Relatório Final de Programação Linear

Resolução do problema 2 da lista proposta

Autores:

Carolina Koike
Daniela Alves Ferreira
Jéssica Cristina Menezes
Luan Santos Sampaio
Matheus Rossi

Novembro de 2024

1 Introdução

A localização estratégica de centros de distribuição é um problema amplamente estudado em logística, devido ao impacto direto nos custos operacionais e na eficiência do transporte. Neste trabalho, é explorado o problema da instalação de centros de distribuição para atender um conjunto de localidades, considerando tanto a minimização da distância total percorrida quanto o equilíbrio entre as distâncias percorridas pelos centros.

A programação linear é uma ferramenta poderosa para resolver problemas de otimização que envolvem a maximização ou minimização de funções sujeitas a restrições. Sua aplicação se estende a diversas áreas, como logística, produção, finanças e até mesmo planejamento urbano, oferecendo soluções que otimizam recursos, reduzem custos e melhoram a eficiência de processos.

No contexto da logística, a programação linear permite modelar e resolver problemas complexos, como a alocação de recursos, o roteamento de veículos e, neste caso, a escolha estratégica de locais para centros de distribuição. A capacidade de traduzir problemas reais em modelos matemáticos possibilita tomar decisões baseadas em dados e buscar soluções que maximizem a produtividade e reduzam desperdícios.

A relevância deste estudo está na aplicação prática dessas técnicas de otimização para problemas reais, como a redução de custos logísticos e a melhora no atendimento ao cliente. A metodologia utilizada baseia-se em modelos matemáticos, como o balanceamento de cargas e a minimização de distâncias, com o apoio do solver Gurobi.

2 Objetivo

Este trabalho tem como objetivo determinar as localidades mais adequadas para a instalação de centros de distribuição, buscando:

- a) Minimizar a distância total percorrida para atender todas as localidades.
- b) Garantir o equilíbrio entre as distâncias percorridas pelas frotas de cada centro de distribuição.

Além disso, este trabalho utiliza o solver Gurobi como ferramenta para modelar e resolver o problema de programação linear relacionado à localização de centros de distribuição.

3 Materiais e Métodos

3.1 Apresentação do Problema

Uma empresa deseja instalar m centros de distribuição de produtos para atender a n localidades representadas por L_1, L_2, \ldots, L_n . Inicialmente, a empresa determinou, dentre as n localidades a serem atendidas, um conjunto C contendo aquelas que estariam aptas a receber os centros de distribuição, levando em conta fatores econômicos e estruturais das cidades envolvidas. A empresa estima o número de viagens que serão feitas para cada uma das n localidades semanalmente.

O problema pode ser dividido em dois objetivos principais:

- a) Determinar quais localidades devem ser escolhidas para abrigar os centros de distribuição, associando a cada uma delas os clientes que devem ser atendidos pelas mesmas, de modo que se minimize a distância total percorrida para as entregas semanais.
- b) Determinar as localidades para os centros de distribuição de forma que as distâncias semanais percorridas pelos veículos de cada centro sejam as mais equilibradas possíveis, minimizando a diferença entre as distâncias percorridas das frotas de cada centro.

3.2 Parâmetros e Variáveis de Decisão

Parâmetros

- C: conjunto de localidades candidatas a serem centros de distribuição.
- n: número total de localidades (clientes).
- m: número de centros de distribuição a serem instalados.
- d_{ij} : distância euclidiana entre a localidade i e a localidade j.
- v_i : número de viagens semanais para atender a localidade j.

Variáveis de Decisão

• x_{ij} : variável binária que indica se a localidade j é atendida pelo centro localizado em i, onde:

$$x_{ij} = \begin{cases} 1, & \text{se a localidade } j \text{ \'e atendida pelo centro em } i, \\ 0, & \text{caso contr\'ario.} \end{cases}$$

• y_i : variável binária que indica se a localidade i foi escolhida como centro de distribuição, onde:

$$y_i = \begin{cases} 1, & \text{se a localidade } i \text{ foi escolhida como centro de distribuição,} \\ 0, & \text{caso contrário.} \end{cases}$$

- Z: variável auxiliar que representa a máxima diferença entre as distâncias totais percorridas pelos centros (usada no balanceamento das distâncias).
- d_{ij} : distância euclidiana entre a localidade i e a localidade j. É calculada a partir da seguinte fórmula:

$$d_{ij} = \sqrt{(a_j - a_i)^2 + (b_j - b_i)^2}$$

Onde:

- -a: coordenada x da localidade i ou localidade j.
- -b: coordenada y da localidade i ou localidade j.

