Relations binaires – Théorie

1 Relations binaires: Les bases

Vidéo 1. Une vidéo qui présente les concepts de bases des relations binaires : https://www.youtube.com/watch?v=W7cH06qDImM

Définition 2 (Relation binaire entre deux ensembles). Soient A et B deux ensembles. Une **relation binaire** entre A et B est un sous-ensemble de $A \times B$.

Soit $R \subseteq A \times B$ une relation binaire entre A et B. Soient $a \in A$ et $b \in B$. Si $(a,b) \in R$, on dira que a est en relation avec b (pour la relation R), dans ce cas, on notera aRb. Si $(a,b) \notin R$, on dira que a n'est pas en relation avec b (pour la relation R), dans ce cas, on notera aRb.

Exercice 3. Donnez des exemples de relations binaires entre deux ensembles A et B, avec $A \neq B$.

Définition 4 (Relation binaire sur un ensemble). Soit A un ensemble. Une **relation binaire** $sur\ A$ est un sous-ensemble de $A \times A$.

Exercice 5. Donnez des exemples de relations binaires sur un ensemble.

Définition 6 (Relation réflexive). Soit $R \subseteq A \times A$. On dit que R est **réflexive** ssi $\forall a \in A \quad aRa$.

Exercice 7. Donnez des exemples et des contre-exemples de relations binaires réflexives.

Définition 8 (Relation symétrique). Soit $R \subseteq A \times A$. On dit que R est **symétrique** ssi $\forall a \in A \ \forall b \in A \ aRb \Rightarrow bRa$.

Exercice 9. Donnez des exemples et des contre-exemples de relations binaires symétriques.

Exercice 10. Prouvez que $R \subseteq A \times A$ est une relation symétrique ssi

$$\forall a \in A \ \forall b \in A \quad aRb \Leftrightarrow bRa.$$

Définition 11 (Relation transitive). Soit $R \subseteq A \times A$. On dit que R est **transitive** ssi $\forall a \in A \ \forall b \in A \ \forall c \in A \ (aRb \wedge bRc) \Rightarrow aRc$.

Exercice 12. Donnez des exemples et des contre-exemples de relations binaires transitives.

Définition 13 (Relation antisymétrique). Soit $R \subseteq A \times A$. On dit que R est antisymétrique ssi

$$\forall a \in A \ \forall b \in A \ (aRb \land bRa) \Rightarrow a = b.$$

Exercice 14. Donnez des exemples et des contre-exemples de relations binaires antisymétriques.

Vidéo 15. Vidéo avec deux exemples et un contre-exemple de relation antisymétrique : https://www.youtube.com/watch?v=jXdOuHW3qgQ&feature=youtu.be

Définition 16 (Relation inverse). Soit $R \subseteq A \times B$ une relation binaire. La **relation inverse**, notée R^{-1} , est définie par

$$R^{-1} = \{(b, a) \in B \times A \mid aRb\}.$$

Exercice 17. Montrer que $R \subseteq A \times A$ est symétrique si et seulement si $R = R^{-1}$.

Définition 18 (Composition de relations). Soient $R_1 \subseteq A \times B$ et $R_2 \subseteq B \times C$. La composition des relations R_1 et R_2 , notée $R_2 \circ R_1$, est définie par

$$R_2 \circ R_1 = \{(a,c) \in A \times C \mid \exists b \in B \ aR_1b \wedge bR_2c\}.$$

Vidéo 19. Une vidéo qui illustre la composition de relations : https://youtu.be/LTgKAVw4wmw

Exercice 20. Soit $A = \{1, 2, 3\}$, $B = \{x, y, z\}$ et $C = \{\alpha, \beta, \gamma\}$. On définit deux relations binaires $R_1 \subseteq A \times B$ et $R_2 \subseteq B \times C$ comme suit

$$R_1 = \{(1, x), (2, y), (3, z)\}; R_2 = \{(x, \alpha), (x, \beta), (x, \gamma), (y, \gamma), (y, \beta)\}.$$

Calculez $R_1 \circ R_2$ et $R_2 \circ R_1$. Comparez les résultats obtenus.

