What is claimed is:

1. A compound of the formula

$$\begin{array}{c|c}
R_4 & R_{3b} & R_{3a} \\
\hline
Ar_2 & D & E & B
\end{array}$$

or a pharmaceutically acceptable salt thereof, wherein:

A, B, E, and D are independently CR₂ or N;

n is 0 or 1;

X is O, NH or CH₂.

Ar₁ is phenyl or a 6-membered aromatic heterocycle, each of which is substituted with from 0 to 4 substituents independently chosen from R_a; or two adjacent substituents are taken together to form, with the ring atoms to which they are bound, a fused 5- or 6-membered ring substituted with from 0 to 4 substituents independently chosen from R_a;

represents fused phenyl or a fused 6-membered aromatic heterocycle, each of which is substituted with from 0 to 4 substituents independently chosen from R_a ; or two adjacent substituents are taken together to form, with the ring atoms to which they are bound, a fused 5- or 6-membered ring substituted with from 0 to 3 substituents independently chosen from R_a ;

R₂ is independently chosen at each occurrence from hydrogen, hydroxy, halogen, amino, nitro, cyano, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkyl, C₁-C₆haloalkoxy, and mono- and di-(C₁-C₄alkyl)amino;

 R_{3a} and R_{3b} are independently hydrogen, hydroxy, halogen, cyano, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_3 - C_7 cycloalkyl(C_0 - C_4 alkyl), C_1 - C_6 haloalkyl or C_1 - C_6 haloalkoxy; or R_{3a} and R_{3b} are taken together to form an oxo group;

R₄ represents from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, nitro, cyano, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkyl, and C₁-C₆haloalkoxy; and

R_a is independently chosen at each occurrence from:

(i) hydroxy, halogen, amino, aminocarbonyl, cyano, nitro, and -COOH; and

67

(ii) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₁-C₈alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₈haloalkyl, C₁-C₈haloalkoxy, C₁-C₈alkanoyl, C₃-C₈alkanone, C₂-C₈alkoxycarbonyl, C₂-C₈alkanoyloxy, C₁-C₈alkylthio, C₂-C₈alkyl ether, phenylC₀-C₄alkyl, phenylC₀-C₄alkoxy, mono- and di-(C₁-C₆alkyl)aminoC₀-C₆alkyl, and (4- to 7-membered heterocycle)C₀-C₄alkyl; each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄haloalkyl, C₁-C₄haloalkoxy, and mono- and di-(C₁-C₄alkyl)amino; and wherein if:

- (i) is unsubstituted phenyl, di-methoxy substituted phenyl, or phenyl substituted with phenyl (C₁-C₂alkoxy); and
- (ii) A, B, E, and D are each CR_2 ; G is a carbon atom covalently bound to the group $X \sim Ar_1$, and Ar_1 is phenyl,

then Ar_1 is substituted at the position para to the point of attachment with a substituent other than halogen.

- 2. A compound or salt according to claim 1, wherein Ar₁ is phenyl or pyridyl, each of which is substituted with from 0 to 4 substituents independently chosen from hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, phenyl and phenoxy.
- 3. A compound or salt according to claim 2, wherein Ar₁ is substituted with 1, 2 or 3 substituents independently chosen from hydroxy, halogen, cyano, nitro, amino, C₁-C₄alkyl, C₁-C₄alkoxy, C₃-C₇cycloalkyl(C₀-C₂alkyl), C₁-C₄haloalkyl, C₁-C₄haloalkoxy and phenoxy.
- 4. A compound or salt according to any one of claims 1 to 3, wherein represents a fused ring chosen from phenyl and pyridyl, each of which is substituted with from 0 to 4 substituents independently chosen from hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkyl, C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkyl ether, and mono- and di-(C₁-C₆alkyl)amino.

 Ar_2

- 5. A compound or salt according to claim 4, wherein is substituted with 1, 2 or 3 substituents.
- 6. A compound or salt according to claim 5, wherein is substituted with 1, 2 or 3 substituents independently chosen from hydroxy, halogen, cyano, nitro, amino, C₁-C₄alkyl, C₁-C₄alkoxy, C₃-C₇cycloalkyl(C₀-C₂alkyl) and C₁-C₄alkylthio.
- 7. A compound or salt according to claim 6, wherein Ar₂ is phenyl or pyridyl, each of which is substituted with from 0 to 4 substituents independently chosen from hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkyl, C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, phenyl and phenoxy.

