

Eletrônica Digital I

- Aula 13 -

Professora: Dra. Luciana Menezes Xavier de Souza e-mail: luciana.xavier@ifsc.edu.br

Conteúdo

- Circuitos lógicos;
- Exercícios.

CIRCUITOS LÓGICOS MSI (Medium-scale-integration)

Os sistemas digitais obtêm dados codificados em binário e informações que, de algum modo, são continuamente submetidas a operações.

Algumas das operações incluem:

- (1) Multiplexação;
- (2) Decodificação e codificação;
- (3) Demultiplexação;
- (4) Comparação;
- (5) Conversão de código;
- (6) Barramento de dados.

Todas essas operações são facilitadas pela disponibilidade de numerosos CIs na categoria MSI (*medium-scale-integration*).

Figura 1 – Vista frontal do implante coclear implantado em humano.

Multiplexador (mux)

- Seleciona um dos sinais de entrada e o direciona para a saída.
- Implementação eletrônica de uma chave seletora.

Exemplo: Seleção de Canais na TV. Emissoras (entrada) e controle (Mux)

Multiplexador digital: aceita diversos dados digitais de entrada e seleciona um deles, em um certo instante, para a saída. O roteamento do sinal de entrada desejado para a saída é controlado pelas entradas de seleção.

O número de informações que as entradas de seleção podem comutar é 2ⁿ, onde n é o número de entradas de seleção.

EX: 2 entradas de dados (1 entrada de seleção), 4 entradas de dados (2 entradas de seleção), 16 entradas de dados (4 entradas de seleção), etc.

- O controle de qual entrada vai para a saída é feito pelos terminais de seleção.
- Implementação de um **mux de duas entradas** e uma saída (2:1):

- Para a um mux 4:1 (quatro entradas e uma saída), são necessários dois terminais de seleção.
- \bullet O código binário formado por $\boldsymbol{S}_1\boldsymbol{S}_0$ é o número da entrada selecionada.

- Mutiplexadores de duas, quatro, oito e dezesseis entradas estão disponíveis nas famílias lógicas TTL (*Transistor–transistor logic*) e CMOS (*Complementary Metal-Oxide Semiconductor*).
- •Existem diferentes tipos de multiplexadores para circuitos analógicos e digitais.

No processo de multiplexação temos técnicas básicas tais como:

- FDM (Frequency Division Multiplexing)
- TDM (*Time Division Multiplexing*)
- · STDM (Statistical TDM),
- · WDM (Wavelength Division Multiplexing) e
- · CDMA (Code Division Multiplexe Acess)

• CI 74LS151: mux 8:1 com um terminal de enable acionado em nível baixo.

7 4 3	2 1	15 14 	13 12
$ \begin{array}{c cccc} 11 & & E & I_0 & I_1 \\ & & S_0 & & & \\ & & S_1 & & & \\ \end{array} $	l ₂ l ₃	I ₄ I ₅	l ₆ l ₇
$9 \longrightarrow S_2$	Z	Z	
V _{CC} = PIN 16 GND = PIN 8	6	5	

	Entra	Said	las		
Ē	S ₂	S,	So	Z	Z
H L L L L L L L L	XLLLHHHH	XLLHHLLHH	XLHLHLHLH	H -9 -1 -9 -9 -4 -5 -6 -7	L I ₀ I ₁ I ₂ I ₃ I ₄ I ₆ I ₇

DEMULTIPLEXADOR (DEMUX)

• É o inverso do multiplexador, recebe uma única entrada e a distribui por várias saídas, conforme a entrada de seleção.

DEMULTIPLEXADOR (DEMUX)

Co de Si S ₂	ódigo ELEÇ S ₁	ÇÃO S ₀		07	O ₆	O ₅	SAÍD. O₄		O ₂	01	O ₀
0	0	0		0	0	0	0	0	0	0	I
0	0	1	П	0	0	0	0	0	0	I	0
0	1	0	П	0	0	0	0	0	I	0	0
0	1	1	П	0	0	0	0	I	0	0	0
1	0	0	П	0	0	0	I	0	0	0	0
1	0	1	П	0	0	I	0	0	0	0	0
1	1	0		0	I	0	0	0	0	0	0
1	1	1		I	0	0	0	0	0	0	0

Demux <u>8:1</u>

CODIFICADOR (ENCODER)

- Dispositivo cuja saída é um código que representa a entrada ativa.
- Uma palavra de N bits da saída representa um número binário de uma das M entradas ativas.

• Codificador decimal para BCD: a saída apresenta o código binário correspondente ao número da entrada que estiver ativa.

