

completeseq2
SEQUENCE LISTING

<110> Lee, Jong Y.

<120> PURIFIED HUMAN ERYTHROPOIETIN RECEPTOR PROTEIN FRAGMENT AND
ANTIBODIES DERIVED THEREFROM

<130> 106.001US2

<140> US 09/016,159

<141> 1998-01-30

<150> US 08/876,227

<151> 1997-06-16

<160> 7

<170> PatentIn version 3.3

<210> 1

<211> 23

<212> DNA

<213> Artificial

<220>

<223> BamH1 linker at 5' end followed by sequence for amino acids 25
through 29 of full length EpoR protein. Forward primer for SEQ
ID NO:2.

<400> 1

ttggatccgc gcccccgct aac

23

<210> 2

<211> 22

<212> DNA

<213> Artificial

<220>

<223> EcoR1 linker followed by sequence complementary to coding
sequence for amino acids 226 through 222 of full length human
EpoR protein. Reverse primer for SEQ ID NO:1.

<400> 2

tgaattcggg gtccaggtcg ct

22

<210> 3

<211> 18

<212> DNA

<213> Homo sapiens

<300>

<301> Smith, D.B. et al.

<302> Single-step purification of polypeptides expressed in Escherichia
coli as fusions with glutathione-S-transferase

<303> Gene

<304> 67

<306> 31-40

<307> 1998

<300>

<301> Smith, D.B. et al.

completeseq2

<302> Single-step purification of polypeptides expressed in Escherichia
coli as fusions with glutathione-S-transferase
<303> Genes and Development
<304> 67
<306> 31-40
<307> 1998

<400> 3
ctggttccgc gtggatcc

18

<210> 4
<211> 1527
<212> DNA
<213> Homo sapiens

<300>
<301> Jones, S.S. et al.
<302> Human Erythropoietin Receptor: Cloning, expression, and
biological characterization
<303> Blood
<304> 76
<305> 1
<306> 31-35
<307> 1990-07-01

<400> 4
atggaccacc tcggggcgtc cctctggccc caggtcggtt ccctttgtct cctgctcgct 60
ggggccgcct gggcgccccc gcctaaccctc ccggacccca agttcgagag caaagcggcc 120
ttgctggcgg cccgggggcc cgaagagctt ctgtgcttca ccgagcgggtt ggaggacttg 180
gtgtgtttct gggaggaagc ggcgagcgtt ggggtgggcc cgggcaacta cagcttctcc 240
taccagctcg aggatgagcc atgaaagctg tgtcgcctgc accaggctcc cacggctcgt 300
ggtgtcggtgc gcttctggtg ttgcgtgcct acagccgaca cgtcgagctt cgtcccccta 360
gagttgcgcg tcacagcagc ctccggcgct ccgcgatatac accgtgtcat ccacatcaat 420
gaagttagtgc tcctagacgc cccctgggg ctggtggcgc ggttggctga cgagagcggc 480
cacgtagtgt tgcgctggct cccgcgcct gagacacccca tgacgtctca catccgctac 540
gaggtggacg tctcggccgg caacggcgca gggagcgtac agagggtgga gatcctggag 600
ggccgcaccg agtgtgtgtct gagcaacctg cggggccgga cgcgtacac cttcgccgtc 660
cgcgcgcgtta tggctgagcc gagcttcggc ggcttctggta gcgcctggtc ggagcctgtg 720
tcgctgctga cgcctagcga cctggacccc ctcatcctga cgctctccct catcctcgtg 780
gtcatcctgg tgctgctgac cgtgctcggt ctgctctccc accgcggggc tctgaagcag 840
aagatctggc ctggcatccc gagcccgagag agcgagttt aaggcctctt caccacccac 900
aagggttaact tccagctgtg gctgtaccag aatgatggct gcctgtggtg gagccctgc 960
accccttca cggaggaccc acctgcttcc ctggaaagtcc tctcagagcg ctgctggggg 1020
acgatgcagg cagtggagcc gggacagat gatgagggcc ccctgctgga gccagtgggc 1080

	completeseq2	
agtgagcatg cccaggatac ctatctggtg ctggacaaat ggttgctgcc ccggaaccgg	1140	
cccagtgagg acctcccagg gcctggtggc agtgtggaca tagtggccat ggatgaaggc	1200	
tcagaagcat cctcctgctc atctgcttg gcctcgaagc ccagcccaga gggagcctct	1260	
gctgccagct ttgagtacac tattcctggac cccagctccc agctttgcg tccatggaca	1320	
ctgtgccctg agctgcccc taccccaccc cacctaaagt acctgtacct tgtggtatct	1380	
gactctggca tctcaactga ctacagctca ggggactccc agggagccca agggggctta	1440	
tccgatggcc cctactccaa cccttatgag aacagccta tcccagccgc tgagcctctg	1500	
ccccccagct atgtggcttg ctcttag	1527	

