BUNDE REPUBLIK DEUTS HLAND WOOD

Rec'd PCT/PTO 10 DEC 2004

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 43 413.1

Anmeldetag:

18. September 2002

Anmelder/Inhaber:

Giesecke & Devrient GmbH, München/DE

Bezeichnung:

Verfahren zur Herstellung von Gitterbildern

Priorität:

12.06.2002 DE 102 26 112.1

IPC:

G 03 F, B 44 F

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 09. April 2003

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

RESPORT

BEST AVAILABLE COPY

Verfahren zur Herstellung von Gitterbildern

Die Erfindung betrifft ein Verfahren zum Erzeugen eines Gitterbildes mittels einer Schreibvorrichtung, das wenigstens ein mit bloßem Auge erkennbares Gitterfeld aufweist, in welchem Gitterelemente angeordnet sind. Die Erfindung betrifft ferner eine Vorrichtung zur Vorbereitung und Durchführung dieses Verfahrens sowie ein Gitterbild und ein Sicherheitsdokument mit einem derartigen Gitterbild.

10

15

20

25

5

Optisch variable Elemente, wie Hologramme oder Beugungsgitterbilder werden aufgrund ihrer mit dem Betrachtungswinkel variierenden optischen Eigenschaften häufig als Fälschungs- bzw. Kopierschutz für Wertdokumente, wie Kreditkarten, Banknoten oder dergleichen, aber auch zur Produktsicherung auf beliebigen Produktverpackungen verwendet. Für die Massenherstellung derartiger Sicherheitselemente ist es üblich, so genannte "Masterstrukturen" herzustellen, welche die jeweiligen Phaseninformationen des optisch variablen Elements in Form einer räumlichen Reliefstruktur aufweisen. Hierbei handelt es sich üblicherweise um ein Glassubstrat mit einer Photoresistbeschichtung, in der die Beugungsstruktur in Form von Bergen und Tälern konserviert ist. Ausgehend von dieser Masterstruktur werden durch Vervielfältigung und Abformen der Reliefstruktur beliebig geformte Prägewerkzeuge hergestellt, mit deren Hilfe die durch die Reliefstruktur dargestellten Beugungsstrukturen in großer Stückzahl in geeignete Substrate übertragen werden können.

Die Masterstruktur kann hierbei die komplette Beugungsstruktur eines echten Hologramms oder eines aus unterschiedlichen Beugungsgittern zusammengesetzten Gitterbildes wiedergeben. Die Beugungsgitter unterscheiden sich hinsichtlich der Gitterkonstante und/oder des Azimutwinkels und/

40.00

oder der Profilstruktur der Gitterlinien sowie der Kontur oder des Umrisses des mit dem jeweiligen Beugungsgitters belegten Bildbereichs.

Die Gitterkonstante entspricht dabei dem Abstand der Gitterlinien und ist wesentlich für die unter einem bestimmten Betrachtungswinkel erkennbare Farbe des Bildbereichs im Gitterbild. Der Azimutwinkel beschreibt die Neigung der Gitterlinien bezüglich einer Referenzrichtung und ist für die Sichtbarkeit dieser Bildfelder in bestimmten Betrachtungsrichtungen verantwortlich. Das Linienprofil ist allgemein für die Intensität verantwortlich und spielt bei Gitterbildern nullter Ordnung eine besondere Rolle. Auf der Grundlage dieser Technik können daher optisch variable Bilder, z.B. bewegte Bilder oder auch plastisch wirkende Bilder erzeugt werden.

Die einzelnen Beugungsgitter können dabei entweder holographisch oder mittels Elektronenstrahllithographie erzeugt werden. Bei der holographischen Aufzeichnung der Beugungsgitter werden in einem entsprechenden Substrat Lichtstrahlen aus räumlich ausgedehnten, einheitlichen Wellenfeldern überlagert. Hierfür wird üblicherweise Laserstrahlung verwendet. Bei der Elektronenstahllithographie werden die beugenden Gitterlinien direkt in ein entsprechendes Substrat belichtet, wobei der Belichtungsvorgang auch häufig als Schreibvorgang bezeichnet wird. Als Substrat wird in diesem Verfahren im Allgemeinen eine Glasplatte verwendet, die mit einer für die entsprechende Teilchen- oder Lichtstrahlung empfindlichen Schicht ("Photoresist") beschichtet ist. Für die Belichtung können Substrat und Elektronenstrahl relativ zueinander bewegt werden. Dabei gibt es die Möglichkeit, das Substrat still zu halten und den Elektronenstrahl elektromagnetisch abzulenken. Der Ablenkungsbereich des Elektronenstrahls liegt im Bereich von wenigen Zehntel Millimeter. Bei größeren Ablenkungen stören die so genannten "Linsenfehler" der Elektronenoptik, die auch am fertigen Beu-

10

15

20

25

gungsgitter erkennbar sind. Alternativ kann das Substrat mittels eines x-y-Tisches bewegt werden, während der Elektronenstrahl still gehalten wird. Hierfür ist allerdings eine hoch präzise Tischführung erforderlich.

Um mithilfe der Elektronenstrahllithographie Gitterbilder der eingangs genannten Art erzeugen zu können, wird das gesamte Gitterbild in eine Vielzahl von kleinen Feldern mit bis zu einigen Zehntel Millimetern Kantenlänge zerlegt. Das Gitterbild wird somit unabhängig vom dargestellten Motiv in einzelne "Rasterelemente" zerlegt, die mittels des Elektronenstrahls mit Gitterlinien beschriftet werden. Hierbei werden die Gitterlinien in den einzelnen kleinen Feldern über die Ablenkung des Elektronenstrahls eingeschrieben, während die Bewegung von Feld zu Feld durch Tischverschiebung erfolgt. Auf diese Weise können große Flächen beschriftet werden. Diese Art der Elektronenstrahlbelichtung wird im Allgemeinen als "Stitching-Modus" bezeichnet. Diese Vorgehensweise hat jedoch den Nachteil, dass das Bild aus lauter kleinen Flächenstücken zusammengesetzt ist, die bei genauerer Betrachtung visuell erkennbar sind, das Bild vergröbern und zu Farbfehlern führen. Bei größeren Bildflächen, wie z.B. Linien, die unter einem Betrachtungswinkel eine einheitliche Farbe zeigen sollen, wird die Fläche nicht mit einem passenden einheitlichen Beugungsgitter versehen. Vielmehr wird dieses Beugungsgitter aus vielen kleinen Elementen zusammengesetzt. Aufgrund der Toleranzen beim Aneinandersetzen der kleinen Flächenelemente weisen die über die Bildfläche verlaufenden Gitterlinien Knicke oder Lücken auf, die zu sichtbaren Fehlern führen.

25

20

5

10

15

Im "CPC-Modus" (Continuous Path Control, Produkt der Firma Leica Microsystems Ltd.) dagegen ist der Elektronenstrahl ortsfest, während der Tisch entsprechend der zu belichtenden Strukturen bewegt wird. Dieser Modus eignet sich aber weniger für die Erzeugung fein strukturierter Gitter-

bilder, wie beispielsweise Guillochebilder oder in feine Linien zerlegte Bilder oder Mikroschrift, da diese fein strukturierten Bilder eine überwiegende Anzahl von kurzen Gitterlinien aufweisen. Daher müssen pro Gitterbild bis in den Millionenbereich hineingehende Stopp- und Anfahrvorgänge des Tisches erfolgen. Dies belastet die Tischmechanik und kostet sehr viel Zeit.

