

Definition. A field on a set Ω is a collection of subsets \mathcal{F} such that:

- 1. (at least contains two sets) $\emptyset, \Omega \in \mathcal{F}$,
- 2. (closer under complement) if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$,
- 3. (closure under finite union) if $A, B \in \mathcal{F}$, then $A \cup B \in \mathcal{F}$

Definition. A σ – field \mathcal{F} on the set Ω also has:

1. (closure under countable union) if $A_1, \dots \in \mathcal{F}$, then $\bigcup_i A_i \in \mathcal{F}$.

Definition. A probability measure on a set Ω with field \mathcal{F} is a function $P: \mathcal{F} \to [0, \infty)$ with:

- 1. $0 \le P(A) \le 1, \forall A \in \mathcal{F},$
- 2. $P(\emptyset) = 0$ and $P(\Omega) = 1$,
- 3. if A_1, \ldots are disjoint and $\bigcup_i A_i \in \mathcal{F}$, then

$$P(\cup_i A_i) = \sum_i P(A_i)$$

Properties. A probability measure P on Ω with field \mathcal{F} has

- 1. (monotonicity), if $A \subset B$, then P(A) < P(B),
- 2. (inclusion-exclusion) $P(A \cup B) = P(A) + P(B) P(A \cap B)$ and more generally

$$P(\cup A_n) = \sum_i P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k)$$

$$+\cdots+(-1)^{n+1}P(A_1\cap\ldots A_n),$$

- 3. (countably subadditive) if $A_1, \dots \in \mathcal{F}$ and $\bigcup_i A_i \in \mathcal{F}$, then $P(\bigcup_i A_i) \leq \sum_i P(A_i)$,
- 4. (continuous from below) if $A_1 \subset A_2 \cdots \subset A$, then $P(A_n) \uparrow P(A)$
- 5. (continuous from above) if $A_1 \supset A_2 \cdots \supset A$, then $P(A_n) \downarrow P(A)$

Proof. • The main work horse is the Cartheodory extension theorem (theorem 3.1): a probability measure on a field can be uniquely extended to the generated σ – field if the measure is σ -finite.

- So to construct the Lebesgue measure: first we define the Lebesgue measure that assigns to half-open intervals the interval length.
- Second we verify that this is a well-defined measure on the Borel field, and then we apply theorem 3.1.
- Proving theorem 3.1 is involved. Also, studying $\sigma(\mathcal{B}_0)$ is necessary, where \mathcal{B}_0 is the field of finite unions and intersections of intervals.

Definition. $\limsup_n A_n = \bigcup_n \cap_{k \geq n} A_k$. If w is in LHS, then for every n, there exists some $k \geq n$ so that $w \in A_k$, hence w is in infinitely many of the A_n . "Infinitely often".

Definition. $\liminf_n A_n = \cap_n \cup_{k \geq n} A_k$. If w is in LHS, then there exists n such that for all $k \geq n$, $w \in A_k$ for all k. Hence, w is in all but finitely many A_n . "Eventually".

Properties.

$$P(\liminf_{n} A_n) \le \liminf_{n} P(A_n)$$

$$\le \lim \sup_{n} P(A_n) \le P(\limsup_{n} A_n)$$

Definition. Two events A and B are independent if $P(A \cap B) = P(A)P(B)$.

Definition. A collection of events $\{A_1, \ldots, A_n\}$ are independent if

$$P(A_{k_1} \cap \dots A_{k_i}) = P(A_{k_1}) \dots P(A_{k_i})$$

for all $2 \le j \le n$ and $1 \le k_1 < \cdots < k_n \le n$.

Definition. A collection of classes A_1, \ldots, A_n in a σ -field \mathcal{F} are independent if for each choice of $A_i \in A_i$, the collection $\{A_n\}$ is independent.

Definition. Two σ – fields \mathcal{A} and \mathcal{B} are independent if for every $A \in \mathcal{A}$ and $B \in \mathcal{B}$, we have $\mu(A \cap B) = \mu(A)\mu(B)$.

Theorem. If $\sum P(A_n) < \infty$, then $P(\limsup_n A_n) = 0$.

Proof. Observe that $\limsup_n A_n \subset \bigcup_{k \geq m} A_k$ for all m. This implies that

$$P(\limsup_{n} A_n) \le P(\bigcup_{k \ge m} A_k) \le \sum_{k \ge m} P(A_k).$$

Since this holds for arbitrary m and the right hand side sum goes to 0 if the infinite sum converges, the lemma follows.

