山小

GENERAL MATH faderal Board Islamabad Presented by:

Urdu Books Whatsapp Group

STUDY GROUP

10TH CLASS

0333-8033313 راؤاباز 7008883-0343 ياكستان زنده باد

0306-7163117 محمد سلمان سليم

Prior Super One "General Math" 10th Solve: I-If $P(x) = x^4 + 3x^2 - 5x + 9$, then find P(x), for x = 0, x = 1. $P(x) = x^4 + 3x^2 - 5x + 9$ Sol. $P(0) = (0)^4 + 3(0)^2 - 5(0) + 9$ =0+0-0+9ध्यातं $P(1) = (1)^4 + 3(1)^2 - 5(1) + 9$ -1+3-5+9 -13 - 5- 8 If $P(x) = 2x^3 + 2x^2 + x - 1$, then find P(-2)2-Sol. $P(x) = 2x^3 + 2x^2 + x = 1$ Therefore, $P(-2) = 2(-2)^3 + 2(-2)^2 + (-2) - 1$ = 2(-8) + 2(4) - 2 - 1**--16+8-2-**1 = # - 16 - 2 - 1 -8 - 19=-11 If $P(y) = 3y^2 + \frac{y}{4} + 9$, then find P(0). $P(y) = 3y^2 + \frac{y}{4} + 9$ $P(0) = 3(0)^2 + \frac{0}{4} + 9$ =3(0)+0+9If $P(x) = 9x^3 - 2x^2 + 3x + 1$, then find P(1) and P(2). $P(x) = 9x^3 - 2x^2 + 3x + 1$ Sol. $P(1) = 9(1)^3 - 2(1)^2 + 3(1) + 1$

			_	
Pilot S	ирст О	ne "General Math" 10th	<u> </u>	•
		=9(1)-2(1)+3+1		
		=9-2+3+1		_
		= 13 - 2		
		=11		
and	P(2)	$=9(2)^3-2(2)^2+3(2)+1$!
		· 9(8) - 2(4) + 6 + 1		
		= 72 - 8 + 6 + 1		
		= 79 - 8	\cap	
		- 7	\cup	
5-		$(x) = \frac{x^2 - 5x + 6}{x + 1}, \text{ then find P(1) and}$	P(2).	
Sol.		$=\frac{x^2-5x+6}{x+1}$		1
	P(1)	$=\frac{(1)^2-5(1)+6}{1+1}$		1
		$=\frac{1-5+6}{1+1}$		
		$-\frac{2}{2}$		
		-1		
and	P(2)	$=\frac{(2)^2-5(2)+6}{2+1}$		
		$=\frac{4-10+6}{3}$		
) •		$-\frac{0}{3}$		
		- 0		
6-	If P(r) = $2\pi r$, then find $P(r)$, for $r = 3$ and	$d \mathbf{x} = \frac{22}{7}.$	
Sol.		P(r) = 2πr	,	

By putting the values of r and π

Pilot	Super One "General Math" 10th	9
	P(r)	$=2\times\frac{22}{7}\times3$
		$=\frac{132}{7}$
		= 18.9 (approximately)
7-	If $P(r) = 4\pi r^2$, then find $P(r)$, for	$r = 8$ and $\pi = \frac{22}{7}$.
Sol.		$=4\pi r^2$
	By putting the values of r and π	
	P(r)	$=4\times\frac{22}{7}\times(8)^2$
		$\Rightarrow 4 \times \frac{22}{7} \times 64$
		$=\frac{5632}{7}$
		= 804.57
8-	If $P(y) = y^4 + \frac{3y^3}{2} - y^2 + 1$, then	
	y = -2.	
Sol.	$P(y) = x^4 + \frac{3y^3}{2} - y^2 + 1$	
		for $y = 2$
	$P(2) = (2)^4 + \frac{3(2)^3}{2} - (2)^2 + 1$	-
	$=16+\frac{3\times8}{2}-4+1$	•
	= 16 + 12 - 4 + 1	

 $P(-2) = (-2)^4 + \frac{3(-2)^3}{2} - (-2)^2 + 1$ for y = -2

عظمت صحابه زنده باد

ختم نبوت صَالِيَّا عُمْ زنده باد

السلام عليكم ورحمة الله وبركاته:

معزز ممبران: آپ کاوٹس ایپ گروپ ایڈ من "اردو بکس" آپ سے مخاطب ہے۔

آپ تمام ممبران سے گزارش ہے کہ:

- ب گروپ میں صرف PDF کتب پوسٹ کی جاتی ہیں لہذا کتب کے متعلق اپنے کمنٹس / ریویوز ضرور دیں۔ گروپ میں بغیر ایڈ من کی اجازت کے کسی بھی قشم کی (اسلامی وغیر اسلامی ،اخلاقی ، تحریری) پوسٹ کرنا پیخی سے منع ہے۔
- گروپ میں معزز ، پڑھے لکھے، سلجھے ہوئے ممبر ز موجود ہیں اخلاقیات کی پابندی کریں اور گروپ رولز کو فالو کریں بصورت دیگر معزز ممبر ز کی بہتری کی خاطر ریموو کر دیاجائے گا۔
 - 💠 کوئی بھی ممبر کسی بھی ممبر کوانباکس میں میسیج، مس کال، کال نہیں کرے گا۔رپورٹ پر فوری ریمو و کرکے کاروائی عمل میں لائے جائے گا۔
 - 💠 ہمارے کسی بھی گروپ میں سیاسی و فرقہ واریت کی بحث کی قطعاً کوئی گنجائش نہیں ہے۔
 - 💠 اگر کسی کو بھی گروپ کے متعلق کسی قشم کی شکایت یا تجویز کی صورت میں ایڈ من سے رابطہ کیجئے۔
 - * سبسے اہم بات:

گروپ میں کسی بھی قادیانی، مرزائی، احمدی، گتاخِ رسول، گتاخِ امہات المؤمنین، گتاخِ صحابہ و خلفائے راشدین حضرت ابو بکر صدیق، حضرت عمرفاروق، حضرت عثمان غنی، حضرت علی المرتضی، حضرت حسنین کریمین رضوان الله تعالی اجمعین، گتاخ المبیت یا ایسے غیر مسلم جو اسلام اور پاکستان کے خلاف پر اپلینڈ امیس مصروف ہیں یا ان کے روحانی و ذہنی سپورٹرز کے لئے کوئی گنجائش نہیں ہے۔ لہذا ایسے اشخاص بالکل بھی گروپ جو ائن کرنے کی زحمت نہ کریں۔ معلوم ہونے پر فوراً ریمووکر دیا جائے گا۔

- ب تمام کتب انٹر نیٹ سے تلاش / ڈاؤ نلوڈ کر کے فری آف کاسٹ وٹس ایپ گروپ میں شیئر کی جاتی ہیں۔جو کتاب نہیں ملتی اس کے لئے معذرت کر لی جاتی ہے۔جس میں محنت بھی صَرف ہوتی ہے لیکن ہمیں آپ سے صرف دعاؤں کی درخواست ہے۔
 - عمران سیریز کے شوقین کیلئے علیحدہ سے عمران سیریز گروپ موجو دہے۔

اردوکتب / عمران سیریزیاسٹڈی گروپ میں ایڈ ہونے کے لئے ایڈ من سے وٹس ایپ پر بذریعہ میسی دابطہ کریں اور جواب کا انتظار فرمائیں۔ برائے مہر بانی اخلاقیات کا خیال رکھتے ہوئے موبائل پر کال یا ایم ایس کرنے کی کوشش ہر گزنہ کریں۔ ورنہ گروپس سے توریموو کیا ہی جائے گا بلاک بھی کیا حائے گا۔
 حائے گا۔

نوٹ: ہارے کسی گروپ کی کوئی فیس نہیں ہے۔سب فی سبیل اللہ ہے

0333-8033313

0343-7008883

0306-7163117

راؤاياز

ياكستان زنده باد

محرسلمان سليم

بإكستان بإئنده باد

پاکستان زنده باد

الله تبارك تعالى جم سب كاحامى وناصر ہو

oms. com. Pilot Super One "General Math" 10th $=16+\frac{3(-8)}{2}-4+1$ = 16 - 12 - 4 + 1

Reduce the given rational expressions to lowest terms.

$$Q.9 = \frac{8x^2y^2}{12x^4y}$$

= 1

Sol. =
$$\frac{2y^{2-1}}{3x^{4-2}}$$

= $\frac{2y}{3x^2}$

Q.10
$$\frac{25a^3b^3}{14a^2b^4}$$

Sol. =
$$\frac{25a^{3-2}}{14b^{4-2}}$$

= $\frac{25a}{14b^2}$

Q.11
$$\frac{16a^4b^7}{12a^3b^3 + 20a^5b^4}$$

Sol. =
$$\frac{16a^{b}b^{1}}{4a^{3}b^{4}(3b+5a^{2})}$$

$$=\frac{4a^{4-1}b^{7-4}}{(5a^2+3b)}$$

$$\int_{a}^{a} = \frac{4a^3b^3}{5a^2+3b}$$

Q.12
$$\frac{18m^3x^3}{27m^4x^8 - 36m^4x^6}$$

Sol. =
$$\frac{18m^3x^3}{9m^4x^6(3x^2-4m^2)}$$

$$=\frac{2m^{3^{-4}}}{x^{4^{-3}}(3x^2-4m^2)}$$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 4 of 32)

Pilot Super One "General Math" 10th 11 $=\frac{2m}{x^3(3x^2-4m^2)}$ $=\frac{2m}{3x^3-4m^2x^3}$ Q.13 $\frac{5c-5d}{c^2-d^2}$ Sol. $\approx \frac{5(c-d)}{(c-d)(c+d)}$ $=\frac{5}{(c+d)}$ Q.14 $\frac{x^2-y^2}{3y-3x}$ Sol. $= \frac{(x-y)(x+y)}{3(y-x)}$ $=\frac{(x-y)(x+y)}{-3(x-y)}$ $=\frac{x+y}{-2}$ Simplify: Q.15 $\frac{x}{x-y} + \frac{x^2}{x^2+y^2}$ Sol. = $\frac{x(x^2 + y^2) + x^2(x - y)}{(x - y)(x^2 + y^2)}$ $=\frac{x^3+xy^2+x^3-x^2y}{x^3+xy^2-x^2y-y^3}$ $=\frac{2x^3-x^2y+xy^2}{x^3-x^2y+xy^2-y^3}$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 5 of 32)

Q.16 $\frac{x^2+2x}{x^2+x-2}+\frac{3x}{x+1}$

Sol. = $\frac{(x^2+2x)(x+1)+3x(x^2+x-2)}{(x^2+x-2)(x+1)}$

s.aotes.com Pilot Super One "General Math" 10th 12 $= \frac{x^3 + x^2 + 2x^2 + 2x + 3x^3 + 3x^2 - 6x}{x^3 + x^2 - 2x + x^2 + x - 2}$ $=\frac{4x^3+6x^2-4x}{x^3+2x^2-x-2}$ Q.17 $\frac{x+2}{x^2+3x+2} - \frac{x-5}{x^2-x-6}$ Sol. = $\frac{x+2}{x^2+x+2x+2} - \frac{x-5}{x^2-x-6}$ $=\frac{x+2}{x(x+1)+2(x+1)}-\frac{x-5}{x^2-x-6}$ $=\frac{x+2}{(x+2)(x+1)}-\frac{x-5}{x^2-x-6}$ $=\frac{1}{r+1}-\frac{x-5}{r^2-r-6}$ $=\frac{1(x^2-x-6)-(x+1)(x-5)}{(x+1)(x^2-x-6)}$ $=\frac{x^2-x-6-(x^2-5x+x-5)}{(x+1)(x^2-x-6)}$ $=\frac{x^2-x-6-x^2+5x-x+5}{x^3-x^2-6x+x^2-x-6}$ $=\frac{3x-1}{x^3-7x-6}$ Sol. $= \frac{8x^2 + 18y^2}{(2x)^2 - (3y)^2} - \frac{2x + 3y}{2x - 3y}$ $= \frac{8x^2 + 18y^2}{(2x)^2 - (3y)^2} - \frac{2x + 3y}{2x - 3y}$ $= \frac{8x^2 + 18y^2}{(2x - 3y)^2}$ Q.18 $\frac{8x^2 + 18y^2}{4x^2 - 9y^2} - \frac{2x + 3y}{2x - 3y}$ $=\frac{8x^2+18y^2}{(2x+3y)(2x-3y)}-\frac{2x+3y}{2x-3y}$ $=\frac{8x^2+18y^2-(2x+3y)(2x+3y)}{(2x^2+3y)(2x-3y)}$

Pilot	Super One "General Math" 10th	13	
	$= \frac{8x^2 + 18y^2 - (4x^2 + 12xy + 9y^2)}{2x^2 + 18y^2 - (4x^2 + 12xy + 9y^2)}$		_
	(2x + 3y)(2x - 3y)		- 1
	$= \frac{8x^2 + 18y^2 - 4x^2 - 12xy - 9y^2}{2}$		A :
	(2x + 3y)(2x - 3y)		cV
	$=\frac{4x^2-12xy+9y^2}{(2x+3y)(2x-3y)}$		U
	(2x+3y)(2x-3y)	4	
	$= \frac{(2x)^2 - 2(2x)(3y) + (3y)^2}{2x^2 + 2(2x)(3y) + (3y)^2}$	X C	
	$\frac{(2x+3y)(2x-3y)}{(2x-3y)}$	11	
	$= \frac{(2x+3y)(2x-3y)}{(2x+3y)(2x-3y)}$ $= \frac{(2x-3y)^2}{(2x+3y)(2x-3y)}$ $= \frac{(2x-3y)^2}{(2x+3y)(2x-3y)}$ $= \frac{(2x-3y)(2x-3y)}{(2x+3y)(2x-3y)}$ $= \frac{2x-3y}{(2x+3y)(2x-3y)}$	U	
	$\frac{(2x-3y)(2x-3y)}{(2x-3y)}$		
	(2x+3y)(2x-3y)		
	$=\frac{2x-3y}{2x+3y}$		
Q.19	x v XU		
Sol.	$=\frac{x}{x(x+y)}-\frac{y}{(x+y)(x-y)}$		
	$=\frac{1}{x+y}\frac{y}{(x+y)(x-y)}$		
	_		
•	$\frac{1(x-y)-y}{(x+y)(x-y)}$		
Λ	<u>x-y-y</u>		
1	(x+y)(x-y)		
•	$=\frac{x-2y}{x^2-y^2}$		
Q.20	$\frac{x+y}{xy+y^2} - \frac{x}{x^2 - xy}$		
Sol.	$=\frac{x+y}{y(x+y)}-\frac{x}{x(x-y)}$		

Super One "General Math" 10th	14
= 1	·
<i>y x</i> - <i>y</i>	
$=\frac{1(x-y)-1(y)}{}$	
(y)(x-y)	
$=\frac{x-y-y}{y(x-y)}$	C C
y(x-y)	. 1
$=\frac{x-2y}{xy-y^2}$	A=
$xy - y^2$	k U
$\frac{(x+1)^2}{x^2-1} - \frac{x^2+1}{x^2+1}$	oter
	N.O.
$=\frac{(x+1)(x+1)}{(x+1)(x-1)} - \frac{x^2+1}{x^2+1}$	*
$=\frac{x+1}{x-1}-1$	
4 4	
$=\frac{x+1-1(x-1)}{x-1}$	
<u>x+1-x+1</u>	
$\frac{x-1}{x-1}$	
_ 2 🐧 🕥 📆	
$-\frac{1}{x-1}$	
$\frac{5x}{x^2} + \frac{x^2 - 2x + 1}{x^2 + 2x + 27} - \frac{6x}{x^2}$	
$x-9$ $x^2-12x+27$ $x-3$	
$\frac{5x}{x^2 - 2x + 1} - \frac{6x}{x^2 - 2x + 1}$	
$x-9$ $x^{2}-9x-3x+27$ $x-3$	
$=\frac{5x}{3}+\frac{x^2-2x+1}{3}-\frac{6x}{3}$	
x-9 $x(x-9)-3(x-9)$ $x-3$	
$=\frac{5x}{3}+\frac{x^2-2x+1}{3}-\frac{6x}{3}$	
$\frac{5x}{x-9} + \frac{x^2 - 12x + 27}{x^3 - 9x - 3x + 27} - \frac{6x}{x-3}$ $= \frac{5x}{x-9} + \frac{x^2 - 2x + 1}{x^3 - 9x - 3x + 27} - \frac{6x}{x-3}$ $= \frac{5x}{x-9} + \frac{x^2 - 2x + 1}{x(x-9) - 3(x-9)} - \frac{6x}{x-3}$ $= \frac{5x}{x-9} + \frac{x^2 - 2x + 1}{(x-9)(x-3)} - \frac{6x}{x-3}$ $= \frac{5x(x-3) + x^2 - 2x + 1 - 6x(x-9)}{(x-9)(x-3)}$	
$=\frac{5x(x-3)+x^2-2x+1-6x(x-9)}{(x-9)(x-3)}$	

Pilot Super One "General Math" 10th	15
$= \frac{5x^2 - 15x + x^2 - 2x + 1 - 6x^2 + 54x}{2}$	
(x-9)(x-3)	
$=\frac{37x+1}{x^2-12x+27}$	
Q.23 $\frac{x^2-4x+4}{x^2-4}+\frac{x}{x-2}$	
Sol. = $\frac{x^2 - 2x - 2x + 4}{(x)^2 - (2)^2} \times \frac{x - 2}{x}$	
$=\frac{x(x-2)-2(x-2)}{(x+2)(x-2)}\times\frac{x-2}{x}$	•
$=\frac{(x-2)(x-2)}{x+2}\times\frac{1}{x}$	
$=\frac{x^2-4x+4}{x^2+2x}$	
_ 	
Q.24 $\frac{x^2-36}{x^2-1} \div \frac{x-6}{1-x}$	
Sol. $ = \frac{(x)^2 - (6)^2}{(x)^2 - (1)^2} \times \frac{1 - x}{x - 6} $	
$=\frac{(x-6)(x+6)}{(x-1)(x+1)} \times \frac{-(x-1)}{x-6}$	
$=\frac{x+6}{x+1}\times(-1)$	
$=-\frac{x+6}{x}$	
f x+1	
Q.25 $\frac{x^2 - 5x}{x - 1} + \frac{x^2 - 25}{x^2 + x + 20}$	
Sol. $ = \frac{x(x-5)}{x-1} \times \frac{x^2 + x + 20}{x^2 - 25} $	
$= \frac{x(x-5)}{x-1} \times \frac{x^2 + x + 20}{(x)^2 - (5)^2}$	
$=\frac{1}{x-1}(x)^2-(5)^2$	

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more.
(Page 9 of 32)

16 Pilot Super One "General Math" 10th -otes.com $= \frac{x(x-5)}{x-1} \times \frac{x^2 + x + 20}{(x-5)(x+5)}$ $=\frac{x(x^2+x+20)}{(x-1)(x+5)}$ $=\frac{x^3+x^2+20x}{x^3+Ax-5}$ Q.26 $\frac{2x^2-5x-12}{4x^2+4x-3} + \frac{2x^2-7x-4}{6x^2+5x-4}$ Sol. = $\frac{2x^2 - 8x + 3x - 12}{4x^2 + 6x - 2x - 3} \times \frac{6x^2 + 5x - 4}{2x^2 - 7x - 4}$ $= \frac{2x(x-4)+3(x-4)}{2x(2x+3)-1(2x+3)} \times \frac{6x^2+8x-3x-4}{2x^2-8x+x-4}$ $=\frac{(x-4)(2x+3)}{(2x+3)(2x-1)}\times\frac{2x(3x+4)-1(3x+4)}{2x(x-4)+1(x-4)}$ $=\frac{x-4}{2x-1} \times \frac{(3x+4)(2x-1)}{(x-4)(2x+1)}$ $=\frac{3x+4}{2x+1}$ Q.27 $\frac{x(2x-1)^2}{2x^2-1} + \frac{4x^2-1}{4x^2+4x+1}$ Sol. $=\frac{x(2x-1)(2x-1)}{2x^2-1} \times \frac{4x^2+4x+1}{4x^3-1}$ $= \frac{x(2x-1)(2x-1)}{(2x^2-1)} \times \frac{4x^2+2x+2x+1}{(2x^2-1)^2}$ $= \frac{x(2x-1)(2x-1)}{(2x^2-1)} \times \frac{2x(2x+1)+1(2x+1)}{(2x+1)(2x-1)}$ $= \frac{x(2x-1)(2x-1)}{(2x^2-1)} \times \frac{(2x+1)(2x+1)}{(2x+1)(2x-1)}$ $=\frac{x(2x-1)(2x+1)}{2x^2-1}$

Visit www.downloadclassnotes.com for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more.

	uper One "General Math" 10th	17
	$=\frac{x(4x^2-1)}{2x^2-1}$	162.00
		.07
	$=\frac{4x^3-x}{2x^2-1}$	
O 28	$\frac{x^2+x}{x^2-1} \times \frac{x+1}{x^3+1}$	
	~ 1 ~ 11	.0₹
Sol.	$= \frac{x(x+1)}{(x+1)(x-1)} \times \frac{(x+1)}{(x+1)(x^2-x+1)}$	11.
	x (x+1)(x-1) (x+1)(x-x+1)	J
	$=\frac{x}{(x-1)(x^2-x+1)}$	
	$= \frac{x}{(x-1)(x^2-x+1)}$ $= \frac{x}{x^3-x^2+x-x^2+x-1}$.
	x'-x'+x-x'+x-1	
	$-\frac{x}{x^3-2x^2+2x-1}$	
Q.29	$\frac{x^2-9}{x^2-6x+9} \times \frac{x}{3x+4}$	
Sol.	$=\frac{(x)^2-(3)^2}{x^2-3x-3x+9}\times\frac{x}{3(x+3)}$	
	$=\frac{(x+3)(x-3)}{x(x-3)-3(x-3)}\times\frac{x}{3(x+3)}$	
	x(x-3)-3(x-3) $3(x+3)$	
\bigcirc	$= \frac{(x+3)(x-3)}{(x-3)(x-3)} \times \frac{x}{3(x+3)}$	
\cup	$=\frac{x}{3(x-3)}$	
	$-\frac{3(x-3)}{3}$	
	$=\frac{x}{3x-9}$	
	*	
	$\frac{x+5}{x^2+6x} \times \frac{x^3+6x^2}{x+5}$	
Sol.	$= \frac{(x+5)}{x(x+6)} \times \frac{x^2(x+6)}{(x+5)}$	

Visit www.downloadclassnotes.com for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more.

Pilot Super One "Go	neral Math" 10th	18	•
$= \frac{x^2}{x}$ $= x^{2-1}$ $= x$		siotes.	OFF
Q.31 $\frac{x^2-2x+1}{x^2-1}$	$\times \frac{x+1}{x-1}$.05.	
Sol. = $\frac{x^2 - x - x}{(x)^2 - (x)^2}$	$\frac{x+1}{1)^2} \times \frac{x+1}{x-1}$	de	
$=\frac{x(x-1)}{(x+1)}$	$\frac{-1(x-1)}{(x-1)} \times \frac{(x+1)}{(x-1)}$		
$=\frac{(x-1)(x}{(x+1)(x)}$	$\frac{-1)}{-1)} \times \frac{(x+1)}{(x-1)}$		
$Q.32 = \frac{x^2 + 4x + 3}{x + 3}$	$\frac{1}{x^2-2x+1}$		1
Sol. = $\frac{x^2 + x + x}{x + x}$	$\frac{3x+3}{3} \times \frac{x^2 - x - x + 1}{(x)^2 - (1)^2}$		
$=\frac{x(x+1)}{(x)}$	$\frac{+3(x+1)}{+3} \times \frac{x(x-1)-1(x-1)}{(x-1)(x+1)}$		
$=\frac{(x+1)(x+1)}{(x+1)}$	$\frac{(x+3)}{(x-1)(x-1)} \times \frac{(x-1)(x-1)}{(x-1)(x+1)}$	·	
=x-1	,		
<u>Formula</u>	٤		
	$= a^2 + 2ab + b^2$		
	= a ² - 2ab + b ²		
	$(a-b)^2 = 2(a^2+b^2)$		
(iv) $(a+b)^2 - ($	$(a-b)^2 = 4ab$	_	
$(v) \qquad (a+b+c)$	$= a^{2} + b^{2} + c^{2} + 2ab + 2bc +$ $= a^{2} + b^{2} + c^{2} + 2(ab + bc +$		
(vi) $(a + b)^3$	$= a^3 + 3a^2b + 3ab^2 + b^3$	•	

Pilot Super One "General Math" 10th

19

$$= a^{3} + b^{3} + 3ab(a + b)$$

$$= a^{3} + 3a^{2}b + 3ab^{2} - b^{3}$$

$$= a^{3} + b^{3} + 3ab(a + b)$$

$$= a^{3} + b^{3} + 3ab(a + b)$$

$$= (a + b)(a^{2} + ab + b^{2})$$

(ix) $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

STATE OF

Solve the following questions using formulas.

Q.1
$$(x + 2y)^2 + (x - 2y)^2$$

Sol. = $2[(x)^2 + (2y)^2]$ [Formula: $(a + b)^2 + (a - b)^2 = 2(a^2 + b^2)$]
= $2[x^2 + 4y^2]$
= $2x^2 + 8y^2$

Q.2
$$(5x + 3y)^2 + (5x - 3y)^2$$

Sol. =
$$2[(5x)^2 + (3y)^2]$$
[Formula: $(a + b)^2 + (a - b)^2 = 2(a^2 + b^2)$]
= $2[25x^2 + 9y^2]$
= $50x^2 + 18y^2$

Q.3
$$(3l + 2m)^1 - (3l - 2m)^2$$

Sol. =
$$4(3/)(2m)$$
 [Formula: $(a + b)^2 - (a - b)^2 = 4ab$]
= $24im$

Q.4
$$(l+m)(l-m)(l^2+m^2)(l^4+m^4)$$

Sol. =
$$[(l+m)(l-m)](l^2+m^2)(l^4+m^4)$$

[Formula: $(a+b)(a-b) = a^2 - b^2$]
= $(l^2 - m^2)(l^2 + m^2)(l^4 + m^4)$
= $[(l^2)^2 - (m^2)^2](l^4 + m^4)$
= $(l^4 - m^4)(l^4 + m^4)$
= $(l^4)^2 - (m^4)^2$
= $l^4 - m^8$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 13 of 32)

Pilot S	uper One "General Math" 10th 20	•
Q.5	$\left(ab - \frac{1}{ab}\right)^3$	
Sol.	[Formula: $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$]	
	$= (ab)^3 - 3(ab)^2 \left(\frac{1}{ab}\right) + 3ab \left(\frac{1}{ab}\right)^2 - \left(\frac{1}{ab}\right)^3$	4
	$= a^3b^3 - 3ab + \frac{3}{ab} - \frac{1}{a^3b^3}$	1
Q.6	$(2x+3y+2)^{1}$	
Sol.	$[(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca]$;
	$= (2x)^2 + (3y)^2 + (2)^2 + 2(2x)(3y) + 2(3y)(2) + 2(2)(2x)$	
	$=4x^2+9y^2+4+12xy+12y+8x$	
Q.7	$(2p + q)^3$	
Sol.	[Formula: $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$]	
	$= (2p)^3 + 3(2p)^2(q) + 3(2p)(q)^2 + (q)^3$	
	$=8p^3+3(4p^2)(q)+6pq^2+q^3$	
	$=8p^3+12p^2q+6pq^2+q^3$	
Q.8	$(3p+q+r)^2$	
Sol.	[Formula: $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$]	
	$= (3p)^2 + (q)^2 + (r)^2 + 2(3p)(q) + 2(q)(r) + 2(r)(3p)$	
	$=9p^2+q^2+r^2+6pq+2qr+6rp$	
Q.9	$(2x+3y)^3$	
Sol.	[Formula: $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$]	
	$= (2x)^3 + 3(2x)^2(3y) + 3(2x)(3y)^2 + (3y)^3$	
	$= 8x^3 + 3(4x^2)(3y) + 3(2x)(9y^2) + 9y^3$	
	$= 8x^3 + 36x^2y + 54xy^2 + 9y^3$	
	$(x+y)^3-1$	
Sol.	= $(x + y)^3 - (1)^3$ [Formula: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$]	
	$= (x+y-1)[(x+y)^2 + (x+y)(1) + (1)^2]$	

$= (x - y + 4)[(x - y)^{2} - (x$ $= (x - y + 4)(x^{2} + y^{2} + 2x)$ $8x^{3} + 27y^{3}$ $= (2x)^{3} + (3y)^{3}$	3y - 4x + 4y + 16 $a_1 a_2 a_3 + b_3 = (a + b)(a^2 - ab + b^2)$ $a_2 a_3 a_4 b_3 = (a + b)(a^2 - ab + b^2)$
[Formula = $(x - y + 4)[(x - y)^2 - (x - y + 4)](x - y)^2 - (x - y + 4)(x^2 + y^2 + 2x)$ $8x^3 + 27y^3$ = $(2x)^3 + (3y)^3$ [Formula = $(2x + 3y)[(2x)^2 - (2x)(3y)]$ = $(2x + 3y)(4x^2 - 6xy + 9y)$	$(x-y)(4) + (4)^{2}$ $(y-4x+4y+16)$ $(a + b)(a^{2} - ab + b^{2})$ $(y) + (3y)^{2}$
$= (x - y + 4)[(x - y)^{2} - (x - y + 4)(x^{2} + y^{2} + 2x)]$ $= (x - y + 4)(x^{2} + y^{2} + 2x)$ $8x^{3} + 27y^{3}$ $= (2x)^{3} + (3y)^{3}$ [Formula] $= (2x + 3y)[(2x)^{2} - (2x)(3y)]$ $= (2x + 3y)(4x^{2} - 6xy + 9y)$	$(x-y)(4) + (4)^{2}$ $(y-4x+4y+16)$ $(a + b)(a^{2} - ab + b^{2})$ $(y) + (3y)^{2}$
$= (x - y + 4)(x^{2} + y^{2} + 2x)$ $8x^{3} + 27y^{3}$ $= (2x)^{3} + (3y)^{3}$ [Formula] $= (2x + 3y)[(2x)^{2} - (2x)(3)]$ $= (2x + 3y)(4x^{2} - 6xy + 9y)$	3y - 4x + 4y + 16 $a_1 a_2 a_3 + b_3 = (a + b)(a^2 - ab + b^2)$ $a_2 a_3 a_4 b_3 = (a + b)(a^2 - ab + b^2)$
$8x^{3} + 27y^{3}$ $= (2x)^{3} + (3y)^{3}$ [Formula] $= (2x + 3y)[(2x)^{2} - (2x)(3y)]$ $= (2x + 3y)(4x^{2} - 6xy + 9y)$	ila: $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$
$= (2x)^{3} + (3y)^{3}$ [Formula] $= (2x + 3y)[(2x)^{2} - (2x)(3y)]$ $= (2x + 3y)(4x^{2} - 6xy + 9y)$	$y) + (3y)^2$
[Formula = $(2x + 3y)[(2x)^2 - (2x)(3y)]$ = $(2x + 3y)(4x^2 - 6xy + 9y)$	$y) + (3y)^2$
$= (2x + 3y)[(2x)^2 - (2x)(3y)]$ $= (2x + 3y)(4x^2 - 6xy + 9y)$	$y) + (3y)^2$
$= (2x + 3y)(4x^2 - 6xy + 9y)$	
	<i>P</i>)
مر 729y ⁶ – کد	
$= (x^3)^2 - (27y^3)^2 $ [1	Formula: $a^2 - b^2 = (a + b)(a - b)$
$=(x^3+27y^3)(x^3-27y^3)$	•
$= [(x)^3 + (3y)^3][(x)^3 - (3y)^3]$	²]
•	
	-
	•
	+ 9y²)(x² + 3xy + 9y²)
• • •	
$= (8a^3 - b^3)(8a^3 + b^3)$ [F	formula: $a^2 - b^2 = (a - b)(a + b)$
= $[(2a)^3 - (b)^3][(2a)^3 + (b)^3]$	1
$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$	²)
- •	-
· (2a - b)(4a ² + 2ab + b ²)(2	
$(2a - b)(2a + b)(4a^2 + 2ab)$	$a + b^2$)(4 $a^2 - 2ab + b^2$)
	$= (x^{3})^{2} - (27y^{3})^{2}$ $= (x^{3} + 27y^{3})(x^{3} - 27y^{3})$ $= [(x)^{3} + (3y)^{3}](x)^{3} - (3y)^{3}$ $= (x^{3} + b^{3}) = (a + b)(a^{2} - ab + b^{2})$ $= (a^{3} - b^{3}) = (a - b)(a^{2} + ab + b^{2})$ $= (a^{3} - b^{2})(a^{2} - ab + b^{2})$ $= (a^{3} - b^{2})(a^{2} - ab + b^{2})$ $= (a^{3} - b^{2})(a^{3} + b^{2})$ $= (a^{3} - b^{2})(a^{3} + b^{2})$ $= (a^{3} - b^{2})(a^{2} - ab + b^{2})$ $= (a^{3} - b^{2})(a^{2} + ab + b^{2})$

Pilot Super One "General Math" 10th

Q.15 Find the value of $a^3 - b^3$ when a - b = 4 and ab = -5. Taking cube

$$a^3 \sim b^3 = ?$$

$$(a-b)^3 = (4)^4$$

$$a^3 - b^3 - 3(-5)(4) = 64$$

$$a^{1} = b^{3} + 60$$
 = 64

$$a^3 - b^3 = 64 - 60$$

$$y^{3} - b^{3} = 4$$

(1) In Show that
$$\left(z + \frac{1}{z}\right)^2 = \left(z - \frac{1}{z}\right)^2$$

1. III.S =
$$\left(z + \frac{1}{z}\right)^2 - \left(z = \frac{1}{z}\right)^2$$

$$\left(z^2 + 2(z)\left(\frac{1}{z}\right) + \frac{1}{z^2}\right) - \left(z^2 - 2(z)\left(\frac{1}{z}\right) + \frac{1}{z^2}\right)$$

$$= \left(z^2 + \frac{1}{z^2}\right) - \left(z^2 - 2 + \frac{1}{z^2}\right)$$

$$= \left(z^2 + 2 + \frac{1}{z^2}\right) - \left(z^2 - 2 + \frac{1}{z^2}\right)$$

Q.17 Find the value of $a^2 + b^2$ and ab when a + b = 5 and

$$a - b = 3.$$

Ecomula.

Pilot S	Super One "General Ma	th" 10th	23
	$(a + b)^2 + (a - b)^2$	$=2(a^2+b^2)$)
	$(5)^2 + (3)^2$	$= 2(a^2 + b^2)$)
	25 + 9	$=2(a^2+b^2)$	•
	34	$=2(a^2+b^2)$	١.
Thus,	$a^2 + b^2$	$=\frac{34}{2}=17$	
Formu	ila: $(a + b)^2 - (a - b)^2$	= 4ab	(.
	<u> </u>	= 4ab	\cup
	25 - 9	= 4ab	
	4ab	= 16	
	ab	$=\frac{16}{4}$	
	ab	≠4	
Q.18	Find the value of a ²	$+b^2+c^2$ if a	b + be + ca = 11 and
	a+b+c=6		
Sol.	$\mathbf{a} + \mathbf{b} + \mathbf{c} = 6$		
	ab + bc + ca = 11		
	$a^2 + b^2 + c^2 = ?$		
	a + bor c = 6		
	$(a+b+c)^{2}$ = $(6)^2$		Taking square root
	$a^2 + b^2 + c^2 + 2$ (ab +	be + ca) = 36	
	■ By pu	itting values a	ab + bc + ca = 1
	$a^2 + b^2 + c^2 + 2(11)$		
	$a^2 + b^2 + c^2 + 22$		
	$a^2 + b^2 + c^2$	= 36 - 22	
	$a^2 + b^2 + c^2$	= 11	

Q.19 Find the value of $x^3 + y^3$ if xy = 10 and x + y = 7.

Sol.
$$x + y = 7$$

 $xy = 10$

	Super One "Gr x² + y²						
	•						
	$x + y = (x + y)^3$				Taking cuhe		
	$(x+y)^{2}$		+ 141		Taking cube		
	$x^{2} + y^{3} + 3t$						
	$x^3 + y^2 + 21$		= 343 = 343				
	•		= 343 -	210		α	
	χ ² + εχ		= 133	210		('	'
	•			2	DK and we	_16	
-					B6 and xgy = -	-10.	
Sol.	xy x² + y²		(i (i	•			
	$(x-y)^2$		(ı	1)			
	$(x-y)^2$		2 - 2 - 2				
	(x -y)	•	y²) = 2(xy)	•			÷
		= 86 - 2			From (i) and	1 (ii)	,
		- 86 + 3					
		- 118	-				
0.21	Find the v	lue of sh	+ bc + cs	when t	the values of		
Q	$a^2 + b^2 + c^2$						
Sal	a+b+c	-					
DOI.	$a^2 + b^2 + c^2$						
	ab + bc + c		, ,				
	a+b+c						
	$(a+b+c)^2$	$=(11)^2$	Taki	ng squa	re root		
	$a^2 + b^2 + c^2$	+ 2(ab +	be + ca)	= 12 i			
	81 + 2(ab +	bc + ca)		=121	. fi	om (ii)	
					_		

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more.

= 121 - 81

2(ab + bc + ca)2(ab + bc + ca)

Prior Super One "General Math" 10th ab + bc + cn ab + bc + cn ab + bc + cn = 20

Q.22 Find the value of $(a + b + c)^2$ when the values of $a^2 + b^2 + c^2 = 32$ and ab + bc + ca = 7.

Sel. ab + bc + ca = 7 (i) $a^2 + b^2 + c^2 = 32$ (ii) $(a + b + c)^2 = 7$ $(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)^2$ = 32 + 2(7) From 6

$$(a+b+c)^2 = a^2+b^2+c^2+2(ab+bc+ea)$$
= 32+2(7) From (i) and (ii)
= 32+14
$$(a+b+c)^2 = 46$$

Laws of Radicals

(iii)
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$
 (iv) $(\sqrt[n]{a})^n = \sqrt[n]{a^m}$

Q.1 Remove the radical sign from the denominator:

(i)
$$\frac{1}{\sqrt{5}}$$

Sol.

26 Pilot Super One "General Math" 10th

$$\frac{2}{(ii)} \frac{2}{\sqrt{2}} \cdot \frac{7}{\sqrt{3}}$$

Sol.

$$\frac{2}{\sqrt{2}} \cdot \frac{7}{\sqrt{3}}$$

$$= \frac{2 \times 7}{\sqrt{2 \times 3}}$$

$$= \frac{14}{\sqrt{6}}$$

$$= \frac{14}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}$$

$$= \frac{14 \times \sqrt{6}}{6} = \frac{7\sqrt{6}}{3}$$

$$= \frac{\sqrt{6}}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}$$

$$= \frac{\sqrt{6} \times 7}{\sqrt{6 \times 7}}$$

(iii)
$$\frac{\sqrt{6}}{\sqrt{7}}$$

Sol.

$$= \frac{\sqrt{6}}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}$$

$$= \frac{\sqrt{6 \times 7}}{\sqrt{7 \times 7}}$$

$$= \frac{\sqrt{42}}{2}$$

Q.2 Simplify these expressions:

(3)
$$\sqrt{2} + \sqrt{8}$$

Sol.

$$= \sqrt{2} + \sqrt{2 \times 2 \times 2}$$

$$= \sqrt{2} + 2\sqrt{2}$$

$$= \sqrt{2}(1+2)$$

$$= 3\sqrt{2}$$

(ii)	$4\sqrt{50} + \sqrt{200} + \sqrt{50}$	
Sol _;		
	$=4\sqrt{5\times5\times2}+\sqrt{5\times5\times2\times2\times2}+\sqrt{5\times5\times2}$	
	$=4\times5\sqrt{2}+5\times2\sqrt{2}+5\sqrt{2}$	
	$= 20\sqrt{2} + 10\sqrt{2} + 5\sqrt{2}$	
	$= \sqrt{2}(20 + 10 + 5)$	
	= √2(35)	
	= 35√2	
(ái)	$(\sqrt{12} - \sqrt{2})(\sqrt{20} - 3\sqrt{2})$	
Sol.		
	$=\sqrt{12} \times \sqrt{20} - \sqrt{12} \times 3\sqrt{2} - \sqrt{2} \times \sqrt{20} + \sqrt{2} \times 3\sqrt{2}$	
	$=\sqrt{2\times2\times3}\times\sqrt{2\times2\times5}-\sqrt{2\times2\times3}\times3\sqrt{2}$	
	$-\sqrt{2}\times\sqrt{2\times2\times5}+3\sqrt{2\times2}$	
•	$= 2\sqrt{3} \times 2\sqrt{5} - 2\sqrt{3} \times 3\sqrt{2} - \sqrt{2} \times 2\sqrt{5} + 3 \times 2$	
	$=4\sqrt{3\times5}-6\sqrt{3\times2}-2\sqrt{2\times5}+6$	
	= 4√15 - 6√6 - 2√10 + 6	
(iv)	5 5	
(iv) Sol.	(074283-43)	
301.	$=6(5-\sqrt{5})+\sqrt{2}(5-\sqrt{5})$	
	$=30-6\sqrt{5}+5\sqrt{2}-\sqrt{2\times5}$	
_	$= 30 - 6\sqrt{5} + 5\sqrt{2} - \sqrt{10}$	
3 •	$(\sqrt{3} - 2)(5 - \sqrt{5})$	
= (v)	(43 + 5)(2 - 12)	
Sot.	5. 6 . 6	
	$= \sqrt{3}(3 - \sqrt{5}) + 2(5 - \sqrt{5})$	
	$= 5\sqrt{3} - \sqrt{3 \times 5} - 10 + 2\sqrt{5}$ $= 5\sqrt{3} - \sqrt{15} - 10 + 2\sqrt{5}$	

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 21 of 32)

Pilot Super One "General Math" 10th

28

(vi)
$$(7+\sqrt{3})(5+\sqrt{2})$$

Sol.

=
$$7(5+\sqrt{2})+\sqrt{3}(5+\sqrt{2})$$

= $35+7\sqrt{2}+5\sqrt{3}+\sqrt{3}\times 2$
= $35+7\sqrt{2}+5\sqrt{3}+\sqrt{6}$

Q.3 Rationalize the denominators of the following:

(i)
$$\frac{1}{\sqrt{3}+2}$$

Sol.

$$= \frac{1}{\sqrt{3} + 2} \times \frac{\sqrt{3} - 2}{\sqrt{3} - 2}$$

$$= \frac{\sqrt{3} - 2}{(\sqrt{3})^2 - (2)^2}$$

$$= \frac{\sqrt{3} - 2}{3 - 4}$$

$$= \frac{\sqrt{3} - 2}{-1}$$

$$= 2 - \sqrt{3}$$

(ii)
$$\frac{1}{4-\sqrt{5}}$$

Sol.

$$= \frac{1}{4 - \sqrt{5}} \times \frac{4 + \sqrt{5}}{4 + \sqrt{5}}$$
$$= \frac{4 + \sqrt{5}}{(4)^2 - (\sqrt{5})^2}$$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 22 of 32)

Pilot Super One "General Math" 10th	
$= \frac{4+\sqrt{5}}{16-5}$ $= \frac{4+\sqrt{5}}{11}$ (iii) $\frac{4\sqrt{3}}{\sqrt{7}+\sqrt{5}}$	29.00.
Sol. $= \frac{4\sqrt{3}}{\sqrt{7} + \sqrt{5}} \times \frac{\sqrt{7} - \sqrt{5}}{\sqrt{7} - \sqrt{5}}$,01
$= \frac{(4\sqrt{3})(\sqrt{7} - \sqrt{5})}{7 - 5}$	· —
$=\frac{4\sqrt{3}(\sqrt{7}-\sqrt{5})}{2}$	•
2√3(√7 - √5)	
$(iv) \qquad \frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}$	
Sol. $\frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}} \times \frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} - \sqrt{y}}$	
$=\frac{(\sqrt{x}-\sqrt{y})^{2}}{(\sqrt{x})^{2}-(\sqrt{y})^{2}}$	
$=\frac{x+y-2\sqrt{xy}}{x-y}$	•

addas, indes, com Pilot Super One "General Math" 10th 30 $\frac{5\sqrt{7}}{2+3\sqrt{7}}$ (v) Sol. $= \frac{5\sqrt{7}}{2+3\sqrt{7}} \times \frac{2-3\sqrt{7}}{2-3\sqrt{7}}$ $=\frac{5\sqrt{7}(2-3\sqrt{7})}{(2)^2-(3\sqrt{7})^2}$ $=\frac{(5\sqrt{7})(2)-(5\sqrt{7})(3\sqrt{7})}{4-9\times7}$ $=\frac{10\sqrt{7}-105}{4-62}$ $=\frac{10\sqrt{7}-105}{-59}$ $=\frac{105-10\sqrt{7}}{59}$ $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{5}}$ Sol. $=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\times\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ $=\frac{(\sqrt{3}+\sqrt{2})^2}{(\sqrt{3})^2-(\sqrt{2})^2}$ $=\frac{3+2+2\sqrt{3\times2}}{3-2}$ $=\frac{5+2\sqrt{6}}{1}$ $=5+2\sqrt{6}$

snotes.com Pilot Super One "General Math" 10th 29 (vii) $11 + 3\sqrt{5}$ Sol. $=\frac{29}{11+3\sqrt{5}}\times\frac{11-3\sqrt{5}}{11-3\sqrt{5}}$ $=\frac{29(11-3\sqrt{5})}{(11)^2-(3\sqrt{5})^2}$ $=\frac{29(11-3\sqrt{5})}{121-9\times5}$ $=\frac{29(11-3\sqrt{5})}{121-45}$ $=\frac{29(11-3\sqrt{5})}{76}$ (viii) $\frac{17}{3\sqrt{7}+2\sqrt{3}}$ Sol. $=\frac{17}{3\sqrt{7}+2\sqrt{3}}\times\frac{3\sqrt{7}-2\sqrt{3}}{3\sqrt{7}-2\sqrt{3}}$ $0 = \frac{17(3\sqrt{7} - 2\sqrt{3})}{(3\sqrt{7})^2 - (2\sqrt{3})^2}$ $= \frac{17(3\sqrt{7} - 2\sqrt{3})}{9 \times 7 - 4 \times 3}$ ania. $=\frac{17(3\sqrt{7}-2\sqrt{3})}{63-12}$ $=\frac{17(3\sqrt{7}-2\sqrt{3})}{51}$ $=\frac{3\sqrt{7}-2\sqrt{3}}{2}$

Pilot Super One "General Math" 10th 32 s-iotes.com Q.4 If $x = \sqrt{5} + 2$, then find the values of (i) $x + \frac{1}{2}$ and (ii) $x^2 + \frac{1}{x^2}$, Sol. (i) $x = \sqrt{5} + 2$(1) $\frac{1}{x} = \frac{1}{\sqrt{5}+2}$ $=\frac{1}{\sqrt{5+2}} \times \frac{\sqrt{5-2}}{\sqrt{5-2}}$ $=\frac{\sqrt{5}-2}{(\sqrt{5})^2-(2)^2}$ $=\frac{\sqrt{5}-2}{5-4}$ $\frac{1}{x} = \sqrt{5} - 2 \dots \sqrt{2}$ $x + \frac{1}{r} = \sqrt{5} + 2 + \sqrt{5} - 2$ from (1) + (2)Thus $x + \frac{1}{x} = 2\sqrt{5}$ (ii) $\left(x + \frac{1}{x}\right)^2 = (2\sqrt{5})^2$ Taking square root $x^{2} + \frac{1}{x^{2}} + 2 = 4 \times 5$ $x^{2} + \frac{1}{x^{2}} + 2 = 20$ $x^{2} + \frac{1}{x^{2}} = -20 - 2$ Hence

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more.

G 	ENERAL MATHEMATICS FOR 10"CLASS (UNIT # 1)			
Pilot Super One "General Math" 10th 33				
Q.5	If $x=2+\sqrt{3}$, then find the values of (i) $x=\frac{1}{x}$ and			
	(ii) $x^2 + \frac{1}{x^2}$.			
Sol.	(i) $x=2+\sqrt{3}$ (1)			
	$\frac{1}{x} = \frac{1}{2+\sqrt{3}}$			
	$= \frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$ (Rationalize the denominators)			
	$=\frac{2-\sqrt{3}}{(2)^2-(\sqrt{3})^2}$			
	$=\frac{2-\sqrt{3}}{4-3}=\frac{2-\sqrt{3}}{1}=2-\sqrt{3}$ (2)			
	$x - \frac{1}{x} = (2 + \sqrt{3}) - (2 - \sqrt{3}) $ from (1), (2) $x - \frac{1}{x} = 2 + \sqrt{3} - 2 + \sqrt{3}$			
	Hence, $x-\frac{1}{x}=2\sqrt{3}$			
(ii)	$\left(x-\frac{1}{x}\right)^2 = (2\sqrt{3})^2$ Taking square root			
	$x^2 + \frac{1}{x^2} - 2 = 4 \times 3$			
•	$x^2 + \frac{1}{x^2} - 2 = 12$			
- 1	Hence, $x^2 + \frac{1}{x^2} = 12 + 2 = 14$			
Q.6	If $x = \sqrt{3} - \sqrt{2}$, then find the values of (i) $x - \frac{1}{x}$ and			
	(ii) $x^2 + \frac{1}{x^2}$.			

