$x_{imin} \coloneqq 1$ x_{in}	$max \coloneqq 4$ $k \coloneqq$	= 2		
$y_{11} \coloneqq 1.1$	$y_{12} = 1.3$	$y_{13} \coloneqq 1.5$	$y_{14} \coloneqq 1.2$	$y_{15} \coloneqq 1.4$
$y_{21} \coloneqq 2.3$	$y_{22} \coloneqq 2.2$	$y_{23} \coloneqq 2.4$	$y_{24}\!\coloneqq\!2.5$	$y_{25} \coloneqq 2.1$
$y_{31} \coloneqq 3.5$	$y_{32} \coloneqq 3.2$	$y_{33} \coloneqq 3.4$	$y_{34} \coloneqq 3.3$	$y_{35} \coloneqq 3.1$
$y_{41} \coloneqq 4.1$	$y_{42} \coloneqq 4.4$	$y_{43} \coloneqq 4.3$	$y_{44} \coloneqq 4.2$	$y_{45} \coloneqq 4.5$
p = 0.950	b := 0.00375	S^2 $a\partial := 0.2$	275	d := 2
$m_x \coloneqq 1$	$m_y \coloneqq 2$	$a_2\!\coloneqq\!-1$	$a_3 \coloneqq -1$	$a_4 \coloneqq -1$
$a_{11} \coloneqq 8$	$a_{21}\!\coloneqq\!-2$	$b_0 := 1$	$b_1 \coloneqq -3$	$b_{11} \coloneqq -4$
$y_{31} := 3.5$ $y_{41} := 4.1$ $p := 0.950$ $m_x := 1$	$y_{32} := 3.2$ $y_{42} := 4.4$ $b := 0.00375$ $m_y := 2$	$y_{33} = 3.4$ $y_{43} = 4.3$ $S^2 \ a \partial := 0.2$ $a_2 = -1$	$y_{34} := 3.3$ $y_{44} := 4.2$ 275 $a_3 := -1$	$y_{35} := 3.1$ $y_{45} := 4.5$ $d := 2$ $a_4 := -1$

Хід роботи

Завдання №1

Визначити абсолютне значення x_{i0} та кодоване значення x_{i0} основного рівня фактора x_i при заданих значеннях x_{imin} та x_{imax} . Значення x_{imin} та x_{imax} узяти з таблиці варіантів.

Абсолютні значення	x_i	$x_{imin}\!\coloneqq\!-1$	$x_{imax}\!\coloneqq\!4$	$x_{i0} \coloneqq \frac{x_{imin} + x_{imax}}{2} = 1.5$
Кодовані значення	$\overline{x_i}$	$x_{iminK} \coloneqq -1$	$x_{imaxK} \coloneqq 1$	$x_{i0K} = 0$

Завдання №2

Визначити значення (розмір) зоряного плеча l, від'ємне кодоване значення x_{il} та відповідне абсолютне значення x_{il} фактора x_i для зоряної точки при використанні рототабельного композиційного плану для k факторів.

Значення k та x_{imax} узяти з таблиці варіантів, а значеня x_{i0} — результат розрахунків по п.1.

$$l1 := \sqrt{k}$$

Кодоване значення
$$x_{ilK} := -l1 = -1.414$$

Абсолютне значення знаходимо з формули
$$\stackrel{-}{x_{ilK}} = \frac{x_{il} - x_{i0}}{\Delta X_i}$$
 де $\Delta X_i = \left(x_{imax} - x_{i0}\right)$

Абсолютне значення
$$x_{il} \coloneqq x_{ilK}^{-} \cdot (x_{imax} - x_{i0}) + x_{i0} = -2.036$$

Завдання №3

Визначити значення (розмір) зоряного плеча l, додатнє кодоване значення x_{il} та відповідне абсолютне значення x_{il} фактора x_i для зоряної точки при використанні центрального ортогонального композиційного плану для двох факторів.

Значення x_{imax} узяти з таблиці варіантів, а значеня x_{i0} — результат розрахунків по

Розмір зоряного плеча визначаємо з біквадратного рівняння $4 \cdot l^4 + 4 \cdot 2^k \cdot l^2 - 2^k \cdot (2 \cdot k + 1) = 0$

 $l2 \coloneqq 1$

 $x_{ilK} := 12 = 1$ Кодоване значення

Абсолютне значення знаходимо з формули $x_{ilK} = \frac{x_{il} - x_{i0}}{\Delta X_i}$ де $\Delta X_i = (x_{imax} - x_{i0})$

 $x_{il} := x_{ilK} \cdot (x_{imax} - x_{i0}) + x_{i0} = 4$ Абсолютне значення

Завдання №4

Визначити середньоарифметичне значення $y_m(m=1,4)$ для п'яти повторень вимірювань функції відгуку $y_{ms}(m=1,4;s=1,5)$ у кожній m-ій точці факторного простору (m=5), значення статистичних оцінок дисперсій S^2 m(m=1,4) та середнє значення статистичної оцінки дисперсії S^2 .

