

Politechnika Wrocławska

Sprawozdanie 2

Ćwiczenie 4.Oświetlenie scen

Krzysztof Zalewa 2.12.2024

Spis treści

1	Wstęp teoretyczny	2
	1.1 Temat1	2
	1.1.1 Temat 1.1	2
2	Zadanie laboratoryjne	2
	2.1 Opis działania programu	2
	2.2 Kod programu	
3	Wnioski	12
4	$\hat{\mathbf{Z}}$ ródła	12

1 Wstęp teoretyczny

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortisfacilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdietmi nec ante. Donec ullamcorper, felis non sodales...

1.1 Temat1

1.1.1 Temat 1.1

2 Zadanie laboratoryjne

2.1 Treść zadania

2.2 Opis działania programu

Zgodnie z treścią zadania program rysuje 4 obiekty. Domyślnie jajko i czajnik rysowane są w kolorze czarnym. Jednakże jest możliwość zmiany koloru na losowy. Wyświetlone obiekty można obracać za pomocą klawiatury (Przycisk musi być wciśnięty i przytrzymany).

Kontrola obrotu:

A D -obrót po osi Y

 \mathbf{W} \mathbf{S} - obrót po osi \mathbf{X}

 \mathbf{Q} \mathbf{E} - obrót po osi \mathbf{Z}

ESC - Powrót do menu (okno konsolowe)

