Formalisms Every Computer Scientist Should Know

Students in the class ISTA

License: This work is marked with CC0 1.0. To view a copy of this license, visit http://creativecommons.org/publicdomain/zero/1.0

Contents

Class 1		7
Class 2 0.1	Lattices and Fixpoints	vi:
Class 3		iz

CONTENTS

Class 1

vi CLASS 1

Class 2

Goal	Knowledge	Outermost symbol
Show for all x , $G(x)$. Consider arbitrary \hat{x} . Show $G(\hat{x})$	We know for all x , $K(x)$ In particular we know $K(\hat{t})$ for constant \hat{t}	A
Show: exists x s.t. $G(x)$. We show $G(\hat{t})$	We know exists x s.t. $K(x)$ Let \hat{x} be s.t. $K(x)$	3
Show G_1 iff G_2 1. Show if G_1 then G_2 2. Show if G_2 then G_1	We know K_1 iff K_2 In particular we know if K_1 then K_2 and if K_2 then K_1	\iff
Show if G_1 then G_2 Assume G_1 Show G_2	We know if K_1 then K_2 1. To show K_2 it suffices to show K_2 2. Know K_1 , Also know K_2	\Rightarrow
Show G_1 and G_2 1. Show G_1 2. Show G_2	Know K_1 and K_2 1. Also Know K_1 2. Also Know K_2	٨
Show G_1 or G_2 1. Assume $\neg G_1$, show G_2 2. Assume $\neg G_2$, show G_1	We know K_1 or K_2 . Show G . 1. Assume K_1 , Show G 2. Assume K_2 , Show G Case split \uparrow	V
Move Negat		

0.1 Lattices and Fixpoints

We begin by defining relations and their properties.

Definition 1. A binary relation R on a set A is a subset $R \subset A \times A$.

The relation R is reflexive if for all x in A, we have R(x,x).

The relation R is Antisymmetric if for all x and y in A, if R(x,y) and R(y,x) then x=y.

The relation R is transitive if for all x, y and z in A, if R(x, y) and R(y, z) then R(x, z).

The relation R is a partial order if R is reflexive, antisymmetric and transitive.

A Poset (A, \sqsubseteq) is a set A and a partial order \sqsubseteq on A.

Example 1. The pair (\mathbb{N}, \leq) where \mathbb{N} is the set of natural numbers, is a poset. For every set B, we have $(\mathscr{P}(B), \subseteq)$ where $\mathscr{P}(B)$ is the powerset of B, is a poset.

Definition 2. • Let (A, \sqsubseteq) be a poset. A function F from A to A is monotone (order-preserving, homomorphism) if for all x and y in A, if $x \sqsubseteq y$, then $F(x) \sqsubseteq F(y)$.

• F has a fixpoint x in A if there exists x in A such that F(x) = x.

viii CLASS 2

• x in A is a pre-fixpoint of F if $x \sqsubseteq F(x)$ and is a post-fixpoint of F, if $F(x) \sqsubseteq x$.

Definition 3. Let (A, \sqsubseteq) be a poset.

- x in A is an upper bound(lower bound) on a subset B of A if for all y in B, it holds that $y \sqsubseteq x$ $(x \sqsubseteq y)$.
- x is the least upper bound of B if (i) x is an upper bound of B and (ii) for all upper bounds y of B, we have $x \sqsubseteq y$. We denote such x by $\bigcup B$.
- x is the greatest lower bound of B if (i) x is a lower bound of B and (ii) for all lower bounds y of B, we have $y \sqsubseteq x$. We denote such x by $\bigcap B$.

Example 2. • Consider the poset (\mathbb{N}, \leq) . Then for any $B \subseteq \mathbb{N}$, if B is finite, $\bigcup B$ is well-defined and equal to $\max B$. If B is infinite, then $\bigcup B$ does not exist.

- Consider the poset $(\mathbb{N} \cup \{\infty\}, \leq)$ where for all x in \mathbb{N} , it holds that $x \leq \infty$. Then for all $B \subseteq \mathbb{N}$, the least upper bound $\coprod B$ is well-define.
- Let A be any set and consider the poset $(\mathscr{P}(A),\subseteq)$. For any subset B of $\mathscr{P}(A)$, it holds that $\bigcup B = \bigcup B$ and $\bigcap B = \bigcap B$.

Definition 4. Poset (A, \sqsubseteq) is a complete-lattice if for all $B \subseteq A$, both $\bigcap B$ and $\bigcup B$ exist.

Example 3. Let (A,\sqsubseteq) be a complete-lattice.

- $\bigsqcup A = \top$
- $\prod A = \bot$
- □∅ = ⊥
- $\square \varnothing = \top$

Theorem 1 (Knaster-Tarski). For every complete lattice (A, \sqsubseteq) and monotone function F on A, it holds that

- 1. $\bigsqcup\{x \in A | x \sqsubseteq F(x)\}\$ is the unique greatest fixpoint of F.
- 2. $\prod \{x \in A | F(x) \subseteq x\}$ is the unique least fixpoint of F.

Homework. Prove the Knaster Tarski Theorem.

Class 3

CLASS 3