Round5: a KEX based on learning with rounding over the rings

Zhenfei Zhang

zhenfei.zhang@hotmail.com

September 19, 2018

Areas I have been working on

- Theoretical results
 - Signature schemes: Falcon (NTRUSign+GPV), pqNTRUSign
 - Security proofs: Computational R-LWR problem
 - Fully homomorphic encryptions
 - Raptor: lattice based linkable ring signature (Blockchains!)
- Practical instantiations
 - NTRU, Round5
 - Cryptanalysis and parameter derivation for lattices
 - Efficient implementations: AVX-2
 - Constant time implementations
- Standardization: NIST, IETF, ETSI, ISO, CACR PQC process
- Deployment: enabling PQC for TLS, Tor, libgcrypt
- Under the radar: lattice based DAA, NIZK

This talk

- Theoretical results
 - Signature schemes: Falcon (NTRUSign+GPV), pqNTRUSign
 - Security proofs: Computational R-LWR problem
 - Fully homomorphic encryptions
 - Raptor: lattice based linkable ring signature (Blockchains!)
- Practical instantiations
 - NTRU, Round5
 - Cryptanalysis and parameter derivation for lattices
 - Efficient implementations: AVX-2
 - Constant time implementations
- Standardization: NIST, IETF, ETSI, ISO, CACR PQC process
- Deployment: enabling PQC for TLS, Tor, libgcrypt
- Under the radar: lattice based DAA, NIZK

Diffie-Hellman

• A, B and g^{ab} are group elements over \mathbb{Z}_q^* .

RLWE-KEX

• Every element is a ring element over $\mathcal{R} := \mathbb{Z}_q[x]/f(x)$.

Round5 September 19, 2018 5 / 49

RLWE-KEX

Alice:
$$(a, X = Ga + e_a)$$
 BoB $(b, B = Gb + e_b)$
 B

Reconciliation r
 $EXTRACT(aGb + ae_b, r) = EXTRACT(bGa + be_a, r)$

• Every element is a ring element over $\mathcal{R} := \mathbb{Z}_q[x]/f(x)$.

6 / 49

Round5 September 19, 2018

NTRU-KEM

• Every element is a ring element over $\mathcal{R} := \mathbb{Z}_q[x]/(x^N-1)$.

◆ロト ◆卸 ト ◆ 差 ト ◆ 差 ト ・ 差 ・ 夕 Q @

Round5 September 19, 2018 7 / 49

	NTRU	R-LWE
Ring	$\mathbb{Z}_q[x]/(x^N-1)$	$\mathbb{Z}_q[x]/(x^N+1)$
Provable security	No	Yes
Secrets	Trinary: $\{-1,0,1\}^{\dim}$	Gaussian: $\chi_{\sqrt{q}}^{\text{dim}}$
Errors	Rounded, binary	Gaussian: $\chi_{\sqrt{q}}^{\dim}$ Gaussian: $\chi_{\sqrt{q}}^{\dim}$
Trapdoor	Yes	No
KeyGen	Slow	Fast
CT size	Small	Large

Major concerns on NTRU

- No provable security
- Slow key generation c.f. New Hope

Round5 September 19, 2018

Major concerns on NTRU

- No provable security
- Slow key generation c.f. New Hope

	NTRU	R-LWE
Ring	$\mathbb{Z}_q[x]/(x^N-1)$	$\mathbb{Z}_q[x]/(x^N+1)$
Provable security	No	Yes
Secrets	Trinary: $\{-1,0,1\}^{\dim}$	Gaussian: $\chi_{\sqrt{q}}^{\text{dim}}$
Errors	Rounded, binary	Gaussian: $\chi_{\sqrt{q}}^{\mathrm{dim}}$
Trapdoor	Yes	No
KeyGen	Slow	Fast
CT size	Small	Large

• RLWE is hard for any ring of integers [PRS17]

