This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Currently Amended) A compound of formula I:

$$\mathbb{R}^{5}$$
 \mathbb{N}
 $\mathbb{N$

wherein

n is 1 or 2;

m is 1 or 2;

 ${f R^1}$ is H, $(C_{1\text{-}6})$ alkyl, $(C_{2\text{-}6})$ alkenyl, or $(C_{2\text{-}6})$ alkynyl, wherein each of said $(C_{1\text{-}6})$ alkyl, $(C_{2\text{-}6})$ alkenyl, or $(C_{2\text{-}6})$ alkynyl are optionally substituted with from one to three halogen atoms;

 R^2 is selected from -CH₂- R^{20} , -NH- R^{20} , -O- R^{20} , -S- R^{20} , -SO- R^{20} , -SO₂- R^{20} , -CH₂O- R^{20} , and -O-X- R^{20} , wherein

 \boldsymbol{X} is $(C_{2\text{--}3})$ alkenyl, $(C_{2\text{--}3})$ alkynyl, or $(C_{1\text{--}3})$ alkyl; and

 $\mathbf{R^{20}}$ is $(C_6 \text{ or } C_{10})$ aryl or \mathbf{Het} , wherein said $(C_6 \text{ or } C_{10})$ aryl or \mathbf{Het} is optionally substituted with $\mathbf{R^{200}}$; wherein

 ${f R^{200}}$ is one to four substituents each independently selected from H, halogen, cyano, $(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, aryl- $(C_{1\text{-}6})$ alkyl-, aryl, ${f Het}$, oxo, thioxo, $-{\bf OR^{201}}$, $-{\bf SR^{201}}$, $-{\bf SOR^{201}}$, $-{\bf SO_2R^{201}}$, $-{\bf N(R^{202})R^{201}}$, and $-{\bf CON(R^{202})R^{201}}$; wherein each of said alkyl, cycloalkyl, aryl and ${f Het}$ is optionally further substituted with ${f R^{2000}}$;

 ${\bf R^{201}}$ in each case is independently selected from H, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, aryl, $-CO-(C_{1-6})$ alkyl and $-CO-(C_{1-6})$ alkyl, wherein each of said alkyl and aryl

is optionally further substituted with \mathbf{R}^{2000} ;

 \mathbf{R}^{202} in each case is independently selected from H and (C₁₋₆)alkyl;

 ${f R^{2000}}$ in each case is one to three substituents each independently selected from halogen, aryl, ${f Het}$, ${\bf -OR^{2001}}$, ${\bf -SOR^{2001}}$, ${\bf -SO_2R^{2001}}$, cyano, ${\bf -N(R^{2002})(R^{2001})}$, and ${f R^{2003}}$, wherein said aryl and ${f Het}$ are optionally substituted with one, two or three substituents each independently selected from (C_{1-6}) alkyl and ${\bf -O-(C_{1-6})}$ alkyl;

 \mathbf{R}^{2001} in each case is independently selected from aryl, aryl- (C_{1-6}) alkyl-, -C(O)- \mathbf{R}^{2003} , -C(O)O- \mathbf{R}^{2003} , - $CON(\mathbf{R}^{2002})(\mathbf{R}^{2004})$ and \mathbf{R}^{2004} ;

 \mathbf{R}^{2002} in each case is independently selected from H and (C_{1-6}) alkyl;

 ${f R}^{2003}$ in each case is independently selected from $(C_{1\text{-}8})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl and $(C_{3\text{-}7})$ cycloalkyl- $(C_{1\text{-}4})$ alkyl-, wherein said $(C_{3\text{-}7})$ cycloalkyl and $(C_{3\text{-}7})$ cycloalkyl- $(C_{1\text{-}4})$ alkyl- are each optionally substituted with one to three substituents each independently selected from $(C_{1\text{-}3})$ alkyl; and ${f R}^{2004}$ in each case is independently selected from H and ${f R}^{2003}$;

- is (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl or (C_{3-7}) cycloalkyl- (C_{1-3}) alkyl-, each optionally substituted with one or more substituents each independently selected from (C_{1-6}) alkyl, (C_{2-6}) alkenyl, halogen, cyano, $-O\mathbf{R}^{30}$, $-S\mathbf{R}^{30}$, $-C(=O)O\mathbf{R}^{30}$, $-C(=O)NH_2$, $-C(=O)NH(C_{1-6})$ alkyl, $-C(=O)N((C_{1-6})$ alkyl)₂, $-NH_2$, $-NH(C_{1-6})$ alkyl, $-N((C_{1-6})$ alkyl)₂, aryl, and aryl (C_{1-6}) alkyl-, wherein \mathbf{R}^{30} is H, (C_{1-6}) alkyl, aryl, or aryl (C_{1-6}) alkyl-;
- $\mathbf{R^5}$ is selected from \mathbf{B} , \mathbf{B} -C(=O)-, \mathbf{B} -O-C(=O)-, \mathbf{B} -N($\mathbf{R^{51}}$)-C(=O)-; \mathbf{B} -N($\mathbf{R^{51}}$)-C(=S)-, \mathbf{B} -SO₂- and \mathbf{B} -N($\mathbf{R^{51}}$)-SO₂-; wherein \mathbf{B} is selected from:
 - $\label{eq:condition} \begin{tabular}{ll} (i) & (C_{1\text{-}10}) alkyl \ optionally \ substituted \ with \ one \ or \ more \ substituents \ each \ selected \ independently \ from -COO(C_{1\text{-}6}) alkyl, -OH, \ halogen, \ -OC(=O)(C_{1\text{-}6}) alkyl, -O(C_{1\text{-}6}) alkyl, -NH_2, -NH(C_{1\text{-}6}) alkyl, -N((C_{1\text{-}6}) alkyl)_2, \ -C(=O)NH_2, -C(=O)NH(C_{1\text{-}6}) alkyl \ and -C(=O)N((C_{1\text{-}6}) alkyl)_2; \end{tabular}$
 - (ii) (C_{3-7}) cycloalkyl, or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, each optionally substituted with one or more substituents each selected independently

