Importar Bibliotecas

```
In [1]:
        import pandas as pd
        import numpy as np
        import seaborn as sns
        import plotly.express as px
        import statsmodels.api as sm
        import statsmodels.formula.api as smf
        import matplotlib.pyplot as plt
        from scipy.stats import chi2, chisquare
        from statsmodels.graphics.regressionplots import abline_plot
        import scipy.stats as stats
        from sklearn.metrics import roc_curve, auc
        import statsmodels.formula.api as smf
        from sklearn.linear_model import LogisticRegression
        from sklearn.model_selection import GridSearchCV
        from sklearn.metrics import accuracy score
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import confusion matrix
        from scipy.stats import ks_2samp
```

Impoirtar base de dados

```
In [2]: df = pd.read_csv('loan_approval_dataset.csv')
    df.head()
```

Out[2]:		Applicant_ID	Age	Income	Credit_Score	Loan_Amount	Loan_Term	Interest_Rate	E
	0	1	56	21920	639	452748	72	4.53	
	1	2	69	126121	655	257134	60	5.38	
	2	3	46	96872	467	226437	72	3.46	
	3	4	32	101132	751	310480	12	14.00	
	4	5	60	22093	404	13070	12	9.13	
	4.0		_						

Renomear colunas

```
In [3]: df = df.rename(columns={'Applicant_ID': 'ID_Requerente'})
    df = df.rename(columns={'Age': 'Idade'})
    df = df.rename(columns={'Income': 'Renda'})
    df = df.rename(columns={'Credit_Score': 'Score_de_Credito'})
    df = df.rename(columns={'Loan_Amount': 'Valor_Emprestimo'})
    df = df.rename(columns={'Loan_Term': 'Prazo_Emprestimo'})
    df = df.rename(columns={'Interest_Rate': 'Taxa_Juros'})
    df = df.rename(columns={'Employment_Status': 'Status_Emprego'})
    df = df.rename(columns={'Debt_to_Income_Ratio': 'Perc_Divida_Renda'})
    df = df.rename(columns={'Marital_Status': 'Estado_civil'})
    df = df.rename(columns={'Number_of_Dependents': 'Numero_dependentes'})
    df = df.rename(columns={'Property_Ownership': 'Propriedade'})
    df = df.rename(columns={'Loan_Purpose': 'Finalidade_Emprestimo'})
    df = df.rename(columns={'Previous_Defaults': 'Target_Aprovado'})
```

df

Out[3]:		ID_Requerente	Idade	Renda	Score_de_Credito	Valor_Emprestimo	Prazo_Empres
	0	1	56	21920	639	452748	
	1	2	69	126121	655	257134	
	2	3	46	96872	467	226437	
	3	4	32	101132	751	310480	
	4	5	60	22093	404	13070	
	•••						
	4995	4996	24	169594	755	299944	

36 154704

Sumario de informações

5000 rows × 14 columns

Variável	Descrição da variável
ID_Requerente	Código de indentificação.
Idade	Idade.
Renda	Renda anual.
Score_de_Credito	Potuação de Score de crédito.
Valor_Emprestimo	Valor do emprestimo.
Prazo_Emprestimo	Tempo de duração do emprestimo.
Taxa_Juros	Taxa de juros do emprestimo.
Status_Emprego	Situação atual do emprego.
Perc_Divida_Renda	Divisão do valor da emprestimo / Renda.
Estado_civil	Estado cívil.
Numero_dependentes	Número de pessoas depedentes na casa.
Propriedade	Situação atual da propriedade.
Finalidade_Emprestimo	Finalidade do emprestimo.
Target_Aprovado	Flag de aprovados ou não.

