

ALGEBRA Chapter 14

Ecuaciones Polinomiales

HELICO MOTIVATING

La edad de Carla es $(a^3 + b^3 + c^3)$ años; donde a; b y c son las raíces de la ecuación: $x^3 + 2x - 4 = 0$ ¿Cuál será la edad de Carla dentro de 4 años?

RPTA: 16 años

HELICO THEORY CHAPTHER 14

ECUACIONES POLINOMIALES

I) ECUACIÓN

SPOLACIONES de grado "n" de la forma:

$$P(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... + a_n = 0$$
 $a_0 \ne 0, n \in \mathbb{Z}^+$

 $a_0, a_1, a_2, \dots, a_n$: son los coeficientes de P(x)

$$P(x) = x^3 - 2x^2 - x + 2 = 0$$

$$P(x) = 4x^5 + 7x^3 - 8x - 3 = 0$$

II) Raíz de un Polinomio

Diremos que "a" es una raíz de un polinomio P(x) si y sólo si P(a)=0.

Ejemplo:

Sea:
$$P(x) = x^3 - 2x^2 - x + 2 = 0$$

Se observa que "1" es raíz de P(x), pues:

$$P(1)=(1)^3-2(1)^2-1+2$$

$$P(1)=1-2-1+2=0 \Rightarrow P(1)=0$$

III) PROPIEDADES

Toda ecuación polinomial de grado "n" tiene exactamente "n" raíces.

$$x^3 - 2x^2 - x + 2 = 0$$
 \Rightarrow Presenta 3 raíces $x^5 + 7x^3 - 8x - 3 = 0$ \Rightarrow Presenta 5 raíces

Sea:
$$P(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... + a_n = 0$$

Si $a + \sqrt{b}$ es raíz de $P(x)$ $a - \sqrt{b}$ también es raíz de $P(x)$

Si: $5+\sqrt{3}$ es raíz de P(x) \longrightarrow $5-\sqrt{3}$ es raíz de P(x)

IV) TEOREMA DE CARDANO

Sea la ecuación:

$$P(x) = a_0^+ x^n + a_1^- x^{n-1} + a_2^+ x^{n-2} + a_3^- x^{n-3} + \dots + a_n^+ = 0$$
cuyas raíces son: $x_1, x_2, x_3, \dots, x_n$

SUMA DE RAÍCES

$$x_1 + x_2 + x_3 + \dots + x_n = \frac{a_1}{a_0}$$

SUMA DE PRODUCTOS BINARIOS

$$x_1x_2 + x_1x_3 + x_2x_3 + \dots = \overline{a_0}$$

SUMA DE PRODUCTOS TERNARIOS

$$x_1x_2x_3 + x_1x_2x_4 + \dots = -\frac{\alpha_3}{-3}$$

Y así sucesivamente hasta llegar al "producto de raíces"

PRODUCTOS DE RAÍCES

$$x_1. x_2. x_3.....x_n = (-1)^n \frac{a_n}{a_0}$$

EJEMPLOS APLICATIVOS

1) Sea:
$$2x^3-3x^2-7x+1=0$$

$$x_1 + x_2 + x_3 = \frac{3}{2}$$

$$x_1x_2+x_1x_3+x_2x_3=\frac{-7}{2}$$

$$\Rightarrow x_1x_2x_3 = \frac{-1}{2}$$

2) Sea:
$$2x^4-x^3-10x^2+7x-8=0$$

$$x_1 + x_2 + x_3 + x_4 = \frac{1}{2}$$

$$x_1x_2+....+x_3x_4=\frac{-10}{2}=\frac{-5}{2}$$

$$x_1x_2x_3 + + x_2x_3x_4 = \frac{-7}{2}$$

HELICO PRACTICE

CHAPTHER 14

Resuelva la ecuación polinomial:

$$x^3 - 6x^2 - x + 30 = 0$$

Resolución Factorizando el polinomio por divisores binómicos

$$\frac{\text{Div (30)}}{\text{Div (1)}} = \pm \left\{ \frac{1; \ 2; \ 3; \ 5; \ 6; \ 10; \ 15; \ 30}{1} \right\} = \pm \{1; \ 2; \ 3; \ 5; \ 6; \ 10; \ 15; \ 30\}$$

Sean x_1 , x_2 y x_3 las raíces de la ecuación $x^3 - 2x^2 + 5x + 3 = 0$ Halle el valor de $T = \frac{(x_1x_2x_3)^{x_1+x_2+x_3}}{x_1x_2+x_2x_3+x_1x_3}$

Resolución

$$x^3 - 2x^2 + 5x + 3 = 0$$

$$x_1 + x_2 + x_3 = 2$$

$$\rightarrow x_1x_2 + x_2x_3 + x_1x_3 = 5$$

Reemplazando en T:

$$T = \frac{(-3)^2}{5}$$

$$\Rightarrow T = \frac{9}{5}$$

Halle el valor de a+b , si la ecuación : $x^3+ax^2+bx+10=0$ tiene como raíces a 5 y 2

