The caching problem under a point process perspective

Andres Ferragut

joint work with Matias Carrasco and Fernando Paganini

Universidad ORT Uruguay

Seminario PYE – Universidad de la República – Abril 2024

Outline

The caching problem

Point processes and stochastic intensity

The optimal caching policy

Large scale asymptotics

Conclusions

Outline

The caching problem

Point processes and stochastic intensity

The optimal caching policy

Large scale asymptotics

Conclusions

The caching problem

- \blacksquare Consider a cache system with a catalog of M objects.
- Requests for objects arrive at random.
- The cache can locally store C < M of them.
- If item is in cache, we have a hit. Otherwise, it is a miss.

Objective: for a given arrival stream, maximize the steady-state hit rate.

A sequential approach

- lacksquare Consider a sequence of random variables Z_1, Z_2, \ldots with values in $\{1, \ldots, M\}$.
- Consider also the set:

$$\mathcal{C} = \{\{i_1, \dots, i_k\} \subset \{1, \dots, M\}, k \leqslant C\}$$

lacktriangle A (causal) caching policy would be a sequence of maps π_n deciding which contents to store:

$$\pi_n(Z_1,\ldots,Z_{n-1})\to\mathcal{C}$$

In probabilistic terms, let $\mathcal{F}_n = \sigma(Z_1, \dots, Z_n)$, then π_n is any \mathcal{C} -valued \mathcal{F}_n -predictable process (\mathcal{F}_{n-1} -measurable).

A simple case

The Independent Reference Model (IRM)

- Assume now that Z_n are iid with distribution $p_i = P(Z_n = i)$, where p_i is the popularity of content i. Wlog, we take $p_1 \geqslant p_2 \geqslant \dots$
- In this case, $Z_n \mid \mathcal{F}_{n-1} \sim p$, thus the hit probability at time n is:

$$P(Z_n \in \pi_n) = E\left[\mathbf{1}_{Z_n \in \pi_n}\right] = E\left[E\left[\mathbf{1}_{Z_n \in \pi_n} \mid \mathcal{F}_{n-1}\right]\right] = E\left[\sum_{i \in \pi_n} p_i\right] \leqslant \sum_{i=1}^C p_i$$

■ Taking $\pi_n \equiv \{1, \ldots, C\}$ achieves the bound.

A simple case

The Independent Reference Model (IRM)

- Assume now that Z_n are iid with distribution $p_i = P(Z_n = i)$, where p_i is the popularity of content i. Wlog, we take $p_1 \geqslant p_2 \geqslant \dots$
- In this case, $Z_n \mid \mathcal{F}_{n-1} \sim p$, thus the hit probability at time n is:

$$P(Z_n \in \pi_n) = E\left[\mathbf{1}_{Z_n \in \pi_n}\right] = E\left[E\left[\mathbf{1}_{Z_n \in \pi_n} \mid \mathcal{F}_{n-1}\right]\right] = E\left[\sum_{i \in \pi_n} p_i\right] \leqslant \sum_{i=1}^C p_i$$

■ Taking $\pi_n \equiv \{1, \dots, C\}$ achieves the bound.

Conclusion: under iid requests, the static "keep the most popular" policy is optimal.

Practical policies: LFU and LRU

In practice, popularities are not known. This leads to the least-frequently-used (LFU) eviction policy:

- \blacksquare Take π_n as the most requested objects so far (remove the least frequently used).
- In the long range, converges to the static policy.

Another popular eviction policy is least-recently-used (LRU), which treats π_n as a list defined recursively:

- If $Z_n \in \pi_n$, serve the content, move Z_n to the front of the list.
- If $Z_n \notin \pi_n$, fetch the content, put Z_n in the front of the list, remove the last object in the list (which is the least recently requested).

Beyond the IRM

- Typically, requests are correlated, and popularities evolve over time.
- For instance, requests for a file may arrive in bursts.
- LRU adapts to changes in popularity. Is good for bursts of requests. Tons of literature on this policy (also called move-to-front).
- However, performance metrics and optimality results are hard to establish.

The caching problem, take 2

Sequential models lack time information, which may be useful!

The caching problem, take 2

Sequential models lack time information, which may be useful!

Point process approach [Fofack et al. 2014]:

Assume requests for item i come from a point process of intensity $\lambda_i := \lambda p_i$.

