Step	Algorithm: $A := LU_BLK_VAR3(A)$
1a	$A = \widehat{A}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, L \to \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}, U \to \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$ where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right \right\}$
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \mid L_{TL}U_{TR} = \widehat{A}_{TR} \wedge m(A_{TL}) < \right\} $
5a	
6	{
8	update line 1 : update line n
7	{ }
5b	$ \left(\begin{array}{c c c} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c c} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c c c} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{array}\right) \leftarrow \cdots, \left(\begin{array}{c c c} U_{TL} & U_{TR} \\ \hline U_{BL} & U_{BR} \end{array}\right) \leftarrow \cdots $
2	$\left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \left L_{TL}U_{TR} = \widehat{A}_{TR} \right \right\}$
	endwhile
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \mid L_{TL}U_{TR} = \widehat{A}_{TR} \wedge \neg (m(A_{TL}) <) \right\} $
1b	$\left \left\{ A = L \backslash U \land LU = \widehat{A} \right. \right $

Step	Algorithm: $A := LU_BLK_VAR3(A)$
1a	{
4	
2	where
3	while do
2,3	
5a	Determine block size b where
6	{
8	
7	{
5b	
2	
	endwhile
2,3	
1b	

1a $\{A = \widehat{A}\}$ 4 where	}
4	
where	
$2 \mid \left\{ \right.$	
3 while do	
2,3	\wedge
Determine block size b 5a where	
6 {	}
8	
7 {	}
5b	
2 {	}
	}
2 {	^}

Step	Algorithm: $A := LU_BLK_VAR3(A)$
1a	$\{A = \widehat{A}\}$
4	where
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right \right\}$
3	while do
2,3	$ \left\{ \begin{array}{c c} \left(\frac{A_{TL} A_{TR}}{A_{BL} A_{BR}} \right) & = & \left(\frac{L \setminus U_{TL} U_{TR}}{\widehat{A}_{BL} \widehat{A}_{BR}} \right) \wedge L_{TL}U_{TL} = \widehat{A}_{TL} L_{TL}U_{TR} = \widehat{A}_{TR} \wedge \right\} $
	Determine block size b
5a	
	where
6	{
8	
7	{
5b	
2	$\left\{ \begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right $
	endwhile
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \land L_{TL}U_{TL} = \widehat{A}_{TL} & L_{TL}U_{TR} = \widehat{A}_{TR} \land \right\} $
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

Step	Algorithm: $A := LU_BLK_VAR3(A)$
1a	$\{A = \widehat{A} $
4	
	where
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right \right\}$
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \mid L_{TL}U_{TR} = \widehat{A}_{TR} \wedge m(A_{TL}) < \right\} $
5a	
	where
6	{
8	
7	{
5b	
2	$\left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \ L_{TL} U_{TL} = \widehat{A}_{TL} \ L_{TL} U_{TR} = \widehat{A}_{TR} \end{array} \right\}$
	endwhile
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \middle L_{TL}U_{TR} = \widehat{A}_{TR} \wedge \neg (m(A_{TL}) < \{m(A)\}) \right\} $
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

Step	Algorithm: $A := LU_BLK_VAR3(A)$
1a	$\left A = \widehat{A} \right $
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, L \to \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}, U \to \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$ where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0
2	$ \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right \right\} $
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \mid L_{TL}U_{TR} = \widehat{A}_{TR} \wedge m(A_{TL}) < \right\} $
5a	
	where
6	{
8	
7	{
5b	
2	$\left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \mid L_{TL}U_{TR} = \widehat{A}_{TR} \end{array} \right\}$
	endwhile
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \middle L_{TL}U_{TR} = \widehat{A}_{TR} \wedge \neg (m(A_{TL}) <) \right\} $
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

Step Algorithm:
$$A := LU_{BLK, VAR3}(A)$$

1a $A = \widehat{A}$

A $A \rightarrow \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}$, $L \rightarrow \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}$, $U \rightarrow \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$

where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0

2 $A_{BL} & A_{BR} & A_{BR} & C_{BL} & C_{BL}$

Step	Algorithm: $A := LU_BLK_VAR3(A)$
1a	$\{A = \widehat{A}\}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, L \to \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}, U \to \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$ where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right $
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \middle L_{TL}U_{TR} = \widehat{A}_{TR} \wedge m(A_{TL}) < \right\} $
5a	
6	{
8	
7	{
5b	$ \left(\begin{array}{c c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c c} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c c c} L_{TL} & L_{TR} \\ \hline L_{BL} & L_{BR} \end{array}\right) \leftarrow \cdots, \left(\begin{array}{c c c} U_{TL} & U_{TR} \\ \hline U_{BL} & U_{BR} \end{array}\right) \leftarrow \cdots $
2	$ \left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \mid L_{TL} U_{TR} = \widehat{A}_{TR} \\ \end{array} \right\} $
	endwhile
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \middle L_{TL}U_{TR} = \widehat{A}_{TR} \wedge \neg (m(A_{TL}) < n) \right\} $
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

