Matrices normales

Teorema espectral

Conceptos preliminares

Recordemos que una matriz $A \in \mathbb{K}^{n \times n}$ ($\mathbb{K} = \mathbb{R}$ ó \mathbb{C}) es diagonalizable en \mathbb{K}^n si existe una base de \mathbb{K}^n compuesta por autovectores de A. En tal caso, la matriz A es semejante a una matriz diagonal, esto es, existe una matriz $P \in \mathbb{K}^{n \times n}$ regular tal que $A = PD_AP^{-1}$, con D_A diagonal cuyos elementos de la diagonal principal son los autovalores de A y las columnas de la matriz P son los autovectores de A correspondientes a cada uno de los autovalores.

En todo este capítulo consideraremos el producto interno canónico de \mathbb{K}^n :

$$\langle x, y \rangle = y^* x, \quad \forall x, y \in \mathbb{K}^n$$

Recordemos que y^* designa el vector y transpuesto y conjugado.

Utilizaremos \mathbb{K}^n ó $\mathbb{K}^{n \times n}$, con $\mathbb{K} = \mathbb{R}$ ó \mathbb{C} cuando las proposiciones sean aplicables a elementos de ambos espacios.

Trabajaremos con distintas clases de matrices:

En $\mathbb{K}^{n\times n}$:

Matrices simétricas: $A \in \mathbb{K}^{n \times n}$ es simétrica si $A^T = A$.

Matrices ortogonales: $A \in \mathbb{K}^{n \times n}$ es ortogonal si $AA^T = A^TA = I_n$. Las matrices ortogonales tienen columnas ortonormales.

Matrices antisimétricas: $A \in \mathbb{K}^{n \times n}$ es antisimétrica si $A^T = -A$.

En $\mathbb{C}^{n\times n}$:

Matrices hermíticas: $A \in \mathbb{C}^{n \times n}$ es hermítica si $A^* = A$, donde A^* denota la matriz transpuesta y conjugada de A, llamada matriz adjunta de A.

Matrices unitarias: $A \in \mathbb{C}^{n \times n}$ es unitaria si $AA^* = A^*A = I_n$. Las matrices unitarias tienen columnas ortonormales.

Matrices antihermíticas: $A \in \mathbb{C}^{n \times n}$ es antihermítica si $A^* = -A$.

Relaciones entre las matrices A y A*

Sea $A \in \mathbb{K}^{n \times n}$; entonces si $x, y \in \mathbb{K}^n$:

- 1. $\langle x, Ay \rangle = (Ay)^*x = y^*A^*x = \langle A^*x, y \rangle$.
- 2. Nul $(A^*) = (\operatorname{Col}(A))^{\perp}$. Para demostrarlo hay que probar la doble inclusión:
 - (a) $\operatorname{Nul}(A^*) \subseteq (\operatorname{Col}(A))^{\perp}$ Sea $x \in \mathbb{K}^n$; entonces $x \in \operatorname{Nul}(A^*) \Leftrightarrow A^*x = 0_{\mathbb{K}^n} \Leftrightarrow \langle A^*x, y \rangle = 0$, $\forall y \in \mathbb{K}^n$ Como $\langle A^*x, y \rangle = \langle x, Ay \rangle$, resulta que $\langle x, Ay \rangle = 0$, y, dado que $Ay \in \operatorname{Col}(A)$, se concluye que $x \in (\operatorname{Col}(A))^{\perp}$.
 - (b) $(\operatorname{Col}(A))^{\perp} \subseteq \operatorname{Nul}(A^*)$ $x \in (\operatorname{Col}(A))^{\perp} \Leftrightarrow \langle x, y \rangle = 0$, $\forall y \in \operatorname{Col}(A)$. Si $y \in \operatorname{Col}(A)$: y = Au para algún $u \in \mathbb{K}^n$; luego $\langle x, Au \rangle = 0$; como $\langle x, Au \rangle = \langle A^*x, u \rangle = 0$, para que esta igualdad se verifique para cualquier $u \in \mathbb{K}^n$ debe ser $A^*x = 0_{\mathbb{K}^n}$; luego $x \in \operatorname{Nul}(A^*)$.