	NTRU	R-LWE
Ring	$\mathbb{Z}_q[x]/(\phi_N(x))$	$\mathbb{Z}_q[x]/(x^N+1)$
Provable security	Yes(?)	Yes
Secrets	Trinary: $\{-1,0,1\}^{\dim}$	Gaussian: $\chi_{\sqrt{q}}^{\text{dim}}$
Errors	Rounded, binary	Gaussian: $\chi_{\sqrt{q}}^{ ext{dim}}$
Trapdoor	Yes	No
KeyGen	Slow	Fast
CT size	Small	Large

• RLWE is hard for any ring of integers [PRS17]

	NTRU	R-LWE
Ring	$\mathbb{Z}_q[x]/(\phi_N(x))$	$\mathbb{Z}_q[x]/(x^N+1)$
Provable security	Yes(?)	Yes
Secrets	Trinary: $\{-1,0,1\}^{\text{dim}}$	Gaussian: $\chi_{\sqrt{q}}^{\text{dim}}$
Errors	Rounded, binary	Gaussian: $\chi_{\sqrt{q}}^{ ext{dim}}$
Trapdoor	No	No
KeyGen	Slow	Fast
CT size	Small	Large

- RLWE is hard for any ring of integers [PRS17]
- Hardness of dec R-LWR is an open problem

	NTRU	R-LWE
Ring	$\mathbb{Z}_q[x]/(\phi_N(x))$	$\mathbb{Z}_q[x]/(x^N+1)$
Provable security	Yes	Yes
Secrets	Trinary: $\{-1,0,1\}^{\text{dim}}$	Gaussian: $\chi_{\sqrt{q}}^{\text{dim}}$
Errors	Rounded, binary	Gaussian: $\chi_{\sqrt{q}}^{\mathrm{dim}}$
Trapdoor	No	No
KeyGen	Fast	Fast
CT size	Small	Large

- RLWE is hard for any ring of integers [PRS17]
- Hardness of dec R-LWR is an open problem (more on this later)

Round5 September 19, 2018

The new NTRU, a.k.a. R-LWR-KEX

Alice:
$$(a, A = Round(Ga))$$

BoB $(b, B = Round(Gb))$

B

Reconciliation r

EXTRACT $(Round(aB), r) = EXTRACT(Round(bA), r)$

- a, b are ring elements over $\mathcal{R} := \mathbb{Z}_q[x]/f(x)$;
- A, B are rounded over $\mathbb{Z}_p[x]$.

September 19, 2018

R-LWR-KEX

Improvements

- Prime cyclotomic ring, i.e., $\phi_{743}(x) = (x^{743} 1)/(x 1)$
- Rounding instead of errors

"Disadvantages"

- Parameters not compatible with number theoretic transform (NTT)
- Noise dependency

Improvements I - PC ring

Prime Cyclotomic ring

- PC ring as secure as power-of-2 cyclotomics;
 - i.e., $\phi_{2048}(x) = x^{1024} + 1$;
- Degree ≈ 700 offers enough security against BKZ attacks with quantum sieving;
- NewHope has to be 512, 1024, etc.;
- Kyber a multiple of 256;
- PC any prime > 700;
 - Also used in LIMA, NTRU-KEM, etc.

200

Improvements II - Rounding

Rounding

- Less randomness sampling e_a and e_b ;
- Ciphertext reduced to $n \log p$, c.f. $n \log q$;
- Small enough to be in an MTU for TLS;
- Introduces new assumptions.

"Disadvantages" I - Ring multiplications

Rule of Thumb

School book \gg Karatsuba/Toom-Cook \gtrapprox NTT > Index based

"Disadvantages" I - Ring multiplications

Rule of Thumb

School book \gg Karatsuba/Toom-Cook \gtrsim NTT > Index based

Karatsuba and Toom-Cook

- Divide and Conquer;
- Parameter dependent optimizations;
 - Improving NTRU-743 reference implementation by 2.3x;
- Constant time; strong side channel resistance;
- Slightly slower than NTT for similar N.

