Domain Decomposition Methods for the Neutron Transport Equation

Jack Blake, Ivan Graham and Alastair Spence

Mathematical Sciences, Bath University, Bath, BA2 7AY

June, 2015

Map of the talk

- Project aimed at developing and understanding numerical methods in radiative transport.
- ► Focus of this talk is the mono-energetic steady-state transport equation. (Equation on next slide)
- This talk is split into three parts:
 - 1. Source Iteration for the transport equation
 - 2. Benefits and limitations of diffusion synthetic acceleration,
 - 3. A domain decomposition approach to solving the transport equation.
- Motivation: domain decomposition methods have good parallelisation potential and can help improve convergence rate whilst limiting computational expense.

The problem

The (mono-energetic, steady-state) neutron transport equation in 5D with an isotropic source, $Q(\mathbf{r})$, is given by

$$\Omega \cdot \nabla \psi(\mathbf{r}, \Omega) + \sigma_T(\mathbf{r})\psi(\mathbf{r}, \Omega) = \frac{\sigma_S(\mathbf{r})}{4\pi} \int_{\mathbb{S}^2} \psi(\mathbf{r}, \Omega') \, d\Omega' + Q(\mathbf{r})$$

with $\mathbf{r} \in V \subset \mathbb{R}^3$ and $\Omega \in \mathbb{S}^2$. The argument $\psi(\mathbf{r}, \Omega)$ is called the neutron flux.

The problem

The (mono-energetic, steady-state) neutron transport equation in 5D with an isotropic source, $Q(\mathbf{r})$, is given by

$$\Omega \cdot \nabla \psi(\mathbf{r}, \Omega) + \sigma_{T}(\mathbf{r})\psi(\mathbf{r}, \Omega) = \frac{\sigma_{S}(\mathbf{r})}{4\pi} \int_{\mathbb{S}^{2}} \psi(\mathbf{r}, \Omega') d\Omega' + Q(\mathbf{r})$$

with $\mathbf{r} \in V \subset \mathbb{R}^3$ and $\Omega \in \mathbb{S}^2$. The argument $\psi(\mathbf{r}, \Omega)$ is called the neutron flux. Boundary conditions

$$\psi(\mathbf{r}, \Omega) = 0$$
, when $n(\mathbf{r}) \cdot \Omega < 0$, $\mathbf{r} \in \delta V$.

Note: σ_T , σ_S and σ_A are called cross-sections. They are all strictly positive and satisfy $\sigma_T = \sigma_S + \sigma_A$

Source Iteration (described via operator notation)

Introduce

$$\mathcal{T}(\cdot) \equiv \Omega \cdot \nabla(\cdot) + \sigma_{\mathcal{T}}(\mathbf{r})(\cdot)$$
 and define $\phi(\mathbf{r}) = \frac{1}{4\pi} \int_{\mathbb{S}^2} \psi(\mathbf{r}, \Omega) d\Omega$

 ϕ is called the scalar flux. The transport equation is then

$$\mathcal{T}\psi = \sigma_{\mathcal{S}}\phi + Q$$

Source Iteration (described via operator notation)

Introduce

$$\mathcal{T}(\cdot) \equiv \Omega \cdot \nabla(\cdot) + \sigma_{\mathcal{T}}(\mathbf{r})(\cdot)$$
 and define $\phi(\mathbf{r}) = \frac{1}{4\pi} \int_{\mathbb{S}^2} \psi(\mathbf{r}, \Omega) d\Omega$

 ϕ is called the scalar flux. The transport equation is then

$$\mathcal{T}\psi = \sigma_{\mathcal{S}}\phi + Q$$

Source Iteration (SI) is defined as follows

$$\mathcal{T}\psi^{(k+1)} = \sigma_{\mathcal{S}}\phi^{(k)} + Q$$
$$\phi^{(k+1)} = \frac{1}{4\pi} \int_{\mathbb{S}^2} \psi^{(k+1)} d\Omega$$

This basic iterative method is known to converge since

$$\|\sigma_{\mathcal{S}}/\sigma_{\mathcal{T}}\|_{\infty} < 1$$

Diffusion Approximation

Limitation of source iteration:

Potentially slow convergence when $\|\sigma_S/\sigma_T\|_{\infty} \approx 1$

Diffusion Approximation

Limitation of source iteration:

Potentially slow convergence when $\|\sigma_S/\sigma_T\|_{\infty} \approx 1$

One approach:

Approximate ϕ (the scalar flux) using a diffusion equation.

$$-\nabla \cdot \left(\frac{1}{3\sigma_T(\mathbf{r})}\nabla\Theta(\mathbf{r})\right) + \sigma_A(\mathbf{r})\Theta(\mathbf{r}) = Q(\mathbf{r}),$$

subject to

$$\Theta(\mathbf{r}) + \lambda n(\mathbf{r}) \cdot \nabla \Theta(\mathbf{r}) = 0$$
, when $\mathbf{r} \in \delta V$,

with λ a known constant.