Значення $y_{ms}(m=1,4;s=1,5)$ узяти з таблиці варіантів.

Середньоарифметичні значення
$$y_{1C}\coloneqq\frac{1}{5}\cdot\left(y_{11}+y_{12}+y_{13}+y_{14}+y_{15}\right)=1.3$$

$$y_{2C} := \frac{1}{5} \cdot (y_{21} + y_{22} + y_{23} + y_{24} + y_{25}) = 2.3$$

$$y_{3C} \coloneqq \frac{1}{5} \cdot \left(y_{31} + y_{32} + y_{33} + y_{34} + y_{35} \right) = 3.3$$

$$y_{4C} := \frac{1}{5} \cdot (y_{41} + y_{42} + y_{43} + y_{44} + y_{45}) = 4.3$$

Значення статистичних оцінок дисперсій S^2 m

$$S2_{1} \coloneqq \frac{1}{5-1} \cdot \left(\left(y_{11} - y_{1C} \right)^{2} + \left(y_{12} - y_{1C} \right)^{2} + \left(y_{13} - y_{1C} \right)^{2} + \left(y_{14} - y_{1C} \right)^{2} + \left(y_{15} - y_{1C} \right)^{2} \right) = 2.5 \cdot 10^{-2}$$

$$S2_2 \coloneqq \frac{1}{5-1} \boldsymbol{\cdot} \left(\left(y_{21} - y_{2C} \right)^2 + \left(y_{22} - y_{2C} \right)^2 + \left(y_{23} - y_{2C} \right)^2 + \left(y_{24} - y_{2C} \right)^2 + \left(y_{25} - y_{2C} \right)^2 \right) = 2.5 \boldsymbol{\cdot} 10^{-2}$$

$$S2_3 \coloneqq \frac{1}{5-1} \boldsymbol{\cdot} \left(\left(y_{31} - y_{3C} \right)^2 + \left(y_{32} - y_{3C} \right)^2 + \left(y_{33} - y_{3C} \right)^2 + \left(y_{34} - y_{3C} \right)^2 + \left(y_{35} - y_{3C} \right)^2 \right) = 2.5 \boldsymbol{\cdot} 10^{-2}$$

$$S2_4 \coloneqq \frac{1}{5-1} \cdot \left(\left(y_{41} - y_{4C} \right)^2 + \left(y_{42} - y_{4C} \right)^2 + \left(y_{43} - y_{4C} \right)^2 + \left(y_{44} - y_{4C} \right)^2 + \left(y_{45} - y_{4C} \right)^2 \right) = 2.5 \cdot 10^{-2}$$

Середнє значення статистичної оцінки дисперсії S^2 .

$$S2 := \frac{1}{4} \cdot \left(S2_1 + S2_2 + S2_3 + S2_4 \right) = 0.025$$

Завдання №5

Визначити значення параметра G, кількість ступенів вільності f_1 і f_2 та рівень значущості q, що використовуються для перевірки однорідності дисперсії $\{\sigma^2\}$ $[y_m] = \sigma^2 = const(m=1,4)$ по критерію Кохрена для заданих значень статистичних оцінок дисперсії S^2 m(m=1,4) при m=5 для двох факторів (k=2). Підтвердити (чи не підтвердити) гіпотезу про однорідність дисперсії по критерію Кохрена з ймовірністю p.

Значення ймовірності р підтвердження (чи не підтвердження) гіпотези про однорідність дисперсії по критерію Кохрена взяти з таблиці варіантів, а значення S^2 m(m=1,4) — результати розрахунків по п.4.

$$G \coloneqq \frac{S2_1}{S2_1 + S2_2 + S2_3 + S2_4} = 0.25$$

$$f_1 := m-1$$
 $f_1 := 5-1=4$ $m=5-$ кількість повторень комбінації $f_2 := N$ $f_2 := 4$ $N=4-$ кількість комбінацій

$$q = 1 - p$$
 $q = 0.05$

За даними визначаємо $G_{\kappa p} := Q$

$$G_{\kappa\rho} \coloneqq 0.5441$$

Оскільки $G \leq G_{\kappa p}$ тоді з ймовірністю p гіпотеза про одорідність дисперсії

Отже, кількість повторень правильна – ми отримали нормальний розподіл.