Checar informações das colunas

```
In [4]: df.info();
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 5000 entries, 0 to 4999
      Data columns (total 14 columns):
       # Column
                                 Non-Null Count Dtype
          ID_Requerente
                                 5000 non-null int64
       0
       1
           Idade
                                5000 non-null int64
       2 Renda
                                5000 non-null int64
       3
          Score_de_Credito
                               5000 non-null int64
                                 5000 non-null int64
       4
          Valor_Emprestimo
       5 Prazo_Emprestimo
                               5000 non-null int64
          Taxa Juros
                               5000 non-null float64
           Status_Emprego 5000 non-null object
Perc_Divida_Renda 5000 non-null float64
       7
       9
           Estado_civil
                               5000 non-null object
       10 Numero_dependentes 5000 non-null int64
       11 Propriedade
                                 5000 non-null object
       12 Finalidade_Emprestimo 5000 non-null object
                                 5000 non-null
                                                int64
       13 Target_Aprovado
      dtypes: float64(2), int64(8), object(4)
      memory usage: 547.0+ KB
```

Checar valores nulos

```
In [5]:
       df.isnull().sum()
Out[5]: ID_Requerente
                                  0
         Idade
                                  0
         Renda
                                  0
         Score_de_Credito
         Valor_Emprestimo
                                  0
         Prazo_Emprestimo
                                  0
         Taxa_Juros
         Status_Emprego
         Perc Divida Renda
         Estado_civil
                                  0
         Numero dependentes
         Propriedade
                                  0
         Finalidade_Emprestimo
                                  0
         Target_Aprovado
         dtype: int64
```

Analise de variáveis Quantitativas

Analise distribuição da Target

```
In [12]: df.describe()
```



```
In [8]: df_quant = df[['Idade', 'Renda', 'Score_de_Credito', 'Valor_Emprestimo', 'Prazo_
```

Analise de correlação e distribuição das variáveis quantitativas

```
In [9]: sns.pairplot(data=df_quant, hue='Target_Aprovado');
```


Analise gráfica da distribuição dos dados quantitativos

Plotando gráfico para a variável: Idade

Plotando gráfico para a variável: Renda

Plotando gráfico para a variável: Score_de_Credito

Plotando gráfico para a variável: Valor_Emprestimo

Plotando gráfico para a variável: Prazo_Emprestimo

Plotando gráfico para a variável: Taxa_Juros

Plotando gráfico para a variável: Perc_Divida_Renda

Plotando gráfico para a variável: Numero_dependentes

Plotando gráfico para a variável: Target_Aprovado

 Após analise dos gráficos de violino e distribuição dos pontos, podemos notar que os dados estão muito bem distribuidos e homogêneos

Analise de variáveis qualitativas

```
In [36]: df_quali = df[['Status_Emprego','Estado_civil', 'Propriedade', 'Finalidade_Empre
In [38]: sns.countplot(data=df_quali, x='Status_Emprego', hue='Target_Aprovado');
```


In [40]: sns.countplot(data=df_quali, x='Propriedade', hue='Target_Aprovado');

In [41]: sns.countplot(data=df_quali, x='Finalidade_Emprestimo', hue='Target_Aprovado');

Analise Variáveis Quantitativas e Qualitativas

In [47]: sns.boxplot(data=df, x='Finalidade_Emprestimo', y='Idade', hue='Target_Aprovado'

In [46]: sns.boxplot(data=df, x='Finalidade_Emprestimo', y='Renda', hue='Target_Aprovado' 200000 175000 150000 125000 Renda 100000 75000 50000 Target Aprovado 25000 Business Education Home Car Personal Finalidade_Emprestimo

In [50]: sns.boxplot(data=df, x='Finalidade_Emprestimo', y='Perc_Divida_Renda', hue='Targ

In [48]: sns.boxplot(data=df, x='Finalidade_Emprestimo', y='Score_de_Credito', hue='Targe

In [132... sns.histplot(data=df, x='Score_de_Credito', bins=10 , hue='Target_Aprovado', mul

In [134... sns.histplot(data=df, x='Perc_Divida_Renda',bins=10, hue='Target_Aprovado', mult

In [133... sns.histplot(data=df, x='Idade',bins=10, hue='Target_Aprovado', multiple="stack"

Analise do resultado dos gráficos

- Podemos notar que cada uma das variáveis estão muito bem distribuidos em cada uma das faixas, quase de maneira homogênea;
- Percebe-se que a finalidade do emprestimo para negócios e pessoal tem uma renda maior para os aprovados;
- A finalidade do emprestimo para carros tem um score de crédito mais alto para os aprovados;
- Podemos perceber também um número maior de aprovados com Score de crédito na faixa 400;
- Clientes com percentual de relação da dívida com a renda 10% e 20%, tem maior volume de aprovador

