

# WM\_W800 认证测试工具说明 V1.2

北京联盛德微电子有限责任公司 (winner micro)

地址:北京市海淀区阜成路 67 号银都大厦 18 层

电话: +86-10-62161900

公司网址: www.winnermicro.com



# 文档修改记录

| 版本   | 修订时间      | 修订记录                 | 作者    | 审核 |
|------|-----------|----------------------|-------|----|
| V0.1 | 2019/9/25 | [C]创建文档              | Cuiyc |    |
| V0.2 | 2020/6/10 | 增加蓝牙 LE 测试部分说明       | Cuiyc |    |
|      |           | 更新界面说明及操作说明          |       |    |
| V0.3 | 2020/6/12 | 更新界面图示及图形变好          | Cuiyc |    |
| V0.4 | 2020/7/2  | 更新界面图片               | Cuiyc |    |
|      |           | 默认勾选温度补偿             |       |    |
| V0.5 | 2020/7/8  | 统一字体                 | Cuiyc |    |
| V1.0 | 2020/8/10 | 正式发布版本               | Cuiyc |    |
| V1.1 | 2020/9/8  | 增加推荐发射增益             | Cuiyc |    |
| V1.2 | 2020/9/18 | Wi-Fi 的发射功率按照 5 级设置增 | Cuiyc |    |
|      |           | 益选项                  |       |    |



# 目录

| 文村 | 当修改记录   | ₹                           | 2  |
|----|---------|-----------------------------|----|
| 目表 | 录       |                             | 3  |
| 1  | 引言      |                             | 4  |
|    | 1.1     | 编写目的                        | 4  |
|    | 1.2     | 预期读者                        | 4  |
|    | 1.3     | 术语定义                        | 4  |
|    | 1.4     | 参考资料                        | 4  |
| 2  | Wi-Fi 认 | 、证连接示意图                     | 5  |
| 3  |         | E连接示意图                      |    |
| 4  |         | 月说明                         |    |
|    | 4.1     | 界面说明                        |    |
|    | 4.2     | Wi-Fi 部分                    |    |
|    | 4.2.1   | Wi-Fi 测试配置参数说明              |    |
|    | 4.2.2   | Wi-Fi 测试操作说明                |    |
|    | 4.2.2.1 | Wi-Fi 发送测试                  |    |
|    |         | Wi-Fi 接收测试                  |    |
|    | 4.2.2.3 | Wi-Fi 频偏(单载波)测试             |    |
|    | 4.2.2.3 | 蓝牙部分                        |    |
|    |         |                             |    |
|    | 4.3.1   | 测试控制说明                      |    |
|    | 4.3.2   | BLE 的指令控制部分说明               |    |
|    | 4.3.2.1 | BLE 发送测试的 HCI 指令            |    |
|    | 4.3.2.2 |                             |    |
|    |         | Packet payload 及发送信道及数据长度定义 |    |
|    |         | BLE 测试的几个 HCI 指令的具体描述       |    |
|    | 4.3.3   | 传统蓝牙的指令控制部分说明               | 21 |
|    | 4.3.3.1 | 传统蓝牙测试的 HCI 指令              | 21 |
|    | 4.3.3.2 | 传统蓝牙测试的几个 HCI 指令的具体描述       | 21 |



# 1 引言

# 1.1 编写目的

无线认证测试 PC 端工具的使用方法及设置说明, 指导客户如何通过工具操作待测无线模块, 使待测模块处于认证测试所需状态。

# 1.2 预期读者

Wi-Fi/蓝牙部分物理层的研发工程师,测试工程师及其他认证支持工程师

# 1.3 术语定义

无

# 1.4参考资料

无



# 2 Wi-Fi 认证连接示意图



图 2-1

#### 上图指示如何连接物理设备及工具安装情况:

- 1) 待测试模块通过 UARTO 与 PC 端的串口相连接
- 2) 待测试模块通过射频线与测试仪器 (Litepoint, 频谱分析仪, 信号源) 相连
- 3) 测试仪器与 PC 如何相连
- 4) 认证测试工具及仪器分析软件(接收或者发送待测信号)会安装于同一 PC



# 3 蓝牙认证连接示意图



图 3.1

上图指示如何连接物理设备及工具安装情况:

- 1) 待测试模块通过 UARTO 与 PC 端的串口相连接,用于控制蓝牙进入测试模式
- 2) 待测模块通过 UART1 与蓝牙测试仪器相连接, 用于蓝牙测试的信令控制
- 3) 待测试模块通过射频线与测试仪器相连
- 4) 认证测试工具及仪器分析软件(接收或者发送待测信号)会安装于同一 PC



