13. LTL Model Checking

Computer-Aided Verification

Dave Parker

University of Birmingham 2017/18

Recap: Regular safety properties

- Model checking regular safety property P_{safe} on LTS M
 - 1. find NFA \mathcal{A} representing the bad prefixes of P_{safe}
 - 2. build LTS-NFA product M \otimes \mathcal{A}
 - 3. is an "accept" state reachable in $M \otimes A$?

- In this lecture, we generalise this approach
 - to model checking for LTL over LTSs

Overview

- Nondeterministic Büchi automata (NBAs)
 - to represent ω-regular languages, LTL formulae
 - non-blocking NBAs
- LTS-NBA product
- LTL model checking

• See [BK08] Sections 4.3–4.4, 5.2

Nondeterministic Büchi automata

- Nondeterministic Büchi automata (NBAs)
 - represent ω -regular languages (e.g. LTL formulae)
- Examples:

Nondeterministic Büchi automata

- Nondeterministic Büchi automata (NBAs)
 - represent ω-regular languages (e.g. LTL formulae)
- Examples:

"infinitely often a" - □�a

"b always follows a" $-\Box(a\rightarrow \diamondsuit b)$

"eventually always a" - ◇□a

Non-blocking NBAs

- An NBA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ is non-blocking if:
 - every symbol is available in every state
 - i.e. $\delta(q,A) \neq \varnothing$ for all states $q \in Q$ and symbols $A \in \Sigma$
 - so every infinite word has a run through \mathcal{A}

Non-blocking NBAs

- An NBA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ is non-blocking if:
 - every symbol is available in every state
 - i.e. $\delta(q,A)=\varnothing$ for all states $q\in Q$ and symbols $A\in \Sigma$
 - so every infinite word has a run through \mathcal{A}
- We can always convert to a non-blocking NBA
 - by adding a "trap" state

Product of an LTS and an NBA

- For an LTS M and a non-blocking NBA A
 - we construct the product of M and \mathcal{A} , denoted M $\otimes \mathcal{A}$
- Identical construction to the case of an NFA
 - synchronous parallel composition
 - transitions of NBA A synchronise with state labels of LTS M
 - allows infinite traces/words that are in both M and A
- Forms the basis of a model checking procedure
 - of ω -regular languages (and thus LTL)

Example 1 – LTS-NBA product

So: there is a path in M which satisfies ψ

{accept}

Note: this is <u>not</u> the procedure for model checking ψ on M

(reachable)

cycle containing

accepting state

Model checking LTL

• Given an LTS M and an LTL formula ψ

```
- M \vDash \psi \Leftrightarrow Traces(M) \subseteq Words(\psi)
```

• Negating the LTL formula (i.e., $\neg \psi$), we have:

```
- M \vDash \psi \Leftrightarrow Traces(M) \cap Words(\neg \psi) = \emptyset
```

• Given also an NBA $\mathcal{A}_{\neg \psi}$ representing the formula $\neg \psi$:

```
- M \models \psi \Leftrightarrow \operatorname{Traces}(M) \cap \mathcal{L}_{\omega}(\mathcal{A}_{\neg \psi}) = \emptyset
```

- Constructing the product $M \otimes A_{\neg \psi}$:
 - $-M \models \psi \Leftrightarrow$ there is no accepting path (cycle) in $M \otimes \mathcal{A}_{\neg \psi}$

LTL model checking

- Model checking LTL formula ψ on LTS M
 - 1. find NBA $\mathcal{A}_{\neg \psi}$ representing the negation $\neg \psi$ of ψ
 - 2. build LTS-NBA product M $\otimes A_{\neg \psi}$
 - 3. is a cycle containing an "accept" state reachable in $M \otimes \mathcal{A}_{\neg \psi}$?
 - "no": ψ is satisfied in M
 "yes": ψ is not satisfied in M $M \models \psi \iff M \otimes \mathcal{A} \models \Diamond \Box \neg accept$ $M \not\models \psi \Leftrightarrow \text{some path satisfies } \Box \Diamond accept \text{ in } M \otimes \mathcal{A}_{\neg \psi}$

