Характеристический вид и инварианты Римана одномерных уравнений газовой динамики

Верещагин Антон Сергеевич канд. физ.-мат. наук, доцент

Кафедра аэрофизики и газовой динамики

30 декабря 2020 г.

Аннотация

Характеристики систем квазилинейных уравнений. Инварианты Римана систем квазилинейных уравнений. Характеристический вид уравнений газовой динамики. Инварианты Римана для изоэнтропических течений. Бегущие волны (волны Римана). Волны сжатия и разрежения. Центрированные волны. Автомодельные решения. Признак волны Римана. Задача о выдвигающемся поршне.

Характеристики системы квазилинейных уравнений

Основная система уравнений Будем исследовать систему квазилинейных дифференциальных уравнений от *n* функций вида

$$\vec{u}_t + A(\vec{u})\vec{u}_x = \vec{f}(\vec{u}), \tag{1}$$
где $\vec{u}(t,x) = \{u_1(t,x), u_2(t,x), \dots, u_n(t,x)\}^T,$

$$A(\vec{u}) = \begin{pmatrix} a_{11}(\vec{u}) & a_{12}(\vec{u}) & \dots & a_{1n}(\vec{u}) \\ a_{21}(\vec{u}) & a_{22}(\vec{u}) & \dots & a_{2n}(\vec{u}) \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}(\vec{u}) & a_{n2}(\vec{u}) & \dots & a_{nn}(\vec{u}) \end{pmatrix},$$

$$\vec{f}(\vec{u}) = \{f_1(\vec{u}), f_2(\vec{u}), \dots, f_n(\vec{u})\}^T.$$

Характеристики системы квазилинейных уравнений

Собственные числа и собственные векторы матрицы A^T Пусть матрица $A^T(\vec{u})$ имеет собственное число $\lambda(\vec{u})$, которому соответствует собственный вектор $\vec{\alpha}(\vec{u})$:

$$A^T \vec{\alpha} = \lambda \vec{\alpha} \quad (\vec{\alpha} \neq 0). \tag{2}$$

Преобразования исходной системы Умножим систему (1) скалярно на вектор $\vec{\alpha}(\vec{u})$ и преобразуем в соответствии с (2), тогда

$$\vec{u}_t \cdot \vec{\alpha} + (A\vec{u}_x) \cdot \vec{\alpha} = \vec{f} \cdot \vec{\alpha}.$$

Выражение преобразуется:

$$(A\vec{u}_x)\cdot\vec{\alpha}=\vec{u}_x\cdot(A^T\vec{\alpha})=\vec{u}_x\cdot\lambda\vec{\alpha}=(\lambda\vec{u}_x)\cdot\vec{\alpha}.$$

Характеристики системы квазилинейных уравнений

Характеристическая форма записи Основная система, записанная в форме

$$(\vec{u}_t + \lambda \vec{u}_x) \cdot \vec{\alpha} = \vec{f} \cdot \vec{\alpha}, \tag{3}$$

называется характеристической формой.

Если у матрицы A^T имеется n вещественных собственных чисел и полная система из n линейно независимых собственных векторов, тогда всю систему (1) можно переписать в виде (3) и она будет называться гиперболической.

Инварианты Римана системы квазилинейных уравнений

Инварианты Римана Пусть $F(\vec{u})$ является потенциалом для собственного вектора $\vec{\alpha}(\vec{u})$:

$$\nabla_u F = \vec{\alpha},$$

тогда $F(\vec{u})$ называют инвариантом Римана.

Инварианты Римана системы квазилинейных уравнений

Рассмотрим кривую в плоскости (t, x), называемую характеристической и удовлетворяющую уравнению:

$$\frac{dx}{dt} = \lambda(\vec{u}(t,x)),\tag{4}$$

где $\vec{u} = \vec{u}(t,x)$ – решение исходной системы уравнений (1).

Тогда полная производная от инварианта Римана F(t, x(t)) вдоль характеристической кривой (4) имеет вид:

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} + \lambda \frac{\partial F}{\partial x} = \nabla_u F \cdot \frac{d\vec{u}}{dt} = \alpha \cdot (\vec{u}_t + \lambda \vec{u}_x) = \vec{\alpha} \cdot \vec{f}.$$

Если у системы (1) имеется n существенно различных инвариантов Римана, то она может быть проинтегрирована вдоль характеристик.

