Study Guide: Solving differential equations with finite elements

Hans Petter Langtangen^{1,2}

Center for Biomedical Computing, Simula Research Laboratory 1 Department of Informatics, University of ${\rm Oslo}^2$

Nov 11, 2013

Differential equation models

Our aim is to extend the ideas for approximating f by u, or solving

$$u = f$$

to real differential equations like[[[

$$-u'' + bu = f$$
, $u(0) = 1$, $u'(L) = D$

Three methods are addressed:

- least squares
- @ Galerkin/projection
- collocation (interpolation)

Method 2 will be totally dominating!

Abstract differential equation

$$\mathcal{L}(u) = 0, \quad x \in \Omega \tag{1}$$

Examples (1D problems):

$$\mathcal{L}(u) = \frac{d^2u}{dx^2} - f(x),\tag{2}$$

$$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(x) \frac{du}{dx} \right) + f(x), \tag{3}$$

$$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(u) \frac{du}{dx} \right) - au + f(x), \tag{4}$$

$$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(u) \frac{du}{dx} \right) + f(u, x)$$
 (5)

Abstract boundary conditions

$$\mathcal{B}_0(u) = 0, \ x = 0, \quad \mathcal{B}_1(u) = 0, \ x = L$$
 (6)

Examples:

$$\mathcal{B}_i(u) = u - g,$$
 Dirichlet condition (7)

$$\mathcal{B}_i(u) = -\alpha \frac{du}{dx} - g,$$
 Neumann condition (8)

$$\mathcal{B}_i(u) = -\alpha \frac{du}{dx} - h(u - g),$$
 Robin condition (9)

Reminder about notation

- $u_e(x)$ is the symbol for the *exact* solution of $\mathcal{L}(u_e) = 0$
- u(x) denotes an approximate solution
- We seek $u \in V$
- $V = \text{span}\{\psi_0(x), \dots, \psi_N(x)\}, V \text{ has basis } \{\psi_i\}_{i \in \mathcal{I}_s}$
- $\mathcal{I}_s = \{0, \dots, N\}$ is an index set
- $u(x) = \sum_{j \in \mathcal{I}_s} c_j \psi_j(x)$
- Inner product: $(u, v) = \int_{\Omega} uv \, dx$
- Norm: $||u|| = \sqrt{(u, u)}$

New topics

Much is similar to approximating a function (solving u = f), but two new topics are needed:

- Variational formulation of the differential equation problem (including integration by parts)
- Handling of boundary conditions

Residual-minimizing principles

- When solving u = f we knew the error e = f u and could use principles for minimizing the error
- When solving $\mathcal{L}(u_{\rm e})=0$ we do not know $u_{\rm e}$ and cannot work with the error $e=u_{\rm e}-u$
- We only have the error in the equation: the residual R

Inserting $u = \sum_{j} c_{j} \psi_{j}$ in $\mathcal{L} = 0$ gives a residual

$$R = \mathcal{L}(u) = \mathcal{L}(\sum_{j} c_{j} \psi_{j}) \neq 0$$
 (10)

Goal: minimize R wrt $\{c_i\}_{i\in\mathcal{I}_s}$ (and hope it makes a small e too)

$$R = R(c_0, \ldots, c_N; x)$$

The least squares method

Idea: minimize

$$E = ||R||^2 = (R, R) = \int_{\Omega} R^2 dx$$
 (11)

Minimization wrt $\{c_i\}_{i\in\mathcal{I}_s}$ implies

$$\frac{\partial E}{\partial c_i} = \int_{\Omega} 2R \frac{\partial R}{\partial c_i} dx = 0 \quad \Leftrightarrow \quad (R, \frac{\partial R}{\partial c_i}) = 0, \quad i \in \mathcal{I}_s$$
 (12)

 $\mathit{N}+1$ equations for $\mathit{N}+1$ unknowns $\{\mathit{c}_i\}_{i\in\mathcal{I}_s}$

The Galerkin method

Idea: make R orthogonal to V,

$$(R, v) = 0, \quad \forall v \in V \tag{13}$$

This implies

$$(R,\psi_i)=0, \quad i\in\mathcal{I}_s \tag{14}$$

N+1 equations for N+1 unknowns $\{c_i\}_{i\in\mathcal{I}_s}$

The Method of Weighted Residuals

Generalization of the Galerkin method: demand R orthogonal to some space W, possibly $W \neq V$:

$$(R, v) = 0, \quad \forall v \in W \tag{15}$$

If $\{w_0, \ldots, w_N\}$ is a basis for W:

$$(R, w_i) = 0, \quad i \in \mathcal{I}_s \tag{16}$$

- N+1 equations for N+1 unknowns $\{c_i\}_{i\in\mathcal{I}_s}$
- Weighted residual with $w_i = \partial R/\partial c_i$ gives least squares

Terminology: test and trial Functions

- ψ_j used in $\sum_i c_j \psi_j$ is called *trial function*
- ψ_i or w_i used as weight in Galerkin's method is called *test* function

The collocation method

Idea: demand R = 0 at N + 1 points

$$R(x_i; c_0, \dots, c_N) = 0, \quad i \in \mathcal{I}_s$$
 (17)

Note: The collocation method is a weighted residual method with delta functions as weights

$$0 = \int_{\Omega} R(x; c_0, \ldots, c_N) \delta(x - x_i) dx = R(x_i; c_0, \ldots, c_N)$$

property of
$$\delta(x)$$
: $\int_{\Omega} f(x)\delta(x-x_i)dx = f(x_i), \quad x_i \in \Omega$ (18)

Examples on using the principles

Goal.

Exemplify the least squares, Galerkin, and collocation methods in a simple 1D problem with global basis functions.

The first model problem

$$-u''(x) = f(x), \quad x \in \Omega = [0, L], \quad u(0) = 0, \ u(L) = 0$$
 (19)

Basis functions:

$$\psi_i(x) = \sin\left((i+1)\pi\frac{x}{I}\right), \quad i \in \mathcal{I}_s$$
 (20)

The residual:

$$R(x; c_0, \dots, c_N) = u''(x) + f(x),$$

$$= \frac{d^2}{dx^2} \left(\sum_{j \in \mathcal{I}_s} c_j \psi_j(x) \right) + f(x),$$

$$= -\sum_{i \in \mathcal{I}_s} c_j \psi_j''(x) + f(x)$$
(21)

Boundary conditions

Since u(0) = u(L) = 0 we must ensure that all $\psi_i(0) = \psi_i(L) = 0$. Then

$$u(0) = \sum_{j} c_{j} \psi_{j}(0) = 0, \quad u(L) = \sum_{j} c_{j} \psi_{j}(L)$$

- u known: Dirichlet boundary condition
- u' known: Neumann boundary condition
- Must have $\psi_i = 0$ where Dirichlet conditions apply

The least squares method; principle

$$(R, \frac{\partial R}{\partial c_i}) = 0, \quad i \in \mathcal{I}_s$$

$$\frac{\partial R}{\partial c_i} = \frac{\partial}{\partial c_i} \left(\sum_{j \in \mathcal{I}_s} c_j \psi_j''(x) + f(x) \right) = \psi_i''(x) \tag{22}$$

Because:

$$\frac{\partial}{\partial c_i} \left(c_0 \psi_0'' + c_1 \psi_1'' + \dots + c_{i-1} \psi_{i-1}'' + c_i \psi_i'' + c_{i+1} \psi_{i+1}'' + \dots + c_N \psi_N'' \right) = c_0 + c_0$$

The least squares method; equation system

$$\left(\sum_{i} c_{j} \psi_{j}^{"} + f, \psi_{i}^{"}\right) = 0, \quad i \in \mathcal{I}_{s}$$
(23)

Rearrangement:

$$\sum_{i} (\psi_i'', \psi_j'') c_j = -(f, \psi_i''), \quad i \in \mathcal{I}_s$$
 (24)

This is a linear system

$$\sum_{i\in\mathcal{I}}A_{i,j}c_j=b_i,\quad i\in\mathcal{I}_s$$

with

$$A_{i,j} = (\psi_i'', \psi_j'')$$

$$= \pi^4 (i+1)^2 (j+1)^2 L^{-4} \int_0^L \sin\left((i+1)\pi \frac{x}{L}\right) \sin\left((j+1)\pi \frac{x}{L}\right) dx$$

$$= \begin{cases} \frac{1}{2} L^{-3} \pi^4 (i+1)^4 & i=j\\ 0, & i\neq j \end{cases}$$
(25)

Orthogonality of the basis functions gives diagonal matrix

Useful property:

$$\int_{0}^{L} \sin\left((i+1)\pi\frac{x}{L}\right) \sin\left((j+1)\pi\frac{x}{L}\right) dx = \delta_{ij}, \qquad \delta_{ij} = \begin{cases} \frac{1}{2}L & i=j\\ 0, & i\neq j \end{cases}$$

$$\Rightarrow (\psi_{i}'', \psi_{j}'') = \delta_{ij}, \text{ i.e., diagonal } A_{i,j}, \text{ and we can easily solve for } c_{i}:$$

$$c_{i} = \frac{2L}{\pi^{2}(i+1)^{2}} \int_{0}^{L} f(x) \sin\left((i+1)\pi\frac{x}{L}\right) dx \qquad (28)$$

(28)

Least squares method; solution

Let's sympy do the work (f(x) = 2):

 $c_{i} = 4 \frac{L^{2}\left((-1)^{i} + 1\right)}{\pi^{3}\left(i^{3} + 3i^{2} + 3i + 1\right)}, \quad u(x) = \sum_{k=0}^{N/2} \frac{8L^{2}}{\pi^{3}(2k+1)^{3}} \sin\left((2k+1)\pi \frac{x}{L}\right)$ Fast decay: $c_2 = c_0/27$, $c_4 = c_0/125$ - only one term might be good enough:

 $u(x) \approx \frac{8L^2}{\pi^3} \sin\left(\pi \frac{x}{L}\right)$.

t decay:
$$c_2 = c_0/27$$
, $c_4 = c_0/125$ - d enough:

The Galerkin method; principle

R = u'' + f:

$$(u''+f,v)=0, \forall v\in V,$$

or

$$(u'', v) = -(f, v), \quad \forall v \in V$$
 (30)

This is a *variational formulation* of the differential equation problem.