3.3 Modelo Matemático

Parte (a): Minimização da Distância Total Percorrida

Função Objetivo: Minimizar a soma ponderada das distâncias, considerando o número de viagens semanais:

Minimizar
$$Z = \sum_{i \in C} \sum_{j=1}^{n} d_{ij} \cdot x_{ij} \cdot v_j$$

Restrições:

1. Cada localidade deve ser atendida por exatamente um centro de distribuição:

$$\sum_{i \in C} x_{ij} = 1, \quad \forall j \in \{1, 2, \dots, n\}.$$

2. O número total de centros de distribuição deve ser igual a m:

$$\sum_{i \in C} y_i = m.$$

3. A localidade j só pode ser atendida por um centro de distribuição i se i for selecionado como centro:

$$x_{ij} \le y_i, \quad \forall i \in C, \forall j \in \{1, 2, \dots, n\}.$$

4. As variáveis x_{ij} e y_i são binárias:

$$x_{ij} \in \{0,1\}, \quad y_i \in \{0,1\}, \quad \forall i \in C, \forall j \in \{1,2,\ldots,n\}.$$

Parte (b): Balanceamento das Distâncias Percorridas

Função Objetivo: Minimizar a diferença máxima entre as distâncias totais percorridas pelos centros para equilibrar a distância percorrida entre as frotas:

Minimizar Z

Restrições:

1. A distância total percorrida por qualquer centro $i \in C$ deve ser menor ou igual a Z:

$$\sum_{j=1}^{n} d_{ij} \cdot x_{ij} \cdot v_j \le Z, \quad \forall i \in C.$$

2. A variável Z representa a diferença máxima permitida entre as distâncias percorridas pelos centros. Para isso, introduzimos uma nova restrição:

$$Z \ge \sum_{j=1}^{n} d_{ij} \cdot x_{ij} \cdot v_j - \sum_{j=1}^{n} d_{ik} \cdot x_{ik} \cdot v_k, \quad \forall i, k \in C.$$

3

3. As restrições (1), (2), (3), e (4) da parte (a) também se aplicam aqui.

3.4 Recursos Disponíveis

Os scripts de programação e todos os dados utilizados neste estudo estão disponíveis no GitHub: https://github.com/carolinakoike/trabalho_final_prog_lin.

4 Resultados e Discussão

4.1 Resultados Detalhados

Item A: Minimização das Distâncias Totais

O objetivo do **Item A** é minimizar a distância total percorrida para atender todas as cidades. Para o caso selecionado com **20 cidades e 3 centros**, os resultados foram:

- Tempo de execução: 0,00 segundos.
- Centros selecionados: 5, 13, 18.
- Distância total percorrida: 11470,15 unidades.
- Maior distância entre um centro e uma cidade: 191,94 (Centro 5 para Cidade 1).
- Menor distância entre um centro e uma cidade: 12,73 (Centro 18 para Cidade 15).
- Maior distância ponderada (considerando o número de viagens): 1555,89 (Centro 5 para Cidade 10).
- Menor distância ponderada (considerando o número de viagens): 25,46 (Centro 18 para Cidade 15).

As distâncias totais percorridas por cada centro de distribuição foram:

- Centro 5: 6958,39 unidades.
- Centro 13: 3994,00 unidades.
- Centro 18: 517,77 unidades.

A associação das cidades aos centros foi distribuída da seguinte forma:

- Centro 5: atende as cidades 0, 1, 2, 4, 5, 7, 8, 10, 12.
- Centro 13: atende as cidades 3, 6, 9, 11, 13, 14, 16, 17.
- Centro 18: atende as cidades 15, 18, 19.

Na Figura 1, é apresentada a representação gráfica dos caminhos percorridos para o **Item A**, considerando 20 cidades e 3 centros. Os centros de distribuição estão indicados em vermelho, enquanto as cidades atendidas por cada centro estão conectadas por linhas verdes, representando as distâncias percorridas.

Figura 1: Representação dos caminhos para o Item A (20 cidades, 3 centros).

