Chapter 1

Introduction

Examples

INVESTMENT BANKS PORTFOLIO ANALYSIS

SECURITIES PRICING, CASH FLOW MATCHING

TRANSPORTATION VEHICLE ROUTING

MARKETING DISTRIBUTION CHANNELS,

PRODUCT/BUDGET PLAN, MERCHANDISING

TELE-COMM. CALL ROUTING

MANUFACTURING PRODUCTION PLANNING, PLANT LOCATION

SEMI-COND. MFG. PICK & PLACE SEQUENCING

Course Objectives

- Convert a business problem description into a rigorous structure: objective, decision variables, and constraints
- Understand the principles of <u>optimization</u> in the context of business decisions
- Determine optimal solutions, and interpret solutions including sensitivity analysis

Course Theme

- Model and analyze complex business/management problems
- The 'Art' of Modeling
 - Translate reality to model
 - Apply tools to analyze model (Gurobi)
 - Interpret the model and solution
- Become a model thinker!

Decision Making

Most operations decisions involve many alternatives that can have quite different impacts on costs or profits.

General Approach to Decision Making

- Modeling is a key tool used by all decision makers
 - Model an abstraction of reality; a simplification of something.
 - Common features of models:
 - They are simplifications of real-life phenomena
 - They omit unimportant details of the real-life systems they mimic so that attention can be focused on the most important aspects of the real-life system

Understanding Models

- Keys to successfully using a model in decision making
 - What is its purpose?
 - How is it used to generate results?
 - How are the results interpreted and used?
 - What are the model's assumptions and limitations?

Benefits of Models

- Models are generally easier to use and less expensive than dealing with the real system
- Require users to organize and sometimes quantify information
- Increase understanding of the problem
- Enable managers to analyze "What if?" questions
- Serve as a consistent tool for evaluation and provide a standardized format for analyzing a problem
- Enable users to bring the power of mathematics to bear on a problem.

Benefits of Modeling

- Economy It is often less costly to analyze decision problems using models.
- Timeliness Models often deliver needed information more quickly than their real-world counterparts.
- Feasibility Models can be used to do things that would be impossible.
- Models give us insight & understanding that improves decision making.

Model Limitations

- Quantitative information may be emphasized at the expense of qualitative information
- Models may be incorrectly applied and the results misinterpreted
 - This is a real risk with the widespread availability of sophisticated, computerized models are placed in the hands of uninformed users.
- The use of models does not guarantee good decisions.

Example of a Mathematical Model

or

Profit = f(Revenue, Expenses)

or

$$Y = f(X_1, X_2)$$

A Generic Mathematical Model

$$Y = f(X_1, X_2, ..., X_n)$$

Where:

Y = dependent variable (aka bottom-line performance measure)

 X_i = independent variables (inputs having an impact on Y)

 $f(\cdot)$ = function defining the relationship between the X_i & Y

Categories of Mathematical Models

Model Category	Form of <i>f</i> (·)	Independen Variables	t OR/MS Techniques
Prescriptive	known, well-defined	known or under decision maker's control	LP, Networks, IP, CPM, EOQ, NLP, GP, MOLP
Predictive	unknown, ill-defined	known or under decision maker's control	Regression Analysis, Time Series Analysis, Discriminant Analysis
Descriptive	known, well-defined	unknown or uncertain	Simulation, PERT, Queueing, Inventory Models

Chapter 2

Linear Programming

Mathematical Programming (MP)

- MP, a.k.a. *optimization*, is an area in MS/BA that finds the optimal, or most efficient, way of using limited resources to achieve the objectives of an individual or a business.
- Some example applications of optimization
 - Determining Product Mix
 - Manufacturing
 - Routing and Logistics
 - Financial Planning

General Form of An Optimization Problem

- Every optimization problem involves the following:
 - √ decisions that must be made
 - √ objective(s) (or goal(s))
 - ✓ a set of restrictions (or constraints)

MAX (or MIN):
$$f_0(X_1, X_2, ..., X_n)$$

Subject to: $f_1(X_1, X_2, ..., X_n) <= b_1$
 \vdots
 $f_k(X_1, X_2, ..., X_n) >= b_k$
 \vdots
 $f_m(X_1, X_2, ..., X_n) = b_m$

Note:

If <u>all</u> the functions in an optimization are *linear(ized)*, the problem is a *Linear Programming* (LP) problem

Linear Programming (LP) Problems

MAX (or MIN):
$$c_1X_1 + c_2X_2 + ... + c_nX_n$$

Subject to: $a_{11}X_1 + a_{12}X_2 + ... + a_{1n}X_n \le b_1$
: $a_{k1}X_1 + a_{k2}X_2 + ... + a_{kn}X_n >= b_k$
: $a_{m1}X_1 + a_{m2}X_2 + ... + a_{mn}X_n = b_m$