1. import important libraries

pip install xgboost

Note: you may need to restart the kernel to use updated packages. Collecting xgboost

In [74]:

In [73]:

import numpy as np import warnings import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline

from sklearn.preprocessing import StandardScaler from sklearn.model_selection import KFold from sklearn.model_selection import cross_validate from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from xgboost import XGBRegressor

sns.set_style('darkgrid')
warnings.filterwarnings('ignore')

Downloading xgboost-1.7.2-py3-none-win_amd64.whl (89.1 MB)

Requirement already satisfied: numpy in c:\users\lucky computers\anaconda3\lib\site-packages (from xgboost) (1.20.3) Requirement already satisfied: scipy in c:\users\lucky computers\anaconda3\lib\site-packages (from xgboost) (1.7.1) Installing collected packages: xgboost

Successfully installed xgboost-1.7.2

2. Reading dataset

df = pd.read_csv("C:/Users/Lucky Computers/Downloads/diamonds.csv")

df

Unnamed: 0 clarity price carat cut color depth table Х у 0 0.23 Ideal Е SI2 61.5 55.0 326 3.95 3.98 2.43 326 2 0.21 Ε SI1 61.0 3.89 3.84 2.31 1 Premium 59.8 3 Е VS1 2 0.23 Good 56.9 65.0 327 4.05 4.07 VS2 3 4 0.29 Premium 62.4 58.0 334 4.20 4.23 2.63 4 5 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75 53935 53936 0.72 D SI1 60.8 57.0 2757 5.75 5.76 3.50 Ideal 53936 53937 0.72 Good D SI1 63.1 55.0 2757 5.69 5.75 3.61 Verv 53937 53938 0.70 D SI1 62.8 60.0 2757 5.66 5.68 Good 53938 53939 0.86 Premium Н SI2 61.0 58.0 2757 6.15 6.12 3.74 53940 D SI2 62.2 55.0 2757 5.83 5.87 3.64 53939 0.75 Ideal

53940 rows × 11 columns

df.info()

Out[20]:

In [19]:

In [20]:

In [21]:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 53940 entries, 0 to 53939
Data columns (total 11 columns):
# Column Non-Null Count Dtype
0 Unnamed: 0 53940 non-null int64
1 carat 53940 non-null float64
2 cut
           53940 non-null object
3 color 53940 non-null object
4 clarity 53940 non-null object 5 depth 53940 non-null float64
           53940 non-null float64
6 table
7 price
          53940 non-null int64
8 x
           53940 non-null float64
9 y
           53940 non-null float64
           53940 non-null float64
dtypes: float64(6), int64(2), object(3)
memory usage: 4.5+ MB
```

3. Statistical Summary

df.describe() Out[22]:

	Unnamed: 0	carat	depth	table	price	x	У	z
count	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000
mean	26970.500000	0.797940	61.749405	57.457184	3932.799722	5.731157	5.734526	3.538734
std	15571.281097	0.474011	1.432621	2.234491	3989.439738	1.121761	1.142135	0.705699
min	1.000000	0.200000	43.000000	43.000000	326.000000	0.000000	0.000000	0.000000
25%	13485.750000	0.400000	61.000000	56.000000	950.000000	4.710000	4.720000	2.910000
50%	26970.500000	0.700000	61.800000	57.000000	2401.000000	5.700000	5.710000	3.530000
75%	40455.250000	1.040000	62.500000	59.000000	5324.250000	6.540000	6.540000	4.040000
max	53940.000000	5.010000	79.000000	95.000000	18823.000000	10.740000	58.900000	31.800000

Displaying first 5 rows

df.head()

	Unnamed: 0	carat	cut	color	clarity	depth	table	price	x	у	z
0	1	0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
1	2	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
2	3	0.23	Good	E	VS1	56.9	65.0	327	4.05	4.07	2.31
3	4	0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.63
4	5	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75

shape of data

df.shape

Out[24]: (53940, 11)

4. Checking duplicate rows

df[df.duplicated()]

len(df[df.duplicated()])

Unnamed: 0 carat cut color clarity depth table price x y z

Out[25]:

In [25]:

In [26]:

In [23]:

In [22]:

Out[23]:

In [24]:

Out[26]:

dropping duplicate rows

In [27]:

 $df.drop_duplicates(inplace = \pmb{True})$

5. Checking null values

In [28]:

df.isnull().sum()

Out[28]:

Unnamed: 0 0 carat 0 cut 0 color 0 clarity 0 depth 0 table 0 price 0 x 0 y 0 z 0 dtype: int64

6. Dropingg Unnamed column from data

In [29]:

df.drop(['Unnamed: 0'], axis=1, inplace=True)

describe data

In [30]:

df.describe()

Out[30]:

	carat	depth	table	price	x	У	z
count	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000
mean	0.797940	61.749405	57.457184	3932.799722	5.731157	5.734526	3.538734
std	0.474011	1.432621	2.234491	3989.439738	1.121761	1.142135	0.705699
min	0.200000	43.000000	43.000000	326.000000	0.000000	0.000000	0.000000
25%	0.400000	61.000000	56.000000	950.000000	4.710000	4.720000	2.910000
50%	0.700000	61.800000	57.000000	2401.000000	5.700000	5.710000	3.530000
75%	1.040000	62.500000	59.000000	5324.250000	6.540000	6.540000	4.040000
max	5.010000	79.000000	95.000000	18823.000000	10.740000	58.900000	31.800000

7. After use df.describe(), we could see that the minimum value of x, y and z are equal to zero. Let's take a look at them.

In [31]:

	carat	cut	color	clarity	depth	table	price	x	у	z
2207	1.00	Premium	G	SI2	59.1	59.0	3142	6.55	6.48	0.00
2314	1.01	Premium	Н	I1	58.1	59.0	3167	6.66	6.60	0.00
4791	1.10	Premium	G	SI2	63.0	59.0	3696	6.50	6.47	0.00
5471	1.01	Premium	F	SI2	59.2	58.0	3837	6.50	6.47	0.00
10167	1.50	Good	G	I1	64.0	61.0	4731	7.15	7.04	0.00
11182	1.07	Ideal	F	SI2	61.6	56.0	4954	0.00	6.62	0.00
11963	1.00	Very Good	Н	VS2	63.3	53.0	5139	0.00	0.00	0.00
13601	1.15	Ideal	G	VS2	59.2	56.0	5564	6.88	6.83	0.00
15951	1.14	Fair	G	VS1	57.5	67.0	6381	0.00	0.00	0.00
24394	2.18	Premium	Н	SI2	59.4	61.0	12631	8.49	8.45	0.00
24520	1.56	Ideal	G	VS2	62.2	54.0	12800	0.00	0.00	0.00
26123	2.25	Premium	- 1	SI1	61.3	58.0	15397	8.52	8.42	0.00
26243	1.20	Premium	D	VVS1	62.1	59.0	15686	0.00	0.00	0.00
27112	2.20	Premium	Н	SI1	61.2	59.0	17265	8.42	8.37	0.00
27429	2.25	Premium	Н	SI2	62.8	59.0	18034	0.00	0.00	0.00
27503	2.02	Premium	Н	VS2	62.7	53.0	18207	8.02	7.95	0.00
27739	2.80	Good	G	SI2	63.8	58.0	18788	8.90	8.85	0.00
49556	0.71	Good	F	SI2	64.1	60.0	2130	0.00	0.00	0.00
49557	0.71	Good	F	SI2	64.1	60.0	2130	0.00	0.00	0.00
51506	1.12	Premium	G	I1	60.4	59.0	2383	6.71	6.67	0.00

Transforming them into NaN values

```
df.loc[df["x"] == 0, "x"] = np.nan
df.loc[df["y"] == 0, "y"] = np.nan
df.loc[df["z"] == 0, "z"] = np.nan
```

Seeing the number of the new missing values

8. filling null values

