Computer System Architecture MCQ 01

- 1. RTL stands for:
- a. Random transfer language
- b. Register transfer language
- c. Arithmetic transfer language
- d. All of these
- 2. Which operations are used for addition, subtraction, increment, decrement and complement function:
- a. Bus
- b. Memory transfer
- c. Arithmetic operation
- d. All of these
- 3. Which language is termed as the symbolic depiction used for indicating the series:
- a. Random transfer language
- b. Register transfer language
- c. Arithmetic transfer language
- d. All of these
- 4. The method of writing symbol to indicate a provided computational process is called as a:
- a. Programming language
- b. Random transfer language
- c. Register transfer language
- d. Arithmetic transfer language
- 5. In which transfer the computer register are indicated in capital letters for depicting its function:
- a. Memory transfer **b.** Register transfer
- c. Bus transfer d. None of these
- 6. The register that includes the address of the memory unit is termed as the ____:
- a. MAR
- b. PC
- c. IR
- d. None of these
- 7. The register for the program counter is signified as
- a. MAR **b.** PC
- c. IR d. None of these
- 8. In register transfer the instruction register as:
- a. MAR
- b. PC
- **c. IR** d. None of these
- 9. In register transfer the processor register as:
- a. MAR
- b. PC
- c. IR
- d. RI
- 10. How many types of micro operations:
- a. 2
- b.
- c. 6
- d. 8

- 11. Which are the operation that a computer performs on data that put in register:
- a. Register transfer b. Arithmetic
- c. Logical
- d. All of these
- 12. Which micro operations carry information from one register to another:
- a. Register transfer b. Arithmetic
- c. Logical
- d. All of these
- 13. Micro operation is shown as:
- a. R1→R2
- b. R1←R2
- c. Both
- d. None
- 14. In memory transfer location address is supplied by____ that puts this on address bus:
- a. ALÜ
- b. CPU
- c. MAR
- d. MDR
- 15. How many types of memory transfer operation:
- a. 1
- b. 2
- c. 3 d.

4

- 16. Operation of memory transfer are:
- a. Read
- b. Write
- c. Both
- d. None
- 17. In memory read the operation puts memory address on to a register known as :
- a. PC
- b. ALU
- c. MAR
- d. All of these
- 18. Which operation puts memory address in memory address register and data in DR:
- a. Memory read
- b. Memory write
- c. Both
- d. None
- 19. Arithmetic operation are carried by such micro operation on stored numeric data available in :
- a. Register
- b. Data
- c. Both
- d. None
- 20. In arithmetic operation numbers of register and the circuits for addition at _____:
- a. ALU
- b. MAR
- c. Both
- d. None
- 21. Which operation are implemented using a binary counter or combinational circuit:
- a. Register transfer **b.**
- r **b.** Arithmetic
- c. Logical
- d. All of these
- 22. Which operation is binary type, and are performed on bits string that is placed in register:
- a. Logical micro operation
- b. Arithmetic micro operation
- c. Both
- d. None

d. None of these
28. VPCC stands for:
a. Variable portable C compiler
b. Very portable C compiler

c. Both

d. None

29. In register transfer which system is a sequential logic system in which flip-flops and gates are constructed:

a. Digital systemb. Registerc. Datad. None

30. High level language C supports register transfer technique for application:

a. Executing b. Compiling c. Both d. None

31. A counter is incremented by one and memory unit is considered as a collection of _____:

a. Transfer registerb. Storage registerc. RTLd. All of these

32. Which is the straight forward register transfer the data from register to another register temporarily:

a. Digital system

b. Register

c. Data

d. Register transfer operations

a. Advance technology attachment

b. Advance teach attachment

c. Both d. None

39. The memory bus is also referred as_____:

a. Data busb. Address busc. Memory busd. All of these

40. How many parts of memory bus:

a. 2 b. 3 c. 5 d. 6

41. A three state gate defined as:

a. Analog circuit b. Analog fundamentals

c. Both a&b

d. Digital circuit

42. In 3 state gate two states act as signals equal to:

a. Logic 0
b. Logic 1
c. None of these
d. Both a & b

43. In 3 state gate third position termed as high impedance state which acts as:

a. Open circuitb. Close circuitc. None of thesed. All of above

44. In every transfer, selection of register by bus is decided by:

a. Control signalb. No signalc. All signald. All of above

d.

4 c.

55. Which shift is a shift micro operation which is used to shift a signed binary number to the left or

Arithmetic

None of these

b.

d.

Logical b.

Both

a.

right:

a. c.

MCQ	5 KNR
19. The instruction read from memory is then	27are the codes that
placed in the and contents of program	represent alphabetic characters, punctuation marks
counter is so that it contains the address	and other special characters:
of instruction in the program:	a. Alphanumeric codes
a. Program counter, incremented and next	b. ASCII codes
b. Instruction register, incremented and previous	c. EBCDIC codes
c. Instruction register, incremented and next	d. All of these
d. Address register, decremented and next	d. Thi of these
d. Madress register, decremented and next	28. Abbreviation ASCII stands for:
20. Execution of instruction specified	a. American standard code for information
by instruction to perform:	interchange
	b. Abbreviation standard code for information
<u>-</u>	
<u>.</u>	interchange
c. Both a & b	c. Both
d. None of these	d. None of these
21 is a symbolic representation of	29. How many bit of ASCII code:
discrete elements of information:	a. 6
a. Data	b. 7
b. Code	c. 5
c. Address	d. 8
d. Control	
	30. Which code used in transferring code
22. Group of binary bits(0&1) is known as:	information from keyboards and to compute
a. Binary code	display and printers:
b. Digit code	a. ASCII
c. Symbolic representation	b. EBCDIC
d. None of these	c. Both
	d. None of these
23. A group of 4 binary bits is called:	H. K. I. I. I.
a. Nibble	31. Which code used to represent numbers, letters
b. Byte	punctuation marks as well as control characters:
c. Decimal	a. ASCII
d. Digit	b. EBCDIC
-	c. Both
24. BCD uses binary number system to	d. None of these
specify decimal numbers:	
a. 1-10	32. abbreviation EBCDIC stand for:
b. 1-9	a. Extended binary coded decima
c. 0-9	interchange code
d. 0-10	b. External binary coded decimal interchange
u. ∪-1∪	code
25. The are assigned according to	c. Extra binary coded decimal interchange code
	d. None of these
the position occupied by digits:	u. INOTIC OF THESE
a. Volume	22 How many 12 of EDODIC 1
b. Weight	33. How many bit of EBCDIC code:
c. Mass	a. 7
d. All of these	b. 8
	c. 5
26. what is the BCD for a decimal number 559:	d. 9
a. [0101 0101 1001] _{BCD}	
b. [0101 0001 1010]	34. Which code the decimal digits are represented
c. [0101 1001 1001]	by the 8421 BCD code preceded by 1111:
d. [1001 1010 0101]	a. ASCII
-	b. EBCDIC
	c. Both
	d. None of these

