# Agenda



1 Time Series Analysis

2 Time Series Analysis in Python



#### Why Forecasting?



# Every business operates under risk and uncertainty. Forecasting helps us to assess these risks





#### Intro to Time Series





Let's understand Time Series Y = f(x)

Dependent Variable (Future)

Independent Variable (Past)



#### **Intervals of Time Series**





- Yearly
- Quarterly
- Monthly
- Weekly
- Daily
- Hourly



# Yearly US GDP



| Year       | 1929  | 1930  | 1931  | 1932  | ••••• | 1989   | 1990   | 1991 |
|------------|-------|-------|-------|-------|-------|--------|--------|------|
| US GDP (b. | 4     |       |       |       |       |        |        |      |
| USD)       | 821.8 | 748.9 | 691.3 | 599.7 |       | 4739.2 | 4822.3 | 4835 |





# **Quarterly Sales Turnover**



| Year    | 1982    | 1982    | 1983    | ((***)) | 1991    | 1992    |
|---------|---------|---------|---------|---------|---------|---------|
| Quarter | Q3      | Q4      | Q1      |         | Q4      | Q1      |
| Turnove |         |         |         |         |         |         |
| r       | 13423.2 | 13128.8 | 15398.8 | ***     | 14914.3 | 17342.3 |









| GRE.Score | CGPA ÷ |
|-----------|--------|
| 337       | 9.65   |
| 324       | 8.87   |
| 316       | 8.00   |
| 322       | 8.67   |
| 314       | 8.21   |
| 330       | 9.34   |
| 321       | 8.20   |
| 308       | 7.90   |
| 302       | 8.00   |
| 323       | 8.60   |







| Time | sales |
|------|-------|
| t1   | 10    |
| t2   | 20    |
| t3   | 30    |
| t4   | 40    |









| Time | sales |
|------|-------|
| t1   | 10    |
| t2   | 20    |
| t3   | 30    |
| t4   | 40    |

| Time | sales |
|------|-------|
| t1   | 90    |
| t4   | 60    |
| t2   | 130   |
| t3   | 40    |











| Time | sales |
|------|-------|
| t1   | 10    |
| t2   | ?     |
| t3   | ?     |
| t4   | 40    |





#### Components of Time Series







### Trend









# Seasonality









#### Decomposition of Time Series



Breaking down of Time Series Data into trend, seasonality and Irregular components

Compare the long term movement of series w.r.t the short term movement





#### **Decomposition Model**



#### There are two types of decomposition models: Additive, Multiplicative

#### Additive Model

Observation = Trend + Seasonality + Error

$$Y = T + S + I$$

#### Multiplicative Model

Observation = Trend \* Seasonality \* Error

$$Y = T * S * I$$



#### **Understanding Additive Model**



#### Forecasting sales with trend, seasonality and error

Business Growth

Weather

Theft/ Calamity





### **Understanding Additive Model**



#### Additive Seasonality: If seasonal fluctuations do not change with trend







### **Decomposition Visualization**







### **Decomposition Visualization**