Ruch myszy w osi X - Obrót kamery w osi X

Ruch myszy w osi Y - Obrót kamery w osi Y

Scroll up - Przybiliżenie obiektu

Scroll down - Oddalenie obiektu

2.3 Kod programu

```
#include <windows.h>
#include <iostream>
#include <GL/glu.h>
#include <vector>
#include <math.h>
#define FREEGLUT_STATIC
#include <GL/freeglut.h>
susing namespace std;
```

```
HWND consoleWindow;
        HWND glutWindow;
10
11
        GLfloat deg = 0;
12
        int sx = 0, sy = 0, sz = 0;
13
        bool spin = false;
14
        bool drawTeapot = true;
15
        bool color = false;
        int eggMode = 0;
        float totalRotationX = 0.0f,totalRotationY = 0.0f,totalRotationZ = 0.0f;
        int radius = 6,lastX = 0,lastY = 0;
        float cameraRotationX = 0.0f,cameraRotationY = 0.0f,cameraRotationZ = radius;
       float phi = 0.0f;
       float theta = 0.0f;
22
        struct pointsRgb{
23
                   //Pozycja
                   float x = 0.0;
25
                   float y = 0.0;
26
                  float z = 0.0;
27
                   //Kolor
28
                   float r = 0.0;
29
                  float g = 0.0;
30
                   float b = 0.0;
31
        }typedef pointsRgb;
32
33
         class Egg{
34
                   private:
35
                   int density;
36
                   vector<vector<pointsRgb>> pointsMatrix;
37
                   float randFloat(){
38
                             return (float)rand()/(float)(RAND_MAX);
40
                   public:
41
                   Egg(int density ) : density(density){
42
                             pointsMatrix.resize(density,vector<pointsRgb>(density));
44
                   vector<vector<pointsRgb>> getPointsMatrix(){
45
                             return pointsMatrix;
46
                   void generateMatrix(float scale){
48
                              for(int u=0;u<(density);u++){</pre>
49
                                        float _u = 0.5/((float)density-1);
50
                                        _u *= u;
51
                                        if(u==density-1){
52
                                                  pointsMatrix[u][0].y = scale*((160*pow(_u,4)) - (320*pow(_u,3)) + (320*pow(_u,3))) + (320*pow(_u,3)) + (320*pow(_u,3))
53
                                                    \rightarrow (160 * pow(_u,2)) - 5);
                                                  if(color){
54
                                                             pointsMatrix[u][0].r = randFloat();
55
                                                             pointsMatrix[u][0].g = randFloat();
56
                                                             pointsMatrix[u][0].b = randFloat();
57
                                                  }else{
58
                                                             pointsMatrix[u][0].r = 0.0f;
59
                                                             pointsMatrix[u][0].g = 0.0f;
60
                                                             pointsMatrix[u][0].b = 0.0f;
                                                  }
62
                                                  break;
63
```

```
}
64
                 for(int v=0;v<density;v++){</pre>
65
                      float _v = v/((float)density);
66
                      _v *= 2.0f;
                      pointsMatrix[u][v].x = scale*((-90*pow(_u,5) + 225*pow(_u,4) -
                          270*pow(_u,3) + 180*pow(_u,2) - 45*_u) * cos(M_PI*_v));
                      pointsMatrix[u][v].y = scale*(160*pow(_u,4) - 320*pow(_u,3) + 160
                          * pow(_u,2) - 5);
                      pointsMatrix[u][v].z = scale*((-90*pow(_u,5) + 225*pow(_u,4) -
70
                          270*pow(_u,3) + 180*pow(_u,2) - 45*_u) * sin(M_PI*_v));
                      if(color){
                          pointsMatrix[u][v].r = randFloat();
                          pointsMatrix[u][v].g = randFloat();
73
                          pointsMatrix[u][v].b = randFloat();
                      }else{
75
                          pointsMatrix[u][v].r = 0.0f;
76
                          pointsMatrix[u][v].g = 0.0f;
77
                          pointsMatrix[u][v].b = 0.0f;
78
                      }
79
                 }
80
             }
81
82
