DHC

- 1. Watch <u>video no. 8 in the MIT OCW 8.04 Quantum Physics 1 course</u> by Barton Zweibach. Then write out his proof of why $E_{n+1} > E_n$, for the time-independent Schroedinger equation, where n is the number of nodes.
- 2. Harmonic oscillator:
 - a) Show that, for a particle in 1D, $[\hat{x}, \hat{p}] = i\hbar = -[\hat{p}, \hat{x}]$. Is this true for any V(x)?
 - b) In state $\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-m\omega x^2/2\hbar}$, what is the probability to find the particle within the classically allowed region? Use Mathematica or similar to do the integral.
 - c) Given $\psi_n(x) = \frac{1}{\sqrt{n!}} (a_+)^n \psi_0(x)$, find $\psi_2(x)$ and $\psi_3(x)$ and check that they contain the Hermite polynomials $H_2(\zeta)$ and $H_3(\zeta)$ where $\zeta = \left(\frac{m\omega}{\hbar}\right)^{1/2} x$.
 - d) Check that ψ_2 and ψ_3 are orthogonal.
 - e) Write both x and p in terms of a_+ and a_- . Using this, and orthonormality, find $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$, $\langle p^2 \rangle$, $\langle T \rangle$ and $\langle V \rangle$ where T and V are the kinetic and potential energy for for ψ_n .
 - f) At t = 0 a particle has wavefunction $\psi(x, 0) = A(\psi_0 + \psi_1)$. If the energy is measured, what are its possible values and their probabilities?
 - g) Find the probability density at later times, correctly normalized. Describe what is happening.
- 3. Free particle:
 - a) Let P_{ab} be the probability of finding a particle in the range (a, b) at time t. Show, using the time-dependent Schroedinger equation, that $\frac{dP_{ab}}{dt} = J(a, t) J(b, t)$, where $J(x, t) \stackrel{\text{def}}{=} \frac{i\hbar}{2m} \left(\psi \frac{\partial \psi^*}{\partial x} \psi^* \frac{\partial \psi}{\partial x} \right)$ is the **probability current**. (This works for any V(x)).
 - b) Find J(x, t) for a free particle momentum eigenstate $\psi = Ae^{i(kx \frac{\hbar k^2}{2m}t)}$. Can you find A?
 - c) At t = 0 free particle has a gaussian wavepacket, $\psi(x, 0) = Ae^{-ax^2}$. Find A.
 - d) Find $\psi(x, t)$. [Hints in Griffiths if needed.]
 - e) Find the probability density at time t in terms of the quantity $\xi = \sqrt{\frac{a}{1 + (2\hbar at/m)^2}}$. Sketch it at t = 0 and again for some very large t. Qualitatively what happens as time goes on?
 - f) At what time does the system come closest to the limit set by the uncertainty principle?