Thesis: Sixth meeting All models completed (almost) and Model Assessment

Georgy Gomon

October 29, 2021

Models so far

- In order to compare all models using model assessment all models were rewritten into similar form.
- All models (except for some type 3 models) are implemented

Models

00000000

No association

$$i = 1, ..., N$$
; $j = 1, ..., n$

$$\begin{cases} y_{i,j}^{1} = (\beta_{0}^{1} + u_{0,i}^{1}) + \beta_{x}^{1} \cdot x_{i} + (\beta_{t}^{1} + u_{t,i}^{1}) \cdot Period_{i,j} + \epsilon_{i,j}^{1} \\ y_{i,j}^{2} = (\beta_{0}^{2} + u_{0,i}^{2}) + \beta_{x}^{2} \cdot x_{i} + (\beta_{t}^{2} + u_{t,i}^{2}) \cdot Period_{i,j} + \epsilon_{i,j}^{2} \end{cases}$$

with

$$\begin{bmatrix} u_{0,i}^1 \\ u_{t,i}^1 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{1,0}^2 & \sigma_{1,(0,t)} \\ \sigma_{1,(t,0)} & \sigma_{1,t}^2 \end{pmatrix} \end{bmatrix}; \quad \begin{bmatrix} u_{0,i}^2 \\ u_{t,i}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{2,0}^2 & \sigma_{2,(0,t)} \\ \sigma_{2,(t,0)} & \sigma_{2,t}^2 \end{pmatrix} \end{bmatrix}$$

$$egin{bmatrix} egin{pmatrix} egin{pmatrix} elde{\epsilon}_i^1 \ eta_i^2 \end{bmatrix} \sim \mathcal{N}_{2j}(oldsymbol{0}, oldsymbol{\mathsf{I}}_{2j})$$

Georgy Gomon

Model 1A

Association via residual errors

$$i = 1, ..., N; j = 1, 2$$

$$\begin{cases} y_{i,j}^1 = \beta_0^1 + \beta_x^1 \cdot x_i + \beta_t^1 \cdot Period_{i,j} + \epsilon_{i,j}^1 \\ y_{i,j}^2 = \beta_0^2 + \beta_x^2 \cdot x_i + \beta_t^2 \cdot Period_{i,j} + \epsilon_{i,j}^2 \end{cases}$$

$$\begin{bmatrix} \epsilon_{i,1}^1 \\ \epsilon_{i,2}^1 \\ \epsilon_{i,1}^2 \\ \epsilon_{i,2}^2 \\ \epsilon_{i,2}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{1,1}^2 & \dots & \dots & \dots \\ \dots & \sigma_{1,2}^2 & \dots & \dots \\ \dots & \dots & \sigma_{2,1}^2 & \dots \\ \dots & \dots & \dots & \sigma_{2,2}^2 \end{pmatrix} \end{bmatrix}$$

Model 2A

Random Intercept only

$$i = 1, ..., N; j = 1, ..., n$$

$$\begin{cases} y_{i,j}^{1} = (\beta_{0}^{1} + u_{0,i}^{1}) + \beta_{x}^{1} \cdot x_{i} + \beta_{t}^{1} \cdot Period_{i,j} + \epsilon_{i,j}^{1} \\ y_{i,j}^{2} = (\beta_{0}^{2} + u_{0,i}^{2}) + \beta_{x}^{2} \cdot x_{i} + \beta_{t}^{2} \cdot Period_{i,j} + \epsilon_{i,j}^{2} \end{cases}$$

$$egin{bmatrix} u_{0,i}^1 \ u_{0,i}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{1,0}^2 & \sigma_{(1,2),0} \ \sigma_{(2,1),0} & \sigma_{2,0}^2 \end{pmatrix} \end{bmatrix}; \qquad egin{bmatrix} oldsymbol{\epsilon}_i^1 \ oldsymbol{\epsilon}_i^2 \end{bmatrix} \sim \mathcal{N}_{2j}(\mathbf{0}, \mathbf{I}_{2j}) \end{split}$$

Model 2B

Models

000000000

Random Intercept & correlated residuals

$$i = 1, ..., N; i = 1, 2$$

$$\begin{cases} y_{i,j}^1 = (\beta_0^1 + u_{0,i}^1) + \beta_x^1 \cdot x_i + \beta_t^1 \cdot Period_{i,j} + \epsilon_{i,j}^1 \\ y_{i,j}^2 = (\beta_0^2 + u_{0,i}^2) + \beta_x^2 \cdot x_i + \beta_t^2 \cdot Period_{i,j} + \epsilon_{i,j}^2 \end{cases}$$

$$\begin{bmatrix} u_{0,i}^1 \\ u_{2}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{1,0}^2 & \sigma_{(1,2),0} \\ \sigma_{(0,1)}^2 & \sigma_{2}^2 \end{pmatrix} \end{bmatrix};$$

$$\begin{bmatrix} u_{0,i}^1 \\ u_{0,i}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{1,0}^2 & \sigma_{(1,2),0} \\ \sigma_{(2,1),0} & \sigma_{2,0}^2 \end{pmatrix} \end{bmatrix}; \qquad \begin{bmatrix} \epsilon_{i,1}^1 \\ \epsilon_{i,2}^1 \\ \epsilon_{i,1}^2 \\ \epsilon_{i,2}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{1,1}^2 & \dots & \dots & \dots \\ \dots & \sigma_{1,2}^2 & \dots & \dots \\ \dots & \dots & \sigma_{2,1}^2 & \dots \\ \dots & \dots & \dots & \sigma_{2,2}^2 \end{pmatrix} \end{bmatrix}$$

Model 2C1

Models

000000000

Random Slope & Intercept: Independent

$$i = 1, ..., N; j = 1, ..., n$$

$$\begin{cases} y_{i,j}^{1} = (\beta_{0}^{1} + u_{0,i}^{1}) + \beta_{x}^{1} \cdot x_{i} + (\beta_{t}^{1} + u_{t,i}^{1}) \cdot Period_{i,j} + \epsilon_{i,j}^{1} \\ y_{i,j}^{2} = (\beta_{0}^{2} + u_{0,i}^{2}) + \beta_{x}^{2} \cdot x_{i} + (\beta_{t}^{2} + u_{t,i}^{2}) \cdot Period_{i,j} + \epsilon_{i,j}^{2} \end{cases}$$

with

$$\begin{bmatrix} u_{0,i}^1 \\ u_{0,i}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{1,0}^2 & \sigma_{(1,2),0} \\ \sigma_{(2,1),0} & \sigma_{2,0}^2 \end{pmatrix} \end{bmatrix}; \quad \begin{bmatrix} u_{t,i}^1 \\ u_{t,i}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{1,t}^2 & \sigma_{(1,2),t} \\ \sigma_{(2,1),t} & \sigma_{2,t}^2 \end{pmatrix} \end{bmatrix}$$

$$egin{bmatrix} egin{pmatrix} egin{pmatrix} egin{pmatrix} eta_i^1 \ oldsymbol{\epsilon}_i^2 \end{bmatrix} \sim \mathcal{N}_{2j}(oldsymbol{0}, oldsymbol{\mathsf{I}}_{2j}) \end{split}$$

