NATIONAL INVENTORY REPORT 1990-2018: GREENHOUSE GAS SOURCES AND SINKS IN CANADA

CANADA'S SUBMISSION TO THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE

Library and Archives Canada Cataloguing in Publication Canada

Main entry under title:

National Inventory Report 1990–2018: Greenhouse Gas Sources and Sinks in Canada

Annual 1990/2020

Issued by the Pollutant Inventories and Reporting Division

Other editions available:

Rapport d'inventaire national 1990-2018 : Sources et puits de gaz à effet de serre au Canada

Continues: Canada's Greenhouse Gas Inventory.

The Executive Summary of this report is available on Environment and Climate Change Canada's website at: https://www.canada.ca/en/environment-climate-change/services/climate-change/greenhouse-gas-emissions.html

- 1. Greenhouse gases—Canada—Measurement—Periodicals
- 2. Methane—Environmental aspects—Canada—Periodicals
- 3. Nitrous oxide—Environmental aspects—Canada—Periodicals
- 4. Carbon dioxide—Environmental aspects—Canada—Periodicals
- 5. Pollution—Canada—Measurement—Periodicals
- I. Canada. Environment and Climate Change Canada.
- II. Pollutant Inventories and Reporting Division.
- III. Greenhouse gas sources and sinks in Canada.

Cat. No.: En81-4E-PDF ISSN: 1910-7064

Unless otherwise specified, you may not reproduce materials in this publication, in whole or in part, for the purposes of commercial redistribution without prior written permission from Environment and Climate Change Canada's copyright administrator. To obtain permission to reproduce Government of Canada materials for commercial purposes, apply for Crown Copyright Clearance by contacting:

Environment and Climate Change Canada

Public Inquiries Centre 12th Floor, Fontaine Building 200 Sacré-Coeur Boulevard Gatineau QC K1A 0H3

Telephone: 819-938-3860

Toll Free: 1-800-668-6767 (in Canada only) Email: ec.enviroinfo.ec@canada.ca

Photos: © gettyimages.ca

© Her Majesty the Queen in Right of Canada, represented by the Minister of Environment and Climate Change, 2020

Aussi disponible en français

TABLE OF CONTENTS

List of Comr	non Abbreviations and Units	ii
List of Table	s	iv
Annex 8	IPCC Sector Rounding Protocol	1
Annex 9	Canada's Greenhouse Gas Emission Tables by IPCC Sector, 1990–2018	3
Annex 10	Canada's Greenhouse Gas Emission Tables by Canadian Economic Sector, 1990–2018	8
Annex 11	Provincial/Territorial Greenhouse Gas Emission Tables by IPCC Sector, 1990–2018	13
Annex 12	Provincial/Territorial Greenhouse Gas Emission Tables by Canadian Economic Sector, 1990–2018	42
Annex 13	Electricity in Canada: Summary and Intensity Tables	58
References.		74

LIST OF COMMON ABBREVIATIONS AND UNITS

Abbreviations	
CAC	Criteria Air Contaminant
CANSIM	Statistics Canada's key socioeconomic database
CEPA 1999	Canadian Environmental Protection Act, 1999
CESI	Canadian Environmental Sustainability Indicators
CFC	chlorofluorocarbon
CFS	Canadian Forest Service
ECCC	Environment and Climate Change Canada
EF	emission factor
GDP	gross domestic product
GHG	greenhouse gas
GHGRP	Greenhouse Gas Reporting Program
HFC	hydrofluorocarbon
HWP	harvested wood products
IPCC	Intergovernmental Panel on Climate Change
IPPU	Industrial Proccesses and Product Use
LULUCF	Land Use, Land-Use Change and Forestry
MSW	municipal solid waste
N/A	not available
NIR	National Inventory Report
NMVOC	non-methane volatile organic compound
NPRI	National Pollutant Release Inventory
ODS	ozone-depleting substance
OECD	Organisation for Economic Co-operation and Development
PFC	perfluorocarbon

QA	quality assurance
QC	quality control
RESD	Report on Energy Supply and Demand in Canada
UNECE	United Nations Economic Commission for Europe
UNFCCC	United Nations Framework Convention on Climate Change
Chemical Formu	ulas
AI	aluminium
Al2O ₃	alumina
CaC ₂	calcium carbide
CaCO₃	calcium carbonate; limestone
CaMg(CO ₃) ₂	dolomite (also CaCO ₃ ·MqCO ₃)

POP persistent organic pollutant

Al2O ₃	alumina
CaC ₂	calcium carbide
CaCO ₃	calcium carbonate; limestone
CaMg(CO ₃) ₂	dolomite (also CaCO ₃ ·MgCO ₃)
CaO	lime; quicklime; calcined limestone
CF ₄	carbon tetrafluoride
C ₂ F ₆	carbon hexafluoride
CH ₃ OH	methanol
CH ₄	methane
C ₂ H ₆	ethane
C ₃ H ₈	propane
C ₄ H ₁₀	butane
C ₂ H ₄	ethylene
C ₆ H ₆	benzene
CHCI ₃	chloroform
CO	carbon monoxide
CO ₂	carbon dioxide
CO ₂ eq	carbon dioxide equivalent

Canada.ca/ghg-inventory National Inventory Report—2020 Edition Part 3

H ₂ hy	drogen
H ₂ O wa	iter
H ₂ S hy	drogen sulphide
HCFC hy	drochlorofluorocarbon
HCIhy	drochloric acid
HF hy	drogen fluoride
HNO ₃ nit	ric acid
K ₂ CO ₃ po	tassium carbonate
Mg ma	agnesium
MgCO ₃ ma	agnesite; magnesium carbonate
MgO ma	agnesia; dolomitic lime
N nit	rogen
N_2 nit	rogen gas
Na ₂ CO ₃ so	dium carbonate; soda ash
Na3AIF ₆ cry	/olite
NF ₃ nit	rogen trifluoride
NH ₃ an	nmonia
NH ₄ + an	nmonium
NH ₄ NO ₃ an	nmonium nitrate
N ₂ O nit	rous oxide
	trous oxide emissions represented terms of nitrogen
NO nit	ric oxide
NO ₂ nit	rogen dioxide
NO ₃ nit	rate
NO _x nit	rogen oxides
O ₂ ox	ygen
SF ₆ su	lphur hexafluoride
SiC sill	icon carbide
SO ₂ su	lphur dioxide
SO _x su	lphur oxides

IE
NE
Units g
Units g
ggram Gggigagram Gtgigatonne hahectare kgkilogram khakilohectare kmkilometre ktkilotonne kWhkilowatt-hour mmetre Mgmegagram Mhamegahectare mmmillimetre
Gg gigagram Gt gigatonne hahectare kg kilogram kha kilohectare km kilometre kt kilotonne kWh kilowatt-hour m metre Mg megagram Mha megahectare mm millimetre
Gtgigatonne hahectare kgkilogram khakilohectare kmkilometre ktkilotonne kWhkilowatt-hour mmetre Mgmegagram Mhamegahectare mmmillimetre
hahectare kgkilogram khakilohectare kmkilometre ktkilotonne kWhkilowatt-hour mmetre Mgmegagram Mhamegahectare mmmillimetre
kgkilogram khakilohectare kmkilometre ktkilotonne kWhkilowatt-hour mmetre Mgmegagram Mhamegahectare mmmillimetre
kha kilohectare km kilometre kt kilotonne kWh kilowatt-hour m metre Mg megagram Mha megahectare mm millimetre
km kilometre kt kilotonne kWh kilowatt-hour m metre Mg megagram Mha megahectare mm millimetre
kt kilotonne kWh kilowatt-hour m metre Mg megagram Mha megahectare mm millimetre
kWh kilowatt-hour m. metre Mg. megagram Mha megahectare mm millimetre
mmetre Mgmegagram Mhamegahectare mmmillimetre
Mg megagram Mha megahectare mm millimetre
Mha megahectare mm millimetre
mm millimetre
Mt megatonne
MW megawatt
PJ petajoule
t tonne
TWh terrawatt-hour

LIST OF TABLES

Table A8–1	Number of Significant Figures Applied to IPCC Sector GHG Summary Tables	2
Table A9–1	GHG Source/Sink Category Descriptions	4
Table A9–2	Canada's 1990–2018 GHG Emissions by IPCC Sector	5
Table A9–3	2018 GHG Emission Summary for Canada	7
Table A10–1	Canadian Economic Sector Descriptions	10
Table A10–2	Canada's GHG Emissions by Canadian Economic Sector, 1990–2018	11
Table A10–3	Relationship between Canadian Economic Sectors and IPCC Sectors, 2018	12
Table A11–1	GHG Source/Sink Category Description	14
Table A11–2	GHG Emission Summary for Newfoundland and Labrador, Selected Years	15
Table A11–3	2018 GHG Emission Summary for Newfoundland and Labrador	16
Table A11–4	GHG Emission Summary for Prince Edward Island, Selected Years	17
Table A11–5	2018 GHG Emission Summary for Prince Edward Island	18
Table A11–6	GHG Emission Summary for Nova Scotia, Selected Years	19
Table A11–7	2018 GHG Emission Summary for Nova Scotia	20
Table A11–8	GHG Emission Summary for New Brunswick, Selected Years	21
Table A11–9	2018 GHG Emission Summary for New Brunswick	22
Table A11–10	GHG Emission Summary for Quebec, Selected Years	23
Table A11–11	2018 GHG Emission Summary for Quebec	24
Table A11–12	GHG Emission Summary for Ontario, Selected Years	25
Table A11–13	2018 GHG Emission Summary for Ontario	26
Table A11–14	GHG Emission Summary for Manitoba, Selected Years	27
Table A11–15	2018 GHG Emission Summary for Manitoba	28
Table A11–16	GHG Emission Summary for Saskatchewan, Selected Years	29
Table A11–17	2018 GHG Emission Summary for Saskatchewan	30
Table A11–18	GHG Emission Summary for Alberta, Selected Years	31
Table A11–19	2018 GHG Emission Summary for Alberta	32

