Tarea 1 Calculo Computacional

Victor Tortolero CI:24.569.609

Respuesta 1

Tenemos que $\frac{A+3}{13}$, como A=9, tendríamos $\frac{9+3}{13}=\frac{12}{13}$. Ahora procedemos a convertir a binario.

$$\begin{array}{l} \frac{12}{13} \times 2 = \frac{24}{13}, \, b_0 = 1 \\ \frac{11}{13} \times 2 = \frac{22}{13}, \, b_1 = 1 \\ \frac{9}{13} \times 2 = \frac{18}{13}, \, b_2 = 1 \\ \frac{5}{13} \times 2 = \frac{10}{13}, \, b_3 = 0 \\ \frac{10}{13} \times 2 = \frac{20}{13}, \, b_4 = 1 \\ \frac{7}{13} \times 2 = \frac{14}{13}, \, b_5 = 1 \\ \frac{1}{13} \times 2 = \frac{2}{13}, \, b_6 = 0 \end{array}$$

Por lo tanto tenemos que:

 $0,111011000100\overline{111011000100}$ **1**...

Observemos que el numero que vendria luego del bit 24 seria un 1. Entonces a la hora de redondear se suma 1. Por lo tanto, tenemos que $Fl(\frac{12}{13})_{Truncado} = 0,111011000100111011000100$, y que $Fl(\frac{12}{13})_{Redondeado} = 0,111011000100111011000101$.

Por Truncamiento tenemos que:

$$E_A = |x - Fl(x)_{Truncado}| = 0, \underbrace{000 \dots 000}_{24 \text{ Ceros}} 111011000100 \dots$$

$$= 0, \underbrace{111011000100111011000100}_{\text{Esto es } \frac{12}{13}} \dots \times 2^{-24}$$

$$= \frac{12}{13} \times 2^{-24} \approx 5, 50196 \times 10^{-8}$$

$$E_R = \frac{E_A}{|x|} = \frac{\frac{12}{13} \times 2^{-24}}{\frac{12}{13}}$$

$$= 2^{-24} \approx 5, 96046 \times 10^{-8}$$

Por Redondeo tenemos que:

$$E_A = |x - Fl(x)_{Redondeado}| = |x - (Fl(x)_{Truncado} + 1 \times 2^{-24})|$$

$$= |x - Fl(x)_{Truncado} - 1 \times 2^{-24}|$$

$$= |\frac{12}{13} \times 2^{-24} - 1 \times 2^{-24}|$$

$$= |\frac{12}{13} - 1| \times 2^{-24}$$

$$= \frac{1}{13} \times 2^{-24} \approx 4,584 \times 10^{-9}$$

$$E_R = \frac{E_A}{|x|} = \frac{\frac{1}{13} \times 2^{-24}}{\frac{12}{13}}$$

$$= \frac{1}{12} \times 2^{-24} \approx 4,9670 \times 10^{-9}$$

Respuesta 2

Tenemos 245696,09₁₀, procedemos a convertirlo a binario:

■ Parte Entera:

$$\begin{array}{c} \frac{245696}{2} = 122848, \ b_{17} = 0 \\ \frac{122848}{2} = 61424, \ b_{16} = 0 \\ \frac{61424}{2} = 30712, \ b_{15} = 0 \\ \frac{30712}{2} = 15356, \ b_{14} = 0 \\ \frac{15356}{2} = 7678, \ b_{13} = 0 \\ \frac{7678}{2} = 3839, \ b_{12} = 0 \\ \frac{3839}{2} = 1919, \ b_{11} = 1 \\ \frac{1919}{2} = 959, \ b_{09} = 1 \\ \frac{959}{2} = 479, \ b_{09} = 1 \\ \frac{479}{2} = 239, \ b_{08} = 1 \end{array}$$

Por lo tanto tenemos que $245696_{10} = 111011111111111000000_2$.

