TOPIC THREE

LAUNCHING INTO MACHINE LEARNING SUMMARY NOTES (ET0732)

Machine Learning Phases and Data Quality

Phases in Machine Learning:

- Training Phase: Model development.
- Inference Phase: Model deployment and predictions.

ML Project Steps:

- 1. Define the use case and success criteria.
- 2. Deliver the ML model through manual or automated steps.

Key Steps Related to Data:

- 1. **Data Extraction**: Retrieve data from diverse sources (structured/unstructured).
- 2. Data Analysis: Use Exploratory Data Analysis (EDA) to identify trends and anomalies.
- 3. **Data Preparation**:
 - Data Transformation: Modify format/structure.
 - o **Data Cleansing**: Remove duplicates and irrelevant records.
 - Data Type Correction: Fix errors and convert types.

Data Quality Attributes:

- Accuracy: Data should reflect real-world events.
- Timeliness: Measure the time from capture to availability.
- Completeness: Ensure all intended data is present.

Improving Data Quality:

- Address missing values and unwanted characters.
- Properly format date/time features.
- Use One-hot Encoding for categorical features.

Iterative Process: Data exploration and cleaning are continuous, improving data quality over time.

Importance of Data Quality: High-quality data enhances the predictive power of ML models.

Machine Learning in Practice

Module Overview: Focus on real-world problem-solving with data and ML algorithms.

Supervised vs. Unsupervised Learning:

- Supervised Learning: Involves labeled data (e.g., predicting tips).
- Unsupervised Learning: Works with unlabeled data (e.g., clustering).

Types of Supervised Learning Problems:

- 1. **Regression**: Predicts continuous values (e.g., tips based on bill).
- 2. **Classification**: Predicts discrete classes (e.g., gender based on features).

Experimentation: Involves testing different models and techniques.

Data Types:

- Structured Data: Organized in rows and columns.
- Unstructured Data: Includes images, audio, etc.

Model Training and Optimization

Loss Functions: Measure model performance against actual values.

Gradient Descent: Optimizes model parameters by minimizing loss functions.

Learning Rate: A hyperparameter that affects the size of the steps taken in gradient descent.

Generalization vs. Overfitting: Generalization measures performance on unseen data, while overfitting shows a model's poor performance on validation datasets.

Data Splitting:

• Training: For model training.

• Validation: For tuning hyperparameters.

• **Test**: For final evaluation.

Cross-Validation: Maximizes data usage for robust model evaluation.

Key Points on Model Performance

Confusion Matrix: Assesses classification performance through TP, FP, TN, FN metrics.

Metrics:

- Precision: Accuracy of positive predictions.
- Recall: Ability to identify actual positives.

Evaluation: Use performance metrics to assess model accuracy and generalization.

Final Considerations: Regularly monitor predictions for bias and optimize model performance based on evaluation metrics.