Sponsored Search Markets

angelehnt an [EK10], Kapitel 15

Seminar Maschinelles Lernen, WS 2010/2011

Thema dieses Vortrags

O'zapft is

Alles fürs Oktoberfest finden Sie online im OTTO-Trachtenshop! Otto.de ist mit **** bewertet. www.otto.de/Oktoberfest

Sucheinstellungen | Anmelden

Dirndl Set 3 teilig 49,-€

über 400 verschiedene Dirndl. Jetzt sichern

www lederhose de

Trachten Dirndl Lederho größte Auswahl - günstige F 4 x in München - 12 x in Bay www.trachtenshop.de

Gaudi zum Oktoberfest

Live Musik u. Unterhaltung r Wettmelken,uvm. Ganzjährid www olli-steudter de

Hotels nahe Oktoberfes

300 Hotels nahe Oktoberfes Fotos, Info Buchung Ihres Hotels Booking.com/Oktoberfest-Hotels

Hier könnte Ihre Anzeige stehen »

Dieser Vortrag: **Bezahlte** Ergebnisse: Reihenfolge und Preise mit Auktionen

Oktoberfest - Wikinedia the free

Volksfeste der Welt. Es findet seit 1810 auf der Theresienwiese in München.

de.wikipedia.org/wiki/**Oktoberfest** - Im Cache - Ähnliche Seiten

Aufbau dieses Vortrags

- Probleme der Preisbestimmung
- Verfahren 1: Generalized Second Price Auction (GSP)
 - Idee, spieltheoretische Analyse aus Sicht der Bieter
- Verfahren 2: Vickrey-Clarke-Groves-Verfahren (VCG)
 - Idee, spieltheoretische Analyse aus Sicht der Bieter
- Vergleich, Sicht des Suchmaschinenbetreibers

Probleme der Preisbestimmung

- Mehrere Slots, die unterschiedlich stark beachtet werden
- Jeder Interessent soll höchstens einen Slot bekommen
- Jeder Slot soll an genau einen verkauft werden (markträumende Preise)
- Suchmaschinenbetreiber will möglichst hohen Erlös für sich erzielen
- → Lösung durch Multi Item Auctions/Matching Markets

Lösungsansatz: Verfahren aus Kapitel 10

- 1. Auktionator (=Suchmaschinenbetreiber) passt Preise an (Vorschrift siehe Kapitel 10)
- Jeder Interessent sagt, welche Slots bei diesen Preisen am besten für ihn sind
- 3. Wiederholung bis perfektes Matching erreicht

Lösungsansatz: Verfahren aus Kapitel 10

- Problem: interaktives Verfahren
 - Bei jeder Preisfindung müssen alle Interessenten viele Iterationen lang teilnehmen
 - → Impraktikabel, besonders bei hoher Interessentenfluktuation
- Lösung: Auktionator muss Entscheidungsgrundlage der Interessenten kennen, braucht Interessenten/dann nicht immer wieder fragen

		Interes-	∲ Erlöse			
Preise	Slots	senten	_a	b	С	Gewinne
40	a ···	×	70	28	0	70-40=30
4	b	y	60	24	0	24-4=20
0	C	Ž	10	4	0	0-0=0

→ Erlöse zu offenbaren muss zu dominanter Strategie gemacht werden

Erlöse offenbaren als dominante Strategie

Problem bereits bei Single Item Auctions (Kapitel 9)

- 1st Price Auction ist keine Lösung: Bieter ändern ihr Gebot häufig auf der Suche nach dem optimalen Gebot
 - → Arbeitsaufwand bei Interessenten, Serverlast beim Auktionator
- 2nd Price Auction ist Lösung: Wahren Erlös zu offenbaren ist dominante Strategie

Brauchen etwas Analoges für **Multi Item Auctions/Matching Markets**, d. h. eine Generalisierung der Single Item 2nd Price Auction

- → Zwei Verfahren:
 - Generalized Second Price Auction (GSP)
 - Vickrey-Clarke-Groves-Verfahren (VCG)

Generalized Second Price Auction

GSP: Der Bieter, der das i-te Item bekommt, zahlt das (i+1)-te Gebot

Single Item 2nd Price Auction Spezialfall davon:
 Wer das erste (=einzige) Item bekommt, zahlt das zweite Gebot

Einschub: Bezugseinheit bei der Online-Werbung

	Click		Interes-	Erlöse	Е	rlös	e
	Rates	Slots	senten	je Klick	_a	b	С
Annahme: Click Rate hängt nur vom Slot ab	10	a	X	7	70	28	0
Unrealistisch – führen deshalb später	4	b	y	6	60	24	0
Korrekturfaktoren ein	0	C	Z	1	10	4	0