"Disadvantages" I - Ring multiplications

Rule of Thumb

School book \gg Karatsuba/Toom-Cook \gtrsim NTT > Index based

Index based

- Super friendly with a trinary polynomial;
- Even faster than NTT;
- Constant time iff HAM(a) and HAM(b) are constant;
- Memory leakage.

"Disadvantages" II - Noise management

Rational: Use ECC to control errors

- Consider $c(x) = a(x)b(x) \mod x^{N-1} + x^{N-2} + \cdots + 1$
- Let $c'(x) = a(x)b(x) \mod (x^N 1)$, then $c'(x) = c(x) \mod \phi_N(x)$
- $\bullet \Rightarrow c_i = c'_i c'_N$
 - Noise, i.e., $||xe_y||_{\infty}$ is "doubled";
 - Every coefficient is "lifted" by c'_N creates dependency;
- ECC doesn't work on dependent errors.

"Disadvantages" II - Noise management

Rational: Use ECC to control errors

- Consider $c(x) = a(x)b(x) \mod x^{N-1} + x^{N-2} + \dots + 1$
- Let $c'(x) = a(x)b(x) \mod (x^N 1)$, then $c'(x) = c(x) \mod \phi_N(x)$
- $\bullet \Rightarrow c_i = c'_i c'_N$
 - Noise, i.e., $||xe_y||_{\infty}$ is "doubled";
 - Every coefficient is "lifted" by c'_N creates dependency;
- ECC doesn't work on dependent errors.

Solution - ring switching

- multiply over $\phi_N(x)$, lift the final results to $x^N 1$ ring;
- c'(x) = c(x)(x-1)
- Only use the coefficients of $1, x^2, x^4, x^6, \dots$
- Security? $\mathbb{Z}[x]/\phi_N(x) \cong \mathbb{Z}[x]/(x^N-1) \cap \{\text{Poly with root } 1\}$

nd5 September 19, 2018

15 / 49

Round2

The team

- Philips: Hayo Baan, Sauvik Bhattacharya, Oscar Garcia-Morchon, Ronald Riemann, Ludo Tolhuizen, Jose Luis Torre Arce
- OnBoard Security: Zhenfei Zhang

Round5 = Round2 + HILA5's ECC

The team

- Philips: Hayo Baan, Sauvik Bhattacharya, Oscar Garcia-Morchon, Ronald Riemann, Ludo Tolhuizen, Jose Luis Torre Arce
- Cisco: Scott Fluhrer
- Rambus: Mike Hamburg
- TU/e: Thijs Laarhoven
- PQShield: Markku-Juhani Olavi Saarinen
- OnBoard Security: Zhenfei Zhang

Performance

Performance

Performance

Deployment: TLS

```
Client
                                                    Server
ClientHello
ClientKevShare
                         ----->
                                         HelloRetryRequest
                         <----
ClientHello
ClientKeyShare
                          ----->
                                               ServerHello
                                            ServerKevShare
                                    {EncryptedExtensions*}
                                            {Certificate*}
                                    {CertificateRequest*+}
                                      {CertificateVerify*}
                                                {Finished}
                         <-----
{Certificate*+}
{CertificateVerify*+}
{Finished}
                          -----
[Application Data]
                         <---->
                                        [Application Data]
```

^{*} message is not sent under some conditions

⁺ message is not sent unless client authentication is desired

Deployment: Hybrid solutions

TNTERNET-DRAFT W. Whyte Intended Status: Experimental Security Innovation Expires: 2017-XX-YY Z. Zhang Security Innovation S. Fluhrer Cisco Systems O. Garcia-Morchon **Philips** 2017-03-31 Quantum-Safe Hybrid (QSH) Key Exchange for Transport Layer Security (TLS) version 1.3 draft-whyte-gsh-tls13-04.txt Client Server

ClientHelloExtensions + qshDataExtension (OSHPKList) + gshNegotiateExtension (OSHSchemeIDList) **HelloRetryRequestExtensions** + gshNegotiateExtension <----- (AcceptOSHSchemeIDList) ClientHelloExtensions + qshDataExtension (OSHPKList) -----EncryptedExtensions* + qshDataExtension (QSHCipherList)

<----{Finished} ClassicSecret|QSHSecret <----> ClassicSecret|QSHSecret

{Finished}

ARE WE DONE YET?