Définition 21 (Composition d'une relation avec elle-même). Soit $R \subseteq A \times A$. Soit $n \in \mathbb{N}_0$, on définit (par induction sur n) R^n de la façon suivante. $R^1 = R$ et $R^{n+1} = R^n \circ R = R \circ R^n$.

Exercice 22. Soit $R \subseteq A \times A$. Prouver que les trois affirmations suivantes sont équivalentes.

- 1. R est transitive.
- 2. $R^2 \subseteq R$.
- 3. Quel que soit $n \in \mathbb{N}_0$, $\mathbb{R}^n \subseteq \mathbb{R}$.

2 Les relations d'équivalence

Vidéo 23. Une vidéo qui présente le concept de relation d'équivalence et son lien avec les partitions : https://www.youtube.com/watch?v=OqoX6sNm2Jc

Vous remarquerez que dans la vidéo, la classe d'équivalence d'un élément a (pour la relation R) est notée à, alors que nous la notons $[a]_R$ (voir Définition 26).

Définition 24 (Relation d'équivalence). Soit $R \subseteq A \times A$. On dit que R est une **relation** d'équivalence ssi R est réflexive, symétrique et transitive.

Exercice 25. Parmi les relations binaires déjà rencontrées, identifier celles qui sont des relations d'équivalence.

Définition 26 (Classe d'équivalence). Soit $R \subseteq A \times A$ une relation d'équivalence. Soit $a \in A$. La classe d'équivalence de a (pour la relation R), notée $[a]_R$, est définie par

$$[a]_R = \{b \in A \mid aRb\}.$$

Théorème 27. Soit $R \subseteq A \times A$ une relation d'équivalence sur A. Soient $a \in A$ et $b \in A$. Les trois affirmations suivantes sont équivalentes.

(i)
$$aRb$$
 (ii) $[a]_R = [b]_R$ (iii) $[a]_R \cap [b]_R \neq \emptyset$.

Exercice 28. Prouver le Théorème 27.

Définition 29 (Partition d'un ensemble). Soit A un ensemble. Soit $\mathcal{P} = \{A_i \mid A_i \subseteq A\}$ un ensemble de sous-ensembles de A. On dit que \mathcal{P} est une **partition de l'ensemble** A ssi les deux proporiétés ci-dessous sont satisfaites

$$(1) \cup_{A_i \in \mathcal{P}} A_i = A \quad (2) \forall A_i \in \mathcal{P} \ \forall A_j \in \mathcal{P} \quad A_i \neq A_j \Rightarrow A_i \cap A_j = \emptyset.$$

Exercice 30. Donner si possible

- 1. Une partition de l'ensemble $\{1,2,3\}$ contenant un seul élément.
- 2. Une partition de l'ensemble {1,2,3} contenant deux éléments.
- 3. Une partition de l'ensemble $\{1,2,3\}$ contenant trois éléments.
- 4. Une partition de l'ensemble N contenant un seul élément.
- 5. Une partition de l'ensemble \mathbb{N} contenant une infinité d'éléments.

Définition 31 (Quotient d'un ensemble par une relation d'équivalence). Soit R une relation d'équivalence sur l'ensemble A. Le **quotient de** A **par** R, noté A/R, est l'ensemble des classes d'équivalences induites par R sur A. Formellement :

$$A/R = \{ [a]_R \mid a \in A \}.$$

Vidéo 32. Une vidéo qui illustre le concept de quotient sur un exemple : https://youtu.be/bZIhHaDQQ4U

Exercice 33. Soit R une relation d'équivalence sur l'ensemble A. Montrer, à l'aide du Théorème 27 que A/R est une partition de A.

3 Les relations d'ordre

Vidéo 34. Une vidéo qui présente le concept de relation d'ordre : https://www.youtube.com/watch?v=g8Tczd1QhJU

Définition 35 (Relation d'ordre). Soit $R \subseteq A \times A$. On dit que R est une **relation d'ordre** ssi R est réflexive, antisymétrique et transitive.

