Project Assessment

Criteria

	Task1	Task2 Opt1	Task2 Opt2	Task2 Opt4
Assignment	5%	5%	5%	5%
Background	15%	15%	15%	15%
Experimental Settings	30%	30%	20%	25%
Results and Discussions	30%	30%	25%	30%
Citation and Contribution	10%	10%	5%	5%
Implementation (scripts)	10%	10%	30%	20%

Grades

Task2

Grading Criteria: https://github.com/csce585-mlsystems/project-athena/blob/grade-2020/README.md **Feedback**: https://github.com/csce585-mlsystems/project-athena/blob/grade-2020/Task2/doubleE/Comments.md

- 1. intro to the assignment. [0/5]
- 2. background. [0/15]
- 3. experiment settings. [30/30]
- 4. results and discussions. [30/30]
- 5. citations. [0/5]
- 6. contribution. [5/5]
- 7. implement. [10/10]

Bonus for your discussion: +10.

- Introduction
 - Intorduce the task in your own words
- Background
 - Introduce the attacks and methods in your own words with a little bit of math

Attack 1: Fast Gradient Sign Method (FGSM; Goodfellow, Shlens, & Szegedy, 2015)

This method processes adversarial examples as follows:

$$x' = x + \epsilon \cdot sign(\nabla_x J(x, y))$$

where x' is the adversarial image, J is the cost (loss) function of the target model f, ∇_x is the gradient with respect to the input x (original image) with corresponding correct output y (original label), and ϵ is the magnitude of the perturbation (the change made to the pixels).

https://github.com/Jacob-L-Vincent/project-athena/blob/master/reports/Report(1).ipynb

Experiment

- Not provide information regarding relevant files.
- Ensemble size is too small: using the 3 weak defenses from demo.
- Process
 - Subsample (if you did)
 - Ratio, location to the samples.
 - Generate AEs
 - Info of attacks: attacks, variants, path to the configuration files.
 - Info of ensemble: # weak defenses, path to the configuration files.
 - Evaluation
 - On what AEs, you evaluated what models

https://github.com/cjshearer/project-athena/blob/master/Task2/Report.ipynb

- Results and Discussion
 - Do not post the logs.
 - Present the results in figures or tables.
 Explain the result (evaluation of what, legends, etc.)
 - Observation and discussions.

https://github.com/andrewwunderlich/project-athena/blob/master/Task%201/Task1Report.pdf https://github.com/andrewwunderlich/project-athena/blob/master/Task%202/Task2Report.pdf https://github.com/Dojones98/project-athena/blob/master/task2/report_task2.ipynb

Contribution

- Pooyan: brainstorm; discussion; wrtiting; implement of transformations.
- Jianhai: brainstorm; discussion; writing; implement of BB; experiment of BB.
- Ying: brainstorm; discussion; writing; implement of framework, transformations, attacks, ZK, and WB; experiment of ZK, WB, and detector.

Citation/Reference/Bibliograpy

References

Goodfellow, I.J., Shlens, J., & Szegedy, C. (2015). Explaining and Harnessing Adversarial Examples. CoRR, abs/1412.6572.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2018). Towards Deep Learning Models Resistant to Adversarial Attacks. ArXiv, abs/1706.06083.

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.Y., & Swami, A. (2016). The Limitations of Deep Learning in Adversarial Settings. 2016 IEEE European Symposium on Security and Privacy (EuroS&P), 372-387.

Resubmission of deliverables

- Refine Task 1 and/or Task 2 according to the feedback.
 - Intro to task (5)
 - Background (15)
 - Citations (5)
- Due 11:59:59 PM, Dec 4th.
- Submit to folders "Task1_update" and "Task2_update" respectively.

Task 3: Presentation and Video Recording

- This is a mandatory task
- 10% (+ a bonus of 15% to the final grade)
- Due: 11:59:59 PM, Dec. 8.

Final Grade

• Task1 (30%) + Task2 (60%) + Task3 (10% + 15%)

Highlight

Clutch

- Great report of the overall framework, experiment design, and analysis.
- Daniel Jones, Austin Staton, Ravi Patel, and Praful Chunchu

• JiR

- Great background introduction
- Jacob Vincent, Isaac Keohane, and Raul Ferraz

doubleE

- Great experiment design, analysis, and discussion.
- Andrew Wunderlich, Jay Desai, and Miles Leonard-Albert

Ares

- Great breakdown of the task.
- Cody Shearer, Mahmudul Hasan, Vincent Davidson, and Zhymir Thompson

Course Evaluation and Feedback

- Please complete the course evaluation in Blackboard by Dec 2nd
- I will ask also your detailed feedback by an anonymous course feedback form to be submitted by Dec 8th.

Course Evaluation Form

Once you enter your course, click Tools

Click on My Course Evaluations

From My Survey Dashboard, choose evaluations you wish to complete