- $$\begin{split} &\text{from } (C_{1\text{-}6}) \text{alkyl, halogen, -COOH, -COO}(C_{1\text{-}6}) \text{alkyl, -OH, -O}(C_{1\text{-}6}) \text{alkyl,} \\ &\text{-NH}_2, \text{-NH}(C_{1\text{-}6}) \text{alkyl, -N}((C_{1\text{-}6}) \text{alkyl})_2, \text{-C}(=O) \text{NH}_2, \text{-C}(=O) \text{NH}(C_{1\text{-}6}) \text{alkyl} \\ &\text{and -C}(=O) \text{N}((C_{1\text{-}6}) \text{alkyl})_2; \end{split}$$
- (iii) aryl or aryl(C_{1-6})alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6})alkyl, -OH, -NH₂, -NH(C_{1-6})alkyl, -N((C_{1-6})alkyl)₂, -C(=O)NH₂, -C(=O)NH(C_{1-6})alkyl and -C(=O)N((C_{1-6})alkyl)₂;
- (iv) **Het** or **Het**- (C_{1-6}) alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6}) alkyl, -OH, -NH₂, -NH (C_{1-6}) alkyl, -N((C_{1-6}) alkyl)₂, -C(=O)NH₂, -C(=O)NH (C_{1-6}) alkyl and -C(=O)N((C_{1-6}) alkyl)₂; and
- (v) (C_{2-6}) alkenyl, or (C_{2-6}) alkynyl, each optionally substituted with 1 to 3 halogens; and wherein

 \mathbf{R}^{51} is selected from H and (C₁₋₆)alkyl;

provided that B is not (C_{1-10}) alkyl unsubstituted when \mathbb{R}^{5} is B-O-C(=0)-;

Y is H or (C_{1-6}) alkyl;

 ${f R}^4$ and ${f R}^6$ are each independently selected from H, (C_{1-6}) alkyl, $-O-(C_{1-6})$ alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl- (C_{1-6}) alkyl-, aryl, ${f Het}$, and aryl- (C_{1-6}) alkyl-; wherein said (C_{1-6}) alkyl, $-O-(C_{1-6})$ alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl- (C_{1-6}) alkyl-, aryl and aryl- (C_{1-6}) alkyl- are each optionally substituted with one or more substituents each independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, $O-(C_{1-6})$ alkyl, $-NH_2$, $-NH(C_{1-4})$ alkyl, $-N((C_{1-4})$ alkyl)₂, $-CO-NH_2$, $-CO-NH(C_{1-4})$ alkyl, $-CO-N((C_{1-4})$ alkyl)₂, -COOH, and $-COO(C_{1-6})$ alkyl; or

R⁴ and R⁶ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle optionally fused to at least one other cycle to form a heteropolycycle, each of said heterocycle and heteropolycycle optionally containing from one to three additional heteroatoms each independently selected from N, S and O, and each of said heterocycle and

heteropolycycle being optionally substituted with one or more substituents each independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, O- (C_{1-6}) alkyl, -NH $_2$, -NH (C_{1-4}) alkyl, -N((C_{1-4}) alkyl) $_2$, -CO-NH $_2$, -CO-NH (C_{1-4}) alkyl, -CO-N((C_{1-4}) alkyl) $_2$, -COOH, and -COO((C_{1-6}) alkyl;

with the proviso that when:

 $\boldsymbol{R^5}$ is B-O-C(=O)- or B-N($\boldsymbol{R^{51}}$)-C(=O)-, wherein

 \mathbf{R}^{51} is H; and

 $\textbf{B} \text{ is selected from } (C_{1\text{--}10}) \text{alkyl, } (C_{3\text{--}7}) \text{cycloalkyl, and } (C_{3\text{--}7}) \text{cycloalkyl-} (C_{1\text{--}4}) \text{alkyl,}$

- wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally mono-, di- or tri-substituted with $(C_{1:3})$ alkyl; and
- b) wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally monoor di-substituted with substituents selected from hydroxy and $O-(C_{1-4})$ alkyl; and
- c) wherein each of said alkyl groups may be mono-, di- or tri-substituted with halogen; and
- wherein in each of said cycloalkyl groups being 4-, 5-, 6- or 7-membered, one (for the 4-, 5-, 6-, or 7-membered) or two (for the 5-, 6- or 7-membered)
 -CH₂-groups not directly linked to each other may be replaced by -O- to provide a heterocycle, such that the O-atom is linked to the -O-C(=O) or -N(R⁵¹)-C(=O) group via at least two carbon atoms; and
 R² is O-R²⁰;

then

R²⁰ cannot be

wherein

 ${\bf R^{200a}}$ is H, halogen, (C_{1-4}) alkyl, -OH, $-O-(C_{1-4})$ alkyl, $-NH_2$, $-NH(C_{1-4})$ alkyl or $-N((C_{1-4})$ alkyl)₂;

 ${f R^{200b}}$, ${f R^{200c}}$ are each independently halogen, cyano, $(C_{1\text{-}4})$ alkyl, -O- $(C_{1\text{-}4})$ alkyl, -SO- $(C_{1\text{-}4})$ alkyl, or -SO₂- $(C_{1\text{-}4})$ alkyl, wherein each of said alkyl groups is optionally substituted with from one to three halogen atoms; and either ${f R^{200b}}$ or ${f R^{200c}}$ (but not both at the same time) may also be H; or

 R^{200a} and R^{200b} or

 ${f R}^{200a}$ and ${f R}^{200c}$ may be covalently bonded to form, together with the two C-atoms to which they are linked, a 5- or 6-membered carbocyclic ring wherein one or two -CH₂-groups not being directly linked to each other may be replaced each independently by -O- or N ${f R}^a$ wherein ${f R}^a$ is H or (C₁₋₄)alkyl, and wherein said carbo- or heterocyclic ring is optionally mono- or disubstituted with (C₁₋₄)alkyl; and

$$\begin{split} R^{2000a} \text{ is } R^{2003}, \text{-N}(R^{2002}) &\text{COR}^{2003}, \text{-N}(R^{2002}) \\ &\text{COOR}^{2003}, \text{-N}(R^{2002})(R^{2004}), \text{ wherein} \end{split}$$

 R^{2002} is H or methyl;

 ${f R^{2003}}$ is (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, wherein said (C_{3-7}) cycloalkyl and (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl- are optionally mono-, di-, or tri-substituted with (C_{1-3}) alkyl; and

 \mathbf{R}^{2004} is H or \mathbf{R}^{2003} ;

wherein **Het** is defined as a 3- to 7-membered heterocycle having 1 to 4 heteroatoms each independently selected from O, N and S, which may be saturated, unsaturated or aromatic, and which is optionally fused to at least one other cycle to form a 4- to 14-membered heteropolycycle having wherever possible 1 to 5 heteroatoms, each independently selected from O, N and S, said heteropolycycle being saturated, unsaturated or aromatic;

or a diastereomer thereof or a salt thereof.

