

Background: Image Classification

4 Areas of Computer Vision

 Image classification is the foundation of computer vision problems and has many applications in everyday life and technology advancements

Background: Why birds?

 Gaining a foundational knowledge about birds allows us to appreciate biodiversity and promote their conservation

Problem Statement

This project aims to develop a model and tool to accurately identify North American birds in order to promote a fundamental knowledge of bird taxonomy, with the goal of empowering users to further conservation efforts to protect birds.

- Can we use deep learning techniques to accurately predict bird images with their respective species?
- Can we create a useful tool to identify birds?

Data Introduction

- 11,788 images from the Caltech Vision Dataset archive
- 200 species, 60 images per species

- Data Cleaning:
 - Extract, clean, transform images into arrays, condense and scale
 - Map images to labels

EDA: Class Reduction Through Taxonomic Hierarchy

First issue to address: too many classes at 200 (species level)

Reduce classes by going up the taxonomic chain to group images by:

- 1. Order
- 2. Family

EDA: Taxonomic Hierarchy

EDA: Order, Family, Species

When aggregating by taxonomic order and family, there are imbalanced classes:

- Passeriformes make up 67% of orders
- New World Warblers and Sparrows make up 27% of families

Top 5 Most Common Families

Order	Family	Images	% of Total
PASSERIFORMES	New World Warblers ~ Parulidae	1790	15.18
PASSERIFORMES	New World Sparrows ~ Passerellidae	1424	12.08
CHARADRIIFORMES	Gulls, Terns, Skimmers ~ Laridae	940	7.97
PASSERIFORMES	Troupials and Allies ~ Icteridae	774	6.57
PASSERIFORMES	Tyrant Flycatchers ~ Tyrannidae	656	5.56

Modeling Goals

- 1. Build 3 neural networks to optimize for **accuracy** and classify bird images at the following levels:
 - 1. Order (12 classes)
 - 2. Family (35 classes)
 - 3. Species (200 classes)
- 2. Iterate & experiment with the following techniques to optimize performance:
 - Image data augmentation
 - Transfer learning- leverage a pretrained model
 - Explore regularization techniques, early stopping, batch normalization
- 3. Create an interactive tool in Streamlit to accurately classify images

Modeling Results: Summary

Final Model Selection Summary						
Class Level	Number of	Baseline	Training	Testing		
	Classes	Accuracy	Accuracy	Accuracy		
Order	12	67.0%	99.4%	87.6%		
Family	35	15.2%	99.0%	64.0%		
Species	200	0.5%	86.3%	30.5%		

Highlights \checkmark

- All models significantly outperformed their baseline accuracy!
- Data augmentation improved accuracy
- Transfer learning and working from a pretrained model drastically increased performance

Drawbacks X

- All models were largely overfit, even with regularization techniques implemented
- Predicting at the species and family level proved to be difficult

Modeling Results: Order

Where did the model do well?

 Passeriformes (the majority class) had the highest accuracy

Where did the model fall short? X

- 60% of Cuculiformes were classified as Passeriformes
- Only 33% of Gaviiformes were classified correctly
- Let's look at an example of misclassification...

Modeling Results: Order

Can you tell the difference?

Slaty Backed Gull
Order: Charadriiformes

- Although the color and images are relatively similar, **scale** is not reflected in the images
- The model may not pick up small differences, like beak shape and subtle colors

Predictive Tool

To the Streamlit demo!

Conclusion

Findings:

- Reducing the classes and using taxonomic hierarchy greatly improved the model's predictive power
- Different modeling techniques worked better than others at each level of class

Next Steps:

- Improve modeling performance by gathering more data and images per species to address the issue of imbalanced classes
- Expand the dataset to include other species
- Further research reliable hosted servers for more modeling power

Thank you!

Appendix

Sources

Page 1:

https://ichef.bbci.co.uk/news/976/cpsprodpb/67CF/production/ 108857562 mediaitem108857561.jpg

Page 2:

https://miro.medium.com/max/1200/1*FYrG744nHvBaQav0Zt-5ZA.jpeg

Page 5:

http://www.vision.caltech.edu/visipedia/collage.jpg

Page 6:

https://www.discoveringgalapagos.org.uk/wp-content/uploads/2014/05/ARTWORK classification orca large.jpg

Page 13:

https://www.rspb.org.uk/globalassets/images/birds-and-wildlife/bird-species-illustrations/raven_1200x675.jpg