2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S)

DSN-S 2024

Table of Contents

Message from the Disrupt'24 Chairs xi Message from the Doctoral Forum Chairs xi Message from the Tutorial Chairs xii Message from the Industry Chairs xiii Message from the Poster Track Chairs xiv Message from the Artifacts Chairs xv Artifacts Committee xvi
Disrupt
AuSSE: A Novel Framework for Security and Safety Evaluation for Autonomous Vehicles
An Experimental Characterization of Combined RowHammer and RowPress Read Disturbance in Modern DRAM Chips
Exploring Use of Symbolic Execution for Service Analysis
When Green Computing Meets Performance and Resilience SLOs

Neural Fault Injection: Generating Software Faults from Natural Language	23
PANDA: Practical Adversarial Attack Against Network Intrusion Detection Subrat Kumar Swain (UQ-IITD Research Academy), Vireshwar Kumar (Indian Institute of Technology Delhi), Guangdong Bai (The University of Queensland), and Dan Dongseong Kim (The University of Queensland)	. 28
Harnessing Explainability to Improve ML Ensemble Resilience	.33
On the Design of Coordination Services for IoT	. 38
Doctoral Forum	
Patching the Cracks: Detecting and Addressing Adversarial Examples in Real-World Applications Niklas Bunzel (Fraunhofer SIT/ATHENE/TU-Darmstadt, Germany)	. 43
Reducing the gap between theory and Practice in Real-Time Systems with MARS Giann Spilere Nandi (CISTER, Polytechnic Institute of Porto, Portugal), David Pereira (CISTER, Polytechnic Institute of Porto, Portugal), José Proença (CISTER, Polytechnic Institute of Porto, Portugal), Eduardo Tovar (CISTER, Polytechnic Institute of Porto, Portugal), and Luís Nogueira (CISTER, Polytechnic Institute of Porto, Portugal)	.47
MTD in Plain Sight: Hiding Network Behavior in Moving Target Defenses Tina Moghaddam (The University of Queensland, Australia), Guowei Yang (The University of Queensland, Australia), Chandra Thapa (CSIRO Data61, Australia), Seyit Camtepe (CSIRO Data61, Australia), and Dan Dongseong Kim (The University of Queensland, Australia)	. 50
Advancing NDN Security for IoT: Harnessing Machine Learning to Detect Attacks	.53
Novel CAN Bus Fuzzing Framework for Finding Vulnerabilities in Automotive Systems	. 56
Secure Data Provenance in Internet of Vehicles with Verifiable Credentials for Security and Privacy	. 59
Anuj Nepal (Deakin University, Australia), Robin Doss (Deakin University, Australia), and Frank Jiang (Deakin University, Australia)	

(Re)-Envisioning Approximate Agreement for Distributed Cryptography and Oracles	62
Tutorial	
Tutorial: Safe, Secure, and Trustworthy Artificial Intelligence (AI) via Formal Verification of Neural Networks and Autonomous Cyber-Physical Systems (CPS) with NNV Taylor T. Johnson (Vanderbilt University, TN), Diego Manzanas Lopez (Vanderbilt University, TN), and Hoang-Dung Tran (University of Nebraska Lincoln, NE)	65
Zero-Knowledge Proofs for Blockchains	67
Evaluating Performance and Dependability of Blockchain Protocols with Diablo	69
Tutorial: LLTFI and the Art of Fault Injection	71
Industry	
Intrusion Detection at Scale with the Assistance of a Command-line Language Model	73
Bridging the Gap: A Study of AI-Based Vulnerability Management between Industry and Academia	80
Investigating Memory Failure Prediction Across CPU Architectures	88
Federated Unlearning in the Internet of Vehicles	96

Zone-Hopping: Sensitive Information Leakage Prevention for DNSSEC-NSEC
Optimizing Large-Scale Fault Injection Experiments through Martingale Hypothesis: A Systematic Approach for Reliability Assessment of Safety-Critical Systems
Active Learning Omnivariate Decision Trees for Fault Diagnosis in Robotic Systems
Empowering Data Centers with Computational Storage Drive-Based Deep Learning Inference Functionality to Combat Ransomware
Road Decals as Trojans: Disrupting Autonomous Vehicle Navigation with Adversarial Patterns 133 Wei-Jia Chen (NYCU), Chia-Yi Hsu (NYCU), Wei-Bin Lee (Hon Hai (Foxconn) Research Institute), Chia-Mu Yu (NYCU), and Chun-Ying Huang (NYCU)
Fault Localization Using Interventional Causal Learning for Cloud-Native Applications
Poster
Federated Anomaly Detection
Mitigating False Positives in DGA Detection for Non-English Domain Names
Cryptography-Based Bootstrapping Scheme for Permissionless Sharding Blockchain
Poster: Optimizing Tree-Based Quorum Certification for BFT Systems at Planetary-Scale

Boosting Communication Efficiency of Federated Learning's Secure Aggregation	157
Balancing Privacy and Attack Utility: Calibrating Sample Difficulty for Membership Inference Attacks in Transfer Learning	159
Synergizing GCN and GAT for Hardware Trojan Detection and Localization	161
Author Index	163