- 67. Which are stages of instruction cycle:
- a. Fetch b. Decode
- c. Execute
- d. Derive effective address of the instruction
- e. All of these
- 68. Which instruction are 32 bits long, with extra 16 bits:
- a. Memory reference instruction
- b. Memory reference format
- c. Both d. None of these
- 69. Which is addressed by sign extending the 16-bit displacement to 32-bit:
- a. Memory addressb. Effectivememory address
- c. Both a and b
- d. None of these
- 70. Which are instruction in which two machine cycle are required:
- a. Instruction cycle
- b. Memory reference instruction
- c. Both d. None of these
- 71. Which instruction are used in multithreaded parallel processor architecture:
- a. Memory reference instruction
- b. Memory reference format
- c. Both d. None of these
- 72. Which instruction are arranged as per the protocols of memory reference format of the input file in a simple ASCII sequence of integers between the range 0 to 99 separated by spaces without formatted text and symbols:
- a. Memory reference instruction
- b. Memory reference format
- c. Both
- d. None of these
- 73. _____ is an external hardware event which causes the CPU to interrupt the current instruction sequence:
- a. Input interrupt b. Output interrupt
- **c. Both** d. None of these
- 74. ISR stand for:
- a. Interrupt save routine
- **b.** Interrupt service routine
- c. Input stages routine
- d. All of these
- 75. Which interrupt services save all the register and flags:
- a. Save interrupt
- b. Input/output interrupt
- c. Service interrupt
- d. All of these

- 76. IRET stand for:
- a. Interrupt enter
- b. Interrupt return
- c. Interrupt delete
- d. None of these
- 77. Which are benefit of input/output interrupt:
- a. It is an external analogy to exceptions
- b. The processor initiates and perform all I/O operation
- c. The data is transferred into the memory through interrupt handler
- d. All of these
- 78. Which are the not causes of the interrupt:
- a. In any single device
- b. In processor poll devices
- c. It is an external analogy to exception
- d. None of these
- 79. Which are the causes of the interrupt:
- a. In any single device
- b. In processor poll devices
- c. In a device whose ID number is stored on the address bus **d.** All of these
- 80. Which are the functioning of I/O interrupt:
- a. The processor organizes all the I/O operation for smooth functioning
- b. After completing the I/O operation the device interrupt the processor
- c. Both d. None of these
- 81. _____with which computers perform is way beyond human capabilities:
- a. Speed b. Accuracy
- c. Storage d. Versatility
- 82. of a computer is consistently:
- a. Speed **b. Accuracy**
- c. Storage d. Versatility
- 83. GIGO stand for:
- a. Garbage-in-garbage-out
- b. Garbage-in garbage-occur
- c. Both d. None of these
- 84. How many basic operations of versatility:
- a. 5 b. 6 **c.** 4 d. 7
- 85. Which are the operation of versatility:
- a. exchange of information with the outside world via I/O device
- b. Transfer of data internally with in the central processing unit
- c. Performs of the basic arithmetic operations
- d. All of these

a.

b.

c. **d.** Link code

Decimal code

Binary code

Assembly code

d.

\$ as hello.s -o hello.o

48. which are of the following modern assemblers:	56. SPARC stands for:
a. MIPS	a. Scalable programmer architecture
b. Sun SPARC	b. Scalable processor architecture
c. HP PA-RISC	c. Scalable point architectured. None of these
d. x86(x64)	
e. all of these	57. Full form of MIPS assembler is:
49. How many types of loop control structures in C	a. Microprocessor without interlocked
language:	pipeline stageb. Microprocessor with interlocked pipeline
a. 4	stage
b. 5	c. Both a & b
c. 2	d. None of these
d. 3	58 statement block is executed atleast
u. <i>5</i>	once for any value of the condition:
50. Types of loop control statements are:	a. For statement
30. Types of loop control statements are.	b. Do-while statement
a. For loop	c. While statement
b. While loop	d. None of these
c. Do-while loop	d. Troile of these
d. All of these	59statement is an unconditional
111 01 0110	transfer of control statement:
51. <initial value=""> is which initializes the</initial>	a. Goto
value of variable:	b. Continue
	c. Switch
a. Assignment expression	d. All of these
b. Condition value	
c. Increment/decrement	60. In Goto statement the place to which control is
d. None of these	transferred is identified by a statement:
	a. Label
52. The format "%8d" is used to print	b. Di <mark>spl</mark> ay
values in a line:	c. Break
a. 11	d. None of these
b. 10	
c. 9	61. The continue statement is used to transfer the
d. 12	control to the of a statement block in a
	loop:
53. <condition> is aexpression which</condition>	a. End
will have value true or false:	b. Beginning
a. Relational	c. Middle
b. Logical	d. None of these
c. Both a & b	
d. None of these	62. The statement is used to transfer
	the control to the end of statement block in a loop:
54. <increment> is the value of variable</increment>	
which will be added every time:	a. Continue
a. Increment	b. Break
b. Decrement	c. Switch
c. Expanding	d. Goto
d. None of these	
	63function is used to transfer the
is the statement block of for loop lies	control to end of a program which uses one
inside block of another for loop:	argument() and takes value is zero for
a. Nested for loop	termination and non-zero fortermination:
a. Nested for loopb. Nested while loop	termination and non-zero fortermination: a. Exit(),normal, abnormal
a. Nested for loopb. Nested while loopc. Nested do-while loop	termination and non-zero fortermination: a. Exit(),normal, abnormal b. Break, normal, abnormal
a. Nested for loopb. Nested while loop	termination and non-zero fortermination: a. Exit(),normal, abnormal

14

d.

