In [2]:

```
## import all necessary libraries
import pandas as pd
import numpy as np
import os
from matplotlib import pyplot as plt
import seaborn as sns
```

In [4]:

import pandas

In [5]:

data=pandas.read_csv("insurance.csv")

In [11]:

data

Out[11]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

In [12]:

data.describe()

Out[12]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

In [8]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
Column Non-Null Count Dtype

#	Column	Non-I	Null Count	Dtype
0	age	1338	non-null	int64
1	sex	1338	non-null	object
2	bmi	1338	non-null	float64
3	children	1338	non-null	int64
4	smoker	1338	non-null	object
5	region	1338	non-null	object
6	charges	1338	non-null	float64
dtyp	es: float6	4(2),	int64(2),	object(3)

memory usage: 73.3+ KB

In [20]:

```
#print top 5 columns
data.head()
```

Out[20]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

```
In [15]:
data.columns
Out[15]:
Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges'], dtyp
e='object')
In [16]:
print(data)
                      bmi
                           children smoker
      age
              sex
                                                region
                                                             charges
                   27.900
0
       19
          female
                                   0
                                        yes
                                             southwest
                                                       16884.92400
1
       18
             male
                   33.770
                                   1
                                             southeast
                                                          1725.55230
                                         no
2
       28
             male
                   33.000
                                   3
                                             southeast
                                                         4449.46200
3
       33
             male
                   22.705
                                   a
                                             northwest 21984.47061
                                         no
4
       32
             male
                   28.880
                                   0
                                             northwest
                                                          3866.85520
                                         no
       50
             male
                   30.970
                                  3
                                             northwest 10600.54830
1333
                                         no
          female
                   31.920
1334
       18
                                   0
                                             northeast
                                                         2205.98080
                                         no
1335
       18
          female
                   36.850
                                   0
                                         no
                                             southeast
                                                          1629.83350
       21
          female 25.800
                                   0
                                                          2007.94500
1336
                                         no
                                             southwest
          female 29.070
                                   0
1337
       61
                                        yes
                                             northwest 29141.36030
[1338 rows x 7 columns]
In [21]:
#print mean of the age data
print(data["age"].mean())
39.20702541106129
In [22]:
# charges column top 5 values
data["charges"].head()
Out[22]:
     16884.92400
0
      1725.55230
1
2
      4449.46200
3
     21984.47061
4
      3866.85520
Name: charges, dtype: float64
In [23]:
# check shape of data set
data.shape
Out[23]:
(1338, 7)
In [ ]:
```

#Sorting data

In [24]:

#Sort charges values from low to high
data.sort_values("charges")

Out[24]:

	age	sex	bmi	children	smoker	region	charges
940	18	male	23.210	0	no	southeast	1121.87390
808	18	male	30.140	0	no	southeast	1131.50660
1244	18	male	33.330	0	no	southeast	1135.94070
663	18	male	33.660	0	no	southeast	1136.39940
22	18	male	34.100	0	no	southeast	1137.01100
819	33	female	35.530	0	yes	northwest	55135.40209
577	31	female	38.095	1	yes	northeast	58571.07448
1230	52	male	34.485	3	yes	northwest	60021.39897
1300	45	male	30.360	0	yes	southeast	62592.87309
543	54	female	47.410	0	yes	southeast	63770.42801

1338 rows × 7 columns

In [25]:

#sort charges values high to Low
data.sort_values("charges" , ascending = False)

Out[25]:

	age	sex	bmi	children	smoker	region	charges
543	54	female	47.410	0	yes	southeast	63770.42801
1300	45	male	30.360	0	yes	southeast	62592.87309
1230	52	male	34.485	3	yes	northwest	60021.39897
577	31	female	38.095	1	yes	northeast	58571.07448
819	33	female	35.530	0	yes	northwest	55135.40209
22	18	male	34.100	0	no	southeast	1137.01100
663	18	male	33.660	0	no	southeast	1136.39940
1244	18	male	33.330	0	no	southeast	1135.94070
808	18	male	30.140	0	no	southeast	1131.50660
940	18	male	23.210	0	no	southeast	1121.87390

