#6

Attorney Docket No.: DIVER1440-2

## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Madden, et al.

Art Unit:

1632

Application No.:

09/751,299

Examiner

Unassigned

Filed:

December 28, 2000

Title:

METHODS FOR PRODUCING ENANTIOMERICALLY PURE  $\alpha$ -

SUBSTITUTED CARBOXYLIC ACIDS

Commissioner for Patents Washington, D.C. 20231

## **VERIFIED STATEMENT UNDER 37 C.F.R. § 1.821(f)**

Sir:

I, Mikhail Bayley, declare that I personally prepared the paper and the computerreadable copies of the Sequence Listing filed herewith in the above-entitled case and that the content of both is the same.

I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of The United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Date: 05/08/2001

Mikhail Bayley

GRAY CARY WARE & FREIDENRICH LLP

4365 Executive Drive, Suite 1600 San Diego, CA 92121-2189

Customer Number: 28213

Commissioner for Patents, Washington, D.C. 20231.

Name of Person Mailing Paper

ignature/

5-8-01

Date



PATENT

Attorney Docket No.: DIVER1440-2

# IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants:

Mark Madden et al.

Art Unit:

1632

Application No.:

09/751,299

Examiner:

Unassigned

Filed:

December 28, 2000

Title:

METHODS FOR PRODUCING ENANTIOMERICALLY PURE ALPHA-

SUBSTITUTED CARBOXYLIC ACIDS

**BOX SEQUENCE** 

Commissioner for Patents Washington, D.C. 20231

## <u>STATEMENT UNDER 37 C.F.R. §§ 1.821(f) and (g);</u> and 37 C.F.R. § 1.825 (b)

Sir:

I hereby state, as required by 37 C.F.R. § 1.821(f), that the information recorded in computer readable form is identical to the written sequence listing.

I hereby state that the submission, filed in accordance with 37 C.F.R. § 1.821 (g), herein does not include new matter.

I hereby state that the substitute copy of the computer readable form, submitted in accordance with 37 C.F.R. § 1.825 (b), is the same as the amended Sequence Listing.

Respectfully submitted,

Date:

Lisa A. Haile, Ph.D.

Reg. No. 38,347

Telephone: (858) 677-1456 Facsimile: (858) 677-1465

GRAY CARY WARE & FREIDENRICH LLP

4365 Executive Drive, Suite 1600

San Diego, CA 92121-2189

**USPTO Customer Number 28213** 

# I hereby certify that the documents referred to as enclosed herein are being deposited with the United States Postal Service as first class mail on this date, 5-8-01, in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231. Name of Person Mailing Paper Signature Signature Date



**PATENT** 

Attorney Docket No.: DIVER1440-2

# IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants:

Mark Madden et al.

Art Unit:

1632

Application No.:

09/751,299

Examiner:

Unassigned

Filed:

December 28, 2000

Title:

METHODS FOR PRODUCING ENANTIOMERICALLY PURE ALPHA-

SUBSTITUTED CARBOXYLIC ACIDS

**BOX SEQUENCE** 

Commissioner for Patents Washington, D.C. 20231

# AMENDMENT AND RESPONSE TO NOTICE TO COMPLY WITH SEQUENCE LISTING REQUIREMENTS UNDER 37 C.F.R. §§ 1.821-1.825

Dear Sir:

In response to the Notice to File Missing Parts for patent applications containing nucleotide sequence and/or amino acid sequence, Applicants provide herewith a computer readable and a paper copy of the Sequence Listing in accordance with 37 C.F.R. § 1.821 *et seq*.

Please amend the application as follows:

## In the Specification:

Following the abstract, please insert the attached Sequence Listing with subsequent page numbering thereafter.

| CERTIFICATION UNDER 37 CFR §1.8                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I hereby certify that the documents referred to as enclosed herein are being deposited with the United States Postal Service as first class mail on this date, |
| Commissioner for Patents, Washington, D.C. 20231.                                                                                                              |
| Inca Najar                                                                                                                                                     |
| Name of Jerson Mailing Paper                                                                                                                                   |
| Signature 5-8-01 Date                                                                                                                                          |

In re Application of: Madden et al.

Application No.: 09/751,299 Filed: December 28, 2000

Page 2

PATENT Attorney Docket No.: DIVER1440-2

If the Examiner would like to discuss any of the issues raised in this Amendment or the attached sequence listing, Applicants' representative can be reached at (858) 677-1456.

