Modélisation 3D & Simulation

I. Kinematic modeling

1. Facial modeling

Hyewon SEO

Equipe 'MLMS', ICube

Facial shape modeling: static

- By interactive design
- From existing CAD files

2

Facial shape modeling: static

Using photos

Facial shape modeling: static

A morphable face model for the synthesis of 3D faces

4

5

Facial shape modeling: dynamic (Facial animation)

Challenging and long-sought aspects of character animation

Interactive design+ Interpolationtechnique

- Facial motion capture: (video, marker-based mocap...)
 - + Animation retargeting

Data-driven
 generative methods
 Impressive results start
 to appear, recently

Keyframe based facial animation

Temporal interpolation, to generate an animation (sequence of poses)

$$P = (t-1) P_0 + t P_1$$
 for $t \in [0,1]$

7

Kinematic facial modeling

Distance-Based Vertex Displacement

- Cannot define locations/trajectories of all vertices by hand..
- Work on <u>seed</u> vertices
 Key, landmark, marker, feature, anchor, ...
- Effect nearby vertices
 - Usually by computation
 - With some controllable parameters
- A facial 'pose' can be generated in this way

https://www.youtube.com/watch?v=TrgN KGjSyxA&index=2&list=PL8VqaFf6Kz-JbeYLvi7fgQvH-dHMhIHwT

Facial poses by landmark displacements

Defining Distance-based Functions

- If vertex i is displaced by (dx, dy, dz) units
 - Displace each neighbor, j, of i by
 (dx, dy, dz) * f (i, j)

- f (i,j) is typically a function of <u>distance</u>
 - Euclidean distance
 - (Smallest!) number of edges from i to j
 - Distance along surface, aka geodesic distance

Vertex Displacement Function

$$f(d) = 1.0 - \left(\frac{d}{n+1}\right)^{k+1}; k \ge 0$$
$$f(d) = \left(1.0 - \left(\frac{d}{n+1}\right)\right)^{-k+1}; k < 0$$

- d is the (shortest) number of edges between i and j
- n is the max number of edges affected
- (k=0): linear; (k<0): rigid; (k>0): elastic

11

Radial Basis Functions

• A radial basis function (RBF) is a real-valued function Φ whose value depends only on the distance from the origin

- Commonly used RBFs
 - Gaussian function

$$\phi(r) = \exp\left(-\frac{r^2}{2\sigma^2}\right)$$

RBF: Gaussian kernel function

$$f(x) = e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\beta \stackrel{\text{let}}{=} \frac{1}{2\sigma^2}$$

$$\varphi(x) = e^{-\beta \|x - \mu\|^2}$$

RBF

- Conventionally used for the curve fitting or scattered data interpolation
 - Given a set of sparse set of samples, we want to derive a continuous function that approximates the sample values

1. The function is assumed to be a linear combination of several basis functions:

$$f(\mathbf{x}) = \sum_{q=1}^{N} w_q \phi(\|\mathbf{x} - \mathbf{x}^q\|)$$

2a. From N samples of $f(\cdot)$, we can obtain N equations. Note: Each equation is composed of N terms.

$$f(\mathbf{x}^p) = \sum_{q=1}^N w_q \phi(\|\mathbf{x}^p - \mathbf{x}^q\|) = t^p$$

2b. The idea is to find the N "weights" w_q so that $f(\cdot)$ does an "exact" interpolation function of the data points.

3. Since an RBF is a 1-dimensional function, i.e. function output is a scalar, we need to have one RBF for each dimension: x, y, and z.

$$\begin{bmatrix} f_{\chi}(\mathbf{x}^{1}) \\ \vdots \\ f_{\chi}(\mathbf{x}^{N}) \end{bmatrix} = \begin{bmatrix} \phi_{\chi}^{11} & \dots & \phi_{\chi}^{1N} \\ \vdots & \ddots & \vdots \\ \phi_{\chi}^{N1} & \dots & \phi_{\chi}^{NN} \end{bmatrix} \begin{bmatrix} w_{\chi}^{1} \\ \vdots \\ w_{\chi}^{N} \end{bmatrix} = \begin{bmatrix} t_{\chi}^{1} \\ \vdots \\ t_{\chi}^{N} \end{bmatrix}$$