1338 rows × 7 columns

In [29]:

#filter only those values that are less than 20000
data[data["charges"]<=20000]</pre>

Out[29]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.90	0	yes	southwest	16884.9240
1	18	male	33.77	1	no	southeast	1725.5523
2	28	male	33.00	3	no	southeast	4449.4620
4	32	male	28.88	0	no	northwest	3866.8552
5	31	female	25.74	0	no	southeast	3756.6216
1332	52	female	44.70	3	no	southwest	11411.6850
1333	50	male	30.97	3	no	northwest	10600.5483
1334	18	female	31.92	0	no	northeast	2205.9808
1335	18	female	36.85	0	no	southeast	1629.8335
1336	21	female	25.80	0	no	southwest	2007.9450

1065 rows × 7 columns

In [33]:

#filter any value that is greater than 20000 and less than 40000
data[(data["charges"] > 20000) & (data["charges"]<40000)]</pre>

Out[33]:

	age	sex	bmi	children	smoker	region	charges
3	33	male	22.705	0	no	northwest	21984.47061
9	60	female	25.840	0	no	northwest	28923.13692
11	62	female	26.290	0	yes	southeast	27808.72510
14	27	male	42.130	0	yes	southeast	39611.75770
19	30	male	35.300	0	yes	southwest	36837.46700
1308	25	female	30.200	0	yes	southwest	33900.65300
1313	19	female	34.700	2	yes	southwest	36397.57600
1321	62	male	26.695	0	yes	northeast	28101.33305
1328	23	female	24.225	2	no	northeast	22395.74424
1337	61	female	29.070	0	yes	northwest	29141.36030

194 rows × 7 columns

In [50]:

```
#show how many times age has appeared within the dataset
data["age"].value_counts()
```

```
Out[50]:
18
      69
19
      68
20
      29
      29
51
45
      29
46
      29
47
      29
48
      29
50
      29
52
      29
28
      28
54
      28
21
      28
      28
27
26
      28
49
      28
25
      28
24
      28
23
      28
22
      28
53
      28
42
      27
44
      27
43
      27
41
      27
40
      27
31
      27
      27
30
29
      27
56
      26
34
      26
33
      26
32
      26
57
      26
55
      26
35
      25
59
      25
58
      25
      25
36
39
      25
38
      25
37
      25
60
      23
      23
61
62
      23
63
      23
64
      22
Name: age, dtype: int64
```

In [51]:

```
#show first 10
data["age"].value_counts().head()
```

Out[51]:

18 69

19 68

20 29

51 29

45 29

Name: age, dtype: int64

In [52]:

```
#Indexing , loc and iloc & isin data.index
```

Out[52]:

RangeIndex(start=0, stop=1338, step=1)

In [53]:

```
#show multiple columns from dataset
list1 = ["age", "sex" , "bmi", "children", "smoker" , "region", "charges"]
data[list1].head()
```

Out[53]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

In [55]:

```
#show first 20 rows and 3 columns: age, sex & charges
data.loc[:19, ["age", "sex", "charges"]]
```

Out[55]:

	age	sex	charges
0	19	female	16884.92400
1	18	male	1725.55230
2	28	male	4449.46200
3	33	male	21984.47061
4	32	male	3866.85520
5	31	female	3756.62160
6	46	female	8240.58960
7	37	female	7281.50560
8	37	male	6406.41070
9	60	female	28923.13692
10	25	male	2721.32080
11	62	female	27808.72510
12	23	male	1826.84300
13	56	female	11090.71780
14	27	male	39611.75770
15	19	male	1837.23700
16	52	female	10797.33620
17	23	male	2395.17155
18	56	male	10602.38500
19	30	male	36837.46700

