HY / Matematiikan ja tilastotieteen laitos Topologia Ia, syksy 2016 Tentti 2.11.

- **t1.** Olkoon $d: \mathbb{R} \times \mathbb{R} \to [0, \infty[$ funktio d(x, y) = ||x| |y|| kaikilla $x, y \in \mathbb{R}$.
 - (a) (3p.) Osoita, että d toteuttaa kolmioepäyhtälön.
 - (b) (3p.) Osoita, että d ei ole metriikka joukossa \mathbb{R} .

Ratkaisu: Olkoot $x, y, z \in \mathbb{R}$. Tällöin

$$d(x,y) = ||x| - |y|| = ||x| - |z| + |z| - |y|| \le ||x| - |z|| + ||z| - |y|| = d(x,z) + d(z,y).$$

eli d toteuttaa kolmioepäyhtälön. Funktio d ei kuitenkaan ole metriikka, sillä d(-1,1) = ||-1|-|1|| = |1-1| = 0, vaikka $-1 \neq 1$.

- **t2.** Olkoot (X, d_X) , (Y, d_Y) ja (Z, d_Z) metrisiä avaruuksia.
 - (a) (2p.) Anna määritelmä kuvauksen $f: X \to Y$ jatkuvuudelle pisteessä $x \in X$ metrisestä avaruudesta (X, d_X) metriseen avaruuteen (Y, d_Y) .
 - (b) (4p.) Olkoot $f: X \to Y$ ja $g: Y \to Z$ jatkuvia kuvauksia. Osoita, että kuvaus $g \circ f: X \to Z$ on jatkuva.

Ratkaisu:

- (a) Kuvaus f on jatkuva pisteessä $x \in X$, jos jokaisella $\varepsilon > 0$ on olemassa selainen $\delta > 0$, että $fB_d(x, \delta) \subset B_d(f(x), \varepsilon)$.
- (b) Olkoon $x \in X$ ja $\varepsilon > 0$. Koska kuvaus g on jatkuva pisteessä f(x), niin on olemassa $\delta' > 0$, jolle pätee $gB_{d_Y}(f(x), \delta') \subset B_{d_Z}(g(f(x)), \varepsilon)$. Toisaalta, koska f on jatkuva pisteessä $x \in X$, niin on olemassa $\delta > 0$, jolle pätee $fB_{d_X}(x, \delta) \subset B_{d_Y}(f(x), \delta')$. Näin ollen $g(f(B_{d_X}(x, \delta)) \subset g(B_{d_Y}(f(x), \delta') \subset B_{d_Z}(g(f(x)), \varepsilon)$. Kuvaus $g \circ f$ on siis jatkuva pisteessä $x \in X$. Näin ollen $g \circ f$ on jatkuva.
- t3. Olkoot

$$X = \{(x, y) \in \mathbb{R}^2 \colon x > 0, \ y \in \mathbb{R}\} \subset \mathbb{R}^2$$

ja

$$A = \{(x, y) \in X : y \ge 0\} \subset \mathbb{R}^2.$$

- (a) (4p.) Osoita, että A on suljettu joukko metrisessä avaruudessa (X,d), missä d tason \mathbb{R}^2 euklidisen metriikan rajoittuma joukkoon X.
- (b) (2p.) Osoita, että A ei ole euklidisen tason \mathbb{R}^2 suljettu osajoukko.

Ratkaisu:

- (a) Osoitetaan, että A:n komplementti X:ssä on avoin. Huomataan aluksi, että $X \setminus A =]0, \infty[\times] \infty, 0[=X \cap (\mathbb{R} \times] \infty, 0[).$ Olkoon $(x,y) \in X \setminus A$. Tällöin y < 0 ja euklidinen kuula $B^2((x,y),|y|)$ sisältyy alempaan puolitasoon eli joukkoon $\mathbb{R} \times]-\infty, 0[$. Näin ollen $B_d((x,y),|y|) \subset X \cap (\mathbb{R} \times] \infty, 0[) = X \setminus A$. Joukko $X \setminus A$ on siis avoin X:ssä, joten A on suljettu X:ssä.
- (b) Havaitaan aluksi, että d((0,0),A)=0, sillä jokaisella r>0 pätee $d((0,0),A)\leq d((0,0),(r,0))=r$. Näin ollen $(0,0)\in \overline{A}$. Koska $(0,0)\not\in A$, niin A ei ole suljettu \mathbb{R}^2 :ssa.

t4. (6p.) Olkoon (X, d) metrinen avaruus ja $A \subset X$ epätyhjä osajoukko. Osoita, että $d(x, A) = d(x, \overline{A})$ jokaisella $x \in X$.

Ratkaisu: Olkoon $x \in X$. Koska $A \subset \overline{A}$, niin

$$d(x, \overline{A}) = \inf_{y \in \overline{A}} d(x, y) \le \inf_{y \in A} d(x, y) = d(x, A).$$

Olkoon $\varepsilon > 0$. Infimumin määritelmän perusteella on olemassa sellainen $y' \in \overline{A}$, että $d(x,y') < d(x,\overline{A}) + \varepsilon/2$. Koska $y' \in \overline{A}$, niin $B_d(y',\varepsilon/2) \cap A \neq \emptyset$. Näin ollen on olemassa $y \in A$, jolle pätee $d(y',y) < \varepsilon/2$. Nyt kolmioepäyhtälön perusteella

$$d(x, A) \le d(x, y) \le d(x, y') + d(y', y) \le d(x, \overline{A}) + \varepsilon.$$

Koska $\varepsilon > 0$ on mielivaltainen, niin $d(x,A) \leq d(x,\overline{A})$. Näin ollen $d(x,A) = d(x,\overline{A})$.

Seuraavassa tehtävässä sanotaan, että joukko $W \subset V$ on vektoriavaruuden V vektoriali-avaruus, jos $x+y \in W$ ja $ax \in W$ kaikilla $x,y \in W$ ja $a \in \mathbb{R}$.

t5. (6p.) Olkoon $(V, ||\cdot||)$ normiavaruus ja $W \subset V$ sellainen vektoriavaruuden V vektorialiavaruus, joka on myös avoin joukko metrisessä avaruudessa (V, d), missä d on normiin $||\cdot||$ liittyvä metriikka d(x, y) = ||x - y|| kaikilla $x, y \in V$. Osoita, että W = V.

Ratkaisu: Koska $\underline{0} \in W$ ja W on avoin, niin on olemassa r > 0, jolle pätee $B_d(\underline{0}, r) \subset W$. Olkoon $x \in V$. Osoitetaan, että $x \in W$. Olkoon x' = (r/2)x/||x||. Tällöin

$$d(x', \underline{0}) = ||x'|| = \frac{r}{2} \frac{1}{||x||} ||x|| = \frac{r}{2} < r$$

eli $x' \in B_d(\underline{0},r) \subset W$. Koska $||x||_r^2 x' \in W$, niin $x \in W$. Näin ollen V = W.