▼ ÁLGEBRA

Conjuntos de Números:

e e ny antice	ac 11 a
Números Naturales	N
Números Enteros	\mathbb{Z}
Números Racionales	\mathbb{Q}
Números Reales	\mathbb{R}
Números Compleios	$\mathbb C$

Simbología Lógica

\forall Para todo	· Porque
∃ Existe	\Rightarrow Implica
∃! Existe un único	⇔ Si y sólo si
∴ Por lo tanto	tal que

Comparadores:

		1	
Igual	=	Más o menos igual	\approx
Desigual	\neq	Equivalente $(semejante)$	~
Mayor que	>	Mayor o igual que	\geq
Menor que	<	Menor o igual que	\leq

Propiedades Aritméticas

Asociativa	x(yz) = z(xy)
Conmutativa	x + y = y + x ; xy = yx
Distributiva	x(y+z) = xy + xz

Leyes de los Radicales

$$\sqrt[n]{x} = y \leftrightarrow x = y^{n} \qquad \sqrt[n]{x} = x^{\frac{1}{n}}$$

$$\sqrt[m]{\sqrt[n]{x}} = \sqrt[m]{x} \qquad \sqrt[n]{xy} = \sqrt[n]{x} * \sqrt[n]{y}$$

$$\sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}} \qquad \sqrt[n]{\frac{x^{a}}{y^{b}}} = \frac{\sqrt[n]{x^{a}}}{\sqrt[n]{y^{b}}}$$

$$\sqrt[n]{x^{n}} = x, \text{ si } n \text{ es impar} \qquad \sqrt[n]{x^{n}} = |x|, \text{ si } n \text{ es par}$$

Leyes de los Exponentes

Se sabe que...
$$x^{n} = \underbrace{x * x * x \dots * x}_{n \text{ veces}}$$

$$x^{0} = 1, \quad x \neq 0 \qquad x^{m} * x^{n} = x^{m+n}$$

$$x^{-m} = \frac{1}{x^{m}} \qquad \frac{x^{m}}{x^{n}} = x^{m-n}$$

$$(x^{m})^{n} = (x^{n})^{m} = x^{nm} \qquad x^{\frac{m}{n}} = \sqrt[n]{x^{m}}$$

$$\left(\frac{x^{m}}{y^{n}}\right)^{z} = \frac{y^{mz}}{y^{nz}} \qquad \left(\frac{x}{y}\right)^{-m} = \left(\frac{y}{x}\right)^{m}$$

$$(x^{m} * y^{n} * z^{a})^{b} = x^{mb} * y^{nd} * z^{ab}$$

Valor Absoluto

Productos Notables

Cuadrado de un binomio:

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

Cuadrado de un trinomio:

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$$

Binomio conjugado:

$$(a+b)(a-b) = a^2 - b^2$$

Binomio con término común:

$$(x+a)(x+b) = x^2 + x(a+b) + ab$$

Cubo de un binomio:

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

Binomio de la forma:

$$(mx+a)(nx+b) = mnx^2 + anx + bmx + ab$$

Binomio de Newton

Binomio elevado a
$$n$$
 $n \in \mathbb{N}$
$$(a+b)^n = \binom{n}{0} a^n b^0 + \binom{n}{1} a^{n-1} b^1 + \cdots \binom{n}{r} a^{n-r} b^r + \cdots \binom{n}{n} a^0 b^n$$

Dicho de otra forma:

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^{n-i} * b^n$$

En donde:

$$\binom{n}{k} = \frac{n!}{k! \, (n-k)!} \to \text{ Interpretación de un N. Combinatorio}$$

Factorización

Factor común:

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

Diferencia de Cuadrados:

$$(a^2 - b^2) = (a - b)(a + b)$$

Trinomio Cuadrado Perfecto (TCP):

$$a^2 \pm 2ab + b^2 = (a \pm b)^2$$

Trinomio de la forma:

$$acx^2 + x(ad + bc) + bd = (ax + b)(cx + d)$$

Trinomio de la forma:

$$x^{2} + x(a+b) + ab = (x+a)(x+b)$$

Suma o diferencia de cubos:

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

 $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$

Ecuaciones de Segundo Grado

Ecuación de la forma $ax^2 + bx + c = 0$, en donde

$$a, b, c \in \mathbb{R} \text{ y } a \neq 0$$

<u>Discriminante:</u> $I = b^2 - 4ac$

Si I>0, las raíces son reales y diferentes

Si I = 0, las raíces $\in \mathbb{R}$ y son iguales

Si I < 0, ambas raíces $\in \mathbb{C}$

Propiedades de los Números Complejos

$$i = \sqrt{-1} \qquad i^{2} = -1 \qquad i^{3} = -i \qquad i^{4} = 1$$

$$\sqrt{-x} = i\sqrt{x}, \quad x \ge 0 \qquad (x+yi)(x-yi) = x^{2} + y^{2}$$

$$|x+yi| = \sqrt{x^{2} + y^{2}} \qquad \frac{1}{x+yi} = \frac{x-yi}{x^{2} + y^{2}}$$

Media Armónica	\leq	Media Geométrica
$\frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \cdots \frac{1}{x_n}}$		$\sqrt[n]{x_1*x_2*\dots x_n}$
Media Geométrica	\leq	Media Aritmética
$\sqrt[n]{x_1*x_2*\dots x_n}$		$\frac{x_1 * x_2 * \dots x_n}{n}$
Media Aritmética	\leq	Media Cuadrática
$\frac{x_1 * x_2 * \dots x_n}{n}$		$\sqrt{\frac{x_1^2 + x_2^2 + \cdots x_n^2}{x_1^2 + x_2^2 + \cdots x_n^2}}$

▼ GEOMETRÍA Y TRIGONOMETRÍA

$Funciones\ Trigonom\'etricas$

$$\sin \theta = \frac{Cat. Op \ a \ \theta}{Hip} = \frac{a}{c}$$

$$\cos \theta = \frac{Cat. Ady \ a \ \theta}{Hip} = \frac{b}{c}$$

$$\tan \theta = \frac{Cat. Op \ a \ \theta}{Cat. Ady \ a \ \theta} = \frac{a}{b}$$

Razones Trigonométricas de \(\section 's \) Notables

Sxg	Rad	$\sin \theta$	$\cos \theta$	$\tan \theta$
0°	0	0	1	0
30°	$\pi/6$	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$
45°	$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1
60°	$\pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$
90°	$\pi/2$	1	0	*

$Circulo\ Trigonom\'etrico$

Se tiene una circunferencia con $r=1\,$

y su centro en el origen

$$x^2 + y^2 = 1$$

Círculo trazado en el plano cartesiano y los signos de las funciones trigonométricas explicado

1° Cuadrante

Cuadrante '°'	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\cot \theta$	$\sec \theta$	$\csc heta$
I $(0^{\circ} - 90^{\circ})$	+	+	+	+	+	+
II $(90^{\circ} - 180^{\circ})$	+	_	_	_	_	+
III (180 – 270°)	_	_	+	+	_	_
IV $(270^{\circ} - 360^{\circ})$	-	+	_	-	+	_

Identidades Trigonométricas

Recíprocas:

$$\sin \theta = \frac{1}{\csc \theta} \qquad \cos \theta = \frac{1}{\sec \theta} \qquad \tan \theta = \frac{1}{\cot \theta}$$

$$\csc \theta = \frac{1}{\sin \theta} \qquad \sec \theta = \frac{1}{\cos \theta} \qquad \cot \theta = \frac{1}{\tan \theta}$$

De cociente:

$$\frac{\sin \alpha}{\cos \alpha} = \tan \alpha \qquad \frac{\cos \alpha}{\sin \alpha} = \cot \alpha$$

