LES PUISSANCES

I Les bases

Définition n°1.

Pour tout nombre relatif a non nul et tout nombre entier n positif non nul :

$$a^{n} = \underbrace{a \times a \times ... \times a}_{n \text{ facteurs}}$$
et
$$a^{-n} = \underbrace{\frac{1}{a \times a \times ... \times a}}_{n \text{ facteurs}} = \frac{1}{a^{n}}$$

En particulier, $a^1 = a$, $a^{-1} = \frac{1}{a}$ et par convention $a^0 = 1$.

Exemple n°1.

$$2^{3} = 2 \times 2 \times 2 = 8$$
 , $2^{-3} = \frac{1}{2^{3}} = \frac{1}{8}$, $(-5,1)^{1} = -5,1$
 $(-5,1)^{-1} = \frac{1}{-5,1}$ et $(-5,1)^{0} = 1$.

Remarque n°1. Attention

$$(-7)^4 = (-7) \times (-7) \times (-7) \times (-7) = 2401$$

alors que :
 $-7^4 = -7 \times 7 \times 7 \times 7 = -2401$

II Puissances et propriétés

Propriété n°1. Puissances et signes

Pour tout nombre entier relatif n:

- Si a est positif alors a^n est positif.
- Si a est négatif alors a^n est positif lorsque l'exposant n est pair, et négatif lorsque l'exposant n est impair.

Remarque n°2.

Cette propriété découle de la règle des signes.

Exemple n°2.

$$7,1^4,7,1^{-6},7,1^3$$
 et 7^{-5} sont tous positifs car $7,1$ est positif. $(-7,1)^4$ et $(-7,1)^{-6}$ sont positifs car 4 et -6 sont pairs $(-7,1)^3$ et $(-7,1)^{-5}$ sont négatifs car 3 et -5 sont impairs

Propriété n°2. Puissances et opérations

Soient a et b des nombres réels non nuls et m et n des entiers relatifs.

$$a^{m} \times a^{n} = a^{m+n}$$

$$a^{m} = a^{m-n}$$

$$(a^{m})^{n} = (a^{n})^{m} = a^{m \times n}$$

$$(a \times b)^{n} = a^{n} \times b^{n}$$

$$(a \times b)^{n} = a^{n} \times b^{n}$$

$$(a^{m})^{n} = a^{m}$$

$$(a^{m})^{n} = a^{m}$$

Remarque n°3.

Ces propriétés se démontrent en revenant à la définition. Elles restent valables pour a et b des réels positifs et m et n des réels, mais la preuve est plus délicate.

Exemple n°3.

$$(-2,1)^{10} \times (-2,1)^{-3} = (-2,1)^{10+(-3)} = (-2,1)^7$$

 $30^2 = (3 \times 10)^2 = 3^2 \times 10^2 = 9 \times 100 = 900$

III Écriture scientifique

Définition n°2.

Tout nombre décimal non nul peut être écrit en notation scientifique, c'est-àdire sous la forme $a \times 10^n$, où a est un nombre décimal dont la distance à zéro est comprise entre 1 et 10 (10 exclu), c'est à dire ayant un seul chiffre non nul ayant la virgule, et où n est un nombre entier relatif.

- Le nombre *a* est appelé : **mantisse**.
- 10ⁿ est l'**ordre de grandeur** du nombre.

Exemple n°4.

•
$$678\,000\,000 = 6,78 \times 10^8$$
 Mantisse: 6,78

Ordre de grandeur : 10^8

•
$$0.000007896 = 7.896 \times 10^{-6}$$
 Mantisse: 7,896

Ordre de grandeur : 10^{-6}

-
$$-450\,000\,000 = -4.5 \times 10^8$$
 Mantisse: -4.5

Ordre de grandeur : 10^8

Remarque n°4. Attention

 $45,321 \times 10^8$ n'est pas une écriture scientifique

 0.758×10^8 n'est pas non plus une écriture scientifique.