6/12/24, 4:01 PM teorema7

Teoremi Dispensa 7

Teorema

Sia $\Gamma=\langle I_\Gamma,S_\Gamma,\pi_\Gamma\rangle$ un problema decisionale e sia $\chi:I_\Gamma\to\Sigma^*$ una sua codifica ragionevole. Se $\chi(I_\Gamma)\in\mathbf{P}$, allora $L_\Gamma(\chi)\in\mathbf{NP}\Rightarrow L_{\Gamma^\circ}(\chi)\in\mathbf{coNP}$

dim

Poichè $\chi(I_{\Gamma})\in \mathbf{P}$, allora esistono una macchina di Turing deterministica T ed un intero h tali che, per ogni $x\in \Sigma^*$, T decide se $x\in \chi(I_{\Gamma})$ e $dtime(T,x)\in O(|x|^h)$.

Se $L_{\Gamma}(\chi) \in \mathbf{NP}$, allora esistono una macchina di Turing non deterministica NT_{Γ} ed un intero k tali che, per ogni $x \in L_{\Gamma}(\chi)$, NT_{Γ} accetta x e $ntime(NT_{\Gamma}, x) \in O(|x|^k)$.

Combinando T e NT_{Γ} , deriviamo una nuova macchina non deterministica NT' che, con input $x \in \Sigma^*$, opera in due fasi, come di seguito descritto.

- 1. Simula la computazione T(x): se T(x) termina nello stato di rigetto, allora NT' termina nello stato di accettazione, altrimenti ha inizio la 2.
- 2. Simula la computazione $NT_{\Gamma}(x)$.

Quindi, NT'(x) accetta se e soltanto se $x \notin \chi(I_{\Gamma})$ oppure $x \in L_{\Gamma}(\chi)$, ossia, se e soltanto se x appartiene al linguaggio complemento di $L_{\Gamma^c}(\chi)$. Inoltre, è semplice verificare che $ntime(NT',x) \in O(|x|^{max\{h,k\}})$.

In conclusione, il linguaggio complemento di $L_{\Gamma^c}(\chi)$ è in ${f NP}$, e dunque $L_{\Gamma^c}(\chi)\in{f coNP}.$

6/12/24, 4:01 PM teorema7