Policy Gradients methods

Ciprian Paduraru

University of Bucharest

Agenda

Part 1 (today):

- Recap & Motivation
- Policy objective and optimization
- Reinforce algorithm
- A3C and GAE
- Results

Part 2

- Other different ways to choose the policy network gaussian, softmax, etc.
- Address the problem when the policy network is not differentiable
- A more formal look at Policy Theorem
- Examples from practice, real implementations

Part 3

- Importance of optimization method, step size tuning
- Use Importance sampling to have monotonic improvenets
- Lower bounds for local Approximation, Trust Regions, TRPO Algorithm
- PPO
- A look at Alpha-Go

Lab 1: Experiment with base class algorithms on Cart-Pole

Lab 2: Experiment with various parameters on DeepMimic environment

1. Short recap

Last lectures:

The general approach:

[Figure source: Sutton & Barto, 1998]

• Have looked at (exact or approximate) approaches for finding V(s), Q(s,a)

A policy was generated directly from the value function

$$\pi(s) = rg \max_a Q(s,a)$$

- In this lecture, we'll directly parameterize the policy (Policy-based RL)
- Focus will still be on model-free reinforcement learning

Value-based

- Learn V(s), Q(s,a)
- Extract the policy from V(s), Q(s,a)

Policy-based

- No intermediate learning of value functions
- lacksquare Directly learn the policy $\pi_{oldsymbol{ heta}}(a \mid s) = P(a \mid s; oldsymbol{ heta})$
- Actor-Critic = Combination of both worlds
 - Learn V(s), Q(s,a) -> CRITIC
 - Learn Policy $\pi_{\boldsymbol{\theta}}(a \mid s)$ -> ACTOR
 - Note: many times, better than pure Policy-based approaches!

2. Properties of Policy-based RL, motivation

Advantages

- Better convergence properties more details in The Sutton and Barto reference, Ch 13.3
- Effectiveness in high-dimensional or continuous action spaces

Examples:

- \circ Robotics: Isn't it harder to compute V(s), Q(s,a) for every state / action of a robot rather than a policy?
- In IRL (Inverse Reinforcement Learning) settings,
 isn't it simpler to think in terms of a policy directly instead of computing the value for each state?
 Think about the self-driving cars field!

Can learn stochastic policies (remember previously with MDPs we had deterministic policies).

Why is a stochastic policy needed?

- State representation is not Markov
- Adversarial / non-stationary domain problems

Example: think about rock-paper-scissors game. Can someone exploit a deterministic strategy? ©.

https://www.timeforkids.com/k1/rock-paper-scissors/

Disadvantages

- Typically converges to a local instead of global optimum (however also true for value-based RL with function approximation)
- Evaluating policy (expected reward) is typically inefficient and high variance

3. Policy optimization

- Denote $\textit{trajectory } au = (s_0, u_0, r_1, s_2, u_1, r_2, \ldots, u_{H-1}, r_H, s_H, \ldots)$
- Actions along $m{ au}$ are taken using policy $\pi_{m{ heta}}(a|s)$, based on parameters $m{ heta}$ used by a function $\pi_{m{ heta}}$
- Methods to evaluate the policy:
 - > In episodic environments, can use the *start value* of the policy:

$$J(\theta) = V^{\pi_{\theta}}(s_1) = E_{\pi_{\theta}}[v_1]$$

 \succ In continuing environments, stationary distribution of $\pi_{ heta}$ over states can be used: $d^{\pi_{ heta}}(s)$

$$J_{avV}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) V^{\pi_{\theta}}(s)$$

- Note: We'll discuss the episodic case, but all results can be reused in the non-episodic ones
- Also, considering finite horizons of length H.

3. Policy optimization

- Trajectory $au = (s_0, u_0, r_1, s_2, u_1, r_2, \dots, u_{H-1}, r_H, s_H, \dots)$
- Reward of a trajectory: $R(\tau) = \sum_{t=0}^{H} R(s_t, u_t)$
- Objective function (expected sum of rewards along trajectories samples from π_{θ} :

$$U(heta) = \mathrm{E}igg[\sum_{t=0}^H R(s_t, u_t); \pi_ hetaigg] = \sum_ au P(au; heta) R(au)$$

• Our **goal** find the optimal θ :

$$\max_{ heta} U(heta) = \max_{ heta} \sum_{ au} P(au; heta) R(au)$$

3.1 Non-differentiable optimization methods

- Having an objective function and a parameters space, we can treat the policy-based RL problem as an optimization one.
- There are some **gradient free methods** such as:
 - Hill climbing
 - Simplex / amoeba / Nelder Mead
 - Genetic algorithms
 - Cross-Entropy method (CEM)
 - Covariance Matrix Adaptation (CMA)
 - Evolution strategies
- **Their advantage**: These allows the policy parametrization to be non-differentiable and are often easy to parallelize

Disadvantage: these methods ignore the temporal structure of rewards

Updates consider only the total episodes' rewards, do not break up the reward for each state in the trajectory!

