Module Interface Specification for Attitude Check

Adrian Sochaniwsky

 $March\ 15,\ 2024$

1 Revision History

Date	Version	Notes
March 15, 20241	1.0	Initial document

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at https://github.com/adrian-soch/attitude_check/blob/main/docs/SRS/SRS.pdf.

Contents

1	Rev	vision History									
2	Symbols, Abbreviations and Acronyms										
3	Introduction										
4	Not	cation									
5	Mo	dule Decomposition									
3	MIS	MIS of Control Module									
	6.1	Module									
	6.2	Uses									
	6.3	Syntax									
		6.3.1 Exported Constants									
		6.3.2 Exported Access Programs									
	6.4	Semantics									
		6.4.1 State Variables									
		6.4.2 Environment Variables									
		6.4.3 Assumptions									
		6.4.4 Access Routine Semantics									
		6.4.5 Local Functions									
•	MIS	S of Estimate w/o Mag Module									
	7.1	Module									
	7.2	Uses									
	7.3	Syntax									
		7.3.1 Exported Constants									
		7.3.2 Exported Access Programs									
	7.4	Semantics									
		7.4.1 State Variables									
		7.4.2 Assumptions									
		7.4.3 Access Routine Semantics									
		7.4.4 Local Functions									
	MIS	S of Estimate w Mag Module									
	8.1	Module									
	8.2	Uses									
	8.3	Syntax									
		8.3.1 Exported Constants									
		8.3.2 Exported Access Programs									
	8.4	Semantics									

		8.4.1	State Variables
		8.4.2	Assumptions
		8.4.3	Access Routine Semantics
		8.4.4	Local Functions
9	MIS	of Ini	tial Quaternion Estimator w/o Mag Module
	9.1		e
	9.2		
	9.3		
		9.3.1	Exported Constants
		9.3.2	Exported Access Programs
	9.4	Seman	tics
		9.4.1	State Variables
		9.4.2	Assumptions
		9.4.3	Access Routine Semantics
		9.4.4	Local Functions
10			tial Quaternion Estimator w Mag Module
	10.1	Modul	e
	10.2	Uses .	
	10.3	Syntax	•
		10.3.1	Exported Constants
			Exported Access Programs
	10.4	Seman	m tics
		10.4.1	State Variables
		10.4.2	Assumptions
		10.4.3	Access Routine Semantics
		10.4.4	Local Functions
11	MIS	of In	out Verification Module
	11.1	Modul	e
			Exported Constants
			Exported Access Programs
	11.4		tics^{-}
			State Variables
			Assumptions
			Access Routine Semantics
			Local Functions

12	MIS of Quaternion Module	
	12.1 Module	
	12.2 Uses	
	12.3 Syntax	
	12.3.1 Exported Access Programs	
	12.4 Semantics	
	12.4.1 State Variables	
	12.4.2 Assumptions	
	12.4.3 Access Routine Semantics	
13	MIS of Matrix Math Module	
	13.1 Module	
	13.2 Uses	
	13.3 Syntax	
	13.3.1 Exported Access Programs	
	13.4 Semantics	
	13.4.1 State Variables	
	13.4.2 Access Routine Semantics	

3 Introduction

The following document details the Module Interface Specifications for Attitude Check.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at https://github.com/adrian-soch/attitude_check.

4 Notation

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by Attitude Check.

Data Type	Notation	Description
real	\mathbb{R}	any number in $(-\infty, \infty)$
boolean	\mathbb{B}	value in $[false = 0, true = 1]$
matrix	$\mathbb{R}^{m \times n}$	matrix of any number in $(-\infty, \infty)$
vector	\mathbb{R}^m	column vector of any number in $(-\infty, \infty)$
quaternion	\mathbf{q}	a quaternion $\in \mathbb{R}^4$, see SRS for details

The specification of Attitude Check uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, Attitude Check uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Behaviour-Hiding Module	Control Module Input Verification Module Initial Quaternion Estimator w/o Mag Module Initial Quaternion Estimator w Mag Module Estimate w/o Mag Module Estimate w Mag Module
Software Decision Module	Matrix Math Module Quaternion Module

