Full Name: SOLUTIONS

MATHEMATICS Methods Units 1 & 2

Test 2 – Linear and Quadratic Functions, Polynomials Chapters 4, 5, 6 and 7

Semester 1 2019

Section One - Calculator Free

Time allowed for this section

Working time for this section: 20 minutes
Marks available: 20 marks

Material required/recommended for this section

To be provided by the supervisor

This Question/Answer booklet Formula sheet

To be provided by the candidate

Standard items: pens, pencils, pencil sharpener, eraser, correction fluid, ruler, highlighters

Special items: Nil

Important note to candidates

No other items may be used in this section of the examination. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

1. (6 marks)

Suggest one possible equation each for the lines L1 and L2 if:

- b) L1 and L2 meet at the point with coordinates (0,4) and are perpendicular

LZ = - = x-2 / somegradical

- L1=2x+4 / Some y-intercept
 L2=-1x+4 / and mimz=-1
- c) L1 and L2 do not intersect.

to each other.

- L1=3x L2=3x+1/ some gradient
- 2. (4 marks)

A parabola has equation y = k(x - a)(x - b) where k, a and b are constants with a < b. Find k, a and b if the parabola has an x-intercept at (-3,0), a turning point at (1,32) and a y-intercept at (0,30).

$$y = k(x-1)^{2} + 32$$

$$= -2(x^{2}-2x+1) + 32$$

$$= -2(x^{2}-2x+1) + 32$$

$$= -2(x^{2}-2x-15)$$

$$= -2(x^{2}-2x-15)$$

$$= -2(x^{2}-2x-15)$$

$$= -2(x+3)(x-5)$$

[2]

[2]

3. (7 marks)

A curve has equation $y = 2x^3 - x^2 - 2x + 1$.

a) Find the coordinates of the x-intercepts of this curve.

x=1 2-1-2 1 2 1-1 0 V

A = (x-1)(x+1)(5x-1) A = (x-1)(x+1)(5x-1)

x-intocepts (1,0), (-1,0) and (2.0) V

[4]

[3]

040 150 50 50 C

b) Sketch this curve for $-1.5 \le x \le 2$.

4. (3 marks)

Sketch the following function $y = \frac{1}{x-2} + 1$, clearly showing all asymptotes and labelling at least two points on the curve.

Full Name: SOLUTIONS

MATHEMATICS Methods Units 1 & 2

Test 2 – Linear and Quadratic Functions, Polynomials Chapters 4, 5, 6 and 7

Semester 1 2019

Section Two - Calculator Assumed

Time allowed for this section

Working time for this section: 30 minutes
Marks available: 32 marks

Material required/recommended for this section

To be provided by the supervisor

This Question/Answer booklet Formula sheet

To be provided by the candidate

Standard items: pens, pencils, pencil sharpener, eraser, correction fluid, ruler, highlighters

Special items: drawing instruments, templates, notes on one unfolded sheet of A4 paper,

and up to three calculators satisfying the conditions set by the Curriculum

Council for this course.

Important note to candidates

No other items may be used in this section of the examination. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

1.	(10	ma	rks
----	-----	----	-----

Bill, a plumber, charges a call-out fee of \$100 plus \$80 per half hour or part thereof. Ian, another plumber, does not charge a call-out fee but charges \$180 per hour or part thereof.

a) How much will Bill charge for a job that is estimated to take exactly 4 hours? [2]

b) How much will lan charge for a job that is estimated to take exactly 4 hours?

c) Determine which plumber will be cheaper to employ if a job is estimated to take 3 hours and 20 minutes. Justify your answer.

· · lon is cheeper /

[1]

[3]

d) Under what conditions will it be cheaper to employ Bill? Justify your answer. [4]

$$100 + 160 \times = 180 \times /$$
 $100 = 70 \times$
 $100 = 5$

. Bill is chapper for volos longer than 5 hours or port thereal.

2. (12 marks)

For the cubic defined by $y = x^3 + 4x^2 - 3x - 7$

a) determine any stationary points and their nature

[4]

MIN@ (3, -7.52)

b) state the zeros of the function

[3]

c) find where the cubic changes concavity

[1]

d) describe the curve over its natural domain

[4]

on increasing function (positive a)

Positive gradical than regative than positive

os xx > -00, y > -00; as xx > 00, y > 00

other volid connects.

3. (3 marks)

If the function defined $g(x) = px^2 - 5x - 3$ passes through the points (1, -6) and (q, 4), find the possible values of p and q.

$$-6 = P - 8$$

$$P = 2$$

$$U = 2q^{2} - 5q - 3$$

$$Q = 2q^{2} - 5q - 7$$

$$Q = -1 \text{ or } 3.5$$

$$V$$

4. (7 marks)

Gemma owns a hobby farm and needs to create a fenced-up area for her sheep using the back wall of her shed as one of the sides of the fenced-up area. She has 200 metres of fencing available. From what she could recall from her mathematics class when she was a student, to maximise the fenced-up area, she would need to maximise the function A(x) = x(200 - 2x) where x is the width of the fenced-up area.

a) On the axes provided below sketch
$$A(x) = x(200 - 2x)$$
. [2]

b) Find the coordinates of the turning point of function A(x). [1]

c) Find the maximum possible area that can be fenced and the dimensions of that fenced-up area.

[2]

[2]

Max Area 5000 m² / Dimensions 50 by 100 V

d) Find the possible dimensions of the fenced-up area if its area is $3200 m^2$.

3200 = x(200-x) $0 = -x^{2} + 200x - 3200$ x = 20 or 80

End of Test

or 80 by 40