Table A11–20	GHG Emission Summary for British Columbia, Selected Years	33
Table A11–21	2018 GHG Emission Summary for British Columbia	34
Table A11–22	GHG Emission Summary for Yukon, Selected Years	35
Table A11–23	2018 GHG Emission Summary for Yukon	36
Table A11–24	GHG Emission Summary for Northwest Territories, Selected Years	37
Table A11–25	2018 GHG Emission Summary for Northwest Territories	38
Table A11–26	GHG Emission Summary for Nunavut, Selected Years	39
Table A11–27	2018 GHG Emission Summary for Nunavut	40
Table A11–28	GHG Emission Summary for Northwest Territories & Nunavut, 1990–1998	41
Table A12–1	Canadian Economic Sector Descriptions	43
Table A12–2	GHG Emissions for Newfoundland and Labrador by Canadian Economic Sector, Selected Years	44
Table A12–3	GHG Emissions for Prince Edward Island by Canadian Economic Sector, Selected Years	45
Table A12–4	GHG Emissions for Nova Scotia by Canadian Economic Sector, Selected Years	46
Table A12–5	GHG Emissions for New Brunswick by Canadian Economic Sector, Selected Years	47
Table A12–6	GHG Emissions for Quebec by Canadian Economic Sector, Selected Years	48
Table A12–7	GHG Emissions for Ontario by Canadian Economic Sector, Selected Years	49
Table A12–8	GHG Emissions for Manitoba by Canadian Economic Sector, Selected Years	50
Table A12–9	GHG Emissions for Saskatchewan by Canadian Economic Sector, Selected Years	51
Table A12–10	GHG Emissions for Alberta by Canadian Economic Sector, Selected Years	52
Table A12–11	GHG Emissions for British Columbia by Canadian Economic Sector, Selected Years	53
Table A12–12	GHG Emissions for Yukon by Canadian Economic Sector, Selected Years	54
Table A12–13	GHG Emissions for Northwest Territories by Canadian Economic Sector, Selected Years .	55
Table A12–14	GHG Emissions for Nunavut by Canadian Economic Sector, Selected Years	56
Table A12–15	GHG Emissions for Northwest Territories & Nunavut by Canadian Economic Sector, 1990–1998	57
Table A13–1	Electricity Generation and GHG Emission Details for Canada	60
Table A13–2	Electricity Generation and GHG Emission Details for Newfoundland and Labrador	61
Table A13–3	Electricity Generation and GHG Emission Details for Prince Edward Island	62
Table A13–4	Electricity Generation and GHG Emission Details for Nova Scotia	63
Table A13–5	Electricity Generation and GHG Emission Details for New Brunswick	64
Table A13-6	Electricity Generation and GHG Emission Details for Quebec	65

Гable A13–7	Electricity Generation and GHG Emission Details for Ontario	66
Гable A13–8	Electricity Generation and GHG Emission Details for Manitoba	67
Table A13–9	Electricity Generation and GHG Emission Details for Saskatchewan	68
Table A13–10	Electricity Generation and GHG Emission Details for Alberta	69
Table A13–11	Electricity Generation and GHG Emission Details for British Columbia	70
Table A13–12	Electricity Generation and GHG Emission Details for Yukon	71
Table A13–13	Electricity Generation and GHG Emission Details for the Northwest Territories	72
Гable А13–14	Electricity Generation and GHG Emission Details for Nunavut	73

IPCC SECTOR ROUNDING PROTOCOL

A rounding protocol has been developed for the emission and removal estimates presented by activity sectors defined by the Intergovernmental Panel on Climate Change (IPCC) (Annexes 9 & 11) in order to reflect their uncertainty levels. The accuracy of a value is reflected by presenting the emission and removal estimates rounded to an appropriate number of significant figures based on the uncertainty of the category in question. The number of significant figures to which each source and sink category has been rounded, using the rounding rules provided in this protocol, can be found in Table A8–1.

A large number of the uncertainty ranges that are used for the various categories were developed using Monte Carlo analysis, as performed by ICF Consulting (ICF Consulting 2004, 2005), using the 2001 inventory estimates submitted in the NIR 2003. Default uncertainty values published by the IPCC (IPCC/OECD/IEA 1997; IPCC 2001; IPCC 2006) and those resulting from expert elicitation were also utilized for some ranges. Since 2004–2005, many methodological changes, refinements and updates, including updates to the uncertainty parameters themselves, have been made. The uncertainty ranges have been calculated around the mean values established by these analyses.

For a more complete description of the analysis of uncertainty in Canada's emission estimates, please refer to Annex 2, which includes tables of current uncertainty values. Recent updates to uncertainty estimates are provided in the respective sectoral chapters.

The following uncertainty values have been used to establish the number of significant figures (up to a maximum of 2 decimal places) to which the estimates have been rounded:

- · uncertainty greater than 50%: one significant figure;
- uncertainty between 10% and 50%: two significant figures; and
- · uncertainty less than 10%: three significant figures.

This rounding protocol does not apply to estimates presented by Canadian Economic Sectors (Annexes 10 & 12) which have been rounded to the nearest 1 Mt and 0.1 Mt for National-level estimates (Annex 10) and provincial/territorial-level estimates (Annex 12), respectively.

All calculations, including the summing of emission totals, were made using unrounded data. The rounding protocol was applied only after the calculations had been completed. The reader should also note that formatting this report limits the maximum number of decimal places and, therefore, even though a zero entry is recorded, some emissions may exist in that category (zero emissions are identified with a dash "-"). As a result of these procedures, individual values in the emission tables may not add up to the subtotals and/or overall totals.

Greenhouse Gas Categories			Nu	mber of Sign	ificant Figur	es		
	CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆	NF ₃	TOTA
TOTAL	3	2	2	2	2	2	1	3
NERGY	3	2	1	_			_	3
· Stationary Combustion Sources	3	1	1					3
Public Electricity and Heat Production	3	2	1					3
Petroleum Refining Industries	2	1	1					2
Oil and Gas Extraction	3	1	1					3
Mining	3	1	1					3
Manufacturing Industries	3	2	2					3
Iron and Steel	3	1	1					3
Non Ferrous Metals	3	2	1					3
Chemical	3	1	1					3
Pulp and Paper Cement	3	1	1					3
Other Manufacturing	3	1	1					3
Construction	3	2	2					3
Commercial & Institutional	3	2	1					3
Residential	3	1	1					3
Agriculture & Forestry	3	1	1					3
. Transport	3	2	2					3
Domestic Aviation	3	1	1					3
Road Transportation	3	1	2					3
Light-Duty Gasoline Vehicles	3	1	2					3
Light-Duty Gasoline Trucks	3	1	2					3
Heavy-Duty Gasoline Vehicles	3	1	2					3
Motorcycles	3	1	2					3
Light-Duty Diesel Vehicles	3	1	2					3
Light-Duty Diesel Trucks	3	1	2					3
Heavy-Duty Diesel Vehicles	3	1	2					3
Propane & Natural Gas Vehicles	3	1	2					3
Railways	3	1	1					3
Domestic Navigation	3	2	1					3
Other Transportation Off-road Agriculture & Forestry	3	2	1					3
Off-road Commercial & Institutional	3	2	1					3
Off-road Manfacturing, Mining & Construction	3	2	1					3
Off-road Residential	3	2	1					3
Off-road Other Transportation	3	2	1					3
Pipeline Transport	3	2	1					3
Fugitive Sources	2	2	2					2
Coal Mining		1						1
Oil and Natural Gas	2	2	1					2
Oil	2	2	1					2
Natural Gas	2	2	1					2
Venting	2	2	1					2
Flaring	2	2	1					2
. CO₂ Transport and Storage	1							1
NDUSTRIAL PROCESSES AND PRODUCT USE	3	2	3	2	3	2	1	3
· Mineral Products	2							2
Cement Production	2							2
Lime Production	2							2
Mineral Product Use	2							2
Chemical Industry	3	2	3					3
Ammonia Production	3							3
Nitric Acid Production			3					3
Adipic Acid Production	2	2	2					2
Petrochemical and Carbon Black Production Metal Production	3	2 1	3		2	2		3
Iron and Steel Production	3	1			3	3		3
Aluminium Production	3	1			3	3		3
SF ₆ Used in Magnesium Smelters and Casters						3		3
Production and Consumption of Halocarbons, SF ₆ and NF ₃				2	2	2	1	2
Non-Energy Products from Fuels and Solvent Use	2			_			•	2
Other Product Manufacture and Use	2		2		2	2		2
GRICULTURE	2	2	2		2	2		2
Enteric Fermentation	-	2				_		2
Manure Management		2	1					2
Agricultural Soils			2					2
Direct Sources			2					2
Indirect Sources			1					1
Field Burning of Agricultural Residues		1	1					1
Liming, Urea Application and Other Carbon-Containing Fertilizers	2							2
ASTE	1	2	1					2
Solid Waste Disposal		2						2
Biological Treatment of Solid Waste		1	1					1
Wastewater Treatment and Discharge		2	1					2
Incineration and Open Burning of Waste	1	1	1					1
Industrial Wood Waste Landfills	1	1	1					1
AND USE, LAND-USE CHANGE AND FORESTRY	2	2	2					2
Forest Land	2	1	1					2
Cropland	2	2	2					2
Grassland		1	1					1
. Wetlands	2	2	2					2
Settlements	2	2	2					2

CANADA'S GREENHOUSE GAS EMISSION TABLES BY IPCC SECTOR, 1990–2018

In this National Inventory Report, emission estimates are primarily presented for each of the activity sectors defined by the Intergovernmental Panel on Climate Change (IPCC): Energy, Industrial Processes and Product Use, Agriculture, Land Use, Land-Use Change and Forestry, and Waste. This is consistent with the categorization outlined in the UNFCCC reporting guidelines on annual inventories for Parties included in Annex I to the Convention (Decision 24/CP.19).1

This annex contains category descriptions and summary tables (Table A9–1 to Table A9–3) illustrating national GHG emissions by year, by gas and by IPCC sector. National GHG emissions allocated to Canadian economic sectors are provided in Annex 10 of this report.

Canada's greenhouse gas emission tables are also available in electronic file format online at https://open.canada.ca.

Table A9–1 GHG Source/Sink Category Descriptions	4
Table A9–2 Canada's 1990–2018 GHG Emissions by IPCC Sector	5
Table A9–3 2018 GHG Emission Summary for Canada	7

¹ Available online at http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf.

