DÉRIVATION DES DISTRIBUTIONS et Opérations élémentaires

December 10, 2023

Agenda

Dérivation des distributions

Opérations élémentaires

Dérivation des distributions

definition

Soit f une fonction de classe C^1 , On appelle dérivée T' d'une distribution T:

$$\forall \varphi \in \mathcal{D}, \langle T', \varphi \rangle = -\langle T, \varphi' \rangle$$

Proposition:

Toute distribution admet des dérivées de tout ordre qui sont aussi des distributions.

Définition:

On dit qu'une distribution S est une primitive d'une distribution T si et seulement si T'=S.

Exemples : Dérivée de la fonction d'Heaviside

La fonction d'Heaviside (dite échelon unité) est définie par :

$$H(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 & \text{si } x > 0 \end{cases}$$

Au sens des fonctions, la dérivée de H(x) n'existe pas au point x=0. Mais au sens des distributions, on a pour $\varphi\in\mathcal{D}$

$$\langle H', \varphi \rangle = -\langle H, \varphi' \rangle$$

$$= -\int_{-\infty}^{+\infty} H(x)\varphi'(x) dx$$

$$= -\int_{-\infty}^{0} H(x)\varphi'(x) dx - \int_{0}^{+\infty} H(x)\varphi'(x) dx$$

$$= -\int_{0}^{+\infty} \varphi'(x) dx = \varphi'(0) = \langle \delta, \varphi \rangle$$

d'où $H' = \delta$

Extension au cas de plusieurs variables

Dans le cas de plusieurs variables, on définit la dérivée $\frac{\partial T}{\partial x_i}$ d'une distribution T, par :

$$\langle \frac{\partial T}{\partial x_i}, \varphi \rangle = -\langle T, \frac{\partial \varphi}{\partial x_i} \rangle, \qquad i = 1, 2, ..., m.$$

Plus généralement, on a :

$$\langle D^k, \varphi \rangle = (-1)^{|k|} \langle T, D^k \varphi \rangle$$

où
$$k = (k_1, k_2, ..., k_m) \in \mathbb{N}^m$$
 avec $|k| = k_1 + k_2 + ... k_m$ et

$$\mathsf{D}^k = \frac{\partial_1^k}{\partial x_1^{k_1}} \cdot \frac{\partial_2^k}{\partial x_2^{k_2}} \dots \frac{\partial_m^k}{\partial x_m^{k_m}} = \frac{\partial^{k_1 + k_2 + \dots + k_m}}{\partial x_1^{k_1} \partial x_2^{k_2} \dots \partial x_m^{k_m}}$$

Exemples : Soient H(x) la fonction d'Heaviside, α une constante réelle. Prouver, au sens des distributions, la relation suivante :

$$\left(\frac{d}{dx} - \alpha\right) H(x) e^{\alpha x} = \delta$$

Solution: L'énoncé initial est:

$$\left(\frac{d}{dx} - \alpha\right) H(x) e^{\alpha x} = \delta(x)$$

Nous allons utiliser l'intégration par parties pour prouver cette égalité.

$$\int_{-\infty}^{\infty} \left(\frac{d}{dx} - \alpha \right) H(x) e^{\alpha x} \phi(x) \, dx = \int_{-\infty}^{\infty} \delta(x) \phi(x) \, dx = \phi(0)$$

Commençons par calculer le côté gauche :

$$\int_{-\infty}^{\infty} \left(\frac{d}{dx} - \alpha \right) H(x) e^{\alpha x} \phi(x) dx$$

$$= \int_{-\infty}^{\infty} \frac{d}{dx} \left(H(x) e^{\alpha x} \right) \phi(x) dx - \alpha \int_{-\infty}^{\infty} H(x) e^{\alpha x} \phi(x) dx$$

En utilisant $H'(x) = \delta(x)$:

$$\int_{-\infty}^{\infty} \frac{d}{dx} (H(x)e^{\alpha x}) \phi(x) dx$$

$$= \int_{-\infty}^{\infty} \delta(x)e^{\alpha x} \phi(x) dx + \alpha \int_{-\infty}^{\infty} H(x)e^{\alpha x} \phi(x) dx$$

"

En simplifiant :

$$\alpha \int_{-\infty}^{\infty} H(x)e^{\alpha x}\phi(x) dx = \phi(0)$$
$$\int_{-\infty}^{\infty} H(x)e^{\alpha x}\phi(x) dx = \frac{1}{\alpha}\phi(0)$$
$$\int_{-\infty}^{\infty} \delta(x)\phi(x) dx = \phi(0)$$

Par conséquent, nous avons montré que $\left(\frac{d}{dx} - \alpha\right) H(x)e^{\alpha x} = \delta(x)$ en termes de distributions en utilisant l'intégration par parties. ou d'une autre facon :

$$\left(\frac{d}{dx} - \alpha\right) H(x) e^{\alpha x} = \frac{d}{dx} \left(H(x) e^{\alpha x}\right) - \alpha H(x) e^{\alpha x}$$

En utilisant cette expression, reprenons l'équation initiale :

$$\frac{d}{dx}(H(x)e^{\alpha x}) = \delta(x)e^{\alpha x} + H(x)\alpha e^{\alpha x}$$

Ainsi, après réarrangement, on obtient effectivement :

La présence de $e^{\alpha x}$ ne change pas la nature de la distribution de Dirac, donc on peut simplifier $\delta(x)e^{\alpha x}$ en $\delta(x)$.

donc, la relation au sens des distributions est bien établie.

