

1200-Output Channel TFT LCD Source Driver with TCON Specification Preliminary

Version: V0.08 Document No.: ILI6122_SPEC_V008.pdf

ILI TECHNOLOGY CORP.

8F, No. 38, Taiyuan St., Jhubei City, Hsinchu Country 302 Taiwan R.O.C. Tel.886-3-5600099; Fax.886-3-5670585 http://www.ilitek.com

Table of Contents

Se	ction		Page					
1.	Introd	uction	4					
2.	Features							
3.	Block	Diagram	6					
	3.1.	Function Block Diagram	6					
	3.2.	Application Block Diagram	7					
		3.2.1. 800(RGB) x 480 (Gate driver on left side)	7					
		3.2.2. 800(RGB) x 600 (Gate driver on left side)	8					
		3.2.3. 800(RGB) x 480 (Gate driver on right side)	9					
		3.2.4. 800(RGB) x 600 (Gate driver on right side)	10					
4.		escriptions						
5.	Opera	ation Description						
	5.1.	Relationship between input data and output channels	16					
		5.1.1. Stripe Mode	16					
	5.2.	Dot Polarity Inversion	17					
	5.3.	Gate Scan Sequence						
	5.4.	CABC (Content Adaptive Brightness Control)						
	5.5.	Application Block Diagram	21					
	5.6.	Display Data Input Timing	23					
		5.6.1. Vertical Input Timing	23					
		5.6.2. Horizontal Input Timing	23					
		5.6.2.1. SYNC Mode (MODE="L")	23					
		5.6.2.2. DE Mode (MODE="H")	24					
	5.7.	Relationship between gamma correction and output voltage	25					
	5.8.	Power ON/OFF Sequence	27					
	5.9.	Standby ON/OFF Control	28					
	5.10	. The BIST Patterns for Aging Mode Test	29					
	5.11	. The Command Format for 3-line Serial Interface	30					
	5.12	. Command List	31					
	5.13	. Command Description	32					
	4	5.13.1. Write Display Brightness Value (51h)	32					
4	A	5.13.2. Read Display Brightness Value (52h)	32					
	~	5.13.3. Write CTRL Display Value (53h)	32					
		5.13.4. Read CTRL Display Value (54h)	33					
		5.13.5. Write Content Adaptive Brightness Control Value (82h)	33					
		5.13.6. Read Content Adaptive Brightness Control Value (82h)	34					
		5.13.7. Write CABC Minimum Brightness (5Eh)	34					
		5.13.8. Read CABC Minimum Brightness (5Fh)	34					
		5.13.9. CABC Control 1 (60h)	35					

		. CABC Control 2 (61h)	
	5.13.11	. CABC Control 3 (62h)	
	5.13.12	. CABC Control 4 (63h)	
	5.13.13	. CABC Control 5 (64h)	
	5.13.14	. CABC Control 6 (65h)	
6. DC (Characteri	stic	
6.1			0V, Ta=25℃)
6.2	. DC Ele	ectrical Characteristics (DGND=AGND=	:0V, Ta=25°ℂ)
7. AC (
7.1	. AC Tir	ning characteristics	
7.2			
9. Pad	Arrangem	ent and Coordination	
		ry	

1. Introduction

ILI6122 is a 1200-channel output source driver with TTL interface timing controller (TCON). The interface follows digital 24-bit parallel RGB input format. The TCON generates the 800x480 and 800x600 resolutions and provides horizontal and vertical control timing to source driver and gate driver. It also supports dithering feature, apply source driver with 6-bit DAC to perform 8-bit resolution 256 gray scales. Operating parameters can be set via pin control for all control features. Since the output circuit of this source driver incorporates an operational amplifier with low power dissipation, and performs wide voltage supply range and small output deviation.

ILI6122 can be configured as dual-gate operation mode for reducing FPC amount and saving the cost. With wide range of supply voltages and many pin control features make this chip mode suitable for various applications.

2. Features

TCON

- Supports display resolution 800x480 and 800x600
- Supports digital 24-bit parallel RGB input mode
- Supports to configure CABC block via 3-line SPI mode
- Source output with 8-bit resolution for 256 gray scales (2-bit dithering)
- Supports dual-gate operation mode
- Supports Stripe CF configuration
- Maximum Operation frequency: 50 MHz
- Provide flip and mirror scan mode by pin control
- Supports stand-by mode for saving power consumption
- Operation Voltage Level 3.0V to 3.6V
- > Hardware Pin Control CABC Mode Selection

Source Driver

- > 1200 channels output source driver for TFT LCD panel
- Embedded custom-made Gamma table for special custom request
- Supports external V1~V14 pad for Gamma adjustment
- Output dynamic range : 0.1 ~ VDDA-0.1V
- Voltage deviation of outputs: ±20mV
- Power for source driver voltage (VDDA): 6.5V ~ 13.5V

III. IFER CONFIDENTIAL NO DISCLOSURE FOR CONTINUENT OF THE PROPERTY OF THE PRO

Others

- COG package
- Supports CABC (Content Adaptive Brightness Control) function

Page 5 of 57 Version: 0.08

3. Block Diagram

3.1. Function Block Diagram

3.2. Application Block Diagram

3.2.1. 800(RGB) x 480 (Gate driver on left side)

3.2.2. 800(RGB) x 600 (Gate driver on left side)

3.2.3. 800(RGB) x 480 (Gate driver on right side)

3.2.4. 800(RGB) x 600 (Gate driver on right side)

4. Pin Descriptions

Pin Name	I/O	Descriptions
CLIZIN		Clock for input data. Data latched at rising/falling edge of this signal. Default is
CLKIN	I	falling edge.
D0[7.0]		Digital data input. Dx0 is LSB and Dx7 is MSB.
D0[7:0]	١.	D0[7:0] = R[7:0] data; D1[7:0] = G[7:0] data; D2[7:0]=B[7:0] data
D1[7:0]	l	When 18-bit RGB interface (disable dithering function), please use Dx[7:2] as
D2[7:0]		6-bit input and connect Dx[1:0] to DGND.
HSD	I	Horizontal sync input in digital parallel RGB. Negative polarity.
VSD	I	Vertical sync input in digital parallel RGB. Negative polarity.
DEN		Input data enable control. When DE mode, active High to enable data input.
DEN	I	(Normally pull low)
		Data inverted control. Normally pull low
REV	1	REV="1": Data inverted for normally black LCD
		REV="0": Data not inverted for normally white LCD. (Default)
		DE / SYNC mode select. (Normally pull high)
MODE	ı	MODE="L", for entering SYNC mode.
		MODE="H", for entering DE mode.
		A chip select signal. (Normally pull high)
CSX	I	CSX="L", the chip is selected and accessible CSX="H", the chip is not selected and not accessible
		Fix to the VDD level when not in use.
		Multi-Function Selection:
		When DBC/3="L", this pin act as 3-wire "SCL" pin.
SCL/DBCM[0]	L	Serial clock input. This pin is used for CABC command set only.
		When DBC/3="H", this pin act as DBC mode select pin LSB (DBCM[0])
		Note: Normal pull high and Fix to the VDD level when not in use.
G		Multi-Function Selection:
		When DBC/3="L", this pin act as 3-wire "SDA" pin.
SDA/DBCM[1]	I/O	Serial data input / output. This pin is used for CABC command set only.
		When DBC/3="H", this pin act as DBC mode select pin MSB (DBCM[1])
		Note: Normal pull high and Fix to the VDD level when not in use.
RSTB	I	Hardware global reset. Low active. (Normally pull high)
		The driving polarity inversion select. This pin is used for CABC command set
INVSEL	ı	only. (Normally pull low)
INVOLL	'	INVSEL="L", 2-dot inversion.
		INVSEL="H", 1-dot inversion

Pin Name	I/O	Descriptions
		Display resolution selection. (Normally pull low)
RES0	I	RES0="L", for 800(RGB)x480 display resolution.
		RES0="H", for 800(RGB)x600 display resolution.
		Dithering function enable control. (Normally pull high)
DITHB	I	DITHB="L", to enable internal dithering function.
		DITHB="H", to disable internal dithering function.
		Input clock edge selection. (Normally pull low)
CLKPOL	I	CLKPOL="L", latch data at CLKIN falling edge.
		CLKPOL="H", latch data at CLKIN rising edge.
		DBC/3-wire selection pin(Normal pull high)
DBC/3	I	DBC/3="H", Select DBC hardware control function.
		DBC/3="L", Select 3-wire SPI interface function.
		When VSET="L", the internal Gamma table is used and V1~V14 pins are
		unused.
V1 ~ V14	I/O	When VSET="H", V1~V14 pins are the external adjustment point for Gamma
		correction. The relationship between V1~V14 must be :
		AGND <v14<v13<v12<v11<v10<v9<v8<v7<v6<v5<v4<v3<v2<v1<vdda< td=""></v14<v13<v12<v11<v10<v9<v8<v7<v6<v5<v4<v3<v2<v1<vdda<>
		Gate on sequence. (Normally pull low)
		GOSEQ="L", INVBRR/INVBRL will output "H" and gate on sequence is
GOSEQ	I	$\text{``G1} \rightarrow \text{G2} \rightarrow \text{G3} \rightarrow \text{G4} \rightarrow \text{G5} \rightarrow \text{G6} \rightarrow \text{G7} \rightarrow \text{G8} \rightarrow \dots \rightarrow \text{G}_{n-3} \rightarrow \text{G}_{n-2} \rightarrow \text{G}_{n-1} \rightarrow \text{G}_{n}$
		GOSEQ="H", INVBRR/INVBRL will output "L" and gate on sequence is
		$\text{``G1} \rightarrow \text{G2} \rightarrow \text{G4} \rightarrow \text{G3} \rightarrow \text{G5} \rightarrow \text{G6} \rightarrow \text{G8} \rightarrow \text{G7} \rightarrow \dots \rightarrow \text{G}_{\text{n-3}} \rightarrow \text{G}_{\text{n-2}} \rightarrow \text{G}_{\text{n}} \rightarrow \text{G}_{\text{n-1}}$
		Gamma correction source select. (Normally pull low)
VSET	I	VSET="L", to use internal Gamma reference voltage (VDDA).
		VSET="H", to use external Gamma correction input (V1~V14).
		DCMP enable control signal. (Normally pull low)
DCMP_EN		DCMP_EN="L", the DCMPL/DCMPR signals are disable.
		DCMP_EN="H", the DCMPL/DCMPR signals are enable.
		Standby mode control. (Normally pull high)
STBYB	ı	STBYB="L", enter standby mode for power saving. Timing controller and
SIBIB	ı	source driver will turn off, all outputs are Hi-Z.
		STBYB="H", normal operation.
		Source shift direction control. (Normally pull high)
SHLR	1	SHLR="L", shift direction is "S1200 → S1199→ 1198 → • • • S3→ → S2 → S1"
SHER		SHLR="H", shift direction is "S1 → S2→ S3 → • • • → S1198 → S1199 →
		S1200".
UPDN	ı	Gate scan direction control (Normally pull low)
OFDIN	'	UPDN="L", STV2 outputs the vertical start pulse and UD pin outputs "L" to

Pin Name	I/O	Descriptions
		Gate driver.
		UPDN="H", STV1 outputs the vertical start pulse and UD pin outputs "H" to
		Gate driver.
		Normal operation / BIST pattern select. (Normally pull low)
BIST	I	BIST="L", Normal operation
		BIST="H", BIST (DCLK input is not needed)
		CABC function enable control. (Normally pull low)
		CABC_EN="L", BLKEN pin is used to be backlight control signal for external
CABC_EN	I	backlight controller.
		CABC_EN="H", ILI6122 will refer the gray scale content of display image to
		output a PWM frequency to LED driver via BLKEN pin.
		The backlight control signal for external backlight controller.
		BLKEN="L", turn off the external backlight controller.
BLKEN	0	BLKEN="H", turn on the external backlight controller.
DEILEIN		Note: Refer to the Power ON/OFF sequence for the detail information when
		CABC_EN is set to "L".
		Note: Keep Open when not in use.
OEVR/OEVL	0	Gate driver control signal.
UDR/UDL	0	Gate driver control signal.
CKVR/CKVL	0	Gate driver control signal.
STV1R/STV1L	0	Gate driver control signal.
STV2R/STV2L	0	Gate driver control signal.
STBNR/STBNL	0	Gate driver control signal.
INVBRR/INVBRL	0	Gate driver control signal.
DCMPL/DCMPR	0	Data line compensation.
VDDA	Р	Power supply for analog block.
AGND	P	Ground level for analog block.
VDD	Р	Power supply for digital block.
DGND	Р	Ground level for digital block.
S1 ~ S1200	0	Source driver output signals.
ALIGN		For assembly alignment.
COM1_B		COM1_B and COM2_B are short-circuited within ILI6122 for contact
COM2_B		resistance measurement. Please leave it open when not in use.
COM1_T	-	COM1_T and COM2_T are short-circuited within ILI6122 for contact resistance
COM2_T		measurement. Please leave it open when not in use.
TP0 ~ TP4	I	Test pins, not accessible to user, must be left open. (Normally pull low)
TP6 ~ TP10	0	Test pins, not accessible to user, must be left open.
SHIELDING		IC shielding pads. Those pins are internally connected to AGND level.

Pin Name	I/O	Descriptions			
DASHD		Data bus shielding pad. Those pins are internally connected to DGND level.			
DUMMY		Dummy pads. Please leave it open when not in use.			
FB		Reserved pins, not accessible to user.			
DRV		Reserved pins, not accessible to user.			
PWM_EN		Reserved pins, not accessible to user. (Normally pull low)			

DBC/3 for CABC Function Control description:

CSX	Pin Name			DBC/3	D - (II)
SCL/DBCM[0] Enable SPI Function Disable SPI Function, CABC Function mode by Hardware Pin content of the Spin Spin Spin Spin Spin Spin Spin Spin		L		H (Detault)
SCL/DBCM[0] Enable SPI Function SDA/DBCM[1] SCL/DBCM[0] Mode User interface image 1 0 Moving image 1 1 Still picture Remark: Default Still Mode	CSX				
SCL/DBCM[0] Enable SPI Function SDA/DBCM[1] SCL/DBCM[0] Mode User interface image 1 0 Moving image 1 1 Still picture Remark: Default Still Mode			Disable SPI Fu	nction, CABC Fu	nction mode by Hardware Pin cont
SDA/DBCM[1] Enable SPI Function D O O Duser interface image CABC OFF D O Moving image T Still picture Remark: Default Still Mode	COL/DDOMIO		SDA/DBCM[1]	SCL/DBCM[0]	Mode
SDA/DBCM[1] 1 0 Moving image 1 1 Still picture Remark: Default Still Mode	SCL/DBCM[0]		0		User interface image
SDA/DBCM[1] 1 1 Still picture Remark: Default Still Mode		Enable SPI Function		1	
SDA/DBCM[1] Remark: Default Still Mode					
	CDA/DDCM[1]		1	4	
IIII KONKINIA KONGONIA KANGONIA	SDA/DBCM[1]			Remark: De	rault Still Mode
HITER CONFIDENTIAL INCOMES OF THE PROPERTY OF					
ALIFER CONFIDENTIAL HODISCHE					
HITTER CONFIDENTIAL TO DISORTER SONT TO THE PARTY OF THE					
HILLER CONFIDENTIAL PROPERTY OF THE PROPERTY O					
HITER CONFIDENTIAL PROPERTY OF THE PROPERTY OF					
			The William		
			40		
		4			
		44			
	THE A				
	A WE A W				

- Note: (1) Please power on following the sequence VDD → logic input → VDDA and V1 ~ V14. Reverse the sequence to shut down.
- (2) To stabilize the supply voltages, please be sure to insert a 0.1uF bypass capacitor between VDD↔DGND and VDDA↔AGND. Furthermore, for increased precision of the D/A converter, insertion of a bypass capacitor of about 0.01uF is also advised between the gamma-corrected power supply terminals (V1, V2, ···, V14) and AGND.
- (3) Please keep V1~V14 not cross to the toggle signals as possible to avoid the AC coupling on the DC V1~V14 voltage. When used as cascade mode, please keep the coupled amount of V1~V10 are the same between the two chips.
- (4) The input wiring resistance values affect power or signal integrity and the display quality. So be sure to design using values that do not exceed those recommended as below.

	Pin Name	Wiring resistance value(Ω)
	VDDA	< 5
	AGND	< 5
	VDD	< 10
	DGND	< 10
	V1 ~ V14	< 10
	Dx[0:7]	< 50
	CLKIN	< 50
	VSD	< 50
	HSD	< 50
	DEN	< 50
	BLK_EN	< 200
	CSX	< 200
	SCL/DBCM[0]	< 200
	SDA/DBCM[1]	< 200
	RESX	< 500
	STBYB	< 500
	DITHB	< 500
	SHLR	< 500
	UPDN	< 500
	BIST	< 500
4	MODE	< 500
	RES0	< 500
434	CLKPOL	< 500
	DBC/3	< 500
	VSET	< 500
	INVBRR/INVBRL	< 500
	OEVR / OEVL	< 500
	UDR / UDL	< 500
	CKVR / CKVL	< 500
	STV1R / STV1L	< 500
**	STV2R / STV2L	< 500
	STV2R / STV2L	< 500
	STBNR / STBNL	< 500
	Others	< 500

5. Operation Description

5.1. Relationship between input data and output channels

5.1.1. Stripe Mode

The relationship between input display data and source output channels is illustrated as below:

SHLR="L", Left Shift Direction									
Output	S1	S2	S3	←	S1198	S1199	S1200		
Order	Last data				First data				
Odd Line / G _n	D0[7:0]	D2[7:0]	D1[7:0]		D0[7:0]	D2[7:0]	D1[7:0]		
Odd Line / G _{n+1}	D1[7:0]	D0[7:0]	D2[7:0]		D1[7:0]	D0[7:0]	D2[7:0]		
Even Line / G _n	D0[7:0]	D2[7:0]	D1[7:0]		D0[7:0]	D2[7:0]	D1[7:0]		
Even Line / G _{n+1}	D1[7:0]	D0[7:0]	D2[7:0]		D1[7:0]	D0[7:0]	D2[7:0]		

Output	S1	S2	S3	\rightarrow	S1198	S1199	S1200
Order		First data					
Odd Line / G _n	D0[7:0]	D2[7:0]	D1[7:0]		D0[7:0]	Last data D2[7:0]	D1[7:0]
Odd Line / G _{n+1}	D1[7:0]	D0[7:0]	D3[7:0]		D4[7:0]	D0[7:0]	D2[7:0]
Even Line / G _n	D0[7:0]	D2[7:0]	D1[7:0]		D0[7:0]	D2[7:0]	D1[7:0]
Even Line / G _{n+1}	D1[7:0]	D0[7:0]	D2[7:0]		D1[7:0]	D0[7:0]	D2[7:0]
Even Line / G _n Even Line / G _{n+1}			001				

5.2. Dot Polarity Inversion

ILI6122 supplies both of 1-dot and 2-dot inversion, the pixel polarity inversion was illustrated as below:

5.3. Gate Scan Sequence

Based on special panel request, ILI6122 supports two kinds of gate scan sequences and illustrated as below:

GOSEQ="L" & UPDN="H" → INVBRR/INVBRL="H" (Traditional Scan, For General Gate Driver)

GOSEQ="H" & UPDN="H" → INVBRR/INVBRL="L" (Bow-shaped Scan, For Special Gate Driver)

GOSEQ="L" & UPDN="L" → INVBRR/INVBRL="H" (Traditional Scan, For General Gate Driver)

GOSEQ="H" & UPDN="L" → INVBRR/INVBRL="L" (Bow-shaped Scan, For Special Gate Driver)

5.4. CABC (Content Adaptive Brightness Control)

ILI61220 provides a dynamic backlight control function as CABC (Content adaptive brightness control) to reduce the power consumption of the luminance source. ILI6122 will refer the gray scale content of display image to output a PWM waveform to LED driver for backlight brightness control. Content adaptation means that the content of gray sale can be increased while simultaneously lowering brightness of the backlight to achieve the same perceived brightness. The adjusted gray level scale and thus the power consumption reduction depend on the content of the image.

