ECE/CS 498 DS - Section U/G (R. Iyer)

Meeting Time and Place:

- Lecture (Mandatory): 12:30 PM 1:50 PM, Mondays and Wednesdays, 1302 Everitt Laboratory
- **Discussion Session (Optional):** 4:00 PM 5:00 PM, Fridays, CSL 141

Instructor:

- Professor Ravi K. Iyer (<u>rkiyer@illinois.edu</u>)
- Office: 255 Coordinated Science Laboratory (CSL)
- Office Hours: 2:00 PM 3:00 PM, Mondays, CSL 255
 (Other times by appointment. Please contact Heidi Leerkamp: leerkamp@illinois.edu)

Teaching Assistants:

- James Cyriac (jcyriac2), Vikram Anjur (vanjur2), Shengkun Cui (scui8),
 Haotian Chen (hc19)
- Office Hours: 4:00 PM 5:00 PM, Mondays and Wednesdays, CSL 249

ECE/CS 498 DS - Section U/G (R. Iyer)

Piazza:

- All class-related information will be announced via Piazza Make sure to enroll!
- http://piazza.com/illinois/spring2020/ececs498ds

Class Website:

- https://courses.engr.illinois.edu/ece498dsu/sp2020/
- A detailed class schedule including topics covered and reading for each class is on the class website; we will adjust the schedule as needed
- The classes are being recorded and will be available through class website
- Lecture notes will be posted on the class website weekly

Recommended Text:

- Class Notes/Lecture Slides
- Trevor Hastie, Robert Tibshirani, and Jerome Friedman, "The Elements of Statistical Learning: Data Mining, Inference, and Prediction"

Further Reading and Sample Problems:

- Daphne Koller and Nir Freidman, "Probabilistic Graphical Models: Principles and Techniques"
- Ravi Iyer's ECE 313 Class Notes (<u>link</u>)

ECE/CS 498 DS - Section U/G (R. Iyer)

Course Components

- Discussion Session: Optional discussion session will be held Fridays from 4-5 PM.
 - Sessions will either (i) cover further elaboration on that week's lecture material or will (ii) serve as an additional office hour with the TAs
- In-Class Activities (ICAs): Organized sessions during lecture time in which the instructor/TAs help students solve relevant problems.
 - Attendance is mandatory, and ICAs will be preannounced
- In-Class Quizzes: Short 5-minute quizzes administered at the tail-end of random lectures throughout the semester.
 - Attendance is mandatory, and no quiz will occur during week of career fair
- Homework (HW): Worksheets/assignments related to lecture material that are to be completed within 1 week of release.
- Mini-Projects (MPs): Programming assignments to be completed in groups of 3 that incorporate end-to-end workflows that solve real-world data science problems.
 - The semester's 3 MPs will range across high impact domains such as autonomous vehicles and health analytics
- Final Project (for 4 credit hour students): Semester-long data science project to be designed and implemented in groups of 3 by 4-credit hour students.

Grading Policies

Activity	Contribution to Final Grade		
Mini-Projects 1, 2, 3	45% (10%, 15%, 20% respectively)		
Midterm and Final	35% (Midterm 15%, Final 20%)		
Final Project (4-Credit Students Only)	30%		
Class Participation	10%		
Homework	10%		

Credit Policy:

- 4 credit-hour students complete final project in addition to other course material
- Only graduate students are permitted to enroll for 4 credit-hour sections undergraduates will require instructor approval
- Score distributions for 4 credit-hour students will be normalized to 100%
- Class Participation: 10% class participation grade comes from participation in (i) ICAs, (ii) lecture quizzes, (iii) lectures/office hours/discussion sections/Piazza.
 - Instructor/TAs reserve right to track attendance in all of these outlets
- Late Submissions: 10% will be taken off each day, prorated (up to 3 days max). 0 credit after that.
- MP Groups: Students will form groups of 3 persons for the projects by the end of week 2
 - A "Search for Partners" page will be created on Piazza by the end of this week
- **Academic Honesty:** While discussion among groups is encouraged, no sharing of answers/solutions is permitted
 - Groups that submit any identical material will incur penalties for academic dishonesty
- The lowest individual ICA score and in-class quiz score will be dropped

Other Information

Prerequisites

- Basic probability understanding (e.g. ECE 313/CS 361) and basic Python programming skills are essential.
- Knowledge of Operating Systems (e.g., ECE 391 or an equivalent course) is beneficial.
- HW0 to test basic probability skills, HW1 to test Python programming skills
- Talk to instructor if you find HW0 to be difficult

