The Resurgence of the Linear Optics Interferometer — Recent Advances & Applications

1

1

1

1

1

1

1

1

1

1

2

2 2

2

2

2

2

2

Si-Hui Tan^{1, *} and Peter P. Rohde^{2, †}

(Dated: November 2, 2016)

Contents

I.	Introduction
Τ.	Mathematical background

III. Optical encoding of quantum information

- A. Single-photons
 - 1. Polarisation
 - 2. Dual-rail
 - 3. Time-bins
- B. Continuous-variables
 - 1. Coherent states
 - 2. Squeezed states

IV. Efficient circuit decompositions of linear optics networks

V. Experimental implementation

- A. State preparation
 - 1. Single-photons
 - 2. Bell pairs
 - 3. Coherent states
 - 4. Squeezed states
- B. Linear optics networks
 - 1. Bulk-optics
- 2. Waveguides
- 3. Time-bins
- C. Measurement
 - Photodetection
 Homodyning

VI. Applications for linear optics interferometry

- A. Linear optics quantum computation
- B. Boson-sampling
- C. Quantum metrology
- D. Encrypted quantum computation

VII. State of the art

VIII. Conclusion

Acknowledgments

I. INTRODUCTION

Si-Hui can colour code things she adds like this And Peter can do it like this

Let's add comments and questions like this

II. MATHEMATICAL BACKGROUND

Mathematical representation for LO networks, and very basic background on quantum optics

III. OPTICAL ENCODING OF QUANTUM INFORMATION

- A. Single-photons
- 1. Polarisation
- 2. Dual-rail
- 3. Time-bins
- B. Continuous-variables
- 1. Coherent states
- 2. Squeezed states

IV. EFFICIENT CIRCUIT DECOMPOSITIONS OF LINEAR OPTICS NETWORKS

Discuss the Reck et al. decomposition

- V. EXPERIMENTAL IMPLEMENTATION
- A. State preparation
- 1. Single-photons
- 2 2. Bell pairs
 - 3. Coherent states
 - 4. Squeezed states
 - B. Linear optics networks
 - 1. Bulk-optics
 - 2. Waveguides
 - 3. Time-bins

¹Singapore University of Technology and Design, 8 Somapah Road, Singapore

²Centre for Quantum Software & Information (CQSI), Faculty of Engineering & Information Technology, University of Technology Sydney, NSW 2007, Australia

 $[*]sihui_tan@sutd.edu.sg$

[†]dr.rohde@gmail.com; URL: http://www.peterrohde.org

Discuss fibre-loop architecture

- C. Measurement
- 1. Photodetection

Discuss number-resolved and bucket detectors, multiplexed detection, APDs, current micropillar detectors

2. Homodyning

VI. APPLICATIONS FOR LINEAR OPTICS INTERFEROMETRY

- A. Linear optics quantum computation
- B. Boson-sampling
- C. Quantum metrology

Discuss NOON states - Heisenberg limited Discuss MORDOR scheme

D. Encrypted quantum computation

VII. STATE OF THE ART

Discuss where experiments are at at the moment

VIII. CONCLUSION

Acknowledgments

P.P.R. is funded by an ARC Future Fellowship (project FT160100397).