	Prove that a stable equilibrium cannot be established by electrostatic forces alone.
	A particle is in stable equilibrium if it experiences no net force and upon being displaced by a small distance, returns to the equilibrium position due to the restoling force. Let q, a positive charge, rest at point P, (arbitrary) in stable equilibrium.
	$\Rightarrow \vec{F_q} = q\vec{E} \text{foll any } q.$
	By definition, if q, is displaced in some neighbourhood. V from P, a extoring force with corresponding field E, acts towards P.
	By Gauss' Law; $\oint \vec{E}_{1} \cdot \vec{n} = \frac{9}{4}$
	S= DV E
	But as is dilected away from Po as per convention.
	$\vec{E} \cdot \vec{n} < 0$
	$\Rightarrow \oint \vec{E}_{r} \cdot \vec{n} < 0$
-	$\Rightarrow \frac{9}{\epsilon} < 0$, which is false.
	Heme, electrostatic fores alone cannot establish stable equilibrium.

William Communication of the C