Étude des valeurs extrêmes univariées

El Mazzouji Wahel, Mariac Damien, Condamy Fabian $22~{\rm avril}~2025$

Table des matières

1	Introduction	3
2	Les lois de M_n 2.1 Quelques notations 2.2 Paramètre b_n 2.3 Paramètre a_n 2.4 Les lois limites 2.4.1 Nature du support 2.4.2 Si $\gamma > 0$ 2.4.3 Si $\gamma < 0$ 2.4.4 2. Cas $\gamma = 0$ 2.5 Résumé	3 3 4 5 6 6 7 7
3	Quelques exemples numériques 3.0.1 Loi uniforme 3.0.2 Loi exponentielle 3.0.3 Loi normale 3.0.4 Loi de Cauchy	8 9 9
4	4.1 Estimateur de Pickands	12 13 14 15 15 15 17
5	Sélection des estimateurs de l'indice de valeurs extrêmes	19
6	6.1 Première méthode (Méthode des maxima en bloc) avec Wooster	20 20 20 21 21 21 22
7		2 4

1 Introduction

Les événements extrêmes tels que les inondations, les crues, les canicules, les crises financières ou encore les krachs boursiers sont certes rares, mais peuvent avoir des conséquences considérables. Leur modélisation statistique constitue aujourd'hui un enjeu majeur dans des domaines aussi variés que la climatologie, l'assurance, la finance ou encore l'ingénierie.

Bien que de tels phénomènes ne puissent pas toujours être évités, la société peut mettre en œuvre des stratégies préventives afin d'en limiter les impacts. C'est dans cette optique que s'inscrit la théorie des valeurs extrêmes (TVE), un outil statistique essentiel dédié à l'analyse et à la prédiction des événements rares. Développée dès le début du XX^e siècle grâce aux travaux fondateurs de Fréchet (1927), Fisher et Tippett (1928), puis formalisée par Gnedenko (1943), cette théorie vise à modéliser les observations situées dans les queues des distributions de probabilité.

Dans la plupart des approches statistiques classiques, l'accent est mis sur le comportement global d'un échantillon, notamment par l'étude de ses moments (moyenne, variance, etc.). Ces méthodes reposent en grande partie sur le théorème central limite (TCL), énoncé par Pierre-Simon de Laplace en 1809, qui stipule que la somme (ou la moyenne) normalisée d'un grand nombre de variables aléatoires indépendantes et identiquement distribuées converge en loi vers une distribution normale.

Toutefois, le TCL ne donne aucune information sur le comportement des valeurs extrêmes, les plus grandes ou les plus petites observations qui sont pourtant cruciales dans les situations de risque. Il est donc naturel de se demander s'il existe un résultat asymptotique analogue au TCL pour les extrêmes d'un échantillon.

Pour cela, on considère un échantillon de variables aléatoires i.i.d. (X_1, X_2, \dots, X_n) , et l'on s'intéresse au comportement du maximum :

$$M_n = \max\{X_1, X_2, \dots, X_n\}.$$

La théorie des valeurs extrêmes cherche à étudier la convergence en loi de M_n (après normalisation éventuelle), ainsi que les conditions sous lesquelles cette convergence a lieu. Elle permet d'identifier les lois limites possibles pour les maxima (ou minima), qui sont : la loi de Fréchet, la loi de Gumbel et la loi de Weibull, chacune correspondant à un type de comportement de la queue de distribution.

Remarque: L'étude du minimum est entièrement analogue, il suffit d'examiner $-\min(X_1,\ldots,X_n)$.

La théorie des valeurs extrêmes trouve des applications concrètes dans de nombreux domaines. Elle est utilisée en :

- **Hydrologie**, pour prévoir les crues et protéger les zones inondables;
- Climatologie, pour modéliser les épisodes météorologiques extrêmes;
- **Assurance**, pour estimer la probabilité de sinistres rares et coûteux;
- **Finance**, pour évaluer les risques extrêmes liés aux variations de marché;
- **Ingénierie**, pour garantir la fiabilité des structures face à des sollicitations exceptionnelles.

En fournissant un cadre théorique rigoureux pour l'analyse des queues de distribution, la TVE permet d'anticiper la fréquence et l'intensité des événements rares, et ainsi d'aider à la prise de décision dans des contextes à fort enjeu.

2 Les lois de M_n

2.1 Quelques notations

On commence par faire une remarque sur la fonction de repartion de M_n en utilisant le fait que les X_i sont i.i.d :

En effet, si on note F_{M_n} la fonction de repartition de M_n , et F_{X_i} la fonction de repartition de X_i on a :

$$\forall t \in \mathbb{R} \quad F_{M_n}(t) = \mathbb{P}(M_n < t) = \mathbb{P}(X_1 < t, ..., X_n < t) = \mathbb{P}(X_1 < t)^n = F_{X_1}^n(t)$$

Dans la suite, on notera F(t), la fonction de repartition des X_i .

Mais on rencontre un probleme ici, puisque si $n \to +\infty$, $F(t)^n$ converge vers 0 (ou 1 si t est la borne sup du support des X_i).

L'idée est donc d'introduire 2 suites (b_n) et (a_n) (avec $a_n > 0$ pour tout n) afin de pouvoir contrôler M_n .

Puis étudier la loi de la limite de $\frac{M_n-b_n}{a_n}$. Comme la fonction de repartition caracterise la loi, il nous suffit d'étudier la fonction G définie pour tout t dans le support des X_i comme :

$$\mathbb{P}\left(\frac{M_n - b_n}{a_n} < t\right) \xrightarrow[n \to +\infty]{} G(t)$$

Si il existe de tel suite a_n et b_n alors on dit que F est dans le domaine d'attraction de G.

à ce stade la, il nous faut donc trouver les distributions G qui peuvent apparaître comme limite dans l'équation ci-dessus.

