INTRO TO DATA SCIENCE REGRESSION & REGULARIZATION

LAST TIME:

I. BUMPY & PANDAS
II. VISUALIZATION
III. OVERFITTING & UNDERFITTING
IV. CROSS VALIDATION

QUESTIONS?

INTRO TO DATA SCIENCE

QUESTIONS?

WHAT WAS THE MOST INTERESTING THING YOU LEARNT?

WHAT WAS THE HARDEST TO GRASP?

I. LINEAR REGRESSION (INCL. MULTIPLE REGRESSION)
II. POLYNOMIAL REGRESSION
III. REGULARIZATION

LAB:

IV. IMPLEMENTING MULTIPLE REGRESSION & POLYNOMIAL REGRESSION IN PYTHON

KEY OBJECTIVES

- WHAT ARE LINEAR AND POLYNOMIAL REGRESSION
- WHICH PROBLEMS CAN BE TACKLED WITH REGRESSION TECHNIQUES
- HOW TO IMPLEMENT LINEAR AND POLYNOMIAL REGRESSION IN PYTHON
- WHAT IS REGULARIZATION
- HOW REGULARIZATION CAN HELP WHEN DATA IS NOISY
- HOW TO IMPLEMENT REGULARIZATION IN PYTHON

L LINEAR REGRESSION

	Continuous	Categorical	
Supervised	???	???	
Unsupervised	???	???	

	Continuous	Categorical
Supervised (regression	classification
Unsupervised	dimension reduction	clustering

Q: What is a regression model?

Q: What is a regression model?

A: A functional relationship between input & response variables.

Q: What is a regression model?

A: A functional relationship between input & response variables

The **simple linear regression** model captures a linear relationship between a single input variable x and a response variable y:

Q: What is a regression model?

A: A functional relationship between input & response variables

The simple linear regression model captures a linear relationship between a single input variable x and a response variable y:

$$y = \alpha + \beta x + \varepsilon$$

$$y = \alpha + \beta x + \varepsilon$$

$$y = \alpha + \beta x + \varepsilon$$

A: y =response variable (the one we want to predict)

$$y = \alpha + \beta x + \varepsilon$$

A: y = response variable (the one we want to predict)

x = input variable (the one we use to train the model)

$$y = \alpha + \beta x + \varepsilon$$

A: y = response variable (the one we want to predict)

x = input variable (the one we use to train the model)

 α = intercept (where the line crosses the y-axis)

$$y = \alpha + \beta x + \varepsilon$$

A: y = response variable (the one we want to predict)

x = input variable (the one we use to train the model)

 α = intercept (where the line crosses the y-axis)

 β = regression coefficient (the model "parameter")

$$y = \alpha + \beta x + \varepsilon$$

A: y = response variable (the one we want to predict)

x = input variable (the one we use to train the model)

 α = intercept (where the line crosses the y-axis)

 β = regression coefficient (the model "parameter")

 ε = residual (the prediction error)

We can extend this model to several input variables, giving us the multiple linear regression model:

We can extend this model to several input variables, giving us the multiple linear regression model:

$$y = \alpha + \beta_1 X_1 + \dots + \beta_n X_n + \varepsilon$$

We can extend this model to several input variables, giving us the multiple linear regression model:

$$y = \alpha + \beta_1 x_1 + \dots + \beta_n x_n + \varepsilon$$

$$y = \alpha + \left[\beta_1 \beta_2 \dots \beta_n\right] * \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} + \varepsilon$$

Linear regression involves several technical assumptions and is often presented with lots of mathematical formality.

The math is not very important for our purposes, but you should check it out if you get serious about solving regression problems.

Statistical Models Theory and Practice REVISED EDITION David A. Freedman

Q: How do we fit a regression model to a dataset?

Q: How do we fit a regression model to a dataset?

A: In theory, minimize the sum of the squared residuals (OLS).

Q: How do we fit a regression model to a dataset?

A: In theory, minimize the sum of the squared residuals (OLS).

In practice, any respectable piece of software will do this for you.

Q: How do we fit a regression model to a dataset?

A: In theory, minimize the sum of the squared residuals (OLS).

In practice, any respectable piece of software will do this for you.

But again, if you get serious about regression, you should learn how this works!

Q: How do we fit a regression model to a dataset?

A: In theory, minimize the sum of the squared residuals (OLS).

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i.$$

$$\hat{u}_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i.$$

$$\sum_{i=1}^{n} \hat{u}_i^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2,$$

Q: How do we fit a regression model to a dataset?

A: In theory, minimize the sum of the squared residuals (OLS).

II: POLYNOMIAL REGRESSION

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \varepsilon$$

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \varepsilon$$

Q: This represents a nonlinear relationship. Is it still a linear model?

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \varepsilon$$

Q: This represents a nonlinear relationship. Is it still a linear model?

A: Yes, because it's linear in the β 's!

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \varepsilon$$

Q: This represents a nonlinear relationship. Is it still a linear model?

A: Yes, because it's linear in the β 's!

"Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y|x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression." -- Wikipedia

POLYNOMIAL REGRESSION

Polynomial regression allows us to fit very complex curves to data.

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \dots + \beta_n x^n + \varepsilon$$

Polynomial regression allows us to fit very complex curves to data.

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \dots + \beta_n x^n + \varepsilon$$

But there is one problem with the model we've written down so far.

Polynomial regression allows us to fit very complex curves to data.

