Berechnungen und Logik Hausaufgabenserie 10

Henri Heyden, Nike Pulow stu240825, stu239549

HA 1 a) b) HA₂ **a**) t_1 ist S-Term, hier werden alle Formalismen für die Signatur S eingehalten. t_2 ist nicht S-Term, wir haben \doteq so definiert, dass links und rechts S-Terme stehen, was auch stimmt, jedoch ergibt dieser entstehende Baum eine S-Formel, kein S-Term. t_3 ist nicht S-Term, wir schreiben Variablen hier klein und nicht groß, also ist X_0 nicht UnterS-term. t_4 ist nicht $\mathcal{S} ext{-Term}$, da T Relation ist, Relationen dürfen nicht in $\mathcal{S} ext{-Termen}$ vorkommen. b) φ_1 ist nicht S-Formel, da T(c) Formel ist und nicht S-Term. φ_2 ist nicht S-Formel, da rechts von "=" kein S-Term steht. φ_3 ist nicht S-Formel, da die Variable x_0 nicht S-Formel ist. φ_4 ist nicht S-Formel, da links von dem Junktor " \wedge " ein S-Term steht und nicht eine S-Formel.

HA 3

i = 0

Definiere für die Struktur A_0 das Universum $A_0 := \{\text{in, out, 1, 2, 3}\}.$

Definiere $E := \{(in, 2), (2, 3), (3, out), (3, 1), (1, 2)\}.$

Dann gilt $E \subseteq A_0^2$, des Weiteren hat jede Konstante aus S ein Komplement in A_0 . Somit ist A_0 S-Struktur und A_0 modelliert den Graph G_0 .

i = 1

Definiere für die Struktur A_1 das Universum $A_1 := \{\text{in}, \text{out}, 1, 2, 3, 4, 5\}.$

Definiere $E := \{(in, 2), (2, 3), (3, 4), (4, 2), (4, 5), (5, 4), (1, 2), (1, 5), (5, out)\}.$

Dann gilt $E \subseteq A_1^2$, des Weiteren hat jede Konstante aus S ein Komplement in A_1 . Somit ist A_1 S-Struktur und A_1 modelliert den Graph G_1 .

i = 2

Definiere für die Struktur A_2 das Universum $A_2 := \{in, out, ..., 1, 2, 3\}$.

Definiere $E := \{(in, 1), (1, out), (1, 2), (2, 3), (3, ...), (1, 1), (2, 2), (3, 3)\}.$

Dann gilt $E \subseteq A_2^2$, des Weiteren hat jede Konstante aus S ein Komplement in A_2 . Somit ist A_2 S-Struktur und A_2 modelliert den Graph G_2 .

HA 4

i = 0

i = 1