Etant donné A un ensemble et R une relation d'ordre sur A, la paire (A, R) est appelée **ensemble** ordonné.

Exercice 36. Parmi les relations binaires déjà rencontrées, identifier celles qui sont des relations d'ordre.

Définition 37 (Ensemble des parties). Soit A un ensemble, on note 2^A (ou parfois $\mathcal{P}(A)$) l'ensemble des parties de A défini ci-dessous.

$$2^A = \{X \mid X \subseteq A\}.$$

Vidéo 38. Vidéo qui illustre le concept de l'ensemble des parties : https://youtu.be/9YipD2KSXis

Définition 39 (Eléments comparables). Soit (A, R) un ensemble ordonné. Soient $a, b \in A$. On dit que les éléments a et b sont **comparables** (pour l'ordre R) ssi aRb ou bRa; sinon a et b sont **incomparables** (pour l'ordre R).

Exercice 40. Donnez (si possible) deux éléments comparables et deux éléments incomparables dans les ensembles ordonnés suivants.

$$(i) (\mathbb{Z}, \leq) \quad ; \quad (ii) (\mathbb{N}_0, |) \quad ; \quad (iii) (2^{\mathbb{Z}}, \subseteq).$$

Définition 41 (Ensemble totalement ordonné). Soit (A, R) un ensemble ordonné. On dit que (A, R) est **totalement** ordonné ssi toute paire d'éléments de A est comparable, i.e.

$$\forall a \in A \ \forall b \in A \quad aRb \lor bRa.$$

Exercice 42. Parmi les ensembles ordonnés déjà rencontrés, identifier ceux qui sont des ensembles totalement ordonnés.

Définition 43 (Ordre strict). Soit (A, \preceq) un ensemble ordonné. On définit \prec , l'**ordre strict** associé à \preceq de la façon suivante : quel que soient $a \in A$ et $b \in A$

$$a \prec b \quad \Leftrightarrow \quad a \preceq b \land a \neq b.$$

Définition 44 (Successeur immédiat). Soit (A, \preceq) un ensemble ordonné. Soient $a \in A$ et $b \in A$. On dit que b **est un successeur immédiat de** a (ou que a est un précesseur immédiat de b) ssi

$$a \prec b \land \neg (\exists c \in A \ a \prec c \prec b).$$

Exercice 45. Dans chacun des cas suivants, donner si possible, un ensemble ordonné (A, R), un élément $a \in A$ tels que

- 1. a possède une unique successeur immédiat dans (A, R).
- 2. a possède plusieurs successeurs immédiats dans (A,R).
- 3. a ne possède pas de successeurs immédiats dans (A,R).

Définition 46 (Diagramme de Hasse). Soit (A, \preceq) un ensemble ordonné fini. Un diagramme de Hasse associé à (A, \preceq) est une représentation de (A, \preceq) sous la forme d'un graphe où

- 1. on trace un segments (sans flèche) entre deux éléments a et b de A si et seulement si b est un successeur immédiat de a,
- 2. quel que soient $a, b \in A$, si $a \prec b$ alors a est placé "plus bas que" b dans le diagramme,
- 3. on veille autant que possible à ne pas croiser les segments.

Par exemple, un diagramme de Hasse associé à l'ensemble ordonné $(\{1,2,3\},\leq)$ est représenté sur la Figure 1.

 $\begin{array}{c}
3 \\
2 \\
1
\end{array}$

FIGURE 1 – Diagramme de Hasse de $(\{1,2,3\},\leq)$.

Exercice 47. Tracer le diagramme de Hasse des ensembles ordonnés suivants.

 $(i) \ (\{1,2,3,4,5,6\},\leq) \quad ; \quad (ii) \ (\{1,2,3,4,6,8,12\},|) \quad ; \quad (iii) \ (2^{\{1,2,3\}},\subseteq).$

Définition 48 (Maximum, minimum, maximal, minimal).

Soit (A, \preceq) un ensemble ordonné. Soit $a \in A$.