- 8. A compound or salt according to any one of claims 1 to 7, wherein each R₂ is independently chosen from hydrogen, halogen, amino, hydroxy, cyano, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₃-C₇cycloalkyl(C₀-C₂alkyl), C₁-C₄haloalkyl and C₁-C₄haloalkoxy.
- 9. A compound or salt according to claim 8, wherein A, B, E, and D are each CR₂.
- 10. A compound or salt according to claim 10, wherein 1 or 2 of A, B, E, D is N, and the remainder are CR₂.
- 11. A compound or salt according to any one of claims 1 to 10, wherein R_{3a} is hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_3 - C_7 cycloalkyl(C_0 - C_2 alkyl) or C_1 - C_4 haloalkyl; and R_{3b} is hydrogen.
- 12. A compound or salt according to claim 11, wherein R_{3a} is hydrogen or methyl; and R_{3b} is hydrogen.
- 13. A compound according to any one of claims 1 to 10, wherein R_{3a} and R_{3b} are taken together to form an ∞ group.
- 14. A compound or salt according to any one of claims 1 to 13, wherein R₄ is 0, 1 or 2 substituents independently chosen from hydroxy, halogen, cyano, C₁-C₄alkyl, C₂-C₄alkenyl, C₂-C₄alkynyl, C₁-C₄alkoxy, C₃-C₇cycloalkyl(C₀-C₂alkyl), C₁-C₄haloalkyl and C₁-C₄haloalkoxy.
- 15. A compound or salt according to claim 14, wherein R₄ is 0 or 1 substituents chosen from methyl, ethyl, and methoxy.
 - 16. A compound or salt according to any one of claims 1 to 15, wherein n is 0.
 - 17. A compound or salt according to any one of claims 1 to 15, wherein n is 1.

WO 2005/077903

70

PCT/US2005/004107

18. A compound or salt according to claim 8, wherein:

Ar₁ is phenyl or pyridyl, each of which is substituted with from 0 to 4 substituents independently chosen from hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, phenyl and phenoxy;

represents phenyl or pyridyl, each of which is substituted with from 0 to 4 substituents independently chosen from hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkyl ether, and mono- and di-(C₁-C₆alkyl)amino; and

 R_4 represents 0, 1 or 2 substituents independently chosen from hydroxy, halogen, cyano, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy, C_3 - C_7 cycloalkyl(C_0 - C_2 alkyl), C_1 - C_4 haloalkyl, and C_1 - C_4 haloalkoxy.

$$R_5$$
 R_4 R_3 R_{1a} R_{1a} R_{1a}

wherein:

A and B are independently CR₂ or N;

each R₂ is independently chosen from hydrogen, halogen, amino, hydroxy, cyano, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₃-C₇cycloalkyl(C₀-C₂alkyl), C₁-C₄haloalkyl and C₁-C₄haloalkoxy;

R_{1a} is hydrogen, hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkyl ether, mono- or di-(C₁-C₆alkyl)amino, phenyl or phenoxy;

R₁ represents from 0 to 3 substituents independently chosen from hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, phenyl, and phenoxy;

R₃ is hydrogen, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl or C₁-C₆haloalkyl;

- R_4 represents 0, 1 or 2 substituents independently chosen from hydroxy, halogen, cyano, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy, C_3 - C_7 cycloalkyl(C_0 - C_2 alkyl), C_1 - C_4 haloalkyl, and C_1 - C_4 haloalkoxy; and
- R_5 represents from 0 to 4 substituents independently chosen from R_a ; or two adjacent R_5 are taken together to form a fused 5- or 6-membered ring substituted with from 0 to 4 substituents independently chosen from R_a .
- 20. A compound or salt according to claim 19, wherein one of A and B is nitrogen.
 - 21. A compound or salt according to claim 19, wherein A and B are CH.
- 22. A compound or salt according to any one of claims 19 to 21, wherein R_{1a} is hydroxy, halogen, cyano, C₁-C₆alkyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkyl, C₁-C₆haloalkoxy or phenoxy.

