Discrete population models

D. Gurarie

Rational: cyclic (seasonal) timing of reproduction and development, synchronization

Topics:

- 1. Renewal models (Fibonacci)
- 2. Discrete logistic models (Verhulst vs. Ricker); cobwebs; equilibria, cycles, chaos
- 3. Discrete-delay models:
 - a. Delayed Ricker
 - b. IWC whale model
 - c. Tumor growth

Renewal/growth models; Fibonacci

Fibonacci sequence:

$$x_{n+1} = x_n + x_{n-1}; \ x_0 = 0; x_1 = 1$$
 (0.1)

defines second order linear *recurrence*, or *finite difference* equation. Like higher order DEs such difference equations can be converted to a matrix system

$$X_{t+1} = AX_t$$
; with $X_t = \begin{pmatrix} x_{t-1} \\ x_t \end{pmatrix}$; matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ (0.2)

It can be viewed as two-stage population system: x_t - young, y_t - adults, that grows (renews) as

$$x_{t+1} = y_t; \ y_{t+1} = y_t + x_t$$

in unit time step. More natural discrete time step 2-stage model obeys

$$x_{t+1} = by_t; \ y_{t+1} = s_y x_t + s_a y_t; \text{ with matrix } A = \begin{bmatrix} 0 & b \\ s_y & s_a \end{bmatrix}$$
 (0.3)

where b>0 - proliferation (growth) factor, $0< s_{y,a}<1$ - survival fractions (of young and adults), so $\mu_{y,a}=1-s_{y,a}$ - mortality factors. Stability of solutions (0.2) $X_n=A^nX_0$, depends on eigenvalues of matrix A

$$\lambda_{1,2} = \frac{s_a}{2} \pm \sqrt{\frac{s_a^2}{4} + b} = 1$$
?

Show (i) unstable $\lambda_1 > 1$, corresponds to $s_y b > \mu_a$ (surviving young exceed adult death removal); (ii) stable (decay) gives $s_y b < \mu_a$.

A general finite difference equation

$$x_{t+m} = a_1 x_{t+m-1} + \dots + a_m x_t \tag{0.4}$$

can also be solved by characteristic polynomial

$$p(\lambda) = \lambda^m - a_1 \lambda^{m-1} - \dots - a_m$$

whose (complex) roots give special power solutions $\{\lambda_j^n\}$, and general one $x_n = \sum_{i=1}^m c_j \lambda_j^k$,

in particular, Fibonacci numbers: $x_n = \frac{\lambda_1^n - \lambda_2^n}{\lambda_1 - \lambda_2}; \lambda_{1,2} = \frac{1 \pm \sqrt{5}}{2}.$

Verhulst and Ricker Discrete Logistic Models.

They offer two different ways to discretize continuous logistic model:

$$y' = r(1 - y/N)y \tag{0.5}$$

in time steps Δt , so $t_n = n\Delta t$, and $y_n = y(t_n)$.

Verhults discretizes derivative: $y_{n+1} - y_n \approx r(1 - y_n / N) y_n \Delta t$, whence

$$y_{n+1} = r^* (1 - y_n / N^*) y_n; \text{ with } r^* = 1 + r\Delta t, N^* = \frac{1 + r\Delta t}{r\Delta t} N$$
 (0.6)

Ricker solves (0.5) over short time $[t_n, t_n + \Delta t]$, assuming "near constant" rate coefficient

$$r(1-y/N) \approx r(1-y_n/N)$$
, to get

$$y_{n+1} = r^* y_n e^{-y_n/N}; \ r^* = e^{r\Delta t}$$
 (0.7)

In both cases rescaled variable u = y/N solves a nonlinear 1-st order recurrence:

$$u_{n+1} = f(u_n); \text{ where } f(u) = \begin{cases} ru(1-u) - \text{ quadratic (Verhulst)} \\ rue^{-u} - \text{ Ricker} \end{cases}$$
 (0.8)

Verhulst population model does not allow values above threshold N (unrealistic), while Ricker has no such limitations (more realistic).

Solution of (0.8) are made of iterates of map
$$f: u_n = \underbrace{f\left(f\left(...f\left(u_0\right)\right)\right)}_{n \text{ times}}$$
. Special cases

include

(i) equilibria: u = f(u) - fixed points of f;

(ii) m- cycles (periodic orbits):
$$u_{t+m} = u_t$$
 - fixed points of $f_m(u) = \underbrace{f(f...f(u))}_{m}$;

(iii) chaotic trajectories.