Criação de variáveis de Dummy

Passamos a variáveis qualitativas para dummy, através do "get_dummies" e excluímo a primeira categoria de cada variável para evitar mulicolinearidade

```
In [135... df_quali_2 = df_quali.drop(columns=['Target_Aprovado'])
    df_dummies = pd.get_dummies(df_quali_2, drop_first=True).astype(int)
    df_dummies.head()
```

Out[135	Status_Emprego_Self- Employed	Status_Emprego_Unemployed	Estado_civil_Married	Estado_civil_			
	0 0	1	1				
	1 0	1	0				
	2 1	0	0				
	3 0	1	0				
	4 1	0	0				
	1			>			
In [136	<pre>df_final = df.drop(columns=df_quali_2) df_final.columns</pre>						
Out[136	<pre>Index(['ID_Requerente', 'Idade', 'Renda', 'Score_de_Credito',</pre>						
In [137	<pre>df_final = pd.concat([df_final, df_dummies], axis=1) df_final.columns</pre>						
Out[137	<pre>Index(['ID_Requerente', 'Idade', 'Renda', 'Score_de_Credito',</pre>						

base final para estudo de regressão

	-							
In [139	<pre>df_final.head(</pre>)						
Out[139	ID_Requeren	te	Idade	Renda	Score_de_Credito	Valor_Emprestimo	Prazo_Emprestim	
	0	1	56	21920	639	452748	7	
	1	2	69	126121	655	257134	6	
	2	3	46	96872	467	226437	7	
	3	4	32	101132	751	310480	1	
	4	5	60	22093	404	13070	1	
	5 rows × 21 colur	mns	5					
	1						>	
In [140	<pre>df_final = df_final.drop(columns=['ID_Requerente']) df_final.columns</pre>							

```
Index(['Idade', 'Renda', 'Score_de_Credito', 'Valor_Emprestimo',
Out[140...
                           'Prazo_Emprestimo', 'Taxa_Juros', 'Perc_Divida_Renda',
                           'Numero_dependentes', 'Target_Aprovado', 'Status_Emprego_Self-Employed',
                           'Status_Emprego_Unemployed', 'Estado_civil_Married',
                           'Estado civil Single', 'Estado civil Widowed', 'Propriedade Own',
                           'Propriedade_Rent', 'Finalidade_Emprestimo_Car',
                           'Finalidade_Emprestimo_Education', 'Finalidade_Emprestimo_Home',
                           'Finalidade_Emprestimo_Personal'],
                         dtype='object')
In [143...
               plt.figure(figsize=(12, 8))
               sns.heatmap(data=round(df_final.corr(),2), annot=True, vmax=1, vmin=-1, cmap='Sp
                                                                                                                                   1.00
                                   Idade - 1 0.01 0.01 -0.01 0 0 0.02 -0.01 0 -0.02 -0.01 0.02 -0.01 -0.02 0.01 -0 -0 0.02 -0.01
                                  Renda - 0.01 1 0 0.01 -0 0 -0.04 0.01 -0 0.01 -0.02 0.01 -0.01 0 0.01 -0.01 0 0.02
                                                 1 -0 0 0.02 0 0.01-0.01-0.02 0.01 0 -0.02 -0 0.02 -0 0.01 0.01-0.03-0.01
                                                                                                                                   - 0.75
                         Valor_Emprestimo --0.01 0.01 -0 1 -0.01-0.01-0.01 0 -0.02 0.02 0.01 0.02 -0.04 0.02 0.01 0.01 -0 -0 -0 -0
                         Prazo_Emprestimo - 0 -0 0 -0.01 1 -0.01 0 0.02 -0.01 0.01 -0.02 0.01 -0.01 0.01 -0.01 0.01 -0 -0.01 0.01
                               Taxa Juros - 0 0 0.02 -0.01 -0.01 1 0.01 -0.02 0 0 -0.02 0.02 0.01 -0.01 0.01 0 0.01 0 0.01 -0.01
                         Perc_Divida_Renda - 0.02 -0.04 0 -0.01 0 0.01 1 0.04 -0.01 -0 -0.02 -0 0.01 0.01 0 0.01 0 -0.01 0.01 -0.01
                      Numero_dependentes --0.01 0.01 0.01 0.01 0 0.02 -0.02 0.04 1 -0.02 0.01 -0.03 0 0 -0.01 0.01 -0.01 -0.02 -0.01 0 0.04
                                                                                                                                  - 0.25
                          Target_Aprovado - 0 -0 -0.01-0.02-0.01 0 -0.01-0.02 1 0.01-0.01-0.02 0.02-0.01 -0 0.01 0 -0.02 0.02 -0.02
