舞鶴工業高等専門学校 電子制御工学科 卒業研究論文 (平成 30 年 2 月 〇〇 日提出)

OO OO (5069)

平成 29 年度

卒業研究論文

○○○○○○○○○に関する研究

舞鶴工業高等専門学校 電子制御工学科									
提出者	OO OO (5069)								
提出日	平成 30 年 2 月 〇〇 日								

Department of Control Engineering,
National Institute of Technology, Maizuru College

指導教員 : ○○ ○○ 准教授

提出者 : ○○ ○○ (5069)

平成 30 年 2 月 〇〇 日

舞鶴工業高等専門学校 電子制御工学科

論文要旨

ここには論文要旨を書きます.

目 次

第 1	章	数式							 												1
	1.1	数式	この使	い方					 												1
	1	1.1.1	数式	の使	い方	jそ(D 1		 												1
	1	1.1.2	数式	の使	い方	jそ(D 2	2.	 												1
	1.2	ボー	-ルド	イタ	リッ	ク			 												1
	1.3	ディ	スプ	レイ	形式	300	分数	Į	 												1
第 2	章	図表							 												3
	2.1	図.							 												3
	2.2	表 .							 												3
第 3	章	参考为	と献,	その	他				 												4
参考	文献								 												5
謝辞									 												6
付録									 												7
	A.1	1 付銀	泉の式	番号					 												7
	A :) 付金	その図	番号	. 耒	番	昌														7

第1章 数式

1.1 数式の使い方

1.1.1 数式の使い方その 1

数式を文章中に入れるには、「\(式 \)」または「\$ 式 \$」で囲んで $\dot{x} = Ax + Bu$ または $\dot{x} = Ax + Bu$ のようにします.また、「\[式 \]」で囲んで

$$\dot{x} = Ax + Bu$$

とすれば、改行後に数式が挿入されます. 式番号は「\begin{equation} 式 \end{equation}」で囲んで

$$\dot{x} = Ax + Bu \tag{1.1}$$

とすれば自動的につきますし、(1.1) 式のように、式番号を参照することもできます。

1.1.2 数式の使い方その 2

「\begin{eqnarray} 式 \end{eqnarray}」で囲んで

$$E\dot{x} = Ax + Bu \tag{1.2}$$

$$y = Cx + Du (1.3)$$

とすれば、「& そろえたい部分 &」で囲まれた位置 ("=") をそろえることができます. \nonumber で

$$E\dot{x} = Ax + Bu \tag{1.4}$$

$$y = Cx + Du$$

のように式番号をはずすこともできます.

1.2 ボールドイタリック

「{\bm ボールドイタリックにしたい部分}」により数式中の文字をボールドイタリックにすることができます.

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u} \tag{1.5}$$

1.3 ディスプレイ形式の分数

「\frac{分子}{分母}」で表現された分数を行列中などに用いると、

$$\begin{bmatrix} a & \frac{c}{b} \\ \frac{e}{b+c} & f \end{bmatrix} \tag{1.6}$$

のように分数が小さくなってしまいます。通常の大きさにしたい場合には、「\frac{分子}{分母}」の代わりに「\dfrac{分子}{分母}」を使用して下さい、「\dfrac{分子}{分母}」を用いると、次式のようになります。

$$\begin{bmatrix}
 a & \frac{c}{b} \\
 \frac{e}{b+c} & f
\end{bmatrix}$$
(1.7)

第2章 図表

2.1 図

eps ファイルを取り込むことができます.

図 2.1 舞鶴高専校章

図 2.1 のように、図番号を参照することもできます.

2.2 表

表の作成は以下の通りです.

表 2.1 PID パラメータ

	比例感度 k_P	比例带 P_B	積分時間 T_I	微分時間 T_D
P 制御	$0.5~K_{Pc}$	$2.0~P_{Bc}$		
PI 制御	$0.45~K_{Pc}$	$2.2~P_{Bc}$	$0.83 \ T_c$	_
PID 制御	$0.6~K_{Pc}$	$1.6~P_{Bc}$	$0.5~T_c$	$0.125 \ T_c$

表 2.1 のように、表番号を参照することもできます.

