Notions de base de la théorie des graphes

Qu'est ce qu'un graphe?

Les Graphes modélisent de nombreuses situations concrètes où interviennent des objets en interaction:

Des villes reliées entre elles

Les interconnections routières, ferroviaires ou aériennes entre différentes villes.

Un réseau d'ordinateurs

Un arbre généalogique

DOMAINES D'APPLICATION

Les graphes sont utilisés dans de nombreux domaines.

 Réseaux de transport routier, transport d'eau, d'électricité

DOMAINES D'APPLICATION

- réseaux de transport de données (réseau de téléphonie fixe, GSM, wifi . . .)
- réseaux d'informations (bases de données, web, réseaux sociaux . . .)

DEFINITIONS ET VOCABULAIRE

- Un graphe est la donnée d'un certain nombre de points du plan, appelés sommets, certains étant reliés par des segments de droites ou de courbes appelés arêtes
- Deux sommets reliés par au moins une arête sont dits adjacents

DEFINITIONS ET VOCABULAIRE

- Une arête partant et arrivant au même sommet est appelée boucle.
- Deux arêtes sont adjacentes si au moins une de leurs extrémités est commune
- On dit qu'une arête est incidente à un sommet ou qu'un sommet est incident à une arête si le sommet est une des extrémités de l'arête
- Un sommet est isolé s'il n'est pas adjacent à aucun autre sommet (sommet D).
- L'arête AC est dite arête multiple

DEFINITIONS ET VOCABULAIRE

Un graphe simple s'il ne contient ni boucle ni arêtes multiples.

Un multi-graphe est un graphe qui n'est pas simple.

Familles de graphes

- Un graphe est nul s'il n'a aucune arête.
 C'est un ensemble de sommets isolés.
- Un graphe nul à n sommet est noté: Nn

- Un graphe complet est un graphe où chaque sommet est relié à tous les autres (c.à.d. toutes les arêtes possibles existes).
- Un graphe complet à n sommets est noté Kn

- Un graphe G=(V, E) est dit orienté si chaque élément de E, appelé arc, est orienté, (représenté par une flèche) munies d'un sens.
- L'arc ba,
 b (origine): prédécesseur a (extrémité): successeur

 Un graphe est dit planaire s'il peut être dessiné dans le plan sans croisement d'arêtes

Application pratique d'un graphe planaire

Peut-on relier trois maisons à trois sources d'eau, de gaz et d'électricité sans que les canalisations se croisent ?

Problème des 3 maisons

- Un graphe est biparti s'il existe une partition de son ensemble de sommets en deux sousensembles X et Y telle que chaque arête ait une extrémité dans X et l'autre dans Y.
- On définit le graphe biparti complet entre un ensemble de n sommets et un ensemble à m sommets (Km,n) comme le graphe simple tel que chaque sommet du premier ensemble est relié à chaque sommet du deuxième ensemble.

Graphe biparti complet K3,4

CONNEXITE

- Our graphe G = (V, E) est dit connexe) si pour tout couple de sommets (x, y) de V, il existe un chemin reliant ces deux sommets.
- (autrement dit, s'il est possible à partir de n'importe quel sommet, de rejoindre tous les autres en suivant les arêtes ou les arcs).

CONNEXITE

 Pour un graphe non connexe, on parlera de ses composantes connexes (CC)

Graphe avec 3 composantes connexes.

Graphe non connexe ayant 2 composantes connexes

- L'ordre d'un graphe est égal au nombre de ses sommets.
- Le degré d'un sommet est le nombre d'arêtes incidentes à ce sommet.

- L'ordre d'un graphe est égal au nombre de ses sommets.
- Le degré d'un sommet est le nombre d'arêtes incidentes à ce sommet.

Ordre de graphe

- L'ordre d'un graphe est égal au nombre de ses sommets.
- Le degré d'un sommet est le nombre d'arêtes incidentes à ce sommet.

Ordre de graphe = 3 (3 sommets)

- L'ordre d'un graphe est égal au nombre de ses sommets.
- Le degré d'un sommet est le nombre d'arêtes incidentes à ce sommet.

Ordre de graphe = 3 (3 sommets)

Degré de A:

- L'ordre d'un graphe est égal au nombre de ses sommets.
- Le degré d'un sommet est le nombre d'arêtes incidentes à ce sommet.

