УЕБ СИСТЕМА ЗА ИЗПЪЛНИМОСТ НА СВЪРЗАНАТА КОНТАКТНА ЛОГИКА

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА КАТЕДРА ПО МАТЕМАТИЧЕСКА ЛОГИКА И ПРИЛОЖЕНИЯТА Й

Антон Дудов

Научен ръководител: проф. Тинко Тинчев

- 🚺 Табло метод за класическа съждителна логика
- ② Контактна логика
 - Синтаксис
 - Семантика
 - Изпълнимост на формула
 - Алгоритъм за строене на модел
- 💿 Свързана контактна логика
 - Алгоритъм за строене на свързан модел
- 🐠 Имплементация
- Демо

Приложения:

• Доказване, че формула е тавтология

Приложения:

• Доказване, че формула е тавтология

$$\phi = x \vee \neg x$$

Приложения:

• Доказване, че формула е тавтология

$$\phi = x \vee \neg x$$

• Алгоритъм за търсене на модел

Приложения:

• Доказване, че формула е тавтология

$$\phi = x \vee \neg x$$

• Алгоритъм за търсене на модел

$$\psi = (x \land \neg x) \lor (\neg x \land y) \to x = F, \ y = T$$

Табло метод със знаци $\mathbb T$ и $\mathbb F$

- ullet $\mathbb{T}X$ означава, че формулата X трябва да е true (в някой модел)
- ullet $\mathbb{F}X$ аналогично, X трябва да e false

$$\frac{\mathbb{F} \neg X}{\mathbb{T} X}$$

$$\frac{\mathbb{T}X \wedge Y}{\mathbb{T}X}$$

$$\frac{\mathbb{F} \neg X}{\mathbb{T} X}$$

$$\frac{\mathbb{F}X \wedge Y}{\mathbb{F}X | \mathbb{F}Y}$$

•
$$\frac{\mathbb{T} \neg X}{\mathbb{F} X}$$

$$\bullet \ \frac{\mathbb{T}X \wedge Y}{\mathbb{T}X}$$

•
$$\frac{\mathbb{T}X \vee Y}{\mathbb{T}X|\mathbb{T}Y}$$

$$\frac{\mathbb{F} \neg X}{\mathbb{T} X}$$

$$\frac{\mathbb{F}X \wedge Y}{\mathbb{F}X | \mathbb{F}Y}$$

$$\frac{\mathbb{F}X \vee Y}{\mathbb{F}X}$$

$$\bullet \ \frac{\mathbb{T}X \Rightarrow Y}{\mathbb{F}X | \mathbb{T}Y}$$

$$\frac{\mathbb{F}X \Rightarrow Y}{\mathbb{T}X}_{\mathbb{F}Y}$$

$$\bullet \ \frac{\mathbb{T}X \Rightarrow Y}{\mathbb{F}X|\mathbb{T}Y}$$

$$\frac{\mathbb{F}X{\Rightarrow}Y}{\mathbb{T}X}_{\mathbb{F}Y}$$

$$\frac{\mathbb{F}X \Leftrightarrow Y}{\mathbb{T}X \mid \mathbb{F}X}$$

$$\mathbb{F}Y \mid \mathbb{T}Y$$

Табло метод - строене

• Клон се нарича затворен, ако съдържа противоречие.

- Клон се нарича затворен, ако съдържа противоречие.
- Клон се нарича **приключен**, ако всички формули в него са приложени, т.е. съдържа само променливи.

- Клон се нарича затворен, ако съдържа противоречие.
- Клон се нарича **приключен**, ако всички формули в него са приложени, т.е. съдържа само променливи.
- Клон се нарича отворен, ако е приключен и не е затворен.

- Клон се нарича затворен, ако съдържа противоречие.
- Клон се нарича **приключен**, ако всички формули в него са приложени, т.е. съдържа само променливи.
- Клон се нарича отворен, ако е приключен и не е затворен.
- Затворено табло е табло, на което всички клонове са затворени.

Табло метод - тавтология

Лема

Затворено табло за $\mathbb{F} X$ е табло доказателство за X, т.е. X е тавтология.