In [56]:

#show the 8th row data.loc[7]

Out[56]:

age 37
sex female
bmi 27.74
children 3
smoker no
region northwest
charges 7281.5056
Name: 7, dtype: object

In [58]:

```
#show 8th row with columns age and bmi
data.loc[7, ["age", "bmi"]]
```

Out[58]:

age 37 bmi 27.74

Name: 7, dtype: object

In [62]:

```
#use iloc to show rows 1-6 and age and charges column
data.iloc[[0,1,2,3,4,5], [0,6]]
```

Out[62]:

	age	charges
0	19	16884.92400
1	18	1725.55230
2	28	4449.46200
3	33	21984.47061
4	32	3866.85520
5	31	3756.62160

In [63]:

#Use index for isin to show regions northwest and southeast
data[data["region"].isin(["northwest", "southeast"])]

Out[63]:

	age	sex	bmi	children	smoker	region	charges
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
5	31	female	25.740	0	no	southeast	3756.62160
1327	51	male	30.030	1	no	southeast	9377.90470
1330	57	female	25.740	2	no	southeast	12629.16560
1333	50	male	30.970	3	no	northwest	10600.54830
1335	18	female	36.850	0	no	southeast	1629.83350
1337	61	female	29.070	0	yes	northwest	29141.36030

689 rows × 7 columns

In []:

#Indexing

In [64]:

```
# set a column with index: age
data.set_index("age")
```

Out[64]:

	sex	bmi	children	smoker	region	charges
age						
19	female	27.900	0	yes	southwest	16884.92400
18	male	33.770	1	no	southeast	1725.55230
28	male	33.000	3	no	southeast	4449.46200
33	male	22.705	0	no	northwest	21984.47061
32	male	28.880	0	no	northwest	3866.85520
50	male	30.970	3	no	northwest	10600.54830
18	female	31.920	0	no	northeast	2205.98080
18	female	36.850	0	no	southeast	1629.83350
21	female	25.800	0	no	southwest	2007.94500
61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 6 columns

In [65]:

```
# Undo the above command
data.reset_index()
```

Out[65]:

	index	age	sex	bmi	children	smoker	region	charges
0	0	19	female	27.900	0	yes	southwest	16884.92400
1	1	18	male	33.770	1	no	southeast	1725.55230
2	2	28	male	33.000	3	no	southeast	4449.46200
3	3	33	male	22.705	0	no	northwest	21984.47061
4	4	32	male	28.880	0	no	northwest	3866.85520
1333	1333	50	male	30.970	3	no	northwest	10600.54830
1334	1334	18	female	31.920	0	no	northeast	2205.98080
1335	1335	18	female	36.850	0	no	southeast	1629.83350
1336	1336	21	female	25.800	0	no	southwest	2007.94500
1337	1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 8 columns

In [66]:

```
# Drop Index
data.reset_index(drop = True)
```

Out[66]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

In []:

#Grouping

In [68]:

```
#Show highest bmi
data["bmi"].max()
```

Out[68]:

53.13

In [69]:

```
data["charges"].mean()
```

Out[69]:

13270.422265141257

```
In [70]:
```

```
data["charges"].cumsum().head()
Out[70]:
0
     16884.92400
1
     18610.47630
2
     23059.93830
3
     45044.40891
4
     48911.26411
Name: charges, dtype: float64
In [73]:
data.groupby("age")["charges"].mean()
data.groupby("age")["charges"].mean().head()
Out[73]:
age
18
       7086.217556
19
       9747.909335
20
      10159.697736
21
       4730.464330
22
      10012.932802
Name: charges, dtype: float64
In [74]:
#Groupby multiple vairables - age, bmi & charges
data.groupby(["age", "bmi"])["charges"].mean()
#show first 10
data.groupby(["age", "bmi"])["charges"].mean()
Out[74]:
     bmi
age
                1694.79640
18
     15.960
     17.290
               12829.45510
     20.790
                1607.51010
     21.470
                1702.45530
     21.565
               13747.87235
                   . . .
     39.050
64
               16085.12750
     39.160
               14418.28040
     39.330
               14901.51670
     39.700
               14319.03100
     40.480
               13831.11520
Name: charges, Length: 1295, dtype: float64
```