GΗ	G Source/Sink Categories	
	RGY	
a.	Stationary Combustion Sources	
	Public Electricity and Heat Production	Emissions from fuel consumed by utility electricity generation and steam production (for sale)
	Petroleum Refining Industries	Emissions from fuel consumed by petroleum refining industries
	Oil and Gas Extraction	Emissions from fuel consumed by oil and gas extraction industries
	Mining	Emissions from fuel consumed by:
		– Metal and non-metal mines, coal mines, stone quarries, and gravel pits
		– Mineral exploration and contract drilling operations
	Manufacturing Industries	Emissions from fuel consumed by the following industries:
		Iron and Steel (steel foundries, casting and rolling mills) Non-ferrous metals (aluminium, magnesium and other production)
		- Chemical (fertilizer manufacturing, organic and inorganic chemical manufacturing)
		- Pulp and Paper (primarily pulp, paper, and paper product manufacturers)
		- Cement and other non-metallic mineral production
		Other manufacturing industries not listed (such as automobile manufacturing, textiles, food and beverage industries)
	Construction	Emissions from fuels consumed by the construction industry—buildings, highways etc.
	Commercial & Institutional	Emissions from fuel consumed by:
		- Service industries related to mining, communication, wholesale and retail trade, finance and insurance, real estate, education, etc.)
		– Federal, provincial and municipal establishments
		- National Defence and Canadian Coast Guard
_		- Train stations, airports and warehouses
	Residential	Emissions from fuel consumed for personal residences (homes, apartment hotels, condominiums and farm houses)
	Agriculture & Forestry	Emissions from fuel consumed by:
		- Forestry and logging service industry
	Tunnanaut	- Agricultural, hunting and trapping industry (excluding food processing, farm machinery manufacturing and repair)
b.	Transport Domestic Aviation	Emissions resulting from the:
	Road Transportation	 Consumption of fossil fuels by aircrafts flying domestically with Canadian purchased fuel Consumption of fuels (excluding the biogenic CO₂ emissions from Ethanol and biodiesel) by vehicles licensed to operate on roads
	Railways	 Consumption of fuels (excluding the biogenic CO₂ emissions from Ethanol and biodiesel) by Canadian railways
	Domestic Navigation	- Consumption of fuels (excluding the biogenic CO ₂ emissions from Ethanol and biodiesel) by marine vessels navigating betwee
	20mestie navigation	Canadian ports (inclusive of international fishing and military opertations)
	Others—Off-road	- Consumption of fuels (excluding the biogenic CO ₂ emissions from Ethanol and biodiesel) by mobile combustion devices not
		licensed to operate on roads
	Others—Pipeline Transport	– Transportation and distribution of crude oil, natural gas and other products
с.	Fugitive Sources	Intentional and unintentional releases of greenhouse gases from the following activities:
	Coal Mining	- Underground and surface mining, abandoned underground coal mines
_	Oil and Natural Gas	- Conventional and unconventional oil and gas exploration, production, transportation and distribution
d.	CO ₂ Transport and Storage	Intentional and unintentional releases of greenhouse gases from the transport and storage of carbon dioxide
IINL a.	DUSTRIAL PROCESSES AND PRODUCT USE Mineral Products	Emissions resulting from the following process activities: - Cement production, lime production, and mineral product use (which includes glass production, other uses of soda ash,
a.	Milleral Floducts	— Centern production, interproduction, and initial an initial as which includes glass production, other uses of soda ash, magnesite use, and limestone and dolomite use)
b.	Chemical Industry	- Production of ammonia, nitric acid, adipic acid, carbide, other uses of urea and petrochemicals. Petrochemical production
	,	includes production of carbon black, ethylene, ethylene dichloride, ethylene oxide, methanol and styrene
c.	Metal Production	- Aluminum production, iron and steel production, and magnesium production and casting
d.	Production and Consumption of Halocarbons,	– By-product production of HFC-23; use of HFCs and/or PFCs in air conditioning units, refrigeration units, fire extinguishers,
	SF ₆ and NF ₃	aerosol cans, solvents, foam blowing, semiconductor manufacturing and electronics industry, and use of SF ₆ and NF ₃ in
e.	Non-Energy Products from Fuels and Solvent	semiconductor manufacturing - Non-energy use of fossil fuels (including solvents and lubricants) that are not accounted for elsewhere under the Industrial
e.	Use	- Non-energy use or rossin dets (including solvents and lubricants) that are not accounted for eisewhere under the industrial Processes and Product Use Sector
f.	Other Product Manufacture and Use	- Use of N ₂ O as an anaesthetic and propellant; use of urea in selective catalytic reduction (SCR) equipped vehicles; use of SF ₆ in
		electrical equipment; and PFCs in electronics industry
AG	RICULTURE	Emissions resulting from:
a.	Enteric Fermentation	– Eructation of CH4 during the digestion of plant material by (mainly) ruminants
b.	Manure Management	- Release of CH ₄ and N ₂ O due to microbial activity during the storage of feces, urine and bedding materials from the cleaning of
		barns and pens
_	Agricultural Soils	– Indirect N ₂ O emissions from volatilization and leaching of nitrogen from animal manure during storage
c.	Agricultural Soils	Direct N.O. omissions from increasis nitrogen factilisms and his allid.
	Direct sources	- Direct N ₂ O emissions from inorganic nitrogen fertilizers, manure and biosolids applied on cropland, pasture range and paddoc crop residue, tillage, summerfallow, irrigation and cultivation of organic soils
	Indirect Sources	- Indirect N₂O emissions from volatilization and leaching of animal manure and biosolid nitrogen, inorganic nitrogen fertilizer a
		crop residue nitrogen
d.	Field Burning of Agricultural Residues	– CH ₄ and N ₂ O emissions from crop residue burning
e.	Liming, Urea Application and Other Carbon-	– Direct emissions of CO ₂ from the application of lime, urea and other fertilizers containing carbon
	containing Fertilizers	
	STE	Emissions resulting from:
а.	Solid Waste Disposal	– Municipal solid waste management sites (landfills)
b.	Biological Treatment of Solid Waste	- Composting of municipal solid waste
	Wastewater Treatment and Discharge	- Municipal and industrial wastewater treatment
d.	Incineration and Open Burning of Waste	- Municipal solid, hazardous and clinical waste, and sewage sludge incineration
e.	Industrial Wood Waste Landfills	- Private, dedicated wood waste landfills
	ND USE, LAND-USE CHANGE AND FORESTRY	Emissions and removals resulting from:
a.	Forest Land	- Managed forests and lands converted to forests; reports emissions and removals from forest growth and anthropogenic disturbances related to forest management but tracks separately emissions and removals from fire and most insect disturbances
b.	Cropland	- Management practices on lands in annual crops, summerfallow and perennial crops (forage, specialty crops, orchards);
	presse	immediate and residual emissions from lands converted to cropland
c.	Grassland	- Managed agricultural grassland
d.	Wetlands	Peatlands disturbed for peat extraction, or land flooded from hydro reservoir development
e.	Settlements	- Forest and grassland converted to built-up land (settlements, transport infrastructure, oil & gas infrastructure, mining, etc);
e.		
f.	Harvested Wood Products	urban tree growth - Use and disposal of harvested wood products manufactured from wood coming from forest harvest and forest conversion