3.2 Policy gradient

• We assume policy π_{θ} is differentiable whenever it is non-zero

Softmax Policy class

 \blacktriangleright Weight actions by using l.c. of features and parameters $\phi(s,a)^T\theta$

$$imes$$
 Probability of actions , $\pi_{ heta}(s,a) = rac{e^{\phi(s,a)^T heta}}{\left(\sum_a e^{\phi(s,a)^T heta}
ight)} \longrightarrow
abla_{ heta} \log \pi_{ heta}(s,a) = \phi(s,a) - \mathbb{E}_{\pi_{ heta}}[\phi(s,\cdot)]$

Full proof:

Using the log identity $\log(x/y) = \log(x) - \log(y)$ we can write

$$\log(\pi_{ heta}(s,a)) = \log(e^{\phi(s,a)^{\intercal} heta}) - \log(\sum_{k=1}^{N}e^{\phi(s,a_k)^{\intercal} heta})$$

$$\max_{ heta} U(heta) = \max_{ heta} \sum_{ au} P(au; heta) R(au)$$

• We take the gradient with respect $to \; oldsymbol{ heta}$

$$egin{aligned}
abla_{ heta}U(heta) &=
abla_{ heta} \sum_{ au} P(au; heta) R(au) \ &= \sum_{ au}
abla_{ heta} P(au; heta) R(au) \end{aligned}$$

$$\max_{ heta} U(heta) = \max_{ heta} \sum_{ au} P(au; heta) R(au)$$

• We take the gradient with respect $to \ m{ heta}$

$$egin{aligned}
abla_{ heta}U(heta) &=
abla_{ heta} \sum_{ au} P(au; heta)R(au) \ &= \sum_{ au}
abla_{ heta}P(au; heta)R(au) \ &= \sum_{ au} rac{P(au; heta)}{P(au; heta)}
abla_{ heta}P(au; heta)R(au) \end{aligned}$$

$$\max_{ heta} U(heta) = \max_{ heta} \sum_{ au} P(au; heta) R(au)$$

• We take the gradient with respect $to \theta$

$$\begin{split} \nabla_{\theta} U(\theta) &= \nabla_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau) \\ &= \sum_{\tau} \nabla_{\theta} P(\tau; \theta) R(\tau) \\ &= \sum_{\tau} \frac{P(\tau; \theta)}{P(\tau; \theta)} \nabla_{\theta} P(\tau; \theta) R(\tau) \\ &= \sum_{\tau} P(\tau; \theta) \frac{\nabla_{\theta} P(\tau; \theta)}{P(\tau; \theta)} R(\tau) \end{split}$$

$$\max_{ heta} U(heta) = \max_{ heta} \sum_{ au} P(au; heta) R(au)$$

• We take the gradient with respect $to \ m{ heta}$

$$\nabla_{\theta} U(\theta) = \nabla_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$$

$$= \sum_{\tau} \nabla_{\theta} P(\tau; \theta) R(\tau)$$

$$= \sum_{\tau} \frac{P(\tau; \theta)}{P(\tau; \theta)} \nabla_{\theta} P(\tau; \theta) R(\tau)$$

$$= \sum_{\tau} P(\tau; \theta) \frac{\nabla_{\theta} P(\tau; \theta)}{P(\tau; \theta)} R(\tau) = \sum_{\tau} P(\tau; \theta) \nabla_{\theta} \log P(\tau; \theta) R(\tau)$$

$$\max_{ heta} U(heta) = \max_{ heta} \sum_{ au} P(au; heta) R(au)$$

• We take the gradient with respect $to \theta$

$$\nabla_{\theta} U(\theta) = \nabla_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$$

$$= \sum_{\tau} \nabla_{\theta} P(\tau; \theta) R(\tau)$$

$$= \sum_{\tau} \frac{P(\tau; \theta)}{P(\tau; \theta)} \nabla_{\theta} P(\tau; \theta) R(\tau)$$

$$= \sum_{\tau} P(\tau; \theta) \frac{\nabla_{\theta} P(\tau; \theta)}{P(\tau; \theta)} R(\tau) = \sum_{\tau} P(\tau; \theta) \nabla_{\theta} \log P(\tau; \theta) R(\tau)$$

$$= \mathbb{E}_{\tau} [\nabla_{\theta} \log P(\tau; \theta) R(\tau)]$$

$$\nabla_{\theta} U(\theta) = \sum_{\tau} P(\tau; \theta) \nabla_{\theta} \log P(\tau; \theta) R(\tau) = \mathbb{E}_{\tau} [\nabla_{\theta} \log P(\tau; \theta) R(\tau)]$$

- We can now approximate with the empirical estimate for m sample paths under policy – Monte Carlo (MC) sampling method from the previous courses!
- Collect m episodes then compute the average

$$abla U(heta) pprox \hat{g} = rac{1}{m} \sum_{i=1}^m
abla_ heta \log P\Big(au^{(i)}; heta\Big) R\Big(au^{(i)}\Big)$$

- Intuition The gradient tries to:
 - > Increase the probability of paths with positive reward
 - ➤ Decrease the probability of paths with negative rewards

$$abla U(heta) pprox \hat{g} = rac{1}{m} \sum_{i=1}^m
abla_ heta \log P\Big(au^{(i)}; heta\Big) R\Big(au^{(i)}\Big)$$