Pour ce faire, nous allons utiliser le théoreme suivant :

Théorème (méthode de la fonction muette): Soit Y_n une variable aléatoire de fonction de répartition F_n , et soit Y une variable aléatoire de fonction de répartition F. Alors $Y_n \xrightarrow{\mathcal{L}} Y$ si et seulement si pour toute fonction z réelle, bornée et continue :

$$\mathbb{E}[z(Y_n)] \to \mathbb{E}[z(Y)].$$

En prenant ici $Y_n = \frac{M_n - b_n}{a_n}$, on obtient :

$$\mathbb{E}[z(\frac{M_n - b_n}{a_n})] = \int_{-\infty}^{\infty} z(\frac{x - b_n}{a_n}) \ n \ F^{n-1}(x) dF(x)$$

L'astuce ici va être de faire un changement de variable astucieux. On va poser :

$$x = Q(1 - \frac{1}{y}) = K(y)$$
 avec Q la fonction quantile

Done,
$$\int_{-\infty}^{\infty} z \left(\frac{x - b_n}{a_n} \right) n F^{n-1}(x) dF(x) = \int_0^n z \left(\frac{K\left(\frac{n}{v}\right) - b_n}{a_n} \right) \left(1 - \frac{v}{n} \right)^{n-1} dv.$$
 (1)

Or, on a $\lim_{n\to\infty}(1-\frac{v}{n})^{n-1}=e^{-v}$, et on a $\lim_{n\to\infty}\int_0^n=\int_0^{+\infty}$

2.2 Paramètre b_n

On en déduit une bonne valeur pour b_n . En effet,

$$\mathbb{P}\left(\frac{M_n - b_n}{a_n} < t\right) \xrightarrow[n \to +\infty]{} G(t) \in]0:1[$$

$$\iff F^n(a_n t + b_n) \xrightarrow[n \to +\infty]{} G(t)$$

$$\iff n \ln(F(a_n t + b_n)) \xrightarrow[n \to +\infty]{} \ln(G(t))$$

$$\iff n(-F(a_n t + b_n) + 1) \xrightarrow[n \to +\infty]{} \ln(G(t)) \quad (\text{car } \lim_{x \to 0} \frac{\ln(1 - x)}{x} = -1)$$

$$\iff n \mathbb{P}(X_1 > a_n t + b_n) \xrightarrow[n \to +\infty]{} -\ln(G(t))$$

On obtient alors pour paramètre d'échelle :

$$n\mathbb{P}(X_1 > b_n) = 1 \Longleftrightarrow \mathbb{P}(X_1 < b_n) = 1 - \frac{1}{n}$$

 $\iff F(b_n) = 1 - \frac{1}{n}$
 $b_n = Q(1 - \frac{1}{n}) = K(n)$

Dans la dernière équivalence, on a composé par la fonction quantile.

2.3 Paramètre a_n

Avec le parametre b_n définie au dessus et en posant $u=\frac{1}{v}$ on obtient alors une condition, il faut qu'il existe une fonction a tel que $\lim_{x\to\infty}\frac{K(xu)-K(x)}{a(x)}$ converge **vers une fonction** h(u).

Proposition:

Les limites possibles sont données par :

$$ch_{\gamma}(u) = c \int_{1}^{u} v^{-\gamma - 1} dv = c \frac{u^{\gamma} - 1}{\gamma}.$$

$$\tag{2}$$

Nous interprétons $h_0(u) = \log(u)$ lorsque $\gamma = 0$.

Remarque : On ne veut pas que c=0, car il conduit à une limite dégénérée pour $\frac{M_n-b_n}{a_n}$. Ensuite, le cas c>0 peut être ramené au cas c=1 en incorporant c dans la fonction a.

Preuve de la Proposition

Soient u, v > 0. Alors:

$$\frac{K(xuv) - K(x)}{a(x)} = \frac{K(xuv) - K(xu)}{a(xu)} \frac{a(xu)}{a(x)} + \frac{K(xu) - K(x)}{a(x)}. \tag{2.3}$$

Si la limite dans F est dans le domaine d'attraction de G (ce qu'on suppose depuis le début), alors le rapport $\frac{a(ux)}{a(x)}$ converge vers g(u).

De plus,

$$\frac{a(xuv)}{a(x)} = \frac{a(xuv)}{a(xv)} \frac{a(xv)}{a(x)}.$$

Par passage à la limite pour x, la fonction g satisfait l'équation fonctionnelle de Cauchy:

$$g(uv) = g(u) g(v).$$

Les solutions de cette équation sont de la forme $g(u) = u^{\gamma}$ avec γ un réel.

Donc, on a $\lim_{x\to\infty} \frac{a(ux)}{a(x)} = x^{\gamma}l(x)$, on dit dans ce cas que a est une fonction à variation régulière.

En réécrivant l'expression (2.3) avec cette convergence, on en déduit que la fonction limite est de la forme

$$h_{\gamma}(u) = c \, \frac{u^{\gamma} - 1}{\gamma},$$

avec la convention $h_0(u) = \ln u$.

Ainsi, nous concluons que

$$h_{\gamma}(u) = \frac{u^{\gamma} - 1}{\gamma}$$
 (avec $h_0(u) = \ln u$),

2.4 Les lois limites

En reprenant (2.3) et en utilisant ce qui précède, on obtient :

$$\lim_{x \to \infty} \frac{K(xuv) - K(x)}{a(x)} = u^{\gamma} h(v) + h(u)$$

autrement dit :
$$h_{\gamma}(uv) = u^{\gamma}h_{\gamma}(v) + h_{\gamma}(u)$$

On fait alors une disjonction de cas sur la valeur de gamma.

2.4.1 Nature du support

En reprenant l'équation (2), on obtient :

$$h_{\gamma}\left(\frac{1}{v}\right) = \frac{(1/v)^{\gamma} - 1}{\gamma} = \frac{v^{-\gamma} - 1}{\gamma}$$

Posons $u = \frac{v^{-\gamma} - 1}{\gamma}$. On résout alors pour v:

$$v^{-\gamma} = 1 + \gamma u \implies v = (1 + \gamma u)^{-1/\gamma}$$

Le changement de variable de v à u permet de réécrire l'intégrale limite sous la forme

$$\int_{u \in S_{\gamma}} z(u) d \left\{ \exp \left[-\left(1 + \gamma u\right)^{-1/\gamma} \right] \right\}$$

ce qui conduit à identifier la loi limite par

$$G_{\gamma}(u) = \exp\left\{-\left(1 + \gamma u\right)^{-1/\gamma}\right\}$$

Il reste alors à étudier la nature du support S_{γ} , mais celui-ci dépend du signe de γ :

2.4.2 Si $\gamma > 0$

L'inversion montre que $v \in [0,1]$ correspond à $u > -\frac{1}{\gamma}$.

De plus, pour de grandes valeurs x on a :

$$S(x) \approx \exp\left[-\left(1 + \gamma x\right)^{-1/\gamma}\right]$$

Or, par un développement asymptotique, $(1+\gamma x)^{-1/\gamma}$ est proportionnel à $x^{-1/\gamma}$ pour x grand. On obtient alors

$$S(x) \approx \exp\left[-C x^{-1/\gamma}\right]$$
 (pour une constante $C > 0$).