Table A9–2 Canada's 1990–2018 GHG Emission	s by IPC	C Sector	,																										
Greenhouse Gas Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
															kt CO ₂ ec														
TOTAL ^a ENERGY	603 000 479 000	595 000 469 000	612 000 487 000		505 000		538 000	553 000	693 000 563 000	707 000 578 000	731 000 600 000	720 000 592 000	724 000 594 000	740 000 607 000	742 000 602 000	730 000 593 000	721 000 585 000	742 000 609 000	723 000 590 000	558 000	691 000 567 000	702 000 575 000	710 000 577 000	721 000 587 000	721 000 591 000	720 000 590 000	706 000 574 000	714 000 584 000	729 000 596 000
a. Stationary Combustion Sources	284 000	278 000	288 000	283 000	290 000	297 000	306 000	313 000	318 000	330 000	352 000	349 000	352 000	362 000	353 000	342 000	333 000	354 000	338 000	316 000	318 000	324 000	322 000	326 000	329 000	328 000	318 000	321 000	324 000
Public Electricity and Heat Production Petroleum Refining Industries	94 500 17 000	95 900 16 000	102 000 17 000		95 400 16 000		98 400 19 000	110 000 19 000	123 000 18 000	120 000 17 000	132 000 17 000	133 000	128 000 19 000	133 000 20 000	126 000 22 000	125 000 20 000	119 000 20 000	124 000 21 000		100 000 19 000	102 000 19 000	94 500 18 000	91 300 19 000	87 500 18 000	83 900 18 000	87 100 18 000	80 500 18 000	78 500 16 000	69 900 16 000
Oil and Gas Extraction	34 700	31 700	34 300		38 900		40 000	38 200	41 900	54 000	57 800	60 800	64 200	67 200	65 500	62 700	66 000	73 900	69 900	72 000	73 100	79 700	85 700	91 100	95 500	97 300	98 500	102 000	106 000
Mining Manufacturing Industries	4 600 56 200	4 300 53 900	3 660 53 000		4 530 54 200		5 000 57 600	5 200 57 700	4 660 54 700	4 440 55 800	4 850 55 900	4 870 51 600	4 500 51 300	4 910 49 200	4 750 50 900	4 300 48 000	5 090 46 200	5 700 47 200	5 990 44 600	5 630 39 900	5 720 41 200	5 620 44 200	5 960 43 700	5 360 44 800	5 070 45 000	4 570 43 600	4 330 41 800	4 710 42 100	4 880 43 700
Iron and Steel	4 950	4 960	5 290		6 020		6 150	6 160	6 230	6 330	6 210	5 010	5 860	5 530	5 830	5 550	5 550	6 000		4 290	4 980	5 290	5 500	5 580	6 030	5 700	5 560	5 940	6 380
Non Ferrous Metals Chemical	3 310 8 260	2 700 8 650	2 940 8 600		3 430 10 000		4 010 9 920	3 890 10 200	3 880 10 800	3 690 11 200	3 580 10 700	3 780 9 470	3 520 9 030	3 530 8 150	3 540 8 970	3 660 8 330	3 490 8 890	3 850 8 720		2 930 8 880	3 070 9 920	3 420 11 100	2 970 11 000	3 100 11 600	2 920 12 400	3 110 12 000	3 190 10 700	3 220 9 640	2 780 10 900
Pulp and Paper	14 500	14 000	13 000		12 900		13 400	13 200	12 100	12 500	12 600	11 600	10 900	10 400	10 200	8 650	7 490	7 740	6 270	6 390	5 970	6 220	5 990	6 230	6 090	6 040	5 950	6 320	6 900
Cement	3 970	3 440	3 400		4 070		4 130	4 040	4 190	4 460	4 640	4 600	4 970	4 990	5 460	5 430	5 740	5 040	4 900	4 480	4 070	4 310	4 030	3 860	4 030	3 940	3 770	4 170	3 960
Other Manufacturing Construction	21 200 1 880	20 200 1 630	19 800 1 760		17 800 1 400		20 000 1 270	20 200 1 260	17 500 1 120	17 600 1 170	18 200 1 080	17 200 1 030	17 000 1 270	16 700 1 350	16 900 1 420	16 400 1 450	15 100 1 410	15 800 1 410		12 900 1 230	13 200 1 520	13 800 1 370	14 200 1 390	14 400 1 290	13 600	12 800	12 600 1 280	12 800 1 290	12 700 1 390
Commercial and Institutional	26 300	26 900	27 600		27 800		30 000	30 400	27 900	29 400	33 400	32 800	34 300	35 400	34 100	32 700	29 700	30 800	30 400	30 200	28 800	30 700	28 700	29 700	31 300	30 100	30 100	31 700	32 800
Residential Agriculture and Forestry	46 500 2 410	45 000 2 740	45 900 3 250		49 000 2 550		52 200 2 930	48 600 2 920	43 700 2 600	45 300 2 680	47 400 2 570	44 200 2 240	46 700 2 160	48 300 2 300	46 600 2 210	45 600 2 190	43 500 2 110	47 800 2 690	47 200 2 750	45 200 2 760	42 700 3 110	45 800 3 680	42 300 3 780	43 800 3 790	45 600 3 840	43 100 3 630	39 200 3 810	41 100 3 710	45 200 3 790
b. Transport ^b	145 000	140 000	144 000	148 000	155 000	159 000	163 000	169 000	172 000	177 000	178 000	176 000	178 000	182 000	186 000	191 000	190 000	193 000		187 000	195 000	196 000	196 000	201 000	199 000	201 000	201 000	207 000	217 000
Domestic Aviation Road Transportation	7 180 83 800	6 310 79 900	6 320 80 400		6 260 85 600		7 100 90 400	7 150 96 400	7 440 103 000	7 810	7 720	7 090	6 910	7 000 122 000	7 490 125 000	7 620 130 000	7 690 130 000	7 750 133 000	7 320 133 000	6 420 132 000	6 440 137 000	139 000	7 300 140 000	7 570 144 000	7 220 142 000	7 140 143 000	7 080 145 000	7 430 148 000	7 990 154 000
Light-Duty Gasoline Vehicles	41 600	39 900	40 200	40 700	41 100	40 400	40 000	40 100	40 400	40 500	40 400	41 500	41 900	41 800	41 200	41 400	40 400	39 700	38 500	38 100	37 800	36 500	35 400	35 600	34 200	34 500	34 600	33 700	33 900
Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles	20 300 6 320	19 700 6 360	20 100 6 680		22 500 7 350		25 300 7 940	27 100 8 810	28 900 9 850	30 800 10 300	31 800 10 500	33 400 11 600	34 700 11 700	36 000 12 000	37 100 12 600	38 100 11 700	38 600 11 900	39 300 12 000		39 900 12 200	41 300 12 500	41 400 12 100	41 900 12 800	43 300 13 400	43 400 12 400	45 300 12 300	48 100 13 000	49 200 13 300	52 000 13 600
Motorcycles	90	87	85	83	81	78	75	74	72	110	123	144	161	176	189	203	216	225	231	239	248	251	260	262	260	271	287	296	304
Light-Duty Diesel Vehicles Light-Duty Diesel Trucks	467 153	403 138	383 134		397 150		409 182	455 222	500 259	537 294	600 338	603 363	643 370	710 408	762 442	605 344	658	669 347		574 368	663	793 482	798 473	856 531	857 641	901 813	842 903	841 1 080	811 1 180
Heavy-Duty Diesel Vehicles	13 600	12 200	11 800	12 100	13 100	13 600	15 700	18 900	21 900	24 700	26 500	27 900		30 300	32 100	36 900	329 38 100	40 500		40 300	421 44 200	47 600	48 700	50 000	49 800	48 600	46 900	49 300	51 800
Propane and Natural Gas Vehicles	1 160 6 920	1 140 6 410	1 070		913 6 910		797 6 120	762 6 210	795 5 980	643 6 330	522 6 530	574 6 470	465	429 6 010	430	381	293	199		62	38 6 540	7 200	30	18	7 470	7 120	6 540	7.400	7.650
Railways Domestic Navigation	3 760	3 800	6 700 3 840		3 920		4 010	4 070	4 120	4 320	4 370	4 450	5 950 4 530	4 610	6 180 4 690	6 580 4 770	6 890 4 800	7 380 4 830	7 800 4 860	6 670 4 890	4 920	7 390 4 710	7 560 4 500	7 290 4 290	7 470 4 080	7 120 3 870	3 920	7 490 3 980	7 650 4 030
Other Transportation	43 600	43 500	46 600		52 100		55 600	55 400	52 100	51 000	48 800	42 200	42 500	42 400	42 900	41 900	40 500	40 600	39 800	37 600	39 500	38 400	36 100	37 700	39 000	40 500	38 900	40 400	43 600
Off-Road Agriculture & Forestry Off-Road Commercial & Institutional	9 040 1 520	9 090	9 180 1 570		11 500		12 600 2 010	12 900 2 090	12 400 2 070	11 700 2 020	11 600 2 080	10 500 2 130	10 300 2 060	11 200 2 290	11 400 2 430	11 400 2 400	10 700 2 390	11 000 2 540	10 600 2 550	10 200 2 460	11 100 2 680	11 000 2 730	10 400 2 520	10 500 2 720	10 400 2 760	10 400 2 720	9 660 2 550	10 300 2 820	11 200 2 930
Off-Road Manufacturing, Mining & Construction	9 160	9 100	9 720	10 400	11 300	12 500	12 500	12 600	10 800	10 700	11 300	9 910	10 100	11 000	11 200	10 400	10 200	11 100	11 700	11 200	12 600	13 200	12 000	12 300	12 200	13 100	12 200	13 500	14 500
Off-Road Residential Off-Road Other Transportation	241 16 700	238 16 000	248 16 000		327 16 400		451 15 600	531 14 700	615 13 700	705 13 300	775 11 700	913 8 440	1 030 8 110	1 150 7 600	1 250 7 990	1 250 6 390	1 230 6 260	1 240 6 320	1 200 6 220	1 160 6 150	1 170 6 300	1 300 4 450	1 220 4 310	1 180 4 300	1 210 4 540	1 220 4 830	1 170 4 920	1 190 5 120	1 250 5 350
Pipeline Transport	6 900	7 650	9 890	10 400	10 800	12 000	12 500	12 600	12 500	12 600	11 300	10 300	10 900	9 120	8 550	10 200	9 690	8 440	7 520	6 360	5 710	5 650	5 730	6 720	7 890	8 160	8 420	7 420	8 340
c. Fugitive Sources Coal Mining	49 000 3 000	51 000	55 000 2 000		61 000 3 000		68 000 2 000	70 000 2 000	73 000 2 000	70 000 2 000	69 000 2 000	67 000 2 000	65 000 2 000	63 000 1 000	63 000	61 000	61 000	61 000	59 000	55 000	55 000 1 000	55 000 1 000	59 000	61 000 2 000	63 000 1 000	60 000 1 000	55 000 1 000	55 000 1 000	55 000 1 000
Oil and Natural Gas	46 000	48 000	52 000		58 000		66 000	68 000	71 000	68 000	68 000	66 000	63 000	62 000	61 000	60 000	60 000	59 000		54 000	53 000	54 000	57 000	59 000	62 000	59 000	54 000	54 000	54 000