Пример

Контактна логика - синтаксис

- ullet Булеви променливи (изброимо множество ${\cal V}$)
- Булеви константи: 0 и 1
- Булеви операции:
 - ▶ □ Сечение

 - * Допълнение
- Булеви термове
- Логически връзки: \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- Логически константи: \top и \bot
- *Модални връзки*: \leq (част от) and C(контакт)
- Формули

Контактна логика - термове

Терм - индуктивна дефиниция

- Булева променлива
- Булева константа
- Ако a е терм, то a^* също е терм
- ullet Ако a и b са термове, то и $a \sqcap b$ и $a \sqcup b$ са също термове

11 / 49

Контактна логика - формули

Атомарни формули са от вида $a \le b$ and aCb, където a и b са термове.

Контактна логика - формули

Атомарни формули са от вида $a \le b$ and aCb, където a и b са термове.

Формула - индуктивна дефиниция

- Логическа константа
- Атомарна формула
- ullet Ако ϕ е формула, то $\neg \phi$ съшо е формула
- Ако ϕ и ψ са формули, то $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \Rightarrow \psi)$ and $(\phi \Leftrightarrow \psi)$ са също формули

Контактна логика - семантика

$$\mathcal{F}=(\mathsf{W},\,\mathsf{R})$$
 е релационна система с $\mathsf{W}
eq \emptyset$ и $\mathsf{R} \subseteq W^2$

Контактна логика - семантика

 $\mathcal{F}=(\mathsf{W},\,\mathsf{R})$ е релационна система с $\mathsf{W}
eq\emptyset$ и $\mathsf{R}\subseteq W^2$

Дефиниция (Оценка)

Оценка на булеви променливи в \mathcal{F} е всяка функция $v: \mathcal{V} \to \mathcal{P}(W)$. Разширяваме v индуктивно за булевите термове:

- $v(0) = \emptyset$
- v(1) = W
- $v(a \sqcap b) = v(a) \cap v(b)$
- $v(a \sqcup b) = v(a) \cup v(b)$
- $v(a^*) = W \setminus v(a)$

Контактна логика - част от

Дефиниция (Част от)

$$a \le b \iff v(a) \subseteq v(b)$$

Където а и в са термове.

Контактна логика - контакт

Дефиниция (Контакт)

$$aCb \iff (\exists x \in v(a))(\exists y \in v(b))(xRy)$$

Където а и в са термове.

Контактна логика - модел

Дефиниция (Модел)

 $\mathcal{M} = (\mathcal{F}, v)$ се нарича **модел**.

Истиността на формула ϕ в \mathcal{M} ($\mathcal{M} \models \phi$) се разширява индуктивно за всички термове както следва:

- $\mathcal{M} \models \top$
- $\mathcal{M} \not\models \bot$
- $\mathcal{M} \models a \leq b \iff v(a) \subseteq v(b)$
- $\mathcal{M} \models aCb \iff (\exists x \in v(a))(\exists y \in v(b))(xRy)$

Контактна логика - модел

Дефиниция (Модел)

- $\mathcal{M} \models \neg \phi \iff \mathcal{M} \not\models \phi$
- $\mathcal{M} \models \phi \land \psi \iff \mathcal{M} \models \phi \text{ and } \mathcal{M} \models \psi$
- $\mathcal{M} \models \phi \lor \psi \iff \mathcal{M} \models \phi \text{ or } \mathcal{M} \models \psi$
- $\mathcal{M} \models \phi \Rightarrow \psi \iff \mathcal{M} \not\models \phi \text{ or } \mathcal{M} \models \psi$
- $\mathcal{M} \models \phi \Leftrightarrow \psi \iff (\mathcal{M} \models \phi \text{ and } \mathcal{M} \models \psi) \text{ or } (\mathcal{M} \not\models \phi \text{ and } \mathcal{M} \not\models \psi)$

Контактна логика - изпълнимост на формула

Дефиниция (Модел на формула)

Модел \mathcal{M} е **модел на формулата** ϕ , ако ϕ е вярвна (изводима) в \mathcal{M} .

