· 药理与临床 ·

基干网络药理学的栀子豉汤抗抑郁作用机制研究

吴 丹^{1,2}, 高 耀^{1,2}, 向 欢³, 邢 婕^{1,2}, 秦雪梅^{1,2}, 田俊生^{1,2*}

- 1. 山西大学 中医药现代研究中心, 山西 太原 030006
- 2. 地产中药功效物质研究与利用山西省重点实验室, 山西 太原 030006
- 3. 山西大学体育学院, 山西 太原 030006

摘 要:目的 建立活性成分-作用靶点、蛋白相互作用、靶点相应的生物功能和通路网络,探讨栀子豉汤的抗抑郁作用机制。方法 通过中药系统药理学技术平台(TCMSP)数据库并结合文献挖掘和整理获取栀子豉汤的主要活性成分。依据反向药效团匹配(PharmMapper)方法预测栀子豉汤活性成分的作用靶点。采用 Cytoscape 软件构建栀子豉汤活性成分-作用靶点网络。通过 String 数据库结合 Cytoscape 软件绘制蛋白相互作用网络,并用 Systems dock Web Site 对其进行验证。通过 ClueGO 结合 CluePedia 插件对其靶点生物功能及涉及的通路进行分析。结果 栀子豉汤中筛选得到 16 个活性成分,涉及 43 个靶点,网络分析结果表明靶点主要参与细胞、组织、器官、代谢、免疫和对应激的应答等过程,通过调节瘦素、雌激素、丝裂原活化蛋白激酶级联(MAPK cascade)、脑源性神经营养因子-酪氨酸激酶受体(BDNF-TrkB)、5-羟色胺受体(5-HT receptor)、白细胞介素(IL)等信号通路来发挥抗抑郁作用。结论 体现了中药多成分-多靶点-多通路的特点,为进一步开展栀子豉汤的抗抑郁作用机制研究提供了新思路和新方法。

关键词:网络药理学;栀子豉汤;分子对接;抑郁症;作用靶点

中图分类号: R285.5 文献标志码: A 文章编号: 0253 - 2670(2018)07 - 1594 - 09

DOI: 10.7501/j.issn.0253-2670.2018.07.017

Study on mechanism of antidepression of Zhizi Chi Decoction based on network pharmacology

WU Dan^{1,2}, GAO Yao^{1,2}, XIANG Huan³, XING Jie^{1,2}, QIN Xue-mei^{1,2}, TIAN Jun-sheng^{1,2}

- 1. Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- 2. Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan 030006, China
- 3. School of Physical Education, Shanxi University, Taiyuan 030006, China

Abstract: Objective To explore the mechanism of antidepressant of Zhizi Chi Decoction by establishing active ingredients-targets, proteins interactions, biological functions and pathways of targets networks. Methods Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database and Analysis Platform database combined with literatures mining were used to obtain the main active ingredients of Zhizi Chi Decoction. The targets of active ingredients of Zhizi Chi Decoction were predicted based on the PharmMapper method. Cytoscape software was applied to construct the active ingredients-targets network. Through the String database combined with Cytoscape software to draw the proteins interactions network, and use the Systems dock Web Site to verify part of its targets. The biological functions and related pathways were analyzed by ClueGO and CluePedia plugin. Results A total of 16 active ingredients and 43 targets were screened in Zhizi Chi Decoction. The results of network analysis showed that the targets involved in cells, tissues, organs, metabolism, immune, response to stress and other processes, and played an antidepressant role by regulating leptin, estrogen, MAPK cascade, BDNF-TrkB, 5-HT receptor and IL signal pathways. Conclusion This study reflects the characteristics of multi-components, multi-targets, and multi-pathways of traditional Chinese medicine, which provides new ideas and clues for further research on the antidepressant mechanism of Zhizi Chi Decoction.

Key words: network pharmacology; Zhizi Chi Decoction; molecular docking; depression; target

收稿日期:2017-12-01

基金项目:中国博士后科学基金面上资助项目(2016M602414);山西省科技重点研发计划(201603D3113013,201603D321077,201701D121137); 地产中药功效物质研究与利用山西省重点实验室项目(201605D111004);山西省科技创新重点团队项目(201605D131045-18)

作者简介:吴 丹(1992—),女,硕士生,研究方向为中药药理。Tel: 18406593071 E-mail: 390481709@qq.com

^{*}通信作者 田俊生,男,博士,副教授,硕士生导师,研究方向为中药药理与新药研发。Tel: (0351)7019297 E-mail: jstian@sxu.edu.cn

抑郁症作为一种常见的情感精神障碍疾病,严重危害人类身心健康,给社会和家庭带来沉重的负担^[1]。世界卫生组织预言 2020 年抑郁症将会成为第二大临床慢性疾病^[2]。目前,抑郁症的治疗仍以药物治疗为主,多数化学抗抑郁药(如三环抗抑郁药、单胺氧化酶抑制剂等)不良反应多、起效慢、易复发,不能满足临床患者需求,而一些中药或中药复方在预防和治疗抑郁症主症和兼症方面表现出良好的效果,不良反应较少发生,逐渐成为研究的重点和热点^[3-4]。

