A Gentle Introduction to Bilateral Filtering and its Applications

Naïve Image Smoothing: Gaussian Blur

Sylvain Paris – MIT CSAIL

Notation and Definitions

Image = 2D array of pixels

• Pixel = intensity (scalar) or color (3D vector)

• $I_{\mathbf{p}}$ = value of image I at position: $\mathbf{p} = (p_x, p_y)$

F[I] = output of filter F applied to image I

Strategy for Smoothing Images

- Images are not smooth because adjacent pixels are different.
- Smoothing = making adjacent pixels look more similar.
- Smoothing strategy
 pixel → average of its neighbors

Box Average

Equation of Box Average

Square Box Generates Defects

- Axis-aligned streaks
- Blocky results

output

input

Box Profile

Strategy to Solve these Problems

- Use an isotropic (i.e. circular) window.
- Use a window with a smooth falloff.

Gaussian Blur

box average

Equation of Gaussian Blur

Same idea: weighted average of pixels.

$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|) I_{\mathbf{q}}$$

$$\begin{array}{c} \text{normalized} \\ \text{Gaussian function} \end{array}$$

Gaussian Profile

$$G_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

Spatial Parameter

input

$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G(\|\mathbf{p} - \mathbf{q}\|) I_{\mathbf{q}}$$
size of the window

limited smoothing

strong smoothing

How to set σ

Depends on the application.

- Common strategy: proportional to image size
 - e.g. 2% of the image diagonal
 - property: independent of image resolution

Properties of Gaussian Blur

Weights independent of spatial location

linear convolution

well-known operation

efficient computation (recursive algorithm, FFT)

Properties of Gaussian Blur

input

- Does smooth images
- But smoothes too much: edges are blurred.
 - Only spatial distance matters
 - No edge term

$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|) I_{\mathbf{q}}$$

A Gentle Introduction to Bilateral Filtering and its Applications

"Fixing the Gaussian Blur": the Bilateral Filter

Sylvain Paris – MIT CSAIL

Blur Comes from Averaging across Edges

Bilateral Filter [Aurich 95, Smith 97, Tomasi 98] No Averaging across Edges

output

The kernel shape depends on the image content.

Bilateral Filter Definition: an Additional Edge Term

Same idea: weighted average of pixels.

Illustration a 1D Image

1D image = line of pixels

Better visualized as a plot

Gaussian Blur and Bilateral Filter

Gaussian blur

Bilateral filter

[Aurich 95, Smith 97, Tomasi 98]

space

$$\mathbf{p}-\mathbf{q}\parallel G_{\sigma_{\mathrm{r}}}\left(\mid I_{\mathrm{p}}-I_{\mathrm{q}}\mid I_{\mathrm{q}}\right)$$
 ace range

normalization

Bilateral Filter on a Height Field

Space and Range Parameters

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (||\mathbf{p} - \mathbf{q}||) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

• space σ_s : spatial extent of the kernel, size of the considered neighborhood.

• range σ_r : "minimum" amplitude of an edge

Influence of Pixels

Only pixels close in space and in range are considered.

input

Exploring the Parameter Space

$$\sigma_{\rm r} = 0.1$$

$$\sigma_{\rm r} = 0.25$$

$$\sigma_{\rm r} = \infty$$
 (Gaussian blur)

 $\sigma_{\rm s} = 2$

input

Varying the Range Parameter

$$\sigma_{\rm r} = 0.1$$

$$\sigma_{\rm r} = 0.25$$

$$\sigma_{\rm r} = \infty$$
 (Gaussian blur)

$$\sigma_{\rm s} = 6$$

 $\sigma_{\rm s} = 2$

$$\sigma_{\rm s} = 18$$

$$\sigma_{\rm r} = \infty$$
 (Gaussian blur)

input

Varying the Space Parameter

$$\sigma_{\rm r} = 0.1$$

$$\sigma_{\rm r} = 0.25$$

 $\sigma_{\rm s} = 2$

 $\sigma_{\rm s} = 6$

How to Set the Parameters

Depends on the application. For instance:

- space parameter: proportional to image size
 - e.g., 2% of image diagonal
- range parameter: proportional to edge amplitude
 - e.g., mean or median of image gradients
- independent of resolution and exposure

A Few More Advanced Remarks

Bilateral Filter Crosses Thin Lines

- Bilateral filter averages across features thinner than $\sim 2\sigma_s$
- Desirable for smoothing: more pixels = more robust
- Different from diffusion that stops at thin lines

Iterating the Bilateral Filter

$$I_{(n+1)} = BF[I_{(n)}]$$

- Generate more piecewise-flat images
- Often not needed in computational photo.

Bilateral Filtering Color Images

For gray-level images

$$BF [I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{s}}} (||\mathbf{p} - \mathbf{q}||) G_{\sigma_{\mathbf{r}}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$
scala

For color images
$$BF\left[I\right]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{s}}} \left(\| \mathbf{p} - \mathbf{q} \| \right) G_{\sigma_{\mathbf{r}}} \left(\| \mathbf{C}_{\mathbf{p}} - \mathbf{C}_{\mathbf{q}} \| \right) \mathbf{C}_{\mathbf{q}}$$
 3D vector (RGB, Lab)

The bilateral filter is extremely easy to adapt to your need.

Hard to Compute

• Nonlinear
$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

- Complex, spatially varying kernels
 - Cannot be precomputed, no FFT

Brute-force implementation is slow > 10min

Questions?