TITLE

CONT ON SHEET 2 VOLTAGE COMPARATOR - LOW HYSTERESIS SCHEMATIC DWG. 125D3224

#3K-AL-0218

BOARD NO. 125D3225 G1 & G2

COD ON SHEET 2 FIRST MADE FOR SH NO.

REVISTO

TEST PROCEDURE

+

Part A

26 APR 1934 TOUT

- Connect +30V HQ to Pin 17, -22V HQ to Pin 21, and HQ ground to Pin 19. Connect lights Ll and L2 as shown in Test Sketch.
- 2. Turn R22 and R44 fully CCW.
- Apply HQ ground to Pins 9, 31, 41, & 39.
- Adjust R21 so that L1 is just on the point of lighting.
- Adjust R43 so that Will is just on the point of lighting.
- Remove the grounds from Pins 9, 31, 41, & 39.
- 7. Hook up board as per test set up.
- 8. Turn R22 and R44 fully counterclockwise. Alto
- Close S1. Diw 9.
- 10. Adjust 2K pot (see test set up) for +8.0 volts at Pin 31. Check that TP8 reads +8.0 volts.
- Adjust R20 for +9.0 volts at Pin 9. 11. Check that TP1 reads +9.0 volts.
- 12. Adjust R20 counterclockwise slowly observing Ll. When L1 lights stop turning R20.
 - 13. Read the voltage at Pin 9. This should equal +8.0 volts ± 30 mv.
 - 14. Turn R20 clockwise slowly, observing L1. When L1 goes out, stop turning R20.
 - 15. Read the voltage at Pin 9. This should be +8.03 volts ± 30 mv. See Note 1.
 - 16. Turn R20 about 3 turns clockwise.
 - Turn R22 fully clockwise. 17.
 - 18. Repeat steps 11 thru 15. This time L1 should go out at +8.2 + 50 mv. " Pick UP AT See Note 2.
- 19. Turn R22 fully counterclockwise.

20. Adjust 2K pot for -8.0 volts at Pin 31.

APPROVALS

2 7,8 UDC m&C 3-12-88

273-13 273-13 273-71

PRINTS '

ET-273

273-2

273-12

COPYRIGHT 1983 GENERAL ELECTRIC CO.

Apr. 29,1974 D'Moñe APR 2 9 ISSUED

Steam Turbine

Schenectady, N. Y.

DIA OU

P3K-AL-0218

sh NO. 1

470

FF-803-WA (4-73) PRINTED IN U.S.A.

LOCATION CONT ON SHEET

CODE-IDENT

P3K-AL-0218

VOLTAGE COMPARATOR - LOW HYSTERESIS

SCHEMATIC DWG. 125D3224

BOARD NO. 125D3225 G1 & G2

CONT ON SHEET 3 SH NO. 2 FIRST MADE FOR

REVISIC

- 21. Adjust R20 CCW for -7.0 volts at Pin 9.
 - 22. L1 should be out. Adjust R20 CCW slowly observing L1. When L1 lights, stop turning R20.
 - 23. Read the voltage at Pin 9. It should have a value of -8.0 volts + 30 mv.
 - 24. Adjust R20 slowly CW observing L1. When L1 goes out, stop turning R20.
 - 25. Read the voltage at Pin 9. This should have a value of -7.97 volts +30 mv. See Note 1.
 - 26. Turn R20 about 3 turns CW.
 - 27. Turn R22 fully CW. Repeat steps 21 thru 25, only this time L1 should go out at -7.8 ± 50 mv. See Note 2.
- -> 28. Turn R22 full CCW.

