САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра вычислительной техники

Отчёт по лабораторной работе № 2 по дисциплине «Тестирование программного обеспечения» Вариант №88

Студенты: Куклина М. Кириллова А. гр. Р3301

Преподаватель: Клименков С.В.

Задание

Провести интеграционное тестирование программы, осуществляющей вычисление системы функций.

$$\begin{cases} ((((\sec(x) - \cos(x))^3) - \tan(x) - \tan(x)) \cdot \sec(x) \cdot ((\frac{\sec(x) + \tan(x) + \sin(x) \cdot \cos(x)}{\frac{\cot(x)^2}{\sec(x)}} + (\frac{\sin(x)}{\sec(x)} \cdot \cot(x))))) & \text{if } x < = 0 \\ \frac{(((\frac{\log_2(x)}{\ln(x)}) \cdot \log_2(x)^2)^3) \cdot \log_3(x)}{(\log_3(x) \cdot \ln(x))^2} & \text{if } x > 0 \end{cases}$$

UML-диаграмма

Тестовое покрытие

Модуль базовой функции ln()

Область определения функции $(0, \infty)$.

- 1. $\forall x \in (0,1), f(x) \in (-\infty,0)$
- 2. Для x = 1, f(x) := 0
- 3. Для x = e, f(x) := 1
- 4. $\forall x \in (1, \infty), f(x) \in (0, \infty)$
- 5. $\forall x \in (-\infty, 0), f(x) \in \emptyset$

Модуль логарифмических функций

lb()

Функция выражена через натуральный логарифм: lb(x) = ln(x)/ln(2). Так как в данном модуле мы используем предположительно оттестированную функцию и математически обоснованное преобразование функции, для тестирования функции двоичного логарифма достаточно оттестировать ряд значений, являющихся степенью двойки.

 $log_3()$

Аналогично для логарифма по основанию 3.

Модуль выражения с логарифмическими функциями

Область определения функции $(0, \infty)$.

- 1. $\forall x \in (0,1), f(x) \in (-\infty,0)$
- 2. Для $x = 1, f(x) \in \emptyset$
- 3. $\forall x \in (1, \infty), f(x) \in (0, \infty)$
- 4. $\forall x \in (-\infty, 0), f(x) \in \emptyset$

Модуль базовой функции $\sin()$

Классы эквивалентности:

1. $\sin(x) > 0 \forall x \in (2\pi n; \pi + 2\pi n), n \in \mathbf{Z}$.

2. $\sin(x) < 0 \forall x \in (-\pi + 2\pi n; 2\pi n), n \in \mathbf{Z}$.

3. Промежутки возрастания. $x \in (-\pi + 2\pi n; \frac{\pi}{2} + 2\pi n), n \in z.$

4. Промежутки убывания. $x \in (-\frac{\pi}{2} + 2\pi n; \frac{3\pi}{2} + 2\pi n), n \in z.$

Модуль тригонометрических функции

Φ ункция $\cos()$

1. $\cos(x) > 0, x \in (-\frac{\pi}{2} + 2\pi n; \frac{\pi}{2} + 2\pi n), n \in \mathbf{Z}.$

2. $\cos(x) < 0, x \in (\frac{\pi}{2} + 2\pi n; 3\frac{\pi}{2} + 2\pi n), n \in \mathbf{Z}.$

3. Промежутки возрастания. $x \in (-\pi + 2\pi n; 2\pi n), n \in {\bf Z}.$

4. Промежутки убывания. $x \in (2\pi n; \pi + 2\pi n), n \in {\bf Z}.$

Функция tan()

1. $(-\pi/2 + 2\pi n; \pi/2 + 2\pi n), n \in \mathbf{Z}$.

2. Точки разрыва $\frac{\pi}{2} + 2\pi n, n \in \mathbf{Z}$.

$\mathbf{\Phi}$ ункция $\cot()$

1. $(2\pi n; \pi + 2\pi n), n \in \mathbf{Z}$.

2. Точки разрыва $\pi + 2\pi n, n \in {\bf Z}$.

 Φ ункция sec()

1.
$$\left(-\frac{\pi}{2} + 2\pi n; \frac{\pi}{2} + 2\pi n\right), n \in \mathbf{Z}.$$

2.
$$(\frac{\pi}{2} + 2\pi n; 3\frac{\pi}{2} + 2\pi n), n \in \mathbf{Z}.$$

3. Точки разрыва $\pi + 2\pi n, n \in \mathbf{Z}$.

Модуль выражения с тригонометрическими функциями

Для конечного неравенства системы были выделены следующие классы эквивалентности:

1.
$$\left(-\frac{\pi}{2} + 2\pi n; \frac{\pi}{2} + 2\pi n\right), n \in \mathbf{Z}.$$

2.
$$(\frac{\pi}{2} + 2\pi n; 3\frac{\pi}{2} + 2\pi n), n \in \mathbf{Z}.$$

3. Устранимые точки разрыва в
$$\pi n, n \in {\bf Z}$$
.

4. Разрывы второго рода в
$$\frac{\pi}{2} + \pi n$$

Итогова система

Тестовое покрытие аналогично тестовым покрытиям составляющих её функций на соответствующих диапазонах.

Вывод

В ходе выполнения лабораторной работы была разработана архитектура проекта, реализующего вычисление заданной системы функций. Было проведено модульное тестирование математических модулей системы и проведенно интеграционное тестирование, в ходе которого были протестировано взаимодействие модулей.