Apprentissage Automatique (2/7): Arbres de décisions & méthodes ensemblistes

S. Herbin, B. Le Saux, A. Chan Hon Tong

bertrand.le_saux@onera.fr

27 mars 2019

Introduction

Introduction

- Plusieurs algorithmes de classification supervisée ont déjà été étudiés : plus proche voisin, classifieur Bayésien
- Concepts: minimisation du risque empirique, surapprentissage, dilemme biais variance

Objectifs

MI203 - Apprentissage automatique

- ▶ Un nouveau type de classifieur : l'arbre de décision
- ▶ Une famille de classifieurs : les approches ensemblistes
- ▶ Intuition : un groupe prend plus souvent de meilleures décisions qu'un individu

Arbres de décision et méthodes ensemblistes : plan

Arbres de décision

Méthodes ensemblistes Random Forests Boosting

Conclusion

Un modèle couramment utilisé et intuitif:

Ou bien encore comme dans le jeu des 20 questions

Objectif

- Classification en posant une série de questions fermées
- Questions organisées sous forme d'arbre

Terminologie (structure)

- Donnée représentées par des attributs (ex: attributs d'un fruit = couleur, taille forme, goût…)
- Noeud de décision lié à un test sur un des attributs
- Branche qui représente des valeurs possibles de l'attribut testé
- Noeud terminal ou feuille, liée à la classe (prédiction)

Quelles questions se poser pour construire un arbre?

Questions globales:

- Quelle structure choisir (profond, équilibré,...)
- ► Combien de découpages par noeud ? (binaire, plus)
- Quand s'arrêter de découper ?

Questions locales:

- Quel attribut choisir, et quel test lui appliquer?
- Si l'arbre est trop grand, comment élaguer?
- Si une feuille n'est pas pure, quelle classe attribuer?

Arbres de décision : structure

Choix de la structure

Soit X un ensemble d'attributs $x_i = \{A_i\}_{1 \le i \le N}$, avec A_i valeurs numériques ou symboliques.

Recherche du plus petit arbre de décision compatible avec X:

- Principe du rasoir d'Occam: trouver l'hypothèse la plus simple possible compatible avec les données
- ▶ Principe Minimum Description Length: trouver l'hypothèse qui produit les plus courts chemins pour classifier l'ensemble *X*

Mais... recherche exhaustive impossible (problème NP-complet)

Algorithmes spécifiques tel que: le risque empirique (l'erreur sur l'ensemble d'apprentissage) est minimal, et arbre consistant avec *la plupart* des données.

Principe général

Construction top-down, récursive d'un *petit* arbre consistant avec la *plupart* des données.

Trois étapes

- 1. Décider si un noeud est terminal
- 2. Si un noeud n'est pas terminal, choisir un attribut et un test
- 3. Si un noeud est terminal, lui associer une classe

Choisir un attribut et un test

→ Algorithmes récursifs (par exemple ID3, C4.5, CART...)

Fonction Construire-arbre(X)

SI tous les points de X sont de même classe, créer une feuille associée à cette classe

SINON

- ▶ choisir la meilleure paire (A_i,test) pour créer un noeud
- ▶ ce test sépare X en 2 parties X_g et X_d
- Contruire-arbre(X_g)
- ▶ Construire-arbre(X_d)

Choix attribut et test

- Mesure de l'hétérogénité des noeuds candidats.
 - ► Entropie : $H = -\sum p(c_k)log_2(p(c_k))$ avec $p(c_k) = N_k/N$ probabilité de la classe c_k dans l'ensemble courant \rightarrow ID3, C4.5, mesure l'information
 - ► Indice de Gini : $I = \sum p(c_k)(1 p(c_k)) = 1 \sum p(c_k)^2$ → CART, mesure les inégalités
 - ▶ Indice d'erreur : $I = 1 max(p(c_k))$

Choix attribut et test

MI203 - Apprentissage automatique

- → Gain d'homogénéité apporté par un test T pour séparer un noeud N en noeuds N_i .
 - ▶ À chaque noeud, choix de *T* maximisant $Gain(N, T) = I(N) - \sum_{i} jp(N_{i})I(N_{i})$
 - \triangleright En pratique, approche empirique pour tout A_i tri des valeurs par ordre croissant et tests tirés selon une approche dichotomique (médiane, etc...)

Décider si un noeud est terminal

- ► Tous ou la plupart des exemples de l'ensemble sont d'une même classe
- Early-stopping selon critère : nombre minimal d'exemples par noeud; hétérogénéïté ne décroit plus

Élagage

- Vise à couper les branches qui nuisent à la généralisation de la classification
- Approche bottom-up en supprimant les noeuds qui permettent de réduire le risque empirique sur un ensemble de validation

Arbres de décision : Résumé

Points clés des arbres de décision

- + Interprétabilité
- Apprentissage et classification rapides et efficaces, y compris en grande dimension.
 - Tendance au surapprentissage (en partie contrôlable par l'élagage)
 - Variance élevée : sensibilité au bruit et aux points aberrants, instabilité

Utilisations

- + Classification ou régression...
- + Capables de traiter des données numériques, mais aussi symboliques

Méthodes ensemblistes

Méthodes ensemblistes

Définition

- Méthodes aggrégeant des ensembles de classifieurs;
- Classifieurs différents : soit en changeant les données, soit en changeant le type de classifieurs;
- ► Classe finale = vote de l'ensemble.

