Departamento de Ciencia de la Computación e Inteligencia Artificial

	Alumno:				
	Grupo teoría:	(de	а)
\mathbf{a}	DNI:				
	Email:				
	Aula del examen:				

Convocatoria de Junio. Teoría. Matemáticas II, 30-05-2013

Instrucciones generales:

Debes rellenar el cuadro de datos personales (nombre y apellidos, grupo, DNI, etc.) indicando tu grupo de teoría.

Debes usar únicamente las hojas grapadas que se os facilitan y no podrá haber por encima de la mesa, ni circulando cerca, ningún otro papel durante el examen. Procura poner los resultados y datos importantes para la corrección y evaluación en la página donde aparece el enunciado (página par), y las operaciones relacionadas en la siguiente página (página impar). Dispones además de una hoja adicional para más operaciones, hacer referencias, aclaraciones, etc.

Pregunta	Máx	Nota
1	2	
2	2	
3	2	
4	2	
5	1	
6	1	
7		

Página 1 de 13

1. (2 puntos) Se quiere construir un centro deportivo que se compone de una sección rectangular con dos semicírculos a cada extremo. Si el perímetro debe ser el de una pista de atletismo de 500 metros. Encontrar las dimensiones que harán el área lo mayor posible.

Perímetro =
$$\pi r + x + x + \pi r = 500$$
 \rightarrow $\pi r + x = 250$ \rightarrow $x = 250$ - πr
Área $(r, x) = \pi r^2 + x \ 2 \ r$ \rightarrow Área $(r) = \pi r^2 + 2 \ r \ (250 - \pi r) = \pi r^2 + 500 \ r - 2\pi r^2 = 500 \ r - \pi r^2$

Área'(r) =
$$500 - 2\pi r = 0$$
 \rightarrow $500 = 2\pi r$ \rightarrow $r = $500/2\pi = 250/\pi$$

$$\mathbf{x} = 250 - \pi \ 250/\pi = \mathbf{0}$$

Área''(r) =
$$-2\pi < 0$$
 \rightarrow luego es un máximo.

- 2. **(2 puntos)** Dados los puntos de control p_0 =(-1,0), p_1 =(1,1), p_2 =(2,3). Calcula la curva de Bezier mediante:
 - a. La fórmula recursiva de De Casteljau
 - b. Polinomios de Bernstein.

<u>a.</u>

$$\begin{split} (X(t),Y(t)) &= (1-t)((1-t)(-1,0) + t(1,1)) + t((1-t)(1,1) + t(2,3)) = \\ &= (1-2t+t^2)(-1,0) + (t-t^2)(1,1) + (t-t^2)(1,1) + t^2(2,3) \\ X(t) &= -(1-2t+t^2) + 2(t-t^2) + 2t^2 = -1 + 2t - t^2 + 2t^2 + 2t^2 = -t^2 + 4t - 1 \\ Y(t) &= 2(t-t^2) + 3t^2 = 2t - 2t^2 + 3t^2 = t^2 + 2t \end{split}$$

<u>b.</u>

$$(X(t),Y(t)) = (1-t)^2(-1,0) + 2(1-t)t(1,1) + t^2(2,3) = (1-2t+t^2)(-1,0) + (2t-2t^2)(1,1) + t^2(2,3)$$

$$X(t) = -(1-2t+t^2) + (2t-2t^2) + 2t^2 = -1 + 2t - t^2 + 2t - 2t^2 + 2t^2 = -t^2 + 4t - 1$$

$$Y(t) = (2t-2t^2) + 3t^2 = 2t - 2t^2 + 3t^2 = t^2 + 2t$$

3. (2 puntos) Calcular el área comprendida entre la curva $f(x) = x^2 e^x$, el eje x y las rectas x=0 y x=1.

$$\int u dv = uv - \int v du$$

$$\int x^2 e^x dx = \begin{vmatrix} u = x^2 & dv = e^x dx \\ du = 2x & v = e^x \end{vmatrix} = e^x x^2 - 2 \int x e^x dx =$$

$$= \begin{vmatrix} u = x & dv = e^x dx \\ du = 1 & v = e^x \end{vmatrix} = e^x x^2 - 2 \left[x e^x - \int e^x dx \right] = e^x x^2 - 2x e^x + 2e^x$$

$$\int_0^1 x^2 e^x dx = \left[e^x x^2 - 2x e^x + 2e^x \right]_0^1 = (e - 2e + 2e) - (0 - 0 + 2) = e - 2 = 0,718281$$

Se ha utilizado dos veces la integración por partes.

4. (2 puntos) Aplicar el método de Newton para obtener una estimación del punto de corte de las funciones g(x) = x - 1/2 y $h(x) = \cos x$ con dos dígitos decimales exactos. Tomar 1 como valor inicial y redondea las operaciones a 8 decimales.

	x	f(x)	f'(x)	h
1	1	-0,04030231	1,84147098	-0,02188593
2	1,02188593	0,00012792	1,85309354	0,00006903
3	1,0218169			
4				
5				
6				
7				

$$f(x) = x - \frac{1}{2} - \cos(x)$$
 $f'(x) = 1 + \sin(x)$

El resultado es una magnitud de orden unidades. Si exigimos exactitud a las décimas y centésimas (dos dígitos decimales exactos) tenemos tres dígitos exactos, por lo que:

$$m = 0$$
 $n = 3$

Según el teorema de la acotación: $\Delta \le \frac{1}{2} \cdot 10^{m-n+1} = 0.5^{-2} = 0.005$

Sólo se necesitan dos iteraciones porque $h \le 0.005$ garantiza 3 dígitos exactos.

El resultado es 1,0218169 con los dígitos exactos 1,02

5. (1 puntos) De una función f(x) se conocen los datos que figuran a continuación

Xi	f(x _i)	
1,0	0,841	
1,1	0,891	
1,2	0,993	
1,3	1,000	

Calcula el polinomio interpolador mediante diferencias divididas (redondea a 3 decimales).

$$P(x) = 0.841 + 0.5(x - 1) + 2.6(x - 1)(x - 1.1) - 24.5(x - 1)(x - 1.1)(x - 1.2)$$

= -24'5x³ + 83.45x² - 93.65x + 35.541

6. (1 punto) Encontrar un valor c que satisfaga las condiciones del "Teorema del Valor Medio para la Derivabilidad" de la función $f(x) = \sqrt{x}$ para valores a=4 y b=9.

Según el teorema del valor medio, si f es continua en [a, b] y derivable en (a, b) entonces existe un c perteneciente a (a, b) tal que $f'(c) = \frac{f(b) - f(a)}{b - a}$

En nuestro caso a=4 y b=9 con lo que f(9)=3 y f(4) =2,
$$f'(c) = \frac{3-2}{9-4} = \frac{1}{5}$$

y como $f'(x) = \frac{1}{2\sqrt{x}}$ luego $\frac{1}{5} = \frac{1}{2\sqrt{c}}$ y $c = \frac{25}{4}$