<210> 5
<211> 508
<212> PRT
<213> Homo sapiens

<300>
<301> Jones, S.S. et al.
<302> Human Erythropoietin Receptor: Cloning, expression, and
biological characterization
<303> Blood
<304> 76
<305> 1
<306> 31-35
<307> 1990-07-01

<400> 5

Met Asp His Leu Gly Ala Ser Leu Trp Pro Gln Val Gly Ser Leu Cys
1 5 10 15

Leu Leu Leu Ala Gly Ala Ala Trp Ala Pro Pro Pro Asn Leu Pro Asp
20 25 30

Pro Lys Phe Glu Ser Lys Ala Ala Leu Leu Ala Ala Arg Gly Pro Glu
35 40 45

Glu Leu Leu Cys Phe Thr Glu Arg Leu Glu Asp Leu Val Cys Phe Trp
50 55 60

Glu Glu Ala Ala Ser Ala Gly Val Gly Pro Gly Asn Tyr Ser Phe Ser
65 70 75 80

Tyr Gln Leu Glu Asp Glu Pro Trp Lys Leu Cys Arg Leu His Gln Ala
85 90 95

Pro Thr Ala Arg Gly Ala Val Arg Phe Trp Cys Ser Leu Pro Thr Ala
100 105 110

Asp Thr Ser Ser Phe Val Pro Leu Glu Leu Arg Val Thr Ala Ala Ser
Page 3

completeseq2

115	120	125
Gly Ala Pro Arg Tyr His Arg Val Ile His Ile Asn Glu Val Val Leu		
130	135	140
Leu Asp Ala Pro Val Gly Leu Val Ala Arg Leu Ala Asp Glu Ser Gly		
145	150	155
His Val Val Leu Arg Trp Leu Pro Pro Pro Glu Thr Pro Met Thr Ser		
165	170	175
His Ile Arg Tyr Glu Val Asp Val Ser Ala Gly Asn Gly Ala Gly Ser		
180	185	190
Val Gln Arg Val Glu Ile Leu Glu Gly Arg Thr Glu Cys Val Leu Ser		
195	200	205
Asn Leu Arg Gly Arg Thr Arg Tyr Thr Phe Ala Val Arg Ala Arg Met		
210	215	220
Ala Glu Pro Ser Phe Gly Gly Phe Trp Ser Ala Trp Ser Glu Pro Val		
225	230	235
Ser Leu Leu Thr Pro Ser Asp Leu Asp Pro Leu Ile Leu Thr Leu Ser		
245	250	255
Leu Ile Leu Val Val Ile Leu Val Leu Leu Thr Val Leu Ala Leu Leu		
260	265	270
Ser His Arg Arg Ala Leu Lys Gln Lys Ile Trp Pro Gly Ile Pro Ser		
275	280	285
Pro Glu Ser Glu Phe Glu Gly Leu Phe Thr Thr His Lys Gly Asn Phe		
290	295	300
Gln Leu Trp Leu Tyr Gln Asn Asp Gly Cys Leu Trp Trp Ser Pro Cys		
305	310	315
Thr Pro Phe Thr Glu Asp Pro Pro Ala Ser Leu Glu Val Leu Ser Glu		
325	330	335
Arg Cys Trp Gly Thr Met Gln Ala Val Glu Pro Gly Thr Asp Asp Glu		
340	345	350
Gly Pro Leu Leu Glu Pro Val Gly Ser Glu His Ala Gln Asp Thr Tyr		
355	360	365

completeseq2

Leu	Val	Leu	Asp	Lys	Trp	Leu	Leu	Pro	Arg	Asn	Pro	Pro	Ser	Glu	Asp
370						375								380	

Leu	Pro	Gly	Pro	Gly	Gly	Ser	Val	Asp	Ile	Val	Ala	Met	Asp	Glu	Gly
385					390					395				400	

Ser	Glu	Ala	Ser	Ser	Cys	Ser	Ser	Ala	Leu	Ala	Ser	Lys	Pro	Ser	Pro
									410				415		

Glu	Gly	Ala	Ser	Ala	Ala	Ser	Phe	Glu	Tyr	Thr	Ile	Leu	Asp	Pro	Ser
								420	425				430		

