例. 波长为 λ 的平面简谐波沿x正向传播,已知在 $x=\lambda/2$ 处振动方程为 $y_Q=A\cos(\omega t-\pi)$ 。波在 $L=5\lambda$ 处遇到一波密媒质反射面,且反射波振幅仍为A。求:

- 1. 该平面简谐波方程。
- 2. 反射波方程。
- 3. 合成驻波方程。
- 4. 在L范围内有几个波腹。

波函数:
$$y_{\lambda} = A\cos[\omega t - \frac{2\pi x}{\lambda}]$$

解:波函数:
$$y_{\lambda} = A\cos[\omega t - \frac{2\pi x}{\lambda}]$$

2. 反射波方程

令0'为反射点,入射波在该点振动方程为

$$y_{o'} = y_{\lambda}|_{x=5\lambda} = A\cos\omega t$$

波的传播方向是波疏到波密, 存在半波损失

波的传播为问类波့ 版到波密,存在干波视天
$$L=5\lambda$$
 以 O' 为波源产生的反射波方程 $COSQ + COS\beta = \lambda COS \frac{Q+\beta}{\lambda} COS \frac{Q+\beta}{\lambda}$ $V_{\xi} = A\cos[\omega t - \frac{2\pi}{\lambda}(5\lambda - x) + \pi] = A\cos[\omega t + \frac{2\pi}{\lambda}x + \pi]$

3. 合成驻波

$$y_{\rightleftharpoons} = y_{\lambda} + y_{\not \bowtie} = 2A\cos\left[\frac{2\pi x}{\lambda} + \frac{\pi}{2}\right]\cos\left[\omega t + \frac{\pi}{2}\right]$$

解:
$$y_{\triangleq} = y_{\lambda} + y_{\xi} = 2A\cos\left[\frac{2\pi x}{\lambda} + \frac{\pi}{2}\right]\cos\left[\omega t + \frac{\pi}{2}\right]$$

4. 在L范围内有几个波腹

波腹的判定条件
$$\left|\cos\left[\frac{2\pi x}{\lambda} + \frac{\pi}{2}\right]\right| = 1$$

$$\left. \begin{cases}
\frac{2\pi x}{\lambda} \\
0 < x < 5\lambda
\end{cases} \right\} x = \frac{\lambda}{4}, \frac{3\lambda}{4}, \dots, \frac{19\lambda}{4} + \frac{10}{4} + \frac$$

例.已知入射波t时刻波形,求t时刻反射波曲线和反射波在P点的相位(反射壁是波密质)

弦线上的驻波

一弦线两端固定:

驻波形成条件

固定端点长度为半波长的整数倍

可能的驻波波长:
$$L = n \frac{\lambda_n}{2}$$

$$n = 1, 2, 3, \dots$$
 量子化

例.如图二胡弦长l=0.3m, 张力T=9.4N。线密度 ρ =3.8×10⁻⁴kg/m, 求弦发出的声音的基频与谐频。

解:弦两端为固定点,是波节。

$$l=n\frac{\lambda_n}{2}$$
 $n=1, 2, \cdots$

频率
$$v = \frac{u}{\lambda_n} = \frac{nu}{2l}$$
 波速 $u = \sqrt{\frac{T}{\rho}}$

基频
$$n=1$$
, $v_1 = \frac{1}{2l} \sqrt{\frac{T}{\rho}} = 262 \text{ Hz}$

同理可得谐频 $n=2,3,\cdots$

作业: 11T19~T22

作业要求

- 1. 独立完成作业。
- 2. 图和公式要有必要的标注或文字说明。
- 3. 作业纸上每次都要写学号(或学号末两位)。
- 4. 课代表收作业后按学号排序,并装入透明文件袋。
- 5. 每周四交上周的作业。迟交不改。
- 6. 作业缺交三分之一及以上者综合成绩按零分计。