Meta-Curvature

Eunbyung Park Junier B. Oliva

Department of Computer Science

University of North Carolina at Chapel Hill

Second-order Optimization in MAML

 \square Model-Agnostic Meta-Learning (MAML) [1] $\underset{\widehat{\Gamma}}{\operatorname{argmin}} \mathbb{E}_{\tau_i} [\mathcal{L}_{\operatorname{val}}^{\tau_i} (\theta - \alpha \nabla \mathcal{L}_{\operatorname{tr}}^{\tau_i} (\theta))]$

☐ Meta-SGD [2]

$$\underset{\theta,\alpha}{\operatorname{argmin}} \mathbb{E}_{\tau_i} [\mathcal{L}_{\operatorname{val}}^{\tau_i} (\theta - \alpha \nabla \mathcal{L}_{\operatorname{tr}}^{\tau_i} (\theta))]$$

☐ Meta-Curvature

$$\underset{\theta, \mathbf{M}}{\operatorname{argmin}} \mathbb{E}_{\tau_i} [\mathcal{L}_{\mathrm{val}}^{\tau_i} (\theta - \mathbf{M} \nabla \mathcal{L}_{\mathrm{tr}}^{\tau_i} (\theta))]$$

Learning a curvature matrix for better generalization and fast model adaptation in MAML framework.

Modeling the second-order dependencies

Second-order optimization in the inner optimization

Reducing space and computational complexity

Decomposition of the curvature matrix

Meta-Curvature Computation

Experimental Results

[Few-shot classification - Omniglot]

	5w-1s	5w-5s	20w-1s	20w-5s	
MAML [1]	98.7 ± 0.4	99.9 ± 0.1	95.8 ± 0.3	98.9 ± 0.2	
Meta-SGD [2]	99.53 ± 0.26	99.93 ± 0.09	95.93 ± 0.38	98.97 ± 0.19	
$MAML++^{\P}[3]$	99.47	99.93	97.65	99.33	
MC	99.77 ± 0.17	99.79 ± 0.10	97.86 ± 0.26	99.24 ± 0.07	
MC¶	99.97 ± 0.06	99.89 ± 0.06	99.12 ± 0.16	99.65 ± 0.05	
5w-1s: 5way 1 shot $\P: 3$ model ensemble					

[Few-shot classification - Imagenet]

mini-Imagenet tiered-Imagenet

	5w-1s	5w-1s	5w-5s	5w-5s
LEO — <i>center</i> [4]	61.76 ± 0.08	77.59 ± 0.12	66.33 ± 0.05	81.44 ± 0.09
LEO – multiview [4]	63.97 ± 0.20	79.49 ± 0.70		
MetaOptNet ⁰ [5]	64.09 ± 0.62	80.00 ± 0.45	65.81 ± 0.74	81.75 ± 0.53
Meta-SGD [2]	56.58 ± 0.21	68.84 ± 0.19	59.75 ± 0.25	69.04 ± 0.22
MC – center	61.85 ± 0.10	77.02 ± 0.11	67.21 ± 0.10	82.61 ± 0.08
MC – multiview	64.40 ± 0.10	80.21 ± 0.10		

[Few-shot regression]

	5-shot	10-shot
MAML [1]	0.69 ± 0.07	0.44 ± 0.04
Meta-SGD [2]	0.48 ± 0.06	0.26 ± 0.03
MC	0.41 ± 0.05	0.20 ± 0.02

Sinusoidal : amp [0.1, 5.0], phase [0, π]

Analysis

Meta-gradient w.r.t M: $\theta^{\tau_i}(\mathbf{M}) = \theta - \alpha \mathbf{M} \nabla_{\theta} \mathcal{L}_{\mathrm{tr}}^{\tau_i}(\theta)$

$$\nabla_{\mathbf{M}} \mathcal{L}_{\mathrm{val}}^{\tau_i}(\theta^{\tau_i}(\mathbf{M})) = -\alpha \nabla_{\theta^{\tau_i}} \mathcal{L}_{\mathrm{val}}^{\tau_i}(\theta^{\tau_i}) \nabla_{\theta} \mathcal{L}_{\mathrm{tr}}^{\tau_i}(\theta)^{\top}$$

