微分積分学 問題集解答

詳細な解答を付けたつもりですが、ところどころ省略している箇所もあります。ご了承ください、内容に不備や落丁、質問等がありましたら <s17m066nk@ous.jp> へ連絡をお願いします。 まぁ質問は担当の先生に聞くのが一番かもしれません.

目次

1	微積 I(松村先生)	1
1.1	数列	1
1.2	極限	2
1.3	関数の連続性...........................	2
1.4	簡単な微分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
1.5	接線の方程式	4
1.6	合成関数の微分	4
1.7	対数微分	5
1.8	様々な関数の微分(まとめ)	5
1.9	逆関数	6
0	微積 II(井上先生)	•
2		6
2.1	逆三角関数	6
2.2	記述問題(逆三角関数)	7
2.3	簡単な <i>n</i> 次導関数	7
2.4	ライプニッツの公式を使う n 次導関数	8
2.5	いろんな n 次導関数(まとめ) \dots	8
2.6	ロピタルの定理	9
2.7	平均値の定理	10
2.8	ロピタルの定理を用いた極限の計算(まとめ)	10
2.9	簡単なマクローリン展開の問題	11
2.10	簡単なテイラー展開の問題	11
2.11	n 次マクローリン展開	12
2.11	記述問題	12
2.13	マクローリン展開 (∞)	13
2.14	マクローリン展開を応用した極限	13
2.15	マクローリン展開を応用した無限級数の和	14
2.16	関数の増減凹凸表とグラフの概形	14
2.16 2.17	極値などを求める問題	14 15
2.17	極値などを求める問題	15
2.17 2.18	極値などを求める問題 増減凹凸表とグラフの概形の応用	15 15
2.17 2.18	極値などを求める問題	15 15 16
2.17 2.18 3 3.1	極値などを求める問題 増減凹凸表とグラフの概形の応用	15 15 16 16
2.17 2.18 3 3.1 3.2 3.3	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法	15 15 16 16 16 17
2.17 2.18 3 3.1 3.2 3.3 3.4	極値などを求める問題 増減凹凸表とグラフの概形の応用	15 15 16 16 16 17 17
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分積分法	15 15 16 16 16 17 17
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分積分法 部分分数分解 まとめ	15 15 16 16 16 17 17 18
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分積分法 部分分数分解 まとめ 区分求積法, 定積分の定義	15 15 16 16 16 17 17 18 19 20
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分積分法 部分分数分解 まとめ	15 15 16 16 16 17 17 18
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分積分法 部分分数分解 まとめ 区分求積法,定積分の定義 記述問題.	15 15 16 16 16 17 17 18 19 20
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分積分法 部分分数分解 まとめ 区分求積法, 定積分の定義 記述問題	15 15 16 16 17 17 18 19 20 21
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分積分法 部分分数分解 まとめ 区分求積法,定積分の定義 記述問題. 微積 IV (瓜屋先生) 定積分(置換積分・部分積分も含む.)	15 15 16 16 17 17 18 19 20 21 21
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4 4.1 4.2	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分積分法 部分分数分解 まとめ 区分求積法,定積分の定義 記述問題 微積 IV (瓜屋先生) 定積分(置換積分・部分積分も含む.) 広義積分	15 15 16 16 17 18 19 20 21 21 21 22
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4 4.1 4.2 4.3	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分積分法 部分分数分解 まとめ 区分求積法,定積分の定義 記述問題. 微積 IV (瓜屋先生) 定積分(置換積分・部分積分も含む.) 広義積分. 広義積分の収束・発散	15 16 16 16 17 18 19 20 21 21 21 22 23
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4 4.1 4.2 4.3 4.4	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分積分法 部分分数分解 まとめ 区分求積法,定積分の定義 記述問題 微積 IV (瓜屋先生) 定積分(置換積分・部分積分も含む.) 広義積分 広義積分の収束・発散 増減凹凸表とグラフの概形から面積を求める問題	15 16 16 16 17 18 19 20 21 21 21 22 23 24
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4 4.1 4.2 4.3 4.4 4.5	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分積分法 部分分数分解 まとめ 区分求積法,定積分の定義 記述問題 微積 IV (瓜屋先生) 定積分 (置換積分・部分積分も含む.) 広義積分 広義積分 広義積分の収束・発散 増減凹凸表とグラフの概形から面積を求める問題 比較定理を使う問題	15 16 16 17 18 19 20 21 21 21 22 23 24 25
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4 4.1 4.2 4.3 4.4 4.5 4.6	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分積分法 部分分数分解 まとめ 区分求積法, 定積分の定義 記述問題 微積 IV (瓜屋先生) 定積分 (置換積分・部分積分も含む.) 広義積分 広義積分の収束・発散 増減凹凸表とグラフの概形から面積を求める問題 比較定理を使う問題 ちょっと難しい定積分	15 16 16 16 17 18 19 20 21 21 22 23 24 25 25
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4 4.1 4.2 4.3 4.4 4.5	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分積分法 部分分数分解 まとめ 区分求積法,定積分の定義 記述問題 微積 IV (瓜屋先生) 定積分 (置換積分・部分積分も含む.) 広義積分 広義積分 広義積分の収束・発散 増減凹凸表とグラフの概形から面積を求める問題 比較定理を使う問題 ちょっと難しい定積分 そこそこ難しい定積分	15 16 16 17 18 19 20 21 21 21 22 23 24 25
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4 4.1 4.2 4.3 4.4 4.5 4.6	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分積分法 部分分数分解 まとめ 区分求積法,定積分の定義 記述問題 、 微積 IV (瓜屋先生) 定積分 (置換積分・部分積分も含む.) 広義積分 広義積分の収束・発散 増減凹凸表とグラフの概形から面積を求める問題 比較定理を使う問題 ちょっと難しい定積分 そこそこ難しい定積分 特殊?な三角関数の定積分	15 16 16 16 17 18 19 20 21 21 22 23 24 25 25
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分積分法 部分分数分解 まとめ 区分求積法,定積分の定義 記述問題 微積 IV (瓜屋先生) 定積分 (置換積分・部分積分も含む.) 広義積分 広義積分 広義積分の収束・発散 増減凹凸表とグラフの概形から面積を求める問題 比較定理を使う問題 ちょっと難しい定積分 そこそこ難しい定積分	15 16 16 17 18 19 20 21 21 22 23 24 25 25 26
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分積分法 部分分数分解 まとめ 区分求積法,定積分の定義 記述問題 、 微積 IV (瓜屋先生) 定積分 (置換積分・部分積分も含む.) 広義積分 広義積分の収束・発散 増減凹凸表とグラフの概形から面積を求める問題 比較定理を使う問題 ちょっと難しい定積分 そこそこ難しい定積分 特殊?な三角関数の定積分	15 16 16 16 17 18 19 20 21 21 22 23 24 25 25 26 26
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分積分法 部分分数分解 まとめ 区分求積法,定積分の定義 記述問題 微積 IV (瓜屋先生) 定積分 (置換積分・部分積分も含む.) 広義積分 広義積分 広義積分の収束・発散 増減凹凸表とグラフの概形から面積を求める問題 比較定理を使う問題 ちょっと難しい定積分 そこそこ難しい定積分 特殊?な三角関数の定積分 h熱で囲まれた面積を求める問題	15 16 16 16 17 18 19 20 21 21 22 23 24 25 26 26 27
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分分数分解 まとめ 区分求積法,定積分の定義 記述問題 微積 IV (瓜屋先生) 定積分 (置換積分・部分積分も含む.) 広義積分 広義積分 広義積分 広義積分の収束・発散 増減凹凸表とグラフの概形から面積を求める問題 比較定理を使う問題 ちょっと難しい定積分 そこそこ難しい定積分 特殊?な三角関数の定積分 曲線で囲まれた面積を求める問題 体積を求める問題	15 16 16 16 17 18 19 20 21 21 22 23 24 25 25 26 26 27 27
2.17 2.18 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11	極値などを求める問題 増減凹凸表とグラフの概形の応用 微積 III (鬼塚先生) 簡単な不定積分 標準的?な不定積分 置換積分法 部分分数分解 まとめ 区分求積法,定積分の定義 記述問題 微積 IV (瓜屋先生) 定積分 (置換積分・部分積分も含む.) 広義積分 広義積分 広義積分 広義積分の収束・発散 増減凹凸表とグラフの概形から面積を求める問題 比較定理を使う問題 ちょっと難しい定積分 そこそこ難しい定積分 特殊?な三角関数の定積分 曲線で囲まれた面積を求める問題 体積を求める問題 面積及び体積を求める問題	15 16 16 16 17 18 19 20 21 21 22 23 24 25 26 26 27 27 28

1 微積 I (松村先生)

1.1 数列

- ① 漸化式 $a_1 = 1$, $a_{n+1} = \sqrt{a_n + 2}$ で定義された数列 $\{a_n\}$ について,次の問いに答えよ.
 - (1) $a_n < 2$ (n = 1, 2, ...) で成り立つことを示せ. 数学的帰納法によって示す.
 - i) n = 1 のとき $a_1 = 1$ より $a_1 < 2$ よって成り立つ.
 - ii) n のとき $a_n < 2$ が成り立つと仮定する.
 - iii) n+1 のとき $a_{n+1}=\sqrt{a_n+2}<\sqrt{2+2}=\sqrt{4}=2 \ \therefore \ a_{n+1}<2$ よって n+1 のとき成り立つ. \square
 - (2) $a_n < a_{n+1} (n=1,2,\dots)$ が成り立つことを示せ.

 $a_n < a_{n+1}$ の両辺を a_n で割ると $1 < \dfrac{a_{n+1}}{a_n} \leftarrow$ これを示す.

仮定より
$$1 < \frac{\sqrt{a_n+2}}{a_n}$$
 右辺を $\sqrt{}$ 右辺を $\sqrt{}$ は $\sqrt{\frac{a_n+2}{a_n^2}}$ $1 < \sqrt{\frac{1}{a_n}+\frac{2}{a_n^2}}$ ここで (1) より $a_n < 2$ なので $\frac{1}{a_n} > \frac{1}{2} \cdots$ [1] [1] より $\sqrt{\frac{1}{a_n}+\frac{2}{a_n^2}} > \sqrt{\frac{1}{2}+\frac{2}{4}} = 1$ $\therefore 1 < \frac{a_{n+1}}{a_n}$ \square

(3) $\lim_{n\to\infty} a_n$ を求めよ.

 $\lim_{n \to \infty} a_n = \alpha$ なので $\lim_{n \to \infty} a_{n+1} = \alpha$ とみてもよい.

両辺の極限値のみについて考えると $\alpha = \sqrt{\alpha + 2}$

この両辺を2乗すると

$$\alpha^2 = \alpha + 2 \Leftrightarrow \alpha^2 - \alpha - 2 = 0 \Leftrightarrow (\alpha - 2)(\alpha + 1) = 0$$

 $\therefore \alpha = -1, 2$

ここで $a_1=1$ かつ $a_n < a_{n+1}$ より $\alpha > 1$ なので $\alpha = 2$

したがって $\lim_{n\to\infty} a_n = 2$

1.2 極限

2 次の極限値を求めよ.

$$(1) \lim_{n \to \infty} \left(1 + \frac{1}{3n} \right)^n$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{3n} \right)^n = \lim_{n \to \infty} \left\{ \left(1 + \frac{1}{3n} \right)^{3n} \right\}^{\frac{1}{3}} = e^{\frac{1}{3}}$$

(2)
$$\lim_{n \to \infty} \frac{n^2 + 3n}{4n - 1}$$

分母の最高次数で分母・分子を割る

$$= \lim_{n \to \infty} \frac{n+3}{4 - \frac{1}{n}} = \infty$$

$$(3) \lim_{x \to 0} \frac{e^x - 1}{\sin x}$$

分母・分子をxで割る

$$= \lim_{x \to 0} \frac{\frac{e^x - 1}{x}}{\frac{\sin x}{x}} \operatorname{ZZC} \lim_{x \to 0} \frac{\sin x}{x} = 1 \text{ } \text{\sharp b}$$

$$= \lim_{x \to 0} \frac{e^x - 1}{x}$$

さらに $e^x - 1 = t$ とおくと $x = \log(t+1)$ また $t \to 0$

$$= \lim_{t \to 0} \frac{t}{\log(1+t)}$$
 分母・分子を t で割ると
$$= \lim_{t \to 0} \frac{1}{\frac{1}{t}\log(1+t)}$$
 対数の性質より
$$= \lim_{t \to 0} \frac{1}{\log(1+t)^{\frac{1}{t}}} = \frac{1}{\log e} = 1$$

(4)
$$\lim_{x \to \infty} \left(\frac{e^x + e^{-x}}{e^x - e^{-x}} \right)^{e^{2x}}$$

分母・分子を e^x で割る

$$= \lim_{x \to \infty} \left(\frac{1 + e^{-2x}}{1 - e^{-2x}} \right)^{e^{2x}} = \lim_{x \to \infty} \frac{(1 + e^{-2x})e^{2x}}{(1 - e^{-2x})e^{2x}}$$

$$= \lim_{x \to \infty} (1 + e^{-2x})e^{2x} \cdot (1 + (-e^{-2x}))^{-e^{2x}}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{e^{2x}} \right)^{e^{2x}} \cdot \left(1 + \left(-\frac{1}{e^{2x}} \right) \right)^{-e^{2x}}$$

$$= e \cdot e = e^2$$

[3] 関数 f(x)=x+3 , $g(x)=\frac{x^2-9}{x-3}$ について次の問いに答えよ. (1) 関数 f(x) , g(x) の定義域を求めよ.

$$f(x): (-\infty, \infty) \ (x \in \mathbb{R}), \ g(x): \{x \in \mathbb{R} | x \neq 3\}$$

(2) 関数 f(x), g(x) が定義域内で連続であることを示せ.

$$f(x)$$
 について $a \in (-\infty, \infty)$

$$\lim f(x) = a + 3 = f(a)$$
よって連続.

g(x) について $a(\neq 3) \in \mathbb{R}$

$$\lim_{x \to a} g(x) = \lim_{x \to a} \frac{x^2 - 9}{x - 3} = \lim_{x \to a} \frac{(x + 3)(x - 3)}{x - 3} = \lim_{x \to a} x + 3 = a + 3$$
$$g(a) = \frac{a^2 - 9}{a - 3} = \frac{(a + 3)(a - 3)}{a - 3}$$

ここで $a \neq 3$ より分母・分子を $a - 3 \neq 0$ で割ると

$$g(a) = a + 3$$
 したがって $\lim_{x \to a} g(x) = g(a)$

ゆえに g(x) は定義域内で連続. \square

(3) $\lim_{x\to 2} g(x)$ を求めよ. また,g(x) は x=3 で連続であるか答えよ.

$$\lim_{x \to 3} g(x) = \lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} x + 3 = 6$$

g(x) は x = 3 定義されていないので g(3) は存在しない.

すなわち $\lim_{x\to 0} g(x) \neq g(3)$ よって g(x) は x=3 で連続でない. \square

(4) 関数 g(x) を拡張した関数

$$h(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & (x \neq 3) \\ 6 & (x = 3) \end{cases}$$

はx=3で連続であるか答え

(3) より
$$x = 3$$
 のとぎ $\lim_{x \to 3} g(x) = 6$

仮定より
$$h(3)=6$$
 なので $\lim_{x\to 3}h(x)=h(3)$

したがって h(x) は x=3 で連続. \square

1.4 簡単な微分

4 次の関数の導関数を求めよ.

(1)
$$y = x^{11}$$

 $y' = 11x^{10}$

(2)
$$y = \frac{1}{x^3}$$

$$y = x^{-3}$$
$$y' = -3x^{-4} \left(= -\frac{3}{x^4} \right)$$

(3)
$$y = \sqrt[3]{x^2}$$

 $y = x^{\frac{2}{3}}$ $\text{$\sharp$} \ \text{$\circ$} \ \text{$t$} \ \text{$\circ$} \ \text{$t$} \ \text{$t$} \ \text{$t$} = \frac{2}{3\sqrt[3]{x}}$

$$(4) \ y = e^x$$
$$y' = e^x$$

$$(5) \ y = \log|x|$$

$$y' = \frac{1}{x}$$

(6)
$$y = \sin x$$

 $y' = \cos x$

$$(7) \ y = \cos x$$
$$y' = -\sin x$$

(8)
$$y = \tan x$$

$$y' = \frac{1}{\cos^2 x}$$

$$(9) y = 3x^2 + 6x$$
$$y' = 6x + 6$$

(10)
$$y = x^4 e^x$$

 $y' = 4x^3 e^x + x^4 e^x$

(11)
$$y = 4 \sin x \cos x$$

 $y = 4(\sin x \cos x)$
 $y' = 4(\cos x \cos x + \sin x(-\sin x)) = 4(\cos^2 x - \sin^2 x)$

(12)
$$y = \frac{x^2 - 2}{x - 1}$$
$$y' = \frac{(x^2 - 2)'(x - 1) - (x^2 - 2)(x - 1)'}{(x - 1)^2}$$
$$= \frac{2x(x - 1) - (x^2 - 2)}{(x - 1)^2}$$

(13)
$$y = \frac{1}{(x^2 - 1)}$$

 $y' = -\frac{(x^2 - 1)'}{(x^2 - 1)^2} = -\frac{2x}{(x^2 - 1)^2}$

(14)
$$y = \underbrace{(x^3 - 3)(x + 1)}_{y_1}(x^2 + 2)$$

 $y'_1 = 3x^2(x + 1) + (x^3 - 3)$
 $y' = (3x^2(x + 1) + (x^3 - 3))(x^2 + 2) + ((x^3 - 3)(x + 1))2x$
 $= (3x^2(x + 1) + (x^3 - 3))(x^2 + 2) + 2x(x^3 - 3)(x + 1)$

(15)
$$y = -3x^2 \sqrt[3]{x}$$

 $y = -3x^2 x^{\frac{1}{3}} = -3x^{\frac{7}{3}}$
 $y' = -7x^{\frac{4}{3}}$

(16)
$$y = \frac{2\sqrt{x} - 3}{x}$$

 $y = \frac{2\sqrt{x}}{x} - \frac{3}{x} = 2x^{\frac{1}{2}} \cdot x^{-1} - 3x^{-1} = 2x^{-\frac{1}{2}} - 3x^{-1}$
 $y' = -x^{\frac{3}{2}} + 3x^{-2}$

(17)
$$y = \sin x + \log|x| + x^4 e^x$$

$$y' = \cos x + \frac{1}{x} + 4x^3 e^x + x^4 e^x$$

(18)
$$y = \frac{x^4 + 2x - 3}{\sqrt{2}x}$$
$$y = \frac{1}{\sqrt{2}} \left(\frac{x^4}{x} + \frac{2x}{x} - \frac{3}{x} \right) = \frac{1}{\sqrt{2}} \left(x^3 + 2 - 3x^{-1} \right)$$
$$y' = \frac{1}{\sqrt{2}} (3x^2 + 3x^{-2})$$

1.5 接線の方程式

- $|\mathbf{5}| y = \sqrt{x}$ について,次の問いに答えよ.
 - (1) 点 x = 4 における接点を求めよ. $y=\sqrt{x}$ に x=4 を代入すると $y=\sqrt{4}=2$

(2) $f(x) = \sqrt{x}$ とするとき, f(x) の導関数と x = 4 における微分係数

$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}, \ f'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}$$

(3) x = 4 における接線の方程式を求めよ.

x = a における接線の方程式は y - f(a) = f'(a)(x - a) なので x = 4 における接線の方程式は y - f(4) = f'(4)(x - 4)

$$y=rac{1}{4}(x-4)+2=rac{1}{4}x+1$$
 よって求める方程式は $y=rac{1}{4}x+1$ 6 次の関数の () 内の点における接線の方程式を求めよ.

