☐ Section A: Multiple Choice Questions (30 Marks)

Part I: (10 Marks)

First Order Logic (5 Questions):

- 1. Which of the following cannot be represented in propositional logic but can be represented in FOL?
 - a) All birds can fly
 - b) It is raining
 - c) Either it is sunny or windy
 - d) It is hot and humid
- 2. What does the expression $\forall x \text{ loves}(Mary, x) \text{ mean}$?
 - a) Mary loves herself
 - b) Everyone loves Mary
 - c) Mary loves everyone
 - d) Nobody loves Mary
- 3. Which is a correct representation for: "Someone is laughing"?
 - a) ∀x laughing(x)
 - b) $\neg \exists x \text{ laughing}(x)$
 - c) $\exists x | \text{laughing}(x)$
 - d) $\neg \forall x | \text{laughing}(x)$
- 4. What does the quantifier duality principle state?
 - a) $\exists x$ is not the same as $\forall x$
 - b) $\forall x \neg P(x) \equiv \neg \exists x P(x)$
 - c) $\exists x P(x) \equiv \forall x P(x)$
 - d) $\exists x P(x) \equiv \exists x \neg P(x)$
- 5. Which of the following correctly expresses: "Nobody loves George"?
 - a) ∀x loves(x, George)
 - b) ∃x ¬loves(x, George)
 - c) ¬∃x loves(x, George)
 - d) $\forall x \neg loves(George, x)$

Expert System Schemas (5 Questions):

- 6. The inference engine in an expert system is responsible for:
 - a) Acquiring knowledge
 - b) Drawing conclusions
 - c) Explaining output
 - d) Editing the knowledge base
- 7. Which of the following is *not* a core component of an Expert System?
 - a) User Interface
 - b) Compiler
 - c) Knowledge Base
 - d) Inference Engine
- 8. The rule "IF fever AND cough THEN flu" is an example of:
 - a) Forward chaining

- b) Rule base
- c) Question base
- d) Fact base
- 9. In an ES, what is stored in the fact base?
 - a) Logical rules
 - b) Predicates
 - c) User queries
 - d) Values for propositions
- 10. The main goal of the *Explanation System* in an expert system is to:
 - a) Modify the interface
 - b) Provide reasoning steps
 - c) Store new data
 - d) Evaluate user input

Part II: (20 Marks)

General Knowledge Representation and Inference (20 Questions)

- 11. In a semantic network, what does a node represent?
 - a) Rules
 - b) Inference
 - c) A concept
 - d) An attribute
- 12. The "is-a" relation in semantic networks implies:
 - a) Instance checking
 - b) Hierarchical classification
 - c) Value assignment
 - d) Data flow
- 13. Which component of semantic networks supports default inheritance?
 - a) Slots
 - b) Rules
 - c) Labels
 - d) Nodes
- 14. What type of semantic network allowing the inference of new knowledge?
 - a) Assertional
 - b) Implicational
 - c) Executable
 - d) Hybrid
- 15. Which is an application of semantic networks in AI?
 - a) Grammar checking
 - b) Software installation
 - c) NLP
 - d) Game graphics

16. What is an advantage of semantic networks?a) Expressivenessb) Scalabilityc) Intuitive representationd) Unstructured data storage	
17. Frames are primarily used to represent:a) Codeb) Mathematical modelsc) Stereotyped situationsd) Programming logic	
18. In a frame, the attributes of a concept are known as:a) Tagsb) Nodesc) Slotsd) Values	
 19. What does the "IF-NEEDED" procedural attachment in frames do? a) Overrides inherited slots b) Triggers when a slot is accessed c) Deletes default values d) Connects to another frame 	
20. What type of semantic network to represent procedural knowledge?a) Assertionalb) Implicationalc) Executabled) Hybrid	
21. Which of the following is not a key element of ontology?a) Slotsb) Classesc) Instancesd) Relations	
 22. Ontologies help improve semantic search by: a) Enhancing formatting b) Organizing keywords alphabetically c) Providing concept context d) Increasing data storage 	
 23. A system reasoning from "All mammals are warm-blooded" and "All dogs are mammalinfer "Dogs are warm-blooded" is an example of: a) Backward chaining b) Forward chaining c) Constraint logic d) Recursive programming 	als" to
24. Which knowledge representation supports reasoning and formal logic best?	

a) Semantic networks

- b) Frames
- c) Ontologies
- d) Trees
- 25. In ontologies, what is used to represent rules and constraints?
 - a) Attributes
 - b) Axioms
 - c) Classes
 - d) Individuals
- 26. Frame-based systems often simulate human reasoning in:
 - a) Finance
 - b) Game development
 - c) Cognitive modeling
 - d) Robotics
- 27. Which type of rule in semantic networks maps synonyms?
 - a) Constraint
 - b) Equivalence
 - c) Classification
 - d) Default
- 28. What component helps semantic networks understand path length and concept similarity?
 - a) Nodes
 - b) Attributes
 - c) Semantic Distance
 - d) Frames
- 29. Which KR method is best suited for large, structured domains like healthcare?
 - a) Frames
 - b) Ontologies
 - c) Trees
 - d) Decision tables
- 30. What would best represent "A car has wheels and an engine" in a semantic network?
 - a) Predicate logic
 - b) Equivalence rule
 - c) Has-A relationship
 - d) Class instance

Section B: Written Questions (20 Marks)

Q1: Frame-Based Representation (10 Marks)

Draw a frame hierarchy representing the following:

- Parent Frame: ElectronicDevice with slots: powerSupply, warrantyPeriod (default = 12 months)
- Child Frame: TV inherits from ElectronicDevice and adds: screenSize, modelNumber
- Further child: SmartTV, adds: hasWiFi, operatingSystem

 Create an instance of SmartTV: model number "X100", screen size = 55", WiFi = Yes, OS = Android

Instructions: Clearly show the inheritance structure and slot values in diagram form.

Q2: Semantic Network or Ontology (10 Marks)

Draw a semantic network or ontology based on this scenario:

- A person named JohnDoe wants to build muscle.
- He is at an advanced fitness level.
- He is assigned to WorkoutPlanA, which includes PushUps.
- PushUps are strength training and high intensity.

Instructions: Use concepts like: Person, Goal, Exercise, WorkoutPlan, IntensityLevel. Label relationships (e.g., "hasGoal", "assignedPlan", "includesExercise").