Teoría de la Computación

Clase 29: Ejemplos de Lenguajes indecidibles y irreconocibles

Mauro Artigiani

08 Noviembre 2021

Universidad del Rosario, Bogotá

Introducción

Los lenguajes que hemos visto

Un lenguaje indecidible

Un lenguaje fundamental

Consideramos el lenguaje

 $A_{\mathtt{TM}} = \{ \langle M, w \rangle : M \text{ es una TM tal que } M \text{ acepta } w \}.$

Un lenguaje fundamental

Consideramos el lenguaje

$$A_{\text{TM}} = \{\langle M, w \rangle : M \text{ es una TM tal que } M \text{ acepta } w\}.$$

Teorema

El lenguaje A_{TM} no es Turing-decidible.

Un lenguaje fundamental

Consideramos el lenguaje

$$A_{\mathtt{TM}} = \{\langle M, w \rangle : M \text{ es una TM tal que } M \text{ acepta } w\}.$$

Teorema

El lenguaje A_{TM} no es Turing-decidible.

Nótese que A_{TM} sí es Turing-reconocible (¿por qué?)

Demostración: A_{TM} no es Turing-decidible

Supongamos por absurdo que A_{TM} sea Turing-decidible y sea H una máquina de Turing que decida este problema. Es decir:

- 1. H se detiene en toda entrada;
- 2. $\langle M, w \rangle \in A_{TM}$ si y solo si H acepta $\langle M, w \rangle$.

Demostración: A_{TM} no es Turing-decidible

Supongamos por absurdo que $A_{\rm TM}$ sea Turing-decidible y sea H una máquina de Turing que decida este problema. Es decir:

- 1. *H* se detiene en toda entrada;
- 2. $\langle M, w \rangle \in A_{TM}$ si y solo si H acepta $\langle M, w \rangle$.

Sea D una TM definida de la siguiente manera:

- 1: procedure $D(\langle M \rangle)$
- 2: Correr $H(\langle M, \langle M \rangle \rangle)$
- 3: **if** se obtiene Aceptar **then**
- 4: Rechazar
- 5: else
- 6: Aceptar

Demostración: A_{TM} no es Turing-decidible

Para no confundirnos: H por definición acepta $\langle M,w\rangle$ si y solo si M acepta w.

Demostración: A_{TM} no es Turing-decidible

Para no confundirnos: H por definición acepta $\langle M,w\rangle$ si y solo si M acepta w.

En particular podemos elegir $w = \langle M \rangle$. En este caso

D acepta $\langle M \rangle$ sii H no acepta $\langle M \rangle$ sii M no acepta $\langle M \rangle$.

Demostración: A_{TM} no es Turing-decidible

Para no confundirnos: H por definición acepta $\langle M,w\rangle$ si y solo si M acepta w.

En particular podemos elegir $w = \langle M \rangle$. En este caso

D acepta $\langle M \rangle$ sii H no acepta $\langle M \rangle$ sii M no acepta $\langle M \rangle$.

Al ser D también una TM, podemos hacer el mismo con su descripción:

D acepta $\langle D \rangle$ sii H no acepta $\langle D \rangle$ sii D no acepta $\langle D \rangle$.

Demostración: A_{TM} no es Turing-decidible

Para no confundirnos: H por definición acepta $\langle M,w\rangle$ si y solo si M acepta w.

En particular podemos elegir $w = \langle M \rangle$. En este caso

D acepta $\langle M \rangle$ sii H no acepta $\langle M \rangle$ sii M no acepta $\langle M \rangle$.

Al ser D también una TM, podemos hacer el mismo con su descripción:

D acepta $\langle D \rangle$ sii H no acepta $\langle D \rangle$ sii D no acepta $\langle D \rangle$.

De esta contradicción sigue que A_{TM} no es Turing-decidible.

Un lenguaje irreconocible

Lema

Un lenguaje L es Turing-decidible sii L y \bar{L} son Turing-reconocibles.

Lema

Un lenguaje L es Turing-decidible sii L y \bar{L} son Turing-reconocibles.

 \Rightarrow) Supongamos que L sea Turing-decidible. Luego, L es Turing-reconocible.