               Status_Emprego_Self-Employed --0.02 0.01 -0.02 0.02 0.01 0 0 -0 0.01 0.01 1 -0.5 -0 0.01 -0.01 0.01 -0.03 -0.02 0 -0.01 -0.01
                                                                                                                                  - 0.00
                Status_Emprego_Unemployed --0.01-0.02 0.01 0.01 -0.02-0.02-0.02-0.03-0.01 0.5 1 0 -0.01 0.01 -0.01 0.03 0.01 0.01 0.02 -0.03
                       Estado_civil_Married - 0.02 0.01 0 0.02 0.01 0.02 -0 0 -0.02 -0 0 1 -0.33 -0.34 0 0 0 0.01 -0.02 -0
                        Estado_civil_Single --0.01-0.01-0.02-0.04-0.01 0.01 0 0.02 0.01-0.01 0.33 1 -0.33 -0 -0 0.01 0.01 0.01 0.03
                                                                                                                                  - -0.25
                      Estado_civil_Widowed --0.01 0 -0 0.02 0.01 -0.01 0.01 -0.01 -0.01 -0.01 -0.01 -0.03 1 -0.01 0.01 -0.01 -0.01 -0.01 -0.03
                         Propriedade_Own --0.02 0.01 0.02 0.01 -0.01 0.01 0 0.01 -0 0.01 -0.01 0 -0 -0.01 1 -0.5 -0.02 -0.01 0.01 -0.01
                                                                                                                                   - -0.50
                         Finalidade_Emprestimo_Car - -0 -0.03 0.01 -0 -0 0.01 0 -0.02 0 -0.02 0.01 0 0.01-0.01-0.02 0.01 1 -0.25-0.25 -0.26
             Finalidade_Emprestimo_Education - -0 0 0.01 -0 -0.01 0 -0.01-0.02 0 0.01 0.01 0.01 -0.02 -0.01 -0 -0.25 1 -0.25 -0.26
                                                                                                                                    -0.75
                Finalidade_Emprestimo_Home - 0.02 -0 -0.03 -0 0.01 0.01 0.01 0 0.02 -0.01 0.02 -0.02 0.01 -0.02 0.01 -0.02 -0.25 -0.25
              Finalidade_Emprestimo_Personal --0.01 0.02 -0.01 -0 0.01 -0.01 0.04 -0.02 -0.01 -0.03 -0 -0.03 0.03 -0.01 0.03 -0.26 -0.26 -0.25
                                                         Prazo_Emprestimo
                                                                          Target_Aprovado
                                                                              status_Emprego_Self-Employed
                                                                                      Estado_civil_Married
                                                                  Perc_Divida_Renda
                                                                                  Status_Emprego_Unemployed
                                                                                              Estado_civil_Widowed
                                                                                                  Propriedade_Own
                                                                                                          Finalidade_Emprestimo_Ca
```

Podemos perceber uma correlação muita baixa entre os dados:

 Isso se da por conta da distribuição da base as únicas variáveis que espresam alguma correlação são as variáveis dummy e mesmo assim não estamos vendo uma correlação alta o suficiente para possívelmente excluir uma delas

Construção do Modelo de Binomial da previssão de resultado e analise de significância do modelo

```
print(y_train.shape)
          print(y_test.shape)
         (3500, 19)
         (1500, 19)
         (3500, 1)
         (1500, 1)
In [192...
          y_test.value_counts()
Out[192...
          Target_Aprovado
                              1346
           1
                                154
           Name: count, dtype: int64
In [177...
          x_train = sm.add_constant(x_train)
          x_test = sm.add_constant(x_test)
          modelo = sm.GLM(y_train, x_train, family=sm.families.Binomial()).fit()
In [178...
          print(modelo.summary())
```

