Prezime, ime, br. indeksa:

21.04.2018

### PREDISPITNE OBAVEZE 1

• 
$$\lim_{n \to \infty} \left( 1 + \frac{1}{3n} \right)^{6n} = \underline{\qquad} \lim_{n \to \infty} \frac{n^3 - 23n + 5}{4n^2 + 25} = \underline{\qquad}$$

• 
$$\lim_{x \to 2} \frac{x^2 - 4}{x + 2} = \underline{\qquad} \qquad \lim_{x \to \infty} \frac{\ln x}{x^2 + 1} = \underline{\qquad}$$

- Napisati jednačinu tangente na grafik funkcije  $f:(0,\infty)\to\mathbb{R}, f(x)=\sqrt{x+1}$  u tački 1:
- Funkcija  $f: \mathbb{R} \to \mathbb{R}, f(x) = |x^2 4|$  je diferencijabilna u tačkama  $x \in \underline{\hspace{1cm}}$
- Zaokružiti tačne iskaze, za proizvoljne realne funkcije f, g i h, i  $a, b \in \mathbb{R}$ :

1) 
$$(f \circ g)'(x) = (f' \circ g')(x)$$
 2)  $(f \circ g)'(x) = (f' \circ g)(x) \cdot g'(x)$  3)  $(xf(x))' = f'(x)$ 

**4)** 
$$f(x) \equiv a \Rightarrow f'(x) = 0$$
 **5)**  $(f(x^2))' = f'(x^2)$  **6)**  $(f(x^2))' = 2xf'(x^2)$ 

• Napisati prve izvode datih funkcija

$$f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{\sqrt{x}}{x^2} - 5, \quad f'(x) = \underline{\hspace{1cm}}$$

$$g: \mathbb{R} \to \mathbb{R}, g(x) = \sin(5-2x), \quad g'(x) = \underline{\hspace{1cm}}$$

- Funkcija  $f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} -Ax + 4 &, x \leq 2 \\ Ax 2 &, x > 2 \end{cases}$  je neprekidna na skupu  $\mathbb{R}$  za  $A \in \underline{\qquad}$
- Prava y = 1 je desna horizontalna asimptota funkcije f(x) ako je (izraziti limesom):
- Napisati formulu za razvoj funkcije  $f: \mathbb{R} \to \mathbb{R}$  u beskonačni Maklorenov red:

$$f(x) =$$

- Stacionarne tačke funkcije  $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 5x + 6$  su: \_\_\_\_\_
- Ako je f'(x) < 0 za sve  $x \in (0,1)$ , tada je funkcija f na intervalu (0,1):
  - 1) monotono rastuća 2) monotono neopadajuća 3) monotono opadajuća
  - 4) monotono nerastuća 5) konstantna 6) neprekidna 7) konveksna
  - 8) konkavna 9) parna 10) neparna 11) pozitivna 12) nenegativna
- Prvi parcijalni izvodi funkcije  $f: \mathbb{R}^2 \to \mathbb{R}$ ,  $f(x,y) = 2x^2y 3y$  su

$$f_x(x,y) = \underline{\qquad} f_y(x,y) = \underline{\qquad}$$

#### **ZADACI**

- 1. Neka je funkcija  $f: \mathbb{R} \to \mathbb{R}$  definisana sa  $f(x) = \begin{cases} x^2 \ln^2 x &, x > 0 \\ (A x)^2 9 &, x \le 0 \end{cases}$ .
  - (a) Ispitati za koje  $A \in \mathbb{R}$  je funkcija f neprekidna na  $\mathbb{R}$ .
  - (b) Ispitati za koje  $A \in \mathbb{R}$  funkcija f ima prvi izvod na  $\mathbb{R}$ .
- 2. Ispitati funkciju  $f\left(x\right)=\frac{1-\ln x}{x}$  i nacrtati njen grafik.
- 3. Koliko članova u razvoju funkcije  $f(x) = \ln(1+x)$  u Maklorenov red treba uzeti da bi vrednost  $\ln(0.5)$  izračunali sa greškom manjom od 0.01?