3. $\operatorname{Col}(A) = (\operatorname{Nul}(A^*))^{\perp}$ Se obtiene de (2), considerando $((\operatorname{Col}(A))^{\perp})^{\perp} = \operatorname{Col}(A)$.

4. $\operatorname{Nul}(A) = (\operatorname{Col}(A^*))^{\perp}$ Se obtiene de (2) intercambiando A^* y A.

5. $\operatorname{Col}(A^*) = (\operatorname{Nul}(A))^{\perp}$ Se obtiene de (3) intercambiando A^* y A.

Matrices hermíticas

Los siguientes resultados son válidos también para matrices simétricas.

Sea $A \in \mathbb{C}^{n \times n}$. Si A es hermítica $(A^* = A)$ entonces:

- 1. Si $x, y \in \mathbb{C}^n : \langle x, Ay \rangle = \langle Ax, y \rangle$ En efecto: $\langle x, Ay \rangle = (Ay)^* x = y^* A^* x = \langle A^* x, y \rangle = \langle Ax, y \rangle$.
- 2. Los autovalores de A son reales. Dado que $\langle x, Ay \rangle = \langle Ax, y \rangle$, para y = x resulta $\langle Ax, x \rangle = \langle x, Ax \rangle$. Si λ es autovalor de A, sea x un autovector de A de norma 1 asociado a λ ,

$$\lambda = \lambda \langle x, x \rangle = \langle \lambda x, x \rangle = \langle Ax, x \rangle = \langle x, Ax \rangle = \langle x, \lambda x \rangle = \overline{\lambda} \langle x, x \rangle = \overline{\lambda}$$
$$\lambda = \overline{\lambda} \Rightarrow \lambda \in \mathbb{R}$$

Ejemplos: Los autovalores de
$$A=\begin{pmatrix}1&1\\1&1\end{pmatrix}$$
 y de $B=\begin{pmatrix}1&\mathrm{i}\\-\mathrm{i}&1\end{pmatrix}$ son $\lambda_1=0$ y $\lambda_2=2$

3. Los autoespacios correspondientes a autovalores distintos son ortogonales, esto es, si λ y μ son dos autovalores distintos de la matriz A, entonces $S_{\lambda} \perp S_{\mu}$.

Hay que probar que si $x \in S_{\lambda}$ y $y \in S_{\mu}$: $\langle x, y \rangle = 0$.

Como λ y $\mu \in \mathbb{R}$: $\lambda \langle x, y \rangle = \langle \lambda x, y \rangle = \langle Ax, y \rangle = \langle x, Ay \rangle = \langle x, \mu y \rangle = \mu \langle x, y \rangle$.

Luego, $\lambda \langle x, y \rangle = \mu \langle x, y \rangle$

Entonces, $(\lambda - \mu)\langle x, y \rangle = 0$; como $\lambda \neq \mu$, resulta $\lambda - \mu \neq 0$ y por lo tanto $\langle x, y \rangle = 0$.

4. Existe una base ortonormal de \mathbb{C}^n formada por autovectores de A.

Para probarlo emplearemos el siguiente

Lema. Sea $A \in \mathbb{C}^{n \times n}$: $A^* = A$. Entonces, si λ es autovalor de A, sus multiplicidades algebraica y geométrica coinciden: $m.a.(\lambda) = m.g.(\lambda)$.

Sean $\lambda_1, \dots, \lambda_k$ los distintos autovalores de A. Como para cada uno de ellos

$$m.a.(\lambda_i) = m.g.(\lambda_i), \quad \forall i : 1 \le i \le k$$

entonces $\mathbb{C}^n = S_{\lambda_1} \oplus \cdots \oplus S_{\lambda_k}$ (1)

Por otra parte, por la propiedad (3), $S_{\lambda_i} \perp S_{\lambda_j}$ si $i \neq j$.

Luego, para cada S_{λ_i} elegimos una base ortonormal, y como la suma (1) es directa, resulta

$$B_{\mathbb{C}^n} = B_{S_{\lambda_1}} \cup \dots \cup B_{S_{\lambda_k}}$$

y así tenemos una base ortonormal de \mathbb{C}^n formada por autovectores de A.

Por lo tanto la matriz A es diagonalizable unitariamente, es decir, A admite una descomposición de la forma $A = UD_AU^*$, con U unitaria.