In [75]:

```
#Replace any missing values & drop all duplicates data.isnull()
```

Out[75]:

	age	sex	bmi	children	smoker	region	charges
0	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False
1333	False	False	False	False	False	False	False
1334	False	False	False	False	False	False	False
1335	False	False	False	False	False	False	False
1336	False	False	False	False	False	False	False
1337	False	False	False	False	False	False	False

1338 rows × 7 columns

In [76]:

#end of code use sum to change from False to count of 0
data.isnull().sum()

Out[76]:

age 0
sex 0
bmi 0
children 0
smoker 0
region 0
charges 0
dtype: int64

In [77]:

No missing Values but if I had any missing values I would use code - drop rows data.dropna()

Out[77]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

In [78]:

#replace any missing values with 0
data.fillna(0)

Out[78]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

In [80]:

#replace any previous values with 0
data.fillna(method="bfill")

Out[80]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

In [81]:

data.dropna(axis=0)

Out[81]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

```
In [107]:
```

```
data = pd.DataFrame({
    "age" : ["22","22","22","21","25","23","22"],
    "bmi" : ["21.2","21.2", "23.4", "21.2", "26.4", "22.5", "19.5"],
})
print(data)
```

```
age
        bmi
   22
       21.2
1
   22
       21.2
2
   22
       23.4
3
   21
       21.2
4
   25
       26.4
5
   23
       22.5
```

22 19.5

In [108]:

```
data.drop_duplicates()
```

Out[108]:

	age	bmi
0	22	21.2
2	22	23.4
3	21	21.2
4	25	26.4
5	23	22.5
6	22	19.5

In []:

#Looping

In [109]:

data.index

Out[109]:

RangeIndex(start=0, stop=7, step=1)

In [1]:

```
region_list= ["northwest", "northeast", "southwest", "southeast"]
for x in region_list:
    print(x)
```

northwest northeast southwest southeast

```
In [ ]:
```

```
#Joining Data
```

```
In [110]:
```

```
data2 = pd.DataFrame({
    "sex" : ["male", "female", "male", "female", "male", "female",],
    "hair_colour" : ["blonde", "black", "grey", "brown", "red", "pink", "purple"],
})
print(data2)
```

```
sex hair_colour
               blonde
0
     male
1
     male
                 black
2
  female
                  grey
3
     male
                 brown
4
  female
                   red
5
     male
                  pink
  female
               purple
```

In [111]:

```
left= data
right= data2
joined_frame = left.join(right)
print(joined_frame)
```

```
age
       bmi
               sex hair_colour
  22 21.2
              male
                        blonde
0
1
  22 21.2
            male
                         black
2
  22 23.4 female
                          grey
3
  21
      21.2
              male
                         brown
4
  25 26.4 female
                           red
5
  23 22.5
              male
                          pink
  22 19.5 female
                        purple
```

In []:

#Numpy

In [131]:

```
np_bmi = np.array( ["21.2","21.2", "23.4", "21.2", "26.4", "22.5", "19.5"])
```

```
In [6]:
```

```
np_data = np.array(data)
print(data)
                             children smoker
      age
               sex
                       bmi
                                                  region
                                                               charges
0
       19
           female
                    27.900
                                    0
                                               southwest
                                                          16884.92400
                                         yes
             male
                    33.770
                                    1
                                               southeast
                                                            1725.55230
1
       18
                                           no
2
       28
             male
                    33.000
                                    3
                                               southeast
                                                            4449.46200
                                           no
3
       33
             male
                    22.705
                                    0
                                               northwest
                                                          21984.47061
                                           no
4
                    28.880
                                    0
       32
             male
                                               northwest
                                                            3866.85520
                                          no
                       . . .
                                  . . .
                                          . . .
1333
       50
             male
                    30.970
                                    3
                                               northwest
                                                          10600.54830
                                          no
           female
                    31.920
1334
       18
                                    0
                                           no
                                               northeast
                                                            2205.98080
1335
       18
           female
                    36.850
                                    0
                                               southeast
                                                            1629.83350
                                          no
           female
1336
       21
                    25.800
                                    0
                                          no
                                               southwest
                                                            2007.94500
1337
           female 29.070
                                    0
                                               northwest
       61
                                         yes
                                                          29141.36030
[1338 rows x 7 columns]
In [7]:
np.std(np_data[:,2])
Out[7]:
6.095907641589428
In [9]:
np.mean(np_data[:,2])
Out[9]:
30.663396860986538
In [10]:
np_bmi = np.array(data["bmi"])
print(np_bmi)
[27.9 33.77 33.
                    ... 36.85 25.8 29.07]
In [13]:
average_bmi = np_bmi == 40
print(np_bmi.sum())
41027.625
In [ ]:
#Dictionaires & Lists
```

```
In [134]:
```

```
age_list= data[["age"]]
print(age_list)
      age
0
       19
1
       18
2
        28
3
       33
4
       32
       . . .
1333
       50
1334
       18
1335
       18
1336
       21
1337
       61
[1338 rows x 1 columns]
In [135]:
#slicing - Positive Indexing
print(age_list[:10])
   age
0
    19
    18
1
2
    28
3
    33
4
    32
5
    31
6
    46
7
    37
8
    37
9
    60
In [136]:
print(age_list [4:20])
    age
4
     32
5
     31
6
     46
7
     37
8
     37
9
     60
10
     25
     62
11
12
     23
13
     56
14
     27
15
     19
     52
16
17
     23
18
     56
19
      30
```

In [137]:

```
#Slicing - Negative Indexing
print(age_list[-20::1])
```

	age
1318	35
1319	39
1320	31
1321	62
1322	62
1323	42
1324	31
1325	61
1326	42
1327	51
1328	23
1329	52
1330	57
1331	23
1332	52
1333	50
1334	18
1335	18
1336	21
1337	61

In [138]:

```
#slice 2 lists evenly
print(age_list[0:669])
print(age_list[669:1338])
     age
0
      19
1
      18
2
      28
3
      33
4
      32
664
      64
      43
665
      49
666
667
      40
668
      62
[669 rows x 1 columns]
      age
669
       40
670
       30
671
       29
       36
672
673
       41
. . .
1333
       50
1334
       18
1335
       18
1336
       21
1337
       61
[669 rows x 1 columns]
```

In []:

#Seaborn Plots

In [139]:

```
sns.scatterplot( x="charges", y = "age", data=data)
plt.show()
```


In [140]:

```
sns.scatterplot ( x="charges", y = "age", data=data, hue="smoker")
plt.show()
```


In [141]:

sns.scatterplot (x="charges", y = "age", data=data, hue="smoker", hue_order=["yes", "no"],
plt.show()

In [142]:

```
sns.relplot(x="charges", y = "age", data=data, kind="scatter", hue="smoker")
plt.show()
```


In [145]:

```
sns.relplot(x="charges", y = "age", data=data, kind="scatter", hue="smoker", alpha=0.4,)
sns.set_style("darkgrid")
plt.show()
```


In [147]:

```
g = sns.relplot(x="charges", y= "age", data=data, kind="scatter", col="smoker", alpha=0.4)
g.set(xlabel="Total Insurance Charges", ylabel="age")
sns.color_palette("tab10")
plt.show()
```


