Usando o catálogo RC3 (de Vaucouleurs 1993), acessível em http://vizier.u-strasbg.fr/

selecionar 2 galáxias elípticas com os seguintes critérios:

declinação (DE2000) > -1° (para podermos ter imagens no SDSS)

Selecionar para mostrar (show): RA2000, DE2000, Name, Bmag, cz

- Bmag < 15 e redshift entre 0.002 e 0.02 (imagens grandes o suficiente para análise

Anotar os valores de RA2000 e DE2000

e:

 Procurar pela imagem no site SDSS DR8 Finding Chart Tool:

http://skyserver.sdss3.org/dr8/en/tools/chart/
chart.asp

• Se a imagem estiver presente, ir na opção "explore" e baixar a imagem fits na banda r.

Alternativa: sabendo as coordenadas do objeto (RA e DEC) em graus, pode-se usar o comando: skyserver.sdss3.org/dr8/en/tools/explore/obj.asp?ra=149.528938&dec=10.359781

DR8

SDSS J001530.91+171942.3

Туре	RA,dec									ObilD			
Type	Decimal			Hexagesimal					Objib				
GALAXY	GALAXY 3.87882507,17.32842687		00:15:30.91,+17:19:42.33					33	1237678601306832954				
Move mouse over a column name to get its units. mode PRIMARY													
flags DEBLENDED_AT_EDGE STATIONARY BAD_MOVING_FIT BINNED1 SUBTRACTED NOTCHECKED INTERP COSMIC_RAY CHILD EDGE													
u g r										i	i z		
_ 5"	_ 5" N _ 14.6			9 12.62			11	11.67		11.18	10.82		
		err_u	u err_g			err_r			err_i		err_z		
		0.01		0.00		(0.00		0.00		0.00		
	w -	run	rerun		Ca	amco	I	field	obj	rowc		colc	
	The state of the s	7713	30	301 3		3	255		58	1329.0		448.4	
-		fiberMag_i	r pe	etroMag_r dev		Mag_r	ig_r expMa		psfMag_r	mo	delMag_r		
		15.29		11.76	ô	11		67 12.1		5 15.84		11.67	
	s –	extinction	n_r	_r petroRad_		ad_r				parentld		nChild	
STATE OF THE PARTY OF		0.21			48.992			1237678601306832949				0	

No scienceprimary SpecObj linked to this PhotoObj (Click on "All Spectra" link if you think this object has a spectrum)

Cross-identifications

catalo	propermotion							angle		
USNO	0							0		
catalog		name		name2				name3		
RC3		NGC 5	UGC 145							
catalog		j		h			k		phQual	
2MASS	1	12.03	1		11.302		11.394		EEE	
catalog de		signation		J_M_K20FE		H_M_K20FE		K_M_K20FE		
2MASSXSC 001530		87+1719422		9.835			9.101		8.796	

Instalar o software DS9 (disponível para todos os sistemas operacionais):

Ir em File > Open e ir até a pasta onde baixou a imagem do SDSS.

https://sites.google.com/cfa.harvard.edu/saoimageds9/download

Abrir a imagem.

Ir em Scale e selecionar Log.

Clicar com o botão direito do mouse na imagem e arrastar o mouse (direita-esquerda ou para cima-baixo). Isso muda o contraste.

NGC 1270: RA 03 18 58.5 , DEC +41 28 18

Para saber qual a galáxia selecionada:

Arrastar o mouse pela imagem e verificar no campo fk5 quais são as coordenadas da galáxia escolhida.

Verificar se a galáxia não está muito na borda da imagem. Se também não tem interações com outras galáxias do campo.

Anotar X, Y (physical)

No Python iremos:

usar a classe ellipse para ajustar elipses às isofototas.

Abrir o Google Colab com uma conta do Google: https://colab.research.google.com/

Importar o notebook: aula5-ajuste-isofotas.ipynb

Importar no Colab a imagem da sua galáxia (aba Files do lado esquerdo)

Antes de executar o notebook:

Nota 1: é preciso mudar o nome da galáxia (imageFile)

Nota 2: Substituir em "position" os valores de X e Y da sua galáxia verificado com o DS9

Nota 3: Mudar "size" caso seja necessário. Se fizer isso, tem que alterar x0=X/2 e y0=Y/2 em:

geometry = EllipseGeometry(x0=200, y0=200, sma=20, eps=0.1,pa=20.*np.pi/180.)

