Hermes: An Efficient Federated Learning Framework for Heterogeneous Mobile Clients

Ang Li¹, Jingwei Sun¹, Pengcheng Li^{2*}, Yu Pu², Hai Li¹, Yiran Chen¹

Department of Electrical and Computer Engineering, Duke University

²Alibaba DAMO Academy

1{ang.li630, jingwei.sun, hai.li, yiran.chen}@duke.edu, ²{landy0220@gmail.com, y.pu@@alibaba-inc.com}

Presented by Tian Liu Oct 25, 2021

Outline

Federated Learning

State-of-the-Art Solutions

Hermes: less communication cost, less memory footprint, better accuracy

Evaluations

Conclusions

Federated Learning

- Distributed ML where multiple devices collaboratively learn a shared global model
- Addressing limited data in local mobile devices
- Privacy preservation
- Large communication cost
- Data heterogeneity
 - Global model bad generalization

Figure 1: An example of federated learning for the task of next-word prediction on mobile phones. Devices communicate with a central server periodically to learn a global model. Federated learning helps preserve user privacy and reduce strain on the network by keeping data localized.

State-of-the-Art Solutions

- Communication cost
 - Compress the communication
 - Quantization: reduce bit number of data
 - Sparsification: only transmit subset of data
 - Hybrid
- Data heterogeneity
 - Fine-tuning, Multi-task learning, Contextualization
 - 2-steps: global collaborative learning + local fine-tuning
 - Incurs extra computational costs
- Very few address both simultaneously
 - LG-FedAvg
 - 2 parts + 2 steps: global and local parameters, normal FedAvg + global params only
 - Inadequate reduction, suboptimal splitting, evaluated in unrealistic way
 - HeteroFL
 - Adaptively allocates submodels to each devices based on computation capability
 - Not based on local data
 - o SFSL
 - Identify submodel based on local history data, transmit only submodel
 - Designed for recommender system
- None of existing approaches consider inference accuracy

Hermes: Efficient FL

- Reduce communication cost
- Improve computation efficiency for inference
- Learn a personalized model for each device

Solutions:

- Each device learn a pruned subnetwork
- Only transmit subnetwork parameters

Challenges:

- How to learn the subnetwork?
- How to aggregate local updates?

Figure 3: The overview of the Hermes framework.

How to learn the subnetwork?

- Unstructured pruning
 - Parameter wise, high flexibility but requires hardware support for computation efficiency
- Structured pruning
 - Channel-wise or filter-wise, less flexible but hardware-friendly
- Adds sparsity regulation in objective function

$$\begin{split} F(\boldsymbol{W}) &= F_D(\boldsymbol{W}) + \lambda R(\boldsymbol{W}) \\ R(\boldsymbol{W}) &= R_{conv}(\boldsymbol{W}) + R_{fc}(\boldsymbol{W}), \\ R_{conv}(\boldsymbol{W}) &= \sum_{l=1}^{W_{conv}} (\sum_{f_l=1}^{F_l} \|\boldsymbol{W}_{f_l,:,:,:}^{(l)}\|_g + \sum_{ch_l=1}^{Ch_l} \|\boldsymbol{W}_{:,ch_l,:,:}^{(l)}\|_g), \\ R_{fc}(\boldsymbol{W}) &= \sum_{l=1}^{W_{fc}} (\sum_{row_l=1}^{Row_l} \|\boldsymbol{W}_{row_l,:}^{(l)}\|_g + \sum_{col_l=1}^{Col_l} \|\boldsymbol{W}_{:,col_l}^{(l)}\|_g), \end{split}$$

Figure 4: Illustration of the difference between the structured pruning and unstructured pruning. (a) The parameter matrix representations of channels in a layer. (b) The effect of the channel-wise structured pruning, where the white and orange channels are the pruned ones and retained ones, respectively. (c) The unstructured pruning scheme.

