CPU Architecture

LAB1 preparation report

VHDL part1

עומר לוקסמבורג 205500390 עילי נוריאל 212538580

תוכן עניינים

זגדרת תכנון המערכת	3
ניאור הרכיבים	4
ניאור הבדיקות	9
:דיקת ה-shifter	9
ביקת ה-Adder_SubstructorAdder_Substructor	10
ton-a カランゴ:	12

הגדרת תכנון המערכת

התבקשנו לכתוב תיאור חומרה למערכת הבאה:

תכנון מודול המורכב משלושה תתי מודולים:

- 1. מחבר/מחסר גנרי בין שני וקטורים בגודל n-ביטים.
 - של 8 ביטים, בעל רכיב פנימי גנרי. Barrel shifter .2
- .shifter בין המחבר-מחסר Selector בין המחבר-מחסר 3

דרישות נוספות:

- התכנון של השכבה העליונה צריך להיות structural ולהכיל 9 entities (אחד לכל רכיב כפי שמתואר קודם).
 - אסור למחוק את הקבצים שניתנו במשימה ("Top", "Top").

תרשים המערכת:

מיבורים:

- . ערוצי הכניסה בעלי n ביטים כל אחד -X, Y
 - .(carry) כניסה של ביט נוסף -Cin
- -Sel בחירת הפעולה שתתבצע על הכניסות הנקבעת באופן הבא

Sel	Operation	Note
0	Res=X+Y	
1	Res=X+Y+cin	
2	Res=X-Y	
3	Res=RLA X,Y(2 to 0)	Rotate left X of Y(20) times

תיאור הרכיבים

לפי הגדרת המשימה הגדרנו את המודולים ותתי המודולים הבאים (מסודרים לפי היררכיית השכבות):

	top			
aux_package	Selector	shifter	Adder_Substructor	
aux_package		Yblock	FA	
		MUX2		

: הערות

• מודול ה- Yblock כתוב בצורה גנרית ומתאר שכבה אחת ברכיב ה-shifter (כמתואר בדרישות העבודה) כלומר עמודה כזו:

.2 \rightarrow 1 מתאר מרבב MUX2 לשני ביטים ומודול Full Adder מתאר מרבב \circ

תיאור הלוגיקה של המודולים בעמוד הבא

Full Adder (FA)

Saipan einna Ich nand

por \$	direction	size	description
Χi	in	1	1 ,0',13
y i	in	1	2 70.10
Cin	in	1	ראז פריסט
S	out	1	x+y = 12/12
cont	out	1	1631N 1621

MUX 2→1 (Mux2)

alor elion. 2 elion milion sing.

por \$	direction	size	description
a	in	1	(5=0) 1
ь	in	1	(S=1) 2 No.70
S	ìn	1	בורר
y	out	1	רוצי לפי פבוני

Y Block

por \$	direction	size	description
sy	in	1	っいつ
×o	In	n	(sy=0) 1 .oc.
X 1	in	n	(sy=1) 2 30.72
yout	out	n	רוצא לפי בבונים

Shifter

. (y(2),y(1),y(e) مددو در در و درور المرار بر المرد (y(2),y(1),y(e) مردور المردور الم

por t	direction	size	description
×	in	n	וקאר שאנתו נליט
У	In	n	כלות ההצבות
res	out	n	อาเรเกา

מבלם בדולות של ב וקלורית במורק ח בבסים משלית ל-2.

N+1 PORD 131N

. X-y Горл Sel=10, X+y+Cin Горл sel=01, X+y Горл Sel=00

.FA N-N 2011

por \$	direction	size	description
×:	in	n	וקלור בניסה ל
y i	in	n	וקלור בניסה 2
Cin	in	1	רוא פריסט
sel	in	2	בורך בולא
S	out	n+1	م اد گام

Selector

sel 20000 mls Adder Subtractor-S shifter-2 12/10 10 2012

por \$	direction	size	description
sel	in	2	17/2
as_in	in	n+1	שוצא שחבר נוחסר
shifter_in	in	и+ <u>1</u>	مراه ادکا <i>ی</i>
result	out	N+1	مالحاد ددم د

המאיפת הכולת כפי שמכוחלת במלה.

