Multi-scale modeling of powder processes: Bi-directional coupling of population balance models in gPROMS with discrete element models in STAR-CCM+

Dana Barrasso^{a,b}, Jianfeng Li^b, Kristian Debus^c, Ravindra Aglave^c, Thomas Eppinger^c, Rohit Ramachandran^a, Sean Bermingham^b

> ^aRutgers, the State University of New Jersey ^bProcess Systems Enterprise ^cCD-adapco

ENGINEERING RESEARCH CENTER FOR

STRUCTURED ORGANIC PARTICULATE SYSTEMS

RUTGERS UNIVERSITY
PURDUE UNIVERSITY
NEW JERSEY INSTITUTE OF TECHNOLOGY
UNIVERSITY OF PUERTO RICO AT MAYAGÜEZ

Introduction

Objective: to develop a multi-scale, mechanistic model for wet granulation processes.

- Process understanding and Quality-by-Design
- Existing approaches are insufficient
- Outline
 - Background and approach
 - Mechanistic PBM development in gPROMS
 - PBM-DEM coupling strategy and demonstration
 - Summary and future work
- Ongoing collaboration between Rutgers University (ERC-SOPS), Process Systems Enterprise, and CD-adapco.

Wet granulation

2 Aggregation & Consolidation

Breakage & Attrition

(Iveson *et al.*, 2001)

Layering

PBM vs. DEM

Population balance modeling:

- Tracks number of particles in each size class based on rate expressions for sub-processes
 - Typically empirical or semi-empirical
 - Effects of many process parameters and material properties are not accounted for
- Spatial information is not inherent
 - Compartmental PBMs need transfer rate data/assumptions
 - Inhomogeneous liquid distributions
- Many unknown parameters must be estimated with experimental data

Discrete element modeling:

- Tracks each particle in space using laws of physics
- Can output collision, velocity, force, and spatial data at the particle scale.
- Does not inherently simulate rate processes, such as aggregation.
- Computationally intensive

PBM & DEM: a multi-scale approach

Mechanistic PBM development

Objective:

Incorporate mechanistic and spatial details into multi-scale model.

Features:

- Mechanistic aggregation rate
- Liquid addition
- Porosity and consolidation
- Internal vs. external liquid
- Spatial compartments and particle/liquid transfer

Detailed gPROMS Model

- UNIT: Population balance model
 - Number and properties of particles of each volume class in each spatial compartment
 - Number of free liquid droplets in each compartment
 - Uses DEM results in rate expressions for subprocesses

- Uses current PBM results to determine collision rates, relative velocities, and transfer between compartments.
- UNIT: Universal parameters
 - All user input settings
- UNIT: Volume domain
 - Sets volume grid for PBM.
 - Calculates cell location for colliding particles.

PBM with lumped parameters

- RateChanges
 - Determines rates of change in each compartment of
 - Number of particles in each bin
 - Total liquid and pore volumes in each bin
 - Free liquid droplets
 - Net rates of four subprocesses

Lumped parameter approach

- Multi-dimensional PBM tracks simultaneous distributions in multiple attributes (such as size and liquid content)
- Lumped parameter approach reduces dimensionality of distribution
 - Assumes every particle in the same bin has the same amount of lumped parameter.
 - Each lumped parameter creates an additional PBM to track volume of that component in each bin.
 - Lumped property can change over time due to aggregation, liquid addition, and other rate processes.
 - Lumped property can also depend on particle size.
 - Using compartments, spatial inhomogeneities can still exist.

Sub-processes

- Sub-processes
 - Aggregation
 - Liquid addition
 - Consolidation
 - Transfer

Mechanistic aggregation rate

Frequency $\beta(v,v') = C(v,v')\Psi(v,v') \qquad \qquad \Psi(v,v') = \begin{cases} 1 \ for \ St \leq St^* \\ 0 \ for \ St > St^* \end{cases}$ Efficiency

- Collision rate can be directly provided by DEM
- Collision efficiency depends on Stokes criterion
 - Critical stokes number a function of thickness of surface liquid and particle surface asperity $8\widetilde{m}u_{s}$

$$St^* = \ln \frac{\lambda_{12}}{h_a} \qquad St = \frac{8\widetilde{m}u_0}{3\pi\mu\tilde{d}^2}$$

