计算机组织与体系结构实习报告 Lab3.1

学号: 1600013019

姓名: 张智涵

大班教师: 易江芳

PART 1 - 单层Cache模拟

使用附件中所给模拟器框架,使用给定的测试trace,完成单层cache的模拟。

1. 在不同的 Cache Size的条件下, Miss Rate 随 Block Size变化的趋势,收集数据并绘制折线图。 并说明变化原因。至少有4个不同的size大小对应的折线图。

写回设置为write back + write allocate,取associativity为4,当cache size分别为32KB, 16KB, 8KB, 4KB, 2KB, 1KB时,所得到的的miss rate随block size的变化趋势如下:

trace1.txt:

cache size = 32KB		cache size = 16KB		cache si	cache size = 8KB		cache size = 4KB		cache size = 2KB		cache size = 1KB	
block size	miss rate	block size	miss rate	block size	miss rate	block size	miss rate	block size	miss rate	block size	miss rate	
4	1.16%	4	1.20%	4	1.58%	4	1.89%	4	2.44%	4	4.06%	
8	1.05%	8	1.10%	8	1.48%	8	1.80%	8	2.36%	8	4.03%	
16	0.57%	16	0.61%	16	0.82%	16	1.04%	16	1.43%	16	2.79%	
32	0.30%	32	0.33%	32	0.47%	32	0.63%	32	0.99%	32	2.24%	
64	0.17%	64	0.19%	64	0.29%	64	0.42%	64	0.81%	64	2.04%	
128	0.09%	128	0.11%	128	0.21%	128	0.37%	128	0.90%	128	2.45%	

trace2.txt:

cache siz	cache size = 32KB		e = 16KB	cache size = 8KB		cache size = 4KB		cache size = 2KB		cache size = 1KB	
block size	miss rate	block size	miss rate	block size	miss rate	block size	miss rate	block size	miss rate	block size	miss rate
4	2.46%	4	2.49%	4	2.95%	4	3.67%	4	4.69%	4	6.98%
8	2.04%	8	2.08%	8	2.54%	8	3.18%	8	4.13%	8	6.51%
16	1.15%	16	1.20%	16	1.63%	16	2.09%	16	2.97%	16	5.18%
32	0.62%	32	0.67%	32	0.95%	32	1.41%	32	2.36%	32	4.45%
64	0.34%	64	0.39%	64	0.58%	64	0.99%	64	2.05%	64	5.58%
128	0.19%	128	0.23%	128	0.42%	128	0.96%	128	2.17%	128	7.31%

注:当cache size取更大值(如64KB)时,miss rate的折线图与32KB时基本重合,故不再绘制。数据分析:总体而言,cache size相同时,block size越大,miss rate越低,由于程序的局部性,增大block size在多次访问地址相近的区域时有较好的hit rate。当block size一定时,cache size越大,miss rate越低,因为更大的cache size能容纳更多的数据。当cache size过小且block size过大时,由于组相联度不变,导致set数量减少,cache中容纳的数据段数量变少,miss rate有上升的趋势。

2. 在给定 Cache Size 的条件下,Miss Rate 随 Associativity变化的趋势,收集数据并绘制折线图。 并说明变化原因。至少有2、4、8、16、32对应的折线图。

写回设置为write back + write allocate,取block size为8,当cache size分别为32KB,16KB,8KB,4KB,2KB,1KB时,所得到的miss rate随associativity变化的趋势如下:

trace1.txt:

cache size = 32KB		cache size = 16KB		cache size = 8KB		cache size = 4KB		cache size = 2KB		cache size = 1KB	
associativity	miss rate	associativity	miss rate	associativity	miss rate	associativity	miss rate	associativity	miss rate	associativity	miss rate
1	1.25%	1	1.39%	1	1.75%	1	2.90%	1	4.47%	1	6.91%
2	1.07%	2	1.11%	2	1.46%	2	2.00%	2	2.69%	2	4.47%
4	1.06%	4	1.10%	4	1.48%	4	1.80%	4	2.36%	4	4.03%
8	1.06%	8	1.10%	8	1.49%	8	1.77%	8	2.32%	8	3.90%
16	1.06%	16	1.10%	16	1.49%	16	1.77%	16	2.31%	16	3.85%
32	1.06%	32	1.10%	32	1.48%	32	1.76%	32	2.32%	32	3.85%

associativity	miss rate										
1	2.36%	1	2.43%	1	3.58%	1	6.85%	1	8.70%	1	11.75%
2	2.05%	2	2.20%	2	2.88%	2	4.10%	2	5.24%	2	7.54%
4	2.04%	4	2.08%	4	2.54%	4	3.18%	4	4.13%	4	6.51%
8	2.04%	8	2.06%	8	2.56%	8	3.13%	8	3.93%	8	6.31%
16	2.04%	16	2.05%	16	2.59%	16	3.10%	16	3.91%	16	6.25%
32	2.04%	32	2.05%	32	2.58%	32	3.10%	32	3.90%	32	6.23%

数据分析:总体而言,当cache size固定时,组相联度越高,miss rate越低,原因可能是trace文件中的局部性比较明显,有很多访存地址都有相似的前缀因此也有相近的set index;当组相联度固定时,cache size越大,miss rate越低,因为更大的cache size能容纳更多的数据;当组相联度过高时miss rate不再下降,可能是因为set数量减少所致。

3. 比较 Write Through + No-write Allocate,Write Back + Write allocate 这两种访存策略的总访问 延时的差异。

取block size = 8, associativity = 4, cache latency = 1 cycle, 当cache size取1, 2, ..., 32KB时, 分别采用两种访存策略对miss rate和访问延迟进行统计如下:

trace1.txt:

write I	back + write a	locate	write through + no write allocate				
cache size	miss rate	latency (ms)	cache size	miss rate	latency (ms)		
1KB	4.03%	3.92	1KB	5.00%	12.84		
2KB	2.36%	3.27	2KB	3.17%	12.56		
4KB	1.80%	3.05	4KB	2.55%	12.46		
8KB	1.48%	2.93	8KB	2.17%	12.39		
16KB	1.10%	2.75	16KB	1.97%	12.37		
32KB	1.06%	2.64	32KB	1.96%	12.37		

trace2.txt:

write I	back + write al	locate	write through + no write allocate				
cache size	miss rate	latency (ms)	cache size	miss rate	latency (ms)		
1KB	6.51%	1.78	1KB	9.10%	4.55		
2KB	4.13%	1.46	2KB	6.23%	4.38		
4KB	3.18%	1.35	4KB	5.24%	4.31		
8KB	2.54%	1.26	8KB	4.70%	4.27		
16KB	2.08%	1.14	16KB	4.33%	4.25		
32KB	2.04%	1.08	32KB	4.31%	4.25		

数据分析: 当访存策略不变时,增加cache size有助于降低miss rate并略微降低访存延迟; 当 cache size不变时,write back + write allocate的访存策略组合带来的性能明显高于write through + no-write allocate的组合,不仅降低了miss rate,更大幅度降低了访存延迟,这证明了 write back的延迟写回方法以及write allocate的"先读进cache再写入"的方式都有助于cache性能