

Estadística

INGENIERÍA MULTIMEDIA

Violeta Migallón

Intervalos de confianza para la media (μ)

Suponiendo normalidad

Si la desviación típica poblacional (σ) es conocida, entonces

$$\left[\overline{x} - \frac{\sigma}{\sqrt{n}} Z_{\frac{\alpha}{2}}, \overline{x} + \frac{\sigma}{\sqrt{n}} Z_{\frac{\alpha}{2}}\right],$$

- Si σ es desconocida, entonces

$$\left[\overline{x} - \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}, n-1}, \overline{x} + \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}, n-1}\right],$$

Intervalos de confianza para la media (μ)

Muestras grandes (no normal)

- Si σ es conocida, entonces

$$\left[\overline{x} - \frac{\sigma}{\sqrt{n}} Z_{\frac{\alpha}{2}}, \overline{x} + \frac{\sigma}{\sqrt{n}} Z_{\frac{\alpha}{2}}\right],$$

- Si σ es desconocida, entonces

$$\left[\overline{x} - \frac{S}{\sqrt{n}} Z_{\frac{\alpha}{2}}, \overline{x} + \frac{S}{\sqrt{n}} Z_{\frac{\alpha}{2}}\right],$$

Intervalos de confianza para la varianza σ^2

Suponiendo normalidad

- Si μ es conocida, entonces

$$\left[\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{\chi_{\frac{\alpha}{2},n}^2}, \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{\chi_{1-\frac{\alpha}{2},n}^2}\right],$$

- Si μ es desconocida, entonces

$$\left[\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2},n-1}},\frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}\right],$$

Intervalos de confianza para proporciones (p)

• Intervalo de confianza para p,

$$\left[\overline{p} - \frac{1}{2\sqrt{n\alpha}}, \overline{p} + \frac{1}{2\sqrt{n\alpha}}\right],$$

donde \overline{p} es la estimación de p en la muestra. El intervalo que acabamos de construir es demasiado amplio y da una estimación por intervalo pobre. En la práctica se suele utilizar el siguiente intervalo, que corresponde a muestras de tamaño grande:

 Intervalo de confianza para p, correspondiente a muestras grandes

$$\left[\overline{p} - Z_{\frac{\alpha}{2}}\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}, \overline{p} + Z_{\frac{\alpha}{2}}\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}\right].$$

Intervalos de confianza para µ1-µ2

Bajo normalidad y muestras independientes

Si σ₁ y σ₂ son conocidas, el intervalo de confianza para μ₁ – μ₂ con nivel (1 – α)100% es

$$\left[\overline{x} - \overline{y} - \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}} Z_{\frac{\alpha}{2}}, \overline{x} - \overline{y} + \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}} Z_{\frac{\alpha}{2}}\right].$$

• Si σ_1 y σ_2 son desconocidas pero iguales, el intervalo de confianza para $\mu_1 - \mu_2$ con nivel $(1 - \alpha)100\%$ es

$$\left[\overline{x} - \overline{y} - S_p \sqrt{\frac{1}{m} + \frac{1}{n}} t_{\frac{\alpha}{2}, m+n-2}, \overline{x} - \overline{y} + S_p \sqrt{\frac{1}{m} + \frac{1}{n}} t_{\frac{\alpha}{2}, m+n-2}\right],$$

siendo

Intervalos de confianza para µ1-µ2

Bajo normalidad y muestras independientes

• Si σ_1 y σ_2 son desconocidas y distintas, el intervalo de confianza para $\mu_1 - \mu_2$ con nivel $(1 - \alpha)100\%$ es

$$\left[\overline{x} - \overline{y} - \sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}} t_{\frac{\alpha}{2},\nu}, \overline{x} - \overline{y} + \sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}} t_{\frac{\alpha}{2}\nu}\right],$$

con

$$\nu = \frac{\left(\frac{S_1^2}{m} + \frac{S_2^2}{n}\right)^2}{\frac{\left(\frac{S_1^2}{m}\right)^2}{m-1} + \frac{\left(\frac{S_2^2}{n}\right)^2}{n-1}}.$$

Intervalos de confianza para µ1-µ2

Sin normalidad y muestras independientes

• Si σ_1 y σ_2 son desconocidas y las muestras son grandes, aunque no provengan de una normal, el intervalo de confianza para $\mu_1 - \mu_2$ con nivel $(1-\alpha)100\%$ es

$$\left[\overline{x} - \overline{y} - \sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}} Z_{\frac{\alpha}{2}}, \overline{x} - \overline{y} + \sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}} Z_{\frac{\alpha}{2}}\right].$$

