## Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

## SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 09.10.2009

| Name:           |                        |          |          |          |          |          |             |         |
|-----------------|------------------------|----------|----------|----------|----------|----------|-------------|---------|
| Vorname(n):     |                        |          |          |          |          |          |             | N.      |
| Matrikelnummer: |                        |          |          |          |          |          |             | Note:   |
|                 | A C 1                  | 1        | 0        |          | 1 4      |          |             |         |
|                 | Aufgabe                | 10       | 2        | 3        | 4        | <u>\</u> |             |         |
|                 | erreichbare Punkte     | 10       | 10       | 10       | 10       | 40       |             |         |
|                 | erreichte Punkte       |          |          |          |          |          |             |         |
|                 |                        |          |          |          |          |          |             |         |
|                 |                        |          |          |          |          |          |             |         |
|                 |                        |          |          |          |          |          |             |         |
|                 |                        |          |          |          |          |          |             |         |
|                 |                        |          |          |          |          |          |             |         |
|                 |                        |          |          |          |          |          |             |         |
|                 |                        |          |          |          |          |          |             |         |
|                 |                        |          |          |          |          |          |             |         |
|                 |                        |          |          |          |          |          |             |         |
| Bitte           |                        |          |          |          |          |          |             |         |
| tragen Sie N    | Tame, Vorname und M    | Iatrikel | lnumme   | er auf o | dem De   | eckblatt | ein,        |         |
| rechnen Sie     | die Aufgaben auf sepa  | araten   | Blätter  | n, nich  | t auf d  | em Ang   | gabeblatt,  |         |
| 1               | . (°°                  |          | 1        | •        | C        | •1       | ,           |         |
| beginnen Sie    | e für eine neue Aufgal | oe imm   | er aucr  | ı eine r | ieue Se  | ite,     |             |         |
| geben Sie au    | ıf jedem Blatt den Na  | men sc   | owie die | e Matri  | kelnum   | ımer an  | ,           |         |
| begründen S     | Sie Ihre Antworten aus | sführlic | ch und   |          |          |          |             |         |
| kreuzen Sie     | hier an, an welchem d  | er folge | enden T  | Formin   | o Sio ni | icht zu  | r miindlich | on Prii |

 $\square$  Mi, 14.10.09  $\quad \square$  Fr, 16.10.09  $\quad \square$  Mo, 19.10.09

1. Abbildung 1(a) zeigt die Prinzipskizze einer eindimensionalen magnetischen Lagerung. Ein Elektromagnet wird dabei mit einer Spannung v versorgt, welche einen Strom i und damit eine Magnetkraft  $f_m$  auf das zu lagernde Objekt zur Folge hat. Auf das zu lagernde Objekt der Masse m wirken die Gewichtskraft und eine äußere Lastkraft  $f_l$ . Der Luftpalt zwischen Elektromagnet und Objekt ist mit  $\delta$  bezeichnet und die Geschwindigkeit des Objekts mit w. Ferner ist in Abbildung 1(b) das magnetische Ersatzschaltbild für den magnetischen Fluss  $\Phi$  dargestellt. Es besteht aus einer Durchflutungsquelle  $\Theta = Ni$ , wobei N die Anzahl der Wicklungen bezeichnet, einer konstanten Eisenreluktanz  $\mathcal{R}_E = p_1$  und einer luftspaltabhängigen Reluktanz  $\mathcal{R}_L(\delta) = p_2 \delta$  mit den Konstanten  $p_1$  und  $p_2$ .



Abbildung 1: Prinzipskizze der eindimensionalen Magnetlagerung und magnetisches Ersatzschaltbild.

- a) Berechnen Sie die magnetische Ersatzreluktanz  $\mathcal{R}_G(\delta)$  und die magnetische Induktivität  $L_G(\delta) = N^2/\mathcal{R}_G(\delta)$  auf Basis des magnetischen Ersatzschaltbildes nach Abbildung 1(b).
- b) Berechnen Sie die Magnetkraft 0.5 P.

$$f_m = \frac{1}{2} \frac{\partial L_G(\delta)}{\partial \delta} i^2.$$

- c) Stellen Sie den Impulssatz für die eindimensionale Magnetlagerung nach Abbil- 1 P. dung 1(a) auf.
- d) Bestimmen Sie die Dynamik des verketteten Flußes  $\psi = L_G(\delta) i$  mit Hilfe des 1 P.| Induktionsgesetzes

$$\frac{\mathrm{d}}{\mathrm{d}t}\psi = -Ri + v,$$

wobei R den elektrischen Widerstand kennzeichnet.