Georgy Gomon

Model 2C2

Models

000000000

Random Slope & Intercept: Dependent

$$i = 1, ..., N; j = 1, ..., n$$

$$\begin{cases} y_{i,j}^{1} = (\beta_{0}^{1} + u_{0,i}^{1}) + \beta_{x}^{1} \cdot x_{i} + (\beta_{t}^{1} + u_{t,i}^{1}) \cdot Period_{i,j} + \epsilon_{i,j}^{1} \\ y_{i,j}^{2} = (\beta_{0}^{2} + u_{0,i}^{2}) + \beta_{x}^{2} \cdot x_{i} + (\beta_{t}^{2} + u_{t,i}^{2}) \cdot Period_{i,j} + \epsilon_{i,j}^{2} \end{cases}$$

with

$$\begin{bmatrix} u_{0,i}^1 \\ u_{0,i}^2 \\ u_{t,i}^1 \\ u_{t,i}^2 \\ u_{t,i}^2 \end{bmatrix} \sim \mathcal{N}_4 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{1,0}^2 & \cdots & \cdots & \cdots \\ \cdots & \sigma_{1,t}^2 & \cdots & \cdots \\ \cdots & \cdots & \sigma_{2,0}^2 & \cdots \\ \cdots & \cdots & \cdots & \sigma_{2,2}^2 \end{pmatrix} \end{bmatrix}; \qquad \begin{bmatrix} \boldsymbol{\epsilon}_i^1 \\ \boldsymbol{\epsilon}_i^2 \end{bmatrix} \sim \mathcal{N}_{2j}(\mathbf{0}, \mathbf{I}_{2j})$$

Georgy Gomon

Model 3A1

Models

000000000

Y_1 scaled entirely with independent Slope & Intercept

$$i = 1, ..., N; j = 1, ..., n$$

$$\begin{cases} m_{ij} = (\beta_0^1 + u_{0,i}^1) + \beta_x^1 \cdot x_i + (\beta_t^1 + u_{t,i}^1) \cdot Period_{i,j} \\ y_{i,j}^1 = m_{ij} + \epsilon_{i,j}^1 \\ y_{i,j}^2 = \gamma \cdot m_{ij} + (\beta_0^2 + u_{0,i}^2) + \beta_x^2 \cdot x_i + (\beta_t^2 + u_{t,i}^2) \cdot Period_{i,j} + \epsilon_{i,j}^2 \end{cases}$$

with

$$egin{aligned} u_{0,i}^1 &\sim \mathcal{N}(0,\sigma_{1,0}^2); \quad u_{t,i}^1 &\sim \mathcal{N}(0,\sigma_{1,t}^2); \quad \begin{bmatrix} u_{0,i}^2 \\ u_{t,i}^2 \end{bmatrix} &\sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{2,0}^2 & \sigma_{2,(0,t)} \\ \sigma_{2,(t,0)} & \sigma_{2,t}^2 \end{pmatrix} \end{bmatrix}; \\ \begin{bmatrix} \boldsymbol{\epsilon}_i^1 \\ \boldsymbol{\epsilon}_i^2 \end{bmatrix} &\sim \mathcal{N}_{2j}(\mathbf{0},\mathbf{I}_{2j}) \end{aligned}$$

Georgy Gomon

Model 3B1

Models

00000000

Random Y_1 -effects scaled independently; independent Slope & Intercept

$$i = 1, ..., N; j = 1, .., n$$

$$\begin{cases} y_{i,j}^{1} = (\beta_{0}^{1} + u_{0,i}^{1}) + \beta_{x}^{1} \cdot x_{i} + (\beta_{t}^{1} + u_{t,i}^{1}) \cdot Period_{i,j} + \epsilon_{i,j}^{1} \\ y_{i,j}^{2} = \gamma_{1} \cdot u_{0,i}^{1} + \gamma_{2} \cdot u_{t,i}^{1} + (\beta_{0}^{2} + u_{0,i}^{2}) + \beta_{x}^{2} \cdot x_{i} + (\beta_{t}^{2} + u_{t,i}^{2}) \cdot Period_{i,j} + \epsilon_{i,j}^{2} \end{cases}$$

with

$$u_{0,i}^1 \sim \mathcal{N}(0, \sigma_{1,0}^2); \quad u_{t,i}^1 \sim \mathcal{N}(0, \sigma_{1,t}^2); \quad \begin{bmatrix} u_{0,i}^2 \\ u_{t,i}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{2,0}^2 & \sigma_{2,(0,t)} \\ \sigma_{2,(t,0)} & \sigma_{2,t}^2 \end{pmatrix} \end{bmatrix};$$

$$egin{bmatrix} egin{bmatrix} \epsilon_i^1 \ \epsilon_i^2 \end{bmatrix} \sim \mathcal{N}_{2j}(\mathbf{0}, \mathbf{I}_{2j})$$

Georgy Gomon

Marginal Assessment methods in INLA

- Within INLA the following Model assessment criteria exist:
 - MLIK (Marginal Likelihood)
 - ▶ DIC (Deviance Information Criterion)
 - WAIC (Watanabe-Akaike Information Criterion)
 - CPO (Conditional Predictive Ordinates)
 - ► PIT (Predictive Integral Transform)

Marginal Likelihood $\pi(y)$

Models

- Probability of observed data under given model
- In INLA approximated as:

$$\widetilde{\pi}(y) = \int \frac{\pi(\theta, x, y)}{\widetilde{\pi}_{G}(x|\theta, y)}|_{x=x^{*}(\theta)} d\theta$$

- When considering set of M models $\{\mathcal{M}_m\}_{m=1}^M$, the marginal likelihoods are $\pi(y|\mathcal{M}_m)$.
- Posterior can be computed via model priors: $\pi(\mathcal{M}_m|y) \propto \pi(y|\mathcal{M}_m)\pi(\mathcal{M}_m)$
- Can be used to compute Bayes factor for models \mathcal{M}_1 and \mathcal{M}_2 :

$$\frac{\pi(\mathcal{M}_1|y)}{\pi(\mathcal{M}_2|y)} = \frac{\pi(y|\mathcal{M}_1)\pi(\mathcal{M}_1)}{\pi(y|\mathcal{M}_2)\pi(\mathcal{M}_2)}$$

DIC & WAIC

- DIC
 - ► Given by:

$$DIC = D(\hat{x}, \hat{\theta}) + 2p_D$$

- ▶ Takes into account goodness of fit $(D(\hat{x}, \hat{\theta}))$ and penalty for number of parameters $(2p_D)$.
- \triangleright D is the deviance with \hat{x} the posterior mean and $\hat{\theta}$ the posterior mode (might be skewed).
- WAIC is similar to DIC but p_D is calculated differently

CPO (Conditional Predictive Ordinates)

• Computed for each observation as:

$$CPO_i = \pi(y_i|y_{-i})$$

- Posterior probability of observing y_i when model is fit without y_i .
- Low value may indicate outlier
- Summarized over all data as:

$$CPO = -\sum_{i=1}^{N} ln(CPO_i)$$

PIT (Predictive Integral Transform)

• Computed for each observation as:

$$PIT_i = \pi(y_i^{new} \leq y_i|y_{-i})$$

- Measures probability for new observation y_i^{new} to be lower than y_i given all observations except for y_i .
- ullet For a good model the PIT's should be approximately uniformly distributed on [0,1]

Simulations

- Data was generated from each of the 8(6) models. In total 8(6) datasets were generated.
- Each dataset was fit by every model 8(6) (only in INLA). The coefficients and Model Assessment criteria were recorded.
- This was done 2 times:
 - 0 N = 750, n = 2. All models participated
 - N = 500, n = 4. Models 1A and 2B did not participate.
 - * They model association via an unstructured variance-covariance matrix for the residual errors, which can only be modelled in INLA for n = 2.

