OS Project: Memory Report

陈泰杰 2019012328 & 段昌宇 2019012327

Q1

Task ID	Replacement Policy	Result (ms)
1	FIFO	5
2	FIFO	425
3	FIFO	979

Q2

Task ID	Replacement Policy	Result (ms)
1	CLOCK	5
2	CLOCK	420
3	CLOCK	735

- We see that FIFO and CLOCK Replacement Policy has almost the same result. One probably reason is that, the number of virtual pages is much larger than the number of physical page, thus the miss rate is rather high no matter replacement policy.
- CLOCL Policy is slightly better than FIFO Policy in Task 3, which implies that the LRU-liked CLOCL Policy can provide a better data reuse in some cases, such as matrix multiplication.

Q3

Task ID	# of Physical Page	FIFO Result (ms)	CLOCK Result (ms)
2	1	400	396
2	2	386	401
2	3	459	396
2	4	404	412
2	5	410	402
2	6	469	410
2	7	407	404
2	8	402	412
2	9	438	406
2	10	406	407

• Either 1 or 10 physical pages is too small for Task 2. Thus, we find little change in the results

Q4

Task ID	# of Thread	CLOCK Result (ms)
4	10	100
4	11	102
4	12	112
4	13	182
4	14	254
4	15	492
4	16	711
4	17	645
4	18	1467
4	19	1300
4	20	1332

• As the number of threads increases, so does the time required. This is due not only to the increased total workload, but also to the system spending more time switching between threads.