Algebra

Adam Yin

A glossary reference for Algebra and related terms. [1] [2]

Glossary

Cayley's Theorem Every group *G* is isomorphic to a subgroup of the symmetric group acting on *G*.

Note: The same can be stated about monoids and monoid actions.

Equivariant Map is a function that commutes with the action of the group on either its domain or codomain. Thus, for a group G and an equivariant map $\phi: S \to T$ for sets S and T:

$$\forall g \in G, \forall s \in S, g\phi(s) = \phi(gs)$$

Field is a set F of two or more elements, together with the two operations called addition (+) and multiplication (\bullet) and satisfies the following axioms:

- (A_1) Closure: $a, b \in F \Rightarrow a + b \in F$
- (A₂) Associative Law: $a,b,c \in F \Rightarrow (a+b)+c=a+(b+c)$
- (A₃) (Additive) Identity: $\exists 0 \in F$ such that $0 + a = a + 0 = a, \forall a \in F$
- (A₄) (Additive) Inverse: $a \in F \Rightarrow \exists -a \in F$ such that a + (-a) = (-a) + a = 0
- (A₅) Commutative Law: $a, b \in F \Rightarrow a+b=b+a$
- (M_1) Closure: $a, b \in F \Rightarrow a \bullet b \in F$
- (M_2) Associative Law: $a,b,c \in F \Rightarrow (a \bullet b) \bullet c = a \bullet (b \bullet c)$
- (M₃) (Multiplicative) Identity: $\exists 1 \in F$ such that $1 \bullet a = a \bullet 1 = a, \forall a \in F$
- (M₄) (Multiplicative) Inverse: $a \in F, a \neq 0 \Rightarrow \exists a^{-1} \in F$ such that $a \bullet a^{-1} \bullet a = a \bullet a^{-1} = 1$
- (M_5) Commutative Law: $a, b \in F \Rightarrow a \bullet b = b \bullet a$
- (D₁) Left Distributive Law: $a,b,c \in F \Rightarrow a \bullet (b+c) = a \bullet b + a \bullet c$
- (D₂) Right Distributive Law: $a, b, c \in F \Rightarrow (b+c) \bullet a = b \bullet a + c \bullet a$

With the following algebraic properties:

- 1. The identity elements 0 and 1 are unique
- 2. The following cancellation laws hold:

(1)
$$a+b=a+c \Rightarrow b+c$$
, (2) $a \bullet b=a \bullet c$, $a \neq 0 \Rightarrow b=c$

- 3. The inverse elements -a and a^{-1} are unique.
- 4. For every $a, b \in F$

(1)
$$a \bullet 0 = 0$$
, (2) $a \bullet (-b) = (-a) \bullet b = -(a \bullet b)$, (3) $(-a) \bullet (-b) = a \bullet b$

Subtraction: is defined as $b - a \equiv b + (-a)$

Division: (by a non-zero element) is defined as $\frac{b}{a} \equiv b \cdot a^{-1}$

Group Action is a way of interpreting elements of group "acting" on some space, thus if *G* is a group and *X* is a set, the action of *G* on *X* is a group homomorphism from *G* to the symmetry group on *X*. The group action $\alpha : G \times X \to X$ may be defined as follows:

- $\alpha(1,x) = x$ where 1 is the identity in *G* for any $x \in X$ Also written as: 1x = x
- $\alpha(gh,x) = \alpha(g,\alpha(h,x))$ for all $g,h \in G, x \in X$ Also written as: (gh)x = g(hx)

Note: A similar construct can be defined for monoids.

Note: One way to think of group actions would be the set *X* is a *state space* and elements of *G* acting on *X* induces *transitions* from one state to another.

Identity Element An element $e \in \Omega$ is said to be an **identity element** under the binary operator o if and only if $\forall a \in \Omega$:

$$a \circ e = e \circ a = a$$

In order for *e* to be an **identity element**, *e* must statisfy the following:

- 1. $e \in \Omega$
- 2. $\forall a \in \Omega, a \circ e = a$
- 3. $\forall a \in \Omega, e \circ a = a$

ie: the identity element e must be in Ω and commute with every element in Ω .

Note: if the binary operator \circ is abelian, only conditions 1. and 2. or 3. is necessary. To prove, let $a \in \Omega$ be arbitrary but fixed. Compute $a \circ x$, $x \circ a$ and solve for x where $a \circ x = x \circ a$. Show that $x \in \Omega$ does not depend on a. Conclude e = x is an identity element in Ω under the binary operator \circ .

Theorem: If Ω is closed under the \circ binary operation and e is an identity element under \circ , then e is unique

Inverse Element An element $a \in \Omega$ is said to have an **inverse element** $a^{-1} \in \Omega$ under the binary operator \circ if and only if:

$$a \circ a^{-1} = a^{-1} \circ a = e$$

where e is the identity element in Ω .

To prove, determine the identity element e and let $a \in \Omega$ be arbitrary but fixed. Compute $a \circ x$, $x \circ a$, solve for x where $a \circ x = e = x \circ a$ and show that $x \in \Omega$. Conc that $a^{-1} = x$ is the inverse of the element e under the binary operator e.

Theorem: Let o be an associative binary operator. If Ω is closed under \circ and $a^{-1} \in \Omega$ whenever $a \in \Omega$, then a^{-1} is unique

Theorem: If Ω is closed under \circ and $a^{-1} \in \Omega$ whenever $a \in \Omega$, then $(a^{-1})^{-1} = a$

Ring is a non-empty set together with two operations that satisfy all the axioms of a field except (M_3) , (M_4) and (M_5) .

Example: \mathbb{Z} , the set of integers under addition and multiplication is a ring but not a field.

References

- [1] Charles Wells Michael Barr. *Category Theory for Computing Science*. Reprints in Theory and Applications of Categories #22. 2013.
- [2] Lipschutz S. *Theory and applications of general topology*. Schaum's outlines. 1965.