

COMPASS: High-Efficiency Deep Image Compression with Arbitrary-scale Spatial Scalability

Jooyoung Lee² Munchurl Kim*,1 Jongmin Park¹

¹Korea Advanced Institute of Science and Technology (KAIST), Korea ²Electronics and Telecommunications Research Institute (ETRI), Korea

*Corresponding author

⊠: jm.park@kaist.ac.kr (a): https://www.viclab.kaist.ac.kr

: https://github.com/ImJongminPark/COMPASS

INTRODUCTION

★ Spatially Scalable Image Compression

- Various resolutions of an image are encoded into a single bitstream in a hierarchical manner with multiple layers
- ★ Limitations of the existing methods
- Tool-based coding: The coding efficiency is insufficient compared to the single-layer coding
- NN-based coding: Only one fixed scale factor of 2 is used between adjacent layers

< Limitation of the existing NN-based methods >

★ COMPASS (our contributions)

- The first NN-based spatially scalable image compression method that supports arbitrary scale factors
- Significantly better coding efficiency than the existing methods (comparable or even better coding efficiency compared to the single-layer coding)
- New adoption of INR (implicit neural representation)based inter-layer arbitrary scale prediction

CONCEPT

- Base Layer (BL) encodes the lowest resolution image
- Enhancement Layers (ELs) sequentially encode higher resolution images (Parameters of all the ELs are shared)

PROPOSED METHOD

★ Overall Network of COMPASS

- i) One or more ELs operate in an iterative manner
- ii) LIFF module effectively predicts/reduces the redundancy between adjacent layers for arbitrary scales
- iii) Residual Compression module only encodes the essential residues with high coding efficiency

★ LIFF: Local Implicit Filter Function

- Inter-layer arbitrary scale prediction based on implicit neural representation (inspired by LIIF and Meta-SR)
- 3 stages: (1) Feature Extraction, (2) Filter Generation, (3) Pixel-wise Prediction

· Local grid: a normalized relative coord.

$$r^{k}(i,j) = p^{k}(i,j) - p^{k-1}(i',j')$$
*nivel coord

*pixel coord. *corresponding pixel coord. for the current layer for the prev. layer

· Scale token : a height/width ratio

$$s^{k}(i,j) = (2 \cdot \frac{H^{k-1}}{H^{k}}, 2 \cdot \frac{W^{k-1}}{W^{k}})$$

OPTIMIZATION

★ Combined RD loss function (CRD loss)

- Summation of RD losses for all ELs

- The same λ value to maintain the R-D balance over layers

QUANTITATIVE RESULTS

★ BD-rate (↓) of our COMPASS over the various method (Negative value : BD-rate gain of ours)

	BD-rate↓ for Two-layer scalable coding					BD-rate↓ for Three-layer scalable coding				
Methods	Scale Factors of final EL (vs. BL)					Scale Factors of final EL (vs. BL)				
	1.2×	1.6×	2.0×	2.4×	2.8×	2.4×	2.8×	3.2×	3.6×	4.0×
SHVC	-53.88%	-42.58%	-35.87%	-26.24%	-22.34%	-58.33%	-51.51%	-46.72%	-43.65%	-33.34%
Simulcast (Mean-Scale)	-44.04%	-31.40%	-16.29%	-16.35%	-12.38%	-49.85%	-42.20%	-35.33%	-30.81%	-22.90%
Mei et al. (original)	-36.26%	-29.44%	-28.20%	-33.19%	-36.31%	-47.17%	-38.73%	-34.34%	-33.56%	-32.12%
Mei et al. (enhanced)	-29.09%	-17.45%	-13.52%	-20.63%	-23.94%	-38.23%	-26.46%	-19.70%	-17.08%	-14.23%
Single-layer (Mean-Scale)	-8.19%	-3.70%	8.80%	0.31%	0.94%	-6.60%	-4.23%	-1.25%	-0.74%	4.74%
*Kodak Dataset										

VISUAL RESULTS -

★ Visual Comparison w/ fixed scale of 2