Generalized Linear Model Regression Results

Dep. Variable: Target_Ap					ns:	35			
Model: Model Family: Link Function: Method:				Residuals:	3480				
		Binomial	Df	Model:		19			
		Logit					1.0000 -1117.4		
		IRLS	_	-Likelihood	:				
Date:	Sun	, 16 Mar 2025				2234			
Time:				rson chi2:	1	3.50e+			
No. Iterat			Pse	udo R-squ.	(CS):	0.0028	30		
Covariance	Type:	nonrobust	=====	========	========	:=======	====		
=======	======								
[0.025	-			std err		P> z			
const		-1.	9205	0.433	-4.440	0.000			
	-1.073								
Idade	0.65-	-5.207	e-05	0.004	-0.014	0.989			
-0.007	0.007	4 6-	- 05	1 00 00	4 405	0.000	_		
Renda 36e-06	0 360 07	-1.21	e-06	1.09e-06	-1.105	0.269	-3		
Score_de_C		4.439	0-05	0.000	0.124	0.901			
-0.001	0.001	4.439	e-62	0.000	0.124	0.301			
Valor_Empr		-3.398	e-07	3.99e-07	-0.852	0.394	-1		
	4.42e-07	2.330	- - .		0.002	0.557	_		
Prazo_Empr		0.	0004	0.003	0.132	0.895			
	0.006								
Taxa_Juros		0.	0058	0.016	0.372	0.710			
	0.036	-	0056	0.007		0.055			
Perc_Divid	_	-0.	0051	0.004	-1.145	0.252			
-0.014 Numero_dep		Q	0162	0.041	0.393	0.694			
-0.064		0.	0102	0.041	0.333	0.054			
	rego_Self-Emplo	oyed 0.	0562	0.139	0.405	0.686			
Status_Emp	rego_Unemployed	d 0.	0563	0.142	0.395	0.693			
-0.223	0.336	-	465-	0 1=1	4	2 222			
Estado_civ -0.478	il_Married 0.147	-0.	1656	0.159	-1.039	0.299			
Estado_civ		-0.	0519	0.159	-0.327	0.744			
-0.363	0.259								
	il_Widowed	-0.	2034	0.163	-1.245	0.213			
-0.524	0.117								
Propriedad	_	0.	0878	0.142	0.618	0.537			
-0.191 Propriedad	0.366 e Rent	а	1372	0.140	0.978	0.328			
-0.138	0.412	0.	, _	0.140	0.570	0.520			
	_Emprestimo_Car	-0.	0793	0.178	-0.446	0.655			
-0.427	0.269		-		-				
Finalidade	_Emprestimo_Edu	ucation -0.	2214	0.184	-1.206	0.228			
-0.581	0.138								
	_Emprestimo_Hor	ne 0.	0587	0.176	0.334	0.739			
-0.286	0.404				<u> </u>	.			
	_Emprestimo_Per	rsonal -0.	1642	0.178	-0.921	0.357			
-0.514	0.185								

Analise p-value:

- Analisando o resultado do p-value das variáveis do modelo binomial, podemos
 perceber que nenhuma das variáveis possuem valores significativos. Uma das teorias
 seria por conta do desbalanceamento das variáveis alvos já que a variável target = 1
 possui menos de 10% de representação, e o modelo pode estar tendo dificualdade
 para capturar essa característica nos dados.
- Podemos testar mais na frete se utilizando o modelo onde possamos adicionar um pessoa maior a essa variável, ou fazendo um rebalanceamento das variáveis podemos obter resultados mais aceitáveis.

```
residuos_deviance = modelo.resid_deviance
residuos_pearson = modelo.resid_pearson
valores_ajustados = modelo.fittedvalues
plt.scatter(valores_ajustados, residuos_deviance, alpha=0.7)
plt.axhline(0, color='red', linestyle='--')
plt.title("Resíduos Deviance vs. Valores Ajustados")
plt.xlabel("Valores Ajustados")
plt.ylabel("Resíduos Deviance")
plt.show()
```

Resíduos Deviance vs. Valores Ajustados


```
plt.scatter(range(len(residuos_deviance)), residuos_deviance, alpha=0.7)
plt.axhline(0, color='red', linestyle='--')
plt.xlabel('Índice')
plt.ylabel('Resíduos de Deviance')
plt.title('Resíduos de Deviance vs. Índice')
```

