

Knowledge Compilation for Constrained Combinatorial Action Spaces in Reinforcement Learning

Jiajing Ling*, Moritz Lukas Schuler*, Akshat Kumar, Pradeep Varakantham {jjling.2018, akshatkumar, pradeepv}@smu.edu.sg, m-schuler@mailbox.org

Motivating Example

Emergency Response System:

Serve ambulance request due to emergency incidents using the limited resources

Monthly traffic incidents occurring in San Francisco in 2021. Source: https://smoosavi.org/datasets/us_accidents

Problem Formulation

- **Action-constrained Markov Decision Process (MDP)**
 - An MDP $(S, A, T, r, \gamma, b_0)$ + Explicit constraints on actions
 - Action space is discrete and combinatorial
 - For each state s, there is a valid action set $C(s) \subseteq A$ determined by constraints.
 - No cost function c(s,a) defined as in standard constrained MDP
- **Optimization problem**

$$\max_{\theta} J(\pi_{\theta}) = \mathbb{E}_{s \sim b_0} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) | s_0 = s; \pi_{\theta} \right]$$
s.t. $a_t \in \mathcal{C}(s_t) \ \forall t$

Key Challenges

- **Action space is combinatorial**
 - Example: allocate 32 ambulances into 25 base stations
 - $|A| = {32 + 25 1 \choose 25 1} = 4.355031703 \text{ E} + 15$
- **Hard constraints**
- **Limitations of previous methods**
 - Constraint violations
 - Computationally expensive

Contributions

We propose a neuro-symbolic method to address action-constrained RL

Symbolic Representation

Neural Optimization

 $B \mid \neg B \mid B \perp$

 $\neg C \neg D \mid C \mid \bot \mid$

- Compile action constraints using (P)SDDs Integrate PSDD with deep NN
- Able to compactly represent a distribution Optimize PSDD parameters using deep RL over all valid actions

Symbolic Representation

Steps

- Define state and action using propositional variables X_S , X_A
- 2. Define constraint using Boolean functions $C_k(X_S, X_A)$
- 3. Compile Boolean functions into a Sentential Decision Diagram (SDD)[1]
- 4. Parameterize the SDD to obtain a Probabilistic SDD(PSDD)[2]

Step2 Step1 • Resource Constraints A + B + C + D = 1 $A \le 1, B \le 1, C \le 1, D \le 1$ • Boolean Function $(A \land \neg B \land \neg C \land \neg D)$ $\vee (\neg A \wedge B \wedge \neg C \wedge \neg D)$ Example: allocate one ambulance into four stations $\vee (\neg A \wedge \neg B \wedge C \wedge \neg D)$ $\vee (\neg A \wedge \neg B \wedge \neg C \wedge D)$ Step3 Step4 $B \downarrow \neg B \mid B \perp$ $B \downarrow \neg B \mid B \perp$

- Fast sampling actions from the PSDD
 - Select a branch for decision nodes

 $C \vdash D \vdash C D \vdash C \vdash D C \perp$

- $P(\neg A, \neg B, C, \neg D) = 0.7 \times 0.2 \times 0.4 = 0.056$
- Linear complexity in depth
- Benefits of using PSDDs
 - Decomposition of complex constraints
 - Fast sampling of an action
 - Actions guaranteed to be valid
 - Tractable number of parameters

 $\neg C \neg D \ C \perp$

 $C \neg D \neg C D$

Neural Optimization

- **Steps**
 - 1. Integrate PSDD with deep NN
 - Each head outputs a probability distribution for a decision node

- 2. Optimize PSDD parameters using amortized Q-learning[3]
 - a_{PSDD} : sampled branches of all decision nodes
 - Maximize the probability of getting a PSDD action with the highest Q-value
 - Critic network is learned using a_{env} mapsped from a_{PSDD}

Experiments

- **Emergency Response System**
 - Allocate 32 ambulances into 25 base stations
 - Constraints:
 - Global sum, local min and max, group min and max
- **Baselines**
 - NFWPO
 - The state-of-the-art approach for ACRL with continuous action space
 - Involve solving an Integer Quadratic Program (IQP)
 - DDPG+QP
- **Results**

References

- [1] Adnan Darwiche. 2011. SDD: A new canonical representation of propositional knowledge bases. In IJCAI
- [2] Doga Kisa et. al. 2014. Probabilistic sentential decision diagrams. In PKRR.
- [3] TomVan de Wiele et. al. 2020. Q-Learning in enormous action spaces via amortized approximate maximization.