

#2

SEQUENCE LISTING

<110>	SMIT	S, John H, Dirk , Teres	Ε.	•	•								
<120>	IL-	1 ZETA,	IL-1	ZETA	SPLIC	E VARI	ANTS	AND	XREC2	DNAS	AND	POLYE	PEPTIDES
<130>	200	8-US											
		be ass 0-08-21	igned	l-									
		112,163 8-12-14											
		146,675 9-11-10											
		/US99/29 9-12-14	9549										
<160>	15												
<170>	Pate	entIn ve	ersio	n 3.1									
<210><211><211><212><213>	1 579 DNA Homo	o sapie	ns										
<400>													
		gtgata											60
ttaaga	iggtc	caaaggt	cgaa ·	gaactt	aaac	ccgaag	aaat	tcag	rcattca	tgac	cagg	at	120
cacaaa	gtac	tggtcct	.gga	ctctgg	gaat	ctcata	gcag	ttcc	agataa	aaac	taca	ta	180
cgccca	gaga	tcttctt	tgc .	attagc	ctca	tccttg	agct	cago	ctctgc	ggag	raaag	ga	240
agtccg	attc	tcctggg	gggt	ctctaa	aggg	gagttt	tgtc	tcta	ctgtga	caag	gata	aa	300
ggacaa	agtc	atccato	ccct	tcagct	gaag	aaggaga	aaac	tgat	gaagct	ggct	gccc	aa	360
aaggaa	tcag	cacgccg	ggcc (cttcat	cttt	tatagg	gctc	aggt	gggctc	ctgg	aaca	tg	420
ctggag	tcgg	cggctca	accc (cggatg	gttc	atctgca	acct	cctg	caattg	taat	gagc	ct	480
gttggg	gtga	cagataa	aatt	tgagaa	cagg	aaacaca	attg	aatt	ttcatt	tcaa	.ccag	tt	540
tgcaaa	gctg	aaatgag	gada (cagtga	ggtc	agcgatt	tag						579
<210><211><211><212><213>	2 2091 DNA Homo	sapier	ıs										
<400>	2 gete	cgattcc	aca o	cttgat	tata	ttataco	rcta	cttt	tactca	aaa+	ttas	a.c.	60

gttgtgacca aaagaggctc cgccgatgga tgcactgact ggtctatcga tatcaagaaa 120 tatcaagttt tggtgggaga gcctgttcga atcaaatgtg cactctttta tggttatatc 180 agaacaaatt actcccttgc ccaaagtgct ggactcagtt tgatgtggta caaaagttct 240 ggtcctggag actttgaaga gccaatagcc tttgacggaa gtagaatgag caaagaagaa 300 gactccattt ggttccggcc aacattgcta caggacagtg gtctctacgc ctgtgtcatc 360 agaaactcca cttactgtat gaaagtatcc atctcactga cagtgggtga aaatgacact 420 ggactctgct ataattccaa gatgaagtat tttgaaaaag ctgaacttag caaaagcaag 480 gaaatttcat gccgtgacat agaggatttt ctactgccaa ccagagaacc tgaaatcctt 540 tggtacaagg aatgcaggac aaaaacatgg aggccaagta ttgtattcaa aagagatact 600 ctgcttataa gagaagtcag agaagatgac attggaaatt atacctgtga attaaaatat 660 ggaggctttg ttgtgagaag aactactgaa ttaactgtta cagcccctct gactgataag 720 ccacccaagc ttttgtatcc tatggaaagt aaactgacaa ttcaggagac ccagctgggt 780 gactctgcta atctaacctg cagagctttc tttgggtaca gcggagatgt cagtccttta 840 atttactgga tgaaaggaga aaaatttatt gaagatctgg atgaaaatcg agtttgggaa 900 agtgacatta gaattettaa ggageatett ggggaacagg aagttteeat eteattaatt 960 gtggactctg tggaagaagg tgacttggga aattactcct gttatgttga aaatggaaat 1020 ggacgtcgac acgccagcgt tctccttcat aaacgagagc taatgtacac agtggaactt 1080 gctggaggcc ttggtgctat actcttgctg cttgtatgtt tggtgaccat ctacaagtgt 1140 tacaagatag aaatcatgct cttctacagg aatcattttg gagctgaaga gctcgatgga 1200 gacaataaag attatgatgc atacttatca tacaccaaag tggatcctga ccagtggaat 1260 caagagactg gggaagaaga acgttttgcc cttgaaatcc tacctgatat gcttgaaaag cattatggat ataagttgtt tataccagat agagatttaa tcccaactgg aacatacatt 1380 gaagatgtgg caagatgtgt agatcaaagc aagcggctga ttattgtcat gaccccaaat 1440 tacgtagtta gaaggggctg gagcatcttt gagctggaaa ccagacttcg aaatatgctt 1500 gtgactggag aaattaaagt gattctaatt gaatgcagtg aactgagagg aattatgaac 1560 taccaggagg tggaggccct gaagcacacc atcaagctcc tgacggtcat taaatggcat 1620 ggaccaaaat gcaacaagtt gaactccaag ttctggaaac gtttacagta tgaaatgcct 1680 tttaagagga tagaacccat tacacatgag caggctttag atgtcagtga gcaagggcct 1740 tttggggagc tgcagactgt ctcggccatt tccatggccg cggccacctc cacagctcta 1800 gccactgccc atccagatct ccgttctacc tttcacaaca cgtaccattc acaaatgcgt 1860 cagaaacact actaccgaag ctatgagtac gacgtacctc ctaccggcac cctgcctctt 1920