At each point in time we must decide which items must be stored locally.

If inter-request times are heavy tailed, this can model burstiness.

Example: Pareto arrivals

Consider two items, with equal popularity...

■ Poisson arrivals:

Homogeneous

lacktriangle Heavy tailed arrivals (Pareto lpha=2):

Bursty!

Some open questions...

- What is the optimal causal policy in this framework?
- Can we compute the optimal hit rate/hit probability?
- What is its large scale behavior?
- How typical policies compare to the optimal one?

Outline

The caching problem

Point processes and stochastic intensity

The optimal caching policy

Large scale asymptotics

Conclusions

A bit of point process theory...

Let $N = \{T_k : k \in \mathbb{Z}\}$ be a stationary point process representing request times:

i.e. $N(B) = \sum_n \mathbf{1}_{\{T_n \in B\}}$ is a random counting measure.

A bit of point process theory...

Let $N=\{T_k:k\in\mathbb{Z}\}$ be a stationary point process representing request times:

i.e. $N(B) = \sum_n \mathbf{1}_{\{T_n \in B\}}$ is a random counting measure.

Counting process:

$$N(t) = \begin{cases} N([0,t]) & t \ge 0 \\ -N((t,0)) & t < 0 \end{cases}$$

t

A bit of point process theory...

Let $N = \{T_k : k \in \mathbb{Z}\}$ be a stationary point process representing request times:

i.e. $N(B) = \sum_n \mathbf{1}_{\{T_n \in B\}}$ is a random counting measure.

Counting process:

$$N(t) = \begin{cases} N([0,t]) & t \geqslant 0 \\ -N((t,0)) & t < 0 \end{cases}$$

Let $\mathcal{F}_t = \sigma(N(s), s \leqslant t)$ be its internal history.

Two important distributions:

Inter-arrival distribution:

$$F(t) := P_N^0(T_1 - T_0 \leqslant t), \quad E_N^0[T_1] = 1/\lambda.$$

Note: here P_N^0 is the Palm probability of the point process (conditioning on $T_0=0$).

Two important distributions:

Inter-arrival distribution:

$$F(t) := P_N^0(T_1 - T_0 \leqslant t), \quad E_N^0[T_1] = 1/\lambda.$$

Age distribution:

$$\hat{F}(t) := P(-T_0 \leqslant t) = \lambda \int_0^t 1 - F(s) ds,$$

Note: here P_N^0 is the Palm probability of the point process (conditioning on $T_0=0$).

Consider a simple stationary point process N with intensity λ , defined in some probability space (Ω, \mathcal{F}, P) . Let some filtration $\{\mathcal{F}_t\}_{t\in\mathbb{R}}$ be a history of the process.

Definition:

The random process $\lambda(t)\geqslant 0$ is a stochastic intensity for the history \mathcal{F}_t iff it is a.s. locally integrable, \mathcal{F}_t -adapted and:

$$E[N((a,b]) \mid \mathcal{F}_a] = E\left[\int_a^b \lambda(t)dt \middle| \mathcal{F}_a\right]$$

for all $a, b \in \mathbb{R}$.

Properties

Local interpretation:

$$E[N((t,t+h]) \mid \mathcal{F}_t] = \lambda(t)h + o(h) \quad P - a.s.,$$

So $\lambda(t)$ acts as a local notion of intensity based on previous history.

Properties

Local interpretation:

$$E[N((t,t+h]) \mid \mathcal{F}_t] = \lambda(t)h + o(h) \quad P - a.s.,$$

So $\lambda(t)$ acts as a local notion of intensity based on previous history.

Martingale interpretation:

$$M_a(t) = N(t) - N(a) - \int_a^t \lambda(s)ds$$

is a local (P, \mathcal{F}_t) martingale for any $a \in \mathbb{R}$.

Namely, $A(t) = N(a) + \int_a^t \lambda(s) ds$ is the compensator of the counting process.

Stochastic intensity of a Poisson process

If N(t) is a Poisson process, then we know that

$$M(t) = N(t) - \lambda t = N(t) - \int_0^t \lambda dt$$

is a martingale, so the stochastic intensity of a Poisson process is just $\lambda(t) \equiv \lambda$.

