Maximum Likelihood & Bayes Rule

Topics

- Review Maximum Likelihood Concept
- Consider Prior Beliefs
- Continuous valued Random Variables
- Posterior probability and Maximum Likelihood

Click-Through Rates in Online Advertizing

Example from Xueri Wang et al

Results

Model:

X = Number of click-throughs in 200 views

 $X \sim Binomial(200, p)$

In 200 views, 25 click-throughs occurred

Let's estimate p using the likelihood approach

Consider the chance of 25 successes if p=0.01

$$P(X = 25 | p=0.01) = C(200,25) 0.01^{25}0.99^{200-25}$$

= 7.7e-20

Let's consider other possible values for p,

```
If p=0.05, then P(X = 25|p=0.05) = 1.7e-05
If p=0.10, then P(X = 25|p=0.10) = 0.04
if p=0.15, then P(X = 25|p=0.10) = 0.05
```

Let's place these values on a plot

If p=0.05, then P(X = 25|p=0.05) = 1.7e-05If p=0.10, then P(X = 25|p=0.10) = 0.04if p=0.15, then P(X = 25|p=0.10) = 0.05

Let's Add the likelihood for all possible values of p

If p=0.05, then P(X = 25|p=0.05) = 1.7e-05If p=0.10, then P(X = 25|p=0.10) = 0.04if p=0.15, then P(X = 25|p=0.10) = 0.05

Likelihood

 These likelihoods can be viewed as a function of p given the data

$$L(p) = C(200,25) p^{25} (1-p)^{200-25}$$

Find the *p* that maximizes the likelihood for our data and use it to estimate *p*.

Likelihood

$$L(p) = C(200,25) p^{25}(1-p)^{200-25}$$

here $C(200,25)$ is the factorial

It is often easier to maximize the log of the likelihood function:

$$log(L(p)) = C(200,25) + 25log(p) + (200-25)log(1-p)$$

We can differentiate the log-likelihood and set to 0 to solve for p to get 0.125 as our estimate

Practice Problem

Geometric(p)

- X = number of failures until first success
- Trials are independent with the same probability of success
- P(k) = P(k failures followed by a success)= $p(1-p)^k$ for k = 0, 1, 2, ...

Suppose you observe the geometric n times, and record k_1 , ..., k_n Which value of p maximizes the likelihood of our data?

Find the Likelihood

$$P(X_1=k_1, X_2=k_2, ..., X_n = k_n)$$

= $P(X_1=k_1)P(X_2=k_2) - P(X_n = k_n)$ independence
= $p(1-p)^{k_1} x p(1-p)^{k_2} x ... x p(1-p)^{k_n}$ geometric(p)

The likelihood function

Let's maximize the log likelihood

 $= p^{n}(1-p)^{k1+k2+...+kn}$

$$Log(L(p)) = nlog(p) + (k_1 + ... + k_n)log(1-p)$$

Differentiate wrt p

$$n/p - (k_1 + ... + k_n)/(1-p)$$

Set to 0 and solve for p

$$0 = n/p - (k_1 + ... + k_n)/(1-p)$$

$$0 = (1-p)n - p(k_1 + ... + k_n)$$

$$p_hat = n/(n + k_1 + ... + k_n) = 1/(1 + avg)$$

number of successes / number of trials

Return to our click-through example

- Suppose that you were certain that p was either 0.01, 0.02, ..., 0.20
- You figure it might be any one of these values
- And you think of them as equally likely values for p
- This is similar to the vitamin problem where you reach into a barrel of coins that have different chances of success and pick one to flip

Here's a pmf for the possible values of p

Given the data: 25 click-throughs on 200 visits, how would you update your pmf for p?

For example, what is

$$P(p = 0.01 \mid data = 25)$$
?

 $P(p = 0.01 \mid data = 25)$

Let's apply the conditional probability rule

= P(p = 0.01 and data = 25) / P(data)

Let's apply the rule again to the numerator

- = P(p = 0.01) P(data = 25 | p = 0.01) / P(data)
- $= 0.05 C(200,25) 0.01^{25} 0.99^{200-25} /P(data)$

Bayes Rule

$$P(A|B) = P(A \text{ and } B)/P(B)$$

$$P(B|A) = P(A \text{ and } B)/P(A)$$

So
$$P(A \text{ and } B) = P(A)P(B|A)$$

Plug this into the numerator above

Bayes RULE: P(A|B) = P(A)P(B|A)/P(B)

Bayes Rule

We just used Bayes rule

$$P(A|B) = P(A)P(B|A)/P(B)$$

- $A = \{p = 0.1\}$
- B = {data = 25}

$$P(p = 0.01 \mid data = 25) =$$

$$P(p = 0.01) P(data = 25 | p = 0.01) / P(data = 25)$$

The denominator is the average over all possible values for p.

