

David Steele Crunchy Data

Charm City PostgreSQL Meetup February 25, 2019

Agenda

- Introduction
- Core Commands
- Archive Push
- 4 Backup
- 6 Archive Get
- 6 Restore
- **7** Other Considerations
- 8 Questions?

About the Speaker

- Principal Architect at Crunchy Data, the Trusted Open Source Enterprise PostgreSQL Leader.
- Actively developing with PostgreSQL since 1999.
- Primary author of pgBackRest and co-author of pgAudit.
- PostgreSQL Contributor.

pgBackRest aims to be a simple, reliable backup and restore system that can seamlessly scale up to the largest databases and workloads.

pgBackRest has a strong emphasis on performance, including

- Parallel/asynchronous operation for all core commands
- Backup from Standby
- Advanced configuration for tuning specific commands

pgBackRest aims to be a simple, reliable backup and restore system that can seamlessly scale up to the largest databases and workloads.

pgBackRest has a strong emphasis on performance, including:

- Parallel/asynchronous operation for all core commands
- Backup from Standby
- Advanced configuration for tuning specific commands

pgBackRest aims to be a simple, reliable backup and restore system that can seamlessly scale up to the largest databases and workloads.

pgBackRest has a strong emphasis on performance, including:

- Parallel/asynchronous operation for all core commands
- Backup from Standby
- Advanced configuration for tuning specific commands

pgBackRest aims to be a simple, reliable backup and restore system that can seamlessly scale up to the largest databases and workloads.

pgBackRest has a strong emphasis on performance, including:

- Parallel/asynchronous operation for all core commands
- Backup from Standby
- Advanced configuration for tuning specific commands

Archive Push

Allows PostgreSQL to push a completed WAL segment to the repository.

Backup

Backup a PostgreSQL cluster.

Archive Get

Allows PostgreSQL to get a completed WAL segment from the repository

Restore

Restore a PostgreSQL cluster

Archive Push

Allows PostgreSQL to push a completed WAL segment to the repository.

Backup

Backup a PostgreSQL cluster.

Archive Get

Allows PostgreSQL to get a completed WAL segment from the repository

Restore

Restore a PostgreSQL cluster

Archive Push

Allows PostgreSQL to push a completed WAL segment to the repository.

Backup

Backup a PostgreSQL cluster.

Archive Get

Allows PostgreSQL to get a completed WAL segment from the repository.

Restore

Restore a PostgreSQL cluster

Archive Push

Allows PostgreSQL to push a completed WAL segment to the repository.

Backup

Backup a PostgreSQL cluster.

Archive Get

Allows PostgreSQL to get a completed WAL segment from the repository.

Restore

Restore a PostgreSQL cluster.

Archive Push Features

- Asynchronous operation
 - Asynchronously scan the archive_status directory for WAL segments that are ready to be archived.
 - Store status of each WAL segment locally so PostgreSQL can be notified via the archive_command of success or failure.
- Parallelism
 - Checksum, compress, encrypt, and transfer in parallel to improve throughput.

Archive Push Features

- Asynchronous operation
 - Asynchronously scan the archive_status directory for WAL segments that are ready to be archived.
 - Store status of each WAL segment locally so PostgreSQL can be notified via the archive_command of success or failure.
- Parallelism
 - Checksum, compress, encrypt, and transfer in parallel to improve throughput.

Archive Push Features

- Asynchronous operation
 - Asynchronously scan the archive_status directory for WAL segments that are ready to be archived.
 - Store status of each WAL segment locally so PostgreSQL can be notified via the archive_command of success or failure.
- Parallelism
 - Checksum, compress, encrypt, and transfer in parallel to improve throughput.