+

+

- 29. Open S1, close S2. 🚫 🖔
- 30. Adjust 2K pot for +8.0 volts at Pin 39. Check that TP9 reads +8.0 volts.
- 31. Adjust R42 CW for +9.0 volts at Pin 41. TP 10 should read +9.0 v.
- 32. L2 should not be lighting. Adjust R42 slowly CCW until L2 lights. When this happens stop turning R42.
- 33. Read voltage at Pin 41. This should equal 8.0 volts \pm 30 mv.
- 34. Adjust R42 slowly clockwise. L2 should go out. When this happens stop turning R42.
- 35. Read voltage at Pin 41. This should equal +8.03 volts + 30 mv. See Note 1.
- 36. Turn R44 fully clockwise. Repeat steps 31 thru 35. This time L2 should go out at +8.2 volts +50 mv. See Note 2.
- 37. Turn R44 fully CCW.
- 38. Adjust 2K pot (see test set up) for -8.0 volts at Pin 39.
- 39. Adjust R42 CCW for -7.0 volts at Pin 41.
- 40. L2 should be out. Turn R42 counterclockwise slowly until L2 lights.

DADE BY DIV OR P3K-AL-0218

Steam Turbine DIV OR P3K-AL-0218

Schenectady, N. Y. LOCATION CONT ON SHEET 3 SH NO. 2

PP-8/13-WA (4-73)

CODE IDENT

CONT ON SHEET 4 SH NO. 3

REV O

+

+

TITLE

VOLTAGE COMPARATOR - LOW HYSTERESIS SCHEMATIC DWG. 125D3224

BOARD NO. 125D3225 G1 & G2

P3K-AL-0218

SH NO.

FIRST MADE FOR

REVISIO

- 41. Read voltage at Pin 41. This should equal -8.0 volts \pm .03 volts.
- 42. Adjust R42 slowly CW observing L2. When L2 goes out, stop turning R42.
- 43. Read the voltage at Pin 41. It should be -7.97 volts + 30 mv. See Note 1.
- 44. Turn R44 completely clockwise. Repeat steps 39 thru 43, only this time L2 should go out at -7.8 volts + 50 mv. See Note 2.
- 45. Turn R44 fully CCW.

ACROSS

- 46. Connect an oscilloscope in place of Ll.
- 47. Set R20 and R42 for zero volts at TP1 and TP10, respectively.
- 48. Close S1. Adjust the 2K pot for +5 volts DC at Pin 31.
- 49. Open S1. Connect S1 to trigger the scope. Close S1 and observe the trace on opening or closing on the scope. The pickup time should be less than 16 ms.
- 50. Open S1 and observe that dropout time of the VC. It should be less than 30 ms.
- 51. Connect up the oscilloscope in place of L2.
- 52. Close S2 and observe the trace on the oscilloscope. The pickup time should be less than 16 ms.
- 53. Open S2 and observe the trace on the scope. The dropout time should be less than 30 ms.

Failures: Any test that cannot be carried out is a condition for rejection and should be reported to Control Design Engineering.

- NOTE 1: With hysteresis pot (R22 or R44) at full CCW the difference between pick-up voltage and drop-out voltage must be less than 30 mv.
- NOTE 2: With hysteresis pot (R22 or R44) at full CW the difference between pick-up voltage and drop-out voltage must be greater than 200 mv.

PRINTS

D. Mone Apr. 29, 1974

APR 2 9 1974

Steam Turbine

Schenectady, N. Y.

APPROVALS

DIV OR

LOCATION CONT ON SHEET

P3K-AL-0218

sh NO. 3

- 6. Adjust R42 for -1 V DC at TP 9. Apply the square wave across Point B and Pin 3. Monitor the voltage across Rb. It should be similar to that across Ra in step 4.
- 7. Adjust R42 for +1 V DC at TP9. Apply the square wave from Point B to Pin 1. The signal across Rb should be similar to that across Ra in step 4.

PRINTS

D. Mone Apr. 29, 1974

Steam Turbine DIV OR P3K-AL-0218

Schenectady, N. Y. LOCATION CONT ON SHEET 5 SH NO. 4

F-803-WA (4-73)

+

CODE IDENT

- 1. Set Vuttage 10 to 2VAC at 200 HZ
- 2. Increase Frequentil
 Voltage drops to
- 3 Freq should be between 3994 HZ and 5976 HZ
- 4. Repeat for all ck+s.

