Lógica e Sistemas Digitais

Operações aritméticas Código dos complementos

João Pedro Patriarca (jpatri@cc.isel.ipl.pt)

Slides inspirados nos slides do prof. Mário Véstias

Soma de dois números

- A soma de dois números binários é realizada tal como na soma de dois números na base 10
- Realizam-se somas parciais, do dígito de menor peso para o dígito de maior peso
- Sempre que a soma de dois dígitos exceder ou igualar o valor da base, o arrasto produzido é somado aos dígitos de peso seguinte

Exemplos de somas de dois números

• Exemplo na base 2:

• Exemplo na base 16:

Subtração de dois números

- A subtração de dois números binários é realizada tal como na subtração de dois números na base 10
- Realizam-se subtrações parciais, do dígito de menor peso para o dígito de maior peso
- Sempre que a subtração de dois dígitos for inferior a 0, é somado o valor da base ao dígito do aditivo, calculada a diferença e o arrasto é somado ao dígito do subtrativo de peso seguinte

Exemplos de subtrações de dois números

• Exemplo na base 2:

• Exemplo na base 16:

Multiplicação de dois número binários

• Multiplicação de dois bits A e B

A	В	$F = A \times B$
0	0	0
0	1	0
1	0	0
1	1	1

Base 10

• Multiplicação de palavras de *n* bits

23 multiplicando 0 \Rightarrow 13 multiplicador 0 \Rightarrow × × 0 1 69 0 0 0 0 0 230 0 299 produto \Rightarrow 0 0

Multiplicação por potências de dois

Multiplicação por 8

- O resultado do produto por uma potência de 2 equivale a adicionar à direita do multiplicando o número de zeros do multiplicador
- Outros exemplos:

$$135_{10} \times 4_{10} = 540_{10} \Leftrightarrow 10000111_2 \times 100_2 = 1000011100_2$$

 $87_{10} \times 32_{10} = 2784_{10} \Leftrightarrow 1010111_2 \times 100000_2 = 101011100000_2$

Números com sinal

- Na aritmética em geral é relevante a representação de números inteiros positivos e negativos (domínio \mathbb{Z})
- Na ausência de limitação de representação de números, é usada a notação sinal-módulo para codificação de números
 - Na base 10 é usado o sinal da adição (+) e subtração (-) para representar o sinal. Ex: +10, -7, -125, +1276
 - Numa codificação em binário pode usar-se o bit de maior peso para representar o sinal: 0 representa um valor positivo; 1 representa um valor negativo
- Desvantagens nesta codificação:
 - Dois códigos para o valor 0;
 - Complexidade na implementação de operações aritméticas

Sina	l-mó	dulo	Número
0	0	0	+0
0	0	1	+1
0	1	0	+2
0	1	1	+3
1	0	0	-0
1	0	1	-1
1	1	0	-2
1	1	1	-3

Código dos complementos

- Num sistema computacional, a representação de números é finita.
 Ex: 4 bits; 8 bits; 16 bits; 32 bits; ... (por norma, num sistema computacional, o número de bits envolvidos na codificação de um número corresponde a potências de 2)
- O complemento ou o simétrico de um número é o valor que somado ao próprio número produz o valor 0 (não considerando o arrasto final)
 - Exemplo base 10 para 3 algarismos:
 - Complemento de 123_{10} é 877_{10} porque 123_{10} + 877_{10} = 1000_{10}
 - Exemplo base 16 para 4 algarismos:
 - Complemento de CA49₁₆ é 35B7₁₆ porque CA49₁₆ + 35B7₁₆ = $1\underline{0000}_{16}$
 - Exemplo base 2 para 5 algarismos:
 - Complemento de 01011₂ é 10101₂ porque 01011₂ + 10101₂ = 100000₂
- Na base binária o complemento ou o simétrico de um valor é igualmente denominado por complemento para 2 ou complemento verdadeiro

Determinação do complemento para 2 de um número Método 1

- O complemento para 2 é obtido a partir do complemento restringido ou complemento para 1 e, ao resultado do complemento, soma-se 1
- O complemento restringido é obtido através da negação bit a bit de todos os bits do valor
- Exemplos

Valor expresso com 6 bits	Complemento restringido	Complemento verdadeiro
101101	010010	010011
010011	101100	101101

101101
$$\Rightarrow$$
 010010 Complemento para 1 010011 \Rightarrow 101100 Complemento para 1 $+$ 1 $+$ 1 010011 Complemento para 2 101101 Complemento para 2

Determinação do complemento para 2 de um número Método 2

- Do bit de menor peso para o bit de maior peso, replicam-se os bits até encontrar o primeiro 1 (inclusive); a partir daí invertem-se os restantes bits
- Exemplos
 - Complemento do valor 111011000 a 9 bits

```
111011000 \Rightarrow 000101000
```

• Complemento de 110111 a 8 bits

```
00110111 \Rightarrow 11001001
```

• Casos particulares: considerando representação a 4 bits, o complemento de 0 e 1000 (independente do método)