Simulation 2

$$N = 500$$
, $n = 4$
Models 0, 2A, 2C1, 2C2, 3A1, 3B1

Simulation 2: Models 0 & 2A

\$Mode1_0\$	Mode ¹	l_0_df					
	true	Model_0	Model_2A	Model_2C1	Model_2C2	Model_3A1	
beta_0^1	2.0	2.129866	2.127995	2.129451	2.129671	2.113251	2.129382
beta_x^1	4.0	4.015218	3.986687	4.008675	4.012158	4.008108	4.007623
beta_t^1	2.5	2.599241	2.600256	2.599472	2.599348	2.594592	2.599510
beta_0^2	3.0	3.112763	3.119732	3.111930	3.112714	3.110197	3.112676
beta_x^2	1.5	1.520176	1.629831	1.507061	1.519394	1.515059	1.518827
beta_t^2	3.5	3.684672	3.680893	3.685136	3.684700	3.681410	3.684719
MLIK		-8381.279613			-8421.715350		
DIC	NA	12865.935243		12862.875267			
WAIC	NA	12843.868420	19877.082468	12803.035691			12823.729900
CPO	NA		9977.461558	6828.089741	6773.182060	6799.374018	6802.389827
\$Model_2A	\\$Mod						
	true		Model_2A	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0		2.097733	2.097734	2.097732	2.090256	2.097732
beta_x^1	4.0		4.000894	4.001353	4.000890	4.000405	4.000966
beta_t^1	2.5		2.480513	2.480512	2.480513	2.480947	2.480513
beta_0^2	3.0		2.954938	2.954935	2.954935	2.952751	2.954934
beta_x^2	1.5	1.453171	1.456217	1.455051	1.455108	1.440928	1.454644
beta_t^2	3.5	3.474924	3.474920	3.474921	3.474922	3.468346	3.474922
MLIK		-6897.256372					
DIC			12143.023504				
WAIC		12147.357605					
CPO	NA	6156.133611	6131.611256	6147.268539	6146.035832	6140.935794	6140.782805

Simulation 2: Models 2C1 & 2C2

\$Mode1_2C	1\$Mod	del_2C1_df					
	true	Model_0	Model_2A	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	2.097733	2.097618	2.097731	2.097731	2.089620	2.097734
beta_x^1	4.0	4.002780	3.980313	4.000695	4.000915	4.001743	4.001821
beta_t^1	2.5	2.399231	2.399276	2.399225	2.399224	2.391553	2.399231
beta_0^2	3.0	2.954909	2.954914	2.954923	2.954922	2.950497	2.954916
beta_x^2	1.5	1.448278	1.472289	1.451368	1.451349	1.437566	1.449916
beta_t^2	3.5	3.323889	3.323887	3.323878	3.323878	3.317111	3.323887
MLIK		-8406.869297					
DIC	NA	12922.015663	19776.053749	12895.802346	12909.911187	12918.496001	12904.086970
WAIC	NA	12871.429198		12848.019719			12853.248810
CPO	NA	6843.523154	9941.981285	6819.326053	6821.665613	6838.080212	6830.165684
\$Mode1_2c	2\$Mo	del_2c2_df					
	true	Model_0	Model_2A	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	2.097729	2.097649	2.097733	2.097724	2.088923	2.097735
beta_x^1	4.0	4.003316	3.996762	4.001333	4.002722	4.001716	
beta_t^1	2.5	2.457149	2.457178	2.457145	2.457143	2.449463	2.457155
beta_0^2	3.0	2.954909	2.954935	2.954923	2.954924	2.942093	2.954916
beta_x^2	1.5	1.448775	1.481918	1.451457	1.451896	1.420161	1.450891
beta_t^2	3.5	3.370851	3.370839	3.370842	3.370836	3.352603	3.370846
MLIK	NA	-8378.421490	-10554.654633	-8373.751226	-8345.385805	-8460.479877	-8435.561154
DIC	NA	12848.046465		12828.597370			
WAIC	NA	12808.011012		12766.348677			
CPO	NA	6764.142319	9961.687452	6783.885676	6731.922986	6784.445274	6780.338331

Simulation 2: Models 3A1 & 3B1

\$Model_3A	1\$Mo	del_3A1_df					
	true	Model_0	Model_2A	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	2.097735	2.097606	2.097727	2.097727	2.089939	
beta_x^1	4.0	4.003397	3.980725	4.002853	4.003129	4.002232	4.003454
beta_t^1	2.5	2.441049	2.441096	2.441041	2.441040	2.433857	2.441050
beta_0^2	3.0	2.982998	2.982961		2.982988		
beta_x^2	1.5	1.455043	1.476305	1.452601	1.452923	1.453170	
beta_t^2	3.5	3.306117	3.306132		3.306113	3.304296	
MLIK		-8485.784612					
DIC		12915.629262		12874.087816			
WAIC	NA	12866.076356		12815.501148			
CPO	NA	6832.886151	10143.175916	6817.070009	6798.283022	6831.933536	6803.806640
\$Mode1_3B	1\$Mod	lel_3B1_df					
	true	Model_0	Model_2A	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	2.097735	2.097585	2.097724	2.097751	2.089780	2.097729
beta_x^1	4.0	4.003409	3.983855	4.001807	4.014631	4.002131	4.003408
beta_t^1	2.5	2.441049	2.441091	2.441027	2.441008	2.434081	2.441052
beta_0^2	3.0	2.982996	2.982820	2.982996	2.982976	2.979989	2.982981
beta_x^2	1.5	1.454259	1.456724	1.452645	1.451898	1.447676	1.451559
beta_t^2	3.5	3.276508	3.276577	3.276500	3.276479	3.275273	3.276509
MLIK			-11115.931909				
DIC	NA	12933.011639	21187.604996	12861.907384	13414.745128	12926.460545	12896.425117
WAIC	NA	12880.063870		12804.146016	13366.191114	12870.271504	12848.227873
CPO	NA	6856.409569	10639.158957	6801.257805	6954.081126	6857.957757	6816.796811

