Пространственно-кинематическое моделирование однородной плоской подсистемы опорных объектов с учетом их собственных движений

Мазеры

И. И. Никифоров

Ver. 0.1.1 (16 апреля 2014 г.)

Основные формулы

Модельной скоростью заданного объекта назовем скорость центроида объектов данного типа, вычисленную для положения этого объекта.

Вращательный стандарт покоя (ВСП) — гелиоцентрическая система отсчета, движущаяся по круговой орбите со скоростью равной средней скорости вращения рассматриваемой подсистемы на $R=R_0$.

Лучевые скорости. В предположении чисто кругового вращения модельная величина гелиоцентрической лучевой скорости данного объекта, $V_{r,\mathrm{mod}}$, в общем случае определяется выражениями

$$V_{r,\text{mod}} = V_{r,\text{rot}} + V_{r,\odot} \,, \tag{1}$$

$$V_{r,\text{rot}} = (\omega - \omega_0) R_0 \sin l \cos b, \tag{2}$$

$$V_{r,\odot} = -u_{\odot}\cos l\cos b - v_{\odot}\sin l\cos b - w_{\odot}\sin b, \qquad (3)$$

где $V_{r,\text{rot}}$ и $V_{r,\odot}$ — влияние на лучевую скорость вращения подсистемы и движения Солнца относительно ВСП подсистемы, соответственно; ω — угловая скорость вращения подсистемы для точки, где находится рассматриваемый объект; ω_0 — угловая скорость ВСП; $u_{\odot}, v_{\odot}, w_{\odot}$ — компоненты скорости движения Солнца относительно ВСП в направлениях $(l,b)=(0^{\circ},0^{\circ}), (l,b)=(90^{\circ},0^{\circ})$ и $b=90^{\circ}$, соответственно; l и b — галактические координаты объекта.

В случае плоской подсистемы линейная скорость вращения центроидов $\theta = \theta(R)$. Используем для преставления $\theta = \theta(R)$ модельный полином в виде многочлена Тейлора:

$$\Theta_n(R) = \sum_{i=0}^n \frac{\theta_i}{i!} (\Delta R)^i, \quad n \ge 1, \qquad \theta_i \equiv \left. \frac{d^i \theta}{dR^i} \right|_{R=R_0}, \tag{4}$$

где

$$\Delta R \equiv R - R_0, \qquad R = \sqrt{R_0^2 + r^2 \cos^2 b - 2R_0 r \cos l \cos b}.$$
 (5)

Здесь R — галактоосевое расстояние, r — гелиоцентрическое расстояние до объекта. Тогда модель (2) принимает общий вид

$$V_{r,\text{rot}} = \left[-2A\Delta R + \sum_{i=2}^{n} \frac{\theta_i}{i!} (\Delta R)^i \right] \frac{R_0}{R} \sin l \cos b, \tag{6}$$

$$A \equiv -\frac{1}{2}R_0\omega'(R_0) = -\frac{1}{2}(\theta_1 - \omega_0). \tag{7}$$

Собственные движения по долготе. $\mu_l \equiv \frac{dl}{dt} \cos b$. В обозначениях, аналогичных использованным в случае V_r , для модельного полинома (4)

$$k\mu_{l,\text{mod}} = k\mu_{l,\text{rot}} + k\mu_{l,\odot},$$

$$k\mu_{l,\text{rot}} = \left[-2A\Delta R + \sum_{i=2}^{n} \frac{\theta_i}{i!} (\Delta R)^i \right] \left(\frac{R_0 \cos l}{r} - \cos b \right) R^{-1} - \omega_0 \cos b, \tag{8}$$

$$k\mu_{l,\odot} = (u_{\odot} \sin l - v_{\odot} \cos l)/r.$$

Здесь

$$k = 4.7406$$
 (9)

для r в кпк и μ в мсд/год. Предлагаю написать (и использовать) такое избыточное в современную эпоху число знаков для k, т.к. применение ошибочного числа 4.738 во многих работах до сих пор продолжается. Я уже писал об этом в отзывах. Но надо хоть раз написать об этом с обоснованием в статье, хотя бы в приложении, чтобы можно было потом ссылаться.

