Indian Institute of Technology Kharagpur Department of Mathematics

Supplementary Test 2013

MA 20101

Transform Calculus

Full Marks: 50

Time: 3 hrs

5

Notations. Laplace Transform: $L[f(t)] \equiv F(s) = \int_0^\infty e^{-st} f(t) dt$, Re(s) > a > 0, $f(t) = O(e^{-at})$

Fourier Transform: $\mathcal{F}[f(x)] \equiv \bar{F}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\xi x} f(x) dx$

Fourier Cosine Transform: $\mathcal{F}_c[f(x)] \equiv \bar{F}_c(\xi) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos(\xi x) dx$

Fourier Sine Transform: $\mathcal{F}_s[f(x)] \equiv \bar{F}_s(\xi) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \sin(\xi x) dx$

1. Show that $L\left[\frac{f(t)}{t}\right] = \int_s^\infty F(s) \mathrm{d}s = -\int_0^s F(s) \mathrm{d}s + \int_0^\infty \frac{f(t)}{t} \mathrm{d}t$, Hence find the value of $I = \int_0^\infty \frac{\sin t}{t} \mathrm{d}t$.

2. Find $L^{-1}\left[\frac{1}{1+\sqrt{1+s}}\right]$.

3. From the definition of Laplace Transform, show that for a periodic function f(t) of period 2K, $L[f(t)] = \frac{1}{1-e^{-2Ks}} \int_0^{2K} e^{-st} f(t) dt$,

Hence find L[f(t)] for the following periodic function

$$f(t) = \begin{cases} 1, & 2n < t \le 2n + 1 \\ 2, & 2n + 1 < t \le 2n + 2 \end{cases}$$

where n = 0, 1, 2, ...

4. Solve the wave equation $u_{tt} = c^2 u_{xx}$, 0 < x < 1, t > 0 (c > 0) subject to the initial conditions $u(x,0) = \sin \pi x = -u_t(x,0)$ and boundary conditions u(0,t) = u(1,t) = 0.

5. If $f(t) * g(t) = \int_0^t f(\tau)g(t-\tau) d\tau = \int_0^t g(\tau)f(t-\tau)d\tau$, show that L[f(t) * g(t)] = F(s)G(s). Using this result, show that $L^{-1}\left\lceil \frac{e^{s^2/2}}{s^2} \right\rceil = t \operatorname{erf}(t/\sqrt{2}) + \sqrt{\frac{2}{\pi}}(e^{-t^2/2} - 1)$.

6. Find $\mathcal{F}[e^{-a^2x^2}]$. Determine the value of a for which the shape of the function remains identical. 5

7. Show that for $f(x) = e^{-a|x|} (a > 0)$, $\mathcal{F}[f(x)] = \mathcal{F}_c[e^{-ax}]$, Hence evaluate $I = \int_0^\infty \frac{\cos \lambda x}{\lambda^2 + 4} d\lambda$.

8. (a) Find Inverse Fourier Transform of $\bar{F}(\xi) = \frac{\xi}{(\xi^2 + a^2)^2}$.

(b) Evaluate $J = \int_0^\infty \frac{\omega \sin \omega x}{(\omega^2 + 1)^2} d\omega$.

9. Show that $\mathcal{F}^{-1}[\bar{F}(\xi)\bar{G}(\xi)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(\tau)g(x-\tau)d\tau = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(\tau)f(x-\tau)d\tau$.

10. (a) Find $\mathcal{F}\left[\frac{e^{-x^2}}{x}\right]$.

(b) Show that $2\mathfrak{F}[f(x)\cos\omega x] = \bar{F}(\xi+\omega) + \bar{F}(\xi-\omega)$.