(1)
$$y = \sqrt{\frac{1}{x}} \ (x = 4)$$

$$f(x) = \sqrt{\frac{1}{x}}$$
 とすると $f(x) = \frac{\sqrt{1}}{\sqrt{x}} = \frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}$

$$x=4$$
 における接点は $y=f(4)=rac{1}{2}$

x = 4 における微分係数は

$$f'(x) = -\frac{1}{2}x^{-\frac{3}{2}} = -\frac{1}{2x\sqrt{x}}$$
 すなわち $f'(4) = -\frac{1}{16}$

よって x=4 における接線の方程式は $y-\frac{1}{2}=-\frac{1}{16}(x-4)$

$$\Leftrightarrow y = -\frac{1}{16}x + \frac{1}{4} + \frac{1}{2} \ \ \therefore y = -\frac{1}{16}x + \frac{3}{4}$$

(2)
$$y = \frac{e^x + e^{-x}}{2} (x = \log 2)$$

$$f(x) = \frac{e^x + e^{-x}}{2}$$
とする.

$$f(\log 2) = \frac{e^{\log 2} + e^{-\log 2}}{2} = \frac{2 + \frac{1}{2}}{2} = \frac{5}{4}$$

$$f'(x) = \frac{e^x - e^{-x}}{2}$$
, $f'(\log 2) = \frac{2 - \frac{1}{2}}{2} = \frac{3}{4}$

$$y - \frac{5}{4} = \frac{3}{4}(x - \log 2)$$
 : $y = \frac{3}{4}(x - \log 2) + \frac{5}{4}$

1.6 合成関数の微分

- [7] 関数 $y = e^{x^2 + 3x}$ について以下の問いに答えよ.
 - (1) $y = e^u$, u = f(x) の合成関数が $y = e^{x^2 + 3x}$ になるような f(x) を

$$f(x) = x^2 + 3x$$

(2) $y=e^u$ と (1) で得た関数 u=f(x) の導関数 $\frac{dy}{du}$, $\frac{du}{dx}$ をそれぞれ求

$$\frac{dy}{du} = e^u, \frac{du}{dx} = u' = 2x + 3$$

(3) 合成関数の微分公式 $\frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{du}{dx}$ を用いて, $y = e^{x^2 + 3x}$ の導関数

を求めよ. ただし,u が残らないよう注意すること.

$$y'=rac{dy}{dx}=rac{dy}{du}\cdotrac{du}{dx}=e^u\cdot(2x+3)=e^{x^2+3x}(2x+3)$$
 8 次の関数の導関数を求めよ、(合成関数の微分)

- - (1) $y = \sqrt{\tan x + 1}$

$$y = \sqrt{\tan x + 1} = (\tan x + 1)^{\frac{1}{2}}$$

$$y' = \frac{1}{2}(\tan x + 1)^{-\frac{1}{2}}(\tan x + 1)' = \frac{1}{2}(\tan x + 1)^{-\frac{1}{2}}\left(\frac{1}{\cos^2 x}\right)$$

上までで o.k. 整理すると
$$y' = \frac{1}{2\sqrt{\tan x + 1}\cos^2 x}$$

(2)
$$y = (2x^2 + 1)^{10}$$

 $y' = 10(2x^2 + 1)^9(4x) = 40x(2x^2 + 1)^9$

$$y = 10(2x + 1)(4x) = 40x(2x + 1)$$

$$(3) \ y = \sin^4 x$$

$$= (\sin x)^4$$

$$y' = 4\sin^3 x \cos x$$

(4) f(x) が微分可能であるとする. $f(x^2)$ の導関数を求めよ.

$${f(x^2)}' = f'(x^2) \cdot 2x = 2xf'(x^2)$$

(5)
$$\{f(x)\}^2$$

$$[\{f(x)\}^2]' = 2f(x) \cdot f'(x)$$

(6) $\log |f(x)|$ ただし $f(x) \neq 0$

$$\{\log |f(x)|\}' = \frac{f'(x)}{f(x)}$$

1.7 対数微分

- | 9 | 関数 $y = x^{\cos x}(x > 0)$ の導関数を以下の問いにしたがって求めよ.
 - (1) 両辺の対数をとり、その後、右辺に対数法則を用いて整理せよ. $\log y = \log x^{\cos x} = \cos x \log x \ \therefore \ \log y = \cos x \log x$
 - (2) (1) で得た等式の両辺をxについて微分せよ. (左辺に注意)

$$\frac{1}{y} \cdot y' = -\sin x \log x + \cos x \cdot \frac{1}{x}$$

(*左辺は合成関数の微分,右辺は積の微分.)

(3) y' を求めよ. ただし y が残らないように注意すること. (2) の結果より

$$y' = y \left(\frac{\cos x}{x} - \sin x \log x\right) = x^{\cos x} \left(\frac{\cos x}{x} - \sin x \log x\right)$$

- 10 次の関数の導関数を対数微分を使って求めよ.
 - (1) $y = x^x \ (x > 0)$

両辺の対数をとり整理すると $\log y = x \log x$

両辺を
$$x$$
 について微分すると $\frac{y'}{y} = \log x + x \cdot \frac{1}{x} = \log x + 1$

$$y' = y(\log x + 1) = x^x(\log x + 1)$$

(2)
$$y = \sqrt{\frac{(x+1)(x+2)}{x+3}}$$

両辺の対数をとると

$$\log y = \log(\sqrt{\frac{(x+1)(x+2)}{x+3}}) = \log\left(\frac{(x+1)(x+2)}{x+3}\right)^{\frac{1}{2}}$$
$$= \frac{1}{2}\log\left(\frac{(x+1)(x+2)}{x+3}\right)$$
$$= \frac{1}{2}\left\{\log(x+1) + \log(x+2) - \log(x+3)\right\}$$

両辺をxについて微分すると

$$\frac{y'}{y} = \frac{1}{2} \left\{ \frac{1}{x+1} + \frac{1}{x+2} - \frac{1}{x+3} \right\}$$
$$y' = \frac{1}{2} \sqrt{\frac{(x+1)(x+2)}{x+3}} \left\{ \frac{1}{x+1} + \frac{1}{x+2} - \frac{1}{x+3} \right\}$$

1.8 様々な関数の微分(まとめ)

11 次の関数の導関数を求めよ.

(1)
$$y = \frac{x^5 - x^2 + 1}{2x^4}$$

$$y = \frac{1}{2} \left(\frac{x^5}{x^4} - \frac{x^2}{x^4} + \frac{1}{x^4} \right) = \frac{1}{2} (x - x^{-2} + x^{-4})$$

$$y' = \frac{1}{2} (1 + 2x^{-3} - 4x^{-5})$$

(2)
$$y = (x+2)(x^2-3)$$

 $y' = x^2 - 3 + 2x(x+2)$

(3)
$$y = 2\cos(2x^3 + 3)$$

 $y' = -2\sin(2x^3 + 3)6x^2 = -12x^2\sin(2x^3 + 3)$

(4) $y = \log|\sin x \cos x|$

$$y' = \frac{\cos^2 x - \sin^2 x}{\sin x \cos x}$$

(5)
$$y = -3xe^{-x^2+3x}$$

 $y' = -3e^{-x^2+3x} + (-3x)e^{-x^2+3x}(-2x+3)$
 $= -3e^{-x^2+3x}(1+3-2x) = -3e^{-x^2+3x}(4-2x)$

(6)
$$y = (\sin x)^x \ (0 < x < \pi)$$
$$\log y = x \log(\sin x)$$

$$\frac{y'}{y} = \log(\sin x) + x \cdot \frac{\cos x}{\sin x}$$
$$y' = (\sin x)^x \left(\log \sin x + \frac{x \cos x}{\sin x}\right) = (\sin x)^x \left(\log \sin x + \frac{x}{\tan x}\right)$$

1.9 逆関数

- 12 次の関数の逆関数を求めよ. 定義域も記すこと.
 - $(1) \ y = 3x 4 \ (x \in \mathbb{R})$

$$y = 3x - 4$$
 の値域は $y \in \mathbb{R}$

$$y = 3x - 4 \Leftrightarrow 3x = y + 4 \Leftrightarrow x = \frac{1}{3}(y+4)$$

$$x$$
と y を入れかえると $y = \frac{1}{3}(x+4)$

$$y = 3x - 4$$
 の値域は $y \in \mathbb{R}$ だったので

$$y=rac{1}{3}(x+4)$$
 の定義域は $x\in\mathbb{R}$

(2) $y = \sqrt{x-1} \ (x \ge 1)$

$$y = \sqrt{x-1}$$
 の値域は $0 \le y$

$$y = \sqrt{x-1} \Leftrightarrow y^2 = x-1 \Leftrightarrow x = y^2 + 1$$

x と y を入れかえると $y = x^2 + 1$ 定義域は $x \ge 0$

(3)
$$y=(x-2)^2 \ (x\leq 2)$$
 $y=(x-2)^2 \ (x\leq 2)$ の値域は $0\leq y$ $y=(x-2)^2 \Leftrightarrow \sqrt{y}=x-2 \Leftrightarrow x=\sqrt{y}+2$ x と y を入れかえて $y=\sqrt{x}+2$,定義域は $x\geq 0$

(4)
$$y = e^{x-1} \ (x \in \mathbb{R})$$

$$y = e^{x-1}$$
 の値域は $0 < y$

$$y = e^{x-1} \Leftrightarrow x - 1 = \log y \Leftrightarrow x = \log y + 1$$

$$x$$
 と y を入れかえると $y = \log x + 1$, 定義域は $x > 0$

13 逆関数の微分公式を用いて

$$y = \sin^{-1} x \ (-1 < x < 1)$$

の微分(導関数)をを求めよ.

逆関数の微分公式は
$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$
 なので

$$f(x) = \sin x \left(-\frac{\pi}{2} < x < \frac{\pi}{2}\right)$$
 とすると

$$f^{-1}(x) = \sin^{-1} x \ (-1 < x < 1)$$
 とみれる.

微分公式にあてはめると

$$y' = \frac{1}{\cos(\sin^{-1} x)} = \frac{1}{\sqrt{1 - \sin(\sin^{-1} x)}} = \frac{1}{\sqrt{1 - x^2}}$$

2 微積 II (井上先生)

2.1 逆三角関数

1 次の逆三角関数の値を求めよ.

(1)
$$\cos^{-1}\left(\frac{1}{2}\right) = x$$
 とすると

$$\cos x = \frac{1}{2} \ (0 \le x \le \pi) \quad \therefore \ x = \frac{\pi}{3}$$

$$(2) \cos^{-1}\left(-\frac{\sqrt{2}}{2}\right)$$

(1) と同様にして
$$\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right) = \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = \frac{3}{4}\pi$$

$$\sin x = -1 \left(-\frac{\pi}{2} \le x \le \frac{\pi}{2} \right) \quad \therefore \ x = -\frac{\pi}{2}$$

(4)
$$\tan^{-1}(-1) = x$$
 とすると

$$\tan x = -1 \left(-\frac{\pi}{2} < x < \frac{\pi}{2} \right) \quad \therefore \ x = -\frac{\pi}{4}$$

$$(5) \sin^{-1}\left(\sin\frac{3}{5}\pi\right) = x \ \text{LtS}$$

$$\sin x = \sin \frac{3}{5}\pi \quad \left(-\frac{\pi}{2} \le x \le \frac{\pi}{2}\right) \quad \therefore \ x = \frac{2}{5}\pi$$

(6)
$$\sin^{-1}\left(\sin\frac{7}{5}\pi\right)$$

$$\sin^{-1}\left(\sin\frac{7}{5}\pi\right) = \sin^{-1}\left(\sin\left(-\frac{2}{5}\pi\right)\right) = -\frac{2}{5}\pi$$

2.2 記述問題(逆三角関数)

2 次の問いに答えよ.

(1)
$$\sin^{-1}\left(\frac{3}{5}\right) = \tan^{-1}x$$
 を満たす x を求めよ.

$$y = \sin^{-1}\left(\frac{3}{5}\right) = \tan^{-1}x$$
 とおくと.

$$y = \sin^{-1}\left(\frac{3}{5}\right) \ \text{\sharp 0 } 0 < y < \frac{\pi}{2}$$

また
$$\sin y = \frac{3}{5}$$
, $\tan y = x$ が成り立つので

$$\cos^2 y = 1 - \sin^2 y = \frac{16}{25} \,, \, 0 < x < \frac{\pi}{2} \, \, \mbox{$\$$

$$x = \tan y = \frac{\sin y}{\cos y} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$$

(2) $y = \sin^{-1}(1-2^x)$ の定義域と値域を求めよ.

$$-1 \le 1 - 2^x \le 1 \Leftrightarrow 0 \le 2^x \le 2$$
 ∴ 定義域は $x \le 1$

また
$$x \le 1$$
 のとき $0 < 2^x \le 2$ なので $-1 \le 1 - 2^x < 1$

よって値域は
$$-\frac{\pi}{2} \le y < \frac{\pi}{2}$$

(3)
$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \ (-1 \le x \le 1)$$
 참규セ.

$$y = \cos^{-1} x$$
 とおくと $\cos y = x \ (0 \le y \le \pi)$

$$x = \sin\left(\frac{\pi}{2} - y\right)$$

$$\sin^{-1}x$$
 が定義できる範囲は $-\frac{\pi}{2} \le \left(\frac{\pi}{2} - y\right) \le \frac{\pi}{2}$ なので

$$\frac{\pi}{2} - y = \sin^{-1} y \Leftrightarrow \frac{\pi}{2} = \sin^{-1} x + y = \sin^{-1} x + \cos^{-1} x$$

2.3 簡単な n 次導関数

 $\boxed{\mathbf{3}}$ 次の関数の n 次導関数 $y^{(n)}$ を求めよ.

(1)
$$y = 2^x$$

 $y' = 2^x \log 2$
 $y'' = 2^x \log 2 \cdot \log 2 = 2^x (\log 2)^2$
 \vdots
 $y^{(n)} = 2^x (\log 2)^n$

 $(2) \ y = \log x$

$$y' = \frac{1}{x} = x^{-1}$$

$$y'' = -x^{-2}$$

$$y^{(3)} = 2x^{-3}$$
 $\therefore y^{(n)} = (-1)^{n-1}(n-1)!(x)^{-n}$

(3)
$$y = x^{\alpha}$$

$$y' = \alpha x^{\alpha - 1}$$

$$y'' = \alpha(\alpha - 1)x^{\alpha - 2}$$

:

$$y^{(n)} = \begin{cases} \alpha(\alpha - 1)(\alpha - 2) \cdots (\alpha - n + 1)x^{\alpha - n} & (\alpha \ge n) \\ 0 & (\alpha < n) \end{cases}$$

(4)
$$y = \frac{1}{1-x}$$

$$y' = \frac{1}{(1-x)^2}$$

$$y'' = \frac{2}{(1-x)^3}$$

$$y^{(3)} = \frac{6}{(1-x)^4}$$

:

$$y^{(n)} = \frac{n!}{(1-x)^{n+1}}$$

 $(5) \ y = \sin x$

$$y' = \cos x = \sin\left(x + \frac{\pi}{2}\right)$$

$$y'' = -\sin x = \sin\left(x + \pi\right) = \sin\left(x + \frac{2}{2}\pi\right)$$

$$y^{(3)} = -\cos x = \sin\left(x + \frac{\pi}{2}\right) = \sin\left(x + \frac{3}{2}\pi\right)$$

$$y^{(n)} = \sin\left(x + \frac{n\pi}{2}\right)$$

(6)
$$y = \cos x$$

(5) と同様にして
$$y^{(n)} = \cos\left(x + \frac{n\pi}{2}\right)$$

2.4 ライプニッツの公式を使う n 次導関数

4 次の関数の n 次導関数を求めよ.

$$(1) \ y = x^2 \log x$$

$$y^{(n)} = \sum_{k=0}^{n} \binom{n}{k} (x^2)^{(k)} (\log x)^{(n-k)}$$

$$= \binom{n}{0} x^2 (\log x)^{(n)} + \binom{n}{1} (x^2)' (\log x)^{(n-1)}$$

$$+ \binom{n}{2} (x^2)'' (\log x)^{(n-2)} + \binom{n}{3} (x^2)^{(3)} (\log x)^{(n-3)}$$

$$+ \dots + \binom{n}{n} (x^2)^n \log x$$

$$= x^2 \cdot \frac{(-1)^{n-1} (n-1)!}{x^n} + 2nx \cdot \frac{(-1)^{n-2} (n-2)!}{x^{n-1}}$$

$$+ n(n-1) \cdot \frac{(-1)^{n-3} (n-3)!}{x^{n-2}} \quad (\because (x^2)^{(k)} = 0 \ (k \ge 3))$$

$$= \frac{(-1)^{n-1} (n-1)!}{x^{n-2}} + \frac{2n(-1)^{n-2} (n-2)!}{x^{n-2}}$$

$$+ \frac{n(n-1)(-1)^{n-3} (n-3)!}{x^{n-2}} \{(n-1)(n-2) - 2n(n-2) + n(n-1)\}$$

$$= \frac{2(-1)^{n-3} (n-3)!}{x^{n-2}}$$

$(2) \ y = x^4 e^x$

$$y^{(n)} = \sum_{k=0}^{n} \binom{n}{k} (x^4)^{(k)} (e^x)^{(n-k)}$$

$$= \binom{n}{0} x^4 e^x + \binom{n}{1} 4x^3 e^x + \binom{n}{2} 12x^2 e^x$$

$$+ \binom{n}{3} 24x e^x + \binom{n}{4} 24e^x + 0 + \dots + 0$$

$$= e^x \{ x^4 + 4nx^3 + 6n(n-1)x^2 + 4n(n-1)(n-2)x + n(n-1)(n-2)(n-3) \}$$

2.5 いろんな n 次導関数 (まとめ)

5 次の関数のn次導関数を求めよ

(1)
$$y = \frac{x^2}{1-x}$$

 $y' = \frac{2x-x^2}{(1-x)^2}$
 $y'' = \frac{2}{(1-x)^3}$
 $y^{(3)} = \frac{6}{(1-x)^4}$ $\therefore y^{(n)} = \begin{cases} \frac{2x-x^2}{(1-x)^2} & (n=1)\\ \frac{n!}{(1-x)^{n+1}} & (n \ge 2) \end{cases}$

(2) $y = (x^2 + 2x)\cos x$

$$y = \sum_{k=0}^{n} \binom{n}{k} (x^2 + 2x)^{(k)} (\cos x)^{(n-k)}$$

$$= \binom{n}{0} (x^2 + 2x) \cos \left(x + \frac{n\pi}{2}\right)$$

$$+ \binom{n}{1} (2x + 2) \cos \left(x + \frac{(n-1)\pi}{2}\right) + \binom{n}{2} 2 \cos \left(x + \frac{(n-2)\pi}{2}\right)$$

$$= (x^2 + 2x) \cos \left(x + \frac{n\pi}{2}\right)$$

$$+ n(2x + 2) \cos \left(x + \frac{(n-1)\pi}{2}\right) + 2n(n-1) \cos \left(x + \frac{(n-2)\pi}{2}\right)$$

[6] $f(x) = x^2 \sin \frac{1}{x} (x \neq 0)$, f(0) = 0 とする. f(x) は x = 0 で微分可能 ではあるが, f''(0) は存在しないことを示せ.