Stochastic intensity of a Poisson process

 \blacksquare If N(t) is a Poisson process, then we know that

$$M(t) = N(t) - \lambda t = N(t) - \int_0^t \lambda dt$$

is a martingale, so the stochastic intensity of a Poisson process is just $\lambda(t) \equiv \lambda$.

In fact, this characterizes the Poisson process. The stochastic intensity $\lambda(t)$ is deterministic if and only if N is a Poisson process of (possible time-varying) intensity $\lambda(t)$.

A local notion of intensity...

However, if traffic is bursty, the stochastic intensity rises after arrivals:

Note: for stationary processes, $E[\lambda(t)] = E[\lambda(0)] = \lambda$, the average intensity.

Renewal processes

- Let now N be a stationary renewal process, i.e. inter request times $T_{n+1}-T_n$ are $iid\sim F$.
- lacktriangle Assume that F has a density, and define the hazard rate of F as:

$$\eta(t) = \frac{f(t)}{1 - F(t)}$$

Renewal processes

- Let now N be a stationary renewal process, i.e. inter request times $T_{n+1} T_n$ are $iid \sim F$.
- \blacksquare Assume that F has a density, and define the hazard rate of F as:

$$\eta(t) = \frac{f(t)}{1 - F(t)}$$

Theorem (Daley-Vere Jones, Chapter 7)

For a renewal process and its natural history, the stochastic intensity is:

$$\lambda(t) = \eta(t - T^*(t)),$$

where

$$T^*(t) = \sup\{T_n : T_n < t\}$$

is the last point before t.

Some examples...

Constant hazard rate \rightarrow Poisson process.

 $\textbf{Increasing hazard rate} \rightarrow \textbf{more periodic!}$

Decreasing hazard rate \rightarrow more bursty!

Outline

The caching problem

Point processes and stochastic intensity

The optimal caching policy

Large scale asymptotics

Conclusions

The predictable σ -algebra

Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t : t \in \mathbb{R}\}, P)$ be a filtered probability space.

Definition

The predictable σ -algebra $\mathcal{P}(\mathcal{F}.)$ is the σ -álgebra in $\mathbb{R} \times \Omega$ generated by the sets:

$$(a, b] \times A, \ a < b, \ A \in \mathcal{F}_a,$$

Predictable processes

Definition (Predictable process)

A stochastic process $X(t,\omega)$ taking values on a measurable space (E,\mathcal{E}) is \mathcal{F}_t -predictable if the mapping $(t,\omega)\mapsto X(t,\omega)$ is $\mathcal{P}(\mathcal{F}.)$ -measurable.

Key idea: a process is \mathcal{F}_t —predictable if its value at t is completely determined by the information prior to t.

Predictable processes

Definition (Predictable process)

A stochastic process $X(t,\omega)$ taking values on a measurable space (E,\mathcal{E}) is \mathcal{F}_t -predictable if the mapping $(t,\omega)\mapsto X(t,\omega)$ is $\mathcal{P}(\mathcal{F}_t)$ -measurable.

- **Key idea:** a process is \mathcal{F}_t —predictable if its value at t is completely determined by the information prior to t.
- In particular \mathcal{F}_t -adapted + left continuous $\Longrightarrow \mathcal{F}_t$ -predictable.
- Since the stochastic intensity of a point process can be chosen left-continuous, it is \mathcal{F}_t -predictable.

Causal caching policies

- Consider again a cache system fed by M independent request processes $N_i(t)$ with stochastic intensities $\lambda_i(t)$.
- Let $\mathcal{F}_t = \sigma(\{\mathcal{F}_t^{(i)}: i=1,\ldots,M\})$ their aggregate history.

Definition

A causal caching policy is an \mathcal{F}_t predictable stochastic process

$$\pi(t): \Omega \times \mathbb{R} \to \mathcal{C}$$

i.e. $\pi(t)=\{i_1,\ldots,i_k\}$ (with $k\leqslant C$) is the subset kept at time t, and only depends on the past history of item requests.