- Stokes number depends on particle masses and diameters, relative velocity, and binder viscosity
- Critical velocity

$$u_{cr} = \frac{3\pi\mu d^2}{8\widetilde{m}} \ln \frac{\lambda_{12}}{h_a}$$

Average relative collision velocity provided by DEM

Liquid addition

$$\dot{L}(v,x) = f_{drop}(v,x)F(v,x)N_{drop}(x)v_{drop}$$

- 1-D PBM with liquid volume as "lumped" parameter
- Rate of liquid addition to any bin (v) and compartment (x) is proportional to:
 - Fractional rate of liquid droplet uptake
 - Total particles in that bin and compartment
 - Total number of free droplets in compartment
 - Droplet volume

$$f_{drop}(v,x) = \frac{n_{drop}(v,x)}{N_{drop}(x)F(v,x)\Delta t}$$

- Fractional rate of liquid droplet uptake can be estimated using DEM
 - Create droplets that disappear upon collision with a particle.
 - Count these collisions over a time interval, by particle size and compartment.
 - Calculate rate, per particle, per droplet, per second.
- Liquid volume is transferred during other rate processes, such as aggregation.

Porosity and consolidation

$$\varepsilon(v) = \frac{p(v)}{s + p(v)}$$

- Particle pore volume consists of internal space occupied by air or liquid.
 - Lumped parameter approach to track pore volume of each particle in each bin and spatial compartment
 - As particles collide and deform, porosity decreases

- Exponential decay in porosity approaching a minimum value

$$\dot{p}_{cons} = -c \left(\frac{1 - \varepsilon_{min}}{1 - \varepsilon} \right) \left(p - \frac{s \varepsilon_{min}}{1 - \varepsilon_{min}} \right)$$

- Unknown rate coefficient
- Collision frequency (total per bin) can be included

$$c = c_0 \dot{N}_{coll}(v)$$

Spatial compartments

- PBM solved in each compartment
- Liquid addition region specified by user
- Transfer between compartments
 - Fraction of particles transferred
 - Number of particles crossing boundaries provided by DEM, converted into rate per particle
 - Particles transfer can occur into and out of compartments at the same time
 - Compartments can be arbitrary size, shape, and position.
- Strategy needed to define compartments

$$\frac{dF(v,x)}{dt} = \Re_{agg,net}(v,x) - \sum_{x'} F(v,x)\alpha(v,x,x') + \sum_{x'} F(v,x')\alpha(v,x',x)$$

Spatial compartments

Compartments

Create compartments in STAR-CCM+

Track particle transfer between compartments

Size	Initial Region	Color	
Small	Left	White	
Small	Right	Blue	
Large	Left	Black	
Large	Right	Red	

End goal for user:

- Define compartments as regions of arbitrary size and shape in STAR-CCM+
- Specify total the number of regions in gPROMS
- Turn on or off sub-processes in each region (liquid addition, inflow/outflow)

Particle and bulk properties

Main granulation model

- Mass and volume balances
- Bulk properties in each compartment and overall (d4,3, mass distributions)

Particle Properties model

- Per-particle volumes in each bin, compartment (pore, liquid)
- Internal and external liquid
- Total volume and diameter, wet and dry masses
- Aggregation information (surface asperity, surface liquid thickness, critical Stokes number)

Internal and external liquid

 Total liquid volume, per particle, calculated using lumped parameter

Dry porous particle

- Distinction between internal liquid (trapped in pores) and external liquid (on the surface)
 - Maximum internal liquid represented as a fraction of the total pore volume
 - Remainder is on surface, available for aggregation
- As porosity decreases, surface liquid increases, resulting in greater aggregation rates
- Drop penetration time
 - Based on Washburn equation for capillary flow
 - Droplet volume, effective porosity and pore radius, binder viscosity, surface tension, and contact angle
 - Order of magnitude for small amounts of liquid: 1e-4 s

Chaudhury, et al. (2014) Chemical Engineering Science

Summary of model

User inputs

- Initial conditions
- Material properties (including DEM parameters)
- Process parameters (batch time, L/S ratio, screw speed)
- Model settings (compartments, volume grid, kernel selection)
- DEM settings (simulation time, time step, trigger)

From gPROMS to DEM

- PSD in each compartment
- Particle properties
- Liquid addition details
- Process parameters
- DEM settings

From DEM to gPROMS

- Collision rate between bins
- Average relative velocity of collisions
- Collision rate for each bin
- Liquid uptake rate
- Particle transfer rate between compartments

Results of uncoupled gPROMS model

Higher liquid-to-solid ratio results in larger granules.

– High: 0.35

- Low: 0.3

Average diameter vs. time

Higher consolidation rate results in faster aggregation.

