Graphs-Spanning Trees

December 2, 2021

Topics

- Spanning Trees in Unweighted Graphs
- Minimum Spanning Trees in Weighted Graphs
 - Prim's Algorithm
 - Kruskal's Algorithm

Definitions

- Spanning tree: a tree that contains all vertices in the graph.
 - Sub graph of the original graph
 - Tree
 - Number of nodes: |V|
 - Number of edges: |V|-1

Spanning trees for unweighted graphs - data structures

- A table (an array) T
 - size = number of vertices,
 - T_v= parent of vertex v
- Adjacency lists
- A queue of vertices to be processed

Algorithm - initialization

• Choose a vertex S and store it in a queue, set a *counter* = 0 (counts the processed nodes), and $T_s = 0$ (to indicate the root), $T_i = -1$, $i \neq s$ (to indicate vertex not processed)

Algorithm - basic loop

While queue not empty and counter < |V| - 1:
Read a vertex V from the queue
For all adjacent vertices U:
If $T_u = -1$ (not processed) $T_u \leftarrow V$ $counter \leftarrow counter + 1$ store U in the queue

Algorithm - results and complexity

- Result:
 - Root: S, such that Ts = 0
 - Edges in the tree: (Tv, V)
- Complexity: O(|E| + |V|) we process all edges and all nodes

Table							
	0	1 is the root					
	1 edge (1,2)						
	2 edge (2,3)						
1 edge (1,4)							
2 edge (2,5)							
Edge format: (Tv,V)							

Definitions

- Minimum Spanning tree: a tree
 - that contains all vertices in the graph,
 - is connected,
 - is acyclic, and
 - has minimum total edge weight.

Applications of Minimum Spanning Trees

- Communication networks
- VLSI design
- Transportation systems

Minimum Spanning Tree - Prim's algorithm

- Given: Weighted graph.
 - Find a spanning tree with the minimal sum of the weights.
 - Similar to shortest paths in weighted graphs.
 - Difference: we record the weight of the current edge, not the length of the path .

Data Structures

- Three arrays:
 - cost[v] = the weight of the shortest edge connecting v to a known vertex
 - path[v] = the last vertex to cause a change in cost[v]
 - known[v] = True, if vertex v is fixed in the tree, False otherwise

Data Structures (cont.)

- Adjacency lists
- A priority queue of vertices to be processed.
 - Priority of each vertex is determined by the weight of edge that links the vertex to its parent.
 - The priority may change if we change the parent, provided the vertex is not yet fixed in the tree.

Prim's Algorithm

```
For all v
      cost[v] = \infty; known[v] = false; path[v] = -
cost[s] = 0
Insert s onto a priority queue that percolates vertices
      with lowest cost[] to the top.
While priority queue not empty
      DeleteMin v from priority queue
      If not known[v]
         known[v] = true
         For all unknown successors w of v
           If weight[v, w] < cost[w]
            cost[w] = weight[v, w]
            path[w] = v
            insert w onto priority queue
```

Results and Complexity

- At the end of the algorithm, the tree would be represented with its edges
 - $\{(v, path[v])|v=1,2,\ldots,|V|\}$
- Complexity: O(|E|log(|V|))

Initialize array

	K	d_v	p_{ν}
Α	F	×	-
В	F	×	-
C	F	×	-
D	F	×	-
Е	F	8	ı
F	F	×	-
G	F	8	ı
Н	F	×	_

Start with any node, say D

	K	d_v	p_{v}
Α			
В			
С			
D	Т	0	-
Е			
F			
G			
Н			

Update distances of adjacent, unselected

	Κ	d_v	p_{v}
Α			
В			
C		3	D
D	Т	0	-
Е		25	D
F		18	D
G		2	D
н			

Select node with minimum distance

	K	d_v	p_{v}
Α			
В			
С		3	D
D	Т	0	_
Е		25	D
F		18	D
G	Т	2	D
Η			

Update distances of adjacent, unselected nodes

110000			
	K	d_{v}	p_{v}
Α			
В			
С		3	D
D	Т	0	-
Е		7	G
F		18	D
G	Т	2	D
Н		3	G

Select node with minimum distance

	K	d_v	p_{v}
Α			
В			
C	Т	3	D
D	Т	0	-
Е		7	G
F		18	D
G	Т	2	ם
Н		3	G

Update distances of adjacent, unselected nodes

110000			
	Κ	d_v	p_{v}
Α			
В		4	С
С	Т	3	D
D	Т	0	-
Е		7	G
F		3	O
G	Т	2	D
Н		3	G

Select node with minimum distance

	K	d_{v}	p_{v}
Α			
В		4	С
С	Т	3	D
D	Т	0	-
Е		7	G
F	Т	3	O
G	Т	2	D
Н		3	G

Update distances of adjacent, unselected nodes

	K	d_v	p _v	
Α		10	F	
В		4	С	
С	Т	3	D	
D	Т	0	-	
Е		2	F	
F	Т	3	C	
G	Т	2	D	
Н		3	G	

Select node with minimum distance

aistaire			
	K	d_v	p_{v}
Α		10	F
В		4	C
С	Т	3	D
D	Т	0	-
Е	Н	2	L
F	Т	3	O
G	Т	2	D
Н		3	G

