Vylepšená frekvenční analýza

Pomocí vylepšené frekvenční analýzy identifikujte podélnou indukčnost L_d a odpor statoru R_s synchronního motoru s permanentními magnety (PMSM).

Schéma synchronního motoru v d-q souřadnicích:

Pro správnou identifikaci je třeba zrušit vzájemné vazby v motoru a zároveň docílit toho, aby se rotor netočil. Toho docílíme tak, že pouze na U_d bude připojen harmonický identifikační signál a $U_q=0$.

Tím nám vznikne jednoduchý setrvačný článek prvního řádu s přenosem $F(p) = \frac{\frac{1}{L_d p}}{1 + \frac{R_S}{L_d p}}$, který můžeme identifikovat.

Zadání:

- V modelu *VFA_pomucka.mdl* doplňte algoritmus pro výpočet vylepšené frekvenční analýzy do bloku *VFA*.
- Dále do bloku *Compute Ld* a *Compute Rs* doplňte vztahy pro výpočet podélné indukčnosti L_d a odpor statoru R_s .

- V nastavení simulace zvolte Fixed-step a periodu vzorkování nastavte na $T_s = 125e 6s$. Vstupní harmonický signál volte s amplitudou 5V a frekvencí 400Hz.
- Pro celkové zlepšení kvality identifikace provádějte integraci přes 20 period. Identifikaci parametrů začněte provádět až po ustálení (např. od 6s).
- Odpor statoru vypočítejte podle vzorce $R_s = \frac{ATy_s}{2(y_s^2 + y_c^2)}$.
- Výpočet podélné indukčnost L_d odvoď te z rovnic: $y_s = \frac{AT}{2} \Re[F(j\omega)], \ y_c = \frac{AT}{2} \Im[F(j\omega)].$
- Na závěr otestujte vliv různých úrovní šumů v proudu i_d na kvalitu identifikace (použijte blok *white noise*).