

20	40	60
MGMSKSHSFFGYPLSIFFIV	VNEFCERFSYYGMRAILILY	FTNFISWDDNLSTAIYHTFV
80	100	120
ALCYLTPILGALIADSWL GK	FKTIVSLSIVYTIGQAVTSV	SSINDLTDHNHDGTPDSL PV
140	160	180
HVVLSLIGLALIALGTGGI K	PCVSAFGGDQFEEGQEQRN	RFFSIFYLAINAGSLLSTII
200	220	240
TPMLRVQQCGIHSKQACYPL	AFGVPAALMAVALIVFVLGS	GMYKKFKPQGN GKVAKCI
260	280	300
GFAIKNRFRHRSKAFPKREH	WLDWAKEKYDERLISQIKMV	TRVMFLYIPLPMFWALFDQQ
320	340	360
GSRWTIQLQATTMSGKIGALEI	QPDQMQTVNAILIVIMVPIF	DAVLYPLIAKCGFNFTSLKK
380	400	420
MAVGMVLASMAFVVAIIVQV	EIDKTLPVFPKGNEVQIKVL	NIGNNTMNISLPGEMVTLGP
440	460	480
MSQTNAFMTFDVNKLTRINI	SSPGSPVTAVTDDFKQGQRH	TLLVWAPNHYQVVKDGLNQK
500	520	540
PEKGENGIRFVNNTFNELITI	TMSGKVYANISSYNASTYQF	FPSGIKGFTISSTEIPPOQQ
560	580	600
PNFNTFYLEFGSAYTYIVQR	KNDSCPEVKVFEDISANTVN	MAIQIPQYFLLTCGEVVFSV
620	640	660
TGLEFSYSQAPSNMKSVLQA	GWLLTVAVGNIIVLIVAGAG	QFSKQWAEYILFAALLLVVC
680	700	708
VIFAIMARFYTYINPAEIEA	QFDEDEKKNRLEKSNPYFMS	GANSQKQM

Fig. 1

1 gaattccgtc tcgaccactg aatggaagaa aaggactttt aaccaccatt ttgtgactta
 61 cagaaaggaa tttgaataaa gaaaactatg atacttcagg cccatcttca ctccctgtgt
 M I L Q A H L H S L C
 121 cttcttatgc tttatggc aactggatg gccaagagg ggaagtttag tggaccctg
 L L M L Y L A T G Y G Q E G K F S G P L
 181 aaacccatga cattttctat ttatgaaggc caagaaccga gtcaaattat attccagttt
 K P M T F S I Y E G Q E P S Q I I F Q F
 241 aaggccaatc ctcctgtgt gactttgaa ctaactgggg agacagacaa catattgtg
 K A N P P A V T F E L T G E T D N I F - V
 301 atagaacggg agggacttct gtattacaac agagccttgg acagggaaac aagatctact
 I E R E G L L Y Y N R A L D R E T R S T
 361 cacaatctcc aggttgcagc cctggacgct aatggaatta tagtggaggg tccagtcct
 H N L Q V A A L D A N G I I V E G P V P
 421 atcaccatag aagtgaagga catcaacgac aatcgaccca cgtttctcca gtcaaagtac
 I T I E V K D I N D N R P T F L Q S K Y
 481 gaaggctcag taaggcagaa ctctcgccca ggaaagccct tcttgtatgt caatgccaca
 E G S V R Q N S R P G K P F L Y V N A T
 541 gacctggatg atccggccac tcccaatggc cagcttattt accagattgt catccagctt
 D L D D P A T P N G Q L Y Y Q I V I Q L
 601 cccatgatca acaatgtcat gtactttcag atcaacaaca aaacgggagc catctctt
 P M I N N V M Y F Q I N N K T G A I S L
 661 acccgagagg gatctcagga attgaatcct gctaagaatc cttcctataa tctggtgatc
 T R E G S Q E L N P A K N P S Y N L V I
 721 tcagtgaagg acatgggagg ccagagttag aattccttca gtgataccac atctgtggat
 S V K D M G G Q S E N S F S D T T S V D
 781 atcatagtga cagagaatat ttggaaagca ccaaaacctg tggagatggg gaaaaactca
 I I V T E N I W K A P K P V E M V E N S
 841 actgatcctc accccatcaa aatcaactcag gtgcgttgg atgatcccg tgcacaatat
 T D P H P I K I T Q V R W N D P G A Q Y
 901 tccttagttg acaaagagaa gctgccaaga ttcccatttt caattgacca ggaaggagat
 S L V D K E K L P R F P F S I D Q E G D
 961 attacgtga ctacggcctt ggaccgagaa gaaaaggatg catatgtttt ttatgcagtt
 I Y V T Q P L D R E E K D A Y V F Y A V
 1021 gcaaaggatg agtacggaaa accacttca tatccgttgg aaattcatgt aaaagttaaa
 A K D E Y G K P L S Y P L E I H V K V K
 1081 gatattaatg ataatccacc tacatgtccg tcaccagtaa ccgtatttga ggtccaggag
 D I N D N P P T C P S P V T V F E V Q E
 1141 aatgaacgac tggtaacag tatcgggacc cttactgcac atgacaggaa tgaagaaaaat
 N E R L G N S I G T L T A H D R D E E N
 1201 actgccaaca gttttctaaa ctacaggatt gtggagcaaa ctcccaaact tcccatggat
 T A N S F L N Y R I V E Q T P K L P M D

