Fast weight programmers (FWP)

Implementation

Schmidhuber 1993

What is a FWP?

What is a FWP?

- Neural network
- Introspective
- Self modification

Metalearning

Irie et al. (2022)

What is a FWP

- Nodal traffic per time step
- Temporal analysis
 - Four dimensional structure

TMDy?

Why are FWPs useful?

- Expands accuracy of temporally bound networks
- Broadens predictable topics of analyzation
- Problem moves us towards understanding Gödel problem of self reflection.

Its a cool problem!

Meta learning tangent...

Sorry professor...

HOW?

How does one build a FWP?

- Fast weight matrix
 - Design to work around an input vector x
 - Design to work around an output vector of
- Slow weight matrix
 - Design to map FWM weighted by activations rather than resistance
 - Design to analys and modify FWM

How does this relate to Graph theory

- Neural networks
- Graph rewiring
- Activation is based on path traversal
- Combinatoric activation analysis (gradient)

Axiomatic functions

- One neural network $\{W_{Slow}, W_{Fast}\}$
- Some $\Delta \mid \Delta : time \rightarrow W_{Slow}, W_{Fast} -> W'_{Fast}$
- Analysis & modification units are derived

.
$$w_{1,0} \in W_{Fast}, a_{1,0} \in W_{Fast} \mid ana: time \to \int w_{1,0} - a_{1,0} dt \to ?$$

Problems (so far...)

- Language decisions
- Fine grain math conversion
- Testing methods (speed, efficacy)
- Bias of testing methods

Haskell

Functional (easier math)

Library scarcity

Curried typing

Easy axiomatic build cycles

Python

Imperative (harder math)

Library support

Unwieldy type system

Easy MVP build cycles

Questions?