Using asymptotics: $\Theta = \phi + \mathcal{O}(\epsilon^2)$, where ϵ is an asymptotic parameter.

Diffusion Synthetic Acceleration (DSA)

Roughly speaking, as $\|\sigma_S/\sigma_T\|_{\infty} \to 1$:

- Source iteration converges more slowly,
- \triangleright Θ better approximates ϕ .

Diffusion Synthetic Acceleration (DSA)

Roughly speaking, as $\|\sigma_S/\sigma_T\|_{\infty} \to 1$:

- Source iteration converges more slowly,
- ▶ Θ better approximates ϕ .

Idea: use the good diffusion approximation to "accelerate" the poor convergence of source iteration.

Diffusion Synthetic Acceleration (DSA)

Roughly speaking, as $\|\sigma_S/\sigma_T\|_{\infty} \to 1$:

- Source iteration converges more slowly,
- \triangleright Θ better approximates ϕ .

Idea: use the good diffusion approximation to "accelerate" the poor convergence of source iteration.

Synthetic acceleration methods were first suggested by Kopp in 1963. DSA is such a method.

2-step process:

- 1. Do one step of source iteration,
- 2. use the diffusion approximation to estimate the error in step 1.

DSA: The Good and the Bad

Good:

DSA improves upon or maintains the convergence of source iteration for all values of σ_S/σ_T

Figure: Iterations to converge to a tolerance of 10^{-6}

DSA: The Good and the Bad

Good:

DSA improves upon or maintains the convergence of source iteration for all values of σ_S/σ_T

Figure: Iterations to converge to a tolerance of 10^{-6}

Bad:

- Discontinuous cross-sections can lead to degraded effectiveness of multidimensional DSA (Azmy, 1998, Warsa et. al., 2004).
- Higher computational cost per iteration.

Idea: separate the domain into diffusive and non-diffusive regions.

Diffusive \rightarrow apply DSA **Non-diffusive** \rightarrow apply SI

Idea: separate the domain into diffusive and non-diffusive regions.

 $\begin{array}{l} \textbf{Diffusive} \rightarrow \mathsf{apply} \ \mathsf{DSA} \\ \textbf{Non-diffusive} \rightarrow \mathsf{apply} \ \mathsf{SI} \end{array}$

First things first: how do we organise a *domain decomposed source iteration* algorithm?

Idea: separate the domain into diffusive and non-diffusive regions.

 $\begin{array}{l} \textbf{Diffusive} \rightarrow \mathsf{apply} \ \mathsf{DSA} \\ \textbf{Non-diffusive} \rightarrow \mathsf{apply} \ \mathsf{SI} \end{array}$

First things first: how do we organise a *domain decomposed source iteration* algorithm?

- Internal boundary,
- External boundary.

Idea: separate the domain into diffusive and non-diffusive regions.

 $\begin{array}{l} \textbf{Diffusive} \rightarrow \mathsf{apply} \ \mathsf{DSA} \\ \textbf{Non-diffusive} \rightarrow \mathsf{apply} \ \mathsf{SI} \end{array}$

First things first: how do we organise a *domain decomposed source iteration* algorithm?

- Internal boundary,
- External boundary.

Boundary conditions:

- Zero incoming flux on the external boundary,
- Internal boundary?

In general: use the flux on V_1 to impose internal conditions for V_2 , use the flux on V_2 to impose internal conditions for V_1 .

 $DDSI \equiv Domain Decomposed Source Iteration$

Jacobi DDSI:

Internal boundary conditions for each subdomain are imposed using the **previous** iteration on neighbouring subdomains.

Gauss-Seidel DDSI:

Internal boundary conditions for each subdomain are imposed using the **current** iteration on neighbouring subdomains.

Proved: Gauss-Seidel DDSI ≡ Source Iteration

DDSI ≡ Domain Decomposed Source Iteration

Jacobi DDSI:

Internal boundary conditions for each subdomain are imposed using the **previous** iteration on neighbouring subdomains.

Gauss-Seidel DDSI:

Internal boundary conditions for each subdomain are imposed using the **current** iteration on neighbouring subdomains.

Proved: Gauss-Seidel DDSI \equiv Source Iteration

	Parallelisation	Rate of	Arbitrary subdomain
Algorithm:	Potential	convergence	shapes
Jacobi DDSI	Angle & space	Slower than SI	✓
Gauss-Seidel DDSI	Angle only	Same as SI	X

Numerical Results

(1): Diffusive (2), (Q): Non-diffusive

Numerical Results

(1): Diffusive (2), (Q): Non-diffusive

Numerical Results

(1): Diffusive (2), (Q): Non-diffusive

Method	Time
Jacobi SI	758
Gauss-Seidel SI	748
Jacobi DSA	2155
Gauss-Seidel DSA	2028
Jacobi SIDSA	1182
Gauss-Seidel SIDSA	1123