Probability Theory I Assignment 1

Claire He

12 septembre 2022

Notations

Exercise 1

We proceed inductively. For n=1, the formula holds. For n=2, the formula holds as well straightforwardly: for any two events $A, B, P(A \cup B) = P(A) + P(B) - P(A \cap B)$. For that we used the following that uses the property for disjoint sets:

$$P(A) + P(B) = (P(A \cap B^c) + P(A \cap B)) + (P(B \cap A^c) + P(B \cap A)) = P(A \cup B) + P(B \cap A)$$

Now assume by induction the generalised result for a certain $n \geq 1$. Let A_1, \ldots, A_{n+1} be events on (Ω, \mathcal{F}, P) .

$$P(\bigcup_{i=1}^{n+1} A_i) = P(A_{n+1} \cup (\bigcup_{i=1}^{n} A_i))$$

$$= P(\bigcup_{i=1}^{n} A_i) + P(A_{n+1}) - P(A_{n+1} \cap \bigcup_{i=1}^{n} A_i) \text{ using formula for } n = 2$$

$$= \sum_{i=1}^{n} P(A_i) - \sum_{i < j \le n} P(A_i \cap A_j) + \sum_{i < j < k \le n} P(A_i \cap A_j \cap A_k) + \dots + (-1)^{n+1} P(\bigcap_{i=1}^{n} A_i) + P(A_{n+1}) - P(A_{n+1} \cap \bigcup_{i=1}^{n} A_i) \text{ using the induction hypothesis for } n$$

Now let's work on the last term of the LHS.

$$P(A_{n+1} \cap \bigcup_{i=1}^{n} A_i) = P(\bigcup_{i=1}^{n} (A_i \cap A_{n+1})) \text{ then using induction hypothesis we get :}$$

$$= \sum_{i=1}^{n} P(A_i \cap A_{n+1}) - \sum_{i < j \le n} P(A_i \cap A_j \cap A_{n+1}) + \dots + (-1)^{n+1} P(\bigcap_{i=1}^{n} A_i \cap A_{n+1})$$

$$= \sum_{i=1}^{n} P(A_i \cap A_{n+1}) - \sum_{i < j \le n} P(A_i \cap A_j \cap A_{n+1}) + \dots$$

$$+ (-1)^n \sum_{\substack{J \subset \{1, \dots, n\} \\ |J| = n-1}} P(\bigcap_{j \in J} A_j \cap A_{n+1}) + (-1)^{n+1} P(\bigcap_{i=1}^{n} A_i \cap A_{n+1})$$

Now piecing the correspondingly colored terms together:

$$P(\bigcup_{i=1}^{n+1} A_i) = \sum_{i=1}^{n+1} P(A_i) - \sum_{1 \le i < j \le n+1} P(A_i \cap A_j) + \sum_{i < j < k \le n+1} P(A_i \cap A_j \cap A_k) + \dots$$

$$+ (-1)^n \sum_{\substack{\mathcal{J}' \subset \{1, \dots, n+1\} \\ |\mathcal{J}'| = n}} P(\bigcap_{j \in \mathcal{J}'} A_j) + (-1)^{n+2} P(\bigcap_{i=1}^{n+1} A_i) \text{ as required for } n+1.$$

Exercise 2

Take $C^* = \bigcap_{\substack{\mathcal{C} \subset \mathcal{A} \\ \mathcal{A} \text{ } \sigma-\text{algebra}}} \mathcal{A}$. Note that C^* is a σ -algebra as intersection of σ -algebra.

Take any \mathcal{G} σ -algebra containing \mathcal{C} ,

$$\mathcal{C}^* \cap \mathcal{G} = \bigcap_{\substack{\mathcal{C} \subset \mathcal{A} \\ \mathcal{A} \text{ } \sigma-\text{algebra}}} \mathcal{A} \cap \mathcal{G} = \bigcap_{\substack{\mathcal{C} \subset \mathcal{A} \\ \mathcal{A} \text{ } \sigma-\text{algebra}}} \mathcal{A} = \mathcal{C}^*$$

So $\mathcal{C}^* \cap \mathcal{G} = \mathcal{C}^*$ hence $\mathcal{C}^* \subset \mathcal{G}$ and we conclude that $\mathcal{C}^* = \sigma(\mathcal{C})$ as required.

Exercise 3

Let $\mathcal{C} = \{\{\omega\} : \omega \in \Omega\}$ and let $\mathcal{A} := \{A \subset \Omega : A \text{ or } A^c \text{ is countable }\}$. We want to show that $\mathcal{A} = \sigma(\mathcal{C})$. Note that $\sigma(\mathcal{C})$ contains any countable union of singletons. It is easy to see that $\mathcal{C} \subset \mathcal{A}$ since singletons are countable.

Also straightforward that \mathcal{A} is a σ -algebra : $\emptyset \in \mathcal{A}$, for $A \in \mathcal{A}$, $A^c \in \mathcal{A}$ in either cases, if A is countable, or if it isn't, by construction A^c is countable and is in \mathcal{A} , and if $(A_n)_n$ are events of \mathcal{A} , let's denote A_n^* the countable events, and $A_n^\#$ the ones where A_n^c is countable. Then $\bigcup_n A_n = \bigcup_n A_n^* \cup \bigcup_n ((A_n^\#)^c)^c$. Using the stability by complementary property, the stability by union property is also verified.

Now for any $A \in \mathcal{A}$, if A is countable, then A is the union of a countable number of singletons, so $A \in \sigma(\mathcal{C})$. If A isn't, then A^c is countable, and is the union of a countable number of singletons and therefore $A^c \in \sigma(\mathcal{C})$. Using the stability by complementary, $A \in \sigma(\mathcal{C})$. Therefore, $A \subset \sigma(\mathcal{C})$ and by minimality, $A = \sigma(\mathcal{C})$.

