

R V COLLEGE OF ENGINEERING

(An autonomous institution affiliated to VTU, Belgaum)

DEPARTMENT OF MATHEMATICS

VECTOR CALCULUS, LAPLACE TRANSFORM AND NUMERICAL METHODS (22MA21A) UNIT 1: VECTOR DIFFERENTIATION

TUTORIAL SHEET-1

1. If
$$\phi(x, y, z) = xy^2z^3 - x^3y^2z$$
, then $|\nabla \phi|$ at $(1, -1, 1)$ is _____.
Ans: $2\sqrt{2}$

- 2. The maximum directional derivative of $\phi(x, y, z) = x^2y + yz^2 xz^3$ at (-1,2,1) is ____. Ans: $\sqrt{78}$
- 3. If $\phi(x, y, z) = x^2 + \sin y + z$ then $|\nabla \phi|$ at $\left(0, \frac{\pi}{2}, 1\right)$ is _____. Ans: \hat{k}
- 4. Find the unit normal vector to the surface $\phi(x,y,z) = x^2y + y^2z + xz^2 5$ at the point (1,-1,2).

 Ans: $\frac{1}{\sqrt{38}}(2\hat{\imath} 3\hat{\jmath} + 5\hat{k})$
- 5. Find the constants a and b so that the surface $3x^2 2y^2 3z^2 + 8 = 0$ is orthogonal to the surface $ax^2 + y^2 = bz$ at the point (-1, 2, 1). Ans: $a = \frac{4}{9}$, $b = \frac{40}{9}$
- 7. Find the directional derivative of $\phi(x,y,z)=xyz-xy^2z^3$ at (1,2,-1) in the direction of $\hat{\iota}-\hat{\jmath}-3\hat{k}$.

 Ans: $\frac{29}{\sqrt{11}}$

R V COLLEGE OF ENGINEERING

(An autonomous institution affiliated to VTU, Belgaum)

DEPARTMENT OF MATHEMATICS

VECTOR CALCULUS, LAPLACE TRANSFORM AND NUMERICAL METHODS (22MA21A)

UNIT 1: VECTOR DIFFERENTIATION

TUTORIAL SHEET-2

1. If
$$\vec{f} = 3x^2\hat{\imath} + 5xy^2\hat{\jmath} + xyz^3\hat{k}$$
 then find $div \vec{f}$ at (1, 2, 3) is ____. **Ans: 80**

2. If
$$\vec{f} = (y^2 + z^2 - x^2)\hat{\imath} + (z^2 + x^2 - y^2)\hat{\jmath} + (x^2 + y^2 - z^2)\hat{k}$$
 then find $div \ \vec{f}$ and $curl \ \vec{f}$
Ans: $div \ \vec{f} = -2(x + y + z) \ curl \ \vec{f} = 2[(y - z)\hat{\imath} + (z - x)\hat{\jmath} + (x - y)\hat{k}]$

- 3. Show that the vector field $\vec{f} = (x+3y)\hat{\imath} + (y-3z)\hat{\jmath} + (x-2z)\hat{k}$ is solenoidal.
- 4. Determine the constant a such that the vector field $\vec{f} = 3x\hat{\imath} + (x+y)\hat{\jmath} az\hat{k}$ is solenoidal.

Ans: 4

5. If
$$\vec{f} = x^2 \hat{\imath} + y^2 \hat{\jmath} + z^2 \hat{k}$$
 and $\vec{g} = yz\hat{\imath} + xz\hat{\jmath} + xy\hat{k}$ then show that $\vec{f} \times \vec{g}$ is solenoidal.

6. If
$$\vec{f} = (2x + 3y + az)\hat{\imath} + (bx + 2y + 3z)\hat{\jmath} + (2x + cy + 3z)\hat{k}$$
 is irrotational vector field, then find the constants a, b, c .

Ans:
$$a = 2, b = 3, c = 3$$

7. If
$$\phi = x^2y + 2xy + z^2$$
 then show that $|\nabla \phi|$ is irrotational.

8. If
$$\phi = x^2 - y^2$$
 then show that ϕ satisfies the Laplacian equation.

9. If
$$\phi = 2x^2yz^3$$
 then find $\nabla^2 \phi$ at $(1, 1, 1)$.

Ans: 1

10. If
$$\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$$
 and $r = |\vec{r}|$ then show that $r^n\vec{r}$ is irrotational for all values of n and solenoidal for $n = -3$.

11. Show that
$$\vec{f} = (6xy + z^3)\hat{\imath} + (3x^2 - z)\hat{\jmath} + (3xz^2 - y)\hat{k}$$
 is irrotational. Find the function ϕ such that $\vec{f} = \nabla \phi$.

Ans:
$$\phi = 3x^2y + xz^3 - yz$$
.

R V COLLEGE OF ENGINEERING

(An autonomous institution affiliated to VTU, Belgaum)

DEPARTMENT OF MATHEMATICS

VECTOR CALCULUS, LAPLACE TRANSFORM AND NUMERICAL METHODS (22MA21A)

UNIT 1: VECTOR DIFFERENTIATION

TUTORIAL SHEET-3

- 1. Compute the gradient of the scalar potentials
 - a) $f = rz \cos \theta$ in the cylindrical coordinate system (r, θ, z) .

 - b) f = r² cos θ in the cylindrical coordinate system (r,θ,z).
 c) f = r² + 2r cos θ e² sin θ in the cylindrical coordinate system (r,θ,z).
 d) f = 3r² sin θ + e² cos φ r in the spherical coordinates (r,θ,φ).
 e) f = r sin θ cos φ in the spherical coordinates (r,θ,φ).
- f) $g = \frac{zr^3}{\cos \theta}$ in the cylindrical coordinate system (r, θ, z) . 2. If $\vec{F} = r^2 \cos \theta \, \hat{e}_r + \frac{1}{r} \hat{e}_\theta + \frac{1}{r \sin \theta} \hat{e}_\phi$ in the spherical coordinates (r, θ, ϕ) , determine $div \vec{F}$ and $curl \vec{F}$.
- 3. Prove that $\vec{F} = rz \sin 2\theta \left(\hat{e}_r + \cot 2\theta \, \hat{e}_\theta + \frac{r}{2z} \hat{e}_z \right)$ is irrotational in the cylindrical
- coordinate system (r, θ, z) .

 4. Prove that $\vec{F} = \frac{\cos \theta}{r^3} \left(\frac{1}{\sin \theta} \hat{e}_r \frac{1}{\cos \theta} \frac{1}{r} \hat{e}_\theta + r^4 \hat{e}_\phi \right)$ is solenoidal in spherical coordinates (r, θ, ϕ) .
- 5. Show that $\nabla^2 f = 2r^2 \cos \theta$, if $f = r^2 z^2 \cos 2\theta$.
- 6. Show that $\vec{F} = \frac{2\cos\theta}{r^3} \hat{e}_r + \frac{\sin\theta}{r^3} \hat{e}_\theta$ is solenoidal in spherical coordinates (r, θ, ϕ) .

7.