

Objectives

Skeleton-based person re-identification (Re-ID) aims to use 3D skeletons to re-identify the same person in a different view.

Task and Approach

- Encode geometric, anthropometirc, gait attributes
- ID classification based on the learned representation

Example of 3D skeleton

Objective of 3D skeleton-based Re-ID task

 We introduce a novel self-supervised approach based on reverse sequential reconstruction and localityaware attention to learn effective gait representation.

Motivation

- No need of hand-crafted descriptors or labeled data
- Automatically learn high-level semantics and discriminative gait features from unlabeled data

Self-Supervised Gait Encoding with Locality-Aware Attention for Person Re-Identification

Haocong Rao^{1,3,5}, Siqi Wang², Xiping Hu^{1,4,5}, Mingkui Tan³, Huang Da², Jun Cheng^{1,5}, Bin Hu⁴

¹ Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

² National University of Defense Technology, ³ South China University of Technology

⁴ Lanzhou University, ⁵ The Chinese University of Hong Kong, Hong Kong

Proposed Approach

• Self-Supervised Reverse Skeleton Reconstruction with Locality-Aware Attention Mechanism

Figure 2: Flow diagram of our model: (1) Gait Encoder (yellow) encodes each skeleton frame S_t into an encoded gait state h_t . (2) Locality-aware attention mechanism (green) first computes the basic attention alignment score $a_t(\cdot)$, so as to measure the content-based correlation between each encoded gait state and the decoded gait state \hat{h}_t from Gait Decoder (purple). Then, the locality mask $l_t(\cdot)$ provides an objective $\tilde{a}_t(\cdot) = a_t(\cdot) l_t(\cdot)$, which guides our model to learn locality-aware alignment scores $\bar{a}_t(\cdot)$ by the locality-aware attention alignment loss \mathcal{L}_A . Next, $h_1 \cdots h_f$ are weighted by $\bar{a}_t(\cdot)$ to compute the context vector c_t . c_t and \hat{h}_t are fed into the concatenation layer $f_{att}(\cdot)$ to produce an attentional state vector \bar{h}_t . Finally, \bar{h}_t is fed into the full connected layer $f_F(\cdot)$ to predict t^{th} skeleton \bar{S}_t and Gait Decoder for later decoding. (3) c_t is used to build Attention-based Gait Encodings (AGEs) v_t , which are fed into a recognition network for person Re-ID (blue).

Experiements

Comparisons results and ablation study

			Rank-1 (%)			nAUC				
	Id	Methods	BIWI	IAS-A	IAS-B	KGBD	BIWI	IAS-A	IAS-B	KGBD
Depth-based methods	1	Gait Energy Image [2010]	21.4	25.6	15.9	_	73.2	72.1	66.0	
	2	Gait Energy Volume [2011]	25.7	20.4	13.7	_	83.2	66.2	64.8	_
	3	3D LSTM [2016]	27.0	31.0	33.8	_	83.3	77.6	78.0	_
	4	PCM + Skeleton [2014a]	42.9	27.3	81.8	_	_	_	_	_
	5	Size-Shape decriptors + SVM [2016]	20.5	_	_	_	–	_	_	_
Multi-modal	6	Size-Shape decriptors + LDA [2016]	22.1	_	_	_	_	_	_	_
methods	7	DVCov + SKL [2017]	21.4	46.6	45.9	_	_	_	_	_
methous	8	ED + SKL [2017]	30.0	52.3	63.3	_	_	_	_	_
	9	CNN-LSTM with RTA [2018]	50.0	_	_	_	_	_	_	_
	10	D^{13} descriptors + SVM [2014b]	17.9		_	_				
	11	D^{13} descriptors + KNN [2014b]	39.3	33.8	40.5	46.9	64.3	63.6	71.1	90.0
Skeleton-based methods	12	D^{16} descriptors + Adaboost [2019]	41.8	27.4	39.2	69.9	74.1	65.5	78.2	90.6
	13	Single-layer LSTM [2016]	15.8	20.0	19.1	39.8	65.8	65.9	68.4	87.2
	14	Multi-layer LSTM [2019]	36.1	34.4	30.9	46.2	75.6	72.1	71.9	89.8
	15	PoseGait [2020]	33.3	41.4	37.1	90.6	81.8	79.9	74.8	97.8
	16	Ours	59.1	56.1	58.2	87.7	86.5	81.7	85.3	96.3

GE	GD	Rev.	BAS	MBAS	LAS	AGEs	Rank-1	nAUC
√							36.1	75.6
\checkmark	\checkmark						41.5	80.1
\checkmark	\checkmark	\checkmark					46.7	81.5
\checkmark	\checkmark		\checkmark			✓	45.7	84.1
\checkmark	✓	\checkmark	\checkmark				53.3	84.6
\checkmark	✓	\checkmark	\checkmark			✓	55.1	85.2
\checkmark	✓	\checkmark		\checkmark			52.9	85.0
\checkmark	✓			\checkmark		✓	53.1	83.6
\checkmark	✓	✓		✓		✓	54.5	85.6
\checkmark	✓	✓			✓		57.7	85.8
\checkmark	✓				✓	✓	57.2	85.7
\checkmark	✓	✓			✓	✓	59.1	86.5

Table 2: Ablation study of our model. " \checkmark " indicates that the corresponding model component is used: GE, GD, reverse skeleton reconstruction (Rev.), different types of attention alignment scores (BAS, MBAS, LAS). "AGEs" indicates exploiting AGEs (v_t) rather than encoded gait states of GE's LSTM h_t for person Re-ID.

(a) LAS improves the locality of learned scores

• (b) LAS significantly reduces reconstruction loss

(a) Attention Matrix (b) Reconstruction Loss Curves

Illustration for gait encoding model "transfer"

Our model learns high-level semantics of 3D skeleton data

⇒ Pre-trained models are transferrable

	J	BIWI	l	AS-A	IAS-B		
Config.	Self	Transfer	Self	Transfer	Self	Transfer	
BAS	55.1	53.5	54.7	54.2	56.3	57.1	
LAS	59.1	58.4	56.1	56.3	58.2	57.4	

Table 3: *Rank-1* accuracy comparison between the original model ("Self") and the transferred model ("Transfer"). Results of different datasets and alignment score types (BAS or LAS) are reported.

Related Links

- Models and codes: https://github.com/Kali-Hac/SGE-LA
- Latest extended work: https://arxiv.org/pdf/2009.03671

