What Is Claimed Is:

1	1. A method for using a computer system to solve a global
2	optimization problem specified by a function f and a set of equality constraints,
3	the method comprising:
4	receiving a representation of the function f and the set of equality
5	constraints $q_i(\mathbf{x}) = 0$ $(i=1,,r)$ at the computer system, wherein f is a scalar
6	function of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n);$
7	storing the representation in a memory within the computer system;
8	performing an interval global optimization process to compute guaranteed
9	bounds on a globally minimum value of the function $f(\mathbf{x})$ subject to the set of
10	equality constraints;
11	wherein performing the interval global optimization process involves,
12	applying term consistency to the set of equality constraints
13	over a subbox X, and
14	excluding portions of the subbox \mathbf{X} that can be shown to
15	violate any of the equality constraints.
1	2. The method of claim 1, wherein performing the interval global
2	optimization process involves:
3	preconditioning the set of equality constraints through multiplication by an
4	approximate inverse matrix B to produce a set of preconditioned equality
5	constraints;
6	applying term consistency to the set of preconditioned equality constraints
7	over the subbox X ; and
8	excluding portions of the subbox \mathbf{X} that can be shown to violate any of the
9	preconditioned equality constraints.

6

 $g^{-l}(y);$

- 1 3. The method of claim 1, wherein performing the interval global optimization process involves: 2 3 keeping track of a least upper bound f bar of the function $f(\mathbf{x})$; unconditionally removing from consideration any subbox for which 4 5 $inf(f(\mathbf{x})) > f bar;$ 6 applying term consistency to the inequality $f(\mathbf{x}) \le f$ bar over the subbox \mathbf{X} ; 7 and 8 excluding portions of the subbox X that violate the inequality. 4. The method of claim 1, wherein applying term consistency 1 2 involves: 3 symbolically manipulating an equation within the computer system to 4 solve for a term, $g(x_i)$, thereby producing a modified equation $g(x_i) = h(\mathbf{x})$,
- substituting the subbox **X** into the modified equation to produce the equation $g(X'_i) = h(\mathbf{X});$

wherein the term $g(x_i)$ can be analytically inverted to produce an inverse function

- 9 solving for $X'_{I} = g^{-1}(h(\mathbf{X}))$; and
- intersecting X'_{j} with the interval X_{j} to produce a new subbox \mathbf{X}^{+} ;
- wherein the new subbox \mathbf{X}^+ contains all solutions of the equation within
- 12 the subbox \mathbf{X} , and wherein the size of the new subbox \mathbf{X}^+ is less than or equal to
- 13 the size of the subbox X.
- 1 5. The method of claim 1, wherein performing the interval global 2 optimization process involves:

3	applying box consistency to the set of equality constraints $q_i(\mathbf{x}) = 0$
4	(i=1,,r) over the subbox X ; and
5	excluding portions of the subbox X that violate the set of equality
6	constraints.
1	6 The method of claim 1 wherein performing the interval glo

- 6. The method of claim 1, wherein performing the interval global optimization process involves:
- 3 evaluating a first termination condition;
- 4 wherein the first termination condition is TRUE if a function of the width
- of the subbox **X** is less than a pre-specified value, ε_X , and the absolute value of the
- function, f, over the subbox X is less than a pre-specified value, ε_F ; and
- 7 if the first termination condition is TRUE, terminating further splitting of
- 8 the subbox X.

- 7. The method of claim 1, wherein performing the interval global optimization process involves performing an interval Newton step on the John conditions.
- 8. A computer-readable storage medium storing instructions that
 when executed by a computer system cause the computer system to perform a
 method for using a computer system to solve a global optimization problem
 specified by a function f and a set of equality constraints, the method comprising:
 receiving a representation of the function f and the set of equality
- Teeerving a representation of the function of the die set of equality
- 6 constraints $q_i(\mathbf{x}) = 0$ (i=1,...,r) at the computer system, wherein f is a scalar
- 7 function of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n);$
- 8 storing the representation in a memory within the computer system;

9	performing an interval global optimization process to compute guaranteed
10	bounds on a globally minimum value of the function $f(\mathbf{x})$ subject to the set of
11	equality constraints;
12	wherein performing the interval global optimization process involves,
13	applying term consistency to the set of equality constraints
14	over a subbox X , and
15	excluding portions of the subbox \mathbf{X} that can be shown to
16	violate any of the equality constraints
1	9. The computer-readable storage medium of claim 8, wherein
2	performing the interval global optimization process involves:
3	preconditioning the set of equality constraints through multiplication by an
4	approximate inverse matrix \mathbf{B} to produce a set of preconditioned equality
5	constraints;
6	applying term consistency to the set of preconditioned equality constraints
7	over the subbox X ; and
8	excluding portions of the subbox \mathbf{X} that can be shown to violate any of the
9	preconditioned equality constraints.
1	10. The computer-readable storage medium of claim 8, wherein
2	performing the interval global optimization process involves:
3	keeping track of a least upper bound f_bar of the function $f(\mathbf{x})$;
4	unconditionally removing from consideration any subbox for which
5	$inf(f(\mathbf{x})) > f_bar;$
6	applying term consistency to the inequality $f(\mathbf{x}) \leq f_b ar$ over the subbox \mathbf{X} ;
7	and
8	excluding portions of the subbox X that violate the inequality.
	29