Table 1: Module Hierarchy

6 MIS of Control Module

- 6.1 Module
- 6.2 Uses
- 6.3 Syntax
- 6.3.1 Exported Constants
- 6.3.2 Exported Access Programs

Name	In	Out	Exceptions
	-	-	-

- 6.4 Semantics
- 6.4.1 State Variables
- 6.4.2 Environment Variables
- 6.4.3 Assumptions
- 6.4.4 Access Routine Semantics

():

- transition:
- output:
- \bullet exception:
- 6.4.5 Local Functions

7 MIS of Estimate w/o Mag Module

- 7.1 Module
- **7.2** Uses
- 7.3 Syntax
- 7.3.1 Exported Constants
- 7.3.2 Exported Access Programs

Name	In	Out	Exceptions
	-	-	-

- 7.4 Semantics
- 7.4.1 State Variables
- 7.4.2 Assumptions
- 7.4.3 Access Routine Semantics

():

- transition:
- output:
- exception:

8 MIS of Estimate w Mag Module

- 8.1 Module
- 8.2 Uses
- 8.3 Syntax
- 8.3.1 Exported Constants
- 8.3.2 Exported Access Programs

Name	In	Out	Exceptions
	-	-	-

- 8.4 Semantics
- 8.4.1 State Variables
- 8.4.2 Assumptions
- 8.4.3 Access Routine Semantics

():

- transition:
- output:
- exception:
- 8.4.4 Local Functions

9 MIS of Initial Quaternion Estimator w/o Mag Module

- 9.1 Module
- 9.2 Uses
- 9.3 Syntax
- 9.3.1 Exported Constants
- 9.3.2 Exported Access Programs

Name	In	Out	Exceptions
	-	-	-

- 9.4 Semantics
- 9.4.1 State Variables
- 9.4.2 Assumptions
- 9.4.3 Access Routine Semantics

():

- transition:
- output:
- exception:

10 MIS of Initial Quaternion Estimator w Mag Module

- 10.1 Module
- 10.2 Uses
- 10.3 Syntax
- 10.3.1 Exported Constants
- 10.3.2 Exported Access Programs

Name	In	Out	Exceptions
	-	-	-

- 10.4 Semantics
- 10.4.1 State Variables
- 10.4.2 Assumptions
- 10.4.3 Access Routine Semantics

():

- transition:
- output:
- exception:

11 MIS of Input Verification Module

11.1 Module

Input

11.2 Uses

Quaternion Module

11.3 Syntax

11.3.1 Exported Constants

11.3.2 Exported Access Programs

Name	In	Out	Exceptions
	-	-	-

11.4 Semantics

- 11.4.1 State Variables
- 11.4.2 Assumptions
- 11.4.3 Access Routine Semantics

():

- \bullet transition:
- output:
- exception:

12 MIS of Quaternion Module

12.1 Module

Quaternion

12.2 Uses

Matrix Math Module

12.3 Syntax

12.3.1 Exported Access Programs

Name	In	Out	Exceptions
create_quat	$\mathbf{w} := \mathbb{R}, x := \mathbb{R}, y := \mathbb{R}, z := \mathbb{R}$	-	ValueError
$\operatorname{quat_prod}$	$P := \mathbf{q}, q := \mathbf{q}$	$q_{\mathrm{out}} := \mathbf{q}$	-
normalize	-	_	-
$assert_is_norm$	$\mathbf{w}{:=}\mathbb{R}, x:=\mathbb{R}, y:=\mathbb{R}, z:=\mathbb{R}$	$\mathrm{out} := \mathbb{B}$	_

12.4 Semantics

12.4.1 State Variables

quat: q

12.4.2 Assumptions

12.4.3 Access Routine Semantics

create_quat(w, x, y, z):