2. (**Currently Amended**) The compound according to claim 1 wherein

- **n** is 1 or 2;
- **m** is 1 or 2;
- ${\bf R^1}$ is H, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, or (C₂₋₆)alkynyl, wherein each of said (C₁₋₆)alkyl, (C₂₋₆)alkenyl, or (C₂₋₆)alkynyl are optionally substituted with from one to three halogen atoms;
- R^2 is selected from -CH₂- R^{20} , -NH- R^{20} , -O- R^{20} , -S- R^{20} , -SO- R^{20} , -SO₂- R^{20} , -CH₂O- R^{20} , and -O-X- R^{20} , wherein
 - \boldsymbol{X} is (C_{2-3}) alkenyl, (C_{2-3}) alkynyl, or (C_{1-3}) alkyl; and
 - $\mathbf{R^{20}}$ is $(C_6 \text{ or } C_{10})$ aryl or \mathbf{Het} , wherein said $(C_6 \text{ or } C_{10})$ aryl or \mathbf{Het} is optionally substituted with $\mathbf{R^{200}}$; wherein
 - ${f R^{200}}$ is one to four substituents each independently selected from H, halogen, cyano, $(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, aryl- $(C_{1\text{-}6})$ alkyl-, aryl, ${f Het}$, oxo, thioxo, $-{\bf OR^{201}}$, $-{\bf SR^{201}}$, $-{\bf SOR^{201}}$, $-{\bf SO_2R^{201}}$, $-{\bf N(R^{202})R^{201}}$, and $-{\bf CON(R^{202})R^{201}}$; wherein each of said alkyl, cycloalkyl, aryl and ${f Het}$ is optionally further substituted with ${f R^{2000}}$;
 - ${f R^{201}}$ in each case is independently selected from H, $(C_{1\text{-}6})$ alkyl, $(C_{2\text{-}6})$ alkenyl, aryl, -CO- $(C_{1\text{-}6})$ alkyl and -CO- $(C_{1\text{-}6})$ alkyl, wherein each of said alkyl and aryl is optionally further substituted with ${f R^{2000}}$;
 - \mathbf{R}^{202} in each case is independently selected from H and (C_{1-6}) alkyl;
 - ${f R^{2000}}$ in each case is one to three substituents each independently selected from halogen, aryl, ${f Het}$, $-{f OR^{2001}}$, $-{f SR^{2001}}$, $-{f SOR^{2001}}$, $-{f SO_2R^{2001}}$, cyano, $-{f N(R^{2002})(R^{2001})}$, and ${f R^{2003}}$, wherein said aryl and ${f Het}$ are optionally substituted with one, two or three substituents each independently selected from (C_{1-6}) alkyl and $-{f O-(C_{1-6})}$ alkyl;
 - R^{2001} in each case is independently selected from aryl, aryl-(C₁₋₆)alkyl-, -C(O)- R^{2003} , -C(O)O- R^{2003} , -CON(R^{2002})(R^{2004}) and R^{2004} ;

- \mathbf{R}^{2002} in each case is independently selected from H and (C_{1-6}) alkyl;
- \mathbf{R}^{2003} in each case is independently selected from (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl and (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, wherein said (C_{3-7}) cycloalkyl and (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl- are each optionally substituted with one to three substituents each independently selected from (C₁₋₃)alkyl; and
- \mathbf{R}^{2004} in each case is independently selected from H and \mathbf{R}^{2003} ;
- \mathbb{R}^3 is (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl or (C_{3-7}) cycloalkyl- (C_{1-3}) alkyl-, each optionally substituted with one or more substituents each independently selected from (C_{1-6}) alkyl, (C_{2-6}) alkenyl, halogen, cyano, $-OR^{30}$, $-SR^{30}$, $-C(=O)OR^{30}$, $-C(=O)NH_2$, $-C(=O)NH(C_{1-6})alkyl, -C(=O)N((C_{1-6})alkyl)_2, -NH_2, -NH(C_{1-6})alkyl,$ $-N((C_{1-6})alkyl)_2$, aryl, and aryl $(C_{1-6})alkyl$, wherein \mathbb{R}^{30} is H, $(C_{1-6})alkyl$, aryl, or $aryl(C_{1-6})alkyl-;$
- \mathbb{R}^5 is selected from **B**, **B**-C(=O)-, **B**-O-C(=O)-, **B**-N(\mathbb{R}^{51})-C(=O)-; **B**-N(\mathbb{R}^{51})-C(=S)-, **B**-SO₂- and **B**-N(\mathbb{R}^{51})-SO₂-; wherein **B** is selected from:
 - (i) (C₁₋₁₀)alkyl optionally substituted with one or more substituents each selected independently from -COOH, -COO(C₁₋₆)alkyl, -OH, halogen, $-OC(=O)(C_{1-6})$ alkyl, $-O(C_{1-6})$ alkyl, $-NH_2$, $-NH(C_{1-6})$ alkyl, $-N((C_{1-6})$ alkyl)₂, $-C(=O)NH_2$, $-C(=O)NH(C_{1-6})$ alkyl and $-C(=O)N((C_{1-6})$ alkyl)₂;
 - (ii) (C_{3-7}) cycloalkyl, or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6}) alkyl, halogen, -COOH, -COO (C_{1-6}) alkyl, -OH, -O (C_{1-6}) alkyl, $-NH_2$, $-NH(C_{1-6})$ alkyl, $-N((C_{1-6})$ alkyl)₂, $-C(=O)NH_2$, $-C(=O)NH(C_{1-6})$ alkyl and $-C(=O)N((C_{1-6})alkyl)_2$;
 - aryl or aryl(C₁₋₆)alkyl-, each optionally substituted with one or more (iii) substituents each selected independently from (C₁₋₆)alkyl, -OH, -NH₂, $-NH(C_{1-6})alkyl, -N((C_{1-6})alkyl)_2, -C(=O)NH_2, -C(=O)NH(C_{1-6})alkyl$ and $-C(=O)N((C_{1-6})alkyl)_2;$
 - Het or Het-(C₁₋₆)alkyl-, each optionally substituted with one or more (iv) substituents each selected independently from (C₁₋₆)alkyl, -OH, -NH₂,

- $-NH(C_{1\text{-}6})alkyl, -N((C_{1\text{-}6})alkyl)_2, -C(=O)NH_2, -C(=O)NH(C_{1\text{-}6})alkyl \ and \\ -C(=O)N((C_{1\text{-}6})alkyl)_2; \ and$
- (v) (C_{2-6}) alkenyl, or (C_{2-6}) alkynyl, each optionally substituted with 1 to 3 halogens; and wherein

 $\mathbf{R^{51}}$ is selected from H and (C₁₋₆)alkyl;

provided that B is not $(C_{1.10})$ alkyl unsubstituted when \mathbb{R}^5 is B-O-C(=O)-;

Y is H or (C_{1-6}) alkyl;

 ${\bf R^4}$ and ${\bf R^6}$ are each independently selected from H, $(C_{1\text{-}6})$ alkyl, -O- $(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, $(C_{3\text{-}7})$ cycloalkyl- $(C_{1\text{-}6})$ alkyl-, aryl, **Het**, and aryl- $(C_{1\text{-}6})$ alkyl-;

wherein said (C_{1-6}) alkyl, $-O-(C_{1-6})$ alkyl, (C_{3-7}) cycloalkyl,

 (C_{3-7}) cycloalkyl- (C_{1-6}) alkyl-, aryl and aryl- (C_{1-6}) alkyl- are each optionally substituted with one or more substituents each independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, $O-(C_{1-6})$ alkyl, $-NH_2$, $-NH(C_{1-4})$ alkyl,