WO 2005/077903

PCT/US2005/004107

72

- 23. A compound or salt according to claim 22, wherein R_{1a} is cyano, chloro, fluoro, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_3 - C_7 cyclo alkyl(C_0 - C_2 alkyl), C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy or phenoxy.
- 24. A compound or salt according to any one of claims 19 to 23, wherein R_5 represents 1 to 3 substituents independently chosen from hydroxy, halogen, cyano, nitro, amino, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkyl, C_1 - C_6 alkylthio, C_2 - C_6 alkyl ether, and mono- and di- $(C_1$ - C_6 alkyl)amino.
 - 25. A compound or salt according to claim 1, having the formula:

wherein each R_5 is independently chosen from hydrogen, hydroxy, halogen, cyano, nitro, amino, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_3 - C_7 cycloalkyl(C_0 - C_4 alkyl), C_1 - C_6 haloalkoxy, C_1 - C_6 alkylthio, C_2 - C_6 alkyl ether, and mono- and di-(C_1 - C_6 alkyl)amino.

$$R_5$$
 R_4 R_5 $R_{1\epsilon}$ $R_{1\epsilon}$

wherein:

A and B are independently CR₂ or N;

each R₂ is independently chosen from hydrogen, halogen, amino, hydroxy, cyano, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₃-C₇cycloalkyl(C₀-C₂alkyl), C₁-C₄haloalkyl and C₁-C₄haloalkoxy;

R_{1a} is hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkyl ether, mono- or di-(C₁-C₆alkyl)amino, phenyl and phenoxy;

R₁ represents from 0 to 3 substituents independently chosen from hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, phenyl and phenoxy;

R₄ represents 0, 1 or 2 substituents independently chosen from hydroxy, halogen, cyano, C₁-C₄alkyl, C₂-C₄alkenyl, C₂-C₄alkynyl, C₁-C₄alkoxy, C₃-C₇cycloalkyl(C₀-C₂alkyl), C₁-C₄haloalkyl and C₁-C₄haloalkoxy; and

 R_5 represents from 0 to 4 substituents independently chosen from R_a ; or two adjacent R_5 are taken together to form a fused 5- or 6-membered ring substituted with from 0 to 4 substituents independently chosen from R_a .

$$R_{5}$$
 R_{4} R_{1a} R_{1a} R_{1a}

wherein:

A and B are independently CR₂ or N;

each R₂ is independently chosen from hydrogen, halogen, amino, hydroxy, cyano, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₃-C₇cycloalkyl(C₀-C₂alkyl), C₁-C₄haloalkyl, and C₁-C₄haloalkoxy;

R_{1a} is hydrogen, hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, phenyl or phenoxy;

R₁ represents from 0 to 3 substituents independently chosen from hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, phenyl, and phenoxy;

R₃ is hydrogen, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl or C₁-C₆haloalkyl;

R₄ represents 0, 1 or 2 substituents independently chosen from hydroxy, halogen, cyano, C₁-C₄alkyl, C₂-C₄alkenyl, C₂-C₄alkynyl, C₁-C₄alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₄haloalkyl and C₁-C₄haloalkoxy; and

R₅ represents from 0 to 4 substituents independently chosen from R_a; or two adjacent R₅ are taken together to form a fused 5- or 6-membered ring substituted with from 0 to 4 substituents independently chosen from R_a.

$$R_{5}$$
 R_{4} R_{18} $R_{$

wherein:

A and B are independently CR2 or N;

each R₂ is independently chosen from hydrogen, halogen, amino, hydroxy, cyano, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄haloalkyl, and C₁-C₄haloalkoxy;

- R_{1a} is hydrogen, hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₃-C₇cycloalkyl(C₀-C₂alkyl), C₂-C₆alkyl ether, mono- or di-(C₁-C₆alkyl)amino, phenyl or phenoxy;
- R₁ represents from 0 to 3 substituents independently chosen from hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, phenyl and phenoxy;
- R₄ represents 0, 1 or 2 substituents independently chosen from hydroxy, halogen, cyano, C₁-C₄alkyl, C₂-C₄alkenyl, C₂-C₄alkynyl, C₁-C₄alkoxy, C₃-C₇cycloalkyl(C₀-C₂alkyl), C₁-C₄haloalkyl and C₁-C₄haloalkoxy; and
- R_5 represents from 0 to 4 substituents independently chosen from R_a ; or two adjacent R_5 are taken together to form a fused 5- or 6-membered ring substituted with from 0 to 4 substituents independently chosen from R_a .

$$R_{5}$$
 R_{4}
 R_{3b}
 R_{3a}
 R_{1a}
 R_{1a}

wherein:

A and B are independently CR₂ or N;

- each R₂ is independently chosen from hydrogen, halogen, amino, hydroxy, cyano, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₃-C₇cycloalkyl(C₀-C₂alkyl), C₁-C₄haloalkyl, and C₁-C₄haloalkoxy;
- R_{1a} is hydrogen, hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkyl ether, mono- or di-(C₁-C₆alkyl)amino, phenyl or phenoxy;
- R₁ represents from 0 to 3 substituents independently chosen from hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, phenyl and phenoxy;
- R_{3a} and R_{3b} are independently hydrogen, hydroxy, halogen, cyano, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or C_1 - C_6 haloalkyl; or R_{3a} and R_{3b} are taken together to form an oxo group;
- R₄ represents 0, 1 or 2 substituents independently chosen from hydroxy, halogen, cyano, C₁-C₄alkyl, C₂-C₄alkenyl, C₂-C₄alkynyl, C₁-C₄alkoxy, C₃-C₇cycloalkyl(C₀-C₂alkyl), C₁-C₄haloalkyl and C₁-C₄haloalkoxy; and
- R₅ represents from 0 to 4 substituents independently chosen from R_a; or two adjacent R₅ are taken together to form a fused 5- or 6-membered ring substituted with from 0 to 4 substituents independently chosen from R_a.

30. A compound or pharmaceutically acceptable salt thereof having the formula:

$$R_5$$
 R_4
 R_{3b}
 R_{3a}
 R_5
 R_5
 R_5
 R_5
 R_6
 R_7
 R_7
 R_7

wherein

A, G, E, and D are independently CR₂ or N;

n is 0 or 1;

X is oxygen or CH₂;

Ar₁ is phenyl or a 6-membered aromatic heterocycle, each of which is substituted with from 0 to 4 substituents independently chosen from R_a; or two adjacent substituents are taken together to form, with the ring atoms to which they are bound, a fused 5- or 6-membered ring substituted with from 0 to 4 substituents independently chosen from R_a;

R₂ is independently chosen at each occurrence from hydrogen, halogen, amino, hydroxy, cyano, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₃-C₇cycloalkyl(C₀-C₂alkyl), C₁-C₄haloalkyl and C₁-C₄haloalkoxy;

R_{3a} is hydroxy, halogen, cyano, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkyl or C₁-C₆haloalkoxy;

R_{3b} is hydrogen, hydroxy, halogen, cyano, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkyl or C₁-C₆haloalkoxy; or R_{3a} and R_{3b} are taken together to form an oxo group;

R₄ represents from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, nitro, cyano, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkyl and C₁-C₆haloalkoxy;

R₅ is independently chosen from hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆haloalkyl, C₁-C₆alkyl, C₂-C₆alkyl ether, and mono- and di-(C₁-C₆alkyl)amino, and

R_a is independently chosen at each occurrence from:

- (i) hydroxy, halogen, amino, aminocarbonyl, cyano, nitro, and -COOH; and
- (ii) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₁-C₈alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl),
 C₁-C₈haloalkyl, C₁-C₈haloalkoxy, C₁-C₈alkanoyl, C₃-C₈alkanone, C₂-C₈alkoxycarbonyl, C₂-C₈alkanoyloxy, C₁-C₈alkylthio, C₂-C₈alkyl ether, phenylC₀-

78

 C_4 alkyl, phenyl C_0 - C_4 alkoxy, mono- and di- $(C_1$ - C_6 alkyl)amino C_0 - C_6 alkyl, and (4- to 7-membered heterocycle) C_0 - C_4 alkyl; each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy, and mono- and di- $(C_1$ - C_4 alkyl)amino.

$$R_5$$
 R_4
 R_5
 R_5
 R_6
 R_7
 R_7
 R_{10}
 R_{10}

G and E are independently CR₂ or N;

each R_2 is independently chosen from hydrogen, halogen, amino, hydroxy, cyano, nitro, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_3 - C_7 cycloalkyl(C_0 - C_2 alkyl), C_1 - C_4 haloalkyl, and C_1 - C_4 haloalkoxy;

R_{1a} is hydrogen, hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkyl ether, mono- or di-(C₁-C₆alkyl)amino, phenyl or phenoxy;

R₁ represents from 0 to 3 substituents independently chosen from hydroxy, halogen, cyano, nitro, amino, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, phenyl, and phenoxy;

 R_3 is C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or C_1 - C_6 haloalkyl;

 R_4 represents 0, 1 or 2 substituents independently chosen from hydroxy, halogen, cyano, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy, C_3 - C_7 cycloalkyl(C_0 - C_2 alkyl), C_1 - C_4 haloalkyl and C_1 - C_4 haloalkoxy; and

R₅ is independently chosen at each occurrence from R_a.