Собственные движения по широте. $\mu_b \equiv \frac{db}{dt}$. Аналогично

$$k\mu_{b,\text{mod}} = k\mu_{b,\text{rot}} + k\mu_{b,\odot},$$

$$k\mu_{b,\text{rot}} = \left[2A\Delta R - \sum_{i=2}^{n} \frac{\theta_i}{i!} (\Delta R)^i\right] \frac{R_0}{Rr} \sin l \sin b,$$

$$k\mu_{b,\odot} = (u_{\odot} \cos l \sin b + v_{\odot} \sin l \sin b - w_{\odot} \cos b)/r.$$
(10)

Алгоритм без учета ненормального распределения ошибок гелиоцентрических расстояний

Уровень I. Решения для n = const и фиксированной выборки из N объектов

I.1. Решения для единичных весов

I.1.А. Раздельные решения систем уравнений для V_r , μ_l , μ_b . По отдельности решаются системы уравнений

$$V_r = V_{r,\text{mod}}(R_0, A, \theta_2, \dots, \theta_n, u_{\odot}, v_{\odot}, w_{\odot}^*), \tag{11}$$

$$k\mu_l = k\mu_{l,\text{mod}}(R_0^*, \omega_0, A, \theta_2, \dots, \theta_n, u_{\odot}, v_{\odot}), \tag{12}$$

$$k\mu_b = k\mu_{b,\text{mod}}(R_0^*, A, \theta_2, \dots, \theta_n, u_{\odot}, v_{\odot}, w_{\odot}^*). \tag{13}$$

Здесь индекс $j=1,\ldots,N$ опущен; $V_r,k\mu_l$ и $k\mu_b$ — наблюдаемые величины. Параметры со звездочкой могут фиксироваться. Выражение для $V_{r,\mathrm{mod}}$ дается формулами (1), (3), (6), выражения для $k\mu_{l,\mathrm{mod}}$ и $k\mu_{b,\mathrm{mod}}$ — формулами (8) и (10), соответственно.

Каждая из систем (11)–(13) решается обычным МНК с единичными весами. Частное решение (при фиксированном единственном нелинейном параметре R_0) можно найти стандартным линейным МНК. Тогда общее решение дает значение R_0 , при котором целевая функция (здесь — сумма квадратов невязок) минимальна.

Найденные общие решения дают оценки дисперсий

$$\sigma_{V_r}^2 = \frac{1}{N_{\text{free}}} \sum_{j=1}^{N} (V_r - V_{r,\text{mod}})_j^2, \tag{14}$$

$$\sigma_{\mu_l}^2 = \frac{1}{N_{\text{free}}} \sum_{j=1}^{N} (k\mu_l - k\mu_{l,\text{mod}})_j^2, \tag{15}$$

$$\sigma_{\mu_b}^2 = \frac{1}{N_{\text{free}}} \sum_{j=1}^{N} (k\mu_b - k\mu_{b,\text{mod}})_j^2, \tag{16}$$

где число степеней свободы

$$N_{\text{free}} = \begin{cases} N - (n+4) & \text{при полном векторе параметров,} \\ N - (n+3) & \text{при фиксированном параметре со звездочкой.} \end{cases}$$
 (17)

Распечатать значения σ_{V_r} , σ_{μ_l} , σ_{μ_b} .

Решение предлагаю выполнить в двух вариантах.

Вариант A1. Решение систем (11)–(13) для всех n+4 параметров. Итераций не требуется.

Вариант A2. Решение систем (11)–(13) с фиксацией одного параметра (со звездочкой). Итерации требуется.

Итерация номер 1:

а) решение системы (11) с $w^*_{\odot} = \mathrm{const}(=7~\mathrm{km/c}) \Longrightarrow$ получение по лучевым скоростям точечной оценки $R_0(V_r)_1$,

б) решение системы (13) с $R_0^* = \text{const} = R_0(V_r)_1 \implies$ получение по μ_b точечной оценки $w_{\odot}(\mu_b)_1$.

Итерация номер I: то же, но

a)
$$w_{\odot}^* = w_{\odot}(\mu_b)_{I-1} \Longrightarrow R_0(V_r)_I$$
,

б)
$$R_0^* = R_0(V_r)_I \Longrightarrow w_{\odot}(\mu_b)_I$$
.

Когда итерации сойдутся (например, будут неизменны три знака после запятой в значения обоих параметров), на последней итерации $I=I_{\rm T}$ решить систему (12) с $R_0^*={\rm const}=R_0(V_r)_{I_{\rm T}}.$

Доверительные интервалы. Для обоих вариантов A1 и A2 найти доверительные интервалы для всех свободных параметров.

B общем случае для вектора параметров ${\bf a}$, вектора точечных оценок параметров ${\bf a}_0$, невязок $({\rm O}-{\rm C})_j$, дисперсий невязок σ_j^2 или весов $w_j\equiv 1/\sigma_j^2$ (или задаваемых иначе весов, в данном случае $w_j=1$) процедура следующая. Для целевой функции

$$S^{2}(\mathbf{a}) = \sum_{j=1}^{N} \frac{[\mathcal{O} - \mathcal{C}(\mathbf{a})]_{j}^{2}}{\sigma_{j}^{2}},$$
(18)

рассмотрим статистики

$$\varsigma_0^2 \equiv \frac{1}{N_{\text{free}}} \min S^2(\mathbf{a}) = \frac{1}{N_{\text{free}}} S^2(\mathbf{a}_0),$$
(19)

$$\varsigma_1^2(a_m) \equiv \frac{1}{N_{\text{free}}} \min_{a_m = \text{const}} S^2(\mathbf{a}). \tag{20}$$

Последнее выражение означает, что значение параметра a_m фиксировано, а целевая функция оптимизируется относительно *всех остальных* параметров. Цель при этом найти дисперсию ς_1^2 как функцию параметра a_m .

