Introduction

Modelling parallel systems

Linear Time Properties

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Regular LT properties

LF2.6-REGULAR

Idea: define regular LT properties to be those languages of infinite words over the alphabet **2**^{AP} that have a representation by a finite automata

Idea: define regular LT properties to be those languages of infinite words over the alphabet **2**^{AP} that have a representation by a finite automata

regular safety properties:
 NFA-representation for the bad prefixes

Idea: define regular LT properties to be those languages of infinite words over the alphabet **2**^{AP} that have a representation by a finite automata

- regular safety properties:
 NFA-representation for the bad prefixes
- other regular LT properties: representation by ω -automata, i.e., acceptors for infinite words

Introduction

Modelling parallel systems

Linear Time Properties

Regular Properties

regular safety properties ω -regular properties model checking with Büchi automata

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Let E be a LT property over AP, i.e., $E \subseteq (2^{AP})^{\omega}$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 ... A_n$ of σ such that none of the words $A_0 A_1 ... A_n B_{n+1} B_{n+2} B_{n+3} ...$ belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^{\omega} : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

BadPref $\stackrel{\text{def}}{=}$ set of bad prefixes for $E \subseteq (2^{AP})^+$

IS2.5-REG-SAFE

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property.

E is called regular iff the language

BadPref = set of all bad prefixes for **E** is regular.

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property.

E is called regular iff the language

BadPref = set of all bad prefixes for $E \subseteq (2^{AP})^+$ is regular.

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property.

E is called regular iff the language $BadPref = \text{set of all bad prefixes for } E \subseteq (2^{AP})^+$ $BadPref = \mathcal{L}(\mathcal{A}) \text{ for some NFA } \mathcal{A} \text{ over the alphabet } 2^{AP}$ is regular.

NFA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

NFA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subset Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

```
run for a word A_0A_1 \dots A_{n-1} \in \Sigma^*: state sequence \pi = q_0 \ q_1 \dots q_n where q_0 \in Q_0 and q_{i+1} \in \delta(q_i, A_i) for 0 \le i < n
```

NFA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subset Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

```
run for a word A_0A_1 \dots A_{n-1} \in \Sigma^*: state sequence \pi = q_0 \ q_1 \dots q_n where q_0 \in Q_0 and q_{i+1} \in \delta(q_i, A_i) for 0 \le i < n run \pi is called accepting if q_n \in F
```

NFA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subset Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

accepted language $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^*$ is given by:

$$\mathcal{L}(\mathcal{A})$$
 = set of finite words over Σ that have an accepting run in \mathcal{A}

NFA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet \longleftarrow here: $\Sigma = 2^{AP}$
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

accepted language $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^*$ is given by:

 $\mathcal{L}(\mathcal{A})$ = set of finite words over Σ that have an accepting run in \mathcal{A}

onfinal state

final state

NFA \mathcal{A} with state space $\{q_0, q_F\}$ q_0 initial state q_F final state alphabet $\Sigma = \{A, B\}$

onfinal state

final state

accepted language $\mathcal{L}(\mathcal{A})$:

set of all finite words over {A, B} ending with letter A

Symbolic notations

for transitions in **NFA** over the alphabet $\Sigma = 2^{AP}$

NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ over the alphabet $\Sigma = 2^{AP}$ symbolic notation for the labels of transitions:

If Φ is a propositional formula over AP then $q \xrightarrow{\Phi} p$ stands for the set of transitions $q \xrightarrow{A} p$ where $A \subseteq AP$ such that $A \models \Phi$

NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ over the alphabet $\Sigma = 2^{AP}$ symbolic notation for the labels of transitions:

If Φ is a propositional formula over AP then $q \xrightarrow{\Phi} p$ stands for the set of transitions $q \xrightarrow{A} p$ where $A \subseteq AP$ such that $A \models \Phi$

Example: if
$$AP = \{a, b, c\}$$
 then
$$q \xrightarrow{a \land \neg b} p \cong \{q \xrightarrow{A} p : A = \{a, c\} \text{ or } A = \{a\}\}$$

NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ over the alphabet $\Sigma = 2^{AP}$ symbolic notation for the labels of transitions:

If Φ is a propositional formula over AP then $q \xrightarrow{\Phi} p$ stands for the set of transitions $q \xrightarrow{A} p$ where $A \subseteq AP$ such that $A \models \Phi$

