Modern Operating System Exercise 4

UNIkeEN

March 16, 2023

Problem 1

Assume the page size is k bytes. So we have $\frac{256M}{k}$ virtual page numbers. The page table has $\frac{256M}{k}$ entries, entry size is 4 bytes, the total size is $4 \times \frac{256M}{k}$ bytes.

The entire table needs to fit well in one page, so we have $4 \times \frac{256M}{k} \le k$, the minimum page size is 32KB.

Problem 2

The allocation situation is shown in the figure below. The allocation order of processes is the same as their arrival order.

Fig. 1. The allocation situation

Using First-Fit algorithm, P4 cannot allocate in the memory, while using Worst-Fit algorithm, P3 and P4 cannot allocate in the memory.

Problem 3

1. FIFO page replacement algorithm

Ref String	1	2	3	4	2	1	5	6	2	1	2	3	7	6	3	2	1	2	3	6
	1	1	1	1	1	1	5	5	5	5	5	3	3	3	3	3	1	1	1	1
		2	2	2	2	2	2	6	6	6	6	6	7	7	7	7	7	7	3	3
			3	3	3	3	3	3	2	2	2	2	2	6	6	6	6	6	6	6
				4	4	4	4	4	4	1	1	1	1	1	1	2	2	2	2	2
Hit/Miss	Μ	М	М	Μ	Н	Н	М	М	М	М	Н	М	Μ	М	Н	М	Μ	Н	Μ	Н

Page Faults: 14, Hit Ratio: 0.3

2. LRU page replacement algorithm

Ref String	1	2	3	4	2	1	5	6	2	1	2	3	7	6	3	2	1	2	3	6
	1	1	1	1	1	1	1	1	1	1	1	1	1	6	6	6	6	6	6	6
		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
			3	3	3	3	5	5	5	5	5	3	3	3	3	3	3	3	3	3
				4	4	4	4	6	6	6	6	6	7	7	7	7	1	1	1	1
Hit/Miss	М	М	Μ	М	Н	Н	Μ	М	Н	Н	Н	М	М	М	Н	Н	М	Н	Н	Н

Page Faults: 10, Hit Ratio: 0.5

3. Second-chance page replacement algorithm

Ref String	1	2	3	4	2	1	5	6	2	1	2	3	7	6	3	2	1	2	3	6
	1	1	1	1	1	1	5	5	5	5	5	3	3	3	3	3	1	1	1	1
		2	2	2	2	2	2	6	6	6	6	6	7	7	7	7	7	7	3	3
			3	3	3	3	3	3	2	2	2	2	2	6	6	6	6	6	6	6
				4	4	4	4	4	4	1	1	1	1	1	1	2	2	2	2	2
Hit/Miss	М	М	М	М	Н	Н	М	М	М	М	Н	М	М	М	Н	М	М	Н	M	Н

Page Faults: 14, Hit Ratio: 0.3

4. OPT page replacement algorithm

Note: The question did not ask for this algorithm. The situation of OPT algorithm was calculated by reading the wrong question before, and it is reserved here.

Ref String	1	2	3	4	2	1	5	6	2	1	2	3	7	6	3	2	1	2	3	6
	1	1	1	1	1	1	1	1	1	1	1	1	7	7	7	7	1	1	1	1
		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
			3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
				4	4	4	5	6	6	6	6	6	6	6	6	6	6	6	6	6
Hit/Miss	Μ	M	M	Μ	Н	Н	M	Μ	Н	Н	Н	Н	M	Н	Н	Н	M	Н	Н	Н

Page Faults: 8, Hit Ratio: 0.6

Problem 4

- 1. Page size is 8KB, page offset address is $\log 8K = 13$ digits. Page number part is 46-13=33 digits. Each page can contain $\frac{8K}{4} = 2^{11}$ page entries. (Up to 11 digit page numbers can be represented) So we need $\frac{33}{11} = 3$ levels.
- 2. 4 memory operations are required (3 for page tables, 1 for the target byte)
- 3. At least, we need 6 pages. (3 for code,data and stack page, and 3 for three levels of page tables).

However, Considering that both the code page and the data page are located at a low address and the stack page is located at a high address, it may be necessary to have different secondary and tertiary page tables pointing to the stack page and the other two pages, so a total of 8 pages are needed. (3 for code, data and stack page, 1 for the first page table, 2×2 for the secondary and tertiary page tables)