Тогда границы доверительного интервала параметра a_m для доверительного уровня $1\sigma~(\approx 68.3\%)$ являются корнями уравнения

$$\varsigma_1^2(a_m) = \varsigma_0^2 \left(1 + \frac{1}{N_{\text{free}}} \right).$$
(21)

Уравнение для произвольного доверительного уровня $s\sigma$:

$$\varsigma_s^2(a_m) = \varsigma_0^2 \left(1 + \frac{s^2}{N_{\text{free}}} \right).$$
(22)

В случае единичных весов, $\sigma_j^2=1=w_j$, величина ς_0^2 — выборочная оценка дисперсии (для $V_r,\,\mu_l,\,\mu_b$).

В случае $\sigma_j^2 \neq 1$ величина ς_0^2 — средняя ошибка единицы веса. Она дает среднюю коррекцию ожидаемых неопределенностей: $\sigma_{j,\mathrm{corr}} = \varsigma_0 \sigma_j$.

Для каждого параметра результат удобно записать с указанием длин "положительной" и "отрицательной" частей доверительных интервалов по отношению к точечной оценке:

$$a_{m,0}^{+\sigma_m^+} = 0. \tag{23}$$

Здесь $a_{m,0}$ — точечная оценка параметра a_m , а части доверительного интервала

$$\sigma_m^+ = a_{m,2} - a_{m,0} \,, \qquad \sigma_m^- = a_{m,0} - a_{m,1} \,,$$
 (24)

где $a_{m,1} < a_{m,0}$, $a_{m,2} > a_{m,0}$ — корни уравнения (21).

І.1.Б. Совместное решение. Использовать значения $\sigma_{V_r}^2,~\sigma_{\mu_l}^2,~\sigma_{\mu_b}^2,$ найденные на шаге 1.І.А. Лучше взять результаты варианта A2, т.к. $\varsigma_0^2({\rm A2})>\varsigma_0^2({\rm A1}).$

Минимизируется целевая функция

$$\chi^{2}(\mathbf{a}) = \sum_{j=1}^{N} \left[\frac{(V_{r} - V_{r,\text{mod}})_{j}^{2}}{\sigma_{V_{r}}^{2}} + \frac{(k\mu_{l} - k\mu_{l,\text{mod}})_{j}^{2}}{\sigma_{\mu_{l}}^{2}} + \frac{(k\mu_{b} - k\mu_{b,\text{mod}})_{j}^{2}}{\sigma_{\mu_{b}}^{2}} \right].$$
 (25)

Доверительные интервалы находятся при помощи уравнения (21). В этом случае

$$\varsigma_0^2 = \frac{1}{N_{\text{free}}} \min \chi^2(\mathbf{a}) = \frac{1}{N_{\text{free}}} \chi^2(\mathbf{a}_0),$$
(26)

$$\varsigma_1^2(a_m) \equiv \frac{1}{N_{\text{free}}} \min_{a_m = \text{const}} \chi^2(\mathbf{a}), \tag{27}$$

$$N_{\text{free}} = 3N - (n+4).$$
 (28)

Величина ς_0 должна получиться чуть больше единицы.

Для каждого решения вариантов A и B, где R_0 — свободный параметр, построить зависимость $\varsigma_1^2(R_0)$. Т.к. остальные параметры линейные, единственность минимума $\varsigma_1^2(R_0)$ гарантирует единственность минимума целевой функции на рассматриваемом промежутке R_0 . Форма $\varsigma_1^2(R_0)$ характеризует обусловленность и вообще качество решения.

Сопоставление результатов вариантов A1, A2 и Б нужны для проверки согласованности результатов по разным (независимым) данным и для определения вклада каждого вида данных в совместное решение. Несогласованность результатов может означать наличие систематических ошибок в данных и/или неадекватность сделанных предположений.

Уровень I является ядром для решений на следующих уровнях. Варианты А нужны в начале, чтобы сразу представить общую ситуацию; на следующих уровнях их можно пропустить. Но раздельные решения нужно будет получить в самом конце для принятого финального решения.

Понадобятся решения для с n от 1 до крайней мере 10. Пока можно принять n=1 и/или 5. Выборка может быть полной или какой-то, пока это не очень важно. Потом, после отладки всей процедуры, расчеты надо провести, начиная с полной выборки.