Out[180... Text(0.5, 1.0, 'Resíduos de Deviance vs. Índice')

Resíduos de Deviance vs. Índice


```
In [181...
    deviance_test_statistic = modelo.deviance
    deviance_df = modelo.df_resid
    deviance_p_value = 1 - stats.chi2.cdf(deviance_test_statistic, deviance_df)
    print("Teste de Deviance para os Resíduos:")
    print("Estatística de teste:", deviance_test_statistic)
    print("Graus de liberdade:", deviance_df)
    print("Valor p:", deviance_p_value)
```

Teste de Deviance para os Resíduos: Estatística de teste: 2234.7436370163286 Graus de liberdade: 3480

Valor p: 1.0

Deviance Residuals:

• Com um Valor p maior que (0,05), concluímos que o modelo ajusta bem os dados.

```
residuos_pearson = modelo.resid_pearson

pearson_test_statistic = np.sum(residuos_pearson**2)
    pearson_df = len(residuos_pearson) - modelo.df_model - 1
    pearson_p_value = 1 - stats.chi2.cdf(pearson_test_statistic, pearson_df)
    print("\nTeste de Pearson para os Resíduos:")
    print("Estatística de teste:", pearson_test_statistic)
    print("Graus de liberdade:", pearson_df)
    print("Valor p:", pearson_p_value)
```

Teste de Pearson para os Resíduos: Estatística de teste: 3499.5779822928516 Graus de liberdade: 3480

Valor p: 0.40430411862062765

Pearson Chi-Square Test

• Com um Valor p maior que (0,05), concluímos que o modelo ajusta bem os dados.

```
In [196...
          y_test_pred = modelo.predict(x_test)
          y_test_result = (y_test_pred >= 0.12).astype(int)
          y_test_result.value_counts()
Out[196...
           0
                1365
           1
                 135
           Name: count, dtype: int64
          y_train_pred = modelo.fittedvalues
In [197...
          y_train_result = (y_train_pred >= 0.12).astype(int)
          y_train_result.value_counts()
Out[197...
                3163
           1
                 337
           Name: count, dtype: int64
```

Curva ROC e AUC

```
In [206...
          # Curva ROC e AUC para a base de treino
          fpr_train, tpr_train, _ = roc_curve(y_train, modelo.fittedvalues)
          roc_auc_train = auc(fpr_train, tpr_train)
          # Curva ROC e AUC para a base de teste
          fpr_test, tpr_test, _ = roc_curve(y_test, y_test_pred)
          roc_auc_test = auc(fpr_test, tpr_test)
          plt.figure()
          plt.plot(fpr_train, tpr_train, color='blue', lw=2, label='ROC curve (Train, area
          plt.plot(fpr test, tpr test, color='green', lw=2, label='ROC curve (Test, area =
          plt.plot([0, 1], [0, 1], color='red', lw=2, linestyle='--')
          plt.xlim([0.0, 1.0])
          plt.ylim([0.0, 1.05])
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('ROC Curve (Train vs Test)')
          plt.legend(loc="lower right")
          plt.show()
```


Analise Curva ROC

 Podemos ver um resultado, um pocuo abaixo da curva muito por conta da questão dos dados estarem desbalanceados

Matriz de confução


```
In [205... accuracy = accuracy_score(y_test, y_test_result)
    print('Accuracy no Test:', accuracy)
```

Accuracy no Test: 0.832666666666667

Analisando a matriz de confução

 Podemos notar que foi necessário uma nota de corte muita baixa, muito por conta da dificualdade de capitar informações da target

```
In [207...
          def hosmer_lemeshow_test(y_true, y_pred, n_groups=10):
              df = pd.DataFrame({'y_true': y_true, 'y_pred': y_pred})
              df = df.sort_values(by='y_pred').reset_index(drop=True)
              df['group'] = pd.qcut(df['y_pred'], q=n_groups, duplicates='drop')
              n_groups = df['group'].nunique()
              # Calcular estatísticas por grupo
              observed = df.groupby('group')['y_true'].sum()
              expected = df.groupby('group')['y_pred'].sum()
              total = df.groupby('group').size()
              chi2_stat = ((observed - expected) ** 2 / (expected * (1 - expected / total)
              p_value = 1 - chi2.cdf(chi2_stat, df=n_groups - 2)
              return chi2_stat, p_value
In [208...
          x_train = x_train.to_numpy()
          x_test = x_test.to_numpy()
          y_train = y_train.to_numpy()
          y_test = y_test.to_numpy()
          x_train = np.array(x_train)
          x_test = np.array(x_test)
```

```
y_test = np.array(y_test).ravel()
# Realizar0
chi2_stat, p_value = hosmer_lemeshow_test(y_test, y_test_pred)
```