	Super One "General Math" 10th 34
Sol.	(i) $x = \sqrt{3} - \sqrt{2}$ (1)
	$\frac{1}{x} = \frac{1}{\sqrt{3} - \sqrt{2}}$
	$=\frac{1}{(\sqrt{3}-\sqrt{2})} \times \frac{(\sqrt{3}+\sqrt{2})}{(\sqrt{3}+\sqrt{2})}$
	$=\frac{(\sqrt{3}+\sqrt{2})}{(\sqrt{3})^2-(\sqrt{2})^2}$
	(45) (45)
	$=\frac{(\sqrt{3}+\sqrt{2})}{3-2}$
	$\frac{1}{x} = \sqrt{3} + \sqrt{2}$ (2)
	$x - \frac{1}{x}$ = $(\sqrt{3} - \sqrt{2}) - (\sqrt{3} + \sqrt{2})$ from (1), (2)
	$-\sqrt{3}-\sqrt{2}-\sqrt{3}-\sqrt{2}$
	Hence, $x-\frac{1}{x} \neq -2\sqrt{2}$
(ii)	$\left(x - \frac{1}{x}\right)^2 = (-2\sqrt{2})^2$ Taking square root
	$x^2 + \frac{1}{x^2} - 2 = 4 \times 2$
	$(x^2) + \frac{1}{x^2} - 2 = 8$
	$x^2 + \frac{1}{x^2} = 8 + 2$
	Hence, $x^2 + \frac{1}{x^2} = 10$
Q.7	If $\frac{1}{x} = 3 - \sqrt{2}$, then evaluate (i) $x + \frac{1}{x}$ and (ii) $x - \frac{1}{x}$.
	(i) $\frac{1}{x} = 3 - \sqrt{2}$ (1)

Pilot Super One "General Math" 10th 35 $x = \frac{1}{3 - \sqrt{2}}$ $=\frac{1}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}$ $=\frac{3+\sqrt{2}}{(3)^2-(\sqrt{2})^2}$ $=\frac{3+\sqrt{2}}{9-2}$ $x = \frac{3+\sqrt{2}}{7}$(2) $x + \frac{1}{x}$ = $\frac{3 + \sqrt{2}}{7} + 3 - \sqrt{2}$ Now from (1) + (2) $=\frac{3+\sqrt{2}+7(3-\sqrt{2})}{7}$ $=\frac{3+\sqrt{2}+21-7\sqrt{2}}{7}$ $=\frac{24+\sqrt{2}-7\sqrt{2}}{7}$ $=\frac{24+\sqrt{2}(1-7)}{7}$ $=\frac{24+\sqrt{2}(-6)}{7}$ Hence, $x + \frac{1}{x} = \frac{24 - 6\sqrt{2}}{7}$ $x - \frac{1}{r} = \frac{3 + \sqrt{2}}{7} - (3 - \sqrt{2})$ from (1),(2) (ii) $=\frac{3+\sqrt{2}}{7}-3+\sqrt{2}$

USSELENDE SENDE DE LE SENDE SERVICE DE LA COMPANIE DEL COMPANIE DE LA COMPANIE DE LA COMPANIE DEL COMPANIE DE LA COMPANIE DEL COMPANIE DE LA COMPANIE DE LA COMPANIE DE LA COMPANIE DE LA COMPANIE DEL COMPANIE DE LA CO

Pilot S	uper One "General Math" 10th	36
	$= \frac{3+\sqrt{2}-21+7\sqrt{2}}{7}$ $= \frac{-18+\sqrt{2}+7\sqrt{2}}{7}$ $= \frac{-18+\sqrt{2}(1+7)}{7}$ $= \frac{1}{7} \frac{-18+8\sqrt{2}}{7}$	()
).8	Hence, $x - \frac{1}{x} = \frac{-18 + 8\sqrt{2}}{7}$ If $\frac{1}{p} = \sqrt{10} + 3$, then evaluate (i) $p + \frac{1}{p}$ (ii) $p - \frac{1}{p}$	and
Sol. (i)	$\frac{1}{p} = \sqrt{10} + 3,,(1)$ $p = \frac{1}{\sqrt{10} + 3}$	
	$p = \frac{1}{\sqrt{10 + 3}} \times \frac{\sqrt{10 - 3}}{\sqrt{10 - 3}} $ (Rationalize) $= \frac{\sqrt{10 - 3}}{(\sqrt{10})^2 - (3)^2}$ $= \frac{\sqrt{10 - 3}}{10 - 9}$ $= \frac{\sqrt{10 - 3}}{\sqrt{10 - 3}}$	the denominators)
	= \(\sqrt{10} - 3 \)(2)	from (1)+(2)

Visit <u>www.downlondclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 30 of 32)

Pilot Super One "General Math" 10th $p + \frac{1}{p} = 2\sqrt{10}$ $\left(p + \frac{1}{p}\right)^2 = (2\sqrt{10})^2$ Taking square root $= 4 \times 10$ Hence, $\left(p + \frac{1}{p}\right)^2 = 40$

(ii)
$$p - \frac{1}{p} = (\sqrt{10} - 3) - (\sqrt{10} + 3)$$
 Now from (1) - (2)
 $= \sqrt{10} - 3 - \sqrt{10} - 3$
 $p - \frac{1}{p} = -6$
 $\left(p - \frac{1}{p}\right)^2 = (-6)^2$ Taking square root
Hence, $\left(p - \frac{1}{p}\right)^2 = 36$

O.9 Rationalize

(i)
$$\frac{b + \sqrt{b^2 - a^2}}{b - \sqrt{b^2 - a^2}}$$

Sol.
$$= \frac{b + \sqrt{b^2 - a^2}}{b - \sqrt{b^2 - a^2}} \times \frac{b + \sqrt{b^2 - a^2}}{b + \sqrt{b^2 - a^2}}$$

Pilot Super One "General Math" 10th	38
$= \frac{\frac{(h+\sqrt{h^2-a^2})^2}{(h)^2-(\sqrt{h^2-a^2})^2}$ $= \frac{\frac{h^2+h^2-a^2+2h\sqrt{h^2-a^2}}{h^2-(h^2-a^2)}$ $= \frac{2h^2-a^2+2h\sqrt{h^2-a^2}}{h^2-b^2+a^2}$ $= \frac{2h^2-a^2+2h\sqrt{h^2-a^2}}{a^2}$ $= \frac{2h^2-a^2+2h\sqrt{h^2-a^2}}{a^2}$ (ii) $= \frac{\sqrt{a+3}+\sqrt{a-3}}{\sqrt{a+3}+\sqrt{a-3}}$	antes.com
Sol. $= \frac{\sqrt{a+3} - \sqrt{a-3}}{\sqrt{a+3} + \sqrt{a-3}} \times \frac{\sqrt{a+3} - \sqrt{a-3}}{\sqrt{a+3} - \sqrt{a-3}}$ $= \frac{(\sqrt{a+3} - \sqrt{a-3})^2}{(\sqrt{a+3})^2 - (\sqrt{a-3})^2}$	<u>-</u>
$= \frac{(a+3)+(a-3)-2\sqrt{(a+3)(a-3)}}{(a+3)-(a-3)}$ $= \frac{a+3+a-3-2\sqrt{(a)^2-(3)^2}}{a+3-a+3}$ $= \frac{2a-2\sqrt{a^2-9}}{a+3-a+3}$	

43

ON CHARLES AND

Pilot Super One "General Math" 10th

Factorize:

Q.1
$$3a(x + y) - 7b(x + y)$$

Sol: $= (x + y)(3a - 7b)$

Q.2 $ax + ay - x^2 - xy$

Sol: $= (ax + ay) - (x^2 + xy)$
 $= a(x + y) - x(x + y)$
 $= (x + y)(a - x)$

Q.3 $a^3 + a - 3a^2 - 3$

Sol: $= (a^3 + a) - (3a^2 + 3)$
 $= a(a^2 + 1) - 3(a^2 + 1)$
 $= (a^2 + 1)(a - 3)$

Q.4 $x^3 + y - xy - x$

Sol: $= x^3 - x - xy + y$ (writing in order)
 $= x(x^2 - 1) - y(x - 1)$
 $= x(x - 1)(x(x + 1) - y(x - 1)$
 $= (x - 1)[x(x + 1) - y]$
 $= (x - 1)[x(x + 1) - y]$
 $= (x - 1)[x(x + 1) - y]$
 $= (x - 1)[x(x + 1) - y]$
Q.5 $3ax + 6ay - 8by - 4bx$

Sol: $= 3ax - 4bx + 6ay - 8by$ (writing in order)
 $= x(3a - 4b)(x + 2y)$

Q.6 $2a^2 - bc - 2ab + ac$

Sol: $= 2a^2 + ac - 2ab - bc$ (writing in order)
 $= a(2a + c) - b(2a + c)$
 $= (2a + c)(a - b)$
 $= (a - b)(2a + c)$

Q.7 $a(a - b + c) - bc$
 $= a^2 - ab + ca - bc$
 $= a(a - b) + e(a - b)$

Visit www.downloadclassnotes.com for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 1 of 19)

= (a - b) (a + c)

0.8	8 - 4a - 2s ³ + a ⁴	
•	$= 4(2 - a) - a^3(2 - a)$	
501.	$= (2 - a)(4 - a^3)$	
	$= (4 - a^3)(2 - a)$	•
0.9	$16x^2 - 24xa + 9a^2$	
-	$= 16x^2 - 12xa - 12xa + 9a^2$	•
201.	= 4x(4x - 3a) - 3a(4x - 3a)	
	= (4x - 3a)(4x - 3a)	(
	$= (4x - 3a)^2$	\cap
0.10	$1 - 14x + 49x^2$	\cup
-	$=(1)^2-2(1)(7x)+(7x)^2$	
	$=(1-7x)^2$	
Q.11	$20x^2 + 5 - 20x$	
Sot:	$=20x^2-20x+5$	
	$= 5[4x^2 - 4x + 1]$	
	$= 5[(2x)^2 - 2(2x)(1) + (1)^2]$	
	$=5(2x-1)^2$	
Q.12	$2a^{3}b + 2ab^{3} - 4a^{2}b^{2}$	
Sol:	$= 2ab(a^2 + b^2 - 2ab)$	
	$= 2ab[a^2 - 2ab + b^2]$	
	$= 2ab[(a)^2 - 2(a)(b) + (b)^2]$	
	$= 2ab(a-b)^2$	
0 13	$(x^2) + x + \frac{1}{x}$	
Q	4	
	(a,a,d) (D^2)	
Sol:	$=(x)^2+2(x)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2$	
	$=\left(x+\frac{1}{2}\right)^{2}$	

Pilot Super One "General Math" 10th

45

Q.14
$$x^2 + \frac{1}{x^2} - 2$$

Sol: $-x^2 - 2 + \dots$

Sol:
$$= x^2 - 2 + \frac{1}{x^2}$$

 $= (x)^2 - 2(x) \left(\frac{1}{x}\right) + \left(\frac{1}{x}\right)^2$
 $= \left(x - \frac{1}{x}\right)^2$

$$Q.15 \quad 5x^3 - 30x^2 + 45x$$

Sol: =
$$5x[x^2 - 6x + 9]$$

= $5x[(x)^2 - 2(x)(3) + (3)^2]$
= $5x(x - 3)^2$

Q.16
$$a^2 + b^2 + 2ab + 2bc + 2ac$$

Sol: =
$$(a^2 + 2ab + b^2) + 2ac + 2bc$$

= $[(a)^2 + 2(a)(b) + (b)^2] + 2c(a + b)$
= $(a + b)^2 + 2c(a + b)$
= $(a + b)[(a + b) + 2c]$
= $(a + b)(a + b + 2c)$

Resolve into factors.

Q.1
$$x^2 + 2xy + y^2 - a^2$$

Sol: $= (x^2 + 2xy + y^2) - a^2$
 $= \{(x)^2 + 2(x)(y) + (y)^2\} - (a)^2$
 $= (x + y)^2 - (a)^2$
 $= (x + y + a)(x + y - a)$
Q.2 $4a^2 - 4ab + b^2 - 9c^2$
Sol: $= (4a^2 - 4ab + b^2) - 9c^2$
 $= [(2a)^2 - 2(2a)(b) + (b)^2] - (3c)^2$

Pilot	Super One "General Math" 10th	46
	$= (2a - b)^2 - (3c)^2$	
	= (2a - b + 3c)(2a - b - 3c)	
Q.3	$x^2 + 6ax + 9a^2 - 16b^2$	
Sol:	$= (x^2 + 6ax + 9a)^2 - 16b^2$	
	$= ((x)^2 + 2(x)(3a) + (3a)^2) - (4b)^2$	
	$= (x + 3a)^2 - (4b)^2$	^
	=(x+3a+4b)(x+3a-4b)	(7
Q.4	$y^2 - c^2 + 2cx - x^2$	•
Sol:	$= y^2 - (e^2 - 2ex + x^2)$	
	$= (y)^2 - [(c)^2 - 2(c)(x) + (x)^2]$	
	$= (y)^2 - (c - x)^2$ Formula: $[a^2 - b^2 = (a + 1)]$	b)(a = b)]
	-[y+(c-x)][y-(c-x)]	
	= (y + c - x)(y - c + x)	
	= (y - x + c)(y + x - c)	
•	$x^2 + y^2 + 2xy - 4x^2y^2$	
Sol:	$= (x^2 + 2xy + y^2) - 4x^2y^2$	
	$= [(x)^2 + 2(x)(y) + (y)^2] - (2xy)^2$	
	$=(x+y)^2-(2xy)^2$	
	= (x + y + 2xy)(x + y - 2xy)	
_	$a^2 - 4ab + 4b^2 - 9a^2c^2$ = $(a^2 - 4ab + 4b^2) - (9a^2c^2)$	
501:	$= (a)^2 - 2(a)(2b) + (2b)^2 - [3ac]^2$	
	$= (a - 2b)^2 - (3ac)^2$	
	= (a - 2b + 3ac)(a - 2b - 3ac)	
0.7	$x^2 - 2xy + y^2 - a^2 + 2ab - b^2$	
•	$= (x^2 - 2xy + y^2) - (a^2 - 2ab + b^2)$	
	$= [(x)^2 - 2(x)(v) + (v)^2] [(a)^2 - 2(a)(b) + (b)^2]$	
	$= (x - y)^2 - (a - b)^2$	
	= [(x-y) + (a-b)][(x-y) - (a-b)]	
	= (x - y + a - b)(x - y - a + b)	
8. O	3 ⁴ +4	
-	$= (v^2)^2 + (2)^2 + (2)(v^2)(2) - 2(y^2)(2) (completing s)$	auste f00t
3()];	- ()-)-+ (2)++ (2)(\(\bar{\parabold}\) - 2(\(\bar{\parabold}\) \(\bar{\parabold}\) \(\bar{\parabold}\) - 2(\(\bar{\parabold}\) \(\bar{\parabold}\) \(\bar{\parabold}\) \(\bar{\parabold}\) \(\bar{\parabold}\) - 2(\(\bar{\parabold}\) \(\bar{\parabold}\) \(\parabol	quare roc

Pilot Super One "Genera) Math" 10th 47 $-[(y^2)^2+(2)^2+4y^2]-4y^2$ $=(v^2+2)^2-(2v)^2$ $= (v^2 + 2 + 2v)(v^2 + 2 - 2v)$ $=(y^2+2y+2)(y^2-2y+2)$ $Q.9 = z^4 + 64y^4$ Sol: = $(z^2)^2 + (8y^2)^2 + 2(z^2)(8y^2) + 2(z^2)(8y^2)(8y^2)$ (completing square root) $=(x^2+8y^2)^2-16x^2y^2$ $=(z^2+8y^2)^2-(4zy)^2$ $= (z^2 + 8y^2 - 4zy)(z^2 + 8y^2 + 4zy)$ Q.10 $x^4 + 324$ Sol: $= (x^2)^2 + (18)^2 + 2(x^2)(18) - 2(x^2)(18)$ (completing square root) $=(x^2+18)^2-36x^2$ $=(x^2+18)^2-(6x)^2$ $=(x^2+18+6x)(x^2+18-6x)$ $=(x^2+6x+18)(x^2-6x+18)$ Q.11 $z^4 - z^2 + 16$ Sol: $= (z^2)^2 + (4)^2 + 2(z^2)(4) - 9z^2$ (completing square root) $-(x^2+4)^2-(3x)^2$ $= (z^2 + 4 - 3z)(z^2 + 4 + 3z)$ $= (z^2 - 3z + 4)(z^2 + 3z + 4)$ $0.12 - 4x^4 - 5x^2y^2 + y^4$ Sol: $= (2x^2)^2 - 5x^2y^2 + (y^2)^2$ (completing square root) $= (2x^2)^2 + 2(2x^2)(y^2) + (y^2)^2 - 9x^2y^2 \text{ (completing square root)}$ = $(2x^2 + y^2)^2 - (3xy)^2$ $= (2x^2 + y^2 - 3xy)(2x^2 + y^2 + 3xy)$ (ATTOMAX)

Factorize:

Q.1
$$x^2 + 9x + 20$$

Sol: $= x^2 + 4x + 5x + 20$
 $= (x^2 + 4x) + (5x + 20)$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 5 of 19)

Pilot	Super One "General Math" 10th	48
	-x(x+4)+5(x+4)	
	-(x+4)(x+5)	
Q.2	$x^2 + 5x - 14$	
Sol:	$= x^2 + 7x - 2x - 14$	
	$=(x^2+7x)-(2x+14)$	
	=x(x+7)-2(x+7)	0
	=(x+7)(x-2)	Ć.
0.3	$x^2 + 5x - 6$	
_	$= x^2 + 6x - x - 6$	
U (11)	$=(x^2+6x)-(x+6)$	
	= x(x+6) - 1(x+6)	
	= (x + 6)(x - 1)	
Ο.4	$x^2 - 7x + 12$	
•	$= x^2 - 3x - 4x + 12$	
	$=(x^2-3x)=(4x-12)$	
	=x(x-3)-4(x-3)	
	$\pi (x-3)(x-4)$	
_	x ² - x - 156	
Sol:	$\pm x^2 - 13x + 12x - 156$	
	$=(x^2-13x)+(12x-156)$	
	=x(x-13)+12(x-13)	
	=(x-13)(x+12)	
Q.6	$x^{2} - x - 2$ $= x^{2} - 2x + x - 2$	
Sol:	$= x^{2} - 2x + x - 2$ $= (x^{2} - 2x) + (x - 2)$	
	-x(x-2)+1(x-2)	
	=(x-2)(x+1)	
Q.7		
Sol:	$= x^2 - 15x + 6x - 90$	
	$=(x^2-15x)+(6x-90)$	•
	=x(x-15)+6(x-15)	•

Pilot Super One "General Math" 10th 49 = (x - 15)(x + 6)Q.8 $a^2 - 12a - 85$ Sol: $= a^2 - 17a + 5a - 85$ $= (a^2 - 17a) + (5a - 85)$ = a(a - 17) + 5(a - 17)= (a - 17)(a + 5)Q.9 $98 - 7x - x^2$ Sol: $= 98 - 14x + 7x - x^2$ $= (98 - 14x) + (7x - x^2)$ = 14(7-x) + x(7-x)= (7-x)(14+x) $Q.10 y^2 - 11y - 152$ Sol: $= y^2 - 19y + 8y - 152$ $= (y^2 - 19y) + (8y - 152)$ y(y-19) + 8(y-19)= (y - 19)(y + B)Q.11 $2x^2 + 3x + 1$ Sol: $= 2x^2 + 2x + x + 1$ $=(2x^2+2x)+(x+1)$ = 2x(x+1)+1(x+1)=(x+1)(2x+1) $0.12 3x^3 + 5x + 2$ Sol: $= 3x^2 + 3x + 2x + 2$ $=(3x^2+3x)+(2x+2)$ =3x(x+1)+2(x+1)=(x+1)(3x+2) $Q.13 \quad 2x^2 - x - 1$ Sol: $= 2x^2 - 2x + x - 1$ $=(2x^2-2x)+(x-1)$ =2x(x-1)+1(x-1)-(x-1)(2x+1)

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 7 of 19)

	Super One "General Math" 10th	50
-	$6x^2 + 7x - 3$	
Sol:	$= 6x^2 + 9x - 2x - 3$	
	$= (6x^2 + 9x) - (2x + 3)$	
	=3x(2x+3)-1(2x+3)	
	=(2x+3)(3x-1)	
_	$2 - 3x - 2x^2$	
Sol:	$= 2 - 4x + x - 2x^2$	
	$=(2-4x)+(x-2x^2)$	
	= 2(1-2x) + x(1-2x)	
	=(1-2x)(2+x)	
-	$8 + 6x - 5x^2$	
Sol:	$= 8 + 10x - 4x - 5x^2$	
	$= (8 + 10x) - (4x + 5x^2)$	
	= 2(4+5x) - x(4+5x)	
	=(4+5x)(2-x)	
Q.17	3u² - 10u + 8	
Sol:	= 3u ² - 6u - 4u + 8	
	$= (3u^2 - 6u) - (4u - 8)$	
	=3u(u-2)-4(u-2)	
	= (u - 2)(3u - 4)	
Q.18	$10x^2 - 7x - 12$	
Sol:	$= 10x^2 - 15x + 8x - 12$	
	$= (10x^2 - 15x) + (8x - 12)$	
	=5x(2x-3)+4(2x-3)	•
	=(2x-3)(5x+4)	
Q.19	$5x^2 - 32x + 12$	
Sol:	$=5x^2-30x-2x+12$	•
	$=(5x^2-30x)-(2x-12)$	
	=5x(x-6)-2(x-6)	
	=(x-6)(5x-2)	

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 8 of 19)

Pilot Super One "General Math" 10th

51

Q.20
$$4\sqrt{3}x^2 + 5x + 2\sqrt{3}$$

Sol: $4\sqrt{3}x^2 + 8x + 3x + 2\sqrt{3}$
 $(4\sqrt{3}x^2 + 8x) + (3x + 2\sqrt{3})$
 $4x(\sqrt{3}x + 2) + \sqrt{3}(\sqrt{3}x + 2)$
 $-(\sqrt{3}x + 2)(4x + \sqrt{3})$

Formulae

(i)
$$(a+b)^3 - a^3 + 3a^2b + 3ab^2 + b^3$$

(ii)
$$(a-b)^3 - a^3 - 3a^2b + 3ab^2 - b^3$$

(iii)
$$a^3 + b^4 - (a + b)(a^2 - ab + b^2)$$

(iv)
$$a^3 - b^3 (a - b)(a^2 + ab + b^2)$$

<u>ाराक्षाक्रस्</u>

Factorize:

Q.1
$$8x^3 - y^3$$

Sol: $(2x)^3 - (y)^3$
 $(2x)^2 + y)[(2x)^2 + (2x)(y) + (y)^2]$

$$\frac{(2x)^2 + (2x)(y) + (y)}{(2x)^2 + (2x)(x)^2 + (2x) + y^2}$$

$$Q.2 = 27x^3 + 1$$

Sol:
$$-(3x)^3 + (1)^3$$

 $= (3x+1)[(3x)^2 - (3x)(1) + (1)^2]$
 $= (3x+1)(9x^2 - 3x + 1)$

Q.3
$$1 - 343x^3$$

Sol:
$$= (1)^3 = (7x)^3$$

 $= (1 - 7x)[(1)^2 + 1(7x) + (7x)^2]$
 $= (1 - 7x)(1 + 7x + 49x^2)$

$$0.4 = a^3b^3 + 512$$

Sol:
$$-(ab)^3 + (8)^3$$

 $(ab + 8)[(ab)^2 - (ab)(8) + (8)^2]$
 $(ab + 8)(a^2b^2 - 8ab + 64)$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 9 of 19)

Pilors	Super One "General Math" 10th	 	52
	27 - 1000y ³		
Sol:	$=(3)^3-(10y)^3$		_
	$= (3 - 10y)[(3)^2 + (3)(10y) + (10y)^2]$		ام
	$= (3 - 10y)(9 + 30y + 100y^2)$		-(7)
Q.6	$27x^3 - 64y^3$		•
Sol:	$=(3x)^3-(4y)^3$		
	$= (3x - 4y)[(3x)^2 + (3x)(4y) + (4y)^2]$	\wedge	
	$+ (3x - 4y)(9x^2 + 12xy + 16y^2)$	()	
Q.7	x³y³ + z³	•	
Sol:	$=(xy)^3+(z)^3$		1
	$= (xy + z)[(xy)^2 - (xy)(z) + (z)^2]$		
	$= (xy + z)(x^2y^2 - xyz + z^2)$		
Q.8			
Sol:	= $(6p)^3 - (7)^3$ = $(6p - 7)[(6p)^2 + (6p)(7) + (7)^2]$		1
	$= (6p - 7)(36p^2 + 42p + 49)$!
	, •		1
Q.9	$8x^3 - \frac{1}{27}$		·
Sol:	$= (2x)^3 - \left(\frac{1}{3}\right)^3$		
	$\left[2x-\frac{1}{3}\right]\left[(2x)^2+(2x)\left(\frac{1}{3}\right)+\left(\frac{1}{3}\right)^2\right]$		
•	$= \left(2x - \frac{1}{3}\right)\left(4x^2 + \frac{2}{3}x + \frac{1}{9}\right)$		
Q.10) a ³ +b ³ +a+b		1
Sol:	$= (a^3 + b^3) + (a + b)$!
	$= (a+b)(a^2 - ab + b^2) + (a+b)$		(
	$= (a + b)[(a^2 - ab + b^2 + 1)]$		1
	$= (a + b)(a^2 - ab + b^2 + 1)$]

Pilot :	Super One "General Math" 10th 5
Q.11	$\mathbf{a} - \mathbf{b} - \mathbf{a}^3 + \mathbf{b}^3$
Sol:	$= (a - b) - (a^3 - b^3)$
	= $(a - b) - [(a - b)(a^2 + ab + b^2)]$
	$= (a - b) [1 - (a^2 + ab + b^2)]$
	$= (a - b)(1 - a^2 - ab - b^2)$
Q.12	$x = 8xy^3$
Sol:	$=x(1-8y^3)$
	$=x[(1)^3-(2y)^3]$
	$= x[(1-2y)\{(1)^2+(1)(2y)+(2y)^2\}]$
	$= x[(1-2y)(1+2y+4y^2)]$
	$= x(1-2y)(1+2y+4y^2)$
Q.13	$x^{12} - y^{12}$
Sol:	$=(x^6)^2-(y^6)^2$
	$=(x^6-y^6)(x^6+y^6)$
	$= \{(x^3)^2 - (y^3)^2\} \{(x^2)^3 + (y^2)^3\}$
	$= (x^3 - y^3)(x^3 + y^3)(x^2 + y^2)(x^4 - x^2y^2 + y^4)$
	$= (x - y)(x^2 + xy + y^2)(x + y)(x^2 - xy + y^2)(x^2 + y^2)$
	$(x^4 - x^2y^2 + y^4)$
	$= (x - y)(x + y)(x^2 + y^2)(x^2 + xy + y^2)(x^2 - xy + y^2)$
	$(x^4 - x^2y^2 + y^4)$
Q.14	$1 - \frac{64p^3}{3}$
_	q
Sol:	$= (1)^3 - \left[\frac{4p}{q}\right]^3$
301.	(4)
	$= \left[\left(\frac{4p}{1 - 4p} \right) \right] \left(\frac{4p}{1 + 4p} \right) + \left(\frac{4p}{1 + 4p} \right)^2 $
	$= \left(1 - \frac{4p}{q}\right) \left[(1)^2 + (1) \left(\frac{4p}{q}\right) + \left(\frac{4p}{q}\right)^2 \right]$
	$= \left(1 - \frac{4p}{q}\right) \left[1 + \frac{4p}{q} + \frac{16p^2}{q^2}\right]$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 11 of 19)

Pilot .	Super One "General Math" 10th	54
	1 + 64u ¹	
Sol:	$=(1)^3+(4u)^3$	
	$-(1+4u)(1)^2-(1)(4u)+(4u)^2$	
	$= (1 + 4u)(1 + 4u + 16u^2)$	
Q.16	$8x^3 = 6x - 9y + 27y^3$	
	$=8x^3+27y^3-6x-9y$	
	$=(8x^3+27y^3)-(6x+9y)$	
	$= [(2x^{3} + (3y)^{3}) - 3(2x + 3y)$	
	$-(2x-3y)[(2x)^2-(2x)(3y)+(3y)^2]-3(2x+3y)$	
	$= (2x + 3) (4x^2 - 6xy + 9y^2) - 3(2x + 3y)$	
	$(2x + 3y)(4x^2 + 6xy + 9y^2 - 3)$	
Q.17	z³ + f25	
Sol:	$(z)^3 + (5)^3$	
	$-(z+5)\{(z)^2-(z)(5)+(5)^2\}$	
	$-(z+5)(z^2-5z+25)$	
Q.18	$x^9 + y^9$	
Sof:	$= (x^3)^3 + (y_1)^3$	
	$= (x^3 + y^3)[(x^3)^2 - (x^3)(y^3) + (y^3)^2]$	
	$= (x^3 + y^3)(x^6 - x^3y^3 + y^6)$	
	$= (x + y)(x^2 - xy + y^2)(x^6 - x^3y^3 + y^6)$	
-	πι ⁶ – μ ⁶	
Sol:	$= (m^3)^2 - (n^3)^2$	
	$= (m^3 + n^3)(m^3 - n^3)$	
	$= (m + n)(m^2 - mn + n^2)(m - n)(m^2 + mn + n^2)$	
	= $(m + n)(m - n)(m^2 - mn + n^2)(m^2 + mn + n^2)$	
-	$64x^7 - xa^6$	
Sol:	$=x(64x^{4}-a^{6})$	
	$= x\{(8x^3)^2 - (a^3)^2\}$	
	$=\pi(8x^3+a^3)(8x^3+a^3)$	

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more.
(Page 12 of 19)

Pilot Super One "General Math" 10th

55

$$\begin{aligned} & + \{(2x)^{3} + \{n\}^{3}\} \{(2x)^{3} - \{n\}^{3}\} \\ & + x(2x + a)(4x^{2} - 2ax + a^{2})(2x + a)(4x^{2} + 2ax + a^{2}) \\ & + x(2x + a)(2x - a)(4x^{2} - 2ax + a^{2})(4x^{2} + 2ax + a^{2}) \end{aligned}$$

Q.21
$$x^3 = 27a^3$$

Sol.
$$(x)^3 = (3a)^3$$

 $(x = 3a)[(x)^2 + (x)(3a) + (3a)^2]$
 $= (x = 3a)(x^2 + 3ax + 9a^2)$

Q.22
$$x^3 + 27a^3$$

Sol:
$$= (x)^3 + (3a)^3$$

 $= (x + 3a)\{(x)^2 - (x)(3a) + (3a)^2\}$
 $= (x + 3a)(x^2 - 3ax + 9a^2)$

 Evaluate each of the polynomials for the value indicated.

Q.1
$$P(x) = 2x^3 - 5x^2 + 7x - 7$$
; $P(2)$

Sol:
$$P(x) = 2x^3 - 5x^2 + 7x - 7$$

$$P(2) = 2(2)^3 - 5(2)^2 + 7(2) - 7$$

$$= 2 \times 8 - 5 \times 4 + 7 \times 2 - 7$$

$$= 16 - 20 + 14 - 7$$

Q.2
$$P(x) = x^4 - 10x^3 + 25x - 2$$
; $P(-4)$

Sol:
$$P(x) = x^4 - 10x^2 + 25x - 2$$

$$P(-4) = (-4)^4 - 10(-4)^2 + 25(-4) - 2$$

= 256 - 160 - 100 - 2

Q.3
$$P(x) = x^4 + 5x^3 - 13x^2 - 36$$
; $P(-1)$

Sol:
$$P(x) = x^4 + 5x^3 - 13x^2 - 30$$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 13 of 19)

GENERAL MATHEMATICS FOR 10TH CLASS (UNIT # 2) THE CONTROL OF THE CO

Pilot Super One "General Math" 10th

Sol:

56

$$P(-1) = (-1)^{4} + 5(-1)^{3} - 13(-1)^{2} - 30$$

$$= 1 - 5 - 13 - 30$$

$$= -47$$

$$Q.4 \quad P(x) = x^{5} - 10x^{3} + 7x + 6; P(3)$$
Sol:
$$P(x) = x^{5} - 10x^{3} + 7x + 6$$

$$P(3) = (3)^5 - 10(3)^3 + 7(3) + 6$$
$$= 243 - 270 + 21 + 6$$
$$= 0$$

Q.5
$$P(x) = x^4 + 4x^3 - 9x^2 + 19x + 6$$
; $P(-2)$
Sol: $P(x) = x^4 + 4x^3 - 9x^2 + 19x + 6$
 $P(-2) = (-2)^4 + 4(-2)^3 - 9(-2)^2 + 19(-2) + 6$
 $= 16 + 4(-8) - 9(4) - 38 + 6$
 $= 16 - 32 - 36 - 38 + 6$
 $= -106 + 22$

II. Determine whether the second polynomial is a factor of the first polynomial without dividing (Hint: evaluate directly and use the factor theorem).

Q.6
$$x^{18}-1$$
; $x+1$
Sol: Let $P(x)=x^{18}-1$
Here $x-a=x+1$
Thus $a=-1$
Now $P(-1)=(-1)^{18}-1$

= -84

Now
$$P(-1) = (-1)^{18} - 1$$

= 1 - 1 = 0

Since P(-1)=0

Then by factor theorem x + 1 is a factor of $x^{12} - 1$.

Q.7
$$x^{18} = 1$$
; $x = 1$

Sol: Let
$$P(x) = x^{18} - 1$$

Here $x - a = x - 1$

Thus a = 1

Visit www.downloadclassnotes.com for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 14 of 19)

Pilot Super One "General Math" 10th	57
Now P(-1) - (1) ¹⁸ - 1	
=1-1=0	
Since $P(-1)=0$	
Then by factor theorem, $x = 1$ is a factor of $x^{18} = 1$.	•
Q.8 $x^9 - 2^9$; $x + 2$	
Sol: Let $P(x) = x^9 - 2^9$	
Here $x-y=x+2$	
Thus a = +2	1
Now $P(-2) = (-2)^9 - (2)^9$	1
= -(2) ⁹ - (2) ⁹	
= -ve ≠ 0	
Since P(-2) ≠ 0	
Therefore, $x + 2$ is not a factor of $x^9 - 2^9$. O.9 $x^9 + 2^9$; $x - 2$	
Sol: Let $P(x) = x^9 + 2^9$	
Here $x=a=x-2$	
Thus a = 2	
Now $P(2) = (2)^9 + (2)^9$	
≠ 0	
Since P(2)≠0	
Therefore, $x = 2$ is not a factor of $x^9 + 2^9$.	
$Q.10 3x^4 - 2x^3 + 5x - 6; x - 1$	
Soi: Let $P(x) = 3x^4 - 2x^3 + 5x - 6$	
Here x = a = x - 1	
Thus a = 1	
Now $P(1) = 3(1)^4 - 2(1)^3 + 5(1) - 6$	
= 3 - 2 + 5 - 6	
= 8 - 8 = 0	
Since P(1) = 0	

Pilot Super One "General Math" 10th

58

Then by factor theorem, x - 1 is a factor of $3x^4 - 2x^3 + 5x + 6$.

Q.11
$$5x^4 - 7x^3 - 6x + x$$
; $x = 1$

Sol: Let
$$P(x) = 5x^5 - 7x^3 - 6x + x$$

Here
$$x-a=x-1$$

Thus
$$a=1$$

Now
$$P(1) = 5(1)^6 - 7(1)^3 - 6(1) + (1)$$

= 5 - 7 - 6 + 1
= 6 - 13
= -7 \neq 0

Since
$$P(1) \neq 0$$

Then by factor theorem, x = 1 is not a factor of $5x^6 - 7x^3 - 6x + x$.

Q.12
$$3x^3 - 7x^2 - 8x + 2$$
; $x + 1$

Sol: Let
$$P(x) = 3x^3 - 7x^2 - 8x + 2$$

Here
$$x-a=x+1$$

Now
$$P(-1) = 3(-1)^3 - 7(-1)^2 - 8(-1) + 2$$

= -3 - 7 + 8 + 2

Since
$$P(-1)=0$$

Then by factor theorem, x+1 is a factor of $3x^3 - 7x^2 - 8x + 2$.

Q.13
$$5x^3 - 2x^5 + 3x^3 + 6x + 2$$
; x+1

Sol: Let
$$P(x) = 5x^8 - 2x^5 + 3x^3 + 6x + 2$$

Here
$$x - a = x + 1$$

Now
$$P(-1) = 5(-1)^{4} - 2(-1)^{5} + 3(-1)^{3} + 6(-1) + 2$$

= $5 + 2 - 3 - 6 + 2$
= $9 - 9 = 0$

Since
$$P(-1) = 0$$

Then by factor theorem, x+1 is a factor of $5x^3-2x^5+3x^3+6x+2$.

Pilot Super One "General Math" 10th 59 Q.14 $6x^3 + 2x^2 - x + 9 : x - 1$ Sol: Let $P(x) = 6x^3 + 2x^2 - x + 9$ Here x = a + x = 1therefore a 1 Now $P(1) = 6(1)^3 + 2(1)^2 - (1) + 9$ -6+2-1+9 17 - 1 = 16 = 0Since $P(1) \neq 0$ Then by factor theorem, x = 1 is not a factor of $6x^3 + 2x^2 + x + 9$. Q.15 $4x^3 - 3x^2 - 8x + 4 : x - 2$ Sol: Let $P(x) = 4x^3 - 3x^2 - 8x + 4$ Here x-a x-2therefore a 2 Now $P(2) - 4(2)^3 - 3(2)^2 - 8(2) + 4$ -4(8) - 3(4) - 8(2) + 4- 32 - 12 - 16 + 4 $-36 - 28 = 8 \pm 0$ Since $P(2) \neq 0$ Then by factor theorem, x - 2 is not a factor of $4x^3 - 3x^2 - 8x + 4$. $0.16 \quad 5x^3 + 3x^2 - x + 1; x + 1$ Sol: Let $P(x) = 5x^3 + 3x^2 - x + 1$ Here x = a + x + 1therefore a --1 Now $P(-1) = 5(-1)^3 + 3(-1)^2 - (-1) + 1$ = 5(-1) + 3(1) + 1 + 1--5+3+1+1

Since P(-1) = 0

÷-5+5

⇔ 0

Then by factor theorem, x+1 is a factor of $5x^3 + 3x^2 - x + 1$.

Pilot Super One "General Math" 10th

60

$$Q.17 2y^3 - 8y^2 + y - 4$$
; $y - 4$

Soi: Let
$$P(y) = 2y^3 - 8y^2 + y - 4$$

Here
$$y-a=y-4$$

therefore a = 4

Now
$$P(4) = 2(4)^3 - 8(4)^2 + (4) - 4$$

= $2(64) - 8(16) + 4 - 4$
= $128 - 128 + 4 - 4$
= $132 - 132$
= 0

Since P(4) = 0

Then by factor theorem, y = 4 is not a factor of $2y^3 = 8y^2 + y = 4$.

$$Q.18 z^3 - 5z^2 - 4z - 4$$
; $z + 2$

Sol: Let
$$P(z) = z^3 - 5z^2 - 4z - 4$$

Here
$$z-a=z+2$$

therefore
$$a = -2$$

Now
$$P(-2) = (-2)^3 - 5(-2)^2 - 4(-2) - 4$$

= $-8 - 5(4) + 8 - 4$
= $-8 - 20 + 8 - 4$
= $-32 + 8$
= $-24 \neq 0$

Since $P(-2) \neq 0$

Then by factor theorem, z+2 is not a factor of $z^3 - 5z^2 - 4z - 4$.

III. Solve

Q.19. If $P(x) = x^3 - kx^2 + 3x + 5$ is divided by x = 1, find k, if remainder is 8.

Sol: Let $P(x) = x^3 - kx^2 + 3x + 5$

Pilot Super One "General Math" 10th	61
	

Here x-a=x-1

therefore a = 1

Now
$$P(1) = (1)^3 - k(1)^2 + 3(1) + 5$$

= $1 - k + 3 + 5$
= $9 - k$ = Remainder

k = 1

Q.20. If $P(x) = 3x^3 + kx - 26$ is divided by x - 2, find k, if

remainder is 0. Sol: Lets $P(x) = 3x^3 + kx - 26$

Here
$$x = a = x - 2$$

therefore a = 2 -

Now
$$P(2) = 3(2)^3 + k(2) = 26$$

$$= 3(8) + 2k - 26$$

$$= 24 + 2k - 26$$

$$= 2k - 2 = Remainder$$

But Remainder = 0

Thus. 2k - 2 = 0

$$k = \frac{2}{2}$$

k ≐ [

Pilot Super One "General Math" 10th

65

Algebraic Manipulation

- H.C.F and L.C.M.
- Basic Operations on Algebraic Fractions
- Square Roots of Algebraic Fractions

After complation of this unit, the students will be able to:

- find highest common factor (HCF) and least common multiple (LCM) of algebraic expressions.
- use factor or division method to determine HCF and LCM.
- know the relationship between HCF and LCM.
- use HCF and LCM to reduce fractional expressions involving +, - , x, +.
- find square root of an algebraic expression by factorization and division.

Find H.C.F by factorization.

Q.1 abxy, a1 bc.

Sol.

Factorization of
$$a^{b}xy = \begin{bmatrix} a \\ a \end{bmatrix} \times \begin{bmatrix} b \\ b \end{bmatrix} \times x \times y$$
Factorization of $a^{2}bc = \begin{bmatrix} a \\ a \end{bmatrix} \times \begin{bmatrix} b \\ b \end{bmatrix} \times a \times c$

common factors = a, h

Thus, $H.C.F = a \times b$

= ab

Pilot Super One "General Math" 10th 66 Q.2 6pgr. 15grs Sol. Factorization of $6pqr = 2 \times 3 \times p \times q$ Factorization of $15qrs = 5 \times 3 \times p \times q$ Common factors = 3, q, rH.C.F = $3 \times q \times r$ Thus. Q.3 $8xy^2z^3$, $12x^2y^2z^3$ Sol. Common factors = 2, 2, x, y, x, z, z $HCF = 2 \times 2 \times x \times y \times y \times z \times z$ Thus, = 4m²x² $14a^2bc$, $21ab^2$ Q.4 Sol Factorization of $14a^2bc = 2 \times \boxed{7} \times \boxed{a} \times a \times b \times c$ Factorization of $21ab^2 = 3 \times \boxed{7} \times \boxed{a} \times b \times b \times b$ Common factors = 7, a, b $HCF = 7 \times a \times b$ Thus. * = 7ab 3x⁵y³, 12x²y⁴, 15x³y² Ų Š Sol Factorization of $3x^5y^2 = 3 xx^3x^3$ Exertisation of $12x^2y^4 = |3| < 2 \times 2 \times$ Factorization of $15\tau^3y^2 = 3 \times 5$ Common factors = J, x, x, y, y=3×x×x×y×y H C.F Thus,

Pilot Super One "General Math" 10th 67 0.6 Jahc1, 8a3bc, 6ab3c Sol. Factorization of $Aabc^3 = \begin{bmatrix} 2 & \times 2 \times a & \times & b & \times c \times c \\ 2 & \times 2 \times a & \times a \times a \times b & \times & c \end{bmatrix} \times c$ Factorization of $Ba^3bc = 2 \times 2 \times a \times a \times a \times b \times c$ Factorization of $6ab^3c = |2| \times 3 \times |a| \times b \times |b|$ Common factors = 2, a, b, cThus, $H.C.F = 2 \times a \times b \times c$ = 2abcQ.7 $x^3 + 64$, $x^2 - 16$ Sol. Factorization of $x^3 + 64 = (x)^3 + (4)^3$ $= (x+4)[(x)^2 - (x)(4) + (4)^2]$ $= (x + 4)(x^2 - 4x + 16) \dots (i)$ Factorization of $x^2 = 16 = (x)^2 = (4)^2$ =(x+4)(x-4)....(ii)Common factors are: (x + 4)Thus, H.C.F = x + 4x2 -y2, x4 - y4, x6 - y6 8.0 Factorization of $x^2 - y^2 = (x + y)(x - y)$(i) Factorization of $x^4 - y^4 = (x^2)^2 - (y^2)^2$ $=(x^2+y^2)(x^2-y^2)$ $=(x^2+y^2)(x+y)(x-y)....(ii)$ Factorization of $x^6 - y^6 = (x^3)^2 - (y^3)^2$ $= (x^3 - y^3)(x^3 + y^3)$ $=(x-y)(x^2+xy+y^2)(x+y)(x^2-xy+y^2)....(iii)$ Common factors are : (x + y), (x - y)H.C.F = (x + y)(x - y)Thus,

Pilot Super One "General Math" 10th

6B

 $t^2 = 9$, $(1 + 3)^2$, $t^2 + t = 6$ 0.9

Sol.

Factorization of
$$t^2 = 9 = (t)^2 = (3)^2$$

= $(t+3)(t-3)$(i)

otes.com Factorization of $(t+3)^2 = (t+3)(t+3)$(ii)

Factorization of $t^2 + t - 6 = t^2 + 3t - 2t - 6$

$$= t(t + 3) - 2(t + 3)$$

Common factor is : (t + 3)

H.C.F \star (1 + 3) Thus.

$$0.10 x^2 - x - 2, x^2 + x - 6, x^2 - 3x + 2$$

Sol.

Factorization of
$$x^2 - x - 2 = x^2 - 2x + x - 2$$

= $(x^2 - 2x) + (x - 2)$
= $x(x - 2) + 1(x - 2)$
= $(x - 2)(x + 1)$(i)

Factorization of
$$x^2 + x - 6 = x^2 + 3x - 2x - 6$$

$$-(x^2+3x)-(2x+6)$$

$$= x(x+3)-2(x+3)$$

$$= (x+3)(x-2).....(ii)$$

Factorization of
$$x^2 - 3x + 2 = x^2 - x - 2x + 2$$

$$=(x^2-x)-(2x-2)$$

$$=x(x-1)-2(x-1)$$

Common factor is : (x - 2)

Thus, H.C.F =
$$(x-2)$$

Q.11
$$1-x^2$$
, x^3+1 , $1-x-2x^2$

Sol.

Factorization of $1 - x^2 = (1)^2 - (x)^2$

Pilot Super One "General Math" 10th 69 = (1 + x)(1 - x)....(i)Factorization of $x^3 + 1 = (x)^3 + (1)^3$ $= (x + 1)(x^2 - x + 1).....(ii)$ Factorization of $1 - x - 2x^2 = 1 - 2x + x - 2x^2$ $= (1 - 2x) + (x - 2x^2)$ = 1(1-2x) + x(1-2x)= (1 - 2x)(1 + x)Common factor is 1 + xThus, H.C.F = 1 + xQ.12 $x^1 - 8$, $x^2 - 7x + 10$ Factorization of $x^3 - 8 = (x)^3 - (2)^3$ $=(x-2)[(x)^2+(x)(2)+(2)^2]$ $= (x-2)(x^2+2x+4)....(i)$ Factorization of $x^2 - 7x + 10 = x^2 - 2x - 5x + 10$ $=(x^2-2x)-(5x-10)$ =x(x-2)-5(x-2)= (x-2)(x-5)....(ii)Common factors are: x = 2Thus, H.C.F = x = 2 $0.13 x^2 + 3x + 2x^2 + 4x + 3x^2 + 5x + 4$ Sol: Factorization of $x^2 + 3x + 2 = x^2 + x + 2x + 2$ $=(x^2+x)+(2x+2)$ = x(x + 1) + 2(x + 1)= (x+1)(x+2)....(i)Factorization of $x^2 + 4x + 3 = x^2 + x + 3x + 3$ $=(x^2+x)+(3x+3)$ = x(x+1) + 3(x+1)= (x + 1)(x + 3)....(ii)Factorization of $x^2 + 5x + 4 = x^2 + x + 4x + 4$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 5 of 50)

Pilot Super One "General Math" 10th 70 $=(x^2+x)+(4x+4)$ = x(x + 1) + 4(x + 1)= (x + 1)(x + 4)....(iii)Common factors are: (x + 1)Thus. H.C.F = x+1O.14: $x^4 + x^3 - 6x^2$, $x^4 - 9x^2$, $x^3 + x^2 - 6x$ Sol: Factorization of $x^{4} + x^{3} - 6x^{2} = x^{2}(x^{2} + x - 6)$ $= x^{2}(x^{2} + 3x - 2x - 6)$ $= x^2 [(x^2 + 3x) - (2x + 6)]$ $= x^{2}[x(x+3)-2(x+3)]$ $= x^2(x+3)(x-2)$ $= x \times x(x+3)(x-2)$(i) Factorization of $x^4 - 9x^2 = x^2(x^2 - 9)$ $x^{2}[(x)^{2}-(3)^{2}]$ $= x^2(x-3)(x+3)$ $= x \times x(x-3)(x+3)$(ii) Factorization of $x^3 + x^2 - 6x = x(x^2 + x - 6)$ $= x(x^2+3x-2x-6)$ $=x[(x^2+3x)-(2x+6)]$ = x[x(x+3)-2(x+3)]

Common factors are: x, x + 3

= x(x+3)(x-2).....(iii)

 Pilot Super One "General Math" 10th 71 H.C.F = x(x+3)Thus. $x^2 + 3x$ Q.15 35a2c3b, 45a3cb2, 30ac2b3 Sol: Factorization of 35a²c³b = 5 ×7× Factorization of $45a^3cb^2 = |5| \times 3 \times 3 \times |a| \times a \times a \times a$ Factorization of $30ac^2b^3 = 5 \times 2 \times 3 \times 10^{-3}$ Common factors = 5, a, b, c Thus, H.C.F = $5 \times a \times b \times c$ = 5abc Find the H.C.F by Division Method. 0.1 $x^{4} + x^{2} + 1, x^{4} + x^{3} + x + 1$ Sol: $H.C.F * x^2 - x + I$

Pilot Super One "General Math" 10th 72 Q.2. $6x^3 + 7x^2 - 9x + 2$, $8x^4 + 6x^3 - 15x^2 + 9x - 2$ Sol: $6x^{3} + 7x^{2} - 9x + 2 \overline{\smash{\big)}\ 8x^{4} + 6x^{4} - 15x^{2} + 9x - 2 \\ \times 3 \ \text{multiply by 3}$ $\frac{24x^4 \pm 28x^3 \pm 36x^2 \pm 8x}{-10x^3 - 9x^2 + 19x - 6}$ $\frac{x(-3)}{30x^3 + 27x^2 - 57x + 18}$ $\pm 30x^3 \pm 35x^2 \pm 45x \pm 10$ $-4|_{-8x^2-12x+8}$ $\begin{array}{r}
3x - 1 \\
2x^{3} + 3x - 2 \overline{\smash{\big)}\ 6x^{3} + 7x^{2} - 9x + 2} \\
\underline{+6x^{3} + 9x^{2} - 6x} \\
-2x^{3} - 3x + 2 \\
\underline{-2x^{3} + 3x + 2} \\
0
\end{array}$ $H.C.F = 2x^2 + 3x - 2$ $Q.3 4x^3 + 2x^2 - 6x, 4x^3 - 8x + 4$ Sol: $2\frac{4x^{3} + 2x^{2} - 6x}{2x^{3} + x^{2} - 3x} = 4\frac{4x^{3} - 8x + 4}{x^{3} - 2x + 1}$ Now we find H.C.F of $x^3 - 2x + 1$ and $2x^3 + x^2 - 3x$ a n d H.C.F of 2, 4 is 2.

