

Instrumentação e Projeto de Circuitos

Conceitos Básicos de Eletricidade

LETI – Licenciatura em Engenharia de Telecomunicações e Informática

Carga elétrica

As cargas elétricas do protão, do eletrão e do neutrão são:

- $Q_p = e = 1.6 \times 10^{-19} \text{ C (coulomb)}$
- $Q_e = -e = -1.6 \times 10^{-19} \text{ C}$
- $Q_n = 0$

As massas em repouso são:

- $m_p \approx m_n = 1.672 \times 10^{-24} \,\text{g (grama)}$
- $m_e = 9.11 \times 10^{-28} \text{ g}$

Os raios, assumindo-as esféricas, são:

 $r_p \approx r_n \approx r_e = 2.81 \text{x} 10^{-15} \text{ m (metro)}$

■ Força elétrica

... a **Lei de** *Coulomb* estabelece que duas cargas elétricas pontuais se atraem ou repelem com uma força cuja intensidade é:

$$F_{xy} = \frac{1}{4\pi\varepsilon_0} \frac{Q_x Q_y}{r^2} \text{ N (newton)}$$

 $\varepsilon_0 \rightarrow$ permitividade do vazio

 Q_{x} , $Q_{y} \rightarrow$ valor absoluto das cargas elétricas

 $r \rightarrow$ distância entre as cargas

Nota: a lei da gravitação universal estabelece que: $F_{xy} = G \frac{m_x m_y}{r^2} N$ (newton), $G = 6.67 \times 10^{-11} Nm^2 / Kg^2$

■ Força elétrica

Campo elétrico

O campo elétrico é uma medida da acção que uma carga exerce sobre as cargas elétricas localizadas no seu raio de ação. A intensidade do campo elétrico criado por uma carga pontual é expressa por :

$$E_x = \frac{1}{4\pi\varepsilon_0} \frac{Q_x}{r^2}$$
 V/m (volt por metro)

Pelo que,

$$F_{x,y} = E_x Q_y$$

■ Campo elétrico

Energia Potencial (elétrica)

Energia – caso geral do deslocamento de uma massa sob acção de uma força:

$$W = -\int_{x_i}^{x_f} \vec{F} \cdot \vec{dL}$$
 J (joule)

 Caso particular da queda de uma massa num campo gravitacional (a força é constante e a direcção coincidente com o deslocamento)

$$W = mgh$$

Tensão elétrica

A tensão é uma medida da energia envolvida no transporte de uma carga elementar entre dois pontos de um campo elétrico. É uma quantidade que se mede em *volts* (V) e que coincide com o quociente entre a energia libertada e a quantidade de carga transportada:

$$Tens\~ao = \frac{W}{Q} \lor (volts)$$

 Tendo em atenção as relações entre trabalho, força e campo elétrico, verifica-se que,

Tensão =
$$\frac{W}{Q} = \frac{-\int_{x_i}^{x_f} \vec{F} \cdot \vec{dL}}{Q} = \frac{-\int_{x_i}^{x_f} Q \vec{E} \cdot \vec{dL}}{Q} = \int_{x_i}^{x_f} \vec{E} \cdot \vec{dL}$$

■ Fontes de tensão

Bateria de chumbo

■ Fontes de tensão

- Valor nominal da tensão de fontes bem conhecidas:
 - Tensão gerada pelas células nervosas: cerca de 30 mV
 - Baterias recarregáveis NiMH or NiCd (por cada célula): 1.2 V
 - Pilhas de mercúrio: 1.355 V
 - Pilhas alcalinas (tipo AAA, AA, C e D): 1.5 V
 - Alimentação do sistema elétrico dos automóveis: 12 V (nominal)
 - Tensão nominal de rede elétrica doméstica: 230 V (eficazes ou RMS) na Europa, Austrália, Ásia e África, 120 V na América do Norte, 100 V no Japão
 - Tensão de alimentação de comboios de alta velocidade: 25 kV eficazes
 - Linhas de transporte de energia elétrica em alta tensão: entre 110 kV e
 1150 kV eficazes
 - Relâmpago: varia muito, frequentemente à volta de 100 MV.