Consolidation rate constant	Percent surface liquid	
5e-4/s	38%	
1e-3/s	62%	

Average diameter vs. time

Coupling with STAR-CCM+: approach

gPROMS

- Population balance, rate changes
- Controls process parameters and problem set up (number and sizes of particles, liquid addition rates, rotational speeds, etc.)

STAR-CCM+

- Collision rates and forces
- Flux and spatial behavior
- Liquid addition

Data transfer

- Text files
- DEM simulations triggered by sufficient changes to key variables

Schedule and FPI

SEND:

Writes particle distribution to text file.

GET:

- Runs DEM using system command.
- Reads DEM results from file, passes values to gPROMS.

REASSIGN:

 Defines criterion for next DEM iteration.

STAR-CCM+ macro:

- Reads text file.
- Creates/deletes particles.
- Runs simulation.
- Exports results to text file.

CONTINUE:

Runs PBM until condition is met.

gPROMS/STAR-CCM+ simulation workflow

- Create simulation file in STAR-CCM+.
 - Define geometry (Future: define compartments).
 - Set model physics to turn on DEM.
 - Specify movement of parts (impeller or screw).
 - Create scenes to output images.

- Specify parameters in gPROMS model.
 - DEM settings (time, time step, trigger)
 - Volume grid size and bounds
 - Initial PSD, porosity, and liquid content
 - Process parameters and material properties

- Run process with FPI and appropriate SCHEDULE.
 - Grid size and particle/collision properties are automatically read and transferred to STAR-CCM+.
 - STAR-CCM+ simulation is modified and executed by gPROMS during GET command.

gPROMS/STAR-CCM+ coupling

- Mechanistic model with one spatial compartment, only data transferred from STAR-CCM+ is collision rate.
- 20 bins (total volume)
 - 0.3-2.2 mm in diameter
 - Lumped solid/pore, liquid
 - Internal and external liquid
 - L/S=0.3, added from 2-12 seconds
- STAR-CCM+ called when d_{4,3} changes by more than 10% or liquid-to-solid ratio changes by more than 0.1.
- 60 s simulation
 - Total simulation time: 4 hrs
 - CPU time: 18 s

gPROMS/STAR-CCM+ results

gPROMS

Summary and future work

- Modeling granulation is a multi-scale problem
 - Developed a detailed, mechanistic PBM for wet granulation processes in gPROMS.
 - Established and demonstrated a bi-directional coupling technique with STAR-CCM+.
- Ongoing and future work
 - Expand data transfer from STAR-CCM+ to gPROMS (liquid addition, spatial compartments, relative velocity)
 - Include additional rate processes, such as breakage, nucleation, and layering.
 - Develop efficient solution techniques for multi-dimensional PBMs in gPROMS.
 - Test and validate multi-scale model.

Acknowledgements

- National Science Foundation Engineering Research Center for Structured Organic Particulate Systems (ERC-SOPS)
- Process Systems Enterprise for providing this internship opportunity.
- Jim Litster (Purdue) for his useful feedback.
- CD-adapco for their support and guidance.

Thank you.

BACKUP SLIDES

Customizing the DEM simulation

- Java macro reads from three text files, modifies existing simulation
 - General simulation parameters: total simulation time, DEM time step, number of bins, rotational speed
 - Bin information: Number of particles in each bin and their properties (size, Poisson ratio, density, Young's modulus)
 - Collision information: Contact model parameters for each bin with each other bin and the walls (coefficients of restitution, friction)

Bin Number	Diameter (mm)	Count	Density (kg/m³)	Poisson's Ratio	Young's Modulus (MPa)
1	0.4	500	2000	0.2	0.2
2	0.5	400	1750	0.2	0.2
3	0.6	300	1500	0.2	0.2
4	0.7	200	1250	0.2	0.2
5	0.8	100	1000	0.2	0.2
6	0.9	50	1000	0.2	0.2
7	1	25	1000	0.2	0.2

Execution of Java macro

- Before simulation:
 - Changes **simulation parameters**.
 - Creates **DEM phase** (particle type) for each bin.
 - Defines interactions between each pair of phases.
 - Checks if particles need to be removed (when F decreases), and if so, removes particles.
 - Creates an injector for each bin.
 - Creates reports and monitors for key information we want to **output.**
- Runs simulation.
- After simulation:
 - Exports contact data over time.
 - Parses file to approximate number of collisions, relative velocity.
 - Creates **text file** with number of collisions between each pair of bins, number of particles in those bins, and average collision velocity.

