Seminario Trabajo Especial de Grado DISEÑO DE UN EQUIPO ELECTRÓNICO CONTROLADOR DE INTERRUPTORES Y ATENUADORES EMPLEADO EN LA MEDICIÓN DE LA FIGURA DE RUIDO EN DISPOSITIVOS DE RADIO FRECUENCIA

Jose Arias

Tutor: MSc. Pedro Ruiz Prof. Guía: Alejandro González

Universidad Central de Venezuela Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control

Octubre 2017

Sistema para medición de figura de ruido (SMFR)

Controlador electrónico de interruptores y atenuadores 11713A

Dispositivos que integran el SMFR

Analizador de figura de ruido (NFA) N8975A

Equipo para pruebas con fuente de ruido N2002A

Controlador electrónico de interruptores y atenuadores, serie 11713

Panorama del SMFR

Metodología de trabajo

Cronograma inicial

Fecha de inicio: 6 de Marzo de 2017.

Jornada de 8 horas diarias, lunes a viernes, de 8:00 AM a 12:00 M y de 1:30 PM a 4:30 PM.

- Fase 1: Preparación y documentación.
- Fase 2: Diseño de dispositivo.
- Fase 3: Implementación de dispositivo.
- Fase 4: Producción de manual de usuario.
- Fase 5: Documentación TEG.

División de tareas

Organización en bloques del proyecto

Documentación

- Investigación sobre caracterización de dispositivos en alta frecuencia: parámetros de dispersión.
- Investigación sobre medición de figura de ruido en RF y microondas.
- Documentación acerca de cada uno de los instrumentos que integran el SMFR.
- Documentación acerca del software asociado o que brinda soporte al SMFR.

Diseño de aplicación CenditLab

Diseño de aplicación CenditLab

Diagrama de paquetes UML

Módulos de software principales

- Interfaz de usuario
- Gestión de instrumentos
- Control del proceso de medición
- Gestión de comunicaciones

Ingeniería de software

Captura de requerimientos

- Estudio del software Test & Measurement (T & M) de Keysight Technologies (Keysight VEE Pro).
- Estudio de aplicaciones T & M disponibles en el Cendit (EmcTest32).
- Entrevistas con personal técnico dentro del Cendit.

Normas ISO/IEC/IEEE

- Systems and Software Engineering: Architecture Description (ISO/IEC/IEEE 42010, 2011).
- System and Software Engineering: Life Cycle Processes Requirements Engineering (ISO/IEC/IEEE 29148, 2011).
- Systems and Software Engineering: Vocabulary (ISO/IEC/IEEE 24765, 2011).

Requerimientos funcionales

Requerimiento funcional 2

ID: FR2

Título: Automatizar tareas de medición

Descripción: Los usuarios pueden programar los instrumentos y generar tareas de medición para sus posterior

ejecución, de forma automatizada y remota Justificación: Programar y automatizar las mediciones con el SMFR

Dependencias: FR1

> Usuario: Técnico

Requerimiento funcional 3

ID: Título:

Presentar una interfaz gráfica para el SMFR

Descripción:

La aplicación servirá como una representación integral en software de los tres instrumentos principales que componen el SMFR, será un instrumento virtual

Justificación: Simplificar las tares de medición con el SMFR

Dependencias: FR2 Usuario:

Técnico

Requerimientos funcionales

Requerimiento funcional 4

ID: FR4

Título: Gestión de las comunicaciones con los instrumentos del SMFR de manera simple y uniforme desde

la perspectiva de usuario

Descripción: La aplicación facilitará el intercambio de datos con los instrumentos del SMFR

Justificación: Simplificar la adquisición de datos del SMFR

Dependencias: FR1. FR2

Usuario: Técnico

Requerimiento funcional 9

ID: FR9

Título:

Capacidad para simular el proceso medición

Descripción: El usuario puede simular una tarea de instrumentación dada, sin necesidad de conexión con el

SMFR

Justificación: Permitir al usuario ensayar una tarea de medición

Dependencias: FR2, FR3, FR4, FR5

Usuario: Técnico

Recopilación e investigación de software asociado al SMFR

Librerías oficiales

- Virtual Instrument Software Architecture (VISA) de National Instruments
- IO Libraries Suite de Keysight Technologies

Disponibles para Windows y ciertas distribucones de Linux

No disponibles en distribuciones Ubuntu ni Debian

Desarrollo de librería alternativa para comunicación de datos

Recopilación e investigación librerías alternativas

- LinuxGPIB: acceso al bus GPIB.
- Vxi-11: acceso al bus GPIB a traves del un puente LAN/GPIB.
- Java Simple Serial Connector (jSSC): acceso al puerto RS-232 y USB CDC.
- libUsb: acceso al puerto USB.

