Misure in AC

Voltmetri in alternata tarati in valore efficace Esercizi

Specifiche di voltmetri analogici

- A volte ci si può imbattere in voltmetri o amperometri basati sul galvanometro
- Il display è costituito da una scala graduata con indicatore a lancetta

Specifiche di voltmetri analogici

- L'angolo di deflessione della lancetta è proporzionale alla tensione o alla corrente che state misurando
- L'angolo massimo di deflessione corrisponde al valore di fondo scala scelto

Incertezza nei voltmetri analogici

- L'incertezza strumentale è espressa per mezzo dell'indice di classe C_L (tipici valori sono C_L = 0.5÷3) dal quale è possibile ricavare l'incertezza assoluta
- La definizione è la seguente

$$\delta V = \frac{C_L}{100} \cdot V_{FS}$$

 Esempio: voltmetro di classe 2 e fondo scala 10V

$$\delta V = \frac{2}{100} \cdot 10 = 0.2V$$

Incertezza nei voltmetri analogici

 L'incertezza strumentale non dipende dal valore di lettura ma solo dal fondo scala utilizzato

 All'incertezza strumentale occorre aggiungere l'incertezza di lettura che dipende dall'operatore e dalla scala graduata presente sullo strumento

Voltmetri numerici per la misura del valore efficace (visti la scorsa settimana)

Misurando la tensione continua ai capi del generatore variabile con un voltmetro numerico per tensioni continue è possibile ottenere direttamente la tensione efficace del segnale v(t), qualunque sia la forma del segnale v(t)

$$V_{eff} = \sqrt{\frac{R'}{R}} \cdot V_{DC}$$

- A volte la misura del valore efficace di un segnale avviene con altri metodi, tutti utilizzanti:
 - Un circuito non lineare
 - Un voltmetro in DC
 - Una costante di taratura (costante strumentale)

- A seconda del circuito NL utilizzato si hanno principalmente 3 tipi di voltmetri:
 - Con circuito non lineare a doppia semionda
 - Con circuito non lineare a singola semionda
 - Con circuito non lineare a sonda di picco
- Qualunque sia il circuito NL utilizzato la lettura ottenuta sarà, nel caso di segnale sinusoidale, pari al valore efficace del segnale sinusoidale

All'uscita del circuito NL a doppia semionda si ha il modulo di v(t). Nel caso che v(t) sia sinusoidale si ha:

Voltmetri tarati in valore efficace: doppia semionda

Nel primo segnale il valor medio è nullo, a valle del circuito NL il valor medio è pari a $2V_p/\pi$

Voltmetri tarati in valore efficace: doppia semionda

II termine
$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(t) dt = \frac{1}{T} \int_{-T/2}^{+T/2} f(t) dt =$$

$$a_0 = \frac{2Vp}{\pi}$$

Che rappresenta il valor medio della funzione $|V_p \cdot \sin(\omega t)|$

Il valor medio del segnale sinusoidale raddrizzato è pari ad a_0

$$V_{medio} = \frac{1}{T} \int_{t_0}^{t_0+T} v(t)dt = \dots = \frac{2Vp}{\pi} \neq \frac{V_p}{\sqrt{2}} = Vrms$$

Voltmetri tarati in valore efficace: doppia semionda

Affinché la lettura sia pari al valore efficace del segnale sinusoidale occorre introdurre una costante strumentale k_s

$$V_{eff} = \frac{V_p}{\sqrt{2}} = k_s \cdot \frac{2Vp}{\pi} = k_s \cdot \frac{2Vp}{\pi} = 1.11$$

Voltmetri tarati in valore efficace: singola semionda

All'uscita del circuito NL a singola semionda si ha un comportamento del tipo:

Voltmetri tarati in valore efficace: singola semionda

Il valor medio del segnale sinusoidale a singola semionda in uscita del circuito NL è pari a

$$V_{medio} = \frac{1}{T} \int_{t_0}^{t_0 + T} v(t) dt = \dots = \frac{Vp}{\pi} \neq \frac{V_p}{\sqrt{2}} = Vrms$$

Voltmetri tarati in valore efficace: singola semionda

Affinché la lettura sia pari al valore efficace del segnale sinusoidale occorre introdurre una costante strumentale k_s

$$V_{eff} = \frac{V_p}{\sqrt{2}} = ks \cdot \frac{Vp}{\pi} \to k_s = \frac{\pi}{\sqrt{2}} = 2.22$$

