Intorial 11:

1. (a) if $f:(a.b) \rightarrow 1R$ is differentiable and $\sup |f'(x)| \in M$ Xt (a.b)

for some M>0, Show that f is uniformly continuous

(b) Y acb EIR, show that if f: (a.b) -> IR is unidorally continuous.

then sup 1+(x) (+10.

Proof of 1 (c): By definiontion, we need to show there

V€>0, 36>0 5.t.

₩ x.y € (a,b) st. 1x-y) <6. we have | 1x-4y) | 5 €.

In fact. $\forall \varsigma > 0$, set $\delta := \frac{\varepsilon}{M}$, we have then $\forall \gamma : \gamma \in (\alpha, \beta) : \varepsilon_{+}$. $|\chi = \gamma| \leq \delta$, $|\chi = \gamma| \leq \delta$,

| \(\frac{1}{4} \) \(\frac{1}{2} \) \(\frac{1

Thus the object to the

Thus the claim holds. 7

Proof of CD b:

By t is continuous. Select Eo=1, there exists some so s.t.

4 x,y \((9.6), |x-y| \(60, \) we have |\(\frac{1}{2}(x) - \frac{1}{2}(y) \) \(\) \(1).

Now selecting N large Enough so that N 60 > 2,

and set Ko:= atb, then for any Xt (a,b). if

 $0 \times x_0$, we can construct a sequence $x_i:=x_0+i\cdot\frac{6}{2}$, i=1.

ne will have there exists some to s.t. X:0 < x < xintly in (N.

thus

$$| +(x) - +(xw) \le | +(x) - +(xw) | + \sum_{i=1}^{iv} | +(x_i) - +(x_{i+1}) |$$

$$\{ |+ \sum_{i\neq j} | = iot | \{N+j\}.$$

Qχ(No. the similar argument with the constructed segmence

implies that If IN : I dirw + N+1.

thus sup | f(x) = | f(x) + N+1. #.

by $\frac{M}{2}$.

2. Show that if $f:[0:1] \rightarrow |R|$ is bounded and continuous in [0:a) and [a:1] for some $a \in (0:1)$, then f is integrable.

Here we would chedi it by the following integrable criterion
(See lecture 12)

4 is integrable (=) Y 520, 3P S.t. U(4,P)-L(4,P) CE.

Front. Now $V \in \mathcal{V}$, we need only find some P of [0,1]S.t. $U(f,P)-L(f,P) \in \mathcal{E}$.

Let L_3 L_2 I have L_1 L_3 L_4 Firstly W.Lo.G. we can assume that U G I

 ξ is small enough so that $0 < \alpha - \frac{\xi}{3M} < \alpha + \frac{\xi}{3M} < 1$.

then set $L_1:=[0, cr\frac{2}{3M}].$ $L_2:=[ar\frac{\epsilon}{3M}, ar\frac{\epsilon}{2M}]$ $L_3:=[ar\frac{\epsilon}{3M}, I].$

we have f is continuous in L_1 , L_3 , thus is integrable, so we can find partitions $\{P_1: 0=\chi_0 < \chi_1 < \cdots < \chi_n = \alpha - \frac{\epsilon}{3M} \text{ of } L_1 \}$ $\{P_2: \alpha + \frac{\epsilon}{3M} = y_0 < y_1 < \cdots < y_m = 1 \text{ of } L_3\}$

Now in
$$L_1$$
, we consider the trivial partition β_2 !

 $\alpha = \frac{\xi}{3m} = \xi_0 < \xi_1 = \alpha + \frac{\zeta}{3m}$, we will have

 $U(f, P_3) - L(f, P_3) = \frac{\zeta}{3m} = \frac{\zeta}{3m}$
 $\zeta = \frac{\zeta}{3m} = \frac{\zeta}{3m}$

Thus if we consider the partition $P \subseteq V$ for $V \subseteq V$.

Thus if we consider the partition $P \subseteq V$ for $V \subseteq V$.

 $\chi_0 \in \chi_1 < \cdots < \chi_n < \chi_1 < \psi_1 < \psi_2 < \cdots < \psi_n$
 $\chi_0 \in \chi_1 < \cdots < \chi_n < \chi_1 < \psi_2 < \cdots < \psi_n$
 $\chi_0 \in \chi_1 < \cdots < \chi_n < \chi_1 < \psi_2 < \cdots < \psi_n$
 $\chi_0 \in \chi_1 < \cdots < \chi_n < \chi_1 < \psi_2 < \cdots < \psi_n$
 $\chi_0 \in \chi_1 < \cdots < \chi_n < \chi_1 < \psi_2 < \cdots < \psi_n$
 $\chi_0 \in \chi_1 < \cdots < \chi_n < \chi_1 < \cdots < \chi_1 < \cdots < \chi_1 < \chi_1 < \cdots <$

Such that { U(f, P1) - L(f, P2) < \frac{\xi}{3}.