In [209... print(f"Estatística do Teste de Hosmer-Lemeshow: {chi2_stat:.4f}") print(f"P-valor: {p_value:.4f}")

> Estatística do Teste de Hosmer-Lemeshow: 12.0096 P-valor: 0.1508

y_train = np.array(y_train).ravel()

C:\Users\gabri\AppData\Local\Temp\ipykernel_10156\2137551005.py:10: FutureWarnin g:

The default of observed=False is deprecated and will be changed to True in a futu re version of pandas. Pass observed=False to retain current behavior or observed= True to adopt the future default and silence this warning.

C:\Users\gabri\AppData\Local\Temp\ipykernel_10156\2137551005.py:11: FutureWarnin g:

The default of observed=False is deprecated and will be changed to True in a futu re version of pandas. Pass observed=False to retain current behavior or observed= True to adopt the future default and silence this warning.

C:\Users\gabri\AppData\Local\Temp\ipykernel_10156\2137551005.py:12: FutureWarnin g:

The default of observed=False is deprecated and will be changed to True in a futu re version of pandas. Pass observed=False to retain current behavior or observed= True to adopt the future default and silence this warning.

Teste hosmer lemeshow

 p-value > 0.05 → O modelo se ajusta bem aos dados (não há evidências contra a qualidade do ajuste).

```
In [210...
          # Calculando o KS2 train
          ks_stat, p_value = ks_2samp(y_train_pred[y_train == 1], y_train_pred[y_train ==
          print(f"KS2: {ks_stat:.4f} (ou {ks_stat*100:.2f}%)")
         KS2: 0.0837 (ou 8.37%)
In [211...
          # Calculando o KS2 test
          ks_stat, p_value = ks_2samp(y_test_pred[y_test == 1], y_test_pred[y_test == 0])
          print(f"KS2: {ks stat:.4f} (ou {ks stat*100:.2f}%)")
```

teste kolmogorov smirnov

KS2: 0.0533 (ou 5.33%)

• Podemos notar que o modelo tem bastante dificuldade de dividir as variáveis 1 e 0

```
coeficientes = modelo.params
In [166...
          odds_ratio = np.exp(coeficientes)
          print("\nOdds Ratio:")
          print(odds_ratio)
         Odds Ratio:
         const
                                            0.146528
         Idade
                                            0.999948
         Renda
                                            0.999999
         Score_de_Credito
                                            1.000044
         Valor_Emprestimo
                                            1.000000
         Prazo_Emprestimo
                                            1.000366
         Taxa_Juros
                                            1.005833
         Perc_Divida_Renda
                                            0.994923
         Numero_dependentes
                                            1.016294
         Status_Emprego_Self-Employed
                                           1.057805
         Status_Emprego_Unemployed
                                            1.057903
         Estado_civil_Married
                                            0.847385
         Estado_civil_Single
                                            0.949427
         Estado_civil_Widowed
                                            0.815962
         Propriedade_Own
                                            1.091728
         Propriedade Rent
                                            1.147108
         Finalidade_Emprestimo_Car
                                            0.923776
         Finalidade_Emprestimo_Education 0.801405
         Finalidade_Emprestimo_Home
                                            1.060489
         Finalidade_Emprestimo_Personal
                                            0.848605
         dtype: float64
In [167...
          def calcular_impacto_percentual(modelo):
              coeficientes = modelo.params
              odds_ratio = np.exp(coeficientes)
              impacto_percentual = (odds_ratio - 1) * 100
              df_impacto = pd.DataFrame({
                  "Coeficiente": coeficientes,
                  "Odds Ratio": odds_ratio,
                  "Impacto %": impacto_percentual
              })
              return df_impacto
          df_impacto = calcular_impacto_percentual(modelo)
          print(df impacto)
```

