陕西科技大学 试题纸

课程	<u>复变函数和积分变换</u>				学期			2016—2017—1				
班级	学号					姓名						
题号	_	二	三	四	五	六	七	八	九	+	总分	
得分												
阅卷人												
一、填空题(每小题 3 分,共 15 分)												
1、												
2、(-2) ^{√3} = (结果写为三角形式);												
$3, ln(1+i) = \underline{\hspace{1cm}};$												
4、设 $f(z) = \frac{z - \sin z}{z^3}$,则孤立奇点 $z = 0$ 的类型为(若为极点,请给												
出极点的阶数);												
5、级数 $\sum_{n=0}^{\infty} (1+i\sqrt{3})^n z^n + \sum_{n=0}^{\infty} z^n$ 的收敛半径 $R = \underline{\qquad}$.												
二 、选择 1、以下:				15 分								
(A) s	sin z 是	个周期	用函数			(B	e^z	是个多	全值函	数		
(C)	$ \cos z \le 1$ (D) $2i > i$											
2、设函	数 f(z)=	=u(x,	y)+iv	$y(x, y)^{\frac{1}{2}}$	在整个	·复平同	面上解	析,贝	則下列	命题不	、一定成立	
的是		;										
(A) <i>t</i>	u,v 均为	调和区	函数			(B)	u,v 社	生整个	平面可	丁微		
(C)	 f(z) 在 ^独	整个复	平面解	军 析		(D)	f'(z))在整	个复平	面解植	斤	
3、以下2	复级数□	户,条	件收敛	的是_		;						
(A)	$\sum_{n=1}^{\infty} (-1 +$	$-\frac{i}{n^2}$)	(B)	$\sum_{n=1}^{\infty} \frac{(6-1)^n}{n}$	$\frac{+5i)^n}{8^n}$	(C)	$\sum_{n=0}^{\infty} \frac{1}{2}$	$\frac{i}{n}$ (D) $\sum_{n=1}^{\infty}$	$\sum_{i=1}^{n} \frac{i^n}{n}$		

(A)
$$\frac{1}{2} < |z-1| < 3$$

(B)
$$2 < |z-1| < 3$$

(A)
$$\frac{1}{2} < |z-1| < 3$$
 (B) $2 < |z-1| < 3$ (C) $\frac{1}{3} < |z-1| < 2$ (D) Φ

5、 $z = \infty$ 为 $f(z) = \frac{\sin z}{z}$ 的_____.

- (C) 本性奇点 (D) 不是孤立奇点

三、(本题满分 7 分) 判断函数 $f(z) = x^2 - y - x + i(2xy - y^2)$ 在复平面上何处可 导?何处解析?

四、(本题满分 7 分) 已知 $u(x,y) = e^x \cos y + x + y$, 求满足条件 f(0) = 1 的解析 函数 f(z) = u(x, y) + iv(x, y), 并计算 f'(z).

五、(本题满分6分) 求下列复变函数在指定孤立奇点处的留数.

1. Re
$$s[\frac{1-\cos z}{z^2(z+1)},\infty]$$
; 2. Re $s[\frac{1}{\sin z},\pi]$.

2. Re
$$s[\frac{1}{\sin z}, \pi]$$
.

六、(每小题 5 分,共 25 分) 计算下列各积分,其中封闭曲线 C 为正向简单闭曲 线.

2.
$$\oint_{c} \frac{z^{5}}{1+z^{6}} dz$$
 $c:|z|=2$;

3、
$$\int (x-2yi)dz$$
 $c: 治 y = x^2 \text{ 从 } 0$ 到 $1+i$; 4、 $\oint_c \frac{z}{(z-1)(z-2)^2} dz$ $c: |z| = 3$;

4.
$$\oint_{c} \frac{z}{(z-1)(z-2)^{2}} dz$$
 $c:|z|=3$;

$$5 \cdot \int_{-\infty}^{+\infty} \frac{x \sin x}{1 + x^2} dx.$$

七、(每小题 5 分,共 15 分) 求下列函数的级数展开式。

1.
$$f(z) = \frac{1}{z^2} \sin \frac{1}{z}$$
 $0 < |z| < +\infty$;

$$0<|z|<+\infty;$$

2.
$$f(z) = \frac{z}{1+z^2}$$
 $1 < |z| < +\infty$;

$$1<|z|<+\infty$$
;

3、
$$f(z) = \frac{1}{z^2}$$
 在 $z = 1$ 处展开.