Si $\mathbb{K} = \mathbb{R}$, toda matriz simétrica es diagonalizable ortogonalmente, es decir, si $A \in \mathbb{R}^{n \times n}$ es tal que $A^T = A$, entonces existe $P \in \mathbb{R}^{n \times n}$ ortogonal tal que $A = PD_A P^T$.

Observación. Una matriz diagonalizable unitariamente no necesariamente es hermítica, como se muestra a continuación:

Ejemplo. La matriz $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ no es hermítica. Sus autovalores son $\lambda_1 = i y \lambda_2 = -i$.

Los autoespacios asociados son: $S_{\lambda_1=i}(A) = \operatorname{gen}\left\{ \begin{pmatrix} i & 1 \end{pmatrix}^T \right\} y S_{\lambda_2=-i}(A) = \operatorname{gen}\left\{ \begin{pmatrix} 1 & i \end{pmatrix}^T \right\}.$

Observar que
$$\langle (\mathbf{i} \ 1)^T, (1 \ \mathbf{i})^T \rangle = (1 \ -\mathbf{i}) \begin{pmatrix} \mathbf{i} \\ 1 \end{pmatrix} = \mathbf{i} - \mathbf{i} = 0.$$

$$A = \begin{pmatrix} i/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & i/\sqrt{2} \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \begin{pmatrix} i/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & i/\sqrt{2} \end{pmatrix}$$

Matrices unitarias

Sea $U \in \mathbb{C}^{n \times n}$. Si U es unitaria $(UU^* = U^*U = I_n)$ entonces:

- 1. Sus autovalores tienen módulo 1. Si λ es autovalor de U asociado al autovector $x \in \mathbb{C}^n$: $Ux = \lambda x$. $||Ux||^2 = \langle Ux, Ux \rangle = \langle \lambda x, \lambda x \rangle = \lambda \langle x, x \rangle \overline{\lambda} = |\lambda|^2 ||x||^2$ Por otra parte, $||Ux||^2 = \langle Ux, Ux \rangle = \langle Ux, Ux \rangle = \langle Ux \rangle^* Ux = x^* U^* Ux = x^* x = ||x||^2$ Por lo tanto, $|\lambda|^2 ||x||^2 = ||x||^2$; como $x \neq 0_{\mathbb{C}^n}$, debe ser $|\lambda|^2 = 1 \Leftrightarrow |\lambda| = 1$.
- 2. El determinante de una matriz unitaria tiene módulo 1.
- 3. Si $U \in \mathbb{C}^{n \times n}$ y $V \in \mathbb{C}^{n \times n}$ son matrices unitarias, entonces UV es unitaria.
- 4. Para todo $x, y \in \mathbb{C}^n$: $\langle Ux, Uy \rangle = (Uy)^*Ux = y^*(U^*U)x = y^*x = \langle x, y \rangle$. La multiplicación por una matriz unitaria preserva el producto interno.

6. Los autovectores de una matriz unitaria asociados a autovalores distintos son ortogonales. Sean x,y autovectores de U asociados a los autovalores λ y μ , respectivamente. De la propiedad (4): $\langle Ux,Uy\rangle = \langle x,y\rangle$. (1)
Por otra parte, $\langle Ux,Uy\rangle = \langle \lambda x,\mu y\rangle = \lambda \overline{\mu}\langle x,y\rangle$ (2)
Entonces, de (1) y (2): $\langle x,y\rangle = \lambda \overline{\mu}\langle x,y\rangle$

 $(\lambda\overline{\mu}-1)\langle x,y\rangle=0$, como λ y μ son distintos, el producto $\lambda\overline{\mu}$ no es igual a 1; en efecto, como $|\overline{\mu}|=1$ resulta $\overline{\mu}=\frac{1}{\mu}$, de modo que $\lambda\overline{\mu}=\frac{\lambda}{\mu}\neq 1$. Luego, para que la igualdad se cumpla debe ser $\langle x,y\rangle=0$ y así, $x\perp y$.

