Recursive Estimation

Probability review CRV (continuous random variable)

KAHL-MANN:

set of possible outcomes: χ (e.g.: χ = [0,1]) $\;$; random variable: imes $\;$; some value imes lakes: $ar{\mathbf{x}}$ \in χ

probability density func. PDF: $p_x(\bar{x})$ ("density" of probability of event) $(p_x(\bar{x}) \ge 0 \ \forall \bar{x} \in \mathcal{X} ; \int_{\mathcal{X}} p_x(\bar{x}) d\bar{x} = 1)$ probability function: $\Pr(x \in [a,b]) = \int_a^b p_x(\bar{x}) d\bar{x}$ (probability that $x \in [a,b]$)

cumulative distrib. func. CDF: $F_{x}(\bar{x}) = \int_{-\infty}^{\bar{x}} p(\bar{x}) d\bar{x}$ (probability that $x < \bar{x}$)

v with $p_v(\overline{v}) = \{1 \text{ for } \overline{v} \in (0,1), 0 \text{ else } (e.g. \text{ rand in mallab})\}$ uniform rand var.:

 $p_{xy}(\bar{x},\bar{y})$ (prob. that $x = \bar{x}$ AND $y = \bar{y}$) ($p_{xy}(\bar{x},\bar{y}) > O \ \forall \bar{x} \in \mathcal{X}, \bar{y} \in \mathcal{Y}$; $\int_{\mathcal{X}} \int_{\mathcal{Y}} p_{xy}(\bar{x},\bar{y}) \, d\bar{y} \, d\bar{x} = 1$) joint PDF:

 $p_{\mathbf{x}}(\bar{\mathbf{x}}) = \int_{\mathcal{Y}} p_{\mathbf{x}\mathbf{y}}(\bar{\mathbf{x}}, \bar{\mathbf{y}}) d\bar{\mathbf{y}}$ ("sum" over all y prob.); $p_{\mathbf{x}|\mathbf{z}}(\bar{\mathbf{x}}|\bar{\mathbf{z}}) = \int_{\mathcal{Y}} p_{\mathbf{x}\mathbf{y}|\mathbf{z}}(\bar{\mathbf{x}}, \bar{\mathbf{y}}|\bar{\mathbf{z}}) d\bar{\mathbf{y}}$ marginalization rule:

 $p_{x|y}(\bar{x}|\bar{y}) = p_{xy}(\bar{x},\bar{y})/p_{x}(\bar{y}) \quad \left(prob(x=\bar{x} \text{ GIVEN THAT } y=\bar{y})\right); \quad p_{x|yz}(\bar{x}|\bar{y},\bar{z}) = \frac{p_{xy|z}(\bar{x},\bar{y}|\bar{z})}{p_{y|z}(\bar{y}|\bar{z})}$ conditioning rule:

 $p_{\mathbf{x}}(\bar{\mathbf{x}}) = \int_{\mathbf{y}} p_{\mathbf{x}|\mathbf{y}}(\bar{\mathbf{x}}|\tilde{\mathbf{y}}) \cdot p_{\mathbf{y}}(\tilde{\mathbf{y}}) d\tilde{\mathbf{y}} \qquad p_{\mathbf{x}|\mathbf{y}}(\bar{\mathbf{x}}|\tilde{\mathbf{y}}) = p_{\mathbf{y}}(\bar{\mathbf{y}}) \cdot p_{\mathbf{x}|\mathbf{y}}(\bar{\mathbf{x}}|\bar{\mathbf{y}}) = p_{\mathbf{x}}(\bar{\mathbf{x}}) p_{\mathbf{y}|\mathbf{x}}(\bar{\mathbf{y}}|\bar{\mathbf{x}})$ usefull relations:

independence: if $p_{x|y}(\bar{x}|\bar{y}) = p_x(\bar{x}) \rightarrow x, y$ are independent $\rightarrow p_{x,y}(\bar{x},\bar{y}) = p_x(\bar{x}) \cdot p_y(\bar{y})$

if $p_{x|y,z}(\bar{x}|\bar{y},\bar{z}) = p_{x|z}(x|z) \rightarrow x,y$ are cond. indep. on $z \rightarrow p_{x,y|z}(\bar{x},\bar{y}|\bar{z}) = p_{x|z}(\bar{x}|\bar{z}) \cdot p_{y|z}(\bar{y}|\bar{z})$ conditional independence:

expected value: $E_{x}(x) = \int_{z} \widetilde{x} \cdot p_{x}(\widetilde{x}) d\widetilde{x}$ (aug. value x is expected to take) $E_{x,y}[f(x,y)] = \int_{y} \int_{x} f(\tilde{x},\tilde{y}) \cdot p_{xy}(\tilde{x},\tilde{y}) d\tilde{x}d\tilde{y}$