 $\forall v \in V$ means for all basis functions:

$$\left(\sum_{i\in\mathcal{I}_s}c_j\psi_j'',\psi_i\right)=-(f,\psi_i),\quad i\in\mathcal{I}_s\tag{31}$$

The Galerkin method; solution

Since $\psi_i'' \propto \psi_i$, Galerkin's method gives the same linear system and the same solution as the least squares method (in this particular example).

The collocation method

R=0 (i.e.,the differential equation) must be satisfied at N+1 points:

$$-\sum_{j\in\mathcal{I}_s}c_j\psi_j''(x_i)=f(x_i),\quad i\in\mathcal{I}_s$$
(32)

This is a linear system $\sum_{i} A_{i,j} = b_i$ with entries

$$A_{i,j} = -\psi_j''(x_i) = (j+1)^2 \pi^2 L^{-2} \sin\left((j+1)\pi \frac{x_i}{L}\right), \quad b_i = 2$$

Choose: N = 0, $x_0 = L/2$

$$c_0=2L^2/\pi^2$$

Comparison of the methods

- Exact solution: u(x) = x(L x)
- Galerkin or least squares (N = 0): $u(x) = 8L^2\pi^{-3}\sin(\pi x/L)$
- Collocation method (N=0): $u(x)=2L^2\pi^{-2}\sin(\pi x/L)$.
- Max error in Galerkin/least sq.: $-0.008L^2$
- Max error in collocation: 0.047L²

Integration by parts

Second-order derivatives will hereafter be integrated by parts

$$\int_{0}^{L} u''(x)v(x)dx = -\int_{0}^{L} u'(x)v'(x)dx + [vu']_{0}^{L}$$

$$= -\int_{0}^{L} u'(x)v'(x)dx + u'(L)v(L) - u'(0)v(0)$$
(33)

Motivation:

- Lowers the order of derivatives
- Gives more symmetric forms (incl. matrices)
- Enables easy handling of Neumann boundary conditions
- Finite element basis functions φ_i have discontinuous derivatives (at cell boundaries) and are not suited for terms with φ_i''

Boundary function; principles

- What about nonzero Dirichlet conditions? Say u(L) = D
- We always require $\psi_i(L) = 0$ (i.e., $\psi_i = 0$ where Dirichlet

Boundary function; example (1)

Dirichlet conditions: u(0) = C and u(L) = D. Choose for example

$$B(x) = \frac{1}{L}(C(L - x) + Dx): \qquad B(0) = C, \ B(L) = D$$

$$u(x) = B(x) + \sum_{j \in \mathcal{I}_s} c_j \psi_j(x), \qquad (34)$$

$$u(0) = B(0) = C, \quad u(L) = B(L) = D$$

Boundary function; example (2)

Dirichlet condition: u(L) = D. Choose for example

$$B(x) = D$$
: $B(L) = D$

$$u(x) = B(x) + \sum_{j \in \mathcal{I}_s} c_j \psi_j(x), \tag{35}$$

$$u(L) = B(L) = D$$

Impact of the boundary function on the space where we seek the solution

- $\{\psi_i\}_{i\in\mathcal{I}_{\varepsilon}}$ is a basis for V
- $\sum_{j\in\mathcal{I}_s} c_j \psi_j(x) \in V$
- But $u \notin V!$
- Reason: say u(0) = C and $u \in V$ (any $v \in V$ has v(0) = C, then $2u \notin V$ because 2u(0) = 2C
- When $u(x) = B(x) + \sum_{j \in \mathcal{I}_s} c_j \psi_j(x)$, $B \neq 0$, $B \notin V$ (in general) and $u \notin V$, but $(u B) \in V$ since $\sum_i c_j \psi_j \in V$

Abstract notation for variational formulations

The finite element literature (and much FEniCS documentation) applies an abstract notation for the variational formulation:

Find
$$(u - B) \in V$$
 such that

$$a(u, v) = L(v) \quad \forall v \in V$$

Example on abstract notation

$$-u'' = f$$
, $u'(0) = C$, $u(L) = D$, $u = D + \sum_{j} c_{j} \psi_{j}$

Variational formulation:

$$\int_{\Omega} u'v'dx = \int_{\Omega} fvdx \quad -v(0)Cor \quad (u',v') = (f,v)-v(0)C \quad \forall v \in V$$

Abstract formulation: finn $(u - B) \in V$ such that

$$a(u,v) = L(v) \quad \forall v \in V$$

We identify

$$a(u, v) = (u', v'), L(v) = (f, v) - v(0)C$$

Bilinear and linear forms

- a(u, v) is a bilinear form
- L(v) is a linear form

Linear form means

$$L(\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2) = \alpha_1 L(\mathbf{v}_1) + \alpha_2 L(\mathbf{v}_2),$$

Bilinear form means

$$a(\alpha_1 u_1 + \alpha_2 u_2, v) = \alpha_1 a(u_1, v) + \alpha_2 a(u_2, v),$$

 $a(u, \alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 a(u, v_1) + \alpha_2 a(u, v_2)$

In nonlinear problems: Find $(u - B) \in V$ such that $F(u; v) = 0 \ \forall v \in V$

The linear system associated with abstract form

$$a(u,v) = L(v) \quad \forall v \in V \quad \Leftrightarrow \quad a(u,\psi_i) = L(\psi_i) \quad i \in \mathcal{I}_s$$

We can now derive the corresponding linear system once and for all:

$$a(\sum_{j\in\mathcal{I}_s}c_j\psi_j,\psi_i)c_j=L(\psi_i)\quad i\in\mathcal{I}_s$$

Because of linearity,

$$\sum_{j\in\mathcal{I}_{s}}\underbrace{a(\psi_{j},\psi_{i})}_{A_{i,i}}c_{j}=\underbrace{L(\psi_{i})}_{b_{i}}\quad i\in\mathcal{I}_{s}$$

Given a(u, v) and L(v) in a problem, we can immediately generate the linear system:

$$A_{i,j} = a(\psi_i, \psi_i), \quad b_i = L(\psi_i)$$

Equivalence with minimization problem

 $\mathsf{If}\ \mathsf{a}(\mathsf{u},\mathsf{v})=\mathsf{a}(\mathsf{v},\mathsf{u}),$

$$a(u, v) = L(v) \quad \forall v \in V,$$

is equivalent to minimizing the functional

$$F(v) = \frac{1}{2}a(v,v) - L(v)$$

over all functions $v \in V$. That is,

$$F(u) \leq F(v) \quad \forall v \in V.$$

- Much used in the early days of finite elements
- Still much used in structural analysis and elasticity
- Not as general as Galerkin's method (since a(u, v) = a(v, u))

Examples on variational formulations

Goal.

Derive variational formulations for many prototype differential equations in 1D that include

- variable coefficients
- mixed Dirichlet and Neumann conditions
- nonlinear coefficients

Variable coefficient; problem

$$-\frac{d}{dx}\left(\alpha(x)\frac{du}{dx}\right) = f(x), \quad x \in \Omega = [0, L], \ u(0) = C, \ u(L) = D$$
(36)

- Variable coefficient $\alpha(x)$
- Nonzero Dirichlet conditions at x = 0 and x = L
- Must have $\psi_i(0) = \psi_i(L) = 0$
- $V = \mathsf{span}\{\psi_0, \dots, \psi_N\}$
- $v \in V$: v(0) = v(L) = 0

$$u(x) = B(x) + \sum_{j \in \mathcal{I}_s} c_j \psi_i(x)$$

$$B(x) = C + \frac{1}{I}(D - C)x$$

Variable coefficient; variational formulation (1)

$$R = -\frac{d}{dx} \left(a \frac{du}{dx} \right) - f$$

Galerkin's method:

$$(R, v) = 0, \forall v \in V,$$

or with integrals:

$$\int_{\Omega} \left(\frac{d}{dx} \left(\alpha \frac{du}{dx} \right) - f \right) v \, \mathrm{d}x = 0, \quad \forall v \in V.$$

Variable coefficient; variational formulation (2)

Integration by parts:

$$-\int_{\Omega} \frac{d}{dx} \left(\alpha(x) \frac{du}{dx} \right) v \, dx = \int_{\Omega} \alpha(x) \frac{du}{dx} \frac{dv}{dx} \, dx - \left[\alpha \frac{du}{dx} v \right]_{0}^{L}.$$

Boundary terms vanish since v(0) = v(L) = 0

Variational formulation.

