A Brief Introduction to Markov Chains

Geraint Palmer

PGR Seminar 9/12/2015

Andrei Andreyevich Markov

Figure: Markov chain pioneer.

What is a Markov Chain?

$$P = \begin{pmatrix} 0.5 & 0.2 & 0.3 \\ 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \end{pmatrix}$$

Initial state $\pi_0 = (1, 0, 0)$:

 $\pi_3 = (0.521, 0.262, 0.217)$

Initial state $\pi_0 = (103, 147, 82)$:

 $\pi_3 = (167.875, 88.725, 75.400)$

Initial state $\pi_0 = (0.1, 0.3, 0.6)$:

$$\pi_3 = (0.5093, 0.2569, 0.2338)$$

Steady-State Probabilities

$$\pi = \pi P$$

$$\Sigma \pi = 1$$

$$\Sigma\pi=1$$

Steady-State Probabilities

$$\pi = \pi P$$
 $\Sigma \pi = 1$
0.5
0.2
0.1
0.5
0.2
0.1
0.5
0.2
0.1
0.1
0.5
0.2
0.1

The Markov Property

Higher Order Markov Chains

Higher Order Markov Chains

GRAIN **MOTHER** WALL ZONE SUCCESS the SHADOW J₀B T.A.R.D.I.S. **CLOCK** TIDE DISAPPOINTMENT

against the

GRAIN
WALL
SUCCESS SHADOW
T.A.R.D.I.S.
CLOCK
TIDE

race against the

GRAIN MOTHER
WALL
SUCCESS SHADOW
T.A.R.D.I.S.
CLOCK

TIDE

Classification of States

Absorbing Markov Chains

Probability of Absorption

$$\mathbb{P}(\text{absorption in } t \text{ steps from } s) = P_{(s,a)}^t$$

$$\lim_{t\to\infty}P^t_{(s,a)}\to 1$$

Absorbing Markov Chains

Probability of Absorption

$$\mathbb{P}\left(\text{absorption in }t\text{ steps from }s\right)=P_{(s,a)}^{t}$$

$$\lim_{t\to\infty}P^t_{(s,a)}\to 1$$

Mean Steps to Absorption

$$P = \left(\begin{array}{cc} Q & R \\ \mathbf{0} & 1 \end{array}\right)$$

$$\mathbb{E}\left[ext{steps to absorption from } s
ight] = \left(\mathbb{I} - Q
ight)^{-1} {}_{(s)}$$

Continuous-Time Markov Chains

$$Q = \begin{pmatrix} -13.8 & 7.5 & 6.3 \\ 4.0 & -9.8 & 5.8 \\ 11.2 & 2.9 & -14.1 \end{pmatrix}$$

Discrete

Continuous

$$\pi_t = \pi_0 P^t$$

$$\pi_t = \pi_0 \left(\mathbb{I} + \sum_{k=1}^{\infty} \frac{Q^k t^k}{k!} \right)$$

$$\pi = \pi P$$

$$0 = \pi Q$$

The Exponential Distribution

$$f(x) = \lambda e^{-\lambda x}$$

$$\mathbb{P}\left(T>s+t\mid T>s\right)=\mathbb{P}\left(T>s\right)$$

Modelling a Queue

Arrivals $\sim \mathsf{Poisson}(\lambda)$ Service time $\sim \mathsf{Exponential}(\mu)$

$$Q=\left(egin{array}{cccc} -\lambda & \lambda & 0 & 0 \ \mu & -(\lambda+\mu) & \lambda & 0 \ 0 & \mu & -(\lambda+\mu) & \lambda \ 0 & 0 & \mu & -\mu \end{array}
ight)$$