 $E_{x}[f(x)] = \int_{\mathcal{X}} f(x) \cdot p_{x}(x) dx$ (expected value of f(x))

"unconscious statistician": $E_{\gamma}[y] = \int_{y} \widetilde{y} p_{\gamma}(\widetilde{y}) d\widetilde{y} = \int_{2} g(\widetilde{x}) p_{\gamma}(\widetilde{x}) d\widetilde{x}$ where y = g(x)

/Var_z[z]=E((z-E[z])·(z-E[z])^T] variance: $Var_x[x]=E[(x-E[x])^2]=E[x^2]-E[x]^2$ (squared aug. dish from E[x]) $Var_{x}[f(x)] = E_{x}[f(x)^{2}] - E_{x}[f(x)]^{2}$

affine transform: $y=mx+b \rightarrow E_y[y]=mE_x[x]+b$; $Var_y[y]=m^2\cdot Var_x[x]$

 $y = \underline{M} \underline{x} + \underline{b} \Rightarrow E_{\mathbf{x}}[\underline{y}] = \underline{M} E_{\underline{x}}[\underline{x}] + \underline{b} ; Var_{\mathbf{x}}[\underline{y}] = \underline{M} Var_{\underline{x}}[\underline{x}] \underline{M}^{\mathsf{T}}$

 $p_{\mathbf{x}}(\bar{\mathbf{x}}) \to F_{\mathbf{x}}(\bar{\mathbf{x}}) \to F_{\mathbf{x}}(\mathbf{x}) = \mathbf{U} \to \bar{\mathbf{x}} = F_{\mathbf{x}}^{-1}(\bar{\mathbf{u}}) \qquad (\ \mathbf{U} : uniform rand.var.\ from e.g. mallab)$ sample PDF:

sample joint PDF:

 $\bar{y} = g(\bar{x})$: $p_{y}(\bar{y}) = p_{x}(g^{inv}(\bar{y})) / \left| \frac{dq}{dx} (g^{inv}(\bar{y})) \right|$ change of variable:

 $\overline{y} = g(\overline{x}) \qquad : p_{x}(\overline{y}) = p_{x}(g^{inv}(\overline{y})) / \left| \frac{aq}{dx}(g^{inv}(\overline{y})) \right|$ $(\overline{y}_{1}, \overline{y}_{2}, ...) = G(\overline{x}_{n}, \overline{x}_{2}, ...) : p_{x}(\overline{y}) = p_{x}(G^{inv}(\overline{y})) / \left| J_{G}(G^{inv}(\overline{y})) \right|$ $avid | J_{G}| = |det \begin{pmatrix} \partial G_{n}/\partial x_{n} & \partial G_{n}/\partial x_{n} \\ \partial G_{n}/\partial x_{n} & \partial G_{n}/\partial x_{n} \end{pmatrix} |$

 $\bar{Y} = \underline{M} \cdot \bar{X} + \underline{p} : P_{\bar{X}}(\bar{Y}) = P_{\bar{X}}(\underline{M}^{1}(\bar{X} - \bar{p})) / |\text{det}(\underline{M})|$

 $p(\underline{y}) = \frac{1}{2\pi^{D/2}} \cdot \det(\underline{\underline{z}})^{1/2} \cdot \exp\left(-\frac{1}{2}(\underline{y} - \underline{\mu})^T \underline{\underline{z}}^{-1}(\underline{y} - \underline{\mu})\right) \quad \underline{\mu} \in \mathbb{R}^D: \text{ mean vector } \underline{\underline{z}} \in \mathbb{R}^{D \times D}: \text{ covariance matrix}$ gaussian rand val:

if newleally indep val.

