"수업자료는 여기"

입출력(IO) 포트 실험 LED 컨트롤 실험 💂

마이크로프로세서 종합 설계

IO 포트 관련 레지스터

Port

LED

IO 포트 관련 레지스터

• 빵판 사용법(브레드보드)

IO 포트 관련 레지스터

• 빵판 사용법(브레드보드)

• 4개의 LED를 연결해서 포트를 제어 해보자.


```
void setup() {
   DDRB = B00001111;
   PORTB = B000000000;
}

void loop() {
   PORTB = B00001111;
   delay(1000);
   PORTB = B00000000;
   delay(1000);
}
```



```
void setup() {
  DDRB = 0x0F;
  PORTB = 0x0A;
}

void loop() {
  PORTB = 0x0A;
  delay(500);
  PORTB = 0x05;
  delay(500);
}
```



```
void setup() {
 DDRB = B00001111;
 PORTB = B00000000;
void loop() {
 int i = 0;
 int led = B00000001;
 for(i=0; i<4; i++)
  PORTB = led << i;
  delay(1000);
```

```
void setup() {
 DDRB = B00001111;
 PORTB = B00000000;
void loop() {
 int i = 0;
 int led = B00000001;
 for(i=0; i<4; i++)
   PORTB = \sim (led << i);
  delay(1000);
```


• 7-segment 실험

Common-anode type

$$0 = a(0) b(0) c(0) d(0) e(0) f(0) g(1) DP(1)$$

 $1 = a(1) b(0) c(0) d(1) e(1) f(1) g(1) DP(1)$
 $2 = a(0) b(0) c(1) d(0) e(0) f(1) g(0) DP(1)$
 $3 = a(0) b(0) c(0) d(0) e(1) f(1) g(0) DP(1)$
 $4 = a(1) b(0) c(0) d(1) e(1) f(0) g(0) DP(1)$
 $5 = a(0) b(1) c(0) d(0) e(1) f(0) g(0) DP(1)$

$$7 = a(0) b(0) c(0) d(1) e(1) f(0) g(1) DP(1)$$

6 = a(0) b(1) c(0) d(0) e(0) f(0) g(0) DP(1)

$$8 = a(0) b(0) c(0) d(0) e(0) f(0) g(0) DP(1)$$

$$9 = a(0) b(0) c(0) d(0) e(1) f(0) g(0) DP(1)$$

$$. = DP(0)$$

а	\rightarrow	PB0		
b	\rightarrow	PB1		
С	\rightarrow	PD2		
d	\rightarrow	PD3		
е	\rightarrow	PD4		
f	\rightarrow	PD5		
g	\rightarrow	PD6		
DP	\rightarrow	PD7		

```
0 = a(1) b(1) c(1) d(1) e(1) f(1) g(0) DP(0)
```

$$1 = a(0) b(1) c(1) d(0) e(0) f(0) g(0) DP(0)$$

$$2 = a(1) b(1) c(0) d(1) e(1) f(0) g(1) DP(0)$$

$$3 = a(1) b(1) c(1) d(1) e(0) f(0) g(1) DP(0)$$

$$4 = a(0) b(1) c(1) d(0) e(0) f(1) g(1) DP(0)$$

$$5 = a(1) b(0) c(1) d(1) e(0) f(1) g(1) DP(0)$$

$$6 = a(1) b(0) c(1) d(1) e(1) f(1) g(1) DP(0)$$

$$7 = a(1) b(1) c(1) d(0) e(0) f(1) g(0) DP(0)$$

$$8 = a(1) b(1) c(1) d(1) e(1) f(1) g(1) DP(0)$$

$$9 = a(1) b(1) c(1) d(1) e(0) f(1) g(1) DP(0)$$

	_	DD/1	١
•	_	DP(I)

		а	b	С	d	е	f	g	DP
		PB0	PB1	PD2	PD3	PD4	PD5	PD6	PD7
0	\rightarrow	1	1	1	1	1	1	0	0
1	\rightarrow	0	1	1	0	0	0	0	0
2	\rightarrow	1	1	0	1	1	0	1	0
3	\rightarrow	1	1	1	1	0	0	1	0
4	\rightarrow	0	1	1	0	0	1	1	0
5	\rightarrow	1	0	1	1	0	1	1	0
6	\rightarrow	1	0	1	1	1	1	1	0
7	\rightarrow	1	1	1	0	0	1	0	0
0	\rightarrow	1	1	1	1	1	1	1	0
9	\rightarrow	1	1	1	1	0	1	1	0


```
void setup() {
   DDRB = B00000001;
}

void loop() {
   PORTB = B00000000;
}
```



```
void setup() {
   DDRB = B00000011;
}

void loop() {
   PORTB = B00000000;
}
```



```
void setup() {
   DDRB = B00000011;
   DDRD = B00000100;
}

void loop() {
   PORTB = B00000000;
   PORTD = B00000000;
}
```



```
void setup() {
   DDRB = B00000011;
   DDRD = B00001100;
}

void loop() {
   PORTB = B00000000;
   PORTD = B00000000;
}
```



```
void setup() {
   DDRB = B00000011;
   DDRD = B00011100;
}

void loop() {
   PORTB = B00000000;
   PORTD = B00000000;
}
```



```
void setup() {
   DDRB = B00000011;
   DDRD = B00111100;
}

void loop() {
   PORTB = B00000000;
   PORTD = B00000000;
}
```



```
void setup() {
 DDRB = B00000011;
 DDRD = B01111100;
void loop() {
 PORTB = B00000000;
 PORTD = B00000000;
 delay(1000);
 PORTB = B00000011;
 PORTD = B01111100;
 delay(1000);
```



```
void setup() {
 DDRB = B00000011;
 DDRD = B111111100;
void loop() {
 PORTB = B00000000;
 PORTD = B00000000;
 delay(1000);
 PORTB = B00000011;
 PORTD = B111111100;
 delay(1000);
```



```
void setup() {
 DDRB = B00000011;
 DDRD = B111111100;
 PORTD = B000000000;
 PORTB = B000000000;
void loop() {
 int led_0 = B01110111;
 int led_1 = B00000110;
 PORTB = led_0;
 PORTD = led_0;
 delay(1000);
 PORTB = led_1;
 PORTD = led_1;
 delay(1000);
```



```
void setup() {
 DDRB = B00000011;
 DDRD = B111111100;
 PORTD = B000000000;
 PORTB = B000000000;
 Serial.begin(9600);
void loop() {
 int led 0 = B01110111;
 int led_1 = B00000110;
 int incomingByte = 0;
 if (Serial.available())
  // read the incoming byte:
  incomingByte = Serial.read();
   if( incomingByte == '0' )
    PORTB = led_0;
    PORTD = led 0;
   else if( incomingByte == '1')
    PORTB = led_1;
    PORTD = led 1;
```


