

Department of Mathematics and Natural Sciences

Semester: Spring 2024

Midterm Examination

Course Title: MMATHEMATICS III: COMPLEX VARIABLES & LAPLACE TRANSFORMATIONS

Course Code: MAT 215

Total marks: 40 Date: March 9, 2024 Times: 1 hour

Answer any FOUR:

Q1. [3+3+4]

a. Find the modulus and argument of $\frac{2-i}{2+i}$

b. Sketch the region in xy-plane represented by $Im(z^2) = 4$

c. Evaluate $\lim_{z\to 0} \left(\frac{\sin z}{z}\right)^{1/z^2}$

Q2. [5+5]

a. Show that the function *sinh z* is analytic.

b. Show that $\sin^{-1}z = -i \ln[iz \pm (1-z^2)^{\frac{1}{2}}]$.

Determine whether the following function u is harmonic. For harmonic function, find the conjugate harmonic function v and express u + iv as an analytic function of z.

$$u = e^{-x}(x\sin y - y\cos y)$$

Q4. [5+5]

a. Find all the values of z for which $z^5 = (-4 + 4i)$.

b. If
$$f(z) = \begin{cases} \frac{z^2 - 4}{z^2 - 3z + 2}, & z \neq 2 \\ kz^2 + 6, & z = 2 \end{cases}$$
, find **k** such that $f(z)$ becomes continuous at $z = 2$.

Q5. [5+5]

a. Let
$$f(z) = \frac{2z-1}{3z+2}$$
. Prove that $\lim_{h\to 0} \frac{f(z_0+h)-f(z_0)}{h} = \frac{7}{(3z_0+2)^2}$ provide $z_0 \neq -\frac{2}{3}$.

b. If $(1+i)^{2024} = x + iy$, then find (x, y).