1

Random Numbers

Gautam Singh

1

8

CONTENTS

Uniform Random Numbers

1

7

2	Central Limit Theorem	2
3	From Uniform to Other	4
4	Triangular Distribution	4
5	Maximum Likelihood	5
6	Gaussian to Other	6

Abstract—This manual provides a simple introduction to the generation of random numbers. Commands that must be executed in a *NIX shell are preceded by a \$ symbol.

Conditional Probability

1 Uniform Random Numbers

Let U be a uniform random variable between 0 and 1.

1.1 Generate 10^6 samples of U using a C program and save into a file called uni.dat .

Solution: Download the following files

- \$ wget https://raw.githubusercontent.com/ goats-9/ai1110-probability/master/ manual/codes/1 1.c
- \$ wget https://raw.githubusercontent.com/ goats-9/ai1110-probability/master/ manual/codes/1_1.h

and compile and execute the C program using

1.2 Load the uni.dat file into python and plot the empirical CDF of *U* using the samples in uni.dat. The CDF is defined as

$$F_U(x) = \Pr\left(U \le x\right) \tag{1.1}$$

Solution: The following code plots Fig. 1.1

Fig. 1.1: The CDF of U

\$ wget https://raw.githubusercontent.com/ goats-9/ai1110-probability/master/ manual/codes/1 2.py

It is executed with

\$ python3 1_2.py

1.3 Find a theoretical expression for $F_U(x)$. **Solution:** The CDF of U is given by

$$F_U(x) = \Pr\left(U \le x\right) = \int_{-\infty}^x p_U(u) du \qquad (1.2)$$

We now have three cases:

- a) x < 0: $p_X(x) = 0$, and hence $F_U(x) = 0$.
- b) $0 \le x < 1$: Here,

$$F_U(x) = \int_0^x du = x$$
 (1.3)

c) $x \ge 1$: Put x = 1 in (1.3) as U is uniform in [0, 1] to get $F_U(x) = 1$.

Therefore,

$$F_U(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$
 (1.4)

This is verified in Figure (1.1)

1.4 The mean of U is defined as

$$E[U] = \frac{1}{N} \sum_{i=1}^{N} U_i$$
 (1.5)

and its variance as

$$var[U] = E[U - E[U]]^2$$
 (1.6)

Write a C program to find the mean and variance of U.

Solution: The C program can be downloaded using

\$ wget https://raw.githubusercontent.com/ goats-9/ai1110-probability/master/ manual/codes/1 4.c

and compiled and executed with

The calculated mean is 0.500007 and the calculated variance is 0.083301.

1.5 Verify your result theoretically given that

$$E\left[U^{k}\right] = \int_{-\infty}^{\infty} x^{k} dF_{U}(x) dx \tag{1.7}$$

Solution: We write

$$E\left[U^{2}\right] = \int_{-\infty}^{\infty} x^{2} dF_{U}(x) \tag{1.8}$$

$$= \int_{-\infty}^{\infty} x^2 p_U(x) dx \tag{1.9}$$

$$= \int_0^1 x^2 dx = \frac{1}{3} \tag{1.10}$$

and

$$E[U] = \int_{-\infty}^{\infty} x dF_U(x)$$
 (1.11)

$$= \int_{-\infty}^{\infty} x p_U(x) dx \tag{1.12}$$

$$= \int_0^1 x dx = \frac{1}{2} \tag{1.13}$$

which checks out with the empirical mean on 0.500007. Now, using linearity of expectation,

$$var[U] = E[U - E[U]]^{2}$$
 (1.14)

$$= E \left[U^2 - 2UE \left[U \right] + (E \left[U \right])^2 \right]$$
 (1.15)

$$= E[U^{2}] - 2(E[U])^{2} + (E[U])^{2}$$
 (1.16)

$$= E[U^2] - (E[U])^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \quad (1.17)$$

and this checks out with the empirical variance 0.083301 of the sample data.

2 Central Limit Theorem

2.1 Generate 10⁶ samples of the random variable

$$X = \sum_{i=1}^{12} U_i - 6 \tag{2.1}$$

using a C program, where U_i , i = 1, 2, ..., 12 are a set of independent uniform random variables between 0 and 1 and save in a file called gau.dat

Solution: The sample data is generated by the C file in Question 1.1.