Item B: Balanceamento das Distâncias

O objetivo do **Item B** é equilibrar as distâncias percorridas entre os centros de distribuição, reduzindo a diferença entre as maiores e menores distâncias percorridas. Para o caso selecionado com **20 cidades e 3 centros**, os resultados foram:

- Tempo de execução: 0,36 segundos.
- Centros selecionados: 7, 12, 13.
- Distância total percorrida: 13232,48 unidades.
- Maior distância entre um centro e uma cidade: 364,18 (Centro 12 para Cidade 15).
- Menor distância entre um centro e uma cidade: 16,49 (Centro 13 para Cidade 16).
- Maior distância ponderada (considerando o número de viagens): 3246,31 (Centro 12 para Cidade 18).
- Menor distância ponderada (considerando o número de viagens): 56,92 (Centro 12 para Cidade 8).

As distâncias totais percorridas por cada centro de distribuição foram:

- Centro 7: 4656,53 unidades.
- Centro 12: 4234,07 unidades.

• Centro 13: 4341,88 unidades.

A associação das cidades aos centros foi distribuída da seguinte forma:

- Centro 7: atende as cidades 0, 2, 4, 5, 7, 9, 10.
- Centro 12: atende as cidades 1, 8, 12, 15, 18.
- Centro 13: atende as cidades 3, 6, 11, 13, 14, 16, 17, 19.

Na Figura 2, é apresentada a representação gráfica dos caminhos percorridos para o **Item B**, considerando 20 cidades e 3 centros. Os centros de distribuição estão indicados em vermelho, enquanto as cidades atendidas por cada centro estão conectadas por linhas verdes, representando as distâncias percorridas.

Figura 2: Representação dos caminhos para o Item B (20 cidades, 3 centros).

Resultados Completos para Todos os Casos

Além dos resultados detalhados apresentados acima, foram realizados testes para diferentes combinações de números de cidades e centros. Essas combinações incluem:

- 20 cidades, 3 centros.
- 20 cidades, 4 centros.
- 30 cidades, 4 centros.
- 40 cidades, 8 centros.
- 40 cidades, 9 centros.

- 50 cidades, 7 centros.
- 50 cidades, 10 centros.
- 60 cidades, 11 centros.
- 60 cidades, 12 centros.

Os resultados obtidos para cada caso estão consolidados na Tabela 1, que fornece uma visão abrangente dos dados para os itens ${\bf A}$ e ${\bf B}$.

Além disso, na Figura 3, é apresentado um gráfico comparativo que destaca as principais métricas analisadas para os diferentes casos testados. O gráfico inclui informações como menor e maior distância entre cidade e centro, distância média percorrida, diferença entre maior e menor distância, distância total percorrida e tempo de execução. Essa visualização complementa os dados da tabela, facilitando a identificação de tendências e padrões.

Tabela 1: Comparação dos Resultados dos Itens A e B entre os Dados Propostos

Dados	Item A						Item B					
	Menor	Maior	Média	Total	DiferençaTempo		Menor	Maior	Média	Total	DiferençaTempo	
						(s)						(s)
20 / 3	517,77	$6958,\!39$	3823,38	11470,15	$6440,\!62$	0,00	4234,07	$4656,\!53$	4410,83	$13232,\!48$	$422,\!46$	$0,\!36$
20 / 4	560,94	3911,93	2228,99	8915,98	3350,99	0,02	2429,73	2682,29	$2586,\!35$	$10345,\!39$	$252,\!56$	0,61
30 / 4	1032,14	$7120,\!53$	$3362,\!17$	13448,66	6088,39	0,02	3616,93	$3797,\!37$	3728,39	$14913,\!57$	180,44	1,00
40 / 8	902,75	$2485,\!11$	$1690,\!22$	13521,74	$1582,\!36$	0,03	1560,12	1921,00	1803,21	$14425,\!68$	360,88	9,72
40 / 9	0,00	$4275,\!61$	1464,98	13184,85	$4275,\!61$	0,03	1633,77	1839,88	1750,90	15758,11	206,11	8,38
50 / 7	102,22	3991,39	$2514,\!55$	17601,83	$3889,\!17$	0,02	2594,66	2824,85	2740,19	19181,35	230,19	32,75
50 / 10	505,36	$2278,\!55$	$1212,\!45$	$12124,\!45$	1773,19	0,05	1072,97	$1518,\!34$	1409,63	14096,29	$445,\!37$	34,48
60 / 11	537,56	$3488,\!56$	$1554,\!42$	17098,66	2951,00	0,05	1538,99	1813,88	1704,13	18745,44	274,89	40,28
60 / 12	0,00	3110,28	1189,86	$14278,\!27$	3110,28	0,05	1200,28	$1427,\!37$	$1348,\!31$	16179,75	227,09	66,18

Figura 3: Gráfico comparativo dos resultados obtidos para diferentes combinações de números de cidades e centros, destacando as principais métricas analisadas: menor e maior distância, distância média, diferença entre maior e menor distância, distância total percorrida e tempo de execução.