Example 1 - LTL model checking

Model check $\psi = \diamondsuit \Box \neg (a \land b)$ on LTS M

 $M \not\models \psi$ i.e. ψ not satisfied

Example 2 – LTL model checking

Model check $\psi = \Box \diamondsuit a$ on LTS M

Product $M \otimes \mathcal{A}_{\neg \psi}$

i.e. ψ not satisfied

Comparison: Linear-time model checking

Model checking regular safety property P_{safe} on LTS M

- 1. NFA \mathcal{A} for bad prefixes of P_{safe}
- 2. build product M \otimes \mathcal{A}
- 3. is an "accept" state reachable in M ⊗ A?
 - "no": P_{safe} is satisfied in M
 - "yes": P_{safe} not satisfied in M

$$M \models P_{safe} \Leftrightarrow M \otimes A \models \Box \neg accept$$

$$M \not\models P_{safe} \Leftrightarrow some path satisfies$$
 $\diamondsuit accept in M \otimes A$

Model checking LTL formula ψ on LTS M

- 1. NBA $\mathcal{A}_{\neg \psi}$ for $\neg \psi$
- 2. build product $M \otimes A_{\neg \psi}$
- 3. is an "accept" cycle reachable in $M \otimes \mathcal{A}_{\neg \psi}$?
 - "no": ψ is satisfied in M
 - "yes": ψ not satisfied in M

$$M \models \psi \Leftrightarrow M \otimes A \models \bigcirc \Box \neg accept$$

$$\begin{array}{c} \mathsf{M} \not\models \psi \Leftrightarrow \mathsf{some} \; \mathsf{path} \; \mathsf{satisfies} \\ & \square \diamondsuit \mathsf{accept} \; \mathsf{in} \; \mathsf{M} \otimes \mathscr{A}_{\neg \psi} \end{array}$$

Regular safety properties

- Regular safety properties
 - are a subclass of ω -regular properties
 - and many can be represented as LTL
 - so LTL model checking also works there (but is more costly)
- Recall the example: $\Box(a \rightarrow \bigcirc b)$
 - an NBA for its negation is...

LTL model checking: Algorithms

- LTL-to-automaton translation
 - various algorithms, tools exist (not covered on this module)
 - (See [BK08] Section 5.2)
- Cycle detection various options
 - 1. search for reachable non-trivial SCCs containing "accept"
 - 2. find all "accept" states, perform DFS to find back edges
 - 3. nested depth-first search
 - (See [BK08] Section 4.4.2)

Assm 2 Qu 2

- Recall this example from Assm 2...
- LTS M

- $\mathbf{M} \models \Box \diamondsuit ((a \land \neg b) \lor \neg c)$
- $\mathbf{M} \not\models \Box \Diamond (\mathbf{a} \land \mathbf{b})$

Complexity of LTL model checking

- The time complexity of LTL model checking
 - for LTS M and LTL formula ψ
- is: $O(|M| \cdot 2^{|\psi|})$
 - i.e. linear in model and exponential in formula size
 - where |M| = number of states + number of transitions in M
 - and $|\psi|$ = number of operators in ψ
- Worst-case execution:
 - there are LTL formulas ψ whose NBA $\mathcal{A}_{\neg\psi}$ is of size $O(2^{|\psi|})$
 - the product to be analysed is $|M| \cdot |\mathcal{A}_{\neg \psi}|$
 - checking for cycles can be done in linear time (nested DFS)

Summary

- LTL model checking procedure
 - convert negation of formula to an equivalent NBA
 - construct LTS-NBA product
 - look for cycles containing accept state in the product
- Same basic idea as for regular safety properties
 - (negation + automaton + product + search)
- Next time
 - counterexamples, fairness, complexity, state space explosion, ...