Update distances of adjacent, unselected

nodes			
	K	d_v	p_{v}
Α		10	F
В		4	С
С	Т	3	D
D	Т	0	_
Е	Т	2	F
F	Т	3	С
G	Т	2	D
Н		3	G

Table entries unchanged

Select node with minimum distance

	K	d_{v}	p _v
Α		10	F
В		4	С
С	Т	3	D
D	Т	0	-
Е	Т	2	F
F	Т	3	O
G	Т	2	D
Н	Т	3	G

Update distances of adjacent, unselected nodes

Houes			
	K	d_v	p_{v}
Α		4	Н
В		4	С
С	Т	3	D
D	Т	0	-
Е	Т	2	F
F	Т	3	С
G	Т	2	D
Н	Т	3	G

Select node with minimum distance

	K	d_v	p_{v}
Α	Т	4	Н
В		4	С
С	Т	3	D
D	Т	0	_
E	Т	2	F
F	Т	3	С
G	Т	2	D
Н	Т	3	G

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
Α	Т	4	Ι
В		4	C
С	Т	3	D
D	Т	0	-
Е	Т	2	F
F	Т	3	O
G	Т	2	D
Н	Т	3	G

Table entries unchanged

Select node with minimum distance

	K	d_v	p_{ν}
Α	Т	4	Н
В	Т	4	С
C	Т	3	D
D	Т	0	_
Е	Т	2	F
F	Т	3	С
G	Т	2	D
Η	Т	3	G

Cost of Minimum Spanning Tree = $\sum d_v = 21$

	K	d_{v}	p_{v}
Α	Т	4	Н
В	Т	4	С
С	Т	3	D
D	Т	0	-
E	Т	2	F
F	Т	3	С
G	Т	2	D
Н	Т	3	G

Done

Kruskal's Algorithm

- The algorithm works with :
 - set of edges,
 - · tree forests,
 - each vertex belongs to only one tree in the forest.

The Algorithm

- Build |V| trees of one vertex only each vertex is a tree of its own. Store edges in priority queue
- Choose an edge (u,v) with minimum weight if u and v belong to one and the same tree, do nothing if u and v belong to different trees, link the trees by the edge (u,v)
- Perform step 2 until all trees are combined into one tree only

Edge	Weight	Action
(v_1, v_4)	1	Accepted
(v_6, v_7)	1	Accepted
(v_1, v_2)	2	Accepted
(v_3, v_4)	2	Accepted
(v_2, v_4)	3	Rejected
(v_1, v_3)	4	Rejected
(v_4, v_7)	4	Accepted
(v_3, v_6)	5	Rejected
(v_5, v_7)	6	Accepted

Operations on Disjoint Sets

- Comparison: Are the vertices in the same tree?
- Union: Combine two disjoint sets to form one set the new tree
- Implementation
 - Union/find operations: the unions are represented as trees.
 - The set of trees is implemented by an array.

Complexity of Kruskal's Algorithm

- The complexity is determined by the heap operations and the union/find operations
- Union/find operations on disjoint sets represented as trees: tree search operations, with complexity O(log|V|)
- DeleteMin in Binary heaps with N elements is O(logN),
- When performed for N elements, it is O(NlogN).

Complexity of Kruskal's Algorithm (Cont.)

- Kruskal's algorithm works with a binary heap that contains all edges: O(|E|log(|E|))
- However, a complete graph has

$$|E| = |V| \times (|V| - 1)/2$$
, i.e. $|E| = O(|V|^2)$

- Thus for the binary heap we have $O(|E|log(|E|)) = O(|E|log(|V|^2) = O(2|E|log(|V|)) = O(|E|log(|V|))$
- Since for each edge we perform DeleteMin operation and union/find operation, the overall complexity is:

$$O(|E|(log(|V|) + log(|V|)) = O(|E|log(|V|))$$

Discussion

- Sparse trees Kruskal's algorithm :
 - Guided by edges
- Dense trees Prim's algorithm :
 - The process is limited by the number of the processed vertices