In [18]:

```
fig, ax = plt.subplots(2,2, figsize = (10,10))
sns.set_style("darkgrid")
sns.set_palette("colorblind")
sns.set_context("notebook")
fig1= sns.barplot(x="region", y="bmi",data=data_region, ax=ax[0,0])
fig2= sns.barplot(x="region", y="age",data=data_region, ax=ax[0,1])
fig3= sns.barplot(x="region", y="charges",data=data_region, ax=ax[1,0])
fig.delaxes(ax[1][1])

fig1.set_ylabel("Average bmi")
fig2.set_ylabel("Average Age")
fig3.set_ylabel("Average Charges")

fig1.set_xlabel("Regions")
fig2.set_xlabel("Regions")
fig3.set_xlabel("Regions")
fig3.set_xlabel("Regions")
fig3.set_xlabel("Regions")
```

Out[18]:

Text(0.5, 1, 'bmi, age and charges on relation to Regions')

In []:

#Comparing Data set based on Gender

In [8]:

print(data["sex"].value_counts())

male 676 female 662

Name: sex, dtype: int64

In [9]:

```
colors = sns.color_palette('pastel')[0:5]
plt.pie(data["sex"].value_counts(), labels = ["Male", "Female"], colors = colors, autopct='
plt.show()
```


In [10]:

```
print(data["smoker"].value_counts())
```

no 1064 yes 274

Name: smoker, dtype: int64

In []:

In []:

#Custom function

In [160]:

```
data["smoker"].count()
```

Out[160]:

1338

In [161]:

```
print(data["smoker"]=="yes")
0
         True
        False
1
2
        False
3
        False
4
        False
        . . .
1333
        False
1334
        False
1335
        False
        False
1336
1337
         True
Name: smoker, Length: 1338, dtype: bool
In [162]:
smoker_yes = ["yes"]
total_smoker =data[data.smoker.isin(smoker_yes)]
print(total_smoker)
                       bmi
                            children smoker
                                                  region
      age
              sex
                                                               charges
0
       19
           female
                   27.900
                                    0
                                              southwest
                                                         16884.92400
                                         yes
                    26.290
           female
                                    0
                                                          27808.72510
11
       62
                                         yes
                                               southeast
                                                         39611.75770
14
       27
             male
                   42.130
                                    0
                                         yes
                                              southeast
19
       30
             male
                   35.300
                                    0
                                               southwest 36837.46700
                                         yes
           female
                                    1
23
       34
                   31.920
                                         yes
                                              northeast
                                                         37701.87680
. . .
      . . .
                       . . .
                                  . . .
                                         . . .
                                                     . . .
1313
       19
           female
                    34.700
                                    2
                                              southwest
                                                         36397.57600
                                         yes
1314
       30
           female
                   23.655
                                    3
                                         yes
                                              northwest
                                                         18765.87545
1321
       62
             male
                   26.695
                                    0
                                              northeast
                                                          28101.33305
                                         yes
                                    2
                                         yes
1323
       42
           female
                   40.370
                                               southeast
                                                          43896.37630
1337
       61
          female
                   29.070
                                    0
                                               northwest
                                                         29141.36030
                                         yes
[274 rows x 7 columns]
In [ ]:
```

```
#Add 10 years to each age
```

In [163]:

```
def add_10years(x):
    return x+10
data["age"]=data["age"].transform(add_10years)
print(data)
```

	age	sex	bmi	children	smoker	region	charges
0	29	female	27.900	0	yes	southwest	16884.92400
1	28	male	33.770	1	no	southeast	1725.55230
2	38	male	33.000	3	no	southeast	4449.46200
3	43	male	22.705	0	no	northwest	21984.47061
4	42	male	28.880	0	no	northwest	3866.85520
1333	60	male	30.970	3	no	northwest	10600.54830
1334	28	female	31.920	0	no	northeast	2205.98080
1335	28	female	36.850	0	no	southeast	1629.83350
1336	31	female	25.800	0	no	southwest	2007.94500
1337	71	female	29.070	0	yes	northwest	29141.36030

