

CE-QUAL-W2 PORTS

Barry Bunch, DE, PE, and Zhonglong Zhang, PhD, PE, PH

U.S. Army Engineer Research and Development Center, Environmental Laboratory

CE-QUAL-W2 Workshop

July 18-20, 2023

Ports

- Ports are means by which water leaves the reservoir and passes through the dam.
- Location of the port determines where water withdrawn originates.
 - Impacts upstream water column thermal and chemical structure.
 - Released water impacts downstream water quality.
- Proper representation of the Port is crucial to obtaining realistic results.
- Required information varies depending upon type of Port.

CE-QUAL-W2 Types of Ports

- Gates
- Spillway/Weir
- Floating Weirs
- Tower Control Devices
- Pipes
- Port type and means of operation impacts both upstream and downstream water quality.

I/CUI//

CE-QUAL-W2 Input Requirements for Spillway

$$Q = \alpha_1 \Delta h^{\beta_1}$$

$$Q = \alpha_1 \Delta h^{\beta_1}$$
$$Q = \alpha_2 \Delta h^{\beta_2}$$

SPILLWAYS	SP1
IUSP- Upstream segment number, spillway segment location	42
IDSP- Downstream segment number, Downstream segment spillway outflow enters	0
ESP - spillway elevation (crest), m	349.6
A1SP- $lpha$ 1, empirical coefficient for free-flowing conditions	45.33
B1SP-β1, empirical coefficient for free-flowing conditions	1.5
A2SP- $lpha$ 2, empirical coefficient for submerged conditions	34.45
B2SP-β2, empirical coefficient for submerged conditions	1
LATSPC-Downstream or lateral withdrawal, DOWN or LAT	DOWN
PUSPC-How inflows enter into the upstream spillway seg-ment, DISTR, DENSITY, or SPECIFY	DISTR
ETUSP-Top elevation spillway inflows enter using SPECIFY option, m	0
EBUSP-Bottom elevation spillway inflows enter using SPECIFY option, m	0
KTUSP-Top layer above which selective withdrawal will not occur	2
KBUSP-Spillway Up Selective withdrawal bottom layer, Bottom layer below which selective withdrawa	a 178
PDSPC-How inflows enter into the downstream spillway segment, DISTR, DENSITY, or SPECIFY	DISTR
ETUSP-Top elevation spillway inflows enter using SPECIFY option m	0
EBUSP-Bottom elevation spillway inflows enter using SPECIFY option, m	0
KTDSP-Top layer above which selective withdrawal will not occur	2
KBDSP-Spillway Down Selective withdrawal bottom layer bottom layer below which selective withdra	178
GASSPC Dissolved gas computations ON or OFF	OFF
EQSP Equation number for computing dissolved gas	2
AGASSP a empirical coefficient	110
BGASSP b empirical coefficient	-0.1
CGASSP c empirical coefficient	-0.1

CE-QUAL-W2 Input Requirements for Gates

$Q = \alpha_1 \Delta h$	$\beta_1 B^{\gamma_1}$
-------------------------	------------------------

$$Q = \alpha_2 \Delta h^{\beta_2} B^{\gamma_2}$$

File names - global	FILE NAMES
OWD FILE OWDEN - withdrawals	awd npt - not used
QGT FILE QGTFN - gate	QGT_BON_2011_2015_daily_DSS-scaled.csv
WSC FILE WSCFN - wind sheltering	BON_WSC.npt
SHD FILE SHDFN - shading	BON_SHD_1.npt
VPLFN - W2 post output, DSI W2Post output file	Bonneville1m.w2l

