(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003年1月23日(23.01.2003)

PCT

(10) 国際公開番号 WO 03/006699 A1

(51) 国際特許分類7:

C22C 38/00,

38/14, 38/58, C21D 8/02, 8/10

(21) 国際出願番号:

PCT/JP02/07102

(22) 国際出願日:

2002年7月12日(12.07.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2001-213145 2001年7月13日(13.07.2001) 特願 2001-364103

2001年11月29日(29.11.2001)

(71) 出願人 (米国を除く全ての指定国について): 日本鋼管 株式会社 (NKK CORPORATION) [JP/JP]; 〒100-0005 東京都千代田区 丸の内一丁目1番2号 Tokyo (JP).

社内 Tokyo (JP). 新宮 豊久 (SHINMIYA, Toyohisa) [JP/JP]; 〒100-0005 東京都 千代田区 丸の内一丁目 1番2号日本鋼管株式会社内 Tokyo (JP). 遠藤 茂 (ENDO,Shigeru) [JP/JP]; 〒100-0005 東京都 千代田区 丸の内一丁目1番2号 日本鋼管株式会社内 Tokyo (JP). 諏訪 稔 (SUWA, Minoru) [JP/JP]; 〒100-0005 東京 都 千代田区 丸の内一丁目 1番2号 日本鋼管株式会 社内 Tokyo (JP).

- (74) 代理人: 中濱泰光 (NAKAHAMA, Yasumitsu); 〒210-0855 神奈川県 川崎市 川崎区南渡田町 1 番 1 号 日本 鋼管株式会社 知的財産部内 Kanagawa (JP).
- (81) 指定国 (国内): US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 石川 信行 (ISHIKAWA, Nobuyuki) [JP/JP]; 〒100-0005 東京都 千代田区 丸の内一丁目 1番 2号 日本鋼管株式会
- (54) Title: HIGH STRENGTH STEEL PIPE HAVING STRENGTH HIGHER THAN THAT OF API X65 GRADE
- (54) 発明の名称: API X65グレード以上の高強度鋼管およびその製造方法

(57) Abstract: A high strength steel pipe having a strength higher than that of API X65 grade, which has a chemical composition, in mass %: C: 0.02 to 0.08 %, Si: 0.01 to 0.5 %, Mn: 0.5 to 1.8 %, P: 0.01 % or less, S: 0.002 % or less, Al: 0.01 to 0.07 %, Ti: 0.005 to 0.04 %, Mo: 0.05 to 0.50 %, at least on element selected from between Nb: 0.005 to 0.05 and V: 0.005 to 0.10 %, and balance: Fe, and a structure wherein a ferrite phase accounts for 90 vol % or more, and a composite carbide containing at least one element selected from among Ti, Mo, and Nb, V is deposited in the ferrite phase. The high strength steel pipe is excellent in the resistance to HIC and the toughness after welding, and also can be produced with stability at a low cost.

- 1...Ti CONTENT (wt.%)
- 2...CHARPY FRACTURE TRANSITION TEMPERATURE
- 3...SCOPE OF THE PRESENT INVENTION
- 4...PREFERABLE RANGE

(57) 要約:

本発明は、実質的に、質量%で、C:0.02-0.08 %、Si:0.01-0.5 %、Mn:0.5-1.8 %、P:0.01 %以下、S:0.002 %以下、Al:0.01-0.07 %、Ti:0.005-0.04 %、Mo:0.05-0.50 %と、Nb:0.005-0.05 %と V:0.005-0.10 %の中から選ばれた少なくとも1種の元素、および残部 Fe からなり、フェライト相の体積率が90 %以上であり、かつフェライト相中に Ti、Mo、および Nb、V の中から選ばれた少なくとも1種の元素を含む複合炭化物が析出している API X65 グレード以上の高強度鋼管を提供する。本発明の高強度鋼管は、優れた耐 HIC 性や溶接後の靭性を有するとともに、安価に安定して製造可能である。

1 明 細 書

API X65グレード以上の高強度鋼管およびその製造方法

技術分野

本発明は、ラインパイプに用いられる API X65 グレード以上の強度を有する高強度鋼管、特に耐水素誘起割れ性(耐 HIC 性)に優れた高強度鋼管とその製造方法に関する。

背景技術

硫化水素を含む原油や天然ガスの輸送に用いられるラインパイプ用鋼管には、強度、靭性、溶接性の他に、耐HIC性や耐応力腐食割れ性(耐SCC性)などのいわゆる耐サワー性が必要とされる。HICは、腐食反応で生じた水素イオンが鋼表面に吸着し、原子状の水素となって鋼内部に侵入、鋼中のMnSなどの非金属介在物やマルテンサイトなどの硬い第2相のまわりに集積して生じる内圧に起因するといわれている。

このHICを防ぐために、特開昭54-110119号公報には、CaやCeをS量に対して適量添加することにより、針状のMnSの生成を抑制し、応力集中が小さくなる微細で球状の介在物を析出させたラインパイプ用鋼の製造方法が開示されている。特開昭61-60866号公報、特開昭61-165207号公報には、偏析し易い元素(C、Mn、Pなど)の低減、スラブ加熱段階での均熱処理、冷却時の変態途中での加速冷却などにより、中心偏析部における割れの起点となる島状マルテンサイトや割れの伝播経路となるマルテンサイト、ベイナイトなどの硬質相の生成を抑制した鋼が開示されている。特開平5-9575号公報、特開平5-271766号公報、特開平7-173536号公報等には、低S鋼にCaを添加して介在物の形態制御を行い、低C、低Mn化により中心偏析を抑制し、Cr、Mn、Niなどの添加と加速冷却により高強度化を図った

2

API X80グレード以上の強度を有する鋼板が開示されている。HICを防ぐこれらの方法は、いずれも中心偏析に起因したHICの防止法である。

しかしながら、API X65グレード以上の強度を有する鋼板では、加速冷却や直接焼入れによって製造される場合が多いため、冷却速度の速い鋼板表層部が内部に比べ硬化し易く、表層部でHICが発生し易い。また、加速冷却によって得られるミクロ組織は、表層部のみならず内部まで比較的HIC感受性の高いベイナイトやアシキュラーフェライトの相からなり、上記のような中心偏析に起因したHICの防止法だけでは十分でない。したがって、こうした鋼板のHICを完全に防ぐには、中心偏析に起因したHICに加え、鋼板の表層部のミクロ組織に起因したHICおよび硫化物や酸化物の介在物に起因したHICに対する対策が必要である。