Par croissance comparé, comme $x^{-1/\gamma}$ tend vers 0 moins vite que $\exp(-\alpha x)$. On a alors :

$$S(x) \sim K x^{-1/\gamma} \quad \text{(pour } x \to \infty\text{)},$$

ce qui caractérise une **queue bornée** : la probabilité d'observer des valeurs très grandes est plus élevée que dans un modèle à décroissance exponentielle.

2.4.3 Si $\gamma < 0$

Pour $\gamma < 0$, la loi est définie quand :

$$1 + \gamma u > 0 \implies u < -\frac{1}{\gamma}$$

Cela signifie que la distribution a son support dans] $-\infty, -\frac{1}{\gamma}$ [

On pose alors $x_{\text{max}} = -\frac{1}{\gamma}$.

Par conséquent, la fonction de survie S(x) = 1 - G(x) = 0 pour $x \ge -\frac{1}{\gamma}$.

Autrement dit, il n'y a aucune probabilité d'observer une valeur au-delà de x_{max} . Dans ce cas, on dit que la distribution est à **queue bornée**.

On dit alors que que que de distribution est bornée.

2.4.4 2. Cas $\gamma = 0$

Lorsque $\gamma = 0$, on a posé $h_0(u) = \ln u$. Donc, le changement de variable s'adapte :

$$u = h_0\left(\frac{1}{v}\right) = \ln\left(\frac{1}{v}\right) = -\ln v,$$

ce qui implique

$$v = e^{-u}$$
.

Le changement de variable transforme alors l'intégrale limite en

$$\int_{-\infty}^{\infty} z(u) \, d \Big\{ \exp \Big[-e^{-u} \Big] \Big\},\,$$

et la loi limite est alors donnée par

$$G_0(u) = \exp\left\{-e^{-u}\right\}, \quad u \in \mathbb{R},$$

On retrouve ici une queue à décroissance exponentielle, ce qui est caractéristique d'une **queue légère** : la probabilité d'observer des valeurs extrêmes est faible.

2.5 Résumé

Les lois limites qui s'imposent dependent d'un parametre γ et sont les suivantes :

— Si $\gamma > 0$ (loi de Fréchet) :

$$G_{\gamma}(u) = \exp\left\{-\left(1 + \gamma u\right)^{-1/\gamma}\right\}, \quad u > -\frac{1}{\gamma}.$$

— **Si** $\gamma = 0$ (loi de Gumbel) :

$$G_0(u) = \exp\left\{-e^{-u}\right\}, \quad u \in \mathbb{R}.$$

— Si $\gamma < 0$ (loi de Weibull) :

$$G_{\gamma}(u) = \exp\left\{-\left(1 + \gamma u\right)^{-1/\gamma}\right\}, \quad u < -\frac{1}{\gamma}.$$

3 Quelques exemples numériques

Voici maintenant quelques applications numériques sur des lois usuelles de ce que nous avons vu dans cette section. Pour chacune des représentations suivantes, nous avons simulé 1000 fois chaque loi puis ensuite effectué 10000 simulations pour le maximum afin d'avoir une précision correcte.

3.0.1 Loi uniforme

Pour la loi uniforme sur [0,1], on peut montrer théoriquement que la limite du max est une loi exponentielle de paramètre 1 (loi de Weibull bien particulière).

Soient U_1, U_2, \dots, U_n des variables aléatoires indépendantes et identiquement distribuées selon la loi uniforme sur [0,1].

On a, pour $x \in [0,1]$:

$$P(M_n \le x) = P(U_1 \le x, \dots, U_n \le x)$$

= $P(U_1 \le x)^n$ par indépendance des U_i
= x^n

Nous allons maintenant effectuer le changement de variable x = 1 - y/n avec y > 0 pour examiner la queue de la distribution :

$$P(M_n < 1 - y/n) = (1 - y/n)^n$$
.

Pour *n* grand, on a : $(1 - y/n)^n \approx e^{-y}$. Donc, $P(M_n \le 1 - y/n) \approx e^{-y}$.

Or, par définition, la loi exponentielle de paramètre 1 a pour fonction de répartition : $P(Y \le y) = 1 - e^{-y}$, y > 0.

Ainsi, on a donc montré que :

$$P(n(1-M_n) \le y) \to P(Y \le y) = 1 - e^{-y},$$

ce qui établit la convergence en loi :

$$Y_n = n(1 - M_n) \xrightarrow{\mathcal{L}} \mathcal{E}(1).$$

Ainsi, on trouve que $a_n = \frac{1}{n}$ et $b_n = 1$.

Avec notre machine, nous obtenons le graphe suivant :

Max de 1000 lois uniformes

Remarquons que l'on obtient une loi de Gumbell, ce qui est assez logique au vu du fait que ce soit une loi à queue très légère (elle n'en a tout simplement pas car son support est borné).

3.0.2 Loi exponentielle

Pour une loi exponentielle de paramètre 1, la loi limite est une loi de Gumbel. Théoriquement, on trouve $a_n = 1$ et $b_n = \log(n)$.

Cette fois-ci, on avait une loi à queue fine, et on obtient loi de Gumbel, ce qui était attendu.

3.0.3 Loi normale

Pour maintenant une loi normale centrée-réduite, on peut montrer que la loi limite est encore une fois une loi de Gumbel. On trouve les paramètres généralisés $a_n = \frac{1}{\sqrt{(2*\log(n)}}$ et $b_n = \frac{1}{a_n} - \frac{\log(\log(n)) + \log(4*pi)}{2*\sqrt{2*\log(n)}}$.

Max de 1000 lois normales centrées-réduites

Notons ainsi que l'on a la même loi limite que pour la loi exponentielle de paramètre 1, les graphes sont quasiment identiques.

3.0.4 Loi de Cauchy

Enfin, pour une loi de Cauchy (de paramètres 0 et 1 ici), la loi limite est une loi de Fréchet. On a les coefficients suivants : $a_n = pi$ et $b_n = n$.

Max de 1000 lois de Cauchy

Enfin ici, on avait une loi à queue lourde, et on obtient bien la loi de Fréchet attendue.

4 Méthodes d'estimation de l'indice de valeurs extrêmes

Dans cette section, nous nous intéressons aux différentes méthodes d'estimation du paramètre γ , intervenant dans la distribution des valeurs extrêmes généralisée.

D'une part, des approches non paramétriques sont dédiées à l'estimation de l'indice de queue, notamment les estimateurs de Hill et de Pickands. D'autre part, des méthodes paramétriques ont été développées, parmi lesquelles la méthode du maximum de vraisemblance, la méthode des moments et les approches bayésiennes.