Let's take a step closer at this

$$abla_{ heta} \log Pig(au^{(i)}; hetaig) =
abla_{ heta} \log \Big[\mu(s_0) \cdot \prod_{t=0}^{H-1} P\Big(s_{t+1}^{(i)} \mid s_t^{(i)}, u_t^{(i)}\Big) \cdot \pi_{ heta}\Big(u_t^{(i)} \mid s_t^{(i)}\Big)\Big]$$

$$abla U(heta) pprox \hat{g} = rac{1}{m} \sum_{i=1}^m
abla_ heta \log P\Big(au^{(i)}; heta\Big) R\Big(au^{(i)}\Big)$$

Let's take a step closer at this

$$\nabla_{\theta} \log P \big(\tau^{(i)}; \theta \big) = \nabla_{\theta} \log \Big[\mu(s_0) \cdot \prod_{t=0}^{H-1} P \Big(s_{t+1}^{(i)} \mid s_t^{(i)}, u_t^{(i)} \Big) \cdot \pi_{\theta} \Big(u_t^{(i)} \mid s_t^{(i)} \Big) \Big]$$
Initial state distribution Model's dynamic Policy samples

$$egin{aligned}
abla_{ heta} \log Pig(au^{(i)}; hetaig) &=
abla_{ heta} \log \Big[\mu(s_0) \cdot \prod_{t=0}^{H-1} P\Big(s_{t+1}^{(i)} \mid s_t^{(i)}, u_t^{(i)}\Big) \cdot \pi_{ heta}\Big(u_t^{(i)} \mid s_t^{(i)}\Big) \Big] \end{aligned}$$

(using log property of products to sum)

$$V =
abla_{ heta} \Big[\mu(s_0) + \sum_{t=0}^{H-1} \log P \Big(s_{t+1}^{(i)} \mid s_t^{(i)}, u_t^{(i)} \Big) + \sum_{t=0}^{H} \log \pi_{ heta} \Big(u_t^{(i)} \mid s_t^{(i)} \Big) \Big]$$

$$egin{aligned}
abla_{ heta} \log Pig(au^{(i)}; hetaig) &=
abla_{ heta} \log \Big[\mu(s_0) \cdot \prod_{t=0}^{H-1} P\Big(s_{t+1}^{(i)} \mid s_t^{(i)}, u_t^{(i)}\Big) \cdot \pi_{ heta}\Big(u_t^{(i)} \mid s_t^{(i)}\Big) \Big] \end{aligned}$$

(using log property of products to sum)
$$=
abla_{ heta} \left[\mu(s_0) + \sum_{t=0}^{H-1} \log P\Big(s_{t+1}^{(i)} \mid s_t^{(i)}, u_t^{(i)}\Big) + \sum_{t=0}^{H} \log \pi_{ heta}\Big(u_t^{(i)} \mid s_t^{(i)}\Big)
ight]$$

(first two don't depend on
$$heta$$
) $=
abla_{ heta} \sum_{t=0}^{H} \log \pi_{ heta} \Big(u_t^{(i)} \mid s_t^{(i)} \Big)$

$$egin{aligned}
abla_{ heta} \log Pig(au^{(i)}; hetaig) &=
abla_{ heta} \log \Big[\mu(s_0) \cdot \prod_{t=0}^{H-1} P\Big(s_{t+1}^{(i)} \mid s_t^{(i)}, u_t^{(i)}\Big) \cdot \pi_{ heta}\Big(u_t^{(i)} \mid s_t^{(i)}\Big) \Big] \end{aligned}$$

(using log property of products to sum)
$$=
abla_{ heta} \left[\mu(s_0) + \sum_{t=0}^{H-1} \log P\Big(s_{t+1}^{(i)} \mid s_t^{(i)}, u_t^{(i)}\Big) + \sum_{t=0}^{H} \log \pi_{ heta}\Big(u_t^{(i)} \mid s_t^{(i)}\Big)
ight]$$

(first two don't depend on
$$heta$$
) $=
abla_{ heta} \sum_{t=0}^{H} \log \pi_{ heta} \Big(u_t^{(i)} \mid s_t^{(i)} \Big)$

$$egin{aligned} &= \sum_{t=0}^{H}
abla_{ heta} \log \pi_{ heta} \Big(u_{t}^{(i)} \mid s_{t}^{(i)} \Big) \end{aligned}$$

$$abla_{ heta} \log Pig(au^{(i)}; hetaig) =
abla_{ heta} \log \Big[\mu(s_0) \cdot \prod_{t=0}^{H-1} P\Big(s_{t+1}^{(i)} \mid s_t^{(i)}, u_t^{(i)}\Big) \cdot \pi_{ heta}\Big(u_t^{(i)} \mid s_t^{(i)}\Big) \Big]$$

(using log property of products to sum)
$$=
abla_{ heta} \left[\mu(s_0) + \sum_{t=0}^{H-1} \log P\Big(s_{t+1}^{(i)} \mid s_t^{(i)}, u_t^{(i)}\Big) + \sum_{t=0}^{H} \log \pi_{ heta}\Big(u_t^{(i)} \mid s_t^{(i)}\Big)
ight]$$

(first two don't depend on
$$heta$$
) $=
abla_{ heta} \sum_{t=0}^{H} \log \pi_{ heta} \Big(u_t^{(i)} \mid s_t^{(i)} \Big)$

$$=\sum_{t=0}^{H}
abla_{ heta}\log\pi_{ heta}\Big(u_{t}^{(i)}\mid s_{t}^{(i)}\Big)$$

Note: No model dynamics is no longer required!

