Groupe IPESUP Année 2022-2023

TD 14 : Dimension des espaces vectoriels

Connaître son cours:

- Soit $(P_k)_{k \in [\![1,n]\!]}$ une famille de polynômes échelonnée en degré, montrer que cette famille est libre. Donner un exemple de famille libre de polynômes qui n'est pas échelonnée en degré.
- Montrer qu'une famille $(x_i)_{i \in I}$ est une base si, et seulement si, tout vecteur de E admet une unique écriture comme combinaison linéaire des vecteurs $(x_i)_{i \in I}$.
- Soit F et G deux sous-espaces supplémentaires d'un \mathbb{K} -espace vectoriel E. Montrer que la famille obtenue par concaténation d'une base de F et d'une base de G est une base de E.
- Montrer que toute famille de n+1 vecteurs d'un espace vectoriel admettant une base de cardinal n est liée.
- Montrer que deux K-espaces vectoriels de dimension finie sont isomorphes si, et seulement s'ils ont la même dimension.
- Soit E et F deux espaces vectoriels de dimension finie, donner la dimension de l'espace vectoriel $\mathcal{L}(E,F)$. En déduire la dimension de E^* .
- Énoncer le formule de Grassmann pour E un espace vectoriel de dimension finie et F_1 , F_2 deux sous-espaces de E et en donner une démonstration.
- Soit $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$ où E, F sont de dimension finie. Montrer que $rg(v \circ u) \leq \min(rg(u), rg(v))$.

Bases et dimension:

Exercice 1. (*)

Pour $E=\mathbb{R}^4$, dire si les familles de vecteurs suivantes peuvent être complétées en une base de E. Si oui, le faire.

- 1. (u, v, w) avec u = (1, 2, -1, 0), v = (0, 1, -4, 1)et w = (2, 5, -6, 1);
- 2. (u, v, w) avec u = (1, 0, 2, 3), v = (0, 1, 2, 3) et w = (1, 2, 0, 3);

Exercice 2. (*)

Soit E l'ensemble des fonctions continues sur [-1,1] qui sont affines sur [-1,0] et sur [0,1]. Démontrer que E est un espace vectoriel et en donner une base.

Exercice 3. (*)

Montrer que $P_1(X) = (X-1)^2$, $P_2(X) = X^2$ et $P_3(X) = (X+1)^2$ forment une base de $\mathbb{R}_2[X]$ et donner les coordonnées de $X^2 + X + 1$ dans cette base.

Exercice 4. (*)

Soient F et G les s.e.v. suivants de \mathbb{R}^3 :

$$F = \{(x, y, z) \in \mathbb{R}^3; \ x - y - 2z = 0\}$$

$$G = \{(x, y, z) \in \mathbb{R}^3; \ x = 2y = x + z\}.$$

- 1. Déterminer la dimension de F, puis la dimension de G.
- 2. Calculer $F \cap G$. En déduire que F et G sont supplémentaires.

Exercice 5. (*)

Montrer que tout sous-espace vectoriel d'un espace vectoriel de dimension finie est de dimension finie.

Exercice 6. (**)

Soit $F = \{ P \in \mathbb{R}_n[X]; P(\alpha) = 0 \}.$

Démontrer que $\mathcal{B} = \{(X - \alpha)X^k; 0 \le k \le n - 1\}$ est une base de F.

Quelle est la dimension de F?

Donner les coordonnées de $(X - \alpha)^n$ dans cette base.

Exercice 7. (**)

Démontrer que les familles suivantes sont libres dans $\mathcal{F}(\mathbb{R},\mathbb{R})$:

- 1. $(x \mapsto e^{ax})_{a \in \mathbb{R}}$;
- 2. $(x \mapsto |x-a|)_{a \in \mathbb{R}}$;
- 3. $(x \mapsto \cos(ax))_{a>0}$;
- 4. $(x \mapsto (\sin x)^n)_{n>1}$.