- 7. La matriz U es inversible y U⁻¹ = U*. Como los autovalores de U tienen módulo 1 y el determinante de una matriz es igual al producto de sus autovalores, se concluye que el determinante de U es distinto de cero, con lo cual U resulta inversible. Por otra parte, dado que U*U = UU* = I, por definición de matriz inversa es U* = U⁻¹.
- 8. U es unitaria si y sólo si U^* es unitaria. U es unitaria $\Leftrightarrow U^*U = UU^* = I \Leftrightarrow (U^*U)^* = (UU^*)^* = I^* \Leftrightarrow U^*(U^*)^* = (U^*)^*U^* = UU^* = I$, y por lo tanto, las filas de U son una base ortonormal de \mathbb{C}^n .

Matrices antihermíticas

Los siguientes resultados son válidos también para matrices antisimétricas.

Sea $A \in \mathbb{C}^{n \times n}$. Si A es antihermítica $(A^* = -A)$ entonces:

- 1. Para todo $x \in \mathbb{C}^n : x^*Ax$ es imaginario puro o cero.
- 2. Los autovalores de A son imaginarios puros o cero.
- 3. Los autovectores asociados a autovalores distintos son ortogonales.
- 4. Existe $U \in \mathbb{C}^{n \times n}$ unitaria tal que $A = UD_AU^*$.

Semejanza de matrices

Recordemos la definición de matrices semejantes.

Una matriz $A \in \mathbb{K}^{n \times n}$ es semejante a otra matriz $B \in \mathbb{K}^{n \times n}$ si existe una matriz regular $P \in \mathbb{K}^{n \times n}$ tal que $A = PBP^{-1}$.

Ejemplo

La matriz
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$$
 es semejante a $B = \begin{pmatrix} 2 & -3 \\ 1 & -1 \end{pmatrix}$ porque $A = PBP^{-1}$, siendo $P = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ y $P^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$.

Las matrices semejantes tienen el mismo polinomio característico (y por ende, los mismos autovalores), el mismo determinante y la misma traza. Observación. La afirmación recíproca de la anterior es falsa. En efecto, sean $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

y $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Las matrices A y B tienen los mismos autovalores, el mismo determinante y la misma traza pero no son semejantes, porque si lo fueran, existiría P regular tal que $A = P \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} P^{-1} = PP^{-1} = I$, pero $A \neq I$.

Por último, dos matrices A y B son unitariamente semejantes si y sólo si existe una matriz $U \in \mathbb{K}^{n \times n}$ unitaria tal que $B = UAU^*$.

En síntesis, las matrices $A \in \mathbb{K}^{n \times n}$ que hemos estudiado (hermíticas, unitarias y antihermíticas, y, en el caso real, simétricas, ortogonales y antisimétricas) pertenecen a un conjunto de matrices denominadas normales, que verifican $AA^* = A^*A$ ($AA^T = A^TA$, en el caso real) es decir, matrices que conmutan con su adjunta.

Asimismo, algunas de las propiedades que hemos estudiado se resumen en el llamado

Teorema espectral

Caso complejo Sea $A \in \mathbb{C}^{n \times n}$. Entonces, las siguientes condiciones son equivalentes:

- 1. La matriz A es normal.
- 2. Existe una base de \mathbb{C}^n formada por autovectores de A.
- 3. A es unitariamente semejante a una matriz diagonal.

Caso real Sea $A \in \mathbb{R}^{n \times n}$. Entonces, las siguientes condiciones son equivalentes:

- 1. La matriz A es normal.
- 2. Existe una base de \mathbb{R}^n formada por autovectores de A.
- 3. A es ortogonalmente semejante a una matriz diagonal.

Matrices definidas y semidefinidas positivas

Definición

La matriz $A \in \mathbb{K}^{n \times n}$ es definida positiva si y sólo si $A^* = A$ y $x^*Ax > 0 \quad \forall x \in \mathbb{K}^n, x \neq 0_{\mathbb{K}^n}$.

Definición

La matriz $A \in \mathbb{K}^{n \times n}$ es semidefinida positiva si y sólo si $A^* = A$ y $x^*Ax \ge 0 \quad \forall x \in \mathbb{K}^n$.

Proposición

La matriz $A \in \mathbb{K}^{n \times n}$ es definida positiva si y sólo si todos los autovalores son positivos.