■ Parte Decimal:

$$\begin{array}{c} \frac{9}{100} \times 2 = \frac{18}{100}, \, b_0 = 0 \\ \frac{18}{100} \times 2 = \frac{36}{100}, \, b_1 = 0 \\ \frac{36}{100} \times 2 = \frac{27}{100}, \, b_2 = 0 \\ \frac{72}{100} \times 2 = \frac{144}{100}, \, b_3 = 1 \\ \frac{44}{100} \times 2 = \frac{88}{100}, \, b_4 = 0 \end{array}$$

Por lo tanto tenemos que $0,09_{10} = 00010111$.

Entonces se tiene que $245696,09_{10} \approx 1110111111111000000,0001011_{12}$.

Si usamos redondeo:

$$Fl(245696,09)_{Redondeado} = 0,11101111111111000000000110 \times 2^{18}$$

Si representamos este numero de vuelta en decimal:

$$11101111111111000000,000110_2 = 245696,09375_{10}.$$

Error absoluto y relativo:

$$\begin{split} E_A &= |x - Fl(x)_{Redondeado}| = |245696, 09 - 245696, 09375| \\ &= -3,75 \times 10^{-3} \\ E_R &= \frac{E_A}{|x|} = \frac{-3,75 \times 10^{-3}}{245696, 09} \approx -1,526275815 \times 10^{-8} \end{split}$$

Respuesta 3

Después de correr el programa, se obtuvieron los siguientes datos

• Para simple precisión: $\epsilon = 0,0000001192092895507812500000000000$

Iteracion	t	ϵ
1	1.5000000000000000000000000000000000000	0.5000000000000000000000000000000000000
2	1.25000000000000000000000000000000000000	0.2500000000000000000000000000000000000
3	1.12500000000000000000000000000000000000	0.12500000000000000000000000000000000000
4	1.062500000000000000000000000000000000000	0.06250000000000000000000000000000000000
5	1.0312500000000000000000000000000000000000	0.0312500000000000000000000000000000000000
6	1.015625000000000000000000000	0.0156250000000000000000000000000000000000
7	1.00781250000000000000000000	0.0078125000000000000000000000000000000000000
8	1.00390625000000000000000000	0.0039062500000000000000000000000000000000000
9	1.00195312500000000000000000	0.00195312500000000000000000000000000000000000
10	1.00097656250000000000000000	0.00097656250000000000000000000000000000000000
11	1.00048828125000000000000000	0.0004882812500000000000000000000000000000
12	1.00024414062500000000000000	0.00024414062500000000000000000000000000000000000
13	1.0001220703125000000000000	0.000122070312500000000000000000000000
14	1.0000610351562500000000000	0.000061035156250000000000000000000000
15	1.0000305175781250000000000	0.00003051757812500000000000000000000
16	1.000015258789062500000000	0.00001525878906250000000000000000000

17	1.000007629394531200000000	0.00000762939453125000000000000000000
18	1.000003814697265600000000	0.00000381469726562500000000000000000
19	1.000001907348632800000000	0.00000190734863281250000000000000000
20	1.000000953674316400000000	0.00000095367431640625000000000000000
21	1.000000476837158200000000	0.00000047683715820312500000000000000
22	1.000000238418579100000000	0.00000023841857910156250000000000000
23	1.000000119209289600000000	0.00000011920928955078125000000000000
24	1.0000000000000000000000000000000000000	0.00000005960464477539062500000000000