00000

Simulation 1

N = 750, *n* = 2 Models 0, 1A, 2A, 2B, 2C1, 2C2, 3A1, 3B1

00000

22 / 57

Simulation 1: Models 0 & 1A

\$Model_0	\$Mode	1_0_df							
	true	Model_0	Model_1A	Model_2A	Model_2B	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	2.062555	2.062551	2.062406	2.062524	2.062554	2.062547	2.058499	2.062551
beta_x^1	4.0	3.994878	3.995314	4.013629	3.998129	3.994915	3.995740	3.994106	3.995384
beta_t^1	2.5		2.529896	2.530182	2.529940	2.529890			
beta_0^2	3.0	3.138011	3.138012	3.138134	3.138012	3.138044	3.138011		
beta_x^2	1.5	1.481725	1.481527	1.466400	1.481810	1.477839	1.481640	1.484109	
beta_t^2	3.5	3.529583	3.529580	3.529364	3.529584	3.529526			
MLIK		-6473.577169		-6758.467139	-6540.734366		-6423.443748		
DIC		11061.126033			-33486.369217	-18794.330685			
WAIC	NA	10978.342196	-34406.926848				11053.801535	-14225.961044	
CPO	NA	5962.388187	-14505.925676	6361.865738	-14505.925265	-6297.703708	5961.902173	-4414.884958	107.657495
\$Model_1	A\$Mod	lel_1A_df							
	true	e Model_0	Model_1A	Model_2A	Model_2B	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1						1.947919	1.947934	1.940167	1.947929
beta_x^1	4.0	4.032881	4.038846	4.035294	4.033802	4.038607	4.033792	4.034340	4.035810
beta_t^1				2.545502			2.545506	2.543746	2.545504
beta_0^2					3.041801		3.041804	3.046431	3.041805
beta_x^2				1.514392			1.514896	1.520036	1.515016
beta_t^2					3.449956		3.449953	3.453001	3.449949
MLIK		-6413.163102		-6379.644607					6398.109654
DIC	N/	12276.846445	-33486.368549					12271.401998 1	.2286.438357
WAIC	N/	12308.244717			-34406.926257				.2315.622331
CPO	N.A	6247.565414	-14505.919316	6202.012515	-14505.923884	6153.812560	6009.408817	6197.178540	6202.414744

00000

Simulation 1: Models 2A & 2B

\$Model_2A	₹Mod	el_2A_df							
	true	Model_0	Model_1A	Model_2A	Model_2B	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	1.955696	1.955707	1.955709	1.955706	1.955706	1.955708	1.950829	1.955707
beta_x^1	4.0	4.020166	4.017974	4.017217	4.017997	4.017823	4.017529	4.016688	4.017643
beta_t^1	2.5	2.531249	2.531243	2.531240	2.531243	2.531242	2.531241	2.530182	2.531242
beta_0^2	3.0	2.980848	2.980857	2.980860	2.980857	2.980860	2.980859	2.967714	2.980859
beta_x^2	1.5	1.519238	1.517028	1.516225	1.516982	1.516246	1.516328	1.486431	1.516397
beta_t^2	3.5	3.475404	3.475399	3.475396	3.475398	3.475396	3.475396	3.456185	3.475396
MLIK	NA	-5623.561814	-5619.900372	-5587.065983	-5480.472438	-5590.733690	-5603.848759	-5633.463099	-5605.276716
DIC	NA	9620.788523	-33486.369651	9784.697084	-33486.369667	9654.370843	9731.584817	9705.418215	9684.344051
WAIC	NA	9637.660147	-34406.927145	9802.080993	-34406.927165	9661.558879	9736.742625	9690.361150	9687.131617
CPO	NA	5083.410842	-14505.927214	5058.243902	-14505.927262	5061.136981	5061.755725	5060.561054	5060.202948
\$Mode1_2E	\$Mod	e1_2B_df							
	true	Model_0	Model_1A	Model_2A	Model_2B	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	1.926926	1.926926	1.926934	1.926926	1.926917	1.926926	1.919334	1.926931
beta_x^1	4.0	4.034246	4.035865	4.033621	4.035664	4.038539	4.035717	4.031976	4.034335
beta_t^1	2.5	2.545501	2.545511	2.545497	2.545511	2.545515	2.545511	2.540654	2.545500
beta_0^2	3.0	3.006339	3.006346	3.006360	3.006346	3.006361	3.006348	3.000786	3.006358
beta_x^2	1.5	1.514451	1.513085	1.509271	1.513016	1.508440	1.512585	1.492554	1.510016
beta_t^2	3.5	3.449947	3.449948	3.449933	3.449948	3.449932	3.449947	3.438864	3.449935
MLIK	NA	-6849.963356	-6811.244393	-6819.210427	-6684.695111	-6806.489301	-6771.620631	-6864.370687	-6840.018325
DIC	NA	12610.671284	-33486.368685	12681.946793	-33486.368694	12285.088363	11899.246840	12648.105376	12652.690583
WAIC	NA	12637.450311	-34406.926271	12710.735544	-34406.926280	12257.484441	11839.618817	12680.988466	12676.876908
CPO	NA	6487.543230	-14505.924018	6463.083064	-14505.923997	6381.703660	6307.621430	6465.126718	6464.026157

Simulations

00000

Simulation 1: Models 2C1 & 2C2

\$Mode1_20	1\$Mo	del_2C1_df							
	true	Model_0	Model_1A	Model_2A	Model_2B	Model_2C1	Model_2C2	Model_3A1	Model_3B1
beta_0^1	2.0	1.955868	1.955875	1.955943	1.955877	1.955878	1.955873	1.951153	1.955865
beta_x^1	4.0		3.964373	3.942856	3.963773		3.965017	3.943641	3.967733
beta_t^1	2.5	2.607244	2.607234	2.607184	2.607232	2.607232	2.607236	2.603580	2.607248
beta_0^2	3.0		2.980922	2.980967	2.980924			2.981361	2.980937
beta_x^2	1.5	1.486335	1.496275	1.482183	1.495729	1.494285	1.495670	1.483777	1.491427
beta_t^2	3.5		3.415976	3.415949	3.415974			3.414693	3.415967
MLIK		-6436.800701		-6543.466389	-6419.819028		-6388.958380	-6497.078009	-6449.312907
DIC			-33486.368935					12009.445033	11443.256350
WAIC			-34406.926554						11340.267668
CPO	NA		-14505.925115	6314.207829	-14505.925051	6092.884596	6084.854690	6195.681026	6157.586279
\$Mode1_2c	2\$Mo	de1_2C2_df							
	true		Model_1A					Model_3A1	
beta_0^1	2.0		1.955816		1.955812		1.955818	1.949278	1.955802
beta_x^1	4.0		3.980462			3.982928	3.979929	3.983381	3.986389
beta_t^1	2.5		2.581100	2.581044	2.581098			2.573173	2.581121
beta_0^2	3.0		2.980898	2.980930	2.980877	2.980903	2.980902	2.980561	2.980919
beta_x^2	1.5	1.495044	1.503940	1.493211	1.506495			1.488733	1.496805
beta_t^2	3.5	3.382313	3.382331	3.382317	3.382327	3.382325		3.379775	3.382317
MLIK		-6471.173412	-6448.167363		-6452.594694				-6478.627661
DIC			-33486.369206			6396.364226			
WAIC	NA		-34406.926862			6439.324195			
CPO	NA	6097.650133	-14505.925416	6370.785045	-14505.925079	5958.275713	5969.357302	212.923448	418.585437