Given a fixed point θ and a meta training set $T=\{ au_i\}$, gradient descents from an initial $\mathbf{M_0}$:

$$\mathbf{M}_{T} = \mathbf{M}_{0} - \beta \sum_{i=1}^{|\mathcal{T}|} \nabla_{\mathbf{M}_{i-1}} \mathcal{L}_{\text{val}}^{\tau_{i}}(\theta^{\tau_{i}}) = \mathbf{M}_{0} + \alpha \beta \sum_{i=1}^{|\mathcal{T}|} \nabla_{\theta^{\tau_{i}}} \mathcal{L}_{\text{val}}^{\tau_{i}}(\theta^{\tau_{i}}) \nabla_{\theta} \mathcal{L}_{\text{tr}}^{\tau_{i}}(\theta)^{\top}$$

Applying M_T to the gradients of a new task τ_{new} :

$$\begin{split} \mathbf{M}_{T} \nabla_{\theta} \mathcal{L}_{\mathrm{tr}}^{\tau_{\mathrm{new}}}(\theta) &= \left(\mathbf{M}_{0} + \alpha \beta \sum_{i=1}^{|\mathcal{T}|} \nabla_{\theta^{\tau_{i}}} \mathcal{L}_{\mathrm{val}}^{\tau_{i}}(\theta^{\tau_{i}}) \nabla_{\theta} \mathcal{L}_{\mathrm{tr}}^{\tau_{i}}(\theta)^{\top} \right) \nabla_{\theta} \mathcal{L}_{\mathrm{tr}}^{\tau_{\mathrm{new}}}(\theta) \\ &= \mathbf{M}_{0} \nabla_{\theta} \mathcal{L}_{\mathrm{tr}}^{\tau_{\mathrm{new}}}(\theta) + \beta \sum_{i=1}^{|\mathcal{T}|} \left(\nabla_{\theta} \mathcal{L}_{\mathrm{tr}}^{\tau_{i}}(\theta)^{\top} \nabla_{\theta} \mathcal{L}_{\mathrm{tr}}^{\tau_{\mathrm{new}}}(\theta) \right) \alpha \nabla_{\theta^{\tau_{i}}} \mathcal{L}_{\mathrm{val}}^{\tau_{i}}(\theta^{\tau_{i}}) \\ &= \mathbf{M}_{0} \nabla_{\theta} \mathcal{L}_{tr}^{\tau_{\mathrm{new}}}(\theta) + \beta \sum_{i=1}^{|\mathcal{T}|} \left(\nabla_{\theta} \mathcal{L}_{tr}^{\tau_{i}}(\theta)^{\top} \nabla_{\theta} \mathcal{L}_{tr}^{\tau_{\mathrm{new}}}(\theta) \right) \left(\alpha \nabla_{\theta} \mathcal{L}_{val}^{\tau_{i}}(\theta) + \mathcal{O}(\alpha^{2}) \right). \end{split}$$

$$= \mathbf{M}_{0} \nabla_{\theta} \mathcal{L}_{tr}^{\tau_{\mathrm{new}}}(\theta) + \beta \sum_{i=1}^{|\mathcal{T}|} \left(\nabla_{\theta} \mathcal{L}_{tr}^{\tau_{i}}(\theta)^{\top} \nabla_{\theta} \mathcal{L}_{tr}^{\tau_{\mathrm{new}}}(\theta) \right) \left(\alpha \nabla_{\theta} \mathcal{L}_{val}^{\tau_{i}}(\theta) + \mathcal{O}(\alpha^{2}) \right).$$
Gradient similarity Taylor expansion

References

Pences
[1] Meta-SGD: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, Finn et al, ICML 2017
[2] Meta-SGD: Learning to Learn Quickly for Few-Shot Learning, Li et al, arXiv 2017 [3] How to train your MAML, Antoniou et al, ICLR 2019
[4] Meta-Learning with Latent Embedding Optimization, Rusu et al, ICLR 2019 [5] Meta-Learning with Differentiable Convex Optimization, Lee et al, CVPR 2019