Homework 3

ALECK ZHAO

February 23, 2018

Chapter 14: The Riemann-Stieltjes Integral

29. Show that $|S_{\alpha}(f, P, T)| \leq ||f||_{\infty} V(\alpha, P)$.

Proof. We have $V(\alpha, P) \ge |\alpha(b) - \alpha(a)| \ge \alpha(b) - \alpha(a)$ for any partition P. Thus,

$$S_{\alpha}(f, P, T) = \sum_{i=1}^{n} f(t_{i}) \left[\alpha(x_{i}) - \alpha(x_{i-1})\right] \le \sum_{i=1}^{n} \|f\|_{\infty} \left[\alpha(x_{i}) - \alpha(x_{i-1})\right]$$
$$= \|f\|_{\infty} \sum_{i=1}^{n} \left[\alpha(x_{i}) - \alpha(x_{i-1})\right] = \|f\|_{\infty} \left[\alpha(b) - \alpha(a)\right]$$
$$\le \|f\|_{\infty} V(\alpha, P)$$

31. Let a < c < b, and suppose that $f \in \mathcal{R}_{\alpha}[a,c] \cap \mathcal{R}_{\alpha}[c,b]$. Show that $f \in \mathcal{R}_{\alpha}[a,b]$ and that $\int_a^b f \, d\alpha = \int_a^c f \, d\alpha + \int_c^b f \, d\alpha$. In fact, if any two of these integrals exist, then so does the third and the equation above still holds.

Proof. Since $f \in \mathcal{R}_{\alpha}[a,c]$ and $f \in \mathcal{R}_{\alpha}[c,b]$, let I_1 and I_2 be $\int_a^c f \, d\alpha$ and $\int_c^b f \, d\alpha$, respectively. Let $\varepsilon > 0$. There exists partitions P^* and Q^* of [a,c] and [c,b] such that

$$|S_{\alpha}(f, P, T_1) - I_1| < \frac{\varepsilon}{2}$$
$$|S_{\alpha}(f, Q, T_2) - I_2| < \frac{\varepsilon}{2}$$

for all $P \supset P^*$ and $Q \supset Q^*$ and all choices T_1 and T_2 . Then let $R^* = P^* \cup Q^*$ be a partition of [a, b]. Then for any $R \supset R^*$, we have $R = A \cup B$ for $A \supset P^*$ and $B \supset Q^*$, so

$$|S_{\alpha}(f, R, T_3) - (I_1 + I_2)| = \left| \left[S_{\alpha}(f, A, T_1) + S_{\alpha}(f, B, T_2) \right] - (I_1 + I_2) \right|$$

$$\leq |S_{\alpha}(f, A, T_1) - I_1| + |S_{\alpha}(f, B, T_2) - I_2|$$

$$< \varepsilon$$

so the integral is equal to $I_1 + I_2$, as desired.

36. If $\alpha \in BV[a,b]$ and $f \in \mathcal{R}_{\alpha}[a,b]$, show that $f \in \mathcal{R}_{\alpha}[c,d]$ for every subinterval $[c,d] \subset [a,b]$.

Proof. Let $\beta(x) = V_a^x \alpha$, so β and $\beta - \alpha$ are increasing functions. Then since $f \in \mathcal{R}_{\alpha}[a, b]$, it follows that

$$f \in \mathcal{R}_{\beta}[a,b] \cap \mathcal{R}_{\beta-\alpha}[a,b] \implies f \in \mathcal{R}_{\beta}[a,b] \text{ and } f \in \mathcal{R}_{\beta-\alpha}[a,b]$$

From HW2, since β and $\beta - \alpha$ are increasing, it follows that $f \in \mathcal{R}_{\beta}[c,d]$ and $f \in \mathcal{R}_{\beta-\alpha}[c,d]$, so $f \in \mathcal{R}_{\beta}[c,d] \cap \mathcal{R}_{\beta-\alpha}[c,d] = R_{\alpha}[c,d]$, as desired.

39. Given $\alpha \in BV[a, b]$, let p and n be the positive and negative variations of α . Show that $\mathcal{R}_{\alpha} = \mathcal{R}_{p} \cap \mathcal{R}_{n}$ and that $\int_{a}^{b} f \, d\alpha = \int_{a}^{b} f \, dp - \int_{a}^{b} f \, dn$ for any $f \in \mathcal{R}_{\alpha}$.

Proof. Since $\alpha(x) = \alpha(a) + p(x) - n(x)$, we have

$$\mathcal{R}_{\alpha} = \mathcal{R}_{\alpha(a)+p-n} \supset \mathcal{R}_p \cap \mathcal{R}_n$$

We wish to show the reverse inclusion. Let $f \in \mathcal{R}_{\alpha}$ and fix $\varepsilon > 0$. Let $I = \int_a^b f \, d\alpha$. Then there exists a partition P^* such that

$$|S_{\alpha}(f, P, T) - I| = \left| \sum_{i=1}^{m} f(t_{i}) \left[\alpha(x_{i}) - \alpha(t_{i-1}) \right] - I \right|$$

$$= \left| \sum_{i=1}^{m} f(t_{i}) \left(\left[\alpha(t_{i}) + p(x_{i}) - n(x_{i}) \right] - \left[\alpha(t_{i}) + p(x_{i-1}) - n(x_{i-1}) \right] \right) - I \right|$$

$$= \left| \sum_{i=1}^{m} f(t_{i}) \left[p(x_{i}) - p(x_{i-1}) \right] - \sum_{i=1}^{m} f(t_{i}) \left[n(x_{i}) - n(x_{i-1}) \right] - I \right| < \varepsilon$$

41. Suppose that (α_n) is a sequence in BV[a,b] and that $V_a^b(\alpha_n - \alpha) \to 0$. Show that $\int_a^b f \, d\alpha_n \to \int_a^b f \, d\alpha$ for all $f \in C[a,b]$.