Fig. 2A

1261 ggactcttcc taatccaaac ctatgctgga atgttacagt tagctaaaca gtccttgaag
 G L F L I Q T Y A G M L Q L A K Q S L K
 1321 aagcaagata ctcctcagta caacttaacg atagaggtgt ctgacaaaga tttcaagacc
 K Q D T P Q Y N L T I E V S D K D F K T
 1381 ctttgttttg tgcaaattcaa cgttattgat atcaatgatc agatccccat ctttggaaaa
 L C F V Q I N V I D I N D Q I P I F E K
 1441 tcagattatg gaaacctgac tcttgctgaa gacacaaaca ttgggtccac catcttaacc
 S D Y G N L T L A E D T N I G S T I L T
 1501 atccaggcca ctgatgctga tgagccattt actggagtt ctggaaattct gtatcatatc
 I Q A T D A D E P F T G S S R I L Y H I
 1561 ataaaggagg acagtggagg acgcctgggg gttgacacag atccccatac caacaccgga
 I K G D S E G R L G V D T D P H T N T G
 1621 tatgtcataa taaaaaagcc tcttgatttt gaaacagcag ctgtttccaa cattgtgttc
 Y V I I K K P L D F E T A A V S N I V F
 1681 aaagcagaaa atcctgagcc tctagtgttt ggtgtgaagt acaatgcaag ttcttttgc
 K A E N P E P L V F G V K Y N A S S F A
 1741 aagttcacgc ttattgtgac agatgtgaat gaagcacctc aattttccca acacgtattc
 K F T L I V T D V N E A P Q F S Q H V F
 1801 caagcgaaag tcagtgagga tcttagctata ggcactaaag tgggcaatgt gactgccaag
 Q A K V S E D V A I G T K V G N V T A K
 1861 gatccagaag gtctggacat aagctattca ctgaggggag acacaagagg ttggcttaaa
 D P E G L D I S Y S L R G D T R G W L K
 1921 attgaccacg tgactgggtga gatctttgt gtggctccat tggacagaga agccggaagt
 I D H V T G E I F S V A P L D R E A G S
 1981 ccatatcggt tacaagtggg ggccacagaa gtaggggggt cttccttaag ctctgtgtca
 P Y R V Q V V A T E V G G S S L S S V S
 2041 gagttccacc tgatccttat ggatgtgaat gacaaccctc ccaggcttagc caaggactac
 E F H L I L M D V N D N P P R L A K D Y
 2101 acgggcttgt tcttctgcca tcccctcagt gcacctggaa gtctcatttt cgaggctact
 T G L F F C H P L S A P G S L I F E A T
 2161 gatgatgatc agcacttatt tcggggtccc cattttacat tttccctcgg cagtggaaagc
 D D D Q H L F R G P H F T F S L G S G S
 2221 ttacaaaacg actgggaagt ttccaaaatc aatggtaatc atgcccact gtctaccagg
 L Q N D W E V S K I N G T H A R L S T R
 2281 cacacagact ttgaggagag ggcttatgtc gtcttgatcc gcatcaatga tgggggtcgg
 H T D F E E R A Y V V L I R I N D G G R
 2341 ccaccctgg aaggcattgt ttctttacca gttacattct gcagttgtgt ggaaggaagt
 P P L E G I V S L P V T F C S C V E G S
 2401 tgtttccggc cagcaggtca ccagactggg ataccactg tgggcatggc agttggtata
 C F R P A G H Q T G I P T V G M A V G I

Fig. 2B

2461 ctgctgacca cccttctgg tattggata attttagcag ttgtgtttat ccgcataaaag
L L T T L L V I G I I L A V V F I R I K
2521 aaggataaaag gcaaagataa ttttggaaagt gctcaagcat ctgaagtcaa acctctgaga
K D K G K D N V E S A Q A S E V K P L R
2581 agctgaattt gaaaaggaat gtttgaattt atatagcaag tgctatttca gcaacaacca
S
2641 tctcatccta ttactttca tctaacgtgc attataattt tttaaacaga tattccctct
2701 tgcctttaa tatttgcata atatttctt tttgagggtgg agtcttgc tc tgccggccag
2761 gctggagtac agtgggtgtga tcccagctca ctgcaaccc tc cccctctgg gttcacatgg
2821 ttctcctgcc tcagcttc aagtagctgg gtttacaggc acccaccacc atgcccagct
2881 aattttgtt ttttaatag agacgggggtt tcgccattt gccaggctgg tcttgaactc
2941 ctgacgtcaa gtgatctgcc tgccttggtc tcccaataca ggcataacc actgcaccca
3001 cctacttaga tatttcatgt gctatagaca tttagagagat ttttcatattt tccatgacat
3061 tttcctctc tgcaaatggc ttagctactt gtgttttcc ctttggggc aagacagact
3121 cattaaatat tctgtacatt ttttctttaat caaggagata tatcagtgtt gtctcataga
3181 actgcctgga ttccattttt gtttttctg attccatcct gtgtccccc catccttgac
3241 tccttggta ttctactgaa tttcaaacat ttgtcagaga agaaaaaaagt gaggactcag
3301 gaaaaataaaa taaataaaag aacagcctt tgcggcccg aattc

