Utilizing sensors for the purpose of building a decision support system for bridge maintenance

Jeremy Barisch-Rooney

June 16, 2019

Contents

1	Inti	oduction	1								
2	Literature review										
	2.1	Neural Clouds for Monitoring of Complex Systems	3								
	2.2	Combining Data-driven Methods with Finite Element Anal-									
		ysis for Flood Early Warning Systems	4								
	2.3	Flood early warning system: design, implementation and com-									
		putational modules	4								
	2.4	A clustering approach for structural health monitoring on									
		bridges	5								
f 3		Background material Condition classification									
	4.1	Components	7								
	4.2	Simulated sensor measurements	7								
		4.2.1 Neccessary data	7								
		4.2.2 Finite element model	7								
	4.3	Condition classification	7								
		4.3.1 Test setup	7								
		4.3.2 Classification model	7								
		4.3.3 Sensor placement	7								
		4.3.4 Uncertainty	7								

5	Decision support system													7		
	5.1	Outline														7
	5.2	Cost-benefit analysis														7
	5.3	Generalizing beyond bridge 705														7
6 Conclusion										7						

1 Introduction

The probability of a bridge to fail increases over time until it is no longer considered safe for use. Maintenance of a bridge is typically carried out when something goes wrong or according to a preventative maintenance schedule based on expert knowledge, neither approach making the best use of limited maintenance resources. Sensors can provide useful real-time information without the delay or cost of a manual maintenance check. How sensors can be utilized to build a decision support system (DSS) for bridge maintenance is the topic of this thesis.

Sensors on bridges can provide real-time measurements of the responses of the part of the bridge on which they are installed. Depending on the sensor-type this measured response may be translation, rotation, vibration or one of many other types of response. In this thesis the focus is on a single bridge, bridge 705 in Amsterdam. The reason bridge 705 was chosen is because a 3D finite element model (FEM) is available for the bridge, and a field test was conducted where known loads were applied to the bridge and the corresponding sensor measurements recorded. The FEM is useful so that sensor measurements for a known load can be simulated without having to conduct a field test, the measurements from the field test allow us to verify the accuracy of the data generated by simulation.

A DSS for bridge maintenance must provide information on the damage status of the bridge to the user of the system or policy maker. Thus it is necessary to transform the responses measured by the sensors into a report of the damage condition of the bridge. To accomplish this a condition classification model (CCM) is built which transforms sensor measurements into a condition report. The CCM is based on two methods referred to from now on as abnormal condition classification (ACC) and similar structure similar behaviour (SSSB).

The goal of ACC is to determine if the condition of the bridge has deviated from the normal range of conditions. To build an ACC system it is necessary to first find out what the range of sensor measurements are dur-

ing normal operation of the bridge. This is achieved by applying a normal range of loading conditions to the FEM and recording the simulated sensor measurements. Then a one-class classifier can be applied to the simulated responses and be used to decide if any subsequent sensor measurements fall within the expected normal range of responses or not.

The SSSB method is based on the assumption that similar structures should behave in a similar manner when subjected to the same load. Bridge 705 in Amsterdam has seven spans each with the same dimensions, ignoring the small differences due to construction and time in operation. To develop an SSSB system loads must be "driven" across the bridge in the FEM, then an analysis must be performed on the difference between sensor measurements from sensors at equivalent positions on each substructure.

The research question that this thesis answers is: how can sensors be utilized to build a DSS for bridge maintenance. The structure of this thesis and how the research question is answered is as follows. First a review of relevant literature and background material is presented. The DSS is then introduced at a high-level, showing how the separate components interact. The components of the DSS are examined in detail, with a large focus on the condition classification model that determines if sensor measurements represent an abnormal condition of the bridge. Since analysis is presented of which sensor types and what sensor placement is optimal for detecting such an abnormal condition. A finite element model is used to simulate sensor measurements in order to address the lack of available data. Due to the safety requirements of any bridge, uncertainty measures for the damage estimates are calculated. Once the capabilities and limitations of the model are understood, an outline of a DSS is presented for policy makers which includes the model and a cost-benefit analysis is presented of the system. Finally (stretch-goal) an investigation is conducted into how such a system can be generalized to bridges other than bridge 705.

