B.E.R.I.

Pre-training of Deep Bidirectional Transformers for Language Understanding

COLIN KIRBY - CO201115@UCF.EDU

2 Why BERT was Needed in NLP.

What is BERT?

• **BERT** = Bidirectional Encoder Representations from Transfomers

Why This Problem Matters:

NLP tasks need full context - one-way models fall short.

What Existed before BERT:

- **ELMo**: Shallow use of both directions, no deep bidirectionality.
- Lack of context → Poor results on QA and inference tasks.

Problem With These Methods:

Incomplete context hurts performance on key tasks like QA and NLI.

Main Goal:

- Build a single model that works across many NLP tasks.
- Learn deep, bidirectional context representations.
- Enable fine-tuning with minimal task-specific changes.

Research Question:

Can a masked language model be pre-trained effectively to boost performance on a wide range of NLP tasks?

How BERT Learns Language.

Two-Stage Training Framework.

1. Pretraining:

- Learn from unlabeled text corpora.
- Two Tasks:
 - Masked Language Modeling (MLM): Randomly
 Mask 15% of Tokens & Predict Them.
 - Next Sentence Prediction (NSP): Predict if sentence B follows sentence A.

2. Fine-tuning:

- Adapt the pre-trained model to specific NLP tasks.
- Minimal architecture changes (Just adds tasks specific heads).

5 Core Contributions of BERT

Masked Language Modeling (MLM).

Enables deep bidirectional learning from unlabeled text.

Next Sentence Prediction (NSP).

Helps model sentence-level relationships.

One model, many tasks.

Works on 11+ NLP tasks with minimal changes.

Open source + Pre-trained release.

Made large-scale NLP accessible & reproducible.

Input = Token + Segment + Position

- Words + Sentence IDs + Word Order
- ➤ All summed → fed into Transformer Encoder.

Input	CLS my dog is cute (SEP) he likes play ##ing (SEP)
Token Embeddings	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Segment Embeddings	E _A E _A E _A E _A E _B E _B E _B E _B E _B
Position Embeddings	E_0 E_1 E_2 E_3 E_4 E_5 E_6 E_7 E_8 E_9 E_{10}

Pre-training = MLM + NSP

- ▶ 15% masked token :
 - > 80% [MASK]
 - ▶ 10% Random
 - ▶ 10% Unchanged

Model	Layers	Hidden Size	Heads	Params
BERT_BASE	12	768	12	110M
BERT_LARGE	24	1024	16	340M

➤ Next Sentence Prediction: 50% Actual Next Sentence, 50% Random Pairing

7 Technical Details of BERT

- 1. GLUE Benchmark (8 NLP Tasks)
 - BERT_LARGE Avg.: 82.1
 - **GPT Avg :** 75.1 (+7 pt gain across diverse tasks)
- 2. SQuAD Question Answering
 - v1.1 F1 Score :
 - **Single** : 90.9
 - **Ensemble**: 93.2 (better than human-level)
- 3. SWAG (Commonsense Inference)
 - BERT_LARGE outperformed ELMo by +27.1%

8 ELMo vs. GPT vs. BERT

ELMo: Bidirectional LSTM

```
\leftarrow the \leftarrow cat \leftarrow sat \leftarrow (Reads R\rightarrowL) && \rightarrow the \rightarrow cat \rightarrow sat \rightarrow (Reads L\rightarrowR)
```

Words see context only from one side at a time. No integration of both dirs at once.

GPT: Unidirectional Transformer Decoder

```
\rightarrow the \rightarrow cat \rightarrow sat \rightarrow on \rightarrow the \rightarrow mat \rightarrow
```

Each word can only "see" the words before it, not after.

BERT: Deep Bidirectional Transformer Encoder

```
\leftrightarrow the \leftrightarrow [MASK] \leftrightarrow sat \leftrightarrow on \leftrightarrow the \leftrightarrow mat
```

It uses both left and right context at the same time.

9 ELMo vs. GPT vs. BERT

Model	Context Type	Pretraining Mask	Used For	Limitations
ELMo	LTR + RTL Concat	LM (No Mask)	Feature Extraction	Shallow fusion, no fine- tuning
GPT	LTR Only	LM (Next Word)	Task-specific Fine- tuning	Can't use right context
BERT	Deep Bidirectional	MLM + NSP	Task-specific Fine- tuning	Higher training cost, slower inference

Why BERT Wins:

BERT was the first to use deep two-way context and support easy fine-tuning — helping it outperform past models on tasks like question answering and sentiment analysis.

10 Conclusion & Key Takeaways

What BERT did.

Introduced deep bidirectional pretraining using Masked LM and Next Sentence Prediction.

Impact.

- Achieved SOTA on 11 NLP Tasks.
- Outperformed humans on some benchmarks (e.g. SQuAD)

Legacy.

Inspired successors like Roberta, Albert, Distilbert, and T5.

Key Insight.

Pretraining on full context + minimal fine-tuning = strong general NLP performance