Example: if
$$AP = \{a, b, c\}$$
 then
$$q \xrightarrow{a \land \neg b} p \stackrel{\frown}{=} \{q \xrightarrow{A} p : A = \{a, c\} \text{ or } A = \{a\}\}$$

$$q \xrightarrow{true} p \qquad \stackrel{\frown}{=} \{q \xrightarrow{A} p : A \subseteq AP\}$$

A safety property $E \subseteq (2^{AP})^{\omega}$ is called regular iff $BadPref = \text{set of all bad prefixes for } E \subseteq (2^{AP})^+$ $BadPref = \mathcal{L}(\mathcal{A}) \text{ for some NFA } \mathcal{A}$ $\text{over the alphabet } 2^{AP}$ is regular.

A safety property $E \subseteq (2^{AP})^{\omega}$ is called regular iff $BadPref = \text{set of all bad prefixes for } E \subseteq (2^{AP})^+$ $BadPref = \mathcal{L}(\mathcal{A}) \text{ for some NFA } \mathcal{A}$ $\text{over the alphabet } 2^{AP}$ is regular.

$$q_0 \xrightarrow{a \land \neg b} q_1 \xrightarrow{a \land \neg b} q_2$$
true
$$AP = \{a, b\}$$

A safety property $E \subseteq (2^{AP})^{\omega}$ is called regular iff $BadPref = \text{set of all bad prefixes for } E \subseteq (2^{AP})^+$ $BadPref = \mathcal{L}(\mathcal{A}) \text{ for some NFA } \mathcal{A}$ over the alphabet 2^{AP} is regular.

$$q_0$$
 $a \land \neg b$ q_1 $a \land \neg b$ q_2 true

$$AP = \{a, b\}$$

symbolic notation:
 $a \land \neg b \cong \{a\}$

A safety property $E \subseteq (2^{AP})^{\omega}$ is called regular iff $BadPref = \text{set of all bad prefixes for } E \subseteq (2^{AP})^+$ $BadPref = \mathcal{L}(\mathcal{A}) \text{ for some NFA } \mathcal{A}$ over the alphabet 2^{AP} is regular.

safety property E: " $a \land \neg b$ never holds twice in a row"

"Every red phase is preceded by a yellow phase"

"Every red phase is preceded by a yellow phase" set of all infinite words $A_0 A_1 A_2 ...$ s.t. for all $i \ge 0$: $red \in A_i \implies i \ge 1$ and $yellow \in A_{i-1}$

"Every red phase is preceded by a yellow phase" set of all infinite words $A_0 A_1 A_2 \dots$ s.t. for all $i \ge 0$: $red \in A_i \implies i \ge 1$ and $yellow \in A_{i-1}$

DFA for all (possibly non-minimal) bad prefixes

"Every red phase is preceded by a yellow phase" set of all infinite words $A_0 A_1 A_2 \dots$ s.t. for all $i \ge 0$: $red \in A_i \implies i \ge 1$ and $yellow \in A_{i-1}$

DFA for minimal bad prefixes

Bad prefixes vs minimal bad prefixes

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property.

BadPref = set of all bad prefixes for E

MinBadPref = set of minimal bad prefixes for E

Claim: BadPref is regular \(\longrightarrow \text{MinBadPref} \) is regular

Bad prefixes vs minimal bad prefixes

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property.

BadPref = set of all bad prefixes for E

MinBadPref = set of minimal bad prefixes for E

Claim: BadPref is regular ← MinBadPref is regular

" \longleftarrow ": Let ${\mathcal A}$ be an NFA for ${\it MinBadPref}$.

Bad prefixes vs minimal bad prefixes

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property.

BadPref = set of all bad prefixes for E

MinBadPref = set of minimal bad prefixes for E

Claim: BadPref is regular ← MinBadPref is regular

An NFA \mathcal{A}' for **BadPref** is obtained from \mathcal{A} by adding self-loops $p \xrightarrow{true} p$ to all final states p.

"←": Let A be an NFA for MinBadPref

35 / 569

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property.

BadPref = set of all bad prefixes for E

MinBadPref = set of minimal bad prefixes for E

Claim: BadPref is regular ← MinBadPref is regular

"\(\lefta\)": Let \mathcal{A} be an NFA for MinBadPref.

An NFA \mathcal{A}' for BadPref is obtained from \mathcal{A} by adding self-loops $p \xrightarrow{true} p$ to all final states p.