Respectfully submitted,

Date: \_\_\_\_\_\_\_\_\_\_\_

Lisa A. Haile, Ph.D. Reg. No. 38,347

Telephone: (858) 677-1456 Facsimile: (858) 677-1465

GRAY CARY WARE & FREIDENRICH LLP 4365 Executive Drive, Suite 1600 San Diego, CA 92121-2189 USPTO Customer Number 28213



### SEOUENCE LISTING

<110> Madden, Mark Weiner, David P. Chaplin, Jennifer A.

<120> METHODS FOR PRODUCING ENANTIOMERICALLY PURE
ALPHA-SUBSTITUTED CARBOXYLIC ACIDS

<130> DIVER1440-2

<140> US 09/751,299

<141> 2000-12-28

<150> 60/254,414

<151> 2000-12-07

<150> 60/173,609

<151> 1999-12-29

<160> 4

<170> PatentIn Ver. 2.1

<210> 1

<211> 1041

<212> DNA

<213> Unknown Organism

<220>

<223> Description of Unknown Organism: Obtained from an environmental sample

<220>

<221> CDS

<222> (1)..(1041)

<400> 1

atg tcg gag ccc atg acg aag tat cgc ggc gcg gcg gtg cag gcc gcg 48
Met Ser Glu Pro Met Thr Lys Tyr Arg Gly Ala Ala Val Gln Ala Ala
1 5 10 15

ccg gtg ttc ctc gat ctc gac cgc aca gtc gag aaa gcg atc ggc ctg 96
Pro Val Phe Leu Asp Leu Asp Arg Thr Val Glu Lys Ala Ile Gly Leu
20 25 30

atc gag cag gcg gcc aag cag gac gtg cgc ctg atc gca ttc cca gag 144
Ile Glu Gln Ala Ala Lys Gln Asp Val Arg Leu Ile Ala Phe Pro Glu

35 40 45

act tgg att ccc ggc tat ccc ttt tgg ata tgg ctg ggc gcg ccg gct 192
Thr Trp Ile Pro Gly Tyr Pro Phe Trp Ile Trp Leu Gly Ala Pro Ala
50 55 60

tgg ggc atg cgc ttc gtc cag cgc tat ttc gag aat tcg ctc gtg cgc
Trp Gly Met Arg Phe Val Gln Arg Tyr Phe Glu Asn Ser Leu Val Arg
65 70 75 80

ggc agc aag cag tgg cag gcc ctg gcg gat gcg gcc cgc cgc cac ggc 288 Gly Ser Lys Gln Trp Gln Ala Leu Ala Asp Ala Ala Arg Arg His Gly

85

90

95

|            | cat<br>His        |            |            |            |            |                   |            |            |            |            |                   |            |            |            |            | 336  |
|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------|
|            | ggc<br>Gly        |            |            |            |            |                   |            |            |            |            |                   |            |            |            |            | 384  |
|            | aag<br>Lys<br>130 |            |            |            |            |                   |            |            |            |            |                   |            |            |            |            | 432  |
|            | ggc<br>Gly        |            |            |            |            |                   |            |            |            |            |                   |            |            |            |            | 480  |
|            | ctc<br>Leu        |            |            |            |            |                   |            |            |            |            |                   |            |            |            |            | 528  |
|            | gcc<br>Ala        |            |            |            |            |                   |            |            |            |            |                   |            |            |            |            | 576  |
|            | tat<br>Tyr        |            |            |            |            |                   |            |            |            |            |                   |            |            |            |            | 624  |
| gca<br>Ala | agc<br>Ser<br>210 | cag<br>Gln | atc<br>Ile | tac<br>Tyr | gcg<br>Ala | gtc<br>Val<br>215 | gag<br>Glu | ggc<br>Gly | ggc<br>Gly | tgc<br>Cys | tac<br>Tyr<br>220 | gtg<br>Val | ctg<br>Leu | gcg<br>Ala | tcg<br>Ser | 672  |
|            | gcg<br>Ala        |            |            |            |            |                   |            |            |            |            |                   |            |            |            |            | 720  |
|            | aag<br>Lys        |            |            |            |            |                   |            |            |            |            |                   |            |            |            |            | 768  |
|            | ccc<br>Pro        | _          |            | _          | _          | _                 | _          |            | _          |            |                   |            |            |            |            | 816  |
|            | ctg<br>Leu        |            |            |            |            |                   |            |            |            |            |                   |            |            |            |            | 864  |
|            | gcg<br>Ala<br>290 |            |            |            |            |                   |            |            |            |            |                   |            |            |            |            | 912  |
|            | ctg<br>Leu        |            |            |            |            |                   |            |            |            |            |                   |            |            |            |            | 960  |
| _          | ttc<br>Phe        | _          | _          |            |            |                   | _          | _          |            | _          |                   |            |            |            |            | 1008 |

gtg gtg gcg gaa agc gcc gcc gcc gcg cag tag Val Val Ala Glu Ser Ala Ala Ala Ala Gln 1041

```
<210> 2
<211> 346
```