Одномерная система уравнений газовой динамики

$$\rho_t + v\rho_x + \rho v_x = 0,$$

$$v_t + vv_x + \frac{p_x}{\rho} = 0,$$

$$S_t + vS_x = 0.$$

Калорическое уравнение состояния:

$$p=p(\rho,S).$$

Одномерная система уравнений газовой динамики

$$\rho_t + v\rho_x + \rho v_x = 0,$$

$$v_t + vv_x + \frac{p_x}{\rho} = 0,$$

$$S_t + vS_x = 0.$$

Калорическое уравнение состояния:

$$p=p(\rho,S).$$

Матричная форма записи

$$u_t + Au_x = 0,$$

$$u = \begin{pmatrix} \rho \\ v \\ S \end{pmatrix}, \quad A = \begin{pmatrix} v & \rho & 0 \\ c^2/\rho & v & p_S/\rho \\ 0 & 0 & v \end{pmatrix}, \quad c^2 = \frac{\partial p}{\partial \rho}(\rho, S).$$

Характеристическое уравнение

$$\chi(\lambda) = (\nu - \lambda)((\nu - \lambda)^2 - c^2) = 0 \iff \lambda_{1,2} = \nu \pm c, \quad \lambda_3 = \nu.$$

Собственные векторы

$$\lambda_1 = v - c \Rightarrow \alpha_3 = \left(-\frac{c}{\rho}, 1, -\frac{1}{\rho c} p_S\right).$$

$$\lambda_2 = v + c \Rightarrow \alpha_2 = \left(\frac{c}{\rho}, 1, \frac{1}{\rho c} p_S\right),$$

$$\lambda_3 = 0 \Rightarrow \alpha_1 = (0, 0, 1),$$

Запись через частные производные

$$\begin{split} S_t + vS_x &= 0, \\ v_t + (v-c)v_x - \frac{c}{\rho} \left[\rho_t + (v-c)\rho_x \right] - \frac{1}{\rho c} \frac{\partial p}{\partial S} \left[S_t + (v-c)S_x \right] = 0, \\ v_t + (v+c)v_x + \frac{c}{\rho} \left[\rho_t + (v+c)\rho_x \right] + \frac{1}{\rho c} \frac{\partial p}{\partial S} \left[S_t + (v+c)S_x \right] = 0, \end{split}$$

Запись в дифференциалах

$$dx = (v - c)dt, \quad dv - \frac{c}{\rho}d\rho - \frac{\partial p}{\partial S}\frac{1}{\rho c}dS = 0,$$

$$dx = vdt, \quad dS = 0,$$

$$dx = (v + c)dt, \quad dv + \frac{c}{\rho}d\rho + \frac{\partial p}{\partial S}\frac{1}{\rho c}dS = 0.$$

Инварианты Римана для изоэнтропических течений

Условия Пусть $S(t,x) = S_0$ в всей области течения, тогда

$$p = p(\rho, S_0) \Rightarrow \frac{\partial p}{\partial S} = 0, \quad c(\rho) = \sqrt{\left(\frac{\partial p}{\partial \rho}\right)_S}.$$

Инварианты Римана Найдем $s(\rho,v)$ и $r(\rho,v)$ такие, что $\nabla_{(\rho,v)}s=\alpha_1, \nabla_{(\rho,v)}r=\alpha_2$:

$$\frac{\partial s}{\partial \rho} = -\frac{c(\rho)}{\rho}, \quad \frac{\partial s}{\partial v} = 1 \Rightarrow s = v - \int \frac{c(\rho)}{\rho} d\rho.$$
$$\frac{\partial r}{\partial \rho} = \frac{c(\rho)}{\rho}, \quad \frac{\partial r}{\partial v} = 1 \Rightarrow r = v + \int \frac{c(\rho)}{\rho} d\rho.$$

Инварианты Римана для изоэнтропических течений

Условия Пусть $S(t,x) = S_0$ в всей области течения, тогда

$$p = p(\rho, S_0) \Rightarrow \frac{\partial p}{\partial S} = 0, \quad c(\rho) = \sqrt{\left(\frac{\partial p}{\partial \rho}\right)_S}.$$

Инварианты Римана

$$\frac{\partial s}{\partial t} + (v - c)\frac{\partial s}{\partial x} = 0, \quad \frac{\partial r}{\partial t} + (v + c)\frac{\partial r}{\partial x} = 0.$$

Полученные $s(\rho, v)$ и $r(\rho, v)$ называются левым и правым инвариантом Римана соответственно.