No initial state distribution!

Also named score function

Let's recap!

- We have an **unbiased** estimate of the gradient
- No need to access model dynamics

$$abla U(heta) pprox \hat{g} = rac{1}{m} \sum_{i=1}^m
abla_ heta \log P\Big(au^{(i)}; heta\Big) R\Big(au^{(i)}\Big)$$

- Unbiased but very noisy (remember the MC properties from previous courses)
- There are a couple of ways to address this and reduce variance in practice:
 - Exploit the temporal structure
 - Baseline method
 - Next course: KL-Divergence trust region / natural gradient

• Current estimation:
$$\hat{g} = \frac{1}{m} \sum_{i=1}^m \nabla_\theta \log P\left(\tau^{(i)}; \theta\right) R\left(\tau^{(i)}\right)$$

• Current estimation: $\hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P\left(\tau^{(i)}; \theta\right) R\left(\tau^{(i)}\right)$

(expanding the trajectory's steps as before)
$$= \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \right) \left(\sum_{t=0}^{H-1} R \left(s_{t}^{(i)}, u_{t}^{(i)} \right) \right)$$

 $\hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P\left(\tau^{(i)}; \theta\right) R\left(\tau^{(i)}\right)$ Current estimation:

$$\text{(expanding the trajectory's steps as before)} \ = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \right) \left(\sum_{t=0}^{H-1} R \left(s_{t}^{(i)}, u_{t}^{(i)} \right) \right)$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \left[\left(\sum_{k=0}^{t-1} R\left(s_{k}^{(i)}, u_{k}^{(i)} \right) \right) + \left(\sum_{k=t}^{H-1} R\left(s_{k}^{(i)}, u_{k}^{(i)} \right) \right) \right] \right)$$
 (splitting rewards before/after t)

• Current estimation:
$$\hat{g} = \frac{1}{m} \sum_{i=1}^m \nabla_{\theta} \log P\left(au^{(i)}; heta\right) R\left(au^{(i)}\right)$$

$$(\text{expanding the trajectory's steps as before}) \ = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \right) \left(\sum_{t=0}^{H-1} R \left(s_{t}^{(i)}, u_{t}^{(i)} \right) \right)$$

$$(\text{splitting rewards before/after } t) \ = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \right) \left[\sum_{k=0}^{L-1} R \left(s_{k}^{(i)}, u_{k}^{(i)} \right) \right) + \left(\sum_{k=t}^{H-1} R \left(s_{k}^{(i)}, u_{k}^{(i)} \right) \right) \right]$$

This term (previous rewards) do not depend on u_t ! Whatever probability we choose now, this remains fixed! (More formal definition in seminar)

• Improved version,
$$\hat{g} = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \left(\sum_{k=t}^{H-1} R\left(s_{k}^{(i)}, u_{k}^{(i)} \right) \right) \right)$$
 less variance

REINFORCE algorithm

REINFORCE (Williams, 1992).

• We are here:
$$\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \left(\sum_{k=t}^{H-1} R\left(s_{k}^{(i)}, u_{k}^{(i)} \right) \right) \right)$$

REINFORCE algorithm

REINFORCE (Williams, 1992).

• We are here: $\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \left(\sum_{k=t}^{H-1} R\left(s_{k}^{(i)}, u_{k}^{(i)} \right) \right) \right)$

 G_t notation from MC course

• At each trajectory, and step we could update the parameters of the policy by:

$$\Delta heta_t = lpha
abla_ heta \log \pi_ heta(a_t|s_t) G_t$$

REINFORCE algorithm

REINFORCE (Williams, 1992).

• We are here:
$$\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \left(\sum_{k=t}^{H-1} R\left(s_{k}^{(i)}, u_{k}^{(i)} \right) \right) \right)$$

 G_t notation from MC course

Pseudocode

```
Initialize policy parameters \theta arbitrarily for each episode \{s_1, a_1, r_2, \cdots, s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta} do for t=1 to T-1 do \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) G_t endfor endfor return \theta
```

3.3 Differentiable policy classes

- Assume policy π_{θ} is differentiable whenever it is non-zero
- Many choices for differentiable policy classes. Popular ones:
 - Softmax
 - Gaussian
 - Neural networks

<u>Softmax Policy class</u> – good for *discrete action spaces*

ightharpoonup Weight actions by using a linear comb of features and parameters $\phi(s,a)^T heta$

$$au$$
 Probability of actions , $\pi_{ heta}(s,a) = rac{e^{\phi(s,a)^T heta}}{\left(\sum_a e^{\phi(s,a)^T heta}
ight)} \longrightarrow
abla_{ heta} \log \pi_{ heta}(s,a) = \phi(s,a) - \mathbb{E}_{\pi_{ heta}}[\phi(s,\cdot)]$

Full proof:

Using the log identity $\log(x/y) = \log(x) - \log(y)$ we can write

$$\log(\pi_{ heta}(s,a)) = \log(e^{\phi(s,a)^{\intercal} heta}) - \log(\sum_{k=1}^{N}e^{\phi(s,a_k)^{\intercal} heta})$$

$$egin{aligned}
abla_{ heta} \log(\pi_{ heta}(s,a)) &=
abla_{ heta} \log(e^{\phi(s,a)^{\intercal} heta}) -
abla_{ heta} \log(\sum_{k=1}^{N} e^{\phi(s,a_k)^{\intercal} heta}) \ left &=
abla_{ heta} \log(e^{\phi(s,a)^{\intercal} heta}) =
abla_{ heta} \phi(s,a)^{\intercal} heta &= \phi(s,a) \end{aligned}$$

The right term simplifies as follows:

Using the chain rule:

$$abla_x \log(f(x)) = rac{
abla_x f(x)}{f(x)}$$

We can write:

$$right =
abla_{ heta} \log(\sum_{k=1}^N e^{\phi(s,a_k)^\intercal heta}) = rac{
abla_{ heta} \sum_{k=1}^N e^{\phi(s,a_k)^\intercal heta}}{\sum_{k=1}^N e^{\phi(s,a_k)^\intercal heta}}$$

Taking the gradient of the numerator we get:

$$right = rac{\sum_{k=1}^{N}\phi(s,a_k)e^{\phi(s,a_k)^\intercal heta}}{\sum_{k=1}^{N}e^{\phi(s,a_k)^\intercal heta}}$$

Substituting the definition of $\pi_{\theta}(s, a)$ we can simplify to:

$$right = \sum_{k=1}^N \phi(s,a_k) \pi_{ heta}(s,a_k)$$

Given the definition of Expected Value:

$$\mathrm{E}[X] = X \cdot P = x_1 p_1 + x_2 p_2 + \ldots + x_n p_n$$

Which in English is just the sum of each feature times its probability.

$$X = features = \phi(s, a)$$

$$P=probabilities=\pi_{ heta}(s,a)$$

So now we can write the expected value of the features:

$$right = \mathrm{E}_{\pi_{ heta}}[\phi(s,\cdot)]$$

where \cdot means all possible actions.

Putting it all together:

$$abla_{ heta} \log(\pi_{ heta}(s,a)) = left - right = \phi(s,a) - \mathrm{E}_{\pi_{ heta}}[\phi(s,\cdot)]$$

Interpretation: difference between the features for certain states and each individual action minus mean of features for the same state and all possible actions.

Gaussian Policy - continuous action spaces (e.g. robotics)

- Mean could be a linear combination of state features $\mu(s) = \phi(s)^T \theta$
- Variance σ^2 could be parametrized or fixed
- Policy is then a Gaussian such that actions are sampled:

$$a \sim \mathcal{N}ig(\mu(s), \sigma^2ig)$$

• Derivative (i.e., score function) becomes:

$$abla_{ heta} \log \pi_{ heta}(s,a) = rac{(a-\mu(s))\phi(s)}{\sigma^2}$$

- Note: Nice interpretation again! An action is more probable if close to the mean estimated by the parameters of the state.
- It works for continuous cases!
- <u>Neural networks most common</u>

Optimization 2: Baseline trick

$$\bullet \quad \text{We are here:} \qquad \nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^m \left(\sum_{t=0}^{H-1} \nabla_\theta \log \pi_\theta \left(u_t^{(i)} \mid s_t^{(i)} \right) \left(\sum_{k=t}^{H-1} R\left(s_k^{(i)}, u_k^{(i)} \right) \right) \right)$$

Optimization 2: Baseline trick

• We are here: $\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{t=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \left(\sum_{t=1}^{H-1} R\left(s_{k}^{(i)}, u_{k}^{(i)} \right) \right) \right)$

Idea: Extract a **baseline value** to improve the variance further
$$\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \left(\sum_{k=t}^{H-1} R\left(s_{k}^{(i)}, u_{k}^{(i)} \right) - b(s_{t}) \right) \right)$$

Optimization 2: Baseline trick

• We are here: $\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \left(\sum_{k=t}^{H-1} R\left(s_{k}^{(i)}, u_{k}^{(i)} \right) \right) \right)$

Idea: Extract a **baseline value** to improve the variance further

$$\begin{split} \nabla U(\theta) &\approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \left(\sum_{k=t}^{H-1} R \left(s_{k}^{(i)}, u_{k}^{(i)} \right) - b(s_{t}) \right) \right) \\ &= \mathbb{E}_{\tau} \left[\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t} \mid s_{t} \right) \left(\sum_{k=t}^{H-1} R \left(s_{k}, u_{k} \right) - b \left(s_{t} \right) \right) \right] \text{ (Just coming back a bit to E form)} \end{split}$$

Optimization 2: Baseline trick

We are here: $\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{t=0}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \left(\sum_{t=0}^{H-1} R\left(s_{k}^{(i)}, u_{k}^{(i)} \right) \right) \right)$

Idea: Extract a **baseline value** to improve the variance further
$$\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \left(\sum_{k=t}^{H-1} R\left(s_{k}^{(i)}, u_{k}^{(i)} \right) - b(s_{t}) \right) \right)$$

(Just coming back a bit to E form)

For any choice of baseline $\boldsymbol{b}(\boldsymbol{s_t})$, gradient estimator is unbiased.

NOTE: it should only depend on previous states, not future, i.e., those affected by future decisions

We must prove that: $\mathbb{E}_{\tau} \left| \sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t} \mid s_{t} \right) b \left(s_{t} \right) \right| = 0$ or even simpler, that $\mathbb{E}_{\tau} \left[\nabla_{\theta} \log \pi_{\theta} \left(u_{t} \mid s_{t} \right) b \left(s_{t} \right) \right] = 0$

Read more: Policy Gradient Theorem: SuTon et al, NIPS 1999; GPOMDP: BartleT & Baxter, JAIR 2001; Survey: Peters & Schaal, IROS 2006]

Proof that by introducing baseline gradient is still unbiased:

$$\begin{split} &\mathbb{E}_{\tau} \left[\nabla_{\theta} \log \pi_{\theta} \left(u_{t} \mid s_{t} \right) b \left(s_{t} \right) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[\mathbb{E}_{s_{(t+1):T}, a_{t:(T-1)}} \left[\nabla_{\theta} \log \pi_{\theta} \left(u_{t} \mid s_{t} \right) b \left(s_{t} \right) \right] \right] \text{(split expectation before and after t)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b \left(s_{t} \right) \mathbb{E}_{s_{(t+1):H}, a_{t:(H-1)}} \left[\nabla_{\theta} \log \pi_{\theta} \left(u_{t} \mid s_{t} \right) \right] \right] \text{(baseline doesn't affect inner E)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b \left(s_{t} \right) \mathbb{E}_{u_{t}} \left[\nabla_{\theta} \log \pi \left(u_{t} \mid s_{t} \right) \right] \right] \text{(remove irrelevant s iteration)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b \left(s_{t} \right) \sum_{u} \pi_{\theta} \left(u_{t} \mid s_{t} \right) \frac{\nabla_{\theta} \pi_{\theta} \left(u_{t} \mid s_{t} \right)}{\pi_{\theta} \left(u_{t} \mid s_{t} \right)} \right] \text{(iterate over actions)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b \left(s_{t} \right) \sum_{u} \nabla_{\theta} \pi_{\theta} \left(u_{t} \mid s_{t} \right) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b \left(s_{t} \right) \nabla_{\theta} \sum_{u} \pi_{\theta} \left(u_{t} \mid s_{t} \right) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b \left(s_{t} \right) \nabla_{\theta} 1 \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b \left(s_{t} \right) \nabla_{\theta} 1 \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b \left(s_{t} \right) \nabla_{\theta} 1 \right] \end{aligned}$$

[Read more: Policy Gradient Theorem: SuTon et al, NIPS 1999; GPOMDP: BartleT & Baxter, JAIR 2001; Survey: Peters & Schaal, IROS 2006]

Current state:

$$\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \left(\sum_{k=t}^{H-1} R\left(s_{k}^{(i)}, u_{k}^{(i)} \right) - b(s_{t}) \right) \right)$$

- Intuition at this point: Increase the probability of actions proportionally to how much its returns are better than the estimated return under the current policy!
- Also called the Advantage of that action over baseline

• Constant baseline: $b = \mathbb{E}\left[R(\tau)\right] \approx \frac{1}{m} \sum_{i=1}^m R(\tau^{(i)})$

- Constant baseline: $b = \mathbb{E}\left[R(\tau)\right] \approx \frac{1}{m} \sum_{i=1}^{m} R(\tau^{(i)})$
- Optimal constant baseline (according to variance): $b = \frac{\sum_{i} \left(\nabla_{\theta} \log P(\tau^{(i)}; \theta) \right)^{2} R(\tau^{(i)})}{\sum_{i} \left(\nabla_{\theta} \log P(\tau^{(i)}; \theta) \right)^{2}}$

[Read: Greensmith, BartleT, Baxter, JMLR 2004 for variance reducing techniques.]

- Constant baseline: $b = \mathbb{E}\left[R(\tau)\right] \approx \frac{1}{m} \sum_{i=1}^{m} R(\tau^{(i)})$
- Optimal constant baseline (according to variance): $b = \frac{\sum_{i} \left(\nabla_{\theta} \log P(\tau^{(i)}; \theta) \right)^{2} R(\tau^{(i)})}{\sum_{i} \left(\nabla_{\theta} \log P(\tau^{(i)}; \theta) \right)^{2}}$
- Time-based average: $b_t = \frac{1}{m} \sum_{i=1}^m \sum_{k=t}^{H-1} R(s_k^{(i)}, u_k^{(i)})$
- State-based expected return: $b(s_t) = \mathbb{E}\left[r_t + r_{t+1} + r_{t+2} + \ldots + r_{H-1}\right] = \mathbb{E}\left[G_t\right]$

[Read: Greensmith, BartleT, Baxter, JMLR 2004 for variance reducing techniques.]

"Vanilla" Policy Gradient pseudocode

(the template of all policy gradients algorithms)

```
Initialize policy parameter \theta, baseline b
for iterations = 1, 2, \cdots do
    Collect a set of trajectories \tau by executing the current policy
    for each trajectory \tau_i
       At each timestep t in trajectory \tau^i
          Compute Return G_t^i = \sum_{t'=t}^{T-1} r_{t'}^i
          Advantage estimate \hat{A}_t^i = G_t^i - b(s_t).
   Re-fit the baseline, by minimizing \sum_i \sum_t \|b(s_t) - G_t^i\|^2
   Update the policy, using a policy gradient estimate \hat{g},
       which is a sum of terms \nabla_{\theta} \log \pi_{\theta}(u_t \mid s_t) \hat{A}_t.
(Plug \hat{g} into SGD or ADAM) endfor
```

• Current state: We estimate the baseline target as returns, G_t , from MC samples

$$\sum_{i}\sum_{t}\left\|b(s_{t})-G_{t}^{i}
ight\|^{2}$$

- This is unbiased, but high variance, collected from individual roll-outs.
- Ideas from previous courses:
 - Reduce variance by adding bias using bootstrapping and discounting
 - Using function approximation

• Now we use :
$$b(s_t) = \mathbb{E}[r_t + r_{t+1} + r_{t+2} + \ldots + r_{H-1}]$$

• Recall State-value function – can serve as a baseline estimator

$$V^{\pi,\gamma}(s) = \mathbb{E}_{\pi}ig[r_0 + \gamma r_1 + \gamma^2 r_2 \cdots \mid s_0 = sig]$$

Recall Q-function (state-action-value):

$$Q^{\pi,\gamma}(s,u) = \mathbb{E}ig[r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots \mid s_0 = s, u_0 = uig]$$

• Now we use :
$$b(s_t) = \mathbb{E}[r_t + r_{t+1} + r_{t+2} + \ldots + r_{H-1}]$$

• Recall State-value function – can serve as a baseline estimator

$$V^{\pi,\gamma}(s) = \mathbb{E}_{\pi}ig[r_0 + \gamma r_1 + \gamma^2 r_2 \cdots \mid s_0 = sig]$$

Recall Q-function (state-action-value):

$$Q^{\pi,\gamma}(s,u) = \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \mid s_0 = s, u_0 = u]$$

$$= \mathbb{E}[r_0 + \gamma V^{\pi}(s_1) \mid s_0 = s, u_0 = u]$$

$$= \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 V^{\pi}(s_2) \mid s_0 = s, u_0 = u]$$

$$= \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 r_2 + \gamma^3 V^{\pi}(s_3) \mid s_0 = s, u_0 = u]$$

$$= \dots$$

Current state:

$$\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \left(\sum_{k=t}^{H-1} R\left(s_{k}^{(i)}, u_{k}^{(i)} \right) - b(s_{t}) \right) \right)$$

Current state:

$$\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \left(\sum_{k=t}^{H-1} R\left(s_{k}^{(i)}, u_{k}^{(i)} \right) - b(s_{t}) \right) \right)$$

Replacing with bootstrapping and action value estimation from the previous slide

$$\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \left(Q^{\pi,\gamma}(s_{t}, u_{t}) - V^{\pi,\gamma}(s_{t}) \right) \right)$$
 Estimated value of taking action u_{t} in state s_{t}

Current state:

$$\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) \left(\sum_{k=t}^{H-1} R\left(s_{k}^{(i)}, u_{k}^{(i)} \right) - b(s_{t}) \right) \right)$$

Replacing with bootstrapping and action value estimation from the previous slide

$$\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_{t}^{(i)} \mid s_{t}^{(i)} \right) (Q^{\pi, \gamma}(s_{t}, u_{t}) - V^{\pi, \gamma}(s_{t})) \right)$$

Replacing with the advantage function:

what is the advantage over average if agent takes action u_t in state s_t

Estimated value of taking action u_t in state s_t

Estimated value of state s_t

$$\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta} \left(u_t^{(i)} \mid s_t^{(i)} \right) A^{\pi,\gamma}(s_t, u_t) \right)$$

- Actor-Critic method:
 - Estimation of V and Q done by a critic
 - Policy decisions are taken by an actor

- A3C (Mnih et al. ICML 2016) commonly used actor-critic method
 - **Critic** can select any blend between TD and MC estimators for estimating the state-action value function Q.

$$Q^{\pi,\gamma}(s,u) = \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \mid s_0 = s, u_0 = u]$$

$$= \mathbb{E}[r_0 + \gamma V^{\pi}(s_1) \mid s_0 = s, u_0 = u]$$

$$= \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 V^{\pi}(s_2) \mid s_0 = s, u_0 = u]$$

$$= \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 r_2 + \gamma^3 V^{\pi}(s_3) \mid s_0 = s, u_0 = u]$$

$$= \dots$$

■ In A3C the look-ahead number of steps is a hyperparameter. E.g., k=5

Let's work on multiple look-ahead steps

• Recall:
$$\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^m \left(\sum_{t=0}^{H-1} \nabla_\theta \log \pi_\theta \left(u_t^{(i)} \mid s_t^{(i)} \right) A^{\pi,\gamma}(s_t, u_t) \right)$$

$$A^{\pi,\gamma}(s_t, u_t) = Q^{\pi,\gamma}(s_t, u_t) - V^{\pi,\gamma}(s_t)$$

Let's work on multiple look-ahead steps

• Recall:
$$\nabla U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^m \left(\sum_{t=0}^{H-1} \nabla_\theta \log \pi_\theta \left(u_t^{(i)} \mid s_t^{(i)} \right) A^{\pi,\gamma}(s_t, u_t) \right)$$

$$A^{\pi,\gamma}(s_t, u_t) = Q^{\pi,\gamma}(s_t, u_t) - V^{\pi,\gamma}(s_t)$$

Look-ahead index

Simplifying notations (getting out π , γ) and explicating multiple steps inside Q

$$A_t^{(1)} = r_t + \gamma V(s_{t+1}) - V(s_t)$$

$$A_t^{(2)} = r_t + \gamma V(s_{t+1}) + \gamma^2 V(s_{t+2}) - V(s_t)$$
......
$$A_t^{(inf)} = r_t + \gamma V(s_{t+1}) + \gamma^2 V(s_{t+2}) + \dots - V(s_t)$$

Check

Look-ahead index

$$A_t^{(1)} = r_t + \gamma V(s_{t+1}) - V(s_t)$$

$$A_t^{(2)} = r_t + \gamma V(s_{t+1}) + \gamma^2 V(s_{t+2}) - V(s_t)$$
......
$$A_t^{(inf)} = r_t + \gamma V(s_{t+1}) + \gamma^2 V(s_{t+2}) + \dots - V(s_t)$$

Select which ones are true:

- $\Box A_t^{(1)}$ has low variance and low bias
- \square $A_t^{(1)}$ has high variance and low bias
- \square $A_t^{(inf)}$ has low variance and high bias
- \Box $A_t^{(inf)}$ has high variance and low bias

Check

Look-ahead index

$$A_t^{(1)} = r_t + \gamma V(s_{t+1}) - V(s_t)$$

$$A_t^{(2)} = r_t + \gamma V(s_{t+1}) + \gamma^2 V(s_{t+2}) - V(s_t)$$
......
$$A_t^{(inf)} = r_t + \gamma V(s_{t+1}) + \gamma^2 V(s_{t+2}) + \dots - V(s_t)$$

Select which ones are true:

- has low variance and low bias
- has high variance and low bias
- $\Box A_t^{(inf)}$ has low variance and high bias
 - has high variance and low bias

Notes:

- $A_t^{(1)}$ has low variance but high bias!
- As we perform multiple look-ahead steps we increase the variance but lower the bias!

Let's improve further!

- Generalized Advantage Estimation (GAE) [Schulman et al, ICLR 2016]
- ~ TD(lambda) / eligibility traces [Sutton and Barto, 1990]

$$Q^{\pi,\gamma}(s,u) = \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \mid s_0 = s, u_0 = u]$$

$$= \mathbb{E}[r_0 + \gamma V^{\pi}(s_1) \mid s_0 = s, u_0 = u]$$

$$= \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 V^{\pi}(s_2) \mid s_0 = s, u_0 = u]$$

$$= \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 r_2 + \gamma^3 V^{\pi}(s_3) \mid s_0 = s, u_0 = u]$$

$$= \dots$$

Let's improve further! Key Idea: why not averaging all look-ahead steps in estimating Q?

- Generalized Advantage Estimation (GAE) [Schulman et al, ICLR 2016]
- ~ TD(lambda) / eligibility traces [Sutton and Barto, 1990]

$$Q^{\pi,\gamma}(s,u) = \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \mid s_0 = s, u_0 = u] \qquad (1 - \lambda)$$

$$= \mathbb{E}[r_0 + \gamma V^{\pi}(s_1) \mid s_0 = s, u_0 = u] \qquad (1 - \lambda)\lambda$$

$$= \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 V^{\pi}(s_2) \mid s_0 = s, u_0 = u] \qquad (1 - \lambda)\lambda^2$$

$$= \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 r_2 + \gamma^3 V^{\pi}(s_3) \mid s_0 = s, u_0 = u] \qquad (1 - \lambda)\lambda^3$$

$$= \dots$$

$$\hat{Q} \quad \text{Averaged weighted of all steps}$$

Actor-Critic with A3C + GAE

- Use two networks: one for policy, one for value estimation
- Note: Can update both independently, e.g., can use k-steps for V, full roll-out for π

Init
$$\pi_{\theta_0}$$
, $V_{\phi_0}^{\pi}$
Run episode = 1,2,....
Collect roll-outs $\{s, u, s', r\}$
Estimate $\hat{Q}_i(s, u)$ using GAE

Update the two networks:

$$\phi_{i+1} \leftarrow \min_{\phi} \sum_{(s,u,s',r)} \left\| \hat{Q}_i(s,u) - V_\phi^\pi(s)
ight\|_2^2 + \kappa \|\phi - \phi_i\|_2^2$$

$$heta_{i+1} \leftarrow heta_i + lpha rac{1}{m} \sum_{k=1}^m \sum_{t=0}^{H-1}
abla_{ heta} \log \pi_{ heta_i} \Big(u_t^{(k)} \mid s_t^{(k)} \Big) \Big(\hat{Q}_i \Big(s_t^{(k)}, u_t^{(k)} \Big) - V_{\phi_i}^{\pi} \Big(s_t^{(k)} \Big) \Big)$$

(advantage at time t)

Some results on ATARI games:

[Mnih et al, ICML 2016]

Likelihood Ratio Policy Gradient

n-step Advantage Estimation

DeepMine A3C Labyrinth

The video shows an agent collecting rewards in previously unseen mazes using only raw pixels as input. The agent was trained using the Asynchronous Advantage Actor-Critic (A3C) algorithm and was only rewarded for picking up apples and orange portals during training.

Paper link - http://arxiv.org/pdf/1602.01783.pdf

Cart-Pole, GAE: Effect of gamma and lambda

[Schulman et al, 2016 -- GAE]

Thank you! Questions