Corrente elétrica

... define-se corrente elétrica média como a quantidade de carga elétrica que na unidade de tempo atravessa uma dada secção de um condutor...

$$I = \frac{\Delta Q}{\Delta T}$$
 A (ampere)

$$\rightarrow i(t) = \frac{dq}{dt}$$

(corrente instantânea)

$$\to q(t) = \int_{-\infty}^t i(\tau) d\tau$$

Corrente elétrica

- Fluxo de eletrões, oposto ao sentido convencional da corrente, que é normalmente usado
- A corrente elétrica (I) tem como unidade o ampere (A)
- Diz-se que uma corrente eléctrica passa num componente ou ramo de um circuito
- Usam-se setas retas para indicar os sentidos de correntes eléctricas

■ Circuito elétrico (analogia com um sistema hidráulico)

Analogia com um sistema hidráulico

Analogia elétrico-Hidráulico

Gerador

Tensão (volt)

Corrente (A)

Resistência elétrica (Ω)

Electrões

(Carga)

Interruptor

Bomba

Pressão (nível, Pa)

Caudal (I/s)

Atrito no circuito hidráulico

Água

(Volume de água)

Válvula (on/off)

■ Como se relaciona a tensão com a corrente?

Resistência elétrica e Lei de Ohm

- As duas grandezas elétricas fundamentais tensão e corrente –
 relacionam-se através de outra grandeza de igual importância: a resistência
- A relação entre as duas grandezas é descrita pela mais importante das leis dos circuitos elétricos: a lei de Ohm:

$$R = \frac{U}{I} \Omega \text{ (ohm)} \qquad \rightarrow I = \frac{U}{R}, \qquad U = RI$$

■ Resistência elétrica e Lei de Ohm

Símbolo da resistência e polaridades

$$U = RI$$

A resistências não têm polaridade!

■ Resistência elétrica. Lei de Ohm

$$I = \frac{E}{R} = \frac{U}{R} = \frac{12 \text{ V}}{6 \Omega} = 2 \text{ A}$$

Circuito elétrico simples

■ Resistência elétrica

 O fluxo ordenado de cargas elétricas através de um material pela aplicação de uma diferença de potencial e é limitado pela estrutura interna do mesmo.

Existem 3 tipos de materiais:

- Condutores
- Isoladores (não condutores)
- Semicondutores

■ Resistência de um condutor

$$R = \rho \frac{L}{A}$$
 depende da geometria

Resistividade (depende do material e da temperatura)

Material	Resistividade (@ 20°C)		
prata	1.645×10 ⁻⁸ Ω.m		
cobre	1.723×10 ⁻⁸ Ω.m		
ouro	2.443×10 ⁻⁸ Ω.m		
alumínio	2.825×10 ⁻⁸ Ω.m		
tungsténio	5.485×10 ⁻⁸ Ω.m		
níquel	7.811×10 ⁻⁸ Ω.m		
ferro	1.229×10 ⁻⁷ Ω.m		
constantan	4.899×10 ⁻⁷ Ω.m		
nicrómio	9.972×10 ⁻⁷ Ω.m		
carbono	3.5×10 ⁻⁵ Ω.m		
silício	2.3×10 ³ Ω.m		
polystirene	~ 10 ¹⁶ Ω.m		

■ Tipos de Resistências

W -> Watts (potência)

(a)

(b)

Resistências fixas: (a) de carbono; (b) bobinadas

■ Tipos de resistências

■ Tipos de resistências

Potenciómetro -> resistência ajustável

Potenciómetro rotativo (dispositivo e símbolo)

Potenciómetros "trimmer"

← Potenciómetro "slide"

Potenciómetro de precisão -

■ Tipos de resistências

Reóstato bobinado (dispositivo e símbolo)

Reóstato toroidal -->

Resistência elétrica

Potenciómetro

$$R_{fios} = 0$$
 (ideal) $U = RI$

$$V_{AC} = V_A - V_C = 12 \text{ V}$$

$$V_C = 0 \text{ V (ground)}$$

■ Resistência elétrica

Potenciómetro

$$V_B = V_A$$

$$V_B = V_C$$

Resistência elétrica

Potenciómetro

$$I = \frac{E}{R_T}$$

$$U_{x} = R_{x}I$$

Fórmula do divisor de tensão:

$$U_{x} = E \frac{R_{x}}{R_{T}}$$

$$R_T = Rx + Ry$$

■ Especificação de resistências

O valor da resistência em ohms é normalmente dado pelo código de cores

Tolerância

Factor multiplicativo (x10^N <=> número de zeros a acrescentar)

