Barycentre

I. Barycentre de deux points pondérés

1. Définition

Activité O: Soutient des prérequis

ABC est un triangle.

Soient *I*, *J* et *K* trois points du plan tels que $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB}$ et $\overrightarrow{AJ} = \frac{2}{5}\overrightarrow{AC}$ et $\overrightarrow{BK} = -2\overrightarrow{BC}$.

- **1.** Placer les points I, J et K.
- **2.** Vérifier que $\overrightarrow{AK} = 3\overrightarrow{AB} 2\overrightarrow{AC}$.
- **3.** Montrer que $\overrightarrow{IJ} = -\frac{1}{2}\overrightarrow{AB} + \frac{2}{5}\overrightarrow{AC}$.
- **4.** Montrer que $\overrightarrow{IK} = \frac{5}{2}\overrightarrow{AB} 2\overrightarrow{AC}$.
- **5.** a. Vérifier que $-10\overrightarrow{IJ} = 2\overrightarrow{IK}$. b. Que peut-on dire sur les points I, J et K?

& Activité O:

Soient A et B deux points distincts du plan, et G un point tel que $2\overrightarrow{GA} + 3\overrightarrow{GB} = \overrightarrow{0}$.

- 1.a. Montrer que $\overrightarrow{AG} = \frac{3}{5}\overrightarrow{AB}$.
 - b. Construire le point G.

Le point G est appelé le barycentre des points pondérés (A; a) et (B; b).

- 2.a. Vérifier, pour tout point du plan, que $2\overline{MA} + 3\overline{MB} = 5\overline{MG}$.
- b. En déduire l'ensemble des points M du plan tel que $\|2\overrightarrow{MA} + 3\overrightarrow{MB}\| = 15$.

Définitions :

Soient (A; a) et (B; b) deux points pondérés tels que $a + b \neq 0$.

Il existe un unique point G vérifiant : $a \overrightarrow{GA} + b \overrightarrow{GB} = \overrightarrow{0}$. Le point G s'appelle **le barycentre** des points pondérés (A; a) et (B; b) ou barycentre du système pondéré $\{(A; a), (B; b)\}$.

On écrit : $G = bar\{(A; a), (B; b)\}.$

• Si a = b, le point G est appelé l'isobarycentre des points A et B.

O Exemple:

Si *I* est milieu du segment [AB], alors $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$.

Donc I est le barycentre des points pondérés (A; 1) et (B; 1).

On a aussi I est l'isobarycentre des points A et B.

O_Remarques:

Soient (A; a) et (B; b) deux points pondérés tels que $a + b \neq 0$.

- $G = bar\{(A; \alpha), (B; \beta)\} \Leftrightarrow \overrightarrow{AG} = \frac{b}{a+b} \overrightarrow{AB}$ $\Leftrightarrow \overrightarrow{BG} = \frac{a}{a+b} \overrightarrow{BA}$.
- Si $A \neq B$, alors les points A, B et G sont alignés.

Application O:

- **1.** Déterminer a et b pour que G soit le barycentre du système $\{(A; a); (B; b)\}$ dans chacun des cas suivants :
- $\mathbf{0}\overrightarrow{GA} + 3\overrightarrow{GB} = 2\overrightarrow{AB} \qquad \mathbf{2} 7\overrightarrow{GA} + 3\overrightarrow{GB} = 10$
- **2.** Construire le point G dans le premier cas.

2. Propriétés du barycentre:

Propriété: conservation du barycentre

Si G le barycentre des points pondérés (A; a) et (B; b), alors G est aussi le barycentre des points pondérés (A; ka) et (B; kb) pour tout réel k non nul.

O Exemple:

Soient A et B deux points du plan.

On a $G = bar\{(A; 0.05), (B; 0.1)\} = bar\{(A; 5), (B; 10)\} = bar\{(A; 1), (B; 2)\}.$

Propriété caractéristique du barycentre de deux points :

Soient (A; a) et (B; b) deux points pondérés tels que $a + b \neq 0$. G est le barycentre de (A; a) et (B; b) si et seulement si pour tout point Mdu plan $a\overrightarrow{MA} + b\overrightarrow{MB} = (a+b)\overrightarrow{MG}$.