e) Geben Sie das Gesamtmodell der magnetischen Lagerung in der nichtlinearen Zu- 3 P.| standsdarstellung

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}), \quad \mathbf{x}(0) = \mathbf{x}_0$$
  
 $y = h(\mathbf{x})$ 

an. Wählen Sie hierbei den Zustandsvektor  $\mathbf{x}=[\psi\ \delta\ w]^T$ , den Eingangsvektor  $\mathbf{u}=[v\ f_l]^T$  und den Ausgang y=i.

f) Linearisieren Sie das nichtlineare Zustandsmodell um eine allgemeine Ruhelage 4 P. |  $(\mathbf{x}_s, \mathbf{u}_s)$  und geben Sie es in der Zustandsdarstellung

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \quad \mathbf{x}(0) = \mathbf{x}_0$$
  
 $y = \mathbf{c}^T\mathbf{x} + \mathbf{D}\mathbf{u}$ 

an.

2. Die eindimensionale Magnetlagerung aus Aufgabe 1 soll mit Hilfe einer kaskadierte Regelungsstrategie stabilisiert werden. Hierzu wird das linearisierte mathematische Modell der Magnetlagerung in einen elektrischen und einen mechanischen Teil zerlegt. Der elektrische Teil lässt sich durch die Ubertragungsfunktion

$$G_i(s) = \frac{\hat{i}}{\hat{v}} = \frac{1}{L_{\delta}s + R}$$

mit  $R=1\,\Omega$  und  $L_\delta=\sqrt{3}/100\,\mathrm{H}$  beschreiben.



Abbildung 2: Kaskadierte Regelungsstrategie zur Stabilisierung einer eindimensionalen Magnetlagerung.

Hinweis: Die Aufgabenteile a) bis c) sind unabhängig voneinander lösbar!

- a) Entwerfen Sie für den inneren Regelkreis nach Abbildung 2 einen PI-Stromregler  $R_i(s)$ , der die folgenden Spezifikationen erfüllt:  $t_r = 0.015s$ ,  $\ddot{u} = 10\%$ . Gehen Sie dabei wie folgt vor:
  - (i) Berechnen Sie die gewünschte Durchtrittsfrequenz und Phasenreserve. 1 P.
  - (ii) Bestimmen Sie die notwendige Phasenanhebung.
  - 1 P. (iii) Berechnen Sie die Integratorzeitkonstante und die Verstärkung.  $2 \, P.$

  - (iv) Geben Sie die bleibende Regelabweichung  $e_{\infty}|_{i_{ref}(t)=\sigma(t)}$  an. 1 P.|
- b) Es wird nun angenommen, dass der innere Regelkreis deutlicher schneller als der äußere ausgelegt wurde, womit Stromreferenz- und Stromistwert  $i_{ref} = i$  identisch sind. Ferner ist der mechanische Teil der Strecke durch

$$G_{\delta}(s) = \frac{1}{ms^2} \quad \text{und} \quad V = konst.$$
 (1)

gegeben. Zur Regelung des äußeren Kreises kommt ein PD-Regler der Form

$$R_{\delta}(s) = V_{\delta}(1 + T_{\delta}s) \tag{2}$$

zum Einsatz.

- (i) Berechnen Sie die Störübertragungsfunktion  $G_{f_l,e_{\delta}}(s) = \frac{\hat{e}_{\delta}}{\hat{f}_l}$  mit  $\hat{e}_{\delta} = \hat{\delta}_{ref} \hat{\delta}$ .
- (ii) Bestimmen Sie die bleibende Regelabweichung auf einen Störsprung  $f_l = \eta \sigma(t)$ mit  $\eta = konst...$
- c) Zeichen Sie qualitativ das Bodediagramm und die Ortskurve der Streckenübertragungsfunktion  $G_{\delta}(s)$  aus Aufgabe 2b) für m=0.1. Verwenden Sie hierzu die Vorlage in Abbildung 3.



Abbildung 3: Vorlage für das Bodediagramm und die Ortskurve nach Aufgabe 2c.