Fig. 2C

20	40	60
MARKKFSGLEISLIVLFVIV	TIIAIALIVVLATKTPAVDE	ISDSTSTPATTRVTNPSDS
80	100	120
GKCPNVLNDPVNVRINCIPE	QFPTEGICAQRGCCWRPWND	SLIPWCFFVDNHGYNVQDMT
140	160	180
TTSIGVEAKLNRIPSPLTFLG	NDINSVLFTTQNQTPNRFRF	KITDPNNRRYEVPHQYVKEF
200	220	240
TGPTVSDTLYDVKVAQNPFS	IQVIRKSNGKTLFDTSIGPL	VYSDQYLQISARLPSDYIYG
260	280	300
IGEQVHKRFRHDLWSKTWPI	FTRDQLPGDNNNNLYGHQTF	FMCIEDTSGKSEGVFLMNSN
320	340	360
AMEIFIQPTPIVTYRVTGGI	LDFYILLGDTPEQVQQYQQ	LVGLPAMPAYWNLGFQLSRW
380	400	420
NYKSLDVVKEVVRRNREAGI	PFDTQVTDIDYMEDKKDFTY	DQVAFNGLPQFVQDLHDHGQ
440	460	480
KYVIILDPAISIGRRANGTT	YATYERGNTQHVVINESDGS	TPIIGEVWPGLTVYPDFTNP
500	520	540
NCIDWWANECSIFHQEVQYD	GLWIDMNEVSSFIQGSTKGC	NVNKLNYPPFTPDLILDKLMY
560	580	600
SKTICMDAVQNWGKQYDVHS	LYGYSMAIATEQAVQKVFPN	KRSFILTRSTFAGSGRHAH
620	640	660
WLGDNNTASWEQMEWSITGML	EFSLFGIPLVGADICGFVAE	TTEELCRRWMQLGAFYPFSR
680	700	720
NHNSDGYEHQDPAFFGQNSL	LVKSSRQYLTIRYTLFLY	TLFYKAHVGETVARPVLHE
740	760	780
FYEDTNSWIEDTEFLWGPAL	LITPVLKQGADTVSAYIPDA	IWYDYESGAKRPWRKQRVDM
800	820	840
YLPADKIGLHLRGGYIPIQ	EPDVTTTASRKNPLGLIVAL	GENNTAKGDFFWDDGETKDT
860	880	900
IQNGNYILYTFVSNNLDI	VCTHSSYQEGTTLAFQTVKI	LGLTDSVTEVRVAENNQPMN
920	940	960
AHSNFTYDASNQVLLIADLK	LNLGRNFSVQWNQIFSENER	FNCYPDADLATEQKCTQRGC
980	1000	1020
VWRTGSSLSSKAPECYFPRQD	NSYSVNSARYSSMGIADLQ	INTANARIKLPSDPISTLRV
1040	1060	1080
EVKYHKNDMLQFKIYDPQKK	RYEVPVPLNIPTTPISTYED	RLYDVEIKENPFGIQIRRRS
1100	1120	1140
SGRVIWDSWLPGFAFNDQFI	QISTRLPSEYIYGFGEVEHT	AFKRDLNWNTWGMFTRDQPP
1160	1180	1200
GYKLNSYGFHPYYMALEEEG	NAHGVFLNSNAMDVTQPT	PALTYRTVGGILDYMFQFLGP
1220	1240	1260
TPQVATKQYHEVIGHPVMPA	YWALGFQLCRYGYANTSEVR	ELYDAMVAANIPYDVQYTDI

Fig. 3A

1280	1300	1320
DYMERQLDFTIGEAFQDLPQ	FVDKIRGEGMRYIIILDPAI	SGNETKTYPAFERGQQNDVF
1340	1360	1380
VKWPNTNDICWAKVWPDLNP	ITIDKTLTEDEAVNASRAHV	AFPDFFRTSTAEEWWAREIVD
1400	1420	1440
FYNEKMKFDGLWIDMNEPSS	FVNGETTNQCRNDELNYPPY	FPELTKRTDGLHFRTICMEA
1460	1480	1500
EQILSDGTSVLHYDVHNLYG	WSQMKPTHDALQKTTGKRG	VISRSTYPTSGRWGGHWLGD
1520	1540	1560
NYARWDNMDKSIIGMMEFL	FGISYTGADICGFFNNSEYH	LCTRWMQLGAFYPYSRNHN
1580	1600	1620
ANTRRQDPASWNETFAEMSR	NILNIRYTLLPYFYTQMHEI	HANGGTIVRPLLHEFFDEKP
1640	1660	1680
TWDIFKQFLWGPAPMVTPL	EPYVQTVNAYVPNARWFDYH	TGKDIGVRGQFQTFNASYDT
1700	1720	1740
INLHVRGGHILPCQEPAQNT	FYSRQKHMKLIVAADDNQMA	QGSLFWDDGESIDTYERDLY
1760	1780	1800
LSVQFNLNQTTLTSTILKRG	YINKSETRLGSLSHVWGKGTT	PVNAVTLTYNGNKNSLPFNE
1820	1827	
DTTNMILRIDLTTHNVTLEE	PIEINWS	

1 gccttactgc aggaaggcac tccgaagaca taagtcggtg agacatggct gaagataaaa
 M A E D K

61 gcaagagaga ctccatcgag atgagtatga agggatgcc a gacaaacaac gggtttgtcc
 S K R D S I E M S M K G C Q T N N G F V

121 ataatgaaga cattctggag cagaccccg atccaggcag c tcaacagac aacctgaagc
 H N E D I L E Q T P D P G S S T D N L K