Another look at the security

Round5 \Rightarrow Dec R-LWR over PC

 \Rightarrow Search R-LWE over PC

 \Rightarrow Search R-LWE over any ring

 \Rightarrow BDD over Ideal Lattices

Another look at the security

Round5⇒Dec R-LWR over PC

⇒Search R-LWE over PC

⇒Search R-LWE over any ring

⇒BDD over Ideal Lattices

What about the hardness of Dec R-LWR?

Dec R-LWE as hard as search R-LWE

- Given $(a, b = as + e) \in \mathbb{R}^2$;
- Increase the first coefficient of *b* gradually and call Dec R-LWE oracle;
- Oracle will keep returning true till overflow this tells us e₀;
- Repeat for all coefficients to learn e;
- Extract s from a noisy free sample b' = as.

What about the hardness of Dec R-LWR?

Dec R-LWE as hard as search R-LWE

- Given $(a, b = as + e) \in \mathbb{R}^2$;
- Increase the first coefficient of *b* gradually and call Dec R-LWE oracle;
- Oracle will keep returning true till overflow this tells us e₀;
- Repeat for all coefficients to learn e;
- Extract s from a noisy free sample b' = as.

Dec R-LWR?

• We can't modify e - it is deterministic.

Our approach

Intuition

Search Problem \geq Computational Problem \geq Decisional Problem

- Computational Diffie-Hellman: given $\{g, g^x, g^y\}$, find g^{xy} ;
- Similarly, given $\{a, Round(as_1), Round(as_2)\}$, find $Round(as_1s_2)$;
- This is the underlying problem for R-LWR-KEX
 - Dec R-LWR problem isn't essential.

The whole picture

Computational R-LWR (a, b = Round(as))

 \Rightarrow Computational Rounded R-LWE (a, b = Round(as + e))

 \Rightarrow Search R-LWE (a, b = as + e)

	R-LWE	R-LWR		
Samples - KEYGEN	2	1		
Samples - ENCRYPT	3	1		
Sampler	Gaussian	Uniform & Invertible		
Modulus	$\Omega(n^{5.5}\log^{0.5}n)$	$\Omega(n^{3.75}\log^{0.25}n)$		

Table: Performance comparison

If I have an unlimited fund

- Lattice based zero knowledge proofs;
- Lattice based group signatures;
- Sieving algorithms.

Backup materials: Lattice basics

Figure source: Wendy Cordero's High School Math Site

Lattice

Definition of a Lattice

• All the integral combinations of $d \le n$ linearly independent vectors over $\mathbb R$

$$\mathcal{L} = \mathbb{Z} \, \boldsymbol{b}_1 + \dots + \mathbb{Z} \, \boldsymbol{b}_d = \{ \lambda_1 \boldsymbol{b}_1 + \dots + \lambda_d \boldsymbol{b}_d : \lambda_i \in \mathbb{Z} \}$$

- d dimension.
- $\boldsymbol{B} = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_d)$ is a basis.

An example

$$\mathbf{B} = \begin{pmatrix} 5 & \frac{1}{2} & \sqrt{3} \\ \frac{3}{5} & \sqrt{2} & 1 \end{pmatrix}$$

- d = 2 < n = 3
- In this talk, full rank integer Basis: $\mathbf{B} \in \mathbb{Z}^{n,n}$.

