

Rule-Based Reordering on Multiple Syntactic Levels in SMT

Ge Wu | September 4, 2014

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

<ロ > < 部 > < 目 > < 目 > 目 ≥ 目 ≥ り へ ○

Outline

- Introduction
- 2 Multi-Level-Tree (MLT) Reordering

Ge Wu - Rule-Based Reordering on Multiple Syntactic Levels in SMT

- Extension of tree rule based reordering to multiple syntactic levels
- 3 Evaluation
 - English to Chinese: 1.61 Improvement of BLEU score
 - Chinese to English: 2.16 Improvement of BLEU score
- 4 Conclusion

Introduction

- Rule-based pre-ordering approaches [Rottmann and Vogel 2007; Niehues and Kolss 2009; Herrmann et al. 2013]
- Hierarchical phrase-based model [Chiang 2007]
- More adaptive pre-ordering approach for Chinese based on syntactic structures

Pre-ordering System

Evaluation

4/15

Reordering Rules

■ Short rules [Rottmann and Vogel 2007]

```
after the accident \rightarrow the accident after (0.5)
```

WRB MD DT -> DT WRB DT (0.3)

Reordering Rules

- Short rules [Rottmann and Vogel 2007]
- Long rules [Niehues and Kolss 2009]

$$NN * MD -> * MD NN (0.14)$$

Reordering Rules

- Short rules [Rottmann and Vogel 2007]
- Long rules [Niehues and Kolss 2009]
- Tree rules [Herrmann et al. 2013]

NP (ADJP JJ NN) -> JJ NN ADJP (0.16)

Evaluation

Pre-modifier instead of post-modifier

- Adverbials
- Relative clauses
- Preposition phrases

- Pre-modifier instead of post-modifier
- Questions

- Pre-modifier instead of post-modifier
- Questions
- Special sentence constructions

There aren't many people around that are really involved with architecture as clients.

Never would India have thought on this scale before.

- Pre-modifier instead of post-modifier
- Questions
- Special sentence constructions
- Long distance position change

I find this very much disturbing when we are talking about what is going on right and wrong with democracy these days.

现在,每当我跟别人讨论我们的民主什么是对的,什么是错的我都为此觉得很无力。

Reordering on multiple syntactic levels

Extension of tree rule based reordering to multiple syntactic levels

Root Depth Pattern

Root Depth Pattern

1 1 NP ($NP_0 PP_1$) -> 1 0


```
Root Depth Pattern
```

```
1 1 NP ( NP_0 PP_1 ) -> 1 0
```

1 2 NP (NP (JJ_0 NNS₁) PP (IN_2 NP₃)) -> 3 2 0 1


```
Root Depth Pattern
```

```
1 1 NP ( NP_0 PP_1 ) -> 1 0
```

1 2 NP (NP (
$$JJ_0$$
 NNS₁) PP (IN_2 NP₃)) -> 3 2 0 1

1 3 NP (NP (
$$JJ_0 NNS_1$$
) PP ($IN_2 NP$ ($JJ_3 NNS_4$)) -> 3 4 2 0 1


```
Root Depth Pattern
```

```
1 1 NP ( NP_0 PP_1 ) -> 1 0
```

1 2 NP (NP ($JJ_0 NNS_1$) PP ($IN_2 NP_3$)) -> 3 2 0 1

1 3 NP (NP ($JJ_0 NNS_1$) PP ($IN_2 NP$ ($JJ_3 NNS_4$)) -> 3 4 2 0 1


```
Root Depth Pattern
```

```
1 1 NP ( NP_0 PP_1 ) -> 1 0
```

