Chapter 2 Array and Structures

C++ Class
Array
Structures and Unions
Polynomial ADT
Sparse Matrix ADT
String ADT
Representation of Multidimensional Arrays

C++ Class

- Class
 - A class name
 - Data members
 - Member functions
- Levels of program access
 - Public: section of a class can be accessed by anyone
 - Private: section of a class can only be accessed by member functions and friends of that class
 - Protected: section of a class can only be accessed by member functions and <u>friends</u> of that class, and by member functions and <u>friends</u> of <u>derived classes</u>

宣告

Declaration of Class Rectangle

```
#ifndef RECTANGLE H
#define RECTANGLE H
// In the header file
class Rectangle {
public:
                                       // The following members are public
          Rectangle();
                                       // Constructor
                                       // Deconstructor
          ~Rectangle();
          int GetHeight();
                                       // return the height of the rectangle
          int GetWidth();
                                       // return the width of the rectangle
                                        // The following members are private
private:
         int x1, y1, h, w;
          // (x1, y1) are the coordinates of the bottom left corner of the rectangle
         // w is the width of the rectangle; h is the height of the rectangle
};
#endif
```

Implementation of Rectangle Operations

```
// In the source file Rectangle.C
#include "Rectangle.h"
  The prefix "Rectangle::" identifies GetHeight() and GetWidth() as member
   functions belong to class Rectangle. It is required because the member
   functions are implemented outside their class definition
*/
int Rectangle::GetHeight() { return h;}
int Rectangle::GetWidth() { return w;}
```

Constructor and Destructor

- Constructor: is a member function which initializes data members of an object.
 - Adv: all class objects are well-defined as soon as they are created.
 - Must have the same name of the class
 - Must not specify a return type or a return value
- **Destructor**: is a member function which deletes data members immediately before the object disappears.
 - Must be named identical to the name of the class prefixed with a tilde ~.
 - It is invoked automatically when a class object goes out of scope or when a class object is deleted.

Examples of Rectangle Constructor

```
Rectangle::Rectangle(int x, int y, int height, int width)
    x1 = x; y1 = y;
    h = height; w = width;
                                       default constructor
Rectangle::Rectangle(int x = 0, int y = 0, int height = 0, int
width = 0
: x1(x), y1(y), h(height), w(width)
{}
       Rectangle r(1, 3, 6, 6);
       Rectangle *s = new Rectangle(0, 0, 3, 4);
```

Operator Overloading

- C++ can distinguish the operator == when comparing two floating point numbers and two integers.
- But what if you want to compare two Rectangles?

```
int Rectangle::operator==(const Rectangle &s)
{
    if (this == &s) return 1;
    if ((x1 == s.x1) && (y1 == s.y1) && (h == s.h) && (w == s.w))
        return 1;
    else
        return 0;
}
```

Array

- Arrays
 - Array: a set of pairs, <index, value>
 - data structure
 - For each index, there is a value associated with that index.
 - representation (possible)
 - Implemented by using consecutive memory.
 - In mathematical terms, we call this a *correspondence* or a *mapping*.
 - E.g., int list[5]: list[0], ..., list[4] each contains an integer

	0	1	2	3	4
list					

Arrays

- When considering an ADT we are more concerned with the operations that can be performed on an array.
 - Aside from <u>creating</u> a new array, most languages provide only two standard operations for arrays, one that <u>retrieves</u> a value, and a second that <u>stores</u> a value.
 - ADT 2.1 shows a definition of the array ADT

ADT of Arrays

structure Array is

objects: A set of pairs < index, value> where for each value of index there is a value from the set item. Index is a finite ordered set of one or more dimensions, for example, $\{0, \dots, n-1\}$ for one dimension, $\{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)\}$ for two dimensions, etc.

functions:

for all $A \in Array$, $i \in index$, $x \in item$, j, $size \in integer$

Array Create(j, list) ::= **return** an array of j dimensions where list

is a *j*-tuple whose *i*th element is the size of

the *i*th dimension. *Items* are undefined.

Item Retrieve(A, i) ::= if $(i \in index)$ return the item associated

with index value *i* in array *A*

else return error

Array Store(A,i,x) ::= **if** (*i* in *index*)

return an array that is identical to array A except the new pair $\langle i, x \rangle$ has been

inserted else return error.

end Array

Arrays

- When considering an ADT we are more concerned with the operations that can be performed on an array.
 - Aside from <u>creating</u> a new array, most languages provide only two standard operations for arrays, one that <u>retrieves</u> a value, and a second that <u>stores</u> a value.
 - ADT 2.1 shows a definition of the array ADT
 - The advantage of this ADT definition is that
 It clearly points out the fact that the array is a more general structure than "a consecutive set of memory locations."

The array as an ADT (4/6)

- Arrays in C/C++
 - int list[5], *plist[5];
 - list[5]: (five integers) list[0], list[1], list[2], list[3], list[4]
 - *plist[5]: (five pointers to integers)
 - plist[0], plist[1], plist[2], plist[3], plist[4]
 - implementation of 1-D array

```
• E.g., list[0] base address = \alpha list[1] \alpha + sizeof(int) list[2] \alpha + 2*sizeof(int) list[3] \alpha + 3*sizeof(int) list[4] \alpha + 4*sizeof(int)
```

The array as an ADT

- Arrays in C/C++ (cont'd)
 - Compare int *list1 and int list2[5] in C/C++.

Same: list1 and list2 are pointers.

Difference: list2 reserves five locations.

