Mathematical Proofs

Chapter 1 - Exercise solutions and notes

Section 1:

- 1) Which of the following sentences are statements? Indicate their truth value.
 - a) False
 - b) True
 - c) Not a statement
 - d) Not a statement
 - e) Not a statement
 - f) Not a statement
 - g) Not a statement
- 2) Consider the sets A, B, C and D...
 - a) True, since an integer n can be found for 1 + 3n = 25
 - b) False, since $33 \notin D$
 - c) False, since $22 \in A$
 - d) True, since all prime numbers except 2 are uneven
 - e) True, since Ø has no elements
 - f) False since 53 is a prime thus $53 \in C$
- 3) Which of the following statements are true?
 - a) False, since Ø has no elements
 - b) True since Ø is contained in {Ø}
 - c) True since sets are unordered
 - d) False since * is not equal to the set {Ø}
 - e) True since Ø has no elements
 - f) False since 1 is not a set
- 4) $x(x-1) = 6 \rightarrow x^2 x = 6 : x \in \mathbb{R}$
 - a) $T: \{3, -2\}$
 - b) $F: \{x \in \mathbb{R} : x \neq 3, -2\}$
- 5) $3x 2 > 4 : x \in \mathbb{Z}$
 - a) T: $\{x \in \mathbb{Z} : x > 2\}$
 - b) $F: \{x \in \mathbb{Z} : x \le 2\}$
- 6) $P(A): A \subseteq \{1, 2, 3\} \text{ over } S = P(\{1, 2, 4\})$
 - a) $A \subseteq \{1, 2\}$
 - b) $A \not\supseteq \{4\}$
 - c) $A = \{4\}$

- 7) P(n): n and n + 2 are primes "twin primes"
 - a) $n = \{3, 5, 11, 17, 29, 41, \dots\}$
- 8) $P(n): \frac{n^2+5n+6}{2}$ is even

 - a) $S_1 = \{1, 2, 5\}$ b) $S_2 = \{3, 4, 7\}$
- 9) P(n): n < 6
- 10) P(n) and $Q(n): n \in S = \{2, 4, 6, 8\}$
 - a) $P(n): \frac{n}{2}$ is uneven b) $Q(n): n \in \{2, 8\}$

Section 2: The Negation of a Statement **Exercises**

- 11) State the negation of each statement.
 - a) $\sqrt{2}$ is not a rational number
 - b) 0 is a negative integer
 - c) 111 is not a prime number
- 12) Complete the truth table.

Р	Q	~P	~Q
Т	T	F	F
Т	F	F	T
F	Т	Т	F
F	F	Т	Т

- 13) State the negation of each of the following statements
 - a) The real number r is larger than $\sqrt{2}$
 - b) The absolute value of the real number a is at least 3
 - c) At most one of the triangles angles is 45°
 - d) The area of the circle is less than 9π
 - e) The sides of the triangle are of different lengths
 - f) The point P in the plane lies inside the circle C
- 14) State the negation of each of the following statements
 - a) At most one of my library books is overdue
 - b) None (or both) of my friends misplaced his homework assignment
 - c) Some expected that to happen
 - d) It's often that my instructor teaches that course
 - e) It's not surprising that two students received the same exam score

Section 3: The Disjunction and Conjunction of Statements Notes

$$P \ or \ Q \rightarrow P \lor Q$$

 $P \ and \ Q \rightarrow P \land Q$

Exercises

15) Complete the truth table.

Р	Q	~Q	$P \wedge (\sim Q)$
Т	T	F	F
Т	F	Т	Т
F	Т	F	F
F	F	T	F

16) For the sets A and B, consider the statements...

- a) False
- b) True
- c) False
- d) False
- e) True

17) Let P: 15 is odd and Q: 21 is prime

- a) True
- b) False
- c) False
- d) True

18) $P(A): A \cap \{2, 4, 6\} = \emptyset$ and $Q(A): A \neq \emptyset$

- a) $P(A) \land Q(A) = True \ when \ A \in \{1, 3, 5\}$
- b) $P(A) \lor \sim Q(A)$) = True when $A \in \{1, 3, 5\}$ or $A = \emptyset$
- c) $\sim P(A) \land \sim Q(A) = True \ when \ A = \{\}$

Section 4: The Implication

Notes

Table 1 - Implication truth table

Р	Q	P => Q
True	True	True
True	False	False
False	True	True
False	False	True

- 19) Consider the statements P: 17 is even and Q: 19 is prime. Write each statement in words and indicate whether it is true or false.
 - a) $\sim P$: 17 is odd (True)
 - b) $P \vee Q$: 17 is even or 19 is prime (True 19 is prime)
 - c) $P \wedge Q$: 17 is even and 19 is prime (False 17 is odd)
 - d) $P \Rightarrow Q$: If 17 is even, then 19 is prime (True 19 is prime)
- 20) For statements P and Q, construct a truth table for $(P \Rightarrow Q) \Rightarrow (P)$

P => Q	~P	(P => Q) => (~P)
True	False	False
False	False	True
True	True	True
True	True	True

- 21) Consider the statements $P: \sqrt{2}$ is rational and $Q: \frac{22}{7}$ is rational. Write each of the following statements in words and indicate whether it is true or false.
 - a) $P \Rightarrow Q$: If $\sqrt{2}$ is rational, then $\frac{22}{7}$ is rational (True)
 - b) $Q \Rightarrow P$: If $\frac{22}{7}$ is rational, then $\sqrt{2}$ is rational (False $\sqrt{2}$ is not rational)
 - c) $(\sim P) \Rightarrow (\sim Q)$: If $\sqrt{2}$ is irrational, then $\frac{22}{7}$ is irrational (False $-\frac{22}{7}$ is not irrational)
 - d) $(\sim Q) \Rightarrow (\sim P)$: If $\frac{22}{7}$ is irrational, then $\sqrt{2}$ is irrational (True $\sqrt{2}$ is irrational)
- 22) Consider the statements:

$$P: \sqrt{2}$$
 is rational. $Q: \frac{2}{3}$ is rational. $R: \sqrt{3}$ is rational.

