

第八章 接口技术

张华平 副教授 博士

Email: kevinzhang@bit.edu.cn

Website: http://www.nlpir.org/

@ICTCLAS张华平博士

NIP

大数据搜索挖掘实验室 (wSMS@BIT)

- 7 (1) 【重点讲解】可编程串行通信
- 7 (2) 【重点讲解】定时和计数及其应用
- a(3)【简单了解,不作要求】红外、Wi-Fi

CPU与外部设备之间的接口

- 7接口模块构成
 - ■控制端口
 - ■状态端口
 - ■数据端口
 - ■地址译码和读写控制逻辑
 - ■中断/DMA 请求逻辑模块

- 78.1 串行接口及应用
- 78.2 定时与计数技术
- 78.3 红外
- **7**8.4 Wi−Fi

7 串行通信概念

- ■数据发送方将并行数据转换成按照二进制数据位排列的串行形式 的数据送到传输线上。数据接收方的串行接口接收到这些二进制 位后, 再将它们转换成字节形式的并行数据。
- ■信息在一个方向上传输只占用一根通信线, 既作数据线, 又作联 络线。

图 8-1 串行接口

7数据传送方式

图 8-2 串行通信的 3 种传送方式

化京理工大学 EIJING INSTITUTE OF TECHNOLOGY

7串行通信协议

■异步: 无时钟信号, 面向字符, 传送不连续

■同步: 收发双方同一个时钟信号, 面向比特, 传送连续

- ▶ 例8.1 在异步串行通信中,其一帧数据格式为1位起始位,7位数据位,偶校验,2位停止位,则发送数据ASCII'Q'的帧数据是什么? (起始位在左)
- → ASCII 'Q' = 51h (1010001), 偶校验时校验位为1。起始位为0, 按照低位 先行的规则, 帧数据为0100010111。
- **7** 例8.2 假定波特率为9600b/s, 异步方式下, 每个字符对应1个起始位、7 个数据位、1 个奇偶校验位和1 个停止位。求: 每传输一个二进制位需要的时间是多少? 数据传输效率是多少? 每秒钟能传输的最大字符数为多少? 每秒钟有效数据传输位是多少?
- **7** (P281)

7时钟误差

■ 串行异步通信的发送方和接收方没有一个统一的时钟信号,发送 方和接收方的时钟频率可能存在一定的误差。只要双方的时钟的 误差范围不超过一定的限度,双方仍然可以正确地通信。

$$n \times |(1/f_{ct}) - (1/f_{cr})| < (1/(2f_d))$$

■时钟频率 = 波特率因子 × 波特率

$$f_c = f_d \times K$$

- 7同步串行通信协议
 - 发送方和接收方使用同一个时钟信号,数据流中的字符与字符之间、字符内部的位与位之间都同步。
 - ■面向字符的同步协议:被传送的数据块是由字符组成的,不像异步协议那样需在每个字符前后附加起始和停止位,因此传输效率提高了。

SYN	SYN	SOH	标题	STX	数据块	ETB/ETX	块校验

图 8-5 面向字符同步协议的帧格式

- 7面向比特的同步协议
 - ■所传输的一帧数据的长度可以是任意位,而且它是靠约定的位组 合模式,而不是靠特定字符来标志帧的开始和结束。
 - ■16位循环冗余校验码CRC

8	8	8	任意	16	8
F开始标志	A 地址字段	C 控制字段	I 信息字段	FCS 校验字段	F 结束标志

图 8-6 面向比特同步协议的帧格式

7调制和解调

- ■在发送端使用调制器(Modulator)把数字信号转换为模拟信号,该模拟信号携带了数据信号,称为载波信号。模拟信号经电话线传送到接收方,接收方再用解调器(Demodulator)把模拟信号变为数字信号。大多数情况下,调制器和解调器合在一个装置中,称为调制解调器(Modem)。
- ■调幅
- ■调频
- ■调相