Modelado y codificación de librería alternativa para comunicación de datos

Modelado y codificación de librería alternativa para comunicación de datos

Modelado y codificación de librería alternativa para comunicación de datos

Diagrama de paquetes UML

Estudio comparativo de los dispositivos de la serie 11713

Vistas del panel frontal

Agilent 11713A

Keysight 11713B

Keysight 11713C

Vistas del panel posterior

Agilent 11713A

Keysight 11713B

Keysight 11713C

Identificación de características clave

Características eléctricas

- Soporte para 2 puertos Viking.
- Soporte para dos jack banana.
- Suministro de alimentación DC programable.

Interfaz de usuario

- Pantalla LCD.
- Teclado alfanumérico.

Interfaces de comunicaciones

- USB
- LAN
- GPIB

Keysight 11713B

Elaboración de concepto de diseño

Diseño módular de tarjetas PCB

Selección de componentes. Circuitos integrados

Selección de microcontrolador de 32 bits

MCU	Descripción	Flash (kB)	SRAM (kB)	Encapsulado	USB	Ethernet
TM4C129ENCPDT	ARM Cortex-M4F 120 MHz	1024	256	TQFP-128	H/D/OTG	MAC-PHY
LPC1768FBD1	ARM Cortex-M3 100 MHz	512	64	LQFP-100	D/H/OTG	MAC
MKL26Z256VLL4	Kinetis KL26 Cortex-M0+ 48 MHz	256	32	LQFP-100	FS	NO

Selección de microcontrolador de 8 bits

MCU	Descripción	Flash (kB)	SRAM (kB)	Encapsulado	USB	Ethernet
PIC18F4550	MCU PIC18 8 bits	32	2	DIP-40	D	NO
PIC1845K50	MCU PIC18 8 bits	32	2	TQFP-44	D	NO
PIC18F67J60	MCU PIC18 8 bits	128	3.8	TQFP-64	NO	10/100/1000 Base-T

Selección de componentes. Circuitos integrados

Selección para controlador de teclado

Parte	Descripción	Encapsulado	Comunicaciones	Fabricante
PCF8885	Controlador de teclado capacitivo de 8 canales	TSSOP-28	I2C (FM+)	NXP

Selección para expansor de puertos Viking

Parte	Descripción	Encapsulado	Comunicaciones	Fabricante
MC33996	Interruptor de 16 salidas	SOIC-32	SPI	NXP

Selección de componentes. Circuitos integrados

Selección para controlador de Ethernet

Parte	Descripción	Encapsulado	Comunicaciones	Fabricante
ENC28J60	Controlador Ethernet 10/100/1000Base-T MAC con 10Base-T PHY	SOIC-28	SPI	Microchip
CP2200	Controlador Ethernet 100/1000 Base-T 10 Base-T PHY	TQFP-48	Bus paralelo Intel o Motorola	Silicon Labs
CP2201	Controlador Ethernet 100/1000 Base-T 10 Base-T PHY	QFN-28	Bus paralelo Intel o Motorola multiplexado	Silicon Labs

Selección para transceptores de bus GPIB

Parte	Descripción	Encapsulado	Fabricante
SN75ALS160	Transceptor de bus octal IEEE 488 (bus datos)	SOIC-20	Texas Instruments
SN75ALS162	Transceptor de bus octal IEEE 488 (bus control)	SOIC-20	Texas Instruments

Selección de componentes. Circuitos integrados

Selección de IC para control de alimentación DC

Parte	Descripción	Encapsulado	Fabricante
XR77129	PMIC, controlador reductor cuadruple PWM/PFM 40V	QFN-44	Exar Corporation
XR77103	programable PMIC reductor de 3 salidas programables 14V	TQFN-32	Exar Corporation
XR79110	Módulo de potencia COT reductor síncrono de 22V 10A	QFN-72	Exar Corporation
TL494	Controlador de ancho de pulso	SOIC-16 / PDIP-16	Texas Instruments

Diseño de circuitos impresos

Elaboración de esquemáticos

- Tarjeta principal basada en microcontrolador PIC18F45K50
- Expansor de puertos Viking basado IC MC33996
- Controlador de teclado capacitivo basado en IC PCF8885
- Tarjeta para pruebas pantalla LCD Nokia 1600

Tareas pendientes

Software

Culminar el diseño de la aplicación CenditLab

- Librerías de soporte de comunicaciones IO para Windows
- Culminar módulo gestión GUI
- Culminar módulos de gestión de instrumentos
- Culminar módulos de gestión de medición

Tareas pendientes

Firmware

Iniciar el diseño y generación de firmware Cendit 11713

- Control de expansor de puertos Viking
- Comunicaciones por medio del bus USB
- Comunicaciones a través de redes LAN (TCP/IP)
- Gestión de la fuente de alimentación
- Gestión de la interfaz de usuario (teclado y pantalla)

Tareas pendientes

Hardware

Culminar diseños, construcción y depuración para los módulos

- Fuente de alimentación
- Teclado capacitivo
- Expansor de puertos Viking
- Módulo Ethernet
- Pantalla LCD
- Tarjeta madre