PC923

High Speed Photocoupler for MOS-FET / IGBT Drive

(Unit: mm)

* Lead forming type (I type) and taping reel type (P type) are also available. (PC923I/PC923P)

** TÜV (VDE 0884) approved type is also available as an option.

■ Features

1. Built-in direct drive circuit for MOS-FET/ IGBT drive

 $(I_{O1P}, I_{O2P}: 0.4A)$

2. High speed response

 $(t_{PLH}, t_{PHL}: MAX. 0.5 \mu s)$

3. Wide operating supply voltage range (Vcc: 15 to 30V, Ta = -10 to 60° C)

4. High noise reduction type

 $(CM_{H} = MIN. - 1500V/\mu s)$

 $(CM_{L} = MIN. 1500V/\mu s)$

5. Recognized by UL, file No. E64380

6. High isolation voltage between input and output ($V_{ISO} = 5000 \text{ V}_{rms}$)

Applications

1. Inverter controlled air conditioners

■ Outline Dimensions

* "OPIC" (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.

■ Absolute Maximum Ratings ($Ta = T_{opr}$ unless otherwise specified)

Parameter		Symbol	Rating	Unit	
Lamint	Forward current	I_F	20	mA	
Input	*1Reverse voltage	V _R	6	V	
Output	Supply voltage	V _{CC}	35	V	
	O ₁ output current	I_1	0.1	A	
	*2O ₁ peak output current	I_{O1P}	0.4	A	
	O ₂ output current	I_{O2}	0.1	A	
	*2O2 peak output current	I _{O2P}	0.4	A	
	O ₁ output voltage	V _{O1}	35	V	
	Power dissipation	Po	500	mW	
	Total power dissipation		550	mW	
	*3Isolation voltage		5 000	V _{rms}	
	Operating temperature		- 25 to + 80	°C	
	Storage temperature		- 55 to + 125	°C	
	*4Soldering temperature		260	°C	

^{*1} Ta = 25°C

" In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.

^{*2} Puise width $\leq 0.15 \mu s$, Duty ratio:0.01

^{*3 40} to 60% RH, AC for 1 minute, $Ta = 25^{\circ}C$

^{*4} For 10 seconds

■ Electro-optical Characteristics

($Ta = T_{opr}$ unless otherwise specified)