שימוש בערי בשים במוך אח (הוספת 'ס' ב- מאא)
שימוש בערי בשים החסר בשים ח (מוציו יכיה ווא)
שימוש בערי במחבר/ מחסר בשים ח (מוציו יכיה ווא)
ושימוש מתמים ב- selector.

por \$	direction	size	description
×	in	n	וקליר בניסה ל
y	in	n	וקלור בניסה 2
Cin	in	1	רוא פריסנ
sel	in	2	בורך בולא
result	out	n+1	ع اد کام

תיאור הבדיקות

.Adder_Substractor ו-shifter, top. בתיקיית ההגשה מצורפים test branches בתיקיית

shifter-בדיקת ה

- הקלט המוזז -X
- ערך ההווה (0 עד 7 הוות) -Y(0...2)
 - (התוצאה) לאחר לאחר X-S

ביצענו שתי בדיקות, אחת עם הקלט 11111111 ואחת עם הקלט 00000001, ובכל אחת הזזנו את הקלט ביצענו שתי בדיקות, אחת עם הקלט 0-71 הזזנו.

ps-, delta-,		ta	/tb_shifter/cin-	b_shifter/cin-, /tb_sh /tb_shifter/sel-,			ifter/Y-, /tb_shifter/s-,		
	v		_		ifter/X⊸	, 52_511			
	0	+4	0	11	11111111	00000000	11111111		
	50000	+4	0	11	11111111	00000001	11111110		
	100000	+5	0	11	11111111	00000010	11111100		
	150000	+5	0	11	11111111	00000011	11111000		
	200000	+5	0	11	11111111	00000100	11110000		
	250000	+5	0	11	11111111	00000101	11100000		
	300000	+6	0	11	11111111	00000110	11000000		
	350000	+6	0	11	11111111	00000111	10000000		
	400000	+4	0	11	00000001	00000000	00000001		
	450000	+4	0	11	00000001	00000001	00000010		
	500000	+5	0	11	00000001	00000010	00000100		
	550000	+5	0	11	00000001	00000011	00001000		
	600000	+5	0	11	00000001	00000100	00010000		
	650000	+5	0	11	00000001	00000101	00100000		
	700000	+6	0	11	00000001	00000110	01000000		
	750000	+6	0	11	00000001	00000111	10000000		

בדיקת ה-Adder_Substructor

- כניסה carry Cin •
- וחיסור carry בורר בין פעולות חיבור, בין פעולות Sel -
 - א (קלט) המספרים -X, Y
 - -S •

ביצענו את 3 הפעולות האפשריות (חיבור, חיבור עם carry וחיסור).

. עשינו את עם קלט Y=011 עשינו את עם קלט

: carry תוצאות בדיקת החיבור וחיבור עם

פעולת החיבור היא פעולת חיבור ביטים פשוטה ללא שיטת ייצוג. כאשר ערך sel הוא 00 זהו חיבור ללא מטה התחשבות ב-cin וכאשר ערך sel הוא 10 החיבור מתבצע גם עם ה-cin. ניתן לראות כי אכן בתוצאות מטה פעולת החיבור מתעלמת מערך ה-cin כאשר ערך ה-sel הוא ob.