1º dígito

2º dígito

■ Especificação de resistências -> Exemplo

Castanho = 1, Preto = 0, Vermelho =
$$10^2$$
 Dourado = $\pm 5\%$

$$10 \times 10^2 \pm 5\% = 1000 \pm 50 = 950 \Omega \leftrightarrow 1050 \Omega$$

■ Medida de tensão

Resistência interna do voltímetro ideal:

$$\rightarrow R = \infty \Omega$$

Medição em paralelo com o componente

■ Medida de corrente elétrica

Onde entra o amperímetro?

Medida de corrente elétrica

Medição em série no ramo do componente

É necessário "abrir o circuito" no ramo desejado para colocar o amperímetro

Medida de corrente elétrica

Amperimetro

Resistência interna do amperímetro ideal:

$$\rightarrow R = 0 \Omega$$

Risco de queimar o fusível do multímetro se ligar em paralelo!

■ Medida de resistências

A resistência não deve ser medida no circuito

■ Medida de resistências

■ Medida de resistências

(a) (b)

Multímetros: (a) analógico; (b) digital (de bancada)

■ Utilização dos aparelhos de medida — escolha da escala adequada

Errado

Certo

■ Utilização dos aparelhos de medida — escolha da escala adequada

Escala (base de tempo) mal seleccionada se o objetivo é medir tempos/frequência

Escala (sensibilidade) mal seleccionada se o objetivo é medir amplitudes (V)

■ Potência elétrica

 A potência (caso geral) é uma medida do ritmo a que se dissipa ou acumula energia.

$$P = \frac{W}{\Delta T}$$
 W (watt), $p(t) = \frac{dw(t)}{dt}$, $w(t) = \int_{-\infty}^{t} p(\tau) d\tau$

Tendo em conta as relações entre trabalho, tensão, carga, tempo e corrente elétrica, a potência elétrica é dada por (valor médio),

$$P = \frac{W}{\Delta T} = \frac{W}{Q} \frac{Q}{\Delta T} = U \cdot I \text{ (W)}$$

$$\rightarrow P = U \times I \text{ (W)}$$

■ Potência dissipada numa resistência. Lei de *Joule*

... a potência dissipada por *efeito de Joule* numa resistência é dada por:

lei de ohm
$$P = U \times I = (R \times I) \times I \qquad \rightarrow P = R \times I^{2}$$
ou...
$$P = U \times I = U \times \left(\frac{U}{R}\right) \qquad \rightarrow P = \frac{U^{2}}{R}$$
lei de ohm

■ Potência elétrica

EQUIPAMENTO	POTÊNCIA (W)	EQUIPAMENTO	POTÊNCIA (W)
Rádio	30	Lava roupa	400
Amplificador (sistema HIFI) 75	Lava louça	1500
Computador portátil	60	Aquecedor	1500
Relógio	2	Frigorífico	300
TV (cores)	160	Torradeira	1200
Máquina de barbear	10	Ferro de passar	1000

Potência típica de alguns equipamentos de uso doméstico (valor médio em watts)

Energia elétrica

$$W = P \cdot t$$
 (J)

$$W \text{ (em kWh)} = \frac{P \text{ (em watts)} \times t \text{(em horas)}}{1000}$$

■ Potência/Energia elétrica

Exemplo

... qual é o custo da energia consumida por um radiador de 2 kW que funciona durante 1h30m?. Assuma que o custo do kWh são 0.16 €.

$$W = \frac{2000W \cdot 1.5h}{1000} = 3 \text{ kWh}$$

⇒
$$Custo = 3 \text{ kWh} \frac{0.16€}{\text{kWh}} = 0.48€$$

■ Potência/Energia elétrica

Rendimento

Potência de entrada (*P*_e)

$$P_{\rm e} = P_{\rm s} + P_{\rm p}$$

 P_p -> Potência perdida

$$\eta = \frac{P_s}{P_e} \times 100\%$$