Monitor

137. The function of these microinstructions	145. A computer having writable control
is to issue the micro orders to:	memory is known as:
a. CPU	a. Static micro programmable
b. Memory	b. Dynamic micro programmable
c. Register	c. Both a & b
d. Accumulator	d. None of these
	146. The control memory contains a set of
138. Micro-orders generate theaddress of operand and execute instruction and	words where each word is:
prepare for fetching next instruction from the main	a. Microinstruction
memory:	b. Program
a. Physical	c. Sets
b. Effective	d. All of these
c. Logical	
d. all of above	147. During program execution content of
	main memory undergo changes and, but control
139. Which of the following 2 task are	memory has microprogram:
performed to execute an instruction by MCU:	· — ·
a. Microinstruction execution	a. Static
b. Microinstruction sequencing	b. Dynamic
c. Both a & b d. None of these	c. Compile time
	d. Fixed
140. What is the purpose of microinstruction	
executions:	148. What happens if computer is started:
a. Generate a control signal	a. It executes "CPU" microprogram which is
b. Generate a control signal to compile	sequence of microinstructions stored in ROM
c. Generate a control signal to execute	b. It executes "code" microprogram which is
d. All of these	sequence of microinstructions stored in ROM
	c. It executes "boot" microprogram which is
141. Which microinstruction provide next	sequence of microinstructions stored in ROM
instruction from control memory:	d. It executes "strap loader" microprogram
a. Microinstruction execution	which is sequence of microinstructions stored in
b. Microinstruction Buffer	ROM
c. Microinstruction decoder	110112
d. Microinstruction Sequencing	149. Control memory is part of that
1 1 1 1 1 1 1 1 1 1	has addressable storage registers and used as
142. Which are the following components of	temporary storage for data:
microprogramed units to implement control	temporary storage for data.
process:	a. ROM
a. Instruction register	b. RAM
b. Microinstruction address generation	c. CPU
c. Control store microprogram memory	d. Memory
d. Microinstruction Buffer	d. Wellot y
e. Microinstruction decoder	150. How many modes the address in control
f. All of these	•
i. All of these	memory are divided:
143. Microcodes are stored as firmware in	a. 2
. Wherocodes are stored as firmware in	
n Mamary chine h Pagistara	b. 3 c. 5
a. Memory chipsb. Registersc. accumulatorsd. none of these	c. 5 d. 7
c. accumulators d. none of these	u. /
	151. which of the following is interrupt mode:
144 A control mamour is start !	
144. A control memory is stored in	151. which of the following is interrupt mode:
some area of memory:	,
some area of memory: a. Control instruction	a. Task mode
some area of memory: a. Control instruction b. Memory instruction	a. Task modeb. Executive mode
some area of memory: a. Control instruction	a. Task mode

 ${\it COMPUTER\ ORGANIZATION\ AND\ ARCHITECTURE}$

152.	M	ode	of	addresses	in	control	memory
are:							
_	E	•		1 -			

- a. Executive mode
- b. Task mode
- c. Both a & b
- d. None of these
- 153. Addresses in control memory is made by____ for each register group:
- a. Address select logic
- b. Data select logic
- c. Control select logic
- d. All of these
- 154. There are how many register groups in control memory:
- a. 3
- b. 5
- c. 6
- d. 8
- 155. What type of circuit is used by control memory to interconnect registers:
- a. Data routing circuit
- b. Address routing circuit
- c. Control routing circuit
- d. None of the these
- 156. Which memory is used to copy instructions or data currently used by CPU:
- a. Main memory
- b. Secondary memory
- c. Cache memory
- d. None of these
- 157. Copy of instruction in cache memory is known as:
- a. Execution cache
- b. Data cache
- c. Instruction cache
- d. All of these
- 158. Copy of data in cache memory is called:
- a. Data cache
- b. Execution cache
- c. Address cache
- d. Control cache
- 159. What are 2 advantages of cache memory:
- a. Reduction of average access time for CPU memory
- b. Reduction of bandwidth of available memory of CPU
- c. Both a & b
- d. None of these

- 160. On what method search in cache memory used by the system:
- a. Cache directing
- b. Cache mapping
- c. Cache controlling
- d. Cache invalidation
- 161. _____process starts when a cpu with cache refers to a memory:
- a. Main memory
- b. External memory
- c. Cache
- d. All of these
- 162. When cache process starts hit and miss rate defines in cache directory:
- a. during search reads
- b. during search writes
- c. during replace writes
- d. during finding writes
- 163. In cache memory hit rate indicates:
- a. Data from requested address is not available
- b. Data from requested address is available
- c. Control from requested address is available
- d. Address from requested address is not available
- 164. In cache memory miss rate indicates:
- a. Availability of requested data
- b. Availability of requested address
- c. Non-Availability of requested data
- d. Non-Availability of requested address
- 165. Which 3 areas are used by cache process:
- a. Search, updating, invalidation
- b. Write, updating, invalidation
- c. Search, read, updating
- d. Invalidation, updating, requesting
- 166. Updating writes to cache data and also to
- a. Directories
- b. Memory
- c. Registers
- d. Folders
- 167. Invalidation writes only to_____ and erases previously residing address in memory:
- a. Folders
- b. Memory
- c. Directory
- d. Files

Control signals from bus

All of these

d.

e.

state as well as write back stage in CU:

b.

d.

Register read

Register R/W

a.

c.