第3章 参考文献,その他

参考文献²⁾⁻⁴⁾ です. 参考文献 2) です. 丸文字やリターンキーは ①, ↓, → のようにして書けます.

参考文献

- 1) 島ほか: 非線形システム制御論, コロナ社 (1997)
- 2) 川田,島津,井上: Hamilton-Jacobi 方程式に基づく非線形 \mathcal{H}_{∞} 制御の近似実現,システム制御情報学会論文誌,Vol. 11,No. 7,pp. 401–410 (1998)
- 3) A. J. van der Schaft: \mathcal{L}_2 -gain Analysis of Nonlinear Systems and Nonlinear State Feedback \mathcal{H}_{∞} Control, *IEEE Trans. Automat. Contr.*, Vol. AC-37, No. 6, pp. 770–784 (1992)
- 4) 中村:二次安定化による倒立振子システムのロバスト制御に関する研究,立命館大学理工学部卒業論文 (1997)

謝辞

謝辞はここに書きます.

付録

A.1 付録の式番号

付録の式番号は

$$\int_0^\infty \|\boldsymbol{x}(t)\|^2 dt < \infty \tag{A.1}$$

のように区別してください.

A.2 付録の図番号,表番号

リスト A.1 (prog.m: フルビッツの安定判別法)

```
1
    %% prog.m
2
3
    clear
    format compact
    syms s
 7
    syms kP kI kD real
8
    syms a0 a1 b0 real
9
10
    P = b0/(s^2 + a1*s + a0);
11
    C = (kD*s^2 + kP*s + kI)/s;
12
13
    [Np Dp] = numden(P);
14
    [Nc Dc] = numden(C);
15
16
    Delta = Dp*Dc + Np*Nc;
17
    Delta = collect(Delta,s)
    alpha = coeffs(Delta,s);
18
19
    N = length(alpha);
20
    n = N - 1;
21
22
23
    % ===== 条件 A ==================
24
    disp('----- 条件 A:a_i > 0 -----')
25
    for i = 1:N
      str = ['a', num2str(i-1), '= alpha(i)'];
26
27
      eval(str)
28
29
```

```
30 | cond1 = '';
31
    for i = 1:N
32
      if i == 1
33
        cond1 = strcat(cond1,['simplify(a' num2str(i-1) '> 0)']);
34
        cond1 = strcat(cond1,[' & simplify(a' num2str(i-1) '> 0)']);
35
36
      end
37
    end
38
    % ===== 条件 B" ============
39
40
    for i = 1:n
41
      for j = 1:n
        k = (N - 1) + (i - 1) - 2*(j - 1);
42
43
        if k >= 1 & k <= N
44
45
         H(i,j) = alpha(k);
46
        else
         H(i,j) = 0;
47
48
        end
49
      end
50
    end
51
    disp('----')
52
53
54
    if mod(n,2) == 0 % 次数: n = 2*k
55
     i_min = 3; i_max = n - 1;
56
                    % 次数: n = 2*k + 1
57
58
     i_min = 2; i_max = n - 1;
59
    end
60
    disp('----- 条件 B":H_i > 0 -----')
61
62
    for i = i_min:2:i_max
63
      str = ['H', num2str(i), '= det(H(1:i,1:i))'];
64
      eval(str)
65
    end
66
    cond2 = ', ';
67
68
    for i = i_min:2:i_max
69
      if i == i_min
70
        cond2 = strcat(cond2,['simplify(H' num2str(i) '> 0)']);
71
72
        cond2 = strcat(cond2,[' & simplify(H' num2str(i) '> 0)']);
73
74
    end
75
    % ===== 安定条件 ===============================
76
    disp('---- 安定条件 -----')
77
    simplify(eval(cond1) & eval(cond2))
78
```