Theorem. If $\{A_n\}$ are independent and $\sum P(A_n) = \infty$ then $P(\limsup_n A_n) = 1$.

Proof. It is enough to show that $P(\bigcup_n \cap_{k \geq n} A_k^c) = 0$ for which it is enough to show that $P(\bigcap_{k \geq n} A_k^c) = 0$ for all k. Note that $1 - x \leq e^{-x}$, then (by independence)

$$P(\cap_{k=n}^{n+j} A_k^c) = \prod_{k=n}^{n+j} 1 - P(A_k) \le \exp\{-\sum_{k=n}^{n+j} P(A_k)\}.$$

But since the sum diverges, as $j \to \infty$, the RHS goes to 0, hence

$$P(\bigcap_{k=n}^{\infty} A_k^c) = \lim_{j} P(\bigcap_{k=n}^{n+j} A_k^c) = 0$$

Use-cases:

- The first one can be used to show the strong law of large numbers. The process there is to show that the deviations of the sum have a decaying (summable) probability, hence the tail event is probability zero.
- The second one can be used like this. Consider a sequence of fair coin flips X_1, X_2, \ldots and define the event $A_n = [X_n = 1]$. Then, $\Pr(A_n) = \frac{1}{2}$, are all independent, and hence $\Pr([X_n = 1 \text{i.o.}]) = 1$.
- In general, it's a way to get information about the limit event when you
 have information about the individual events.

Definition. Given a sequence of events $A_1, A_2, ...$ in a probability space (Ω, \mathcal{F}, P) , the tail σ – field associated with the sequence $\{A_n\}$ is

$$\mathcal{T} = \bigcap_{n=1}^{\infty} \sigma(A_n, A_{n+1}, \dots).$$

The $\limsup_n A_n$ and $\liminf_n A_n$ are events in the tail σ – field.

Theorem. If A_1, A_2, \ldots are independent, then for each event A in the tail σ – field, P(A) is either 0 or 1.

Use cases:

- Given a sequence of independent events A_n , we know that $P(\limsup_n A_n)$ is either 0 or 1. The Borel-Cantelli lemmas go further and give us a summability condition to decide whether the probability is 0 or 1.
- Any random variable measurable with respect to the tail σ -field is equal to a constant almost surely. Consider a random variable X on \mathbb{R} that is measurable with respect to a tail σ field \mathcal{T} . By Kolmogorov's 0-1 law, we have $P(A) \in \{0,1\}$ for all $A \in \mathcal{T}$. Hence, since $A_n = [X(w) \in (n, n+1)]$ is measurable and is either 0 or 1. Since $\cup_n A_n$ is the whole measure space, whose measure is 1, we know that $P(A_n) = 1$ only for a single A_n . We can then continue subdividing intervals in a similar way and using Cantor's intersection theorem (that the intersection of a nested sequence of compact sets is non-empty) we know that P(X(w) = c) = 1 and hence almost surely.

Definition. A random variables X on (Ω, \mathcal{F}) is **simple** iff it can be written as

$$X(w) = \sum_{i} x_i I_{A_i}$$

for some finite set of x_i and $A_i \in \mathcal{F}$.

Remark. Simple rand om variables X_n converge to X with probability 1 $(\lim_n X_n = X)$ iff $\forall \epsilon > 0$,

$$P(|X_n - X| > \epsilon \ i.o.) = 0$$

which, if the above holds, implies that

$$\lim_{n} P(|X_n - X| > \epsilon) = 0.$$

Note that

$$\{\lim_{n} X_{n} = X\}^{c} = \bigcup_{\epsilon} \{|X_{n} - X| \ge \epsilon \ i.o.\} = \bigcup_{\epsilon} \bigcup_{n} \bigcap_{k \ge n} \{|X_{n} - X| \ge \epsilon\}.$$

State and prove the Markov's inequality Billingsley What's a use case of Markov's inequality? Billingsley			
What's a use case of Markov's inequality? BILLINGSLEY		State and prove the Markov's inequality	
BILLINGSLEY			BILLINGSLEY
BILLINGSLEY	L		
		What's a use case of Markov's inequality?	
			BILLINGSLEV
State and prove Chebyshev's inequality			DIDDINGSDET
BILLINGSLEY		State and prove Chebyshev's inequality	Billingsi fy