一方、HIC感受性の高いブロック状ベイナイトやマルテンサイトなどの相がない耐HIC性に優れた高強度鋼として、特開平7-216500号公報には、フェライト+ベイナイト2相からなるAPI X80グレードの強度を有する鋼が開示されている。特開昭61-227129号公報、特開平7-70697号公報には、フェライト相の組織にして耐SCC性や耐HIC性を改善し、MoやTiを添加して炭化物の析出強化を利用した高強度鋼が開示されている。

しかしながら、特開平7-216500号公報に記載の高強度鋼のミクロ組織は、ブロック状ベイナイトやマルテンサイトの相ほどではないが比較的HIC感受性の高いベイナイト相からなる。また、SとMn量を厳しく制限して、Ca処理を必須としているため製造コストが高い。特開昭61-227129号公報、特開平7-70697号公報に記載の高強度鋼のミクロ組織は、延性に富んだフェライト相であり、HIC感受性が極めて低いが、強度が低い。そのため、特開昭61-227129号公報に記載の鋼では、CとMoを多量に添加し、焼入れ焼戻しの後に冷間加工を行い、さらに再度焼戻しを行って多量の炭化物を析出させて高強度化を行っており、製造コストが高い。また、特開平7-70697号に記載の鋼では、Ti添加して巻取り時のTiCの析出強化を利用して高強度化しているが、TiCは巻取り時の温度の影響を受けて粗大化し易く、安定して高強度化を達成できない。多量のTi添加により安定した高強度化を図れるが、電気抵抗溶接やサブマージアーク溶接などの溶接時に、溶接熱影響部

3

の靭性が大幅に劣化する。

発明の開示

本発明の目的は、耐HIC性に優れ、溶接後の靭性に問題がなく、安価に安定して製造可能なAPI X65グレード以上の強度を有する高強度鋼管およびその製造方法を提供することである。

この目的は、実質的に、質量%で、C: 0.02-0.08 %、Si: 0.01-0.5 %、Mn: 0.5-1.8 %、P: 0.01 %以下、S: 0.002 %以下、Al: 0.01-0.07 %、Ti: 0.005-0.04 %、Mo: 0.05-0.50 %と、Nb: 0.005-0.05 %とV: 0.005-0.10 %の中から選ばれた少なくとも1種の元素、および残部Feからなり、フェライト相の体積率が90%以上であり、かつ前記フェライト相中にTi、Mo、およびNb、Vの中から選ばれた少なくとも1種の元素を含む複合炭化物が析出しているAPI X65グレード以上の高強度鋼管により達成される。

この高強度鋼管は、例えば、上記した成分組成を有する鋼スラブを1000-1250 ℃の範囲に加熱する工程と、鋼スラブをAr3変態点以上の仕上温度で熱間圧延して鋼板とする工程と、鋼板を2 ℃/s以上の冷却速度で冷却する工程と、冷却された鋼板を550-700 ℃の範囲で巻取る工程と、巻取られた鋼板を鋼管に成形する工程とを有するAPI X65グレード以上の高強度鋼管の製造方法により製造される。

図面の簡単な説明

図1は、Ti量とシャルピー破面遷移温度との関係を示す図である。

図2は、本発明である高強度鋼のミクロ組織の一例を示す図である。

図3は、析出物のEDX分析結果を示す図である。

図4は、厚鋼板の製造ラインの一例を示す図である。

図5は、誘導加熱装置による熱処理の一例を示す図である。

4

発明の実施の形態

本発明者等が、ラインパイプに用いられるAPI X65グレード以上の強度を有する高強度鋼管の耐HIC性と溶接後の靭性について検討した結果、以下の知見が得られた。

- 1). フェライト相にベイナイト、マルテンサイト、パーライト等の硬質な第2 相が存在すると、相界面において水素の集積や応力集中が起き易くなるので、耐 HIC性の向上にはフェライト相の体積率を90 %以上にすることが効果的である。
- 2). MoやTiは鋼中で炭化物を形成する元素であり、MoCやTiCの析出により鋼を強化させることは従来より知られている。しかし、MoとTiの複合添加によりフェライト相中に析出する炭化物は、(Mo、Ti)Cで表され、(Mo、Ti)とCとがほぼ1:1の原子比で結合した複合炭化物であり、安定でかつ成長速度が遅いため10 nm未満と極めて微細である。それゆえ、この複合炭化物が、従来のMoCやTiCに比べて、より大きな強化能を有する。なお、このような極めて微細な炭化物はHICには何ら影響を与えない。
- 3). MoとTiを含有する複合炭化物において、Tiの含有量が多くなると溶接部の 靭性が劣化し易くなる。これを防ぐには、MoとTiに加えて、さらに少なくともNb とVの中から選ばれた1種の元素を添加し、Mo、Ti、Nbおよび/またはVを含んだ微 細な複合炭化物を析出させることが有効である。
- 4). 上記のミクロ組織により、API X65グレード以上の高強度化と、NACE Standard TM-02-84によるHIC試験において割れが発生しない耐HIC特性の両立が可能となる。特にAPI X70グレード以上の高強度化と耐HIC性の両立は、本発明によって初めて可能となる。

本発明は、こうした知見に基づき行われたもので、次に各成分量の限定理由を説明する。

C: Cは、炭化物として析出して、鋼を強化する元素である。しかし、その量が0.02 %未満ではAPI X65グレード以上の強度が得られず、0.08 %を超えると耐HIC性や溶接部の靭性を劣化させる。それゆえ、C量は0.02-0.08 %とする。

HIC性や溶接部の靭性を劣化させる。それゆえ、C量は0.02-0.08 %とする。

Si: Siは、鋼の脱酸のために必要な元素である。しかし、その量が0.01 %未満では脱酸効果が十分でなく、0.5 %を超えると溶接性や靭性が劣化する。それゆえ、Si量は0.01-0.5 %とする。

Mn: Mnは、鋼を強化し、靭性を向上させる元素である。しかし、その量が0.5%未満ではその効果が十分でなく、1.8%を超えると溶接性や耐HIC性が劣化する。それゆえ、Mn量は0.5-1.8%とする。

P:Pは、溶接性と耐HIC性を劣化させる元素であるため、0.01%以下とする。

S:Sは、鋼中においてMnS介在物となり耐HIC性を劣化させるため、0.002 %以下とする。

Al: Alは、脱酸剤として添加されるが、その量が0.01 %未満では脱酸効果がなく、0.07 %を超えると鋼の清浄度が低下して耐HIC性が劣化する。それゆえ、Al量は0.01-0.07 %とする。