5

10

15

20

25

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zu schaffen, das es ermöglicht, fein strukturierte Gitterbilder mithilfe der Elektronenstrahllithographie zu erzeugen und dabei die oben genannten Nachteile vermeidet.

Die Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst. Weiterbildungen sind Gegenstand der Unteransprüche.

Die Erfindung beruht auf der Erkenntnis, dass zur Vermeidung von optischen Fehlern in Gitterbildern die den optisch variablen Effekt erzeugenden Gitterelemente, die vorzugsweise als Gitterlinien ausgestaltet sind, kontinuierlich in einem Verfahrensschritt erzeugt werden müssen. Daher werden nach dem erfindungsgemäßen Verfahren nur die Gitterlinien, die über ihre gesamte Länge in der Reichweite der elektromagnetischen Ablenkung des Elektronenstrahls liegen, nach diesem Modus belichtet. Um auf diese Art und Weise Gitterbilder zusammensetzen zu können, werden Arbeitsfelder definiert, die über Bewegung des Tisches angefahren werden können. Innerhalb der einzelnen Arbeitsfelder werden die Gitterlinien über ihre gesamte Länge durch Ablenkung des Elektronenstrahls in ein entsprechendes Substrat belichtet.

Nach dem erfindungsgemäßen Verfahren werden daher in einem ersten Schritt die Gitterelemente bestimmt, deren Anfangs- und Endpunkte (und gegebenenfalls auch Zwischenpunkte) innerhalb des Bewegungsbereichs der Schreibvorrichtung liegen. Anschließend werden die Arbeitsfelder festgelegt, in denen die Schreibvorrichtung relativ zu einem Träger, auf dem sich ein zu beschriftendes Substrat befindet, bewegt wird. Schließlich wird die Bewegungsbahn des Trägers festgelegt, so dass die Arbeitsfelder nacheinander durch Bewegung des Trägers angefahren und die im jeweiligen Arbeitsfeld liegenden Gitterelemente erzeugt werden können.

5

10

15

20

Die Bestimmung der Gitterelemente erfolgt dabei vorzugsweise anhand eines Datensatzes, der Informationen über Anfangs- und Endpunkte und gegebenenfalls auch Zwischenpunkte der das Gitterfeld bildenden Gitterelemente in Form von Ortskoordinaten enthält.

Im Rahmen der Erfindung bedeutet Gitterbild vorzugsweise ein mit bloßem Auge erkennbares Bildmotiv oder eine alphanumerische Information mit lichtbeugenden oder reflektierenden Effekten. Unter alphanumerischer Information ist auch eine Mikroschrift zu verstehen. Das Gitterbild weist wenigstens ein mit bloßem Auge erkennbares Gitterfeld beliebiger Umrisskontur auf, in dem ein Gittermuster aus beliebig geformten Gitterelementen angeordnet ist. Vorzugsweise bestehen diese Gitterelemente aus Gitterlinien, die gerade, geschwungen oder in einer beliebigen anderen Gestalt ausgeführt sein können.

Die lichtbeugenden Gitterbilder setzen sich vorzugsweise aus unterschiedlichen Beugungsgittern zusammen. Mit dem erfindungsgemäßen Verfahren können jedoch beliebig komplizierte Beugungsstrukturen bis hin zu computererzeugten Hologrammen erzeugt werden.

Das erfindungsgemäße Verfahren eignet sich vorzugsweise für die Herstellung von fein strukturierten Gitterbildern oder Gitterbildern, die Gitterfelder aufweisen, deren Länge und/oder Breite im Bereich von 5 μ m bis 500 μ m liegt und vorzugsweise 20 µm bis 100 µm beträgt.

5

15

20

25

Die Gitterfelder wiederum sind im Falle von lichtbeugenden Gitterbildern mit Gitterelementen, vorzugsweise Gitterlinien, mit einer Gitterkonstanten von etwa 0,1 bis 10 μ m, vorzugsweise 0,5 bis 2 μ m versehen.

10

Als Schreibvorrichtung wird im erfindungsgemäßen Verfahren vorzugsweise ein Teilchenstrahl, insbesondere ein Elektronenstrahl verwendet, da hiermit Auflösungen bis in den Nanometerbereich möglich sind. Sofern Gitterbilder erzeugt werden sollen, die diese hohe Auflösung nicht benötigen, beispielsweise rein auf reflektierenden Effekten beruhende Gitterbilder, so

kommen auch andere Lithographieinstrumente infrage, um die Gitterelemente in einem entsprechenden Substrat zu erzeugen. Hierbei kann es sich beispielsweise um einen fokussierenden UV-Laser oder auch eine Präzisionsfräsvorrichtung handeln. Für das Fräsverfahren werden als Substrat vorzugsweise Metallplatten verwendet. Der Begriff "Photoresist" umfasst im Rahmen der Erfindung daher beliebige Substrate, in die eine Information in

Form einer Reliefstruktur eingebracht werden kann.

Das erfindungsgemäße Prinzip der Aufteilung des Schreibvorganges in einen hoch präzisen, reinen Transportvorgang und einen hoch präzisen Bewegungs- und Schreibvorgang, der hinsichtlich der verwendeten Schreibvorrichtung optimiert ist, lässt sich auch hier vorteilhaft anwenden.

Gemäß einer ersten Ausführungsform beispielsweise können die Arbeitsfelder über einen Tisch angefahren werden, der über eine Hochpräzisionsme-

chanik, wie eine Hochpräzisionsspindel steuerbar ist. Mit dieser Technik können größere Strecken relativ schnell und sehr präzise zurückgelegt werden. Für den eigentlichen Schreibvorgang kann auf dem Tisch ein weiterer kleinerer Tisch angeordnet sein, der beispielsweise piezoelektrisch bewegt wird. Alternativ kann der kleine Tisch auchauf andere Weise, z.B. über Magnetostriktion bewegt werden. Damit können kurze Strecken im Mikrometerbereich schnell und exakt zurückgelegt werden. D.h., während des Schreibvorgangs wird das zu beschriftende Substrat mittels des piezoelektrischen Tisches relativ zur ortsfesten Schreibvorrichtung bewegt bis alle mit dem piezoelektrischen Tisch erreichbaren Elemente des Gesamtmotivs geschrieben sind. Anschließend werden sowohl das Substrat als auch der piezoelektrische Tisch mithilfe des mechanisch verschiebbaren Tisches zum nächsten Arbeitsfeld transportiert, in dessen Bereich das Substrat erneut beschriftet wird. Diese Vorgehensweise eignet sich vorzugsweise für Fräsvorrichtungen, kann aber auch bei allen anderen genannten Schreibvorrichtungen verwendet werden. Bei der Verwendung eines Elektronenstrahls bietet es sich, wie bereits erwähnt, alternativ an, die Arbeitsfelder über eine Bewegung des Tisches anzufahren, während die im Arbeitsfeld liegenden Gitterelemente durch elektromagnetische Ablenkung des Elektronenstrahls erzeugt werden.