 \Rightarrow) Sea $x \neq 0_{\mathbb{K}^n}$: $Ax = \lambda x$; como A es hermítica $\lambda \in \mathbb{R}$ entonces: $x^*Ax = x^*\lambda x = \lambda x^*x = \lambda \|x\|^2 > 0$. Dado que $\|x\|^2 > 0$ si $x \neq 0_{\mathbb{K}^n}$, para que el producto sea positivo debe ser $\lambda > 0$.

 \Leftarrow) como A es hermítica existe una base ortonormal de \mathbb{K}^n compuesta por autovectores de A. Sea $\{v_1, v_2, \dots, v_n\}$ una base ortonormal de \mathbb{K}^n , siendo $Av_i = \lambda_i v_i$

$$\forall x \in \mathbb{K}^n : x = \sum_{i=1}^n \alpha_i v_i$$
$$Ax = A\left(\sum_{i=1}^n \alpha_i v_i\right) = \sum_{i=1}^n A\left(\alpha_i v_i\right) = \sum_{i=1}^n \alpha_i \left(\lambda_i v_i\right) = \sum_{i=1}^n \alpha_i \lambda_i v_i$$

Calculamos x^*Ax :

$$x^*Ax = \left(\sum_{j=1}^n \overline{\alpha}_j v_j^*\right) \left(\sum_{i=1}^n \alpha_i \lambda_i v_i\right) = \sum_{j=1}^n \sum_{i=1}^n \overline{\alpha}_i \alpha_i \lambda_i v_j^* v_i =$$

Obsérvese que cuando $i \neq j : \langle v_i, v_j \rangle = v_i^* v_i = 0.$

$$= \sum_{i=1}^{n} \overline{\alpha}_i \alpha_i \lambda_i ||v_i||^2 = \sum_{i=1}^{n} |\alpha_i|^2 \lambda_i > 0, \quad \forall x \in \mathbb{K}^n, x \neq 0_{\mathbb{K}^n}$$

Otro criterio para determinar si una matriz es definida positiva es el siguiente:

 $A \in \mathbb{K}^{n \times n}$ es definida positiva si y sólo si todos los menores principales de A son positivos, esto es, det $(A_k) > 0$, $\forall k : 1 \le k \le n$:

$$A_1 = (a_{11})$$

$$A_2 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

$$\vdots$$

$$A_n = A$$

$$\det(A_1) > 0 \land \det(A_2) > 0 \land \cdots \land \det(A) > 0$$

Para matrices semidefinidas positivas todos menores principales tienen que ser no negativos y todos los autovalores deben ser no negativos.

Ejemplo

Determinar para qué valores de α la matriz $A = \begin{pmatrix} 1 & 2\alpha \\ 2\alpha & 1 \end{pmatrix}$ es definida positiva.

i.
$$A^T = A$$

ii.
$$p_A(\lambda) = \det \begin{pmatrix} 1 - \lambda & 2\alpha \\ 2\alpha & 1 - \lambda \end{pmatrix} = (1 - \lambda)^2 - 4\alpha^2 = 0 \Leftrightarrow \lambda = 1 - 2\alpha \lor \lambda = 1 + 2\alpha$$

 $A \text{ es definida positiva} \Leftrightarrow 1-2\alpha>0 \quad \wedge \quad 1+2\alpha>0 \quad \Leftrightarrow \quad \alpha>-1/2 \quad \alpha<1/2 \quad \Leftrightarrow \quad |\alpha|<1/2$

Ejemplo

Sea la proyección

$$T: \mathbb{R}^3 \to \mathbb{R}^3: T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1/2 & 0 & -1/2 \\ 0 & 0 & 0 \\ -1/2 & 0 & 1/2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

sobre cierto subespacio $S \subset \mathbb{R}^3$. Probar que $[T]_{E^3_{\mathbb{R}}}$ es semidefinida positiva.

La matriz $A = [T]_{E_{\mathbb{R}}^3}$ cumple que $A^T = A$ y sus autovalores son $\lambda_1 = 0$ (doble), $\lambda_2 = 1$.

Luego, la matriz A es semidefinida positiva.