```
def filling_null_values(col):
    c = df.groupby(("carat"))[col].median()
    idx = list(df.loc[df[col].isnull() == True].sort_values(by = "carat", ascending = False).index)
    for i in idx:
        cv = df.loc[i, "carat"]
    val = c[cv]
        df.loc[i, col] = val
        print("carat: {} / median {} value: {}".format(cv, col, val))
    return df.iloc[idx].style.applymap(lambda x: "background-color: limegreen", subset = col).format(dictn)
```

filling null valus in y

In [37]:

filling_null_values("y")

In [32]:

Out[31]:

In [35]:

Out[35]:

In [36]:

carat: 2.25 / median y value: 8.39 carat: 1.56 / median y value: 7.46 carat: 1.2 / median y value: 6.79 carat: 1.14 / median y value: 6.72 carat: 1.0 / median y value: 6.38 carat: 0.71 / median y value: 5.73 carat: 0.71 / median y value: 5.73

	carat	cut	color	clarity	depth	table	price	X	у	z
27429	2.25	Premium	Н	SI2	62.8	59.0	18034	nan	8.39	nan
24520	1.56	Ideal	G	VS2	62.2	54.0	12800	nan	7.46	nan
26243	1.20	Premium	D	VVS1	62.1	59.0	15686	nan	6.79	nan
15951	1.14	Fair	G	VS1	57.5	67.0	6381	nan	6.72	nan
11963	1.00	Very Good	Н	VS2	63.3	53.0	5139	nan	6.38	nan
49556	0.71	Good	F	SI2	64.1	60.0	2130	nan	5.73	nan
49557	0.71	Good	F	SI2	64.1	60.0	2130	nan	5.73	nan

filling null values in x

filling_null_values("x")

carat: 2.25 / median x value: 8.47 carat: 1.56 / median x value: 7.46 carat: 1.2 / median x value: 6.78 carat: 1.14 / median x value: 6.71 carat: 1.07 / median x value: 6.57 carat: 1.0 / median x value: 6.38 carat: 0.71 / median x value: 5.72 carat: 0.71 / median x value: 5.72

	carat	cut	color	clarity	depth	table	price	x	у	z
27429	2.25	Premium	Н	SI2	62.8	59.0	18034	8.47	8.39	nan
24520	1.56	Ideal	G	VS2	62.2	54.0	12800	7.46	7.46	nan
26243	1.20	Premium	D	VVS1	62.1	59.0	15686	6.78	6.79	nan
15951	1.14	Fair	G	VS1	57.5	67.0	6381	6.71	6.72	nan
11182	1.07	Ideal	F	SI2	61.6	56.0	4954	6.57	6.62	nan
11963	1.00	Very Good	Н	VS2	63.3	53.0	5139	6.38	6.38	nan
49556	0.71	Good	F	SI2	64.1	60.0	2130	5.72	5.73	nan
49557	0.71	Good	F	SI2	64.1	60.0	2130	5.72	5.73	nan

filling null values in z

filling_null_values("z")

Out[37]:

In [38]:

Out[38]:

In [39]:

```
carat: 2.8 / median z value: 5.5
carat: 2.25 / median z value: 5.19
carat: 2.25 / median z value: 5.19
carat: 2.2 / median z value: 5.17
carat: 2.18 / median z value: 5.16
carat: 2.02 / median z value: 5.0
carat: 1.56 / median z value: 4.59
carat: 1.5 / median z value: 4.53
carat: 1.2 / median z value: 4.21
carat: 1.15 / median z value: 4.16
carat: 1.14 / median z value: 4.14
carat: 1.12 / median z value: 4.11
carat: 1.1 / median z value: 4.09
carat: 1.07 / median z value: 4.05
carat: 1.01 / median z value: 3.98
carat: 1.01 / median z value: 3.98
carat: 1.0 / median z value: 3.96
carat: 1.0 / median z value: 3.96
carat: 0.71 / median z value: 3.54
carat: 0.71 / median z value: 3.54
```

	carat	cut	color	clarity	depth	table	price	x	у	z
27739	2.80	Good	G	SI2	63.8	58.0	18788	8.90	8.85	5.50
26123	2.25	Premium	1	SI1	61.3	58.0	15397	8.52	8.42	5.19
27429	2.25	Premium	Н	SI2	62.8	59.0	18034	8.47	8.39	5.19
27112	2.20	Premium	Н	SI1	61.2	59.0	17265	8.42	8.37	5.17
24394	2.18	Premium	Н	SI2	59.4	61.0	12631	8.49	8.45	5.16
27503	2.02	Premium	Н	VS2	62.7	53.0	18207	8.02	7.95	5.00
24520	1.56	Ideal	G	VS2	62.2	54.0	12800	7.46	7.46	4.59
10167	1.50	Good	G	I1	64.0	61.0	4731	7.15	7.04	4.53
26243	1.20	Premium	D	VVS1	62.1	59.0	15686	6.78	6.79	4.21
13601	1.15	Ideal	G	VS2	59.2	56.0	5564	6.88	6.83	4.16
15951	1.14	Fair	G	VS1	57.5	67.0	6381	6.71	6.72	4.14
51506	1.12	Premium	G	I1	60.4	59.0	2383	6.71	6.67	4.11
4791	1.10	Premium	G	SI2	63.0	59.0	3696	6.50	6.47	4.09
11182	1.07	Ideal	F	SI2	61.6	56.0	4954	6.57	6.62	4.05
2314	1.01	Premium	Н	I1	58.1	59.0	3167	6.66	6.60	3.98
5471	1.01	Premium	F	SI2	59.2	58.0	3837	6.50	6.47	3.98
11963	1.00	Very Good	Н	VS2	63.3	53.0	5139	6.38	6.38	3.96
2207	1.00	Premium	G	SI2	59.1	59.0	3142	6.55	6.48	3.96
49556	0.71	Good	F	SI2	64.1	60.0	2130	5.72	5.73	3.54
49557	0.71	Good	F	SI2	64.1	60.0	2130	5.72	5.73	3.54

9. Visualize the data

boxplot

In [41]:

Out[39]:

```
for c in ['carat', 'depth', 'table', 'price', 'x', 'y', 'z']:
  plt.figure(figsize=(10, 5))
  sns.boxplot(df[c])
  plt.title(c, fontsize=20)
  plt.show()
```

C:\Users\Lucky Computers\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From v ersion 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretatio n.

warnings.warn(

carat

C:\Users\Lucky Computers\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From v ersion 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretatio n.

warnings.warn(

C:\Users\Lucky Computers\anaconda3\\ib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From v ersion 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretatio n.

warnings.warn(

C:\Users\Lucky Computers\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From v ersion 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretatio n.

warnings.warn(

0 2500 5000 7500 10000 12500 15000 17500 price

C:\Users\Lucky Computers\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From v ersion 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretatio n.

warnings.warn(

C:\Users\Lucky Computers\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From v ersion 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretatio n.

warnings.warn(

C:\Users\Lucky Computers\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From v ersion 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretatio n.

warnings.warn(

10. checking outliers

```
return out.style.applymap(lambda x: "background-color: red", subset = i).format(dictn)
df_out = df.loc[df["y"] > 30].copy()
outliers(df_out, "y")
       carat
                  cut color clarity depth table
                                                    price
                                                                    у
24067
       2.00
             Premium
                          Н
                                 SI2
                                       58.9
                                              57.0
                                                   12210 8.09
                                                                       8.06
49189
       0.51
                 Ideal
                           Е
                                VS1
                                       61.8
                                              55.0
                                                    2075 5.15
                                                                       5.12
df_out = df.loc[df["z"] > 30].copy()
outliers(df_out, "z")
                    cut color clarity depth table price
       carat
                   Very
48410
      0.51
                                               54.7 1970 5.12 5.15
```

In [43]:

Out[43]:

In [44]:

Out[44]:

In [45]:

In [46]:

Out[46]:

In [47]:

Out[47]:

In [48]:

filling outliers values with np.nan in x and y

df.loc[df["y"] > 30, "y"] = np.nandf.loc[df["z"] > 30, "z"] = np.nan

out_idx = out.index

i = pd.IndexSlice[out_idx, col]

filling null values in y

filling_null_values("y")

carat: 2.0 / median y value: 8.01 carat: 0.51 / median y value: 5.14

	carat	cut	color	clarity	depth	table	price	X	у	Z
24067	2.00	Premium	Н	SI2	58.9	57.0	12210	8.09	8.01	8.06
49189	0.51	Ideal	E	VS1	61.8	55.0	2075	5.15	5.14	5.12

filling null values in z

filling_null_values('z')

carat: 0.51 / median z value: 3.17

	carat	cut	color	clarity	depth	table	price	X	У	z
48410	0.51	Very Good	Е	VS1	61.8	54.7	1970	5.12	5.15	3.17

checking outiers in depth column

 $\label{eq:df_out} df_out = df.loc[(df["depth"] > 75) \mid (df["depth"] < 45)].copy() \\ outliers(df_out, "depth")$