5

10

15

20

25

Zur Veranschaulichung des erfindungsgemäßen Verfahrens wird von einem Gitterbild ausgegangen, das lediglich aus einem geraden linienförmigen Gitterfeld mit einer Breite im oben genannten Bereich von 0,02 und 0,2 mm besteht. Die Länge der Linie ist beliebig. Dieses linienförmige Gitterfeld weist als Gitterelemente gerade Gitterlinien auf, die über die Breite des Gitterfeldes verlaufen und damit eine Länge aufweisen, die der Breite des Gitterfeldes entspricht. Dieses Gitterbild soll mithilfe eines Elektronenstrahls in einen passenden Photoresist belichtet werden. Der Photoresist befindet sich hierbei

auf einem Substrat, vorzugsweise einer Glasplatte, die auf einem beweglich gelagerten x-y-Tisch angeordnet ist.

5

10

15

20

25

Für die Erzeugung dieses Gitterbildes wird ein Datensatz zur Verfügung gestellt, der Informationen über die Anfangs- und Endpunkte der Gitterlinien enthält. Dieser Datensatz kann beispielsweise aus der Entwurfphase des Gitterbildes stammen, insbesondere wenn das Design des Gitterbildes computergestützt mithilfe spezieller Programme erstellt wurde. Anhand dieser Daten wird bestimmt, welche der Gitterlinien im elektromagnetischen Ablenkungsbereich des Elektronenstrahls liegen. Da die Anfangs- und Endpunkte aller Gitterlinien in dem Bereich liegen, der über eine elektromagnetische Ablenkung des Elektronenstrahls erreicht werden kann, können alle Gitterlinien kontinuierlich, ohne Unterbrechung über ihre gesamte Länge geschrieben werden. Schließlich wird eine Bewegungsbahn für den Tisch festgelegt, auf dem sich der Photoresist befindet. Nachdem alle für die Steuerung der jeweiligen Vorrichtungen benötigten Daten festgelegt sind, wird das erste Arbeitsfeld durch Bewegung des Tisches angefahren. Innerhalb dieses Arbeitsfeldes werden die Gitterlinien durch Ablenkung des Elektronenstrahls erzeugt. Die einzelnen Gitterlinien werden dabei durch kontinuierliche Ablenkung des Elektronenstrahls erzeugt und weisen keine Unterbrechungen oder unerwünschten Knickstellen auf. Nachdem alle im Bereich des ersten Arbeitsfeldes liegenden Gitterlinien geschrieben wurden, wird der Tisch erneut bewegt und das nächste Arbeitsfeld in Belichtungsposition gebracht. Dieser Vorgang wird solange wiederholt bis das gesamte linienförmige Gitterfeld in den Photoresist belichtet ist.

Das erfindungsgemäße Verfahren hat den Vorteil, dass die einzelnen Gitterelemente in möglichst großen Bereichen in sich einheitlich sind und innerhalb dieser Bereiche nicht aus mehreren Teilsegmenten zusammengesetzt

sind. Zudem wird durch die Aufteilung des Gitterfeldes in Arbeitsbereiche die Zahl der zeitintensiven Stop- und Anfahrvorgänge des Tisches auf ein Minimum reduziert.

Wenn die Gitterfelder kompliziertere Umrisskonturen, wie z.B. Guillochelinien, aufweisen sollen, so kann es vorkommen, dass die Gitterelemente Anfangs- und Endpunkte aufweisen, die außerhalb des Ablenkungsbereichs der Schreibvorrichtung liegen. Diese zu großen Gitterelemente können entweder allein durch Bewegung des Substrats bei fester Schreibvorrichtung oder durch Zerlegung der Gitterelemente in kleinere für die Schreibvorrichtung erreichbare Stücke, die aneinander gesetzt werden, erzeugt werden.

Die erfindungsgemäße Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens weist eine Transportvorrichtung auf, mit der die Schreibvorrichtung und das Substrat über eine größere Strecke relativ zueinander bewegt werden können, eine Bewegungseinrichtung, mit der die Schreibvorrichtung und das Substrat während des tatsächlichen Schreibvorgangs relativ zueinander bewegt werden können, sowie Einrichtungen zur Steuerung der vorher Genannten auf. Die Bewegungseinrichtung kann dabei beispielsweise der bereits erwähnte piezoelektrische Tisch oder eine Vorrichtung zur Ablenkung eines Teilchen- oder Lichtstrahls sein. Die Bewegungseinrichtung ermöglicht eine schnelle und präzise Relativbewegung von Substrat und Schreibvorrichtung im Mikrometerbereich.

15

20

Für den Fall der Elektronenstrahlbelichtung weist die Vorrichtung vorzugsweise einen beweglich gelagerten Tisch für den reinen Transportvorgang sowie eine elektronenstrahl während des Schreibvorgangs auf. Zusätzlich kann die erfindungsgemäße Vorrichtung auch eine Recheneinheit enthalten, in der die beschriebenen Bewegungsabläufe der Schreibvorrichtung und des Trägers berechnet werden.

Um jedoch während des Schreibvorgangs nicht zu viel Zeit mit Berechnungen verbringen zu müssen, findet die Vorbereitung und die Entscheidung, wie das Gitterbild im Einzelnen zusammengesetzt, bzw. die Berechnung der Steuerungsdaten für die Schreibvorrichtung und den Träger vorzugsweise in einer Computersimulation vor dem eigentlichen Schreibvorgang statt. Hier wird entschieden, welche Gitterelemente innerhalb des Ablenkungsbereichs der Schreibvorrichtung liegen, wie die Arbeitsfelder gestaltet werden müssen, welche Gitterelemente in welchem Arbeitsfeld liegen, wie der Träger bewegt werden muss, um alle Arbeitsfelder in wirtschaftlicher Weise anfahren zu können, ob und wenn ja welche Gitterelemente nach einem anderen Verfahren erzeugt werden sollen.

15

20

10

5

Das erfindungsgemäße Verfahren kann selbstverständlich auch für Gitterbilder verwendet werden, die sowohl fein strukturierte als auch größer flächige Gitterbildanteile aufweisen. In diesem Fall wird im Rahmen der Vorbereitung des Schreibvorgangs festgelegt, welche Anteile des Gitterbildes mit dem erfindungsgemäßen Verfahren und welche Anteile nach einem anderen Verfahren erzeugt werden sollen.

25

Die Schreibwege innerhalb der Arbeitsfelder können in verschiedener Weise ausgeführt werden. Beispielsweise kann die Schreibvorrichtung mäanderförmig oder zickzackförmig geführt werden. Bei Verwendung eines Elektronenstrahls oder eines Lasers hat die mäanderförmige Führung den Vorteil, dass der Strahl auf den kurzen Verbindungsstücken nicht abgeschaltet werden muss. Im Falle eines zickzackförmigen Schreibweges wird der Strahl

beim Zurückfahren abgeschaltet oder die Rückwege werden so schnell abgefahren, dass keine wesentliche Belichtung auftritt.

Gemäß einer alternativen Verfahrensvariante wird in jedem Arbeitsfeld lediglich eine Linie bzw. ein Gitterelement geschrieben. Das heißt, die Schreibvorrichtung erzeugt jeweils ein Gitterelement, das in ihrem Arbeitsbereich liegt. Gleichzeitig bzw. beim Rückweg wird der Träger schrittweise oder kontinuierlich von Gitterelement zu Gitterelement bewegt. Die einzelnen Gitterelemente können dabei geradlinig oder beliebig gekrümmt sein. Im einfachsten Fall haben die aufeinander folgenden Gitterelemente die identische Form. Es können aber auch beliebige Gitterelemente erzeugt werden, wenn die Schreibvorrichtung entsprechend programmiert wird.

