Using Reed-Muller Codes for Classification with Rejection and Recovery

International Symposium on Foundations & Practice of Security - 2023

Daniel Fentham, Dave Parker, Mark Ryan

Classification Problems

- Real-world classifiers are expected to respond intelligently to any user input.
- However, there are many instances where this is not the case.

 Neural Networks (NNs) are often forced to give a response from the limited set of class labels for Out-of-Distribution (OoD) inputs.

Adversarial Examples

Adversarial examples are a related phenomenon.

We apply calculated perturbations to clean inputs to push them out of the

'natural distribution'.

This can lead to incorrect and potentially dangerous results.

A Short Aside on Adversaries

- Adversarial attacks come in two primary flavours:
 - Open-box The adversary has full access to the model (architecture and weights).
 - Closed-box The adversary only has access to the final class.
- Open-box attacks use gradient-based approaches to generate adversaries.
- Closed-box attacks usually involve creating a surrogate model, which we use to generate adversarial examples. Due to *transferability*, these adversaries are effective at fooling the target model.
- Adversaries can be generated using different norms:
 - $ightharpoonup L_{\infty}$ Encourage perturbations which focus on a single feature.
 - $ightharpoonup L_2$ Encourage perturbations across multiple features.

The Common Thread

- It is important to make a distinction between the types of OoD data:
 - Artificially OoD data (adversarial examples)
 - Naturally OoD data (an input the NN has not been trained to classify)
- Both artificial and natural OoD data lie off the distribution the NN was trained on.
- Within these regions, the NN must make unconstrained extrapolations to classify the data.
- Ideally, a NN would never be asked to make the classifications.
- How can we improve?

Classification with Rejection

- Classification with Rejection (CwR) aims to solve this problem by giving the NN the option to refuse to classify an input it believes is OoD.
- This approach works well for naturally OoD data.
- This approach works less well for artificially OoD data:
 - Adversaries tend to be rejected.
 - In some applications we may want to classify the rejected inputs.

Reed-Muller Aggregation Networks

- The Reed-Muller Aggregation Network (RMAggNet) aims to solve the problem by giving the network the option to refuse to classify an input it believes is OoD after trying to correct it.
- This method:
 - Splits classification over n networks, generating n independent sub-tasks.
 - Aggregates the results.
 - Identifies and corrects inconsistencies in the classification using Reed-Muller codes.
- This is an approach that approximates distances to a learned manifold.
- Is similar to previous work but focuses on correction.

Reed-Muller Codes

- Are defined by two hyperparameters m and r (where $m \ge r$)
- Using *m* and *r* we can determine:
 - $n = 2^m$ The codeword length/number of networks we aggregate over.
 - ► $d = 2^{m-r}$ The (guaranteed) minimum Hamming distance between any two codes.
 - , $k = \sum_{i=0}^{r} {m \choose i}$ The message length we can encode.
- Reed-Muller code notation is often in the form $[n, k, d]_2$

Selecting m and r

- There are a number of related factors to consider when deciding on appropriate values for m and r:
 - We need to have enough class codewords for the dataset, such that $|C| \le 2^k$, and the probability of assigning a valid class to random noise is low (a low value for $\frac{|C|}{2^n}$).
 - We have appropriate error correction $t = \left\lfloor \frac{d-1}{2} \right\rfloor$.
 - We can feasibly train $n = 2^m$ networks and use them for inference.

Generating Reed-Muller codes

For a codeword length of n we generate codes with 2^{m-1} 0s followed by 2^{m-1} 1s, then 2^{m-2} etc., stopping at $2^{m-x} = 1$.

For example, with m = 3:

```
x_3 \oplus x_4 : 01100110
                                                                                             x_1 \oplus x_2 \oplus x_3 \oplus x_4 : 10010110
                             x_1 \oplus x_2 : 11110000
x_0: 00000000
                             x_1 \oplus x_3 : 11001100
                                                         x_1 \oplus x_2 \oplus x_3 : 11000011
x_1: 111111111
                             x_1 \oplus x_4 : 10101010
                                                         x_1 \oplus x_2 \oplus x_4 : 10100101
x_2: 00001111
                                                         x_1 \oplus x_3 \oplus x_4 : 10011001
                             x_2 \oplus x_3 : 001111100
x_3: 00110011
                                                         x_2 \oplus x_3 \oplus x_4 : 01101001
                             x_2 \oplus x_4 : 01011010
x_4: 01010101
```

This defines a closed set, which allows us to make guarantees about the Hamming distance between codewords.

Example

- If we have a dataset with |C| = 10 classes, we can define a Reed-Muller code with m = 3, r = 1 giving us an $[8,4,4]_2$ code.
- We can generate the Reed-Muller codes with this specification and take 10 of the class codewords.