# REŠENJA ZADATAKA - KOLOKVIJUM 1

- 1. Neka je funkcija  $f: \mathbb{R} \to \mathbb{R}$  definisana sa  $f(x) = \begin{cases} x^2 \ln^2 x &, x > 0 \\ (A x)^2 9 &, x \le 0 \end{cases}$ .
  - (a) Ispitati za koje  $A \in \mathbb{R}$  je funkcija f neprekidna na  $\mathbb{R}$ .
  - (b) Ispitati za koje  $A \in \mathbb{R}$  funkcija f ima prvi izvod na  $\mathbb{R}$ .

## Rešenje:

(a) Kvadrata funkcija  $f_1(x) = (A - x)^2 - 9$ ,  $x \le 0$  je neprekidna na  $(-\infty, 0]$ , i pri tome je  $f_1(0) = A^2 - 9$ . Funkcija  $f_2(x) = x^2 \ln^2 x$ , x > 0 je, kao kompozicija neprekidnih funkcija, neprekidna na  $(0, \infty)$ , i pri tome je

$$\lim_{x \to 0^+} f_2(x) = \lim_{x \to 0^+} x^2 \ln^2 x = 0 \cdot (-\infty),$$

što je neodređen izraz. Primenom Lopitalovog pravila (2 puta) dobijamo

$$\lim_{x \to 0^{+}} f_{2}(x) = \lim_{x \to 0^{+}} \frac{\ln^{2} x}{x^{-2}} = \lim_{x \to 0^{+}} \frac{\left(\ln^{2} x\right)'}{\left(x^{-2}\right)'} = \lim_{x \to 0^{+}} \frac{2 \ln x \cdot \frac{1}{x}}{-2x^{-3}} = -\lim_{x \to 0^{+}} \frac{\ln x}{x^{-2}} = -\frac{-\infty}{\infty}$$

$$= -\lim_{x \to 0^{+}} \frac{\left(\ln x\right)'}{\left(x^{-2}\right)'} = -\lim_{x \to 0^{+}} \frac{\frac{1}{x}}{-2x^{-3}} = \frac{1}{2} \lim_{x \to 0^{+}} x^{2} = 0.$$

Funkcija f je neprekidna ako i samo ako je  $f_1(0) = \lim_{x \to 0^+} f_2(x)$  odnosno  $A^2 - 9 = 0$ , dakle za  $A \in \{-3,3\}$ .

(b) Da bi funkcija imala izvod, mora biti neprekidna. Dakle, u tački 0 može da ima izvod samo za vrednosti  $A \in \{-3,3\}$ . Za svako  $A \in \mathbb{R}$ , funkcija  $f_1(x) = (A-x)^2 - 9$ ,  $x \le 0$  ima izvod

$$f_1'(x) = -2(A-x) = 2x - 2A$$

na intervalu  $(-\infty,0)$  i levi izvod

$$f'_{1,-}(0) = -2(A-0) = -2A$$

u tački 0. Funkcija  $f_2(x) = x^2 \ln^2 x$ , x > 0 ima izvod

$$f_2'(x) = 2x \ln^2 x + 2x^2 \ln x \cdot \frac{1}{x} = 2x \ln x (\ln x + 1)$$

na intervalu  $(0,\infty)$  za svako  $A\in\mathbb{R}$ . Desni izvod funkcija f može da ima samo za  $A\in\{-3,3\}$ , i tada je

$$f_{2,+}'\left(x\right) = \lim_{x \to 0^{+}} \frac{f\left(x\right) - f\left(0\right)}{x - 0} = \lim_{x \to 0^{+}} \frac{x^{2} \ln^{2} x - \left(A^{2} - 9\right)}{x} = \lim_{x \to 0^{+}} \frac{\ln^{2} x}{x^{-1}} = \frac{\infty}{\infty}.$$

