IE 534/CS 598 Deep Learning

University of Illinois at Urbana-Champaign

Fall 2018

Lecture 4

We now consider a multi-layer neural network.

$$Z^{1} = W^{1}x + b^{1},$$

$$H^{1} = \sigma(Z^{1}),$$

$$Z^{\ell} = W^{\ell}H^{\ell-1} + b^{\ell}, \quad \ell = 2, ..., L,$$

$$H^{\ell} = \sigma(Z^{\ell}), \quad \ell = 2, ..., L,$$

$$U = W^{L+1}H^{L} + b^{L+1},$$

$$f(x; \theta) = F_{\text{softmax}}(U).$$
(1)

The neural network has L hidden layers followed by a softmax function. Each layer of the neural network has d_H hidden units. The ℓ -th hidden layer is $H^\ell \in \mathbb{R}^{d_H}$. H^ℓ is produced by applying an element-wise nonlinearity to the input $Z^\ell \in \mathbb{R}^{d_H}$. Using a slight abuse of notation,

$$\sigma(Z^{\ell}) = \left(\sigma(Z_0^{\ell}), \sigma(Z_1^{\ell}), \dots, \sigma(Z_{d_H-1}^{\ell})\right). \tag{2}$$

The SGD algorithm for updating θ is:

- Randomly select a new data sample (X, Y).
- Compute the forward step $Z^1, H^1, \ldots, Z^L, H^L, U, f(X; \theta)$, and $\rho := \rho(f(X; \theta), Y)$.
- Calculate the partial derivative

$$\frac{\partial \rho}{\partial U} = -\left(e(Y) - f(X;\theta)\right). \tag{3}$$

- Calculate the partial derivatives $\frac{\partial \rho}{\partial b^{L+1}}$, $\frac{\partial \rho}{\partial W^{L+1}}$, and δ^L .
- For $\ell = L 1, ..., 1$:
 - Calculate δ^{ℓ} via the formula

$$\delta^{\ell} = (W^{\ell+1})^{\top} (\delta^{\ell+1} \odot \sigma'(Z^{\ell+1})). \tag{4}$$

- Calculate the partial derivatives with respect to W^{ℓ} and b^{ℓ} .
- ullet Update the parameters heta with a stochastic gradient descent step.

- In principle, the neural network can more accurately fit more complex nonlinear relationships with more layers.
- A "deep neural network" is a highly nonlinear model due to repeated applications of element-wise nonlinearities.
- However, the numerical estimation of the neural network with stochastic gradient descent suffers a limitation called the vanishing gradient problem as the number of layers is increased.

- As the number of layers L is increased, the magnitude of the gradient with respect to the parameters in the lower layers becomes small (e.g., $\frac{\partial \rho}{\partial W^{\ell}}$ for $\ell \ll L$).
 - This leads to (stochastic) gradient descent converging extremely slowly.
- Essentially, the lower layers take an impractically long amount of time to train.

Example

Each hidden layer has a single unit (i.e., $d_H = 1$) and $\sigma(\cdot)$ is a sigmoid function. Let's initialize $b^{\ell}=0$ and $W^{\ell}=\frac{1}{2}$. The input dimension d=1 and the output is also one-dimensional. Assume

Then,

$$x=1$$
 and let the loss function be $\rho(z,y)=(y-z)^2$.

 $\left|\frac{\partial \rho}{\partial W^{\ell}}\right| \leq C2^{-(L-\ell)},$

(5)

dimension
$$d=1$$
 and the output is also one-dimensional. Assume $x=1$ and let the loss function be $\rho(z,y)=(y-z)^2$.

- The vanishing gradient problem can also occur due to saturation.
- Saturation occurs when the inputs to the hidden units have very large magnitudes.
- For example, recall that if $\sigma(\cdot)$ is a sigmoidal function, then its derivative is

$$\sigma'(z) = \sigma(z)(1 - \sigma(z)). \tag{6}$$

Since $\lim_{\|z\|\to\infty} \sigma(z) \to 0$,

$$\lim_{\|z\| \to \infty} \sigma'(z) = 0. \tag{7}$$

Contour plots of distribution of gradient magnitudes.

Contour plots of distribution of gradient magnitudes.

