Numerical Integration

01. Apply the Trapezoid Rule to the following integrals.

a.
$$\int_{0}^{1} x^{2} dx$$

b.
$$\int_{0}^{1} e^{-x} dx$$

c.
$$\int_{0}^{\pi/4} \cos^{2}(x) dx$$

Find a bound for the error for each of the integrals above.

02. Repeat the problem above using the Midpoint Rule, then using Simpson's Rule.

03. Let a < c < b and f(x) a function defined in [a, b]. Using the degree-two Lagrange polynomial that interpolates f(x) at the nodes $x_1 = a$, $x_2 = c$, $x_3 = b$, derive a three-point quadrature rule $Q_3(f) = w_1 f(x_1) + w_2 f(x_2) + w_3 f(x_3)$ that approximates $\int_a^b f(x) \, \mathrm{d}x.$

04. Given an interval $[a\,,\,b]$, let $h=\frac{b-a}{3},\ x_{_1}=a+h$ and $x_{_2}=a+2\,h$. Derive the 2-point open Newton-Cotes quadrature rule $\int_a^b f(x)\,\mathrm{d}x \approx w_{_1}\,f\big(x_{_1}\big)+w_{_2}\,f\big(x_{_2}\big)=\mathfrak{Q}_2\big(f\big)$. What is the degree of precision of $\mathfrak{Q}_2\big(f\big)$?

05. What is the degree of precision of the quadrature rule

$$\int_0^1 g(x) \, \mathrm{d}x \approx \frac{1}{24} \left(11 \, f(1/5) + f(2/5) + f(3/5) + 11 \, f(4/5) \right) = \mathcal{Q}_4(f)$$

Rewrite the above rule for the integral $\int_{1}^{3} f(t) dt$.

06. Given the table of values

x	1.8	2.0	2.2	2.4	2.6
f(x)	3.12014	4.42569	6.04241	8.03014	10.46675

List all the rules you know that can be applied to approximate $\int_{1.8}^{2.6} f(x) dx$.

07. Write down each of the 3-interval composite rule over [0, 3] for each of the following rules

a. Trapezoid

b. Midpoint

c. Simpson's

- Suppose the Composite Trapezoid Rule is used to approximate the integral $\int_{a}^{1} e^{x^2} dx$.
 - How many intervals are needed to guarantee an error within 10^{-6} ?
 - Repeat the question, assuming the Composite Simpson's Rule is used to approximate $\int_0^1 e^{x^2} dx$.
- Use the 4-interval composite Simpson's rule to approximate the length L of the ellipse

Recall that the ellipse can be parametrized with $\begin{cases} x = 3\cos(t) \\ y = 2\sin(t) \end{cases} 0 \le t \le 2\pi$ Hence the length is given by $L = \int_0^{2\pi} \sqrt{\left(x'\right)^2 + \left(y'\right)^2} \, \mathrm{d}t = 4 \int_0^{\pi/2} \sqrt{4 + 5\sin^2(t)} \, \mathrm{d}t$