Ti: Tiは、本発明において重要な元素である。その量を0.005%以上にすると、上述したようにMoと複合炭化物を形成し、鋼の高強度化を促進する。しかし、図1に示すように、0.04%を超えるとシャルピー破面遷移温度は-20℃を超え、靭性が劣化する。それゆえ、Ti量は0.005-0.04%とする。さらに0.02%以下にするとシャルピー破面遷移温度は-40℃以下となりより優れた靭性を示すため、Ti量を0.005-0.02%とすることが好ましい。

Mo: 上述したように、MoはTiと同様に本発明において重要な元素である。その量を0.05 %以上にすると熱間圧延後の冷却時にパーライト変態を抑制し、Tiとの微細な複合炭化物を形成して、鋼の高強度化を促進する。しかし、0.50 %を超えるとベイナイトやマルテンサイトなどの硬質相が形成され耐HIC性が劣化する。それゆえ、Mo量は0.05-0.50 %とする。

Nb: Nbは、組織の微細化により靭性を向上させ、TiおよびMoと共に複合炭化物を形成し、高強度化に寄与する。しかし、その量が0.005 %未満ではその効果がなく、0.05 %を超えると溶接部の靭性が劣化する。それゆえ、Nb量は0.005-0.05 %とする。

V: Vは、Nbと同様にTiおよびMoと共に複合炭化物を形成し、高強度化に寄与する。しかし、その量が0.005 %未満ではその効果がなく、0.1 %を超えると溶接部の靭性が劣化する。それゆえ、Nb量は0.005-0.1 %とする。

なお、Nb、Vは少なくとも1種が含有されれば、高強度化や溶接部の靭性向上が 達成される。

上記成分以外の残部はFeとする。また、本発明の作用効果に影響を及ぼさない範囲で、不可避不純物などの他の元素が含有されてもよい。

なお、MoとTiを含有した10 nm未満の複合炭化物の個数は、高強度化への寄与の少ないTiNを除いた全析出物の個数の80 %以上、好ましくは95 %以上であれば、高強度化を促進できる。

図2に、0.05C-0.15Si-1.26Mn-0.11Mo-0.018Ti-0.039Nb-0.048Vの成分を有する 鋼を用いて熱延プロセス(巻取温度:650 ℃)で製造した本発明鋼のミクロ組織 の一例を示すが、大きさが10 nm未満の微細析出物が多数分散析出していること が確認できる。また、エネルギー分散型X線分光法(EDX)によって析出物の成 分を分析した結果を図3に示すが、析出物がTi、Nb、VおよびMoを含む複合炭化物 であることがわかる。

さらに、Wを、Moの代わりにあるいはMoと一緒に、(W/2+Mo) が0.05-0.50 %となるように添加しても、Tiとの微細な複合炭化物を形成して、高強度化を促進する。なお、(W/2+Mo) が0.50 %を超えるとベイナイトやマルテンサイトなどの硬質相が形成され耐HIC性が劣化する。

さらに、Caを添加すると、硫化物系介在物の形態が制御されて耐HIC性がより 改善される。しかし、その量が0.0005 %未満ではその効果が十分でなく、0.0040 %を超えると鋼の清浄度を低下させて耐HIC性を劣化させるので、Ca量は0.0005-0.0040 %とする。

さらにまた、次に示す量のCu、Ni、Crの中から選ばれた少なくとも1種の元素 を含有させると、さらなる高強度化を達成することができる。

Cu: Cuは、靭性の改善と強度の上昇に有効な元素であるが、0.5 %を超えて添加すると溶接性が劣化する。それゆえ、Cu量は0.5 %以下とする。

加すると耐HIC性が低下する。それゆえ、Ni量は0.5 %以下とする。

Cr: Crは、Mnと同様に高強度化に有効な元素であるが、0.5 %を超えて添加すると溶接性が劣化する。それゆえ、Cr量は0.5 %以下とする。

個々の成分量のみならず、下記の式(1)式で表わされるCeqを制御すると溶接部の靭性がより改善される。特に、API X65グレードではCeqを0.30%以下、API X70グレードではCeqを0.32%以下、API X80グレードではCeqを0.34%以下とすることが好ましい。

 $Ceq = C + Mn/6 + (Cu+Ni)/12 + (Cr+Mo+V)/5 \cdots (1)$

さらに、下記の式 (2) で表わされるRを0.5-3.0とすると、熱的に安定でかつ 非常に微細な複合炭化物を得ることができ、高強度化や溶接部の靭性向上をより 安定して達成できる。さらに高強度化を図る場合には、Rを0.7-2.0とすることが 好ましい。

R = (C/12) / [(Mo/96) + (Ti/48) + (Nb/93) + (V/51) + (W/184)] …(2) 次に、本発明の高強度鋼管の製造方法について説明する。

上記した成分組成を有する鋼スラブを1000-1250 ℃の範囲に加熱し、Ar3変態点以上の仕上温度で熱間圧延し、2 ℃/s以上の冷却速度で冷却して550-700 ℃の範囲で巻取り後、鋼管に成形すれば、体積率が90 %以上のフェライト相とフェライト相中に分散析出したTi、Mo、およびNbとVの中から選ばれた少なくとも1種を含む複合炭化物からなるAPI X65グレード以上の高強度鋼管が得られる。

ここで、スラブの加熱温度は、1000 ℃未満では炭化物の固溶が不十分で必要な強度が得られず、1250 ℃を超えると靭性が劣化するため、1000-1250 ℃とする。

熱間圧延は、Ar3変態点未満の仕上温度で行うと圧延方向に伸展した組織となり耐HIC性が劣化するため、Ar3変態点以上の仕上温度で行う。なお、組織の粗大化による靭性の低下を防ぐため、950 ℃以下の仕上温度で圧延することが好ましい。

熱間圧延後は、放冷や徐冷のように2 ℃/s未満の冷却速度で冷却すると複合炭化物が高温域から析出してしまい、容易に粗大化して高強度化を阻害する。それ

ゆえ、2 ℃/s以上の冷却速度で冷却する必要がある。このとき、冷却終了温度が高すぎると析出物の粗大化を招き、十分な強度が得られないので、冷却終了温度は巻取温度以上750 ℃以下とすることが望ましい。

2 ℃/s以上の冷却速度で冷却後は、フェライト相のミクロ組織と微細な複合炭化物を得るために550-700 ℃の範囲、より好ましくは600-660 ℃の範囲で巻取る必要がある。巻取温度が550 ℃未満ではベイナイト相が生成し耐HIC性が劣化し、700 ℃を超えると複合炭化物が粗大化し十分な強度が得られない。