pgbackrest.conf

[global:archive-push] archive-async=y process-max=4 spool-path=/path/to/spool

- The spool-path parameter is optional (defaults to /var/spool/pgbackrest).
- The spool directory must exist for asynchronous operation
- Note that configuration may be done with environment variables, e.g.
 PGBACKREST_ARCHIVE_ASYNC, or the command-line, e.g. --archive-async

pgbackrest.conf

[global:archive-push] archive-async=y process-max=4 spool-path=/path/to/spool

- The spool-path parameter is optional (defaults to /var/spool/pgbackrest).
- The spool directory must exist for asynchronous operation
- Note that configuration may be done with environment variables, e.g.
 PGBACKREST_ARCHIVE_ASYNC, or the command-line, e.g. --archive-async

pgbackrest.conf

[global:archive-push] archive-async=y process-max=4 spool-path=/path/to/spool

- The spool-path parameter is optional (defaults to /var/spool/pgbackrest).
- The spool directory must exist for asynchronous operation.
- Note that configuration may be done with environment variables, e.g.
 PGBACKREST_ARCHIVE_ASYNC, or the command-line, e.g. --archive-async

pgbackrest.conf

```
[global:archive-push]
archive-async=y
process-max=4
spool-path=/path/to/spool
```

- The spool-path parameter is optional (defaults to /var/spool/pgbackrest).
- The spool directory must exist for asynchronous operation.
- Note that configuration may be done with environment variables, e.g. PGBACKREST_ARCHIVE_ASYNC, or the command-line, e.g. --archive-async.

Backup Features

- Backup from Standby
 - Perform most of the backup from a standby to reduce load on the primary.
 - Primary and standby are automatically selected from a list of clusters.
- Parallelism
 - Checksum, compress, encrypt, and transfer in parallel to improve throughput.

Backup Features

- Backup from Standby
 - Perform most of the backup from a standby to reduce load on the primary.
 - Primary and standby are automatically selected from a list of clusters.
- Parallelism
 - Checksum, compress, encrypt, and transfer in parallel to improve throughput.

Backup Features

- Backup from Standby
 - Perform most of the backup from a standby to reduce load on the primary.
 - Primary and standby are automatically selected from a list of clusters.
- Parallelism
 - Checksum, compress, encrypt, and transfer in parallel to improve throughput.

Backup Configuration

pgbackrest.conf

```
backup-standby=y
process-max=8

[demo]
pg1-host=pg1
pg1-path=/var/lib/postgresql/10
pg2-host=pg2
pg2-path=/var/lib/postgresql/10
pg3-host=pg3
pg3-path=/var/lib/postgresgl/10
```

[global:backup]

- The current primary can be in any position in the list of PostgreSQL servers.
- The first live standby found will be used to perform the backup.

Backup Configuration

pgbackrest.conf

```
backup-standby=y
process-max=8

[demo]
pg1-host=pg1
pg1-path=/var/lib/postgresql/10
pg2-host=pg2
pg2-path=/var/lib/postgresql/10
pg3-host=pg3
pg3-path=/var/lib/postgresql/10
```

[global:backup]

- The current primary can be in any position in the list of PostgreSQL servers.
- The first live standby found will be used to perform the backup.

Backup Configuration

pgbackrest.conf

```
[global:backup]
backup-standby=y
process-max=8

[demo]
pgl-host=pg1
pgl-path=/var/lib/postgresql/10
pg2-host=pg2
pg2-path=/var/lib/postgresql/10
pg3-host=pg3
pg3-path=/var/lib/postgresql/10
```

- The current primary can be in any position in the list of PostgreSQL servers.
- The first live standby found will be used to perform the backup.

- Asynchronous operation
 - Asynchronously build a queue of WAL segments that PostgreSQL will need.
 - Move or copy segments from the queue when requested by restore_command.
 - The spool directory should be located on the same device as pg_xlog/pg_wal for best performance.
- Parallelism
 - Transfer, decrypt, decompress, and checksum in parallel to improve throughput.

- Asynchronous operation
 - Asynchronously build a queue of WAL segments that PostgreSQL will need.
 - Move or copy segments from the queue when requested by restore_command.
 - The spool directory should be located on the same device as pg_xlog/pg_wal for best performance.
- Parallelism
 - Transfer, decrypt, decompress, and checksum in parallel to improve throughput.