\bullet Para doble precisión: $\epsilon = 0,000000000000002220446049250313100$

Iteracion	t	ϵ
1	1.5000000000000000000000000000000000000	0.5000000000000000000000000000000000000
2	1.25000000000000000000000000000000000000	0.2500000000000000000000000000000000000
3	1.12500000000000000000000000000000000000	0.12500000000000000000000000000000000000
4	1.062500000000000000000000000000000000000	0.06250000000000000000000000000000000000
5	1.0312500000000000000000000000000000000000	0.0312500000000000000000000000000000000000
6	1.0156250000000000000000000000000000000000	0.0156250000000000000000000000000000000000
7	1.00781250000000000000000000	0.0078125000000000000000000000000000000000000
8	1.00390625000000000000000000	0.0039062500000000000000000000000000000000000
9	1.00195312500000000000000000	0.00195312500000000000000000000000000000000000
10	1.00097656250000000000000000	0.00097656250000000000000000000000000000000000
11	1.00048828125000000000000000	0.00048828125000000000000000000000000000000000
12	1.00024414062500000000000000	0.000244140625000000000000000000000000
13	1.0001220703125000000000000	0.000122070312500000000000000000000000
14	1.0000610351562500000000000	0.000061035156250000000000000000000000
15	1.0000305175781250000000000	0.000030517578125000000000000000000000
16	1.000015258789062500000000	0.00001525878906250000000000000000000
17	1.000007629394531200000000	0.00000762939453125000000000000000000
18	1.000003814697265600000000	0.00000381469726562500000000000000000
19	1.000001907348632800000000	0.00000190734863281250000000000000000
20	1.000000953674316400000000	0.00000095367431640625000000000000000
21	1.000000476837158200000000	0.00000047683715820312500000000000000
22	1.000000238418579100000000	0.00000023841857910156250000000000000
23	1.000000119209289600000000	0.0000001192092895507812500000000000
24	1.000000059604644800000000	0.0000000596046447753906250000000000
25	1.000000029802322400000000	0.0000000298023223876953130000000000
26	1.000000014901161200000000	0.0000000149011611938476560000000000
27	1.000000007450580600000000	0.0000000074505805969238281000000000

28	1.000000003725290300000000	0.0000000037252902984619141000000000
29	1.000000001862645100000000	0.000000018626451492309570000000000
30	1.000000000931322600000000	0.0000000009313225746154785200000000
31	1.000000000465661300000000	0.000000004656612873077392600000000
32	1.000000000232830600000000	0.000000002328306436538696300000000
33	1.000000000116415300000000	0.000000001164153218269348100000000
34	1.000000000058207700000000	0.0000000000582076609134674070000000
35	1.000000000029103800000000	0.0000000000291038304567337040000000
36	1.00000000014551900000000	0.000000000145519152283668520000000
37	1.000000000007276000000000	0.000000000072759576141834259000000
38	1.00000000003638000000000	0.000000000036379788070917130000000
39	1.00000000001819000000000	0.000000000018189894035458565000000
40	1.000000000000909500000000	0.0000000000009094947017729282400000
41	1.000000000000454700000000	0.0000000000004547473508864641200000
42	1.000000000000227400000000	0.0000000000002273736754432320600000
43	1.000000000000113700000000	0.000000000001136868377216160300000
44	1.000000000000056800000000	0.0000000000000568434188608080150000
45	1.000000000000028400000000	0.0000000000000284217094304040070000
46	1.000000000000014200000000	0.0000000000000142108547152020040000
47	1.000000000000007100000000	0.00000000000000071054273576010019000
48	1.000000000000003600000000	0.0000000000000035527136788005009000
49	1.000000000000001800000000	0.0000000000000017763568394002505000
50	1.0000000000000000000000000000000000000	0.0000000000000008881784197001252300
51	1.000000000000000400000000	0.0000000000000004440892098500626200
52	1.0000000000000000200000000	0.00000000000000002220446049250313100
53	1.0000000000000000000000000000000000000	0.000000000000001110223024625156500

El valor de ϵ es distinto de 10^{-308} , porque como estamos continuamente sumando 1 con ϵ , y ϵ se vuelve mas pequeño con cada iteración, y su magnitud es muy pequeña comparada con la de 1 y la suma de $1 + \epsilon$ deja de ser significativa.

Para precisión simple $\delta=0,00097656250$ y para precisión doble $\delta=0,0000000000181898940354585650$.

Los valores de ϵ y δ son distintos ya que la magnitud de 10000 es mucho mayor a la de 1 y por lo tanto al sumarle números pequeños se llega de manera rápida a uno que no afecte la suma.