 $v = v \cdot v = e$

1	11. The computer-readable storage medium of claim 8, wherein
2	applying term consistency involves:
3	symbolically manipulating an equation within the computer system to
4	solve for a term, $g(x_j)$, thereby producing a modified equation $g(x_j) = h(\mathbf{x})$,
5	wherein the term $g(x_j)$ can be analytically inverted to produce an inverse function
6	$g^{-l}(y);$
7	substituting the subbox X into the modified equation to produce the
8	equation $g(X'_J) = h(\mathbf{X});$
9	solving for $X'_{j} = g^{-1}(h(\mathbf{X}))$; and
10	intersecting X'_{J} with the interval X_{J} to produce a new subbox \mathbf{X}^{+} ;
11	wherein the new subbox \mathbf{X}^- contains all solutions of the equation within
12	the subbox X , and wherein the size of the new subbox X^+ is less than or equal to
13	the size of the subbox \mathbf{X} .

- 1 12. The computer-readable storage medium of claim 8, wherein 2 performing the interval global optimization process involves:
- applying box consistency to the set of equality constraints $q_i(\mathbf{x}) = 0$
- 4 (i=1,...,r) over the subbox **X**; and
- excluding portions of the subbox **X** that violate the set of equality constraints.
- 1 13. The computer-readable storage medium of claim 8, wherein 2 performing the interval global optimization process involves:
- 3 evaluating a first termination condition;

4	wherein the first termination condition is TRUE if a function of the width
5	of the subbox X is less than a pre-specified value, ε_X , and the absolute value of the
6	function, f, over the subbox X is less than a pre-specified value, ε_F ; and
7	if the first termination condition is TRUE, terminating further splitting of
8	the subbox X .
1	14. The computer-readable storage medium of claim 8, wherein
2	performing the interval global optimization process involves performing an
3	interval Newton step on the John conditions.
1	15. An apparatus that solves a global optimization problem specified
2	by a function f and a set of equality constraints, the apparatus comprising:
3	a receiving mechanism that is configured to receive a representation of the
4	function f and the set of equality constraints $q_i(\mathbf{x}) = 0$ ($i=1,,r$), wherein f is a
5	scalar function of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n);$
6	a memory for storing the representation;
7	an optimizer that is configured to perform an interval global optimization
8	process to compute guaranteed bounds on a globally minimum value of the
9	function $f(\mathbf{x})$ subject to the set of equality constraints;
10	wherein the optimizer is configured to,
11	apply term consistency to the set of equality constraints
12	over a subbox X, and to
13	exclude portions of the subbox X that can be shown to
14	violate any of the equality constraints

The apparatus of claim 15, wherein the optimizer is configured to:

16.

1

6 , 5 e

precondition the set of equality constraints through multiplication by an 2 approximate inverse matrix B to produce a set of preconditioned equality 3 constraints; 4 apply term consistency to the set of preconditioned equality constraints 5 over the subbox X; and to 6 exclude portions of the subbox \boldsymbol{X} that can be shown to violate any of the 7 preconditioned equality constraints. 8 The apparatus of claim 15, wherein the optimizer is configured to: 17. 1 keep track of a least upper bound f bar of the function $f(\mathbf{x})$; 2 unconditionally remove from consideration any subbox for which 3 $inf(f(\mathbf{x})) > f \ bar;$ 4 apply term consistency to the inequality $f(\mathbf{x}) \le f_b ar$ over the subbox \mathbf{X} ; 5 6 and to exclude portions of the subbox X that violate the inequality. 7 The apparatus of claim 15, wherein while applying term 18. 1 2 consistency, the optimizer is configured to: symbolically manipulate an equation to solve for a term, $g(x_i)$, thereby 3 producing a modified equation $g(x_i) = h(\mathbf{x})$, wherein the term $g(x_j)$ can be 4 analytically inverted to produce an inverse function $g^{-1}(y)$; 5 substitute the subbox \mathbf{X} into the modified equation to produce the equation 6 7 $g(X'_I) = h(\mathbf{X});$ solve for $X'_{i} = g^{-1}(h(\mathbf{X}))$; and to 8

intersect X'_i , with the interval X_i to produce a new subbox \mathbf{X}^+ ;

10	wherein the new subbox \mathbf{X}^+ contains all solutions of the equation within
11	the subbox X , and wherein the size of the new subbox X^+ is less than or equal to
12	the size of the subbox \mathbf{X} .
1	19. The apparatus of claim 15, wherein the optimizer is configured to:
2	apply box consistency to the set of equality constraints $q_i(\mathbf{x}) = 0$ $(i=1,,r)$
3	over the subbox X ; and to
4	exclude portions of the subbox \mathbf{X} that violate the set of equality
5	constraints.
1	20. The apparatus of claim 15, wherein the optimizer is configured to:
2	evaluate a first termination condition;
3	wherein the first termination condition is TRUE if a function of the width
4	of the subbox X is less than a pre-specified value, ε_X , and the absolute value of the
5	function, f, over the subbox X is less than a pre-specified value, ε_F ; and to
6	terminate further splitting of the subbox X if the first termination
7	condition is TRUE
1	21. The apparatus of claim 15, wherein the optimizer is configured to

perform an interval Newton step on the John conditions.