– Notations:

```
list2 — a pointer to list2[0]
(list2 + i) — a pointer to list2[i] (&list2[i])
*(list2 + i) — list2[i]
```

The array (6/6)

Example: 1-dimension array addressing $- int one[] = {0, 1, 2, 3, 4};$ Goal: print out address and value void print1(int *ptr, int rows){ /* print out a one-dimensional array using a pointer */ int i; printf("Address Contents\n"); for (i=0; i < rows; i++) printf("%8u%5d\n", ptr+i, *(ptr+i)); $printf("\n");$

- Arrays are collections of data of the same type.
- Structures (records)
 - In C/C++ there is an alternate way of grouping data that permit the data to vary in type.
 - Struct
 - A structure is a collection of data items, where each item is identified as to its type and name.

```
struct {
    char name[10];
    int age;
    float salary;
    } person;
    strcpy(person.name,"james");
    person.age = 10;
    person.salary = 35000;
```

- Create structure data type
 - We can create our own structure data types by using the typedef statement as below:

```
typedef struct human_being {
    char name[10];
    int age;
    float salary;
    };
    int age;
    float salary;
    }
    human_being;
```

Declaration of variables

```
struct human_being person1, person2; human_being person1, person2;
```

We can also embed a structure within a structure.

```
typedef struct {
    int month;
    int day;
    int year;
    } date;

typedef struct human_being {
    char name[10];
    int age;
    float salary;
    date dob;
    };
```

 A person born on February 11, 1994, would have have values for the date struct set as

```
person1.dob.month = 2;
person1.dob.day = 11;
person1.dob.year = 1944;
```

Unions

- A union declaration is similar to a structure.
- The fields of a union must share their memory space.
- Only one field of the union is "active" at any given time

Example: Add fields for male and female.

```
typedef struct sex_type {
  enum tag_field {female, male} sex;
  union {
     int children;
     int beard;
     } u;
typedef struct human_being {
        char name[10];
        int age;
        float salary;
        date dob;
        sex_type sex_info;
human_being person1, person2;
```

```
person1.sex_info.sex = male;
person1.sex_info.u.beard = FALSE;
person2.sex_info.sex = female;
person2.sex_info.u.children = 4;
```

- Internal implementation of structures
 - The fields of a structure in memory will be stored in the same way using increasing address locations in the order specified in the structure definition.
 - Holes or padding may actually occur
 - Within a structure to permit two consecutive components to be properly aligned within memory
 - The size of an object of a struct or union type is the amount of storage necessary to represent the largest component, including any padding that may be required.

- Self-Referential Structures
 - One or more of its components is a pointer to itself.

```
typedef struct list {
  char data;
  list *link;
}
```

Construct a list with three nodes

```
list item1, item2, item3;
item1.data='a';
item2.data='b';
item3.data='c';
item1.link=item2.link=item3.link=NULL;
item1.link=&item2;
item2.link=&item3;
```

The Polynomial ADT (1/20)

- Ordered List or Linear List
 - ordered (linear) list: (item1, item2, item3, ..., item n)
 - (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday)
 - (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King)
 - (basement, lobby, mezzanine, first, second)
 - (1941, 1942, 1943, 1944, 1945)
 - (a1, a2, a3, ..., an-1, an)

The Polynomial ADT (2/20)

- Operations on Ordered List
 - 1) Finding the length, n, of the list.
 - 2) Reading the items from left to right (or right to left).
 - 3) Retrieving the i'th element.
 - 4) Storing a new value into the i'th position.
 - 5) Inserting a new element at the position i, causing elements numbered i, i+1, ..., n to become numbered i+1, i+2, ..., n+1
 - **6) Deleting** the element at position *i*, causing elements numbered *i*+1, ..., *n* to become numbered *i*, *i*+1, ..., *n*-1
- Implementation
 - sequential mapping (1)~(4)
- Performing operations 5 and 6 requires data movement: Costly
- non-sequential mapping (5)~(6)
 Linked list

The Polynomial ADT(3/20)

- Polynomial examples:
 - Two example polynomials are:
 degree
 - $A(x) = 3x^{20} + 2x^5 + 4$ and $B(x) = x^4 + 10x^3 + 3x^2 + 1$
 - Assume that we have two polynomials, $A(x) = \sum a_i x^i$ and $B(x) = \sum b_i x^i$ where x is the variable, a_i is the coefficient, and i is the exponent, then:
 - $A(x) + B(x) = \sum (a_i + b_i)x^i$
 - $A(x) \cdot B(x) = \sum (a_i x^i \sum (b_i x^i))$

Similarly, we can define subtraction and division on polynomials, as well as many other operations.

The Polynomial ADT(4/20)

```
class polynomial
objects: p(x) = a_1 x^{e_1} + ... + a_n x^{e_n} a set of ordered pairs of \langle e_i, a_i \rangle
where a_i \in Coefficient and e_i \in Exponent
We assume that Exponent consists of integers \geq 0
public:
   Polynomial();
   // return the polynomial p(x) = 0
   int operator!();
   // if *this is the zero polynomial, return 1; else return 0;
   Coefficient Coef(Exponent e);
   // return the coefficient of e in *this
   Exponent LeadExp();
   // return the largest exponent in *this
   Polynomial Add(Polynomial poly);
   // return the sum of the polynomials *this and poly
   Polynomial Mult(Polynomial poly);
   // return the product of the polynomials *this and poly
   float Eval(float f);
   // Evaluate the polynomial *this at f and return the result
}; //end of Polynomial
```

