Projekt

STEROWNIKI ROBOTÓW

Raport

Sterowany Pochyleniem Ręki Pojazd Prawie Autonomiczny

S.P.R.P.P.A

Skład grupy (6): Patrycjusz Auguscik, 226523 Maciej Kajdak, 226256

Termin: wtTP11

 $\begin{tabular}{ll} $Prowadzący: \\ mgr inż. Wojciech DOMSKI \end{tabular}$

Spis treści

1	Opis prac	2	
2	Konfiguracja mikrokontrolerów 2.1 Konfiguracja STM32L476VGT6		
3	Wykorzystane układy zewnętrzne 3.1 Układ LSM303CTR	6	
4	Opis działania programu	7	
5	Zadania niezrealizowane	8	

1 Opis prac

Projekt ma na celu stworzenie sterownika do małego, zdalnie sterowanego pojazdu. Sterownik ma bazować na odczytach z układu akcelerometru LSM303CTR dostępnego na płytce deweloperskiej STM32L476 Discovery. Odpowiednie pochylenie płytki będzie skutkowało ruchem pojazdu w określonych kierunkach.

Do wspomagania pracy zespołowej użyto systemu kontroli wersji Git, a repozytorium projektu znajduje się na serwerze Github pod adresem Github

Na dzień oddania Etapu II zrealizowano następujące zadania:

- Skonfigurowano sygnały oraz zegar w STMCubeMX dla płytki Discovery.
- Trwają prace nad poprawnym czytaniem danych z akcelerometru.
- Zaprojektowano i zbudowano samochodzik wchodzący w skład projektu.
- Zaprojektowano i wytworzono płytkę wchodzącą w skład samochodzika

2 Konfiguracja mikrokontrolerów

2.1 Konfiguracja STM32L476VGT6

Na rysunku 1 przedstawiono konfigurację zegara mikrokontrolera STM32L476VGT6 dostępnego na płytce deweloperskiej Discovery uwzględniając poniższe założenia:

- 1. **USART1** skonfigurowany w trybie asynchronicznym do komunikacji z modułem bluetooth. Uzywane piny PB6 i PB7 jako kolejno: BLUETOOTH TX oraz BLUETOOTH RX.
 - rozmiar danych ustawiony na 8 bitów,
 - bez bitu parzystości,
 - $\bullet\,$ baud rate us tawiony na 115200 bits/s.
- 2. **USART2** skonfigurowany w trybie asynchronicznym do debugowania. Użyte piny PD5 i PD6 kolejno jako USART2_TX oraz USART2_RX. Długość słowa ustawiona na 8 bitów, bez bitu parzystości.
 - rozmiar danych ustawiony na 8 bitów,
 - bez bitu parzystości,
 - \bullet baud rate us tawiony na 115200 bits/s.
- $3.\ \mathbf{SPI2}$ skonfigurowany do odczytywania danych z akcelerometru. Działa w trybie Half-Duplex Master
 - $\bullet\,$ rozmiar danych ustawiony na 8 bitów,
 - baud rate dla taktowania procesora 80 MHz wynosi 10 Mb/s.

Rysunek 1: Konfiguracja zegara dla płytki Discovery

Na rysunku 2 przedstawiono konfigurację peryferiów mikrokontrolera STM32L476VGT6 z uwzględnieniem powyższych założeń.

IP	Pin	Signal	GPIO mode	GPIO pull/up pull	Max	User Label
RCC	PC14- OSC32_IN (PC14)	RCC_OSC32_IN	n/a	down n/a	Speed n/a	
	PC15- OSC32_OU T (PC15)	RCC_OSC32_O UT	n/a	n/a	n/a	
	PH0- OSC_IN (PH0)	RCC_OSC_IN	n/a	n/a	n/a	
	PH1- OSC_OUT (PH1)	RCC_OSC_OUT	n/a	n/a	n/a	
SPI2	PD1	SPI2_SCK	Alternate Function Push Pull	No pull-up and no pull-down	Very High *	ACC_SCK
	PD4	SPI2_MOSI	Alternate Function Push Pull	No pull-up and no pull-down	Very High	ACC_MOSI
USART1	PB6	USART1_TX	Alternate Function Push Pull	No pull-up and no pull-down	Very High	BLUETOOTH_TX
	PB7	USART1_RX	Alternate Function Push Pull	No pull-up and no pull-down	Very High	BLUETOOTH_RX
USART2	PD5	USART2_TX	Alternate Function Push Pull	No pull-up and no pull-down	Very High	
	PD6	USART2_RX	Alternate Function Push Pull	No pull-up and no pull-down	Very High	
GPIO	PA0	GPIO_EXTI0	External Interrupt Mode with Rising edge trigger detection	No pull-up and no pull-down	n/a	JOY_CENTER
	PB2	GPIO Output	Output Push Pull	No pull-up and no pull-down	Low	LD R
	PE8	GPIO_Output	Output Push Pull	No pull-up and no pull-down	Low	LD_G
	PE0	GPIO_Output	Output Push Pull	No pull-up and no pull-down	Low	ACC_CS

Rysunek 2: Konfiguracja peryferiów STM32L476VGT6

2.2 Konfiguracja mikrokontrolera STM32F105RBT6

Na rysunku 3 przedstawiono konfigurację zegara dla mikrokontrolera wchodzącego w skład pojazdu. Konfigurując projekt uwzględniono następujące założenia:

1.

Rysunek 3: Konfiguracja zegara dla STM32F105RBT6

Na rysunku przedstawiono tabelę z konfiguracją sygnałów mikrokontrolera z uwzględnieniem powyższych założeń.

3 Wykorzystane układy zewnętrzne

3.1 Układ LSM303CTR

Do sterownika został użyty układ dostępny na płytce Discovery – LSM303CTR (pinout układu na płytce pokazany na rysunku 4).

Rysunek 4: Układ LSM303CTR

4 Opis działania programu

Sterownik po włączaniu automatycznie łączy się z samochodzikiem jeśli jest dostępny. Automatycznie odczytuje dane z akcelerometru w pętli i jeśli samochodzik jest włączony a komunikacja między płytkami działa – przesyła odpowiednie komendy do samochodzika.

5 Zadania niezrealizowane

Poniższe zadania muszą być zrealizowane w najbliższym czasie:

• Komunikacja między płytkami przy pomocy modułów bluetooth.