ECE 35 Midterm1 (Spring 2023)

Name_____

(4 problems, 10 pts each)

1. For the circuit below, calculate the power supplied or absorbed (specify one) by each of the elements.

Solution:

Assume current i in the 25 Ω resistor, apply KCL to the supernode on top:

$$2 + 6 = i_a + i \rightarrow i = 8 - i_a$$

Apply KVL to the middle loop,

10
$$i_a + 5 i_a - 25 i = 0$$

→ 10 $i_a + 5 i_a - 25 (8 - i_a) = 0$
→ 40 $i_a - 200 = 0$

$$\rightarrow$$
 i_a = 5 A and i = 3 A.

Voltage drop across 10 Ω resistor is 50 V.

Voltage drop across 25 Ω resistor is 75 V.

Current through the dependent voltage source is 6 - 3 = 3 A, right to left.

Power absorbed by the 10 W resistor is $10 \times i_a^2 = 250 \text{ W}$

Power absorbed by the 25 W resistor is $25 \times i^2 = 225 \text{ W}$

Power supplied by the 2 A source is $2 \times 50 = 100 \text{ W}$

Power supplied by the 6 A source is $6 \times 75 = 450 \text{ W}$

Power absorbed by the dependent source is $3 \times 5 i_a = 75 W$

Check: Power supplied = 100 + 450 = 550 W

Power absorbed = 250 + 225 + 75 = 550 W.

2. Find v_1 , v_2 , v_3 , i_1 , and i_2 . (Include signs and units.)

Solution:

$$i = 15/(8 + 12 + 6 + 4) = 0.5 A.$$

Voltage division: $v_1 = -8 \times i \times 30/(30 + 10) = -3 \text{ V}$.

$$v_2 = 6 \times i = 3 \text{ V}.$$

$$v_3 = 6 \times i \times 6/(6 + 3 + 3) = 1.5 \text{ V}.$$

Current division: $i_1 = -i \times 40/(40 + 10) = -0.4 \text{ A}.$

$$I_2 = i \times 20/(20 + 30) = 0.2 A.$$

3. Find i and the power supplied by the dependent current source.

Solution:

KVL entire loop, $v_a - 5 - 0.5 \times 20 - 0.5 \times 30 = 0$

 \rightarrow v_a = 30 V.

Center current: $0.1 \times v_a = 3 A$.

KCL: $i = 0.1 \times v_a - 0.5 = 2.5 \text{ A}.$

KVL right loop, $5 \times 3 + V = 0$

 \rightarrow V = -15 V.

Power supplied by the dependent current source is

 $0.1 \text{ v}_{a} \times (-\text{ V}) = 45 \text{ W}.$

4. Solve the circuit below for i_1 , i_2 , i_x .

Solution:

$$i_x = i_2 + 1$$

KVL, left loop,
$$12-2 i_1-4 i_x-2 (i_1-i_2)=0$$

KVL, middle loop,
$$2(i_1 - i_2) - 2i_2 - 2i_x = 0$$

Eliminate ix from the above eqs.,

$$4 - 2i_1 - i_2 = 0$$

$$i_1 - 3 i_2 - 1 = 0$$

Solve
$$i_1 = 13/7 \text{ A}$$

$$i_2 = 2/7 A$$

$$i_x = 9/7 A$$
.