

2018 金融数据分析 与数据挖掘

Kaggle 房价预测问题

By 王丹妤 高宇馨 李莉欣

ABOUT US

王丹妤: 模型设计+代码编写+

润色报告PPT

高宇馨: PPT 制作+报告(概况、数据

预处理等其他部分)

李莉欣:报告(模型特点整理、图)

1 问题概述

2 问题分析

3 数据预处理

4 模型建立

5 结果分析与评价

问题概述

房价预测问题

基本信息

- ·来自Kaggle
- 79个解释变量(爱荷华州艾姆斯住宅)
- •目的: 预测房屋的最终价格

任务

- 1. 已有的数据分析
- 2. 数据预处理-包括特征转换、数据类型转换、异常值检测和估算缺失值。
- 3. 基准建模-利用基础模型建模。
- 4. 模型改进-合并,调参,得到最优结果

问题分析

数据探索

80 70 60 50 40 30 20 10 10.0 12.0 log(SalePrice)

原始数据:房价的分布

线性回归后不符合正态分布 进行平滑处理,取log,符合高 斯分布

数据探索

OverallQual	0. 790982
GrLivArea	0. 708624
GarageCars	0. 640409
GarageArea	0. 623431
TotalBsmtSF	0. 613581
1stF1rSF	0. 605852

相关系数最高的前六位

数值变量和房屋销售之间的相关系数矩阵

数据探索

异常数据信息

Poo1QC	7 non-null object
Fence	281 non-null object
MiscFeature	54 non-null object
Alley	91 non-null object
FireplaceQu	770 non-null object
LotFrontage	1201 non-null float64
MasVnrType	1452 non-null object
MasVnrArea	1452 non-null float64
BsmtQual	1423 non-null object
BsmtCond	1423 non-null object
BsmtExposure	1422 non-null object
BsmtFinType1	1423 non-null object
BsmtFinType2	1422 non-null object
Electrical	1459 non-null object
GarageType	1379 non-null object
GarageYrB1t	1379 non-null float64
GarageFinish	1379 non null object
GarageQual	1379 non-null object
GarageCond	1379 non-null object

数据预处理

删除变量

所有变量中Alley变量有1369个缺失值, FireplaceQu变量有690个缺失值,PoolQC 变量有1453个缺失值,Fence变量有1179 个缺失值,MiscFeature变量有1406个缺 失值。由于缺失值过多,我们将删掉这五 个相关变量。

填补缺失值

然后对有缺失值的 14 个变量 LFage, GarageType等进行平均值填充。

删除outlier

针对之前六个相关度大的属性, 根据图中 的离散点进行删除。

其他

- •对于分类变量,我们采取将分类变量转换 为虚拟变量或指示变量的方式。
- ·特别的,如果某个数据的'Sale Condition'属性值若为'Abnormal',则将所 对应数据删除。

模型建立

五个基本模型

随机森林

岭回归

Extra trees

梯度提升树

XGBoost

五个基本模型

调用Python中的 机器学习库

运用GridSearchCV 自动调参,产生模型 3

用RMSE评价模型

合并基本模型

运用bagging的方法 将随机森林和岭回归 模型结果合并

基本模型比较

	优点	缺点
随机森林	实现简单;不容易过度拟合;能处理高纬度数据;平衡数据误差;可以选出重要特征	数据噪声过大时还是容易过度拟合;其随机性 对于模型难以进行解释
岭回归	改良的OLS估计,在存在共线性问题和病 态数据偏多的研究中有较大的实用价值。	结果是有偏的,降低了精度
Extra trees(极端随机 森林)	随机性比随机森林更强,模型的方差相对于RF进一步减少,在某些时候,extratrees的泛化能力比RF更好。	但是偏倚相对于RF进一步增大
Gradient boosted tree (梯度提升树)	适用面广,几乎可用于所有回归问题(线 性/非线性),亦可用于二分类问题	对异常值非常敏感
XGBoost (Extreme Gradient Boosting)	有效防止过度拟合;精度高;可适应纬度 高的情况;	调参复杂

结果评价与分析

-

模型自我评估

Random forest regression: Best CV Score: 0.13825001670785134 Gradient boosted tree regression: Best CV Score: 0.11444568720434202 Extreme Gradient Boosting regression: Best CV Score: 0.1150576611704134 Extra trees regression: Best CV Score: 0.14182317000239522 Ridge Regression: Best CV score: 0.12154299504355613

Kaggle评价结果

从Kaggle提供的结果来看,合并模 型结果最优,其次是XGBoost模 型。这与自己预估的结果相类似。

反思与改进

极端随机森林在Kaggle的模型评价比在交叉验证环节中要好;相反,梯度提升树的情况刚好与之相反,在实际评价中表现较差,可能还是存在overfitting的情况。

- •变量分析不够细致,以后可以进行主成分分析。
- •对参数的调整范围比较宽泛,没有精确估计。

