ROBOTIRÁNYÍTÁS

8. előadás Empirikus szabályzótervezés, a P és PI szabályzás

Dr. habil. Kovács Levente egyetemi docens

Dr. Haidegger Tamás egyetemi adjunktus

Élettani Szabályozások Csoport _{Óbudai Egyetem}

Tartalom

1. Szabályozások

- 1.1. Empirikus szabályozás
- 1.2. P szabályozó tulajdonságai
- 1.3. PI szabályozó tulajdonságai

2. Ziegler-Nichols módszer

- 2.1. Stabilitás határának elérésén alapuló szabályozás
- 2.2. Kísérleti identifikáción alapuló szabályozás

3. Kessler módszer

- 3.1. Modulusz kritérium
- 3.2. Szimmetrikus kritérium

1. Szabályozások

- 1.1. Empirikus szabályozás
- 1.2. P szabályozó tulajdonságai
- 1.3. PI szabályozó tulajdonságai

Empirikus szabályozás

- Manapság az iparban használt szabályozóknak több, mint a fele PID szabályozó
- Korábban
 - ✓ ezen szabályozók többsége analóg volt
 - ✓ azonban ma már ezen szabályozók digitálisak
- Amikor a rendszer matematikai modellje elérhető
 - ✓ a szabályozó paraméterei expliciten meghatározhatóak
- Amikor a rendszer matematikai modellje nem érhető el
 - ✓ a paramétereket kísérleti úton kell meghatározni
 - **Empirikus szabályozó tervezés:** a kívánt kimenet elérése érdekében kell hangolni a szabályozó paramétereit
 - ✓ matematikai modell készítése
 - Modell identifikáció

P szabályozó tulajdonságai

- átviteli függvénye: $W_P(s) = A_P$
- paramétere (erősítés): $A_P > 0$

- a szabályzó nem változtatja meg a felnyitott kör átviteli függvényének
 - √ típusszámát
 - ✓ fázismenetét
- a szabályzó megváltoztatja
 - \checkmark a körerősítést $\rightarrow A_P$ -szeresére módosítja
 - √ a körerősítése növelésével
 - → a vágási frekvencia nő
 - → a fázistartalék csökken
 - → a stabilitás határa felé haladunk

Pl szabályozó tulajdonságai

• átviteli függvénye:
$$W_{PI}(s) = A_P \left(1 + \frac{1}{sT_I} \right) = \frac{A_P}{T_I} \cdot \frac{1 + sT_I}{s}$$

- paraméterek:
 - ✓ erősítés: $A_P > 0$
 - ✓ integrálási idő (integrátor időállandója): $T_I > 0$
- a szabályzó megváltoztatja
 - \checkmark a körerősítést $\Rightarrow \frac{A_P}{T_I}$ -szeresére módosítja
 - √ a szabályozási kör típusszámát 1-el növeli
 - ✓ a felnyitott körben új zérus jelenik meg: $-\frac{1}{T_r}$
 - \checkmark a felnyitott kör fázismenetét $\frac{1}{T_r}$ frekvenciánál kisebb értékeknél -90°-al csökkenti, annál nagyobb frekvenciáknál (közelítőleg) változatlanul hagyja

2. Ziegler-Nichols módszer

- 2.1. Stabilitás határának elérésén alapuló szabályozás
- 2.2. Kísérleti identifikáción alapuló szabályozás

Ziegler-Nichols módszer

- Az 1940-es években Ziegler és Nichols két empirikus módszert dolgozott ki szabályozók paramétereinek meghatározására
- A módszerek jellemzői:
 - ✓ nem elsőfokú rendszerekre lett kifejlesztve
 - ✓ a rendszerek tartalmaznak holtidőt
 - ✓ a tervezés számos manuális számítást tartalmaz
- Az egyre fejlettebb optimalizáló szoftverek megjelenésével az ilyen manuális számításokat alkalmazó módszertanokat már nem igen használják
- Számítógépes támogatással azonban a módszerek alkalmazhatók

