa), 9(3), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090354

-2C.H. Bennett, G. Brassard: Quantum Cryptography, Public key distribution and coin tossing, Proc. Int. Conf. Computer Systems and Signal Processing, 175, Bangalore 1984

-3M Dušek, O Haderka, M Hendrych 1999 Optics Communications 169 103-108 ⁴Boris A. Slutsky, Ramesh Rao, Pang-Chen Sun, and Y. Fainman. Phys. Rev. A **57**, 2383 – Published 1 April 1998

Acknowledgements

This project would not be possible without funding and support through the Hooper Undergraduate Research Award.