Ir em Runtime e Run all

Imagem da galáxia mais o chute inicial

(Cores falsas)

Resíduo = Original - Modelo

Os resultados são salvos no arquivo dados_ajuste.txt

Semi-eixo maior (pixel)	Intensidade isofotal média				
sma	intens		niter	stop_code	
		• • •			
2 020511050005411	20 02025000204004	• • • •			
2.030511959895411 2.2335631558849522	29.03825808294804 28.13590477240464		10 10	0	
2.4569194714734475	27.13675477093988		50	2	
2.7026114186207923	25.99123927728753		10	0	
2.972872560482872	24.60011823835625		10	0	
3.270159816531159	23.250119161703815		10	0	
3.597175798184275	21.815581241104		10	0	
3.956893378002703	20.287989964074175		11	0	
4.352582715802973	18.798120448904907		10	0	
4.78784098738327	17.334852547352362		10	0	
69.04542428786206	0.3600630306065608	• • •	10	0	
75.94996671664828	0.29581655434752574	• • •	10	0	
83.5449633883131	0.24113556148670712	• • •	21	0	
91.89945972714443	0.19519471819545647		50	2	
101.08940569985889	0.15234537140968332		10	0	
111.19834626984479	0.12520903802523736		11	0	
122.31818089682928	0.10657876219328367		50	2	
134.5499989865122	0.08358894618845321		12	0	
148.00499888516345	0.21998274557717482		2	5	
	0.059810863066352464	• • •	15	5	
Length = 47 rows					

Lista dos parâmetros da tabela (fora de ordem): https://photutils.readthedocs.io/en/stable/api/
https://photutils.isophote.lsophoteList.html#photutils.isophote.lsophoteList

No SDSS a intensidade é dada em unidades de nanomaggies/arcsec² (nmgy/arcsec²).

Para converter para Jy/arcsec² usar: 1 nmgy = 3.631x10⁻⁶ Jy e depois calcular a magnitude isofotal:

$$\mu = -2.5 \log[I]$$

Converter pixel para arcsec no SDSS: 1 pixel = 0.39597 arcsec

Vamos ajustar o perfil de de Vaucoulers:

$$I(R) = I_0 \exp \left[-\left(\frac{R}{\alpha}\right)^{1/4} \right]$$

Linearizar a função de de Vaucoulers:

$$\mu = -2.5 \log \left[\frac{I}{I_0} \right] \qquad \qquad \mu(R) = \mu_0 + \frac{2.5}{\ln 10} \left(\frac{R}{\alpha} \right)^{1/4}$$

$$\mu(R) = \mu_0 + bX$$
 ; $X = R^{1/4}$, $b = \frac{1.0857362}{\alpha^{1/4}}$

$$I(R) = I_0 \exp\left[-\left(\frac{R}{\alpha}\right)^{1/4}\right]$$

Notar que o raio efetivo (meia luz): $R_e = 3459 \alpha$

e também o brilho superficial no raio efetivo: $I_e = 10^{-3.33} I_0$

$$I_0[L_{sol}] = 10^{[(M_{sol} + 21.572 - \mu_0)/2.5]}$$

Sendo $M_{\rm sol}$ a magnitude bolométrica do Sol.

Luminosidade $L = (2n)! \pi I_0 \alpha^2$ com n = 4 (galáxia elíptica)

No programa preferido de cada um:

- Ajustar o perfil de de Vaucouleurs ao perfil obtido.
- Obter a partir do ajuste de perfil:
- a luminosidade total (L),
- raio efetivo R_e (em kpc),
- o brilho superficial efetivo μ_e em mag/"².

Relatório

- Galáxias escolhidas (2 elípticas)
- Ajuste das isofotas com ellipse
- o gráfico mag X R^{1/4} deu uma reta?
- a imagem do resíduo é satisfatória ou há muitas estruturas presentes?

- Ajuste do perfil de de Vaucouleurs.
- Cálculo de R_e em kpc e arcsec, μ_e em mag/arcsec2. Luminosidade total em L_{\odot} ajustado e baseado na magnitude r da galáxias no SDSS DR8.

Data da entrega: 08 de outubro

