UNIVERSIDAD DEL BÍO BÍO

DEPARTAMENTO DE MATEMÁTICA

Ingeniería Civil Eléctrica - Ingeniería Estadistica - 2020 (1) Álgebra Lineal

Guía Espacios Vectoriales

RESULTADOS DE APRENDIZAJES

1 Aplica la teoría de espacios vectoriales y sus propiedades para la resolución de problemas.

Espacios Vectoriales

- 1. Analizar si los siguientes conjuntos son o no subespacios de los espacios vectoriales dados.
 - a) $R = \{(x,y) \in \mathbb{R}^2 / x + 2y = 0\}, V = \mathbb{R}^2$.
 - b) $S = \{(x,y) \in \mathbb{R}^2/x^2 y = 0\}, V = \mathbb{R}^2$
 - c) $T = \{(x, y) \in \mathbb{R}^2 / 3x 2y = 2\}, V = \mathbb{R}^2$.
 - d) $W = \{(x,y,z) \in \mathbb{R}^3/2x 3y + z = 0\}, V = \mathbb{R}^3.$
 - e) $R = \{(x, y, z) \in \mathbb{R}^3 / 4x y + z = 0, x + y 3z = 0\}, V = \mathbb{R}^3$.
 - f) $S = \{(x, y, z) \in \mathbb{R}^3 / x > 0\}, V = \mathbb{R}^3$.
 - g) $T = \{A = (a_{ij}) \in M_2(\mathbb{R})/a_{11} + a_{21} = 0\}, V = M_2(\mathbb{R}).$
 - h) $W = \{A = (a_{ij}) \in M_n(\mathbb{R}) / A^t = -A\}, V = M_n(\mathbb{R}).$
 - i) $U = \{f : A \subset \mathbb{R} \to \mathbb{R}/f \text{ una función par}\}, V = \{f : A \subset \mathbb{R} \text{ } f \text{ es función}\}.$
 - j) $R = \{A = (a_{ij}) \in M_2(\mathbb{R}) / a_{12} = a_{11} + 1\}, V = M_2(\mathbb{R}).$
- 2. Dados los subespacios $S = \{(x, y, z) \in \mathbb{R}^3 / x y + z = 0; 2x z = 0\}$ y $T = \{(x, y, z) \in \mathbb{R}^3 / 3x 2y + z = 0\}$. Halle $S \cap T$. $S \oplus T = \mathbb{R}^3$?
- 3. Sea $V = \mathbb{R}^3$ un espacio vectorial sobre \mathbb{R} , determine si el conjunto es linealmente dependiente o independiente: $A = \{(1, -3, 2), (0, 7, -1), (2, 1, 3)\}$
- 4. Sean u, v, w vectores l.i. de un espacio vectorial V. Probar que el conjunto $\{u+v, u-v, u-2v+w\}$ es l.i.
- 5. Sea $V=\mathbb{R}^3$ un espacio vectorial sobre \mathbb{R} , probar que $\{(1,3,5),(2,-2,3),(3,2,-5)\}$ forma una base de \mathbb{R}^3 .
- 6. Sean los subespacios de \mathbb{R}^3 , dados por $S = \{(x, y, z) \in \mathbb{R}^3 / 3x + y 3z = 0; x y + 4z = 0\}$ y $T = \langle \{(-1, 0, 1), (1, -1, 2)\} \rangle$.
 - a) Caracterice el subespacio T.
 - b) Halle una base y dimensión de S.
 - c) Determine $S \cap T$, una base y su dimensión. $S \oplus T = \mathbb{R}^3$?
- 7. Sea el sunconjunto $S = \{(x, y, z) \in \mathbb{R}^3 / 3x 2y z = 0\}$ de \mathbb{R}^3 :
 - a) Pruebe que S es un subespacio de \mathbb{R}^3
 - b) Halle una base y dimensión de S.
 - c) Verifique que el vector $(3, -2, 13) \in S$ y escribalo como combinación lineal de la base de S encontrada en b).
- 8. Dado el conjunto $A=\left\{\begin{pmatrix}1&3\\-1&1\end{pmatrix},\begin{pmatrix}0&4\\-3&1\end{pmatrix},\begin{pmatrix}3&5\\0&2\end{pmatrix}\right\}\subset M_2(\mathbb{R})$
 - a) Determine si A es un conjunto l.i o l.d.
 - b) Caracterice el subespacio S generado por A.
 - c) Determine la dimensión S.
- 9. Dados los conjuntos $S=\{(x,y,z)\in\mathbb{R}^3/3x-4y-z=0\}$ y $T=\{(x,y,z)\in\mathbb{R}^3/x-3y=0\}$.
 - a) Determine una base y dimensión de S.
 - b) Caracterice $S \cap T$.
- 10. Probar que los siguientes vectores de \mathbb{R}^3 : $A = \{(1,2,-1),(3,-1,2)\}$ y $B = \{(2,-3,3),(5,3,0)\}$ generan el mismo subespacio.

