MATH235 HOMEWORK 5 SOLUTION

• 3.5.12 Define f by

$$f(x) = \begin{cases} 1 & x \in (-1,1) \\ 0 & x = \pm 1 \\ -1 & x \in \mathbb{R}, x \notin [-1,1] \end{cases}$$

We claim that $f_n \to f$ pointwise a.e. and in measure, but not uniformly. The convergence is not uniform, as f_n for each n is continuous while f is not on \mathbb{R} .

• 3.5.13

Proof. (a). Consider the set $Z_{\epsilon}=\{x\in E: |f(x)-g(x)|>\epsilon\}$. Using triangle inequality we have

$$|f(x) - g(x)| \le |f(x) - f_n(x)| + |g(x) - g_n(x)|.$$

Consider the set A_n and B_n defined by $A_n = \{x \in E : |f(x) - f_n(x)| > \epsilon\}$ and $B_n = \{x \in E : |g_n(x) - g(x)| > \epsilon\}$. It follows that $Z_{\epsilon} \subseteq A \cup B$. By convergence in measure, we know $\lim_{n \to \infty} |A_n| = \lim_{n \to \infty} |B_n| = 0$. Hence $|Z_{\epsilon}|$ goes to 0 which implies f = g a.e.

(b). It suffices to prove for any $\epsilon > 0$ the measure of the following set goes to 0:

$$A = \{x \in E : |f(x) + g(x) - (f_n(x) + g_n(x))| > \epsilon\}$$

By triangle inequality, we can consider $A \subseteq A_1 \cup A_2$ where

$$A_1 = \{ x \in E : |f(x) - f_n(x)| > \epsilon \}$$

$$A_2 = \{ x \in E : |g(x) - g_n(x)| > \epsilon \}$$

By convergence in measure assumption, measure of A_1 and A_2 goes to 0, therefore $|A| \to 0$.

- (c).Let $\{f_{n_k}g_{n_k}\}$ denotes an arbitrary subsequence of $\{f_ng_n\}$. Since $f_n\to f$ in measure, for the subsequence f_{n_k} , there exists a subsequence $\{f_{n_{k_l}}\}$ converges to f a.e. and similarly for g we have a further subsequence $\{g_{n_{k_{l_p}}}\}$ converges to g a.e. Hence $\{f_{n_{k_{l_p}}}g_{n_{k_{l_p}}}\}$ converges to fg a.e. and $f_ng_n\to fg$ in measure.
- (d). Consider g(x)=1/x, f(x)=x and $g_n(x)=g(x)\chi_{[-n,n]}$, f(x)=x defined on $\mathbb{R}\setminus\{0\}$. Then we have $|g(x)-g_n(x)|\leq 1/n$ for all x and n, which gives two convergence in measure sequences. However, fg=1 and $f_ng_n=\chi_{[-n,n]}$ while $\lim_{n\to\infty}|\{f_ng_n(x)-x>\epsilon\}|=0$ is not true for arbitrarily small ϵ .
- (e). Consider $\frac{|f_n(x)-f(x)|}{|f(x)f_n(x)|}=|\frac{1}{f(x)}-\frac{1}{f_n(x)}|$ and assume $|f_n|,|f|\geq \delta.$ ($|f|\geq \delta$ can be derived using a subsequence argument). Then we have

$$|\{|\frac{1}{f(x)} - \frac{1}{f_n(x)}| \ge \epsilon\}| \le |\{|f_n - f| \ge \epsilon\delta^2\}| \to 0$$

Date: December 4, 2023.

and $1/f_n \to 1/f$ in measure.

• 3.5.15

Proof. (a). Assume φ is uniformly continuous. Then for all $\epsilon>0$, there exists some $\delta>0$ such that for all $x,y\in E.|x-y|<\delta$ implies $|\varphi(x)-\varphi(y)|<\epsilon$. Then for some $\delta'>0$, we have

$$\{|\varphi \circ f - \varphi \circ f_n| > \epsilon\} \subseteq \{|f - f_n| > \delta'\}$$

and since the right hand side of the above expression goes to 0, we have our desired result. The counterexample can be $\varphi = x^2$ and $f_n = x - 1/n$ on \mathbb{R} .

- (b). We can always find a subsequence $\{f_{n_k}\}$ such that converges a.e. to f. Then since φ is continuous we have $\varphi \circ f_{n_k}$ converges to $\varphi \circ f$ a.e. and therefore we have $\varphi \circ f_n$ converges in measure. The counterexample we need is same as above. \square
- 4.1.12. Let E be a measurable subset of \mathbb{R}^d . Suppose that f and g are measurable functions on E such that $0 \le f \le g$ and $\int_E f < \infty$. Prove that g f is measurable, $0 \le \int_E (g f) \le \infty$, and, as extended real numbers,

$$\int_{E} (g - f) = \int_{E} g - \int_{E} f$$

Proof. Since f and g are measurable, g-f is also measurable. Since $f \leq g$, we have $0 \leq \int g - f \leq \infty$. If $\int_E g < \infty$, notice that g = (g-f) + f, where all two terms in the right hand side are positive. Hence we have $\int_E g = \int_E g - f + \int_E f$ which proves the claim. If $\int_E g = \infty$, then we have $\int_E g - \int_E f = \infty$ as $\int_E f < \infty$, which also proves the claim. \Box

• 4.2.11. Assume $E \subseteq \mathbb{R}^d$ and $f: E \to [0, \infty]$ are measurable, and $\int_E f < \infty$. Given $\varepsilon > 0$, prove that there exists a measurable set $A \subseteq E$ such that $|A| < \infty$ and $\int_A f \ge \int_E f - \varepsilon$

Proof. Since $\int_E f < \infty$, we know $f < \infty$ a.e. on E, therefore $|\{f = \infty\}| = 0$. Consider $f_n = f\chi_{B_n(0)}$ which converges to f pointwise a.e. For all $\epsilon > 0$, there exists some $N_0 \ge 1$ such that $\int_E f - \int_{B_{N_0(0)}} f < \epsilon$. Switch sides of the inequality and set $A = B_{N_0(0)}$ give the desired result.