Ser	Gln	Leu	Leu	Arg	Pro	Trp	Thr	Leu	Cys	Pro	Glu	Leu	Pro	Pro	Thr
								435	440				445		

Pro	Pro	His	Leu	Lys	Tyr	Leu	Tyr	Leu	Val	Val	Ser	Asp	Ser	Gly	Ile
								450	455				460		

Ser	Thr	Asp	Tyr	Ser	Ser	Gly	Asp	Ser	Gln	Gly	Ala	Gln	Gly	Gly	Leu
								465	470				475		480

Ser	Asp	Gly	Pro	Tyr	Ser	Asn	Pro	Tyr	Glu	Asn	Ser	Leu	Ile	Pro	Ala
								485	490				495		

Ala	Glu	Pro	Leu	Pro	Pro	Ser	Tyr	Val	Ala	Cys	Ser				
								500	505						

<210> 6
 <211> 1527
 <212> DNA
 <213> Homo sapiens

<300>
 <301> Winkelman, J.C. et al.
 <302> The gene for the human erythropoietin receptor: analysis of the coding sequence and assignment to chromosome 19p
 <303> Blood
 <304> 76
 <305> 1
 <306> 24-30
 <307> 1990-07-01

<400>	6															
atggaccacc	tcggggcgtc	cctctggccc	caggtcggtc	ccctttgtct	cctgctcgct											60
ggggccgcct	gggcgcccccc	gcctaacctc	ccggacccca	agttcgagag	caaagcggcc											120
ttgctggcgg	cccgggggcc	cgaagagctt	cttgcttca	ccgagcggtt	ggaggacttg											180
gtgtgtttct	gggaggaagc	ggcgagcgct	ggggtgggccc	cgggcaacta	cagcttctcc											240
taccagctcg	aggatgagcc	atggaagctg	tgtcgctcgc	accaggctcc	cacggctcgt											300
ggtcgggtgc	gcttctggtg	ttcgctgcct	acagccgaca	cgtcgagctt	cgtcccccta											360

completeseq2

gagttgcgc	tcacagcagc	ctccggcgct	ccgcgatatac	accgtgtcat	ccacatcaat	420
gaagttagtgc	tcctagacgc	ccccgtgggg	ctggtggcgc	ggttggctga	cgagagcggc	480
cacgtagtgt	tgcgctggct	cccggcgct	gagacaccca	tgacgtctca	catccgctac	540
gaggtggacg	tctcggccgg	caaccggcca	gggagcgtac	agagggtgga	gatcctggag	600
ggccgcaccg	agtgtgtgct	gagcaacctg	cggggccgga	cgcgctacac	cttcggccgtc	660
cgcgcgcgt	tggctgagcc	gagcttcggc	ggcttctgga	gcgcctggtc	ggagcctgtg	720
tcgctgctgg	agcctagcga	cctggacccc	ctcatcctga	cgctctccct	catcctcgtg	780
gtcattcctgg	tgctgctgac	cgtgctcgcg	ctgctctccc	accgcgggc	tctgaagcag	840
aagatctggc	ctggcatccc	gagcccagag	agcgagttt	aaggcctctt	caccacccac	900
aaggtaact	tccagctgtg	gctgtaccag	aatgatggct	gcctgtggtg	gagccctgc	960
accccttca	cggaggaccc	acctgcttcc	ctggaagtcc	tctcagagcg	ctgctggggg	1020
acgatgcagg	cagtggagcc	ggggacagat	gatgagggcc	ccctgctgga	gccagtggc	1080
agtgagcatg	cccaggatac	ctatctggtg	ctggacaaat	ggttgctgcc	ccggaacccg	1140
cccagtgagg	acctcccagg	gcctgggtgc	agtgtggaca	tagtggccat	ggatgaaggc	1200
tcagaagcat	cctcctgctc	atctgcttt	gcctcgaagc	ccagcccaga	gggagccctct	1260
gctgccagct	ttgagtacac	tatcctggac	cccagctccc	agctctgcg	tccatggaca	1320
ctgtgccctg	agctcccccc	taccccaccc	cacctaagt	acctgtacct	tgtggtatct	1380
gactctggca	tctcaactga	ctacagctca	ggggactccc	agggagccca	agggggctta	1440
tccgatgggc	cctactccaa	cccttatgag	aacagcctta	tcccagccgc	tgagcctctg	1500
ccccccagct	atgtggcttg	ctcttag				1527