- 3. Bearbeiten Sie die folgenden Teilaufgaben:
  - a) Das lineare kontinuierliche System  $\dot{x}=f(x)$  mit  $f(x)=\lambda x$  wird näherungsweise 3 P.| mittels des expliziten Eulerverfahrens  $x_{k+1}=x_k+T_af(x_k)$  in eine zeitdiskrete Systemdarstellung überführt. Für welche Abtastzeiten  $T_a$  ist dieses Abtastsystem asymptotisch stabil, wenn (i)  $\lambda=\alpha$  mit  $\alpha<0$  und (ii)  $\lambda=I\alpha$  mit  $\alpha\in\mathbb{R}$ ? Erläutern Sie, ob das explizite Eulerverfahren zur zeitdiskreten Analyse von ungedämpften schwingungsfähigen Systemen geeignet ist.
  - b) Gegeben ist das System

7 P.

$$\dot{\mathbf{x}} = \underbrace{\begin{bmatrix} \alpha & \frac{\beta - \alpha}{2} \\ \frac{\alpha - \beta}{2} & \beta \end{bmatrix}}_{= \mathbf{A}} \mathbf{x} + \mathbf{b}u$$

mit  $\alpha$ ,  $\beta \neq 0$ . Bestimmen Sie die Erreichbarkeitsmatrix des Systems und ermitteln Sie die Komponenten  $b_1$  und  $b_2$  des Eingangsvektors **b** so, dass das System für  $\alpha \neq \beta$  steuerbar ist.

Begründen Sie Ihre Wahl zudem durch die Analyse der Systemtrajektorien. Gehen Sie hierzu wie folgt vor:

- (i) Ermitteln Sie die Eigenwerte der Systemmatrix A.
- (ii) Bestimmen Sie damit die Transformationsmatrix V in die Jordansche Normalform.
- (iii) Geben Sie die transformierte Systemdarstellung  $(\tilde{\mathbf{A}}, \tilde{\mathbf{b}})$  in dem neuen Zustand  $\mathbf{z} = \mathbf{V}^{-1}\mathbf{x}$  an.
- (iv) Nutzen Sie die Systembeschreibung in  $\mathbf{z}$  zur anschaulichen Begründung Ihrer Wahl von  $b_1$  und  $b_2$ .

4. Gegeben ist das lineare, zeitdiskrete System der Form

$$\mathbf{x}_{k+1} = \mathbf{\Phi} \mathbf{x}_k + \mathbf{\Gamma} u_k + \mathbf{\Gamma}_v v, \quad \mathbf{x}_0 = \mathbf{x}^0$$
  
 $y_k = \mathbf{c}^T \mathbf{x}_k$ 

mit

$$\mathbf{\Phi} = \begin{bmatrix} 1 & 0 \\ 1 & a \end{bmatrix}, \quad a \in \mathbb{R}, \ a \neq 0,$$

wobei v eine auf die Strecke einwirkende konstante Störung beschreibt.

a) Zeigen Sie mittels vollständiger Induktion, dass

1 P.

$$\mathbf{\Phi}^k = \begin{bmatrix} 1 & 0 \\ \frac{a^k - 1}{a - 1} & a^k \end{bmatrix}, \quad k \ge 0.$$

b) Bestimmen Sie die Impulsantwort  $(g_k)$  für  $\Gamma = [0\ 1]^T$ ,  $\Gamma_v = \mathbf{0}$  und  $\mathbf{c}^T = [0\ 1]$  und  $3\ P.$  ermitteln Sie hiermit den Wertebereich von a für den das Abtastsystem BIBOstabil ist?

Für die weiteren Aufgabenteile gilt a = 1/2 sowie

$$oldsymbol{\Gamma} = oldsymbol{\Gamma}_v = egin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad \mathbf{c}^T = egin{bmatrix} 1 & 1 \end{bmatrix}.$$

c) Entwerfen Sie für das nominelle System mit v=0 unter Verwendung der Formel  $5\,\mathrm{P.}|$  von Ackermann einen vollständigen Luenberger-Beobachter der Form

$$\hat{\mathbf{x}}_{k+1} = \mathbf{\Phi}\hat{\mathbf{x}}_k + \mathbf{\Gamma}u_k + \hat{\mathbf{k}}(\hat{y}_k - y_k), \quad \hat{\mathbf{x}}_0 = \hat{\mathbf{x}}^0$$
$$\hat{y}_k = \mathbf{c}^T\hat{\mathbf{x}}_k$$

so, dass jeder anfängliche Beobachterfehler  $\mathbf{e}_0 = \hat{\mathbf{x}}_0 - \mathbf{x}_0$  in höchstens 2 Schritten in den Ursprung  $\mathbf{0}$  überführt wird.

Charakterisieren Sie die nichttrivalen Anfangsbedingungen  $\mathbf{e}_0$  für die mit dem ermittelten  $\hat{\mathbf{k}}$  gilt, dass  $\mathbf{e}_k = \mathbf{0}$  für  $k \ge 1$ .

d) Bestimmen Sie den stationären Beobachtungsfehler  $\mathbf{e}_{\infty}$  für  $v \neq 0$ . 1 P.