栀子豉汤出自汉代张仲景的《伤寒杂病论》,由 栀子和淡豆豉 2 味药组成。针对栀子豉汤的抗抑郁 作用已有文献报道。高芳[5]研究结果表明栀子豉汤 能够使抑郁症大鼠体质量增加,同时对血中多巴胺、 5-羟色胺、三酰甘油等物质的量起到调节作用,证 明了栀子豉汤具有一定的抗抑郁作用。蔡絜如[6]对 栀子豉汤治疗轻度抑郁症进行了临床观察,结果显 示栀子豉汤治疗轻度抑郁症的总有效率达 94.05%。 彭国茳等[7]对栀子中京尼平的抗抑郁机制进行了 ¹H-NMR 代谢组学研究 ,结果表明京尼平(50 mg/kg) 表现出较好的抗抑郁作用,可能是通过调节甘氨酸 和 N-乙酰天门冬氨酸,降低谷氨酸、肌醇、乳酸和 丙氨酸等代谢产物水平来增强海马组织中神经元的 活性来发挥抗抑郁作用。然而,对栀子豉汤的抗抑 郁作用仍以单味药栀子中的一种或几种化合物的研 究为主,而对淡豆豉及其主要活性成分的抗抑郁作 用以及栀子豉汤的抗抑郁作用机制的研究文献报道 相对较少。因此需要借助新的方法,整体系统地探 讨其作用机制,而网络药理学为此提供了契机。

网络药理学是在网络生物学与多向药理学的基础上提出的一种新思想、新策略^[8],主要包括活性成分的筛选、作用靶点的获取、网络构建与分析 3 个部分。网络药理学通过构建活性成分-靶点、靶点-靶点、成分-靶点-疾病、成分-靶点-通路等网络来阐明药物的作用机制,非常适合于多成分、多靶点的中药复方作用机制的研究^[9-10]。

高耀等[11-12]采用 PharmMapper 方法研究了逍遥散和交泰丸抗抑郁主要活性成分的作用靶点,探讨其多成分-多靶点-多通路的作用机制。赵蕾等[13]通过 ClueGO 插件对百合地黄汤抗抑郁靶点的基因功能及代谢通路进行分析,揭示了百合地黄汤干预心理亚健康的作用机制。Trindade等[14]采用 String、Cytoscape、ClueGO结合 CluePedia等生物信息工具,

探讨了 2 种心血管疾病-主动脉瓣狭窄 (AVS)和冠状动脉疾病 (CAD)的病理生理学和潜在生物标志物。Zeng 等[15]利用 String 数据库构建蛋白质相互作用网络并利用 Cytoscape MCODE 插件对阳和汤治疗人表皮生长因子受体 2 (HER2)阳性乳腺癌的药理作用机制进行了探讨。综上表明,PharmMapper 方法适合中药复方活性成分作用靶点的获取,ClueGO插件适合基因功能和相关通路分析,ClueGO结合CluePedia 插件可以得到更佳的输出效果,String数据库适合用于分析蛋白相互作用。采用上述方法来研究栀子豉汤的抗抑郁作用机制具有可行性。

本研究借助中药系统药理学技术平台(TCMSP)结合文献挖掘的方法筛选出栀子豉汤中的主要活性成分,通过构建活性成分-靶点、蛋白相互作用、靶点涉及的生物功能和通路网络来探讨栀子豉汤的抗抑郁作用机制。

1 材料和方法

1.1 软件与数据库

TCMSP (http://lsp.nwu.edu.cn/, Version 2.3), PubChem (https://pubchem.ncbi.nlm.nih.gov/)、ChemicalBook (http://www.chemicalbook.com/)、PharmMapper (http://59.78.96.61/pharmmapper/, Update in 2016-12-28), UniProt 数据库中 UniProtKB搜索功能(http://www.uniprot.org/, update in 2017-6-22), GeneCards 数据库(http://www.genecards.org/, Version 4.5.0), Cytoscape 软件(Version 3.4.0), String数据库(https://string-db.org/, Version 10.5), Systems dock Web Site(http://systemsdock.unit.oist.jp, Version 2.0), Chembiodraw Ultra 软件(Version 12.0),

1.2 化学成分的获取与活性成分的筛选

通过 TCMSP 数据库获取栀子豉汤 2 味药的化学成分,再结合文献挖掘与整理,依据化合物在单味药中的含量、研究热度和相关生物学功能等标准筛选出已报道的栀子豉汤的主要活性成分。

1.3 作用靶点的获取

所得的活性成分在 Chembiodraw Ultra 软件中绘制出各自的结构图,并以 SDFile (*.sdf)格式存储。并利用 PubChem、ChemicalBook 和 TCMSP 平台对其分子结构进一步确证。登陆 PharmMapper 服务器,上传上述栀子和淡豆豉活性成分的 SDFile (*.sdf)格式文件,获得虚拟筛选结果。利用 UniProt数据库中 UniProtKB 搜索功能,输入蛋白名称,限定物种为人,限定输出前 300 个靶点,将靶点校正