Theorem. For a random variable X, nonnegative, then for positive α , we have

 $P(X \ge \alpha) \le \frac{1}{\alpha} \mathbb{E}[X].$

Proof. Note that for any convex f and any set A, we have that

$$\min_{x \in A} f(x) \mathbf{1}_A \le E[X \mathbf{1}_A] \le E[X]$$

Hence, with f(x) = x and $A = [\alpha, \infty)$, the result follows. If we use $f(x) = |x|^k$, then we have for positive α :

$$\Pr(|X| \ge \alpha) \le \frac{1}{\alpha}^k \mathbb{E}[|X|^k]$$

Use cases:

• Well, say we flip n fair coins and count the number of heads. What's a bound on the probability of getting .9n heads?

$$\Pr(X \ge 0.9n) \le \frac{0.5n}{0.9n} = \frac{5}{9}$$

• The main limitation on Markov's inequality seems to be that it works on positive random variables. Hence, given X we can do:

$$\Pr(|X - \mu| \ge \epsilon) \le \frac{\mathbb{E}[X]}{\epsilon}$$

Theorem. For a random variable X, we have

$$\Pr(|X - m| \ge \alpha) \le \frac{1}{\alpha} \operatorname{Var}(X)$$

Proof. Applying Markov's inequality with the absolute value function, exponent k=2, and subtracting $m=\mathbb{E}[X]$, we obtain the desired result.

What's a use case of Chebyshev's inequality?
State and prove Jensen's inequality (finite case). BILLINGSLEY
What's a use case of Jensen's inequality?

- Non-negativity of the Kullback-Leibler divergence and hence mutual information.
- The fact that $H(X) \leq \log |\mathcal{X}|$.
- The fact that $H(X|Y) \leq H(X)$.
- Independence bound on entropy (entropy of a collection of random variables is bounded above by the sum of their individual entropies).

Theorem. Suppose that $\frac{1}{p} + \frac{1}{q} = 1$ for p, q > 1. Then:

$$\mathbb{E}[|XY|] \le \mathbb{E}[|X|^p]^{\frac{1}{p}} \mathbb{E}[|Y|^q]^{\frac{1}{q}}$$

Proof. Young's. Here.

We can show that $||f||_r \le ||f||_p \mu(X)^s$ for $0 \le r \le p$ and $\frac{1}{s} + \frac{r}{p} = 1$. Using Holder's:

$$||f||_r^r = \int_X |f|^r d\mu \le \left(\int_X (|f|^r)^{p/r} d\mu\right)^{r/p} \left(\int_X 1 d\mu\right)^{1/s} \le ||f||_p^r \mu(X)^{1/s}$$

Theorem. If X_n are iid and $\mathbb{E}[X_n] = m$, then

$$\Pr\Bigl(\lim_n n^{-1} S_n = m\Bigr) = 1$$

Proof. WLOG m = 0. It is enough to show that $\Pr(|n^{-1}S_n| \ge \epsilon \text{ i.o}) = 0$ for each ϵ

Let $\mathbb{E}[X_i^2] = \sigma^2$ and $\mathbb{E}[X_i^4] = \xi^4$. By independence, we have

$$\mathbb{E}[S_n^4] = n\xi^4 + 3n(n-1)\sigma^4 \le Kn^2$$

where K does not depend on n. By Markov's inequality for k=4,

$$\Pr(|S_n| \ge n\epsilon) \le Kn^{-2}\epsilon^{-4},$$

so the result follows by the first Borel-Cantelli lemma (the event probs are summable, hence the \limsup is 0).

Theorem. If X_n are iid and $\mathbb{E}[X_n] = m$, then for all ϵ

$$\lim_{n} \Pr(|n^{-1}S_n - m| \ge \epsilon) = 0.$$

Proof. By appealing to the strong law, we have

$$\Pr(|n^{-1}S_n - m| \ge \epsilon) \le \frac{\operatorname{Var}(S_n)}{n^2 \epsilon^2} = \frac{n\operatorname{Var}(X_1)}{n^2 \epsilon^2} \to 0.$$

Obviously, the probability that the sample mean is $\epsilon > 0$ away infinitely often is zero.

The probability that the sample mean is $\epsilon > 0$ away decays to zero with n (can still be infinitely often).

Definition. For two measure spaces (Ω, \mathcal{F}) and (Ω', \mathcal{F}') , a transformation $T: \Omega \to \Omega'$ is measurable \mathcal{F}/\mathcal{F}' iff for all $A \in \mathcal{F}'$, $T^{-1}(A) \in \mathcal{F}$.

Properties. • If $T^{-1}(A) \in \mathcal{F}$ for each $A \in \mathcal{A}$, where \mathcal{A} generates \mathcal{F}' , then T is \mathcal{F}/\mathcal{F}' measurable.