REGULAR						
	kernel		input	output		num weights
conv1		4	3	1	28	6144
conv2		4	128	1	28	262144
conv3		4	128	1	28	262144
conv4		4	128	1	28	262144
conv5		4	128	1	28	262144
conv6		3	128	1	28	147456
conv7		3	128	1	28	147456
conv8		3	128	1	28	147456
fc1			2048	5	00	1024000
fc2			500	5	00	250000
fc3			500		10	5000
						2776088
SHALLOW						
	kernel		input	output		num weights
conv1		4	3	2	56	12288
conv3		4	256	2	56	1048576
conv5		4	256	1	28	524288
fc1			2048	5	00	1024000
fc2			500	5	00	250000
fc3			500		10	5000
						2864152
EXTRA SHA	LLOW					
	kernel		input	output		num weights
conv1		4	3	7	00	33600
conv3		4	700	1	28	1433600
fc1			2048	5	00	1024000
fc2			500	5	00	250000
fc3			500		10	5000
						2746200
2-LAYER						
	kernel		input	output		num weights
conv1		5		30		225000
fc1			192000		10	1920000
						2145000

We first consider a convolution network with a single hidden layer. Let the input image be $X \in \mathbb{R}^{d \times d}$ and a filter $K \in \mathbb{R}^{k_y \times k_x}$.

We define a convolution of the matrix X with the filter K as the map $X*K: \mathbb{R}^{d\times d} \times \mathbb{R}^{k_y \times k_x} \to \mathbb{R}^{(d-k_y+1)\times (d-k_x+1)}$ where

$$(X * K)_{i,j} = \sum_{m=0}^{k_y - 1} \sum_{n=0}^{k_x - 1} K_{m,n} X_{i+m,j+n}.$$
 (8)

The hidden layer applies an element-wise nonlinearity $\sigma:\mathbb{R}\to\mathbb{R}$ to each element of the matrix X*K. We define the variable $Z\in\mathbb{R}^{(d-k_y+1)\times(d-k_x+1)}$ and the hidden layer $H\in\mathbb{R}^{(d-k_y+1)\times(d-k_x+1)}$ where

$$H_{i,j} = \sigma((Z)_{i,j}),$$

$$Z = X * K.$$
(9)

Y is the label for the image X and takes values in the set $\mathcal{Y} = \{0, 1, \dots, K-1\}.$

$$f(x;\theta) = F_{\text{softmax}}(U),$$

$$U_k = W_{k,:,:} \cdot H + b_k,$$
(10)

where $W \in \mathbb{R}^{K \times (d-k_y+1) \times (d-k_x+1)}$, $b \in \mathbb{R}^K$, $U \in \mathbb{R}^K$, and $W_{k,:,:} \cdot H = \sum_{i,i} W_{k,i,j} H_{i,j}$.

The collection of parameters is $\theta = \{K, W, b\}$. The cross-entropy error for a single data sample (X, Y) is

$$\rho := \rho(f(X;\theta),Y)$$

$$= -\log\left(f_Y(X;\theta)\right). \tag{11}$$

The single layer convolution network is:

$$Z = X * K,$$
 $H = \sigma(Z),$
 $U_k = W_{k,:,:} \cdot H + b_k, \quad k = 0, ..., K - 1,$
 $f(x; \theta) = F_{\text{softmax}}(U).$

The cross-entropy error for a single data sample (X, Y) is

$$\rho := \rho(f(X;\theta), Y)
= -\log \left(f_Y(X;\theta) \right).$$
(13)

(12)

The stochastic gradient descent algorithm for updating θ is:

- Randomly select a new data sample (X, Y).
 - Compute the forward step (Z, H, U, ρ) .
 - Calculate the partial derivatives $(\frac{\partial \rho}{\partial U}, \delta, \frac{\partial \rho}{\partial K})$.
 - Update the parameters $\theta = \{K, W, b\}$ with a stochastic gradient descent step:

$$b^{(\ell+1)} = b^{(\ell)} - \alpha^{(\ell)} \frac{\partial \rho}{\partial U},$$

$$W_{k,\cdot,\cdot}^{(\ell+1)} = W_{k,\cdot,\cdot}^{(\ell)} - \alpha^{(\ell)} \frac{\partial \rho}{\partial U_k} H,$$

$$K^{(\ell+1)} = K^{(\ell)} - \alpha^{(\ell)} \left(X * (\sigma'(Z) \odot \delta) \right),$$

where $\alpha^{(\ell)}$ is the learning rate.

- The feature maps for the hidden layer are represented by a variable $H \in \mathbb{R}^{(d-k_y+1)\times (d-k_x+1)\times C}$.
- The convolution layer has an array (or "stack") of C filters where each filter is of size $k_y \times k_x$.
- The filters are given by the variable $K \in \mathbb{R}^{d_y \times d_x \times C}$.