Parameter		Symbol	*5 Conditions	MIN.	TYP.	MAX.	Unit	Fig.
Input	Es many descriptions	V _{F1}	$Ta = 25^{\circ}C, I_{F} = 10mA$	-	1.6	1.75	V	-
	Forward voltage	V _{F2}	$Ta = 25^{\circ}C$, $I_F = 0.2mA$	1.2	1.5	-	V	-
	Reverse current	I_R	$Ta = 25^{\circ}C, V_R = 5V$	-	-	10	μΑ	-
	Terminal capacitance	Ct	$Ta = 25^{\circ}C, V = 0, f = 1MHz$	-	30	250	pF	-
	On continue control of the control	Vcc	$Ta = -10 \text{ to } 60^{\circ}\text{C}$	15	-	30	V	
	Operating supply voltage			15	-	24	V	
	O ₁ low level output voltage	V _{OIL}	$V_{CC1} = 12V, V_{CC2} = -12V$	- 0.	0.2	0.4	V	1
	O ₁ low level output voltage		$I_{01} = 0.1A, I_F = 5mA$	_	0.2			
	O ₂ high level output voltage	V _{O2H}	$V_{CC} = V_{01} = 24V$, $I_{02} = -0.1A$, $I_{F} = 5mA$	18	21	-	V	2
Output	O ₂ low level output voltage		$V_{CC} = 24V$, $I_{02} = 0.1A$, $I_{F} = 0$	-	1.2	2.0	V	3
Output	O ₁ leak current	Ioil	$Ta = 25^{\circ}C$, $V_{CC} = V_{01} = 35V$, $I_F = 0$	-	-	500	μΑ	4
	O2 leak current	I _{O2L}	$Ta = 25^{\circ}C$, $V_{CC} = V_{02} = 35V$, $I_{F} = 5mA$	-	-	500	μΑ	5
	TT 1 1 1 1	Іссн	$Ta = 25^{\circ}C$, $V_{CC} = 24V$, $I_{F} = 5mA$	-	6	10	mA	6
	High level supply current		$V_{CC} = 24V, I_{F} = 5mA$	-	-	14	mA	
	L over loved commby commons	I _{CCL}	$Ta = 25^{\circ}C$, $V_{CC} = 24V$, $I_{F} = 0$	-	8	13	mA	
	Low level supply current		$V_{CC} = 24V, I_F = 0$	-	-	17	mA	
	*6 "Low→High" threshold	I _{FLH}	$Ta = 25^{\circ}C, V_{CC} = 24V$	0.3	1.5	3.0	mA	7
	input current		$V_{CC} = 24V$	0.2	-	5.0	mA	7
	Isolation resistance	R _{ISO}	$Ta = 25^{\circ}C$, DC = 500V, 40 to 60% RH	5 x 10 ¹⁰	10^{11}	-	Ω	-
	≅ "Low→High" propagation delay time	t PLH	T- 25°C N 24N	-	0.3	0.5	μs	
Transfer charac- teristics	"Low → High" propagation delay time "High → Low" propagation delay time Rise time	t PHL	$Ta = 25^{\circ}C, V_{CC} = 24V,$ $I_{F} = 5mA$	-	0.3	0.5	μs	8
		$t_{\rm r}$	• •	-	0.2	0.5	μs	
	Fall time	$t_{\rm f}$	$R_C = 47 \Omega$, $C_G = 3000 pF$	-	0.2	0.5	μs	
	Instantaneous common mode rejection	СНм	$Ta = 25^{\circ}C$, $V_{CM} = 600V(peak)$	20		1-37/11 -		
	voltage "Output : High level"		$I_F=5mA,~V_{CC}=24V,~\Delta~V_{O2H}=2.0V$	-	- 30	0 -	kV/μs	9
	Instantaneous common mode rejection	CML	$Ta = 25^{\circ}C, V_{CM} = 600V(peak)$	- 30		- k'	kV/μs	9
	voltage "Output: Low level"		$I_F=0,V_{CC}=24V,\DeltaV_{O2L}=2.0V$				kv/μs	

^{*5} When measuring output and transfer characteristics, connect a by-pass capacitor (0.01 μ F or more) between V_{CC} and GND near the **PC923**

■ Truth Table

Input	O ₂ Output	Tr. 1	Tr. 2
ON	High level	ON	OFF
OFF	Low level	OFF	ON

 $^{*6~}I_{FLH}$ represents forward current when O2output goes from low to high.

■ Test Circuit

SW at B, I $_{F} = 0mA$

Fig.10 Forward Current vs.

Ambient Temperature

Fig.12 Forward Current vs. Forward Voltage

Fig.14 " Low→High" Relative Threshold Input Current vs. Ambient Temperature

Fig.11 Power Dissipation vs.
Ambient Temperature

Fig.13 " Low→High" Relative Threshold Input Current vs. Supply Voltage

Fig.15 O₁ Low Level Output Voltage vs. O₁ Output Current

Fig.16 O₁ Low Level Output Voltage vs. Ambient Temperature

Fig.18 O₂ High Level Output Voltage vs. Ambient Temperature

Fig.20 O₂ Low Level Output Voltage vs. Ambient Temperature

Fig.17 O₂ High Level Output Voltage vs. Supply Voltage

Fig.19 O₂ Low Level Output Voltage vs. O₂ Output Current

Fig.21 High Level Supply Current vs. Supply Voltage

Fig.22 Low Level Supply Current vs. Supply Voltage

Fig.24 Propagation Delay Time vs.
Ambient Temperature

Fig.23 Propagation Delay Time vs. Forwrad current

■ Application Circuit (For Power MOS-FET Driving Inverter)

• Please refer to the chapter "Precautions for Use."