Инварианты Римана для политропного газа

Уравнение состояния

$$p = a(S)\rho^{\gamma}, \quad \gamma = \frac{c_p}{c_V} > 1,$$

$$c^2 = a(S)\gamma\rho^{\gamma-1} = \frac{\gamma p}{\rho}.$$

Инварианты Римана

Система дифференциальных уравнений изоэнтропического течения политропного газа

Общий случай

$$\frac{\partial s}{\partial t} + (\alpha s + \beta r) \frac{\partial s}{\partial x} = 0, \quad \frac{\partial r}{\partial t} + (\alpha r + \beta s) \frac{\partial s}{\partial x} = 0,$$

$$\alpha = \frac{1}{2} + \frac{\gamma - 1}{4} > \frac{1}{2} > 0, \quad \beta = \frac{1}{2} - \frac{\gamma - 1}{4}.$$

Система дифференциальных уравнений изоэнтропического течения политропного газа

Общий случай

$$\frac{\partial s}{\partial t} + (\alpha s + \beta r) \frac{\partial s}{\partial x} = 0, \quad \frac{\partial r}{\partial t} + (\alpha r + \beta s) \frac{\partial s}{\partial x} = 0,$$

$$\alpha = \frac{1}{2} + \frac{\gamma - 1}{4} > \frac{1}{2} > 0, \quad \beta = \frac{1}{2} - \frac{\gamma - 1}{4}.$$

$$\Gamma$$
аз Чаплыгина $\gamma=1$
$$\frac{\partial s}{\partial t}+r\frac{\partial s}{\partial x}=0, \quad \frac{\partial r}{\partial t}+s\frac{\partial s}{\partial x}=0.$$

Система дифференциальных уравнений изоэнтропического течения политропного газа

Общий случай

$$\frac{\partial s}{\partial t} + (\alpha s + \beta r) \frac{\partial s}{\partial x} = 0, \quad \frac{\partial r}{\partial t} + (\alpha r + \beta s) \frac{\partial s}{\partial x} = 0,$$

$$\alpha = \frac{1}{2} + \frac{\gamma - 1}{4} > \frac{1}{2} > 0, \quad \beta = \frac{1}{2} - \frac{\gamma - 1}{4}.$$

Газ Чаплыгина
$$\gamma=1$$

$$\frac{\partial s}{\partial t}+r\frac{\partial s}{\partial x}=0,\quad \frac{\partial r}{\partial t}+s\frac{\partial s}{\partial x}=0.$$

Случай
$$\gamma=3$$

$$\frac{\partial s}{\partial t}+s\frac{\partial s}{\partial x}=0,\quad \frac{\partial r}{\partial t}+r\frac{\partial s}{\partial x}=0.$$

Задача Коши для изоэнтропического течения политропного газа

Общий случай

$$\frac{\partial s}{\partial t} + (\alpha s + \beta r) \frac{\partial s}{\partial x} = 0, \quad \frac{\partial r}{\partial t} + (\alpha r + \beta s) \frac{\partial s}{\partial x} = 0,$$

где

$$\alpha=\frac{1}{2}+\frac{\gamma-1}{4},\quad \beta=\frac{1}{2}-\frac{\gamma-1}{4},\quad \gamma\neq 1.$$

Начальные условия при t = 0:

$$s(x,0) = s_0(x), \quad r(x,0) = r_0(x).$$

В этом случае из общей теории следует существование решения в некоторой полосе $0 \le t < t_0$; величина t_0 есть момент времени, в который производные решения становятся неограниченными.

Бегущие волны (волны Римана)

Определение Если в какой-то области изоэнтропического течения один из инвариантов Римана остается постоянным, то такое течение называют волной Римана, или бегущей волной.

Характеристики в области бегущей волны

Уравнения бегущей волны Пусть в некоторой области $r=r_0=const$, тогда течение будет описываться уравнением:

$$\frac{\partial s}{\partial t} + (\alpha s + \beta r_0) \frac{\partial s}{\partial x} = 0,$$

$$\alpha = \frac{1}{2} + \frac{\gamma-1}{4}, \quad \beta = \frac{1}{2} - \frac{\gamma-1}{4}, \quad \gamma \neq 1.$$

Характеристики в области бегущей волны

Уравнения бегущей волны Пусть в некоторой области $r = r_0 = const$, тогда течение будет описываться уравнением:

$$\frac{\partial s}{\partial t} + (\alpha s + \beta r_0) \frac{\partial s}{\partial x} = 0,$$

где

$$\alpha=\frac{1}{2}+\frac{\gamma-1}{4}, \quad \beta=\frac{1}{2}-\frac{\gamma-1}{4}, \quad \gamma\neq 1.$$

Уравнения характеристик Вдоль линии

$$\frac{dx}{dt} = \frac{x - x_0}{t - t_0} = \alpha s(x, t) + \beta r_0$$

сохраняется инвариант s(x,t), это означает, что характеристики будут прямыми линиями.

