Strategies for correlated covariates in distance sampling

David Lawrence Miller

CREEM, University of St Andrews

Covariates in distance sampling

- ► CDS: P(observing an object) depends on distance
- ▶ MCDS: what about other factors?
 - per animal (sex, size,...)
 - environmental effects (weather, time of day, habitat,...)
 - observer effects (individual, team, pilot,...)
 - (group size not addressed here)

Detection functions

Models of the form

$$g(x; \beta, z_1, \dots, z_J) = \mathbb{P}(\text{detected}|\text{observed } x, z_1, \dots, z_J)$$

- distances x
- estimate parameters β
- \triangleright covariates z_1, \ldots, z_J , that affect detection
- covariates enter model via scale parameter:

$$\sigma(z_1,\ldots,z_J)=\exp(\beta_0+\sum_j z_j\beta_j)$$

Constraints and particulars

- g has fixed functional form
- ▶ usually <5 covariates</p>
- covariates independent from distance (in population)
- ▶ inference on likelihood *conditional* on observed covariates

Motivating example: AK black bears

- Black bear data from Alaska
- 301 aerial observations
- ▶ 3 covariates (low correlation):
 - search distance
 - % foliage cover
 - % snow cover

What can go wrong?

- from linear model literature:
 - fitting problems
 - high(er) variance
 - non-interpretable covariates
 - prediction usually fine
- important for DS:
 - fitted values $(\hat{p}_i(z_1,\ldots,z_J))$ important
 - ► rarely "predict"
 - variance important
 - covariates are nuisance

Simulated example

- ► half-normal detection function $\exp\left(\frac{-x^2}{2\sigma(z_1,...,z_J)^2}\right)$
- $z_1 \sim \text{beta}(0.1, 0.4)$
- z₂, z₃ generated to be correlated with z₁
- ► fitted:

$$\sigma_{12} = \exp(\beta_0 + z_1\beta_1 + z_2\beta_2)$$

$$\sigma_{123} = \exp(\beta_0 + z_1\beta_1 + z_2\beta_2 + z_3\beta_3)$$

- select model by AIC
- $ightharpoonup \sim 90$ samples per realisation

Simulated example - $Var(\hat{N_c})$

Simulated example - bias in \hat{N}_c

What can we do?

- Obvious possibilities from linear modelling:
 - ▶ Ridge regression
 - Lasso
 - PCA
- Shrinkage methods require estimate shrinkage!
 - change in fitting procedure

Simple solutions

- Principle components
 - fast, simple, most people know about it
 - "derived" covariates no change in fitting procedure
 - only covariates, not distance
- ightharpoonup standardise covariates $\Rightarrow \mathcal{Z}$
- ▶ take $Z^TZ = U^T \Lambda U$
- new covariates $z_i^* = \mathcal{Z}\mathbf{u}_j$
- select new PCA covariates in order
 - using all gives same fit as no-PCA model

Simulation revisit - $Var(\hat{N_c})$

Simulation revisit - AIC

Black bears - results

- ► Full model (3 PC/3 covariates) selected by AIC
- Adding 1 dummy covariate
 - correlated with search distance ($\rho = 0.9$)
 - ▶ 3 PC model better AIC than 2 or 1
 - ightharpoonup 3 PC model give $\sim 10\%$ saving in variance
- for both models, small changes in \hat{p}

What's going on?

In terms of $\hat{N_c}$:

$$\operatorname{var}(\hat{N}_{c}) = w^{2} \sum_{i} \hat{f}(0|\mathbf{z})^{2} - \hat{N}_{c} + \left[\frac{\partial N_{c}}{\partial \beta}\right]^{\mathsf{T}} H^{-1} \left[\frac{\partial N_{c}}{\partial \beta}\right]$$
$$= \sum_{i} \frac{1 - \hat{p}_{i}}{\hat{p}_{i}^{2}} + \left[\frac{\partial \hat{N}_{c}}{\partial \hat{\beta}}\right]^{\mathsf{T}} H^{-1} \left[\frac{\partial \hat{N}_{c}}{\partial \hat{\beta}}\right]$$

first term dominates.

Further work

- what about other situations?
 - ► hazard-rate, etc. detection functions
 - factor covariates
- is it ever "bad" to do this?
- is ridge/lasso more "efficient"?
- is anyone here doing "large" analyses?

Talk available at:

http://converged.yt/talks/dscorrcovar.pdf