运筹学第五次作业参考答案(20230322)

1. 用单纯型法直接求解如下线性规划问题

$$\max z = 5x_1 + x_2 + 2x_3$$
s.t. $x_1 + x_2 + x_3 \le 6$

$$6x_1 + x_3 \le 8$$

$$x_2 + x_3 \le 2$$

$$x_j \ge 0, j = 1, 2, 3$$

其最优单纯型表如下:

BV	x_1	x_2	x_3	X_4	<i>x</i> ₅	X_6	RHS
x_4	0	1/6	0	1	-1/6	-5/6	3
x_1	1	-1/6	0	0	1/6	-1/6	1
x_3	0	1	1	0	0	1	2
	0	-1/6	0	0	-5/6	-7/6	z-9

- 1) 从表中直接读出该问题对偶问题的最优解和最优值。
- 2)若目标函数中 x_1 的系数变为 c_1 ,求能够使当前基保持最优的 c_1 的取值范围。

解:

- 1) 对偶问题的最优值为 9,最优解为 $(y_1, y_2, y_3) = (0, \frac{5}{6}, \frac{7}{6})^T$
- 2) 设目标函数变为 $\max z = C_1 x_1 + x_2 + 2x_3$, 则单纯形表变为

			<u></u>				
BV	x_1	x_2	x_3	x_4	x_5	x_6	RHS
x_4	0	1/6	0	1	-1/6	-5/6	3
x_1	1	-1/6	0	0	1/6	-1/6	1
x_3	0	1	1	0	0	1	2
	C_1	1	2	0	0	0	z-9

将目标函数中基变量的系数消去得到

BV	x_1	x_2	x_3	x_4	x_5	x_6	RHS
x_4	0	1/6	0	1	-1/6	-5/6	3
x_1	1	-1/6	0	0	1/6	-1/6	1
x_3	0	1	1	0	0	1	2
	0	-1+ <i>C</i> ₁ /6	0	0	- <i>C</i> ₁ /6	-2+ <i>C</i> ₁ /6	z-4- <i>C</i> ₁

若仍然保持当前基为最优,应有

$$\begin{cases} -1 + \frac{C_1}{6} \le 0 \\ -\frac{C_1}{6} \le 0 \\ -2 + \frac{C_1}{6} \le 0 \end{cases}$$

解得 $0 \le C_1 \le 6$

2. 用分支定界法求解下面整数规划问题。

max
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 + 3x_2 \le 14$
 $x_1 + 0.5x_2 \le 4.5$
 $x_1, x_2 \ge 0$, 且为整数

解:

设原问题的松弛问题为(P1),解该问题有 $x^* = \left(\frac{13}{4}, \frac{5}{2}\right)^{\mathsf{T}}$,上界 $\bar{z}_1 = \frac{59}{4}$ 。对该问题分别加上约束 $x_1 \leq 3\pi x_1 \geq 4$ 形成子问题(P2)和(P3)。

解(P2)有 $x^* = \left(3, \frac{8}{3}\right)^{\mathsf{T}}$,上界 $\bar{z}_2 = \frac{43}{3}$ 。该问题分别加上约束 $x_2 \leq 2\pi x_2 \geq 3$ 形成子问题(P4)和(P5).

解(P3)有
$$x^* = (4,1)^{\mathsf{T}}$$
,上下界 $\bar{z}_3 = \underline{z}_3 = 14$ 。

解(P4)有
$$x^* = (3,2)^\mathsf{T}$$
,上下界 $\bar{z}_4 = \underline{z}_4 = 13$ 。由于 $\bar{z}_4 < \underline{z}_3$,故剪枝。

解(P5)有
$$x^* = \left(\frac{5}{2}, 3\right)^{\mathsf{T}}$$
,上界 $\bar{z}_5 = \frac{27}{2}$ 。由于 $\bar{z}_5 < \underline{z}_3$,故剪枝。

综上可得原问题最优解为 $x^* = (4,1)^T$, $z^* = 14$ 。树状图如下:

3. 用割平面法求解下面线性规划问题。

max
$$z = 11x_1 + 4x_2$$

s.t. $-x_1 + 2x_2 \le 4$
 $5x_1 + 2x_2 \le 16$
 $2x_1 - x_2 \le 4$
 $x_1, x_2 \ge 0$, 且为整数

解:

原问题引入松弛变量 x_3, x_4, x_5 , 画出单纯形表

BV	x_1	x_2	<i>x</i> ₃	χ_4	<i>x</i> ₅	RHS
x_3	-1	2	1	0	0	4
x_4	5	2	0	1	0	16
x_5	2	-1	0	0	1	4
	11	4	0	0	0	

BV	x_1	x_2	x_3	x_4	<i>x</i> ₅	RHS
x_3	0	3/2	1	0	1/2	6
x_4	0	9/2	0	1	-5/2	6
x_1	1	-1/2	0	0	1/2	2
	0	19/2	0	0	-11/2	