Définition : On appelle *statistique d'ordre* la permutation aléatoire de l'échantillon X_1, \ldots, X_n , qui ordonne les valeurs de l'échantillon par ordre croissant :

$$X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$$

Définition : On dit qu'une suite $(k_n)_{n\geq 0}$ d'entiers est intermédiaire si :

$$\lim_{n \to \infty} k_n = \infty \quad et \lim_{n \to \infty} \frac{k_n}{n} = 0$$

Définition : On dit qu'un estimateur $\hat{\gamma}_n$ est convergent s'il converge en probabilité vers γ , soit :

$$\lim_{n \to \infty} P(|\hat{\gamma}_n - \gamma| > \epsilon) = 0 \quad \forall \epsilon > 0$$

4.1 Estimateur de Pickands

L'estimateur de Pickands est construit à partir de trois statistiques d'ordre dans un échantillon. Il constitue l'un des premiers estimateurs non paramétriques proposés pour estimer l'indice des valeurs extrêmes γ . Son principal avantage réside dans le fait qu'il est valide quel que soit le domaine d'attraction de la loi sous-jacente : Fréchet $(\xi > 0)$, Gumbel $(\xi = 0)$ ou Weibull $(\xi < 0)$. Il n'est donc pas restreint à une famille particulière de distributions et reste applicable dans un cadre très général.

Néanmoins, cet estimateur est connu pour être assez sensible à la taille de l'échantillon, et en particulier au choix du paramètre intermédiaire k, ce qui peut entraîner une certaine instabilité dans les estimations. Cela limite parfois sa robustesse, en particulier pour des tailles d'échantillon modestes.

En 1975, Pickands a démontré la consistance faible de son estimateur, c'est-à-dire la convergence en probabilité vers le vrai paramètre lorsque la taille de l'échantillon tend vers l'infini. Plus tard en 1989, Dekkers et de Haan ont établi la convergence forte ainsi que la normalité asymptotique de cet estimateur sous des conditions plus générales.

Définition. Soit X_1, \ldots, X_n une suite de variables aléatoires i.i.d. de loi F, appartenant à l'un des domaines d'attraction des lois de valeurs extrêmes. On note $X_{1,n} \leq \cdots \leq X_{n,n}$ les statistiques d'ordre croissantes. Soit $(k_n)_{n \geq 1}$ une suite intermédiaire telle que $k_n \to \infty$ et $k_n/n \to 0$, l'estimateur de Pickands est défini par :

$$\hat{\gamma}_{k,n} = \frac{1}{\ln(2)} \ln \left(\frac{X_{n-k+1,n} - X_{n-2k+1,n}}{X_{n-2k+1,n} - X_{n-4k+1,n}} \right)$$

L'estimateur de Pickands repose sur l'idée que, dans les queues d'une distribution extrême, les plus grandes observations suivent un comportement régulier. En considérant des statistiques d'ordre décroissantes, on peut approximer la structure de la queue à l'aide de différences successives entre grandes valeurs. L'utilisation d'une transformation logarithmique permet alors d'isoler l'indice de queue γ , sous des conditions d'attraction à une loi limite.

Propriété de consistance. Si (k_n) est une suite intermédiaire, alors :

$$\hat{\gamma}_{k,n} \xrightarrow{\mathbb{P}} \gamma$$
 lorsque $n \to \infty$.

De plus, sous hypothèses régulières, l'estimateur est asymptotiquement normal :

$$\sqrt{k} (\hat{\gamma}_{k,n} - \gamma) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2(\gamma))$$

où la variance asymptotique est donnée par :

$$\sigma(\gamma) = \frac{\gamma\sqrt{2^{2\gamma+1}+1}}{2(2^{\gamma}-1)\ln(2)}.$$

Cette formule théorique permet de construire des intervalles de confiance pour l'estimation de γ , bien qu'en pratique la variance soit souvent estimée par simulation.

Enfin, une version généralisée de cet estimateur existe, introduisant deux paramètres u, v > 1, permettant une plus grande flexibilité :

$$\hat{\gamma}_{(k,u,v)} = \frac{1}{\ln(v)} \ln \left(\frac{X_{n-k+1,n} - X_{n-[uk]+1,n}}{X_{n-[vk]+1,n} - X_{n-[uvk]+1,n}} \right)$$

Cette généralisation permet d'ajuster la stabilité de l'estimation. On retrouve l'estimateur de Pickands classique en prenant u = v = 2.

4.2 Représentation graphique de l'estimateur de Pickands

Afin d'illustrer le comportement de l'estimateur de Pickands dans différents contextes, nous l'appliquons à des échantillons simulés de taille $n=40\,000$, issus de quatre lois représentatives : la loi de Pareto, la loi exponentielle, la loi uniforme sur [0,1], et la loi de Cauchy. Ces lois permettent de couvrir les trois domaines d'attraction des lois de valeurs extrêmes, avec des indices théoriques respectifs de queue γ valant $0.5,\,0,\,-1,$ et 1.

Les figures ci-dessous présentent l'évolution de l'estimateur $\hat{\gamma}_{k,n}$ en fonction de k, c'est-à-dire du nombre d'observations extrêmes utilisées dans le calcul. Une ligne rouge horizontale indique la valeur théorique de γ pour chaque distribution, afin de visualiser la qualité de convergence.

4.2.1 Loi de Pareto ($\alpha = 2$)

FIGURE 1 – Estimateur de Pickands pour la distribution de Pareto (shape = 2).

La figure 1 illustre l'estimateur de Pickands appliqué à un échantillon simulé selon une loi de Pareto de paramètre $\alpha=2$, ce qui correspond à un indice de queue $\gamma=1/\alpha=0.5$. L'estimateur converge clairement vers cette valeur lorsque k augmente, ce qui confirme la bonne performance de l'estimateur dans le cas d'une distribution à queue lourde.

4.2.2 Loi exponentielle

FIGURE 2 – Estimateur de Pickands pour la distribution exponentielle.

Dans la figure 2, on observe que l'estimateur de Pickands reste proche de zéro, en accord avec l'indice théorique $\gamma=0$ de la loi exponentielle. Ce résultat est cohérent avec le fait que cette loi appartient au domaine d'attraction de Gumbel.

4.2.3 Loi uniforme [0, 1]

FIGURE 3 – Estimateur de Pickands pour la distribution uniforme sur [0,1].