The CABC function can be turned ON/OFF via external pin as CABC_EN and also can be configured by software commands via SPI mode for performance optimization. IL6122 can calculate the backlight brightness level and send a PWM pulse to LED driver via BLKEN pin for backlight brightness control purpose. The figure in the following is the basic timing diagram which is applied ILI6122 to control LED driver.

5.5. Application Block Diagram

The configuration examples of the ILI6122 are illustrated as the following figure.

5.6. Display Data Input Timing

5.6.1. Vertical Input Timing

ILI6122 provides two different interface modes, SYNC mode and DE mode. Both modes can be selected by MODE pin, ILI6122 will enter the SYNC mode while MODE pin is set to 'L" and enter DE mode while MODE pin is set t "H".

5.6.2. Horizontal Input Timing

5.6.2.1. SYNC Mode (MODE="L")

ILI6122 will enter SYNC mode while MODE pin is fixed at "L" level. Every HSD period is consists of Horizontal Back Porch, Active Area and Horizontal Front Porch time. The first active display data is transmitted at the first falling/rising edge of CLKIN after Horizontal Back Porch period and the last display data is transmitted at the last falling/rising edge of CLKIN before Horizontal Front Porch period.

ILI6122 will latch the display data on Dx[7:0] bus at falling edge of CLKIN when CLKPOL is set to "L", the input data timing is illustrated as below:

ILI6122 will latch the display data on Dx[7:0] bus at rising edge of CLKIN when CLKPOL is set to "H", the input data timing is illustrated as below:

5.6.2.2. DE Mode (MODE="H")

ILI6122 will enter DE mode while MODE pin is fixed at "H" level. ILI6122 will treat the data on Dx[7:0] bus as active display data while DEN is at "H" level and ignore the data on Dx[7:0] bus while DEN is at "L" level.

5.7. Relationship between gamma correction and output voltage

The output voltage is determined by the 6-bit digital input data, and the V1 ~ V14 gamma correction reference voltage inputs. The figure in the following shows the relationship between the input data and the output voltage. Refer the next page for the relative values and voltage calculation method.

Gamma correction characteristic curve:

THE CONTRACTOR

Note: $VDDA-0.1 \ge V1 \ge V2 \ge V3 \ge V4 \ge V5 \ge V6 \ge V7 \ge V8 \ge V9 \ge V10 \ge V11 \ge V12 \ge V13 \ge V14 \ge AGND+0.1$

The internal Gamma Table is shown as below. (VSET="L")

Diaplay Data (Llay)	`	921-27
Display Data (Hex)	Positive Polarity	Negative Polarity
00h	VDDA x 0.961	VDDA x 0.019
01h	VDDA x 0.937	VDDA x 0.045
-		
02h	VDDA x 0.903	VDDA x 0.081
03h	VDDA x 0.880	VDDA x 0.106
04h	VDDA x 0.861	VDDA x 0.126
		VDDA x 0.142
05h	VDDA x 0.847	
06h	VDDA x 0.836	VDDA x 0.155
07h	VDDA x 0.826	VDDA x 0.166
08h	VDDA x 0.818	VDDA x 0.176
09h	VDDA x 0.810	VDDA x 0.184
0Ah	VDDA x 0.804	VDDA x 0.192
0Bh	VDDA x 0.798	VDDA x 0.199
0Ch	VDDA x 0.793	VDDA x 0.205
0Dh	VDDA x 0.788	VDDA x 0.211
0Eh	VDDA x 0.783	VDDA x 0.217
0Fh	VDDA x 0.779	VDDA x 0.222
10h	VDDA x 0.775	VDDA x 0.227
11h	VDDA x 0.772	VDDA x 0.231
12h	VDDA x 0.768	VDDA x 0.236
13h	VDDA x 0.765	VDDA x 0.240
14h		VDDA x 0.244
	VDDA x 0.762	
15h	VDDA x 0.759	VDDA x 0.248
16h	VDDA x 0.757	VDDA x 0.252
17h	VDDA x 0.754	VDDA x 0.256
18h	VDDA x 0.751	VDDA x 0.259
		A100 VIII. 200
19h	VDDA x 0.749	VDDA x 0.263
1Ah	VDDA x 0.746	VDDA x 0.266
1Bh	VDDA x 0.744	VDDA x 0.269
1Ch	VDDA x 0.742	VDDA x 0.272
1Dh	VDDA x 0.740	VDDA x 0.276
1Eh	VDDA x 0.737	VDDA x 0.279
1Fh	VDDA x 0.735	VDDA x 0.282
20h	VDDA x 0.733	VDDA x 0.285
		7000
21h	VDDA x 0.731	VDDA x 0.288
22h	VDDA x 0.729	VDDA x 0.291
23h	VDDA x 0.728	VDDA x 0.294
		\/DD4 × 0 207
24h	VDDA x 0.726	VDDA x 0.297
		VDDA x 0.297 VDDA x 0.300
24h	VDDA x 0.726	
24h 25h 26h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721	VDDA x 0.300 VDDA x 0.302
24h 25h 26h 27h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305
24h 25h 26h 27h 28h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308
24h 25h 26h 27h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305
24h 25h 26h 27h 28h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308
24h 25h 26h 27h 28h 29h 2Ah	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315
24h 25h 26h 27h 28h 29h 2Ah 2Bh	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.713	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318
24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.713 VDDA x 0.712	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321
24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.713	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318
24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.713 VDDA x 0.712	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321
24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.713 VDDA x 0.712 VDDA x 0.710 VDDA x 0.710 VDDA x 0.708	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328
24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.713 VDDA x 0.712 VDDA x 0.710 VDDA x 0.708 VDDA x 0.707	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.331
24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.713 VDDA x 0.712 VDDA x 0.710 VDDA x 0.700 VDDA x 0.700	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.331 VDDA x 0.331
24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.713 VDDA x 0.712 VDDA x 0.710 VDDA x 0.708 VDDA x 0.707 VDDA x 0.704 VDDA x 0.704 VDDA x 0.702	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.334 VDDA x 0.337
24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.713 VDDA x 0.712 VDDA x 0.710 VDDA x 0.708 VDDA x 0.707 VDDA x 0.704 VDDA x 0.702 VDDA x 0.700	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.331 VDDA x 0.331 VDDA x 0.331 VDDA x 0.331 VDDA x 0.334 VDDA x 0.337 VDDA x 0.340
24h 25h 26h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h 32h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.713 VDDA x 0.712 VDDA x 0.710 VDDA x 0.708 VDDA x 0.707 VDDA x 0.704 VDDA x 0.702 VDDA x 0.700	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.331 VDDA x 0.331 VDDA x 0.331 VDDA x 0.331 VDDA x 0.334 VDDA x 0.337 VDDA x 0.340
24h 25h 26h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h 32h 33h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.713 VDDA x 0.712 VDDA x 0.710 VDDA x 0.708 VDDA x 0.708 VDDA x 0.704 VDDA x 0.704 VDDA x 0.702 VDDA x 0.700 VDDA x 0.700 VDDA x 0.698	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.334 VDDA x 0.337 VDDA x 0.340 VDDA x 0.344
24h 25h 26h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h 32h 33h 34h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.713 VDDA x 0.712 VDDA x 0.710 VDDA x 0.708 VDDA x 0.708 VDDA x 0.704 VDDA x 0.704 VDDA x 0.700 VDDA x 0.700 VDDA x 0.700 VDDA x 0.698 VDDA x 0.697	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.334 VDDA x 0.337 VDDA x 0.340 VDDA x 0.349
24h 25h 26h 26h 27h 28h 29h 24h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 30h 31h 32h 33h 34h 35h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.713 VDDA x 0.712 VDDA x 0.710 VDDA x 0.700 VDDA x 0.704 VDDA x 0.702 VDDA x 0.700 VDDA x 0.700 VDDA x 0.700 VDDA x 0.698 VDDA x 0.695	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.334 VDDA x 0.337 VDDA x 0.340 VDDA x 0.349 VDDA x 0.353
24h 25h 26h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h 32h 33h 34h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.713 VDDA x 0.712 VDDA x 0.710 VDDA x 0.708 VDDA x 0.708 VDDA x 0.704 VDDA x 0.704 VDDA x 0.700 VDDA x 0.700 VDDA x 0.700 VDDA x 0.698 VDDA x 0.697	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.334 VDDA x 0.337 VDDA x 0.340 VDDA x 0.349
24h 25h 26h 26h 27h 28h 29h 24h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 30h 31h 32h 33h 34h 35h 36h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.713 VDDA x 0.712 VDDA x 0.710 VDDA x 0.710 VDDA x 0.700 VDDA x 0.704 VDDA x 0.704 VDDA x 0.700 VDDA x 0.700 VDDA x 0.698 VDDA x 0.695 VDDA x 0.693	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.334 VDDA x 0.337 VDDA x 0.340 VDDA x 0.349 VDDA x 0.358 VDDA x 0.358
24h 25h 26h 26h 27h 28h 29h 24h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 30h 31h 32h 33h 34h 35h 36h 37h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.712 VDDA x 0.712 VDDA x 0.710 VDDA x 0.700 VDDA x 0.707 VDDA x 0.704 VDDA x 0.702 VDDA x 0.700 VDDA x 0.698 VDDA x 0.695 VDDA x 0.692	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.334 VDDA x 0.337 VDDA x 0.340 VDDA x 0.349 VDDA x 0.358 VDDA x 0.358 VDDA x 0.358 VDDA x 0.363
24h 25h 26h 26h 27h 28h 29h 24h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 30h 31h 32h 33h 34h 35h 36h 37h 38h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.713 VDDA x 0.712 VDDA x 0.710 VDDA x 0.710 VDDA x 0.700 VDDA x 0.704 VDDA x 0.704 VDDA x 0.700 VDDA x 0.700 VDDA x 0.698 VDDA x 0.695 VDDA x 0.692 VDDA x 0.690	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.334 VDDA x 0.337 VDDA x 0.340 VDDA x 0.349 VDDA x 0.353 VDDA x 0.358 VDDA x 0.358 VDDA x 0.363 VDDA x 0.368
24h 25h 26h 26h 27h 28h 29h 24h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.712 VDDA x 0.712 VDDA x 0.710 VDDA x 0.700 VDDA x 0.707 VDDA x 0.704 VDDA x 0.702 VDDA x 0.700 VDDA x 0.698 VDDA x 0.695 VDDA x 0.692 VDDA x 0.690 VDDA x 0.690 VDDA x 0.696	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.321 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.334 VDDA x 0.337 VDDA x 0.340 VDDA x 0.349 VDDA x 0.358 VDDA x 0.358 VDDA x 0.363 VDDA x 0.368 VDDA x 0.368 VDDA x 0.374
24h 25h 26h 26h 27h 28h 29h 24h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 30h 31h 32h 33h 34h 35h 36h 37h 38h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.713 VDDA x 0.712 VDDA x 0.710 VDDA x 0.710 VDDA x 0.700 VDDA x 0.704 VDDA x 0.704 VDDA x 0.700 VDDA x 0.700 VDDA x 0.698 VDDA x 0.695 VDDA x 0.692 VDDA x 0.690	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.334 VDDA x 0.337 VDDA x 0.340 VDDA x 0.349 VDDA x 0.353 VDDA x 0.358 VDDA x 0.358 VDDA x 0.363 VDDA x 0.368
24h 25h 26h 27h 28h 29h 24h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.712 VDDA x 0.712 VDDA x 0.710 VDDA x 0.700 VDDA x 0.707 VDDA x 0.704 VDDA x 0.702 VDDA x 0.700 VDDA x 0.698 VDDA x 0.695 VDDA x 0.692 VDDA x 0.690 VDDA x 0.690 VDDA x 0.696	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.334 VDDA x 0.337 VDDA x 0.340 VDDA x 0.349 VDDA x 0.353 VDDA x 0.358 VDDA x 0.368 VDDA x 0.368 VDDA x 0.374
24h 25h 26h 26h 27h 28h 29h 24h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 38h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.712 VDDA x 0.710 VDDA x 0.710 VDDA x 0.700 VDDA x 0.707 VDDA x 0.704 VDDA x 0.702 VDDA x 0.698 VDDA x 0.695 VDDA x 0.692 VDDA x 0.688 VDDA x 0.686 VDDA x 0.683	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.334 VDDA x 0.337 VDDA x 0.340 VDDA x 0.349 VDDA x 0.358 VDDA x 0.358 VDDA x 0.363 VDDA x 0.368 VDDA x 0.374 VDDA x 0.389
24h 25h 26h 26h 27h 28h 29h 24h 29h 24h 28h 29h 24h 28h 20h 20h 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 34h 38h 39h 3Ah	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.712 VDDA x 0.710 VDDA x 0.710 VDDA x 0.700 VDDA x 0.707 VDDA x 0.704 VDDA x 0.702 VDDA x 0.700 VDDA x 0.698 VDDA x 0.695 VDDA x 0.692 VDDA x 0.688 VDDA x 0.688	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.334 VDDA x 0.337 VDDA x 0.340 VDDA x 0.349 VDDA x 0.358 VDDA x 0.358 VDDA x 0.363 VDDA x 0.368 VDDA x 0.381 VDDA x 0.389 VDDA x 0.398
24h 25h 26h 26h 27h 28h 29h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 3Bh 3Ch 3Dh	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.712 VDDA x 0.710 VDDA x 0.710 VDDA x 0.700 VDDA x 0.704 VDDA x 0.702 VDDA x 0.700 VDDA x 0.698 VDDA x 0.695 VDDA x 0.690 VDDA x 0.688 VDDA x 0.680 VDDA x 0.680 VDDA x 0.680 VDDA x 0.685	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.334 VDDA x 0.334 VDDA x 0.337 VDDA x 0.340 VDDA x 0.340 VDDA x 0.353 VDDA x 0.353 VDDA x 0.368 VDDA x 0.368 VDDA x 0.374 VDDA x 0.389 VDDA x 0.398 VDDA x 0.305
24h 25h 26h 26h 27h 28h 29h 24h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 38h 39h 3Ah 38h	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.712 VDDA x 0.710 VDDA x 0.710 VDDA x 0.700 VDDA x 0.707 VDDA x 0.704 VDDA x 0.702 VDDA x 0.700 VDDA x 0.698 VDDA x 0.695 VDDA x 0.692 VDDA x 0.688 VDDA x 0.688	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.334 VDDA x 0.337 VDDA x 0.340 VDDA x 0.349 VDDA x 0.358 VDDA x 0.358 VDDA x 0.363 VDDA x 0.368 VDDA x 0.381 VDDA x 0.389 VDDA x 0.398
24h 25h 26h 26h 27h 28h 29h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 3Bh 3Ch 3Dh	VDDA x 0.726 VDDA x 0.724 VDDA x 0.721 VDDA x 0.719 VDDA x 0.717 VDDA x 0.716 VDDA x 0.714 VDDA x 0.712 VDDA x 0.710 VDDA x 0.710 VDDA x 0.700 VDDA x 0.704 VDDA x 0.702 VDDA x 0.700 VDDA x 0.698 VDDA x 0.695 VDDA x 0.690 VDDA x 0.688 VDDA x 0.680 VDDA x 0.680 VDDA x 0.680 VDDA x 0.685	VDDA x 0.300 VDDA x 0.302 VDDA x 0.305 VDDA x 0.308 VDDA x 0.311 VDDA x 0.315 VDDA x 0.318 VDDA x 0.321 VDDA x 0.325 VDDA x 0.328 VDDA x 0.334 VDDA x 0.334 VDDA x 0.337 VDDA x 0.340 VDDA x 0.340 VDDA x 0.353 VDDA x 0.353 VDDA x 0.368 VDDA x 0.368 VDDA x 0.374 VDDA x 0.389 VDDA x 0.398 VDDA x 0.305

VDDA=10.4V							
V_{GMA}	Code	Voltage					
V1	00h	9.99 V					
V2	01h	9.74 V					
V3	10h	8.06 V					
V4	20h	7.62 V					
V5	30h	7.32 V					
V6	3Eh	6.91 V					
V7	3Fh	6.28 V					
V8	3Fh	5.09 V					
V9	3Eh	4.40 V					
V10	30h	3.47 V					
V11	20h	2.96 V					
V12	10h	2.36 V					
V13	01h	0.47 V					
V14	00h	0.198 V					

5.8. Power ON/OFF Sequence

To prevent the device damage from latch up, the power ON/OFF sequence shown below must be followed.

Power ON: VDD, DGND→ VDDA, AGND → V1 to V14

Power OFF: V1 to V14 → VDDA, AGND→ VDD, DGND

In order to prevent ILI6122 from power ON reset fail, the rising time (t_{POR}) of the digital power supply VDD should be maintained within given specifications. The power ON/OFF timing sequence is illustrated as below:

Note: For prevent anormal operation, t_{RST} must be longer than 10us during Power ON sequence.

5.9. Standby ON/OFF Control

ILI6122 supports Standby mode for saving power consumption, the source driver will turn off and all source output channel will be Hi-Z state when chip in Standby mode. The Standby mode can be controlled via STBYB pin and the Standby ON/FF timing sequence is illustrated as below:

5.10. The BIST Patterns for Aging Mode Test

ILI6122 supports the function to generate BIST patterns for Aging mode test automatically. When external BIST pin goes "H" level, then ILI6122 will leave Normal operation mode and starts to generate the BIST patterns to LCD panel without external clock signal, The BIST patterns is illustrated as below:

1	2	3	4
Red	Green	Blue	Black
5	6	7	8
White	Vertical 8-color stripe	Horizontal 64-gray scale	Vertical 64-gray scale
9	10	11	12
Gray with black block	Gray with black dot	Gray with black line	Black with white frame

5.11. The Command Format for 3-line Serial Interface

ILI6122 using the 3-line serial port as communication interface for all the commands and parameters of CABC function. This 3-line serial communication can be bi-directional controlled by the "R/W" bit in address field. Under read mode, the 3-line engine in ILI6122 will return the data during "Data phase". The returned data should be latched at the rising edge of SPCK by external controller. Data in the "Hi-Z phase" will be ignored by 3-line engine during write operation, and should be ignored during read operation also. During read operation, external controller should float SPDA pin under "Hi-Z phase" and "Data phase". Each Read/Write operation should be exactly 17 bit. To prevent from incorrect setting of the internal register, any write operation with more or less than 17 bit data during a CSX Low period will be ignored by 3-line engine.