为官方名称 (official symbol)。

1.4 抑郁症相关靶点的筛选

通过在 GeneCards 数据库中输入关键词 depression、depressive、depressed 和 antidepressant 搜索已报道的和抑郁症相关的基因,去除重复基因 和假阳性基因,与上述 PharmMapper 服务器中返回 的靶点进行匹配,得到栀子豉汤活性成分的抗抑郁 潜在作用靶点。

1.5 网络构建与分析

将获得的栀子豉汤的活性成分和作用靶点信息 导入 Cytoscape 软件 构建活性成分-作用靶点网络。

将栀子豉汤的作用靶点导入 String 数据库,利 用 Multiple proteins 工具,限定物种为人,获取蛋白 相互作用,并保存其 TSV 格式文件。将文件中的 node1、node2 和 combined score 信息导入 Cytoscape 软件绘制蛋白相互作用网络,并对网络进行分析。 在 Cytoscape 的 generate style from statistics 工具中 将靶点大小和颜色设置用于反映 degree 的大小,边 的粗细设置用于反映 combine score 的大小,从而获 得最终的蛋白相互作用网络。

1.6 分子对接验证

Systems dock Web Site 是一个基于网络药理学 预测和分析的网络服务器,它应用高精度对接模拟 和分子通路图,全面表征配体选择性,并说明配体 如何作用于复杂的分子网络。它具有 DocK-IN 评分 的分子对接功能,以评估蛋白质-配体结合潜力[16]。 用 systems dock Web Site 对相互作用网络中 degree 值靠前的6个靶点与栀子豉汤的16个成分进行分子 对接验证。

1.7 生物功能和通路分析

使用 Cytoscape 软件中的 ClueGO 和 CluePedia 插件对栀子豉汤活性成分对应靶点的生物功能和通 路进行分析。先使用 ClueGO 插件对靶点的生物功能 和通路进行分析, 然后用 CluePedia 插件对结果进行 丰富,使其显示生物过程和通路相关的靶点信息。

2 结果

2.1 栀子豉汤活性成分的筛选

TCMSP 数据库中分别得到栀子化学成分 98 个、淡豆豉化学成分15个。经大量的文献挖掘与整 理,根据在单味药中的含量、生物学功能、研究热 度等筛选出栀子豉汤具有生物活性的成分 16 个。除 了绿原酸、大豆皂苷 I、大豆皂苷 II、大豆皂苷 III 和大豆皂苷 Ab 外,其余成分 TCMSP 数据库均有 收录。其中栀子活性成分7个,分别为京尼平苷、 京尼平、京尼平苷酸、西红花酸、西红花苷 I、熊 果酸和绿原酸。淡豆豉活性成分9个,分别为大豆 苷元、染料木苷、染料木黄酮、黄豆黄素、大豆苷、 大豆皂苷 I、大豆皂苷 II、大豆皂苷 III 和大豆皂苷 Ab。见表 1。

表 1 栀子豉汤中的活性成分

Table 1 Main active ingredients from Zhizi Chi Decoction

中药	活性成分	分子式	PubChem CID
栀子	西红花苷 I (crocin I)	C44H64O24	5 281 233
	熊果酸 (ursolic acid)	$C_{30}H_{48}O_3$	64 945
	西红花酸 (crocetin)	$C_{20}H_{24}O_4$	5 281 232
	京尼平苷 (geniposide)	$C_{17}H_{24}O_{10} \\$	107 848
	京尼平苷酸 (geniposidic acid)	$C_{16}H_{22}O_{10}$	443 354
	绿原酸 (chlorogenic acid)	$C_{16}H_{18}O_{9}$	1 794 427
	京尼平 (genipin)		442 424
淡豆豉	大豆皂苷 II (soyasaponin II)	C47H76O17	443 614
	大豆皂苷 Ab(soyasaponin Ab)	$C_{67}H_{104}O_{33}$	102 004 833
	大豆皂苷 III(soyasaponin III)	$C_{42}H_{68}O_{14}$	21 607 811
	大豆苷 (daidzin)	$C_{21}H_{20}O_{9}$	107 971
	大豆皂苷 I (soyasaponin I)	$C_{48}H_{78}O_{18}$	122 097
	染料木苷 (genistin)	$C_{21}H_{20}O_{10} \\$	5 281 377
	黄豆黄素 (glycitein)	$C_{16}H_{12}O_5$	5 317 750
	染料木黄酮 (genistein)	$C_{15}H_{10}O_5$	5 280 961
	大豆苷元 (daidzein)	C ₁₅ H ₁₀ O ₄	5 281 708

2.2 靶点预测

将栀子豉汤的 16 个活性成分在 PharmMapper 中返回的前 300 个潜在作用靶点根据匹配度(fit score) 由高到低进行排序,去除重复后得到 354 个 蛋白靶点。 通过向 Uniprot 数据库的 UniProtKB 搜索 功能中输入蛋白靶点的名称,限定物种为人,共对 应得到 344 个基因靶点。通过与 GeneCards 中与抑 郁症相关的基因进行比对,筛选出43个可能与栀子 豉汤治疗抑郁症相关联的潜在作用靶点,见表2、3。