[1338 rows x 7 columns]

In []:

#Visualiing the Data

In [7]:

```
sns.pairplot(data)
plt.show()
```


In []:

Retrieving Data using online APIs

In [34]:

```
import requests
import pandas as pd
import matplotlib.pyplot as plt
import time
plt.style.use('seaborn')
```

```
In [35]:
```

```
google = requests.get('http://google.com')
type(google)
```

Out[35]:

requests.models.Response

In [3]:

```
import requests
```

In [8]:

```
data=requests.get("https://www.weatherapi.com/docs/weather_conditions.json")
```

In [9]:

data

Out[9]:

<Response [200]>

In [10]:

```
data.json()
  TCOI . TOJ,
 {'code': 1087,
  'day': 'Thundery outbreaks possible',
  'night': 'Thundery outbreaks possible',
  'icon': 200},
 {'code': 1114, 'day': 'Blowing snow', 'night': 'Blowing snow', 'icon': 22
7},
 {'code': 1117, 'day': 'Blizzard', 'night': 'Blizzard', 'icon': 230},
{'code': 1135, 'day': 'Fog', 'night': 'Fog', 'icon': 248},
 {'code': 1147, 'day': 'Freezing fog', 'night': 'Freezing fog', 'icon': 26
0},
 {'code': 1150,
  'day': 'Patchy light drizzle',
  'night': 'Patchy light drizzle',
  'icon': 263},
 {'code': 1153, 'day': 'Light drizzle', 'night': 'Light drizzle', 'icon':
266},
 {'code': 1168,
  'day': 'Freezing drizzle',
```

In [12]:

```
type(data.json())
```

Out[12]:

list

In [23]:

```
iss = requests.get('https://www.weatherapi.com/docs/weather conditions.json')
iss.json()
/},
 {'code': 1117, 'day': 'Blizzard', 'night': 'Blizzard', 'icon': 230},
 {'code': 1135, 'day': 'Fog', 'night': 'Fog', 'icon': 248},
 {'code': 1147, 'day': 'Freezing fog', 'night': 'Freezing fog', 'icon': 26
0},
 {'code': 1150,
  'day': 'Patchy light drizzle',
  'night': 'Patchy light drizzle',
  'icon': 263},
 {'code': 1153, 'day': 'Light drizzle', 'night': 'Light drizzle', 'icon':
266},
 {'code': 1168,
  'day': 'Freezing drizzle',
  'night': 'Freezing drizzle',
  'icon': 281},
 {'code': 1171,
  'day': 'Heavy freezing drizzle',
  'night': 'Heavy freezing drizzle',
  'icon': 284},
 {'code': 1180,
In [29]:
iss = requests.get('https://www.weatherapi.com/docs/weather_conditions.json')
```

In [30]:

iss_dict = iss.json()

```
data
```

```
Out[30]:
[{'code': 1000, 'day': 'Sunny', 'night': 'Clear', 'icon': 113},
{'code': 1003, 'day': 'Partly cloudy', 'night': 'Partly cloudy', 'icon':
116},
 {'code': 1006, 'day': 'Cloudy', 'night': 'Cloudy', 'icon': 119},
 {'code': 1009, 'day': 'Overcast', 'night': 'Overcast', 'icon': 122},
 {'code': 1030, 'day': 'Mist', 'night': 'Mist', 'icon': 143},
 {'code': 1063,
  'day': 'Patchy rain possible',
  'night': 'Patchy rain possible',
  'icon': 176},
 {'code': 1066,
  'day': 'Patchy snow possible',
  'night': 'Patchy snow possible',
  'icon': 179},
 {'code': 1069,
  'day': 'Patchy sleet possible',
  'night': 'Patchy sleet possible',
  'icon': 182}.
```

