Inhomogeneity in HPCA insertions pattern and translocation amplitudes in compact cells: morphological properties vs PIP2 distribution

Borys Olifirov, 21.06.2021

Повышение кальция в дендритах нейронов приводит к кальций-зависимой транлокации НРСА, однако паттерн транлокации неравномерный вдоль дендрита (*Markova et al., 2008, doi:10.1016/j.neulet.2008.06.089*). Места предпочтительных мест транлокаций устойчивы во времени (*Dovgan, unpublished*). Как *in vitro*, так и *in vivo* показано, что НРСА обладает высоким сродством с минорным фосфолипидным компонентом цитоплазматической мембраны - фосфатидилинозитол 4,5-дифосфатом (PIP2), результаты измерений на липидных везикулах показали Kd ~ 50 nM (*O'Callaghan et al., 2005, doi:10.1042/BJ20051001*).

HPCA Ca2+-dependent translocations pattern in dendrite

Markova et al., 2008

В состоянии покоя лишь незначительная доля HPCA встроена в мембрану, 0-8% (*Sheremet et al., 2020, DOI 10.1007/s11062-020-09845-6*; *Cherkas, unpublished*), а при повышении концентрации кальция в отдельных регионах мембраны концентрация белка может повышаться на 50-100% (*Olifirov, unpublished*; *Dovgan, unpublished*).

Эти наблюдения позволяют выдвинуть гипотезу, что встраивание такого огромного количества кальциевого сенсора в небольшие по площади регионы мембраны может приводь к изменения ее биофизических свойств, в том числе и буферизировать PIP2. Стоит подчеркнуть, потенциальные мишени подобного воздействия HPCA также демонстрируют высокое сродство к PIP2 или же их активность непосредственно им модулируется (*Hansen, 2015, dx.doi.org/10.1016/j.bbalip.2015.01.011*; *Rodríguez-Menchaca et al., 2012, doi: 10.3389/fphar.2012.00170*; *Dickson et al., 2014, doi/10.1073/pnas.1407133111*).

Однако до сих пор не существует прямых наблюдений связи неравномерностей встраивания HPCA с распределением PIP2 в плазматической мембране а также то, насколько сильно изменение PIP2 может влиять на амплитуды встраивания HPCA в плазматическую мембрану, что критически важно для понимая механизмов взаимодействия HPCA с потенциальными мишенями. Необходимо ли для влияния на них прямое взаимодействие с HPCA или же неспецифическое влияние нейронного кальциевого сенсора на локальное мембранное окружение каналов способно изменять их поведение.

Main points

- Связан ли паттерн встраивания с морфологическими особенностями?
- Снизит ли амплитуды транслокаций удаление PIP2 из плазматической мембраны?

Hypothesis

- Неравномерности паттерна встраивания обусловлена локальной морфологией плазматической мембраны и истинное распределение HPCA равномерно Распределение равномерно и снижение количества PIP2 в мембране не должно влиять на амплитуды транслокаций HPCA
- Неравномерности паттерна встраивания обусловлена сродством с PIP2 локализованном в компактных рафтах
 Потенциально снижение количества PIP2 в мембране должно приводить к снижению

Experimental plan

амплитуды транслокацый НРСА

- EYFP-Mem + HPCA-TagRFP

 Характер распределения сайтов встраивания HPCA
- EYFP-Mem + PH-CFP
 Характер распределения PIP2
- DrVSP-EYFP + PH-CFP
 Кинетика утилизация мембранного PIP2 за счет активности DRVSP
- DrVSP-EYFP + PH-CFP + HPCA-TagRFP
 Влияние утилизация мембранного PIP2 на амплитуды транслокаций HPCA