The hit process

Stochastic intensity

Focus now on a particular content i, its hit process is the point process given by:

$$H_i(B) = \sum_{n \in \mathbb{Z}} \mathbf{1}_{\{T_n^i \in B\}} \mathbf{1}_{\{i \in \pi(T_n^i)\}} \\ \xrightarrow{\times \bullet \bullet \bullet} \\ \text{hit}$$

Now $\mathbf{1}_{\{i\in\pi(t)\}}$ is \mathcal{F}_t -predictable, so the stochastic intensity of H_i is:

$$h_i(t) = \lambda_i(t) \mathbf{1}_{\{i \in \pi(t)\}}$$

i.e., $h_i(t) = \lambda_i(t)$ while i is cached and otherwise 0.

The hit process

The hit rate

If we now consider the aggregate of requests, the total hit process is given by:

$$H = \sum_{i=1}^{M} H_i$$

And its stochastic intensity is just:

$$h(t) = \sum_{i=1}^{M} h_i(t) = \sum_{i=1}^{M} \lambda_i(t) \mathbf{1}_{\{i \in \pi(t)\}}$$

The steady state hit rate of the policy is:

hit rate
$$= \lambda_{hit} := E[h(t)]$$

Maximizing the hit rate

In order to maximize $\lambda_{\rm hit}$, consider the causal policy:

$$\pi^*(t) = \{i_1, \dots, i_C\} \quad \text{such that } \sum_{i \in \{i_1, \dots, i_C\}} \lambda_i(t) \text{ is maximized.}$$

Then, for any causal policy π and for each realization:

$$h(t) = \sum_{i \in \pi(t)} \lambda_i(t) \leqslant \sum_{i \in \pi^*(t)} \lambda_i(t) = h^*(t).$$

Theorem

The optimal causal policy is to keep in the cache the ${\cal C}$ objects with the highest stochastic intensity at any time.

Back to the Poisson case

- Assume the N_i are Poisson processes of intensities λ_i .
- lacksquare We take $\lambda_1 > \lambda_2 > \dots$ as the popularities.
- \blacksquare The total request process is also Poisson of intensity $\sum_i \lambda_i$.
- In that case, the optimal policy is:

$$\pi^*(t) \equiv \{1, \dots, C\}$$

since $\lambda_i(t) \equiv \lambda_i$ and these are is decreasing.

Back to the Poisson case

- Assume the N_i are Poisson processes of intensities λ_i .
- lacksquare We take $\lambda_1 > \lambda_2 > \dots$ as the popularities.
- \blacksquare The total request process is also Poisson of intensity $\sum_i \lambda_i$.
- In that case, the optimal policy is:

$$\pi^*(t) \equiv \{1, \dots, C\}$$

since $\lambda_i(t) \equiv \lambda_i$ and these are is decreasing.

Conclusion: under Poisson arrivals, statically keeping the most popular objects is optimal (compare to the IRM before).

The renewal case

- If now the N_i are renewal processes of (decreasing) intensities λ_i .
- The total request process is no longer renewal, but its intensity is again $\sum_i \lambda_i$.
- lacksquare Since $\lambda_i(t)=\eta_i(t-T_i^*(t))$, the optimal policy is:
 - \blacksquare Keep track of the current hazard rate of each content i.
 - lacksquare Choose to keep in $\pi^*(t)$ the C highest.

The renewal case

- If now the N_i are renewal processes of (decreasing) intensities λ_i .
- The total request process is no longer renewal, but its intensity is again $\sum_i \lambda_i$.
- Since $\lambda_i(t) = \eta_i(t T_i^*(t))$, the optimal policy is:
 - \blacksquare Keep track of the current hazard rate of each content i.
 - Choose to keep in $\pi^*(t)$ the C highest.

Conclusion: under renewal arrivals, the optimal policy only depends on the current hazard rates since the last request.

An interesting observation

Decreasing hazard rates

- If hazard rates are decreasing, caching makes sense! After an arrival it becomes more likely to get another request.
- After some time, we will evict the content to make room for more recent ones (as in LRU).

An interesting observation

Decreasing hazard rates

- If hazard rates are decreasing, caching makes sense! After an arrival it becomes more likely to get another request.
- After some time, we will evict the content to make room for more recent ones (as in LRU).

Increasing hazard rates

- If instead hazard rates are increasing, then when a request arrives, the item becomes less likely to be requested again!
- It may be better to remove it and make room for other ones (i.e. LRU makes no sense!).
- If we haven't seen it for a while, then we may have to fetch it anticipating the upcoming request.