2.2 Load gau.dat in python and plot the empirical CDF of *X* using the samples in gau.dat. What properties does a CDF have?

Solution: The CDF of *X* is plotted in Fig. 2.1 Download the Python code using

Fig. 2.1: The CDF of X

\$ wget https://raw.githubusercontent.com/ goats-9/ai1110-probability/master/ manual/codes/2 2.py and execute it with

\$ python3 2_2.py

The CDF of a probability distribution has the following properties:

- a) It is non-decreasing
- b) It is right-continuous
- c) $\lim_{x\to -\infty} F_X(x) = 0$
- d) $\lim_{x\to\infty} F_X(x) = 1$

The CDF of the normal distribution is expressed in terms of the Q-function as $F_X(x) =$ 1 - Q(x).

2.3 Load gau.dat in python and plot the empirical PDF of X using the samples in gau.dat. The PDF of X is defined as

$$p_X(x) = \frac{d}{dx} F_X(x) \tag{2.2}$$

What properties does the PDF have?

Solution: The PDF of X is plotted in Fig. 2.2 using the code below

\$ wget https://raw.githubusercontent.com/ goats-9/ai1110-assignments/master/ manual/codes/2 3.py

The figure is generated using

The properties of a PDF are as follows:

- a) $\forall x \in \mathbb{R}, p_X(x) \ge 0$ b) $\int_{-\infty}^{\infty} p_X(x) dx = 1$ c) For $a < b, a, b \in \mathbb{R}$

$$\Pr(a < X < b) = \Pr(a \le X \le b)$$
 (2.3)

$$= \int_a^b p_X(x) dx \tag{2.4}$$

If we take a = b, then we get Pr(X = a) = 0.

2.4 Find the mean and variance of X by writing a C program.

Solution: The mean and variance have been calculated using (1.5) and (1.6) respectively.

The C program can be downloaded using

\$ wget https://raw.githubusercontent.com/ goats-9/ai1110-assignments/master/ manual/codes/2 4.c

and compiled and executed with the following commands

Fig. 2.2: The PDF of X

\$./a.out

The calculated mean is 0.000326 and the calculated variance is 1.000906.

2.5 Given that

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), -\infty < x < \infty, (2.5)$$

repeat the above exercise theoretically.

Solution: The mean is given by

$$E[X] = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) = 0 \qquad (2.6)$$

as the integrand is odd. This checks out with the empirical mean of 0.000326. The variance is given by

$$var[X] = E[X^2] - (E[X])^2$$
 (2.7)

$$= \int_{-\infty}^{\infty} x^2 \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx \qquad (2.8)$$

$$= \int_0^\infty \frac{2}{\sqrt{2\pi}} \sqrt{2t} e^{-t} dt \tag{2.9}$$

$$=\frac{2}{\sqrt{\pi}}\Gamma\left(\frac{3}{2}\right) \tag{2.10}$$

$$= \frac{1}{\sqrt{\pi}} \Gamma\left(\frac{1}{2}\right) = 1 \tag{2.11}$$

where we have used $t = \frac{x^2}{2}$ and so dt = xdx. We have also used the gamma function defined as

$$\Gamma(n) = \int_{-\infty}^{\infty} x^{n-1} e^{-x} dx \tag{2.12}$$

$$\Gamma(n) = (n-1)\Gamma(n-1) \text{ for } n > 1$$
 (2.13)

and the fact that $\Gamma(1/2) = \sqrt{\pi}$. This agrees with the empirical variance of 1.000906.

3 From Uniform to Other

3.1 Generate samples of

$$V = -2\ln(1 - U) \tag{3.1}$$

and plot its CDF.

Solution: The relevant python code is at

\$ wget https://raw.githubusercontent.com/ goats-9/ai1110-probability/master/ manual/codes/3_1.py

and can be executed with

The CDF is plotted in Figure (3.1).

Fig. 3.1: The CDF of V

3.2 Find a theoretical expression for $F_V(x)$.

Solution: Note that the function

$$v = f(u) = -2\ln(1 - u) \tag{3.2}$$

is monotonically increasing in [0, 1] and $v \in \mathbb{R}^+$. Hence, it is invertible and the inverse function is given by

$$u = f^{-1}(v) = 1 - \exp\left(-\frac{v}{2}\right)$$
 (3.3)

Therefore, from the monotonicity of v, and using (1.4),

$$F_V(v) = F_U \left(1 - \exp\left(-\frac{v}{2}\right) \right) \tag{3.4}$$

$$\implies F_V(v) = \begin{cases} 0 & v < 0 \\ 1 - \exp\left(-\frac{v}{2}\right) & v \ge 0 \end{cases}$$
 (3.5)

4 Triangular Distribution

4.1 Generate

$$T = U_1 + U_2 \tag{4.1}$$

Solution: The samples are generated in the C file exrand.c in 1.1 as the file tri.dat.