Pitagóricas:

$$\sin^2 \alpha + \cos^2 \alpha = 1$$
 $\tan^2 \alpha + 1 = \sec^2 \alpha$
 $1 + \cot^2 \alpha = \csc^2 \alpha$

Ángulos Dobles:

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos 2\theta = \cos^2\theta - \sin^2\theta$$

$$\tan 2\theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta} = \frac{2\tan\theta}{1 - \tan^2\theta}$$

Ángulos Medios:

$$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}} \qquad \cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$$

$$\tan\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}} = \frac{1-\cos\theta}{\sin\theta} = \frac{\sin\theta}{1+\cos\theta}$$

Otras identidades:

$$\sin -\theta = -\sin \theta \qquad \cos -\theta = \cos \theta$$

$$\tan -\theta = -\tan \theta \qquad \sin(\theta + \pi) = -\sin \theta$$

$$\cos(\theta + \pi) = -\cos \theta \qquad \tan(\theta + \pi) = \tan \theta$$

$$\sin \theta = \cos\left(\theta - \frac{\pi}{2}\right) \qquad \cos \theta = \sin\left(\theta + \frac{\pi}{2}\right)$$

$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2} \qquad \cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$

$$\tan^2 \theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}$$

Propiedades de los Logaritmos

$$\begin{aligned} & \textbf{Propieaales ae ios Logariimos} \\ & \log_b 1 = 0 & \log_b b = 1 \\ & \log_b M^n = n * \log_b M \\ & \log_b \sqrt[n]{M} = \frac{1}{n} * \log_b M \\ & \log_b MN = \log_b M + \log_b N \\ & \log_b \frac{M}{N} = \log_b M - \log_b N \\ & \log_b M = \frac{1}{\log_M b} \\ & \log_b x = \frac{\log x}{\log b} \\ & \log_e M = \ln M & \ln \alpha = \text{Logaritmo Neperiano} \end{aligned}$$

Ángulos (Sistema Circular)

1 radián (1 rad) = 57.29°

 $\pi \ rad = 180^{\circ}$

 $\frac{Radianes~a~Grados:}{Radianes*180} = Grados$ $\frac{Grados~a~Radianes:}{Grados~a~Radianes:}$

▼ GEOMETRÍA ANALÍTICA

Línea Recta

Ecuación de una recta:

Ax + By + C = 0

Pendiente de una recta que

pasa por dos puntos:

$$m = \frac{y_2 - y_1}{x - x}$$

Ángulo de la recta respecto a x

 $\theta = \tan^{-1} m$

Distancia Entre Dos Puntos

A partir de los puntos $P_1(x_1, y_1)$ y $P_2(x_2, y_2)$:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Condición de Paralelismo

Se tienen 2 líneas, ambas poseen la misma pendiente

$$l_1 \parallel l_2 \Rightarrow m_1 = m_2$$

Condición de Perpendicularidad

Líneas que cortan formando ángulos de 90°

$$l_1 \perp l_2 \Rightarrow m_1 * m_2 = -1$$

Parábola Vertical (Ecuación de 2º grado)

Teniendo una ecuación de segundo grado de la forma

$$f(x) = ax^2 + bx + c$$

Para hallar el punto del vértice:

$$oldsymbol{V} = (oldsymbol{V_x}, oldsymbol{V_y}) = \left(-rac{b}{2a}, f\left(-rac{b}{2a}
ight)
ight)$$

Cuando a > 0

Gráfica general:

$$egin{aligned} oldsymbol{D_f} &= oldsymbol{x} \in \mathbb{R} \ oldsymbol{R_f} &= oldsymbol{x} \in [oldsymbol{V_y}, +\infty) \end{aligned}$$

Cuando a < 0

Gráfica general:

$$egin{aligned} oldsymbol{D_f} &= oldsymbol{x} \in \mathbb{R} \ oldsymbol{R_f} &= oldsymbol{x} \in (-\infty, V_{oldsymbol{x}}) \end{aligned}$$

