Elastic Scheduling for the ARM Augmented Reality Heads-Up Display

Marion Sudvarg, Ao Li, Chris Gill, Ning Zhang

Thursday, 11 July, 2024 ECRTS 2024 Industrial Challenge

OV²SLAM

Vehicle orientation + trajectory

3D map of surroundings

Identify objects / features in map

30-60 fps

Challenge: Construct a Scheduling Policy

- Meet the desired timing semantics of the application
- Critical tasks at 30-60fps
- Non-critical tasks can accommodate some dropped frames
- Maintain guarantees with "aggressor" workloads
- Maintain guarantees in dynamic environments

Dropping frames is wasted work

Why not adapt (extend) task *periods* to maintain schedulability?

Elastic Scheduling

Giorgio Buttazzo, Giuseppe Lipari, and Luca Abeni. "Elastic task model for adaptive rate control." RTSS 1998

Elastic Scheduling

Tasks are characterized by:

- Minimum period 60fps → 16.7 ms
- Maximum period SLAM front-end Frame Prep Bundle Adj. $30 \text{fps} \longrightarrow 33.3 \text{ ms}$ 100 ms 500 ms
- Elasticity (adaptability)

Utilizations compressed from max proportionally to elasticity (stopping at min) until system schedulable

Giorgio Buttazzo, Giuseppe Lipari, and Luca Abeni. "Elastic task model for adaptive rate control." RTSS 1998

Dataflow Imposes Harmonic Period Constraints

Elastic Scheduling of Implicit-Deadline Tasks with *Harmonic* Periods

Marion Sudvarg, Ao Li, Daisy Wang, Sanjoy Baruah, Jeremy Buhler, Chris Gill, Ning Zhang, Pontus Ekberg. "Elastic Scheduling for Harmonic Task Systems." RTAS 2024.

Remainder of this Proposal

Brief overview of harmonic elastic scheduling

Results for ORB-SLAM3

Model extensions needed for ARM HUD challenge

Problem

Proportional compression may not maintain the harmonic period relationships

Solution

Use equivalent constrained optimization

$$\min_{\{U_i\}} \sum_{i=1}^{N} \frac{1}{E_i} (U_i^{max} - U_i)^2$$
s.t.
$$\sum_{i=1}^{N} U_i \le U_D$$

$$\forall_i, \quad U_i^{min} \le U_i \le U_i^{max}$$

$$\forall_{i,j}, \quad \frac{T_i}{T_i} \in \mathbb{N} \text{ or } \frac{T_j}{T_i} \in \mathbb{N}$$

Thidapat (Tam) Chantem, Xiaobo (Sharon) Hu, and Michael D. Lemmon. "Generalized Elastic Scheduling." RTSS 2006

Problem

Solving this constrained-optimization problem is NP-hard

Build a lookup table offline

to enable polynomial-time *online* compression in response to changes in available utilization

Overhead of Task Period Reassignment

Case Study: ORB-SLAM3

Selecting elastic constants to *minimize result error* within the constraints of schedulability

$$\min_{\{U_i\}} \quad \sum_{i=1}^{N} \frac{1}{E_i} \left(U_i^{max} - U_i \right)^2$$

$$\min_{\{R_i\}} \sum_{i=1}^{N} \frac{C_i^2}{E_i} \left(R_i^{max} - R_i \right)^2$$

$Error = 10^4 \times Relative Translational Error$

Quality of Produced Map

Extensions Needed for Online Adaptation in ARM AR HUD

Multicore Scheduling

Assume *m* processors

Fluid scheduling
$$\sum U_i \leq m$$

Global EDF

$$\sum_{i} U_i \le m - (m - 1) \cdot \max_{\tau_i \in \Gamma} \{U_i\}$$

Partitioned EDF
$$\sum_{i} U_{i} \leq \frac{m+1}{2}$$

Dynamic Execution Times

 Workloads depend on environment

Execution times vary with resource contention

Algorithm still inefficient in these scenarios

Takeaway Message

- ARM's AR HUD presents several challenges
- We focus on designing a dynamic scheduling policy
- We propose to apply elastic scheduling for harmonic tasks
- Needs to be extended to multiprocessor
- Must consider dynamic execution times

SLAM systems synchronize frames from multiple input sources

Visual Inertial Lidar

ORB-SLAM3

Harmonic Periods

Harmonic Chains

Front-End

Triangulation

Triangulation

Elastic Scheduling of Implicit-Deadline Tasks with *Harmonic* Periods

This Talk

- 1. Selecting harmonic periods
- 2. Elastic scheduling with harmonic periods
- 3. Case study: atmospheric aerosol sampling
- 4. Case study: ORB-SLAM3
- 5. Open questions in computational complexity

The Harmonic Elastic Problem

For n tasks, table size at most

$$k(n-1)^{2\lfloor \log k \rfloor}$$

For n tasks, table size at most

$$k(n-1)^{2\lfloor \log k \rfloor}$$

Case Studies

The Fast Integrated Mobility Spectrometer (FIMS)

The Fast Integrated Mobility Spectrometer (FIMS)

Image courtesy https://www.seilergeodrones.com/shop/dji-matrice-300-rtk/

The Fast Integrated Mobility Spectrometer (FIMS)

$$Error = 1000 \times (1 - \theta)$$

Process Image

HK Data

Data Inversion

With utilization limited to 0.1-0.5 by a high-priority interfering task, no FIMS tasks missed their deadlines

ORB-SLAM3

Synthetic Task Sets

Number of projected harmonic zones on last task at most k^2

For n tasks, table size at most

$$k(n-1)^{2\lfloor \log k \rfloor}$$

Problem

Solving this constrained-optimization problem is NP-hard

Number Partitioning

Can a set of integers $\{a_1, a_2, ..., a_n\}$ be partitioned into subsets S_1 and S_2 so that the sum of integers in each subset are equal?

Construct a set of tasks $\{\tau_1, \tau_2, ..., \tau_n\}$ Periods may be selected from [1,2]

A dummy task τ_{n+1} has period 1

Tasks are partitioned into sets of periods 1 and 2