The timing diagram of read/write operation is illustrated as below:

Read Operation

5.12. Command List

Command Function	D/C	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Write Display Brightness Value	0	0	0	1	0	1	0	0	0	1	51h
Write Display Brightness Value	1	0				DB	V[7:0]				XX
Read Display Brightness Value	0	0	0	1	0	1	1	0	0	0	52h
Read Display Brightness value	1	1				DB	V[7:0]				XX
Write CTRL Display	0	0	0	1	0	1	0	0	1	1	53h
Write CTTL Display	1	0	0	0	BCTRL	0	DD	BL	0	0	XX
Read CTRL Display	0	0	0	1	0	1	0	1	0	0	54h
Read CTRL Display	1	1	0	0	BCTRL	0	DD	BL	0	0	XX
Write Content Adaptive Brightness Control	0	0	1	0	0	0	0	0	1	0	82h
White Goment Adaptive Brightness Control	1	0	0	0	C[1:	0]	0	0	0	0	XX
Read Content Adaptive Brightness Control	0	0	1	0	0	0	0	0	1	0	82h
Read Content Adaptive Brightness Control	1	1	0	0	C[1:	0]	0	0	0	0	XX
Write CABC Minimum Brightness	0	0	0	1	0	1	1	1	1	0	5Eh
Write CADC William Brightness	1	0				CM	B[7:0]				XX
Read CABC Minimum Brightness	0	0	0	1	0	1	1	1	1	1	5Fh
Read CADO Willimidiri Brightiness	1	1				CM	B[7:0]	A			XX
CABC Control 1	0	0	0	1	1	0	0	0	0	0	60h
CASO COMICI 1	1	0		•			_DIV[7:0	-		,	XX
CABC Control 2	0	0	0	1	1	0	0	0	0	1	61h
CABO COMICI 2	1	0		THRES_MOV[3:0] THRES_STILL[3:0]					3:0]	XX	
CABC Control 3	0	0	0	1	1	0	0	0	1	0	62h
CASO COMICIO	1	0	0	0	0 4	0			S_UI[3:0	-	XX
CABC Control 4	0	0	0	1	1	0	0	0	1	1	63h
or as a solution .	0	0		DTH_N	MOV[3:0]			DTH_S		-	XX
CABC Control 5		0	0	1		0	0	1	0	0	64h
5. 125 36Hill 1	1	0	0	0	0	0		_	_UI[3:0]	1	XX
CABC Control 6	0	0	0	1	1	0	0	1	0	1	65h
J. 120 Co	1	0	4	DIM_C	PT2[3:0]			DII	M_OPT	1[2:0]	XX

Register Default Value Table

Command Function	Address	Default
Display Brightness Value	52h	FFh
CTRL Display	54h	2Ch
Content Adaptive Brightness Control	82h	20h
CABC Minimum Brightness	> 5Fh	00h
CABC Control 1	60h	12h
CABC Control 2	61h	B8h
CABC Control 3	62h	04h
CABC Control 4	63h	C9h
CABC Control 5	64h	04h
CABC Control 6	65h	73h

Note: 1. These commands above can be transmitted from host to driver IC via 3-line SPI mode only.

- 2. When D/C in the table above is '0', it means the data on SDA/DBCM[1] pin is treated as "Command" and the data is treated as "Parameter" when D/C is set to '1'.
- 3. When R/W in the table above is '0', it means the "Write" operation is executed and the "Read" operation is executed when R/W is set to '1'

5.13. Command Description

5.13.1. Write Display Brightness Value (51h)

51h		WRDISBV (Write Display Brightness)										
	D7 D6 D5 D4 D3 D2 D1 D0								HEX			
Command	0	1	0	1	0	0	0	1	51h			
Parameter		DBV[7:0] XX										
Description	DBV[7:0]: 8	and is used to B bit, for displate to control the	y brightness	of manual brig	htness settin	g and CABC i	n ILI6122. Th	ere is a PWM	l output signal,			

5.13.2. Read Display Brightness Value (52h)

52h			RUL	NSRV (Read F	isnlav Bright	ness Value)	William Total		
3211		RDDISBV (Read Display Brightness Value)							
	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	0	1	0	1	0	0	1	0	52h
Parameter				DBV	[7:0]				XX
Default	1	1	1	1	1	1	1	1	FFh
Description	DBV[7:0] is '0 DBV[7:0] is n When bit BC	o' when bit BC nanual set brig TRL of "Write Ce (55h)" comma	TRL of "Write Chiness specifie	/alue (53h)" cor	alue (53h)" co TRL Display V	mmand is '0'. /alue (53h)" cor nd C1/C0 bit of s value specifie	"Write Conter	nt Adaptive Briç	ghtness

5.13.3. Write CTRL Display Value (53h)

Description

00.0.		, 10 b.	ij talao	(33)					
53h		WRCTRLD (Write Control Display)							
	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	0	1	0	1	0	0	1	1	53h
Parameter	X	Χ	BCTRL	Х	DD	BL	X	Χ	XX
	This command	d is used to co	ntrol display	brightness.					
	BCTRL: Brightness Control Block On/Off, This bit is always used to switch brightness for display.								
44	BCTRL Description								
4			0	Brightness Co	ntrol Block OF	F (DBV[7:0]=00	Oh)		

DD: Display Dimming Control. This function is only for manual brightness setting.

DD	Description
0	Display Dimming OFF
1	Display Dimming ON

Brightness Control Block ON (DBV[7:0] is active)

BL: Backlight Control On/Off

BL	Description
0	Backlight Control OFF
1	Backlight Control ON

Dimming function is adapted to the brightness registers for display when bit BCTRL is changed at DD=1, e.g. BCTRL: 0 ->

1 or 1-> 0.

When BL bit change from "On" to "Off", backlight is turned off without gradual dimming, even if dimming-on (DD=1) are selected.

X = Don't care

5.13.4. Read CTRL Display Value (54h)

54h		RDCTRLD (Read Control Display Value)									
	D7	D6	D5	D4	D3	D2	D1	D0	HEX		
Command	0	1	0	1	0	1	0	0	54h		
Parameter	Х	Х	BCTRL	Χ	DD	BL	X	Χ	XX		
Default	0	0	1	0	1	1	0	0	2Ch		

This command is used to control display brightness.

BCTRL: Brightness Control Block On/Off, This bit is always used to switch brightness for display.

BCTRL	Description
0	Brightness Control Block OFF (DBV[7:0]=00h)
1	Brightness Control Block ON (DBV[7:0] is active)

DD: Display Dimming Control. This function is only for manual brightness setting.

Description

Description

200	DD	Description
Sel Per	0	Display Dimming OFF
99	1	Display Dimming ON

BL: Backlight Control On/Off

BL	Description
0	Backlight Control OFF
1	Backlight Control ON

X = Don't care

5.13.5. Write Content Adaptive Brightness Control Value (82h)

55h		WRCABC (Write Content Adaptive Brightness Control)								
	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
Command	1	0	0	0	0	0	1	0	82h	
Parameter	Χ	Χ	C[1	1:0]	Χ	Χ	0	0	XX	
	Th.'-	This command is used to set our section for image part at the set of election being the section of the								

This command is used to set parameters for image content based adaptive brightness control functionality.

There is possible to use 4 different modes for content adaptive image functionality, which are defined on a table below.

C[1	1:0]	Description
0	0	CABC OFF
0	1	User Interface Image
1	0	Still Picture
1	1	Moving Image

X = Don't care

5.13.6. Read Content Adaptive Brightness Control Value (82h)

		56h				RDCABC (Read Content Adaptive Brightness Control)					
	D7	D6	D5	D4		D3	D2	D1	D0	HEX	
Command	1	0	0	0		0	0	1	0	82h	
Parameter	X	X	C[1:0]		X	Χ	0	0	XX	
Default	0	0	1	0		0	0	0	0	20h	
				C[1:0]	Descript	tion			4	
	possible to	use 4 different	modes for co			1		ire definied on	the table belo	4	
Description				0	0	CABC C)FF				
,		0 1 User Interface Image									
				1	0	Still Pict	ure		A		
				1	1	Moving In	nage			7	
	X = Don't ca	are			•		.		0		

5.13.7. Write CABC Minimum Brightness (5Eh)

J. 1 J. 1 .	WILLE CA	Write CABC Willindin Brightness (3En)										
5Eh			WR	CABCMB (W	rite CABC N	linimum Brigh	tness)					
	D7	D6	D5	D4	D3	D2	D1	D0	HEX			
Command	0	0 1 0 1 1 1 1 0 5Eh										
Parameter				CME	3[7:0]				XX			
Description	CMB[7:0] XX This command is used to set the minimum brightness value of the display for CABC function. CMB[7:0]: CABC minimum brightness control, this parameter is used to avoid too much brightness reduction. When CABC is active, CABC can not reduce the display brightness to less than CABC minimum brightness setting. Improcessing function is worked as normal, even if the brightness can not be changed. This function does not affect to the other function, manual brightness setting. Manual brightness can be set the display brightness to less than CABC minimum brightness. Smooth transition and dimming function can be worked as normal. When display brightness is turned off (BCTRL=0 of "Write CTRL Display (53h)"), CABC minimum brightness setting is ignored. In principle relationship is that 00h value means the lowest brightness for CABC and FFh value means the highest											

5.13.8. Read CABC Minimum Brightness (5Fh)

5Fh	RDCABCMB (Read CABC Minimum Brightness)									
	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
Command	0	1	0	1	1	1	1	1	5Fh	
Parameter		CMB[7:0]								
Default	0	0	0	0	0	0	0	0	00h	
Description	In principle brightness.	and returns the relationships CABC minim	nip is that 00h	n value mean	s the lowest t	orightness an				

Description

1200-Output Channels TFT LCD SOURCE DRIVER WITH TCON

5.13.9. CABC Control 1 (60h)

60h		CABCCTRL1 (CABC Control 1)								
	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
Command	0	1	1	0	0	0	0	0	60h	
Parameter		PWM_DIV[7:0]								
Default	0	0	0	1	0	0	1	0	12h	

PWM_DIV[7:0]: BLKEN output period control. This command is used to adjust the PWM waveform period of BLKEN. The PWM period can be calculated using the equation in the following.

$$f_{BLKEN} = \frac{6MHz}{(PWM_DIV[7:0]+1)\times 255}$$

			`					
		ı	_MW_	DIV[7:0]			F
D7	D6	D5	D4	D3	D2	D1	D0	FBLKEN_
0	0	0	0	0	0	0	0	25.53KHz
0	0	0	0	0	0	0	1	11.76KHz
0	0	0	0	0	0	1	0	7.84KHz
0	0	0	0	0	0	1	1	5.88KHz
0	0	0	0	0	1	0	0	4.71KHz
				:				
0	0	0	1	0	0	1	0	1.24KHz
1	1	1	1	4	0	1	1	93.37
1	1	1	1	1	1	0	0	93.00
1	1	1	1	1	1	0	1	92.64
1	1	1		1	1	1	0	92.27
1	1	1	1	1	1	1	1	91.91

5.13.10. CABC Control 2 (61h)

61h	CABCCTRL2 (CABC Control 2)								
	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	0	1	1	0	0	0	0	1	61h
Parameter		THRES_	MOV[3:0]		THRES_STILL[3:0]				
Default	1	0	1	1	1	0	0	0	B8h

THRES_MOV[3:0]: This parameter is used to set the ratio (percentage) of the maximum number of pixels that makes display image white (data="63) to the total of pixels by image process in MOVING image mode. After this parameter sets the number of pixels that makes display image white, threshold grayscale value (DTH) that makes display image white is set so that the number of the pixels set by this parameter does not change.

TH	RES_	MOV[3:0]	Dagarintian
D3	D2	D1	D0	Description
0	0	0	0	99 %
0	0	0	1	98 %
0	0	1	0	96 %
0	0	1	1	94 %
0	1	0	0	92 %
0	1	0	1	90 %
0	1	1	0	88 %
0	1	1	1	86 %

TH	RES_	Description		
D3	D2	D1	D0	Description
1	0	0	0	84 %
1	0	0	1	82 %
1	0	1	0	80 %
1	0	1	1	78 %
1	1	0	0	76 %
1	1	0	1	74 %
1	1	1	0	72 %
1	1	1	1	70 %

THRES_STILL[3:0]: This parameter is used to set the ratio (percentage) of the maximum number of pixels that makes display image white (data="63) to the total of pixels by image process in STILL mode. After this parameter sets the number of pixels that makes display image white, threshold grayscale value (DTH) that makes display image white is set so that the number of the pixels set by this parameter does not change.

Description

	411 Y									
THE	RES_S	Danasiatias								
D3	D2	D1	D0	Description						
0	0	0	0	99 %						
0	0 📣	0	1	98 %						
0	0		0	96 %						
0	0	1	1	94 %						
0	1	0	0	92 %						
0	1	0	1	90 %						
0	1	1	0	88 %						
0	1	1	1	86 %						

THE	RES_S	STILL[3:0]	Decemention
D3	D2	D1	D0	Description
1	0	0	0	84 %
1	0	0	1	82 %
1	0	1	0	80 %
1	0	1	1	78 %
1	1	0	0	76 %
1	1	0	1	74 %
1	1	1	0	72 %
1	1	1	1	70 %

Description

1200-Output Channels TFT LCD SOURCE DRIVER WITH TCON

5.13.11. CABC Control 3 (62h)

62h	CABCCTRL3 (CABC Control 3)									
	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
Command	0	1	1	0	0	0	1	0	62h	
Parameter	0	0	0	0	THRES_UI[3:0]				XX	
Default	0	0	0	0	0	0 1 0 0				

THRES_UI[3:0]: This parameter is used to set the ratio (percentage) of the maximum number of pixels that makes display image white (data="63") to the total of pixels by image process in USER INTERFACE mode. After this parameter sets the number of pixels that makes display image white, threshold grayscale value (DTH) that makes display image white is set so that the number of the pixels set by this parameter does not change.

Т	HRES	_UI[3:	0]	Danamintian
D3	D2	D1	D0	Description
0	0	0	0	99 %
0	0	0	1	98 %
0	0	1	0	96 %
0	0	1	1	94 %
0	1	0	0	92 %
0	1	0	1	90 %
0	1	1	0	88 %
0	1	1	1	86 %

T	HRES	_UI[3:	0]	Description		
D3	D2	D1	D0	Description		
1	0	0	0	84 %		
1	0	0	1	82 %		
1	0	1	0	80 %		
1	0	1	1	78 %		
1	1	0	0	76 %		
1	1	0	1	74 %		
1	1	1	0	72 %		
1	1	1	1	70 %		

5.13.12. CABC Control 4 (63h)

63h	CABCCTRL4 (CABC Control 4)								
	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	0	1	1	0	0	0	1	1	63h
Parameter		DTH_M	OV[3:0]			DTH_S	TILL[3:0]		XX
Default	1	1	0	0	1	0	0	1	C9h

DTH_MOV[3:0]: This parameter is used set the minimum limitation of grayscale threshold value in MOVING image mode.

D	TH_M	OV[3:	0]	December		
D3	D2	D1	D0	Description		
0	0	0	0	224		
0	0	0	1	220		
0	0	1	0	216		
0	0	1	1	212		
0	1	0	0	208		
0	1	0	1	204		
0	1	1	0	200		
0	1	1	1	196		

D	TH_M	Description		
D3	D2	D1	D0	Description
1	0	0	0	192
1	0	0	1	188
1	0	1	0	184
1	0	1	1	180
1	1	0	0	176
1	1	0	1	172
1	1	1	0	168
1	1	1	1	164

DTH_OPT[2:0]: This parameter is used to set the minimum limitation of grayscale threshold value in STILL image mode.

Description

200

196

0

	D3	D2	D1	D0	Descripti
	0	0	0	0	224
	0	0	0	1	220
on	0	0	1	0	216
	0	0	1	1	212
	0	1	0	0	208
	0	1	0	1	204

DTH_STILLI[3:0]

1

	Dī	TH_ST	TILL[3	:0]	Description		
	D3	D2	D1	D0	Description		
	1	0	0	0	192		
	1	0	0	1	188		
480	1	0	1	0	184		
	1	0	1	1	180		
12	1	1	0	0	176		
	1	1	0	1	172		
	1	1 1		0	168		
	1	1	1	1	164		

Description

5.13.13. CABC Control 5 (64h)

64h		CABCCTRL5 (CABC Control 5)								
	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
Command	0	1	1	0	0	1	0	0	64h	
Parameter	0	0	0	0	DTH_UI[3:0]				XX	
Default	0	0	0	0	0	1	0	0	04h	
	DTH_UI[3:0]	: This paramet	er is used set t	he minimum lir	mitation of gray	scale threshol	d value in USE	R INTERFACE	mode.	
		DTH_UI[3:0] Description DTH_UI[3:0] Description D3 D2 D1 D0 Description D3 D2 D1 D0								

	DTH_	UI[3:0]		Danamintian
D3	D2	D1	D0	Description
0	0	0	0	252
0	0	0	1	248
0	0	1	0	244
0	0	1	1	240
0	1	0	0	236
0	1	0	1	232
0	1	1	0	228
0	1	1	1	224

	DTH_I	UI[3:0]		Description		
D3	D2	D1	D0	Description		
1	0	0	0	220		
1	0	0	1	216		
1	0	1	0	212		
1	0	1	1	208		
1	1	0	0	2-4		
1	1	0	1	200		
1	1	1	0	196		
1	1	1	1	192		

Description

Description

5.13.14. CABC Control 6 (65h)

65h		CABCCTRL6 (CABC Control 6)									
	D7	D6	D5	D4	D3	D2	D1	D0	HEX		
Command	0		1	0	0	1	0	1	65h		
Parameter		DIM_OF	PT2[3:0]		0		DIM_OPT1[2:0]		XX		
Default	0	1	1	1	0	0	1	1	73h		

DIM_OPT1[2:0]: This parameter is used set the transition time of brightness level change to avoid the sharp brightness change on vision.

DIM_	_OPT1	[2:0]	Description				
D2	D1	D0	Description				
0	0	0	1 frame				
0	0	1	1 frame				
0	1	0	2 frames				
0	1	1	4 frames				
1	0	0	8 frames				
1	0	1	16 frames				
1	1	0	32 frames				
1	1	1	64 frames				

DIM_OPT2[3:0]: This parameter is used to set the imitation of minimum brightness change. If this parameter is large than

the difference between target brightness and current brightness, then the brightness will not change.

6. DC Characteristic

6.1. Absolute Maximum Rating (DGND = AGND=0V, Ta=25°C)

Parameter	Cymbol		Unit		
Parameter	Symbol	Min.	Тур.	Max.	Offic
Power supply voltage 1	VDD	-0.5		+5.0	٧
Power supply voltage 2	VDDA	-0.5		+13.5	٧
Gamma correction voltage	V1 ~ V14	-0.5		+13.5	٧
Input voltage	Vin	0		VDD+0.3	٧
Operation temperature	TOPR	-20		+85	°C
Storage temperature	TSTG	-55		+125	°C

Note: (1) All of the voltages listed above are with respective to DGND=AGND=0V.

(2) Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above.