- Für den Erlös direkt relevant ist nicht "Welchen Slot belege ich?", sondern "Wie viele Leute klicken auf meine Werbung?"
- Also: Erlös = **Click Rate** · Erlös je Klick
- Betreiber wird auch nicht je belegtem Slot bezahlt, sondern je erfolgtem Klick

Generalized Second Price Auction

- Beispiel

GSP: Der Bieter, der das i-te Item bekommt, zahlt das (i+1)-te Gebot

- Wahre Erlöse als Gebote führen im Allgemeinen zu keinem Nash Equilibrium
- Immerhin: Es gibt immer ≥ 1 Nash Equilibria (Beweis siehe [EK10])

Vickrey-Clarke-Groves-Verfahren – Beispiel

VCG-Prinzip: Ein Bieter muss so viel zahlen, wie alle anderen zusammen mehr Erlös hätten, wenn der Bieter nicht mitbieten würde

Vickrey-Clarke-Groves-Verfahren – Beispiel

VCG-Prinzip: Ein Bieter muss so viel zahlen, wie alle anderen zusammen mehr Erlös hätten, wenn der Bieter nicht mitbieten würde

Vickrey-Clarke-Groves-Verfahren – Formalisierung

VCG-Prinzip: Ein Bieter muss so viel zahlen, wie alle anderen zusammen mehr Erlös hätten, wenn der Bieter nicht mitbieten würde

- S := Menge aller Slots, B := Menge aller Bieter
- E^S_B := Durch ein perfektes Matching zwischen S und B maximal erreichbare Erlössumme (VCG-Verfahren erreicht diese, Beweis siehe [EK10])
- Erlössumme der anderen, wenn Slot a an Bieter x vergeben wird: $E_{B\setminus\{x\}}^{S\setminus\{a\}}$
- Erlössumme der anderen, wenn Bieter x nicht mitböte: $E_{B\setminus\{x\}}^{S}$
- Preis, den Bieter x für Slot a bezahlen muss, wenn er ihm zugeteilt wird = Mehrerlössumme der anderen, wenn x nicht mitbieten würde:

$$p_x^a = E_{B\setminus\{x\}}^S - E_{B\setminus\{x\}}^{S\setminus\{a\}}$$

Preis ist unabhängig von den echten und vorgeblichen Erlösen von Bieter x

Erlössummen

Veranschaulichung

- Erlössumme mit allen Slots und allen Bietern: E^S_R
- Erlössumme der anderen, wenn Slot a an Bieter x vergeben wird: $E_{B\setminus\{x\}}^{S\setminus\{a\}}$
- Erlössumme der anderen, wenn Bieter x nicht mitböte: $E_{B\setminus\{x\}}^{S}$
- Preis, den Bieter x für Slot a bezahlen muss, wenn er ihm zugeteilt wird: $p_x^a = E_{B\setminus\{x\}}^S E_{B\setminus\{x\}}^{S\setminus\{a\}}$

	Interes-	Erlöse		Erlöse	Erlöse	Mehr-		
Slots	senten	_a	b	С	mit x	ohne x	erlöse	
a	X	70	28	0	70			
b	y	60	24	0	24	60	36	
C	Z	10	4	0	0	4	4	
					$E_{B\setminus\{x\}}^{S\setminus\{a\}}$	$E_{B\backslash\{x\}}^S$	p _x	
					E_B^S			

Single Item 2nd Price Auction als Spezialfall vom VCG-Verfahren

- Alle Items außer a sind fiktiv und wertlos; wer sie bekommt, hat keinen Erlös
- Wenn x Höchstbietender ist und y Zweithöchstbietender:

$$E_{B\setminus\{x\}}^{S\setminus\{a\}} = 0 \qquad E_{B\setminus\{x\}}^{S} = e_y^a \qquad p_x^a = E_{B\setminus\{x\}}^{S} - E_{B\setminus\{x\}}^{S\setminus\{a\}} = e_y^a$$
 Erlös von Bieter y für Item a = Gebot von Bieter y

 Der Höchstbietende muss also das Gebot des Zweithöchstbietenden bezahlen

Erlöse offenbaren ist dominante Strategie beim VCG-Verfahren

- Annahme: Wenn Bieter x ehrlich bietet, bekommt er Slot a zugeteilt
- Behauptung: x kann seinen Gewinn durch unehrliche Angabe seiner Erlöse nicht erhöhen
- Fall 1: Gebotsänderung hat keinen Einfluss auf erhaltenen Slot
 - → Gewinn bleibt gleich
- Fall 2: Bieter x erhält Slot f statt Slot a
 - \rightarrow Zu beweisen: Gewinn durch Slot f \leq Gewinn durch Slot a

$$e_x^f - p_x^f \le e_x^a - p_x^a$$
 Gewinn = Erlös e – Preis p

$$\text{Einsetzen:} \qquad e_x^f - \left(\mathsf{E}_{\mathsf{B} \setminus \{x\}}^\mathsf{S} - \mathsf{E}_{\mathsf{B} \setminus \{x\}}^{\mathsf{S} \setminus \{f\}}\right) \, \leqslant \, e_x^a - \left(\mathsf{E}_{\mathsf{B} \setminus \{x\}}^\mathsf{S} - \mathsf{E}_{\mathsf{B} \setminus \{x\}}^{\mathsf{S} \setminus \{a\}}\right)$$

