Assignment 3

Course: Computational Physics (PHYS4150/8150) – Professor: Dr. Ziyang Meng Tutor: Mr. Menghan Song, Mr. Ting-Tung Wang Due date: Nov. 7th, 2022

1. Stationary Schrödinger Equation

Use the Numerov matrix method to solve the stationary Schrödinger equation with potential $V = |x|^3$. Similar with the case of quantum harmonic oscillator, we set the term $\gamma^2 = 2m\omega/\hbar = 2$ and $N = 2(4\pi + \frac{x_t}{dx})$ (we set as N = 224) with $x_t = 10$ and dx = 0.1. Therefore, the range of x is from -11.15 to 11.15. Please numerically solve the equation and:

(a) Plot the numerical probability density $P_n(x) = |\psi_n(x)|^2$ for n = 1, ..., 5 and see whether it is the same as the following:

Figure 1: 1(a)

- (b) Show the five lowest eigen-energies.
- 2. (a) Time-dependent Schrödinger Equation Please use the Crank-Nicolson Scheme to numerically solve the time-dependent Schrödinger equation. Using the same scheme as in the lecture: $\hbar=m=1$, $x_0=-10$, L=40, $\sigma_0=1$, $k_0=7$, N=401, $\tau=0.03$, h=0.1, (the range of x is -20 to 20) and the initial

condition is $\Psi(t=0,x)=\frac{1}{\sqrt{\sigma_0\sqrt{2\pi}}}e^{ik_0x}e^{-\frac{1}{2}\frac{(x-x_0)^2}{2\sigma_0^2}}$. The difference is we add a sinusoidal potential barrier $V(x)=\frac{k_0^2}{2}cos(\frac{\pi x}{6})$ at -3< x<3. Please use an animation to show the probability density $P(t,x)=|\Psi_n(t,x)|^2$ for t from 0 to 15. (Attached below is a screenshot at $t=150\tau$)

Figure 2: 2

(b) Show that the probability density P(t, x) is conserved during time evolution.