Graphs: Shortest paths

Jordi Cortadella and Jordi Petit Department of Computer Science

Distance in a graph

Depth-first search finds vertices reachable from another given vertex. The paths are not the shortest ones.

Distance between two nodes: length of the shortest path between them

Breadth-first search

Similar to a wave propagation

Breadth-first search

Breadth-first search

BFS algorithm

• BFS visits vertices layer by layer: 0,1,2,...,d.

• Once the vertices at layer d have been visited, start visiting vertices at layer d+1.

- Algorithm with two active layers:
 - Vertices at layer d (currently being visited).
 - Vertices at layer d + 1 (to be visited next).
- Central data structure: a queue.

BFS algorithm

Graphs: Shortest paths

BFS algorithm

```
function BFS (G, s)
// Input: Graph G(V, E), source vertex S.
// Output: For each vertex u, dist[u] is
//
           the distance from s to u.
  for all u \in V: dist[u] = \infty
  dist[s] = 0
  Q = \{s\} // Queue containing just s
  while not Q.empty():
    u = Q.pop_front()
    for all (u,v) \in E:
       if dist[v] = \infty:
         dist[v] = dist[u] + 1
         Q.push back (v)
```

Runtime O(|V| + |E|): Each vertex is visited once, each edge is visited once (for directed graphs) or twice (for undirected graphs).

Reachability: BFS vs. DFS

Input: A graph *G* and a source node *s*.

Output: $\forall u \in V$: reached[u] $\Leftrightarrow u$ is reachable from s.

```
function BFS (G, s)
  for all u \in V:
    reached[u] = false
  Q = \Box // Empty queue
  Q.push back (s)
  reached[s] = true
  while not Q.empty():
    u = Q.pop front()
    for all (u,v) \in E:
      if not reached[v]:
        reached[v] = true
        Q.push back (v)
```

```
function DFS (G, s)
 for all u \in V:
   reached[u] = false
 S.push(s)
 while not S.empty():
   u = S.pop()
   if not reached[u]:
     reached[u] = true
     for all (u,v) \in E:
       if not reached[v]:
         S. push (v)
```

Reachability: BFS vs. DFS

DFS order: A B C E F G H D

BFS order: A B D C F E G H **Distance:** 0 1 1 2 2 3 3 3

Distances on edges

Reusing BFS

Inefficient: many cycles without any interesting progress. How about real numbers?

Dijkstra's algorithm: invariant

The set of non-completed vertices with their shortest distance from S using only the completed vertices.

(completed vertices)

Done	Queue
	A:0
	B: ∞
	E:∞
	D: ∞
	C:∞
	F:∞
	G:∞

Done	Queue
A:0	D:1
	B:2
	E:∞
	C:∞
	F:∞
	G:∞

Done	Queue
A:0	B:2
D:1	E:3
	C:3
	G:5
	F:9

Done	Queue
A:0	E:3
D:1	C:3
B:2	G:5
	F:9

Done	Queue
A:0	C:3
D:1	G:5
B:2	F:9
E:3	

Done	Queue
A:0	G:5
D:1	F:8
B:2	
E:3	
C:3	

Done	Queue
A:0	F:6
D:1	
B:2	
E:3	
C:3	
G:5	

Done	Queue
A:0	
D:1	
B:2	
E:3	
C:3	
G:5	
F:6	

Shortest-path tree

We need to:

- keep a list non-completed vertices and their expected distances.
- select the non-completed vertex with shortest distance.
- update the distances of the neighbouring vertices.

Dijkstra's algorithm for shortest paths

```
function ShortestPaths (G, l, s)
// Input: Graph G(V,E), source vertex s,
       positive edge lengths \{oldsymbol{l}_e \colon e \in E\}
// Output: dist[u] has the distance from s,
        prev[u] has the predecessor in the tree
  for all u \in V:
    dist[u] = \infty
    prev[u] = nil
  dist[s] = 0
  Q = makequeue(V) // using dist as keys
  while not Q.empty():
    u = Q.deletemin()
    for all (u,v) \in E:
       if dist[v] > dist[u] + l(u,v):
         dist[v] = dist[u] + l(u,v)
         prev[v] = u
         Q. decreasekey (v)
```

Dijkstra's algorithm: complexity

- The skeleton of Dijkstra's algorithm is based on BFS, which is O(|V| + |E|)
- We need to account for the cost of:
 - makequeue: insert |V| vertices to a list.
 - **deletemin**: find the vertex with min dist in the list (|V| times)
 - **decreasekey**: update dist for a vertex (|E| times)
- Let us consider two implementations for the list: vector and binary heap

Dijkstra's algorithm: complexity

Implementation	deletemin	insert/ decreasekey	Dijkstra's complexity
Vector	O(V)	0(1)	$O(V ^2)$
Binary heap	$O(\log V)$	$O(\log V)$	$O((V + E) \log V)$

Binary heap:

- The elements are stored in a complete (balanced) binary tree.
- **Insertion:** place element at the bottom and let it *bubble up* swapping the location with the parent (at most $log_2 |V|$ levels).
- **Deletemin:** Remove element from the root, take the last node in the tree, place it at the root and let it *bubble down* (at most $log_2 |V|$ levels).
- **Decreasekey:** decrease the key in the tree and let it *bubble up* (same as insertion). A data structure might be required to known the location of each vertex in the heap (table of pointers).

For connected graphs: $O((|V| + |E|) \log |V|) = O(|E| \log |V|)$

Why Dijkstra's works

- A tree of open paths with distances is maintained at each iteration.
- The shortest paths for the internal nodes have already been calculated.
- The node in the frontier with shortest distance is "frozen" and expanded. Why? Because no other shorter path can reach the node.

Disclaimer: this is only true if the distances are non-negative!