181 acagcaccag gggcatcctt ggctcccagg agcccactt caagggcgtc cagccctatg
 H S T R G I L G S Q E P D F K G V Q P Y

241 cggggatgcc caaggaggtg ctgttccagt tctctggcca gggccgtac cgcatacctc
 A G M P K E V L F Q F S G Q A R Y R I P

301 gggagatcct cttctggctc acagtggctt ctgtgctgg gtcatcgcg gccaccatag
 R E I L F W L T V A S V L V L I A A T I

361 ccatcattgc cctctctcca aagtgcctag actggtggca ggagggccccc atgtaccaga
 A I I A L S P K C L D W W Q E G P M Y Q

421 tctacccaag gtctttcaag gacagtaaca aggatggaa cggagatctg aaaggatttc
 I Y P R. S F K D S N K D G N G D L K G I

481 aagataaaact ggactacatc acagtttaa atataaaaac tggggatt acttcatttt
 Q D K L D Y I T A L N I K T V W I T S F

541 ataaatcgtc cttaaagat ttcaagatag gtgttgaaga tttccggaa gttgatccca
 Y K S S L K D F R Y G V E D F R E V D P

601 ttttggAAC gatggaaagat tttgagaatc tggggcagc catacatgat aaaggtttaa
 I F G T M E D F E N L V A A I H D K G L

661 aattaatcat cgatttcata ccaaaccaca cgagtgataa acatatttg tttcaattga
 K L I I D F I P N H T S D K H I W F Q L

721 gtcggacacg gacagggaaa tatactgatt attatatctg gcatgactgt acccatgaaa
 S R T R T G K Y T D Y Y I W H D C T H E

781 atggcaaaac cattccaccc aacaactggt taagtgtgt tggaaaactcc agttggcact
 N G K T I P P N N W L S V Y G N S S W H

841 ttgacgaagt gcaaaaccaa tggattttc atcagttat gaaagagcaa cctgatttaa
 F D E V R N Q C Y F H Q F M K E Q P D L

901 atttccgcaa tcctgatgtt caagaagaaa taaaagaaaat ttacgggtc tggctcacaa
 N F R N P D V Q E E I K E I L R F W L T

961 aggggtgtga tggtttagt ttggatgctg ttaaattcct cctagaagca aagcacctga
 K G V D G F S L D A V K F L L E A K H L

1021 gagatgagat ccaagtaaat aagacccaaa tcccggacac ggtcacacaa tactcgagc
 R D E I Q V N K T Q I P D T V T Q Y S E
 1081 tgtaccatga cttcaccacc acgcagggtgg gaatgcacga cattgtccgc agcttccggc
 L Y H D F T T T Q V G M H D I V R S F R
 1141 agaccatgga ccaatacagc acggagcccg gcagatacag gttcatgggg actgaagcct
 Q T M D Q Y S T E P G R Y R F M G T E A
 1201 atgcagagag tattgacagg accgtgatgt actatggatt gccatttatc caagaagctg
 Y A E S I D R T V M Y Y G L P F I Q E A
 1261 atttccctt caacaattac ctcagcatgc tagacactgt ttctggAAC agcgtgtatg
 D F P F N N Y L S M L D T V S G N S V Y
 1321 aggttatcac atcctggatg gaaaacatgc cagaaggaaa atggcttaac tggatgattg
 E V I T S W M E N M P E G K W P N W M I
 1381 gtggaccaga cagttcacgg ctgacttcgc gtttgggaa tcagtatgtc aacgtgatga
 G G P D S S R L T S R L G N Q Y V N V M
 1441 acatgcttct tttcacactc cctggaaactc ctataactta ctatggagaa gaaattggaa
 N M L L F T L P G T P I T Y Y G E E I G
 1501 tggaaatat ttagccgca aatctcaatg aaagctatga tattaatacc ctgcgtcaa
 M G N I V A A N L N E S Y D I N T L R S
 1561 agtcaccaat gcagtgggac aatagttcaa atgctggttt ttctgaagct agtaacaccc
 K S P M Q W D N S S N A G F S E A S N T
 1621 gtttacccatc caattcagat taccacactg tgaatgtga tgcctaaaag actcagccca
 W L P T N S D Y H T V N V D V Q K T Q P
 1681 gatcggtttt gaagttatat caagattaa gtctacttca tgccaatgag ctactcctca
 R S A L K L Y Q D L S L L H A N E L L L
 1741 acaggggctg gtttgccat ttgaggaatg acagccacta tggatgttac acaagagagc
 N R G W F C H L R N D S H Y V V Y T R E
 1801 tggatggcat cgacagaatc tttatcggtt ttctgaatgg tggagaatca acactgttaa
 L D G I D R I F I V V L N F G E S T L L
 1861 atctacataa tatgatttcc ggcctcccg ctaaaataag aataaggta agtaccaatt
 N L H N M I S G L P A K I R I R L S T N
 1921 ctggccgacaa aggcaatggat gttgatccaa gtggatccaa tctggacaa ggagagggac
 S A D K G S K V D T S G I F L D K G E G
 1981 tcatcttga acacaacacg aagaatctcc ttcatcgcca aacagcttcc agagatagat
 L I F E H N T K N L L H R Q T A F R D R
 2041 gctttgtttc caatcgacca tgctattcca gtgtactgaa catactgtat acctcggtt
 C F V S N R A C Y S S V L N I L Y T S C
 2101 aggcacccat atgaagagat gaagacactg gcatttcagt gggattgtaa gcatttggaa
 2161 tagcttcatg tacagcatgc tgctgggtga acaatcatta attcttcgat attctgttag
 2221 cttgaatgtt accgctttaa gaaagggttcaaaatgtttt gaaaaaaaata aatgtttaa
 2281 aagt