Завдання №6

Визначити значення статистичної оцінки дисперсії похибки розрахунку будь-якого коефіцієнта рівняння регресії $S^2\{b\}$, значення параметра t та кількість ступенів вільності f_3 , що використовуються при перевірці значущості коєфіцієнтів лінійної регресії по критерію Стьюдента (повний факторний експеримент) при $m{=}5$ для двох факторів (k=2). Визначити з ймовірністю p незначущі коефіцієнти лінійної регресії та кількість значущих коефіцієнтів d лінійної регресії.

Значення b узяти з таблиці варіантів, значення f_3 розраховується за формулою f_3 $=f_1 f_2$ (значення f_1 та f_2 узяти з п.5), а значення S^2 – результати розрахунків по п.4.

$$S2_b\coloneqq\frac{1}{5\cdot 4}\cdot S2=0.001 \qquad m=5-$$
 кількість повторень комбінації
$$N=4-$$
 кількість комбінацій
$$t_i\coloneqq\frac{|b|}{S2_b}=3$$

$$f_3 \coloneqq f_1 \cdot f_2 \qquad \qquad f_3 = 16$$

$$q := 1 - p$$
 $q = 0.05$

За даними визначаємо $t_{\kappa\rho}$

$$t_{\kappa p} = 2.1199$$

Оскільки $t > t_{\kappa p}$ тоді з ймовірністю p заданий по варіанту коєфицієнт b є значимим. Отже, кількість повторень правильна — ми отримали нормальний розподіл.

Завдання №7

Визначити значення параметра F, кількість ступенів вільності f_4 , що використовується при перевірці адекватності моделі (рівняння регресіі) оригіналу (усім експериментальним даним) по критерію Фішера. Визначити чи адекватна статистична математична модель оригіналу з ймовірність p чи ні.

Значення статистичної оцінки дисперсії адекватності S^2 $a \partial$ та кількість значущих коефіцієнтів рівняння регресії d узяти з таблиці варіантівю

$$S2_{aa} = 0.275$$

$$F \coloneqq \frac{S2_{a\theta}}{S2} \qquad F = 11$$

Ступені вільності:

$$f_3 := f_1 \cdot f_2$$
 $f_3 = 16$
 $f_4 := N - d$ $f_4 = 2$
 $q := 1 - p$ $q = 0.05$

За даними визначаємо $F_{\kappa \rho}$

$$F_{KD} := 19.43$$

Оскільки $F < F_{\kappa p}$, тоді з ймовірністю р рівняння регресії адекватне усім експерементальним даним по критерію Фішера. Це означає, що кількість членів ряду обрано достатньо.

Завдання №8

Для лінійної форми рівняння регресії (один фактор) $y=b_0+b_1\cdot x$ визначити значення коефіцієнтів b_0 та b_1 , якщо відомі наступні значення статистичних моментів $m_x=(\frac{1}{n})\sum x_i$ та $m_y=(\frac{1}{n})\sum y_i$ і значення статистичних коефіцієнтів $a_2=(\frac{1}{n})\sum x_i^2$ та $a_{11}=(\frac{1}{n})\sum x_i\cdot y_i$.

Значення m_x , m_y , a_2 та a_{11} узяти з таблиці варіантів.

Для лінійної форми рівняння регресії $y = b_0 + b_1 \cdot x$ маємо таку систему рівнянь з якої можемо обчислити невідомі коефіцієнти b_0 і b_1 :

$$\begin{cases} b_0 + m_x b_1 = m_y \\ m_x b_0 + a_2 b_1 = a_{11} \end{cases}$$

Розв'язки невідомих $\,b_0\,$ та $\,b_1\,$ знайдемо методом Крамера:

Розвизки невідомих
$$b_0$$
 та b_1 знаидемо методом Крамера:
$$b_0 \coloneqq \frac{\begin{bmatrix} m_y & m_x \\ a_{11} & a_2 \end{bmatrix}}{\begin{bmatrix} 1 & m_x \\ a_{11} & a_2 \end{bmatrix}} \quad b_0 \coloneqq \frac{m_y \cdot a_2 - m_x \cdot a_{11}}{a_2 - m_x^2} \qquad b_0 = 5$$

$$b_1 \coloneqq \frac{\begin{bmatrix} m_y & m_x \\ a_{11} & a_2 \end{bmatrix}}{\begin{bmatrix} 1 & m_x \\ m_x & a_2 \end{bmatrix}} \quad b_1 \coloneqq \frac{a_{11} - m_x \cdot m_y}{a_2 - m_x^2} \qquad b_1 = -3$$