Variable Compleja

SEGUNDO EXAMEN PARCIAL

Julio 30 de 2024

ALEXIS

Juan Camilo Lozano Suárez

Ejercicio 1. Suponga que la serie

$$\sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

converge a una función analítica X(z) en algún anillo $R_1 < |z| < R_2$. La suma X(z) es llamada la **z-transformada** de x[n] $(n = 0, \pm 1, \pm 2, \ldots)$. Use la expresión (5), Sec. 66, para los coeficientes en una serie de Laurent para mostrar que si el anillo contiene la circunferencia unitaria |z| = 1, entonces la z-transformada inversa de X(z) puede escribirse como

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{i\theta}) e^{in\theta} d\theta \qquad (n = 0, \pm 1, \pm 2, \dots).$$

Prueba. Llamemos A a la región anular $R_1 < |z| < R_2$, y C a la circunferencia |z| = 1 orientada positivamente. Supongamos que C está contenido en A. Como X(z) es analítica en A y C es un contorno simple orientado positivamente alrededor de 0 y contenido en A, se sigue que X(z) tiene representación en serie de Laurent

$$X(z) = \sum_{-\infty}^{\infty} c_n z^n, \qquad (z \in A)$$

donde, para todo $n \in \mathbb{Z}^+$,

$$c_n = \frac{1}{2\pi i} \int_C \frac{X(z)}{z^{n+1}} dz.$$

Como además, para todo $z \in A$ tenemos

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n},$$

por la unicidad de la representación en serie de Laurent, se sigue que para todo $n \in \mathbb{Z}^+$,

$$x[n] = c_{-n}$$

$$= \frac{1}{2\pi i} \int_C \frac{X(z)}{z^{-n+1}} dz$$

$$= \frac{1}{2\pi i} \int_C X(z) z^{n-1} dz.$$

Haciendo el cambio de variable $z=e^{i\theta},\,dz=ie^{i\theta}d\theta,$ se tiene

$$\begin{split} \frac{1}{2\pi i} \int_C X(z) z^{n-1} dz &= \frac{1}{2\pi i} \int_{-\pi}^{\pi} X(e^{i\theta}) (e^{i\theta})^{n-1} i e^{i\theta} d\theta \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{i\theta}) e^{in\theta} d\theta, \end{split}$$

con lo que concluimos

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{i\theta}) e^{in\theta} d\theta \qquad (n = 0, \pm 1, \pm 2, \dots).$$

Ejercicio 2. (Segundo punto)

Prueba. (Prueba segundo punto)

Ejercicio 3. Calcule $\oint_{|z|=2} \frac{\sinh(1/z)}{z-1} dz$.

Solución. Asumimos que el contorno |z|=2 está orientado positivamente. Llamemos $f(z)=\frac{\mathrm{senh}(1/z)}{z-1}$. Como senh es una función entera, los únicos puntos en que f no es analítica son $z_0=0$ y $z_1=1$, que se encuentran dentro de |z|=2, y por tanto son puntos singulares aislados de f. Por el teorema de los residuos de Cauchy tenemos

$$\oint_{|z|=2} \frac{\sinh(1/z)}{z-1} dz = 2\pi i \sum_{k=0}^{1} \underset{z=z_k}{\text{Res }} f(z).$$

• Calculemos $\underset{z=z_0}{\operatorname{Res}} f(z)$. Sabemos que

$$senh(z) = z + \frac{z^3}{3!} + \frac{z^5}{5!} + \dots$$
 $(z \in \mathbb{C}),$

luego,

$$\operatorname{senh}\left(\frac{1}{z}\right) = \frac{1}{z} + \frac{1}{3!} \frac{1}{z^3} + \frac{1}{5!} \frac{1}{z^5} + \dots \qquad (z \in \mathbb{C} - \{0\}).$$

También, para |z| < 1:

$$\frac{1}{z-1} = -\frac{1}{1-z}$$

$$= -\sum_{n=0}^{\infty} z^n$$

$$= -(1+z+z^2+\dots)$$

$$= -1-z-z^2-\dots$$

de modo que para 0 < |z| < 1 se tiene

$$f(z) = \operatorname{senh}\left(\frac{1}{z}\right) \frac{1}{z-1}$$

$$= \left(\frac{1}{z} + \frac{1}{3!} \frac{1}{z^3} + \frac{1}{5!} \frac{1}{z^5} + \dots\right) \left(-1 - z - z^2 - \dots\right).$$

En particular, podemos ver que el coeficiente de 1/z en la anterior serie es

Res_{z=z₀}
$$f(z) = -1 - \frac{1}{3!} - \frac{1}{5!} - \frac{1}{7!} - \dots$$

= $\sum_{n=0}^{\infty} -\frac{1}{(2n-1)!}$.