- a) $(P \wedge Q) \Rightarrow R$: If $\sqrt{2}$ and $\frac{2}{3}$ are rational, then $\sqrt{3}$ is rational (True $\sqrt{2}$ is not rational)
- b) $(P \wedge Q) \Rightarrow (\sim R)$: If $\sqrt{2}$ and $\frac{2}{3}$ are rational, then $\sqrt{3}$ is irrational (True $\sqrt{2}$ is not rational)
- c) $((\sim P) \land Q) \Rightarrow R$: If $\sqrt{2}$ is irrational and $\frac{2}{3}$ is rational, then $\sqrt{3}$ is rational (False $\sqrt{3}$ is not rational)
- d) $(P \lor Q) \Rightarrow (\sim R)$: If $\sqrt{2}$ or $\frac{2}{3}$ is rational, then $\sqrt{3}$ is irrational (True $\sqrt{3}$ is irrational)
- 23) Suppose that $\{S_1, S_2\}$ is a partition of a set S and $x \in S$. Which of the following are true?
 - a) If we know that $x \notin S_1$ then x must belong to S_2 . (True)
 - b) It's possible that $x \notin S_1$ and $x \notin S_2$. (False)
 - c) Either $x \notin S_1$ or $x \notin S_2$. (True)
 - d) Either $x \in S_1$ or $x \in S_2$. (True)
 - e) It's possible that $x \in S_1$ and $x \in S_2$. (False)
- 24) Two sets A and B are nonempty disjoint subsets of a set S. If $x \in S$, then which of the following are true?
 - a) It's possible that $x \in A \cap B$. (False A and B are disjoint)
 - b) If x is an element of A, then x can't be an element of B. (True A and B are disjoint)

- c) If x is not an element of A, then x must be an element of B. (False It is possible that $A \cup B \neq S$)
- d) It's possible that $x \notin A$ and $x \notin B$. (True It's possible that $A \cup B \neq S$)
- e) For each nonempty set C, either $x \in A \cap C$ or $x \in B \cap C$. (False It is possible that $A \cup B \neq S$)
- f) For some nonempty set C, both $x \in A \cup C$ and $x \in B \cup C$. (True if C contains x, False otherwise)
- 25) A college student makes the following statement: If I receive an A in both Calculus I and Discrete Mathematics this semester, then I'll take either Calculus II or Computer Programming this summer.

P: A in Calculus I and Discrete Mathematics Q: Takes Calculus II or Computer Programming

- a) P is false and Q is true. (True)
- b) P is true and Q is false. (False)
- c) P is false and Q is true. (True)
- d) P is true and Q is true. (True)
- e) P is false and Q is false. (True)
- 26) A college student makes the following statement: If I don't see my advisor today, then I'll see her tomorrow.

P: Don't see advisor today
Q: See advisor tomorrow

- a) P is true and Q is false. (False)
- b) P is false and Q is true. (True)
- c) P is true and Q is true AND P is false and Q is false. (True)
- d) P is true and Q is false. (False)
- 27) The instructor of a computer science class announces...
 - a) Alice => Ben
 - b) Ben => Cindy
 - c) Cindy => Don
 - d) The two students who attend are Cindy and Don
- 28) Consider the statement (implication): If Bill takes Sam to the concert, then Sam will take Bill to dinner.

P: Bill takes Sam to concert

Q: Sam takes bill to dinner

- a) Q only if P. (False P can be false and Q true and the implication still holds)
- b) Either \sim P or Q. (False The \sim P \wedge Q scenario is also true)
- c) P is true. (False Q doesn't happen)
- d) P is true and Q is true. (True)
- e) P is true and Q is false. (False)
- f) P is false. (True)
- g) P is false. (True)

- 29) Let P and Q be statements. Which of the following implies that $P \vee Q$ is false?
 - a) $(\sim P) \vee (\sim Q)$ is false. (False P or Q can be true)
 - b) $(\sim P) \vee Q$ is true. (False Q can be true)
 - c) $(\sim P) \land (\sim Q)$ is true. (True both P and Q must be false)
 - d) $Q \Rightarrow P$ is true. (False P or Q can be true)
 - e) $P \wedge Q$ is false. (False one of them can be true)

Section 5: More on Implications

Notes

 \mathbb{R} : Real numbers (all real numbers)

 \mathbb{Q} : Rational numbers

 \mathbb{N} : Natural numbers (positive integers, starting from 1) \mathbb{Z} : Integers (positive and negative including 0)

Exercises

- 30) Consider the open sentences P(n): 5n + 3 is prime. And Q(n): 7n + 1 is prime. Both over the domain \mathbb{N} . State in words.
 - a) $P(n) \Rightarrow Q(n)$: If 5n + 3 is prime, then 7n + 1 is prime.
 - b) $P(2) \Rightarrow Q(2)$: If 13 is prime, then 15 is prime. (False 15 is not prime)
 - c) $P(6) \Rightarrow Q(6)$: if 33 is prime, then 43 is prime. (True 33 is not prime)
- 31) In each of the following, two open sentences P(x) and Q(x) over a domain S are given.

Determine all $x \in S$ for which $P(x) \Rightarrow Q(x)$ is a true statement.

