	Université Y. F. de Médéa								
	Faculté: des Sciences	Date: 04/06/2023							
	Département: de Mathématique et Informatique								
	Module: Introduction aux Probabiltés et Statistique								
	Examen: de Second Semèstre	Durée: 1H30Mn							
	Promotion: Licence Mathématique et Informatique								

EFS-02

Respectez ces conseils

- Une feuille blanche doit l'être.
- L'organisation et la proprété de votre feuille d'examen seront notés.
- Respecter tous les notations du module.
- travailler sur brouillon avant de passer au propore.

Exercice $N^o: \mathbf{01}$. (08 pontos)

1)- Classer les caractéristiques suivants selon leurs nature (Position ou dispersion): médiane, Variance, moyenne, mode, quartiles, écart-type, covariance.

caractéristique de position	caractéristique de dispersion
X	У

2)- . Dans un groupe de MI (mathématiques et informatique) de 10 étudiants, on a étudié les notes de CC et les notes d'EFS, les résultats étaient comme dans le tableau suivant:

Note de CC: x_i	10	11	12	13	14	15	16	17	18	19
Note de EFS: y_i	9	8	13	13	15	8	17	17	18	19

- i. Tracer le nuage des points de cette série. Que peut-on déduire?
- ii. Calculer: les moyennes arithmétiques, les variances et le covariance de deux caractères;
- iii. Déterminer la droite de regréssion, notée $D_{Y/X}$, de y en X;
- iv. Estimer l'EFS pour un étudiant qui a eu la note de CC = 10.5.

Exercice $N^o: \mathbf{02}$. (08 pontos)

- 1)- On considère deux événements indépendants A et B de probabilités respectives 1/4 et 1/3 calculer :
 - (a) La probabilité de l'événements E: "les deux évènements A et B se réalisent";
 - (b) La probabilité de l'événements F: "l'un au moins de A et B se réalise";
 - (c) La probabilité de l'événements G: "qu'exactement l'un des deux événements A et B se réalise".
- 2)- Sachant que l'un au moins des deux événements A et B se réalise, Déduire:
 - i. La probabilité que l'évènement A se réalise;
 - ii. La probabilité qu'exactemnt l'un des deux évènements A et B se réalise.

Exercice $N^o: \mathbf{03}$. (4 pontos)

Pour le jeux suivant, on utilise un dé à quatre faces numérotées 0, 2, 3 et 5. On dispose aussi d'une urne contenant trois billes numérotées respectivement 1, 3 et 5. On procède de la façon suivante: on lance le dé puis on tire une bille de l'urne. Si le dé donne 0, on ne gagne rien. Sinon, on gagne 5 points si le dé et la bille portent le même numéro. Sinon, on gagne 1 point.

- Q_1)- Donner l'univers Ω et la probabilité associés à l'expérience aléatoire. Soit X la variable aléatoire correspondant au gain du joueur;
- Q_2)- Donner la définition de X sous forme d'une fonction (on pourra utiliser un tableau) et expliciter $X(\Omega 1)$;
- Q_3)- Donner la loi de probabilité de la variable aléatoire X.

Solution $N^o: \mathbf{01}$. (08 pontos)

1)- Répartition des caractéristiques selon leurs natures.....0.25 * 7 = 1.75 pts.

caractéristique de position	caractéristique de dispersion
médiane	Variance
moyenne	quartiles
mode	écart-type
	covariance

2)- Tableau statistique.....0.25 * 3 = 0.75 pts.

x_i	10	11	12	13	14	15	16	17	18	19	145
y_i	9	8	13	13	15	8	17	17	18	19	137
x_i^2	100	121	144	169	196	225	256	289	324	361	2185
y_i^2	81	64	169	169	225	64	289	289	324	361	2035
$x_i.y_i$	90	88	156	169	210	120	272	289	324	361	2079

- i. Tracage du nuage des points de cette série $\dots 01pts$.
- ii. On déduit que les deux caractères sont colinéaire eutre eux 0.5pts.
- iii. Calcul:

Les moyennes arithmétiques.....2*0.5 = 1.0pts.

$$\overline{X} = \frac{145}{10} = 14.5 \text{ et } \overline{Y} = \frac{137}{10} = 13.7$$

Les variances.....2*0.5 = 1.0pts.

$$\sigma_X^2 = \frac{2185}{10} - (14.5)^2 = 8.25 \text{ et } \sigma_Y^2 = \frac{2035}{10} - (13.7)^2 = 15.81$$

Le covariance.....0.5pts.

$$\sigma_{XY} = \frac{2079}{10} - (14.5)(13.7) = 9.25$$

iv. Détermination de la droite de regréssion, $D_{Y/X}: y = ax + b$ avec

$$a = \frac{\sigma_{XY}}{\sigma_X^2} = \frac{9.25}{8.25} = 1.12 \dots 0.5 pts;$$

$$b = \overline{Y} - a * \overline{Y} = 13.7 - (1.12)(14.5) = -2.54 \dots 0.5 pts;$$

$$D_{Y/X}: y = 1.12x - 2.54.$$

v. L'estimation est $y = (1.12)(10.5) - 2.54 \Rightarrow y = 9.22 \dots 0.5pts$.

Solution $N^o: \mathbf{02}$. (08 pontos)

- 1)- On a P(A) = 1/4 et P(B) = 1/3 calculer:
 - (a) $P(A \cap B) = P(A) * P(B) = 1/4 * 1/3 = \frac{1}{12} \dots 01pts;$
 - **(b)** $P(A \cup B) = P(A) + P(B) P(A \cap B) = 1/4 + 1/3 \frac{1}{12} = \frac{1}{2} \dots 01pts;$
 - (c) $P(A\Delta B) = P(A \cup B) P(A \cap B) = \frac{1}{2} \frac{1}{12} = \frac{5}{12} \dots 02pts$.
- 2)- Sachant que l'un au moins des deux événements A et B se réalise, Déduire:

 - i. $P(A/(A \cup B) = \frac{P[A \cap (A \cup B)]}{P(A \cup B)} = \frac{P(A)}{P(A \cup B)} = \frac{1/4}{1/2} = \frac{1}{2} \dots 02pts;$ ii. $P[(A \Delta B)/(A \cup B)] = \frac{P[(A \Delta B) \cap (A \cup B)]}{P(A \cup B)} = \frac{P[(A \Delta B)}{P(A \cup B)} = \frac{5/12}{1/2} = \frac{5}{6} \dots 02pts.$

Solution $N^o: \mathbf{03}$. (04 pontos)

 Q_1)- L'univers est $\Omega = \{(x,y); x \in \{0,2,3,5\} \text{ et } y \in \{1,3,5\}\} \Rightarrow |\Omega| = 4*3 = 12 \dots 01pts;$

$$Q_2) - \begin{array}{cccc} X & : & \Omega & \to & \mathbf{R} \\ \omega & \mapsto & X(\omega) \end{array} \text{ tel que } X(\omega = (d,b)) = \left\{ \begin{array}{cccc} 0 & si & d = 0 \\ 1 & si & d \neq b \\ 5 & si & d = b \end{array} \right. \dots \dots 1.5pts$$