Ordre de graphe = 3 (3 sommets)

Degré de A: d(A)=4

- L'ordre d'un graphe est égal au nombre de ses sommets.
- Le degré d'un sommet est le nombre d'arêtes incidentes à ce sommet.

Ordre de graphe = 3 (3 sommets)

Degré de A: d(A)=4

Degré de B et C:

- L'ordre d'un graphe est égal au nombre de ses sommets.
- Le degré d'un sommet est le nombre d'arêtes incidentes à ce sommet.

Ordre de graphe = 3 (3 sommets)

Degré de A: d(A)=4

Degré de B et C: d(B)=d(C)=1

NOMBRE D'ARÊTES

Le nombre d'arêtes d'un graphe est égal à la somme des degrés des sommets divisée par deux :

$$n_{ar\hat{e}tes} = \frac{\sum d(sommet)}{2}$$

- La somme des degrés des sommets d'un graphe est paire.
- Le nombre de sommets de degré impair d'un graphe est donc toujours pair (sinon la somme des degrés des sommets serait impaire.
- Dans un graphe complet K_n (d'ordre n), tous les sommets sont de degré (n-1).

NOMBRE D'ARÊTES

n (arêtes)=[(d(A)+d(B)+d(C))/2]=[(1+1+4)/2]=3 arêtes

La somme de degrés est pair = 6

Le nombre de degré impair = 2 (pair)

ISOMORPHISME DE GRAPHES

Théorème

Si deux graphes G₁ et G₂ sont isomorphes (identiques, G₁≅G₂), alors ils ont le même ordre, même taille (nombre d'arêtes) et les degrés des sommets de G₁ sont les mêmes que les degrés des sommets de G₂.

SUITE DES DEGRES DES SOMMETS D'UN GRAPHE

Une suite d'entiers (d_1, d_2, \ldots, d_n) est dite graphique s'il existe un graphe à n sommets $\{v_1, \ldots, v_n\}$ avec v_i de degré d_i pour tout $i \in \{1, \ldots, n\}$.

(3,3,2,2)

La suite $(d_1, d_2, ..., d_n)$ est graphique si la somme de degrés est paire (condition nécessaire, mais pas suffisante).

Par exemple la suite (3,3,1,1), la somme de degrés =8 pair, mais n'est pas graphique

Pour savoir si la suite des degrés (d_1, d_2, \ldots, d_n) est graphique ou non, on applique **le théorème de Havel-Hakimi**.

THEOREM DE HAVEL-HAKIMI

Une suite d'entiers $(d_1, d_2, ..., d_n)$ trier par ordre décroissant $d_1 \ge d_2 \ge ... \ge d_n$ est la séquence de degrés d'un graphe simple si et seulement si la suite $(d_2 - 1, d_3 - 1, ..., d_{d_1+1} - 1, d_{d_2+1}, ..., d_n)$ est graphique.

Algorithme de Havel-Hakimi

- 1. Trier la suite d₁, d₂,...,d_n en ordre décroissant .
- 2. Supprimer le premier terme.
- 3. Soustraire 1 au d1 premiers éléments restants.
- 4. Si un élément devient négatif, la suite n'est pas graphique.
- 5. Si tous les éléments sont 0, la suite est graphique.
- 6. Sinon, réarranger en ordre décroissant et répéter à partir de l'étape 1 avec la nouvelle suite.

Exemples

Considérons la suite (3,3,2,2,2):

$$\begin{pmatrix}
1, 3, 2, 2, 2 \\
-1
\end{pmatrix} graphique \Leftrightarrow (2, 1, 1, 2)$$
Réarrangement
$$\begin{pmatrix}
1, 2, 1, 1 \\
-1
\end{pmatrix} graphique \Leftrightarrow (1, 0, 1)$$
Réarrangement
$$\begin{pmatrix}
1, 1, 0 \\
-1
\end{pmatrix} graphique \Leftrightarrow (0, 0)$$

donc la suite est graphique

Soit la suite (3,3,3,1):

$$\begin{pmatrix} 3, 3, 1 \\ -1 \end{pmatrix} graphique \Leftrightarrow (2, 2, 0)$$

$$\begin{pmatrix} 2, 2, 0 \\ -1 \end{pmatrix} graphique \Leftrightarrow (1, -1)$$

On en déduit donc qu'il n'existe pas de graphe simple dont la suite des degrés soit (3,3,3,1).