6.2. DC Electrical Characteristics (DGND=AGND=0V, Ta=25°C)

Doromotor	Parameter Symbol Spec Ur		Llmit	Conditions				
Parameter			O III	Conditions				
Power supply voltage	VDD	3.0	3.3	3.6	V			
Power supply voltage	VDDA	6.5	10.4	13.5	>			
Low level input voltage	V_{IL}	0	-	0.3VCC	>	For the digital circuit block		
High level input voltage	V_{IH}	0.7VDD		VCC	V	For the digital circuit block		
Output low voltage	V_{OL}		1	GND+0.4	>	IOL=+400μA		
Output high voltage	V_{OH}	VDD-0.4	-	73	>	IOH=-400μA		
Input leakage current	I_{IN}		-	±1	μΑ	No pull up or pull down.		
Input level of V1~V7	V_{REF1}	0.4VDDA		VDDA-0.1	V	Gamma correction voltage input		
Input level of V8~V14	V_{REF2}	0.1		0.6VDDA	V	Gamma correction voltage input		
Output voltage deviation		4	±20	±35	mV	VO=AGND+0.1V ~ AGND+0.5V and		
Odiput voltage deviation	V_{OD1}	The A	±ZU	±30	IIIV	VO=VDDA-0.1V ~ VDDA-0.5V		
Output voltage deviation	V_{OD2}	+ J. J.	±15	±20	mV	VO= AGND+0.5V ~ VDDA-0.5V		
DC offset	Vos	A.		±20	mV	VO= AGND+0.5V ~ VDDA-0.5V		
Dynamic output range	V_{DR}	0.1		AVDD-0.1	V	S1 ~ S1200		
Pull high/low resistance	R_{H}	200	250	300	kΩ	For digital input pins at VDD=3.3V		
Output sinking current	I _{OL}	80	1	1	μΑ	S1~S1200, VO =0.1V vs. 1.0V, VDDA=13.5V		
Output driving current	I _{OH}	80	ł	•	μΑ	S1~S1200, VO=13.4V vs. 12.5V, VDDA=13.5V		
Analog operating gurrent			10	12	mΑ	Without loading, FCLK=50MHz, FLD=48kHz,		
Analog operating current	I _{DDA}		Ü	12	ША	VDDA=10V, V1=8V, V14=0.4V		
Digital operating current	I_{DD}		8	10	mΑ	FCLK=50MHz, FLD=48kHz, VDD=3.3V		
Analog standby current	I_{STBA}		10	50	μΑ	No loading, clock and all functions are stopped		
Digital standby current	I_{STBD}		10	50	μΑ	Clock and all functions are stopped		

Note: VDD=3.0 ~ 3.6V, VDDA=6.5~13.5V, DGND=AGND=0V, Ta=-20~+85 $^{\circ}$ C

7. AC Characteristics

7.1. AC Timing characteristics

DE Mode (MODE='1')

SYNC Mode (MODE='0')

Source Output timing Diagram (Cascade)

Vertical Timing Diagram of DE Mode (Dual Gate)

Davamatav	Cumah al		Spec		Unit	Conditions
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
VDD Power ON slew rate	t _{POR}			20	ms	0V ~ 0.9VDD
RSTB pulse width	t _{RST}	10	-		us	CLKIN=50MHz
CLKIN cycle time	t_{CPH}	20		-	ns	
CLKIN pulse duty	t _{CWH}	40	50	60	%	
VSD setup time	t_{VST}	8			ns	
VSD hold time	t_{VHD}	8	4-1		ns	
HSD setup time	t _{HST}	8 4	7		ns	
HSD hold time	t_{HHD}	8	¥2.	-	ns	
Data setup time	t _{DST}	8		-	ns	D0[7:0], D1[7:0], D2[7:0] to CLKIN
Data hold time	t _{DHD}	8			ns	D0[7:0], D1[7:0], D2[7:0] to CLKIN
DE setup time	t _{EST}	8		-	ns	
DE hold time	t _{EHD}	8			ns	
Output stable time				6	us	10% to 90% target voltage.
Output stable time	t _{SST}			0	us	CL=120pF, R=10KΩ
CLKIN frequency	f _{CLK}		40	50	MHz	VDD=3.0 ~ 3.6V
CLKIN cycle time	t_{CLK}	20	25		ns	
CLKIN pulse duty	t _{CWH}	40	50	60	%	T _{CLK}
Time from HSD to Source output	t _{HSO}		20		CLKIN	
Time from HSD to LD	t_{HLD}		20		CLKIN	Note (2)
Time from HSD to STV	t _{HSTV}		2	-	CLKIN	
Time from HSD to CKV	t _{HCKV}		20	-	CLKIN	
Time from HSD to OEV	t _{HOEV}		4	1	CLKIN	
LD pulse width	t_{WLD}		10	-	CLKIN	Note (2)
CKV pulse width	t _{WCKV}		66	-	CLKIN	
OEV pulse width	t_{WOEV}		74		CLKIN	

Note: (1) VDD=3.0 ~ 3.6V, VDDA=6.5~13.5V, DGND=AGND=0V, Ta=-20~+85 $\ensuremath{\mathcal{C}}$

- (2) The contents of the data register are transferred to the latch circuit at the rising edge of LD. Then the gray scale voltage is output from the device at the falling edge of LD.
 - (3) Output loading condition:

SPI Timing

Parameter SCL period SCL high width	Symbol		Spec			
SCL high width	•	Min.	Тур.	Max.	Unit	Conditions
SCL high width	T _{CK}	60			ns	•
	T _{CKH}	30			ns	
SCL low width	T _{CKL}	30		🙈	ns	
Data setup time	T _{SU1}	12		-4	ns	
Data hold time	т —	12			ns	
CSX to SCL setup time	T _{CS}	20		P. **	ns	
CSX to SDA hold time	T _{CE}	20			ns	
CSX high pulse width	T _{CD}	50	- -		ns	
CSX to SCL setup time CSX to SDA hold time CSX high pulse width	AL HO					

7.2. Display Timing characteristics

7.2.1. Resolution: 800x480

Н	orizontal Inp	ut Timing	g							
	Doromot		Cumahad		Value		1.16.4			
	Paramete	er	Symbol	Min.	Тур.	Max.	Unit			
Ho	orizontal disp	lay area	t _{HD}		800		CLKIN			
	CLKIN frequ	ency	f _{CLK}		33.3	50	MHz			
1 H	Horizontal lin	e period	t _H	862	1056	1200	CLKIN			
	IOD mula a	Min.		1	1	ŀ	CLKIN			
F	ISD pulse	Typ.	t _{HPW}				CLKIN			
	width	Max.			40		CLKIN			
H	HSD back porch	SYNC	t _{HBP}	46	46	46	CLKIN			
	HSD front porch	SYNC	t _{HFP}	16	210	354	CLKIN			
THE CONTRACTOR										

	h n n n n n h n n				шш	4 0 0 0		
		пппп	ППП	П	ппп			7
DE								
	V. Back Porch (tvBP)	Active Are	⊒ □ □ □ □ a (tvɒ)	J L		/. Front Porch (tv	(FP)	L
		Totale Are	a (tv)					
	N (1 11 (T)						4	
	Vertical Input Timing	3	1 ,					
	Parameter	Symbol	i i	Value		Unit	4	₩
	1 didilictor	Cymbol	Min.	Typ.	Max.			
	Vertical display area	t_{VD}		480		HSD		
	VSD period time	t _V	510	525	650	HSD		
	VSD pulse width	t _{VPW}	1		20	HSD		
	VSD back porch	t _{VBP}	23	23	23	HSD		
	VSD front porch	t _{VFP}	7	22	147	HSD		
				4	04			
				4	1			
				SA.				
				D				
		4						
			1					
			9					
		A						
4	G							
41								
4								

7.2.2. Resolution: 800x600

Horizontal Inp	Horizontal Input Timing													
Paramet	or	Symbol		Value	i	Unit								
Faramer	.eı	Symbol	Min.	Тур.	Max.	Offic								
Horizontal disp	lay area	t _{HD}		800		CLKIN								
CLKIN frequ	uency	f _{CLK}		40	50	MHz								
1 Horizontal lin	e period	t _H	862	1056	1200	CLKIN								
LICD mules	Min.	A		1		CLKIN								
HSD pulse width	Typ.	t _{HPW}				CLKIN								
Width	Max.			40		CLKIN								
HSD back porch	SYNC	t _{HBP}	46	46	46	CLKIN								
HSD front porch	SYNC	t _{HFP}	16	210	354	CLKIN								

Vertical Input Timing													
Doromotor	Cumbal		Value		Lloit								
Parameter	Symbol	Min.	Тур.	Max.	Unit								
Vertical display area	t_VD		600		HSD								
VSD period time	t_V	624	635	700	HSD								
VSD pulse width	t_{VPW}	1		20	HSD								
VSD back proch	t_{VBP}	23	23	23	HSD								
VSD front porch	t_{VFP}	1	12	77	HSD								

8. Pad Sequence (Bump Side)

9. Pad Arrangement and Coordination

A 17um A1 34um A2 110um A3 30um B 30um B1 50um B2 70um B3 50um B4 191.5um C 65um C1 85um C2 110um C3 115um D 30um D1 40um D2 100um D3 30um D4 70um D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um F3 25um	Symbol	Dimension (um)
A2 110um A3 30um B 30um B1 50um B2 70um B3 50um B4 191.5um C 65um C1 85um C2 110um C3 115um D 30um D1 40um D2 100um D3 30um D4 70um D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	Α	17um
A3 30um B 30um B1 50um B2 70um B3 50um B4 191.5um C 65um C1 85um C2 110um C3 115um D 30um D1 40um D2 100um D3 30um D4 70um D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E6 136.5um F1 115um F2 20um	A1	34um
B 30um B1 50um B2 70um B3 50um B4 191.5um C 65um C1 85um C2 110um C3 115um D 30um D1 40um D2 100um D3 30um D4 70um D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	A2	110um
B1 50um B2 70um B3 50um B4 191.5um C 65um C1 85um C2 110um C3 115um D 30um D1 40um D2 100um D3 30um D4 70um D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	A3	30um
B2 70um B3 50um B4 191.5um C 65um C1 85um C2 110um C3 115um D 30um D1 40um D2 100um D3 30um D4 70um D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	В	30um
B3 50um B4 191.5um C 65um C1 85um C2 110um C3 115um D 30um D1 40um D2 100um D3 30um D4 70um D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	B1	50um
B4 191.5um C 65um C1 85um C2 110um C3 115um D 30um D1 40um D2 100um D3 30um D4 70um D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	B2	70um
C 65um C1 85um C2 110um C3 115um D 30um D1 40um D2 100um D3 30um D4 70um D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	B3	50um
C1 85um C2 110um C3 115um D 30um D1 40um D2 100um D3 30um D4 70um D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	B4	191.5um
C2 110um C3 115um D 30um D1 40um D2 100um D3 30um D4 70um D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	С	65um
C3 115um D 30um D1 40um D2 100um D3 30um D4 70um D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	C1	85um
D 30um D1 40um D2 100um D3 30um D4 70um D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	C2	110um
D1 40um D2 100um D3 30um D4 70um D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	СЗ	115um
D2 100um D3 30um D4 70um D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	D	30um
D3 30um D4 70um D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	D1	40um
D4 70um D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	D2	100um
D5 273um D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	D3	30um
D6 168.5um D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	D4	70um
D7 50um E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	D5	273um
E1 22578um (max.) E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	D6	168.5um
E2 1040um (max.) E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	D7	50um
E3 TBD E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	E1	22578um (max.)
E4 57um (max.) E5 60um (max.) E6 136.5um F1 115um F2 20um	E2	1040um (max.)
E5 60um (max.) E6 136.5um F1 115um F2 20um	E3	TBD
E6 136.5um F1 115um F2 20um	E4	57um (max.)
F1 115um F2 20um	E5	60um (max.)
F2 20um	E6	136.5um
	F1	115um
F3 25um	F2	20um
	F3	25um

Chip size: 22578 um x 1040 um(Include 80um scribe line).

Chip height: 400 um.

No.	Pad name	X	Υ	No.	Pad name	Х	Υ	No.	Pad name	Х	Υ	No.	Pad name	Х	Υ
1	SHIELDING	-11196.5	-408	61	DBC/3	-5950	-408	121	V4	-850	-408	181	DEN	4250	-408
2	SHIELDING	-11111.5	-408	62	SHIELDING	-5865	-408	122	SHIELDING	-765	-408	182	DASHD	4335	-408
3	SHIELDING	-11026.5	-408	63	CLKPOL	-5780	-408	123	V5	-680	-408	183	CLKIN	4420	-408
4	SHIELDING	-10825	-408	64	CLKPOL	-5695	-408	124	V5	-595	-408	184	CLKIN	4505	-408
5	COM1_B	-10710	-408	65	SHIELDING	-5610	-408	125	SHIELDING	-510	-408	185	DASHD	4590	-408
6	COM1_B	-10625	-408	66	DITHB	-5525	-408	126	V6	-425	-408	186	D27	4675	-408
7	SHIELDING	-10540	-408	67	DITHB	-5440	-408	127	V6	-340	-408	187	D27	4760	-408
8	SHIELDING	-10455	-408	68	SHIELDING	-5355	-408	128	SHIELDING	-255	-408	188	D26	4845	-408
9	AGND	-10370	-408	69	MODE	-5270	-408	129	V7	-170	-408	189	D26	4930	-408
10	AGND	-10285	-408	70	MODE	-5185	-408	130	V7	-85	-408	190	DASHD	5015	-408
11	AGND	-10200	-408	71	SHIELDING	-5100	-408	131	SHIELDING	0	-408	191	D25	5100	-408
12	AGND	-10115	-408	72	SHLR	-5015	-408	132	V8	85	-408	192	D25	5185	-408
13	SHIELDING	-10030	-408	73	SHLR	-4930	-408	133	V8	170	-408	193	D24	5270	-408
14	FB (Reserved)	-9945	-408	74	SHIELDING	-4845	-408	134	SHIELDING	255	-408	194	D24	5355	-408
15	FB (Reserved)	-9860	-408	75	UPDN	-4760	-408	135	V9	340	-408	195	DASHD	5440	-408
16	SHIELDING	-9775	-408	76	UPDN	-4675	-408	136	V9	425	-408	196	D23	5525	-408
17	DRV (Reserved)	-9690	-408	77	SHIELDING	-4590	-408	137	SHIELDING	510	-408	197	D23	5610	-408
18	DRV (Reserved)	-9605	-408	78	STBYB	-4505	-408	138	V10	595	-408	198	D22	5695	-408
19	TP0	-9520	-408	79	STBYB	-4420	-408	139	V10	680	-408	199	D22	5780	-408
20	TP0	-9435	-408	80	SHIELDING	-4335	-408	140	SHIELDING	765	-408	200	DASHD	5865	-408
21	TP1	-9350	-408	81	RSTB	-4250	-408	141	V11	850	-408	201	D21	5950	-408
22	TP1 TP2	-9265 -9180	-408 -408	82	RSTB SHIELDING	-4165 -4080	-408 -408	142	V11 SHIELDING	935	-408 -408	202	D21 D20	6035 6120	-408 -408
24	TP2	-9180	-408	84	BLKEN	-3995	-408	143	V12	1105	-408	203	D20	6205	-408
25	TP3	-9093 -9010	-408	85	BLKEN	-3910	-408	145	V12	1190	-408	205	DASHD	6290	-408
26	TP3	-8925	-408	86	SHIELDING	-3825	-408	146	SHIELDING	1275	-408	206	DA3HD D17	6375	-408
27	TP4	-8840	-408	87	VSET	-3740	-408	147	V13	1360	-408	207	D17	6460	-408
28	TP4	-8755	-408	88	VSET	-3655	-408	148	V13	1445	-408	208	D16	6545	-408
29	Dummy	-8670	-408	89	TP6	-3570	-408	149	SHIELDING	1530	-408	209	D16	6630	-408
30	REV	-8585	-408	90	TP6	-3485	-408	150	V14	1615	-408	210	DASHD	6715	-408
31	SHIELDING	-8500	-408	91	TP7	-3400	-408	151	V14	1700	-408	211	D15	6800	-408
32	INVSEL	-8415	-408	92	TP7	-3315	-408	152	SHIELDING	1785	-408	212	D15	6885	-408
33	INVSEL	-8330	-408	93	TP8	-3230	-408	153	AGND	1870	-408	213	D14	6970	-408
34	SHIELDING	-8245	-408	94	TP8	-3145	-408	154	AGND	1955	-408	214	D14	7055	-408
35	CABC EN	-8160	-408	95	TP9	-3060	-408	155	AGND	2040	-408	215	DASHD	7140	-408
36	CABC_EN	-8075	-408	96	TP9	-2975	-408	156	AGND	2125	-408	216	D13	7225	-408
37	SHIELDING	-7990	-408	97	TP10	-2890	-408	157	AGND	2210	-408	217	D13	7310	-408
38	PWM_EN (Reserved)	-7905	-408	98	Dummy	-2805	-408	158	AGND	2295	-408	218	D12	7395	-408
39	PWM_EN (Reserved)	-7820	-408	99	DCMP_EN	-2720	-408	159	AGND	2380	-408	219	D12	7480	-408
40	SHIELDING	-7735	-408	100	DUMMY	-2635	-408	160	AGND	2465	-408	220	DASHD	7565	-408
41	CSX	-7650	-408	101	SHIELDING	-2550	-408	161	SHIELDING	2550	-408	221	D11	7650	-408
42	CSX	-7565	-408	102	AVDD	-2465	-408	162	SHIELDING	2635	-408	222	D11	7735	-408
43	SHIELDING	-7480	-408	103	AVDD	-2380	-408	163	GND	2720	-408	223	D10	7820	-408
44	SCL/DBC[0]	-7395	-408	104	AVDD	-2295	-408	164	GND	2805	-408	224	D10	7905	-408
45	SCL/DBC[0]	-7310	-408	105	AVDD	-2210	-408	165	GND	2890	-408	225	DASHD	7990	-408
46	SHIELDING	-7225	-408	106	AVDD	-2125	-408	166	GND	2975	-408	226	D07	8075	-408
47	SDA/DBC[1]	-7140	-408	107	AVDD	-2040	-408	167	SHIELDING	3060	-408	227	D07	8160	-408
48	SDA/DBC[1]	-7055	-408	108	AVDD	-1955	-408	168	SHIELDING	3145	-408	228	D06	8245	-408
49	SHIELDING	-6970	-408	109	AVDD	-1870	-408	169	VDD	3230	-408	229	D06	8330	-408
50	SHIELDING	-6885	-408	110	SHIELDING	-1785	-408	170	VDD	3315	-408	230	DASHD	8415	-408
51	GOSEQ	-6800	-408	111	V1	-1700	-408	171	VDD	3400	-408	231	D05	8500	-408
52	GOSEQ	-6715	-408	112	V1	-1615	-408	172	VDD	3485	-408	232	D05	8585	-408
53	SHIELDING	-6630	-408	113	SHIELDING	-1530	-408	173	DASHD	3570	-408	233	D04	8670	-408
54	BIST	-6545	-408	114	V2	-1445	-408	174	VSD	3655	-408	234	D04	8755	-408
55	BIST	-6460	-408	115	V2	-1360	-408	175	VSD	3740	-408	235	DASHD	8840	-408
56	SHIELDING	-6375	-408	116	SHIELDING	-1275	-408	176	DASHD	3825	-408	236	D03	8925	-408
57	RES0	-6290	-408	117	V3	-1190	-408	177	HSD	3910	-408	237	D03	9010	-408
58	RES0	-6205	-408	118	V3	-1105	-408	178	HSD	3995	-408	238	D02	9095	-408
59	SHIELDING	-6120	-408	119	SHIELDING	-1020	-408	179	DASHD	4080	-408	239	D02	9180	-408
60	DBC/3	-6035	-408	120	V4	-935	-408	180	DEN	4165	-408	240	DASHD	9265	-408