5

10

15

20

25

Das nach dem erfindungsgemäßen Verfahren hergestellte Substrat bildet nach einem eventuellen Entwicklungsschritt eine Masterstruktur, die in beliebige Prägewerkzeuge umgesetzt werden kann. Um diese Prägewerkzeuge zu erzeugen, wird beispielsweise die Reliefstruktur des Gitterbildes z.B. durch Aufsprühen einer Metallschicht elektrisch leitend gemacht und anschließend galvanisch in eine Nickelfolie abgeformt. Ausgehend von dieser Nickelfolie werden weitere Nickelfolien abgeformt, die beispielsweise zum Prägen einer großen Anzahl von Nutzen in eine thermoplastische Kunststoffplatte, z.B. Plexiglas benutzt werden. Diese Kunststoffplatte wird ebenfalls galvanisch abgeformt und die abgeformte Metallfolie als Prägeform für eine Vielzahl von Nutzen des ursprünglichen Gitterbildes benutzt. Die Metallfolie wird hierfür vorzugsweise zu einer zylindrischen Prägeform verschweißt und auf einen Spannzylinder aufgezogen.

Mit diesen Prägewerkzeugen können beliebige Schichten, wie beispielsweise eine thermoplastische Schicht oder eine Lackschicht, insbesondere eine UV-

härtbare Lackschicht geprägt werden. Die prägbare Schicht befindet sich vorzugsweise auf einem Trägermaterial, wie einer Kunststofffolie. Je nach Verwendungszweck kann die Kunststofffolie zusätzliche Schichten oder Sicherheitsmerkmale aufweisen. So kann die Kunststofffolie als Sicherheitsfaden oder Sicherheitsetikett eingesetzt werden. Alternativ kann die Kunststofffolie als Transfermaterial, wie beispielsweise in Form einer Heißprägefolie ausgestaltet sein, die zum Übertrag einzelner Sicherheitselemente auf zu sichernde Gegenstände dient.

5

- Die Gitterbilder werden vorzugweise zur Absicherung von Wertdokumenten, wie Banknoten, Ausweiskarten, P\u00e4ssen und dergleichen benutzt. Selbstverst\u00e4ndlich k\u00f6nnen sie auch f\u00fcr andere zu sichernde Waren, wie CDs, B\u00fc-cher, Flaschen etc. eingesetzt werden.
- Gemäß der Erfindung ist es auch nicht unbedingt notwendig, das gesamte Gitterbild aus Gitterfeldern zusammenzusetzen. Vielmehr können nur Teile eines Gesamtbildes in Form von Gitterfeldern, insbesondere erfindungsgemäßen Gitterfeldern ausgeführt sein, während andere Bildanteile mit anderen Verfahren gestaltet werden, wie beispielsweise holographischen Gittern, echten Hologrammen oder Aufdrucken.

Weitere Vorteile der Erfindung werden anhand der Figuren erläutert. Es zeigen:

- 25 Fig. 1 Design, das nach dem erfindungsgemäßen Verfahren in ein Gitterbild umgesetzt wird,
 - Fig. 2 einen Ausschnitt aus dem erfindungsgemäßen Gitterbild gemäß Fig. 1 in starker Vergrößerung,

Herstellung eines Gitterfeldes nach dem erfindungsgemäßen Fig. 3a-3c Verfahren, ein nach dem Stand der Technik hergestelltes Gitterbild, Fig. 4 5 Fig. 5 Herstellung eines Gitterfeldes mit langen Gitterelementen, Varianten für Schreibwege innerhalb der Arbeitsfelder, Fig. 6a-6d 10 Fig. 7a-7c Variante des erfindungsgemäßen Verfahrens, weitere Variante des erfindungsgemäßen Verfahrens, Fig. 8a-8c weitere Variante des erfindungsgemäßen Verfahrens. Fig. 9 In Fig. 1 ist ein erfindungsgemäßes Gitterbild 1 dargestellt. Im gezeigten Beispiel handelt es sich um ein fein strukturiertes Gitterbild 1, das aus Guillochelinien 2 zusammengesetzt ist. Bei diesem Guillochebild 1 sind die einzelnen Guillochelinien 2 durch unterschiedliche Beugungsstrukturen, insbesondere Beugungsgitter dargestellt. Die Beugungsgitter können sich hinsichtlich ihrer Gitterkonstanten und/oder dem Azimutwinkel unterscheiden, so dass unter einem bestimmten Betrachtungswinkel lediglich ein Teil der Guillochelinien 2 zu erkennen ist und die sichtbaren Guillochelinien 2 unterschiedliche Farbe zeigen. Beim Ändern des Betrachtungswinkels werden andere Guillochelinien 2 sichtbar und die Farben der einzelnen Guillochelinien 2 ändern sich. Die Beugungsgitter können jedoch auch so ausgestaltet sein, dass alle Guillochelinien 2 unter jedem Betrachtungswinkel erkennbar sind und sich lediglich hinsichtlich ihrer Farbe unterscheiden. In diesem Fall tritt beim Ändern des Betrachtungswinkels lediglich ein Farbwechselspiel auf.

15

20

25

In Fig. 2 ist der Ausschnitt a in starker Vergrößerung dargestellt, so dass die einzelnen Beugungsgitterlinien 5, 7 zu erkennen sind. Die gezeigten Guillochelinien bilden hierbei die erfindungsgemäßen Gitterfelder 4, 6, in denen jeweils Gitterelemente 5, 7 angeordnet sind. Wie bereits erwähnt, sind die Gitterelemente 5, 7 im vorliegenden Beispiel geradlinig ausgeführt und verlaufen über die gesamte Breite b der Gitterfelder 4, 6. Die Form der Gitterfelder 4, 6 ist allein durch das Bildmotiv 1 bestimmt. Die Breite und Länge der Gitterfelder 4, 6 ist durch das Motiv bestimmt. Im vorliegenden Beispiel einer Guillochelinie liegt die Breite vorzugsweise im Bereich von 0,02 bis 0,2 mm. Die Gitterfelder 4, 6 sind dabei nach dem erfindungsgemäßen Verfahren hergestellt. Das erfindungsgemäße Verfahren wird im Folgenden anhand des Gitterfeldes 4 erläutert.

Für die Erzeugung des Gitterfeldes 4 wird in einem ersten Schritt ein Datensatz zur Verfügung gestellt, der Informationen über die Form und Lage der Gitterelemente 5 enthält, die vorzugsweise als Koordinaten in einem bestimmten Koordinatensystem vorliegen. Falls die Gitterlinien gerade sind, genügen die Koordinaten der Anfangs- und Endpunkte der einzelnen Gitterelemente 5. Dies ist in Fig. 3a schematisch skizziert. Jede der Gitterlinien 5 besitzt einen Anfangspunkt A und einen Endpunkt B, deren Koordinaten in einer definierten x-y-Ebene in dem Datensatz gespeichert sind. Aus den Anfangs- und Endpunkten ergibt sich indirekt die Länge L einer jeden Gitterlinie 5 sowie der Abstand der einzelnen Gitterlinien 5 zueinander. Im gezeigten Beispiel ist der Abstand d für alle Gitterlinien 5 des Gitterfeldes 4 konstant. Er kann jedoch beliebig variieren, auch entlang einer Gitterlinie, wenn diese nicht parallel zur nächsten angeordnet ist oder die Gitterlinien beispielsweise wellenförmig ausgestaltet sind.

