Esercizi 1,2,3 per gli studenti della LM, esercizio 4 per gli studenti della LT.

Esercizio 1. Let $A \subseteq B$ and $p(x) \subseteq L(A)$. Suppose that $\operatorname{tp}(a/B)$ is isolated for every $a \models p(x)$. Prove that p(x) is isolated.

Esercizio 2. Let |x| = 1. Prove that if $S_x(A)$ is countable for every finite set A, then T is small.

Esercizio 3. Let |x| = 1. Prove that if $S_x(A)$ is countable for every finite set A, then T is small.

Esercizio 4. Assumimamo L numerabile. Sia $p(x) \subseteq L$ un tipo consistente non isolato. Esiste sempre un modello omogeneo che non realizza p(x)?

Esercizio 5. Let $p(x) \subseteq L(B)$ and $p_n(x) \subseteq L(A)$, for $n < \omega$, be consistent types such that

$$p(x) \to \bigvee_{n < \omega} p_n(x)$$

Prove that there is an $n < \omega$ and a formula $\varphi(x) \in L(A)$ consistent with p(x) such that

$$p(x) \land \varphi(x) \rightarrow p_n(x)$$
.

Give an example that proves that the claim does not hold when ω is replaced with un uncountable cardinal.