

Chapter 5 Divide and Conquer

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\frac{1}{2}$ n.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: n².
- Divide-and-conquer: n log n.

Divide et impera. Veni, vidi, vici.

- Julius Caesar

5.1 Mergesort

Sorting

Sorting. Given n elements, rearrange in ascending order.

Applications.

- Sort a list of names.
- Organize an MP3 library.
- Display Google PageRank results.
- List RSS news items in reverse chronological order.
- Find the median.
- Find the closest pair.
- Binary search in a database.
- Identify statistical outliers.
- Find duplicates in a mailing list.
- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management.
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

obvious applications

problems become easy once items are in sorted order

non-obvious applications

. . .

Mergesort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

	A	L	G		0	R	I	T	Н	M	1 5	3		
A	.]	L	G	0	R			I	T	Н	М	S	divide	O(1)
A	. (3	L	0	R		ı	Н	I	M	s	T	sort	2T(n/2)
	A	G	Н		I	L	M	0	R		3]	•	merge	O(n)

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

- Linear number of comparisons.
- Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

t
using only a constant amount of extra storage

DEMO (05-demo-merge)

Merge Sort

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

$$T(n) \leq \begin{cases} 0 & \text{if } n=1 \\ \underline{T(\lceil n/2 \rceil)} + \underline{T(\lfloor n/2 \rfloor)} + \underline{n} & \text{otherwise} \end{cases}$$

Solution. $T(n) = O(n \log_2 n)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with =.

Proof by Recursion Tree

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

assumes n is a power of 2

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \\ \text{sorting both halves merging} \end{cases}$$

Pf. For n > 1:

$$\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1$$

$$= \frac{T(n/2)}{n/2} + 1$$

$$= \frac{T(n/4)}{n/4} + 1 + 1$$

$$= \frac{T(n/n)}{n/n} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{$$

Proof by Induction

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

 $T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$ sorting both halves merging

assumes n is a power of 2

Pf. (by induction on n)

- Base case: n = 1.
- Inductive hypothesis: $T(n) = n \log_2 n$.
- Goal: show that $T(2n) = 2n \log_2 (2n)$.

$$T(2n) = 2T(n) + 2n$$

= $2n \log_2 n + 2n$
= $2n(\log_2(2n)-1) + 2n$
= $2n \log_2(2n)$

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then $T(n) \le n \lceil \lg n \rceil$.

$$T(n) \leq \begin{cases} 0 & \text{if } n=1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n & \text{otherwise} \end{cases}$$

Pf. (by induction on n)

- Base case: n = 1.
- Define $n_1 = \lfloor n/2 \rfloor$, $n_2 = \lceil n/2 \rceil$.
- Induction step: assume true for 1, 2, ..., n-1.

$$T(n) \leq T(n_1) + T(n_2) + n$$

$$\leq n_1 \lceil \lg n_1 \rceil + n_2 \lceil \lg n_2 \rceil + n$$

$$\leq n_1 \lceil \lg n_2 \rceil + n_2 \lceil \lg n_2 \rceil + n$$

$$= n \lceil \lg n_2 \rceil + n$$

$$\leq n(\lceil \lg n \rceil - 1) + n$$

$$= n \lceil \lg n \rceil$$

$$n_{2} = |n/2|$$

$$\leq \lceil 2^{\lceil \lg n \rceil} / 2 \rceil$$

$$= 2^{\lceil \lg n \rceil} / 2$$

$$\Rightarrow \lg n_{2} \leq \lceil \lg n \rceil - 1$$

5.3 Counting Inversions

Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: $a_1, a_2, ..., a_n$.
- Songs i and j inverted if i < j, but $a_i > a_j$.

	Songs									
	Α	В	С	D	Ε					
Me	1	2	3	4	5					
You	1	3	4	2	5					

Inversions 3-2, 4-2

Brute force: check all $\Theta(n^2)$ pairs i and j.

Applications

Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).

Observations

- In the worst case, there are quadratic number of inversions $(O(n^2))$.
 - E.g., consider a list sorted in descending order.
- So to improve upon $O(n^2)$ bound asymptotically (e.g., $O(n \log n)$) an algorithm must count inversions without ever looking at each inversion individually.
- Key "combine" Idea:

The cross-inversions between the two sorted halves A and B are precisely due to pairs $(a_i,b_j),(a_{i+1},b_j),...$ $A\times B$ where $a_i>b_j$.

Divide-and-conquer.

1	5	4	8	10	2	6	9	12	11	3	7
_		•			_						

Divide-and-conquer.

Divide: separate list into two pieces.

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

5 blue-blue inversions

8 green-green inversions

5-4, 5-2, 4-2, 8-2, 10-2

6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

9 blue-green inversions 5-3 4-3 8-6 8-3 8-7 10-6

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

21

Combine: ???

Counting Inversions: Combine

Combine: count blue-green inversions

Assume each half is sorted.

2

- lacksquare Count inversions where a_i and a_j are in different halves.
- Merge two sorted halves into sorted whole.

to maintain sorted invariant

25

14

16

17

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

11

10

Merge: O(n)

Count: O(n)

$$T(n) \le T(\lfloor n/2 \rfloor) + T(\lfloor n/2 \rfloor) + O(n) \Rightarrow T(n) = O(n \log n)$$

18

19

DEMO (05demo-merge-invert)

Merge Sort

Counting Inversions: Implementation

Pre-condition. [Sort-and-Count] A and B are sorted. Post-condition. [Merge-and-Count] L is sorted.

```
Sort-and-Count(L) {
   if list L has one element
      return 0 and the list L

   Divide the list into two halves A and B
   (r<sub>A</sub>, A) ← Sort-and-Count(A)
   (r<sub>B</sub>, B) ← Sort-and-Count(B)
   (r , L) ← Merge-and-Count(A, B)

return r = r<sub>A</sub> + r<sub>B</sub> + r and the sorted list L
}
```

5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

1D version: Divide and Conquer

- Divide the points S into two sets S_1, S_2 by some x-coordinate so that p < q for all $p \in S_1$ and $q \in S_2$.
- Recursively compute closest pair (p_1, p_2) in S_1 and (q_1, q_2) in S_2 .