Pilot Super One "General Math" 10th 73 x' - 2x + 1 2x' + x' - 3x $\pm 2x' \pm 4x \pm 2$ Required H.C.F = 2(x-1)Q.4 $x^3 + 7x^2 + 12x$, $x^3 + 2x^2 - 15x$ Sol: $x \mid x^3 + 7x^2 + 12x$ $x \mid x^3 - 2x^2 - 15x$ I.C.F of x and x is x. Now we find H.C.F of $x^2 - 2x - 15$ and $x^2 + 7x + 12$.

Pilot Super One 'General Math" 10th

74

Super One 'General Math" 10th

$$x' + 7x + 12 \overline{\smash) \begin{array}{c} x' - 2x - 15 \\ + x' + 7x + 12 \\ \hline - 9 \overline{} - 9x - 27 \\ \hline x + 3 \overline{} + x^2 + 7x + 12 \overline{} x + 4 \\ \underline{+ x^2 \pm 3x} \\ \hline + 4x + 12 \\ \underline{+ 4x + 12} \\ \hline 0 \\$$
Required H.C.F = $x(x + 3)$

Required H.C.F = x(x + 3)

Q.5
$$x^3 - x^2 - x + 1$$
, $x^4 - 2x^3 + 2x - 1$

Sol:

$$\begin{array}{r}
x-1 \\
x^{4}-2x^{3}+2x-1 \\
\pm x^{4} \pm x^{3} \pm x^{2} \pm x \\
-x^{3}+x^{2}+x-1 \\
\pm x^{3} \pm x^{2} \pm x \pm 1
\end{array}$$

Required H.C.F $\frac{x^2}{4}$ = x^2 = x + 1

$$= x^{2}(x-1) - 1(x-1)$$

$$= (x^{2}-1)(x-1)$$

$$= [(x)^{2} - (1)^{2}](x-1)$$

$$= (x-1)(x+1)(x-1)$$

$$= (x+1)(x-1)^2$$

Q.6
$$x^3 - x^2 - x - 2$$
, $x^3 + 3x^2 - 6x - 8$

Sol:

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 11 of 50)

GENERAL MATHEMATICS FOR 10	CLASS (UNI) # 3)
Pilot Super One "General Maib" 10th	76
Q.8 $3x^3 - 14x^2 + 9x + 10$, $15x^3 - 34x^2 +$	21x - 10
Sol:	
5	
$3x^3 - 14x^2 + 9x + 10$ $15x^3 - 34x^2 + 21x - 10$ $\pm 15x^3 \mp 70x^2 \pm 45x \pm 50$	
$12 36x^2 - 24x - 60$	-
· ·	$3x^{3} - 14x^{2} + 9x + 10 = 4$ $\pm 3x^{3} \mp 2x^{2} \mp 5x$
	$-12x^{2}+14x+10$
	$\mp 12x^2 \pm 8x \pm 20$
	2 6x - 10
	3x = 5
	
↓	
a • 1	
$3x - 5$ $3x^2 - 2x - 5$	
$\pm 3x^2 \mp 5x$	
$\frac{3x-5}{}$	
± 3x ∓ 5	
_ 	
0 -	
Required H.C.F = $3x = 5$	

Pilot Super One "General Math"	10ւհ	77
$Q.9 = 2x^4 + x^3 + 4x + 2, 6x^3 +$	$5x^2 + x$, $2x^4 + 3x^3$	$+x^{2}+2x+1$
Sof: First we will find the	H.C.F of $2x^4 + x$	3 + 4x + 2 at
$2x^4 + 3x^3 + x^2 + 2x + 1$		
į t		
$2x^4 + x^3 + 4x + 2 + 2x^4 + 3x^3 +$	2 4 2 4 1	
$\pm 2x^4 \pm x^3$	± 4x ±2	x
	$\frac{1}{x^2 - 2x - 1} + 2x^{-1}$	$+x^3 + 4x + 2x$
-	•	±r³∓2r²∓ <i>x</i>
		2x2+5x+2
 		
↓ x-2		
$2x^2 + 5x + 2$ $2x^3 + x^2 - 2x $;_	
$\pm 2x^3 \pm 5x^2 \pm 2x$	•	•
$-4x^2 - 4x -$. T	
∓ 4x² ∓ 1Qx 3	F4	
3 6x + 3		
11. C. F 2x + 1	$2x^2 + 5x + 2$	-
	$\pm 2x^2 \pm x$	
	±4x±2	
	0	
Now we will find H.C.F	of $2x + 1$ and $6x^3$	$^{1} + 5x^{2} + x$
$3x^2 + x$		
$2x + 1 \sqrt{6x^3 + 5x^2 + x}$		
$\frac{\pm 6x^3 \pm 3x^2}{2}$		
$\frac{2x^2+x}{2x^2+x}$		
± 2x ² ±x		
equired H.C.F = $2x + 1$		

Pilot Super One "General Math" 10th		78	
	$x^2 - 5x + 3$, $x^3 - 7x + 6$		
	we will find the $H.C.F$ 5x + 3.	of $x^3 = 7x + 6$ and	,,, ,
$x^3 - 7x + 6$	$\begin{array}{c c} x^3 + x^2 - 5x + 3 \\ \pm x^3 & \mp 7x \pm 6 \end{array}$	x - 2	
	$x^2 + 2x - 3$	$x^3 - 7x + 6$ $\pm x^3 \pm 2x^2 \mp 3x$	
		$-2x^2 - 4x + 6$ $\mp 2x^{1} \mp 4x \pm 6$	

Now we will find H.C.F of $x^2 + 2x - 3$ and $x^3 + 2x^2 + 3$.

Least Common Multiple (LCM)

x + 3

H.C.F

The least common multiple of two or more algebraic expressions is the expression of lowest degree which is divisible by each of them without remainder.

The abbreviation of the words least common multiple is $L_{\bullet}C.M$.

Find L.C.M by Factorization.

 $21a^4x^4y$, $35a^2x^4y$, $28a^3xy^4$ Q.1

Pilot Super One "General Math" 10th

Sot:

Factorization of $2 |a'x^2y = 3 \times 7 \times a|x |a|x |a \times a|x \times x \times x \times y$ Factorization of $35a^2x^4y = 5 \times 7 \times a$

Product of common factors = $7 \times u \times u \times u \times u \times x \times y \times x \times x$ $= 7u^3x^3y....(i)$

Product of uncommon factors= $3 \times 5 \times 2 \times 2 \times n \times x \times y \times y \times y$

79

L.C.M = (i) × (ii)
=
$$7a^3x^3y \times 60c\alpha y^3$$

= $420a^4x^4y^4$

0.2 $3a^4b^2c^3$, $5a^2b^3c^5$

Sol:

Fac of
$$3a^4h^3c^3 = 3 \times a \times a \times a \times b \times b \times c \times c \times c$$

Fac of $5a^2h^3c^5 = 5 \times a \times a \times b \times b \times b \times c \times c \times c \times c \times c \times c$

Product of common factors= $\mathbf{a} \times \mathbf{a} \times \mathbf{b} \times \mathbf{b} \times \mathbf{c} \times \mathbf{c} \times \mathbf{c}$

=
$$a^2b^2c^3$$
 (i)

Product of uncommon factors= $3 \times 5 \times a \times a \times b \times c \times c$

=
$$15a^2bc^2$$
 (ii)

L.C.M = (i) × (ii)
=
$$(a^2b^2c^3)(15a^3bc^2)$$

= $15a^4b^3c^5$

Visit www.downloadclassnotes.com for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 15 of 50)

Pilot Super One "General Math" 10th

80

O.3 2ab, 3ab, 4ca

Sol:

Factorization of
$$2ab = 2 \times a \times b$$

Factorization of $3ab = 3 \times a \times b$
Factorization of $4ca = 2 \times 2 \times a \times b$

Product of common factors= $2 \times a \times b = 2ab$(i)

Product of uncommon factors= $3 \times 2 \times c = 6c......(ii)$

L.C.M = (i) × (ii)
=
$$(2ah)(6c)$$

= $12abc$

 $0.4 \quad x^2yz, xy^2z, xyz^2$

Sol:

Factorization of
$$x^2yz = \begin{bmatrix} x \\ x \end{bmatrix} \times x \begin{bmatrix} y \\ x \end{bmatrix} \times \begin{bmatrix} y \\ y \end{bmatrix} \times \begin{bmatrix} z \\ z \end{bmatrix}$$
Factorization of $xy^2z = \begin{bmatrix} x \\ x \end{bmatrix} \times \begin{bmatrix} y \\ y \end{bmatrix} \times \begin{bmatrix} z \\ z \end{bmatrix}$
Factorization of $xyz^2 = \begin{bmatrix} x \\ x \end{bmatrix} \times \begin{bmatrix} y \\ y \end{bmatrix} \times \begin{bmatrix} z \\ z \end{bmatrix}$

Product of common factors= $x \times y \times y \times z = xy^2z$(i)

Product of uncommon factors= x × z = xz.....(ii)

L.C.M = (i) × (ii)
=
$$xy^2z \times xz$$

= $x^2y^2z^2$

Q.5 $p^3q - pq^3 \cdot p^5q^2 - p^2q^5$

Sol

Factorization of
$$p^3q - pq^3 = pq(p^2 - q^2)$$

= $pq(p - q)(p + q)$(i)

Factorization of $p^3q^2 - p^2q^3 = p^2q^2(p^3 - q^3)$

Pilot Super One "General Math" 10th

81

$$= ppqq(p - q)(p^2 + pq + q^2).....(ii)$$

In (i) and (ii)

Product of common factors= pq(p-q).....(iii)

Product of uncommon factors = $pq(p+q)(p^2+pq+q^2)$(iv)

Sol:

Factorization of $x^3 + 64 = (x)^3 + (4)^3$ = $(x + 4) [(x)^2 - (x)(4) + (4)^2]$ = $(x + 4)(x^2 - 4x + 16)$(i)

Factorization of $x^2 - 16 = (x)^2 - (4)^2$ = (x + 4)(x - 4)....(ii)

In (i) and (ii)

Product of common factors = (x + 4).......................(iii)

Product of uncommon factors = $(x - 4)(x^2 - 4x + 16)....(iv)$

L.C.M = (iii) × (iv)
=
$$(x + 4)(x - 4)(x^2 - 4x + 16)$$

Of $x^2 - x - 2$, $x^2 + x - 6$, $x^2 - 3x + 2$

Sol:

Factorization of
$$x^2 - x - 2 = x^2 - 2x + x - 2$$

= $(x^2 - 2x) + (x - 2)$
= $x(x - 2) + 1(x - 2)$

$$= (x-2)(x+1)......(i)$$

Factorization of
$$x^2 + x - 6 = x^2 + 3x - 2x - 6$$

= $(x^2 + 3x) - (2x + 6)$

com

Pilot Super One "General Math" 10th

$$= x(x+3) - 2(x+3)$$

$$= (x+3)(x-2).......(ii)$$
Factorization of $x^2 - 3x + 2 = x^2 - x - 2x + 2$

$$= (x^2 - x) - (2x + 2)$$

$$= x(x-1) - 2(x-1)$$

$$= (x-1)(x-2)......(iii)$$

In (i), (ii) and (iii)

Product of common factors = (x - 2).....(iv)

 \mathbb{C}

Product of uncommon factors = (x + 1)(x + 3)(x - 1)....(v)

L.C.M =
$$(iv) \times (v)$$

= $(x-2)(x+1)(x+3)(x-1)$

Q.8
$$y^2 - 9$$
, $(y + 3)^2$, $y^2 + y - 6$

Sol:

Factorization of
$$y^2 - 9 = (y)^2 - (3)^2$$

= $(y + 3)(y - 3)$(i)

Factorization of
$$(y + 3)^2 = (y + 3)(y + 3)$$
.....(ii)

Factorization of
$$y^2 + y - 6 = y^2 + 3y - 2y - 6$$

= $(y^2 + 3y) - (2y + 6)$
= $y(y + 3) - 2(y + 3)$
= $(y + 3)(y - 2)$(iii)

In (i), (ii) and (iii)

Product of common factors = (y + 3).....(iv)

Product of uncommon factors = (y-3)(y+3)(y-2).....(v)

$$C(1) = (iv) \times (v)$$

$$= (y + 3)(y - 3)(y + 3)(y - 2)$$

$$Q.9 = 1 - \chi^{2}, \chi^{3} + 1, 1 - \chi^{2} - 2\chi^{2}$$

Sol:

Factorization of $1-\sqrt{2}=(1)^2-\sqrt{2}$

Pilot Super One "General Math" 10th 83 · (1 + x)(1 - x).....(i) Factorization of $y^3 + 1 = (y^3 + (1)^3 + (1$ $= (1 - 2y) + (y - 2y^2)$ = 1(1 - 2y) + \((1 - 2y) = (1 - 2y)(1 + y).....(iii) In (i), (ii) and (iii) Product of common factors = (1 + y)....(iv) Product of uncommon factors = $(1-y)(1-2y)(y^2-y+1)...(y)$ Q.10 $x^2 - y^2$, $x^4 - y^4$, $x^6 - y^6$ L.C.M = (iv) × (v) $(1 + y)(1 - y)(1 - 2y)(y^2 - y + 1)$ Sol: Factorization of $x^2 - y^2 = (x + y)(x - y)$(i) $=(x)^2-(y)^2$ Factorization of $x^4 - y^4 = (x^2)^2 - (y^2)^2$ $=(x^2+v^2)(x^2-v^2)$ $=(x^2+y^2)[(x)^2-(y)^2]$ $=(x^2+y^2)(x+y)(x-y).....(ii)$ Factorization of $x^{b} - y^{b} = (x^{3})^{2} - (y^{3})^{2}$ $=(x^3+y^3)(x^3-y^3)$ $= (x+y)(x^2 - xy + y^2)(x-y)(x^2 + xy + y^2)(iii)$ In (i), (ii) and (iii) Product of common factors = (x + y)(x - y)....(iv)

Product of uncommon factors = $(x^2+y^2)(x^2-xy+y^2)(x^2+xy+y^2)$ (v)

L.C.M = (iv) × (v)
=
$$(x+y)(x-y)(x^2+y^2)$$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 19 of 50)

Pilot Super One "General Math" 10th	84
$(x^2 - xy + y^2)(x$	$(2 + xy + y^2)$
$=(x+y)(x-y)(x^2)$! + y ² }
$(x^4 + x^2y^2 + y^4)$)
$Q.11 x^3 + 1 x^4 + x^2 + 1 (x^2 + x + 1)^2$	
Sol:	0
Factorization of $x^3 + 1 = (x)^3 + (1)^3$	\mathbf{c}
$= (x + 1)(x^2 - x + 1)$	(i)
Factorization of $x^4 + x^2 + 1 = x^4 + 2x^2 + 1 - x^2$ (co	mpleting square)
$=(x^2+1)^2-(x)^2$	
$= (x^2 + 1 + x)(x^2 + 1 - x)$	•
$=(x^2+x+1)(x^2-x+1)$	(ii)
Factorization of $(x^2 + x + 1)^2 = (x^2 + x + 1)(x^2 + x + 1)$	r + 1)(iii)
to (i) (ii) and (iii)	•
Product of common factor $x = (x^2 + x + 1)(x^2 + x + 1)$	-x + 1)(iv)
Product of uncommunications = $(x + 1)(x^2 + x^2)$	+ 1)(v)
$F(C) = (iv) \times (v)$	
$\frac{1}{x^2 + x + 1}(x^2 - x + 1)(x^2 - x + 1$	$(x+1)(x^2+x+1)$
$= (x+1)(x^2-x)$	$+1)(x^2+x+1)^2$
$Q.12 \cdot x^3 + y^3 \cdot x^4 - y^4 \cdot x^6 + y^6$	•
Sol: Factorization of $x^3 + y^3 = (x + y)(x^2 - xy + y^2)$,(i)
Factorization of $x^4 - y^4 = (x^2)^2 - (y^2)^2$	
Factorization of $x^2 - y = (x^2 + y^2)(x^2 - y^2)$	
$=(x^2+y^2)[(x^2)-(y)^2]$	•
$=(x^2+y^2)(x+y)(x-y)$	(ii)
Factorization of $x^6 + y^6 = (x^2)^3 + (y^2)^3$	
Factorization of $x^2 + y^2 = (x^2 + y^2)[(x^2)^2 - (x^2)(y^2)]$	+ (y²)²]
$= (x^2 + y^2)(x^4 - x^2y^2 + y^4).$	GiA

Pilot Super One "General Math" 10th	85	
In (i), (ii) and (iii)		
Product of common factors = $(x + y)(x_x^2 + y^2)$ (iv)		
Product of uncommon factors = $(x^2-xy+y^2)(x-y)(x^4-x^2y^2+y^2)$	y4)(v)	1
$L.C.M = (iv) \times (v)$		۱م
$= (x + y)(x^2 + y^2)(x^2 - x + y^2)(x - y)$		V
$(x^4 - x^2y^2 + y^4)$		
$=(x+y)(x-y)(x^2+y^2)$		
$(x^2 - xy + y^2)(x^4 - x^2y^2 + y^4)$		
Q.13 $2x^2+5x+3$, x^2+2x+1 , $2x^2+9x+9$		
Sol:		
Factorization of $2x^2 + 5x + 3 = 2x^2 + 2x + 3x + 3$		
$=(2x^2+2x)+(3x+3)$	•	
=2x(x+1)+3(x+1)		
=(x+1)(2x+3)(i)		
Factorization of $x^2 + 2x + 1 = x^2 + x + x + 1$		
$=(x^2+x)+(x+1)$		
=x(x+1)+1(x+1)		
=(x+1)(x+1)(ii)		
Factorization of $2x^2 + 9x + 9 = 2x^2 + 3x + 6x + 9$		
$=(2x^2+3x)+(6x+9)$		
=x(2x+3)+3(2x+3)		
= (2x + 3)(x + 3)(iii)		
In (i), (ii) and (iii)		
Product of common factors = $(x + 1)(2x + 3)$ (iv)		
Product of uncommon factors = $(x + 1)(x + 3)$ (v)		
$L.C.M = (iv) \times (v)$		
=(x+1)(2x+3)(x+1)(x+1)	+ 3)	
$=(x+1)^2(2x+3)(x+3)$		

Pilot Super One "General Math" 10th

86

$$Q.14 x^4 + x^3 - 6x^2, x^4 - 9x^2, x^3 + x^2 - 6x$$

Sol: •

Factorization of
$$x^4 + x^3 - 6x^2 = x^2(x^2 + x - 6)$$

$$= x^2(x^2 + 3x - 2x - 6)$$

$$= x^2[(x^2 + 3x) - (2x + 6)]$$

$$= x^2[x(x + 3) - 2(x + 3)]$$

$$= x^2(x + 3)(x - 2)$$
.....(i)

In (i), (ii) and (iii)

Product of common factors =
$$x^2(x + 3)(x - 2)$$
.....(iv)

Product of uncommon factors =
$$(x - 3)$$
.....(v)

L.C.M = (iv) × (v)
=
$$x^2(x + 3)(x - 2)(x - 3)$$

Q.15
$$x^2 + 4xy + 4y^2$$
, $x^2 + 3xy + 2y^2$, $x^2 + 2xy + y^2$

Sol

Factorization of
$$x^2 + 4xy + 4y^2 = x^2 + 2xy + 2xy + 4y^2$$

= $(x^2 + 2xy) + (2xy + 4y^2)$
= $x(x + 2y) + 2y(x + 2y)$
= $(x + 2y)(x + 2y)$(i)

Factorization of
$$x^2 + 3xy + 2y^2 = x^2 + xy + 2xy + 2y^2$$

= $(x^2 + xy) + (2xy + 2y^2)$
= $x(x + y) + 2y(x + y)$
= $(x + y)(x + 2y)$(ii)

Relationship between HCF and LCM

If A and B are two algebraic expressions and *H.C.F* and *L.C.M* of these is represented by H and L respectively, then the relation among them can be expressed as:

$$A \times B = H \times L$$

It is called a formula between L.C.M and H.C.F.

PROOF: Suppose that

Since there is no common factor between x and y.

Therefore L = H. x. y HL = H (H.x.y) (multiplying both the sides by H) = (Hx). (Hy)HL = A.B.

$$(i) \qquad L = \frac{A \times B}{H}$$

$$(ii) \qquad H = \frac{A \times B}{I}$$

$$(iii) \quad A = \frac{H \times L}{R}$$

Pilot Super One "General Math" 10th

88

Find the H.C.F and L.C.M of the following.

Q.1
$$x^3 + x^2 + x + 1$$
, $x^3 - x^2 + x - 1$

Sol:

First we find H.C.F

 $H.C.F = x^2 + 1$

Now we will find L.C.M.

$$L.C.M = \frac{(x^3 + x^2 + x + 1)(x^3 - x^2 + x - 1)}{(x^2 + 1)}$$

$$= (x^3 + x^2 + x + 1)(x - 1)$$

$$= x^4 + x^3 + x^2 + x - x^3 - x^2 - x - 1$$

$$L.C.M = x^4 - 1$$

$$L.C.M = x^4 - 1$$

Working

Visit www.downloadclassnotes.com for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 24 of 50)

Pilot Super One "General Math" 10th 89 Q.2 $x^3 - 3x^2 - 4x + 12$, $x^3 - x^2 - 4x + 4$ Sol: First we find H C.F $x^3 - 3x^2 - 4x + 12$ $x^3 - x^2 - 4x + 4$ $\pm x^3 \mp 3x^2 \mp 4x \pm 12$ $x^2 - 4$ $x^3 - 3x^2 - 4x + 12$ $\pm x^3$ $\mp 4x$ ± 12 $H.C.F = x^2 - 4$ Now we will find L.C.M. L.C.M $\int \frac{(x^3-3x^2-4x+12)(x^3-x^2-4x+4)}{(x^3-x^2-4x+4)}$ $=(x-3)(x^3-x^2-4x+4)$ $=x^4-x^3-4x^2+4x-3x^3+3x^2+12x-12$ $= x^4 - 4x^3 - x^2 + 16x - 12$ Q.3 $2x^3 + 2x^2 + x + 1$, $2x^3 - 2x^2 + x - 1$ Sol: First we find H.C.F $2x^{3} + 2x^{2} + x + 1 \qquad 2x^{3} - 2x^{2} + x - 1 \\ \pm 2x^{3} \pm 2x^{2} \pm x \pm 1$

Pilot Super One "General Ma	th" 10th	90
2	x^2+1 $2x^2+x+1$	
	± 2x³ ± x	
	2r ² + 1	(
		ام
•	$\pm 2r^2 \pm 1$	\mathbf{U}
1100 A.Z.		
$H.C.f = 2x^2 +$	-	
Now we will find L.		
	x+1	
L.C.M <u>12x</u>	$\frac{+2x^{2}+x+1)(2x^{1}-2x^{2}+x-1)}{(2x^{2}+1)}$	<u>)</u>
$= (x+1)(2x^3-2x^2+x-1)$	-	
$=2x^4-2x^3+x^2-x+$	$+2x^{1}-2x^{2}+x-1$	
$=2x^4-x^2-1$	•	
$Q.4 - 6x^3 + 7x^2 - 9x + 2, 8$	$x^4 + 6x^3 - 15x^2 + 9x - 2$	
Sol:		
First we find H.C.F		
4x	+ 5	
$6x^3 + 7x^2 - 9x + 2 \qquad 8x^4 +$	$6x^3 - 15x^2 + 9x - 2$	
×3		
'		
	$+18x^{3}-45x^{2}+27x-6$	
± 24x4 :	± 28x ³ ∓ 36x ² ± 8x	
	$x^3 - 9x^2 + 19x - 6$	
], -1 -10	r AY. + IAY - 9	
	$+9x^2-19x+6$	

× 3 .

 $30x^3 + 27x^2 - 57x + 18$ $\pm 30x^3 + 35x^2 \mp 45x \pm 10$

_		General Math" 10			91
		$-1 - 8x^2 - 1$	2x + 8		
		$\frac{1}{4} 8x^2 + 12$	x - 8	3x = 1	
		$2x^2 + 3x -$	$ \begin{array}{c c} $	$x^2 - 9x + 2$	
			± 6x' ± 9	x ² ∓6x	
		•		-3x + 2	
			∓2x	$7 \mp 3x \pm 2$	
		n 42		0	
	•	$F = 2x^2 + 3x - 2$ $\dots : 0.6 \text{ a.t. C.M.}$	2 .		
	Now we	will find L.C.M $3x-1$			
	L.C.	$M = \frac{(6x^3 + 7x^2)}{2}$	$\frac{9x+2)(8x^4+6}{(2x^2+3x-4)}$	$\frac{x^3-1}{27}$ 5 x^2+9x-	<u>2)</u> .
		$= (3x - 1)(8x^4)$			
Q.5	$3x^4 + 17x^3$	$+27x^2+7x-6$	$6x^4 + 7x^3 - 3$	$27x^2 + 17x - 3$	i
Sol	First we fin	d H.C.F			
		2			
$3x^{4}$	+17x ³ +27x ² + 7 x	$666x^4 + 7$	$x^3 - 27x^2 + 1$	7x-3	
	•	$\pm 6x^4 \pm 34$	$4x^3 \pm 54x^2 \pm 1$	4x ∓ 12	
		$-3 - 27x^3$	$-81x^{2} + 3x +$	9	
4	. ;	·	$\frac{1}{7x^2 - x - 3}$	<u>, </u>	
			74-14-3		
`	1_	x+2+2			
N ,					
9x ³ +	$27x^2 - x - 3$	$3x^4 + 17x^3 + 2$	$27x^4 + 7x - 6$		
		× 3	1	_	
			$81x^2 + 21x -$	18	
		$\pm 9x^4 \pm 27x^3 \mp$	$x^{\mu} \mp 3x$		

Pilot Super One "General	Mark* 10th	92
	$24x^3 + 82x^2 + 24x - 18$	
	$\pm 18x^3 \pm 54x^2 \mp 2x \mp 6$	
	$\frac{6x^3 + 28x^2 + 26x - 12}{6x^3 + 26x - 12}$	
	× 3	
	$18x^{3} + 84x^{2} + 78x - 36$ $\pm 18x^{3} \pm 54x^{2} \mp 2x \mp 6$	•
	$2 30x^2 + 80x - 30$	xe
	5 $15x^2 + 40x - 15$	<i>*</i> "
	$3x^2 + 8x - 3$ $9x^3 - 27$	x² -x - x² ∓ 9x
•	T -	+ 8x = 3 + 8x ∓ :
HCF =	3x ² + 8x = 3	0
	ill find L.C.M	
	$2x^2 - 3x$	
$L.C.M = \frac{(3x^4 + 17)^2}{2}$	$\frac{x^3 + 27x^2 + 7x - 6)(6x^4 + 7x^3 - 27x^2)}{(3x^2 + 8x - 3)}$	+ 1/x
$\int_{3}^{3} x^2 + 8x - 3$	- -	+ 7x - 6
N'	$2x^2 - 3x + 1$	
$3x^2+8x-3$	$6x^4 + 7x^3 - 27x^2 + 17x - 3$	
O	± 6x4 ± 16x3 ∓6x2	
. •	$-9x^3 - 21x^2 + 17x - 3$	
	∓9x³ ∓ 24x³ ±9x	
*	$3x^{2}+8x-3$	
	±3x²±8x∓3	
	0	

Pilot Super One "General Math" 10th Q.6 $2x^4 + 3x^3 - 13x^2 - 7x + 15$, $2x^4 + x^3 - 20x^2 - 7x + 24$ Sol: First we find H.C.F. $2x^{4} + 3x^{3} - 13x^{2} - 7x + 15$ $2x^{4} + x^{3} - 20x^{2} - 7x + 24$ $\pm 2x^{4} \pm 3x^{3} \mp 13x^{2} \mp 7x \pm 15$ $2x^3 + 7x^2 - 9$ $2x^4 + 3x^3 - 13x^2 - 7x + 15$ ±2x^±7x3 $-4x^{3}-13x^{2}+2x+15$ 74x3714x2 ±18 $x^{2} + 2x - 3 = 2x^{4} + 3x^{3} - 13x^{2} - 7x + 15$ $\pm 2x^{4} \pm 4x^{3} \mp 6x^{2}$ $-x^3 - 7x^2 - 7x + 15$ $\mp x^3 \mp 2x^2 \pm 3x$ $-5x^2 - 10x + 15$ $\mp 5x^2 \mp 10x \pm 15$ H.C.F = $x^2 + 2x - 3$ Now we will find L.C.M. $=(2x^2-x-5)(2x^4+x^3-20x^2-7x+24)$

Pilot Super One "General Math" 10th 84 Q.7 $x^4 - x^3 - x + 1$, $x^4 + x^3 - x - 1$ Sol: First we find H.C.F $H.C.F = x^3 - 1$ Now we will find L.C.M. L.C.M = $\frac{(x^4 - x^3 - x + 1)(x^4 + x^3 - x - 1)}{(x^3 - 1)}$ $= (x-1)(x^4+x^3-x-1)$ Q.8 $x^4 + x^3 + x + 1, x^4 + x^3 - x - 1$ Sol: First we find H.C.F H.C.F. = x + 1Now we will find L.C.M.

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 30 of 50)

(x ¹ +1)	
του (x2+x***** (x*+x*=x=1)	
L.C.M = $\frac{(x^4+x^3+x+1)(x^4+x^3-x-1)}{(x+1)}$	
$=(x^3+1)(x^4+x^3-x+1)$	
d the Required Polynomial.	
$A = x^2 - 5x - 14, H = x - 7, L = x^3 - 10x^2 + 11x + 70,$	B= ?
Formula: $B = \frac{H \times L}{A}$	
(x-5)	
$=\frac{(x-7)(x^3-10x^2+11x+70)}{(x^2-5x-14)}$	
(x:-3x-14)	
=(x-7)(x-5)	
$= x^2 - 12x + 35$	
Working	
x - 5	
$x^2 = 5x - 14$ $x^3 - 10x^2 + 11x + 70$	
$x^{2} = 5x - 14 \qquad x^{3} = 10x^{2} + 11x + 70$ $\pm x^{3} \mp 5x^{2} \mp 14x$	
$-5x^2 + 25x + 70$	
$7.5x^{2} \pm 2.5x \pm 70$	
0	
10. B = $3x^2 + 14x + 8$, H = $3x + 2$, L = $6x^3 + 25x^2 + 2x - 3x + 3$	8,
A=? H=1	
Formula: $A = \frac{H \times L}{B}$	
(2x-1)	
$=\frac{(3x+2)(6x^3+25x^2+2x-8)}{(3x^3+14x+8)}$	

Pilot Super One "General Math" 10th = (3x + 2)(2x - 1) $= 6x^{2} + x - 2$ $3x^{2} + 14x + 18$ $6x^{3} + 25x^{2} + 2x - 8$ $\pm 6x^{3} \pm 28x^{2} \pm 16x$ $-3x^{2} - 14x - 8$ $\pm 3x^{2} + 14x + 8$ 0Q.11. The product of two polynomials and their L.C.M. are $x^{4} + 6x^{3} - 3x^{2} - 56x - 48$ and $x^{3} + 2x^{2} - 11x - 12$ respectively. Find their H.C.F.

A × B = $x^{4} + 6x^{3} - 3x^{2} - 56x - 48$ H = $x^{3} + 2x^{2} + 11x - 12$ L = ?

Formula: L = $\frac{A \times B}{H}$ $= \frac{x^{4} + 6x^{3} - 3x^{2} - 56x - 48}{x^{3} + 2x^{2} - 11x - 12}$

U

Pilot Super One "General Math" 10th	97
Q.12. The product of two polynomials and their L.C	.M. are

Q.12. The product of two polynomials and their L.C.M. are $x^4 + 5x^3 - x^2 - 17x + 12$ and $x^3 + 6x^2 + 5x - 12$ respectively.

Find their B.C.F.

Sol:
$$A \times B = x^4 + 5x^3 - x^2 - 17x + 12$$

 $L = x^3 + 6x^2 + 5x - 12$,

Formula
$$H = \frac{A \times B}{L}$$

= $\frac{x^4 + 5x^3 - x^2 - 17x + 12}{x^3 + 6x^2 + 5x - 12}$

Working x = 1 $x^{3} + 6x^{2} + 5x - 12$ $x^{4} + 5x^{3} - x^{2} - 17x + 12$ $\pm x^{4} \pm 6x^{3} \pm 5x^{2} \mp 12x$ $-x^{3} - 6x^{2} - 5x + 12$ $+x^{3} + 6x^{2} + 5x \pm 12$

Q.13. The product of two polynomials and their H.C.F. are $x^4 - 12x^3 + 53x^2 - 102x + 72$ and x - 3 respectively. Find L.C.M.

Solt

$$A \times B = x^4 - 12x^3 + 53x^2 - 102x + 72$$

$$L = x - 3$$

Formula H =
$$\frac{A \times B}{L}$$

= $\frac{x^4 - 12x^3 + 53x^2 - 102x + 72}{(x - 3)}$

Q.14. The product of two polynomials and their H.C.F. is $x^4 - 5x^3 + 2x^2 + 20x - 24$ and x + 2 respectively. Find their L.C.M.

Sol:

A × B =
$$x^4 - 5x^3 + 2x^2 + 20x - 24$$

H = $x + 2$
L =?
Formula L = $\frac{A \times B}{H}$
= $\frac{x^4 - 5x^3 + 2x^2 + 20x - 24}{(x + 2)}$
H = $x^3 - 7x^2 + 16x - 12$
Working
 $x^3 - 7x^2 + 16x - 12$
 $x + 2$
 $x + 2$
 $x^4 - 5x^3 + 2x^2 + 20x - 24$
 $\pm x^4 \pm 2x^3$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 34 of 50)

Pilot Super One "Gen		99
	$\mp 7x^3 \mp 14x^2 \qquad .$	
	$+ 16x^2 + 20x - 24$	
	$\pm 16x^3 \pm 32x$	
	- 12x - 24	-
	$\frac{-}{+}12x - 24$	
_	0	-
Q.15. One algebra	$expression is x^3 + 3x^2 - 4x = -4x + 3x + $	- 12 and
	x - 20 other one is . Their H.C	$\mathbf{LF} + \mathbf{x}^2 - 4$
Find their L. Sol:	.C.IVI.	
	$3x^2 - 4x - 12$	
- B = x^3 +	$5x^2 - 4x - 20$	
$H = x^2 -$	4	
L =?		
Formula: L=	A×B	
	Π	
<u> </u>	$\pm 3x^2 - 4x = 12$) $(x^3 + 5x^2 - 4x -$	20)
1.	$\frac{1+3x^{\frac{n+3}{2}}-4x-12)(x^3+5x^2-4x-12)}{(x^2-4)}$	
*(x+	$3)(x^3 + 5x^2 - 4x - 20)$ $8x^3 + 11x^2 - 32x - 60$	
- * +		-
(O)	Working x + 3	
10.	$x^2 - 4$ $x^3 + 3x^2 - 4x - 12$	
	± x ¹ ∓ 4x	
		
	$3x^2 - 1$	
	$\pm 3x^3 \qquad \pm 12$	<u>. </u>
•	0	

Pilot Super One "General Math" 10th 100 Q.16. One algebraic expression is $x^3 - x^2 + 2x - 2$ and other

Q.16. One algebraic expression is $x^3 - x^2 + 2x - 2$ and other one is $x^3 - x^2 - 2x + 2$. Their H.C.F is x - 1. Find their L.C.M.

Sol:

A =
$$x^3 - x^2 + 2x - 2$$

B = $x^3 - x^2 - 2x + 2$
H = $x - 1$
L = ?

Formula: L =
$$\frac{A \times B}{H}$$

 $(x^2 + 2)$
= $\frac{(x^3 - x^2 + 2x - 2)(x^3 - x^2 - 2x + 2)}{(x - 1)}$
= $(x^2 + 2)(x^3 - x^2 - 2x + 2)$
= $x^5 - x^4 - 2x + 4$

Working

$$x^2 + 2$$

- ±2x² + 2

Q.17. Prove that H³ + L³ = A³ + B³ where H + L = A + B 'H' and 'L' stand for H.C.F and L.C.M respectively and 'A, B' represent two polynomials.

Sol:

Proof: We know the

	Super One "General Math" 10th	101
Now and	H + L = A + B $(H + L)^3 = (A + B)^3$ Taking cube $H^3 + L^3 + 3HL(H + L) = A^3 + B^3 + 3AB(A + B)$ $H^3 + L^3 = A^3 + B^3 + 3AB(A + B) - 3HL(H + L)$ H + L = A + B $H \times L = A \times B$	() ()
	Putting values in (i) H + L and HL H ³ + L ³ = A ³ + B ³ + 3AB(A + B) - 3AB(A + B) H ³ + L ³ = A ³ + B ³ Proved	
Q.1 Sol:	Simplify $ \frac{1}{a} + \frac{2}{a+1} - \frac{3}{a+2} $ $ = \frac{1(a+1)(a+2) + 2(a)(a+2) - 3(a)(a+1)}{(a)(a+1)(a+2)} $ $ = \frac{a^2 + 3a + 2 + 2a^2 + 4a - 3a^2 - 3a}{a^2 - 3a} $	•
0	$= \frac{a + 3a + 2 + 2a + 4a - 3a - 3a}{(a)(a+1)(a+2)}$ $= \frac{4a+2}{(a)(a+1)(a+2)}$ $= \frac{2(2a+1)}{(a)(a+1)(a+2)}$	
Q.2	$\frac{2a}{(x-2a)} - \frac{x-a}{x^2 - 5ax + 6a^2} + \frac{2}{x-3a}$ $= \frac{2a}{(x-2a)} - \frac{x-a}{x^2 - 2ax - 3ax + 6a^2} + \frac{2}{x-3a}$	

Pilot S	uper One "General Math" 10th	102
	2 <i>a</i>	
	$\frac{1}{(x-2a)} = \frac{1}{x(x-2a)-3a(ax-2a)} + \frac{1}{x-3a}$	
	$=\frac{2a}{(x-2a)} - \frac{x-a}{(x-2a)(x-3a)} + \frac{2}{x-3a}$	
	(x-2a) $(x-2a)(x-3a)$ $x-3a$	
	$=\frac{2a(x-3a)-(x-a)+2(x-2a)}{2a(x-3a)-(x-a)+2(x-2a)}$	
	(x-2a)(x-3a)	.0.
	$=\frac{2ax-6a^2-x+a+2x-4a}{a^2-x^2-a^2-a^2-a^2-a^2-a^2-a^2-a^2-a^2-a^2-a$	
	(x-2a)(x-3a)	ole
	$=\frac{2ax+x-3a-6a^2}{a^2}$	* 1 0
	$= {(x-2a)(x-3a)}$	•
	$\frac{1}{a^2+1} - \frac{a^4}{a^2+1} + \frac{a^6}{a^2-1} - \frac{1}{a^2-1}$	ī
Q.3	$\frac{a^2+1}{a^2+1} - \frac{a^2+1}{a^2+1} + \frac{a^2-1}{a^2-1} - \frac{a^2-1}{a^2-1}$	
	$=\frac{1(a^2-1)-a^4(a^2-1)+a^4(a^2-1)-1(a^2+1)}{(a^2+1)(a^2-1)}$	<u>1)</u>
Sol:	$(a^2+1)(a^2-1)$	
	$=\frac{a^2-1-a^4+a^4+a^4+a^2+a^2-1}{(a^2+1)(a^2-1)}$	
	$(a^{1}+1)(\underline{a^{2}-1})$	
	= $a + a + 2$	
	$(a^2+1)(a^3+1)$.	
	$a^4 + 2a^4 + a^4 - 2$	
	$(a^2 + 1)(a^2 - 1)$	
•	O 3	•
A	$a^4(a^4+2)-1(a^4+2)$	
V	7	
•	$=\frac{(a^4+2)(a^4-1)}{(a^4-1)}$	
	ί γ	
	$=a^4+2$	
	= a + L	

$\frac{1}{x^{2}+x+1} - \frac{1}{x^{2}-x+1} + \frac{2x+1}{x^{4}+x^{2}+1}$ $= \frac{1}{x^{2}+x+1} - \frac{1}{x^{2}-x+1} + \frac{2x+1}{(x^{2}+x+1)(x^{2}-x+1)}$ $= \frac{1(x^{2}-x+1)-1(x^{2}+x+1)+2x+1}{(x^{2}+x+1)(x^{2}-x+1)}$ $= \frac{x^{2}-x+1-x^{2}-x-1+2x+1}{(x^{2}+x+1)(x^{2}-x+1)}$ $= \frac{1}{(x^{2}+x+1)(x^{2}-x+1)}$	ole
$= \frac{1(x^2 - x + 1) - 1(x^2 + x + 1) + 2x + 1}{(x^2 + x + 1)(x^2 - x + 1)}$ $= \frac{x^2 - x + 1 - x^2 - x - 1 + 2x + 1}{(x^2 + x + 1)(x^2 - x + 1)}$	ote
$= \frac{1(x^2 - x + 1) - 1(x^2 + x + 1) + 2x + 1}{(x^2 + x + 1)(x^2 - x + 1)}$ $= \frac{x^2 - x + 1 - x^2 - x - 1 + 2x + 1}{(x^2 + x + 1)(x^2 - x + 1)}$	ole
$=\frac{x^2-x+1-x^2-x-1+2x+1}{(x^2+x+1)(x^2-x+1)}$	ote
	0, 1
$(x^2+x+1)(x^2-x+1)$	_ * .
	·
	I
$\frac{a^{2}(b-c)}{(a+b)(a+c)} \frac{b^{2}(c-a)}{(b+c)(b+a)} \frac{c^{2}(a-b)}{(c+a)(c+b)}$.
$= \frac{a^2(h-c)(h+c)}{c^2} + \frac{b^2(c-a)(c+a) + c^2(a-b)}{c^2}$	$\frac{(b)(a+b)}{(a+b)}$
$= \frac{a^2(h^2 - a^2) + c^2(a^2 - h^2)}{a^2(a^2 - a^2) + c^2(a^2 - h^2)}$	
	•
(a+b)(a+c)(b+c)	
$\frac{2ab-2bc}{(a+b)(a+c)(b+c)}$	
$= \frac{2h^{2}(a^{2}-c^{2})}{(a+b)(a+c)(b+c)}$	-
$= \frac{2h^2(a+c)(a-c)}{a-c}$	
(a+b)(a+c)(b+c)	•
	$= \frac{a^{2}(h^{2}-e^{2})+c^{2}(c^{2}-a^{2})+c^{2}(a^{2}-h^{2})}{c^{2}+b)(a+c)(b+c)}$ $= \frac{a^{2}(h^{2}-e^{2})+c^{2}(a^{2}-h^{2})}{c^{2}+b)(a+c)(b+c)}$ $= \frac{a^{2}(h^{2}-e^{2})+c^{2}(a^{2}-h^{2})}{(a+b)(a+c)(b+c)}$ $= \frac{2a^{2}h^{2}-2b^{2}c^{2}}{(a+b)(a+c)(b+c)}$ $= \frac{2b^{2}(a^{2}-c^{2})}{(a+b)(a+c)(b+c)}$ $= \frac{2b^{2}(a+c)(a-c)}{c^{2}+a^{2}b^{2}(a+c)(a-c)}$

Sain ways down londs began to san far Natur Old Danes, Harry Types John IT Courses & many

Pilot Super One "General Math" 10th

Q.6 $\frac{1}{x-1} + \frac{1}{x+1} - \frac{x+2}{x^2+x+1} - \frac{x-2}{x^2-x+1}$ Changing order Sol: $=\left\{\frac{1}{x-1}-\frac{x+2}{x^2+x+1}\right\}+\left\{\frac{1}{x+1}-\frac{x-2}{x^2-x+1}\right\}$ $=\frac{(x^2+x+1)-(x-1)(x+2)}{(x+1)(x^2+x+1)}+\frac{(x^2-x+1)-(x-2)(x+1)}{(x+1)(x^2-x+1)}$ $= \frac{(x^2 + x + 1) - (x^2 + x - 2)}{x^3 - 1} + \frac{(x^2 - x + 1) - (x^2 + x - 2)}{x^3 + 1}$ $= \frac{x^2 + x + 1 - x^2 - x + 2}{x^3 + 1} + \frac{x^2 - x + 1 - x^2 + x + 2}{x^3 + 1}$ $=\frac{3}{m^3+1}+\frac{3}{m^3+1}$ $=\frac{3(x^3+1)+3(x^3-1)}{(x^3-1)(x^3+1)}$ $=\frac{3x^3+3+3x^3-3}{x^4-1}$ $=\frac{6x^3}{6}$ Q.7 $\frac{a^2 + ab + b^2}{a + b} + \frac{a^2 - ab + b^2}{a - b}$ Sol: $= \frac{(a-b)(a^2+ab+b^2)+(a+b)(a^2-ab+b^2)}{(a+b)(a-b)}$ $=\frac{(a^3-b^3)+(a^3+b^3)}{a^2-b^2}$ $=\frac{a^3-b^3+a^3+b^3}{a^2-b^2}$ $=\frac{2a^3}{a^2-b^2}$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 40 of 50)

Pilot	Super One "General Math" 10th	105
8.Ç	$\frac{x^4 + y^3}{x^2 - 2xy + y^2} \times \frac{x - y}{x(x + y)} + \frac{x^2 + y^2}{x}$	
ol:	$=\frac{(x^2+y^2)(x^2-y^2)}{(x-y)^2}\times\frac{x-y}{x(x+y)}\times\frac{x}{(x^2+y^2)}$	•
	$= \frac{(x+y)(x-y)}{(x-y)(x-y)} \times \frac{(x-y)}{x(x+y)} \times x$	
). 9	$\frac{x^2 - 1}{x^2 + x - 2} \times \frac{x^3 + 8}{x^4 + 4x^2 + 16} + \frac{x^2 + x}{x^3 + 2x^2 + 4x}$	0 .
ol:	$=\frac{(x+1)(x-1)}{x^2+2x-x-2}\times\frac{(x)^3+(2)^3}{x^4+4x^2+16}\timesx^3+2x^2+x^2+x^2+x^2+x^2+x^2+x^2+x^2+x^2+x^$	
	$=\frac{(x+1)(x-1)}{x(x+2)-1(x+2)}\times\frac{(x+2)(x^2-2x+4)}{x^4+8x^2+16-4x^4}\times\frac{x(x+2)(x+2)}{x^4+8x^2+16-4x^4}$	$\frac{x^2+2x+4)}{x(x+1)}$
	(Complet	ing square)
	$=\frac{(x+1)(x-1)}{(x+2)(x-1)}\times\frac{(x+2)(x^2-2x+4)}{(x^2+4)^2-(2x)^2}\times\frac{x^2+2x}{x+1}$	+4 .
	$=\frac{(x^2-2x+4)(x^2+2x+4)}{(x^2+4-2x)(x^2+4+2x)}$	
	$=\frac{(x^2-2x+4)(x^2+2x+4)}{(x^2-2x+4)(x^2+2x+4)}$	
). 10	$\frac{a^3 + 64b^3}{a^2 + 20ab + 64b^2} + \frac{a^2 - 4ab + 16b^2}{a^2 + 4ab + 16b^2} \times \frac{a^2 + 12a}{a^3 - 16a}$	64b ³
ol:	$\frac{(a)^{3} + (4b)^{3}}{4ab + 16ab + 64h^{2}} \times \frac{a^{2} + 4ab + 16b^{2}}{a^{2} - 4ab + 16b^{2}} \times \frac{a^{2} + 16ab - 16ab}{(a)^{3} - 16ab}$	4ab - 64b²
a2 +	$4ah + 16ab + 64h^2 - a^2 - 4ab + 16b^2$ (a)3 -	(46)
(0+	$\frac{4b(a^2-4ab+16b^2)}{4b(a+4b)} \times \frac{a^2+4ab+16b^2}{a^2-4ab+16b^2} \times \frac{a(a+16b)-4b}{(a-4b)(a^2+4ab+16b^2)}$	<u>(a + 16b)</u> zb + 16b³)
(a+	$\frac{4h)(a^{1}-4ab+16b^{2})}{a+4b)(a+16b)} \times \frac{a^{2}+4ab+16b^{1}}{a^{2}-4ab+16b^{2}} \times \frac{(a+16h)(a+16h)(a+16h)}{(a-4b)(a^{2}+4ab+16b^{2})} \times \frac{a^{2}+4ab+16b^{2}}{(a-4b)(a^{2}+4ab+16b^{2})} \times \frac{a^{2}+4ab+16b^{2}}{(a-4b)(a^{2}+4ab+16b^{2})} \times \frac{a^{2}+4ab+16b^{2}}{(a-4b)(a+16b)} \times \frac{a^{2}+4ab+16b^{2}}{(a-4b)(a+16b)} \times \frac{a^{2}+4ab+16b^{2}}{(a-4b)(a+16b)} \times \frac{a^{2}+4ab+16b^{2}}{(a-4b)(a+16b)} \times \frac{a^{2}+4ab+16b^{2}}{(a-4ab+16b)} \times \frac{a^{2}+4ab+16b^{2}}{(a-4ab+16b)} \times \frac{a^{2}+4ab+16b^{2}}{(a-4b)(a+16b)} \times \frac{a^{2}+4ab+16b^{2}}{(a-4ab+16b)} \times \frac{a^{2}+4ab+16b^{2}}{(a-4ab+16b)$	-46) 2b + 16b ²)
•	≠1	

Pilot Super One "General Math" 10th Q.11 $\frac{a}{(a+b)^2-2ab} \times \frac{a^4-b^4}{(a+b)^3-3ab(a+b)} + \frac{(a+b)^2-4ab}{(a+b)^2-3ab}$ Sol: $=\frac{a}{a^2+b^2+2ab-2ab} \times \frac{(a^2)^2-(b^2)^2}{a^3+b^3+3ab(a+b)-3ab(a+b)} \times$ $\frac{(a+b)^2-3ab}{(a+b)^2-4ab}.$ $= \frac{a}{(a^2 + b^2)} \times \frac{(a^2 + b^1)(a^2 - b^2)}{a^3 + b^3} \times \frac{a^2 + b^2 + 2ab - 3ab}{a^2 + b^2 + 2ab - 4ab}$ $= a \times \frac{(a+b)(a-b)}{(a+b)(a^2-ab+b^2)} \times \frac{(a^2+b^2-ab)}{a^2+b^2-2ab}$ $= \frac{a \times (a-b)}{a^2 - 2ab + b^2} = \frac{a(a-b)}{(a-b)^2}$ $= \frac{a(a-b)}{(a-b)(a-b)}$ = a Q.12 $\frac{a^2-1}{a^2-a-2} + \frac{a^2+5a+6}{a^2-5a+6} + \frac{a^2-4a+3}{a^2+4a+3}$ Sol: $= \frac{(a)^2 - (1)^2}{a^2 + 2a + a - 2} \times \frac{a^2 - 5a + 6}{a^2 + 5a + 6} \times \frac{a^2 + 4a + 3}{a^2 - 4a + 3}$ $\frac{(a-1)(a+1)}{a(a-2)+1(a-2)} \times \frac{a^2-2a-3a+6}{a^2+2a+3a+6} \times \frac{a^2+a+3a+3}{a^2-a-3a+3}$ $= \frac{(a-1)(a+1)}{a(a-2)-3(a-2)} \times \frac{a(a-2)-3(a-2)}{a(a-2)-3(a-2)}$ $= \frac{(a-1)(a+1)}{(a-2)(a+1)} \times \frac{a(a-2)-3(a-2)}{a(a+2)+3(a+2)} \times \frac{a(a+1)+3(a+1)}{a(a-1)-3(a-1)}$ $= \frac{(a-1)(a+1)}{(a-2)(a+1)} \times \frac{(a-2)(a-3)}{(a+2)(a+3)} \times \frac{(a+1)(a+3)}{(a-1)(a-3)}$

Pilot Super One "General Math" 10th

107

क्रिकालहरू हैं।

Find the Square Root of the Following.