Stability of equilibrium u_0 , or cycle $\{u_0, u_1, ... u_{m-1}\}$ is determined by linearized model:

$$u_{t+1} = Bu_t$$
; where $B = f'(u_0)$, or $f'_m(u_0)$ (for cycle) (0.9)

So B < 1 are stable, and B > 1 (unstable).

Discrete logistic models (0.8) exhibit a complex chain of bifurcations in terms of growth parameter r > 1, that progresses from stable equilibria to limit cycles of different periodicities to chaos. They are summarized in the following table:

stable equilibrium y* = 1 - 1/r
stable period: 2 orbit
perioddoubling: 2 ² -orbit
stable 2 ^k – orbit
stable 3 - orbit
32 ^k - orbit
chaos

Two important types of bifurcations that occur in iterated maps are *period doubling* illustrated in Fig. 1, and *tangential* bifurcation (e.g. period 3 cycle, or any other odd m). In *period doubling* a stable m-cycle (i.e. fixed point y^* of $f_m(y)$) looses stability for $f_{2m}(y)$, but a new stable pair $\{y_1^* < y^* < y_2^*\}$ (2-cycle of f_m) comes in place. So *period doubling* serves as a discrete version of *pitchfork bifurcation*: "stable equilibrium" \rightarrow "stable-unstable-stable triplet".

Tangential bifurcation (triple cycle) is illustrated in Fig.2: three stable fixed points of f_3 come out of the complex domain at critical $r_3 = 3.828$, and develop into stable period-3 cycle of f(y) in the range $r_3 < r < r_6$, when another period doubling occurs. Fig.3 shows critical case r_3 and period-3 cycle.

Problem: Show that m-cycle $\{y_1, ..., y_m\}$ of map f(y) is stable if and only if the corresponding fixed point of the m-th iterate $f_m(y)$ is stable. Hint: linearize f about m-cycle, and show that the resulting linear system is given by a Leslie type (cyclic) matrix with entries $a_j = f'(y_j)$

$$A = \begin{bmatrix} 0 & \dots & a_m \\ a_1 & 0 & \dots & 0 \\ 0 & a_2 & & 0 \\ 0 & \dots & a_{m-1} & 0 \end{bmatrix}$$

Use characteristic polynomial $\det(\lambda - A) = \lambda^m \pm a_1...a_m$, and link stability of A to stability of fixed points of f_m .

Fig.1: Period doubling: Plot (a) stable equilibrium $y^* = 1 - 1/r$; (1 < r < 3) for f(x) and $f_2(x) = f(f(x))$, turns Plot (b) into stable 2-cycle $\{y_1^* < y^* < y_2^*\}$, so that $f'(y^*) > 1$; $f'(y_i^*) < 1$.

Fig.3: Dynamics of quadratic map in two cases: (a) critical $r_3 = 3.828$; (b) stable 3-cycle. Further details and computations are given in Mathematica <u>notebook</u>.

Fourier Power Spectra

Periodic or chaotic (time series) solution can be examined by Fourier methods (power spectra) discussed in the <u>notebook</u>. We recall that a (generalized) *Fourier expansion*

$$f(t) \sim \sum_{k=-\infty}^{\infty} \hat{f}_k e^{2\pi i \omega_k t}$$
, consists of (amplitude) coefficients $\{\hat{f}_k\}$, and frequencies $\{\omega_k\}$. For

periodic functions f with period T, all frequencies are multiples (harmonics) of the lowest one:

$$\omega_k = k\omega_1$$
; $\omega_1 = \frac{2\pi}{T}$, and coefficients

$$\hat{f}_k = \int_0^1 f(t)e^{-2\pi ikt}dt = \left\langle f \mid e^{2\pi ikt} \right\rangle$$

- (square-mean) inner product of f and exponent.

More general *quasi-periodic* functions have arbitrary set of ω 's. Frequencies $\{\omega_k\}$ define *power spectrum* $\{|\hat{f}(\omega)|^2\}$ of signal f(t). So spectral peaks in Fig. 1,3 (right bottom) indicate the most important frequencies that appear in long term series if iterates $\{y_k\}$. One can see frequencies $\omega = 1/2; 1/3;...$ corresponding to 2-cycles, 3-cycles, etc.