No.	Pad name	X	Υ	No.	Pad name	X	Υ	No.	Pad name	X	Υ	No.	Pad name	X	Υ
241	D01	9350	-408	301	SO[16]	10365.5	128	361	SO[76]	9345.5	128	421	SO[136]	8325.5	128
242	D01	9435	-408	302	SO[17]	10348.5	268	362	SO[77]	9328.5	268	422	SO[137]	8308.5	268
243	D00	9520	-408	303	SO[18]	10331.5	408	363	SO[78]	9311.5	408	423	SO[138]	8291.5	408
244	D00	9605	-408	304	SO[19]	10314.5	128	364	SO[79]	9294.5	128	424	SO[139]	8274.5	128
245	DASHD	9690	-408	305	SO[20]	10297.5	268	365	SO[80]	9277.5	268	425	SO[140]	8257.5	268
246	SHIELDING	9775	-408	306	SO[21]	10280.5	408	366	SO[81]	9260.5	408	426	SO[141]	8240.5	408
247	SHIELDING SHIELDING	9860	-408	307	SO[22]	10263.5	128	367	SO[82]	9243.5	128	427	SO[142]	8223.5	128
248		9945 10030	-408 -408	308	SO[23] SO[24]	10246.5 10229.5	268 408	368	SO[83]	9226.5 9209.5	268 408	428 429	SO[143] SO[144]	8206.5 8189.5	268 408
249	SHIELDING AVDD	10115	-408	309	SO[24]	10229.5	128	369	SO[84] SO[85]	9192.5	128	430	SO[144] SO[145]	8172.5	128
251	AVDD	10200	-408	311	SO[26]	10195.5	268	371	SO[86]	9175.5	268	431	SO[146]	8155.5	268
252	AVDD	10285	-408	312	SO[27]	10178.5	408	372	SO[87]	9158.5	408	432	SO[140]	8138.5	408
253	AVDD	10370	-408	313	SO[28]	10161.5	128	373	SO[88]	9141.5	128	433	SO[148]	8121.5	128
254	SHIELDING	10455	-408	314	SO[29]	10144.5	268	374	SO[89]	9124.5	268	434	SO[149]	8104.5	268
255	SHIELDING	10540	-408	315	SO[30]	10127.5	408	375	SO[90]	9107.5	408	435	SO[150]	8087.5	408
256	COM2_B	10625	-408	316	SO[31]	10110.5	128	376	SO[91]	9090.5	128	436	SO[151]	8070.5	128
257	COM2_B	10710	-408	317	SO[32]	10093.5	268	377	SO[92]	9073.5	268	437	SO[152]	8053.5	268
258	SHIELDING	10825	-408	318	SO[33]	10076.5	408	378	SO[93]	9056.5	408	438	SO[153]	8036.5	408
259	SHIELDING	11026.5	-408	319	SO[34]	10059.5	128	379	SO[94]	9039.5	128	439	SO[154]	8019.5	128
260	SHIELDING	11111.5	-408	320	SO[35]	10042.5	268	380	SO[95]	9022.5	268	440	SO[155]	8002.5	268
261	SHIELDING	11196.5	-408	321	SO[36]	10025.5	408	381	SO[96]	9005.5	408	441	SO[156]	7985.5	408
262	DUMMY	11049	-232	322	SO[37]	10008.5	128	382	SO[97]	8988.5	128	442	SO[157]	7968.5	128
263	DUMMY	11179	-232	323	SO[38]	9991.5	268	383	SO[98]	8971.5	268	443	SO[158]	7951.5	268
264	STBNL	11049	-152	324	SO[39]	9974.5	408	384	SO[99]	8954.5	408	444	SO[159]	7934.5	408
265	STBNL	11179	-152	325	SO[40]	9957.5	128	385	SO[100]	8937.5	128	445	SO[160]	7917.5	128
266	STV1L	11049	-72	326	SO[41]	9940.5	268	386	SO[101]	8920.5	268	446	SO[161]	7900.5	268
267	STV1L	11179	-72	327	SO[42]	9923.5	408	387	SO[102]	8903.5	408	447	SO[162]	7883.5	408
268	STV2L	11049	8	328	SO[43]	9906.5	128	388	SO[103]	8886.5	128	448	SO[163]	7866.5	128
269	STV2L	11179	8	329	SO[44]	9889.5	268	389	SO[104]	8869.5	268	449	SO[164]	7849.5	268
270	STV1L	11049	88	330	SO[45]	9872.5	408	390	SO[105]	8852.5	408	450	SO[165]	7832.5	408
271	STV1L	11179	88	331	SO[46]	9855.5	128	391	SO[106]	8835.5	128	451	SO[166]	7815.5	128
272	CKVL	11049	168	332	SO[47]	9838.5	268	392	SO[107]	8818.5	268	452	SO[167]	7798.5	268
273	CKVL	11179	168	333	SO[48]	9821.5	408	393	SO[108]	8801.5	408	453	SO[168]	7781.5	408
274	UDL	11049	248	334	SO[49]	9804.5	128	394	SO[109]	8784.5	128	454	SO[169]	7764.5	128
275	UDL	11179	248	335	SO[50]	9787.5	268	395	SO[110]	8767.5	268	455	SO[170]	7747.5	268
276	OEVL	11179	328	336	SO[51]	9770.5	408	396	SO[111]	8750.5	408	456	SO[171]	7730.5	408
277	INVBRL	11179	408	337	SO[52]	9753.5	128	397	SO[112]	8733.5	128	457	SO[172]	7713.5	128
278	OEVL	11049	328	338	SO[53]	9736.5	268	398	SO[113]	8716.5	268	458	SO[173]	7696.5	268
279	INVBRL	11049	408	339	SO[54]	9719.5	408	399	SO[114]	8699.5	408	459	SO[174]	7679.5	408
280	DCMPL	10914	428	340	SO[55]	9702.5	128	400	SO[115]	8682.5	128	460	SO[175]	7662.5	128
281	DCMPL	10864	428	341	SO[56]	9685.5	268	401	SO[116]	8665.5	268	461	SO[176]	7645.5	268
282	SHIELDING	10814	428	342	SO[57]	9668.5	408	402	SO[117]	8648.5	408	462	SO[177]	7628.5	408
283	COM2_T	10764	428	343	SO[58]	9651.5	128	403	SO[118]	8631.5	128	463	SO[178]	7611.5	128
284	COM2_T	10714	428	344	SO[59]	9634.5	268	404	SO[119]	8614.5	268	464	SO[179]	7594.5	268
285	SHIELDING	10664	428	345	SO[60]	9617.5	408	405	SO[120]	8597.5	408	465	SO[180]	7577.5	408
286	SO[1]	10620.5	128 268	346	SO[61]	9600.5	128 268	406	SO[121]	8580.5 8563.5	128 268	466 467	SO[181]	7560.5	128 268
287	SO[2] SO[3]	10603.5 10586.5	408	347	SO[62] SO[63]	9583.5 9566.5	408	407	SO[122] SO[123]	8546.5	408	468	SO[182] SO[183]	7543.5 7526.5	408
289	SO[3]	10569.5	128	349	SO[63]	9549.5	128	409	SO[123]	8529.5	128	469	SO[183]	7509.5	128
290	SO[4]	10559.5	268	350	SO[64] SO[65]	9549.5	268	410	SO[124] SO[125]	8512.5	268	470	SO[184] SO[185]	7492.5	268
290	SO[6]	10532.5	408	351	SO[65]	9532.5	408	411	SO[125] SO[126]	8495.5	408	471	SO[185] SO[186]	7492.5	408
292	SO[7]	10535.5	128	352	SO[67]	9498.5	128	412	SO[120]	8478.5	128	472	SO[180] SO[187]	7473.5	128
293	SO[8]	10510.5	268	353	SO[68]	9481.5	268	413	SO[127]	8461.5	268	473	SO[188]	7441.5	268
294	SO[9]	10484.5	408	354	SO[69]	9464.5	408	414	SO[120]	8444.5	408	474	SO[189]	7424.5	408
295	SO[10]	10467.5	128	355	SO[70]	9447.5	128	415	SO[129]	8427.5	128	475	SO[199]	7407.5	128
296	SO[10]	10450.5	268	356	SO[71]	9430.5	268	416	SO[130]	8410.5	268	476	SO[190]	7390.5	268
297	SO[11]	10433.5	408	357	SO[72]	9413.5	408	417	SO[131]	8393.5	408	477	SO[191]	7373.5	408
298	SO[13]	10416.5	128	358	SO[73]	9396.5	128	418	SO[133]	8376.5	128	478	SO[193]	7356.5	128
299	SO[14]	10399.5	268	359	SO[74]	9379.5	268	419	SO[134]	8359.5	268	479	SO[194]	7339.5	268
300	SO[15]	10382.5	408	360	SO[75]	9362.5	408	420	SO[135]	8342.5	408	480	SO[195]	7322.5	408
									- []				- []		

