2 Last Digit of a Large Fibonacci Number

Problem Introduction

Your goal in this problem is to find the last digit of n-th Fibonacci number. Recall that Fibonacci numbers grow exponentially fast. For example,

 $F_{200} = 280\,571\,172\,992\,510\,140\,037\,611\,932\,413\,038\,677\,189\,525\,.$

Therefore, a solution like

```
F[0] \leftarrow 0

F[1] \leftarrow 1

for i from 2 to n:

F[i] \leftarrow F[i-1] + F[i-2]

print(F[n] \mod 10)
```

will turn out to be too slow, because as i grows the ith iteration of the loop computes the sum of longer and longer numbers. Also, for example, F_{1000} does not fit into the standard C++ int type. To overcome this difficulty, you may want to store in F[i] not the ith Fibonacci number itself, but just its last digit (that is, $F_i \mod 10$). Computing the last digit of F_i is easy: it is just the last digit of the sum of the last digits of F_{i-1} and F_{i-2} :

```
F[i] \leftarrow (F[i-1] + F[i-2]) \text{ mod 10}
```

This way, all F[i]'s are just digits, so they fit perfectly into any standard integer type, and computing a sum of F[i-1] and F[i-2] is performed very quickly.

Problem Description

Task. Given an integer n, find the last digit of the nth Fibonacci number F_n (that is, $F_n \mod 10$).

Input Format. The input consists of a single integer n.

Constraints. $0 \le n \le 10^7$.

Output Format. Output the last digit of F_n .

Sample 1.

Input:

Output:

 $F_3 = 2$.

Sample 2.

Input: **331**

Output:

9

 $F_{331} = 668\,996\,615\,388\,005\,031\,531\,000\,081\,241\,745\,415\,306\,766\,517\,246\,774\,551\,964\,595\,292\,186\,469.$