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \dots + \beta_n x^n + \varepsilon$$

But there is one problem with the model we've written down so far.

Q: Does anyone know what it is?

Polynomial regression allows us to fit very complex curves to data.

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \dots + \beta_n x^n + \varepsilon$$

But there is one problem with the model we've written down so far.

Q: Does anyone know what it is?

A: This model violates one of the assumptions of linear regression!

POLYNOMIAL REGRESSION

This model displays multicollinearity, which means the predictor variables are highly correlated with each other.

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \dots + \beta_n x^n + \varepsilon$$

Multicollinearity causes the linear regression model to break down, because it can't tell the predictor variables apart.

A: Replace the correlated predictors with uncorrelated predictors.

A: Replace the correlated predictors with uncorrelated predictors.

$$y = \alpha + \beta_1 f_1(x) + \beta_2 f_2(x^2) + ... + \beta_n f_n(x^n) + \varepsilon$$

A: Replace the correlated predictors with uncorrelated predictors.

$$y = \alpha + \beta_1 f_1(x) + \beta_2 f_2(x^2) + ... + \beta_n f_n(x^n) + \varepsilon$$

OPTIONAL NOTE

These polynomial functions form an *orthogonal basis* of the function space.

So far, we've seen how polynomial regression allows us to fit complex nonlinear relationships, and even to avoid multicollinearity (by using basis functions).

So far, we've seen how polynomial regression allows us to fit complex nonlinear relationships, and even to avoid multicollinearity (by using basis functions).

Q: Can a regression model be too complex?

III: REGULARIZATION

Recall our earlier discussion of overfitting.

Recall our earlier discussion of overfitting.

When we talked about this in the context of classification, we said that it was a result of matching the training set too closely.

Recall our earlier discussion of overfitting.

When we talked about this in the context of classification, we said that it was a result of matching the training set too closely.

In other words, an overfit model matches the noise in the dataset instead of the signal.

The same thing can happen in regression.

It's possible to design a regression model that matches the noise in the data instead of the signal.

This happens when our model becomes too complex for the data to support.

A: One method is to define complexity as a function of the size of the coefficients.

A: One method is to define complexity as a function of the size of the coefficients.

Ex 1: $\Sigma |\beta_i|$

Ex 2: $\sum \beta_i^2$

A: One method is to define complexity as a function of the size of the coefficients.

Ex 1: $\Sigma |\beta_i|$ *this is called the* **L1-norm**

Ex 2: $\sum \beta_i^2$ this is called the **L2-norm**

L1 regularization: $y = \sum \beta_i x_i + \varepsilon$ st. $\sum |\beta_i| < s$

L1 regularization:
$$y = \sum \beta_i x_i + \epsilon$$
 st. $\sum |\beta_i| < s$

L2 regularization:
$$y = \sum \beta_i x_i + \epsilon$$
 st. $\sum \beta_i^2 < s$

L1 regularization:
$$y = \sum \beta_i x_i + \epsilon$$
 st. $\sum |\beta_i| < s$

L2 regularization:
$$y = \sum \beta_i x_i + \epsilon$$
 st. $\sum \beta_i^2 < s$

Regularization *refers to the method of preventing* **overfitting** *by explicitly controlling model* **complexity**.

These regularization problems can also be expressed as:

L1 regularization: $min(||y - x\beta||^2 + \lambda ||\beta||)$

L2 regularization: $min(||y - x\beta||^2 + \lambda ||\beta||^2)$

These regularization problems can also be expressed as:

L1 regularization (Lasso): $min(||y - x\beta||^2 + \lambda ||x||)$

L2 regularization (Ridge): $min(||y - x\beta||^2 + \lambda ||x||^2)$

This (Lagrangian) formulation reflects the fact that there is a cost associated with regularization.

A: Bias refers to predictions that are systematically inaccurate.

A: Bias refers to predictions that are systematically inaccurate. Variance refers to predictions that are generally inaccurate.

A: Bias refers to predictions that are systematically inaccurate. Variance refers to predictions that are generally inaccurate.

It turns out (after some math) that the generalization error in our model can be decomposed into a bias component and variance component.

This is another example of the bias-variance tradeoff.

This is another example of the bias-variance tradeoff.

Meta-parameter

NOTE

The "meta-parameter" here is the lambda we saw above.

A more typical term is "hyperparameter".

This tradeoff is regulated by a hyperparameter λ , which we've already seen:

L1 regularization:
$$y = \sum \beta_i x_i + \epsilon$$
 st. $\sum |\beta_i| < \lambda$

L2 regularization:
$$y = \sum \beta_i x_i + \epsilon$$
 st. $\sum \beta_i^2 < \lambda$

So regularization represents a method to trade away some variance for a little bias in our model, thus achieving a better overall fit.

L2 regularization:

$$\min(\|\mathbf{y} - \mathbf{x}\boldsymbol{\beta}\|^2 + \lambda \|\mathbf{x}\|^2)$$

L2 regularization:
$$\min(\|\mathbf{y} - \mathbf{x}\boldsymbol{\beta}\|^2 + \lambda \|\mathbf{x}\|^2)$$

L2 regularization:
$$\min(\|\mathbf{y} - \mathbf{x}\boldsymbol{\beta}\|^2 + \lambda \|\mathbf{x}\|^2)$$

- Linear regression
- Multiple regression
- Polynomial regression
- The concept of minimizing some error or "cost" function
- Regularization

LAB: POLYNOMIAL REGRESSION & REGULARIZATION