Opgave 2i

Casper Lisager Frandsen

September 20, 2017

Opgave 2i.0

Udfyld følgende tabel, således at hver række repræsenterer den samme værdi men opskrevet på 4 forskellige former, og angiv mellemregningerne du brugte, for at udregne konverteringerne.

Det er lettest at udregne disse tal ved at først konvertere til binær, da jeg ved at 1 ciffer i hexadecimal = 4 cifre i binær, fordi $1111_2 = 15_{10} = f_{16}$, mens i oktal er 1 ciffer = 3 cifre i binær, da $111_2 = 7_{10} = 7_8$.

I første række startede jeg med binær. $10 = 1 * 2^3 + 1 * 2^1$. Hexadecimal: a = 10. Til oktal benyttede jeg at det binære tal kan deles op. $10_8 + 1 * 2^2 = 12_8$.

Anden række: Decimal: $1*2^4+1*2^2+1*2^0=21$ Hexadecimal: delt i to: 10000_2 og 0101_2 . $1_2=1_{16}$ og $0101_2=1*2^2+1*2^0=4_{16}$ altså giver det 14_{16} . Oktal: del i to: 10_2 og 101_2 . $10_2=1*2^1=2_8$. $101_2=1*2^2+1*2^0=5_8$, altså giver det 25_8

Tredje og fjerde række da de er ens:

Hexadecimal: 3f Binær: del i to: 3 og f. $3 = 1*2^1 + 1*2^0 = 0011_2$. $f = 1*2^3 + 1*2^2 + 1*2^1 + 1*2^0 = 1111$. Altså giver det 111111_{16} Oktal: del i to igen, 111_2 og 111_2 . $1*2^2 + 1*2^1 + 1*2^0 = 7_8$, da de begge er det samme må det give 77_8 .

Decimal	Binær	Hexadecimal	Oktal
10	1010	a	12
21	10101	14	25
63	11 1111	3f	77
63	11 1111	3f	77

Opgave 2i.1

Opskriv 2 F# udtryk, som ved brug af indeceringssyntaksen udtrækker første og andet ord i strengen "hello world"

Dette er blevet gjort vha kode, der er vedhæftet, i henholdsvis opgave2i16 og opgave2i16(1)