Comme le montre la figure 3, l'estimateur décroît vers $\gamma=-1$, valeur attendue pour la loi uniforme qui possède une queue bornée. La plus grande instabilité observée est due au fait que cette loi n'a pas de queue lourde, ce qui affecte la stabilité de l'estimation.

4.2.4 Loi de Cauchy

FIGURE 4 – Estimateur de Pickands pour la distribution de Cauchy.

La figure 4 présente l'estimateur de Pickands appliqué à un échantillon de loi de Cauchy. Cette loi est caractérisée par une queue extrêmement lourde et appartient au domaine d'attraction de Fréchet, avec un indice de queue théorique $\gamma = 1$.

Le comportement de l'estimateur est ici particulièrement intéressant. Pour les faibles valeurs de k, l'estimateur est très instable, ce qui est attendu compte tenu de la nature explosive des grandes valeurs dans une loi de Cauchy. À partir d'un certain seuil (environ k=500), une phase de stabilisation est visible, avec une estimation qui reste relativement proche de la valeur attendue.

Cependant, on note qu'au-delà de $k \approx 4000$, l'estimateur décroît significativement. Cela s'explique par le fait que l'inclusion d'observations moins extrêmes perturbe la qualité de l'estimation. Ainsi, le cas de la Cauchy montre bien les limites pratiques de l'estimateur, malgré sa validité théorique.

4.2.5 Synthèse

Ces représentations graphiques montrent que l'estimateur de Pickands parvient globalement à capturer l'indice de queue γ pour différentes familles de distributions. Il converge correctement pour les cas classiques (Pareto, exponentielle), mais présente une instabilité accrue pour les queues bornées ou très lourdes. Ces résultats illustrent à la fois les points forts et les limites de l'estimateur, notamment sa sensibilité au choix de k.

4.3 Construction de l'estimateur de Pickands

Proposition : (Caractérisations de $D(H_{\gamma})$)

Pour $\gamma \in \mathbb{R}$, les affirmations suivantes sont équivalentes.

- (a) $F \in D(H_{\gamma})$
- (b) Pour une certaine function positive $c(t) = a(\frac{1}{t})$:

$$\lim_{t \to 0} \frac{U(tx) - U(t)}{c(t)} = \begin{cases} \frac{x^{\gamma} - 1}{\gamma} & \text{si } \gamma \neq 0, \\ \log(x) & \text{si } \gamma = 0, \end{cases} \quad \text{pour } x > 0.$$

La dernière affirmation est équivalente à :

$$\lim_{s \to 0} \frac{U(sx) - U(s)}{U(sy) - U(s)} = \begin{cases} \frac{x^{\gamma} - 1}{y^{\gamma} - 1} & \text{si } \gamma \neq 0, \\ \frac{\log(x)}{\log(y)} & \text{si } \gamma = 0. \end{cases}$$

pour x, y > 0 et $y \neq 1$.

Lemme A: Soit X_1, \ldots, X_n des variables aléatoires indépendantes et de fonction de répartition F. Soit U_1, \ldots, U_n des variables aléatoires indépendantes de loi uniforme [0,1]. Alors $F^{-1}(U_{1,n}), \ldots, F^{-1}(U_{n,n})$ a même loi que $(X_{1,n},...,X_{n,n})$

Preuve de la construction de l'estimateur de Pickands :

On déduit de la proposition précédente que pour $\gamma \in \mathbb{R}$ et α on a avec le choix t=2s, x=2 et $y=\frac{1}{2}$,

$$\lim_{t\to\infty}\frac{U(t)-U(t/2)}{U(t/2)-U(t/4)}=2^{\gamma}.$$

En fait, en utilisant la croissance de U qui se déduit de la croissance de F, on obtient

$$\lim_{t \to \infty} \frac{U(t) - U(t_{c_1}(t))}{U(t_{c_1}(t)) - U(t_{c_2}(t))} = 2^{\gamma}$$

dès que $\lim_{t\to\infty} c_1(t) = \frac{1}{2}$ et $\lim_{t\to\infty} c_2(t) = \frac{1}{4}$. Il reste donc à trouver des estimateurs pour U(t).

Soit $k(n), n \ge 1$ une suite d'entiers telle que $1 \le k(n) \le \frac{n}{4}$ et $\lim_{n \to \infty} \frac{k(n)}{n} = 0$ et $\lim_{n \to \infty} k(n) = \infty$. Soit $(V_{1,n}, \dots, V_{n,n})$ la statistique d'ordre d'un échantillon de variables aléatoires indépendantes de loi de Pareto. On note $F_V(x) = 1 - x^{-1}, x \ge 1$.

On déduit avec certains résultats de bases liés à $(V_{1,n},\ldots,V_{n,n})$ que les suites

$$\frac{k}{n}V_{n-k+1,n}, \quad \frac{2k}{n}V_{n-2k+1,n}, \quad \frac{4k}{n}V_{n-4k+1,n}$$

pour $n \ge 1$ convergent en probabilité vers 1.

On en déduit en particulier, les convergences en probabilité suivantes :

$$V_{n-k+1,n} \to \infty$$
, $\frac{V_{n-2k+1,n}}{V_{n-k+1,n}} \to \frac{1}{2}$, $\frac{V_{n-4k+1,n}}{V_{n-k+1,n}} \to \frac{1}{4}$.

Donc la convergence suivante a lieu en probabilité :

$$\frac{U(V_{n-k+1,n}) - U(V_{n-2k+1,n})}{U(V_{n-2k+1,n}) - U(V_{n-4k+1,n})} \to 2^{\gamma}.$$

Remarquons que si $x \ge 1$, alors $U(x) = F^{-1}(F_V(x))$. On a donc

$$(U(V_{1,n}), \dots, U(V_{n,n})) = (F^{-1}(F_V(V_{1,n})), \dots, F^{-1}(F_V(V_{n,n}))).$$

Or F_V est la fonction de répartition de la loi de Pareto.

On déduit de la croissance de F_V que $(F^{-1}(F_V(V_{1,n})), \dots, F^{-1}(F_V(V_{n,n})))$ a la même loi qu'une suite de nvariables aléatoires uniformes sur [0, 1] indépendantes.

On déduit du lemme A que le vecteur aléatoire $(F^{-1}(F_V(V_{1,n})), \dots, F^{-1}(F_V(V_{n,n})))$ a la même loi que $(X_1,\ldots,X_n).$

Donc la variable aléatoire $\frac{U(V_{n-k+1,n})-U(V_{n-2k+1,n})}{U(V_{n-k+1,n})-U(V_{n-4k+1,n})}$ a la même loi que :

$$\frac{X_{n-k+1,n} - X_{n-2k+1,n}}{X_{n-k+1,n} - X_{n-4k+1,n}}$$

Ainsi cette quantité converge en loi vers 2^{γ} quand n tend vers l'infini.

