Больше куч!

	binaryheap	binomial heap	fibonacciheap
insert	$O(\log n)$	$O(\log n)$	O(1)
$extract_min$	$O(\log n)$	$O(\log n)$	$\tilde{O}(\log n)$
$decrease_key$	$O(\log n)$	$O(\log n)$	$ ilde{O}(1)$
$increase_key$	$O(\log n)$	$O(\log n)$	$\tilde{O}(\log n)$
merge	$\tilde{O}(\log^2 n)$	$O(\log n)$	O(1)
get_min	$O(\log n)$ or $O(1)$	O(1)	

Биномиальная куча

Храним биномиальные деревья. Каждому дереву сопоставим ранг. Ранг дерева полностью определяет его структуру. Дерево ранга 0 — одна вершина. Дерево ранга 1 — одно ребро. В общем случае, дерево ранга n содержит корень и полное двоичное дерево размера 2^{n-1} . Дерево ранга n+1 — это два слитых вместе дерева ранга n — корень второго указывает на корень первого, а корень первого теперь будет указывать на оба бинарных дерева.

Биномиальная куча — это набор из логарифма биномиальных куч.

Слияние двух деревьев мы научились делать за O(1) — меньшая вершина по ключу становится новым корнем, а дальше перекидываем указатели.

Слияние двух куч — это алгоритм сложения двоичных чисел — при сливании двух деревьев ранга n мы «переносим» прибавление кучи ранга n+1

Как добавлять элемент? Создать кучу на 0 элементов и слить их вместе.

Уменьшение ключа — напишем sift~up на нашей новой куче

Удаление минимума — Заметим, что если в правом дереве пройти по правым детям и обозначим их за корни, а их левых детей за полные бинарные деревья, то мы получим набор деревьев рангов $0,1,\ldots,n-1$. Обозначим их за новую кучу, и сольем все вместе.

Увеличение ключа — удалим соответствующий элемент и добавим другой.

Фибоначчиева куча

Хотим сделать биномиальную кучу с послаблаблениями— делать операции в самый последний момент, менее четкую структуру, etc

Есть деревья, их корни храним в двусвязном закольцованном списке.

Всех детей для всех вершин храним в двусвязном закольцованном списке.

Новый ранг — это количество вершин в списке детей.

На каждом дереве выполнена куча, а также поддерживаем глобальный минимум.

Улучшение ключа делается так — удаляем вершину из своего списка, вместе с поддеревом. Добавляем в корневой список. Если мы удалили уже вторую вершину в поддереве родителя, то делаем каскадное вырезание — прыгаем по предкам с mark = 1, и вырезаем их в корневой список, причем все вырезания делаются по очереди.

Удаление делается так — мы приписываем всех детей к корневому списку, а потом вызываем *compact*, которая должна спасти наше дерево и навести порядок.

Псевдокод тупых операций:

```
struct Node{
    Node *child;
    Node *left;
    Node *right;
    Node *parent;
    int rank;
    bool mark;
    int value;
}
list<Node *> roots;
void insert(int x) {
    Node *node = new Node(x);
    roots.insert(node);
}
void merge(list<Node *> a, list<Node *> b) {
    merge(a, b); // O(1) haha super easy
}
int getmin() {
    return argmin->value;
}
```

compact

- Сбрасываем пометки корневого списка в 0
- Переводим дерево в состояние, где все ранги разлиичны
- Храним ранги, мерджим одинаковые
- Как мерджим? Берем меньший корень, и записываем в его детей второй корень

Обозначим $R = \max rank$, $t(H) = root \ list \ size$, $m(H) = \sum_{v} mark(v)$ compact работает за O(R + t(H)).

Анализ времени работы $extract_min \& increase_key - \tilde{O}(R).$

$$\Phi(H) = t(H) + 2m(H) < 3n$$

Пусть каскадное вырезание сделало t_i действий. $m: 1 \to 0, t: +1$. Тогда $\Phi'(H) = \Phi(H) - 1$ за каждое вырезание. Тогда амортизированно вырезание работает за O(1).

Compact:

$$t(H) \le R, t'(H) = t(H) - R$$

Амортизациованно работает за 2R+1

Хотим показать $R = O(\log n)$.

$$\forall v \in H \ sz(v) > A^{rank(v)}, \ A > 1$$

Тогда

$$r(v) \le \log_A s(v) \le c \log n$$

Возьмем

$$s(v) > \phi^{rank(v)-2}$$

 $<\!O\!\phi\!\phi\!mon$ про числа Φ ибоначчи>

1.
$$F_n = F_{n-1} + F_{n-2}$$
, $F_0 = F_1 = 1$

2.
$$F_n > \phi^{n-2}$$

3.
$$\forall i \geq 2$$
: $F_i = \sum_{j=0}^{i-2} F_j + 1$

</Oф ϕ mon про числа Φ ибоначчи>

Почему инвариант на размеры сохраняется? Возьмем вершину v с k детьми. Рассмотрим детей в том порядке, в котором их склеивал компакт. Тогда на момент добавления i-й вершины в структуру, ее ранг совпадал с рангом v. Тогда из условия на удаление не более чем одного сына (mark) следует, что $rank(i) \geq i-1$. Тогда мы доказываем по индукции, что у нас все размеры — хотя бы числа фибоначчи,

соответствующие рангу. Тогда
$$s(v) = \sum_{u \in g(v)} s(u) + 1 \ge \sum_{u \in g(v)} F_r ank(u) + 1 \ge \sum_{i=0}^{\infty} F_i + 1 \ge F_{rank(v)-2}$$