if $p(\underline{x})$ and $p(\underline{y})$ gaussian + independent, then $p(\underline{x},\underline{y})$ also gaussian: $p(x,y) = \exp(-\frac{1}{2} \begin{bmatrix} x-\mu_x \end{bmatrix}^T \begin{bmatrix} \Xi_x^{-1} & 0 \\ 0 & \Xi_y^{-1} \end{bmatrix} \begin{bmatrix} x-\mu_x \\ y-\mu_y \end{bmatrix}$ jointly gaussian RV:

 $\chi = \underline{M} \underline{x} + \underline{b} \rightarrow \mu_{y} = \underline{M} \mu_{x} + \underline{b} ; \underline{\xi}_{y} = \underline{M} \underline{\xi}_{x} \underline{M}^{T}$ (affine transforms preserve GRV form) affine transform:

sample PDF $p_x(\overline{x})$ N times producing particles \overline{x}_n (n=1,...,N) (density of particles \cong PDF) particles from PDF:

 $p_{\mathbf{x}}(\bar{\mathbf{x}}) \approx \frac{1}{N} \sum_{n=1}^{N} S(\bar{\mathbf{x}} - \bar{\mathbf{x}}_n)$ (5: Dirac della for CRV 'Kronecker dela for DRV) PDF from particles:

transforms with particles: given $\overline{y} = g(\overline{x}) \rightarrow \overline{y}_n = g(\overline{x}_n)$ for n=1,...,N (transform every particle toget new particles)