- a) P(x): |x| = 4; Q(x): x = 4; $S = \{-4, -3, 1, 4, 5\}$
 - i) $S_{true} = \{-3, 1, 4, 5\}$
- b) $P(x): x^2 = 16; Q(x): |x| = 4; S = \{-6, -4, 0, 3, 4, 8\}$
 - i) $S_{true} = \{-6, -4, 0, 3, 4, 8\}$ aka $true\ for\ all\ x \in S$
- c) $P(x): x > 3; Q(x): 4x 1 > 12; S = \{0, 2, 3, 4, 6\}$
 - i) $S_{true} = \{0, 2, 3, 4, 6\}$ aka true for all $x \in S$
- 32) In each of the following, two open sentences P(x) and Q(x) over a domain S are given.

Determine all $x \in S$ for which $P(x) \Rightarrow Q(x)$ is a true statement.

- a) $P(x): x 3 = 4; Q(x): x \ge 8; S = \mathbb{R}$
 - i) True for $x \neq 7$
- b) $P(x): x^2 \ge 1; Q(x): x \ge 1; S = \mathbb{R}$
 - i) True for x > -1
- c) $P(x): x^2 \ge 1; Q(x): x \ge 1; S = \mathbb{N}$
 - i) True for all $x \in S$
- d) $P(x): x \in [-1, 2]; Q(x): x^2 \le 2; S = [-1, 1]$
 - i) True for all $x \in S$ since Q(x) is true for all $x \in S$
- 33) In each of the following, two open sentences P(x, y) and Q(x, y) are given, where the domain of both x and y is \mathbb{Z} . Determine the truth value of $P(x, y) \Rightarrow Q(x, y)$ for the given values of x and y.
 - a) $P(x,y): x^2 y^2 = 0$; Q(x,y): x = y; $(x,y) \in \{(1,-1), (3,4), (5,5)\}$

- i) True for $(x, y) \in \{(3,4), (5,5)\}$
- b) $P(x,y): |x| = |y|; Q(x,y): x = y; (x,y) \in \{(1,2), (2,-2), (6,6)\}$
 - i) True for $(x, y) \in \{(1,2), (6,6)\}$
- c) $P(x,y): x^2 + y^2 = 1; Q(x,y): x + y = 1; (x,y) \in \{(1,-1), (-3,4), (0,-1), (1,0)\}$
 - i) True for $(x, y) \in \{(1, -1), (-3, 4), (1, 0)\}$
- 34) Each of the following describes an implication. Write the implication in the form "if, then."
 - a) If a point on the straight line is given by 2y + x 3 = 0 and x is an integer, then y an integer.
 - b) If n is odd then n^2 is odd.
 - c) If 3n + 7 is even and $n \in \mathbb{Z}$, then n is odd.
 - d) If f(x) = cosx, then f'(x) = -sinx
 - e) If the circumference of C is 4π , then the area of C is 4π
 - f) If n^3 is even, then n is even.

Section 6: The Biconditional

Notes

$$Biconditional: (P \Rightarrow Q) \land (Q \Rightarrow P) = P \Leftrightarrow Q$$

Р	Q	P => Q	Q => P	$P \Leftrightarrow Q$
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	T	T	F	F
F	F	Т	Т	Т

The biconditional $P \Leftrightarrow Q$ is often stated as: P = Q

- 35) Let P: 18 is odd and Q: 25 is even. State $P \Leftrightarrow Q$ in words. Is $P \Leftrightarrow Q$ true or false?
 - a) 18 is odd if and only if 25 is even.
 - b) True (both are false)
- 36) Let P(x): x is odd and Q(x): x^2 is odd. Be open sentences over the domain \mathbb{Z} . State $P(x) \Leftrightarrow Q(x)$ in two ways: (1) using "if and only if" and (2) using "necessary and sufficient".
 - a) x is odd if and only if x^2 is odd
 - b) x being odd is a necessary and sufficient condition for x^2 being odd
- 37) For the open sentences P(x): |x-3| < 1; Q(x): $x \in \{2,4\}$. Over the domain \mathbb{R} , state the biconditional $P(x) \Leftrightarrow Q(x)$ in two different ways.
 - a) |x-3| < 1 if and only if $x \in \{2,4\}$
 - b) The condition |x-3| < 1 is necessary and sufficient for $x \in \{2,4\}$

- 38) Consider the open sentences: P(x): x = -2; Q(x): $x^2 = 4$ over the domain $S = \{-2, 0, 2\}$. State each of the following in words and determine all values of $x \in S$ for which the resulting statement is true.
 - a) $\sim P(x)$
 - i) $x \neq -2$
 - ii) True for all $x \in \{0, 2\}$
 - b) $P(x) \vee Q(x)$
 - i) $x = -2 \text{ or } x^2 = 4$
 - ii) True for all $x \in \{-2, 2\}$
 - c) $P(x) \wedge Q(x)$
 - i) x = -2 and $x^2 = 4$
 - ii) True for x = -2
 - d) $P(x) \Rightarrow Q(x)$
 - i) If x = -2 then $x^2 = 4$
 - ii) True for all $x \in S$
 - e) $Q(x) \Rightarrow P(x)$
 - i) If $x^2 = 4$ then x = -2
 - ii) True for $x \in \{-2, 0\}$
 - f) $P(x) \Leftrightarrow Q(x)$
 - i) x = -2 if and only if $x^2 = 4$
 - ii) True for all $x \in \{-2, 0\}$
- 39) For the following open sentences P(x) and Q(x) over domain S, determine all values of $x \in S$ for which the biconditional $P(x) \Leftrightarrow Q(x)$ is true.
 - a) P(x): |x| = 4; Q(x): x = 4; $S = \{-4, -3, 1, 4, 5\}$
 - i) True for all $x \in \{-3, 1, 4, 5\}$
 - ii) Alt. notation: True for all $x \in S \{-4\}$
 - b) $P(x): x \ge 3; Q(x): 4x 1 > 12; S = \{0,2,3,4,6\}$
 - i) True for all $x \in \{0, 2, 4, 6\}$
 - ii) Alt. notation: True for all $x \in S \{3\}$
 - c) $P(x): x^2 = 16; Q(x): x^2 4x = 0; S = \{-6, -4, 0, 3, 4, 8\}$
 - i) True for all $x \in \{-6, 3, 4, 8\}$
 - ii) Alt. notation: True for all $x \in S \{-4, 0\}$
- 40) In each of the following, two open sentences P(x,y) and Q(x,y) are given, where the domain of both x and y is \mathbb{Z} . Determine the truth value of $P(x,y) \Leftrightarrow Q(x,y)$ for the given values of x and y.
 - a) $P(x,y): x^2 y^2 = 0; Q(x,y): x = y; (x,y) \in \{(1,-1), (3,4), (5,5)\}$
 - i) True for all $(x, y) \in \{(3,4), (5,5)\}$
 - b) $P(x,y): |x| = |y|; Q(x,y): x = y; (x,y) \in \{(1,2), (2,-2), (6,6)\}$
 - i) True for all $(x, y) \in \{(1,2), (6,6)\}$
 - c) $P(x,y): x^2 + y^2 = 1$; Q(x,y): x + y = 1; $(x,y) \in \{(1,-1), (-3,4), (0,-1), (1,0)\}$
 - i) True for all $(x, y) \in \{(1, -1), (1, 0)\}$

