Otázky k MIPSUM-u – vypracované

1. Ako sa volá najmenšia adresovateľná časť pamäti? Koľko je to bitov?

Najmenšia adresovateľná časť pamäti je **1 byte**, t.j. 00 = 1 byte = **8 bitov**.

2. Aký je rozdiel medzi inštrukčnou pamäťou a dátovou pamäťou?

Inštrukčná pamäť v IF stupni je adresovaná pomocou PC a dodáva odpovedajúcu 32-bitovú inštrukcie do vyrovnávacieho registra IF/ID.

Pri zmene vstupného signálu MemWrite (zápis do pamäti) z nuly do jedničky je vstupná 32-bitová hodnota z **dátového vstupu** uložená na adresu, ktorá je na adresnom vstupe.

Inštrukčná pamäť obsahuje jednotlivé inštrukcie simulátora (operačný kód), dátová pamäť obsahuje hodnoty uložené v pamäti – konštanty. Čísla sú vždy ukladané v hexadecimálnom formáte.

3. Koľko bitová je inštrukcia, koľko bitové sú dáta?

32, 32

4. K čomu slúži ALU?

ALU v tomto simulátore môže vykonávať rôzne operácie s 32-bitovými hodnotami. Riadiaca jednotka (The Control Unit) určuje ALU po 4-bitovom riadiacom kanále, ktorá operácia bude vykonaná. Prenos z najvyššieho bitu sčítačky v ALU (Carry) a pretečenie (Overflow) nie sú implementované.

5. K čomu slúžia multiplexory?

Používa sa na prepojenie ľubovoľného jeho vstupu s jeho výstupom. V tejto schéme multiplexory distribuujú riadiace signály podľa príslušného operačného kódu.

6. Ako sa vykonáva program v prúdovom prostriedku (koľko stupňov, koľko inštrukcií sa spracúva súčasne)?

Znamená to, že naraz sa v procesore spracováva viac inštrukcií. Východiskom tejto technológie je skutočnosť, že spracovanie inštrukcie možno rozložiť na (spravidla) päť jednoduchších úkonov, ktoré na seba nadväzujú.

7. Vymenujte stupne prúdového spracovania.

prenos (Instruction Fetch – IF), dekódovanie (Instruction Decode - ID), vykonanie (Execution - EX), výber operandu z pamäti (Data Access – DA, asi MEM), zápis výsledku do pamäti (Write Back - WB)

8. Stručne charakterizujte stupeň prúdového spracovania FETCH

Prenos inštrukcie z pamäti do procesora.

9. Stručne charakterizujte stupeň prúdového spracovania ID

Inštrukcia sa konvertuje do jednoduchých povelov (mikrooperácií), ktoré výkonné jednotky procesora dokážu vykonať.

10. Stručne charakterizujte stupeň prúdového spracovania EX

Vykonanie povelov.

11. Stručne charakterizujte stupeň prúdového spracovania MEM

Výber operandu z pamäti.

12. Stručne charakterizujte stupeň prúdového spracovania WRITEBACK

Zápis výsledku do pamäti.

13. K čomu slúži vyrovnávací register (Latch)?

Vyrovnávacie registre zachytávajú dáta vypočítané vnútri daného stupňa, až kým nezačne nový cyklus prúdového prostriedku, kedy ich pripoja k nasledujúcemu stupňu.

14. Ktorý vyrovnávací register plní funkciu programového počítadla (PC)?

IF/ID

15. Vysvetlite, ako sa vykonajú inštrukcie lw, sw, add, sub, addi, or, xori

16. Čo je to NOP?

Prázdna inštrukcia

17. Podrobne vysvetlite vykonanie inštrukcie beq (bneq) v prúdovom prostriedku (v ktorom stupni prúdového prostriedku sa rozhodne, či sa bude meniť poradie vykonávania inštrukcií) ?

18. Vysvetliť vykonanie súboru inštrukcií v DEMO.mp

zdroj odpovedí 6-12: http://frdsa.fri.uniza.sk/~janosik/Kniha/Prudove_sprac.html