MATRICE ASSOCIEE A UN GRAPHE

• La matrice d'adjacence est une matrice de dimension $n \times n$ indiquant le nombre d'arêtes entre deux sommets. Pour les exemples suivant, nous avons :

$$M_{a} = \begin{pmatrix} a & b & c & d \\ 0 & 1 & 1 & 1 \\ b & 1 & 0 & 1 & 0 \\ c & d & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

(a) Graphe simple

$$M_b = \begin{pmatrix} a & b & c & d \\ 0 & 1 & 1 & 2 \\ b & 1 & 1 & 2 & 0 \\ 1 & 1 & 2 & 0 & 1 \\ 1 & 2 & 0 & 1 & 0 \end{pmatrix}$$

(b) Multigraphe

MATRICE ASSOCIEE A UN GRAPHE

- Dans le cas d'un graphe non orienté, la matrice d'adjacence est symétrique
- Pour un graphe non orienté, ne comportant <u>pas de boucle</u>. On peut retrouver le degré d'un sommet à partir de la matrice. Il suffit de faire la somme des coefficients de Ma sur la ligne (ou sur la colonne).

$$d(a) = 0+1+1+1=3$$
; $d(d)=1+1=2$

La demi somme de tous les coefficients de la matrice d'adjacence d'un graphe non orienté (sans boucle) est égale au nombre d'arêtes de ce graphe.

MATRICE ASSOCIEE A UN GRAPHE

Cas d'un graphe orienté

La somme de tous les coefficients de la matrice d'adjacence d'un graphe orienté est égale au nombre d'arcs de ce graphe (5 arcs).

CHAÎNE ET CYCLE D'UN GRAPHE

- Une chaîne est une séquence alternée de sommets et d'arêtes (une suite de sommets qui sont adjacents).
- La longueur d'une chaîne est le nombre d'arêtes qu'elle contient.

CHAÎNE ET CYCLE D'UN GRAPHE

Un cycle est une chaîne fermée. La longueur d'un cycle est le nombre d'arêtes qu'il contient.

Familles de graphes

- Un graphe cycle est constitué d'un cycle élémentaire de longueur n
- Un graphe cycle à n sommets est noté Cn (cycle graph)

- Un graphe chaîne est un graphe obtenul à partir d'un cycle en supprimant une arête sur n sommets.
- Un graphe chaîne à n sommets est noté
 Pn (Path graph)

- Un graphe roue est un graphe d'ordre n≥4 formé en ajoutant un sommet « centre » adjacent à tous les sommets du graphe cycle C_{n-1}
- Un graphe roue à n sommets est noté Wn (Wheel graph)

- Un graphe étoile est un graphe biparti complet K_{1,n-1}
- Un graphe étoile à n sommets est noté Sn (Star graph)

- Un graphe régulier est un graphe ou tous le sommet ont même degré k
- Un graphe régulier dont les sommets sont de degré k est appelé un graphe k-régulier.

Exemple

Cn: 2-régulier

Kn: (n-1)-régulier

MATRICE D'ADJACENCE-LONGUEUR D'UNE CHAINE

Soit G un graphe (orienté ou non) de matrice d'adjacence M, le nombre de chaînes (chemins) de longueur n d'un sommet i à un sommet j est égal au coefficient m_{ij} dans la matrice Mⁿ

Exemple

- 1. Combien y-a-t-il de chemins de longueur 3 entre B et A?
- 2. Combien y-a-t-il de cycles de longueur 3 dans ce graphe?

La résolution passe par les trois étapes suivantes :

- •Écrire la matrice M d'adjacence du graphe.
- Élever cette matrice à la puissance 3.
- Lire dans la matrice M³ la solution.

$$M = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

On remarque que le nombre de chaîne de longueur 3 entre B et A est égal 3.

B-F-C-A; B-C-D-A; B-C-B-A

Il y a 6 cycles de longueur 3 dans ce graphe: 1 cycle partant et arrivant à A, plus 1 cycle pour le sommet B,