

Learning Objectives

- Students completing this lecture will be able to
 - Explain the roles of scalars, vectors and points in defining geometry
 - Sketch vectors based on the head-to-tail axiom
 - Describe the following terms: affine space, parametric form, linearly (in)dependent, dimension, basis, coordinate system
 - Differentiate between affine and convex sums, dot and cross products
 - Describe the difference between points and vectors in the homogeneous coordinate representation

Scalars, Points and Vectors

Basic Elements

- Geometry is the study of the relationships among objects in an n-dimensional space
 - In computer graphics, we are interested in objects that exist in three dimensions
- Want a minimum set of primitives from which we can build more sophisticated objects
- We will need three basic elements
 - Scalars
 - Vectors
 - Points

Cartesian Approach

- When we learned simple geometry, most of us started with a Cartesian approach
 - Points were at locations in space $\mathbf{P} = (x, y, z)$

We derived results by algebraic manipulations involving these coordinates

Coordinate-Free Geometry

- The Cartesian approach is nonphysical
 - -Physically, points exist regardless of the location of an arbitrary coordinate system
 - Most geometric results are independent of the coordinate system

Scalars

- Need three basic elements in geometry
 - Scalars, vectors, points
- Scalars can be defined as members of sets which can be combined by two operations (addition and multiplication) obeying some fundamental axioms (associativity, commutivity, inverses)
- Examples include the real and complex number systems under the ordinary rules
- Scalars alone have no geometric properties

Vectors

- Physical definition: a vector is a quantity with two attributes
 - Direction
 - Magnitude
- Examples include
 - Force, velocity
 - Directed line segments
 - Most important example for graphics
 - Can map to other types

Vector Operations

- Every vector has an inverse
 - Same magnitude but points in opposite direction
- Every vector can be multiplied by a scalar
- There is a zero vector
 - Zero magnitude, undefined orientation
- The sum of any two vectors is a vector
 - Use head-to-tail axiom

Linear Vector Spaces

- Mathematical system for manipulating vectors
- Operations
 - Scalar-vector multiplication: $\mathbf{u} = \alpha \mathbf{v}$
 - Vector-vector addition: $\mathbf{w} = \mathbf{u} + \mathbf{v}$
- Expressions such as

$$\mathbf{v} = \mathbf{u} + 2\mathbf{w} - 3\mathbf{r}$$

make sense in a vector space (we can draw it!)

$\mathbf{v} = \mathbf{u} + 2\mathbf{w} - 3\mathbf{r}$

$$\mathbf{v} = \mathbf{u} + 2\mathbf{w} - 3\mathbf{r}$$

$$\mathbf{v} = \mathbf{u} + 2\mathbf{w} + (-3\mathbf{r})$$

They are the same!

Vectors Lack Position

- These vectors are identical
 - Same length and magnitude

- Vectors spaces insufficient for geometry
 - Need points

Points

- Location in space
- Operations allowed between points and vectors
 - Point-point subtraction yields a vector $\mathbf{v} = \mathbf{P} \mathbf{Q}$
 - Equivalent to point-vector addition $\mathbf{P} = \mathbf{v} + \mathbf{Q}$

Affine Spaces

- Point + vector space
- Operations
 - Vector-vector addition $\mathbf{u} = \mathbf{v} + \mathbf{w}$
 - Scalar-vector multiplication $\mathbf{u} = \alpha \mathbf{v}$
 - Point-vector addition $\mathbf{P} = \mathbf{v} + \mathbf{Q}$
 - Scalar-scalar operations $\alpha = \beta + \gamma$
 - $-\mathbf{P} + 3\mathbf{Q} \mathbf{v}$ does not make sense! (why?)
- For any point define
 - $-1 \cdot P = P$
 - $-0 \cdot \mathbf{P} = \mathbf{0}$ (zero vector)

Lines

Consider all points of the form

$$-\mathbf{P}(\alpha) = \mathbf{P}_0 + \alpha \, \mathbf{d}$$

– Set of all points that pass through \mathbf{P}_0 in the direction of the vector \mathbf{d}

Parametric Form

- This form is known as the parametric form of the line
 - More robust and general than other forms
 - Extends to curves and surfaces
- Two-dimensional forms
 - Explicit: y = mx + h
 - Implicit: ax + by + c = 0
 - Parametric:

$$x(\alpha) = x_0 + \alpha(x_1 - x_0) = \alpha x_1 + (1 - \alpha)x_0$$
$$y(\alpha) = y_0 + \alpha(y_1 - y_0) = \alpha y_1 + (1 - \alpha)y_0$$

Rays and Line Segments

- If $\alpha \ge 0$, then $\mathbf{P}(\alpha)$ is the ray leaving \mathbf{P}_0 in the direction \mathbf{d}
- If we use two points to define v, then

$$\mathbf{P}(\alpha) = \mathbf{Q} + \alpha (\mathbf{R} - \mathbf{Q}) = \mathbf{Q} + \alpha \mathbf{v}$$
$$= \alpha \mathbf{R} + (1 - \alpha)\mathbf{Q}$$

• For $0 \le \alpha \le 1$ we get all the points on the line segment joining ${\bf R}$ and ${\bf Q}$

Affine Sums

Consider the "sum"

$$\mathbf{P} = \alpha_1 \mathbf{P}_1 + \alpha_2 \mathbf{P}_2 + \dots + \alpha_n \mathbf{P}_n$$