Контактна логика - изпълнимост на формула

Дефиниция (Модел на формула)

Модел \mathcal{M} е **модел на формулата** ϕ , ако ϕ е вярвна (изводима) в \mathcal{M} .

Дефиниция (Изпълнимост на формула)

Ако ϕ има модел \mathcal{M} , то ϕ е **изпълнима**.

Контактна логика

Нека а и b са термове.

Лема (Равенство на термове)

$$a = b \implies \upsilon(a) = \upsilon(b)$$

Контактна логика

Нека а и b са термове.

Лема (Равенство на термове)

$$a = b \implies \upsilon(a) = \upsilon(b)$$

Лема (Нулев терм)

$$a \le b \implies a \sqcap b^* = 0$$

Контактна логика

Нека а и b са термове.

Лема (Равенство на термове)

$$a = b \implies \upsilon(a) = \upsilon(b)$$

Лема (Нулев терм)

$$a \le b \implies a \sqcap b^* = 0$$

Лема (Ненулев терм)

$$\neg(a \le b) \implies a \sqcap b^* \ne 0$$

Контактна логика - свойства на релацията

Нека а и b са термове.

Аксиома (Рефлексивност)

$$a \neq 0 \implies aCa$$

Контактна логика - свойства на релацията

Нека а и в са термове.

Аксиома (Рефлексивност)

$$a \neq 0 \implies aCa$$

Аксиома (Симетричност)

Табло - отворен клон

Формула $\phi \to$ табло с начало $\phi \to$ отворен клон $\mathbb B$.

Табло - отворен клон

Формула ϕo табло с начало ϕo отворен клон $\mathbb B$.

 ${\mathbb B}$ е множество състоящо се от следните атомарни формули

- $\mathbb{T}C(a,b)$
- **F**C(e, f)
- $\mathbb{T}a \leq b$
- $\mathbb{F}a \leq b$

Табло - отворен клон

Формула ϕo табло с начало ϕo отворен клон $\mathbb B.$

 ${\mathbb B}$ е множество състоящо се от следните атомарни формули

- $\mathbb{T}C(a,b) \to C(a,b)$ (контакт)
- $\mathbb{F}C(a,b) o \neg C(a,b)$ (не-контакт)
- ullet $\mathbb{T} a \leq b
 ightarrow a \leq b
 ightarrow a \sqcap b^* = 0
 ightarrow g = 0$ (нулев терм)
- ullet $\mathbb{F}a \leq b
 ightarrow
 eg(a \leq b)
 ightarrow a \sqcap b^*
 eq 0
 ightarrow d
 eq 0 (ненулев терм)$

Строене на модел

Дефиниция (Отворен клон β)

$$\beta = \bigwedge_{\mathbb{T}C(a,b)\in\mathbb{B}} C(a,b) \wedge \bigwedge_{\mathbb{T}d=0\in\mathbb{B}} d = 0 \wedge \bigwedge_{\mathbb{F}C(e,f)\in\mathbb{B}} \neg C(e,f) \wedge \bigwedge_{\mathbb{F}g=0\in\mathbb{B}} g \neq 0$$

Строене на модел

Дефиниция (Отворен клон β)

$$\beta = \bigwedge_{\mathbb{T}C(a,b)\in\mathbb{B}} C(a,b) \wedge \bigwedge_{\mathbb{T}d=0\in\mathbb{B}} d = 0 \wedge \bigwedge_{\mathbb{F}C(e,f)\in\mathbb{B}} \neg C(e,f) \wedge \bigwedge_{\mathbb{F}g=0\in\mathbb{B}} g \neq 0$$

Ако β има модел $\mathcal{M}=(\mathcal{F},\upsilon)=((W,R),\upsilon)$, то \mathcal{M} е и модел за формулата ϕ

Модални точки

$$\upsilon: \mathcal{V} \to \mathcal{P}(W)$$

- $v(0) = \emptyset$ v(1) = W $v(a^*) = W \setminus v(a)$
- $v(a \sqcap b) = v(a) \cap v(b)$ $v(a \sqcup b) = v(a) \cup v(b)$