Respuesta 4

- Ascendente precisión simple:
- Ascendente precisión doble:
- Descendente precisión simple:

- Descendente precisión doble:
- Mayor a menor precisión simple:
- Mayor a menor precisión doble:
- Menor a mayor precisión simple:
- Menor a mayor precisión doble:

Respuesta 5

El mayor valor que llego a tomar la sumatoria fue **15.4036827008740234**. Fueron sumados **2097152 términos** antes de que la computadora dejara de "sumar".

La computadora no llega infinito al realizar la sumatoria debido a la precisión decimal, llega a un punto en que la computadora al sumar dos números, las magnitudes entre ellos son muy distintas y por lo tanto se queda con el numero mas grande y es como si no se le sumara nada.

Respuesta 6

Para x = 10, con precisión simple tenemos que $e^{10} = 22026,4667968750$, este resultado se obtuvo al sumar los términos desde un n = 0, y hasta que la suma dejara de "sumar", usando al final 32 iteraciones.

Y para precisión doble tenemos $e^{10} = 22026,465760913433769019320607185363769531250$. que se obtuvo al cambiar el orden en que se suma y se empezó desde n = 32 hasta n = 0. En este caso usamos 32 iteraciones.

Si se empezara desde un n muy grande y hasta n=0, se tendría un resultado mas preciso.

Código Fuente

repuesta3.c

```
#include <stdio.h>
   void singlePrecision(float);
   void doublePrecision(double);
   int main(){
            singlePrecision(1);
            doublePrecision(1);
            singlePrecision(10000);
            doublePrecision(10000);
10
11
12
   void singlePrecision(float x) {
13
            float t = 2 * x, epsilon=1;
14
            int i=1;
15
            while(t > x) {
16
                    t = x + (epsilon *= 0.5);
17
                    printf("i=%d t=%.24f epsilon=%.34f\n", i, t, epsilon);
18
                    i++;
19
20
            }
21
22
    void doublePrecision(double x) {
23
24
            double t=2 * x, epsilon=1;
            int i=1;
25
26
            while(t > x) {
                    t = x + (epsilon *= 0.5);
27
                    printf("i=%d t=%.24lf epsilon=%.34lf\n", i, t, epsilon);
28
                    i++;
            }
30
31
```

repuesta4.c

```
#include <stdio.h>
    float productoEscalarAscendenteF(float[], float[]);
    float productoEscalarDescendenteF(float[], float[]);
    double productoEscalarAscendenteD(double[], double[]);
    double productoEscalarDescendenteD(double[], double[]);
    int main(){
9
            float a_float[] = {2.718281828, -3.141592654, 1.414213562,
10
                                            0.5772156649, 0.3010299957};
11
12
            float b_float[] = {1485.2497, 878366.9879, -22.37492,
13
                                             4773714.647, 0.000185049};
            double a_double[] = {2.718281828, -3.141592654, 1.414213562,
                                               0.5772156649, 0.3010299957};
17
18
            double b_double[] = {1485.2497, 878366.9879, -22.37492,
19
                                               4773714.647, 0.000185049};
20
21
            printf("Ascendiente Precision Simple = %.34f\n", productoEscalarAscendenteF(a_float, b_float));
22
            printf("Descendente Precision Simple = %.34f\n", productoEscalarDescendenteF(a_float, b_float));
23
            printf("---\n");
24
            printf("Ascendiente Precision Doble = %.34lf\n", productoEscalarAscendenteD(a_double, b_double));
25
            printf("Descendiente Precision Doble = %.34lf\n", productoEscalarDescendenteD(a_double, b_double));
26
27
28
    // funciones float
29
    float productoEscalarAscendenteF(float a[], float b[]){
30
31
            int i;
32
            float producto=0;
33
            for(i=0; i < 5; i++) {</pre>
                    //~ printf("%.30f x %.30f\n", a[i], b[i]);
34
                    producto += a[i] * b[i];
35
36
            return producto;
37
38
39
    float productoEscalarDescendenteF(float a[], float b[]) {
40
41
            int i;
            float producto=0;
42
            for(i=4; i >= 0; i--) {
43
                    //~ printf("%.30f x %.30f\n", a[i], b[i]);
44
                    producto += a[i] * b[i];
45
46
            return producto;
47
48
49
50
    // funciones double
51
    double productoEscalarAscendenteD(double a[], double b[]) {
```

```
int i;
53
            double producto=0;
54
            for(i=0; i < 5; i++) {
55
                    producto += a[i] * b[i];
57
            return producto;
59
60
    double productoEscalarDescendenteD(double a[], double b[]) {
61
62
            int i;
            double producto=0;
63
            for(i=4; i >= 0; i--) {
64
                   producto += a[i] * b[i];
65
            }
66
            return producto;
67
68
```