$$\vdots$$

$$[f_{z}(\mathbf{x}^{1})] \begin{bmatrix} \phi_{z}^{11} & \dots & \phi_{z}^{1N} \end{bmatrix} \begin{bmatrix} w_{z}^{1} \end{bmatrix} \begin{bmatrix} t_{z}^{1} \end{bmatrix}$$

$$\begin{vmatrix} f_Z(\mathbf{x}^1) \\ \vdots \\ f_Z(\mathbf{x}^N) \end{vmatrix} = \begin{vmatrix} \phi_Z^{11} & \dots & \phi_Z^{1N} \\ \vdots & \ddots & \vdots \\ \phi_Z^{N1} & \dots & \phi_Z^{NN} \end{vmatrix} \begin{vmatrix} w_Z^1 \\ \vdots \\ w_Z^N \end{vmatrix} = \begin{vmatrix} t_Z^1 \\ \vdots \\ t_Z^N \end{vmatrix}$$

4a. The weights are the solutions of the linear equations:

$$\sum_{q=1}^{N} \Phi_{pq} w_q = t^p \qquad \text{where:} \quad \phi^{pq} = \exp\left(-\frac{\|\mathbf{x}^p - \mathbf{x}^q\|}{2\sigma^2}\right).$$

4b. This weight vector can be derived by defining vectors \mathbf{t} and the square matrix $\mathbf{\Phi}$:

$$\Rightarrow \Phi \mathbf{w} = \mathbf{t} \qquad \mathbf{w} = \Phi^{-1} \mathbf{t}$$

NOTE: σ controls the fitting behavior of the approxmiation.

RBF's have become a well-established tool for interpolation

- Produces high-quality meshes
- Avoids the need for mesh connectivity information
- The system of equations which needs to be solved is linear
- The size of the linear system of equation is proportional to the number of nodes, not all vertices

2D Warping by RBF

• Displacement is computed as a function of distance to anchors

Face warping by RBF(3D case)

- Given:
 - A face shape (a mesh)
 - Marker positions (from the mocap or by hand) on it
- What we want to obtain:
 - A deformed mesh

Performance based FA demo: https://www.youtube.com/watch?v=o_7CfWlkqm8

RBF based deformation: We assume..

= F(

evaluated on

F(X,Y) = (dx, dy)

RBF based deformation: 2D example

X	Y	dX	dΥ
25	30	5	6
10	28	4	8
•	•	•	

 Once the functions are computed, we apply them to all mesh points

RBF network

Summary

- Given example pairs $\{x_{i,} b_{i}\}$, i=1,2,...,N, find $f: \mathbb{R}^{d} \to \mathbb{R}$ s.t. $f(x_{i})=b_{i}$
- f takes smooth changes between examples.

$$f(\mathbf{x}) = \mathbf{p_m}(\mathbf{x}) + \Sigma \mathbf{w_i} \cdot \Phi(|\mathbf{x} - \mathbf{x_i}|)$$
 $\mathbf{p_m}$: low degree polynomial
 $\Phi(r) = r^2 \log r$
 $\Phi(r) = (r^2 + c^2)^{1/2}$
 $\Phi(r) = e^{-\frac{r^2}{2\sigma^2}}$

 w_i's are solved by f(x_i)=b_i and (optionally) orthogonally conditions

$$\Sigma$$
 w_i p (x_i) =0, for all p \in π _m, π _m: the space of all polynomials of degree at most m

- Function output is 1-dimensional: f: Rⁿ --> R
 - $f(x) = (f_1(x), f_2(x))$ in case of 2D
 - $f(x) = (f_1(x), f_2(x), f_3(x))$ in case of 3D

Keyframe based facial animation

Temporal interpolation, to generate an animation (sequence of poses)

$$P = (t-1) P_0 + t P_1$$
 for $t \in [0,1]$

Deformation at a high level

Intensity Emotions envelope

Technical elements for FA

- Region based deformation
- Head/eye movement
- Expression transfer
- Lip synchronization
- Personalized expression

https://www.youtube.com/watch?v=zGqfKY1rjkM ~facial muscle

https://www.youtube.com/watch?v=db_qxsvBaok ~Video as input

https://www.youtube.com/watch?v=vniMsN53ZPI (4:30)

https://www.youtube.com/watch?v=OhgmFyzovHM ~Video as input