Review of the Definite Integrals

In the special case where $f(x) \ge 0$, the Riemann sum can be interpreted as the sum of the areas of the approximating rectangles in Figure 1, and $\int_a^b f(x) dx$ represents the area under the curve y = f(x) from a to b.

Figure 1

Review of the Definite Integrals

First let's recall the basic facts concerning definite integrals of functions of a single variable.

If f(x) is defined for $a \le x \le b$, we start by dividing the interval [a, b] into n subintervals $[x_{i-1}, x_i]$ of equal width $\Delta x = (b-a)/n$ and we choose sample points x_i^* in these subintervals. Then we form the Riemann sum

1

$$\sum_{i=1}^{n} f(x_i^*) \Delta x$$

and take the limit of such sums as $n \to \infty$ to obtain the definite integral of f from a to b:

$$\int_a^b f(x) \ dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \ \Delta x$$

In a similar manner we consider a function *f* of two variables defined on a closed rectangle

$$R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, c \le y \le d\}$$

and we first suppose that $f(x, y) \ge 0$.

The graph of f is a surface with equation z = f(x, y).

Let *S* be the solid that lies above *R* and under the graph of *f*, that is,

Figure 2

$$S = \{(x, y, z) \in \mathbb{R}^3 | 0 \le z \le f(x, y), (x, y) \in R\}$$

(See Figure 2.)

By drawing lines parallel to the coordinate axes through the endpoints of these subintervals, as in Figure 3, we form the subrectangles

 $R_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] = \{(x, y) \mid x_{i-1} \le x \le x_i, y_{j-1} \le y \le y_j\}$ each with area $\Delta A = \Delta x \, \Delta y$.

Dividing *R* into subrectangles

Figure 3

If we choose a **sample point** (x_{ij}^*, y_{ij}^*) in each R_{ij} , then we can approximate the part of S that lies above each R_{ij} by a thin rectangular box (or "column") with base R_{ij} and height $f(x_{ij}^*, y_{ij}^*)$ as shown in Figure 4.

The volume of this box is the height of the box times the

area of the base rectangle:

$$f(x_{ij}^*, y_{ij}^*) \Delta A$$

If we follow this procedure for all the rectangles and add the volumes of the corresponding boxes, we get an approximation to the total volume of S:

3
$$V \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta A$$

(See Figure 5.) This double sum means that for each subrectangle we evaluate *f* at the chosen point and multiply by the area of the subrectangle, and then we add the results.

6

Our intuition tells us that the approximation given in (3) becomes better as *m* and *n* become larger and so we would expect that

$$V = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta A$$

We use the expression in Equation 4 to define the **volume** of the solid *S* that lies under the graph of *f* and above the rectangle *R*.

Limits of the type that appear in Equation 4 occur frequently, not just in finding volumes but in a variety of other situations even when *f* is not a positive function. So we make the following definition.

5 Definition The **double integral** of f over the rectangle R is

$$\iint_{R} f(x, y) dA = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$

if this limit exists.

Example 1

Estimate the volume of the solid that lies above the square $R = [0, 2] \times [0, 2]$ and below the elliptic paraboloid $z = 16 - x^2 - 2y^2$. Divide R into four equal squares and choose the sample point to be the upper right corner of each square R_{ij} . Sketch the solid and the approximating rectangular boxes.

Example 1 – Solution

The squares are shown in Figure 6.

The paraboloid is the graph of $f(x, y) = 16 - x^2 - 2y^2$ and the area of each square is $\Delta A = 1$.

Example 1 – Solution

Approximating the volume by the Riemann sum with m = n = 2, we have

$$V \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(x_i, y_j) \Delta A$$

$$= f(1, 1) \Delta A + f(1, 2) \Delta A + f(2, 1) \Delta A + f(2, 2) \Delta A$$

$$= 13(1) + 7(1) + 10(1) + 4(1)$$

$$= 34$$

This is the volume of the approximating rectangular boxes

shown in Figure 7.

Figure 7 12