Register write

All of these

- 67. Which operation is used to shift the content of an operand to one or more bits to provide necessary variation:
- a. Logical and bit manipulation
- b. Shift manipulation
- c. Circular manipulation
- d. None of these
- 68. _____is just like a circular array:
- a. Data
- b. Register
- c. ALU
- d. CPU
- 69. Which control refers to the track of the address of instructions:
- a. Data control
- b. Register control
- c. Program control
- d. None of these
- 70. In program control the instruction is set for the statement in a:
- a. Parallel
- b. Sequence
- c. Both
- d. None
- 71. How many types of unconditional jumps used in program control are follows:
- a. 1
- b. 2
- c. 3
- d. 4
- 72. Which are unconditional jumps used in program control are follows:
- a. Short jump
- b. Near jump
- c. Far jump
- d. All of these
- 73. Which instruction is used in program control and used to decrement CX and conditional jump:
- a. Loop
- b. Shift manipulation
- c. Circular manipulation
- d. None of these

- 74. Which is always considered as short jumps:
- a. Conditional jump
- b. Short jump
- c. Near jump
- d. Far jump
- 75. Who change the address in the program counter and cause the flow of control to be altered:
- a. Shift manipulation
- b. Circular manipulation
- c. Program control instruction
- d. All of these
- 76. Which is the common program control instructions are:
- a. Branch
- b. Jump
- c. Call a subroutine
- d. Return
- e. All of these
- f. None of these
- 77. Which is a type of microprocessor that is designed with limited number of instructions:
- a. CISC
- b. RISC
- c. Both
- d. None
- 78. SMP Stands for:
- a. System multiprocessor
- b. Symmetric multiprocessor
- c. Both
- d. None
- 79. UMA stands for:
- a. Uniform memory access
- b. Unit memory access
- c. Both
- d. None
- 80. NUMA stands for:
- a. Number Uniform memory access
- b. Not Uniform memory access
- c. Non Uniform memory access
- d. All of these
- 81. SIMD stands for:
- a. System instruction multiple data
- b. Single instruction multiple data
- c. Symmetric instruction multiple data
- d. Scale instruction multiple data

- 82. MIMD stands for:
- Multiple input multiple data
- b. Memory input multiple data
- Multiple instruction multiple data c.
- Memory instruction multiple data d.
- 83. HLL stands for:
- High level languages
- b. High level line
- High level logic c.
- d. High level limit
- 84. Which is a method of decomposing a sequential process into sub operations:
- **Pipeline** a.
- **CISC** b.
- **RISC**
- d. Database
- 85. How many types of array processor:
- 1
- b. 2
- 3 c.
- d. 4
- 86. Which are the types of array processor:
- Attached array processor
- b. SIMD array processor
- Both d. None
- 87. Which are the application of vector processing:
- Weather forecasting a.
- b. Artificial intelligence
- Experts system d. Images processing c.

h.

- Seismology e.
- f. Gene mapping All of these
- Aerodynamics g. None of these
- 88. Which types of jump keeps a 2_byte instruction that holds the range from- 128to127 bytes in the memory location:
- Far jump a.
- Near jump b.
- Short jump c.
- All of these d.
- 89. Which types of register holds a single vector containing at least two read ports and one write ports:
- a. Data system
- Data base b.
- c. Memory
- d. Vector register
- 90. Parallel computing means doing several takes simultaneously thus improving the performance of the
- Data system a.
- b. Computer system
- c. Memory
- d. Vector register

- 91. Which is used to speed-up the processing:
- Pipeline a.
- b. Vector processing
- **Both** c.
- None
- 92. Which processor is a peripheral device attached to a computer so that the performance of a computer can be improved for numerical computations:
- Attached array processor a.
- b. SIMD array processor
- c. Both
- None d.
- 93. Which processor has a single instruction multiple data stream organization that manipulates the common instruction by means of multiple functional units:
- Attached array processor a.
- b. SIMD array processor
- Both C.
- d. None
- 94. Which carry is similar to rotate without carry operations:
- a. Rotate carry
- **Rotate through carry** b.
- c. Both
- None
- 95. In the case of a left arithmetic shift, zeros are Shifted to the ____:
- Left
- Right b.
- Up c.
- d. Down
- 96. In the case of a right arithmetic shift the sign bit values are shifted to the____:
- a. Left
- Right b.
- Up c.
- d. Down

Con	nputer System Architecture MCQ 05	
		9. How many system of arithmetic, which are
1.	A number system that uses only two digits, 0	often used in digital system:
and	1 is called the:	
a.	Octal number system	a. 5
b.	Binary number system	b. 6
c.	Decimal number system	c. 3
d.	Hexadecimal number system	d. 4
2.	In which computers, the binary number are	10. Which are the system of arithmetic, which are
	esented by a set of binary storage device such	often used in digital system:
_	ip flop:	a. Binary digit
a.	Microcomputer	b. Decimal digit
b.	Personal computer	**
c.	Digital computer	d. Octal digit
d.	All of these	e. All of these
2	A Linear constant and the constant in the	11 I (1
3.	A binary number can be converted into	11. In any system, there is an ordered set of
	;	symbols also known as:
a.	Binary number	a. Digital
b.	Octal number	b. Digit
c.	Decimal number	c. Both
d.	Hexadecimal number	d. None of these
4.	Which system is used to refer amount of	12. Which is general has two parts in number
thing		system:
a.	Number system	a. Integer
b.	Number words	b. Fraction
c.	Number symbols	c. Both
d.	All of these	d. None of these
_		
5.	are made with some part of body,	13. MSD stand for:
usua	illy the hands:	3.5
		a. Most significant digit
a.	Number words	b. Many significant digit
b.	Number symbols	c. Both a and b
c.	Number gestures	d. None of these
d.	All of these	
		14. LSD stand for:
6.	are marked or written down:	a. Less significant digit
a.	Number system	b. Least significant digit
b.	Number words	c. Loss significant digit
c.	Number symbols	d. None of these
d.	Number gestures	
	8	15. The and of a number is
7.	A number symbol is called a:	defined as the number of different digits which can
, -		occur in eachposition in the system:
a.	Arabic numerals	a. Base
b.	Numerals	b. Radix
о. С.	Both	c. Both
d.	None of these	d. None of these
u.	NOTE OF THESE	d. INOHE OF THESE
8.	0,1,2,3,4,5,6,7,8 and 9 numerals are called:	16. Which system has a base or radix of 10:
a.	Arabic numerals	a. Binary digit
		• •
b.	String numerals	b. Hexadecimal digit

c.

d.

Decimal digit

Octal digit

Digit numerals

None of these

c.

d.

b.

c.

d.

0's to 1's

None of these

Both

Decimal

Binary

Octal

b.

c.

d.

- 32. Each device represent:
- a. 1 bit
- b. 2 bit
- c. 3 bit
- d. 4 bit
- 33. A 0 in the sign bit represents a and a 1 in the sign bit represents a
- a. Positive number
- b. Negative number
- c. Both
- d. None of these
- 34. How many main sign number binary codes are used:
- a. 4
- b. 5 **c. 3** d.

