Graph algorithms

- Graph Traversal (Graph Searching)
 - Breadth-first search
 - Depth-first search
- Shortest-Path Algorithm
 - Dijkstra's algorithm
- Minimum Spanning Tree
 - Prim's Algortihm
 - Kruskal's Algorithm

Spanning Tree

• A **spanning tree** (ST) of an **undirected** graph is a **tree** which contains all vertices and **some edges** of the graph.

Spanning Tree and Connectivity

• An *undirected* graph has a spanning tree if and only if the graph is *connected*.

A graph that has **no** spanning trees

Spanning Tree

• For a graph with n vertices, its spanning tree always has exactly n-1 edges.

Minimum Spanning Tree

• A *minimum spanning tree* (MST) of an *undirected weighted* graph is a spanning tree whose sum of all weights is minimum.

Application: Minimum Spanning Tree

• Find the cheapest route to connect all computers/devices.

MST Algorithms

- Two common algorithms for finding MSTs.
 - Prim's algorithm
 - Build tree to span all vertices
 - Kruskal's algorithm
 - From "forest" to tree

Start from any one vertex, say, v_0 . (Consider v_0 as a tree with one node.)

·		
vertex	distance	previous
V ₀	0	0
V ₁	8	0
V ₂	8	0
V ₃	8	0
V ₄	8	0
V ₅	8	0
V ₆	8	0
·		

Start from any one vertex, say, v_0 . (Consider v_0 as a tree with one node.)

vertex	distance	previous
V_0	0	0
V ₁	7	v ₀
V_2	8	0
V ₃	5	v ₀
V ₄	8	0
V ₅	8	0
V_6	8	0

Update the distance to all nodes adjacent to v₀

vertex	distance	previous
V_0	0	0
V ₁	7	v ₀
V ₂	8	0
V ₃	5	v ₀
V ₄	8	0
V ₅	8	0
V ₆	8	0
-	· ·	

vertex	distance	previous
V ₀	0	0
V ₁	Min(7,9)	v ₀
V ₂	8	0
<i>V</i> ₃	5	v ₀
V ₄	15	<i>V</i> ₃
V ₅	6	<i>V</i> ₃
V ₆	8	0

Update the distance to all nodes adjacent to \boldsymbol{v}_0

vertex	distance	previous
<i>V</i> ₀	0	0
V ₁	7	v ₀
V ₂	8	0
<i>V</i> ₃	5	v ₀
V ₄	Min(15,8)	V ₅
V ₅	6	V ₃
V ₆	11	V ₅
	-	

vertex	distance	previous
V ₀	0	0
V ₁	7	v ₀
V_2	8	v ₁
<i>V</i> ₃	5	v ₀
V ₄	Min(8,7)	<i>v</i> ₁
V ₅	6	<i>V</i> ₃
V ₆	11	V ₅

- Initialize the current tree T to have any one vertex.
- While *T* has fewer than *n* 1 edges
 - Pick the edge around T whose weight is the smallest and link to an unvisited node.
 - (When no such edge is found, graph is disconnected and no MST exists.)

Increasingly sorted by weights

Edge	Weight
(v_0, v_3)	5
(v_2, v_4)	5
(v_3, v_5)	6
(v_0, v_1)	7
(v_1, v_4)	7
(v_1, v_2)	8
(v_4, v_5)	8
(v_1, v_3)	9
(v_4, v_6)	9
(v_5, v_6)	11
(v_3, v_4)	15

Pick edge one by one

Edge	Weight
(v_0, v_3)	5
(v_2, v_4)	5
(v_3, v_5)	6
(v_0, v_1)	7
(v_1, v_4)	7
(v_1, v_2)	8
(v_4, v_5)	8
(v_1, v_3)	9
(v_4, v_6)	9
(v_5, v_6)	11
(v_3, v_4)	15