Objectifs

- ► L'union fait la force: comment tirer parti de plusieurs classifieurs plus ou moins médiocres pour faire un classifieur performant
- ► Réduire la variance et moyenner les erreurs

Méthodes ensemblistes

Deux grandes approches: bagging et boosting

19

Un mot sur le bagging

Comment changer les données pour construire différents classifieurs, alors qu'on ne dispose que d'un jeu d'entraînement X?

- ▶ Couper X en plusieurs sous-ensembles ? \rightarrow peu de données pour chaque classifieur:
- ▶ Bagging : générer $\tilde{X}_1,...,\tilde{X}_M$ avec moins d'échantillons que Xpar tirage avec remise.
- $ightharpoonup ilde{X}_i$ similaires, mais pas trop : proba d'un exemple de ne pas être sélectionné $p = (1 - 1/N)^N$. Quand $N \to \infty$, $p \to 0.3679$.

Un mot sur le bagging

Comment changer les données pour construire différents classifieurs, alors qu'on ne dispose que d'un jeu d'entra \hat{n} ement X?

- ▶ ..
- ▶ Entrainer M fois le même algorithme f_i (arbre, réseau de neurones, SVM...) sur chaque \tilde{X}_j et aggréger par vote majoritaire ou moyenne $f(x) = \frac{1}{M} \sum f_i(x)$

Objectifs

- ► Chaque classifieur a un biais différent, lié à $\tilde{X}_j \rightarrow$ l'aggrégat a une variance réduite
- ► Méthode alternative pour la régularisation

Forêts aléatoires ou Random forests

Combiner hasard et bagging pour construire un ensemble d'arbres de décision (=forêt)

- Constat: la partie calculatoire des arbres de décision est le choix de la structure (meilleure paire attribut & test)
- La structure devient un arbre de profondeur fixe et des choix aléatoires des attributs et des tests associés

Forêts aléatoires ou Random forests

Algorithme:

POUR $k = 1 \dots K$:

- ▶ Bagging : tirage de \tilde{X}_k de même taille que X
- ▶ Tirage (avec remise) de q attributs A_i parmi les N
- ightharpoonup Construction de l'arbre G_k avec des seuils aléatoires
- ▶ Construction de f_k la fonction de décision de G_k dont les feuilles sont remplies avec \tilde{X}_k

Aggrégation:

- $f(x) = \frac{1}{K} \sum f_k(x)$ (régression)
- $f(x) = \text{Vote majoritaire}(f_1(x), \dots, f_K(x))$

Random Forests : Résumé

Points clés des forêts aléatoires

- + Très efficaces!
- + Arbres plus décorrélés que par simple bagging
- + Grande dimension
- Robustesse
 - Temps d'entraînement (mais aisément parallélisable).

Utilisation

- Choix d'une faible profondeur (2 à 5), autres hyper-paramètres à estimer par validation croisée
- Classification et régression
- Données numériques et symboliques

Un mot sur les systemes à classifieurs multiples

- ▶ Toujours un jeu d'entraînement X, plusieurs classifieurs différents f_i à disposition
 - Classifieurs variés: k-NN, réseau de neurones, SVM...
 - Simplement chaque attribut associé à un test linéaire
 - Chaque dimension d'un descripteur ou caractéristique calculée sur une donnée (cf. Cours 1 et 2)
- La décision finale est : $f(x) = \frac{1}{M} \sum f_i(x)$ ou f(x) = Vote majoritaire $(f_1(x), \dots, f_K(x))$

Objectifs

- ► Chaque classifieur f_i a un biais différent → l'aggrégat a une variance réduite
- ► Régularisation pour contre-balancer le sur-apprentissage.

AdaBoost

- ▶ X un ensemble d'attributs $x_i = \{A_i\}_{1 \le i \le N}$
- ▶ H un ensemble de classifieurs $f_k \mapsto -1, 1$, pas forcément performants → appelés weak learners

Objectif du boosting:

- ► Construire un classifieur performant $F(x) = \sum_{k=1}^{K} \alpha_k f_k(x) \rightarrow$ appelé strong learner
- Moyenne pondérée des weak learners
- Comment trouver les poids ?