2.3 活性成分-靶点网络构建与分析

图 1 为栀子豉汤活性成分-作用靶点网络 ,其中共 有 59 个节点 ,304 个边。节点代表活性成分或作用靶 点(蓝色椭圆节点表示作用靶点,紫色和绿色矩形节 点分别代表栀子和淡豆豉的活性成分),边代表活性 成分和作用靶点间的相互关联。可以看出相同的靶点 可对应于不同的活性成分,体现了栀子豉汤多成分、 多靶点的特点。

表 2 栀子豉汤活性成分潜在靶点

Table 2 Information of potential targets from main active ingredients of Zhizi Chi Decoction

编号	Uniprot ID	基因靶点	蛋白靶点	频次
1	P03372	ESR1	estrogen receptor	119
2	Q16539	MAPK14	mitogen-activated protein kinase 14	74
3	P01112	HRAS	GTPase HRas	56
4	P00734	F2	prothrombin	56
5	P04035	HMGCR	3-hydroxy-3-methylglutaryl-coenzyme A reductase	48
6	P49841	GSK3B	glycogen synthase kinase-3 beta	36
7	P29218, O14732	IMPA1、IMPA2	inositol monophosphatase	22
8	P17612	PRKACA	cAMP-dependent protein kinase catalytic subunit alpha	22
9	P60568	IL-2	interleukin-2	20
10	P35228	NOS2	nitric oxide synthase, inducible	18
11	P06213	INSR	insulin receptor	17
12	Q07343	PDE4B	cAMP-specific 3,5-cyclic phosphodiesterase 4B	16
13	P04150	NR3C1	glucocorticoid receptor	14
14	P00439	PAH	phenylalanine-4-hydroxylase	14
15	P52732	KIF11	kinesin-like protein KIF11	13
16	P27338	MAOB	amine oxidase [flavin-containing] B	12
17	Q9BY41	HDAC8	histone deacetylase 8	12
18	P02753	RBP4	retinol-binding protein 4	11
19	P31749	AKT1	RAC-alpha serine/threonine-protein kinase	11
20	P48449	LSS	lanosterol synthase	9
21	P13501	CCL5	C-C motif chemokine 5	9
22	P61812	TGFB2	transforming growth factor beta-2	9
23	P15056	BRAF	B-raf proto-oncogene serine/threonine-protein kinase	8
24	P35270	SPR	sepiapterin reductase	8
25	P27487	DPP4	dipeptidyl peptidase 4	8
26	Q02750	MAP2K1	dual specificity mitogen-activated protein kinase kinase 1	7
27	P11142	HSPA8	heat shock cognate 71 kDa protein	7
28	P04062	GBA	glucosylceramidase	6
29	P05019	IGF1	insulin-like growth factor IA	6
30	P17752	TPH1	tryptophan 5-hydroxylase 1	6
31	P27986	PIK3R1	phosphatidylinositol 3-kinase regulatory subunit alpha	5
32	Q06124	PTPN11	tyrosine-protein phosphatase non-receptor type 11	5
33	P04049	RAF1	RAF proto-oncogene serine/threonine-protein kinase	4
34	P28482	MAPK1	mitogen-activated protein kinase 1	4
35	P08069	IGF1R	insulin-like growth factor 1 receptor	4
36	Q15303	ERBB4	receptor tyrosine-protein kinase erbB-4	3
37	P12821	ACE	angiotensin-converting enzyme	2
38	P04179	SOD2	superoxide dismutase [Mn], mitochondrial	2
39	P29474	NOS3	nitric oxide synthase, endothelial	1
40	Q04609	FOLH1	glutamate carboxypeptidase 2	1
41	P09601	HMOX1	heme oxygenase 1	1
42	P00326	ADH1C	alcohol dehydrogenase 1C	1
43	P15289	ARSA	arylsulfatase A	1

表 3 栀子豉汤主要活性成分潜在靶点数目

Table 3 Potential target numbers from main active ingredients of Zhizi Chi Decoction

编号	活性成分	靶点数目		
1	西红花苷 I	27		
2	大豆皂苷 II	25		
3	大豆皂苷 Ab	24		
4	熊果酸	23		
5	大豆皂苷 III	21		
6	西红花酸	20		
7	大豆苷	20		
8	大豆皂苷 I	20		
9	京尼平苷	18		
10	染料木苷	18		
11	黄豆黄素	16		
12	京尼平苷酸	15		
13	绿原酸	15		
14	染料木黄酮	15		
15	大豆苷元	14		
16	京尼平	13		

图 1 栀子豉汤主要活性成分-靶点网络

Fig. 1 Components-targets network of main active ingredients of Zhizi Chi Decoction