given $p_y(\bar{x}_n) \rightarrow \bar{y}_n = \text{sample DRV } p_y(\bar{x}_n) \text{ N kines } (\bar{y}_n \text{ will be a subset of } \bar{x}_n \text{ with PDF } p_y)$ resample particles:

```
Srobability occies DRV (discrete random variable) same as CRV except:
   1) X finite set of values
                                                                       2) p_{\mathbf{x}}(\bar{\mathbf{x}}): probability of picking value \bar{\mathbf{x}}
                                                                                                                                                                                  3) integrals over {\mathcal X} become summs over {\mathcal X}
   Bayes' Theorem
                                                                             p(x): prior belief of state (before observing, what is prob. of x \stackrel{?}{.})
     p(x|z) = \frac{p(z|x)p(x)}{p(z)}
                                                                            p(z|x): Observation model (for given x, what is prob. of observing z)
                                                                            p(x|z): posteriori belief of state (for given observation z, what is prob of state x)
    X: unknown system state
z: observation of state
                                                                             p(z) = \int_{X} p(z|\tilde{x}) p(\tilde{x}) d\tilde{x} : normalization constant
  p(x|z_{4...}z_{N}) = \frac{p(x) \prod_{i=4}^{N} p(z_{i}|x)}{\int_{x} p(\widehat{x}) \prod_{i=4}^{N} p(z_{i}|\widehat{x}) d\widehat{x}}
                                                                                       (form for multiple z; observations that are conditionally independent on x)
 Bayesian Tracking
  state model: p(x(k)|x(k-1))
                                                                              posteriori state belief: p(x(k)|z(1:k)) (PDF of x(k) given obs. at linus 1,...,k)
   observ. model: p(z(k)|x(k)) priori state belief: p(x(k)|z(1:k-1)) (PDF of x(k) given obs. at times 1,...,k-1)
p(x(k)|z(1:k-1)) = \int_{\mathcal{X}} p(x(k)|x(k-1),z(1:k-1)) p(x(k-1)|z(1:k-1)) dx(k-1) \qquad (\bullet \text{ known}, \bullet \text{ inleg. var.}, \bullet \text{ result var.})
             prior state model prev: posterior
• posteriori update: new measurement _ ______ leave out since z(k) and z(1:k-1) are condit. indep. on x(k)
  p(x(k)|z(1:k)) = p(x(k)|z(k),z(1:k-1)) = p(z(k)|x(k),z(1:k-1)) \cdot p(x(k)|z(1:k-1)) / p(z(k)|z(1:k-1)) \cdot p(x(k)|z(1:k-1)) / p(z(k)|z(1:k-1)) \cdot p(x(k)|z(1:k-1)) \cdot p(x
📀 discrete state space implementation:
                                                                                                                                                                                             Observ. model prior

\begin{pmatrix}
Q_{0|0}^{i} = \rho_{x(0)}(i) \\
Q_{0|0}^{i} = \rho_{x(0)}(i)
\end{pmatrix}

(i=0,..,N-1)
                                                                                                                                  \chi = \{0,..,N-1\}

\alpha_{k|k-1}^{i} = \sum_{j=0}^{N-1} p_{x(k)|x(k-1)}(i|j) \alpha_{k-1|k-1}^{i} \quad (i=0,...,N-1)

\alpha_{k|k}^{i} = \frac{p_{z(k)|x(k)}(\overline{z}(k)|i) \alpha_{k|k-1}^{i}}{\sum_{j=0}^{N-1} p_{z(k)|x(k)}(\overline{z}(k)|j) \alpha_{k|k-1}^{j}} \quad (i=0,...,N-1)

                                                                                                                                 \alpha_{k|k}^{i} = p_{x(k)|z(1:k)} (i|z(1:k)) posteriori discrete PDF (i=0,..,N-1)
                                                                                                                                Q_{k|k-1}^{i} = p_{x(k)|z(4:k-1)} (i|z(4:k-1))
                                                                                                                                                                                                      priori discrete PDF (i=0,.., N-1)
                                                                                                                                 p_{x(k)|x(k-1)}(i|j): state model; p_{z(k)|x(k)}(\overline{z}(k)|j): observ. model
                                                              z = h(x, w) \longrightarrow \rho_{z|x}(\bar{z}|\bar{x}) = \text{prob. of observing } \bar{z}, \text{ given state } \bar{x}
 observation model:
     x=x(k): system state
z=z(k): observation
w=w(k): obs. noises
                                                              W = h^{inv}(x,z) \qquad / = p_{w|x}(\overline{w}|\overline{x}) / |J_h|(\overline{x},\overline{w}) \qquad (change of variable)
                                                                                                                                 = p_w(\overline{w})/|J_h|(\overline{x},\overline{w}) (w,x are independ)
                                                             |J_h|(x,w)=|det(\partial h_i/\partial w_i)|
                                                                                                                                 =p_{\mathbf{w}}\left(\,\mathsf{h}^{\mathsf{inv}}(\bar{\mathbf{x}},\bar{\mathbf{z}})\right)/|\mathsf{J}_{\mathsf{h}}|(\bar{\mathbf{x}},\mathsf{h}^{\mathsf{inv}}(\bar{\mathbf{x}},\bar{\mathbf{z}}))\ (\,\mathsf{h}\,\mathsf{is}\,\mathsf{invertible}\,\mathsf{in}\,\mathsf{w})
                                                            x(k)=g(x(k-1),v(k-1))
• slale model:
                                                                                                                              p(x(k)|x(k-1)) = prob. neset state \overline{x}(k), given x(k-1)
   (x(k): system state )
v(k): sys. noises
                                                                   (analog to obs. model)
                                                                                                                              = p_{\nu}(g^{in\nu}(x(k-1),x(k))) / |J_{g}|(x(k-1),g^{in\nu}(x(k-1),x(k)))
                                                                                                                                       \hat{x}^{\text{ML}} = \underset{z \in X}{\text{argmax}} p_{z|x}(\bar{z}|\bar{x})
estimates of state:
                                                                                                                                                                                                              (p_{z|x}(\bar{z}|\bar{x}): observation model)
                                                          - maximum Likelyhood (ML):
   - mascinum a posteriori (MAP): \hat{x}^{\text{MAP}} = \underset{z \in \mathcal{X}}{\bar{x} \in \mathcal{X}} p_{x|z}(\bar{x}|\bar{z}) = \underset{z \in \mathcal{X}}{\bar{x} \in \mathcal{X}} p_{z|x}(\bar{z}|\bar{x}) \cdot p_{x}(\bar{x})
                                                                                                                                                                                                               (p_{x|z}(\bar{x}|\bar{z}): a postenori belief)
  - recursive least square (RLS): same as only posteriori update of Kalmann-Filler