- A random vector is measurable iff each component function is measurable
- Continuous functions are measurable. If $f_k : \Omega \to \mathbb{R}$ are measurable \mathcal{F} , then $g(f_1(w), \ldots, f_k(w))$ is measurable \mathcal{F} if $g : \mathbb{R}^k \to \mathbb{R}$ is measurable.
- Composition of measurable functions is measurable. Sum, sup, lim sup, product are measure-preserving. A limit of measurable functions is measurable if the limit exists everywhere. We can construct a sequence of simple measurable functions that increase to any given measurable function.

Definition. Given (Ω, \mathcal{F}) and (Ω', \mathcal{F}') and a measurable transformation $T: \Omega \to \Omega'$ and a measure μ on \mathcal{F} , then $\mu T^{-1}(A') = \mu(T^{-1}(A'))$ is a pushforward measure on \mathcal{F}' .

Definition. A measurable function g on Ω' is integrable with respect to the pushforward measure $\mu T^{-1} = T(\mu)$ iff the composition $g \circ T$ is integrable with respect to the measure μ . In that case,

$$\int_{\Omega'} g d(\mu T^{-1}) = \int_{\Omega} g \circ T d\mu$$

Say a few things about distribution functions. Billingsley
How is the integral defined for a non-negative measurable function? Properties?
Drywnyggyny
BILLINGSLEY
State some properties of the general integral (addition, limits)
Billingsley

Properties. • A distribution function for a random variable X on \mathbb{R} is $F(x) = \Pr(X \leq x)$. It is non-decreasing, right-continuous (by continuity from above). By continuity from below, $\lim_{y \uparrow x} F(y) = F(x^-) = \Pr(X < x)$.

- For every non-decreasing, right-continuous function with $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$, there exists on some probability space a random variable X for F is the distribution function.
- If $\lim_n F_n(x) = F(x)$ for all x, then we write $F_n \Rightarrow F$ and say that the distributions converge weakly and their corresponding random variables converge weakly.

Definition. $\int_{\Omega} f d\mu = \sup \sum_{i} (\inf_{w \in A_{i}} f(w)) \mu(A_{i})$ where the sup is taken over all partitions of Ω .

Properties. • If $f \leq g$ then $\int f \leq \int g$.

- If $f_n \uparrow f$ then $\int f_n \uparrow \int f$.
- The integral is linear.
- If f = 0 a.e., then $\int f = 0$. If the measure of the set where f is non-zero is positive, then the integral is positive. If the integral exists, then $f < \infty$ a.e.

Properties. • Monotonicity: (i) if $f \leq g$ and are integrable, then $\int f d\mu \leq \int g d\mu$,

- Linearity: if f, g are integrable, then $\lceil (\alpha f + \beta g) d\mu \leq \alpha \lceil f d\mu + \beta \lceil g d\mu$.
- Monotone convergence: if $0 \le f_n \uparrow f$ a.e., then $\int f_n d\mu \uparrow \int f d\mu$,
- Fatou's lemma: for non-negative f_n , $\int \liminf f_n d\mu \leq \liminf \int f_n d\mu$,
- Dominated convergence: if $|f_n| \leq g$ a.e., where g is integrable, and if $f_n \to f$ a.e., then f and f_n are integrable and $\int f_n d\mu \to \int f d\mu$.

Give an application of MCT.	
	BILLINGSLEY
Give an application of DOM.	
	BILLINGSLEY
Give an application of Fatou's lemma.	Billingsley
	DITTINGSPE I

Example. Consider the space $\{1, 2, ...\}$ with the counting measure. If for all m, we have $0 \le x_{n,m} \uparrow x_m$ as $n \to \infty$, then $\lim_n \sum_m x_{n,m} = \sum_m x_m$.

Example. For an infinite sequence of measures μ_n on \mathcal{F} , $\mu(A) = \sum_n \mu_n(A)$ defines another measure (countably additive because sums can be reversed in a nonnegative double series). You can show that $\int f d\mu = \sum_n \int f d\mu_n$ holds for all nonnegative f.

Consider the sequence $f_n = X1_{A_n}$ where $A_n \downarrow A$ with $\mu(A) = 0$ and $A_1 = \Omega$. Assuming that f_1 is absolutely integrable, note that $|f_1| \geq |f_n|$ hence the sequence is dominated and therefore $\lim_n \int f_n d\mu = \int X1_A d\mu = 0$.