Primenom Lopitalovog pravila (2 puta) dobijamo

$$f'_{2,+}(x) = \lim_{x \to 0^+} \frac{\left(\ln^2 x\right)'}{(x^{-1})'} = \lim_{x \to 0^+} \frac{2\ln x \cdot \frac{1}{x}}{-x^{-2}} = -2\lim_{x \to 0^+} \frac{\ln x}{x^{-1}} = -2\frac{-\infty}{\infty} = -2\lim_{x \to 0^+} \frac{(\ln x)'}{(x^{-1})'}$$
$$= -2\lim_{x \to 0^+} \frac{\frac{1}{x}}{-x^{-2}} = 2\lim_{x \to 0^+} x = 0.$$

Dakle, za  $A \in \{-3, 3\}$  je

$$f'_{-}(0) = f'_{1,-}(0) = -2A = \pm 6 \neq f'_{+}(0) = f'_{2,+}(0) = 0,$$

te za sve  $A \in \mathbb{R}$  funkcija f ima prvi izvod na  $\mathbb{R} \setminus \{0\}$ , a u tački 0 nema prvi izvod ni za jednu vrednost parametra A.

2. Ispitati funkciju  $f(x) = \frac{1 - \ln x}{x}$  i nacrtati njen grafik.

## Rešenje:

- (a) Domen funkcije je skup  $\mathcal{D} = \{x \in \mathbb{R} \mid x > 0 \land x \neq 0\} = (0, \infty).$
- (b) Nule funkcije:

$$f(x) = 0 \Leftrightarrow 1 - \ln x = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e.$$

(c) Znak funkcije: kako je  $x > 0, x \in \mathcal{D}$ , imamo da je

$$f(x) < 0 \Leftrightarrow x > e$$
.

(d) Monotonost i lokalni ekstremi funkcije:

$$f'(x) = \left(\frac{1 - \ln x}{x}\right)' = \frac{-\frac{1}{x} \cdot x - (1 - \ln x) \cdot 1}{x^2} = \frac{\ln x - 2}{x^2};$$

$$f'(x) = 0 \Leftrightarrow \ln x = 2 \Leftrightarrow x = e^2$$

pri čemu je  $x^2 > 0, x \in \mathcal{D}$ , te je

$$f'(x) > 0 \Leftrightarrow \ln x - 2 > 0 \Leftrightarrow \ln x > 2 \Leftrightarrow x > e^2$$

$$f'(x) < 0 \quad \Leftrightarrow \quad x < e^2 \quad \Leftrightarrow \quad x \in (0, e^2).$$

Dakle, funkcija f je monotono rastuća na skupu  $(e^2, \infty)$ , monotono opadajuća na skupu  $(0, e^2)$ , i ima lokalni minimum u tački  $x = e^2$ .

(e) Drugi izvod funkcije, konveksnost i konkavnost:

$$f''(x) = \left(\frac{\ln x - 2}{x^2}\right)' = \frac{\frac{1}{x} \cdot x^2 - (\ln x - 2) \cdot 2x}{x^4} = \frac{5 - 2\ln x}{x^3}.$$

$$f''(x) = 0 \Leftrightarrow 5 - 2\ln x = 0 \Leftrightarrow \ln x = \frac{5}{2} \Leftrightarrow x = e^{\frac{5}{2}}$$

$$f''(x) = 0 \quad \Leftrightarrow \quad 5 - 2\ln x = 0 \quad \Leftrightarrow \quad \ln x = \frac{5}{2} \quad \Leftrightarrow \quad x = e^{\frac{5}{2}},$$

$$f''(x) > 0 \quad \Leftrightarrow \quad 5 - 2\ln x > 0 \quad \Leftrightarrow \quad \ln x < \frac{5}{2} \quad \Leftrightarrow \quad x < e^{\frac{5}{2}},$$

$$f''(x) < 0 \quad \Leftrightarrow \quad 5 - 2\ln x < 0 \quad \Leftrightarrow \quad x > e^{\frac{5}{2}}$$

sledi da je funkcija konkavna na  $\left(e^{\frac{5}{2}},\infty\right)$ , konveksna na skupu  $\left(0,e^{\frac{5}{2}}\right)$ , i ima prevojnu tačku  $x = e^{\frac{5}{2}}$ .