Resolución

$$x^3 + ax^2 + bx + 10 = 0$$

$$x_1 + x_2 + x_3 = -\frac{a}{1} = -a$$

$$x_1.x_2 + x_2.x_3 + x_3.x_1 = \frac{b}{1} = b$$

$$x_1.x_2.x_3 = -10$$

dato:
$$x_1 = 5$$
 y $x_2 = 2$

10.
$$x_3 = -10$$
 | luego | $x_3 = -1$

Reemplazando:

•
$$x_1 + x_2 + x_3 = -a$$

 $5+2-1 = -a$ \Rightarrow $a = -6$

•
$$x_1.x_2 + x_2.x_3 + x_3.x_1 = b$$

$$(5)(2) + (2)(-1) + (5)(-1) = b$$

 $10 - 2 - 5 = b$ $b = 3$

piden: a + b:

$$a+b=-6+3$$

Rpta a+b=-3

Se tiene a x_1 , x_2 y x_3 como raíces de la ecuación: $x^3 + 7x + 5 = 0$, efectúe:

$$\mathbf{M} = \frac{x_1^3 + x_2^3 + x_3^3}{x_1^2 + x_2^2 + x_3^2}$$

Resolución

$$x_1 + x_2 + x_3 = 0$$

$$x_1x_2 + x_2x_3 + x_1x_3 = 7$$

Recordar Si:
$$a + b + c = 0$$

$$a^{3}+b^{3}+c^{3}=3abc$$

$$a^{2}+b^{2}+c^{2}=-2(ab+bc+ac)$$

$$\longrightarrow M = \frac{3x_1x_2x_3}{-2(x_1x_2 + x_2x_3 + x_1x_3)}$$

$$M = \frac{3(-5)}{-2(7)} = \frac{15}{14}$$

Si a, b y c son raíces de la ecuación $x^3 + 4x^2 + 2 = 0$. Evalúe

$$\mathbf{M} = \frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab}$$

Resolución

$$x^3 + 4x^2 + 0x + 2 = 0$$

$$\Rightarrow$$
 $a + b + c = -4$

$$\Rightarrow$$
 $ab + bc + ca = 0$

$$\Rightarrow$$
 $abc = -2$

Del dato:
$$M = \frac{a}{bc} \cdot \frac{a}{a} + \frac{b}{ac} \cdot \frac{b}{b} + \frac{c}{ab} \cdot \frac{c}{c} \rightarrow M = \frac{a^2}{abc} + \frac{b^2}{abc} + \frac{c^2}{abc}$$

Recordar:
$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ac)$$

$$(-4)^2 = a^2 + b^2 + c^2 + 2(0)$$

 $16 = a^2 + b^2 + c^2$

Reemplazando
$$M = \frac{a^2+b^2+c^2}{abc} = \frac{16}{-2} = -8$$

Rpta

$$M=-8$$

PROBLEMA 6 La edad de Lucio en años es $\frac{1}{2}$; donde T está dado por el

siguiente problema: "Si a; b y c son las raíces de : $x^3-2x^2-3x-5=0$ Halle $T=a^2+b^2+c^2$ " ¿Cuál es la edad de Lucio?

Resolución

$$x^3 - 2x^2 - 3x - 5 = 0$$

$$a + b + c = 2$$

$$\Rightarrow$$
 $ab + bc + ca = -3$

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$$

Reemplazando

(2)² =
$$a^2+b^2+c^2+2$$
(-3)
Piden:
 $4 = T - 6$
 $\frac{T}{2} = \frac{10}{2} = 5$

RPTA: LUCIO TIENE 5 AÑOS

PROBLEMA 7 Siendo a, b y c las raíces de: $2x^3 + 3x - 12 = 0$ dada la expresión $P = ab(a+b)^3 + ac(a+c)^3 + bc(b+c)^3$ donde P representa la edad del hijo del profesor Arturo. ¿Cuál es dicha edad?

Resolución

$$\begin{vmatrix} + & - & + & - \\ 2x^3 + 0x^2 + 3x - 12 = 0 \end{vmatrix}$$

$$\Rightarrow a + b + c = 0$$

$$\Rightarrow ab + bc + ca = \frac{3}{2}$$

$$\Rightarrow$$
 abc = $\frac{12}{2}$ = 6

Recordar: Si
$$a + b + c = 0$$

$$a^2+b^2+c^2=-2(ab+bc+ca)$$

Del dato:
$$P = ab(-c)^3 + ac(-b)^3 + bc(-a)^3$$

Del dato:
$$P = ab(-c)^3 + ac(-b)^3 + bc(-a)^3$$

 $P = -abc^3 - acb^3 - bca^3$ $P = -abc(c^2 + b^2 + a^2)$

$$P = -abc(c^2 + b^2 + a^2)$$

Hallamos: $c^2 + b^2 + a^2$

$$a^2 + b^2 + c^2 = -2\left(\frac{3}{2}\right) = -3$$

Reemplazamos
$$P = -6(-3) = 18$$

Rpta: El hijo del profesor tiene 18 años