Consider on $(\mathbb{R}, \mathcal{R}, \lambda)$ the functions $f_n = n^2 I_{(0,n^{-1})}$ and f = 0 satisfy $f_n \to 0$ for each x, but $\int f d\lambda = 0$ and $\int f_n d\lambda = n \to \infty$. Hence Fatou's lemma inequality can be strict. Note that DOM and MCT do not apply here, as f_n are unbounded.

What is the continuous mapping theorem?
When do the integral values determine the integrands? BILLINGSLEY
DIBBINGSBET
What is a density?

Theorem. A sequence of random variables X_n converging in distribution/probability/as to X implies that $g(X_n)$ converges to g(X) if g is continuous.

Remark. If g is just a function on $\mathbb{R} \to \mathbb{R}$ and it's a composition, this is fine. However, if you want this to state something about the expectation, then $g(X) := \mathbb{E}[X^k]$ (so g is now an operator), this is only continuous if the moments are bounded. However even in a space of bounded moment random variables (aka. $L^p(X)$), one can find a sequence of random variables whose integrals will blow up, so this g is not a bounded operator, hence not continuous.

Remark. If random variables converge in distribution, then do their moments converge? No: $Pr(X_n = n^2) = 1/n$, $Pr(X_n = 0) = 1 - 1/n$.

Theorem. If f and g are nonnegative and $\int_A f d\mu = \int_A g d\mu$ for all $A \in \mathcal{F}$ and if μ is σ – field then f = g a.e.

Theorem. If f and g are integrable and $\int_A f d\mu = \int_A g d\mu$ for all $A \in \mathcal{F}$ then f = g a.e.

Definition. δ is a density if it is a nonnegative function so that for two measures ν and μ we have

$$\nu(A) = \int_A \delta d\mu, \quad A \in \mathcal{F}$$

What is Scheffe's theorem?
DILLINGSLEY
What is uniform integrability?
Billingsley
What is an application of uniform integrablity?

Theorem. Suppose $\nu_n(A) = \int_A \delta_n d\mu$ and $\nu(A) = \int_A \delta d\mu$ for densities δ_n and δ . If

$$\nu_n(\Omega) = \nu(\Omega) < \infty, \quad n = 1, 2 \dots,$$

and if $\delta_n \to \delta$ except on a set of μ -measure 0, then

$$\sup_{A \in \mathcal{F}} |\nu(A) - \nu_n(A)| \le \int_{\Omega} |\delta - \delta_n| d\mu \to 0$$

Remark. In other words, the total variation of two measures is bounded above by the L^1 difference of the densities, hence if the densities convergence, then the measures converge.

Definition. A sequence f_n is uniformly integrable if

$$\lim_{\alpha \to \infty} \sup_n \int_{[|f_n| \ge \alpha]} |f_n| d\mu = 0$$

Theorem. Suppose $\mu(\Omega) < \infty$ and $f_n \to f$ a.e.

(i) if f_n are uniformly integrable, then f is integrable and

$$\int f_n d\mu \to \int f d\mu$$

(ii) if f and f_n are nonnegative and integrable, then the conclusion of (i) implies that f_n are uniformly integrable.

Theorem. If $\mu(\Omega) < \infty$, f and f_n are integrable, and $f_n \to f$ a.e., then the following are equivalent:

- f_n are uniformly integrable,
- $\int |f f_n| d\mu \to 0$,
- $\int |f_n| d\mu \to \int |f| d\mu$.

What is Riemann integrability?
BILLINGSLEY
What is a product space? What is the product measure?
What is Fubini's theorem?

Definition. A real function f on (a,b] is Riemann integrable with integral r if: for all ϵ there exists a δ with

$$|r - \sum_{i} f(x_i)\lambda(I_i)| < \epsilon$$

if $\{I_i\}$ is any finite partition of (a,b] into subintervals satisfying $\lambda(I_i) < \delta$ and if $x_i \in I_i$ for each i.

Definition. Given two measure spaces (X, \mathcal{X}) and (Y, \mathcal{Y}) , the product space is $(X \times Y, \mathcal{X} \times \mathcal{Y})$ where $\mathcal{X} \times \mathcal{Y}$ is the set of sets $A \times B$ where $A \in \mathcal{X}$ and $B \in \mathcal{Y}$.

Definition. Given two measures μ, ν , the product measure is a measure π with $\pi(A \times B) = \mu(A)\nu(B)$. This measure is unique.