在
$$z=1$$
处展开。

八、(本题满分10分)试用拉普拉斯变换求解微分方程问题

$$y''(t)+ 2y'(t) y(t), y(0)=y'(0).$$

$$y(0) = y'(0)$$
.

陕西科技大学 试题纸

课程	复变	复变函数和积分变换					J	2016—2017—1			
班级			_	学号 .		姓名					
题号			=	四四	五	六	七	八	九	+	总分
得分											
阅卷人											
一、填 1、5√3 3、ln√2 二、A; 2 三、 体 平: u(x	, 2、2 2+ ^π / ₄ i, 季题 (每 2、C; 3 题满分 上解析?	2 ^{√3} [cos 4、□ *题 3 分 、D; 7 分)	π(1+2) 「去奇」 + 15 4、B; 判断	2k)√3 点 , 5 5 分) 5、0 函数 f	$\frac{1}{2} \cdot \frac{1}{2}$ $(z) = 3$	$x^2 - y -$					 了上何处可
<u> </u>	$\frac{u(x,y)}{\partial x}$	=2x-1	$\frac{\partial v}{\partial x}$	$\frac{(x,y)}{\partial x}$:	=2y,	<u> </u>	$\frac{\partial u(x, }{\partial y}$	$\frac{y}{=}-1$	$1, \frac{\partial v}{\partial x}$	$\frac{(x,y)}{\partial y} =$	=2x-2y
					人当 y =	$=\frac{1}{2}$ 时,	C-R	方程周	 遠立,	所以函	4分 6数只有在
$y = \frac{1}{2}$ 时	可导,在	生整个	复平面	面处处	不解析	Ĩ。	• • • • • • • • • • • • • • • • • • • •		• • • • • • • •		3 分
四、(本	题满分"	7分)	己知u	(x,y)	$=e^{x}$ co	os $y+z$	x + y,	求满	足条件	‡ f(0)	=1的解析
函数 f(z	u(x) = u(x,	y)+iv	(x,y)	,并计	·算 f′((z) o					
解: $\frac{\partial u}{\partial x}$	$=e^x\cos$	y + 1,	$\frac{\partial u}{\partial y} =$	$=-e^x$ s	in y+	1					2 分
f'(z) =	$\frac{\partial u}{\partial x} - i \frac{\partial u}{\partial x}$	$\frac{u}{v} = e^x$	cos y ⊣	⊢ 1−(−	$-e^x \sin$	y+1)i	$=e^z+$	-1-i .	• • • • • • •		2 分

$$f(z) = \int (e^z + 1 - i)dz = e^z + (1 - i)z + C \dots 2$$

综上,
$$f(z) = e^z + (1-i)z$$
, $f'(z) = e^x \cos y + 1 - (-e^x \sin y + 1)i = e^z + 1 - i$

五、(本题满分6分) 求下列函数在指定孤立奇点处的留数。

1. Re
$$s[\frac{1-\cos z}{z^2(z+1)}, \infty]$$
; 2. Re $s[\frac{1}{\sin z}, \pi]$.

2. Re
$$s[\frac{1}{\sin z}, \pi]$$
.

$$z = -1$$
是 $\frac{1 - \cos z}{z^2(z+1)}$ 一级极点,所以

Re
$$s[\frac{1-\cos z}{z^2(z+1)}, -1] = \lim_{z \to -1} (z+1) \frac{1-\cos z}{z^2(z+1)} = 1 - \cos 1$$

$$\operatorname{Re} s[\frac{1-\cos z}{z^2(z+1)}, \infty] = -\{\operatorname{Re} s[\frac{1-\cos z}{z^2(z+1)}, 0] + \operatorname{Re} s[\frac{1-\cos z}{z^2(z+1)}, -1]\} = \cos 1 - 1$$