2.4 蛋白相互作用网络构建

将上述栀子豉汤的43个靶点导入String数据库中,限定物种为人,从而获得蛋白相互作用关系(IMPA1、IMPA2、ADH1C未在数据库中找到,还

有一些蛋白与其他蛋白没有相互作用,这些均不在相互作用网络中体现),导入 Cytoscape 软件中构建蛋白相互作用网络,见图 2。图 2 中的节点表示蛋白,边表示蛋白间的相互关联,共涉及 36 个节点,204 条边。用节点的大小和颜色表示 degree 值的大小,节点越大对应的 degree 值越大,颜色由红变蓝对应的 degree 值越大。用边的粗细表示 Combine score 值的大小,边越粗 Combine score 值越大。

图 2 栀子豉汤蛋白相互作用网络

Fig. 2 Proteins interactions network of Zhizi Chi Decoction

2.5 分子对接

对上述相互作用网络中筛选出的 degree 值排名前 6 位的重要靶点(表 4)进行分子对接验证。将其PDB ID 号导入 Systems dock Web Site 与栀子豉汤的 16 个活性成分进行对接,对接结果见表 5。分子对接结果显示,docking score 值大于 7.0 的有 5 个(7.6%),介于 7.0 和 5.0 的有 43 个(65.2%),介于 5.0 和 4.25 的有 12 个(18.2%),小于 4.25 的有 6 个。一般来说,docking score 值大于 4.25 说明分子与靶点有一定的结合活性,大于 5.0 说明分子与靶点有较好的结合活性,大于 7.0 则说明具有强烈的结合活性^[17]。分子对接结果表明,栀子豉汤活性成分与 6 个重要靶点具有较好的结合活性。

2.6 生物功能与通路分析

使用 ClueGO 结合 CluePedia 插件对栀子豉汤活性成分对应的 43 个作用靶点的生物功能和通路进行分析,见图 3。图 3 显示栀子豉汤的作用靶点主要涉及细胞、组织、器官、代谢、免疫、对应激的应答等过程,这反映了抑郁症作为一种复杂的疾病涉及多种生物过程,栀子豉汤可以通过调节这些生物过程来发挥抗抑郁作用。栀子豉汤作用靶点主要路分析见图 4。图 4 显示栀子豉汤的作用靶点主要

表 4 栀子豉汤相互作用重要靶点 (前 6 位)

Table 4 Important interaction targets of Zhizi Chi Decoction (top six)

排序	degree	靶点名称	PDB ID
1	25	AKT1	1UNQ
2	24	MAPK1	3D44
3	21	HRAS	2CE2
4	20	IGF1	1TGR
5	20	MAPK14	2FST
6	19	NOS3	1DOC

涉及瘦素(leptin) 雌激素(estrogen) 丝裂原活 化蛋白激酶级联(MAPK cascade) 脑源性神经营 养因子-酪氨酸激酶受体(BDNF-TrkB) 5-羟色胺 受体(5-HT receptor)、白细胞介素(IL)等信号通路,这表明栀子豉汤作用靶点存在于多个通路,可以通过调节不同的通路来发挥抗抑郁作用。

3 讨论

栀子豉汤由栀子和淡豆豉 2 味药组成。栀子主要成分有环烯醚萜苷、栀子黄素和有机酸,其中京尼平苷、西红花苷、西红花酸、绿原酸和熊果酸含

表 5 栀子豉汤活性成分分子对接结果

Table 5 Molecular docking of of main active ingredients of Zhizi Chi Decoction

靶点	PDB ID	成分	docking scores	靶点	PDB ID	成分	docking scores
AKT1	1UNQ	daidzin	5.273	MAPK14	2FST	geniposide	5.435
IGF1	1TGR	daidzin	5.262	NOS3	1D0C	geniposide	5.371
MAPK1	3D44	daidzin	5.046	HRAS	2CE2	geniposide	5.714
MAPK14	2FST	daidzin	5.376	AKT1	1UNQ	ursolic acid	4.853
NOS3	1D0C	daidzin	5.163	IGF1	1TGR	ursolic acid	4.932
HRAS	2CE2	daidzin	5.582	MAPK1	3D44	ursolic acid	4.842
AKT1	1UNQ	glycitein	2.599	MAPK14	2FST	ursolic acid	4.816
IGF1	1TGR	glycitein	2.562	NOS3	1D0C	ursolic acid	4.886
MAPK1	3D44	glycitein	2.351	HRAS	2CE2	ursolic acid	5.747
MAPK14	2FST	glycitein	3.306	AKT1	1UNQ	geniposidic acid	5.545
NOS3	1D0C	glycitein	2.524	IGF1	1TGR	geniposidic acid	5.556
HRAS	2CE2	glycitein	3.025	MAPK1	3D44	geniposidic acid	5.264
AKT1	1UNQ	chlorogenic acid	5.270	MAPK14	2FST	geniposidic acid	5.446
IGF1	1TGR	chlorogenic acid	5.241	NOS3	1D0C	geniposidic acid	5.333
MAPK1	3D44	chlorogenic acid	5.022	HRAS	2CE2	geniposidic acid	5.699
MAPK14	2FST	chlorogenic acid	5.343	AKT1	1UNQ	genipin	4.913
NOS3	1D0C	chlorogenic acid	5.149	IGF1	1TGR	genipin	4.992
HRAS	2CE2	chlorogenic acid	5.484	MAPK1	3D44	genipin	4.625
AKT1	1UNQ	genistein	5.873	MAPK14	2FST	genipin	4.758
IGF1	1TGR	genistein	7.765	NOS3	1D0C	genipin	4.770
MAPK1	3D44	genistein	6.968	HRAS	2CE2	genipin	5.194
MAPK14	2FST	genistein	6.716	MAPK1	3D44	soyasaponin III	5.000
NOS3	1D0C	genistein	7.574	MAPK14	2FST	soyasaponin III	5.595
HRAS	2CE2	genistein	4.849	HRAS	2CE2	soyasaponin III	7.067
AKT1	1UNQ	daidzein	6.352	AKT1	1UNQ	genistin	5.524
IGF1	1TGR	daidzein	6.440	IGF1	1TGR	genistin	5.564
MAPK1	3D44	daidzein	7.741	MAPK1	3D44	genistin	5.371
MAPK14	2FST	daidzein	6.846	MAPK14	2FST	genistin	5.400
NOS3	1D0C	daidzein	7.814	NOS3	1D0C	genistin	5.358
HRAS	2CE2	daidzein	4.878	HRAS	2CE2	genistin	5.758
AKT1	1UNQ	geniposide	5.579	MAPK14	2FST	soyasaponin I	6.362
IGF1	1TGR	geniposide	5.561	NOS3	1D0C	soyasaponin I	5.110
MAPK1	3D44	geniposide	5.316	HRAS	2CE2	soyasaponin I	6.844