Sabemos que, para todo $z \in \mathbb{C}$ se tiene $e^z = \sum_{n=0}^{\infty} z^n/n!$, de modo que

$$e - e^{-1} = \left(\sum_{n=0}^{\infty} \frac{1}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}\right)$$
$$= \sum_{n=0}^{\infty} (1 - (-1)^n) \frac{1}{n!}$$
$$= \frac{2}{1!} + \frac{2}{3!} + \frac{2}{5!} + \dots$$
$$= \sum_{n=0}^{\infty} \frac{2}{(2n+1)!},$$

y por tanto

$$\frac{e - e^{-1}}{2} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!}.$$

De lo anterior obtenemos

$$\mathop{\mathrm{Res}}_{z=z_0} f(z) = -\frac{e-e^{-1}}{2} = -\mathrm{senh}(1).$$

• Calculemos $\underset{z=z_1}{\operatorname{Res}} f(z)$. Como $\operatorname{senh}(1/z)$ es analítica y no nula en $z_1=1$, tenemos que $z_1=1$ es un polo simple de f y por tanto $\underset{z=z_1}{\operatorname{Res}} f(z)=\operatorname{senh}(1)$.

Con los ítems anteriores concluimos

$$\oint_{|z|=2} \frac{\operatorname{senh}(1/z)}{z-1} dz = 2\pi i \sum_{k=0}^{1} \operatorname{Res}_{z=z_k} f(z)$$

$$= 2\pi i \left(-\operatorname{senh}(1) + \operatorname{senh}(1)\right)$$

$$= 0.$$

Ejercicio 4.

Soluci'on.

Ejercicio 5. Calcule usando residuos:

$$\int_{-\infty}^{\infty} \frac{dx}{ax^2 + bx + c}$$

y

$$\int_{-\infty}^{\infty} \frac{dx}{\left(ax^2 + bx + c\right)^2}$$

donde $a, b \ y \ c \ son \ reales \ tales \ que \ b^2 < 4ac.$

Solución.

 $I. \int_{-\infty}^{\infty} \frac{dx}{ax^2 + bx + c}$

Llamemos $f(z) = 1/(az^2 + bz + c)$. Como $4ac > b^2 \ge 0$, tenemos $a \ne 0$. Así, tomando

$$z_1 = -\frac{b}{2a} + i \frac{\sqrt{4ac - b^2}}{2|a|}$$
 y $z_2 = -\frac{b}{2|a|} - i \frac{\sqrt{4ac - b^2}}{2a} = \overline{z_1}$,

tenemos

$$f(z) = \frac{1}{a(z-z_1)(z-z_2)}.$$

Llamando $q(z) = a(z - z_1)(z - z_2)$, como $4ac - b^2 \neq 0$, tenemos que q(z) no tiene ceros reales, y z_1 es su único cero sobre el eje real. Además, como la función $1/(a(z - z_2))$ es analítica y no nula en z_1 , se tiene que z_1 es un polo simple de f(z), y

$$B := \underset{z=z_1}{\operatorname{Res}} f(z)$$

$$= \frac{1}{a(z_1 - z_2)}$$

$$= \frac{1}{a(z_1 - \overline{z_1})}$$

$$= \frac{1}{2ia \cdot \operatorname{Im}(z_1)}$$

$$= \frac{1}{2ia \frac{\sqrt{4ac - b^2}}{2|a|}}$$

$$= \frac{|a|}{ia\sqrt{4ac - b^2}}$$

$$= \operatorname{sgn}(a) \frac{1}{\sqrt{4ac - b^2}}.$$

Tomamos $R > |z_1|$ y llamamos C_R a la curva $Re^{i\theta}$ con $\theta \in [0, \pi]$, y C a la curva que consta del eje real de -R a R junto a C_R . Por el teorema de los residuos de Cauchy tenemos

$$\int_{-R}^{R} f(x)dx + \int_{C_R} f(z)dz = \int_{C} f(z)dz = 2\pi i B,$$

y por tanto,

$$\lim_{R\to\infty}\int_{-R}^R f(x)dx = 2\pi i B + \lim_{R\to\infty}\int_{C_R} f(z)dz.$$

Por el lema de Jordan, $\lim_{R\to\infty}\int_{C_R} f(z)dz = 0$, así que

$$\lim_{R \to \infty} \int_{-R}^{R} f(x) dx = 2\pi i B,$$

es decir,

$$\lim_{R \to \infty} \left(\int_{-R}^{0} f(x)dx + \int_{0}^{R} f(x)dx \right) = 2\pi i B.$$

Por el criterio de la integral, $\in_0^\infty f(x)dx$ converge si y solo si $\sum_{n=0}^\infty f(n)$ converge, pero vemos que esto es cierto haciendo comparación del límite con la serie convergente $\sum_{n=1}^\infty 1/(an^2)$. Por tanto, $\lim_{R\to\infty} \int_0^R f(x)dx$

converge; como $\lim_{R\to\infty}\left(\int_{-R}^0 f(x)dx+\int_0^R f(x)dx\right)$ converge, también lo hace $\lim_{R\to\infty}\int_{-R}^0 f(x)dx$, de modo que

$$\lim_{R \to \infty} \left(\int_{-R}^{0} f(x)dx + \int_{0}^{R} f(x)dx \right) = \lim_{R \to \infty} \int_{-R}^{0} f(x)dx + \lim_{R \to \infty} \int_{0}^{\infty} f(x)dx$$
$$= \int_{-\infty}^{\infty} f(x)dx,$$

y por tanto

$$\int_{-\infty}^{\infty} f(x)dx = 2\pi i B$$

$$= 2\pi i \cdot \operatorname{sgn}(a) \frac{1}{i\sqrt{4ac - b^2}}$$

$$= \operatorname{sgn}(a) \frac{2\pi}{\sqrt{4ac - b^2}}.$$