Q.1
$$16x^2 + 24xy + 9y^2$$

Sol: $= 16x^2 + 12xy + 12xy + 9y^2$
 $= (16x^2 + 12xy) + (12xy + 9y^2)$
 $= 4x(4x + 3y) + 3y(4x + 3y)$
 $= (4x + 3y)^2$
 $= (4x + 3y)^2$
 $= \pm (4x + 3y)$
Q.2 $(x^2 - 7x + 12)(x^2 - 9x + 20)(x^3 - 8x + 15)$
Sol: $= [x^2 - 3x - 4x + 12][x^2 - 4x - 5x + 20][x^2 - 3x - 5x + 15]$
 $= [(x^2 - 3x) - (4x - 12)][(x^2 - 4x) - (5x - 20)][(x^2 - 3x) - (5x - 15)]$
 $= [x(x - 3) - 4(x - 3)][x(x - 4) - 5(x - 4)][x(x - 3) - 5(x - 5)]$
 $= (x - 3)^2(x - 4)^2(x - 5)^2$
Now we will take square root.
 $= \sqrt{(x - 3)^2(x - 4)^2(x - 5)^2}$
 $= \pm (x - 3)(x - 4)(x - 5)$
Q.3 $(x^2 + 8x + 7)(2x^2 - x - 3)(2x^2 + 11x - 21)$
Sol: $= (x^2 + x + 7x + 7)[2x^2 - 3x + 2x - 3)(2x^2 + 14x - 3x - 21)$
 $= [(x^2 + x) + (7x + 7)][(2x^2 - 3x) + (2x - 3)][2x(x + 7) - 3(x + 7)]$
 $= [x(x + 1) + 7(x + 1)][(2x - 3)(x + 1)][(x + 7)(2x - 3)]$
 $= (x + 1)^2(x + 7)^2(2x - 3)^2$
 $= \sqrt{(x + 1)^2(x + 7)^2(2x - 3)^2}$ (Taking square root)

 $=\pm(x+1)(x+7)(2x-3)$

Pilot S	Super One "General Math" 10th	108
Q.4	x(x+2)(x+4)(x+6)+16	i
Sol:	= x(x+6)(x+2)(x+4) + 16 (Rearranging)	
	= [x(x+6)][(x+2)(x+4)]+16	•
	$=(x^2+6x)(x^2+6x-8)+16(i)$	
Let	$x^2 + 6x = y$	
	= (y)(y + 8) + 16 from (i)	
	$= y^2 + 8y + 16$	
	$= y^2 + 4y + 4y + 16$	
	$= (y^2 + 4y) + (4y + 16)$	
	= y(y+4) + 4(y+4)	
	= (y+4)(y+4)	
	$= (\nu + 4)^2$	
	Putting values of y in $x^2 + 6x$	
	$= (x^2 + 6x + 4)^2$	
	= $\sqrt{(x^2 + 6x + 4)^2}$ (Taking square root)	
	$=\pm(x^2+6x+4)$	
Q.5	(2x+1)(2x+3)(2x+5)(2x+7)+16	
Sol:	(Rearranging)	
	(2x+1)(2x+7)(2x+3)(2x+5)+16	
	= [(2x+1)(2x+7)][(2x+3)(2x+5)]+16	
	$= [4x^2 + 16x + 7][(4x^2 + 16x + 15] + 16$	
Let	$4x^2 + 16x = y$	
	= (y+7)(y+15)+16	
	$= y^2 + 22y + 105 + 16$	-
	$=y^2+22y+121$	
	$= y^2 + 11y + 11y + 121$,
	$= (y^2 + 11y) + (11y + 121)$:

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 44 of 50)

ilot Super One "General Math" 10th	109
= y(y + (1) + 11(y + 11)	
= (y + 11)(y + 11)	
$=(v+11)^2$	
Putting value of y	•
$=(4x^2+16x+11)^2$	
$= \sqrt{(4x^2 + 16x + 11)^2}$ (Taking	square root)
$= \pm (4x^2 + 16x + 11)$	0 7
$6 - \left(x^2 + \frac{1}{x^2}\right) - 10\left(x + \frac{1}{x}\right) + 27 ; x \neq 0$	s square root)
$ \left(x^2 + \frac{1}{x^2}\right) - 10\left(x + \frac{1}{x}\right) + 27 $ (i)	
$x + \frac{1}{x} = y$	
$x^2 + \frac{1}{x^2} + 2 = y^2$ (Squaring both	sides.)
$x^2 + \frac{1}{x^2} = y^2 - 2$	
Putting values $x + \frac{1}{x} = y$ and $x^2 + \frac{1}{x} = y$	$\frac{1}{x^2} = y^2 - 2$ in (i).
$-y^2 - 2 - 10y + 27$	
$= y^2 - 10y + 25$	•
- y² - 5y - 5y + 25	
y(y-5)-5(y-5)	•
(y-5)(y-5)	
$=(y-5)^2$	
$= (y-5)(y-5)$ $= (y-5)^{2}$ $= \left(x+\frac{1}{x}-5\right)^{2}$	
$\int_{a}^{a} \sqrt{\left(x + \frac{1}{x} - 5\right)^2}$ (Taking square	re most)

Pilot	Super One "General Math" 10th	110
	$=\pm\left(x+\frac{1}{x}-5\right)$	
Q.7	$\left(t-\frac{1}{t}\right)^2-4\left(t+\frac{1}{t}\right)+8, (t\neq 0)$	•
	1	

Sol: Let $t + \frac{1}{t} = y$

We know that

$$\left(t - \frac{1}{t}\right)^2 = \left(t + \frac{1}{t}\right)^2 - 4t \times \frac{1}{t}$$
$$= y^2 - 4$$

Now $t + \frac{1}{t} = y$ and $\left(t + \frac{1}{t}\right)^2 = y^2 - 4$ putting in given values $= y^2 - 4 - 4y + 8$ $= y^2 - 4y + 4$ $= y^2 - 2y - 2y + 4$ = y(y - 2) - 2(y - 2) = (y - 2)(y - 2) $= (y - 2)^2$

Putting value of y.

$$-\left(t + \frac{1}{t} \cdot 2\right)^{2}$$

$$-\left(t + \frac{1}{t} \cdot 2\right)^{2}$$
(Taking square root)
$$= \pm \left(t + \frac{1}{t} - 2\right)$$

$$Q.8 \quad \left(x^{2} + \frac{1}{x^{2}}\right)^{2} - 4\left(x + \frac{1}{x}\right)^{2} + 12 ; x \neq 0$$

Sol: Let $x + \frac{1}{x} = y$

GENERAL MATHEMATICS FOR 10TH CLASS (UNIT # 3) __________

Pilot Super One "General Math" 10th

111 tes.com

Squaring both sides

$$\left(x + \frac{1}{x}\right)^2 = xy^2$$

$$x^2 + \frac{1}{x^2} + 2 = y^2$$
....(i)

$$x^2 + \frac{1}{x^2} = y^2 - 2$$

Putting $x + \frac{1}{x} = y$ and $x^2 + \frac{1}{x^2} = y^2 - 2$ in the given

statement.

$$= (y^2 - 2)^2 - 4y^2 + 12$$

$$= y^4 - 4y^2 + 4 - 4y^2 + 12$$

$$-y^4 - 8y^2 + 16$$

$$= y^4 - 4y^2 - 4y^2 + 16$$

$$= y^4 - 8y^2 + 16$$

$$= y^4 - 4y^2 - 4y^2 + 16$$

$$= y^2(y^2 - 4) - 4(y^2 - 4)$$

$$-(y^2-4)(y^2-4)$$

$$=(y^2-4)^2$$

From (i), putting values $y^2 = x^1 + \frac{1}{x^2} + 2$.

$$= \left(x^2 + \frac{1}{x^2} + 2 - 4\right)^2$$

$$= \left(x^2 + \frac{1}{x^2} - 2\right)^2$$

$$= \sqrt{\left(x^2 + \frac{1}{x^2} - 2\right)^2}$$
 (Taking square root)
$$= \pm \left(x^2 + \frac{1}{x^2} - 2\right)$$

Visit <u>www.downloadclass.notes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 47 of 50)

Pilot Super One	General Math. 10th	112
$Q.9 = 4x^4 + 12x$	$x^3 + 25x^2 + 24x + 16$	
Sol:	$2x^2 + 3x + 4$	
2x	$4x^4 + 12x^3 + 25x^2 + 24x + 16$	
	± 4x4	
$4x^2 + 3$:	
		·
$4x^2 + 6x +$	4 + $16x^2 + 24x + 16$.0-
	$\pm 16x^2 \pm 24x \pm 16$	10
	0	J
Square roo	$01 = \pm (2x^2 + 3x + 4)$	_
Q.10 $\frac{9x^2}{4x^2} = \frac{3x}{2}$	$\frac{x}{y} - \frac{7}{4} + \frac{2y}{3x} + \frac{4y^2}{9x^2} (x \neq 0, y \neq 0)$	
Sol: 4y ² 25	$y + 4 + 3x + 9x^2$	
JCII.	10	
	.0	
	in Char.	
. ff	, , , , , , , , , , , , , , , , , , ,	
_ 		`
10.		•
.00	•	
	•	
	•	
	•	
	-	

Pilot Super One "General Math" 10th Square root = $\pm \left(\frac{3x}{2y} - \frac{1}{2} - \frac{2y}{3x}\right)$ Q.11. For what value of x , $x^4 + 4x^2 + x + \frac{8}{x^2} + \frac{4}{x^4}$ is a consquare, where $x = 0$ Sol: First we will find square root $x^2 + 2 + \frac{2}{x^2}$ $x^4 + 4x^2 + x + \frac{8}{x^2} + \frac{4}{x^4}$ $\pm x^4$	113
Q.11. For what value of x , $x^4 + 4x^2 + x + \frac{8}{x^2} + \frac{4}{x^4}$ is a consequence, where $x \ne 0$ Sol: First we will find square root $x^2 + 2 + \frac{2}{x^4}$	mplete
Sol: First we will find square root $x^2 + 2 + \frac{2}{x^2}$	mplete
Sol: First we will find square root $x^2 + 2 + \frac{2}{x^2}$	
$x^2 + 2 + \frac{2}{x^2}$	
x^2 $x^4 + 4x^2 + x + \frac{8}{-2} + \frac{4}{-4}$	
1 X X	
₹ I	
$ \begin{array}{c c} 2x^2 + 2 & 4x^2 + x + \frac{8}{x^2} + \frac{4}{x^4} \\ \pm 4x^2 \pm 4 & x^2 \end{array} $	
$2x^2 + 4 + \frac{2}{x^2} \qquad -4 + x + \frac{8}{x^2} + \frac{4}{x^4}$	
$2x^{2}+2$ $4x^{2}+x+\frac{8}{x^{2}}+\frac{4}{x^{4}}$ $2x^{2}+4+\frac{2}{x^{2}}$ $-4+x+\frac{8}{x^{2}}+\frac{4}{x^{4}}$ $\pm 4 \pm \frac{8}{x^{2}}\pm \frac{4}{x^{4}}$	
-8+x	
For completing square remainder must be zero.	
Therefore $-8 + x = 0$ $\Rightarrow x = 8$	
Q.12. If $x^4 + hx^3 + mx^2 + 12x + 9$ is a complete square	then
find the values of l and m . Sol: $x^2 + 2x + 3$	
x^2 $x^4 + lx^3 + mx^2 + 12x + 9$	
± x ⁴	
$2x^2 + 2x$ $lx^3 + mx^2 + 12x + 9$	
$\pm 4x^3 \pm 4x^2$	
$2x^2 + 4x + 3 \qquad (l-4)x^3 + mx^2 - 4x^2 + 12x + 9$	
$\pm 6x^2 \pm 12x \pm 9$	
$\frac{(l-4)x^3 + mx^2 - 10x^2}{(l-4)x^3 + mx^2 - 10x^2}$	

Pilot Super One "General Math" 10th

114

For completing square remainder must be zero

$$(i-4)x^3 + (m-10)x^2 \approx 0$$

Therefore,
$$l-4=0$$
 and $m-10=0$

$$l = 4 cm = 10$$

Pilot Super One "General Math" 10th

118

电多次程度数定数单排

Solve:

$$3x + 20 = 44$$

Sol.

$$3x = 44 - 20$$

$$3x = 24$$

$$\frac{3x}{24} = \frac{24}{3}$$

(Dividing by 3)

$$x = 8$$

$$\frac{4x}{5} - \frac{3x}{4} = 4$$

Sol.

Mulitiplied by 4, 5 L.C.M. 20.

$$\frac{4x}{5}(20) - \frac{3x}{4}(20) = 4(20)$$

$$16x - 15x = 80$$

$$r = 80$$

$$3x + 3(x + 1) = 69$$

$$3x + 3x + 3 = 69$$

$$6x + 3 = 69$$

3 •

$$6x = 69 - 3$$

$$6x = 66$$

$$\frac{6x}{6} = \frac{66}{6}$$
 (Dividing by 6)

$$x = 11$$

Pilot Super One "General Math" 10th		119
(iv)	(90 - 9x) + 27 = 90 + 9	
Sol.	90 - 9x + 27 = 99	
	-9x = 99 - 90 - 27	
	-9x = -18	
	$\frac{-9x}{-9} = \frac{-18}{-9}$ (Dividing by -9)	
	x = 2 .	
Q.2.	3(x+3) = 14+x	
Sol.	3x + 9 = 14 + x	
	3x - x = 14 - 9	
	2x = 5	
	$\frac{2x}{2} = \frac{5}{2}$ (Dividing by 2)	
	$x=\frac{5}{2}$	
Q.3.	3(2x+5) = 25 + x	
Sol.	6x + 15 = 25 + x	
	6x-x=25-15	-
<i>:</i>	5x = 10	
	$\frac{5x}{5} = \frac{10}{5} $ (Dividing by 5)	
	x = 2	
Q.4.	9x - 3 = 3(2x - 8)	
Sol.	9x - 3 = 6x - 24	•
	9x - 6x = -24 + 3	

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more.
(Page 2 of 16)

ilot Super One "General Math" 10th		120
	3x = -21 $3x = -21$	
	$\frac{3x}{3} = \frac{-21}{3} $ (Dividing by 3)	
	x = -7	•
).5.	3(2x-1) = 5(x-1)	
ol.	6x-3=5x-5	
	6x + 5x = -5 + 3 (By Transposing)	
	x = -2	
).6 .	2(7x - 6) = 3(1 + 3x)	
Sol.	14x - 12 = 3 + 9x	
	14x - 9x = 3 + 12	
	5x = 15	
	$\frac{x}{5} = \frac{15}{5}$ (Dividing by 5)	
-	x = 3	
).7.	$\frac{10x-1}{2x+5}=3$	
iol. 🔿	10x - 1 = 3(2x + 5)	
\cup	10x - 1 = 6x + 15	
	10x - 6x = 15 + 1	,
	4x = 16	
	$\frac{x}{4} = \frac{16}{4} \text{ (Dividing by 4)}$	
	_x = 4	

Pilot S	aper One "General Math" 10th 121
Q.8.	$\frac{2x+1}{x+5} = 1$
Sol.	2x+1=1(x+5)
	2x+1=x+5
	2x-x=5-1
	x = 4
Q.9.	$\frac{5x+3}{x+\epsilon} = 2$
Sol.	5x + 3 = 2(x + 6)
	5x + 3 = 2x + 12
	5x - 2x = 12 - 3
	3x = 9
	$\frac{x}{3} = \frac{9}{3} \text{(Dividing by 3)}$
-	x = 3
Q.10.	$y-6+\sqrt{y} = 0$
Sol.	$\sqrt{y} = 6 - y$
	$(\sqrt{y})^2 = (6-y)^2$ (Squaring on both sides)
	$y = 36 + y^2 - 12y$
	$0 = 36 + y^2 - 12y - y$
	$0 = 36 + y^2 - 13y$
	$\Rightarrow y^2 - 13y + 36 = 0$
	y'' - 4y - 9y + 36 = 0
	y(y-4)-9(y-4)=0
	(y-4)(y-9)=0
	y - 4 = 0
	Then, $v = 4$

Visit www.downloadclassnotes.com for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more.

122 Pilot Super One "General Math" 10th and if y-9=0Then. y = 9Check to eliminate extraneous root y = 9. $x = 15 - 2\sqrt{x}$ 0.11 $2\sqrt{x} = 15 - x$ Sol. $(2\sqrt{x})^2 = (15-x)^2$ (Squaring on both sides) $4x = 225 + x^2 - 30x$ $n = 225 + x^2 - 30x - 4x$ $0 = x^2 + 225 - 34x$ $\Rightarrow x^2 - 34x + 225 = 0$ $x^2 - 9x - 25x + 225 \approx 0$ x(x-9) - 25(x-9) = 0(x-9)(x-25)=0x - 9 = 0then x = 9And if x-25=0x = 25then Check to eliminate extraneous roots x = 25 $m-13=\sqrt{m+7}$ Q.12. $(m-13)^2 = (\sqrt{m+7})^2$ Squaring both sides Sol. $m^2 - 26m + 169 = m + 7$ $m^2 - 26m + 169 - m - 7 = 0$

Pilot Su	pet One "Gene	ral Math" 10th	123
	$m^2 - 27z$	m+162 = 0	
	m² -18m -9i	n+162 = 0	
п	n(m – 18)– 9(m - 18) = 0	
	(m-18)	(m-9)=0	-
	lf	m-18=0	
	then	m = 18	(y
	-	m - 9°= 0	
	Then	m = 9 Variante extendence en	ote m = 0
		$\lim_{n \to \infty} \frac{1}{5n+9} = n-1$	Wia M − 7
Q.13	•		
Sol.	(√5	$\overline{n+9}$) ² = $(n-1)^2$ (Squa	ring both sides)
		$5n+9 = n^2-2n+1$	
		$0 = n^2 - 2n + 1 - 5$	n - 9
		$0 = n^2 - 7n - 8$	
	⇒ n³.	-7n-8=0	
	n2 - 81	+n-8 = 0 .	
	n(n-8)+	I(n-8) = 0	
\mathcal{A}	(n - 8	3)(n+1) = 0	
	. 11	n - 8 = 0	
U	Then	r = 8	
	If any	n+1=0	
	then	₁₂ = -	
	Check to c	liminate extraneous re	oots n =-1
		$\sqrt{2x-1} = 0$	-
Q.14.		$\sqrt{2x-1} = 0-3$	
Sol.	<u> </u>	Y =	

Pilot Super One "General Math" 10th

124

$$\sqrt{2x-1}=-1$$

Square root is always positive.

Therefore = { } S.S.

Let solve

$$\sqrt{2x-1} = -3$$

$$(\sqrt{2x-1})^2 = (-3)^2 \text{ (Squaring both sides)}$$

$$2x-1=9$$

$$2x = 9 + 1$$

$$2r = 10$$

$$\frac{x}{2} = \frac{10}{2}$$
 (Dividing by 2)

L. H. S.
$$= \sqrt{2x-1}$$
 To check

$$= \sqrt{2 \times 5 - 1} \quad \text{(Putting } x = 5\text{)}$$

$$=\sqrt{10-1}$$
.

Square root is always positive.

Hence.

$$S.S. = \{ \}$$

$$\sqrt{x+5}+7=0$$

Sol.

$$\sqrt{x+5} = 0-7$$

$$\sqrt{x+5} = -7$$

Square root is always taken positive.

Pilot Super One "General Math" 10th 125 res.co.n Hence. $S.S. = \{ \}$ $\sqrt{2x-1} - \sqrt{x-4} = 2$ O.16. $\sqrt{2x-1} = 2 + \sqrt{x-4}$ Sol. Squaring root on both sides $\left(\sqrt{2x-1}\right)^2 = \left(2 + \sqrt{x-4}\right)^2$ $2x-1 = 4+x-4+4\sqrt{x-4}$ $2x - 1 - x = 4\sqrt{x - 4}$ $x-1=4\sqrt{x-4}$ (Again squaring) $(x-1)^2 = (4\sqrt{x-4})^1$ $x^2 - 2x + 1 = 16(x - 4)$ $x^2 - 2x + 1 = 16x - 64$ $x^2 - 2x - 16x + 1 + 64 = 0$ $x^{4} - 18x + 65 = 0$ $x^2 - 13x - 5x + 65 = 0$ x(x-13)-5(x-13)=0(x-13)(x-5)=0 $x \sim 13 = 0$ Then x = 13If any x - 5 = 0then x = 5 $S.S. = \{13, 5\}$

Q.17. $\sqrt{x+1} = 3$ Sol. $(\sqrt{x+1})^2 = (3)^2$ (Squaring both sides)

x+1-9

Pilot Super	One "General Math" 10th	126
	x = 9 - 1	
	x = 8	
Q.18.	$\sqrt{2x-1} = 5$	
Sol.	$(\sqrt{2x-1})^2 = (5)^2$ (Squaring both	sides)
	2x-1=25	•
	2x = 25 + 1	
	2x = 26	
	$x=\frac{26}{2}$	•
	x = 13	-
Q.19.	$\sqrt{x-1} = 10$	
Sol.	$(\sqrt{x-1})^2 = (10)^2$ (Squaring both	sides)
	x - 1 = 100	
	x = 100 + 1	
	x = 101	
Q.20.	$\sqrt{3x+4} = 7$	
Sol.	$(\sqrt{3x+4})^2 = (7)^2$ (Squaring both	sides)
	3x + 4 = 49	•
	3x = 49 - 4	
	3x = 45	
	$x = \frac{45}{3}$	
	x = 15	٠.

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more.
(Page 9 of 16)

Pilot Super One "General Math" 10th

127

Solve and Check:

$$|x|=9$$

x = 9

$$-x = 6$$

Hence, $x = \pm 9$

$$Check_{\bullet} |\pm 9| = 9$$

Check

Q.2.

$$|x - \hat{3}| = 4$$

$$x-3=4$$
 $x=4+3$
 $x=7$
 $-(x-3)=4$
 $-x+3=4$
 $-x=4-3$
 $-x=1$

Hence: x = -1, 7

Check:

$$|-1-3| = |-4| = 4$$
 if $|7-3| = |4| = 4$

Q.3. |x+1|=5

Sol.
$$x+1=5$$
 . $-(x+1)=5$
 $x=5-1$ $-x-1=5$
 $x=4$ $-x=5+1$
 $-x=6$
 $x=-6$

Hence, x=4,-6

Check: |4+t|=|5|=5 m |-6+1|=|-5|=5

Q.4.	[2x-3]=5	 ,	
Sol.	2x-3=5	-(2x-3)=5	
	2x = 5 + 3	-2x+3=5	
	2x = 8	-2x=5-3	
	$\frac{x}{2} = \frac{8}{2}$	$\frac{-2x}{2} = \frac{2}{-2}$	
	<i>x</i> = 4	x=-1 _	١
	$S.S. = \{4, -1\}$)
C	heck: $ 2(4) - 3 = 8 $	-3 = 5 = 5 of $ 2(-1) - 3 $	
		= -2 -3 = -5 = 5	
Q.5.	3x + 4 = 9		
s	ol.		
	3x + 4 = 9	-(3x+4)=9	•
	3x = 9 - 4	-3x-4=9	•
	3.7=\$	-3x = 9 + 4	
	$x=\frac{5}{3}$	-3x = 13	
	. 3		
	•	$x = -\frac{13}{3}$	
•		(5 13)	
त्र () ()	· S. S. =	$\left\{\frac{5}{3}, -\frac{13}{3}\right\}$	
)	Check: Pu	stting $\frac{5}{3}$	
		-	
-	$3\left(\frac{5}{3}\right) + 4 = 5+4 = 9 =$: 9	
'	• •	_	
	ì	Putting $-\frac{13}{3}$	
. 1	$3\left(-\frac{13}{3}\right)+4$ \Rightarrow $-13+4$	= 1 −9 != 9	
ľ	[3] ' ' ' ' '	· · · · ·	

|--|

Q.6. 3(x-2)

3(x-2) < 2x+1

129

Sol. 3x-6 < 2x+1

3x - 2x < 1 + 6

x < 7

Check: Let x = 6

These putting values

3(6-2) < 2(6)+1

3(4) < 12 + 1.

12 < 13

Which is true

Therefore, x < 7

Q.7. 3(x+5) > 2(x+2) + 8

Sol. 3x + 15 > 2x + 4 + 8

3x - 2x > 4 + 8 - 15

x > -3

Check: Suppose that x = -2

3(-2+5) > 2(-2+2)+8

3(3) > 2(0) + 8

9 > 8

Which is true

Hence, x > -3

1 101 34	per One "General Math" 10th	130
Q.8.	$\frac{1}{2}(2-x) > \frac{1}{4}(3-x) + \frac{1}{2}$	
Sol.	$\frac{2}{2} - \frac{x}{2} > \frac{3}{4} - \frac{x}{4} + \frac{1}{2}$	
	$1-\frac{x}{2} = \frac{3}{4} - \frac{x}{4} + \frac{1}{2}$	
	- · · · -	
	$-\frac{x}{2} + \frac{x}{4} > \frac{3}{4} + \frac{1}{2} - 1$	
	$\frac{-2x+x}{4} > \frac{3+2-4}{4}$	
	$-\frac{x}{4} > \frac{1}{4}$	i
	7 7	
	-x > 1 (Multiplying by 4)	
	Therefore, $x < -1$	
	Now, Suppose that ≠ -2	1
	· X	
	Putting values $x = -2$ $\frac{1}{2}(2+2) \ge \frac{1}{4}(3+2) + \frac{1}{2}$.	
	•	
	$\frac{4}{2} > \frac{5}{4} + \frac{1}{2}$	1
	$2>\frac{5+2}{4}$,
	$2 > \frac{7}{4}$ (Which is true)	;
	Hence, $x < -1$	
.9.	$\frac{x-2}{4} + \frac{2}{3} < \frac{x-4}{6}$	
_	7 2 ~	

	Pilot Super One "General Math" 10th	131
	$12\frac{(x-2)}{4} + 12\left(\frac{2}{3}\right) < 12\frac{(x-4)}{6}$	·
	3(x-2)+4(2)<2(x-4)	
	3x - 6 + 8 < 2x - 8	
	3x - 2x < -8 - 8 + 6	
;	Q.10. $\frac{3x+4}{5} - \frac{x+1}{3} > 1 - \frac{x+5}{3}$	
!	Sol. Multiply by L.C.M of 5, 3 by 15.	
1	$15\left(\frac{3x+4}{5}\right) - 15\left(\frac{x+1}{3}\right) \ge 15 \times 1 - 15\left(\frac{x+5}{3}\right)$	-)
i	3(3x+4)-5(x+1) > 15-5(x+5)	
'	9x + 12 - 5x - 5 > 15 - 5x - 25	
	9x - 5x + 5x > 15 - 25 - 12 + 5	
,	9x > -17	
	$x > -\frac{17}{6}$	-
1	Q.11. $\frac{x+1}{2} - \frac{x+3}{3} > \frac{x+1}{4} + 1$	
j I	Sol. Multiply by 12, L.C.M of 4, 3, 2,	
-	$12\left(\frac{x+1}{2}\right) - 12\left(\frac{x+3}{3}\right) \ge 12\left(\frac{x+1}{4}\right) + 12 \times 12\left(x$	1.
	6(x+1)-4(x+3) > 3(x+1)+12	
	6x + 6 - 4x - 12 > 3x + 3 + 12 $6x - 4x - 3x > 3 + 12 - 6 + 12$	
	-x > 21	
,	Therefore, $x < -21$ N.T.S	

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 14 of 16)

	uper One "General Math" 10th	132
Q.12.	$\frac{x+3}{4} - \frac{x+2}{5} \le 1 + \frac{x+5}{6}$	
Sol.	Multiply by 60, L.C.M. of 4, 5, 6.	
	$60\left(\frac{x+3}{4}\right) - 60\left(\frac{x+2}{5}\right) < 60 \times 1 + 60\left(\frac{x+5}{6}\right)$	
	15(x+3)-12(x+2) < 60+10(x+5)	
	15x + 45 - 12x - 24 < 60 + 10x + 50	
	15x - 12x - 10x < 60 + 50 - 15 + 24	
	-7x < 89	
	7x < -89 (Changing symbol)	
	$x > -\frac{89}{7}$	
	$x > -12\frac{5}{7}$	
Q.13.	$\frac{1}{2}x \ge 1 + \frac{1}{3}x$	
Sol.	Multiply by 6, L.C.M. of 2, 3.	
	$6\left(\frac{1}{2}x\right) \geq 6 \times 1 + 6 \times \frac{1}{3}x$	
	$3x \ge 6 + 2x$	
	3x - 2x ≥ 6	
	x ≥ 6	
014		
Q.14.	$\frac{1}{4}(2x+3) \leq (7-4x)$	
Sol.	$4 \times \frac{1}{4} (2x+3) \le 4(7-4x)$ (Multiply by 4)	
	$2x + 3 \le 28 - 16x$	
	$4 + 16x \le 28 - 3$	

$\frac{18x}{18} \le \frac{25}{18}$ (Dividing by	
$\frac{18x}{18} \le \frac{25}{18}$ (Dividing by	
lx 18 (18 (18 (18 (18 (18 (18 (18 (18 (18	/ (8)
	_ (
$x \leq \lfloor \frac{7}{18} \rfloor$	U.
Q.15. $\frac{4}{3}(2x+3) \ge 10 - \frac{4x}{3}$	À.
Sol 3	(l)
	•
$3 \times \frac{4}{3}(2x+3) \ge 3 \times 10 - 3 \times \frac{4x}{3} $ (Multiply)	by 3)
$4(2x+3) \geq 30-4x$	
8x + 12 ≥ 30 - 4x	
$8x + 4x \ge 30 + 12$	
12x ≥ 18 —	
<u>n</u> 2 ≥ 18	
> 3	
$x \ge 1\frac{1}{2}$	
Q.16. $\frac{x \ge \frac{18}{12}}{x \ge \frac{3}{2}}$ $x \ge \frac{1}{\frac{1}{2}}$	
Q.16. $\frac{1}{4} - \frac{1}{6} \ge \frac{1}{3}$	
Sd. Multiply by 12, L.C.M. of 4, 6, 3,	
$12\left(\frac{x-2}{4}\right) - 12\left(\frac{x-5}{6}\right) \ge 12 \times \frac{1}{3}$	
$3(x-2)-2(x-5) \ge 4$	
$3x-6-2x+10 \ge 4$	

_____x ≥ 0

Pilot Super One "General Math" 10th

138

-l Solve by using factrization method.

$$x^2 - 4x - 12 = 0$$

$$x^2 - 6x + 2x - 12 = 0$$

$$(x^2-6x)+(2x-12)=0$$

$$x(x-6) + 2(x-6) = 0$$

$$(x-6)(x+2) = 0$$

If

$$x - 6 = 0$$

then

$$x = 6$$

and if

$$x + 2 = 0$$

then

$$x = -2$$

S. S. $= \{6, -2\}$

Q.2.

$$x^2 - 6x + 5 = 0$$

Sol.

$$x^2 - x - 5x + 5 = 0$$

$$(x^1 - x) - (5x - 5) = 0$$

$$x(x-1) - 5(x-1) = 0$$

$$(x-1)(x-5) = 0$$

If

$$x-1=0$$

then

$$x = 1$$

and if

$$x - 5 = 0$$

then

x=5

=====	GENE	RAL MATHEMATICS FOR 10 th CLASS (UNI	(1 # 5)
	Pilot Supe	er One "General Math" 10th	139
		S.S. = {1, 5}	•
	Q.3.	$x^2 = 8 - 7x$	
i	Sol,	$x^2 + 7x - 8 = 0$	•
		$x^2 + 8x - x - 8 = 0$	
		$(x^2 + 8x) - (x + 8) = 0$	Δ
		x(x+8) - 1(x+8) = 0	([']
		(x + 8)(x - 1) = 0	
;		1f x+8=0	
į		then $x = -8$	
ļ		and if $x-1=0$	
ļ		then $x=1$	
		Solution set = $\{-8, 1\}$	
	Q.4.	$5x = x^3 + 6$	
	Sol.	$0 = x^2 + 6 - 5x$	
Ì		$x^2 + 6 - 5x = 0$	
		$x^2 - 5x + 6 = 0$	
	10	$x^2 - 2x - 3x + 6 = 0$	
	(I)	$(x^2 - 2x) - (3x - 6) = 0$	
إ		x(x-2) - 3(x-2) = 0	
	•	(x-2)(x-3)=0	
51	•	$x^2 = 0$	
N. S. S.	.	then $x=2$	

Pilot Supe	er One "General Math" 10th	140
	and if $x = 3 = 0$	_
	then $y = 3$	
	Solution set * {2, 3}	و
Q.5.	$3x^2 - 10x + 8 = 0$	\mathbf{C}
Sol.	$3x^2 - 6x - 4x + 8 = 0$	
	$(3x^2 - 6x) - (4x - 8) = 0$	\cap
	3x(x-2) - 4(x-2) = 0	U
	(x-2)(3x-4) = 0	
	$1f \qquad x-2=0$	
	then $x=2$	
	and if 🎉 🕹 🗸 0	•
	$3x = 4$ then $x = \frac{4}{3}$	
.	Solution set $=$ $\left\{2, \frac{4}{3}\right\}$	
Q.6.	$2x^2 + 15x - 8 = 0$ $2x^2 - x + 16x - 8 = 0$	
Sol.	$(2x^{1}-x)+(16x-8)=0$	
•	x(2x-1) + 8(2x-1) = 0	
;	(2x-1) + 6(2x-1) = 0 $(2x-1)(x+8) = 0$	
	$1f \qquad 2x - 1 = 0$	
	2x = 1	
	<u>-</u>	

ruot Super (One *General !	Math* 10th			141
	then	$x = \frac{5}{1}$			
	and if	x + 8 = 0			
	then	x = -8]		
	So	Solution set = $\begin{cases} \frac{1}{2} & \text{for } 1 \\ \frac{1}{2} & \text{for } 1 \end{cases}$	8}		
Q.7.		$\frac{x}{4}(x+1) = 3$	·	\cap	
Sot.	4	$\frac{x}{4}\bigg](x+1) = 3 \times$	4 (Mulip	ly by 4)	
		x(x+1) = 12			
		x² + x 12			
	x ;	$^{1}+x-12=0$			
	$x^2 + 4x$	-3x - 12 = 0			
	$(x^2 + 4x) - (x^2 + 4x) = 0$	(3x+12)=0			
	x(x + 4) -	-3(x+4)=0			
<u> </u>	\ (x+	4)(x-3)=0	•		
- 7		x + 4 = 0			
2 1 7	ı	then <u>x = -4</u>			
		f x-3=0			
	the	<u> </u>			
	Soh	ution set = {-4	, 3}		

Pilot Super One "General Math" 10th 142 $3x^2 - 8x - 3 = 0$ 0.8. rotes.co $3x^2 - 9x + x - 3 = 0$ Sol. $(3x^2-9x)+(x-3)=0$ 3x(x-3) + 1(x-3) = 0(x-3)(3x+1)=0x - 3 = 0x=3and if 3x+1=03x = -1then Solution set = $\left\{3, -\frac{1}{3}\right\}$ $2x = \frac{2}{3} + 3$ Q.9. Sol. (Multiply by x) $x(2x) = x\left(\frac{2}{x}\right) + 3(x)$ $2x^2 = 2 + 3x$ $2x^2 - 3x - 2 = 0$ $2x^2 - 4x + x - 2 = 0$ $(2x^2-4x)+(x-2) = n$ 2x(x-2) + 1(x-2) = 0

(x-2)(2x+1)=0

o e. down Pilot Super One "General Math" 10th 143 If x-2=0x=2then and if 2x + 1 = 0Solution set = $\left\{2, -\frac{1}{2}\right\}$ $5x^2 - 6x - 8 = 0$ Q.10. $5x^2 - 10x + 4x - 8 = 6$ Sol. $(5x^2-10x)+(4x-8) = 0$ 5x(x-2) + 4(x-2) = 0(x-2)(5x+4)=0x-2=0ana do a x=2then 5x + 4 = 0then Solution set (2x+3)(x-2)=0x - 2 = 0lf Sol. then x=2

ı

Pilot Super O	ne "General Math" 10th	144
	and if $2x + 3 = 0$	
	$2x = -3$ then $x = -\frac{3}{2}$	
	Solution set = $\left\{2, -\frac{3}{2}\right\}$	
Q.12.	(2x+1)(5x-4)=0	
Sol.	2x+1=0	
	then $x = -1$ $x = -\frac{1}{2}$ and if $5x - 4 = 0$	
	$5x = 4$ then $x = \frac{4}{5}$ Solution set $= \left\{-\frac{1}{2}, \frac{4}{5}\right\}$	
Q.13.	4x(3x-1)-2=(2x-1)(5x+1)	
Sol.	$12x^2 - 4x - 2 = 10x^2 - 3x - 1$	
$12x^{2}$	$-10x^2 - 4x + 3x - 2 + 1 = 0$	
	$2x^2-x+1=0$	
	$2x^2 - 2x + x - 1 = 0$	
	$(2x^2 - 2x) + (x - 1) = 0$	

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more.
(Page 7 of 37)

2x(x-1)+1(x-1)=0

Pilot Super One	e "General Math" 10th	145
	(x-1)(2x+1)=0	
	If $x-1=0$	
	then $x=1$	
	and if $2x + 1 = 0$	
	then $ x = -\frac{1}{2} $	
	Solution set $=\left\{ \xi_{i}-\frac{1}{2}\right\}$	
11- Solve I	by completing the square method.	
Q.14.	$x^2 - 10x - 3 = 0$	
Sol.	$x^2 - 10x = 3$	
$\frac{10}{2} = 5$ th	hen add (5)2 on both sides	
_	$x^2 - 10x + (5)^2 = 3 + (5)^2$	
	$(x-5)^2 = 3 + 25$	
	$(x-5)^2=28$	
(By taki	ing square root on both sides)	
	$x-5=\sqrt{28}$	
	$x-5=\pm 2\sqrt{7}$	
	$x = 5 \pm 2\sqrt{7}$	
Q.15.	$x^2 - 6x - 3 = 0$	
Sol.	$x^2 - 6x = 3$	
	en add (3)2 on both sides	

Pilot Super One "General Math" 10th	148
$x^2 - 6x + (3)^2 = 3 + (3)^2$	
$(x-3)^2 = 3+9$	
$(x-3^{\sqrt{2}}-12)$	
(By taking square root on both sides)	
$x-3=\pm\sqrt{12}$	
$x = \pm 2\sqrt{3}$	
$x = 3 \pm 2\sqrt{3}$	
$x^2 + x - 1 = 0$	
ol. $x^2 + x = 1$ Adding $\left(\frac{1}{2}\right)^2$ on both sides $(1)^2 = (1)^2$	
$\left(\frac{2}{x^2}\right)^2 = 1 + \left(\frac{1}{2}\right)^2$	
$\sqrt{2}$	
$\left(x+\frac{1}{2}\right)^2=1+\frac{1}{4}$	
$\left(x + \frac{1}{2}\right)^2 = \frac{4+1}{4}$	
$\left(x+\frac{1}{2}\right)^2=\frac{5}{4}$	
$x + \frac{1}{2} = \pm \sqrt{\frac{5}{4}} $ (Taking s	quare root)
$x = -\frac{1}{2} \pm \sqrt{\frac{5}{4}}$	•
$= -\frac{1}{2} \pm \frac{\sqrt{5}}{2}$ $= -1 \pm \sqrt{5}$	
-1+√5	

Q.17. $x^2 + 6x - 3 = 0$ Sol. $x^2 + 6x = 3$ $\frac{6}{2} \approx 3$, then (3) ² adding on both sides $x^2 + 6x + (3)^2 = 3 + (3)^2$ $(x+3)^2 = 3 + 9$ $(x+3)^2 = 12$ $x + 3 = \pm \sqrt{12}$ (Taking square root) $x + 3 = \pm 2\sqrt{3}$ $x = -3 \pm 2\sqrt{3}$ Q.18. $2x^2 - 4x + 1 = 0$ Sol. $2x^3 - 4x = -1$ Divided by co-efficient 2 of x. $x^2 - 2x = -\frac{1}{2}$ $\frac{2}{2} \approx 1$, add (1) ² on both sides $x^2 - 2x + (1)^2 = -\frac{1}{2} + (1)^2$ $(x-1)^2 = -\frac{1}{2} + 1$ $(x-1)^2 = -\frac{1}{2} + 2$ $(x-1)^2 = \frac{1}{2}$ $(x-1)^2 = \frac{1}{2}$	Pilot Super ()	ne "General Math" 10th	147
$\frac{6}{2} = 3 \text{, then } (3)^2 \text{ adding on both sides}$ $x^2 + 6x + (3)^2 = 3 + (3)^2$ $(x+3)^2 = 3 + 9$ $(x+3)^2 = 12$ $x + 3 = \pm \sqrt{12} \text{ (Taking square root)}$ $x + 3 = \pm 2\sqrt{3}$ $x = -3 \pm 2\sqrt{3}$ Q.18. $2x^2 - 4x + 1 = 0$ Sol. $2x^3 - 4x = -1$ Divided by co-efficient 2 of x. $x^2 - 2x = -\frac{1}{2}$ $\frac{2}{2} = 1 \text{, add } (1)^2 \text{ on both sides}$ $x^2 - 2x + (1)^2 = -\frac{1}{2} + (1)^2$ $(x-1)^2 = -\frac{1}{2} + 1$ $(x-1)^2 = \frac{-1+2}{2}$ $(x-1)^2 = \frac{1}{2}$	Q.17.	$x^2 + 6x - 3 = 0$	
$x^{2} + 6x + (3)^{2} = 3 + 9$ $(x+3)^{2} = 12$ $x+3 = \pm \sqrt{12} \text{ (Taking square root)}$ $x+3 = \pm 2\sqrt{3}$ $x = -3 \pm 2\sqrt{3}$ Q.IR. $2x^{2} - 4x + 1 = 0$ Sol. $2x^{2} - 4x = -1$ Divided by co-efficient 2 of x. $x^{2} - 2x = -\frac{1}{2}$ $\frac{2}{2} = 1, \text{ add (1)}^{2} \text{ on both sides}$ $x^{2} - 2x + (1)^{2} = -\frac{1}{2} + (1)^{2}$ $(x-1)^{2} = -\frac{1}{2} + 1$ $(x-1)^{2} = \frac{-1+2}{2}$ $(x-1)^{2} = \frac{1}{2}$	Sol	$x^2 + 6x = 3$	
$x^{2} + 6x + (3)^{2} = 3 + 9$ $(x+3)^{2} = 12$ $x+3 = \pm \sqrt{12} \text{ (Taking square root)}$ $x+3 = \pm 2\sqrt{3}$ $x = -3 \pm 2\sqrt{3}$ Q.IR. $2x^{2} - 4x + 1 = 0$ Sol. $2x^{2} - 4x = -1$ Divided by co-efficient 2 of x. $x^{2} - 2x = -\frac{1}{2}$ $\frac{2}{2} = 1, \text{ add (1)}^{2} \text{ on both sides}$ $x^{2} - 2x + (1)^{2} = -\frac{1}{2} + (1)^{2}$ $(x-1)^{2} = -\frac{1}{2} + 1$ $(x-1)^{2} = \frac{-1+2}{2}$ $(x-1)^{2} = \frac{1}{2}$	$\frac{6}{2} = 3$.	then (3)2 adding on both sides	
$(x+3)^{2} = 12$ $x+3 = \pm \sqrt{12} \text{ (Taking square root)}$ $x+3 = \pm 2\sqrt{3}$ $x = -3 \pm 2\sqrt{3}$ Q.IR. $2x^{2} - 4x + 1 = 0$ Sol. $2x^{2} - 4x = -1$ Divided by co-efficient 2 of x. $x^{2} - 2x = -\frac{1}{2}$ $\frac{2}{2} = 1 \text{ add (1)}^{2} \text{ on both sides}$ $x^{2} - 2x + (1)^{2} = -\frac{1}{2} + (1)^{2}$ $(x-1)^{2} = -\frac{1}{2} + 1$ $(x-1)^{2} = \frac{-1+2}{2}$ $(x-1)^{2} = \frac{1}{2}$	-		
$x + 3 = \pm \sqrt{12} \text{ (Taking square root)}$ $x + 3 = \pm 2\sqrt{3}$ $x = -3 \pm 2\sqrt{3}$ Q.IB. $2x^{2} - 4x + 1 = 0$ Sol. $2x^{2} - 4x = -1$ Divided by co-efficient 2 of x. $x^{2} - 2x = -\frac{1}{2}$ $\frac{2}{2} = 1, \text{ add (1)}^{2} \text{ on both sides}$ $x^{2} - 2x + (1)^{2} = -\frac{1}{2} + (1)^{2}$ $(x - 1)^{2} = -\frac{1}{2} + 1$ $(x - 1)^{2} = \frac{-1 + 2}{2}$ $(x - 1)^{2} = \frac{1}{2}$		$(x+3)^2 = 3+9$	
$x + 3 = \pm 2\sqrt{3}$ $x = -3 \pm 2\sqrt{3}$ Q.IB. $2x^{2} - 4x + 1 = 0$ Sol. $2x^{3} - 4x = -1$ Divided by co-efficient 2 of x. $x^{2} - 2x = -\frac{1}{2}$ $\frac{2}{2} = 1, \text{ add } (1)^{2} \text{ on both sides}$ $x^{2} - 2x + (1)^{2} = -\frac{1}{2} + (1)^{2}$ $(x - 1)^{2} = -\frac{1}{2} + 1$ $(x - 1)^{2} = \frac{-1 + 2}{2}$ $(x - 1)^{2} = \frac{1}{2}$		· · · · · · · · · · · · · · · · · · ·	
Q.18. $2x^2 - 4x + 1 = 0$ Soil. $2x^2 - 4x = -1$ Divided by co-efficient 2 of x. $x^2 - 2x = -\frac{1}{2}$ $\frac{2}{2} = 1$, add (1) ² on both sides $x^2 - 2x + (1)^2 = -\frac{1}{2} + (1)^2$ $(x-1)^2 = -\frac{1}{2} + 1$ $(x-1)^2 = \frac{-1+2}{2}$ $(x-1)^2 = \frac{1}{2}$			ig square rixit)
Q.18. $2x^2 - 4x + 1 = 0$ Sol. $2x^2 - 4x = -1$ Divided by co-efficient 2 of x. $x^2 - 2x = -\frac{1}{2}$. $\frac{2}{2} = 1$, add (1) ² on both sides $x^2 - 2x + (1)^2 = -\frac{1}{2} + (1)^2$ $(x-1)^2 = -\frac{1}{2} + 1$ $(x-1)^2 = \frac{-1+2}{2}$ $(x-1)^2 = \frac{1}{2}$			
Divided by co-efficient 2 of x. $x^{2} - 2x = -\frac{1}{2}$ $\frac{2}{2} = 1 \text{ add (1)}^{2} \text{ on both sides}$ $x^{2} - 2x + (1)^{2} = -\frac{1}{2} + (1)^{2}$ $(x - 1)^{2} = -\frac{1}{2} + 1$ $(x - 1)^{2} = \frac{-1 + 2}{2}$ $(x - 1)^{2} = \frac{1}{2}$	0.10	- •	
Divided by co-efficient 2 of x. $x^{2} - 2x = -\frac{1}{2}$ $\frac{2}{2} = 1 \text{ add (1)}^{2} \text{ on both sides}$ $x^{2} - 2x + (1)^{2} = -\frac{1}{2} + (1)^{2}$ $(x - 1)^{2} = -\frac{1}{2} + 1$ $(x - 1)^{2} = \frac{-1 + 2}{2}$ $(x - 1)^{2} = \frac{1}{2}$	_	$2x^2 \sim 4x + 1 \qquad 0$	
$x^{2}-2x = -\frac{1}{2}$ $\frac{2}{2} = 1, \text{ add } (1)^{2} \text{ on both sides}$ $x^{2}-2x+(1)^{2} = -\frac{1}{2}+(1)^{2}$ $(x-1)^{2} = -\frac{1}{2}+1$ $(x-1)^{2} = \frac{-1+2}{2}$ $(x-1)^{2} = \frac{1}{2}$		•	
$\frac{2}{2} = 1, \text{ add } (1)^{2} \text{ on both sides}$ $x^{2} - 2x + (1)^{2} = -\frac{1}{2} + (1)^{2}$ $(x - 1)^{2} = -\frac{1}{2} + 1$ $(x - 1)^{2} = \frac{-1 + 2}{2}$ $(x - 1)^{2} = \frac{1}{2}$			
$x^{2}-2x+(1)^{2} = -\frac{1}{2}+(1)^{2}$ $(x-1)^{2} = -\frac{1}{2}+1$ $(x-1)^{2} = \frac{-1+2}{2}$ $(x-1)^{2} = \frac{1}{2}$		$x^2 - 2x = -\frac{1}{2}$	
$x^{2}-2x+(1)^{2} = -\frac{1}{2}+(1)^{2}$ $(x-1)^{2} = -\frac{1}{2}+1$ $(x-1)^{2} = \frac{-1+2}{2}$ $(x-1)^{2} = \frac{1}{2}$	$\frac{2}{3} = 1$, a	dd (1) ² on both sides	
$(x-1)^{2} = -\frac{1}{2} + 1$ $(x-1)^{2} = \frac{-1+2}{2}$ $(x-1)^{2} = \frac{1}{2}$	2		•
$(x-1)^2 = \frac{-1+2}{2}$ $(x-1)^2 = \frac{1}{2}$	`	$\frac{1}{2} = \frac{1}{2} + (1)^2$	
$(x-1)^2 = \frac{-1+2}{2}$ $(x-1)^2 = \frac{1}{2}$		$(x-1)^2 = -\frac{1}{2}+1$	
$(x-1)^2 = \frac{1}{2}$		$(x-1)^2 = \frac{-1+2}{}$	
-		—	
$x - 1 = \pm \sqrt{\frac{1}{2}} $ (Taking square root)		$(x-1)^r = \frac{1}{2}$	
		$x - 1 = \pm \sqrt{\frac{1}{2}} Taking $	square root)