图 8-7 常用的 3 种调制方式

7RS-232C标准

- ■RS-232C将-5~-15V规定为"1"(逻辑1电平),+5~+15V规定为"0"(逻辑0电平)
- 计算机采用的是标准TTL(Transistor-Transistor Logic)。电平定义+2.4~+5V为高电平,表示逻辑1;0~0.4V为低电平,表示逻辑0。

图 8-9 EIA 电平与 TTL 电平的转换

京理工大学 INSTITUTE OF TECHNOLOGY

→RS-232C标准信号定义

图 8-10 25 芯和 9 芯连接器

表 8-1 常用 RS-232C 信号

25 芯引脚	9 芯引脚	名 称	作用	方 向
1	_	PG	保护地	设备地
2	3	TxD, TD, SD	发送数据	DTE→DCE
3	2	RxD, RD	接收数据	DCE→DTE
4	7	RTS, RS	请求发送	DTE→DCE
5	8	CTS, CS	允许/清除发送	DCE→DTE
6	6	DSR, MR	DCE 就绪	DCE→DTE
7	5	SG	信号地	信号公共地
8	1	RLSD, DCD	接收线路信号检测	DCE→DTE
20	4	DTR	DTE 就绪	DTE→DCE
22	9	RI	振铃指示	DCE→DTE

7双机串行互联

图 8-11 短距离双机串口直连(25 芯)

- 7可编程串行通信接口
 - ■通用异步收发传输器INS8250、NS16450和NS16550等

表 8-2 常见 UART 可编程芯片比较

功能	型 号							
切配	8250	16450	16550	16650	16750			
FIFO	_		16 字节	32 字节	64 字节			
超时检测			√	√	√			
低功耗模式			√	√	√			
睡眠模式		9 <u></u> 9)	_	_	√			
自动流量控制	_	_	_	_	√			
临时寄存器	_	√	√	√	√			

78250/16550的外部引脚

图 8-12 8250 和 16550 的外部引脚

- 78250/16550的引脚信号线
 - ■与CPU 或系统连接的信号: D7~D0, CS0、CS1、CS2,
 - ■时钟与传送速率控制: BAUDOUT, RCLK、······
 - ■与MODEM相连接的控制信号: DSR、DTR、······
 - ■串行数据发送和接收信号
 - **©** SOUT
 - **O**SIN
- 7内部结构和端口地址
 - ■8250内部有11个可访问的寄存器,16550有12个,多了一个FIF0控制寄存器。

7寄存器地址

表 8-3 8250/16550 内部寄存器地址

-				
A2~A0	DLAB	访问的寄存器	基址为 3F8 时 各寄存器地址	基址为 2F8 时 各寄存器地址
000	0	接收缓冲寄存器 RBR (读),发送保持寄存器 THR (写)	3F8	2F8
	1	波特率除数寄存器 DLL(低字节)	3F8	2F8
001	0	中断允许寄存器 IER	3F9	2F9
001	1	波特率除数寄存器 DLM(高字节)	3F9	2F9
010	X	中断识别寄存器 IIR(读) FIFO 控制寄存器 FCR(写)(16550 专有)	3FA	2FA
011	X	线路控制寄存器 LCR	3FB	2FB
100	X	MODEM 控制寄存器 MCR	3FC	2FC
101	X	线路状态寄存器 LSR	3FD	2FD
110	X	MODEM 状态寄存器 MSR	3FE	2FE
111	X	暂存寄存器	3FF	2FF