00000

Simulation 1: Models 3A1 & 3B1

\$Mode1_3A	A1\$Mode	1_3A1_df												
	true	Model_0	Model_1A	Model_2A	Model_2B	Mo	del_2c1	Mod	le1_2C2	Mo	del_3A1	Mo	odel_3B1	
beta_0^1	2.0	1.955716	1.955703	1.955722	NA	1	.955702	1.	955694	1	.951377	1	L.955701	
beta_x^1	4.0	4.013707	4.016508	4.010417	NA	4	.016969	4.	019107	4	.021408	4	.017387	
beta_t^1	2.5	2.480880	2.480884	2.480875	NA	2	.480885	2.	480892	2	.475474	2	2.480891	
beta_0^2	3.0	3.083040	3.083038	3.083150	NA	3	.083050	3.	083031	3	.075170		3.083028	
beta_x^2	1.5	1.506024	1.506122	1.470687	NA	1	. 502925	1.	508065	1	.498191	1	L.509141	
beta_t^2	3.5	3.393346	3.393342	3.393263	NA.		. 393335		393349		.385820		3.393355	
MLIK	NA -(6545.895839	-6548.561624	-6705.595984	NA	-6505	. 596862	-6541.	381528	-6579	.721299	-6547	7.787680	
DIC	NA 11	1698.771557	-33486.369077	12577.732176	NA	-3355	.980072	11673.	875652	11355	.651221	11267	7.087081	
WAIC	NA 11	1630.697743	-34406.926731	12608.341609	NA	-3304	.003118	11617.	742379	11246	. 386888	11132	2.139616	
CPO			-14505.925633	6395.637957	NA	48	.978159	6126.	917631	6177	.789901	6152	2.630117	
\$Model_3E	31\$Model	l_3B1_df												
	true	Model_0	Model_1A	Model_2A	Mode	≥1_2B	Model		Model	_2C2	Model	_3A1	Model_3	B1
beta_0^1	2.0	1.955716	1.956119	1.955716	1.99	55698	1.95	5696	1.95	5694	1.99	0879	1.9556	99
beta_x^1		4.013723	3.897429	4.011802	4.01	L7805	4.01	.8933	4.01	.9703	4.02	2540	4.0179	45
beta_t^1	2.5	2.480880	2.480469	2.480879	2.48	30878	2.48	30881	2.48	0883	2.47	4315	2.4808	92
beta_0^2	3.0	3.083033	3.083536	3.083178	3.08	33046		33057	3.08	3044	3.07	9319	3.0830	25
beta_x^2	1.5	1.508197	1.365191	1.461668	1.50	03214	1.50	0601	1.50	4111	1.50	8898	1.5105	66
beta_t^2	3.5	3.355581	3.355086	3.355474		55557		55552 _	3.35			4027	3.3555	
MLIK	NA -6	5703.762707	-7332.338520	-6876.675075	-6603.58	32489	-6576.16	7425 -	6558.04	0635	-6735.27	7017	-6698.6426	38
DIC			-33486.368881											
WAIC	NA 11	L973.207654	-34406.925965	13118.930882	-34406.92	26552	-3444.09	8004 1	1046.68	5107	11637.58	2631	11493.3473	21
CPO	NA 6	5390.051954	-14505.922939	6621.167449	-14505.92	24678	-122.30	9984	6115.23	5178	6411.12	5399	6374.1509	134

To-do

Models

- Complete model configuration in INLA
 - ▶ Complete model 3: dependent copied random effects
 - ► Model 1: Inspect other residual error covariance structures
- Theoretical results
 - Give Likelihood for every model
 - Try to write them as LGM
- Implement models on Dataset
 - Open dataset
 - ★ Back to PBC?
 - Duchenne
 - COVID

Simulated Data

• To better test the models simulated data was used for every setting

Model 1: Simulated Data

Correlated errors

Models

$$\begin{cases} y_{i,j}^{1} = 2 + 3 \cdot x_{i} + \epsilon_{i,j}^{1} \\ y_{i,j}^{2} = 4 + 2 \cdot x_{i} + \epsilon_{i,j}^{2} \end{cases}$$

$$\begin{bmatrix} \epsilon_{i,1}^1 \\ \epsilon_{i,2}^1 \\ \epsilon_{i,1}^2 \\ \epsilon_{i,1}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} 5.16 & 2.06 & -0.93 & -0.39 \\ 2.06 & 4.22 & -0.48 & -1.42 \\ -0.93 & -0.48 & 4.01 & 1.04 \\ -0.39 & -1.42 & 1.04 & 3.86 \end{pmatrix} \end{bmatrix}$$

Model 1: Correlated Errors

```
true qls MCMCqlmm INLA
            2 2.06
beta 0^1
                        2.05 2.06
            3 2.98
beta_x^1
                        2.99 2.98
beta 0^2
            4 4.02
                        4.02 4.02
beta x^2
            2 1.95
                        1.96 1.95
```

```
$true
      Γ.17
            [,2] [,3] [,4]
     5.16
           2.06 -0.93 -0.39
     2.06
           4.22 -0.48 -1.42
    -0.93 -0.48
                  4.01
    -0.39 -1.42
                 1.04
```

```
$INLA
            [,2]
                  [,3]
[1.]
      5.11
            2.04 -0.92 -0.37
     2.04 4.18 -0.47 -1.41
     -0.92 -0.47
                  3.96
[4.] -0.37 -1.41
                 1.03
                        3.82
```

```
$als
Marginal variance covariance matrix
           [,2]
                  [,3] [,4]
            2.06 -0.93 -0.39
      5.17
      2.06
           4.23 -0.48 -1.42
    -0.93 -0.48 4.00 1.04
    -0.39 -1.42
                  1.04
```

\$MCMCq1mm [,1] [,2] [,3] [,4] 2.23 -0.92 -2.30

```
4.23
                  0.02 - 1.42
    -0.92
            0.02
                  4.03 -1.74
[4.] -2.30 -1.42 -1.74 3.85
```

Model 2: Simulated Data

Only random intercept

Models

$$\begin{cases} y_{i,j}^{1} = 3 + 2 \cdot x_{i} + \mathbf{u}_{i}^{1} + \epsilon_{i,j}^{1} \\ y_{i,j}^{2} = 4 + 3 \cdot x_{i} + \mathbf{u}_{i}^{2} + \epsilon_{i,j}^{2} \end{cases}$$

$$\begin{bmatrix} \mathbf{u}_i^1 \\ \mathbf{u}_i^2 \end{bmatrix} \sim \mathcal{N} \begin{bmatrix} \mathbf{0}, \begin{pmatrix} 1.98 & -0.9 \\ -0.9 & 2.93 \end{pmatrix} \end{bmatrix}; \quad \begin{bmatrix} \boldsymbol{\epsilon}_i^1 \\ \boldsymbol{\epsilon}_i^2 \end{bmatrix} \sim \mathcal{N}_6(\mathbf{0}, \mathbf{I}_6)$$

Model 2: Only random intercept

_						
		true	lmer	nlme	INLA	MCMCgImm
_	β_0^1	3.00	3.00	3.00	3.00	3.00
	β_0^1 β_x^1	2.00	2.00	2.00	2.00	2.02
	$eta_0^2 \ eta_x^2$	4.00	3.97	3.97	3.97	3.97
	β_x^2	3.00	3.05	3.05	3.05	3.07
	u_1	1.98	1.98	1.98	1.99	1.76
	u_2	2.93	2.96	2.96	2.94	2.84
	u_{12}	-0.90	-0.90	-0.90	-0.90	-0.88