Find $(u - B) \in V$ such that

$$\int_{\Omega} \alpha(x) \frac{du}{dx} \frac{dv}{dx} dx = \int_{\Omega} f(x) v dx, \quad \forall v \in V,$$

Compact notation:

$$\underbrace{(\alpha u', v')}_{a(u,v)} = \underbrace{(f, v)}_{L(v)}, \quad \forall v \in V$$

Variable coefficient; linear system (the easy way)

With

$$a(u, v) = (\alpha u', v), \quad L(v) = (f, v)$$

we can just use the formula for the linear system:

$$A_{i,j} = a(\psi_j, \psi_i) = (\alpha \psi'_j, \psi'_i) = \int_{\Omega} \alpha \psi'_j \psi'_i \, \mathrm{d}x = \int_{\Omega} \psi'_i \alpha \psi'_j \, \mathrm{d}x = a(\psi_i, \psi_j) =$$

$$b_i = (f, \psi_i) = \int_{\Omega} f \psi_i \, \mathrm{d}x$$

Variable coefficient; linear system (full derivation)

 $v = \psi_i$ and $u = B + \sum_i c_i \psi_i$:

$$(\alpha B' + \alpha \sum_{i \in \mathcal{I}} c_j \psi'_j, \psi'_i) = (f, \psi_i), \quad i \in \mathcal{I}_s.$$

Reorder to form linear system:

$$\sum (\alpha \psi_j', \psi_i') c_j = (f, \psi_i) + (a(D - C)L^{-1}, \psi_i'), \quad i \in \mathcal{I}_s.$$

This is $\sum_{i} A_{i,j} c_i = b_i$ with

 $i \in \mathcal{I}_s$

$$A_{i,j} = (a\psi'_j, \psi'_i) = \int_{\Omega} \alpha(x)\psi'_j(x)\psi'_i(x) dx$$

$$b_i = (f, \psi_i) + (a(D - C)L^{-1}, \psi'_i) = \int_{\Omega} \left(f(x)\psi_i(x) + \alpha(x) \frac{D - C}{L} \psi'_i(x) \right)$$

First-order derivative in the equation and boundary condition; problem

$$-u''(x) + bu'(x) = f(x), \quad x \in \Omega = [0, L], \ u(0) = C, \ u'(L) = E$$
(37)

New features:

- first-order derivative u' in the equation
- boundary condition with u': u'(L) = E

Initial steps:

- Must force $\psi_i(0) = 0$ because of Dirichlet condition at x = 0
- Boundary function: B(x) = C(L x) or just B(x) = C
- No requirements on $\psi_i(L)$ (no Dirichlet condition at x = L)

First-order derivative in the equation and boundary condition; details

$$u = C + \sum_{j \in \mathcal{I}_s} c_j \psi_i(x)$$

Galerkin's method: multiply by v, integrate over Ω , integrate by parts.

$$(-u'' + bu' - f, v) = 0, \quad \forall v \in V$$

$$(u', v') + (bu', v) = (f, v) + [u'v]_0^L, \quad \forall v \in V$$

Now, $[u'v]_0^L = u'(L)v(L) = Ev(L)$ because v(0) = 0 and u'(L) = E:

$$(u'v') + (bu', v) = (f, v) + Ev(L), \quad \forall v \in V$$

First-order derivative in the equation and boundary condition; observations

$$(u'v') + (bu', v) = (f, v) + Ev(L), \quad \forall v \in V,$$

Important:

- The boundary term can be used to implement Neumann conditions
- Forgetting the boundary term implies the condition u' = 0 (!)
- Such conditions are called natural boundary conditions

First-order derivative in the equation and boundary condition; abstract notation

Abstract notation:

$$a(u, v) = L(v) \quad \forall v \in V$$

Here:

$$a(u, v) = (u', v') + (bu', v)$$

 $L(v) = (f, v) + Ev(L)$

First-order derivative in the equation and boundary condition; linear system

Insert $u = C + \sum_{i} c_{i} \psi_{j}$ and $v = \psi_{i}$:

$$\sum_{j \in \mathcal{I}_s} \underbrace{\left((\psi'_j, \psi'_i) + (b\psi'_j, \psi_i) \right)}_{A_{i,j}} c_j = \underbrace{\left(f, \psi_i \right) + E\psi_i(L)}_{b_i}$$

Observation: $A_{i,j}$ is not symmetric because of the term

$$(b\psi_j',\psi_i)=\int_{\Omega}b\psi_j'\psi_i\mathsf{d}x
eq\int_{\Omega}b\psi_i'\psi_j\mathsf{d}x=(\psi_i',b\psi_j)$$

Terminology: natural and essential boundary conditions

$$(u', v') + (bu', v) = (f, v) + u'(L)v(L) - u'(0)v(0)$$

- Note: forgetting the boundary terms implies u'(L) = u'(0) = 0 (unless prescribe a Dirichlet condition)
- Conditions on u' are simply inserted in the variational form and called natural conditions
- Conditions on u at x = 0 requires modifying V (through $\psi_i(0) = 0$) and are known as essential conditions

Lesson learned.

It is easy to forget the boundary term when integrating by parts. That mistake may prescribe a condition on u'!

Nonlinear coefficient; problem

Problem:

$$-(\alpha(u)u')' = f(u), \quad x \in [0, L], \ u(0) = 0, \ u'(L) = E$$
 (38)

- V: basis $\{\psi_i\}_{i\in\mathcal{I}_s}$ with $\psi_i(0)=0$ because of u(0)=0
- How does the nonlinear coefficients $\alpha(u)$ and f(u) impact the variational formulation?
- (Not much!)

Nonlinear coefficient; variational formulation

Galerkin: multiply by v, integrate, integrate by parts

$$\int_0^L \alpha(u) \frac{du}{dx} \frac{dv}{dx} dx = \int_0^L f(u) v dx + [\alpha(u)vu']_0^L \quad \forall v \in V$$

- $\alpha(u(0))v(0)u'(0) = 0$ since v(0)
- $\alpha(u(L))v(L)u'(L) = \alpha(u(L))v(L)E$ since u'(L) = E

$$\int_0^L \alpha(u) \frac{du}{dx} \frac{dv}{dx} v \, dx = \int_0^L f(u) v \, dx + \alpha(u(L)) v(L) E \quad \forall v \in V$$

or

$$(\alpha(u)u',v')=(f(u),v)+\alpha(u(L))v(L)E \quad \forall v\in V$$

Nonlinear coefficient; where does the nonlinearity cause challenges?

- Abstract notation: no a(u, v) and L(v) because a and L are nonlinear
- Instead: $F(u; v) = 0 \ \forall v \in V$
- What about forming a linear system? We get a nonlinear system of algebraic equations
- Must use methods like Picard iteration or Newton's method to solve nonlinear algebraic equations
- But: the variational formulation was not much affected by nonlinearities

Computing with Dirichlet and Neumann conditions; problem

$$-u''(x) = f(x), \quad x \in \Omega = [0, 1], \quad u'(0) = C, \ u(1) = D$$

- Use a *global* polynomial basis $\psi_i \sim x^i$ on [0, 1]
- Because of u(1) = D: $\psi_i(1) = 0$
- Basis: $\psi_i(x) = (1-x)^{i+1}$, $i \in \mathcal{I}_s$
- B(x) = Dx

Computing with Dirichlet and Neumann conditions; details

$$A_{i,j} = (\psi'_j, \psi'_i) = \int_0^1 \psi'_i(x)\psi'_j(x)dx = \int_0^1 (i+1)(j+1)(1-x)^{i+j}dx,$$

Choose f(x) = 2:

$$egin{aligned} b_i &= (2, \psi_i) - (D, \psi_i') - C \psi_i(0) \ &= \int_0^1 \left(2(1-x)^{i+1} - D(i+1)(1-x)^i
ight) dx - C \psi_i(0) \end{aligned}$$

Can easily do the integrals with sympy. N = 1:

$$\begin{pmatrix} 1 & 1 \\ 1 & 4/3 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \begin{pmatrix} -C + D + 1 \\ 2/3 - C + D \end{pmatrix}$$
$$c_0 = -C + D + 2, \quad c_1 = -1.$$

$$u(x) = 1 - x^2 + D + C(x - 1)$$
 (exact solution)

When the numerical method is exact

Assume that apart from boundary conditions, u_e lies in the same space V as where we seek u:

$$u = B + F$$
, $F \in Va(B + F, v) = L(v)$ $\forall v \in Vu_e = B + E$, $E \in Va(B + F, v) = 0$ $\Rightarrow E = F$ and $u = u_e$

Computing with finite elements

Tasks:

- Address the model problem -u''(x) = 2, u(0) = u(L) = 0
- Uniform finite element mesh with P1 elements
- Show all finite element computations in detail

Variational formulation, finite element mesh, and basis

$$-u''(x) = 2, \quad x \in (0, L), \ u(0) = u(L) = 0,$$

Variational formulation:

$$(u', v') = (2, v) \quad \forall v \in V$$

Since u(0) = 0 and u(L) = 0, we must force

$$v(0) = v(L) = 0, \quad \psi_i(0) = \psi_i(L) = 0$$

Use finite element basis, but exclude φ_0 and φ_{N_n} since these are not 0 on the boundary:

$$\psi_i = \varphi_{i+1}, \quad i = 0, \dots, N = N_n - 2$$

Introduce index mapping $\nu(j)$: $\psi_i = \varphi_{\nu(i)}$

$$u = \sum_{i \in \mathcal{I}_s} c_j \varphi_{\nu(i)}, \quad i = 0, \dots, N, \quad \nu(j) = j + 1$$

Irregular numbering: more complicated $\nu(j)$ table

Computation in the global physical domain; formulas

$$A_{i,j} = \int_0^L \varphi'_{i+1}(x) \varphi'_{j+1}(x) dx, \quad b_i = \int_0^L 2\varphi_{i+1}(x) dx$$

Many will prefer to change indices to obtain a $\varphi_i'\varphi_j'$ product: $i+1 \to i, \ j+1 \to j$

$$A_{i-1,j-1} = \int_0^L \varphi_i'(x)\varphi_j'(x) dx, \quad b_{i-1} = \int_0^L 2\varphi_i(x) dx$$

