ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)» Кафедра МО ЭВМ

ОТЧЁТ

по лабораторной работе № 3

по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов.

Студент гр. 1303	Ягодаров М.А.
Преподаватель	Ефремов М.А.

Санкт-Петербург

Цель работы.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров вычисляет значения функций.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a,b,i,k вычисляет:

- а) значения функций $i_1 = f_1(a, b, i)$ и $i_2 = f_2(a, b, i)$;
- b) значения результирующей функции $res = f_3(i_1, i_2, k)$, где вид функций f_1 и f_2 определяется из табл. 2, а функции f_3 из табл. 3 по цифрам шифра индивидуального задания (n_1, n_2, n_3) , приведённым в табл. 4.

Значения a,b,i,k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a,b,k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

$$f_1 = egin{cases} 15 - 2 \cdot i, & \text{при } a > b \ 3 \cdot i + 4, & \text{при } a \leq b \end{cases}$$
 $f_4 = egin{cases} -(6 \cdot i - 4), & \text{при } a > b \ 3 \cdot (i + 2), & \text{при } a \leq b \end{cases}$ $f_3 = egin{cases} |i_1 + i_2|, & \text{при } k = 0 \ \min(i_1, i_2), & \text{при } k \neq 0 \end{cases}$

Выполнение работы.

1. Из таблицы получен вариант набора функций, которые необходимо реализовать.

- 2. Программа протранслирована с различными значениями переменных, результат выполнения набора функций зафиксирован в таблице.
- 3. Для выполнения задания были использованы такие команды общего назначения как:
 - Команды передачи данных:
 - трисваивание
 - Двоичные арифметические команды:
 - add сложение
 - sub вычитание
 - стр сравнение
 - neg инвертирование знака
 - Команды побитового сдвига:
 - sal арифметический сдвиг влево
 - Команды передачи управления:
 - jmp безусловный переход
 - ју переход, если при вызове стр первый операнд большего второго операнда
 - jge переход, если при вызове стр первый операнд больше или равен второму операнду
 - jle переход, если при вызове стр первый операнд меньше или равен второму операнду
 - је переход, если при вызове стр первый операнд равен второму операнду
 - jne переход, если при вызове стр первый операнд не равен второму операнду
- 4. Программа выполнена в пошаговом режиме под управлением отладчика с фиксацией значений используемых переменных.

№	Тестируемый	Функции для	Данные	
	случай	данного случая	Входные	Выходные
1	a > b	$f_1 = 15 - 2 \cdot i$	$a = 7, \ b = 3$	$f_1 = 11 = 000B$
	k = 0	$f_2 = -(6 \cdot i - 4)$	k = 0, i = 2	$f_2 = -8 = FFF8$
		$f_3 = f_1 + f_2 $		$f_3 = 3 = 0003$
2	a > b	$f_1 = 15 - 2 \cdot i$	a = 7, b = 3	$f_1 = 9 = 0009$
	$k \neq 0$	$f_2 = -(6 \cdot i - 4)$	k = 1, i = 3	$f_2 = -14 = FFF2$
		$f_3 = \min(f_1, f_2)$		$f_3 = -14 = FFF2$
3	$a \leq b$	$f_1 = 3 \cdot i + 4$	a = 5, b = 5	$f_1 = 10 = 000A$
	k = 0	$f_2 = 3 \cdot (i+2)$	k = 0, i = 2	$f_2 = 12 = 000C$
		$f_3 = f_1 + f_2 $		$f_3 = 22 = 0016$
4	$a \leq b$	$f_1 = 3 \cdot i + 4$	a = 3, b = 5	$f_1 = 13 = 000D$
	$k \neq 0$	$f_2 = 3 \cdot (i+2)$	k = 1, i = 3	$f_2 = 15 = 000F$
		$f_3 = \min(f_1, f_2)$		$f_3 = 13 = 000D$

Выводы

В ходе выполнения лабораторной работы были получены навыки разработки программы с заданными целочисленными значениями на языке программирования Ассемблер.

ПРИЛОЖЕНИЕ А КОД ПРОГРАММ

assume ss:my_stack, cs:my_code, ds:my_data my_stack segment stack dw 12 dup('?') my_stack ends my_data segment i dw 0 a dw 0 b dw 0 k dw 0 i1 dw 0 i2 dw 0 res dw 0 my_data ends my_code segment f1_f2 proc near mov ax, a cmp ax, b jg greater less_or_equal: mov ax, i sal ax, 1;2*iadd ax, i ; 3 * iadd ax, 4 ; 4 + 3 * imov i1, ax; i1 = 3 * i + 4add ax, 2; 6 + 3 * ijmp end_f1_f2 greater: mov cx, i sal cx, 1;2*imov ax, 15 ; 15 + 2 * isub ax, cx ; 15 - 2 * imov i1, ax; i1 = 15 - 2 * iadd cx, i ; 3 * iadd cx, cx; 6 * i

Название файла: lab3.asm

```
mov ax, 4
   sub ax, cx ; 4 - 6 * i
end_f1_f2:
  mov i2, ax
  ret
f1_f2 endp
f3 proc near
  mov ax, k
   cmp ax, 0
   je equal_zero
not_equal_zero:
  mov ax, i1
  cmp ax, i2
   jle end_f3 ; i1 ≤ i2
  mov ax, i2
   jmp end_f3 ; i1 > i2
equal_zero:
  mov ax, i1
  add ax, i2
   cmp ax, 0
   jge\ end_f3; i1 + i2 \ge 0
  abs: ; i1 + i2 < 0
     neg ax
end_f3:
  mov res, ax
  ret
f3 endp
main proc far
  push ds
  xor ax, ax
  push ax
  mov ax, my_data
  mov ds, ax
   call f1_f2
   call f3
  mov ax, i1
  mov bx, i2
```

mov cx, res

ret main endp

my_code ends

end main