Model 2: Simulated Data

Random intercept & Random Errors

$$\begin{cases} y_{i,j}^{1} = 3 + 2 \cdot x_{i} + \mathbf{u}_{i}^{1} + \epsilon_{i,j}^{1} \\ y_{i,j}^{2} = 4 + 3 \cdot x_{i} + \mathbf{u}_{i}^{2} + \epsilon_{i,j}^{2} \end{cases}$$

with

Models

$$\begin{bmatrix} \mathbf{u}_i^1 \\ \mathbf{u}_i^2 \end{bmatrix} \sim \mathcal{N} \begin{bmatrix} \mathbf{0}, \begin{pmatrix} 1.98 & -0.9 \\ -0.9 & 2.93 \end{pmatrix} \end{bmatrix};$$

$$\begin{bmatrix} \mathbf{u}_i^1 \\ \mathbf{u}_i^2 \end{bmatrix} \sim \mathcal{N} \begin{bmatrix} \mathbf{0}, \begin{pmatrix} 1.98 & -0.9 \\ -0.9 & 2.93 \end{pmatrix} \end{bmatrix}; \quad \begin{bmatrix} \epsilon_{i,1}^1 \\ \epsilon_{i,2}^1 \\ \epsilon_{i,2}^2 \\ \epsilon_{i,1}^2 \\ \epsilon_{i,2}^2 \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} 5.16 & 2.06 & -0.93 & -0.39 \\ 2.06 & 4.22 & -0.48 & -1.42 \\ -0.93 & -0.48 & 4.01 & 1.04 \\ -0.39 & -1.42 & 1.04 & 3.86 \end{bmatrix} \end{bmatrix}$$

Model 2: Random intercept & Random Errors

```
nlme INLA
          true
beta 0^1
          3.00
                3.04 3.04
beta x^1
        2.00
                2.06 2.06
beta_0^2
         4.00
               4.18 4.18
beta_x^2
        3.00
               3.02 3.02
u_1
          2.14
                4.06 2.58
u 2
          3.23
                4.23 1.91
u_12
         -1.06 -1.90 1.26
$true
      [,1] [,2] [,3]
     4.98 2.06 -1.02 -0.43
     2.06 4.19 -0.44 -1.46
    -1.02 -0.44
                 4.21
                        0.96
[4.] -0.43 -1.46
                 0.96
```

\$r	ılme			
	1	2	3	4
1	2.90	0.04	-0.20	0.33
2	0.04	2.22	0.50	-0.58
3	-0.20	0.50	3.04	-0.16
4	0.33	-0.58	-0.16	2.99
INL	Α			

```
[,1] [,2] [,3] [,4]
[1,] 4.28 1.49 -3.41 -2.85
[2,] 1.49 3.67 -2.72 -3.69
[3,] -3.41 -2.72 5.42 2.28
[4,] -2.85 -3.69 2.28 5.32
```

Model 2: Simulated Data

Random intercept & Random Slope

Models

$$\begin{cases} y_{i,j}^{1} = (\beta_{0}^{1} + u_{0,i}^{1}) + \beta_{x}^{1} \cdot x_{i} + (\beta_{t}^{1} + u_{t,i}^{1}) \cdot Period_{i,j} + \epsilon_{i,j}^{1} \\ y_{i,j}^{2} = (\beta_{0}^{2} + u_{0,i}^{2}) + \beta_{x}^{2} \cdot x_{i} + (\beta_{t}^{2} + u_{t,i}^{2}) \cdot Period_{i,j} + \epsilon_{i,j}^{2} \end{cases}$$

with

$$\begin{bmatrix} u_{0,i}^1 \\ u_{0,i}^2 \\ u_{t,i}^1 \\ u_{t,i}^2 \\ u_{t,i}^2 \end{bmatrix} \sim \mathcal{N}_{2j} \begin{bmatrix} \boldsymbol{0}, \begin{pmatrix} \sigma_{0,1}^2 & \sigma_{0,(1,2)} & 0 & 0 \\ \sigma_{0,(2,1)} & \sigma_{0,2}^2 & 0 & 0 \\ 0 & 0 & \sigma_{t,1}^2 & \sigma_{t,(1,2)} \\ 0 & 0 & \sigma_{t,(2,1)} & \sigma_{t,2}^2 \end{pmatrix} \end{bmatrix}; \quad \begin{bmatrix} \boldsymbol{\epsilon}_i^1 \\ \boldsymbol{\epsilon}_i^2 \end{bmatrix} \sim \mathcal{N}_{2j}(\boldsymbol{0}, \boldsymbol{\mathsf{I}}_{2j})$$

Georgy Gomon

Pain dataset

Models

- Dataset given as example in Weiss [4].
 - ▶ Measurements on pain tolerance and pain rating on 63 children
 - 4 measurements per child
 - ▶ 2 outcomes: Pain tolerance & Pain rating
 - 3 covariates: Treatment, sex & ses (socio-economic status)

		id	ses	sex	treatment	pain_tolerance	pain_rating
2	.1	2	74.70	female	distract	3.34	6
2	.2	2	74.70	female	distract	3.19	5
2	.3	2	74.70	female	distract	2.76	4
2	.4	2	74.70	female	distract	3.01	6
3	.1	3	81.50	female	none	2.48	7
3	.2	3	81.50	female	none	2.30	2

Method 2: Joint Mixed Model

Joint Mixed Model

Models

$$\begin{cases} y_{i}(t_{ij}) = \mathbf{v}_{yi}^{\mathsf{T}}(t_{ij})\beta_{\mathbf{y}} + \mathbf{z}_{yi}^{\mathsf{T}}(t_{ij})\mathbf{b}_{yi} + \epsilon_{yi}(t_{ij}) \\ x_{i}(t_{ij}) = \mathbf{v}_{xi}^{\mathsf{T}}(t_{ij})\beta_{\mathbf{x}} + \mathbf{z}_{xi}^{\mathsf{T}}(t_{ij})\mathbf{b}_{xi} + \epsilon_{xi}(t_{ij}) \end{cases}$$
 with
$$\begin{bmatrix} \mathbf{b}_{yi} \\ \mathbf{b}_{xi} \end{bmatrix} \sim \mathcal{N}(\mathbf{0}, \mathbf{D}); \quad \begin{bmatrix} \epsilon_{yi} \\ \epsilon_{xi} \end{bmatrix} \sim \mathcal{N}_{n_{i}}(\mathbf{0}, \Sigma_{i})$$
$$\epsilon_{vi}(t_{ij}) \perp \mathbf{b}_{vi}, \epsilon_{xi}(t_{ii}) \perp \mathbf{b}_{xi}$$

• Association measured via **D** and Σ_i .

