DATA WAREHOUSE

Date: 17.07.2025

Introduction to Data Warehousing

A Data Warehouse is a specialized system designed to support data analysis and reporting. It plays a vital role in business intelligence, acting as a centralized platform that collects and integrates data from multiple unrelated sources. The main focus of a data warehouse is to store historical data and enable efficient analytical processing, rather than handling day-to-day transactions.

Why Data Warehousing is Important

- 1. Unified Data Repository: Brings together information from various databases into a single, consistent source.
- 2. Historical Tracking: Maintains past records, useful for trends and predictive analysis.
- 3. Better Decision-Making: Supports strategic planning by providing accurate analytical reports.
- 4. Optimized for Analysis: Built specifically to manage complex data queries efficiently.
- 5. Data Accuracy and Consistency: Applies rules to ensure standard formats and reliable data.

Architecture of a Data Warehouse

- 1. Data Input Sources: Includes databases from operations, third-party tools, and external systems.
- 2. ETL Pipeline (Extract, Transform, Load):
 - Extract: Gathers raw data from different sources.
 - Transform: Converts and cleanses data into a standard structure.
 - Load: Sends the refined data into the warehouse.

3. Data Storage Structure:

- Staging Area: Temporary space for data before transformation.
- o Warehouse Database: Core storage where final data resides.
- o Data Marts: Smaller, topic-specific segments for departments.

4. Access & Presentation:

 Tools like dashboards, OLAP systems, and reporting software display results to users.

5. Metadata Layer:

Stores details about source systems, ETL rules, data structures, etc.

What is an ODS (Operational Data Store)?

An Operational Data Store is a storage system used for real-time reporting and operations. Unlike a data warehouse that contains long-term historical data, the ODS manages current, updated information for immediate decision-making.

Difference Between OLTP and Data Warehousing (OLAP)

Feature	OLTP (Online Transaction Processing)	Data Warehouse (OLAP)
Purpose	Routine business processes	Analytical reporting
Data Type	Real-time, current	Past, summarized
Structure	Highly normalized	De-normalized for fast access
Query Style	Fast inserts/updates	Complex analytical queries
Users	Operators, Admins	Analysts, Executives
System Focus	Speed in processing transactions	Speed in retrieving insights

Understanding Data Marts

A Data Mart is a focused section of a data warehouse built for a particular function like sales, marketing, or finance. It helps teams access relevant data quickly. Data marts may operate on their own or as part of the larger warehouse system.

Data Mart vs Data Warehouse

Attribute	Data Mart	Data Warehouse
Focus Area	Specific business unit	Enterprise-wide
Size	Smaller	Larger
Data Sources	Limited, usually one	Broad and varied
Development Time	Faster to implement	Requires more time
Cost	Less expensive	More costly due to scale

Life Cycle of a Data Warehouse

- 1. Requirement Gathering: Identify business goals and what data is needed.
- 2. Modeling the Data: Design data models—conceptual to physical.
- 3. Building ETL Process: Develop the data flow and transformation setup.
- 4. Deployment: Install infrastructure and launch the system.
- 5. Testing: Verify accuracy, speed, and functionality.
- 6. Ongoing Maintenance: Fix issues, apply updates, and monitor performance.
- 7. Expansion: Adapt to future needs, add more sources, and scale up features.

