MA3H5 Manifolds

Luca Seemungal

19th August 2021

Contents

Differential Forms in \mathbb{R}^n 11.1 Exterior Algebra1
Differential Forms in \mathbb{R}^n
.1 Exterior Algebra
f $f:U\to V$ is a linear map then we define its pullback $f^*:\Lambda^rV^*\to\Lambda^rU^*$ by
$f^*\beta(u_1,\ldots,u_r)=\beta(f(u_1),\ldots,f(u_r))$
or every $\beta \in \Lambda^r U^*$ and every $u_1, \dots, u_r \in U$. Prop. 1.
$f^*(\alpha \wedge \beta) = f^*(\alpha) \wedge f^*(\beta)$
$f f: U \to V \text{ and } g: V \to W \text{ are linear maps then}$
$(g \circ f)^* = f^* \circ g^*.$
$ff:U\to U$ is a linear map and $\beta\in\Lambda^nU^*$ where $n=\dim U$ then
$f^*\beta = (\det f)\beta.$