Outline

The caching problem

Point processes and stochastic intensity

The optimal caching policy

Large scale asymptotics

Conclusions

Understanding the optimal policy

The threshold process

We can rewrite this optimal policy as a threshold policy:

$$i \in \pi^*(t) \Leftrightarrow \lambda_i(t) \geqslant \theta(t) :=$$
 the C largest stochastic intensity

Example: Pareto requests, Zipf popularities, N=20, C=4.

¿What is the large scale behavior of $\theta(t)$ in steady state?.

The threshold value in steady state

- Now we have N independent renewal processes with intensities $\lambda_i(t)$.
- At time t=0, we have a sample $\{X_1,\ldots,X_M\}$ of independent, but **not identically distributed** random variables, with distribution:

$$X_i \sim \eta_i(-T_0^i), \quad -T_0 \sim \hat{F}_i(t)$$

■ The threshold $\theta(0)$ is the C-th order statistic (in decreasing order) of the sample.

Problem: for non iid random variables, no closed form \to Can we say something about the large scale limit?

A useful Theorem

Let $\{X_i\}$ be a sequence of independent random variables with distributions G_i . Define:

$$\hat{G}_M(x) = \frac{1}{M} \sum_{i=1}^{M} \mathbf{1}_{\{X_i \leqslant x\}}$$

the empirical distribution, and let:

$$\bar{G}_M(x) = \frac{1}{M} \sum_{i=1}^{M} G_i(x)$$

Theorem (Shorack)

If the family $\{G_i\}$ is tight, then:

$$||\hat{G}_M - \bar{G}_M||_{\infty} \to 0 \quad \text{almost surely as } M \to \infty.$$

Back to caching...

A little more structure

Assume now that the request processes come from a common scale family, i.e. their inter-arrival distributions satisfy:

$$F_i(t) = F_0(\lambda_i t)$$

where F_0 has mean 1, so F_i has mean $1/\lambda_i$.

Back to caching...

A little more structure

Assume now that the request processes come from a common scale family, i.e. their inter-arrival distributions satisfy:

$$F_i(t) = F_0(\lambda_i t)$$

where F_0 has mean 1, so F_i has mean $1/\lambda_i$.

In this case:

- The distribution of $-T_0^i$ is $\hat{F}_i(t) = \hat{F}_0(\lambda_i t)$.
- The hazard-rate of F_i is $\eta_i(t) = \lambda_i \eta_0(t/\lambda_i)$.
- The random variable $X_i \sim G_i(x) := G_0(x/\lambda_i)$

where $G_0(x) = P(\eta_0(-T_0) \leqslant x)$ is the observed hazard rate distribution for the base process.

The distribution of popularities

Consider now the popularities $\lambda_1>\ldots>\lambda_M$ and define:

$$\phi_M(\lambda) = \frac{1}{M} \sum_{i=1}^{M} \mathbf{1}_{\{\lambda_i \leqslant \lambda\}}$$

their empirical (deterministic) distribution.

The distribution of popularities

Consider now the popularities $\lambda_1 > \ldots > \lambda_M$ and define:

$$\phi_M(\lambda) = \frac{1}{M} \sum_{i=1}^{M} \mathbf{1}_{\{\lambda_i \leqslant \lambda\}}$$

their empirical (deterministic) distribution.

Assumption:

$$\phi_M(\lambda) \to \phi(\lambda)$$
 as $M \to \infty$

where $\phi(\lambda)$ is a probability distribution.

Example: Zipf popularities

- lacksquare A common model for popularities is the Zipf distribution, where $\lambda_i \propto rac{1}{i^eta}.$
- In our framework, take:

$$\lambda_i = \left(\frac{M}{i}\right)^{\beta}$$

Then we can show that:

$$\phi_M(\lambda) \to \phi(\lambda) = \left[1 - \lambda^{-1/\beta}\right] \mathbf{1}_{\{\lambda \geqslant 1\}}$$

Remark: note that $\sum_i \lambda_i$ diverges, so the system is scaling up...