6

- 35. Which are the types of binary codes number:
- a. Sign magnitude
- b. 1's complement code
- c. 2's complement code
- d. All of these
- 36. How many types of addition in the 2's complement system:
- a. 3
- b. 4
- c. 5
- d. 6
- 37. Which are the types of addition in the 2's complement system:
- a. Both number positive
- b. A Positive number and a smaller negative number
- c. A negative number and a smaller positive number
- d. Both number negative
- e. All of these
- 38. How many important ideas to notice about these odometer readings:
- a. 1 **b. 2** c. 3 d. 4
- 39. Which are the types of important ideas to notice about these odometer readings:
- a. The MSB is the sign bit :0 for a +sign and 1 for a sign
- b. The negative number represent the 2's complement of the positive number
- **c. Both** d. All of these
- 40. Which is an algorithm or techniques used to multiply two numbers:
- a. Addition algorithm
- b. Subtraction algorithm
- c. Multiplication algorithm

- d. All of these
- 41. Which algorithm are used depending on the size of the numbers:
- a. Simple algorithm
- b. Specific algorithm
- c. Both
- d. None of these
- 42. Which algorithm is named after Volker Strassen:
- a. Strassen algorithm
- b. Matrix algorithm
- c. Both
- d. None of these
- 43. Strassen algorithm was published in
- a. 1967
- b. 1969
- c. 1987
- d. 1980
- 44. Which algorithm is used for matrix multiplication:
- a. Simple algorithm
- b. Specific algorithm
- c. Strassen algorithm
- d. Addition algorithm
- 45. Which algorithm is a divided and conquer algorithm that is asymptotically faster:
- a. Simple algorithm
- b. Specific algorithm
- c. Strassen algorithm
- d. Addition algorithm
- 46. Which method required 8 multiplication and 4 addition:
- a. Multiplication
- b. Usual multiplication
- c. Both d. None of these
- 47. Which algorithm is a multiplication algorithm which multiplies two signed binary numbers in 2's complement notation:
- a. Usual multiplication
- b. Booth's multiplication
- c. Both d. None of these
- 4. Which algorithm includes repeated addition of two predetermined values A and S to a product P and then performs a rightward arithmetic shift on P:
- a. Booth's algorithm
- b. Usual algorithm
- c. Multiplication algorithm
- d. None of these

-MCQ	34 KNRES
49. Which algorithm in mathematics expresses the outcome of the process of division of integers by another:	58. In this method, the decimal number is:
a. Addition algorithm	a. Repeatedly divided by 4
b. Multiplication algorithm	b. Repeatedly divided by 2
c. Division algorithm	c. Repeatedly divided by 1
d. None of these	d. None of these
50. Which algorithm is used to find GCD of two	
integers:	59. The conversion of decimal fraction to binary
a. Multiplication algorithm	fraction may be accomplished by using
b. Division algorithm	 :
c. Addition algorithm	a. Several techniques
d. Simple algorithm	b. Simple techniques
	c. Both d. None of these
51. Which algorithm is used as a general variant of	
a theorems, in the domain of integral numbers:	60. Which system was used extensively by early
a. Multiplication algorithm	mini computers:
b. Division algorithm	a. Decimal number b. Octal number
c. Addition algorithm	c. Hexadecimal number d. Binary
d. Simple algorithm	number
52. How many main approaches to algorithm for division:	61. 3 bit binary numbers can be represented by
a. 2 b. 3	a. Binary number b. Decimal number
c. 4 d. 5	c. Hexadecimal number
c. 4 u. 3	d. Octal number
53. How many algorithm based on add/subtract	u. Octai humber
and shift category:	62. A number system that uses eight
a. 2 b. 4	digits,0,1,2,3,4,5,6, and 7 is called an:
c. 3 d. 6	a. Binary number system
	b. Decimal number system
54. Which are the algorithm based on add/subtract	c. Octal number system
and shift category:	d. None of these
a. Restoring division	63. Which system each digit has a weight
b. Non-restoring division	corresponding to its position:
c. SRT division	a. Hexadecimal number system
d. All of these	b. Binary number system
	c. Decimal number system
55. Several methods for converting a	d. Octal number system
:	
a. Decimal number to a binary number	64. Which odometer is a hypothetical device
b. Binary number to a decimal number	similar to the odometer of a car:
c. Octal number to a decimal number	a. Binary b. Decimal
d. Hexadecimal number to a binary number	c. Hexadecimal d. Octal
56. A popular method knows as double-dabble	65. Ancan be easily converted to its
method also knows as:	decimal equivalent by multiplying each octal digit
a. Divided-by-one method	by positional weight:
b. Divided-by-two method	a. Binary number b. Octal number
c. Both d. None of these	c. Hexadecimal number
57 White weeks 1 ' 1 '	d. Decimal number
57. Which method is used to convert a large	66 Mil. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
decimal number into its binary equivalent:	66. The simple procedure is to use:

Double dabble method

Divided-by-two-method

a.

b.

c.

d.

Both

None of these

Binary-triplet method

Decimal-triplet method

Octal-triplet method

All of these

a.

b.

c.

d.

d.