También podemos calcular los subdeterminantes de A:

$$\det(1/2) = 1/2 > 0 \quad \wedge \quad \det\begin{pmatrix} 1/2 & 0 \\ 0 & 0 \end{pmatrix} = 0 \quad \wedge \quad \det\begin{pmatrix} 1/2 & 0 & -1/2 \\ 0 & 0 & 0 \\ -1/2 & 0 & 1/2 \end{pmatrix} = 0$$

Isometrías

El operador $T: \mathbb{R}^2 \to \mathbb{R}^2: T(x) = Ax$, con $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, que es la rotación de ángulo θ , en sentido antihorario alrededor del origen de coordenadas, es una isometría. Dado que la matriz A es ortogonal, cada vector de \mathbb{R}^2 y su transformado tienen la misma longitud, esto es, T preserva la norma.

La matriz asociada $A = [T]_{E_{\mathbb{R}^2}}$, donde $E_{\mathbb{R}^2}$ es la base canónica de \mathbb{R}^2 , no tiene autovalores en \mathbb{R} si $\theta \neq k\pi, k \in \mathbb{Z}$.

Definición

Sea $\mathbb V$ un espacio vectorial con producto interno. Entonces el operador $T:\mathbb V\to\mathbb V$ es una isometria si

$$d(T(x), T(y)) = d(x, y)$$

donde d es la distancia entre dos elementos de \mathbb{V} .

Proposiciones

1. T es una isometría si y sólo si preserva la norma.

$$\Rightarrow$$
) $\forall x \in \mathbb{V} : ||T(x)|| = d(T(x), 0) = d(x, 0) = ||x||$

$$(x, y) \in \mathbb{V} : d(T(x), T(y)) = ||T(x) - T(y)|| = ||T(x - y)|| = ||x - y|| = d(x, y)$$

2. T preserva el producto interno si y sólo si preserva la norma.

$$\Rightarrow) \ \forall x,y \in \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle; \ \text{si} \ x=y: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \mathbb{V}: \langle T(x),T(y)\rangle = \langle x,y\rangle \Leftrightarrow \|T(x)\|^2 = \|x\|^2 \Leftrightarrow \|T(x)\|^2 = \|x\|^2 + \|x\|^2 = \|x\|^2 + \|x\|^2 +$$

 $\Leftrightarrow ||T(x)|| = ||x||$. Luego T preserva la norma.

←) En el caso real:

Si
$$||T(x)|| = ||x|| \Rightarrow \langle T(x), T(y) \rangle = \frac{1}{4} (||T(x) + T(y)||^2 - ||T(x) - T(y)||^2) =$$

$$= \frac{1}{4} (||T(x+y)||^2 - ||T(x-y)||^2) = \frac{1}{4} (||x+y||^2 - ||x-y||^2) =$$

$$= \frac{1}{4} (\langle x+y, x+y \rangle - \langle x-y, x-y \rangle) = \frac{1}{4} (4\langle x, y \rangle) = \langle x, y \rangle$$

En el caso complejo: Si
$$||T(x)|| = ||x|| \Rightarrow \langle T(x), T(y) \rangle =$$

$$= \frac{1}{4} \left(||T(x) + T(y)||^2 - ||T(x) - T(y)||^2 + \mathrm{i}||T(x) + \mathrm{i}T(y)||^2 - \mathrm{i}||T(x) - \mathrm{i}T(y)||^2 \right)$$

$$= \frac{1}{4} \left(||x + y||^2 - ||x - y||^2 + \mathrm{i}||x + \mathrm{i}y||^2 - \mathrm{i}||x - \mathrm{i}y||^2 \right)$$
Operando como en el caso anterior, resulta:
$$= \frac{1}{4} \left(4\langle x, y \rangle \right) = \langle x, y \rangle$$

Por lo tanto, T preserva el producto interno.