Sofern die Gitterlinien nicht gerade sind, enthält der Datensatz die Koordinaten vieler eng beieinander liegender Zwischenpunkte, die als Polygonzug die Form der Gitterelemente beschreiben. Alternativ kann die Form der Gitterelemente auch als Bezier-Kurve beschrieben werde, bei welcher lediglich die Koordinaten weniger Zwischenpunkte und zusätzlich eine Tangentialrichtung bezüglich des weiteren Kurvenverlaufs gespeichert werden.

5

10

15

20

25

Die Koordinaten eines Gitterelements können daher lediglich aus den Koordinaten des Anfangs- und Endpunkts des Gitterelements bestehen oder aber die Koordinaten einer bestimmten Anzahl von Zwischenpunkten und gegebenenfalls Richtungsinformationen mitumfassen.

Anhand der Koordinaten der einzelnen zu erzeugenden Gitterelemente 5 wird festgelegt, welche der Gitterelemente durch Ablenkung eines Elektronenstrahls kontinuierlich geschrieben werden können. Es wird ein Fenster in der Größe des Arbeitsfeldes definiert. Dieses Koordinatenfenster wird ausgehend von einem definierten Startpunkt über die Koordinaten der Gitterelemente gelegt und bestimmt, welche aufeinander folgenden Gitterelemente vollständig im Bereich dieses Koordinatenfensters liegen. Die Koordinaten der Gitterlinien 5, die innerhalb eines Koordinatenfensters liegen, werden nun so sortiert und geordnet, dass Polygonzüge A₁B₁, A₂B₂ und A₃B₃ entstehen. Dieser Verfahrensschritt ist in Fig. 3b dargestellt.

In Fig. 3c sind zusätzlich zu den Polygonzügen A₁B₁, A₂B₂, A₃B₃ die Arbeitsfelder 8, 9, 10 gezeigt. Bei der Bestimmung der Lage des Arbeitsfeldes 8 wird beispielsweise die y-Koordinate des Koordinatenfensters auf den y-Wert des Anfangspunkts A₁ gesetzt und das Koordinatenfenster in x-Richtung solange verschoben bis der Endpunkt D des ersten Gitterelements vollständig innerhalb des definierten Koordinatenfensters liegt. Nun werden die Koordinaten

der folgenden Gitterelemente mit den Koordinaten des Fensters verglichen und überprüft, ob diese vollständig im Bereich des Koordinatenfensters liegen. Dabei kann die Lage des Koordinatenfensters noch optimiert werden. Aus diesem Abgleich der Koordinaten des Fensters und der Gitterelemente ergibt sich schließlich, dass das Gitterelement 100 das letzte Gitterelement ist, das vollständig in das bei A1 beginnende Koordinatenfenster passt. Das Arbeitsfeld 8 endet mit dem Endpunkt B1 des Gitterelements 100.

5

10

15

20

25

Für die Bestimmung des Arbeitsfeldes 9 wird das Koordinatenfenster aufgrund der Neigung des Gitterfeldes 4 in y-Richtung auf den Endpunkt B₂ des folgenden Gitterelements 101 gesetzt und erneut solange verschoben bis die maximal mögliche vollständige Zahl an Gitterelementen in dem Koordinatenfenster liegt. Dieser Vorgang wird computergestützt durchgeführt und solange wiederholt, bis alle Gitterelemente einem Arbeitsfeld zugeordnet sind. Wie aus Fig. 3c ersichtlich, können sich die Arbeitsfelder 8, 9, 10 durchaus überlappen.

Die Größe der Arbeitsfelder 8, 9, 10 entspricht dabei der Größe des elektromagnetischen Ablenkbereichs des Elektronenstrahls. Beim Belichten des Substrats wird nun zunächst der Tisch in eine Position gebracht, in der das Arbeitsfeld 8 unter dem Elektronenstrahl zu liegen kommt. Der Elektronenstrahl wird elektromagnetisch abgelenkt und wird entlang des Polygonzugs A₁B₁ bewegt, und die entsprechenden Gitterlinien 5 geschrieben. Wie an anderer Stelle noch näher erläutert wird, können dabei die kurzen Verbindungsstücke 11 zwischen den Gitterlinien 5 innerhalb eines Polygonzuges A₁B₁, A₂B₂, A₃B₃ ebenfalls mitbelichtet werden oder nicht. Danach wird der Tisch so verschoben, dass das Arbeitsfeld 9 unter den Elektronenstrahl zu liegen kommt. Der Elektronenstrahl fährt mittels elektromagnetischer Ablenkung den Polygonzug A₂B₂ und belichtet die entsprechenden Gitterlinien

5 in das Substrat. Analog wird mit dem Arbeitsfeld 10 und dem Polygonzug A₃B₃ verfahren. Dieser Vorgang wird so lange durchgeführt, bis das gesamte Gitterfeld 4, im vorliegenden Fall die Guillochelinie 2 mithilfe des Elektronenstrahls in das Substrat belichtet wurde. In analoger Weise wird mit den anderen Gitterfeldern des Gitterbildes 1 verfahren.

5

10

In Fig. 4 ist das Gitterfeld 4 dargestellt, für den Fall, dass es nach dem bekannten Stitching-Modus hergestellt wird. Die vom dargestellten Motiv unabhängigen "Rasterelemente" 30, in welchen Teilstücke der Gitterlinien angeordnet sind, sind deutlich zu erkennen. Da die Rasterelemente nicht exakt aneinander gesetzt werden können, weisen die meisten über die Breite des Gitterfeldes verlaufenden Gitterlinien Lücken und/oder Knicke auf, wie in dem markierten Bereich c zu erkennen ist.

Fig. 5 zeigt eine Variante des erfindungsgemäßen Verfahrens, bei dem ein Gitterfeld 20 geschrieben werden soll, das ebenfalls eine linienförmige Umrisskontur aufweist. Die das Gitterfeld 20 darstellenden Gitterlinien bestehen zum Teil aus Gitterlinien 12, deren Koordinaten im Ablenkungsbereich des Elektronenstrahls liegen. Darüber hinaus weist das Gitterfeld 20 große Gitterelemente auf, deren Koordinaten außerhalb des Ablenkungsbereichs des Elektronenstrahls liegen. Im gezeigten Beispiel handelt es sich bei diesen Gitterelementen ebenfalls um Gitterlinien 13.

In diesem Fall werden ebenfalls erfindungsgemäße Arbeitsfelder 14, 15, 16, 17, 18 definiert, in welchen die jeweiligen nach dem bereits beschriebenen Verfahren schreibbaren Polygonzüge A₁,B₁, A₂B₂, A₄B₄, A₅B₅ und A₆B₆ angeordnet sind. Der Zwischenbereich, bestehend aus dem Polygonzug A₃B₃, allerdings kann nicht nach dem erfindungsgemäßen Verfahren geschrieben werden. Nachdem das Arbeitsfeld 15 nach dem erfindungsgemäßen Verfah-

ren in das Substrat belichtet wurde, wird daher kurzzeitig auf einen anderen Schreibmodus ausgewichen. Im gezeigten Beispiel wird der Polygonzug A₃B₃ ebenfalls kontinuierlich rein durch Verschiebung des Tisches geschrieben. D.h., der Elektronenstrahl wird nicht abgelenkt und ist ortsfest gelagert, während der Tisch und das darauf befindliche zu belichtende Substrat relativ zum Elektronenstrahl entsprechend dem Polygonzug A₃B₃ bewegt wird.

