

Assignment Project Exam Help

https://powcoder.com MultipleCharphiectives

CIS 418

An Example of Multiple Objective Optimization

Removing snow in Montreal.

Goal: minimize the expense and at the same time maximize contaminant removal (salt, sand). Different removal sites have different capacities.

A a	Annual	mont l	Droi	oot E	Two n	ь Ц
As		nent l	Distance	o disposal	site#	ПП
	Requirem			_	_	_
Sector	ents	20.1/12/	2	o dor	4	5
1	HE	JS.34 D	J VA/4C (JUEI	.041	9.3
2	152	2.4	2.1	8.3	9.1	8.8
3	154	1.4	2.9	3.7	9.4	8.6
4	1/28	d We	Chai	1957	X/820	1 com
5	127	1.5	$C_{3,1}a$	2.1	7.9	8.8
6	129	4.2	4.9	6.5	7.7	6.1
7	111	4.8	6.2	9.9	6.2	5.7
8	110	5.4	6	5.2	7.6	4.9
9	130	3.1	4.1	6.6	7.5	7.2
10	135	3.2	6.5	7.1	6	8.3
		Disposal Site Capacity (1000s cubic feet)				
		350	250	500	400	200
		Contaminants removed at site				
		30%	40%	20%	70%	50%

Formulate the problem

- Objective:
 - Minimize cost (assume that it costs k\$ per km travelled * ft³ of snow) / Maximize the amount of contaminants removed
- **Decisions:**
 - From each sessignmentsileraje et Examp Helpontaminant snow. 5X10=50 decision variables.
- Constraints:

https://powcoder.com

- Site capacity Site capacity
 Add WeChat powcoder
 You cannot remove snow that does not exist
- Non-negative decision variables

Go to the excel file "Non-Linear Problem"->"Montreal Snow removal" and find the optimal solution.

Handling conflicting objectives

- Conflicting objectives:
 - Maximum amount of contaminants that can be removed
 - Minimum cost

Assignment Project Exam Help

- How can you use Optimization Parameter Analysis to create a plot showing minimum cost of reinovals power developer of contaminants removal?
 - Set the constraint R.H as a parameter.
 - Run optimization of the parameter
 - Plot the efficient frontier by using "Chart"->"Multiple Optimizations"

Selecting an operating point on the efficient frontier

- **Efficient Frontier classic definition:** The efficient frontier is the set of optimal portfolios that offers the highest expected return for a defined level of risk or the lowest risk for a given level of expected return.
- Efficient Frontier—in our case: The set of optimal amount of contaminants removed for a defined level of cost (budget), or the set of optimal cost for a defined amount of contaminants removed.

Add WeChat powcoder
 What point on the curve the city may want to choose to operate? Why?

Simon Business School CIS-418 Ricky Roet-Green