Electronics Policy

- Students **SHOULD NOT** use electronics (cell phones/laptops/etc.) during lecture
- Students SHOULD bring their laptops to class to use only in case of a quiz

Other

- Midterm is scheduled for Wednesday March 11, 2020
- Those requesting DRES accommodations should email instructor/TAs by Friday 1/24
- Project descriptions and due dates will be posted on the course website under "Assignments and Mini-Projects"
 - Please check "Resources" for tutorials and hints related to projects
- Over 15 weeks in the spring semester, there will be ~33 hours of mandatory lectures and ~15 hours of optional discussion sections

ECE 498 DS

In this course,

- > Raw datasets to actionable intelligence
- Building end-to-end workflows that can work in practice
- Work on real-world problems of high societal impact

Solving problems in real-world involves

- Understanding the problem and the associated domain
- Finding or building relevant datasets

Use of data-science techniques to find solutions by

- Converting raw datasets to usable features
- Choosing a model that best represent the data
- Validation of the models on the field

ECE 498 DS Course Structure

Problem solving and domain-driven analyses

You will be introduced to real-world problems in domains of societal importance: (a) Safety in AVs, (b) Health Analytics, and (c) Intrusion Detection

In-class lectures, quizzes, and activities

You will work on hands-on modeling tutorials with support from instructors

Homework assignments

You will be given theoretical questions, and small programming assignments to strengthen your understanding the methods

Outcomes

- · Learn to handle the data
- Learn to decide what model to use and when
- Learn to apply the models to real-world examples
- Learn to derive insights from by combining model solutions with domain knowledge

ECE 498 DS: Examples from Real-world

- Uncertainty in measurements, labels etc.
- > Structure/Process
- ➤ Dataset size: #samples, signal to noise ratio

Seixas et al., A Bayesian network decision model for supporting the diagnosis of dementia, Alzheimer's disease and mild cognitive impairment

Does the patient suffer from Dementia?

Identify object in front of the AV?

Integrating AI Techniques in a Real System: Autonomous Vehicles (AVs)

Source: https://www.youtube.com/watch?v=B8R148hFxPw

Autonomous Driving System (ADS)

Hands-off the Wheel?

Source: https://www.youtube.com/watch?v=spw176TZ7-8

AV Safety, Reliability, and Dependability Analytics

Intro to Autonomous Vehicles (AVs)

- Autonomous vehicles (AVs) are complex systems that use artificial intelligence (AI) and machine learning (ML) to integrate mechanical, electronic, and computing technologies to make real-time driving decisions.
- Al enables AVs to navigate through complex environments while maintaining a safety envelope that is continuously measured and quantified by onboard sensors (e.g., camera, LiDAR, RADAR).
- Clearly, the safety, resilience, and dependability of AVs are of a significant concern.

Mini Project 1: AV Safety, Reliability, and Dependability Analytics

- Recent media attention on Tesla/Waymo/Uber AVs
- Resilience and Safety characteristics vary across computing kernels and computing systems
- Methods and tools for Assessing End-to-End Resilience of AV Technology is not available

TRANSPORTATION UBER RIDE-SHARING

Uber self-driving car saw pedestrian but didn't brake before fatal crash, feds say

The report is more interesting for what it doesn't say than what it does

By Andrew J. Hawkins | @andyjayhawk | May 24, 2018, 11:07am EDT

Safety and Reliability Issues [Banerjee et al., DSN 2018]

- Data and Machine Learning: 64% of reports were the result of problems in, or untimely decisions made by, the machine learning system
- Compute system-related: 30% or more due to failures in computing stack
- System Design and Integration: Mismatch between real-world driving behavior, machine learning methods, automotive engineering and compute systems

An End-to-End Workflow for AV Log Data Analysis

- Reports stored as scanned documents.
- Vendor specific parsing & filtering.
- Standardizing data formats across vendors.

- Analyze failure data to quantify
 - Causes
 - Dynamics
 - Impacts

- Vendors are required to collect data as per CA laws.
- CA DMV curates databases of vendor reports.
- No standardized reporting formats.

 Localize failures in abstract system model.

Nissan Case Study

Individual Report

15	5/25/2016	11:20am	Leaf #1 (Alfa)	The AV didn't see the lead vehicle, driver safely disengaged and resumed manual control.	City Street	Sunny/Dry	<1 Sec	2A-B

OCR + Parsing + Cleaning

The AV didn't see the lead vehicle...