Theorem. If (X, \mathcal{X}, μ) and $(Y, \mathcal{Y}, \hat{)}$ are σ – field measure spaces, then

$$\int_{X\times Y} f(x,y)\pi(d(x,y)) = \int_X \left[\int_Y f(x,y)\nu(dy)\right]\mu(dx)$$

$$\int_{X\times Y} f(x,y)\pi(d(x,y)) = \int_Y \left[\int_X f(x,y)\nu(dx)\right]\mu(dy)$$

Definition. Random variables X_n converge in probability to X, written $X_n \to_P X$ if for each positive ϵ

$$\lim_{n} P(|X_n - X| \ge \epsilon) = 0$$

Theorem. A necessary and sufficient condition for convergence in probability is that each subsequence X_{n_i} contain a further subsequence $X_{n_{k(i)}}$ such that $X_{n_{k(i)}} \to X$ with probability 1 as $i \to \infty$.

Remark. In nonprobabilistic contexts, convergence in probability becomes convergence in measure.

Theorem. Suppose that $X_1, X_2, ...$ are independent and have a common distribution function F; put $D_n(w) = \sup_x |F_n(x, w) - F(x)|$, where

$$F_n(x, w) = \frac{1}{n} \sum_{i=1}^n I_{(-\infty, x]}(X_i(w))$$

Then $D_n \to 0$ with probability 1.

Definition. • $\mathbb{E}[X] = \int X dP = \int_{\Omega} X(w) P(dw)$.

- $\mathbb{E}[X1_A] = \int_A XdP$.
- $\mathbb{E}[g(X)] = \int_{\Omega} g(X(w)) P(dw)$.
- Absolute moments: $\mathbb{E}[|X|^k] = \int_{-\infty}^{\infty} |x|^k P(dx)$.

Remark. By the way P(dx) intuitively refers to the P measure of a small change in x.

Remark. If X_n are dominated by an integrable random variable (or uniformly integrable), then $\mathbb{E}[X_n] \to \mathbb{E}[X]$ follows if $X_n \to_P X$.

Definition. The MGF is

$$M_X(t) = \mathbb{E}[e^{tX}] = \int_{-\infty}^{\infty} e^{sx} \mu(dx)$$

Properties. • The standard normal distribution: $M_X(t) = e^{t^2/2}$.

- The exponential: $M_X(t) = \frac{\alpha}{\alpha s}$ defined for $s < \alpha$.
- The Poisson: $M_X(t) = e^{\lambda(e^t 1)}$.
- The Binomial: $M_X(t) = pe^t + (1-p)$.

Proof. • You only need to show it for nonnegative rvs, by $\mathbb{E}[X_1^+] - \mathbb{E}[X_1^-] = \mathbb{E}[X]$.

• Truncated random variables and two applications of Borel-Cantelli and some other things.

Theorem. $n^{-1}S_n \to_P \mathbb{E}[X_1]$.

Proof. This follows in the same condition from the strong law, because a.s. convergence implies convergence in probability. \Box

Theorem. Let μ and ν be probability measures on $[0, \infty)$. If

$$\int_0^\infty e^{-sx}\mu(dx) = \int_0^\infty e^{-sx}\nu(dx), \quad s \ge s_0$$

where $s_0 \ge 0$, then $\mu = \nu$.

Remark. A distribution concentrated on $[0, \infty)$ is determined by its MGF or its Laplace transform.

Theorem. Suppose that X_1, X_2, \ldots are independent with mean 0 and finite variances. For $\alpha > 0$,

$$P(\max_{1 \le k \le n} |S_k| \ge \alpha) \le \frac{1}{\alpha^2} Var(S_n)$$

Theorem. Suppose that $\{X_n\}$ are independent and $\mathbb{E}[X_n] = 0$. If $\sum Var(X_n) < \infty$, then $\sum X_n$ converges with probability 1.

Theorem. For an independent sequence $\{X_n\}$, the S_n converge with probability if and only if they converge in probability.

Theorem. Suppose that $\{X_n\}$ are independent and consider the three series

$$\sum P(|X_n|>c), \quad \sum \mathbb{E}[X_n^{(c)}], \quad \sum Var(X_n^{(c)}).$$

In order that $\sum X_n$ converge with probability 1, it is necessary that the three series converge for all positive c and sufficient that they converge for some positive c.

Definition. Distribution functions F_n converge weakly to F if

$$\lim_{n} F_n(x) = F(x)$$

for every continuity point x of F. We write $F_n \Rightarrow F$.

Definition. Measures μ_n converge weakly if

$$\lim_{n} \mu_n((-\infty, x]) = \mu((-\infty, x])$$

for every x for which $\mu(\{x\}) = 0$.

Definition. Random variables X_n converge weakly to X if their respective distribution functions converge weakly $F_n \Rightarrow F$.