2 Literature review

This section contains a review of relevant literature studied during this thesis project.

2.1 Neural Clouds for Monitoring of Complex Systems

In one-class classification, a classifier attempts to identify objects of a single class among all objects by learning from a training set that consists only of objects of that class. One-class classifiers are useful in the domain of system

condition monitoring because often only data corresponding to the normal range of operating conditions is available. Data corresponding to the class of abnormal conditions, when a failure or breakdown of a system has occurred, is often not available or is difficult or expensive to obtain.

The Neural Clouds (NC) method presented in TODO:REF is a one-class classifier which provides a confidence measure of the condition of a complex system. In the NC algorithm we are dealing with measurements from a real object where each measurement is considered as a point in n-dimensional space.

First a normalization procedure is applied to the data to avoid clustering problems in the subsequent step. The data is then clustered and the centroids of the clusters extracted. The centroids are then encapsulated with "Gaussian bells", and these Gaussian bells are normalized to avoid outliers in the data.

The summation of the Gaussian bells results in a height h for each point p on the hyperplane of parameter values. The value of h at a point p can be interpreted as the probability of the parameter values at p falling within the normal conditions represented by the training data.

In comparison to other one-class classifiers, the NC method has an advantage in condition monitoring in that it creates this unique plateau where height can be interpreted as probability of the system condition. Figure TODO:FIG shows this plateau in comparison with other one-class classifiers.

It is important to note that when significant changes occur in the normal state of the system, perhaps due to environmental changes, then the NC classifier should be retrained in order to avoid a false alarm. However, if a NC classifier is continually being retrained with real-time data then it may not detect a gradual long-term change to the system.

2.2 Combining Data-driven Methods with Finite Element Analysis for Flood Early Warning Systems

In this paper TODO:REF a system for real-time levee condition monitoring is presented based on a combination of data-driven methods and finite-element analysis. Levee monitoring allows for earlier warning signals incase of levee failure, compared to the current method of visual inspection. The problem with visual inspection is that when deformations are visiable at the surface it means that levee collapse is already in progress.

Data-driven methods are model-free and include machine learning and statistical techniques, whereas finite-element analysis is a model-based method.

One advantage of data-driven methods are that they do not require information about physical parameters of the monitored system. As opposed to finite-element analysis which in the case of levee condition monitoring requires parameters such as slope geometry and soil properties. The model-based methods provide more information about the monitored object, but are more expensive to evaluate and thus difficult to use for real-time condition assessment.

In this paper the data-driven and finite-element components of the system which were developed are referred to as the Artificial Intelligence (AI) and Computer Model (CM) respectively. The AI and CM can be combined in two ways. In the first case the CM is used for data generation. Data is generated by the CM corresponding to normal and abnormal conditions. The normal behaviour data is used to train the AI and both the normal and abnormal behaviour data can be used for testing the AI. In the second case shown in TODO:FIG the CM is used for validation of the alarms generated by the AI. If the AI detects abnormal behaviour then the CM is run to confirm the result. If the AI was correct a warning is raised, else the new data point is used to retrain the AI.

The paper includes a section which demonstrates the applicability of FEM for prediction tasks. Real sensor values (collected from an experiment where a constructed levee was intentionally collapsed) are compared to virtual sensor values generated by the CM. Figure TODO:REF it can be clearly seen how the real and virtual sensor values deviate prior to collapse.

2.3 Flood early warning system: design, implementation and computational modules.

In TODO:REF a prototype of an flood early warning system (EWS) is presented as developed within the UrbanFlood FP7 project. This system monitors sensors installed in flood defenses, detects sensor signal abnormalities, calculates failure probability of the flood defense, and simulates failure scenarios. All of this information is made available online as part of a DSS to help the relevant figure of authority make an informed decision in case of emergency or routine assessment.

Some requirements are listed which must be taken into account in the design of an EWS, these include:

- sensor equipment design, installation and technical maintenance
- sensor data transmission, filtering and analysis

- computational models and simulation components
- interactive visualization technologies
- remote access to the system

Thus it is clear that the development of an EWS or DSS consists of much more than the development of the software components, but must also take into account the installation of hardware and the transmission of information between components of the system.

