Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет"

Кафедра Высокопроизводительных вычислительных технологий и систем

Дисциплина: Численные методы

Отчет по лабораторной работе № 1

Тема: «Приближение функции»

Группа МКН-316	Фамилия И.О.	Подпись	Дата	Оценка
Студент	Султанов М.Ф.			
Принял	Гайнетдинова А.А.			

Цель работы: Получить навык проведения вычислительного эксперимента, направленного на решение задач интерполирования и аппроксимации функций.

Ход работы

Задача №1

- 1. Написать вычислительную программу на языке программирования C++ для построения интерполяционного многочлена Лагранжа $L_n(x)$ произвольной степени n по известным значениям функции $y_i = f(x_i)$, заданным на сетке узлов $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$.
- 2. Для каждого n = 1, ..., 15 построить интерполяционный многочлен Лагранжа $L_n(x)$ по значениям функции на равномерной сетке узлов:

$$x_i + 1 = x_i + h, \quad x_0 = a, \quad h = \frac{b - a}{n}$$
 (1)

и найти оценку погрешности приближения функции

$$\Delta_n = \sup |f(x) - L_n(x)|, \quad x \in [a, b]. \tag{2}$$

Оценку Δ_n провести численно посредством вычисления модуля ошибки приближений |f(x) - Ln(x)| в узлах мелкой равномерной сетки, состоящей из 10^5 узлов, с выбором максимального значения в качестве искомой оценки.

- 3. Построить график зависимости Δ_n от n определить оптимальную степень n_0 , при которой погрешность минимальна.
- 4. Построить график ошибки приближения $f(x) L_{n_0}(x)$.

Решение

Задана функция:

$$f(x) = \frac{\arctan(x)}{1 + x^2} \tag{3}$$

Необходимо построить интерполяционный многочлен в виде:

$$L_n(x) = \sum_{i=1}^n f(x_i) \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$$

Согласно заданию, построим многочлены Лагранжа степеней $n=1,\ldots,15$ для функции (3) на равномерной сетке (1) и численно найдем оценку погрешности (2). Данные запишем в Таблицу 1.

n	Δ_n		
1	1.776300		
2	0.562909		
3	0.439082		
4	0.114664		
5	0.083134		
6	0.105621		
7	0.050630		
8	0.002494		
9	0.014350		
10	0.011087		
11	0.003506		
12	0.000860		
13	0.001649		
14	0.000901		
15	0.000147		

Таблица 1: Зависимость Δ_n от n

Таким образом, видно, что наилучшим образом функцию (3) приближает многочлен степени $n_0=15$ с $\Delta_{15}=1.4710^-4$.

График ошибки $|f(x) - L_{n_{15}}(x)|$ представлен на рисунке 1.

Рис. 1: График зависимости Δ_n от x в узхлах тестовой равномерной сетки

Сильный всплеск на конце обусловлен тем, что концевая точка не является узлом интерполяционной сетки. Точки интерполяции продемонстрированы на рисунке 2.. Расхождение функций $L_{15}(x)$ и f(x) в окрестности точки a=2 видно на риснуке 3.

Рис. 2: Графики $L_{15}(x)$ и f(x) с указанием узлов интерполяции

Рис. 3: Расхождение функций $L_{15(x)}$ и f(x) на конце отрезка

Задача №2

1. Построить сетку узлов, составленных из нулей многочлена Чебышева степени n_0 , найденной при решении предыдущей задачи:

$$x_i = \frac{b+a}{2} + \frac{b+a}{2} \cos\left(\frac{\pi(2i+1)}{2n_0}\right), \quad i = 0, 1, \dots, n_0 - 1.$$
 (4)

Найти численные значения заданной функции (3) в этих узлах:

$$y_i = f(x_i)$$

- 2. С использованием написанной при решении Задачи 1 программы построить по этим данным многочлен Лагранжа $L_{n_0}(x)$ степени n_0 .
- 3. Найти оценку погрешности приближения функции Δ_{n_0} и сравнить ее с известной теоретической минимальной оценкой погрешности интерполяции многочленом Лагранжа.

4. Выполнить сравнение двух многочленов Лагранжа $L_{n_0}(x)$ на равномерной и неравномерной сетках, построенных в этой и предыдущей задачах.

Решение

Узлы интерполяции, построенный по ним интерполяционный многочлен Лагранжа L_{15} и функция (3) продемонстрированы на рисунке 4.

Рис. 4: Графики $L_{15}(x)$ и f(x) с указанием узлов интерполяции на чебышевской сетке

Как видно из рисунка 4 на концах отрезка узлы интерполяции расположены более плотно, чем в середине отрезка.

При этом оценка (2) составляет $\Delta_{15} = 3,451 \cdot 10^{-7}$, что на три порядка ниже, чем на равномерной сетке.