- stabilitás határán lévő rendszer erősítésének, K_u megtalálása
 - ✓ egyetlen P erősítést használva keressük meg azt az erősítés értéket, amelynek hatására a rendszer oszcillál
 - → ennek megtalálásához az I és a D tagok erősítése nullára van állítva, így csak a P tag érvényesül
- a másik paraméter, amely a csak P tagot tartalmazó szabályozásból meghatározható, a stabilitás határán lévő rendszer lengési periódusa, P_{ii}
 - ✓ az az idő, amely ahhoz kell, hogy egy teljes oszcillációt elvégezzen a rendszer az állandósult állapotban
- Ezen két paraméter (K_u és P_u) segítségével a szabályozó paraméterei számíthatók (A_P , T_V , T_D)

Táblázat a szabályozótervezéshez

Szabályozó	A szabályozó paraméterei		
típusa	A_{P}	T_{I}	T_{D}
Р	0.5 K _U	_	_
PI	0.45 K _U	0.85 P _U	_

Példa

Feladat: PI szabályozó tervezése

A stabilitás határán lévő rendszer (erősítés) megtalálása

- 1. a rendszer létrehozása Simulink alatt
- 2. K = 1 értékről kezdve figyeljük a scope-ot
- a) ha a rendszer stabil → növeljük a K-t
- b) ha a rendszer instabil → csökkentsük a K-t

$$P_{u} = 11$$

PI szabályozó tervezés

Szabályozó	A szabályozó paraméterei		
típusa	A_{P}	T_{I}	T_{D}
PI	0.45 K _U	0.85 P _U	_

$$K_u = 11.86$$
 $A_P = 0.45 K_u = 0.45 \cdot 11.86 = 5.337$

$$P_u = 11$$
 $T_I = 0.85 P_u = 0.85 \cdot 11 = 9.35$

$$W_{PI}(s) = A_P \cdot \left(1 + \frac{1}{sT_I}\right)$$
 \longrightarrow $W_{PI}(s) = 5.337 \cdot \left(1 + \frac{1}{9.35s}\right) = \frac{49.9s + 5.337}{9.35s}$

PI szabályozó tervezés – megvalósítás Simulink alatt

PI szabályozó tervezés – szimuláció

Ugrásválasz paraméterei:

✓ szabályozási idő: t_s = 100 sec

✓ túllövési idő: $t_1 = 9$ sec

✓ túllövés: $σ_1$ = 65%

- számos ipari folyamat ugrásválasza mutat tiszta aperiodikus viselkedést
- ez az S-alakú görbe általában a magasabb rendű rendszerekre jellemző

A szakasz ugrásválasza az alábbi paraméterekkel írható le:

- √ K_P a szakasz erősítése
- √ T_r felfutási idő
- ✓ T_u holtidő

• a szakasz átviteli függvénye az alábbi modellel közelíthető:

$$W_P = \frac{K_P}{1 + T_S} e^{-T_t s}$$

- 1. Vizsgáljuk meg a szakasz ugrásválaszát
 - ✓ bemeneti ugrás értéke: u_{∞}
 - ✓ a válasz állandósult állapota: y_∞
- 2. A *T* inflekciós pontban szerkesszük meg az ugrásválasz tangensét
 - ✓ holtidő: T_u
 - \checkmark felfutási idő: T_r
 - \checkmark szakasz erősítése: $K_P = \frac{y_\infty y_0}{u_\infty u_0}$

3. Az ugrásválasz közelítése

$$W_P = \frac{K_P}{1 + Ts} e^{-T_t s} \qquad T_t = T_u T = T_r \qquad W_P = \frac{K_P}{1 + T_r s} e^{-T_u s}$$

Táblázat a szabályozótervezéshez

$$\rho = \frac{T_u}{T_r}$$
 relatív holtidő

Szabályozó	A szabályozó paraméterei			
típusa	$A_P \cdot K_P \cdot \rho$	T_{I}	T_{D}	
Р	≤ 1	_	-	
PI	≤ 0.9	3 T _u	-	