- 32. A compound or salt according to claim 30 wherein X is oxygen and A, G, D, and E are all CR₂.
- 33. A compound or salt according to claim 31, wherein at least one of G and E is nitrogen.
- 34. A compound or salt according to any one of claims 1 to 33, wherein the compound exhibits a K_i of 1 micromolar or less in a MCH receptor ligand binding assay and/or an IC₅₀ of 1 micromolar or less in a MCH receptor-mediated calcium mobilization assay.

35. A compound or salt according to claim 34, wherein the compound exhibits a K_i of 500 nanomolar or less in a MCH receptor ligand binding assay

80

- 36. A compound or salt according to claim 35, wherein the compound exhibits a K_i of 100 nanomolar or less in a MCH receptor ligand binding assay.
- 37. A compound or salt according to claim 36, wherein the compound exhibits a K_i of 10 nanomolar or less in a MCH receptor ligand binding assay.
- 38. A pharmaceutical composition, comprising a compound or salt according to any one of claims 1 to 33, in combination with at least one physiologically acceptable carrier or excipient.
- 39. A pharmaceutical composition according to claim 38, wherein the composition is formulated as an injectible fluid, an aerosol, a cream, a gel, a pill, a capsule, a syrup or a transdermal patch.

- 40. A packaged pharmaceutical preparation, comprising:
- (a) a pharmaceutical composition comprising at least one physiologically acceptable carrier or excipient together with a compound of the formula:

$$R_4$$
 R_{3b}
 R_{3a}
 A_{3a}
 A_{3

or a pharmaceutically acceptable salt thereof; wherein:

A, E, and D are independently CR₂ or N; and one of B and G is chosen from CR₂ and N; and the other of B and G is a carbon atom covalently bound to the group $X \bowtie_n^{\mathsf{Ar}_1}$. X is O, NH or CH₂;

n is 0 or 1;

Ar₁ is phenyl or a 6-membered aromatic heterocycle, each of which is substituted with from 0 to 4 substituents independently chosen from R_a; or two adjacent substituents are taken together to form, with the ring atoms to which they are bound, a fused 5- or 6-membered ring substituted with from 0 to 4 substituents independently chosen from R_a;

represents fused phenyl or a fused 6-membered aromatic heterocycle, each of which is substituted with from 0 to 4 substituents independently chosen from R_a; or two adjacent substituents are taken together to form, with the ring atoms to which they are bound, a fused 5- or 6-membered ring substituted with from 0 to 3 substituents

independently chosen from Ra;

R₂ is independently chosen at each occurrence from hydrogen, hydroxy, halogen, amino, nitro, cyano, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkyl, C₁-C₆haloalkoxy, and mono- and di-(C₁-C₄alkyl)amino;

R_{3a} and R_{3b} are independently hydrogen, hydroxy, halogen, cyano, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkyl or C₁-C₆haloalkoxy; or R_{3a} and R_{3b} are taken together to form an oxo group;

PCT/US2005/004107

R₄ represents from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, nitro, cyano, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkyl, and C₁-C₆haloalkoxy;

R_a is independently chosen at each occurrence from:

- (i) hydroxy, halogen, amino, aminocarbonyl, cyano, nitro, and -COOH; and
- (ii) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₁-C₈alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₈haloalkyl, C₁-C₈haloalkoxy, C₁-C₈alkanoyl, C₃-C₈alkanone, C₂-C₈alkoxycarbonyl, C₂-C₈alkanoyloxy, C₁-C₈alkylthio, C₂-C₈alkyl ether, phenylC₀-C₄alkyl, phenylC₀-C₄alkoxy, mono- and di-(C₁-C₆alkyl)aminoC₀-C₆alkyl, and (4- to 7-membered heterocycle)C₀-C₄alkyl; each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄haloalkyl, C₁-C₄haloalkoxy, and mono- and di-(C₁-C₄alkyl)amino;
 - (b) in a container; and
 - (c) instructions for using the composition to treat a patient suffering from a disorder associated with MCH receptor activation.