$P(p \mid data = 25)$

We can compute $P(p = x \mid data = 25)$ for all possible values of p.

```
In general, for x = 0.01, 0.02, ..., 0.20, P(p = x \mid data = 25) = P(p = x) P(data = 25 \mid p = x) / P(data) = 0.05 C(200,25) <math>x^{25} (1-x)^{200-25} / P(data)
```

$$P(p = x | data = 25) = C x^{25} (1-x)^{200-25}$$

The sample avg of 0.125 is not one of the possible values.

We have updated our probabilities for p given the data.

Posterior probability of p given our data

What happens if we change our initial (prior) probabilities on p to be discrete uniform on 0.001, 0.002, ..., 0.200?

What probability mass function is so dense that we can't distinguish the individual values for p.

This posterior distribution for p places the highest probability on 0.125, but the small values between 0 and 0.05 still have a chance (a small chance) of being the true p.

We can use this posterior distribution to estimate p (choose the one with the highest chance). We can provide credible regions for p, e.g., interval with a 95% posterior probability.

This pmf is so dense that we wonder, can we just say that p can be equally likely to be any value in (0, 1)?

One small problem:
There are uncountably many possible values in (0,1)

Continuous Random Variables

Continuous Uniform Distribution

- Uniform(0, 1) distribution
- We say the random variable X has a Uniform(0, 1) distribution, if

$$P(a < X < b) = (b-a)$$
 for any a & b in (0,1)

For example,

$$P(1/4 < X < \frac{1}{2}) = P(1/8 < X < 3/8)$$

= $P(3/4 < X < 1)$
= $\frac{1}{4}$

We compute probabilities on intervals, rather than exact values

Probability Density Function

Like a histogram, the y-axis is a density scale. The area under the curve corresponds to chance.

Х

Another Continuous Distribution

The Normal(μ , σ^2)

Normal Distribution

For a small region of width dx, P(X in dx) = f(x)dx

We find probabilities by integration

This integral doesn't have a closed form solution so we need the computer to approximate the area.

Another Continuous Distribution

The Beta (α, β)

The Family of Beta Distributions

Beta (α, β)

- The Beta distribution is for random variables in (0, 1)
- The Beta(1,1) is the Uniform(0,1) distribution
- The Beta includes symmetric, skewed, Ushaped distributions
- The probability density function is $f(p) = B(\alpha,\beta) p^{\alpha-1} (1-p)^{\beta-1} \text{ for p in } (0, 1)$

Beta (α, β)

- Let's return to our click-through example
- Let's consider another prior distribution for p, such as the Beta(2, 10)
- The Beta(2, 10) probability density function is $f(p) = B(\alpha,\beta) p^{2-1}(1-p)^{10-1} \text{ for p in } (0, 1)$

Beta(2, 10)

Posterior for p given the data

Recall that we used Bayes rule to compute the $P(p = 0.01 \mid data = 25) =$ $P(p = 0.01) P(data = 25 \mid p = 0.01) / P(data = 25)$

We use it again with the Beta density giving us the probability P(p in dp) = f(p) dp

Posterior for p given the data

If we have a continuous distribution for the possible values of p, then

```
P(p in dp | data = 25)
```

- = P(p in dp) P(data = 25|p in dp) / P(data = 25)
- = $B(\alpha,\beta) p(1-p)^9 C(200,25) p^{25} (1-p)^{175}$
- = $B(\alpha,\beta) C(200,25) p^{25+1}(1-p)^{175+9}$

This is the Beta(26, 184) distribution for p

Using the prior to provide a single point estimate for p

- Our posterior distribution for p is B(26,184)
- If we want to provide an estimate for p, then we could provide the p with the highest posterior probability, i.e., we would maximize $B(\alpha,\beta)$ C(200,25) $p^{25+1}(1-p)^{175+9}$
- We know this is p_hat = (25+1)/(200+10)

Laplace Smoothing

- $p_hat = (25+1)/(200+10)$
- Notice that we have taken the MLE of 25/200 and added a small bit to the numerator and a small bit to the denominator
- This is especially useful for rare events, i.e., when p is small
- We can re-express p_hat as a weighted average of the MLE and the Ev of the prior:

$$\frac{200}{210} \frac{25}{200} + \frac{10}{210} \frac{1}{10}$$

Step Back

- Real world phenomena can often be modeled with a probability distribution
- Many probability distributions can be expressed as probability mass (or density) functions that depend on parameter(s)
- We can use Maximum Likelihood to estimate these parameters, i.e., to find the parameters that are most likely to have produced our data

