## 3. Find the corresponding line in the emission spectrum.

Examination of the diagram shows that the electron's jump from energy level  $E_4$  to energy level  $E_2$  corresponds to *Line 3* in the emission spectrum.

## 4. Evaluate your answer.

*Line 3* is in the visible part of the electromagnetic spectrum and appears to be blue. The frequency  $f = 6.15 \times 10^{14}$  Hz lies within the range of the visible spectrum and is toward the violet end, so it is reasonable that light of this frequency would be visible blue light.

## PRACTICE C

## **Interpreting Energy-Level Diagrams**

- **1.** An electron in a hydrogen atom drops from energy level  $E_3$  to  $E_2$ . What is the frequency of the emitted photon, and which line in the emission spectrum shown in Sample Problem C corresponds to this event?
- **2.** An electron in a hydrogen atom drops from energy level  $E_6$  to energy level  $E_3$ . What is the frequency of the emitted photon, and in which range of the electromagnetic spectrum is this photon? (See **Table 1** in the chapter "Light and Reflection" for ranges in the electromagnetic spectrum.)
- **3.** The energy-level diagram in **Figure 16** shows the first five energy levels for mercury vapor. The energy of  $E_1$  is defined as zero. What is the frequency of the photon emitted when an electron drops from energy level  $E_5$  to  $E_1$  in a mercury atom?

| E <sub>5</sub> ———————————————————————————————————— | E = 6.67  eV        |
|-----------------------------------------------------|---------------------|
| $E_4$                                               | E = 5.43  eV        |
| $E_3$                                               | E = 3.43  eV        |
| $E_2$                                               | E = 4.66  eV        |
| $\mathbf{E}_2$                                      | $E-4.00\mathrm{eV}$ |



- **4.** How many different spectral lines *could* be emitted if mercury vapor were excited by photons with 6.67 eV of energy? (Hint: An electron could move, for example, from energy level  $E_5$  to  $E_3$ , then from  $E_3$  to  $E_2$ , and then from  $E_2$  to  $E_1$ .)
- **5.** The emission spectrum of hydrogen has one emission line at a frequency of  $7.29 \times 10^{14}$  Hz. Calculate which two energy levels electrons must jump between to produce this line, and identify the line in the energy-level diagram in Sample Problem C. (Hint: First, find the energy of the photons, and then use the energy-level diagram.)