Дефиниция (Модална точка)

Оценка на променливи \mathcal{E}_n за n булеви променливи е поредица от единици и нули както следва:

$$\mathcal{E}_n = \langle e_1, e_2, \dots, e_n \rangle$$
, where $e_1, \dots, e_n \in \{0, 1\}$

Модална точка е оценка на променливи \mathcal{E}_n

Модални точки

Дефиниция (W_n)

Множеството от всички модални точки за n променливи е \mathcal{W}_n

$$W_n = \{ \langle e_1, e_2, \dots, e_n \rangle | e_1, \dots, e_n \in \{0, 1\} \}$$

$$|W_n|=2^n$$

Модални точки

Дефиниция (W_n)

Множеството от всички модални точки за n променливи е \mathcal{W}_n

$$W_n = \{ \langle e_1, e_2, \dots, e_n \rangle | e_1, \dots, e_n \in \{0, 1\} \}$$

$$|W_n| = 2^n$$

Дефиниция

 $(\mathcal{E}_n)^i$ е і-тия елемент в поредицата \mathcal{E}_n .

Оценка

Оценка $\upsilon: \mathcal{V} \to \mathcal{P}(W)$:

$$v(x) = \{ \mathcal{E} \mid \mathcal{E} \in W \text{ and } (\mathcal{E})^i = 1 \}, \ \ x \in \mathcal{V}$$

Разширява се индуктивно както следва:

- $v(0) = \emptyset$
- v(1) = W
- $\upsilon(a \sqcap b) = \upsilon(a) \cap \upsilon(b)$
- $v(a \sqcup b) = v(a) \cup v(b)$
- $v(a^*) = W \setminus v(a)$

Изпълнимост на атомарни формули

Лема (Изпълнимост на нулевите термове)

$$g = 0 \in \beta \rightarrow \upsilon(g) = \emptyset$$

Изпълнимост на атомарни формули

Лема (Изпълнимост на нулевите термове)

$$g = 0 \in \beta \rightarrow \upsilon(g) = \emptyset$$

Лема (Изпълнимост на не-контактите)

$$\neg C(e, f) \in \beta \rightarrow \neg (\exists x \in v(e))(\exists y \in v(f))(xRy)$$

Валидна модална точка

Дефиниция (Валидна модална точка)

 $\mathcal{E} \in W_n$ е валидна модална точка на eta, ако запазва изпълнимостта на нулевите термове и не-контактите

$$g=0\in\beta\to\mathcal{E}_n\notin\upsilon_n(g)$$

$$\neg C(e, f) \in \beta \to \mathcal{E}_n \notin (\upsilon_n(e) \cap \upsilon_n(f))$$

Валидна модална точка

Дефиниция (Валидна модална точка)

 $\mathcal{E} \in W_n$ е валидна модална точка на β , ако запазва изпълнимостта на нулевите термове и не-контактите

$$g=0\in\beta\to\mathcal{E}_n\notin\upsilon_n(g)$$

$$\neg C(e,f) \in \beta \to \mathcal{E}_n \notin (\upsilon_n(e) \cap \upsilon_n(f))$$

Дефиниция (W^{ν})

Множеството от всички валидни модални точки е W^{ν}

$$W^{\mathsf{v}} = \{ \mathcal{E} \mid \mathcal{E} \in \mathcal{W}_n \text{ и } \mathcal{E} \text{ е валидна модална точка на } \beta \}$$

Валидна релация между точки

Дефиниция (Валидна релация)

Нека $x, y \in W^{\nu}$. Тогава $\langle x, y \rangle$ е **валидна релация** на β , ако запазва изпълнимостта на не-контактите в β .

$$\neg C(e,f) \in \beta \to \neg (x \in \upsilon(e) \text{ и } y \in \upsilon(f))$$
 или $(x \in \upsilon(f) \text{ и } y \in \upsilon(e))$

Валидна релация между точки

Дефиниция (Валидна релация)