The Polynomial ADT(5/20)

- There are two ways to create the type polynomial in C++

a.degree=n

a.coef[i]= a_{n-i} , $0 \le i \le n$

The Polynomial ADT (6/20)

```
class Polynomial {
// p(x) = a_0 x^{e_0} + \cdots + a_n x^{e_n}, a ordered pairs of \langle e_i \rangle,
    where a_i is a nonzero float coefficient and e_i is a nonzero integer exponent.
public:
    Polynomial();
    // constructor, create p(x) = 0 •
    Polynomial Add(Polynomial poly);
    // return the polynomial of *this+poly.
    Polynomial Mult(Polynomial poly);
    // return the polynomial of *this poly.
    float Eval(float f);
    // return p(f) of *this.
};
```

The Polynomial ADT (7/20)

 Polynomial Addition of Representation I (implemented in C++)

advantage: easy implementation disadvantage: waste space when sparse

```
Polynomial Polynomial: Add(Polynomial b)
{// return sum of *this and b
  Polynomial c;
  int aPos = degree, bPos = b.degree;
  if (aPos>bPos)
    c. degree = aPos;
  else
    c. degree = bPos;
  while ((aPos>0) || (bPos>0))
    if (aPos==bPos) {
         float t = coef[aPos] + b. coef[bPos];
         If (t) c. coef[aPos] = t;
           aPos--; bPos--;
    else if (aPos>bPos) {
         c. coef[aPos] = coef[aPos];
         aPos--;
    else {
         c. coef[bPos] = b. coef[bPos];
         bPos--;
  return c;
```

The Polynomial ADT(8/20)

Representation II

```
class Polynomial {
private:
 int degree; // degree ≤ MaxDegree
 float *coef;
                      Assume max degree is known
Polynomial::Polynomial(int d) //constructor
 degree=d;
 coef=new float[degree+1]; // from 0~degree
```

Waste space when the polynomial is sparse (e.g., x¹⁰⁰⁰+1)

The Polynomial ADT (9/20)

- Representation III
 - Store only nonzero terms
 - Class member of *Term*
 - coef and exp store the coefficient and exponent of a non-zero term
 - Class member of *Polynomial*
 - termArray is the array of nonzero terms
 - terms stores the number of nonzero terms
 - capacity stores the size of termArray

$$a(x) = 2x^{1000} + 1$$

a(x) uses only 6 units of space!

terms: 2 capacity: 6 termArray:

When all terms are nonzeros, Representation III costs about twice as much space as does Represerntation II!

```
class Polynomial; // forward declaration
                                The Polynomial ADT (10/20)
class Term {
 friend Polynomial;
 private:
  float coef;
                   // coefficient
                     // exponent
  int exp;
class Polynomial{
 private:
  Term *termArray; // array of nonzero terms
              // size of termArray
  int capacity;
                    // no. of nonzero terms
  int terms;
Polynomial::Polynomial (int c=1, int t = 0): capacity(c), terms(t){
   termArray=new Term[1];
```

The Polynomial ADT (11/20)

```
void Polynomial::NewTerm(const float theCoeff, const int theExp)
{// 在 termArray 的末端加入一個新項
   if (terms = capacity)
    {// 將 termArray 的容量加倍
        capacity *= 2;
        term *temp = new term[capacity]; // 新陣列
        copy(termArray, termArray + terms, temp);
        delete [] termArra;
                                      // 釋放舊的記憶體
        termArray = temp;
   termArray [terms].coef = theCoeff;
   termArray [terms++].exp = theExp;
   加入一個新項,必要時將陣列大小加倍
```

Problem: Compaction is required when polynomials that are no longer needed. (data movement takes time.)

```
Representation III: c(x) = a(x) + b(x)
                       Polynomial Polynomial::Add(Polynomial b)
                       {// return sum of *this and b
                         Polynomial c;
                         int aPos = 0, bPos = 0;
                         while ((aPos < terms) \&\& (bPos < b.terms))
                   6
                           if (termArray [aPos].exp = b.termArray [bPos].exp) {
                                float t = termArray [aPos].coef + b.termArray [bPos].coef;
                   8
                                If (t) c.NewTerm (t, termArray [aPos].exp);
                   9
                                 aPos++; bPos++;
worst case:
                   10
 m + n - 1
                   11
                           else if (termArray [aPos].exp < b.termArray [bPos].exp) {
                   12
                                c.NewTerm (b.termArray [bPos].coef, b.termArray [bPos].exp);
0(m+n)?
                   13
                                bPos++;
\Rightarrow O(m + n + \text{time spent for array doubling})
                                c. wew reim (iermarray [ar os]. coef, termArray [aPos].exp);
                   17
                                aPos++:
                   18
                   19
                         // add remaining items of *this
                   20
                         for ( ; aPos < terms ; aPos++)
                   21
                           c.NewTerm (termArray [aPos].coef, termArray [aPos].exp);
                   22
                         // add the remaining items of b(x)
                   23
                         for ( ; bPos < b.terms ; bPos++)
                   24
                           c.NewTerm (b.termArray [bPos].coef, b.termArray [bPos].exp);
                   25
                         return c:
                   26 }
                                                  The Polynomial ADT (12/20)
```

The Polynomial ADT (13/19)