<212> PRT

<213> Unknown Organism

<400> 2 Met Ser Glu Pro Met Thr Lys Tyr Arg Gly Ala Ala Val Gln Ala Ala 5 10 Pro Val Phe Leu Asp Leu Asp Arg Thr Val Glu Lys Ala Ile Gly Leu 25 Ile Glu Gln Ala Ala Lys Gln Asp Val Arg Leu Ile Ala Phe Pro Glu Thr Trp Ile Pro Gly Tyr Pro Phe Trp Ile Trp Leu Gly Ala Pro Ala Trp Gly Met Arg Phe Val Gln Arg Tyr Phe Glu Asn Ser Leu Val Arg 70 75 Gly Ser Lys Gln Trp Gln Ala Leu Ala Asp Ala Arg Arg His Gly 85 Met His Val Val Ala Gly Tyr Ser Glu Arg Ala Gly Gly Ser Leu Tyr 100 105 Met Gly Gln Ala Ile Phe Gly Pro Asp Gly Asp Leu Ile Ala Ala Arg 120 115 125 Arg Lys Leu Lys Pro Thr His Ala Glu Arg Thr Val Phe Gly Glu Gly 135 140 Asp Gly Ser His Leu Ala Val His Asp Thr Ala Ile Gly Arg Leu Gly 150 155 Ala Leu Cys Cys Trp Glu His Ile Gln Pro Leu Ser Lys Tyr Ala Met 165 170 175 Tyr Ala Ala Asp Glu Gln Val His Val Ala Ser Trp Pro Ser Phe Ser 180 185 Leu Tyr Arg Gly Met Ala Tyr Ala Leu Gly Pro Glu Val Asn Thr Ala 200 205 Ala Ser Gln Ile Tyr Ala Val Glu Gly Gly Cys Tyr Val Leu Ala Ser 215 220 Cys Ala Thr Val Ser Pro Glu Met Ile Lys Val Leu Val Asp Thr Pro 230 235 Asp Lys Glu Met Phe Leu Lys Ala Gly Gly Phe Ala Met Ile Phe 245 250 Gly Pro Asp Gly Arg Ala Leu Ala Glu Pro Leu Pro Glu Thr Glu Glu 265 Gly Leu Leu Val Ala Asp Ile Asp Leu Gly Met Ile Ala Leu Ala Lys 280 Ala Ala Ala Asp Pro Ala Gly His Tyr Ser Arg Pro Asp Val Thr Arg 295 Leu Leu Leu Asp Arg Pro Ala Gln Arg Val Val Thr Leu Asp Ala 310 315 Ala Phe Glu Pro Gln Asn Glu Asp Lys Gly Asp Ala Pro Ala Leu Arg 325 330 Val Val Ala Glu Ser Ala Ala Ala Gln 340