- 41. A packaged pharmaceutical preparation according to claim 40, wherein the disorder is an eating disorder, sexual disorder, obesity, diabetes, heart disease or stroke.
- 42. A method of reducing medication error and enhancing therapeutic compliance of an individual suffering from a disorder associated with MCH receptor activation, said method comprising the steps of providing a packaged pharmaceutical preparation according to claim 40 wherein the instructions additionally include contraindication and adverse reaction information pertaining to the packaged pharmaceutical preparation.
- 43. A method for modulating binding of MCH to cellular MCH receptor, the method comprising contacting cells expressing MCH receptor with a compound or salt according to any one of claims 1 to 33, in an amount sufficient to detectably modulate MCH binding to MCH receptor *in vitro*, and thereby modulating MCH binding to MCH receptor in the cells.
 - 44. A method according to claim 43, wherein the cells are present in an animal.
- 45. A method according to claim 44, wherein animal is a human, the cell is a brain cell and the fluid is cerebrospinal fluid.
 - 46. A method according to claim 43, wherein the modulation is inhibition.
- 47. A method for modulating binding of MCH to a MCH receptor *in vitro*, the method comprising contacting MCH receptor with a compound or salt according to any one of claims 1 to 33, under conditions and in an amount sufficient to detectably modulate MCH binding to the MCH receptor.
- 48. A method for altering the signal-transducing activity of a MCH receptor in a cell, the method comprising contacting a cell expressing MCH receptor with a compound or salt according to any one of claims 1 to 33, under conditions and in an amount sufficient to detectably alter the electrophysiology of the cell, and thereby altering the signal-transducing activity of MCH receptor in the cell.
 - 49. A method according to claim 48, wherein the cell is present in an animal.

- 50. A method according to claim 49, wherein animal is a human, the cell is a brain cell and the fluid is cerebrospinal fluid.
 - 51. A method according to claim 47 wherein the modulation is inhibition.
- 52. A method according to claim 48, wherein the alteration in the electrophysiology of the cell is detected as a change in the animal's feeding behavior.
- 53. A method for treating a disease or disorder associated with MCH receptor activation, comprising administering to a patient in need of such treatment a therapeutically effective amount of a compound of the formula

$$\underbrace{ \begin{array}{c} R_4 \\ Ar_2 \end{array} }^{R_{3b}} \underbrace{ \begin{array}{c} R_{3a} \\ D \end{array} }_{D} \underbrace{ \begin{array}{c} A \\ B \end{array} }^{A} \underbrace{ \begin{array}{c} G \\ Y_n \end{array} }^{Ar_1}$$

or a pharmaceutically acceptable salt; wherein:

A, E, and D are independently CR_2 or N; and one of B and G is chosen from CR_2 and N; and the other of B and G is a Carbon atom covalently bound to the group: $X
ightharpoonup Ar_1$ X is O, NH or CH_2 ;

n is 0 or 1;

Ar₁ is phenyl or a 6-membered aromatic heterocycle, each of which is substituted with from 0 to 4 substituents independently chosen from R_a; or two adjacent substituents are taken together to form, with the ring atoms to which they are bound, a fused 5- or 6-membered ring substituted with from 0 to 4 substituents independently chosen from R_a;

represents fused phenyl or a fused 6-membered aromatic heterocycle, each of which is substituted with from 0 to 4 substituents independently chosen from R_a; or two adjacent substituents are taken together to form, with the ring atoms to which they are bound, a fused 5- or 6-membered ring substituted with from 0 to 3 substituents independently chosen from R_a;

R₂ is independently chosen at each occurrence from hydrogen, hydroxy, halogen, amino, nitro, cyano, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₃-

WO 2005/077903

PCT/US2005/004107

85

- C_7 cycloalkyl(C_0 - C_4 alkyl), C_1 - C_6 haloalkyl, C_1 - C_6 haloalkoxy, and mono- and di-(C_1 - C_4 alkyl)amino;
- R_{3a} and R_{3b} are independently hydrogen, hydroxy, halogen, cyano, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₆haloalkyl or C₁-C₆haloalkoxy; or R_{3a} and R_{3b} are taken together to form an oxo group;
- R_4 represents from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, nitro, cyano, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_3 - C_7 cycloalkyl(C_0 - C_4 alkyl), C_1 - C_6 haloalkyl, and C_1 - C_6 haloalkoxy;