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) + f(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin \frac{1}{h}}{h} = \lim_{h \to 0} h \sin \frac{1}{h}$$

$$-1 \le \sin \frac{1}{h} \le 1$$
 全ての辺に h をかけると $-h \le h \sin \frac{1}{h} \le h$
$$\lim_{h \to 0} (-h) = 0, \lim_{h \to 0} h = 0$$
 よって、はさみうちの原理より $\lim_{h \to 0} h \sin \frac{1}{h} = 0$ ∴ $f'(0) = 0$

したがって f(x) は x=0 で微分可能である.

$$f'(x) = 2x \sin \frac{1}{x} + x^2 \cos \frac{1}{x} (-x^{-2}) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$$
$$\sharp \approx \lim_{h \to 0} \frac{f'(0+h) + f'(0)}{h} = \lim_{h \to 0} \frac{2h \sin \frac{1}{h} - \cos \frac{1}{h} - 1}{h}$$

これは振動するので f''(0) は存在しない. \square

2.6 ロピタルの定理

- [7] 次の極限を求めよ.ロピタルの定理を使う際はどの不定形か明記せよ.ロピタルの定理を使わずに解ける問題,使ってはいけない問題もあるので注意
 - $(1) \lim_{x \to 2} \frac{x}{x+1}$ $= \frac{2}{3}$
 - (2) $\lim_{x \to -\infty} \frac{x}{x+1}$ $= \lim_{x \to -\infty} \frac{1}{1 + \frac{1}{2}} = 1$
 - $(3) \lim_{x \to 0} \frac{\sin^{-1} x}{\sin x}$

 $\frac{0}{0}$ 形なのでロピタルの定理を用いると

$$= \lim_{x \to 0} \frac{\frac{1}{\sqrt{1 - x^2}}}{\cos x} = \frac{1}{1} = 1$$

(4) $\lim_{x \to 0} \frac{x - \log(1+x)}{x^2}$

 $\frac{0}{0}$ 形なのでロピタルの定理を用いると

$$= \lim_{x \to 0} \frac{1 - \frac{1}{1+x}}{2x} = \lim_{x \to 0} \frac{(1+x) - 1}{(1+x) \cdot 2x} = \lim_{x \to 0} \frac{1}{2+2x} = \frac{1}{2}$$

(5) $\lim_{x \to \infty} \frac{(\log x)^2}{x}$

 $\frac{\infty}{\infty}$ 形なのでロピタルの定理を用いると

$$= \lim_{x \to \infty} \frac{2(\log x) \cdot \left(\frac{1}{x}\right)}{1} = \lim_{x \to \infty} \frac{2\log x}{x}$$

これもまた $\frac{\infty}{\infty}$ 形なのでロピタルの定理を用いると

$$= \lim_{x \to \infty} \frac{\frac{2}{x}}{1} = \lim_{x \to \infty} \frac{2}{x} = 0$$

(6) $\lim_{x\to\infty}xe^{-x}$ $\infty \times 0$ 形なのでロピタルの定理を用いると

$$= \lim_{x \to \infty} \frac{x}{e^x} = \lim_{x \to \infty} \frac{1}{e^x} = 0$$

(7) $\lim_{x\to+0}x\log x$ $0\times(-\infty)$ 形なのでロピタルの定理を用いると

$$= \lim_{x \to +0} \frac{\log x}{x^{-1}} = \lim_{x \to +0} \frac{\frac{1}{x}}{-x^{-2}} = \lim_{x \to +0} (-x) = 0$$

 $\begin{array}{l}
(8) \lim_{x \to \infty} x \log x \\
= \infty
\end{array}$

- 8 $\lim_{x\to +0} x^x$ を以下の手順で計算せよ.
 - (1) $y=x^x$ とおき,両辺の対数をとり,右辺を式変形せよ.

$$\log y = \log x^x = x \log x$$

(2) (1) を使って $\lim_{x\to +0} \log y$ を計算せよ.

(1) より
$$\log y = x \log x$$
 なので $\lim_{x \to +0} \log y = \lim_{x \to +0} x \log x$

$$5$$
0 (7) ξ $\lim_{x \to +0} x \log x = \lim_{x \to +0} \frac{x^{-1}}{-x^{-2}} \lim_{x \to +0} (-x) = 0$

$$\lim_{x \to \pm 0} \log y = 0$$

(3) (2) と $y = e^{\log y}$ を使って, $\lim_{x \to +0} x^x$ を求めよ.

$$\lim_{x \to +0} x^x = \lim_{x \to +0} y = \lim_{x \to +0} e^{\log y} = e^0 = 1$$

9 次の極限を求めよ.

ロピタルの定理を用いるときは,どの不定形であるか明記すること.

(1)
$$\lim_{x \to +0} x^{x^2}$$
 $y = x^2$ とおくと $\log y = x^2 \log x$ $\lim_{x \to +0} \log y = \lim_{x \to +0} x^2 \log x = \lim_{x \to +0} \frac{\log x}{x^{-2}}$ これは $\frac{-\infty}{\infty}$ 形なのでロピタルの定理を用いると $=\lim_{x \to +0} \frac{x^{-1}}{-2x^{-3}} = \lim_{x \to +0} \left(-\frac{x^2}{2}\right) = 0$ ∴ $\lim_{x \to +0} \log y = 0$ $\lim_{x \to +0} x^{x^2} = \lim_{x \to +0} y = \lim_{x \to +0} *e^{\log y} = e^0 = 1 \ (*a^{\log_a x} = x)$

(2) $\lim_{x \to +0} (1 + \sin x)^{\frac{1}{x}}$

$$y = (1 + \sin x)^{\frac{1}{x}}$$
 とおくと (1) と同様に

$$\lim_{x \to +0} \log y = \lim_{x \to +0} \frac{1}{x} \log(1 + \sin x) = \lim_{x \to +0} \frac{\log(1 + \sin x)}{x}$$

これは $\frac{0}{0}$ 形なのでロピタルの定理を用いると

$$= \lim_{x \to +0} \frac{\frac{\cos x}{1+\sin x}}{1} = \lim_{x \to +0} \frac{\cos x}{1+\sin x} = 1 \therefore \lim_{x \to +0} \log y = 1$$

$$\lim_{x \to +0} (1 + \sin x)^{\frac{1}{x}} = \lim_{x \to +0} y = \lim_{x \to +0} e^{\log y} = e^1 = e$$

2.7 平均値の定理

10 次の関数 f(x) に対して,()内の区間 [a,b] で

平均値の定理 $\frac{f(b)-f(a)}{b-a}=f'(c)$ を使用した際の $c\in(a,b)$ の値を具体的に求めよ.

(1)
$$f(x) = x^3$$
 ([1, 3])

$$\frac{f(3) - f(1)}{3 - 1} = \frac{27 - 1}{2} = 13 = f'(c)$$

$$f'(x) = 3x^2 \, \text{ deg}(c) = 3c^2 = 13 \, \therefore \, c^2 = \frac{13}{3}$$

$$c = \pm \sqrt{\frac{13}{3}}, \ 1 < c < 3 \ \ \ \ \ c = \frac{\sqrt{13}}{\sqrt{3}} = \frac{\sqrt{39}}{3}$$

(2)
$$f(x) = x^3 - x$$
 ([-2,2])

$$\frac{f(2) - f(-2)}{2 - (-2)} = \frac{6 - (-6)}{4} = 3 = f'(c)$$

$$f'(x) = 3x^2 - 1 \ \text{\sharp 9 } f'(c) = 3c^2 - 1 = 3 \ \therefore c^2 = \frac{4}{3}$$

$$c = \pm \sqrt{\frac{4}{3}} \,, \, -2 < c < 2 \, \, \text{\sharp b } \, c = \pm \frac{\sqrt{4}}{\sqrt{3}} = \pm \frac{2}{\sqrt{3}} \left(= \pm \frac{2\sqrt{3}}{3} \right)$$

11 平均値の定理を用いて

$$e^a < \frac{e^b - e^a}{b - a} < e^b \ (a < b)$$

を示せ

٠.٠

$$f(x) = e^x [a, b]$$
 とする.

このとき平均値の定理より

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

すなわち $\frac{e^b - e^a}{b-a} = e^c$ となる c (a < c < b) が存在する.

ここで e^x は単調増加なので $e^a < e^c < e^b$

ゆえに
$$e^a < rac{e^b - e^a}{b-a} < e^b$$
 が成り立つ. $\ \Box$

2.8 ロピタルの定理を用いた極限の計算(まとめ)

12 次の極限を求めよ.ロピタルの定理を使う際は,どの不定形であるか明記すること。

すること.
(1)
$$\lim_{x\to 0} \frac{\sin bx}{\sin ax}$$
 $(a \neq 0)$

 $\frac{0}{0}$ 形なのでロピタルの定理を用いると

$$= \lim_{x \to 0} \frac{(\cos bx) \cdot (bx)'}{(\cos ax) \cdot (ax)'} = \lim_{x \to 0} \frac{b \cos bx}{a \cos ax} = \frac{b}{a}$$

(2)
$$\lim_{x \to \infty} \frac{e^x}{x^{100}}$$

 $\frac{\infty}{\infty}$ 形なのでロピタルの定理を 100 回用いると

$$= \lim_{x \to \infty} \frac{e^x}{100!} = \infty$$

(3)
$$\lim_{x \to \infty} \frac{cx^n + d}{ax^m + b}$$
 $(a > 0, c > 0, m, n \in \mathbb{N})$

 $\frac{\infty}{\infty}$ 形なのでロピタルの定理を用いる.また場合分けを行う.

i) n < m のとき

(与式) =
$$\lim_{x \to \infty} \frac{cnx^{n-1}}{amx^{m-1}} = \dots = \lim_{x \to \infty} \frac{cn!}{a \cdot mP_nx^{m-n}} = 0$$

ii) n=m のとき

(与式) =
$$\lim_{x \to \infty} \frac{cnx^{n-1}}{anx^{n-1}} = \lim_{x \to \infty} \frac{c}{a} = \frac{c}{a}$$

iii) n > m のとき

(与式) =
$$\lim_{x \to \infty} \frac{cnx^{n-1}}{amx^{m-1}} = \dots = \lim_{x \to \infty} \frac{c \cdot {}_{n}P_{m}x^{n-m}}{am!} = \infty$$

$$(*_{n}P_{k} = n(n-1)(n-2)\cdots(n-k+1))$$

(4)
$$\lim_{x\to 0} \left(\frac{e^x-1}{x}\right)^{\frac{1}{x}}$$

$$y = \left(\frac{e^x - 1}{x}\right)^{\frac{1}{x}} \, \succeq \, \Im \, \langle \, .$$

$$\log y = \frac{1}{x} \log \left(\frac{e^x - 1}{x} \right)$$

$$\lim_{x \to 0} \log y = \lim_{x \to 0} \frac{1}{x} \log \left(\frac{e^x - 1}{x} \right) = \lim_{x \to 0} \frac{\log \left(\frac{e^x - 1}{x} \right)}{x}$$

これは $\frac{0}{0}$ 形なのでロピタルの定理を用いると

$$= \lim_{x \to 0} \frac{\frac{\left(\frac{e^x - 1}{x}\right)'}{\left(\frac{e^x - 1}{x}\right)}}{1} = \lim_{x \to 0} \frac{\left(\frac{e^x - 1}{x}\right)'}{\left(\frac{e^x - 1}{x}\right)'} = \lim_{x \to 0} \frac{1}{\left(\frac{e^x - 1}{x}\right)} \cdot \left(\frac{e^x - 1}{x}\right)'$$

$$= \lim_{x \to 0} \frac{x}{e^x - 1} \cdot \left(\frac{e^x - 1}{x}\right)' = \lim_{x \to 0} \frac{x}{e^x - 1} \cdot \frac{e^x x - (e^x - 1)}{x^2}$$

$$= \lim_{x \to 0} \frac{xe^x - e^x + 1}{x(e^x - 1)} \left(\leftarrow \frac{0}{0} \mathbb{B}\right) = \lim_{x \to 0} \frac{e^x + xe^x - e^x}{e^x + xe^x - 1} \left(\leftarrow \frac{0}{0} \mathbb{B}\right)$$

$$= \lim_{x \to 0} \frac{e^x + xe^x}{e^x + e^x + xe^x} = \lim_{x \to 0} \frac{1 + x}{2 + x} = \frac{1}{2} \therefore \lim_{x \to 0} \log y = \frac{1}{2}$$

$$\lim_{x \to 0} \left(\frac{e^x - 1}{x} \right)^{\frac{1}{x}} = \lim_{x \to 0} y = \lim_{x \to 0} e^{\log y} = e^{\frac{1}{2}} = \sqrt{e}$$

2.9 簡単なマクローリン展開の問題

13 次の関数の3次マクローリン展開を求めよ. ただし

$$R_4 = \frac{f^{(4)}(\theta x)}{4!} x^4 \ (0 < \theta < 1)$$

とする.

(1)
$$f(x) = x^3 - 3x^2 + 2x - 1$$

 $f'(x) = 3x^2 - 6x + 2$, $f''(x) = 6x - 6$, $f^{(3)}(x) = 6$, $f^{(4)} = 0$
 $f(0) = -1$, $f'(0) = 2$, $f''(0) = -6$, $f^{(3)}(0) = 6$

$$f(x) = -1 + 2x + \frac{1}{2!}(-6)x^2 + \frac{1}{3!} \cdot 6 \cdot x^3 + R_4$$
$$= -1 + 2x - 3x^2 + x^3$$

(2)
$$f(x) = e^{2x}$$

 $f'(x) = 2e^{2x}$, $f''(x) = 4e^{2x}$, $f^{(3)}(x) = 8e^{2x}$, $f^{(4)}(x) = 16e^{2x}$
 $f(0) = 1$, $f'(0) = 2$, $f''(0) = 4$, $f^{(3)}(0) = 8$
 $R_4 = \frac{16e^{2\theta x}}{4!}x^4$
 $f(x) = 1 + 2x + 2x^2 + \frac{4}{3}x^3 + R_4$

- 14 $f(x) = \sqrt[3]{1+x}$ のマクローリン展開を利用して、 $\sqrt[3]{1.1}$ の近似値を求める.次の問いに答えよ.
 - (1) f(x) の 2 次までのマクローリン展開を求めよ.

$$f'(x) = \frac{1}{3}(1+x)^{-\frac{2}{3}}, f''(x) = -\frac{2}{9}(1+x)^{-\frac{5}{3}}$$
$$f(0) = 1, f'(0) = \frac{1}{3}, f''(0) = -\frac{2}{9}$$
$$f(x) = 1 + \frac{1}{3}x - \frac{2}{9}x^2 + R_3$$

(2) (1) の右辺に x = 0.1 を代入して , $\sqrt[3]{1.1}$ の近似値を小数点以下 4 桁 まで求め t

$$f(0.1) = 1 + \frac{1}{30} - \frac{1}{900} = \frac{929}{900} = 1.0322...$$

2.10 簡単なテイラー展開の問題

[15] 次の関数の()内の点における 3 次テイラー展開を求めよ. ただし x=a における 3 次テイラー展開の剰余項

$$R_4 = \frac{f^{(4)}(c)}{4!}(x-a)^4 \ (c は a と x の間)$$

とする.

(1)
$$f(x) = x^3 - 3x^2 + 2x - 1$$
 $(x = -2)$
 $f(-2) = -25$, $f'(-2) = 26$, $f''(-2) = -18$, $f^{(3)}(-2) = 6$
 $f(x) = 25 + 26(x + 2) - 9(x + 2)^2 + (x + 2)^3$

(2)
$$f(x) = \log x \ (x = 1)$$

$$f'(x) = \frac{1}{x}, f''(x) = -x^{-2}, f^{(3)}(x) = 2x^{-3}, f^{(4)}(x) = -6x^{-4}$$

$$f(1) = 0, f'(1) = 1, f''(1) = -1, f^{(3)}(1) = 2$$

$$R_4 = \frac{-6c^{-3}}{4!}(x-1)^4 = -\frac{1}{4c^3}(x-1)^4$$

$$f(x) = (x-1) - \frac{1}{2!}(x-1)^2 + \frac{1}{3!} \cdot 2(x-1)^3 + R_4$$

$$= (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 + R_4$$

2.11 n次マクローリン展開

16 次の関数の n 次マクローリン展開を求めよ. ただし剰余項

$$R_{n+1} = \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1} \ (0 < \theta < 1)$$

とする. また具体的な数値は範囲は最初の項から4つ程度でよい.

$$(1) \ f(x) = \cos x$$

$$\begin{cases} f'(x) = -\sin x \\ f''(x) = -\cos x \\ f^{(3)}(x) = \sin x \end{cases} \implies \begin{cases} f^{(2n+1)}(x) = (-1)^{n+1}\sin x \\ f^{(2n)}(x) = (-1)^n\cos x \end{cases}$$

$$f^{(2n+1)}(0) = 0$$
, $f^{(2n)}(0) = (-1)^n$

$$f(x) = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \dots + \frac{(-1)^n}{(2n)!}x^{2n} + R_{2n+1}$$
$$R_{2n+1} = \frac{(-1)^{n+1}\sin\theta x}{(2n+1)!}x^{2n+1} \ (0 < \theta < 1)$$

(2) $f(x) = \log(1+x)$

$$f'(x) = \frac{1}{1+x}, f''(x) = -\frac{1}{(1+x)^2}, f^{(3)}(x) = \frac{2}{(1+x)^3}$$
$$f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n}$$

$$f(0) = 0, f^{(n)}(0) = (-1)^{n-1}(n-1)!$$

$$f(x) = 0 + x + \frac{1}{2!} \cdot (-1)x^2 + \frac{1}{3!} \cdot 2!x^3 + \cdots + \frac{1}{n!} (-1)^{n-1} \cdot (n-1)!x^n + R_{n+1}$$
$$= x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots + \frac{(-1)^{n-1}}{n}x^n + R_{n+1}$$

$$R_{n+1} = \frac{(-1)^n}{(n+1)(1+\theta x)^{n+1}} x^{n+1}$$

(3) $f(x) = (1+x)^{\alpha}$

$$\binom{\alpha}{n} = \frac{\alpha(\alpha - 1)(\alpha - 2)\cdots(\alpha - n + 1)}{n!} \ (n \in \mathbb{N}, \ \alpha \in \mathbb{R})$$

$$\binom{\alpha}{0} := 1$$
 と定義する.

$$f'(x) = \alpha x^{\alpha-1}$$
, $f''(x) = \alpha(\alpha - 1)x^{\alpha-2}$, ...

$$f^{(n)}(x) = \alpha(\alpha - 1)(\alpha - 2) \cdots (\alpha - n + 1)(1 + x)^{\alpha - n}$$

$$f^{(n)}(0) = \alpha(\alpha - 1)(\alpha - 2) \cdots (\alpha - n + 1) = {}_{\alpha}P_n$$

$$f(x) = {}_{\alpha}P_{0} + {}_{\alpha}P_{1}x + \frac{{}_{\alpha}P_{2}}{2!}x^{2} + \dots + \frac{{}_{\alpha}P_{n}}{n!}x^{n} + R_{n+1}$$
$$= {\binom{\alpha}{0}} + {\binom{\alpha}{1}}x + {\binom{\alpha}{2}}x^{2} + \dots + {\binom{\alpha}{n}}x^{n} + R_{n+1}$$
$$R_{n+1} = {\binom{\alpha}{n+1}} \frac{x^{n+1}}{(1+\theta x)^{n+1-\alpha}}$$

2.12 記述問題

| 17 | 次の問いに答えよ.