	$\mid N_1 \mid$	N_2	N_3	N_4	N_5	N_6	N_7	N_8
0	0	0	0	0	1	1	1	1
$1 \mid$	0	0	1	1	0	0	1	1
$2 \mid$	0	1	0	1	0	1	0	1
3	1	1	1	1	0	0	0	0
$4 \mid$	1	1	0	0	1	1	0	0
5	1	0	1	0	1	0	1	0
6	0	0	1	1	1	1	0	0
$7 \mid$	0	1	0	1	1	0	1	0
8	0	1	1	0	0	1	1	0
9	1	1	0	0	0	0	1	1

- We train each network N_x (column) to return a 0 or 1 for each class as the rows indicate.
- Because this is an [8,4,4]₂ code, we can correct up to 1 bit.

Evaluation

- We compare RMAggNet to two other methods:
 - CCAT A popular CwR method which uses adversarial training to return a uniform distribution for all OoD data.
 - Ensemble Similar to RMAggNet except the individual networks learn the entire classification process, and there is no correction.
- We analyse the performance of these methods on the EMNIST and CIFAR-10 datasets consisting of clean in-distribution, and adversarial data.

EMNIST

Results on the clean EMNIST dataset (higher correctness is better).

CCAT									
au	Correct	Rejected	Incorrect						
0	88.68	0.00	11.32						
0.10	88.60	0.15	11.24						
0.20	87.54	2.41	10.05						
0.30	85.46	6.45	8.09						
0.40	83.16	10.29	6.55						
0.50	80.70	14.22	5.08						
0.60	77.95	18.03	4.02						
0.70	74.23	22.71	3.06						
0.80	69.48	28.46	2.06						
0.90	60.74	38.05	1.20						
1.0	0.00	100.00	0.00						

Ensemble									
σ	Correct	Rejected	Incorrect						
0	89.78	0.00	10.22						
0.10	89.78	0.00	10.22						
0.20	89.78	0.01	10.21						
0.30	89.76	0.05	10.19						
0.40	89.70	0.28	10.03						
0.50	89.20	1.41	9.39						
0.60	87.76	4.45	7.79						
0.70	85.94	7.68	6.38						
0.80	83.89	11.05	5.06						
0.90	80.60	15.60	3.80						
1.0	68.34	30.15	1.51						

$\mathbf{R}\mathbf{M}$	RMAggNet $[32, 6, 16]_2$									
\mathbf{EC}	Correct	Rejected	Incorrect							
7	89.16	2.14	8.70							
6	87.93	4.59	7.48							
5	86.54	6.98	6.48							
4	84.99	9.49	5.52							
3	83.29	12.03	4.68							
2	80.85	15.15	4.00							
1	77.19	19.59	3.23							
0	70.02	27.72	2.26							

EMNIST (Adversarial)

Results on an adversarial EMNIST dataset generated using a PGD open-box attack using the L_2 metric (lower incorrectness is better).

	$\mathbf{PGD}(L_2)$											
\mathbf{CC}	\mathbf{AT}											
τ	ϵ	Correct	Rejected	Incorrect	ϵ	Correct	Rejected	Incorrect	ϵ	Correct	Rejected	Incorrect
0.00	0.30	0.20	0.00	99.80	1.0	0.00	0.00	100.00	3.0	0.00	0.00	100.00
0.30		0.00	100.00	0.00		0.00	100.00	0.00		0.00	100.00	0.00
0.70		0.00	100.00	0.00		0.00	100.00	0.00		0.00	100.00	0.00
0.90		0.00	100.00	0.00		0.00	100.00	0.00		0.00	100.00	0.00
Ens	emb	le										
σ	ϵ	Correct	Rejected	Incorrect	ϵ	Correct	Rejected	Incorrect	ϵ	Correct	Rejected	Incorrect
0.00	0.30	84.80	0.00	15.20	1.0	62.40	0.00	37.60	3.0	19.60	0.00	80.40
0.30		84.80	0.00	15.20		62.40	0.00	37.60		19.60	0.00	80.40
0.70		79.50	9.10	11.40		57.10	13.00	29.90		19.50	0.20	80.30
1.00		60.60	35.90	3.50		47.40	39.80	12.80		18.50	9.80	71.70
$\mathbf{R}\mathbf{M}$	$\overline{\mathbf{Agg}}$	${f Net}$										
EC	ϵ	Correct	Rejected	Incorrect	ϵ	Correct	Rejected	Incorrect	ϵ	Correct	Rejected	Incorrect
7	0.30	86.00	3.10	10.90	1.0	70.40	6.60	23.00	3.0	9.20	25.70	65.10
6		84.40	6.20	9.40		67.60	12.20	20.20		6.40	37.60	56.00
5		82.70	9.10	8.20		65.20	17.40	17.40		5.00	45.60	49.40
$\mid 4 \mid$		80.70	12.40	6.90		61.70	23.40	14.90		3.10	55.60	41.30
3		77.70	16.40	5.90		57.40	29.30	13.30		2.00	65.00	33.00
2		74.10	20.90	5.00		50.30	38.10	11.60		1.00	75.60	23.40
1		68.00	28.20	3.80		39.10	51.50	9.40		0.70	86.10	13.20
0		56.00	41.30	2.70		15.10	78.60	6.30		0.00	94.60	5.40

EMNIST (Adversarial)

CCAT Model

CIFAR-10

Results on the clean CIFAR-10 dataset (higher correctness is better).

CCAT									
au	Correct	Rejected	Incorrect						
0	76.41	0.00	23.59						
0.10	76.41	0.00	23.59						
0.20	76.21	0.68	23.11						
0.30	75.10	3.76	21.14						
0.40	72.62	9.38	18.00						
0.50	68.59	17.41	14.00						
0.60	64.04	25.55	10.41						
0.70	58.81	33.72	7.47						
0.80	52.81	42.39	4.80						
0.90	44.64	52.54	2.82						
1.0	1.09	98.91	0.00						

Ensemble									
σ	Correct	Rejected	Incorrect						
0	79.34	0.00	20.66						
0.10	79.54	0.00	20.46						
0.20	79.35	0.00	20.65						
0.30	79.53	0.02	20.45						
0.40	79.24	1.05	19.71						
0.50	77.14	6.73	16.13						
0.60	75.31	11.23	13.46						
0.70	68.79	22.62	8.59						
0.80	65.38	28.00	6.62						
0.90	56.57	40.23	3.20						
1.0	39.21	59.83	0.96						

RMAggNet $[16, 5, 8]_2$									
\mathbf{EC}	Correct	Rejected	Incorrect						
3	77.11	12.76	10.13						
2	$\boldsymbol{68.32}$	27.23	4.45						
1	57.90	40.09	2.01						
0	42.46	59.96	0.58						

CIFAR-10 (Adversarial)

Results on an adversarial CIFAR-10 dataset generated using a PGD open-box attack using the L_2 metric (lower incorrectness is better).

	$\mathbf{PGD}(L_2)$											
CCAT												
τ	ϵ	Correct	Rejected	Incorrect	ϵ	Correct	Rejected	Incorrect	ϵ	Correct	Rejected	Incorrect
0.00	0.30	29.20	0.00	70.80	0.75	12.50	0.00	87.50	2.5	10.20	0.00	89.80
0.30		0.50	92.10	7.40		0.00	97.50	2.50		0.00	99.50	0.50
0.70		0.00	96.00	4.00		0.00	99.20	0.80		0.00	99.80	0.20
0.90		0.00	97.40	2.60		0.00	99.70	0.30		0.00	99.80	0.20
Ense	emb	le										
σ	ϵ	Correct	Rejected	Incorrect	ϵ	Correct	Rejected	Incorrect	ϵ	Correct	Rejected	Incorrect
0.00	0.30	54.30	0.00	45.70	0.75	26.70	0.00	73.30	2.5	13.40	0.00	86.60
0.30		53.30	0.00	46.70		26.50	0.00	73.50		13.30	0.00	86.70
0.70		42.00	28.60	29.40		23.30	12.90	63.80		13.00	0.90	86.10
1.00		23.10	70.20	6.70		16.20	54.70	29.10		12.20	6.30	81.50
RM	\mathbf{Agg}	${f Net}$										
EC	ϵ	Correct	Rejected	Incorrect	ϵ	Correct	Rejected	Incorrect	ϵ	Correct	Rejected	Incorrect
3	0.30	64.00	15.30	20.70	0.75	39.80	17.00	43.20	2.5	11.10	10.80	78.10
2		52.40	36.30	11.30		32.90	37.90	29.20		9.60	23.20	67.20
1		41.20	52.10	6.70		25.60	54.90	19.50		8.20	41.80	50.00
0		28.70	69.10	2.20		19.40	71.70	8.90		5.60	63.00	31.40

CIFAR-10 (Adversarial)

CCAT Model

Ensemble Model

RMAggNet Model

Summary

- RMAggNet can effectively recover correct classifications from adversarial images for small ϵ , reducing the number of rejected images compared to CCAT.
- Experimentally, it has shown better performance than Ensemble methods in many situations.
- RMAggNet has applications in CwR systems where we aim to reduce the reliance on downstream error handling.
- This error correction framework provides an interesting approach to measuring distances from the learned data manifold.
- Next up: Expand to larger datasets and check model independence!

Thank you!

Code available at: https://github.com/dfenth/RMAggNet