BV	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	RHS
x_3	0	0	1	-1/3	4/3	4
x_2	0	1	0	2/9	-5/9	4/3
x_1	1	0	0	1/9	2/9	8/3
	0	0	0	-19/9	-2/9	

取上表中第3行的约束,即

$$x_1 + \frac{1}{9}x_4 + \frac{2}{9}x_5 = \frac{8}{3}$$
$$\Delta(x) = \frac{2}{3} - \left(\frac{1}{9}x_4 + \frac{2}{9}x_5\right)$$

添加割平面约束 $\Delta(x) \leq 0$,以及松弛变量 x_6 ,用对偶单纯形法,得到

BV	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	RHS
x_3	0	0	1	-1/3	4/3	0	4
x_2	0	1	0	2/9	-5/9	0	4/3
x_1	1	0	0	1/9	2/9	0	8/3
x_6	0	0	0	-1/9	-2/9	1	-2/3
	0	0	0	-19/9	-2/9	0	

BV	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	RHS
χ_3	0	0	1	-1	0	6	0
x_2	0	1	0	1/2	0	-5/2	3
x_1	1	0	0	0	0	1	2
x_5	0	0	0	1/2	1	-9/2	3
	0	0	0	-2	0	-1	

此时得到最优解 $x^* = (2,3,0,0,3,0)^\mathsf{T}$,最优值 $z_{\text{max}} = 34$

- 4. 某大学运筹学专业硕士生要求课程计划中必须选修两门数学类,两门运筹学类和两门计算机类课程。该专业所有可选课程及其归类如下表所示:
- 注: 凡归属两类的课程选修后可认为两类中各选修了一门课程。

课程名称	所属归类
微积分	数学类
计算机程序设计	计算机类
运筹学	数学类,运筹学类
数据结构	数学类,计算机类
管理统计	数学类,运筹学类
计算机模拟	计算机类,运筹学类
预测	数学类,运筹学类

此外,有些课程必须学习了先修课程才能选修,如修计算机模拟必须先学习计算机程序设计。所有要求先修课程的选修课及其对应的先修课程如下表所示:

课程名称	对应先修课程
计算机模拟	计算机程序设计
数据结构	计算机程序设计
管理统计	微积分
预测	管理统计

现在希望知道一个硕士生最少应选修几门课程(及其对应的课程名称)才能满足上述要求。请列出求解该问题的整数线性规划模型。

解:

设 $x_1, x_2, ..., x_7$ 分别按顺序表示以上 7 门课程的选修情况,其中 $x_i = 1$ 表示选修第i门课程, $x_i = 0$ 表示不选第i门课程。希望选修课程数目最少,即目标函数为 $\min z = \sum_{i=1}^7 x_i$,约束条件包含两个方面:

1) 课程数量的约束:要求至少选修两门数学类,两门运筹学类和两门计算机

类课程,则有

$$x_1 + x_3 + x_4 + x_5 + x_7 \ge 2$$
$$x_3 + x_5 + x_6 + x_7 \ge 2$$
$$x_2 + x_4 + x_6 \ge 2$$

2) 先修课程的关系约束: 例如"数据结构 x_4 "的先修课程是"计算机程序设计 x_2 ",那么当 $x_4 = 1$ 时,必须有 $x_2 = 1$,这个条件可以表示为 $x_4 \le x_2$ 。根据表格可以列出所有的先修关系约束

$$x_6 \le x_2$$

$$x_4 \le x_2$$

$$x_5 \le x_1$$

$$x_7 \le x_5$$

综上,问题的0-1规划模型为

$$\min z = \sum_{i=1}^{7} x_i$$
s.t. $x_1 + x_3 + x_4 + x_5 + x_7 \ge 2$

$$x_3 + x_5 + x_6 + x_7 \ge 2$$

$$x_2 + x_4 + x_6 \ge 2$$

$$x_2 - x_6 \ge 0$$

$$x_2 - x_4 \ge 0$$

$$x_1 - x_5 \ge 0$$

$$x_5 - x_7 \ge 0$$

$$x_i \in \{0, 1\}, i = 1, 2, ..., 7$$

5. 某航空公司计划在全国选择若干个机场组建基地。设在机场j组建基地所需费用为 c_j , j=1,2,..., n。若该公司在机场i和机场j的基地组建完成,则可开通往返两地的航班并获得票款收益 r_{ij} , $1 \le i < j \le n$ 。该航空公司基地组建费用上限为B. 应选择在哪些机场组建基地才能使获得的收益最大。试写出该问题的数学规划。 \mathbf{A} :

设 x_j 表示是否在机场j组建基地,即 $x_j = 1$ 表示组建基地, $x_j = 0$ 表示不组建。则可写出规划问题

$$\max z = \sum_{1 \le i < j \le n} r_{ij} x_i x_j$$
 s.t.
$$\sum_{i=1}^n c_j x_j \le B, \qquad x_i \in \{0,1\}, j=1,\dots,n$$

 $\pmb{ ilde{\mathcal{L}}}$: 目标函数中也可以减去 $\sum_{j=1}^n c_j x_j$,表示净收益。两种表示都算正确。