# 4 工具使用说明



图 4-1

上图是工具主界面,它通过图形指导来展示:

- 1)如何通过串口指令操作,使得待测模块的 Wi-Fi 功能处于发送,接收或频偏(单载波)等相关状态,加以测试仪器(litepoint,频谱分析仪等)的配合来完成指定测试。
- 2) 如果通过串口指令操作,使得待测模块蓝牙处于测试模式。

### 4.1 界面说明

如图 2-1, 界面按照左右分成两大部分:

- 1. DUT 搜索显示部分
  - a) 模块搜素:

端口下拉列出当前的串口,根据连接情况选择要使用的串口,

默认波特率: 115200, 数据位: 8bit, 停止位: 1bit, 奇偶校验: 无

b) 模块显示

搜索到的模块 MAC 和对应的串口显示在白色窗口

2. DUT 的 WI-Fi 指标测试部分



#### a) 公共部分

发送和接收时的信道,模式以及速率的配置项,停止测试的功能

b) 发送和频偏测试部分

发送的增益,包长,发包间隔等配置项

频偏测试选项

温度补偿选项

启动发送功能按钮

c) 接收部分

可配置的期望包数 (对端实际发包数)

实际收包和误包率显示项

启动接收功能按钮

接收包数查询功能按钮

#### 3. DUT 的蓝牙操作部分

主要是用于控制模块的蓝牙打开及进入测试模式(UARTO 口的操作),而信令相关的操作不在此界面操作,且信令是通过 UART1 口完成。

### 4.2Wi-Fi 部分

# 4.2.1Wi-Fi 测试配置参数说明

#### 信道: 1-14

| 频率范围         | 信道 | 中心频点(MHz) |
|--------------|----|-----------|
| 2400-2484MHz | 1  | 2412      |
|              | 2  | 2417      |
|              | 3  | 2422      |
|              | 4  | 2427      |



| 5  | 2432 |
|----|------|
| 6  | 2437 |
| 7  | 2442 |
| 8  | 2447 |
| 9  | 2452 |
| 10 | 2457 |
| 11 | 2462 |
| 12 | 2467 |
| 13 | 2472 |
| 14 | 2484 |

表 4-1

#### 模式:

802.11b

802.11g

802.11n

#### 速率:

802.11b 对应速率:

L1M, L2M, L5M5, L11M

802.11g 对应速率:

R06M, R09M, R12M, R18M, R24M, R36M, R48M, R54M

802.11n 对应速率:

HT20: MCS0\_20M, MCS1\_20M, MCS2\_20M, MCS3\_20M, MCS4\_20M, MCS5\_20M,

MCS6\_20M,MCS7\_20M

HT40: MCS0\_40M,MCS1\_40M, MCS2\_40M,MCS3\_40M, MCS4\_40M,MCS5\_40M,



#### MCS6 40M, MCS7 40M, MCS32

#### 单载波测试:

测试频偏时使用

#### 温度补偿:

默认打开功能。

随着环境温度升高或者降低,芯片的工作温度会变化,在不调整芯片参数的情况下,芯片发射性能会发生变化。为了使芯片能够在不同的温度都能达到较好的发射性能,因此需要根据温度的变化对芯片发射参数进行调整。

当温度补偿功能打开时,芯片依据内部设定的参数进行调整,界面设定的增益参数无效。如果需要生效工具界面的增益,需关闭温度补偿功能。

#### 增益:

| 制式      | 速率   | 增益取值           |
|---------|------|----------------|
|         | 1M   |                |
| 802.11b | 2M   |                |
|         | 5.5M | 7,10,16,20,23  |
|         | 11M  |                |
| 制式      | 速率   | 增益取值           |
|         | 6M   |                |
|         | 9M   |                |
|         | 12M  |                |
|         | 18M  | 25,29,36,41,44 |
| 802.11g | 24M  |                |
|         | 36M  |                |



|              | 48M  |                |
|--------------|------|----------------|
|              | 54M  | 20,25,33,36,42 |
| 制式           | 速率   | 增益取值           |
|              | MCS0 | 25,29,36,41,44 |
|              | MCS1 |                |
|              | MCS2 |                |
| 802.11n-HT20 | MCS3 |                |
|              | MCS4 |                |
|              | MCS5 |                |
|              | MCS6 | 20,25,33,36,42 |
|              | MCS7 | 10,16,20,25,29 |
| 制式           | 速率   | 增益取值           |
|              | MCS0 |                |
|              | MCS1 |                |
|              | MCS2 |                |
| 802.11n-HT40 | MCS3 | 25,29,36,41,44 |
|              | MCS4 |                |
|              | MCS5 |                |
|              | MCS6 | 20,25,33,36,42 |
|              | MCS7 | 10,16,20,25,29 |