Pilot Super One "General Math" 10th

148

Q19.

$$2x^2 - 6x + 3 = 0$$

Sol.

$$2x^2 - 6x = -3$$

Divided by co-efficient 2 of x.

$$x^2 - 3x = -\frac{3}{2}$$

Adding $\left(\frac{3}{2}\right)^2$ on both sides

$$x^{2} - 3x + \left(\frac{3}{2}\right)^{2} = -\frac{3}{2} + \left(\frac{3}{2}\right)^{2}$$

$$\left(x - \frac{3}{2}\right)^{2} = -\frac{3}{2} + \frac{9}{2}$$

$$\left(x - \frac{3}{2}\right)^{2} = \frac{-3 + 9}{2}$$

$$\left(x-\frac{3}{2}\right)^2=\frac{6}{2}$$

$$\left(x - \frac{3}{2}\right)^2 = 3$$

$$x - \frac{3}{2} = \pm \sqrt{3}$$
 (Taking square root)

$$x = \frac{3}{2} \pm \sqrt{3}$$

$$x = \frac{3 \pm 2\sqrt{3}}{2}$$

Q.20.

$$3x^2 + 5x - 4 = 0$$

Sol.

$$3x^2 + 5x = 4$$

Divided by 3 co-efficient of x.

$$x^2 + \frac{5}{3}x = \frac{4}{3}$$

GENERAL MAINEMAILES FOR TO CLASS	
	`
Pilot Super One "General Math" 10th	149
$\frac{1}{2} \left(\frac{5}{3} \right) = \frac{5}{6}, \text{ Adding } \left(\frac{5}{6} \right) \text{ on both sign}$	les
$x^2 + \frac{5}{3}x + \left(\frac{5}{6}\right)^2 = \left(\frac{5}{6}\right)^2 + \frac{5}{3}x + \left($	
$\left(x + \frac{5}{6}\right)^2 = \frac{25}{36} + \frac{4}{3}$, ,
$\left(x + \frac{5}{6}\right)^2 = \frac{25 + 41}{36}$	i (
$\left(x+\frac{5}{6}\right)^2=\frac{73}{36}$	
- 0	(Taking square root)
$x = -\frac{5}{6} \pm \frac{9}{2}$	U
$x = \frac{-5 \pm }{6}$	73
Q21. $\chi^{-1} + mx + n = 0$	
Sol. $x^2 + mx = -n$ Adding $\left(\frac{m}{2}\right)^2$ on both sides.	
Adding $(\frac{1}{2})$ on both sides.	
$x^2 + mx + \left(\frac{m}{2}\right)^{-2} = \left(\frac{m}{2}\right)^{-2}$	n
$\left(x+\frac{m}{2}\right)^2=\frac{m^2}{4}+n$	
$\left(x+\frac{m}{2}\right)^2=\frac{m^2-4n}{4}$	<u>!</u>
<u> </u>	(Taking square risk)

Pilot Super Or	e "General Math" 10th	150	
	$x = -\frac{m}{2} \pm \sqrt{\frac{m^2}{3}}$	<u>-4n</u>	
	$T = -\frac{m}{2} \pm \frac{\sqrt{m^2}}{2}$	-	
	- -	•	
	$x = \frac{-m \pm \sqrt{m^2 - m^2}}{2}$	411	
Q22 Sol.	$1 \operatorname{tr}^2 = 6x + 21$	^	
3 01.	$1!x^{2} - 6x = 21$ $x^{2} - \frac{6}{11}x = \frac{21}{11} \text{ (Divided)}$	hv II)	
(6 I			
\ 11 *2	$\int_{1}^{2} = \frac{3}{11} \text{ adding } \left(\frac{3}{11}\right)^{2} \text{ on both sides}$	•	
	$x^2 - \frac{6}{11}x + \left(\frac{3}{11}\right)^2 = \left(\frac{3}{11}\right)^2 + \frac{21}{11}$		
	$\left(x-\frac{3}{11}\right)^2 = \frac{9}{121} + \frac{21}{11}$		
	$\left(x-\frac{3}{11}\right)^2 = \frac{9+231}{121}$		
	$\left(x - \frac{3}{11}\right)^2 = \frac{240}{121}$		
	-		
	$x - \frac{3}{11} = \pm \sqrt{\frac{240}{121}}$ (Tak	ing square root)	
3.	$x = \frac{3}{11} = \pm \sqrt{\frac{16 \times 15}{11 \times 11}}$		
	$x - \frac{3}{11} = \pm \frac{4\sqrt{15}}{11}$		
	11 = 11		
	$x = \frac{3}{11} \pm \frac{4\sqrt{15}}{11}$		

Pilot Super	One "General Math" 10th
	$x = \frac{3 \pm 4\sqrt{15}}{11}$
Q23.	$2x^2 + 8x - 26 = 0$
Sol.	$2x^2 + 8x = 26$
	$x^2 + 4x = 13 $ (Dividing by 2)
$\frac{4}{2} = 2$	adding (2) ² on both sides.
	$x^2 + 4x + (2)^2 = (2)^2 + 13$
	$(x+2)^2 = 4+13$
	$(x+2)^2 = 17$
	$x + 2 = \pm \sqrt{17}$ (Taking square root)
	$z = -2 \pm \sqrt{17}$
Q24	$5x^2 - 20x - 28 = 0$
Sol.	$5x^2 - 20x = 28$
	$x^2 - 4x = \frac{28}{5} \text{(Divided by 5)}$
$\frac{4}{2}=2$, Adding (2) ² on both sides.
	$x^2 - 4x + (2)^2 = (2)^2 + \frac{28}{5}$
	$(x-2)^2 = 4 + \frac{28}{5}$
	$(x-2)^2 = \frac{20+28}{5}$
	$(x-2)^2 = \frac{48}{5}$

Pilot Super One "General Math" 10th $x-2 = \pm \sqrt{\frac{48}{5}}$ (Taking square root) 00,3 $x-2 = \pm \frac{4\sqrt{3}}{\sqrt{6}}$ $x = 2 \pm \frac{4\sqrt{3}}{\sqrt{5}} \text{ (Rationalize)}$ $x = 2 \pm 4\frac{\sqrt{3}}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$ $x = 2 \pm \frac{4\sqrt{15}}{5}$ $x = \frac{10 \pm 4\sqrt{15}}{4}$ Ans. $x^2 - 11x - 26 = 0$ 0.25. $x^2 - 11x = 26$ Sol. Adding $\left(\frac{11}{2}\right)^2$ on both sides. $x^{3} - 11x + \left[\frac{11}{2}\right]^{2} = \left(\frac{11}{2}\right)^{2} + 26$ $\left(x - \frac{11}{2}\right)^2 = \frac{121}{4} + 26$ $\left(x - \frac{11}{2}\right)^2 = \frac{121 + 104}{4}$ $\left(x - \frac{11}{2}\right)^2 = \frac{225}{4}$ $x - \frac{11}{2} = \pm \sqrt{\frac{225}{4}}$ (Taking square root) $x-\frac{11}{2}=\pm\frac{15}{2}$

Pilot Super One "General Man	de 100s <u>-</u>	153
	$v = \frac{11}{2} \pm \frac{15}{2}$	
	$x = \frac{11 \pm 15}{2}$	
	$x = \frac{11+15}{2}, \frac{11-15}{2}$	
•	$x = \frac{26}{2}, \frac{-4}{2}$	Ο,
	x = 13, -2	0
	S.S. = {13, -2}	

5.3 The Quadratic Formula

1f
$$ax^2 + bx + c = 0$$
 $a \ne 0$
then $x = \frac{b + \sqrt{b^2 - 4ac}}{2a}$

Solve using quadratic formula:

Q.1.
$$x^2 - 5x + 6 = 0$$

Sol. Here
$$a = 1$$

 $b = -5$

(Formula)
$$c = 6$$

$$c = \frac{-h \pm \sqrt{b^3 - 4ac}}{2}$$

Putting values of a, b, c

Pilot Super One "General Math" 10th

ne General Main. 10th	154
$x = \frac{-(-5) + \sqrt{(-5)^2 - 4(1)}}{2(1)}$	
$x = \underbrace{5 \pm \sqrt{25 \cdot 24}}_{2}$	iotes.co
$x = \frac{5 \pm \sqrt{1}}{2}$	مح.
$x = \frac{5 \pm 1}{2}$ $x = \frac{5 \pm 1}{2}, \frac{5 - 1}{2}$	10°
	10.
$x = \frac{6}{2}, \frac{4}{2}$	•
x = 3, 2	
Solutin set = {3, 2}	
$(3-4x) = (4x-3)^2$	
$3-4x + 16x^2 - 24x + 9$	
$0 = 16x^2 - 24x + 9 = 3 + 4$	lx
$0 = 16x^2 - 20x + 6$	
$16x^2 - 20x + 6 = 0$	
$8x^2 - 10x + 3 = 0$ (Divided by 2)	

Here

Q.2.

Sol.

$$a = 9$$

$$b = -10$$

(Formula)

$$x = \frac{-h \pm \sqrt{h^2 - 4ac}}{2a}$$

Putting the values of a, b, c

Pilot Super One "General Math" 10th 155 iotes. Low $x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(8)(3)}}{2(8)}$ $x = \frac{10 \pm \sqrt{100 - 96}}{16}$ $x = \frac{10 \pm \sqrt{4}}{16}$ $x = \frac{10 \pm 2}{16}$ $x = \frac{10+2}{16}, \frac{10-2}{16}$ $x = \frac{12}{16}, \frac{8}{16}$ $x = \frac{3}{4}, \frac{1}{2}$ Solution set = $\left\{\frac{3}{4}, \frac{1}{2}\right\}$ $3x^2 + x - 2 = a$ Q.3. Sol. Here $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$ (Formula) By putting the values of a, b, c $x = \frac{-1 \pm \sqrt{(1)^2 - 4(3)(-2)}}{2(3)}$ $x = \frac{-1 \pm \sqrt{1 + 24}}{6}$

=====		,
	Pilot Super One "General Math" 10th	156
	$x = \frac{-1 \pm 5}{6}$ $x = \frac{-1 + 5}{6}, \frac{-1 - 5}{6}$ $x = \frac{4}{6}, \frac{-6}{6}$ $x = \frac{2}{3}, -1$ Solution set $= \left\{\frac{2}{3}, -1\right\}$ $Q.4. \qquad 10x^2 - 5x = 15$	
	Sol. $10x^3 - 5x - 15 = 0$]
	$2x^2 - x - 3 = 0 \qquad \text{(Divided by 5)}$	
	Here g = 2	i
	b=-1	i
	Formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1
	By putting the values of a, h, c	
	$x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(2)(-3)}}{2(2)}$	<u>5</u>
	$x = \frac{1 \pm \sqrt{1 + 24}}{1 + 24}$, 1
	$x = \frac{1 \pm \sqrt{1 + 24}}{4}$ $x = \frac{1 \pm \sqrt{25}}{4}$	1
	$x = \frac{1\pm 5}{4}$. 1
	,	

.==========		
Pilot Super One "General M		157
	$x = \frac{1+5}{4}, \frac{1-5}{4}$	•
•	$x = \frac{6}{4}, \frac{-4}{4}$	
•	4 4 3 .	Ú
	$x = \frac{3}{2}, -1$	03°
Solution	$set = \left\{\frac{3}{2}, -1\right\}$	
Q.5. $(x-1)(x+3)$	- 12 = 0	ole.
Sol. $x^2 + 2x - 3 - 3$	-12 = 0	•
$x^2 + 2x -$	-15 = 0	
Here	a = 1	
	<i>b</i> = 2	
4.5	$a = -15$ $x = -b \pm \sqrt{b^3 - 4ac}$	
(Formula)	$\frac{1}{2a}$	
By putting the value	·	
	$x = \frac{-2 \pm \sqrt{(2)^2 - 4(1)(-1)^2}}{2(1)}$	<u>-15)</u>
\cap	$\begin{array}{c} 2(1) \\ x = -2 \pm \sqrt{4 + 60} \end{array}.$	
•	2	
	$x = \frac{-2 \pm \sqrt{04}}{2}$	
-	$x = \frac{-2 \pm \sqrt{4 + 60}}{2}$ $x = \frac{-2 \pm \sqrt{64}}{2}$ $x = \frac{-2 \pm 8}{2}$ $x = \frac{-2 \pm 8}{2}$	
	$\frac{-2+8}{-2-8}$	
	<u>, </u>	

	1CS FOR 10CLASS (
Pilot Super One "General M	ան" (Օւհ		158
! ————————————————————————————————————	$x = \frac{6}{2}, \frac{-10}{2}$		
1	2 2 $x = 3, -5$		1
Solution	set = {3, -5}		
Q.6. $x(2x+7) - 3(2x+7)$	+ 7) = 0		
Soi. $2x^2 + 7x - 6x - 6x = 6x - 6x - 6x - 6x - 6x - 6$	21 = 0		1
$2x^2 + x +$	21 = 0	\cap	1
Here	a = 2	\cup	1
	h = 1		}
(Fomula)	$c = -21$ $x = -\hbar \pm \sqrt{\hbar^2 - 4ac}$		
(Formula)	$\frac{3}{2u}$		i
By putting the values	s of a, h c		}
	$x = \frac{-1 \pm \sqrt{(1)^2 - 4(2)}}{2x^2}$	(-21)	1
	$x = \frac{2(2)}{4}$		1
	$x = \frac{-1 \pm \sqrt{169}}{}$		
	4		ı
	$x = \frac{-1 \pm 13}{4}$		1
	$x = \frac{-1+13}{4}, \frac{-1-13}{4}$		1
3. 3. ·	·		
	$x = \frac{12}{4}, \frac{-14}{4}$		1
•	$x=3,-\frac{7}{2}$		
Solution	$set = \left\{3, -\frac{7}{2}\right\}$		
·	25		

Pilot Super	One "General Math" 10th	159
Q.7.	$\frac{x+1}{x+4} = \frac{2x-1}{x+6}$, where x	≠-4,-6
Sol.	(x+1)(x+6) = (2x+1)(x+4)	
	$x^2 + 7x + 6 = 2x^2 + 7x - 4$	
x2 -	$-2x^2 + 7x - 7x + 6 + 4 = 0$	Δ
	-x + 10 = 0	('
	v - 10 = 0	
	Here $a=1$.	
	b = 0	
	c = -10	
	(Formula) $ = \frac{-b}{2a} \pm \sqrt{b^2 - 4ac} $	
Ву ри	tting the values of a, b, c	
	$x = \frac{-(0) \pm \sqrt{(0)^2 - 4(1)}}{2(1)}$	<u>)(-10)</u>
	$x = \frac{0 \pm \sqrt{0 + 40}}{2}$ $x = \frac{0 \pm \sqrt{40}}{2}$	
\wedge	$v = \frac{0 \pm \sqrt{40}}{2}$	
\cup	$y = \frac{0 \pm 2\sqrt{10}}{2}$	
	$x = \pm \frac{2\sqrt{10}}{2}$	
	$x = \pm \sqrt{10}$	•
	Solution set = $\{\pm\sqrt{10}\}$	

Pdot Super One "General Math" 10th

160

$$\frac{x}{6} + \frac{6}{x} = \frac{4}{x} + \frac{y}{4}$$
, where $x \ne 0$

Sol. Multiplying by L.C.M. 12x

$$12x\left(\frac{x}{6}\right) + 12x\left(\frac{6}{x}\right) = 12x\left(\frac{4}{x}\right) + 12x\left(\frac{x}{4}\right)$$

$$2x^{2} + 72 = 48 + 3x^{2}$$

$$2x^{2} - 3x^{2} + 72 - 48 = 0$$

$$-x^{2} + 24 = 0$$

$$x^{2} - 24 = 0$$
Here
$$a = 1$$

$$b = 0$$

$$c = -24$$
(Formula)
$$x = \frac{-h \pm \sqrt{h^{2} - 4ac}}{2a}$$

By putting the values of a, b, c

$$x = \frac{-(0) \pm \sqrt{(0)^{2} - 4(1)(-24)}}{2(1)}$$

$$x = \frac{\pm \sqrt{0 + 96}}{2}$$

$$x = \frac{\pm \sqrt{96}}{2}$$

$$x = \frac{\pm \sqrt{16 \times 6}}{2}$$

$$x = \frac{\pm 4\sqrt{6}}{2}$$

$$x = \pm 2\sqrt{6}$$
Solution set = $\left\{\pm 2\sqrt{6}\right\}$

I

Pilot Super One "Geno	eral Math* 10th	161
$Q.9. \qquad \frac{x+a}{x-a}$	$\frac{4}{4} + \frac{x-4}{x+4} = \frac{10}{3}$ where $x \neq -4$	
Sol. Multiplying by	y 3(x-4)(x+4)	
3(x+4)(x+4)+3(x	(x-4)(x-4) = 10(x-4)(x+4)	
3(x² + 8x + 16) + 3(x²	$\frac{1}{2} - 8x + 16$ = $10(x^2 - 16)$	
3x2 + 24x + 48 + 3x2 -	$-24x + 48 = 10x^3 - 160$	
2	24x - 24x + 48 + 48 + 160 = 0	
	$4x^2 + 256 = 0$	
	$4x^2 - 256 = 0$	
	$x^2 - 64 = 0$ (Divided by 4)	
Here	a = 1	
	<i>b</i> • 0	
	c = - 64	
(Formula)	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
By putting th	ne values of a, b, c	
	$x = \frac{-0 \pm \sqrt{(0)^2 - 4(1)(-64)}}{1}$	

$$x = \frac{-0 \pm \sqrt{(0)^2 - 4(1)(-64)}}{2(1)}$$

$$x = \frac{\pm \sqrt{0 + 256}}{2}$$

$$x = \frac{\pm \sqrt{256}}{2}$$

$$x = \frac{\pm 16}{2}$$

$$x = \pm \frac{8}{2}$$
Solution set = $\{8, -8\}$

	ne "General Math" 10th	162	
Q.10,	$\frac{1}{x-1} + \frac{1}{x-2} = \frac{2}{x-3} \text{ where } x = 1.$.2.3	
Sol. Multip	lying by $(x-1)(x-2)(x-3)$		~
(1 ^ 1Ks - 2Ks -)	$\frac{1}{(x-1)} * (x-1)(x+2)(x+3) * \dots \frac{(x-3)}{(x-1)(x-1)} * (x-1)(x-2)$	(c-3)# . ² (x-3)	
(x-2)(x-1)	3) + (x-1)(x-3) = (x-1)(x-2)(2)		•
$x^2 - 5x$	$+6+x^2-4x+3 = 2(x^2-3x+2)$		1
	$2x^2-9x+9 = 2x^2-6x+4$	\cap	
	-9x + 6x = 4 - 9	\cup	i
•	-3x = -5		i
	$x = \frac{-5}{-3}$,		1
	$x = \frac{5}{3}$		
).11. (x+4)(x-	-1)+(x+5)(x+2)=6		
of $x^2 + 3x = -$	$1+x^2+7x+10=6$		- 1

$$2x^2 + 10x - 4 + 10 - 6 = 0$$
$$3x^2 + 10x = 0$$

Here
$$a = 2$$

$$b = 10$$

$$c = 0$$
formula)
$$x = \frac{-h \pm \sqrt{h^2 - 4aa}}{a}$$

By putting the values of a, b, c

$$x = \frac{-10 \pm \sqrt{(10)^2 - 4(2)(0)}}{2(2)}$$

Pilot Super One "General Math" 10th

163

$$x = \frac{-10 \pm \sqrt{100}}{4}$$

$$x = \frac{-10 \pm 10}{4}$$

$$x = \frac{-10 + 10}{4}, \frac{-10 - 10}{4}$$

$$x = \frac{0}{4}, \frac{-20}{4}$$

Solution set $= \{0, -5\}$

$$Q.12 \qquad (2x+4)^2 - (4x-6)^2 = 0$$

Sol.

$$(4x^{2} + 16x + 16) - (16x^{2} - 48x + 36) = 0$$

$$-12x^{2} + 64x - 20 = 0$$

$$(Dividing by -4)$$

$$3x^{2} - 16x + 5 = 0$$
Here $a = 3$

(Formula)
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

By putting the values of a, b, c

$$x = \frac{-(-16) \pm \sqrt{(-16)^2 - 4(3)(5)}}{2(3)}$$
$$= 16 + \sqrt{256 - 60}$$

$$x = \frac{16 \pm \sqrt{256 - 60}}{6}$$

Visit www.downloadclassnotes.com for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 26 of 37)

Pilot Super One "General Math" 10th

164

$$x = \frac{16 \pm \sqrt{196}}{6}$$

$$x = \frac{16 \pm 14}{6}$$

$$x = \frac{16 + 14}{6} \cdot \frac{16 - 14}{6}$$

$$x = \frac{30}{6} \cdot \frac{2}{6}$$

$$x = 5 \cdot \frac{1}{3}$$
Solution set $= \left\{5, \frac{1}{3}\right\}$

(Korone Se

Q.1. Find two consecutive positive odd numbers such that the sum of their squares is 74.

Sol. Let 1^{st} odd number = 2x + 1

 2^{nd} odd number = 2x + 3

According to statement

$$(2x+1)^2 + (2x+3)^2 = 74$$

$$4x^2 + 4x + 1 + 4x^2 + 12x + 9 = 74$$

$$8x^2 + 16x + 10 - 74 = 0$$

$$8x^2 + 16x - 64 = 0$$

$$x^{2} + 2x - 8 = 0$$
 (Divided by 8)

$$x^2 + 4x - 2x - 8 = 0$$

$$(x^2 + 4x) - (2x + 8) = 0$$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more.
(Page 27 of 37)

Pilos Super One Towner il Math. 10th	165
1(1 + 4) - 2(1 + 4) + 0	
(x + 4)(x - 2) = 0	
11' 1 - 2 - 0	
then Trans	
and if $\tau + 4 = 0$	0
then $\left\{ \mathbf{t} = -\mathbf{I} \right\}$	(
when $x \ge 2$ then 1^4 number $\pm 2x \pm 1$	
~2(2) + 1	
-4+1	
◆ 5	
and 2^{nd} number $= 2x + 3$	
+2(2) + 3	
-4+3	
-7	
Required odd number = 5, 7	
Q.2. Find two consecutive positive even num that the sum of their squares is 164.	ihera such
Sol Let 1* number = 2x	
2 rd number = 24 + 2	
According to the statement	
$(2\pi)^2 + (2\pi + 2)^2 = 164$	
4 s 2 + 4 s 2 + 8 s + 4 + 164	

Pilot Super One "Ger	eral Math* 10th	166
8.r ²	+8x+4-164 = 0	-
:	$8x^2 + 8x - 160 = 0$	
	$x^2 + x - 20 = 0 $ (Divided)	oy 8)
, x ²	+5x - 4x - 20 = 0	. (
$(x^2 + 5)$	(4x+20) = 0	
x(x	+5)-4(x+5)=0	•
	(x+5)(x-4)=0	()
If	x - 4 = 0	Ŭ
	then $x=4$	
ал	d if x+5 = 0	
	then $x = -5$	
when $x = 4$, th	en 1 st number = 2x	
	, = 2(4) = 8	
And	$2^{\text{ad}} \text{ number} = 2x + 2$	
	= 2(4) + 2 = 8 +	2 = 10
Required	even number = 8, 10	
	of two numbers is 9 and the is 162. Find the two number	•
ol. Let	l st number = x	•
	2 nd number = x + 9	

According to the statement

Super One "General Math" 10th	

$$x^2 + 9x = 162$$

167

$$x^2 + 9x = 162$$

$$x^2 + 9x - 162 = 0$$

$$x^2 + 18x - 9x - 162 = 0$$

$$(x^2 + 18x) + (9x + 162) = 0$$

Pilot

$$x(\tau + 18) - 9(x + 18) = 0$$

$$(x-9)(x+18)=0$$

If
$$x-9=0$$

then
$$x=9$$

and if
$$x + 18 = 0$$

$$x = -18$$

If x = 9, then 1^{st} number = x = 9

$$2^{nd}$$
 number = $x + 9$

$$=9+9=18$$

If
$$x = -18$$

$$1^{st}$$
 number = $x = -18$

$$2^{nd}$$
 number = $x + 9$

Required numbers =
$$-18.-9$$

Pilot Super One "General Math" 10th

168

Q.4. The base and height of a triangle are (x + 3)cm and (2x - 5)cm respectively. If the area of the triangle is $20cm^2$, find x,

Sol.

Length of base = x + 3cm

Length of altitude = 2x - 5cm

Area of $\Delta = 20 \text{cm}^2$

According to the statement

$$\frac{(x+3)(2x-5)}{2} = 20$$

Area of
$$\Delta = \frac{B \times A}{2}$$

$$\frac{2x^2 + x - 15}{2} = 20$$

$$2x^2 + x - 15 = 2 \times 20$$

$$2x^2 + x - 15 = 40$$

$$3x^2 + x - 15 - 40 = 0$$

$$2x^2 + x - 55 = 0$$

$$2x^2 + 11x - 10x - 55 = 0$$

$$(2x^2+11x)-(10x+55)=0$$

$$x(2x+11) - 5(2x+11) = 0$$

$$(2x+11)(x-5)=0$$

If
$$x-5=0$$

then

$$x=5$$

Therefore, Length of base = x + 3

-5+3

Pilot Super One "General Math" 10th

169

3. John

= 8cm

Length of altitude = 2x - 5

$$= 2(5) - 5$$

$$= 10 - 5$$

= 5cm

and if

$$2x + 11 = 0$$

$$2x = -11$$

then

$$x = -\frac{11}{2}$$

Cancelling due to negativity.

Q.5. The perimeter and area of a rectangle are 22cm and $30cm^2$ respectively. Find the length and breadth of the rectangle.

Sol.

Rectangle's perimeter = 22cm

Let.

Length of rectangle = x cm

Breadth of rectangle =
$$\frac{30}{x}$$
 cm

Perimeter = $(length + breadth) \times 2$

$$22 = \left(\frac{30}{x} + x\right) \times 2$$

$$11 = x + \frac{30}{x} \text{ (Divided by 2)}$$

$$11x = 30 + x^2$$
 (Multiplying by x)

$$0 = 30 + x^2 - 11x$$

Pilot Super One "General Math" 10th

170

$$x^2 - 11x + 30 = 0$$

$$x^2 - 5x - 6x + 30 = 0$$

$$(x^2 - 5x) - (6x - 30) = 0$$

$$x(x-5) - 6(x-5) = 0$$

$$(x-5)(x-6) = 0$$

If
$$x-5=0$$

then
$$x=5$$

Length of rectangle = x

- 5cm

and Breadth of rectangle = $\frac{30}{100}$

6 ст

Length of rectangle = 5cm

Breadth of rectangle = 6cm

and if

x - 6 = 0

then

x = 6

Length of rectangle = x

6cm

and

Breadth of rectangle = $\frac{30}{x}$

- -

= 5cm

Pilot Super One "General Math" 10th

171

Length of rectangle = 6cm

So, Breadth of rectangle = 5cm

Q.6. The product of two consecutive positive numbers is 156. Find the numbers.

Sol. Let.

$$1^{st}$$
 number = x

$$2^{\text{nd}}$$
 number = $x + 1$

According to the statement

$$(x)(x+1) = 156$$

$$x^2 + x = 156$$

$$x^{1} + x - 156 = 0$$

$$x^2 + 13x - 12x - 156 = 0$$

$$(x^2+13x)-(12x+156)=0$$

$$x(x+13) - 12(x+13) = 0$$

$$(x-12)(x+13)=0$$

$$x - 12 = 0$$

$$[x=12]$$

Required numbers = x, x + 1

$$= 12, 12 + 1$$

$$x+13=0$$

$$x = -13$$

Required numbers = x, x + 1

Pilot Super One "General Math" 10th

172

Q.7. Find two consecutive positive odd numbers given that the difference between their reciprocals is $\frac{2}{63}$.

Sol. Suppose that 1^{st} number = 2x + 1

$$2^{nd}$$
 number = $2x + 3$

According to given condition

$$\frac{1}{2x+1} - \frac{1}{2x+3} = \frac{2}{63}$$

Multiplying by (2x + 1)(2x + 3)(63)

$$63(2x+1)(2x+3) \times \frac{1}{(2x+1)} - 63(2x+1)(2x+3) \times \frac{1}{(2x+3)}$$

$$= \frac{2}{63} \times 63(2x+1)(2x+3)$$

$$63(2x+3) - 63(2x+1) = 2(2x+1)(2x+3)$$

$$126x + 189 - 126x - 63 = 2(4x^{2} + 8x + 3)$$

$$126 = 8x^2 + 16x + 6$$

$$8x^2 + 16x + 6 - 126 = 0$$

$$8x^2 + 16x - 120 = 0.$$

$$x^2 + 2x - 15 = 0$$
 (Dividing by 8)

$$x^2 + 5x - 3x - 15 = 0$$

$$(x^2 + 5x) - (3x + 15) = 0$$

$$x(x+5)-3(x+5)=0$$

W. Cr.

Pilot Super One "General Math" 10th

173

$$(x+5)(x-3)=0$$

lſ

$$x - 3 = 0$$

then

$$x=3$$

Required numbers: 1st number = 2x + 1 required numbers

$$= 2(3) + 1$$

2
2nd number = $2x + 3$

$$= 2(3) + 3$$

2nd number = 9

and if

then

$$x = -5$$

Cancelling due to negativity.

Q.8. The sum of the two positive number is 12 and the sum of whose squares is 80. Find the numbers.

1st number
$$= x$$

$$2nd number = 12 - x$$

According to given condition

$$(x)^2 + (12 - x)^2 = 80$$

$$x^2 + 144 + x^2 + 24x = 80$$

$$2x^2 - 24x + 144 - 80 = 0$$

$$2x^2 - 24x + 64 = 0$$

$$x^2 - 12x + 32 = 0$$
 (Dividing by 2)

Pilot Super One "General Math" 10th

174

$$x^2 - 4x - 8x + 32 = 0$$

$$x(x-4)-8(x-4)=0$$

$$(x-4)(x-8)=0$$

If
$$x - 4 = 0$$

then
$$x = 4$$

Required numbers: 1st num

1st number =
$$x = 4$$

2nd number =
$$12.-x$$

$$2nd number = 12 - 4 = 8$$

and if
$$x-8=0$$

$$x = 8$$

Hence

2nd number =
$$12 - x$$

$$2nd number = 4$$

Required numbers = 8, 4

or Required numbers = 4, 8

Pilot Super One "General Math" 10th

180

্জারার্থিত (জিন্

With the help of the given matrices answer the questions

from 1 to 3.

==========

$$A = \begin{bmatrix} 2 & -2 \\ -5 & 0 \end{bmatrix}, B = \begin{bmatrix} -3 & -2 \\ 0 & 4 \end{bmatrix}, C = \begin{bmatrix} 3 \\ -i \\ 0 \end{bmatrix},$$

$$D = \begin{bmatrix} -3 & 2 & 0 \\ 0 & 1 & 5 \\ 4 & -2 & 2 \end{bmatrix}, E = \begin{bmatrix} -3 & 2 & 0 \end{bmatrix}, F = \begin{bmatrix} -3 & 4 \\ 0 & 5 \\ 3 & -1 \end{bmatrix}$$

- 1- What are the orders of matrices A, C and F?
- 2. What are the orders of matrices B, D and E?
- 3- What element is in the second row and third column of matrix D?

Answers:

- 1.(i) (R) Number of rows in matrix A = 2
 - (C) Number of columns in matrix B = 2 Order of matrix A (R × C) = 2-by-2
- (ii) (R) Number of rows in matrix C = 3
 - (C) Number of columns in matrix C = 1 Order of matrix C(R × C) = 3-by-1
- (iii) (R) Number of rows in matrix F = 3
 - (C) Number of columns in matrix F = 2

Pilot	Super	One	*General	Math"	10th
-------	-------	-----	----------	-------	------

181

Order of matrix $F(R \times C) \approx 3$ -by-2

- 2.(a) (R) Number of rows in matrix B = 2
 - (C) Number of columns in matrix B = 2Order of matrix $B(R \times C) = 2$ -by-2
- (ii) (R) Number of rows in matrix D = 3
 - (C) Number of columns in matrix D = 3 Order of matrix D(R × C) = 3-by-3
- (iii) (R) Number of rows in matrix E = 1
 - (C) Number of columns in matrix E = 3
 Order of matrix E(R × C) = 1-by-3
- The element is in the second row and third column of matrix D is 5.
- Q.4. Which of the following matrices are equal and which of them are not?

$$A = \begin{bmatrix} 4 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \end{bmatrix}, C = \begin{bmatrix} 6 \\ 9 \end{bmatrix}, D = \begin{bmatrix} 2+2 \end{bmatrix},$$

$$C = \begin{bmatrix} 3+3 \\ 8+1 \end{bmatrix}, F = \begin{bmatrix} \frac{5}{5} & \frac{4}{2} \\ \frac{6}{5} & \frac{4}{2} \end{bmatrix}, G = \begin{bmatrix} 1 & 3 \\ 6 & 8 \end{bmatrix},$$

$$H = \begin{bmatrix} 1 & 2 & 5 \\ 0 & 3 & 4 \\ 2 & 6 & 3 \end{bmatrix}, I = \begin{bmatrix} 1 & 3 \\ 6 & 7 \end{bmatrix}, J = \begin{bmatrix} 1 & 3 \\ 6 & \frac{16}{2} \end{bmatrix}$$

Pilot Super One "General Math" 10th

182

$$K = \begin{bmatrix} 1 & 2 & 3+2 \\ 0 & 3 & 4 \\ 2 & 4+2 & 3 \end{bmatrix}, L = \begin{bmatrix} 1 & 3 & 5 \\ 0 & 3 & 4 \\ 2 & 6 & 3 \end{bmatrix}$$

Answers:

(i)
$$B = F, G = J, H = K, C = E, A = D$$

(ii) I and L are not equal to any matrix.

TYPES OF MATRICES

(i) Row Matrix:

A matrix with only one row is called a row matrix.

For example: $B = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$ is of order 1 - by - 3.

(ii) Column Matrix:

A matrix with only one column is called a column matrix.

For example: $D = \begin{bmatrix} 3 \\ 2 \\ 7 \end{bmatrix}$ is of order 3 - by - 1.

(iii) Rectangular Matrix:

If in a matrix, the number of rows and the number of columns are not equal, then the matrix is called a rectangular matrix.

For example: $C = \begin{bmatrix} 1 & 2 & 7 \\ 3 & 4 & 5 \end{bmatrix}$

(iv) Square Matrix:

If a matrix has equal number of rows and columns, it is called a square matrix.

For example: $Q = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{bmatrix}$

(v) Zero or Null Matrix:

Pilot Super One "General Math" 10th

183

If all the elements in a matrix are zeros, it is called a zero matrix or null matrix. A null matrix is denoted by the letter O.

For example: O = [0] is of order 1 - by - 1.

 $O = \begin{bmatrix} 0 & 0 \end{bmatrix}$ is of order 1 - by - 2.

(vi) Diagonal Matrix:

A square matrix in which all the elements except at least the one element in the diagonal are zeros is called a diagonal matrix.

For example: $A = \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ 0 & 3 \end{bmatrix}$

(vii) Scalar Matrix:

A diagonal matrix having equal elements is called a scalar matrix.

For example: $B = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix}$

(viii) Unit Matrix or Identity Matrix:

A scalar matrix having each element equal to 1 is called a unit or identity matrix. Identity or unit matrix is generally denoted by I.

For example: $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

(ix) Transpose of a Matrix:

If A is a matrix of order (m - by - n), then a matrix (n - by - m) obtained by interchanging the rows and columns of A is called the transpose of A. It is denoted by A^{ℓ} .

For example: $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then $A' = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$

Pilot Super One "General Math" 10th

184

(x) Symmetric Matrix:

A square matrix A is called symmetric if A' = A

For example:
$$A = \begin{bmatrix} p & q \\ q & r \end{bmatrix}$$
, and $A' = \begin{bmatrix} p & q \\ q & r \end{bmatrix}$

(xi) Skew-Symmetric Matrix:

A square matrix A is called skew symmetric (or anti-symmetric) if A' = -A

For example:
$$A = \begin{bmatrix} 0 & -2 & 3 \\ 2 & 0 & 4 \\ -3 & -4 & 0 \end{bmatrix}$$

$$A' = \begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & -4 \\ 3 & 4 & 0 \end{bmatrix} = -\begin{bmatrix} 0 & -2 & 3 \\ 2 & 0 & 4 \\ -3 & -4 & 0 \end{bmatrix} = -A$$

A' = -A Hence A is skew symmetric.

1. Identify row matrices, column matrices, square matrices, and rectangular matrices in the following matrices.

$$A = \begin{bmatrix} 3 & 1 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 5+2 & 4 \\ 2 & 6 \end{bmatrix}, C = \begin{bmatrix} a+x \\ b+y \end{bmatrix},$$

$$D = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}, E = \begin{bmatrix} x & -2 \\ b & 5 \end{bmatrix}, F = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 4 & 5 \\ 1 & -5 & 0 \end{bmatrix},$$

$$G = \begin{bmatrix} 1 & 2 & 4 \\ 5 & 7 & 8 \end{bmatrix}, H = [0]$$

Solution:

Pilot Super One "General Math" 10th

185

$A = \begin{bmatrix} 3 & 1 & 1 & 1 \end{bmatrix} \qquad Rc$	w Mai	trix	
$C = \begin{bmatrix} (a+x) \\ (h+y) \end{bmatrix}$ Column			
$B = \begin{bmatrix} (5+2) & 4 \\ 2 & 6 \end{bmatrix}, D = \begin{bmatrix} (5+2) & 4 \\ 2 & 6 \end{bmatrix}$	_[2	4]	Square Matrix -
$\begin{bmatrix} 2 & 6 \end{bmatrix}$	t	3]	.07
$E = \begin{bmatrix} x & -2 \\ h & 5 \end{bmatrix}, F = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$	3	2]	
$E = \begin{bmatrix} x & z \\ b & 5 \end{bmatrix}, F = \begin{bmatrix} 2 & z \\ c & 5 \end{bmatrix}$	4	5	, H = [0]
[, ,] [!	-5	0	
$C = \begin{bmatrix} (a+x) \end{bmatrix} C = \begin{bmatrix} 1 \end{bmatrix}$	2	4]	Rectangle Matrix
$C = \begin{bmatrix} (a+x) \\ (b+y) \end{bmatrix}, G = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$	7	8]	

2. Identify, diagonal matrices, scalar matrices, identity matrices.

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 4 \end{bmatrix},$$

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}, F = \begin{bmatrix} 8 & 0 \\ 0 & 0 \end{bmatrix},$$

$$G = \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}$$

Solution:

$$G = \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}$$

Diagonal Matrix

Pilot Super One "General Math" 10th 186

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 4 \end{bmatrix}, F = \begin{bmatrix} 8 & 0 \\ 0 & 0 \end{bmatrix}$$

Scalar Matrix

$$B = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{bmatrix}, E = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}, G = \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}$$

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Identity Matrix

Find transpose of the following matrices.

$$A = \begin{bmatrix} 3 & 4 \\ -1 & 4 \end{bmatrix}, B = \begin{bmatrix} -3 & -2 \\ -1 & 4 \end{bmatrix},$$

$$C = \begin{bmatrix} a & -b \\ c & d \end{bmatrix}, D = \begin{bmatrix} l & m & n \\ p & q & r \\ a & b & c \end{bmatrix}$$

Solution:

$$A = \begin{bmatrix} 3 & 4 \\ -1 & 4 \end{bmatrix}, A' = \begin{bmatrix} 3 & -1 \\ 4 & 4 \end{bmatrix}$$

$$B = \begin{bmatrix} -3 & -2 \\ -1 & 4 \end{bmatrix}, B' = \begin{bmatrix} -3 & -1 \\ -2 & 4 \end{bmatrix}$$

$$C = \begin{bmatrix} a & -b \\ c & d \end{bmatrix}, C' = \begin{bmatrix} a & c \\ -b & d \end{bmatrix}$$

Pilot Super One "General Math" 10th

187

$$D = \begin{bmatrix} l & m & n \\ p & q & r \\ a & b & c \end{bmatrix}, D' = \begin{bmatrix} l & p & a \\ m & q & b \\ n & r & c \end{bmatrix}$$

4. Identify all row matrices, if:

$$A = \begin{bmatrix} 3 & 4 & 5 \end{bmatrix}, B = \begin{bmatrix} -1 & 3 \\ 4 & 6 \end{bmatrix}, C = \begin{bmatrix} e & f & g \end{bmatrix},$$

$$D = \begin{bmatrix} 3 & 7 & 5 \\ 4 & 6 & 2 \\ 1 & 9 & 8 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 & 6 \\ 3 & 7 & 3 \end{bmatrix}$$

Solution:

Row Matrix

$$A = [3 \ 4 \ 5], C = [e \ f \ g]$$

5. Identify all column matrices, if:

$$A = \begin{bmatrix} 3 \\ 6 \\ 10 \end{bmatrix}, B = \begin{bmatrix} 2 & 3 \\ 6 & 5 \\ 4 & 7 \end{bmatrix}, C = \begin{bmatrix} a \\ b \\ c \end{bmatrix},$$

$$D = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 6 & 5 \\ -2 & 3 & 4 \end{bmatrix}, E = \begin{bmatrix} 5 \\ 7 \\ -4 \end{bmatrix}, F = \begin{bmatrix} 9 & 7 & 1 \end{bmatrix}$$

Solution:

Column Matrix

$$A = \begin{bmatrix} 3 \\ 6 \\ 10 \end{bmatrix}, C = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, E = \begin{bmatrix} 5 \\ 7 \\ -4 \end{bmatrix}$$

Pilot Super One "General Math" 10th

188

6. Identify all column matrices, if:

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}, B = \begin{bmatrix} 3 & -2 & 4 \\ 1 & 6 & 5 \\ 7 & 3 & 4 \end{bmatrix}, C = \begin{bmatrix} 1 \\ 2 \\ 9 \end{bmatrix},$$

$$D = \begin{bmatrix} 7 & 8 \\ 6 & 5 \end{bmatrix}, E = \begin{bmatrix} 3 & 7 & 5 \end{bmatrix}, F = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Solution: Column Matrix

$$C = \begin{bmatrix} 1 \\ 2 \\ 9 \end{bmatrix}$$

Identify all 3-by-3 square matrices, if:

$$A = \begin{bmatrix} 2 & -3 & 6 \\ 1 & 5 & 4 \\ 3 & 6 & -3 \end{bmatrix}, B = \begin{bmatrix} 2 \\ 4 \\ 7 \end{bmatrix}, C = \begin{bmatrix} 7 & 3 & 4 \end{bmatrix}$$

Solution:

A Scalar Multiplication

Any element from the set of real numbers is also called a scalar. We define the product of a matrix A and a scalar k, denoted by kA, to be the matrix formed by multiplying each element of A by k.

For example: $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then $kA = \begin{bmatrix} ka & kh \\ kc & kd \end{bmatrix}$

Pilot Super One "General Math" 10th

189

Laws of Addition of Matrices

Commutative Law:

For any two matrices A and B of the same order

$$A + B = B + A$$

This law is called commutative law of matrices with respect to addition.

Associative Law:

For three matrices A, B and C of same order,

$$(A + B) + C = A + (B + C)$$

This law is called associative law of matrices with respect to addition.

Additive Identity of Matrices

$$A+O=O+A=A$$

Additive Inverse of a Matrix

If two matrices A and B are such that their sum (A + B) is a zero matrix, then A and B are called additive inverse of each other.