         void draw(int model){
             switch (model)
             {
85
             case 1:
86
                 glPointSize(5.0f);
                 glBegin(GL_POINTS);
88
                 for(int u=0;u<density-1;u++){</pre>
89
                      if(u==0){
                          glColor3f(pointsMatrix[u][0].r,pointsMatrix[u][0].g,pointsMatr_
                           \rightarrow ix[u][0].b);
                          glVertex3f(pointsMatrix[u][0].x,pointsMatrix[u][0].y,pointsMat_
92
                           \rightarrow rix[u][0].z);
                          continue;
                      }
                      if (u==density-2){
95
                          glColor3f(pointsMatrix[u+1][0].r,pointsMatrix[u+1][0].g,points
                           \rightarrow Matrix[u+1][0].b);
                          glVertex3f(pointsMatrix[u+1][0].x,pointsMatrix[u+1][0].y,point
97
                              sMatrix[u+1][0].z);
                          break;
98
                      }
                      for(int v=0;v<density;v++){</pre>
100
                          glColor3f(pointsMatrix[u][v].r,pointsMatrix[u][v].g,pointsMatr_
101
                           \rightarrow ix[u][v].b);
                          glVertex3f(pointsMatrix[u][v].x,pointsMatrix[u][v].y,pointsMat
102
                           \rightarrow rix[u][v].z);
                      }
103
                 }
                 glEnd();
105
                 break;
106
             case 2:
107
                 glBegin(GL_LINES);
                 for(int u=0;u<density-1;u++){</pre>
109
                      if(u==0){
110
```

```
for(int v=0;v<density;v++){</pre>
111
                              glColor3f(pointsMatrix[u][0].r,pointsMatrix[u][0].g,points
112

    Matrix[u][0].b);

                              glVertex3f(pointsMatrix[u][0].x,pointsMatrix[u][0].y,point

    sMatrix[u][0].z);

                              glColor3f(pointsMatrix[u+1][v].r, pointsMatrix[u+1][v].g,
114
                                   pointsMatrix[u+1][v].b);
                              glVertex3f(pointsMatrix[u+1][v].x, pointsMatrix[u+1][v].y,
                               → pointsMatrix[u+1][v].z);
116
                          continue;
117
                      }
                      if (u==density-2){
119
                          for(int v=0;v<density;v++){</pre>
120
                              glColor3f(pointsMatrix[u+1][0].r,pointsMatrix[u+1][0].g,po |
121

    intsMatrix[u+1][0].b);

                              glVertex3f(pointsMatrix[u+1][0].x,pointsMatrix[u+1][0].y,p
122

    ointsMatrix[u+1][0].z);

                              glColor3f(pointsMatrix[u][v].r, pointsMatrix[u][v].g,
123

→ pointsMatrix[u][v].b);
                              glVertex3f(pointsMatrix[u][v].x, pointsMatrix[u][v].y,
124
                                  pointsMatrix[u][v].z);
                          }
                          break;
127
                     for(int v=0;v<density;v++){</pre>
128
                          int nextV = (v + 1) % density;
                          glColor3f(pointsMatrix[u][v].r,pointsMatrix[u][v].g,pointsMatr_
130
                          \rightarrow ix[u][v].b);
                          glVertex3f(pointsMatrix[u][v].x,pointsMatrix[u][v].y,pointsMat
131
                           \rightarrow rix[u][v].z);
                          glColor3f(pointsMatrix[u+1][v].r, pointsMatrix[u+1][v].g,
132

→ pointsMatrix[u+1][v].b);
                          glVertex3f(pointsMatrix[u+1][v].x, pointsMatrix[u+1][v].y,
133
                          → pointsMatrix[u+1][v].z);
134
                          glColor3f(pointsMatrix[u][v].r,pointsMatrix[u][v].g,pointsMatr_
135
                          \rightarrow ix[u][v].b);
                          glVertex3f(pointsMatrix[u][v].x,pointsMatrix[u][v].y,pointsMat
                          \rightarrow rix[u][v].z);
                          glColor3f(pointsMatrix[u][nextV].r, pointsMatrix[u][nextV].g,
137
                              pointsMatrix[u][nextV].b);
                          glVertex3f(pointsMatrix[u][nextV].x, pointsMatrix[u][nextV].y,
138
                              pointsMatrix[u][nextV].z);
139
                      }
                 }
141
                 glEnd();
142