(f) Vertikalne asimptote funkcije: s obzirom na domen  $\mathcal{D} = (0, \infty)$  funkcije f, jedina moguća vertikalna asimptota je prava x=0. Kako je

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{1 - \ln x}{x} = \frac{1 - (-\infty)}{+0} = \frac{\infty}{+0} = \infty,$$

sledi da je prava x=0 leva vertikalna asimptota funkcije f.

(g) Horizontalna / kosa asimptota funkcije: kako je (primenom Lopitalovog pravila)

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1 - \ln x}{x} = \frac{\infty}{\infty} = ?,$$

$$1 - \ln x$$

$$= \lim_{x \to \pm \infty} \frac{1 - \ln x}{x} = \lim_{x \to \pm \infty} \frac{-\frac{1}{x}}{1} = \lim_{x \to \pm \infty} \frac{0}{1} = 0,$$

sledi da funkcija f ima za desnu horizontalnu asimptotu pravu y = 0 (x-osa).

(h) Grafik funkcije:



3. Koliko članova u razvoju funkcije  $f(x) = \ln(1+x)$  u Maklorenov red treba uzeti da bi vrednost  $\ln(0.5)$  izračunali sa greškom manjom od 0.01?

**Rešenje:** Imamo da je  $\ln(0.5) = \ln(1 + (-0.5)) = f(-0.5)$ , te posmatramo razvoj funkcije f(x) = $\ln(1+x)$  u tački x=-0.5. Kako je (vidi tablice)

$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^n}{n}, \quad x \in (-1, 1],$$

$$r_{n}\left(x\right)=\frac{f^{\left(n+1\right)}\left(\xi\right)}{\left(n+1\right)!}x^{n+1},\text{ za neko }\xi\in\left(x,0\right),$$

to za x = -0.5 treba da bude

$$|r_n(x)| = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1} \right| < 0.01,$$

pri čemu za  $f\left( x\right) =\ln \left( 1+x\right)$ induktivno dobijamo

$$f'(x) = \frac{1}{1+x}, \quad f''(x) = -\frac{1}{(1+x)^2}, \quad f'''(x) = \frac{2}{(1+x)^3}, \quad f^{(4)}(x) = -\frac{3!}{(1+x)^4},$$
$$f^{(5)}(x) = \frac{4!}{(1+x)^5}, \quad f^{(6)}(x) = -\frac{5!}{(1+x)^6}, \dots$$

odnosno

$$f^{(2n+1)}(x) = \frac{(2n)!}{(1+x)^{2n+1}}, \quad n \in \mathbb{N} \cup \{0\},$$

$$f^{(2n)}(x) = -\frac{(2n-1)!}{(1+x)^{2n}}, \quad n \in \mathbb{N},$$

Tako, za  $\xi \in (-0.5, 0)$ , za sve  $x \in \mathbb{R}$  dobijamo

$$|r_n(-0.5)| = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (-0.5)^{n+1} \right| = \left| \frac{\pm \frac{n!}{(1+\xi)^{n+1}}}{(n+1)!} (-0.5)^{n+1} \right| =$$

$$= \left| \frac{0.5^{n+1}}{(n+1)(1+\xi)^{n+1}} \right| < \frac{0.5^{n+1}}{(n+1)0.5^{n+1}} = \frac{1}{n+1} < 0.01,$$

pri čemu je

$$\frac{1}{n+1} < 0.01 \Leftrightarrow 100 < n+1 \Leftrightarrow 99 < n.$$

Dakle, za traženu aproksimaciju je dovoljno uzeti n = 100, odnosno polinom 100-tog stepena.