9336

1.4 VRms

GENERAL & ELECTRIC P3K-AL-0218 NO. O TITLE CONT ON SHEET VOLTAGE COMPARATOR-LOW HYSTERESIS SCHEMATIC DWG. 125D3224 P3K-AL-0218 BOARD NO. 125D3225 G1 & G2 FIRST MADE FOR CONT ON SHEET 6 sh NO. 5 REVISIO Fig. 1 21 ーススレクー 17 2K 2K1.2K +30Va 24 Voc 24 VDC PRINTS TO Mone Mone APPROVALS Apr. 29, 1974 -Steam Turbine APR 2 9 1974 P3K-AL-0218 Schenectady, N.Y. LOCATION CONT ON SHEET SH NO. PF-803-WA (2-73) PRINTED IN U.S.A. CODE IDENT N

EHC TEST ENGINEER

PRINT

D.Mone Apr. 29, 1974 ISSUED

Steam Turbine

Schenectady, N.Y.

DIV OR .. DEPT.

P3K-AL-0218 LOCATION CONT ON SHEET

FF-803-WA (4-73) PRINTED IN U.S.A.

CODE ICE

Data Sheet

Job #							.	
Serial #					Burn-in Start			
Date						·	·	
			Sheet 1 of 2_		Burn-in Stop			
Test Proced	ure _P3K-AL	-0218			Technician			
Test						Pot Values		
Procedure		Lower	Pre-Burn	Post Burn		If applicable		
Step	Nominal + to CW	Limit	in Results	in Results	Upper Limit	CW	ccw	Pass/Fail
R21	- to CCW	C1 - C2						:
1/21	+ to CW	from		-	-			
R43	- to CCW	C8 - C9	-	_	_			
10	+8.0VDC	+8.0VDC			+8.0VDC	-	_	
11	+9.0VDC	+9.0VDC			+9.0VDC		-	
11 -R20		-	<u>-</u>	<u>-</u>	-			
13	+8.0VDC	+7.97VDC		<u> </u>	+8.03VDC	-	-	
15	+8.03VDC	+8.0VDC			+8.06VDC		-	
18	> 200mV	> 200mV				-	-	
23	-8.0VDC	-7.97VDC			-8.25VDC	<u>-</u>	_	
25	-7.97VDC	-7.94VDC			-8.0VDC	-	-	
27	> 200mV	> 200mV			-	-	-	
30	+8.0VDC	+8.0VDC			+8.0VDC	_	-	
31	+9.0VDC	+9.0VDC			+9.0VDC		_	
31 -R42				-				
33	+8.0VDC	+7.97VDC			+8.03VDC	_	<u>-</u>	
35	+8.03VDC	+8.0VDC			+8.06VDC	<u>-</u>		
36	> 200mV	> 200mV					-	
41	-8.0VDC	-7.97VDC			-8.03VDC			
43	-7.97VDC	-7.94VDC			-8.0VDC		-	
44	> 200mV	> 200mV				_	-	
49	< 16mS							
50	< 1.85							
52	< 16mS							
53	< 1.85							

Data Sheet

Job #									
Serial #					Burn-in Start				
Date									
Data Sheet for125D3225G0002Sheet 2 of 2_					Burn-in Stop				
Test Procedu	re _P3K-AL-	0218			Technician				
Test							Pot Values		
Procedure Step	Nominal	Lower Limit	Pre-Burn in Results	Post Burn in Results	Upper Limit		If applicable CW CCW		
Part B	TVOTTILITAL	Little	III ICSUITS	III Nesuits	Opper Limit	CVV	CCVV	Pass/Fail	
3-18		3984 Hz	<u>.</u>	<u> </u>	5976 Hz				
1-18		3984 Hz			5976 Hz		_		
6-20		3984 Hz			5976 Hz	-			
5-20		3984 Hz			5976 Hz	-	-		
	_								
								···	
						_			
	_								
_									