1 2 NP (NP ($JJ_0 NNS_1$) PP ($IN_2 NP_3$)) -> 3 2 0 1

1 3 NP (NP (JJ_0 NNS₁) PP (IN_2 NP (JJ_3 NNS₄)) -> 3 4 2 0 1

3 1 PP ($IN_0 NP_1$) -> 10


```
Root Depth Pattern

1     1     NP ( NP<sub>0</sub> PP<sub>1</sub> ) -> 1 0

1     2     NP ( NP ( JJ<sub>0</sub> NNS<sub>1</sub> ) PP ( IN<sub>2</sub> NP<sub>3</sub> ) ) -> 3 2 0 1

1     3     NP ( NP ( JJ<sub>0</sub> NNS<sub>1</sub> ) PP ( IN<sub>2</sub> NP ( JJ<sub>3</sub> NNS<sub>4</sub> ) ) ) -> 3 4 2 0 1

3     1     PP ( IN<sub>0</sub> NP<sub>1</sub> ) -> 1 0

3     2     PP ( IN<sub>0</sub> NP ( JJ<sub>1</sub> NNS<sub>2</sub> ) ) -> 1 2 0
```



```
Root Depth Pattern

1     1     NP ( NP<sub>0</sub> PP<sub>1</sub> ) -> 1 0

1     2     NP ( NP ( JJ<sub>0</sub> NNS<sub>1</sub> ) PP ( IN<sub>2</sub> NP<sub>3</sub> ) ) -> 3 2 0 1

1     3     NP ( NP ( JJ<sub>0</sub> NNS<sub>1</sub> ) PP ( IN<sub>2</sub> NP ( JJ<sub>3</sub> NNS<sub>4</sub> ) ) ) -> 3 4 2 0 1

3     1     PP ( IN<sub>0</sub> NP<sub>1</sub> ) -> 1 0

3     2     PP ( IN<sub>0</sub> NP ( JJ<sub>1</sub> NNS<sub>2</sub> ) ) -> 1 2 0
```


- Search from all nodes with all possible depths
- Rule probability

- Rule pruning
- Rule number doubles in comparison with tree rules

- Search from all nodes with all possible depths
- Rule probability

- Rule pruning
- Rule number doubles in comparison with tree rules

- Search from all nodes with all possible depths
- Rule probability

- Rule pruning
- Rule number doubles in comparison with tree rules

Conclusion

- Search from all nodes with all possible depths
- Rule probability

- Rule pruning
- Rule number doubles in comparison with tree rules

- Search from all nodes with all possible depths
- Search depth decreases to avoid duplicate applications

```
PP ( IN_0 NP_1 ) -> 1 0 [0.39]

PP ( IN_0 NP ( JJ_1 NNS_2 ) ) -> 1 0 2 [0.04]

PP ( IN_0 NP ( JJ_1 NNS_2 ) ) -> 1 2 0 [0.33]
```

- Reorderings as paths in word lattices (size doubles approx.)
- Threshold for adding a path

- Search from all nodes with all possible depths
- Search depth decreases to avoid duplicate applications

```
PP ( IN_0 NP_1 ) -> 1 0 [0.39]

PP ( IN_0 NP ( JJ_1 NNS_2 ) ) -> 1 0 2 [0.04]

PP ( IN_0 NP ( JJ_1 NNS_2 ) ) -> 1 2 0 [0.33]
```

- Reorderings as paths in word lattices (size doubles approx.)
- Threshold for adding a path

- Search from all nodes with all possible depths
- Search depth decreases to avoid duplicate applications

```
PP (IN_0 NP_1) -> 1 0
                                                     [0.39]
PP ( IN_0 NP ( JJ_1 NNS<sub>2</sub> ) ) -> 1 0 2
                                                     [0.04]
PP ( IN_0 NP ( JJ_1 NNS<sub>2</sub> ) ) -> 1 2 0
                                                     [0.33]
```

- Reorderings as paths in word lattices (size doubles approx.)
- Threshold for adding a path

- Search from all nodes with all possible depths
- Search depth decreases to avoid duplicate applications

```
PP (IN_0 NP_1) -> 1 0
                                                  [0.39]
PP ( IN_0 NP ( JJ_1 NNS<sub>2</sub> ) ) -> 1 0 2
                                                  [0.04]
PP (IN_0 NP (JJ_1 NNS_2)) \rightarrow 120
                                                  [0.33]
```

- Reorderings as paths in word lattices (size doubles approx.)
- Threshold for adding a path

Results: English -> Chinese

Data: LDC & TED, 1 reference Train: 75MB / 454K sentences Dev: 164KB / 919 sentences Test: 263KB / 1663 sentences

	BLEU Score	Improvement	TER
Baseline	12.07		72.15
+Short Rules	12.50	0.43	71.41
+Long Rules	12.99	0.92	70.71
+Tree Rules	13.38	1.31	68.27
+MLT Rules	13.81	1.74	68.20
Oracle Reordering	18.58	6.51	62.13
Long Rules	12.31	0.24	71.81
Tree Rules	13.30	1.23	70.42
MLT Rules	13.68	1.61	70.25

Results: Chinese -> English

Data: LDC, 3 references Train: 47MB / 303K sentences Dev: 142KB / 919 sentences Test: 220KB / 1663 sentences

	BLEU Score	Improvement	TER
Baseline	21.80		62.09
+Short Rules	22.90	1.10	61.64
+Long Rules	23.13	1.33	61.43
+Tree Rules	23.84	2.04	60.95
+MLT Rules	24.14	2.34	60.79
Oracle Reordering	26.80	5.00	56.97
Long Rules	22.10	0.30	62.21
Tree Rules	23.35	1.55	61.52
MLT Rules	23.96	2.16	60.83

