HOW TO TRAIN YOUR DRAGON

TRAINING VISION
MODEL FOR
MONOCULAR
DEPTH ESTIMATION
AND MASK
GENERATION

DATASET IS THE BEAST

1.2 Million images,

Uncompressed size = \sim 20GB

Time to Extract Entire Dataset = "Forever" (~15 m to 2h on Colab)

Data Sources Profiling <u>link</u>

Data Management is a major challenge. Following options were considered:

Option	Observations	
Bulk load all data	Easy access. Highly unreliable during extraction and long preload time	
Create HDF5 dataset	Awesome r/w speeds. Diskspace even with compression ~10x	
GCS Buckets	Easy access r/w speeds. High latency ~2.4ms	
Torch dataloaders with Zip	Decent r/w speeds and per-epoch speeds. Unreliable as training proceeds due to parallel access.	
Torch dataloaders with selective preload	Much better r/w speeds and per-epoch speeds. Preload time limited to the chunk getting loaded.	

DATA PIPELINE

DNN MODELS

DITITIODEE				
Model	Parameter Count	Link		
Modified Unet-224	Total params: 17,532,622 Trainable params: 17,532,622 Non-trainable params: 0 Input size (MB): 1.15 Forward pass size (MB): 324.75 Params size (MB): 66.88 Estimated Total Size (MB): 392.78	Base Model Link Final Model Link		

- I. The final model consists of two parts:
 - Base Unet-56: Base U-Net styled model with
 - Input_size of (6, 56, 56) and
 - outputs (2, 56, 56)
 - Param Count: ~17.3 M
 - Double Conv Layer + Base Unet-56 + UpSampling layer:
 - Input_size of (6, 224, 224) and
 - Output Size (2, 224, 224)
 - Param Count: ~17.6M

Input Conv Block

(6, 64)

DNN MODELS – OTHER MODELS EVALUATED

Model	Parameter Count	Challenges/Observations	Link	
Plain Resnet50 with last layers modified to (2, 224, 224)	20,132,004	Checkerboard/Vertical Strides observed.	<u>MonoMaskDepthResnet</u>	
Resnet-18 + Unet	Total params: 28,476,354 Trainable params: 28,476,354 Non-trainable params: 0 Input size (MB): 1.15 Forward pass size (MB): 2751.66 Params size (MB): 76.80 Estimated Total Size (MB): 2829.61	Long convergence time and difficult to train larger batch size.	ResnetUnet	

TRAINING STRATEGY

Training Stage-I (Strengthen Spine)

- I. Use BaseModel
- 2. 56x56 Image Size
- 3. Large Batch Size
- 4. Cover Full Dataset in chunks of 50K
- 5. Target decent performance.

Main Notebook Link(For Stg2 and Stg3):

https://github.com/rajy4683/S15FinalSubmission/blob/master/S15EVA4_FinalOutput.ipynb

Training Stage-I: Sample

https://github.com/rajy4683/S15FinalSubmission/blob/master/S15Unet6_Large_56.ipynb

Training Stage-2

(Add head and tail, train only head and tail)

- Head and tail added to Baselined Model from Stage-I
- 2. Freeze all Spine Layers
- 3. Image Size (224x224)
- 4. Medium Batch Size(64)
- 5. Cover Full Dataset in chunks of 50K

Training Stage-3 (Full-Scale Training)

- Unfreeze all layers and perform necessary tuning
- 2. Train full Image Size
- 3. Cover Full Dataset in chunks of 100K

TRAINING STRATEGY

- 1. Adopt multi-task learning strategy(i.e train for both Masks and Depth Prediction) from the beginning (mainly inspired from EIP4 and HyperFace).
- 2. Randomly sample full training dataset and create chunks of 50K. Each chunk had a decent combination of various fg/bg combinations. Classes of BG were: (classrooms, college_outdoors, corridors, dining_room, lobby, malls, meeting_rooms)
- 3. Training Stage-I (Strengthen Spine)
 - I. For training each chunk:
 - 1. Base Unet model with input_size (6,56,56) was used (fg_bg images and plain bg images were concatenated)
 - 2. Initial iterations used simple loss functions (RMSE) and basic augmentations like Horizontal Flip.
 - 3. Large batch size of up to 256 (on P100 whenever available)
 - 4. Checkpoint major improvements and retrain from the previous checkpoint.
 - 5. Evaluated Multiple Loss Functions and finalized on
- 4. Training Stage-2 (Add Head and Tail)
 - 1. Add Double-Conv Layer to accept (6, 224, 224) as the input and UpSample output from previous stage to 4x
 - 2. Repeat Training Loop over in chunks
- 5. Training Stage-3 (Unfreeze all layers)
 - 1. Tune hyperparameters and repeat Training Loop over in chunks

LOSS FUNCTIONS

Loss Functions Evaluated	Task	Observation	
RMSE	Depth Prediction and Mask Formation	Very helpful in mask prediction tasks. Acts as a good regularizer when used with other loss functions	
LI Loss	Depth Prediction and Mask Formation	Provides better convergence than RMSE/L2. Acts as a good regularizer when used with other loss functions	
BCELossWithLogits	Mask Formation	Resulted in noisy output on multiple datasets	
Dice Loss	Mask Formation	For masks, feature formation was much faster with Dice Loss	
SSIM Loss	Depth Prediction	Quite reliable and provides faster feature formation	
Pixel Weighted L1/L2 Loss	Mask Formation	Intention was to use it with other loss functions to regularize but seems to cause large noise over images.	