" \Longrightarrow ": Let \mathcal{A} be a DFA for **BadPref**.

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property.

BadPref = set of all bad prefixes for E

MinBadPref = set of minimal bad prefixes for E

Claim: BadPref is regular ← MinBadPref is regular

" \Leftarrow ": Let \mathcal{A} be an NFA for *MinBadPref*.

An NFA \mathcal{A}' for **BadPref** is obtained from \mathcal{A} by adding self-loops $p \xrightarrow{true} p$ to all final states p.

" \Longrightarrow ": Let \mathcal{A} be a DFA for **BadPref**.

A DFA A' for **MinBadPref** is obtained from A by removing all outgoing transitions of final states.

correct.

correct.

Let E be an invariant with invariant condition Φ

correct.

Let *E* be an invariant with invariant condition Φ

is a DFA for the language of all bad prefixes

correct.

Let E be an invariant with invariant condition Φ

is a DFA for the language of all minimal bad prefixes

"The two processes are never simultaneously in their critical sections"

Example: DFA for *MUTEX*

"The two processes are never simultaneously in their critical sections"

DFA for minimal bad prefixes over the alphabet 2^{AP} where $AP = \{ crit_1, crit_2 \}$

wrong.

wrong. e.g.,
$$AP = \{pay, drink\}$$

 $E = \text{ set of alle infinite words } A_0 A_1 A_2 ... \in (2^{AP})^{\omega}$ such that for all $j \in \mathbb{N}$:

$$\left|\left\{i \leq j : pay \in A_i\right\}\right| \geq \left|\left\{i \leq j : drink \in A_i\right\}\right|$$

wrong. e.g.,
$$AP = \{pay, drink\}$$

 $E = \text{ set of alle infinite words } A_0 A_1 A_2 ... \in (2^{AP})^{\omega}$ such that for all $j \in \mathbb{N}$:

$$\left|\left\{i \leq j : pay \in A_i\right\}\right| \geq \left|\left\{i \leq j : drink \in A_i\right\}\right|$$

- *E* is a safety property, but
- the language of (minimal) bad prefixes is not regular

given: finite TS T

regular safety property *E*

(represented by an **NFA** for its bad prefixes)

question: does $T \models E$ hold ?

```
given: finite TS T

regular safety property E

(represented by an NFA for its bad prefixes)
```

question: does $T \models E$ hold ?

method: relies on an analogy between the tasks:

- checking language inclusion for NFA
- model checking regular safety properties

language inclusion for NFA	verification of regular safety properties
$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$?	$Traces(T) \subseteq E$?

language inclusion for NFA	verification of regular safety properties
$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$?	$Traces(T) \subseteq E$?
check whether $\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$ is empty	

language inclusion for NFA	verification of regular safety properties
$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$?	$Traces(T) \subseteq E$?
check whether $\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$ is empty	
1. complement A_2 , i.e., construct NFA $\overline{A_2}$ with $\mathcal{L}(\overline{A_2}) = \Sigma^* \setminus \mathcal{L}(A_2)$	

language inclusion for NFA	verification of regular safety properties
$\mathcal{L}(\mathcal{A}_1)\subseteq\mathcal{L}(\mathcal{A}_2)$?	$Traces(T) \subseteq E$?
check whether $\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$ is empty	
1. complement A_2 , i.e., construct NFA $\overline{A_2}$ with $\mathcal{L}(\overline{A_2}) = \Sigma^* \setminus \mathcal{L}(A_2)$	
2. construct NFA \mathcal{A} with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\overline{\mathcal{A}_2})$	

language inclusion for NFA	verification of regular safety properties
$\mathcal{L}(\mathcal{A}_1)\subseteq\mathcal{L}(\mathcal{A}_2)$?	$Traces(T) \subseteq E$?
check whether $\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$ is empty	
1. complement A_2 , i.e., construct NFA $\overline{A_2}$ with $\mathcal{L}(\overline{A_2}) = \Sigma^* \setminus \mathcal{L}(A_2)$	
2. construct NFA \mathcal{A} with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\overline{\mathcal{A}_2})$	
3. check if $\mathcal{L}(A) = \emptyset$	

