## Лабораторная работа 1.4.1

# Изучение экспериментальных погрешностей на примере физического маятника 29 сентября 2023 г.

### 1. Цели и задачи

- на примере измерения периода свободных колебаний физического маятника познакомиться с систематическими и случайными погрешностями, прямыми и косвенными измерениями
- проверить справедливость формулы для периода колебаний физического маятника и определить значение ускорения свободного падения
- убедиться в справедливости теоремы Гюйгенса об обратимости точек опоры и центра качания маятника
- оценить погрешность прямых и косвенных измерений и конечного результата.

## 2. Оборудование

Металлический стержень с опорной призмой; дополнительный груз; закреплённая на стене консоль; подставка с острой гранью для определения цента масс маятника; секундомер; счётчик колебаний (механический или электронный); линейки металлические различной длины; штангенциркуль; электронные весы; математический маятник (небольшой груз, подвешенный на нитях).

Секундомер:  $\Delta T_{\rm cek} = 0.01 \; {\rm c}$ Линейка:  $\Delta_l = 0.01 \; {\rm cm}$ 

Электронные весы:  $\Delta_m=0.1$  г

# 3. Теория







Рис. 2. Схема установки с грузом.

Период колебаний

$$T = 2\pi \sqrt{\frac{\frac{l^2}{12} + a^2}{g\left(1 + \frac{m_{\text{np}}}{m_{\text{cr}}}\right) x_{\text{I}}}}$$
 (1)

Ускорение свободного падения:

$$g = 4\pi^2 \frac{J_0 + m_{\rm r} y^2}{TMx_{\rm u}} \tag{2}$$

# 4. Результаты измерений

Измерим все необходимые величины:

Длина стержня:  $l=100,01\pm0,01$  см

Центр масс стержня:  $l_{_{\rm II.M.}} = 50 \pm 0.1 \; {\rm cm}$ 

Расстояние от острия призмы до ц.м.:  $x_{\rm n0} = 24.4 \pm 0.1~{\rm cm}$ 

Центр масс стержня с призмой:  $x_{\mbox{\tiny II.M.}} = 52.1 \pm 0.1 \ \mbox{cm}$ 

Масса призмы:  $m_{\rm np} = 78.4 \pm 0.1$  г

Масса стержня:  $m_{\rm cr} = 891.7 \pm 0.1 \ {\rm r}$ 

Масса груза:  $m_{\rm rp} = 291{,}0 \pm 0{,}1$  г

Момент инерции подвеса:

$$J_0 = m_{
m ct} \cdot x_{
m 110}^2 + m_{
m ct} \cdot l^2 = 0{,}127~{
m kr} \cdot {
m cm}^2$$

Измерим период колебаний стержня без груза (таблица 1):

Таблица 1. Измерения колебаний стержня без груза.

$$T, c \mid 30,77 \mid 30,77 \mid 30,77 \mid 30,78$$

Период одного колебания:

$$\sigma_T = \sqrt{\frac{1}{N-1} \sum_i \left( T_i - \langle T \rangle \right)^2} = 0,0058 \text{ c}$$
 
$$\Delta T = \sqrt{\sigma_T^2 + \Delta_T^2} = 0,012 \text{ c}$$
 
$$T = 30,773 \pm 0,012 \text{ c} \approx 30,77 \pm 0,01 \text{ c}$$

Измерим период колебаний стержня с дополнительным грузом в разных положениях, результаты запишем в таблицу 2.

Таблица 2. Измерения колебания маятника с разными положениями дополнительного груза

| $x_{\mathrm{ц}}$ , см | y, см  | n  | $t_1$ , c | $t_2, \mathbf{c}$ | $t_3$ , c | T, c  | $g$ , $\mathrm{m/c}^2$ |
|-----------------------|--------|----|-----------|-------------------|-----------|-------|------------------------|
| 28,60                 | 42,60  | 10 | 14,90     | 14,90             | 14,90     | 1,490 | 8,89                   |
| 29,30                 | 45,64  | 10 | 15,04     | 15,04             | 15,04     | 1,504 | 8,88                   |
| 29,80                 | 47,80  | 10 | 15,13     | 15,13             | 15,14     | 1,513 | 8,89                   |
| 22,70                 | 17,03  | 10 | 14,23     | 14,23             | 14,23     | 1,423 | $9,\!25$               |
| 11,30                 | -33,37 | 10 | 20,08     | 20,08             | 20,08     | 2,008 | 10,85                  |
| 15,80                 | -13,87 | 10 | 16,09     | 16,09             | 16,09     | 1,609 | 10,12                  |
| 18,50                 | -2,17  | 10 | 14,82     | 14,82             | 14,82     | 1,482 | 9,82                   |
| 33,60                 | 64,27  | 10 | 16,15     | 16,15             | 16,15     | 1,615 | 8,85                   |