Final Loss Function used:

I. For Mask Prediction:

LILoss + Dice Loss

I. For Depth Estimation:RMSE Loss + SSIMLoss

Losses Module Link:

Results of various loss functions are present in this <u>link</u>

PROFILING RESULTS

For profiling runs, cProfile python module was used for training loops Two striking observations:

- I. SSIM Loss takes a whopping 56ms per call, around 20% of run-time
- Any .item() call causes CUDA synchronization which consumes ~171ms
- 3. Dataloaders take nearly 3-8% of total time and most of the time is spent in thread lock
- 4. Further details can be found here:
 - https://github.com/rajy4683/S15
 FinalSubmission/blob/master/Profiling.xlsx
 - 2. Profiling Notebook

ncalls		tottime		cumtime		TimePercent filename:lineno(function)
	I	0.036	0.036	181.691	181.691	100%mmdtraintest.py:216(execute_model)
	2	0.128	0.064	177.648	88.824	98%mmdtraintest.py:114(train_batch)
	644	0.194	0	45.075	0.07	25%mmdlosses.py:20(construct_criterion)
	322	0.002	0	44.001	0.137	24%mmdlosses.py:59(LocalSSIMLoss)
	322	0.275	0.001	43.755	0.136	24%ssim.py:82(forward)
	322	0.013	0	6.239	0.019	3%mmdmodels.py:169(forward)
5152/3	542	0.08	0	4.966	0.001	3%container.py:98(forward)
	3542	0.014	0	4.697	0.001	3%mmdmodels.py:30(forward)
	322	0.015	0	4.562	0.014	3%mmdmodels.py:105(forward)
	314	0.003	0	3.915	0.012	2%tensor.py:170(backward)
	314	0.003	0	3.912	0.012	2%initpy:45(backward)
						{method 'run_backward' of
	314	3.892	0.012	3.892	0.012	2%'torchCEngineBase' objects}
	2	0.001	0.001	3.561	1.78	2%mmdtraintest.py:172(test_batch)
	1288	0.041	0	2.347	0.002	1%mmdmodels.py:63(forward)
	1610	0.005	0	2.334	0.001	1%mmdmodels.py:44(forward)
	7728	0.025	0	2.087	0	1%conv.py:348(forward)
	7728	0.039	0	2.048	0	1%conv.py:340(_conv_forward)
	7406	0.642	0	2.011	0	1%batchnorm.py:83(forward)
	7084	0.014	0	0.433	0	0%activation.py:93(forward)
	322	0.003	0	0.353	0.001	0%mmdlosses.py:35(LocalFocalLoss)
	1610	0.007	0	0.342	0	0%upsampling.py:130(forward)
	322	0.191	0.001	0.328	0.001	0%mmdlosses.py:80(forward)
	1932	0.008	0	0.278	0	0%pooling.py: 138(forward)
	322	0.101	0	0.218	0.001	0%mmdlosses.py:63(dice_loss)
	322	0.022	0	0.109	0	0%mmdlosses.py:38(LocalPixelLoss)
	322	0.003	0	0.104	. 0	
	322	0.003	0	0.094	0	0%mmdlosses.py:47(LocalL1Loss)
	644	0.002	0	0.091	0	0%loss.py:431(forward)
	322	0.001	0	0.087	0	0%mmdmodels.py:83(forward)
	322	0.001	0	0.064	0	0%loss.py:87(forward)
	322	0.001	0	0.017	0	0%mmdlosses.py:76(init)
	16	0	0	0.001	0	0%mmddataloader.py:272(len)

FINAL RESULTS

Losses	Values
Overall Loss	0.94152086
Overall Mask	0.87551310
Overall Depth Loss	0.06600758

FINAL RESULTS

Losses	Values
Overall Loss	0.94152086
Overall Mask	0.87551310
Overall Depth Loss	0.06600758

HANDLING COLAB

- One central Google Drive was created which contains:
 - Base Modules
 - Raw Image Zip files
 - Model Checkpoint directories
 - Logs and other useful files
- Multiple Google accounts were linked back to the shared Google Drive.
- All notebooks, upon Colab expiry were pushed into private GitHub repository and reloaded directly from GitHub to allow for easy resuming of training

REFERENCE CITATIONS CREDITS

- I. Main model was inspired from this code:
 - I. https://github.com/milesial/Pytorch-UNet
- 2. Papers that really helped to understand Monocular depth estimation:
 - I. UnsupervisedMonocular Depth Estimation with Left-Right Consistency.
 - 2. Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue
 - 3. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
 - 4. Original U-Net paper: U-Net: Convolutional Networks for Biomedical Image Segmentation
 - 5. https://lars76.github.io/neural-networks/object-detection/losses-for-segmentation/ (Awesome details on variety of loss functions)
 - 6. EVA4 community discussions and of course Rohan Shravan for all the mentoring.