Step	Algorithm: $A := LU_BLK_VAR3(A)$
1a	$\{A = \widehat{A}\}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, L \to \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}, U \to \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$ where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \left L_{TL} U_{TR} = \widehat{A}_{TR} \right $
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \middle L_{TL}U_{TR} = \widehat{A}_{TR} \wedge m(A_{TL}) < \right\} $
5a	
6	{
8	
7	{
5b	$ \left(\begin{array}{c c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c c} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c c c} L_{TL} & L_{TR} \\ \hline L_{BL} & L_{BR} \end{array}\right) \leftarrow \cdots, \left(\begin{array}{c c c} U_{TL} & U_{TR} \\ \hline U_{BL} & U_{BR} \end{array}\right) \leftarrow \cdots $
2	$ \left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & U_{TR} \\ \hline \widehat{A}_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge L_{TL} U_{TL} = \widehat{A}_{TL} \mid L_{TL} U_{TR} = \widehat{A}_{TR} \\ \end{array} \right\} $
	endwhile
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} L \setminus U_{TL} & U_{TR} \\ \widehat{A}_{BL} & \widehat{A}_{BR} \end{pmatrix} \wedge L_{TL}U_{TL} = \widehat{A}_{TL} \middle L_{TL}U_{TR} = \widehat{A}_{TR} \wedge \neg (m(A_{TL}) < n) \right\} $
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

$$\begin{array}{llll} \text{Step} & \text{Algorithm: } A := \text{LU_BLK_VAR3}(A) \\ \text{la} & \left\{A = \widehat{A} \right. & \left\{A \to \left(\frac{A_{TL}}{A_{BL}} \middle| A_{TR} \right), L \to \left(\frac{L_{TL}}{L_{BL}} \middle| L_{TR} \right), U \to \left(\frac{U_{TL}}{U_{BL}} \middle| U_{TR} \right), Where & A_{TL} \text{ is } 0 \times 0, L_{TL} \text{ is } 0 \times 0, U_{TL} \text{ is } 0 \times 0, U_{TL} \text{ is } 0 \times 0 \end{array} \right. \\ \text{where } & A_{TL} \middle| A_{TR} \middle| A_{BR} \middle| A$$

Algorithm: $A := LU_BLK_VAR3(A)$

$$A o \left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) \,, \, L o \left(\begin{array}{c|c} L_{TL} & L_{TR} \\ \hline L_{BL} & L_{BR} \end{array} \right) \,, \, U o \left(\begin{array}{c|c} U_{TL} & U_{TR} \\ \hline U_{BL} & U_{BR} \end{array} \right)$$

where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0

while $m(A_{TL}) < m(A)$ do

Determine block size b

$$\left(\begin{array}{c|c}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \to \left(\begin{array}{c|c}
A_{00} & A_{01} & A_{02} \\
\hline
A_{10} & A_{11} & A_{12} \\
A_{20} & A_{21} & A_{22}
\end{array}\right), \left(\begin{array}{c|c}
L_{TL} & L_{TR} \\
\hline
L_{BL} & L_{BR}
\end{array}\right) \to \cdots, \left(\begin{array}{c|c}
U_{TL} & U_{TR} \\
\hline
U_{BL} & U_{BR}
\end{array}\right) \to \cdots$$

where A_{11} is $b \times b$, L_{11} is $b \times b$, U_{11} is $b \times b$

update line 1

:

update line n

$$\left(\begin{array}{c|cccc}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \leftarrow \left(\begin{array}{c|cccc}
A_{00} & A_{01} & A_{02} \\
\hline
A_{10} & A_{11} & A_{12} \\
\hline
A_{20} & A_{21} & A_{22}
\end{array}\right), \left(\begin{array}{c|cccc}
L_{TL} & L_{TR} \\
\hline
L_{BL} & L_{BR}
\end{array}\right) \leftarrow \cdots, \left(\begin{array}{c|cccc}
U_{TL} & U_{TR} \\
\hline
U_{BL} & U_{BR}
\end{array}\right) \leftarrow \cdots$$

endwhile