При чебышевских узлах интерполирования теоретическая оценка принимает вид:

$$||f(x) - L_n(x)|| \le \frac{||f^{(n)}(x)||}{n!} 2^{1-2n} (b-a)^n$$
 (5)

С использованием пакета Maple вычислим оценку (5). Листинг программы приведен в приложении. Получим, что:

$$||f(x) - L_n(x)|| \le 8,242 \cdot 10^{-6}$$

Что согласуется с полученным выше численным расчетом.

Задача №3

1. Написать вычислительную программу на языке программирования C++ для построения интерполяционного многочлена Ньютона порядка n_0 (найдено при решении Задачи 1) на равномерной сетке через вычисление разделенных разностей.

2. Выполнить сравнение построенного многочлена Ньютона с аналогичным многочленом Лагранжа, построенного при решении первой задачи.

Решение

Требуется построить интерполяционный многочлен для фукнции (3) в виде:

$$L_n = f(x_0) + \sum_{k=1}^{n+1} \prod_{i=0}^{k-1} (x - x_i) f(x_0; \dots; x_k)$$

Здесь $f(x_0; ...; x_k)$ разделенная разность, вычисляющаяся по формуле:

$$f(x_0; \dots; x_k) = \frac{f(x_0; \dots; x_{k-1}) - f(x_1; \dots; x_k)}{x_0 - x_k}$$

Интерполяция данным методом дает ошибку больше, чем при интерполяции в форме Лагранжа, однако работает в среденем гораздо быстрее за счет уменьшения колличества операций. В данной конкретной реализации при n=15 оценка ошибки начала различаться в 12 знаке мантиссы. Кроме того, в форме Ньютона можно добавлять узлы интерполяции лишь просчитав разделенную разность и добавив её к общей сумме, в то время как многочлен Лагранжа пришлось бы пересчитывать заново.

Задача №4

1. Написать вычислительную программу на языке программирования C++, осуществляющую интерполяцию функции $g(t), t \in [0, 2\pi]$, заданной своими значениями $g(t_i)(i=1, \ldots, 2n+1)$ в узлах

$$t_i = 2\pi(i-1)/(2n+1)$$

равномерной сетки, тригонометрическим многочленом $F_n(x)$:

$$F_n(t) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos(kt) + b_k \sin(kt))$$

- 2. Построить линейную замену переменных $x = \alpha t + \beta$, переводящую заданный отрезок [a,b] в отрезок $[0,2\pi]$. Выполнить эту замену переменных в аргументе функции $f(x): f(\alpha t + \beta) = g(t)$.
- 3. С использованием написанной программы провести вычислительный эксперимент по нахождению минимальной степени m тригонометрического многочлена, обеспечивающего приближение функции с указанным в задании предельным уровнем погрешности $\delta = 10^{-3}$:

$$\sup |g(t) - F_m(t)| \le \delta.$$

4. Оценку погрешности производить по способу, описанному в Задаче 1. Построить график ошибки приближения функции многочленом.

Решение

Проведя вычислительный эксперимент, не была получена желаемая оценка погрешности δ . Наилучший результат при степени многолчена n=100 составлял $\delta_{100}=0,00147...$ Это связано с тем, что функция (3) не является периодической на отрезке [a,b]. Следовательно, для неё не выполнена теорема Дирихле о разложении в тригонометрический ряд Фурье. А значит, мы никогда не сможем добиться желаемого результата.

Рис. 5: Графики $F_n(x)$ и f(x) на равномерной сетке

Из рисунка 5 видно, что тригонометрическая интерполяция на концах отрезка дает ощутимый вклад в ошибку Δ . График соответствующей оценки приведен на рисунке 6.

Рис. 6: График ошибки функции $F_n(x)$ на равномерной сетке

Задача №5

1. Написать вычислительную программу на языке C++, позволяющую построить многочлен наилучшего равномерного приближения Q_n степени n для произвольного многочлена P_{n+1} степени n+1.

2. С использованием математического пакета (Maple или MATLAB) выполнить разложение заданной функции f(x) в ряд Тейлора в окрестности точки $\frac{a+b}{2}$ и определить степень n, при которой соответствующий многочлен $P_n(x)$, представляющий собой отрезок ряда Тейлора, приближает функцию f(x) с указанным в задании предельным уровнем погрешности $\delta = 10^{-3}$:

$$f(x) \approx P_n(x) = \sum_{k=0}^n b_k x^k, \quad \sup |f(x) - P_n(x)| \le \delta$$

3. С использованием написанной программы телескопическим методом построить многочлен Q_m наилучшего равномерного приближения наименьшей степени m, обеспечивающий приближении исходной функции f(x) с той же точностью:

$$\sup |f(x) - Q_m(x)| \le \delta$$

Построить график ошибки приближения функции многочленом Q_m .

