- 1. Prove que quaisquer que sejam as proposições p, q, r, se tem:
 - (a) $p \lor q = q \lor p$ (comutatividade da disjunção)
 - (b) $(p \lor q) \lor r = p \lor (q \lor r)$ (associatividade da disjunção)
 - (c) $p \wedge q = q \wedge p$ (comutatividade da conjunção)
 - (d) $(p \wedge q) \wedge r = p \wedge (q \wedge r)$ (associatividade da conjunção)
 - (e) $p \wedge (q \vee r) = (p \wedge r) \vee (p \wedge q)$ (distributividade da conjunção a respeito da disjunção)
 - (f) $p \lor (q \land r) = (p \lor r) \land (p \lor q)$ (distributividade da disjunção a respeito da conjunção)
- 2. Prove que, quaisquer que sejam as proposições p,q e r, são verdadeiras as proposições:
 - (a) $(p \Rightarrow q) \Leftrightarrow [(\sim q) \Rightarrow (\sim p)]$ (regra do contra-recíproco),
 - (b) $[p \land (p \Rightarrow q)] \Rightarrow q$,
 - (c) $[(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)$.
- 3. Indique quais das seguintes proposições são verdadeiras e quais são falsas onde o domínio das variáveis é: (a) o conjunto dos números reais; e (b) o conjunto dos números naturais.

$$\forall x \quad x^2+1>1, \qquad \forall x \quad (x>2\Rightarrow x>1), \qquad \forall x, \exists y \quad y=x^2, \\ \exists y, \forall x \quad y=x^2, \qquad \forall x, y, \exists z \quad x=yz, \qquad \exists x, y \quad (x-y)^2=x^2-y^2, \qquad \forall x, y \quad (x-y)^2=x^2-y^2$$

4. Verifique que as condições seguintes são formalmente equivalentes:

$$\exists y \quad x = 10^y \quad \Leftrightarrow x > 0 \quad (\text{ em } \mathbf{R}), \qquad \forall x, \exists y \quad y = x^2 \quad \Leftrightarrow y \le 0 \quad (\text{ em } \mathbf{R})$$

 $\forall x \quad y \le x \quad \Leftrightarrow \quad y = 1 \quad (\text{ em } \mathbf{N}), \qquad \forall x, \quad y < x \quad \Leftrightarrow \quad y = y + 1 \quad (\text{ em } \mathbf{N})$
 $\exists z \quad x = y + z, \quad \Leftrightarrow \quad x > y \quad (\text{ em } \mathbf{N})$

- 5. Mostre que as condições $p(x) \Rightarrow q(x)$ e $\sim q(x) \Rightarrow \sim p(x)$ são equivalentes, mas que, em geral, qualquer delas não é equivalente a $q(x) \Rightarrow p(x)$.
- 6. Escreva a negação de:

$$\begin{array}{lllll} x>z\Rightarrow |f(x)|<\epsilon & |f(x)|>\epsilon\Rightarrow x>z & \forall x & y=x^2 & \exists y & y=x^2 & \forall x\forall yz-x=x-y\\ \exists x\forall y & z-x=x-y & \exists x\exists y & z-x=x-y & \forall y\exists z\forall x & x>z\Rightarrow f(x)>y\\ \forall y\exists z\forall x & xy \end{array}$$

7. Seja u_n o termo geral de uma sucessão e a um número real. Por definição, a proposição $\lim u_n = a$ é equivalente a

$$\forall \delta \exists p \forall n (n > p \Rightarrow |u_n - a| < \delta)$$

onde δ tem por domínio os reais positivos e p e n os naturais. Que proposição caracteriza a negação de $\lim u_n = a$?

- 8. A sucessão u_n diz-se limitada se, por definição, $\exists k \forall n |u_n| < k$. Defina sucessão ilimitada. Será que a condição $\forall n \exists k |u_n| < k$ caracteriza sucessões limitadas?
- 9. Verifique que, sendo z e ϵ números reais,

se
$$\forall \epsilon (\epsilon > 0 \Rightarrow |z| > \epsilon)$$
, então $z = 0$