R_a is independently chosen at each occurrence from:

- (i) hydroxy, halogen, amino, aminocarbonyl, cyano, nitro, and -COOH; and
- (ii) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₁-C₈alkoxy, C₃-C₇cycloalkyl(C₀-C₄alkyl), C₁-C₈haloalkyl, C₁-C₈haloalkoxy, C₁-C₈alkanoyl, C₃-C₈alkanone, C₂-C₈alkoxycarbonyl, C₂-C₈alkanoyloxy, C₁-C₈alkylthio, C₂-C₈alkyl ether, phenylC₀-C₄alkyl, phenylC₀-C₄alkoxy, mono- and di-(C₁-C₆alkyl)aminoC₀-C₆alkyl, and (4- to 7-membered heterocycle)C₀-C₄alkyl; each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄haloalkyl, C₁-C₄haloalkoxy, and mono- and di-(C₁-C₄alkyl)amino.

- 54. A method according to claim 53, wherein the disease or disorder is an eating disorder, sexual disorder, diabetes, heart disease or stroke.
- 55. A method according to claim 53, wherein the compound or salt is administered orally.
- 56. A method according to claim 53, wherein the compound or salt is administered intranasally, intravenously or topically.
 - 57. A method according to claim 53, wherein the patient is a human.
 - 58. A method according to claim 53, wherein the patient is a dog or a cat.
- 59. A method for treating obesity, comprising administering to a patient in need of such treatment a therapeutically effective amount of a compound of any one of Claims 1 to 33.
- 60. A method according to claim 59, wherein the compound or salt is administered orally.
 - 61. A method according to claim 59 or claim 60, wherein the patient is a human.
- 62. A method according to claim 59 or claim 60, wherein the patient is a dog or a cat.
- 63. A compound or salt according to any one of claims 1 to 33, wherein the compound or salt is radiolabeled.
- 64. A method for determining the presence or absence of MCH receptor in a sample, comprising the steps of:
 - (a) contacting a sample with a compound or salt according to any one of claims 1 to 33 under conditions that permit binding of the compound or salt to MCH receptor; and
 - (b) detecting a level of compound or salt bound to MCH receptor, and therefrom determining the presence or absence of MCH receptor in the sample.

- 65. A method according to claim 64, wherein the compound or form is a radiolabeled, and wherein the step of detection comprises the steps of:
 - (i) separating unbound compound from bound compound; and
 - (ii) determining an amount of bound compound in the sample.
 - 66. A method according to claim 65, wherein the sample is a tissue section.
- 67. (3-Benzyl-phenyl)-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-methanone or a pharmaceutically acceptable salt thereof.
- 68. (6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-(3-phenoxy-phenyl)-methanone or a pharmaceutically acceptable salt thereof.
- 69. (6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-[6-(2-ethyl-phenoxy)-pyridin-2-yl]-methanone or a pharmaceutically acceptable salt thereof.
- 70. (6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-[6-(3-ethyl-phenoxy)-pyridin-2-yl]-methanone or a pharmaceutically acceptable salt thereof.
- 71. 2-(3-Benzyl-benzyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 72. 2-[1-(3-Benzyloxy-phenyl)-ethyl]-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 73. 2-[1-(3-Benzyloxy-phenyl)-ethyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 74. 2-[1-(3-Phenoxy-phenyl)-ethyl]-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 75. 2-[1-(4-Benzyloxy-3,5-dimethyl-phenyl)-ethyl]-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 76. 2-[1-(4-Benzyloxy-3,5-dimethyl-phenyl)-ethyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.

- 77. 2-[1-(4-Benzyloxy-phenyl)-ethyl]-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 78. 2-[1-(4-Benzyloxy-phenyl)-ethyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 79. 2-[1-(4-Phenoxy-phenyl)-ethyl]-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 80. 2-[2-(4-Isopropyl-phenoxy)-pyridin-4-ylmethyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 81. 2-[2-(4-*tert*-Butyl-phenoxy)-pyridin-4-ylmethyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 82. 2-[3-(3,4-Dichloro-phenoxy)-benzyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 83. 2-[3-(4-Ethoxy-phenoxy)-benzyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 84. 2-[3-(4-Isopropyl-phenoxy)-benzyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 85. 2-[3-(4-*tert*-Butyl-phenoxy)-2-methyl-benzyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 86. 2-[3-(4-*tert*-Butyl-phenoxy)-4-methyl-benzyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 87. 2-[3-(4-*tert*-Butyl-phenoxy)-benzyl]-6,7-dichloro-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 88. 2-[3-(4-*tert*-Butyl-phenoxy)-benzyl]-6,7-diethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.