- 41) Determine all values of n in the domain $S = \{1,2,3\}$ for which the following is a true statement: A necessary and sufficient condition for $\frac{n^3+n}{2}$ to be even is that $\frac{n^2+n}{2}$ is odd.
 - - i) $\frac{2}{2}$ is even and $\frac{2}{2}$ is odd. (False)

 - i) $\frac{10}{2}$ is even and $\frac{6}{2}$ is odd. (False) c) n=3
 - - i) $\frac{90}{2}$ is even and $\frac{12}{2}$ is odd (True both are false)
- 42) Determine all values of n in the domain $S = \{2,3,4\}$ for which the following is a true statement: The integer $\frac{n(n-1)}{2}$ is odd if and only if $\frac{n(n+1)}{2}$ is even.
 - a) n = 2
 - i) $\frac{2}{2}$ is odd if and only if $\frac{6}{2}$ is even. (False) b) n = 3

 - i) $\frac{6}{2}$ is odd if and only if $\frac{12}{2}$ is even. (True) c) n=4
 - - i) $\frac{12}{3}$ is odd if and only if $\frac{20}{3}$ is even. (False)
- 43) Let $S = \{1,2,3\}$. Consider the following open sentences over the domain S. Determine three distinct elements a, b, c in S such that...

$$P(n): \frac{(n+4)(n+5)}{2} \text{ is odd}$$

$$Q(n): 2^{n-2} + 3^{n-2} + 6^{n-2} > (2.5)^{n-1}$$

- a) $P(a) \Rightarrow Q(a)$ is false
 - i) P(1) is true and Q(1) is false
 - ii) a = 1
- b) $Q(b) \Rightarrow P(b)$ is false
 - i) P(3) is false and Q(3) is true
 - ii) b = 3
- c) $P(a) \Leftrightarrow Q(a)$ is true
 - i) P(2) is true and Q(2) is true
 - ii) c = 2
- 44) Let $S = \{1,2,3,4\}$. Consider the following open sentences over the domain S. Determine four distinct elements a, b, c, d in S such that...

$$P(n): \frac{n(n-1)}{2}$$
 is even
 $Q(n): 2^{n-2} - (-2)^{n-2}$ is even
 $R(n): 5^{n-1} + 2^n$ is prime

Table 2 - Results of P(n), Q(n) and R(n) given n in $\{1, 2, 3, 4\}$

n	P(n)	Q(n)	R(n)
1	0	1	3
	True	False	True
2	1	0	9
	False	True	False
3	3	4	33
	False	True	False
4	6	0	141
	True	True	False

- a) $P(a) \Rightarrow Q(a)$ is false
 - i) $a \in \{1\} \to a = 1$
- b) $Q(b) \Rightarrow P(b)$ is true
 - i) $b \in \{1, 4\} \rightarrow b = 4$
- c) $P(c) \Leftrightarrow R(c)$ is true
 - i) $c \in \{1, 2, 3\} \rightarrow c = 2$
- d) $Q(d) \Leftrightarrow R(d)$ is false
 - i) $d \in \{1, 2, 3, 4\} \rightarrow d = 3$
- 45) Let P(n): $2^n 1$ is a prime; Q(n): n is a prime. Be open sentences over the domain $S = \{2,3,4,5,6,11\}$. Determine all values of $n \in S$ for which $P(n) \Leftrightarrow Q(n)$ is a true statement.
 - a) $2: 2^2 1$ is a prime if and only if 2 is a prime
 - i) True (both statements are true)
 - b) $3: 2^3 1$ is a prime if and only if 3 is a prime
 - i) True (both statements are true)
 - c) $4:2^4-1$ is a prime if and only if 4 is a prime
 - i) True (both statements are false)
 - d) $5: 2^5 1$ is a prime if and only if 5 is a prime
 - i) True (both statements are true)
 - e) $6: 2^6 1$ is a prime if and only if 6 is a prime
 - i) True (both statements are false)
 - f) $11: 2^{11} 1$ is a prime if and only if 11 is a prime
 - i) False $(2^{11} 1)$ is not a prime but 11 is)
 - g) SUMMARY: True for all $n \in S \{11\}$