In [37]:

```
t = requests.get("https://www.weatherapi.com/docs/weather_conditions.json")
data = pd.DataFrame(t.json())
data.set_index('code').head()
```

Out[37]:

	day	night	icon
code			
1000	Sunny	Clear	113
1003	Partly cloudy	Partly cloudy	116
1006	Cloudy	Cloudy	119
1009	Overcast	Overcast	122
1030	Mist	Mist	143

In [38]:

import pandas as pd
pd.DataFrame(iss.json())

Out[38]:

	code	day	night	icon
0	1000	Sunny		113
1	1003	Partly cloudy Partly clo		116
2	1006	Cloudy		119
3	1009	Overcast	Overcast	122
4	1030	Mist	Mist	143
5	1063	Patchy rain possible	Patchy rain possible	176
6	1066	Patchy snow possible	Patchy snow possible	179
7	1069	Patchy sleet possible	Patchy sleet possible	182
8	1072	Patchy freezing drizzle possible	Patchy freezing drizzle possible	185
9	1087	Thundery outbreaks possible	Thundery outbreaks possible	200
10	1114	Blowing snow	Blowing snow	227
11	1117	Blizzard	Blizzard	230
12	1135	Fog	Fog	248
13	1147	Freezing fog	Freezing fog	260
14	1150	Patchy light drizzle	Patchy light drizzle	263
15	1153	Light drizzle	Light drizzle	266
16	1168	Freezing drizzle	Freezing drizzle	281
17	1171	Heavy freezing drizzle	Heavy freezing drizzle	284
18	1180	Patchy light rain	Patchy light rain	293
19	1183	Light rain	Light rain	296
20	1186	Moderate rain at times	Moderate rain at times	299
21	1189	Moderate rain	Moderate rain	302
22	1192	Heavy rain at times	Heavy rain at times	305
23	1195	Heavy rain	Heavy rain	308
24	1198	Light freezing rain	Light freezing rain	311
25	1201	Moderate or heavy freezing rain	Moderate or heavy freezing rain	314
26	1204	Light sleet	Light sleet	317
27	1207	Moderate or heavy sleet	Moderate or heavy sleet	320
28	1210	Patchy light snow	Patchy light snow	323
29	1213	Light snow	Light snow	326
30	1216	Patchy moderate snow	Patchy moderate snow	329
31	1219	Moderate snow	Moderate snow	332
32	1222	Patchy heavy snow	Patchy heavy snow	335
33	1225	Heavy snow	Heavy snow	338

	code	day	night	icon
34	1237	Ice pellets	Ice pellets	350
35	1240	Light rain shower	Light rain shower	353
36	1243	Moderate or heavy rain shower	Moderate or heavy rain shower	356
37	1246	Torrential rain shower	Torrential rain shower	359
38	1249	Light sleet showers	Light sleet showers	362
39	1252	Moderate or heavy sleet showers	Moderate or heavy sleet showers	365
40	1255	Light snow showers	Light snow showers	368
41	1258	Moderate or heavy snow showers	Moderate or heavy snow showers	371
42	1261	Light showers of ice pellets	Light showers of ice pellets	374
43	1264	Moderate or heavy showers of ice pellets	Moderate or heavy showers of ice pellets	377
44	1273	Patchy light rain with thunder	Patchy light rain with thunder	386
45	1276	Moderate or heavy rain with thunder	Moderate or heavy rain with thunder	389
46	1279	Patchy light snow with thunder	Patchy light snow with thunder	392
47	1282	Moderate or heavy snow with thunder	Moderate or heavy snow with thunder	395

In [39]:

```
from datetime import date, datetime

datetime.now().strftime("%Y-%m-%d %H:%M:%S")
```

Out[39]:

'2022-05-19 15:04:30'

In [40]:

```
plt.bar(data['day'], data['night'])
```

Out[40]:

<BarContainer object of 48 artists>

In []:			