01)

المسألة الشاملة رقم:

👚 مشاهـــدة الحــــل

نعتبر الدالة g المعرفة على $\mathbb R$ كما يلى:

$$g(x) = x - e^{-x}$$

- . g ادرس تغيرات الدالة g
- 0.5 < lpha < 0.6: مين أن المعادلة g(x) = 0 تقبلا حلا وحيدا lpha حيث (2) . \mathbb{R} على g(x) على g(x) استنتج إشارة المعادلة والمعادلة و
 - \mathbb{R} نعتبر الدالة f المعرفة على (II)

$$f(x) = \frac{x+1}{e^x + 1}$$

 $(o;ec{l};ec{j})$ ونسمي تمثيلها البياني في مستو منسوب إلى المعلم المتعامد والمتجانس والمتجانس.

- $\lim_{x \to -\infty} [f(x)]$ و $\lim_{x \to +\infty} [f(x)]$ احسب (1
 - \mathbb{R} من x من أجل كل x من (2)

$$f'(x) = \frac{-e^x g(x)}{(e^x + 1)^2}$$

ب/ عيّن دون حساب: $\lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{x - \alpha}$ فسر النتيجة هندسيا.

- f شكل جدول تغيرات الدالة f
- f(lpha) بين أن f(x)=x إذا وفقط إذا كان f(x)=x بين أن بين أن
 - $\cdot \left(\mathcal{C}_{f} \right)$ مثل بیانیا (5
 - نعتبر الدالة h المعرفة على المجال $\mathbb R$ كما يلى: (III)

$$h(x) = |f(x)|$$

. ونسمي (\mathcal{C}_h) تمثيلها البياني في المعلم السابق

- ا كتب h(x) دون رمز القيمة المطلقة.
 - (C_h) انطلاقا من (C_f) ، مثل بیانیا (2

حل المسألة الشاملة رقم:

(I)

: g دراسة تغيرات الدالة (1

- حساب النهايات:

$$\bullet \lim_{x \to -\infty} [g(x)] = \lim_{x \to -\infty} [x - e^{-x}] = \lim_{x \to -\infty} \left[e^{-x} \left(\frac{x}{e^{-x}} - 1 \right) \right] = -\infty$$

•
$$\lim_{x \to +\infty} [g(x)] = \lim_{x \to +\infty} [x - e^{-x}] = +\infty$$

: g'(x) - حساب -

$$g'(x) = 1 + e^{-x}$$

لدينا g'(x) > 0 ومنه:

- جدول التغيرات:

х	-∞ +∞
g'(x)	+
g(x)	-8

$$g(x)=0.5<\alpha<0.6$$
: تبيين أن المعادلة $g(x)=0$ تقبلاً حلا وحيدا α حيث: (2

 \mathbb{R} لدينا الدالة g مستمرة ومتزايدة على

$$g(0.6) imes g(0.5) < 0$$
 ولدينا $g(0.5) = -0.1$ و $g(0.6) = 0.05$

$$g(0.6) = 0.05$$
 ولدينا

lpha ومنه حسب مبرهنة القيم المتوسطة المعادلة g(x)=0 تقبلا حلا وحيدا

 \mathbb{R} على g(x) على g(x)

х	$-\infty$	α	+∞
g(x)	-	0	+

(II)

1) حساب النهايات:

•
$$\lim_{x \to -\infty} [f(x)] = \lim_{x \to -\infty} \left[\frac{x+1}{e^x+1} \right] = -\infty$$

•
$$\lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[\frac{x+1}{e^x+1} \right]$$

$$= \lim_{x \to +\infty} \left[\frac{\frac{x}{e^x} + \frac{1}{e^x}}{1 + \frac{1}{e^x}} \right]$$

$$= 0$$

$$\lim_{x \to +\infty} \left[\frac{x}{e^x} \right] = 0$$

$$\text{Lim}_{x \to +\infty} \left[\frac{x}{e^x} \right] = 0$$

- · التفسير الهندسي:
- y=0 يقبل مستقيم مقارب أفقي معادلته $\left(\mathcal{C}_{f}
 ight)$
 - : f'(x) -ا (2

: لدينا مما سبق g(lpha)=0 ومنه

$$\lim_{x \to \alpha} \left[\frac{f(x) - f(\alpha)}{x - \alpha} \right] = f'(\alpha)$$

$$= \frac{-e^{\alpha} g(\alpha)}{(e^{\alpha} + 1)^2}$$

$$= 0$$

· تفسير الهندسي:

منحني الدالة f يقبل مماس في النقطة ذات الفاصلة lpha مواز لحامل محور الفواصل معادلته هي:

$$y = f(\alpha)$$

: f عدول تغيرات الدالة : f

لدينا:

$$f'(x) = \frac{-e^x g(x)}{(e^x + 1)^2}$$

لدينا المقام موجب تماما ومنه الإشارة من إشارة البسط

- جدول التغيرات:

لدينا f(-1) = 0 ومنه:

х		1	<i>α</i> +∞
$-e^x$	_	_	_
$\frac{g(x)}{f'(x)}$	_	_	0 +
f'(x)	+	+	0 –
f(x)	-8	▼ f((α)

g(x) = 0 تبيين أن المعادلة f(x) = x إذا وفقط إذا كان (4

$$f(x) = x$$
 لتبيين أن

$$f(x) - x = 0$$
:یکفی آن نثبت آن

$$f(x) - x = \frac{x+1}{e^x + 1} - x$$

$$= \frac{x+1 - xe^x - x}{e^x + 1}$$

$$= \frac{1 - xe^x}{e^x + 1}$$

$$= \frac{e^x(e^{-x} - x)}{e^x + 1}$$

$$= \frac{-e^x(x - e^{-x})}{e^x + 1}$$

$$= \frac{-e^x g(x)}{e^x + 1}$$

$$= \frac{0}{e^x + 1}$$

$$= 0$$

:f(lpha) استنتاج قیمه

$$f(\alpha) = \alpha$$
 ومنه $f(x) = x$

5) التمثيل البياني:

(III)

دون رمز القيمة المطلقة: (1 كتابة h(x) دون رمز القيمة

$$h(x) = |f(x)|$$

$$= \left| \frac{x+1}{e^x + 1} \right|$$

$$= \frac{|x+1|}{e^x + 1}$$

$$= \begin{cases} \frac{x+1}{e^x + 1}; x \ge -1 \\ \frac{-x-1}{e^x + 1}; x \le -1 \end{cases}$$

$$= \begin{cases} f(x); x \ge -1 \\ -f(x); x \le -1 \end{cases}$$

 $:(C_h)$ تمثیل (2

 $f(x) \leq 0$ ينطبق على C_f لما $f(x) \geq 0$ ويناظر ويناظر ويناظر إلى محور الفواصل ينطبق على ينطبق على ويناظر ويناظر

المسألة الشاملة رقم:

مشاهدة الحل

نعتبر f الدالة المعرفة على $\mathbb R$ كما يلي:

$$f(x) = x + 2 - \frac{4e^x}{e^x + 3}$$

 $(o;ec{\imath};ec{\jmath})$ تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد والمتجانس ونسمي (C_f)

- $\lim_{x \to -\infty} [f(x)]$ و $\lim_{x \to +\infty} [f(x)]$ احسب (1
 - بیّن أنّه من أجل كل x من \mathbb{R} فإن:

$$f'(x) = \left(\frac{e^x - 3}{e^x + 3}\right)^2$$

(3) أ/ ادرس اتجاه تغير الدالة f ثم شكل جدول تغيراتها.

برر اجابتك. $f''(\ln 3)$ دون حساب عبارة $f''(\ln 3)$ دون حساب عبّن

- $-\infty$ مقارب مائل لـ $\binom{C_f}{}$ في جوار y=x+2 مقارب مائل لـ $\binom{\Delta_1}{}$ في جوار (Δ_1) في جوار (Δ_2) في جوار (Δ_1) في جوار (Δ_2) في جوار (Δ_2)
 - . (Δ_2) و (Δ_1) والمستقيمين (C_f) والمستقيمين (5
 - . (C_f) عند النقطة ذات الفاصلة (T) اكتب معادلة المماس (T) للمنحني (6
 - $A(\ln 3; \ln 3)$ بيّن أن النقطة $A(\ln 3; \ln 3)$ مركز تناظر للمنحني (7
- سعته lpha سعته f(x)=0 ، ثم عين حصرا للعدد lpha سعته f(x)=0 بيّن أن المعادلة f(x)=0 تقبل حلا وحيدا lpha في المجال lpha . 10^{-2}
 - ، (Δ_1) ، (Δ_1) ، هثّل بيانيا كلا من (9
 - التالية: x التالية ذات المجهول الحقيقي غير المعدوم m المعادلة ذات المجهول الحقيقي التالية:

$$f(-|x|) = \ln(|m|)x + 2$$

 \mathbb{R} نعتبر الدالة g المعرفة على (II)

$$g(x) = f(3x - 2)$$

(عبارة g(x) غير مطلوبة).

- $.\ g$ ادرس تغيرات الدالة (1
 - 2) تحقق من أنّ:

$$g\left(\frac{\alpha+2}{3}\right) = 0$$

ثم بيّن أنّ:

$$g'\left(\frac{\alpha+2}{3}\right) = 3f'(\alpha)$$

- . $\frac{\alpha+2}{3}$ استنتج معادلة المماس (d) لمنحني الدالة g عند النقطة ذات الفاصلة (3
 - ب تحقق من أن معادلة المستقيم (d) تعطى بـ: (4

$$y = \frac{3\alpha^2}{4}x - \frac{\alpha^2(\alpha+2)}{4}$$

حل المسألة الشاملة رقم:

(I)

1) حساب النهايات:

•
$$\lim_{x \to -\infty} [f(x)] = \lim_{x \to -\infty} \left[x + 2 - \frac{4e^x}{e^x + 3} \right] = -\infty$$
• $\lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[x + 2 - \frac{4e^x}{e^x + 3} \right]$

$$= \lim_{x \to +\infty} \left[\frac{xe^x - 2e^x + 3x + 6}{e^x + 3} \right]$$

$$= \lim_{x \to +\infty} \left[\frac{e^x \left(x - 2 + \frac{3x + 6}{e^x} \right)}{e^x \left(1 + \frac{3}{e^x} \right)} \right]$$

$$= \lim_{x \to +\infty} \left[\frac{x - 2 + \frac{3x + 6}{e^x}}{1 + \frac{3}{e^x}} \right] = +\infty$$

$$: f'(x) = \left(\frac{e^{x - 3}}{e^{x + 3}} \right)^2 = +\infty$$

$$: f'(x) = 1 - \frac{4e^x (e^x + 3) - e^x (4e^x)}{(e^x + 3)^2}$$

$$= \frac{(e^x + 3)^2 + 12e^x}{(e^x + 3)^2}$$

$$= \frac{e^{2x} - 6e^x + 9}{(e^x + 3)^2}$$

$$= \frac{e^{2x} - 6e^x + 9}{(e^x + 3)^2}$$

$$= \frac{(e^x - 3)^2}{(e^x + 3)^2}$$

$$= \frac{(e^x - 3)^2}{(e^x + 3)^2}$$

$$= \left(\frac{(e^x - 3)^2}{(e^x + 3)^2} \right)$$

$$= \left(\frac{(e^x - 3)^2}{(e^x + 3)^2} \right)$$

3) أ/ دراسة اتجاه تغير الدالة f ثم تشكيل جدول تغيراتها:

لدينا $f'(x) \geq 0$ ومنه الدالة f متزايدة تماما

ولدينا

$$e^x - 3 = 0 \Rightarrow e^x = 3$$

 $\Rightarrow x = \ln 3$

ومنه f'(x) تنعدم عند f'(x) ومنه

ومنه

х	-∞	ln 3	+∞
f'(x)	+	0	+
f(x)	-8	lm3	*+8

f''(x) دون حساب عبارة $f''(\ln 3)$ دون حساب

عندما تنعدم المشتقة الاولى ولا تغير من اشارتها فإنه توجد نقطة انعطاف وعندها تنعدم المشتقة الثانية $f''(\ln 3)=0$

 $z=\infty$ في جوار (C_f) في جوار مائل لـ $y_1=x+2$ مقارب مائل لـ ($\Delta_1)$

$$\lim_{x \to -\infty} [f(x) - y_1] = \lim_{x \to -\infty} \left[x - 2 - \frac{4e^x}{e^x + 3} - x + 2 \right]$$
$$= \lim_{x \to -\infty} \left[-\frac{4e^x}{e^x + 3} \right]$$
$$= 0$$

 $-\infty$ ومنه المستقيم $\left(\Delta_{1}
ight)$ مقارب مائل لـ $\left(C_{f}
ight)$ في جوار

 $+\infty$ با نبين أن المستقيم (C_f) ذو المعادلة $y_2=x-2$ مقارب مائل لـ (Δ_2) في جوار

$$\lim_{x \to +\infty} [f(x) - y_2] = \lim_{x \to +\infty} \left[x + 2 - \frac{4e^x}{e^x + 3} - x + 2 \right]$$

$$= \lim_{x \to +\infty} \left[4 - \frac{4e^x}{e^x + 3} \right]$$

$$= \lim_{x \to +\infty} \left[\frac{12}{e^x + 3} \right]$$

$$= 0$$

 $+\infty$ ومنه المستقيم (Δ_2) مقارب مائل لـ (C_f) في جوار

- $:(\Delta_2)$ و (Δ_1) و المستقيمين (C_f) والمستقيمين (5
 - $: (\Delta_1)$ والمستقيم والمنتقيم (C_f) الوضع النسبي بين المنت

ندرس إشارة الفرق $[f(x)-y_1]$: لدينا:

$$f(x) - y_1 = \frac{-4e^x}{e^x + 3}$$

 $(-4e^x)$ لدينا المقام موجب ومنه الإشارة من إشارة

x	-8	+∞
$f(x) - y_1$	-	
الوضعية	تحت (Δ)	(C_f)