O Remarques:

En posant M = A (ou M = B) dans la propriété caractéristique, on obtient $\overrightarrow{AG} = \frac{b}{a+b}\overrightarrow{AB}$ (ou $\overrightarrow{BG} = \frac{a}{a+b}\overrightarrow{BA}$).

Application 2:

Soient A et B deux points du plan (P).

- **1.** Déterminer l'ensemble des points M du plan (P) tel que $||2\overline{MA} + \overline{MB}|| = 6$.
- **2.** Déterminer l'ensemble des points M du plan (P) tel que $||3\overrightarrow{MA} + \overrightarrow{MB}|| = ||-2\overrightarrow{MA} + 6\overrightarrow{MB}||$.

3. Coordonnées du barycentre de deux points

Activité 2:

Soient A(-2;3) et B(1;4) deux points du plan (P) muni d'un repère $(0;\vec{\imath};\vec{\jmath})$ et G le point du plan tel que $G = bar\{(A; 3), (B; 1)\}.$

- **1.** Montrer que $\overrightarrow{OG} = \frac{3}{4}\overrightarrow{OA} + \frac{1}{4}\overrightarrow{OB}$.
- **2.** Déterminer les coordonnées du point *G*.

Propriété

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points du plan (P) muni d'un repère $(0; \vec{\imath}; \vec{\jmath})$. Si G est le barycentre des points (A; a) et (B; b), alors : $x_G = \frac{ax_A + bx_B}{a + b}$ et $y_G = \frac{ay_A + by_B}{a + b}$

Application 3:

On considère dans le plan (P) muni d'un repère $(0; \vec{i}; \vec{j})$ les points A(2; -5) et B(4; 3)Soient Get G' deux points tels que : $G = bar\{(A; 3); (B; 6)\}\$ et $G' = bar\{(A; -2); (B; 1)\}\$ Déterminer les coordonnées des points G et G'.

Barycentre de trois points pondérés II.

Définitions:

Soient (A; a), (B; b) et (C; c) trois points pondérés tels que : $a + b + c \neq 0$.

Il existe un point G unique tel que : $a\overrightarrow{GA} + b\overrightarrow{GB} + c\overrightarrow{GC} = \overrightarrow{0}$.

Le point G est appelé barycentre des points pondérés (A; a), (B; b) et (C; c) ou barycentre du système pondéré $\{(A; a), (B; b), (C; c)\}$. On écrit $G = bar\{(A; a), (B; b), (C; c)\}$.

• Si a = b = c, le point G est appelé l'isobarycentre (Ou centre de gravité) des points A, B et C.

O Remarque :

Si *G* le barycentre des points pondérés
$$(A; a)$$
, $(B; b)$ et $(C; c)$, alors : $\overrightarrow{AG} = \frac{b}{a+b+c}\overrightarrow{AB} + \frac{c}{a+b+c}\overrightarrow{AC}$, $\overrightarrow{BG} = \frac{a}{a+b+c}\overrightarrow{BA} + \frac{c}{a+b+c}\overrightarrow{BC}$ et $\overrightarrow{CG} = \frac{a}{a+b+c}\overrightarrow{CA} + \frac{b}{a+b+c}\overrightarrow{CB}$

Application @:

- 1. Déterminer a ,b et c pour que le point G soit le barycentre du système pondéré $\{(A; a); (B; b), (C; c)\}\$ dans le cas suivant : $\overrightarrow{GA} + \overrightarrow{GB} + 2\overrightarrow{GC} = 3\overrightarrow{AB} - \overrightarrow{AC}$.
- **2.** Construire le point G tel que $G = bar\{(A; 2); (B; -1), (C; -2)\}.$

Propriété : conservation du barycentre

Si G est le barycentre des points pondérés (A; a), (B; b) et (C; c), alors G est aussi le barycentre des points pondérés (A; ka), (B; kb) et (C; kc) pour tout réel k non nul.