Vereinfachen:
$$e_{x}^{f} + E_{B\setminus\{x\}}^{S\setminus\{f\}} \leq e_{x}^{a} + E_{B\setminus\{x\}}^{S\setminus\{a\}}$$

• • •

Erlöse offenbaren ist dominante Strategie beim VCG-Verfahren

$$e_x^f + E_{B\setminus\{x\}}^{S\setminus\{f\}} \leqslant e_x^a + E_{B\setminus\{x\}}^{S\setminus\{a\}}$$

- Die Terme sind die maximalen Erlössummen von Matchings zwischen allen Slots und allen Bietern ...
 - ... jeweils mit der Einschränkung, dass Slot f bzw. Slot a an Bieter x vergeben wird
- Nach Annahme: VCG-Verfahren teilt Slot a Bieter x zu
- VCG-Verfahren erreicht die maximale Erlössumme EB (Beweis: [EK10])
- → Zuteilung von Slot a an Bieter x ist Teil eines optimalen Matchings

$$\rightarrow e_{x}^{a} + E_{B\setminus\{x\}}^{S\setminus\{a\}} = E_{B}^{S}$$

$$e_{x}^{f} + E_{B\setminus\{x\}}^{S\setminus\{f\}} \leqslant E_{B}^{S}$$
 Nach Definition maximal

- → Ungleichung ist erfüllt (selbst wenn die anderen Bieter lügen)
- → Unehrliche Angabe der Erlöse erhöht den Gewinn nicht, ehrliche Offenbarung ist also dominante Strategie

Vergleich aus Sicht des Suchmaschinenbetreibers

	GSP	VCG	wichtig für Betreiber
intuitiv verständlich	ja	eher nein	eher ja (Transparenz)
hat allgemeine do- minante Strategie	nein	ja	eher ja (Serverlast)
maximiert Erlös- summe der Bieter	nein	ja	eher nein
maximiert Erlös des Betreibers	nein	nein	ja

Welches Verfahren unter welchen Umständen besser ist: Thema aktueller Forschung

Click Rate abhängig von Werbung

- Click Rate ist nicht nur vom Slot abhängig
- Die im Slot angezeigte Werbung hat großen Einfluss
 - Z. B. zum Suchausdruck kaum passende Werbung uninteressant
- Ungünstig für Betreiber: Uninteressante Werbung mit hohem Gebot
 - Belegt einen Slot
 - Bringt zwar hohen Betreibererlös je Klick
 - Aber es kommen nur wenig Klicks zustande
 - → Niedriger Gesamterlös

Click Rate abhängig von Werbung

- Lösung: Korrekturfaktor je Werbung, mit dem das Gebot multipliziert wird
 - Einflüsse auf den Korrekturfaktor:
 - Bisherige Click Rate dieser speziellen Werbung
 - Analyse der Zielseite (z. B. PageRank)
 - Geheime Zutaten
 - → Transparenz des Verfahrens verringert

Wie verhalten sich Spieler, wenn ihnen die genauen Regeln des Spiels nicht bekannt sind? → Aktuelle Forschung

Literatur

Übersicht

• [EK10] David Easley and Jon Kleinberg. Networks, Clouds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 2010.

Generalized Second Price Auction

- [EOS07] Ben Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertising and the generalized second price auction: Selling billions of dollars worth of keywords. American Economic Review, 97(1):242–259, March 2007.
- [Var07] Hal Varian. Position auctions. International Journal of Industrial Organization, 25:1163–1178, 2007.

Vickrey-Clarke-Groves-Prinzip

- [Cla71] Edward H. Clarke. Multipart pricing of public goods. Public Choice, 11:17–33, Fall 1971.
- [Gro73] Theodore Groves. Incentives in teams. Econometrica, 41:617–631, July 1973.

Anwendung des Vickrey-Clarke-Groves-Prinzips auf Matching Markets

- [Dem82] Gabrielle Demange. Strategyproofness in the assignment market game, 1982.
 Laboratiore d'Econometrie de l'Ecole Polytechnique.
- [Leo83] Herman B. Leonard. Elicitation of honest preferences for the assignment of individuals to positions. Journal of Political Economy, 91(3):461–479, 1983.