 $: (\Delta_2)$ والمستقيم والمنحني - الوضع النسبي بين المنحني -

ندرس إشارة الفرق $[f(x) - y_2]$: لدينا:

$$f(x) - y_2 = 4 - \frac{4e^x}{e^x + 3} = \frac{12}{e^x + 3} > 0$$

ومنه

x	-8	+8
f(x) - y	+	
الوضعية) فوق (∆)	C_f

 (C_f) عند النقطة ذات الفاصلة (T) كتابة معادلة المماس (T) للمنحنى (6

$$(T): y = f'(0)(x - 0) + f(0)$$

$$= \left(\frac{e^0 - 3}{e^0 + 3}\right)^2 (x) + 0 + 2 - \frac{4e^0}{e^0 + 3}$$

$$= \frac{1}{4}x + 1$$

 $:(C_f)$ مركز تناظر للمنحني (7 A $(\ln 3;\ln 3)$ مركز تناظر المنحني (7

$$(\ln 3 - x) \in D_f$$
 و $(\ln 3 + x) \in D_f$: نبین أن

$$x\in]-\infty;+\infty[$$
 معناه $x\in D_f$ الدينا:

$$(\ln 3 - x) \in]-\infty; +\infty[$$
 ومنه $(\ln 3 + x) \in]-\infty; +\infty[$

$$f(\ln 3 + x) + f(\ln 3 - x) = 2 \ln 3$$
 نبین أن

$$f(\ln 3 + x) + f(\ln 3 - x) = \left(\ln 3 + x + 2 - \frac{4e^{\ln 3 + x}}{e^{\ln 3 + x} + 3}\right) + \left(\ln 3 - x + 2 - \frac{4e^{\ln 3 - x}}{e^{\ln 3 - x} + 3}\right)$$

$$= 2\ln 3 + 4 - \left(\frac{4e^{\ln 3 + x}}{e^{\ln 3 + x} + 3} + \frac{4e^{\ln 3 - x}}{e^{\ln 3 - x} + 3}\right)$$

$$= 2\ln 3 + 4 - \left(\frac{12e^x}{3e^x + 3} + \frac{12e^{-x}}{3e^{-x} + 3}\right)$$

$$= 2\ln 3 + 4 - \left(\frac{4e^x}{e^x + 1} + \frac{4e^{-x}}{e^{-x} + 1}\right)$$

$$= 2\ln 3 + 4 - \left(\frac{4 + 4e^x + 4 + 4e^{-x}}{1 + e^x + e^{-x} + 1}\right)$$

$$= 2 \ln 3 + 4 - \left(\frac{8}{2}\right)$$

= 2 \ln 3

: lpha تبين أن المعادلة f(x)=0 تقبل حلا وحيدا (8

 \mathbb{R} لدينا الدالة f مستمرة ورتيبة على

$$f(-1) imes f(-2) < 0$$
 ولدينا $f(-2) = -0.17$ و $f(-1) = 0.56$ ولدينا α ولدينا α المجال α المجال المعادلة α تقبلاً حلا وحيدا وحيدا وعنه المجال المعادلة ومنه حسب مبرهنة القيم المتوسطة المعادلة و

: α حصر

α	-2	-1.9	-1.8	-1.7	 -1
$f(\alpha)$	-0.17	-0.09	-0.09	0.07	 0.56

9) التمثيل البياني:

خطوات التمثيل على معلم متعامد ومتجانس:

- y=x-2 و y=x+2 و y=x+2
 - (C_f) نعين نقطة مركز تناظر المنحني ullet
 - نرسم المماس (T)
 - (C_f) ثم باستعمال جدول التغيرات نرسم •

10)المناقشة البيانية:

$$f(-|x|) = \ln(|m|)x + 2$$

$$h(x) = f(-|x|)$$
 نضع

ومنه:

$$h(x) = \begin{cases} f(-(x)); x \ge 0 \\ f(-(-x)); x \le 0 \end{cases} = \begin{cases} f(-x); x \ge 0 \\ f(x); x \le 0 \end{cases}$$

 $x \in (C_f)$ لما $\chi \leq 0$ المنحني $\chi \leq 0$ لما

لما $x \geq 0$ المنحني (C_h) يناظر المنحني العكسي لـ (C_f) بالنسبة لمحور التراتيب. ومنه تمثيل (C_h) كالآتي:

 $y=\ln \lvert m \rvert \, x$ و المنحني $\binom{C_h}{m}$ و المنحني $\binom{C_f}{m}$

ومنه المناقشة كالآتي:

المعادلة لا تقبل حلولا لما:

$$-1 \leq \ln |m| \leq 1$$

أي:

$$\ln|m| \ge -1$$
 و $\ln|m| \le 1$

أي:

$$|m| \ge e^{-1}$$
 و $|m| \le e$

أي:

$$m \in]-e;e[$$

9

$$m\in]-\infty; -e^{-1}[\ \cup\]e^{-1}; +\infty[$$

اي:

$$m \in \begin{pmatrix}]-\infty; -e^{-1}[\ \cup\]e^{-1}; +\infty[\\ \cap \\]-e; e[\end{pmatrix}$$

اي:

$$m \in]-e; -e^{-1}[\; \cup \;]e^{-1}; e[$$

المعادلة تقبل حلا وحيدا لما: المعادلة تقبل حلا وحيدا لما:

$$\ln|m| > -1$$

:(

$$m \in]-\infty; -e[\cup]e; +\infty[$$

 $\ln |m| < -1$ $|m| < e^{-1}$ $|e^{-1}| < m < e^{-1}$

$$m \in]-e^{-1}; e^{-1}[$$

لما: $\ln |m| \le e$ أي لما: $m \in [-e;e]$ أي $-e \le m \le e$ أي لما: $m \in [-e;e]$ المعادلة لا تقبل حلول $m \in]-\infty; -e[\cup]e; +\infty[$ لما: $m \in]-\infty; -e[\cup]e; +\infty[$ أي: $m \mid > e$ أي: $m \mid > e$ لما: $m \mid > e$ المعادلة تقبل حل وحيدا $m \mid > e$ (II)

. g دراسة تغيرات الدالة (1

$$k(x) = 3x - 2$$
 حيث $g(x) = (f \circ k)(x)$ نلاحظ أنّ

$$:g\left(rac{lpha+2}{3}
ight)=0$$
 التحقق من أن (2

$$g\left(\frac{\alpha+2}{3}\right) = f\left(3\left(\frac{\alpha+2}{3}\right) - 2\right) = f(\alpha) = 0$$

$$g'\left(\frac{\alpha+2}{3}\right)=3f'(\alpha)$$
 تبيين أن

ومنه:
$$g'(x) = 3f'(3x - 2)$$

$$g'\left(\frac{\alpha+2}{3}\right) = 3f'\left(3\left(\frac{\alpha+2}{3}\right) - 2\right) = 3f'(\alpha)$$

 $rac{lpha+2}{3}$ استنتاج معادلة المماس (d) لمنحني الدالة g عند النقطة ذات الفاصلة (3

$$(d): y = g'\left(\frac{\alpha+2}{3}\right)\left(x - \frac{\alpha+2}{3}\right) + g\left(\frac{\alpha+2}{3}\right)$$
$$= 3f'(\alpha)\left(x - \frac{\alpha+2}{3}\right) + 0$$
$$= 3f'(\alpha)x - f'(\alpha)(\alpha+2)$$

:(d) التحقق من معادلة المماس (4

لدىنا:

$$f(\alpha) = 0 \Rightarrow \alpha + 2 - \frac{4e^{\alpha}}{e^{\alpha} + 3} = 0$$

$$\Rightarrow \alpha + 2 = \frac{4e^{\alpha}}{e^{\alpha} + 3}$$

$$\Rightarrow (\alpha + 2)(e^{\alpha} + 3) - 4e^{\alpha} = 0$$

$$\Rightarrow ae^{\alpha} + 3a + 2e^{\alpha} + 6 - 4e^{\alpha} = 0$$

$$\Rightarrow e^{\alpha}(a - 2) = -(3a + 6)$$

$$\Rightarrow e^{\alpha} = \frac{3\alpha + 6}{2 - \alpha}$$

ولدينا:

$$(d): y = 3f'(\alpha)\left(x - \frac{\alpha + 2}{3}\right)$$

$$= 3\left(\frac{e^{\alpha} - 3}{e^{\alpha} + 3}\right)^{2} \left(x - \frac{\alpha + 2}{3}\right)$$

$$= 3\left(\frac{\frac{3\alpha + 6}{2 - \alpha} - 3}{\frac{3\alpha + 6}{2 - \alpha} + 3}\right)^{2} \left(x - \frac{\alpha + 2}{3}\right)$$

$$= 3\left(\frac{\alpha}{2}\right)^{2} \left(x - \frac{\alpha + 2}{3}\right)$$

$$= \frac{3\alpha^{2}}{4}x - \frac{\alpha^{2}(\alpha + 2)}{4}$$

ب: \mathbb{R} و c أعداد حقيقة، نعتبر الدالة g المعرفة على b ، a

$$g(x) = (ax + b)e^x + c$$

ونسمي (C_g) تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد والمتجانس $(0;\vec{t};\vec{j})$. كما في الشكل أدناه:

1) بقراءة بيانية، أوجد ما يلي:

 $\lim_{x \to +\infty} [g(x)]$ e $\lim_{x \to -\infty} [g(x)]$

 \cdot g'(0) و g(0) ب

- c مما سبق أوجد b ، a و b
- $g(x) = (x-1)e^x 1$ نضع: (3

1.2 < lpha < 1.3 : ثم تحقق من أن: g(x) = 0 تقبل حلا وحيدا lpha على lpha ، ثم تحقق من أن: g(x) = 0

. $\mathbb R$ على g(x) على برا استنتج إشارة

نعتبر الدالة f المعرفة على $\mathbb R$ كما يلي: (II)

$$f(x) = \frac{x}{e^x + 1}$$

.ونسمي (C_f) تمثيلها البياني في المستو السابق

- اً الحسب $\lim_{x \to +\infty} [f(x)]$ ثم فسّر النتيجة هندسيا . $\lim_{x \to +\infty} [f(x)]$ بـ/ احسب $\lim_{x \to +\infty} [f(x)]$
 - $x \to -\infty$ ر (المربق) بين أنه من اجل كل x حقيقى:

$$f'(x) = -\frac{g(x)}{(e^x + 1)^2}$$

ب/ ادرس اتجاه تغير الدالة f ، ثم شكل جدول تغيراتها .

3) عيّن دون حساب:

$$\lim_{x \to \alpha} \left[\frac{f(x) - f(\alpha)}{x - \alpha} \right]$$

ثم فسّر النتيجة هندسيا.

- له. عادلة معادلة له. يُطلب كتابة معادلة له. $\binom{C_f}{T}$ يمر من المبدأ، يُطلب كتابة معادلة له.
 - . 10^{-2} بيّن أنّ f(lpha)=lpha-1 ، ثم اوجد حصرا لـ f(lpha)=lpha-1
 - $-\infty$ بجوار (C_f) بجوار مائل لـ y=x مقارب مائل لـ (Δ) بجوار (Δ) بجوار بيّن أنّ المستقيم (Δ) . (Δ) بالنسبة للمستقيم (Δ)
 - . (C_f) ثم المنحني (Δ) والمستقيم (Δ) ثم المنحني (T) مثّل بيانيا المماس
- f(x)=m عدد وإشارة حلول المعادلة m عدد ويشارة حلول المعادلة m (8

حل المسألة الشاملة رقم:

(I)

1) من البيان نجد:

$$\bullet \lim_{x \to +\infty} [g(x)] = +\infty$$

$$\bullet \lim_{x \to -\infty} [g(x)] = -1$$

•
$$g'(0) = 0$$

•
$$g(0) = -2$$

: *c* و *b* ، *a* و (2

لدينا:

$$\begin{cases} g(0) = -2 \\ g'(0) = 0 \\ \lim_{x \to -\infty} [g(x)] = -1 \end{cases} \Rightarrow \begin{cases} (a(0) + b)e^{0} + c = -2 \\ (a(0) + a + b)e^{0} = 0 \\ \lim_{x \to -\infty} [(ax + b)e^{x} + c] = -1 \end{cases} \Rightarrow \begin{cases} b + c = -2 \\ a + b = 0 \\ c = -1 \end{cases}$$
$$\begin{cases} a = 1 \\ b = -1 \\ c = -1 \end{cases}$$

$: \alpha$ تقبل حلا وحيدا g(x) = 0 تقبل حلا وحيدا (3

 ${\mathbb R}$ لدينا الدالة g مستمرة ورتيبة على

$$\lim_{x \to +\infty} [g(x)] \times \lim_{x \to -\infty} [g(x)] < 0$$
 ولدينا

. lpha ومنه حسب مبرهنة القيم المتوسطة المعادلة g(x)=0 تقبل حلا وحيدا

 $1.2 < \alpha < 1.3$ - التحقق من أن - التحقق من أن

$$g(1.2) = -0.3$$
 و $g(1.3) = 0.1$

$$g(1.3) \times g(1.2) < 0$$
 ولدينا:

$$1.2 < \alpha < 1.3$$
 ومنه:

g(x) برا استنتاج إشارة

х	$-\infty$	α	+∞
g(x)	_	0	+

(II)

$$\lim_{x \to +\infty} [f(x)]$$
 أ- حساب (1

$$\lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[\frac{x}{e^x + 1} \right] = \lim_{x \to +\infty} \left[\frac{\frac{x}{e^x}}{1 + \frac{1}{e^x}} \right] = 0$$
(نهاية شهيرة) $\lim_{x \to +\infty} \left[\frac{x}{e^x} \right] = 0$

y=0 التفسير الهندسي: المنحني $\binom{C_f}{2}$ يقبل مستقيم مقارب أفقي بجوار - معادلته -

$$\lim_{x \to -\infty} \left[\frac{x}{e^x + 1} \right]$$
 جساب /ب

$$\lim_{x \to -\infty} \left[\frac{x}{e^x + 1} \right] = -\infty$$

$$: f'(x) = -\frac{g(x)}{(e^x + 1)^2}$$

$$f'(x) = \frac{e^x + 1 - xe^x}{(e^x + 1)^2}$$

$$= \frac{(1 - x)e^x + 1}{(e^x + 1)^2}$$

$$= \frac{-((x - 1)e^x - 1)}{(e^x + 1)^2}$$

$$= \frac{-g(x)}{(e^x + 1)^2}$$

f دراسة اتجاه تغير الدالة f

$$f(0) = 0$$
 لدينا

$$g(x)$$
 ومنه إشارة المشتقة عكس إشارة $f'(x) = rac{-g(x)}{(e^x + 1)^2} < 0$ ولدينا:

ومنه جدول التغيرات:

	х	-∞ ()	α	+∞
f	'(x)	+	+	0	_
f	f(x)	-8)	$\bullet f(\alpha)$	0

:نعیین $\lim_{x \to \alpha} \left[\frac{f(x) - f(\alpha)}{x - \alpha} \right]$ دون حساب (3

$$\lim_{x \to \alpha} \left[\frac{f(x) - f(\alpha)}{x - \alpha} \right] = f'(\alpha) = \frac{-g(\alpha)}{(e^{\alpha} + 1)^2} = 0$$

- تفسير الهندسي:

. المنحني (C_f) يقبل مماس عند النقطة ذات الفاصلة lpha مواز لحامل محور الفواصل

بيين أن المنحنى $\binom{C_f}{2}$ يقبل مماسا وحيدا (T) يمر من المبدأ:

لدينا معادلة المماس تكتب من الشكل:

$$y = f'(a)(x - a) + f(a)$$

یوجد مماس یمر من O(0;0) معناه:

$$f'(a)(0-a) + f(a) = 0$$

$$\Rightarrow -af'(a)x + f(a) = 0$$

$$\Rightarrow a\frac{(a-1)e^a - 1}{(e^a + 1)^2} + \frac{a}{e^a + 1} = 0$$

$$\Rightarrow a(a-1)e^a - a + a(e^a + 1) = 0$$

$$\Rightarrow a^2e^a = 0$$

$$\Rightarrow a = 0$$

ومنه معادلة المماس هي:

$$(T): y = f'(0)(x - 0) + f(0)$$
$$y = \frac{-g(0)}{(e^0 + 1)^2}x + \frac{0}{e^0 + 1}$$
$$y = \frac{1}{2}x$$

$: f(\alpha) = \alpha - 1$ تبيين أن (5

مما سبق لدينا

$$g(\alpha) = 0 \Rightarrow (\alpha - 1)e^{\alpha} - 1 = 0$$
$$\Rightarrow (\alpha - 1)e^{\alpha} = 1$$
$$\Rightarrow e^{\alpha} = \frac{1}{\alpha - 1}$$

ومنه:

$$f(\alpha) = \frac{\alpha}{e^{\alpha} + 1}$$

$$= \frac{\alpha}{\frac{1}{\alpha - 1} + 1}$$

$$= \frac{\alpha(\alpha - 1)}{\alpha}$$

$$= \alpha - 1$$

 $f(\alpha)$ حصر

لدىنا:

$$1.2 < \alpha < 1.3$$

 $0.2 < a - 1 < 0.3$
 $0.2 < f(\alpha) < 0.3$

$z - \infty$ بجوار (C_f) المستقيم (Δ) نو المعادلة y = x مقارب مائل لـ (Δ) بجوار (6

لدينا:

$$\lim_{x \to -\infty} [f(x) - y] = \lim_{x \to -\infty} \left[\frac{x}{e^x + 1} - x \right]$$

$$= \lim_{x \to -\infty} \left[\frac{x - xe^x - x}{e^x + 1} \right]$$

$$= \lim_{x \to -\infty} \left[\frac{-xe^x}{e^x + 1} \right] = 0$$

$$\lim_{x o -\infty} [xe^x] = 0$$
 (نهاية شهيرة)

 \cdot : (Δ) بالنسبة للمستقيم با دراسة وضعية (C_f)

:[f(x)-y] دراسة إشارة الفرق

$$f(x) - y = \frac{x}{e^x + 1} - x$$
$$= \frac{x - xe^x - x}{e^x + 1}$$
$$= \frac{-xe^x}{e^x + 1}$$

(-x) و $e^x > 0$ و فمنه الإشارة من إشارة $e^x > 0$ و لدينا

x	-8	0	$+\infty$
f(x) - y	+	0	_

الوضعية:

- $]-\infty;0[$ فوق (Δ) في المجال: C_f •
- 0 يقطع (Δ) في النقطة ذات الفاصلة $\left(\mathcal{C}_{f}
 ight)$
 - $]0;+\infty[$:في المجال (C_f) نحت (C_f) .
 - 7) التمثيل البياني:

خطوات التمثيل على معلم متعامد ومتجانس:

- (Δ) نرسم المستقيم المقارب y=0 و المستقيم المقارب المائل \bullet
 - (T) نرسم المماس \bullet
 - (C_f) ثم باستعمال جدول التغيرات نرسم \bullet

8) المناقشة البيانية:

لما m<0 المعادلة تقبل حل وحيد سالب لما m=0 المعادلة تقبل حل وحيد معدوم لما m<0 المعادلة تقبل حلين موجبين $0< m<\alpha$ لما $m=\alpha$ المعادلة تقبل حل مضاعف موجب لما $m>\alpha$ المعادلة لا تقبل حلولا

نعتبر الدالة f المعرفة على $\mathbb R$ كما يلي:

$$f(x) = x - 1 + \frac{4}{e^x + 1}$$

 $(o;ec{\iota},ec{\jmath})$ تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس ونسمي (\mathcal{C}_f)

 \mathbb{R} من x من أجل كل ألبيّن أنّه من أجل كل أ

$$f'(x) = \left(\frac{e^x - 1}{e^x + 1}\right)^2$$

f شكل جدول تغيرات الدالة f

- . (\mathcal{C}_f) برهن أنّ النقطة A(0;1) مركز تناظر المنحني (2
- ن البيّن أنّ $\lim_{x \to +\infty} [f(x) (x-1)] = \lim_{x \to +\infty} [f(x) (x-1)]$ ثم فسر النتيجة هندسيا.

 (C_f) ماذا تسنتج بالنسبة للمنحني با $\lim_{x o +\infty} [f(x) - x]$ عاذا f(x)

- عيث: α عين أنّ المنحني α يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها α حيث: $-2.77 < \alpha < -2.76$
 - . (C_f) مثّل بیانیا (5
 - \mathbb{R} نعتبر الدالة g المعرفة على (II)

$$g(x) = f(4x + 1)$$

(عبارة g غير مطلوبة).

- . g ما هو اتجاه تغير الدالة (1)
 - 2) تحقق من أنّ:

$$g\left(\frac{\alpha-1}{4}\right)=0$$

ثم بيّن أن:

$$g'\left(\frac{\alpha-1}{4}\right) = 4f'(\alpha)$$

 $rac{lpha-1}{4}$ استنتج معادلة المماس (T) لمنحني الدالة g في النقطة ذات الفاصلة (3

ب: عطى ب(T) تحقق من أن معادلة المماس (T) تعطى ب

$$y = (1 + \alpha)^2 x - \frac{(1 + \alpha)(\alpha^2 - 1)}{4}$$

:كما يلى الدالة k المعرفة على الدالة الدالة \mathbb{R}

$$k(x) = f(|x|)$$

 $(o; \vec{\imath}, \vec{\jmath})$ تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس (\mathcal{C}_k) تمثيلها البياني في مستوِ منسوب

- . بيّن أن الدالة k زوجية (1
- . (C_f) انطلاقا من مثیل (C_k) انطلاقا من (2 . (C_k) ، مثل بیانیا برا انطلاقا من انطلاقا من (C_f)
 - نعتبر الدالة h المعرفة على $\mathbb R$ كما يلي: (IV)

$$h(x) = x + \frac{4}{e^x + 1}$$

 $(o; ec{\imath}, ec{\jmath})$ تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس ونسمي (\mathcal{C}_h)

- $h(x) = f(x) + 1 : \mathbb{R}$ من (1) تحقق من أنه كل تحقق من أنه كل
- 2) أ/ استنتج أن (C_h) هو صورة (C_f) بتحويل نقطي بسيط يُطلب تعيينه. (C_h) ، مثل بيانيا (C_h) ، مثل بيانيا

...

حل المسألة الشاملة رقم:

مشاهــدة المسألة

(I)

$$f'(x) = \left(\frac{e^{x}-1}{e^{x}+1}\right)^{2} : \mathbb{R} \text{ as } x \text{ if } x \text$$

$:\mathbb{R}$ على f'(x) على بالمناب دراسة إشارة

لدينا f'(x)>0 ومنه الدالة لمتزايدة تماما.

لدينا f'(0) = 0 أي المشتقة تنعدم ولا تغير اشارتها

.فالعناتج أن المنحني (C_f) يقبل نقطة انعطاف.

f جدول تغيرات الدالة f

· حساب النهايات:

$$\bullet \lim_{x \to -\infty} [f(x)] = \lim_{x \to -\infty} \left[x - 1 + \frac{4}{e^x + 1} \right]$$

$$\bullet \lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[x - 1 + \frac{4}{e^x + 1} \right]$$

$$= \lim_{x \to +\infty} \left[x - 1 + \frac{\frac{4}{e^x}}{1 + \frac{1}{e^x}} \right]$$

- جدول التغيرات:

х	$-\infty$	0	+∞
f'(x)	+	- 0	+
f(x)	-∞	1	+∞

A(0;1) برهان أن النقطة A(0;1) مركز تناظر المنحني (2

➤ شاهد هذا التذكير <> (اثبات ان نقطة مركز تناظر)

$$x: (2(0) - x) \in D_f$$
 - نثبت أن

 $(-x) \in \mathbb{R}$ ومنه $x \in \mathbb{R}$ لدينا

$$: f(2(0) - x) + f(x) = 2(1):$$
 نثبت أن

لدىنا:

$$f(2(0) - x) + f(x) = -x - 1 + \frac{4}{e^{-x} + 1} + x - 1 + \frac{4}{e^{x} + 1}$$

$$= -2 + \frac{4}{e^{-x} + 1} + \frac{4}{e^{x} + 1}$$

$$= \frac{-2(e^{-x} + 1)(e^{x} + 1) + 4(e^{x} + 1) + 4(e^{-x} + 1)}{(e^{-x} + 1)(e^{x} + 1)}$$

$$= \frac{2[2(e^{x} + 1) + 2(e^{-x} + 1) - (e^{-x} + 1)(e^{x} + 1)]}{(e^{-x} + 1)(e^{x} + 1)}$$

$$= \frac{2[2(e^{x} + e^{-x} + 2) - (e^{x} + e^{-x} + 2)]}{(e^{-x} + 1)(e^{x} + 1)}$$

$$= \frac{2[2(e^{x} + e^{-x} + 2) - (e^{x} + e^{-x} + 2)]}{(e^{-x} + 1)(e^{x} + 1)}$$

$$= \frac{2[e^{x} + e^{-x} + 2]}{(e^{-x} + 1)(e^{x} + 1)}$$

$$= \frac{2[e^{x} + e^{-x} + 2]}{e^{x} + e^{-x} + 2}$$

$$= 2$$

A(0;1) ومنه النقطة A(0;1) مركز تناظر المنحني

$$\lim_{x \to +\infty} [f(x) - (x-1)] = 0$$
 أ/ تبيين أن (3

$$\lim_{x \to +\infty} [f(x) - (x - 1)] = \lim_{x \to +\infty} \left[x - 1 + \frac{4}{e^x + 1} - x + 1 \right]$$
$$= \lim_{x \to +\infty} \left[\frac{4}{e^x + 1} \right]$$
$$= \lim_{x \to +\infty} \left[\frac{\frac{4}{e^x}}{\frac{1}{e^x} + 1} \right] = 0$$

التفسير الهندسي:

y=x-1 . يقبل مستقيم مقارب مائل بجوار $+\infty$ معادلته: C_f

$$\lim_{x \to -\infty} [f(x) - x] = \lim_{x \to -\infty} \left[x - 1 + \frac{4}{e^x + 1} - x \right]$$

$$= \lim_{x \to -\infty} \left[-1 + \frac{4}{e^x + 1} \right]$$

$$= 3$$

الاستنتاج:

لدينا:

$$\lim_{x \to -\infty} [f(x) - x] = 3 \Rightarrow \lim_{x \to -\infty} [f(x) - x] - 3 = 0$$

$$\Rightarrow \lim_{x \to -\infty} [f(x) - x - 3] = 0$$

$$\Rightarrow \lim_{x \to -\infty} [f(x) - (x + 3)] = 0$$

 $-\infty$ ومنه المستقيم ذو المعادلة y=x+3 مقارب مائل بجوار

lacktriangle ملاحظة: أمكننا إدخال 3 داخل النهاية لانها لا تتعلق بالمتغير lacktriangle

: lpha يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها (4

 \mathbb{R} لدينا الدالة f مستمرة ورتيبة على

$$f(-2.77) = -0.3$$
 و $f(-2.76) = 0.001$ ولدينا: $f(-2.77) \times f(-2.76) < 0$

. lpha ومنه حسب مبرهنة القيم المتوسطة المعادلة f(x)=0 تقبل حلا وحيدا

5) التمثيل البياني:

خطوات التمثيل على معلم متعامد ومتجانس:

- (y=x+3) و (y=x-1) نرسم المستقيمات المقاربة المائلة (y=x+3)
 - (C_f) نعين A نقطة مركز تناظر المنحنى •
 - (C_f) ثم باستعمال جدول التغيرات نرسم •

(II)

1) اتجاه تغير الدالة *q*

 $\varphi(x) = 4x + 1$:حيث $g(x) = (f \circ \varphi)(x)$ نلاحظ أن

 \mathbb{R} لدينا الدالة ϕ متزايدة تماما على

والدالة f متزايدة تماما أيضا على $\mathbb R$ (لهما نفس اتجاه التغير)

 ${\mathbb R}$ متزادية تماما على g

 $g\left(\frac{\alpha-1}{4}\right)=0$ التحقق من أن: (2

$$g\left(\frac{\alpha-1}{4}\right)=0$$
 التحقق من ان: 0 $g\left(\frac{\alpha-1}{4}\right)=f\left(4\frac{\alpha-1}{4}+1\right)$ $=f(\alpha)$ $=0$

 $g'\left(\frac{\alpha-1}{4}\right)=4f'(\alpha)$ تبيين أن:

: ومنه g'(x) = 4f'(4x + 1)

$$g'\left(\frac{\alpha-1}{4}\right) = 4f'\left(4\frac{\alpha-1}{4} + 1\right)$$
$$= 4f'(\alpha)$$

I دالة معرفة على مجال fوg دالة معرفة على المجال

ادا کانت الدالتین f و g لهماullet $(f \circ : نفس اتجاه التغير فإن$ I متزایدهٔ علی g

g و إذا كانت الدالتين f و متعاكستان في اتجاه التغير I فإن: $(f \circ g)$ متناقصة على

$$rac{lpha-1}{4}$$
 استنتاج معادلة المماس (T) لمنحني الدالة g في النقطة ذات الفاصلة (3

$$(T): y = g'\left(\frac{\alpha - 1}{4}\right)\left(x - \frac{\alpha - 1}{4}\right) + g\left(\frac{\alpha - 1}{4}\right)$$
$$= 4f'(\alpha)\left(x - \frac{\alpha - 1}{4}\right) + 0$$
$$= 4f'(\alpha)x - f'(\alpha)(\alpha - 1)$$

$$y = (\alpha + 1)^2 x - \frac{(\alpha + 1)(\alpha^2 - 1)}{4}$$
: التحقق من أن معادلة المماس (T) تعطى ب

لدىنا:

$$f(\alpha) = 0 \Rightarrow \alpha - 1 + \frac{4}{e^{\alpha} + 1} = 0$$
$$\Rightarrow \frac{4}{e^{\alpha} + 1} = 1 - \alpha$$
$$\Rightarrow e^{\alpha} = \frac{3 + \alpha}{1 - \alpha}$$

ومنه:

$$(T): y = 4 \left(\frac{\frac{3+\alpha}{1-\alpha} - 1}{\frac{3+\alpha}{1-\alpha} + 1} \right)^2 \left(x - \frac{\alpha - 1}{4} \right)$$

$$= 4 \left(\frac{\alpha + 1}{2} \right)^2 \left(x - \frac{\alpha - 1}{4} \right)$$

$$= (\alpha + 1)^2 x - \frac{(\alpha + 1)^2 (\alpha - 1)}{4}$$

$$= (\alpha + 1)^2 x - \frac{(\alpha + 1)(\alpha + 1)(\alpha - 1)}{4}$$

$$= (\alpha + 1)^2 x - \frac{(\alpha + 1)(\alpha^2 - 1)}{4}$$

(III)

: تبيين أن الدالة k زوجية (1

 $(-x) \in \mathbb{R}$ لدينا

ولدينا:

$$k(-x) = f(|-x|) = f(|x|) = h(x)$$

ومنه الدالة k زوجية.