- Complexity Analysis of Represerntation III
 - How to estimate doubling time?
 - Assume c. capacity is 2^k
 - Total time spent over all array doublings

$$\Rightarrow 0(\sum_{i=1}^{k} 2^{k})$$
$$\Rightarrow 0(2^{k+1}) = 0(2^{k})$$

• Since c. terms $> 2^{k-1}$ and $m + n \ge c$. terms

$$\Rightarrow 0(c.terms) = 0(m+n)$$

 \Rightarrow Total time spent over all array doublings is O(m+n)

The Polynomial ADT (14/20)

- Representation III (Advanced)
 - Use one global array to store all polynomials
 - Class member of *Polynomial*
 - start and finish give the loctions of the begin and the last items of the polynomial
 - free gives the location of the next free location

The Polynomial ADT (15/20)

- Representation III (Advanced)
 - Use one global array to store all polynomials
 - Class member of *Ploynomial*
 - *start* and *finish* give the loctions of the begin and the last items of the polynomial
 - free gives the location of the next free location

The Polynomial ADT (17/20)

```
class Polynomial{
 private:
  static term *termArray;
  static int free, capacity;
  int Start, Finish; static: shared by all class instances (objects)
Polynomial::Polynomial (){
  Start=Finish=free;
```

- ✓ storage requirements: start, finish, 2*(finish-start+1)
- ✓ non-sparse: twice as much as Representation II when all the items are nonzero

```
int Polynomial::capacity=100;
term Polynomial:: termArray=new Term[100];
int Polynomial::free = 0;
// free: location of next free location in temArray
```

The Polynomial ADT (18/20)

• To produce c(x) = a(x) + b(x)

$$a(x) = 2x^{1000} + 1$$

 $b(x) = x^4 + 10x^3 + 3x^2 + 1$

a.start a.finish b.start b.finish free 3 coef 10 1000 exp coef exp 8 9 10 11 12 13

C.Start

```
Representation III (advanced): c(x) = a(x) + b(x)
                  Polynomial Polynomial::Add(Polynomial b)
                  {// return sum of *this and b
                    Polynomial c;
              4
5
                    int aPos = Start, bPos = b.Start;
                    while ((aPos \le Finish) \&\& (bPos \le b.Finish))
              6
7
                       if (termArray [aPos].exp = termArray [bPos].exp) {
                            float t = termArray [aPos].coef + termArray [bPos].coef;
              8
9
                            If (t) c.NewTerm (t, termArray [aPos].exp);
                             aPos++; bPos++;
              10
              11
                       else if (termArray [aPos].exp < termArray [bPos].exp) {
              12
                            c.NewTerm (termArray [bPos].coef, termArray [bPos].exp);
              13
                            bPos++:
              14
              15
                       else {
              16
                            c.NewTerm (termArray [aPos].coef,termArray [aPos].exp);
              17
                            aPos++;
              18
                    // add remaining items of *this
              19
                    for (; aPos < \overline{terms}; aPos ++)
              20
              21
                       c.NewTerm (termArray [aPos].coef, termArray [aPos].exp);
              22
                    // add remaining items of b(x)
                    for (; bPos < \overline{b}.terms; bPos++)
              23
                       c.NewTerm (b.termArray [bPos].coef, b.termArray [bPos].exp);
              24
              25
                    return c;
              26
                                                The Polynomial ADT (19/20)
```

The Polynomial ADT (20/20)

Adding a New Term (Representation III)

```
void Polynomial::NewTerm(const float theCoeff, const int theExp)
{// add a new item at the end of termArray
    if (free = = capacity)
    {// doubling the capacity of termArray
         capacity *= 2;
         Terms *temp = new Term[capacity]; // create a new array
         copy(termArray, termArray + free-1,temp);
         delete [] termArray;
                                               // release the mem of the old array
         termArray = temp;
    termArray [free].coef = theCoeff;
    termArray [free].exp = theExp;
    Finish=free++;
```

The Sparse Matrix ADT (1/23)

• In mathematics, a matrix contains m rows and n columns of elements, we write $m \times n$ to designate a matrix with m rows and n columns.

15/15

8/36

The Sparse Matrix ADT (2/23)

- The standard representation of a matrix is a two dimensional array defined as a[MAX_ROWS][MAX_COLS].
 - We can locate quickly any element by writing a[i][j]
- Sparse matrix wastes space
 - We must consider alternate forms of representation.
 - Our representation of sparse matrices should store only nonzero elements.
 - Each element is characterized by <row, col, value>.

The Sparse Matrix ADT(3/18)

```
class SparseMatrix
{// 三元組,<列,行,值>,的集合,其中列與行為非負整數,
// 並且它的組合是唯一的;值也是個整數。
public:
   SparseMatrix(int r, int c, int t);
   // 建構子函式,建立一個有r列c行並且具有放t個非零項的容量
   SparseMatrix Transpose();
   //回傳將 *this 中每個三元組的行與列交換後的 SparseMatrix
   SparseMatrix Add(SparseMatrix b);
   // 如果 *this 和 b 的維度一樣,那麼就把相對應的項給相加,
   // 亦即,具有相同列和行的值會被回傳;否則的話丟出例外。
   SparseMatrix Multiply(SparseMatrix b);
   // 如果*this 中的行數和 b 中的列數一樣多的話,那麼回傳的矩陣 d 就是
*this 和 b
   //(依據 d[i][j]=\Sigma(a[i][k]\cdot b[k][j],其中 d[i][j]是第 (i,j) 個元素)相乘的結
果。k的範圍
   // 從 0 到*this 的行數減 1;如果不一樣多的話,那麼就丟出例外。
};
```

The Sparse Matrix ADT(4/23)

