Math 114 Problem Set 8

Lev Kruglyak

December 3, 2022

Problem 1. Let \mathcal{H} denote a Hilbert space, and $\mathcal{L}(\mathcal{H})$ the vector space of all bounded linear operators on \mathcal{H} .

Given $T \in \mathcal{L}(\mathcal{H})$, we define the operator norm

$$||T|| = \inf\{B : |Tv| \le B|v|, \text{ for all } v \in \mathcal{H}\}.$$

a. Show that $||T_1 + T_2|| \le ||T_1|| + ||T_2||$ whenever $T_1, T_2 \in \mathcal{L}(\mathcal{H})$.

Recall that we have

$$||T|| = \sup_{|v|=1} |Tv| = \sup_{v \neq 0} |Tv|/|v|.$$

Thus for any $T_1, T_2 \in \mathcal{L}(\mathcal{H})$ and some vector $v \in \mathcal{H}$ we have

$$|T_1v + T_2v| \le |T_1v| + |T_2v| \le (||T_1|| + ||T_2||)|v| \implies ||T_1 + T_2|| \le ||T_1|| + ||T_2||.$$

b. Prove that

$$d(T_1, T_2) = ||T_1 - T_2||$$

defines a metric on $\mathcal{L}(\mathcal{H})$.

Nonnegativity is obvious, and we proved the triangle inequality in the previous problem. For definiteness, suppose ||T|| = 0. For all $v \in \mathcal{H}$, this implies that $|Tv| \leq 0$ so T = 0. Laslty, for any $c \in k$ we have ||cT|| = |c|||T||.

c. Show that $\mathcal{L}(\mathcal{H})$ is complete in the metric d.

Suppose we have a Cauchy sequence $\{T_i\}_{i=1} \subset \mathcal{L}(\mathcal{H})$. For all $v \in \mathcal{H}$ we have a Cauchy sequence $\{T_iv\}_{i=1}$ since $|T_nv-T_mv| \leq ||T_n-T_m|||v||$. Since \mathcal{H} is a complete space by definition, the sequence $\{T_iv\}_{i=1}$ converges. Thus let's define $Tv = \lim T_iv$.

Since addition and scalar multiplication are continuous, we obviously have linearity of T. All we need to show is that $T \in \mathcal{L}(\mathcal{H})$ and $\lim T_i = T$. First of all, since T_i is a Cauchy sequence, there is some M with $||T_n|| \leq M$ so for all $v \in \mathcal{H}$ we have $|T_iv| \leq M|v|$. Thus we have $|Tv| \leq |Tv - T_iv| + M|v|$. As $i \to \infty$, we get $|Tv| \leq M|v|$ so $||T|| \leq M$ and thus $T \in \mathcal{L}(\mathcal{H})$.

Lastly, let $\epsilon > 0$. Since T_i is a Cauchy sequence, there is some N with $n, m \ge N \implies ||T_m - T_n|| < \epsilon/2$. For any unit vector v we have $m \ge N$ with $|Tv - T_m v| < \epsilon/2$. Thus

$$|(T-T_n)v| = |Tv-T_mv+T_mv-T_nv| \le |Tv-T_mv| + |(T_m-T_n)v| < \epsilon \quad \forall n \ge N.$$

Thus $||T - T_n|| \le \epsilon$ for all $n \ge N$ so $\lim T_n = T$.

Problem 2. Prove that the operator

$$Tf(x) = \frac{1}{\pi} \int_0^\infty \frac{f(y)}{x+y} dy$$

is bounded on $L^2(0,\infty)$ with norm $||T|| \leq 1$.

The result of Homework 7 Problem 4 would hold for $(0, \infty)$, so we only need to find some (measurable) function $0 < w(x) < \infty$ on $(0, \infty)$ with

$$\frac{1}{\pi} \int_0^\infty \frac{w(y)}{x+y} \, dy \le w(x) \quad \text{a.e.} \quad x > 0.$$

To apply Problem 4, set $K(x,y) = 1/\pi(x+y)$ and a=1. Letting $w(y) = y^{-1/2}$, we get

$$\frac{1}{\pi} \int_0^\infty \frac{y^{-1/2}}{x+y} \, dy = x^{-1/2} \implies ||T|| \le 1.$$

Problem 3. Let \mathcal{H} be a Hilbert space.