Нека x, y $\in W^{\nu}$. Тогава $\langle x,y \rangle$ е **валидна релация** на β , ако запазва изпълнимостта на не-контактите в β .

$$\neg C(e,f) \in \beta \to \neg (x \in \upsilon(e) \text{ и } y \in \upsilon(f))$$
 или $(x \in \upsilon(f) \text{ и } y \in \upsilon(e))$

Дефиниция (IsValidCon)

IsValidCon: $(W^{\nu} \times W^{\nu}) \rightarrow \{0,1\}$

 $IsValidCon(x,y) = 1 \iff \langle x,y \rangle$ е валидна релация

Точка част от оценка

Дефиниция (η)

 $\eta: (\mathsf{T} imes W_n) o \{0,1\}$ - указва дали модална точка е част от оценката на терм. Нека $t \in \mathsf{T}$ и $\mathcal{E} \in W_n$.

- $\eta(0, \mathcal{E}) = 0$
- $\eta(1, \mathcal{E}) = 1$
- $\eta(x_i, \mathcal{E}) = 1 \iff (\mathcal{E})^i = 1$
- $\eta(a \sqcap b, \mathcal{E}) = 1 \iff \eta(a, \mathcal{E}) = 1 \text{ and } \eta(b, \mathcal{E}) = 1$
- $\eta(a \sqcup b, \mathcal{E}) = 1 \iff \eta(a, \mathcal{E}) = 1 \text{ or } \eta(b, \mathcal{E}) = 1$
- $\eta(a^*, \mathcal{E}) = 1 \iff \eta(a, \mathcal{E}) = 0$

Точка част от оценка

Лема

Нека $t \in T$ и $\mathcal{E} \in W_n$.

$$\eta(t,\mathcal{E}) = 1 \iff \mathcal{E} \in \upsilon(t)$$

Algorithm Алгоритъм за строене на модел

- 1 $\mathcal{W} \leftarrow \emptyset$ 2: $R \leftarrow \emptyset$ 3: for $d \neq 0 \in \beta$ do for $\mathcal{E} \in W^{\nu}$ do if $\eta(d, \mathcal{E}_n) = 1$ then 5: $W \leftarrow W \cup \{x\}$ 6: $R \leftarrow R \cup \{\langle x, x \rangle\}$ 7: go to 3 end if 9:
- end for 10:
- Не може да се създаде модел. 11:
- 12: end for

Algorithm Алгоритъм за строене на модел

```
13: for C(a,b) \in \beta do
        for x, y \in W^{v} do
14:
           if \eta(a,x) = 1 \wedge \eta(b,x) = 1 \wedge IsValidCon(x,y) then
15
               W \leftarrow W \cup \{x, y\}
16:
               R \leftarrow R \cup \{\langle x, x \rangle, \langle y, y \rangle, \langle x, y \rangle, \langle y, x \rangle\}
17:
               go to 13
18:
           end if
19:
        end for
20:
        Не може да се създаде модел.
21:
22. end for
```


Свързана контактна логика

Аксиома (Свързаност)

$$a \neq 0 \land a \neq 1 \implies aCa^*$$

Свързана контактна логика

Аксиома (Свързаност)

$$a \neq 0 \land a \neq 1 \implies aCa^*$$

$$\upsilon(a) \neq \emptyset \land \upsilon(a) \neq W \implies (\exists x \in \upsilon(a))(\exists y \in W \setminus \upsilon(a))(xRy)$$

Релационната система $\mathcal{F} = (W, R)$ дефинира ненасочен граф G(W, R). W е множеството от върхове, а R е множеството от ребра.

Релационната система $\mathcal{F} = (W, R)$ дефинира ненасочен граф G(W, R). W е множеството от върхове, а R е множеството от ребра.

Дефиниция (Път в граф)

Нека G=(W,R) е граф. **Път** $\pi_G(x,y)$ е поредица от върхове (x,v_1,\ldots,v_k,y) , такива че $x,v_1,\ldots,v_k,y\in V$ и $xRv1,v_1Rv_2,\ldots,v_{k-1}Rv_k,v_kRy$.

