from sklearn.metrics import accuracy_score

```
In [50]: # importing libraries
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LogisticRegression
   from sklearn.metrics import accuracy_score
```

data collection and processing

```
#load the data from csv file to pandas dataframe
           titanic_data=pd.read_csv('train.csv')
          #print first 5 rows from the dataframe
In [52]:
           titanic_data.head()
Out[52]:
              PassengerId Survived Pclass
                                               Name
                                                        Sex Age SibSp Parch
                                                                                   Ticket
                                                                                              Fare Cabir
                                             Braund,
                                                                                      A/5
          0
                       1
                                            Mr. Owen
                                                       male 22.0
                                                                                            7.2500
                                                                                                     NaN
                                                                                    21171
                                               Harris
                                            Cumings,
                                            Mrs. John
                                             Bradley
                       2
                                                                             0 PC 17599 71.2833
                                                                                                     C85
                                 1
                                                      female 38.0
                                            (Florence
                                               Briggs
                                                Th...
                                           Heikkinen,
                                                                                STON/O2.
                       3
                                 1
          2
                                        3
                                                Miss. female 26.0
                                                                                            7.9250
                                                                                                     NaN
                                                                                  3101282
                                               Laina
                                             Futrelle,
                                                Mrs.
                                             Jacques
          3
                                 1
                                                                                   113803 53.1000
                                                      female 35.0
                                                                             0
                                                                                                    C123
                                               Heath
                                            (Lily May
                                                Peel)
                                            Allen, Mr.
                       5
                                 0
                                              William
                                                       male 35.0
                                                                             0
                                                                                   373450
                                                                                            8.0500
                                                                                                     NaN
                                               Henry
In [53]:
          #number of rows and columns
          titanic_data.shape
          (891, 12)
Out[53]:
          # getting some information about the data
```

titanic data.info()

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries, 0 to 890
         Data columns (total 12 columns):
              Column
                           Non-Null Count Dtype
         ---
                                            ____
          0
              PassengerId 891 non-null
                                            int64
                                            int64
          1
              Survived
                           891 non-null
                           891 non-null
          2
              Pclass
                                            int64
              Name
                           891 non-null
                                           object
                           891 non-null
          4
              Sex
                                            object
          5
              Age
                           714 non-null
                                            float64
                           891 non-null
                                            int64
          6
              SibSp
          7
                           891 non-null
                                           int64
              Parch
          8
              Ticket
                           891 non-null
                                           object
          9
              Fare
                           891 non-null
                                            float64
                           204 non-null
          10 Cabin
                                            object
          11 Embarked
                           889 non-null
                                            object
         dtypes: float64(2), int64(5), object(5)
         memory usage: 83.7+ KB
         #check the number of missing values in each row
In [55]:
         titanic_data.isnull().sum()
                           0
         PassengerId
Out[55]:
         Survived
                           0
         Pclass
                          0
         Name
                          0
         Sex
                          a
                        177
         Age
         SibSp
                          0
         Parch
                          0
         Ticket
                          0
         Fare
                          0
         Cabin
                        687
         Embarked
                           2
         dtype: int64
```

handling the missing values

```
#drop the "cabin" column from thhe dataset
In [56]:
         titanic_data=titanic_data.drop(columns='Cabin',axis=1)
         #replacing the missing vales in "age " column with the mean value
In [57]:
         titanic data['Age'].fillna(titanic data['Age'].mean(),inplace=True)
         #finding the mode value of "Embared" column
In [58]:
         print(titanic_data['Embarked'].mode())
         Name: Embarked, dtype: object
         print(titanic_data['Embarked'].mode()[0])
In [59]:
         #replacing the missing vales in "Embarked" column with mode value
In [60]:
         titanic_data['Embarked'].fillna(titanic_data['Embarked'].mode()[0],inplace=True)
         #check the number of missing valesin each column
         titanic data.isnull().sum()
```

```
0
          PassengerId
Out[61]:
          Survived
                         0
          Pclass
         Name
                         0
                         0
          Sex
         Age
         SibSp
                         0
          Parch
                         0
         Ticket
          Fare
                         0
          Embarked
          dtype: int64
```

data analysis

In [62]: #getting some statistical measurs about the data
 titanic_data.describe()

Out[62]:		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	13.002015	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	29.699118	0.000000	0.000000	14.454200
	75 %	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
In [63]: #finding the number of people survived or not survived
titanic_data['Survived'].value_counts()
```

Out[63]: 0 549 1 342

Name: Survived, dtype: int64

data visualization

```
In [64]: sns.set()
In [65]: #waking a cont plot for the "survived" column
    sns.countplot(x='Survived',data=titanic_data)
Out[65]: <Axes: xlabel='Survived', ylabel='count'>
```


In [66]: #maing a count plot for "sex" column
sns.countplot(x='Sex',data=titanic_data)

Out[66]: <Axes: xlabel='Sex', ylabel='count'>


```
In [67]: titanic_data['Sex'].value_counts()
```

Out[67]: male 577 female 314

Name: Sex, dtype: int64

In [68]: #number of survivors gender wise
sns.countplot(x='Survived',hue='Sex',data=titanic_data)

Out[68]: <Axes: xlabel='Survived', ylabel='count'>


```
In [69]: #maing a count plot for sex column
sns.countplot(x='Pclass',data=titanic_data)
```

