Numerical derivative

Random Search

Save weight if current loss better than best loss

Numerical derivative

$$\frac{\partial L}{\partial w} \approx \frac{L(w+\epsilon) - L(w-\epsilon)}{2\epsilon}$$

Derivative

Local minima


```
W = W - learning_rate * dLdW
b = b - learning_rate * dLdb
```

Features

Data

Stochastic Gradient Descent

Features Batch Update weight Model Data Loss

Stochastic Gradient Descent

Stochastic Gradient Descent

Logistic Regression

Train

Regularization

BCELoss = - (y * log(pred) + (1 - y) * log(1 - pred)) + reg * R(W)

reg - hyperparameter

Sigmoid

Tanh

ReLU

Leaky ReLU

Parametric ReLU: y=ax

ELU

Neural Networks

Important things

- Don't use sigmoid as inner activation in MLP
- But then we talk about how you can use sigmoid as inner activation
- Normalize your data
- Early stopping

Important things

Why normalize?

Gradient of larger parameter dominates the update

Both parameters can be updated in equal proportions

Early Stopping