(1) f(x) は [a,b] において 1 回微分可能とする. $m \leq |f'(x)| \leq M \ (M \geq m > 0 \ の定数) \ が成り立つとき , 不等式 <math display="block">m(b-a) \leq |f(b)-f(a)| \leq M(b-a)$

が成り立つことを示せ.

...

a < c < b とすると $m \le |f'(c)| \le M$

f(x) は [a,b] において微分可能なので平均値の定理より

$$m \le \left| \frac{f(b) - f(a)}{b - a} \right| \le M$$

ここで b-a>0 より $m(b-a)\leq |f(b)-f(a)|\leq M(b-a)$ \qed

(2) $f(x)=\sqrt{1+x}$ $(x\in[0,h])$ で考えることにより ,h>0 に対して $1+\frac{h}{2\sqrt{1+h}}<\sqrt{1+h}<1+\frac{h}{2}$ が成り立つことを示せ.

全ての辺に h をかけると

$$\frac{h}{\sqrt{1+h}} < \sqrt{1+h} - 1 < \frac{h}{2}$$

全ての辺に1加えると

$$1 + \frac{h}{2\sqrt{1+h}} < \sqrt{1+h} < 1 + \frac{h}{2}$$

(3) 関数 f(x) が区間 I で単調増加であることの定義をかけ. $x_1, x_2 \in I$ で $x_1 < x_2$ なら必ず $f(x_1) < f(x_2)$ であること.

(4) 関数 f(x) が区間 I で広義単調減少であることの定義をかけ、 $x_1, x_2 \in I$ で $x_1 < x_2$ なら必ず $f(x_1) \geq f(x_2)$ であること.

2.13 マクローリン展開(∞)

18 次の関数のマクローリン展開を求めよ.p78 の定理 2 を使ってよい.

$$f(x) = \cos 2x$$

$$f(x) = \cos(2x) = 1 - \frac{1}{2!}(2x)^2 + \dots + \frac{(-1)^n}{(2n)!}(2x)^{2n} + \dots$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} \cdot 4^k x^{2k} \quad (\text{定理 2,10.6})$$

$$(3) \ f(x) = \frac{1}{(1+x)^2}$$

$$(1+x)^{\alpha} = {\alpha \choose 0} + {\alpha \choose 1} x + \dots + {\alpha \choose n} x^n + \dots$$

$$f(x) = \frac{1}{(1+x)^2} i \, \text{d} \, \alpha = -2 \, \text{od} \, \text{deg} \, \text{deg} \, \text{deg} \,$$

$$\frac{1}{(1+x)^2} = {-2 \choose 0} + {-2 \choose 1} x + \dots + {-2 \choose n} x^n + \dots$$

$$= 1 - 2x + \dots + \frac{(-2)(-3) \dots (-2-n+1)}{n!} x^n + \dots$$

$$= 1 - 2x + \dots + \frac{(-1)^n n! (n+1)}{n!} x^n + \dots = \sum_{k=0}^{\infty} (-1)^k (k+1) x^k$$

(4)
$$f(x) = \frac{1}{\sqrt{1+x}}$$

$$\alpha = -\frac{1}{2} \text{ or } \geq \stackrel{\cong}{\geq}$$

$$\frac{1}{\sqrt{1+x}} = {-\frac{1}{2} \choose 0} + {-\frac{1}{2} \choose 1} x + \dots + {-\frac{1}{2} \choose n} x^n + \dots$$

$$= \sum_{k=0}^{\infty} {-\frac{1}{2} \choose k} x^k = \sum_{k=0}^{\infty} (-1)^k \cdot \frac{(2k-1)!!}{k!2^k} x^k$$

(5)
$$f(x) = \sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

(*2 重階乗 $n!! = n(n-2)(n-4)\cdots 1)$

(1) より

$$\sin^2 x = \frac{1}{2} - \frac{1}{2}\cos 2x = \frac{1}{2} - \frac{1}{2}\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} \cdot 4^k x^{2k}$$

2.14 マクローリン展開を応用した極限

19 マクローリン展開を利用して 次の極限を求めよ

(1)
$$\lim_{x \to 0} \frac{\sin x - x + \frac{1}{6}x^3}{x^5}$$

$$= \lim_{x \to 0} \frac{\left(\underline{x} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots\right) - \underline{x} + \frac{1}{6}x^3}{x^5}$$

$$= \lim_{x \to 0} \frac{\frac{x^5}{5!} - \frac{x^7}{7!} + \cdots}{x^5} = \lim_{x \to 0} \left(\frac{1}{5!} - \frac{x^2}{7!} + \cdots\right) = \frac{1}{5!}$$

(2)
$$\lim_{x \to 0} \frac{\log(1+x) - x + \frac{x^2}{2}}{x^3}$$

$$= \lim_{x \to 0} \frac{\left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots\right) - x + \frac{x^2}{2}}{x^3}$$

$$= \lim_{x \to 0} \frac{\frac{x^3}{3} - \frac{x^4}{4} + \cdots}{x^3} = \lim_{x \to 0} \left(\frac{1}{3} - \frac{x}{4} + \cdots\right) = \frac{1}{3}$$

(3)
$$\lim_{x \to 0} \frac{e^{x^2} - 1 - x^2}{x - \sin x}$$
$$e^{x^2} = 1 + x^2 + \frac{1}{2!} (x^2)^2 + \cdots$$
$$\sin x = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 + \cdots$$
$$\lim_{x \to 0} \frac{e^{x^2} - 1 - x^2}{x - \sin x} = \lim_{x \to 0} \frac{\left(1 + x^2 + \frac{x^4}{2!} + \cdots\right) - 1 - x^2}{x - \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots\right)}$$

$$x \to 0 \qquad x - \sin x \qquad x \to 0 \qquad x - \left(x - \frac{x^{2}}{3!} + \frac{x^{3}}{5!} + \cdots\right)$$

$$= \lim_{x \to 0} \frac{\frac{x^{4}}{2!} + \frac{x^{6}}{3!} + \cdots}{\frac{x^{3}}{3!} - \frac{x^{5}}{5!} + \cdots} = \lim_{x \to 0} \frac{x^{3} \left(\frac{x}{2!} + \frac{x^{3}}{3!} + \cdots\right)}{\frac{x^{3}}{3!} - \frac{x^{5}}{5!} + \cdots}$$

$$= \lim_{x \to 0} \frac{\frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots}{\frac{1}{3!} - \frac{x^{2}}{5!} + \cdots} = \frac{0}{\frac{1}{3!}} = 0$$

しかしこの問題はロピタルの定理を使ったほうが早い (個人的には)

2.15 マクローリン展開を応用した無限級数の和

(2) $1 + \log 2 + \frac{1}{2!} (\log 2)^2 + \frac{1}{3!} (\log 2)^3 + \cdots$

20 次の無限級数の和を求めよ.

(1)
$$\frac{\pi}{6} - \frac{1}{3!} \left(\frac{\pi}{6}\right)^3 + \frac{1}{5!} \left(\frac{\pi}{6}\right)^5 - \cdots$$

$$f(x) := x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \cdots = \sin x$$

$$f\left(\frac{\pi}{6}\right) = \frac{\pi}{6} - \frac{1}{3!} \left(\frac{\pi}{6}\right)^3 + \frac{1}{5!} \left(\frac{\pi}{6}\right)^5 - \cdots = \sin \frac{\pi}{6} = \frac{1}{2}$$

$$f(x) := 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots = e^x$$

$$f(\log 2) = 1 + \log 2 + \frac{1}{2!}(\log 2)^2 + \frac{1}{3!}(\log 2)^3 + \dots = e^{\log 2} = 2$$
(3) $(\sqrt{e} - 1) - \frac{(\sqrt{e} - 1)^2}{2} + \frac{(\sqrt{e} - 1)^3}{3} - \dots$

$$f(x) := x - \frac{x^2}{2} + \frac{x^3}{3} - \dots = \log(1 + x)$$

$$f((\sqrt{e}-1)) = (\sqrt{e}-1) - \frac{(\sqrt{e}-1)^2}{2} + \frac{(\sqrt{e}-1)^3}{3} - \cdots$$
$$= \log(1 + (\sqrt{e}-1)) = \log\sqrt{e} = \frac{1}{2}$$

$$(4) \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \cdots$$

$$= 0 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \cdots = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \cdots$$

$$f(x) := 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots = e^x$$

$$f(-1) = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \cdots$$

$$= \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \cdots = e^{-1} = \frac{1}{e}$$

2.16 関数の増減凹凸表とグラフの概形

[21] 関数 $y = (x^2 - 2)e^x$ の増減・凹凸・極値・変曲点を調べ、増減凹凸表を書き、グラフの概形をかけ、

$$f'(x) = 2xe^x + (x^2 - 2)e^x = e^x(x^2 + 2x - 2)$$

$$f'(x) = 0$$
 のとき $x = -1 \pm \sqrt{3}$

$$f''(x) = e^x(x^2 + 2x - 2) + e^x(2x + 2) = x(x + 4)e^x$$

$$f''(x) = 0 \ \mathcal{O} \ \mathcal{E} \ \mathcal{E} \ x = 0, -4$$

$x \mid$		-4		$-1-\sqrt{3}$		0		$-1+\sqrt{3}$	
y'	+	+	+	0	_	_	_	0	+
y''	+	0	_	_	_	0	+	+	+
y	1	$\frac{14}{e^4}$	~	*	1	-2	\ <u></u>	$2-2\sqrt{3}$	1

$$* = (2 + 2\sqrt{3})e^{-1-\sqrt{3}}$$

$$\lim_{x \to \infty} (x^2 - 2)e^x = \infty$$

$$\lim_{x \to -\infty} (x^2 - 2)e^x$$

これは $\infty \times 0$ 形なのでロピタルの定理を 2 回用いる.

$$= \lim_{x \to -\infty} \frac{(x^2 - 2)}{e^{-x}}$$

$$= \lim_{x \to -\infty} \frac{2x}{-e^{-x}} = \lim_{x \to -\infty} \frac{2}{e^{-x}} = \lim_{x \to -\infty} 2e^x = 0$$

増減凹凸表と極限よりグラフがかける. グラフの概形はこちら.

| 22 | 関数 $y = \log(2 - \sin x)$ $(-\pi \le x \le \pi)$ の増減・凹凸・極値・変曲点を調べ、増減凹凸表を書き、グラフの概形をかけ.

$$f(x)=y$$
 とする. $f'(x)=rac{-\cos x}{2-\sin x}\,,\,f'(x)=0$ のとき $x=\pmrac{\pi}{2}$

$$f''(x) = \frac{\sin x(2 - \sin x) + \cos x(-\cos x)}{(2 - \sin x)^2} = \frac{2\sin x - 1}{(2 - \sin x)^2}$$

$$f''(x) = 0 \text{ oze } x = \frac{\pi}{6}, \frac{5}{6}\pi$$

x	$-\pi$		$-\frac{\pi}{2}$		$\frac{\pi}{6}$		$\frac{\pi}{2}$		$\frac{5\pi}{6}$		π
y'		+	0	_	_	_	0	+	+	+	
y''		_	_	_	0	+	+	+	0	_	
y	$\log 2$	~	$\log 3$	7	$\log \frac{3}{2}$	\ <u></u>	0	ノ	$\log \frac{3}{2}$	~	$\log 2$

グラフの概形はこちら

2.17 極値などを求める問題

- [23] 関数 $y = x^3 3x^2 9x$ について次の問いに答えよ.
 - (1) 極値を求めよ. また, そのときのx の値を求めよ.

$$y' = 3x^2 - 6x - 9 = 3(x^2 - 2x - 3) = 3(x - 3)(x + 1)$$

x		-1		3		
y'	+	0	_	0	+	
y	7	5	×	-27	7	
増減	表より	$\begin{cases} x \\ x \end{cases}$	= -1 $= 3 6$	のとき のとき植	を極大 極小値	値 5 i – 27

(2) $0 \le x \le 4$ における最大値と最小値を求めよ. また, そのときの x の値も求めよ.

x	0		3		4	
y'		_	0	+		
y	0	×	-27	7	-20	
増減	表よ	h {	x = 0	のとき	き最大値	10
- 1174	200		x = 3	のとき	最小值	1 - 2

(3) 方程式 $x^3 - 3x^2 - 9x = k$ の実数解の個数は k の値によってどのように変化するか答えよ.

$$y'' = 6x - 6 = 6(x - 1)$$

x		-1		1		3	
y'	+	0	_	_	_	0	+
y''	_	_	_	0	+	+	+
y	~	5	7	-11	/	-27	1

増減表よりグラフ(省略)を書くと

$$\left\{ egin{aligned} k < -27 \,, \, 5 < k \, のとき \, 1 \, 個 \ k = 5 \, \text{または} \, k = -27 \, \text{のとき} \, 2 \, 個 \ -27 < k < 5 \, \text{のとき} \, 3 \, \Pi \end{aligned}
ight.$$

2.18 増減凹凸表とグラフの概形の応用

- 24 関数 $y = \frac{\log x}{x}$ について次の問いに答えよ.
 - (1) 増減凹凸表を書き,グラフの概形をかけ.

$$f(x) = \frac{\log x}{x} とする.$$

$$f'(x) = \frac{\frac{1}{x} \cdot x - (\log x)}{x^2} = \frac{1 - \log x}{x^2}$$

$$f'(x) = 0$$
 のとき

$$\frac{1 - \log x}{x^2} = 0 \Leftrightarrow 1 - \log x = 0 \Leftrightarrow \log x = 1 \text{ \sharp } \emptyset \text{ } x = e$$

$$f''(x) = \frac{-\frac{1}{x} \cdot x^2 - 2x(1 - \log x)}{x^4} = \frac{2\log x - 3}{x^3}$$

\boldsymbol{x}		e		$e^{\frac{3}{2}}$	
y'	+	0	_	_	_
y''	_	_	_	0	+
y	~	$\frac{1}{e}$	7	$\frac{3}{2e^{\frac{3}{2}}}$	\ <u></u>

グラフの概形をかくために極限を考える.

まずは $x \to \infty$ の極限を考える.

$$\lim_{x \to \infty} \frac{\log x}{x}$$
 これは $\frac{\infty}{\infty}$ 形なのでロピタルの定理を用いると
$$= \lim_{x \to \infty} \frac{1}{x} = 0$$

次に $x \to -\infty$ を考えたいが

 $\log x$ は $x \le 0$ で定義されていないので(真数条件より) $x \to +0$ の極限を考える.

$$\lim_{x \to +0} \frac{\log x}{x} = \lim_{x \to +0} \frac{1}{x} \log x = \infty \cdot (-\infty) = -\infty$$

グラフの概形はこちら

- (2) 関数の最大値を求めよ. グラフの概形より x=e のとき $\frac{1}{2}$
- (3) e^{π} と π^e はどちらが大きいか. e^x と x^e を比較する.

 $\pi > e > 0$ なので $x = \pi$ のときも成り立つ. よって $e^{\pi} > \pi^e$

3 微積 III (鬼塚先生)

3.1 簡単な不定積分

- 1 次の不定積分を求めよ.
 - $(1) \int 3x^2 dx$

$$=\frac{1}{3}\cdot 3x^3 + C = x^3 + C \ (C: 積分定数)$$

(2) $\int e^x dx$

$$=e^x+C$$
 (C:積分定数)

- (3) $\int \frac{1}{x} dx$
 - $= \log|x| + C(C: 積分定数)$
- $(4) \int \frac{1}{\cos^2 x} dx$
 - $= \tan x + C (C : 積分定数)$
- (5) $\int \sin x dx$

$$=-\cos x + C(C: 積分定数)$$

(6) $\int \cos x dx$

$$=\sin x + C(C: 積分定数)$$

(7) $\int \frac{1}{1+x^2} dx$

$$= \tan^{-1} x + C (C: 積分定数)$$

(8) $\int \frac{1}{\sqrt{1-x^2}} dx$

$$=\sin^{-1}x+C(C:積分定数)$$

 $(9) \int e^{2x} dx$

$$=\frac{1}{2}e^{2x}+C\ (C: 積分定数)$$

 $(10) \int \frac{5x^7 + 3x^3}{x^4} dx$

$$= \int \left(\frac{5x^7}{x^4} + \frac{3x^3}{x^4}\right) dx$$

$$=5\int x^3 dx + 3\int \frac{1}{x} dx = \frac{5}{4}x^4 + 3\log|x| + C(C: 積分定数)$$

3.2 標準的?な不定積分

- 2 次の不定積分を求めよ.
 - (1) $\int \sin^2 x \cos x dx$

$$\int \{f(x)\}^{\alpha} \cdot f'(x) dx = \frac{1}{\alpha + 1} \{f(x)\}^{\alpha + 1} + C \not \exists \land \mathcal{T}$$

$$=\frac{1}{3}\sin^3 x + C (C: 積分定数)$$

(2)
$$\int \frac{x}{x^2 + 1} dx$$

$$\int \frac{f'(x)}{f(x)} dx = \log|f(x)| + C \, \, \mathcal{A} \, \mathcal{T}$$

$$=\frac{1}{2}\int \frac{2x}{x^2+1}dx$$

$$=\frac{1}{2}\log(x^2+1)+C(C:$$
 積分定数)

$$(3) \int \frac{\tan^{-1} x}{1+x^2} dx$$

$$=\frac{1}{2}(\tan^{-1}x)^2+C\ (C: {\hat{\pi}}$$

$$(4) \int x^6 e^{x^7} dx$$

$$=\frac{1}{7}\int 7x^6 e^{x^7} dx = \frac{1}{7}e^{x^7} + C(C: 積分定数)$$

(5)
$$\int \frac{1}{(3x-2)^4} dx$$

$$=\int (3x-2)^{-4}dx$$

$$= \frac{1}{3} \int 3(3x-2)^{-4} dx$$

$$= \frac{1}{3} \cdot \left(\frac{1}{-3}(3x-2)^{-3}\right) + C = -\frac{1}{9}(3x-2)^{-3} + C (C: 積分定数)$$