Computation in the global physical domain; details

$$\varphi_i = \pm h^{-1}$$

$$A_{i-1,i-1} = h^{-2}2h = 2h^{-1}, \quad A_{i-1,i-2} = h^{-1}(-h^{-1})h = -h^{-1}, \quad A_{i-1,i} = h^{-1}$$

$$b_{i-1} = 2(\frac{1}{2}h + \frac{1}{2}h) = 2h$$

Computation in the global physical domain; linear system

$$\frac{1}{h} \begin{pmatrix}
2 & -1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
-1 & 2 & -1 & \ddots & & & & & \vdots \\
0 & -1 & 2 & -1 & \ddots & & & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & -1 \\
0 & \cdots & \cdots & \cdots & \cdots & 0 & -1 & 2
\end{pmatrix}
\begin{pmatrix}
c_0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ c_N
\end{pmatrix}$$

Comparison with a finite difference discretization

- Recall: $c_i = u(x_{i+1}) \equiv u_{i+1}$
- Write out a general equation at node i-1, expressed by u_i

$$-\frac{1}{h}u_{i-1} + \frac{2}{h}u_i - \frac{1}{h}u_{i+1} = 2h \tag{40}$$

The standard finite difference method for -u'' = 2 is

$$-\frac{1}{h^2}u_{i-1} + \frac{2}{h^2}u_i - \frac{1}{h^2}u_{i+1} = 2$$

The finite element method and the finite difference method are identical *in this example*.

(Remains to study the equations involving boundary values)

Cellwise computations; formulas

- Repeat the previous example, but apply the cellwise algorithm
- Work with one cell at a time
- ullet Transform physical cell to reference cell $X \in [-1,1]$

$$A_{i-1,j-1}^{(e)} = \int_{\Omega^{(e)}} \varphi_i'(x) \varphi_j'(x) \, \mathrm{d}x = \int_{-1}^1 \frac{d}{dx} \tilde{\varphi}_r(X) \frac{d}{dx} \tilde{\varphi}_s(X) \frac{h}{2} \, \mathrm{d}X,$$
$$\tilde{\varphi}_0(X) = \frac{1}{2} (1 - X), \quad \tilde{\varphi}_1(X) = \frac{1}{2} (1 + X)$$
$$\frac{d\tilde{\varphi}_0}{dX} = -\frac{1}{2}, \quad \frac{d\tilde{\varphi}_1}{dX} = \frac{1}{2}$$

From the chain rule

$$\frac{d\tilde{\varphi}_r}{dx} = \frac{d\tilde{\varphi}_r}{dX}\frac{dX}{dx} = \frac{2}{h}\frac{d\tilde{\varphi}_r}{dX}$$

Cellwise computations; details

$$A_{i-1,j-1}^{(e)} = \int_{\Omega^{(e)}} \varphi_i'(x) \varphi_j'(x) \, \mathrm{d}x = \int_{-1}^1 \frac{2}{h} \frac{d\tilde{\varphi}_r}{dX} \frac{2}{h} \frac{d\tilde{\varphi}_s}{dX} \frac{h}{2} \, \mathrm{d}X = \tilde{A}_{r,s}^{(e)}$$

$$b_{i-1}^{(e)} = \int_{\Omega^{(e)}} 2\varphi_i(x) \, \mathrm{d}x = \int_{-1}^1 2\tilde{\varphi}_r(X) \frac{h}{2} \, \mathrm{d}X = \tilde{b}_r^{(e)}, \quad i = q(e, r), \ r = 0, 1$$

Must run through all r, s = 0, 1 and r = 0, 1 and compute each entry in the element matrix and vector:

$$\tilde{A}^{(e)} = \frac{1}{h} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad \tilde{b}^{(e)} = h \begin{pmatrix} 1 \\ 1 \end{pmatrix}. \tag{41}$$

Example:

$$\tilde{A}_{0,1}^{(e)} = \int_{-1}^{1} \frac{2}{h} \frac{d\tilde{\varphi}_0}{dX} \frac{2}{h} \frac{d\tilde{\varphi}_1}{dX} \frac{h}{2} dX = \frac{2}{h} (-\frac{1}{2}) \frac{2}{h} \frac{1}{2} \frac{h}{2} \int_{-1}^{1} dX = -\frac{1}{h}$$

Cellwise computations; details of boundary cells

- The boundary cells involve only one unknown
- \bullet $\Omega^{(0)}$: left node value known, only a contribution from right node
- $\Omega^{(N_e)}$: right node value known, only a contribution from left node

For e = 0 and $= N_e$:

$$\tilde{A}^{(e)} = \frac{1}{h} \left(\begin{array}{c} 1 \end{array} \right), \quad \tilde{b}^{(e)} = h \left(\begin{array}{c} 1 \end{array} \right)$$

Only one degree of freedom ("node") in these cells (r=0 counts the only dof)

Cellwise computations; assembly

4 P1 elements:

```
vertices = [0, 0.5, 1, 1.5, 2]
cells = [[0, 1], [1, 2], [2, 3], [3, 4]]
dof_map = [[0], [0, 1], [1, 2], [2]]  # only 1 dof in elm 0, 3
```

Python code for the assembly algorithm:

Result: same linear system as arose from computations in the physical domain

General construction of a boundary function

- Now we address nonzero Dirichlet conditions
- B(x) is not always easy to construct (extend to the interior of Ω), especially not in 2D and 3D
- With finite element φ_i , B(x) can be constructed in a completely general way
- *I_b*: set of indices with nodes where *u* is known
- U_i : Dirichlet value of u at node i, $i \in I_b$

$$B(x) = \sum_{j \in I_b} U_j \varphi_j(x) \tag{42}$$

Suppose we have a Dirichlet condition $u(x_k) = U_k$, $k \in I_b$:

$$u(x_k) = \sum_{j \in I_b} U_j \underbrace{\varphi_j(x)}_{\neq 0 \text{ only for } j=k} + \sum_{j \in \mathcal{I}_s} c_j \underbrace{\varphi_{\nu(j)}(x_k)}_{=0, \ k \notin \mathcal{I}_s} = U_k$$

Example with two Dirichlet values; variational formulation

$$-u'' = 2, \quad u(0) = C, \quad u(L) = D$$

$$\int_0^L u'v' \, dx = \int_0^L 2v \, dx \quad \forall v \in V$$

$$(u', v') = (2, v) \quad \forall v \in V$$

Example with two Dirichlet values; boundary function

$$B(x) = \sum_{i \in I_i} U_j \varphi_j(x) \tag{43}$$

Here $I_b = \{0, N_n\}, \ U_0 = C, \ U_{N_n} = D,$

$$\psi_i = \varphi_{\nu(i)}, \quad \nu(i) = i + 1, \quad i \in \mathcal{I}_s = \{0, \dots, N = N_n - 2\}$$

$$u(x) = C\varphi_0(x) + D\varphi_{N_n}(x) + \sum_{i \in \mathcal{I}_n} c_i \varphi_{\nu(i)}$$
(44)

Example with two Dirichlet values; details

Insert $u = B + \sum_{i} c_{i} \psi_{j}$ in variational formulation:

$$(u',v')=(2,v) \quad \Rightarrow \quad (\sum_i c_j\psi'_j,\psi'_i)=(2-B',\psi_i) \quad \forall v\in V$$

$$u(x) = \underbrace{C \cdot \varphi_0 + D\varphi_{N_n}}_{B(x)} + \sum_{j \in \mathcal{I}_s} c_j \varphi_{j+1}$$
$$= C \cdot \varphi_0 + D\varphi_{N_n} + c_0 \varphi_1 + c_1 \varphi_2 + \dots + c_N \varphi_{N_n-1}$$

$$= \mathcal{C} \cdot \varphi_0 + D\varphi_{N_n} + c_0\varphi_1 + c_1\varphi_2 + \dots + c_N\varphi_{N_n-1}$$

$$A_{i-1,j-1} = \int_0^L \varphi_i'(x)\varphi_j'(x) \,\mathrm{d}x, \quad b_{i-1} = \int_0^L (f(x) - C\varphi_0'(x) - D\varphi_{N_n}'(x))\varphi_i(x) \,\mathrm{d}x$$

New boundary terms from $-\int B'\varphi_i\,\mathrm{d}x$: C/2 for i=1 and -D/2

$$A_{i-1,j-1} = \int_0 \varphi_i(x)\varphi_j(x) dx,$$

for $i, j = 1, ..., N + 1 = N_n - 1$.

for $i = N_n - 1$

Example with two Dirichlet values; cellwise computations

- Element matrices as in the previous example (with u=0 on the boundary)
- New element vector in the first and last cell

From the last cell:

$$\tilde{b}_0^{(N_e)} = \int_{-1}^1 \left(f - D \frac{2}{h} \frac{d\tilde{\varphi}_1}{dX} \right) \tilde{\varphi}_0 \frac{h}{2} dX = \left(\frac{h}{2} (2 - D \frac{2}{h} \frac{1}{2}) \int_{-1}^1 \tilde{\varphi}_0 dX = h - D / \frac{h}{2} dX \right)$$

From the first cell:

$$\tilde{b}_{0}^{(0)} = \int_{-1}^{1} \left(f - C \frac{2}{h} \frac{d\tilde{\varphi}_{0}}{dX} \right) \tilde{\varphi}_{1} \frac{h}{2} dX = \left(\frac{h}{2} (2 + C \frac{2}{h} \frac{1}{2}) \int_{-1}^{1} \tilde{\varphi}_{1} dX = h + C/2 \right)$$

Modification of the linear system; ideas

- Method 1: incorporate Dirichlet values through a B(x) function and demand $\psi_i = 0$ where Dirichlet values apply
- Method 2: drop B(x), drop demands to ψ_i , just assemble as if there were no Dirichlet conditions, and modify the linear system instead

Method 2: always $\psi_i = \varphi_i$ and

$$u(x) = \sum_{j \in \mathcal{I}_s} c_j \varphi_j(x), \quad \mathcal{I}_s = \{0, \dots, N = N_n\}$$
 (45)

Attractive way of incorporating Dirichlet conditions.