4.2 Discussão dos Resultados

Os resultados obtidos para os itens \mathbf{A} e \mathbf{B} permitem observar as diferenças de abordagem entre minimizar as distâncias totais e equilibrar as distâncias percorridas entre os centros:

- No Item A, observa-se uma significativa disparidade entre as distâncias percorridas pelos centros, sendo o Centro 5 responsável pela maior parte da distância percorrida (6958,39 unidades), enquanto o Centro 18 percorre apenas 517,77 unidades. Isso indica que a minimização total das distâncias pode levar a um desbalanceamento das operações entre os centros.
- Por outro lado, no **Item B**, o balanceamento das distâncias reduz significativamente a diferença entre as distâncias percorridas pelos centros. As distâncias percorridas pelos centros (4656,53, 4234,07 e 4341,88 unidades) estão mais equilibradas, ainda que o custo total (13232,48 unidades) seja maior que no Item A.
- O tempo de execução foi consideravelmente maior no Item B (0,36 segundos) devido à complexidade adicional de equilibrar as distâncias, enquanto o Item A foi resolvido quase instantaneamente (0,00 segundos).
- A diferença entre a maior e a menor distância no Item B (422,46 unidades) é muito menor em comparação ao Item A (6440,62 unidades), evidenciando o sucesso do balanceamento.

Os resultados mostram que o modelo de otimização consegue atender ao objetivo de balancear as distâncias percorridas pelos centros, especialmente à medida que o número de centros aumenta. No entanto, isso ocorre ao custo de um maior tempo de execução, como evidenciado nos casos de maior complexidade (60 cidades e 12 centros).

Além disso, o equilíbrio entre as distâncias (medido pela diferença entre a maior e a menor distância percorrida) é mais evidente nos casos com maior número de centros. Isso reflete a eficiência do modelo em distribuir melhor as cidades entre os centros disponíveis.

Os gráficos fornecem uma visualização clara dessas tendências e destacam o impacto direto do aumento do número de cidades e centros sobre as métricas analisadas.

Esses resultados destacam o trade-off entre eficiência global (Item A) e balanceamento de distâncias percorridas (Item B), que pode ser explorado dependendo das prioridades da aplicação prática. O Item A pode ser preferido em cenários onde o custo total é crítico, enquanto o Item B é mais adequado para operações que buscam balancear o esforço entre os centros.

5 Conclusão

Neste trabalho, foram modelados e resolvidos dois problemas relacionados à localização de centros de distribuição utilizando programação linear, com foco nos objetivos de minimização das distâncias totais percorridas (Item A) e balanceamento das distâncias percorridas entre os centros (Item B). Os resultados obtidos destacam as diferenças entre as duas abordagens, evidenciando o trade-off entre eficiência global e balanceamento operacional.

No **Item A**, a minimização das distâncias totais resultou em soluções com menor custo total, mas com uma disparidade significativa na distribuição das distâncias percorridas

entre os centros. Por outro lado, no **Item B**, o modelo conseguiu equilibrar as distâncias percorridas pelos centros, reduzindo a diferença entre as maiores e menores distâncias percorridas, ainda que isso tenha aumentado o custo total e o tempo de execução.

Os testes realizados para diferentes combinações de números de cidades e centros confirmaram que o aumento no número de centros tende a melhorar o balanceamento das distâncias, porém com impacto no tempo de execução, especialmente em casos de maior complexidade. Essa análise demonstra a flexibilidade do modelo em atender a diferentes demandas logísticas, permitindo que a escolha entre as duas abordagens seja guiada pelas prioridades específicas de cada aplicação prática.

Como trabalhos futuros, é sugerido explorar a inclusão de custos fixos associados à instalação dos centros, bem como a aplicação do modelo em cenários dinâmicos, onde a demanda e as condições logísticas variam ao longo do tempo. Além disso, a integração de técnicas de aprendizado de máquina para prever padrões de demanda poderia ampliar a eficiência e a aplicabilidade do modelo.

Em resumo, o trabalho mostrou a aplicabilidade e eficácia da programação linear na resolução de problemas logísticos reais, destacando a importância do balanceamento entre eficiência operacional e equidade na distribuição de recursos. Os resultados obtidos oferecem uma base sólida para decisões estratégicas em logística e gestão de transportes.