- Sparse Matrix Representation
 - Use triple <row, column, value>
 - Store triples row by row
 - For all triples within a row, their column indices are in ascending order.
 - Must know the numbers of rows and columns and

the number of nonzero elements

The Sparse Matrix ADT(5/23)

- To implement the class SparseMatrix in C++
 - Class MatrixTerm stores nonzero terms
 - class SparseMatrix stores information about the spase matrix

```
class SparseMatrix; // forward declaration
class MatrixTerm {
 friend class SparseMatrix;
 private:
  int row, col, value; // row and col are index of the item
class SparseMatrix{
private:
 int Rows, Cols, Terms; // Rows/Cols: No. of rows/columns in the
                        // matrix and col are index of the item
 MatrixTerm smArray[MaxTerms]; }
```

The Sparse Matrix ADT (6/23)

- Representing the sparse matrix in the array a.
 - Represented by a two-dimensional array.
 - Each element is characterizedby <row, col, value>.

	coro	COLI	COI Z	COL	COI	1 6013
row 0	15	0	0	22	0	-15
row 1	0	11	3	0	0	0
row 2	0	0	0	-6	0	0
row 3	0	0	0	0	0	0
row 4	91	0	0	0	0	0
row 5	0	0	28	0	0	0
	Acres (CONTRACT)					

col 0 col 1 col 2 col 3 col 4 col 5

	row	col	value			row	col	value
smArray[0]	0	0	15	SM	Array[0]	0	0	15
[1]	0	3	22		[1]	0	3	22
[2]	0	5	-15		[2]	0	5	-15
[3]	1	1	11	tranchaca	[3]	1	1	11
[4]	1	2	3	transpose	[4]	1	2	3
[5]	2	3	-6		[5]	2	3	-6
[6]	4	0	91		[6]	4	0	91
[7]	5	2	28		[7]	5	2	28

row, column in ascending order

The Sparse Matrix ADT (7/23)

- Transpose a Matrix
 - For each row i
 - take element < i, j, value > and store it in element < j, i, value > of the transpose.
 - Difficulty: where to put < j, i, value >

 (0, 0, 15) ====> (0, 0, 15)
 (0, 3, 22) ====> (3, 0, 22)
 (0, 5, -15) ====> (5, 0, -15)
 (1, 1, 11) ====> (1, 1, 11)

 Move elements down very often.
 - For all elements in column j, place element < i, j, value > in element < j, i, value >

Iteration i: scan the array and process the entries with col = i

The Sparse Matrix ADT (8/23)

CurrentB
$$\longrightarrow$$
 b[0] 0 0 15 \longleftarrow a[0] 0 0 15 $\upparbox{01}{15}$ [1] 0 3 22 $\upparbox{02}{15}$ [2] 1 1 11 [3] [3] [4] [4] [5] 3 0 22 [6] [7] [7] 5 0 -15

Iteration 0: scan the array and process the entries with col = 0

The Sparse Matrix ADT (9/23)

	row	col	value		row	col	value
CurrentB → b [0]	0	0	15	a[0]	0	0	15
[1]	0	3	22	[1]	0	4	91
[2]	0	5	-15	[2]	1	1	11
[3]	1	1	11	[3]	2	1	3
[4]	1	2	3	[4]	2	5	28
[5]				[5]	3	0	22
[6]				[6]	3	2	-6
[7]				[7]	5	0 -	-15

Iteration 1: scan the array and process the entries with col = 1

The Sparse Matrix ADT (10/23)

```
SparseMatrix SparseMatrix::Transpose()
                  {// return transpose of *this
                     SparseMatrix b(cols, rows, terms); // capacity of b.smArray is terms
                     if (terms > 0)
                     {// nonzero matrix
                       int currentB = 0;
                       for (int c = 0 ; c < cols ; c++)
              8
                         for (int i = 0 ; i < terms ; i++)
                         // search and move the items in column c
columns •
                            if (smArray[i].col = = c)
   terms ←
                              b.smArray[currentB].row = c;
                              b.smArray[currentB].col = smArray[i].row;
              13
                              b.smArray[currentB++].value = smArray[i].value;
              14
              15
                     } // if (terms > 0) terminate
              16
              17
                     return b;
              18 }
                     Scan the array "columns" times.
                                                            ==> O(columns*terms)
                     The array has "terms" elements.
```

The Sparse Matrix ADT (11/23)

- Discussion: compared with 2-D array representation
 - O(columns*terms) vs. O(columns*rows)
 - elements --> columns * rows when non-sparse,
 O(columns^{2*}rows)
- Problem: Scan the array "columns" times.
 - We can transpose a matrix represented as a sequence of triples in O(columns + terms) time.
- Solution: Fast Matrix Transposing
 - 1. Determine the number of elements in each column of the original matrix.
 - Determine the starting positions of each row in the transpose matrix.