For example:
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, and $B = \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix}$

क्रिलियार्थिक

$$\mathbf{1} \quad \text{if } A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 5 & 5 \\ 4 & 9 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 1 & 5 \\ 2 & 3 & 6 \\ 1 & 4 & -2 \end{bmatrix}$$

Find

- (i) A + B
- (ii) A = B
- (iii) B = A

- (iv) 2A + 3B
- (v) 3A 4B
- (vi) A = 2B

Solutions:

(i)
$$A + B = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 5 & 5 \\ 4 & 9 & 3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 5 \\ 2 & 3 & 6 \\ 1 & 4 & -2 \end{bmatrix}$$

Pilot Super One "General Math" 10th	190
2+0 3+1 4+5	<u></u>
= 1+2 5+3 5+6	5
4+1 9+4 3-2	:
[2 4 9]	•
= 3 8 11	•
(ii) $A-B = \begin{bmatrix} 5 & 13 & 1 \\ 2 & 3 & 4 \\ 1 & 5 & 5 \\ 4 & 9 & 3 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 1 & 4 \end{bmatrix}$ $\begin{bmatrix} 2-0 & 3-1 & 4-5 \end{bmatrix}$	5]
$A-B = \begin{bmatrix} 1 & 5 & 5 \\ - & 2 & 3 \end{bmatrix}$	6
4 9 3 1 4	
[2-0 3-1 4-5	
<u>-</u> 1-2 5-3 5-6	1
د، د به مایدا	· ·
$\begin{bmatrix} 4-1 & 9-4 & 3+2 \\ 2 & 2 & -1 \\ -1 & 2 & -1 \\ 3 & 5 & 5 \end{bmatrix}$	J
= -i 2 -1	
3 5 5	
2] [0 ا 5] [2 ع	4]
!!!! !	5
1 4 -2 4 9	l l
[0-2 1-3 5-4	
• • • • • • • • • • • • • • • • • • •	
$= \begin{bmatrix} 2-1 & 3-5 & 6-1 \\ 1-4 & 4-9 & -2-1 \end{bmatrix}$	3
[-2 -2 1]	-1
$= \begin{bmatrix} -2 & -2 & 1 \\ 1 & -2 & 1 \\ -3 & -5 & -5 \end{bmatrix}$	
- '	
L of the state of	

Pilot Super One "General Math" 10th	191
(iv) $2A + 3B = 2\begin{bmatrix} 2 & 3 & 4 \\ 1 & 5 & 5 \\ 4 & 9 & 3 \end{bmatrix} + 3\begin{bmatrix} 0 & 1 & 5 \\ 2 & 3 & 6 \\ 1 & 4 & -2 \end{bmatrix}$ $= \begin{bmatrix} 4 & 6 & 8 \\ 2 & 10 & 10 \\ 8 & 18 & 6 \end{bmatrix} + \begin{bmatrix} 0 & 3 & 15 \\ 6 & 9 & 18 \\ 3 & 12 & -6 \end{bmatrix}$ $= \begin{bmatrix} 4 + 0 & 6 + 3 & 8 + 15 \\ 2 + 6 & 10 + 9 & 10 + 18 \\ 8 + 3 & 18 + 12 & 6 - 6 \end{bmatrix}$	Carlon
$= \begin{bmatrix} 8 & 19 & 28 \\ 11 & 30 & 0 \end{bmatrix}$ (v) $3A-4B = 3\begin{bmatrix} 2 & 3 & 4 \\ 1 & 5 & 5 \\ 4 & 9 & 3 \end{bmatrix} - 4\begin{bmatrix} 0 & 1 & 5 \\ 2 & 3 & 6 \\ 1 & 4 & -2 \end{bmatrix}$ $\begin{bmatrix} 6 & 9 & 12 \\ 3 & 15 & 15 \end{bmatrix} \begin{bmatrix} 0 & 4 & 20 \\ 9 & 12 & 24 \end{bmatrix}$	
$\begin{bmatrix} 3 & 13 & 13 \\ 12 & 27 & 9 \end{bmatrix} = \begin{bmatrix} 8 & 12 & 24 \\ 4 & 16 & -8 \end{bmatrix}$ $\begin{bmatrix} 6 - 0 & 9 - 4 & 12 - 20 \\ 3 - 8 & 15 - 12 & 15 - 24 \\ 12 - 4 & 27 - 16 & 9 + 8 \end{bmatrix}$ $\begin{bmatrix} 6 & 5 & -8 \\ -5 & 3 & -9 \\ 8 & 11 & 17 \end{bmatrix}$	

192

Pilot Su	per One "Ger	eral !	Math'	10	lh					19
		[2	3	4]		Γo	ı	5]	
	A-2B	l I	5	5	-2	2	3	6		
		4	9	3	l	Įι	4	-2]	
		[2	3	4	ן [י	ō	2	[01		
	=	[ı	5 9	5	\- {·	4	6	12		
		4	9	3	ַן [2	8	-4 J		
		Ţ2	-0				-10			
	_	1.	-4	5	-6	5	-12	-		
		4	-2	9	-8	3	+ 4	}		
		Ţ:	2	1	-6]				
	-	- -	3	-l	-7					
		[:	2	1	7	•				
					_	_				

2- Find the additive inverse of the following matrices.

$$A = \begin{bmatrix} 4 & 3 \\ 2 & 6 \end{bmatrix}, B = \begin{bmatrix} \sqrt{2} & 3 \\ 4 & \sqrt{3} \end{bmatrix}, C = \begin{bmatrix} 1 \\ -7 \\ 4 \end{bmatrix}$$

$$D = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 3 & 4 \\ 2 & -1 & -3 \end{bmatrix}, E = \begin{bmatrix} 2 & 5 & -3 \end{bmatrix}$$

: احد

Matrix Additive Inverse
$$A = \begin{bmatrix} 4 & 3 \\ 2 & 6 \end{bmatrix}, \quad -A = \begin{bmatrix} -4 & -3 \\ -2 & -6 \end{bmatrix},$$

Pilot :	Super One "General Math"	10th	1
	$B = \begin{bmatrix} \sqrt{2} & 3 \\ 4 & \sqrt{3} \end{bmatrix}.$	$-B = \begin{bmatrix} -\sqrt{2} & -3 \\ -4 & -\sqrt{3} \end{bmatrix},$	
	$C = \begin{bmatrix} 1 \\ -7 \\ 4 \end{bmatrix},$	$-C = \begin{bmatrix} -1 \\ 7 \\ -4 \end{bmatrix},$	
	L 4		
	_	$-D = \begin{bmatrix} -1 & 0 & 2 \\ 0 & -3 & -4 \\ -2 & 1 & 3 \end{bmatrix}$	•
	,	-E = [-2 -5 3]	
3-	$\operatorname{rr} A = \begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix} \text{ and } b$	$B = \begin{bmatrix} 1 & 7 \\ 4 & 6 \end{bmatrix}$ then show the	
(i)	4A - 3A = A	ii) 3B - 3A = 3(B - A))
Sol:		_	
(i)		$4\begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix} - 3\begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix}$	
		$\begin{bmatrix} 8 & 12 \\ 4 & 20 \end{bmatrix} - \begin{bmatrix} 6 & 9 \\ 3 & 15 \end{bmatrix}$	
		$\begin{bmatrix} 8-6 & 12-9 \\ 4-3 & 20-15 \end{bmatrix}$	
		$\begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix} = A \qquad \text{(Prove)}$	d)
(ii)	3B-3A	=3(B-A)	

of Super One "General Math" 10th	194
1. H.S. $3B - 3A = 3\begin{bmatrix} 1 & 7 \\ 4 & 6 \end{bmatrix} - 3\begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix}$	
$ = \begin{bmatrix} 3 & 21 \\ 12 & 18 \end{bmatrix} - \begin{bmatrix} 6 & 9 \\ 3 & 15 \end{bmatrix} $	
$= \begin{bmatrix} 3-6 & 21-9 \\ 12-3 & 18-15 \end{bmatrix}$	
$=\begin{bmatrix} -3 & 12 \\ 9 & 3 \end{bmatrix}$	A .
$RHS = 3(B-A) = 3\left(\begin{bmatrix} 1 & 7 \\ 4 & 6 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix}\right)$	
$-3\left[\begin{bmatrix} 1-2 & 7-3\\ 4-1 & 6-5 \end{bmatrix}\right]$	
$= 3\begin{bmatrix} -1 & 4 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ 9 & 1 \end{bmatrix}$	2 3 (ii)
3B - 3A = 3(B - A) From (1) an	d (ti)
Find x and y if $\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$	
x+3=2	
x=2-3	
x = -1	
and $3y - 4 = 2$ 3y = 2 + 4	

Pilot Super One "General Math" 10th 195	
3y=6	
$y = \frac{6}{3}$ $ y = 2$	0
5. If $A = \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 7 \\ 6 & 5 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 6 \\ 3 & -2 \end{bmatrix}$ then	
prove that. (i) $A + B = B + A$ (ii) $A + (B + C) = (A + B) + C$	
(i) A+B = B+A	
Sol: $A + B = \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix} + \begin{bmatrix} 4 & 7 \\ 6 & 5 \end{bmatrix}$	
$= \begin{bmatrix} 1+4 & 3+7 \\ 4+6 & 5+5 \end{bmatrix}$ $= \begin{bmatrix} 5 & 10 \\ 10 & 10 \end{bmatrix} \dots (i)$	
and $B + A = \begin{bmatrix} 4 & 7 \\ 6 & 5 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}$	
$= \begin{bmatrix} 4+1 & 7+3 \\ 6+4 & 5+5 \end{bmatrix}$ $= \begin{bmatrix} 5 & 10 \\ 10 & 10 \end{bmatrix} \dots (ii)$	
From (i) and (ii) $A + B = B + A$	
(ii) $A+(B+C) = (A+B)+C$	

Pilot Super One "General Math" 10th

196

$$A + (B + C) = \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix} + \begin{bmatrix} 4 & 7 \\ 6 & 5 \end{bmatrix} + \begin{bmatrix} 2 & 6 \\ 3 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix} + \begin{bmatrix} 4+2 & 7+6 \\ 6+3 & 5-2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix} + \begin{bmatrix} 6 & 13 \\ 9 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1+6 & 3+13 \\ 4+9 & 5+3 \end{bmatrix} = \begin{bmatrix} 7 & 16 \\ 13 & 8 \end{bmatrix} \dots q_{r} (i)$$

and

$$(A + B) + C = \left(\begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix} + \begin{bmatrix} 4 & 7 \\ 6 & 5 \end{bmatrix} \right) + \begin{bmatrix} 2 & 6 \\ 3 & -2 \end{bmatrix}$$

$$= \left(\begin{bmatrix} 1 + 4 & 3 + 7 \\ 4 + 6 & 5 + 5 \end{bmatrix} \right) + \begin{bmatrix} 2 & 6 \\ 3 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 10 \\ 10 & 10 \end{bmatrix} + \begin{bmatrix} 2 & 6 \\ 3 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} 5+2 & 10+6 \\ 10+3 & 10-2 \end{bmatrix} = \begin{bmatrix} 7 & 16 \\ 13 & 8 \end{bmatrix} \dots (ii)$$

From (i) and (ii)

$$A + (B + C) = (A + B) + C$$

6- Solve the matrix equation for X.

$$3X \sim 2A = B \text{ if } A = \begin{bmatrix} 2 & 3 \\ -4 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & -3 \\ 4 & 4 \end{bmatrix}$$

Pilot Super One "General Math" 10th

Solution:

$$3X - 2A = B$$

$$3X = B + 2A$$

$$3X = \begin{bmatrix} 2 & -3 \\ 4 & 4 \end{bmatrix} + 2 \begin{bmatrix} 2 & 3 \\ -4 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -3 \\ 4 & 4 \end{bmatrix} + \begin{bmatrix} 4 & 6 \\ -8 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2 + 4 & -3 + 6 \\ 4 - 8 & 4 + 2 \end{bmatrix}$$

$$3X = \begin{bmatrix} 6 & 3 \\ -4 & 6 \end{bmatrix}$$

$$X = \frac{1}{3} \begin{bmatrix} 6 & 3 \\ -4 & 6 \end{bmatrix}$$

$$X = \begin{bmatrix} 6 \times \frac{1}{3} & 3 \times \frac{1}{3} \\ -4 \times \frac{1}{3} & 6 \times \frac{1}{3} \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$$

7. Find a, b, c, d, e and f such that

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} - \begin{bmatrix} 3 & -2 & 1 \\ 5 & 0 & -4 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 3 \\ -2 & 4 & 6 \end{bmatrix}$$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 18 of 74)

Sol: $\begin{bmatrix} a & b & c \\ d & e & t \end{bmatrix} = \begin{bmatrix} 3 & -2 & 1 \\ 5 & 0 & -4 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 3 \\ -2 & 4 & 6 \end{bmatrix}$

 $\begin{bmatrix} a & 3 & b+2 & c-1 \\ d+5 & e-0 & f+4 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 3 \\ -2 & 4 & 6 \end{bmatrix}$

Hence

$$a-3=-1$$
, $b+2=-2$, $c-1=3$

$$a = -1 + 3$$
 $b = -2 - 2$ $c = 3 + 1$

$$\frac{1}{(1+2)}$$
 $\frac{1}{h} = -\frac{1}{4}$

nd

d = 3

$$f=2$$

198

g. Find may also such that

$$\begin{bmatrix} \mathbf{u} & x \\ y & z \end{bmatrix} \cdot \begin{bmatrix} 3 & 0 \\ -1 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$$

Sol: $\begin{bmatrix} y + 3 & y + 0 \\ y - 1 & z + 5 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 6 & -3 \end{bmatrix}$

$$\frac{1}{12} \frac{1}{12} + 3 = 2$$

$$x + 0 = 1$$

$$x = 1$$

$$v = 6$$

$$z = 3 - 3$$

4

199 Pilot Super One "General Math" 10th z = -89. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then what is the additive inverse of A? Sol: $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $-A = -\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ (Additive Inverte of A) $= \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix}$ Given that $A = \begin{bmatrix} t & -1 \\ 2 & 3 \end{bmatrix}$ verify that $A^2 - 4A + 5I = 0$. $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$ $LALS = A^2 - 4A + 5/$ $\begin{bmatrix} 1 - 3 & 1 & 2 & 3 \\ 2 & 3 & 3 \end{bmatrix} - 4 \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} + 5 \begin{bmatrix} 1 \\ 0 & 3 \end{bmatrix}$ $= \begin{bmatrix} 1 - 2 & -1 - 3 \\ 2 + 6 & -2 + 9 \end{bmatrix} - \begin{bmatrix} 4 & -4 \\ 8 & 12 \end{bmatrix} + \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 \\ 8 & 7 \end{bmatrix} - \begin{bmatrix} 4 & -4 \\ 2 & 3 \end{bmatrix} + \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$ $= \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} - 4 \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} + 5 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} -1 - 4 & -4 + 4 \\ 8 - 8 & 7 - 12 \end{bmatrix} + \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$

=====	=======	**************************************	
			
	Pilot S	uper One "General Math" 10th	200
		$= \begin{bmatrix} -5 & 0 \\ 0 & -5 \end{bmatrix} + \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$ $= \begin{bmatrix} -5 + 5 & 0 + 0 \\ 0 + 0 & -5 + 5 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$	
	İ	اره ما)
	[Hence proved	,
	•	$A^2 - 4A + 5I = 0$	
	11-	If $A = \begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -2 \\ 4 & 6 \end{bmatrix}$, then verify that	-
		$(A+B)^t = A^t + B^t$	
	Sol:	$A + B = \begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix} + \begin{bmatrix} 3 & -2 \\ 4 & 6 \end{bmatrix}$	
		$= \begin{bmatrix} 2+3 & 4-2 \\ 1+4 & 5+6 \end{bmatrix}$	
		$=\begin{bmatrix} 5 & 2 \\ 5 & 1 \end{bmatrix}$	
	 	[5 11] [5 5]	
		$(A + B)^{i} = \begin{bmatrix} 5 & 11 \\ 5 & 5 \\ 2 & 11 \end{bmatrix} \dots (i)$	
	🔌	[2 4]	
	Now	$A = \begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix}$	•
		[2 1]	
		$A' = \begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix} \dots (ii)$	1
			1

Pilot Supe	r One "General Math" 10th	201
and	$B = \begin{bmatrix} 3 & -2 \\ 4 & 6 \end{bmatrix}$	
	$B^{i} = \begin{bmatrix} 3 & 4 \\ -2 & 6 \end{bmatrix} \dots (iii)$	
	$A' + B' = \begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix} + \begin{bmatrix} 3 & 4 \\ -2 & 6 \end{bmatrix}$	From (i) and (ii)
	$= \begin{bmatrix} 2+3 & 1+4 \\ 4-2 & 5+6 \end{bmatrix}$	
	$= \begin{bmatrix} 5 & 5 \\ 2 & 11 \end{bmatrix} (iv)$	
	$(A+B)^t = A^t + B^t$	From(i)and(iv)
	$A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}, B = \begin{bmatrix} 2 & -7 \\ 5 & 8 \end{bmatrix}, C$	$C = \begin{bmatrix} 1 & 5 \\ 0 & 2 \end{bmatrix}$ then
sh	$100 \times 100 \times 10^{-10} A + B - C = \begin{bmatrix} 2 & -10 \\ 8 & 2 \end{bmatrix}$	
Solution:		_
A + B -	$C = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix} + \begin{bmatrix} 2 & -7 \\ 5 & 8 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	5] 2]
	$= \begin{bmatrix} 1+2 & 2-7 \\ 3+5 & -4+8 \end{bmatrix} - \begin{bmatrix} 1 & 5 \\ 0 & 2 \end{bmatrix}$	
	$= \begin{bmatrix} 3 & -5 \\ 8 & 4 \end{bmatrix} - \begin{bmatrix} 1 & 5 \\ 0 & 2 \end{bmatrix}$	

Pilot Super One "General Math" 10th

202

$$= \begin{bmatrix} 3-1 & -5-5 \\ 8-0 & 4-2 \end{bmatrix} = \begin{bmatrix} 2 & -10 \\ 8 & 2 \end{bmatrix}$$

Hence proved

$$A + B - C = \begin{bmatrix} 2 & -10 \\ 8 & 2 \end{bmatrix}$$

MULTIPLICATION OF MATRICES

Two matrices A and B are said to be conformable for the product AB, if the number of columns in A is equal to the number of rows in B.

Remember that:

For multiplication AB of two matrices A and B the following points should be kept in mind.

- (i) The number of columns in A = number of rows in \hat{B} .
- (ii) The product of matrices A and B is denoted by $A \times B$ or AB.
- (iii) If A is a m-by-p matrix and B is a p-by-n matrix then AB is m-by-n matrix.

Associative Law of Matrices with respect to Multiplication

If three matrices A, B and C are conformable for multiplication, then

$$A(BC) = (AB)C$$

is called associative law with respect to multiplication.

Distributive Laws:

If the matrices $A,\,B$ and C are conformable for addition and multiplication, then

- A(B + C) AB + AC (left distributive law for matrices)
- (ii) I.I. BiC AC BC (right distributive law for matrices)
- (i) and (ii) are called distributive laws.

Pilot Super One "General Math" 10th

203

(ACC | COLOR |

In Problems 1 to 8 Verify Each Statement, Using

$$A = \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix}, C = \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix}$$

$$I, \qquad (AB)C = A(BC)$$

$$L.H.S = (AB)C$$

$$(AB)C = \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix} \times \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 8 - 4 & 4 + 8 \\ 0 + 0 & 0 + 0 \end{bmatrix} \times \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 12 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} -4 + 48 & 8 + 24 \\ 0 + 0 & 0 + 0 \end{bmatrix} = \begin{bmatrix} 44 & 32 \\ 0 & 0 \end{bmatrix} \dots (i)$$

$$R.H.S = A(BC)$$

$$\mathbf{A(BC)} = \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix} \times \left(\begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix} \times \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix} \right)$$
$$= \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix} \times \left(\begin{bmatrix} -2 + 4 & 4 + 2 \\ 2 + 16 & -4 + 8 \end{bmatrix} \right)$$
$$= \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & 6 \\ 18 & 4 \end{bmatrix}$$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 24 of 74)

Pilot !	Super One "General Math" 10th	204
	$= \begin{bmatrix} 8+36 & 24+8 \\ 0+0 & 0+0 \end{bmatrix} = \begin{bmatrix} 44 & 32 \\ 0 & 0 \end{bmatrix} \dots (ii)$	
	(AB)C = A(BC) from (i) and (ii)	
2.	$AB \neq BA$	
Sol:	$AB = \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix}$	
	$= \begin{bmatrix} 8-4 & 4+8 \\ 0+0 & 0+0 \end{bmatrix} = \begin{bmatrix} 4 & 12 \\ 0 & 0 \end{bmatrix} \dots (i)$	
	$BA = \begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix} \times \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix}$	
	$= \begin{bmatrix} 8+0 & 4+0 \\ -8+0 & -4+0 \end{bmatrix} = \begin{bmatrix} 8 & 4 \\ -8 & -4 \end{bmatrix} \dots (1i)$	
	$AB \neq BA$ from (i) and (ii)	
3.	A(B+C)=AB+AC	
Sol:	L.H.S = A(B+C)	
	Putting values of A, B, C	
($A(B+C) = \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix} + \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix} \right)$	
	$= \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 2-1 & 1+2 \\ -2+4 & 4+2 \end{bmatrix} \right)$	
	$= \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$	

	=========
!	
Pilot Super One "General Math" 10th	205
$= \begin{bmatrix} 4+4 & 12+12 \\ 0+0 & 0+0 \end{bmatrix} = \begin{bmatrix} 8 & 24 \\ 0 & 0 \end{bmatrix} \dots (i)$	
R.H.S = AB + AC	,
Putting values of A, B, C	1
$AB + AC = \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix} + \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix}$	
$= \begin{bmatrix} 8-4 & 4+8 \\ 0+0 & 0+0 \end{bmatrix} + \begin{bmatrix} -4+8 & 8+4 \\ 0+0 & 0+0 \end{bmatrix}$	
$= \begin{bmatrix} 4 & 12 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 4 & 12 \\ 0 & 0 \end{bmatrix}$	
$= \begin{bmatrix} 4+4 & 12+12 \\ 0+0 & 0+0 \end{bmatrix} = \begin{bmatrix} 8 & 24 \\ 0 & 0 \end{bmatrix} \dots (ii)$	
from (i) and (ii)	
A(B+C) = AB + AC	
$A. \qquad (B+C)A=BA+CA$	
Sol: L.H.S = $(B + C)A$	
$ (B+C)A (B+C)A = \left[\begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix} + \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix} \right] \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix} $	
$ = \left[\begin{bmatrix} 2-1 & 1+2 \\ -2+4 & 4+2 \end{bmatrix} \right] \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix} $	
$=\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix}$	
$= \begin{bmatrix} 2 & 1 & 1 & 2 \\ -2 + 4 & 4 + 2 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 4 + 0 & 2 + 0 \\ 8 + 0 & 4 + 0 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 8 & 4 \end{bmatrix} \dots (i)$	

Thot super tyne	Ocheral Math" 10th	206
RHS.	BA.+ CA	

$$BA + CA$$

$$BA + CA = \begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 8+0 & 4+0 \\ -8+0 & -4+0 \end{bmatrix} + \begin{bmatrix} -4+0 & -2+0 \\ 16+0 & 8+0 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 4 \\ -8 & -4 \end{bmatrix} + \begin{bmatrix} -4 & -2 \\ 16 & 8 \end{bmatrix}$$

$$= \begin{bmatrix} 8-4 & 4-2 \\ -8+16 & -4+8 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 8 & 4 \end{bmatrix} \dots (ii)$$

$$(B+C)A = BA + CA$$

5.
$$(B+C)(B-C) \neq B^2-C^2$$

Sol: L.H.S =
$$(B+C)(B-C)$$

Putting values of B. C

$$(B+C)(B-C) = \left[\begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix} + \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix} \right] \left[\begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix} - \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix} \right]$$

$$= \begin{bmatrix} 2-1 & 1+2 \\ -2+4 & 4+2 \end{bmatrix} \begin{bmatrix} 2+1 & 1-2 \\ -2-4 & 4-2 \end{bmatrix} ,$$

$$= \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ -6 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 3-18 & -1+6 \\ 6-36 & -2+12 \end{bmatrix}$$

$$= \begin{bmatrix} -15 & 5 \\ -30 & 10 \end{bmatrix}(i)$$

GENERAL MATHEMATICS FOR 10"CLASS (UNIT # 6)
Pilot Super One "General Math" 10th	207
R.H.S $B^2 - C^2 = B \times B - C \times C$	
$= \begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix} - \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix}$ $= \begin{bmatrix} 4-2 & 2+4 \\ -4-8 & -2+16 \end{bmatrix} - \begin{bmatrix} 1+8 & -2+4 \\ -4+8 & 8+4 \end{bmatrix}$	0
$= \begin{bmatrix} 2 & 6 \\ -12 & 14 \end{bmatrix} - \begin{bmatrix} 9 & 2 \\ 4 & 12 \end{bmatrix}$	
$= \begin{bmatrix} 2-9 & 6-2 \\ -12-4 & 14-12 \end{bmatrix}$ $= \begin{bmatrix} -7 & 4 \\ -16 & 2 \end{bmatrix} \dots \dots (ii)$	
$(B + C)(B - C) \neq B^2 - C^2 \text{from (i) and (ii)}$	
$6. \qquad (BC)' = C'B'$	
Sol: L.H.S = $(BC)'$	
$BC = \begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix}$	
$= \begin{bmatrix} -2+4 & 4+2 \\ 2+16 & -4+8 \end{bmatrix}$	
$=\begin{bmatrix} 2 & 6 \\ 18 & 4 \end{bmatrix}$	
$(BC)^{i} = \begin{bmatrix} 2 & 18 \\ 6 & 4 \end{bmatrix} \dots (i)$ and	
Now R.H.S = $C^t B^t$	i

208 Pilot Super One "General Math" 10th $C' = \begin{bmatrix} -1 & 4 \\ 2 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix}$ and $B' = \begin{bmatrix} 2 & -2 \\ 1 & 4 \end{bmatrix}$ Now $C'B' = \begin{bmatrix} -1 & 4 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ 1 & 4 \end{bmatrix}$ $= \begin{bmatrix} -2 + 4 & 2 + 16 \\ 4 + 2 & -4 + 8 \end{bmatrix}$ $=\begin{bmatrix} 2 & 18 \\ 6 & 4 \end{bmatrix}$ (ii) $(BC)^t = C^t B^t$ from (i) and (ii) BI - B7. L.H.S = BISol: $BI = \begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $BI = \begin{bmatrix} 2+0 & 0+1 \\ -2+0 & 0+4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix} = B$

Pilot	Super One "Ger	ieral Math" 10th	209
8.	BC≠CB		
Sol:		$\begin{bmatrix} 1 \\ 4 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix}$	on.
	$= \begin{bmatrix} -2+4\\2+16 \end{bmatrix}$	$\begin{bmatrix} 4+2 \\ -4+8 \end{bmatrix} = \begin{bmatrix} 2 \\ 18 \end{bmatrix}$	6 4
	$CB = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix}$	oter

Sol:
$$BC = \begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} -2+4 & 4+2 \\ 2+16 & -4+8 \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 18 & 4 \end{bmatrix}$$

$$CB = \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} -2-4 & -1+8 \\ 8-4 & 4+8 \end{bmatrix} = \begin{bmatrix} -6 & 7 \\ 4 & 12 \end{bmatrix}$$

from (i) and (ii)

$$BC \neq CB$$

Find the Matrix Products.

9.
$$[2 5] \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$

Sol: $= [2(1) + 5(2) - 2(-1) + (5)(3)]$
 $= [2 + 10 - 2 + 15]$
 $[12 13]$

Sol:
$$\begin{bmatrix} -1 & -2 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$$
$$= \begin{bmatrix} 3(-1) + 4(2) \\ -1(-1) + (-2)(2) \end{bmatrix}$$
$$= \begin{bmatrix} -3 + 8 \\ \end{bmatrix} = \begin{bmatrix} 5 \end{bmatrix}$$

Visit www.downloadclassnotes.com for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 30 of 74)

Pilot Sup	er One "General Math" 10th	210	
11.	$\begin{bmatrix} 2 & -3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & -2 \end{bmatrix}$		•
L	$\begin{bmatrix} 2(1) + (-3)(0) & 2(-1) + (-3)(-2) \\ 1(1) + 2(0) & 1(-1) + (2)(-2) \end{bmatrix}$)]	C
	$\begin{bmatrix} 2+0 & -2+6 \\ 1+0 & -1-4 \end{bmatrix}$	•	Ĭ
	$\begin{bmatrix} 2 & 4 \\ 1 & -5 \end{bmatrix}$:
12.	$\begin{bmatrix} -3 & 2 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} -1 & 5 \\ -1 & 3 \end{bmatrix}$		
Sol: 2	$\begin{bmatrix} -3(-1) + (2)(-1) & -3(5) + (2)(3) \\ 4(-1) + (-1)(-1) & 4(5) + (-1)(3) \end{bmatrix}$)]	i
	$\begin{bmatrix} 3-2 & -15+6 \\ -4+1 & 20-3 \end{bmatrix}$	•	-
=	[I -9] [-3 I7]		
	$\begin{bmatrix} -5 & -2 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 0 & -3 \end{bmatrix}$		
Sol: =	$\begin{cases} (-5)(-2) + (-2)(0) & (-5)(1) + (-2)(0) \\ 1(-2) + (-3)(0) & (1)(1) + (-3)(0) \end{cases}$	2)(-3))(-3) .	
=	[10+0 -5+6] -2+0 1+9]	-	
	$\begin{bmatrix} 10 & 1 \\ -2 & 10 \end{bmatrix}$		

Pilot	Super One "General Math" 10th	211
	$\begin{bmatrix} -2 & 4 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} -5 & -5 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & -0 \end{bmatrix}$	
Sol;	$= \left(\begin{bmatrix} -2 & 4 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} -5 & -5 \\ 1 & -3 \end{bmatrix} \right) \begin{bmatrix} 1 & -1 \\ 2 & -0 \end{bmatrix}$, c
	$= \begin{bmatrix} (-2)(-5) + (4)(1) & (-2)(-5) + (4)(-3) \\ (0)(-5) + (-3)(1) & (0)(-5) + (-3)(-3) \end{bmatrix}$	
	$ \begin{bmatrix} (0)(-5) + (-3)(1) & (0)(-5) + (-3)(-3) \end{bmatrix} $ $ = \begin{bmatrix} 10 + 4 & 10 - 12 \\ 0 - 3 & 0 + 9 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix} $	
Ì	$\begin{bmatrix} 0-3 & 0+9 \end{bmatrix} \begin{bmatrix} 2 & 0 \end{bmatrix}$ $= \begin{bmatrix} 14 & -2 \\ -3 & 9 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$	
	$= \begin{bmatrix} 14(1) + (-2)(2) & 14(-1) + (-2)(0) \\ -3(1) + 9(2) & -3(-1) + 9(0) \end{bmatrix}$ $\begin{bmatrix} 14 - 4 & -14 + 0 \end{bmatrix}$	
	$= \begin{bmatrix} 14-4 & -14+0 \\ -3+18 & 3+0 \end{bmatrix}$	1
{ -	$= \begin{bmatrix} 10 & -14 \\ 15 & 3 \end{bmatrix}$	
15.	If $\begin{bmatrix} 1 & 5 \\ 3 & a \end{bmatrix} \begin{bmatrix} b \\ 7 \end{bmatrix} = \begin{bmatrix} 35 \\ 10 \end{bmatrix}$, then find the values of	
Sol:	$\begin{bmatrix} 1 & 5 \\ 3 & a \end{bmatrix} \begin{bmatrix} b \\ 7 \end{bmatrix} = \begin{bmatrix} 35 \\ 10 \end{bmatrix}$	
1		
}	$ \begin{bmatrix} 1(b) + 5(7) \\ 3(b) + (a)(7) \end{bmatrix} = \begin{bmatrix} 35 \\ 10 \end{bmatrix} $	

	<u>=====================================</u>	
Pilot S	Super One "General Math" 10th	212
	$\begin{bmatrix} b+35 \\ 3b+7a \end{bmatrix} = \begin{bmatrix} 35 \\ \hat{10} \end{bmatrix}$	
Now	b + 35 = 35	
Непсе	b=0	1
and	3b + 7a = 10	-
	$3(0) + 7a = 10 \qquad (Putting values of b)$	
	7a = 10	1
	$a=\frac{10}{7}$	Ì
16.	If $A = \begin{bmatrix} 2 & 6 \\ 7 & 8 \end{bmatrix}$, $B = \begin{bmatrix} -4 & -3 \\ 2 & 0 \end{bmatrix}$, then verify	
	$(AB)^t = B^t A^t.$	i
Sol:		
	$L.H.S = (AB)^t$	1
	$AB = \begin{bmatrix} 2 & 6 \\ 7 & 8 \end{bmatrix} \begin{bmatrix} -1 & -3 \\ 2 & 0 \end{bmatrix}$	
	. J. J]
	$=\begin{bmatrix} 2(-1)+6(2) & 2(-3)+6(0) \\ 7(-1)+8(2) & 7(-3)+8(0) \end{bmatrix}$:
	$= \begin{bmatrix} -2+12 & -6+0 \\ -7+16 & -21+0 \end{bmatrix}$	1
	<u>-</u>	
	$=\begin{bmatrix} 10 & -6 \\ 9 & -21 \end{bmatrix}$	
	[9 -21]	
	•	

· · · · · · · · · · · · · · · · · · ·	
Pilot Super One "General Math" 10th 213	
$(AB)^{t} = \begin{bmatrix} 10 & 9 \\ -6 & -21 \end{bmatrix} \dots (i)$	
$R.1LS = B^t A^t$	• :
$B = \begin{bmatrix} -1 & -3 \\ 2 & 0 \end{bmatrix}$	
$B' = \begin{bmatrix} -1 & 2 \\ -3 & 0 \end{bmatrix}$	
and $A = \begin{bmatrix} 2 & 6 \\ 7 & 8 \end{bmatrix}$	
$A' = \begin{bmatrix} 2 & 7 \\ 6 & 8 \end{bmatrix}$	
Now $B^t A^t = \begin{bmatrix} -1 & 2 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} 2 & 7 \\ 6 & 8 \end{bmatrix}$	
$= \begin{bmatrix} -1(2) + 2(6) & -1(7) + 2(8) \\ -3(2) + (0)(6) & -3(7) + 0(8) \end{bmatrix}$	
$= \begin{bmatrix} -2+12 & -7+16 \\ -6+0 & -21+0 \end{bmatrix}$	
$=\begin{bmatrix} 10 & 9 \\ -6 & -21 \end{bmatrix} \dots (ii)$	
$(AB)^{I} = B^{I}A^{I}$ from (i) and (ii)	1
MULTIPLICATIVE INVERSE OF A MATRIX	
Determinant Function	
If A is a square matrix, then det A or $ A $ read "The determinant of A " is used to denote the unique real number.	

Pilot Super One "General Math" 10th

214

Singular Matrix:

A square matrix A is called a singular matrix. If det A = 0

Example:
$$A = \begin{bmatrix} 12 & 6 \\ 6 & 3 \end{bmatrix}$$

$$\det \quad A = \begin{bmatrix} 12 & 6 \\ 6 & 3 \end{bmatrix} = 36 - 36$$

det A = 0. Hence matrix A is singular.

Non-Singular Matrix:

A square matrix A is called non-singular matrix, if det $A \neq 0$.

Example

If
$$A = \begin{bmatrix} 2 & 5 \\ 6 & 8 \end{bmatrix}$$

$$\det A = \begin{bmatrix} 2 & 5 \\ 6 & 8 \end{bmatrix} = 16 - 30$$

det A = -14. Hence matrix A is non -singular.

Adjoint of a Matrix:

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 be a square matrix of order 2-by-2.

Then the matrix obtained by interchanging the elements of the diagonal (i.e a and d) and by changing the signs of the other elements b and c is called the adjoint of the matrix

A.

Multiplicative Inverse

In the set of real numbers, we know that for each real

Pilot Super One "General Math" 10th

215

number a (except zero) there exists a real number a^{-1} such that $aa^{-1} = 1$.

The number a^{-1} is called the multiplicative inverse of a.

$$A^{-1} = \frac{adj A}{|A|}, |A| \neq 0$$

If A is a singular matrix then the multiplicative inverse of A does not exist.

Remember that:

- (i) Inverse of square matrix A is denoted by A^{-1} .
- (ii) Only non-singular matrices have inverses.
- (iii) Inverse of square matrix A is always unique.
- (iv) Non-square matrices cannot possess inverses.

$$(v)$$
 $A^{-1} = \frac{\alpha dj A}{|A|}$

जिल्लाम्य स्टब्स्

Find the determinants of the following matrices.

(i)
$$\begin{bmatrix} u & v \\ x & y \end{bmatrix}$$

(ii)
$$\begin{bmatrix} -2 & 5 \\ 1 & 4 \end{bmatrix}$$

(iv)
$$\begin{bmatrix} \frac{1}{i} & \frac{3}{8} \\ \frac{1}{8} & \frac{1}{4} \end{bmatrix}$$

Pilot Super One "General Math" 10th 216 Sol: Let $|A| = \begin{vmatrix} u & v \\ x & v \end{vmatrix} = uy - vx$ Sol: Let $|P| = \begin{vmatrix} -2 & 5 \\ 1 & 4 \end{vmatrix}$ =(-2)(4)-(5)(1)=-8-5=-13 $(iii) B = \begin{bmatrix} -8 & -4 \\ -4 & -2 \end{bmatrix}$ Sol: Let $|B| = \begin{vmatrix} -8 & -4 \\ -4 & -2 \end{vmatrix}$ =16-16=0

Pilot Super One "General Math" 10th	217
$=(1)\left(\frac{1}{4}\right)-\left(\frac{3}{8}\right)\left(\frac{1}{8}\right)$	M
$=\frac{1}{4} - \frac{3}{64}$	
$=\frac{16-3}{64}=\frac{13}{64}$	164.
2. Identify the singular and non-singular matrices.	0,
$ \begin{bmatrix} -1 & 3 \\ 1 & -3 \end{bmatrix} $	O
[1 -3]	•
Sol: $A = \begin{bmatrix} -1 & 3 \end{bmatrix}$	

(i)
$$\begin{bmatrix} -1 & 3 \\ 1 & -3 \end{bmatrix}$$
Sol:
$$\begin{vmatrix} A \\ A \end{vmatrix} = \begin{bmatrix} -1 & 3 \\ 1 & -3 \end{bmatrix}$$

$$\begin{vmatrix} A \\ A \end{vmatrix} = \begin{vmatrix} -1 & 3 \\ 1 & -3 \end{vmatrix}$$

$$|A| = \begin{vmatrix} 3 & 3 \\ 1 & -3 \end{vmatrix}$$

= (-1)(-3) - (3)(1)

Therefore,
$$\begin{bmatrix} -1 & 3 \\ 1 & -3 \end{bmatrix}$$
 is singular matrix

Sol:
$$|B| = \begin{bmatrix} 3 & 0 \\ 4 & 9 \end{bmatrix}$$
$$|B| = \begin{vmatrix} 3 & 8 \\ 4 & 9 \end{vmatrix}$$

$$' = (3)(9) - (8)(4)$$

for Super One "General Math" 10th	218
$=27-32=-5\neq0$	
Therefore, $\begin{bmatrix} 3 & 8 \\ 4 & 9 \end{bmatrix}$ is non-singular matrix.	C
$\begin{bmatrix} -a & b \\ a & b \end{bmatrix}$	(
$ \text{Let } P = \begin{bmatrix} -a & b \\ a & b \end{bmatrix} $)
$ P = \begin{vmatrix} -a & b \\ a & b \end{vmatrix}$	
= (-a)(b) - (a)(b)	
=-ah-ab	
$=-2ab\neq0$	

3. Find the inverse of each matrix A and show that $A^{-1}A = I$. If the inverse does not exist, give

GENERAL MATHEMATICS FOR 10" CLASS (UNIT # 6)	
Pilot Super One "General Math" 10th	219
$A^{-1} = \frac{adj A}{ A }$	
$= \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$	
1	
$=\begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$	
Now $A^{-1}A = ?$	
$A^{-1}A = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$	
$= \begin{bmatrix} 3(1) + (-2)(1) & 3(2) + (-2)(3) \\ -1(1) + (1)(1) & -1(2) + (1)(3) \end{bmatrix}$	
$= \begin{bmatrix} 3-2 & 6-6 \\ -1+1 & -2+3 \end{bmatrix}$	
$=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$	
$A^{-1}A = I \qquad \text{(proved)}$	
(ii) $A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$	
Sol: $ A = \begin{vmatrix} 2 & 1 \\ 5 & 3 \end{vmatrix} = (2)(3) - (1)(5) = 6 - 5 = 1$	
$A^{-1} = \frac{adj A}{ A }$	

GENERAL MATHEMATICS FOR 10" CLASS (:=====================================	
Pilot Super One "General Math" 10th	220	
$= \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$		N
$=\begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$		
and $A^{-1}A = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$ $\begin{bmatrix} 3(2) + (-1)(5) & 3(1) + (-1)(3) \end{bmatrix}$	otes	
$= \begin{bmatrix} 3(2) + (-1)(5) & 3(1) + (-1)(3) \\ -5(2) + (2)(5) & -5(1) + (2)(3) \end{bmatrix}$ $= \begin{bmatrix} 6 - 5 & 3 - 3 \\ -10 + 10 & -5 + 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$	1	
(iii) $A = \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix}$ (proved)		
$ A = (2)(3) - (-1)(0)$ $ A = \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix} = (2)(3) - (-1)(0)$	•	
$ \sqrt{A} = \frac{adj A}{ A } $ $ \sqrt{A} = \frac{adj A}{ A } $		
$A^{-1} = \frac{1}{6}$		

Pilot Super One "General Math" 10th	221
$=\frac{1}{6}\begin{bmatrix}3 & 0\\1 & 2\end{bmatrix}$	
Now $A^{-1}A = \frac{1}{6}\begin{bmatrix} 3 & 0 \\ 1 & 2 \end{bmatrix}\begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix}$	
$= \frac{1}{6} \begin{bmatrix} (3)(2) + (0)(-1) & (3)(0) + (0)(3) \\ (1)(2) + (2)(-1) & (1)(0) + (2)(3) \end{bmatrix}$	
$=\frac{1}{6}\begin{bmatrix} 6+0 & 0+0 \\ 2-2 & 0+6 \end{bmatrix}$	
$=\frac{1}{6}\begin{bmatrix}6 & 0\\0 & 6\end{bmatrix}$	
$= \begin{bmatrix} \frac{6}{6} & \frac{0}{6} \\ \frac{0}{6} & \frac{6}{6} \end{bmatrix}$,
$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$	•
$A^{-1}A = I \qquad \text{(proved)}$	
(iv) $A = \begin{bmatrix} -6 & 4 \\ 3 & -2 \end{bmatrix}$	
Sol: $ A = \begin{vmatrix} -6 & 4 \\ 3 & -2 \end{vmatrix}$	
=(-6)(-2)-(4)(3)	
=12-12=0	
It is a singular matrix, its inverse is not possible.	

_______ Pilot Super One "General Math" 10th 222 =(1)(8)-(3)(2)=8-6=2Now $A^{-1}A = \frac{1}{2} \begin{bmatrix} 8 & -3 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 8 \end{bmatrix}$ = $\frac{1}{2} \begin{bmatrix} 8(1) + (-3)(2) & 8(3) + (-3)(8) \\ -2(1) + 1(2) & -2(3) + (1)(8) \end{bmatrix}$

Pilot Super One "General Math" 10th 223 $A^{-1}A = I \qquad (proved)$ Sol: =(-1)(-1)-(0)(0)Now $A^{-1}A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ $A = \begin{bmatrix} (-1)(-1) + (0)(0) & (-1)(0) + (0)(-1) \\ 0(-1) + (-1)(0) & (0)(0) + (-1)(-1) \end{bmatrix}$ $A^{-1}A = I$ (proved)

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 44 of 74)

Pilot Super Oke "General Math" 10th	224
(ii) $A = \begin{bmatrix} \frac{3}{5} & \frac{-4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$ (iol: $ A = \begin{bmatrix} \frac{3}{5} & \frac{-4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$	•
ol: $ A = \begin{vmatrix} \frac{3}{5} & \frac{-4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{vmatrix}$	•
$= \left(\frac{3}{5}\right) \left(\frac{3}{5}\right) - \left(-\frac{4}{5}\right) \left(\frac{4}{5}\right)$ $= \frac{9}{25} + \frac{16}{25}$	·. ·
$=\frac{9+16}{25}$	•
$= \frac{25}{25} = 1$ $A^{-1} = \frac{adj A}{ A }$	
$= \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$,
$= \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$	

		<u></u>
Pi	fot Super One "General Math" 10th	225
	Now $A^{-1}A = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$	
	$= \begin{bmatrix} \left(\frac{3}{5}\right)\left(\frac{3}{5}\right) + \left(\frac{4}{5}\right)\left(\frac{4}{5}\right) & \left(\frac{3}{5}\right)\left(-\frac{4}{5}\right) + \left(\frac{4}{5}\right)\left(\frac{3}{5}\right) \\ \left(-\frac{4}{5}\right)\left(\frac{3}{5}\right) + \left(\frac{3}{5}\right)\left(\frac{4}{5}\right) & \left(-\frac{4}{5}\right)\left(-\frac{4}{5}\right) + \left(\frac{3}{5}\right)\left(\frac{3}{5}\right) \end{bmatrix}$	$\left[\frac{3}{5}\right]$
		$\left[\frac{3}{5}\right]$
,	$= \begin{bmatrix} \frac{9}{25} + \frac{16}{25} & -\frac{12}{25} + \frac{12}{25} \\ -\frac{12}{25} + \frac{12}{25} & \frac{16}{25} + \frac{9}{25} \end{bmatrix}$	
	$A^{-1}A = \begin{bmatrix} \frac{25}{25} & \frac{0}{25} \\ \frac{0}{25} & \frac{25}{25} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$	
	$A^{-1}A = I$ Hence proved	
4.	$1.et M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	
	(a) Find M^{-1}	
	(b) Verify that $M^{-1}M = MM^{-1}$	
Sol:	$M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	
	$ M = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$	

Pilot Super One "General Math" 10th	226
=(1)(4)-(2)(3)	
=4-6=-2	
$M^{-1} = \frac{adj \ M}{ M }$	
$= \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$	
$= \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} 4\left(-\frac{1}{2}\right) & (-2)\left(-\frac{1}{2}\right) \\ -3\left(-\frac{1}{2}\right) & (1)\left(-\frac{1}{2}\right) \end{bmatrix}$	
$= \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$	
$M^{-1}M = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	
(-2)(1)+(1)(3) $(-2)(2)+(1)(4)$	
$= \begin{bmatrix} (-2)(1) + (1)(3) & (-2)(2) + (1)(4) \\ \left(\frac{3}{2}\right)(1) + \left(-\frac{1}{2}\right)(3) & \left(\frac{3}{2}\right)(2) + \left(-\frac{1}{2}\right)(4) \end{bmatrix}$	
$= \begin{bmatrix} -2+3 & -4+4 \\ \frac{3}{2} - \frac{3}{2} & 3-2 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \dots (i)$	
$=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \dots (i)$	
[0 1]	

Pilot Super One "General Math" 10th and now $MM^{-1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} -2 & 3 \\ \frac{3}{2} & \frac{3}{2} \end{bmatrix}$ $= \begin{bmatrix} (1)(-2) + (2)\left(\frac{3}{2}\right) & (1)(1) + (2)\left(-\frac{1}{2}\right) \\ (3)(-2) + (4)\left(\frac{3}{2}\right) & (3)(1) + (4)\left(-\frac{1}{2}\right) \end{bmatrix}$ $= \begin{bmatrix} -2 + 3 & 1 - 1 \\ -6 + 6 & 3 - 2 \end{bmatrix}$ $=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \dots \dots (ii)$ $M^{-1}M = MM^{-1}$ from (i) and (ii) If $A = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix}$, verify that $(AB)^{-1} = B^{-1}A^{-1}$ Sol: L.H.S = $(AB)^{-1}$ $AB = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix}$ $= \begin{bmatrix} (5)(4) + (2)(3) & (5)(2) + (2)(-1) \\ (2)(4) + (1)(3) & (2)(2) + (1)(-1) \end{bmatrix}$ $= \begin{bmatrix} 20 + 6 & 10 - 2 \\ 8 + 3 & 4 - 1 \end{bmatrix}$

Pilot Super One "General Math" 10th	228
$ Now AB = \begin{vmatrix} 26 & 8 \\ 11 & 3 \end{vmatrix}$	
=(26)(3)+(11)(8)	
= 78 - 88	t,
=-10	
$(AB)^{-1} = \frac{adj(AB)}{ AB }$	\sim
$= \frac{\begin{bmatrix} 3 & -8 \\ -11 & 26 \end{bmatrix}}{-10} = -\frac{1}{10} \begin{bmatrix} 3 & -8 \\ -11 & 26 \end{bmatrix}$	O
$= \begin{bmatrix} (3)\left(-\frac{1}{10}\right) & (-8)\left(-\frac{1}{10}\right) \\ (-11)\left(-\frac{1}{10}\right) & (26)\left(-\frac{1}{10}\right) \end{bmatrix}$	
<u>-</u>	
$= \begin{bmatrix} -\frac{3}{10} & \frac{4}{5} \\ \frac{11}{10} & -\frac{13}{5} \end{bmatrix} \dots (7)$	•
$R.H.S = B^{-1}A^{-1}$	
$B^{-1}A^{-1} = ?$	
$\mathbf{z} = \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix}$	
$ B = \begin{vmatrix} 4 & 2 \\ 3 & -1 \end{vmatrix}$	
=(4)(-1)-(2)(3)	
=-4-6	

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 49 of 74)

•	Pilot Super One "General Math" 10th	
•		229
	$\begin{bmatrix} -1 & -2 \\ 2 & 4 \end{bmatrix}$	res.co.
1	$B^{-1} = \frac{\begin{bmatrix} -1 & -2 \\ -3 & 4 \end{bmatrix}}{-10} $ $= -\frac{1}{3} \begin{bmatrix} -1 & -2 \\ -3 & -2 \end{bmatrix}$	ال غ
:	$=-\frac{1}{10}\begin{bmatrix} -1 & -2 \\ -3 & 4 \end{bmatrix}$	*62
1	$= \left[(-1)\left(-\frac{1}{10}\right) - (-2)\left(-\frac{1}{10}\right) \right]$	30
,	$= \begin{bmatrix} (-1)\left(-\frac{1}{10}\right) & (-2)\left(-\frac{1}{10}\right) \\ (-3)\left(-\frac{1}{10}\right) & (4)\left(-\frac{1}{10}\right) \end{bmatrix}$	
;		
	$ \begin{bmatrix} \frac{1}{10} & \frac{1}{5} \\ \frac{3}{10} & -\frac{2}{5} \end{bmatrix} $	
; }	and $A = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$	
1	$\begin{bmatrix} 2 & 1 \end{bmatrix}$ $[A] = \begin{vmatrix} 5 & 24 \\ 2 & 1 \end{vmatrix}$	
•	= (5)(1) - (2)(2)	
;	<u>-</u> 5-4	•
3.0	×1 . adi A	
• •	$A^{-1} = \frac{adj A}{ A }$	
1	$= \frac{\begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix}}{1} = \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix}$	
	1 [-2 5]	

Pilot Super One "General Math" 10th	230
Now $B^{-1}(1)^{-1} = \begin{bmatrix} \frac{1}{10} & \frac{1}{5} \\ \frac{3}{10} & -\frac{2}{5} \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix}$! C:
$= \begin{bmatrix} \left(\frac{1}{10}\right)(1) + \left(\frac{1}{5}\right)(-2) & \left(\frac{1}{10}\right)(-2) + \left(\frac{1}{5}\right)(5) \\ \left(\frac{3}{10}\right)(1) + \left(-\frac{2}{5}\right)(-2) & \left(\frac{3}{10}\right)(-2) + \left(-\frac{2}{5}\right)(5) \end{bmatrix}$	9
	į
$\begin{bmatrix} \frac{1}{10} - \frac{2}{5} & -\frac{1}{5} + 1 \\ \frac{3}{10} + \frac{4}{5} & -\frac{3}{5} - 2 \end{bmatrix}$ $\begin{bmatrix} 1 - 4 & -1 + 5 \end{bmatrix}$:
$= \begin{bmatrix} \frac{1-4}{10} & -\frac{1+5}{5} \\ \frac{3+8}{10} & -\frac{3-10}{5} \end{bmatrix}$	
$= \begin{bmatrix} -\frac{3}{10} & \frac{1}{5} \\ \frac{11}{10} & \frac{13}{5} \end{bmatrix} \dots (ii)$	
[10 3 5]	ı

 $(AB)^{-1} = B \cdot J^{-1}$

SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS

To determine the value of two variables, we need a pair of equations. Such a pair of equations is called a system of simultaneous linear equations.