How to aggregate local updates?

```
Algorithm 1: Training Algorithm of Hermes.
    Data: (D_1, \ldots, D_N) where D_k is the local data on kth device
    Server Executes:
1 initialize the global model W
<sup>2</sup> for each round T = 1, 2, \dots do
         k \leftarrow \max(N \times K, 1) / * N available devices,
              random sampling rate K
        S_c \leftarrow \{C_1, \dots, C_k\} / *  the selected k
              participating devices indexed by k
        for C_k \in S_t in parallel do
              \mathbf{W}_{k}^{T} = \mathbf{W}^{T} \odot \mathbf{M}_{k}^{T} / * the subnetwork of C_{k} \times /
             W_{\iota}^{T+1} \leftarrow \text{ClientUpdate}(C_k, W_{\iota}^T)
         \mathbf{W}^{T+1} \leftarrow (\text{aggregate } \{\mathbf{W}_{k}^{T+1}\}) / * \text{ using the proposed}
               personalization-preserving aggregation */
   ClientUpdate (C_k, W_k^T):
9 acc \leftarrow (evaluate W_k^T \text{ on the local validation data } D_k^{val})
10 if acc > acc_{threshold} and r_k^T < r_{target} then /* r_k^T is the
     current pruning rate of kth client's model,
     rtarget is the target pruning rate
     M_k^{T+1} \leftarrow (\text{prune } W_k^T \text{ with the fixed pruning rate } r_p)
12 \mathcal{B} ← (split local data D_L^{train} into batches);
13 for each local epoch i from 1 to E do
         for batch b \in \mathcal{B} do
              \begin{aligned} \textbf{\textit{W}}_k^{T+1} \leftarrow \textbf{\textit{W}}_k^T \odot \textbf{\textit{M}}_k^{T+1} - \eta \nabla_{F_k} (\textbf{\textit{W}}_k^T \odot \textbf{\textit{M}}_k^{T+1}; b) \ / \star \ \eta \\ \text{is the learning rate, } F_k(\cdot) \ \text{is the loss} \end{aligned}
                    function
16 return W_{k}^{T+1}, M_{k}^{T+1} to server
```


Figure 5: Illustration of the personalization-preserving aggregation on the central server.

Evaluation Scheme

- 2 mobile Al applications
 - Image Classification: VGG16 model, EMNIST for training, CIFAR10 for validation
 - EMNIST: sample 2414 writer's data
 - Human Activity Recognition: 3-layer fully connected neural network
 - HAR: accelerometers and gyroscope data from 30-individuals
- Implemented on Google Pixel 3, Android 9.0, PyTorch 1.5
- Central server Intel Xeon E5-2630@2.6GHz and 128G RAM
- Baselines: Standalone, FedAvg, Top-K, Per-FedAvg, LG-FedAvg

Table 1: Statistical information of datasets.

Dataset	Number of devices	Classes	Non-IID	
EMNIST [8]	2414	64	1	
CIFAR10 [26]	400	10	1	
HAR [3]	30	6	✓	

Evaluation Metrics

Training performance

- Convergence Speed
- Inference accuracy
- Communication cost: RTT

Robustness

- # of devices
- Data unbalanceness
- Target prune rate

Runtime performance

- Memory footprint
- Inference latency
- Energy consumption

Faster Convergence

Figure 6: Comparison of convergence speed between FedAvg and Hermes.

Higher Inference Accuracy, Less Communication Cost

Figure 7: Comparison between Hermes and baselines in inference accuracy-communication cost space.

Robust to # of Devices and Unbalanced Data

Figure 8: The impact of the number of participating devices on Hermes performance.

Figure 9: The impact of data volume and balance rate on Hermes performance (IC-CIFAR10).

Robust to Hash Pruning

Table 2: The impact of target pruning rate on Hermes performance.

Application	r _{target}	Accuracy	Communication Cost
IC-CIFAR10	0.3	85.72%	0.54
	0.5	85.91%	0.79
	0.8	86.35%	1
IC-EMNIST	0.3	91.24%	0.53
	0.5	91.35%	0.75
	0.8	91.66%	1

Less Memory Footprint, Inferency Latency, Energy Consumption

Table 3: Memory footprint reduction of Hermes. $(r_{target} = 0.3)$

Application	Hermes Model Size (MB)	Baseline Model Size (MB)
IC-CIFAR10	161.16	537.21
IC-EMNIST	161.43	538.09
HAR	1.32	4.41
All Included	323.91	1081.24

Figure 10: Comparison between Hermes and the baselines on inference time. ($r_{target} = 0.3$)

Figure 11: Comparison between Hermes and the baselines on energy consumption. ($r_{target} = 0.3$)

Conclusions

- Problems with Federated Learning
 - Communication cost
 - Data heterogeneity
- Hermes: efficient FL framework
 - Pruned local subnetwork
 - Transmit only subnetwork params
- Faster Convergence, Higher Inference Accuracy, More Robust
- Less Communication Cost, Less Inference Latency, Less Energy Consumption
- Believed to be a significant step towards the realization of efficient FL in heterogeneous mobile devices