この550-700 ℃の範囲で巻取る方法は、薄鋼板用熱延ミルにより鋼管素材である鋼板を製造する場合に取られる方法である。この場合、鋼板はプレスベント成形、ロール成形法により電縫鋼管、スパイラル鋼管に成形される。

厚鋼板用熱延ミルにより鋼管素材である鋼板を製造する場合は、550-700 $\mathbb C$ の範囲で巻取る代わりに、2 $\mathbb C/s$ 以上の冷却速度で600-700 $\mathbb C$ の範囲に冷却後少なくとも550 $\mathbb C$ まで0.1 $\mathbb C/s$ 以下の冷却速度で徐冷するか、550-700 $\mathbb C$ の範囲に冷却後直ちに550-700 $\mathbb C$ の範囲で3 min.以上保持する熱処理を行う必要がある。この場合、鋼板は100E成形法により10E鋼管に成形される。

0.1 ℃/s 以下の冷却速度で徐冷する手段としては、鋼板を積み重ねて冷却する方法、徐冷用のボックス炉等に挿入して冷却する方法を用いることが出来る。

厚鋼板の製造ライン内に誘導加熱装置を設置すれば、鋼板の温度を550 ℃未満に低下させることなく、550-700 ℃の範囲で3 min.以上保持する熱処理を生産性を落とすことなく行える。

図4に、厚鋼板の製造ラインにおける設備レイアウトの一例を示す。

製造ライン1には、上流から下流にわたって、熱間圧延機3、加速冷却装置4、誘導加熱装置5、ホットレベラー6が配置されている。加熱炉を出たスラブは熱間圧延機3により鋼板2に圧延された後、鋼板2は加速冷却装置4により冷却され、誘導加熱装置5により熱処理される。そして、鋼板2は、ホットレベラー6により形状矯正されて、鋼管製造工程へ送られる。

図5に、誘導加熱装置による熱処理の一例を示す。

この例は、誘導加熱装置により2回の加熱を行って550-700 ℃の範囲に保持す

9

る例である。最高温度が (Tmax) が700 ℃超えないように、また最低温度が (Tmin) 550 ℃未満とならないように、誘導加熱装置がオン・オフされ、トータルで3 min.以上550-700 ℃の範囲に保持される。誘導加熱では鋼板の表層と内部 で温度差が生じるが、ここで規定する温度は表層から内部へ熱が拡散し均一になった時の鋼板平均温度とする。

実施例1

表1に示す化学成分の鋼A-0を用い、薄鋼板用熱延ミルにより表2に示す条件で製造した熱延鋼帯を用いて外径508.0 mm、管厚12.7 mmの電縫鋼管No.1-29を製造した。また、厚鋼板用熱延ミルにより表3に示す条件で製造した厚鋼板を用いて外径914.4 mm、管厚19.1 mmおよび外径1219.2 mm、管厚25.4 mmのU0E鋼管No.30-35を製造した。厚鋼板の製造においては、冷却後鋼板を積み重ねることで室温まで徐冷した。徐冷開始から550 ℃までの平均冷却速度を表3に併せて示す。また、表3のU0E鋼管には、サブマージアーク溶接によってシーム溶接を行った後、1.2%の拡管を施した。

鋼管のミクロ組織を、光学顕微鏡、透過型電子顕微鏡 (TEM) により観察した。 析出物の組成はエネルギー分散型X線分光法 (EDX) により分析した。

また、API規格の管周方向に全厚引張試験片を切りだし引張試験を行い、降伏強度と引張強度を測定した。製造上のばらつきを考慮して、引張強度550 MPa以上の鋼管はAPI X65グレードの規格を、引張強度590MPa以上の鋼管はAPI X70グレードの規格を、引張強度680MPa以上の鋼管はAPI X80グレードの規格を満足するとした。

さらに、耐HIC性、溶接部靱性(HAZ靱性)を測定した。耐HIC性は、NACE Standard TM-02-84に準じた浸漬時間96時間のHIC試験を行い、割れが認められない場合を〇、割れが発生した場合を×で示した。HAZ靱性は、電縫溶接部またはシーム溶接部の管周方向より2 mm Vノッチシャルピー試験片を採取して、破面遷移温度(vTrs)を測定した。このとき、ノッチは、鋼管1-29では電縫溶接中心部に、鋼管30-35ではt/2(tは板厚)位置のボンド部(ヒュージョンライン)に設

けた。

結果を表2、3に示す。

本発明例である熱延鋼帯を用いて製造した鋼管1-18は、いずれもX65グレード以上で、かつ耐HIC性とHAZ靱性が優れている。鋼管の組織は、実質的にフェライト相であり、Ti、MoおよびNbとVの少なくとも1種を含む粒径が10 nm未満の微細な炭化物が分散していた。Ti含有量が0.005-0.02 %未満であるB、C、F、I鋼を用いた鋼管3、4、5、10、11、12、17、18はさらに良好なHAZ靭性を示した。また、C量とMo、Ti、Nb、V、Wの合計量の比が0.7-2.0の範囲であるA-G鋼を用いた鋼管1-15は、H、I鋼を用いた鋼管16-18より高強度であった。

比較例である熱延鋼帯を用いて製造した鋼管19-23は、製造方法が本発明範囲外であるため組織が実質的にフェライト相でなく、Ti、MoおよびNbとVの少なくとも1種を含む微細な炭化物が析出していないため、十分な強度が得られない、HIC試験で割れが生じるなどの問題がある。鋼管19では、加熱温度が低いために十分な固溶炭素量が確保できず、巻取り時に析出する炭化物が不足するため十分な強度が得られない。鋼管20では、仕上温度が低いので、圧延方向に伸展した組織となるため耐HIC性が劣化する。鋼管21では、圧延後の冷却速度が遅いために、高温域から炭化物が析出し始め、粗大化するため強度が低下する。鋼管22では、巻取温度が高いために炭化物が粗大化し、十分な強度が得られない。鋼管23では、巻取温度が低いので、ベイナイト相を含んだ組織となるために、耐HIC性が劣る。

