SPRAWOZDANIE Z LABORATORIUM FIZYKI 3.1											
Numer ćwiczenia	84	Temat ćwiczenia	Wyznaczanie długości fali świetlnej za pomoca								
			siatki dyfrakcyjnej								
Numer grupy	6	Termin zajęć	17.11.2016, 9:15								
S	kład gr	иру	Prowadzący	Ocena							
Iwo Bu	ıjkiewicz	z, 226203	Drini Crangera Zetruh								
Bartosz F	Rodziew	icz, 226105	Dr inż. Grzegorz Zatryb								

1. Cel ćwiczenia

- Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego;
- Wyznaczenie stałej siatki dyfrakcyjnej;

2. Spis przyrządów

- Transmisyjne siatki dyfrakcyjne (S): typ "A" -50 linii na milimetr oraz typ "B";
- · Laser lub inne źródło światła monochromatycznego (PM);
- Ekran ze skalą milimetrową (E);
- Ława optyczna ze skalą milimetrową;
- Szczelina (O);

3. Schemat układu pomiarowego

Rys.1 Schemat układu eksperymentalnego.

4. Przebieg ćwiczenia

- 1. Wyznaczenie długości fali emisji lasera
 - a. Po ustawieniu stanowiska zgodnie ze schematem wykonaliśmy pomiary dla 5 różnych odległości L, dla każdej odległości zapisane zostały wyniki dla 3 rzędów siatki dyfrakcyjnej.
 - b. Wyniki pomiarów wraz z opracowaniem znajdują się w tabeli 1.
 - c. $\lambda = 657 [nm]$

d. Przykładowe obliczenia:

$$u(L_1) = 3 [mm]$$

Niepewność odczytów L_i ustalona na 3mm zgodnie z zaleceniem prowadzącego.

$$L_1 = 290(3) [mm]$$

$$u(x_{nli}) = u(x_{npi}) = \frac{d}{2 * \sqrt{3}} = \frac{3}{2\sqrt{3}} \approx 0.9$$

Niepewność odczytów x_{nli} i x_{npi} ustalona zgodnie z zaleceniem prowadzącego na połowę średnicy kropki na linijce. W naszym przypadku była to zawsze kropka prawa.

$$x_{11} = \frac{|x_{1l1}| + |x_{1p1}|}{2} = \frac{9 + 10}{2} = 9.5$$

$$u_A(x_{11}) = \sqrt{\frac{(|x_{1l1}| - x_{11})^2 + (|x_{1p1}| - x_{11})^2}{2}} = \sqrt{\frac{(9 - 9.5)^2 + (10 - 9.5)^2}{2}} = 0.5$$

 $u_B(x_{11})$ jest równe $u(x_{1|1})$ lub $u(x_{1p1})$ ponieważ są one sobie równe (w każdym przypadku, zgodnie z założeniem napisanym wyżej).

$$u_{c}(x_{11}) = \sqrt{u_{A}(x_{11})^{2} + u_{B}(x_{11})^{2}} = \sqrt{u_{A}(x_{11})^{2} + u(x_{1p1})^{2}} = \sqrt{0.9^{2} + 0.5^{2}} \approx 1.1$$

$$\sin \theta_{11} = \frac{x_{11}}{\sqrt{(x_{11})^{2} + (L_{1})^{2}}} = \frac{9.5}{\sqrt{(9.5)^{2} + (290)^{2}}} = \frac{9.5}{\sqrt{90.25 + 84100}} = \frac{9.5}{290.16}$$

$$= 0.0327 \dots$$

$$u_{c}(\sin \theta_{11}) = \sqrt{\left(\frac{L_{1} * x_{11}}{(L_{1}^{2} + x_{11}^{2})^{3/2}}\right)^{2} * u^{2}(L_{1}) + \left(\frac{L_{1}^{2}}{(L_{1}^{2} + x_{11}^{2})^{3/2}}\right)^{2} * u^{2}(x_{11})}$$

$$= \sqrt{\left(\frac{290 * 9.5}{(290^{2} + 9.5^{2})^{3/2}}\right)^{2} * 9 + \left(\frac{290^{2}}{(290^{2} + 9.5^{2})^{3/2}}\right)^{2} * 1.21}$$

$$= \sqrt{\left(\frac{2755}{24428269.2805}\right)^2 * 9 + \left(\frac{84100}{24428269.2805}\right)^2 * 1.21}$$

$$= \sqrt{1.271914179538 * 10^{-8} * 9 + 0.003442732640381 * 1.21}$$

$$\approx 0.039$$

$$\lambda_{11} = \frac{d * \sin \Theta_{11}}{n} = \frac{0.02 * 0.0327}{1} = 0.000654 [mm] = 654 [nm]$$