4.4 Estimateur de Hill

Tout d'abord, l'estimateur de Hill est applicable uniquement aux distributions de Fréchet ($\gamma > 0$), où il permet d'obtenir un estimateur de l'indice de queue plus efficace que celui de Pickands. Cet estimateur est défini par la statistique suivante :

$$\hat{\gamma}_{k,n} = \frac{1}{k} \sum_{i=1}^{k} \ln(\frac{X_{n-i+1,n}}{X_{n-k,n}})$$

pour $k \in \{1, \dots, n-1\}$. Si l'on choisit $k, n \to +\infty$, de sorte que $\frac{k}{n} \to 0$, alors on peut montrer que $\lim_{k \to \infty} \hat{\gamma}_{k,n} = \gamma$. Cet estimateur possède la propriété d'être asymptotiquement normal, ce qui signifie que :

$$\sqrt{k} \frac{\hat{\gamma}_{k,n} - \gamma}{\gamma} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$$

Il existe plusieurs approches pour construire l'estimateur de Hill. Une approche possible consiste à utiliser la méthode du maximum de vraisemblance.

Tout d'abord, on considère une suite de variables aléatoires X_1, \ldots, X_n i.i.d. suivant une loi de Pareto de paramètre $\lambda > 0$, dont la fonction de répartition est donnée par :

$$F(x) = 1 - x^{-\lambda}$$
, pour $x \ge 1$.

La densité de probabilité associée est alors :

$$f(x) = \lambda x^{-\lambda - 1}$$
, pour $x \ge 1$.

La fonction de vraisemblance est donnée par :

$$L(x_1, ..., x_n, \lambda) = \prod_{i=1}^n f(x_i) = \lambda^n \prod_{i=1}^n x_i^{-\lambda - 1}.$$

En prenant le logarithme, on obtient la log-vraisemblance :

$$\log L(x_1, \dots, x_n, \lambda) = n \log \lambda - (\lambda + 1) \sum_{i=1}^n \log x_i.$$

En dérivant cette expression par rapport à λ , on obtient :

$$\frac{d\log L}{d\lambda} = \frac{n}{\lambda} - \sum_{i=1}^{n} \log x_i.$$

En dérivant une seconde fois, nous obtenons :

$$\frac{d^2 \log L}{d\lambda^2} = -\frac{n}{\lambda^2} < 0,$$

ce qui confirme qu'il s'agit bien d'un maximum.

Ainsi, l'estimateur du maximum de vraisemblance de $\frac{1}{\lambda}$ est donné par :

$$\hat{\lambda}^{-1} = \frac{1}{n} \sum_{i=1}^{n} \log X_i.$$

Cela implique que l'estimateur du paramètre λ est :

$$\hat{\lambda} = \left(\frac{1}{n} \sum_{i=1}^{n} \log X_i\right)^{-1}.$$

4.4.1 Graphique pour l'estimateur de Hill

Dans cette section nous allons analyser le comportement de l'estimateur de Hill sur des données simulées à partir de la distribution de Pareto.

L'estimateur de Hill, appliqué à des données simulées à partir de la distribution de Pareto avec des paramètres de forme de 1 et 5, montre une décroissance globale et présente une forte volatilité, particulièrement pour les faibles valeurs du paramètre de forme $\alpha = 1$. Cette volatilité est due au fait que l'estimateur repose sur un nombre limité d'observations extrêmes, ce qui peut entraîner des fluctuations importantes. A mesure que le paramètre de forme augmente $\alpha = 5$, l'estimateur tend à se stabiliser plus rapidement, illustrant ainsi la convergence vers la valeur théorique de l'indice de forme.

Estimateur de DEDH 4.5

Le troisième estimateur de l'indice de queue est celui proposé par Dekkers, Einmahl et De Haan. Il s'agit d'une généralisation de l'estimateur de Hill, applicable à tous les domaines d'attraction. Il est défini par :

$$\hat{\gamma}_n^{(DEdH)}(k_n) = \mathcal{M}_{k_n}^{(1)} + 1 - \frac{1}{2} \left(1 - \frac{(\mathcal{M}_{k_n}^{(1)})^2}{\mathcal{M}_{k_n}^{(2)}} \right)^{-1}$$

οù

$$\mathcal{M}_{k_n}^{(r)} = \frac{1}{k_n} \sum_{i=1}^{k_n} (\ln(X_{(n-i+1)}) - \ln(X_{(n-k_n)}))^r.$$

La valeur de $\mathcal{M}_{k_n}^{(1)}$ correspond à l'estimateur de Hill. L'estimateur de DEDH possède la propriété de convergence en loi :

$$\sqrt{k_n} (\frac{\hat{\gamma}_n^{(DEdH)}(k_n) - \gamma}{\sigma_M}) \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$$
 quand $n \to \infty$.

où:

$$\sigma_M^2 = \begin{cases} 1 + \gamma^2, & \text{si } \gamma \ge 0, \\ (1 - \gamma^2)(1 - 2\gamma) \left(4 - \frac{8(1 - 2\gamma)}{1 - 3\gamma} - \frac{(5 - 11\gamma)(1 - 2\gamma)}{(1 - 3\gamma)(1 - 4\gamma)}\right), & \text{si } \gamma < 0. \end{cases}$$

En pratique, il est difficile de comparer ces estimateurs de manière tranchée. Toutefois, l'estimateur de Hill se distingue par une variance asymptotique plus faible, ce qui justifie son choix dans la suite. Étant donné que cet estimateur n'est valide uniquement pour les distributions appartenant au domaine d'attraction de Fréchet, c'est-à-dire dans le cas où $\gamma > 0$, il est essentiel de vérifier cette hypothèse.

5 Sélection des estimateurs de l'indice de valeurs extrêmes

Le choix de l'estimateur dépend du type de distribution sous-jacente. L'estimateur de Hill est spécifiquement adapté aux distributions de Fréchet ($\gamma > 0$), caractérisées par des queues lourdes. Il est donc plus efficace dans ce cas et sera préféré à l'estimateur de Pickands.

Cependant, pour les distributions de Weibull ($\gamma < 0$) et Gumbel ($\gamma = 0$), l'estimateur de Hill n'est pas applicable. Dans ces cas, on utilise l'estimateur de Pickands, qui est valide quel que soit le signe de γ .