Решение

Заметим, что для любого интеполяционного многочлена справедливо:

$$||f(x) - Q_n(x)|| = \sup |f(x) - Q_n(x)| \ge \min |f^{(n+1)(x)}| \cdot \frac{\max |\omega_{n+1}(x)|}{(n+1)!}$$

где максимум и минимум берутся по отрезку [a, b]. Наилучшая оценка достигается при чебышевских узлах интерполяции:

$$||f(x) - Q_n(x)|| \ge \min |f^{(n+1)(x)}| \cdot \frac{(b-a)^{n+1}}{2^{2n+1}(n+1)!}$$
 (6)

Теперь оценим сверху. Так как Q_n есть МНРП, то $||f - Q_n|| \le ||f - P_n||$, где P_n любой многочлен степени n. Пусть $P_n = L_n$, то есть интерполяционный многочлен с чебышевскими узлами. Тогда:

$$|f(x) - Q_n(x)| \le \max |f^{(n+1)(x)}| \cdot \frac{(b-a)^{n+1}}{2^{2n+1}(n+1)!}$$

То есть получаем, что:

$$||f(x) - Q_n(x)|| \le ||f - L_n|| \le \max |f^{(n+1)(x)}| \cdot \frac{(b-a)^{n+1}}{2^{2n+1}(n+1)!}$$
(7)

То есть, применяя теорему о двух жандармах к уравнениям (6) и (7), получаем, что МНРП Q_n должен быть интерполяционным многочленом с чебышевскими узлами.

Таким образом, первый пункт Задачи 5 сводится к Задаче 2.

Теперь аппроксимируем функцию (3) рядом Тейлора. С помощью пакета Марle найдем, что нужна оценка $\delta = 10^{-3}$ достигается при степени разложения n = 20.

Телескопическим методом, начиная от n=20 найдем степень, при которой МНРП меньшей степени будет оптимальным.

Получим, что оптимальным будет являться многочлен степени n = 9. На рисунке 7 продемонстрирован график ошибки $\Delta_9(x) = |f(x) - Q_9(x)|$.

Рис. 7: График $\Delta_9(x)$

Задача 6

- 1. Написать вычислительную программу на языке программирования С++ для построения интерполирующего кубического сплайна по значениям функции, известным в узлах равномерной сетки.
- 2. С использованием написанной программы провести вычислительный эксперимент по определению минимального количества узлов равномерной сетки, обеспечивающих построение интерполирующего сплайна для заданной функции с указанным в задании предельным уровнем погрешности. Погрешность интерполяции оценивать способом, описанным в Задаче 1.
- 3. Построить график ошибки приближения заданной функции интерполирующим сплайном.

Решение

Были получены следующие результаты: необходимое количество сплайнов равно n=8, при этом $\Delta=8,949\cdot 10^{-4}$. График ошибки приведен на рисунке 8.

Рис. 8: График ошибки Δ при восьми сплайнах

Вывод

В ходе выполнения данной лабораторной работы были изучены методы решения задач по приближению функций, а также были получены навыки проведения вычислительного эксперимента, направленные на решение этих задач

Список литературы

- 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы: Бином, 2018.-636 с.
- 2. Калиткин Н.Н. Численные методы, 2-е издание: БХВ-Петербург, 2014. 592 с.
- 3. Самарский А.А., Гулин А. В. Численные методы: Учеб, пособие для вузов, М.: Наука. Гл. ред. физ-мат. лит., 1989.— 432 с.

Приложение

```
Весь C++ код выложен в github-репозитории по ссылке:
  https://github.com/sultanovMF/Numerical-Methods-Lab
# Расчет теоретической оценки
# для интерполяции на чебышевской сетке
with(Optimization):
f := (arctan(x) / (1 + x^2)):
f_{prime} := diff(f, x$15):
fn := Maximize(f_prime, x=0..2)[1]:
evalf(fn / 15! * 2^{(1-30)} * 2^{15});
# Расчет наилучшей степени разложения ряда Тейлора
f := \arctan(x)/(x^2 + 1);
a := 0;
b := 2;
epsilon = evalf(10^{-3});
q := taylor(f, x = (a + b)/2, 20);
p := convert(q, polynom);
p := evalf(simplify(p));
delta := 0:
for i to 100 do
    x[i] := evalf(a + i*(b - a)/100);
    y[i] := evalf(subs(x = x[i], f));
    pn[i] := evalf(subs(x = x[i], p));
    d[i] := abs(y[i] - pn[i]);
    if delta < d[i]
        then delta := d[i];
    end if;
end do;
delta;
q := evalf(series(f, x = (a + b)/2, 20));
```