(6)
$$\int \left(3x^2 + \frac{1}{x}\right) (x^3 + \log x)^{10} dx$$

$$=\frac{1}{11}(x^3+\log x)^{11}+C\ (C: {\it \AA}$$
分定数)

$$(7) \int \frac{1}{x(\log x)^4} dx$$

$$= \int (\log x)^{-4} \cdot \frac{1}{r} dx = -\frac{1}{3} (\log x)^{-3} + C (C : 積分定数)$$

(8)
$$\int \tan x dx$$

$$= \int \frac{\sin x}{\cos x} dx = -\int \frac{-\sin x}{\cos x} dx$$

$$=-\log|\cos x|+C$$
 (C:積分定数)

3.3 置換積分法

(2)
$$\int \frac{2 + \log x^3}{x} dx$$
$$t = 2 + \log x^3 = 2 + 3\log x \ \text{とすると} \frac{dt}{dx} = \frac{3}{x} \ \therefore \ dx = \frac{x}{3} dt$$
$$= \frac{1}{3} \int t \, dt = \frac{1}{6} t^2 + C = \frac{1}{6} (2 + \log x^3)^2 + C \ (C : 積分定数)$$
$$\left(*\frac{1}{6} (\log x^3)^2 + C \ \text{でも可}\right)$$

(3)
$$\int (-x^2)\sin(x^3+2)dx$$

$$t = x^3 + 2 \ \ \, \forall \ \ \, \delta \ \, \leq \frac{dt}{dx} = 3x^2 \ \, \therefore \ \, dx = \frac{1}{3x^2}dt \ \, \, \, \forall \ \, \delta \ \, \mathcal{O} \mathcal{O}$$

$$= -\frac{1}{3}\int \sin t \, dt = \frac{1}{3}\cos t + C = \frac{1}{3}\cos(x^3+2) + C$$

$$\qquad \qquad (C: 積分定数)$$

$$\tan^4 x = \tan^2 x \cdot \tan^2 x = \tan^2 x \left(\frac{1}{\cos^2 x} - 1\right)$$

$$\int \tan^4 x \, dx = \int \tan^2 x \left(\frac{1}{\cos^2 x} - 1\right) dx$$

$$= \int \tan^2 x \cdot \frac{1}{\cos^2 x} dx - \int \tan^2 x \, dx$$

$$\int \tan^2 x \cdot \frac{1}{\cos^2 x} dx \, \angle \supset \lor \lor \subset$$

$$t = \tan x \, \angle \not = \, \& \, \& \, \frac{dt}{dx} = \frac{1}{\cos^2 x} \, \therefore \, dx = \cos^2 x \, dt$$

$$\int \tan^2 x \cdot \frac{1}{\cos^2 x} dx = \int t^2 \, dt$$

$$= \frac{1}{3} t^3 + C = \frac{1}{3} (\tan x)^3 + C$$

$$\int \tan^2 x \, dx \, \angle \supset \lor \lor \subset$$

$$\tan^2 x = \frac{1}{\cos^2 x} - 1 \, \& \, \lor \lor$$

$$\int \tan^2 x \, dx = \int \frac{1}{\cos^2 x} dx - \int 1 dx = \tan x - x + C$$

$$\therefore \int \tan^4 x \, dx = \frac{1}{3} (\tan x)^3 + \tan x - x + C \, (C : \, ?)$$

3.4 部分積分法

4 次の不定積分を求めよ.

(1)
$$\int xe^x dx$$
$$= xe^x - \int e^x dx = e^x(x-1) + C(C: 積分定数)$$

(2)
$$\int \log x \, dx$$
$$= \int 1 \cdot \log x \, dx = \int (x)' \log x \, dx$$
$$= x \log x - \int x \cdot \frac{1}{x} dx$$
$$= x \log x - \int 1 dx = x(\log x - 1) + C (C : 積分定数)$$

(4)
$$\int (x^2 + 6) \sin x \, dx$$

$$= (-\cos x)(x^2 + 6) - \int (-\cos x)2x \, dx$$

$$= -(x^2 + 6)\cos x + \left(2x\sin x - \int 2\sin x \, dx\right)$$

$$= -(x^2 + 6)\cos x + 2x\sin x + 2\cos x + C (C: 積分定数)$$

3.5 部分分数分解

|5|次の分数を部分分数分解せよ.

(1)
$$\frac{3}{x^2 - 4}$$

$$\frac{3}{x^2 - 4} = \frac{3}{(x+2)(x-2)} = \frac{a}{x+2} + \frac{b}{x-2}$$
$$\frac{a}{x+2} + \frac{b}{x-2} = \frac{a(x-2) + b(x+2)}{(x+2)(x-2)} = \frac{(a+b)x - 2a + 2b}{x^2 - 4}$$

$$a+b=0 \Leftrightarrow a=-b$$

$$-2(a-b) = 3 \Leftrightarrow -2(a+a) = 3 \Leftrightarrow a = -\frac{3}{4}, b = \frac{3}{4}$$

$$\therefore \frac{3}{x^2 - 4} = \frac{-3/4}{x + 2} + \frac{3/4}{x - 2} = \frac{3}{4} \left(\frac{1}{x - 2} - \frac{1}{x + 2} \right)$$

(2)
$$\frac{1}{x^3+1}$$

$$\frac{1}{x^3+1} = \frac{1}{(x+1)(x^2-x+1)} = \frac{a}{x+1} + \frac{bx+c}{x^2-x+1}$$

$$\frac{a}{x+1} + \frac{bx+c}{x^2-x+1}$$

$$=\frac{a(x^2-x+1)+(bx+c)(x+1)}{(x+1)(x^2-x+1)}$$

$$= \frac{(a+b)x^2 + (b-a+c)x + a + c}{x^3 + 1}$$

$$a+b=0 \Leftrightarrow a=-b$$

$$b-a+c=0 \Leftrightarrow c=2a \Leftrightarrow a=\frac{c}{2}$$

$$a+c=1 \Leftrightarrow 3a=1 \Leftrightarrow a=\frac{1}{3}, b=-\frac{1}{3}, c=\frac{2}{3}$$

$$\therefore \frac{1}{x^3 + 1} = \frac{1/3}{x + 1} + \frac{-x/3 + 2/3}{x^2 - x + 1} = \frac{1}{3} \left(\frac{1}{x + 1} + \frac{-x + 2}{x^2 - x + 1} \right)$$

(3)
$$\frac{x^2}{(x-5)^3}$$

$$\frac{x^2}{(x-5)^3} = \frac{a}{x-5} + \frac{b}{(x-5)^2} + \frac{c}{(x-5)^3}$$

ヘビサイドの方法を用いると

 $(x が残った場合 x-5=0 \Leftrightarrow x=5$ を代入)

$$a=rac{1}{2!_{\leftarrow^{(ar{eta}ar{a}ar{b}ar{a}}-\;ar{a}ar{a}ar{b}}(x^2)''(\leftarrow^{(ar{ar{a}}ar{a}ar{b}ar{b}}-\;ar{a}ar{b}$$
の分母の指数)回微分)

$$= \frac{1}{2!}(2x)' = \frac{1}{2!} \cdot 2 = 1$$

$$b = \frac{1}{1!}(x^2)' = 2x = 10$$

$$c = \frac{1}{\Omega} = (x^2)^{(0)} = x^2 = 25$$

$$\therefore \frac{x^2}{(x-5)^3} = \frac{1}{x-5} + \frac{10}{(x-5)^2} + \frac{25}{(x-5)^3}$$

(2)
$$\int \frac{1}{x^2 - 2x - 3} dx$$

$$\frac{1}{x^2 - 2x - 3} = \frac{1}{(x+1)(x-3)} = \frac{a}{x+1} + \frac{b}{x-3}$$
ヘビザイドの方法を用いると $a = -\frac{1}{4}$, $b = \frac{1}{4}$

$$\therefore \frac{1}{x^2 - 2x - 3} = \frac{1}{4} \left(\frac{1}{x-3} - \frac{1}{x+1} \right)$$

$$\int \frac{1}{x^2 - 2x - 3} dx = \frac{1}{4} \left(\int \frac{1}{x-3} dx - \int \frac{1}{x+1} dx \right)$$

$$= \frac{1}{4} (\log|x-3| - \log|x+1|) + C = \frac{1}{4} \log\left|\frac{x-3}{x+1}\right| + C$$
($C:$ 積分定数)

(3)
$$\int \frac{x^2}{(x-5)^3} dx$$
$$= \int \frac{1}{x-5} dx + \int \frac{10}{(x-5)^2} dx + \int \frac{25}{(x-5)^3} dx$$
$$= \log|x-5| - 10(x-5)^{-1} - \frac{25}{2}(x-5)^{-2} + C (C: 積分定数)$$

3.6 まとめ

7 次の不定積分を求めよ.

(1)
$$\int e^{4x+3} dx$$

= $\frac{1}{4} e^{4x+3} + C (C : 積分定数)$

(3)
$$\int \left(5x^4 + \frac{1}{x}\right) (x^5 + \log x)^5 dx$$
$$= \frac{1}{6} (x^5 + \log x)^6 + C (C : 積分定数)$$

(4)
$$\int \frac{1}{\sqrt{16-x^2}} dx$$
$$x = 4\sin t \quad \left(\frac{\pi}{2} \le t \le \frac{\pi}{2}\right)$$
 と置換して (2) と同様に解くと
$$= \sin^{-1}\left(\frac{x}{4}\right) + C (C : 積分定数)$$

(5)
$$\int x \cos 2x \, dx$$
$$= \frac{1}{2} (\sin 2x) \cdot x - \int \frac{1}{2} \sin 2x \, dx$$
$$= \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + C \quad (C: 積分定数)$$

(6)
$$\int \frac{x^3 + x^2 + 3x + 1}{x^2 + x + 1} dx$$

分子の次数を下げる.

$$\begin{array}{r}
x \\
x^2 + x + 1 \\
\underline{x^3 + x^2 + 3x + 1} \\
\underline{x^3 + x^2 + x} \\
2x + 1
\end{array}$$

$$x^3 + x^2 + 3x + 1 = x(x^2 + x + 1) + 2x + 1$$

$$\iff \frac{x^3 + x^2 + 3x + 1}{x^2 + x + 1} = x + \frac{2x + 1}{x^2 + x + 1}$$

$$\therefore \int \frac{x^3 + x^2 + 3x + 1}{x^2 + x + 1} dx = \int x dx + \int \frac{2x + 1}{x^2 + x + 1} dx$$

$$= \frac{1}{2}x^2 + \log(x^2 + x + 1) + C \ (C :$$
 積分定数)

8 次の に適切な値を書け

(1)
$$\frac{1}{(x-1)(x+2)(x-3)} = \frac{a}{x-1} + \frac{b}{x+2} + \frac{c}{x-3}$$
 ヘビサイドの方法より $a = -\frac{1}{6}$, $b = \frac{1}{15}$, $c = \frac{1}{10}$

(2)
$$\frac{x^3 - x + 1}{(x+1)^4} = \frac{\boxed{a}}{x+1} + \frac{\boxed{b}}{(x+1)^2} + \frac{\boxed{c}}{(x+1)^3} + \frac{\boxed{d}}{(x+1)^4}$$

ヘビサイドの方法より (xが残った場合は $x+1=0 \Leftrightarrow x=-1$ を代入)

$$a = \frac{1}{3!}(x^3 - x + 1)^{(3)} = \frac{1}{6}(3x^2 - 1)'' = \frac{1}{6}(6x)' = \frac{1}{6} \cdot 6 = 1$$

$$b = \frac{1}{2!} \cdot 6x = -3, \ c = \frac{1}{1!}(3x^2 - 1) = 3 - 1 = 2$$

$$d = \frac{1}{0!}(x^3 - x + 1) = -1 + 1 + 1 = 1$$

$$\therefore a = 1, b = 2, c = 2, d = 1$$

(3)
$$\frac{x^2+4}{(x-2)(x-3)^2} = \frac{a}{x-2} + \frac{b}{x-3} + \frac{c}{(x-3)^2}$$

ヘビサイドの方法より

 $\therefore a = 8, b = -7, c = 13$

9 次の不定積分を求めよ

(1)
$$\int \frac{2x^3 + 7x^2 + 2x + 2}{x(x+2)(x^2+1)} dx$$

$$\int \mathcal{O}$$
中身は $\frac{a}{x} + \frac{b}{x+2} + \frac{cx+d}{x^2+1}$ と分解できる.

$$a(x+2)(x^2+1)+bx(x^2+1)+(cx+d)x(x+2)=2x^3+7x^2+2x+2$$

となる a,b,c,d を求める.

$$a, b, c, d$$
 に関する項をそれぞれ計算すると

$$a(x+2)(x^2+1) = ax^3 + 2ax^2 + ax + 2a$$

$$bx(x^2+1) = bx^3 + bx$$

$$(cx+d)x(x+2) = cx^3 + (2c+d)x^2 + 2dx$$

上記の結果から
$$2a=2$$
 : $a=1$ がわかる

その他には
$$a+b+c=2 \Leftrightarrow b+c=1\cdots[1]$$

$$2a+2c+d=7 \Leftrightarrow 2c+d=5 \Leftrightarrow d=-2c+5\cdots [2]$$

$$a+b+2d=2 \Leftrightarrow b+2d=1\cdots[3]$$

[3] の式に [2] を代入すると
$$b-4c=-9\cdots$$
[4]

[4] と [1] の式を連立して解くと
$$c=2$$
 $b=-1$, [2] より $d=1$

$$\therefore a = 1, b = -1, c = 2, d = 1$$

$$\therefore (与式) = \int \frac{1}{x} dx - \int \frac{1}{x+2} dx + \int \frac{2x+1}{x^2+1} dx$$

$$= \int \frac{1}{x} dx - \int \frac{1}{x+2} dx + \int \frac{2x}{x^2+1} dx + \int \frac{1}{x^2+1} dx$$

$$= \log|x| - \log|x+2| + \log(x^2+1) + \tan^{-1}x + C$$

$$=\log\left|\frac{x(x^2+1)}{x+2}\right| + \tan^{-1}x + C(C: 積分定数)$$

(2)
$$\int \frac{1}{\sqrt{(a^2+x^2)^3}} dx \ (a>0)$$

$$x=a an t$$
 $\left(-rac{\pi}{2} < t < rac{\pi}{2}
ight)$ とおくと $dx=rac{a}{\cos^2 t}dt$, $an t=rac{x}{a}$

$$=\int \frac{a}{\sqrt{(a^2+a^2\tan^2t)^3}\cos^2t}dt$$

$$= \int \frac{a}{\sqrt{(a^2(1+\tan^2 t))^3}\cos^2 t} dt$$

$$= \int \frac{a}{\sqrt{a^6(1+\tan^2 t)^3} \cos^2 t} dt$$

$$= \int \frac{a}{a^3 \sqrt{(1+\tan^2 t)^3} \cos^2 t} dt$$

$$= \frac{1}{a^2} \int \frac{1}{\sqrt{(1+\tan^2 t)^3} \cos^2 t} dt$$

$$= \frac{1}{a^2} \int \frac{1}{\sqrt{(-\frac{1}{a^2})^3 \cos^2 t}} dt = \frac{1}{a^2} \int \frac{1}{((\cos t)^{-2})^{\frac{3}{2}} (\cos t)^2} dt$$

$$= \frac{1}{a^2} \int \frac{1}{(\cos t)^{-1}} dt = \frac{1}{a^2} \int \cos t \, dt = \frac{1}{a^2} \sin t + C$$

$$an t = rac{x}{a}$$
 なので三平方 (ピタゴラス) の定理より $\sin t = rac{x}{\sqrt{a^2+x^2}}$

$$\therefore \int \frac{1}{\sqrt{(a^2 + x^2)^3}} dx = \frac{x}{a^2 \sqrt{a^2 + x^2}} + C(C: 積分定数)$$

3.7 区分求積法, 定積分の定義

10 区分求積法を用いて次の定積分を求めよ.

(1)
$$\int_{0}^{1} x^{3} dx$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{i}{n} \right)^{3} = \lim_{n \to \infty} \frac{1}{n^{4}} \sum_{i=1}^{n} i^{3}$$

$$= \lim_{n \to \infty} \frac{1}{n^4} \cdot \frac{1}{4} n^2 (n+1)^2 = \frac{1}{4} \lim_{n \to \infty} \frac{1}{n^2} (n+1)^2$$

$$=\frac{1}{4} + \lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n}\right) = \frac{1}{4}$$

(2)
$$\int_0^1 3x^2 dx$$

$$= \lim_{n \to \infty} \frac{1 - 0}{n} \sum_{i=1}^{n} f\left(0 + \frac{1 - 0}{n}i\right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} 3\left(\frac{i}{n}\right)^{2} = \lim_{n \to \infty} \frac{3}{n^{3}} \sum_{i=1}^{n} i^{2}$$

$$= \lim_{n \to \infty} \frac{3}{n^3} \cdot \frac{1}{6} n(n+1)(2n+1)$$

$$= \frac{1}{2n^2}(2n^2 + 3n + 1) = \lim_{n \to \infty} \left(1 + \frac{3}{2n} + \frac{1}{2n^2}\right) = 1$$

[11] 定積分の定義に従って, $\int_{11}^{18} 3 dx$ を求めよ.

$$egin{aligned} eta & \Delta: 11 = x_0 < x_1 < \dots < x_n = 18 \ ext{ とし } \\ 小区間 & [x_0, x_1], & [x_1, x_2], & [x_2, x_3], \dots, & [x_{n-1}, x_n] \\ & \text{の間にそれぞれ任意に} & \xi_1, \xi_2, \xi_3, \dots, \xi_n \ ext{をとり} \\ & |\Delta| & := \max_{1 \leq i \leq n} (x_i - x_{i-1}) \ ext{とする}. \end{aligned}$$

$$\int_{11}^{18} 3 \, dx = \lim_{|\Delta| \to 0} \sum_{i}^{n} f(\xi_i)(x_i - x_{i-1})$$

$$f(x) = 3 \, \, \ \, \ \, \mathcal{I} \, \mathcal{I} \, f(\xi_i) = 3$$

$$= \lim_{|\Delta| \to 0} \sum_{i=1}^{n} 3(x_i - x_{i-1})$$

$$= \lim_{|\Delta| \to 0} 3\{(x_1 \overline{(-x_0)}) + (x_2 - x_1) + \dots + (\overline{(x_n)} - x_{n-1})\}$$

$$= \lim_{|\Delta| \to 0} 3(\underbrace{x_n}_{=18} - \underbrace{x_0}_{=11}) = 3(18 - 11) = 21$$

3.8 記述問題

- | 12 | 関数 f(x) は区間 [1,4] において積分可能とする. このとき,以下の問
 - (1) 分割 Δ_1 を Δ_1 : $1 = x_0 < x_1 < \dots < x_n = 2$ としたとき

定積分
$$\int_{1}^{2} f(x)dx$$
 の定義を答えよ.

$$|\Delta_1| := \max_{1 \le i \le n} (x_i - x_{i-1})$$

$$\int_{1}^{2} f(x)dx = \lim_{|\Delta_{1}| \to 0} \sum_{i=1}^{n} f(\xi_{i})(x_{i} - x_{i-1})$$

$$\int_{1}^{4} f(x)dx = \int_{1}^{2} f(x)dx + \int_{2}^{3} f(x)dx + \int_{3}^{4} f(x)dx$$

$$\Delta_1 : 1 = x_0 < x_1 < \dots < x_n = 2$$

$$\Delta_2 : 2 = x_n < x_{n+1} < \dots < x_{2n} = 3$$

$$\Delta_3: 3 = x_{2n} < x_{2n+1} < \dots < x_{3n} = 4$$

$$\Delta: 1 = x_0 < x_1 < \dots < x_n < \dots < x_{2n} < \dots < x_{3n} = 4$$
 とする.

$$|\Delta_1| := \max_{1 \le i \le n} (x_i - x_{i-1})$$

$$|\Delta_2| := \max_{1 \le i \le n} (x_{n+i} - x_{n+i-1})$$

$$|\Delta_3| := \max_{1 \le i \le n} (x_{2n+i} - x_{2n+i-1})$$

$$|\Delta| := \max\{|\Delta_1|, |\Delta_2|, |\Delta_3|\} \ \texttt{L} \ \texttt{J} \ \texttt{L} \ \texttt{J} \ \texttt{L} \ \texttt{L$$

$$\int_{1}^{2} f(x)dx + \int_{2}^{3} f(x)dx + \int_{3}^{4} f(x)dx$$

$$= \lim_{|\Delta_1| \to 0} \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1}) +$$

$$\lim_{|\Delta_2| \to 0} \sum_{i=1}^n f(\xi_{n+i}) (x_{n+i} - x_{n+i-1}) +$$

$$\lim_{|\Delta_3| \to 0} \sum_{i=1}^n f(\xi_{2n+i}) (x_{2n+i} - x_{2n+i-1})$$

$$\int \mathcal{L} \mathcal{L} \mathcal{C} \left(x_i - x_{i-1} \right) = \Delta_i$$

$$(x_{n+i}-x_{n+i-1})=\Lambda_{n+i}$$

$$(x_{2n+i} - x_{2n+i-1}) = \Lambda_{2n+i} \ \xi \, \dagger \, \delta$$

ここで $(x_i - x_{i-1}) = \Delta_i$ $(x_{n+i} - x_{n+i-1}) = \Delta_{n+i}$ $(x_{2n+i} - x_{2n+i-1}) = \Delta_{2n+i}$ とする. (解答スペースの関係で Δ_* とおいたが本来はおかなくてもよい.)