- 1. On dit que $a \in A$ est **le maximum dans** (A, \preceq) ssi $\forall b \in A$ $b \preceq a$.
- 2. On dit que $a \in A$ est **le minimum dans** (A, \preceq) ssi $\forall b \in A$ $a \preceq b$.
- 3. On dit que $a \in A$ est **maximal dans** (A, \preceq) ssi $\neg (\exists b \in A \ a \prec b)$.
- 4. On dit que $a \in A$ est **minimal dans** (A, \preceq) ssi $\neg (\exists b \in A \ b \prec a)$.

Exercice 49. Soit (A, \preceq) un ensemble ordonné. Soit $a \in A$. Déterminer si les affirmations suivantes sont vraies ou fausses. Justifier votre réponse.

- 1. Si a est un élément maximal, alors c'est le maximum.
- 2. Si a est le maximum, alors c'est un élément maximal.

Exercice 50. Prouver que si (A, \preceq) possède un maximum (resp. un minimum), alors il est unique.

Exercice 51. Dans chacun des cas suivants, donner si possible un ensemble ordonné (A, \preceq) tel que

- 1. (A, \preceq) possède un maximum et pas de minimum.
- 2. (A, \preceq) possède deux éléments maximaux et un unique élément minimal.
- 3. (A, \preceq) possède trois éléments maximaux et deux éléments minimaux.

Définition 52 (borne supérieure/inférieure).

Soit (A, \preceq) un ensemble ordonné. Soit $X \subseteq A$. Soit $a \in A$.

- 1. On dit que a est une borne supérieure de X pour (A, \preceq) ssi $\forall b \in X \ b \preceq a$.
- 2. On dit que a est une borne inférieure de X pour (A, \preceq) ssi $\forall b \in X \ a \preceq b$.

Définition 53 (supremum/infimum). Soit (A, \preceq) un ensemble ordonné. Soit $X \subseteq A$. Soit $a \in A$.

- 1. On dit que a est le **supremum de** X **pour** (A, \preceq) ssi a est le minimum de l'ensemble des bornes supérieures de X pour (A, \preceq) .
- 2. On dit que a est l'**infimum de** X **pour** (A, \preceq) ssi a est le maximum de l'ensemble des bornes inférieures de X pour (A, \preceq) .

Exercice 54. Prouver que si X possède un supremum (resp. un infimum) pour (A, \preceq) , alors il est unique.

Exercice 55. Dans chacun des cas suivants, donner si possible un ensemble ordonné (A, \preceq) et un ensemble X tels que

- 1. X possède un supremum et pas de minimum pour (A, \preceq) .
- 2. X possède trois bornes supérieres mais pas de supremum.
- 3. X possède un supremum et pas de bornes inférieures pour (A, \preceq) .

Définition 56 (Treillis). Soit (A, \preceq) un ensemble ordonné. On dit que (A, \preceq) est un treilli ssi toute paire d'éléments $\{a, b\} \subseteq A$ possède un infimum et un supremum.

Exercice 57. Donner un exemple d'ensemble ordonné qui est un treillis. Donner un exemple d'ensemble ordonné qui n'est pas un treillis.

Exercice 58. Prouver que $(\mathbb{N}_0, |)$ est un treillis.

Exercice 59. Prouver que $(2^A, \subseteq)$ est un treillis, quel que soit A.

Définition 60 (Ensemble bien ordonné). Soit (A, \preceq) un ensemble totalement ordonné. On dit que (A, \preceq) est **bien ordonné** ssi tout sous-ensemble non vide de A admet un minimum.

Exercice 61. Donner un exemple d'ensemble totalement ordonné qui est bien ordonné. Donner un exemple d'ensemble totalement ordonné qui n'est pas bien ordonné.

Définition 62 (Ordres compatibles). Soit (A, R) un ensemble ordonné. Soit $\preceq \subseteq A \times A$ un ordre total sur A. On dit que \preceq est compatible avec R ssi

$$\forall a \in A \ \forall b \in A \quad aRb \Rightarrow a \prec b.$$