acctccatag gcaatcagca tacctactgt aacatcccta tgacactcat caacgggcag cggccacaga caaaatcgag caggagcag aatccagatg aggcccacac aaacagtgcc atcctgccgc tgttgccaag ggagaccagt atatccagtg tgatatggtg a <210> <211> 192 <212> PRT <213> Homo sapiens <400> 3 Met Ser Gly Cys Asp Arg Glu Thr Glu Thr Lys Gly Lys Asn Ser Phe Lys Lys Arg Leu Arg Gly Pro Lys Val Lys Asn Leu Asn Pro Lys Lys Phe Ser Ile His Asp Gln Asp His Lys Val Leu Val Leu Asp Ser Gly Asn Leu Ile Ala Val Pro Asp Lys Asn Tyr Ile Arg Pro Glu Ile Phe Phe Ala Leu Ala Ser Ser Leu Ser Ser Ala Ser Ala Glu Lys Gly Ser Pro Ile Leu Leu Gly Val Ser Lys Gly Glu Phe Cys Leu Tyr Cys Asp Lys Asp Lys Gly Gln Ser His Pro Ser Leu Gln Leu Lys Lys Glu 105 110 Lys Leu Met Lys Leu Ala Ala Gln Lys Glu Ser Ala Arg Arg Pro Phe Ile Phe Tyr Arg Ala Gln Val Gly Ser Trp Asn Met Leu Glu Ser Ala Ala His Pro Gly Trp Phe Ile Cys Thr Ser Cys Asn Cys Asn Glu Pro Val Gly Val Thr Asp Lys Phe Glu Asn Arg Lys His Ile Glu Phe Ser

Phe Gln Pro Val Cys Lys Ala Glu Met Ser Pro Ser Glu Val Ser Asp

<210> 4

<211> 696

<212> PRT

<213> Homo sapiens

<400> 4

Met Lys Ala Pro Ile Pro His Leu Ile Leu Leu Tyr Ala Thr Phe Thr 1 5 10 15

Gln Ser Leu Lys Val Val Thr Lys Arg Gly Ser Ala Asp Gly Cys Thr 20 25 30

Asp Trp Ser Ile Asp Ile Lys Lys Tyr Gln Val Leu Val Gly Glu Pro 35 40 45

Val Arg Ile Lys Cys Ala Leu Phe Tyr Gly Tyr Ile Arg Thr Asn Tyr 50 55 60

Ser Leu Ala Gln Ser Ala Gly Leu Ser Leu Met Trp Tyr Lys Ser Ser 65 70 75 80

Gly Pro Gly Asp Phe Glu Glu Pro Ile Ala Phe Asp Gly Ser Arg Met
85 90 95

Ser Lys Glu Glu Asp Ser Ile Trp Phe Arg Pro Thr Leu Leu Gln Asp 100 105 110

Ser Gly Leu Tyr Ala Cys Val Ile Arg Asn Ser Thr Tyr Cys Met Lys 115 120 125

Val Ser Ile Ser Leu Thr Val Gly Glu Asn Asp Thr Gly Leu Cys Tyr 130 135 140

Asn Ser Lys Met Lys Tyr Phe Glu Lys Ala Glu Leu Ser Lys Ser Lys 145 150 155 160

Glu Ile Ser Cys Arg Asp Ile Glu Asp Phe Leu Leu Pro Thr Arg Glu 165 170 175

Pro Glu Ile Leu Trp Tyr Lys Glu Cys Arg Thr Lys Thr Trp Arg Pro 180 185 190

Ser Ile Val Phe Lys Arg Asp Thr Leu Leu Ile Arg Glu Val Arg Glu 195 200 205

Asp	Asp 210	Ile	Gly	Asn	Tyr	Thr 215	Cys 、	Glu	Leu	Lys	Tyr 220	Gly	Gly	Phe	Val
Val 225	Arg	Arg	Thr	Thr	Glu 230	Leu	Thr	Val	Thr	Ala 235	Pro	Leu	Thr	Asp	Lys 240
Pro	Pro	Lys	Leu	Leu 245	Tyr	Pro	Met	Glu	Ser 250	Lys	Leu	Thr	Ile	Gln 255	Glu
Thr	Gln	Leu	Gly 260	Asp	Ser	Ala	Asn	Leu 265	Thr	Cys	Arg	Ala	Phe 270	Phe	Gly
Tyr	Ser	Gly 275	Asp	Val	Ser	Pro	Leu 280	Ile	Tyr	Trp	Met	Lys 285	Gly	Glu	Lys
Phe	Ile 290	Glu	Asp	Leu	Asp	Glu 295	Asn	Arg	Val	Trp	Glu 300	Ser	Asp	Ile	Arg
Ile 305	Leu	Lys	Glu	His	Leu 310	Gly	Glu	Gln	Glu	Val 315	Ser	Ile	Ser	Leu	Ile 320
Val	Asp	Ser	Val	Glu 325	Glu	Gly	Asp	Leu	Gly 330	Asn	Tyr	Ser	Суѕ	Tyr 335	Val
Glu	Asn	Gly	Asn 340	Gly	Arg	Arg	His	Ala 345	Ser	Val	Leu	Leu	His 350	Lys	Arg
Glu	Leu	Met 355	Tyr	Thr	Val	Glu	Leu 360	Ala	Gly	Gly	Leu	Gly 365	Ala	Ile	Leu
Leu	Leu 370	Leu	Val	Cys	Leu	Val 375	Thr	Ile	Tyr	Lys	Cys 380	Tyr	Lys	Ile	Glu
Ile 385	Met	Leu	Phe	Tyr	Arg 390	Asn	His	Phe	Gly	Ala 395	Glu	Glu	Leu	Asp	Gly 400
Asp	Asn	Lys	Asp	Tyr 405	Asp	Ala	Tyr	Leu	Ser 410	Tyr	Thr	Lys	Val	Asp 415	Pro
Asp	Gln	Trp	Asn 420	Gln	Glu	Thr	Gly	Glu 425	Glu	Glu	Arg	Phe	Ala 430	Leu	Glu
Ile	Leu	Pro 435	Asp	Met	Leu	Glu	Lys 440	His	Tyr	Gly	Tyr	Lys 445	Leu	Phe	Ile
Pro	Asp	Arg	Asp	Leu	Ile	Pro	Thr	Gly	Thr	Tyr	Ile	Glu	Asp	Val	Ala

450 455 460

Arg Cys Val Asp Gln Ser Lys Arg Leu Ile Ile Val Met Thr Pro Asn 465 470 475 480

Tyr Val Val Arg Arg Gly Trp Ser Ile Phe Glu Leu Glu Thr Arg Leu 485 490 495

Arg Asn Met Leu Val Thr Gly Glu Ile Lys Val Ile Leu Ile Glu Cys 500 505 510

Ser Glu Leu Arg Gly Ile Met Asn Tyr Gln Glu Val Glu Ala Leu Lys 515 520 525

His Thr Ile Lys Leu Leu Thr Val Ile Lys Trp His Gly Pro Lys Cys 530 540

Asn Lys Leu Asn Ser Lys Phe Trp Lys Arg Leu Gln Tyr Glu Met Pro 545 550 550

Phe Lys Arg Ile Glu Pro Ile Thr His Glu Gln Ala Leu Asp Val Ser 565 570 575

Glu Gln Gly Pro Phe Gly Glu Leu Gln Thr Val Ser Ala Ile Ser Met 580 590

Ala Ala Ala Thr Ser Thr Ala Leu Ala Thr Ala His Pro Asp Leu Arg 595 600 605

Ser Thr Phe His Asn Thr Tyr His Ser Gln Met Arg Gln Lys His Tyr 610 620

Tyr Arg Ser Tyr Glu Tyr Asp Val Pro Pro Thr Gly Thr Leu Pro Leu 625 630 635 640

Thr Ser Ile Gly Asn Gln His Thr Tyr Cys Asn Ile Pro Met Thr Leu 645 650 655

Ile Asn Gly Gln Arg Pro Gln Thr Lys Ser Ser Arg Glu Gln Asn Pro 660 665 670

Asp Glu Ala His Thr Asn Ser Ala Ile Leu Pro Leu Pro Arg Glu 675 680 685

Thr Ser Ile Ser Ser Val Ile Trp 690 695

<210> 5 <211> 657 <212> DNA <213> Hor		•				
<400> 5						
	g tgggggagaa	ctcaggagtg	aaaatgggct	ctgaggactg	ggaaaaagat	60
gaaccccagt	gctgcttaga	agacccggct	gtaagccccc	tggaaccagg	cccaagcctc	120
cccaccatga	ı attttgttca	cacaagtcca	aaggtgaaga	acttaaaccc	gaagaaattc	180
agcattcatg	accaggatca	caaagtactg	gtcctggact	ctgggaatct	catagcagtt	240
ccagataaaa	actacatacg	cccagagatc	ttctttgcat	tagcctcatc	cttgagctca	300
gcctctgcgg	agaaaggaag	tccgattctc	ctgggggtct	ctaaagggga	gttttgtctc	360
tactgtgaca	aggataaagg	acaaagtcat	ccatcccttc	agctgaagaa	ggagaaactg	420
atgaagctgg	ctgcccaaaa	ggaatcagca	cgccggccct	tcatctttta	tagggctcag	480
gtgggctcct	ggaacatgct	ggagtcggcg	gctcaccccg	gatggttcat	ctgcacctcc	540
tgcaattgta	atgagcctgt	tggggtgaca	gataaatttg	agaacaggaa	acacattgaa	600
ttttcatttc	aaccagtttg	caaagctgaa	atgagcccca	gtgaggtcag	cgattag	657
<210> 6 <211> 594 <212> DNA <213> Home						
<400> 6						
atgtcctttg	tgggggagaa	ctcaggagtg	aaaatgggct	ctgaggactg	ggaaaaagat	60
gaaccccagt	gctgcttaga	aggtccaaag	gtgaagaact	taaacccgaa	gaaattcagc	120
attcatgacc	aggatcacaa	agtactggtc	ctggactctg	ggaatctcat	agcagttcca	180
gataaaaact	acatacgccc	agagatcttc	tttgcattag	cctcatcctt	gagctcagcc	240
tctgcggaga	aaggaagtcc	gattctcctg	ggggtctcta	aaggggagtt	ttgtctctac	300
tgtgacaagg	ataaaggaca	aagtcatcca	tcccttcagc	tgaagaagga	gaaactgatg	360
aagctggctg	cccaaaagga	atcagcacgc	cggcccttca	tcttttatag	ggctcaggtg	420
ggctcctgga	acatgctgga	gtcggcggct	caccccggat	ggttcatctg	cacctcctgc	480
aattgtaatg	agcctgttgg	ggtgacagat	aaatttgaga	acaggaaaca	cattgaattt	540
tcatttcaac	cagtttgcaa	agctgaaatg	agccccagtg	aggtcagcga	ttag	594

<210> 7 <211> 474 <212> DNA

<213>	Uomo	anniona
< Z 13>	HOMO	sapiens

<400> 7						
atgtcctttg	tgggggagaa	ctcaggagtg	aaaatgggct	ctgaggactg	ggaaaaagat	60
gaaccccagt	gctgcttaga	agagatcttc	tttgcattag	cctcatcctt	gagctcagcc	120
tctgcggaga	aaggaagtcc	gattctcctg	ggggtctcta	aaggggagtt	ttgtctctac	180
tgtgacaagg	ataaaggaca	aagtcatcca	tcccttcagc	tgaagaagga	gaaactgatg	240
aagctggctg	cccaaaagga	atcagcacgc	cggcccttca	tcttttatag	ggctcaggtg	300
ggctcctgga	acatgctgga	gtcggcggct	caccccggat	ggttcatctg	cacctcctgc	360
aattgtaatg	agcctgttgg	ggtgacagat	aaatttgaga	acaggaaaca	cattgaattt	420
tcatttcaac	cagtttgcaa	agctgaaatg	agccccagtg	aggtcagcga	ttag	474

<210> 8

<211> 218

<212> PRT

<213> Homo sapiens

<400> 8

Met Ser Phe Val Gly Glu Asn Ser Gly Val Lys Met Gly Ser Glu Asp 1 5 10 15

Trp Glu Lys Asp Glu Pro Gln Cys Cys Leu Glu Asp Pro Ala Val Ser 20 25 30

Pro Leu Glu Pro Gly Pro Ser Leu Pro Thr Met Asn Phe Val His Thr 35 40 45

Ser Pro Lys Val Lys Asn Leu Asn Pro Lys Lys Phe Ser Ile His Asp 50 55 60

Gln Asp His Lys Val Leu Val Leu Asp Ser Gly Asn Leu Ile Ala Val 65 70 75 80

Pro Asp Lys Asn Tyr Ile Arg Pro Glu Ile Phe Phe Ala Leu Ala Ser 85 90 95

Ser Leu Ser Ser Ala Ser Ala Glu Lys Gly Ser Pro Ile Leu Leu Gly 100 105 110

Val Ser Lys Gly Glu Phe Cys Leu Tyr Cys Asp Lys Asp Lys Gly Gln 115 120 125

Ser His Pro Ser Leu Gln Leu Lys Lys Glu Lys Leu Met Lys Leu Ala 130 135 140 Ala Gln Lys Glu Ser Ala Arg Arg Pro Phe Ile Phe Tyr Arg Ala Gln 145 150 150