7寄存器

- ■发送保持寄存器
- ■接收缓冲寄存器
- ■线路状态寄存器

8.1 串行接口及应用

7	6	5	4	3	2	1	0	
RFE	TEMT	THRE	BI	FE	PE	OE	DR	386 200

RFE	接收 FIFO 出错 (只对 16550 有效)。等于 1 时,表示接收 FIFO 出错
TEMT	发送移位器空。等于1时,表示发送器空
THRE	发送保持寄存器空。等于 1 时,表示 THR 中的数据字节已被取走。数据字节写入 到 THR 时,此位被清零
BI	间断识别指示。等于 1 时,接收线 SIN 空闲的时间超过了传送一个字符的时间,对方发送过程出现了间断
FE	帧格式错。等于1时,表示传输的数据格式错误
PE	奇偶校验错。等于1时,表示奇偶校验错误
OE	覆盖错。等于1时,表示接收到有效的数据但被丢失
DR	接收缓冲寄存器有效。等于1时,已接收到一个数据字节放入 RBR 中。读取 RBR 后,此位被清零

图 8-15 线路状态寄存器 LSR 的格式

7状态检测

- ■例8.5 假定8250/16550基地址为3F8H(对应于A2、A1、A0 = 000B),那么发送保持寄存器、接收缓冲寄存器的地址为3F8H,而线路状态寄存器的地址为3FDH(A2、A1、A0 = 101B)。在不考虑串口发送、接收出错的情况下,试编写程序从串行接口发送和接收一个字符AL。
- P295代码示例

7控制寄存器

■LCR主要用来指定异步通信数据格式

7	6	5	4	3	2	1	0
DLAB	SB	SP	EPS	PEN	STB	WLS1	WLS0

WLS1 WLS0	WLS1 WLS0=00b, 字符长度为 5 位; =01b, 字符长度为 6 位; =10b, 字符长度为 7 位; =11b, 字符长度为 8 位
STB	=0, 停止位长度为 1 位; =1、1.5 位或 2 位 (字符长度为 5 位时, 采用 1.5 位停止位, 字符长度为 6、7、8 位时, 采用 2 位停止位)
PEN	=0, 不使用奇偶校验。发送接收时没有校验位
EPS	=0, 奇校验; =1, 偶校验。EP=0 时, 此位无效
SP	=1 时, 奇偶校验位固定为 0 或 1; =0 时,设置校验位
SB	=1 时,发送线 SOUT 设为 0 并保持至少一个字符的时间,即产生一个间断,进入 发送间断状态; =0 时,退出间断状态
DLAB	=1,访问除数寄存器;DLAB=0,访问其他寄存器

图 8-16 线路控制寄存器 LCR 的格式

- 7例8.6 8250地址范围为03F8H~03FFH, 试编写程序设置发送字符长度为8位, 2位停止位, 偶校验。
 - ■解答:线路控制寄存器的地址为3FBH(A2、A1、A0 = 011B),控制字应为00011111B。
 - ■参考程序段如下:

MOV DX, 3FBH;LCR地址

MOV AL, 00011111B; LCR的内容, 数据格式参数

OUT DX, AL

力波特率设置

■8250/16550芯片传输数据的速率是由除数锁存器控制的。计算机异步串行通信接口外接的1.8432MHz基准时钟,通过除数寄存器给定的分频值,可以在8250内部产生不同的波特率,然后通过BAUDOUT引脚输出到RCLK,控制接收传输速率。对一个已知的波特率,按照以下公式计算除数锁存器的内容:

f_{工作时钟}=f_{基准时钟}·除数锁存器=波特率×16

这里 f_{基准时钟}=1.843 2 MHz=1 843 200 Hz。

除数锁存器=f_{基准时钟}÷ (波特率×16)

=1843200÷ (波特率×16)=115200÷波特率

- 7除数锁存器
 - ■低字节(LSB)为DLL,高字节(MSB)为DLM。
 - ■写入DLM和DLL时,必须设置LCR中的DLAB为1。
- 7例8.7编写程序,设置波特率为2400b/s。
 - 若选取波特率为2400,则除数锁存器=115200÷2400 =48=0030H。 将00H写入DLM,30H写入DLL。

```
:置 LCR 口地址
MOV
      DX. 3FBH
      AL, 80H
MOV
                   :DLAB=1
                   :之后, 3F8H、3F9H 对应于 DLL、DLM
      DX, AL
OUT
                   :DLL 的 I/O 地址
MOV
      DX. 3F8H
                   :商的低字节
      AL, 30H
MOV
      DX. AL
                   :写入 DLL
OUT
                   :DLM 的 I/O 地址
      DX, 3F9H
MOV
      AL, 00H
                   :商的高字节
MOV
                   :写入 DLM
OUT
      DX, AL
      DX, 3FBH
                   :LCR 的 I/O 地址
MOV
                   ;LCR的内容,数据格式参数,DLAB=0
      AL, 000111111B
MOV
```