- We may have prior information about the parameters
- This prior information can be expressed as a probability distribution on the parameter values
- We can use Bayes rule to find the posterior distribution of our parameters given our data
- Sometimes the prior fits nicely with the data distribution, e.g., the Beta and Binomial
- Other times we use computational methods to compute the posterior

Spam Detection

Spam

- Spam appears in our email, comments on blogs, reviews on Yelp, etc.
- We can develop detectors to help us programmatically identify spam
- In the case of email, Spam Assassin provided 9000 email messages that are hand-classified as spam or ham

Email Corpus

- Later in the semester we will discuss how to build classifiers
- We look at a simple example today
- From the 9000 email messages we determined
 - whether or not the subject line starts Re:
 - the percentage of capital letters in the email

Re: in the subject line of the email

	ham	spam	
Re:	2400	300	2700
No Re:	3600	2700	6300
	6000	3000	9000

A new email arrives, it has an Re: in its subject line.

What is the chance it is spam?

Is the presence of Re: a useful indicator of ham?

Re: in the subject line of the email

What are we assuming to answer this question?

	ham	spam	
Re:	2400	300	2700
No Re:	3600	2700	6300
	6000	3000	9000

New email has a similar distribution of Re: within spam and ham as the corpus

We have enough data to accurately estimate this probability

Prop(spam | Re:) =

Prop(spam and Re:)/prop(Re:)

= 300/2700 = 0.11

Capitalization in the email

	ham	spam	
<20	4000	750	4750
20-30	1500	1500	3000
>30	500	750	1250
	6000	3000	9000

A new email arrives, it has more than 30% capital letters. What is the chance it is spam?

Is the percent capitals a useful indicator of ham?

> 30% capital letters in the email

	ham	spam	
<20	4000	750	4750
20-30	1500	1500	3000
>30	500	750	1250
	6000	3000	9000

- A new email arrives.
- It has an Re: in the subject line and fewer than 20% of the letters are capitalized
- What is the chance it is spam?
- Can we answer this question?

P(spam | Re: and <20% caps)

		ham	spam	
Re:	<20			
	20-30			
	>30			
No Re:	<20			
	20-30			
	>30			
		6000	3000	9000

P(spam | Re; and <20%)=

P(spam & Re: & <20%)/

P(Re: & <20%)

= 50/2050

P(spam | Re: and <20% caps)

		ham	spam	
Re:	<20	2000	50	2050
	20-30	300	100	400
	>30	100	150	250
No Re:	<20	2000	700	2700
	20-30	1200	1400	2600
	>30	400	600	1000
		6000	3000	9000

In practice

- We have many features X₁, X₂, ..., X_m
- We observe $x_1, x_2, ..., x_m$
- We want P(spam $| x_1, x_2, ..., x_m$)
- Building a probability model is quite complex
- We don't have enough data to estimate the joint distribution of m random variables

```
P(spam | x_1, x_2, ..., x_m )
= P(spam and x_1, x_2, ..., x_m ) / P(x_1, x_2, ..., x_m )
Why? Definition of conditional probability
```

=
$$P(spam)P(x_1, x_2, ..., x_m | spam) / P(x_1, x_2, ..., x_m)$$

Why?

Bayes Rule P(A|B) = P(A)P(B|A)/P(B)

Naively assume independence

```
P(spam|x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>m</sub>)
= P(spam)P(x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>m</sub>|spam) / P(x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>m</sub>)
= P(spam)P(x<sub>1</sub>|spam) *...*P(x<sub>m</sub>|spam) / P(x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>m</sub>)
..., x<sub>m</sub>)
```

Naïve Bayes Estimation of P(spam $| x_1, x_2, ..., x_m$)

Computational Considerations

```
Take log to turn product of small probabilities into sums  Log(P(spam)) = log(P(spam)) + \Sigma log(P(x_i|spam)) \\ - log(P(x_1, x_2, ..., x_m)) \\ approx log(3/9) + \Sigma log(\#x_i in spam)/\#spam) - C \\ approx log(3/9) + \Sigma log(\#x_i in spam + 1)/(\#spam + 1)) - C
```

```
Examine the likelihood ratio,

Log(P(spam)/P(ham))

We don't need to compute P(x_1, x_2, ..., x_m)

Values above 0 indicate P(spam) > P(ham)
```

Take Aways

- In practice,
 - We might not have a named probability distribution so we resort to estimating probabilities with proportions
 - We might not have enough data so we smooth our proportions and make naïve assumptions
 - Computational considerations can be important for accuracy and efficiency