ここで ∑ の線形性より

$$= \lim_{|\Delta| \to 0} \sum_{i=1}^{n} \{ f(\xi_i) \Delta_i + f(\xi_{n+i}) \Delta_{n+i} + f(\xi_{2n+i}) \Delta_{2n+i} \}$$
3n

$$= \lim_{|\Delta| \to 0} \sum_{i=1}^{3n} f(\xi_i)(x_i - x_{i-1}) = \int_1^4 f(x) dx \quad \Box$$

 $\fbox{13}$ 関数 f(x) が C^1 級または連続微分可能であるとはどのようなことか.

関数 f(x) が微分可能で f(x) を微分した関数 f'(x) が連続である.

微積 IV (瓜屋先生)

- 4.1 定積分(置換積分・部分積分も含む.)
- 1 次の定積分を求めよ.

$$(1) \int_1^3 e^x dx$$

$$= \left[e^{x} \right]_{1}^{3} = e^{3} - e = e(e+1)(e-1)$$

(2)
$$\int_{0}^{\frac{\pi}{3}} \sin 3x \, dx$$

$$= \left[-\frac{1}{3}\cos 3x \right]_0^{\frac{\pi}{3}} = -\frac{1}{3}\cos \pi - \left(-\frac{1}{3}\cos 0 \right) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$$

(3)
$$\int_{0}^{1} \sqrt{4-x^2} \, dx$$

$$x = 2\sin t \left(-\frac{\pi}{2} \le t \le \frac{\pi}{2}\right)$$
 と置換すると

$$\frac{dx}{dt} = 2\cos t$$
 $\therefore dx = 2\cos t \, dt$

また積分範囲は
$$x \mid 0 \cdots 1$$
 $t \mid 0 \cdots \pi$

$$= \int_0^{\frac{\pi}{6}} \sqrt{4 - 4\sin^2 t} \, 2\cos t \, dt = \int_0^{\frac{\pi}{6}} \sqrt{4(1 - \sin^2 t)} \, 2\cos t \, dt$$

$$= \int_0^{\frac{\pi}{6}} 2\cos t \cdot 2\cos t \, dt = \int_0^{\frac{\pi}{6}} 4\cos^2 t \, dt$$

ここで
$$\cos^2 t = \frac{1 + \cos 2t}{2}$$
 より

$$=2\int_{0}^{\frac{\pi}{6}}(\cos 2t+1)dt=2\left\{ \left[\frac{1}{2}\sin 2t\right]_{0}^{\frac{\pi}{6}}+\left[t\right]_{0}^{\frac{\pi}{6}}\right\}$$

$$= \left(\sin\frac{\pi}{3} - \sin 0\right) - 2\left(\frac{\pi}{6} - 0\right) = \frac{\sqrt{3}}{2} + \frac{\pi}{3}$$

(4)
$$\int_{-\epsilon}^{\epsilon} \log x \, dx$$

$$= \begin{bmatrix} x \log x \end{bmatrix}_1^e - \int_1^e x \cdot \frac{1}{x} dx$$
$$= \begin{bmatrix} x \log x \end{bmatrix}_1^e - \begin{bmatrix} x \end{bmatrix}_1^e = (e - 0) - (e - 1) = 1$$

(5)
$$\int_{-1}^{1} \frac{1}{e^x + 1} dx$$

分母・分子を e^x で割ると

$$= \int_{-1}^{1} \frac{e^{-x}}{1 + e^{-x}} dx$$

$$= \left[-\log(1+e^{-x}) \right]_{-1}^{1} = -\log(1+e^{-1}) - (-\log(1+e))$$

$$= \log(1+e) - \log(1+e^{-1}) = \log\left(\frac{1+e}{1+e^{-1}}\right)$$

分母・分子に e をかけると

$$= \log\left(\frac{1+e}{1+e^{-1}}\right) = \log\left(\frac{e+e^2}{e+1}\right) = \log\left(\frac{e(1+e)}{1+e}\right) = \log e = 1$$

4.2 広義積分

2 次の定積分を求めよ. (広義積分も含む. 必ずしも値が求まるとは限ら

次の定権分を求めよ、(法義権力も含む、必りでも値がすない。)
$$(1) \int_0^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin^2 x} dx$$

$$= \int_0^{\frac{\pi}{2}} \frac{(\sin x)'}{1 + (\sin x)^2} dx$$

$$= \left[\tan^{-1}(\sin x) \right]_0^{\frac{\pi}{2}} = \tan^{-1} 1 - \tan^{-1} 0 = \frac{\pi}{4}$$

$$(2) \int_0^1 \frac{1}{\sqrt{1 - x^2}} dx$$

$$= \lim_{\varepsilon \to +0} \int_0^{1 - \varepsilon} \frac{1}{\sqrt{1 - x^2}} dx$$

$$= \lim_{\varepsilon \to +0} \left[\sin^{-1} x \right]_0^{1 - \varepsilon} = \lim_{\varepsilon \to +0} \sin^{-1}(1 - \varepsilon) = \frac{\pi}{2}$$

$$(3) \int_0^1 \log x \, dx$$

$$= \lim_{\varepsilon \to +0} \int_{\varepsilon}^1 \log x \, dx$$

$$= \lim_{\varepsilon \to +0} \left\{ \left[x \log x \right]^1 - \int_0^1 1 \, dx \right\}$$

$$= \lim_{\varepsilon \to +0} \left[x(\log x - 1) \right]_{\varepsilon}^{1}$$

$$= \lim_{\varepsilon \to +0} \left(-1 - \varepsilon(\log \varepsilon - 1) \right)$$

$$= -1 - \lim_{\varepsilon \to +0} \varepsilon \log \varepsilon + \lim_{\varepsilon \to +0} \varepsilon \, \, \square \, \forall \beta \, \nu \, 0$$
定理より

(5)
$$\int_{-1}^{1} \frac{1}{x} dx$$

 $\frac{1}{x}$ は x = 0 で定義されないので広義積分となる.

$$\begin{split} &= \int_{-1}^{0} \frac{1}{x} dx + \int_{0}^{1} \frac{1}{x} dx \\ &= \lim_{\varepsilon \to +0} \int_{-1}^{-\varepsilon} \frac{1}{x} dx + \lim_{\varepsilon' \to +0} \int_{\varepsilon'}^{1} \frac{1}{x} dx \\ &= \lim_{\varepsilon \to +0} \left[-\log|x| \right]_{-1}^{\varepsilon} + \lim_{\varepsilon' \to +0} \left[-\log|x| \right]_{\varepsilon'}^{1} \\ &= \lim_{\varepsilon \to +0} \log \varepsilon + \left(-\lim_{\varepsilon' \to +0} \log \varepsilon' \right) \quad (= \infty - \infty) \leftarrow \mathbb{R} \mathcal{E} \mathcal{E} \end{split}$$

この極限は存在しない.よって発散する.

$$(6) \int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$

$$= \int_{-\infty}^{0} \frac{1}{1+x^2} dx + \int_{0}^{\infty} \frac{1}{1+x^2} dx$$

$$= \lim_{\alpha \to -\infty} \int_{\alpha}^{0} \frac{1}{1+x^2} dx + \lim_{\beta \to \infty} \int_{0}^{\beta} \frac{1}{1+x^2} dx$$

$$= \lim_{\alpha \to -\infty} \left[\tan^{-1} x \right]_{\alpha}^{0} + \lim_{\beta \to \infty} \left[\tan^{-1} x \right]_{0}^{\beta}$$

$$= \lim_{\beta \to \infty} \tan^{-1} \beta - \lim_{\alpha \to -\infty} \tan^{-1} \alpha = \frac{\pi}{2} - \left(-\frac{\pi}{2} \right) = \pi$$

(7)
$$\int_{-\infty}^{-3} \frac{1}{\sqrt{(1-x)^3}} dx$$

$$= \lim_{t \to -\infty} \int_{t}^{-3} (1-x)^{-\frac{3}{2}} dx$$

$$= \lim_{t \to -\infty} \left[(-1)(-2)(1-x)^{-\frac{1}{2}} \right]_{t}^{-3}$$

$$= 2 \lim_{t \to -\infty} \left\{ \frac{1}{2} - \frac{1}{\sqrt{1-t}} \right\} = 1$$

(8)
$$\int_{1}^{\infty} \frac{1}{x\sqrt{x^{2}-1}} dx$$

$$t = \sqrt{x^{2}-1} \ge \sharp \le \ge x^{2} = t^{2} + 1$$

$$\frac{dt}{dx} = \frac{1}{2} (x^{2}-1)^{-\frac{1}{2}} \cdot 2x \quad \therefore dx = (x^{2}-1)^{\frac{1}{2}} \cdot \frac{1}{x} dt$$

$$\sharp \underbrace{\hbar \mathring{\pi}}_{\alpha \to \infty} \mathring{\pi}_{0} = \lim_{x \to \infty} \int_{0}^{\alpha} \frac{1}{x \cdot t} \cdot (x^{2}-1)^{\frac{1}{2}} \cdot \frac{1}{x} dt$$

$$= \lim_{\alpha \to \infty} \int_{0}^{\alpha} \frac{t}{x^{2} \cdot t} dt$$

$$= \lim_{\alpha \to \infty} \int_{0}^{\alpha} \frac{1}{t^{2}+1} dt = \lim_{\alpha \to \infty} \tan^{-1} \alpha = \frac{\pi}{2}$$

4.3 広義積分の収束・発散

 $\boxed{3}$ $\alpha < 0$ とする.次の広義積分の収束・発散を調べよ.

(1)
$$\int_0^1 x^{\alpha} dx$$

i)
$$\alpha = -1$$
 のとき

$$\int_0^1 \frac{1}{x} dx = \lim_{\varepsilon \to +0} \int_{\varepsilon}^1 \frac{1}{x} dx$$

$$= \lim_{\varepsilon \to +0} \left[\log x \right]_{\varepsilon}^1$$

$$= \lim_{\varepsilon \to +0} (\log 1 - \log \varepsilon) = -(-\infty) = \infty$$

ii)
$$\alpha \neq -1$$
 のとき

$$\begin{split} \int_0^1 x^{\alpha} dx &= \lim_{\varepsilon \to +0} \int_{\varepsilon}^1 x^{\alpha} dx \\ &= \lim_{\varepsilon \to +0} \left[\frac{1}{\alpha+1} x^{\alpha+1} \right]_{\varepsilon}^1 \\ &= \lim_{\varepsilon \to +0} \left(\frac{1}{\alpha+1} - \frac{1}{\alpha+1} \varepsilon^{\alpha+1} \right) \\ &= \frac{1}{\alpha+1} - \left(\frac{1}{\alpha+1} \lim_{\varepsilon \to +0} \varepsilon^{\alpha+1} \right) \\ &= \begin{cases} \frac{1}{\alpha+1} & (-1 < \alpha < 0) \\ \infty & (\alpha < -1) \end{cases} \end{split}$$

、 $-1<\alpha<0$ で $\frac{1}{\alpha+1}$ に収束 $,\alpha\leq -1$ で発散する.

$$(2) \int_{1}^{\infty} x^{\alpha} dx$$

i)
$$\alpha = -1$$
 のとき

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x} dx$$
$$= \lim_{t \to \infty} \left[\log x \right]_{1}^{t} = \lim_{t \to \infty} \log t = \infty$$

ii) $\alpha \neq -1$ のとき

$$\begin{split} \int_{1}^{\infty} x^{\alpha} dx &= \lim_{t \to \infty} \int_{1}^{t} x^{\alpha} dx \\ &= \lim_{t \to \infty} \left[\frac{1}{\alpha + 1} x^{\alpha + 1} \right]_{1}^{t} \\ &= \lim_{t \to \infty} \left(\frac{1}{\alpha + 1} t^{\alpha + 1} - \frac{1}{\alpha + 1} \right) \\ &= \left(\frac{1}{\alpha + 1} \lim_{t \to \infty} t^{\alpha + 1} \right) - \frac{1}{\alpha + 1} \\ &= \begin{cases} \infty & (-1 < \alpha < 0) \\ -\frac{1}{\alpha + 1} & (\alpha < -1) \end{cases} \\ \therefore -1 \leq \alpha < 0 \, \mathfrak{C}発散, \alpha < -1 \, \mathfrak{C} - \frac{1}{\alpha + 1} \, \mathbb{K} \, \mathbb{V} \, \mathbb{R}. \end{split}$$

(3)
$$\int_0^1 (1-x)^{\alpha} dx$$

i)
$$\alpha = -1$$
 のとき

$$\int_0^1 \frac{1}{1-x} dx = \lim_{\varepsilon \to +0} \int_0^{1-\varepsilon} \frac{1}{1-x} dx$$
$$= \lim_{\varepsilon \to +0} \left[-\log(1-x) \right]_0^{1-\varepsilon}$$
$$= \lim_{\varepsilon \to +0} (-\log \varepsilon) = -(-\infty) = \infty$$

ii)
$$\alpha \neq -1$$
 のとき

$$\int_0^1 (1-x)^{\alpha} dx = \lim_{\varepsilon \to +0} \int_0^{1-\varepsilon} (1-x)^{\alpha} dx$$

$$= \lim_{\varepsilon \to +0} \left[-\frac{1}{1-\alpha} (1-x)^{1-\alpha} \right]_0^{1-\varepsilon}$$

$$= \lim_{\varepsilon \to +0} \left(-\frac{1}{1-\alpha} \varepsilon^{1-\alpha} + \frac{1}{1-\alpha} \right)$$

$$= \frac{1}{1-\alpha} - \left(\frac{1}{1-\alpha} \lim_{\varepsilon \to +0} \varepsilon^{1-\alpha} \right)$$

$$= \begin{cases} -\infty & (-1 < \alpha < 0) \\ \frac{1}{1-\alpha} & (\alpha < -1) \end{cases}$$

 $\therefore -1 \leq \alpha < 0 \text{ のとき発散}, \alpha < -1 \text{ のとき } \frac{1}{1-\alpha} \text{ に収束}.$

$$(4) \int_{1}^{\infty} (1+x)^{\alpha} dx$$

i)
$$\alpha = -1$$
 のとき

$$\int_{1}^{\infty} \frac{1}{1+x} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{1+x} dx$$

$$= \lim_{t \to \infty} \left[\log(1+x) \right]_{1}^{t}$$

$$= \lim_{t \to \infty} (\log(1+t) - \log 2) = \infty$$

ii) $\alpha \neq -1$ のとき

$$\int_0^\infty (1+x)^\alpha dx = \lim_{t \to \infty} \int_0^t (1+x)^\alpha dx$$

$$= \lim_{t \to \infty} \left[\frac{1}{\alpha+1} (1+x)^{\alpha+1} \right]_1^t$$

$$= \lim_{t \to \infty} \left(\frac{1}{\alpha+1} (1+t)^{\alpha+1} - \frac{2^{\alpha+1}}{\alpha+1} \right)$$

$$= \left(\frac{1}{\alpha+1} \lim_{t \to \infty} (1+t)^{\alpha+1} \right) - \frac{2^{\alpha+1}}{\alpha+1}$$

$$= \begin{cases} \infty & (-1 < \alpha < 0) \\ -\frac{2^{\alpha+1}}{\alpha+1} & (\alpha < -1) \end{cases}$$

$$\therefore -1 \le \alpha < 0 \text{ oden in the proof of the pro$$

4.4 増減凹凸表とグラフの概形から面積を求める問題

- $\boxed{4}$ $y = x^2 \log x \ (x > 0) \cdots (\sharp)$ について以下の問いに答えよ.
 - (1)(#)の増減凹凸表とグラフの概形をかけ.

$$f'(x) = 2x \log x + x$$

$$f'(x) = 0$$
 となるのは

$$x(2\log x+1)=0\Leftrightarrow 2\log x+1=0\Leftrightarrow \log x=-rac{1}{2}$$
 である.

$$f''(x)=2\log x+3$$
 , $f''(x)=0$ となるのは $x=e^{-\frac{3}{2}}$ よって増減凹凸表は

\boldsymbol{x}	0		$e^{-\frac{3}{2}}$		$e^{-\frac{1}{2}}$	
y'		_	_	_	0	+
y''		_	0	+	+	+
\overline{y}		\	$-\frac{3}{2e^3}$	\ <u></u>	$-\frac{1}{2e}$	J

$$y \parallel | | -\frac{3}{2e^3} | | -\frac{1}{2e} |$$
また極限は $\lim_{x \to +0} x^2 \log x = \lim_{x \to +0} \frac{\log x}{x^{-2}} \stackrel{*}{=} \lim_{x \to +0} \frac{x^{-1}}{-2x^{-3}} = 0$

(*はロピタルの定理)

$$\lim_{x \to \infty} x^2 \log x = \infty$$

よってグラフの概形はこちら (**ただし (0,0) は含まない.)