Exercise 4

 $- C_1 = \{(a, b) : a \in \mathbb{R}, b \in \mathbb{R}, a < b\}$

We claim that any open set in \mathbb{R} can be written as countable union of open intervals and that we can even choose those intervals to be disjoint ie $\forall O \in \mathcal{B}(\mathbb{R}), \ O = \bigsqcup_{n \in \mathbb{N}} (a_n, b_n)$ where $a_n < b_n$. Therefore, $\mathcal{B}(\mathbb{R}) \subset \mathcal{C}_1$.

Conversely, any open interval of C_1 is an open set. Since the borelians are generated by open sets of \mathbb{R} , $C_1 \subset \mathcal{B}(\mathbb{R})$.

Hence $C_1 = \mathcal{B}(\mathbb{R})$.

 $\mathcal{C}_2 = \{ [a, b] : a \in \mathbb{R}, b \in \mathbb{R}, a < b \}$

For this, see that for any a < b, $[a,b] = \bigcup_{n \ge 1} \{(a-n,a) \cup (b,b+n)\}^c$ Using the previous point, (a-n,a) and (b,b+n) are open intervals, therefore, $[a,b] \in \mathcal{C}_1$ by stability by countable union and stability of complementary since we have shown that $\mathcal{C}_1 = \mathcal{B}(\mathbb{R})$ is a σ -algebra. Therefore, $\mathcal{C}_2 \subset \mathcal{C}_1$. Conversely, for any a < b, $(a,b) = \bigcap_{n \ge 1} [a + \frac{1}{n}, b - \frac{1}{n}]$ so similarly, since we can write any open interval as a countable intersection of closed intervals, $\mathcal{C}_1 \subset \mathcal{C}_2$.

Hence, $C_2 = \mathcal{B}(\mathbb{R})$. — $C_3 = \{(a, b] : a \in \mathbb{R}, b \in \mathbb{R}, a < b\}$

We start from the following: for any a < b, $(a, b] = \bigcap_{n \ge 1} (a, b + \frac{1}{n})$. Since $(a, b + \frac{1}{n}) \in \mathcal{C}_1$, and this is a countable intersection, $\mathcal{C}_3 \subset \mathcal{C}_1$.

Assignment 1 2

```
Conversely, (a,b) = \bigcap_{n\geq 1} (a,b-\frac{1}{n}], hence, \mathcal{C}_1 \subset \mathcal{C}_3.

Therefore \mathcal{C}_3 = \mathcal{B}(\mathbb{R}).

— \mathcal{C}_4 = \{[a,b): a \in \mathbb{R}, b \in \mathbb{R}, a < b\}

For any a < b, [a,b) = \bigcap_{n\geq 1} (a-\frac{1}{n},b). Since (a-\frac{1}{n},b) \in \mathcal{C}_1, and this is a countable intersection, \mathcal{C}_4 \subset \mathcal{C}_1.

Conversely, for any a < b, (a,b) = \bigcap_{n\geq 1} [a+\frac{1}{n},b), hence, \mathcal{C}_1 \subset \mathcal{C}_4.

Therefore \mathcal{C}_4 = \mathcal{B}(\mathbb{R}).

— \mathcal{C}_5 = \{(a,\infty): a \in \mathbb{R}\}

Since (a,\infty) = \bigcup_{n\geq 1} (a,a+n), \mathcal{C}_5 \subset \mathcal{C}_1.

Conversely, for any a < b, (a,b] = (a,\infty) \cap (b,\infty)^c, hence \mathcal{C}_3 \subset \mathcal{C}_5.

Threfore \mathcal{C}_5 = \mathcal{B}(\mathbb{R}).
```

Exercise 5

Let $B \in \mathcal{G}$, first notice that $(g \circ f)^{-1}(B) = f^{-1} \circ g^{-1}(B)$. Since g is measurable, $A := g^{-1}(B) \in \mathcal{E}$. Also, since f is measurable $f^{-1}(A) = f^{-1}(g^{-1}(B)) \in \mathcal{F}$. Therefore, if $B \in \mathcal{G}$, $(g \circ f)^{-1}(B) \in \mathcal{F}$ meaning $g \circ f$ is measurable.

Now let X_1, \ldots, X_n be measurable, and $\varphi : \mathbb{R}^n \to \mathbb{R}$ continuous. Following the hint, we take $O_1 \times \ldots O_n \in \mathbb{R}^n$ open sets since it generates $\mathcal{B}(\mathbb{R}^n)$.

First, we claim that $(X_1, \ldots, X_n)^{-1}(O_1 \times \cdots \times O_n) = X_1^{-1}(O_1) \cap \cdots \cap X_n^{-1}(O_n)$

Since $(O_i)_{i=1}^n$ are open sets in \mathbb{R} and $(X_i)_{i=1}^n$ are measurable, for all $i=1,\ldots,n, X_i^{-1}(O_i) \in \mathcal{F}$, and since \mathcal{F} is a σ -algebra, it is stable by finite intersection, therefore $(X_1,\ldots,X_n)^{-1}(O_1\times\cdots\times O_n)\in \mathcal{F}$. And we have shown that $(X_1,\ldots,X_n):\Omega^n\to\mathbb{R}^n$ is measurable.

Now, since (X_1, \ldots, X_n) is measurable and φ is continuous therefore measurable, using the first part of the question, $\varphi \circ (X_1, \ldots, X_n)$ is measurable.

Assignment 1 3