Exercice 8. (**) (Polynômes de Bernstein)

Pour $0 \le k \le n$, on note $P_k(X) = X^k(1-X)^{n-k}$. Démontrer que la famille (P_0, \dots, P_n) forme une base de $\mathbb{R}_n[X]$.

Exercice 9. (**)

Dans \mathbb{R}^3 , on considère les 3 vecteurs suivants :

$$v_1 = (1, 0, -1), v_2 = (0, 1, 2) \text{ et } v_3 = (1, 2, 3).$$

- 1. La famille (v_1, v_2, v_3) est-elle libre?
- 2. On pose $F = \text{vect}(v_1, v_2, v_3)$. Déterminer une base de F et sa dimension.
- 3. Déterminer trois réels a, b, c tels que l'on ait

$$F = \{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = 0\}.$$

- 4. Déterminer un vecteur w tel que (v_1, v_2, w) soit une base de \mathbb{R}^3 .
- 5. Déterminer un supplémentaire de F dans \mathbb{R}^3 .
- 6. On considère $G = \{(x, y, z) \in \mathbb{R}^3: \ x + 3y + 2z = 0\}.$ Déterminer une base de G. Quelle est sa dimension?
- 7. Déterminer une base de $F \cap G$. Quelle est sa dimension?
- 8. F et G sont-ils en somme directe?
- 9. Sans chercher à déterminer une base de F + G, donner la dimension de F + G.
- 10. En déduire que $F + G = \mathbb{R}^3$.

Exercice 10. (**)

Soit (v_1, \ldots, v_n) une famille libre d'un \mathbb{R} -espace vectoriel E. Pour $k = 1, \ldots, n-1$, on pose $w_k = v_k + v_{k+1}$ et $w_n = v_n + v_1$. Etudier l'indépendance linéaire de la famille (w_1, \ldots, w_n) .

Exercice 11. (**) (Polynômes de Lagrange)

Soit $E = \mathbb{C}_{n-1}[X]$ et soit $\alpha_1, \ldots, \alpha_n$ des nombres complexes deux à deux distincts.

On pose, pour $k = 1, \ldots, n$,

$$L_k = \frac{\prod_{\substack{i=1\\i\neq k}}^n (X - \alpha_i)}{\prod_{\substack{i=1\\i\neq k}}^n (\alpha_k - \alpha_i)}.$$

Démontrer que $(L_k)_{k=1,...,n}$ est une base de E. Déterminer les coordonnées d'un élément $P \in E$ dans cette base.

Exercice 12. (**)

Soit $n \ge 1$ et $P \in \mathbb{R}_n[X]$ non nul.

- Montrer que l'ensemble F_P des polynômes de R_n[X] multiples de P est un sous-espace vectoriel de R_n[X].
- 2. En déduire la dimension de F_P en fonction du degré de P.

Exercice 13. (**)

Soit E un espace vectoriel de dimension finie n des sous-espaces $E_1, \ldots, E_p, F_1, \ldots, F_p$ tels que

- Pour tout $i \in [1, p]$, $F_i \subset E_i$
- $\bullet \bigoplus_{i=1}^{p} F_i = \bigoplus_{i=1}^{p} E_i$

Montrer que, pour tout $i \in [1, p]$, $F_i = E_i$.

Exercice 14. (***)

Soit E un espace vectoriel de dimension finie n, et F, G deux sous-espaces vectoriels de E de même dimension p < n. Montrer que F et G ont un supplémentaire commun, c'est-à-dire qu'il existe un sous-espace H de E tel que $F \oplus H = G \oplus H = E$.

Groupe IPESUP Année 2022-2023

Exercice 15. (***)

E est un espace vectoriel de dimension $n \ge 2$ sur \mathbb{K} .

