Test 2

Name and Roll No.: _

Answer the questions in the spaces provided on the question paper. You can use the additional sheets for rough work.

Question No.:	1	2	3	4	5	6	Total
Marks:	2	2	3	4	4	5	20
Score:							

Useful formula: If
$$n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$$
, then Euler's totient function
$$\varphi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_t}\right)$$

1. Is it possible that $a^{\varphi(n)} \equiv 1 \pmod{n}$ if a is not co-prime to n? Justify your answer.

2. Let G be a group and let H be a subgroup of G. Which cosets of G wrt. H are subgroups of G? Justify your answer.

2

3. Does $\overline{x+5}$ have an inverse in $(\mathbb{R}[x]/(x^2+1)\mathbb{R}[x],\times)$? If yes give the inverse, otherwise prove that it doesn't exist.

4

3

4. Let $\mathbb{Z}_n[x]$ denote the set of all polynomials with non-negative degree and coefficients in \mathbb{Z}_n , with addition and multiplication modulo n. For example, $(x+4)\times(x+7)=x^2+(11\times x)+13$ in $\mathbb{Z}_{15}[x]$. Does Unique Factorization Theorem hold for $\mathbb{Z}_n[x]$? Justify your answer.

[Hint: If n is composite, then an equation of degree d may have more than d solutions in \mathbb{Z}_n .]

4

- 5. Suppose Bob wants to securely receive messages from Alice. To do this,
 - **Key generation:** Bob first generates an encryption and a decryption key in the following way:
 - 1. He chooses large distinct primes p and q, and computes n=pq.
 - 2. He chooses e co-prime to $\varphi(n)$. The pair (n, e) is given to Alice who will use it as the encryption key. Bob keeps d and $\varphi(n)$ secret. [Recall $\varphi(n)$ denotes the Euler's totient function.]
 - 3. He then computes d satisfying $de \equiv 1 \pmod{\varphi(n)}$.
 - Encryption: Now suppose Alice wants to send a message m (where gcd(m, n) = 1) to Bob. She computes $c = m^e \mod n$. She sends c to Bob.
 - **Decryption:** Bob receives c and computes $m' = c^d \mod n$.

Prove that m' = m.

6. Is 2 a generator of the group $(\mathbb{Z}_{83}^*, \times)$? Why / Why not? [Note: No marks for brute force or nearly brute force solutions.]

5