Order Theory

Daniel Mao

Contents

1	Infimum and Supremum					
	1.1	Arithmetic Properties	1			
2	Binary Relations					
	2.1	Homogeneous Relations	3			
	2.2	Preorder	4			
3	Dire	ected Sets	5			

ii CONTENTS

Chapter 1

Infimum and Supremum

1.1 Arithmetic Properties

Proposition 1.1.1. For any non-empty set S and any non-negative real-valued function f defined on S, we have

$$\left[\inf_{x\in S}f(x)\right]^2 = \inf_{x\in S}\left[f(x)\right]^2.$$

Proof. Let x be an arbitrary element in S. Since $\inf_{x \in S} f(x) \leq f(x)$ and $\inf_{x \in S} f(x) \geq 0$ and $f(x) \geq 0$, we get $\left[\inf_{x \in S} f(x)\right]^2 \leq f^2(x)$. So the LHS is a lower bound for the set $\{f^2(x) : x \in S\}$. Since S is non-empty, $\exists M > 0$ such that

$$\big|\inf_{x \in S} f(x)\big| < M.$$

Let ε be an arbitrary positive number. Since $\varepsilon > 0$, $\exists x_0 \in S$ such that

$$\left| f(x_0) - \inf_{x \in S} f(x) \right| < \min \left\{ 1, \frac{\varepsilon}{2M+1} \right\}.$$
 (1)

Then

$$|f(x_0) + \inf_{x \in S} f(x)|$$

$$= |f(x_0) - \inf_{x \in S} f(x) + 2 \inf_{x \in S} f(x)|$$

$$\leq |f(x_0) - \inf_{x \in S} f(x)| + 2 |\inf_{x \in S} f(x)|$$

$$< 1 + 2M.$$

That is,

$$|f(x_0) + \inf_{x \in S} f(x)| \le 2M + 1.$$
 (2)

From (1) and (2), we get

$$\begin{aligned} & \left| f^2(x_0) - \left[\inf_{x \in S} f(x) \right]^2 \right| \\ &= \left| f(x_0) - \inf_{x \in S} f(x) \right| \left| f(x_0) + \inf_{x \in S} f(x) \right| \\ &< \frac{\varepsilon}{2M+1} (2M+1) \\ &= \varepsilon. \end{aligned}$$

That is,

$$\left| f^2(x_0) - \left[\inf_{x \in S} f(x) \right]^2 \right| < \varepsilon. \tag{3}$$

That is, $\forall \varepsilon > 0, \exists x_0 \in S \text{ such that (3) holds. So}$

$$\left[\inf_{x\in S}f(x)\right]^2 = \inf_{x\in S}\left[f(x)\right]^2,$$

as desired.

Chapter 2

Binary Relations

Definition (Binary Relations). Let X and Y be two sets. We define a **binary** relation over sets X and Y to be a subset of the Cartesian product $X \times Y$.

2.1 Homogeneous Relations

Definition (Homogeneous Relation). Let X be a set. We define a **homogeneous relation** over X, denoted by R, to be a binary relation over X and itself. i.e. a subset of the cartesian product $X \times X$.

Proposition 2.1.1 (Some properties that a homogeneous relation <u>may</u> have). *Group 1: Reflexivity.*

• Reflexive.

$$\forall x \in X, \quad xRx.$$

 $\bullet \ \ \mathit{Irreflexive}.$

$$\forall x \in X, \quad \neg x R x.$$

• Coreflexive.

$$\forall x,y \in X, \quad xRy \implies x = y.$$

- Left quasi-reflexive.
- Right quasi-reflexive.
- Quasi-reflexive.

Group 2: Symmetry.

- $\bullet \ \ Symmetric.$
- $\bullet \ \ Antisymmetric.$
- \bullet Asymmetric.

Group 3: Transitivity.

- Transitive.
- Antitransitive.
- \bullet Cotransitive.
- $\bullet \ \ Quasi-transitive.$

 $and\ more...$

2.2 Preorder

Definition (Preorder). Let S be a set. We define a **preorder** on S, denoted by \leq , to be a homogeneous relation that is reflexive and transitive. i.e.

• Reflexive:

$$\forall x \in S, quadx \leq x.$$

• Transitive:

$$\forall x, y, z \in S, \quad x \leq y \text{ and } y \leq z \implies x \leq z.$$

Definition (Strict Preorder). Let S be a set. We define a **strict preorder** on S, denoted by <, to be a homogeneous relation that is irreflexive and transitive. i.e.

• Irreflexive:

$$\forall x \in S, \neg x < x.$$

• Transitive:

$$\forall x, y, z \in S, \quad x \le y \text{ and } y \le z \implies x \le z.$$

Chapter 3

Directed Sets

Definition (Directed Set). Let S be a set. Let \leq be a preorder. We say that S, with \leq , is a **directed set** if every pair of elements in S has an upper bound. i.e.

 $\forall x, y \in S, \quad \exists z \in S, \quad x \leq z \text{ and } y \leq z.$