GATES	GATE1	GATE2	GTE3	GATE4	GATE5	GATE6	GATE7	GATE8	GATE9	GATE10
IUGT- Upstream segment number	76	76	76	76	76	76	76	76	76	76
IDGT- Downstream segment number	0	0	0	0	0	0	0	0	0	0
EGT Gate elevation m	11.7	7.3	7.3	7.2	7.2	7.2	7.2	7.2	7.2	7.2
A1GT α 1 coefficient in gate equation for free flowing	10	10	10	10	10	10	10	10	10	10
B1GT β1 coefficient in gate equation for free flowing	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
G1GT gamma1 coeff for free flowing conditions	1	1	1	1	1	1	1	1	1	1
A2GT α 2 coefficient in gate equation for submerged	10	10	10	10	10	10	10	10	10	10
B2GT β 2 coefficient in gate equation for submerged α	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
G2GT gamma2 coeff for submerged conditions	1	1	1	1	1	1	1	1	1	1
LATGTC downstream or lateral withdrawal LAT or DC		DOWN								
GTA1 α 1 in gate equation for free flowing conditions	10	10	10	10	10	10	10	10	10	10
GTB1 β1 in gate equation for free flowing conditions	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
GTA2 α2 in gate equation for submerged conditions a	10	10	10	10	10	10	10	10	10	10
GTB2 β2 in gate equation for submerged conditions a	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
DYNGTC Either 'B', 'ZGT', or 'FLOW'	FLOW									
GTIC EITHER ON or OFF interpolate gate file	ON									
PUGTC Specifies how inflows enter the upstream gat	DISTR									
ETUGT Top elevation gate inflows enter using the SPI										
EBUGT Bottom elevation gate inflows using the SPEC										
KTUGT Top layer above which selective withdrawal w	2	2	2	2	2	2	2		2	2
KBUGT-Selective withdrawal bottom layer, Bottom la	55	55	55	55	55	55	55	55	55	55
PDGTC Specifies how inflows enter the downstream a	DISTR									
ETDGT Top elevation gate inflows enter using the SPE										
EBDGT Bottom elevation gate inflows using the SPEC										
KTDGT Top layer above which selective withdrawal w	2	2	2	2	2	2	2	2	2	2
KBDGT-Selective withdrawal bottom layer, Bottom la	55	55	55	55	55	55	55	55	55	55
GASGTC Dissolved gas computations ON or OFF	OFF	ON								
EQGT Equation number for computing dissolved gas	2	2	2	2	2	2	2	2	2	2
AGASGT a empirical coefficient	135	135	135	135	135	135	135	135	135	135
BGASGT b empirical coefficient	-35	-35	-35	-35	-35	-35	-35	-35	-35	-35
CGASGT c empirical coefficient	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1

CE-QUAL-W2 Input Requirements for Structures

STRUCTURES for each branch. These are known outflows at the end of a b	BR1	BR2
NSTR - Number of branch outlet structures	1	
DYNSTRUC - Dynamic elevation of structure control ON or OFF - reads input	OFF	
STRIC1-Turns ON/OFF interpolation of structure outflows for structure 1	ON	
STRIC2-Turns ON/OFF interpolation of structure outflows for structure 2		
STRIC3-Turns ON/OFF interpolation of structure outflows for structure 3		
STRIC4-Turns ON/OFF interpolation of structure outflows for structure 4		
STRIC5-Turns ON/OFF interpolation of structure outflows for structure 5		
KTSTR1-Top layer above which selective withdrawal will not occur for structu	. 2	
KTSTR2-Top layer above which selective withdrawal will not occur for structu		
KTSTR3-Top layer above which selective withdrawal will not occur for structu		
KTSTR4-Top layer above which selective withdrawal will not occur for structu		
KTSTR5-Top layer above which selective withdrawal will not occur for structu		
KBSTR1-Bottom layer below which selective withdrawal will not occur for str	35	
KBSTR2-Bottom layer below which selective withdrawal will not occur for str		
KBSTR3-Bottom layer below which selective withdrawal will not occur for str		
KBSTR4-Bottom layer below which selective withdrawal will not occur for str		
KBSTR5-Bottom layer below which selective withdrawal will not occur for str		
SINKC1 - Sink type used in the selective withdrawal algorithm, LINE or POINT	POINT	
SINKC2 - Sink type used in the selective withdrawal algorithm, LINE or POINT		
SINKC3 - Sink type used in the selective withdrawal algorithm, LINE or POINT	,	
SINKC4 - Sink type used in the selective withdrawal algorithm, LINE or POINT		
SINKC5 - Sink type used in the selective withdrawal algorithm, LINE or POINT		
ESTR1-Centerline elevation of structure 1, m	115	
ESTR2-Centerline elevation of structure 2, m		
ESTR3-Centerline elevation of structure 3, m		
ESTR4-Centerline elevation of structure 4, m		
ESTR5-Centerline elevation of structure 5, m		
WSTR1 - Structure 1 width if "LINE" chosen, Width of structure (line sink), m	0	
WSTR2- Structure 2 width if "LINE" chosen, Width of structure (line sink), m		
WSTR3- Structure 3 width if "LINE" chosen, Width of structure (line sink), m		
WSTR4- Structure 4 width if "LINE" chosen, Width of structure (line sink), m		
WSTR5- Structure 5 width if "LINE" chosen, Width of structure (line sink), m		

CE-QUAL-W2 Control File

Specification of Number and Type of Ports in W2 Control File (w2_con.csv)

NST	NIW	NWD	NGT	NSP	NPI	NPU
1	0	0	1	0	0	0

- ■NST Structures
- ■NGT Gates
- ■NSP Spillways
- By specifying operation of these Ports, all aspects of reservoir operation and conditions are impacted.
- CE-QUAL-W2 has option to enable model to choose port operation based upon specified temperature constraints w2_selective.npt.

NDAY	SELECTC	HABTATC	
100	ON	OFF	

Selective Withdrawal Controls – w2_selective.npt

Selective input control file

Temperature outlet control - frequency of output for temperature

OUTFREQ TFRQTMP

0.125

Structure outlet control based on time and temperature and branch

DYNSTR1	CONTROL	NUM	FREQ
	ON	4	1

DYNSTR2	ST/WD	JB	JS/NW	YEARLY	TSTR	TEND	TEMP	NELEV	ELEV1	ELEV2	ELEV3
1	ST	1	1	ON	1	151	5	2	115	110	
2	ST	1	1	ON	151.1	181	12	2	115	100	
3	ST	1	1	ON	181.1	273	16	2	115	95	
4	ST	1	1	ON	273.1	365	10	2	115	92.5	

MONITORI	ISEG	ELEV	DYNCEL
1	0	-185	OFF
2	0	-185	OFF
3	0	-185	OFF
4	0	-185	OFF

//CUI//

CE-QUAL-W2 Outputs Related to Ports

- Withdrawal outflow files include outflow, outflow temperature, outflow constituent concentrations, and outflow derived constituent concentrations:
- If there is a structure, gate, spillway, and pipe, and withdrawal at the segment (XX), the combined flows and flow-averaged temperature and concentrations will be written to following output files.
- In addition, output files are written for each separate outlet.

```
qwo _segXX.csv
two _segXX.csv
cwo _segXX.csv
dwo _segXX.csv
```

```
qwo_wd1_segXX.csv
two_wd1_segXX.csv
cwo_wd1_segXX.csv
dwo_wd1_segXX.csv
```

```
qwo_str1_segXX.csv, qwo_gate1_segXX.csv
two_str1_segXX.csv, two_gate1_segXX.csv
cwo_str1_segXX.csv, cwo_gate1_segXX.csv
dwo_str1_segXX.csv, dwo_gate1_segXX.csv
```

cuiii

Hands-On Exercises

- DeGray W2 model, included in release, includes
 1 gate and 1 port withdrawal at 104 m.
- In this workshop, add additional three ports at 110 m, 107 m, and 72 m.
- Update the W2 control file and rerun the model.
- Review and compare following model outputs:

qwo_31.csv,	two_31.csv
qwo_gateX_seg31.csv,	two_gateX_seg31.csv
qwo_str1_seg31.csv,	two_str1_seg31.csv
qwo_str2_seg31.csv,	two_str2_seg31.csv
qwo_str3_seg31.csv,	two_str3_seg31.csv
qwo_str4_seg31.csv,	two_str4_seg31.csv

	STRUCTURES for each branch. These are known outflows	BR1
ŀ	NSTR - Number of branch outlet structures	4
11	DYNSTRUC - Dynamic elevation of structure control ON or	OFF
â	STRIC1-Turns ON/OFF interpolation of structure outflows f	ON
	STRIC2-Turns ON/OFF interpolation of structure outflows f	ON
	STRIC3-Turns ON/OFF interpolation of structure outflows f	ON
	STRIC4-Turns ON/OFF interpolation of structure outflows f	ON
,	STRIC5-Turns ON/OFF interpolation of structure outflows f	
١	KTSTR1-Top layer above which selective withdrawal will no	
	KTSTR2-Top layer above which selective withdrawal will no	
	KTSTR3-Top layer above which selective withdrawal will no	2
	KTSTR4-Top layer above which selective withdrawal will no	2
,	KTSTR5-Top layer above which selective withdrawal will no	
	KBSTR1-Bottom layer below which selective withdrawal w	35
	KBSTR2-Bottom layer below which selective withdrawal w	i 35
	KBSTR3-Bottom layer below which selective withdrawal w	35
	KBSTR4-Bottom layer below which selective withdrawal w	i 35
,	KBSTR5-Bottom layer below which selective withdrawal w	
	SINKC1 - Sink type used in the selective withdrawal algorit	POINT
	SINKC2 - Sink type used in the selective withdrawal algorit	POINT
	SINKC3 - Sink type used in the selective withdrawal algorit	POINT
	SINKC4 - Sink type used in the selective withdrawal algorit	POINT
/	SINKC5 - Sink type used in the selective withdrawal algorit	
ſ	ESTR1-Centerline elevation of structure 1, m	104
ı	ESTR2-Centerline elevation of structure 2, m	110
ı	ESTR3-Centerline elevation of structure 3, m	107
Ļ	ESTR4-Centerline elevation of structure 4, m	72
/	ESTR5-Centerline elevation of structure 5, m	
	WSTR1 - Structure 1 width if "LINE" chosen, Width of struc	0
	WSTR2- Structure 2 width if "LINE" chosen, Width of struct	0
	WSTR3- Structure 3 width if "LINE" chosen, Width of struct	0
	WSTR4- Structure 4 width if "LINE" chosen, Width of struct	
/	WSTR5- Structure 5 width if "LINE" chosen, Width of struct	

Questions?

US Army Corps of Engineers • Engineer Research and Development Center

//CUI/