Proof. Since $f \in C[a, b]$, it is integrable, $f \in \mathcal{R}_{\alpha} \cap \mathcal{R}_{\alpha_n}$, so

$$\left| \int_{a}^{b} f \, d\alpha_{n} - \int_{a}^{b} f \, d\alpha \right| = \left| \int_{a}^{b} f \, d(\alpha_{n} - \alpha) \right|$$

From the result of Problem 29, we have

$$|S_{\alpha_n-\alpha}(f,P,T)| \le ||f||_{\infty} V(\alpha_n-\alpha,P) \le ||f||_{\infty} V_a^b(\alpha_n-\alpha) \to 0$$

Thus,
$$\left| \int_a^b f \, d(\alpha_n - \alpha) \right| \to 0$$
, so $\left| \int_a^b f \, d\alpha_n - \int_a^b f \, d\alpha \right| \to 0$.

42. Suppose that φ is a strictly increasing continuous function from [c,d] onto [a,b]. Given $\alpha \in BV[a,b]$ and $f \in \mathcal{R}_{\alpha}[a,b]$, show that $\beta = \alpha \circ \varphi \in BV[c,d]$ and that $g = f \circ \varphi \in \mathcal{R}_{\beta}[c,d]$. Moreover, $\int_{c}^{d} g \, d\beta = \int_{a}^{b} f \, d\alpha$.

Proof. Let $P = \{c = x_0 < x_1 < \dots < x_n = d\}$ be a partition of [c, d]. Then since φ is strictly increasing and onto [a, b], it follows that $Q = \{a = \varphi(x_0) < \varphi(x_1) < \dots < \varphi(x_n) = b\}$ is a partition of [a, b]. Then

$$V(\beta, P) = \sum_{i=1}^{n} |\alpha \circ \varphi \circ (x_i) - \alpha \circ \varphi(x_{i-1})| = V(\alpha, Q)$$

and since $\alpha \in BV[a, b]$, it follows that $\beta \in BV[c, d]$ since P was arbitrary.

Let $I = \int_a^b f \, d\alpha$ and let $\varepsilon > 0$. Since $f \in \mathcal{R}_{\alpha}[a, b]$, there exists a partition $P^* = \{a = x_0 < \dots < x_n = b\}$ such that

$$|S_{\alpha}(f, P, T) - I| < \varepsilon$$

2

Homework 3 Honors Analysis II

for all $P \supset P^*$ and all choices of points T. Then $Q^* = \{c = \varphi^{-1}(x_0) < \dots < \varphi^{-1}(x_n) = d\}$ is a partition of [c,d]. Let $Q = \{c = y_0 < \dots < y_m = d\} \supset Q^*$ and let T be an arbitrary selection of points under Q. We have

$$|S_{\beta}(g, Q, T_1) - I| = \left| \sum_{i=1}^{m} g(t_i) \left[\beta(y_i) - \beta(y_{i-1}) \right] - I \right| = \left| \sum_{i=1}^{m} \alpha(\varphi(t_i)) \left[\alpha(\varphi(y_i)) - \alpha(\varphi(y_{i-1})) \right] - I \right|$$

Now, since Q is a partition of [c,d] containing Q^* , it follows that $\varphi(Q) = \{\varphi(y) : y \in Q\}$ is a partition of [a,b] containing P^* , and $\varphi(T) = \{\varphi(t) : t \in T\}$ is a selection of points, so from above, we have

$$|S_{\alpha}(f,\varphi(Q),\varphi(T)) - I| = \left| \sum_{i=1}^{m} \alpha(\varphi(t_i)) \left[\alpha(\varphi(y_i)) \alpha(\varphi(y_{i-1})) \right] - I \right| < \varepsilon$$

and thus $g \in \mathcal{R}_{\beta}[c,d]$ and $\int_{c}^{d} g \, d\beta = I = \int_{a}^{b} f \, d\alpha$.

50. If f is continuous on [a, b], and if $\int_a^b |f(x)| dx = 0$, show that f = 0.

Proof. Suppose $f \not\equiv 0$, so there exists $c \in (a,b)$ such that |f(c)| > 0. Then since f is continuous, it follows that |f| is continuous by the $\varepsilon - \delta$ definition since $||f(x)| - |f(y)|| \le |f(x) - f(y)|$. Thus for a fixed $\varepsilon = \frac{f(c)}{2}$, there exists $\delta > 0$ such that

$$|x-c| < \delta \implies |f(x) - f(c)| < \frac{f(c)}{2} \implies f(x) > \frac{f(c)}{2}$$

Thus, f(x) > f(c)/2 on the interval $[c - \delta, c + \delta] \subset [a, b]$, so $\int_a^b f \, dx \ge 2\delta \cdot \frac{f(c)}{2} > 0$, a contradiction. \Box