| <211> 1014<br><212> DNA<br><213> Unknown Organism                                                                                       |                                           |  |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
| <220> <223> Description of Unknown Organism: Obtained from an environmental sample                                                      |                                           |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <220> <221> CDS <222> (1)(1014)                                                                                                         |                                           |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <pre>&lt;400&gt; 3 atg aaa gaa gct atc aag gtc gcc tgc gtg caa gcc gcc Met Lys Glu Ala Ile Lys Val Ala Cys Val Gln Ala Ala 1 5 10</pre> | ccg atc tac 48<br>Pro Ile Tyr<br>15       |  |  |  |  |  |  |  |  |  |  |  |  |  |
| atg gat ttg gag gcg acg gtg gac aaa acc att gag ttg<br>Met Asp Leu Glu Ala Thr Val Asp Lys Thr Ile Glu Leu<br>20 25                     | atg gaa gaa 96<br>Met Glu Glu<br>30       |  |  |  |  |  |  |  |  |  |  |  |  |  |
| gca gca cgt aat aat gct cgt ctg atc gcc ttt ccg gaa<br>Ala Ala Arg Asn Asn Ala Arg Leu Ile Ala Phe Pro Glu<br>35 40                     | Thr Trp Ile                               |  |  |  |  |  |  |  |  |  |  |  |  |  |
| cca ggc tac cca tgg ttt ctt tgg ctt gac tca cca gca<br>Pro Gly Tyr Pro Trp Phe Leu Trp Leu Asp Ser Pro Ala<br>50 55 60                  | tgg gca atg 192<br>Trp Ala Met            |  |  |  |  |  |  |  |  |  |  |  |  |  |
| caa ttt gta cgc caa tac cat gag aac tca ttg gag ttg<br>Gln Phe Val Arg Gln Tyr His Glu Asn Ser Leu Glu Leu<br>65 70 75                  | g gat ggc cct 240<br>1 Asp Gly Pro<br>80  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| caa gct aag cgc att tca gat gca gcc aag cgg ttg gga<br>Gln Ala Lys Arg Ile Ser Asp Ala Ala Lys Arg Leu Gly<br>85 90                     | a atc atg gtc 288<br>7 Ile Met Val<br>95  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| acc ctg ggg atg agt gaa cgg gtc ggt ggc acc ctt tac<br>Thr Leu Gly Met Ser Glu Arg Val Gly Gly Thr Leu Tyr<br>100 105                   | e atc agt cag 336<br>File Ser Gln<br>110  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| tgg ttc ata ggc gat aat ggt gac acc att ggg gcc cgg<br>Trp Phe Ile Gly Asp Asn Gly Asp Thr Ile Gly Ala Arg<br>115 120                   | g Arg Lys Leu                             |  |  |  |  |  |  |  |  |  |  |  |  |  |
| aaa cct act ttt gtt gaa cgt act ttg ttc ggc gaa ggg<br>Lys Pro Thr Phe Val Glu Arg Thr Leu Phe Gly Glu Gly<br>130 135 140               | g gat ggt tca 432<br>/ Asp Gly Ser        |  |  |  |  |  |  |  |  |  |  |  |  |  |
| tcg cta gcg gtt ttc gag acg tct gtt gga agg ctg ggt<br>Ser Leu Ala Val Phe Glu Thr Ser Val Gly Arg Leu Gly<br>145 150 155               | t ggc tta tgc 480<br>y Gly Leu Cys<br>160 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| tgt tgg gag cac ctt caa ccg cta aca aaa tac gct ttg<br>Cys Trp Glu His Leu Gln Pro Leu Thr Lys Tyr Ala Leu<br>165 170                   | g tat gca caa 528<br>1 Tyr Ala Gln<br>175 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| aat gaa gag att cat tgt gcg gct tgg ccg agc ttt ago<br>Asn Glu Glu Ile His Cys Ala Ala Trp Pro Ser Phe Ser<br>180 185                   | c ctt tat cct 576<br>r Leu Tyr Pro<br>190 |  |  |  |  |  |  |  |  |  |  |  |  |  |