Prove the following variants of the spectral theorem.

a. If T_1 and T_2 are two linear symmetric and compact operators on \mathcal{H} that commute (that is, $T_1T_2 = T_2T_1$), show that they can be diagonalized simultaneously. In other words, there exists an orthonormal basis for \mathcal{H} which consists of eigenvectors for both T_1 and T_2 .

First, let's show that T_1 and T_2 contain a common eigenvector. Since T_1 is a compact symmetric operator, it has an eigenvalue λ with an eigenvector, so the eigenspace $V_{\lambda}^{T_1}$ is a nontrivial subspace of \mathcal{H} . For some $v \in V_{\lambda}^{T_1}$, we have $T_1T_2v = T_2T_1v = T_2(\lambda v) = \lambda T_2v$. Thus $T_2(V_{\lambda}^{T_1}) \subset V_{\lambda}^{T_1}$. So T_2 is a compact symmetric linear operator on $V_{\lambda}^{T_1}$ so it has a nonzero eigenvector in $v \in V_{\lambda}^{T_1} \cap V_{\lambda}^{T_2}$.

Let \mathcal{S} be the closure of $V_{\lambda}^{T_1} \cap V_{\lambda}^{T_2}$. This is nontrivial, so we have $\mathcal{H} = \mathcal{S} \oplus \mathcal{S}^{\perp}$. Note that T_1 and T_2 are invariant on the space \mathcal{S}^{\perp} , and since they're compact symmetric linear operators, they have a common eigenvector $v \in \mathcal{S}^{\perp}$. Then $v \in \mathcal{S} \cap \mathcal{S}^{\perp}$ which is a contradiction.

b. A linear operator on \mathcal{H} is normal if $TT^* = T^*T$. Prove that if T is normal and compact, then T can be diagonalized.

Consider the compact operators

$$T_1 = \frac{T + T^*}{2}$$
, $T_2 = \frac{T - T^*}{2i}$ so that $T = T_1 + iT_2$.

These operators are also symmetric since

$$T_1^* = \left(\frac{T+T^*}{2}\right)^* = \frac{T^*+T^{**}}{2} = \frac{T^*+T}{2} = T_1.$$

The same follows for T_2 . Lastly, we have

$$T_1T_2 = \frac{(T+T^*)(T-T^*)}{4i} = \frac{T^2 - (T^*)^2}{4i} = \frac{(T-T^*)(T+T^*)}{4i} = T_2T_1$$

so we can apply (a) to simultaneously diagonalize T_1 and T_2 . Say v_i is an orthonormal basis for \mathcal{H} with eigenvalues λ_i, ζ_i for T_1 and T_2 respectively. Then $(\lambda_i + i\zeta_i)v_i$ diagonalizes T.

2

Problem 4. Suppose ν , ν_1 , and ν_2 are signed measures on (X, \mathcal{M}) and μ is a (positive) measure on \mathcal{M} .

Using the symbols \perp and \ll defined in Section 4.2, prove:

a. If $\nu_1 \perp \mu$ and $\nu_2 \perp \mu$, then $\nu_1 + \nu_2 \perp \mu$.

Suppose $A_1, A_2, B \in \mathcal{M}$ are such that A_1 and A_2 are both disjoint from B, and ν_i is supported on A_1 and A_2 . Let μ be supported on B. Now let Let $A = A_1 \cup A_2 \in \mathcal{M}$. Then $A \cap B = (A_1 \cap B) \cup (A_2 \cap B) = \emptyset$. Then for any $E \in \mathcal{M}$, we have

$$(\nu_1 + \nu_2)(E \cap A) = \nu_1(E \cap A \cap A_1) + \nu_2(E \cap A \cap A_2)$$

= $\nu_1(E \cap A_1) + \nu_2(E \cap A_2) = (\nu_1 + \nu_2)(E).$

So $\nu_1 + \nu_2$ is supported on A, and thus $\nu_1 + \nu_2 \perp \mu$.

b. If $\nu_1 \ll \mu$ and $\nu_2 \ll \mu$, then $\nu_1 + \nu_2 \ll \mu$.