Val Gly Ser Trp Asn Met Leu Glu Ser Ala Ala His Pro Gly Trp Phe 165 170 175

Ile Cys Thr Ser Cys Asn Cys Asn Glu Pro Val Gly Val Thr Asp Lys
180 185 190

Phe Glu Asn Arg Lys His Ile Glu Phe Ser Phe Gln Pro Val Cys Lys 195 200 205

Ala Glu Met Ser Pro Ser Glu Val Ser Asp 210 215

<210> 9

<211> 197

<212> PRT

<213> Homo sapiens

<400> 9

Met Ser Phe Val Gly Glu Asn Ser Gly Val Lys Met Gly Ser Glu Asp 1 5 10 15

Trp Glu Lys Asp Glu Pro Gln Cys Cys Leu Glu Gly Pro Lys Val Lys 20 25 30

Asn Leu Asn Pro Lys Lys Phe Ser Ile His Asp Gln Asp His Lys Val
35 40 45

Leu Val Leu Asp Ser Gly Asn Leu Ile Ala Val Pro Asp Lys Asn Tyr 50 55 60

Ile Arg Pro Glu Ile Phe Phe Ala Leu Ala Ser Ser Leu Ser Ser Ala 65 70 75 80

Ser Ala Glu Lys Gly Ser Pro Ile Leu Leu Gly Val Ser Lys Gly Glu 85 90 95

Phe Cys Leu Tyr Cys Asp Lys Asp Lys Gly Gln Ser His Pro Ser Leu 100 105 110

Gln Leu Lys Lys Glu Lys Leu Met Lys Leu Ala Ala Gln Lys Glu Ser 115 120 125 Ala Arg Arg Pro Phe Ile Phe Tyr Arg Ala Gl
n Val Gly Ser Trp As
n 130 $$ 135 . $$ 140

Met Leu Glu Ser Ala Ala His Pro Gly Trp Phe Ile Cys Thr Ser Cys 145 150 155 160

Asn Cys Asn Glu Pro Val Gly Val Thr Asp Lys Phe Glu Asn Arg Lys
165 170 175

His Ile Glu Phe Ser Phe Gln Pro Val Cys Lys Ala Glu Met Ser Pro 180 185 190

Ser Glu Val Ser Asp 195

<210> 10

<211> 157

<212> PRT

<213> Homo sapiens

<400> 10

Met Ser Phe Val Gly Glu Asn Ser Gly Val Lys Met Gly Ser Glu Asp 1 5 10 15

Trp Glu Lys Asp Glu Pro Gln Cys Cys Leu Glu Glu Ile Phe Phe Ala 20 25 30

Leu Ala Ser Ser Leu Ser Ser Ala Ser Ala Glu Lys Gly Ser Pro Ile 35 40 45

Leu Leu Gly Val Ser Lys Gly Glu Phe Cys Leu Tyr Cys Asp Lys Asp 50 55 60

Lys Gly Gln Ser His Pro Ser Leu Gln Leu Lys Lys Glu Lys Leu Met 70 75 80

Lys Leu Ala Ala Gln Lys Glu Ser Ala Arg Arg Pro Phe Ile Phe Tyr 85 90 95

Arg Ala Gln Val Gly Ser Trp Asn Met Leu Glu Ser Ala Ala His Pro 100 105 110

Gly Trp Phe Ile Cys Thr Ser Cys Asn Cys Asn Glu Pro Val Gly Val 115 120 125

Thr Asp Lys Phe Glu Asn Arg Lys His Ile Glu Phe Ser Phe Gln Pro 130 135 140

Val Cys Lys Ala Glu Met Ser Pro Ser Glu Val Ser Asp 145 150 155 <210> 11 <211> 8 <212> PRT <213> Artificial sequence <220> antigenic peptide used in fusion proteins <223> <400> 11 Asp Tyr Lys Asp Asp Asp Lys 1 <210> 12 <211> 27 <212> PRT <213> Artificial sequence <220> <223> leucine zipper polypeptide <400> 12 Pro Asp Val Ala Ser Leu Arg Gln Gln Val Glu Ala Leu Gln Gly Gln 1 5 10 15 Val Gln His Leu Gln Ala Ala Phe Ser Gln Tyr 20 <210> 13 <211> 33 <212> PRT <213> Artificial sequence <220> <223> leucine zipper polypeptide <400> 13 Arg Met Lys Gln Ile Glu Asp Lys Ile Glu Glu Ile Leu Ser Lys Ile 10 15 Tyr His Ile Glu Asn Glu Ile Ala Arg Ile Lys Lys Leu Ile Gly Glu 20 Arg <210> 14

11