六、(每小题 5 分,共 25 分) 计算下列各积分,其中封闭曲线 C 为正向简单闭曲

2.
$$\oint_{c} \frac{z^{5}}{1+z^{6}} dz$$
 $c:|z|=2$;

3、
$$\int (x-2yi)dz$$
 $c:$ 沿 $y=x^2$ 从 0 到 $1+i$; 4、 $\oint_c \frac{z}{(z-1)(z-2)^2}dz$ $c:|z|=3$;

4.
$$\oint_{c} \frac{z}{(z-1)(z-2)^2} dz$$
 $c:|z|=3$;

$$5. \int_{-\infty}^{+\infty} \frac{x \sin x}{1+x^2} dx.$$

解: 1、
$$\oint_c \left[\frac{e^z}{z(z-3)} + \frac{1}{z} \right] dz = \oint_c \frac{e^z}{z(z-3)} dz = 2\pi i \operatorname{Re} s \left[\frac{e^z}{z(z-3)}, 3 \right] \dots 2$$
 分

$$\begin{aligned} \operatorname{Re} s &[\frac{e^z}{z(z-3)}, 3] = \lim_{z \to 3} (z-3) \frac{e^z}{z(z-3)} = \frac{1}{3}e^3 \dots 2 \frac{2}{3} \\ & \text{ where } \int_{\varepsilon} \left[\frac{e^z}{z(z-3)} + \frac{1}{z} | dz = \frac{2\pi i}{3}e^3 \right] \\ & \text{ where } \int_{\varepsilon} \left[\frac{z^3}{z(z-3)} + \frac{1}{z} | dz = \frac{2\pi i}{3}e^3 \right] \\ & \text{ end } \int_{\varepsilon} \frac{z^3}{1+z^6} dz = -2\pi i \operatorname{Re} s \left[\frac{z^3}{1+z^6}, \infty \right] \\ & \text{ end } \int_{\varepsilon} \frac{z^5}{1+z^6} dz = 2\pi i \operatorname{Re} s \left[\frac{z^3}{1+\frac{1}{z^6}} \frac{1}{z^2}, 0 \right] = -\operatorname{Re} s \left[\frac{1}{(z^6+1)z}, 0 \right] = -1 \dots 2 \frac{2}{3} \\ & \text{ for } \lim_{\varepsilon} \int_{\varepsilon} \frac{z^5}{1+z^6} dz = 2\pi i \operatorname{Re} s \left[\frac{1}{1+\frac{1}{z^6}} \frac{1}{z^2} \right] \\ & \text{ for } \int_{\varepsilon} (x-2yi) dz = \int_{0}^{1} (x-2x^2i)(1+2xi) dx = \frac{3}{2} \operatorname{end} s \left[\frac{z}{(z-1)(z-2)^2}, 1 \right] + \operatorname{Re} s \left[\frac{z}{(z-1)(z-2)^2}, 2 \right] \\ & = -2\pi i \operatorname{Re} s \left[\frac{z}{(z-1)(z-2)^2}, \infty \right] = -\operatorname{Re} s \left[\frac{1}{z} - \frac{1}{z^2}, 0 \right] \\ & = -\operatorname{Re} s \left[\frac{1}{(1-z)(1-2z)^2}, 0 \right] = 0 \dots 2 \frac{2}{3} \end{aligned}$$

