Лабораторная работа 2.1.2 Определение C_p/C_v методом адиабатического расширения газа

Рашковецкий М.М., группа 526т 4 марта 2016 г.

Цель работы: определение отношения C_p/C_v для углекислого газа по измерению давления в стеклянном сосуде.

Оборудование и материалы: стеклянный сосуд с трубками; U-образный жидкостный манометр; газгольдер с углекислым газом; секундомер.

Краткая теория

Экспериментальная установка (рис. 1) состоит из стеклянного сосуда A (объёмом около 20 л) с краном K_2 , и U-образного жидкостного манометра M для измерения избыточного давления газа в сосуде. Избыточное давление в сосуде создаётся путём накачивания углекислого газа из газгольдера через кран K_1 .

Рис. 1: Схема установки

Схематические графики процессов, происходящих с газом, показаны на рис. 2. Штриховой линией показаны изотермы. При накачивании газ несколько нагревается, но спустя некоторое время остывает $(1 \to 2)$, так что в начале опыта в сосуде A находится исследуемый газ при комнатной температуре T_0 и давление P_1 немного больше атмосферного P_0 :

$$P_1 = P_0 + \rho g \Delta h_1. \tag{1}$$

Рис. 2: Графики процессов

После открытия крана K, соединяющего сосуд A с атмосферой, давление и температура газа будет понижаться сначала адиабатически в течение $\Delta t \sim 0.5$ с $(2 \to 3)$, а потом идёт изобарное расширение $(3 \to 4)$. После закрытия K_2 газ изохорически нагревается до комнатной температуры $(4 \to 5)$, давление повышается до

$$P_2 = P_0 + \rho g \Delta h_2. \tag{2}$$

Исследуем зависимость соотношения перепадов давлений $\frac{\Delta P_1}{\Delta P_2}$ от времени открытия клапана τ .

Можно достаточно точно считать газ идеальным. Рассмотрим изобарное расширения, записав уравнение теплового баланса для изменяющейся со временем

$$m = \mu \frac{P_0 V_0}{RT} \tag{3}$$

массы газа:

$$C_P m dT = -\alpha \left(T - T_0 \right) dt, \tag{4}$$

где C_P — удельная теплоёмкость при постоянном давлении, а α — положительный коэффициент, характеризующий теплообмен, V_0 — объём сосуда.

$$C_P \mu \frac{P_0 V_0}{RT} dT = -\alpha \left(T - T_0 \right) dt, \tag{5}$$

или

$$\frac{dT}{T(T-T_0)} = -\frac{\alpha R dt}{C_P P_0 V_0 \mu}.$$
 (6)

Поскольку

$$\frac{1}{T(T-T_0)} = -\frac{1}{T_0} \left(\frac{1}{T} - \frac{1}{T-T_0} \right),\tag{7}$$

получаем

$$\frac{dT}{T_0} \left(\frac{1}{T} - \frac{1}{T - T_0} \right) = \frac{\alpha dt}{C_P m_0 T_0}.$$
 (8)

Сократим на T_0 :

$$\frac{dT}{T} - \frac{dT}{T - T_0} = \frac{\alpha dt}{C_P m_0},\tag{9}$$

проинтегрируем и получим

$$\ln\left(\frac{T_2}{T_1}\frac{\Delta T_1}{\Delta T_2}\right) = \frac{\alpha \tau}{C_P m_0}.\tag{10}$$

Наконец

$$\frac{\Delta T_1}{T_1} = \frac{\Delta T_2}{T_2} \exp\left[\frac{\alpha \tau}{C_P m_0}\right]. \tag{11}$$

Из уравнения адиабаты в координатах P, T:

$$T^{\gamma} = const \cdot P^{\gamma - 1} \tag{12}$$

взятием логарифмических производных получим

$$\frac{dT}{T} = \frac{\gamma - 1}{\gamma} \frac{dP}{P}.\tag{13}$$

Перейдём к конечным приращениям:

$$\frac{\Delta T}{T} = \frac{\gamma - 1}{\gamma} \frac{\Delta P}{P}.\tag{14}$$

Для изохоры $P \sim T$, поэтому

$$\frac{\Delta T}{T} = \frac{\Delta P}{P}.\tag{15}$$

После подстановки (14) и (15) в (11) получим

$$\frac{\gamma - 1}{\gamma} \frac{\Delta P_1}{P_0} = \frac{\Delta P_2}{P_2} \exp\left[\frac{\alpha \tau}{C_P m_0}\right]. \tag{16}$$