Opérations élémentaires

definition

Le produit d'une distribution quelconque $\mathcal T$ par une fonction g de classe C^∞ est défini par :

$$\langle T \cdot g, \varphi \rangle = \langle T, g \cdot \varphi \rangle$$

où $\langle T, \varphi \rangle$ est l'action de la distribution T sur la fonction test φ , et $g \cdot \varphi$ est le produit de la fonction g par la fonction test φ .

Exemple : Considérons la distribution de Dirac $\delta(x)$ et une fonction g(x) quelconque, par exemple $g(x) = x^2$, qui est de classe C^{∞} sur son domaine. La définition du produit de $\delta(x)$ par g(x) est donnée par :

$$\langle \delta(x) \cdot g(x), \varphi(x) \rangle = \langle \delta(x), g(x) \cdot \varphi(x) \rangle$$

Pour une fonction test $\varphi(x)$, cette équation se traduit par :

$$\langle \delta(x) \cdot x^2, \varphi(x) \rangle = \langle \delta(x), x^2 \cdot \varphi(x) \rangle$$

En utilisant les propriétés de la distribution de Dirac, on sait que $\langle \delta(x), x^2 \cdot \varphi(x) \rangle = (g.\varphi)(0) = 0$ pour toute fonction test $\varphi(x)$, car $x^2 \cdot \varphi(x)$ s'annule en x = 0.

Ainsi, le produit de la distribution de Dirac $\delta(x)$ par la fonction $g(x) = x^2$ est égal à la distribution nulle. Cet exemple montre comment le produit d'une distribution par une fonction de classe C^{∞} est défini et comment il peut être évalué dans certains cas.

proposition:

Les solutions de xT=0 dans \mathcal{D}' sont les distributions $T=c\delta$ où $c\in\mathbb{C}$. **en générale**, La solution de l'équation xT=S, où S est une distribution donnée, est égale à la somme d'une solution particulière T_0 de cette équation et de la solution générale de l'équation homogène. On en déduit de la proposition précédente que cette solution s'écrit sous la forme : $T=c\delta+T_0$, où $c\in\mathbb{C}$. En effet, si T et T_0 sont des solutions de xT=S, alors $x(T-T_0)=0$, d'où $T-T_0=c\delta$, $c\in\mathbb{C}$.

définition :

Soit f(x) une fonction localement sommable et f la distribution qui lui est associée. La distribution associée à f(x-a), où a est une constante, est définie comme la translation de la distribution f par a. On la note souvent $T_a(f)$.

La translation d'une distribution f par a agit sur une fonction test $\varphi(x)$ comme suit :

$$\langle T_a(f), \varphi(x) \rangle = \langle f(x-a), \varphi(x) \rangle = \langle f(x), \varphi(x+a) \rangle$$

Exemple : Considérons la distribution de Dirac $\delta(x)$ et regardons comment la distribution $\delta(x-a)$ agit sur une fonction test $\varphi(x)$. La distribution $\delta(x-a)$ représente une translation de la distribution de Dirac de a unités vers la droite.

La façon dont cette distribution agit sur une fonction test $\varphi(x)$ est définie par :

$$\langle \delta(x-a), \varphi(x) \rangle = \varphi(a)$$

Definition

Une distribution T est dite périodique de période a si elle satisfait la propriété suivante pour toute fonction test $\varphi(x)$:

$$\langle T(x), \varphi(x) \rangle = \langle T(x), \varphi(x+a) \rangle = \langle T(x-a), \varphi(x) \rangle$$

ou encore:

$$\langle T(x), \varphi(x+a) - \varphi(x) \rangle = 0$$

Définition du Changement d'échelle :

Soit T une distribution. Le changement d'échelle est défini comme suit :

$$\forall a \neq 0, \quad \langle T, \varphi(ax) \rangle = \frac{1}{|a|} \langle T, \varphi\left(\frac{x}{a}\right) \rangle$$

Definition

La transposée $\check{\mathcal{T}}$ d'une distribution \mathcal{T} est définie par la relation suivante pour toute fonction test φ :

$$\langle \check{T}, \varphi \rangle = \langle T, \check{\varphi} \rangle \qquad \forall \varphi \in \mathcal{D}$$

Une distribution T est dite paire si $\check{T} = T$, c'est-à-dire :

$$\langle \check{T}, \varphi \rangle = \langle T, \varphi \rangle \qquad \forall \varphi \in \mathcal{D}$$

et elle est dite impaire si $\check{T} = -T$, c'est-à-dire :

$$\langle \check{T}, \varphi \rangle = -\langle T, \varphi \rangle \qquad \forall \varphi \in \mathcal{D}$$

merci pour votre attention!