また、比較例である熱延鋼帯を用いて製造した鋼管24-29は、化学成分が本発明範囲外であるため、十分な強度が得られない、HIC試験で割れが生じる、HAZ靱性が劣化するなどの問題がある。鋼管24、25では、MoまたはTi量が少なく、十分な析出強化が得られず強度が低い。鋼管26では、Ti含有量が多すぎために、溶接熱影響によって組織が粗大化し、HAZ靱性が劣化する。鋼管27では、C量が少ないため、十分な析出強化が得られず強度が低い。鋼管28では、C量が多すぎるため、ベイナイト相が生じ耐HIC性が劣る。鋼管29では、S量が多すぎるために、硫化物系介在物が多くなり耐HIC性が劣化する。

本発明例である厚鋼板を用いて製造した鋼管30-33は、いずれも引張強度が580

11

MPa以上であり、かつ耐HIC性とHAZ靱性が優れている。鋼管の組織は、実質的にフェライト相であり、Ti、MoおよびNbとVの少なくとも1種を含む粒径が10 nm未満の微細な炭化物が分散していた。

比較例の厚鋼板を用いて製造した鋼管34は、徐冷時の冷却速度が速く、組織がベイナイト相を含むため、耐HIC性が劣る。また、鋼管35では、化学成分が本発明範囲外でTi量が高いためHAZ靱性が劣る。

	_															
福地				₩	然品	笠 莲	2	•				丑:	松區	<u> </u>		
C/(Mo+Ti+Nb+V+Zr) *	1.62	1.14	1.47	1.17	0.86	1.36	0.94	0.67	2.80	3.27	1.39	1.10	0.31	2.80	119	
Sed	0.26	0.31	0.29	0.32	0.28	0.30	0.32	0.26	0.28	0.27	0.30	0.35	0.29	0.32	0.35	,
≯					0.18											_
Ca					0.0015	0.0021	0.0023	0.0015	0.0032					0.0024	0.0018	1
ර්						0.12										1
Z					0.18								0.31		0.22	
₂					0.12								0.24			
A	0.032	0.041	0.042	0.025	0.030	0.034	0.032	0.022	0.025	0.033	0.026	0.027	0.034	0.039	0.025	1
^		0.069	0.048		0.052	0.048	0.028	0.035	0.035	0.023	0.041	0.045	0.034	0.052	0.013 0.028 0.048 0.025 0.16	1
Q N	0.046		0.039	0.028		0.038	0.021	0.030	0.028	0.032	0.048	0.009		0.030	0.028	1
<u>;=</u>	0.022	0.016	0.018	0.034	0.028	0.013 0.038	0.035	0.022	0.008 0.028	0.019	0.002	0.051	0.008	0.008	0.013	1
Мо	0.13	0.21	0.11	0.32	0.14	0.12	0.28	0.24	90'0	0.02	0.14	0.16	0.23	0.12	0.21	1
S	0.0008	0.0004	0.0007	0.0009	0.0013	0.0008	0.0010	0.0012	5 0.0009	0.0010	18 0.0013	0.0015	5 0.0008	0.0009	4 0.0023	1
Ь	0.008	0.005	0.008	0.010	0.009	0.002	0.007	0.008	0.005	900'0	0.008	0.011	0.005	0.003	0.004	
ᄧ	1.15	1.23	1.26	1.16	1.09	1.20	1.25	1.06	1.22	1.24	1.33	1.58	1.16	1.15	1.36	1
:z	0.18	0.25	0.15	0.30	0.26	0.14	0.21	0.25	0.30	0.23	0.32	0.22	0.17	0.29	0.28	
၁	0.045	0.053	0.051	0.061	0.042	0.047	0.050	0.032	090'0	0.055	0.047	0.049	0,012	0.093	0.050	
鎖種	∢	a	ပ	۵	ш	ш	ŋ	Ξ	-	٦	ᅩ	_	≥	z	0	

単位:mass%, *:at% 下線は本発明の範囲外であることを示す

表 1

備考							₩		架		溫		臺							Π			끄		数		藍			
耐HIC性 溶接部勒性 備考	<u>န (</u>	-20	-45	-57	-64	09-	-47	-40	-43	-48	-65	-62	-72	-31	-37	-35	-27	09-	-57	-53	-57	-50	-45	09-	Ş	-33	col	-65	-27	9
型上に体		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0	×	×	0	Ò	×	0	Ó	0	0	×	×į
グレード		X65	X65	07X	07X	X70	X80	X80.	X80	0/X	. 0/X	X70	X70	X80	X80	X80	X65	X65	X65	X52	X65	X52	X52	07X	X62	X52	X80	X52	07X	X70
引張強度	(MPa)	587	592	642	658	635	706	726	713	638	699	652	665	738	726	682	556	551	553	512	564	520	45B	633	483	483	736	462	625	658
降伏強度引張強度	(MPa)	505	205	552	558	542	588	809	809	548	578	548	570	630	614	591	481	458	473	415	483	446	392	538	419	416	630	395	540	537
物取り	(C)	650	620	635	650	615	290	620	089	635	665	650	850	635	009	"	630	640	620	585	625	630	725	520	650	635	640	"	635	"
が世後の言語を	W.C. = 7.3 /m	卷取り	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	. "	"	"	"	"	"	"	"	"
新型級服 (平常%)		20	"	"	"	"	"	"	"	"	"	8	20	"	"	8	20	"	"	"	"	-1	02	"	"	*	"	"	"	"
	(3)	910	870	900	"	"	880	"	"	. "	900	"	"	880	"	870	"	"	830	149	730	910	910	880	900	"	"	"	"	"
影 世	(2)	1150	"	1200	"	"	*	1150	"	"	1200	"	1150	"	"	1050	1150	1050	1200	920	1200	*	,	1150		"	,	*	1200	29 0 " " " "
可可	(mm)	12.7	"	*	-	"	"	=	*	=	=	=	=	*	*	*	*	*	*	=	*	=	=	=	*	=	=	=	"	"
7 年	(mm)	508.0	*	"	*	*	=	=	,	=	=	"	"	"	=	*	=	*	*	*	=	=	*		"	=		*	"	"
토		4	<u> </u>	-	0	=	٥	=	*	ш	u l	=	=	5	=	=	Ξ	-	<u>"</u>	∢	=	=	=	В	5	ᅬ	4	Σ	z	0
9	7	-	7	က	4	2	9	7	æ	6	의	=	2	2	=	15	9	=	B	e e	2	12	22	23	24	52	58	22	28	59

