STID 1ère année - AJUSTEMENT ET SÉRIES CHRONOLOGIQUES

ETUD'+, Centre de formation Et Cours de soutien 11 place de la Tour 641610, Morlaàs

FEUILLE DE TRAVAUX DIRIGÉS N° 4

ETUD'+, Centre de formation Et Cours de soutien 11 place de la Tour 641610, Morlaàs

Moyenne mobiles - Médianes mobiles - Résidus

Enseignant-Formateur: H. El-Otmany

A.U.: 2019-2020

Exercice $n^{\circ}1$ On considère la série chronologique Y_t représentant l'effectif de la population des États-Unis de 1780 à 1860 (en millions), voir le tableau.

- 1. Représenter graphiquement la série sans oublier les dates en abscisse. Quelle est l'allure de la courbe obtenue.
- 2. Créer une variable f_t contenant les valeurs de la tendance obtenue par un ajustement linéaire.
- 3. Quel ordre k à choisir pour lisser la série par les moyennes mobiles (MA). Créer une nouvelle variable $MA_k(t)$ contenant ces moyennes.
- 4. Avec le même ordre k, calculer $med_k(t)$ la série de médiane mobiles.
- 5. Représenter sur un même graphique les séries Y_t , f_t , $MA_k(t)$ et $med_k(t)$. Commenter le résultat.
- 6. Calculer et commenter le coefficient de corrélation linéaire.
- 7. Calculer et représenter graphiquement les résidus.
- 8. Si on utilise ces tendances pour faire des prévisions, quelles sont les valeurs obtenues pour chacune des tendances au mois t=21? Interpréter le résultat.

Date	Temps t	Effectif Y_t
1900	1	2,78
1900	2	3,93
1900	3	5,31
1900	4	7,24
1901	5	9,64
1901	6	12,87
1901	7	17,07
1901	8	23,49
1902	9	31,44
1902	10	31,44
1902	11	31,44
1902	12	31,44
1903	13	31,44
1903	14	31,44
1903	15	31,44
1903	16	31,44
1904	17	31,44
1904	18	31,44
1904	19	31,44
1904	20	31,44

Exercice n°2 Le tableau présente le taux de chômage mensuel en Suisse au cours de 2014 et 2015.

Mois t	1	2	3	4	5	6	7	8	9	10	11	12
Année 2014	4.0	4.0	4.0	3.9	3.9	3.9	3.8	3.8	4.0	4.0	4.1	4.2
Année 2015	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0	5.	5.3

- 1. Présentez Table 1 sous forme d'une série trimestrielle.
- 2. En supposant un modèle additif :
 - a. déterminer le trend par moindre carrés.
 - b. déterminer les écarts saisonniers.
 - c. déterminer la série corrigée des variations saisonnières
 - d. calculez la valeur des résidus

- e. représenter le trend, les écarts saisonniers, la série corrigée des variations saisonnières et les résidus.
- 3. Reprenez les questions précédentes en supposant un modèle multiplicatif.

Exercice n°3 On s'intéresse à l'évolution du cours de l'once d'or en USD, chaque trimestre de 2012 à 2015.

Trimestre t	1	2	3	4
2012	52.7	50.6	56.2	53.6
2013	47.9	41.3	40.9	39.5
2014	42.1	42.3	38.8	38.0
2015	38.6	37.5	35.8	34.1

- 1. Déterminer les moyennes mobiles d'ordre trois.
- 2. Calculez les écarts saisonniers.
- 3. Déterminer les coefficients saisonniers ajustés.
- 4. Déterminer la série des cours corrigées des variations saisonnières.
- 5. Calculer la valeur des résidus.

Exercice n°4 (*traitement des extrêmes*) Cette technique permet de prolonger la série filtrée par les médianes mobiles sur toute la période traitée. Pour ce faire, nous utilisons les démarches suivantes :

- Pour $2 \le t \le n-1$, il suffit d'utiliser les médianes mobiles d'ordre inférieur.
- Pour t = 1 (respectivement tt = n) on utilise une interpolation linéaire à partir des valeurs lissées z_t des instants 2 et 3 (respectivement n 1 et n 2).
- Pour déterminer Z_1 , on utilise une interpolation linéaire à l'instant t=0 des valeurs z_2 et z_3 et on obtient une valeur z_0 . On trouve la valeur lissée de $z_1 = \text{med}(z_0, y_1, z_2)$.

Pour illustrer cette technique, on présente les valeurs de la série Y_t et de la série des médianes mobiles $med_5(t)$ d'ordre 5 dans le tableau c-dessous.

	t	1	2	3	4	5	6	7	8	9	10	11	12	13
ſ	Y_t	65	73	67	72	68	67	61	58	55	47	46	42	44
ĺ	$med_5(t)$			68	68	67	67	61	58	55	47	46	46	44

$\int t$	14	15	16	17	18	19	20	21	22	23	24	25
Y_t	49	38	40	32	36	29	28	80	36	23	27	29
$med_5(t)$	42	40	38	36	32	32	36	29	28	29		

- 1. Calculer z_1 et z_2 .
- 2. Montrer que $z_0 = 3z_2 2z_3$.
- 3. Calculer z_0 et z_1 en utilisant la technique précédente.
- 4. Expliciter la technique pour trouver la valeur de z_n .
- 5. Sur les données du tableau ci-dessus, calculer la valeur de z_{25} .