[4]:	symboling normalized-losses make fuel-type body-style drive-wheels engine-location width height engine-type engine-size horsepower city-mpg highway-mpg price 0 3 ? alfa-romero gas convertible rwd front 64.1 48.8 dohc 130 111 21 27 13495 1 3 ? alfa-romero gas convertible rwd front 65.5 52.4 ohcv 152 154 19 26 16500 3 2 164 audi gas sedan front 66.2 54.3 ohc 109 102 24 30 13950 4 2 164 audi gas sedan 4wd front 66.4 54.3 ohc 136 115 18 22 17450 df . shape (205, 15)
	symboling of normalized-losses of make of the type of the type of the type of the type of type
	<class 'pandas.core,="" frame.dataframe'=""> RangeIndex: 295 entries, 0 to 204 Data columns (total 15 columns): Dtype # Column Non-Null Count normalized-losses 205 non-null object 1 normalized-losses 205 non-null object 2 make 205 non-null object dive-wheels 205 non-null object of engine-location 205 non-null object 0 object object object object object 5 drive-wheels 205 non-null engine-type 205 non-null object object of engine-type 205 non-null float64 0 object o</class>
[6]: [6]:	13 highway-mpg 205 non-null int64 14 price 205 non-null int64 dtypes: float64(2), int64(5), object(8) memory usage: 24.1+ KB df["normalized-losses"].value_counts()
	74 5 168 5 94 5 65 5 148 4 193 4 106 4 118 4 122 4 125 3 101 3 137 3 83 3 115 3 154 3 192 2 108 2
	158
[7]: [7]:	90 1 142 1 107 1 78 1 Name: normalized-losses, dtype: int64 df["horsepower"].value_counts() 68 19 70 11 69 10 116 9 110 8 95 7 114 6 88 6 62 6
	160 6 101 6 97 5 82 5 76 5 145 76 76 76 76 76 76 76 7
	184 2 100 2 112 2 112 2 113 2 114 2 115 115 11
	143
.0]: .1]:	<pre>df["normalized-losses"]=df["normalized-losses"].astype("float64") nmean=df["normalized-losses"].mean() hmean=df["horsepower"].mean() df["normalized-losses"].fillna(nmean,inplace=True) df["horsepower"].fillna(hmean,inplace=True)</pre>
3]:	122.0 45 161.0 11 91.0 8 150.0 7
	150.0 7 134.0 6 104.0 6 128.0 6 103.0 5 102.0 5 74.0 5 65.0 5 168.0 5 95.0 5 94.0 5 118.0 4 93.0 4 108.0 4 108.0 4 108.0 4 108.0 5 118.0 4 108.0 5 118.0 4 108.0 5 118.0 4 108.0 5 118.0 4 108.0 5 108.0 5 108.0 5 108.0 5 108.0 5 108.0 5 108.0 5 108.0 5 108.0 5 108.0 5 108.0 5 108.0 5 108.0 6 108.0 6 108.0 7 108
	154.0 3 137.0 3 108.0 2 145.0 2 188.0 2 158.0 2 197.0 2 153.0 2 194.0 2
4]: 4]:	256.0 1 90.0 1 142.0 1 78.0 1 186.0 1 231.0 1 107.0 1 98.0 0 1 121.0 1 77.0 1 Name: normalized-losses, dtype: int64 df["horsepower"].value_counts() 68.00000 19 70.000000 11 69.00000 10 115.000000 10
	116.000000 9 110.000000 7 88.00000 7 88.00000 6 114.000000 6 62.00000 6 100.000000 6 101.000000 6 101.000000 5 76.000000 5 82.00000 5 84.00000 5 84.00000 5 84.00000 5 84.00000 5 84.00000 5 84.00000 5 84.00000 6 145.00000 6 145.00000 6 145.00000 6 145.000000 6 145.000000 6 145.000000 6 15000000 7 15000000 7 15000000 8 150000000 8 15000000 8 15000000 8 15000000 8 15000000 8 150000000 8 150000000 8 150000000 8 150000000 8 150000000 8 150000000 8 1500000000 8 150000000 8 150000000 8 150000000 8 150000000 8 15000000000000000000000000000000000000
	152.000000 3 182.000000 3 121.000000 3 90.000000 3 56.000000 2 155.000000 2 94.000000 2 94.000000 2 94.000000 2 104.256158 2 176.000000 2 112.000000 2 112.000000 2 112.000000 2 112.000000 2 112.000000 2 112.000000 2 112.000000 2 112.000000 2 112.000000 2 112.000000 2 112.000000 2
	288.000000 1 140.000000 1 78.000000 1 48.000000 1 120.000000 1 106.000000 1 106.000000 1 142.000000 1 158.000000 1 72.000000 1 135.000000 1 135.000000 1 154.00000 1 154.00000 1 143.00000 1 154.00000 1 154.00000 1 154.00000 1 154.00000 1 154.00000 1 154.00000 1 154.00000 1
5]:	200.000000 1 115.000000 1 Name: horsepower, dtype: int64 sns.boxplot(df["price"])
