11040A Neural Networks

Assignment 4 Deadline: June 12, 2025 24:00

1. Summarize the key idea of the BP algorithm briefly.

2. Consider an 1-M-1 multi-layer perceptron (MLP) whose input-output are denoted by x(t), y(t) t=1,...,N and the activation functions are $f_1(x) = \tanh(x)$ for hidden layer and $f_2(x) = x$ for output layer.

① Suppose there is teacher signal, d(t), t = 1,...,N, corresponding the input x(t). The learning rate is μ . The loss function is defined as:

$$E = \frac{1}{2N} \sum_{t=1}^{N} (d(t) - y(t))^{2}$$

(1) Derive the backpropagation (BP) training algorithm and describe your derivation process. During your derivation, you should include the value of the parameters below:

 W_1 : the set of ω of hidden layer

 b_1 : the set of bias of hidden layer

 W_2 : the set of ω of output layer

 b_2 : the set of bias of output layer

Z: the set of outputs of the hidden layer (after passing through the activation function f_1)

y(t): the output of the MLP of t - th input x(t)

 δ^1 : the set of δ of hidden layer

 δ^2 : the set of δ of output layer

 ΔW_1 : the set of $\mu \frac{\partial E}{\partial \omega}$ of hidden layer

 Δb_1 : the set of $\mu \frac{\partial E}{\partial h}$ of hidden layer

Name:	Student ID:

 ΔW_2 : the set of $\mu \frac{\partial E}{\partial \omega}$ of output layer

 Δb_2 : the set of $\mu \frac{\partial E}{\partial b}$ of output layer

- (2) How many " δ "s are there in this MLP?
- ② Change the activation function for the hidden layer to $f_1(x) = ReLU(x)$. Train the MLP using the BP algorithm in the case of M = 2, N = 1, x(1) = 0.7, d(1) = 0.68, and learning rate $\mu = 0.2$. Refer to and fill out the following table.

*If you calculate this problem through programming, please attach your code.

t	W1/b1	W2/b2	Z	y(1)	δ1	δ2	$\Delta W_1 / \Delta b_1$	$\Delta W_2 / \Delta b_2$
0	[[0.3 - 0.3]] /[0.0 0.0]	[[-0.1] [0.1]] / [0.0]	[0.21 0]	[-0.021]	[-0.07 0.0]	[0.701]	[[-0.01 0.0]] / [- 0.014 0.0]	[[0.029] [0.0]] / [0.14]
1	[[0.29 - 0.3]] / [- 0.014 0.0]	[[-0.071] [0.1]] / [0.14]						
2								
3								
• • •		•••	•••			•••	•••	•••

Hint:

If you find this question is quite complex or are still confused about the BP algorithm, you may review what you have learned:

Chapter 3: Neural Networks – Training; 3.2 BP Training Algorithm I

We also provide the reference, which you can find in the references section of the course page:

Hints for Backpropagation

But please notice that:

- (1) There are differences in some symbols between the course PPT and the reference.
- (2) Each δ in the reference corresponds to the loss C^t of one data point, while each δ in this question corresponds to the total loss E of the entire batch of data. Therefore, if you refer to the reference, for each ω and b, you still need one more step to get the final result:

$$\nabla_{\omega,b} E = \nabla_{\omega,b} L(\theta) = \frac{1}{N} \sum_{t=1}^{N} \nabla_{\omega,b} C^{t}(\theta)$$

(3) In the course PPT, when representing the value of δ , it excluded "-" from δ when calculating this part: $\frac{\partial E}{\partial y_k(t)}$ (The $\frac{\partial C^t}{\partial y_m^t}$ part of δ in reference). Therefore, the value of δ in the course PPT is opposite to the value of δ in the reference. For this question, both expressions will be considered correct. (Question (b) take the expression of the course PPT as the example.)

Name:	Student ID:	
-------	-------------	--

Programming part

Please write a report on the following questions and send your report and source code to TA (Remember to pack them into a *.zip file). If you have any questions, feel free to contact the TA.

Note: to have a better understanding of BP, in this assignment, deep learning frameworks such as TensorFlow, Torch, Caffe, Theano etc. are **NOT** allowed to use. However, we suggest utilizing them in the next assignment.

We recommend that you use Python and only use the NumPy and Matplotlib libraries.

1. SYSTEM: A Two-Nested-Spirals Problem

Two-Nest-Spirals problem is a well-known classification benchmark problem. It contains two nested spirals, 'o' and '+', as shown in figure. The task is to separate the two nested spirals.

- (1) Write a program to generate the data set.
- (2) Design a neural network classifier.
- (3) Define a loss function.
- (4) Implement BP algorithm and train the neural network. (Bonus: implement minibatch, Momentum or other variants of BP)
 - ① Discuss what difficulties you encountered and how they were resolved;
 - 2 You may show the error curve for training data.
- (5) After training the neural network, show in a figure (decision boundary) how well the trained neural network can separate the two spirals. (generalization ability)

Please write a report. The report should include your code & results and the explanation of the code.

(You can submit your programming files along with your report. Or you can organize your program into a markdown file or a Jupiter Notebook file as a report and submit it.)