```

```
Xalman-Filler (Bayesian tracking with: linear models, gaussian noise - gausian state beliefs)
 state model: p(x(k)|x(k-1)) priori state belief: p_{x_p}(k) = p(x(k)|z(1:k-1))
                                                                                                                      (xp randvar ; $p mean ; Pp variance)
 observ. model: p(z(k)|x(k)) posteriori state belief: p_{x_m}(k) = p(x(k)|z(1:k))
                                                                                                                      (xm randvar ; $m mean ; Pm variance)
 system models: x(k) = A \cdot x(k-1) + B \cdot v(k-1) + v(k-1) gausian noises: p_{x_m}(0)
                                                                                                                  (xm0) rand var. ; xo mean ; Po variance)
                         z(k)=H\cdot x(k)+w(k)
                                                                                                                      ( v randvar ; 0 mean ; Q variance)
                                                                                                     p(v(k))
                                                                                                                      (w randwar ; O mean ; R variance)
                                                                                                     p(w(k))
• priori updale: pxp(k)=
p(x(k)|x(k-1)) · pxm(k-1) dx(k-1)
           hard to work with! I teclure 6 for proof ...
                                                                                                   p(x(k)|x(k-1))= slate model
                                                                                                   \propto \exp(-\frac{1}{2}(x|k)-Ax(k-1)-Bu(k-1))'Q'(x|k)-Ax(k-1)-Bu(k-1))
   beller approach: use formula xp(k)=Axm(k-1)+Bu(k-1)+v(k-1)
  \Rightarrow \hat{x}_{\rho}(k) = E[x_{\rho}(k)] = A \cdot E[x_{m}(k-1)] + u(k-1) + E[v(k-1)] = A \hat{x}_{m}(k-1) + Bu(k-1)
                                                                                                        f(x) = g(x) = Ax(k-1) + Bu(k-1) + v(k-1)
                                                                                                        - v(k-1) = q^{inv}(...) = x(k) - Ax(k-1) - Bu(k-1)
 P_{\rho}(k) = V_{\alpha r}[x_{\rho}(k)] = E[(x_{\rho}(k) - \hat{x}_{\rho}(k)) \cdot (x_{\rho}(k) - \hat{x}_{\rho}(k))] = ... = AP_{m}(k-1)A' + Q
                                                                                                        |-|J_g|=|\det(\frac{\partial g_i}{\partial v_i})|=1
• posteriori updale: p_{x_m}(\bar{x}_m) \propto p(\bar{z}|\bar{x}_m) \cdot p_{x_p}(\bar{x}_m) \leftarrow k shipped for
                                                                                                        L p,(v) c exp(-2·v Q'v)
    p_{x_m}(\overline{x}_m) \propto \exp\left(-\frac{1}{2}\left(\overline{z}-H\overline{x}_m)^T \overline{R}^{-1}(\overline{z}-H\overline{x}_m) + \overline{(\overline{x}_m-\hat{x}_p)^T} \overline{P}^{-1}(\overline{x}_m-\hat{x}_p)\right)\right) = 0
                                                                                                   p(z(k)|x(k)) = observ.model
     → P_{m}(k) = ... = (P_{p}(k)^{-1} + H^{T}R^{-1}H)^{-1} (P_{p}(k)^{-1} + P_{m}^{T}R^{-1}H)^{-1}
                                                                                                      \propto \exp\left(-\frac{1}{2}(z(k)-H_X(k))^T R^{-1}(z(k)-H_X(k))\right)
     \Rightarrow \hat{x}_{m}(k) = ... = \hat{x}_{p}(k) + P_{m}(k) H^{T} R^{1}(z(k) - H\hat{x}_{p}(k))
                                                                                                      <sup>2</sup> analog to state model
• alt equations for posterior update:
                                                                                       A,H,Q,R can be func of k. if they are const. I known then
     K(k)=Po(k)HT+R)-1 (Kalman Filler gain)
                                                                                       (KIK), Pm(K), Pp(K) can be computed offline!
     \hat{x}_{m}(k) = \hat{x}_{p}(k) + K(k)(\bar{z}(k) - H\hat{x}_{p}(k))
    Pm(k)=(I-K(k)H)Pp(k) [=(I-K(k)H)Pp(k)(I-K(k)H)T+K(k)RK(k)T: Joseph form, more comp expensive, but less numerical error]
Heady state Kalmann-Filter (Pp(K), Pm(K), K(K) might converge for K+00. can simplify implementation)
 P_{\omega} = \lim_{k \to \infty} P_{\rho}(k) \rightarrow P_{\omega} = A P_{\omega} A^{T} + Q - A P_{\omega} H^{T} (H P_{\omega} H^{T} + R)^{-1} H P_{\omega} A^{T} 
(P_{\rho}(k) = P_{\rho}(k+1) \rightarrow \text{Siccalic eq.} \rightarrow \text{solve for } P_{\omega} = ...) \qquad \hat{x}_{m}(k) = \underbrace{(I - K_{\omega} H) A}_{k} \hat{x}_{m}(k-1) + \underbrace{(I - K_{\omega} H) B}_{\omega} U(k-1) + K_{\omega} \Xi(k)
 K_{\infty} = \lim_{k \to \infty} K(k) \rightarrow K_{\infty} = P_{\infty} H^{T} (HP_{\infty} H^{T} + R)^{-1}
Lallemative formulation: \hat{x}_{m}(k) = A\hat{x}_{m}(k-1) + B_{U}(k-1) + K_{\infty}(\Xi(k) - \Xi(k)); \hat{\Xi}(k) = H(A\hat{x}(k-1) + B_{U}(k-1))
                                                                                                                                      (Luenberger form)
 \left[ \text{error dynamics} : e(k) = x(k) - x_m(k) = ... = (I - K_oH)A e(k-1) + (I - K_oH)v(k-1) - K_ow(k) \rightarrow E[e(k)] = (I - K_oH)A \cdot E[e(k-1)] \right] 
                                                                          · |a|<1: one solution for any Pp(1)
 necessary presumptions:

 |a|≥1,h+0,q>0: one solution for any Pp(1)

 • Po must exist and be positive semidefinite and constant for any initial condition P(1)
                                                                          · |a|≥1, h=0, q>0: no solution
      e.g. SISO rank 1 system: P_{\infty} = \frac{\alpha^2 r P_{\infty}}{h^2 P_{\infty} + r} + q  | |\alpha| \ge 1, h = 0, q = 0: In solutions, one like \uparrow, one for other P_{\rho}(1)
                                                                          • |\alpha| \ge 1, h=0, q=0: one solution P_{\infty}=0 for P_{p}(1)=0 (unstable)
 • error must go to 0 \Leftrightarrow error dynamics must be stable \Leftrightarrow (\lambda_i | < 1 \ \forall i \ ; \ \lambda_i = EW((I-K_BH)A)
  alternative (equivalent) presumptions:

    (A, H) is detectable : all unobservable states are stable

                                                                                                   rank(A^{T}-\lambda_{i}I | H^{T})=n
                                                                                                                                        \forall |\lambda_i| \ge 1; \lambda_i = EW(A)
                                                                                                    rank(\lambda, I-A|G)=n
   •(A,G) is pot stabilizable : all noiseless states are stable
                                                                                                                                      \forall |\lambda_i| \ge 1; \lambda_i = EW(A)
           ^{\sim}Q=GG^{T}
```

