Nassau County Interscholastic Mathematics League

Team Contest Answers must be integers from 0 to 999, inclusive. 2016 – 2017

Calculators are allowed.

Time: 40 minutes

- 31) The three interior angles of a triangle each measure a positive integral number of degrees. If the measure of one of these angles is 60, compute the greatest possible difference between the measures of the other two angles.
- 32) Compute the sum of the real roots of $\sqrt[3]{x^2 2x + 1} 7\sqrt[3]{x 1} + 10 = 0$.
- 33) Compute the greatest prime factor of $2^{2017} 2^{2009}$.
- 34) Circle O is tangent to \overline{RS} , a side of equilateral ΔRST at its midpoint, M. All other points of circle O lie outside ΔRST . Circle O is also tangent to the circle circumscribed about ΔRST , and RS=4. In simplest form, the radius of circle O is $\frac{\sqrt{a}}{b}$. Compute a^b .
- 35) If Melanie walks to school and returns home by bus, the entire round trip takes her 2 hours. If she takes the bus both ways, it takes her 20 minutes. Compute the number of minutes it would have taken her if she walked both ways.
- 36) If $x^3 + x^2 + x = -1$, compute x^{2016} .
- 37) The lengths of two sides of a triangle are 12 and 15 and the length of the angle bisector of their included angle is 10. Compute the length of the third side of the triangle.
- 38) In $\triangle ABC$, AB=27, BC=27, and CA=18. Point P is interior to $\triangle ABC$ and its distance from \overline{AB} is $2\sqrt{2}$ and its distance from \overline{BC} is also $2\sqrt{2}$. If the distance between point P and \overline{AC} is expressed in simplest form as $p\sqrt{q}$, compute p+q.
- 39) When $x^{2017} 49x^{1008} + 1$ is divided by $x^2 1$, the remainder is expressible as ax + b. Compute a b.
- 40) The Nassau Ice Cream Math League (NICML) Store sells 9 different flavors of ice cream. When the number of ways your coach can choose 5 ice cream cups, not necessarily of different flavors, is divided by 1000, compute the remainder.

Solutions for Team Contest

- 31) The measures of the two remaining angles have a sum of 120. Since the measures are positive integers, the smaller of these two angles has a measure of 1 and the larger has a measure of 119. The greatest difference is 119 1 = 118.
- 32) If $a = \sqrt[3]{x-1}$, then $\sqrt[3]{x^2-2x+1} = \sqrt[3]{(x-1)^2} = a^2$ and $a^2-7a+10 = (a-5)(a-2) = 0$. So, a = 5 or $a = 2 \rightarrow \sqrt[3]{x-1} = 5$ or $a = 2 \rightarrow x-1 = 125$ or $a = 2 \rightarrow x-1 = 125$
- 33) $2^{2017} 2^{2009} = 2^{2009}(2^8 1) = 2^{2009} \cdot 255 = 2^{2009} \cdot 5 \cdot 51 = 2^{2009} \cdot 5 \cdot 3 \cdot 17$. The required greatest prime factor of the given number is **17**.
- 34) Let point P be the center of the circumscribed circle. RM=2, and since ΔPRM is a 30-60-90 triangle, $PM=\frac{2}{\sqrt{3}}$, and the radius of the circumscribed circle, $PR=\frac{4}{\sqrt{3}}$. The line through points O and M contains point P and contains the common point of tangency, N, of the two circles. Then, $PMON=PR=\frac{4}{\sqrt{3}}$. So, the radius of circle O, $MO=\frac{1}{2}(PN-PM)=\frac{1}{2}(\frac{4}{\sqrt{3}}-\frac{2}{\sqrt{3}})=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$. Thus, a=b=3 and the required power is 27.