Model 2 on Pain Data

Models

Random Intercept Model

$$\begin{cases} \textit{Tolerance}_i(t_{ij}) = \beta_0^t + \beta_1^t \cdot \textit{sex}_i + \beta_2^t \cdot \textit{ses}_i + b_{i0}^t + \epsilon_{ij}^t \\ \textit{Rating}_i(t_{ij}) = \beta_0^r + \beta_1^r \cdot \textit{sex}_i + \beta_2^r \cdot \textit{ses}_i + b_{i0}^r + \epsilon_{ij}^r \end{cases}$$
 with
$$\begin{bmatrix} \mathbf{b}_{yi} \\ \mathbf{b}_{xi} \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_y^2 & \sigma_{y,x} \\ \sigma_{y,x} & \sigma_x^2 \end{pmatrix} \end{bmatrix}; \quad \begin{bmatrix} \epsilon_{yi} \\ \epsilon_{xi} \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \mathbf{I}_2 \end{bmatrix}$$

$$\epsilon_{yi}(t_{ij}) \perp \mathbf{b}_{yi}, \epsilon_{xi}(t_{ij}) \perp \mathbf{b}_{xi}$$

Model 2 on Pain Data: LMER+NLME

prior = list(R = list(V = diag(2), n = 4),

Model 2 on Pain Data: MCMCglmm

```
G = \textbf{list} (G1 = \textbf{list} (V = \textbf{matrix} (\textbf{c}(10, -0.50, -0.50, 0.45), \\ \textbf{nrow} = 2), \ n = 1))) m\_pain < -MCMCglmm(\textbf{cbind} (pain\_tolerance, pain\_rating) \sim \\ trait + trait : sex + trait : ses - 1, \\ random = \sim us(trait) : units, rcov = \sim idh(trait) : units, \\ \textbf{family} = \textbf{rep}("gaussian", 2), prior = prior, nitt = 10000, \\ burnin = 1000, thin = 25, \textbf{data} = \textbf{data\_long})
```

Model 2 on Pain Data: INLA

- One can indeed calculate transformation of hyperparameter
- I did not understand the prior specification properly

Model 2 on Pain Data: Results

	lmer	Imer_sd	nlme	nlme_sd	INLA	INLA_sd	MCMC	MCMC_sd
beta_0^t	3.20	0.16	3.20	0.16	3.01	0.32	3.20	0.10
beta_sf^t	0.18	0.20	0.18	0.20	0.18	0.19	0.19	0.13
beta_ses^t	-0.23	0.10	-0.23	0.10	-0.23	0.09	-0.23	0.07
beta_0^r	5.68	0.38	5.68	0.38	6.04	0.63	5.68	0.24
beta_sf^r	-0.37	0.48	-0.37	0.48	-0.37	0.37	-0.37	0.30
beta_ses^r	-0.24	0.23	-0.24	0.23	-0.24	0.18	-0.24	0.15
u_t^2	0.15		0.15		0.39		0.70	
u_r^2	2.50		2.50		2.84		2.15	
rho_rt	-0.43		-0.42		-0.77		-0.21	

Georgy Gomon

Thesis: Sixth meeting

Method 2: Sources

Books

Models

- ▶ G. Fitzmaurice, M. Davidian, G. Verbeke, Longitudinal Data Analysis, 2009, Chapters 13 & 16
- Papers
 - S. Fieuws, G. Verbeke, Pairwise Fitting of Mixed Models for the Joint Modeling of Multivariate Longitudinal Profiles, 2006, Biometrics
 - G. Verbeke, S. Fieuws, The analysis of multivariate longitudinal data: A review, 2012, Stat Methods Med Res

Method 3: Joint Mixed Model with latent variable

Joint Mixed Model with latent variable

$$\begin{cases} x_i(t_{ij}) = m_i(t_{ij}) + \epsilon_{xi}(t_{ij}) \\ y_i(t_{ij}) = \mathbf{w}_{yi}^\mathsf{T} \alpha_{\mathbf{y}} + \gamma \cdot m_i(t_{ij}) + \mathbf{v}_{yi}^\mathsf{T}(t_{ij}) \beta_{\mathbf{y}} + \mathbf{z}_{yi}^\mathsf{T}(t_{ij}) \mathbf{b}_{yi} + \epsilon_{yi}(t_{ij}) \end{cases}$$
 with
$$m_i(t_{ij}) = \mathbf{w}_{xi}^\mathsf{T} \alpha_{\mathbf{x}} + \mathbf{v}_{xi}^\mathsf{T}(t_{ij}) \beta_{\mathbf{x}} + \mathbf{z}_{xi}^\mathsf{T}(t_{ij}) \mathbf{b}_{xi}$$
 and
$$\mathbf{b}_{xi} \sim \mathcal{N}(\mathbf{0}, \mathbf{D}_x), \mathbf{b}_{yi} \sim \mathcal{N}(\mathbf{0}, \mathbf{D}_y)$$

$$\epsilon_{yi}(t_{ij}) \sim \mathcal{N}_{n_i}(\mathbf{0}, \sigma_y^2), \epsilon_{xi}(t_{ij}) \sim \mathcal{N}_{n_i}(\mathbf{0}, \sigma_x^2)$$

$$\epsilon_{yi}(t_{ij}) \perp \mathbf{b}_{yi}, \epsilon_{xi}(t_{ij}) \perp \mathbf{b}_{xi}$$

Georgy Gomon

Thesis: Sixth meeting

Model 3 on Pain Data

Random ses + Intercept Model

$$\begin{cases} \textit{Tolerance}_i(t_{ij}) = \beta_0^t + b_1^t \cdot \textit{ses}_i + \epsilon_{ij}^t \\ \textit{Rating}_i(t_{ij}) = \beta_0^r + \gamma_1 \cdot b_1^t \cdot \textit{ses}_i + \epsilon_{ij}^r \end{cases}$$

Model 3 on Pain Data: LM, LME & INLA

```
model_{lm_3}<-lm(value~variable+variable:ses-1,
               data=data_long_melted, na.action=na.omit)
model lme_3 < -lme(value \sim variable_1, random = \sim 0 + ses | variable_1
                  data=data_long_melted, na.action=na.omit)
formula comparison INLA 2=Y\sim-1+
     f(Intercept1, model='linear')+f(Intercept2, model='linear')+
     f(sestol, ses, model = "iid")+
     f(sesrat,ses, copy="sestol",hyper = list(
     beta = list(fixed=FALSE)))
```

To-do

Models

Model 3 on Pain Data: Results

	lm	nlme	INLA
beta_0^t	3.313	3.313	3.313
beta_0^r	5.448	5.448	5.448
u_ses^t	-0.223	-0.172	-0.180
u_ses^r	-0.241	-0.186	-0.184

• Did not manage to combine multiple parameters with one γ .

- https://groups.google.com/g/r-inla-discussion-group/c/ClNVlx1lgwY
- https://arxiv.org/pdf/1210.0333.pdf

To-do

48 / 57

Method 1: Multivariate Normal Model

Multivariate Normal Model

$$\begin{cases} y_i(t_{ij}) = \mathbf{v}_{yi}^{\mathsf{T}}(t_{ij})\beta_{\mathbf{y}} + \epsilon_{yi}(t_{ij}) \\ x_i(t_{ij}) = \mathbf{v}_{xi}^{\mathsf{T}}(t_{ij})\beta_{\mathbf{x}} + \epsilon_{xi}(t_{ij}) \end{cases}$$
 with
$$\begin{bmatrix} \epsilon_{yi} \\ \epsilon_{xi} \end{bmatrix} \sim \mathcal{N}_{n_i}(\mathbf{0}, \Sigma_i)$$

• Association measured via Σ_i

Model 1 on Pain Data

Models

Random Intercept Model

$$\begin{cases} \textit{Tolerance}_i(t_{ij}) = \beta_0^t + \beta_1^t \cdot \textit{sex}_i + \beta_2^t \cdot \textit{ses}_i + \epsilon_{ij}^t \\ \textit{Rating}_i(t_{ij}) = \beta_0^r + \beta_1^r \cdot \textit{sex}_i + \beta_2^r \cdot \textit{ses}_i + \epsilon_{ij}^r \end{cases}$$

with

$$\begin{bmatrix} \epsilon_{yi} \\ \epsilon_{xi} \end{bmatrix} \sim \mathcal{N}_2 \left[\mathbf{0}, \mathsf{Unstructured}_8 \right]$$