Remark. Let μ_n be the binomial distribution for $p = \lambda/n$ and let μ be the Poisson distribution. For nonnegative integers k,

$$\mu_n(k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{\lambda^k (1 - \lambda/n)^n}{k!} \times \frac{1}{(1 - \lambda/n)^k} \prod_{i=0}^{k-1} (1 - \frac{i}{n})$$

$$\stackrel{n \to \infty}{\to} \frac{\lambda^k e^{-\lambda}}{k!} = \mu(k)$$

if $n \ge k$ and k stays fixed as we take the limit.

Remark.

Remark. Convergence in probability is equivalent to convergence in distribution when limiting to constants.

Example. Consider two independent Bernoulli random variables X and Y with $p = \frac{1}{2}$. If $X_n = Y$, then certainly $X_n \Rightarrow X$ because their distributions are the same. However, $\Pr(|X_n - X|) = \frac{1}{2}$.

Example. Consider the independent random variables $X_n = \begin{cases} 1, & p = \frac{1}{n} \\ 0, & 1-p=1-\frac{1}{n} \end{cases}$. Clearly $X_n \to 0$ a.e. as functions and $\Pr(|X_n| \ge \epsilon) = \frac{1}{n} \to 0$. However, $\sum_n \Pr(X_n = 1) = \infty$, while the X_n are independent, hence by Borel-Cantelli 2, we have $\Pr(\limsup_n X_n = 1) = 1$ so X_n do not converge almost surely.

Example. An analysis version, aka the "typewriter sequence": partition the interval [0,1] into two sets and choose the indicator functions of those sets to be f_1, f_2 . Then partition into three and set the indicators of those sets to be f_3, f_4, f_5 . Repeat this and note that in measure these functions converge to the zero function, while not converging pointwise.

Theorem. If $X_n \Rightarrow X$ and $X_n - Y_n \Rightarrow 0$, then $Y_n \Rightarrow X$.

Theorem. The following are equivalent:

- $\mu_n \Rightarrow \mu$,
- $\int f d\mu_n \to \int f d\mu$ for every bounded, continuous real f,
- $\mu_n(A) \to \mu(A)$ for every μ -continuity set A

What is a theorem on weak convergence and compactness?
Billingsley
What is tightness?
Billingsley
Does weak convergence imply convergence of means?
BILLINGSLEY

Theorem. (Helly selection theorem): For every sequence $\{F_n\}$ of distribution functions there exists a subsequence $\{F_{n_k}\}$ and a non-decreasing, right-continuous function F such that $\lim_k F_{n_k}(x) = F(x)$ at continuity points x of F.

Theorem. Tightness is necessary and sufficient so that for every subsequence $\{\mu_{n_k}\}$ there exists a further subsequence $\{\mu_{n_{k(i)}}\}$ and a probabilistic measure μ such that $\mu_{n_{k(i)}} \Rightarrow \mu$.

Remark. The first theorem guarantees compactness of distribution functions, but in the larger space of functions – that is F, may not be a distribution. The second theorem gives the necessary and sufficient condition for that compactness be in the space of probability measures.

Remark. Tightness for sequences of unit mass probability measures μ_n at x_n corresponds to boundedness of the sequence. A sequence of normal distributions is tight iff the means and variances are bounded.

Definition. A sequence of measures is tight if $\forall \epsilon > 0, \exists (a, b] \ s.t.$ $\forall n, \mu_n(a, b] > 1 - \epsilon$. The equivalent condition on the distributions is $\forall \epsilon > 0, \exists (a, b] \ such that F_n(a) < \epsilon, F_n(b) > 1 - \epsilon$.

Theorem. If $X_n \Rightarrow X$ and X_n are uniformly integrable, then X is integrable and $\mathbb{E}[X_n] \to \mathbb{E}[X]$.

Theorem. Let r be a positive integer. If $X_n \Rightarrow X$ and $\sup_n \mathbb{E}[|X_n|^{r+\epsilon}] < \infty$, where $\epsilon > 0$, then $\mathbb{E}[|X|^r] < \infty$ and $\mathbb{E}[X^r] \to \mathbb{E}[X^r]$.

What is the characteristic function?	
	Billingsley
What are important properties of the characteristic	
	BILLINGSLEY
State the CLT and sketch the proof	
	BILLINGSLEY

Definition. The characteristic function of a probability measure μ is defined for real t by

$$\phi(t) = \int_{-\infty}^{\infty} e^{itx} \mu(dx).$$

A random variable with distribution μ has characteristic function

$$\phi(t) = \mathbb{E}[e^{itX}] = \int_{-\infty}^{\infty} e^{itx} \mu(dx).$$

Properties. • It is the Fourier transform of the random variable's density. It is the MGF with t replaced by it. It always exists and is bounded.