1. Montrer que si F et G sont deux sous-espaces vectoriels de E:

$$\dim(F \cap G) \geqslant \dim F + \dim G - n$$

- 2. Déterminer la dimension de l'intersection de deux hyperplans distincts de *E*.
- 3. Soient H_1, H_2, \dots, H_r des hyperplans de E. Montrer que

$$\dim (H_1 \cap H_2 \cap \ldots \cap H_r) \geqslant n-r$$

4. Montrer que si p appartient à [1, n] et si F est un sous-espace vectoriel de dimension n - p alors F est l'intersection de p hyperplans de E.

Exercice 16. (***)

Un polynôme trigonométrique de degré au plus n est une fonction

$$T: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{a_0}{2} + \sum_{k=1}^{n} \left(a_k \cos(kx) + b_k \sin(kx) \right) \end{cases}$$

$$\text{Exercises a problem of } \mathbb{R}^{2n+1} \text{ Définissons } \mathcal{T}$$

avec $(a_0, \ldots, a_n, b_1, \ldots, b_n) \in \mathbb{R}^{2n+1}$. Définissons \mathcal{I}_n l'ensemble des polynômes trigonométriques de degré au plus n.

- 1. Montrer que \mathcal{T}_n est un espace vectoriel.
- 2. Soit $T \in \mathcal{T}_n$. Calculer, pour tout entier k, les intégrales

$$\int_{-\pi}^{\pi} \sin(kx) T(x) dx \text{ et } \int_{-\pi}^{\pi} \cos(kx) T(x) dx.$$

3. Montrer que la famille composée des fonctions $x \mapsto \cos(kx)$ pour $k \in [0, n]$ et des fonctions $x \mapsto \sin(jx)$ pour $j \in [1, n]$ est une base de \mathcal{T}_n . En déduire la dimension de \mathcal{T}_n .

Applications linéaires et propriétés :

Exercice 17. (*)

Soit $E = \mathbb{R}^3$. On note $\mathcal{B} = \{e_1, e_2, e_3\}$ la base canonique de E et u l'endomorphisme de \mathbb{R}^3 défini par la donnée des images des vecteurs de la base :

$$u(e_1) = -2e_1 + 2e_3$$
, $u(e_2) = 3e_2$, $u(e_3) = -4e_1 + 4e_3$.

- 1. Déterminer une base de ker *u. u* est-il injectif? peut-il être surjectif? Pourquoi?
- 2. Déterminer une base de Im u. Quel est le rang de \mathbf{u} ?
- 3. Montrer que $E = \ker u \oplus \operatorname{Im} u$.

Exercice 18. (*)

Soit $E = \mathbb{R}^4$ et $F = \mathbb{R}^2$. On considère $H = \{(x, y, z, t) \in \mathbb{R}^4; x = y = z = t\}$.

Existe-t-il des applications linéaires de E dans F dont le noyau est H?

Exercice 19. (*)

Soit E le sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs u = (1,0,0) et v = (1,1,1). Trouver un endomorphisme f de \mathbb{R}^3 dont le noyau est E.

Exercice 20. (**)

Soit E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. On suppose que, pour tout $x \in E$, il existe un entier $n_x \in \mathbb{N}$ tel que $f^{n_x}(x) = 0$. Montrer qu'il existe un entier n tel que $f^n = 0$.

Exercice 21. (**)

Soit E, F deux espaces vectoriels de dimension finie et $u \in \mathcal{L}(E)$. Déterminer la dimension du sous espace

$$\{v \in \mathcal{L}(E,F), v \circ u = 0_{\mathcal{L}(E,F)}\}.$$

Groupe IPESUP Année 2022-2023

Exercice 22. (***)

Soient E_0, \ldots, E_n des espaces vectoriels de dimensions finies respectivement égales à a_0, \ldots, a_n . On suppose qu'il existe n applications linéaires f_0, \ldots, f_{n-1} telles que, pour chaque $k \in \{0, \ldots, n-1\}$, f_k est une application linéaire de E_k dans E_{k+1} et

- 1. f_0 est injective;
- 2. $\ker(f_k) = \operatorname{Im}(f_{k-1})$ pour tout k = 1, ..., n-1;
- 3. f_{n-1} est surjective.