<210> 7
<211> 508
<212> PRT
<213> Homo sapiens

<300>
<301> Winkelmann, J.C. et al.
<302> The Gene for the Human Erythropoietin Receptor: Analysis of the coding sequence and assignment to chromosome 19p
<303> Blood
<304> 76
<305> 1
<306> 24-30
<307> 1990-07-01

<400> 7

Met Asp His Leu Gly Ala Ser Leu Trp Pro Gln Val Gly Ser Leu Cys
1 5 10 15

completeseq2

Leu Leu Leu Ala Gly Ala Ala Trp Ala Pro Pro Pro Asn Leu Pro Asp
20 25 30

Pro Lys Phe Glu Ser Lys Ala Ala Leu Leu Ala Ala Arg Gly Pro Glu
35 40 45

Glu Leu Leu Cys Phe Thr Glu Arg Leu Glu Asp Leu Val Cys Phe Trp
50 55 60

Glu Glu Ala Ala Ser Ala Gly Val Gly Pro Gly Asn Tyr Ser Phe Ser
65 70 75 80

Tyr Gln Leu Glu Asp Glu Pro Trp Lys Leu Cys Arg Leu His Gln Ala
85 90 95

Pro Thr Ala Arg Gly Arg Val Arg Phe Trp Cys Ser Leu Pro Thr Ala
100 105 110

Asp Thr Ser Ser Phe Val Pro Leu Glu Leu Arg Val Thr Ala Ala Ser
115 120 125

Gly Ala Pro Arg Tyr His Arg Val Ile His Ile Asn Glu Val Val Leu
130 135 140

Leu Asp Ala Pro Val Gly Leu Val Ala Arg Leu Ala Asp Glu Ser Gly
145 150 155 160

His Val Val Leu Arg Trp Leu Pro Pro Pro Glu Thr Pro Met Thr Ser
165 170 175

His Ile Arg Tyr Glu Val Asp Val Ser Ala Gly Asn Arg Pro Gly Ser
180 185 190

Val Gln Arg Val Glu Ile Leu Glu Gly Arg Thr Glu Cys Val Leu Ser
195 200 205

Asn Leu Arg Gly Arg Thr Arg Tyr Thr Phe Ala Val Arg Ala Arg Met
210 215 220

Ala Glu Pro Ser Phe Gly Gly Phe Trp Ser Ala Trp Ser Glu Pro Val
225 230 235 240

Ser Leu Leu Glu Pro Ser Asp Leu Asp Pro Leu Ile Leu Thr Leu Ser
245 250 255

Leu Ile Leu Val Val Ile Leu Val Leu Leu Thr Val Leu Ala Leu Leu
260 265 270

completeseq2

Ser His Arg Arg Ala Leu Lys Gln Lys Ile Trp Pro Gly Ile Pro Ser
275 280 285

Pro Glu Ser Glu Phe Glu Gly Leu Phe Thr Thr His Lys Gly Asn Phe
290 295 300

Gln Leu Trp Leu Tyr Gln Asn Asp Gly Cys Leu Trp Trp Ser Pro Cys
305 310 315 320

Thr Pro Phe Thr Glu Asp Pro Pro Ala Ser Leu Glu Val Leu Ser Glu
325 330 335

Arg Cys Trp Gly Thr Met Gln Ala Val Glu Pro Gly Thr Asp Asp Glu
340 345 350

Gly Pro Leu Leu Glu Pro Val Gly Ser Glu His Ala Gln Asp Thr Tyr
355 360 365

Leu Val Leu Asp Lys Trp Leu Leu Pro Arg Asn Pro Pro Ser Glu Asp
370 375 380

Leu Pro Gly Pro Gly Gly Ser Val Asp Ile Val Ala Met Asp Glu Gly
385 390 395 400

Ser Glu Ala Ser Ser Cys Ser Ser Ala Leu Ala Ser Lys Pro Ser Pro
405 410 415

Glu Gly Ala Ser Ala Ala Ser Phe Glu Tyr Thr Ile Leu Asp Pro Ser
420 425 430

Ser Gln Leu Leu Arg Pro Trp Thr Leu Cys Pro Glu Leu Pro Pro Thr
435 440 445

Pro Pro His Leu Lys Tyr Leu Tyr Leu Val Val Ser Asp Ser Gly Ile
450 455 460

Ser Thr Asp Tyr Ser Ser Gly Asp Ser Gln Gly Ala Gln Gly Gly Leu
465 470 475 480

Ser Asp Gly Pro Tyr Ser Asn Pro Tyr Glu Asn Ser Leu Ile Pro Ala
485 490 495

Ala Glu Pro Leu Pro Pro Ser Tyr Val Ala Cys Ser
500 505