Pilot Super One "General Math" 10th

231

1- Write the equation 2x + ky = 7 and 4x - 9y = 4 in matrix form. Also find the value of k if the matrix of the coefficients is singular.

Sol:

$$2x + kv = 7$$

$$4x - 9y = 4$$

In matrix form

$$\begin{bmatrix} 2 & k \\ 4 & -9 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \end{bmatrix}$$

$$A \quad X = B$$

$$A = \begin{bmatrix} 2 & k \\ 4 & -9 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \end{bmatrix}, \quad B = \begin{bmatrix} 7 \\ 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & k \\ 4 & -9 \end{bmatrix}$$

Now, if A is singular matrix.

Therefore,

$$\begin{bmatrix} 2 & k \\ 4 & -9 \end{bmatrix} = 0$$

$$(2)(-9) - (k)(4) = 0$$

$$-18 - 4k = 0$$

$$-4k = 18$$

$$k = \frac{18}{-4}$$

$$= -\frac{9}{2}$$

Pilot Super One "General Math", 1906

232

Solve the simultaneous equations by the matrix inversion 2. method where possible. Where there is no solution, explain why this is so

$$2x - 5y = 1$$

10

$$3x - 7x = 2$$

Sol In matter form

$$\begin{bmatrix} 2 & -5 \\ 3 & -7 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & -5 \\ 3 & -7 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

and
$$d = \begin{bmatrix} 2 & -5 \\ 3 & -7 \end{bmatrix}$$

$$T_{ab} = \begin{bmatrix} 2 & -5 \\ 3 & -7 \end{bmatrix}$$

$$|A| = \begin{vmatrix} 2 & -5 \\ 3 & -7 \end{vmatrix}$$

* -||+|5 =| # ()

A is non-singular matrix. Therefore, equations can be

$$A^{-1} = \frac{adj A}{|A|}$$

$$=\begin{bmatrix} -7 & 5 \\ -3 & 2 \end{bmatrix}$$

233 Pilot Super One "General Math" 10th $X = A^{-1}B$ hecause Hence, $S.S = \{(3,1)\}$ 3x + 2y = 10(ii) 2y - 3x = -4Sol: Write equations again 3x + 2y = 10-3x + 2y = -4· In matrix form AX = B $A = \begin{bmatrix} 3 & 2 \\ -3 & 2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix}, B = \begin{bmatrix} 10 \\ -4 \end{bmatrix}$

Prior Super One "General Math" 19th 23	14
$V = A^{-1}B$	_
$A = \begin{bmatrix} 3 & 2 \\ -3 & 2 \end{bmatrix}$	
$.1 = \begin{vmatrix} 3 & 2 \\ -3 & 2 \end{vmatrix}$	
=(3)(2)-(2)(-3)	
$=6 \cdot 6 = 12 \neq 0$	
A is non-singular matrix, therefore equations can be	
solve	
$t^{-1} = \frac{acti A}{ A }$	
$=\begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix}$	
$=\frac{1}{12}\begin{bmatrix} 2 & \sqrt{-2} \\ 3 & 3 \end{bmatrix}$	
$\begin{bmatrix} x \\ 1 \end{bmatrix} = \frac{1}{12} \begin{bmatrix} 2 & -2 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} 10 \\ -4 \end{bmatrix}$	
$0 = \frac{1}{12} \begin{bmatrix} 2(10) + (-2)(-4) \\ 3(10) + (3)(-4) \end{bmatrix}$	
$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{12} \begin{bmatrix} 20 + 8 \\ 30 - 12 \end{bmatrix}$	
$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{12} \begin{bmatrix} 28 \\ 18 \end{bmatrix}$	

=======	GENERAL MATHEMATICS F	OR 10CLASS (UNII # 6)
•	Pilot Super One "General Math" 100	h 235
	$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{28}{12} \\ \frac{18}{12} \end{bmatrix}$	com
	$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{7}{3} \\ \frac{3}{2} \end{bmatrix}$	
ŀ	Hence, $x = \frac{7}{3}$	_ (Ca) ***
	$y = \frac{3}{2}$ $\{(7 3)\}$	Carried Carried Control of the Contr
,	$S.S = \left\{ \left(\frac{7}{3}, \frac{3}{2} \right) \right\}$ $4x + 5y = 0$ $2x + 5y = 1$ (iii)	
	$2x + 5y = 1$ Sol: $\begin{bmatrix} 4 & 5 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$	
	$\begin{bmatrix} 2 & 5 \end{bmatrix} \begin{bmatrix} y \end{bmatrix}^{-1} \begin{bmatrix} 1 \end{bmatrix}$	In matrix form
	3-1 4 V = 4-10	
.	$X = A^{-1}B$	
JAN.	$A = \begin{bmatrix} 4 & 5 \\ 2 & 5 \end{bmatrix}$	•
1	$X = A^{-1}B$ $A = \begin{bmatrix} 4 & 5 \\ 2 & 5 \end{bmatrix}$ $ A = \begin{vmatrix} 4 & 5 \\ 2 & 5 \end{vmatrix}$	•
•	<u>, </u>	

Pifot Super One "General Math" 10th	236
A = (4)(5) - (5)(2)	
$=20-10=10\neq0$	
A is non-singular matrix, therefore equations can be	
solve.	
A =10	
$A^{-1} = \frac{adj}{A} \frac{A}{a}$	

$$= \frac{\begin{bmatrix} 5 & -5 \\ -2 & 4 \end{bmatrix}}{10} = \frac{1}{10} \begin{bmatrix} 5 & -5 \\ -2 & 4 \end{bmatrix}$$
Now $A^{-1}B = \frac{1}{10} \begin{bmatrix} 5 & -5 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$

Now $A^{-1}B = \frac{1}{10} \begin{bmatrix} 5 & -5 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $= \frac{1}{10} \begin{bmatrix} (5)(0) + (-5)(1) \\ (-2)(0) + (4)(1) \end{bmatrix}$ $= \frac{1}{10} \begin{bmatrix} 0 - 5 \\ 0 + 4 \end{bmatrix}$

$$= \frac{10}{10} \begin{bmatrix} 4 \\ \frac{4}{10} \end{bmatrix}$$

Pilot Super One "General Math" 10th	237
$A^{-1}B = \begin{bmatrix} -\frac{1}{2} \\ \frac{2}{5} \end{bmatrix}$	
But $X = A^{-1}B$	
Thus $X = \begin{bmatrix} -\frac{1}{2} \\ \frac{2}{5} \end{bmatrix}$	•
or $ \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{2}{5} \end{bmatrix} $	•
Hence, $x = -\frac{1}{2}$	
$y = \frac{2}{5}$	•
$S.S = \left\{ \left(-\frac{1}{2}, \frac{2}{5} \right) \right\}$	
(iv) $5x + 6y = 25$ 3x + 4y = 17	
Suf: $\begin{bmatrix} 5 & 6 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \simeq \begin{bmatrix} 25 \\ 17 \end{bmatrix}$	In matrix form
Let $A X = B$	
$A^{-1}AX = A^{-1}B$	
$X = \Lambda^{-1} B$	

=======

Pilot Super One "General Math" 10th	238
Now $A = \begin{bmatrix} 5 & 6 \\ 3 & 4 \end{bmatrix}$	
$ A = \begin{vmatrix} 5 & 6 \\ 3 & 4 \end{vmatrix}$	
=(5)(4)-(6)(3)	A 1
=20-18	(′ 1
$ A =2\neq 0$	\bigcirc
A is non-singular matrix. Therefore equa	tions can be
solve.	·
$A^{-1} = \frac{\alpha dj \ A}{ A }$	
$= \begin{bmatrix} 4 & -6 \\ -3 & 5 \end{bmatrix}$	1
2 1 [A _4]	1
$=\frac{1}{2}\begin{bmatrix} 4 & -6 \\ -3 & 5 \end{bmatrix}$	1
Now $A^{-1}B = \frac{1}{2} \begin{bmatrix} 4 & -6 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} 25 \\ 17 \end{bmatrix}$	i
$=\frac{1}{2}\begin{bmatrix} (4)(25) + (-6)(17) \\ (-3)(25) + (5)(17) \end{bmatrix}$	
∴[(□0Λ±2)*(3)(17)] ↓[(0Λ±2)*(3)(17)]	
$=\frac{1}{2}\begin{bmatrix}100-102\\-75+85\end{bmatrix}$	
$=\frac{1}{2}\begin{bmatrix} -2\\10 \end{bmatrix}$	

Pilot Super One "General Math" 10th	239
$= \left[\frac{-2}{2} \right]$	
$A^{-1}B = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$	
But $X = A^{-1}B$	
Thus $X = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$	
or $ \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \end{bmatrix} $	
Hence, $x = -1$	
y=5	
$s.s = \{(-1,5)\}$	
(v) x + y = 2	
y=2+x	
Sol: Write equations again $x + y = 2$ $-x + y = 2$	•
In matrix form $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	-
Let $A X = B$	

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 60 of 74)

Pilot Super One "General Math" | 10th $A^{-1}AX = A^{-1}B$ $X = A^{-1}B$ Now $A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ $|A| = \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix}$ = (1)(1) - (1)(-1)

A is non-singular matrix. Therefore equations can be

solve.

= 1 + 1

 $|A|=2 \neq 0$

$$A^{-1} = \frac{adj A}{|A|}$$

$$= \frac{\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}}{2} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
and
$$A^{-1}B = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} (1)(2) + (-1)(2) \\ (1)(2) + (1)(2) \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 2 - 2 \\ 2 + 2 \end{bmatrix}$$

Pilot Super One "General Math" 10th	241
$=\frac{1}{2}\begin{bmatrix}0\\4\end{bmatrix}$	
$= \begin{bmatrix} \frac{0}{2} \\ \frac{4}{2} \end{bmatrix}$	
$A^{-1}B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$	
while $X = A^{-1}B$	
$X = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$	
or $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$	
Hence, $x=0$	
y=2	
$S.S = \{(0,2)\}$	
(vi) $\frac{x}{2} + \frac{y}{3} = 1$ (i)	
-4x + y = 14 (ii)	
Sol: Multiply (i) by 6.	
$6\left(\frac{x}{2}\right) + 6\left(\frac{y}{3}\right) = 6$	•
3x + 2y = 6	(2nd condition)
-4x + y = '4	•

Pilot Super One "General Math" 10th 242

$$\begin{bmatrix} 3 & 2 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 \\ 14 \end{bmatrix}$$
 (in matrix form)

$$A \quad X = B$$

$$A^{-1}A \quad X = A^{-1}B$$

$$X = A^{-1}B$$

$$A = \begin{bmatrix} 3 & 2 \\ -4 & 1 \end{bmatrix}$$

$$|A| = \begin{bmatrix} 3 & 2 \\ -4 & 1 \end{bmatrix}$$

$$= (3)(1) - (2)(-4)$$

Let
$$A X = B$$

$$A^{-1}A X = A^{-1}B$$

$$X = A^{-1}B$$

Now
$$A = \begin{bmatrix} 3 & 2 \\ -4 & 1 \end{bmatrix}$$

$$|A| = \begin{bmatrix} 3 & 2 \\ -4 & 1 \end{bmatrix}$$

$$=(3)(1)-(2)(-4)$$

$$= 3 + 8$$

$$=11 \neq 0$$

A is non-singular matrix. Therefore equations can be

solve,

$$A^{-1} = \frac{adf}{|A|} \frac{A}{|A|}$$

$$\begin{bmatrix}
1 & -2 \\
4 & 3
\end{bmatrix} = \frac{1}{11} \begin{bmatrix} 1 & -2 \\
4 & 3 \end{bmatrix}$$
and
$$A^{-1}B = \frac{1}{11} \begin{bmatrix} 1 & -2 \\
4 & 3 \end{bmatrix} \begin{bmatrix} 6 \\
14 \end{bmatrix}$$
therefore a contact and the second sec

and
$$A^{-1}B = \frac{1}{11} \begin{bmatrix} 1 & -2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 6 \\ 14 \end{bmatrix}$$

$$=\frac{1}{11}\left[\frac{(1)(6)+(-2)(14)}{(4)(6)+(3)(14)}\right]$$

Visit <u>www.downloadclass.notes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 63 of 74)

Pitot Super One "General Math" 10th	243
$=\frac{1}{11} \left[\frac{6-28}{24+42} \right]$	
$=\frac{1}{11}\begin{bmatrix} -22\\ 66\end{bmatrix}$	
[.22]	
= 11 66	
$\left \frac{66}{100} \right $	
[11] ,	
$A^{-1}B = \begin{bmatrix} -2\\6 \end{bmatrix}$	
while $X = A^{-1}B$	•
$\chi = \begin{bmatrix} -2 \\ 6 \end{bmatrix}$	
L 3	
or $\begin{bmatrix} v \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 6 \end{bmatrix}$	
Hence. 1 = -2	
1 = 6	
<= {(-2.6)}	
Softe, using matrix inversion method	
$3x \cdot y = 10$	
2x + 3y = 3	
in matrix form	
$\begin{bmatrix} 3 & -1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 10 \\ 3 \end{bmatrix}$	•
	1
	ı

Pitot Super One "General Math" 10th

Let A : X = Band $A^{-1}A : X = A^{-1}B$ $X = A^{-1}B$ Now $A = \begin{bmatrix} 3 & -1 \\ 2 & 3 \end{bmatrix}$ $|A| = \begin{bmatrix} 3 & -1 \\ 2 & 3 \end{bmatrix}$ = (3)(3) - (-1)(2) = 9 + 2 $= 11 \neq 0$ A is non-singular matrix. Therefore equations can be solve. $A^{-1} = \frac{adj}{|A|}$

$$A^{-1} = \frac{adj A}{|A|}$$

$$= \frac{\begin{bmatrix} 3 & 1 \\ -2 & 3 \end{bmatrix}}{11} = \frac{1}{11} \begin{bmatrix} 3 & 1 \\ -2 & 3 \end{bmatrix}$$
and
$$A^{-1}B = \frac{1}{11} \begin{bmatrix} 3 & 1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 10 \\ 3 \end{bmatrix}$$

$$= \frac{1}{11} \begin{bmatrix} (3)(10) + (1)(3) \\ (-2)(10) + (3)(3) \end{bmatrix}$$

$$= \frac{1}{11} \begin{bmatrix} 30 + 3 \\ -20 + 9 \end{bmatrix}$$

Pilot Super One "General Math" 101	h 245
$=\frac{1}{11}\begin{bmatrix} 33\\ -11 \end{bmatrix}$	•
$= \begin{bmatrix} \frac{33}{11} \\ \frac{-11}{11} \end{bmatrix}$,
$A^{-1}B = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$	
while $X = A^{-1}B$	
$\chi = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$	
or $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$	
Hence, $x=3$ $y=-1$	
$S.S = \{(3,-1)\}$	
Use Cramer's rule to so equations. Give the reaso possible. $x + 2y = 3$	olve the simultaneous n where solution is not
$\begin{array}{c} x + 2y = 5 \\ x + 3y = 5 \end{array}$	·
Remember that:	
Cramer's Rule	
$_{\mathbf{if}}a_{\mathbf{i}}x+a_{2}y=b_{\mathbf{i}}$	• •

Pilot Super One "General Math" 10th 246 $a_3x + a_4y = b_2$ then x + 2y = 3Sol: x + 3y = 5In matrix form $|A| = \begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix} = (1)(3) - (1)(2) = 3 - 2 = 1$ $|D_1| = \begin{vmatrix} 3 & 2 \\ 5 & 3 \end{vmatrix} = (3)(3) - (2)(5) = 9 - 10 = -1$ $|D_2| = \begin{vmatrix} 1 & 3 \\ 1 & 5 \end{vmatrix} = (1)(5) - (3)(1) = 5 - 3 = 2$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 67 of 74)

<u></u>	GENERAL MATHEMATICS FOR 10 CLASS (U	======================================
} _{Pit}	ot Super One "General Math" 10th	247
	$y = \frac{ D_2 }{ A } = \frac{2}{1} = 2$ $S.S = \{(-1, 2)\}$	
· (fi)	2x + y = 1 $5x + 3y = 2$	٠٦٠ ا
Sol:	r15.7 F.7	iole
	$A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$ $ A = \begin{vmatrix} 2 & 1 \\ 5 & 3 \end{vmatrix}$	
*	$ A = \begin{vmatrix} 2 & 1 \\ 5 & 3 \end{vmatrix}$ = (2)(3) - (1)(5)	
	$ D_1 = \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix}$ $= (1 \times 2) \cdot (1 \times 2)$	
	=(1)(3)-(1)(2) = 3-2=1	
3	$ D_2 = \begin{vmatrix} 2 & 1 \\ 5 & 2 \end{vmatrix} = (2)(2) - (1)(5)$	
٩	= 4 - 5 = -1	
ئنسد	,	

Pilot	Super One "General Math" 10th	248
	$x = \frac{ D_1 }{ A } = \frac{1}{1} = 1$	
	$y = \frac{ D_2 }{ A } = \frac{-1}{1} = -1$	
	$s.s=\{(1,-1)\}$	
(iii)	x + 3y = 1	
	2x + 8y = 0	
Sol:	$\begin{bmatrix} 1 & 3 \\ 2 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ In matrix form	
	$A = \begin{bmatrix} 1 & 3 \\ 2 & 8 \end{bmatrix}$	
	$ A = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = (1)(8) - (3)(2)$	
	=8-6=2	
	$ D_1 = \begin{vmatrix} 1 & 3 \\ 0 & 8 \end{vmatrix} = (1)(8) - (3)(0)$	
	= 8-0	
	=8	
	$ D_2 = \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = (1)(0) - (1)(2)$	
	=0-2	
	=-2	

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more.
(Page 69 of 74)

	GENERAL MATHEMATICS FOR 10 TO CLASS (UNIT # 6)
1	- Consent Mathe 10th	249
	Pilot Super One "General Math" 10th $x = \frac{ D_1 }{ A } = \frac{8}{2} = 4$ $y = \frac{ D_2 }{ A } = \frac{-2}{2} = -1$ $S.S = \{(4, -1)\}$ $-2x + 6y = 5$ $x - 3y = -7$ Sol: $\begin{bmatrix} -2 & 6 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ -7 \end{bmatrix}$ In matrix form $AX = B$ $A = \begin{bmatrix} -2 & 6 \\ 1 & -3 \end{bmatrix}$ $ A = \begin{vmatrix} -2 & 6 \\ 1 & -3 \end{vmatrix}$ $= (-2)(-3) - (6)(1)$	
	$=6-6=0$ $A = \begin{bmatrix} -2 & 6 \\ 1 & -3 \end{bmatrix}$ is singular matrix, therefore S.S is not possible. $x = 3 y = 5$	
	x-3y=5 $2x-5y=9$ $x - 3 = 5$ $x - 3y = 5$	
}	ol: $\begin{bmatrix} 1 & -3 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \end{bmatrix}$ In matrix form	

Pilot Super One "General Math" 10th	250
AX = B	
$A = \begin{bmatrix} 1 & -3 \\ 2 & -5 \end{bmatrix}$	
$ A = \begin{vmatrix} 1 & -3 \\ 2 & -5 \end{vmatrix}$	
=(1)(-5)-(-3)(2)	
=-5+6=1	
$ D_1 = \begin{vmatrix} 5 & -3 \\ 9 & -5 \end{vmatrix} = (5)(-5) - (-3)(9)$	
= -25 + 27	_
=2	-
$ D_2 = \begin{vmatrix} 1 & 5 \\ 2 & 9 \end{vmatrix}$	
=(1)(9)-(5)(2)	
=9-10=-1	
$x = \frac{ D_1 }{ A } = \frac{2}{1} = 2$	
$y = \frac{ D_2 }{ A } = \frac{-1}{1} = -1$	
$\mathbf{S}.\mathbf{S} = \left\{ (2, -1) \right\}$	

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 71 of 74)

1

	Super One "General Math" 10th	251
(vi)	5x + 2y = 13	
Sel:	$2x + 5y = 17$ $\begin{bmatrix} 5 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 13 \\ 17 \end{bmatrix}$ In matrix form $AX = B$	
	$A = \begin{bmatrix} 5 & 2 \\ 2 & 5 \end{bmatrix}$ $[A] = \begin{bmatrix} 5 & 2 \\ 2 & 5 \end{bmatrix} = (5)(5) - (2)(2)$	
	= 25 - 4 = 21	
	$ D_1 = \begin{vmatrix} 13 & 2 \\ 17 & 5 \end{vmatrix} = (13)(5) - (2)(17)$	
•	= 65 - 34 = 31	
	$ D_2 = \begin{vmatrix} 5 & 13 \\ 2 & 17 \end{vmatrix} = (5)(17) - (13)(2)$	
	$ = 85 - 26 = 59 $ $ x = \frac{ D_1 }{ A } = \frac{31}{21} $	
	$y = \frac{ D_2 }{ A } = \frac{59}{21}$	
	$s.s = \left\{ \left(\frac{31}{21}, \frac{59}{21} \right) \right\}$	

Pilot Super (Ine "General	Math"	10th
---------------	--------------	-------	------

252

5. Write the following matrices in the form of linear equations.

(i)
$$\begin{bmatrix} 2 & -1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Sol:
$$\begin{bmatrix} (2)(x) + (-1)(y) \\ (5)(x) + (2)(y) \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

then
$$\begin{bmatrix} 2x - y \\ 5x + 2y \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

and
$$2x - y = 2$$

$$5x + 2y = 4$$

(ii)
$$\begin{bmatrix} -5 & 2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

Sol:
$$\begin{bmatrix} (-5)(x) + (2)(y) \\ (2)(x) + (-3)(y) \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} -5x + 2y \\ 2x - 3y \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

thus,
$$-5x + 2y = 2$$

and
$$2x-3y=-1$$

(iii)
$$\begin{bmatrix} -4 & 1 \\ 5 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Sol:
$$\begin{bmatrix} -4(x) + (1)(y) \\ 5(x) + (4)(y) \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} -4x + y \\ 5x + 4y \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 73 of 74)

Pilot Super One "General Math" 10th

253

thus,
$$-4x + y = 1$$

and
$$5x + 4y = -1$$

(iv)
$$\begin{bmatrix} 0.8 & -0.6 \\ 0.6 & 0.8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Sol:
$$\begin{bmatrix} (0.8)(x) + (-0.6)(y) \\ (0.6)(x) + (0.8)(y) \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 0.8x - 0.6y \\ 0.6x + 0.8y \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

thus,
$$0.8x - 0.6y = 1$$

and
$$0.6x + 0.8y = 2$$

Pilot Super One "General Math" 10th

262

Write down the angles marked with letters. Write whether the angles are complimentary or supplementary?

Sol:

(i)
$$m \angle a + 50^\circ = 180^\circ$$

 $m \angle a = 180^\circ + 50^\circ$
 $m \angle a = 130^\circ$

(ii)
$$m \angle b + 65^{\circ} = 180^{\circ}$$

 $m \angle b = 180^{\circ} - 65^{\circ}$
 $m \angle b = 115^{\circ}$

(Supplementary angles)

(Supplementary angles)

(iii)
$$m \angle c + 138^{\circ} = 180^{\circ}$$

 $m \angle c = 180^{\circ} - 138^{\circ}$
 $m \angle c = 42^{\circ}$

(Supplementary angles)

(Complementary angles)

Pitot Super One "General Math" 10th

263

(Complementary angles)

Two angles are supplementary and the greater exceeds the smaller by 30°. How many degrees are there in each angle?

Sol: The size of small angle = x Let The size of large angle = $x + 30^{\circ}$

According to statement

$$x + (x + 30^{\circ}) = 180^{\circ}$$

$$x + x + 30^{\circ} = 180^{\circ}$$

$$2x + 30^{\circ} = 180^{\circ}$$

$$2x = 180^{\circ} - 30^{\circ}$$

$$2x = 150^{\circ}$$

$$x = \frac{150^{\circ}}{2}$$

$$x = 75^{\circ}$$

The size of small $sic = 75^{\circ}$

The size of large angle = $x + 30^{\circ} = 75^{\circ} + 30^{\circ} = 105^{\circ}$ angles = 75° , 105°

Pilot Super One "General Math" 10th

264

 If 40° is added to an angle, the resulting angle is equal to the supplement of the original angle. Find the original angle.

Sol: Let the required angle = x

size of the angle after adding $= x + 40^{\circ}$

The supplement of 1st angle = $180^{\circ}-x$

According to statement

$$x + 40^{\circ} = 180^{\circ} - x$$

$$x + x = 180^{\circ} - 40^{\circ}$$

$$2x = 140^{\circ}$$

$$x = \frac{140^{\circ}}{2}$$

4. The sum of two angles is 100° , and the difference between their supplements is 100° . Find the angles.

Let the size of lat angle = x^0

The size of 2nd angle =
$$100^{\circ} - x^{\circ}$$

The supplement of $x^0 = 180^{\circ} - x^0$

The supplement of
$$100^{\circ} - x^{\circ} = 180^{\circ} - (100^{\circ} - x^{\circ})$$

$$= 180^{\circ} - 100^{\circ} + x^{\circ}$$

According to the statement

$$(180^{\circ}-100^{\circ}+x^{\circ})-(180^{\circ}-x^{\circ})=100^{\circ}$$

$$180^{\circ} \sim 100^{\circ} + x^{\circ} - 180^{\circ} + x^{\circ} = 100^{\circ}$$

Pilot Super One "General Math" 10th

265

General Math"
$$10\text{ih}$$
 265
$$2x^{O} - 100^{O} = 100^{O}$$

$$2x = 100^{O} + 100^{O}$$

$$2x = 200^{O}$$

$$x = \frac{200^{O}}{2}$$

$$x = 100^{O}$$
of 1st angle = $100^{O} - 100^{O}$

$$= 0^{O}$$

The size of 1st angle = 100°

The size of 2nd angle = $100^{\circ} - 100^{\circ}$

Sol: Let the size of 1^{10} angle = x^0

The size of 2nd angle = $100^{\circ} - x^{\circ}$

The supplement of 1st angle = $180^{\circ} - x^{\circ}$

The supplement of 2nd angle = $180^{\circ} - (100^{\circ} - x)$

$$= 180^{\circ} - 100^{\circ} + x^{\circ}$$
$$= 80^{\circ} + x^{\circ}$$

According to the statement

$$180^{\circ} - x^{\circ} - 40^{\circ} = 80^{\circ} + x^{\circ}$$
$$-x^{\circ} - x^{\circ} = 80^{\circ} + 40^{\circ} - 180^{\circ}$$
$$-2x^{\circ} = -60^{\circ}$$

Pilot Super One "General Math" 10th

266

$$x^{0} = 30^{0}$$

1st angle
$$= 30^{\circ}$$

2nd angle
$$\approx 100^{\circ} - 30^{\circ}$$

6. Write the equation for the given triangle and solve it.

Sol: The sum of angles of any triangles = 180°

The sum of angles of
$$\triangle ABC = x + 90^{\circ} + 30^{\circ}$$

$$= x + 120^{\circ}$$

According to the statement

$$x + 120^{\circ} = 180^{\circ}$$

 $x = 180^{\circ} - 120^{\circ}$
 $x = 60^{\circ}$

Write down the angles marked with letters.

7(i) $m \angle a = 40^{ct}$ (vertically opp. angles)

Pilot Super One "General Math" 10th

267

7(ii) $m \angle c = 35^{\circ}$ (vertically opp. angles)

 $m\angle d = 145^{\circ\prime}$ (vertically opp. angles)

7(iii) $m\angle e = 29^{tt}$ (vertically opp. angles)

 $m \angle f = 151^{\circ}$ (vertically opp. angles)

7(iv) $m \angle b = 135^{\circ\prime}$ (vertically opp. angles)

7(v) $m \angle q = 70^{\circ}$ (vertically opp. angles) $m \angle p = 180 - 77^{\circ}$ (supplementary angles)

= 103°

Pilot Super One "General Math" 10th 268 (vertically opp. angles) $m\angle r = m\angle p$ =103" (i) ے 7(vi) $m \angle k = 150^{\circ}$ (vertically opp. angles) (supplementary angles) $m\angle i + 150^{\prime\prime} = 180^{\prime\prime}$ $m \angle i = 180^{\circ} - 150^{\circ}$ $m\angle i = 30^{tr}$ (i) m∠j = m∠i (vertically opp, angles) $m \angle j = 30^{\prime\prime}$ from (i)

269 Pilot Super One "General Math" 10th 7(vii) $m\angle h = 40''$ (vertically opp. angles) (supplementary angles) $m\angle 40 + \angle g = 180^{\circ\prime}$ $m\angle g = 180^{\circ\prime} + 40$ m∠g ≈ 140° (1) (vertically opp angles) $m\angle i = m\angle g$ and from (i) = 140" (vertically opp. angles) $m \angle k = 138^{\prime\prime} - 7(viii)$ (supplementary angles) $m \angle p + 138^{\prime\prime} = 180^{\prime\prime}$ $m\angle p = 180^{\prime\prime} - 138^{\prime\prime}$

i	Pilot Super One "General Math" 10th	270	
	$m\angle p = 42^{\prime\prime}$ (vertically opp. angles) $m\angle l = m\angle p$	(i) and	
	from (i) $m \angle l = 42^{tr}$ (vertically opp. angles) $m \angle P = 58^{tr}$	7(ix)	cO
	(supplementary angles) $m \angle N + 58'' = 180''$ $m \angle N = 180'' - 58$		V
ļ.	\)	: i
	(M)		!
	Sã V		· i
			•
j	$(\text{vertically opp. angles}) \qquad m \angle N = 122^{\prime\prime}$ $(\text{vertically opp. angles}) \qquad m \angle M = m \angle N$	(i) and	
	from (i) = 122"	7(x)	
	(b/65 I	_	•
1			

Pilot Super One "General Math" 10th

(supplementary angles) $m\angle a + 22^{\prime\prime} = 180^{\prime\prime}$ $m\angle a = 180^{\prime\prime} - 22^{\prime\prime}$ $m\angle a = 158^{\prime\prime}$ (supplementary angles) $m\angle b + 68^{\prime\prime} = 180^{\prime\prime}$

$$m \angle b = 180^{\circ} - 68$$

 $m \angle b = 112^{\circ}$

271

(i) PARALLEL LINES

Parallel lines are two straight lines in the same plane which never meet.

The lines a and b are parallel, we write $a \parallel b$.

- (ii) Properties of Parallel Lines
- (a) Two lines parallel to a third are parallel to each other.

177 (If three parallel lines are intercented by two tensor

(b) If three parallel lines are intercepted by two transversals in such a way that the two intercepts on one transversal are equal to each other, the two intercepts on the second transversal are also equal.

(c) If a line bisects one side of a triangle and is parallel to a second side, then it bisects the third side.

Pilot Super One "General Math" 10th

272

i.e. if △ABC with BD = DA, DE || BC then AE = CE

com

Transversal

A transversal is a line that intersects two lines in differnt points.

If a transversal "I" intersects two parallel lines a and b, the angles formed are identified as follows:

- 1. Four interior angles $: \angle 1, \angle 2, \angle 3, \angle 4$
- Four exterior angles ; ∠5, ∠6, ∠7, ∠8
- Two pairs of alternate interior angles ∠1 and ∠3; and ∠4
- Two pairs of alternate exterior angles ∠5 and ∠7; ∠6 and ∠8
- Two pairs of interior angles on the same side of the transversal: ∠2 and ∠3;∠1 and ∠4.
- 6. Four pairs of corresponding angles: ∠3 and ∠7;∠4 and ∠8;∠2 and ∠6;∠1 and ∠5.

Relation Between the Pairs of Angles
If two parallel lines are cut by a transversal, the
corresponding angles are equal.

 $[\angle 1 = \angle 2, \angle 2 = \angle 3, \angle 1 = \angle 3]$

Pilot Super One "General Math" 10th

273

 d) If two parallel lines are cut by a transversal, the alternate interior angles are equal.

a || b, lines a and b are cut by the transversal c at point M and N to form the pairs of alternate interior angles. $(\angle 1, \angle 2)$ and $(\angle 3, \angle 4)$

$$\angle 1 = \angle 2, \angle 3 = \angle 4$$

e) If two parallel lines are intercepted by a transversal, then
pairs of interior angles on the same side of transversal are
supplementary.

 $AB \parallel CD$, lines are cut by the transversal t, angles a, b, c and d are formed.

(i)
$$m\angle 2 = m\angle 4$$

$$m \angle 1 = m \angle 3$$

(ii)
$$m\angle 3 = m\angle 7$$

$$m\angle 4 = m\angle 8$$

$$m\angle 6 = m\angle 2$$

$$m \angle 5 = m \angle 1$$

(iii)
$$m \angle 7 = m \angle 5$$

(iv)
$$m \angle 2 + m \angle 3 = 180^{\circ}$$

$$m\angle 1 + m\angle 4 = 180^{\circ}$$

(v)
$$m \angle 5 + m \angle 8 = 180^{\circ}$$

$$m \angle 6 + m \angle 7 = 180^{\circ}$$

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 12 of 34)

Pilot Super One "General Math" 10th

274

 Look at the given figure and answer the following questions.

- (a) The pair of alternative angles
- (b) The pair of corresponding angles
- (c) The pair of complementary angles
- (d) The pair of supplementary angles
- (e) The pair of vertical angles

Answers:

- a) The pair of alternative interior angles: $(\angle 1, \angle 2)$ and $(\angle 3, \angle 4)$
- b) The pair of corresponding angles: $\angle 1, \angle 6; \angle 3, \angle 8; \angle 2, \angle 7; \angle 5, \angle 4$
- c) The pair of complementary angles: No one
- d) The pair of supplementary angles:

$$(\angle 4,\angle 1);(\angle 4,\angle 7);(\angle 7,\angle 8);(\angle 8,\angle 1)$$

$$(\angle 5, \angle 6); (\angle 5, \angle 2); (\angle 2, \angle 3); (\angle 3, \angle 6)$$

c) The pair of vertical angles:

Pilot Super One "General Math" 10th

275

$$(\angle 5, \angle 3)$$
: $(\angle 6, \angle 2)$; $(\angle 4, \angle 6)$; $(\angle 1, \angle 7)$

Look at the given figure and answer the following questions.

- (a) The pair of alternative interior angles
- (b) The pair of corresponding angles
- (c) The pair of complementary angles
- (d) The pair of supplementary angles
- (e) The pair of vertical angles

Answers:

The alternate interior angles : $(\angle n, \angle 1), (\angle m, \angle r)$

The corresponding angles:

$$(\angle p, \angle n); (\angle m, \angle s); (\angle q, \angle r); (\angle l, \angle l)$$

The complementary angles: No one

The supplementary angles:

$$(\angle p, \angle m); (\angle p, \angle q); (\angle q, \angle l); (\angle l, \angle m)$$
$$(\angle n, \angle s); (\angle n, \angle r); (\angle r, \angle l); (\angle l, \angle s)$$

The vertical angles: $(\angle p, \angle l)$; $(\angle m, \angle q)$; $(\angle n, \angle t)$; $(\angle r, \angle s)$

3. Take a point 'X' outside a line \overrightarrow{DE} . Draw a line through

Pilot Super One "General Math" 10th

276

'X' which cuts \overrightarrow{DE} at some point. Making corresponding angles congruent draw a line parallel to \overrightarrow{DE} .

Steps of Construction:

- (i) Draw a line \overline{DE} .
- (ii) Take any point "X" which lay outside of \overline{DE} .
- (iii) Take any point "A" on \overrightarrow{DE} .
- (iv) Join "A" with "X" then extend it
- (v) Draw corresponding angles ∠I & ∠2 with the help of compasses.
- (vi) Extend \overline{XT} on both sides.

 $\overline{PQ} \parallel \overline{DE}$ which passes through X.

CONGRUENTAND SIMILAR FIGURES

Congruent Figures

The word congruent comes from Latin meaning "together agree". Two geometrical figures which abve the same size and shape are congruent.

One figure is congruent to the other. The symbol for congruent is \approx . Thus two segments are congruent when they have the / ame size.

Pilot Super One "General Math" 10th

. 278

$$m\angle A = 50^{\circ}, \quad m\angle P = 50^{\circ}$$

$$m\angle B = 45^{\circ}, \quad m\angle Q = 45^{\circ}$$

$$m\angle C = 85^{\circ}, \quad m\angle R = 85^{\circ}$$

$$\frac{m\overline{AC}}{mPR} = \frac{4}{2} = \frac{2}{1}$$

$$\frac{m\overline{AB}}{m\overline{PQ}} = \frac{6}{3} = \frac{2}{1}$$

$$\frac{m\overline{BC}}{mOR} = \frac{4.6}{2.3} = \frac{2}{1}$$

Tell Whether or not the Figures in Question 1-3 are Similar:

All squares;

Yes '

all rectangles;

No

all regular hexagons.

Yes

Two rectangles with sides 8, 12, 10 and 15.

Ans. These are similar figures

$$\frac{10}{15} = \frac{8}{12}$$
$$\frac{2}{3} = \frac{2}{3}$$

Two rhombuses with angles of 55° and 125°.

Ans. These are similar figures because the four.

4. The sides of a polygon are 5cm, 6cm, 7cm, 8cm, and 9cm, In a similar polygon the sides corresponding to 6cm is 12cm. Find the other sides of the second polygon.

Ans. According to the given condition the ratio among

Pilot

Super One "Gener	al Math" 10th		279
corresponding $ \frac{6}{12} $ $ \frac{7}{a} = \frac{1}{2} \implies \frac{8}{b} = \frac{1}{2} \implies \frac{1}{2$	sides is $\frac{6}{12} = \frac{1}{2}$. = $\frac{1}{2} = \frac{7}{a} = \frac{8}{b} = \frac{5}{c} = \frac{4}{d} = \frac{9}{e}$ $a = 7 \times 2 = 14 \text{ cm}$ $b = 8 \times 2 = 16 \text{ cm}$		₀ 0
$ \begin{array}{c} b & 2 \\ \frac{5}{c} = \frac{1}{2} \implies \\ \frac{4}{d} = \frac{1}{2} \implies \\ \end{array} $	$c = 5 \times 2 = 10 \text{ cm}$ $d = 4 \times 2 = 8 \text{ cm}$	0	
$\frac{9}{e} = \frac{1}{2} \implies$	e=9×2=18cm		1

The sides of a quadrilateral are 2cm, 4cm, 6cm, and 7cm.
 The longest side of a similar quadrailateral is 21cm. Find the other sides.

Ans. The longest side of quadrilateral is 7cm. Thus, the ratio between the biggest sides $\frac{7}{21} = \frac{1}{3}$.

According to the statement the ratio between the corresponding sides is $\frac{1}{3}$.

$$\frac{1}{3} = \frac{6}{a} = \frac{5}{b} = \frac{4}{c} = \frac{2}{d}$$
Thus
$$\frac{6}{a} = \frac{1}{3} \implies a = 6 \times 3 = 18 \text{ cm} \quad \text{therefore}$$

$$\frac{5}{b} = \frac{1}{3} \implies b = 5 \times 3 = 15 \text{ cm}$$

$$\frac{4}{c} = \frac{1}{3} \implies c = 4 \times 3 = 12 \text{ cm}$$

Pilot Super One "General Math" 10th

280

$$\frac{2}{d} = \frac{1}{3} \implies d = 2 \times 3 = 6_{\text{cm}}$$

While a, b, c, d are the rest sides of quadrilateral.

6. The sides of a polygon are Sem, 2em, 7em, 3em, 4em. Find the sides of a similar polygon whose side corresponding to 2cm is 6cm. What is the ratio of the perimeters of these two polygons?

$$\frac{1}{3} = \frac{5}{a} = \frac{7}{b} = \frac{3}{c} = \frac{4}{d}$$
 thus
$$\frac{5}{a} = \frac{1}{3} \implies a = 5 \times 3 = 15 \text{ cm}$$

$$\frac{7}{b} = \frac{1}{3} \implies b = 7 \times 3 = 21 \text{ cm}$$

$$\frac{3}{c} = \frac{1}{3} \implies c = 3 \times 3 = 9 \text{ cm}$$

$$\frac{4}{c} = \frac{1}{3} \implies d = 4 \times 3 = 12$$

While a, b, c, d are the rest sides of polygon.

The perimeter of 1st polygon =
$$5 + 2 + 7 + 3 + 4$$

= 21cm

The perimeter of 2nd-polygon =
$$15 + 21 + 9 + 12 + 6$$

The ratio between the perimeter =
$$\frac{21}{63} = \frac{1}{3} + \frac{1}{1} : 3$$

7. What are the congruent pairs of corresponding sides and

Pilot Super One "General Math" 10th

281

corresponding angles?

8. Are all similar figures congruent? Explain why?

Sol: All similar figures are equal in size and shape.

Therefore, similar figures are congruent.

9. Are all congruent figures similar? Explain why?

Sol: All congruent figures have same shape but differ in size.

Therefore, congruent figures are not similar.

1. Fill in the blanks.

(a) If
$$\triangle ABC \cong \triangle FDE$$
, then

(i)
$$\overline{AB} =$$

(ii)
$$\overline{BC} = \cdot$$

(iii)
$$\overline{AC} =$$

$$(v_i)$$
 $m \angle C =$

(b) In ΔPQR , the angle included between side PR and QR is

282 Pilot Super One "General Math" 10th In , the side included between ∠E and ∠F is - (c) $\{ (\overline{AB} = \overline{QP}, m \angle B = m \angle P, \overline{BC} = \overline{PR} \}$, then by (d) condition. $\triangle ABC \cong \triangle QPR$ [f $m \angle A = m \angle R, m \angle B = m \angle P, \overline{AB} = \overline{RP}$ (hen by (e) _____ congruence condition. $\Delta ABC \approx \Delta RPQ$ Answers: (a) $\overline{BC} \cong \overline{DE}$ $\overline{AB} \cong \overline{FD}$ (ii)(i) $\overline{AC} \cong \overline{FE}$ $\angle A \cong \angle F$ (iv)(iii) $\angle C \cong \angle E$ $\angle B \cong \angle D$ (vi)(v) mid angle $\angle R$ **(b)** mid side \overline{FE} (c) $m \angle A = m \angle R$ (d) $m \angle B = m \angle P$ $\overline{AB} = \overline{RP}$ $\triangle ABC = \triangle RPQ$

Pilot Super One "General Math" 10th

283

2. In figure, the pairs of corresponding equal parts in a pair of triangles are shown with similar markings. Specify the two triangles which become congruent. Also, write the congruence of two triangles in symbolic form.

Sol:

(i)
$$\triangle ABC = \triangle DEF = SSS = SSS$$

3. In figure, ABC and DBC are two triangles on a common base \overline{BC} such that $\overline{AB} = \overline{DC}$ and , where A and D lie on the same side of BC. In $\triangle ADB$ and $\triangle DAC$, state the corresponding parts so that $\triangle ADB = \triangle DAC$.

Which condition do you use to establish the congruence?

Pilot Super One "General Math" 10th

284

If
$$m \angle DCA = 40^{\circ}$$
 and $m \angle BAD = 100^{\circ}$.

Find ZADB

Sol: Now AABC and ADBC

common
$$\overline{BC} \cong \overline{BC}$$
given $\begin{cases} \overline{AB} \cong \overline{DC} \\ \overline{AC} \cong \overline{DB} \end{cases}$

Now AADB and ADAC

$$\overline{DA} \cong \overline{AD}$$

$$\overline{DB} \approx \overline{AC}$$

$$\overline{BA} \cong \overline{CD}$$

 $\Delta ADB \cong \Delta DAC$

$$m\angle DCA = 40^{\circ}$$
 now

$$m\angle BAD = 100^{\circ}$$
 and

$$m\angle ABD = 40^{\circ}$$
 therefore

$$m \angle ADB = 180^{\circ} - 100^{\circ} - 40^{\circ}$$

$$= 180^{\circ} - 140^{\circ}$$

= 40°

4.				uh= 10d			285
. ".	iaci	atrith fi	vollol 91	ring fig	gure as co	ingruent, si	milar or
	nciti	ет.					
		Δ			; ; ; ; ;		
Sol:	(i)	conj	gruent	(ii)	congru		
	(iii)		gruent	(")	congru	cni	
			_				
_		ne is si					
5.	Ident	ify the	correspor	iding pa	uts in AM	NO and AP	QR
(i)	MN	↔		¥	-	Q	•
(ii)	NO			- }	λ	Δ	-
(iii)	PR	↔		ſ			
(iv)	⊿	↔			\	\perp	
				l,	λ.	1)	
			•	H.	730	٧٧	7*
Answ							
(i)	MN	(+)	\overrightarrow{PQ}				
(ii),	NO	\leftrightarrow	\overline{QR}				
(Ni)	\overline{PR}	\leftrightarrow	MO				•
(N)	Z 1	\leftrightarrow	~ ∠4				

Pilot Super One "General Math" 10th

286

A quadrilateral is a polygon with four sides.

Parallelogram:

A parallelogram is a quadrilateral with two pairs of parallel sides.

Rectangle

A rectangle is a parallelogram containing a right angle.

Square

A square is an equilateral rectangle.

Properties of Congruency

Four Sides of a Square are Equal

ABCD is a square. Measure \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} and \overrightarrow{DA} We

find that.

Pilot Super One "General Math" 10th

287

 $\overline{mAB} = \overline{mBC} = \overline{mCD} = \overline{mDA} = 2.8$ cm.

Four Angles of a Square are Right Angles

ABCD is a square. Measure angle A, B, C, D with

protractor. We find that

 $m \angle A = m \angle B \neq m \angle C = m \angle D = 90'$

Diagonals of a Square Bisect Each Other:

Consider a square ABCD, the diagonals and intersect at

'O'. We find that

$$m\overline{OA} = m\overline{OC} = 1.9cm \text{ and}$$

$$m\overline{OB} = m\overline{OD} = 1.9cm$$

7.5.2 Opposite Sides of a Rectangle are Equal

Consider Rectangle

Pilot Super One "General Math" 10th

288

Let us consider a rectangle ABCD.

 \overrightarrow{AB} , \overrightarrow{CD} and \overrightarrow{AD} , \overrightarrow{BC} are opposite pairs of rectangle ABCD.

We find that $m\overline{AB} = m\overline{CD} = 4.5cm$ and

$$m\overline{AD} = m\overline{BC} = 2.8cm$$

$$m\overline{AB} = m\overline{DC}$$
 (i)

$$\int_{-m}^{\infty} \overline{AD} = m\overline{BD} \text{ and } .$$

$$m\angle A = m\angle B = m\angle C = m\angle D = 90\%$$
 (ii)

mOB = mOD mOA = mOC = mOB = mOD

Properties of Parallelogram

The opposite sides of a parallelogram are equal. ABCD is a parallelogram. $\overline{AB},\overline{CD}$ and $\overline{AD},\overline{BC}$ are pairs of opposite sides.

We find that

$$m\overline{AB} = m\overline{CD} = 3.9cm$$
 and

$$m\overline{AD} = m\overline{BC} = 2.0cm$$

PI

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 27 of 34)

Pilot Super One "General Math" 10th

289

The opposite angles of a parallelogram are equal.

ABCD is a parallelogram. $\angle A , \angle C$ and $\angle B , \angle D$ are pairs of opposite angles.

We find that

$$m\angle A = m\angle C = 70^{\circ}$$
 and

$$m \angle B = m \angle D = 110^{\circ}$$

The diagonals of a parallelogram bisect each other.

A parallelogram *ABCD*, the diagonals \overline{AC} and \overline{BD}

intersect at O. We find that

$$m\overline{OA} = m\overline{OC} = 2.5cm$$

and $m\overrightarrow{OD} = m\overrightarrow{OB} = 2.5cm$

Pilot S	uper One "General Math" 10th 290	
t.	Fill in the blanks:	
(i)	A parallelogram that contains a right angle is	
(ii)	An equilateral rectangle is a	
(iii)	A polygon with four sides is a	
(iv)	The diagonals of a parallelogram each other.	
(v)	The opposite angles of a parallelogram are	
Ansn	er:	
(i)	Rectangle (ii) Square (iii) Quadrilateral	
(iv)	Bisect (v) Congruent	
a pi	tele is the set of points in the plane.	
pom	Centre	
	The fixed point C is called the centre of the circle.	
	Radiul Segment	
	P is any point on the circumference of the circle with	
	centre O . \overrightarrow{OP} is called the radial segment of the circle.	

Radius

Pilot Super One "General Math" 10th A radius of a circle is the length of a segment joining the

> centre to any point on the circle. In the given figure is $m\overline{CP}$ the radius. Usually represented by Y.

291

Chord

A chord of a circle is a segment connecting any two points on the circle. In the given figure \overline{AB} is a chord.

Segment of a Circle

A chord \overline{AB} of a circle divides the circle in two parts.

These are called segment of the circle.

Minor Segment

The included area between minor are and the chord is minor segment.

Major Segment

The included area between major are and chord is called major segment.

Diameter

A diameter of a circle is a chord that passes through the . centre. The length of a diameter of a circle is twice the length of the radius of the same circle.

Pilot Super One "General Math" 10th

292

 $Diameter = 2 \times rachus$

Equal Circles

Equal circles are circles having equal radii or equal diameter

Sector

A sector is the circular region bounded by an arc of a circle and its two corresponding radial segments is called a sector of the circle. In the figure, region AOB is the sector of the circle with centre at O.

Secant

A secant is a line which intersects a circle in two points.

Pilot Super One "General Math" 10th

293

A tangent to a circle is the line perpendicular to radius of the circle at its outer extremity.