Expression of Phage Inserts as GST Fusion

00000000000000000000000000000000

Fig. 5A

	1	10	20	30	Clone #
P31	1	10	20	30	
	SARDSGPAEDGSRAVRLNGVENANTRKSSRSNPRGRRHP				
	SARDSGPAEDGSRAVRLNG				101
	DGSRAVRLNGVENANTRKSSR				102
	ENANTRKSSRSNPRGRRHP				103
	TRKSSRSNPRG				119
Pax2	1	10	20	30	Clone #
	STPPSREAYSRPYSVDSDDSDTNAKHSSHNRRLRTRSRPN				
	STPPSREAYSRPYSVDSDDSD				104
	SRPYSVDSDDSDTNAKHSSHNR				105
	TNAKHSSHNRRLRTRSRPN				106
DCX8	1	10	20	30	Clone #
	RYKHDIGCDAGVDKSSSVRG <u>GGCG</u> AHSSPPRAGRGPRTMVSRL				
	RYKHDIGCDAGVDKSSSVRG <u>GGCG</u>				107
	GCDAGVDKSSSVRG <u>GGCG</u> AHSSPPRA				108
	GAHSSPPRAGRGPRTMVSRL				109

Fig. 5B

	1	10	20	30	Clone #
P31	1	10	20	30	
	SARDSGPAEDGSRAVRLNGVENANTRKSSRSNPRGRRHP				
		ENANTRKSSRSNPRGRRHP			103
		ENANTRKSSR			110
		TRKSSRSNPRG			119
		RKSSRSNPRG			111
		SNPRGRRHP			112
Pax2	1	10	20	30	Clone #
	STPPSREAYSRPYSVDS	SDSDTNA	KHSSHNRRRLTRSRPN		
		NAKHSSHNRRRLTRSRPN			106
		NAKHSSH			113
		SSHNRRRLTR			114
		RRLRTRSRPN			115
SN10	1	10	20	30	Clone #
	RVGQCTDSDVRRPWARSCAH <u>QGCGAG</u> TRNSHGCI	TRPLRQASAH			
	RVGQCTDSDVRRPWARSCA				116
	VRRPWARSCAH <u>QGCGAG</u> TRNS				117
		GTRNSHGCI	TRPLRQASAH		118

Fig. 5C

A**B****Fig. 6**

Fig. 7A-C

D

E

Fig. 7 D-E

F

G

Fig. 7 F-G

H

I

Fig. 7 H-I

J

K

Fig. 7 J-K

L

M

Fig. 7 L-M

Figs. 8 A-D

A

B

Fig. 9

<u>Peptide Name</u>	<u>Sequence</u>	<u>PI</u>	<u>IC₅₀</u>	<u>GST/C2BBe1</u>
ELAN024 (P31)	SARDSGPAEDGSRAVRLLGVENANTRKSSRNPRGRHPG	11.88	0.5-2.2	+++
101	SARDSGPAEDGSRAVRLL			-
102	DGSRAVRLNGVENANTRKSSR			++
103	ENANTRKSSRNPRGRHP			-
110	ENANTRKSSR			-
111	RKSSRNPRG			-
112	SNPRGRHP			-
119	ZTRKSSRNPRG			-
228	ZENANTRKSSRNPRGRHPG	12.28	0.5-1.7	
229	ZTRKSSRNPRG	12.40	5.5-15	
230	ZENANTRKSSRNPRG	11.81	>50	
231	ZTRKSSRNPRGRHPG	12.70	0.6-3.2	
239	ZENANTRKSSR	10.89	>50	
240	ZSNPRGRHPG	12.40	5.9-29	
241	ZENANT	3.75	>50	
242	ZANTRKSS	11.05	>50	
243	ZTRKSS	11.05	>50	
244	ZRESSR	12.11	13->50	
245	ZK88SRSN	11.05	40-48	
246	ZSSRSNPG	10.04	>50	
247	ZRSNPRG	12.40	>50	
248	ZSNPRG	10.04	>50	
249	ZPRGRHH	12.40	11-20	
250	ZRRHPG	12.10	30	
251 (RepC core)	ZK88SRGN	12.40	>50	
252 (RepC P26664)	ZK79ERSQPRGRRQPG	12.10	9.8	
253	ZTRKSSRNPRG-RHPG			1.6
254	ZTRKSSRNPRG-RHPG			1.6
221 (HAX42)	SDHALGTTLRSDNAKEPGDYNCCGNGNSTGRKVENRRRPSAAPT	11.27	1.7	

