## Problem 1: Large powers of symmetric matrices (a $3 \times 3$ example)

Consider the matrix

$$M = \begin{bmatrix} 3/5 & 1/5 & 1/5 \\ 1/5 & 3/5 & 1/5 \\ 1/5 & 1/5 & 3/5 \end{bmatrix}$$

Since M is symmetric, the Spectral Theorem implies that there is an orthogonal basis for  $\mathbf{R}^3$  consisting of eigenvectors for M. For this problem, assume that we are also given that the eigenvalues of M are  $\lambda_1=1$  and  $\lambda_2=\frac{2}{5}$ .

- (a) Let  $V_1$  be the  $\lambda_1$ -eigenspace. Verify that  $\mathbf{w}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$  lies in  $V_1$ , and explain why it spans that space.
- (b) Find the  $\lambda_2$ -eigenspace  $V_2$ , and write it as the span of two orthogonal vectors  $\mathbf{w}_2$ ,  $\mathbf{w}_3$ .
- (c) Let  $\mathbf{w}_1', \mathbf{w}_2', \mathbf{w}_3'$  be unit vectors obtained from  $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ . Let W be the matrix whose columns are  $\mathbf{w}_1', \mathbf{w}_2', \mathbf{w}_3'$ . Find the diagonal matrix D where  $M = WDW^{\top}$ .
- (d) Using the fact that  $(2/5)^{100} \approx 0$  to over thirty-five decimal places, calculate  $M^{100}$  explicitly.

## Problem 2: Large powers of symmetric matrices (a $2 \times 2$ example)

Let  $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ , a symmetric matrix.

- (a) Compute the eigenvalues  $\lambda_1 > \lambda_2$  of A and find eigenvectors  $\mathbf{v}_1, \mathbf{v}_2$  for  $\lambda_1, \lambda_2$ , respectively. Check that  $\mathbf{v}_1, \mathbf{v}_2$  are orthogonal.
- (b) Write  $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  and  $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$  as linear combinations of the orthogonal basis  $\{\mathbf{v}_1, \mathbf{v}_2\}$ .
- (c) Use your expressions from part (b) to give an exact expression for  $A^{100}$ . (Hint: note that the first column of  $A^{100}$  is equal to  $A^{100}\mathbf{e}_1$ , and similarly for the second column. Use (b) to compute  $A^{100}\mathbf{e}_i$ .)
- (d) Using the (very accurate!) approximation  $(\lambda_2/\lambda_1)^{100} \approx 0$ , give a much simpler approximate expression for  $A^{100}$ .

## **Problem 3: Calculating multiple derivatives**

Consider the function

$$f(x,y) = e^{x\sin y}.$$

- (a) Find all first and second partial derivatives of f.
- (b) Find the gradient vector and Hessian matrix of f at (1,0).
- (c) Find the quadratic approximation to f(1+h,k) for h and k near 0.

## **Problem 4: Level sets of quadratic forms**

Consider the quadratic form  $Q(x, y) = x^2 + 6xy + y^2$ .

- (a) Find the symmetric  $2 \times 2$  matrix A for which  $\begin{bmatrix} x & y \end{bmatrix} A \begin{bmatrix} x \\ y \end{bmatrix} = Q(x, y)$ .
- (b) Find the eigenvalues  $\lambda_1$  and  $\lambda_2$  of A, and find unit eigenvectors  $\mathbf{v}_1$  and  $\mathbf{v}_2$  for these respective eigenvalues.
- (c) We can use the eigenvalues to express Q when its input is written in a basis of *unit* eigenvectors of A:

$$Q(x'\mathbf{v}_1 + y'\mathbf{v}_2) = \lambda_1 x'^2 + \lambda_2 y'^2.$$

Use this to sketch the level curves  $Q(x'\mathbf{v}_1 + y'\mathbf{v}_2) = \pm 8$  as well as  $Q(x'\mathbf{v}_1 + y'\mathbf{v}_2) = 0$  in an x'y'-coordinate plane, indicating where each crosses a coordinate axis.

(d) Explain why rotating the "standard basis" onto the orthonormal basis  $\{\mathbf{v}_1, \mathbf{v}_2\}$  carries  $x'\mathbf{e}_1 + y'\mathbf{e}_2$  onto  $x'\mathbf{v}_1 + y'\mathbf{v}_2$ , and carries the x', y' coordinate axes onto the "eigenlines" of A. Sketch the resulting rotation of the picture in (c); why is it the level sets Q(x,y) = -8,0,8? (This gives a *general technique* to draw level sets of any  $Ax^2 + Bxy + Cy^2$ .)