Extended Kalman-Killer (extension for nonlinear models. linearize at each timestep)

priori updale: (input v is integraled in q(x,v))

x(k)=q(x(k-1),v(k-1)) linearize at $x=x_m(k-1)$; v=E[v(k-1)]=0:

 $= A(k-1) \times (k-1) + \underline{L(k-1) \vee (k-1)} + \underline{q(\hat{x}_m(k-1),0) - A(k-1)\hat{x}_m(k-1)}$

 $= A(k-1) \times (k-1) + \tilde{\vee}(k-1) + \tilde{\vee}(k-1)$

🚶 analog derivation to ordinary Kalman-Filter:

 $\hat{x}_{p}(k) = A(k-1)\hat{x}_{m}(k-1) + \xi(k-1) = ... = q(\hat{x}_{m}(k-1),0)$

 $P_{\rho}(k) = A(k-1)P_{m}(k-1)A^{T}(k-1) + L(k-1)Q(k-1)L^{T}(k-1)$

EKF only approximales $\hat{x}_p, \hat{x}_m, P_p, P_m + n\sigma guarantees!$

posteriori update:

z(k)=h(x(k),w(k)) linearize at x=xp(k); w=E[w(k)]=0: H(k)

 $\approx h(\hat{\mathbf{x}}_{p}(k),0) + \frac{\partial h}{\partial \mathbf{x}}(\hat{\mathbf{x}}_{p}(k),0) \cdot (\mathbf{x}(k) - \hat{\mathbf{x}}_{p}(k)) + \frac{\partial h}{\partial \mathbf{w}}(\hat{\mathbf{x}}_{p}(k),0) \cdot \mathbf{w}(k)$

 $= H(k)x(k) + \underline{M(k)w(k)} + \underline{h(\hat{x}_{p}(k),0) - H(k)\hat{x}_{p}(k)}$