图 3 栀子豉汤主要活性成分潜在抗抑郁靶点的生物功能分析

Fig. 3 Biological function analysis of potential antidepressant targets from main active ingredients of Zhizi Chi Decoction

图 4 栀子豉汤主要活性成分抗抑郁靶点的通路分析

Fig. 4 Pathway analysis of potential antidepressant targets from main active ingredients of Zhizi Chi Decoction

量较高^[18-21]。研究表明,京尼平苷、京尼平^[22]和西红花苷-I^[23]具有一定的抗抑郁作用;西红花酸具有抗肿瘤和神经保护等作用^[24-28];京尼平苷酸是京尼平苷的衍生物,具有抗炎和抗氧化等作用^[29-30];绿原酸为多种中药中的活性成分之一,具有抗炎、抗病毒、抗氧化、增强免疫力等作用^[31];熊果酸在许多人类疾病中均发挥着作用,具有抗炎、抗氧化、抗癌、抗病毒等作用^[32]。淡豆豉中大豆异黄酮与大豆皂苷成分逐渐成为近年来的研究热点。目前对大豆异黄酮类成分研究较多的是大豆苷、染料木苷、

大豆苷元和染料木黄酮,但也有研究表明游离苷元 (大豆苷元和染料木黄酮)才是大豆异黄酮主要活性 组分^[33]。研究表明大豆皂苷类成分具有溶血、降低 胆固醇和三酰甘油、抑制肿瘤细胞生长等作用^[34]。但大豆皂苷类成分复杂,对大豆总皂苷生物功能报 道的居多,而对单个大豆皂苷成分则报道较少,其中以大豆皂苷 I 和大豆皂苷 II、大豆皂苷 Ab、大豆皂苷 III 报道的相对较多。这表明栀子豉汤活性成分 筛选具有一定的依据。

栀子豉汤活性成分-作用靶点网络(图1)结果

与中药多成分-多靶点的特点一致。蛋白相互作用网络(图 2)结果显示栀子豉汤作用靶点并非单独起作用,靶点间存在着相互作用关系,为一个互作的复杂网络。分子对接结果(表 5)可知重要靶点与活性成分的结合能力较好,为之后网络分析奠定了好的基础。作用靶点的生物功能分析结果(图 3)反映了抑郁症作为一种复杂的疾病涉及体内多种生物过程,这与相关文献报道一致^[35-37]。

栀子豉汤作用靶点的通路分析结果显示, MAPK 级联途径为胞内主要的信号转导系统,主要 包括 Ras-ERK、p38MAPK 等信号通路,该级联途 径与脑的发育、神经细胞膜表面受体、神经递质作 用和神经细胞凋亡等过程有关[38]。脑源性神经营养 因子(BDNF)为一种重要的神经营养因子,在神 经元的存活和功能维持上发挥着重要的作用。 BDNF 通过与酪氨酸激酶受体 (TrkB)结合,促使 CREB 磷酸化,从而促进相关蛋白(如 BDNF 基因) 的转录来发挥作用。5-HT 为一种重要的单胺类神经 递质,其受体在抑郁症的形成中起着重要的作用, 为单胺特异受体药物研发的热点和重点。IL 为重要 的细胞因子,在抑郁症炎症反应中发挥作用。瘦素 为一种脂肪细胞分泌的蛋白类激素,可能与脑内结 构的改变、神经递质功能、HPA 轴的功能有关^[39]。 研究表明,血浆、中枢瘦素水平均与抑郁症状相关, 局部中枢注射瘦素可以起到抗抑郁效果[40-41]。 栀子 豉汤可能通过影响血浆瘦素水平发挥作用,也可能 通过影响瘦素在中枢的功能发挥作用。