#### 包长:

0-1500byte, 说明, 实际空中发送的包长度为:设置包长+MAC 头和 CRC 长度。

### 发包间隔:

默认 100ms, 取值说明: >=2ms 时, 使用设置值; <2 时, 使用内部默认的发送间隔。

#### 期望包数:



接收测试时,发送方要发送的包数,即模块要收到的最多包数。

#### 接收包数:

接收测试时,通过查询收包数功能或者停止测试时查询到的实际接收包数。

#### 收包率:

接收测试时,依据期望包数和接收包数计算百分比,即收包正确率,当收包大于总包数时,收保率无意义。

### 4.2.2 Wi-Fi 测试操作说明

#### 4.2.2.1 Wi-Fi 发送测试

#### 说明:

仪器处于接收状态,让待测模块发出指定的信号,仪器接收并分析模块的信号,进而分析出模块的发送功率,EVM,MASK等信息。

如果要进行温度补偿功能,按照默认温度补偿功能勾选即可。

如果要测试不同增益下的射频发射性能,不要勾选温度补偿选项。

#### 操作:

根据测试需要设置信道,模式,速率,增益,包长,发包间隔,然后,点击发送按钮,启动模块发送数据。如需要停止,点击停止按钮。





图 4-2-1 有温度补偿 (界面增益不生效)



图 4-2-2 无温度补偿 (界面增益生效)

#### 4.2.2.2 Wi-Fi 接收测试

#### 说明:

让待测模块打开接收通道,处于接收状态,仪器根据测试要求发出指定速率的信号,一般接收测试只是看误报率。



#### 操作:

选择信道,模式,速率,点击启动接收按钮,使模块处于接收状态。如需要停止,点击停止按钮。测试过程中,可以通过点击查询收包数按钮,查询收到的包数;停止测试时,也会更新实际收包数,如果期望包数设置,且满足条件会计算误包率。



