

planetmath.org

Math for the people, by the people.

topology induced by uniform structure

Canonical name TopologyInducedByUniformStructure

Date of creation 2013-03-22 12:46:44

Last modified on 2013-03-22 12:46:44

Owner Mathprof (13753)

Last modified by Mathprof (13753)

Numerical id 7

Author Mathprof (13753)

Entry type Derivation Classification msc 54E15

 ${\it Related topic} \qquad {\it Uniform Neighborhood}$

Defines uniform topology

Let \mathcal{U} be a uniform structure on a set X. We define a subset A to be open if and only if for each $x \in A$ there exists an entourage $U \in \mathcal{U}$ such that whenever $(x, y) \in U$, then $y \in A$.

Let us verify that this defines a topology on X.

Clearly, the subsets \emptyset and X are open. If A and B are two open sets, then for each $x \in A \cap B$, there exist an entourage U such that, whenever $(x,y) \in U$, then $y \in A$, and an entourage V such that, whenever $(x,y) \in V$, then $y \in B$. Consider the entourage $U \cap V$: whenever $(x,y) \in U \cap V$, then $y \in A \cap B$, hence $A \cap B$ is open.

Suppose \mathcal{F} is an arbitrary family of open subsets. For each $x \in \bigcup \mathcal{F}$, there exists $A \in \mathcal{F}$ such that $x \in A$. Let U be the entourage whose existence is granted by the definition of open set. We have that whenever $(x,y) \in U$, then $y \in A$; hence $y \in \bigcup \mathcal{F}$, which concludes the proof.