 λ została wyliczona jako średnia arytmetyczna wszystkich λ_{ni} i wynosi $\lambda=657.2~[nm]$

Błąd $u(\lambda)$ to odchylenie statystyczne λ i wyliczony został ze wzoru:

$$u_A(\lambda) = \sqrt{\frac{\sum_{i,n}^{5,3} (\lambda_{ni} - \lambda)^2}{i * n}}$$

Nie piszę dalszych obliczeń ponieważ suma na górze ma 15 składników. Policzone zostało to za pomocą funkcji w Excelu.

Policzyłem również poszczególne $u(\lambda_{ni})$ ze wzoru:

$$u(\lambda_{ni}) = \sqrt{\left(\frac{d}{n} * u_c(\sin \Theta_{ni})\right)^2}$$

Dla przykładu:

$$u(\lambda_{11}) = \sqrt{\left(\frac{d}{n} * u_c(\sin \Theta_{11})\right)^2} = \frac{0.02}{1} * 0.0039 = 0.000078 [mm] = 78 [nm]$$

Za $u_B(\lambda)$ wziąłem największą wartość $u(\lambda_{ni})$.

 $u_c(\lambda)$ zostało wyliczone jako średnia kwadratowa $u_A(\lambda)$ i $u_B(\lambda)$.

$$u_C(\lambda) = 56 [nm]$$

Więc
$$\lambda = 657[56][nm]$$

2. Wyznaczenie stałej siatki dyfrakcyjnej

- a. W trakcie zajęć wykonaliśmy pomiary dla 15 odległości siatki od ekranu, dla każdej zapisując odległość rzędu 1 od zera.
- b. Wyniki pomiarów wraz z opracowaniem znajdują się w tabeli 2.
- c. d = 1980 [nm]
- d. Przykładowe obliczenia:

 $u(L_i)$, $u(x_{li})$, $u(x_{pi})$, x_i , $u_A(x_i)$, $u_B(x_i)$, $u_C(x_i)$, $sin(\Theta)_i$, jak i $u(sin(\Theta)_i)$ zostały policzone w identyczny sposób jak w pierwszej części ćwiczenia.

 $sin(\Theta)$ został policzony jako średnia arytmetyczna $sin(\Theta)_i$, a $u_A(sin(\Theta))$ to odchylenie standardowe liczone analogicznie, jak $u(\lambda)$ w poprzedniej części. Za $u_B(sin(\Theta))$ wziąłem największą wartość $u(sin(\Theta)_i)$ i $u(sin(\Theta))$ wyliczyłem jako średnia kwadratowa $u_A(sin(\Theta))$ i $u_B(sin(\Theta))$.

$$d = \frac{n * \lambda}{\sin(\theta)} = \frac{1 * 657}{0.3320} = 1980 [nm]$$

$$u_c(d) = \sqrt{\left(\frac{n}{\sin(\theta)}\right)^2 * u^2(\lambda) + \left(\frac{n * \lambda}{\sin(\theta)^2}\right)^2 * u^2(\sin(\theta))}$$

$$= \sqrt{\left(\frac{1}{0.332}\right)^2 * 56^2 + \left(\frac{657}{0.332}\right)^2 * 0.0094^2}$$

$$= \sqrt{28451.15401364494 + 0.1748569879518072}$$

$$= \sqrt{28451.32887063289} \approx 180$$

 $d = 1.98(18) [\mu m]$

A siatka dyfrakcyjna o takiej stałej daje wartość około 505 rys na 1mm.

5. Wnioski

- Wyliczona długość fali światła wynosi $\lambda = 657[56]$ [nm]. Laser którego używaliśmy był barwy czerwonej (zakres długości fali czerwonej: 630-780 [nm]), więc wyznaczona przez nas długość jest poprawna.
- Wyliczona stała siatki dyfrakcyjnej wynosi $d = 1.98(18)[\mu m]$. Siatka o takie stałej ma około 505 rys na 1mm.
- Dość duży błąd 8-9% pojawił się już na samym początku naszych obliczeń (błąd odczytu
 odległości kropek od zera) i to on powoduje tak duży błąd wartości na końcu obliczeń. Błąd
 ten wynika z niemożliwości dokładniejszego odczytania odległości rzutu światła od zera osi.

