

News Topic Classification

Build NLP classifiers for a specific text

Presentation Route

Aim of the project

Data Overview

Understanding the dataset

Source

Downloaded from **Kaggle** Gathered from > 2000 news sources by **ComeToMyHead**

Properties

Size: **29MB**; Language: **ENG**2 columns: **Text** and **Label 4 types** of news topics: 'World', 'Sports', 'Business' and 'Sci/Tech'.

Data Quality

No missing values Last update **2 months ago**

Project Pipeline

Collect the data

Download and explore the all dataset

Analyse error

Explain the results achieved

Prepare the data

Pre-processing the data

Evaluate the model

Compare different results

Train models

Use different machine learning algorithms

- New York
- Oil Price
- Target Stock
- Investor

- Win
- Team
- Game
- Play

Word Cloud of all the dataset

Project Pipeline

Collect the data

Download and explore the all dataset

Analyse error

Explain the results achieved

Prepare the data

Pre-processing the data

Evaluate the model

Compare different results

Train models

Use different machine learning algorithms

Data Preparation

spaCy Pipeline Used

Data Preparation

	text	label	tokens	tokens_count	tokens_filtered	text_filtered	text_embeddings	text_ner	entity_dict
568	Nearly 10 Million Afghans to Embrace Democracy	0	(Nearly, 10, Million, Afghans, to, Embrace, De	43	[Nearly, 10, Million, Afghans, Embrace, Democr	nearly 10 million afghans embrace democracy re	[[-1.2955, -2.7019, -1.6919, 1.7825, 5.9797, 1	[(Nearly, ADV, B, CARDINAL), (10, NUM, I, CARD	{'nearly 10 million': ('NUM', 'CARDINAL'), 'af
320	Lenovo revenue grows, but problems persist Chi	3	(Lenovo, revenue, grows, ,, but, problems, per	24	[Lenovo, revenue, grows, problems, persist, Ch	lenovo revenue grow problem persist china larg	[[0.92553, 2.4457, -0.12281, 3.1267, 0.7986, 2	[(Lenovo, PROPN, B, ORG), (revenue, NOUN, O,)	{'china': ('PROPN', 'GPE')}
93	Bangkok's Canals Losing to Urban Sprawl (AP) A	3	(Bangkok, 's, Canals, Losing, to, Urban, Spraw	43	[Bangkok, Canals, Losing, Urban, Sprawl, AP, A	bangkok canals lose urban sprawl ap ap bank ca	[[-0.26372, -0.95107, -0.19456, 1.6077, 2.4591	[(Bangkok, PROPN, B, GPE), (Canals, PROPN, O,	{'bangkok canal': ('VERB', 'ORG'),

Project Pipeline

Collect the data

Download and explore the all dataset

Analyse error

Explain the results achieved

Prepare the data

Pre-processing the data

Evaluate the model

Compare different results

Train models

Use different machine learning algorithms

Train-test Split

80%

Training set

The model learns patterns and relationships in the training data to make predictions.

20%

Testing set

The predicted outputs are then compared to the actual target labels in the testing set

Feature Sets

01 features

All features (entity_dict, word_embeddings, text_filtered, tokens_filtered)

02 features_embedds

Only embeddings (word_embeddings)

03 features_text_and_tokens

Only text and tokens (text_filtered, tokens_filtered)

04 features_entities

Only entities (entity_dict)

05 features_no_ner

No NER (word_embeddings, text_filtered, tokens_filtered)

Train a model

Train a model

Project Pipeline

Collect the data

Download and explore the all dataset

Analyse error

Explain the results achieved

Prepare the data

Pre-processing the data

Evaluate the model

Compare different results

Train models

Use different machine learning algorithms

Evaluate the models	Accuracy	F1-Score	Precision	Recall
Naîve Bayes	0.895	0.894	0.894	0.895
Logistic Regression	0.897	0.896	0.896	0.897
Decision Tree	0.772	0.772	0.772	0.772
Random Forest	0.86	0.86	0.86	0.86
Support Vector Machine	0.896	0.895	0.895	0.896
Extreme Gradient Boost	0.88	0.88	0.88	0.88
Gradient Boosting	0.89	0.89	0.89	0.89
Nearest Neighbor	0.763	0.767	0.787	0.763

Metric Analysis

Metric Analysis

(Different feature sets for Logistic Regression)

Metric Analysis

Count vs TF-IDF Vectorization

Project Pipeline

Collect the data

Download and explore the all dataset

Analyse error

Explain the results achieved

Prepare the data

Pre-processing the data

Evaluate the model

Compare different results

Train models

Use different machine learning algorithms

Logistic Regression All Features

Ambiguous Sci/Tech news articles examples:

"Boeing fires airborne laser as part of missile defense A Boeing Co.-led team has succeeded in firing a laser beam for the first time as part of a ballistic missile defense shield, the Pentagon and the Boeing Co."

"MessageLabs taps Brightmail in war on spam Email filtering firm MessageLabs yesterday announced a deal to incorporate Symantec's Brightmail anti-spam technology into its own anti-spam service."

Accuracy: 89.675%, **F1**: 89.643%, **Precision**: 89.648%, **Recall**: 89.675%

Support Vector Machine Word Embeddings

Accuracy: 89.65%, **F1**: 89.626%, **Precision**: 89.65%, **Recall**: 89.65%

Support Vector Machine Word Embeddings

Accuracy: 89.65%, **F1**: 89.626%, **Precision**: 89.65%, **Recall**: 89.65%

Conclusions

In the **World** category, both False Positives (FP) and True Negatives (TN) appear across all labels. This arises due to the wide breadth of topics and the presence of terms that may also relate to other labels, such as countries, nationalities, and companies. Consequently, texts on this topic have high ambiguity.

Conversely, the **Sports** category has high accuracy since its content is more specific, often mentioning distinct clubs, their respective countries, and the sports themselves. Hence, such specific texts are more easily classifiable.

However, the **Business** and **Sci/Tech** categories have their own challenges. These categories exhibit significant content overlap, particularly concerning entities like companies. Consequently, the classifier may struggle to differentiate between them, resulting in a notable number of both FP and TN.

Thanks!

Bárbara Rodrigues *up202007163*

Guilherme Pereira *up202007375*

Lucas Sousa up202004682