$$\operatorname{Re} \int_{-\infty}^{\infty} \frac{z}{(z-1)(z-2)^2} dz = 0 \operatorname{end} \left[\frac{1}{1+z^2}, i \right] \\ & = -2\pi i \operatorname{Re} \int_{-\infty}^{\infty} \frac{z}{(z-1)(z-2)^2} dz = 0 \operatorname{end} \left[\frac{z}{1+z^2}, i \right] \\ & = -\operatorname{Re} \int_{-\infty}^{\infty} \frac{z}{(z-1)(z-2)^2} dz = 0 \operatorname{end} \left[\frac{z}{1+z^2}, i \right] \\ & = -\operatorname{Re} \int_{-\infty}^{\infty} \frac{z}{(z-1)(z-2)^2} dz = 0 \operatorname{end} \left[\frac{z}{1+z^2}, i \right] \\ & = -\operatorname{Re} \int_{-\infty}^{\infty} \frac{z}{(z-1)(z-2)^2} dz = 0 \operatorname{end} \left[\frac{z}{1+z^2}, i \right] \\ & = -\operatorname{Re} \int_{-\infty}^{\infty} \frac{z}{(z-1)(z-2)^2} dz = 0 \operatorname{end} \left[\frac{z}{1+z^2}, i \right] \\ & = -\operatorname{Re} \int_{-\infty}^{\infty} \frac{z}{(z-1)(z-2)^2} dz = 0 \operatorname{end} \left[\frac{z}{1+z^2}, i \right] \\ & = -\operatorname{Re} \int_{-\infty}^{\infty} \frac{z}{(z-1)(z-2)^2} dz = 0 \operatorname{end} \left[\frac{z}{1+z^2}, i \right] \\ & = -\operatorname{Re} \int_{-\infty}^{\infty} \frac{z}{(z-1)(z-2)^2} dz = 0 \operatorname{end} \left[\frac{z}{1+z^2}, i \right] \\ & = -\operatorname{Re} \int_{-\infty}^{\infty} \frac{z}{(z-1)(z-2)^2} dz = 0 \operatorname{end} \left[\frac{z}{1+z^2}, i \right] \\ & = -\operatorname{Re} \int_{-\infty}^{\infty} \frac{z}{(z-1)(z-2)^2} dz = 0 \operatorname{end} \left[\frac{z}{1+z^2}, i \right] \\ & = -\operatorname{Re} \int_{-\infty}^{\infty} \frac{z}{(z-1)(z-2)^2} dz = 0 \operatorname{end} \left[\frac{z}{1+z^2}, i \right] \\ & = -\operatorname{Re} \int_{-\infty}^{\infty} \frac{z}{(z-1)(z-2)^2} dz = 0 \operatorname{end} \left[\frac{z}{1+z^2}, i \right] \\ & = -\operatorname{Re} \int_{-\infty}^{\infty} \frac{z}{(z-1)(z-2)^2} dz = 0 \operatorname{end} \left[\frac{z}{1+z^2}, i \right] \\ & = -\operatorname{Re} \int_{-\infty}^{\infty} \frac{z}{(z-1)(z-2)^2} dz = 0 \operatorname{end} \left[\frac{z}{1+z^2}, i \right]$$

七、(每小题 5 分,共 15 分) 求下列函数在指定域内的级数展开式。

1,
$$f(z) = \frac{1}{z^2} \sin \frac{1}{z}$$
 $0 < |z| < +\infty$; 2, $f(z) = \frac{z}{1+z^2}$ $1 < |z| < +\infty$;

3.
$$f(z) = \frac{1}{z^2}$$
 $|z-1| < 1$.

3.
$$f(z) = \frac{1}{z^2} = (\frac{-1}{z})'$$

$$\frac{1}{z} = \frac{1}{(z-1)+1} = \sum_{n=0}^{\infty} (-1)^n (z-1)^n \dots 3$$

所以
$$f(z) = \frac{1}{z^2} = \sum_{n=1}^{\infty} (-1)^{n+1} n(z-1)^{n-1} \dots 2$$
 分

八、(10分)试用拉普拉斯变换求解微分方程问题。

$$y''(t)+ 2y'(t), y(t), y(t) = y'(t)$$

解:设L[y(t)]=Y(s),方程两端同时取拉普拉斯变换得

$$L[y'' \notin \mathcal{Y} \notin \mathcal{Y} \notin \mathcal{Y} \notin \mathcal{Y} \notin \mathcal{Y} \oplus \mathcal{Y}$$