Technologies Ethernet

 Une procédure de communication est divisée en composants logiques qui se connectent via des interfaces bien définies

Les composants de réseaux IE

Equipement A Equipement B 7 Application **Passerelles** 7 Application 6 Presentation 6 Presentation 5 Session 5 Session 4 Transport 4 Transport 3 Réseau 3 Réseau Routeurs Hub, switch 2 Liaison de données 2 Liaison de données 1 Physique Répéteurs 1 Physique

.02.2002, Ethernet fundamentals N° :

Hub ou switch?

Réseau partagé

- Un hub transmet
 l'information à toutes les stations
- Chaque échange de données concerne tout le réseau
 → Réseau très chargé
- Collisions possibles lors des échanges

Réseau commuté

- Un switch transmet les données directement au destinataire
- Chaque trame est filtrée et commutée uniquement sur le port du destinataire → réduction de la charge sur le réseau
- Pas de collisions lors des échanges

Topologies de réseaux

Architectures de réseaux Ethernet

Bureautique (EN 50173)

SD = site distributor FD = floor distributor

BD = building distributor

MD = machine distributor

DTE = data terminal

Topologies Ethernet (aujourd'hui)

- Topologie arborescente selon IEC 11801 (en bureautique)
 - Câblage informatique indépendant des applications dans les batiments et complexes

Topologies Ethernet avec PROFInet

PROFInet prend en compte les applications, les coûts, et les aspects de performance liés au monde de l'automatisation industrielle

ex.: topologies de bus linéaires au niveau cellule et terrain (pour des

Ethernet en bureautique

- Large bande passante
 - Transmission de données multimédia (Gbit et 10-Gbit Ethernet)
- Composants de réseau avec un grand nombre de ports
 - Câblage point-à-point
 - Faible coût par port de communication
- Niveau de disponibilité moyen
 - Quelques secondes de disfonctionnement acceptables
 - Temps de réponse le plus rapide possible sans réelle garantie
- Conditions environnementales
 - Température ambiante 0 45 °C
- Niveau de qualification des installateurs
 - Spécialistes réseaux

- Bande passante moyenne
- Transmission de données de process (Ethernet 100-Mbit à Gbit)
- Composants de réseaux avec un nombre réduit de ports
- Architecture distribuée
- -
- Taux de disponibilité élevé
- Pas d'arrêt de production dû à une défaillance réseau
- Temps de basculement du système de redondance < 300 ms
- Temps de réponse très courts
- Conditions environnementales difficiles
- -Température ambiante 0 60 °C, vibrations,
- Simplicité de mise en œuvre (installation)
- Réalisée par des techniciens

Temps de reconfiguration du réseau avec 50 switches < 300 ms

Points forts des Switches industriels au niveau Contrôle

- Ethernet commuté 10/100 Mbit/s automatique
- Réseau étendu (jusqu'à 150Km)
- Gestionnaire de redondance intégré
- Commutation rapide (<300ms)
- Fonction "Standby"
- Entrées TOR de diagnostic
- Management réseau via SNMP ou le Web
- 4 à 8 ports ITP, RJ45 ou FO
- Technologies de câblage simplifié

Ethernet dans l' automatisation Exemple d'installation au niveau terrain

- Câblage au niveau terrain
 - Topologie multipoint (linéaire avec des branches)
 - Installation simple, système FastConnect
 - Connecteurs et câbles adaptés aux environnements industriels

Directives du standard PROFInet pour la couche physique

Exemple de switch de terrain

- Câblage simple avec prises "vampires"
- Technologie FastConnect
- Prises RJ45 avec fonction "autocrossing"
- Diagnostic simple à LED

| directive

Connecteurs IP 20

- Connecteur RJ45 destiné à la bureautique
- Industry-compatible (connectable à AWG22)
- Peut être confectionné sur le terrain

- connecteur compatible avec la version IP20
- Peut être confectionné sur le terrain
- Version hybride données + alimentation
- Connecteur circulaire M12 (4 contacts)

- Twisted pair selon IEC 11801, CAT5 (details IEC 61156)
- Version Hybride (données + alimentation)
- Fibre optique en verre selon IEC 11801

Management réseau via SNMP

• SNMP : Simple Network Management Protocol

Management réseau basé sur le Web avec les composants Industrial Ethernet

• Web-Based Network Management

- Accès aux composants réseaux
- au moyen de navigateurs Web
- Diagnostics en cas d'erreurs
 - Les composants peuvent envoyer des e-mails
 - Affichage des états des composants

Résumé des Protocoles de communication

The TCP/IP protocol suite

- IP: Internet Protocol
 - Protocole chargé de l'adressage des trames à travers les sousréseaux locaux ou distants
- TCP: Transmission Control Protocol
 - Protocole de Transport pour une communication avec connexion entre stations, chargé de la transmission sécurisée des paquets
- UDP: User Datagram Protocol
 - Protocole de Transport pour une communication sans connexion entre stations
 - Contrairement à TCP, UDP n'est pas sécurisé. UDP ne fournit aucune garantie d'intégrité des données transmises
- ARP: Address Resolution Protocol
 - Protocole qui associe les adresses MAC à chaque adresse Internet logique définie

The TCP/IP applications

- SMTP
 Simple Mail Transfer Protocol
 Echange d' e-mail
- HTTP
 Hypertext Transfer Protocol
 Utilisé par les navigateurs du WWW
- FTP
 File Transfer Protocol
 Utilisé pour le transfert de fichiers entre ordinateurs
- DCOM
 Distributed Component Object Model
 Echanges d'objets COM sur un réseau
- SNMP
 Simple Network Management Protocol
 Utilisé pour la gestion centralisée des composants de réseaux
- Autres
 DHCP, TFTP, TELNET, SOAP, Microsoft .NET

Encapsulation de protocoles

- Les informations de la couche application sont encapsulées dans la zone de données des paquets TCP/IP
- Chaque paquet TCP/IP est une partie de la zone de données de la trame Ethernet

Organisation des adresses réseau

- L'adresse Ethernet (MAC address)
 - Adresse physique unique (au niveau mondial) par carte
 - Code fournisseur et numéros consécutifs
 - Adresse sur 6 octets (6 valeurs hexadecimales)_{2.0.1.2}
 e.g. C0-10-A4-00-17-AC
- Adresse Internet (IP address)
 - Adresse unique sur le réseau
 - Identifiant de réseau (network ID) et Identifiant utilisateur (host ID)
 - Adresse 32-bit (4 nombres decimaux)
 e.g. 142.0.1.3
- Masque de sous réseau
 - Partie commune des adresses IP des équipements d'un même sous-réseau
 - Adresse 32-bit, e.g. 255.255.255.0

