Figure 1A

2H7scFv-Ig cDNA and predicted amino acid sequence:

HindIII

	HindIII NcoI 2H7 V _L Leader Peptide->	
. 1	M D F Q V Q I F S F L L I S A S AAGCTTGCCG CC ATGGATTT TCAAGTGCAG ATTTTCAGCT TCCTGCTAAT CAGTGCTTC	S CA
61	2H7 V _L → V I I A R G Q I V L S Q S P A I L S A S GTCATAATTG CCAGAGGACA AATTGTTCTC TCCCAGTCTC CAGCAATCCT GTCTGCATCT P G E K V T M T C R A S S S V S Y M H W CCAGGGGAGA AGGTCACAT CACTTCCACG CONTACT	
. 121	CCAGGGGAGA AGGTCACAAT GACTTGCAGG GCCAGCTCAA GTGTAAGTTA CATGCACTGG	
	BamHI ~~~~~	
181	Y Q Q K P G S S P K P W I Y A P S N L A TACCAGCAGA AGCCAGGATC CTCCCCCAAA CCCTGGATTT ATGCCCCATC CAACCTGGCT	
241	S G V P A R F S G S G S G T S Y S L T I TCTGGAGTCC CTGCTCGCTT CAGTGGCAGT GGGTCTGGGA CCTCTTACTC TCTCACAATC	
. 301	S R V E A E D A A T V V C O O O	
361	PTFGAGTKLELKGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	
421	$\begin{array}{c} \text{2H7 V}_{\text{H}} \rightarrow \\ \text{G S G G G S S Q A Y L Q Q S G A E L V} \\ \text{GGATCTGGAG GAGGTGGGAG CTCTCAGGCT TATCTACAGC AGTCTGGGGC TGAGCTGGTG} \end{array}$	
481	R P G A S V K M S C K A S G Y T F T S Y AGGCCTGGGG CCTCAGTGAA CATGTCCTGC AAGGCTTCTG GCTACACATT TACCAGTTAC	
	N M H W V K Q T P R Q G L E W I G A I Y AATATGCACT GGGTAAAGCA GACACCTAGA CAGGGCCTGG AATGGATTGG AGCTATTTAT	
	P G N G D T S Y N Q K F K G K A T L T V CCAGGAAATG GTGATACTTC CTACAATCAG AAGTTCAAGG GCAAGGCCAC ACTGACTGTA	
•	D K S S S T A Y M Q L S S L T S E D S A GACAAATCCT CCAGCACAGC CTACATGCAG CTCAGCAGCC TGACATCTGA AGACTCTGCG	
	V Y F C A R V V Y Y S N S Y W Y F D V W	

721 GTCTATTTCT GTGCAAGAGT GGTGTACTAT AGTAACTCTT ACTGGTACTT CGATGTCTGG

Figure 1 B

BclI

	~~~~~human IgG1 Fc domain 🔾	<b>&gt;</b>
781	G I G T T V T V S D O E P K S C D	17 m rr
		CIMMICICAL
841	T C P P C P A P E L L G G P S V F ACATGCCCAC CGTGCCCAGC ACCTGAACTC CTGGGGGGAC CGTCAGTCTT	L. F P
901	P K P K D T L M I S R T P E V T C CCAAAACCCA AGGACACCT CATGATCTCC CGGACCCCTG AGGTCACATG	V V V CGTGGTGGTG
	D V S H E D P E V K E N W V D C	
961	GACGTGAGCC ACGAAGACCC TGAGGTCAAG TTCAACTGGT ACGTGGACGG	CGTGGAGGTG
1021	H N A K T K P R E E Q Y N S T Y R	V V S
	STREET COOK AGACAMAGEE GEGGGAGGAG CAGTACAACA GCACGTACCG	
1081	V L T V L H Q D W L N G K E Y K C GTCCTCACCG TCCTGCACCA GGACTGGCTG AATGGCAAGG AGTACAAGTG	K V S
1141	N K A L P A P I E K T I S K A K G AACAAAGCCC TCCCAGCCCC CATCGAGAAA ACAATCTCCA AAGCCAAAGG	Q P R GCAGCCCCGA
1201	EPQVYTLPPSRDELTKN	Q V S
	GARCEACAG TGTACACCET GCCCCCATCC CGGGATGAGC TGACCAAGAA	CCAGGTCAGC
1261	L T C L V K G F Y P S D I A V E W CTGACCTGCC TGGTCAAAGG CTTCTATCCC AGCGACATCG CCGTGGAGTG	E S N
	G Q P E N N Y K T T P P V L D S D	•
1321	GGGCAGCCGG AGAACAACTA CAAGACCACG CCTCCCGTGC TGGACTCCGA	G S F CGGCTCCTTC
1381 "	F L Y S K L T V D K S R W Q Q G N	V F S
1301	TICCICIACA GCAAGCICAC CGTGGACAAG AGCAGGTGGC AGCAGGGGAA	CGTCTTCTCA
1441	C S V M H E A L H N H Y T Q K S L TGCTCCGTGA TGCATGAGGC TCTGCACAAC CACTACACGC AGAAGAGCCT (	S L S
	XbaI	
	~~~~	
1501	P G K * S R CCGGGTAAAT GA TCTAGA	

Figure 2.