6]:	5000 10000 15000 20000 25000 30000 35000 40000 45000 sns.boxplot(data=df,x="price",y="make") plt.show() add brown devoted brow
.7]: .7]:	mercedes-benomissubshippoisches benomissubshippoisches benomissubshi
	1 3 122.0 alfa-romero gas convertible rwd front 64.1 48.8 dohc 130 111.0 21 27 16500 2 1 122.0 alfa-romero gas hatchback rwd front 65.5 52.4 ohcv 152 154.0 19 26 16500 3 2 164.0 audi gas sedan fwd front 66.2 54.3 ohc 109 102.0 24 30 13950 4 2 164.0 audi gas sedan 4wd front 66.4 54.3 ohc 136 115.0 18 22 17450 df_cat=df.select_dtypes("object") df_num=df.select_dtypes(["int64","float64"])
	0 3 122.0 64.1 48.8 130 111.0 21 27 13495 1 3 122.0 64.1 48.8 130 111.0 21 27 16500 2 1 122.0 65.5 52.4 152 154.0 19 26 16500 3 2 164.0 66.2 54.3 109 102.0 24 30 13950 4 2 164.0 66.4 54.3 136 115.0 18 22 17450
0]: 1]: 2]:	204 -1 95.0 68.9 55.5 141 114.0 19 25 22625 205 rows × 9 columns from sklearn.preprocessing import LabelEncoder for col in df_cat: le = LabelEncoder() df_cat[col]=le.fit_transform(df_cat[col]) df = pd.concat([df_cat,df_num],axis=1) df.head()
2]:	make fuel-type body-style drive-wheels engine-location engine-type symboling normalized-losses width height engine-size horsepower city-mpg highway-mpg price 0 0 1 0 2 0 0 3 12.0 64.1 48.8 130 111.0 21 27 13495 1 0 1 0 2 0 0 3 122.0 64.1 48.8 130 111.0 21 27 16500 2 0 1 2 2 0 5 1 122.0 65.5 52.4 152 154.0 19 26 16500 3 1 1 3 0 0 3 2 164.0 66.2 54.3 109 102.0 24 30 13950 4 1 1 3 0 0 3 2 164.0 66.4 54.3
4]: 5]: 6]:	<pre>from sklearn.model_selection import train_test_split xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=0.3,random_state=1) from sklearn.linear_model import LinearRegression linreg=tinearRegression() linreg.fit(xtrain,ytrain) ypred = linreg.predict(xtest) from sklearn.metrics import mean_absolute_error as mae , mean_squared_error as mse , r2_score print(f"MAE :- {mae(ytest,ypred)}") print(f"MSE :- {mse(ytest,ypred)}") print(f"MSE :- {mse(ytest,ypred)}") print(f"MRNSE :- {mse(ytest,ypred)}") print(f"MACcuracy : {r2 score(ytest,ypred)}")</pre>
	print(f"Accuracy :- {r2_score(ytest,ypred)}") MAE :- 2464.0068217581634 MSE :- 12259459.688784553 RMSE :- 6129729.844392276 Accuracy :- 0.7965566780397375 plt.scatter(ytest,ypred) plt.show() 40000 35000 35000 35000 25000
	20000 15000 5000 10000 15000 20000 25000 2
	#COEFFICIENT AND INTERCEPT :- print(f"COEFFICIENT :- {linreg.coef_}") print(f"INTERCEPT :- {linreg.intercept_}") COEFFICIENT :- [-2.00099087e+02 -6.22650015e+02 -1.70235175e+02 1.86860719e+03 1.64133620e+04 2.83174279e+02 4.51384957e+01 1.53127607e+00 7.89452171e+02 3.62663990e+02 9.83682875e+01 -1.08169245e+01 3.08017854e+02 -4.17024371e+02] INTERCEPT :65022.769859956396 • L1 AND L2 Regularization
80]:	<pre>12 = Ridge(alpha=11) 12.fit(xtrain,ytrain) ypred=12.predict(xtest) print(f"L2 Accuracy :- {r2_score(ytest,ypred)}") L2 Accuracy :- 0.815027724543179 l1 = Lasso(alpha=200) l1.fit(xtrain,ytrain)</pre>
o]: 2]:	<pre>l1.fit(xtrain,ytrain) ypred=l1.predict(xtest)</pre>
0]: 2]: 4]:	<pre>11.fit(xtrain,ytrain) ypred=11.predict(xtest) print(f"L1 Accuracy :- {r2_score(ytest,ypred)}") L1 Accuracy :- 0.8139201176339511 for i in range(50):</pre>
o]: 2]: 4]:	11.fit(xtrain,ytrain) ypred=ll.predict(xtest) print("Ll Accuracy :- (r2_score(ytest,ypred)}") L1 Accuracy :- (s12soe176339511 for 1 nrange(58):
0]: 2]: 5]:	
60]: 22]: 33]: 46]:	12. Taticy singuistics print(**12. Accuracy : (*72.000*(pint.)pred)*)*) Li Accuracy : -8. 0.2000(17.000*(pint.)pred)*)*) Li Accuracy : -8. 0.2000(17.000*(pint.)pred)*)*) Li Accuracy : -8. 0.2000(17.000*(pint.)pred)*)* (***)
30]: 31]: 32]: 33]:	12. (1.2, (1
30]: 31]: 32]: 33]: 35]: 38]:	
30]: 31]: 32]: 33]: 33]: 33]:	The Content Augustian
30]: 31]: 32]: 33]: 33]: 33]:	Part