5

10

Wie bereits erwähnt, können die in einem Arbeitsfeld liegenden Polygonzüge exakt in dieser Form in das Substrat belichtet werden. Es gibt jedoch weitere Möglichkeiten für die Ausgestaltung der Schreibwege innerhalb der jeweiligen Arbeitsfelder. Die verschiedenen Möglichkeiten zur Führung der Schreibvorrichtung werden stellvertretend anhand eines Polygonzuges, der innerhalb eines Arbeitsfeldes abgearbeitet wird, beschrieben.

In Fig. 6a ist die Variante dargestellt, bei welcher lediglich die Gitterlinien ohne die Verbindungsstücke 11 des Polygonzuges in das Substrat belichtet werden sollen. D.h., nachdem der Elektronenstrahl die Gitterlinie 21 ausgehend vom Anfangspunkt A1 bis zum Endpunkt B1 in das Substrat geschrieben hat, muss der Elektronenstrahl einen "Leerweg" zum Anfangspunkt A2 der nächsten Gitterlinie 22 fahren. Die Leerwege auf den Verbindungsstükken 11 sind daher in Fig. 6a gestrichelt gezeichnet. Auf diesem Leerweg kann der Elektronenstrahl ausgeschaltet oder auf andere Weise an der Belichtung des Substrats gehindert werden.

Da das kurzzeitige Abschalten des Elektronenstrahls auf den Verbindungsstücken 11 Zeit beansprucht und den Verfahrensablauf stört, können die Verbindungsstücke ebenfalls mitbelichtet werden, so dass im Substrat tatsächlich ein mäanderförmiger Polygonzug mit dem Anfangspunkt A₁ und dem Endpunkt B₁ vorliegt. Diese kleinen mitgeschriebenen Randstücke stören aufgrund ihrer Kürze nicht den optischen Eindruck des gesamten Gitterbildes.

Die Verbindungsstücke 11 müssen jedoch auch nicht geradlinig ausgeführt sein, sondern können abgerundet sein, wodurch die Schreibgeschwindigkeit des Elektronenstrahls noch weiter erhöht werden kann. Diese Ausführungsform ist in Fig. 6c dargestellt.

Die in den Fig. 6a bis 6c gezeigten mäanderförmigen Schreibwege sind sehr 10 nützlich, da sie die Schreibwege verkürzen, aber sie sind gemäß der Erfin-

dung nicht unbedingt erforderlich. In Fig. 6d ist eine andere Möglichkeit dargestellt, die Schreibvorrichtung, insbesondere den Elektronenstrahl zwi-

schen den einzelnen Belichtungsvorgängen zu führen. Hierbei wird der

Elektronenstrahl ausgehend vom Anfangspunkt A1 der Gitterlinie 21 zum

Endpunkt B₁ der Gitterlinie 21 geführt und die Gitterlinie 21 in das Substrat

belichtet. Anschließend wird der Elektronenstrahl auf dem Verbindungs-

stück 23 diagonal zurück zum Anfangspunkt A2 der Gitterlinie 22 geführt.

Auf dieser diagonalen Verbindungsstrecke 23 findet keine Belichtung des

Substrats statt. Ausgehend vom Anfangspunkt A2 der Gitterlinie 22 wird

anschließend die Gitterlinie 22 bis zum Endpunkt B2 in das Substrat belich-

tet. Dieser Vorgang wird in einer Art Zickzackkurs wiederholt bis alle Git-

terlinien des Arbeitsfeldes geschrieben sind. Auf der gestrichelt gezeichneten

Verbindungslinie 23 wird der Elektronenstrahl entweder abgeschaltet oder

so schnell bewegt, dass keine Belichtung stattfindet.

Die Fig. 7a bis 7c zeigen eine spezielle Ausführungsform des erfindungsgemäßen Verfahrens, bei welchem im Arbeitsbereich, d.h. im Ablenkbereich eines Elektronenstrahls lediglich eine Linie geschrieben wird. In Fig. 7a ist eine entsprechende Linie 301 mit dem Anfangspunkt A₁ und dem Endpunkt

25

20

15

B₁ dargestellt. Entlang dieser Linie 301 bewegt sich der Elektronenstrahl in seinem Ablenkbereich. Der Träger bewegt sich entweder schrittweise oder mit einer passenden Geschwindigkeit kontinuierlich entlang der Bewegungsbahn 31. In Fig. 7b ist die Überlagerung der Trägerbewegung 31 mit der Elektronenstrahlbewegung dargestellt. Im gezeigten Verfahrensauschnitt hat der Elektronenstrahl bereits die Gitterlinien 301 bis 309 geschrieben, wobei der Elektronenstrahl auf dem Rückweg zwischen dem Endpunkt der jeweiligen geschriebenen Linie und dem Anfangspunkt der nächsten Linie ausgeschaltet wird. Dies wird durch die gestrichelten Verbindungslinien 32 angedeutet. In Fig. 7c schließlich ist das fertig geschriebene Gitterbild 33 dargestellt, das aus lauter gleich langen Gitterlinien besteht, die entlang der Bewegungsbahn 31 angeordnet sind.

5

10

15

20

25

In Fig. 8a bis 8c ist eine ähnliche Variante des erfindungsgemäßen Verfahrens dargestellt, bei dem allerdings der Elektronenstrahl in seinem Ablenkungsbereich eine kompliziertere Gitterlinie 401 mit dem Anfangspunkt A₁ und B₁ schreibt. Auch hier wird der Elektronenstrahl auf dem Rückweg 42 abgeschaltet. Aus Gründen der Übersichtlichkeit ist der geradlinige Rückweg 42 in Fig. 8b nicht eingezeichnet. Hier sind lediglich die entlang der Bewegungsbahn 41 geschriebenen Gitterlinien 401 bis 420 dargestellt. Das fertige Gitterlinienbild 43 zeigt wiederum Fig. 8c.

Sofern die Elektronenstrahlbewegung nach jedem Schreibvorgang bzw. nach jedem Zurücksetzen neu programmiert wird, können auch beliebige Gitterstrukturen entlang einer Bewegungsbahn des Trägers geschrieben werden. Eine derartige Variante ist in Fig. 9 schematisch dargestellt. Im gezeigten Beispiel variiert die Form der Gitterlinien entlang der Bewegungsbahn 51. Die Gitterlinie 501 ist stark geschwungen. Entlang der Bewegungsbahn 51 werden die Gitterlinien allmählich länger und ihre Form nähert sich immer

mehr der Form einer Geraden an. Die Gitterlinie 519 ist praktisch geradlinig und weist eine wesentlich größere Länge als die Gitterlinie 501 auf.

Für den Fall, dass die Gitterlinien nicht vollständig im Ablenkungsbereich des Elektronenstrahls liegen, können sie entweder in kleinere Stücke aufgeteilt werden oder es wird in einen anderen Schreibmodus (z.B. CPC) übergegangen.

10

Patentansprüche

- Verfahren zum Erzeugen eines Gitterbildes, das wenigstens ein Gitterfeld aufweist mit visuell erkennbaren, optisch variablen Eigenschaften, in welchem Gitterelemente angeordnet sind, die mittels einer Schreibvorrichtung erzeugt werden, wobei das Verfahren folgende Schritte aufweist:
 - Bestimmen wenigstens eines Gitterelements, das vollständig innerhalb eines Arbeitsfeldes liegt;

10

- b) Festlegen einer Abfolge von Arbeitsfeldern, in denen die Gitterelemente mittels der Schreibvorrichtung, erzeugt werden sollen;
- c) Anfahren der Arbeitsfelder durch relative Bewegung eines Trägers,
 auf dem sich ein zu beschriftendes Substrat befindet, und der Schreibvorrichtung;
 - d) Einschreiben des wenigstens einen Gitterelements in das Substrat mit der Schreibvorrichtung innerhalb der jeweiligen Arbeitsfelder.