AdaBoost

- ► Adaboost = "Adaptive boosting algorithm", itératif, qui cherche à minimiser l'erreur globale de *F*
- ▶ Intuition : à chaque itération k, modifier F^k de manière à donner plus de poids aux données difficiles (mal-classées) qui permettent de corriger les erreurs commises par F^{k-1}

AdaBoost: algorithme

Initialiser les poids liés aux données:

$$d^0 \leftarrow (\frac{1}{K}, \frac{1}{K}, \dots, \frac{1}{K})$$

POUR t = 1 ... K:

- ▶ Entraîner f_k sur les données X pondérées par d^{k-1}
- ▶ Prédire $\hat{v} = v^i \leftarrow f_k(x_i), \forall i$
- ► Calculer l'erreur pondérée $\epsilon^k \leftarrow \sum_i d_i^{k-1} [y_i \neq \hat{y}_i]$
- ▶ Calculer les paramètres adaptatifs $\alpha^k \leftarrow \frac{1}{2} \log \left(\frac{1 \epsilon^k}{\epsilon^k} \right)$
- ▶ Re-pondérer les données $d^k = d_i^k \leftarrow d_i^{k-1} \exp(-\alpha^k v_i \hat{v}_i)$

Classifieur (pondéré) final :
$$F(x) = \operatorname{sgn}\left(\sum_{k=1}^K \alpha_k f_k(x)\right)$$

Gradient Boosting

Gradient Boosting

Variante: version additive pas-à-pas

- ▶ X un ensemble d'attributs $x_i = \{A_i\}_{1 \le i \le N}$
- ▶ H un ensemble de classifieurs $h \mapsto -1, 1$, pas forcément performants → appelés weak learners

Objectif du gradient boosting:

- Construire un classifieur performant $F_T(x) = \sum_{t=1}^T \alpha_t f_t(x) = F_{T-1}(x) + \alpha_T f_T(x)$ où f_t est l'un des weak learners h.
- Moyenne pondérée des weak learners choisis par tirage avec remise
- ▶ Il s'agit à chaque étape de minimiser le risque emprique : $\mathcal{L}(F_T) = \sum_{n=1}^{N} I(y_n F_T(x_n))$ où I est une pénalité (Ioss)

Gradient Boosting

MI203 - Apprentissage automatique

Pénalités

- ► Adaboost → gradient boost avec fonction de pénalité $I(v, f(x)) = \exp(-vf(x))$
- Adaboost peut donc être vu comme la construction itérative d'un classifieur optimal par minimisation du risque empirique à chaque pas.
- Cadre plus général : d'autres pénalités sont possibles :
 - ► LogitBoost : $I(y, f(x)) = \log_2 (1 + \exp[-2yf(x)])$
 - ► L_2 Boost : $I(y, f(x)) = (y f(x))^2/2$
 - ▶ DoomII : $I(y, f(x)) = 1 \tanh(yf(x))$
 - ► Savage : $I(y, f(x)) = \frac{1}{(1 + \exp(2vf(x)))^2}$
- ▶ DoomII et Savage sont non-convexes → plus robustes aux données bruitées

Gradient Boosting

Pourquoi *Gradient* Boosting?

- ▶ On a vu que chaque étape minimise le risque emprique : $\mathcal{L}(F_T) = \sum_{n=1}^{N} I(y_n F_T(x_n))$ où I est une pénalité (Ioss)
- ▶ Lors de la variante additive d'adaboost, alpha_Tf_T(x) peut donc être vu comme le weak learner qui approxime le mieux le pas d'une descente de gradient dans l'espaces des fonctions de classification
- Une version exacte de la descente de gradient donne les Gradient Boosting Models :

$$F_T(x) = F_{T-1}(x) + \alpha_T sum_{i=1}^N \nabla_{F_{T-1}} I(y_i, f_{T-1}(x_i))$$

- ► Extreme Gradient Boosting reprend cette idée et dispose de 2 atouts :
 - Bibliothèque disponible en R ou python
 - ► Très efficace → à mettre dans la boîte à outil du data scientist

Boosting: Résumé

Points clés du boosting

- Aggrégation adaptative de classifieurs moyens
- Résultats théoriques sur la convergence et l'optimalité du classifieur final
- Très effice (améliore n'importe quel ensemble de classifieurs)
- + Facile à mettre en oeuvre (moins vrai pour XGBoost)
 - Sensibilité aux données aberrantes, surapprentissage

Utilisations

- Choix du weak learner : ne doit pas être trop bon, sinon surapprentissage
- Choix de la pénalité en fonction du bruit des données
- Variantes pour la classification et la régression

Conclusion

ONERA

Cours n°3: Arbres de décision et méthodes ensemblistes

Notions phares du jour

- Arbres de décision (vote, homogénéité)
- Aggrégation de classifieurs
- Bagging, Random Forests
- Boosting, GradientBoost

MI203 - Apprentissage automatique

Concepts généraux

- Classification / régression
- Bagging et randomisation (Forêts aléatoires)
- Construction adaptative à partir de weak learners et optimisation dans l'espace des classifieurs (Boosting)