图 4-3

# 4.2.2.3 Wi-Fi 频偏 (单载波) 测试

#### 说明:

让待测模块打开发送通道,仪器处于接收状态,仪器分析模块的本振信号,以此来判断频率误差。

#### 操作:

勾选[**单载波测试**]选项,设置信道,点击发送按钮,使得模块输出本振信号。如需要停止, 点击停止按钮。





图 4-4

# 4.3 蓝牙部分

# 4.3.1测试控制说明

#### 说明:

此界面操作仅仅是让待测模块处于蓝牙测试模式,具体的信令控制部分通过 UART1 来实现的。

#### 操作:

要启动测试,点击"启动蓝牙测试"按钮,待测模块蓝牙功能打开,并进入蓝牙测试模式。要停止测试,点击"停止蓝牙测试"按钮即可。

如图所示。





图 4-4

### 4.3.2BLE 的指令控制部分说明

#### 注意:

此部分,仅是介绍蓝牙的 HCI 控制指令。一般蓝牙测试仪直接支持 HCI 指令,无需**手动**通过串口发送 HCI 指令。

如需手动操作,发送的指令串口应以十六进制方式发送。

# 4.3.2.1 BLE 发送测试的 HCI 指令

1) 发送: 01 03 0C 00

响应: **04** 0E 04 01 03 0C 00

//复位蓝牙控制器

2) 发送: 01 1E 20 03 00 25 00

//发送数据,其中 packet payload 可以选择不同类型用于测试不

同rf性能指标。具体定义参见如下说明。

响应: 04 0E 04 01 1E 20 00

3) 发送停止测试: 01 1F 20 00

//用于停止发送测试。如果测试不同的 channel 及 packet payload,继续步骤 2)即可。

响应: **04** 0E 06 01 1F 20 00 00 00



Size: 1 Octet

# 4.3.2.2 BLE 接收灵敏度测试的 HCI 指令

1) 发送: 01 03 0C 00 //复位蓝牙控制器

响应: **04 0E 04 01 03 0C 00** 

2) 发送: 01 1D 20 01 00 //配置接收信道,进入接收数据模式。此时可以用 CWM500,根

据配置的信道发送 LE 数据包。发送完成后,发送停止测试指令

响应: 04 0E 04 01 1D 20 00

3) 发送停止测试: **01** 1F 20 00 //发送停止测试

响应: 04 0E 06 01 1F 20 00 xx xx //其中 xx xx 为收到的数据包个数。

# 4.3.2.3 Packet payload 及发送信道及数据长度定义

Packet Payload: Size: 1 Octet

| Value | Parameter Description                                                                                       |
|-------|-------------------------------------------------------------------------------------------------------------|
| 0x00  | PRBS9 sequence '11111111100000111101' (in transmission order) as described in [Vol 6] Part F, Section 4.1.5 |
| 0x01  | Repeated '11110000' (in transmission order) sequence as described in [Vol 6] Part F, Section 4.1.5          |
| 0x02  | Repeated '10101010' (in transmission order) sequence as described in [Vol 6] Part F, Section 4.1.5          |
| 0x03  | PRBS15 sequence as described in [Vol 6] Part F, Section 4.1.5                                               |
| 0x04  | Repeated '11111111' (in transmission order) sequence                                                        |
| 0x05  | Repeated '00000000' (in transmission order) sequence                                                        |
| 0x06  | Repeated '00001111' (in transmission order) sequence                                                        |
| 0x07  | Repeated '01010101' (in transmission order) sequence                                                        |

TX\_Channel: Size: 1 Octet

| Value    | Parameter Description                                     |
|----------|-----------------------------------------------------------|
| N = 0xXX | N = (F - 2402) / 2                                        |
|          | Range: 0x00 – 0x27. Frequency Range: 2402 MHz to 2480 MHz |

Length\_Of\_Test\_Data:

| Value     | Parameter Description                          |
|-----------|------------------------------------------------|
| 0x00-0xFF | Length in bytes of payload data in each packet |

17



# 4.3.2.4 BLE 测试的几个 HCI 指令的具体描述

蓝牙复位指令: COM: 01 03 0C 00(Reset) Send 01......Command 03 0C......Command\_Opcode (reset Command) 00.....Parameter length Receive COM: 04 0E 04 01 03 0C 00 (7 bytes) 04.....HCI Packet Type 0E......Event Code 04......Parameter\_Length 01..... Num HCI Command Packets 03 OC......Command\_Opcode 00...... Status 发射指令: COM: 01 1E 20 03 00 25 00 Send ......Command 20.....Command Opcode 1E (HCI\_LE\_Transmitter\_Test) ...... Parameter\_Length 00.....TX Channel (2402) 25.....Length Of Test Data 00......Packet Payload (Pseudo-Random bit sequence 9) Receive COM: 04 0E 04 01 1E 20 00 (7 bytes) 04......HCI Pa cket\_Type 0E.....Event 04...... Parameter\_Length



|         | 01                                |             |                    |             |
|---------|-----------------------------------|-------------|--------------------|-------------|
|         | Num_HCI_Comm                      | and_Packets | 1E                 |             |
|         | 20                                | Command_    | Opcode             |             |
|         | 00                                | Status      |                    |             |
| 停止测     | 试                                 |             |                    |             |
| Send    | COM: 01 1F 20 00(End Test)        |             |                    |             |
|         | 01                                | Com         | mand               |             |
|         | 1F 20                             |             |                    | E_Test_End) |
| Receive | e COM: 04 0E 06 01 1F 20 00 00 00 | (9 bytes)   |                    |             |
|         | 04                                | HCI         | _Packet_Type       |             |
|         | 0E                                | Ever        | nt_Code            |             |
|         | 06                                | Paraı       | meter_Length       |             |
|         | 01                                | Num_        | _HCI_Command_Packe | ts          |
|         | 1F 20                             | Comma       | and_Opcode         |             |
|         | 00                                | Status      |                    |             |
|         | 00 00                             | Number of   | fpackets           |             |



# 接收测试模式

| Send    | COM: 01 1D 20 0   | 1 00          |                                 |
|---------|-------------------|---------------|---------------------------------|
|         | 01                |               | Command                         |
|         | 1D                |               | 20Command_Opcode                |
|         | (HCI_LE           | _Reciver_Tes  | st)                             |
|         | 01.               |               | Parameter_Length                |
|         |                   | 00            | RX_Channel (2402)               |
| Receive | e COM: 04 0E 04 0 | 1 1D 20 00    | (7 bytes)                       |
|         | 04                |               | HCI_Packet_Type                 |
|         | 0E                |               | Event_Code                      |
|         | 04                |               | Parameter_Length                |
|         | 01.               |               |                                 |
|         |                   | Num_HCI_C     | Command_Packets 1D              |
|         | • •               | 20            | Command_Opcode                  |
|         |                   | 00            | Status                          |
| 停止测     | ं <b>तं</b>       |               |                                 |
| Send    | COM: 01 1F 20 00  | (End Test)    |                                 |
|         | 01                |               | Command                         |
|         | 1F 20             |               | Command_Opcode(HCI_LE_Test_End) |
|         | 00                |               | Parameter length                |
| Receive | e COM: 04 0E 06 0 | 1 1F 20 00 00 | 00 00 (9 bytes)                 |
|         | 04                |               | HCI Packet Type                 |



