

■ Cases ■ 7-Day Rolling Average of Cases

- Observations $x_1, x_2, ...x_T$
- Joint distribution can always be decomposed via

$$p(x_1, x_2, ...x_T) = p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2)...p(x_T | x_1, ...x_{T-1})$$

- Causality & time Decomposing p(x) forward works better (more accurate) than a backwards decomposition of the same form.
- Can we predict things?

$$x_t \sim p(x_t | x_1, \dots x_{t-1})$$

$$x_t \sim p(x_t | x_{t-\tau}, \dots x_{t-1})$$

$$x_t \sim p(x_t | x_{t-\tau}, \dots x_{t-1})$$

- Limit influence to the recent past.
- Taken's theorem: under some regularity conditions using the past τ steps is enough.

$$x_t \sim p(x_t | x_{t-\tau}, \dots x_{t-1})$$

- When does this work?
 - Relevant history about x_t can be found in $(x_{t-\tau}, ... x_{t-1})$
 - In practice we assume that the probability distribution only depends on actual values of $(x_{t-\tau}, ... x_{t-1})$ rather than point in time t (stationarity of time series).
- Train regression model for $\bar{y}_t = x_t$ and $\bar{x}_t = (x_{t-\tau}, ..., x_{t-1})$

Latent Variables

Long history might be necessary for good model

Use latent variable instead to store the history

$$h_t = g(x_{t-1}, h_{t-1})$$

 $x_t = f(x_{t-1}, h_t)$

Plain RNN

g is just a simple deep network

$$h_t = g(x_{t-1}, h_{t-1})$$

 $x_t = f(x_{t-1}, h_t)$

Recursive Neural Network Variants

- Plain RNN $h_t = g(x_{t-1}, h_{t-1})$ g is just a simple deep network $x_t = f(x_{t-1}, h_t)$
- Long Short Term Memory (Hochreiter&Schmidhuber '98) g is a complex memory device to remember past state
- Gated Recurrent Unit (Cho et al '14)

 g is a slightly less complex memory device to remember past state (and works typically slightly worse)

Long Short Term Memory (Hochreiter & Schmidhuber '98)

Mimic memory cell in a circuit

Long Short Term Memory (Hochreiter & Schmidhuber '98)

 \mathbf{C}_{t-1}

Mimic memory cell in a circuit

$$\begin{split} i_t &= \sigma(W_i(x_t, h_{t-1}) + b_i) \\ f_t &= \sigma(W_f(x_t, h_{t-1}) + b_f) \\ o_t &= \sigma(W_o(x_t, h_{t-1}) + b_o) \\ c_t &= f_t \cdot c_{t-1} i_t \cdot \tanh(W_c(x_t, h_{t-1}) + b_c) \\ h_t &= o_t \cdot \tanh c_t \end{split}$$

Different variants exist (e.g. for output gate)

Gated Recurrent Unit (Cho et al. '14)

Simplified state relative to LSTM (faster, smaller)

Using RNNs with Hidden State

- Stack multiple layers of hidden state (deep and simple is better than shallow and complex)
- Training can be expensive (back-propagation through long chain)
- In practice, truncate gradient to avoid expensive chain

Use framework defaults

Interpolation vs. **Prediction**

Interpolation vs. Prediction

Training a sequence model

IID Data

- Random partition into training / validation (and test)
- Equally reliable estimates (and bagging, too)

Dependent data

- Don't train on the future the predict the past
- Train on $x_1, ..., x_t$ and estimate $x_{t+1}, ..., x_T$
- Stationarity of time series important if you want to use all past history. Otherwise need to fix covariate drift.

Example - Product Recommendations

Time series

- Stationarity (Christmas comes every year)
- Nonstationarity (MacBook Pro 14 in 2021)

Caution

- Concept shift/drift (e.g. COVID-19 related change to purchase more durable goods vs. eating out)
- External causes for nonstationarity. Conditioned on that, we might have independent data (e.g. umbrella sales governed by weather).

Teacher vs. Student Forcing

- Autoregressive model $x_t = f(x_{t-\tau}, \dots x_{t-1})$
- Iterate to get $x_t, x_{t+1}, x_{t+2}, \dots$
 - Prediction using iterates can lead to rapid divergence.
 - Training on real data ensures that we're only one step away from truth.
- Can be ameliorated with GANs or VAE.

Seq2Seq for Machine Translation, Sutskever, Vinyals, Le '14

- Encode source sequence s via LSTM to representation $\phi(s)$
- Decode to target sequence one character at a time

- 'The table is round.' 'Der Tisch ist rund.'
- 'The table is very beautiful with r Republished Blah blah blah' 'Error ...'

Representation not rich enough

Seq2Seq for Machine Translation, Sutskever, Vinyals, Le '14

- Encode source sequence s via LSTM to latent representation $\phi(s)$
- Decode to target sequence one character at a time

- Need memory for long sequences
- Attention to iterate over source (we can look up source at any time after all)

Seq2Seq with attention (Bahdanau, Cho, Bengio '14) (Pham. Luong, Manning '15)

Seq2Seq with attention (Bahdanau, Cho, Bengio '14) (Pham, Luong, Manning '15)

- Iterative attention model
 - Compute (next) attention weights
 - Aggregate next state
 - Emit next symbol
- Repeat
- Memory networks emit only one symbol.
- NMT with attention emits many symbols.

Seq2Seq with attention (Bahdanau, Cho, Bengio '14)

Lots more to come (Lecture 10++)

- Sequence models require long history
- Expensive to store and train
- Expensive to compute

- Use representation of sequence directly
- Use attention to compute state
- Can use bidirectional strategy naturally (simply attend to past and future) for sequence embeddings.