

^{付録} Bell-CHSH 不等式 の導出

田崎 晴明

最小の「隠れた変数」の場合

最小の隠れた変数

▶ 隠れた変数 $\lambda \in \{1,2,...,16\}$ を指定すると A_1, A_2, B_1, B_2 を測定した際の結果 $a_1(\lambda), a_2(\lambda), b_1(\lambda), b_2(\lambda)$ が一意に定まる

λ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$a_1(\lambda)$	+1	+1	+1	+1	+1	+1	+1	+1	-1	-1	-1	-1	$\overline{-1}$	-1	-1	$\overline{-1}$
$a_2(\lambda)$	+1	+1	+1	+1	-1	-1	-1	-1	+1	+1	+1	+1	-1	-1	-1	-1
$b_1(\lambda)$	+1	+1	-1	-1	+1	+1	-1	-1	+1	+1	-1	-1	+1	+1	-1	-1
$b_2(\lambda)$																

 \triangleright N 回の実験 隠れた変数の列 $\lambda_1, \lambda_2, ..., \lambda_N$

列は完全に任意 どのような規則で決めてもいい

確率的である必要はない

$$N(\lambda) = \sum_{j=1}^N \delta_{\lambda,\lambda_j}$$
 列の中に λ が現れた回数 $\sum_{\lambda=1}^{16} N(\lambda) = N$

$$r(\lambda) = \frac{N(\lambda)}{N}$$
 列の中に λ が現れた頻度 $\sum_{\lambda=1}^{16} r(\lambda) = 1$

測定量の選択と相関関数

▶ A, B が測定する量をランダムに選ぶ

各々の j=1,...,N について、独立に、確率 $\frac{1}{4}$ で (1,1),(1,2),

(2,1),(2,2) のいずれかを選ぶ

 $S_{\alpha,\beta}$: (α,β) が選ばれた j の集まり $N_{\alpha,\beta}$: $S_{\alpha,\beta}$ の要素の個数

$$\{1, 2, \dots, N\} = S_{1,1} \cup S_{1,2} \cup S_{2,1} \cup S_{2,2}$$

▶相関関数

$$\langle A_{\alpha}B_{\beta}\rangle = \frac{1}{N_{\alpha,\beta}} \sum_{j \in S_{\alpha,\beta}} a_{\alpha}(\lambda_j) \, b_{\beta}(\lambda_j) = \frac{1}{N_{\alpha,\beta}} \sum_{\lambda=1}^{16} a_{\alpha}(\lambda) \, b_{\beta}(\lambda) \, N_{\alpha,\beta}(\lambda)$$

$$N_{lpha,eta}(\lambda) = \sum_{j \in S_{lpha,eta}} \delta_{\lambda,\lambda_j}$$
 $S_{lpha,eta}$ の中に λ が現れた回数

$$N\gg 1$$
 のとき任意の (α,β) について $\frac{N_{\alpha,\beta}(\lambda)}{N_{\alpha,\beta}}\simeq \frac{N(\lambda)}{N}=r(\lambda)$

相関関数の表式
$$\langle A_{\alpha}B_{\beta}\rangle=\sum_{\lambda=1}^{16}a_{\alpha}(\lambda)\,b_{\beta}(\lambda)\,r(\lambda)$$
 大数の法則 ϕ

Bell-CHSH 不等式

Bell 1964, Clauser, Horne, Shimony, Holt 1969

任意の $\lambda = 1,...,16$ について

$$a_{1}(\lambda) b_{1}(\lambda) + a_{2}(\lambda) b_{1}(\lambda) - a_{1}(\lambda) b_{2}(\lambda) + a_{2}(\lambda) b_{2}(\lambda)$$

$$= \{a_{1}(\lambda) + a_{2}(\lambda)\} b_{1}(\lambda) - \{a_{1}(\lambda) - a_{2}(\lambda)\} b_{2}(\lambda)$$

$$= \pm 2$$

$$a_{1}(\lambda), a_{2}(\lambda), b_{1}(\lambda), b_{2}(\lambda) \in \{+1, -1\}$$

$$a_{1} a_{2} | a_{1} + a_{2} | a_{1} - a_{2} | a_{1} + a_{2} | a_{2} | a_{1} + a_{2} | a_{2}$$

$$\langle A_{\alpha}B_{\beta}\rangle = \sum_{\lambda=1}^{16} a_{\alpha}(\lambda) \, b_{\beta}(\lambda) \, r(\lambda)$$

$$\sum_{\lambda=1}^{16} r(\lambda) = 1 \quad \text{\sharp 5}$$

$$-2 \le \langle A_1 B_1 \rangle + \langle A_2 B_1 \rangle - \langle A_1 B_2 \rangle + \langle A_2 B_2 \rangle \le 2$$

より複雑な「隠れた変数」

最小の場合に帰着させる

隠れた変数から測定値が決まる場合

- 各々の粒子に隠れた変数 Λ_1 および Λ_2 が書き込まれる
- ◆ 隠れた変数は何らかの規則 (決定的でも確率的でもよい) によって Λ_1' および Λ_2' に変化 $(\Lambda_1', \Lambda_2' \in \mathcal{V})$
- $igoplus A が A_{\alpha}$ を測定すると結果は必ず $\tilde{a}_{\alpha}(\Lambda_1') \in \{+1, -1\}$
- lacktriangle B が B_{β} を測定すると結果は必ず $\tilde{b}_{\beta}(\Lambda_2') \in \{+1,-1\}$

$$\tilde{a}_{\alpha}: \mathcal{V} \to \{+1, -1\} \quad (\alpha = 1, 2) \qquad \tilde{b}_{\beta}: \mathcal{V} \to \{+1, -1\} \quad (\beta = 1, 2)$$

これと整合する一意的な $\lambda \in \{1,...,16\}$ をとる

$$a_{\alpha}(\lambda) = \tilde{a}_{\alpha}(\Lambda'_1) \quad (\alpha = 1, 2) \qquad b_{\beta}(\lambda) = \tilde{b}_{\beta}(\Lambda'_2) \quad (\beta = 1, 2)$$

測定値が確率的に決まる場合

- 各々の粒子に隠れた変数 Λ_1 および Λ_2 が書き込まれる
- ◆ 隠れた変数は何らかの規則 (決定的でも確率的でもよい) によって Λ_1' および Λ_2' に変化 $(\Lambda_1', \Lambda_2' \in \mathcal{V})$
- igapsile A が A_{α} を測定すると、確率 $p_{\alpha}(\Lambda_1')$ で +1, 確率 $1-p_{\alpha}(\Lambda_1')$ で -1 が得られる
- lacktriangle B が B_{β} を測定すると、確率 $q_{\beta}(\Lambda_2')$ で +1, 確率 $1-q_{\beta}(\Lambda_2')$ で -1 が得られる

$$p_{\alpha}: \mathcal{V} \to [0,1] \quad (\alpha = 1,2) \qquad q_{\beta}: \mathcal{V} \to [0,1] \quad (\beta = 1,2)$$

この確率に基づいて測定結果 (の候補) a_1 , a_2 , b_1 , b_2 を選び、 それと整合する一意的な $\lambda \in \{1,...,16\}$ をとる

$$a_{\alpha}(\lambda) = a_{\alpha} \quad (\alpha = 1, 2)$$
 $b_{\beta}(\lambda) = b_{\beta} \quad (\beta = 1, 2)$