TABLA 1: Contrastes de hipótesis bajo normalidad

Hipótesis	Estadístico de	Hipótesis	Criterios de	P-valor
nula	prueba	alternativa	rechazo	
$H_0: \mu = \mu_0$		$H_1: \mu \neq \mu_0$	$ Z_0 > Z_{\frac{\alpha}{2}}$	$2P(Z \ge Z_0)$
σ^2 conocida	$Z_0 = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$	$H_1: \mu > \mu_0$	$Z_0 > Z_{\alpha}$	$P(Z \ge Z_0)$
	***	$H_1: \mu < \mu_0$	$Z_0 < -Z_{\alpha}$	$P(Z \leq Z_0)$
$H_0: \mu = \mu_0$		$H_1: \mu \neq \mu_0$	$ t_0 > t_{\frac{\alpha}{2}, n-1}$	$2P(t_{n-1} \ge t_0)$
σ^2 desconocida	$t_0 = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}}$	$H_1: \mu > \mu_0$	$t_0 > t_{\alpha,n-1}$	$P(t_{n-1} \ge t_0)$
	V 12	$H_1: \mu < \mu_0$	$t_0 < -t_{\alpha,n-1}$	$P(t_{n-1} \le t_0)$
$H_0:\sigma^2=\sigma_0^2$		$H_1:\sigma^2 eq\sigma_0^2$	$\chi_0^2 > \chi_{\frac{\alpha}{2}, n-1}^2$ ó	2P(cola menor)
			$\chi_0^2 < \chi_{1 - \frac{\alpha}{2}, n - 1}^2$	
	$\chi_0^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$H_1: \sigma^2 > \sigma_0^2$	$\chi_0^2 > \chi_{\alpha,n-1}^2$	$P(\chi_{n-1}^2 \ge \chi_0^2)$
				$P(\chi_{n-1}^2 \le \chi_0^2)$

TABLA 2: Contrastes de hipótesis bajo normalidad

Hipótesis	Estadístico de	Hipótesis	Criterios de	P-valor
nula	prueba	alternativa	rechazo	
$H_0: \mu_1 = \mu_2$		$H_1: \mu_1 \neq \mu_2$		$2P(Z \ge Z_0)$
σ_1^2,σ_2^2	$Z_0 = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$H_1: \mu_1 > \mu_2$	$Z_0 > Z_{\alpha}$	$P(Z \ge Z_0)$
conocidas	,	$H_1: \mu_1 < \mu_2$		$P(Z \leq Z_0)$
$H_0: \mu_1 = \mu_2$		$H_1: \mu_1 \neq \mu_2$	$ t_0 > t_{\frac{\alpha}{2}, n_1 + n_2 - 2}$	$2P(t_{n_1+n_2-2} \ge t_0)$
$\sigma_1^2 = \sigma_2^2$	$t_0 = \frac{\overline{X}_1 - \overline{X}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$H_1: \mu_1 > \mu_2$	$t_0 > t_{\alpha, n_1 + n_2 - 2}$	$P(t_{n_1+n_2-2} \ge t_0)$
desconocidas	,	$H_1: \mu_1 < \mu_2$	$t_0 < -t_{\alpha,n_1+n_2-2}$	$P(t_{n_1+n_2-2} \le t_0)$
$H_0: \mu_1 = \mu_2$		$H_1: \mu_1 \neq \mu_2$	$ t_0 > t_{\frac{\alpha}{2},\nu}$	$2P(t_{\nu} \geq t_0)$
$\sigma_1^2 eq \sigma_2^2$	$t_0 = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$	$H_1: \mu_1 > \mu_2$	$t_0 > t_{lpha, u}$	$P(t_{\nu} \ge t_0)$
desconocidas	·	$H_1: \mu_1 < \mu_2$	$t_0 < -t_{\alpha,\nu}$	$P(t_{\nu} \leq t_0)$
$H_0: \sigma_1^2 = \sigma_2^2$		$H_1:\sigma_1^2 eq\sigma_2^2$	$F_0 > F_{\frac{\alpha}{2},n_1-1,n_2-1}$ ó	2P(cola menor)
			$F_0 < F_{1-\frac{\alpha}{2},n_1-1,n_2-1}$	
	$F_0 = \frac{S_1^2}{S_2^2}$			
		$H_1: \sigma_1^2 > \sigma_2^2$	$F_0 > F_{\alpha,n_1-1,n_2-1}$	$P(F_{n_1-1,n_2-1} \ge F_0)$