Fig. 10A

PAX2

Peptide Name	Sequence	pI	IC_{50}	GST/C2BBe1
ELAN018 (PAX2)	STPPSREAYSRPYSDSDTNAKHS9NRRRLTRSRPN	10.88 0.6-0.9, 1	+++	
104	STPPSREAYSRPYSDSDTNAKHS9NRRRLTRSRPN	10.88 0.6-0.9, 1	+++	
105	SRPYSDSDTNAKHS9NRRRLTRSRPN	10.88 0.6-0.9, 1	+++	
106	TRAKHS9NRRRLTRSRPN	10.88 0.6-0.9, 1	+++	
113	TRAKHS9EN	10.88 0.6-0.9, 1	+++	
114	SSENRRRLTR	10.88 0.6-0.9, 1	+++	
115	RRRLTRSRPN	10.88 0.6-0.9, 1	+++	
232	ZTNAKHS9NRRRLTRSRPN	12.58 1.6	1.2	
233	ZTNAKHS9NRRRLTR	12.58 1.6	1.2	
234	ZSSHNRRLTRSRPN	12.7	1.6, 1.3, 0.68, 1.5	
235	ZSSHNRRLTR	12.58 0.38	1.8, 2.7	
226	Z SEANLDGKRSYSSPRRNSSTRPSPNTHARYPSTDAD	10.88 7-8, 3		
238	Z SRANTDGERRSYSSPRRNSSTEPPSPNTHARYPSTDAD	10.88 1.7, 0.9		
255	ZTNAKHS9EN	42		
256	ZRRLTRSRPN	1.7		
257	ZRRLTRSR	1.9		
258	ZRRLTR	3.4		
259	ZRRLTRSRPN	NOT DONE		
273	ZSSHNRRLTR	1.5, 5.5		
274	ZSAHNRRRLTR	6.2		
275	ZSANRRLTR	1.6		
276	ZSSHARRLTR	1.8		
277	ZSSHARLRLTR	3.9, 5.2		
278	ZSSHNRRLTR	4.5, 4.6		
279	ZSSHNRRLAATR	1.4		
280	ZSSHNRRLRAR	3.4, 5.2		
281	ZSSHENRRLRATA	2.2		
282	ZSSHENRRLRATA	3.1, 2.7		
221	(PAX42)7SDHALGTEILRSQNAKEPFGDYNCGGNGSTGRKVANRRRPSAIP	11.27 0.7		

Fig. 10B

SNI10

1101-220

(SHE 23 OF 38)