- 35) Let d= distance in miles between home and school, w= rate in miles per hour at which Melanie walked to school, and b= rate in miles per hour at which the bus traveled. The time it takes Melanie to walk to school is $\frac{d}{w}$ and the time it takes her to bus to school is $\frac{d}{b}$. Then, $\frac{d}{w}+\frac{d}{b}=2$ and $\frac{2d}{b}=\frac{1}{3}$. So, $\frac{d}{b}=\frac{1}{6}$. Therefore, $\frac{d}{w}=\frac{11}{6}$ and $\frac{2d}{w}=\frac{11}{3}$ hours or **220** minutes. Alternatively, let b= the number of minutes by bus one way, and let w= the number of minutes to walk one way. Since b= 10 and b+ w= 120, then w= 110 and 2w= **220**.
- 36) Re-write the given equation as $x^3 + x^2 + x + 1 = 0$. Factoring by grouping yields $(x+1)(x^2+1) = 0 \rightarrow x+1=0$ or $x^2+1=0 \rightarrow x=-1$ or $x=\pm i$. Any of these three roots raised to the 2016th power equals **1**. Alternatively, by inspection, x=-1 is a root of $x^3 + x^2 + x + 1 = 0$. Thus, $(-1)^{2016} = 1$.
- 37) Let \overline{CD} be the angle bisector in $\triangle ABC$, with point D in \overline{AB} , AC=12, CB=15, and CD=10. A result of the angle bisector in a triangle theorem is $\frac{AD}{DB}=\frac{4}{5}$. Let AD=4x, DB=5x, and $m \not ACD=m \not BCD=\theta$. Use the Law of Cosines in the two smaller triangles to yield: $16x^2=144+100-240\cos\theta$ and $25x^2=100+225-300\cos\theta$. Solve each for $\cos\theta$ and set the results equal to obtain: $\frac{244-16x^2}{240}=\frac{325-25x^2}{300} \rightarrow x=2$. Thus, AB=AD+DB=4x+5x=18.

Alternatively, let $m \not= ACD = m \not= BCD = \theta$. Since the sum of the areas of the two smaller triangles equals the area of the larger triangle, $\frac{1}{2}(12)(10)\sin\theta + \frac{1}{2}(15)(10)\sin\theta = \frac{1}{2}(12)(15)\sin 2\theta \rightarrow 135\sin\theta = 90(2\sin\theta\cos\theta)$. Dividing by $180\sin\theta$ yields $\cos\theta = \frac{3}{4}$. Using a double-angle identity, $\cos 2\theta = 2\left(\frac{3}{4}\right)^2 - 1 = \frac{1}{8}$. So, by the Law of Cosines in $\triangle ABC$, $AB^2 = 144 + 225 - 360\left(\frac{1}{8}\right) = 324$. Thus, AB = 18.

38) Draw line segments from point P to the three vertices of $\triangle ABC$. The sum of the areas of the three triangles thus formed equals the area of $\triangle ABC$. The latter area is obtained with Heron's formula. Let x be the required distance from point P to \overline{AC} . Then, $\frac{1}{2} \cdot 27 \cdot 2\sqrt{2} + \frac{1}{2} \cdot 18x = \sqrt{36 \cdot 9 \cdot 9 \cdot 18} = 162\sqrt{2} \rightarrow 54\sqrt{2} + 9x = 162\sqrt{2} \rightarrow 9x = 108\sqrt{2} \rightarrow x = 12\sqrt{2}$. So, the required sum is **14**. Alternatively, in isosceles $\triangle ABC$, point P lies on altitude and median \overline{BM} . Let points D and E be the feet of the perpendiculars from point P to \overline{AB} and \overline{CB} , respectively, and let $m \not ABM = \theta$. In $\triangle ABM$, $\sin \theta = \frac{9}{27} = \frac{1}{3}$, and in $\triangle DBP$, $\sin \theta = \frac{2\sqrt{2}}{BP}$. So, $\frac{1}{3} = \frac{2\sqrt{2}}{BP} \rightarrow BP = 6\sqrt{2}$. By the Pythagorean Theorem in $\triangle ABM$, $BM = \sqrt{27^2 - 9^2} = \sqrt{648} = 18\sqrt{2}$. Thus, the required distance.

 $PM = 18\sqrt{2} - 6\sqrt{2} = 12\sqrt{2}$, and the required sum is 14.

- 39) We can express the given division as $x^{2017} 49x^{1008} + 1 = Q(x)(x^2 1) + ax + b$, where Q(x) is the quotient and ax + b is the remainder. Then let x = 1: $1 49 + 1 = a + b \rightarrow a + b = -47$. Now let x = -1: $-1 49 + 1 = -a + b \rightarrow -a + b = -49$. Solve this system of equations to get a = 1 and b = -48. Thus, a b = 49.
- 40) Suppose the flavors are A, B, C, D, E, F, G, H, and I. A choice of 5 flavors can be depicted as listing the flavors in alphabetical order. For example, ACCEI means one cup each of A, E, and I and two cups of C. Draw slashes to separate the A's from the B's, the B's from the C's, ..., and the H's from the I's: A//CC//E///I. Notice that there are 13 symbols, of which 5 are letters and 8 are slashes. Instead, begin with 13 pound (#) symbols. Erase 8 of them and replace them with slashes. For example, the result BDGGH is depicted by /#//#//#/#/#/. The number of ways of choosing 5 ice cream cups out of 9 flavors is $_{13}C_5 = 1287$. Thus, the required remainder is **287**.