Conclusion

- Better translation quality
 - English to Chinese: 1.61 Improvement of BLEU score
 - Chinese to English: 2.16 Improvement of BLEU score
- Better syntactic structure
 - More possible reorderings
 - Improvement for more complicated reorderings
- Space for further improvement

Conclusion

- Better translation quality
 - English to Chinese: 1.61 Improvement of BLEU score
 - Chinese to English: 2.16 Improvement of BLEU score
- Better syntactic structure
 - More possible reorderings
 - Improvement for more complicated reorderings
- Space for further improvement

Conclusion

- Better translation quality
 - English to Chinese: 1.61 Improvement of BLEU score
 - Chinese to English: 2.16 Improvement of BLEU score
- Better syntactic structure
 - More possible reorderings
 - Improvement for more complicated reorderings
- Space for further improvement

Outlook

- Better reordering approaches
- Vector presentation instead of POS tags as features
- Reordering with less information

Outlook

- Better reordering approaches
- Vector presentation instead of POS tags as features
- Reordering with less information

Outlook

- Better reordering approaches
- Vector presentation instead of POS tags as features
- Reordering with less information

Thank you for your attention

Evaluation

Data Size

English -> Chinese

Data Set		#Sentence	#Word		Size (Byte)	
			English	Chinese	English	Chinese
Training Data	LDC	303K	10.96M	8.56M	60.88M	47.27M
	TED	151K	2.58M	2.86M	14.24M	15.63K
Development Data		919	30K	25K	164K	142K
Test Data		1663	47K	38K	263K	220K

Chinese -> English

Data Set	#Sentence	#Word		Size (Byte)	
		Chinese	English	Chinese	English
Training Data	303K	8.56M	10.96M	47.27M	60.88M
Development Data	919	25K	30K	142K	164K
Test Data	1663	38K	47K	220K	263K

Lattice Size

System: English -> Chinese

Data set: test data

	Number of Rules	Size of Lattices
Short Rules	362873	13M
Long Rules	106081	6.8M
Tree Rules	5067	7.3M
MLT Rules	10312	12M

Results: English -> German

Data: NC-v9, EPPS-v7 & newstest Train: 301MB / 2121K sentences

Dev: 376KB / 3003 sentences Test: 328KB / 3000 sentences

	BLEU Score	Improvement	TER
Baseline	18.45		64.77
+Short Rules	19.09	0.64	63.80
+Long Rules	19.16	0.71	63.74
+Tree Rules	19.34	0.89	62.43
Oracle Reordering	22.51	4.06	58.97
Long Rules	18.65	0.20	64.45
Tree Rules	19.13	0.68	62.48
MLT Rules	19.16	0.71	63.78

Some Most Frequent MLT Rules


```
PP ( IN NP ) -> 1 0 [0.3865 = 118538 / 306657]
NP ( DT NN ) -> 1 0 [0.2280 = 44557 / 195428]
NP ( NP PP ) \rightarrow 1 0 [0.6547 = 38840 / 59329]
PP ( IN NP ( NN ) ) -> 1 0 [0.3879 = 24449 / 63033]
NP ( DT NNS ) -> 1 0 [0.2052 = 10873 / 52990]
NP ( DT JJ NN ) -> 1 2 0 [0.1441 = 8197 / 56867]
PP (IN S) \rightarrow 1 0 [0.4290 = 6455 / 15045]
PP ( IN NP ( NNS ) ) -> 1 0 [0.3541 = 6317 / 17839]
PP ( IN S ( VP ) ) -> 1 0 [0.4332 = 6153 / 14205]
VP ( VBN PP ) -> 1 0 [0.6157 = 6078 / 9872]
PP ( IN NP ( JJ NN ) ) -> 1 2 0 [0.4362 = 5217 / 11959]
NP ( NP ( DT NN ) PP ( IN NP ) ) -> 0 3 2 1 [0.2113 = 1270
/ 6009]
. . .
```

4日 → 4周 → 4 至 → 4 至 → 至 | 至 り へ ○ ○

Reordering on multiple syntactic levels

References I

- Alexandra Birch. "Reordering Metrics for Statistical Machine Translation". In: (2011).
- Alexandra Birch, Miles Osborne, and Phil Blunsom. "Metrics for MT Evaluation: Evaluating Reordering". In: Machine Translation 24.1 (Mar. 2010). ISSN: 0922-6567. DOI: 10.1007/s10590-009-9066-5. URL: http://dx.doi.org/10.1007/s10590-009-9066-5.
- Phil Blunsom, Edward Grefenstette, Nal Kalchbrenner, et al. "A Convolutional Neural Network for Modelling Sentences". In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. 2014.

