

# Master Thesis Seminar Talk Progress Update

#### Fabrice Beaumont

Department of Information Systems and Artificial Intelligence - Dr. Pascal Welke

10. November 2022









### Example of the whole procedure





### Example: AIDS t-SNE







Bs: 5%, WLLT-d: 4, PP: 0.4, SVM-acc.: 80%

### Example: NCI1 t-SNE







Bs: 5%, WLLT-d: 4, Pull: 1.0, Push: 0.1, SVM-acc.: 48%

### Example: NCI1 t-SNE







Bs: 5%, WLLT-d: 4, Pull: 1.0, Push: 0.1, SVM-acc.: 48%

### Example: ENZYMES t-SNE







Bs: 5%, WLLT-d: 4, Pull: 1.0, Push: 0.1, SVM-acc.: 11%

### Example: ENZYMES t-SNE







Bs: 5%, WLLT-d: 4, Pull: 1.0, Push: 0.1, SVM-acc.: 11%

### Example: Sample movement error







NCI1, Bs: 5%, WLLT-d: 4, Pull: 0.1, Push: 0.5, SVM-acc.: 48%

### Example: Sample movement error







PROTEINS c, Bs: 5%, WLLT-d: 4, Pull: 1.0, Push: 0.1, SVM-acc.: 64% ENZYMES, Bs: 5%, WLLT-d: 4, Pull: 1.0, Push: 0.1, SVM-acc.: 11%

### Example: Sample movement error











### Example: AIDS perfect



#### Separate clusters for:

WLLT-d=4, 100 epochs, Bs=5%, He\_thdl=0.6, Pull=0.1, Push=0.1

#### And with changed:

- Bs=20%
- WLLT-d=2
- Lr=0.5

Assume that these parameters do not interfere with the cluster separation. Suspect instead the scaling effect of multiplicative updates. Thus try absolute updates.

### Example: AIDS perfect - SVM accuracy



Expected (almost) 100% for iteration 0. But got only 51%.

Testing the SVM with other kernel lambdas  $\lambda$  besides the standard 'scale' in the computation of the kernel matrix from the distance matrix D:

$$K := \exp(-\lambda D)$$

|          | scale |       |       |       |       |
|----------|-------|-------|-------|-------|-------|
| Avg.Acc. | 50.43 | 97.94 | 79.99 | 50.54 | 50.91 |
| Std.dev. | 3.69  | 2.53  | 1.26  | 0.93  | 0.55  |

#### Where:

- auto:  $\lambda = 1/(\#\{\text{features}\} * \text{var}(D))$
- scale:  $\lambda = 1/(\#\{\text{features}\})$

'scale' is the default of sklearn's svm implementation (since version 0.22).

#### Outlook



- "Finish" experiments with AIDS\_perfect (limits of push-pull, absolute weight update, single layer)
- Try to find more truly SME improving configuration for (normal) AIDS (Ideally increasing diff-cl distance and decreasing same-cl dist.)
- Besides this: Terminate the evaluations and report about the investigated parameter configurations.
   Outlook for improvement of the method: e.g. Layer gradient

### Example: MUTAG WLLT layer 0





Bs: 20%, WLLT-d: 4, Pull: 0.3, Push: 0.1, SVM-acc.: 66%

### Example: MUTAG WLLT layer 1







Bs: 20%, WLLT-d: 4, Pull: 0.3, Push: 0.1, SVM-acc.: 66%

### Example: MUTAG WLLT layer 2







Bs: 20%, WLLT-d: 4, Pull: 0.3, Push: 0.1, SVM-acc.: 66%

### Example: AIDS WLLT layer 2







Bs: 5%, WLLT-d: 4, PP: 0.4, SVM-acc.: 80%

## Thank you all for listening.

I will be happy to answer any questions and hear your comments.



### Preparation of the performance comparison





Figure: Classification accuracies on databases using Weisfeiler-Lehman.

grakel.kernels.WeisfeilerLehman(n\_iter=[1-10], base=grakel.kernels.VertexHistogram, normalize=True) grakel.utils.cross\_validate\_Kfold\_SVM(K, y, n\_iter=10)