 \boldsymbol{u} is treated as unknown at all boundaries when computing entires in the linear system

Modification of the linear system; original system

$$-u'' = 2$$
, $u(0) = 0$, $u(L) = D$

Assemble as if there were no Dirichlet conditions:

$$\begin{pmatrix}
1 & -1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
-1 & 2 & -1 & \ddots & & & & \vdots \\
0 & -1 & 2 & -1 & \ddots & & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & 0 & -1 & 2 & -1 & \ddots & \vdots \\
\vdots & & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & \ddots & \ddots & \ddots & -1 \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & -1 & 1
\end{pmatrix}$$

(46)

Modification of the linear system; row replacement

- Dirichlet condition $u(x_k) = U_k$ means $c_k = U_k$ (since $c_k = u(x_k)$)
- Replace first row by $c_0 = 0$
- Replace last row by $c_N = D$

Modification of the linear system; element matrix/vector

In cell 0 we know u for local node (degree of freedom) r=0. Replace the first cell equation by $\tilde{c}_0=0$:

$$\tilde{A}^{(0)} = A = \frac{1}{h} \begin{pmatrix} h & 0 \\ -1 & 1 \end{pmatrix}, \quad \tilde{b}^{(0)} = \begin{pmatrix} 0 \\ h \end{pmatrix} \tag{48}$$

In cell N_e we know u for local node r=1. Replace the last equation in the cell system by $\tilde{c}_1=D$:

$$\tilde{A}^{(N_e)} = A = \frac{1}{h} \begin{pmatrix} 1 & -1 \\ 0 & h \end{pmatrix}, \quad \tilde{b}^{(N_e)} = \begin{pmatrix} h \\ D \end{pmatrix}$$
 (49)

Symmetric modification of the linear system; algorithm

- The modification above destroys symmetry of the matrix: e.g., $A_{0,1} \neq A_{1,0}$
- Symmetry is often important in 2D and 3D (faster computations)
- A more complex modification can preserve symmetry!

Algorithm for incorporating $c_i = U_i$ in a symmetric way:

- Subtract column i times U_i from the right-hand side
- Zero out column and row no i
- Place 1 on the diagonal
- \bigcirc Set $b_i = U_i$

Symmetric modification of the linear system; example

$$\frac{1}{h} \begin{pmatrix}
1 & 0 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
0 & 2 & -1 & \ddots & & & & & \vdots \\
0 & -1 & 2 & -1 & \ddots & & & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & 0 & -1 & 2 & -1 & \ddots & \vdots \\
\vdots & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & \cdots & \cdots & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
c_0 \\ \vdots \\ c_N
\end{pmatrix} = \begin{pmatrix}
0 \\ 2h \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 2h + D/D \\ D$$
(50)

Symmetric modification of the linear system; element level

Symmetric modification applied to $\tilde{A}^{(N_e)}$:

$$\tilde{A}^{(N_e)} = A = \frac{1}{h} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \tilde{b}^{(N-1)} = \begin{pmatrix} h + D/h \\ D \end{pmatrix}$$
 (51)

Boundary conditions: specified derivative

Neumann conditions.

How can we incorporate u'(0) = C with finite elements?

$$-u'' = f$$
, $u'(0) = C$, $u(L) = D$

- $\psi_i(L) = 0$ because of Dirichlet condition u(L) = D
- No demand to $\psi_i(0)$

The variational formulation

Galerkin's method:

$$\int_0^L (u''(x) + f(x))\psi_i(x)dx = 0, \quad i \in \mathcal{I}_s$$

Integration of $u''\psi_i$ by parts:

$$\int_0^L u'(x)\psi_i'(x) dx - (u'(L)\psi_i(L) - u'(0)\psi_i(0)) - \int_0^L f(x)\psi_i(x) dx = 0, \quad i \in$$

- $u'(L)\psi_i(L) = 0$ since $\psi_i(L) = 0$
- $u'(0)\psi_i(0) = C\psi_i(0)$ since u'(0) = C

Method 1: Boundary function and exclusion of Dirichlet degrees of freedom

•
$$\psi_i = \varphi_i, i \in \mathcal{I}_s = \{0, ..., N = N_n - 1\}$$

•
$$B(x) = D\varphi_{N_n}(x)$$
, $u = B + \sum_{j=0}^{N} c_j \varphi_j$

$$\int_0^L u'(x)\varphi_i'(x)dx = \int_0^L f(x)\varphi_i(x)dx - C\varphi_i(0), \quad i \in \mathcal{I}_s$$

$$\sum_{j=0}^{N=N_n-1} \left(\int_0^L \varphi_i'(x) \varphi_j'(x) dx \right) c_j = \int_0^L \left(f(x) \varphi_i(x) - D \varphi_N'(x) \varphi_i(x) \right) dx - C$$
(52)

for $i = 0, ..., N = N_n - 1$.

Method 2: Use all φ_i and insert the Dirichlet condition in the linear system

- Now $\psi_i = \varphi_i$, $i = 0, \ldots, N = N_n$
- $\varphi_N(L) \neq 0$, so $u'(L)\varphi_N(L) \neq 0$
- However, the term $u'(L)\varphi_N(L)$ in b_N will be erased when we insert the Dirichlet value in $b_N=D$

We can forget about the term $u'(L)\varphi_i(L)!$

Result.

Boundary terms $u'\varphi_i$ at points x_i where Dirichlet values apply can always be forgotten.

$$u(x) = \sum_{j=0}^{N=N_n} c_j \varphi_j(x)$$

$$\sum_{i=0}^{N=N_n} \left(\int_0^L \varphi_i'(x) \varphi_j'(x) dx \right) c_j = \int_0^L f(x) \varphi_i(x) \varphi_i(x) dx - C \varphi_i(0)$$

How the Neumann condition impacts the element matrix and vector

The extra term $C\varphi_0(0)$ affects only the element vector from the first cells since $\varphi_0 = 0$ on all other cells.

$$\tilde{A}^{(0)} = A = \frac{1}{h} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \quad \tilde{b}^{(0)} = \begin{pmatrix} h - C \\ h \end{pmatrix}$$
 (54)

The finite element algorithm

The differential equation problem defines the integrals in the variational formulation.

Request these functions from the user:

```
integrand_lhs(phi, r, s, x)
boundary_lhs(phi, r, s, x)
integrand_rhs(phi, r, x)
boundary_rhs(phi, r, x)
```

Must also have a mesh with vertices, cells, and dof_map

Python pseudo code; the element matrix and vector

```
<Declare global matrix, global rhs: A, b>
# Loop over all cells
for e in range(len(cells)):
    # Compute element matrix and vector
    n = len(dof_map[e]) # no of dofs in this element
    h = vertices[cells[e][1]] - vertices[cells[e][0]]
    <Declare element matrix, element vector: A_e, b_e>
    # Integrate over the reference cell
    points, weights = <numerical integration rule>
    for X, w in zip(points, weights):
        phi = <basis functions + derivatives at X>
        det.I = h/2
        x = \langle affine mapping from X \rangle
        for r in range(n):
            for s in range(n):
                A_e[r,s] += integrand_lhs(phi, r, s, x)*detJ*w
            b_e[r] += integrand_rhs(phi, r, x)*detJ*w
    # Add boundary terms
    for r in range(n):
        for s in range(n):
            A_e[r,s] += boundary_lhs(phi, r, s, x)*detJ*w
        b_e[r] += boundary_rhs(phi, r, x)*detJ*w
```

Python pseudo code; boundary conditions and assembly

```
for e in range(len(cells)):
    # Incorporate essential boundary conditions
    for r in range(n):
        global_dof = dof_map[e][r]
        if global_dof in essbc_dofs:
            # dof r is subject to an essential condition
            value = essbc_docs[global_dof]
            # Symmetric modification
            b_e -= value*A_e[:,r]
            A_e[r,:] = 0
            A_e[:,r] = 0
            A_e[r,r] = 1
            b_e[r] = value
    # Assemble
    for r in range(n):
        for s in range(n):
            A[dof_map[e][r], dof_map[e][r]] += A_e[r,s]
        b[dof_map[e][r] += b_e[r]
<solve linear system>
```

Variational formulations in 2D and 3D

How to do integration by parts is the major difference when moving to 2D and 3D.