143
                 break:
             case 3:
144
                 glBegin(GL_TRIANGLES);
                 for(int u=0;u<density-1;u++){</pre>
146
                      if(u==0){
147
                          for(int v=0;v<density;v++){</pre>
                               int nextV = (v + 1) % density;
149
```

```
glColor3f(pointsMatrix[u][0].r,pointsMatrix[u][0].g,points
150
                              \rightarrow Matrix[u][0].b);
                              glVertex3f(pointsMatrix[u][0].x,pointsMatrix[u][0].y,point_
151

    sMatrix[u][0].z);

                              glColor3f(pointsMatrix[u+1][nextV].r,pointsMatrix[u+1][nex_
152

    tV].g,pointsMatrix[u+1][nextV].b);
                              glVertex3f(pointsMatrix[u+1][nextV].x,pointsMatrix[u+1][ne_|
153

    xtV].y,pointsMatrix[u+1][nextV].z);
                              glColor3f(pointsMatrix[u+1][v].r,pointsMatrix[u+1][v].g,po_
154

    intsMatrix[u+1][v].b);

                              glVertex3f(pointsMatrix[u+1][v].x,pointsMatrix[u+1][v].y,p_|

    ointsMatrix[u+1][v].z);

                         }
156
                         continue;
                     }
                     if (u==density-2) {
                         for(int v=0;v<density;v++){</pre>
160
                              int nextV = (v + 1) % density;
161
                              glColor3f(pointsMatrix[u+1][0].r,pointsMatrix[u+1][0].g,po

    intsMatrix[u+1][0].b);

                              glVertex3f(pointsMatrix[u+1][0].x,pointsMatrix[u+1][0].y,p
163

    ointsMatrix[u+1][0].z);

                              glColor3f(pointsMatrix[u][v].r,pointsMatrix[u][v].g,points_

→ Matrix[u][v].b);
                              glVertex3f(pointsMatrix[u][v].x,pointsMatrix[u][v].y,point_
165

    sMatrix[u][v].z);

                              glColor3f(pointsMatrix[u][nextV].r,pointsMatrix[u][nextV].

    g,pointsMatrix[u][nextV].b);
                              glVertex3f(pointsMatrix[u][nextV].x,pointsMatrix[u][nextV] |
167
                                  .y,pointsMatrix[u][nextV].z);
                         }
                         break;
169
                     }
170
                     for(int v=0;v<density;v++){</pre>
171
                         int nextV = (v + 1) % density;
                         glColor3f(pointsMatrix[u][v].r,pointsMatrix[u][v].g,pointsMatr_
173
                          \rightarrow ix[u][v].b);
                         glVertex3f(pointsMatrix[u][v].x,pointsMatrix[u][v].y,pointsMat
174
                          \rightarrow rix[u][v].z);
                         glColor3f(pointsMatrix[u+1][nextV].r,pointsMatrix[u+1][nextV].
175
                              g,pointsMatrix[u+1][nextV].b);
                         glVertex3f(pointsMatrix[u+1][nextV].x,
176
                          \  \, \rightarrow \  \, pointsMatrix[u+1]\,[nextV]\,.y, \,\, pointsMatrix[u+1]\,[nextV]\,.z)\,;
                         glColor3f(pointsMatrix[u+1][v].r,pointsMatrix[u+1][v].g,points_
177
                          \rightarrow Matrix[u+1][v].b);
                         glVertex3f(pointsMatrix[u+1][v].x, pointsMatrix[u+1][v].y,
                             pointsMatrix[u+1][v].z);
179
                         glColor3f(pointsMatrix[u+1][nextV].r,pointsMatrix[u+1][nextV].
180
                          glVertex3f(pointsMatrix[u+1][nextV].x,

→ pointsMatrix[u+1][nextV].y,
                             pointsMatrix[u+1][nextV].z);
                         glColor3f(pointsMatrix[u][v].r,pointsMatrix[u][v].g,pointsMatr_
                          \rightarrow ix[u][v].b);
```

```
glVertex3f(pointsMatrix[u][v].x,pointsMatrix[u][v].y,pointsMat
183
                           \rightarrow rix[u][v].z);
                           glColor3f(pointsMatrix[u][nextV].r,pointsMatrix[u][nextV].g,po |
184

    intsMatrix[u][nextV].b);
                           glVertex3f(pointsMatrix[u][nextV].x, pointsMatrix[u][nextV].y,
185
                               pointsMatrix[u][nextV].z);
                      }
186
                  }
                  glEnd();
188
                  break;
189
         ~Egg(){
192
193
         }
    };
    Egg egg(20);
196
    void toggleFocusToConsole() {
197
         ShowWindow(glutWindow, SW_HIDE);