Propriété caractéristique du barycentre de trois points :

Soient (A; a), (B; b) et (C; c) trois points pondérés tels que $a + b + c \neq 0$. G le barycentre des points pondérés (A; a), (B; b) et (C; c) si et seulement si pour tout point M du plan : $a\overrightarrow{MA} + b\overrightarrow{MB} + c\overrightarrow{MC} = (a + b + c)\overrightarrow{MG}$.

Application 5:

Soient A, B et C trois points du plan (P).

- **1.** Déterminer l'ensemble des points M du plan (P) tel que $\|\overline{MA} + \overline{MB} + \overline{MC}\| = 4$.
- **2.** Déterminer l'ensemble des points M du plan (P) tel que $\|2\overrightarrow{MA} + \overrightarrow{MB} \overrightarrow{MC}\| = \|3\overrightarrow{MA} \overrightarrow{MB}\|$

Soient $A(x_A; y_A)$, $B(x_B; y_B)$ et $C(x_C; y_C)$ trois points du plan (P) muni d'un repère $(O; \vec{i}; \vec{j})$. Si G est le barycentre des points pondérés (A; a), (B; b) et (C; c), alors :

$$x_G = \frac{ax_A + bx_B + cx_C}{a + b + c} \text{ et } y_G = \frac{ay_A + by_B + cy_C}{a + b + c}.$$

Application 6:

Déterminer les coordonnées du point G le barycentre du système pondéré $\{(A; 2), (B; -3), (C; -6)\}$ tel que A(1; 4), B(0; 5) et C(2; -1).

Propriété : Associativité du barycentre

Soient (A; a), (B; b) et (C; c) des points pondérés du plan tels que $a + b + c \neq 0$ et $a + b \neq 0$. Si G est le barycentre des points (A; a), (B; b) et (C; c) et H est le barycentre des points (A; a), (B; b), alors G est le barycentre des points (H; a + b) et (C; c).

Application 0:

Soit *ABC* un triangle et *K* un point défini par $\overrightarrow{BK} = -\frac{4}{3}\overrightarrow{BC}$, le point *G* est le barycentre du système pondéré $\{(A;3);(B;7),(C;-4)\}$.

- **1.** Vérifier que $K = bar\{(B; 7); (C; -4)\}$.
- **2.** Montrer que G est le milieu du segment [AK].

Exercice:

ABC est un triangle.

G est le barycentre des points (A; -2), (B; 3) et (C; 3).

K et H sont deux point du plan tels que $\overrightarrow{AK} = 3\overrightarrow{AB}$ et $\overrightarrow{AH} = 3\overrightarrow{AC}$.

I est le milieu le milieu du segment [BC].

- **1.** Vérifier que $K = bar\{(A; -2); (B; 3)\}$ et $H = bar\{(A; -2); (C; 3)\}$.
- **2.** a. Montrer que $G = bar\{(K; 1); (C; 3)\}.$
 - b. Montrer que $G = bar\{(H; 1); (B; 3)\}.$
 - c. Montrer que $G = bar\{(A; -1); (I; 3)\}.$
- **3.** En déduire que les droites (CK), (BH)et (AI)sont concourantes en un point qu'on déterminera.

III. Barycentre de quatre points pondérés

La définition et les propriétés de conservation, de caractérisation et d'associativité du barycentre de trois points pondérés sont généralisables au barycentre de quatre points pondérés.

Propriété :

Soient $A(x_A; y_A)$, $B(x_B; y_B)$, $C(x_C; y_C)$ et $D(x_D; y_D)$ trois points du plan (P) muni d'un repère $(0; \vec{\imath}; \vec{\jmath})$.

Si G est le barycentre des points pondérés (A; a), (B; b), (C; c) et (D; d), alors :

$$x_G = \frac{ax_A + bx_B + cx_C + dx_D}{a + b + c + d} \text{ et } y_G = \frac{ay_A + by_B + cy_C + dy_D}{a + b + c + d}$$

O_Technique de construction :

Construisons le barycentre des points (A; -1), (B; 3), (C; -1) et (D, 2).

On construit les point $G_1 = bar\{(A; -1); (B; 3)\}$ et $G_2 = bar\{(C; -1); (D; 2)\}$.

Par l'associativité du barycentre, on a $G = bar\{(G_1; 2); (G_2; 1)\}$. Ce qui permet de construire le point G.