A lattice \mathcal{L}

$$\mathbf{B} = \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix}$$

All lattice crypto talks start with an image of a dim-2 lattice

10/10/12/12/

A lattice \mathcal{L}

$$\textbf{\textit{UB}} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 8 & 5 \\ -3 & 11 \end{pmatrix}$$

An infinity of basis

A lattice \mathcal{L}

$$\textbf{\textit{UB}} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 8 & 5 \\ 13 & 21 \end{pmatrix}$$

An infinity of basis

A lattice \mathcal{L}

$$\textbf{\textit{UB}} = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 29 & 31 \\ 21 & 26 \end{pmatrix}$$

An infinity of basis

The Shortest Vector and The First Minima

$${m v}=\begin{pmatrix} 8 & 5 \end{pmatrix}, \text{ with } \lambda_1=\sqrt{8^2+5^2}=9.434$$

The Shortest Vector

The Determinant

$$\det \mathcal{L} = \sqrt{\det \left(oldsymbol{B} oldsymbol{B}^T
ight)} = 103$$

The Fundamental Parallelepiped

NTRU ring

- Originally: $\mathbb{Z}_q[x]/(x^N-1)$, q a power of 2, N a prime;
- Alternative 1: $\mathbb{Z}_q[x]/(x^N-x-1)$, q a prime;
- Alternative 2: $\mathbb{Z}_q[x]/(x^N+1)$, q a prime, N a power of 2

NTRU ring

- Originally: $\mathbb{Z}_q[x]/(x^N-1)$, q a power of 2, N a prime;
- Alternative 1: $\mathbb{Z}_q[x]/(x^N-x-1)$, q a prime;
- Alternative 2: $\mathbb{Z}_q[x]/(x^N+1)$, q a prime, N a power of 2

Ring multiplications: $h(x) = f(x) \cdot g(x)$

- Compute $h'(x) = f(x) \times g(x)$ over $\mathbb{Z}[x]$
- Reduce $h'(x) \mod (x^N 1) \mod q$

NTRU ring

- Originally: $\mathbb{Z}_q[x]/(x^N-1)$, q a power of 2, N a prime;
- Alternative 1: $\mathbb{Z}_q[x]/(x^N-x-1)$, q a prime;
- Alternative 2: $\mathbb{Z}_q[x]/(x^N+1)$, q a prime, N a power of 2

Ring multiplications: $h(x) = f(x) \cdot g(x)$, alternatively

$$\langle h_0, \dots, h_{N-1} \rangle = \langle f_0, \dots, f_{N-1} \rangle \times \begin{bmatrix} g_0 & g_1 & g_2 & \dots & g_{N-1} \\ g_{N-1} & g_0 & g_1 & \dots & g_{N-2} \\ g_{N-2} & g_{N-1} & g_0 & \dots & g_{N-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ g_1 & g_2 & g_3 & \dots & g_0 \end{bmatrix} \mod q$$

Round5

NTRU assumption

- Decisional: given two small ring elements f and g; it is hard to distinguish h = f/g from a uniformly random ring element;
- Computational: given h, find f and g.

NTRU assumption

- Decisional: given two small ring elements f and g; it is hard to distinguish h = f/g from a uniformly random ring element;
- Computational: given h, find f and g.

NTRU lattice

$$\begin{bmatrix} qI_N & 0 \\ H & I_N \end{bmatrix} := \begin{bmatrix} q & 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ 0 & q & \dots & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q & 0 & 0 & \dots & 0 \\ h_0 & h_1 & \dots & h_{N-1} & 1 & 0 & \dots & 0 \\ h_{N-1} & h_0 & \dots & h_{N-2} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ h_1 & h_2 & \dots & h_0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

NTRU assumption

- Decisional: given two small ring elements f and g; it is hard to distinguish h = f/g from a uniformly random ring element;
- Computational: given h, find f and g.

NTRU lattice
$$\mathcal{L} = \begin{bmatrix} qI_N & 0 \\ H & I_N \end{bmatrix}$$

- $\langle g, f \rangle$ (and its cyclic rotations) are unique shortest vectors in \mathcal{L} ;
- Decisional problem: decide if L has unique shortest vectors;
- Computational problem: find those vectors.
- Both are hard for random lattices.

