Combinational ATPG

- Introduction
- Deterministic Test Pattern Generation
 - Boolean difference *
 - Path sensitization **
 - D-Algorithm**
 - PODEM**
 - ◆ FAN**
 - SAT-based *
- Acceleration Techniques
- Concluding Remarks

Two ATPG categories:

*Boolean-based methods

**Path-based methods

Motivating Problem

- We do not need to know Boolean expression
 - we can just find a test from circuit netlist

Let's Analyze What We Did

- Fault activation: Assign gate inputs to generate appropriate value at fault site (H)
 - A=0
- Sensitization: Assign side-inputs to non-controlling value to propagate fault effect forward
 - → J=0
- Justification: Assign primary inputs to achieve desired values
 - ▶ B=1

Single Path Sensitization

- Single path sensitization (SPS) Algorithm:
- ① Fault activation (aka. Fault excitation)

 Assign gate inputs to generate value at fault site

 Desired value opposite to the faulty value (e.g. 0 for SA1)
- ② Fault effect propagation:
 - Select one single path from fault site to an output Assign side inputs to sensitize fault effect along the path
- 3 Justification:

Assign primary inputs to justify desired values assigned in

0&2

If justification fails, backtrack.

Example

Consider stuck-at-1 fault

- Tault activation
 - a = b = c = 1
- 2 Fault effect propagation: two propagation paths
 - Choose path {G5}. Want G2 = 1
- 3 $a = d = 0 \rightarrow justification fails!$
- ② Backtrack! Choose another path {G6}. Want G4 = 1
- \circ $c = 1, e = 0 \rightarrow justification succeeds$
 - test pattern: abce' generated

Quiz

Q1: Generate a test pattern for *E* SA1 fault. Choose path *ELHK*.

A:

Q2: (Cont'd) Backtrack to another path *EFJK*.

A:

Important to Choose Correct Path

But it is difficult...

Backtrack

When we made a mistake in decision tree, conflict occurs

> Go back to a previous decision point

- **Change decision**
- Redo the rest

Pros and Cons

- © Pros
 - Easy to implement
 - No Boolean equation needed
- **Cons**
 - Q1: Too many paths to choose, which one is correct?
 - Q2: Single-path sensitization not enough to detect all faults

- Single path sensitization (SPS) Algorithm:
- Fault activation (aka. Fault excitation)
 Assign internal signals to generate value at fault site
 Desired value opposite to the faulty value
- ② Fault effect propagation: Select one single path from fault site to an output Assign internal signals to sensitize fault effect along the path
- 3 Justification:

Assign primary inputs to justify signal values assigned in ①&② If justification fails, backtrack.

Q1: Too Many Paths!

- How to choose correct path?
 - No smart algorithm
 - Simple idea: exhaustively try all paths
- How many paths in a circuit?
 - Worst case example: 3n gates, 2n paths! (n = # of stages)

of Paths is Exponential to Circuit Size! Impossible to Try All

Q2: Single Path Not Enough

Example

- ① Fault activation: a = b = 1
- 2 Fault propagation: Choose path (G3-G6). want G2 = G4 = G5 = 1
- 3 G4 = 1 \rightarrow e = 0 \rightarrow G5 = 0 \rightarrow justification fails
- 2 Choose another path {G4-G6}. Justification also fails.
- SPS algorithm fails

This Fault Is Actually Testable. Why SPS Fail?

Solution: Multiple Path Sensitization

- This fault requires multiple path sensitization
- Both two paths {G3-G6} and {G4-G6} are sensitized
 - Error is propagated along both paths simultaneously
 - G2 = G5 = 1 , c = e = 1
 - Test generated successfully
- FFT: can we extend 1-path to 2, 3, 4, 5...path sensitization?

Complete ATPG Algorithm

- A complete ATPG exhausts the whole input space (2ⁿ)
 - If a test pattern exists, complete ATPG will find it for sure
- An incomplete ATPG does NOT exhaust the whole input space
 - ATPG may fail even though a test pattern DOES exist

Complete ATPG Guarantees to Find Solution if it exists

Quiz

Q: Is Single Path Sensitization a complete ATPG algorithm?

Hint: recall this example

- Single path sensitization (SPS) Algorithm:
- Fault activation (aka. Fault excitation)

 Assign internal signals to generate value

Assign internal signals to generate value at fault site Desired value opposite to the faulty value

② Fault effect propagation:

Select one single path from fault site to an output Assign internal signals to sensitize fault effect along the path

3 Justification:

Assign primary inputs to justify signal values assigned in 0&2 If justification fails, backtrack.

Summary

- Single Path Sensitization Algorithm
 - ① Fault activation
 - ② Fault effect propagation
 - 3 Justification
- Complete ATPG: guarantee to find solution if one exists
- Disadvantages of SPS algorithm
 - Number of paths is exponential to circuit size. Too many!
 - Single path sensitization is incomplete ATPG

FFT

- Q1: If SPS fails, can we extend 1-path to 2, 3, 4, 5... paths?
 - What is the problem for multiple path sensitization algorithm?
- Q2: Pros and Cons of complete ATPG algorithm?
 - in terms of run time and fault coverage

