Álgebra Lineal I

Nota importante: El espacio máximo para escribir las respuestas es de dos folios por las dos caras. Si se envian más de dos folios, solamente se leerán los dos primeros

Problema 1

a) Demostrar que el determinante de un producto de matrices

cuadradas es el producto de sus determinantes. (1,5 puntos)

- b) Se considera el sistema de ecuaciones $Ax^t = y^t \text{ con } A \in M_{nxn}(\mathbb{R}),$ $x \in \mathbb{R}^n$ e $y \in \mathbb{R}^n$. Cuál de las siguientes afirmaciones es verdadera o falsa y explicar razonadamente el motivo:
- i) Si y^t pertenece al subespacio vectorial generado por las columnas de la matriz A, el sistema de ecuaciones es compatible determinado.
- ii) Si $Ax^t = 0^t$ es compatible indeterminado e $y^t = 2a_1$, donde a_1 es la primera columna de la matriz A, entonce $Ax^t = y^t$ es tambien compatible indeterminado. (2 puntos)

Problema 2

Dada la matriz
$$A = \begin{pmatrix} 1 & 3 \\ -1 & 0 \end{pmatrix} \in M_2(K)$$
:

- a) Probar que el conjunto $V = \{X \in M_2(K) : AX = XA\}$ es un subespacio vectorial de $M_2(K)$. (1,5 puntos)
 - b) Encontrar una base de V. (1,5 puntos)

Problema 3

Sea
$$f: \mathbb{R}^2 \to \mathbb{R}^4$$
, una aplicación lineal tal que $f(2,-3) = (1,1,1,1)$ $f(-1,2) = (2,1,0,2)$

Se pide:

- a) Hallar la expresión de la aplicación f, es decir dado un vector $(v_1, v_2) \in \mathbb{R}^2$, determinar $f(v_1, v_2)$. (1 punto)
- b) Hallar la matriz asociada a f respecto a las bases canónicas o estándar de \mathbb{R}^2 y \mathbb{R}^4 . (1 punto)
- C) Encontrar las ecuaciones implícitas del subespacio imagen de la aplicación lineal f. (1,5 puntos)