 $:(C_f)$ انطلاقا من ((C_k) انطلاقا من (2

 $\left(\mathcal{C}_{f}
ight)$ لمَا $x\geq 0$ ينطبق على

(yy') بيناظر (C_f) بالنسبة لحامل محور التراتيب $(C_k):x\leq 0$ ولما $(C_k):x\leq 0$ برا التمثيل البياني لـ (C_k)

(IV)

$$h(x)=f(x)+1:\mathbb{R}$$
 التحقق من أنه كل التحقق من أنه كل (1

$$f(x) + 1 = x - 1 + \frac{4}{e^x + 1} + 1$$
$$= x + \frac{4}{e^x + 1}$$
$$= h(x)$$

:2 أ/ استنتاج أن (C_h) هو صورة (C_f) بتحويل نقطي بسيط يُطلب تعيينه:

$$h(x) = f(x) + 1$$
 لدينا:

 $ec{u}(0;1)$:مو صورة (\mathcal{C}_f) بواسطة انسحاب شعاعه $ec{u}$ حيث ومنه (\mathcal{C}_h) مو صورة

 $:(\mathcal{C}_h)$ التمثيل البياني لـ التمثيل

المسألة الشاملة رقم:

مشاهـــدة الحــــل

 \mathbb{R} بـن الدالة g المعرفة على (I)

$$g(x) = x + 2 - e^x$$

- . g ادرس تغيرات الدالة (1
- -1.9 < eta < -1.8 و lpha < 1.15 و lpha < 1.15 و lpha حيث: g(x) = 0 و عند g(x) = 0 بيّن أنّ المعادلة a
 - \mathbb{R} على g(x) على (3
 - نعتبر الدالة f المعرفة على $\mathbb R$ كما يلى:

$$f(x) = \frac{e^x - 1}{xe^x + 1}$$

 $(o;ec{\iota},ec{J})$ تمثيلها البياني في مستوٍ منسوب إلى المعلم المتعامد المتجانس ونسمي (C_f)

- الحسب $\lim_{x \to +\infty} [f(x)]$ و $\lim_{x \to +\infty} [f(x)]$: ثم فسر ذلك هندسيا.
 - \mathbb{R} من x من أجل كل x من (2

$$f'(x) = \frac{e^x g(x)}{(xe^x + 1)^2}$$

- ادرس اتجاه تغير الدالة f ، ثم شكل جدول تغيراتها.
- $\lim_{x \to \beta} \left[\frac{f(x) f(\beta)}{x \beta} \right]$ وَ $\lim_{x \to \alpha} \left[\frac{f(x) f(\alpha)}{x \alpha} \right]$: غيّن دون حساب كل من $\frac{1}{x}$ عيّن دون حساب كل من ثم فسر النتيجتين هندسيا.
 - . 10^{-1} سعته $f(\alpha)$ بیّن أن: $f(\alpha) = \frac{1}{\alpha+1}$ ، ثم أوجد حصرا لـ (5
 - \mathbb{R} نعتبر الدالة h المعرفة على \mathbb{R} بـ: (6

$$h(x) = e^x - xe^x - 1$$

- $h(x) \leq 0: \mathbb{R}$ من x من أجل كل بيّن أنه من أجل كل
 - $: \mathbb{R}$ نضع من أجل كل x من (7

$$p(x) = (x^2 + 1)e^{2x} + xe^x - 2e^x + 1$$

- p(0) = 0 : تحقق من أنّ
- y=-x+5 أ/ بيّن أن المنحني المستقيم (C_f) يقبل مماسا (T) عمودي على المستقيم ذو المعادلة (T) . (8
- (C_f) بالنسبة للمماس (T) ، ماذا تستنتج بالنسبة للمنحني (C_f) بالنسبة للمنحني (C_f) ؛

- $f(\beta) \cong -1.195$ نأخذ: (9
- . $\left(\mathcal{C}_{f}
 ight)$ والمنحني مثّل بيانيا المستقيم
- وسيط حقيقي، ناقش بيانيا حسب قيم m عدد حلول المعادلة ذات المجهول الحقيقي χ التالية: m(10)

$$e^x(1 - mx^2) + mx - 1 = 0$$

...

حل المسألة الشاملة رقم:

مشاهــدة المسألة

(I)

: g دراسة تغيرات الدالة (1

- النهايات:

•
$$\lim_{x \to -\infty} [g(x)] = \lim_{x \to -\infty} [x + 2 - e^x]$$

= $-\infty$

•
$$\lim_{x \to +\infty} [g(x)] = \lim_{x \to +\infty} [x + 2 - e^x]$$

$$= \lim_{x \to +\infty} \left[e^x \left(\frac{x}{e^x} + \frac{2}{e^x} - 1 \right) \right]$$

$$= -\infty$$

لأن:
$$\lim_{x o +\infty}\left[rac{x}{e^x}
ight]=0$$
 نهاية شهيرة)

g'(x) حساب

$$g'(x) = 1 - e^x$$

لدينا:

$$g'(x) = 0 \Rightarrow 1 - e^{x} = 0$$
$$\Rightarrow e^{x} = 1$$
$$\Rightarrow x = \ln 1$$
$$\Rightarrow x = 0$$

- جدول التغيرات:

х	$-\infty$	0	+∞
g'(x)	+	0	_
g(x)	-8	1	-∞

:eta و lpha تبيين أن المعادلة g(x)=0 تقبل حلان (2

 ${\mathbb R}$ لدينا الدالة g مستمرة ورتيبة على

$$g(1.14) = 0.01$$
 $g(1.14) = 0.01$

$$g(1.15) = -0.008$$
 ولدينا:

$$g(1.14) \times g(1.15) < 0$$
 ولدينا:

g(x)=0 ومنه حسب مبرهنة القيم المتوسطة المعادلة g(x)=0 تقبل حل وحيد lpha في المجال g(x)=0

$$g(-1.9) = -0.04$$

$$g(-1.9) = -0.04$$
 ولدينا: $g(-1.8) = 0.03$

$$g(-1.9) \times g(-1.8) < 0$$
 ولدينا:

g(x)=0:]-1.9;-1.8 في المجال المعادلة g(x)=0 تقبل حل وحيد g(x)=0

$: \mathbb{R}$ على g(x) على (3

X	-∞	β		α	+∞
g(x)	_	0	+	0	_

(II)

$$\lim_{x \to +\infty} [f(x)]$$
 و $\lim_{x \to +\infty} [f(x)]$ و $\lim_{x \to -\infty} [f(x)]$ • $\lim_{x \to -\infty} [f(x)] = \lim_{x \to -\infty} \left[\frac{e^x - 1}{xe^x + 1} \right]$ = -1

لأن:
$$\lim_{x \to -\infty} [xe^x] = 0$$
 (نهاية شهيرة)

•
$$\lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[\frac{e^x - 1}{xe^x + 1} \right]$$
$$= \lim_{x \to +\infty} \left[\frac{1 - \frac{1}{e^x}}{x + \frac{1}{e^x}} \right]$$
$$= 0$$

- التفسير الهندسي:

- . y=-1 معادلته: $-\infty$ معادلته مستقیم مقارب عمودي بجوار $-\infty$
 - y=0 يقبل مستقيم مقارب عمودي بجوار $+\infty$ معادلته: (\mathcal{C}_f) •

$$f'(x)=rac{e^xg(x)}{(xe^x+1)^2}\colon \mathbb{R}$$
 من x من أجل كل تبيين أنه من أجل كل (2

$$f'(x) = \frac{e^{x}(xe^{x} + 1) - (e^{x} + xe^{x})(e^{x} - 1)}{(xe^{x} + 1)^{2}}$$

$$= \frac{xe^{2x} + e^{x} - e^{2x} + e^{x} - xe^{2x} + xe^{x}}{(xe^{x} + 1)^{2}}$$

$$= \frac{-e^{2x} + 2e^{x} + xe^{x}}{(xe^{x} + 1)^{2}}$$

$$= \frac{e^{x}(x + 2 - e^{x})}{(xe^{x} + 1)^{2}}$$

$$= \frac{e^{x}g(x)}{(xe^{x} + 1)^{2}}$$

: f دراسة اتجاه تغير الدالة

$$g(x)$$
 و منه إشارة $f'(x)$ من إشارة $(xe^x+1)^2>0$ و منه إشارة

ولدينا : f(0) = 0 ومنه جدول التغيرات كالآتي:

X	-∞	β		0		α	+∞
f'(x)	_	0	+	0	+	0	+
f(x)	-1	$f(\beta)$		9		$f(\alpha)$	•0

$$\lim_{x \to \beta} \left[\frac{f(x) - f(\beta)}{x - \beta} \right]$$
 و $\lim_{x \to \alpha} \left[\frac{f(x) - f(\alpha)}{x - \alpha} \right]$: تعیین دون حساب کل من

•
$$\lim_{x \to \alpha} \left[\frac{f(x) - f(\alpha)}{x - \alpha} \right] = f'(\alpha) = 0$$

•
$$\lim_{x \to \beta} \left[\frac{f(x) - f(\beta)}{x - \beta} \right] = f'(\beta) = 0$$

- التفسير الهندسى:

. eta و lpha يقبل مماسين موازيين لحامل محور الفواصل في النقطتين ذات الفاصلتين و (\mathcal{C}_f)

$$f(\alpha) = \frac{1}{\alpha+1}$$
 : تبيين أنّ

لدينا:

$$g(\alpha) = 0 \Rightarrow \alpha + 2 - e^{\alpha}$$

 $\Rightarrow e^{\alpha} = \alpha + 2$

ومنه:

$$f(\alpha) = \frac{e^{\alpha} - 1}{\alpha e^{\alpha} + 1}$$

$$= \frac{\alpha + 2 - 1}{\alpha(\alpha + 2) + 1}$$

$$= \frac{\alpha + 1}{\alpha^2 + 2\alpha + 1}$$

$$= \frac{\alpha + 1}{(\alpha + 1)^2}$$

$$= \frac{1}{\alpha + 1}$$

$f(\alpha)$ حصر

لدىنا:

$$1.14 < \alpha < 1.15$$

 $1.14 + 1 < \alpha + 1 < 1.15 + 1$

$$\frac{1}{2.15} < \frac{1}{\alpha + 1} < \frac{1}{2.14}$$

ومنه:

$$0.46 < f(\alpha) < 0.46$$

 $h(x) \leq 0 : \mathbb{R}$ من $h(x) \leq 0$ تبيين أنه من أجل كل $h(x) \leq 0$

h(0) = 0 لدينا

ولدينا:

•
$$\lim_{x \to +\infty} [h(x)] = \lim_{x \to +\infty} [e^x - xe^x - 1]$$
$$= \lim_{x \to +\infty} \left[e^x \left(1 - x - \frac{1}{e^x} \right) \right]$$
$$= -\infty$$

•
$$\lim_{x \to -\infty} [h(x)] = \lim_{x \to -\infty} [e^x - xe^x - 1]$$

= $-\infty$

ولدينا:

$$h'(x) = -xe^x$$

: h جدول تغيرات الدالة

x	$-\infty$	0	+∞
h'(x)	+	0	_
h(x)		7 0	
	$-\infty$		$-\infty$

0 من جدول التغيرات نجد أعلى قيمة تأخذها الدالة h

 $h(x) \le 0$ ومنه

p(0) = 0: التحقق من ان (7

$$p(0) = 1 - 2 + 1 = 0$$

y=-x+5 عمودي على المستقيم ذو المعادلة (C_f) عمودي على أن المنحني (C_f) عمودي على المستقيم أن المنحني

lacktrianglerightيتعامد مستقيمان إذا كان جداء ميليهما يساوي -1

ومنه:

$$f'(a) \times -1 = -1 \Rightarrow f'(a) = 1$$

$$\Rightarrow \frac{e^{a}(a+2-e^{a})}{(ae^{a}+1)^{2}} = 1$$

$$\Rightarrow e^{a}(a+2-e^{a}) = (ae^{a}+1)^{2}$$

$$\Rightarrow (ae^{a}+1)^{2} - e^{a}(a+2-e^{a}) = 0$$

$$\Rightarrow a^{2}e^{2a} + 1 + 2ae^{a} + e^{2a} - 2e^{a} - ae^{a} = 0$$

$$\Rightarrow (a^{2} + 1)e^{2a} + (a - 2)e^{a} + 1 = 0$$

$$\Rightarrow p(a) = 0$$

$$\Rightarrow a = 0$$

y=-x+5 المعادلة تقبل حل، ومنه المنحني $\binom{C_f}{2}$ يقبل مماسا (T) عمودي على المستقيم ذو المعادلة T: T

$$(T): y = f'(a)(x - a) + f(a)$$
$$= x + f(0)$$
$$= x$$

:(T) بالنسبة للمماس ج- دراسة وضعية المنحني (\mathcal{C}_f) بالنسبة للمماس

f(x) - y: ندرس إشارة الفرق

$$f(x) - y = \frac{e^x - 1}{xe^x + 1} - x$$

$$= \frac{e^x - 1 - x^2 e^x - x}{xe^x + 1}$$

$$= \frac{e^x (1 - x^2) - (1 + x)}{xe^x + 1}$$

$$= \frac{e^x (1 - x)(1 + x) - (1 + x)}{xe^x + 1}$$

$$= \frac{(1 + x)(e^x - xe^x - 1)}{xe^x + 1}$$

$$= \frac{(1 + x)h(x)}{xe^x + 1}$$

 $h(x) \leq 0$ لدينا

ولدينا:

 $\underline{\hspace{1cm}}$: (xe^x+1) ندرس إشارة -

$$\varphi(x) = xe^x + 1$$
 نضع

$$\phi'(x)=e^x+xe^x=e^x(1+x)$$
 $\qquad \qquad (1+x)$ من إشارة $\phi'(x)$ من إشارة $e^x>0$ $\qquad \qquad 1+x=0 \Rightarrow x=-1$

 $: \varphi(x)$ جدول تغیرات -

مسائل شاملة بالحلول في الدوال [العددية | الأسية | اللوغاريتمية] |

x	$-\infty$	-1	+∞
$\varphi'(x)$	_	0	+
$\varphi(x)$	1	0.6	+∞

من جدول تغيرات $\varphi(x)>0$ نلاحظ أن $\varphi(x)>0$ ومنه:

اذن إشارة الفرق f(x)-y كالآتي

x	-∞	-1	+∞
h(x)	_		_
1+x	_	0	+
f(x)-y	+	0	_

- الوضعية:
- $x \in]-\infty;-1[$ لما (T) فوق (C_f) •
- A(-1;-1) في النقطة (T) يقطع (C_f)
 - $x \in]-1;+\infty[$ لما (T) تحت (C_f)
 - الاستنتاج:

المماس (T) يقطع المنحني (C_f) في النقطة (C_f) معناه توجد نقطة انعطاف

9) التمثيل البياني:

خطوات التمثيل على معلم متعامد ومتجانس:

- (y=0) و (y=-1) نرسم المستقيمات المقاربة:

 - (C_f) ثم باستعمال جدول التغيرات نرسم •

10) المناقشة البيانية:

$$e^{x}(1 - mx^{2}) + mx - 1 = 0 \Rightarrow e^{x} - mx^{2}e^{x} + mx - 1 = 0$$

$$\Rightarrow mx(1 - xe^{x}) = 1 - e^{x}$$

$$\Rightarrow mx = \frac{1 - e^{x}}{1 - xe^{x}}$$

$$\Rightarrow \frac{e^{x} - 1}{xe^{x} - 1} = mx$$

$$\Rightarrow f(x) = mx$$

f(x) = mx : مجموعة حلول المعادلة هي نقط تقاطع المنحني (\mathcal{C}_f) مع المستقيمات ذات المعادلة هي نقط ومنه:

لما
$$m=1$$
 المعادلة تقبل حلا مضاعفا $m=1$ وحلا سالبا لما $0 < m < 1$ المعادلة تقبل ثلاث حلول لما $m \le 0$ المعادلة تقبل حلا معدوما لما $m \ge 1$ المعادلة تقبل حلا معدوما لما $m > 1$

نعتبر الدالة f المعرفة على $\mathbb R$ كما يلى:

$$f(x) = 2x + 1 - xe^{x-1}$$

 $(o; ec{l}, ec{f})$ تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس ونسمي (C_f)

- . f' ادرس تغيرات الدالة f'
- . \mathbb{R} على f'(1) على (2
 - . f ادرس تغيرات الدالة (3
- $-\infty$ بجوار مائل لـ $\binom{C_f}{f}$ بجوار مائل لـ y=2x+1 مقارب مائل لـ ($\binom{C_f}{f}$ بجوار بيّن أن المستقيم ($\binom{\Delta}{f}$ بالنسبة للمستقيم ($\binom{\Delta}{f}$ بالنسبة للمستقيم ($\binom{\Delta}{f}$
- (5) أ/ بين أن المنحني $\binom{C_f}{2}$ يقبل مماسا $\binom{T}{2}$ يوازي المستقيم ($\binom{D}{2}$) في نقطة يُطلب تعيين إحداثييها. برا بين أن المنحني $\binom{C_f}{2}$ يقطع حامل محور الفواصل في نقطتين فاصلتيهما $\binom{D}{2}$ و $\binom{D}{2}$ و $\binom{D}{2}$ و $\binom{D}{2}$
 - . $\left(C_f\right)$ مثل بيانيا: $\left(\Delta\right)$ ، $\left(\Delta\right)$ و المنحني (6
 - التالية: m المجهول الحقيقي x والوسيط الحقيقي الموجب تماما التالية:

$$f(x) = 2x + \ln m \dots (E)$$

. (E) عدد وإشارة حلول المعادلة m عدد واشارة حلول المعادلة

حل المسألة الشاملة رقم:

مشاهــدة المسألة

: f' دراسة تغيرات الدالة (1

لدينا:

$$f'(x) = 2 - e^{x-1} - xe^{x-1}$$
$$= 2 - (1+x)e^{x-1}$$

:f' ومنه ندرس تغيرات الدالة

$$\begin{array}{l}
\bullet \lim_{x \to -\infty} [f'(x)] = \lim_{x \to -\infty} [2 - (1+x)e^{x-1}] \\
= \lim_{x \to -\infty} [f'(x)] \\
= 2
\end{array}$$

•
$$\lim_{x \to +\infty} [f'(x)] = \lim_{x \to +\infty} [2 - (1+x)e^{x-1}]$$
$$= \lim_{x \to -\infty} [f'(x)]$$
$$= -\infty$$

:f''(x) - حساب

$$f''(x) = -e^{x-1} - (1+x)e^{x-1}$$
$$= -(2+x)e^{x-1}$$

 $e^{x-1} > 0$ لدينا $e^{x-1} > 0$ ومنه الإشارة من

$$-(2+x) = 0 \Rightarrow x = -2$$

ومنه:

f'(x) جدول تغيرات

х	-∞	-2	+∞
f''(x)	+	0	_
<i>f</i> ′(<i>x</i>)	2	f'(−2) ▼	-∞

: f'(1) حساب (2

$$f'(1) = 2 - (1+1) = 0$$

\mathbb{R} على f'(x) على -

х	-∞	1	+∞
f'(x)	+	0	_

: f دراسة تغيرات الدالة (3

النهابات:

•
$$\lim_{x \to -\infty} [f(x)] = \lim_{x \to -\infty} [2x + 1 - xe^{x-1}]$$
$$= -\infty$$

$$\lim_{x \to -\infty} [xe^{x-1}] = 0$$
لأن:

$$\begin{split} \bullet \lim_{x \to +\infty} [f(x)] &= \lim_{x \to +\infty} [2x + 1 - xe^{x-1}] \\ &= \lim_{x \to +\infty} \left[e^{x-1} \left(\frac{2x}{e^{x-1}} + \frac{1}{e^{x-1}} - x \right) \right] \\ &= -\infty \\ &\lim_{x \to +\infty} \left[\frac{2x}{e^{x-1}} \right] = 0 : \end{split}$$

f(x) جدول تغیرات -

x	-8	1	+∞
f'(x)	+	. 0	_
f(x)		_ 2	
			•
	$-\infty$		-∞

y=2x+1 مقارب مائل لـ (C_f) بجوار (4 مائل لـ (C_f) بجوار مائل لـ ((C_f)

لدينا:

$$\lim_{x \to -\infty} [f(x) - y] = \lim_{x \to -\infty} [2x + 1 - xe^{x-1} - 2x - 1]$$
$$= \lim_{x \to -\infty} [-xe^{x-1}]$$
$$= 0$$

 $-\infty$ ومنه (Δ) مستقیم مقارب مائل بجوار

 $\cdot : (\Delta)$ بالنسبة للمستقيم با دراسة وضعية (C_f)

f(x) - y ندرس إشارة الفرق:

$$f(x) - y = -xe^{x-1}$$

 $e^{x-1}>0$ لدينا $e^{x-1}>0$ ومنه الإشارة من

x	-∞	0	+∞
f(x) - y	+	0	_

- الوضعية:
- x < 0: لما (Δ) فوق (C_f) فوق
- (0;1) يقطع (Δ) في النقطة ذات الاحداثيات: (C_f)
 - x > 0: لما (Δ) تحت (C_f) •
- 5) أ/ تبيين أن المنحني $\binom{C_f}{r}$ يقبل مماسا $\binom{T}{r}$ يوازي المستقيم ($\binom{\Delta}{r}$

المستقيم (T) يوازي المستقيم (Δ) معناه:

$$f'(a) = 2 \Rightarrow 2 - (1+a)e^{a-1} = 2$$
$$\Rightarrow -(1+a)e^{a-1} = 0$$
$$\Rightarrow -(1+a) = 0$$
$$\Rightarrow a = -1$$

ومنه:

$$(T): y = f'(-1)(x - (-1)) + f(-1)$$

$$= 2x + 2 + 2(-1) + 1 - (-1)e^{-1-1}$$

$$= 2x + 1 + e^{-2}$$

إذن معادلة المماس (T) هى :

$$y = 2x + 1 + e^{-2}$$

lpha بـ/ تبيين أن المنحنى (C_f) يقطع حامل محور الفواصل فى نقطتين فاصلتيهما

لدينا الدالة f مستمرة ورتيبة على مجال تعريفها

$$f(1.9) \times f(2) < 0$$
 ولدينا:

]1.9;2[في المجال α أنه حسب مبرهنة القيم المتوسطة ، المعادلة α المجال α تقبل حلا وحيدا $f(-0.6) \times f(-0.5) <$

[-0.6; -0.5] ومنه حسب مبرهنة القيم المتوسطة ، المعادلة f(x)=0 تقبل حلا وحيدا eta في المجال 6) التمثيل البياني:

خطوات التمثيل على معلم متعامد ومتجانس:

- نعين lpha و eta نقط تقاطع المنحنى $ig(C_fig)$ مع حامل محور الفواصل.
 - (y = 2x + 1): نرسم المستقيم المقارب المائل
 - \cdot نرسم المماس \bullet
 - $\left(\mathcal{C}_{f} \right)$ ثم باستعمال جدول التغيرات نرسم ullet

7) المناقشة البيانية:

 $m \in \mathbb{R}_+^* : (E)$ لدينا: من المعادلة

 $y=2x+\ln m$ حلول المعادلة (E) هي فواصل نقط تقاطع و (C_f) مع المستقيمات ذات المعادلة

لما
$$m \in]0; e[$$
 أي $m < e$ أي $m < e$ المعادلة تقبل حل وحيد موجب $m = e$ أي $\ln m < 1$ أما $m = e$ أي $m = e$ المعادلة تقبل حلين سالبين $m = e$ أي $m \in]e; e^{1+e^{-2}}[$ أي $m = e^{1+e^{-2}}$ المعادلة تقبل حل مضاعف $m = e^{1+e^{-2}}$ أي $m = e^{1+e^{-2}}$ المعادلة لا تقبل حلول $m = e^{1+e^{-2}}$ أي $m = e^{1+e^{-2}}$ الم $m = e^{1+e^{-2}}$ الم $m = e^{1+e^{-2}}$ المعادلة لا تقبل حلول

المسألة الشاملة رقم:

🧥 مشاهـــدة الحــــل

نعتبر الدالة g المعرفة على $\mathbb R$ كما يلى:

$$g(x) = (2x+1)e^x - 1$$

- : g' ادرس تغيرات الدالة (1
- . \mathbb{R} على g(x) على ، ثم استنتج إشارة g(0) على (2
 - الدالة المعرفة على \mathbb{R} بـ:

$$f(x) = x(e^x - 1)^2$$

. $(o; ec{t}, ec{f})$ تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس ونسمي ونسمي

- ا حسب نهایات الدالة f عند أطراف مجموعة تعریفها.
- $-\infty$ عند (C_f) عند مائل للمنحي y=x مقارب مائل للمنحي (Δ) عند Δ 0 عند Δ 1 عند Δ 2 . (Δ 3 ادرس الوضع النسبي بين المنحني Δ 4 والمستقيم (Δ 4) .
 - اً بیّن أنه یوجد من أجل كل عدد حقیقی x لدینا:

$$f'(x) = (e^x - 1)g(x)$$

. ب/ استنتج اتجاه تغير الدالة f وشكل جدول تغيراتها

- اكتب معادلة ديكارتية للمماس (T) للمنحني عند المبدأ. (C_f)
 - . $\left(C_f \right)$ و $\left(\Delta \right)$ ، $\left(T \right)$ مثّل بیانیا کلا من (5
- x ناقش بيانيا حسب قيم الوسيط الحقيقي m عدد واشارة حلول المعادلة (E) ذات المجهول الحقيقي (E): f(x) = mx

حل المسألة الشاملة رقم:

(I)

: g' دراسة تغيرات الدالة (1

النهايات:

•
$$\lim_{x \to -\infty} [g(x)] = \lim_{x \to -\infty} [(2x+1)e^x - 1] = -1$$

$$\bullet \lim_{x \to +\infty} [g(x)] = \lim_{x \to +\infty} [(2x+1)e^x - 1] = +\infty$$

- التفسير الهندسي للنهايات:
- $-\infty$ منحنى الدالة g يقبل مستقيم مقارب أفقى بجوار ullet
 - : g'(x) حساب -

$$g'(x) = 2e^x + (2x + 1)e^x$$

= $(2x + 3)e^x$

= (2x+3) من إشارة g'(x) دينا $e^x > 0$ لدينا

$$2x + 3 = 0 \Rightarrow x = -\frac{3}{2}$$

: g(x) جدول تغیرات -

x	-∞	$\frac{-3}{2}$	+∞
g'(x)	ı	0	+
g(x)	-1	$f\left(\frac{-3}{2}\right)$	+∞

: g(0) حساب (2

$$g(0) = (2(0) + 1)e^0 - 1 = 0$$

 \mathbb{R} على g(x) على -

X	-∞	0	+∞
g(x)	_	0	+

(II)

1) حساب نهایات الداله f عند أطراف مجموعه تعریفها:

•
$$\lim_{x \to -\infty} [f(x)] = \lim_{x \to -\infty} [x(e^x - 1)^2] = -\infty$$

$$\bullet \lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} [x(e^x - 1)^2] = +\infty$$

$z - \infty$ عند (C_f) عند مائل للمنحى y = x عند عند (Δ) عند (2

$$\lim_{x \to -\infty} [f(x) - y] = \lim_{x \to -\infty} [x(e^x - 1)^2 - x]$$

$$= \lim_{x \to -\infty} [xe^{2x} + x - 2xe^x - x]$$

$$= \lim_{x \to -\infty} [xe^x(e^x - 2)]$$

$$= 0$$

$$\lim_{x \to -\infty} [xe^x] = 0$$

 \cdot (Δ) والمستقيم (C_f) والمستقيم بـ/ دراسة الوضع النسبي بين المنحني

:(f(x)-y) دراسة إشارة الفرق

$$f(x) - y = xe^{x}(e^{x} - 2)$$

$$\Rightarrow \begin{cases} xe^{x} = 0 \\ e^{x} - 2 = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x = 0 \\ e^{x} = 2 \end{cases}$$

$$\Rightarrow \begin{cases} x = 0 \\ x = 1 \end{cases}$$

ومنه:

X	$-\infty$	0		ln 2	+∞
xe^x	_	0	+		+
$e^x - 2$	_		_	0	+
f(x) - y	+	0	_	0	+

- الوضعية:
- $0. x \in]-\infty; 0[\cup] \ln 2; +\infty[$ فوق (Δ) فوق (C_f) فوق (C_f) فوق (C_f)
- A(0;0) يقطع $\Delta(\Delta)$ في النقطتين $\Delta(0;0)$ و $\Delta(0;0)$
 - $x \in]0$; $\ln 2[$ لما: Δ تحت C_f •

$f'(x) = (e^x - 1)g(x) x$ أ/ تبيين أنه يوجد من أجل كل عدد حقيقى (3

$$f'(x) = (e^{x} - 1)^{2} + 2xe^{x}(e^{x} - 1)$$

$$= (e^{x} - 1)(e^{x} - 1 + 2xe^{x})$$

$$= (e^{x} - 1)(e^{x}(2x + 1) - 1)$$

$$= (e^{x} - 1)g(x)$$

 $\cdot f$ استنتاج اتجاه تغیر الداله +

 (e^x-1) من إشارة g(x) من إشارة f'(x) اشارة

$$e^{x} - 1 = 0 \Rightarrow e^{x} = 1$$

 $\Rightarrow x = \ln 1$
 $\Rightarrow x = 0$

جدول التغيرات:

X	-∞	0	+∞
g(x)	ı	0	+
$e^{x} - 1$	_	0	+
f'(x)	+	0	+
f(x)	-8	θ	+∞

4) كتابة معادلة ديكارتية للمماس (T) عند المبدأ:

لدينا معادلة المماس تكتب من الشكل:

$$(T): y = f'(a)(x - a) + f(a)$$

المماس يمر من المبدأ معناه:

$$f'(a)(0-a) + f(a) = 0$$

$$\Rightarrow -a(e^{a} - 1)g(a) + a(e^{a} - 1) = 0$$

$$\Rightarrow a(e^{a} - 1)[-g(a) + (e^{a} - 1)] = 0$$

$$\Rightarrow a(e^{a} - 1)[-(2a + 1)e^{a} + 1 + e^{a} - 1] = 0$$

$$\Rightarrow a(e^{a} - 1)[-2ae^{a} - e^{a} + 1 + e^{a} - 1] = 0$$

$$\Rightarrow -2a^{2}(e^{a} - 1)e^{a} = 0$$

$$\Rightarrow \begin{cases} -2a^{2} = 0 \\ e^{a} - 1 = 0 \end{cases}$$

$$\Rightarrow \begin{cases} a = 0 \\ e^{a} = 1 \end{cases}$$

$$\Rightarrow \begin{cases} a = 0 \\ a = \ln 1 \end{cases}$$

$$\Rightarrow a = 0$$

ومنه:

$$(T): y = f'(0)x + f(0)$$
$$y = 0x + 0$$
$$y = 0$$

y=0 مماس للمنحني (\mathcal{C}_f) ومنه المستقيم ذو المعادلة

5) التمثيل البياني:

خطوات التمثيل على معلم متعامد ومتجانس:

- $(y = x) : (\Delta)$ نرسم المستقيم المقارب المائل •
- (Δ) . نعين A و B نقط تقاطع المنحني (C_f) مع المستقيم \bullet
 - (T) نرسم المماس

$\left(\mathcal{C}_{f} ight)$ ثم باستعمال جدول التغيرات نرسم •

6) المناقشة البيانية:

 $y_m=mx$:خلول المعادلة f(x)=mx هل فواصل نقط تقاطع (\mathcal{C}_f) مع المستقيمات ذات المعادلة

x=0 لما m=0 المعادلة تقبل حلا مضاعفا هو

لما 0 < m < 1 المعادلة تقبل ثلاث حلول

لما $m \geq 0$ المعادلة تقبل حلان: حل موجب وحل معدوم

لما m < 0 المعادلة تقبل حلا معدوما

 \mathbb{R} نعرف الدالة f على

$$f(x) = 1 - \frac{1}{2}x - \frac{2}{e^x + 1}$$

. $(o; ec{t}, ec{f})$ تمثيلها البياني في مستوٍ منسوب إلى المعلم المتعامد المتجانس (\mathcal{C}_f)

 \mathbb{R} اً/ بین أنه من اجل کل x من (1

$$\frac{1}{e^{-x}+1} = 1 - \frac{1}{e^x+1}$$

ب/ استنتج أن الدالة f فردية.

- احسب نهایات الداله f عند أطرف مجموعة تعریفها.
 - \mathbb{R} أ/ بين أنه من أجل كل x من (3

$$f'(x) = -\frac{1}{2} \left(\frac{e^x - 1}{e^x + 1} \right)^2$$

f'(x) ثم ادرس إشارة

 (C_f) بانسبة لـ بالنسبة لـ بانسبة لـ

f . f شكل جدول تغيرات الدالة

اً بین أن0:0 $\lim_{x\to +\infty}\left[f(x)+rac{1}{2}x-1
ight]$ ، ثم فسر النتیجة هندسیا. (4

. برا احسب $\lim_{x \to -\infty} \left[f(x) + \frac{1}{2}x + 1 \right]$ ثم فسر النتيجة هندسيا

- $y=-rac{1}{2}x+1$ ادرس الوضع النسبي بين المنحني $\left(\mathcal{C}_{f}
 ight)$ والمستقيم $\left(d
 ight)$ ذو المعادلة: 3
 - (C_f) مثل بیانیا (6

حل المسألة الشاملة رقم:

· مشاهـــدة المسألة

$$: \frac{1}{e^{-x}+1} = 1 - \frac{1}{e^{x}+1} : \mathbb{R}$$
 من x من اجل کل x من اجل کل x من x از تبیین أنه من اجل کل x من x از x من x من x از x من x من

ب/ استنتاج أن الدالة f فردية:

$$f(-x) = 1 + \frac{1}{2}x - \frac{2}{e^{-x} + 1}$$

$$= 1 + \frac{1}{2}x - \frac{1}{e^{-x} + 1} - \frac{1}{e^{-x} + 1}$$

$$= 1 + \frac{1}{2}x - 1 + \frac{1}{e^{x} + 1} - 1 + \frac{1}{e^{x} + 1}$$

$$= -1 + \frac{1}{2}x + \frac{2}{e^{x} + 1}$$

$$= -\left(1 - \frac{1}{2}x - \frac{2}{e^{x} + 1}\right)$$

$$= -f(x)$$

إذن الدالة f فردية

2) حساب نهایات الدالة f عند أطرف مجموعة تعریفها:

•
$$\lim_{x \to -\infty} [f(x)] = \lim_{x \to -\infty} \left[1 - \frac{1}{2}x - \frac{2}{e^x + 1} \right] = \lim_{x \to -\infty} [f(x)] = +\infty$$
• $\lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[1 - \frac{1}{2}x - \frac{2}{e^x + 1} \right] = \lim_{x \to +\infty} [f(x)] = -\infty$

$$: f'(x) = -\frac{1}{2} \left(\frac{e^x - 1}{e^x + 1} \right)^2 : \mathbb{R} \text{ is } x \text{ is }$$

$$= \frac{-e^{2x} - 1 + 2e^x}{2(e^x + 1)^2}$$

$$= \frac{-(e^{2x} + 1 - 2e^x)}{2(e^x + 1)^2}$$

$$= \frac{-(e^x - 1)^2}{2(e^x + 1)^2}$$

$$= -\frac{1}{2} \left(\frac{e^x - 1}{e^x + 1}\right)^2$$

 $\cdot f'(x)$ دراسة إشارة

:دينا
$$f'(0) = 0$$
 ولدينا $-\frac{1}{2} \left(\frac{e^{x}-1}{e^{x}+1}\right)^{2} \le 0$ لدينا

X	-∞	0	+∞
f'(x)	_	0	_

ب/ الاستنتاج:

O(0;0) المشتقة الأولى انعدمت ولم تغير اشارتها إذن المنحني المنحني

f جدول تغيرات الدالة

لدينا:
$$f(0) = 0$$
 ومنه:

X	$-\infty$	0	+∞
f'(x)	_	. 0	_
	+∞_		
f(x)		0	
			$-\infty$

$$\lim_{x \to +\infty} \left[f(x) - \left(-\frac{1}{2}x + 1 \right) \right] = 0 : 0$$

$$\lim_{x \to +\infty} \left[f(x) - \left(-\frac{1}{2}x + 1 \right) \right] = \lim_{x \to +\infty} \left[1 - \frac{1}{2}x - \frac{2}{e^x + 1} + \frac{1}{2}x - 1 \right]$$

$$= \lim_{x \to +\infty} \left[-\frac{2}{e^x + 1} \right]$$

$$= 0$$

- التفسير الهندسى:

$$y=-rac{1}{2}x+1$$
 يقبل مستقيم مقارب مائل بجوار $+\infty$ معادلته: (\mathcal{C}_f)

$$\lim_{x \to -\infty} \left[f(x) + \frac{1}{2}x + 1 \right] = \lim_{x \to -\infty} \left[1 - \frac{1}{2}x - \frac{2}{e^x + 1} + \frac{1}{2}x + 1 \right]$$

$$= \lim_{x \to -\infty} \left[2 - \frac{2}{e^x + 1} \right]$$

$$= 2 - 2 = 0$$

- التفسير الهندسي:

$$y=-rac{1}{2}x-1$$
 یقبل مستقیم مقارب مائل بجوار $-\infty$ معادلته: (\mathcal{C}_f)

 $y = -\frac{1}{2}x + 1$:دراسة الوضع النسبي بين المنحني (C_f) والمستقيم (C_f) دراسة الوضع النسبي بين المنحني (5

f(x) - y ندرس إشارة الفرق

$$f(x) - y = 1 - \frac{1}{2}x - \frac{2}{e^x + 1} + \frac{1}{2}x - 1$$
$$= \frac{-2}{e^x + 1}$$

: ومنه ($e^x + 1$) > 0 دينا

X	-8	+∞
f(x) - y	1	
الوضعية	حت (d)	ت (C_f)

6) التمثيل البيانى:

خطوات التمثيل على معلم متعامد ومتجانس:

- $\left(y=-rac{1}{2}x+1
 ight)$ و $\left(y=-rac{1}{2}x-1
 ight)$: فرسم المستقيمات المقاربة المائلة
 - $\left(\mathcal{C}_{f}
 ight)$ ثم باستعمال جدول التغيرات نرسم ullet

 \mathbb{R} نعتبر الدالة f المعرفة

$$f(x) = -x + \frac{5}{2} - \frac{1}{2}e^{x-2}(e^{x-2} - 4)$$

. $(o; ec{t}, ec{f})$ سمتيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس (C_f)

- $\lim_{x \to +\infty} [f(x)] = -\infty$ و $\lim_{x \to -\infty} [f(x)] = +\infty$ (1) بيّن أنّ
- (C_f) مقارب مائل للمنحني $y=-x+rac{5}{2}$ فو المعادلة (Δ) فو المعادلة (Δ) مقارب مائل للمنحني (Δ) على المجال بيّن أنّ المنحني (Δ) على المجال بيّن أنّ المنحني (Δ) على المجال Δ
 - \mathbb{R} اً/ بيّن أنّه من أجل كل x من (3

$$f'(x) = -(e^{x-2} - 1)^2$$

f شكل جدول تغيرات الدالة f

- . $\left(\mathcal{C}_f\right)$ نقطة انعطاف للمنحني ، f''(x) احسب ، f''(x) نقطة انعطاف المنحني . (4
- $2 + \ln 3 < lpha < 2 + \ln 4$ تقبل حلا وحيدا α حيث: f(x) = 0 تقبل حلا أنّ المعادلة (5
 - . (C_f) مثّل بيانيا (Δ) والمنحنى (6

حل المسألة الشاملة رقم:

مشاهــدة المسألة

 $\lim_{x \to +\infty} [f(x)] = -\infty$ و م $\lim_{x \to -\infty} [f(x)] = +\infty$ 1) تبيين أن (1

•
$$\lim_{x \to -\infty} [f(x)] = \lim_{x \to -\infty} \left[-x + \frac{5}{2} - \frac{1}{2} e^{x-2} (e^{x-2} - 4) \right] = +\infty$$

لأن:

$$\begin{cases} \lim_{x \to -\infty} [x - 2] = -\infty \\ \lim_{x \to -\infty} [e^x] = 0 \\ \lim_{x \to -\infty} \left[-x + \frac{5}{2} \right] = +\infty \end{cases}$$

•
$$\lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[-x + \frac{5}{2} - \frac{1}{2} e^{x-2} (e^{x-2} - 4) \right] = -\infty$$

لأن:

$$\begin{cases} \lim_{x \to +\infty} \left[-x + \frac{5}{2} \right] = -\infty \\ \lim_{x \to +\infty} \left[x - 2 \right] = +\infty \\ \lim_{x \to +\infty} \left[-\frac{1}{2} e^{x-2} \right] = -\infty \end{cases}$$

. (\mathcal{C}_f) دو المعادلة $y=-x+rac{5}{2}$ مقارب مائل للمنحني (Δ) دو المعادلة (2

$$\lim_{x \to -\infty} [f(x) - y] = \lim_{x \to -\infty} \left[-x + \frac{5}{2} - \frac{1}{2} e^{x-2} (e^{x-2} - 4) + x - \frac{5}{2} \right]$$
$$= \lim_{x \to -\infty} \left[-\frac{1}{2} e^{x-2} (e^{x-2} - 4) \right] = 0$$

 $-\infty$ ومنه المستقيم (Δ) مقارب مائل بجوار

 $e^{x-2} - 4 = 0$: برا حل المعادلة

$$e^{x-2} - 4 = 0 \Rightarrow e^{x-2} = 4$$

 $\Rightarrow x - 2 = \ln 4$
 $\Rightarrow x = \ln 4 + 2$

المجال $-\infty$; $2 + \ln 4$ [المنحني (C_f) يقع فوق المستقيم (Δ) على المجال على المجال $-\infty$; $2 + \ln 4$: $+\infty$ [

: (f(x)-y) دراسة إشارة الفرق

$$f(x) - y = -x + \frac{5}{2} - \frac{1}{2}e^{x-2}(e^{x-2} - 4) + x - \frac{5}{2}$$

$$= -\frac{1}{2}e^{x-2}(e^{x-2}-4)$$

الدينا $-\frac{1}{2}e^{x-2} < 0$ لدينا

$$e^{x-2} - 4 = 0 \Rightarrow x = \ln 4 + 2$$

ومنه:

x	-∞	ln 4 + 2	+∞
$-\frac{1}{2}e^{x-2}$	_		_
$e^{x-2} - 4$	_	0	+
f(x) - y	+	0	_

- الوضعية:

- $x \in]-\infty; 2 + \ln 4[$ فوق (Δ) فوق (C_f) •
- $2 + \ln 4$ يقطع (Δ) في النقطة ذات الفاصلة (C_f)
 - $x \in]2 + \ln 4$; + ∞ [:لما: (Δ) تحت (C_f)

$$f'(x) = -(e^{x-2}-1)^2$$
: \mathbb{R} من $f(x) = -(e^{x-2}-1)^2$ (3) أ/ تبيين أنه من أجل كل

$$f'(x) = -1 - \frac{1}{2}e^{x-2}(e^{x-2} - 4) - \frac{1}{2}e^{2(x-2)}$$

$$= -\left(1 + \frac{1}{2}e^{2(x-2)} - 2e^{x-2} + \frac{1}{2}e^{2(x-2)}\right)$$

$$= -\left(1 + e^{2(x-2)} - 2e^{x-2}\right)$$

$$= -(e^{x-2} - 1)^2$$

f جدول تغيرات الدالة f:

 $f'(x) \leq 0$ لدينا

ولدينا:

$$f'(x) = 0 \Rightarrow -(e^{x-2} - 1)^2 = 0$$

$$\Rightarrow (e^{x-2} - 1)^2 = 0$$

$$\Rightarrow e^{x-2} - 1 = 0$$

$$\Rightarrow e^{x-2} = 1$$

$$\Rightarrow x - 2 = 0$$

$$\Rightarrow x = 2$$

X	-∞	2	+∞
f'(x)	_	0	_
f(x)	+∞		

: f''(x) حساب (4

$$f''(x) = -2e^{x-2}(e^{x-2} - 1)$$

$$\frac{e^{x}}{1-2e^{x-2}} < 0$$
لدينا

ولدينا:

$$e^{x-2} - 1 = 0 \Rightarrow x = 2$$

ومنه:

X	$x - \infty$ 2		+∞	
$-2e^{x-2}$	_	0	_	
$e^{x-2} - 1$	_	0	+	
f''(x)	+	0	_	

المشتقة الثانية انعدمت وغيرت اشارتها معناه أن المنحنى (C_f) يقبل نقطة انعطاف فاصلتها 2

 $2 + \ln 3 < \alpha < 2 + \ln 4$: ثبات أن المعادلة f(x) = 0 تقبل حلا وحيدا (5

لدينا الدالة f رتيبة ومستمرة على مجال تعريفها

$$f(2 + \ln 3) = 0.93$$
 $g(2 + \ln 4) = -0.83$

$$f(2 + \ln 4) = -0.83$$

ولدينا:

$$f(2 + \ln 4) \times f(2 + \ln 3 < 0)$$

ولدينا:

ومنه حسب مبرهنة القيم المتوسطة، المعادلة f(x)=0 تقبل حلا وحيدا lpha في المجال

$$]2 + \ln 3; 2 + \ln 4[$$

6) التمثيل البياني:

خطوات التمثيل على معلم متعامد و (C_f) متجانس:

- $(y=-\frac{1}{2}x-1)$:(Δ) نرسم المستقيم المقارب المائل
 - (Δ) نعين نقطة تقاطع المنحنى (C_f) مع المقارب lacktriangle
 - (C_f) ثم باستعمال جدول التغيرات نرسم •

 \mathbb{R} بـ:g المعرفة على الدالة و (I)

$$g(x) = e^x + x + 2$$

- . \mathbb{R} على g ادرس تغيرات الدالة
- -2.2 < lpha < -2.1 أ/ بيّن أنّ المعادلة g(x)=0 تقبلا حلا وحيدا lpha في lpha ثم تحقق أن g(x)=0 على lpha . lpha على lpha على
 - ب: \mathbb{R} بعتبر الدالة f المعرفة على

$$f(x) = \frac{1 - xe^x}{e^x + 1}$$

. $(o; ec{t}, ec{f})$ تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس (C_f)

اً الحسب $\lim_{x \to -\infty} [f(x)]$ ثم فسر النتيجة هندسيا. (1

 \mathbb{R} بيّن أنه من أجل كل x من

$$f(x) = \frac{e^{-x} - x}{e^{-x} + 1}$$

 $\lim_{x \to +\infty} [f(x)]$ ثم احسب

 \mathbb{R} نه من أجل كل x من (2

$$f'(x) = \frac{-g(x)e^x}{(e^x + 1)^2}$$

- . ادرس تغيرات الدالة f ثم شكل جدول تغيراتها (3
- . (C_f) مقارب مائل لـ y=-x مقارب مائل لـ (4) فو المعادلة y=-x مقارب مائل لـ (4) مائل لـ (4)

. (C_f) و (Δ) برا الوضع النسبي بين

. $f(\alpha)$ أ بيّن أن: $f(\alpha)=-(\alpha+1)$ ، ثم استنتج حصرا لـ $f(\alpha)=-(\alpha+1)$. $f(\alpha)=$

. (C_f) مثّل بيانيا المستقيم (Δ) والمنحني (6

ليكن m عدد حقيقى موجب تماما، ناقش بيانيا حسب قيم الوسيط m عدد واشارة حلول المعادلة:

$$1 - (x + \ln x)e^x - \ln m = 0$$

حل المسألة الشاملة رقم:

مشاهــدة المسألة

(I)

$: \mathbb{R}$ على g على (1

النهايات:

•
$$\lim_{x \to -\infty} [f(x)] = \lim_{x \to -\infty} [e^x + x + 2] = -\infty$$

•
$$\lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} [e^x + x + 2]$$
$$= \lim_{x \to +\infty} \left[e^x \left(1 + \frac{x}{e^x} + \frac{2}{e^x} \right) \right]$$
$$= +\infty$$

g'(x) - حساب

$$g'(x) = e^x + 1$$

: g'(x) > 0 لدينا:

ومنه:

: g'(x) جدول تغیرات

х	$-\infty$	+∞
g'(x)	+	-
g(x)	-8	+∞

: \mathbb{R} في α أ/ تبيين أن المعادلة g(x)=0 تقبل حلا وحيدا (2

 \mathbb{R} لدينا الدالة g مستمرة ورتيبة على

$$g(-2.1) = 0.02$$
 $g(-2.2) = -0.08$

$$g(-2.2) = -0.08$$

ولدينا

$$g(-2.2) \times g(-2.1) < 0$$
 ولدينا:

-2.2 < lpha < -2.1 ومنه حسب مبرهنة القيم المتوسطة المعادلة g(x) = 0 تقبل حلا وحيدا

 $:\mathbb{R}$ على g(x) على بالستنتاج إشارة

x	$-\infty$	α	+∞
g(x)	_	0	+

(II)

 $\lim_{x\to -\infty} [f(x)]$ أ/ حساب (1

$$\lim_{x \to -\infty} [f(x)] = \lim_{x \to -\infty} \left[\frac{1 - xe^x}{e^x + 1} \right] = \frac{1}{1} = 1$$

$$\lim_{x \to -\infty} [xe^x] = 0$$

$$\lim_{x \to -\infty} [xe^x] = 0$$

- التفسير الهندسي:

 $0.-\infty$ بجوار y=1 بجوار مستقیم مقارب أفقي معادلته y=1

$$f(x) = \frac{e^{-x} - x}{e^{-x} + 1} : \mathbb{R}$$
 من x من x باله من أجل كل x من x من x باله من أجل كل x من x باله من x أنه من أجل كل x من x باله من

 $\lim_{x\to +\infty} [f(x)]$ - حساب

$$\lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[\frac{e^{-x} - x}{e^{-x} + 1} \right] = -\infty$$

$$\lim_{x \to +\infty} \left[\frac{1}{e^x} \right] = 0 : \dot{y}$$

$$: f'(x) = \frac{-g(x)e^x}{(e^x + 1)^2} : \mathbb{R}$$

$$: f'(x) = \frac{(-e^x - xe^x)(e^x + 1) - e^x(1 - xe^x)}{(e^x + 1)^2}$$

$$= \frac{-e^x(1 + x)(e^x + 1) - e^x(1 - xe^x)}{(e^x + 1)^2}$$

$$= \frac{e^x[-(1 + x)(e^x + 1) - (1 - xe^x)]}{(e^x + 1)^2}$$

$$= \frac{e^x[-e^x - 1 - xe^x - x - 1 + xe^x]}{(e^x + 1)^2}$$

$$= \frac{-e^x[e^x + x + 2]}{(e^x + 1)^2}$$

$$= \frac{-g(x)e^x}{(e^x + 1)^2}$$

: f دراسة تغيرات الدالة (3

-g(x) من إشارة f'(x) ومنه إشارة $(e^x+1)^2>0$ و و $e^x>0$ لدينا

f(x) جدول تغیرات

X	-∞	α	+∞
f'(x)	+	0	-
f(x)	1	$f(\alpha)$	

y=-x مقارب مائل لـ (Δ) : (Δ) دو المعادلة λ

$$\lim_{x \to +\infty} [f(x) - x] = \lim_{x \to +\infty} \left[\frac{1 - xe^x}{e^x + 1} - x \right]$$

$$= \lim_{x \to +\infty} \left[\frac{1 - xe^x + xe^x + x}{e^x + 1} \right]$$

$$= \lim_{x \to +\infty} \left[\frac{1 + x}{e^x + 1} \right]$$

$$= 0$$

$$\lim_{x \to +\infty} \left[\frac{x}{e^x} \right] = 0$$

$$\lim_{x \to +\infty} \left[\frac{x}{e^x} \right] = 0$$

 $_{x
ightarrow+\infty}$ ومنه المستقيم (Δ) ذو المعادلة y=-x مقارب مائل لـ (Δ)

 $: (C_f)$ و (Δ) برا ادرس الوضع النسبى بين

(f(x) - y) دراسة إشارة الفرق -

$$f(x) - y = \frac{1+x}{e^x + 1}$$

لدينا: $(e^x+1)>0$ ومنه إشارة الفرق من إشارة البسط:

- الوضعية:
- $x \in]-\infty;-1[$ لما (Δ) تحت (C_f) •
- A(-1;-1) يقطع (Δ) في النقطة (C_f)
 - $x \in]-1;+\infty[$ لما (Δ) فوق (C_f)
 - $f(\alpha) = -(\alpha + 1)$ (5) أ/ تبيين أن:

لدينا:

$$g(\alpha) = 0 \Rightarrow e^{\alpha} + \alpha + 2 = 0$$

 $\Rightarrow e^{\alpha} = -(\alpha + 2)$

ولدينا:

$$f(\alpha) = \frac{1 - \alpha e^{\alpha}}{e^{\alpha} + 1}$$
$$= \frac{1 + \alpha(\alpha + 2)}{-(\alpha + 2) + 1}$$

$$= \frac{\alpha^2 + 2\alpha + 1}{-(\alpha + 1)}$$
$$= \frac{(\alpha + 1)^2}{-(\alpha + 1)}$$
$$= -(\alpha + 1)$$

 $f(\alpha)$ حصر

لدينا:

$$-2.2 < \alpha < -2.1$$

$$-1.2 < \alpha + 1 < -1.1$$

$$1.1 < -(\alpha + 1) < 1.2$$

اذن:

 $1.1 < f(\alpha) < 1.2$

> 0.5 < eta < 0.6: عنص المنحني (\mathcal{C}_f) يقطع محور الفواصل في نقطة وحيدة فاصلتها (\mathcal{C}_f) يقطع محور الفواصل في نقطة وحيدة فاصلتها

 \mathbb{R} لدينا الدالة f مستمرة ورتيبة على

$$f(0.5) = 0.06$$
 g $f(0.6) = -0.03$

ولدينا

 $f(0.4) \times f(0.6) < 0$ ولدينا:

]0.5;0.6[في المجال β في المجادلة f(x)=0 تقبلاً حلا وحيدا β في المجال β ومنه حسب مبرهنة القيم المتوسطة المعادلة β .

6) التمثيل البيانى:

خطوات التمثيل على معلم متعامد و (C_f) متجانس:

- (y=-1): نرسم المستقيم المقارب •
- $(y=-x):(\Delta)$ نرسم المستقيم المقارب المائل •
- (Δ) نقطة تقاطع المنحني (C_f) مع المقارب \bullet
 - (C_f) ثم باستعمال جدول التغيرات نرسم •

7) المناقشة السانية:

لدينا:

$$\ln m + (x + \ln x)e^x - 1 = 0 \implies \ln m + xe^x + e^x \ln m - 1 = 0$$

$$\implies \ln m (1 + e^x) = 1 - xe^x$$

$$\implies \ln m = \frac{1 - xe^x}{1 + e^x}$$

$$\implies f(x) = \ln m$$

 $y_m = \ln m$ مع المستقيمات ذات المعادلة ومنه مجموعة الحلول هي فواصل نقط تقاطع المنحني (C_f) مع المستقيمات ذات المعادلة

لما
$$m<\sqrt{e}$$
 أي $m<\sqrt{e}$ المعادلة تقبل حل وحيد موجب $m=\sqrt{e}$ أي $m=\sqrt{e}$ ألمعادلة تقبل حل وحيد معدوم $m=\sqrt{e}$ أي $m=\sqrt{e}$ أي $m=\sqrt{e}$ ألمعادلة تقبل حل وحيد سالب لما $\sqrt{e}< m< e$ أي $\frac{1}{2}<\ln m<1$ أي $e< m< e^{f(\alpha)}$ أي $1<\ln m< f(\alpha)$ أم المعادلة تقبل حلان سالبان $m=e^{f(\alpha)}$ أي $m=e^{f(\alpha)}$ أي $m>e^{f(\alpha)}$ المعادلة لا تقبل حلول لمضاعف سالب

لتكن g دالة عددية معرفة على $\mathbb R$ وتحقق العلاقة:

$$g(x) - 2g(1-x) = e^x - 2e^{1-x} - 3x + 3$$

- (ارشاد: ضع t=1-x تارة أخرى) . t=t تارة أخرى) أوجد عبارة g(x) بدلالة g(x)
 - $D_q=\mathbb{R}$: نضع $g(x)=e^x-x-1$ نضع (2

أ/ احسب نهايات الدالة g عند أطراف مجموعة تعريفها.

ب/ ادرس اتجاه تغير الدالة g ثم شكل جدول تغيراتها.

 $+ : \mathbb{R}$ استنتج اتجاه تغیر الداله h المعرفة على (3

$$h(x) = 1 - g(-x)$$

ديث: lpha اثبت أن المعادلة h(x)=0 تقبل حلين lpha و ط

$$1.84 < \beta < 1.85$$
 وَ

$$-1.15 < \alpha < -1.14$$

- . x و استنتج اشارة كل من g(x) و استنتج القيم العدد الحقيقى g(x)
 - \mathbb{R} لتكن f دالة عددية معرفة على التكن لتكن

$$f(x) = \frac{x + g(x)}{1 + g(x)}$$

 \cdot $(o;ec{t},ec{f})$ تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس (\mathcal{C}_f) ونسمي

- ا حسب نهایات الدالة f عند أطراف مجموعة تعریفها.
 - ياً البيت أن الدالة f قابلة للاشتقاق على \mathbb{R} وأن:

$$f'(x) = \frac{e^x h(x)}{\left(1 + g(x)\right)^2}$$

ب/ استنتج اتجاه تغير الدالة f ثم شكل جدول تغيراتها.

