Curs 2010-11

- 1. Considereu la funció definida per $f(x) = \frac{1}{\sqrt{1-x^2}}$.
 - (a) Calculeu el domini de f, D(f).
 - (b) És $f: D(f) \to \mathbb{R}$ exhaustiva?
 - (c) És f és injectiva? És $f_{D(f)\cap[0,+\infty)}$ injectiva?
 - (d) Calculeu $f^{-1}([2,3])$.
 - (e) Calculeu f((0,1)).

Justifiqueu detalladament les respostes.

Solución:

(a) Observar que $f(x) = f_3(f_2(f_1(x)))$, on $f_1(x) = 1 - x^2$, $f_2(x) = \sqrt{x}$ y $f_3(x) = 1/x$. Por tanto,

$$D(f) = \{ x \in D(f_1) = \mathbb{R} : f_1(x) \in D(f_2) = [0, +\infty), f_2(f_1(x)) \in D(f_3) = \mathbb{R} \setminus \{0\} \}$$
$$= \{ x \in \mathbb{R} : 1 - x^2 > 0 \} = (-1, 1).$$

- (b) Claramente f(x) > 0 y, por tanto no es exhaustiva pues $R(f) \subset (0, \infty)$ y, en consecuencia, no es \mathbb{R} .
- (c)
- (c1) La función es par y puesto que el dominio es (-1,1), tenemos que si $x, -x \in (-1,1)$, f(x) = f(-x) y, por tanto, no es inyectiva.
- (c2) Si no restringimos al dominio (0, 1) el argumento anterior no es válido. Ahora bien,

$$f(a) = f(b) \implies \sqrt{1 - a^2} = \sqrt{1 - b^2} \implies 1 - a^2 = 1 - b^2 \implies a^2 = b^2$$

y puesto que la función x^2 es inyectiva en (0,1) obtenemos que a=b. Luego en este dominio la función sí es inyectiva.

(d)

$$f^{-1}([2,3]) = \left\{ x \in (-1,1); 2 \le \frac{1}{\sqrt{1-x^2}} \le 3 \right\} = \left\{ x \in (-1,1); \frac{1}{3} \le \sqrt{1-x^2} \le \frac{1}{2} \right\}$$

$$= \left\{ x \in (-1,1); \frac{1}{9} \le 1 - x^2 \le \frac{1}{4} \right\} = \left\{ x \in (-1,1); \frac{3}{4} \le x^2 \le \frac{8}{9} \right\}$$

$$= \left[-\frac{\sqrt{8}}{3}, -\frac{\sqrt{3}}{2} \right] \cup \left[\frac{\sqrt{3}}{2}, \frac{\sqrt{8}}{3} \right]$$

(d) Usaremos los recorridos de las funciones elementales f_1 , f_2 y f_3 : sabemos que $f_1((0,1))=(0,1)$, $f_2((0,1))=(0,1)$ y $f_3((0,1))=(1,\infty)$ y, por tanto

$$f((0,1)) = f_3(f_2(f_1((0,1)))) = f_3(f_2((0,1))) = f_3((0,1)) = (1,\infty).$$