$$P 30.$$
 $D_4 = \langle r, s | r^4 = s^2 = (rs)^2 = 4 \rangle$

$$= \{ 1, r, r^2, r^3, s, rs, r^2s, r^2s \}$$

$$= \{ 1, r, r^2, r^3, s, rs, r^2s, r^2s \}$$

$$= \{ 1, r, r^2, r^3, s, rs, r^2s, r^2s \}$$

$$= \{ 1, r, r^2, r^3, s, rs, r^2s, r^2s \}$$

$$= \{ 1, r, r^2, r^3, s, rs, r^2s, r^2s \}$$

$$= \{ 1, r, r^2, r^3, s, rs, r^2s, r^2s \}$$

$$= \{ 1, r, r^2, r^3, s, rs, r^2s, r^2s \}$$

$$= \{ 1, r, r^2, r^3, s, rs, r^2s, r^2s \}$$

$$= \{ 1, r, r^2, r^3, s, rs, r^2s, r^2s \}$$

$$= \{ 1, r, r^2, r^3, s, rs, r^2s, r^2s \}$$

$$= \{ 1, r, r^2, r^3, s, rs, r^2s, r^2s \}$$

$$= \{ 1, r, r^2, r^3, s, rs, r^2s, r^2s \}$$

$$= \{ 1, r, r^2, r^3, s, rs, r^2s, r^2s \}$$

$$= \{ 1, r, r^2, r^3, s, rs, r^2s, r^2s \}$$

$$= \{ 1, r, r^2, r^3, s, rs, r^2s, r^2s \}$$

$$= \{ 1, r, r^2, r^3, s, rs, r^2s, r^2s \}$$

 $C_1 = 1$; $C_2 = r + r^3$; $C_3 = r^2$; $C_4 = g + r^2g$; $C_5 = rg + r^3g$

(3) Lik = 7 Cij yi

$$L = \begin{pmatrix} y' & y^2 & y^3 & y^4 & y^5 \\ 2y^2 & y'+y^2 & 2y^2 & 2y^5 & 2y^6 \\ y^2 & y^2 & y' & y' & y' & y^5 \\ 2y^4 & 2y^5 & 2y^4 & y'+y^3 & 2y^2 \\ 2y^5 & 2y^6 & 2y^5 & 2y^1 & y'+y^3 \end{pmatrix}$$

$$\lambda_{a} = y' - y^{3} \qquad m_{1} = 1$$

$$\lambda_{b} = y' + 2y^{2} + y^{3} - 2y' - 2y^{5} \qquad m_{2} = 2$$

$$\lambda_{c} = y' - 2y^{2} + y^{3} + 2y' - 2y^{5} \qquad m_{3} = 1$$

$$\lambda_{d} = y' - 2y^{2} + y^{3} - 2y' + 2y^{5} \qquad m_{5} = 2$$

$$\lambda_{e} = y' + 2y^{2} + y^{3} + 2y' + 2y^{5}$$

$$\lambda_{\mu} = \frac{1}{n_{\mu}} \sum_{i=1}^{n} m_{i} x_{\mu}(E_{G}) y_{i} = 0$$

$$\chi_{a} = n_{a} (1, 0, -1, 0)$$

$$\chi_{b} = n_{b} (1, 1, 1, -1, -1)$$

$$\chi_{c} = n_{c} (1, -1, 1, 1, -1, 1)$$

$$\chi_{d} = n_{d} (1, -1, 1, 1, 1)$$

$$\chi_{e} = n_{e} (1, 1, 1, 1, 1)$$

$$n_{\mu} = \left[\frac{(a_{i})}{\sum_{i=1}^{n} m_{i}} \frac{x_{\mu}(E_{G})}{n_{\mu}} \right]^{2} \xrightarrow{2} n_{a} = 2$$

$$n_{b} = n_{c} = n_{d} = n_{e} = 1$$

identify
$$TrJ = C_40$$
, $Tr^2J = C_2(b)$, $TsJ = C_2'$, $TrsJ = C_2''$

We recover the character table,

D ₄	Е	2C ₄ (z)	C ₂ (z)	2C'2	2C"2	linear functions, rotations	quadratic functions	cubic functions		
A_1	+1	+1	+1	+1	+1	-	$x^{2}+y^{2}, z^{2}$	=		
A ₂	+1	+1	+1	-1	-1	z, R _z	-	z^3 , $z(x^2+y^2)$		
В	+1	-1	+1	+1	-1	-	x ² -y ²	xyz		
В2	+1	-1	+1	-1	+1	-	xy	$z(x^2-y^2)$		
Е	+2	0	-2	0	0	$(x, y) (R_x, R_y)$	(xz, yz)	$(xz^2, yz^2) (xy^2, x^2y) (x^3, y^3)$		

http://symmetry.jacobs-university.de/cgi-bin/group.cgi?group=304&option=4