Sprawozdanie laboratorium metody numeryczne Lab 6 - rozwiązywanie układu równań nieliniowych metodą Newtona

Jędrzej Szostak

1. Cel ćwiczenia

Zapoznanie się z metodą Newtona rozwiązywania układu równań nieliniowych, a następnie przy jej pomocy wyznaczyć pierwiastki danego układu.

2. Opis problemu

Celem zadania było wyznaczenie pierwiastków układu równań nieliniowych metodą Newtona z następującego układu równań:

$$\begin{cases} 2xy^2 - 3x^2y - 2 = 0 \\ x^2y^3 + 2xy - 12 = 0 \end{cases}$$

Do rozwiązania układu metodą Newtona użyto dwóch różnych wektorów początkowych:

- r=[10,10]
- r = [10, -4]

3. Opis metody

Teoretyczny opis metody:

- z końca przedziału [a,b] w którym funkcja ma ten sam znak co druga pochodna należy poprowadzić styczną do wykresu funkcji y = f(x)
- styczna przecina oś 0X w punkcie x₁ który stanowi pierwsze przybliżenie rozwiązania
- sprawdzamy czy $f(x_1) = 0$, jeśli nie to z tego punktu prowadzimy kolejną styczna
- ullet druga styczna przecina oś 0X w punkcie x_2 , który stanowi drugie przybliżenie
- kroki 3-4 powtarzamy iteracyjne aż spełniony będzie warunek:

$$\left| x_{k+1} - x_k \right| \le \epsilon$$

w naszym wypadku za ϵ przyjęliśmy 10^{-6} .

Implementacja: metody Newtona wykorzystana do rozwiązania wygląda następująco W k-tej iteracji metody Newtona dostajemy wektor rozwiązań $r_k = [x_k, y_k]$, zależny od rozwiązania w kroku k – 1:

$$r_{k} = r_{k-1} + \Delta r$$

, gdzie Δr możemy obliczyć:

$$\Delta r = \begin{bmatrix} \frac{df_1}{dx_1} & \frac{df_2}{dx_1} \\ \frac{df_1}{dx_2} & \frac{df_2}{dx_2} \end{bmatrix}^{-1} \cdot \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

Pierwszy człon powyższego równania to de facto jakobian układu dwóch równań nieliniowych, a \boldsymbol{f}_1 , \boldsymbol{f}_2 to równania należące do układu. Po wstawieniu do powyższego wzoru naszych danych wejściowych otrzymujemy:

$$\Delta \mathbf{r} = -\begin{bmatrix} 2y^2 - 6xy & 4xy - 3x^2 \\ 2xy^3 + 2y & 3x^2y^2 + 2x \end{bmatrix}^{-1} \\ r = r_{k-1} \cdot \begin{bmatrix} 2xy^2 - 3x^2y - 2 \\ x^2y^3 + 2xy - 12 \end{bmatrix}_{r=r_{k-1}}$$

4. Wyniki

Wykresy kolejnych rozwiązań oraz norm wektora r w zależności od iteracji przedstawiają się następująco:

a)
$$r_0 = [10, 10]$$

Rys1. Pierwiastki wielomianu w kolejnych iteracjach dla r0=[10, 10]

Rys2. norma wektora rozwiązań dla kolejnych iteracji dla r0=[10, 10]

b)
$$r_0 = [10, -4]$$

Rys3. Pierwiastki wielomianu w kolejnych iteracjach dla r0=[10, -4]

Rys4. norma wektora rozwiązań dla kolejnych iteracji dla r0=[10, -4]

Jak widzimy dla obu wektorów początkowych pierwiastki zbiegały do tych samych wartości [1,2]. Jak widzimy wraz z kolejnymi iteracjami rozwiązania starają się coraz bardziej dokładne co sugeruje zbliżanie się wykresów normy do 0. Widzimy jednak(różna ilość iteracji dla *Rys4*. i *Rys2*.), że czas działania algorytmu zależy od wyboru punktu początkowego.

5. Wnioski

Metoda Newtona jest dobrze uwarunkowaną numerycznie, efektywną oraz dokładną metodą obliczania pierwiastków układu równań nieliniowych. Oba wyniki zbiegające do tej samej wartości [1, 2] świadczy o poprawnym wykonaniu ćwiczenia.