Out[69]: <Axes: xlabel='Pclass', ylabel='count'>

In [70]: sns.countplot(x='Pclass',hue='Survived',data=titanic_data)

Out[70]: <Axes: xlabel='Pclass', ylabel='count'>

encoding the categorical colums

```
titanic_data['Sex'].value_counts()
In [71]:
                     577
          male
Out[71]:
          female
                     314
          Name: Sex, dtype: int64
          titanic_data['Embarked'].value_counts()
In [72]:
               646
Out[72]:
          C
                168
                 77
          Name: Embarked, dtype: int64
          #converting categorical columns
In [73]:
          titanic_data.replace({'Sex' :{'male':0,'female':1},'Embarked':{'S':0,'C':1,'Q':2}}
In [74]:
          titanic data.head()
Out[74]:
             PassengerId Survived Pclass
                                             Name Sex Age SibSp Parch
                                                                               Ticket
                                                                                         Fare Embarke
                                            Braund,
                                                                                 A/5
          0
                       1
                                0
                                                                                       7.2500
                                       3
                                          Mr. Owen
                                                      0 22.0
                                                                  1
                                                                         0
                                                                               21171
                                              Harris
                                           Cumings,
                                           Mrs. John
                                            Bradley
                       2
                                1
                                                      1 38.0
                                                                  1
                                                                         0 PC 17599 71.2833
                                           (Florence
                                             Briggs
                                               Th...
                                          Heikkinen,
                                                                            STON/O2.
          2
                       3
                                1
                                       3
                                                                  0
                                                                                       7.9250
                                              Miss.
                                                      1 26.0
                                                                             3101282
                                              Laina
                                            Futrelle,
                                               Mrs.
                                            Jacques
          3
                       4
                                1
                                                      1 35.0
                                                                  1
                                                                         0
                                                                              113803 53.1000
                                             Heath
                                           (Lily May
                                              Peel)
                                           Allen, Mr.
                       5
                                0
          4
                                       3
                                            William
                                                      0 35.0
                                                                  0
                                                                         0
                                                                              373450
                                                                                       8.0500
                                             Henry
          X=titanic_data.drop(columns=['PassengerId','Name','Ticket','Survived'],axis=1)
In [75]:
          Y=titanic_data['Survived']
          print(X)
In [76]:
```

```
Pclass Sex
                  Age SibSp Parch
                                   Fare Embarked
     3 0 22.000000 1 0
0
                                 7.2500
1
       1 1 38.000000
                              0 71.2833
                                              1
2
       3 1 26.000000
                              0 7.9250
                                              0
3
       1 1 35.000000
                        1
                              0 53.1000
                                              0
4
       3
           0 35.000000
                         0
                              0 8.0500
                                              0
                        0 0 13.0000
886
      2 0 27.000000
                                             0
887
       1 19.000000
                             0 30.0000
       3 1 29.699118
                              2 23.4500
                                              0
888
                        1
889
           0 26.000000
                         0
                               0 30.0000
                                              1
890
           0 32.000000
                                  7.7500
```

[891 rows x 7 columns]

```
print(Y)
In [77]:
                  0
          1
                  1
          2
                  1
                  0
          887
                  1
          888
                  0
          889
                  1
          890
          Name: Survived, Length: 891, dtype: int64
```

splitting data into training data and test data

model training

logistic regression

```
In [80]: model=LogisticRegression()

In [81]: model.fit(X_train,Y_train)

C:\Users\PALWAI MEGHNA\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.
    py:460: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
        n_iter_i = _check_optimize_result(
```

```
Out[81]: • LogisticRegression

LogisticRegression()
```

model evaluation

accuracy score

```
In [82]:
    #accuracy on train data
    X train prediction=model.predict(X train)
In [83]:
    print(X_train_prediction)
    0\;1\;0\;0\;1\;1\;1\;0\;0\;1\;0\;1\;1\;1\;0\;0\;1\;0\;0\;0\;1\;0\;0\;0\;1\;0\;0\;0\;1\;0\;0\;0
    0\;1\;1\;0\;0\;0\;0\;0\;0\;1\;0\;1\;0\;0\;0\;0\;1\;1\;1\;0\;0\;0\;1\;0\;1\;0\;0\;0\;0\;0\;1\;1\;0\;1\;1
    0\;1\;1\;1\;0\;0\;0\;0\;0\;0\;0\;0\;0\;1\;0\;0\;1\;1\;1\;0\;1\;0\;0\;0\;0\;1\;1\;1\;0\;0
    0\;1\;0\;1\;0\;0\;1\;1\;0\;0\;0\;0\;1\;0\;0\;0\;0\;1\;1\;0\;1\;0\;1\;0\;0\;0\;0\;1\;0\;0\;0\;0\;1\;1\;0\;0
    0 0 0 1 1 0 0 1 0]
In [84]:
    training data accuracy=accuracy score(Y train, X train prediction)
In [85]:
    print('accuracy score of training data:',training data accuracy)
    accuracy score of training data: 0.8075842696629213
    X_test_prediction=model.predict(X_test)
In [86]:
In [87]:
    print(X_test_prediction)
    0 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0
In [88]:
    test data accuracy=accuracy score(Y test,X test prediction)
In [89]:
    print('accuracy score of training data:',test_data_accuracy)
    accuracy score of training data: 0.7821229050279329
```