		BCD	CODE	
DECIMAL DIGIT	A ₃	A ₂	A ₁	A
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	21.	1
4	0	1 -	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	l	1
8	1	0	0	0
9	1	0	0	1

• Implementação de um **codificador 8x3**, para cada uma das oito entradas, obtém-se um código binário de três bits correspondente na saída.

^{*}Apenas uma entrada em nível BAIXO de cada vez

Codificador Decimal-BCD Circuito integrado TTL 74147

Codificador Decimal-BCD Tabela Verdade - Circuito integrado TTL 74147

FUNCTION TABLE - '147, 'LS147

	INPUTS									OUT	PUTS	
1	2	3	4	5	6	7	8	9	D	С	В	Α
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Х	X	X	X	X	X	X	X	L	L	Н	Н	L
Х	X	X	X	X	X	X	L	Н	L	Н	Н	Н
X	X	X	X	X	X	L	Н	Н	Н	L	L	L
X	X	X	X	X	L	Н	Н	Н	Н	L	L	Н
Х	X	X	X	L	Н	Н	Н	Н	Н	L	Н	L
Х	X	X	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Х	X	L	Н	Н	Н	Н	Н	Н	Н	Н	L	L
Х	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

H = high logic level, L = low logic level, X = irrelevant

Circuito que gera o CI 74147

Decodificador (decoder)

- Dispositivo que recebe um conjunto de entradas que representa um número binário e ativa somente a saída que corresponde a esse número.
- Para N entradas, tem-se 2^N combinações possíveis.

• Decodificador 2x4 com terminal de *enable* sensível a nível alto:

E	$A_{\mathbf{i}}$	A_{0}	O_0	O ₁	O_2	O_3
0	х	х	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

• Implementação de um decoder 3x8:

СВА

	D /	٦									
A ₂	\mathbf{A}_{1}	\mathbf{A}_{0}	0,	06	05	O ₄	O ₃	O ₂	01	00	
0	0	0	0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	0	0	1	0	
0	1	0	0	0	0	0	0	1	0	0	
0	1	1	0	0	0	0	1	0	0	0	
1	0	0	0	0	0	1	0	0	0	0	
1	0	1	0	0	1	0	0	0	0	0	
1	1	0	0	1	0	0	0	0	0	0	
1	1	1	1	0	0	0	0	0	0	0	

14/3

Display Cátodo e Ânodo Comum

Para acender, normalmente o *display* necessita de uma corrente entre 10 e 20 mA, o que provoca uma queda de tensão da ordem de 1,2 V. Desta forma, trabalhando-se com 5 volts de alimentação, é comum utilizarmos um resistor de 330 Ω para cada segmento visando atingir estes valores.

Para a elaboração do projeto de um decodificador, basta montar a tabela da verdade, simplificar as expressões de saída e implementar o circuito.

CARACTERES	В	CD	842	21	CÓDIGO P/ 7 SEGMENTOS						
	Α	В	С	D	a	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1							
2	0	0	1	0							
3	0	0	1	1							
4	0	1	0	0							
5	0	1	0	1							
6	0	1	1	0							
7	0	1	1	1							
8	1	0	0	0							
9	1	0	0	1							

Т							<u> </u>				1
CARACTERES	В	CD	842	21				IGC MEN			
	Α	В	С	D	а	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0							
3	0	0	1	1							
4	0	1	0	0							
5	0	1	0	1							
6	0	1	1	0							
7	0	1	1	1							
8	1	0	0	0							
9	1	0	0	1							

										T	
CARACTERES	В	BCD 8421					ÓD EGI				
	Α	В	С	D	a	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1							
6	0	1	1	0							
7	0	1	1	1							
8	1	0	0	0							
9	1	0	0	1							

CARACTERES	В	CD	842	21	CÓDIGO P/ 7 SEGMENTOS						
	Α	В	С	D	a	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

	Enti			
D	С	В	Α	Saída Ativa
L L L	L L L	L H H	L	Ō₀ Ō₁ Ō₂ Ō₃
L L L	H H H	L H H	ГНГН	. Ō4 Ō5 Ō6 Ō7
H H H	L L L	L L H	L H L L H	Ō8 Ō9 Nenhuma Nenhuma
Н Н Н	H H H	L L H	L H L H	Nenhuma Nenhuma Nenhuma Nenhuma

H = Nível de Tensão ALTO L = Nível de Tensão BAIXO

Circuito integrado 7447 – Decodificador BCD

Vcc = pino 16 Gnd = pino 8 RBO = L, display apagado RBI = L, eliminação do zero LE = teste dos segmentos

Teste o CI 7447 – Decodificador BCD