. (C_f) مثل بیانیا (3

حل المسألة الشاملة رقم:

مشاهــدة المسألة

(I)

: x بدلالة g(x) بيجاد عبارة (1

نضع: x = t نجد:

$$g(t) - 2g(1-t) = e^{t} - 2e^{1-t} - 3t + 3$$

$$\Rightarrow -2g(1-t) = -g(t) + e^{t} - 2e^{1-t} - 3t + 3$$

$$\Rightarrow 2g(1-t) = g(t) - e^{t} + 2e^{1-t} + 3t - 3 \dots (1)$$

نجد: x=1-t معناه: t=1-x

$$g(1-t) - 2g(1-1+t) = e^{1-t} - 2e^{1-1+t} - 3(1-t) + 3$$

$$\Rightarrow g(1-t) - 2g(t) = e^{1-t} - 2e^{t} + 3t$$

$$\Rightarrow 2g(1-t) - 4g(t) = 2e^{1-t} - 4e^{t} + 6t \dots (2)$$

نعوض المعادلة (1) في المعادلة (2) نجد:

$$g(t) - e^{t} + 2e^{1-t} + 3t - 3 - 4g(t) = 2e^{1-t} - 4e^{t} + 6t$$
$$-e^{t} - 3 = -4e^{t}$$

$$\Rightarrow -3g(t) = -3e^t + 3t + 3$$

$$\Rightarrow g(t) = e^t - t - 1$$

إذن :

$$g(x) = e^x - x - 1$$

(2

أ/ حساب نهايات الدالة g عند أطراف مجموعة تعريفها:

•
$$\lim_{x \to -\infty} [g(x)] = \lim_{x \to -\infty} [e^x - x - 1] = +\infty$$

•
$$\lim_{x \to +\infty} [g(x)] = \lim_{x \to +\infty} \left[e^x \left(1 - \frac{x}{e^x} - \frac{1}{e^x} \right) \right] = +\infty$$

g دراسة اتجاه تغير الدالة: g

لدىنا:

$$g'(x) = e^x - 1$$

ولدينا:

$$g'(x) = 0 \Rightarrow e^{x} - 1 = 0$$
$$\Rightarrow e^{x} = 1$$
$$\Rightarrow x = 0$$

ومنه جدول التغيرات:

h(x) = 1 - g(-x): استنتج اتجاه تغير الدالة المعرفة على المعرفة على (3

من أجل كل x من \mathbb{R} : نضع:

$$v(x)=(g\circ u)(x)$$
 أي $v(x)=gig(u(x)ig)=g(-x)$ و $u(x)=-x$ لدينا الدالة g متناقصة على المجال $\underbrace{[0;+\infty[}_{[lor]U(x)]}_{[lor]U(x)]}$ والدالة $u(x)=0$

: g(I) كيف وجدنا المجال

$$x\in[0;+\infty[$$
 لدينا: $u(x)\leq 0$ ومنه $u(x)\in I$ ومنه $u(x)\in I$ ومنه $u(x)\in I$ ومنه: $g(I)=[0;+\infty[$ ومنه: $u(x)\in I$

 $[0;+\infty[$ وبما أنّ الدالة g متناقصة على g متناقصة على g متناقصة على g وبما أنّ الدالة g متزايدة على المجال g المجال g متزايدة على المجال g

 $]-\infty;0]$ بنفس الفكرة نجد: الدالة k متناقصة على المجال

$$-g(-x) = -k(x) \qquad : \underline{g}$$

$$g(-x)=k(x)$$
 واضح أن

وعليه:

$$[0;+\infty[$$
 متزايدة على المجال $]-\infty;0]$ و $-k(x)$ متزايدة على المجال $-k(x)$ ولدينا $-k(x)$ لهما نفس اتجاه التغير لأن: $-k(x)$ و $-k(x)$ اذن:

etaو lpha اثبات أن المعادلة h(x)=0 تقبل حلين lpha

لدينا الدالة h مستمرة ورتيبة على مجال تعريفها

$$h(-1.15) = -0.08$$

$$h(-1.14) = 0.01$$

$$h(-1.14) \times h(-1.15) < 0$$

ولدينا:

]-1.15;-1.14[في المجال lpha في المجال المعادلة a تقبل حلا وحيدا a في المجال المعادلة ومنه حسب مبرهنة القيم المتوسطة المعادلة a

$$h(1.84) = 0.001$$

$$h(1.85) = -0.007$$

ولدينا:

$$h(1.84) \times h(1.85) < 0$$

ولدينا:

[1.84; 1.85] ومنه حسب مبرهنة القيم المتوسطة المعادلة h(x)=0 تقبل حلا وحيدا eta في المجال h(x)=0 اذن المعادلة h(x)=0 تقبل حلين lpha و

x استنتاج إشارة كل من g(x) و g(x) تبعا لقيم العدد الحقيقى (5

g(x) إشارة

من جدول تغيرات g(x) لدينا:

X	8	0	+∞
g(x)	+	0	+

:h(x) إشارة

من جدول تغيرات h(x) لدينا:

x	8	α		β	+∞
h(x)	1	0	+	0	_

(II)

1) حساب نهایات الدالة f عند أطراف مجموعة تعریفها:

$$\bullet \lim_{x \to -\infty} [f(x)] = \lim_{x \to -\infty} \left[\frac{x + g(x)}{1 + g(x)} \right] \\
= \lim_{x \to -\infty} \left[\frac{x + e^x - x - 1}{1 + e^x - x - 1} \right] \\
= \lim_{x \to -\infty} \left[\frac{e^x - 1}{e^x - x} \right] \\
= \frac{-1}{+\infty} \\
= 0$$

$$\bullet \lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[\frac{x + g(x)}{1 + g(x)} \right]$$

$$= \lim_{x \to +\infty} \left[\frac{e^x - 1}{e^x - x} \right]$$

$$= \lim_{x \to +\infty} \left[\frac{1 - \frac{1}{e^x}}{1 - \frac{x}{e^x}} \right]$$

$$= 1$$

$$\lim_{x \to +\infty} \left[\frac{x}{e^x} \right] = 0$$
 لأن:

- التفسير الهندسي:
- y=0 يقبل مستقيم مقارب مائل بجوار ∞ معادلته (\mathcal{C}_f) •
- y=1 یقبل مستقیم مقارب مائل بجوار $+\infty$ معادلته (\mathcal{C}_f) .
 - \mathbb{R} أ/ اثبات أن الدالة f قابلة للاشتقاق على (2

$$f(x) = \frac{x + g(x)}{1 + g(x)}$$

لدينا البسط عبارة عن مجموعة دالتين قابلتين للاشتقاق على $\mathbb R$ والمقام كذلك ومنه البسط على المقام قابل للاشتقاق على $\mathbb R$.

 \mathbb{R} اذن الدالة f قابلة للاشتقاق على

$$: f'(x) = \frac{e^x h(x)}{(1+g(x))^2}$$
: اثبات أن

لدينا:

$$h(x) = 1 - g(-x)$$

= 1 - e^{-x} - x + 1
= 2 - x - e^{-x}

ومنه:

$$f'(x) = \frac{e^{x}(e^{x} - x) - (e^{x} - 1)(e^{x} - 1)}{(e^{x} - x)^{2}}$$

$$= \frac{e^{x}[e^{x} - x - (1 - e^{-x})(e^{x} - 1)]}{(e^{x} - x + 1 - 1)^{2}}$$

$$= \frac{e^{x}(e^{x} - x - e^{x} + 1 + 1 - e^{-x})}{(1 + g(x))^{2}}$$

$$= \frac{e^{x}(2 - x - e^{-x})}{(1 + g(x))^{2}}$$

$$= \frac{e^{x}h(x)}{(1 + g(x))^{2}}$$

f استنتاج اتجاه تغیر الداله f

.
$$h(x)$$
 من إشارة $f'(x)$ من إشارة $e^x>0$ ومنه إشارة $f'(x)$ من إشارة $f(x)$ ولدينا $f(0)=0$

جدول التغيرات:

x	-∞	α		0		β	+∞
f'(x)	_	0	+	0	+	0	_
f(x)	0	$f(\alpha)$		0		<i>f</i> (β).	1

3) التمثيل البياني:

خطوات التمثيل على معلم متعامد ومتجانس:

- y=1و y=0 و نرسم المستقيمات المقاربة y=0
 - $\left(\mathcal{C}_{f}
 ight)$ ثم باستعمال جدول التغيرات نرسم ullet

f بـ:

$$f(x) = \frac{e^x}{e^x + 1}$$

. $(o; \vec{\imath}, \vec{j})$ سمتيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس (C_f) ونسمي

- f عين مجوعة تعريف الدالة (1
- . ثم فسر النتيجة هندسيا . $\lim_{x \to -\infty} [f(x)]$ أ احسب (2

 \boldsymbol{x} بين أنه من أجل كل عدد حقيقي \boldsymbol{x}

$$f(x) = \frac{1}{e^{-x} + 1}$$

. ثم فسر النتيجة هندسيا . $\lim_{x \to +\infty} [x]$

- . اثبت أن الدالة f متزايدة تماما على مجال تعريفها (3
- (C_f) مركز تناظر المنحني $A\left(0; \frac{1}{2}\right)$ مركز بين أن النقطة (4
- . A عين معادلة المماس (T) للمنحني عين معادلة المماس (5
 - نعتبر الدالة g المعرفة على D_f كما يلى: (6

$$g(x) = \frac{1}{4}x + \frac{1}{2} - f(x)$$

 $\cdot e^{2x} - 2e^x + 1$

أ/ حلل العبارة:

g برا احسب g'(x) و g'(0) ثم ادرس تغيرات الدالة

. (T) والمماس (\mathcal{C}_f) والمناس النسبي للمنحني (\mathcal{C}_f) والمماس

. (C_f) و (T) مثل بیانیا (7

حل المسألة الشاملة رقم:

مشاهـــدة المسألة

: f تعيين مجوعة تعريف الدالة

$$e^x + 1 \neq 0$$
: الدالة f معرفة لما

$$e^x + 1 > 0$$
 ولدينا

 ${\mathbb R}$ ومنه الدالة f معرفة على

$$\lim_{x \to -\infty} [f(x)]$$
 1) أا حساب (2

•
$$\lim_{x \to -\infty} [f(x)] = \lim_{x \to -\infty} \left[\frac{e^x}{e^x + 1} \right]$$

= 0

y=0 معادلته $-\infty$ التفسير الهندسي: ررم يقبل مستقيم مقارب أفقي بجوار $-\infty$ معادلته -

$$f(x) = \frac{1}{e^{-x}+1} \; x$$
 برا تبیین أنه من أجل كل عدد حقیقي برا

لدىنا:

$$f(x) = \frac{e^x}{e^x + 1}$$
$$= \frac{e^x}{e^x \left(1 + \frac{1}{e^x}\right)}$$
$$= \frac{1}{1 + e^{-x}}$$

 $\lim_{x\to+\infty}[x]$ جاب

$$\lim_{x \to +\infty} [x] = \lim_{x \to +\infty} \left[\frac{e^x}{e^x + 1} \right]$$
$$= \lim_{x \to +\infty} \left[\frac{1}{1 + e^{-x}} \right]$$
$$= 1$$

- y=1 معادلته $+\infty$ التفسير الهندسي: (\mathcal{C}_f) يقبل مستقيم مقارب أفقي بجوار
 - نبات أن الدالة f متزايدة تماما: (3
 - f'(x) حساب

$$f'(x) = \frac{e^x(e^x + 1) - e^x e^x}{(e^x + 1)^2}$$

$$=\frac{e^x}{(e^x+1)^2}$$

الدينا g'(x) > 0 ومنه:

f جدول تغيرات الدالة f:

$A\left(0;\frac{1}{2}\right)$ تبيين أن النقطة $A\left(0;\frac{1}{2}\right)$ مركز تناظر المنحني (4

◄ شاهد هذا التذكير ◄ (اثبات ان نقطة مركز تناظر)

 $\underline{:(2(0)-x)\in D_f}$ نبيّن أن - $(-x) \in \mathbb{R}$ واضح أن

$$f(2(0) - x) + f(x) = 2\left(\frac{1}{2}\right)$$
 نبیّن أن

$$f(2(0) - x) + f(x) = 2\left(\frac{1}{2}\right) \frac{1}{2} - \frac{e^x}{e^x + 1} + \frac{e^{-x}}{e^{-x} + 1}$$

$$= \frac{e^x(e^{-x} + 1) + e^{-x}(e^x + 1)}{(e^x + 1)(e^{-x} + 1)}$$

$$= \frac{1 + e^x + 1 + e^{-x}}{1 + e^x + e^{-x} + 1}$$

$$= \frac{2}{2}$$

$$= 2\left(\frac{1}{2}\right)$$

:A عند النقطة (C_f) عند النقطة (T) عند النقطة (5

$$(T): y = f'(0)(x - 0) + f(0)$$

$$= \frac{e^0}{(e^0 + 1)^2} x + \frac{e^0}{e^0 + 1}$$

$$= \frac{1}{4} x + \frac{1}{2}$$

(6

$$e^{2x} - 2e^x + 1$$
 أ/ تحليل العبارة:

$$e^{2x} - 2e^x + 1 = (e^x - 1)^2$$

ب/

•
$$g'(x) = \frac{1}{4} - f'(x)$$

= $\frac{1}{4} - \frac{e^x}{(e^x + 1)^2}$
= $\frac{(e^x + 1)^2 - 4e^x}{4(e^x + 1)^2}$
= $\frac{e^{2x} + 1 + 2e^x - 4e^x}{4(e^x + 1)^2}$
= $\frac{e^{2x} + 1 - 2e^x}{4(e^x + 1)^2}$
= $\frac{(e^x - 1)^2}{4(e^x + 1)^2}$

ولدينا:

•
$$g(0) = 0$$

- دراسة تغيرات الدالة g

حساب نهایات الدالة g عند أطراف مجموعة تعریفها:

$$\bullet \lim_{x \to -\infty} [g(x)] = \lim_{x \to -\infty} \left[\frac{1}{4}x + \frac{1}{2} - f(x) \right]
= \lim_{x \to -\infty} \left[\frac{1}{4}x + \frac{1}{2} \right] - \lim_{x \to -\infty} [f(x)]
= -\infty$$

$$\bullet \lim_{x \to +\infty} [g(x)] = \lim_{x \to +\infty} \left[\frac{1}{4}x + \frac{1}{2} - f(x) \right]
= \lim_{x \to +\infty} \left[\frac{1}{4}x + \frac{1}{2} \right] - \lim_{x \to +\infty} [f(x)]
= +\infty$$

 $g'(x) \ge 0$ لدينا:

ولدينا:

$$(e^{x} - 1)^{2} = 0 \Rightarrow e^{x} - 1 = 0$$
$$\Rightarrow e^{x} = 1$$
$$\Rightarrow x = 0$$

ومنه:

g جدول تغيرات الدالة

X	-∞	0	+∞
g'(x)	+	0	+
			→ +∞
g(x)		0	
	-8		

:(T) والمماس (C_f) والمناسبي للمنحني (C_f) والمماس

لدينا:

$$g(x) = \frac{1}{4}x + \frac{1}{2} - f(x)$$
$$\Rightarrow f(x) - \left(\frac{1}{4}x + \frac{1}{2}\right) = -g(x)$$

: -g(x) ومنه الوضعية من إشارة

: g لدينا من جدول تغيرات الدالة

х	-∞	0	+∞
g(x)	_	0	+

- الوضعية:
- $x \in]-\infty;0$ لما (C_f) تحت (C_f)
 - . A يقطع (T) في النقطة (\mathcal{C}_f) •
 - $x\in]0;+\infty[$ لما (T) فوق (\mathcal{C}_f)
 - 7) التمثيل البياني:

خطوات التمثيل على معلم متعامد ومتجانس:

- y=1و y=0 نرسم المستقيمات المقاربة
 - (T) مع (C_f) مع A نعین A
 - (T) نرسم المماس
 - $\left(\mathcal{C}_{f}
 ight)$ ثم باستعمال جدول التغيرات نرسم ullet