Волны сжатия и разрежения в случае бегущей *s*-волны

Цепочка алгебраических следствий

$$\begin{array}{llll} \frac{\partial s}{\partial x} > 0 & \mathrm{и} & \begin{array}{lll} v = \frac{1}{2}(r_0 + s) & \Rightarrow & \frac{\partial v}{\partial x} > 0, \\ c = \frac{\gamma - 1}{4}(r_0 - s) & \Rightarrow & \frac{\partial c}{\partial x} < 0 & \Rightarrow & \frac{\partial \rho}{\partial x} < 0. \end{array}$$

Волны сжатия и разрежения в случае бегущей *s*-волны

Цепочка алгебраических следствий

$$\frac{\partial s}{\partial x} > 0 \quad \text{и} \qquad \begin{aligned} v &= \frac{1}{2}(r_0 + s) & \Rightarrow & \frac{\partial v}{\partial x} > 0, \\ c &= \frac{\gamma - 1}{4}(r_0 - s) & \Rightarrow & \frac{\partial c}{\partial x} < 0 & \Rightarrow & \frac{\partial \rho}{\partial x} < 0. \end{aligned}$$

Условия существования волн сжатия и разрежения Таким образом, в области, где инвариант Римана s(t,x) увеличивается, там происходит разгон течения с одновременным его *расширением*. Такое течение будет называться волной разрежения.

Волны сжатия и разрежения в случае бегущей *s*-волны

Цепочка алгебраических следствий

$$\frac{\partial s}{\partial x} > 0 \quad \text{if} \quad \begin{array}{ll} v = \frac{1}{2}(r_0 + s) & \Rightarrow & \frac{\partial v}{\partial x} > 0, \\ c = \frac{\gamma - 1}{4}(r_0 - s) & \Rightarrow & \frac{\partial c}{\partial x} < 0 & \Rightarrow & \frac{\partial \rho}{\partial x} < 0. \end{array}$$

Условия существования волн сжатия и разрежения Таким образом, в области, где инвариант Римана s(t,x) увеличивается, там происходит разгон течения с одновременным его *расширением*. Такое течение будет называться волной разрежения.

В случае уменьшения инварианта s(t,x), наоборот, скорость v(t,x) будет уменьшаться, а плотность $\rho(t,x)$ – увеличиваться. Такая бегущая волна будет называться волной сжатия.

Волны сжатия и разрежения в случае бегущей r-волны

Цепочка алгебраических следствий

$$\frac{\partial r}{\partial x} > 0 \quad \text{if} \quad \begin{aligned} v &= \frac{1}{2}(r+s_0) & \Rightarrow & \frac{\partial v}{\partial x} > 0, \\ c &= \frac{\gamma-1}{4}(r-s_0) & \Rightarrow & \frac{\partial c}{\partial x} > 0 & \Rightarrow & \frac{\partial \rho}{\partial x} > 0. \end{aligned}$$

Волны сжатия и разрежения в случае бегущей r-волны

Цепочка алгебраических следствий

$$\frac{\partial r}{\partial x} > 0 \quad \text{ii} \qquad \begin{aligned} v &= \frac{1}{2}(r+s_0) & \Rightarrow & \frac{\partial v}{\partial x} > 0, \\ c &= \frac{\gamma-1}{4}(r-s_0) & \Rightarrow & \frac{\partial c}{\partial x} > 0 & \Rightarrow & \frac{\partial \rho}{\partial x} > 0. \end{aligned}$$

Условия существования волн сжатия и разрежения Таким образом, в области, где инвариант Римана r(t,x) увеличиваемся, будет реализовываться волна сжатия.

Волны сжатия и разрежения в случае бегущей r-волны

Цепочка алгебраических следствий

$$\begin{array}{llll} \frac{\partial r}{\partial x} > 0 & \mathrm{i} & v = \frac{1}{2}(r+s_0) & \Rightarrow & \frac{\partial v}{\partial x} > 0, \\ & c = \frac{\gamma-1}{4}(r-s_0) & \Rightarrow & \frac{\partial c}{\partial x} > 0 & \Rightarrow & \frac{\partial \rho}{\partial x} > 0. \end{array}$$

Условия существования волн сжатия и разрежения Таким образом, в области, где инвариант Римана r(t,x) увеличиваемся, будет реализовываться волна сжатия.

И, наоборот, в случае *уменьшения* инварианта s(t,x) будет реализовываться волна разрежения.