(2) (\sharp) と x 軸で囲まれている図形の面積を求めよ.

原点で関数が定義されていないので 関数は有界だが広義積分になる.

$$\int_0^1 x^2 \log x \, dx = \lim_{\varepsilon \to +0} \int_{\varepsilon}^1 x^2 \log x \, dx$$

$$= \lim_{\varepsilon \to +0} \left\{ \left[\frac{1}{3} x^3 \log x \right]_{\varepsilon}^1 - \int_{\varepsilon}^1 \frac{1}{3} x^3 \cdot \frac{1}{x} dx \right\}$$

$$= \lim_{\varepsilon \to +0} \left(-\frac{1}{3} \varepsilon^3 \log \varepsilon \right) - \lim_{\varepsilon \to +0} \left(\frac{1}{9} (1 - \varepsilon^3) \right)$$

$$= {}^*0 - \frac{1}{9} = -\frac{1}{9}$$

(*はロピタルの定理) したがって求める面積は $\frac{1}{9}$

 $\boxed{\mathbf{5}}$ $y = (\log x)^2$ $(x > 0) \cdots (\flat)$ について次の問いに答えよ.

(1) 原点 (0,0) から (b) にひき得る接線の方程式を求めよ. (必ずしも接線が1本だけとは限らない.)

$$f(x) = (\log x)^2$$
 とすると $f'(x) = \frac{2\log x}{x}$

原点 (0,0) を通る接線の接点を仮に $(a,(\log a)^2)$ とおくと

接線の方程式は
$$y - (\log a)^2 = \frac{2\log a}{a}(x-a)\cdots(\natural)$$

これが原点 (0,0) を通るので x=0, y=0 を (\natural) に代入すると

$$-(\log a)^2 = -2\log a \Leftrightarrow (\log a)^2 - 2\log a = 0$$

$$\Leftrightarrow \log a(\log a - 2) = 0 \ \sharp \ \emptyset \ \log a = 0 \,,\, \log a = 2 \quad \therefore \ a = 1 \,,\, e^2$$

$$a=1\,,\,e^2$$
 をそれぞれ (\natural) に代入すると $y=0\,,\,y=rac{4}{
ho^2}x$

(2) () の増減凹凸表とグラフの概形をかけ.

また(1)で求めた接線もかけ.

(1)
$$\sharp b \ f'(x) = 0 \ \text{tsol}$$

$$f''(x) = \frac{\frac{2}{x} \cdot x - 2\log x}{x^2} = \frac{2}{x^2} (1 - \log x)$$

$$f''(x) = 0$$
 となるのは $x = e$

よって増減凹凸表は

x	0		1		e	
y'		_	0	+	+	+
y''		+	+	+	0	_
\overline{y}		\ <u></u>	0	1	1	~

$$\lim_{x \to +0} (\log x)^2 = \infty, \lim_{x \to \infty} (\log x)^2 = \infty$$

グラフの概形はこちら

(3)
$$\int_0^1 (\log x)^2 dx$$
 を求めよ.

$$\int_0^1 (\log x)^2 dx = \lim_{\varepsilon \to +0} \int_{\varepsilon}^1 (\log x)^2 dx$$

$$= \lim_{\varepsilon \to +0} \left\{ \left[x (\log x)^2 \right]_{\varepsilon}^1 - 2 \int_{\varepsilon}^1 \log x \, dx \right\}$$

$$= \lim_{\varepsilon \to +0} \left\{ (-\varepsilon (\log \varepsilon)^2) - 2 \left\{ \left[x \log x \right]_{\varepsilon}^1 - \int_{\varepsilon}^1 1 dx \right\} \right\}$$

$$= -\left(\lim_{\varepsilon \to +0} \varepsilon (\log \varepsilon)^2 \right) + 2 \left(\lim_{\varepsilon \to +0} \varepsilon \log \varepsilon \right) + 2 - \left(2 \lim_{\varepsilon \to +0} \varepsilon \right)$$

(*不定形のものはすべてロピタルの定理を使うと0になる.)

4.5 比較定理を使う問題

6 n を 2 より大きい自然数とする.

$$\int_0^\infty \frac{1}{(1+x^2)^n} dx$$

が収束することを示せ

$$\frac{1}{(1+x^2)^n}$$
 は $[0,\infty)$ で連続だが有界でないので

$$f(x) = \frac{1}{(1+x^2)^n}$$
, $\alpha = 2 > 1$ とすると

$$\lim_{x \to \infty} x^2 |f(x)|$$

ここで
$$(1+x^2)>0$$
 より $(1+x^2)^n$ すなわち $\frac{1}{(1+x^2)^n}>0$ なので
$$=\lim_{x\to\infty}\frac{x^2}{(1+x^2)^n}\stackrel{*}{=}0 \quad (*はロピタルの定理 2 回)$$

上より $x^2|f(x)|$ が収束したので $x^2|f(x)|$ は有界. よって比較定理より

$$\int_0^\infty \frac{1}{(1+x^2)^n} dx$$
は収束. \Box

7 n を自然数とする.

$$\int_0^\infty x^n e^{-x^2} dx$$

が収束することを示せ.

$$f(x) = x^n e^{-x^2}$$
 とすると $f(x)$ は $[0,\infty)$ で連続だが有界でないので

全ての $\alpha > 1$ に対して

$$\lim_{x\to\infty} x^{\alpha} |f(x)| = x^{\alpha+n} e^{-x^2} = \lim_{x\to\infty} \frac{x^{\alpha+n}}{e^{x^2}} \stackrel{*}{=} 0$$

(*は $\alpha + n \le m \in \mathbb{N}$ 回口ピタルの定理を適用する.)

よって比較定理より
$$\int_0^\infty x^n e^{-x^2} dx$$
 は収束. \square

また積分範囲は
$$\frac{x}{t} = 0 \cdots \infty$$

$$\int_{0}^{\infty} \left(\frac{\sin x}{x}\right)^{2} dx = \int_{0}^{\infty} \frac{1}{2} (1 - \cos t) \frac{4}{t^{2}} \cdot \frac{1}{2} dt = \int_{0}^{\infty} \frac{1 - \cos t}{t^{2}} dt$$

$$\int_{0}^{\infty} \frac{1 - \cos t}{t^{2}} dt = \lim_{\substack{\alpha \to \infty \\ \varepsilon \to +0}} \int_{\varepsilon}^{\alpha} \left(\frac{1}{t^{2}} - \frac{\cos t}{t^{2}}\right) dt \quad ($$
 右項は部分積分)
$$= \lim_{\substack{\alpha \to \infty \\ \varepsilon \to +0}} \left\{ \left[-\frac{1}{t} \right]_{\varepsilon}^{\alpha} - \left\{ \left[-\frac{\cos t}{t} \right]_{\varepsilon}^{\alpha} - \int_{\varepsilon}^{\alpha} \frac{\sin t}{t} dt \right\} \right\}$$

$$= \lim_{\substack{\alpha \to \infty \\ \varepsilon \to +0}} \left[\frac{\cos t - 1}{t} \right]_{\varepsilon}^{\alpha} + \lim_{\substack{\alpha \to \infty \\ \varepsilon \to +0}} \int_{\varepsilon}^{\alpha} \frac{\sin t}{t} dt$$

$$= \lim_{\substack{\alpha \to \infty \\ \varepsilon \to +0}} \frac{\cos \alpha - 1}{\alpha} - \lim_{\substack{\alpha \to \infty \\ \varepsilon \to +0}} \frac{\cos \varepsilon - 1}{\varepsilon} + \int_{0}^{\infty} \frac{\sin t}{t} dt$$

1項目は分子は振動するが分母か限りなく大きくなるので0

2 項目は $\frac{0}{0}$ 形なのでロピタルの定理を用いると

$$\lim_{\varepsilon \to +0} \frac{\cos \varepsilon - 1}{\varepsilon} = \lim_{\varepsilon \to +0} \frac{-\sin \varepsilon}{1} = 0$$

3項目は問題文より
$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$$
 なので $\frac{\pi}{2}$

したがって

$$=0+0+\frac{\pi}{2}$$

$$\therefore \int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx = \frac{\pi}{2}$$

4.7 そこそこ難しい定積分
$$\boxed{9} \int_0^\infty |\sin x| e^{-x} dx \ \text{を求めよ}.$$

$$\int_0^\infty |\sin x| e^{-x} dx$$

$$= \sum_{n=0}^\infty (-1)^n \int_{n\pi}^{(n+1)\pi} (\sin x) \cdot e^{-x} dx$$

$$I = \int_{n\pi}^{(n+1)\pi} (\sin x) e^{-x} dx = \int_n^{(n+1)\pi} (-\cos x)' e^{-x} dx$$
 を計算すると
$$= \left[(-\cos x) e^{-x} \right]_{n\pi}^{(n+1)\pi} - \int_{n\pi}^{(n+1)\pi} (-\cos x) (-e^{-x}) dx$$

$$= -e^{-(n+1)\pi}\cos(n+1)\pi + e^{-n\pi}\cos n\pi$$

$$-\left\{\underbrace{\left[(\sin x)e^{-x}\right]_{n\pi}^{(n+1)\pi}}_{=0} - \int_{n\pi}^{(n+1)\pi} (\sin x)(-e^{-x})dx\right\}$$

$$= e^{-n\pi} \cos n\pi - e^{-(n+1)\pi} \cos(n+1)\pi - I$$

$$\therefore \int_{n\pi}^{(n+1)\pi} (\sin x) e^{-x} dx = \frac{1}{2} \{ e^{-n\pi} \cos n\pi - e^{-(n+1)\pi} \cos(n+1)\pi \}$$

$$\int_0^\infty |\sin x| e^{-x} dx$$

$$= \sum_{n=0}^{\infty} (-1)^n \int_{n\pi}^{(n+1)\pi} (\sin x) e^{-x} dx$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{1}{2} \{ e^{-n\pi} \cos n\pi - e^{-(n+1)\pi} \cos(n+1)\pi \}$$

$$= \frac{1}{2} \{ (1 + e^{-\pi}) - (-e^{-\pi} - e^{-2\pi}) + (e^{-2\pi} + e^{-3\pi}) - \dots \}$$

$$= \frac{1}{2}(1+e^{-\pi}) - \frac{1}{2}(-e^{-\pi})(1+e^{-\pi}) + \cdots$$

$$= \frac{1}{2}(1+e^{-\pi}) + \frac{1}{2}(e^{-\pi})(1+e^{-\pi}) + \cdots$$

これは初項 $\frac{1}{2}(1+e^{-\pi})$, 公比 $e^{-\pi}$ の無限等比級数である

無限等比級数の和の公式より

$$=\frac{\frac{1}{2}(1+e^{-\pi})}{1-e^{-\pi}}=\frac{1+e^{-\pi}}{2(1-e^{-\pi})}$$

$$\therefore \int_0^\infty |\sin x| e^{-x} dx = \frac{1 + e^{-\pi}}{2(1 - e^{-\pi})}$$

4.8 特殊?な三角関数の定積分

(1)
$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin x} dx$$

$$t = \tan \frac{x}{2} \ (-\pi < x < \pi)$$
 とおくと

$$\sin x = \frac{2t}{1+t^2}, dx = \frac{2}{1+t^2}dt \quad \frac{x \mid 0 \quad \cdots \quad \frac{\pi}{2}}{t \mid 0 \quad \cdots \quad 1}$$

$$= \int_0^1 \frac{\frac{2t}{1+t^2}}{1+\frac{2t}{1+t^2}} \cdot \frac{2}{1+t^2} dt$$

$$= \int_0^1 \frac{\frac{2t}{1+t^2}}{\frac{1+t^2+2t}{1+t^2}} \cdot \frac{2}{1+t^2} dt$$

$$=2\int_0^1 \frac{2t}{(1+t^2)(1+t)^2} dt$$
 中身を部分分数分解すると

$$=2\int_0^1 \left\{ \frac{1}{1+t^2} - \frac{1}{(1+t^2)} \right\} dt$$

$$= 2 \left\{ \left[\tan^{-1} t \right]_0^1 - \left[-(1+t)^{-1} \right]_0^1 \right\}$$

$$=2\left\{\frac{\pi}{4}-\left(-\frac{1}{2}-\left(-1\right)\right)\right\}$$

$$=\frac{\pi}{2}-1$$

$$\left(*\frac{\sin x}{1+\sin x}=1-\frac{1}{1+\sin x}$$
であることに気づくと計算はもっと楽になる.

ここで
$$\int_0^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} dx = J$$
 を与える.

$$J - I = \int_0^{\frac{\pi}{2}} \frac{\cos x - \sin x}{\sin x + \cos x} dx = \int_0^{\frac{\pi}{2}} \frac{(\sin x + \cos x)'}{\sin x + \cos x} dx$$

$$= \left[\log|\sin x + \cos x|\right]_0^{\frac{\pi}{2}} = 0 \quad \therefore I = J$$

$$2I = I + J = \int_0^{\frac{\pi}{2}} \frac{\sin x + \cos x}{\sin x + \cos x} dx = \int_0^{\frac{\pi}{2}} 1 dx = \frac{\pi}{2} \quad \therefore I = \frac{\pi}{4}$$

したがって
$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx = \frac{\pi}{4}$$

4.9 曲線で囲まれた面積を求める問題

11 次の図形の面積を求めよ.

(1) $y = -x^2 + 4x - 2$ と y = 1 により囲まれる図形の面積 S を求めよ. $y = -x^2 + 4x - 2$ と y = 1 の交点は $-x^2 + 4x - 2 = 1 \Leftrightarrow x^2 - 4x + 3 = 0 \Leftrightarrow (x - 3)(x - 1) = 0$ ∴ x = 1,3

よって求める面積Sは

$$S = \int_{1}^{3} (-x^{2} + 4x - 2 - 1) dx = \left[-\frac{1}{3}x^{3} + 2x^{2} - 3x \right]_{1}^{3} = \frac{4}{3}$$

(2) 2 曲線 $y=x^3$ と y=x で囲まれる図形の面積 S を求めよ、 交点は $x^3-x=0 \Leftrightarrow x(x+1)(x-1)=0$ $\therefore x=-1,0,1$ また区間 [-1,0] では $x^3 \geq x$,区間 [0,1] では $x^3 \leq x$ なので

求める面積Sは

$$S = \int_{-1}^{0} (x^3 - x) dx + \int_{0}^{1} (x - x^3) dx$$
$$= \left[\frac{1}{4} x^4 - \frac{1}{2} x^2 \right]_{-1}^{0} + \left[\frac{1}{2} x^2 - \frac{1}{4} x^4 \right]_{0}^{1} = \frac{1}{2}$$

(3) 3 曲線 $y=\sin x$, y=x , $x=\frac{\pi}{2}$ で囲まれる図形の面積 S.

交点は
$$x=0$$
 , また区間 $\left[0,\frac{\pi}{2}\right]$ で $x-\sin x \geq 0$

よって求める面積Sは

$$S = \int_0^{\frac{\pi}{2}} (x - \sin x) dx = \left[\frac{1}{2} x^2 + \cos x \right]_0^{\frac{\pi}{2}} = \frac{\pi^2}{8} - 1$$

4.10 体積を求める問題

12 次の図形の体積を求めよ.

(1) $y = \log x$ の $1 \le x \le e$ の部分を x 軸を中心として回転させた立体 の体積 V を求めよ.

$$V = \pi \int_{1}^{e} (\log x)^{2} dx$$

$$= \pi \left\{ \left[x (\log x)^{2} \right]_{1}^{e} - \int_{1}^{e} x \cdot 2(\log x) \cdot \frac{1}{x} dx \right\}$$

$$= \pi \left\{ e - 2 \left(\left[x \log x \right]_{1}^{e} - \int_{1}^{e} 1 dx \right) \right\} = \pi (e - 2)$$

(2) 底面の半径がr,高さがhの円錐の体積Vを求めよ.

半径がr,高さがhなので

原点 (0,0) と点 (h,r) を通る直線を考える.

この直線は $y = \frac{r}{h}x$ である.

この直線の $0 \le x \le h$ の部分を x 軸を中心に回転させると

円錐の体積Vが求まる.したがって

$$V = \pi \int_0^h \left(\frac{r}{h}x\right)^2 dx = \pi \int_0^h \frac{r^2}{h^2} x^2 dx$$
$$= \frac{r^2}{h^2} \pi \int_0^h x^2 dx = \frac{r^2}{h^2} \pi \left[\frac{1}{3}x^3\right]_0^h = \frac{1}{3}\pi r^2 h$$

4.11 面積及び体積を求める問題

- $\boxed{13}$ xy + x + y = 1 と x 軸, y 軸が囲む図形を D とする. 以下の問いに答
 - (1) Dの面積 Sを求めよ.

$$xy + x + y = 1 \Leftrightarrow xy + y = -x + 1 \Leftrightarrow y(x+1) = -x + 1 \Leftrightarrow$$

$$y = \frac{-x+1}{x+1} = \frac{-(x+1)+2}{x+1} = -1 + \frac{2}{x+1}$$

$$xy + x + y = 1$$
 と x 軸 $(y = 0), y$ 軸 $(x = 0)$ との交点は

$$x = 0$$
, $y = 0$ をそれぞれ代入すると $x = 1$, $y = 1$ なので

y を基準にすると $0 \le x \le 1$ が被積分区間となる.

$$S = \int_0^1 \left(-1 + \frac{2}{x+1} \right) dx$$
$$= \left[-x + 2\log|x+1| \right]_0^1 = -1 + 2\log 2$$

(2) D を x 軸を中心として回転させてできる立体の体積 V を求めよ.

$$V = \pi \int_0^1 \left(-1 + \frac{2}{x+1} \right)^2 dx$$

$$= \pi \int_0^1 \left(1 - \frac{4}{x+1} + \frac{4}{(x+1)^2} \right) dx$$

$$= \pi \left[x - 4\log|x+1| - \frac{4}{x+1} \right]_0^1$$

$$= \pi \left\{ (1 - 4\log 2 - 2) + 4 \right\} = \pi (3 - 4\log 2)$$

(3) D を y 軸を中心として回転させてできる立体の体積 V を求めよ.

$$xy + x + y = 1 \Leftrightarrow xy + x = -y + 1 \Leftrightarrow x(y+1) = -y + 1 \Leftrightarrow$$

$$x = \frac{-y+1}{y+1} = \frac{-(y+1)+2}{y+1} = -1 + \frac{2}{y+1}$$

$$V = \pi \int_{0}^{1} \left(-1 + \frac{2}{y+1}\right)^{2} dy = \pi (3 - 4\log 2)$$

$$\boxed{14} \ y = \frac{\sin x}{\cos^2 x} \ \mathcal{O} \ 0 \leq x \leq \frac{\pi}{4} \ \mathcal{O}$$
部分と $x = \frac{\pi}{4} \ , \ y = 0 \$ が囲む図形を D とする.

