CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 9 LUGLIO 2018

Svolgere i seguenti esercizi,

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza** e eventuale **esenzione** da parte dello scritto. All'esenzione (dai primi due esercizi) ha diritto chi ha superato prova in itinere e non ha consegnato il compito nell'appello di giugno.

Non è necessario consegnare la traccia.

Esercizio 1. Di ciascuna delle seguenti:

$$f\colon X\in \mathcal{P}(\mathbb{Z})\longmapsto X\cup \{3\}\in \mathcal{P}(\mathbb{N}) \qquad \mathrm{e} \qquad g\colon X\in \mathcal{P}(\mathbb{Z})\longmapsto X\cup \{3\}\in \mathcal{P}(\mathbb{Z})$$

si dica se è o non è ben definita come applicazione e, nel caso lo sia, se è iniettiva, suriettiva, biettiva, calcolando in quest'ultimo caso l'applicazione inversa.

Esercizio 2. Si definisca l'operazione binaria * in $S = \mathbb{Z}_{12} \times \mathbb{Z}_{12}$ ponendo, per ogni $a, b, c, d \in \mathbb{Z}_{12}$, (a, b) * (c, d) = (ac, d).

- (i) Decidere se * è commutativa e se è associativa, descrivere gli eventuali elementi neutri a destra, neutri a sinistra, neutri in (S,*) e, nel caso, quali elementi di (S,*) sono simmetrizzabili.
- (ii) Sia $T = \mathbb{Z}_{12} \times \{[2]_{12}\}$. Decidere se T è una parte chiusa di (S, *) e, nel caso lo sia, studiare la struttura indotta (T, *), stabilendo che tipo di struttura è (un semigruppo?, un monoide?, un gruppo?; commutativa o no?) e, nel caso la domanda abbia senso, quali (e quanti) suoi elementi sono simmetrizzabili.

Esercizio 3. Si dia la definizione di partizione di un insieme A e si enunci il teorema fondamentale che lega partizioni e relazioni di equivalenza in un insieme.

- (i) Posto $A = \{n \in \mathbb{N} \mid n < 10\}$, se $P = \{a \in A \mid a \text{ è pari}\}$, quali tra $F_1 = \{P, \{1, 5, 7\}, \{0, 3, 9\}\}$, $F_2 = \{P, \{1, 5\}, \{3, 9\}\}$, $F_3 = \{P, \{1, 7\}, \{3, 5, 9\}\}$ sono e quali non sono partizioni di A?
- (ii) Fissata una partizione tra F_1 , F_2 , F_3 , chiamiamola F, dire se esiste una relazione di equivalenza \sim tale che $F = A/\sim$ e, se possibile, quali e quanti sono gli elementi di $[4]_{\sim}$.
- (iii) Quante e quali sono le partizioni Q di A tali che $P \in Q$ e $\{1, 5, 7\} \in Q$?

Esercizio 4. Siano $H = \{n \in \mathbb{N} \mid n < 10\}$ e $K = \{X \subseteq H \mid |X| \neq 1\}$. Quanto vale |K|? Consideriamo in K la relazione d'ordine ρ definita da: $\forall X, Y \in K$

$$X \rho Y \iff (X = Y \vee (|X| \neq |Y| \wedge |X| \text{ è un divisore di } |Y|)).$$

- (i) Determinare gli eventuali elementi minimali, massimali, minimo, massimo in (K, ρ) . (K, ρ) è un reticolo? Nel caso, decidere se è complementato, distributivo, booleano.
- (ii) Dire quali elementi di K non sono confrontabili con $\{0,1\}$ rispetto a ρ . Indicare quanti sono.
- (iii) Costruire, se possibile, un sottoinsieme W di K che, ordinato da ρ , sia un reticolo pentagonale.

Esercizio 5. Per ogni primo positivo p, sia $f_p = x^3 + \bar{4}x^2 - \bar{2}x - \bar{3} \in \mathbb{Z}_p[x]$.

- (i) Determinare il massimo primo p tale che f_p abbia $\bar{4}$ come radice.
- (ii) Per tale primo p, scrivere f_p come prodotto di polinomi monici irriducibili in $\mathbb{Z}_p[x]$.
- (iii) Trovare, se possibile, un divisore di f_p di grado 2 e coefficiente direttore $\bar{3}$.

Esercizio 6. Si trovino tutte le soluzioni (in \mathbb{Z}) di ciascuna delle due equazioni congruenziali $30x \equiv_{69} 16$ e $30x \equiv_{69} 15$.

solo per chi non ha diritto all'esenzione parziale