

České vysoké učení technické v Praze Fakulta elektrotechnická 8.4.2022

Obří slalom s Turtlebotem

Technická zpráva

Matouš Soldát, Šimon Soldát, Karolína Volfíková

Obsah

1	Úvod				
	1.1	Zadání úlohy	2		
	1.2	Použitý robot	3		
2	Řeš	ení	4		
	2.1	Segmentace	4		
	2.2	Orientace v prostoru	5		
	2.3	Pohyb na dráze	5		
	2.4	Poznámky k implementaci	6		
3	$\mathbf{V}\mathbf{\acute{y}}\mathbf{sled}\mathbf{k}\mathbf{y}$				
	3.1	Grafy, tabulky	6		
4	Záv	ěr	7		

1 Úvod

1.1 Zadání úlohy

Cílem úlohy "obří slalom" je projetí dráhy vyznačené tyčkami různých barev robotem. Dvojice stejně barevných tyček tvoří branku. Šířka jednotlivých branek je 450-600 mm a maximální vzdálenost středů dvou po sobě následujících branek je 1000 mm.

Na počátku úlohy je robot umístěn do startovní pozice. Jeho střed se nachází minimálně 300 mm a maximálně 1300 mm od startovní branky, kterou tvoří zelené tyčky, a jeho podélná osa s osou startovní branky nesvírá úhel větší než 60°. Minimální vzdálenost dvou tyček různých branek je 500 mm. Navíc směr jízdy může s osou branky svírat maximálně 30°. Na začátku je alespoň jedna z tyček startovní branky v zorném poli RGB kamery. Po průjezdu startovní brankou musí robot projet trať, na které se střídají modré a červené branky, aniž by se jich dotkl. Poslední branka není nijak definována a robot po jejím projetí může pokračovat v jízdě.

Obrázek 1: Schéma dráhy obřího slalomu

1.2 Použitý robot

Pro řešení úlohy byl použit TutleBot 2. Jeho základnu tvoří zařízení Kobuki, které poskytuje základní funkční prvky: systém pro pohyb robotu, bumper, odometrii. Robot je ovládán přes NUC PC s frameworkem pro softwarový vývoj robotu ROS (Robot Operating System). Dále je na robotu umístěn jeden ze dvou RGBD senzorů: Orbex Astra (pro roboty s číslem 1, 2), Intel RealSense (pro roboty s číslem 3-7).

Obrázek 2: TurtleBot 2

2 Řešení

2.1 Segmentace

Pro nalezení jednotlivých tyček v obraze získaném z RGB kamery jsme zvolili segmentační metodu prahování. Nejprve jsme získali obraz z kamery pomocí funkce $get_rgb_image()$. Převedli jsme obraz z RGB do HSV barevné reprezentace a zvolili optimální prahové hodnoty. Pro každou barvu jsme experimentálně nalezli práh tak, že jsme RGB kamerou pořídili několik snímků každé tyčky při různém osvětlení.

Barva	H_{exp}	H_{diff}	S_{min}	V_{min}
Zelená	65	25	80	60
Modrá	100	25	230	80
Červená	2	8	150	70

Tabulka 1: Tabulka zvolených prahových hodnot, kde: H_{exp} je střední hodnota odstínu, H_{diff} je maximální povolený rozdíl měřené a střední hodnoty odstínu, S_{min} je minimální saturace a V_{min} minimální jas.

Dále jsme v obraze detekovali spojité oblasti jako kandidáty pro tyčky pomocí OpenCV funkce connectedComponentsWithStats(). Odstranění nežádoucích oblastí jsme realizovali pomocí výstupů této funkce – definovali jsme minimální požadovanou plochu S a také podmínky pro poměr výšky h a šířky w:

$$S > 2500 [px], \tag{1}$$

$$r = \frac{h}{w} = 5.1,\tag{2}$$

$$r_{diff} < 3, (3)$$

kde r_{diff} je rozdíl poměru měřených hodnot a definovaného poměru $\boldsymbol{r}.$

2.2 Orientace v prostoru

Pro orientaci v prostoru jsme využili point cloud. Point cloud je sada bodů, které reprezentují daný objekt v prostoru. Každý bod je charakterizován souřadnicemi x, y, z. Point cloud získáme z funkce $get_point_cloud()$ jako matici o velikosti $480 \times 640 \times 3$.

Vektor třetí dimenze si uložíme jako \mathbf{z} a v matici jej nahradíme vektorem jedniček – tím převedeme matici do homogenních souřadnic. Novou matici označíme jako $M1_{CAM}$. Následně využijeme rovnici:

$$\mathbf{X} = \lambda \cdot \mathbf{K}^{-1} \cdot \mathbf{M} \mathbf{1}_{\mathbf{CAM}},\tag{4}$$

kde \mathbf{K}^{-1} je matice hloubkové kamery se souřadnicemi se středem v kameře získaná funkcí $get_depth_K()$ a λ je empiricky zjistěná hodnota. Pro její získání jsme provedli osm měření vzdáleností tyček od sebe s hodnotou $\lambda=1$. Poté jsme na výsledky aplikovali metodu nejmenších čtverců a dostali hodnotu $\lambda=429$.

Z matice \mathbf{X} opět odstraníme vektor třetí dimenze a nahradíme jej vektorem \mathbf{z} . Výsledná matice M_{CAM} je matice souřadnic se středem v robotu.

Při pohybu jsme využívali funkcí $reset_odometry()$ a $get_odometry()$. $Reset_odometry()$ nastaví počátek souřadnic na aktuální pozici robotu. $Get_odometry()$ vrací relativní vzdálenost uraženou od posledního volání $reset_odometry()$.

2.3 Pohyb na dráze

Po spuštění robotu se aktivuje hledání zelené branky. Robot se otáčí, dokud nedetekuje dvě zelené tyčky. Poté změří jejich relativní pozici vůči němu a najede na osu této branky do vzdálenosti půl robotu + 5 cm před ní. Brankou projíždí a zastaví se až v momentě, kdy projede celé tělo robotu.

Následně proběhne hledání největší tj. nejbližší tyčky. Robot se otočí doleva o $30^{\circ} + 20^{\circ}$, pak doprava o 60° , a ukládá si oblast s největší plochou včetně její barvy. Díky tomu zjistíme, zda dráha začíná červenou nebo modrou brankou. Poté robot zopakuje tento proces otáčení, během kterého najde alespoň dvě tyčky, vybere dvě největší a porovná jejich výšky. Musí platit:

$$h_{diff} = \frac{a}{b} < 1.05 \tag{5}$$

$$a > b$$
, (6)

kde a je měřená výška a b šířka tyčky. Poté se robot vycentruje na rozpoznanou branku a opakuje se proces popsaný pro branku startovní.

2.4 Poznámky k implementaci

Turtlebot object struktury

3 Výsledky

3.1 Grafy, tabulky

– měření času –

4 Závěr

:)