Correspondência entre código dos complementos e base 10

Números naturais (domínio N)

$$V_{(10)} = \sum_{i=0}^{k-1} d_i b^i = d_{k-1} b^{k-1} + d_{k-2} b^{k-2} + \dots + d_1 b^1 + d_0 b^0$$

$$1011_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 11_{10}$$

Números relativos (domínio Z)

$$V_{(10)} = \sum_{i=0}^{k-1} d_i b^i = -d_{k-1} b^{k-1} + d_{k-2} b^{k-2} + \dots + d_1 b^1 + d_0 b^0$$

$$1011_2 = -1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = -5_{10}$$

- No código dos complementos o bit de maior peso determina o sinal do número: 0 (positivo); 1 (negativo)
- Metade das codificações representa números positivos (de 0 a +7, para 4 bits); a outra metade representa número negativos (de -1 a -8, para 4 bits)
- O complemento de 0 é 0; a 4 bits não é representável o complemento de -8 (para codificar +8 são necessários, no mínimo, 5 bits)

A ₃	A ₂	A_1	A_0	N	\mathbb{Z}
0	0	0	0	0	+0
0	0	0	1	1	+1
0	0	1	0	2	+2
0	0	1	1	3	+3
0	1	0	0	4	+4
0	1	0	1	5	+5
0	1	1	0	6	+6
0	1	1	1	7	+7
1	0	0	0	8	-8
1	0	0	1	9	-7
1	0	1	0	10	-6
1	0	1	1	11	-5
1	1	0	0	12	-4
1	1	0	1	13	-3
1	1	1	0	14	-2
1	1	1	1	15	-1

Exemplos

Número de bits na codificação	Número base 2	Número base 10 (N)	Número base 10 (ℤ)	Simétrico base 2	Simétrico base 10 (N)	Simétrico base 10 (ℤ)
3	110	6	-2	010	2	+2
4	<mark>0</mark> 110	6	+6	1010	10	-6
4	0000	0	+0	0000	0	+0
3	100	4	-4	100	4	-4
5	00100	4	+4	11100	28	-4
4	1111	15	-1	0001	1	+1
6	111111	63	-1	000001	1	+1
4	0111	7	+7	1001	9	-7

Subtração com código dos complementos

$$A - B \equiv A + (-B)$$

- Logo, subtrair A por B é equivalente a somar a A o complemento de B
- Exemplos, considerando números codificados com 4 bits (operandos e resultados)

Nos № e nos ℤ operandos e resultado têm os mesmos valores

$$5-2=5+(-2)=3$$
 Em binário $0101-0010=0101+1110=1$

Nos
$$\mathbb{N}$$
: $14 - 3 = 14 + (-3) = 11$

Nos
$$\mathbb{Z}$$
: $(-2) - 3 = (-2) + (-3) = -5$

Em binário

$$1110 - 0011 = 1110 + 1101 = 1 1011$$

Exercícios

Exercícios – códigos numéricos

• Preencha as células vazias da tabela.

Número de bits na codificação (min.)	Número base 2	Número base 10 (ℕ)	Número base 10 (Z)	Simétrico base 2	Simétrico base 10 (ℕ)	Simétrico base 10 (ℤ)
3		0				
3						-1
4	1001					
4			+3			
4				1011		
4	1100					
4		8				
			+12			

Exercícios – códigos numéricos (resolvido)

Preencha as células vazias da tabela.

Número de bits na codificação (min.)	Número base 2	Número base 10 (N)	Número base 10 (Z)	Simétrico base 2	Simétrico base 10 (N)	Simétrico base 10 (ℤ)
3	000	0	0	000	0	0
3	001	1	+1	111	7	-1
4	1001	9	-7	0111	7	+7
4	0011	3	+3	1101	13	-3
4	0101	5	+5	1011	11	-5
4	1100	12	-4	0100	4	+4
4	1000	8	-8	1000	8	-8 (N.R)
5	01100	12	+12	10100	20	-12

N.R. = Não representável.

O valor +8 não é representável em código dos complemento apenas com 4 bits

Exercícios – operações adição e subtração em binário

• Considere números codificados com 5 bits. Realize as operações em binário (indique os valores dos operandos e resultados em binário):

$$9 + 5 =$$

$$7 - 8 =$$

$$-4 - 5 =$$

$$-14 - 6 =$$

$$21 + 3 =$$

Exercícios – operações adição e subtração em binário (resolvido)

• Considere números codificados com 5 bits. Realize as operações em binário (indique os valores dos operandos e resultados em binário):

$$9 + 5 = 01001 + 00101 = 01110$$

$$7 - 8 = 00111 - 01000 = 11111$$

$$-4 - 5 = 11100 - 00101 = 10111$$

$$-14 - 6 = 10010 - 00110 = 01100$$

$$21 + 3 = 10101 + 00011 = 11000$$