Oil Natural Gas	5 000 13 000	5 200 14 000	5 600 15 000		5 700 16 000		6 300 19 000	6 600 18 000	6 500 20 000	6 400 19 000	6 500 18 000	6 800 16 000	6 500 14 000	6 300 14 000	6 300	5 900 14 000	5 900 14 000	5 700 13 000	5 400 13 000	5 100 13 000	5 100 12 000	4 900 12 000	5 700 12 000	5 700 13 000	5 600 13 000	5 400 12 000	5 200 12 000	5 200 12 000	5 500 12 000
Venting	23 000	24 000	27 000		31 000		35 000	37 000	37 000	37 000	38 000	38 000	37 000	37 000	36 000	35 000	35 000	35 000	35 000	32 000	31 000	32 000	33 000	34 000	36 000	35 000	30 000	30 000	30 000
Flaring d. CO ₂ Transport and Storage	4 700	5 000	5 200	5 000	5 400	5 400	5 700	5 700	7 500	5 700	5 800 0.09	5 200 0.09	5 800 0.09	5 000 0.09	5 200 0.09	5 300 0.09	5 700 0.09	5 400 0.09	4 900 0.09	4 300 0.09	4 700 0.09	5 000 0.09	5 800 0.09	7 000 0.09	7 200 0.10	6 900 0.20	5 900 0.30	6 500 0.30	6 500 0.30
INDUSTRIAL PROCESSES AND PRODUCT USE	56 900	58 400	56 100	55 800	57 700	58 300	60 600	60 100	56 900	54 500	54 000	52 000	54 000	56 100	60 200	56 600	57 000	55 600	55 200	48 200	51 400	55 100	59 300	56 800	54 700	54 300	55 200	54 000	56 300
a. Mineral Products	8 400 5 800	7 500 4 700	7 300 4 800		8 400 5 700		8 800 6 100	9 500 6 600	9 600 6 800	9 800 7 000	10 000 7 200	9 400 7 000	9 700 7 100	9 700 7 200	10 000 7 500	10 000 7 600	10 000 7 700	7 700	9 300 7 000	7 200 5 400	7 800 6 000	8 000 6 100	8 500 6 600	7 800 6 000	7 800 5 900	8 100 6 300	7 900 6 200	8 500 6 800	8 900
Cement Production Lime Production	1 800	1 800	1 800		1 900		1 800	1 900	1 900	2 000	1 900	1 700	1 700	1 700	1 800	1 700	1 700	1 600	1 600	1 200	1 400	1 500	1 500	1 400	1 500	1 400	1 400	1 400	7 200 1 400
Mineral Product Use	860	980	670		820		890	990	940	790	910	770	820	790	880	910	880	810	750	610	410	450	440	380	380	410	390	330	320
b. Chemical Industry Ammonia Production	17 600 2 770	2 750	16 700 2 530		19 000 3 030		19 500 2 800	17 600 2 800	13 400 3 100	9 970 3 000	8 780 2 960	8 710 2 600	8 960 2 630	9 250 2 630	2 930	10 400 2 710	8 980 2 780	8 260 2 580	9 520 2 810	6 560 2 400	6 400 2 490	7 110 2 880	7 460 3 000	7 330 2 950	7 210 2 540	7 600 2 850	7 710 2 790	6 940 2 560	7 660 2 440
Nitric Acid Production	973	1 020	1 040		919	-	1 060	1 020	995	1 120	1 180	1 230	1 210	1 220	1 180	1 200	1 190	1 090	1 230	1 110	1 060	1 120	1 070	988	1 020	1 120	1 040	935	1 100
Adipic Acid Production Petrochemical and Carbon Black Production	10 000 3 520	9 600 3 570	9 600 3 600		11 000 4 530		11 000 4 560	9 500 4 230	4 900 4 470	1 700 4 170	870 3 780	770 4 100	1 200 3 920	1 000 4 360	3 000 4 370	2 500 3 960	1 200 3 840	1 400 3 160		640 2 420	2 850	3 110	3 390	3 400	3 650	3 630	3 880	3 450	4 120
c. Metal Production	23 800	26 800	25 600	25 400	23 900	23 500	23 200	23 000	24 000	23 200	23 400	21 400	21 300	21 000	20 500	20 200	20 700	19 300	19 000	15 900	16 200	17 100	16 900	14 800	15 000	14 500	15 400	15 100	15 000
Iron and Steel Production Aluminum Production	10 500 10 300	12 100 11 200	12 400 10 900		11 000		11 300	11 100 10 300	11 400 10 500	9 340	11 800 8 890	10 800 8 260	10 600 7 930	10 500 8 130	10 600 7 770	10 300 8 680	11 300 8 080	7 630	10 800 7 760	8 140 7 540	9 170	10 100	10 200 6 470	8 040 6 530	8 930 5 830	8 520 5 720	9 270 5 990	8 980 6 010	9 330 5 510
SF ₆ Used in Magnesium Smelters and Casters	2 960	3 420	2 290	2 110	2 180	2 010	1 560	1 600	2 100	2 160	2 660	2 250	2 800	2 370	2 090	1 230	1 340	489	435	184	185	184	248	212	249	226	133	129	134
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c e. Non-Energy Products from Fuels and Solvent Use	980 5 800	1 100 5 600	830 5 300		6 000	500 6 300	840 7 900	1 100 8 500	1 600 7 800	2 200 8 800	2 800 8 500	3 200 8 700	3 600 9 900	4 000 12 000	4 600 13 000	5 100 10 000	5 400 11 000	6 100 11 000		6 900 11 000	7 700 13 000	8 600 14 000	9 100 17 000	10 000 16 000	11 000 13 000	11 000 13 000	11 000 12 000	12 000 11 000	13 000 12 000
f. Other Product Manufacture and Use	370	370	350		360		350	390	500	580	610	680	520	610	630	540	520	540		470	430	400	500	560	480	570	630	660	740
AGRICULTURE a. Enteric Fermentation	47 000 22 000	47 000 23 000	48 000 24 000		52 000 25 000		55 000 27 000	55 000 27 000	56 000 27 000	56 000 27 000	57 000 28 000	56 000 29 000	56 000 29 000	58 000 29 000	59 000 30 000	60 000 31 000	59 000 30 000	58 000 29 000	59 000 28 000	56 000 26 000	55 000 25 000	55 000 25 000	57 000 25 000	59 000 25 000	58 000 24 000	58 000 24 000	59 000 24 000	58 000 24 000	59 000 24 000
b. Manure Management	6 100	6 200	6 500		6 900		7 400	7 400	7 600	7 800	8 000	8 300	8 400	8 500	8 700	8 800	8 700	8 400		7 900	7 700	7 700	7 700	7 800	7 700	7 800	7 900	7 900	7 900
c. Agricultural Soils	17 000	16 000	17 000		18 000		19 000	19 000	19 000	19 000	19 000	18 000	17 000	19 000	19 000	19 000	19 000	19 000		20 000	20 000 17 000	21 000	22 000	24 000	23 000	24 000	25 000	24 000	25 000
Direct Sources Indirect Sources	14 000 3 000	14 000 3 000	14 000 3 000		15 000 3 000		16 000 3 000	15 000 3 000	14 000 3 000	15 000 3 000	16 000 3 000	15 000 3 000	15 000 3 000	16 000 4 000		16 000 4 000	17 000 4 000	17 000 4 000	18 000 4 000	20 000 4 000	19 000 4 000	20 000 4 000	20 000 4 000	20 000 4 000	20 000 4 000				
d. Field Burning of Agricultural Residues	200	200	200	200	200	200	200	200	200	100	100	100	100	100	30	40	50	40	50	50	30	30	40	50	50	60	50	50	50
e. Liming, Urea Application and Other Carbon-containing Fertilizers WASTE	1 200 21 000	1 100 21 000	1 200 21 000		1 400 21 000		1 500 21 000	1 600 18 000	1 700 18 000	1 500 19 000	1 600 20 000	1 400 19 000	1 500 20 000	1 600 19 000	1 500 20 000	1 400 20 000	1 500 20 000	1 700 20 000	1 700 19 000	1 800 18 000	1 800 17 000	2 000 17 000	2 300 17 000	2 700 17 000	2 500 17 000	2 600 18 000	2 500 18 000	2 500 18 000	2 600 18 000
a. Solid Waste Disposal	15 000	15 000	15 000	15 000	15 000	15 000	15 000	12 000	11 000	13 000	13 000	13 000	13 000	13 000	14 000	14 000	14 000	14 000	13 000	12 000	11 000	11 000	11 000	12 000	12 000	12 000	12 000	12 000	12 000
b. Biological Treatment of Solid Waste c. Wastewater Treatment and Discharge	920	910	910	920	70 930		100 950	100 950	100 960	200 960	200 970	200 990	200 990	1 000	1 000	300 1 000	300 1 000	1 000		400 1 100	1 100	1 200	400 1 200	400 1 100	500 1 200	500 1 200	1 100	400 1 100	400 1 100
d. Incineration and Open Burning of Waste	500	500	500	600	600	600	600	600	600	600	600	700	700	600	600	600	500	500	500	500	400	400	300	300	400	400	400	400	400
e. Industrial Wood Waste Landfills LAND USE, LAND-USE CHANGE AND FORESTRY	4 000 -60 000	4 000 -65 000	4 000 -58 000		4 000 -53 000		4 000 -48 000	4 000 -49 000	4 000 -56 000	4 000 -45 000	4 000 -32 000	4 000 -48 000	4 000 -34 000	4 000 -40 000	4 000 -17 000	4 000 -13 000	4 000 -22 000	4 000 -25 000		4 000 -42 000	4 000 -25 000	4 000 -25 000	4 000 -28 000	4 000 -25 000	4 000 -25 000	4 000 -18 000	4 000 -19 000	3 000 -16 000	3 000 -13 000
a. Forest Land	-200 000	-210 000	-210 000	-200 000	-200 000	-190 000	-200 000	-200 000	-190 000	-190 000	-180 000	-180 000	-170 000	-160 000	-150 000	-150 000	-140 000	-140 000	-150 000	-150 000	-150 000	-150 000	-150 000	-150 000	-150 000	-140 000	-140 000	-140 000	-140 000
b. Cropland	8 100	7 000 0.80	5 600		2 800		540 0.50	- 940 0.60	-2 200 0.70	-3 400 0.80	-4 800 1	-5 900 1	-7 400 1	-8 600 1	-9 800 0.90	-11 000 0.90	-12 000	-12 000 0 40		-12 000 0.40	-12 000	-12 000	-11 000	-10 000	-9 500 0.80	-8 600 1	-7 700 1	-6 800 1	-6 200 1
c. Grassland d. Wetlands	0.60 5 300	5 200	5 000	0.40 5 400	3 200	0.30 3 100	3 000	0.60 3 100	3 400	3 700	3 200	3 100	3 200	3 000	3 200	3 100	3 200	0.40 3 200		3 100	0.30 3 100	0.60 3 000	3 000	3 100	0.80 3 100	2 900	2 900	3 000	2 600
e. Settlements	2 100	2 000	1 900		1 600		1 500	1 500	1 500	1 600	1 600	1 500	1 800	1 800	2 000	2 100	2 300	2 300	2 300	2 100	2 000	2 100	2 000	2 300	2 300	2 200	2 100	1 900	1 800
f. Harvested Wood Products	130 000	130 000	140 000	140 000	140 000	150 000	140 000	140 000	130 000	140 000	150 000	130 000	140 000	120 000	140 000	140 000	130 000	120 000	120 000	120 000	130 000	130 000	130 000	130 000	130 000	130 000	130 000	130 000	130 000