| aat<br>Asn        | gcg<br>Ala        | gcg<br>Ala<br>195 | aaa<br>Lys        | gcc<br>Ala        | ctg<br>Leu        | Gly<br>aaa        | cct<br>Pro<br>200 | gat<br>Asp        | gtc<br>Val        | aat<br>Asn        | gta<br>Val        | gcg<br>Ala<br>205 | gcc<br>Ala        | tct<br>Ser        | cga<br>Arg        | 624  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| atc<br>Ile        | tat<br>Tyr<br>210 | gcc<br>Ala        | gtt<br>Val        | gaa<br>Glu        | gly<br>ggg        | caa<br>Gln<br>215 | tgc<br>Cys        | ttc<br>Phe        | gta<br>Val        | cta<br>Leu        | gcg<br>Ala<br>220 | tcg<br>Ser        | tgt<br>Cys        | gcg<br>Ala        | ctc<br>Leu        | 672  |
| gtt<br>Val<br>225 | tca<br>Ser        | caa<br>Gln        | tcc<br>Ser        | atg<br>Met        | atc<br>Ile<br>230 | gat<br>Asp        | atg<br>Met        | ctt<br>Leu        | tgt<br>Cys        | aca<br>Thr<br>235 | gat<br>Asp        | gac<br>Asp        | gaa<br>Glu        | aag<br>Lys        | cat<br>His<br>240 | 720  |
| gcg<br>Ala        | ttg<br>Leu        | ctt<br>Leu        | ctg<br>Leu        | gct<br>Ala<br>245 | ggt<br>Gly        | ggt<br>Gly        | gga<br>Gly        | cac<br>His        | tca<br>Ser<br>250 | cgt<br>Arg        | atc<br>Ile        | ata<br>Ile        | Gly<br>999        | cct<br>Pro<br>255 | gat<br>Asp        | 768  |
| ggt<br>Gly        | ggt<br>Gly        | gac<br>Asp        | ttg<br>Leu<br>260 | gtc<br>Val        | gcg<br>Ala        | cct<br>Pro        | ctt<br>Leu        | gcc<br>Ala<br>265 | gaa<br>Glu        | aat<br>Asn        | gaa<br>Glu        | gag<br>Glu        | ggt<br>Gly<br>270 | att<br>Ile        | ctc<br>Leu        | 816  |
| tac<br>Tyr        | gca<br>Ala        | aac<br>Asn<br>275 | ctt<br>Leu        | gat<br>Asp        | cct<br>Pro        | gga<br>Gly        | gta<br>Val<br>280 | cgc<br>Arg        | atc<br>Ile        | ctt<br>Leu        | gct<br>Ala        | aaa<br>Lys<br>285 | atg<br>Met        | gcg<br>Ala        | gca<br>Ala        | 864  |
| gac<br>Asp        | cct<br>Pro<br>290 | Ala               | ggt<br>Gly        | cat<br>His        | tat<br>Tyr        | tcc<br>Ser<br>295 | cgt<br>Arg        | ccc<br>Pro        | gac<br>Asp        | att<br>Ile        | act<br>Thr<br>300 | cgc<br>Arg        | ttg<br>Leu        | cta<br>Leu        | ata<br>Ile        | 912  |
| gat<br>Asp<br>305 | cgc<br>Arg        | agc<br>Ser        | cct<br>Pro        | aaa<br>Lys        | tta<br>Leu<br>310 | ccg<br>Pro        | gta<br>Val        | gtt<br>Val        | gaa<br>Glu        | att<br>Ile<br>315 | Glu               | ggt<br>Gly        | gat<br>Asp        | ctt<br>Leu        | cgt<br>Arg<br>320 | 960  |
| cct<br>Pro        | tac<br>Tyr        | gct<br>Ala        | ttg<br>Leu        | ggt<br>Gly<br>325 | aaa<br>Lys        | gcg<br>Ala        | tct<br>Ser        | gag<br>Glu        | acg<br>Thr<br>330 | Gly               | gcg<br>Ala        | caa<br>Gln        | ctc<br>Leu        | gaa<br>Glu<br>335 | gaa<br>Glu        | 1008 |
| att<br>Ile        | . tga             | L                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1014 |

<210> 4

<211> 337

<212> PRT

<213> Unknown Organism

<223> Description of Unknown Organism: Obtained from an environmental sample

<400> 4

Met Lys Glu Ala Ile Lys Val Ala Cys Val Gln Ala Ala Pro Ile Tyr 5 10 Met Asp Leu Glu Ala Thr Val Asp Lys Thr Ile Glu Leu Met Glu Glu 30 25 20 Ala Ala Arg Asn Asn Ala Arg Leu Ile Ala Phe Pro Glu Thr Trp Ile 40 45 35 Pro Gly Tyr Pro Trp Phe Leu Trp Leu Asp Ser Pro Ala Trp Ala Met 60 55 50 Gln Phe Val Arg Gln Tyr His Glu Asn Ser Leu Glu Leu Asp Gly Pro 70 75 Gln Ala Lys Arg Ile Ser Asp Ala Ala Lys Arg Leu Gly Ile Met Val 90 Thr Leu Gly Met Ser Glu Arg Val Gly Gly Thr Leu Tyr Ile Ser Gln