The Sparse Matrix ADT (12/23)

Fast Matrix Transposing

- Store some information to avoid scanning all terms back and forth
- FastTranspose requires more space than Transpose
 - RowSize
 - RowStart

The Sparse Matrix ADT (13/23)

```
row col value
                        row col value
b[0]
                              15
                    a[0]
                         0 4 91
 [1]
                     [2] 1 1 11
 [2]
                     [3] 2 1 3
 [3]
 [4]
                     [4] 2 5 28
                     [5] 3 0 22
 [5]
                     [6] 3 2 -6
 [6]
                         5 0 -15
 [7]
    index
            [0][1][2][3][4][5]
  RowSize
  RowStart = 0
```

- Calculate RowSize by scanning array a
- Calculate RowStart by scanning RowSize

The Sparse Matrix ADT (14/23)

```
row col value
                       row col value
          15
                           15
b[0]
                  a[0]
                    [1] 0 4 91
 [1]
                    [2] 1 1 11
 [2]
                    [3] 2 1 3
 [3]
                    [4] 2 5 28
 [4]
                    [5] 3 0 22
 [5]
                   [6] 3 2 -6
 [6]
                    [7] 5 0 -15
 [7]
  index
          [0][1][2][3][4][5]
RowSize = 3 2 1
RowStart = 0 3 5
```

The Sparse Matrix ADT (15/23)

```
row col value
                       row col value
b[0] 0 0 15
                           15
                  a[0]
                       0 4 91
 [1]
                   [2] 1 1 11
 [2]
                   [3] 2 1 3
 [3]
                    [4] 2 5 28
 [4]
                   [5] 3 0 22
 [5]
                    [6] 3 2 -6
                       5 0 -15
 [7]
                    [7]
           [0][1][2][3][4][5]
  index
RowSize = 3 2 1
RowStart = 1 3 5
```

The Sparse Matrix ADT (16/23)

```
row col value
                         row col value
b[0] 0 0 15
                    a[0] 0 0 15
                     [1] 0 4 91
 [1]
                         <del>1</del>1 11
 [2]
                     [3] 2 1 3
 [3] 1 1 11<sup>+</sup>
                     [4] 2 5 28
 [4]
                     [5] 3 0 22
 [5]
                     [6] 3 2 -6
     4 0 91
                     [7] 5 0 -15
 [7]
   index [0][1][2][3][4][5]
  RowSize = 3 | 2 1 0 1 1
  RowStart = 0
```

The Sparse Matrix ADT (17/23)

```
row col value
                      row col value
                 a[0] 0 0 15
b[0] 0 0 15
 [1] 0 3 22
                   [1] 0 4 91
 [2] 0 5 -15
                   [2] - 1 11
                   [3] 2 1 3
 [3] 1 1 11
 [4] 1 2 3
                   [4] 2 5 28
 [5] 2 3 -6
                   [5] 3 0 22
                   [6] 3 2 -6
 [6] 4 0 91
                   [7] 5 0 -15
 [7] 5 2 28
   index [0][1][2][3][4][5]
 RowSize = 3
              2 1 0 1 1
  RowStart = 0
```

The Sparse Matrix ADT (19/23)

```
SparseMatrix SparseMatrix::FastTranspose()
// The transpose of a(*this) is placed in b and is found in O(terms + columns) time.
 int *Rows = new int[Cols];
 int *RowStart = new int[Cols];
 SparseMatrix b;
 b.Rows = Cols; b.Cols = Rows; b.Terms = Terms;
 if (Terms > 0)
                    // nonzero matrix
  // compute RowSize[i] = number of terms in row i of b
                                                              O(columns)
    for (int i = 0; i < Cols; i++) RowSize[i] = 0;
  // Initialize
  for (i = 0; i < Terms; i++)
                                                  (terms)
   RowSize[smArray[i].col]++;
  // RowStart[i] = starting position of row i in b
  RowStart[0] = 0;
  for (i = 1; i < Cols; i++)
   RowStart[i] = RowStart[i-1] + RowSize[i-1];
                                                   O(columns-1)
```

The Sparse Matrix ADT (20/23)

```
for (i = 0; i < Terms; i++) // move from a to b
                                                    O(terms)
    int j = RowStart[smArray[i].col];
    b.smArray[j].row = smArray[i].col;
    b.smArray[j].col = smArray[i].row;
    b.smArray[j].value = smArray[i].value;
    RowStart[smArray[i].col]++;
  } // end of for
 } // end of if
delete [] RowSize;
delete [] RowStart;
return b;
} // end of FastTranspose
```

O(columns+terms)

addition

subtraction

transposing

multiplication

Recap...

Sparse Matrix Representation

- Use triple <row, column, value>
- Store triples row by row
- For all triples within a row, their column indices are in ascending order.
- Must know the numbers of rows and columns and the number of nonzero elements

	col 0	col 1	col 2	col 3	col 4	col 5
row 0	15	0	0	22	0 -	-15
row 1	0	11	3	0	0	0
row 2	0	0	0	-6	0	0
row 3	0	0	0	0	0	0
row 4	91	0	0	0	0	0
row 5	0	0	28	0	0	0
4						-

	row	col	value
smArray[0]	0	0	15
[1]	0	3	22
[2]	0	5	-15
[3]	1	1	11
[4]	1	2	3
[5]	2	3	-6
[6]	4	0	91
[7]	5	2	28

The Sparse Matrix ADT(21/23)

Matrix multiplication

– Definition:

Given A and B where A is $m \times n$ and B is $n \times p$, the product matrix D has dimension $m \times p$. Its < i, j > element is

$$d_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}$$

for $0 \le i < m$ and $0 \le j < p$.