Vegyük észre, hogy kisebb is lehet, mint a táblázatban szereplő érték! Ha a táblázatban szereplő értékkel tervezett szabályozó nem működik, próbáljunk meg kisebb értékkel számolni (pl. Pl esetén 0.7-tel 0.9 helyett)

Példa

Ugrásválasz és paraméterek

PI szabályozó tervezés

Szabályozó	A szabályozó paraméterei		
típusa	$A_{P} \cdot K_{P} \cdot \rho$	$T_{\rm I}$	T_{D}
PI	≤ 0.9	3 T _u	-

$$K_{P} = 6$$

$$T_{u} = 3$$

$$T_{r} = 18$$

$$\rho = \frac{T_{u}}{T_{r}} = \frac{3}{18} = \frac{1}{6}$$

$$A_{P} \cdot K_{P} \cdot \rho \le 0.9$$

$$A_{P} \cdot K_{P} \cdot \rho \le 0.9$$

$$W_{PI}(s) = A_{P} \cdot \left(1 + \frac{1}{sT_{I}}\right)$$

$$W_{PI}(s) = 0.9 \cdot \left(1 + \frac{1}{9s}\right)$$

$$W_{PI}(s) = \frac{9s + 1}{10s}$$

PI szabályozó tervezés – megvalósítás Simulink alatt

PI szabályozó tervezés – szimuláció

Ugrásválasz paraméterei:

- ✓ szabályozási idő: t_s = 50 sec
- ✓ túllövési idő: t₁ = 10 sec
- ✓ túllövés: $\sigma_1 = 60\%$

3. Kessler módszer

- 3.1. Modulusz kritérium
- 3.2. Szimmetrikus kritérium

Kessler módszer

- A rendszer nem tartalmaz holtidőt
 - √ ha igen, közelíteni kell
 - ✓ Padé közelítés
 - a függvény közelítése egy adott fokszámú törttel

 $W_d(s) = e^{-sT_d}$

- gyakran a Taylor sorbafejtésnél jobb közelítést ad
- ha aTaylor sor nem konvergens, ez akkor is működhet
- o ✓ MATLAB [num den]=pade(Td,5);
 % 5th order approximation
- $e^{-sT_{d}} = \begin{cases} \frac{2 sT_{d}}{2 + sT_{d}} \\ \frac{12 6sT_{d} + s^{2}T_{d}^{2}}{12 + 6sT_{d} + s^{2}T_{d}^{2}} \\ etc . \end{cases}$

- A folyamat átviteli függvénye relatív egyszerű.
- A rendszer paraméterei ne változzanak túlzottan.
- Az elérhető minőségi követelmények relatív adottak.

Kessler módszer

Kis időállandók tétele

- egy átviteli függvény kis időállandós tagjai helyettesíthetőek egyetlen taggal
- T_{Σ} : kis időállandók összege (vagy a legkisebb időállandó)

$$T_{\Sigma} = \sum_{n} T_{n}$$

 a módszer közelített holtidőt tartalmazó rendszerek esetén is alkalmazható

$$T_{\Sigma} = \sum_{n} T_n + T_d$$

Gyakran a rendszer leírására alacsony rendű modell használható.

Kessler módszer

A különböző Kessler módszerek használata

Szimmetrikus kritérium

 a folyamat tartalmaz egy (szabad) integrátort

$$\bullet \frac{K_{P}}{s(1 + sT_{\Sigma})}$$

$$\bullet \frac{K_{P}}{s(1+sT_{\Sigma})(1+sT_{1})}$$

Modulusz kritérium

 a folyamat nem tartalmaz (szabad) integrátort

$$\bullet \quad \frac{K_{P}}{1 + sT_{\Sigma}}$$

$$\bullet \quad \frac{K_{P}}{(1+s\cdot T_{1})(1+s\cdot T_{\Sigma})}$$

$$\bullet \quad \frac{K_{P}}{(1+s\cdot T_{1})(1+s\cdot T_{2})(1+s\cdot T_{\Sigma})}$$