3. Let $f: \overline{[0.1]} \rightarrow IR$ be bounded by $\frac{M}{2}$ and { XETO-17: f is dis-continuous at x ? = { Xn: NEN} with (xn: ne/1v) a sequence in [o.] such that lim xn=0. Show that fox, is integrable in [0.17. Proof: As in Ex.2. we want to show that by 200, exists a partition 12 s.t. U(f,p)-L(f,p) < E. Tirstly by lim kn=0. for Eo < \frac{\xi}{2M}, exists some No S.t. Un?Na In < Eo. So if we denote L1:= [0, E0], L2:= [E0, 1]. me then have of has only finitely many dis-continuous points in Lz. Denote these discontinuous points in Lz by <u>Σ</u>M < χ1< χ2< ··· < χη ≤ | and select $6 < \frac{\varepsilon}{4m_{\rm M}}$ s.t. $[x_i-6, x_i+6]$ are disjoint for $|\varepsilon| \le N$. then the interval Lz is divided into following intervals: $L_{2}: \left(\begin{array}{c} N \\ U \\ \vdots \\ 1 \end{array} \right) \cup \left(\begin{array}{c} N \\ U \\ \vdots \\ 1 \end{array} \right), \quad \text{with} \quad L_{1}:= L_{2} \bigwedge \left[\begin{array}{c} L_{1} \\ \lambda_{1} \\ \vdots \\ \lambda_{n} \end{array}, \quad \chi_{1}:=b \right], \quad |C| \leq N, \\ J_{1}:= \begin{cases} \left[\begin{array}{c} L_{1} \\ \lambda_{1} \\ \vdots \\ \lambda_{n} \end{array}, \quad \chi_{1}:=b \right], \quad |C| \leq N, \\ \left[\begin{array}{c} X_{1}:+b, \quad \chi_{1}:-b, \quad \chi_{1}:+b \\ \vdots \\ \chi_{n}:-b, \quad \chi_{n}:-b \end{array} \right], \quad |C| \leq N,$

then O by t is integrable in every non-empty Ji, we have exists partitions Pi of J; s.t. Ulf, Pi)-L(f, Pi) < \frac{\xi}{4n}. 3 Consider trivial partition Q; of [: mex { Eo, x;-67 = Zo; (31; = min x; +8, 17. then we have $U(t,Q_i) - L(t,Q_i) < \frac{h\cdot \epsilon}{4N/h} = \frac{\epsilon}{4N}$. this if we construct P of [50, 1] by letting P= UP; U Oi, then U(1, P)- L(1, P) = = = [U(1, P;) - L(1, P;) + U(1, Q;) - L(1, Q;)] ٧ - 2 . Now by Eoc zm, we have for the partition Q of [0. Es] given by 0=40cy = 80. we have U(f,Q)- L(f,Q) < E.M= 2. thus if we set P as the union of P, Q, we will U(f, P) - L(f, P) < E, thus P is the desired partition of [0,1]. #.

4. Lt t is continuous in [a.b], tx>0 for all x E [ab].
4. If f is continuous in $[a,b]$, $f(x) \ge 0$ for all $x \in [a,b]$. and $\int_{a}^{b} f(x) \ge 0$. Show that $f(x) \ge 0$ for all $x \in [a,b]$.
Prost.
Suppose 3 x o 6 Ca. 67 c.t. fixo > 20. From the symbor-present property of continuous function. we know.
3 Brixo) = (Xo-r. Xu+r) C(a,b) s.T. f(x) >0 for x6Brix)
Chare we assume xoc(a,b); the case for xo= a or b is similar). If we further nerrow the neighborhood, we can have:
fix>>o for x e [xo-r. xo+r]
Moreover. since f continuous. I can out ain its minimum.
Moreover. since f continuous. f can outtain its minimum. or $Br(x_0)$. soy: $f(x) \ge m := \min_{x \in Br(x_0)} f(x) \ge 0$.
XE Brixo)
Hence, we observe that.
$\int_{\alpha}^{b} f(x) dx = \int_{\alpha}^{x_{0}-r} f(x) dx + \int_{x_{0}-r}^{b} f(x) dx + \int_{x_{0}-r}^{b} f(x) dx$
- (x) dx
JXO-r in (constant function: Mitegrable)

a contradiction.