University of Dhaka

Department of Computer Science and Engineering

CSE 3116 -Microcontroller Lab

Batch 28 / 3RD Year 1ST Semester

Blinky Program and Road Traffic Management

Submitted To:

Dr. Mosaddek Tushar, Professor, CSEDU Jargis Ahmed, Lecturer, CSEDU

Group Number: B_9(Even)

Submitted By:

Farzana Tasnim (14) Amina Islam (36) Rezaunnabi Ruhan (58)

1 Blinky Program

1.1 Design

GPIO Configuration

- Pin Used: GPIOA pin 5 (PA5) for LED control.
- Configuration (in GPIO_Init):
 - Enable GPIOA clock (RCC->AHB1ENR |= 0x1U).
 - Set PA5 as output (GPIOA->MODER \mid = 0x1U << 10, sets MODER[11:10] = 01).
 - Configure PA5 for very high-speed operation (GPIOA->OSPEEDR \mid = 0x3U << 10).

Control Function:

- GPIO_ON(5): Sets PA5 high (GPIOA->BSRR = 0x1U << 5) to turn the LED on.
- GPIO_OFF(5): Sets PA5 low (GPIOA->BSRR = 0x1U << (5 + 16)) to turn the LED off.

Main Loop Operation

- Functionality: Continuously toggles the LED on PA5.
- Implementation (in main):
 - Initialize clock (initClock()) and GPIO (GPIO_Init()).
 - Enter infinite loop:
 - * Turn LED on (GPIO_ON(5)).
 - * Delay using a for loop (for (volatile int i = 0; i < 1000000; i++)).
 - * Turn LED off (GPIO_OFF(5)).
 - * Delay again with the same loop.

1.2 Required Hardwares

- 1. LED(1)
- 2. Register(1)
- 3. Breadboard
- 4. STM32F446RE
- 5. Wires

1.3 Result

Figure 1: Blinking Led Circuit

2 Traffic Management

2.1 Design

Hardware Configuration

- GPIO Setup:
 - Port B (PB0-PB5): Configured as outputs for traffic light signals:
 - * PB0: NS Red, PB1: NS Yellow, PB2: NS Green
 - * PB3: EW Red, PB4: EW Yellow, PB5: EW Green
 - Port A (PA6-PA7): Configured as outputs for load indicator LEDs:
 - * PA6: NS Load Indicator, PA7: EW Load Indicator
 - All pins are set to **high-speed** operation.

• Clock Configuration:

- Configures AHB , APB1 and APB2 .

Software Design

- Traffic States: Defined as an enumeration with three states:
 - NORTH_SOUTH_GREEN: NS green, EW red
 - YELLOW: NS yellow, EW yellow
 - EAST_WEST_GREEN: EW green, NS red

• Traffic Light Control:

- The set_traffic_lights function sets GPIO pins based on the current state, ensuring only the appropriate lights are active.
- States transition in a fixed sequence: NS Green \rightarrow NS Yellow \rightarrow EW Green \rightarrow EW Yellow, looping indefinitely.

• Traffic Load Simulation:

- The simulate_random_load function generates random binary values (0 or 1) for NS and EW traffic loads.
- Load indicators (PA6, PA7) reflect the simulated load (high/low).
- The green light duration dynamically adjusts based on traffic load—set to 20 seconds under high load conditions and 10 seconds under low load—whereas the yellow light duration is fixed at 5 seconds regardless of load.

• Main Loop:

- Initializes clock, system init, and traffic init.
- Enters an infinite loop in traffic_control, cycling through traffic states with adaptive green timings based on simulated load.

Timing and Operation

The system operates as a state machine with adaptive timing:

- NS Green: 10s (low load) or 20s (high load), followed by 5s yellow.
- EW Green: 10s (low load) or 20s (high load), followed by 5s yellow.

2.2 Required Hardwares

- 1. LEDs(2 red, 2 green, 2 yelllow, 2 white)
- 2. 1k ohm Register(8)
- 3. Breadboard
- 4. STM32F446RE
- 5. Wires

2.3 Result

Figure 2: Left:North-South , Right:East-West , Traffic lights(Red, Green, Blue LEDs), Loads-White LEDs

Figure 3: NS-Green, EW-Red , Load on both side.

Figure 4: NS-Green, EW-Red , Load on NS side.

Figure 5: NS-Red, EW-Green , Load on Both side.

Figure 6: Transition from Green to Red and vice versa.