L'estimateur de Pickands est basé sur les distances entre deux statistiques d'ordre, sans tenir compte du maximum de l'échantillon, ce qui entraı̂ne une perte d'information sur la queue de distribution. Par conséquent, il présente une plus grande volatilité que l'estimateur de Hill, qui repose sur la moyenne des logarithmes des observations.

6 Application sur des données réelles

Afin d'illustrer les méthodes d'estimation de l'indice de valeurs extrêmes, nous allons appliquer ces techniques sur des données réelles. Nous allons utiliser les données du package *ismev* de R. Plus précisément wooster et rain. Wooster contient les données de température minimale (en Fahrenheit) annuelle à Wooster de 1983 à 1988. Tandis que Rain contient les données de pluie journalière dans en Angleterre de 1914 à 1962.

Nous allons utiliser deux méthodes d'estimation sur les paramètres a_n , b_n et γ afin de d'estimer la valeur extrême.

6.1 Première méthode (Méthode des maxima en bloc) avec Wooster

6.1.1 Principe

La première étape consiste à découper nos données en blocs de taille k et de calculer le maximum sur chaque bloc. Le paramètre k est choisit en fonction de l'interprétation des données. (par exemple, si on a des données journalières, on peut choisir k=365 pour avoir des maximums annuels). Ensuite, pour chaque bloc on calcule le maximum. Cela nous donne une suite de maximum. Une fois les maximums obtenus, on estime a_n,b_n et γ en utilisant la méthode du maximum de vraisemblance.

6.1.2 Application sur les données de Wooster

L'objectif sur ces données est de savoir s'il existe (et dans le cas échéant de le calculer) un seuil tel que les températures ne puissent pas dépasser. Chercher cette valeur seuil serait utile en agriculture par exemple pour savoir si les températures ne sont pas trop élevées pour les cultures.

Histogram de wooster

Nous avons découper ici nos données en blocs de taille 60 et de calculer le maximum sur chaque bloc. L'estimation numériques par l'algorithme de Nelder-Mead des paramètres a_n,b_n (qu'on note pour la suite σ et μ) et γ nous donne :

$$\sigma = 36.02, \quad \mu = 18.82, \quad \gamma = -0.5$$

Nous obtenons une valeur de γ négative, ce qui signifie que la distribution des températures max à Wooster est de type Weibull. Nous pouvons donc conclure que les températures à Wooster sont pas limitées par un seuil. Ce seuil étant donnée dans la partie 1, il vaut : $x_{max} = \mu - \frac{\sigma}{\gamma} = 74.93$

Il est alors raisonnables de penser que les températures à Wooster ne dépassent pas 74.93.

v

6.2 Méthode de dépassement de seuil avec Rain

6.2.1 Principe

La deuxième méthode consiste à fixer un seuil u et de considérer les données qui dépassent ce seuil. C'est à dire X_i tel que $X_i > u$. Ensuite, on stocke les excès $X_i - u$. Cela nous donne un jeu de données positifs. La clé de cette méthode est que pour un seuil u bien choisi, les excès suivent une loi de Pareto de paramètres σ (échelle) et γ (le gamma qu'on estime dans toute la théorie). C'est alors qu'on ajuste les paramètres σ et γ par maximum de vraisemblance.

6.2.2 Application sur les données de Rain

L'objectif sur ces données est de savoir s'il existe (et le cas échéant de le calculer) un seuil tel que les pluies ne puissent pas dépasser. Chercher cette valeur seuil serait utile en agriculture par exemple pour savoir si les pluies ne sont pas trop élevées pour les cultures.

On remarque dans un premier temps que les données sont concentrées autour de 0 mais qu'elles sont capables de prendre des valeurs très élevées. Il est alors raisonnable de penser qu'après estimation, on va obtenir une valeur de gamma positive ou nulle. En effet, il n'apparait pas de cassure dans la distribution des données. De plus, la queue de distribution est longue mais ne parait pas lourde. Ce qui suggèrerait une valeur de gamma proche de 0.

Après estimation numérique, on obtient : $\sigma = 7.94$ et $\gamma = 0.034$ avec pour γ un intervalle de confiance : [-0.022; 0.102].

Une valeur de gamma aussi proche de 0 doit nous conduire à une étude plus approfondie. Plusieurs méthodes s'offrent à nous pour améliorer l'estimation de gamma.

ON Peut considère la première méthode afin de comparer les résultats.

On peut faire varier le seuil u et juger de l'impact sur l'estimation de gamma.

Ou alors de façon plus arbitraire, on peut considérer la valeur de gamma en fonction du type de donnée qu'on étudie et de la cohérence que cela apporte.

Pour notre exemple, on considère que $\gamma > 0$

Rain Excesses et densité de Pareto

La distribution de Pareto (courbe rouge) avec les paramètres estimés semblent bien coller avec les données. Cela signifie qu'on s'attend à des excès au-delà du seuil de plus en plus rares, sans pour autant exclure la survenue de précipitations sensiblement élevées.

L'avantage de cette méthode est qu'elle est plus efficace car elle utilise plus de données. Cependant, elle est plus difficile à mettre en place car il faut choisir un seuil u qui est crucial pour l'estimation de gamma.

6.2.3 Méthode de Nelder-Mead

Le package "evd", que nous avons utilisé pour réaliser les méthodes de dépassement de seuil et des maxima en bloc, utilise l'algorithme de Nelder-Mead pour calculer les paramètres de la fonction limite et ainsi savoir dans quel cas où se trouve : Fréchet, Gumbel ou Weibull.

Nelder-Mead est un algorithme d'optimisation non linéaire, il consiste en la chose suivante dans le cadre des valeurs extrêmes :