表2

	_	·				
		4 日 全			比較例	
<u></u> [2]	-45	Τ	Τ	-42		
	0	0	С	0	×	0
	X65	X70	X70	X80	X65	X80
(MPa)	596	650	663	710	537	706
(MPa)	485	520	542	585	448	574
(°C/s)	0.04	0.08	0.04	0.04	-	0.08
,	徐冷	"	"	"	"	"
(၃)	640	999	655	670	635	650
(°C/s)	22	30	22	"	"	30
္မွ	900	088	900	"	"	"
္မွ	1150	H.	1200	"	"	"
(mm)	25.4	19.1	25.4	"	25.4	19.1
(mm)	1219.2	914.4	1219.2	"	1219.2	914.4
	٧	ч	"	ß	۵	-1
	ဗ္က	31	32	33	34	35
	(mm) (°C) (°C/s) (°C/s) (MPa) (MPa)	(mm) (mm) ("C) ("C/s") ("C/s") ("C/s") (MPa) (MPa) A 1219.2 25.4 1150 900 22 640 徐冷 0.04 485 596 X65 O	A (mm) ((mm) (mm) <t< td=""><td>A (219.2 25.4 (150 (°C/s) (°C/s) (MPa) (MPa) (MPa) (MPa) (MPa) ("C) A 1219.2 25.4 1150 900 22 640 徐冷 0.04 485 596 X65 O -45 F 914.4 19.1 " 880 30 660 " 0.08 520 650 X70 O -48 " 1219.2 25.4 1200 900 22 655 " 0.04 542 663 X70 O -55 G " " " " " " -55</td><td>A (219.2 25.4 (150 (°C) <th< td=""></th<></td></t<>	A (219.2 25.4 (150 (°C/s) (°C/s) (MPa) (MPa) (MPa) (MPa) (MPa) ("C) A 1219.2 25.4 1150 900 22 640 徐冷 0.04 485 596 X65 O -45 F 914.4 19.1 " 880 30 660 " 0.08 520 650 X70 O -48 " 1219.2 25.4 1200 900 22 655 " 0.04 542 663 X70 O -55 G " " " " " " -55	A (219.2 25.4 (150 (°C) (°C) <th< td=""></th<>

下線は本発明の範囲外であることを示す

実施例2

表4に示す化学成分の鋼a-iを連続鋳造法によりスラブとし、厚鋼板用熱延ミルにより表5に示す条件で厚鋼板を製造した。熱間圧延後は、直ちに水冷型のインライン加速冷却装置を用いて冷却し、オンライン上に直列に3台設置したインライン誘導加熱装置、またはガス燃焼炉を用いて熱処理を行った。表5で、各温度は鋼板平均温度であり、最高温度と最低温度は前述した熱処理時の最高温度と最低温度である。また、加熱回数は3 min.以上550-700 ℃に保持するために行った誘導加熱装置による加熱回数である。ガス燃焼の場合は、一定温度に保持されている。

そして、実施例1と同様に、外径914.4 mm、管厚19.1 mmおよび1219.2 mm、管厚25.4 mmのUOE鋼管No. 36-51を製造し、ミクロ組織、降伏強度、引張強度、耐HIC性、HAZ靱性を測定した。

結果を表5に示す。

本発明例である鋼管36-43は、いずれも引張強度が600 MPa以上で、かつ耐HIC性とHAZ靱性が優れている。鋼管の組織は、実質的にフェライト相であり、Ti、MoおよびNbとVの少なくとも1種を含む粒径が10 nm未満の微細な炭化物が分散していた。

比較例である鋼管44-48は製造方法が本発明範囲外であり、鋼管49-51は化学成分が本発明範囲外であるため、組織が実質的にフェライト相でなく、Ti、MoおよびNbとVの少なくとも1種を含む微細な炭化物が析出していないため、十分な強度が得られない、HIC試験で割れが生じるなどの問題がある。

なお、熱処理を誘導加熱装置で行ってもガス燃焼炉で行っても、結果には差が 認められない。

鋼種	ပ	:S	Mn	۵	S	Mo	Ξ	SP QP	>	₹	ਰ	Ë	ဝ	Ca	*	Cea	C/(Mo+Ti+Nb+V+Zr) *	師米
8	0.050	0.19	1.23	0.19 1.23 0.006	0.0010	0.14	0.018	0.018 0.014	0.046	1 –						0.29	1.44	2
q	0.042	0.21	1.30	0.008	0.0005	0.20	0.035	0.035		0.032						0.30	1.10	₩
ပ	0.039	0.26	1.45	0.010	0.0008	0.16	0.019	0.049	0.051	0.035				0.0025		0.32	0.90	- &#</td></tr><tr><td>Р</td><td>0.052</td><td>0.27 1.55</td><td>1.55</td><td>0.010 0.0</td><td>0.0010</td><td>0.22</td><td>0.038</td><td>0.027</td><td>0.042</td><td>0.036</td><td></td><td></td><td></td><td></td><td>0.21 0.36</td><td>0.36</td><td>0.81</td><td>雷</td></tr><tr><td>Ð</td><td>0.063</td><td>0.32</td><td>1.31</td><td>0.002</td><td>8000'0</td><td>0.37</td><td>0.028</td><td>0.024</td><td>0.045</td><td>0.026</td><td></td><td></td><td></td><td>0.0021</td><td></td><td>0.36</td><td>0.94</td><td>区</td></tr><tr><td>±</td><td>0.045</td><td>0.21 1.26</td><td>1.26</td><td>0.008</td><td>9000'0</td><td>0.24</td><td>0.012</td><td>0.035</td><td>0.030</td><td>0.033 0.16 0.12</td><td>0.16</td><td>0.12</td><td></td><td>0.0024</td><td></td><td>0.33</td><td>1.01</td><td></td></tr><tr><td>g</td><td>0.045</td><td>0.24</td><td>1.19</td><td>0.006</td><td>0.0009</td><td>90.0</td><td>0.081</td><td>0.024</td><td></td><td>0.027</td><td></td><td></td><td></td><td></td><td></td><td>0.26</td><td>1.46</td><td>丑</td></tr><tr><td>Ч</td><td>0.055</td><td>0.16</td><td>1.28</td><td>1.28 0.007 0.0</td><td>900000</td><td>0.15</td><td>0.002</td><td>0.023</td><td>0.045</td><td>0.035</td><td></td><td></td><td></td><td>0.0022</td><td></td><td>0.31</td><td>1.67</td><td>谷</td></tr><tr><td>-</td><td>0.049</td><td>0.33</td><td>1.21</td><td>0.049 0.33 1.21 0.009 0.0</td><td>015</td><td>0.02</td><td>0.018 0.015</td><td>0.015</td><td></td><td>0.026</td><td></td><td></td><td></td><td></td><td></td><td>0.25</td><td>5.47</td><td>E</td></tr><tr><td>7 77</td><td>à</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td>1</td></tr></tbody></table>