雌激素对抑郁症的发生起着重要的作用。研究表明,血清、海马雌激素/雌激素受体水平与抑郁症状相关^[42-43],雌激素可以通过影响脑中单胺类神经递质发挥抗抑郁作用^[44]。栀子豉汤可能通过影响体内雌激素水平发挥作用,也可能通过影响雌激素在脑中的功能发挥作用。提示栀子豉汤发挥作用可能是脑内直接作用与脑外间接作用共同作用的结果。

综上所述,筛选出的栀子豉汤 16 个活性成分具有一定的研究意义与依据。栀子豉汤的抗抑郁作用涉及细胞、组织、器官、代谢、免疫、对应激的应答等多个过程;与神经营养因子、细胞因子、神经递质、激素等物质有关,通过调节瘦素、雌激素、MAPK 级联、BDNF-TrkB、5-HT 受体、IL 等信号通路来发挥抗抑郁作用。文献报道与分子对接结果表明网络药理学方法预测具有一定的准确性。本研究结果充分体现了栀子豉汤多成分-多靶点-多通路

的抗抑郁作用特点,为进一步开展栀子豉汤抗抑郁作用机制的研究提供了新思路。此外,本课题组对栀子豉汤的活性成分及抗抑郁作用机制的实验研究也正在进行中。

参考文献

- [1] Ferrari A J, Stockings E, Khoo J P, *et al.* The prevalence and burden of bipolar disorder: Findings from the *Global Burden* of disease study 2013 [J]. *Bipol Disord*, 2016, 18(5): 440-450.
- [2] Nowak G, Szewczyk B, Wieronska J M, et al. Antidepressant-like effects of acute and chronic treatment with zinc in forced swim test and olfactory bulbectomy model in rats [J]. Brain Res Bull, 2003, 61(2): 159-164.
- [3] 赵思俊, 赵晓喆, 向 欢, 等. 基于代谢通路调控的沙 棘籽油抗抑郁作用机制研究 [J]. 中草药, 2017, 48(13): 2682-2690.
- [4] 李 肖, 宫文霞, 周玉枝, 等. 逍遥散中抗抑郁有效成分及其作用机制研究进展 [J]. 中草药, 2015, 46(20): 3109-3116.
- [5] 高 芳. 栀子豉汤治疗抑郁症的实验研究 [D]. 福州: 福建中医学院, 2007.
- [6] 蔡絜如. 栀子豉汤治疗轻度忧郁症之探讨与临床观察 [D]. 北京: 北京中医药大学, 2013.
- [7] 彭国茳, 史碧云, 田俊生, 等. 京尼平抗抑郁作用的 ¹H-NMR 代谢组学机制研究 [J]. 药学学报, 2014, 49(2): 209-216.
- [8] Hopkins A L. Network pharmacology: The next paradigm in drug discovery [J]. *Nat Chem Biol*, 2008, 4(11): 682-690.
- [9] 李泮霖, 苏薇薇. 网络药理学在中药研究中的最新应用进展 [J]. 中草药, 2016, 47(16): 2938-2942.
- [10] Liu Y F, Ai N, Keys A, et al. Network pharmacology bridges traditional application and modern development of traditional Chinese medicine [J]. Chin Herb Med, 2015, 7(1): 18-26.
- [11] 高 耀, 高 丽, 高晓霞, 等. 基于网络药理学的逍遥 散抗抑郁活性成分作用靶点研究 [J]. 药学学报, 2015, 50(12): 1589-1595.
- [12] 张 潇, 高 耀, 向 欢, 等. 基于网络药理学的交泰 丸治疗抑郁症作用机制研究 [J]. 中草药, 2017, 48(8): 1584-1590.
- [13] 赵 蕾, 武嫣斐, 高 耀, 等. 基于网络药理学的百合 地黄汤干预心理亚健康作用机制研究 [J]. 药学学报, 2017, 52(1): 99-105.
- [14] Trindade F, Ferreira R, Magalhães B, *et al.* How to use and integrate bioinformatics tools to compare proteomic data from distinct conditions? A tutorial using the