No. Performent No. V																
March 1968 1969								1 1								Υ
Math				i i				i i								
Met																
March Marc				i i				i i								
Math				i i				i i		, ,						
Mary																
March Marc				i i												
September Sept				i i												
Section Sect					549											
140 150	490	SO[205]	7152.5	128	550	SO[265]	6132.5	128	610	SO[325]	5112.5	128	670	SO[385]	4092.5	128
SCOCORD 7705-16 228 254 25	491	SO[206]	7135.5	268	551	SO[266]	6115.5	268	611	SO[326]	5095.5	268	671	SO[386]	4075.5	268
646 SO(219)	492	SO[207]	7118.5	408	552	SO[267]	6098.5	408	612	SO[327]	5078.5	408	672	SO[387]	4058.5	408
Section Property	493	SO[208]	7101.5	128	553	SO[268]	6081.5	128	613	SO[328]	5061.5	128	673	SO[388]	4041.5	128
140	494	SO[209]	7084.5	268	554	SO[269]	6064.5	268	614	SO[329]	5044.5	268	674	SO[389]	4024.5	268
May	495	SO[210]	7067.5	i i	555	SO[270]	6047.5	408	615	SO[330]	5027.5		675	SO[390]	4007.5	408
488				i i				i i								
SO				i i				i i					4	, Ma 4		
SOC SOCI-15 G882.5 288 560 SOCI-15 S982.5 288 620 SOCI-35 4084.5 288 680 SOCI-95 302.5 268 SOCI SOCI-17 G844.5 18 562 SOCI-75 592.5 126 621 SOCI-35 408 681 SOCI-95 302.5 268 SOCI SOCI-17 G844.5 18 562 SOCI-75 592.5 128 680 SOCI-95 302.5 128 SOCI SOCI-18 G914.5 408 564 SOCI-95 591.5 268 621 SOCI-95 302.5 408 SOCI-95 G914.5 408 564 SOCI-95 S91.5 268 622 SOCI-95 408 681 SOCI-95 302.5 408 SOCI-95 G914.5 408 564 SOCI-95 S91.5 288 628 SOCI-95 S91.5 288 SOCI-95 G914.5 408 564 SOCI-95 S91.5 128 628 SOCI-95 S91.5 128 SOCI-95 G987.5 128 566 SOCI-95 S91.5 128 628 SOCI-95 S91.5 128 SOCI-95 G863.5 408 567 SOCI-95 S91.5 128 628 SOCI-95 S91.5 128 SOCI-95 G863.5 408 567 SOCI-95 S91.5 128 628 SOCI-95 S91.5 128 SOCI-95 G863.5 408 567 SOCI-95 S91.5 128 628 SOCI-95 G91.5 408 S91.5 SOCI-95 G863.5 408 567 SOCI-95 S91.5 128 628 SOCI-95 G91.5 408 S91.5 SOCI-95 G871.5 408 570 SOCI-95 S91.5 128 628 SOCI-95 G91.5 408 S91.5 SOCI-95 G871.5 408 570 SOCI-95 S91.5 128 631 SOCI-95 G91.5 408 S91.5 SOCI-95 G91.5 408 571 SOCI-95 S91.5 128 631 SOCI-95 G91.5 408 S91.5 SOCI-95 G91.5 408 571 SOCI-95 S91.5 128 631 SOCI-95 G91.5 408 S91.5 408 S91.5 SOCI-95 G91.5 408 571 SOCI-95 S91.5 128 631 SOCI-95 G91.5 408 S91.5 408 S													470			
												APR		•		
502 S0[217] 6648.5 128 562 S0[277] 5628.5 128 622 S0[33] 4908.5 128 682 S0[397] 3888.5 128 503 S0[219] 6911.5 286 563 S0[279] 5911.5 286 23 S0[233] 4891.5 286 683 S0[398] 3871.5 283 505 S0[220] 6887.5 128 585 S0[280] 5877.5 128 626 S0[241] 4861.5 128 686 S0[281] 5861.5 608 507 S0[222] 6883.6 50 S0[281] 5861.5 608 507 S0[282] 5863.5 128 686 50[40] 3837.5 128 686 50[40] 3837.5 128 690 50[221] 6861.5 128 586 S0[281] 5863.5 128 628 50[23] 5864.5 128 688 50[403] 3898.5 128 628 50[243] 4898.5 128 687				i i				i i					d ^y			
503 SO(218) 6931.5 286 653 SO(279) 5911.5 286 623 SO(338) 4891.5 286 683 SO(399) 3871.5 286 504 SO(279) 6897.5 128 565 SO(270) 6897.5 128 565 SO(220) 6897.5 128 565 SO(221) 6805.5 268 568 SO(280) 587.5 128 569 SO(240) 6897.5 128 69 SO(240) 4897.5 128 688 SO(400) 3897.5 1428 568 SO(281) 580.5 280 628 SO(341) 4840.5 288 686 SO(401) 3803.5 408 509 SO(221) 688 SO(402) 880.5 280 628 SO(341) 4840.5 288 SO(401) 3803.5 408 509 SO(221) 689.5 SO(288) 572.5 288 629 SO(341) 4789.5 288 8010 3780.5 288 570 SO(289) 57				i i				i i			A	407				
504 S0/219 6614.5 408 564 S0/279 5894.5 409 624 S0/339 4874.5 120 688 S0/109 3824.5 120 506 S0/221 6880.5 508 569 50221 5803.5 408 627 S01281 5803.5 408 627 S01281 4823.5 408 688 S01402 3803.5 408 509 S01221 6804.5 570 S01281 5809.5 288 598 S01401 48728.5 408 S014021 3709.5 408 510 S01225 6812.5 408 570 S01281 5806.5 5708.5 408 830 S01341 4809.5 4718 480 571 S01281 5802				i i								-				
505 SO/2201 6887.5 128 566 SO/2801 6887.5 128 625 SO/3401 4867.5 128 685 SO/4001 3837.5 128 506 SO/221 6885.5 488 566 SO/2811 5883.5 408 677 SO/2821 6885.5 128 568 SO/2231 6865.5 128 568 SO/2821 5883.5 408 677 SO/2821 3833.5 408 679 SO/2221 6881.5 488 569 SO/2831 5826.5 128 628 SO/3431 4806.5 128 689 SO/4031 3786.5 128 510 SO/2261 689.5 SO/2851 579.5 408 631 SO/2851 478.5 408 570 SO/2851 579.5 408 631 SO/2851 478.5 408 477.5 408 573 SO/2851 579.5 408 631 SO/2851 578.5 428 632 SO/2471 4788.5 288				i i				1								
SOCIED GRAS.5 408 567 SOCIED SR43.5 408 627 SOCIED 4823.5 408 687 SOCI402 3803.5 408 509 SOCIED GRAS.5 128 588 SOCIED SR2.5 528 528 528 509 SOCIED GRAS.5 128 588 SOCIED SR2.5 528	505			128	565		5877.5		625		4857.5		685		3837.5	128
508 SO(23) 6846.5 128 568 SO(283) 5826.5 128 628 SO(343) 4806.5 128 688 SO(403) 3786.5 128 509 SO(224) 6822.5 288 698 SO(285) 5792.5 408 689 SO(344) 4799.5 208 688 SO(404) 3796.5 286 511 SO(226) 6812.5 408 570 SO(285) 5792.5 408 430 SO(345) 4772.5 408 690 SO(406) 3735.5 286 572 SO(287) 5758.5 288 632 SO(347) 4738.5 288 691 SO(406) 3735.5 128 513 SO(229) 674.5 188 573 SO(288) 5741.5 408 633 SO(349) 470.5 408 693 SO(409) 370.5 488 514 SO(229) 674.5 128 575 SO(280) 5707.5 288 632 SO(349)	506	SO[221]	6880.5	268	566	SO[281]	5860.5	268	626	SO[341]	4840.5	268	686	SO[401]	3820.5	268
509 SO(224) 6829.5 268 569 SO(284) 5809.5 268 629 SO(344) 4789.5 286 690 SO(404) 3769.5 286 510 SO(226) 6795.5 128 570 SO(286) 5775.5 128 631 SO(346) 4772.5 408 690 SO(405) 3735.5 128 511 SO(227) 6776.5 228 571 SO(288) 577.5 578.5 288 632 SO(347) 4798.5 288 692 SO(407) 3718.5 288 513 SO(228) 6761.5 408 573 SO(288) 5741.5 408 633 SO(349) 4794.5 408 644 50(409) 3894.5 128 634 SO(349) 4794.5 408 696 SO(409) 3894.5 128 635 SO(350) 4687.5 268 695 SO(409) 3894.6 1498 674 408 696 SO(411) 3860.5 208	507	SO[222]	6863.5	408	567	SO[282]	5843.5	408	627	SO[342]	4823.5	408	687	SO[402]	3803.5	408
510 SO(225) 6812.5 408 570 SO(286) 579.5 408 680 SO(345) 4772.5 408 690 SO(1405) 375.5 408 511 SO(226) 6795.5 128 571 SO(2287) 5758.5 128 631 SO(346) 4755.5 128 691 SO(407) 3718.5 288 513 SO(228) 6761.5 408 573 SO(288) 5741.5 408 633 SO(348) 4772.5 408 692 SO(407) 3718.5 288 514 SO(229) 6744.5 128 574 SO(289) 5724.5 128 634 SO(349) 4704.5 128 694 SO(409) 3684.5 128 516 SO(231) 670.5 408 676 SO(291) 5673.5 128 637 SO(352) 4673.5 128 697 SO(141) 3665.5 268 517 SO(2321) 6676.5 268 578	508	SO[223]	6846.5	128	568	SO[283]	5826.5	128	628	SO[343]	4806.5	128	688	SO[403]	3786.5	128
511 SO(226) 6795.5 128 571 SO(226) 5775.5 128 631 SO(346) 4755.5 128 691 SO(440) 3735.5 128 512 SO(227) 6778.5 268 572 SO(287) 5755.5 268 632 SO(347) 4738.5 268 692 SO(407) 3718.5 288 513 SO(229) 6744.5 128 574 SO(288) 5741.5 408 634 SO(349) 4704.5 128 694 SO(409) 3884.5 128 515 SO(230) 6727.5 268 575 SO(290) 5707.5 268 635 SO(350) 4687.5 268 695 SO(1410) 3667.5 268 516 SO(231) 6676.5 268 578 SO(222) 5673.5 128 633 SO(351) 4683.5 128 697 SO(141) 3660.5 268 519 SO(234) 6665.5 268 578 SO(233)	509	SO[224]	6829.5	268	569	SO[284]	5809.5	268	629	SO[344]	4789.5	268	689	SO[404]	3769.5	268
512 SO[227] 6778.5 268 572 SO[287] 5758.5 268 632 SO[347] 4738.5 268 692 SO[407] 3718.5 286 513 SO[228] 6761.5 408 573 SO[228] 5741.5 408 633 SO[348] 4721.5 408 633 SO[409] 3701.5 408 514 SO[230] 6727.5 268 574 SO[299] 5724.5 128 634 SO[350] 4687.5 268 698 SO[409] 3684.5 128 516 SO[231] 6710.5 408 576 SO[291] 5690.5 408 636 SO[351] 4675.5 268 695 SO[411] 3665.5 408 696 SO[411] 3633.5 128 637 SO[232] 4653.5 128 697 SO[412] 3633.5 128 519 SO[234] 6650.5 268 638 SO[353] 4663.5 288 699 SO[413] 3616.5 <td>510</td> <td>SO[225]</td> <td>6812.5</td> <td>408</td> <td>570</td> <td>SO[285]</td> <td>5792.5</td> <td>408</td> <td>630</td> <td>SO[345]</td> <td>4772.5</td> <td>408</td> <td>690</td> <td>SO[405]</td> <td>3752.5</td> <td>408</td>	510	SO[225]	6812.5	408	570	SO[285]	5792.5	408	630	SO[345]	4772.5	408	690	SO[405]	3752.5	408
513 SO(228) 6761.5 408 573 SO(288) 5741.5 408 633 SO(348) 4721.5 408 693 SO(408) 3701.5 408 514 SO(229) 6744.5 128 574 SO(289) 5724.5 128 634 SO(349) 4704.5 128 694 SO(409) 3884.5 128 516 SO(231) 6710.5 408 576 SO(290) 5690.5 408 636 SO(351) 4670.5 408 669 SO(411) 3667.5 268 517 SO(231) 6676.5 268 578 SO(293) 5666.5 288 638 SO(353) 4636.5 128 667 SO(411) 3665.5 268 519 SO(233) 6676.5 268 578 SO(293) 5665.5 288 638 SO(353) 4636.5 288 699 SO(411) 3665.5 288 519 SO(223) 66642.5 128 580							- 4		500							
514 SO(229) 6744.5 128 674 SO(289) 5724.5 128 634 SO(349) 4704.5 128 694 SO(409) 3684.5 128 515 SO(230) 6727.5 268 575 SO(290) 5707.5 268 635 SO(350) 4687.5 268 695 SO(1410) 3667.5 268 516 SO(231) 6676.5 268 5676 SO(292) 5673.5 128 636 SO(351) 4670.5 408 6696 SO(412) 3650.5 408 518 SO(233) 6676.5 268 578 SO(293) 5665.5 268 638 SO(355) 4683.5 128 689 SO(1412) 3663.5 128 519 SO(233) 6669.5 408 579 SO(294) 5639.5 408 638 SO(355) 468.5 268 689 SO(1412) 3663.5 128 521 SO(226) 6625.5 268 581				i i			# AP									
515 SO[230] 6727.5 268 575 SO[290] 5707.5 268 636 SO[351] 4687.5 268 695 SO[411] 3667.5 268 516 SO[231] 6710.5 408 576 SO[281] 5690.5 408 636 SO[351] 4670.5 408 696 SO[411] 3650.5 408 517 SO[232] 6693.5 128 577 SO[292] 5673.5 128 637 SO[353] 4663.5 128 697 SO[412] 3633.5 128 519 SO[234] 6659.5 408 502.94 5639.5 408 639 SO[333] 4663.6 268 SO[413] 3616.5 268 520 SO[236] 6642.5 128 580 SO[296] 5622.5 128 640 SO[353] 4602.5 128 700 SO[414] 3592.5 128 521 SO[236] 6625.5 268 561 SO[237] 5588.5		• •		ĺ				•								
516 SO[231] 6710.5 408 576 SO[281] 5690.5 408 636 SO[351] 4670.5 408 696 SO[411] 3650.5 408 517 SO[232] 6693.5 128 577 SO[232] 5673.5 128 637 SO[352] 4653.5 128 697 SO[412] 3633.5 128 518 SO[233] 6676.5 268 578 SO[293] 5666.5 268 638 SO[353] 4636.5 268 698 SO[413] 3616.5 268 519 SO[235] 6642.5 128 580 SO[295] 5622.5 128 640 SO[354] 4619.5 408 699 SO[414] 3599.5 408 520 SO[237] 6608.5 268 581 SO[296] 5605.5 288 641 SO[356] 4685.5 268 701 SO[416] 3582.5 128 522 SO[237] 6608.5 268 581		• •		i i		4	h									
517 SO(232) 6693.5 128 577 SO(292) 5673.5 128 637 SO(352) 4653.5 128 697 SO(412) 3633.5 128 518 SO(233) 6676.5 268 578 SO(293) 5656.5 268 638 SO(353) 4636.5 268 698 SO(1412) 3633.5 128 519 SO(234) 6659.5 408 579 SO(294) 5639.5 408 639 SO(354) 4619.5 408 699 SO(412) 3599.5 408 520 SO(236) 6625.5 268 581 SO(295) 5622.5 128 640 SO(355) 408.5 700 SO(415) 3582.5 128 521 SO(237) 6608.5 408 582 SO(297) 5588.5 408 642 SO(355) 468.5 408 701 SO(1416) 3562.5 268 522 SO(239) 6574.5 268 564 SO(299)				i i		. 1	P'A	i i								
518 SO[233] 6676.5 268 578 SO[293] 5656.5 268 638 SO[353] 4636.5 268 698 SO[413] 3616.5 268 519 SO[234] 6659.5 408 579 SO[294] 5639.5 408 639 SO[354] 4619.5 408 699 SO[414] 3599.5 408 520 SO[236] 6662.5 268 580 SO[296] 5605.5 268 641 SO[366] 4602.5 128 700 SO[414] 3599.5 408 522 SO[237] 6608.5 408 582 SO[297] 5588.5 408 642 SO[357] 4568.5 408 702 SO[417] 3548.5 408 523 SO[238] 6691.5 128 583 SO[298] 5571.5 128 643 SO[358] 4551.5 128 704 SO[417] 3548.5 408 526 SO[240] 6557.5 408 585				i i		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	÷	i i								
519 SO[234] 6659.5 408 579 SO[294] 5639.5 408 639 SO[354] 4619.5 408 699 SO[414] 3599.5 408 520 SO[235] 6642.5 128 580 SO[295] 5622.5 128 640 SO[355] 4602.5 128 700 SO[415] 3592.5 128 521 SO[236] 6625.5 268 581 SO[296] 5605.5 268 641 SO[356] 4685.5 268 701 SO[416] 3565.5 268 522 SO[237] 6608.5 408 582 SO[298] 5571.5 128 642 SO[357] 4586.5 408 702 SO[411] 3598.5 408 523 SO[238] 6571.5 408 582 SO[299] 5554.5 268 644 SO[357] 4586.5 408 702 SO[411] 3594.5 268 526 SO[241] 6560.5 408 585				i i		47 49		i i					1			
521 SO[236] 6625.5 268 581 SO[296] 5605.5 268 641 SO[356] 4585.5 268 701 SO[416] 3565.5 288 522 SO[237] 6608.5 408 582 SO[297] 5588.5 408 642 SO[357] 4568.5 408 702 SO[417] 3548.5 408 523 SO[238] 6591.5 128 583 SO[298] 5571.5 128 643 SO[358] 4551.5 128 703 SO[418] 3531.5 128 524 SO[239] 6574.5 268 584 SO[299] 5554.5 268 644 SO[358] 4551.5 128 704 SO[419] 3514.5 268 526 SO[241] 6540.5 128 586 SO[301] 5520.5 128 646 SO[361] 4500.5 128 706 SO[421] 3480.5 128 527 SO[242] 6523.5 268 587				i i	AP	407,440		i i					1			
522 SO[237] 6608.5 408 582 SO[297] 5588.5 408 642 SO[357] 4568.5 408 702 SO[417] 3548.5 408 523 SO[238] 6591.5 128 583 SO[298] 5571.5 128 643 SO[358] 4551.5 128 703 SO[418] 3531.5 128 524 SO[239] 6574.5 268 584 SO[299] 5554.5 268 644 SO[359] 4534.5 268 704 SO[419] 3514.5 268 525 SO[240] 6557.5 408 585 SO[300] 5537.5 408 645 SO[360] 4517.5 408 705 SO[420] 3497.5 408 526 SO[241] 6540.5 128 586 SO[301] 5520.5 128 646 SO[361] 4500.5 128 706 SO[421] 3480.5 128 527 SO[243] 6506.5 408 588	520	SO[235]	6642.5	128	580	SO[295]	5622.5	128	640	SO[355]	4602.5	128	700	SO[415]	3582.5	128
523 SO[238] 6591.5 128 583 SO[298] 5571.5 128 643 SO[358] 4551.5 128 703 SO[418] 3531.5 128 524 SO[239] 6574.5 268 584 SO[299] 5554.5 268 644 SO[359] 4534.5 268 704 SO[419] 3514.5 268 525 SO[240] 6557.5 408 585 SO[300] 5537.5 408 644 SO[360] 4517.5 408 705 SO[420] 3497.5 408 526 SO[241] 6540.5 128 586 SO[301] 5520.5 128 646 SO[361] 4500.5 128 706 SO[421] 3480.5 128 527 SO[242] 6523.5 268 587 SO[302] 5503.5 268 647 SO[362] 4483.5 268 707 SO[422] 3463.5 268 528 SO[243] 6506.5 408 588	521	SO[236]	6625.5	268	581	SO[296]	5605.5	268	641	SO[356]	4585.5	268	701	SO[416]	3565.5	268
524 SO[239] 6674.5 268 584 SO[299] 5554.5 268 644 SO[359] 4534.5 268 704 SO[419] 3514.5 288 525 SO[240] 6557.5 408 585 SO[300] 5537.5 408 645 SO[360] 4517.5 408 705 SO[420] 3497.5 408 526 SO[241] 6540.5 128 586 SO[301] 5520.5 128 646 SO[361] 4500.5 128 706 SO[421] 3480.5 128 527 SO[242] 6523.5 268 587 SO[302] 5503.5 268 647 SO[362] 4483.5 268 707 SO[422] 3463.5 268 528 SO[243] 6506.5 408 588 SO[303] 5486.5 408 648 SO[363] 4466.5 408 708 SO[423] 3446.5 408 529 SO[241] 5469.5 128 649	522	SO[237]	6608.5	408	582	SO[297]	5588.5	408	642	SO[357]	4568.5	408	702	SO[417]	3548.5	408
525 SO[240] 6557.5 408 585 SO[300] 5537.5 408 645 SO[360] 4517.5 408 705 SO[420] 3497.5 408 526 SO[241] 6540.5 128 586 SO[301] 5520.5 128 646 SO[361] 4500.5 128 706 SO[421] 3497.5 408 527 SO[242] 6523.5 268 587 SO[302] 5503.5 268 647 SO[362] 4483.5 268 707 SO[422] 3463.5 268 528 SO[244] 6489.5 128 589 SO[304] 5469.5 128 648 SO[363] 4466.5 408 708 SO[423] 3463.5 268 529 SO[245] 6472.5 268 590 SO[305] 5452.5 268 650 SO[366] 4449.5 128 709 SO[424] 3429.5 128 531 SO[246] 6455.5 408 591	523	SO[238]	6591.5	128	583	SO[298]	5571.5	128	643	SO[358]	4551.5	128	703	SO[418]	3531.5	128
526 SO[241] 6540.5 128 586 SO[301] 5520.5 128 646 SO[361] 4500.5 128 706 SO[421] 3480.5 128 527 SO[242] 6523.5 268 587 SO[302] 5503.5 268 647 SO[362] 4483.5 268 707 SO[422] 3463.5 268 528 SO[243] 6506.5 408 588 SO[303] 5486.5 408 648 SO[363] 4466.5 408 708 SO[423] 3446.5 408 529 SO[244] 6489.5 128 589 SO[304] 5469.5 128 649 SO[364] 4449.5 128 709 SO[424] 3429.5 128 530 SO[245] 6472.5 268 590 SO[305] 5452.5 268 650 SO[365] 4432.5 268 710 SO[426] 3412.5 268 531 SO[246] 6438.5 128 592	524		1					268	644				1			268
527 SO[242] 6523.5 268 587 SO[302] 5503.5 268 647 SO[362] 4483.5 268 707 SO[422] 3463.5 268 528 SO[243] 6506.5 408 588 SO[303] 5486.5 408 648 SO[363] 4466.5 408 708 SO[423] 3446.5 408 529 SO[244] 6489.5 128 589 SO[304] 5469.5 128 649 SO[364] 4449.5 128 709 SO[424] 3429.5 128 530 SO[245] 6472.5 268 590 SO[305] 5452.5 268 650 SO[365] 4432.5 268 710 SO[425] 3412.5 268 531 SO[246] 6455.5 408 591 SO[306] 5435.5 408 651 SO[366] 4415.5 408 711 SO[426] 3395.5 408 532 SO[247] 6438.5 128 592	525	SO[240]	6557.5	408	585	SO[300]	5537.5	408	645	SO[360]	4517.5	408	705	SO[420]	3497.5	408
528 SO[243] 6506.5 408 588 SO[303] 5486.5 408 648 SO[363] 4466.5 408 708 SO[423] 3446.5 408 529 SO[244] 6489.5 128 589 SO[304] 5469.5 128 649 SO[364] 4449.5 128 709 SO[424] 3429.5 128 530 SO[245] 6472.5 268 590 SO[305] 5452.5 268 650 SO[365] 4432.5 268 710 SO[425] 3412.5 268 531 SO[246] 6455.5 408 591 SO[306] 5435.5 408 651 SO[366] 4415.5 408 711 SO[426] 3395.5 408 532 SO[247] 6438.5 128 592 SO[307] 5418.5 128 652 SO[367] 4398.5 128 712 SO[427] 3378.5 128 533 SO[249] 6404.5 408 594		42 700														
529 SO[244] 6489.5 128 589 SO[304] 5469.5 128 649 SO[364] 4449.5 128 709 SO[424] 3429.5 128 530 SO[245] 6472.5 268 590 SO[305] 5452.5 268 650 SO[365] 4432.5 268 710 SO[426] 3412.5 268 531 SO[246] 6455.5 408 591 SO[306] 5435.5 408 651 SO[366] 4415.5 408 711 SO[426] 3395.5 408 532 SO[247] 6438.5 128 592 SO[307] 5418.5 128 652 SO[367] 4398.5 128 712 SO[427] 3378.5 128 533 SO[248] 6421.5 268 593 SO[308] 5401.5 268 653 SO[368] 4381.5 268 713 SO[428] 3361.5 268 534 SO[249] 6404.5 408 594				i i				i i					1			
530 SO[245] 6472.5 268 590 SO[305] 5452.5 268 650 SO[365] 4432.5 268 710 SO[425] 3412.5 268 531 SO[246] 6455.5 408 591 SO[306] 5435.5 408 651 SO[366] 4432.5 268 710 SO[426] 3395.5 408 532 SO[247] 6438.5 128 592 SO[307] 5418.5 128 652 SO[367] 4398.5 128 712 SO[427] 3378.5 128 533 SO[248] 6421.5 268 593 SO[308] 5401.5 268 653 SO[368] 4381.5 268 713 SO[428] 3361.5 268 534 SO[249] 6404.5 408 594 SO[309] 5384.5 408 654 SO[369] 4364.5 408 714 SO[429] 3344.5 408 535 SO[250] 6387.5 128 595		49' 49'														
531 SO[246] 6455.5 408 591 SO[306] 5435.5 408 651 SO[366] 4415.5 408 711 SO[426] 3395.5 408 532 SO[247] 6438.5 128 592 SO[307] 5418.5 128 652 SO[367] 4398.5 128 712 SO[427] 3378.5 128 533 SO[248] 6421.5 268 593 SO[308] 5401.5 268 653 SO[368] 4381.5 268 713 SO[428] 3361.5 268 534 SO[249] 6404.5 408 594 SO[309] 5384.5 408 654 SO[368] 4381.5 268 713 SO[428] 3361.5 268 535 SO[250] 6387.5 128 595 SO[310] 5367.5 128 655 SO[370] 4347.5 128 715 SO[430] 3327.5 128 536 SO[251] 6370.5 268 596	V 40	A														
532 SO[247] 6438.5 128 592 SO[307] 5418.5 128 652 SO[367] 4398.5 128 712 SO[427] 3378.5 128 533 SO[248] 6421.5 268 593 SO[308] 5401.5 268 653 SO[368] 4381.5 268 713 SO[428] 3361.5 268 534 SO[249] 6404.5 408 594 SO[309] 5384.5 408 654 SO[369] 4364.5 408 714 SO[429] 3344.5 408 535 SO[250] 6387.5 128 595 SO[310] 5367.5 128 655 SO[370] 4347.5 128 715 SO[430] 3327.5 128 536 SO[251] 6370.5 268 596 SO[311] 5350.5 268 656 SO[371] 4330.5 268 716 SO[431] 3310.5 268 537 SO[252] 6353.5 408 597	4	W														
533 SO[248] 6421.5 268 593 SO[308] 5401.5 268 653 SO[368] 4381.5 268 713 SO[428] 3361.5 268 534 SO[249] 6404.5 408 594 SO[309] 5384.5 408 654 SO[369] 4364.5 408 714 SO[429] 3344.5 408 535 SO[250] 6387.5 128 595 SO[310] 5367.5 128 655 SO[370] 4347.5 128 715 SO[430] 3327.5 128 536 SO[251] 6370.5 268 596 SO[311] 5350.5 268 656 SO[371] 4330.5 268 716 SO[431] 3310.5 268 537 SO[252] 6353.5 408 597 SO[312] 5333.5 408 657 SO[372] 4313.5 408 717 SO[432] 3293.5 408 538 SO[253] 6336.5 128 598																
534 SO[249] 6404.5 408 594 SO[309] 5384.5 408 654 SO[369] 4364.5 408 714 SO[429] 3344.5 408 535 SO[250] 6387.5 128 595 SO[310] 5367.5 128 655 SO[370] 4347.5 128 715 SO[430] 3327.5 128 536 SO[251] 6370.5 268 596 SO[311] 5350.5 268 656 SO[371] 4330.5 268 716 SO[431] 3310.5 268 537 SO[252] 6353.5 408 597 SO[312] 5333.5 408 657 SO[372] 4313.5 408 717 SO[432] 3293.5 408 538 SO[253] 6336.5 128 598 SO[313] 5316.5 128 658 SO[373] 4296.5 128 718 SO[433] 3276.5 128 539 SO[254] 6319.5 268 599																
535 SO[250] 6387.5 128 595 SO[310] 5367.5 128 655 SO[370] 4347.5 128 715 SO[430] 3327.5 128 536 SO[251] 6370.5 268 596 SO[311] 5350.5 268 656 SO[371] 4330.5 268 716 SO[431] 3310.5 268 537 SO[252] 6353.5 408 597 SO[312] 5333.5 408 657 SO[372] 4313.5 408 717 SO[432] 3293.5 408 538 SO[253] 6336.5 128 598 SO[313] 5316.5 128 658 SO[373] 4296.5 128 718 SO[433] 3276.5 128 539 SO[254] 6319.5 268 599 SO[314] 5299.5 268 659 SO[374] 4279.5 268 719 SO[434] 3259.5 268																
536 SO[251] 6370.5 268 596 SO[311] 5350.5 268 656 SO[371] 4330.5 268 716 SO[431] 3310.5 268 537 SO[252] 6353.5 408 597 SO[312] 5333.5 408 657 SO[372] 4313.5 408 717 SO[432] 3293.5 408 538 SO[253] 6336.5 128 598 SO[313] 5316.5 128 658 SO[373] 4296.5 128 718 SO[433] 3276.5 128 539 SO[254] 6319.5 268 599 SO[314] 5299.5 268 659 SO[374] 4279.5 268 716 SO[431] 3293.5 408																
537 SO[252] 6353.5 408 597 SO[312] 5333.5 408 657 SO[372] 4313.5 408 717 SO[432] 3293.5 408 538 SO[253] 6336.5 128 598 SO[313] 5316.5 128 658 SO[373] 4296.5 128 718 SO[433] 3276.5 128 539 SO[254] 6319.5 268 599 SO[314] 5299.5 268 659 SO[374] 4279.5 268 719 SO[434] 3259.5 268																
539 SO[254] 6319.5 268 599 SO[314] 5299.5 268 659 SO[374] 4279.5 268 719 SO[434] 3259.5 268																
	538	SO[253]	6336.5	128	598	SO[313]	5316.5	128	658	SO[373]	4296.5	128	718	SO[433]	3276.5	128
540 SO[255] 6302.5 408 600 SO[315] 5282.5 408 660 SO[375] 4262.5 408 720 SO[435] 3242.5 408	539	SO[254]	6319.5	268	599	SO[314]	5299.5	268	659	SO[374]	4279.5	268	719	SO[434]	3259.5	268
	540	SO[255]	6302.5	408	600	SO[315]	5282.5	408	660	SO[375]	4262.5	408	720	SO[435]	3242.5	408