language inclusion for NFA	verification of regular safety properties
$\mathcal{L}(\mathcal{A}_1)\subseteq\mathcal{L}(\mathcal{A}_2)$?	$Traces(T) \subseteq E$?
check whether $\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$ is empty	check whether $Traces_{fin}(T) \cap BadPref$ is empty
1. complement A_2 , i.e., construct NFA $\overline{A_2}$ with $\mathcal{L}(\overline{A_2}) = \Sigma^* \setminus \mathcal{L}(A_2)$	
2. construct NFA \mathcal{A} with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\overline{\mathcal{A}_2})$	
3. check if $\mathcal{L}(A) = \emptyset$	
	57 / 50

language inclusion for NFA	verification of regular safety properties
$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$?	$Traces(T) \subseteq E$?
check whether $\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$ is empty	check whether $Traces_{fin}(T) \cap BadPref$ is empty
1. complement A_2 , i.e., construct NFA $\overline{A_2}$ with $\mathcal{L}(\overline{A_2}) = \Sigma^* \setminus \mathcal{L}(A_2)$	1. construct NFA \mathcal{A} for the bad prefixes $\mathcal{L}(\overline{\mathcal{A}}) = BadPref$
2. construct NFA \mathcal{A} with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\overline{\mathcal{A}_2})$	
3. check if $\mathcal{L}(A) = \emptyset$	

language inclusion for NFA	verification of regular safety properties
$\mathcal{L}(\mathcal{A}_1)\subseteq\mathcal{L}(\mathcal{A}_2)$?	$Traces(T) \subseteq E$?
check whether $\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$ is empty	check whether $Traces_{fin}(T) \cap BadPref$ is empty
1. complement A_2 , i.e., construct NFA $\overline{A_2}$ with $\mathcal{L}(\overline{A_2}) = \Sigma^* \setminus \mathcal{L}(A_2)$	1. construct NFA \mathcal{A} for the bad prefixes $\mathcal{L}(\overline{\mathcal{A}}) = BadPref$
2. construct NFA \mathcal{A} with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\overline{\mathcal{A}_2})$	2. construct TS T' with $Traces_{fin}(T') = \dots$
3. check if $\mathcal{L}(A) = \emptyset$	

language inclusion for NFA	verification of regular safety properties
$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$?	$Traces(T) \subseteq E$?
check whether $\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$ is empty	check whether $Traces_{fin}(T) \cap BadPref$ is empty
1. complement A_2 , i.e., construct NFA $\overline{A_2}$ with $\mathcal{L}(\overline{A_2}) = \Sigma^* \setminus \mathcal{L}(A_2)$	1. construct NFA \mathcal{A} for the bad prefixes $\mathcal{L}(\overline{\mathcal{A}}) = BadPref$
2. construct NFA \mathcal{A} with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\overline{\mathcal{A}_2})$	2. construct TS T' with $Traces_{fin}(T') = \dots$
3. check if $\mathcal{L}(A) = \emptyset$	3. invariant checking for T'

finite transition system NFA for bad prefixes
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 NFA for bad prefixes $A = (Q, 2^{AP}, \delta, Q_0, F)$

path fragment $\hat{\pi}$

finite transition system
$$T = (S, Act, \rightarrow, S_0, AP, L)$$

$$\begin{array}{ccc}
s_0 & L(s_0) = A_0 \\
\downarrow & & L(s_1) = A_1 \\
\downarrow & & \downarrow \\
s_2 & L(s_2) = A_2 \\
\downarrow & & \vdots \\
\downarrow & & \downarrow \\
s_n & L(s_n) = A_n
\end{array}$$

path fragment $\hat{\pi}$

trace

NFA for bad prefixes
$$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$$

NFA for bad prefixes
$$A = (Q, 2^{AP}, \delta, Q_0, F)$$

$$q_0 \in Q_0$$

$$\downarrow A_0$$

$$q_1$$

$$\downarrow A_1$$

$$q_2$$

$$\downarrow A_2$$

$$\vdots$$

$$q_n$$

$$\downarrow A_n$$

$$q_{n+1}$$

run for **trace**($\hat{\pi}$)

finite transition system
$$T=(S,Act,\rightarrow,S_0,AP,L)$$
 NFA for bad prefixes $A=(Q,2^{AP},\delta,Q_0,F)$ $A=(Q,2^{AP},A_0,G_0,F)$ $A=(Q,2^{AP},A_0,G_0,F)$ $A=(Q,2^{AP},A_0,G_0,F)$ $A=(Q,2^{AP},A_0,G_0,F)$ $A=(Q,2^{AP},A_0,G_0,F)$ $A=(Q,2^{AP},A_0,G_0,F)$ $A=(Q,2^{AP},A_0,G_0,F)$ $A=(Q,2^{AP},A_0,G_0,F)$ $A=(Q$