Центрированные волны

Определение

Волна Римана $(r=r_0)$ называется центрированной, если *s*-характеристики образуют пучок прямых, выходящих из одной точки (t_0,x_0) . Так как *s* постоянен вдоль любой характеристики, то

$$s = s\left(\frac{x - x_0}{t - t_0}\right), \quad r = r_0.$$

Определение

Волна Римана ($s=s_0$) называется центрированной, если r-характеристики образуют пучок прямых, выходящих из одной точки (t_0,x_0). Так как r постоянен вдоль любой характеристики, то

$$r = r \left(\frac{x - x_0}{t - t_0} \right), \quad s = s_0.$$

Определение

Автомодельными называются решения, зависящие от переменной

$$y = \frac{x - x_0}{t - t_0}.$$

Определение

Автомодельными называются решения, зависящие от переменной

$$y = \frac{x - x_0}{t - t_0}$$

Утверждение

Центрированные волны Римана дают все автомодельные решения уравнений газовой динамики.

Предположение

Пусть все параметры газа: плотность ρ , скорость v, энтропия S- зависят от $y=\frac{x-x_0}{t-t_0}$. Тогда

$$\frac{\partial}{\partial t} = -\frac{y}{t - t_0} \frac{d}{dy}, \quad \frac{\partial}{\partial x} = \frac{1}{t - t_0} \frac{d}{dy}.$$

Одномерная система уравнений газовой динамики

$$-y\frac{d\rho}{dy} + v\frac{d\rho_x}{dy} + \rho\frac{dv}{dy} = 0,$$

$$-y\frac{dv}{dy} + v\frac{dv}{dy} + \frac{1}{\rho}\frac{d\rho}{dy} = 0,$$

$$-y\frac{dS}{dy} + v\frac{dS}{dy} = 0.$$

Из последнего уравнения следует, что

$$S = S_0, \quad p = p(\rho, S_0)$$

и можно далее использовать инварианты Римана.

Система уравнений газовой динамики в терминах инвариантов Римана в автомодельных переменных для политропного газа

$$\begin{cases} -y\frac{ds}{dy} + (\alpha s + \beta r)\frac{ds}{dy} = 0, \\ -y\frac{dr}{dy} + (\alpha r + \beta s)\frac{dr}{dy} = 0. \end{cases} \iff \begin{cases} (\alpha s + \beta r - y)\frac{ds}{dy} = 0, \\ (\alpha r + \beta s - y)\frac{dr}{dy} = 0. \end{cases}$$

Система уравнений газовой динамики в терминах инвариантов Римана в автомодельных переменных для политропного газа

$$\begin{cases} -y\frac{ds}{dy} + (\alpha s + \beta r)\frac{ds}{dy} = 0, \\ -y\frac{dr}{dy} + (\alpha r + \beta s)\frac{dr}{dy} = 0. \end{cases} \iff \begin{cases} (\alpha s + \beta r - y)\frac{ds}{dy} = 0, \\ (\alpha r + \beta s - y)\frac{dr}{dy} = 0. \end{cases}$$

$$\begin{cases} s = s_0, \\ r = r_0. \end{cases} \begin{cases} s = s_0, \\ r = \frac{y - \beta s_0}{\alpha}. \end{cases} \begin{cases} r = r_0, \\ s = \frac{y - \beta r_0}{\alpha}. \end{cases} \begin{cases} r = \frac{y}{\alpha + \beta}, \\ s = \frac{y}{\alpha + \beta}. \end{cases}$$

Последний вариант невозможен в силу того, что дает нулевую скорость звука во всей области течения, поэтому любое автомодельное решение является волной Римана.

Решение для политропного газа для волн Римана

Предположение

 $\Pi_{\mathbf{y}$ сть v_0, p_0, c_0 значение скорости давления и скорости звука для некоторой точки волны Римана.

$$r = r_0$$

$$c = c_0 \left(1 - \frac{\gamma - 1}{2} \frac{v - v_0}{c_0} \right), \quad p = p_0 \left[1 - \frac{\gamma - 1}{2} \frac{v - v_0}{c_0} \right]^{\frac{2\gamma}{\gamma - 1}}.$$

$$s = s_0$$

$$c = c_0 \left(1 + \frac{\gamma - 1}{2} \frac{v - v_0}{c_0} \right), \quad p = p_0 \left[1 + \frac{\gamma - 1}{2} \frac{v - v_0}{c_0} \right]^{\frac{2\gamma}{\gamma - 1}}.$$

Признак волны Римана

Утвеждение Всякое непрерывное течение, примыкающее к зоне постоянного течения, есть волна Римана.

Литература

Рождественский Б.Л., Яненко Н.Н. Системы квазилинейных уравнений и их приложения к газовой динамике. Изд. 2-е, Главная редакция физ.-мат. лит. Изд. «Наука», М., 1978.