

01 Introducción

- Definición
- Caracteristicas
- Hard vs Soft
- RTOS vs GPOS
- Ejemplos
- Tipos de RTOS

RTOS

• Es un sistema operativo que ha sido desarrollado para aplicaciones de tiempo real. Se le exige corrección en sus respuestas bajo ciertas

Actuators

Real Time Computer

Sensors

Environment

restricciones de tiempo.

Caracteristicas

- Tiempos de respuestas limitados (*Timing correctness*)
- Priorización de tareas
- Eventos sincrónicos y asincrónicos
- Deadline-driven

Componentes

Componentes

- Scheduler
 - Determina cuando se ejecuta una tarea
- Objetos
 - Ayudan a crear sistemas de tiempo real
 - tareas, semáforos, cola de mensajes
- Servicios
 - Son operaciones que el kernel realiza sobre un objeto
 - Manejo de interrupciones, gestión de recursos y timing

Definición

Scheduler

- Mantiene
 - El estado actual y la prioridad de cada tarea en el sistema
 - El manejo de Timers
- Algoritmos más comunes
 - Preemptive priority-based
 - Round-Robin

Definición

Preemptive priority-based

Definición

Round-Robin

Objetos

- Tareas
 - Hilos de ejecución concurrentes e independientes que pueden competir por CPU en tiempo de ejecución
- Semáforos
 - Objetos tipo token que son incrementados o decrementados por las tareas para la sincronización o exclusión mutua
- Cola de mensajes
 - Estructura de datos tipo buffer que pueden ser usadas para la sincronización, exclusión mutua e intercambio de datos al pasar mensajes entre las tareas

Definición

Servicios

- Set de API calls que pueden ser usadas
 - Realizar operaciones sobre los objetos
 - Facilitar
 - Manejo de interrupciones
 - Dispositivos I/O
 - Manejo de memoria
 - Manejo de timers

02 Caracteristicas

Características

Confiabilidad

- Operaciones con poca intervención humana
- Alto costo por no cumplir con deadlines

Downtime como forma de medir la confiabilidad

Características

Previsibilidad

- Benchmark sobre tiempos de respuesta
- Cumplimentos de deadlines
- Poca variabilidad de tiempos de respuesta
- Scheduling determinista

Características

Performance

- Throughput como forma de medir la performance
- Cumplir con los tiempos de respuesta
- Call-by-call basic como alternativa para medir la performance

Características

Compactness

• Tamaño del kernel acorde a constraints de espacio

Características

Escalabilidad

- Capacidad de agregar o quitar modulos
 - Desarrollo para un base station y un celular
 - Scale-up y scale-down

03 Hard vs Soft

Tipos de RTOS

Hard vs Soft

- Se determinan por la penalidad de no cumplir un deadline
- Functional vs timing correctness
- La tolerancia tiende a 0
- Precio por no cumplir un time constraint

Tipos de RTOS

Hard

- Sistema de armas
- Sistema de control de un reactor nuclear
- Sistema de frenos

Tipos de RTOS

Soft

- Reproductor de DVD
- Microondas
- Reproductor de mp3

04 RTOS vs GPOS

RTOS vs GPOS

Comparación

RTOS	GPOS
Optimiza el peor caso	Optimiza el caso promedio
Schedule predecible	Schedule eficiente
Ejecución simple	Alto rango de servicios
Minimiza la latencia	Maximiza el throughput

RTOS vs GPOS

Similitudes funcionales

- Algún nivel de multitarea
- Manejo de recursos de software y hardware
- Provisión de los servicios subyacentes del SO en las aplicaciones
- Abstraer el hardware de las aplicaciones de software

RTOS vs GPOS

Diferencias funcionales

- Mayor fiabilidad en contextos de aplicaciones embebidas
- Capacidad para escalar para satisfacer las necesidades de la aplicación
- Rendimiento más rápido
- Requerimientos de memoria reducidos
- Mayor portabilidad

05 Ejemplos

Ejemplos

Ejemplos de sistemas

- Control de una planta química
- Planta de montaje de automóviles
- Impresora laser
- Sistema de inyección de combustible
- Sistema de guía de misiles

06 Tipos de RTOS

RTOS

Ejemplos

- QNX
- FreeRTOS
- RTLinux
- Embedded Linux
- MicroC/OS-II
- Nucleus Plus
- eCos
- VxWorks

02 Bibliografía

⁰¹ Bibliografía

- Real-Time concepts for embedded systems
- Real-Time Design and Analysis
- Real-Time System Development
- Real-Time Systems: Theory and Practice

03 Contacto

01 Contacto

- gonzalo.raposo@globallogic.com
- daniel.corbatta@globallogic.com
- lucia.ginart@globallogic.com

04 Preguntas

GlobalLogic®

Gracias