```
cut color clarity
                                depth table
                                              price
       carat
4518
       1.00
              Fair
                       G
                            SI1
                                         59.0
                                               3634 6.32
                                                           6.27
                                                                3.97
6341
        1.00
              Fair
                      G
                            VS2
                                         53.0
                                               4032 6.31 6.24 4.12
10377
        1.09
             Ideal
                            VS2
                                         54.0
                                               4778 6.53 6.55 4.12
41918
                       Е
        1.03
              Fair
                              11
                                         54.0
                                               1262 5.72 5.59 4.42
                       Е
52860
       0.50
              Fair
                            VS2
                                         73.0
                                               2579
                                                     5.21 5.18 4.09
                       Е
52861
       0.50
              Fair
                            VS2
                                         73.0
                                               2579 5.21 5.18 4.09
```

checking outliers in table column

	carat	cut	color	clarity	depth	table	price	X	У	Z
4518	1.00	Fair	G	SI1	43.0	59.0	3634	6.32	6.27	3.97
6341	1.00	Fair	G	VS2	44.0	53.0	4032	6.31	6.24	4.12
10377	1.09	Ideal	J	VS2	43.0	54.0	4778	6.53	6.55	4.12
24932	2.01	Fair	F	SI1	58.6	95.0	13387	8.32	8.31	4.87

checking outliers in z column

df_out = df.loc[df["z"] < 2].copy()
outliers(df_out, "z")</pre>

	carat	cut	color	clarity	depth	table	price	x	у	z
14635	1.07	Ideal	F	SI1	60.6	57.0	5909	6.62	6.67	1.07
20694	1.53	Ideal	1	SI1	61.9	54.0	8971	7.43	7.50	1.53
21654	1.41	Ideal	Н	VS1	60.7	56.0	9752	7.31	7.22	1.41

df.loc[df["carat"] == df["z"], ["carat", "z"]]

```
        carat
        z

        14635
        1.07
        1.07

        20694
        1.53
        1.53

        21654
        1.41
        1.41
```

replacing outliers in z with np.nan

df.loc[df["z"] < 2, "z"] = np.nan

filling null value in z

filling_null_values('z')

carat: 1.53 / median z value: 4.56 carat: 1.41 / median z value: 4.44 carat: 1.07 / median z value: 4.05

	carat	cut	color	clarity	depth	table	price	x	у	z
20694	1.53	Ideal	1	SI1	61.9	54.0	8971	7.43	7.50	4.56
21654	1.41	Ideal	Н	VS1	60.7	56.0	9752	7.31	7.22	4.44
14635	1.07	Ideal	F	SI1	60.6	57.0	5909	6.62	6.67	4.05

In [50]:

Out[48]:

Out[50]:

In [51]:

Out[51]:

In [52]:

Out[52]:

In [53]:

In [54]:

Out[54]:

11. Barplot between cut and price

plt.figure(figsize=(10, 5))
sns.barplot(x='cut', y='price', data=df)
plt.title('Relation b/w cut and price', fontsize=20);
plt.xlabel('cut', fontsize=15)
plt.ylabel('price', fontsize=15);

12. checking correlation of price column with other columns

In [56]:

In [55]:

Out[56]:

df.corr()['price'].sort_values(ascending=False)[1:]

carat 0.921591 y 0.888800 x 0.887206 z 0.882368 table 0.127134 depth -0.010647

Name: price, dtype: float64

color category

In [57]:

color_label = df.color.value_counts()
plt.figure(figsize=(10, 5))
sns.barplot(color_label.index, color_label);
plt.ylabel('count', fontsize=15)
plt.xlabel('color', fontsize=15);

C:\Users\Lucky Computers\anaconda3\\ib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. Fro m version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpret ation.

warnings.warn(

barplot b/w clarity and price

In [58]:

plt.figure(figsize=(10, 5))
sns.barplot(x='clarity', y='price', data=df);
plt.title('Relation b/w clarity and price', fontsize=20)
plt.xlabel('clarity', fontsize=15)
plt.ylabel('price', fontsize=15);

13. Preprocessing of data

independent and dependent variabels

$$\begin{split} X &= df[['carat', 'cut', 'color', 'clarity', 'depth', 'table', 'x', 'y', 'z']] \\ y &= df[['price']] \end{split}$$

In [59]:

In [60]:

X.head()

							,		,
ł	carat	cut	color	clarity	depth	table	x	у	z
0	0.23	Ideal	Е	SI2	61.5	55.0	3.95	3.98	2.43
1	0.21	Premium	Е	SI1	59.8	61.0	3.89	3.84	2.31
2	0.23	Good	Е	VS1	56.9	65.0	4.05	4.07	2.31
3	0.29	Premium	1	VS2	62.4	58.0	4.20	4.23	2.63
4	0.31	Good	J	SI2	63.3	58.0	4.34	4.35	2.75
y.h	nead()								
	price								
0	326								
1	326								
2	327								
3	334								
4	335								

14. "one-hot encoding"