 $-N((C_{1\text{--}4})alkyl)_2, -CO\text{-}NH_2, -CO\text{-}NH(C_{1\text{--}4})alkyl, -CO\text{-}N((C_{1\text{--}4})alkyl)_2, -COOH, and \\ -COO(C_{1\text{--}6})alkyl; or$

 ${f R}^4$ and ${f R}^6$ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle optionally fused to at least one other cycle to form a heteropolycycle, each of said heterocycle and heteropolycycle optionally containing from one to three additional heteroatoms each independently selected from N, S and O, and each of said heterocycle and heteropolycycle being optionally substituted with one or more substituents each independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, O- (C_{1-6}) alkyl, -NH₂, -NH (C_{1-4}) alkyl, -N((C_{1-4}) alkyl)₂, -CO-NH₂, -CO-NH (C_{1-4}) alkyl, -CO-N((C_{1-4}) alkyl)₂, -COOH, and -COO (C_{1-6}) alkyl;

with the proviso that when:

 $\boldsymbol{R^5}$ is B-O-C(=O)- or B-N($\boldsymbol{R^{51}}$)-C(=O)-, wherein

 $\mathbf{R}^{\mathbf{51}}$ is H; and

 $\textbf{B} \text{ is selected from } (C_{1\text{--}10}) \text{alkyl, } (C_{3\text{--}7}) \text{cycloalkyl, and } (C_{3\text{--}7}) \text{cycloalkyl-} (C_{1\text{--}4}) \text{alkyl, }$

a) wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally mono-,

di- or tri-substituted with (C_{1-3}) alkyl; and

- b) wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally monoor di-substituted with substituents selected from hydroxy and $O-(C_{1-4})$ alkyl; and
- c) wherein each of said alkyl groups may be mono-, di- or tri-substituted with halogen; and
- d) wherein in each of said cycloalkyl groups being 4-, 5-, 6- or 7-membered, one (for the 4-, 5-, 6-, or 7-membered) or two (for the 5-, 6- or 7-membered) -CH₂-groups not directly linked to each other may be replaced by -O- to provide a heterocycle, such that the O-atom is linked to the -O-C(=O) or -N(**R**⁵¹)-C(=O) group via at least two carbon atoms; and

 R^2 is $O-R^{20}$;

then

R20 cannot be

wherein

 ${f R^{200a}}$ is H, halogen, (C_{1-4}) alkyl, -OH, $-O-(C_{1-4})$ alkyl, $-NH_2$, $-NH(C_{1-4})$ alkyl or $-N((C_{1-4})$ alkyl)₂;

 ${f R^{200b}}$, ${f R^{200c}}$ are each independently halogen, cyano, $(C_{1\text{-}4})$ alkyl, -O- $(C_{1\text{-}4})$ alkyl, -SO- $(C_{1\text{-}4})$ alkyl, or -SO₂- $(C_{1\text{-}4})$ alkyl, wherein each of said alkyl groups is optionally substituted with from one to three halogen atoms; and either ${f R^{200b}}$ or ${f R^{200c}}$ (but not both at the same time) may also be H; or

 R^{200a} and R^{200b} or

 \mathbf{R}^{200a} and \mathbf{R}^{200c} may be covalently bonded to form, together with the two C-atoms to which they are linked, a 5- or 6-membered carbocyclic ring wherein one

or two -CH₂-groups not being directly linked to each other may be replaced each independently by -O- or $N\mathbf{R}^a$ wherein \mathbf{R}^a is H or (C₁₋₄)alkyl, and wherein said carbo- or heterocyclic ring is optionally mono- or disubstituted with (C₁₋₄)alkyl; and

$$\begin{split} R^{2000a} \text{ is } R^{2003}, \text{-N}(R^{2002}) &\text{COR}^{2003}, \text{-N}(R^{2002}) \\ &\text{COOR}^{2003}, \text{-N}(R^{2002})(R^{2004}), \text{ wherein} \end{split}$$

 R^{2002} is H or methyl;

 ${f R^{2003}}$ is (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, wherein said (C_{3-7}) cycloalkyl and (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl- are optionally mono-, di-, or tri-substituted with (C_{1-3}) alkyl; and

 \mathbf{R}^{2004} is H or \mathbf{R}^{2003} :

and with the further proviso that when:

 \mathbb{R}^{8} is \mathbb{B} O C(=0) and \mathbb{B} is selected from methyl and 1,1 dimethylethyl; and \mathbb{R}^{3} is 1,1 dimethylethyl; and

R⁴-is-ethenyl;-and

the group N(R4)R6 is selected from:

R² is not selected from:

wherein **Het** is defined as a 3- to 7-membered heterocycle having 1 to 4 heteroatoms each independently selected from O, N and S, which may be saturated, unsaturated or

aromatic, and which is optionally fused to at least one other cycle to form a 4- to 14-membered heteropolycycle having wherever possible 1 to 5 heteroatoms, each independently selected from O, N and S, said heteropolycycle being saturated, unsaturated or aromatic;

or a diastereomer thereof or a salt thereof.

- 3. (Currently amended) The compound according to claim 1 wherein \mathbb{R}^5 is selected from \mathbf{B} -C(=O)-, \mathbf{B} -O-C(=O)-, and \mathbf{B} -N(\mathbb{R}^{51})-C(=O)-; wherein \mathbf{B} and \mathbb{R}^{51} are defined as in claim 1, provided that B is not (C₁₋₁₀)alkyl unsubstituted when \mathbb{R}^5 is B-O-C(=O)-.
- 4. (Currently Amended) The compound according to claim 3 wherein R⁵¹ is H and B is selected from:
 - (i) (C_{1-7}) alkyl optionally substituted with one or two or three substituents each independently selected from fluoro, chloro, bromo, hydroxy, methoxy and ethoxy; or optionally substituted with -COOCH₃;
 - (ii) (C_{3-7}) cycloalkyl, or (C_{3-7}) cycloalkyl-methyl-, each optionally substituted with one or two substituents each independently selected from methyl, ethyl, hydroxy, methoxy and ethoxy;
 - (iii) benzyl; and
 - (iv) **Het**, wherein **Het** comprises a 3-, 4-, 5-, 6-, or 7-membered heterocyle having one to four heteroatoms each independently selected from O, N, and S, which may be saturated or unsaturated or aromatic;

provided that B is not $(C_{1:7})$ alkyl unsubstituted when \mathbb{R}^{5} is B-O-C(=0)-.

5. (**Previously presented**) The compound according to claim 1 wherein **Y** is H.

- 6. (Previously presented) The compound according to claim 1 wherein \mathbf{R}^3 is (C_{1-8}) alkyl or (C_{3-7}) cycloalkyl, the (C_{1-8}) alkyl being optionally substituted with hydroxy, (C_{1-6}) alkoxy or -C(=O) \mathbf{OR}^{30} , wherein \mathbf{R}^{30} is (C_{1-6}) alkyl or aryl (C_{1-6}) alkyl-.
- 7. (Previously presented) The compound according to claim 1 wherein \mathbb{R}^2 is selected from -O- \mathbb{R}^{20} , -S- \mathbb{R}^{20} , and -O-X- \mathbb{R}^{20} , wherein \mathbb{R}^{20} and X are defined as in claim 1.
- **8.** (Original) The compound according to claim 7 wherein \mathbb{R}^2 is -O-X- \mathbb{R}^{20} , wherein X is (C₃)alkynyl and \mathbb{R}^{20} is (C₆ or C₁₀)aryl.
- 9. (Original) The compound according to claim 7 wherein \mathbb{R}^2 is -O- \mathbb{R}^{20} , wherein \mathbb{R}^{20} is

wherein

 \mathbf{R}^{200d} is $-\mathbf{OR}^{201}$, wherein \mathbf{R}^{201} is $(C_{1\text{-}6})$ alkyl;

 $\boldsymbol{R^{200e}}$ is H or -O $\boldsymbol{R^{201}}$, wherein $\boldsymbol{R^{201}}$ is (C_{1-6})alkyl; and

 $\mathbf{R^{200f}}$ is $(C_{1\text{-}6})$ alkyl, halogen, $-S\mathbf{R^{201}}$, $-SO_2\mathbf{R^{201}}$, or $-O\mathbf{R^{201}}$, wherein $\mathbf{R^{201}}$ is $(C_{1\text{-}6})$ alkyl optionally further substituted with $(C_{3\text{-}7})$ cycloalkyl or phenyl.

- 10. (Original) The compound according to claim 9 wherein R^{200d} is $-OR^{201}$ wherein R^{201} is ethyl.
- 11. (Original) The compound according to claim 7 wherein \mathbb{R}^2 is -O- \mathbb{R}^{20} , wherein \mathbb{R}^{20} is

wherein

one of **A**, **D**, and **E** represents a S atom and the other two of **A**, **D**, and **E** represent C atoms;

---- represents a single bond between a C atom and an S atom, and represents a single bond or a double bond between two C atoms; provided that each C atom is bonded by one double bond;

 ${f R^{200g}}$ is H or ${}^{-}{}{}{}^{-}{}{}{}{}^{-}{}{}^{-}{}{}{}^{-}{}{}{}^{-}{}{}^{-}{}{}^{-}{}{}^{-}{}{}^{-}$

- **12.** (**Previously presented**) The compound according to claim 1 wherein **n** is 1.
- 13. (Previously presented) The compound according to claim 1 wherein \mathbb{R}^1 is (C_{2-6}) alkenyl or (C_{2-6}) alkyl.
- 14. (Previously presented) The compound according to claim 1 wherein m is 2.
- **15.** (**Previously presented**) The compound according to claim 1 wherein:
 - (i) $\mathbf{R^4}$ and $\mathbf{R^6}$ are each independently selected from H, $(C_{1\text{-}6})$ alkyl, $-O\text{-}(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, $(C_{3\text{-}7})$ cycloalkyl- $(C_{1\text{-}6})$ alkyl-, aryl and aryl- $(C_{1\text{-}6})$ alkyl-; wherein said $(C_{1\text{-}6})$ alkyl, $-O\text{-}(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, $(C_{3\text{-}7})$ cycloalkyl- $(C_{1\text{-}6})$ alkyl-, aryl and aryl- $(C_{1\text{-}6})$ alkyl- are each optionally substituted with one to three substituents each independently selected from halogen, $(C_{1\text{-}6})$ alkyl, hydroxy, cyano, $O\text{-}(C_{1\text{-}6})$ alkyl, -COOH, and $-COO(C_{1\text{-}6})$ alkyl; or
 - (ii) R⁴ and R⁶ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle, said heterocycle optionally containing from one to three additional heteroatoms each independently selected from N, S and O, and said 3- to 7-membered monocyclic saturated or unsaturated heterocycle being optionally substituted with one to three

substituents each independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, $O-(C_{1-6})$ alkyl, $-NH_2$, $-NH(C_{1-4})$ alkyl, $-N((C_{1-4})$ alkyl)₂, -COOH, and $-COO(C_{1-6})$ alkyl.

- **16.** (Currently Amended) The compound according to claim 1 wherein:
 - **n** is 1 or 2;
 - **m** is 1 or 2;
 - ${f R^1}$ is H, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, or (C₂₋₆)alkynyl, wherein said (C₁₋₆)alkyl, (C₂₋₆)alkenyl, or (C₂₋₆)alkynyl are optionally substituted with from one to three halogen atoms;
 - ${\bf R^2}$ is selected from -CH₂- ${\bf R^{20}}$, -NH- ${\bf R^{20}}$, -O- ${\bf R^{20}}$, -SO- ${\bf R^{20}}$, -SO- ${\bf R^{20}}$, -SO₂- ${\bf R^{20}}$, -CH₂O- ${\bf R^{20}}$, and -O-X- ${\bf R^{20}}$, wherein

X is (C_{2-3}) alkenyl, (C_{2-3}) alkynyl, or (C_{1-3}) alkyl; and

- ${f R^{20}}$ is $(C_6$ or $C_{10})$ aryl or ${f Het}$, wherein said $(C_6$ or $C_{10})$ aryl or ${f Het}$ is optionally mono-, di-, tri- or tetra-substituted with ${f R^{200}}$, wherein each ${f R^{200}}$ is independently selected from H, halogen, cyano, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, aryl- (C_{1-6}) alkyl-, aryl, ${f Het}$, oxo, thioxo, $-{f OR^{201}}$, $-{f SR^{201}}$, $-{f SO_2R^{201}}$, $-{f N(R^{202})R^{201}}$, and $-{f CON(R^{202})R^{201}}$; wherein each of said alkyl, cycloalkyl, aryl and ${f Het}$ is optionally further substituted with ${f R^{2000}}$;
- ${f R}^{201}$ in each case is independently selected from H, (C₁₋₆)alkyl, aryl, -CO-(C₁₋₆)alkyl and -CO-O-(C₁₋₆)alkyl, wherein each of said alkyl and aryl is optionally further substituted with ${f R}^{2000}$;

 \mathbf{R}^{202} is H or (C₁₋₆)alkyl;