|               |     |     | 100      |          |     |          |      | 105  |            |      |              |             | 110           |          |       |
|---------------|-----|-----|----------|----------|-----|----------|------|------|------------|------|--------------|-------------|---------------|----------|-------|
| Trp           | Phe | Ile | Gly      | Asp      | Asn | Gly      | Asp  | Thr  | Ile        | Gly  | Ala          | Arg         | Arg           | Lys      | Leu   |
|               |     | 115 |          |          |     |          | 120  |      |            |      |              | 125         |               |          |       |
| Lys           | Pro | Thr | Phe      | Val      | Glu | Arg      | Thr  | Leu  | Phe        | Gly  |              | Gly         | Asp           | Gly      | Ser   |
|               | 130 |     |          |          |     | 135      |      |      |            |      | 140          |             | _             |          |       |
| Ser           | Leu | Ala | Val      | Phe      | Glu | Thr      | ser  | Val  | Gly        |      | Leu          | Gly         | Gly           | Leu      | Cys   |
| 145           |     |     |          |          | 150 |          |      |      |            | 155  |              |             |               |          | 160   |
| Суѕ           | Trp | Glu | His      | Leu      | Gln | Pro      | Leu  | Thr  |            | Tyr  | Ala          | Leu         | Tyr           | Ala      | GIn   |
|               |     |     |          | 165      |     |          |      |      | 170        | _    |              | _           | _             | 175      | D     |
| Asn           | Glu | Glu |          | His      | Cys | Ala      | Ala  |      | Pro        | Ser  | Phe          | Ser         | Leu           | Tyr      | Pro   |
|               |     |     | 180      |          |     |          |      | 185  |            | _    |              |             | 190           | <b>a</b> | 7     |
| Asn           | Ala |     | Lys      | Ala      | Leu | Gly      |      | Asp  | Val        | Asn  | Val          | Ala         | Ala           | ser      | Arg   |
|               |     | 195 |          |          |     |          | 200  | _    | _          | _    |              | 205         | <b>a</b>      | 77.      | T     |
| Ile           |     | Ala | Val      | Glu      | Gly |          | Cys  | Phe  | Va⊥        | Leu  | Ala          | ser         | Cys           | Ala      | ьeu   |
|               | 210 |     |          |          |     | 215      |      | _    | _          |      | 220          |             | <b>G</b> 1    | T        | TT    |
| Val           | Ser | Gln | Ser      | Met      |     | Asp      | Met  | Leu  | Cys        |      | Asp          | Asp         | Glu           | гуя      | 11S   |
| 225           |     |     |          |          | 230 |          |      |      | _          | 235  | <b>-7</b> 7- | <b>-</b> 1- | <b>a</b> 1    | Dago     |       |
| Ala           | Leu | Leu | Leu      |          | Gly | Gly      | GIY  | His  |            | Arg  | тте          | тте         | Gly           | 255      | Asp   |
|               |     |     |          | 245      |     | _        | _    |      | 250        | 7    | <b>a</b> 1   | a1.,        | <b>03.</b> 11 |          | T.011 |
| Gly           | Gly | Asp |          | Val      | Ala | Pro      | Leu  |      |            | Asn  | GIU          | GIU         | Gly<br>270    | TTE      | пеп   |
|               | _   |     | 260      | _        | _   | ~ 7      | ** 7 | 265  |            | T    | ח ד ה        | Tira        |               | בות      | 777 = |
| Tyr           | Ala |     | Leu      | Asp      | Pro | GIY      |      | Arg  | тте        | цец  | ніа          | ду 5<br>285 | Met           | AIa      | AIU   |
|               |     | 275 | ~ 7      | 1        | _   | <b>~</b> | 280  | D-44 | 7 ~~       | т1.  | mbr          |             | T.011         | T.=11    | Tle   |
| Asp           |     | Ala | GIY      | Hls      | Tyr |          |      | PIO  | Asp        | тте  | 300          | AIG         | Leu           | шеш      | 110   |
|               | 290 | _   | _        | <b>.</b> | Ŧ   | 295      |      | 77-7 | <i>α</i> 1 | т1 о |              | G137        | Agn           | T.e11    | Δra   |
| _             | Arg | ser | Pro      | гаг      |     |          | vai  | Val  | GIU        | 315  | GIU          | Oly         | Asp           | пси      | 320   |
| 305           | _   |     | <b>.</b> | ~1       | 310 |          | 0.2  | C1., | Thr        |      |              | Gln         | T.e.11        | Glu      |       |
| Pro           | Tyr | Ата | ьeu      |          |     | Ата      | ser  | GIU  | 330        |      | лта          | 0111        | Leu           | 335      |       |
| <b>77</b> 3 - |     |     |          | 325      |     |          |      |      | 220        |      |              |             |               |          |       |
| Tle           |     |     |          |          |     |          |      |      |            |      |              |             |               |          |       |

Ile