Math 115 - Midterm 1 Definitions

The product of sets $A \times B$ is the Cartesian product of the sets, where $A \times B = \{(a,b) \mid a \in A, b \in B\}.$

A relation on a set A is a subset of $A \times A$. Elaborately, a relation on a set A takes two values from A and puts them into a class based on how they are compared.

A relation is reflexive if for any $a \in A$, aRa, symmetric if $aRb \implies bRa$, and transitive if $aRb \wedge bRc \implies aRc$, where $b, c \in A$.

A relation on a set A is an equivalence relation if it is reflexive, symmetric, and transitive. An equivalence class of an element $a \in A$ is the set $\{x \in A \mid a \sim x\}$. The set of all members that are in a's equivalence

A partition of a set A is a collection of disjoint subsets of A (with each subset nonempty) such that their union is A.

a and b are relatively prime if they share no common factors (except the trivial factor of 1).

The integers b_1, \ldots, b_n are relatively prime if they share no common factors (except the trivial factor of 1). They are pairwise relatively prime if b_i, b_j are relatively prime for all $i \neq j$.

A prime number is an integer at least two whose factors are 1 and itself. A composite number is a number that isn't prime.

The prime factorization of a number n is denoted $\prod_{n} p^{\alpha(p)}$, where this product

symbolizes the product of all primes and the function α returns the exponent of a prime when considering that prime as its input.

A congruence class (modulo m) is a set of all integers that are congruent modulo m.

A complete residue system (modulo m) is a set of integers r_1, \ldots, r_n such that any integer x is congruent modulo m to exactly of the r_i 's.

A reduced residue system (modulo m) is a set of integers s_1, \ldots, s_k coprime to m such that any integer coprime to m is congruent modulo m to exactly one of the s_i 's.

Euler's totient function, $\phi(m)$, returns the number of elements in a reduced residue system modulo m. Equivalently, $\phi(m)$ is the number of integers t, with $0 < t \le m$, such that t is coprime to m.

Consider the integers modulo m. Then, take the integer a in modulo m. Then, a has a unique inverse (modulo m) a^{-1} such that $aa^{-1} \equiv 1 \pmod{m}$.

A Gaussian integer is a complex number of the form a + bi, where $a, b \in \mathbb{Z}$.

 $\mathbb{Z}[x]$ is the set of all polynomials with integer coefficients.

The number of solutions to the congruence $f(x) \equiv g(x) \pmod{m}$ is the number of congruence classes that satisfy $f(x) - g(x) \equiv 0 \pmod{m}$.

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$, with $a_i \in \mathbb{Z}$ for all i. The degree of the congruence $f(x) \equiv 0 \pmod{m}$ is the highest value of i such that $m \nmid a_i$, and undefined if $m \mid a_i$ for all i. To find the degree of the congruence $f(x) = g(x) \pmod{m}$ (with $f, g \in \mathbb{Z}[x]$), find the degree of $(f - g)(x) \equiv 0 \pmod{m}$.

A polynomial-time algorithm is an algorithm whose run time is a polynomial function of the length of its input.

A weak probable prime to the base a is a number p > 1 that satisfies $a^{p-1} \equiv 1 \pmod{p}$. A weak pseudoprime to the base a is a number p > 1 that

satisfies $a^{p-1} \equiv 1 \pmod{p}$ but p is composite.

Consider the following algorithm:

- 1. Find j and d odd such that $m-1=2^{j}d$.
- 2. If $a^d \equiv \pm 1 \pmod{m}$, then m is a strong probable prime, stop.
- 3. Square a^d to get a^{2d} . If $a^{2d} \equiv 1 \pmod{m}$, then m is composite. If $a^{2d} \equiv -1 \pmod{m}$, then m is a strong probable prime, stop.
- 4. Repeat this procedure for the list $a^{4d}, \ldots, a^{2^{j-1}d}$.
- 5. If the procedure has not yet terminated, m is composite.

If the test is inconclusive, then m is composite. m is a strong pseudoprime to the base a if the test with m is conclusive but m is both odd and composite.

A Carmichael number is a composite number m which is a weak pseudoprime to the base a for all integers a coprime to m.

 p^{α} exactly divides n (denote: $p^{\alpha} \mid\mid n$) if $p^{\alpha} \mid n$ but $p^{\alpha+1} \nmid n$.