

BSc (Hons) in Information Technology

Year 2

Data Structures and Algorithms – IT2070

Tutorial 9 – Heaps

Semester 2, 2023

Question1

- a) What is a binary tree?
- b) Show that the relationship between height (h) of a Full Binary Tree and the number of nodes (n) is given by $n = 2^{h+1} 1$.

Question 2

a) The following are the algorithms for Heap sort, Max Build Heap and Max_Heapify.

```
HEAPSORT(A)

1.BUILD_HEAP[A]

2.for i = A.length down to 2

3. Exchange A[1] with A[i]

4. A.heap_size = A.heap_size-1;

5. MAX_HEAPIFY(A,1)
```

MAX_BUILD_HEAP (A)

- 1. A.heap_size = A.length
- 2. for $i = \lfloor A. \text{length}/2 \rfloor$ downto 1
- 3. $MAX_HEAPIFY(A, i)$

$MAX_HEAPIFY(A,i)$

```
l = LEFT CHILD(i);
1.
        r = RIGHT\_CHILD(i);
2.
        if l \le A.heap_size and A[l] > A[i]
3.
                then largest = l;
4.
5.
                else largest = i;
        if r \le A.heap_size and A[r] > A[largest]
6.
                then largest = r;
7.
8.
        if largest \neq i
9.
                then exchange A[i] with A[largest]
                           MAX_HEAPIFY (A, largest)
10.
```

Illustrate the operations of the Heap sort for the array $\bf A$ of elements given below. (For the purpose of illustration, assign the values only once to the given algorithm and use diagrammatic way to reach the answer.)

	2	_		_	_		_
4	20	30	1	50	60	0	80

b) We can compute the upper bound on the running time of BUILD-HEAP as follows.

can compute the upper bound on the running time of BUILD-HEAP as follows.
$$T(n) = \sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h)$$
 Briefly explain two components of the above equation.