Introduction to Neural Networks and Deep Learning

Topics to be covered

- The Perceptron
- Features, Weights and Activation Functions
- Learning of Neural Network
- Rise of Deep Learning

Perceptron

Brain Neuron

Google Images 4

Brain Neuron

Google Images 5

Real Neuron to Artificial Neuron (Perceptron)

The Perceptron (Modelling the Brain Neuron)

Neural Network

Neural Network

Multilayer Neural Network With Two Layers of Hidden Neurons

Averaging Machine

Another Averaging Machine

Weighted Averaging Machine

Basic Perceptron With Inputs and Bias

Features, Weights And Activation Functions

Suppose few candidates appear for interview in a company and the company's output after the interview will be either selected (1) OR not selected (0). The company will classify (selected OR not selected)the candidates based on some qualities (features) of the candidates.

- Qualification relevant to the job
- Experience
- Communication skill
- Address of the candidate

Lets call these features $X_1, X_2, X_3, \ and \ X_4$.

Lets give importance (Weights) to each feature based on the job requirements

$$W_1 = 1$$

$$W_2 = 0.6$$

$$W_3 = 0.3$$

$$W_4 = 0.01$$

- Qualification relevant to the job
- Experience
- Communication skill
- Address of the candidate

$$X_1$$
 $W_1 = 1$
 X_2
 $W_2 = 0.6$
 $W_3 = 0.3$
 $W_4 = 0.01$
 $W_4 = 0.01$

If
$$X_1 = X_2 = X_3 = X_4 = 1$$

$$X_1$$
 $W_1 = 1$
 X_2
 $W_2 = 0.6$
 $W_3 = 0.3$
 $W_4 = 0.01$
 $W_4 = 0.01$
 $W_4 = 0.01$

$$X_1$$
 $W_1 = 1$ Activation Function W_2 $W_2 = 0.6$ $W_3 = 0.3$ $Y_4 = 0.01$ $W_4 = 0.01$

Threshold Activation Function

$$O_f = \begin{cases} 1 & \text{if y} > 1 \\ 0 & \text{if y} < 1 \end{cases}$$

How Neural Networks Learn?

Neural Network learns in two stages / propagations

- Forward Propagation
- Backward Propagation

Forward Propagation

In forward propagation, we calculate error of the neural network.

Backward Propagation

In backward propagation, we propagate the error back to the Layers of neural network and we update the weights and bias iteratively.

Forward Propagation

X_1	X_2	\overline{y}
0	0	0
0	1	1
1	0	1
1	1	1

$$E = y - y_{pred}$$

Forward Propagation

X_1	X_2	y	y_{pred}
0	0	0	- 1
0	1	1	
1	0	1	
1	1	1	

Calculation of Error

$$E = y - y_{pred}$$

Loss function =
$$\frac{1}{2}(y - y_{pred})^2$$

Backward Propagation

Error is propagated back through the layers of the Neural Network and the weights of the Neural Network are adapted iteratively.

Backward Propagation

Updating W_1

$$\frac{\partial E}{\partial W_1} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial h_1} \frac{\partial h_1}{\partial W_1}$$

$$W_1(updated) = W_1(old) + \eta \frac{\partial E}{\partial W_1}$$

where $\eta = \text{Learning rate}$

Forward Propagation (Iter 02)

$\overline{X_1}$	X_2	\overline{y}	y_{pred}	New Predicted
0	0	0	-0.09	Value
0	1	1		
1	0	1		
1	1	1		

The Rise of Deep Neural Networks (Deep Learning)

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto
ilya@cs.utoronto.ca

Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

Availability of Large Datasets

Computational Resources

Google Images 34

State-of-the-art Deep Learning Models

- VGG-16, ResNet-18, ResNet-50.
- Long-Short-Term-Memory (LSTM) and its variants.
- Autoencoders.
- Generative Adversarial Network (GAN).
- Transformers.

Applications of Deep Learning Models

Face Detection

Object Detection

[.] Szegedy Et Al, Going Deeper with Convolutions , CVPR 2015.

Financial Forecasting

Google Images 39

Machine Translation

Google Images 40

Thank you!

Thank you!