▼ CÁLCULO DIFERENCIAL

Rango, Contra dominio y Rango de 'f'

Dada una función f, se dice:

Dominio: (D_f)

Contra dominio: (C_f)

Rango: (R_f)

Tabla de Intervalos

Tavia de Tittervatos				
Desigualdad	Intervalo	Gráfica		
x > a	(a,∞)			
x < a	$(-\infty, a)$	←		
$x \ge a$	$[a,\infty)$	a		
$x \le a$	$(-\infty, a]$	a		
a < x < b	(a,b)	a b		
$a \le x \le b$	[a,b]	a b		
$a < x \le b$	(a,b]	a b		
$a \le x < b$	[a,b)	a b		
$-\infty < x < \infty$	$(-\infty, \infty)$] 		

Operaciones Con Funciones

Cualquier operación básica entre dos funciones implica la intersección de sus dominios:

 $f(x) + g(x) = (f+g)(x), D_f \cap D_g$ Suma

 $f(x) - g(x) = (f - g)(x), D_f \cap D_g$ Resta $f(x) * g(x) = (f * g)(x), D_f \cap D_q$ Producto

 $\frac{f(x)}{g(x)} = \left(\frac{f}{g}\right)(x), D_f \cap D_g$ División

Función Composición ('f' de Funciones)

Una función compuesta por otra función:

$$(f \circ g)(x) = f(g(x))$$

$$D_{f \circ g} \colon \{x | x \in D_g \land g(x) \in D_f\}$$

Teoremas de Límites

 $\lim_{x \to a} (c) = c$

 $\lim(x) = a$

 $\lim_{x \to \infty} (c * f(x)) = c * \lim_{x \to \infty} f(x)$

 $\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$ $\lim_{x \to a} [f(x) * g(x)] = \lim_{x \to a} f(x) * \lim_{x \to a} g(x)$

 $\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \lim_{x \to a} \overline{f(x)}, \quad \text{si } g(x) \neq 0$

 $\lim_{x\to a}[f(x)]^n=\left[\lim_{x\to a}f(x)\right]^n$

Cuando x tiende a infinito con el siguiente formato:

 $\lim_{x \to \infty} \frac{c}{x^n} = 0$

En donde:

c es una constante

f(x), g(x) son funciones distintas

a valor numérico al cual tiende ese límite

Continuidad

Una función f(x) es continua en el punto $x_0 \in \mathbb{R}$ si cumple con las siguientes condiciones

- 1. $f(x_0)$ está definida
- $\lim f(x)$ existe
- 3. $\lim f(x) = f(x_0)$

Regla de L'Hôpital

Si f(x), g(x) son 2 funciones continuas tal que:

$$\begin{cases} \lim_{x \to a} f(x) = 0\\ \lim_{x \to a} g(x) = 0 \end{cases}$$

 $\bigcup g'(x) \neq 0 \;\; \leftarrow$ Derivada de g(x), ya que es la función denominadora

La regla de L'Hôpital nos dice que:

$$\lim_{x \to a} \frac{f(x)}{g(x)} \to \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Esta regla aplica para los límites de la forma $\lim_{x\to a}\frac{f(x)}{g(x)}$, con alguna de las siguientes indeterminaciones:

$$\frac{f(x)}{g(x)} \to \frac{0}{0}$$

$$\frac{f(x)}{g(x)} \to \frac{\infty}{\infty}$$

Derivada Por Definición

Sea f(x) una función, se define a su derivada f'(x):

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$

Interpretación geométrica de la derivada:

Derivadas de Funciones Básicas y Vareadas

1.
$$\frac{d}{dx}[c] = 0$$

$$2. \quad \frac{d}{dx}[x] = 1$$

3.
$$\frac{d}{dx}[c*v] = c*\frac{dv}{dx}$$

4.
$$\frac{d}{dx}[u \pm v \pm w] = \frac{du}{dx} \pm \frac{dv}{dx} \pm \frac{dw}{dx}$$

$$5. \quad \frac{d}{dx}[x^n] = n * x^{n-1}$$

$$6. \quad \frac{d}{dx}[v^n] = v^{n-1} * \frac{dv}{dx}$$

7.
$$\frac{d}{dx} \left[\sqrt[n]{v} \right] = \frac{1}{n * \sqrt[n]{v^{n-1}}} * \frac{dv}{dx}$$

8.
$$\frac{d}{dx}\left[\sqrt{v}\right] = \frac{\frac{dv}{dx}}{2\sqrt{v}}$$

9.
$$\frac{d}{dx}[u*v] = u*\frac{dv}{dx} + v*\frac{du}{dx}$$

10.
$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{v * \frac{du}{dx} - u * \frac{dv}{dx}}{v^2}$$

11.
$$\frac{d}{dx} \left[\frac{c}{v} \right] = -\frac{c * \frac{dv}{dx}}{v^2}$$

12.
$$\frac{d}{dx} \left[\frac{v}{c} \right] = \frac{\frac{dv}{dx}}{c}$$

13.
$$\frac{d}{dx}[\sin(v)] = \cos(v) * \frac{dv}{dx}$$

14.
$$\frac{d}{dx}[\cos(v)] = -\sin(v) * \frac{dv}{dx}$$

15.
$$\frac{d}{dx}[\tan(v)] = \sec^2(v) * \frac{dv}{dx}$$

16.
$$\frac{d}{dx}[\cot(v)] = -\csc^2(v) * \frac{dv}{dx}$$

17.
$$\frac{d}{dx}[\sec(v)] = \sec(v) * \tan(v) * \frac{dv}{dx}$$

18.
$$\frac{d}{dx}[\csc(v)] = -\csc(v) * \cot(v) * \frac{dv}{dx}$$

19.
$$\frac{d}{dx}[\arcsin(v)] = \frac{1}{\sqrt{1-v^2}} * \frac{dv}{dx}$$

$$20. \ \frac{d}{dx}[\arccos(v)] = -\frac{1}{\sqrt{1-v^2}} * \frac{dv}{dx}$$

21.
$$\frac{d}{dx}[\arctan(v)] = \frac{1}{1+v^2} * \frac{dv}{dx}$$

22.
$$\frac{d}{dx}[\operatorname{arccot}(v)] = -\frac{1}{1+v^2} * \frac{dv}{dx}$$

23.
$$\frac{d}{dx}[\operatorname{arcsec}(v)] = \frac{1}{v * \sqrt{v^2 - 1}} * \frac{dv}{dx}$$

24.
$$\frac{d}{dx}[\operatorname{arccsc}(v)] = -\frac{1}{v * \sqrt{v^2 - 1}} * \frac{dv}{dx}$$

25.
$$\frac{d}{dx}[\ln(v)] = \frac{\frac{dv}{dx}}{v}$$

26.
$$\frac{d}{dx}[\log_{b}(v)] = \frac{\log_{b}(e)}{v} * \frac{dv}{dx}$$

$$27. \quad \frac{d}{dx}[e^v] = e^v * \frac{dv}{dx}$$

28.
$$\frac{d}{dx}[a^v] = a * \ln(a) * \frac{dv}{dx}$$

29.
$$\frac{d}{dx}[u^v] = v * u^{v-1} * \frac{du}{dx} + \ln(u) * u^v * \frac{dv}{dx}$$

NOTAS:

Versión 8. 25-03-2023 Rojo Ibarra Jesús 1CV5

Formulario Para Cálculo

08-03-2023: Agregar ciertos teoremas introducidos por Mandrake durante las clases de Cálculo

11-03-2023: Agregar temas de límites, derivadas, derivadas implícitas, optimización, integrales definidas e indefinidas. Agregando álgebras de matrices