Lema

Un lenguaje L es Turing-decidible sii L y \bar{L} son Turing-reconocibles.

 \Rightarrow) Supongamos que L sea Turing-decidible. Luego, L es Turing-reconocible. Siendo L decidible existe una máquina de Turing M que lo decide.

Lema

Un lenguaje L es Turing-decidible sii L y \bar{L} son Turing-reconocibles.

 \Rightarrow) Supongamos que L sea Turing-decidible. Luego, L es Turing-reconocible. Siendo L decidible existe una máquina de Turing M que lo decide. Sea N la TM que realiza el siguiente algoritmo:

```
1: procedure N(w)
```

- 2: Correr M(w)
- 3: **if** se obtiene Aceptar **then**
- 4: Rechazar
- 5: **else**
- 6: Aceptar

Lema

Un lenguaje L es Turing-decidible sii L y \bar{L} son Turing-reconocibles.

 \Rightarrow) Supongamos que L sea Turing-decidible. Luego, L es Turing-reconocible. Siendo L decidible existe una máquina de Turing M que lo decide. Sea N la TM que realiza el siguiente algoritmo:

```
1: procedure N(w)
```

- 2: Correr M(w)
- 3: **if** se obtiene Aceptar **then**
- 4: Rechazar
- 5: **else**
- 6: Aceptar

N reconoce a \bar{L} .

Demostración del criterio para decidibilidad

 \Leftarrow) Supongamos que ambos L y \bar{L} sean Turing-reconocibles. Sean M y N las TM que los reconocen.

Demostración del criterio para decidibilidad

- \Leftarrow) Supongamos que ambos L y \bar{L} sean Turing-reconocibles. Sean M y N las TM que los reconocen. Definimos T que decide a L así:
 - 1: procedure T(w)
 - 2: Correr en paralelo M(w) y N(w)
 - 3: **if** M produce Aceptar **then**
 - 4: Aceptar
 - 5: **if** N produce Aceptar **then**
 - 6: rechazar

Podemos utilizar lo que acabamos de demostrar para dar un ejemplo de un lenguaje que no sea Turing-reconocible.

Podemos utilizar lo que acabamos de demostrar para dar un ejemplo de un lenguaje que no sea Turing-reconocible.

Corolario

 \overline{A}_{TM} no es Turing-reconocible.

Podemos utilizar lo que acabamos de demostrar para dar un ejemplo de un lenguaje que no sea Turing-reconocible.

Corolario

 $\overline{A_{\text{TM}}}$ no es Turing-reconocible.

Demostración

Supongamos por absurdo que $\overline{A_{\rm TM}}$ sea Turing-reconocible.

Podemos utilizar lo que acabamos de demostrar para dar un ejemplo de un lenguaje que no sea Turing-reconocible.

Corolario

 $\overline{A_{\rm TM}}$ no es Turing-reconocible.

Demostración

Supongamos por absurdo que $\overline{A_{\rm TM}}$ sea Turing-reconocible. Hemos dicho antes que $A_{\rm TM}$ es Turing-reconocible.

Podemos utilizar lo que acabamos de demostrar para dar un ejemplo de un lenguaje que no sea Turing-reconocible.

Corolario

 \overline{A}_{TM} no es Turing-reconocible.

Demostración

Supongamos por absurdo que $\overline{A_{\rm TM}}$ sea Turing-reconocible. Hemos dicho antes que $A_{\rm TM}$ es Turing-reconocible. Entonces, por el lema anterior sigue que $A_{\rm TM}$ es Turing-decidible, lo que es absurdo.

De la contradicción sigue que $\overline{A_{\rm TM}}$ no es Turing-reconocible.

Si \bar{L} es Turing-reconocible, decimos que L es co-Turing-reconocible. El corolario también se puede expresar como $A_{\rm TM}$ no es co-Turing-reconocible.

Resumen

Resumen

Hoy aprendimos:

- Un ejemplo de lenguaje no Turing-decidible;
- Un ejemplo de lenguaje no Turing-reconocible;
- La relación entre lenguajes Turing-decidibles, Turing-reconocibles y co-Turing-reconocibles.