

You Only Look Once: Unified, Real-Time Object Detection Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi

Big picture

448x448x3

Input GoogLeNet modification (20 layers)

14x14x1024

448x448x3

448x448x3

448x448x3

Input image GoogLeNet modification (20 layers) 14x14x1024 C,R C,R Tx7x1024

448x448x3

448x448x3

Inference GoogLeNet modification (20 layers) 14x14x1024 C,R Tx7x1024 Tx7x1024 FC,R Tx7x1024 Tx7x1024 4096x1

Inference Input GoogLeNet modification image C,R C,R FC,R FC (20 layers) 7x7x1024 7x7x1024 14x14x1024 14x14x1024 14x14x1024 4096x1 1470x1

Inference Input GoogLeNet modification image C,R C,R FC,R FC Reshape (20 layers) 7x7x30 7x7x1024 7x7x1024 14x14x1024 14x14x1024 14x14x1024 4096x1 1470x1

Tensor values interpretation

Tensor values interpretation

Tensor values interpretation

Look at detection procedure

Class scores for each bbox

class (dog) scores for each bbox

1x98

Get bbox with max score. Let's denote it "bbox_max"

1x98

After this procedure - a lot of zeros

Select bboxes to draw by class score values

Key Points

- 1. Fast: YOLO 45 fps, YOLO-tiny 155 fps.
- End-to-end training.
- 3. Makes more localization errors but is less likely to predict false positives on background
- 4. Performance is lower than the current state of the art.
- 5. Combined Fast R-CNN + YOLO model is one of the highest performing detection methods.
- 6. Learns very general representations of objects: it outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains

Links

- Arxiv: https://arxiv.org/abs/1506.02640
- Blog: http://pjreddie.com/publications/yolo/
- Darknet: https://github.com/pjreddie/darknet
- Caffe: https://github.com/xingwangsfu/caffe-yolo
- Tensorflow:
 - Test+train: https://github.com/thtrieu/yolotf
 - Test: https://github.com/gliese581qq/YOLO tensorflow

Thank you!

Our website: <u>deepsystems.io</u>

Our team is looking for business partners to make exciting deep learning solutions.