Mantissa

power of sixteen: a. Binary b. Hexadecimal	77. The second part of floating point designates the position of the decimal point and is called:
c. Octal d. None of these	a. Mantissa b. Binomial
c. Octai d. None of these	c. Octal d. Exponent
68. Which number are used extensively in	e. Com u. Exponent
microprocessor work:	78. The fixed point mantissa may be
a. Octal b. Hexadecimal	or:
c. Both d. None of these	a. Fraction b. Integer
	c. Both d. None of these
69. Which number is formed from a binary number	
by grouping bits in groups of 4-bit each starting at	79. The number of bit required to
the binary point:	express and are determined by
a. Binary b. Octal c. Decimal d. Hexadecimal	the accuracy desired from the computing system : a. Exponent b. Mantissa
c. Decimal d. Hexadecimal	a. Exponentb. Mantissac. Bothd. None f these
70. Which number system has a base of 16:	c. Dom u. None i these
a. Binary number system	80. Which part is not physically indicated in the
b. Octal number system	register:
c. Decimal number system	a. Binary b. Decimal
d. Hexadecimal number system	c. Octal d. None of these
71. Counting in hex, each digit can be increment	81. The exponent contains the decimal number:
from:	a. +05 b. +03
a. 0 to F b. 0 to G c. 0 to H d. 0 to J	c. + 04 d. +07
c. 0 to H d. 0 to J	82. The first or the integer part is known
72. Which number can be converted into binary	as:
numbers by converted each hexadecimal digit to 4	a. Exponent b. Integer
bits binary equivalent using the code:	c. Binomial d. None of these
a. Binary number b. Decimal number	
c. Octal number d. Hexadecimal number	83. How many bits of mantissa:
	a. 4 b. 8
73. One way to convert from decimal to	c. 10 d. 16
hexadecimal is the:	04 11
a. Double dabble methodb. Hex dabble method	84. How many bit of exponent:
b. Hex dabble methodc. Binary dabble method	a. 4 b. 6 c. 8 d. 10
d. All of these	c. 8 d. 10
d. Thi of these	85. Which number is said to be normalized if the
74. Binary numbers can also be expressed in this	more significant position of the mantissa contains a
same notation byrepresentation:	non zero digit:
a. Floating point	a. Binary point number
b. Binary point	b. Mantissa point number
c. Decimal point	c. Floating point number
d. All of these	d. None of these
75. How many parts of floating point	86 Which operation with floating point numbers
75. How many parts of floating point representation of a number consists:	86. Which operation with floating point numbers are more complicated then arithmetic operation
a. 4 b. 2 c. 3 d. 5	with fixed point number:
	a. Logical operation
76. The first part of floating point represents a	b. Arithmetic operation
signed fixed point number called:	c. Both
a. Exponent	d. None of these
b. Digit	
c. Number	

Computer System Architecture MCQ 06

- Which is an important data transfer technique:
- a.
- **DMA** b.
- c. **CAD**
- None of these d.
- 2. Which device can be thought of transducers which can sense physical effects and convert them into machine-tractable data:
- Storage devices a.
- b. Peripheral devices
- Both c.
- d. None
- 3. Which devices are usually designed on the complex electromechanical principle:
- Storage devices a.
- b. Peripheral devices
- **Input devices** c.
- d. All of these
- 4. Which disk is one of the important I/O devices and its most commonly used as permanent storage devices in any processor:
- a. Hard disk
- b. Optical disk
- Magneto disk c.
- Magneto Optical disk d.
- In storage devices PC have hard disk having capacities in the range of ____:
- 12GB to 15GB a.
- 15GB to 20GB b.
- 20GB to 80GB c.
- 80GB to 85GB d.
- Which disk is a 3.5-inch diskette with a capacity of 1.44MB:
- Soft disk a.
- Floppy disk b.
- **Both** c.
- d. None
- 7. Which has a large storage capacity of 2 to8GB:
- Magnetic tape a.
- Magnetic disk b.
- Soft disk c.
- d. Floppy disk

- 8. Which disk read the data by reflecting pulses of laser beams on the surface:
- Magnetic disk a.
- b. Soft disk
- Floppy disk c.
- d. **Optical disk**
- 9. Data access time of optical disk varies from 200 to 350minutes with transfer rate of _____:
- 130KB/s to 400KB/s a.
- 130KB/s to 500KB/s b.
- c. 150KB/s to 600KB/s
- d. 150KB/s to 800KB/s
- 10. NAND type flash memory data storage devices integrated with a _____ interface:
- ATM
- LAN b.
- **USB** c.
- d. **DBMS**
- 11. Which disk is based on the same principle as the optical disk:
- Optical disk a.
- Magnetic disk b.
- Magneto-optical disk c.
- d. All of these
- 12. WAN stands for:
- Wide area network a.
- b. Word area network
- World area network c. d. Window area network
- 13. The human-interactive I/O devices can be further categorized as :
- a. Direct
- Indirect b.
- **Both** c.
- None d.
- 14. I/O devices are categorized in 2 parts are:
- Character devices a.
- b. Block devices
- Numeral devices c.
- Both a & b d.
- 15. UART stands for:
- Universal asynchronization receiver/transmitter
- Universal b. asynchronous
- receiver/transmitter
- United asynchronous receiver/transmitter c.
- Universal automatic receiver/transmitter d.

Both a & b

None of these

c. d.

49. DAC stands for:	
a. Digital to analog converter	56. In devices, controller is used for:
b. Analog to digital converter	a Buffering the data
c. Only digital converter	b. Manipulate the data
d. Only analog converter	c. Calculate the data
•	d. Input the data
50. In text to speech, speech is synthesized using	•
lookup table of and these clubbed together	57. By which signal flow of traffic between
to form:	internal and external devices is done:
	a. Only control signal
a. Phonemes, Words	b. Only timing signal
b. Phonemes, Sentences	c. Control and timing signal
c. Character, Phonemes	d. None of these
d. Word, Character	58. In devices 2 status reporting signals are:
51interface is an entity that controls data	a. BUSY
transfer from external device, main memory and or	b. READY
CPU registers:	c. Both a & b
	d. None of these
a. I/O interface	
b. CPU interface	59. I/O module must recognize a address
c. Input interface	for each peripheral it controls:
d. Output interface	
	a. Long
52. The operating mode of I/O devices is	b. Same
for different device:	c. Unique
	d. Bigger
a. Same	
b. Different c. Optimum	60. Each interaction b/w CPU and I/O module involves:
d. Medium	
	a. Bus arbitration
53. To resolve problems of I/O devices there is a	b. Bus revolution
special hardware component between CPU	c. Data bus
and to supervise and synchronize all input	d. Control signals
output transfers:	
	61. Which are 4 types of commands received by
a. Software	an interface:
b. Hardware	a. Control, status, data output, data input
c. Peripheral	b. Only data input
d. None of these	c. Control, flag, data output, address arbitration
	d. Data input, data output, status bit, decoder
54. I/O modules are designed with aims to:	
a. Achieve device independence	62. Two ways in which computer buses can
b. Handle errors	communicate with memory in case of I/O devices
c. Speed up transfer of data	by using:
d. Handle deadlocks	a. Separate buses for memory and I/O device
e. Enable multi-user systems to use dedicated	b. Common bus for memory and I/O device
device	c. both a & b
f. All of these	d. none of these
55 IDE is a controller.	63. There are 2 ways in which addressing can be
55. IDE is a controller:	63. There are 2 ways in which addressing can be done in memory and I/O device:
a. Disk	
b. Floppyc. Hard	b. Memory-mapped I/Oc. Both a & b
d. None of these	d. None of these