単位:mass%, *:at% 下線は本発明の範囲外であることを示す

			_							•	т							
羅北					₩	一张	<u> </u>	彦					耛	微	逐			
溶接部勒性	vTrs	ည	-65	-43	-48	-57	SP P	-42	4-	-70	-40	44-	-56	-61	-55	18	-89	-58
動HIC性			0	0	0	0	0	0	0	0	0	0	×I	0	×	0	0	0
グレード			07X	0/X	X70	X70	0/X	X80	X80	07X	09X	09X	09X	X52	X65	X80	09X	X52
引張強度		(MPa)	597	654	633	612	646	731	795	655	548	526	518	497	583	742	513	201
降伏強度		(MPa)	502	532	515	508	528	604	648	545	451	417	427	411	488	634	425	418
	回数	圓	3	-	4	2	5	-	62	-	6	-	-	1	2	2	4	-
	時間	(min)	4.2	7.3	5.5	3.2	9.2	6.0	5.1	4.5	4.2	3.3	1.5	6.1	ī	4.3	9.1	14.5
再加熱	最低温度	Tmin(°C)	900	1	580	630	620	1	009	ı	570	,	-	ı	420	009	"	,
再加	最高温度	Tmax(°C)	650	099	630	650	089	650	630	650	620	999	580	750	460	650	"	"
	方式		誘導加熱炉	ガス燃焼炉	誘導加熱炉	誘導加熱炉	誘導加熱炉	ガス燃焼炉	誘導加熱炉	ガス燃焼炉	誘導加熱炉	ガス燃焼炉	ガス燃焼炉	ガス燃焼炉	誘導加熱炉	誘導加熱炉	誘導加熱炉	ガス燃焼炉
冷却停止	前两	(၁)	580	640	290	270	680	009	620	630	099	750	280	650	400	650	"	"
加熱 压延終了 冷却速度 冷却停止		(°C/s)	30	"	"	22	"	30	"	"	1	30	22	"	09	45	"	"
田常総プ	迴度	(၁)	880	920	006	850	930	920	880	900	850	850	006	"	900	850	"	"
和發	過級	ဥ	1200	1150	1200	1150	"	1200	"	1100	1200	"	1200	*	100	1150	*	*
回		(mm)	19.1	,	"	25.4	*	19.1	"	"	19.1	"	25.4	"	"	19.1	*	"
外谷		(mm)	914.4	"	"	1219.2	"	914.4	"	"	914.4	"	1219.2	"	"	914.4	"	"
箱種			В	۵	*	٥	=	٦	٥	-	٥	*	٥	*	*	М	디	
ģ			99	37	88	39	\$	4	42	43	4	45	46	47	48	49	20	21

表5

18 請求の範囲

- 1. 実質的に、質量%で、C:0.02-0.08 %、Si:0.01-0.5 %、Mn:0.5-1.8 %、P:0.01 %以下、S:0.002 %以下、Al:0.01-0.07 %、Ti:0.005-0.04 %、Mo:0.05-0.50 %と、Nb:0.005-0.05 %とV:0.005-0.10 %の中から選ばれた少なくとも1種の元素、および残部Feからなり、フェライト相の体積率が90 %以上であり、かつ前記フェライト相中にTi、Mo、およびNb、Vの中から選ばれた少なくとも1種の元素を含む複合炭化物が析出しているAPI X65グレード以上の高強度鋼管。
- 2. Ti: 0.005-0.02 %未満である請求の範囲1のAPI X65グレード以上の高強度鋼管。
- 3. 実質的に、質量%で、C: 0.02-0.08 %、Si: 0.01-0.5 %、Mn: 0.5-1.8 %、P: 0.01 %以下、S: 0.002 %以下、Al: 0.01-0.07 %、Ti: 0.005-0.04 %と、Nb: 0.005-0.05 %とV: 0.005-0.10 %の中から選ばれた少なくとも1種の元素と、(W/2 + Mo): 0.05-0.50 %を満足するW、Mo (ただし、Moが0 %の場合も含む。)、および残部Feからなり、フェライト相の体積率が90 %以上であり、かつ前記フェライト相中にTi、W、Mo、およびNb、Vの中から選ばれた少なくとも1種の元素を含む複合炭化物が析出しているAPI X65グレード以上の高強度鋼管。
- 4. Ti: 0.005-0.02 %未満である請求の範囲3のAPI X65グレード以上の高強度鋼管。
- 5. さらに、Ca: 0.0005-0.0040 %を含有する請求の範囲1のAPI X65グレード以上の高強度鋼管。
- 6. さらに、Ca: 0.0005-0.0040 %を含有する請求の範囲3のAPI X65グレード以上の高強度鋼管。

19

- 7. さらに、質量%で、Cu: 0.5 %以下、Ni: 0.5 %以下、Cr: 0.5 %以下の中から 選ばれた少なくとも1種の元素を含有する請求の範囲1のAPI X65グレード以上の 高強度鋼管。
- 8. さらに、質量%で、Cu: 0.5 %以下、Ni: 0.5 %以下、Cr: 0.5 %以下の中から 選ばれた少なくとも1種の元素を含有する請求の範囲3のAPI X65グレード以上の 高強度鋼管。
- 9. さらに、質量%で表したC量とMo、Ti、Nb、V、Wの合計量の比R = (C/12)/[(Mo/96) + (Ti/48) + (Nb/93) + (V/51) + (W/184)] が0.5-3.0である 請求の範囲1のAPI X65グレード以上の高強度鋼管。
- 10. さらに、Rが0.5-3.0である請求の範囲3のAPI X65グレード以上の高強度鋼管。
- 11. Rが0.7-2.0である請求の範囲9のAPI X65グレード以上の高強度鋼管。
- 12. Rが0.7-2.0である請求の範囲10のAPI X65グレード以上の高強度鋼管。
- 13. 請求の範囲1に記載の成分組成を有する鋼スラブを、1000-1250 ℃の範囲に加熱する工程と、