20

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Bestimmung der Gitterelemente in Schritt a) anhand eines Datensatzes erfolgt, der Informationen über Form und Lage der das Gitterfeld bildenden Gitterelemente enthält.

- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Datensatz die Koordinaten der Anfangs- und Endpunkte der Gitterelementen enthält.
- 30 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, das der Datensatz die Koordinaten mehrerer Zwischenpunkte enthält.

- 5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Datensatz die Koordinaten von Bezier-Kurven enthält, die die Form der Gitterelemente beschreiben.
- 6. Verfahren nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass anhand der Koordinaten festgelegt wird, welche Gitterelemente kontinuierlich in einem Schreibvorgang erzeugt werden können.
- 7. Verfahren nach wenigstens einem der Ansprüche 1 bis 6, dadurch ge kennzeichnet, dass ein Koordinatenfenster in der Größe des Arbeitsfeldes definiert wird und in Schritt b) über die Koordinaten der Gitterelemente gelegt wird.
- 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass ausgehend
 von einem definierten Startpunkt bestimmt wird, welche aufeinander folgenden Gitterelemente vollständig im Bereich dieses Koordinatenfensters liegen.
 - 9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Koordinaten der Gitterelemente innerhalb eines Koordinatenfensters so sortiert werden, dass Polygonzüge entstehen.

- 10. Verfahren nach wenigstens einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass alle Arbeitsfelder mithilfe des Koordinatenfensters festgelegt werden.
- 11. Verfahren nach wenigstens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass als Schreibvorrichtung ein Licht- oder Teilchenstrahl verwendet wird.

- 12. Verfahren nach wenigstens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass als Schreibvorrichtung ein Elektronenstrahl verwendet wird.
- 13. Verfahren nach wenigstens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Einschreiben der Gitterelemente in Schritt d) durch Ablenkung, vorzugsweise elektromagnetische Ablenkung der Schreibvorrichtung erfolgt.
- 14. Verfahren nach wenigstens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Größe der Arbeitsfelder der Größe des Ablenkungsbereichs der Schreibvorrichtung entspricht.
- 15. Verfahren nach wenigstens einem der Ansprüche 1 bis 12, dadurch ge kennzeichnet, dass beim Einschreiben der Gitterelemente in Schritt d) die Schreibvorrichtung ortsfest gelagert ist und der Träger bewegt wird.
 - 16. Verfahren nach wenigstens einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass als Träger ein beweglich gelagerter Tisch verwendet wird.
 - 17. Verfahren nach wenigstens einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Arbeitsfelder in Schritt c) durch Bewegung des Trägers angefahren werden.
 - 18. Verfahren nach wenigstens einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass das Gitterfeld die Form einer Linie aufweist.

- 19. Verfahren nach wenigstens einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass als Gitterelemente Gitterlinien verwendet werden.
- 20. Verfahren nach wenigstens einem der Ansprüche 1 bis 19, dadurch ge kennzeichnet, dass die Gitterlinien zumindest bereichsweise über die Breite des Gitterfeldes verlaufen.
 - 21. Verfahren nach wenigstens einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die Gitterlinien geradlinig oder geschwungen ausgeführt werden.
 - 22. Verfahren nach wenigstens einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass in wenigstens einem Arbeitsfeld nur ein Gitterelement erzeugt wird.
 - 23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass in jedem Arbeitsfeld nur ein Gitterelement erzeugt wird und die einzelnen Positionen der Gitterelemente entlang einer Bewegungsbahn durch schrittweises oder kontinuierliches Bewegen des Trägers angefahren werden.
 - 24. Verfahren nach wenigstens einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass alle Gitterelemente die gleiche Form haben.
- 25. Verfahren nach wenigstens einem der Ansprüche 1 bis 24, dadurch ge kennzeichnet, dass die Gitterelemente unterschiedliche Form haben.
 - 26. Verfahren nach wenigstens einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, dass das Gitterbild große Gitterelemente aufweist, deren Ko-

10

ordinaten zumindest teilweise außerhalb des Arbeitsfeldes liegen, und dass diese Gitterelemente nach einem anderen Verfahren erzeugt werden.

- 27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, dass diese großen Gitterelemente kontinuierlich durch Verschieben des Trägers erzeugt werden.
 - 28. Verfahren nach Anspruch 26, dadurch gekennzeichnet, dass diese großen Gitterelemente in Bearbeitungsbereiche unterteilt werden, deren Größe maximal einem Arbeitsfeld entspricht.
 - 29. Verfahren nach Anspruch 28, dadurch gekennzeichnet, dass die Bearbeitungsbereiche durch Verschiebung des Trägers nacheinander angefahren werden und die im jeweiligen Bearbeitungsbereich liegenden Teile der großen Gitterelemente erzeugt werden.
 - 30. Verfahren nach wenigstens einem der Ansprüche 1 bis 29, dadurch gekennzeichnet, dass bei der Festlegung der Abfolge der Arbeitsfelder auch die Bearbeitungsbereiche berücksichtigt werden.
 - 31. Verfahren nach wenigstens einem der Ansprüche 1 bis 30, dadurch gekennzeichnet, dass die großen Gitterelemente lange Gitterlinien sind, deren Koordinaten außerhalb des Ablenkungsbereichs der Schreibvorrichtung liegen.

32. Verfahren nach wenigstens einem der Ansprüche 1 bis 31, dadurch gekennzeichnet, dass die Schreibwege der Schreibvorrichtung innerhalb der jeweiligen Arbeitsfelder bzw. Bearbeitungsbereiche mäanderförmig oder zickzackförmig ausgeführt werden.

20

15

10

33. Verfahren nach wenigstens einem der Ansprüche 1 bis 32, dadurch gekennzeichnet, dass in einer Datenverarbeitungsanlage zuerst alle für die Erzeugung der Gitterelemente notwendigen Koordinaten, festgelegt werden und die Schreibvorrichtung anschließend anhand dieser Koordinaten die Gitterelemente in dem Substrat erzeugt.

5

10

34. Verfahren nach wenigstens einem der Ansprüche 1 bis 33, dadurch gekennzeichnet, dass als Substrat ein strahlungsempfindliches Material verwendet wird, in dem die Schreibvorrichtung eine Zustandsänderung erzeugt.

35. Verfahren nach Anspruch 34, dadurch gekennzeichnet, dass als strahlungsempfindliches Material eine Photoresistschicht verwendet wird.

36. Verfahren nach wenigstens einem der Ansprüche 1 bis 35, dadurch gekennzeichnet, dass auf das mit den Gitterelementen versehene Substrat eine Metallisierung aufgebracht und davon auf galvanischem Wege eine metallische Abformung erzeugt wird.

20 37. Verfahren nach Anspruch 36, dadurch gekennzeichnet, dass die Abformung als Prägewerkzeug zum Prägen eines Gitterbildes in eine Schicht verwendet wird.

38. Verfahren nach wenigstens einem der Ansprüche 1 bis 37, dadurch ge kennzeichnet, dass das Gitterbild mehrere Gitterfelder aufweist.