 $=H(k)_{x}(k)+\widetilde{w}(k)+S(k)$

🚶 analog derivation to ordinary Kalman-Eiller:

K(k)=Pp(k)H'(k)(H(k)Pp(k)H'(k)+M(k)R(k)M'(k))-1

 $\hat{\mathbf{x}}_{\mathbf{m}}(\mathbf{k}) = \hat{\mathbf{x}}_{\mathbf{p}}(\mathbf{k}) + K(\mathbf{k})(\Xi(\mathbf{k}) - H(\mathbf{k})\hat{\mathbf{x}}_{\mathbf{p}}(\mathbf{k}) - S(\mathbf{k}))$

 $= \hat{x}_{p}(k) + K(k)(\overline{z}(k) - h(\hat{x}_{p}(k), 0))$

 $P_m(k) = (I - K(k)H(k))P_p(k)$

Hybrid Kalman Filter (like EKF, but with continuous line state model) (don't use this. just discretize model!)

Particle Filter (Bayesian tracking with particles as PDFs)

use particles to approximate PDFs where particle density & probe density (particles generated by sampling PDF)

 $\mathbb{X}_{m}^{n}(k)$: n=1,...,N particles = samples of $p_{\times m}(k)$ $\bar{X}_{p}^{n}(k)$: n=1,..,N particles = samples of $\rho_{x,p}(k)$

• priori update: use $x_p(k) = q(x_m(k-1), \nu(k-1))$ on every particle of x_m to get new particles for x_p

 $\overline{X}_{p}^{n}(k) = q(\overline{X}_{m}^{n}(k-1), \upsilon(k-1), \overline{v}^{n}(k-1))$ $(\overline{v}^{n}(k-1) : noise samples)$

posleriori updale: $p_{x_m}(\bar{x}_m) \propto p(\bar{z} | \bar{x}_m) \cdot p_{x_p}(\bar{x}_m) = p(\bar{z} | \bar{x}_m) \cdot \sum_{n=1}^N \delta(\bar{x}_m - \bar{x}_p^n)$

> pxm(xp) c p(z|xp) = p(z|xp)/(Sin p(z|xp))~(normalize)

 $\Rightarrow \overline{X}_m^n = \text{sample DRV } p_{X_m}(\overline{X}_p^n) \text{ N times } \begin{cases} \text{ might want to add noise here as } \overline{X}_m^n \text{ is a subset of } \overline{X}_p^n, \text{ which can lead to sample} \end{cases}$ L'improverishment (all samples in one place) - particles no longer approx PDF Ce.g.: Mg=0,0g= Varg=KE,N-VA { K: hunig param; E;=max particle spread; N:#of particles; d:#dimensions of x

Separation Principle

for LTI systems with gaussian noise the steady-state Kalman-filter is the optimal state observer! and an LQR controler U(k)=F.x(k) is optimal in reducing a quadratic cost! combining the two yields linear-quadratic-gaussian (LQG) control which is the globally optimal control strategy (= separation theorem).

x(k) = Ax(k-1) + Bu(k-1) + v(k-1)stale model:

observer model: z(k)=Hx(k)+w(k)

 $\hat{x}(k) = (I - K_{a}H)A\hat{x}(k-1) + (I - K_{a}H)Bu(k-1) + K_{a}z(k)$ KF observer:

LQR controller: $u(k) = E \hat{x}(k)$

error dynamics: $e(k) = (I-K_{\omega}H)A \cdot e(k-1) + (I-K_{\omega}H) \cdot v(k-1) - K_{\omega} \cdot w(k)$ $(e(k) = x(k) - \hat{x}(k))$

state dynamics: $x(k) = Ax(k-1) + BF_{a}x(k-1) + v(k-1) = (A+BF_{a}x(k-1) + BF_{e}(k-1) + v(k-1)$

 \hookrightarrow combined system (for means): $\begin{bmatrix} E[x(k)] \\ E[e(k)] \end{bmatrix} = \begin{bmatrix} A+BE_{\infty} & -BE_{\infty} \\ O & (I-K_{\omega}H)A \end{bmatrix} \cdot \begin{bmatrix} E[x(k-1)] \\ E[e(k-1)] \end{bmatrix}$

for system to be stable (I-KaH)A and (A+BFo) must be stable. this is equivalent to (A,H) being delectable + (A,B) pot stabilizable