NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

SEMESTER II, 2017/2018 MA1508E MID-TERM TEST

Full Name :	_
Matric/Student Number :	
Tutorial Group :	

INSTRUCTIONS PLEASE READ CAREFULLY

- Write your full name, matric number and tutorial group clearly above on this cover page.
- There are 4 questions printed on 3 pages. Answer all questions.
- You must show all your working clearly, failure to do so will result in marks deducted.
- Use pen for this test.
- All answers and working have to be written on the answer book provided.
- Start on a new page for each question.
- Tie this cover page (and question paper) together with your answer book before submission.

Question 1

(i) Let

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & -2 & -1 \\ -2 & 1 & 6 & 7 \\ 3 & -2 & -5 & -3 \end{pmatrix}.$$

Find three elementary matrices E_1 , E_2 , E_3 such that $E_3E_2E_1A$ is a matrix in row-echelon form.

(ii) Hence, solve the following linear system

$$\begin{cases} x & -2z = -1 \\ -2x + y + 6z = 7 \\ 3x - 2y - 5z = -3 \end{cases}$$

(iii) Use your answer in (ii) to solve the following linear system

$$\begin{cases} 2a + 4c = -1 \\ -4a + 3b - 12c = 7 \\ 6a - 6b + 10c = -3 \end{cases}$$

Warning: You should not solve the linear system directly (that is, perform any further elementary row operations).

(iv) Use your answer in (i) to write down the $\boldsymbol{L}\boldsymbol{U}$ factorisation of $\begin{pmatrix} 1 & 0 & -2 \\ -2 & 1 & 6 \\ 3 & -2 & -5 \end{pmatrix}$. Hence solve the following linear system:

$$\begin{pmatrix} 1 & 0 & -2 \\ -2 & 1 & 6 \\ 3 & -2 & -5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -5 \end{pmatrix}.$$

Question 2

(i) Let **A** and **B** be row equivalent, square matrices of order 3 such that

$$A \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \begin{pmatrix} 1 & -3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & -5 \end{pmatrix} = B.$$

Find $det(\mathbf{A})$ and \mathbf{A} .

- (ii) Find \boldsymbol{B}^{-1} and write down $\operatorname{adj}(\boldsymbol{B})$.
- (iii) If C is row equivalent to A, then C must be invertible. Is this statement true or false? Justify your answer.
- (iv) If D is row equivalent to B and det(D) = 1, then $D = I_3$. Is this statement true or false? Justify your answer.

Question 3

Consider the following electrical network.

- (i) Write down a linear system with 3 equations involving unknowns I_1 , I_2 and I_3 using KCL and KVL.
- (ii) Solve the linear system using Gauss-Jordan Elimination.

Question 4

Let

$$u = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad v = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \quad w = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}.$$

(i) Find $a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3$ such that

$$a_1 \boldsymbol{u} + a_2 \boldsymbol{v} + a_3 \boldsymbol{w} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad b_1 \boldsymbol{u} + b_2 \boldsymbol{v} + b_3 \boldsymbol{w} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad c_1 \boldsymbol{u} + c_2 \boldsymbol{v} + c_3 \boldsymbol{w} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

(ii) Recall the definition of a 3×3 flexibility matrix **D** used to study the flexibility of a horizontal elastic beam shown in the figure below.

We know that, by Hooke's law,

$$y = Df$$

where $\mathbf{f} = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix}$ represents the forces applied at the 3 points #1, #2 and #3 and $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$ represents the amount of deflection of the beam at the 3 points when it is subjected to \mathbf{f} is subjected to f.

Suppose we wish to determine the flexibility matrix D of an elastic beam. Three sets of experiments were conducted, where different units of force were applied at the 3 points and each time, the deflections were measured. The results of the experiment are given in the table below.

	Force applied			Deflection observed		
	f_1	$ f_2 $	f_3	y_1	y_2	y_3
Experiment 1	1	0	1	0.5	0.3	0.5
Experiment 2	0	1	2	0.1	0.3	0.7
Experiment 3	2	1	0	0.7	0.3	0.1

Use your answer in part (i) to find the flexibility matrix D.

END OF TEST