2H7scFvlg Standard Curve

first derro deres deres deres desta sters este

LFE @ 1:50	Estimated Concentration (μg/ml)
26.1	56
25.7	55
28.6	61
29.6	64
	26.1 25.7 28.6

Figure 3.

Figure 4A.

Complement Mediated B Cell Killing After Binding of CD20-targeted 2H7 Derivatives:

2H7scFv-lg Concentration	RAMOS	BJAB
20 μg/ml + complement	0.16	0.07
5 μg/ml + complement	0.2	N.D.
1.25 μg/ml + complement	0.32	0.1
Complement alone	0.98	0.94

*Viability was determined by trypan blue exclusion and is tabulated as the fraction of viable cells out of the total number of cells counted.

Figure 4B.

Antibody-dependent cellular cytotoxicity (ADCC) mediated by 2H7scFv-lg:

^{**}N.D. (not determined).

Figure 5.

that the man the the tall that the

**

CPM INCORPORATED

Figure 6A and B.

â

ļa

Figure 7A.

2H7-CD154 L2 cDNA and predicted amino acid sequence:

	HindIII NcoI 2H7 V _L Leader Peptide →
:	M D F Q V Q I F S F L L I S A S $oldsymbol{AAGCTT}$ GCCG CC $oldsymbol{ATGGATTT}$ TCAAGTGCAG ATTTTCAGCT TCCTGCTAAT CAGTGCTTCA
61	$2H7\ V_L$ \Rightarrow V I I A R G Q I V L S Q S P A I L S A S GTCATAATTG CCAGAGGACA AATTGTTCTC TCCCAGTCTC CAGCAATCCT GTCTGCATCT
121	PGEKVTMTG
	BamHI
181	Y Q Q K P G S S P K P W I Y A P S N L A TACCAGCAGA AGCCAGGATC CTCCCCCAAA CCCTGGATTT ATGCCCCATC CAACCTGGCT
241	S G V P A R F S G S G S G T S Y S L T I TCTGGAGTCC CTGCTCGCTT CAGTGGCAGT GGGTCTGGGA CCTCTTACTC TCTCACAATC
301	S R V E A E D A A T Y Y C Q Q W S F N P AGCAGAGTGG AGGCTGAAGA TGCTGCCACT TATTACTGCC AGCAGTGGAG TTTTAACCCA
361	P T F G A G T K L E L K G G G G G G CCCACGTTCG GTGCTGGGAC CAAGCTGGAG CTGAAAGGTG GCGGTGGCTC GGGCGGTGGT
421	GSGGGGGGGGGGGCTCTCAGGCT TATCTACAGC AGTCTGGGGC TGAGCTGGTG
481	R P G A S V K M S C K A S G Y T F T S Y AGGCCTGGGG CCTCAGTGAA GATGTCCTGC AAGGCTTCTG GCTACACATT TACCAGTTAC
541	N M H W V K Q T P R Q G L E W I G A I Y AATATGCACT GGGTAAAGCA GACACCTAGA CAGGGCCTGG AATGGATTGG AGCTATTTAT
601	P G N G D T S Y N Q K F K G K A T L T V CCAGGAAATG GTGATACTTC CTACAATCAG AAGTTCAAGG GCAAGGCCAC ACTGACTGTA
661	D K S S T A Y M Q L S S L T S E D S A GACAAATCCT CCAGCACAGC CTACATGCAG CTCAGCAGCC TGACATCTGA AGACTCTGCG
721	V Y F C A R V V Y Y S N S Y W Y F D V W GTCTATTTCT GTGCAAGAGT GGTGTACTAT AGTAACTCTT ACTGGTACTT CGATGTCTGG