Notes:

Indicates no emissions

0.00 Indicates emissions truncated due to rounding

Estimates for the latest year (2018) are based on preliminary energy data; these data, though the best available information at the time of publication, are subject to revision in the next submission year.

National GHG emissions allocated to Canadian economic sectors are provided in Annex 10 of this report.

a. National totals exclude all GHGs from the Land Use, Land-use Change and Forestry Sector.
b. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.

Greenhouse Gas Categories					Greenhou	ise Gases				
The Division Control of the Control	CO ₂	CH ₄	CH ₄	N ₂ O	N ₂ O	HFCsd	PFCsd	SF ₆	NF ₃	TOTAL
Global Warming Potential	l.a	1.4	25	l.s.	298	l+ CO	I+ CO	22 800 kt CO ₂ eq	17 200	l+ CO -
Jnit	kt	kt	kt CO ₂ eq	kt	kt CO ₂ eq	kt CO ₂ eq	kt CO ₂ eq		kt CO ₂ eq	kt CO ₂ e
TOTAL ^{a,b}	587 000	3 700	91 000	130	38 000	13 000	620	310	0.10	729 00
NERGY	543 000	1 900	47 000	20	7 000	-	-	-	-	596 00
Bublic Electricity and Heat Production	315 000 69 300	6	6 000	9	3 000 400	-	-		-	324 00 69 90
Public Electricity and Heat Production Petroleum Refining Industries	16 000	0.30	8	0.10	30					16 00
Oil and Gas Extraction	103 000	100	3 000	2	600	_	-		_	106 00
Mining	4 840	0.10	3	0.10	30	-	-	-	-	4 88
Manufacturing Industries	43 100	3	66	2	490	-	-	-	-	43 70
Iron and Steel	6 340	0.10	4	0.10	40	-	-	-	-	6 38
Non Ferrous Metals	2 770	0.06	2	0.05	20	-	-	-	-	2 78
Chemical	10 900	0.21	5	0.20	60	-	-	-	-	10 90
Pulp and Paper	6 670	1	30	0.70	200	-	-	-	-	6 90
Cement	3 940	0.20	20	0.05	200	-	-	-	-	3 96
Other Manufacturing Construction	12 500 1 380	0.70	0.63	0.60	11	-	-		-	12 70 1 39
Commercial and Institutional	32 600	0.03	20	0.70	200					32 80
Residential	41 300	100	3 000	2	700	-	-	-	_	45 20
Agriculture and Forestry	3 760	0.07	2	0.10	30	-	-	_	-	3 79
o. Transport	212 000	40	1 000	14	4 100	-	-	-	-	217 00
Domestic Aviation	7 920	0.20	6	0.20	70	-	-	-	-	7 99
Road Transportation	151 000	10	200	9	2 600	-	-	-	-	154 00
Light-Duty Gasoline Vehicles	33 300	3	70	2	540	-	-	-	-	33 90
Light-Duty Gasoline Trucks	51 100	4	100	3	820	-	-	-	-	52 00
Heavy-Duty Gasoline Vehicles	13 300	0.50	10	1	350	-	-	-	-	13 60
Motorcycles	299	0.10	3	0.01	2	-	-	-	-	30
Light-Duty Diesel Vehicles	791	0.02	0.40	0.07	20	-	-	-	-	81
Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles	1 150 50 900	0.03	0.80	0.10	29 860	-		-	-	1 18 51 80
Propane and Natural Gas Vehicles	10	0.00	0.10	0.00	0.05	-	-		-	5180
Railways	6 840	0.40	10	3	800		-		-	7 65
Domestic Navigation	3 990	0.40	10	0.10	30					4 03
Other Transportation	42 300	29	730	2	500	-	-		_	43 60
Off-Road Agriculture & Forestry	11 000	0.51	13	0.50	100	-	-	-	-	11 20
Off-Road Commercial & Institutional	2 810	4	100	0.09	30	-	-	-	-	2 93
Off-Road Manufacturing, Mining & Construction	14 200	2	43	0.80	300	-	-	-	-	14 50
Off-Road Residential	1 180	3	65	0.03	10	-	-	-	-	1 25
Off-Road Other Transportation	5 000	12	310	0.10	40	-	-	-	-	5 35
Pipeline Transport	8 080	8	200	0.20	60	-	-	-	-	8 34
. Fugitive Sources	16 000	1 600	40 000	0.38	110	-	-		-	55 00
Coal Mining		50	1 000		-	-	-	-	-	1 00
Oil and Natural Gas	16 000	1 500	38 000	0.40	100	-	-	-	-	54 00
Oil Natural Cas	560 110	190 490	4 800 12 000	0.40	100 0.04	-		-	-	5 50
Natural Gas Venting	9 000	830	21 000	0.00	0.04	-				12 00 30 00
Flaring	5 900	22	560	0.03	8		-			6 50
I. CO ₂ Transport and Storage	0.30		-	-	-	-	-	-	-	0.3
NDUSTRIAL PROCESSES AND PRODUCT USE	41 100	6	150	5	1 630	13 000	621	310	0.10	56 30
. Mineral Products	8 900	-	-	-	-	-	-	-	-	8 90
Cement Production	7 200	-	-	-	-	-	-	-	-	7 20
Lime Production	1 400	-	-	-	-	-	-	-	-	1 40
Mineral Product Use	320	-	-	-	-	-	-	-	-	32
o. Chemical Industry	6 400	6	150	4	1 110	-	-	-	-	7 66
Ammonia Production	2 440	-	-	-	1 100	-	-	-	-	2 44
Nitric Acid Production	-	-	-	4	1 100	-	-	-	-	1 10
Adipic Acid Production Petrochemical and Carbon Black Production	3 960	- 6	150	0.04	13	-		-	-	4 12
Metal Production	14 200	0.09	2	0.04	- 13	-	591	147	-	15 00
Iron and Steel Production	9 330	0.09	2	-	-		- 186	- 14/		9 3
Aluminum Production	4 900	-	-	-	-	-	591	13	-	5 5
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-	-	-	-	134	-	13
I. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	-	-	-	-	-	13 000	4	2	0.10	13 00
. Non-Energy Products from Fuels and Solvent Use	12 000	-	-	-	-	-	-	-	-	12 00
. Other Product Manufacture and Use	32	-	-	2	520	-	26	160	-	74
AGRICULTURE	2 600	1 100	28 000	96	29 000	-	-	-	-	59 00
. Enteric Fermentation	-	970	24 000	-	-	-	-	-	-	24 00
. Manure Management	-	150	3 800	10	4 000	-	-	-	-	7 90
. Agricultural Soils	-	-	-	83	25 000	-	-	-	-	25 00
Direct Sources Indirect Sources	-	-	-	69	20 000	-	-	-	-	20 00
	-	1	40	0.04	4 000 10	-			-	4 00
I. Field Burning of Agricultural Residues Liming, Urea Application and Other Carbon-containing Fertilizers	2 600		- 40	- 0.04	- 10	-	-		-	2 60
VASTE	200	660	17 000	3	900	-	-			18 00
. Solid Waste Disposal	-	490	12 000	-	-	-	-	-	-	12 00
. Biological Treatment of Solid Waste	-	10	300	0.60	200	-	-	-	-	40
. Wastewater Treatment and Discharge	-	26	660	2	500	-	-	-	-	1 10
. Incineration and Open Burning of Waste	200	0.05	1	0.60	200	-	-	-	-	4
. Industrial Wood Waste Landfills	-	100	3 000	-	-	-	-	-	-	3 0
AND USE, LAND-USE CHANGE AND FORESTRY	-14 000	23	580	1	320	-	-	-	-	-13 0
. Forest Land	-140 000	20	400	0.70	200	-	-	-	-	-140 0
Considered	-6 300	3	79	0.20	59	-	-	-	-	-6 20
o. Cropland	0.000									
. Grassland	-	0.04	0.90	0.00	0.30	-	-	-	-	
	2 600 1 700	0.04 0.60 4	15	0.00 0.01 0.16	0.30 4 49	- - -		-	-	2 6 1 8

Notes:

Indicates no emissions

O.00 Indicates missions truncated due to rounding

Estimates for the latest year (2018) are based on preliminary energy data; these data, though the best available information at the time of publication, are subject to revision in the next submission year.

National GHG emissions allocated to Canadian economic sectors are provided in Annex 10 of this report.

a. National totals exclude all GHGs from the Land Use, Land-use Change and Forestry Sector.

b. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.

c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF, emissions from the use of NF₃.

d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

TABLES

CANADA'S GREENHOUSE GAS EMISSION TABLES BY CANADIAN ECONOMIC SECTOR, 1990–2018

This annex contains summary tables illustrating national GHG emissions for the period 1990–2018 by Canadian economic sector (Table A10–2), as well as the relationship (crosswalk) between the economic sectors and the Intergovernmental Panel on Climate Change (IPCC) sectors presented in Annex 9 of this report (Table A10–3). In addition, Table A10–1 provides a brief description of each economic sector.

Although not a mandatory reporting requirement, reallocating emissions from IPCC sectors to Canadian economic sectors is useful for the purpose of analyzing trends and policies, as most people associate GHG emissions with a particular economic activity (e.g. producing electricity, farming or driving a car). This re-allocation simply re-categorizes emissions under different headings, but does not change the overall magnitude of Canadian emission estimates. Estimates for each economic sector includes emissions from energy-related and non energy related processes.

Reallocation of Emissions from IPCC Sector to Canadian Economic Sector

In general, the reallocation of emissions from IPCC sector to economic sector involves aggregating emissions from stationary combustion, fugitive sources, transportation, industrial processes, agriculture and waste into the appropriate economic sector. In many cases, the stationary combustion emissions for a specific IPCC sector are the same as that for the corresponding economic sector with some notable exceptions.

First, unlike allocation for the IPCC sectors, all utilityowned cogeneration facilities that produce steam or electricity for on-site use are reallocated from Electricity to the relevant economic sector. The relevant economic sectors include Natural Gas Production & Processing, Oil Sands, Mining, Pulp and Paper, Chemicals and

Table A10-1 Canadian Economic Sector Descriptions	10
Table A10–2 Canada's GHG Emissions by Canadian Economic Sector, 1990–2018	11
Table A10–3 Relationship between Canadian Economic Sectors and IPCC Sectors, 2018	12

Fertilizers, Service Industry, and Light Manufacturing. This is generally accomplished by analyzing and reallocating data by sector from the *Electric Power Thermal Generating Station Fuel Consumption Survey* (Statistics Canada 2019).

Second, Lime and Gypsum is split out from the IPCC category Other Manufacturing and reported as an economic sector on its own, while all other industries included in the IPCC category are allocated to the economic sector Light Manufacturing. Constituent sectors include all other manufacturing industries not already accounted for in identified IPCC manufacturing categories (e.g. Iron and Steel, Chemicals, etc.). Examples include automobile manufacturing, textiles, food and beverage industries, etc.