The real NTRU assumption

NTRU lattice behaves the same as random lattices.

NTRU lattice
$$\mathcal{L} = egin{bmatrix} q \emph{I}_N & \emph{0} \ \emph{H} & \emph{I}_N \end{bmatrix}$$

- $\langle g, f \rangle$ (and its cyclic rotations) are unique shortest vectors in \mathcal{L} ;
- ullet Decisional problem: decide if ${\cal L}$ has unique shortest vectors;
- Computational problem: find those vectors.
- Both are hard for random lattices.

NTRU lattice vs random lattice

$$\begin{pmatrix} 256 & 0 \\ 172 & 1 \end{pmatrix}$$

$$(g, f) = (1, 3)$$

$$\begin{pmatrix} 256 & 0 \\ 17 & 1 \end{pmatrix}$$

NTRU lattice vs random lattice

- ullet Random lattice, SV pprox Gaussian Heuristic length $=\sqrt{rac{ ext{dim}}{2\pi e}}\det^{rac{1}{ ext{dim}}}$
- \bullet NTRU lattice, unique shortest vectors $= \| {\it g}, {\it f} \|_2$

Lattice signatures

GGHSign	hash-then-sign	generic lattice	
NTRUSign	hash-then-sign	NTRU lattice	
Fiat Shamir with abort	FS, Rejection sampling	generic lattice	
GPV	hash-then-sign	generic lattice	
BLISS	FS, Rejection sampling	NTRU lattice	
Dilithium	FS, Rejection sampling	generic lattice	
Falcon	hash-then-sign	NTRU lattice	
pqNTRUSign	HTS, Rejection sampling	NTRU lattice	

GGHSign

- Signing key: a good basis B
- Verification key a bad basis H
- Sign
 - ullet Hash message to a vector ${f v}$
 - Use B to find the closest vector **c** (Babai's algorithm)
- Verification
 - Check $Dist(\mathbf{v} \mathbf{c})$ is small

NTRUSign

- Good basis: (g,f)
- Bad basis: h

Transcript security

- Breaks GGHSign, NTRUSign;
- Each signature is a vector close to the lattice (info leakage);
- Recover enough of distance vectors (blue dots) gives away a good basis of the lattice;
- Seal the leakage with rejection sampling.

GPV sampler: a randomized Babai function

How it works

A trapdoored lattice L, i.e.

$$\mathcal{L}_{A}^{\perp} := \{ v : Av = 0 \bmod q \}, \qquad \mathcal{L}_{h} := \{ (u, v) : uh = v \bmod q \}$$

- ullet A trapdoor S, or (g,f), and a smooth parameter $\eta_{arepsilon}(\mathcal{L})$
- A target lattice point v
- Outputs another vector s, s.t.
 - \mathbf{s} is uniform over \mathcal{L}
 - $dist(\mathbf{s}, \mathbf{v})$ Gaussian over \mathbb{Z}^n

Bottle neck: trapdoor generation

Bonsai Tree, Gadget matrix, NTRU lattices . . .

Falcon

 $\bullet \ \, \mathsf{Falcon} = \mathsf{GPV} + \mathsf{NTRUSign} + \mathsf{more} \ \mathsf{ticks} \\$

Falcon

Pierre-Alain Fouque¹ Jeffrey Hoffstein² Paul Kirchner¹ Vadim Lyubashevsky³ Thomas Pornin⁴ Thomas Prest⁵ Thomas Ricosset⁵ Gregor Seiler³ William Whyte⁶ Zhenfei Zhang⁶

Falcon in a Nutshell

We work over the cyclotomic ring $\mathcal{R} = \mathbb{Z}_q[x]/(x^n+1)$.