 64. Advantages of isolated I/O are: a. Commonly usable b. Small number of I/O instructions c. Both a & b d. None of these 	 72. All the operations in a digital system are synchronized by a clock that is generated by: a. Clock b. Pulse c. Pulse generator d. Bus
65. In addressing technique separate address space is used for both memory and I/O device: a. Memory-mapped I/O b. Isolated I/O c. Both a & b d. None of these	 73. Asynchronous means: a. Not in step with the elapse of address b. Not in step with the elapse of control c. Not in step with the elapse of data d. Not in step with the elapse of time
66is a single address space for storing both memory and I/O devices: a. Memory-mapped I/O b. Isolated I/O c. Separate I/O	74is a single control line that informs destination unit that a valid is available on the bus: a. Strobe b. Handshaking c. Synchronous d. Asynchronous
 d. Optimum I/O 67. Following are the disadvantages of memory-mapped I/O are: a. Valuable memory address space used up b. I/O module register treated as memory addresses c. Same machine intersection used to access 	75. What is disadvantage of strobe scheme: a. No surety that destination received data before source removes it b. Destination unit transfer without knowing whether source placed data on data bus c. Can't said d. Both a & b
both memory and I/O device d. All of these 68. Who determine the address of I/O interface:	76. In technique has 1 or more control signal for acknowledgement that is used for intimation:
a. Register select	a. Handshaking
b. Chip select c. Both a & b	b. Strobec. Both a & b
c. Both a & b d. None of these	d. None of these
d. None of these	d. None of these
69. 2 control lines in I/O interface is:a. RD, WR	77. The keyboard has a asynchronous transfer mode:
b. RD,DATA	a. Parallel
c. WR, DATA	b. Serial
d. RD, MEMORY	c. Optimum
	d. None
70. In I/O interface RS1 and RS0 are used for	
selecting:	78. Intransfer each bit is sent one after the
a. Memory	another in a sequence of event and requires just one
b. Register	line:
c. CPU	a. Serial b. Parallel
d. Buffer	c. Both a & b d. None of these
 71. If CPU and I/O interface share a common bus than transfer of data b/w 2 units is said to be: a. Synchronous b. Asynchronous c. Clock dependent d. Decoder independent 	 79. Modes of transfer b/w computer and I/O device are: a. Programmed I/O b. Interrupt-initiated I/O c. DMA d. Dedicated processor such as IOP and DCP
	e. All of these

95. _____interrupt method uses a register whose bits are set separately by interrupt signal for each device:

a. Parallel priority interrupt

- b. Serial priority interrupt
- c. Both a & b
- d. None of these

96. _____register is used whose purpose is to control status of each interrupt request in parallel priority interrupt:

- a. Mass
- b. Mark
- c. Make
- d. Mask
- 97. The ANDed output of bits of interrupt register and mask register are set as input of:
- a. Priority decoder
- b. Priority encoder
- c. Priority decoder
- d. Multiplexer

98. Which 2 output bits of priority encoder are the part of vector address for each interrupt source in parallel priority interrupt:

- a. **A0 and A1**
- b. A0 and A2
- c. A0 and A3
- d. A1 and A2
- 99. What is the purpose
- 100. of A0 and A1 output bits of priority encoder in parallel priority:
- a. Tell data bus which device is to entertained and stored in VAD

b. Tell subroutine which device is to entertained and stored in VAD

- c. Tell subroutine which device is to entertained and stored in SAD
- d. Tell program which device is to entertained and stored in VAD
- 101. When CPU invokes a subroutine it performs following functions:
- a. Pushes updated PC content(return address) on stack
- b. Loads PC with starting address of subroutine
- c. Loads PC with starting address of ALU
- d. Both a & b
- 102. DMAC stands for:

a. Direct memory access controller

- b. Direct memory accumulator controller
- c. Direct memory access content
- d. Direct main access controller
- 103. IOP stands for:

- a. **Input output processor**
- 104. DCP stands for:

a. Data communication processor

105. Which may be classified as a processor with the direct memory access capability that communicates with I/O devices:

- a. DCP
- b. IOP
- c. Both
- d. None

106. The processor that communicates with remote terminals like telephone or any other serial communication media in serial fashion is called

- a. **DCP**
- b. IOP
- c. Both
- d. None

107. Instruction that are used for reading from memory by an IOP called _____:

- a. Commands
- b. Block diagram
- c. Interrupt
- d. None of these

108. Data communication with a remote device a special data communication is used :

- a. Multiprocessor
- b. Serial communication
- c. DCP
- d. IOP
- 109. CRC stands for:

a. Cyclic redundancy check

110. Which is used for synchronous data, PID is process ID, followed by message, CRC code and EOP indicating end of block:

- a. DCP
- b. CRC
- c. IOP
- d. SYNC
- 111. Which is commonly used in high –speed devices to realize full efficiency of communication link:
- a. Transmission
- b. Synchronous communication
- c. Multiprocessor
- d. All of these

b.

c.

d.

BAL

All of these

b.

c.

d.

