Numeri complessi

Def

• Insieme dei complessi > - $\mathbb{C} := \{a+ib \mid a,b \in \mathbb{R}, \ i:i^2=-1\}$ è l'insieme dei complessi > - $z \in \mathbb{C} \implies \left\{ \begin{array}{l} a:=\operatorname{Re}(z) \\ b:=\operatorname{Im}(z) \end{array} \right.$

Oss

• Hp $-a, b \in \mathbb{R}, z \in \mathbb{C} \mid z = a + ib \\ -c, d \in \mathbb{R}, w \in \mathbb{C} \mid w = c + id$ • Th -z + w = (a + b) + i(c + d)

Def

- Coniugato
 - z = a + ib
 - $\bar{z} := a ib$ è il **coniugato** di z

 $-z \cdot w = (ac - bd) + i(ad + bc)$

\mathbf{Oss}

• Hp $\begin{array}{c} -a,b\in\mathbb{R},z\in\mathbb{C}\mid z=a+ib\\ -c,d\in\mathbb{R},w\in\mathbb{C}\mid w=c+id \end{array}$ • Th $\begin{array}{c} -\overline{z}+\overline{w}=\overline{z+w}\\ -\overline{z}\cdot\overline{w}=\overline{z\cdot w} \end{array}$

Formula di Eulero

• $\forall \theta \quad e^{i\theta} = \cos \theta + i \sin \theta$

Def

• Raggio > - z=a+ib > - $|z|:=\sqrt{a^2+b^2}$ è il raggio di z > - è la distanza di z dall'origine nel piano di Gauss

Forma polare

•
$$\forall z \in \mathbb{C} - 0 \implies z = |z| \cdot e^{i\theta}$$

Def

• $\arg(z) \subset \mathbb{R}$ è l'insieme delle soluzioni del sistema $\left\{ \begin{array}{l} \cos \theta = \frac{a}{|z|} \\ \sin \theta = \frac{b}{|z|} \end{array} \right.$

• per definizione, $\arg(z) \implies \exists !\theta \mid 0 \le \theta \le 2\pi$ tale che θ sia soluzione del sistema, e questo prende il nome di Arg(z), detta soluzione principale

Oss

• Dim
$$-\frac{z \cdot \bar{z} = (a+ib)(a-ib) = a^2 - (ib)^2}{i^2 = -1} \implies a^2 - i^2b^2 = a^2 + b^2 = |z|^2$$

$$-z \cdot \bar{z} = |z|^2 \iff z = \frac{|z|^2}{\bar{z}} \iff z^{-1} = \frac{z}{|z|^2} = \frac{a}{a^2 + b^2} - i\frac{b}{a^2 + b^2} \implies \mathbb{C} \text{ ammette}$$
inversi moltiplicativi $\implies (\mathbb{C}, +, \cdot)$ è un campo

Oss

•
$$|z \cdot w| = |z| \cdot |w|$$
 $\arg(z \cdot w) = \arg(z) + \arg(w)$

•
$$|\overline{w}| = |w|$$
 $\arg(\overline{w}) = -\arg(w)$

•
$$|w^{-1}| = |w|^{-1}$$
 $\arg(w^{-1}) = -\arg(w)$

•
$$|z \cdot w| = |z| \cdot |w|$$
 $\arg(z \cdot w) = \arg(z) + \arg(w)$
• $|\overline{w}| = |w|$ $\arg(\overline{w}) = -\arg(w)$
• $|w^{-1}| = |w|^{-1}$ $\arg(w^{-1}) = -\arg(w)$
• $\left|\frac{z}{w}\right| = \frac{|z|}{|w|}$ $\arg\left(\frac{z}{w}\right) = \arg(z) - \arg(w)$

Formula di de Moivre

•
$$z^n = |z|^n e^{in\theta}$$
 $\arg(z^n) = n \arg(z)$