- **Etape 1**: on commence par choisir 3 premiers points x_1, x_2, x_3 par une rapide estimation des paramètres σ , μ et γ de nos données. Ce seront nos points de départs de l'algorithme et ils définissent notre premier simplexe (triangle ici) dans R^2 .
- **Etape 2** : on calcule ensuite la valeur de la fonction en ces 3 points : f est la fonction GEV généralisée (à définir plus précisément) et on les trie par valeurs décroissantes.
- **Etape 3**: on cherche le centre de gravité x_0 de nos premiers points : $x_0 = \frac{x_1 + x_2 + x_3}{3}$.
- **Etape 4** : on fait ensuite une réflexion en calculant $x_r = x_0 + \alpha(x_0 x_3)$ où $\alpha > 0$ est appelé le coefficient de réflexion
- **Etape 5** : si $f(x_1) \le f(x_r) \le f(x_3)$: on remplace x_3 par x_r et on retourne à l'étape 2.
- **Etape 6**: si $f(x_r) \le f(x_1)$: on procède à une expansion du simplexe, on calcule $x_3 = x_0 + \gamma(x_r x_0)$ où $\gamma > 1$. Si $f(x_e) \le f(x_r)$, on remplace x_3 par x_e sinon on remplace x_3 par x_r et on retourne à l'étape x_3
- **Etape 7**: si $f(x_r) \ge f(x_3)$: on procède à une contraction du simplexe, on cherche $x_c = x_0 + \rho(x_3 x_0)$ où $0 < \rho < 0.5$. Si $f(x_c) \le f(x_3)$, on remplace x_3 par x_c et on retourne à l'étape 2, sinon on continue jusqu'à l'étape 8.
- **Etape 8**: on effectue une homothétie de rapport ω et de centre x_1 : on remplace ainsi x_i par $x_1 + ω(x_i x_1)$ où 0 < ω < 1et on retourne à l'étape 2

On répète cela jusqu'à atteinte du critère d'arrêt, en général : $\sqrt{\sum_{i=1}^{n+1} \frac{(f_i - \bar{f})^2}{n}} < \epsilon$ où $\bar{f} = \frac{1}{n+1} \sum_{i=1}^{n+1} f_i$ et ϵ est

un réel proche de 0.

7 Annexe

7.1 Codes R

Voici un exemple de code R utilisé dans la première section :

```
# Paramètres
1
2
            n <- 1000
                              # Taille de l'échantillon pour la simulation des lois uniformes
            N <- 10000
                              # Nombre de simulations pour le maximum
3
            # Simulation des maxima de lois uniformes(0,1)
5
            set.seed(123) # fixation de l'aléa
6
            M_n <- replicate(N, max(runif(n))) # M_n = max / X_n = runif</pre>
8
            # Normalisation pour observer la convergence
9
            Y_n \leftarrow n * (1 - M_n)
10
11
12
            # Histogramme des valeurs transformées
            hist(Y_n, breaks = 50, probability = TRUE,
13
            col = "lightblue", border = "white", ylab = "Densité",
14
15
            xlab = expression(Y_n), main = "Max_de_1000_lois_uniformes")
16
17
            # Densité théorique de la loi exponentielle (paramètre = 1)
            curve(dexp(x, rate = 1), col = "red", lwd = 2, add = TRUE)
18
19
20
            # Légende
21
            legend("topright", legend = c("Simulation", "Densitéuthéoriqueu:uexp(1)"),
            fill = c("lightblue", NA), border = c("white", NA),
22
            lty = c(NA, 1), col = c(NA, "red"), lwd = c(NA, 2))
23
            1
            library(ismev)
2
            library(evd)
3
4
            data("wooster")
5
            gev_fit <- fgev(wooster)</pre>
6
            mu <- as.numeric(gev_fit$param[1])</pre>
8
            sigma <- as.numeric(gev_fit$param[2])</pre>
9
10
            gamma <- as.numeric(gev_fit$param[3])</pre>
11
            # estimation de gamma avec pickands (juste pour comparer)
12
13
            x <- sort(wooster)</pre>
14
            n <- length(x)</pre>
15
            k <- floor(0.1 * length(wooster))</pre>
16
            X1 \leftarrow x[n - k + 1]
17
            X2 \leftarrow x[n - 2*k + 1]
18
            X3 \leftarrow x[n - 4*k + 1]
19
            pickands_est \leftarrow (1 / log(2)) * log((X1 - X2) / (X2 - X3))
20
            print(pickands_est)
21
22
23
            # gamma est < 0 donc on calcule la borne max
24
            x_{max} \leftarrow mu - sigma / gamma
25
26
            # Définir la densité de la loi (pour gamma < 0)
27
            dgev <- function(x, mu, sigma, gamma) {</pre>
28
              t <- 1 + gamma * ((x - mu) / sigma)
              dens <- ifelse(t > 0,
30
                                                (1/sigma) * t^{(-1/gamma - 1)} * exp(-t^{(-1/gamma)}),
31
32
              return(dens)
33
34
35
            xseq <- seq(min(wooster), max(wooster), length.out = 200)</pre>
36
37
            # PLOT
38
39
            hist(wooster, main = "Histogramudeuwooster", breaks = 60, probability = TRUE, col = "
40
                lightgray")
41
            lines(xseq, dgev(xseq, mu, sigma, gamma), col = "blue", lwd = 2)
42
```

```
44
            abline(v = x_max, col = "red", lwd = 2, lty = 2)
legend("topright", legend = paste("x_max_u=", round(x_max, 2)), col = "red", lwd = 2,
45
46
                 1ty = 2
47
             # plot plus détaillé
48
49
            plot(gev_fit)
            1
2
            library(ismev)
            library(evd)
3
            data(rain)
4
            rain_data <- rain
6
            # seuil
7
            threshold <- quantile(rain_data, probs = 0.95)</pre>
            gpd_result <- gpd.fit(rain_data, threshold)</pre>
9
10
             # on stocke la parametre d'échelle et de forme
11
            sigma <- gpd_result$mle[1]
gamma <- gpd_result$mle[2]</pre>
12
13
             SE <- gpd_result$se[2]
14
15
            IC <- c(gamma - 1.96 * SE, gamma + 1.96 * SE) # contient 0 (oups)
16
17
            # On code la fonction de pareto généralisée parametre echel sigma et de forme gamma
18
19
             pareto <- function(x, gamma, sigma) {</pre>
              if (gamma == 0) {
20
21
                     return(1/sigma * exp(-x/sigma))
              } else {
22
                     return(1/sigma * (1 + gamma * x/sigma)^(-1/gamma - 1))
23
              }
24
            }
25
26
             # on trace l'histogramme des données
            hist(rain_data, breaks = 50, freq = FALSE, main = "Rain")
28
29
             # on trace l'histogramme des données en excés par rapport au seuil et la loi de pareto
30
            hist(rain_data[rain_data > threshold] - threshold, breaks = 50, freq = FALSE, main =
31
                 Rain_{\sqcup}Excesses_{\sqcup}et_{\sqcup}densit\acute{e}_{\sqcup}de_{\sqcup}Pareto")
32
33
            # on trace la loi de gpd avec les paramètres estimés
             xseq <- seq(min(rain), max(rain), length.out = 200)</pre>
            lines(xseq, pareto(xseq, gamma, sigma),col='red', lwd=2)
35
36
37
38
39
            # pour le qq-plot et residus
             gpd.diag(gpd_result)
40
```

43