FÓRMULAS TABLA 2

$$S_p = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}},$$

$$\nu = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{\left(\frac{S_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{S_2^2}{n_2}\right)^2}{n_2 - 1}}$$

TABLA 3: Contrastes de hipótesis para muestras grandes

Hipótesis	Estadístico de	Hipótesis	Criterios de	P-valor
nula	prueba	alternativa	rechazo	
$H_0: \mu = \mu_0$		$H_1: \mu \neq \mu_0$	$ Z_0 > Z_{\frac{\alpha}{2}}$	$2P(Z \ge Z_0)$
	$Z_0 = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}}$	$H_1: \mu > \mu_0$	$Z_0 > Z_{\alpha}$	$P(Z \ge Z_0)$
	V.1	$H_1: \mu < \mu_0$	$Z_0 < -Z_{\alpha}$	$P(Z \leq Z_0)$
$H_0: \mu_1 = \mu_2$		$H_1: \mu_1 \neq \mu_2$	$ Z_0 > Z_{\frac{\alpha}{2}}$	$2P(Z \ge Z_0)$
	$Z_0 = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$	$H_1: \mu_1 > \mu_2$	$Z_0 > Z_\alpha$	$P(Z \ge Z_0)$
	V	$H_1: \mu_1 < \mu_2$	$Z_0 < -Z_{\alpha}$	$P(Z \leq Z_0)$
$H_0: p = p_0$		$H_1: p \neq p_0$	$ Z_0 > Z_{\frac{\alpha}{2}}$	$2P(Z \ge Z_0)$
	$Z_0 = \frac{p^* - p_0}{\sqrt{\frac{(1 - p_0)p_0}{n}}}$	$H_1: p > p_0$	$Z_0 > Z_{\alpha}$	$P(Z \geq Z_0)$
	,	$H_1: p < p_0$	$Z_0 < -Z_\alpha$	$P(Z \leq Z_0)$
$H_0: p_1 = p_2$		$H_1: p_1 \neq p_2$	$ Z_0 > Z_{\frac{\alpha}{2}}$	$2P(Z \ge Z_0)$
	$Z_0 = \frac{p_1^* - p_2^*}{\sqrt{p^*(1-p^*)}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$H_1: p_1 > p_2$	$Z_0 > Z_{\alpha}$	$P(Z \ge Z_0)$
	,	$H_1: p_1 < p_2$	$Z_0 < -Z_\alpha$	$P(Z \leq Z_0)$

Contrastes de hipótesis: contingencia y homogeneidad

El test χ^2 se basa en la siguiente regla: Rechazar H_0 si

$$\chi_0^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(\theta_{ij} - E_{ij})^2}{E_{ij}} \ge \chi_{\alpha,\nu}^2,$$

donde $\nu = (r-1)(c-1)$. El valor r es el número de filas de la tabla y c el número de columnas. El valor θ_{ij} es la frecuencia absoluta observada en la celda (i,j) y E_{ij} es la frecuencia esperada bajo la hipótesis nula. Por último, α es el nivel de significación.

$$\alpha > P(\chi_{\nu}^2 \ge \chi_0^2).$$

Estudio de las celdas de interés:

En caso de rechazar la hipótesis nula parece interesante estudiar qué casillas han sido las que han contribuido en mayor medida a esto.

Para ello, calculamos para cada casilla

$$Z_{ij} = \frac{(\theta_{ij} - E_{ij})}{\sqrt{E_{ij}}},$$

y asignamos símbolos a las casillas de la siguiente forma:

- Si $|Z_{ij}| \leq 1.645$ asignamos el símbolo ·.
- Si $1.645 < |Z_{ij}| \le 1.96$ asignamos el símbolo o.
- Si 1.96 < $|Z_{ij}| \leq 2.576$ asignamos el símbolo O.
- Si $|Z_{ij}| > 2.576$ asignamos el símbolo @.

□ H₀: la muestra procede de la población especificada

 $\square H_1$: no H_0

El test de bondad de ajuste se basa en la regla: Rechazar H_0 si $\chi_0^2 = \sum_{i=1}^k \frac{(\theta_i - E_i)^2}{E_i} \ge \chi_{\alpha,k-1}^2$, donde θ_i es la frecuencia observada en cada categoria, E_i la frecuencia esperada de cada categoría bajo la hipótesis nula y k el número de categorías.

Otra forma de estudiar si se rechaza el test es con el P-valor. Así se rechaza la hipótesis nula para todo α tal que

$$\alpha > P(\chi_{k-1}^2 \ge \chi_0^2).$$

