LOPES Marco, ISELI Cyril, RINGOT Gaëtan

TP: Programmation Concurrente, Password Cracker Rendu le 3 Novembre 2016

Questions

1. Etablissez un graphe illustrant les performances de votre programme multi-threadé en variant le nombre de threads.

Pour le mot de passe encrypté par le hash « 431pugYzZc5QM » et le salt « 43 ».

Nb threads	Temps (s)	Temps (en h)
1	48483	13,5
2	24301	6,8
4	15476	4,3
8	11376	3.2

Nb threads	Temps (s)	Temps (en h)
16	11622	3,2
32	11397	3,2
64	12553	3,5

2. Que remarquez-vous ? Le gain de vitesse est-il linéaire avec le nombre de threads ?

Nous remarquons, que lors du passage d'un seul thread, à 2 threads, le temps est presque divisé par deux. Alors que lors du passage de 4 thread à 8 threads, nous ne gagnons même pas 1/3 du temps. Enfin dès les 8 threads nous nous rendons compte qu'il n'y a plus de gain de temps.

Par conclusion, nous pouvons déduire que c'est une décroissance exponentielle, avec une stabilisation autour des 3h, et non pas un gain de temps linéaire en fonction du nombre de threads.

3. Bonus: quel est l'impact de l'hyper-threading (coeurs logiques) sur les performances ?

L'hyper-threading permet sur les performances, de gagner à peu près 1/3 du temps. Cependant, ce gain de temps n'est pas aussi remarquable que lorsque le changement s'effectue sur des ajouts de cœurs physiques.

De plus, lorsque le double de cœurs physiques est dépassé, à ce moment le temps ne diminue plus réellement.

LOPES Marco, ISELI Cyril, RINGOT Gaëtan

TP : Programmation Concurrente, Password Cracker Rendu le 3 Novembre 2016

4. Test de la linéarité du temps de crack d'un mot de passe simple :

Afin d'avoir un temps qui soit valable, nous avons pris pour chaque nombre de thread, 10 mesures de temps et ensuite fait une moyenne géométrique de celles-ci.

Nb de threads	Temps (en s)
1	9,354001862
2	3,336424858
3	3,207627473
4	2,360850706
5	2,32294803
6	1,97110683
7	1,976521582
8	1,959614282
9	1,931083442
10	1,897580626
11	1,892958299
12	1,796366899
13	1,826250238
14	1,817931748
15	1,815408367
16	1,825210609

Nb de threads	Temps (en s)
17	1,885979667
18	2,06196622
19	1,89478297
20	1,9542113
21	1,870230473
22	1,869741889
23	1,907557053
24	1,851781798
25	1,960728318
26	2,020192701
27	1,957157347
28	1,935775151
29	1,984064876
30	1,996195508
31	1,888339349
32	1,936622358

Nous remarquons, que contrairement à ce que donnait l'impression lors des premières mesures, que la relation n'est pas réellement linéaire et mais la différence est vraiment minime lors d'un grand nombre de threads.