Let $E \in \mathcal{M}$ be a μ -measure zero set. Then we have $\mu_1(E) = \mu_2(E) = 0$ and so $(\mu_1 + \mu_2)(E) = \mu_1(E) + \mu_2(E) = 0$. This implies $\mu_1 + \mu_2 \ll \mu$.

c. $\nu_1 \perp \nu_2$ implies $|\nu_1| \perp |\nu_2|$.

Let $A_1, A_2 \in \mathcal{M}$ be disjoint sets with ν_1 supported on A_1 and ν_2 supported of A_2 . Let $E \in \mathcal{M}$. For any partition $\{E_i\}$ of E, we get a partition $\{E_i \cap A_i\}$ of $E \cap A$ and so

$$\sum_{i=1}^{\infty} |\mu_i(E_j)| = \sum_{i=1}^{\infty} |\mu_i(E_j \cap A)| \le |v|(E \cap A_i).$$

Thus $|\mu_i|(E) \leq |\mu_i|(E \cap A_i)$. The other direction follows trivially, so $|\mu_i|(E) = |\mu_i|(E \cap A_i)$. As a result, we have $|\mu_1| \perp |\mu_2|$.

d. $\nu \ll |\nu|$.

Let $E \in \mathcal{M}$ be a set with $|\mu|$ -measure zero. Then $|\nu(E)| \leq |\nu|(E) = 0$ by taking the partition $(E, \varnothing, \varnothing, \ldots)$. Thus $\nu(E) = 0$ and so $\nu \ll |\nu|$.

e. If $\nu \perp \mu$ and $\nu \ll \mu$, then $\nu = 0$.

Let $A, B \in \mathcal{M}$ be disjoing and ν and μ supported on A and B respectively. Suppose $E \in \mathcal{M}$. Then $\mu(E \cap A) = \mu(E \cap A \cap B) = \mu(\emptyset) = 0$, so $\nu \ll \mu$ implies $\nu(E) = \nu(E \cap A) = 0$. Thus $\nu = 0$.

Problem 5. Examples of compactly supported functions in $\mathcal{S}(\mathbb{R})$ are very handy in many applications in analysis.

Some examples are:

a. Suppose a < b, and f is the function such that f(x) = 0 if $x \le a$ or $x \ge b$ and

$$f(x) = e^{-1/(x-a)}e^{-1/(b-x)}$$
 if $a < x < b$.

Show that f is infinitely differentiable on \mathbb{R} .

Consider the function g(x) given by

$$g(x) = \begin{cases} e^{-1/x} & x > 0, \\ 0 & x \le 0. \end{cases}$$

We'll begin by showing that g is C^{∞} . This function is obviously C^{∞} when $x \neq 0$. Thus we only need to show that $g^{(n)}(x) = 0$ as $x \to 0^+$. Note that repeated differentiation gives us $g^{(n)}(x) = p(1/x)e^{-1/x}$ for some polynomial $p(x) \in \mathbb{R}[x]$. Since $e^{-1/x}/x^n \to 0$ as $x \mapsto 0^+$, we are done, since f(x) = g(x-a)g(b-x).

b. Prove that there exists an infinitely differentiable function F on \mathbb{R} such that F(x) = 0 if $x \leq a$, F(x) = 1 if $x \geq b$, and F is strictly increasing on [a, b].

Let $c = \int_{-\infty}^{\infty} f(t) dt$ and let $F(x) = \frac{1}{c} \int_{-\infty}^{x} f(t) dt$. Note that F is C^{∞} and strictly increasing on [a, b]. By the fundamental theorem of calculus, F'(x) = f(x). The rest follows obviously from the fact that f is supported on [a, b] and from our choice of c.

c. Let $\delta > 0$ be so small that $a + \delta < b - \delta$. Show that there exists an infinitely differentiable function g such that g is 0 if $x \le a$ or $x \ge b$, g is 1 on $[a + \delta, b - \delta]$, and g is strictly monotonic on $[a, a + \delta]$ and $[b - \delta, b]$.

Construct functions F and G as tin the previous part on the intervals $[a, a+\delta]$ and $[-b, \delta-b]$ respectively, and let g(x) = F(x)G(-x). This clearly C^{∞} . The required facts follow immediately from the previous problem.