Université A. Mira de Béjaia Faculté des Sciences Exactes Département de Mathématiques Concours national d'entrée en Doctorat LMD

Spécialité: Mathématiques

Options: Analyse, Probabilités et Statistiques

08/10/2016

Epreuve commune : Mathématiques de base

Durée: 02 heures

Problème 1 (10 points):

Partie I:

On munit $E = \mathbb{R}^* \times \mathbb{R}$ de la loi \star définie par :

$$\forall (a_1, b_1), (a_2, b_2) \in E : (a_1, b_1) \star (a_2, b_2) = (a_1 a_2, a_1 b_2 + b_1).$$

1. Montrer que (E, \star) est un groupe.

— Ce groupe est-il abélien? Justifier.

2. Soit $H = \{(1, b), b \in \mathbb{R}\}.$

- (a) Montrer que H est un sous-groupe de (E, \star) .
- (b) Montrer que (H, \star) est isomorphe à $(\mathbb{R}, +)$.

Partie II:

Pour tout $a \in \mathbb{R}^*$ et tout $b \in \mathbb{R}$, on considère l'endomorphisme $f_{a,b}$ de \mathbb{R}^2 défini par :

$$\begin{pmatrix}
f_{a,b} : \mathbb{R}^2 & \longrightarrow \mathbb{R}^2 \\
\begin{pmatrix} x \\ y \end{pmatrix} & \longmapsto \begin{pmatrix} ax + by \\ y \end{pmatrix}.$$

- 1. Etant donné $(a, b) \in \mathbb{R}^* \times \mathbb{R}$, déterminer la matrice $A_{a,b}$ associée à l'endomorphisme $f_{a,b}$ relativement à la base canonique de \mathbb{R}^2 .
- 2. On note par G l'ensemble de toutes les matrices $A_{a,b}$ $(a \in \mathbb{R}^*, b \in \mathbb{R})$.
 - Montrer que (G, \cdot) (où \cdot est la loi de multiplication des matrices) est un groupe et qu'il est isomorphe au groupe (E, \star) .
- 3. Soient $a \in \mathbb{R} \setminus \{0, 1\}$ et $b \in \mathbb{R}$.
 - (a) Montrer que $\mathscr{B} := \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -b \\ a-1 \end{pmatrix} \right\}$ constitue une base du \mathbb{R} -espace vectoriel \mathbb{R}^2 puis écrire la matrice $D_{a,b}$ associée à l'endomorphisme $f_{a,b}$ de \mathbb{R}^2 relativement à cette nouvelle base \mathscr{B} .
 - (b) Justifier sans calcul la formule matricielle : $A_{a,b} = PD_{a,b}P^{-1}$, où $P := \begin{pmatrix} 1 & -b \\ 0 & a-1 \end{pmatrix}$.
 - (c) Montrer que pour tout $n \in \mathbb{N}$, on a :

$$A_{a,b}^n = PD_{a,b}^n P^{-1}.$$

(d) Pour tout $n \in \mathbb{N}$, exprimer $A^n_{a,b}$ en fonction de n puis en déduire une expression simple pour l'élément de E suivant :

$$\underbrace{(2,1)\star(2,1)\star\cdots\star(2,1)}_{n \text{ fois}}.$$

Problème 2 (10 points):

On considère dans \mathbb{R} l'équation :

$$x = \frac{1}{2}\cos x \tag{*}$$

- 1. Montrer que (??) possède une unique solution dans \mathbb{R} . Pour toute la suite, on notera α cette solution.
- 2. Montrer que $\alpha \in]0, \frac{1}{2}[$.
- 3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle vérifiant la relation de récurrence :

$$u_{n+1} = \frac{1}{2}\cos u_n \qquad (\forall n \in \mathbb{N}).$$

(a) Montrer que pour tout $n \in \mathbb{N}$, on a :

$$|u_{n+2} - u_{n+1}| \le \frac{1}{2} |u_{n+1} - u_n|.$$

(b) En déduire que pour tout $n \in \mathbb{N}$, on a :

$$|u_{n+1} - u_n| \le \frac{1}{2^n} |u_1 - u_0|.$$

- (c) En déduire que $(u_n)_n$ est une suite de Cauchy et qu'elle converge vers α .
- 4.
- (a) Montrer les deux estimations suivantes :

$$\int_0^1 \sin\left(\alpha x\right) dx \le \frac{\alpha}{2} \tag{1}$$

$$\int_0^1 \sin(\alpha x) \, dx = \frac{1}{\alpha} - 2 \tag{2}$$

(b) En déduire l'encadrement plus précis pour α suivant :

$$\frac{4}{9} < \alpha < \frac{1}{2}.$$

Bon travail