北京理工大学

7 例8.10 假定16550的端口地址为3F8~3FFH。16550以波特率为9600b/s进行串行通信,字符格式为7个数据位、2个停止位、奇校验方式,允许所有中断,试编写初始化程序。

波特率为9600b/s,则除数锁存器=115200÷9600=12= 000CH。将00H写入DLM, 0CH 写入DLL。

根据要求的数据帧格式, LCR=00001110B=0EH。

MCR=00001011B=0BH,表示使用中断,并且使DTR和RTS两个信号为有效电平。

中断允许字为:00001111B=0FH, 开放所有中断。

FCR控制字为: 10010111B=87H, 表示FIF0缓冲中有8个字节触发, 发送和接收FIF0复位。(P301代码)

7定时与计数

- ■软件定时
- ■不可编程的硬件定时
- ■可编程的定时
- ■可编程定时器芯片8254
 - ❶数据总线缓冲器
 - ●读写逻辑
 - № 控制字寄存器
 - ❶计数器

图 8-23 8254 的内部结构

78254内部结构及读写逻辑

- ■与CPU连接的引脚
- ■与外部设备的接口信号

表 8-5 8254 的读写操作逻辑

10					
CS	$\overline{\mathrm{RD}}$	$\overline{ m WR}$	A1	A0	操作功能
0	1	0	0	0	计数初值装入计数器 0
0	1	0	0	1	计数初值装入计数器 1
0	1	0	1	0	计数初值装入计数器 2
0	1	0	1	1	写控制寄存器
0	0	1	0	0	读计数器 0
0	0	1	0	1	读计数器 1
0	0	1	1	0	读计数器 2

图 8-25 8254 的引脚安排

- 78254的控制字及其编程
 - ■控制字用来确定每一个计数器的工作参数,包括数据读写格式、工作方式、数制。

7	6	5	4	3	2	1	0	
D7	D6	D5	D4	D3	D2	D1	D0	

D7、D6	= 00b, 设定计数器 0 的工作参数 = 01b, 设定计数器 1 的工作参数 = 10b, 设定计数器 2 的工作参数 = 11b, 锁存计数器的当前计数值
D5、D4	=00b, 锁存计数器当前值,供 CPU 使用 =01b,只读/写低 8 位计数值,高 8 位自动置零 =10b,只读/写高 8 位计数值,低 8 位自动置零 =11b,使用 16 位计数值。先读/写低 8 位,后读/写高 8 位
D3, D2, D1	=000b~101b,设定该计数器的工作方式为0~5
D0	=0, 二进制计数模式; =1, BCD 计数模式

■ 例8.12 8254地址为40H~43H,编程将计数器0初始化为工作方式3,采用二进制计数模式,计数初值为2000。

MOV AL, 36H

OUT 43H, AL ;写入方式控制字

MOV AL, 0D0H ;2000D = 07D0H, 取低 8 位

OUT 40H, AL ;写入计数初值的低 8 位

MOV AL, 07H ;2000D = 07D0H, 取高 8 位

OUT 40H, AL ;写入计数初值的高 8 位

如果采用 BCD 方式, 初始化程序为:

MOV AL, 00110111B ;D0=1,使用 BCD 计数

OUT 43H, AL ;写入方式控制字

MOV AL, 00H ;2000 的 BCD 码为 2000H。

OUT 40H, AL ;写入计数初值的低 8 位

MOV AL, 20H ;2000D = 07D0H, 取高 8 位

OUT 40H, AL ;写入计数初值的高 8 位

- 7读取当前计数值
 - ■CPU可用输入指令读取某一个计数器当前的计数值。
 - ■16位数据CPU要分2次读,先读取低8位,再读取高8位。
 - ■如果不锁存计数器的当前计数值,那么在两次读取操作之间,计数值的高8位可能已经发生变化了。
 - ■利用GATE信号使计数过程暂停
 - ■锁存一个计数器
 - ■写读回命令锁存

- 7方式0(计数结束中断方式)
 - ■计数器减到零时,即OUT引脚在n+1个CLK后变为高电平,并且一直保持到该通道重新装入计数值或重新设置工作方式为止。在方式O下,写一次计数初值,只计数一遍,计数器不会自动重装初值和重新开始计数。
 - ■门控信号GATE用来控制计数过程。当GATE保持为低电平时,暂停 计数;当GATE变为高电平时,恢复计数。
 - ■在计数过程中写入新的计数初值,则在写入新值后的下一个时钟下降沿计数器将按新的初值计数,即新的初值是立即有效,不必等待第一个计数过程的结束。

7方式0

- 7方式1(可编程单稳态触发器)
 - ■由外部门控信号GATE上升沿触发,产生一单拍负脉冲信号,脉冲 宽度由计数初值决定。
 - ■当写入方式1控制字后,OUT输出变为高电平。写入计数初值n之后,计数器并不立即开始计数,而要等到GATE上升沿后的下一个CLK输入脉冲的下降沿,OUT输出变低电平,计数才开始。计数到O时结束,OUT输出变高,从而产生一个宽度为n个CLK周期的负脉冲。
 - ■GATE信号的作用包括两个方面: 计数结束后门控信号可重新触发 计数; 终止原来的计数过程, 开始新的一轮计数。

7方式1

- 7方式2(脉冲波发生器、分频器)
 - ■N分频器,输出是输入时钟按照计数值N分频后的一个连续脉冲。
 - ■第一个时钟下降沿开始减1计数,减到1时,输出端0UT变为低电平,减到0时,输出0UT又变成高电平,同时从初值开始新的计数过程,即计数到1时,输出一个CLK脉冲宽度的负脉冲。
 - ■GATE一直维持高电平时,计数器输出F_{OUT}=F_{CLK}÷n固定频率的脉冲,为一个n分频器。

7方式2

图 8-31 方式 2 计数过程

北京理工大學 BEIJING INSTITUTE OF TECHNOLOGY

7方式3(方波发生器)

- ■方式3与方式2类似,所不同的是它们的OUT输出波形不同:方式2 在计数过程结束前输出一个CLK时钟的负脉冲;而方式3输出一个 方波。
- ■计数初值n为偶数时,方波的高电平和低电平的维持时间为n/2个CLK时钟。
- 计数初值n为奇数时,方波的高电平维持时间为 (n+1)/2个CLK时钟,低电平维持时间为 (n-1)/2个CLK 时钟。

7方式3

北京理工大學 BEIJING INSTITUTE OF TECHNOLOGY

- 7方式4(软件触发选通方式)
 - ■写入方式控制字后,OUT输出高电平。若GATE=1,写入初值后的下一个CLK脉冲开始减1计数,计数到达0值(不是减到1)后,OUT输出为低电平,持续一个CLK脉冲周期后再恢复到高电平。输出负脉冲可以用作选通脉冲。
 - ■GATE为低电平时,禁止计数,输出维持当时的电平。当GATE变高以后,允许计数。
 - ■在计数过程中写入新的初值,在写入新值后的下一个时钟下降沿计数器将按新的初值计数,即新的初值立即生效。