• Let δ be the smallest separation found so far:

$$\delta = \min(|p_2 - p_1|, |q_2 - q_1|)$$

1D version: Divide and Conquer

- The closest pair is $\{p_1, p_2\}$, or $\{q_1, q_2\}$, or some $\{p_3, q_3\}$ where $p_3 \in S_1$ and $q_3 \in S_2$.
- Key Observation: If m is the dividing coordinate, then p_3, q_3 must be within δ of m.

1D version: Divide and Conquer

How many points of S_1 can lie in the interval $(m - \delta, m]$?

By definition of δ , at most one. Same holds for S_2 .

So, we have just one pair (p3, q3) to check!

Note, problem decomposition (median computation) takes linear time and solution composition (max-min computation) takes linear time.

Recurrence is T(n) = 2T(n/2) + O(n), which solves to $T(n) = O(n \log n)$.

- Closest-Pair (S).
- If |S| = 1, output $\delta = \infty$. If |S| = 2, output $\delta = |p_2 - p_1|$. Otherwise, do the following steps:
 - 1. Let m = median(S).
 - **2.** Divide S into S_1, S_2 at m.
 - 3. $\delta_1 = \mathbf{Closest-Pair}(S_1)$.
 - 4. $\delta_2 = \mathbf{Closest-Pair}(S_2)$.
 - 5. δ_{12} is minimum distance across the cut.
 - 6. Return $\delta = \min(\delta_1, \delta_2, \delta_{12})$.
- Recurrence is T(n) = 2T(n/2) + O(n), which solves to $T(n) = O(n \log n)$.

Closest pair of points: first attempt

Sorting solution.

- Sort by x-coordinate and consider nearby points.
- Sort by y-coordinate and consider nearby points.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

Closest Pair of Points

Algorithm.

■ Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side. \leftarrow seems like $\Theta(n^2)$
- Return best of 3 solutions.

Find closest pair with one point in each side, assuming that distance $< \delta$.

 \blacksquare Observation: only need to consider points within δ of line L.

- Observation: only need to consider points within δ of line L.
- Unfortunately, this can degenerate into determining closest points among $O(n/2) \times O(n/2)$ point pairs in the worst case.

- Observation: only need to consider points within δ of line L.
- Unfortunately, this can degenerate into determining closest points among $O(n/2) \times O(n/2)$ point pairs in the worst case.

- Observation: only need to consider points within δ of line L.
- Unfortunately, this can degenerate into determining closest points among $O(n/2) \times O(n/2)$ point pairs in the worst case.
- Sort points in 2δ -strip by their y coordinate.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.
- Key Insight: Check distances of only those points within 11 positions of each point in sorted list! (linear-time)

Def. Let s_i be the point in the 2δ -strip, with the i^{th} smallest y-coordinate.

Claim. If $|i - j| \ge 12$, then the distance between s_i and s_j is at least δ .

- No two points lie in same $\frac{1}{2}\delta$ -by- $\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$. ■

Fact. Still true if we replace 12 with 6.
E.g. For pt. 28, need to check with three **squares** on the other side of the median line, or for pt. 30, six **squares**,.
E.g., For pt. 27, check 5 **points** in 2 rows.
-(Constant time for each point \times O(n)Using y-coordinate sorted points in the 2δ -strip)

Alternate Explanation

• Consider a point $p \in S_1$. All points of S_2 within distance δ of p must lie in a $\delta \times 2\delta$ rectangle R.

- How many points can be inside R if each pair is at least δ apart?
- In 2D, this number is at most 6!
- So, we only need to perform $6 \times n/2$ distance comparisons!

Alternate Explanation

• In order to determine at most 6 potential mates of p, project p and all points of P_2 onto line ℓ .

- Pick out points whose projection is within δ of p; at most six.
- We can do this for all p, by walking sorted lists of P_1 and P_2 , in total O(n) time.
- The sorted lists for P_1, P_2 can be obtained from pre-sorting of S_1, S_2 .

Closest Pair Algorithm

```
Closest-Pair(p<sub>1</sub>, ..., p<sub>n</sub>) {
   Compute separation line L such that half the points
                                                                          O(n \log n)
   are on one side and half on the other side.
   \delta_1 = Closest-Pair(left half)
                                                                         2T(n / 2)
   \delta_2 = Closest-Pair(right half)
   \delta = \min(\delta_1, \delta_2)
   Delete all points further than \delta from separation line L
                                                                          O(n)
                                                                          O(n log n)
   Sort remaining points by y-coordinate.
   Scan points in y-order and compare distance between
                                                                          O(n)
   each point and next 11 neighbors. If any of these
   distances is less than \delta, update \delta.
   return \delta.
```

Closest Pair of Points: Analysis

Running time.

$$T(n) \le 2T(n/2) + O(n \log n) \Rightarrow T(n) = O(n \log^2 n)$$

- Q. Can we achieve $O(n \log n)$?
- A. Yes. Don't sort points in strip from scratch each time.
 - Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
 - Sort by merging two pre-sorted lists.

$$T(n) \le 2T(n/2) + O(n) \implies T(n) = O(n \log n)$$