Graphs with negative edges

Dijkstra's algorithm does not work:

Dijkstra would say that the shortest path S→A has length=3.

• Dijkstra is based on a safe update each time an edge (u, v) is treated:

$$dist(v) = \min\{dist(v), dist(u) + l(u, v)\}\$$

- Problem: shortest paths are consolidated too early.
- Possible solution: add a constant weight to all edges, make them positive, and apply Dijkstra.
 - It does not work, prove it!

Graphs with negative edges

• The shortest path from s to t can have at most |V| - 1 edges:

If the sequence of updates includes

$$(s, u_1), (u_1, u_2), (u_2, u_3), \dots, (u_k, t),$$

in that order, the shortest distance from s to t will be computed correctly (updates are always safe). Note that the sequence of updates does not need to be consecutive.

- Solution: update all edges |V| 1 times!
- Complexity: $O(|V| \cdot |E|)$.

Bellman-Ford algorithm

```
function ShortestPaths (G, l, s)
// Input: Graph G(V,E), source vertex s,
         edge lengths \{l_e: \in E\}, no negative cycles.
// Output: dist[u] has the distance from s,
        prev[u] has the predecessor in the tree
  for all u \in V:
    dist[u] = \infty
    prev[u] = nil
  dist[s] = 0
  repeat |V|-1 times:
    for all (u,v) \in E:
      if dist[v] > dist[u] + l(u,v):
         dist[v] = dist[u] + l(u,v)
         prev[v] = u
```

Bellman-Ford: example

	Iteration							
Node	0	1	2	3	4	5	6	7
S	0	0	0	0	0	0	0	0
A	8	10	10	5	5	5	5	5
В	8	8	8	10	6	5	5	5
С	8	8	8	8	11	7	6	6
D	8	8	8	8	8	14	10	9
E	8	8	12	8	7	7	7	7
F	8	8	9	9	9	9	9	9
G	8	8	8	8	8	8	8	8

Negative cycles

What is the shortest distance between S and A?

Bellman-Ford does not work as it assumes that the shortest path will not have more than |V| - 1 edges.

- A negative cycle produces $-\infty$ distances by endlessly applying rounds to the cycle.
- How to detect negative cycles?
 - Apply Bellman-Ford (update edges |V| 1 times)
 - Perform an extra round and check whether some distance decreases.

Shortest paths in DAGs

DAG's property:

In any path of a DAG, the vertices appear in increasing topological order.

- Any sequence of updates that preserves the topological order will compute distances correctly.
- Only one round visiting the edges in topological order is sufficient: O(|V| + |E|).
- How to calculate the longest paths?
 - Negate the edge lengths and compute the shortest paths.
 - Alternative: update with max (instead of min).

DAG shortest paths algorithm

```
function DagShortestPaths (G, l, s)
// Input: DAG G(V, E), source vertex s,
  edge lengths \{l_e: \in E\}.
//
// Output: dist[u] has the distance from s,
        prev[u] has the predecessor in the tree
  for all u \in V:
    dist[u] = \infty
    prev[u] = nil
  dist[s] = 0
  Linearize G
  for all u \in V in linearized order:
    for all (u,v) \in E:
      if dist[v] > dist[u] + l(u,v):
         dist[v] = dist[u] + l(u,v)
         prev[v] = u
```

DAG shortest/longest paths: example

Linearization: S A B C D E F G H

Shortest paths: summary

Single-source shortest paths

Graph	Algorithm	Complexity
Non-negative edges	Dijkstra	$O((V + E) \log V)$
Negative edges	Bellman-Ford	$O(V \cdot E)$
DAG	Topological sort	O(V + E)

A related problem: All-pairs shortest paths

- Floyd-Warshall algorithm $(O(|V|^3))$, based on dynamic programming.
- Other algorithms exist.

EXERCISES

Dijkstra (from [DPV2008])

Run Dijkstra's algorithm starting at node A:

- Draw a table showing the intermediate distance values of all the nodes at each iteration
- Show the final shortest-path tree

Bellman-Ford (from [DPV2008])

Run Bellman-Ford algorithm starting at node S:

- Draw a table showing the intermediate distance values of all the nodes at each iteration
- Show the final shortest-path tree

New road (from [DPV2008])

There is a network of roads G = (V, E) connecting a set of cities V. Each road in E has an associated length l_{ρ} . There is a proposal to add one new road to this network, and there is a list E' of pairs of cities between which the new road can be built. Each such potential road $e' \in E'$ has an associated length. As a designer for the public works department you are asked to determine the road $e' \in E'$ whose addition to the existing network G would result in the maximum decrease in the driving distance between two fixed cities s and t in the network. Give an efficient algorithm for solving this problem.

Nesting boxes

A d-dimensional box with dimensions $(x_1, x_2, ..., x_d)$ nests within another box with dimensions $(y_1, y_2, ..., y_d)$ if there exists a permutation π on $\{1, 2, ..., d\}$ such that:

$$x_{\pi(1)} < y_1, x_{\pi(2)} < y_2, \dots, x_{\pi(d)} < y_d.$$

- a. Argue that the nesting relation is transitive.
- b. Describe an efficient method to determine whether or not one d-dimensional box nests inside another.
- c. Suppose that you are given a set of n d-dimensional boxes $\{B_1, B_2, \dots, B_n\}$. Describe an efficient algorithm to determine the longest sequence $\langle B_{i_1}, B_{i_2}, \dots, B_{i_k} \rangle$ of boxes such that B_{i_j} nests within $B_{i_{j+1}}$ for $j=1,2,\dots,k-1$. Express the running time of your algorithm in terms of n and d.

Source: Cormen, Leiserson and Rivest, Introduction to Algorithms, The MIT Press.