Main result

Theorem (Carrasco,F',Paganini)

Consider a caching system fed by M independent and stationary renewal processes, with intensities $\{\lambda_i\}$, and inter-arrival distributions $F_i(t) = F_0(\lambda_i t)$. Let X_1, \ldots, X_M denote the observed hazard-rates at time 0. Then, under the preceding assumption, the empirical distribution:

$$\hat{G}_M(x) = \frac{1}{M} \sum_{i=1}^M \mathbf{1}_{\{X_i \leqslant x\}} \to_M G_\infty(x) = \int_0^\infty G_0\left(\frac{x}{\lambda}\right) \phi(d\lambda)$$

Proof sketch

■ By Shorack's result:

$$\hat{G}_M(x) = \frac{1}{M} \sum_{i=1}^M \mathbf{1}_{\{X_i \leqslant x\}} \approx \bar{G}_M := \frac{1}{M} \sum_{i=1}^M G_i(x)$$

Note that:

$$\frac{1}{M} \sum_{i=1}^{M} G_i(x) = \sum_{i=1}^{M} G_0\left(\frac{x}{\lambda_i}\right) \frac{1}{M} = \int_0^\infty G_0\left(\frac{x}{\lambda}\right) \phi_M(d\lambda)$$

Use the assumption to show that:

$$\int_0^\infty G_0\left(\frac{x}{\lambda}\right)\phi_M(d\lambda) \to_M \int_0^\infty G_0\left(\frac{x}{\lambda}\right)\phi(d\lambda) = G_\infty(x).$$

A law of large numbers for the threshold

Assume further that the cache has capacity C = cM with 0 < c < 1 is the fraction of the catalog that can be stored.

A law of large numbers for the threshold

Assume further that the cache has capacity C=cM with 0 < c < 1 is the fraction of the catalog that can be stored.

Then, the optimal policy threshold $\theta_M^*(0)$ is the random variable:

$$\theta_M^*: \sum_{i=1}^M \mathbf{1}_{\{X_i \leqslant \theta_M^*\}} = (1-c)M$$

or equivalently θ_M^* is such that $\hat{G}_M(\theta_M^*) = 1 - c$.

A law of large numbers for the threshold

Assume further that the cache has capacity C=cM with 0 < c < 1 is the fraction of the catalog that can be stored.

Then, the optimal policy threshold $\theta_M^*(0)$ is the random variable:

$$\theta_M^*: \sum_{i=1}^M \mathbf{1}_{\{X_i \leqslant \theta_M^*\}} = (1-c)M$$

or equivalently θ_M^* is such that $\hat{G}_M(\theta_M^*)=1-c$.

Corollary

If the cache size scales linearly with the catalog as ${\cal C}_M=cM$, then:

$$\theta_M^* \to \theta^* : G_\infty(\theta^*) = 1 - c$$

So the optimal policy becomes a fixed threshold policy.

Simulation example

N=1000, C=100. Pareto $\alpha=2$ requests, Zipf $\beta=0.5$ popularities.

Asymptotic miss probability

Moreover, we can calculate the asymptotic performance:

Theorem

Under all the above assumptions, the asymptotic miss rate verifies:

$$\lambda_{\mathsf{miss},M} \to_M \int_0^\infty \lambda \tilde{G}_0\left(\frac{\theta^*}{\lambda}\right) \phi(d\lambda) = E\left[\Lambda \tilde{G}_0\left(\frac{\theta^*}{\lambda}\right)\right]$$

where $\Lambda \sim \phi$, and \tilde{G}_0 is the distribution of the hazard-rate prior to an arrival:

$$\tilde{G}_0(x) = \int_0^\infty \mathbf{1}_{\{\eta_0(t) \leqslant x\}} F_0(dt).$$

Outline

The caching problem

Point processes and stochastic intensity

The optimal caching policy

Large scale asymptotics

Conclusions

Final remarks

- The above result characterizes the optimal policy completely in the large-scale scenario.
- For particular distributions of interest (e.g. Pareto requests, Zipf popularities) the threshold can be computed explicitly.
- Once the threshold is computed, we can compute the asymptotic hit probability.
- Therefore, we have a computable absolute performance bound in the limit.

Final remarks

- There is much more to do (students welcome!).
- In particular, in a previous paper we explored timer-based policies.
- Using this result, we can show that the optimal timer-based policy matches the optimal causal policy in the limit, for decreasing hazard-rates.
- For increasing hazard-rates, we have to think about pre-fetching content anticipating future arrivals.

Gracias!

Andres Ferragut

ferragut@ort.edu.uy
aferragu.github.io