- pathological similarities between Aortic Valve Stenosis and Coronary Artery Disease as a case-study [J]. *J Proteomics*, 2017, doi:org/10.1016/j.jprot.2017.03.015.
- [15] Zeng L, Yang K. Exploring the pharmacological mechanism of Yanghe Decoction on HER2-positive breast cancer by a network pharmacology approach [J]. *J Ethnopharmacol*, 2017, 199(6): 68-85.
- [16] Hsin K Y, Matsuoka Y, Asai Y, et al. SystemsDock: A web server for network pharmacology-based prediction and analysis [J]. Nucleic Acids Res, 2016, 44(W1): W507-W513.
- [17] Hsin K Y, Ghosh S, Kitano H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology [J]. PLoS One, 2013, 8(12): e83922.
- [18] 王 亭. 中药栀子有效成分及药理作用的研究进展 [J]. 中国药师, 2015, 18(10): 1782-1784.
- [19] 丁 艳. 栀子有效成分的分离、制备及测定方法研究 [D]. 合肥: 安徽师范大学, 2006.
- [20] 黎潭辉, 罗淑芳, 庄义修. HPLC 法测定江西栀子中绿原酸的含量 [J]. 中医临床研究, 2012, 4(7): 50-51.
- [21] 廖夫生, 熊 魏. 栀子中熊果酸提取分离及纯化研究 [J]. 食品研究与开发, 2011, 32(10): 5-8.
- [22] 崔元璐. 从栀子豉汤中寻找抗抑郁先导化合物的研究 [A] // 2010 施慧达杯第十届全国青年药学工作者最新科研成果交流会论文集 [C]. 北京: 中国药学会, 2010.
- [23] Hosseinzadeh H, Jahanian Z. Effect of *Crocus sativus* L. (saffron) stigma and its constituents, crocin and safranal, on morphine withdrawal syndrome in mice [J]. *Phytother Res*, 2010, 24(5): 726-730.
- [24] 杨翼风, 石 磊, 王永信, 等. 栀子提取物对大鼠阻力动脉的松弛作用 [J]. 中成药, 1999, 21(9): 31-33.
- [25] 宗颂梅. 藏红花的最新研究进展 [J]. 国外医学: 中医中药分册, 1997, 19(5): 20-21.
- [26] Escribano J, Alonso G L. Crocin and crocetin picrocrocin from saffron inhibit the growth of human cancer cell in vitro [J]. J Cancer Letter, 1996, 100(12): 1913-1918.
- [27] Wang C J, Cheng T C, Liu J Y, *et al.* Inhibition of protein kinase C and proto-oncogene expression by crocetin in NIH/3 T3 cells [J]. *Mol Carcinog*, 1996, 17(4): 235-240.
- [28] 张新庄. 基于网络药理学研究思路探索热毒宁注射液治疗 URTI 的作用机制 [D]. 南京: 南京中医药大学, 2013.

- [29] 傅春升, 娄红祥, 张学顺. 栀子的化学成分与药理作用 [J]. 国外医药: 植物药分册, 2004, 19(4): 152-156.
- [30] 金 鑫, 孙 静, 谢文利, 等. 京尼平苷酸对佐剂性关节炎大鼠抗炎作用及滑膜细胞凋亡机制究 [J]. 中国中药杂志, 2009, 34(23): 3082-3086.
- [31] 高瑞峰. 绿原酸抗乳腺炎作用及机制研究 [D]. 长春: 吉林大学, 2014.
- [32] Tsai S J, Yin M C. Antioxidative and anti-inflammatory protection of oleanolic acid and ursolic acid in pc12 cells [J]. *J Food Sci*, 2008, 73(7): 174-178.
- [33] 李 琛. 淡豆豉提取物对 2 型糖尿病大鼠胰岛素抵抗的改善作用及其机制研究 [D]. 石家庄: 河北医科大学, 2010.
- [34] 曲丽萍. 淡豆豉异黄酮提取物的分离、分析及其体内代谢研究 [D]. 上海: 第二军医大学, 2006.
- [35] 董 栋, 王 蕊. 抑郁症相关受体、细胞因子及信号通路的研究进展 [J]. 神经药理学报, 2012, 2(5): 24-30.
- [36] 王 睿, 黄树明. 抑郁症发病机制研究进展 [J]. 医学研究生学报, 2014, 27(12): 1332-1336.
- [37] 杨 敏, 康洪钧, 戴晓畅. 抑郁症的发病机制与治疗进展 [J]. 四川生理科学志, 2015, 37(3): 146-150.
- [38] 田兆方, 李述庭. MAPK 级联途径在脑发育与脑损伤修复中的作用 [J]. 国外医学: 生理、病理科学与临床分册, 2000, 20(3): 184-186.
- [39] 张 勇. 瘦素与抑郁症 [J]. 国际精神病学杂志, 2013, 40(3): 155-157.
- [40] Esel E, Ozsoy S, Tutus A, *et al.* Effects of antidepressant treatment and of gender on serum leptin levels in patients with major depression [J]. *Progr Neuro-Psychopharmacol Biol Psych*, 2005, 29(4): 565-570.
- [41] Yamada N, Katsuura G, Ochi Y, *et al.* Impaired CNS leptin action is implicated in depression associated with obesity [J]. *Endocrinology*, 2011, 152(7): 2634-2643.
- [42] 于学文, 高成阁, 任永惠, 等. 雌激素对妇女围绝经与 绝经期抑郁障碍的影响 [J]. 中国妇幼健康研究, 2007, 18(5): 371-373.
- [43] 那 全. 妊娠期抑郁症与海马雌激素受体关系的研究 [D]. 沈阳: 中国医科大学, 2009.
- [44] 严琦敏, 校建波, 赵 波, 等. 雌激素对抑郁症小鼠行为学和脑组织单胺类递质的作用 [J]. 神经解剖学杂志, 2017, 33(5): 622-626.