

Photonic Crystals: Molding the Flow of Light

M.A. Al Mamun, Zahidur Rahman, Arnab Malaker, Samira Saimoma, Ehsanul Haque, Abu Sayem, Ashikin Dewan, Mamunur Rahman

Dept. of GCE, Bangladesh University of Engineering & Technology, Dhaka 1000, Bangladesh

Dawn of the Ultrafast Communication Era

Information Carrier: X Electrons Photons (Light)

Advantages of lights over electrons:

- Speed: Photons in dielectric materials > Electrons in metallic wire
- Bandwidth: Dielectric materials > Metals
- Minimum Energy loss

- > Bandgap due to a periodicity in the materials dielectric properties.
- > Mechanism of total internal reflection.

Photonic Band Gap

A particular range of frequencies are restricted to pass through

Fig: Multilayer film: A 1D Photonic Crystal

Fig: 3 different multilayer films; each layer has width 0.5a

Left: Every layer has same dielectric constant $\varepsilon = 13$ Center: Layers alternate between ε of 13 & 12 Right: Layers alternate between ε of 13 & 1

Bandgap increases with contrast in ϵ

Ref: John et al. "Photonic Crystals" Princeton University Press, 2008

Photonic Crystals: Play with Defects

In plane electric field energy densities: L3 (3 missing holes, shifted end holes), L1 (1 missing holes, shifted & shrunk neighbor holes), L0 (no missing holes, only 2 shifted holes)

Ref: Uday et al. Nanotechnology 21 (2010), 065202

Photonic Crystals (GaAs) as Waveguides

Only the light that resonates on the point defects can pass

Most Important Challenge: Design & Fabrication

Current fabrication techniques:

- > Electron Beam Lithography
- X-Ray Lithography

* This poster is a part of the coursework "GCE 6103: October 2017" under supervision of Dr. M. Hasanuzzaman