🔛 List - Default 💳				= ;;;;;;				
ps- ₃ ,		/tb adder sub/cin-						
delt	:a	/tb adder sub/sel-						
	•	/tb adder		/X_				
			_		/Y_			
						b/s⊸		
				000	044	0044		
0	+4	0	00		011	0011		
50000 100000	+4	0	00	001 010	011 011	0100 0101		
150000	+3	0	00	010	011	0110		
200000	+5	0	00	100	011	0111		
250000	+5	0	00	101	011	1000		
300000	+3	0	00	110	011	1000		
350000	+3	0	00	111	011	1010		
400000	+4	1	00	000	011	0011		
450000	+4	1	00	001	011	0100		
500000	+3	1	00	010	011	0101		
550000	+3	1	00	011	011	0110		
600000	+5	1	00	100	011	0111		
650000	+5	1	00	101	011	1000		
700000	+3	1	00	110	011	1001		
750000	+3	1	00	111	011	1010		
800000	+4	0	01	000	011	0011		
850000	+4	0	01	001	011	0100		
900000	+3	0	01	010	011	0101		
950000	+3	0	01	011	011	0110		
1000000	+5	0	01	100	011	0111		
1050000	+5	0	01	101	011	1000		
1100000	+3	0	01	110	011	1001		
1150000	+3	0	01	111	011	1010		
1200000	+5	1	01	000	011	0100		
1250000	+2	1	01	001	011	0101		
1300000	+2	1	01	010	011	0110		
1350000	+2	1	01	011	011	0111		
1400000	+3	1	01	100	011	1000		
1450000 1500000	+2	1	01 01	101 110	011 011	1001 1010		
1550000	+2	1	01		011			
1220000	+2	1	UI	111	OII	1011		

תוצאות בדיקת החיסור:

.cin- מערך מתעלמים מערך החיסור בפעולת בשלים ל-2. בשיטת בשיטת באיט היא X-Y בשיטת מערך החיסור בעולת החיסור

Ī	;;; List - Default ::::::::::::::::::::::::::::::::::::											
	ps⊸v deli	ta⊸,	/tb_adder_sub/cin-, /tb_adder_sub/sel-, /tb_adder_sub/X-, /tb_adder_sub/Y-, /tb_adder_sub/s-,									
	1600000	+7	0 10 000 011 1101									
	1650000	+3	0 10 001 011 1110									
	1700000	+6	0 10 010 011 1111									
	1750000	+6	0 10 011 011 0000									
	1800000	+3	0 10 100 011 1001									
	1850000	+3	0 10 101 011 1010									
	1900000	+4	0 10 110 011 1011									
	1950000	+4	0 10 111 011 1100									
	2000000	+5	1 10 000 011 1101									
	2050000	+3	1 10 001 011 1110									
	2100000	+6	1 10 010 011 1111									
	2150000	+6	1 10 011 011 0000									
	2200000	+3	1 10 100 011 1001									
	2250000	+3	1 10 101 011 1010									
	2300000	+4	1 10 110 011 1011									
	2350000	+4	1 10 111 011 1100									

Carry מצורפת חיבור – 01 הוא sel בחלק העליון בחלק: wave מצורפת הצוגת

 \times בשיטת משלים ל-2 בחלק התחתון ערך ה $ext{sel}$ הוא $ext{sel}$

top-בדיקת ה

בצענו בדיקות דומות לבדיקות המתוארות קודם, אך הפעם במודול הסופי שמאחד את כל תתי המודולים.

- כניסה carry Cin •
- . חיסור חיסור, חיבור עם carry בורר בין פעולות חיבור, חיבור $-\operatorname{Sel}$
 - (קלט) המספרים -X, Y •
 - ערך ההוות (0 עד 7 הוות) -Y(0...2)
 - התוצאה -S •

. וערך X וערך Y=1000 0000 עשינו את עם אינו יאת ישינו וויבור עם בדיקות החיבור וחיבור עם בדיקות ישינו יש