- 89. 2-[3-(4-*tert*-Butyl-phenoxy)-benzyl]-6,7-dimethoxy-1,1-dimethyl-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 90. 2-[3-(4-*tert*-Butyl-phenoxy)-benzyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 91. 2-[3-(4-*tert*-Butyl-phenoxy)-benzyl]-6,7-dimethoxy-1-methyl-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 92. 2-[3-(4-*tert*-Butyl-phenoxy)-benzyl]-6,7-dimethoxy-3-methyl-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 93. 2-[3-(4-*tert*-Butyl-phenoxy)-benzyl]-6-ethoxy-7-methoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 94. 2-[3-(4-*tert*-Butyl-phenoxy)-benzyl]-6-methoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 95. 2-[3-(4-*tert*-Butyl-phenoxy)-benzyl]-7-ethoxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 96. [2-(4-*tert*-Butyl-phenoxy)-pyridin-4-yl]-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-methanone or a pharmaceutically acceptable salt thereof.
- 97. 2-[6-(2-Ethyl-phenoxy)-pyridin-2-ylmethyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 98. 2-[6-(3-Ethyl-phenoxy)-pyridin-2-ylmethyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 99. 2-[6-(4-*tert*-Butyl-phenoxy)-pyridin-2-ylmethyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 100. 2-{1-[3-(3,4-Dichloro-phenoxy)-phenyl]-ethyl}-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.

- 101. 2-{1-[3-(3,4-Dichloro-phenoxy)-phenyl]-ethyl}-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 102. 2-{1-[3-(4-Chloro-phenoxy)-phenyl]-ethyl}-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 103. 2-{1-[3-(4-Chloro-phenoxy)-phenyl]-ethyl}-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 104. 2-{1-[3-(4-Methoxy-phenoxy)-phenyl]-ethyl}-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 105. 2-{1-[3-(4-*tert*-Butyl-phenoxy)-phenyl]-ethyl}-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 106. 2-{1-[3-(4-*tert*-Butyl-phenoxy)-phenyl]-ethyl}-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 107. [3-(4-*tert*-Butyl-phenoxy)-2-methyl-phenyl]-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-methanone or a pharmaceutically acceptable salt thereof.
- 108. 4-[3-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-ylmethyl)-phenoxy]-benzonitrile or a pharmaceutically acceptable salt thereof.
- 109. 6,7-Dimethoxy-2-(3-p-tolyloxy-benzyl)-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 110. 6,7-Dimethoxy-2-[1-(3-phenoxy-phenyl)-ethyl]-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 111. 6,7-Dimethoxy-2-[1-(4-phenoxy-phenyl)-ethyl]-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 112. 6,7-Dimethoxy-2-[3-(3,4,5-trimethoxy-phenoxy)-benzyl]-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.

91

- 113. 6,7-Dimethoxy-2-[3-(4-methoxy-phenoxy)-benzyl]-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 114. 6,7-Dimethoxy-2-[3-(4-phenoxy-phenoxy)-benzyl]-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 115. 6,7-Dimethoxy-2-[3-(4-trifluoromethoxy-phenoxy)-benzyl]-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 116. 6,7-Dimethoxy-2-[3-(4-trifluoromethyl-phenoxy)-benzyl]-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 117. 6,7-Dimethoxy-2-{1-[3-(4-methoxy-phenoxy)-phenyl]-ethyl}-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 118. 6-[3-(4-*tert*-Butyl-phenoxy)-benzyl]-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinoline or a pharmaceutically acceptable salt thereof.
- 119. 7-Ethoxy-2-[2-(4-isopropyl-phenoxy)-pyridin-4-ylmethyl]-6-methoxy-1,2,3,4-tetrahydroisoquinoline or a pharmaceutically acceptable salt thereof.
- 120. The use of a compound or salt according to any one of claims 1-33 for the manufacture of a medicament for the treatment of a disorder associated with MCH receptor activation
- 121. A use according to claim 120, wherein the disorder is an eating disorder, sexual disorder, obesity, diabetes, heart disease or stroke.