Section 7: Tautologies and Contradictions

Notes

Tautology: A compound statement which is always true, e. g. $P \lor \sim P$ Contradiction: A compound statement which is always false, e. g. $P \land \sim P$

Exercises

46) For statements P and Q, show that $P \Rightarrow (P \lor Q)$ is a tautology

Р	Q	$(P \lor Q)$	$P \Rightarrow (P \lor Q)$
Т	T	Т	Т
Т	F	Т	Т
F	Т	Т	Т
F	F	F	Т

47) For statements P and Q, show that $(P \land (\sim Q)) \land (P \land Q)$ is a contradiction

Р	Q	$P \wedge Q$	$P \wedge (\sim Q)$	$(P \land (\sim Q)) \land (P \land Q)$
Т	Т	T	F	F
Т	F	F	Т	F
F	Т	F	F	F
F	F	F	F	F

48) For statements P and Q, show that $(P \land (P \Rightarrow Q)) \Rightarrow Q$ is a tautology. Then state the compound statement in words. (This is an important logical argument form, called **modus ponens.**)

a) If P is true and P implies Q, then Q is true.

Р	Q	$P \Rightarrow Q$	$P \wedge (P \Rightarrow Q)$	$(P \land (P \Rightarrow Q)) \Rightarrow Q$
Т	Т	T	Т	T
Т	F	F	F	Т
F	Т	T	F	Т
F	F	T	F	Т

49) For statements P, Q and R, show that $(P \Rightarrow Q) \land (Q \Rightarrow R) \Rightarrow (P \Rightarrow R)$ is a tautology. Then state this compound statement in words. (This is another important logical argument form, called **syllogism**.)

a) If P implies Q and Q implies R, then P implies R

	a) It implies a and a implies it, then implies it						
Р	Q	R	$(P \Rightarrow Q)$	$(Q \Rightarrow R)$	$(P \Rightarrow Q) \land (Q \Rightarrow R)$	$(P \Rightarrow R)$	$((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow \cdots$
Т	Т	Т	T	T	T	T	Т
Т	Т	F	T	F	F	F	Т
Т	F	Т	F	Т	F	T	Т
Т	F	F	F	T	F	F	Т
F	Т	Т	Т	Т	Т	T	Т
F	Т	F	T	F	F	T	Т
F	F	Т	Т	T	T	T	Т
F	F	F	Т	Т	T	T	Т

50) Let R and S be compound statements involving the same compound statements. If R is a tautology and S is a contradiction, then what can be said of the following?

- a) $R \vee S$ is true, since R is always true
- b) $R \wedge S$ is false, since S is always false
- c) $R \Rightarrow S$ is false, since 'true $\Rightarrow false$ ' is false
- d) $S \Rightarrow R$ is true, since 'false $\Rightarrow true'$ is true

Section 8: Logical Equivalence

Notes

Logical equivalence: $P \Rightarrow Q \equiv (\sim P) \lor Q$

Exercises

51) For statements P and Q, the implication $(\sim P) \Rightarrow (\sim Q)$ is called the inverse of the implication $P \Rightarrow Q$.

a) Use a truth table to show that these statements are not logically equivalent

Р	Q	$P \Rightarrow Q$	$(\sim P) \Rightarrow (\sim Q)$
Т	Т	T	Т
Т	F	F	Т
F	Т	Т	F
F	F	Т	Т

b) Find another implication that is logically equivalent to $(\sim P) \Rightarrow (\sim Q)$ and verify your answer

i)
$$P \lor (\sim Q) \equiv Q \Rightarrow P \equiv (\sim P) \Rightarrow (\sim Q)$$

Р	Q	$(\sim P) \Rightarrow (\sim Q)$	P ∨ (~Q)	$Q \Rightarrow P$
Т	Т	T	T	T
Т	F	T	Т	Т
F	Т	F	F	F
F	F	T	Т	Т

- 52) Let P and Q be statements.
 - a) Is $\sim (P \vee Q)$ logically equivalent to $(\sim P) \vee (\sim Q)$? Explain.
 - i) They are logically equivalent since each statement is only true when both Q and P are false, and true otherwise.
 - b) What can you say about the biconditional $\sim (P \vee Q) \Leftrightarrow ((\sim P) \vee (\sim Q))$?
 - i) The biconditional is a tautology since $\sim (P \vee Q) \equiv ((\sim P) \vee (\sim Q))$
- 53) For statements P, Q and R, use a truth table to show that each of the following pairs of statements is logically equivalent.
 - a) $(P \land Q) \Leftrightarrow P \text{ and } P \Rightarrow Q$

Р	Q	$P \wedge Q$	$(P \land Q) \Leftrightarrow P$	$P \Rightarrow Q$
Т	Т	T	T	T
Т	F	F	F	F
F	Т	F	Т	Т
F	F	F	Т	T

 $P \Rightarrow (Q \lor R) \text{ and } (\sim Q) \Rightarrow ((\sim P) \lor R)$

Р	Q	R	$Q \vee R$	$P \Rightarrow (Q \lor R)$	$(\sim P) \vee R$	$(\sim Q) \Rightarrow ((\sim P) \lor R)$
Т	Т	Т	Т	Т	Т	T
Т	Т	F	T	T	F	T
Т	F	Т	T	T	Т	T
Т	F	F	F	F	F	F
F	Т	Τ	Т	Т	Т	Т
F	Т	F	Т	Т	Т	Т
F	F	Т	T	Т	Т	Т
F	F	F	F	Т	Т	Т

54) For statements P and Q, show that $(\sim Q) \Rightarrow (P \land (\sim P))$ and Q are logically equivalent

Р	Q	$P \wedge (\sim P)$	$(\sim Q) \Rightarrow (P \land (\sim P))$
Т	T	F	T
Т	F	F	F
F	T	F	T
F	F	F	F

