

Why do we need a new kind of neural networks?

Current architectures don't fit all problems

For example they don't fit combinatorial optimization problems like travelling salesman problem

Pointer Networks

Oriol Vinyals*
Google Brain

Meire Fortunato*
Department of Mathematics, UC Berkeley

Navdeep Jaitly Google Brain

Sequence-to-sequence approach

Content Based Input Attention

Learnable parameters

Hidden state of decoder

$$egin{array}{lll} u^i_j &=& v^T anh(W_1 e_j + W_2 d_i) & j \in (1, \ldots, n) \ a^i_j &=& ext{softmax}(u^i_j) & j \in (1, \ldots, n) \ d'_i &=& \sum_{j=1}^n a^i_j e_j & ext{Weighted average} \end{array}$$

Pointer Network

$$u_j^i = v^T \tanh(W_1 e_j + W_2 d_i) \quad j \in (1, \dots, n)$$
$$p(C_i | C_1, \dots, C_{i-1}, \mathcal{P}) = \operatorname{softmax}(u^i)$$

Problems

Convex Hull

(a) Input $\mathcal{P} = \{P_1, \dots, P_{10}\}$, and the output sequence $\mathcal{C}^{\mathcal{P}} = \{\Rightarrow, 2, 4, 3, 5, 6, 7, 2, \Leftarrow\}$ representing its convex hull.

— Ground Truth --▲- Predictions

Метнор	TRAINED n	n	ACCURACY	AREA
				_
LSTM [1]	50	50	1.9%	FAIL
+ATTENTION [5]	50	50	38.9%	99.7%
PTR-NET	50	50	72.6%	99.9%
LSTM [1]	5	5	87.7%	99.6%
PTR-NET	5-50	5	92.0%	99.6%
LSTM [1]	10	10	29.9%	FAIL
PTR-NET	5-50	10	87.0%	99.8%
PTR-NET	5-50	50	69.6%	99.9%
PTR-NET	5-50	100	50.3%	99.9%
PTR-NET	5-50	200	22.1%	99.9%
PTR-NET	5-50	500	1.3%	99.2%

- ♦ Accuracy: Number of test cases, where predicted sequence of points represent the convex hull
- Area: Ratio of area of predicted hull to the ground truth hull

Delaunay Triangulation

(b) Input $\mathcal{P} = \{P_1, \dots, P_5\}$, and the output $\mathcal{C}^{\mathcal{P}} = \{\Rightarrow, (1, 2, 4), (1, 4, 5), (1, 3, 5), (1, 2, 3), \Leftarrow\}$ representing its Delaunay Triangulation.

Travelling Salesman Problem

	2^N*N^2	N^2	N^2	N^3	
n	OPTIMAL	A1	A2	A3	PTR-NET
5	2.12	2.18	2.12	2.12	2.12
10	2.87	3.07	2.87	2.87	2.88
50 (A1 TRAINED)	N/A	6.46	5.84	5.79	6.42
50 (A3 TRAINED)	N/A	6.46	5.84	5.79	6.09
5 (5-20 TRAINED)	2.12	2.18	2.12	2.12	2.12
10 (5-20 TRAINED)	2.87	3.07	2.87	2.87	2.87
20 (5-20 TRAINED)	3.83	4.24	3.86	3.85	3.88
25 (5-20 TRAINED)	N/A	4.71	4.27	4.24	4.30
30 (5-20 TRAINED)	N/A	5.11	4.63	4.60	4.72
40 (5-20 TRAINED)	N/A	5.82	5.27	5.23	5.91
50 (5-20 TRAINED)	N/A	6.46	5.84	5.79	7.66

Ground Truth: tour length is 3.518

(c) Truth, n=20

Predictions: tour length is 3.523

(f) Ptr-Net, m=5-20, n=20

Bibliography

- https://arxiv.org/pdf/1506.03134.pdf
- https://en.wikipedia.org/wiki/Types_of_artificial_neural_networks
- https://en.wikipedia.org/wiki/Delaunay_triangulation
- https://en.wikipedia.org/wiki/Convex_hull
- https://en.wikipedia.org/wiki/Travelling_salesman_problem

ML in PL is back! https://forms.gle/EuYGXQnezBARTpXN6