39. Verfahren zur Festlegung der Bewegungskoordinaten einer Schreibvorrichtung und eines Trägers für die Erzeugung eines Gitterbildes, das wenigstens ein mit bloßem Auge erkennbares Gitterfeld aufweist, in welchem Git-

terelemente angeordnet sind, wobei das Verfahren folgende Schritte aufweist:

- Bestimmen der Gitterelemente, deren Koordinaten innerhalb eines vorgegebenen Koordinatenfensters liegen;
 - Festlegen einer Abfolge von Arbeitsfeldern, in denen die Schreibvorrichtung relativ zu einem Träger, auf dem sich ein zu beschriftendes Substrat befindet, bewegt wird.
- 40. Verfahren nach Anspruch 39, dadurch gekennzeichnet, dass für die Bestimmung der Koordinaten der Gitterelemente eine Umrisslinie des Gitterfeldes festgelegt und die Umrisslinie mit den Gitterelementen gefüllt wird.
- 41. Verfahren nach Anspruch 40, dadurch gekennzeichnet, dass die Gitterelemente Gitterlinien sind und als Gitterkoordinaten die Schnittpunkte der Gitterlinien mit der Umrisslinie des Gitterfeldes verwendet werden.
 - 42. Verfahren nach wenigstens einem der Ansprüche 39 bis 41, dadurch gekennzeichnet, dass das Verfahren mithilfe einer Datenverarbeitungsanlage durchgeführt wird.
 - 43. Vorrichtung zur Festlegung der Bewegungskoordinaten einer Schreibvorrichtung und eines Trägers für die Erzeugung eines Gitterbildes, das wenigstens ein mit bloßem Auge erkennbares Gitterfeld aufweist, in welchem Gitterelemente angeordnet sind, wobei die Vorrichtung folgende Einrichtungen aufweist:

10

20

25

- eine Einrichtung zur Bestimmung wenigstens eines Gitterelements, das vollständig innerhalb eines Arbeitsfeldes liegt;
- eine Einrichtung zur Festlegung einer Abfolge von Arbeitsfeldern, in de nen die Gitterelemente mittels der Schreibvorrichtung erzeugt werden sollen;
 - eine Einrichtung zur Festlegung der Bewegungsbahn der Schreibvorrichtung und/oder des Trägers, auf dem ein zu beschriftendes Substrat angeordnet ist, so dass die Arbeitsfelder nacheinander angefahren und die im jeweiligen Arbeitsfeld liegenden Gitterelemente erzeugt werden können.
- 44. Vorrichtung nach Anspruch 43, dadurch gekennzeichnet, dass die Vorrichtung eine Einrichtung zur Bestimmung der Koordinaten der Gitterelemente aufweist.
 - 45. Vorrichtung nach Anspruch 43 oder 44, dadurch gekennzeichnet, dass die Vorrichtung eine Datenverarbeitungsanlage ist.
 - 46. Gitterbild, welches wenigstens ein mit bloßem Auge erkennbares Gitterfeld aufweist, in dem Gitterelemente angeordnet sind, wobei ein Großteil der Gitterelemente eine Länge von weniger als 0,2 mm, vorzugsweise 0,05 mm aufweist und kontinuierlich ist.
 - 47. Gitterbild nach Anspruch 46, dadurch gekennzeichnet, dass die Gitterelemente Gitterlinien sind.

25

- 48. Gitterbild nach Anspruch 46 oder 47, dadurch gekennzeichnet, dass das Gitterfeld auch lange Gitterlinien mit einer Länge größer 0,02 mm aufweist.
- 49. Gitterbild nach Anspruch 48, dadurch gekennzeichnet, dass die langen
 5 Gitterlinien aus mehreren Teilstücken zusammengesetzt sind.
 - 50. Gitterbild nach wenigstens einem der Ansprüche 46 bis 49, dadurch gekennzeichnet, dass das Gitterbild mehrere Gitterfelder aufweist.
- 10 51. Vorrichtung zur Durchführung des Verfahrens gemäß wenigstens einem der Ansprüche 1 bis 42.
 - 52. Gitterbild hergestellt nach wenigstens einem der Ansprüche 1 bis 42.
- 15 53. Sicherheitselement mit wenigstens einem Gitterbild hergestellt nach wenigstens einem der Ansprüche 1 bis 42.
 - 54. Sicherheitselement mit wenigstens einem Gitterbild gemäß wenigstens einem der Ansprüche 46 bis 50.
 - 55. Sicherheitselement nach Anspruch 53 oder 54, dadurch gekennzeichnet, dass das Sicherheitselement ein Sicherheitsfaden, ein Etikett oder ein Transferelement ist.
- 25 56. Sicherheitspapier mit wenigstens einem Gitterbild hergestellt nach wenigstens einem der Ansprüche 1 bis 42.
 - 57. Sicherheitspapier mit wenigstens einem Gitterbild gemäß wenigstens einem der Ansprüche 46 bis 50.

- 58. Sicherheitspapier mit einem Sicherheitselement gemäß wenigstens einem der Ansprüche 53 bis 55.
- 59. Sicherheitsdokument mit wenigstens einem Gitterbild hergestellt nach
 wenigstens einem der Ansprüche 1 bis 42.
 - 60. Sicherheitsdokument mit wenigstens einem Gitterbild gemäß wenigstens einem der Ansprüche 46 bis 50.
- 10 61. Sicherheitsdokument mit einem Sicherheitselement gemäß wenigstens einem der Ansprüche 53 bis 55.

- 62. Sicherheitsdokument mit einem Sicherheitspapier gemäß wenigstens einem der Ansprüche 56 bis 58.
- 63. Transfermaterial, insbesondere Heißprägefolie mit wenigstens einem Gitterbild hergestellt nach wenigstens einem der Ansprüche 1 bis 42.
- 64. Transfermaterial, insbesondere Heißprägefolie mit wenigstens einem Git terbild gemäß wenigstens einem der Ansprüche 46 bis 50.
 - 65. Prägewerkzeug mit wenigstens einem Gitterbild hergestellt nach wenigstens einem der Ansprüche 1 bis 42.
- 25 66. Prägewerkzeug mit wenigstens einem Gitterbild gemäß wenigstens einem der Ansprüche 46 bis 50.

Zusammenfassung

Die Erfindung betrifft ein Verfahren zum Erzeugen eines Gitterbildes, das wenigstens ein mit bloßem Auge erkennbares Gitterfeld aufweist, in welchem Gitterelemente angeordnet sind, die mittels einer Schreibvorrichtung erzeugt werden. In einem ersten Verfahrensschritt wird wenigstens ein Gitterelement bestimmt, das vollständig innerhalb eines Arbeitsfeldes liegt. Anschließend wird eine Abfolge von Arbeitsfeldern festgelegt, in denen die Gitterelemente mittels der Schreibvorrichtung erzeugt werden sollen. Schließlich werden die Arbeitsfelder durch relative Bewegung eines Trägers, auf dem sich ein zu beschriftendes Substrat befindet, und der Schreibvorrichtung angefahren und die Gitterelemente mit der Schreibvorrichtung innerhalb der jeweiligen Arbeitsfelder in das Substrat eingeschrieben.

5

FIG.3a

FIG.3b

FIG. 3c

FIG. 4

FIG. 5

FIG.6a

FIG.6b

FIG.6c

FIG.6d

•

10/11 Fig Des 10h

Fig 9

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.