Voltmetri tarati in valore efficace: voltmetri di picco

All'uscita del circuito NL di picco si ha una tensione pari al massimo di v(t). Nel caso che v(t) sia sinusoidale di ampiezza V_p , all'uscita del circuito NL si avrà una tensione pari a V_p

Voltmetri tarati in valore efficace: voltmetri di picco

Il valor medio in uscita al circuito NL è dunque pari a

$$V_{medio} = \frac{1}{T} \int_{t_0}^{t_0+T} V_p dt = \dots = Vp \neq \frac{V_p}{\sqrt{2}} = Vrms$$

La costante strumentale sarà quindi pari $1/\sqrt{2}$

Riassumendo:

- Qualunque sia il circuito NL utilizzato la lettura ottenuta è "corretta" solo se il segnale di ingresso è sinusoidale
- Il voltmetro è tarato in modo tale da ottenere la lettura del valore efficace del segnale sinusoidale
- Se il segnale in ingresso non è sinusoidale la lettura e l'incertezza dello strumento non sono valide

- Le cose si complicano quando si hanno segnali non sinusoidali
- La lettura ottenuta non coincide con il valore efficace del segnale misurato
- Dalla forma del segnale da misurare e dalla lettura ottenuta è eventualmente possibile ricavare a posteriori il valore efficace del segnale

- Volete misurare una tensione di circa 4V con il tester analogico in figura. Il manuale indica che tale strumento, per misure di tensioni costanti, è di classe 1 e presenta quattro possibili valori di fondo scala selezionabili dall'utente (V_{FS} =2V, 10V, 50V, 200V) e una resistenza di ingresso pari a $40 \text{k}\Omega/V_{FS}$. Lo strumento presenta un quadrante con scala di ampiezza pari a 100° . Si chiede di indicare:
- quale fondo scala scegliete e quanto vale l'incertezza strumentale di misura
- quale posizione assumerà l'indicatore quando effettuate la lettura
- quanto vale la resistenza di ingresso del tester

• Quale fondo scala scegliete

Si hanno i seguenti fondo scala V_{ES}=2V, 10V, 50V, 200V

Al fine di minimizzare l'incertezza strumentale sceglierò il fondo scala di 10V Lo strumento è di classe 1 dunque avrò un'incertezza pari all'1% del fondo scala utilizzato:

$$\delta V = 0.01 \cdot 10 = 0.1V$$

• quale posizione assumerà l'indicatore quando effettuate la lettura

Dal momento che ho scelto il fondo scala di 10V e la scala è di ampiezza 100° avrò

$$V_L : V_{FS} = \varphi \colon 100^\circ$$
da cui
$$\varphi = V_L \colon V_{FS} \cdot 100^\circ = 40^\circ$$

N.B.: al posto di 'scala di ampiezza di 100°' potevate trovare: scala graduata suddivisa in 50 divisioni.... È sufficiente fare l'opportuna proporzione per trovare la posizione finale

• quanto vale la resistenza di ingresso del tester

Poiché si ha una resistenza di ingresso pari a $40k\Omega/V_{FS}$. E si è scelto un fondo scala di 10V si avrà:

$$Rin=40k\Omega/V_{FS}\cdot V_{FS} = 400k\Omega$$

- Quanto vale la tensione indicata da un voltmetro a valor efficace basato su un circuito NL a doppia semionda, utilizzato per misurare il segnale periodico rappresentato nella seguente figura? Sapendo che il voltmetro è di classe 1 con fondo scala di 1V, 3V, 5V, 10V
 - 1. Scegliete il fondo scala più opportuno
 - 2. Determinate il valore assoluto dell'incertezza strumentale
 - Quanto vale il valore efficace del segnale di ingresso?

• A valle del circuito NL a doppia semionda si ha:

 Il valor medio del segnale a valle del circuito NL a doppia semionda è pari a:

$$V_m = \frac{1}{T} \left(0.5T \cdot 5 \cdot \frac{1}{2} + 0.5T \cdot 5 \right) = 3.75V$$

- La costante strumentale vale 1.11 quindi la lettura attesa è pari a $V_L = 1.11 \cdot 3.75V = 4.16V$
- Come fondo scala scelgo 5V da cui l'incertezza strumentale è di 0.05V

• Quanto vale il valore efficace del segnale?