Edge	Weight
(v_0, v_3)	5
(v_2, v_4)	5
(v_3, v_5)	6
(v_0, v_1)	7
(v_1, v_4)	7
(v_1, v_2)	8
(v_4, v_5)	8
(v_1, v_3)	9
(v_4, v_6)	9
(v_5, v_6)	11
(v_3, v_4)	15

Edge	Weight
(v_0, v_3)	5
(v_2, v_4)	5
(v_3, v_5)	6
(v_0, v_1)	7
(v_1, v_4)	7
(v_1, v_2)	8
(v_4, v_5)	8
(v_1, v_3)	9
(v_4, v_6)	9
(v_5, v_6)	11
(v_3, v_4)	15

Edge	Weight
(v_0, v_3)	5
(v_2, v_4)	5
(v_3, v_5)	6
(v_0, v_1)	7
(v_1, v_4)	7
(v_1, v_2)	8
(v_4, v_5)	8
(v_1, v_3)	9
(v_4, v_6)	9
(v_5, v_6)	11
(v_3, v_4)	15

Edge	Weight
(v_0, v_3)	5
(v_2, v_4)	5
(v_3, v_5)	6
(v_0, v_1)	7
(v_1, v_4)	7
(v_1, v_2)	8
(v_4, v_5)	8
(v_1, v_3)	9
(v_4, v_6)	9
(v_5, v_6)	11
(v_3, v_4)	15

Edge	Weight
(v_0, v_3)	5
(v_2, v_4)	5
(v_3, v_5)	6
(v_0, v_1)	7
(v_1, v_4)	7
(v_1, v_2)	8
(v_4, v_5)	8
(v_1, v_3)	9
(v_4, v_6)	9
(v_5, v_6)	11
(v_3, v_4)	15

×

Edge	Weight	
(v_0, v_3)	5	✓
(v_2, v_4)	5	✓
(v_3, v_5)	6	✓
(v_0, v_1)	7	✓
(v_1, v_4)	7	✓
(v_1, v_2)	8	×
(v_4, v_5)	8	×
(v_1, v_3)	9	
(v_4, v_6)	9	
(v_5, v_6)	11	
(v_3, v_4)	15	

Edge	Weight	
(v_0, v_3)	5	✓
(v_2, v_4)	5	✓
(v_3, v_5)	6	✓
(v_0, v_1)	7	√
(v_1, v_4)	7	✓
(v_1, v_2)	8	×
(v_4, v_5)	8	×
(v_1, v_3)	9	×
(v_4, v_6)	9	
(v_5, v_6)	11	
(v_3, v_4)	15	

Edge	Weight	
		_
(v_0, v_3)	5	✓
(v_2, v_4)	5	✓
(v_3, v_5)	6	✓
(v_0, v_1)	7	✓
(v_1, v_4)	7	✓
(v_1, v_2)	8	×
(v_4, v_5)	8	×
(v_1, v_3)	9	×
(v_4, v_6)	9	✓
(v_5, v_6)	11	
(v_3, v_4)	15	

Spans all vertices. Done!
Total tree weight = 39

- Increasingly sort the edges by weights.
- For each edge e in sorted order
 - If e does not form a cycle with the already picked edges, then
 - Pick *e*. (Done when *n* 1 edges are picked.)
 - Else
 - Discard e.
- If fewer than *n* 1 edges are picked, then
 - Graph is disconnected. No MST exists.

• From "forest" to tree

Kruskal's vs Prim's Algorithms

Order of edges picked to solution

Kruskal	Prim
(v_0, v_3)	(v_0, v_3)
(v_2, v_4)	(v_3, v_5)
(v_3, v_5)	(v_0, v_1)
(v_0, v_1)	(v_1, v_4)
(v_1, v_4)	(v_2, v_4)
(v_4, v_6)	(v_4, v_6)

- Kruskal's algorithm repeatedly merges multiple trees (forest) until only one tree is left.
- Prim's algorithm repeatedly grows one tree until all vertices are spanned.