		410			380			350			320			290		Li [mm]
		ω			ω			ω			ω			ω		u(Li) [mm] n
	ω	2	1	ω	2	1	ω	2	1	ω	2	1	ω	2		
	-40	-27	-13	-37	-25	-12	-34	-22	-11	-31	-21	-10	-28	-19	-9	Xnli [mm]
	2	ω	4	2	ω	ω	2	ω	ω	2	2	ω	2	2	ω	dl [mm]
	0.6	0.9	1.2	0.6	0.9	0.9	0.6	0.9	0.9	0.6	0.6	0.9	0.6	0.6	0.9	u(Xnli) [mm]
	41	28	14	38	25	13	35	24	12	32	22	11	29	19	10	Xnpi [mm]
	2	ω	4	2	ω	ω	2	ω	ω	2	2	ω	2	2	ω	dp [mm]
	0.6	0.9	1.2	0.6	0.9	0.9	0.6	0.9	0.9	0.6	0.6	0.9	0.6	0.6	0.9	u(Xnpi) [mm]
	40.5	27.5	13.5	37.5	25	12.5	34.5	23	11.5	31.5	21.5	10.5	28.5	19	9.5	Xni [mm] ua(Xni
	0.5	0.5	0.5	0.5	0.0	0.5	0.5	1.0	0.5	0.5	0.5	0.5	0.5	0.0	0.5	ua(Xni)[mm]
	0.8 0.0983	1.1 0.0669	1.3 0.0329	0.8 0.0982	0.9 0.0656		0.8 0.0981	1.4 0.0656	1.1 0.0328	0.8 0.0980	0.8 0.0670	1.1 0.0328	0.8 0.0978	0.6 0.0654		i)[mm] uc(Xni) [mm] sin⊖ni
λ ua(λ) ub(λ) u(λ)	0.0021	0.0028	0.0032	0.0023	0.0025	0.0030	0.0025	0.0041	0.0032	0.0027	0.0026	0.0035	0.0029	0.0022	0.0039	u(sinΘni) λni [nm] u(λni) [nm]
657 5.2 78 56	655.3	669.2	658.2	654.7	656.5	657.5	654.0	655.7	656.8	653.1	670.4	655.9	652.0	653.8	654.8	ni [nm]
	14	28	64	16	25	60	17	41	64	18	26	70	20	22	78	u(λni) [nm]

	410	380	350	320	290	270	250	230	210	190	170	150	130	110	90	Li [mm]
	3 1	3 1	3 1	3 1	3 1	3 1	3 1	3 1	3 1	3 1	3 1	3 1	3 1	3 1	3 1	[mm] u(Li) [mm] n
	-144	-138	-123	-112	-102	-95	-88	-81	-74	-66	-59	-53	-45	-38	-31	Xli [mm] dl [mm]
	ω	ω	ω	ω	ω	3	ω	З	ω	ω	2	2	2	2	2	dl [mm]
	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.6	0.6	0.6	0.6	0.6	u(Xli) [mm]
	144	138	123	112	102	95	88	81	74	67	60	53	46	39	32	Xpi [mm] dp [mm]
	₃	3	3	ω	ω	ω	3	ω	ω	ω	2	2	2	2	2	dp [mm]
	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.6	0.6	0.6	0.6	0.6	u(Xpi) [mm]
	144.0	138.0	123.0	112.0	102.0	95.0	88.0	81.0	74.0	66.5	59.5	53.0	45.5	38.5	31.5	Xi [mm]
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.5	0.0	0.5	0.5	0.5	ua(Xi)[mm]
sinO ua(sinO) ub(sinO) u(sinO) d [nm] u(d) [nm]	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	1.1	0.8	0.6	0.8	0.8	0.8	uc(Xi) [mm]
0.3320 0.0027 0.013 0.0094 1980 180	0.3314	0.3413	0.3316	0.3304	0.3318	0.3319	0.3320	0.3322	0.3324	0.3304	0.3304	0.3331	0.3304	0.330	0.330	sin⊖i
																u(sin⊖i)