References II

- David Chiang. "Hierarchical Phrase-Based Translation". In: computational linguistics 33.2 (2007), pp. 201–228.
- Michael Collins, Philipp Koehn, and Ivona Kučerová. "Clause Restructuring for Statistical Machine Translation". In: *Proceedings of the 43rd annual meeting on association for computational linguistics*. Association for Computational Linguistics. 2005, pp. 531–540.
- Josep M Crego and Nizar Habash. "Using Shallow Syntax Information to Improve Word Alignment and Reordering for SMT". In: *Proceedings of the Third Workshop on Statistical Machine Translation*. Association for Computational Linguistics. 2008, pp. 53–61.

References III

- Marie-Catherine De Marneffe, Bill MacCartney,
 Christopher D Manning, et al. "Generating Typed Dependency
 Parses from Phrase Structure Parses". In: *Proceedings of LREC*.
 Vol. 6. 2006, pp. 449–454.
- Nizar Habash. "Syntactic Preprocessing for Statistical Machine Translation". In: *MT Summit XI* (2007), pp. 215–222.
- Teresa Herrmann, Jan Niehues, and Alex Waibel. "Combining Word Reordering Methods on Different Linguistic Abstraction Levels for Statistical Machine Translation". In: Proceedings of the Seventh Workshop on Syntax, Semantics and Structure in Statistical Translation. Atlanta, Georgia: Association for Computational Linguistics, June 2013, pp. 39–47. URL: http://www.aclweb.org/anthology/W13-0805.

4□ > 4륜 > 4분 > 4분 = 900

References IV

- Teresa Herrmann et al. Analyzing the Potential of Source Sentence Reordering in Statistical Machine Translation. 2013.
- Philipp Koehn. *Statistical Machine Translation*. 1st. New York, NY, USA: Cambridge University Press, 2010. ISBN: 0521874157, 9780521874151.
- Philipp Koehn et al. "Edinburgh System Description for the 2005 IWSLT Speech Translation Evaluation". In: IWSLT. 2005, pp. 68–75.
- Uri Lerner and Slav Petrov. "Source-Side Classifier Preordering for Machine Translation". In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP '13). 2013.
- Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. "Building a Large Annotated Corpus of English: The Penn Treebank". In: *Computational linguistics* 19.2 (1993), pp. 313–330.

References V

- Tomas Mikolov et al. "Efficient Estimation of Word Representations in Vector Space". In: arXiv preprint arXiv:1301.3781 (2013).
- Jan Niehues and Muntsin Kolss. "A POS-Based Model for Long-Range Reorderings in SMT". In: *Proceedings of the Fourth Workshop on Statistical Machine Translation*. Association for Computational Linguistics. Athens, Greece, 2009, pp. 206–214.
- Kishore Papineni et al. "BLEU: a Method for Automatic Evaluation of Machine Translation". In: Proceedings of the 40th annual meeting on association for computational linguistics. Association for Computational Linguistics. 2002, pp. 311–318.
- Maja Popovic and Hermann Ney. "POS-Based Word Reorderings for Statistical Machine Translation". In: *International Conference on Language Resources and Evaluation*. 2006, pp. 1278–1283.

References VI

- Kay Rottmann and Stephan Vogel. Word Reordering in Statistical Machine Translation with a POS-Based Distortion Model. 2007.
- Beatrice Santorini. "Part-of-Speech Tagging Guidelines for the Penn Treebank Project (3rd revision)". In: (1990).
- Christoph Tillmann. "A Unigram Orientation Model for Statistical Machine Translation". In: *Proceedings of HLT-NAACL 2004: Short Papers*. Association for Computational Linguistics. 2004, pp. 101–104.
- Chao Wang, Michael Collins, and Philipp Koehn. "Chinese Syntactic Reordering for Statistical Machine Translation". In: *EMNLP-CoNLL*. Citeseer. 2007, pp. 737–745.

References VII

Yuqi Zhang, Richard Zens, and Hermann Ney. "Chunk-Level Reordering of Source Language Sentences with Automatically Learned Rules for Statistical Machine Translation". In: *Proceedings of the NAACL-HLT 2007/AMTA Workshop on Syntax and Structure in Statistical Translation*. Association for Computational Linguistics. 2007, pp. 1–8.