```
In [62]:
X_{copy} = X.copy()
X_copy = pd.get_dummies(data=X_copy, columns=['clarity', 'color', 'cut'], prefix=['clarity', 'color', 'cut'], drop_first=True).copy()
                                                                                                                                                                In [63]:
```

clarity IF clarity SI1 clarity SI2 clarity VS1 color E color F color G color H color I color J cut Good cu

	curut	acptii	tubic	^	y	_	ciaiity_ii	ciarity_orr	Clairty_Cl2	ciaiity_voi	 CO101_E	00101_1	coloi_a	00101_11	00101_1	00101_0	cut_coou	ou
0	0.23	61.5	55.0	3.95	3.98	2.43	0	0	1	0	 1	0	0	0	0	0	0	
1	0.21	59.8	61.0	3.89	3.84	2.31	0	1	0	0	 1	0	0	0	0	0	0	
2	0.23	56.9	65.0	4.05	4.07	2.31	0	0	0	1	 1	0	0	0	0	0	1	
3	0.29	62.4	58.0	4.20	4.23	2.63	0	0	0	0	 0	0	0	0	1	0	0	
4	0.31	63.3	58.0	4.34	4.35	2.75	0	0	1	0	 0	0	0	0	0	1	1	

5 rows × 23 columns

4		<u> </u>
	·	

15. scaling

X_copy.head()

In [64]:

sc = StandardScaler()

 $X_{copy} = sc.fit_{transform}(X_{copy})$

16. k-fold correlation

```
In [65]:
cv = KFold(n_splits=10, random_state=0, shuffle = True)
```

matrix = ["r2", "neg_mean_absolute_error", "neg_mean_squared_error"] scores = {"train" : [], "test" : [], "mae" : [], "mse" : [], "rmse" : []}

In [67]:

In [66]:

Out[63]:

def result(model, f): sc = cross_validate(model, f, y, cv=cv, scoring=matrix, return_train_score=**True**)

train_s = sc["train_r2"].mean()

```
scores["train"].append(train_s)

test_s = sc["test_r2"].mean()
scores["test"].append(test_s)

"" mae ""
mae = np.absolute(sc["test_neg_mean_absolute_error"]).mean()
scores["mae"].append(mae)

"" scorese ""
mse = np.absolute(sc["test_neg_mean_squared_error"]).mean()
scores["mse"].append(mse)

"" rscorese ""
rmse = np.sqrt(mse)
scores["rmse"].append(rmse)
print("train score: {0:.4f}\nR2 score: {1:.4f}\nMAE: {2:.2f}\nscoresE: {3:.2f}\nRscoresE: {4:.2f}".format(train_s, test_s, mae, mse, rmse))
```

16. linear regression

linear_reg = LinearRegression()
result(linear_reg, X_copy)

train score: 0.9207 R2 score: 0.9205 MAE: 733.52 scoresE: 1264478.94 RscoresE: 1124.49

17.XGBRegressor

xgb = XGBRegressor(learning_rate = 0.1, n_estimators = 200, random_state = 0) result(xgb, X_copy)

train score: 0.9850 R2 score: 0.9783 MAE: 301.19 scoresE: 345675.40 RscoresE: 587.94

18. RandomForestRegressor

rf = RandomForestRegressor(max_depth = 8, n_estimators = 40, random_state = 0) result(rf, X_copy)

train score: 0.9508 R2 score: 0.9476 MAE: 473.02 scoresE: 834965.60 RscoresE: 913.76

19. DecisionTreeRegressor

dt = DecisionTreeRegressor(max_depth = 8, random_state = 0) result(dt, X_copy)

train score: 0.9444 R2 score: 0.9404 MAE: 506.39 scoresE: 949876.92 RscoresE: 974.62 In [68]:

In [75]:

In [76]:

In []:

In [78]: