Fie $\Gamma \cup \{\varphi, \psi\} \subseteq Form$.

- (i) Dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \rightarrow \psi$, atunci $\Gamma \vDash \psi$.
- (ii) $\Gamma \cup \{\varphi\} \models \psi \text{ ddacă } \Gamma \models \varphi \rightarrow \psi$.
- (iii) $\Gamma \vDash \varphi \land \psi$ ddacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \psi$.

Dem.: Exercițiu.

Propoziția 1.32

Fie Γ o mulțime de formule. Următoarele afirmații sunt echivalente:

- (i) Γ este nesatisfiabilă.
- (ii) $\Gamma \vDash \varphi$ pentru orice formulă φ .
- (iii) $\Gamma \vDash \varphi$ pentru orice formulă nesatisfiabilă φ .
- (iv) $\Gamma \vDash \bot$.

Dem.: Exercițiu ușor.

Fie Γ o multime de formule.

- (i) $\Gamma \vDash \varphi$ ddacă $\Gamma \cup \{\neg \varphi\}$ este nesatisfiabilă.
- (ii) $\Gamma \vDash \neg \varphi$ ddacă $\Gamma \cup \{\varphi\}$ este nesatisfiabilă.
- (iii) Dacă Γ este satisfiabilă, atunci cel puțin una dintre $\Gamma \cup \{\varphi\}$ și $\Gamma \cup \{\neg \varphi\}$ este satisfiabilă.

Dem.:

- (i) Avem că $\Gamma \not\models \varphi \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma$ și $e^+(\varphi) = 0 \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma$ și $e^+(\neg \varphi) = 1 \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma \cup \{\neg \varphi\} \iff \Gamma \cup \{\neg \varphi\}$ este satisfiabilă.
- (ii) Similar.
- (iii) Fie e un model al lui Γ . Dacă $e^+(\varphi) = 1$, atunci e este model al lui $\Gamma \cup \{\varphi\}$. Dacă $e^+(\varphi) = 0$, deci $e^+(\neg \varphi) = 1$, atunci e este model al lui $\Gamma \cup \{\neg \varphi\}$.

Fie $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ o mulțime finită de formule.

- (i) $\Gamma \sim \{\varphi_1 \wedge \ldots \wedge \varphi_n\}.$
- (ii) $\Gamma \vDash \psi$ ddacă $\vDash \varphi_1 \land \ldots \land \varphi_n \rightarrow \psi$.
- (iii) Γ este nesatisfiabilă ddacă $\neg \varphi_1 \lor \neg \varphi_2 \lor \ldots \lor \neg \varphi_n$ este tautologie.
- (iv) Dacă $\Delta = \{\psi_1, \dots, \psi_k\}$ este o altă mulțime finită de formule, atunci următoarele afirmații sunt echivalente:
 - (a) $\Gamma \sim \Delta$.
 - (b) $\varphi_1 \wedge \ldots \wedge \varphi_n \sim \psi_1 \wedge \ldots \wedge \psi_k$.

Dem.: Exercițiu.

Teorema de compacitate - versiunea 1

Pentru orice mulțime Γ de formule, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.

Teorema de compacitate - versiunea 2

Pentru orice mulțime Γ de formule, Γ este nesatisfiabilă ddacă Γ nu este finit satisfiabilă.

Teorema de compacitate - versiunea 3

Pentru orice mulțime Γ de formule și pentru orice formulă φ , $\Gamma \vDash \varphi$ ddacă există o submulțime finită Δ a lui Γ a.î. $\Delta \vDash \varphi$.

Propoziția 1.35

Cele trei versiuni sunt echivalente.

Dem.: Exercițiu.

Teorema de compacitate

Lema 1.36

Fie Γ finit satisfiabilă. Atunci există un șir (ε_n) în $\{0,1\}$ care satisface, pentru orice $n \in \mathbb{N}$:

 P_n Orice submulțime finită Δ a lui Γ are un model $e: V \to \{0, 1\}$ care satisface $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0, 1, \dots n\}$.

Dem.: Definim șirul (ε_n) prin inducție după $n \in \mathbb{N}$.

n = 0. Avem următoarele cazuri:

- (1₀) Pentru orice submulțime finită Δ a lui Γ , există un model e al lui Δ a.î. $e(v_0) = 0$. Definim $\varepsilon_0 := 0$.
- (2₀) Există o submulțime finită Δ_0 a lui Γ a.î. pentru orice model e al lui Δ_0 , avem $e(v_0) = 1$. Definim $\varepsilon_0 := 1$.

Demonstrăm că P_0 este satisfăcută. În cazul (1_0) este evident. Să considerăm cazul (2_0) . Fie Δ o submulțime finită a lui Γ . Atunci $\Delta \cup \Delta_0$ este o submulțime finită a lui Γ . Deoarece Γ este finit satisfiabilă, $\Delta \cup \Delta_0$ are un model e. Rezultă că $e \models \Delta$ și, din faptul că $e \models \Delta_0$, obținem că $e \models \Delta_0$.

Teorema de compacitate

 (1_{n+1}) Pentru orice submulțime finită Δ a lui Γ , există un model e al lui Δ a.î.

$$e(v_i) = \varepsilon_i$$
 pentru orice $i \in \{0, 1, \dots, n\}$ și $e(v_{n+1}) = 0$.

Definim $\varepsilon_{n+1} := 0$.

(2_{n+1}) Există o submulțime finită Δ_{n+1} a lui Γ a.î. pentru orice model e al lui Δ_{n+1} , avem $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0, 1, \dots, n\}$ implică $e(v_{n+1}) = 1$. Definim $\varepsilon_{n+1} := 1$.

Demonstrăm că P_{n+1} este satisfăcută. În cazul (1_{n+1}) este evident. Să considerăm cazul (2_{n+1}) . Fie Δ o submulțime finită a lui Γ . Atunci $\Delta \cup \Delta_{n+1}$ este o submulțime finită a lui Γ . Prin urmare, conform P_n , există un model e al lui $\Delta \cup \Delta_{n+1}$ a.î. $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0,1,\ldots n\}$. Din (2_{n+1}) , obținem și $e(v_{n+1}) = 1 = \varepsilon_{n+1}$.

Teorema 1.37 (Teorema de compacitate)

Pentru orice mulțime Γ de formule, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.

Dem.: "⇒" Evident.

"←" Presupunem că Γ este finit satisfiabilă. Definim

$$\overline{e}: V \to \{0,1\}, \quad \overline{e}(v_n) = \varepsilon_n,$$

unde (ε_n) este șirul construit în lema precedentă. Demonstrăm că \overline{e} este model al lui Γ . Fie $\varphi \in \Gamma$ arbitrară și fie $k \in \mathbb{N}$ a.î. $Var(\varphi) \subseteq \{v_0, v_1, \ldots, v_k\}$. Deoarece $\{\varphi\} \subseteq \Gamma$ este o submulțime finită a lui Γ , putem aplica Proprietatea P_k pentru a obține un model e al lui φ a.î. $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0, 1, \ldots k\}$. Atunci $\overline{e}(v) = e(v)$ pentru orice variabilă $v \in Var(\varphi)$. Aplicând Propoziția 1.14, rezultă că $\overline{e}^+(\varphi) = e^+(\varphi) = 1$, deci $\overline{e} \models \varphi$. Prin urmare, \overline{e} este model al lui Γ , deci Γ este satisfiabilă.

SINTAXA LP

Folosim un sistem deductiv de tip Hilbert pentru LP.

Axiomele logice

Mulțimea Axm a axiomelor lui LP constă din toate formulele de forma:

(A1)
$$\varphi \rightarrow (\psi \rightarrow \varphi)$$

(A2)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(A3)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$
,

unde φ , ψ și χ sunt formule.

Regula de deducție

Pentru orice formule φ, ψ ,

din φ și $\varphi \to \psi$ se inferă ψ (modus ponens sau (MP)):

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$

Fie Γ o mulțime de formule. Definiția Γ -teoremelor este un nou exemplu de definiție inductivă.

Definiția 1.38

T-teoremele sunt formulele lui *LP* definite astfel:

- (T0) Orice axiomă este Γ-teoremă.
- (T1) Orice formulă din Γ este Γ -teoremă.
- (T2) Dacă φ și $\varphi \to \psi$ sunt Γ -teoreme, atunci ψ este Γ -teoremă.
- (T3) Numai formulele obținute aplicând regulile (T0), (T1), (T2) sunt Γ -teoreme.

Dacă φ este Γ -teoremă, atunci spunem și că φ este dedusă din ipotezele Γ .

Γ-teoreme

Notații

 $\Gamma \vdash \Delta$: \Leftrightarrow $\Gamma \vdash \varphi$ pentru orice $\varphi \in \Delta$.

Definiția 1.39

O formulă φ se numește teoremă a lui LP dacă $\vdash \varphi$.

Reformulând condițiile (T0), (T1), (T2) folosind notația \vdash , obținem

Propoziția 1.40

- (i) dacă φ este axiomă, atunci $\Gamma \vdash \varphi$;
- (ii) dacă $\varphi \in \Gamma$, atunci $\Gamma \vdash \varphi$;
- (iii) dacă $\Gamma \vdash \varphi$ și $\Gamma \vdash \varphi \rightarrow \psi$, atunci $\Gamma \vdash \psi$.

O definiție alternativă a Γ-teoremelor:

Definiția 1.41

Mulțimea $Thm(\Gamma)$ este intersecția tuturor mulțimilor de formule Σ care satisfac următoarele proprietăți:

- (i) $Axm \subseteq \Sigma$;
- (ii) $\Gamma \subseteq \Sigma$;
- (iii) Σ este închisă la modus ponens:

dacă
$$\varphi, \varphi \to \psi \in \Sigma$$
, atunci $\psi \in \Sigma$.

Γ-teoreme

Definiția Γ-teoremelor dă naștere la metoda de demonstrație prin inducție după Γ-teoreme.

Versiunea 1

Fie \mathbf{P} o proprietate a formulelor. Demonstrăm că orice Γ-teoremă satisface \mathbf{P} astfel:

- (i) demonstrăm că orice axiomă are proprietatea **P**;
- (ii) demonstrăm că orice formulă din Γ are proprietatea P;
- (iii) demonstrăm că dacă φ și $\varphi \to \psi$ au proprietatea ${\bf P}$, atunci ψ are proprietatea ${\bf P}$.

Versiunea 2

Fie Σ o mulțime de formule. Demonstrăm că $Thm(\Gamma) \subseteq \Sigma$ astfel:

- (i) demonstrăm că orice axiomă este în Σ ;
- (ii) demonstrăm că orice formulă din Γ este în Σ ;
- (iii) demonstrăm că dacă $\varphi \in \Sigma$ și $\varphi \to \psi \in \Sigma$, atunci $\psi \in \Sigma$.

Fie Γ, Δ mulțimi de formule

(i) Dacă $\Gamma \subseteq \Delta$, atunci $Thm(\Gamma) \subseteq Thm(\Delta)$, adică, pentru orice formulă φ ,

$$\Gamma \vdash \varphi \text{ implică } \Delta \vdash \varphi.$$

- (ii) $Thm \subseteq Thm(\Gamma)$, adică, pentru orice formulă φ , $\vdash \varphi$ implică $\Gamma \vdash \varphi$.
- (iii) Dacă $\Gamma \vdash \Delta$, atunci $Thm(\Delta) \subseteq Thm(\Gamma)$, adică, pentru orice formulă φ ,

$$\Delta \vdash \varphi$$
 implică $\Gamma \vdash \varphi$.

(iv) $Thm(Thm(\Gamma)) = Thm(\Gamma)$, adică, pentru orice formulă φ , $Thm(\Gamma) \vdash \varphi$ ddacă $\Gamma \vdash \varphi$.

Dem.: Exercițiu ușor.

Definiția 1.43

O Γ -demonstrație (demonstrație din ipotezele Γ) este o secvență de formule $\theta_1, \ldots, \theta_n$ a.î. pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) θ_i este axiomă;
- (ii) $\theta_i \in \Gamma$;
- (iii) există k, j < i a.î. $\theta_k = \theta_i \rightarrow \theta_i$.
- O Ø-demonstrație se va numi simplu demonstrație.

Lema 1.44

Dacă $\theta_1, \ldots, \theta_n$ este o Γ-demonstrație, atunci

$$\Gamma \vdash \theta_i$$
 pentru orice $i \in \{1, \ldots, n\}$.

Dem.: Exercitiu.

Definiția 1.45

Fie φ o formulă. O Γ-demonstrație a lui φ sau demonstrație a lui φ din ipotezele Γ este o Γ-demonstrație $\theta_1, \ldots, \theta_n$ a.î. $\theta_n = \varphi$. În acest caz, n se numește lungimea Γ-demonstrației.

Propoziția 1.46

Fie Γ o mulțime de formule și φ o formulă. Atunci $\Gamma \vdash \varphi$ ddacă există o Γ -demonstrație a lui φ .

Dem.: Exercițiu suplimentar.

Pentru orice mulțime de formule Γ și orice formulă φ , $\Gamma \vdash \varphi$ ddacă există o submulțime finită Σ a lui Γ a.î. $\Sigma \vdash \varphi$.

Dem.: " \Leftarrow " Fie $\Sigma \subseteq \Gamma$, Σ finită a.î. $\Sigma \vdash \varphi$. Aplicând Propoziția 1.42.(i) obținem că $\Gamma \vdash \varphi$.

" \Rightarrow " Presupunem că $\Gamma \vdash \varphi$. Conform Propoziției 1.46, φ are o Γ -demonstrație $\theta_1, \ldots, \theta_n = \varphi$. Fie

$$\Sigma := \Gamma \cap \{\theta_1, \dots, \theta_n\}.$$

Atunci Σ este finită, $\Sigma \subseteq \Gamma$ și $\theta_1, \ldots, \theta_n = \varphi$ este o Σ -demonstrație a lui φ , deci $\Sigma \vdash \varphi$.