Peptide NameSequence

1 10 20 30 40

| | | |

ELAN016 (SNI10) RVGQCTDSDVRRPWARSCAHQGCCAGTCRNSHGCITRPLRQASAH

116 RVGQCTDSDVRRPWARSCA

VRRPWARSCAHQGCCAGTCRNS

117 VRRPWARSCAHQGCCAGTCRNS

118 VRRPWARSCAHQGCCAGTCRNS

GTRNSHGCITRPLRQASAH

217 ZRVGQCTDSDVRRPWARSCAH

ZCGAGTCRNSHGCITRPLRQASAH

216C23 ZVRRPWARSCAHQGCCAGTCRNS

ZCTDSDVRRPWARSCA

236 ZCTDSDVRRPWARSCA

237 ZCTDSDVRRPWARSCA

HAX42

Peptide NameSequence

1 10 20 30 40

| | | |

ELAN021 (HAX42) SDHALGTTLRSDNAKEPQDYNCCNGNSTGRKVENRRPSAIP

ELAN018 (PAX2) STPPSREAISSRPISSVDDSDTINAKHSSNNRLRTRSRNG

226 ZSEANLDGRKSRISSPERNSSTRPTSPNSVHARYPSTDHD

238 ZSRANTDGRKSRISSPERNSSTEPRLSPTNSVHARYPSTDHD

234 (PAX2 14mer) ZSSSNRRLRTRSRPN

Peptide NameSequence

1 10 20 30 40

| | | |

ELAN016 (SNI10) RVGQCTDSDVRRPWARSCAHQGCCAGTCRNSHGCITRPLRQASAH

116 RVGQCTDSDVRRPWARSCA

VRRPWARSCAHQGCCAGTCRNS

117 VRRPWARSCAHQGCCAGTCRNS

118 VRRPWARSCAHQGCCAGTCRNS

GTRNSHGCITRPLRQASAH

217 ZRVGQCTDSDVRRPWARSCAH

ZCGAGTCRNSHGCITRPLRQASAH

216C23 ZVRRPWARSCAHQGCCAGTCRNS

ZCTDSDVRRPWARSCA

236 ZCTDSDVRRPWARSCA

237 ZCTDSDVRRPWARSCA

Peptide NameSequence

1 10 20 30 40

| | | |

ELAN021 (HAX42) SDHALGTTLRSDNAKEPQDYNCCNGNSTGRKVENRRPSAIP

ELAN018 (PAX2) STPPSREAISSRPISSVDDSDTINAKHSSNNRLRTRSRNG

226 ZSEANLDGRKSRISSPERNSSTRPTSPNSVHARYPSTDHD

238 ZSRANTDGRKSRISSPERNSSTEPRLSPTNSVHARYPSTDHD

234 (PAX2 14mer) ZSSSNRRLRTRSRPN

Peptide NameSequence

1 10 20 30 40

| | | |

ELAN021 (HAX42) SDHALGTTLRSDNAKEPQDYNCCNGNSTGRKVENRRPSAIP

ELAN018 (PAX2) STPPSREAISSRPISSVDDSDTINAKHSSNNRLRTRSRNG

226 ZSEANLDGRKSRISSPERNSSTRPTSPNSVHARYPSTDHD

238 ZSRANTDGRKSRISSPERNSSTEPRLSPTNSVHARYPSTDHD

234 (PAX2 14mer) ZSSSNRRLRTRSRPN

Peptide NameSequence

1 10 20 30 40

| | | |

ELAN021 (HAX42) SDHALGTTLRSDNAKEPQDYNCCNGNSTGRKVENRRPSAIP

ELAN018 (PAX2) STPPSREAISSRPISSVDDSDTINAKHSSNNRLRTRSRNG

226 ZSEANLDGRKSRISSPERNSSTRPTSPNSVHARYPSTDHD

238 ZSRANTDGRKSRISSPERNSSTEPRLSPTNSVHARYPSTDHD

234 (PAX2 14mer) ZSSSNRRLRTRSRPN

Fig. 10C

A

B

Fig. 11

Fig. 12

A

B

Fig. 13

A**B****Fig. 14**

A

B

Fig. 15

A

B

Fig. 16

B

A

Fig. 17

A

Fig. 18

B

Fig. 19

P31 AA Seq. Position	Known Protein	Homologous Seq. Position
12-34	Fasciculin 2	10-32
4-12	Mesentericopeptidase	54-62
15-31		175-191
26-39	Core protein (Hepatitis C virus)	5-18
26-39		11-24
26-39		21-34
26-39		38-51
23-30		39-55
25-39		41-55
26-39		51-64
16-39	PT-NANBH Polyprotein N-terminus	51-64
28-40	AL2 protein (Caenorhabditiselegans)	70-82
26-38	Capsid protein (Hepatitis C virus Type 3g)	48-60
26-39	Genome polyprotein (Hepatitis C virus)	57-70

Fig. 20

DCX8AA Seq. Position	Known Protein	Homologous Seq. Position
20-27	Endo-1,4-Beta-D-Glucanase	78-85
30-37		221-228
21-34	P-Hydroxybenzoate Hydroxylase	285-298
5-15		54-64
7-21	Cytochrome	50-64
7-21	Cytochrome C3	50-64
	Trimethylamine Dehydrogenase	208-219
32-43		396-407
30-37	Gag-JunD fusion protein	24-31
26-30		16-20
23-44	Secretin precursor, N- prosecretin, secretin amide	18-39
33-44	T-cell receptor V beta chain	15-26
27-33		3-9
23-44	Secretin precursor pir	18-39
31-44	Hypothetical protein V (Synechocystis)	275-288
24-30		251-257
23-43	Putative RNA binding protein	230-250
28-40	Mu son of sevenless 1	1-13
24-35	Neuropeptide precursor	80-91
29-43		5-19
23-43	RNA-binding protein (Macaca fascicularis)	230-250
23-43	RNA-binding protein (Homosapiens)	230-250
23-43	Autosomal gene - azoospermia factor	230-250
25-38	Collagen	25-28
24-35		4-15
29-41	Probable cell growth regulator	306-318
24-35	Ribosomal protein S2	24-35
T6-39		182-185
24-44	Caenorhabditis elegans	296-316
23-34	pid:e208155 (Homo sapiens)	61-72
36-43		116-123

Fig. 21A

DCX8A Seq. Position	Known Protein	Homologous Seq. Position
24-38	Xylulose Kinase	16-30
24-39	<i>Caenorhabditis elegans</i>	57-72
26-42		65-81
27-33	Hypothetical protein - phage BZ13	22-28
35-39		31-35
30-42	Cerebellin-like glycoprotein	2-14
8-22	DNA Primase	170-184
2-7		76-81
5-21	Coat Protein (Bean common mosaic virus)	12-28
5-21	Coat protein (Bean common mosaic virus)	33-49
5-21		19-35
5-21	Polyprotein (Bean common mosaic virus)	215-231
5-21		39-55
5-21	Nib protein/coat protein (Cowpea aphid-bome mosaic virus)	92-108
2-13	MHC class 1 Pipi (<i>Pithecia</i>)	111-122
14-22		326-334
3-19	Talin (<i>Caenorhabditis elegans</i>)	1538-1554
2-9	Acetamidase pir	359-366
9-20		483-494
10-16	Rhizobium etli strain	134-140
17-30		173-186
31-39		200-208
2-11	Neurotoxin 1 (toxin B) A. Stokesi	7-16
12-33		26-47
21-27	Suid herpes virus 1 early protein	425-432
30-43		51-64
13-42	Rice cDNA partial sequence	50-151
8-15	Fusion protein	24-31
4-8		16-20
1-22	Secretin precursor, N-prosecretin, secretin-amide	18-39
11-22	T-cell receptor V beta chain	15-26
5-11		3-9
9-22	Hypothetical protein	275-288
2-8		251-257

Fig. 21B

DCX8A Seq. Position	Known Protein	Homologous Seq. Position
1-21	Putative RNA binding protein	230-250
6-18	Hypothetical protein-mouse pir	1-13
2-13	Neuropeptide precursor	80-91
7-21	orf3-human	5-19
1-21	RNA-binding protein	230-250
13-16	Collagen	25-28
7-19	Probable cell growth or differentiation regulator	306-318
2-13	Ribosomal protein S2	14-25
14-17		182-185
2-22	Caenorhabditis elegans	296-316
1-12	Homosapiens	61-72
14-21		116-123
2-16	Xylulose Kinase	16-30
8-15	T cell receptor delta chain	55-62
5-8		12-15
8-17	Seq. 43 from patent US	12-21