55) For statements P, Q and R, show that $(P \lor Q) \Rightarrow R$ and $(P \Rightarrow R) \land (Q \Rightarrow R)$ are logically equivalent

Р	Q	R		$(P \lor Q) \Rightarrow R$	$P \Rightarrow R$	$Q \Rightarrow R$	$(P \Rightarrow R) \land (Q \Rightarrow R)$
Т	Т	Т	T	Т	T	Т	Т
Т	Т	F	T	F	F	F	F
Т	F	Т	T	Т	T	Т	Т
Т	F	F	Т	F	F	Т	F
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	T	F	T	F	F
F	F	Т	F	Т	T	Т	Т
F	F	F	F	Т	T	Т	Т

- 56) Two compound statements S and T are composed of the same component statements P, Q and R. If S and T are not logically equivalent, then what can we conclude from this? a) $S \Leftrightarrow T$ is not a tautology
- 57) Five compound statements S_1 , S_2 , S_3 , S_4 and S_5 are all composed of the same component statements P and Q whose truth tables have identical first and fourth rows. Show that at least two of these five statements are logically equivalent.

S1	S2	S3	S4	S5
Т	Т	T	Т	Т
Т	Т	F	F	Х
Т	F	Т	F	Х
F	F	F	F	F

Section 9: Some Fundamental Properties of Logical Equivalence

Notes

Theorem 18

- (1) Commutative Laws
 - (a) $P \lor Q \equiv Q \lor P$
 - (b) $P \wedge Q \equiv Q \wedge P$
- (2) Associative Laws
 - (a) $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
 - (b) $P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$
- (3) Distributive Laws
 - (a) $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
 - (b) $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$
- (4) De Morgan's Laws
 - (a) $\sim (P \vee Q) \equiv (\sim P) \wedge (\sim Q)$
 - (b) $\sim (P \land Q) \equiv (\sim P) \lor (\sim Q)$

Theorem 21

- (1) For statements P and Q,
 - (a) $\sim (P \Rightarrow Q) \equiv P \land (\sim Q)$
 - (b) $\sim (P \Leftrightarrow Q) \equiv (P \land (\sim Q)) \lor (Q \land (\sim P))$

Exercises

- 58) Verify the following laws stated in Theorem 18:
 - a) Let P, Q and R be statements. Then $P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$
 - i) The first statement is true if P or Q and R, or all three are true. Equivalently statement two is true only if both of the parenthesized statements are true. This requires either P to be true (since a P is in both statements), or Q and R to be true (since there is one of each in the statements). Thus the second statement is also true if P or Q and R, or all three are true.
 - b) Let P and Q be statements. Then $\sim (P \vee Q) \equiv (\sim P) \wedge (\sim Q)$
 - i) The first statement is true only if P and Q are false. We can easily see that this is the case for statement two as well.
- 59) Write negations of the following open sentences.
 - a) Either x=0 or y=o
 - i) Using De Morgan's Law (a): Both $x \neq 0$ and $y \neq 0$
 - b) The integers a and b are both even
 - i) Using De Morgan's Law (b): Either the integer a is odd or the integer b is odd.
- 60) Consider the implication: If x and y are even, then xy is even.
 - a) State the implication using "only if": x and y are even only if xy is even
 - b) State the converse of the implication: xy is even only if x and y are even
 - c) State the implication as a disjunction: x and y are odd or xy is even

Theorem 17:
$$P \Rightarrow Q \equiv (\sim P) \vee Q$$

d) State the negation of the implication as a conjunction: x and y are even and xy is odd

- 61) For a real number x, let P(x): $x^2 = 2$ and Q(x): $x = \sqrt{2}$. State the negation of the biconditional $P \Leftrightarrow Q$ in words.
 - a) Biconditional: $x^2 = 2$ if and only if $x = \sqrt{2}$
 - b) Negation: $\sim (P \Leftrightarrow Q) \equiv (P \land (\sim Q)) \lor (Q \land (\sim P))$, using De Morgan's Law (b)
 - c) Result: Either both $x^2 = 2$ and $x \neq \sqrt{2}$, or both $x = \sqrt{2}$ and $x^2 \neq 2$

62) Let P and Q be statements. Show that $[(P \lor Q) \land \sim (P \land Q)] \equiv \sim (P \Leftrightarrow Q)$

Р	Q	$(P \lor Q)$	$(P \wedge Q)$	$(P \lor Q) \land \sim (P \land Q)$	$\sim (P \Leftrightarrow Q)$
Т	Т	T	Т	F	F
Т	F	Т	F	Т	Т
F	Т	Т	F	Т	Т
F	F	F	F	F	F

- 63) Let $n \in \mathbb{Z}$. For which implication is its negation the following? The integer 3n+4 is odd and 5n-6 is even
 - a) The negated statement has the form $P \wedge Q$
 - i) P: 3n + 4 is odd; Q: 5n 6 is even
 - b) Using Theorem 21 (a): $\sim (P \Rightarrow Q) \equiv P \land (\sim Q)$
 - c) Thus the original implication is: If 3n + 4 is odd, then 5n 6 is odd.
- 64) For which biconditional is its negation the following? n^3 and 7n + 2 are odd or n^3 and 7n + 2 are even
 - a) The negated statement has the form: $(P \land (\sim Q)) \lor (Q \land (\sim P))$
 - i) $P: n^3$ is odd; Q: 7n + 2 is even
 - b) Using Theorem 21 (b): $\sim (P \Leftrightarrow Q) \equiv (P \land (\sim Q)) \lor (Q \land (\sim P))$
 - c) Thus the original biconditional is: n^3 is odd if and only if 7n + 2 is even