į	🔐 List - Default 💳						
	ps-		/tb/cin-		/tb/X-	/tb/Y-	/tb/s-
	delta-		/tb/sel-		•	•	•
		Ť		Ť			
	0	+6	0	00	00000001	10000000	010000001
	50000	+3	0	00	00000010	10000000	010000010
	100000	+3	0	00	00000100	10000000	010000100
	150000	+3	0	00	00001000	10000000	010001000
	200000	+3	0	00	00010000	10000000	010010000
	250000	+3	0	00	00100000	10000000	010100000
	300000	+3	0	00	01000000	10000000	011000000
	350000	+4	0	00	10000000	10000000	100000000
	400000	+4	1	00	00000001	10000000	010000001
	450000	+3	1	00	00000010	10000000	010000010
	500000	+3	1	00	00000100	10000000	010000100
	550000	+3	1	00	00001000	10000000	010001000
	600000	+3	1	00	00010000	10000000	010010000
	650000	+3	1	00	00100000	10000000	010100000
	700000	+3	1	00	01000000	10000000	011000000
	750000	+4	1	00	10000000	10000000	100000000
	800000	+4	0	01	00000001	10000000	010000001
	850000	+3	0	01	00000010	10000000	010000010
	900000	+3	0	01	00000100	10000000	010000100
	950000	+3	0	01	00001000	10000000	010001000
	1000000	+3	0	01	00010000	10000000	010010000
	1050000	+3	0	01	00100000	10000000	010100000
	1100000	+3	0	01	01000000	10000000	011000000
	1150000	+4	0	01	10000000	10000000	100000000
	1200000	+5	1	01	00000001	10000000	010000010
	1250000	+5	1	01	00000010	10000000	010000011
	1300000	+3	1	01	00000100	10000000	010000101
	1350000	+3	1	01	00001000	10000000	010001001
	1400000	+3	1	01	00010000	10000000	010010001
	1450000	+3	1	01	00100000	10000000	010100001
	1500000	+3	1	01	01000000	10000000	011000001
	1550000	+4	1	01	10000000	10000000	100000001

לדוגמא : ערך X הוא 128 וערך Y הוא 128, וערך השארית הוא 1. ואכן התוצאה 128, וערך השארית הוא 1000 0001 היא 257

תוצאות בדיקות החיסור וההזזה:

. בדיקת החיסור התבצעה עם קלט Y=1111 וו-1100 אורך א משתנה אפשריים. בדיקת החיזה התבצעה עם קלט T וווו וו- א 1111 וווו א כל ערכי הזיה האפשריים. בדיקת החיזה התבצעה עם קלט X

E List - Default			= ;;;;;	
ps-	/tb/cin-	/tb/X-	/tb/Y-	/tb/s-
delta—	/tb/sel_	•	•	•
·	·			
1600000 +11	0 10	01111010	01111100	111111110
1650000 +3	0 10	01111011	01111100	111111111
1700000 +10	0 10	01111100	01111100	000000000
1750000 +3	0 10	01111101	01111100	000000001
1800000 +3	0 10	01111110	01111100	000000010
1850000 +3	0 10	01111111	01111100	000000011
1900000 +4	0 10	10000000	01111100	100000100
1950000 +3	0 10	10000001	01111100	100000101
2000000 +10	1 10	11111110	11111100	000000010
2050000 +3	1 10	11111100	11111100	000000000
2100000 +10	1 10	11111000	11111100	111111100
2150000 +3	1 10	11110000	11111100	111110100
2200000 +3	1 10	11100000	11111100	111100100
2250000 +3	1 10	11000000	11111100	111000100
2300000 +3	1 10	10000000	11111100	110000100
2350000 +4	1 10	00000000	11111100	000000100
2400000 +6	0 11	11111111	00000000	011111111
2450000 +6	0 11	11111111	00000001	111111110
2500000 +7	0 11	11111111	00000010	111111100
2550000 +7	0 11	11111111	00000011	111111000
2600000 +7	0 11	11111111	00000100	111110000
2650000 +7	0 11	11111111	00000101	111100000
2700000 +8	0 11	11111111	00000110	111000000
2750000 +8	0 11	11111111	00000111	110000000
2800000 +6	0 11	00000001	00000000	000000001
2850000 +6	0 11	00000001	00000001	000000010
2900000 +7	0 11	00000001	00000010	000000100
2950000 +7	0 11	00000001	00000011	000001000
3000000 +7	0 11	00000001	00000100	000010000
3050000 +7	0 11	00000001	00000101	000100000
3100000 +8	0 11	00000001	00000110	001000000
3150000 +8	0 11	00000001	00000111	010000000

תצוגת ה-wave בעמוד הבא

: חיסור