Fig. 21C

DAB10 AA Seq. Position	Known Protein	Homologous Seq. Position
13-34	1,3-Beta-Glucanase	231-252
3-11	Photosynthetic Reaction Center	20-28
16-27		128-139
28-35	MYB Proto-Oncogene Protein	131-138
5-18		32-45
23-36	Lysozyme Mutant	130-143
28-35	Lipase	400-407
3-15		159-171
3-37	Trypsin	169-203
13-34	1,3-1,4-Beta-Glucanase	232-253
4-10	Lactate Dehydrogenase	190-196
11-7		244-250
4-10	Apo-Lactate Dehydrogenase	190-196
11-17		244-250
4-10	Lactate Dehydrogenase	191-197
11-17		245-251
16-26	Ovotransferrin	240-250
23-36	Genome Polyprotein Matrix Protein	1022-1035
14-20	Rous sarcoma virus	43-49
2-12		13-23
14-20	Hypothetical protein-avian leukosis virus	43-49
4-20	T cell receptor delta chain variable region	1-4
14-18		12-16
2-12	Gag Polyprotein-avian endogenous virus RAV-0	139-149
14-20		169-175
	p19 Protein-avian erythroblastosis virus	189-199
14-20		219-225
7-19	ALI protein-potato yellow mosaic virus	222-234
3-22	Endo-1,4-beta glucanase	186-205
6-18	I a protein-brome mosaic virus	430-442
2-12	Gag polyprotein-Fujinami sarcoma virus	186-196
14-22		216-222
2-12	Gag protein-Rous sarcoma virus	190-200
14-20		220-226
1-12	Corticotropin-like intermediate lobe peptide	7-18
1-22	Gene product (Caenorhabditis elegans)	4-25
31-37	T cell receptor delta chain	56-62
26-39		12-15
26-37	Lysozyme Mutant	133-144

Fig. 22.

ATG TCC CCT ATA CTA GGT TAT TGG AAA ATT AAG GGC CTT GTG CAA CCC Met Ser Pro Il Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val Gln Pro 1 5 10 15	48
ACT CGA CTT CTT TTG GAA TAT CTT GAA GAA AAA TAT GAA GAG CAT TTG Thr Arg Leu Leu Leu Glu Tyr Leu Glu Glu Lys Tyr Glu Glu His Leu 20 25 30	96
TAT GAG CGC GAT GAA GGT GAT AAA TGG CGA AAC AAA AAG TTT GAA TTG Tyr Glu Arg Asp Glu Gly Asp Lys Trp Arg Asn Lys Lys Phe Glu Leu 35 40 45	144
GGT TTG GAG TTT CCC AAT CTT CCT TAT TAT ATT GAT GGT GAT GTT AAA Gly Leu Glu Phe Pro Asn Leu Pro Tyr Tyr Ile Asp Gly Asp Val Lys 50 55 60	192
TTA ACA CAG TCT ATG GCC ATC ATA CGT TAT ATA GCT GAC AAG CAC AAC Leu Thr Gln Ser Met Ala Ile Ile Arg Tyr Ile Ala Asp Lys His Asn 65 70 75 80	240
ATG TTG GGT TGT CCA AAA GAG CGT GCA GAG ATT TCA ATG CTT GAA Met Leu Gly Gly Cys Pro Lys Glu Arg Ala Glu Ile Ser Met Leu Glu 85 90 95	288
GGA GCG GTT TTG GAT ATT AGA TAC GGT GTT TCG AGA ATT GCA TAT AGT Gly Ala Val Leu Asp Ile Arg Tyr Gly Val Ser Arg Ile Ala Tyr Ser 100 105 110	336
AAA GAC TTT GAA ACT CTC AAA GTT GAT TTT CTT AGC AAG CTA CCT GAA Lys Asp Phe Glu Thr Leu Lys Val Asp Phe Leu Ser Lys Leu Pro Glu 115 120 125	384
ATG CTG AAA ATG TTC GAA GAT CGT TTA TGT CAT AAA ACA TAT TTA AAT Met Leu Lys Met Phe Glu Asp Arg Leu Cys His Lys Thr Tyr Leu Asn 130 135 140	432
GGT GAT CAT GTA ACC CAT CCT GAC TTC ATG TTG TAT GAC GCT CTT GAT Gly Asp His Val Thr His Pro Asp Phe Met Leu Tyr Asp Ala Leu Asp 145 150 155 160	480
GTT GTT TTA TAC ATG GAC CCA ATG TGC CTG GAT GCG TTC CCA AAA TTA Val Val Leu Tyr Met Asp Pro Met Cys Leu Asp Ala Phe Pro Lys Leu 165 170 175	528
GTT TGT TTT AAA AAA CGT ATT GAA GCT ATC CCA CAA ATT GAT AAG TAC Val Cys Phe Lys Lys Arg Ile Glu Ala Ile Pro Gln Ile Asp Lys Tyr 180 185 190	576
TTG AAA TCC AGC AAG TAT ATA GCA TGG CCT TTG CAG GGC TGG CAA GCC Leu Lys Ser Ser Lys Tyr Ile Ala Trp Pro Leu Gln Gly Trp Gln Ala 195 200 205	624
ACG TTT GGT GGT GGC GAC CAT CCT CCA AAA TCG GAT CTG GTT CCG CGT Thr Phe Gly Gly Asp His Pro Pro Lys Ser Asp Leu Val Pro Arg 210 215 220	672
GGA TCC CCA GGA ATT CCC GGG TCG ACT CGA GCG GCC GCA TCG TGA Gly Ser Pro Gly Ile Pro Gly Ser Thr Arg Ala Ala Ala Ser 225 230 235	717

Fig. 23