Section 10: Quantified Statements

- 65) Let S denote the set of odd integers and let P(x): $x^2 + 1$ is even; Q(x): x^2 is even be open sentences over the domain S. State $\forall x \in S, P(x)$ and $\exists x \in S, Q(x)$ in words.
 - a) For every odd integer x, the integer $x^2 + 1$ is even.
 - b) An odd integer x exists, such that the integer x^2 is even.
- 66) Define an open sentence R(x) over some domain S and then state $\forall x \in S, R(x)$ and $\exists x \in S, R(x)$
 - a) Definitions: R(x): 2x + 1 is prime; S: The set of integers \mathbb{Z}
 - b) $\forall x \in S, R(x)$: For every integer x, the integer 2x + 1 is prime
 - c) $\exists x \in S, R(x)$: For some integer x, the integer 2x + 1 is prime
- 67) State the negations of the following quantified statements, where all sets are subsets of some universal set U.
 - a) $\forall A \in U, A \cap \overline{A} = \emptyset$
 - i) Negation: $\exists A \in U, A \cap \overline{A} \neq \emptyset$

- b) $\exists A \in U, \overline{A} \subseteq A$
 - i) Negation: $\forall A \in U, \overline{A} \nsubseteq A$
- 68) State the negations of the following quantified statements:
 - a) For every rational number r, the number 1/r is rational.
 - i) There exists a rational number r, such that the number 1/e is not rational.
 - b) There exists a rational number r, such that $r^2 = 2$.
 - i) For every rational number $r, r^2 \neq 2$
- 69) Let P(n): $\frac{5n-6}{3}$ is an integer. Be an open sentence over the domain \mathbb{Z} . Determine, with explanations, whether the following statements are true.
 - a) $\forall n \in \mathbb{Z}, P(n)$
 - i) False, since "P(1): $-\frac{1}{3}$ is an integer" is false.
 - b) $\exists n \in \mathbb{Z}, P(n)$
 - i) True, since "P(3): 3 is an integer" is true.
- 70) Determine the truth value of each of the following statements.
 - a) $\exists x \in \mathbb{R}, x^2 x = 0$; True (e.g. $1^2 1 = 0$)
 - b) $\forall n \in \mathbb{N}, n+1 \ge 2$; True (\mathbb{N} is all positive integers ≥ 1 and $1+1 \ge 2$)
 - c) $\forall x \in \mathbb{R}, \sqrt{x^2} = x$; False (False for all negative numbers)
 - d) $\exists x \in \mathbb{Q}, 3x^2 27 = 0$; True (for -3 and 3)
 - e) $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y + 3 = 8$; True (e.g. x = 2 and y = 3)
 - f) $\forall x, y \in \mathbb{R}, x + y + 3 = 8$; False (e.g. $1 + 1 + 3 \neq 8$)
 - g) $\exists x, y \in \mathbb{R}, x^2 + y^2 = 9$; True (e.g. $1^2 + 3^2 = 9$)
 - h) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x^2 + y^2 = 9$; False (e.g. $1^2 + 1^2 \neq 9$)
- 71) The statement: "For every integer m, either $m \le 1$ or $m^2 \ge 4$ " can be expressed using a quantifier as: $\forall m \in \mathbb{Z}, m \le 1$ or $m^2 \ge 4$. Do this for the following two statements.
 - a) There exists integers a and b such that both ab < 0 and a + b > 0.
 - i) $\exists a, b \in \mathbb{Z}, ab < 0 \text{ and } a + b > 0$
 - b) For all real numbers x and y, $x \neq y$ implies that $x^2 + y^2 > 0$.
 - i) $\forall x, y \in \mathbb{R}, (x \neq y) \Rightarrow (x^2 + y^2 > 0)$
 - c) Express in words the negations of the statements in (a) and (b).
 - i) For all integers a and b, either $ab \ge 0$ or $a + b \le 0$. (De Morgan's Law b)
 - ii) Real numbers x and y exists, such that $x \neq y$ and $x^2 + y^2 \leq 0$. (Theorem 21)
 - d) Using quantifiers, express in symbols the negations of the statements in both (a) and (b).
 - i) $\forall a, b \in \mathbb{Z}, ab \geq 0 \text{ or } a + b \leq 0$
 - ii) $\exists x, y \in \mathbb{R}, x \neq y \text{ and } x^2 + y^2 \leq 0$
- 72) Let P(x) and Q(x) be open sentences where the domain of the variable x is S. Which of the following implies that $(\sim P(x)) \Rightarrow Q(x)$ is false for some $x \in S$?
 - a) $P(x) \wedge Q(x)$ is false for all $x \in S$.
 - i) This does not, e.g. P can be true and Q false for all $x \in S$, thus the original statement would never be false.

