Source: [KBhMATH401Limits]

1 | Epsilon Delta Proofs

The secrets of the limit

1.1 | Formal Definition of a Limit

Definition 1
$$\cdot$$
 Limit Definition $\lim_{x \to a} f(x) = L$ for all $\epsilon > 0$, there exists a δ such that $if \ 0 < |x-a| < \delta$, $then \ 0 < |f(x)-L| < \epsilon$

1.2 | An Epsilon Delta Proof

Let's prove $\lim_{x\to 2} x^2 = 4$ together!

The crux of the proof is to come up with a value δ that is a function of ϵ assuming that $0 < \epsilon$ that meets $0 < |x - a| < \delta$.

Oh, here's some symbols

Symbol	Definition
\forall	For all
∃	There exisits
s.t.	Such that

And so, the formal and pretentious definition of a limit:

$$\lim_{x\to a} f(x) = L \text{ where } \forall \epsilon > 0, \exists \delta > 0, \text{ s.t. } 0 < |x-a| < \delta \to |f(x)-L| < \epsilon.$$

This needs to go before every Epsilon Delta proof.

- Step 1: Re-write the Definition Above w.r.t. the function
- · Step 2: Do scratch work to identify delta
- · Step 3: Plug it in to verify