The hidden layer H is given by:

$$H_{i,j,p} = \sigma \left(\sum_{m=0}^{k_y^{\ell} - 1} \sum_{n=0}^{k_x^{\ell} - 1} K_{m,n,p}^{\ell} X_{i+m,j+n} \right).$$
 (15)

Therefore,

$$H_{:,:,p} = \sigma(Z_{:,:,p},),$$
 $Z_{:,:,p} = X_{:,:} * K_{:,:,p}.$ (16)

The output of the network is simply the softmax function applied to a linear function of the hidden layer H:

a linear function of the hidden layer
$$H$$
:
$$f(x;\theta) = F_{\text{softmax}}(U),$$

 $U_k = W_k \cdots H + b_k$

(17)

where
$$W \in \mathbb{R}^{K \times (d-k_y+1) \times (d-k_x+1) \times C}$$
, $b \in \mathbb{R}^K$, $U \in \mathbb{R}^K$, and $W_{k,:,:,:} \cdot H = \sum_{i=1}^K W_{k,i,j,p} H_{i,j,p}$. The collection of parameters is

$$W_{k,:,:,:} \cdot H = \sum_{i,j,p} W_{k,i,j,p} H_{i,j,p}$$
. The collection of parameters is

 $\theta = \{K, W, b\}.$

The single layer convolution network with multiple channels is:

$$Z_{:,:,p} = X_{:,:} * K_{:,:,p},$$

$$H_{:,:,p} = \sigma \left(Z_{:,:,p} \right),$$

$$U_k = W_{k,:,:,:} \cdot H + b_k,$$

$$f(x;\theta) = F_{\text{softmax}}(U).$$
(18)

The cross-entropy error for a single data sample (X, Y) is

$$\rho := \rho(f(X;\theta), Y)$$

$$= -\log\left(f_Y(X;\theta)\right). \tag{19}$$

Define

$$\delta_{i,j,p} := \frac{\partial \rho}{\partial H_{i,j,p}} = \sum_{k=0}^{K-1} \frac{\partial \rho}{\partial U_k} W_{k,i,j,p}$$
$$= \frac{\partial \rho}{\partial U} \cdot W_{:,i,j,p}. \tag{20}$$

The backpropagation algorithm is essentially the same as before, with

$$\frac{\partial \rho}{\partial K_{\dots,p}} = X * \left(\sigma'(Z_{:,:,p}) \odot \delta_{:,:,p} \right), \tag{21}$$

and

$$\frac{\partial \rho}{\partial b} = \frac{\partial \rho}{\partial U},$$

$$\frac{\partial \rho}{\partial W_{k,\dots}} = \frac{\partial \rho}{\partial U_k} H.$$
(22)

Multi-layer convolution networks:

- The input image is $X \in \mathbb{R}^{d \times d \times C^0}$.
- ullet The ℓ -th convolution layer contains C^ℓ "feature maps".
- The number of feature maps C^{ℓ} is often called the "number of channels" for layer ℓ .
- The ℓ -th hidden layer is $H^{\ell} \in \mathbb{R}^{d_y^{\ell} \times d_x^{\ell} \times C^{\ell}}$. The first feature map $H^0 = X$.
- The filters for the ℓ -layer are given by the variable $K^\ell \in \mathbb{R}^{d_y^\ell \times d_x^\ell \times C^\ell \times C^{\ell-1}}$.

$$H_{i,j,p}^{\ell} = \sigma \left(\sum_{p'=0}^{C^{\ell-1}-1} \sum_{m=0}^{k_y^{\ell}-1} \sum_{n=0}^{k_x^{\ell}-1} K_{m,n,p,p'}^{\ell} H_{i+m,j+n,p'}^{\ell-1} \right).$$
 (23)

The height d_y^ℓ and width d_x^ℓ of the feature maps in the ℓ -th layer depend upon the height $d_y^{\ell-1}$ and width $d_x^{\ell-1}$ of the feature maps in the previous layer and the size of the filters $k_y^\ell \times k_x^\ell$:

$$d_{y}^{\ell} = d_{y}^{\ell-1} - k_{y}^{\ell} + 1,$$

$$d_{x}^{\ell} = d_{x}^{\ell-1} - k_{x}^{\ell} + 1.$$
 (24)

The size of the features maps monotonically decreases as the number of layers increase. In particular,

$$d_{y}^{\ell} = d + \sum_{i=1}^{\ell} (-k_{y}^{i} + 1),$$

$$d_{x}^{\ell} = d + \sum_{i=1}^{\ell} (-k_{x}^{i} + 1).$$
(25)

- Typically followed by 1-2 fully-connected layers.
- ReLU hidden units
- Common sizes for filters: 3×3 , 5×5 , 8×8 .
- Pooling, strides, padding.
- 3-d convolutions.

Why do convolution networks work well for image recognition?

