Grundbegriffe der Informatik Aufgabenblatt 7

Matr.nr.:	
Nachname:	
Vorname:	
Tutorium:	Nr. Name des Tutors:
Ausgabe:	1. Dezember 2010
Abgabe:	10. Dezember 2010, 12:30 Uhr im Briefkasten im Untergeschoss von Gebäude 50.34
Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet abgegeben werden.	
Vom Tutor au	szufüllen:
erreichte Pui	nkte
Blatt 7:	/ 20
Blätter 1 – 7:	/ 139

Aufgabe 7.1 (3+2 Punkte)

An dieser Stelle betrachten wir noch einmal ein Problem ähnlich dem Brückenproblem aus der Vorlesung. Es sei G = (V, E) ein Graph. Es geht um die Frage, ob es in G einen (womöglich geschlossenen) Weg gibt, der jede Kante von G genau einmal enthält.

a) Geben Sie für jeden der folgenden Graphen an, ob es einen Weg gibt, der jede Kante genau einmal enthält *und* ob es einen Zyklus gibt, der jede Kante genau einmal enthält:

b) Geben Sie eine einfache Bedingung an, die notwendig und hinreichend dafür ist, dass ein Graph einen Zyklus enthält, in dem jede Kante genau einmal vorkommt.

Aufgabe 7.2 (2+3+1 Punkte)

Gegeben sei das Wort $w = \text{caccacababaabbacabcabccabbacac } \ddot{u}$ ber $\{a, b, c\}$.

- a) Zerlegen Sie w von links nach rechts in Dreierblöcke und geben Sie für jeden Block an, wie häufig er in w vorkommt.
- b) Konstruieren Sie den für den Huffman-Code benötigten Baum.
- c) Geben Sie die Codierung von w für den Huffman-Code an, den Sie in Teilaufgabe b) konstruiert haben.

Aufgabe 7.3 (2+2 Punkte)

Seien $n, k \in \mathbb{N}_0$ mit $1 \le k \le n$.

In einem Wort $w \in \{a, b, c\}^*$ der Länge 3n komme k mal das Zeichen a, n mal das Zeichen b und 2n - k mal das Zeichen c vor.

- a) Geben Sie den für die Huffman-Codierung benötigten Baum an.
- b) Geben Sie (in Abhängigkeit von *k* und *n*) die Länge des zu *w* gehörenden Huffman-Codes an.

Aufgabe 7.4 (5 Punkte)

Sei $T_1=(V_1,E_1)$ ein gerichteter Baum mit Wurzel r_1 , $T_2=(V_2,E_2)$ ein gerichteter Baum mit Wurzel r_2 , und es gelte $V_1\cap V_2=\{\}$. Sei $r\notin V_1\cup V_2$.

Zeigen Sie: $T_1 \circ_r T_2 = (V_1 \cup V_2 \cup \{r\}, E_1 \cup E_2 \cup \{(r, r_1), (r, r_2)\})$ ist ein gerichteter Baum mit Wurzel r.