Observación

El operador $T: \mathbb{C}^n \to \mathbb{C}^n: T(x) = Ux$, con $U \in \mathbb{C}^{n \times n}$ unitaria, es una isometría, ya que:

$$\langle T(x), T(x) \rangle = \langle Ux, Ux \rangle = (Ux)^*Ux = x^*U^*Ux = x^*x = \langle x, x \rangle$$

Luego ||T(x)|| = ||x|| y por lo tanto preserva el producto interno.

si T está definida como $T: \mathbb{R}^n \to \mathbb{R}^n : T(x) = Px$, con $P \in \mathbb{R}^{n \times n}$, entonces, además de preservar la norma y el producto interno, preserva los ángulos:

$$\cos\left(\widehat{T(x),T(y)}\right) = \frac{\langle T(x),T(y)\rangle}{\|T(x)\|\|T(y)\|} = \frac{\langle x,y\rangle}{\|x\|\|y\|} = \cos\left(\widehat{x,y}\right)$$

Ejemplo. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ la reflexión sobre el subespacio $S = \{x \in \mathbb{R}^3 : x_1 - x_2 + x_3 = 0\}$. Considerando el producto interno canónico, hallar $[T]_{E_{\mathbb{R}^3}}$ y comprobar que es ortogonal, y por lo tanto T es una isometría.

Sea
$$B = \{v_1 = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}^T, v_2 = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix}^T, v_3 = \begin{pmatrix} 1 & -1 & 1 \end{pmatrix}^T \}, v_1, v_2 \in S \text{ y } v_3 \in S^{\perp}.$$
 Luego:
$$T(v_1) = v_1$$

$$T(v_2) = v_2$$

$$T(v_3) = -v_3$$

entonces B es una base de autovectores y $\lambda_1 = 1$ (doble), $\lambda_2 = -1$ son autovectores de T.

$$[T]_{E_{\mathbb{R}^3}} = M_B^{E_{\mathbb{R}^3}} [T]_B \ M_{E_{\mathbb{R}^3}}^B$$

$$\begin{split} [T]_{E_{\mathbb{R}^3}} &= \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 2/3 & 1/3 & -1/3 \\ -1/3 & 1/3 & 2/3 \\ 1/3 & -1/3 & 1/3 \end{pmatrix} \\ & [T]_{E_{\mathbb{R}^3}} &= \begin{pmatrix} 1/3 & 2/3 & -2/3 \\ 2/3 & 1/3 & 2/3 \\ -2/3 & 2/3 & 1/3 \end{pmatrix} \end{split}$$

esta matriz tiene columnas ortonormales.

Ejemplo. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ la rotación de ángulo θ alrededor del eje x_3 :

$$T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

la matriz

$$A = [T]_{E_{\mathbb{R}^3}} = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

es ortogonal, y por lo tanto la transformación T es una isometría.

Su polinomio característico es

$$p(\lambda) = \det \begin{pmatrix} \cos \theta - \lambda & -\sin \theta & 0 \\ \sin \theta & \cos \theta - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{pmatrix} = (1 - \lambda) (\lambda^2 - 2\cos \theta \lambda + 1) = 0$$

y sus soluciones son $\lambda_1 = 1, \lambda_2 = \cos \theta + i \sin \theta, \lambda_3 = \cos \theta - i \sin \theta$;

El autoespacio asociado a $\lambda_1 = 1$ es el conjunto solución del sistema $\begin{cases} (\cos \theta - 1)x_1 - \sin \theta \ x_2 = 0 \\ \sin \theta \ x_1 + (\cos \theta - 1)x_2 = 0 \end{cases}$

como det $\begin{pmatrix} \cos \theta - 1 & -\sin \theta \\ \sin \theta & \cos \theta - 1 \end{pmatrix} = (\cos \theta - 1)^2 + \sin^2 \theta = \cos^2 \theta - 2 \cos \theta + 1 + \sin^2 \theta = 2 - 2 \cos \theta = 4 \sin^2 \left(\frac{\theta}{2}\right)$, el sistema tiene únicamente la solución $x_1 = x_2 = 0$;

si $\theta \neq 2k\pi, k \in \mathbb{Z}$; en esté caso, los autovectores correspondientes a $\lambda_1 = 1$ son de la forma $\begin{pmatrix} 0 & 0 & x_3 \end{pmatrix}^T, x_3 \in \mathbb{R} \setminus \{0\}.$

Si $\theta = 2k\pi$:, $A = I_{3\times 3}$ y en este caso cualquier vector de \mathbb{R}^3 es un autovector.

Si $\theta = (2k + 1)\pi$, $\lambda_2 = \lambda_3 = -1$, sus autovectores son todos los del plano $x_3 = 0$; en este caso tenemos una simetría con respecto al eje x_3 .