| E        |                | Event_Code     |      |
|----------|----------------|----------------|------|
| 06       |                | Parameter_Lenç | gth  |
| 01       |                |                |      |
| Num_HCI_ | _Command_Packe | ets            |      |
| 1F 20.   |                | Command_Op     | code |
|          | 00             | Status         |      |

### 4.3.3传统蓝牙的指令控制部分说明

#### 注意:

此部分,仅是介绍传统蓝牙的 HCI 控制指令。一般蓝牙测试仪直接支持 HCI 指令,无需**手动**通过串口发送 HCI 指令。

如需手动操作,发送的指令串口应以十六进制方式发送。

# 4.3.3.1 传统蓝牙测试的 HCI 指令

1) 发送: 01 03 0C 00 //复位蓝牙控制器

响应: 04 0E 04 01 03 0C 00

2) 发送: 01 05 0C 03 02 00 02 //设置 Event filter

响应: 04 0E 04 05 05 0C 00

3) 发送: 01 1A 0C 01 03 //用于配置控制器处于 scan 模式

响应: 04 0E 04 05 1A 0C 00

4) 发送: 01 03 18 00 //进入 DUT 模式

响应: 04 0E 04 05 03 18 00 //此时可以使用蓝牙测试测试

# 4.3.3.2 传统蓝牙测试的几个 HCI 指令的具体描述

#### 蓝牙复位指令:



COM: 01 03 0C 00 (Reset) Send 01......Command 03 0C......Command\_Opcode (reset Command) 00..... parameter length Receive COM: 04 0E 04 01 03 0C 00 (7 bytes) 04......HCI Packet Type 0E......Event Code 01..... Num HCI Command Packets 03 OC......Command\_Opcode 00..... Status 设置 Event Filter: COM: 01 05 0C 03 02 00 0 Send 01......Command 03 0C.....Command\_Opcode (reset Command) 03.....Parameter Length 02.....Connection setup 00......Allow connections from all devices 02......Do auto accept the connection with role switch disabled

Receive COM: 04 0E 04 05 05 0C 00 (7 bytes)



| 04                                | HCI_Packet_Type               |  |
|-----------------------------------|-------------------------------|--|
| 0E                                | Event_Code                    |  |
| 04                                | Parameter_Length              |  |
| 05                                |                               |  |
| Num_HCI_Com                       | imand_Packets 05              |  |
| 0C                                | Command_Opcode                |  |
| 00                                | Status                        |  |
| 设置使能 scan 模式                      |                               |  |
| Send COM: 01 1A 0C 01 03          |                               |  |
| 01                                | Command                       |  |
| 1A 0C                             | Write scan enable             |  |
| 01                                | parameter length              |  |
| 03                                | Inquire and page scan enabled |  |
| Receive COM: 04 0E 04 05 1A 0C 00 | (7 bytes)                     |  |
| 04                                | HCI_Packet_Type               |  |
| 0E                                | Event_Code                    |  |
| 04                                | Parameter_Length              |  |
| 05                                |                               |  |
| Num_HCI_Com                       | imand_Packets 1A              |  |
| 0CCommand_Opcode                  |                               |  |
| 00                                | Status                        |  |

使能 DUT 模式指令:



| Send    | COM: 01 03 18 00            |                  |                             |  |
|---------|-----------------------------|------------------|-----------------------------|--|
|         | 01                          | Cc               | ommand                      |  |
|         | 03 18                       | Ena              | able device under test mode |  |
|         | 00                          | Parar            | neter length                |  |
| Receive | e COM: 04 0E 04 05 03 18 00 |                  |                             |  |
|         | 04                          | Н                | CI_Packet_Type              |  |
|         | 0E                          | Ev               | ent_Code                    |  |
|         | 04                          | Parameter_Length |                             |  |
| 05      |                             |                  |                             |  |
|         | Num_HCI_Co                  | mmand_Packets    | 03                          |  |
|         | 18                          | Command          | _Opcode                     |  |
|         | .00                         | Status           |                             |  |