												1			
No.	Pad name	Χ	Υ	No.	Pad name	Х	Υ	No.	Pad name	Х	Υ	No.	Pad name	Х	Υ
721	SO[436]	3225.5	128	781	SO[496]	2205.5	128	841	SO[556]	1185.5	128	901	SO[604]	-488.5	408
722	SO[437]	3208.5	268	782	SO[497]	2188.5	268	842	SO[557]	1168.5	268	902	SO[605]	-505.5	268
723	SO[438]	3191.5	408	783	SO[498]	2171.5	408	843	SO[558]	1151.5	408	903	SO[606]	-522.5	128
724	SO[439]	3174.5	128	784	SO[499]	2154.5	128	844	SO[559]	1134.5	128	904	SO[607]	-539.5	408
725	SO[440]	3157.5	268	785	SO[500]	2137.5	268	845	SO[560]	1117.5	268	905	SO[608]	-556.5	268
726	SO[441]	3140.5	408	786	SO[501]	2120.5	408	846	SO[561]	1100.5	408	906	SO[609]	-573.5	128
727	SO[442]	3123.5	128	787	SO[502]	2103.5	128	847	SO[562]	1083.5	128	907	SO[610]	-590.5	408
728	SO[443] SO[444]	3106.5 3089.5	268 408	788 789	SO[503] SO[504]	2086.5 2069.5	268 408	848	SO[563] SO[564]	1066.5 1049.5	268 408	908	SO[611] SO[612]	-607.5 -624.5	268
729	SO[444] SO[445]	3072.5	128	790	SO[504]	2052.5	128	849	SO[565]	1049.5	128	910	SO[612]	-641.5	128 408
731	SO[446]	3055.5	268	791	SO[506]	2035.5	268	851	SO[566]	1015.5	268	911	SO[614]	-658.5	268
732	SO[447]	3038.5	408	792	SO[507]	2018.5	408	852	SO[567]	998.5	408	912	SO[615]	-675.5	128
733	SO[448]	3021.5	128	793	SO[508]	2001.5	128	853	SO[568]	981.5	128	913	SO[616]	-692.5	408
734	SO[449]	3004.5	268	794	SO[509]	1984.5	268	854	SO[569]	964.5	268	914	SO[617]	-709.5	268
735	SO[450]	2987.5	408	795	SO[510]	1967.5	408	855	SO[570]	947.5	408	915	SO[618]	-726.5	128
736	SO[451]	2970.5	128	796	SO[511]	1950.5	128	856	SO[571]	930.5	128	916	SO[619]	-743.5	408
737	SO[452]	2953.5	268	797	SO[512]	1933.5	268	857	SO[572]	913.5	268	917	SO[620]	-760.5	268
738	SO[453]	2936.5	408	798	SO[513]	1916.5	408	858	SO[573]	896.5	408	918	SO[621]	-777.5	128
739	SO[454]	2919.5	128	799	SO[514]	1899.5	128	859	SO[574]	879.5	128	919	SO[622]	-794.5	408
740	SO[455]	2902.5	268	800	SO[515]	1882.5	268	860	SO[575]	862.5	268	920	SO[623]	-811.5	268
741	SO[456]	2885.5	408	801	SO[516]	1865.5	408	861	SO[576]	845.5	408	921	SO[624]	-828.5	128
742	SO[457]	2868.5	128	802	SO[517]	1848.5	128	862	SO[577]	828.5	128	922	SO[625]	-845.5	408
743	SO[458]	2851.5	268	803	SO[518]	1831.5	268	863	SO[578]	811.5	268	923	SO[626]	-862.5	268
744	SO[459]	2834.5	408	804	SO[519]	1814.5	408	864	SO[579]	794.5	408	924	SO[627]	-879.5	128
745	SO[460]	2817.5	128	805	SO[520]	1797.5	128	865	SO[580]	777.5	128	925	SO[628]	-896.5	408
746	SO[461]	2800.5	268	806	SO[521]	1780.5	268	866	SO[581]	760.5	268	926	SO[629]	-913.5	268
747	SO[462]	2783.5	408	807	SO[522]	1763.5	408	867	SO[582]	743.5	408	927	SO[630]	-930.5	128
748	SO[463]	2766.5	128	808	SO[523]	1746.5	128	868	SO[583]	726.5	128	928	SO[631]	-947.5	408
749	SO[464]	2749.5	268	809	SO[524]	1729.5	268	869	SO[584]	709.5	268	929	SO[632]	-964.5	268
750	SO[465]	2732.5	408	810	SO[525]	1712.5	408	870	SO[585]	692.5	408	930	SO[633]	-981.5	128
751	SO[466]	2715.5	128	811	SO[526]	1695.5	128	871	SO[586]	675.5	128	931	SO[634]	-998.5	408
752	SO[467]	2698.5	268	812	SO[527]	1678.5	268	872	SO[587]	658.5	268	932	SO[635]	-1015.5	268
753	SO[468]	2681.5	408	813	SO[528]	1661.5	408	873	SO[588]	641.5	408	933	SO[636]	-1032.5	128
754	SO[469]	2664.5	128	814	SO[529]	1644.5	128	874	SO[589]	624.5	128	934	SO[637]	-1049.5	408
755 756	SO[470] SO[471]	2647.5 2630.5	268 408	815	SO[530] SO[531]	1627.5 1610.5	268 408	875 876	SO[590] SO[591]	607.5 590.5	268 408	935 936	SO[638] SO[639]	-1066.5 -1083.5	268 128
757	SO[471] SO[472]	2613.5	128	817	SO[531]	1593.5	128	877	SO[591]	573.5	128	937	SO[640]	-1100.5	408
758	SO[472]	2596.5	268	818	SO[533]	1576.5	268	878	SO[593]	556.5	268	938	SO[641]	-1117.5	268
759	SO[474]	2579.5	408	819	SO[534]	1559.5	408	879	SO[594]	539.5	408	939	SO[642]	-1134.5	128
760	SO[475]	2562.5	128	820	SO[535]	1542.5	128	880	SO[595]	522.5	128	940	SO[643]	-1151.5	408
761	SO[476]	2545.5	268	821	SO[536]	1525.5	268	881	SO[596]	505.5	268	941	SO[644]	-1168.5	268
762	SO[477]	2528.5	408	822	SO[537]	1508.5	408	882	SO[597]	488.5	408	942	SO[645]	-1185.5	128
763	SO[478]	2511.5	128	823	SO[538]	1491.5	128	883	SO[598]	471.5	128	943	SO[646]	-1202.5	408
764	SO[479]	2494.5	268	824	SO[539]	1474.5	268	884	SO[599]	454.5	268	944	SO[647]	-1219.5	268
765	SO[480]	2477.5	408	825	SO[540]	1457.5	408	885	SO[600]	437.5	408	945	SO[648]	-1236.5	128
766	SO[481]	2460.5	128	826	SO[541]	1440.5	128	886	SHIELDING	403.5	408	946	SO[649]	-1253.5	408
767	SO[482]	2443.5	268	827	SO[542]	1423.5	268	887	SHIELDING	369.5	408	947	SO[650]	-1270.5	268
768	SO[483]	2426.5	408	828	SO[543]	1406.5	408	888	SHIELDING	335.5	408	948	SO[651]	-1287.5	128
769	SO[484]	2409.5	128	829	SO[544]	1389.5	128	889	SHIELDING	301.5	408	949	SO[652]	-1304.5	408
770	SO[485]	2392.5	268	830	SO[545]	1372.5	268	890	SHIELDING	267.5	408	950	SO[653]	-1321.5	268
771	SO[486]	2375.5	408	831	SO[546]	1355.5	408	891	SHIELDING	233.5	408	951	SO[654]	-1338.5	128
772	SO[487]	2358.5	128	832	SO[547]	1338.5	128	892	SHIELDING	-233.5	408	952	SO[655]	-1355.5	408
773	SO[488]	2341.5	268	833	SO[548]	1321.5	268	893	SHIELDING	-267.5	408	953	SO[656]	-1372.5	268
774	SO[489]	2324.5	408	834	SO[549]	1304.5	408	894	SHIELDING	-301.5	408	954	SO[657]	-1389.5	128
775	SO[490]	2307.5	128	835	SO[550]	1287.5	128	895	SHIELDING	-335.5	408	955	SO[658]	-1406.5	408
776	SO[491]	2290.5	268	836	SO[551]	1270.5	268	896	SHIELDING	-369.5	408	956	SO[659]	-1423.5	268
777	SO[492]	2273.5	408	837	SO[552]	1253.5	408	897	SHIELDING	-403.5	408	957	SO[660]	-1440.5	128
778	SO[493]	2256.5	128	838	SO[553]	1236.5	128	898	SO[601]	-437.5	408	958	SO[661]	-1457.5	408
779 780	SO[494] SO[495]	2239.5 2222.5	268 408	839	SO[554] SO[555]	1219.5 1202.5	268 408	900	SO[602] SO[603]	-454.5 -471.5	268 128	959 960	SO[662] SO[663]	-1474.5 -1491.5	268 128
700	00[490]	۷.۷۵۵۵	400	040	UO[JJJJ]	1202.3	400	500	აი[თა]	- 1 11.0	120	300	CO[UU3]	-1451.0	120

No.	Pad name	Х	Υ	No.	Pad name	Х	Υ	No.	Pad name	Х	Υ	No.	Pad name	Х	Υ
961	SO[664]	-1508.5	408	1021	SO[724]	-2528.5	408	1081	SO[784]	-3548.5	408	1141	SO[844]	-4568.5	408
962	SO[665]	-1525.5	268	1022	SO[725]	-2545.5	268	1082	SO[785]	-3565.5	268	1142	SO[845]	-4585.5	268
963	SO[666]	-1542.5	128	1023	SO[726]	-2562.5	128	1083	SO[786]	-3582.5	128	1143	SO[846]	-4602.5	128
964	SO[667]	-1559.5	408	1024	SO[727]	-2579.5	408	1084	SO[787]	-3599.5	408	1144	SO[847]	-4619.5	408
965	SO[668]	-1576.5	268	1025	SO[728]	-2596.5	268	1085	SO[788]	-3616.5	268	1145	SO[848]	-4636.5	268
966	SO[669]	-1593.5	128	1026	SO[729]	-2613.5	128	1086	SO[789]	-3633.5	128	1146	SO[849]	-4653.5	128
967	SO[670]	-1610.5	408	1027	SO[730]	-2630.5	408	1087	SO[790]	-3650.5	408	1147	SO[850]	-4670.5	408
968	SO[671]	-1627.5	268	1028	SO[731]	-2647.5	268	1088	SO[791]	-3667.5 -3684.5	268	1148	SO[851]	-4687.5	268
969 970	SO[672] SO[673]	-1644.5 -1661.5	128 408	1029	SO[732] SO[733]	-2664.5 -2681.5	128 408	1089	SO[792] SO[793]	-3701.5	128 408	1149	SO[852] SO[853]	-4704.5 -4721.5	128 408
971	SO[674]	-1678.5	268	1030	SO[733]	-2698.5	268	1090	SO[794]	-3718.5	268	1151	SO[854]	-4738.5	268
972	SO[674]	-1695.5	128	1031	SO[734]	-2098.5	128	1091	SO[794]	-3735.5	128	1152	SO[855]	-4755.5	128
973	SO[676]	-1712.5	408	1033	SO[736]	-2732.5	408	1093	SO[796]	-3752.5	408	1153	SO[856]	-4772.5	408
974	SO[677]	-1729.5	268	1034	SO[737]	-2749.5	268	1094	SO[797]	-3769.5	268	1154	SO[857]	-4789.5	268
975	SO[678]	-1746.5	128	1035	SO[738]	-2766.5	128	1095	SO[798]	-3786.5	128	1155	SO[858]	-4806.5	128
976	SO[679]	-1763.5	408	1036	SO[739]	-2783.5	408	1096	SO[799]	-3803.5	408	1156	SO[859]	-4823.5	408
977	SO[680]	-1780.5	268	1037	SO[740]	-2800.5	268	1097	SO[800]	-3820.5	268	1157	SO[860]	-4840.5	268
978	SO[681]	-1797.5	128	1038	SO[741]	-2817.5	128	1098	SO[801]	-3837.5	128	1158	SO[861]	-4857.5	128
979	SO[682]	-1814.5	408	1039	SO[742]	-2834.5	408	1099	SO[802]	-3854.5	408	1159	SO[862]	-4874.5	408
980	SO[683]	-1831.5	268	1040	SO[743]	-2851.5	268	1100	SO[803]	-3871.5	268	1160	SO[863]	-4891.5	268
981	SO[684]	-1848.5	128	1041	SO[744]	-2868.5	128	1101	SO[804]	-3888.5	128	1161	SO[864]	-4908.5	128
982	SO[685]	-1865.5	408	1042	SO[745]	-2885.5	408	1102	SO[805]	-3905.5	408	1162	SO[865]	-4925.5	408
983	SO[686]	-1882.5	268	1043	SO[746]	-2902.5	268	1103	SO[806]	-3922.5	268	1163	SO[866]	-4942.5	268
984	SO[687]	-1899.5	128	1044	SO[747]	-2919.5	128	1104	SO[807]	-3939.5	128	1164	SO[867]	-4959.5	128
985	SO[688]	-1916.5	408	1045	SO[748]	-2936.5	408	1105	SO[808]	-3956.5	408	1165	SO[868]	-4976.5	408
986	SO[689]	-1933.5	268	1046	SO[749]	-2953.5	268	1106	SO[809]	-3973.5	268	1166	SO[869]	-4993.5	268
987	SO[690]	-1950.5	128	1047	SO[750]	-2970.5	128	1107	SO[810]	-3990.5	128	1167	SO[870]	-5010.5	128
988	SO[691]	-1967.5	408	1048	SO[751]	-2987.5	408	1108	SO[811]	-4007.5	408	1168	SO[871]	-5027.5	408
989	SO[692]	-1984.5	268	1049	SO[752]	-3004.5	268	1109	SO[812]	-4024.5	268	1169	SO[872]	-5044.5	268
990	SO[693]	-2001.5	128	1050	SO[753]	-3021.5	128	1110	SO[813]	-4041.5	128	1170	SO[873]	-5061.5	128
991	SO[694]	-2018.5	408	1051	SO[754]	-3038.5	408	1111	SO[814]	-4058.5	408	1171	SO[874]	-5078.5	408
992	SO[695]	-2035.5	268	1052	SO[755]	-3055.5	268	1112	SO[815]	-4075.5	268	1172	SO[875]	-5095.5	268
993	SO[696]	-2052.5	128	1053	SO[756]	-3072.5	128	1113	SO[816]	-4092.5	128	1173	SO[876]	-5112.5	128
994	SO[697]	-2069.5	408	1054	SO[757]	-3089.5	408	1114	SO[817]	-4109.5	408	1174	SO[877]	-5129.5	408
995	SO[698]	-2086.5	268	1055	SO[758]	-3106.5	268	1115	SO[818]	-4126.5	268	1175	SO[878]	-5146.5	268
996	SO[699]	-2103.5	128	1056	SO[759]	-3123.5	128	1116	SO[819]	-4143.5	128	1176	SO[879]	-5163.5	128
997	SO[700]	-2120.5	408	1057	SO[760]	-3140.5	408	1117	SO[820]	-4160.5	408	1177	SO[880]	-5180.5	408
998	SO[701]	-2137.5	268	1058	SO[761]	-3157.5	268	1118	SO[821]	-4177.5	268	1178	SO[881]	-5197.5	268
999	SO[702]	-2154.5	128	1059	SO[762]	-3174.5	128	1119	SO[822]	-4194.5	128	1179	SO[882]	-5214.5	128
1000	SO[703]	-2171.5	408	1060	SO[763]	-3191.5	408	1120	SO[823]	-4211.5	408	1180	SO[883]	-5231.5	408
1001	SO[704]	-2188.5	268	1061	SO[764]	-3208.5	128	1121	SO[824]	-4228.5 -4245.5	268	1181	SO[884]	-5248.5 -5265.5	268
1002	SO[705] SO[706]	-2205.5 -2222.5	128 408	1062 1063	SO[765] SO[766]	-3225.5 -3242.5	128 408	1122	SO[825] SO[826]	-4245.5 -4262.5	128 408	1182	SO[885] SO[886]	-5265.5 -5282.5	128 408
1003	SO[706] SO[707]	-2222.5	268	1063	SO[766] SO[767]	-3242.5 -3259.5	268	1123	SO[826] SO[827]	-4262.5 -4279.5	268	1183	SO[886] SO[887]	-5282.5 -5299.5	268
1004	SO[707]	-2256.5	128	1064	SO[767]	-3276.5	128	1125	SO[828]	-4279.5 -4296.5	128	1185	SO[888]	-5299.5	128
1005	SO[708]	-2273.5	408	1066	SO[768]	-3293.5	408	1126	SO[829]	-4313.5	408	1186	SO[889]	-5333.5	408
1007	SO[710]	-2290.5	268	1067	SO[770]	-3310.5	268	1127	SO[830]	-4330.5	268	1187	SO[890]	-5350.5	268
1008	SO[711]	-2307.5	128	1068	SO[771]	-3327.5	128	1128	SO[831]	-4347.5	128	1188	SO[891]	-5367.5	128
1009	SO[712]	-2324.5	408	1069	SO[772]	-3344.5	408	1129	SO[832]	-4364.5	408	1189	SO[892]	-5384.5	408
1010	SO[713]	-2341.5	268	1070	SO[773]	-3361.5	268	1130	SO[833]	-4381.5	268	1190	SO[893]	-5401.5	268
1011	SO[714]	-2358.5	128	1071	SO[774]	-3378.5	128	1131	SO[834]	-4398.5	128	1191	SO[894]	-5418.5	128
1012	SO[715]	-2375.5	408	1072	SO[775]	-3395.5	408	1132	SO[835]	-4415.5	408	1192	SO[895]	-5435.5	408
1013	SO[716]	-2392.5	268	1073	SO[776]	-3412.5	268	1133	SO[836]	-4432.5	268	1193	SO[896]	-5452.5	268
1014	SO[717]	-2409.5	128	1074	SO[777]	-3429.5	128	1134	SO[837]	-4449.5	128	1194	SO[897]	-5469.5	128
1015	SO[718]	-2426.5	408	1075	SO[778]	-3446.5	408	1135	SO[838]	-4466.5	408	1195	SO[898]	-5486.5	408
1016	SO[719]	-2443.5	268	1076	SO[779]	-3463.5	268	1136	SO[839]	-4483.5	268	1196	SO[899]	-5503.5	268
1017	SO[720]	-2460.5	128	1077	SO[780]	-3480.5	128	1137	SO[840]	-4500.5	128	1197	SO[900]	-5520.5	128
1018	SO[721]	-2477.5	408	1078	SO[781]	-3497.5	408	1138	SO[841]	-4517.5	408	1198	SO[901]	-5537.5	408
1019	SO[722]	-2494.5	268	1079	SO[782]	-3514.5	268	1139	SO[842]	-4534.5	268	1199	SO[902]	-5554.5	268
1020	SO[723]	-2511.5	128	1080	SO[783]	-3531.5	128	1140	SO[843]	-4551.5	128	1200	SO[903]	-5571.5	128