• transition: quat := \mathbf{q} where $\mathbf{q} = [w, x, y, z]$

• exception: ValueError when $|quat| \neq 1$

 $quat_prod(p, q)$:

• output:

$$q_{\text{out}} := \begin{bmatrix} p_w q_w - p_x q_x - p_y q_y - p_z q_z \\ p_w q_x + p_x q_w + p_y q_z - p_z q_y \\ p_w q_y - p_x q_z + p_y q_w + p_z q_x \\ p_w q_z + p_x q_y - p_y q_x + p_z q_w \end{bmatrix}$$

• exception: none

normalize():

$$\bullet \ \ \text{transition: quat} := \left\lceil \frac{\text{quat}_w}{d}, \frac{\text{quat}_x}{d}, \frac{\text{quat}_y}{d}, \frac{\text{quat}_z}{d} \right\rceil \ \text{where} \ d = \sqrt{\text{quat}_w^2 + \text{quat}_x^2 + \text{quat}_y^2 + \text{quat}_z^2}$$

• exception: none

assert_is_norm():

• output: out:=
$$(1 == \sqrt{w^2 + x^2 + y^2 + z^2})$$

• exception: none

13 MIS of Matrix Math Module

13.1 Module

Math

13.2 Uses

N/A

13.3 Syntax

13.3.1 Exported Access Programs

Name	In	Out	Exceptions
*	$\mathbb{R}^{m \times n} \times \mathbb{R}^{n \times m}$	$m := \mathbb{R}^{n \times n}$	EIGEN_STATIC_ASSERT_ERROR
*	$\mathbb{R}^{m \times n} \times \mathbb{R}$	$m := \mathbb{R}^{m \times n}$	EIGEN_STATIC_ASSERT_ERROR
+	$\mathbb{R}^{m\times n}\times\mathbb{R}^{m\times n}$	$m := \mathbb{R}^{m \times n}$	EIGEN_STATIC_ASSERT_ERROR
transpose	$\mathbb{R}^{m imes n}$	$m := \mathbb{R}^{n \times m}$	EIGEN_STATIC_ASSERT_ERROR

13.4 Semantics

13.4.1 State Variables

None.

13.4.2 Access Routine Semantics

transpose($\mathbb{R}^{m \times n}$):

- output: $m := \mathbb{R}^{m \times n}$
- exception: EIGEN_STATIC_ASSERT_ERROR

$$[\mathbf{A}^T]_{i,j} = [\mathbf{A}]_{j,i}$$

 $\mathbb{R}^{m\times n} * \mathbb{R}^{n\times m}$:

- output: $m := \mathbb{R}^{n \times n}$
- \bullet exception: EIGEN_STATIC_ASSERT_ERROR

Let
$$\mathbf{A} = [a_{i,j}]_{m \times n}$$
 and $\mathbf{B} = [b_{i,j}]_{n \times m}$. Then $\mathbf{C} = \mathbf{A} * \mathbf{B}$ with $c_{i,j} = a_{i,0}b_{0,j} + a_{i,1}b_{1,j}...a_{i,n}b_{n,j}$.

 $\mathbb{R}^{m \times n} * \mathbb{R}$:

• output: $m := \mathbb{R}^{m \times n}$

 \bullet exception: EIGEN_STATIC_ASSERT_ERROR

Let
$$\mathbf{A} = [a_{i,j}]_{m \times n}$$
 and $k = \mathbb{R}$. Then $\mathbf{C} = \mathbf{A} * k$ with $c_{i,j} = k a_{i,j}$.

 $\mathbb{R}^{m \times n} + \mathbb{R}^{m \times n}$:

- output: $m := \mathbb{R}^{m \times n}$
- \bullet exception: EIGEN_STATIC_ASSERT_ERROR

Let
$$\mathbf{A} = [a_{i,j}]_{m \times n}$$
 and $\mathbf{B} = [b_{i,j}]_{m \times n}$. Then $\mathbf{A} + \mathbf{B} = [a_{i,j} + b_{i,j}]_{m \times n}$.

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.