- b) P(x) is true for all $x \in S$.
 - i) This does not, since the original statement would always be true.
- c) Q(x) is true for all $x \in S$.
 - i) This does not, since the original statement would always be true.
- d) $P(x) \vee Q(x)$ is false for some $x \in S$.
 - i) **This**, since this implies that P and Q will be false at the same time for some $x \in S$, which in turn implies that the original statement will be false for some (since true \Rightarrow false is false).
- e) $P(x) \land (\sim Q(x))$ is false for all $x \in S$.
 - i) This does not, since it just implies that (P, Q) is never (true, false), which means that the original statement is never $false \Rightarrow false$ (which is true for implications).
- 73) Let P(x) and Q(x) be open sentences where the domain of the variable x is T. Which of the following implies that $P(x) \Rightarrow Q(x)$ is true for all $x \in T$?
 - a) $P(x) \land Q(x)$ is false for all $x \in S$.
 - i) This does not, since it is possible that P is true and Q is false.
 - b) Q(x) is true for all $x \in S$.
 - i) **This**, since the implication will always be true.
 - c) P(x) is false for all $x \in S$.
 - i) **This**, since the implication will always be true.
 - d) $P(x) \land (\sim Q(x))$ is true for some $x \in S$.
 - i) This does not (It is the negation of the original implication).
 - e) P(x) is true for all $x \in S$.
 - i) This does not, since Q may be false and thus the original implication is false.
 - f) $(\sim P(x)) \land (\sim Q(x))$ is false for all $x \in S$.
 - i) This does not, since this statement is false even though both P and Q are false.
- 74) Consider the open sentence: P(x, y, z): $(x 1)^2 + (y 2)^2 + (z 2)^2 > 0$. Where the domain of each of the variables x, y and z is \mathbb{R} .
 - a) Express the quantified statement $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \forall z \in \mathbb{R}, P(x, y, z)$ in words.
 - i) For all real numbers x, y and z, $(x-1)^2 + (y-2)^2 + (z-2)^2 > 0$.
 - b) Is the quantified statement in (a) true or false? Explain.
 - i) It is false since P(1,2,2) = 0
 - c) Express the negation of the quantified statement in (a) in symbols.
 - i) $\exists x, y, z \in \mathbb{R}, \sim P(x, y, z)$
 - d) Express the negation of the quantified statement in (a) in word.
 - i) Real numbers x, y and z exists, such that $(x-1)^2 + (y-2)^2 + (z-2)^2 \le 0$
 - e) Is the negation of quantified statement in (a) true or false? Explain.
 - i) It is true since the original statement was false. $(P(1,2,2) \le 0)$
- 75) Consider the quantified statement: For every $s \in S$ and $t \in S$, st 2 is prime. Where the domain $S = \{3,5,11\}$ and P(s,t): st 2 is prime.
 - a) Express this quantified statement in symbols.
 - i) $\forall s, t \in S, P(s, t)$
 - b) Is the quantified statement (a) true or false? Explain.

- i) P(3,3) = P(3,3) = 7 is prime (true)
- ii) P(3,5) = P(5,3) = 13 is prime (true)
- iii) P(3,11) = P(11,3) = 31 is prime (true)
- iv) P(5,11) = P(11,5) = 53 is prime (true)
- v) P(11,11) = P(11,11) = 119 is prime (false)
- vi) In summary: the quantified statement is true for all combinations of s and t except (11,11), thus the statement is false.
- c) Express the negation in symbols.
 - i) $\exists s, t \in S, \sim (P(s, t))$
- d) Express the negation in words.
 - i) Numbers s and t in the domain S exists, such that st 2 is not prime.
- e) Is the negation true or false? Explain.
 - i) It is true since the original is false ("P(11,11) is not prime" is true)
- 76) Let A be the set of circles in the plane with center (0, 0) and let B be the set of circles in the plane with center (1, 1). Furthermore, let $P(C_1, C_2)$: C_1 and C_2 have exactly two points in common. Be an open sentence where the domain of C_1 is A and the domain of C_2 is B.
 - a) Express the following quantified statement in words: $\forall C_1 \in A, \exists C_2 \in B, P(C_1, C_2)$.
 - i) For every circle C_1 in the plane with center (0, 0) there exists some circle C_2 in the plane with center (1, 1), such that C_1 and C_2 have exactly two points in common.
 - b) Express the negation of the statement in symbols.
 - i) $\exists C_1 \in A, \forall C_2 \in B, (\sim P(C_1, C_2))$
 - c) Express the negation in words.
 - i) A circle C_1 in the plane with center (0, 0) exists, such that every circle C_2 in the plane with center (1,1), C_1 and C_2 have exactly two points in common.
- 77) For a triangle T, let r(T) denote the ratio of the length of the longest side of T to the length of the smallest side of T. Let A denote the set of all triangles and let $P(T_1, T_2)$: $r(T_2) \ge r(T_1)$. Be an open sentence where the domain of both T_1 and T_2 is A.
 - a) Express the following quantified statement in words: $\exists T_1 \in A, \forall T_2 \in A, P(T_1, T_2)$
 - i) There exists a triangle T_1 such that for every triangle T_2 , $r(T_2) \ge r(T_1)$.
 - b) Express the negation in symbols.
 - i) $\forall T_1 \in A, \exists T_2 \in A, \sim P(T_1, T_2)$
 - c) Express the negation in words.
 - i) For every triangle T_1 , there exists a triangle T_2 such that $r(T_2) < r(T_1)$.
- 78) Consider the open sentence P(a,b): $\frac{a}{b} < 1$. Where the domain of a is $A = \{2,3,5\}$ and the domain of b is $B = \{2,4,6\}$.
 - a) State the quantified statement: $\forall a \in A, \exists b \in B, P(a, b)$. In words.
 - i) For every integer a in A, there exists an integer b in B such that a/b < 1.
 - b) Show the statement is true.
 - i) For a=2: P(2,4) is less than 1
 - ii) For a=3: P(3,4) is less than 1
 - iii) For a=5: P(5,6) is less than 1
 - iv) Thus a number b exists for every a, such that the statement is true.

- 79) Consider the open sentence Q(a,b): a-b < 0, where the domain of a is $A = \{3,5,8\}$ and the domain of b is $B = \{3,6,10\}$.
 - a) State the quantified statement $\exists b \in B, \forall a \in A, Q(a, b)$ in words.
 - i) There exists an integer b in B such that for every integer a in A, a-b<0.
 - b) Show the quantified statement (a) is true.
 - i) When b is 10, the statement is true for all values of a. Thus b in B can be indeed be found to make the statement true for all a's.
 - ii) 3-10=-7; 5-10=-5; 8-10=-2