If your dependent variable is categorical, you run svm classification and you choose "SVC"

This is the file "purchase4.csv"

Customer ID	Age	Income	Year-of-Education	Purchase-Amount	Loyalt
1	35	139000	12	572	Excellent
2	25	20000	14	344	Low
3	23	74000	6	413	Excellent
4	56	35000	5	369	Excellent
5	47	43000	14	399	Low
6	36	39000	10	360	Low
7	56	71000	13	465	Excellent
8	38	142000	8	435	Good
9	69	139000	14	634	Good
10	20	122000	5	424	Good
11	41	26000	9	429	Low
12	49	43000	13	402	Low
13	66	125000	13	542	Low
14	22	130000	12	561	Good
15	38	120000	6	372	Good
16	37	149000	9	418	Good
17	32	77000	10	472	Good
18	35	99000	15	605	Low
19	41	91000	8	486	Low
20	53	145000	14	552	Low

If your dependent variable is numerical, you run svm regression and you choose "SVR"

```
limport numpy as np
limport matplotlib.pyplot as plt
from sklearn import sym
4 import pandas as pd
sydata=pd.read_csv('purchase4.csv')

7
8 print("Classification")
9 X=my data['Age', 'Income', 'Year-of-Education']]
16 y=my_data['Age', 'Income', 'Year-of-Education']]
16 y=my_data['Loyalty']
17
18 right sym sklearn model_selection import train_test_split
19 X train, X test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=2)
10 cif_sym_SVC(kernel='rbr', C=my_C)
11 clf_sym_SVC(kernel='rbr', C=my_C)
12 clf_fit(X_train, y_train)
13 print(pr_f[y_test])
14 clf_sym_SVC(kernel='rbr', C=10)
15 print(pr_f[y_test])
16 print(pr_f[y_test])
17 print(clf_predict(X_test))
18 clf = sym_SVC(kernel='rbr', C=my_C)
19 clf_fit(X_train, y_train, y_test]
10 print(pr_f[y_test])
10 print(pr_f[y_test])
11 print(clf_sym_SVR(kernel='rbr', C=my_C)
12 clf_fit(X_train, y_train)
13 print("C=%f score=%f" %(my_C,clf.score(X_test, y_test)))
13 clf = sym_SVR(kernel='rbr', C=20)
14 clf_fit(X_train, y_train)
15 print("C=%f score=%f" %(my_C,clf.score(X_test, y_test)))
15 print("C=%f score=%f" %(my_C,clf.score(X_test, y_test)))
16 print(clf_predict(X_test), astype(int))
17 print(clf_predict(X_test), astype(int))
18 print(clf_predict(X_test), astype(int))
19 clf_fit(X_train, y_train)
10 print(clf_predict(X_test), astype(int))
10 print(clf_predict(X_test), astype(int))
11 print(clf_predict(X_test), astype(int))
12 print(clf_predict(X_test), astype(int))
13 print(clf_predict(X_test), astype(int))
14 print(clf_predict(X_test), astype(int))
15 print(clf_predict(X_test), astype(int))
16 print(clf_predict(X_test), astype(int))
17 print(clf_predict(X_test), astype(int))
18 print(clf_predict(X_test), astype(int))
18 print(clf_predict(X_test), astype(int))
19 print(clf_predict(X_test), astype(int))
19 print(clf_predict(X_test), astype(int))
19 print(clf_predict(X_test), astype(int), a
```

Here the first block of the code is to predict "Loyalty" which is categorical, so we use SVC.

```
Classification
C=0.100000 score=0.125000
C=1.000000 score=0.125000
C=5.000000 score=0.250000
C=10.000000 score=0.250000
C=20.000000 score=0.250000
C=100.000000 score=0.250000
C=1000.000000 score=0.250000
['Low' 'Low' 'Low' 'Excellent' 'Good' 'Low' 'Excellent' 'Low']
['Good' 'Low' 'Good' 'Good' 'Good' 'Good' 'Good']
```

According to the comparisons of all Cs, it seems C=10 is a good choice.

So we run C=10 and print out the true values and predicted values.

The second block of the code is to predict "Purchase-Amount" which is numerical, so we use SVR.

```
Regression
C=0.100000 score=-0.001005
C=1.000000 score=-0.000603
C=5.000000 score=0.001171
C=10.000000 score=0.003350
C=20.000000 score=0.007583
C=100.000000 score=-0.026255
C=1000.000000 score=-0.076125
[542 399 486 572 424 360 369 429]
[450 446 450 450 450 450 450 450]
```

According to the comparisons of all Cs, it seems C=20 is a good choice.

So we run C=20 and print out the true values and predicted values.