The EWS consists of a number of interacting components. The Sensor Monitoring module receives data from the installed sensors which are then filtered by the AI Anomaly Detector. In case an abnormality is detected the Reliability Analysis calculates the probability of failure. If the failure probability is high then the Breach Simulator predicts the dynamics of the dike failure. The response which is calculated beginning with the AI Anomaly Detector and ending with the Breaching Simulator is a fast response i.e. the response is calculated quickly to be available to the decision maker without delay. The Virtual Dike module is additionally available for the purpose of simulation by expert users. The fast response and the response from the Virtual Dike module are both fed to the Flood Simulator which models the flooding dynamics, this information is sent to the decision support system to be made available to the decision maker.

2.4 A clustering approach for structural health monitoring on bridges

In this paper TODO:REF a clustering based approach is presented to group substructures or joints with similar behaviour and to detect abnormal or damaged ones. The presented approach is based on the simple idea that a sensor located at a damaged substructure or joint will record responses that are significantly different from sensors at undamaged points on the bridge.

The approach was applied to data collected from 2,400 tri-axial accelerometers installed on 800 jack arches on the Sydney Harbour Bridge. An *event* is defined as a time period in which a vehicle is driving across a joint. A pre-set threshold is set to trigger the recording of the responses by each sensor, each event is then represented by a vector of samples X.

Prior to performing any abnormality detection the data is preprocessed. First each event data is transformed into a feature $V_i = |A_i| - |A_r|$ where A_i is the instantaneous acceleration at the \$i\$th sample and A_r is the "rest

vector" or average of the first 100 samples. The event data is then normalised as $X = \frac{V - \mu(V)}{\sigma(V)}$.

After normalisation of the event data, k-nearest neighbours is applied for outlier removal. One might consider that outliers are useful in the detection of abnormal conditions, since they represent abnormal responses. However if outlying data per joint are removed, then a greater level of confidence can be had when an abnormal condition is detected knowing that the result is not based on any outliers. In this outlier removal step the sum of the energy in time domain is calculated for event data as $E(X) = \sum_i |x_i|^2$. Then for every iteration of k-nearest neighbours, the k closest neighbours to the mean of the enery of the joint's signals μ_{joint} is calculated.

The event data is then transformed from the time domain into a series of frequencies using the Fast Fourier Transform (FFT), such that the original vibration data is now represented as sequence that determines the importance of each frequency component in the signal. After this transformation a distance metric is calculated for each pair of event signals, this metric is used for k-means clustering of the data for anomaly detection. The distance metric used is the Euclidean distance: $dist(X,Y) = ||X-Y|| = \sqrt{\sum (x_i - y_i)^2}$.

Two clustering methods were applied, event-based and joint-based. In the event-based clustering experiment it was known beforehand that joint 4 was damaged. All event data was clustered using k-means clustering with K=2 which resulted in a big cluster containing 23,849 events and a smaller cluster of 4662 events mostly located in joint 4, detecting the damaged joint. In case there is no knowledge of abnormal behaviour then this method can be used to separate outliers and obtain a profile of normal behaviour.

In joint-based clustering a pairwise map of distances is calculated between joint representatives. A joint representative is calculated as the mean of the values of all event data for a joint, after the outlier removal phase. Two experiments were conducted. One experiment consisted only of 6 joints, including the damaged joint 4. The clustering method detected the damaged joint as can be seen in TODO:FIG. The second experiment was run on data from 71 joints. The resulting map can be seen in TODO:FIG which accuratley detected the damaged joint 135.

3 Background material

- 4 Condition classification
- 4.1 Components
- 4.2 Simulated sensor measurements
- 4.2.1 Neccessary data
- 4.2.2 Finite element model
- 4.3 Condition classification
- 4.3.1 Test setup
- 4.3.2 Classification model
- 4.3.3 Sensor placement
- 4.3.4 Uncertainty
- 5 Decision support system
- 5.1 Outline
- 5.2 Cost-benefit analysis
- 5.3 Generalizing beyond bridge 705
- 6 Conclusion