- Can show by induction that this sum makes sense iff $\alpha_1 + \alpha_2 + ... + \alpha_n = 1$, in which case we have the affine sum of the points \mathbf{P}_1 , \mathbf{P}_2 , ..., \mathbf{P}_n
- If, in addition, $\alpha_i \ge 0$, we have the convex sum (i.e., convex hull) of $\mathbf{P}_1, \mathbf{P}_2, ..., \mathbf{P}_n$

Convex Hull

- Smallest convex object containing $P_1, P_2, ..., P_n$
- Formed by "shrink wrapping" points

Dot Product

$$|\mathbf{u}|^2 = \mathbf{u} \cdot \mathbf{u}$$

If $\mathbf{u} \cdot \mathbf{v} = 0$, then \mathbf{u} and \mathbf{v} are orthogonal

Cross Product

$$\mathbf{u} = (u_1, u_2, u_3)$$

$$\mathbf{v} = (v_1, v_2, v_3)$$

$$\mathbf{u} \times \mathbf{v} = (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1)$$

Mutually orthogonal vectors in 3D (**u**, **n**, **w**) right-hand rule

$$\mathbf{n} = \mathbf{u} \times \mathbf{v}$$
$$\mathbf{w} = \mathbf{u} \times \mathbf{n}$$

Coordinate Systems and Frames

Linear Independence

A set of vectors v₁, v₂, ..., v_n is linearly independent if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n = \mathbf{0}$$
 iff $\alpha_1 = \alpha_2 = \dots = 0$

- If a set of vectors is linearly independent, we cannot represent one in terms of the others
- If a set of vectors is linearly dependent, as least one can be written in terms of the others

Are they linearly independent?

Dimension

- In a vector space, the maximum number of linearly independent vectors is fixed and is called the dimension of the space
- In an n-dimensional space, any set of n linearly independent vectors form a basis for the space
- Given a basis $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$, any vector \mathbf{v} can be written as $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + ... + \alpha_n \mathbf{v}_n$, where the $\{\alpha_i\}$ are unique

Linear independence ≠ orthogonal

Representation

- Until now we have been able to work with geometric entities without using any frame of reference, such as a coordinate system
- A frame of reference is needed to relate points and objects to our physical world
 - For example, where is a point? Can't answer without a reference system
 - World coordinates
 - Camera coordinates

Coordinate Systems

- Consider a basis $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$
- A vector is written $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n$
- The list of scalars $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ is the representation of \mathbf{v} with respect to the given basis
- We can write the representation as a row or column array of scalars

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \dots \ \alpha_n]^T = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \cdot \\ \alpha_n \end{bmatrix}$$

Example

- $\mathbf{v} = 2\mathbf{v}_1 + 3\mathbf{v}_2 4\mathbf{v}_3 \rightarrow \mathbf{a} = [2\ 3\ -4]^T$
- Note that this representation is with respect to a particular basis
- For example, in WebGL we start by representing vectors using the object basis (i.e., object frame) but later the system needs a representation in terms of the world basis (i.e., world frame), followed by camera or eye basis (i.e., eye frame)

Coordinate Systems

Which is correct?

Both are because vectors have no fixed location

Frames

- A coordinate system is insufficient to represent points
- If we work in an affine space we can add a single point, the origin, to the basis vectors to form a frame

Representation in a Frame

- Frame determined by $(\mathbf{P}_0, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$
- Within this frame, every vector can be written as

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n$$

Every point can be written as

$$\mathbf{P} = \mathbf{P}_0 + \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \dots + \beta_n \mathbf{v}_n$$

Confusing Points and Vectors

Consider the point and the vector

$$\mathbf{P} = \mathbf{P}_0 + \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \dots + \beta_n \mathbf{v}_n$$

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n$$

They appear to have the similar representations

$$\mathbf{P} = [\beta_1 \, \beta_2 \, \beta_3] \qquad \mathbf{v} = [\alpha_1 \, \alpha_2 \, \alpha_3]$$

which confuses the point with the vector

A vector has no position

Vector can be placed anywhere

point: fixed

A Single Representation

Recall that we define 0 • P = 0 and 1 • P = P then we can write:

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = [\alpha_1 \alpha_2 \alpha_3 \mathbf{0}] [\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3 \mathbf{P}_0]^{\mathrm{T}}$$

$$\mathbf{P} = \mathbf{P}_0 + \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \beta_3 \mathbf{v}_3 = [\beta_1 \beta_2 \beta_3 \mathbf{1}] [\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3 \mathbf{P}_0]^{\mathrm{T}}$$

 Thus we obtain the four-dimensional homogeneous coordinate representation

$$\mathbf{v} = [\alpha_1 \, \alpha_2 \, \alpha_3 \, \mathbf{0}]^{\mathrm{T}}$$
$$\mathbf{P} = [\beta_1 \, \beta_2 \, \beta_3 \, \mathbf{1}]^{\mathrm{T}}$$

Homogeneous Coordinates

• The homogeneous coordinates form for a three dimensional point $[x\ y\ z]$ is given as

$$\mathbf{P} = [x' y' z' w]^{T} = [wx wy wz w]^{T}$$

We return to a three dimensional point (for w≠0) by

$$x \leftarrow x'/w \quad y \leftarrow y'/w \quad z \leftarrow z'/w$$

- If w = 0, the representation is that of a vector
- If w = 1, the representation is that of a point

Homogeneous Coordinates and Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
 - All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4 × 4 matrices
 - Hardware pipeline works with fourdimensional representations