DM549/DS(K)820/MM537/DM547 Lecture 9: More on Cardinality; Recursive Definitions and Strong Induction

Kevin Schewior Email: kevs@sdu.dk

University of Southern Denmark

October 7, 2024

Definition (Definition 2.5.1)

Two sets A, B have the same cardinality

Definition (Definition 2.5.1)

Two sets A, B have the same *cardinality* if there exists a bijection from A to B.

Definition (Definition 2.5.1)

Two sets A, B have the same *cardinality* if there exists a bijection from A to B.

Definition (Definition 2.5.3)

The cardinality of \mathbb{Z}^+ is called \aleph_0 . A set A is called

- countable if it is finite or has cardinality \aleph_0 ,
- countably infinite if it has cardinality \aleph_0 ,
- uncountable if it is not countable.

Definition (Definition 2.5.1)

Two sets A, B have the same *cardinality* if there exists a bijection from A to B.

Definition (Definition 2.5.3)

The cardinality of \mathbb{Z}^+ is called \aleph_0 . A set A is called

- countable if it is finite or has cardinality \aleph_0 ,
- countably infinite if it has cardinality \aleph_0 ,
- uncountable if it is not countable.

Proposition (Example 2.5.3)

It holds that $|\mathbb{Z}| = \aleph_0$.

Definition (Definition 2.5.1)

Two sets A, B have the same *cardinality* if there exists a bijection from A to B.

Definition (Definition 2.5.3)

The cardinality of \mathbb{Z}^+ is called \aleph_0 . A set A is called

- countable if it is finite or has cardinality \aleph_0 ,
- countably infinite if it has cardinality \aleph_0 ,
- uncountable if it is not countable.

Proposition (Example 2.5.3)

It holds that $|\mathbb{Z}| = \aleph_0$.

Proposition (Example 2.5.4)

It holds that $|\mathbb{Q}| = \aleph_0$.

The Cardinality of $\mathbb R$

The Cardinality of ${\mathbb R}$

Theorem (Example 2.5.5)

The set \mathbb{R} is uncountable.

The Cardinality of $\mathbb R$

Theorem (Example 2.5.5)

The set \mathbb{R} is uncountable.

Remark: This argument is known as Cantor's diagonalization argument.

A Quiz

Go to pollev.com/kevs

Russell's Paradox: The set $S = \{x \text{ is a set } | x \notin x\}$ cannot exist.

Russell's Paradox: The set $S = \{x \text{ is a set } | x \notin x\}$ cannot exist.

Therefore:

• One needs a more sophisticated set theory (for deeper Mathematics than we are doing here)!

Russell's Paradox: The set $S = \{x \text{ is a set } | x \notin x\}$ cannot exist.

Therefore:

- One needs a more sophisticated set theory (for deeper Mathematics than we are doing here)!
- Modern set theory is based on axioms.

Russell's Paradox: The set $S = \{x \text{ is a set } | x \notin x\}$ cannot exist.

Therefore:

- One needs a more sophisticated set theory (for deeper Mathematics than we are doing here)!
- Modern set theory is based on axioms.
- The widely accepted set of axioms is called Zermelo–Fraenkel set theory.

Russell's Paradox: The set $S = \{x \text{ is a set } | x \notin x\}$ cannot exist.

Therefore:

- One needs a more sophisticated set theory (for deeper Mathematics than we are doing here)!
- Modern set theory is based on axioms.
- The widely accepted set of axioms is called Zermelo–Fraenkel set theory.

The Continuum Hypothesis

It holds that $|\mathbb{R}| = \aleph_1$.

Russell's Paradox: The set $S = \{x \text{ is a set } | x \notin x\}$ cannot exist.

Therefore:

- One needs a more sophisticated set theory (for deeper Mathematics than we are doing here)!
- Modern set theory is based on axioms.
- The widely accepted set of axioms is called Zermelo-Fraenkel set theory.

The Continuum Hypothesis

It holds that $|\mathbb{R}| = \aleph_1$.