Categories: Recognition

Analysis shows that AVs do worse than human drivers

Nissan Disengagement Reports from the CA DMV

AV Dependability in Adversarial ML

[1]

Camera and Lighting Conditions

Effect of fault injection

[1] Eykholt, Kevin, et al. "Robust Physical-World Attacks on Deep Learning Visual Classification." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2018.

[2] Jha, Saurabh, et al. "AVFI: Fault injection for autonomous vehicles." 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). IEEE, 2018.

Example Applications we will come Across

- AVs
- Safety analytics
- Genomic computing
- Health monitoring
- Software design
- Heterogenous computing
- Security monitoring

Homework 0

- Questions on application of probability in the computing
- Questions cover
 - Basic Probability
 - Conditional Probability Bayes Formula
 - Probability Distributions Discrete, Continuous
 - Bernoulli's, binomial, Poisson, Exponential Normal ...
 - Joint Distribution
 - Variance/Covariance/Mean/Expectation
 - Law of large numbers/Central Limit Theorem
- Be concise and provide all steps
- Release Date: Monday Jan 27, 2020
- Due Date: Monday Feb 3, 2020, 23:59 hrs
- Students should submit their solutions on Compass (you are encouraged to type your solutions).

Course Outline I

Jan 22 Lecture 1: Course outline and Overview of Mini Projects: a. Autonomous Vehicle (AV) Safety Analytics b. Healthcare analytics c. Security analytics Overview of key data analytics and ML concepts. Week 2 Jan 27 Lecture 2: Probability Basics Overview, P values, Hypothesis Testing, fitting distributions KS tests KL	
, , , , , , , , , , , , , , , , , , , ,	
divergence	
Jan 29 Lecture 3: Python; Jupyter notebook	
Week 3 Feb 3 Lecture 4: In-class Activity 1 (Submit in class on Mon Feb 3)	
Feb 5 Lecture 5: Naïve Bayes, Conditional probability, conditional independence	
Week 4 Feb 10 Lecture 6: Naïve Bayes, and Bayesian Networks (Continued)	
Feb 12 Lecture 7: In-class Activity 2 on Bayesian Networks. Expectation Maximization. Final project proposals du	e.
Week 5 Feb 17 Lecture 8: Clustering GMM continued; K-means Clustering	
Feb 19 Lecture 9: Hierarchical Clustering, Regression	
Week 6 Feb 24 Lecture 10: Hierarchical Clustering and Linear Regression examples Preparation for Mini-project 2: Introduction to Health-care Domain: Disease Models, Drug Response, Forecasting Disease Progression Mini-project 1 Presentations (out of class)	
Feb 26 Lecture 11: Guest Lecture by a Mayo clinician from Center for Individualized Medicine. Principal Component Analysis (PCA)	
Week 7 Mar 2 Lecture 12: In-class Activity 3 on PCA and Clustering	
Mar 4 Lecture 13: Introduction to Probabilistic Graphical Models; revisit Bayesian Networks Naïve Bayes Introduction and Examples	
Week 8 Mar 9 Lecture 14: Practice Midterm	
Mar 11 Lecture 15: Midterm	

Course Outline II

Week 9	Mar 16	Spring Break – No Lecture
	Mar 18	Spring Break – No Lecture
Week 10	Mar 23	Lecture 16: Midterm Discussion. Markov Models and Hidden Markov Models (HMMs)
	Mar 25	Lecture 17: HMM continued. ICA4
Week 11	Mar 30	Lecture 18: Factor Graphs
	Apr 1	Lecture 19: Intro to Security Domain and Mini-project 3. In-class Lab 3 on Mini-project 3
Week 12	Apr 6	Lecture 20: Factor Graphs Continued + Belief Propagation
	Apr 8	Lecture 21: Belief Propagation continued
Week 13	Apr 13	Lecture 22: In-class Activity 5 on PGMs
	Apr 15	Lecture 23: Supervised Learning (SVM, Neural Nets)
Week 14	Apr 20	Lecture 24: Intro to Deep Learning
	Apr 22	Lecture 25: Decision Trees, Random Forest, Cross Validation
Week 15	Apr 27	Lecture 26: In-class Activity 6 (tentative) on Neural Network + SVM
	Apr 29	Lecture 27: Solved Examples
Week 16		Lecture 28: Practice Exam for Finals
Week17	May 6 May	Reading Day Final Examination Period. As per the exam calendar
	8-15	