- Keygen()
 - $\mbox{\bf 0}$ Generate matrices $\mbox{\bf A},\mbox{\bf B}$ with coefficients in ${\cal R}$ such that
 - ⇒ BA = 0
 - → B has small coefficients
 - 2 pk ← A3 sk ← B
 - **○** 3K ← **D**
- Sign(m,sk)
 - **1** Compute **c** such that $\mathbf{cA} = H(\mathbf{m})$
 - $\mathbf{v} \leftarrow$ "a vector in the lattice $\Lambda(\mathbf{B})$, close to \mathbf{c} "
 - $\mathbf{0} \mathbf{s} \leftarrow \mathbf{c} \mathbf{v}$

The signature sig is $\mathbf{s} = (s_1, s_2)$

- Verify(m,pk sig) Accept iff:
 - **1 s** is short
 - **SA**= H(m)

Performance comparison

	Α	В	1	J	K	L
1		Category	sk	pk	bytes	
2	Dilithium_medium	Lattices	2,800	1,184	2,044	
3	Dilithium_recommended	Lattices	3,504	1,472	2,701	
4	Dilithium_very_high	Lattices	3,856	1,760	3,366	
5						
6	falcon1024	Lattices	8,193	1,793	1,330	
7	falcon512	Lattices	4,097	897	690	
8	falcon768	Lattices	6,145	1,441	1,077	
9						
10	gTesla_128	Lattices	2,112	4,128	3,104	
11	gTesla_192	Lattices	8,256	8,224	6,176	
12	gTesla_256	Lattices	8,256	8,224	6,176	
13						
14	Gaussian-1024	Lattices	2,604	2,065	2,065	
15						
16						

Raptor

• Raptor = Falcon + anonymity (stealth mode)

Round5 September 19, 2018

Raptor

The scheme

- **Setup** Output a hash function $\mathcal{H}: \{*\} \to D_b$ and a random **h**.
- **KeyGen** Return $pk = \mathbf{a} := \mathbf{g}/\mathbf{f}$ and $sk = (\mathbf{f}, \mathbf{g})$.
- Signing
 - Input $\{pk_1, \ldots, pk_\ell\}$, sk_π and μ ;
 - For $i \in [1, \dots, \ell]$ and $i \neq \pi$, pick \mathbf{m}_i and \mathbf{r}_i . Compute $\mathbf{c}_i = \mathbf{h} \mathbf{m}_i + \mathbf{a}_i \mathbf{r}_i$.
 - For $i = \pi$, pick \mathbf{c}_{π} .
 - Compute \mathbf{m}_{π} such that

$$\mathbf{m}_1 \oplus \cdots \oplus \mathbf{m}_{\pi} \oplus \cdots \oplus \mathbf{m}_{\ell} = \mathcal{H}(\mu, \mathbf{c}_1, \cdots, \mathbf{c}_{\ell}, pk_1, \dots, pk_{\ell}).$$
 (1)

- Set $\mathbf{u} = \mathbf{c}_{\pi} \mathbf{hm}_{\pi}$
- Set $\mathbf{r}_{\pi} = \mathsf{Falcon.sign}(\mathbf{u}, sk_{\pi})$
- Signature $(\mathbf{r}_1,\ldots,\mathbf{r}_\pi,\mathbf{m}_i,\ldots,\mathbf{m}_\pi)$
- Verify
 - For $i \in [1, \dots, \ell]$, generate $\mathbf{c}_i = \mathbf{hm}_i + \mathbf{a}_i \mathbf{r}_i$
 - Check Equation (1).

Raptor

Security

- Public key security: as hard as breaking NTRU
- Strong Unforgeability: as hard as forging a Falcon signature
- Strong Anonymity: $(\mathbf{m}_{\pi}, \mathbf{r}_{\pi})$ statistically IND from $(\mathbf{m}_{i}, \mathbf{r}_{i})$

Linkable Raptor

- Use one time signature to generate a tag for each pk
- Tag is enforced in verification
- Same tag = linked.

Wrap up

Features

- First lattice based linkable ring signature
- Do not require NIZK
- Competitive performance to classical solutions
- 50 to 100x smaller than known (none-implementable) PQC solutions