human CD154/amino acid 48→

	. 781	CONCAGGA CCACGGTCAC CGTCTCTGAT CCAAGAAGGT TGGACAAGAT ACAAGAT
the Ret Hall the first que then greater than the region of the first region of the first region of the first region of the first factors and the first factors are at the first factors and the first factors are at the first factors and the first factors are at the factors are at the first factors	841	AGGAATCTTC ATGAAGATTT TGTATTCATG AAAACGATAC AGAGATGCAA CACAGGAGA
	901	AGATCCTTAT CCTTACTGAA CTGTGAGGAG ATTAAAAGCC AGTTTGAAGG CTTTGTGAAG
	961	D I M L N K E E T K K E N S F E M Q K G GATATAATGT TAAACAAAGA GGAGACGAAG AAAGAAAACA GCTTTGAAAT GCAAAAAGGT BclI
	1021	D Q N P Q I A A H V I S E A S S K T T S GATCAGAATC CTCAAATTGC GGCACATGTC ATAAGTGAGG CCAGCAGTAA AACAACATCT
	1081	GTGTTACAGT GGGCTGAAAA AGGATACTAC ACCATGAGCA ACAACTTGGT AACCGTGA
Wall Hall Hard	1141	AATGGGAAAC AGCTGACCGT TAAAAGACAA GGACTCTATT ATATCTATGC CCAAGTCACC
		HindIII
•	1201	TTCTGTTCCA ATCGGGAAGC TTCGAGTCAA GCTCCATTTA TAGCCAGCCT CTCCCTTAR
	1261	TCCCCCGGTA GATTCGAGAG AATCTTACTC AGAGCTGCAA ATACCCACAG TTCCCCGCAA
		P C G Q Q S I H L G G V F E L Q P G A S CCTTGCGGGC AACAATCCAT TCACTTGGGA GGAGTATTTG AATTGCAACC AGGTGCTTCG
		NCOI V F V N V T D P S Q V S H G T G F T S F GTGTTTGTCA ATGTGACTGA TCCAAGCCAA GTGAGCCATG GCACTGGCTT CACGTCCTTT
		XhoI XbaI
	1441 G	G L L K L E * * S R GCTTACTCA AACTCGAGTG ATAA TCTAGA

TITLE: BINDING DOMAIN-IMMUNOGLOBULIN FUSION PROTEINS Inve : Jeffrey A. Ledbetter et al. Docket No. 31 EXPRESS MAIL NO. EL 755733415US

Figure 7 C

2H7scFv-CD154 S4 cDNA and predicted amino acid sequence:

	HindIII NcoI
	Nco1 2H7 V _L Leader Peptide→
1	M D F Q V Q I F S F L L I S A S AAGCTTGCCG CC ATGGATTT TCAAGTGCAG ATTTTCAGCT TCCTGCTAAT CAGTGCTTCA
61	V I I A R G Q · I V L S Q S P A I L S A S GTCATAATTG CCAGAGGACA AATTGTTCTC TCCCAGTCTC CAGCAATCGT CTGT
121	P G E K V T M T C R A S S S V S Y M H W CCAGGGGAGA AGGTCACAAT GACTTGCAGG GCCAGCTCAA GTGTAAGTTA CATGCACTGG
	BamHI
181	THOCAGCAGA AGCCAGGATC CTCCCCCAAA CCCTGGATTT ATCCCCGATTO
241	TCTGGAGTCC CTGCTCGCTT CAGTGGCAGT GGGTCTGGGA CCTCTTACTG TO
301	S R V E A E D A A T Y Y C Q Q W S F N P AGCAGAGTGG AGGCTGAAGA TGCTGCCACT TATTACTGCC AGCAGTGGAG TTTTAACCCA
361	P T F G A C m (Glv.Ser) Linker
421	G S G G G S S Q A Y L Q Q S G A E L V GGATCTGGAG GAGGTGGGAG CTCTCAGGCT TATCTACAGC AGTCTCGGG TOTAL V
481	AGGCCTGGGG CCTCAGTGAA GATGTCCTGC AAGGCTTCTG GCTACACATT TO Y
541	AATATGCACT GGGTAAAGCA GACACCTAGA CAGGGCCTGG AATCCATTGCA
601	CCAGGAAATG GTGATACTTC CTACAATCAG AAGTTCAAGG GCAAGGGGA
661 (GACAAATCCT CCAGCACAGC CTACATGCAG CTCAGCAGCC TGACATCTCA ACLAS
721 G	V Y F C A R V V Y Y S N S Y W Y F D V W TCTATTTCT GTGCAAGAGT GGTGTACTAT AGTAACTCTT ACTGGTACTT CGATGTCTGG

1261

Figure 7**D**.

