Stu 2014-03-0

Four d'Merent ases - the VAR(1) model

The born dillerent cases are non related to the roots of the charecteristic polynomial $_{c}$ C(Z), for A_{0} , i.e. the roots of: $(C(Z)) = det(I_{2} - A_{1}Z) = 0$

This implies that
$$X_{t} \sim T(0)$$
 (a schemary System)

Example: $A_{t} = \begin{pmatrix} 0.5 & 0.2 \\ 0.6 & 0.4 \end{pmatrix}$, $Z_{t} = 10$, $Z_{t} = 1.25$. Moreover,

 $T = \begin{pmatrix} -0.5 & 0.2 \\ 0.6 & -0.6 \end{pmatrix}$; ranh $(\Pi) = Z_{t} = 1$ (full rank)

This implies that $X_{\xi} \cap T(1)$ (a non-stationary system)

Example: $A_{\xi} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = T_{2}$, $Z_{\xi} = 1$. Moreover, $T = T_{2} - T_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{Which implies in (7) that}$ $\Delta X_{\xi} = e_{\xi} \quad \text{Alt} = X_{\xi} e_{-1} = \begin{pmatrix} e_{\xi} \\ e_{7} e_{1} \end{pmatrix} = \begin{pmatrix} e_{\xi} \\ e_{7} e_{7} \end{pmatrix} = \begin{pmatrix} e_{\xi}$

Finally, rank(11)=0 (minimum rank) We conclude, K+ TCO but not a cointegraled system. (II) 2,=1 (22/>1

This implies that $X_{i} \cap ICI$ (a non-stationary system)

Example: $A_{i} = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix}$, $\mathcal{E}_{i} = 1$, $\mathcal{E}_{2} = 1.4786$. Moreover, $\mathcal{O}_{i} = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix}$; Since $\mathcal{C}_{2} = -0.5C_{i}$ we will have veduced rank, i.e.

ReMark: Since we have a reduced rank case, Xi and XI will have a common stochastic trend (up to a scalar).

(We conclude, KerICI) and is a cointegraled System.

(IV.) |Z| | | | | | (on it any voc6:5 stress there are in assolute calve)

This case implies an explosive system (exponential trend), and is not tentor studied in this course.