None of these

Distributed memory multiprocessor

- 127. Which signal on bus applies +1 to the priority of resolution circuits of the arbitration designate a new arbitration:
- a. BM4
- b. BAL
- c. BNA
- d. DBA
- 128. Which signal create 3 lines of bus in which signals from the encoded number of processors:
- a. BM1 to BM3
- b. BAL
- c. Both
- d. None of these
- 129. Which signal request the validation signal make active if its logic level is 0 and validate signals from BM1 to BM3:
- a. BAL
- b. **BM4**
- c. BNA
- d. All of these
- 130. Which signal represents synchronization signal decided by interprocess arbitration with a certain delay or signal DMA:
- a. BAL
- b. BNA
- c. Both
- d. None of these
- 131. In which condition only one process holds a resource at a given time:
- a. Mutual exclusion
- b. Hold and wait
- c. Both
- d. None of these
- 132. In which condition one process holds the allocated resources and other waits for it:
- a. No preemption
- b. Hold and wait
- c. Mutual exclusion
- d. All of these
- 133. In which condition resource is not removed from a process holding:
- a. Synchronization problem
- b. **No preemption**
- c. Hold and wait
- d. None of these

- 134. In which condition busy waiting, programmer error, deadlock or circular wait occurs in interprocessing:
- a. Synchronization problem
- b. No preemption
- c. Hold and wait
- d. None of these
- 135. Mechanism can be referred to as adding a new facility to the system hence known as :
- a. Process
- b. Arbitration
- c. Both a & b
- d. None of these
- 136. Which is a mechanism used by the OS to ensure a systematic sharing of resources amongst concurrent resources:
- a. Process synchronous
- b. Process system
- c. **Process synchronization**
- d. All of these
- 137. _____ is basically sequence of instructions with a clear indication of beginning and end for updating shared variables
- a. Critical section
- b. Entry section
- c. Remainder section
- d. All of these
- 138. Which provides a direct hardware support to mutual exclusion
- a. **Test-and-set(TS)**
- b. Swap instruction
- c. Wait instruction
- d. Signal instruction
- 139. A process waiting to enter its critical section may have to wait for unduly_____:
- a. Short time or may have to wait forever
- b. Long time or may have to wait forever
- c. Short time or may have to wait for long time
- d. Long time or may have to wait for short time
- 140. Which is a modified version of the TS instruction which is designed to remove busy-waiting:
- a. Swap instruction
- b. Wait instruction
- c. Signal instruction
- d. Both b & c

- 157. Which section refer to the code segment where a shared resource is accessed by the process:
- a. Reminder section
- b. Entry section
- c. Both
- d. None of these
- 158. Which section is the remaining part of a process's code:
- a. Racing section
- b. Critical section
- c. Entry section
- d. Reminder section
- 159. How many conditions for controlling access to critical section:
- a. 2
- b. 4
- c. 3
- d. 5
- 160. Which instruction provides a direct hardware support to mutual exclusion:
- a. SP instruction
- b. TS instruction
- c. Both
- d. None of these
- 161. Which instruction also improves the efficiency of the system:
- a. Swap instruction
- b. TS instruction
- c. Both
- d. None of these
- 162. Which instruction allows only one concurrent process to enter the critical section:
- a. RP instruction
- b. SP instruction
- c. TS instruction
- d. None of these
- 163. Which section problem can be solved simply in a uniprocessor environment if the we are able to prevent the occurrence of interrupt during the modification of a shared variable:
- a. Entry section
- b. Critical section
- c. Non-critical section
- d. None of these

- 164. The problem of readers and writers was first formulated by _____:
- a. P.J. Courtois
- b. F.Heymans
- c. D.L. Parnas
- d. All of these
- 165. Which is a situation in which some process wait for each other's actions indefinitely:
- a. Operating system
- b. **Deadlock**
- c. Mutex
- d. None of these

166. _____system handles only deadlocks caused by sharing of resources in the system:

- a. **Operating system**
- b. Deadlock
- c. Mutex
- d. None of these
- 167. A deadlocks occurs when the how many conditions are met:
- a. 1
- b. 2
- c. 3
- d. 4
- 168. Which are the characteristics of deadlocks:
- a. Mutual exclusion
- b. Hold and wait
- c. No pre-emption
- d. Circular wait
- e. All of these
- 169. RAG stands for:
- a. Resource allocation graph
- 170. How many events concerning RAG can occur in a system:
- a. 1
- b. 2
- c. 3
- d. 4
- 171. Which are the events concerning RAG can occur in a system:
- a. Request for a resource
- b. Allocation of a resource
- c. Release of resource
- d. All of these

-MCQ
172. How many methods for handling deadlocks: a. 1 b. 2 c. 3 d. 4
173. Which are the method for handling deadlocks:
 a. Deadlock prevention b. Deadlock avoidance c. Deadlock detection d. All of these
174. How many condition that should be met in order to produce a deadlock:
a. 2 b. 4 c. 6 d. 8
175. Which are the condition that should be met in order to produce a deadlock:
a. Mutual exclusion b. Hold and Waitc. No preemption
 d. Circular wait e. All of these 176. In protocol each process can make a
a. Increasing order b. Decreasing order c. Both a & b d. None of these
177. In protocol above mentionedprotocol are used then the circular wait-condition can not hold:
a. 1 b. 2 c. 3 d. 4
178. Which state refers to a state that is not safe not necessarily a deadlocked state:
a. Safe stateb. Unsafe statec. Both a & bd. None of these
179 a direct arrow is drawn from the process to the resource rectangle to represent

each pending resource request:

b.

d.

b.

d.

f.

SP

RAG

The attributes of a file are:

Time, date and user identification

Identifier

Location

Protection

TS

CCR

Name

Types

All of these

Size

a.

c.

a.

c.

e.

g. h.

180.

181. The various file operation are: Crating a file Writing a file b. a. Reading a file c. Repositioning within a file d. Deleting a file truncating a file e. f. All of these 182. Which operations are to be performed on a directory are: Search for a file b. Create a file a. c. Delete a file List a directory Rename a file e. f. Traverse the file system All of these g. Which memory is assembled between 183. main memory and CPU: Primary memory b. Cache memory c. Both a & b None of these 184. Which is considered as semi-conductor memory, which is made up of static RAM: Primary memory b. Cache memory a. Both a & b None of these d. c. 185. Which is one of the important I/O devices and is most commonly used as permanent storage device in any processor: Soft disk b. Hard disk a. c. Both a & b d. None of these _ can read any printed character by 186. comparing the pattern that is stored in the computer: a. SP b. **CCR RAG** d. **OCR** c. 187. Which system is a typical example of the readers and writers problem: Airline reservation system a. Airport reservation system b. Both c. None of these d. Which lock can arise when two 188. processes wait for phone calls from one another: Spine lock **Dead lock** b. None of these Both d 189. Which lock is more serious than indefinite postponement or starvation because it

a.

C.

affect more than one job:

Spinelock

None of these

b.

d.

Deadlock

Both