- Asynchronous operation
 - Asynchronously build a queue of WAL segments that PostgreSQL will need.
 - Move or copy segments from the queue when requested by restore_command.
 - The spool directory should be located on the same device as pg_xlog/pg_wal for best performance.
- Parallelism
 - Transfer, decrypt, decompress, and checksum in parallel to improve throughput.

- Asynchronous operation
 - Asynchronously build a queue of WAL segments that PostgreSQL will need.
 - Move or copy segments from the queue when requested by restore_command.
 - \bullet The spool directory should be located on the same device as pg_xlog/pg_wal for best performance.
- Parallelism
 - Transfer, decrypt, decompress, and checksum in parallel to improve throughput.

pgbackrest.conf

[global:archive-get]
archive-async=y
archive-get-queue-max=1GB
process-max=2

- Archive Get generally requires fewer processes than Archive Push because decompression is less CPU-intensive than compression.
- On the other hand, clusters in recovery have more CPU resources to spare.
- The idea is to keep PostgreSQL supplied with WAL so that it doesn't need to wait.

pgbackrest.conf

[global:archive-get]
archive-async=y
archive-get-queue-max=1GB
process-max=2

- Archive Get generally requires fewer processes than Archive Push because decompression is less CPU-intensive than compression.
- On the other hand, clusters in recovery have more CPU resources to spare.
- The idea is to keep PostgreSQL supplied with WAL so that it doesn't need to wait.

pgbackrest.conf

[global:archive-get]
archive-async=y
archive-get-queue-max=1GB
process-max=2

- Archive Get generally requires fewer processes than Archive Push because decompression is less CPU-intensive than compression.
- On the other hand, clusters in recovery have more CPU resources to spare.
- The idea is to keep PostgreSQL supplied with WAL so that it doesn't need to wait.

pgbackrest.conf

```
[global:archive-get]
archive-async=y
archive-get-queue-max=1GB
process-max=2
```

- Archive Get generally requires fewer processes than Archive Push because decompression is less CPU-intensive than compression.
- On the other hand, clusters in recovery have more CPU resources to spare.
- The idea is to keep PostgreSQL supplied with WAL so that it doesn't need to wait.

- Delta operation
 - Checksum local cluster files to determine what can be preserved.
 - Transfer only files that have changed since the last backup from the repository.
- Parallelism
 - Transfer, decrypt, decompress, and checksum in parallel to improve throughput.

- Delta operation
 - Checksum local cluster files to determine what can be preserved.
 - Transfer only files that have changed since the last backup from the repository.
- Parallelism
 - Transfer, decrypt, decompress, and checksum in parallel to improve throughput.

- Delta operation
 - Checksum local cluster files to determine what can be preserved.
 - Transfer only files that have changed since the last backup from the repository.
- Parallelism
 - Transfer, decrypt, decompress, and checksum in parallel to improve throughput.

- Delta operation
 - Checksum local cluster files to determine what can be preserved.
 - Transfer only files that have changed since the last backup from the repository.
- Parallelism
 - Transfer, decrypt, decompress, and checksum in parallel to improve throughput.

Restore Configuration

pgbackrest.conf

[global:restore] process-max=16 delta=y

High Latency

The process-max option can be used to speed transfers on high latency storage such as S3.

Compression

The compress-level option can be lowered (e.g. 6 to 3) to reduce the CPU cost of compression. This also reduces the compression ratio, but the time savings are often worth it.

We are introducing 1z4 support soon for a faster alternative to gzip.

Compression

The compress-level option can be lowered (e.g. 6 to 3) to reduce the CPU cost of compression. This also reduces the compression ratio, but the time savings are often worth it.

We are introducing 1z4 support soon for a faster alternative to gzip.

C Migration Complete

The migration of pgBackRest to C was completed in 2019. We are now focussed on new features and performance improvments.

Questions?

```
website: http://www.pgbackrest.org
```

email: david@pgbackrest.org email: david@crunchydata.com

releases: https://github.com/pgbackrest/pgbackrest/releases

slides: https://github.com/dwsteele/conference/releases