${\bf repuesta 5.c}$

```
1 #include <stdio.h>
2 #include <math.h>
4 void serieArmonicaSingle();
   int main(){
6
           serieArmonicaSingle();
8
9
   void serieArmonicaSingle() {
10
           float serie=0, ant=1;
11
           float k=1;
^{12}
13
            while(serie - ant != 0){
                   ant = serie;
                    serie += 1 / (k++);
16
                    //~ printf("serie: %.10f\n", serie);
17
18
19
            printf("%f terminos.\n", k);
20
21
            printf("Serie = %.24f\n", serie);
22
```

repuesta6.c

```
#include <stdio.h>
   #include <math.h>
   float exponencialAdelante(float);
   float exponencialAtras(float);
   float fact (float);
   double exponencialAdelanteD(double);
   double exponencialAtrasD(double);
   double factD(double);
9
10
11
    int main(){
            float x=10;
12
            printf("Precision Simple:\n");
13
            printf("\tHacia adelante = %.54f\n", exponencialAdelante(x));
14
            printf("\tHacia atras = %.54f\n", exponencialAtras(x));
15
            printf("-----
            printf("Precision Doble:\n");
17
            printf("\tHacia adelante = %.54lf\n", exponencialAdelanteD(x));
18
19
            printf("\tHacia atras = %.54lf\n", exponencialAtrasD(x));
20
21
22
23
    // Funciones float
24
    float exponencialAdelante(float x) {
25
            float e=0, factorial=0, potencia=0, ant=1, i=0;
26
27
            while(e != ant){
28
                    factorial = factorial == 0 ? 1 : factorial * i;
29
                    potencia = (i++) == 0 ? 1 : potencia * x;
30
31
                    ant = e;
32
                    e += potencia / factorial;
33
            }
34
35
            return e;
36
37
    float exponencialAtras(float x){
38
            float e=0, factorial=0, potencia=0, n=33;
39
40
            while(n >= 0) {
41
                    factorial = fact(n);
42
                    potencia = pow(x, (n--));
43
                    e += potencia / factorial;
44
45
46
            return e;
47
48
49
   float fact(float n) {
50
           int i;
51
           float f=1;
52
```

```
for (i=1; i <= n; i++) {</pre>
53
                    f *= i;
54
55
            return f;
56
57
58
    // Funciones double
60
61
    double exponencialAdelanteD(double x) {
            double e=0, factorial=0, potencia=0, ant=1, i=0;
62
63
            while(e != ant){
64
                     factorial = (factorial == 0 ? 1 : factorial * i);
65
                     potencia = ((i++) == 0 ? 1 : potencia * x);
66
                     ant = e;
67
                     e += potencia / factorial;
68
             }
69
70
            return e;
71
72
73
    double exponencialAtrasD(double x) {
74
            double e=0, factorial=0, potencia=0, n=33;
75
76
            while(n >= 0){
77
78
                    factorial = fact(n);
                     potencia = pow(x, (n--));
                     e += potencia / factorial;
81
            }
82
83
            return e;
84
85
   double factD(double n) {
86
            int i;
87
            double f=1;
88
            for (i=1; i <= n; i++) {</pre>
89
                    f *= i;
90
91
            return f;
92
93
```