第八章 假设检验

第八章 假设检验

- 8.1 假设检验的基本问题
 - 8.1.4 假设检验的流程
- 8.2 一个总体参数的检验
 - 8.2.1 检验统计量的确定
 - 8.2.2 总体均值的检验
 - 8.2.3 总体比例的检验
 - 8.2.4 总体方差的检验
- 8.3 两个总体参数的检验
 - 8.3.1 检验统计量的确定
 - 8.3.2 两个总体均值之差的检验
 - 8.3.3 两个总体比例之差
 - 8.3.4 两个总体方差比的检验
 - 8.3.5 检验中的匹配样本
- 8.4 检验问题的进一步说明

8.1 假设检验的基本问题

 H_0 原假设 $(=,\leq,\geq)$, H_1 备择假设 $(\neq,>,<)$ 互斥。

 α **错误**: 原假设为真, 但被拒绝了, 页脚弃真错误;

β**错误**: 原假设为假,却被接受了,也叫取伪错误。

8.1.4 假设检验的流程

- 1. 提出原假设和备择假设
- 2. 计算 z 统计量,将统计量转化为标准得分,
- 3. 根据显著性水平 (α) 查表得到临界值,并与 z 进行比较。 (单侧检验还是双侧检验)
- 4. 根据 z 是否在临界值之间决定是否接受原假设。

8.2 一个总体参数的检验

8.2.1 检验统计量的确定

样本量大或者总体正态,用 z 统计量,如果 σ 未知,则用 s 替代。

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \tag{1}$$

小样本且标准未知,用 t 统计量,自由度为 n-1

$$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}} \tag{2}$$

8.2.2 总体均值的检验

大样本 z 统计量, 小样本 t 统计量。

8.2.3 总体比例的检验

如果总体比例的真实值为 π ,假设总体比例为 π_0 ,样本比例为p,使用z统计量进行假设检验

$$z = \frac{p - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}\tag{3}$$

8.2.4 总体方差的检验

如果总体方差的真实值为 σ^2 ,假设值为 σ_0^2 ,样本方差为 s^2 ,使用 χ^2 统计量进行假设检验, χ^2 检验通常是单侧检验,临界点在 χ^2 分布右侧斜尾方向。

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2} \tag{4}$$

8.3 两个总体参数的检验

8.3.1 检验统计量的确定

小样本, 方差未知用 t 统计; 方差比检验用F 统计; 其余都是 z 统计量。

8.3.2 两个总体均值之差的检验

如果 σ_1^2 和 σ_2^2 已知,

$$z = \frac{(x_1 - x_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n}}}$$
 (5)

如果 σ_1^2 和 σ_2^2 未知,且样本量较小,使用 t 统计,根据方差是否相等选择不同的自由度。

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\hat{\sigma}_{x_1 - x_2}} \tag{6}$$

Case 1: $\sigma_1^2=\sigma_2^2$,使用自由度为 n_1+n_2-2 的 t 统计量检验,其中

$$\hat{\sigma}_{x_1-x_2} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \ s_p = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$
 (7)

Case 2: $\sigma_1^2
eq \sigma_2^2$,使用自由度为 f 的 t 分布(近似),其中

$$\hat{\sigma}_{x_1 - x_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \tag{8}$$

$$f = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}} \tag{9}$$

8.3.3 两个总体比例之差

1. 两个总体比例相等的假设

在原假设成立的情况下最佳的方差是 p(1-p), 其中 $p=(x_1+x_2)/(n_1+n_2)$, 在大样本条件下, 统计量 z 的表达式为 (p_1,p_2) 是样本比例)

$$z = \frac{p_1 - p_2}{\sqrt{p(1-p)(\frac{1}{n_1} + \frac{1}{n_2})}}$$
 (10)

2. 检验两个总体比例之差不为0的假设

原假设 $H_0: \pi_1 - \pi_2 = d_0$, $p_1 - p_2 \sim \mathcal{N}(\pi_1 - \pi_2, \frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2})$ $z = \frac{p_1 - p_2 - d_0}{\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}}$ $\tag{11}$

8.3.4 两个总体方差比的检验

方差之比服从F分布

$$F(n_1 - 1, n_2 - 1) = \frac{s_1^2}{s_2^2} \frac{\sigma_2^2}{\sigma_1^2}$$
 (12)

原假设 $H_0:\sigma_1^2\leq\sigma_2^2$, 备择假设 $H_1:\sigma_1^2>\sigma_2^2$,临界点为 $F_{lpha}(n_1-1,n_2-1)$

双侧检验的两个临界点为 $F_{\alpha/2}(n_1-1,n_2-1),F_{1-\alpha/2}(n_1-1,n_2-1)$

$$F_{1-\alpha/2}(n_1-1,n_2-1) = \frac{1}{F_{\alpha/2}(n_2-1,n_1-1)}$$
 (13)

8.3.5 检验中的匹配样本

如果是匹配样本,如果计算差值

- 1. 提出原假设, 备择假设
- 2. 分别求出每个对应的差 $x = x_1 x_2$
- 3. 计算差值样本均值 \overline{x} 和标准差 s
- 4. 得到抽样分布的标准差估计值 $\hat{\sigma}_x = s/\sqrt{n}$
- 5. 根据样本量大小选择 z 或者 t,
- 6. 以 t 为例,比较差值的均值和临界值 $d \pm t_{\alpha}$

8.4 检验问题的进一步说明