– Example:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

The Sparse Matrix ADT (22/23)

Sparse Matrix Multiplication

- Definition: $D_{m \times p} = A_{m \times n} * B_{n \times p}$

- $d_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}$
- **Procedure**: Fix a row j of A and find all terms in column j of B for j=0,1,...,p-1.
- Method 1.
 Scan all of B to find all elements in j.
- Method 2.
 Compute the transpose of *B first*.
 (Put all column elements consecutively)
 - Once we have located the elements of row i of A and column j of B we just do a merge operation similar to that used in the polynomial addition of 2.2

2D Arrays

The elements of a 2-dimensional array a declared as:

```
int [][]a = new int[3][4];
```

may be shown as a table

```
a[0][0] a[0][1] a[0][2] a[0][3]
```

Rows Of A 2D Array

```
\frac{a[0][0]}{a[0][1]} = a[0][2] = a[0][3] \rightarrow \text{row } 0
\frac{a[1][0]}{a[1][1]} = a[1][2] = a[1][3] \rightarrow \text{row } 1
\frac{a[2][0]}{a[2][1]} = a[2][2] = a[2][3] \rightarrow \text{row } 2
```

Columns Of A 2D Array

2D Array Representation In C++

2-dimensional array x

view 2D array as a 1D array of rows

```
x = [row0, row1, row 2]

row 0 = [a,b, c, d]

row 1 = [e, f, g, h]

row 2 = [i, j, k, l]
```


Row-Major Mapping

Example 3 x 4 array:

- Convert into 1D array y by collecting elements by rows.
- Within a row elements are collected from left to right.
- Rows are collected from top to bottom.
- We get y[] = {a, b, c, d, e, f, g, h, i, j, k, l}

Two Dimensional Array Row Major Order

Representation of Arrays (3/5)

• Row major order: $A[i][j] : \alpha + i * u_1 + j$

```
col_0 col_1 col_{u1-1}

row_0 A[0][0] A[0][1] ... A[0][u1-1]

row_1 A[1][0] A[1][1] ... A[1][u1-1]

\alpha + u_1

row_{u0-1} A[u0-1][0] A[u0-1][1] ... A[u0-1][u1-1]

\alpha + (u_0-1)^*u_1
```

Locating Element x[i][j]

row 0 row 1 row 2 ... row i

- assume x has u_0 rows and u_1 columns
- each row has u₁ elements
- i rows to the left of row i
- so $i \times u_1$ elements to the left of x[i][0]
- so x[i][j] is mapped to position

```
i * u_1 + j of the 1D array
```

Column-Major Mapping

```
abcd
efgh
ijkl
```

- Convert into 1D array y by collecting elements by columns.
- Within a column elements are collected from top to bottom.
- Columns are collected from left to right.
- We get y = {a, e, i, b, f, j, c, g, k, d, h, l}

Representation of Multidimensional Arrays

- The internal representation of multidimensional arrays requires more complex addressing formula.
 - If an array is declared $a[u_0][u_1] \dots [u_n]$, then it is easy to see that the number of elements in the array is:

$$\prod_{i=0}^{n-1} u_i$$

Where Π is the product of the u_i 's.

- Example:
 - If we declare a as a[10][10][10], then we require 10 * 10 * 10 = 1000 units of storage to hold the array.

Representation of Multidimensional Arrays

- To represent a three-dimensional array, $A[u_0][u_1][u_2]$, we interpret the array as u_0 two-dimensional arrays of dimension $u_1 \times u_2$.
 - To locate a[i][j][k], we first obtain $\alpha + i^*u_1^*u_2$ as the address of a[i][0][0] because there are i two dimensional arrays of size $u_1^*u_2$ preceding this element.
 - $-\alpha + i^*u_1^*u_2 + j^*u_2 + k$ as the address of a[i][j][k].

Representation of Multidimensional Arrays

- Generalizing on the preceding discussion, we can obtain the addressing formula for any element $A[i_0][i_1]...[i_{n-1}]$ in an n-dimensional array declared as: $A[u_0][u_1]...[u_{n-1}]$
 - The address for $A[i_0][i_1]...[i_{n-1}]$ is:

$$\begin{array}{l} \alpha + i_{0} \, u_{1} \, u_{2} \, ... \, u_{n-1} \\ + i_{1} \, u_{2} \, u_{3} \, ... \, u_{n-1} \\ + i_{2} \, u_{3} \, u_{4} \, ... \, u_{n} \\ \vdots \\ + i_{n-2} \, u_{n-1} \\ + i_{n-1} \end{array} \right. = \alpha + \sum_{j=0}^{n-1} i_{j} a_{j} \quad \text{where} \quad \left\{ \begin{array}{l} a_{j} = \prod_{k=j+1}^{n-1} u_{k} & 0 \leq j \leq n-1 \\ a_{n-1} = 1 \\ \end{array} \right.$$

The String ADT

- The String: component elements are characters.
 - A string to have the form, $S = s_0, ..., s_{n-1}$, where s_i are characters taken from the character set of the programming language.
 - If n = 0, then S is an empty or null string.
 - Operations in ADT String

The String Abstract data type(2/19)

• ADT String: class String public: *String*(**char** **init*, **int** *m*); // 建構子:將 *this 初始化為長度為 m 的字串 init。 **bool operator** = = (String t); // 如果 *this 所表示的字串等於 t,回傳 true;否則回傳 false。 bool operator!(); // 如果 *this 是空字串,回傳 true; 否則回傳 false。 int Length(); // 回傳 *this 裡的字元數。 String Concat(String t); // 回傳一個字串,它的內容是字串 *this 後接著字串 t。 String Substr(**int** i, **int** j); // 如果這些位置在 *this 裡是有效的,那麼回傳 *this 裡的第i, i+1, ..., i+i-1// 共i個字元的子字串;否則丟出一個例外。 int Find(String pat); // 回傳 pat 在 *this 裡的開始位置 i; // 如果 pat 是空字串或者 pat 不是 *this 的子字串則回傳-1。

String

- Usually string is represented as a character array.
- General string operations include comparison, string concatenation, copy, insertion, string matching, printing, etc.