         ShowWindow(consoleWindow, SW_SHOWNORMAL);
199
         SetForegroundWindow(consoleWindow);
200
    }
201
    void toggleFocusToGLUT() {
203
         ShowWindow(consoleWindow, SW_HIDE);
204
         ShowWindow(glutWindow, SW_SHOWNORMAL);
205
         SetForegroundWindow(glutWindow);
    }
207
    void animate(){
208
         float rotationSpeed = 0.5f;
         totalRotationX += rotationSpeed * sx;
         totalRotationY += rotationSpeed * sy;
211
         totalRotationZ += rotationSpeed * sz;
212
         glutPostRedisplay();
213
    }
214
    void reset_rotation(){
215
         totalRotationX = 0.0f;
216
         totalRotationY = 0.0f;
         totalRotationZ = 0.0f;
         radius = 6;
219
         cameraRotationX = 0.0f;
220
         cameraRotationY = 0.0f;
221
         cameraRotationZ = radius;
222
         lastX = 0;
223
         lastY = 0;
224
    }
225
    string bool_to_string(bool convert){
226
         if(convert){
227
             return "true";
228
         }else{
229
             return "false";
230
231
    }
232
    void printControls(){
         cout<<"A D - obrot po osi Y\n";</pre>
234
         cout<<"W S - obrot po osi X\n";</pre>
235
```

```
cout<<"Q E - obrot po osi Z\n";</pre>
236
         cout<<"ESC - Powrot do menu (okno konsolowe)\n";</pre>
237
         cout<<"Nalezy nacisnac i przytrzymac PPM\n";</pre>
238
         cout<<"Ruch myszy w osi X - Obrot kamery w osi X\n";</pre>
         cout<<"Ruch myszy w osi Y - Obrot kamery w osi Y\n";</pre>
240
         cout<<"Scroll up - Przybilizenie obiektu\n";</pre>
241
         cout<<"Scroll down - Oddalenie obiektu\n";</pre>
242
         cout<<"Nacisnij Enter zeby kontynuowac\n"<<flush;</pre>
         cin.get();
244
         cin.get();
245
    }
246
    void menu(){
         toggleFocusToConsole();
248
         reset_rotation();
249
         cout<<"========\n";
250
         cout<<"1. Narysuj czajnik\n";</pre>
         cout<<"2. Narysuj jajko (punkty)\n";</pre>
252
         cout<<"3. Narysuj jajko (linie)\n";</pre>
253
         cout<<"4. Narysuj jajko (trojkaty) \n";</pre>
254
         cout<<"5. Rysowanie w kolorze: "<<bool_to_string(color)<<"\n";</pre>
255
         cout<<"6. Kontrola\n";</pre>
256
         cout<<"7. Zakoncz program\n";</pre>
257
         cout<<"> ";
         int x;
         cin>> x;
260
         switch (x)
261
         case 1:
263
              drawTeapot = true;
264
              break;
         case 2:
              drawTeapot = false;
267
              eggMode = 1;
268
              break;
269
         case 3:
              drawTeapot = false;
271
              eggMode = 2;
272
              break;
         case 4:
              drawTeapot = false;
275
              eggMode = 3;
276
              break;
277
         case 5:
278
              color=!color;
279
              egg.generateMatrix(0.5f);
280
              menu();
              break;
282
         case 6:
283
              printControls();
284
              menu();
285
              break;
         case 7:
287
              exit(0);
              break;
         default:
290
              cout<<"Podano nieporawny znak\n";</pre>
291
```

```
menu();
292
              break;
293
294
         toggleFocusToGLUT();
295
         glutPostRedisplay();
296
297
    void keyDown(u_char key,int x,int y){
298
         switch (key)
300
         case 'Q':
301
         case 'q':
302
              sz=1;
              glutIdleFunc(animate);
304
              break;
305
         case 'E':
306
         case 'e':
              sz=-1;
308
              glutIdleFunc(animate);
309
              break;
310
         case 'W':
311
         case 'w':
312
              sx=-1;
313
              glutIdleFunc(animate);
              break;
315
         case 'S':
316
         case 's':
317
              sx=1;
              glutIdleFunc(animate);
319
              break;
320
         case 'A':
321
         case 'a':
322
              sy=-1;
323
              glutIdleFunc(animate);
324
              break;
325
         case 'D':
         case 'd':
327
              sy=1;
328
              glutIdleFunc(animate);
329
              break;
         default:
331
              break;
332
333
    }
334
     void keyUp(u_char key,int x,int y){
335
         switch (key)
336
337
         case 'E':
338
