CMPT 379: Principles of Compiler Design

Syntax Analysis Worksheet (Answers)

- 1. Given language $\left\{wcw^R|w\in(a|b)*\right\}$ (w^R is w in reverse), write a CFG which produces this language.
- 2. Given language $\left\{a^nb^mc^md^n|n\geq 1, m\geq 1\right\}$, write a CFG which produces this language.
- 3. Does bottom-up parsing create a rightmost or leftmost derivation?
- 4. Where is a handle located?

5. Given the production rules in table 1, write out the parse tree for the string id + id * id.

Figure 1: Question 5: Production Rules

$$E \to E + E$$

$$E \to E*E$$

$$E \to id$$

6. Given the production rules in table 2, write out the parse tree for the string int*int+int.

Figure 2: Question 6: Production Rules

$$\begin{split} E &\to T + E \\ E &\to T \\ T &\to int \\ T &\to int * T \end{split}$$

 $T \to (E)$

7. Given the production rules and action/goto table in figure 3, write the trace of the LR(0) parse.

Figure 3: Question 7: Production Rules and Action/Goto Table

	Production Rules
1	$T \to F$
2	$T \to T * F$
3	$F \rightarrow id$
4	$F \to (T)$

States	Actions					Gotos	
States	*	()	id	\$	Т	F
0		S5		S8	2	1	
1	R1	R1	R1	R1	R1		
2	S3				ACC		
3		S5		S8		4	
4	R2	R2	R2	R2	R2		
5		S5		S8		6	1
6	S3		S7				
7	R4	R4	R4	R4	R4		
8	R3	R3	R3	R3	R3		

8. Given the set of production rules and dotted rule in figure 4, find the configuration set resulting from the closure of the dotted rule.

Figure 4: Question 8: Closure

Production Rules	$T \to F$
	$T \to T * F$
	$F \rightarrow id$
	$F \to (T)$
	$T \to T * \bullet F$

9. Given a set of production rules, a configuration set, and a successive character in figure 5, apply the successor function to create a new configuration set.

Figure 5: Question 9: Successor

Production Rules	$S' \to T$
	$S' \to T$ $T \to F$ $T \to T * F$ $F \to id$ $F \to (T)$
	$T \to T * F$
	$F \to id$
	$F \to (T)$
Configuration set I	$S' \to ullet T$
	$T \to \bullet F$ $T \to \bullet T * F$ $F \to \bullet id$ $F \to \bullet (T)$
	$T \to \bullet T * F$
	$F \to \bullet id$
	$F \to \bullet(T)$

10. Given a set of production rules in figure 6, find the First and Follow sets of the non-terminal symbols.

Figure 6: Question 10: First/Follow

Production Rules:
$$\mid \begin{array}{c} A \to Bc | d \\ B \to e \end{array}$$

11. Given the set of production rules in figure 7, find the First and Follow sets of the non-terminal symbols.

Figure 7: Question 11: First/Follow

Production Rules:
$$\begin{vmatrix} A \to Bc \\ B \to d|BC|Be \\ C \to f \end{vmatrix}$$

12. Given a set of production rules in figure 8, find the First and Follow sets of the non-terminal symbols.

Figure 8: Question 12: First/Follow

Production Rules
$$\begin{array}{c|c} S \to AB \\ A \to c | \epsilon \\ B \to cbB | a \end{array}$$

13. Given a set of production rules in figure 9, find the First and Follow sets of the non-terminal symbols.

Figure 9: Question 13: First/Follow

Production Rules
$$\begin{array}{c|c} S \to cAa \\ A \to cB|B \\ B \to bcB|\epsilon \end{array}$$

14.	Given left-recursive grammar $A o A*B B;B o a$, create an equivalent grammar which is no longe
	eft-recursive.

15. Given grammar $A \to Bc|D; B \to ef; D \to e$, left-factor this grammar.

16. Given the set of production rules in figure 10, remove left-recursion from the grammar.

Figure 10: Question 16: Production Rules

Production Rules
$$\begin{vmatrix} S \rightarrow Aa|b \\ A \rightarrow Ac|Sd|\epsilon \end{vmatrix}$$

17. Given the set of production rules in table 11) which form an LL(1) grammar, find the following symbols upon which the production rule $Y \to \epsilon$ is the valid option.

Figure 11: Question 17: LL(1) Conflict Resolution

 $\begin{array}{ll} \text{Production Rules} & E \to TX \\ & X \to \epsilon \\ & X \to +E \\ & T \to (E) \\ & T \to idY \\ & Y \to *T \\ & Y \to \epsilon \end{array}$