Prouver que $\sum_{k=0}^{n} (-1)^k a_k = 0$.

Exercice 23. (**)

Soit E un \mathbb{K} -espace vectoriel non nul et $f \in \mathcal{L}(E)$ un endomorphisme nilpotent. On note p l'indice de nilpotence de f, i.e. le plus petit entier naturel vérifiant $f^p = 0$.

- 1. f peut-il être un automorphisme?
- 2. Montrer qu'il existe $x \in E$ tel que $(x, f(x), \dots, f^{p-1}(x))$ est libre.
- 3. En déduire que si E est de dimension finie alors $p \le \dim E$.

Exercice 24. (**)

Soient E, F, G des \mathbb{K} -espaces vectoriels et soient $u \in \mathcal{L}(E, G), v \in \mathcal{L}(E, F)$.

- 1. Montrer que : $\operatorname{Ker} v \subseteq \operatorname{Ker} u \Leftrightarrow \exists w \in \mathcal{L}(F,G) : u = w \circ v.$
- 2. En déduire que : $v \text{ injective} \Leftrightarrow \exists w \in \mathcal{L}(F, E) : w \circ v = \mathrm{Id}_E.$

Exercice 25. (**)

Soient E, F, G des \mathbb{K} -espaces vectoriels et soient $u \in \mathcal{L}(E, G), v \in \mathcal{L}(F, G)$.

- 1. Montrer que : $\operatorname{Im} v \subseteq \operatorname{Im} u \Leftrightarrow \exists w \in \mathcal{L}(F, E) : v = u \circ w.$
- 2. En déduire que : $u \text{ surjective} \Leftrightarrow \exists w \in \mathcal{L}(G, E) : u \circ w = \mathrm{Id}_G.$

Exercice 26. (**)

Soit E de dimension finie et $u, v \in \mathcal{L}(E)$ vérifiant $u^2 + u \circ v = \text{Id.}$ Montrer que u et v commutent.

Exercice 27. (**)

Soit E, E', E'', F, F' et F'' des K-espaces vectoriels. Soit $f, f', f'', \varphi, \varphi', \psi$ et ψ' des applications linéaires suivant :

$$E \xrightarrow{\varphi} E' \xrightarrow{\psi} E''$$

$$f \downarrow \qquad f' \downarrow \qquad f'' \downarrow$$

$$F \xrightarrow{\varphi'} F' \xrightarrow{\psi'} F''$$

On suppose que $f' \circ \varphi = \varphi' \circ f$, $f'' \circ \psi = \psi' \circ f'$, Im $\varphi = \operatorname{Ker} \psi$ et Im $\varphi' = \operatorname{Ker} \psi'$.

- 1. Montrer que si φ' , f et f'' sont injectives alors f' l'est aussi.
- 2. Montrer que si ψ , f et f'' sont surjectives alors f' l'est aussi.

Exercice 28. (****)

Soit E un espace vectoriel de dimension finie, $u \in \mathcal{L}(E)$ nilpotent d'indice p (tel que $u^p = 0_{\mathcal{L}(E)}$ et $u^{p-1} \neq 0_{\mathcal{L}(E)}$) et $\Phi : v \in \mathcal{L}(E) \mapsto u \circ v - v \circ u$.

1. Montrer que, pour tout $n \in \mathbb{N}$ et tout $v \in \mathcal{L}(E)$,

$$\Phi^n(\nu) = \sum_{k=0}^n (-1)^k \binom{n}{k} u^{n-k} \circ \nu \circ u^k.$$

- 2. Montrer que Φ est nilpotente et majorer son indice de nilpotence.
- 3. Soit $a \in \mathcal{L}(E)$.

 Montrer qu'il existe $b \in \mathcal{L}(E)$ tel que $a \circ b \circ a = a$.
- 4. En déduire l'indice de nilpotence de Φ .