No.	Pad name	Х	Υ	No.	Pad name	X	Υ	No.	Pad name	X	Υ	No.	Pad name	X	Υ
1201	SO[904]	-5588.5	408	1261	SO[964]	-6608.5	408	1321	SO[1024]	-7628.5	408	1381	SO[1084]	-8648.5	408
1202	SO[905]	-5605.5	268	1262	SO[965]	-6625.5	268	1322	SO[1025]	-7645.5	268	1382	SO[1085]	-8665.5	268
1203	SO[906] SO[907]	-5622.5 -5639.5	128 408	1263 1264	SO[966] SO[967]	-6642.5 -6659.5	128 408	1323	SO[1026] SO[1027]	-7662.5 -7679.5	128 408	1383	SO[1086] SO[1087]	-8682.5 -8699.5	128 408
1205	SO[908]	-5656.5	268	1265	SO[968]	-6676.5	268	1325	SO[1028]	-7696.5	268	1385	SO[1088]	-8716.5	268
1206	SO[909]	-5673.5	128	1266	SO[969]	-6693.5	128	1326	SO[1029]	-7713.5	128	1386	SO[1089]	-8733.5	128
1207	SO[910]	-5690.5	408	1267	SO[970]	-6710.5	408	1327	SO[1030]	-7730.5	408	1387	SO[1090]	-8750.5	408
1208	SO[911]	-5707.5	268	1268	SO[971]	-6727.5	268	1328	SO[1031]	-7747.5	268	1388	SO[1091]	-8767.5	268
1209	SO[912]	-5724.5	128	1269	SO[972]	-6744.5	128	1329	SO[1032]	-7764.5	128	1389	SO[1092]	-8784.5	128
1210	SO[913]	-5741.5	408	1270	SO[973]	-6761.5	408	1330	SO[1033]	-7781.5	408	1390	SO[1093]	-8801.5	408
1211	SO[914]	-5758.5	268	1271	SO[974]	-6778.5	268	1331	SO[1034]	-7798.5	268	1391	SO[1094]	-8818.5	268
1212	SO[915]	-5775.5	128	1272	SO[975]	-6795.5	128	1332	SO[1035]	-7815.5	128	1392	SO[1095]	-8835.5	128
1213	SO[916]	-5792.5	408	1273	SO[976]	-6812.5	408	1333	SO[1036]	-7832.5	408	1393	SO[1096]	-8852.5	408
1214	SO[917]	-5809.5	268	1274	SO[977]	-6829.5	268	1334	SO[1037]	-7849.5	268	1394	SO[1097]	-8869.5	268
1215	SO[918]	-5826.5	128	1275	SO[978]	-6846.5	128	1335	SO[1038]	-7866.5	128	1395	SO[1098]	-8886.5	128
1216	SO[919]	-5843.5	408	1276	SO[979]	-6863.5	408	1336	SO[1039]	-7883.5 -7900.5	408	1396	SO[1099]	-8903.5	408
1217	SO[920] SO[921]	-5860.5 -5877.5	268 128	1277 1278	SO[980] SO[981]	-6880.5 -6897.5	268 128	1337	SO[1040] SO[1041]	-7900.5	268 128	1397	SO[1100] SO[1101]	-8920.5 -8937.5	268 128
1219	SO[922]	-5894.5	408	1279	SO[982]	-6914.5	408	1339	SO[1041]	-7934.5	408	1399	SO[1101]	-8954.5	408
1220	SO[923]	-5911.5	268	1280	SO[983]	-6931.5	268	1340	SO[1043]	-7951.5	268	1400	SO[1103]	-8971.5	268
1221	SO[924]	-5928.5	128	1281	SO[984]	-6948.5	128	1341	SO[1044]	-7968.5	128	1401	SO[1104]	-8988.5	128
1222	SO[925]	-5945.5	408	1282	SO[985]	-6965.5	408	1342	SO[1045]	-7985.5	408	1402	SO[1105]	-9005.5	408
1223	SO[926]	-5962.5	268	1283	SO[986]	-6982.5	268	1343	SO[1046]	-8002.5	268	1403	SO[1106]	-9022.5	268
1224	SO[927]	-5979.5	128	1284	SO[987]	-6999.5	128	1344	SO[1047]	-8019.5	128	1404	SO[1107]	-9039.5	128
1225	SO[928]	-5996.5	408	1285	SO[988]	-7016.5	408	1345	SO[1048]	-8036.5	408	1405	SO[1108]	-9056.5	408
1226	SO[929]	-6013.5	268	1286	SO[989]	-7033.5	268	1346	SO[1049]	-8053.5	268	1406	SO[1109]	-9073.5	268
1227	SO[930]	-6030.5	128	1287	SO[990]	-7050.5	128	1347	SO[1050]	-8070.5	128	1407	SO[1110]	-9090.5	128
1228	SO[931]	-6047.5	408	1288	SO[991]	-7067.5	408	1348	SO[1051]	-8087.5	408	1408	SO[1111]	-9107.5	408
1229	SO[932]	-6064.5	268	1289	SO[992]	-7084.5	268	1349	SO[1052]	-8104.5	268	1409	SO[1112]	-9124.5	268
1230	SO[933]	-6081.5	128 408	1290	SO[993]	-7101.5	128	1350	SO[1053]	-8121.5	128	1410	SO[1113]	-9141.5	128
1231 1232	SO[934] SO[935]	-6098.5 -6115.5	268	1291 1292	SO[994] SO[995]	-7118.5 -7135.5	408 268	1351 1352	SO[1054] SO[1055]	-8138.5 -8155.5	408 268	1411	SO[1114] SO[1115]	-9158.5 -9175.5	408 268
1233	SO[936]	-6132.5	128	1293	SO[996]	-7152.5	128	1353	SO[1056]	-8172.5	128	1413	SO[1116]	-9192.5	128
1234	SO[937]	-6149.5	408	1294	SO[997]	-7169.5	408	1354	SO[1057]	-8189.5	408	1414	SO[1117]	-9209.5	408
1235	SO[938]	-6166.5	268	1295	SO[998]	-7186.5	268	1355	SO[1058]	-8206.5	268	1415	SO[1118]	-9226.5	268
1236	SO[939]	-6183.5	128	1296	SO[999]	-7203.5	128	1356	SO[1059]	-8223.5	128	1416	SO[1119]	-9243.5	128
1237	SO[940]	-6200.5	408	1297	SO[1000]	-7220.5	408	1357	SO[1060]	-8240.5	408	1417	SO[1120]	-9260.5	408
1238	SO[941]	-6217.5	268	1298	SO[1001]	-7237.5	268	1358	SO[1061]	-8257.5	268	1418	SO[1121]	-9277.5	268
1239	SO[942]	-6234.5	128	1299	SO[1002]	-7254.5	128	1359	SO[1062]	-8274.5	128	1419	SO[1122]	-9294.5	128
1240	SO[943]	-6251.5	408	1300	SO[1003]	-7271.5	408	1360	SO[1063]	-8291.5	408	1420	SO[1123]	-9311.5	408
1241	SO[944]	-6268.5	268	1301	SO[1004]	-7288.5	268	1361	SO[1064]	-8308.5	268	1421	SO[1124]	-9328.5	268
1242	SO[945]	-6285.5	128	1302	SO[1005]	-7305.5	128	1362	SO[1065]	-8325.5	128	1422	SO[1125]	-9345.5	128
1243	SO[946]	-6302.5	408	1303	SO[1006]	-7322.5	408	1363	SO[1066]	-8342.5	408	1423	SO[1126]	-9362.5	408
1244	SO[947] SO[948]	-6319.5 -6336.5	268 128	1304 1305	SO[1007] SO[1008]	-7339.5 -7356.5	268 128	1364 1365	SO[1067] SO[1068]	-8359.5 -8376.5	268 128	1424 1425	SO[1127] SO[1128]	-9379.5 -9396.5	268 128
1246	SO[948]	-6353.5	408	1306	SO[1008]	-7373.5	408	1366	SO[1069]	-8393.5	408	1426	SO[1128]	-9413.5	408
1247	SO[950]	-6370.5	268	1307	SO[1003]	-7390.5	268	1367	SO[1003]	-8410.5	268	1427	SO[1129]	-9430.5	268
1248	SO[951]	-6387.5	128	1308	SO[1011]	-7407.5	128	1368	SO[1071]	-8427.5	128	1428	SO[1131]	-9447.5	128
1249	SO[952]	-6404.5	408	1309	SO[1012]	-7424.5	408	1369	SO[1072]	-8444.5	408	1429	SO[1132]	-9464.5	408
1250	SO[953]	-6421.5	268	1310	SO[1013]	-7441.5	268	1370	SO[1073]	-8461.5	268	1430	SO[1133]	-9481.5	268
1251	SO[954]	-6438.5	128	1311	SO[1014]	-7458.5	128	1371	SO[1074]	-8478.5	128	1431	SO[1134]	-9498.5	128
1252	SO[955]	-6455.5	408	1312	SO[1015]	-7475.5	408	1372	SO[1075]	-8495.5	408	1432	SO[1135]	-9515.5	408
1253	SO[956]	-6472.5	268	1313	SO[1016]	-7492.5	268	1373	SO[1076]	-8512.5	268	1433	SO[1136]	-9532.5	268
1254	SO[957]	-6489.5	128	1314	SO[1017]	-7509.5	128	1374	SO[1077]	-8529.5	128	1434	SO[1137]	-9549.5	128
1255	SO[958]	-6506.5	408	1315	SO[1018]	-7526.5	408	1375	SO[1078]	-8546.5	408	1435	SO[1138]	-9566.5	408
1256	SO[959]	-6523.5	268	1316	SO[1019]	-7543.5	268	1376	SO[1079]	-8563.5	268	1436	SO[1139]	-9583.5	268
1257	SO[960]	-6540.5	128	1317	SO[1020]	-7560.5	128	1377	SO[1080]	-8580.5	128	1437	SO[1140]	-9600.5	128
1258	SO[961]	-6557.5	408	1318	SO[1021]	-7577.5	408	1378	SO[1081]	-8597.5	408	1438	SO[1141]	-9617.5	408
1259	SO[962]	-6574.5	268	1319	SO[1022]	-7594.5	268	1379	SO[1082]	-8614.5	268	1439	SO[1142]	-9634.5	268
1260	SO[963]	-6591.5	128	1320	SO[1023]	-7611.5	128	1380	SO[1083]	-8631.5	128	1440	SO[1143]	-9651.5	128

Pad name	Х	Υ
SO[1144]	-9668.5	408
SO[1145]	-9685.5	268
SO[1146]	-9702.5	128
SO[1147]	-9719.5	408
SO[1148]	-9736.5	268
SO[1149]	-9753.5	128
SO[1150]	-9770.5	408
SO[1151]	-9787.5	268
SO[1152]	-9804.5	128
SO[1153]	-9821.5	408
SO[1154]	-9838.5	268
SO[1155]	-9855.5	128
SO[1156]	-9872.5	408
SO[1157]	-9889.5	268
SO[1158]	-9906.5	128
SO[1159]	-9923.5	408
SO[1160]	-9940.5	268
SO[1161]	-9957.5	128
SO[1162]	-9974.5	408
SO[1163]	-9991.5	268
SO[1164]	-10008.5	128
SO[1165]	-10025.5	408
SO[1166]	-10042.5	268
SO[1167]	-10059.5	128
SO[1168]	-10076.5	408
SO[1169]	-10093.5	268
SO[1170]	-10110.5	128
SO[1171]	-10127.5	408
SO[1172]	-10144.5	268
SO[1173]	-10161.5	128
SO[1174]	-10178.5	408
SO[1175]	-10195.5	268
SO[1176]	-10212.5	128
SO[1177]	-10229.5	408
SO[1178]	-10246.5	268
SO[1179]	-10263.5	128
SO[1180]	-10280.5	408
SO[1181]	-10297.5	268
SO[1182]	-10314.5	128
SO[1183]	-10331.5	408
SO[1184]	-10348.5	268
		A 194
SO[1185]	-10365.5	128
SO[1186]	-10382.5	408
SO[1187]	-10399.5	268
SO[1188]	-10416.5	128
SO[1189]	-10433.5	408
SO[1190]	-10450.5	268
SO[1191]	-10467.5	128
SO[1192]	-10484.5	408
SO[1193]	-10501.5	268
SO[1194]	-10518.5	128
SO[1195]	-10535.5	408
SO[1196]	-10552.5	268
SO[1197]	-10569.5	128
SO[1198]	-10586.5	408
SO[1199]	-10603.5	268
SO[1200]	-10620.5	128
SHIELDING	-10664	428
COM1_T	-10714	428
COM1_T	-10764	428

X	Υ	No.	Pad name	X	Υ
9668.5	408	1501	SHIELDING	-10814	428
9685.5	268	1502	DCMPR	-10864	428
9702.5	128	1503	DCMPR	-10914	428
9719.5	408	1504	OEVR	-11049	328
9736.5	268	1505	INVBRR	-11049	408
9753.5	128	1506	INVBRR	-11179	408
9770.5					
9787.5	268	1508	UDR	-11179	248
9804.5	128	1509	UDR	-11049	248
9821.5	408	1510	CKVR	-11179	168
9838.5	268	1511	CKVR	-11049	168
9855.5	128	1512	STV/1P	-11170	88
9872.5	408	1512	STV/1P	-110/49	88
	268	1513	QTV/2D	_11170	Ω
9889.5	200	1014	OT VZR	-11179	0
9906.5	128	1515	S1 V2K	-11049	8 70
9923.5	408	1516	SIVIR	-11179	-72
9940.5	268	1517	STV1R	-11049	-72
9957.5	128	1518	STBNR	-11179	-152
9974.5	408	1519	STBNR	-11049	-152
9991.5	268	1520	DUMMY	-11179	-232
10008.5	128	1521	DUMMY	-11049	-232
10025.5	408				
10042.5	268				
10059.5	128				
10076.5	408				
10093.5	268				
10110.5	128				
10127.5	408				
10144.5	268				
10161.5	128				
10178.5	408			4	D'
10195.5	268			. (1)	A Allen
10212.5	128			2	7
10229.5	408			1	
10246.5	268			₽	
10263.5	128				
10280.5	408		A AA.		
10297.5	268	A	1. 1		
	128		1		
10314.5	120				
10331.5	408				
10348.5	268	PA	OEVR UDR UDR CKVR CKVR STV1R STV1R STV2R STV2R STV1R STBNR DUMMY DUMMY		
10365.5	4 33153153153150				
10382.5	408				
10399.5	268				
10416.5	128				
10433.5	408				
10450.5	268				
10467.5	128				
10484.5	408				
10501.5	268				
	_	ı			

10. Revision History

2009/06/23 2009/09/25 2009/10/15	P08	Modify DCMP_EM (Normally pull low) → (Normally pull high) Modify UPDN (Normally pull low) → (Normally pull high) Modify Analog operating current TBD → Typ=10mA Max=12mA Modify Digital operating current TBD → Typ=8mA Max=10mA Modify Analog standby current TBD → Typ=10uA Max=50uA Modify Digital standby current TBD → Typ=10uA Max=50uA
2009/09/25	P34	Modify Analog operating current TBD→ Typ=10mA Max=12mA Modify Digital operating current TBD → Typ=8mA Max=10mA Modify Analog standby current TBD → Typ=10uA Max=50uA Modify Digital standby current TBD→ Typ=10uA Max=50uA
		Modify Digital operating current TBD → Typ=8mA Max=10mA Modify Analog standby current TBD → Typ=10uA Max=50uA Modify Digital standby current TBD→ Typ=10uA Max=50uA
	D.40	Modify Analog standby current TBD → Typ=10uA Max=50uA Modify Digital standby current TBD→ Typ=10uA Max=50uA
	D.40	Modify Digital standby current TBD→ Typ=10uA Max=50uA
	D.40	
2009/10/15	D40	
2009/10/15	D40	Add Chip size: 22498 um x 960 um.
2009/10/15	P43	Add Chip height: 400 um .
	P50	Modify the pad location.
	P14	Modify Dot Polarity Inversion Diagram.
2009/11/13	P11	Add Pin Descriptions.(FB \cdot DRV \cdot PWM_EN)
2000/11/10		Add Application Block Diagram.
		Add Register Default Value Table
2009/12/14		Add Register Default Value
		Modify BLKEN Frequency Specification.
2010/01/06		Add Application Block Diagram of 800X480 with ILI5960
		Modify Content Adaptive Brightness Control register address "55H"→"82H"
2010/01/00		NEW Logo
		Add Hardware Pin Control CABC Mode Selection
		Add REV Function.
	P12	Modify DCMP_EM (Normally pull high) → (Normally pull low)
2010/06/11	P12	Modify UPDN (Normally pull high)→ (Normally pull low)
	P21/P22	Modify Application Block Diagram.
	P49	Modify Chip size(Include scribe line)
		Modify D5 、E2、 E5 Pad Size.
CONFIN		
	2009/12/14 2010/01/06 2010/04/08 2010/06/11	P7 P27 P27 P28~35 P31 P31 P2010/01/06 P7/P9/P21 P30 ALL P14 P11/P48/P50/P6 P12 P12 P21/P22