- if μ_1 and μ_2 have characteristic functions $\phi_1(t)$ and $\phi_2(t)$ then $\mu_1 * \mu_2$ has characteristic function $\phi_1(t)\phi_2(t)$
- The characeristic function always determines the distribution.
- From the pointwise convergence of characteristic functions follows weak convergence of the corresponding distributions.

Theorem. Suppose that X_n are iid random variables with mean c and finite positive variance σ^2 . If $S_n = X_1 + \cdots + X_n$, then

$$\frac{S_n - nc}{\sigma\sqrt{n}} \Rightarrow N(0, 1)$$

Proof. Consider the special case where X_n takes the values ± 1 with probability $\frac{1}{2}$ each. Then the characteristic function is $\phi(t) = \cos t$ and the characteristic function of S_n/\sqrt{n} is $\phi(t/\sqrt{n})^n = \cos(t/\sqrt{n})^n$. If we show that this converges to $e^{-t^2/2}$, then by the continuity mapping theorem we get convergence in distribution. The rest requires analysis.

When is a measure determined by its moments? BILLINGSLEY
DIBBINGGEET
What is an additive set function? Billingsley
What is the Hahn decomposition theorem?

Theorem. A measure μ is determined by its moments if it has finite moments α_k of all orders and the power series $\sum_k \alpha_k \frac{r^k}{k!}$ has a positive radius of convergence.

Theorem. If a random variable X has finite moments of all orders and a sequence of random variables X_n has $\lim_n \mathbb{E}[X_n^r] = \mathbb{E}[X^r]$ for all r, then $X_n \Rightarrow X$.

Remark. One can also show the CLT using the method of moments.

Definition. A functino ϕ on \mathcal{F} is an additive set function if

$$\phi(\cup A_i) = \sum \phi(A_i)$$

whenever $\{A_i\}$ are a countable sequence of disjoint sets.

Theorem. For any additive set function, there exist two sets A^+ and A^- with $A^+ \cup A^- = \Omega$, and $\phi(E) \ge 0$ for all E in A^+ , and $\phi(E) \le 0$ for all E in A^- .

What is the Radon-Nikodym theorem?
BILLINGSLEY
How is conditional probability defined measure theoretically?
BILLINGSLEY
What is conditional expectation? Billingsley

Theorem. If μ and ν are σ – field measures and $\nu \ll \mu$, then there exists an almost everywhere unique non-negative function f such that

$$\nu(A) = \int_A f d\mu$$

for all $A \in \mathcal{F}$.

Remark. This is the converse of the statement that if $\nu(A) = \int_A f d\mu$, then $\nu \ll \mu$.

Theorem. Let X be a random variable (Ω, \mathcal{F}, P) and let \mathcal{G} be a σ – field in \mathcal{F} . Then there exists a function $\mu(H, w)$ defined for $H \in \mathcal{R}$ and $w \in \Omega$ with:

- for each w in Ω , $\mu(\cdot, w)$ is a probability measure on \mathcal{R} ,
- for each H in \mathcal{F} , $\mu(H,\cdot)$ is a version of $P(X \in H|\mathcal{G})$

Definition. A version is a function $f = P(A|\mathcal{G})$ specifying a random variable such that $P(A|\mathcal{G})$ is measurable \mathcal{G} and integrable and

$$\int_G P(A|\mathcal{G})dP = P(A \cap G), \quad G \in \mathcal{G}$$

Definition. A conditional expectation of X given \mathcal{G} is a random variable $\mathbb{E}[X|\mathcal{G}]$ satisfying (i) that $\mathbb{E}[X|\mathcal{G}]$ is measurable \mathcal{G} and integrable, (ii) that

$$\int_G E[X|\mathcal{G}]dP = \int_G XdP$$

What is the tower property of expectation? BILLINGSLEY

then	If X is a random variable \mathcal{G}_1 and \mathcal{G}_2 are two $\sigma-$ field with $\mathcal{G}_1\subset\mathcal{G}_2$
	$\mathbb{E}[\mathbb{E}[X \mathcal{G}_2] \mathcal{G}_1] = \mathbb{E}[X \mathcal{G}_1]$
$tion\ about\ X$	The average is a smoothing operation, in which we loose informally up to the average of X in \mathcal{G} . Hence, averaging over a fine an er σ – field leaves the coarser result.