Third, emissions resulting from the combustion of fuel used to transport oil and natural gas in pipelines accounted for in the IPCC category Pipeline Transport, is divided into the Oil and Natural Gas Transmission and Natural Gas Distribution economic sectors. This division is based on sector-specific fuel combustion data from an upstream oil and gas (UOG) study (Environment Canada 2014).

Fourth, combustion emissions from the Mining and Upstream Oil and Gas Production IPCC category are reallocated to many economic sectors including: Coal Production, Mining, Natural Gas Production and Processing, Conventional Light Oil Production, Conventional Heavy Oil Production, Frontier Oil Production and Oil Sands (Mining, In-situ, Upgrading). A variety of external data sources are used to estimate emissions for the appropriate sectors which are then re-proportioned to align with Canada's energy balance. These external data sources include:

 Mining—Metal and non-metal mining fuel consumption data from the Canadian Industrial Energy End-Use Data and Analysis Centre (CEEDC) database on Energy, Production and Intensity Indicators for Canadian Industry (CEEDC 2019).

- Coal Production—Fuel consumption estimates for the coal mining industry are based on the Compilation of a National Inventory of Greenhouse Gas and Fugitive VOC Emissions by the Canadian Coal Mining Industry (Cheminfo/Clearstone 2014) and annual coal production data provided by Statistics Canada (see Annex 3.2 for further discussion on this activity data).
- UOG sectors—Fuel consumption data for the various UOG sectors, except Oil Sands, is estimated from the UOG study (Environment Canada 2014).
- 4. Oil Sands—Fuel consumption data for the Oil Sands industry (including mining and extraction, in-situ and upgrading) is modelled by ECCC and adjusted so that the resultant emissions align with the facility level emissions data that is reported to ECCC through the Greenhouse Gas Emissions Reporting Program (GHGRP) (see Chapter 1 for more information on the GHGRP).

Fifth, emissions from road, rail, marine and air transport are separated into passenger and freight components. Emissions for Other Transportation (Off-road) are reallocated to their relevant economic sectors and to the Transportation category Other: Recreational, Commercial, and Residential.

Sixth, CO₂ captured from waste streams at large industrial facilities (e.g. electric utilities, oil sands upgraders) is presented separately in the economic sectors. It is displayed as a negative number to represent the removal of CO₂ from the specific sector while the source of the CO₂ emissions (e.g. stationary combustion) for the sector is displayed as a gross amount.

In terms of process and product use-related emissions, emissions from mineral products, chemical industry and metal production are reallocated to Heavy Industry and Light Manufacturing. Emissions from consumption of halocarbons, SF $_6$ and NF $_3$, which mainly consist of HFC emissions from refrigeration and air conditioning, are reallocated to Transportation and Buildings, where the majority of HFCs are used and emitted. Emissions from non-energy products from fuels and solvent use are reallocated to multiple relevant economic categories. Finally, emissions from other product manufacture and use are mainly distributed to Electricity and Service Industry.

Once all of these sector specific fuel consumption estimates are compiled the data are reconciled by province and by fuel with the fuel consumption data from the *Report on Energy Supply and Demand* (Statistics Canada, 2003–). This ensures that the economic sector estimates match the IPCC sector estimates.

Canada's greenhouse gas emission tables are also available in electronic file format online at http://open.canada.ca.

Economic Sector	Description
OIL AND GAS	
Jpstream Oil and Gas	Stationary combustion, onsite transportation, electricity and steam production, fugitive and process emissions from:
Natural Gas Production and Processing	- natural gas production and processing
Conventional Oil Production	Emissions resulting from:
Conventional Light Oil Production	- conventional light crude oil production
Conventional Heavy Oil Production	- conventinoal heavy crude oil production
Frontier Oil Production	- offshore and arctic production of crude oil
Oil Sands (Mining, In-situ, Upgrading)	Stationary combustion, onsite transportation, electricity and steam production, fugitive and process emissions from
Mining and Extraction	- crude bitumen mining and extraction
In-situ	- in-situ extraction of crude bitumen including primary extraction, cyclic steam stimulation (CSS), steam-assisted gravity drainage (SAGD) and other experimental techniques.
Upgrading	- crude bitumen and heavy oil upgrading to synthetic crude oil
Oil, Natural Gas and CO ₂ Transmission	Combustion and fugitive emissions from the transport and storage of crude oil and natural gas
Downstream Oil and Gas	Emissions resulting from:
Petroleum Refining	Stationary combustion, onsite transportation, electricity and steam production, fugitive and process emissions from petroleum refining industries
Natural Gas Distribution	Combustion and fugitive emissions from local distribution of natural gas
ELECTRICITY	Combustion and process emissions from utility electricity generation, steam production (for sale) and transmission. Excludes utility owned cogeneration at industrial sites.
FRANSPORTATION	Mobile related emissions including all fossil fuels and non-CO₂ emission from biofuels.
Passenger Transport	Mobile related combustion, process and refrigerant emissions from the vehicles that primarily move people around.
Cars, Light Trucks and Motorcycles	- Light duty cars and trucks up to 8 500 lb. GVWR and motorcycles.
Bus, Rail and Domestic Aviation	- All buses and the passenger component of rail and domestic aviation
reight Transport	Mobile related combustion, process and refrigerant emissions from the vehicles that primarily move cargo or freight around
Heavy Duty Trucks, Rail	- Vehicles above 8 500 lb. GVWR and the freight component of rail
Domestic Aviation and Marine	- Cargo component of domestic aviation and all domestic navigation
Other: Recreational, Commercial and	Combustion emissions from the non-industrial use of off-road engines (e.g., ATVs, snowmobiles, personal watercraft including portable engines (e.g., generators, lawn mowers, chain saws).
HEAVY INDUSTRY	Stationary combustion, onsite transportation, electricty and steam production, and process emissions from:
Mining	- metal and non-metal mines, stone quarries, and gravel pits
Smelting and Refining (Non Ferrous Metals)	- Non-ferrous Metals (aluminium, magnesium and other production)
Pulp and Paper	- Pulp and Paper (primarily pulp, paper, and paper product manufacturers)
ron and Steel	- Iron and Steel (steel foundries, casting, rolling mills and iron making)
Cement	- Cement and other non-metallic mineral production
Lime & Gypsum	- Lime and Gypsum product manufacturing
Chemicals & Fertilizers	- Chemical (fertilizer manufacturing, organic and inorganic chemical manufacturing)
BUILDINGS	
	Stationary combustion and process (i.e. air conditioning) emissions from:
Service Industry	- Service industries related to mining, communication, wholesale and retail trade, finance and insurance, real estate, education, etc.; offices, health, arts, accommodation, food, information & cultural; Federal, provincial and municipal establishments; National Defence and Canadian Coast Guard; Train stations, airports and warehouses
Residential	- personal residences (homes, apartment hotels, condominiums and farm houses)
AGRICULTURE	Emissions resulting from:
On Farm Fuel Use	- Stationary combustion, onsite transportation and process emissions from the agricultural, hunting and trapping industry (excluding food processing, farm machinery manufacturing, and repair)
Crop Production	- Application of biosolids and inorganic nitrogen fertilizers, decomposition of crop residues, loss of soil organic carbon, cultivation of organic soils, indirect emissions from leaching and volatilization, field burning of agricultural residues, liming, and urea application
Animal Production	- Animal housing, manure storage, manure deposited by grazing animals, and application of manure to managed soils
WASTE	Non-CO ₂ Emissions from biomass resulting from:
Solid Waste	- Municipal solid waste management sites (landfills), dedicated wood waste landfills, and composting of municipal
Waste Water	solid waste - Municipal and industrial wastewater treatment
Vaste Incineration	- Municipal solid, hazardous and clinical waste, and sewage sludge incineration
COAL PRODUCTION LIGHT MANUFACTURING, CONSTRUCTION & FOREST RESOURCES	Stationary combustion, onsite transportation and fugitive emissions from underground and surface coal mines Stationary combustion, onsite transportation, electricty and steam production, and process emissions from (excluding LULUCF):
Light Manufacturing	- all other manufacturing industries not included in the Heavy Industry category above
Construction	- construction of buildings, highways etc.