The point on the circle at which the radius and tangent meet is known as the Point of Contant or Point of Tangency.

Angle in a Semi-Circle is a Right Angle

- 1- Draw a line-segment \overline{AB} of any length. Mark the midpoint of \overline{AB} as O.
- 2- Draw a semi-circle on \overline{AB} with radius \overline{OA} .
- 3- Take any point C on the semi-circle, Join A with C and B with C.

Thus, $\angle ACB$ is an angle in the semi-circle APB.

4- Now take a protractor and place it along \overline{AC} so that the centre of the protractor falls on C.

We note that the measure of the $\angle ACB$ by looking at the marking on the protractor corresponding to arm \overline{CB} of $m \angle ACB$ is of 90° , i.e $m \angle ACB = 90^{\circ}$ or a right angle. Thus, angle in a semi-circle is a right angle.

Angles in the Same Segment are Faual:

Draw a circle with centre 'O'. Take two points B and C on the circle and join them. \overline{BC} divides the circle into two parts.

Draw angles, $\angle BAC$ and $\angle BDC$ in the same segment as shown in the figure. Take a sheet of tracing paper and

Pilot Super One "General Math" 10th

294

make a trace copy of $\angle BAC$. Place the trace copy of $\angle BAC$ on $\angle BBC$.

A falls on D and \overline{AB} falls on \overline{DC} .

So that we observe that \overline{BD} falls on \overline{AC} . Thus $\angle BAC = \angle BDC$, this shows that angles in the same segment are equal.

Central Angle

The central angle of a minor are of a circle is double that the angle subtended by corresponding major are.

 $m \angle AOB = m2\angle ACB$

1-	Fill in 1	he blanks:		
			noints W	hose distance from a
(1)		same is called		
(it)				ele from its centre is c
(11)	THE GIS	nance or a poor	., .,, .	
1443	<u>-</u> A lina i	zamom whose	end poi	us lie on the circle is c
(iii)	A line:	eguziii wikise	Tanta poin	
(iv)	A chor	d that passes	through	the centre of the circ
` '				
(v)	Halfoi	a circle is call	ed be	_
(vi)	An arc	which is greate	er than a	semicirele is called
(vii)	One at	nd only one cit	rele can i	be constructed with a p
	centre	and given	<u>_</u> .	
(viii)	A regi	on bounded by	an arc a	nd two of its radial segu
	is calle	ad		
(ix)	A strai	ight line that in	tersects a	circle at two points is c
(x)	Angle	m a semi-circle	c is a	
Алян	_			
	(i)	circle	(ii)	radius
	(iii)	chord	(iv)	diameter
	(v)	semicircle	(vi)	major arc
	(vii)	radius	(viii)	sector
	(ix)	secant line	(x)	right angle

Paint Super One "General Math" 10th

302

Q.1. Draw a triangle ABC in which mBC = 5.4cm,

mAB = 4.3cm and mAC = 3.9cm. Find the in centre

Sol.

Steps of Construction:

- (i) Draw a fine segment $\overline{BC} = 5.4cm$
- (ii) With B as centre draw an arc of radius 4.3 cm.
- (iii) With C as centre draw an are of radius 3.9cm which intersect the first are at A
- (iv) Join A with B and C.ABC is the required triangle.
- (v) Draw perpendicular bisectors LM and PQ of the sides \overrightarrow{AB} and \overrightarrow{BC} which intersect each other at Q.

Point O is the required incentre.

Pilot	Super Or	ne "General Math" 10th 301	
	UN 8	Practical 1 Geometri	
	▶	Construction of a Triangle	
		Construction of a Quadrilateral	
	46	Tangent to a Circle	
		completing of this unit, the students will be able to:	
\mathbf{c}		uct a triangle having: ides and the included angle.	
))		ide and two of the angles.	
C		of its sides and angle opposite to one of them with all	
	the th	ree possibilities).	
-	Draw:	-	
)	Angle	bisectors. O Altitudes.	
3	Media	ins of a given triangle and verify their concourrency.	
•	Const	ruct a rectangle when:	
	Ŏ	Two sides are given.	
	0	Diagonal and one side are given.	
	Const	ruct a square when its diagonal is given.	
	Consu	ruct a parallelogram when two adjacent sides and the	
	locata	included between them is given.	
	draw :	the centre of given circle.	
	роіліs.	a circle passing through three given non-collinear	
•		tangent to a given circle from a point P when P lies.	
	0	On the circumference,	
	O	Outside the circle.	
•	Draw:		
	0	Direct common tangent or external tangent.	
	0	Transverse common tangent or internal tangent to	
		two equal circles.	
	Draw a	langent to:	
	•	Two unequal touching circles.	
	0	Two unequal intersecting circles.	

Pilot Super One "General Math" 10th

303

Q.2. Construct a ABC in which mBC = 4.6cm $\angle B = 110^\circ$ and mAB = 5cm. Draw the perpendicular bisectors of its sides.

Sol.

Steps of Construction:

- (i) Draw a line segment \overline{AB} = 5cm.
- (ii) At point B, draw an angle 110° with the help of compasses

(iii) Cut
$$m\overline{BC} = 4.6cm$$
 at BP

(iv) Join "C" with A. ABC is the required triangle.

Pilot Super One "General Math" 10th

304

Q.3. Draw a equilateal ABC in which

$$\overline{mAB} = m\overline{BC} = m\overline{AC} = 5cm$$
. Draw its altitudes and

measure their lengths are they equal?

Sol.

Steps of Construction:

- (i) Draw a line segment $m\overline{BC} = 5cm$.
- (ii) Draw arcs of radius 5cm with taking centre B and C, which intersect eachother at A.
- (iii) Loin A with B and C.

ABC is the required equilateral.

 $AB \perp BC$, $BQ \perp CA$ and $AB \perp CR$

And

$$(v) m\overline{AP} = m\overline{BC} = m\overline{CR} = 4.2cm$$

All the altitudes are equal in lengths.

Pilot Super One "General Math" 10th

305

Q.4. Construct a \triangle ABC in which $m\overline{BC} = 5.4cm$, $\angle B = 65^{\circ}$ and $m\angle C = 55^{\circ}$. Find the centroid of the triangle.

Sol.

Steps of Construction:

- Draw a line segment BC 5.4cm.
- (ii) Now draw an angle of 65° at point B & 55° at point C. BP and CQ intersect eachother at point A.
- (iii) ABC is the required triangle.
- (iv) M and N are the mid points of \overline{BC} and \overline{AC} .
- (v) \overline{AM} and \overline{BN} are the medians which intersect eachother at point G.

Thus point "G" is the required centroid of triangle.

Pilot Super One "General Math" 10th

306

Q.5. Draw an equilateral triangle each of whose sides is

Sol.

Steps of Construction:

- (i) Draw a line segment \overline{BC} 5.3cm.
- (ii) Taking B and C as centre draw two ares which intersect eachother at point A.
- (iii) Join point A with B and C.ABC is the required equilateral.
- (iv) Draw medians of sides \overline{AB} , \overline{CA} , \overline{BC} at points P, Q & R.
- (v) Join A with P, B with Q and C with R.
 AP, BQ, CR are the required medians.
- (vi) $m\overline{AP} = m\overline{BQ} = m\overline{CR} = 4.5cm$

So that the medians are equal in lengths.

Pitot Super One "General Math" 10th

307

Q.6. Draw an equilateral triangle with length of each ode 6cm.

Sol.

Steps of Construction:

- (i) Draw a line segment $\overline{AB} = 6$ cm.
- (ii) Taking A and B as centre draw two arcs of radius 6cm each. They intersect eachother at point C
- (iii) Join point C with A and B

 ABC is the required equilateral
- Q.7. Construct a triangle ABC with base length 5cm and the angles at both ends of the base are 45° and 60° respectively.

Sol.

Pilot Super One "General Math" 10th

308

Steps of Construction:

- (i) Draw a line segment $\overline{AB} = Scin.$
- (ii) Draw $m \angle BAP 60^{\circ}$ at point A.
- (iii) Draw an angle $m\angle ABQ = 45^{\circ\prime}$ at point B.
- (iv) $A\vec{P}$ and $B\vec{Q}$ intersect eachother at point C.

 ABC is the required triangle.
- Q.8. Draw an isosceles triangle with length of the equal sides 5cm and the angle included between them is 60°.

Sol.

I

Steps of Construction:

- (i) Draw a line segment $\overline{BC} = 5cm$.
- (ii) At point B, draw $m\angle ABC = 60^{\prime\prime}$ using compasses.
- (iii) Cut $m\overline{BA} = 5cm$.
- (iv) Join point A with C.

ABC is the required isosceles.

Pilot Super One "General Math" 10th

309

Q.9. Construct a rectangle whose adjacent sides are 4cm and 3cm.

Steps of Construction:

- (i) Draw a line segment $\overline{AB} = 4cm$.
- (ii) At points A and B, draw right angles with the help of compasses.
- (iii) Cut mAD = mBC = 3cm.

Join point C with D.

ABCD is the required rectangle

Pilot Super One "General Math" 10th

310

Q.10. Construct a rectangle whose one side is 6cm and an adjacent diagonal of 9cm.

Sol.

- (i) Draw a line segment $\overline{AB} = 6cm$.
- (ii) Draw right angle at points A and B.
- (iii) Taking centre as A draw on arc of radius 9cm which intersect Bl^{j} at C.
- (iv) $Cut mBC, m\overline{AD}$ at AQ.
- (v) Join point C with D.ABCD is the required rectangle.

Pilot Super One "General Math" 10th

311

Q.11. Construct a square whose one side is 5cm.

Sol.

Steps of Construction:

- (i) Draw a line segment $\overline{AB} = 5cm$.
- (ii) At points A and B, draw right angle with the help of compesses.

Cut $m\overline{BC} = m\overline{AD} = 5cm$ at \overline{AQ} and \overline{BP} .

Join C with D

ABCD is the required square.

Pina

Pilot Super One "General Math" 10th

312

Q.12. Construct a square whose one side is 3.5em,

Sol.

Steps of Construction:

- (i) Draw a line segment $\overline{AB} = 3.5cm$.
- (ii) At points A and B, draw right angle with the help of compasses.
- (iii) Cut $m\overline{BC} = m\overline{AD} = 3.5cm$ at \overline{AQ} and \overline{BR} .
- (iv) Join C with D.

ABCD is the required square.

Pilot Super One "General Math" 10th

313

Q.13. Construct a rectangle whose two adjacent sides

measure 5cm and 4cm and their included angle is 90° .

Sol.

Steps of Construction:

- (i) Draw a line segment $\overrightarrow{AB} = Scm$.
- (ii) At point A, draw right angle with the help of compasses.
- (iii) Cut $\overrightarrow{mBC} = \overrightarrow{mAD} = 4cm$ at \overrightarrow{AR} and \overrightarrow{BP} .
- (iv) Join C with D.

ABCD is the required rectangle.

Pilot Super One "General Math" 10th

313

Q.13. Construct a rectangle whose two adjacent sides

measure 5cm and 4cm and their included angle is 90°.

Sol.

Steps of Construction:

- (i) Draw a line segment $\frac{r_t}{AB} = 5cm$.
- (ii) At point A, draw right angle with the help of compasses.
- (iii) Cut $m\overrightarrow{BC} = m\overrightarrow{AD} = 4cm$ at \overrightarrow{AR} and \overrightarrow{BP} .
- (iv) Join C with D.

ABCD is the required rectangle.

Pilot Super One "General Math" 10th

314

Q.14. Draw a rectangle whose one side is 8cm and the length of each diagonal is 10cm.

Sol.

- (i) Draw a line segment $\overline{AR} = 6cm$.
- (ii) At point A and B, draw right angle with the help of compasses.
- (iii) Draw an arc of radius 10cm with taking centre point "A" which intersect \overline{BP} at point C.
- (iv) Now, draw an arc of radius cm again with taking centre at point B. Which intersect \overline{AQ} at point D.
- (v) Joint point C with D.ABCD is the required rectangle.

Pilot Super One "General Math" 10th

315

Q.15. Draw a rectangle ABCD in which mAB = 6.5 cm and $m \overline{4D} = 4.8 \,\mathrm{cm}$ and $m \angle B \, 4D = 90^{\circ}$. Measure its diagonals.

Sol.

 $m\overrightarrow{AC} = m\overrightarrow{BD} = 8.1cm$

- Draw a line segment $\overline{AB} = 6.5$ cm. (i)
- (ii) At point A and B, draw right angle with the help of compasses.
- Intersect $m\overline{BC} = m\overline{AD} = 4.8cm$ at \overline{AP} and \overline{BQ} . (iii)
- Join C with D. (iv)
- ABCD is the required rectangle. (v)

Pilot Super One "General Math* 10th

316

Q.16. Name the following quadrilaterals when:

	Questions	Answers
(1)	The diagonals are equal and the adjacent sides are unequal	Rectangle
(11)	The dragonals are equal and the adjacent sides are equal	Square
(m)	All the sides are equal and one angle is 90°	Square
(tv)	All the angles are equal and the adjacent sides are unequal	Rectangle

Q.17. Construct a rectangle with sides 10cm and 6cm.

Sol

- (i) Draw a line segment $\overline{AB} = 10cm$.
- (ii) At point A and B, draw right angle with the help of compasses/
- (iii) Intersect $m\overline{BC} = m\overline{AD} = 6cm$ at \overline{AQ} and \overline{BP} .
- (iv) Join C with D.ABCD is the required rectangle.

Pilot Super One "General Math" 10th

317

Q.18. Construct a square with side of length 6cm.

Sol.

Steps of Construction:

- (i) Draw a line segment $\overline{AB} = 6$ cm.
- (ii) Points A and B, draw right angle with the help of compasses.
- (iii) Cut $\overline{AP} = B\vec{R} = 6$ cm at AD and $B\vec{C}$.
- (iv) Join C with D.ABCD is the required square.

Q.19. Name the following triangles.

Questions	Answers
(1) With all the three sides equal in length.	Equilateral triangle
(ii) With two sides equal in length.	Isosceles triangle
(iii) None of the sides is equal to the other.	Scalene triangle

Pilot Super One "General Math" 40th

318

Q.20. Draw a circle with centre O and radius 5cm. Explain

the steps necessary to draw a regiment of the circle.

Sol.

Steps of Construction:

- (i) Take any point O.
- (ii) Taking centre with "O", draw an arc of radius 5cm.
- (iii) Now, take any diameter \overline{PQ} .

Conclusions: \overline{PQ} has divided the circle into two parts. The major segment part and minor segment part.

Pilot Super One "General Math" 10th

319

Q.21. Draw a circle with center O and any radius. Draw the diameter AB and shade one semicircular region.

Sal,

Steps of Construction:

- (i) Take any point O.
- (ii) With taking "O" as centre, draw a circle with suitable radius
- (iii) Draw \overline{AOB} as diameter.

Conclusion: The circle has divided into two parts. Now, shaded the half part.

Pilot Super One "General Math" 10th

320

Q.22. Show four angles in a semi-circular region of question 21.

Sol.

Steps of Construction:

- (i) Draw a circle with suitable radius and marks its centre as"O".
- (ii) Draw a diameter \overline{AOB} .
- (iii) Take a point C, D, E, F at half curved area.
- (iv) Join these points with A and B.

Conclusion: ∠4CB, ∠ADB, ∠AEB, ∠AFB are the required four angles.

Pilot Super One "General Math" 10th

321

Q.23. Draw a circle of radius 2cm with center O, Draw a chrod and shade the portion showing major arc.

Sol.

Steps of Construction:

- (i) Take any point O.
- (ii) With taking "O" as centre, draw a circle with radius 2cm.
- (iii) Take \overrightarrow{AB} as chord.

Thus, \widehat{ACB} is the major arc.

(iv) In figure \widehat{ACB} (major arc) is quite prominent.

Pdot Super One "General Math" 10th

322

Q.24. Draw a circle of radius 2 5cm with center at O. Draw a chief and shade the portion showing the minor are of the circle.

Sol.

Steps of Construction;

- (i) Take any point "O".
- (ii) With taking "O" as centre, draw a circle with radius 2.5cm
- (iii) Draw \overline{AB} as chord.
- (iv) The major are \widehat{ACB} is quite prominent in the figure.
- ().25. Draw a semi-circle with diameter 4cm and center at O.

Sol.

Pilot Super One "General Math" 10th

323

Steps of Construction:

- (i) Draw a line segment $\overrightarrow{AB} = 4cm$.
- (ii) Now take "O" as centre, draw a semi-circle with radius $m\overline{AO}$ or $m\overline{OB}$.
- (iii) With taking "O" as centre $m\overline{OA}$ or $m\overline{OB}$.
- (iv) ACB is the required semi-circle.
- Q.26. Draw a circle passing through the vertices of a square of side 3cm.

Sol.

Steps of Construction:

- (i) Draw a fine segment $\overline{AB} = 3$ cm.
- (ii) At points A and B, draw right angles at each $(C m\overline{AD}) = m\overline{BC} = 3cm$
- (iii) Join C with D.
- (iv) Draw two diagonals \overline{AC} and \overline{BD} which intersect eachother at O.
 - (v) Taking "O" as centre, draw a circle with radius $m\overline{OB}$ or $m\overline{OA}$ or $m\overline{OC}$ or $m\overline{OD}$.

Pilot Super One "General Math" 10th

324

Q.27. In a right triangle ABC, $m\overline{AB} = 3cm$ and $m\overline{BC} = 4cm$ with right angle at B. Draw a circle through A, B and C.

Sol.

Steps of Construction:

- (i) Draw a line segment $\overline{AB} = 3cm$.
- (ii) At point B, draw right angle with the help of compasses.
- (iii) Cut $m\overline{BC} = 4cm$.
- (iv) Join C with A.ABC is the required triangle.
- (v) Now, draw perpendicular bisector of sides \overline{AB} and \overline{BC} which cut eachother at point "O".
- (vi) With taking "O" as centre draw a circle with radius $m\overline{OB}$ or $m\overline{OC}$ or $m\overline{OA}$ respectively.

Conclusion: The circle is passing through the vertices (A, B and C)

Pilot Super One "General Math" 10th

325

Q.28. Draw a circle passing through the three vertices of an equilateral triangle with length of each side 4cm.

Sol.

Steps of Construction:

- (i) Draw a line segment $\sqrt{AB} = 4cm$
- (ii) Taking A and B as centre, draw two arcs of radius 4 cm each. They intersect eachother at point "C".
- (iii) Join C with points A and B.ABC is the equilateral triangle.
- (iv) Now, draw a perpendicular bisectors \overline{RT} and \overline{PQ} of sides \overline{AB} and \overline{BC} respectively.

 They meet eachother at point "O".
- (v) With taking "O" as centre, draw a circle with radius $m\overline{OC}$ or $m\overline{OA}$ or $m\overline{OB}$ respectively.
- Conclusion: The circle is passing through the vertices (A, B, C) of triangle.

Pito	CSuper C	one "General Math"	Qth	326
	_	ार्टन्य हैं स	रेशक	71.5
<i>I</i> -	Enci	te the correct ans	HVCF2	
I-	The	number of median	k in = 1	Iriangle is:
	(a)	I	(b)	2
	(c)	3	(d)	4
2-	The	mher of altitude	es in a	triangle is:
	4.0	!	(b)	2 ()
	(c)	1	(d)	, O
3-	The	number of angle b	isector	s in a triangle is:
	(a)	1	(b)	And i
	(c)	1	(d)	4 -
4-	7 hc	n umber perpendic	ular bi	isectors of the side of a
	trian	igle is:		
	(a)	1	(p)	2
	(c)	ì	(d)	4
5-	The	angle bisectors of a	a triang	,-
	(a)	concurrent	(b)	collinear
	(c)	perpendicular	(d)	non-concurrent
6-	The	medians of a trian;	-	
	(a)	concurrent	(b)	collinear
	(c)	non-concurrent	(d)	4
7-	The :	altitudes of a trian		
,	(a)	concurrent	(b)	collinear
	(c)	non-collinear	(d)	5
8-	A lin	e joining one verte	ex of a	triangle to the mid point
	of its	opposite sides is c	alled:	
	(a)	angle bisector	(b)	altitude
	(c)	median	(d)	side bisector

9-	A line joining one vertex of a triangle and									
	perpendicular to its opposite side is called:									
	(a) angle bisector (b) median									
	(c)	i	altitude		(d)	Si	de	hisector	г	
10-	A line coplanar with a circle and intersecting the circle									
	at one point only is called:									
	(a)	(a) tangent line			(b)	median				
	(c)	1	altitude		(d)	П	ОП	nal line		
4nsu	Pers:									
Ī-	(c)	Γ	2- (c)	T	3- (c)	4		(c)	5-	(a)
(h-	(a)	1	7- (a)	†	8- (c)	9	_	(c)	10	
 -	4	n t	he blanks	<u>. </u>				T 4-1		
۱-					angle are	ι.				
? -	The	T)LY	lians of a	tris	ingle are					
J _		The medians of a triangle are								
 _		_			_	_			_	rianole
	The perpendicular bisector of the three sides of a triangle are									
5-		The line joining ene vertex of a triangle and perpendicular								
					called					
5 -					ertex of s					
					illed					-
1.					ungle of a tr				-	
							•••	io curiço	1111	•
5.	Even	y tri	iangle has	i		altii	tud	es		
). .						me				
lO-										
				_		6.		13441013		
1nsu				_						Jan 2000
I- ar	nament		inunet	3-	concurrent	4-	00	ncurrent	5-	altitude
6- Juie	edian	7-	angle	8-	three	9-	փ	rce	10	three
			bisector				1			I

- Find the third side of each right triangle with legs a and I. b and hypotenuse c.
- a=3, b=4, c=?(i)

- (ii) a = 5, c = 13, b = ?
- (iii) h = 5, c = 61, a = ?

Solution:

- a = 3(i)
 - h = 4
 - c = ?
 - $c^2 = a^2 + b^2$

By Pythagoras theorem

 $c^2 = (3)^2 + (4)^2$ Putting values of a, b

لا مدارو	oper One "General Math" 10th	
-		331
	. 9+16	
	C 25	
	$\sqrt{25}$ Take	ing square root
	c=3	
(11)	a = 5, $c = 13$, $b = 6$	- ?
		oras theorem
	$c^2 = a^2 + h^2$	
	$b^2 - c^2 - a^2$	ox
	Putting va	lucs of a, c
	$h^2 = (13)^2 - (5)^2$	
	$h^2 = 169 - 25$	
	$h^2 = 144$	
	$\sqrt{M} = \sqrt{144}$ Takin	ng square root
	h=12	
(iii)	b = 5 .	
	c = 61	
	a = ?	
	By Pytha	goras theorem
	$c^2 = a^2 + b^2$	
	$a^2 = c^2 - b^2 \qquad \text{the}$	erefore

Pilot Super One "General Math" 10th

332

Putting values of b, c

$$a^2 = (61)^2 - (5)^2$$

$$a^2 = 3721 - 25$$

$$a^2 = 3696$$
 Taking square root

$$\sqrt{a} = \sqrt{16 \times 231}$$

$$\boxed{a - 4\sqrt{231}}$$

2 If the legs of a right triangle are 2ab and $a^2 = b^2$, prove that hypotenuse is $a^2 + b^2$.

أدوا

$$2mt \text{ side} = a^2 - b^2$$

By Pythagoras theorem

$$O(\rho atenuse)^t = (2ab)^t + (a^t + b^t)^2$$

Open now =
$$\sqrt{(a'+b')^2 + (2ab)}$$

= $\sqrt{a'+b'+2a'b'+3a'b'}$

Pilot Super One "General Math" 10th

333

$$= \sqrt{a^{2} + b^{3} + 2a^{2}b^{2}}$$
$$= \sqrt{(a^{2} + b^{2})^{2}}$$

Hypotenuse = $(a^2 + b^2)$

3, Find the hypotenuse of the right isosceles triangle each of whose legs is I.

Sol:

$$m\overline{AC} = A$$

$$m\overline{BC} = ?$$

By Pythagoras theorem

By Pythagoras theorem
$$(m\overline{AB})^2 = (m\overline{AC})^2 + (m\overline{BC})^2$$

$$= l^2 + l^2$$

$$= 2l^2$$

$$\sqrt{m\overline{AB}^2} = \sqrt{2}l^2$$
Taking square root
$$m\overline{AB} = \sqrt{2}l \text{ units}$$

Pilot Super One "General Math" 10th

334

 Find the hypotenuse of a right isosceles triangle whose legs are 8cm

Sol:

here

By Pythagoras theorem

Putting values of a, b

$$c^2 = (8)^2 + (8)^2$$

$$\epsilon^2 = 128$$

Taking square root

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 5 of 34)

Pilot Super One "General Math" 10th

335

- 5. If the numbers represent the lengths of the sides of a triangle, which triangles are right triangles?
- (i) 3, 4, 5
- (ii) 9, 17, 25
- (iii) 11, 61, 60

Sol: Length of sides 3, 4, 5

We observer that, is the square of big side equal or not equal the square of the other to sides? Then these sides will be right angle Δ otherwise not.

$$(5)^{2} = 25$$

$$(3)^{2} + (4)^{2}$$

$$= 9 + 16$$

$$= 25$$

These sides are sides of right angle Δ .

(ii)

$$(25)^{2} | (9)^{2} + (17)^{2} |$$

$$= 625 | = 81 + 289 |$$

$$= 370 |$$

$$625 \neq 370 |$$

Sides 9, 17, 25 are not the sides of right angle triangle.

(iii)

$$(61)^{2} \qquad (11)^{2} + (60)^{2}$$

$$= 3721 \qquad = 121 + 3600$$

$$= 3721$$

Sides 11, 61, 60 are the sides of right angle triangle.

Pilot Super One "General Math" 10th

336

6. $\triangle ABC$ is right angled at C If $m\overline{AC} = 9cm$ and mBC = 12cm, find the length \overline{AB} , using Pythagoras theorem

Sol In A/BC

$$b = 9 cm$$

$$c = ?$$

By Pythagoras theorem

$$c^2 = a^2 + b^2$$

Putting values of a, b

$$c^2 = (12)^2 + (9)^2$$

$$= 144 + 81$$

$$c^2 = 225$$

$$\sqrt{c^2} = \sqrt{225}$$

Taking square root

$$c = 15$$
 car

Pilot Super One "General Math" 10th

337

7. The hypotenuse of a right triangle is 25cm. If one of the sides are of length 24cm, find the length of the other side.
Sol:

$$c \approx 25 \text{ cm}$$

here

$$b = 24 \text{ cm}$$

$$a = ?$$

By Pythagors theorem

$$c^2 = a^2 + b^2$$

$$a^2 = c^2 - b^2$$

Οſ

Putting values of b. c

$$a^2 = (25)^2 - (24)^2$$

$$= 625 - 576$$

$$a^2 = 49$$

$$\sqrt{a^2} = \sqrt{49}$$

Taking square root

$$a = 7cm$$

Pilot Super One "General Math" 10th

338

8. A ladder 17m long when set against the walt of a house just reaches a window at a height of 15m from the ground. How far is the lower end of the ladder from the base of the wall?

Sol:

Lower end of the ladder from the wall = a

$$b = 15m$$

here

c = 17m

$$a = 7$$

By Pythagoras theorem

$$a^2 = c^2 - b^2$$

Putting values of c, b

$$a^2 = (17)^2 - (15)^2$$

$$a^2 = 64$$

$$\sqrt{a^2} = \sqrt{64}$$
 Taking square root

a=8 m

Pilot Super One "General Math" 10th

339

9. The two legs of a right triangle are equal and the square of the hypotenuse is 50. Find the length of each leg.
Sol:

$$c = 50$$

here

$$a = b$$

By Pythagoras theorem

$$c^2 = a^2 + b^2$$

$$c^2 = a^2 + a^2$$

(a=b)

$$c^2 = 2a^2$$

$$2a^2 = c^2$$

OF

Putting values of c^2

$$2a^2 = (50)^2$$

$$a^2=\frac{2500}{2}$$

$$a^2 = 1250$$

$$\sqrt{a^2} = \sqrt{1250}$$

taking square root

$$a = \sqrt{625 \times 2}$$

$$a = 25\sqrt{2}$$

Pilot Super One "General Math" 10th

340

Length of each side = 25\sqrt{2} units

10. The sides of a triangle are 15cm, 36cm and 39cm. Show that it is a right angled triangle.

Sol:

The length of big side = 39 cm

The length of small side = 15cm, 36cm

(Lengths of big side) $^2 = (39)^2$

- 152 L (i)

The sum of the square of small sides = $(15)^2 + (36)^2$

= 225 + 1296

Now its prove that = 1521

(ii)

These lengths are the lengths of right angle triangle.

The surface inside the boundary of a shape is called area. We see that, is the big side of square equal or not equal the square of the other two sides? Then these sides will be sides of right angle triangle otherwise not.

Area of a Triangle when all the three sides are given

A triangle ABC with sides a, b, c and

$$2S = a+b+c \implies S = \frac{a+b+c}{2},$$

where 'S' is half the perimeter of a triangle.

Then area of any triangle is $A = \sqrt{S(S-a)(S-b)(S-c)}$

This is called Hero's Formula for finding the area of a triangle.

Pilot Super One "General Math" 10th 341

 A verandah 40m long. 15m wide is to be paved with stones each measuring 6cm by 5cm. Find the number of stones.

Sol Length of verandah = 40m

Width of verandah = 15m

Area of veranda = 40 × 15

= 600 sq. m

Area of one stone = 6 × 5

Now

Number of stones $= \frac{30 \text{ sq. m}}{Total \text{ area}}$ $= \frac{30 \text{ sq. m}}{area of \text{ one stone}}$ $= \frac{600}{30}$

Number of stones = 20 tiles

2. How many tiles of 40cm² will be required to pave the footpath 1m wide carried round the outside of a grassy plot 28m by 18m?

Sol: Tiles fixed round the out side of a plot therefore,

External length = 28 + 1 + 1

Pilot Super One "General Math? 10th

342

- 30 m

External width = 18 + 1 - 1

= 20 m

Area of plot with path = 30 × 20

= 600 sq m

The area of plot $= 28 \times 18$

= 504 sq m

Area of path = 600 - 504

= 96 sq m

Area of one tile= 40 sq. m.

Number of Mese Area of Path area of one tile

40

100×100

49 49 × 100 × 104

Number of tiles= 24000

Find the area of a room 5.49m long and 3.87m wide. What is the cost of carpeting the room if the rate of carpet is Rs. 10.50 per $m^{2\alpha}$

Sol

Length of room = 5 49m

Width of room = 3.87m

Area of room = Length * Width

oe.com

Pilot Super One "General Math" 10th

343

 -549×3.87

= 21,2463 sq. m

Cost of carpeting one square m = Rs. 10 50

Cost of carpeting 21,2463 sq m= 10 50 × 21,2463

= 223.08615

Cost of carpeting = Rs. 223 Approx

4. The area of a rectangular rice field is 2.5 hectares and its sides are in the ratio 3 : 2. Find the perimeter of the field

Area of field = 2.5 hectares

Area of field = 25000 sq m

Length of filed = 3x m

Width of field $= 2x \, m$ and

Area = $3x \times 2x$

() Area≠6x² sq.m.

fram (i) and (ii)

$$6x^2 = 25000$$

$$x^2 = \frac{25000}{6}$$

 $x^2 = 4166.67$ Taking square root

x = 64.55

Length 3x = 193.65

Width 2x = 129.10

Perimeter = 2(3x + 2x) = 2(193.65 + 129.10)

Pilot Super One "General Math" Hith

344

2(322.75)

* 645 50 m

5. The area of a square playground is 4500 nt². How long will a man take to cross it diagonally at the speed of 3km per hour?

= 4500 sq m

 $-\sqrt{45000}$ m

Length of despiral of a square = $m\hat{B}\hat{D} = \sqrt{(\sqrt{4500})^2 + (\sqrt{4500})^2}$

By Pythagoras theorem = 4500 + 4500

$$\sim \sqrt{9000}$$

$$\omega \overline{RD} = 94.87 \, \mathrm{m}$$

Time spent to cross 3km distane = 60min

Lime spent to cross 3000 km distance = 60 min

From spent to cross 94 87m distance = $\frac{647}{34475} \times 94 87 \text{ min}$ $= \frac{94.87}{50}$

= 1 8974 min

→ 1 mm 54 sec.

Pilot Super One "General Math" 10th

345

The diagonal of a square is 14cm. Find its area.

Diagonal of square = $14 ext{cm}$ Area of a square = $\frac{14 ext{ } + 14}{2}$ = $14 ext{ }

2nd method:

Suppose that side of a square = x cm

By Pythagoras theorem

$$x^{2} + x^{2} = (14)^{2}$$

$$2x^{2} = 14 \times 14$$

$$x^{2} = \frac{14 \times 14}{2}$$

$$14 \times 7 = 98$$

and x^2 is area of a square.

Thus, Area of square = 98 sq.cm

Pilot Super One "General Math" 10th

346

- Find the area of a triangle whose sides are. 7.
- (i) 120cm, 150cm and 200cm
- 50dm, 78dm and 112dm (ii)

Sol:

$$a = 200$$
 here

$$b = 150$$

$$c = 120$$

$$S = \frac{a+b+c}{2}$$

$$S = \frac{200 + 150 + 120}{2}$$

$$S = \frac{470}{2}$$

$$S = 235$$

$$S - a = 235 - 200 = 35$$

$$S - b = 235 - 150 = 85$$

$$-25 \times 358.66$$

5 - c = 235 - 120 = 115Area of $\Delta A = A = \sqrt{S(S-a)(S-b)(S-c)}$ $=\sqrt{235\times35\times85\times115}$ ATANA. CIL $= \sqrt{5 \times 47 \times 5 \times 7 \times 5 \times 17 \times 5 \times 23}$ $=\sqrt{5^2\times47\times7\times5^2\times17\times23}$ $=5\times5\sqrt{47\times7\times17\times23}$ **-** 25√128639

347

Pilot Super One "General Math" 10th

(ii) a = 112 dm here b = 78 dm c = 50 dm $S = \frac{a+b+c}{2}$ $= \frac{112+78+50}{2}$ $= \frac{240}{2}$ S = 120Area (A) $= A = \sqrt{S(S-a)(S-b)(S-c)}$ $= \sqrt{120(120-112)(120-78)(120-50)}$ $= \sqrt{120 \times 8 \times 42 \times 70}$

 $A = \sqrt{3 \times 5 \times 8 \times 8 \times 7 \times 2 \times 3 \times 7 \times 5 \times 2}$ $= \sqrt{3^2 \times 5^2 \times 8^2 \times 7^2 \times 2^2}$ $= 3 \times 5 \times 8 \times 7 \times 2$

= 1680 sq. dm

8. The perimeter of a triangular field is 540m and its sides are in the ratio 25: 17: 12. Find the area of triangle. Hint: Let the sides be 25x, 17x, 12x meters.

Then $25x + 17x + 12x = 540 \implies x = 10$

Sol: Let sides are 25x, 17x, 12x

perimeter = 25x + 17x + 12x

= 54x

perimeter = 540 m

but

Pilot Super One "General Math" 10th 348 otes. John 540 = 54x then $\tau = 10$ 25 × 10, 17 × 10, 12 × 10 sides = 250, 170, 120 m $S = \frac{a+b+c}{2}$ $=\frac{250+170+120}{2}$ $=\frac{540}{2}=270$ S - a = 270 - 250 = 20S - h = 270 - 170 = 100S - c = 270 - 120 = 150Area (A) = $A = \sqrt{S(S-a)(S-b)(S-c)}$ $=\sqrt{270\times20\times100\times150}$ $\frac{10^{2} \times 2^{2} \times 10 \times 2 \times 50}{\sqrt{10^{2} \times 2^{2} \times 50^{2} \times 3 \times 27}}$ $= 10 \times 2 \times 50 \times \sqrt{3 \times 27}$ $= 1000 \times \sqrt{3 \times 3 \times 3 \times 3}$ $= 1000 \times 3 \times 3$ $=\sqrt{27\times10\times2\times10\times2\times50\times3\times50}$

Find the area of a parallelogram if its two adjacent sides are 12cm and 14cm and diagonal is 18cm.

Hints:

Let ABCD is all in which .

Visit <u>www.downloadclassnotes.com</u> for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 19 of 34)

Pilot Super One "General Math" 10th

349

Find area of ΔABC .

Area of $\parallel^m = 2$ (Area of $\triangle ABC$)

Sol: Find area of \(\Delta \) ACB

$$a = 18 \text{ cm}$$

$$c = 12 \text{ cm}$$

$$S = \frac{a+b+c}{2}$$

$$S = \frac{18+14+12}{2}$$

$$S = \frac{44}{2}$$

$$S = 22$$

$$S-a=22-18=4$$

$$S - b = 22 - 14 = 8$$

$$S-c = 22 - 12 = 10$$

Area of
$$\triangle ABC = A = \sqrt{S(S-a)(S-b)(S-c)}$$

$$=\sqrt{22\times4\times8\times10}$$

$$= \sqrt{11 \times 2 \times 5}$$

$$=\sqrt{11\times2^2\times2^2\times2^2\times2\times5}$$

Pilot Super One "General Math" 10th

350

$$= 2 \times 2 \times 2 \sqrt{110}$$

Area of
$$\triangle ACD = Area of \triangle ABC$$
 and

Area of $||^m ARCD = (i) + (ii)$

$$= 8\sqrt{110} + 8\sqrt{110}$$

$$= (8+8)\sqrt{110}$$

- interant diameters are: (i) 15cm and 13cm
- (ii) 1.2m and 0.9m
- (iii) 40mm and 33mm.

Sol: External diameter =

Internal diameter = $\frac{13}{2}$ cm

Total area = 272

$$= \pi \left(\frac{15}{2}\right)^3$$

		 -
Piled Super Cine, "General Math." Heli	37	1
Internal area 🕟 🛷		-
$-\pi \left(\frac{13}{2}\right)^{\prime}$		ıO
Area of wathers = $\pi \left(\frac{15}{2}\right)^2 = \pi \left(\frac{13}{2}\right)^2$		ł
$= \pi \left[\left(\frac{15}{2} \right)' \cdot \left(\frac{13}{2} \right)' \right]$	\cap	
$-\frac{22}{7}\begin{bmatrix} 225 & 169 \\ 4 & 4 \end{bmatrix}$	U	
$-\frac{22}{7}\left[\frac{225-169}{4}\right]$		
- 22 (See)		
44 sq. cm		
Sol. External diameter = $\frac{1.2}{2} = 6m = \frac{6}{10}m$		
Internal diameter = $\frac{0.9}{2} = \frac{9}{10 \times 2}$		
Total area = #f		
Total area = π^2 = $\pi \left(\frac{6}{10} \right)^2$ Internal area = π^2 = $\pi \left(\frac{9}{20} \right)^2$		
(iò)		
Internal area - #*		
$-\pi\left(\frac{9}{29}\right)^2$		
(-7)		

Table Code Cocheral Man. Hwu	352
Area of washers = $\pi \left(\frac{6}{10}\right) - \pi \left(\frac{9}{20}\right)$	M
$= \mathbb{E}\left[\left(\frac{6}{10}\right)^2 - \left(\frac{9}{20}\right)^2\right]$	com
$=\frac{22}{7}\left(\frac{36}{100}-\frac{81}{400}\right)$	مد.
$=\frac{27}{7}\left[\frac{144-81}{400}\right]$	Jes.C
$=\frac{22}{7}\left(\frac{^{4}63}{400}\right)$	10
$=\frac{198}{400}$	-
= 0.495 sq. mm	

352

Sol:

Diameter of big half circle =
$$\frac{40}{2} = 20mm$$

Internal diameter = $\frac{33}{2}mm$

Pilot Super One "General Mark" 10th

Internal diameter =
$$\frac{33}{2}mm$$

Total area =
$$\pi^{-1}$$
= $x(20)$

$$= \pi \left(\frac{33}{2}\right)^2$$

$$= \pi(20)^{2}$$
Internal area = πr^{2}

$$= \pi\left(\frac{33}{2}\right)^{2}$$
Area of washers = $\pi(20)^{2} - \pi\left(\frac{33}{2}\right)^{2}$

$$= \pi\left[(20)^{2} - \left(\frac{33}{2}\right)^{2}\right]$$

Visit www.downloadclassnotes.com for Notes, Old Papers, Home Tutors, Jobs, IT Courses & more. (Page 23 of 34)

Pilot Super One "General Math" 10th

353

$$= \frac{\frac{32}{7} \left[\frac{100 - \frac{1089}{4}}{4} \right]$$

$$= \frac{22}{7} \left[\frac{1600 - 1089}{4} \right]$$

$$= \frac{22}{7} \left(\frac{844^{11}}{4} \right)$$

$$= \frac{11 \times 73}{2}$$

= 401.5 sq. mm

11. Find the area of the shaded region.

Diameter of big half circle =
$$\frac{28}{2}$$
 = 14 m

Area of big half circle =
$$\frac{1}{2} z r^2$$

$$=\frac{1}{2}\pi(14)^2$$

$$= \frac{1}{7} \times \frac{22}{7} \times 14^{7} \times 14$$

Demoter of every small half circle =
$$\frac{14}{2}$$
 = 7 m

Total area of both =
$$\frac{1}{2} \pi r^2$$

Pilot Super One "General Math" 10th

354 ec.com

THE T	1716	Cicincial leading	******
-			$= \frac{1}{2} \times \frac{22}{7} \times (7)^2$
			$= \frac{1}{2} \times \frac{22^{11}}{7} \times 7 \times 7$
			≈ 77 sq m
		small circles	= 2 × 77
			- 154 sq. m
Aı	rea of	shaded region	= 308 - 154
			= 154 sq m

Find the area of an equilateral triangle whose side is 8m. 12.

Sol

$$a = b = c = 8m$$

$$S = \frac{a+b+c}{2} = \frac{8+8+8}{2} = \frac{24}{2} = 12$$

$$5 - a = 12 - 8 = 4$$

$$S - h = 12 - 8 = 4$$

 $A = \sqrt{S(S-a)(S-b)(S-c)}$ $= \sqrt{12 \times 4 \times 4 \times 4}$ $= \sqrt{3 \times 4 \times 4 \times 4 \times 4}$

4 4 4
$$\sqrt{3}$$

$$= 16\sqrt{3} \text{ sq. m}$$

The side of an equilateral triangle is 6cm. Find its area.

$$a = b = c = 6$$
 here

Pilot Super One "General Math" 10th

355

$$S = \frac{a+b+c}{2} = \frac{6+6+6}{2} = \frac{18}{2} = 9$$

$$S - a = 9 - 6 = 3$$

$$S - h = 9 - 6 = 3$$

$$S-c=9-6=3$$

Area of
$$\Delta = A = \sqrt{S(S-a)(S-b)(S-c)}$$

$$= \sqrt{9 \times 3 \times 3 \times 3}$$

$$= \sqrt{3 \times 3 \times 3 \times 3 \times 3}$$

$$= 3 \times 3\sqrt{3} = 9\sqrt{3} \text{ sq. cm}$$

 Find the area of the right triangle with legs 12cm and 35cm.

Length of one side = 12 cm

Length of 2nd side = 35 cm

Area of right angles =
$$\frac{hase \times altitude}{2}$$

= $\frac{35 \times 12}{2}$
= 35×6
= 210 sq.cm

15. The base of a rectangle is three times its altitude. The area is 147cm². Find the dimensions of the rectangle.

Sol Let altitude = x

Length of base = 3x cm

$$Area = (x)(3x)$$

$$= 3x^{2}$$

Pilot Super One "General Math" 10th

356

Area = 147 sq. cm but $3x^2 = 147 therefore$ $x^2 = \frac{147}{3}$ $x^2 = 49$ $\sqrt{x^2} = \sqrt{49} Taking square root$ x = 7altitude = 7 cm Base = 3x

Base = 21 cm

= 3 × 7

Find the base of the parallelogram whose attitude is 18cm and whose area is 3m².

Length of altitude = 18 cm

Area = 3 sq.m

Area = 3 × 100 × 100 sq.m

Length of base =
$$\frac{area}{attitude}$$

$$= \frac{\cancel{3} \times 100 \times 196^{44}}{\cancel{18}\cancel{5}\cancel{6}}$$

$$= \frac{5000}{3}$$

Length of base = 1666.67 cm

 The area of a parallelogram is 144cm². Find the altitude if the base is 2m long.

Pilot Super One "General Math" 10th

357

Area of a parallelogram= 144 sq. m

Length of base = 2 cm

Length of shitude =
$$\frac{ava}{bcse}$$

= $\frac{144}{2}$

Length of altitude = 72 cm

Find the area of the rectangle 2m long and 18cm wide. 18.

Length of a rectangle = 2m

= 200 cm

Width = 18 cm

Arca = Length × Width

 $= 200 \times 18$

- 3600 sq.cm

The area of an equilateral triangle is $4\sqrt{2cm^2}$. Find the 19. length of a side.

If side of an any equilateral triangle are "a" units then its Sol:

area will be
$$\frac{\sqrt{3} a^2}{4}$$
.

$$\int \int d^2 u d^2 = 4\sqrt{3}$$

$$a^2 = \left(4\sqrt{3}\right)\left(\frac{4}{\sqrt{3}}\right)$$

$$a^2 = 4 \times 4$$

$$\sqrt{a^2} = \sqrt{4 \times 4}$$

 $\sqrt{a^2} = \sqrt{4 \times 4}$ Taking square root

Pilot Super One "General Math" 10th

358

Volume of a cube
$$= V = I \times I \times I$$

= $(I)^3$

Volume of a cuboid of length l, breadth h and height h is

Volume of cuboid = $V = I \times b \times h$

Volume of a cuboid of length l, breadth h and height h

Volume of cylinder = $\pi r^2 h$

where "r" is radius of the base and "h" is height.

Volume of cylinder $*\frac{1}{3} \pi r^2 h$

where 'r' is radius of base and "A" is height.

Volume of sphere = $\frac{4}{3} \pi r^3$

where 'r' is radius of sphere.

Remember that:

- A:

PANA.

lom ≠t0mm,

therefore,

 $lcm^3 = 10 \times 10 \times 10 mm^3$

 $lcm^3 = 1000mm^3$

 $lm^3 = 100 \times 100 \times 100 cm^3$

= 1000000 cm³

$$[m^3 = 10^5 cm^3]$$

also

lm3 = 1000 × 1000 × 1000 mm³

com

Pilot Super One "General Math" 10th

359

$$1m' = 10'' mm''$$

3- For measurement of volumes of liquids, we use the terms liters (I) and milliliters (mI).

$$lcm^3 = 1ml$$

$$1000 \text{cm}^3 = 11$$

and
$$lm^3 = 1000000 cm^3 = 1000 I$$

$$1m^3 = 1kl (1 \text{ kilohter})$$

Find the Volume of the Solids

1. A cube of a side 4cm

Sol: A cube of a side = 4

Volume of cube =
$$(l)^3$$

$$= (4)^3$$

2. A cube whose total area is 96cm².

Total area of cube = 96

$$areas of cube = 6$$

area of 1 face
$$=\frac{96}{6}$$

Length of edge =
$$\sqrt{16}$$

Pilot Super One "General Math" 10th

360

= 4 cm

volume of cube = $(I)^3$

 $-(4)^3$

= 64 cm³

 A rectangular box with length 4m breadth 3m and height 2m.

length of rectangular = 4 m

Breadth of rectangular = 3 m

Height of rectangular = 2 m

volume of cuboid = $I \times b \times h$

=4×3×2

 $= 24 \text{ (m)}^3$

4. Right cylinder, with radius of base 4cm, altitude 10cm, use $x = \frac{22}{7}$.

Sol. Radius of base
$$= (r) = 4$$
 cm

altitude =
$$(h) = 10 cm$$

volume of cylinder = $\pi r^2 h$

$$= \frac{22}{7} \times (4)^{2} (10)$$

$$= \frac{22}{7} \times 16 \times 10$$

$$= \frac{3520}{7}$$

Pilot Super One "General Math" 10th

361

- 502 86 cm³

S. Circular cone, with radius of base 3cm, altitude 10cm.

Radius of circular base = r = 3 cm

Height of altitude = h = 10 cm

Circular cone, with radius of base 3cm, altitude 10cm.

Radius of circular base =
$$r = 3$$
 cm

Height of altitude = $h = 10$ cm

Volume of circular cone = $\frac{1}{3} ar^2 h$

= $\frac{1}{3} \left(\frac{22}{7}\right) (3)^2 (10)$
= $\frac{1}{3} \times \frac{22}{7} \times 3 \times 3 \times 10^{-1}$
= $\frac{660}{7}$
= 94.3 cm³

Sphere, with radius Jens.

Radius of sphere = r = 3 cm.

Volume of sphere =
$$r = 3 \text{ cm}$$

Volume of sphere = $\frac{4}{3} \times \frac{22}{7} \times (3)^3$
= $\frac{4}{3} \times \frac{22}{7} \times 3 \times 3 \times 3$
= $\frac{4 \times 22 \times 3 \times 3}{7}$
Volume of sphere = $\frac{792}{7}$

= 113.14 cm³

Pilot Super One "General Math" 10th

362

- ole3.co.il Right circular cylinder, with circumferences of base 4cm. altitude Im
- Sol Circumference of base = 4cm

Circumderence of base $= 2 \pi r$

then

$$r = \frac{4}{2\pi}$$

$$= \frac{2}{\pi} \sin$$

Length of cylinder (h) = 1m

100 cm

Volume of cylinder $= \pi r^2 \times h$

from (i)

$$\pi \left(\frac{2}{\pi}\right)^3 (100)$$

≈ 127.3cm³

арргох

Cone with altitude 9cm, radius of base 6cm.

Sol: Cone with altitude = h = 9 cm

Cone with radius of base = r = 6 cm

Volume of cone =
$$\frac{1}{3} m^{-1} \times h$$

-----www.downloudelassnotes.com Pilot Super One "General Math" 10th