$$y = \frac{\left(m_{\mathrm{np}} + m_{\mathrm{ct}} + m_{\mathrm{rp}}\right) \cdot x_{\mathrm{ii}} - \left(m_{\mathrm{np}} + m_{\mathrm{ct}}\right) \cdot x_{\mathrm{ii0}}}{m_{\mathrm{rp}}}$$
 
$$M = m_{\mathrm{np}} + m_{\mathrm{ct}} + m_{\mathrm{rp}}$$
 
$$\Delta y = \frac{\sqrt{\left(M \cdot \Delta x_{\mathrm{ii}}\right)^2 + \left(\left(m_{\mathrm{np}} + m_{\mathrm{ct}}\right) \cdot \Delta x_{\mathrm{ii0}}\right)^2}}{m_{\mathrm{rp}}}$$

#### **4.1.** Минимум T(y)



Рис. 3. Зависимость периода колебаний T от положения груза y Минимум приходится на y=17,0 см, что совпадает с теоретическим значением.

#### 4.2. Усреднение g

$$\begin{split} T_{\rm cp} &= \frac{\langle t \rangle}{N} \\ \sigma_T &= \sqrt{\frac{1}{N-1} \sum_i \left(t_i - \langle t \rangle\right)^2} \\ \Delta T_{\rm cp} &= \frac{\sqrt{\sigma^2 + \Delta_{\rm cek}^2}}{N} \approx 0{,}001~{\rm c}, \Delta_{\rm cek} \gg \sigma \\ \Delta g &= \sqrt{\frac{1}{N-1} \sum_i \left(g_i - \langle g \rangle\right)^2} = 0{,}7~{\rm m/c}^2 \\ g &= 9{,}4 \pm 0{,}7~{\rm m/c}^2 \end{split}$$

Вычисление y создаёт большую погрешность, из-за чего значение g существенно отклоняется от его настоящего значения.

#### 4.3. Метод наименьших квадратов

Из формулы 2 следует:

$$T^2 x_{\scriptscriptstyle 
m II} = rac{4\pi^2}{aM} (J_0 + m_{\scriptscriptstyle 
m F} y^2)$$



Рис. 4. Зависимость  $T^2x_{\scriptscriptstyle {
m IIM}}$  от  $y^2$ 

Метод наименьших квадратов:

$$k = \frac{\langle xy\rangle - \langle x\rangle \langle y\rangle}{\langle x^2\rangle - \langle x\rangle^2} = 0.012$$
 
$$b = \langle y\rangle - k\langle x\rangle = 39.886$$
 
$$D_{\rm xx} = \langle x^2\rangle - \langle x\rangle^2$$
 
$$\sigma_k = \sqrt{\frac{\sum_i \frac{E_{\rm yy}}{E_{\rm xx}} - k^2}{n-2}} = 0.00089$$
 
$$\sigma_b = \sigma_k \sqrt{\langle x^2\rangle} = 1.75$$
 
$$\Delta g = g \cdot \sqrt{\left(\frac{\Delta b}{b}\right)^2 + \left(\frac{\Delta M}{M}\right)^2}$$
 
$$g = \frac{b \cdot \left(m_{\rm \pi p} + m_{\rm cr} + m_{\rm rp}\right)}{4J_0\pi^2} = 9.98 \pm 0.44 \; {\rm m/c}^2$$

Таким образом, МНК получился точнее, однако большая погрешность от вычисления y всё ещё присутствует.

#### 4.4. Приведённая длина

$$l_{
m привед} = x_{
m ц0} + rac{l^2}{12 x_{
m ц0}} = 58{,}6$$
 см

Проверим справедливость теоремы Гюйгенса: снимим призму и поместим её на расстоянии  $l_{\rm привед}$  от исходного, измерим время 20 колебаний:

$$t_{\rm привед}=30{,}59~{
m c}$$

$$T_{
m привед} = rac{t_{
m привед}}{20} = 1{,}5295 \ {
m c}$$

Что в пределах погрешности (человеческой реакции) совпадает с периодом колебаний T.

#### 4.5. Добротность

Амплитуда маятника уменьшается в два раза за n=580 колебаний

Время затухания: 
$$au_{\rm зат}=\frac{nT}{\ln 2}=5833~{\rm c}$$
 Декремент затухания:  $\gamma=\frac{1}{ au_{\rm зат}}=0{,}00017~\Gamma$ ц Добротность:  $Q=\frac{\pi n}{\ln 2}\approx 2628$ 

## 5. Вывод

В работе была проверена формула периода колебаний физического маятника, опеределено значение ускорение свободного падения и оценены погрешности.

Также была проверена справедливость теоемы Гюйгенса об обратимости точке опоры и центра качания маятника.