1 FINAL REMARKS I 1

1 Final remarks I

Definition 1 (Sylvester matrix).

Definition 2 (Resultant).

Theorem 1.1. Let α_i be roots of f and β_j be roots of g. Then

$$R(f,g) = a_0^m b_0^n \prod_i (\alpha_i - \beta_j)$$
$$= a_0^m \prod_i g(\alpha_i) = b_0^n \prod_i f(\beta_i)$$

R?

Corollary 1. 1. $R(f,g) = (-1)^{\deg f \cdot \deg g} R(g,f)$

2. If
$$f = gq + r \implies R(f,g) = b_0^{\deg f - \deg R} R(r,g)$$

3.
$$R(f, gh) = R(f, g)R(f, h)$$

Corollary 2. Let $f(t) = a_0 t^n + \dots + a_n$, $a_0 \neq 0$. Then $R(f, f') = (-1)^{\frac{n(n-1)}{2}} \prod_{i < j} (\alpha_i - \alpha_j)^2$