

Data Science Foundations

Master in Big Data Solutions 2017-2018

Liana Napalkova liana.napalkova @bts.tech

Ludovico Boratto

ludovico.boratto@bts.tech

Francisco Guitierres
francisco.gutierres@bts.tech

Today's Objective

Contents

Today's objective

Master data handling skills using pandas package of Python.

Matplotlib and Seaborn

Contents

Today's objective

Master data handling skills using pandas package of Python.

Matplotlib and Seaborn

Analysis of errors

Your homework in Session 1

- Create a new script in Jupyter Notebook named "data_handling".
- Load the data from the file "rural_population_data.csv" into pandas DataFrame.
- Do the following tasks with the data:
 - 1. Find all unique values of the column "Continent"
 - 2. Calculate a grow rate based on this formula: Growrate = (Population2100 Population2000) / Population2000
 - 3. Create a histogram of "Growrate".
 - Check the existence of NaN values in the DataFrame.
 - 5. Find the average population size in the years 2000 and 2010.
 - 6. Check how many rows have UrbanRuralDesignation equal to "Urban".
- Push your script to your Git repository "DataScienceFoundations".

Analysis of errors

Your homework in Session 1

Git pull:

https://github.com/LianaNapalkova/BTS MasterInBigData.git

- Go to the folder "Session_2".
- Take the file "rural_area_assignment_analysis_of_common_errors.ipynb" and import it into your Jupyter Notebook

Analysis of errors

Your homework in Session 1

- Fix errors in your code, if needed and synchronize changes with your repository "DataScienceFoundations".
- In your repository, please organize the files into folders according to the Session number (3 folders):
 - ✓ Session_1
 - ✓ Session_2
 - ✓ Session_3

Contents

Today's objective

Master data handling skills using pandas package of Python.

Matplotlib and Seaborn

- Objective: Mastering skills
- Data set: BTS_MasterInBigData/Session_2/2_titanic_dataset.csv
- Data dictionary: BTS_MasterInBigData/Session_2/2_notes.pdf
- This is the anonymous dataset that defines which persons survived/not survived the Titanic disaster.

[4]: df	df.head()											
:[4]:	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	5

- 1. Define 20 basic questions about your data and answer them using the tools that we learned in Session 1.
- 2. Clearly state each questions in the comments (Cell type: Markdown).

My question #1 that I can answer using Pandas

- 3. If you create your own function, do not forget to use docstrings.
- 4. Export your *.ipynb notebook and push it to your repository "DataScienceFoundations"

- Please keep in mind that your objective is to analyze which persons survived/not survived the Titanic disaster. For example, you can formulate and answer the questions similar to:
 - ✓ What is a total family size?
 - ✓ Compute frequencies of Ticket, Cabin and Fare values
 - ✓ ...
- After each question, add a relevant code. Finally put a comment starting with "Knowledge retrieved:" and summarize your finding.
- You have 1 hour in order to do the assignment.
- After this, you will need to quickly (5 minutes) present your code and your findings to other classmates.


```
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read csv("pathtocsvfile/2 titanic dataset.csv")
df.info()
                                     df.dtypes
df["column name"]
                                     df[column name'].hist()
                                     plt.show()
df.shape
                                     Additional functions:
                                     • loc
df["column name"].unique()
df["column name"].min()

    apply

                                       fillna
df["column name"].mean()
                                       dropna
df["column name"].std()
df.isnull().sum()
```


Contents

Today's objective

Master data handling skills using pandas package of Python.

Matplotlib and Seaborn

import matplotlib.pyplot as plt

matplotlib:

- python 2D plotting library which produces publication quality figures in a variety of hardcopy formats.
- line plots, scatter plots, barcharts, histograms, pie charts etc.
- relatively low-level; some effort needed to create advanced visualization.

import seaborn as sns

seaborn:

- based on matplotlib.
- provides high level interface for drawing attractive statistical graphics.
- Similar (in style) to the popular ggplot2 library in R.

	description
countplot	Counter plot
barplot	Estimate of central tendency for a numeric variable
violinplot	Similar to boxplot, also shows the probability density of the data
distplot	Distribution plot
pointplot	Point or linear plot
pairplot	Pairplot
boxplot	Boxplot
swarmplot	Categorical scatterplot
factorplot	General categorical plot


```
In [55]: plt.figure(figsize=[12,10])
    sns.countplot(df['Survived'])
    plt.show()
```



```
In [4]: plt.figure(figsize=[12,10])
    sns.barplot('Sex', 'Survived', data=df)

# Show the plot
    plt.show()
```


Barchart


```
In [13]: plt.figure(figsize=[12,10])
    sns.factorplot("Pclass", "Survived", "Sex", data=df, kind="bar", palette="muted", legend=False)
    plt.show()
```

<matplotlib.figure.Figure at 0xbffee80>

Factorplot


```
In [27]: sns.lmplot('Age', # Horizontal axis
                     'Fare', # Vertical axis
                     data=df, # Data source
                     fit reg=False, # Don't fix a regression line
                                                                                     Scatter plot
                     hue="Sex", # Set color
                     scatter kws={"marker": "D", # Set marker style
                                   "s": 100}) # S marker size
          # Set title
         plt.title('Histogram of IQ')
                                                                          Histogram of IQ
          # Set x-axis label
                                                          500
         plt.xlabel('Age')
         # Set v-axis label
         plt.ylabel('Fare')
                                                          400
                                                          300
                                                                                                        Sex
                                                                                                        male
                                                                                                        female
                                                          200
                                                          100
                                                                       20
                                                                                40
                                                                                        60
                                                                                                 80
```

Age


```
In [33]: g = sns.FacetGrid(df, col="Sex", row="Pclass", margin_titles=True)
    g.map(plt.scatter, "Fare", "Age")
    # Add a title to the figure
    g.fig.suptitle("this is a title")
# Show the plot
    plt.show()

**Bodynamics**

**Bodynamic
```

Scatter plots

Distplot

```
In [67]: g = sns.FacetGrid(df, col="Sex")
    g.map(sns.distplot, "Fare")
    plt.show()
```

<matplotlib.figure.Figure at 0x28e6df98>

- Create 10 charts for the dataset "rural_population_data" (Session_1/file_formats).
- Create 5 charts for the dataset "2_titanic_data" (Session_2).
- After each chart, please put a comment starting with "Knowledge retrieved:" and summarize your finding.
- Push your results to the repository "DataScienceFoundations" into the folder "Session_2".
- You will need to share your findings with classmates (5-10 minutes per person).
- Please notice that your charts should be informative and should bring useful insight!

Individual Assignment

- Take a dataset "3_bike_sharing.csv"
- Perform a basic data analysis using Pandas
- Perform visual analysis of data using Matplotlib and Seaborn
- Do not forget to comment your code and specify questions/findings.