4.2 Find the CDF of T.

Solution: The Python code for the figure is at

\$ wget https://raw.githubusercontent.com/ goats-9/ai1110-assignments/master/ manual/codes/4 2.py

and can be run using

\$ python3 4 2.py

Fig. 4.1: The CDF of T

4.3 Find the PDF of T.

Solution: The Python code for the figure can be downloaded using

\$ wget https://raw.githubusercontent.com/ goats-9/ai1110-assignments/master/ manual/codes/4 3.py

and run using

\$ python3 4 3.py

Fig. 4.2: The PDF of T

4.4 Find the theoretical PDF and CDF of *T*. **Solution:** We write,

$$F_T(t) = \Pr(U_1 + U_2 \le t)$$
 (4.2)

$$= \Pr(U_1 \le t - U_2) \tag{4.3}$$

$$= \int_0^1 F_{U_1}(t-x)p_{U_2}(x)dx \qquad (4.4)$$

where U_1 and U_2 are uniform i.i.d. random variables in [0, 1]. Then, $0 \le U_1 + U_2 \le 2$. We have three cases:

- a) t < 0: Using Equation 1.4, $F_T(t) = 0$.
- b) $0 \le t < 1$: We have,

$$F_T(t) = \int_0^t (t - x) dx = \frac{t^2}{2}$$
 (4.5)

c) $1 \le t < 2$: Here, we get

$$F_T(t) = \int_0^{t-1} dx + \int_{t-1}^1 (t-x)dx \tag{4.6}$$

$$= t - 1 + t(2 - t) - \frac{1 - (t - 1)^2}{2}$$
 (4.7)

$$= -\frac{t^2}{2} + 2t - 1 \tag{4.8}$$

d) $t \ge 2$: Here, $F_T(t) = 1$.

Therefore,

$$F_T(t) = \begin{cases} 0 & t < 0 \\ \frac{t^2}{2} & 0 \le t < 1 \\ -\frac{t^2}{2} + 2t - 1 & 1 \le t < 2 \\ 1 & t \ge 2 \end{cases}$$
 (4.9)

Using Equation 2.2,

$$p_T(t) = \begin{cases} t & 0 \le t < 1\\ 2 - t & 1 \le t < 2\\ 0 & \text{otherwise} \end{cases}$$
 (4.10)

4.5 Verify your results through a plot.

Solution: This has been done in the plots (4.1) and (4.2).

5 Maximum Likelihood

5.1 Generate

$$Y = AX + N \tag{5.1}$$

where A = 5 dB, $X \in \{1, -1\}$ is Bernoulli and $N \sim \mathcal{N}(0, 1)$.

Solution: The C file in Question 1.1 generates the numbers in the file data/gau ber.dat

5.2 Plot Y.

Solution: The Python code can be downloaded using

\$ wget https://raw.githubusercontent.com/ goats-9/ai1110-probability/master/ manual/codes/5 2.py

and run using

\$ python3 5 2.py

Fig. 5.1: Plot of *Y*

5.3 Guess how to estimate X from Y.

Solution: From the plot of Y, we see that X = 1 usually correlates to Y > 0 and X = -1 correlates to Y < 0.

5.4 Find

$$P_{e|0} = \Pr(\hat{X} = -1|X = 1)$$
 (5.2)

and

$$P_{e|1} = \Pr(\hat{X} = 1|X = -1)$$
 (5.3)

Solution: Letting X = 1 and X = -1 respectively, we see the number of mismatched data points to compute the error probabilities. The simulation is coded in