Surprising status: One can prove that it is neither possible to

- prove the continuum hypothesis from axioms of Zermelo–Fraenkel set theory, nor to
- disprove the continuum hypothesis from axioms of Zermelo–Fraenkel set theory

(unless axioms contradict each other already, which is provably impossible to disprove).

Rabbits

Simplified assumptions:

- A pair of rabbits of the same age reproduce in the following way: Starting from when they are two month old, they create a new pair of rabbits every month.
- Rabbits never die.

A pair of rabbits is born now and put on an (until then) rabbitless island.

Question: How does the rabbit population on the island develop?

Recursive Definitions

Recursive Definitions

A recursive definition is a self-referential definition, such as:

Definition (Definition 2.4.5)

The Fibonacci Numbers are defined by:

$$f_0 = 0,$$

 $f_1 = 1,$
 $f_n = f_{n-1} + f_{n-2}, \text{ for } n \ge 2.$

If you have any problems with understanding recursion...

If you have any problems with understanding recursion...

(by Zach Weinersmith)

Fibonacci Numbers

Definition (Definition 2.4.5)

The Fibonacci Numbers are defined by:

$$f_0 = 0,$$

 $f_1 = 1,$
 $f_n = f_{n-1} + f_{n-2}, \text{ for } n \ge 2.$

Fibonacci Numbers

Definition (Definition 2.4.5)

The Fibonacci Numbers are defined by:

$$f_0 = 0,$$
 $f_1 = 1,$ $f_n = f_{n-1} + f_{n-2}, \text{ for } n \ge 2.$

Definition

The golden ratio is the number

$$\varphi = \frac{\sqrt{5}+1}{2} \approx 1.618.$$

Fibonacci Numbers

Definition (Definition 2.4.5)

The Fibonacci Numbers are defined by:

$$f_0 = 0,$$

 $f_1 = 1,$
 $f_n = f_{n-1} + f_{n-2}, \text{ for } n \ge 2.$

Definition

The golden ratio is the number

$$\varphi = \frac{\sqrt{5} + 1}{2} \approx 1.618.$$

Theorem

For all $n \geq 3$, it holds that

$$f_n \geq \varphi^{n-2}$$
.

Repetition: Recipe for (Regular) Induction

Recipe 1 for Proofs by (Simple) Induction

To show that P(n) holds for all $n \ge m$, prove:

- Basis step: Prove that P(m) holds.
- Inductive step: Prove that

$$\underbrace{P(k)}_{\text{inductive hypothesis}} \Rightarrow P(k+1)$$

for all $k \geq m$.

Recipe for Strong Induction

Recipe for Proofs by Strong Induction

To show that P(n) holds for all $n \ge m$, prove for some $\ell \ge 0$:

- Basis step: Prove that P(m), P(m+1), ..., $P(m+\ell)$ hold.
- Inductive step: Prove that

$$(P(k-\ell) \wedge \cdots \wedge P(k-1) \wedge P(k)) \Rightarrow P(k+1)$$

for all $k \ge m + \ell$.

Another Example

Theorem

For every $n \in \mathbb{N}$ with $n \geq 4$, there exist $a, b \in \mathbb{N}$ such that

$$n = 2a + 5b$$
.

Interpretation: Any number of $n \ge 4$ Danish kroner can be given as change with 2 kroner and 5 kroner coins only.

■ This was probably your last lecture this year with this Kevin.

- This was probably your last lecture this year with this Kevin.
- You can still direct questions towards me, regarding the content that I taught and general ones about the course.

- This was probably your last lecture this year with this Kevin.
- You can still direct questions towards me, regarding the content that I taught and general ones about the course.
- We will probably meet again for the Q&A session before the exam.

- This was probably your last lecture this year with this Kevin.
- You can still direct questions towards me, regarding the content that I taught and general ones about the course.
- We will probably meet again for the Q&A session before the exam.
- It was fun teaching you!

- This was probably your last lecture this year with this Kevin.
- You can still direct questions towards me, regarding the content that I taught and general ones about the course.
- We will probably meet again for the Q&A session before the exam.
- It was fun teaching you!
- Have fun in the remaining part of the semester (probably 12 lectures more).