human CD154/amino acid 108 →

781	G T G T T V T V S D P E N S F E M Q K G GGCACAGGGA CCACGGTCAC CGTCTC TGAT CC AGAAAACA GCTTTGAAAT GCAAAAAGGT Bcli
	BclI
841	D Q N P Q I A A H V I S E A S S K T T S GATCAGAATC CTCAAATTGC GGCACATGTC ATAAGTGAGG CCAGCAGTAA ARGAA
901	GTGTTACAGT GGGCTGAAAA AGGATACTAC ACCATGAGCA ACAACTTGCT ARGGETA
961	AATGGGAAAC AGCTGACCGT TAAAAGACAA GGACTCTATT ATATCTATGC CCAAGTCACC
	Hindili
1021	TOTAL AICGGGAAGC TTCGAGTCAA GCTCCATTTA TAGCCACCCT CTCCAT
1081	TCCCCCGGTA GATTCGAGAG AATCTTACTC AGAGCTGCAA ATACCCACAG TTGGAGA
.1141	P C G Q Q S I H L G G V F E L Q P G A S CCTTGCGGGC AACAATCCAT TCACTTGGGA GGAGTATTTG AATTGCAACC AGGTGCTTCG
	NCOI V F V N V T D P S Q V S H G T G F T S F GTGTTTGTCA ATGTGACTGA TCCAAGCCAA GTGAGCCATG GCACTGGCTT CACGTCCTTT
	XhaT
1261	G L L K L E * * S R

GGCTTACTCA AACTCGAGTG ATAATCTAGA

Figure 8.

2H7scFv-CD154

CD20 CHO cell targets + (control or fusion protein) + Biotin-CD40Ig + PE-SA

Figure 9.

.....control supernatant

and the first seem some terms can be first that the seems that the

2H7scFv-CD154 supernatant

House the second than the first time that the

Figure 10.

TITLE: BINDING DOMAIN-IMMUNOGLOBULIN FUSION PROTEINS Inve : Jeffrey A. Ledbetter et al. Docket No. 39 EXPRESS MAIL NO. EL 755733415US

FIGURE 11

FIGURE 12

Novex Multimark MW Standards (kDa) CytoxB - IgA HingeWTG1C CytoxB - MG1HWTG1C

MW Standards (kDa)

Bio-Rad Prestained

HI THE WAS A WAY THE WAY

Anti-CD20/CD 40 ScFv - MG1HMG1C Rituximab

Non-reduced

Reduced

TITLE: BINDING DOMAIN-IMMUNOGLOBULIN FUSION PROTEINS
Inve Jeffrey A. Ledbetter et al. Docket No. 39
EXPRESS MAIL NO. EL 755733415US

FIGURE 13

TITLE: BINDING DOMAIN-IMMUNOGLOBULIN FUSIO: PROTEINS Inve Jeffrey A. Ledbetter et al. Docket No. 3: 401 EXPRESS MAIL NO. EL 755733415US

FIGURE 14

	Monkey J	Monkey J99231		Monkey K99334	
Day	LFE(1:40)	Concentration (µg/mL)	LFE(1:40)	Concentration (µg/mL)	
njection 7	2.41	<0.6μg/mL	1.51	<0.4μg/mL	
0	2.22	<0.6μg/mL	1.63	<0.4µg/mL	
njection 1	73.8	220µg/mL	44.4	100μg/mL	
3	20.0	28μg/mL	40.2	80μg/mL	
7	15.6	24μg/mL	15.7	24μg/mL	
8	39.1	80μg/mL	42.6	92μg/mL	
10	11.5	18µg/mL	2.74	$1.2\mu g/mL$	
14	2.05	0.6mg/mL	1.96	0.6μg/mL	

Figure 16

FIGURE 17

Standard Curve of HD37 scFvlg Derivative Binding to B Cells

Clone/Isolate	Mean LFE at 1:100	Estimated Concentration
Bulk IgAHWTG1C	11.2	> 60 ug/ml
1B2	10.4	>50 ug/ml
6C5	10.5	>50 ug/ml
4B1	8.6	>40 ug/ml
Bulk MHWTG1C	10.9	> 50 ug/ml
2G8	10.6	> 50 ug/ml
3F3	8.3	>40 ug/ml
3D9	11.1	> 60 ug/ml

FIGURE 18

L6 scFvlg Standard Curves

Hard there there there were there there there is the

Construct	Mean LFE 1:20	Estimated Concentration
L6lgAHWTG1C unamplified CHO sup	· 51.1	6.25 ug/ml
L6lgGMHWTG1C unamplified CHO sup	23.0	3.2 ug/ml

TITLE: BINDING DOMAIN-IMMUNOGLOBULIN FUSION PROTEINS Inve : Jeffrey A. Ledbetter et al. Docket No. 3 EXPRESS MAIL NO. EL 755733415US

FIGURE 19

A. 2H7 (anti-CD20) scFv Derivatives

B. G28-1 (anti-CD37) scFv Derivatives

C. HD37 (anti-CD19) scFv Derivatives

Figure 21

Figure 22

Bult down their down three from Ben's The

or deal with the term of the little of