\$ wget https://raw.githubusercontent.com/ goats-9/ai1110-assignments/master/ manual/codes/5 4.py

and can be run by typing

The results are

$$P_{e|0} = 0 (5.4)$$

$$P_{e|1} = 0 (5.5)$$

5.5 Find P_e .

Solution: Here, we assume Pr(X = 1) = Pr(X = -1) = 0.5. Thus,

$$P_e = \frac{1}{2} \left(P_{e|0} + P_{e|1} \right) = 0 \tag{5.6}$$

5.6 Verify by plotting the theoretical P_e .

Solution: We note that

$$P_{e|0} = \Pr(\hat{X} = 1|X = -1)$$
 (5.7)

$$= \Pr(Y > 0 | X = -1) \tag{5.8}$$

$$= \Pr(AX + N > 0 | X = -1) \tag{5.9}$$

$$= \Pr(N > A | X = -1) = Q(A)$$
 (5.10)

since X and N are independent. Writing a similar expression for $P_{e|1}$ and noting that

$$Pr(N < -A) = Pr(N > A) = O(A)$$
 (5.11)

it follows that $P_e = Q(A)$. This is the idea used to plot the theoretical P_e . The plot is coded both in the rectangular axes and the semilog-y axes. Download the relevant codes using

- \$ wget https://raw.githubusercontent.com/ goats-9/ai1110-assignments/master/ manual/codes/5 6.py
- \$ wget https://raw.githubusercontent.com/ goats-9/ai1110-assignments/master/ manual/codes/5 6 semilog.py

and execute them using

\$ python3 5 6.py

\$ python3 5_6_semilogy.py

Fig. 5.2: $P_e(A)$ (rectangular axes)

Fig. 5.3: $P_e(A)$ (semilog-y axes)

6 Gaussian to Other

6.1 Let $X_1 \sim \mathcal{N}(0,1)$ and $X_2 \sim \mathcal{N}(0,1)$. Plot the CDF and PDF of

$$V = X_1^2 + X_2^2 \tag{6.1}$$

Solution: We transform the variables X_1 and X_2 as:

$$X_1 = R\cos\Theta \tag{6.2}$$

$$X_2 = R\sin\Theta \tag{6.3}$$

where $R \in [0, \infty), \Theta \in [0, 2\pi)$. The Jacobian Matrix for this transformation is given by

$$\mathbf{J} = \begin{pmatrix} \frac{\partial X_1}{\partial R} & \frac{\partial X_2}{\partial R} \\ \frac{\partial X_1}{\partial \Theta} & \frac{\partial X_2}{\partial \Theta} \end{pmatrix} \tag{6.4}$$

$$= \begin{pmatrix} \cos\Theta & \sin\Theta \\ -R\sin\Theta & R\cos\Theta \end{pmatrix} \tag{6.5}$$

$$\implies |\mathbf{J}| = R \tag{6.6}$$

We also know that

$$|\mathbf{J}|p_{X_1,X_2}(x_1,x_2) = p_{R,\Theta}(r,\theta)$$
(6.7)

$$\implies p_{R,\Theta}(r,\theta) = Rp_{X_1}(x_1)p_{X_2}(x_2) \tag{6.8}$$

$$= \frac{R}{2\pi} \exp\left(-\frac{X_1^2 + X_2^2}{2}\right) \quad (6.9)$$

$$= \frac{R}{2\pi} \exp\left(-\frac{R^2}{2}\right) \tag{6.10}$$

where (6.8) follows as X_1, X_2 are iid random variables. Thus,

$$p_R(r) = \int_0^{2\pi} p_{R,\Theta}(r,\theta) d\theta \qquad (6.11)$$

$$= R \exp\left(-\frac{R^2}{2}\right) \tag{6.12}$$

However, $V = X_1^2 + X_2^2 = R^2 \ge 0$, thus $F_V(x) = 0$ for $x \ge 0$.

$$F_V(x) = F_R(\sqrt{x}) \tag{6.13}$$

$$= \int_0^{\sqrt{x}} r \exp\left(-\frac{r^2}{2}\right) dr \qquad (6.14)$$

$$= \int_{0}^{\frac{x}{2}} e^{-t} dt = 1 - e^{-\frac{x}{2}}$$
 (6.15)

where $t = \frac{r^2}{2}$ and so, for $x \ge 0$,

$$p_V(x) = \frac{1}{2}e^{-\frac{x}{2}} \tag{6.16}$$

Hence,

$$F_V(x) = \begin{cases} 1 - e^{-\frac{x}{2}} & x \ge 0\\ 0 & x < 0 \end{cases}$$
 (6.17)

$$p_V(x) = \begin{cases} \frac{1}{2}e^{-\frac{x}{2}} & x \ge 0\\ 0 & x < 0 \end{cases}$$
 (6.18)