Подставив (1) и (2), получим

$$\frac{\Delta h_1}{\Delta h_2} = \frac{\gamma}{\gamma - 1} \exp\left[\frac{\alpha \tau}{C_P m_0}\right]. \tag{17}$$

Прологарифмировав, получим линейную связь:

$$\ln \frac{\Delta h_1}{\Delta h_2} = \ln \frac{\gamma}{\gamma - 1} + \frac{\alpha}{C_P m_0} \tau \tag{18}$$

Тогда, если линейно аппроксимировать $(\tau, \ln{(\Delta h_1/\Delta h_2)})$ как

$$\ln \frac{\Delta h_1}{\Delta h_2} = C + B\tau,$$
(19)

то показатель адиабаты можно найти как

$$\gamma = \frac{1}{1 - e^{-C}}.\tag{20}$$

Я работал с углекислым газом, по классической теории для него $\gamma = 1.33$.

Ход работы

- 1. Проверил исправность установки.
- 2. Открыл кран K_1 и наполнил сосуд газом.
- 3. Подождал, пока уровни жидкости в коленах манометра установятся, и измерил разность уровней Δh_1 .
- 4. Открыл кран K_2 на время τ .
- 5. Подождал, пока уровни жидкости в коленах манометра установятся, и измерил разность уровней Δh_2 .
- 6. Открыл краны K_1 и K_2 приблизительно на минуту.
- 7. Повторил пп. 2-6 для разных τ .

Обработка результатов

Результаты измерений приведены в таблице 1.

Для подсчёта погрешностей я принял $\sigma_h=1$ мм, погрешность логарифма в соответствии с частными производными по $\Delta h_1,\,\Delta h_2$ и в предположении о их независимости

$$\sigma_{\ln(h_1/h_2)} = \sigma_h \sqrt{\frac{1}{(\Delta h_1)^2} + \frac{1}{(\Delta h_2)^2}}.$$
 (21)

После этого с помощью библиотек SciPy, NumPy и matplotlib я построил требуемый график (рис. 3) и провёл линейную аппроксимацию зависимости¹ в соответствии с (19). Нас интересует только свободный член, он равен

$$C = 1,50 \pm 0,04 \tag{22}$$

¹Точкам был установлен разный вес в соответствии с погрешностям каждой.

Таблица 1: Результаты эксперимента

τ , c	Δh_1 , cm	Δh_2 , cm	$\ln\left(\Delta h_1/\Delta h_2\right)$
5	10,4	2	$1,65 \pm 0,05$
3	9,7	2	$1,58 \pm 0,05$
10	10,2	1,3	$2,06 \pm 0,08$
15	10,2	0,8	$2,54 \pm 0,13$
20	9,6	0,7	$2,62 \pm 0,14$
7	10,4	1,5	$1,94 \pm 0,07$
8	10	1,4	$1,97 \pm 0,07$
12	9,6	0,8	$2,49 \pm 0,13$
4	9,8	1,7	$1,75 \pm 0,06$
2	10,4	2	$1,65 \pm 0,05$
1	10,3	2	$1,64 \pm 0,05$
17	10,2	0,9	$2,43 \pm 0,11$
23	10	0,7	$2,66 \pm 0,14$
25	10,2	0,6	$2,83 \pm 0,17$
13	8	0,8	$2,30 \pm 0,13$
18	4,4	0,4	$1,4 \pm 0,3$

Рис. 3: Экспериментальный график и его линейная аппроксимация

Тогда мы можем найти показатель адиабаты из (20), его погрешность будет равна

$$\sigma_{\gamma} = \sigma_C \frac{e^{-C}}{\left(1 - e^{-C}\right)^2}.\tag{23}$$

Показатель адибаты равен

$$\gamma = 1,287 \pm 0,014. \tag{24}$$

Этот результат несколько отличается от теоретического, однако из расхождение находится в пределах 3σ . Вероятно, погрешность занижена, потому что при подсчёте погрешности коэффициента не учтены погрешности точек.