Táblázat a szabályozótervezéshez

Folyamat W _P (s)	Szabályozó típusa	Paraméterek relációi	Megjegy- zés
$\frac{K_{P}}{1 + sT_{\Sigma}}$	$\frac{K_R}{s}$ or $\left(\frac{1}{sT_i}\right)$	$K_{R} = \frac{1}{2 K_{P} T_{\Sigma}}$	t _s =8,4 T _Σ
$\frac{K_{P}}{(1+s\cdot T_{1})(1+s\cdot T_{\Sigma})}$ $T_{1}\rangle T_{2}$		$K_{R} = \frac{1}{2 K_{P} T_{\Sigma}}$ $T_{i} = T_{1}$	$t_1 = 4.7 T_{\Sigma}$ $\sigma_1 = 4.3 \%$

Példa

Feladat: PI szabályozó tervezése

PI szabályozó tervezés

Folyamat W _P (s)	Szabályozó típusa	Paraméterek relációi	Megjegy- zés
$\frac{K_{P}}{(1+s\cdot T_{1})(1+s\cdot T_{\Sigma})}$	$\frac{K_R}{s} (1 + s \cdot T_i)$		$t_{s} = 8.4 T_{\Sigma}$ $t_{1} = 4.7 T_{\Sigma}$
$T_{_1} \rangle T_{_2}$	PI	$T_i = T_1$	$\sigma_1 = 4.3 \%$

$$\frac{1}{(1+10s)(1+3s)(1+0.2s)}e^{-T_{u}s} \qquad K_{R} = \frac{1}{2K_{P}T_{\Sigma}} = \frac{1}{2\cdot 1\cdot 3.2} = 0.156$$

$$T_{i} = T_{1} = 10$$

$$T_{\Sigma} = T_{2} + T_{3} = 3 + 0.2 = 3.2$$

$$K_{P} = 1$$

$$W_{PI}(s) = \frac{K_{R}}{s}(1+sT_{i}) = \frac{0.156}{s}(1+10s)$$

$$W_{PI}(s) = \frac{1.56s + 0.156}{s}$$

PI szabályozó tervezés – megvalósítás Simulink alatt

```
s = tf('s');
W_PI = (KR/s) * (1 + s*Ti)

Transfer function:
1.563 s + 0.1563
------s
```


PI szabályozó tervezés – szimuláció

Ugrásválasz paraméterei:

- ✓ szabályozási idő: t_s = 27 sec
- √ túllövési idő: t₁ = 25 sec
- ✓ túllövés: $\sigma_1 = 4.3\%$

Videó

Empirikus szabályozások

Szimmetrikus kritérium

Táblázat a szabályozótervezéshez

Folyamat	Szabályozó típusa	Paraméterek	Észrevé-
T ₁ >T _Σ		relációi	tel
$\frac{K_{P}}{s\left(1+sT_{\Sigma}\right)}$	$\frac{K_R}{s} \left(1 + sT_r\right)$ $K_R = \frac{K_r}{T_r}$	$K_{R} = \frac{1}{8T_{\Sigma}^{2}K_{P}}$ $T_{r} = 4T_{\Sigma}$	$t_s = 16.5 T_{\Sigma}$ $t_1 = 3.1 T_{\Sigma}$ $\sigma_1 = 43.4 \%$

A szabályozó tervezése a korábbi példákéhoz hasonlóan történik.

Köszönöm a figyelmet!

Dr. habil. Kovács Levente egyetemi docens

kovacs.levente@nik.uni-obuda.hu

Dr. Haidegger Tamás egyetemi adjunktus

haidegger@irob.uni-obuda.hu

Élettani Szabályozások Csoport _{Óbudai Egyetem}