$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 transition system $A = (Q, 2^{AP}, \delta, Q_0, F)$ NFA

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 transition system $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NFA

product-TS
$$T \otimes A \stackrel{\text{def}}{=} (S \times Q, Act, \longrightarrow', S'_0, AP', L')$$

$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 transition system $A = (Q, 2^{AP}, \delta, Q_0, F)$ NFA product-TS $T \otimes A \stackrel{\text{def}}{=} (S \times Q, Act, \longrightarrow', S'_0, AP', L')$
$$\frac{s \stackrel{\alpha}{\longrightarrow} s' \quad \land \quad q' \in \delta(q, L(s'))}{\langle s, q \rangle \stackrel{\alpha}{\longrightarrow} ' \langle s', q' \rangle}$$

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 transition system $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NFA product-TS $\mathcal{T} \otimes \mathcal{A} \stackrel{\text{def}}{=} (S \times Q, Act, \longrightarrow', S'_0, AP', L')$
$$\frac{s \stackrel{\alpha}{\longrightarrow} s' \quad \land \quad q' \in \delta(q, L(s'))}{\langle s, q \rangle \stackrel{\alpha}{\longrightarrow} ' \langle s', q' \rangle}$$

initial states:
$$S_0' = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$$

$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 transition system $A = (Q, 2^{AP}, \delta, Q_0, F)$ NFA product-TS $T \otimes A \stackrel{\text{def}}{=} (S \times Q, Act, \longrightarrow', S'_0, AP', L')$
$$\frac{s \stackrel{\alpha}{\longrightarrow} s' \quad \land \quad q' \in \delta(q, L(s'))}{\langle s, q \rangle \stackrel{\alpha}{\longrightarrow} ' \langle s', q' \rangle}$$
 initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$

$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 transition system $A = (Q, 2^{AP}, \delta, Q_0, F)$ NFA product-TS $T \otimes A \stackrel{\text{def}}{=} (S \times Q, Act, \longrightarrow', S'_0, AP', L')$ $s \stackrel{\alpha}{\longrightarrow} s' \wedge q' \in \delta(q, L(s'))$ $\langle s, q \rangle \stackrel{\alpha}{\longrightarrow} ' \langle s', q' \rangle$ initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$ set of atomic propositions: $AP' = Q$

$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 transition system $A = (Q, 2^{AP}, \delta, Q_0, F)$ NFA product-TS $T \otimes A \stackrel{\text{def}}{=} (S \times Q, Act, \longrightarrow', S'_0, AP', L')$
$$\underline{s \stackrel{\alpha}{\longrightarrow} s' \quad \land \quad q' \in \delta(q, L(s'))}_{\langle s, q \rangle \stackrel{\alpha}{\longrightarrow} '\langle s', q' \rangle}$$
 initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$ set of atomic propositions: $AP' = Q$ labeling function: $L'(\langle s, q \rangle) = \{q\}$

transition system
$$T$$
 over $AP = \{red, yellow\}$

transition system T over $AP = \{red, yellow\}$

T satisfies the safety property E
"every red phase is preceded by a yellow phase"

transition system T over

 $AP = \{red, yellow\}$

DFA \mathcal{A} for the bad prefixes for \boldsymbol{E}

T satisfies the safety property E
"every red phase is preceded by a yellow phase"

86 / 569

88 / 569

Example: product-TS

152.5-26

89 / 569

invariant condition $\neg q_F$ holds for all reachable states

Technical remark on the product-TS

definition of the product of

• a transition system $T = (S, Act, \rightarrow, S_0, AP, L)$

• an NFA $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ then the product $\mathcal{T} \otimes \mathcal{A} = (S \times Q, Act, \rightarrow', \ldots)$ is a TS

- a transition system $T = (S, Act, \rightarrow, S_0, AP, L)$ without terminal states
- an NFA $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ then the product $\mathcal{T} \otimes \mathcal{A} = (S \times Q, Act, \rightarrow', \ldots)$ is a TS

• a transition system $T = (S, Act, \rightarrow, S_0, AP, L)$ without terminal states