Integration by parts

Rule for multi-dimensional integration by parts.

$$-\int_{\Omega} \nabla \cdot (a(\mathbf{x})\nabla u) v \, dx = \int_{\Omega} a(\mathbf{x})\nabla u \cdot \nabla v \, dx - \int_{\partial\Omega} a \frac{\partial u}{\partial n} v \, ds$$
 (55)

- \int_{Ω} () dx: area (2D) or volume (3D) integral
- $\int_{\partial\Omega}$ () ds: line(2D) or surface (3D) integral
- $\partial \Omega_N$: Neumann conditions $-a \frac{\partial u}{\partial n} = g$
- $\partial \Omega_D$: Dirichlet conditions $u = u_0$
- $v \in V$ must vanish on $\partial \Omega_D$ (in method 1)

Example on integration by parts; problem

$$\mathbf{v} \cdot \nabla u + \alpha u = \nabla \cdot (a\nabla u) + f, \qquad \mathbf{x} \in \Omega \qquad (56)$$

$$u = u_0, \qquad \mathbf{x} \in \partial \Omega_D \qquad (57)$$

$$-a\frac{\partial u}{\partial n} = g, \qquad \mathbf{x} \in \partial \Omega_N \qquad (58)$$

- Known: a, α , f, u_0 , and g.
- Second-order PDE: must have exactly one boundary condition at each point of the boundary

Method 1 with boundary function and $\psi_i = 0$ on $\partial \Omega_D$:

$$u(\mathbf{x}) = B(\mathbf{x}) + \sum_{j \in \mathcal{I}_s} c_j \psi_j(\mathbf{x}), \quad B(\mathbf{x}) = u_0(\mathbf{x})$$

Example on integration by parts; details (1)

Galerkin's method: multiply by $v \in V$ and integrate over Ω ,

$$\int_{\Omega} (\mathbf{v} \cdot \nabla u + \alpha u) \mathbf{v} \, d\mathbf{x} = \int_{\Omega} \nabla \cdot (\mathbf{a} \nabla u) \, d\mathbf{x} + \int_{\Omega} f \mathbf{v} \, d\mathbf{x}$$

Integrate second-order term by parts:

$$\int_{\Omega} \nabla \cdot (a\nabla u) v \, \mathrm{d}x = -\int_{\Omega} a\nabla u \cdot \nabla v \, \mathrm{d}x + \int_{\partial\Omega} a \frac{\partial u}{\partial n} v \, \mathrm{d}s,$$

Resulting variational form:

$$\int_{\Omega} (\mathbf{v} \cdot \nabla u + \alpha u) v \, dx = -\int_{\Omega} a \nabla u \cdot \nabla v \, dx + \int_{\partial \Omega} a \frac{\partial u}{\partial n} v \, ds + \int_{\Omega} f v \, dx$$

Example on integration by parts; details (2)

Note: $v \neq 0$ only on $\partial \Omega_N$:

$$\int_{\partial\Omega} a \frac{\partial u}{\partial n} v \, \mathrm{d}s = \int_{\partial\Omega_N} \underbrace{a \frac{\partial u}{\partial n}}_{-g} v \, \mathrm{d}s = -\int_{\partial\Omega_N} g v \, \mathrm{d}s$$

The final variational form:

$$\int_{\Omega} (\mathbf{v} \cdot \nabla u + \alpha u) v \, \mathrm{d}x = -\int_{\Omega} a \nabla u \cdot \nabla v \, \mathrm{d}x - \int_{\partial \Omega_N} g v \, \mathrm{d}s + \int_{\Omega} f v \, \mathrm{d}x$$

Or with inner product notation:

$$(\mathbf{v}\cdot\nabla u,v)+(\alpha u,v)=-(a\nabla u,\nabla v)-(g,v)_N+(f,v)$$

 $(g, v)_N$: line or surface integral over $\partial \Omega_N$.

Example on integration by parts; linear system

$$u = B + \sum_{j \in \mathcal{I}_s} c_j \psi_j, \quad B = u_0$$

$$A_{i,j} = (\mathbf{v} \cdot \nabla \psi_j, \psi_i) + (\alpha \psi_j, \psi_i) + (a \nabla \psi_j, \nabla \psi_i)$$

$$b_i = (g, \psi_i)_N + (f, \psi_i) - (\mathbf{v} \cdot \nabla u_0, \psi_i) + (\alpha u_0, \psi_i) + (a\nabla u_0, \nabla \psi_i)$$

Transformation to a reference cell in 2D/3D (1)

We want to compute an integral in the physical domain by integrating over the reference cell.

$$\int_{\Omega^{(e)}} a(\mathbf{x}) \nabla \varphi_i \cdot \nabla \varphi_j \, \mathrm{d}x \tag{59}$$

Mapping from reference to physical coordinates:

with Jacobian J.

$$J_{i,j} = \frac{\partial x_j}{\partial X_i}$$

- $dx \rightarrow \det J dX$.
- Must express $\nabla \varphi_i$ by an expression with $\tilde{\varphi}_r$, i = q(e, r): $\nabla \tilde{\varphi}_r(\mathbf{X})$
- We want $\nabla_{\mathbf{x}} \tilde{\varphi}_r(\mathbf{X})$ (derivatives wrt \mathbf{x})
- What we readily have is $\nabla_{\mathbf{X}} \tilde{\varphi}_r(\mathbf{X})$ (derivative wrt \mathbf{X})

Transformation to a reference cell in 2D/3D (2)

Can derive

$$\nabla_{\mathbf{X}} \tilde{\varphi}_r = J \cdot \nabla_{\mathbf{x}} \varphi_i$$

$$\nabla_{\mathbf{x}} \varphi_i = \nabla_{\mathbf{x}} \tilde{\varphi}_r(\mathbf{X}) = J^{-1} \cdot \nabla_{\mathbf{X}} \tilde{\varphi}_r(\mathbf{X})$$

Integral transformation from physical to reference coordinates:

$$\int_{\Omega^{(e)}} a(\mathbf{x}) \nabla_{\mathbf{x}} \varphi_i \cdot \nabla_{\mathbf{x}} \varphi_j \, \mathrm{d}\mathbf{x} = \int_{\tilde{\Omega}^r} a(\mathbf{x}(\mathbf{X})) (J^{-1} \cdot \nabla_{\mathbf{X}} \tilde{\varphi}_r) \cdot (J^{-1} \cdot \nabla \tilde{\varphi}_s) \, \mathrm{det} \, J \, \mathrm{d}X$$
(60)

Numerical integration

Numerical integration over reference cell triangles and tetrahedra:

$$\int_{\tilde{\Omega}^r} g \, \mathrm{d}X = \sum_{j=0}^{n-1} w_j g(\bar{\mathbf{X}}_j)$$

Module numint.py contains different rules:

- Triangle: rules with n = 1, 3, 4, 7 integrate exactly polynomials of degree 1, 2, 3, 4, resp.
- Tetrahedron: rules with n = 1, 4, 5, 11 integrate exactly polynomials of degree 1, 2, 3, 4, resp.

Time-dependent problems

- So far: used the finite element framework for discretizing in space
- What about $u_t = u_{xx} + f$?
 - Use finite differences in time to obtain a set of recursive spatial problems
 - Solve the spatial problems by the finite element method

Example: diffusion problem

$$\frac{\partial u}{\partial t} = \alpha \nabla^2 u + f(\mathbf{x}, t), \qquad \mathbf{x} \in \Omega, t \in (0, T] \qquad (61)$$

$$u(\mathbf{x}, 0) = I(\mathbf{x}), \qquad \mathbf{x} \in \Omega \qquad (62)$$

$$\frac{\partial u}{\partial n} = 0, \qquad \mathbf{x} \in \partial\Omega, \ t \in (0, T] \qquad (63)$$

A Forward Euler scheme; ideas

$$[D_t^+ u = \alpha \nabla^2 u + f]^n, \quad n = 1, 2, \dots, N_t - 1$$
 (64)

Solving wrt u^{n+1} :

$$u^{n+1} = u^n + \Delta t \left(\alpha \nabla^2 u^n + f(\mathbf{x}, t_n) \right)$$
 (65)

- $u^n = \sum_j c_j^n \psi_j$, $u^{n+1} = \sum_j c_j^{n+1} \psi_j$
- Compute u^0 from I
- Compute u^{n+1} from u^n by solving the PDE for u^{n+1} at each time level

A Forward Euler scheme; stages in the discretization

- $u_e(\mathbf{x}, t)$: exact solution of the space-and time-continuous problem
- $u_e^n(\mathbf{x})$: exact solution of time-discrete problem (after applying a finite difference scheme in time)
- $u_{\rm e}^n({\bf x}) \approx u^n = \sum_{j \in \mathcal{I}_s} c_j^n \psi_j = {\rm solution\ of\ the\ time-\ and\ space-discrete\ problem\ (after\ applying\ a\ Galerkin\ method\ in\ space)}$

$$\frac{\partial u_{\mathsf{e}}}{\partial t} = \alpha \nabla^2 u_{\mathsf{e}} + f(\mathbf{x}, t) \tag{66}$$

$$u_{\mathsf{e}}^{n+1} = u_{\mathsf{e}}^n + \Delta t \left(\alpha \nabla^2 u_{\mathsf{e}}^n + f(\mathbf{x}, t_n) \right) \tag{67}$$

$$u_{\mathsf{e}}^{n} \approx u^{n} = \sum_{j=0}^{N} c_{j}^{n} \psi_{j}(\mathbf{x}), \quad u_{\mathsf{e}}^{n+1} \approx u^{n+1} = \sum_{j=0}^{N} c_{j}^{n+1} \psi_{j}(\mathbf{x})$$

$$R = u^{n+1} - u^n - \Delta t \left(\alpha \nabla^2 u^n + f(\mathbf{x}, t_n) \right)$$

A Forward Euler scheme; weighted residual (or Galerkin) principle

$$R = u^{n+1} - u^n - \Delta t \left(\alpha \nabla^2 u^n + f(\mathbf{x}, t_n) \right)$$

The weighted residual principle:

$$\int_{\Omega} Rw_i \, \mathrm{d}x = 0, \quad i = 0, \dots, N$$

results in

$$\int_{\Omega} \left[u^{n+1} - u^n - \Delta t \left(\alpha \nabla^2 u^n + f(\mathbf{x}, t_n) \right) \right] w_i \, \mathrm{d} x = 0, \quad i = 0, \dots, N$$