	Coeficiente	Odds Ratio	Impacto %
const	-1.920536e+00	0.146528	-85.347167
Idade	-5.207073e-05	0.999948	-0.005207
Renda	-1.209858e-06	0.999999	-0.000121
Score_de_Credito	4.438688e-05	1.000044	0.004439
Valor_Emprestimo	-3.397803e-07	1.000000	-0.000034
Prazo_Emprestimo	3.655420e-04	1.000366	0.036561
Taxa_Juros	5.816482e-03	1.005833	0.583343
Perc_Divida_Renda	-5.089977e-03	0.994923	-0.507704
Numero_dependentes	1.616250e-02	1.016294	1.629382
Status_Emprego_Self-Employed	5.619610e-02	1.057805	5.780510
Status_Emprego_Unemployed	5.628878e-02	1.057903	5.790314
Estado_civil_Married	-1.656000e-01	0.847385	-15.261489
Estado_civil_Single	-5.189660e-02	0.949427	-5.057297
Estado_civil_Widowed	-2.033880e-01	0.815962	-18.403839
Propriedade_Own	8.776183e-02	1.091728	9.172807
Propriedade_Rent	1.372439e-01	1.147108	14.710784
Finalidade_Emprestimo_Car	-7.928578e-02	0.923776	-7.622411
Finalidade_Emprestimo_Education	-2.213884e-01	0.801405	-19.859462
Finalidade_Emprestimo_Home	5.873016e-02	1.060489	6.048904
Finalidade_Emprestimo_Personal	-1.641616e-01	0.848605	-15.139516

Analise Odds Ratio

- Na variável Idade podemos ver que para cada unidade de aumento, as chances do evento ocorrer reduzem em aproximadamente -0.005%.
- Na variável Renda podemos ver que para cada unidade de aumento, as chances do evento ocorrer reduzem em aproximadamente -0.0001%.
- Na variável Score_de_Credito podemos ver que para cada unidade de aumento, as chances do evento ocorrer aumentam em aproximadamente 0.004%.
- Na variável Valor_Emprestimo podemos ver que para cada unidade de aumento, as chances do evento ocorrer reduzem em aproximadamente -0.00003%.
- Na variável Prazo_Emprestimo podemos ver que para cada unidade de aumento, as chances do evento ocorrer aumentam em aproximadamente 0.036%.
- Na variável Taxa_Juros podemos ver que para cada unidade de aumento, as chances do evento ocorrer aumentam em aproximadamente 0.58%.
- Na variável Perc_Divida_Renda podemos ver que para cada unidade de aumento, as chances do evento ocorrer reduzem em aproximadamente -0.50%.
- Na variável Numero_dependentes podemos ver que para cada unidade de aumento, as chances do evento ocorrer aumentam em aproximadamente 1.62%.
- Indivíduos com Status_Emprego_Self-Employed, as chances do evento ocorrer aumentam em aproximadamente 5.78%.
- Indivíduos com Status_Emprego_Unemployed, as chances do evento ocorrer aumentam em aproximadamente 5.79%.
- Indivíduos com Estado_civil_Married, as chances do evento ocorrer reduzem em aproximadamente -15.26%.
- Indivíduos com Estado_civil_Single, as chances do evento ocorrer reduzem em aproximadamente -5.05%.
- Indivíduos com Estado_civil_Widowed, as chances do evento ocorrer reduzem em aproximadamente -18.40%.

- Indivíduos com Propriedade_Own, as chances do evento ocorrer aumentam em aproximadamente 9.17%.
- Indivíduos com Propriedade_Rent, as chances do evento ocorrer aumentam em aproximadamente 14.71%.
- Indivíduos com Finalidade_Emprestimo_Car, as chances do evento ocorrer reduzem em aproximadamente -7.62%.
- Indivíduos com Finalidade_Emprestimo_Education, as chances do evento ocorrer reduzem em aproximadamente -19.85%.
- Indivíduos com Finalidade_Emprestimo_Home, as chances do evento ocorrer aumentam em aproximadamente 6.04%.
- Indivíduos com Finalidade_Emprestimo_Personal, as chances do evento ocorrer reduzem em aproximadamente -15.13%.