Model 1 on Pain Data: INLA

```
gls_unstructured<-gls (value\sim variable+variable: ses+variable: sex -1,
                correlation=corSymm(form=\sim 1|id).
                weights = varIdent (form = ~1 | Period),
                data=data_long_melted, na.action=na.omit)
m_pain<-MCMCglmm(cbind(pain_tolerance, pain_rating) ~
         trait+trait:sex+trait:ses - 1.
         rcov = \sim us(Period:trait):units,
        family = rep("gaussian", 2), prior=prior,
         nitt = 10000. burnin = 1000.
                  thin = 25, data = data long)
```

Model 1 on Pain Data: Results

	gls	gls_sd	MCMCglmm	MCMCglmm_sd
beta_0^t	5.25	0.00	5.30	0.03
beta_sf^t	0.82	0.01	0.24	0.01
beta_ses^t	-0.03	0.06	-0.03	0.00
beta_0^r	7.50	0.00	6.70	0.32
beta_sf^r	-0.54	0.07	-0.62	0.05
beta_ses^r	-0.02	0.25	-0.01	0.01

[8.]

0.5376341

0.6066506239

Models

```
Marginal variance covariance matrix
           [.1]
                        [.2]
                                   [,3]
                                              [,4]
                                                         Γ.51
                                                                  Γ.61
                                                                              [,7]
                                                                                          Γ.81
      1.000000
                 0.9646700
                              0.934000
                                         0.880790 -0.146390 0.31915
                                                                         0.011592
                                                                                    0.0085110
[2,]
      0.964670
                 1.0000000
                              0.915690
                                         0.897470
                                                   -0.084704 0.31812
                                                                         0.077383
                                                                                    0.0020768
[3,]
      0.934000
                 0.9156900
                              1.000000
                                         0.923760 -0.183270 0.28127
                                                                        -0.034945
                                                                                   -0.0365370
[4.]
      0.880790
                              0.923760
                                                    -0.135120 0.24249
                                                                         0.020602
                 0.8974700
                                         1.000000
                                                                                   -0.0749610
                -0.0847040
                             -0.183270
                                        -0.135120
                                                     1.000000 0.53617
                                                                         0.435130
                                                                                    0.2272000
     -0.146390
                                                     0.536170 1.00000
[6.]
      0.319150
                 0.3181200
                              0.281270
                                         0.242490
                                                                         0.373270
                                                                                    0.2487200
[7,]
      0.011592
                 0.0773830 -0.034945
                                         0.020602
                                                    0.435130 0.37327
                                                                         1.000000
                                                                                    0.3341800
[8.]
      0.008511
                 0.0020768 -0.036537 -0.074961
                                                     0.227200 0.24872
                                                                         0.334180
                                                                                    1.0000000
  Standard Deviations: 1 1 1 1 1 1 1 1
          Γ.17
                        [,2]
                                  [,3]
                                             [,4]
                                                         [,5]
                                                                                [,7]
                                                                      [,6]
                                                                                            Γ.81
[1.]
     1.0000000
                0.7923632234
                             0.2757604 -0.16859774
                                                  -0.32375237
                                                              0.3394998084
                                                                           0.7253773
                                                                                      0.53763412
[2.]
     0.7923632
                1.0000000000
                             0.4762324
                                       0.06301609 -0.58650226
                                                             -0.0005261689
                                                                            0.6880497
                                                                                      0.60665062
     0.2757604
                0.4762324384
                             1.0000000
                                       0.76345228 -0.47261506
                                                              0.3155500984 -0.1407778
                                                                                      0.44914344
     -0.1685977
                0.0630160916
                             0.7634523
                                       1.00000000 -0.01470108
                                                              0.1720782933 -0.4947750
                                                                                     -0.06233257
                            -0.4726151 -0.01470108
     -0.3237524 -0.5865022575
                                                   1.00000000
                                                              0.1274419714 -0.3406734
                                                                                     -0.74698798
     0.3394998 -0.0005261689
                             0.3155501
                                       0.17207829
                                                   0.12744197
                                                              1.00000000000
                                                                           0.1558983
                                                                                      0.16098986
     0.7253773
                0.6880497328
                            -0.1407778 -0.49477504 -0.34067340
                                                              0.1558983051
                                                                           1.0000000
                                                                                      0.58234240
```

0.4491434 -0.06233257 -0.74698798

0.1609898619

0.5823424

1.00000000

To-do

Method 1: Correlation of residuals in INLA

- Correlation of residuals seems not to be available in INLA (Spatial models also use random effects with multivariate normal distribution)
- I asked on the INLA forum whether correlated residuals can be implemented:
 - ▶ INLA only support conditional independent data, but for Gaussian response, you can always just expand the latent field (or linear predictor) to have define dependent data. sometimes this involve setting the likelihood to have fixed high precision, like having AR1 dependency in the observations. In these cases, you'll end up with a 'fake' linear predictor, for which a subset of it, is the real one.

There are also generic iid models in dimension up to 10, with general covariance structure, that can be used for this (see inla.doc("iidkd") for a new testing version)

Best H

00000000

Model 1 on Simulated data

Random Intercept Model

Models

$$\begin{cases} y_{ij}^1 = \beta_0^t + \beta_1^t \cdot sex_i + \beta_2^t \cdot ses_i + \epsilon_{ij}^t \\ y = \beta_0^r + \beta_1^r \cdot sex_i + \beta_2^r \cdot ses_i + \epsilon_{ij}^r \end{cases}$$

with

$$\begin{bmatrix} \epsilon_{yi} \\ \epsilon_{xi} \end{bmatrix} \sim \mathcal{N}_2 \left[\mathbf{0}, \mathsf{Unstructured_8} \right]$$

Method 1: Sources

- Usually mentioned briefly as introduction
- Books

Models

- G. Fitzmaurice, M. Davidian, G. Verbeke, Longitudinal Data Analysis, 2009, Chapters 13
- Papers
 - ► H. Cho, The analysis of multivariate longitudinal data using multivariate marginal models, Journal of Multivariate analysis, 2016
 - ▶ G. Verbeke, S. Fieuws, The analysis of multivariate longitudinal data: A review, 2012, Stat Methods Med Res

To-do

Models

- I need to write a Thesis proposal: What will be the main direction of research?
 - Correlated Residuals
 - ★ Do we need correlated residuals? Many Marginal Models (correlated residuals) can be implemented by using Mixed Models (random effects)
 - ★ Do we want to implement correlated residuals in INLA? Maybe with generic package?
 - Apply methods on COVID-dataset

H. Rue, S. Martino, Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations, 2009, JRSS B

J. van Niekerk, H. Bakka, H. Rue, Joint models as latent Gaussian models - not reinventing the wheel, 2019, arXiv

J. van Niekerk, H. Bakka, H. Rue, Competing risks joint models using R-INLA, 2021, Statistical Modelling

R. Weiss, Modelling Longitudinal Data, 2005, Chapter 13