Galerkin: $w_i = \psi_i$

A Forward Euler scheme; integration by parts

Isolating the unknown u^{n+1} on the left-hand side:

$$\int_{\Omega} u^{n+1} \psi_i \, \mathrm{d}x = \int_{\Omega} \left[u^n - \Delta t \left(\alpha \nabla^2 u^n + f(\mathbf{x}, t_n) \right) \right] \psi_i \, \mathrm{d}x$$

$$\int_{\Omega} \alpha(\nabla^2 u^n) \psi_i \, \mathrm{d}x = -\int_{\Omega} \alpha \nabla u^n \cdot \nabla \psi_i \, \mathrm{d}x + \underbrace{\int_{\partial \Omega} \alpha \frac{\partial u^n}{\partial n} \psi \, \mathrm{d}x}_{}$$

$$=0 \iff \frac{\partial \Omega}{\partial u^n/\partial n}=0$$
/ariational form:

or using any $v \in V$ instead of the basis functions:

Variational form:
$$\int_{\Omega} u^{n+1} \psi_i \, \mathrm{d}x = \int_{\Omega} u^n \psi_i \, \mathrm{d}x - \Delta t \int_{\Omega} \alpha \nabla u^n \cdot \nabla \psi_i \, \mathrm{d}x + \Delta t \int_{\Omega} f^n \psi_i \, \mathrm{d}x$$

Variational form:

 $\int_{\Omega} u^{n+1} v \, \mathrm{d}x = \int_{\Omega} u^n v \, \mathrm{d}x - \Delta t \int_{\Omega} \alpha \nabla u^n \cdot \nabla v \, \mathrm{d}x + \Delta t \int_{\Omega} f^n v \, \mathrm{d}x, \quad \forall v \in V$

Integration by parts of $\alpha(\nabla^2 u^n)\psi_i$:

New notation for the solution at the most recent time levels

- u and u: the spatial unknown function to be computed
- u_1 and u_1 : the spatial function at the previous time level $t-\Delta t$
- u_2 and u_2 : the spatial function at $t 2\Delta t$
- This new notation gives close correspondance between code and math

and math
$$\int_{\Omega} u\psi_{i} \, \mathrm{d}x = \int_{\Omega} u_{1}\psi_{i} \, \mathrm{d}x - \Delta t \int_{\Omega} \alpha \nabla u_{1} \cdot \nabla \psi_{i} \, \mathrm{d}x + \Delta t \int_{\Omega} f^{n}\psi_{i} \, \mathrm{d}x \tag{70}$$

or

$$(u,\psi_i) = (u_1,\psi_i) - \Delta t(\alpha \nabla u_1, \nabla \psi_i) + (f^n,\psi_i)$$
 (71)

Deriving the linear systems

$$u = \sum_{j=0}^{N} c_j \psi_j(\mathbf{x}), \quad u_1 = \sum_{j=0}^{N} c_{1,j} \psi_j(\mathbf{x})$$

Insert these in

$$(u,\psi_i) = (u_1,\psi_i) - \Delta t(\alpha \nabla u_1, \nabla \psi_i) + (f^n,\psi_i)$$

and order terms as matrix-vector products:

$$\sum_{j=0}^{N} \underbrace{(\psi_i, \psi_j)}_{M_{i,j}} c_j = \sum_{j=0}^{N} \underbrace{(\psi_i, \psi_j)}_{M_{i,j}} c_{1,j} - \Delta t \sum_{j=0}^{N} \underbrace{(\nabla \psi_i, \alpha \nabla \psi_j)}_{K_{i,j}} c_{1,j} + (f^n, \psi_i), \quad i = 0$$
(72)

Structure of the linear systems

$$Mc = Mc_1 - \Delta t K c_1 + f \tag{73}$$

$$M = \{M_{i,j}\}, \quad M_{i,j} = (\psi_i, \psi_j), \quad i, j \in \mathcal{I}_s$$

$$K = \{K_{i,j}\}, \quad K_{i,j} = (\nabla \psi_i, \alpha \nabla \psi_j), \quad i, j \in \mathcal{I}_s$$

$$f = \{(f(\mathbf{x}, t_n), \psi_i)\}_{i \in \mathcal{I}_s}$$

$$c = \{c_i\}_{i \in \mathcal{I}_s}$$

$$c_1 = \{c_{1,i}\}_{i \in \mathcal{I}_s}$$

Computational algorithm

- lacktriangle Compute M and K.
- ② Initialize u^0 by either interpolation or projection
- **3** For $n = 1, 2, ..., N_t$:

 - **9** solve Mc = b
 - **3** set $c_1 = c$

Initial condition:

- Either interpolation: $c_{1,j} = I(\mathbf{x}_j)$ (finite elements)
- Or projection: solve $\sum_i M_{i,j} c_{1,j} = (I, \psi_i)$, $i \in \mathcal{I}_s$

Comparing P1 elements with the finite difference method; ideas

- P1 elements in 1D
- Uniform mesh on [0, L] with cell length h
- No Dirichlet conditions: $\psi_i = \varphi_i$, $i = 0, ..., N = N_n$
- Have found formulas for M and K at the element level
- Have assembled the global matrices
- Have developed corresponding finite difference operator formulas
- $M: h[D_t^+(u-\frac{1}{6}h^2D_xD_xu)]_i^n$
- $K: h[\alpha D_x D_x u]_i^n$

Comparing P1 elements with the finite difference method; results

Diffusion equation with finite elements is equivalent to

$$[D_t^+(u - \frac{1}{6}h^2D_xD_xu) = \alpha D_xD_xu + f]_i^n$$
 (74)

Can lump the mass matrix by Trapezoidal integration and get the standard finite difference scheme

$$[D_t^+ u = \alpha D_{\mathsf{x}} D_{\mathsf{x}} u + f]_i^n \tag{75}$$

Discretization in time by a Backward Euler scheme

Backward Euler scheme in time:

$$[D_t^- u = \alpha \nabla^2 u + f(\mathbf{x}, t)]^n.$$

$$u_e^n - \Delta t \left(\alpha \nabla^2 u_e^n + f(\mathbf{x}, t_n)\right) = u_e^{n-1}$$
(76)

$$u_{\mathsf{e}}^n pprox u^n = \sum_{j=0}^N c_j^n \psi_j(\mathbf{x}), \quad u_{\mathsf{e}}^{n+1} pprox u^{n+1} = \sum_{j=0}^N c_j^{n+1} \psi_j(\mathbf{x})$$

The variational form of the time-discrete problem

$$\int_{\Omega} (u^n \psi_i + \Delta t \alpha \nabla u^n \cdot \nabla \psi_i) \, dx = \int_{\Omega} u^{n-1} \psi_i \, dx - \Delta t \int_{\Omega} f^n \psi_i \, dx$$
(77)

or

$$(u,\psi_i) + \Delta t \alpha(\nabla u, \nabla \psi_i) = (u_1,\psi_i) + \Delta t(f^n,\psi_i)$$
 (78)

The linear system: insert $u=\sum_j c_j \psi_i$ and $u_1=\sum_j c_{1,j} \psi_i$,

$$(M + \Delta t \alpha K)c = Mc_1 + f \tag{79}$$

Calculations with P1 elements in 1D

Can interpret the resulting equation system as

$$[D_t^-(u - \frac{1}{6}h^2D_xD_xu) = \alpha D_xD_xu + f]_i^n$$
 (80)

Lumped mass matrix (by Trapezoidal integration) gives a standard finite difference method:

$$[D_t^- u = \alpha D_{\mathsf{x}} D_{\mathsf{x}} u + f]_i^n \tag{81}$$

Dirichlet boundary conditions

Dirichlet condition at x = 0 and Neumann condition at x = L:

$$u(\mathbf{x},t) = u_0(\mathbf{x},t), \qquad \mathbf{x} \in \partial \Omega_D$$
 (82)

$$-\alpha \frac{\partial}{\partial n} u(\mathbf{x}, t) = g(\mathbf{x}, t), \qquad \mathbf{x} \in \partial \Omega_{N}$$
 (83)

Forward Euler in time, Galerkin's method, and integration by parts:

$$\int_{\Omega} u^{n+1} v \, dx = \int_{\Omega} (u^n - \Delta t \alpha \nabla u^n \cdot \nabla v) \, dx - \Delta t \int_{\partial \Omega_N} g v \, ds, \quad \forall v \in V$$
(84)

Requirement: v = 0 on $\partial \Omega_D$

Boundary function

$$u^n(\mathbf{x}) = u_0(\mathbf{x}, t_n) + \sum_{j \in \mathcal{I}_e} c_j^n \psi_j(\mathbf{x})$$

$$\begin{split} \sum_{j \in \mathcal{I}_{s}} \left(\int_{\Omega} \psi_{i} \psi_{j} \, \mathrm{d} \mathbf{x} \right) c_{j}^{n+1} &= \sum_{j \in \mathcal{I}_{s}} \left(\int_{\Omega} \left(\psi_{i} \psi_{j} - \Delta t \alpha \nabla \psi_{i} \cdot \nabla \psi_{j} \right) \, \mathrm{d} \mathbf{x} \right) c_{j}^{n} - \\ & \int_{\Omega} \left(u_{0}(\mathbf{x}, t_{n+1}) - u_{0}(\mathbf{x}, t_{n}) + \Delta t \alpha \nabla u_{0}(\mathbf{x}, t_{n}) \cdot \nabla u_{n} \right) d\mathbf{x} \right) c_{j}^{n} - \\ & + \Delta t \int_{\Omega} f \psi_{i} \, \mathrm{d} \mathbf{x} - \Delta t \int_{\partial \Omega u} g \psi_{i} \, \mathrm{d} \mathbf{s}, \quad i \in \mathcal{I}_{s} \end{split}$$