- ${f R^{2000}}$ is one to three substituents each independently selected from halogen, aryl, ${f Het}, -{\bf OR^{2001}}, -{\bf SR^{2001}}, -{\bf SOR^{2001}}, -{\bf SO_2R^{2001}}, {\bf cyano}, -{\bf N(R^{2002})(R^{2001})}, {\bf and}$ ${f R^{2003}}, {\bf wherein said aryl and Het}$ are optionally substituted with one, two or three substituents selected from (C_{1-6}) alkyl and $-{\bf O-(C_{1-6})}$ alkyl;
- \mathbf{R}^{2001} in each case is independently selected from aryl, aryl- (C_{1-6}) alkyl-, -C(O)-

 R^{2003} , $-C(O)O-R^{2003}$, $-CON(R^{2002})(R^{2004})$ and R^{2004} ;

 \mathbf{R}^{2002} is H or (C_{1-6}) alkyl;

 ${f R^{2003}}$ is (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, wherein said (C_{3-7}) cycloalkyl and (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl- are optionally mono-, di-, or tri-substituted with (C_{1-3}) alkyl; and

 \mathbf{R}^{2004} is H or \mathbf{R}^{2003} ;

- is (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl or (C_{3-7}) cycloalkyl- (C_{1-3}) alkyl-, each optionally substituted with one or more substituents independently selected from (C_{1-6}) alkyl, (C_{2-6}) alkenyl, halogen, cyano, $-O\mathbf{R}^{30}$, $-S\mathbf{R}^{30}$, $-C(=O)O\mathbf{R}^{30}$, $-C(=O)NH_2$, $-C(=O)NH(C_{1-6})$ alkyl, $C(=O)N((C_{1-6})$ alkyl)₂, $-NH_2$, $-NH(C_{1-6})$ alkyl, $-N((C_{1-6})$ alkyl)₂, aryl, and aryl (C_{1-6}) alkyl-, wherein \mathbf{R}^{30} is H, (C_{1-6}) alkyl, aryl, or aryl (C_{1-6}) alkyl-;
- **R**⁵ is selected from **B**, **B**-C(=O)-, **B**-O-C(=O)-, **B**-N(\mathbf{R}^{51})-C(=O)-; **B**-N(\mathbf{R}^{51})-C(=S)-, **B**-SO₂- and **B**-N(\mathbf{R}^{51})-SO₂-; wherein **B** is selected from:
 - $\label{eq:condition} \begin{tabular}{ll} (i) & (C_{1\text{-}10}) alkyl \ optionally \ substituted \ with \ one \ or \ more \ substituents \ each \ selected \ independently \ from -COO(C_{1\text{-}6}) alkyl, -OH, \ halogen, \ -OC(=O)(C_{1\text{-}6}) alkyl, -O(C_{1\text{-}6}) alkyl, -NH_2, -NH(C_{1\text{-}6}) alkyl, -N((C_{1\text{-}6}) alkyl)_2, \ -C(=O)NH_2, -C(=O)NH(C_{1\text{-}6}) alkyl \ and -C(=O)N((C_{1\text{-}6}) alkyl)_2; \end{tabular}$
 - $\label{eq:continuous} \begin{tabular}{ll} (ii) & (C_{3-7}) cycloalkyl-(C_{1-4}) alkyl-, each optionally \\ & substituted with one or more substituents each selected independently \\ & from (C_{1-6}) alkyl, halogen, $-COOH, $-COO(C_{1-6})$ alkyl, $-OH, $-O(C_{1-6})$ alkyl, \\ & -NH_2, $-NH(C_{1-6})$ alkyl, $-N((C_{1-6})$ alkyl)_2, $-C(=O)NH_2, $-C(=O)NH(C_{1-6})$ alkyl \\ & and $C(=O)N((C_{1-6})$ alkyl)_2; \end{tabular}$
 - (iii) aryl or aryl(C_{1-6})alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6})alkyl, -OH, -NH₂, -NH(C_{1-6})alkyl, -N((C_{1-6})alkyl)₂, -C(=O)NH₂, -C(=O)NH(C_{1-6})alkyl and C(=O)N((C_{1-6})alkyl)₂;
 - (iv) **Het** or **Het**- (C_{1-6}) alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6}) alkyl, -OH, -NH₂,

- $-NH(C_{1\text{-}6})alkyl, \ -N((C_{1\text{-}6})alkyl)_2, \ -C(=O)NH_2, \ -C(=O)NH(C_{1\text{-}6})alkyl \ and \\ C(=O)N((C_{1\text{-}6})alkyl)_2; \ and$
- (v) (C_{2-6}) alkenyl, or (C_{2-6}) alkynyl, each optionally substituted with 1 to 3 halogens; and wherein

 \mathbf{R}^{51} is selected from H and (C₁₋₆)alkyl;

provided that **B** is not $(C_{1.10})$ alkyl unsubstituted, when \mathbb{R}^5 is **B-O-C**(=0)-;

Y is H or (C_{1-6}) alkyl;

 ${f R}^4$ and ${f R}^6$ are each independently selected from H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl- (C_{1-6}) alkyl-, aryl, ${f Het}$, and aryl- (C_{1-6}) alkyl-; wherein said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl- (C_{1-6}) alkyl-, aryl and aryl- (C_{1-6}) alkyl- are optionally substituted with one or more substituents independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, O- (C_{1-6}) alkyl, -NH $_2$, -NH (C_{1-4}) alkyl, -N((C_{1-4}) alkyl) $_2$, -CO-NH $_2$, -CO-NH (C_{1-4}) alkyl, -CO-N((C_{1-4}) alkyl) $_2$, -COOH, and -COO((C_{1-6}) alkyl; or

 ${f R}^4$ and ${f R}^6$ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle optionally fused to at least one other cycle to form a heteropolycycle, said heterocycle and heteropolycycle optionally containing from one to three further heteroatoms independently selected from N, S and O, and said 3- to 7-membered monocyclic saturated or unsaturated heterocycle being optionally substituted with one or more substituents independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, $O\text{-}(C_{1-6})$ alkyl, -NH₂, -NH(C₁₋₄)alkyl, -N((C₁₋₄)alkyl)₂, -CO-NH₂, -CO-NH(C₁₋₄)alkyl, -CO-N((C₁₋₄)alkyl)₂, -COOH, and -COO(C₁₋₆)alkyl;

with the proviso that when:

 ${f R^5}$ is B-O-C(=O)- or B-N(${f R^{51}}$)-C(=O)-, wherein ${f R^{51}}$ is H; and

 $\textbf{B} \text{ is selected from } (C_{1\text{--}10}) \text{alkyl, } (C_{3\text{--}7}) \text{cycloalkyl, and } (C_{3\text{--}7}) \text{cycloalkyl-} (C_{1\text{--}4}) \text{alkyl, }$

a) wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally mono-, di- or tri-substituted with (C_{1-3}) alkyl; and

- b) wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally monoor di-substituted with substituents selected from hydroxy and $O-(C_{1-4})$ alkyl; and
- c) wherein each of said alkyl groups may be mono-, di- or tri-substituted with halogen; and
- wherein in each of said cycloalkyl groups being 4-, 5-, 6- or 7-membered, one (for the 4-, 5-, 6-, or 7-membered) or two (for the 5-, 6- or 7-membered)
 -CH₂-groups not directly linked to each other may be replaced by -O- to provide a heterocycle, such that the O-atom is linked to the -O-C(=O) or -N(R⁵¹)-C(=O) group via at least two carbon atoms; and
 R² is O-R²⁰:

then

R20 cannot be

wherein

 ${f R^{200a}}$ is H, halogen, $(C_{1\text{-}4})$ alkyl, -OH, $-O\text{-}(C_{1\text{-}4})$ alkyl, $-NH_2$, $-NH(C_{1\text{-}4})$ alkyl or $-N((C_{1\text{-}4})$ alkyl) $_2$;

 ${f R^{200b}}$, ${f R^{200c}}$ are each independently halogen, cyano, $(C_{1\text{-}4})$ alkyl, -O- $(C_{1\text{-}4})$ alkyl, -SO- $(C_{1\text{-}4})$ alkyl, or -SO₂- $(C_{1\text{-}4})$ alkyl, wherein each of said alkyl groups is optionally substituted with from one to three halogen atoms; and either ${f R^{200b}}$ or ${f R^{200c}}$ (but not both at the same time) may also be H; or

 R^{200a} and R^{200b} or

 ${\bf R^{200a}}$ and ${\bf R^{200c}}$ may be covalently bonded to form, together with the two C-atoms to which they are linked, a 5- or 6-membered carbocyclic ring wherein one or two -CH₂-groups not being directly linked to each other may be

replaced each independently by -O- or $N\mathbf{R}^{\mathbf{a}}$ wherein $\mathbf{R}^{\mathbf{a}}$ is H or (C_{1-4}) alkyl, and wherein said carbo- or heterocyclic ring is optionally mono- or disubstituted with (C_{1-4}) alkyl; and

$$\begin{split} R^{2000a} \text{ is } R^{2003}, \text{-N}(R^{2002}) &\text{COR}^{2003}, \text{-N}(R^{2002}) \\ &\text{COOR}^{2003}, \text{-N}(R^{2002})(R^{2004}), \text{ or } \\ &\text{-N}(R^{2002}) &\text{CON}(R^{2002})(R^{2004}), \text{ wherein} \end{split}$$

R²⁰⁰² is H or methyl;

 ${f R}^{2003}$ is (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, wherein said (C_{3-7}) cycloalkyl and (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl- are optionally mono-, di-, or tri-substituted with (C_{1-3}) alkyl; and

 R^{2004} is H or R^{2003} :

wherein **Het** is defined as a 3- to 7-membered heterocycle having 1 to 4 heteroatoms each independently selected from O, N and S, which may be saturated, unsaturated or aromatic, and which is optionally fused to at least one other cycle to form a 4- to 14-membered heteropolycycle having wherever possible 1 to 5 heteroatoms, each independently selected from O, N and S, said heteropolycycle being saturated, unsaturated or aromatic;

or a diastereomer thereof or a salt thereof.

- 17. (Currently Amended) The compound according to claim 1 wherein:

 R⁵ is selected from B-C(=O)-, B-O-C(=O)-, and B-NH-C(=O)-; wherein B is selected from:
 - $(i) \qquad (C_{1\text{-}10}) \text{alkyl optionally substituted with one or more substituents each selected} \\ \text{independently from -COOH, -COO}(C_{1\text{-}6}) \text{alkyl, -OH, halogen, -OC}(=O)(C_{1\text{-}6}) \text{alkyl,} \\ -O(C_{1\text{-}6}) \text{alkyl, -NH}(C_{1\text{-}6}) \text{alkyl, -N}((C_{1\text{-}6}) \text{alkyl})_2, -C(=O) \text{NH}_2, \\ -C(=O) \text{NH}(C_{1\text{-}6}) \text{alkyl and -C}(=O) \text{N}((C_{1\text{-}6}) \text{alkyl})_2; \\ \end{aligned}$
 - (ii) (C_{3-7}) cycloalkyl, or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6}) alkyl, halogen,

- $-COOH, -COO(C_{1\text{-}6}) alkyl, -OH, -O(C_{1\text{-}6}) alkyl, -NH_2, -NH(C_{1\text{-}6}) alkyl, \\ -N((C_{1\text{-}6}) alkyl)_2, -C(=O)NH_2, -C(=O)NH(C_{1\text{-}6}) alkyl \ and -C(=O)N((C_{1\text{-}6}) alkyl)_2; \\ -N((C_{1\text{-}6}) alkyl)_2, -C(=O)NH_2, -C(=O)NH(C_{1\text{-}6}) alkyl \ and -C(=O)N((C_{1\text{-}6}) alkyl)_2; \\ -N((C_{1\text{-}6}) alkyl)_2, -C(=O)NH_2, -C(=O)NH(C_{1\text{-}6}) alkyl \ and -C(=O)N((C_{1\text{-}6}) alkyl)_2; \\ -N((C_{1\text{-}6}) alkyl)_2, -C(=O)NH_2, -C(=O)NH(C_{1\text{-}6}) alkyl \ and -C(=O)N((C_{1\text{-}6}) alkyl)_2; \\ -N((C_{1\text{-}6}) alkyl)_2, -C(=O)NH_2, -C(=O)NH(C_{1\text{-}6}) alkyl \ and -C(=O)N((C_{1\text{-}6}) alkyl)_2; \\ -N((C_{1\text{-}6}) alkyl)_2, -C(=O)NH_2, -C(=O)NH(C_{1\text{-}6}) alkyl \ and -C(=O)N((C_{1\text{-}6}) alkyl)_2; \\ -N((C_{1\text{-}6}) alkyl)_2, -C(=O)NH_2, -C(=O)NH(C_{1\text{-}6}) alkyl \ and -C(=O)N((C_{1\text{-}6}) alkyl)_2; \\ -N((C_{1\text{-}6}) alkyl)_2, -C(=O)NH_2, -C(=O)NH_2, -C(=O)N((C_{1\text{-}6}) alkyl)_2; \\ -N((C_{1\text{-}6}) alkyl)_2, -C((C_{1\text{-}6}) alkyl)_2; \\ -N((C_{1\text{-}6}) alkyl)_2, -C$
- (iii) aryl or aryl(C_{1-6})alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6})alkyl, -OH, -NH₂, -NH(C_{1-6})alkyl, -N((C_{1-6})alkyl)₂, -C(=O)NH₂, -C(=O)NH(C_{1-6})alkyl and -C(=O)N((C_{1-6})alkyl)₂;
- (iv) **Het** or **Het**- (C_{1-6}) alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6}) alkyl, -OH, -NH₂, -NH (C_{1-6}) alkyl, -N((C_{1-6}) alkyl)₂, -C(=O)NH₂, -C(=O)NH (C_{1-6}) alkyl and -C(=O)N((C_{1-6}) alkyl)₂; provided that **B** is not (C_{1-10}) alkyl unsubstituted, when \mathbb{R}^5 is **B**-O-C(=O)-;

 \mathbf{Y} is \mathbf{H} ;

 ${f R}^3$ is (C_{1-8}) alkyl or (C_{3-7}) cycloalkyl, each of which are optionally substituted with one or more substituents each independently selected from (C_{1-6}) alkyl, $-{f OR}^{30}$, and $-C(=O){f OR}^{30}$, wherein ${f R}^{30}$ is H, (C_{1-6}) alkyl, or aryl (C_{1-6}) alkyl-;

 \mathbf{R}^2 is -O-X- \mathbf{R}^{20} , wherein X is (C₃)alkynyl and \mathbf{R}^{20} is (C₆ or C₁₀)aryl; or

 \mathbf{R}^2 is -O- \mathbf{R}^{20} wherein \mathbf{R}^{20} is

wherein

 \mathbf{R}^{200d} is $-\mathbf{OR}^{201}$, wherein \mathbf{R}^{201} is (C_{1-6}) alkyl;

 \mathbf{R}^{200e} is H or $-\mathbf{O}\mathbf{R}^{201}$, wherein \mathbf{R}^{201} is (C_{1-6}) alkyl; and

 \mathbf{R}^{200f} is (C_{1-6}) alkyl, halogen, $-S\mathbf{R}^{201}$, $-SO_2\mathbf{R}^{201}$, or $-O\mathbf{R}^{201}$, wherein \mathbf{R}^{201} is

 $(C_{1\text{-}6}) \text{alkyl optionally further substituted with } (C_{3\text{-}7}) \text{cycloalkyl or phenyl;}$ or R^{20} is

wherein

one of **A**, **D**, and **E** represents a S atom and the other two of **A**, **D**, and **E** represent C atoms:

---- represents a single bond between a C atom and an S atom, and represents a single bond or a double bond between two C atoms; provided that each C atom is bonded by one double bond;

 ${\bf R^{200g}}$ is H or ${\bf \cdot OR^{201}}$, wherein ${\bf R^{201}}$ is (C_{1-6}) alkyl or (C_{2-6}) alkenyl; and ${\bf R^{200h}}$ is one or two substituents each independently selected from H, cyano, (C_{1-6}) alkyl and $-SO_2$ - (C_{1-6}) alkyl; wherein each ${\bf R^{200h}}$ is bonded to a C atom which would otherwise bear a hydrogen atom;

 $\mathbf{R^1}$ is (C_{2-6}) alkenyl or (C_{2-6}) alkyl;

n is 1;

m is 2; and

 ${f R^4}$ and ${f R^6}$ are each independently selected from H, $(C_{1\text{-}6})$ alkyl, $-O\text{-}(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, $(C_{3\text{-}7})$ cycloalkyl- $(C_{1\text{-}6})$ alkyl-, aryl and aryl- $(C_{1\text{-}6})$ alkyl-; wherein said $(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, $(C_{3\text{-}7})$ cycloalkyl- $(C_{1\text{-}6})$ alkyl-, aryl and aryl- $(C_{1\text{-}6})$ alkyl- are optionally substituted with one to three substituents independently selected from halogen, $(C_{1\text{-}6})$ alkyl, hydroxy, cyano, $O\text{-}(C_{1\text{-}6})$ alkyl, -COOH, and -COO $(C_{1\text{-}6})$ alkyl; or

 ${f R}^4$ and ${f R}^6$ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle, said heterocycle optionally containing from one to three further heteroatoms each independently selected from N, S and O, and said 3- to 7-membered monocyclic saturated or unsaturated heterocycle being optionally substituted with one to three substituents each independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, $O-(C_{1-6})$ alkyl, $-NH_2$, $-NH(C_{1-4})$ alkyl, $-N((C_{1-4})$ alkyl)₂,—COOH, and $-COO(C_{1-6})$ alkyl;

or a diastereomer thereof or a salt thereof.

- 18. (Previously presented) A pharmaceutical composition comprising an anti-hepatitis C virally effective amount of a compound according to claim 1, or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier medium or auxiliary agent.
- **19. (Original)** The pharmaceutical composition according to claim 18 additionally comprising a therapeutically effective amount of at least one other antiviral agent.
- 20. (Withdrawn) A method of treating or preventing a hepatitis C viral infection in a mammal comprising administering to the mammal an anti-hepatitis C virally effective amount of a compound according to claim 1, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition comprising said compound or pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier medium or auxiliary agent.

21. – 22. (Canceled)

23. (Withdrawn) A method of inhibiting the replication of hepatitis C virus by exposing the virus to a hepatitis C viral NS3 protease inhibiting amount of the compound according to claim 1, or a pharmaceutically acceptable salt thereof.

24. (Canceled)

- 25. (Previously Presented) An article of manufacture comprising a composition effective to treat an HCV infection or to inhibit the NS3 protease of HCV; and packaging material comprising a label which indicates that the composition can be used to treat infection by the hepatitis C virus; wherein the composition comprises a compound according to claim 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier medium or auxiliary agent.
- **26.** (**Previously Presented**) A process for the preparation of a compound according to claim 1, comprising:
 - a) reacting a compound of formula (II):

$$H_2N$$
 SO_m R^6 (II)

wherein \mathbf{R}^4 , \mathbf{R}^6 and \mathbf{m} are defined as in claim 1, with a strong base so as to form the corresponding amide anion and

b) reacting an azalactone of formula (III):

wherein \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^5 , Y and n are defined as in claim 1, with the amide anion formed in step a).

27. (**Original**) An azalactone intermediate compound of formula (III):

$$\mathbf{R}^{5} \bigvee_{\mathbf{Y}}^{\mathbf{R}^{3}} \bigvee_{\mathbf{O}}^{\mathbf{R}^{2}} \bigvee_{\mathbf{O}}^{\mathbf{R}^{1}} (\mathbf{CH}_{2})_{n}$$
(III)

wherein \mathbf{R}^1 , \mathbf{R}^2 , \mathbf{R}^3 , \mathbf{R}^5 , \mathbf{Y} and \mathbf{n} are defined as in claim 1.

28. (Canceled)