String Pattern Matching

- Algorithm: Simple string matching
- Input: P and T, the pattern and text strings; m, the length of P.
 The pattern is assumed to be nonempty.
- **Output**: The return value is the index in *T* where a copy of *P* begins, or -1 if no match for *P* is found.

A simple algorithm

Exhaustive Pattern Matching

```
int String::Find(String pat)
{// if pat cannot be found in *this, return -1; otherwise, return the starting address of patin *this
    for (int start = 0; start <= Length() - pat.Length(); star ++)
    { // start from str [start] to find matched character
        int j;
        for (j = 0; j < pat.Length() && str [start+j] == pat.str[j]; j++)
        if (j == pat.Length()) return start; // 找到相同的字串
        // not match at start
    }
    return -1; // pat is an empty string or pat doesn't exist in s
}</pre>
```

 $O(lengthP \times lentghS)$

KMP Algorithm

- KMP algorithm
 - Proposed by Knuth, Morris and Pratt
- Concept
 - Use the characteristic of the pattern string
- Phase 1:
 - Generate an array to indicate the moving direction.
- Phase 2:
 - Use the array to move and match string

The First Case for the KMP Algorithm

The Second Case for the KMP Algorithm

The Third Case for the KMP Algorithm

KMP Algorithm (cont'd)

• Definition: If $p=p_0\dots p_{n-1}$ is a pattern, then its failure function, f, is defined as

- If a partial match is found such that $s_{i-j}\dots s_{i-1}=p_0\dots p_{j-1}$ and $s_i\neq p_j$ then
 - matching may be resumed by comparing s_i and $p_{f(i-1)+1}$ if $j \neq 0$.
 - If j=0, then we may continue by comparing s_{i+1} and p_0 .

Fast Matching Example: Failure Function Calculation

The largest k such that 1. k < j $2. k \ge 0$ $3. p_0 p_1 \dots p_k = p j_{-kpj-k+1} p_j$

•
$$j = 0$$

- Since k < 0 and $k \ge 0$, no such k exists

$$-f(0) = -1$$

- j = 1
 - Since k < 1 and $k \ge 0$, k may be 0
 - When k = 0 $p_0 = a$ and $p_1 = b$ \neq
 - -f(1) = -1

j	0	1 b	2	3	4	5	6	7	8	9
P	a	b	C	a	b	C	a	C	a	b
f	_1	_1								

Fast Matching Example: Failure Function

Calculation (contd.)

The largest k such that

$$2.k \ge 0$$

$$3.p_0p_1...p_k = pj_{-kpj_k+1}p_j$$

•
$$j = 2$$

- Since k < 2 and $k \ge 0$, k may be 0, 1
- When k = 1 $p_0p_1 = ab$ and $p_1p_2 = bc$ \neq
- When k = 0 $p_0 = a$ and $p_2 = c$ \neq
- -f(2) = -1

j	0	1	2	3	4	5	6	7	8	9
p	a	b	C	a	b	C	a	C	a	b
f	-1	-1	-1							_
k=0										

Fast Matching Example: Failure Function Calculation (contd.)

```
• j=4

— Since k<4 and k\geq 0, k may be 0, 1, 2, 3

— When k=3 p_0p_1p_2p_3=abca and p_1p_2p_3p_4=bcab \neq

— When k=2 p_0p_1p_2=abc and p_2p_3p_4=cab \neq

— When k=1 p_0p_1=ab and p_3p_4=ab =

— When k=0 p_0=a and p_4=b \neq

— f(4)=1
```

j	0	1	2	3 a 0	4	5	6	7	8	9
p	a	b	C	a	b	C	a	C	a	b
f	-1	-1	-1	0	1					

Fast Matching Example: Failure Function Calculation (contd.)

- A restatement of failure function
- f(j) = -1 if j = 0
 - $-f^m(j-1) + 1$ where m is the least integer k for which $p_{f^k(j-1)+1} = p_j$
 - -1 if there is no k satisfying the above

$$f^{1}(j) = f(j)$$
 and $f^{m}(j) = f(f^{m-1}(j))$

Failure Function

```
void String::FailureFunction()
   {// 為字串樣本 *this 計算失敗函數。
      int lengthP = Length();
    f[0] = -1;
      for (int j = 1; j < lengthP; j++) // 計算 f [j]
           int i = f[j-1];
           while ((*(str+j)!=*(str+i+1)) \&\& (i>=0)) i = f[i];
           if (*(str+j) = = *(str+i+1))
10
                f[j] = i + 1;
            else f[i] = -1;
11
12
13
   }
```

Pattern-matching with a Failure Function

```
int String::FastFind(String pat)
                     2 \{//  決定 pat 是否為 s 的子字串。
                          int posP = 0, posS = 0;
                          int lengthP = pat.Length(), lengthS = Length();
while((posP < lengthP) && (posS < lengthS))
                            if (pat.str[posP] = = str[posS]) {// 匹配到相同的字元
                               posS++;
                               else posP = pat.f[posP - 1] + 1;
                     13
                          if (posP < lengthP) return -1;
                          else return posS—lengthP;
                     15
```

Fast Matching Example: String Matching

Fast Matching Example: String Matching (contd.)

The Analysis of the KMP Algorithm

- O(m+n)
 - O(lengthP) for computing function f
 - Program 2.17
 - O(lengthS) for searching P
 - Program 2.16