- Invariant to translations.
- Shared weights vs. fully-connected
 - Learn about all weights no matter where image is located in the image.
 - Much fewer parameters than fully-connected.

- Convolutions are invariant to translations.
- Consider an image $X: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ and the convolution

 $k_{v}-1 k_{v}-1$

$$Z_{i,j} = (X * K)_{i,j} = \sum_{m=0}^{k_y - 1} \sum_{n=0}^{k_x - 1} K_{m,n} X_{i+m,j+n}.$$
 (26)

• Let Y = t(X), defined as

$$Y_{i,j} = t(X)_{i,j} = X_{i-b_1, j-b_2}. (27)$$

Then,

$$(Y * K)_{i,j} = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} K_{m,n} Y_{i+m,j+n}$$

$$= \sum_{m=0}^{k_y-1} \sum_{n=0}^{k_x-1} K_{m,n} X_{i+m-b_1,j+n-b_2}$$

$$= (X * K)_{i-b_1,j-b_2} = Z_{i-b_1,j-b_2}.$$
(28)

We have that

$$(Y * K)_{i,j} = (X * K)_{i-b_1,j-b_2}$$

= $Z_{i-b_1,j-b_2}$
= $t(Z)_{i,j}$ (29)

Therefore,

$$t(X) * K = t(X * K). \tag{30}$$

Shifting the data does not change the output of the convolution operation (up to translations)!

Importance of understanding backpropagation:

- Low-level implementation
- Implementation of new methods and models
- $\hbox{ \bullet Understanding backpropagation} \longrightarrow \hbox{vanishing gradient} \\ \hbox{problem} \longrightarrow \hbox{new models and training methods}.$
- "Standard" automatic differentiation code may not be optimal.

Automatic differentiation computes the chain rule for a composition of functions

$$g(x) = f^{N}\left(f^{N-1}\left(\cdots f^{1}(x)\right)\right). \tag{31}$$

 $y^n = f^n(\cdots f^1(x)), y^0 = x$, and $D^n = \frac{\partial y^n}{\partial y^{n-1}}$. Then,

$$\frac{\partial y^N}{\partial x} = D^N D^{N-1} \cdots D^1. \tag{32}$$

Suppose $g(x): \mathbb{R}^d \to \mathbb{R}^K$, $f^1: \mathbb{R}^d \to \mathbb{R}^H$, $f^n: \mathbb{R}^H \to \mathbb{R}^H$ for 1 < n < N, and $f^N: \mathbb{R}^H \to \mathbb{R}^K$.

What is the optimal way to compute $\frac{\partial y^{\prime\prime}}{\partial x}$?

The partial derivative of $g(x): \mathbb{R}^d \to \mathbb{R}^K$ is:

$$\frac{\partial y^N}{\partial x} = D^N D^{N-1} \cdots D^1. \tag{33}$$

Forward mode:

$$\mathcal{O}\bigg(H^2d + (N-2)H^2d + KHd\bigg). \tag{34}$$

Reverse mode:

$$\mathcal{O}\bigg(H^2K + (N-2)KH^2 + KHd\bigg). \tag{35}$$

Forward mode is better if K > d.

Reverse mode is better if K < d.

- In fact, backpropagation is an example of reverse mode differentiation.
- PyTorch and TensorFlow use reverse mode automatic differentiation.
- The optimal sequence of chain rule operations to compute the Jacobian ("Optimal Jacobian accumulation") is NP-complete. (See Naumann, Mathematical Programming, 2008.)
- Therefore, automatic differentiation algorithms may not be optimal.
- For example, consider the softmax function.

Other features of PyTorch:

• Dynamic, define-by-run. TensorFlow is static, define-and-run.

- Implementation in C++.
- Safeguards against in-place operations.
- Memory management: automatically frees memory when possible.
- See "Automatic differentiation in PyTorch" by Paszke et al., NIPS, 2017.

3-d convolutions:

Let the input image be $X \in \mathbb{R}^{d \times d \times d}$ and a filter $K \in \mathbb{R}^{k_y \times k_x \times k_z}$.

We define a 3-dimensional convolution of the matrix X with the filter K as the map

$$X*K: \mathbb{R}^{d\times d\times d} \times \mathbb{R}^{k_y\times k_x\times k_z} \to \mathbb{R}^{(d-k_y+1)\times (d-k_x+1)\times (d-k_z+1)}, (36)$$

where

$$(X * K)_{i,j,q} = \sum_{m=0}^{k_y - 1} \sum_{n=0}^{k_x - 1} \sum_{r=0}^{k_z - 1} K_{m,n,r} X_{i+m,j+n,q+r}.$$
 (37)