Département de Mathématiques

L3: Analyse-EDP

DM 1 : A rendre pour le mercredi 26 février

Exercice 1. Résoudre explicitement

$$\begin{cases} b \frac{\partial u}{\partial t}(t, x) + x \frac{\partial u}{\partial x}(t, x) &= 0 & \text{pour } (t, x) \in [0, +\infty[\times \mathbb{R} \\ u(0, x) &= u_0(x) & \text{pour } x \in \mathbb{R} \end{cases}$$

quand

- **1.** la fonction u_0 est la fonction définie sur \mathbb{R} par $u_0(x) = e^{-x^2}$;
- **2.** la fonction u_0 est la fonction indicatrice du segment [0,1] de \mathbb{R} .

Dessiner les fonctions u_0 et $u(1,\cdot)$ dans ces deux exemples, ainsi que les caractéristiques dans le plan (t,x).

EXERCICE 2. Étant donnée une fonction u_0 sur \mathbb{R} de classe C^1 on cherche les fonctions u = u(t, x) de classe C^1 sur $[0, +\infty[\times\mathbb{R} \text{ solution de}]$

$$(*) \begin{cases} \frac{\partial u}{\partial t}(t,x) + u(t,x) \frac{\partial u}{\partial x}(t,x) & = 0 & \text{pour } (t,x) \in [0,+\infty[\times \mathbb{R} \\ u(0,x) & = u_0(x) & \text{pour } x \in \mathbb{R}. \end{cases}$$

1. Soit u une solution du problème. On suppose que u est lipschitzienne en x, uniformément en $t \in [0, T]$ pour tout T > 0. Pour $(t, x) \in [0, +\infty[\times \mathbb{R} \text{ on note } X(\cdot; t, x) \text{ la caractéristique issue de } (t, x) \text{ générée par } u$, c'est-à-dire la solution de

$$\begin{cases} X'(s) &= u(s, X(s)) & \text{pour } s \ge 0 \\ X(t) &= x. \end{cases}$$
 (C)

- 1.1. Vérifier que pour tout (t,x) le système (C) a bien une unique solution globale.
- 1.2. Démontrer que

$$u(s, X(s;t,x)) = u(t,x)$$

pour tous t, x, s puis que pour tous t, x

$$u(t, x + t u_0(x)) = u_0(x).$$

- **2.** Soit u_0 une fonction de classe $C^1(\mathbb{R})$.
- **2.1.** On suppose que $u_0' \geq 0$ sur \mathbb{R} , montrer que la relation

$$u(t, x + t u_0(x)) = u_0(x)$$
 pour $(t, x) \in [0, +\infty] \times \mathbb{R}$

définit bien une fonction u=u(t,x) sur $[0,+\infty[\times\mathbb{R}.$ En admettant que cette fonction u est de classe C^1 , démontrer que c'est une solution de (*).

- **2.2.** Et si on suppose que u_0 est à support compact dans \mathbb{R} ? Montrer qu'on peut tout de même définir la solution u(t,x) sur $[0,t^*]\times\mathbb{R}$ pour un certain t^* que l'on exprimera en fonction de $\inf_{\mathbb{R}} u'_0$.
- **2.3.** Soit x un réel tel que $u_0(x) = 0$. Montrer que u(t, x) = 0 pour tout t. En déduire que si u_0 est à support compact dans \mathbb{R} , alors pour tout t où la solution est bien définie

$$\int_{\mathbb{R}} u(t,x) dx = \int_{\mathbb{R}} u_0(x) dx.$$