The equations (6.17) and (6.18) have been used to generate the plots. The Python code can be downloaded from

\$ wget https://raw.githubusercontent.com/

goats-9/ai1110-assignments/master/ manual/codes/6_1_cdf.py \$ wget https://raw.githubusercontent.com/ goats-9/ai1110-assignments/master/ manual/codes/6_1_pdf.py

Execute the codes by typing the commands

Fig. 6.1: CDF of *V*

Fig. 6.2: PDF of *V*

6.2 If

$$F_V(x) = \begin{cases} 1 - e^{-\alpha x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
 (6.19)

find α .

Solution: From (6.17), it is clear that $\alpha = 0.5$.

6.3 Plot the CDF and PDF of

$$A = \sqrt{V} \tag{6.20}$$

Solution:

Note that for $x \ge 0$,

$$F_A(x) = \Pr(A \le x) \tag{6.21}$$

$$= \Pr\left(\sqrt{V} \le x\right) \tag{6.22}$$

$$= \Pr\left(V \le x^2\right) \tag{6.23}$$

$$= F_V(x^2) = 1 - e^{-\frac{x^2}{2}}$$
 (6.24)

and so,

$$p_A(x) = xe^{-\frac{x^2}{2}} (6.25)$$

Thus, the CDF and PDF of A is given by

$$F_V(x) = \begin{cases} 1 - e^{-\frac{x^2}{2}} & x \ge 0\\ 0 & x < 0 \end{cases}$$
 (6.26)

$$p_V(x) = \begin{cases} xe^{-\frac{x}{2}} & x \ge 0\\ 0 & x < 0 \end{cases}$$
 (6.27)

The Python codes for the plots are at

- \$ wget https://raw.githubusercontent.com/ goats-9/ai1110-assignments/master/ manual/codes/6 3 cdf.py
- \$ wget https://raw.githubusercontent.com/ goats-9/ai1110-assignments/master/ manual/codes/6_3_pdf.py

and can be executed using

\$ python3 6_3_pdf.py

7 CONDITIONAL PROBABILITY

7.1 Plot

$$P_e = \Pr(\hat{X} = -1|X = 1)$$
 (7.1)

for

$$Y = AX + N \tag{7.2}$$

where A is Rayleigh with $E[A^2] = \gamma$, $N \sim \mathcal{N}(0,1)$, $X \in \{1,-1\}$ for $0 \le \gamma \le 10$ dB.

Solution: Download the relevant Python code

\$ wget https://raw.githubusercontent.com/ goats-9/ai1110-assignments/master/ manual/codes/7 1.py

Fig. 6.3: CDF of *A*

Fig. 6.4: PDF of *A*

and run it using

\$ python3 7_1.py

7.2 Assuming that N is a constant, find an expression for P_e . Call this $P_e(N)$.

Solution: We rewrite the previous expression for P_e as

$$P_e(N) = \Pr(A < -N) = F_A(-N)$$
 (7.3)

$$= \begin{cases} 1 - e^{-\frac{N^2}{\gamma}} & N \le 0\\ 0 & N > 0 \end{cases}$$
 (7.4)

7.3 For a function g,

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)p_X(x)dx \tag{7.5}$$

Find $P_e = E[P_e(N)]$.

Fig. 7.1: P_e as a function of γ

Solution: We write,

$$P_e = \int_0^\infty F_A(x) f_N(x) dx \tag{7.6}$$

$$= \int_0^\infty (1 - e^{-\frac{x^2}{y}}) \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$
 (7.7)

$$= \frac{1}{2} - \frac{1}{\sqrt{2\pi}} \int_0^\infty \exp\left(-\frac{x^2}{\frac{2\gamma}{\gamma+2}}\right) dx \qquad (7.8)$$

$$=\frac{1}{2}\left(1-\sqrt{\frac{\gamma}{\gamma+2}}\right)\tag{7.9}$$

where we have integrated by parts and f_N denotes the standard normal distribution.

7.4 Plot P_e in problems 7.1 and 7.3 on the same graph wrt γ . Comment.

Solution: This has been done in Figure (7.1) using the result (7.9). We observe that $P_{e|0} = E[P_e(N)]$ i.e., the error rate is independent of the noise.