Finite element basis functions

- $B(\mathbf{x}, t_n) = \sum_{i \in I_n} U_i^n \varphi_i$
- $\psi_i = \varphi_{\nu(i)}, j \in \mathcal{I}_s$
- $\nu(j)$, $j \in \mathcal{I}_s$, are the node numbers corresponding to all nodes without a Dirichlet condition

$$u^{n} = \sum_{j \in I_{b}} U_{j}^{n} \varphi_{j} + \sum_{j \in \mathcal{I}_{s}} c_{1,j} \varphi_{\nu(j)},$$

$$u^{n+1} = \sum_{j \in \mathcal{I}_{s}} U_{j}^{n+1} \varphi_{j} + \sum_{j \in \mathcal{I}_{s}} c_{j} \varphi_{\nu(j)}$$

$$\sum_{j \in \mathcal{I}_s} \left(\int_{\Omega} \varphi_i \varphi_j \, \mathrm{d}x \right) c_j = \sum_{j \in \mathcal{I}_s} \left(\int_{\Omega} \left(\varphi_i \varphi_j - \Delta t \alpha \nabla \varphi_i \cdot \nabla \varphi_j \right) \, \mathrm{d}x \right) c_{1,j} - \sum_{j \in I_b} \int_{\Omega} \left(\varphi_i \varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_i \cdot \nabla \varphi_j U_j^n \right) \, \mathrm{d}x \right) c_{1,j} - \sum_{j \in I_b} \int_{\Omega} \left(\varphi_i \varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_i \cdot \nabla \varphi_j U_j^n \right) \, \mathrm{d}x \right) c_{1,j} - \sum_{j \in I_b} \int_{\Omega} \left(\varphi_i \varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_i \cdot \nabla \varphi_j U_j^n \right) \, \mathrm{d}x \right) c_{1,j} - \sum_{j \in I_b} \int_{\Omega} \left(\varphi_i \varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_i \cdot \nabla \varphi_j U_j^n \right) \, \mathrm{d}x \right) c_{1,j} - \sum_{j \in I_b} \int_{\Omega} \left(\varphi_i \varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_i \cdot \nabla \varphi_j U_j^n \right) \, \mathrm{d}x \right) c_{1,j} - \sum_{j \in I_b} \int_{\Omega} \left(\varphi_i \varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_i \cdot \nabla \varphi_j U_j^n \right) \, \mathrm{d}x \right) c_{1,j} - \sum_{j \in I_b} \int_{\Omega} \left(\varphi_i \varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_i \cdot \nabla \varphi_j U_j^n \right) \, \mathrm{d}x \right) c_{1,j} - \sum_{j \in I_b} \int_{\Omega} \left(\varphi_j \varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_i \cdot \nabla \varphi_j U_j^n \right) \, \mathrm{d}x \right) c_{1,j} - \sum_{j \in I_b} \left(\varphi_j \varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_i \cdot \nabla \varphi_j U_j^n \right) \, \mathrm{d}x \right) c_{1,j} - \sum_{j \in I_b} \left(\varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_i \cdot \nabla \varphi_j U_j^n \right) \, \mathrm{d}x \right) c_{1,j} - \sum_{j \in I_b} \left(\varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_i \cdot \nabla \varphi_j U_j^n \right) \, \mathrm{d}x \right) c_{1,j} - \sum_{j \in I_b} \left(\varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_j \cdot \nabla \varphi_j U_j^n \right) \, \mathrm{d}x \right) c_{1,j} - \sum_{j \in I_b} \left(\varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_j \cdot \nabla \varphi_j U_j^n \right) \, \mathrm{d}x \right) c_{1,j} - \sum_{j \in I_b} \left(\varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_j \cdot \nabla \varphi_j U_j^n \right) c_{1,j} - \sum_{j \in I_b} \left(\varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_j \cdot \nabla \varphi_j U_j^n \right) \, \mathrm{d}x \right) c_{1,j} - \sum_{j \in I_b} \left(\varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_j \cdot \nabla \varphi_j U_j^n \right) c_{1,j} - \sum_{j \in I_b} \left(\varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_j \right) c_{1,j} - \sum_{j \in I_b} \left(\varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_j \right) c_{1,j} - \sum_{j \in I_b} \left(\varphi_j (U_j^{n+1} - U_j^n) + \Delta t \alpha \nabla \varphi_j \right) c_{1,j} - \sum_{j \in I_b} \left(\varphi_j (U_j^n) + \Delta U_j (U_j^n) \right) c_{2,j} - \sum_{j \in I_b} \left(\varphi_j (U_j^n) + \Delta U_j (U_j^n) \right) c_{2,j} - \sum_{j \in I_b} \left(\varphi_j (U_j^n) + \Delta U_j (U_j^n) \right) c_{2,j} - \sum_{j \in I_b} \left(\varphi_j (U_j^n) + \Delta$$

Modification of the linear system; the raw system

- Drop boundary function
- Compute as if there are not Dirichlet conditions
- Modify the linear system to incorporate Dirichlet conditions
- \mathcal{I}_s holds the indices of all nodes $\{0, 1, \dots, N = N_n\}$

$$\sum_{j \in \mathcal{I}_{s}} \left(\underbrace{\int_{\Omega} \varphi_{i} \varphi_{j} \, \mathrm{d}x}_{M_{i,j}} \right) c_{j} = \sum_{j \in \mathcal{I}_{s}} \left(\underbrace{\int_{\Omega} \varphi_{i} \varphi_{j} \, \mathrm{d}x}_{M_{i,j}} - \Delta t \underbrace{\int_{\Omega} \alpha \nabla \varphi_{i} \cdot \nabla \varphi_{j} \, \mathrm{d}x}_{K_{i,j}} \right) c_{1,j}$$

$$-\Delta t \underbrace{\int_{\Omega} f \varphi_{i} \, \mathrm{d}x - \Delta t \underbrace{\int_{\partial \Omega_{N}} g \varphi_{i} \, \mathrm{d}s}_{f_{i}}, \quad i \in \mathcal{I}_{s}}_{f_{i}}$$

Modification of the linear system; setting Dirichlet conditions

$$Mc = b, \quad b = Mc_1 - \Delta t K c_1 + \Delta t f$$
 (85)

For each k where a Dirichlet condition applies, $u(x_k, t_{n+1}) = U_k^{n+1}$,

- set row k in M to zero and 1 on the diagonal: $M_{k,j} = 0$, $j \in \mathcal{I}_s$, $M_{k,k} = 1$
- $\bullet b_k = U_k^{n+1}$

Or apply the slightly more complicated modification which preserves symmetry of ${\it M}$

Modification of the linear system; Backward Euler example

Backward Euler discretization in time gives a more complicated coefficient matrix:

$$Ac = b$$
, $A = M + \Delta tK$, $b = Mc_1 + \Delta tf$. (86)

- ullet Set row k to zero and 1 on the diagonal: $M_{k,j}=0$, $j\in\mathcal{I}_{s}$, $M_{k,k}=1$
- Set row k to zero: $K_{k,j}=0$, $j\in\mathcal{I}_s$
- $b_k = U_k^{n+1}$

Observe: $A_{k,k} = M_{k,k} + \Delta t K_{k,k} = 1 + 0$, so $c_k = U_k^{n+1}$

Analysis of the discrete equations

The diffusion equation $u_t = \alpha u_{xx}$ allows a (Fourier) wave component

$$u = A_e^n e^{ikx}, \quad A_e = e^{-\alpha k^2 \Delta t}$$
 (87)

Numerical schemes often allow the similar solution

$$u_q^n = A^n e^{ikx} (88)$$

A: amplification factor to be computed

Handy formulas

$$\begin{split} &[D_t^+ A^n e^{ikq\Delta x}]^n = A^n e^{ikq\Delta x} \frac{A-1}{\Delta t}, \\ &[D_t^- A^n e^{ikq\Delta x}]^n = A^n e^{ikq\Delta x} \frac{1-A^{-1}}{\Delta t}, \\ &[D_t A^n e^{ikq\Delta x}]^{n+\frac{1}{2}} = A^{n+\frac{1}{2}} e^{ikq\Delta x} \frac{A^{\frac{1}{2}} - A^{-\frac{1}{2}}}{\Delta t} = A^n e^{ikq\Delta x} \frac{A-1}{\Delta t}, \\ &[D_x D_x A^n e^{ikq\Delta x}]_q = -A^n \frac{4}{\Delta x^2} \sin^2\left(\frac{k\Delta x}{2}\right). \end{split}$$

Amplification factor for the Forward Euler method; results

Introduce $p = k\Delta x/2$ and $C = \alpha \Delta t/\Delta x^2$:

$$A = 1 - 4C \frac{\sin^2 p}{1 + \frac{2}{3}\sin^2 p}$$
from M

(See notes for details)

Stability:
$$|A| \leq 1$$
:

$$C \le \frac{5}{6} \quad \Rightarrow \quad \Delta t \le \frac{5\Delta x^2}{6\alpha}$$
 (89)

Finite differences: $C \leq \frac{1}{2}$, so finite elements improves stability (for this PDE)

Amplification factor for the Forward Euler method; plot

Amplification factor for the Backward Euler method; results

$$A = \left(1 + 4C \frac{\sin^2 p}{1 + \frac{2}{3}\sin^2 p}\right)^{-1}$$
 (unconditionally stable)

Amplification factors for smaller time steps; Forward Euler

Amplification factors for smaller time steps; Backward Euler