•
$$v_{eff}^2 = \frac{1}{2} \frac{5^2}{3} + \frac{1}{2} 5^2 = 16.66V^2 \rightarrow v_{eff} = 4.08V$$

- Un segnale v(t) a forma d'onda quadra, fra -5V e +1V, ha duty cycle del 40%. Si determini il valore efficace del segnale. Si determinino le letture ottenute con:
 - Voltmetro a singola semionda tarato in valore efficace di classe 1 e fondo scala di 10V
 - Voltmetro a doppia semionda tarato in valore efficace di classe 2 e fondo scala 100V
 - Voltmetro di picco tarato in valore efficace di classe 5 e fondo scala 5V
 - Voltmetro a vero valore efficace con fondo scala 1,3,5,10V ed incertezza espressa come δV =0.1% V_{letto} +0.05% V_{fs}

 Un segnale v(t) forma d'onda quadra, fra -5V e +1V, duty cycle del 40%.

- Voltmetro a singola semionda tarato in valore efficace di classe 1 e fondo scala di 10V
- Lettura pari a 2.22 volte il valore medio del segnale a valle del circuito NL
- V_L =2.22 · 0.4=0.888V, essendo il voltmetro di classe 1 e fondo scala 10V ho un'incertezza di 0.1V quindi la misura ottenuta è pari a V_L =(0.9±0.1)V

- Voltmetro a doppia semionda tarato in valore efficace di classe 2 e fondo scala 100V
- Lettura pari a 1.11 volte il valore medio del segnale a valle del circuito NL
- V_L =1.11 · 3.4=3.774V, essendo il voltmetro di classe 2 e fondo scala 100V ho un'incertezza di 2V quindi la misura ottenuta è pari a V_L =(4±2)V

- Voltmetro di picco tarato in valore efficace di classe 5 e fondo scala 5V
- Lettura pari a 0.707 volte il valore massimo del segnale di ingresso
- V_L =0.707 · 1=0.707V, essendo il voltmetro di classe 5 e fondo scala 5V ho un'incertezza di 0.25V quindi la misura ottenuta è pari a V_L =(0.71±0.25)V

- Voltmetro a vero valore efficace con fondo scala 1,3,5,10V ed incertezza espressa come δV =0.1% V_{letto} +0.05% V_{fs}
- Il voltmetro a vero valore efficace misura realmente il valore efficace del segnale di ingresso
- $v_{eff}^2 = \frac{1}{T} \cdot [0.4T \cdot 1^2 + 0.6T \cdot (-5^2)] = 15.4V^2 \rightarrow v_{eff} = 3.9242834 \dots V$
- Il fondo scala scelto è pari a 5V
- $\delta V = 0.1\% V_{letto} + 0.05\% V_{fs} = (0.1\% 3.92 + 0.05\% 5) = 3.9 \text{mV} + 2.5 \text{mV} = 6.4 \text{mV}$
- Il risultato finale è $V_L = (3.9243 \pm 0.0064)V$

Esercizio (non risolto la scorsa settimana)

• Volete misurare una tensione di circa 20kV con un voltmetro con fondo scala 3.2V, 32V, 320V. Per effettuare la misura montate un attenuatore per 1000 con 10 resistenze da $100M\Omega$ ed una resistenza da $1.1M\Omega$. Tutte le resistenze hanno una tolleranza pari a 0.5%. Il voltmetro (ideale) presenta un'incertezza espressa come

$$\delta V = 0.3\% V_{\text{letta}} + 0.03\% V_{\text{fs}}$$

Determinare l'incertezza di misura della tensione da 20kV

Esercizio (non risolto la scorsa settimana)

Volete misurare un resistore di circa $1k\Omega$ con il metodo voltamperometrico avendo a disposizione

- Un voltmetro con resistenza di ingresso di $1M\Omega$, fondo scala di 1V e incertezza $\delta V = (0.01\%V_L + 0.0005V_{FS})$
- Un amperometro con resistenza interna di 100Ω e $I_{FS1}=0.1$ mA $I_{FS2}=1$ mA ed incertezza $\delta I=1\%I_{FS}$

Nell'effettuare la misura avete deciso di non dissipare più di 0.1mW sul resistore.

- 1. Disegnate i possibili schemi di misura
- 2. Determinate la corrente di misura necessaria per soddisfare la scelta della potenza dissipabile
- 3. Determinate lo schema di misura tale da minimizzare l'errore di consumo
- 4. Determinate l'incertezza di misura del resistore con lo schema che minimizza l'errore di consumo