(1) Dの面積 Sを求めよ.

 $= \left[\frac{1}{\cos x}\right]_{0}^{\frac{\pi}{4}} = \sqrt{2} - 1$

$$0 \le x \le \frac{\pi}{4}$$
 において $\sin x \ge 0$ より $y \ge 0$ また $y' = \frac{\cos x \cdot \cos^2 x - \sin x \cdot 2\cos x \cdot (-\sin x)}{\cos^4 x} = \frac{1 + \sin^2 x}{\cos^3 x}$ $0 \le x \le \frac{\pi}{4}$ において $\cos x \ge 0$ より $\cos^3 x \ge 0$ すなわち $y' \ge 0$ よって y は $0 \le x \le \frac{\pi}{4}$ で単調増加.
$$S = \int_0^{\frac{\pi}{4}} \frac{\sin x}{\cos^2 x} dx = \int_0^{\frac{\pi}{4}} (\cos x)^{-2} \cdot (\sin x) dx$$

$$= -\int_0^{\frac{\pi}{4}} (\cos x)^{-2} \cdot (\cos x)' dx$$

(2) D を x 軸を中心として回転させてできる立体の体積を求めよ.

$$V = \pi \int_0^{\frac{\pi}{4}} \left(\frac{\sin x}{\cos^2 x}\right)^2 dx$$

$$= \pi \int_0^{\frac{\pi}{4}} \frac{\sin^2 x}{\cos^4 x} dx = \pi \int_0^{\frac{\pi}{4}} \frac{\sin^2 x}{\cos^2 x} \cdot \frac{1}{\cos^2 x} dx$$

$$= \pi \int_0^{\frac{\pi}{4}} \left(\frac{\sin x}{\cos x}\right)^2 \cdot \frac{1}{\cos^2 x} dx$$

$$= \pi \int_0^{\frac{\pi}{4}} \tan^2 x \cdot \frac{1}{\cos^2 x} dx$$

$$= \pi \int_0^{\frac{\pi}{4}} \tan^2 x \cdot (\tan x)' dx = \pi \left[\frac{1}{3} \tan^3 x\right]_0^{\frac{\pi}{4}} = \frac{\pi}{3}$$

4.12 計算がめんどくさい問題

[15] $0 \le x \le \frac{\pi}{2}$ の範囲で、3 曲線 $y = \sin x$ 、 $y = \cos x$ 、 $y = \tan x$ により囲まれる図形の面積 S を求めよ.

まず,
$$0 \le x \le \frac{\pi}{2}$$
 の範囲で

$$\sin x = \cos x$$
 : $x = \frac{\pi}{4}$

$$\sin x = \tan x \Leftrightarrow \sin x - \tan x = 0 \Leftrightarrow \sin x - \frac{\sin x}{\cos x} = 0$$
$$\Leftrightarrow \sin x \cos x - \sin x = 0 \Leftrightarrow \sin x (\cos x - 1) = 0$$

$$\therefore \sin x = 0, \cos x = 1 \Rightarrow x \Rightarrow x = 0$$

$$\cos x = \tan x \Leftrightarrow \cos x - \frac{\sin x}{\cos x} = 0 \Leftrightarrow \cos^2 x - \sin x = 0$$
 $\Leftrightarrow 1 - \sin^2 x - \sin x = 0 \Leftrightarrow \sin^2 x + \sin x + 1 = 0$ $\sin x$ の 2 次式とみれば $\sin x = \frac{-1 \pm \sqrt{5}}{2}$

しかし
$$0 \le x \le \frac{\pi}{2}$$
 の範囲で $\sin x \ge 0$ なので $\sin x = \frac{-1 + \sqrt{5}}{2}$

$$\therefore x = \sin^{-1} \frac{-1 + \sqrt{5}}{2} = \alpha \ \text{とする}.$$

また
$$0 \le x \le \frac{\pi}{2}$$
 で

 $\tan x \ge \sin x$, $\cos x \ge \sin x$ (∵ 微分するとわかる.) なので

$$S = \int_0^\alpha (\tan x - \sin x) dx + \int_\alpha^{\frac{\pi}{4}} (\cos x - \sin x) dx$$
$$= \left[-\log|\cos x| + \cos x \right]_0^\alpha + \left[\sin x + \cos x \right]_\alpha^{\frac{\pi}{4}}$$
$$= (-\log(\cos \alpha) + \cos \alpha - 1) + (\sqrt{2} - \sin \alpha - \cos \alpha)$$

$$= -\log(\cos\alpha) - 1 + \sqrt{2} - \sin\alpha$$

ここで
$$\alpha = \sin^{-1} \frac{-1 + \sqrt{5}}{2}$$
 なので $\sin \alpha = \frac{-1 + \sqrt{5}}{2}$

$$\cos \alpha = \cos \left(\sin^{-1} \frac{-1 + \sqrt{5}}{2} \right)$$

三平方の定理より

$$\cos \alpha = \frac{\sqrt{2\sqrt{5} - 2}}{2} = \frac{\sqrt{2\sqrt{5} - 2}}{\sqrt{4}} = \sqrt{\frac{2\sqrt{5} - 2}{4}} = \left(\frac{2\sqrt{5} - 2}{4}\right)^{\frac{1}{2}}$$
$$\log(\cos \alpha) = \log\left(\frac{2\sqrt{5} - 2}{4}\right)^{\frac{1}{2}} = \frac{1}{2}\log\left(\frac{2\sqrt{5} - 2}{4}\right)$$
$$= \frac{1}{2}\log\left(\frac{\sqrt{5} - 1}{2}\right)$$
$$\therefore S = \sqrt{2} - 1 - \frac{1}{2}\log\left(\frac{\sqrt{5} - 1}{2}\right) - \frac{\sqrt{5} - 1}{2}$$

 $16 \mid a > 0$ とする.

$$S(a) = \int_0^{\frac{\pi}{2}} |a\cos x - \sin x| dx$$

を a を用いて表せ.

さらに a > 0 が変化するとき, S(a) の最小値を求めよ.

まず絶対値がついているので $y=a\cos x$ と $y=\sin x$ の交点を調べ, どの点で符号が変化するかを調べる.

$$a\cos x = \sin x \Leftrightarrow a^2\cos^2 x = \sin^2 x \Leftrightarrow a^2\cos^2 x = 1 - \cos^2 x$$

$$\cos^2 x(a^2 + 1) = 1 \Leftrightarrow \cos^2 x = \frac{1}{a^2 + 1}$$

$$0 \le x \le \frac{\pi}{2}$$
 \$\tau \cos x = \frac{1}{\sqrt{a^2 + 1}} \therefore x = \cos^{-1} \left(\frac{1}{\sqrt{a^2 + 1}} \right)

$$t = \cos^{-1}\left(\frac{1}{\sqrt{a^2+1}}\right)$$
 とおく.

$$S(a) = \int_0^t (a\cos x - \sin x)dx + \int_t^{\frac{\pi}{2}} -(a\cos x - \sin x)dx$$

$$= \left[a\sin x + \cos x\right]_0^t - \left[a\sin x + \cos x\right]_t^{\frac{\pi}{2}}$$

$$= (a\sin t + \cos t - 1) - (a - a\sin t - \cos t)$$

$$= 2a\sin t + 2\cos t - 1 - a$$

 $(a\cos x$ と $\sin x$ の交点が x=t より $a\cos t=\sin t$ なので)

$$= 2a \cdot a\cos t + 2\cos t - 1 - a$$

$$=2a^2\cos t + 2\cos t - 1 - a$$

$$= 2\cos t(a^2 + 1) - 1 - a = 2(a^2 + 1)\cos t - 1 - a$$

$$= 2 \cdot \frac{a^2 + 1}{\sqrt{a^2 + 1}} - 1 - a = 2\sqrt{a^2 + 1} - 1 - a \quad \Box_1$$

また a>0 の値が変化するときの最小値を考えると

$$S'(a) = \frac{2a}{\sqrt{a^2 + 1}} - 1$$

$$S'(a) = 0$$
 とすると

$$\frac{2a}{\sqrt{a^2+1}} = -1 \Leftrightarrow 2a = -\sqrt{a^2+1} \Leftrightarrow 4a^2 = a^2+1$$

$$\Leftrightarrow 3a^2 = 1 \Leftrightarrow a^2 = \frac{1}{3} : a = \pm \frac{1}{\sqrt{3}}$$

増減表を書くと

よって S(a) の最小値は $\sqrt{3}-1$ \square_2

4.13 媒介変数表示

17 媒介変数表示

$$\begin{cases} x = 2t^2 + 1 \\ y = t^2 + t - 2 \end{cases}$$

で表される曲線とx軸で囲まれる図形の面積Sを求めよ.

まずグラフの概形を考える. (x,y) がどう変化するか考える.)

$$\frac{dx}{dt} = 4t, \frac{dy}{dt} = 2t + 1$$

ここで y=0 となる t が求まれば, x 軸との交点がわかる $y=t^2+t-2=0 \Leftrightarrow (t+2)(t-1)=0 \quad t=-2,1$

また
$$\frac{dx}{dt} = 0$$
, $\frac{dy}{dt} = 0$ となる t も求めると

それぞれ
$$t=0, t=-\frac{1}{2}$$

t		-2		$-\frac{1}{2}$		0		1
x	>	9	V	$\frac{3}{2}$	V	1	7	3
\overline{y}	7	0	>	$-\frac{9}{4}$	7	-2	7	0

よってグラフの概形はこちらのようになる.

$$S = \int_{-2}^{0} (t^2 + t - 2)4t \, dt + \int_{0}^{1} (t^2 + t - 2)4t \, dt$$
$$= \int_{-2}^{1} (t^2 + t - 2)4t \, dt = 4 \left[\frac{1}{4} t^4 + \frac{1}{3} t^3 - 2t^2 \right]_{-2}^{1} = 9$$

18 媒介変数表示された曲線(サイクロイド)

$$\begin{cases} x = r(\theta - \sin \theta) \\ y = r(1 - \cos \theta) \end{cases}, (0 \le \theta \le 2\pi)$$

について,次の問いに答えよ.

(1) x 軸とサイクロイドで囲まれる図形 K の面積 S を求めよ.

$$S = \int_0^{2\pi r} y \, dx$$

$$\frac{dx}{d\theta} = r(1 - \cos \theta) \quad \therefore dx = r(1 - \cos \theta) d\theta \quad \frac{x \mid 0 \quad \cdots \quad 2\pi r}{\theta \mid 0 \quad \cdots \quad 2\pi}$$

$$= \int_0^{\pi} r(1 - \cos \theta) \cdot r(1 - \cos \theta) d\theta$$

$$= r^2 \int_0^{2\pi} (1 - \cos \theta)^2 d\theta$$

$$= r^2 \int_0^{2\pi} (1 - 2\cos \theta + \cos^2 \theta) d\theta$$

$$= r^2 \int_0^{2\pi} \left(1 - 2\cos \theta + \frac{1 + \cos 2\theta}{2}\right) d\theta$$

$$= r^2 \left[\theta - 2\sin \theta + \frac{1}{2}x + \frac{1}{4}\sin 2\theta\right]_0^{2\pi} = 3\pi r^2$$

(2) K を x 軸を中心として回転させてできる立体の体積 V を求めよ.

$$\begin{split} V &= \pi \int_0^{2\pi r} y^2 dx \quad (1) \, \, \sharp \, \, \theta \\ &= \pi \int_0^{2\pi} (r(1 - \cos \theta))^2 \cdot r(1 - \cos \theta) d\theta \\ &= \pi r^3 \int_0^{2\pi} (1 - \cos \theta)^3 d\theta \\ &= \pi r^3 \int_0^{2\pi} (1 - 3\cos \theta + 3\cos^2 \theta - \cos^3 \theta) d\theta \\ &= \pi r^3 \left\{ 2\pi - 3 \left[\sin \theta \right]_0^{2\pi} + 3 \left[\frac{x}{2} + \frac{\sin 2\theta}{4} \right]_0^{2\pi} - \int_0^{2\pi} \cos \theta (1 - \sin^2 \theta) d\theta \right\} \\ &= \pi r^3 \left\{ 2\pi + 3\pi - \int_0^{2\pi} \cos \theta \, d\theta + \int_0^{2\pi} \sin^2 \theta \cos \theta \, d\theta \right\} \\ &= \pi r^3 (5\pi) = 5\pi^2 r^3 \end{split}$$

(3) サイクロイドの弧長 ℓ を求めよ.

$$\ell = \int_0^{2\pi r} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

$$\frac{dy}{d\theta} = r \sin \theta \quad \therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{r \sin \theta}{r(1 - \cos \theta)} = \frac{\sin \theta}{1 - \cos \theta}$$

$$= \int_0^{2\pi} \sqrt{1 + \frac{\sin^2 \theta}{(1 - \cos \theta)^2}} \cdot r(1 - \cos \theta) d\theta$$

$$= r \int_0^{2\pi} \sqrt{\frac{1 - 2\cos \theta + \cos^2 \theta + \sin^2 \theta}{(1 - \cos \theta)^2}} \cdot (1 - \cos \theta) d\theta$$

$$= r \int_0^{2\pi} \sqrt{\frac{2(1 - \cos \theta)}{(1 - \cos \theta)^2}} \cdot (1 - \cos \theta) d\theta$$

$$= r \int_0^{2\pi} \sqrt{\frac{2(1 - \cos \theta)}{(1 - \cos \theta)^2}} \cdot (1 - \cos \theta) d\theta$$

ここで $|\cos\theta| \leq 1$ より $1-\cos\theta \geq 0$ なので $\sqrt{-}$ の中に入れると

$$= r \int_0^{2\pi} \sqrt{\frac{2(1-\cos\theta)^2}{(1-\cos\theta)}} \, d\theta$$

$$= r \int_0^{2\pi} \sqrt{2(1-\cos\theta)} \, d\theta$$

$$\stackrel{>}{=} 5 \ \mathcal{Z} \ \mathcal{Z} \ \stackrel{=}{=} \frac{1-\cos\theta}{2} \ \ \mathcal{Z} \ \mathcal{Y} \ 1 - \cos\theta = 2\sin^2\frac{\theta}{2}$$

$$= r \int_0^{2\pi} \sqrt{2 \cdot 2\sin^2\frac{\theta}{2}} \, d\theta = r \int_0^{2\pi} \sqrt{4\sin^2\frac{\theta}{2}} \, d\theta$$

$$= r \int_0^{2\pi} 2\sin\frac{\theta}{2} \, d\theta = 2r \int_0^{2\pi} \sin\frac{\theta}{2} \, d\theta$$

$$= 2r \left[-2\cos\frac{\theta}{2} \right]_0^{2\pi} = 2r(2-(-2)) = 8r \quad \therefore \ \ell = 8r$$

4 14 記述問題

$$\boxed{19 \quad -\pi < x < \pi \text{ とする.tan } \frac{x}{2} = t \text{ とおくとき}}$$

$$\sin x = \frac{2t}{1+t^2}$$
, $\cos t = \frac{1-t^2}{1+t^2}$, $\frac{dx}{dt} = \frac{2}{1+t^2}$

であることを示せ.

$$\frac{dt}{dx} = \left(\tan\frac{x}{2}\right)' = \frac{1}{\cos^2\frac{x}{2}} \cdot \frac{1}{2} = \frac{1}{2}\left(\tan^2\frac{x}{2} + 1\right) = \frac{t^2 + 1}{2}$$

$$\therefore \frac{dx}{dt} = \frac{2}{1 + t^2}$$

加法定理より

$$\tan x = \tan\left(\frac{x}{2} + \frac{x}{2}\right) = \frac{\tan\frac{x}{2} + \tan\frac{x}{2}}{1 - \tan\frac{x}{2}\tan\frac{x}{2}} = \frac{2t}{1 - t^2}$$

$$\cos x = \cos\left(2 \cdot \frac{x}{2}\right) = 2\cos^2\frac{x}{2} - 1 = \frac{2}{1 + t^2} - 1 = \frac{1 - t^2}{1 + t^2}$$

$$\sin x = \cos x \cdot \tan x = \frac{1 - t^2}{1 + t^2} \cdot \frac{2t}{1 - t^2} = \frac{2t}{1 + t^2} \quad \Box$$

20 n > 2 o ≥ 3

$$\frac{1}{2} < \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^n}} dx < \frac{\pi}{6}$$

が成り立つことを示せ.

$$0 < x < \frac{1}{2}$$
 において

全辺を
$$\left[0,\frac{1}{2}\right]$$
で積分すると

$$\int_0^{\frac{1}{2}} 1 \, dx < \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^n}} dx < \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^2}} dx$$

$$\left[x\right]_{0}^{\frac{1}{2}} < \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^{n}}} dx < \left[\sin^{-1} x\right]_{0}^{\frac{1}{2}}$$

したがって
$$\frac{1}{2} < \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1-x^n}} dx < \frac{\pi}{6}$$

[21] f(x) が (a,b] で連続だが有界でないとする.f(x) が (a,b] で広義積分可能であることの定義を述べよ.

$$\lim_{\varepsilon \to +0} \int_{a+\varepsilon}^b \! f(x) \, dx \left(= \lim_{t \to a+0} \int_t^b f(x) \, dx \right) \, \text{ が存在すること}.$$

[22] f(x) は $(-\infty, b]$ で連続であるとする.f(x) が $(-\infty, b]$ で広義積分可能であることの定義を述べよ.

$$\lim_{t \to -\infty} \int_t^b f(x) \, dx \, \,$$
が存在すること.

[23] f(x): 区間 [a,b] で連続 g(t): 区間 $[\alpha,\beta]$ で微分可能 また $g(\alpha)=a,g(\beta)=b,g'(x)$: $[\alpha,\beta]$ で連続とする.

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(g(t))g'(t)dt$$

が成り立つことを示せ.

$$F(x) = \int_a^x f(t)dt$$
 とすると微分積分学の基本定理より $F'(x) = f(x)$
$$\frac{d}{dx}F(g(t)) = F'(g(t))g'(t) = f(g(t))g'(t)$$

$$\int_\alpha^\beta f(g(t))g'(t)dt = \int_\alpha^\beta \frac{d}{dx}\left(F(g(t))\right)dt = F(g(\beta)) - F(g(\alpha))$$

$$= F(b) - F(a) = \int_\alpha^b f(x)dx \quad \Box$$

 $\boxed{24} \ f(x), g(x) \in \mathcal{C}^1[a, b]$

$$\int_{a}^{b} f'(x)g(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx$$

が成り立つことを示せ.

積の微分法より

$${f(x)g(x)}' = f'(x)g(x) + f(x)g'(x)$$

両辺を [a,b] で積分すると

$$\int_a^b \{f(x)g(x)\}' dx = \int_a^b f'(x)g(x)dx + \int_a^b f(x)g'(x)dx$$
$$[f(x)g(x)]_a^b = \int_a^b f'(x)g(x)dx + \int_a^b f(x)g'(x)dx$$
$$\therefore \int_a^b f'(x)g(x)dx = [f(x)g(x)]_a^b - \int_a^b f(x)g'(x)dx \quad \Box$$