RODRIGO CARRASCO (2020-1)

11. Dado el conjunto $A = \{2, x+1, x^2-1, x^2+3x-4\}$, en el espacio de los polinomios de grado 2.

- a) Muestre que el conjunto es l.d.
- b) De A, halle una base de $P_2(\mathbb{R})$.

12. Sea
$$V=M_2(\mathbb{R})$$
 y considere el conjunto $A=\left\{\begin{pmatrix}1&0\\1&1\end{pmatrix},\begin{pmatrix}1&-2\\0&1\end{pmatrix},\begin{pmatrix}1&0\\0&1\end{pmatrix}\right\}\subset M_2(\mathbb{R})$

- a) Caracterice el subespacio S generado por A.
- b) Extienda el conjunto A a una base de $V=M_2(\mathbb{R})$.
- 13. Verificar si el conjunto $\{(2, -1, 4, 0), (-1, 0, 1, 1), (4, 1, 7, -5)\}$ es l.i o l.d.

14. Considere en \mathbb{R}^4 los subespacios vectoriales $W_1 = \{(1, -1, 0, 1), (-1, 0, 1, 0), (1, -2, 1, 2)\}$ y $W_2 = \{(0, -1, 1, 1), (1, -2, 1, 2)\}$.

- a) Caracterice los subespacios W_1 y W_2 .
- b) Hallar $dim(W_1 \cap W_2)$ y $dim(W_1 + W_2)$.

15. Sean los subespacios vectoriales de \mathbb{R}^4 , $U=\{(1,1,0,-1),(1,2,3,0),(2,3,3,-1)\}$ y $V=\{(1,2,2,-2),(2,3,2,-3),(1,3,4,-3)\}$. Hallar

- a) Caracterizar U + V y dim(U + V).
- b) Caracterizar $U \cap V$ y $dim(U \cap V)$.

16. Sean los subespacios vectoriales de \mathbb{R}^4 , $W_1 = \{(x, y, z, t) \in \mathbb{R}^4 / x - z = 0; y + t = 0\}$ y $W_2 = \{(0, 0, 0, 1), (1, 1, 1, -1)\}$. Calcular:

- a) $dim(W_1)$ y $dim(W_2)$.
- b) Caracterizar $W_1 \cap W_2$ y $dim(W_1 \cap W_2)$. ¿Es $\mathbb{R}^4 = W_1 \oplus W_2$?
- c) Hallar $dim(W_1 + W_2)$.

17. Sea el espacio vectorial $M_{2\times 2}(\mathbb{R})$ y consideremos los subespacios vectoriales $T = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2\times 2}(\mathbb{R})/a + b + c + d = 0 \right\}$ y $U = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$.

- a) Hallar base para T.
- b) Caracterizar U.
- c) Hallar una base y caracterizar T + U y $T \cap U$.

18. Calcular los valores de a para los cuales los vectores $\{(1,2,-1,2),(2,-1,3,-1),(1,a,-6,a)\}$ de \mathbb{R}^4 son linealmente independientes.

19. Sea R el conjunto de matrices de la forma

$$\begin{pmatrix} a & b & c \\ b & a+b+c & b \\ c & b & a \end{pmatrix}$$

donde $a,b,c\in\mathbb{R}$. Probar que R es un subespacio vectorial de $M_3(\mathbb{R})$.

20. Dada la base B = (1, 1, 1), (1, 1, 2), (1, 2, 3) de \mathbb{R}^3 . Hallar las coordenadas del vector x = (6, 9, 14).

 $21. \text{ Sea el espacio vectorial } \boldsymbol{M_{2\times2}}(\mathbb{R}) \text{ y las bases } \boldsymbol{B_1} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \text{ y } \boldsymbol{B_2} = \left\{ \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 2 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ -2 & -3 \end{pmatrix} \right\}$

- a) Encuentre la matriz cambio de base de B_1 a B_2 .
- b) Encuentre la matriz cambio de base de B_2 a B_1 .

21. Considere las bases de \mathbb{R}^3 . $B_1=\{(1,0,1),(-1,1,1),(1,-1,0)\}$ y $B_2=\{(2,1,1),(1,1,1),(1,-1,1)\}$

- a) Calcular la matriz de cambio de base de B_2 a B_1 .
- b) Calcular las coordenadas en la base B_1 del vector cuyas coordenadas en B_2 son (3, -2, 2).

22. Sean $B_1 = \{e_1, e_2, e_3\}$ y $B_2 = \{e_1^* = e_1 + e_2 + e_3, e_2^* = e_1 + 2e_2 + e_3, e_3^* = e_1 + e_2 + 3e_3\}$ dos bases de \mathbb{R}^3 . Calcular la matriz de cambio de base de B_1 a B_2 y de B_2 a B_1 . Si $[v]_{B_1} = (23, -7, 19)$ calcular las coordenadas de v en la base B_2 .

Rodrigo Carrasco (2020-1)