前記鋼スラブをAr3変態点以上の仕上温度で熱間圧延し、鋼板とする工程と、 前記鋼板を、2 ℃/s以上の冷却速度で冷却する工程と、

前記冷却された鋼板を、550-700 ℃の範囲で巻取る工程と、

前記巻取られた鋼板を、鋼管に成形する工程と、

を有するAPI X65グレード以上の高強度鋼管の製造方法。

14. 請求の範囲3に記載の成分組成を有する鋼スラブを、1000-1250 ℃の範囲に加熱する工程と、

前記鋼スラブをAr3変態点以上の仕上温度で熱間圧延し、鋼板とする工程と、 前記鋼板を、2 ℃/s以上の冷却速度で冷却する工程と、

前記冷却された鋼板を、550-700 ℃の範囲で巻取る工程と、

前記巻取られた鋼板を、鋼管に成形する工程と、

を有するAPI X65グレード以上の高強度鋼管の製造方法。

15. 請求の範囲1に記載の成分組成を有する鋼スラブを、1000-1250 ℃の範囲に加熱する工程と、

前記鋼スラブをAr3変態点以上の仕上温度で熱間圧延し、鋼板とする工程と、 前記鋼板を、2 ℃/s以上の冷却速度で600-700 ℃の範囲まで冷却する工程と、 前記冷却された鋼板を、0.1 ℃/s以下の冷却速度で少なくとも550 ℃まで冷 却する工程と、

前記冷却された鋼板を、鋼管に成形する工程と、 を有するAPI X65グレード以上の高強度鋼管の製造方法。

16. 請求の範囲3に記載の成分組成を有する鋼スラブを、1000-1250 ℃の範囲に加熱する工程と、

前記鋼スラブをAr3変態点以上の仕上温度で熱間圧延し、鋼板とする工程と、 前記鋼板を、2 ℃/s以上の冷却速度で600-700 ℃の範囲まで冷却する工程と、 前記冷却された鋼板を、0.1 ℃/s以下の冷却速度で少なくとも550 ℃まで冷 却する工程と、

前記冷却された鋼板を、鋼管に成形する工程と、 を有するAPI X65グレード以上の高強度鋼管の製造方法。

17. 請求の範囲1に記載の成分組成を有する鋼スラブを、1000-1250 ℃の範囲に加熱する工程と、

前記鋼スラブをAr3変態点以上の仕上温度で熱間圧延し、鋼板とする工程と、 前記鋼板を、2 ℃/s以上の冷却速度で550-700 ℃の範囲まで冷却する工程と、

21

前記冷却された鋼板を、冷却後直ちに加熱して550-700 ℃の範囲で3 min.以上保持する工程と、

前記熱処理された鋼板を、鋼管に成形する工程と、 を有するAPI X65グレード以上の高強度鋼管の製造方法。

18. 請求の範囲3に記載の成分組成を有する鋼スラブを、1000-1250 ℃の範囲に加熱する工程と、

前記鋼スラブをAr3変態点以上の仕上温度で熱間圧延し、鋼板とする工程と、 前記鋼板を、2 ℃/s以上の冷却速度で550-700 ℃の範囲まで冷却する工程と、 前記冷却された鋼板を、冷却後直ちに加熱して550-700 ℃の範囲で3 min.以 上保持する工程と、

前記熱処理された鋼板を、鋼管に成形する工程と、 を有するAPI X65グレード以上の高強度鋼管の製造方法。

- 19. 550-700 ℃の範囲で3 min.以上保持する処理を、圧延設備および冷却設備と同一ライン上に2台以上直列に設置された誘導加熱装置により行う請求の範囲17 のAPI X65グレード以上の高強度鋼管の製造方法。
- 20. 550-700 ℃の範囲で 3 min.以上保持する処理を、圧延設備および冷却設備 と同一ライン上に 2 台以上直列に設置された誘導加熱装置により行う請求の範囲 18 の API X65 グレード以上の高強度鋼管の製造方法。

WO 03/006699

1/3

PCT/JP02/07102

図 1

図 2

2/3

図 3

図 4

図

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/07102

A. CLASS Int.	SIFICATION OF SUBJECT MATTER .C1 ⁷ C22C38/00, 38/14, 38/58, 0	C21D8/02, 8/10	
According t	to International Patent Classification (IPC) or to both na	ational classification and IPC	
	S SEARCHED		
Minimum d Int.	locumentation searched (classification system followed C1 ⁷ C22C38/00-38/60, C21D8/00-	by classification symbols) -8/10, 9/46-9/48	
	tion searched other than minimum documentation to the		
Electronic d	lata base consulted during the international search (nam	e of data base and, where practicable, sea	rch terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
Α .	JP 10-30122 A (NKK Corp.), 03 February, 1998 (03.02.98), (Family: none)	,	1-20
A	JP 10-176239 A (Kobe Steel, 30 June, 1998 (30.06.98), (Family: none)	Ltd.),	1-20
A	JP 4-168217 A (Kawasaki Stee 16 June, 1992 (16.06.92), (Family: none)	el Corp.),	1-20
A	JP 1-234521 A (Nippon Steel 19 September, 1989 (19.09.89) (Family: none)		1-20
Furth	er documents are listed in the continuation of Box C.	See patent family annex.	
"A" docume conside	I categories of cited documents: ent defining the general state of the art which is not cred to be of particular relevance document but published on or after the international filing	"T" later document published after the inte priority date and not in conflict with th understand the principle or theory und document of particular relevance; the	ne application but cited to erlying the invention
date	ent which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered step when the document is taken alone	red to involve an inventive
cited to	reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive step	claimed invention cannot be
"O" documents "P" documents	ent referring to an oral disclosure, use, exhibition or other	combined with one or more other such combination being obvious to a person "&" document member of the same patent	documents, such
Date of the	actual completion of the international search august, 2002 (21.08.02)	Date of mailing of the international search 03 September, 2002	
	nailing address of the ISA/ nese Patent Office	Authorized officer	
Facsimile N		Telephone No.	

発明の属する分野の分類(国際特許分類(IPC))

Int. Cl C22C38/00, 38/14, 38/58, C21D8/02, 8/10

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C22C38/00-38/60, C21D8/00-8/10, 9/46-9/48

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連する	5と認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 10-30122 A(日本鋼管株式会社) 1998. 02. 03(ファミリーなし)	1-20
A	JP 10-176239 A(株式会社神戸製鋼所) 1998.06.30(ファミリーなし)	1-20
A	JP 4-168217 A(川崎製鉄株式会社) 1992.06.16(ファミリーなし)	1-20
	<u> </u>	

X C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

03.09.02 国際調査を完了した日 国際調査報告の発送日 21.08.02 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4K | 9352 日本国特許庁(ISA/JP) 諸岡 健一 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3435

国際調査報告

国際出願番号 PCT/JP02/07102

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 1-234521 A(新日本製鐵株式会社) 1989. 09. 19(ファミリーなし)	1-20