Релационната система $\mathcal{F} = (W, R)$ дефинира ненасочен граф G(W, R). W е множеството от върхове, а R е множеството от ребра.

Дефиниция (Път в граф)

Нека G=(W,R) е граф. Π ът $\pi_G(x,y)$ е поредица от върхове (x,v_1,\ldots,v_k,y) , такива че $x,v_1,\ldots,v_k,y\in V$ и $xRv1,v_1Rv_2,\ldots,v_{k-1}Rv_k,v_kRy$.

Дефиниция (Свързан граф)

Нека G = (W, R) е ненасочен граф. G е **свързан**, ако има път между всеки два различни върха в W.

$$x, y \in W \to (x \neq y \implies \pi_G(x, y))$$

Теорема (Свързаност)

Нека $\mathcal{F} = (W, R)$ е релационна система и G = (W, R) е графът, дефиниран от нея.

аксиомата за свързаност е удоволетворена в $\mathcal{F} \iff \mathsf{G}$ е свързан

Теорема (Свързаност)

Нека $\mathcal{F} = (W, R)$ е релационна система и G = (W, R) е графът, дефиниран от нея.

аксиомата за свързаност е удоволетворена в $\mathcal{F} \iff \mathsf{G}$ е свързан

Дефиниция (Свързан модел)

Нека $\mathcal{F}=(W,R)$ е релационна система. Нека G=(W,R) е графът дефиниран от нея \mathcal{F} . Нека $\mathcal{M}=(\mathcal{F},\upsilon)$ е модел на β . \mathcal{M} е **свързан модел**, ако G е свързан граф.

Дефиниция
$$(R^{\nu})$$

$$R^{\mathsf{v}} = \{\langle x,y \rangle \mid x,y \in W^{\mathsf{v}}$$
 и $\langle x,y \rangle$ е валидна релация на $\beta\}$

Дефиниция (R^{ν})

$$R^{\mathsf{v}} = \{\langle x,y \rangle \mid x,y \in W^{\mathsf{v}}$$
 и $\langle x,y \rangle$ е валидна релация на $\beta\}$

Стъпка

 $\mathcal{F}^{v} = (W^{v}, R^{v}), \mathcal{M}^{v} = (\mathcal{F}^{v}, \upsilon). \mathcal{M}^{v}$ е модел на β , ако контактите и ненулевите термове в β са удоволетворени. Ако \mathcal{M}^{v} не е модел, тогава β няма модел(нито свързан модел).

Подграф

Дефиниция (Подграф)

$$G'(W',R')\subseteq G(W,R)$$
, ako:

$$W' \subseteq W$$
 u $R' = \{\langle x, y \rangle \mid x, y \in W' \text{ u } xRy\}$

Подмодел

Лема (Подмодел)

 $\mathcal{F}=(W,R)$, $\mathcal{M}=(\mathcal{F},\upsilon)$. Нека $G'=(W',R')\subseteq G=(W,R)$. Тогава G' дефинира модел $\mathcal{M}'=((W',R'),\upsilon')$, където:

- $\upsilon'(x) = \upsilon(x) \cap W'$, за всяка променлива x
- $v'(0) = \emptyset$
- v'(1) = W'
- $\upsilon'(a \sqcap b) = \upsilon'(a) \cap \upsilon'(b)$
- $v'(a \sqcup b) = v'(a) \cup v'(b)$
- $v'(a^*) = W' \setminus v'(a)$

Запазване удоволетворимост атомарни формули

Лема (Запазване удоволетворимост атомарни формули)

$$G^v = (W^v, R^v)$$
 е графът породен от \mathcal{F}^v . Нека $G = (W, R) \subseteq G^v$ and $\mathcal{M} = ((W, R), v')$ е моделът дефиниран от G . Тогава:

ullet M запазва удоволетворимостта на контактите в eta, ако

$$C(a,b) \in \beta \to (\exists x \in \upsilon'_n(a))(\exists y \in \upsilon'_n(b))(xRy)$$

Запазване удоволетворимост атомарни формули

Лема (Запазване удоволетворимост атомарни формули)