• an NFA $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

then the product $T \otimes A = (S \times Q, Act, \rightarrow', ...)$ is a TS

without terminal states

- a transition system $T = (S, Act, \rightarrow, S_0, AP, L)$ without terminal states
- an NFA $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

then the product $T \otimes A = (S \times Q, Act, \rightarrow', ...)$ is a TS

without terminal states

assumptions on the NFA A:

- a transition system $T = (S, Act, \rightarrow, S_0, AP, L)$ without terminal states
- an NFA $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

then the product
$$T \otimes A = (S \times Q, Act, \rightarrow', ...)$$
 is a TS without terminal states

assumptions on the NFA A:

• A is non-blocking, i.e.,

$$Q_0 \neq \emptyset \land \forall q \in Q \forall A \in 2^{AP}. \ \delta(q, A) \neq \emptyset$$

- a transition system $T = (S, Act, \rightarrow, S_0, AP, L)$ without terminal states
- ullet an NFA ${\cal A}=\left(Q,2^{AP},\delta,Q_0,{\it F}
 ight)$

then the product $T \otimes A = (S \times Q, Act, \rightarrow', ...)$ is a TS

without terminal states

assumptions on the NFA A:

- A is non-blocking, i.e.,
 - $Q_0 \neq \emptyset \land \forall q \in Q \forall A \in 2^{AP}. \delta(q, A) \neq \emptyset$
- no initial state of \mathcal{A} is final, i.e., $Q_0 \cap F = \emptyset$

NFA A

alphabet $\Sigma = 2^{AP}$ where $AP = \{a, b\}$

NFA A

blocks for input $\{a\} \varnothing \{a\}$

alphabet $\Sigma = 2^{AP}$ where $AP = \{a, b\}$

equivalent NFA \mathcal{A}'

stop true

blocks for input $\{a\} \varnothing \{a\}$

add a trap state **stop**

NFA A

equivalent NFA \mathcal{A}'

blocks for input $\{a\} \varnothing \{a\}$

add a trap state **stop**

NFA A

equivalent NFA \mathcal{A}'

blocks for input $\{a\} \varnothing \{a\}$

non-blocking

NFA \mathcal{A}' with $Q_0 \cap F = \emptyset$

~→

NFA \mathcal{A}' with $Q_0 \cap \mathcal{F} = \emptyset$

$$\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A}) \setminus \{\varepsilon\}$$

ightarrow NFA \mathcal{A}' with $Q_0 \cap F = \emptyset$

$$\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A}) \setminus \{\varepsilon\}$$

note: if **A** is an NFA for the bad prefixes of a safety property then

$$\varepsilon \notin \mathcal{L}(\mathcal{A}) = BadPref$$

... via a reduction to invariant checking

Let
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 be a transition system

 $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ be an NFA for the bad prefixes of a regular safety property E

 $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ be an NFA for the bad prefixes of a regular safety property E

 $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ be an NFA for the bad prefixes of a regular safety property E (non-blocking and $Q_0 \cap F = \emptyset$)

$$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$$
 be an NFA for the bad prefixes of a regular safety property E (non-blocking and $Q_0 \cap F = \emptyset$)

The following statements are equivalent:

- (1) $T \models E$
- $(2) \quad Traces_{fin}(T) \cap \mathcal{L}(A) = \emptyset$

 $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ be an NFA for the bad prefixes of a regular safety property E (non-blocking and $Q_0 \cap F = \emptyset$)

The following statements are equivalent:

- (1) $T \models E$
- (2) $Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$
- (3) $T \otimes A \models \text{invariant "always } \neg F$ "

Let
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 be a transition system (without terminal states)

$$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$$
 be an NFA for the bad prefixes of a regular safety property E (non-blocking and $Q_0 \cap F = \emptyset$)

The following statements are equivalent:

- (1) $T \models E$
- (2) $Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$
- (3) $T \otimes A \models \text{invariant "always } \neg F$ "

where " $\neg F$ " denotes $\bigwedge_{q \in F} \neg q$

$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 transition system $A = (Q, 2^{AP}, \delta, Q_0, F)$ NFA product-TS $T \otimes A \stackrel{\text{def}}{=} (S \times Q, Act, \longrightarrow', S'_0, AP', L')$
$$\underline{s \stackrel{\alpha}{\longrightarrow} s' \quad \land \quad q' \in \delta(q, L(s'))}_{\langle s, q \rangle \stackrel{\alpha}{\longrightarrow} '\langle s', q' \rangle}$$
 initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$ set of atomic propositions: $AP' = Q$ labeling function: $L'(\langle s, q \rangle) = \{q\}$

$$\lambda_{y} = \delta_{r} = x \oplus r$$

Example: sequential circuit

transition system T

$$\lambda_y = \delta_r = x \oplus r$$
initially $r = 0$

182.5-27

over
$$AP = \{y\}$$

$$\lambda_y = \delta_r = x \oplus r$$
initially $r = 0$

over
$$AP = \{y\}$$

$$\lambda_y = \delta_r = x \oplus r$$
initially $r = 0$

$$T \not\models E$$

$$\lambda_y = \delta_r = x \oplus r$$
initially $r = 0$

$$T \not\models E$$
 error indication, e.g., $\langle 10 \rangle \langle 01 \rangle$

$$\lambda_y = \delta_r = x \oplus r$$
 initially $r = 0$

$$T \not\models E$$
 error indication, e.g., $\langle 10 \rangle \langle 01 \rangle$

bad prefix: $\{y\}\{y\}$

 q_1

DFA for bad prefixes

true

 q_0

safety property *E* The circuit will never

(10) (01)

ouput two ones after each other

Model checking regular safety properties

input: finite TS **T**,

NFA \mathcal{A} for the bad prefixes of \mathcal{E}

output: "yes" if $T \models E$

otherwise "no"

input: finite TS **T**,

NFA \mathcal{A} for the bad prefixes of \mathcal{E}

output: "yes" if $T \models E$

otherwise "no"

construct product transition system $T \otimes A$ check whether $T \otimes A \models$ "always $\neg F$ "

where F = set of final states in A

input: finite TS **T**,

NFA \mathcal{A} for the bad prefixes of \mathcal{E}

output: "yes" if $T \models E$

otherwise "no"

construct product transition system $T \otimes A$ check whether $T \otimes A \models$ "always $\neg F$ " if so, then return "yes" if not, then return "no"

where F = set of final states in A

input: finite TS **T**,

NFA \mathcal{A} for the bad prefixes of $\boldsymbol{\mathcal{E}}$

output: "yes" if $T \models E$

otherwise "no" + error indication

construct product transition system $T \otimes A$ check whether $T \otimes A \models$ "always $\neg F$ " if so, then return "yes" if not, then return "no" \leftarrow and an error indication

where F = set of final states in A

construct product transition system $T \otimes A$ IF $T \otimes A \models$ "always $\neg F$ "

THEN return "yes"

ELSE

FΙ

construct product transition system $T \otimes A$

IF $T \otimes A \models$ "always $\neg F$ "

THEN return "yes"

ELSE compute a counterexample for $T \otimes A$ and the invariant "always $\neg F$ ",

FΙ

construct product transition system $T \otimes A$

IF $T \otimes A \models$ "always $\neg F$ "

THEN return "yes"

ELSE compute a counterexample for $\mathcal{T} \otimes \mathcal{A}$ and the invariant "always $\neg F$ ",

i.e., an initial path fragment in the product

$$\langle s_0, p_0 \rangle \langle s_1, p_1 \rangle \dots \langle s_n, p_n \rangle$$
 where $p_n \in F$

FΙ

```
construct product transition system T \otimes A
IF T \otimes A \models "always \neg F"
 THEN
          return "yes"
          compute a counterexample for T \otimes A and
          the invariant "always \neg F",
             i.e., an initial path fragment in the product
                 \langle s_0, p_0 \rangle \langle s_1, p_1 \rangle \dots \langle s_n, p_n \rangle where p_n \in F
          return "no" and s_0 s_1 \dots s_n
FΙ
```

```
construct product transition system T \otimes A
IF T \otimes A \models "always \neg F"
 THEN
         return "yes"
         compute a counterexample for T \otimes A and
          the invariant "always \neg F",
             i.e., an initial path fragment in the product
                 \langle s_0, p_0 \rangle \langle s_1, p_1 \rangle \dots \langle s_n, p_n \rangle where p_n \in F
          return "no" and s_0 s_1 \dots s_n
FI
```

time complexity: $\mathcal{O}(\operatorname{size}(T) \cdot \operatorname{size}(A))$

correct.