         case 'Q':
339
         case 'e':
340
         case 'q':
341
              sz=0;
              break;
343
         case 'W':
344
         case 'S':
         case 'w':
346
         case 's':
347
```

```
sx=0;
348
             break;
349
         case 'A':
350
         case 'D':
351
         case 'd':
352
         case 'a':
353
             sy=0;
             break;
         case 27:
356
             menu();
357
             break;
358
         default:
             break;
360
361
         if (sx == 0 && sy == 0 && sz == 0) {
362
             glutIdleFunc(nullptr);
364
    }
365
    void mouse(int x, int y){
366
         float sensitivity =0.75f;
367
         float phi = sensitivity*((2.0f * y / 400) - 1.0f);
368
         float theta = sensitivity*((2.0f * (400 - x) / 400) - 1.0f);
369
         float maxPhi = 1.75f; // Restrict phi range to avoid gimbal lock (approx ±85
         → degrees)
         if (phi > maxPhi){
371
             phi = maxPhi;
372
         if (phi < -maxPhi){</pre>
374
             phi = -maxPhi;
375
376
         cameraRotationX = radius*cos(theta)*cos(phi);
         cameraRotationY = radius*sin(phi);
378
         cameraRotationZ = radius*sin(theta)*cos(phi);
379
         lastX = x;
380
         lastY = y;
         glutPostRedisplay();
382
383
    void mouseWheel(int button, int dir, int x, int y){
         if (dir > 0){
385
             radius -= 1;
386
         }else{
387
             radius += 1;
388
389
         if(radius>=10){
390
             radius=10;
391
         if(radius<=1){</pre>
393
             radius=1;
394
395
         glutPostRedisplay();
396
    }
397
    void display() {
398
         GLfloat lPos[] = {0,4,0,1}; //x,y,z,czy światło jest odległe
399
         GLfloat col[] = \{1,0,0,1\};
         glLoadIdentity();
401
         glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
402
```

```
//glLightfv(GL_LIGHTO,GL_POSITION,1Pos);
403
        gluLookAt(cameraRotationX,cameraRotationY,cameraRotationZ,0,0,0,0,1,0);//Ustaw
404
         glRotatef(totalRotationX, 1.0f, 0.0f, 0.0f);
405
        glRotatef(totalRotationY, 0.0f, 1.0f, 0.0f);
406
        glRotatef(totalRotationZ, 0.0f, 0.0f, 1.0f);
407
        if(drawTeapot){
             glutWireTeapot(1);
        }else{
410
             glShadeModel(GL_FLAT);
411
             egg.draw(eggMode);
412
        glutSwapBuffers();
414
    }
415
    void Init() {
416
        egg.generateMatrix(0.5f);
        glEnable(GL_DEPTH_TEST); //bez tego frontalna sciana nadpisuje tylnią
418
        glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
419
        glMatrixMode(GL_PROJECTION);
420
        glLoadIdentity();
421
        glFrustum(-1,1,-1,1,2,10);
422
        glMatrixMode(GL_MODELVIEW);
423
        // // Włącza culling, czyli pomijanie tylnych ścianek
        // glEnable(GL_CULL_FACE);
        // // Ustawia kierunek frontowych ścianek jako przeciwny do ruchu wskazówek
426

→ zegara

        // glFrontFace(GL_CW);
427
        // // Ustawia pomijanie tylnych ścianek
428
        glCullFace(GL_BACK);
429
        //glEnable(GL_LIGHTING); //Włączenie oświetlenia
        //glEnable(GL_LIGHTO); //Dodanie źródła światła
    }
432
    int main(int argc, char** argv){
433
        consoleWindow = GetConsoleWindow();
434
        glutInit(&argc, argv);
        glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
436
        glutInitWindowSize(800,800);
437
        glutCreateWindow("Lab 3 - Czajnik i Jajko");
        glutWindow = FindWindowW(NULL,L"Lab 3 - Czajnik i Jajko");
        Init();
440
        glutDisplayFunc(display);
441
        glutIdleFunc(nullptr);
442
        glutKeyboardFunc(keyDown);
443
        glutKeyboardUpFunc(keyUp);
444
        glutMotionFunc(mouse);
        glutMouseWheelFunc(mouseWheel);
        menu();
448
        glutMainLoop();
449
        system("pause");
450
        return 0;
    }
452
```

Fragment kodu 1: Fragment kodu z programu

3 Wnioski

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortisfacilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdietmi nec ante. Donec ullamcorper, felis non sodales...

4 Źródła

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortisfacilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdietmi nec ante. Donec ullamcorper, felis non sodales...