Math 13 - Week 9: Equivalence Relations

- 1. Suppose A is an infinite set such that $|A| < |\mathbb{N}|$.
 - (a) Argue that there exists an injective function $f: A \to \mathbb{N}$.
 - (b) Let the elements in the image of f in increasing order

$$Im(f) = \{n_1, n_2, \ldots\}.$$

Prove that the image is infinite.

- (c) Show that for all $k \in \mathbb{N}$, there is a unique $a_i \in A$ such that $f(a_k) = n_k$.
- (d) Define $g: \mathbb{N} \to A$ by $g(k) = a_k$. Prove that g is a bijection.
- (e) Why do we obtain a contradiction?
- 2. What, if anything, is wrong with these proofs?
 - (a) We prove that the sum of the first n natural numbers is $\frac{n(n+1)}{2}$. For P(1) we have $1 = \frac{1 \cdot 2}{2}$. Now assume that k = n is true. Then we have

$$1+2+\cdots+n+(n+1)=P(n)+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2},$$
 so $k=n+1$ is true.

(b) Suppose a and b are integers with $a \equiv 1 \pmod 3$ and $b \equiv 2 \pmod 3$. Then $(a+b) \equiv 0 \pmod 3$.

Proof. Since $a \equiv 1 \pmod{3}$, then a = 3k + 1 for some integer k. Similarly, b = 3k + 2. We then have (a + b) = (3k + 1) + (3k + 2) = 6k + 3 = 3(2k + 1), which is divisible by 3. Hence, $a + b \equiv 0 \pmod{3}$.

(c) If there's a surjective function f:

Proof. Assume for the sake of contradiction that $1 \leq \frac{1}{a}$. Since a > 1, we can divide both sides of this equation to obtain 1 > 1/a, which contradicts our assumption that $1 \leq 1/a$.