The Wigner Distribution

Part 2

Prof. Gelman

The Wigner-Ville Distribution

• Ville used the Wigner distribution in 1948 when he replaced the continuous complex signal with the analytical signal

Here the analytical signal is defined as

$$x_a(t) = x(t) + i\hat{x}(t)$$

where $\hat{x}(t)$ is the Hilbert transform of x(t)

• In this case the Wigner distribution is termed the Wigner-Ville distribution

The Wigner-Ville Distribution

By using the Wigner-Ville distribution

- the negative transform values which have no physical significance for a real signal are eliminated (it is well known that the spectrum of the analytic signal does not have any negative frequencies)
- consequently, the cross terms between the negative and positive parts are also eliminated
- Therefore, in order to reduce the cross-terms, we can use the Wigner distribution of analytical signal
- Thus, the Wigner-Ville distribution is very often used in practical application

Smoothing in the Time Domain

- In practical applications, the Wigner distribution requires some smoothing in order to suppress the cross-terms between positive frequencies
- There are two methods to suppress the cross-terms
- The first method (smoothing in the time domain) is the application of a sliding window in the time domain before calculating the Wigner distribution
- The distribution obtained with a *time* window is often called the *pseudo Wigner distribution*:

$$W_{p}(t,f) = \int h(\tau)x^{*}(t - \frac{\tau}{2})x(t + \frac{\tau}{2})e^{-i2\pi f\tau}d\tau$$

The Pseudo Wigner-Distribution

- The pseudo Wigner distribution is a *short time* version of the Wigner distribution using a time window
- This distribution corresponds only approximately to the Wigner distribution of the original signal
- The pseudo Wigner distribution gives a good time resolution at the expense of sacrificing the frequency resolution
- Unfortunately, this distribution destroys many of desirable properties of the Wigner distribution
- For example, the instantaneous frequency property no longer holds

Pseudo Wigner-Distribution: Case Study

- The sum of two sinusoids
- Take as an example a Gaussian window $h(\tau) = e^{-at^2/2}$
- The pseudo Wigner distribution can be calculated analytically

$$W_{p} = \sqrt{\frac{2\pi}{a}} (A_{1}^{2} e^{-\pi(f-f_{1})/a} + A_{2}^{2} e^{-\pi(f-f_{2})/a}) + 2A_{1}A_{2}\sqrt{\frac{2\pi}{a}} \cos 2\pi (f_{2} - f_{1})t e^{-\pi(f-\frac{f_{1}+f_{2}}{2})^{2}/a}$$

- If we choose a small a the cross-terms can be made small
- However, note that the auto terms get spread out

Smoothing in Time and Frequency

• A smoothing procedure can be defined as:

$$W_s(t,f) = \iint W(t',f')S(t-t',f-f')dt'df'$$

where S(t, f) is a two-dimensional smoothing function

• An example of a smoothing function is a Gaussian function:

$$S(t,f) = \frac{1}{2\pi\sigma_{t}\sigma_{f}} e^{-(\frac{t^{2}}{2\sigma_{t}^{2}} + \frac{(2\pi f)^{2}}{2\sigma_{f}^{2}})}$$

where σ_f and σ_t are standard deviations in the frequency and time domains respectively

Smoothing in Time and Frequency

• It was shown that positive distribution values only (e.g. the smoothed Wigner distribution is positive) can always be assured by requiring that σ_f and σ_t both be greater than zero and that $\sigma_t^2 \sigma_f^2 \ge 0.25$ Otherwise, the smoothed Wigner distribution may contain

Otherwise, the smoothed Wigner distribution may contain negative values

- To smooth the sampled Wigner distribution, the Gaussian window should be applied in the range $\pm 2\sigma_t$ and $\pm 2\sigma_f$
- A smoothing can substantially suppress the cross-terms

 However, smoothing will reduce the resolution in the time and
 frequency domains. A trade-off exists between the degree of
 smoothing and the resolution

 8

The Discrete Wigner-Ville Distribution

- To calculate the Wigner distribution of a finite-length, sampled signal, a discrete approximation of Wigner distribution is required
- By letting $u = \frac{\tau}{2}$ and assuming that Δt is the sample interval, we have an approximation of the integral by

$$W(t, f) = 2\Delta t \sum_{n} x(t + n\Delta t) x^*(t - n\Delta t) \exp(-i4\pi f n\Delta t)$$

• In this form it is obvious that Wigner distribution is related to the discrete Fourier transform of the Wigner kernel and so may be evaluated using FFT algorithms

The Discrete Wigner Distribution: Choice of Sampling Frequency

It is possible to prove that

$$W(f + \frac{1}{2\Delta t}) = W(f)$$

 Therefore, the period of Wigner distribution is twice less than the period of the Fourier transfrm

• As a consequence the sampling frequency of the signal should be *twice* as high as that used for the Fourier transform

This is needed to avoid any aliasing in the distribution

The Discrete Wigner-Ville Distribution: Choice of Sampling Frequency

- This sampling rate restriction can be eliminated if Wigner-Ville distribution (e.g. Wigner distribution of analytical signal) is used
- Thus the Wigner-Ville distribution requires the normal sampling frequency based on Nyquist theorem, e.g. the signal should be sampled at a frequency at least twice as high as the highest frequency content in the signal

The Wigner Distribution: Frequency Resolution

• The frequency resolution of Wigner distribution is different from that obtained by FFT of the original $\,^N\,$ point time history

• The frequency resolution of the Wigner transform is *one* fourth the resolution of the ordinary FFT

The Wigner Distribution vs. The Fourier Transform

- The Wigner distribution in some respects is better than any windowed Fourier transform
- One of the advantages of the Wigner distribution over the Fourier transform is that we do not have to bother with choosing the window
- The Wigner distribution gives a clear picture of the instantaneous frequency and time delay
- It is never true for the windowed Fourier transform

The Wigner Distribution vs. The Fourier Transform

- One of the advantages of the windowed Fourier transform is that it is positive; the results obtained from it can be interpreted, although they may be poor
- The Wigner distribution is never manifestly positive, which sometimes leads to results that cannot be interpreted

The Wigner Distribution vs. The Fourier Transform

- Finally, the Wigner distribution and the Fourier transform allow us to ascertain whether a signal is multi-component
- But the Wigner distribution suffers from the fact that for multi-component signals we get cross-terms. On the other hand, the windowed Fourier transform often cannot resolve the components effectively
- The reason that makes the Wigner distribution so special is the Wigner distribution better characterizes a signal's frequency changes than any other schemes, such as the short time Fourier transform or wavelet transform

Wigner Distribution

