1. Coordenadas y cambio de base

Instrucciones: Resuelva los ejercicios indicando con detalle la resolución de los mismos y argumentando sus respuestas.

- Resuelva los problemas y haga las demostraciones que hayan quedado como ejercicios en clase.
- 2. Considere las bases ordenadas de \mathbb{R}^3 : $\mathcal{B}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ y $\mathcal{B}_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, y sea $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in \mathbb{R}^3$. Calcule:
 - $a) v_{\mathcal{B}_1},$
 - b) $v_{\mathcal{B}_2}$,
 - c) la matriz de transición de \mathcal{B}_1 a \mathcal{B}_2 ,
 - d) la matriz de transición de \mathcal{B}_2 a \mathcal{B}_1 .
 - e) Compruebe sus resultados de a) y b) empleando las matrices de c) y d).
- 3. Sean $\mathcal{B}_1 = (2, 1-x, 1+x^2)$ y $\mathcal{B}_2 = (-3, 1+x^2, x-x^2)$ bases ordenadas de $\mathcal{P}_2(\mathbb{R})$. Calcule los mismos incisos que en el ejercicio anterior si $v = 1 + 2x + 3x^2 \in \mathcal{P}_2(\mathbb{R})$.
- 4. Sean \mathcal{E} la base canónica de matrices 2×2 con entradas reales y $\mathcal{B} = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \right) \text{ otra base del mismo espacio. Calcule los mismos incisos que en el ejercicio anterior si } v = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \in \mathcal{M}_2(\mathbb{R}).$
- 5. En \mathbb{R}^2 suponga que $x_{\mathcal{B}_1} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, donde $\mathcal{B}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Calcule $x_{\mathcal{B}_2}$, donde $\mathcal{B}_2 = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 5 \\ -1 \end{pmatrix}$.
- 6. Resuelva los ejercicios 24, 25 y 26 de la lista de ejercicios 1.

2. Ejercicios de Transofrmaciones Lineales

Instrucciones: Resuelva los ejercicios indicando con detalle la resolución de los mismos y argumentando sus respuestas.

- Resuelva los problemas y haga las demostraciones que hayan quedado como ejercicios en clase.
- 2. Determine si las siguientes funciones son transformaciones lineales o no lo son.

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 dada por $T(x, y) = (x + y, 0)$.

b)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 dada por $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ xy \end{pmatrix}$.

c)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 dada por $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ y + 1 \end{pmatrix}$.

d)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 dada por $T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} (x_1 + x_2)^2 \\ 0 \end{pmatrix}$.

e)
$$T: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^2$$
 dada por $T(a_0 + a_1 x + a_2 x^2) = \begin{pmatrix} -a_0 \\ a_1 + a_2 \end{pmatrix}$.

$$f)$$
 $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ dada por $T(a_0 + a_1x + a_2x^2) = \begin{pmatrix} a_0 & -a_1 \\ a_2 & 1 \end{pmatrix}$.

$$g)$$
 $T: \mathcal{M}_2(\mathbb{C}) \to \mathbb{C}^2$ dada por $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+b \\ c-d \end{pmatrix}$.

$$h)$$
 $D: \mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R})$ dada por $D(p) = p'$.

$$i)$$
 $I: \mathcal{P}_n(\mathbb{R}) \to \mathbb{R}$ dada por $I(p) = \int_a^b p$, donde $a, b \in \mathbb{R}$ con $a < b$.

$$j)$$
 $T: \mathbb{R}^2 \to \mathbb{C}_{\mathbb{R}}$ dada por $T\begin{pmatrix} a \\ b \end{pmatrix} = a + bi$.

$$k)$$
 $T: \mathbb{C}_{\mathbb{R}} \to \mathbb{R}^2$ dada por $T(a+bi) = \begin{pmatrix} a \\ b \end{pmatrix}$.

- 3. Sea $T: V \to W$ lineal. Pruebe que el kernel de T es un subespacio de V.
- 4. Sea $T:V\to W$ lineal. Pruebe que la imagen de T es un subespacio de W.

- 5. Sea $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ con $\theta \in \mathbb{R}$. Pruebe que A es un operador lineal sobre \mathbb{R}^2 y calcule las imágenes de los vértices del cuadrado (0,0),(1,0),(1,1),(0,1). Interprete geométricamente este operador, llamado operador o matriz de rotación en el plano.
- 6. Calcule el kernel, la imagen, una base para el kernel, la nulidad, una base para la imagen y el rango de las siguientes transformaciones lineales:

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 dada por $T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}$.

b)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 dada por $T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

c)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 dada por $T \begin{pmatrix} x_1 \\ x_2 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_1 - x_3 \\ x_1 + 4x_2 \\ x_1 - 2x_2 + 3x_3 \end{pmatrix}$.

d)
$$T: \mathbb{R}^4 \to \mathbb{R}^2$$
 dada por $T \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x+z \\ y+w \end{pmatrix}$.

e) $T: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ dada por $T(A) = A^t$ (A^t representa la transpuesta de A).

$$f)$$
 $T: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^3$ dada por $T(a_0 + a_1 x + a_2 x^2) = \begin{pmatrix} a_0 \\ a_1 \\ -a_2 \end{pmatrix}$.

 $g) D: \mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R}) \text{ dada por } D(p) = p'.$