7方式4

图 8-33 方式 4 计数过程

- 7方式5 (硬件触发选通方式)
 - ■写入计数初值后,计数器并不立即开始计数,而是由GATE门控脉冲的上升沿触发。
 - 计数结束(计数器减到0),输出一个持续时间为一个CLK时钟周期的负脉冲,然后输出恢复为高电平。
 - ■输出负脉冲是通过硬件电路产生的门控信号上升沿触发得到的, 所以叫硬件触发选通方式。
 - ■门控信号的上升沿到来后,会立即触发一个新的计数过程。
 - ■新的计数初值需要门控信号上升沿触发后才有效。

7方式5

图 8-34 方式 5 计数过程

7六种工作方式总结

	特征	方式0	方式1	方式 2	方式3	方式4	方式 5
OUT	写控制字后	变0	变1	变1	变0	变1	变1
输出 状态	波形宽度	N+1	N	N	N	N+1	N+1
初值是	上否自动重装	否	否	是	是	否	否
计数过	 注程改变初值	立即有效	GATE 触发 后有效	计数结束或 GATE 触发 后有效	计数结 <mark>束或</mark> GATE 触发 后有效	立即有效	GATE 触发 后有效
	0	禁止计数	无影响	禁止计数	禁止计数	禁止计数	无影响
GATE	下降沿	暂停计数	无影响	停止计数	停止计数	停止计数	无影响
	上升沿	继续计数	从初值开始 重新计数	从初值开始 重新计数	从初值开始 重新计数	从初值开始 重新计数	从初值开始 重新计数
	1	允许计数	无影响	允许计数	允许计数	允许计数	无影响

78254的应用

■ 计数:可选择方式0来实现,发生100次,则计数初值N =100。即计数器减到1时,输出端0UT0输出一个高电平,向CPU申请中断。在没有达到100次事件时,CPU也可以锁存并读出计数值,获得事件的发生次数。

图 8-35 8254 用于计数

78254的应用

■分频:提供一个频率为10kHz的时钟信号,要求每隔100ms采集一次数据。对于一个10kHz时钟信号,其周期为1/10kHz=0.0001s=0.1ms。需要对它进行分频,生成一个周期为100ms的信号,频率为10Hz。计数值1000。

图 8-36 8254 用于分频

2理工大学

78254的应用

■级联:输入脉冲频率为10kHz,要产生周期为100s的定时信号(频率为0.01Hz),那么分频系数N为10k/0.01 =1000000。而计数器的最大计数范围为65536,通过一个计数器不能完成所要求的分频。此时可以将2个计数器进行级联。计数初值应该满足条件:N=N1×N2。

京理工大學 ING INSTITUTE OF TECHNOLOGY

78253的应用

■8253和8254功能基本相同,8253没有读回控制的功能。

表 8-7 PC 机中 8253 的三个计数器

项目	计数器 0	计数器 1	计数器 2
功能	定时器	刷新请求发生器	音频信号发生器
工作方式	方式3	方式2	方式3
GATE 信号	+ 5 V	+5 V	8255A 芯片 PB0 控制
OUT 信号	接 8259IRQ0	接刷新电路 8237	接扬声器

78253的应用

- 计数器0: 为系统中的时钟提供时间基准。OUTO输出脉冲频率为 1.19318 MHz/65536=18.2Hz的方波。将此信号连接到8259A的IRQO 端, 大约每隔55ms产生一次时钟中断, 即每秒产生18.2次时钟中断 请求。用于系统实时时钟和磁盘驱动器的电动机定时。
- ■计数器1:产生动态RAM的刷新定时信号。计数器初值为18,这样 0UT1端输出脉冲的频率为1.19318MHz/18=66.2878kHz,周期 15.12us,满足刷新定时信号要求。
- 计数器2: 用作扬声器的发声源。计数初值由程序决定,不同的初值得到不同的频率,频率又决定了扬声器音调。控制这两个参数便可使扬声器发出不同的声音。

7实时钟芯片

■ MC146818RTC

8.2 定时与计数技术

图 8-39 PC 中的实时钟

光通信的一种,位于可见光之外的红外光区的电磁波。它可以实现数据的无线传输。

特征:

- ■点对点的传输方式。
- ■无线,不能远距离传输,要直线互相对准且中间不能有障碍物,即不能阻碍红外光线传播。
- ■提供较高的传输速率。
- ■一个红外通信系统包括三个基本部分:发射机、信道和接收机。

8.3 红外

图 8-41 红外传输链路

(a) 定向视距链路; (b) 视距混合链路; (c) 非定向视距链路; (d) 漫射链路

7 IrDA协议分析

- ■红外物理层协议IrPHY
- ■红外链路接入协议IrLAP
- ■红外链路管理协议IrLMP

7 IrDA建立连接的过程

- ■设备发现和地址解析
- ■链接建立
- ■信息交换和链接复位
- ■链接终止

→ Wi-Fi (Wireless Fidelity)

- ■无线联网的技术,通过无线电波来为终端设备提供联网方案。属于无线局域网(Wireless Local Area Network, WLAN)的组成方式。
- ■通过一个无线路由器,在这个无线路由器的电波覆盖的有效范围都可以采用Wi-Fi连接方式进行联网,如果无线路由器连接了一条互联网线路,则此无线路由器又被称为"热点"。
- ■工作站(Station, STA)、无线介质(Wireless Medium, WM)、无线接入点(Access Point, AP)和主干分布式系统(Distribution System, DS)等几部分组成

7WLAN组成

- ■工作站(STA): 也被称为无线终端, 是集成了无线网络设备的计算机或智能设备终端。
- ■无线接入点(AP):可以是无线接入点AP,也可以是无线路由器, 主要负责连接所有无线工作站进行集中管理、收发无线信号实现数据交换、实现无线工作站和有线局域网之间的互连等工作,起到有 线网络中交换机的作用。
- ■无线介质(WM): STA 和STA、STA 和AP 之间通信时发送的无线电波的传输媒质。
- ■主干分布式系统(DS):分布式系统用来连接不同的BSS形成ESA。

才WLAN结构

■无中心网络:又称Ad-hoc网络,用于多台无线工作站之间的直接通信。由一组具有无线网络设备的计算机组成,这些计算机具有相同的工作组名、密码和SSID,只要互相都在彼此的有效范围之内,任意两台或多台计算机都可以建立一个独立的局域网络。该网络不能接入有线网、是最简单的WLAN 网络结构。

图 8-42 Ad-hoc 模式的无线局域网

才WLAN结构

■有中心网络: 称结构化(Infrastructure)网络, 它由工作站(STA)、无线介质(WM)和无线接入点(AP)组成,所有的工作站在本 BSS以内都可以直接通信,但在和本BSS以外的工作站通信时都要通 过本BSS的AP 连接到有线网络来实现。

图 8-43 结构化无线局域网

7 IEEE 802.11协议

■ IEEE (国际电工电子工程学会)制订的第一个WLAN标准,主要用于解决校园网中用户终端的无线接入和办公室的无线局域网。

	802.2	LLC (Logical Li	nk Control)					
802.11 MAC (Media Access Control)								
802.11 PHY FHSS	802.11 PHY DSSS	802.11 PHY IR/DSSS	802.11 PHY OFDM	802.11 PHY DSSS/OFDM				
	802.11b 11 Mb/s 2.4 GHz		802.11a 54 Mb/s 5 GHz	802.11g 54 Mb/s 5 GHz				

图 8-44 IEEE 802.11 网络层次结构

7 IEEE 802.11协议

- ■802.11 标准
- ■802.11a 标准
- ■802.11b 标准
- ■802.11c 标准
- ■802.11d 标准
- ■802.11e 标准
- ■802.11g 标准

感谢关注聆听!

张华平

Email: kevinzhang@bit.edu.cn

微博: @ICTCLAS张华平博士

实验室官网:

http://www.nlpir.org

大数据千人会