 $G^v=(W^v,R^v)$ е графът породен от \mathcal{F}^v . Нека $G=(W,R)\subseteq G^v$ and $\mathcal{M}=((W,R),\upsilon')$ е моделът дефиниран от G. Тогава:

ullet M запазва удоволетворимостта на контактите в eta, ако

$$C(a,b) \in \beta \to (\exists x \in \upsilon'_n(a))(\exists y \in \upsilon'_n(b))(xRy)$$

ullet M запазва удоволетворимостта на ненулевите термове в eta, ако

$$g \neq 0 \in \beta \rightarrow \upsilon'_n(g) \neq \emptyset$$

Свързани компоненти - дефиниции

Дефиниция (Свързана компонента)

Нека G = (W, R) е граф. Нека $G' = (W', R') \subseteq G(W, R)$. Ако G' е свързан, то G' е свързана компонента на G.

Свързани компоненти - дефиниции

Дефиниция (Свързана компонента)

Нека G = (W, R) е граф. Нека $G' = (W', R') \subseteq G(W, R)$. Ако G' е свързан, то G' е свързана компонента на G.

Дефиниция (Максимална свързана компонента)

Нека G = (W, R) е граф. Нека G' = (W', R') е свързана компонента на G. G' е максимална свързана компонента на G, ако:

$$x \in W' \to \neg(\exists y \in W \setminus W')(xRy)$$

 $x, y \in W' \to xRy \iff xR'y$

Стъпка

Нека \mathcal{M}^{v} е модел на β . Всички модели, дефинирани от свързаните компоненти на G^{v} запазват удоволетворимостта на нулевите термове и не-контактите (не добавят точки, нито релации). Ако има свързана компонента, която запазва удоволетворимостта на контактите и ненулевите термове, то тя дефинира **свързан модел** на β . Достатъчно е да разгледаме само максималните свързани компоненти на G^{v} .

Максимално свързани компоненти

Дефиниция ($Comp^G$)

Нека G = (W, R) е граф.

$$Comp^G = \{G' \mid G' \subseteq G \text{ и } G' \text{ е максимлано свързана компонента } \}$$

Стъпка

Нека $Comp^{G^v}$ е множеството от максимлано свързани компоненти на G^v . Нека $|W^v|=m$, тогава $|Comp^{G^v}|<=m$.

Стъпка

Всеки модел дефиниран от граф в $Comp^{G^v}$ удоволетворява нулевите термове и не-контактите на β . Ако има такъв, който запазва удоволетворимостта на контактите и ненулевите термове, то той е ${\it cbързан модел}$ на β . Ако няма, то β няма свързан модел.

Лема (Разширение на свързана компонента)

Нека G=(W,R) и $G'=(W',R')\subseteq G$ е свързана компонента на G. G' може да бъде разширено до максимлано свързана компонента $G_m(W_m,R_m)$ на G както следва:

$$W_m = W' \cup \{x \mid x \in W \setminus W' \text{ in } (\exists y \in W')(\pi_G(x, y))\}$$

$$R_m = \{\langle x, y \rangle \mid \langle x, y \rangle \in R \text{ in } x, y \in W_m\}$$

Теорема

Нека $G^{v} = (W^{v}, R^{v})$ е граф дефиниран от \mathcal{F}^{v} . Ако G^{v} няма максимално свързана компонента, която дефинира модел на β , то β няма свързан модел.

Y CO

Имплементация - строене на AST

Flex & Bison за строене на AST (Абстрактно синтактично дърво)

Пример

Пример (Премахване на импликацията)

Имплементация

- Превръщане на AST формула във формула с удобни и ефективни операции свързани за табло метода и строенето на модела
- Пускане на табло метода за търсене на отворен клон
- Генериране на (свързан) модел
- Компилиране на библиотеката в WebAssembly
- Уеб приложение
- Тестове
- Автоматични билдове
- https://github.com/Anton94/modal_logic_formula_prover_

Демо

Демо - http://logic.fmi.uni-sofia.bg/theses/Dudov_Stoev/

Благодаря за вниманието!

Въпроси?

Ф_М