Table A10–2 Canada's GHG Emissions by																													
Greenhouse Gas Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004 Mt CO ₂ eq	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
NATIONAL GHG TOTAL	603	595	612	615	636	653	675	686	693	707	731	720	724	740	742	730	721	742	723	680	691	702	710	721	721	720	706	714	729
OIL AND GAS	106	104	114	121	126	132	139	140	145	154	157	158	161	163	162	158	162	168	161	158	159	165	176	185	191	191	187	188	193
Upstream Oil and Gas	86	86	95	101	107	113	117	118	124	134	137	137	139	140	137	134	138	144	138	135	136	143	152	161	169	168	164	167	173
Natural Gas Production and Processing	36	34	36	39	41	43	45	43	47	54	57	59	61	64	58	55	54	58	54	51	48	51	51	52	53	50	49	49	50
Conventional Oil Production	23	23	25	26	28	30	32	33	35	35	37	36	35	33	31	30	29	31	29	27	27	28	31	32	35	34	29	29	29
Conventional Light Oil Production	11	11	11	11	12	12	12	12	12	11	12	12	12	11	11	11	11	12	11	11	11	12	14	15	17	17	15	15	16
Conventional Heavy Oil Production	12	12	14	15	16	18	19	22	21	22	24	23	21	19	18	17	17	17	16	14	14	14	15	15	16	16	13	12	11
Frontier Oil Production	0	0	0	0	0	0	0	0	2	2	1	1	2	2	2	2	2	2	2	2	2	2	1	2	2	2	2	2	2
Oil Sands (Mining, In-situ, Upgrading)	15	16	18	20	21	21	22	23	23	26	27	29	30	33	37	37	43	45	46	50	54	56	63	68	71	74	75	80	84
Mining and Extraction	4	5	5	5	5	5	5	5	6	7	7	29	8	9	10	9	11	12	11	12	12	12	14	15	16	17	17	18	18
	4	4	5	5	5	6	6	7	8	8	8	8	8	9	10	11	13	14		17	20	21		27		33	35		_
In-situ				-	_	-	-		-		_		-	-					16				25		29			38	41
Upgrading Oil Natural Gas and CO. Transmission	12	13	8	10	10	10	10	10	10	12	13	13	14	15	17	17	19	20	19	21	22	23	25	26	25	24	22	23	24
Oil, Natural Gas and CO ₂ Transmission	12	13	16	16	17	18	19	19	19	19	15	14	13	11	10	12	11	10	9	8	7	7	8	9	10	10	11	10	11
Downstream Oil and Gas	20	19	19	20	19	19	22	22	21	20	20	21	22	23	24	23	23	24	22	22	23	22	24	24	23	22	23	21	21
Petroleum Refining	18	17	17	18	17	17	20	20	19	18	19	19	21	22	23	22	22	23	21	21	22	21	23	23	21	21	22	20	19
Natural Gas Distribution	2	2	2	2	2	2	2	2	2	2	1	120	1	1	100	1	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1	1	1	1	1	1	1	1
ELECTRICITY	95	96	103	93	95	98	98	109	122	119	130	130	124	127	120	119	114	119	110	95	96	88	84	81	77	81	75	73	64
TRANSPORTATION	121	115	116	117	122	123	126	132	138	144	146	147	148	152	157	161	162	166	166	162	168	169	171	174	172	172	174	179	186
Passenger Transport	71	68	68	69	71	72	74	76	79	81	82	85	86	88	89	90	90	90	89	88	89	89	89	91	89	91	94	95	99
Cars, Light Trucks and Motorcycles	64	62	62	63	65	66	67	69	72	74	75	77	79	81	81	82	82	82	80	81	82	81	80	82	81	83	86	86	90
Bus, Rail and Domestic Aviation	7	6	6	6	6	6	7	7	7	8	8	7	7	7	8	8	8	9	8	8	8	8	9	9	8	8	8	9	9
Freight Transport	31	29	30	30	32	32	35	39	43	47	49	51	51	54	56	60	62	65	67	64	69	72	74	75	74	72	71	75	78
Heavy Duty Trucks, Rail	26	24	25	25	27	26	29	33	37	41	43	45	45	48	50	54	56	59	61	59	63	66	69	70	69	67	66	69	73
Domestic Aviation and Marine	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	5	5	5	5	5	5
Other: Recreational, Commercial and Residential	18	18	18	18	19	19	18	17	16	16	15	11	11	11	12	10	10	10	10	10	10	8	8	8	8	9	9	9	9
HEAVY INDUSTRY	97	97	94	94	99	100	103	102	97	95	94	88	89	89	93	87	87	86	85	72	75	82	81	79	80	79	77	76	78
Mining	7	6	6	7	8	8	8	9	8	7	8	7	7	7	7	7	7	8	8	8	8	8	9	8	8	8	7	7	8
Smelting and Refining (Non Ferrous Metals)	17	18	17	17	17	16	17	17	17	16	16	15	15	15	14	14	14	13	13	12	11	12	10	11	10	10	11	11	10
Pulp and Paper	15	15	14	14	13	13	14	14	13	13	13	12	11	11	11	9	8	8	7	7	7	7	7	7	7	6	7	7	8
Iron and Steel	16	18	18	18	18	18	18	18	18	19	19	17	17	17	17	16	17	18	17	13	14	17	17	15	16	15	15	15	16
Cement	10	8	8	9	10	11	10	11	11	12	12	12	12	12	13	13	14	13	12	10	10	10	11	10	10	10	10	11	11
Lime & Gypsum	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3	3	2	3	2	2	3	2
Chemicals & Fertilizers	29	29	28	27	31	31	33	32	28	25	23	23	24	24	27	25	24	24	25	21	23	25	26	26	27	27	25	22	24
BUILDINGS	74	73	75	79	79	80	86	83	76	79	86	82	87	92	90	86	81	87	86	85	82	87	85	86	89	86	82	85	92
Service Industry	28	28	29	31	30	32	34	34	32	34	38	38	40	43	43	40	37	39	39	39	38	41	42	42	42	41	41	43	46
Residential	47	45	46	48	49	48	52	49	44	45	47	44	47	48	47	46	44	48	47	46	43	47	43	45	47	44	40	42	47
AGRICULTURE	57	58	60	62	65	68	70	70	70	70	70	68	67	70	72	72	70	71	71	68	68	68	70	73	71	71	72	71	73
On Farm Fuel Use	11	11	11	12	13	14	14	15	14	13	13	11	11	12	12	12	12	12	12	12	13	14	13	13	13	13	13	13	14
Crop Production	15	14	15	15	16	16	17	17	17	17	17	15	15	16	17	16	16	17	19	18	18	19	21	23	22	23	24	23	24
Animal Production	32	32	34	34	36	38	38	38	39	39	40	41	41	42	43	44	43	41	40	38	37	36	36	36	36	35	36	36	36
WASTE	21	21	21	21	21	21	21	18	18	19	20	19	20	19	20	20	20	20	19	18	17	17	17	17	17	18	18	18	18
Solid Waste	19	19	19	20	20	20	20	16	16	18	18	17	18	18	18	18	18	18	17	16	16	16	16	16	16	16	16	16	16
Wastewater	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Waste Incineration	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
COAL PRODUCTION	4	4	4	4	4	4	4	4	4	3	3	3	3	3	3	2	2	3	3	3	3	3	3	3	3	2	2	2	3
LIGHT MANUFACTURING, CONSTRUCTION & FOREST RESOURCES	28	27	26	24	25	27	27	28	24	25	26	24	24	24	25	24	23	24	23	20	22	23	22	22	21	21	21	21	22
Light Manufacturing	21	20	20	18	18	20	20	21	18	18	19	17	17	17	17	17	16	17	16	14	15	16	16	16	15	15	14	14	14
Construction	6	5	5	5	6	6	6	5	5	5	5	5	6	6	6	6	6	6	6	5	6	6	5	5	5	5	5	6	6
Forest Resources	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Totals may not add up due to rounding.

National GHG emissions allocated to IPCC sectors are provided in Annex 9 of this report.

Provincial/territorial GHG emissions allocated to IPCC sectors are provided in Annex 11 of this report.

Estimates presented here are under continual improvement. Historical emissions may be change in future publications as new data becomes available and methods and models are refined and improved.

Emission estimates for Solid Waste include emissions from municipal solid waste landfills, wood waste landfills and municipal solid waste composting.

0 indicates emissions of less than 0.5 Mt CO₂ eq; truncated due to rounding

- Indicates no emissions

	Economic													NATIO	IAL INVENT	ORY CAT	EGORT										
	Category Total				Energ								al Processes and P					Agricul						aste			CO ₂
	Total	Statio Stationary	onary Comb Industrial C	el Combustion oustion Cogeneration Steam for Sale	Transport (U	Ener Fugitive Jnintentional	gy: Fugitive Flaring				Chemical Industry ^e	Metal Production ^f	Consumption of Halocarbons, SF ₆ and NF ₃	Products from Fuels and Solvent Use	and Use	Total	Manure Management		Agriculture Soils	Total	Solid Waste Disposal	Biological Treatment of Solid Waste	Wastewater Treatment and Discharge		d Industrial Woo Waste Landfill:		Captured ^j
National Inventory Total ^{a,b}	729	302	21.5	0.7	217	19.2	6.5	30.8	598	8.9	7.0	15.0	12.6		CO ₂ equivale 0.7	nt 56.3	7.9	24.1	27.3	59.4	12.3	0.4	1.1	0.4	2	17.7	-1.7
OIL AND GAS	193	111.7	12.9	0.0	12.6	17.9	6.5		92.5	0.9	7.0	15.0	12.0	1.8	0.7	1.8	7.9	24.1	27.3	37.4	12.3	0.4	1.1	0	3.4	17.7	-1.7
Upstream Oil and Gas	173	96.2	11.9	0.0	12.6	16.7	6.3		73.6					0.1		0.1											-1.1
Natural Gas Production and Processing	50	27.1	0.8		0.3	9.9	1.2		49.5					0.0		0.0											-1.1
Conventional Oil Production	29	8.5	0.8		0.3	3.2	3.5		28.9					0.0		0.0											
	16	3.0	0.4		0.3	2.1	2.2		15.9					0.0		0.0											
Conventional Light Oil Production Conventional Heavy Oil Production	11	4.6			0.2	1.0	0.6		10.9					0.0		0.0											
<u> </u>	11		0.4																								
Frontier Oil Production	2	0.9	0.4		0.0	0.0	0.7	0.0	2.1					0.4													
Oil Sands (Mining, In-situ, Upgrading) ^c	84	60.7	10.7		3.7	2.3	1.7		84.5					0.1		0.1											-1.1
Mining and Extraction	18	9.6	3.0		3.7	1.9	0.2		18.4					0.1		0.1									+		
In-situ	41	34.0	6.1			0.3	0.2		40.7																		
Upgrading	24	17.1	1.5			0.1	1.3		25.5					0.0		0.0											-1.1
Oil, Natural Gas and CO ₂ Transmission	11				8.3	1.4	0.0		10.6																		
Downstream Oil and Gas	21	15.5	1.0	0.0	0.1	1.1	0.2		18.9					1.7		1.7											
Petroleum Refining	19	15.5	1.0	0.0		0.1	0.2		17.7					1.7		1.7											
Natural Gas Distribution	1				0.1	1.0	0.0		1.2																		
ELECTRICITY	64	64.1		0.6					64.7						0.2	0.2									4		-0.6
TRANSPORTATION ⁹	186				182.9				82.9				2.7		0.0	3.0									4		
Passenger Transport	99				97.2				97.2				1.3	0.2	0.0	1.5											
Cars, Light Trucks and Motorcycles	90				88.2				88.2				1.2		0.0	1.4											
Bus, Rail and Domestic Aviation	9				9.0				9.0				0.1	0.0	0.0	0.1											
Freight Transport	78				76.3				76.3				1.4		0.0	1.5											
Heavy Duty Trucks, Rail	73				71.2				71.2				1.2		0.0	1.4											
Domestic Aviation and Marine	5				5.1				5.1				0.2	0.0		0.2											
Other: Recreational, Commercial and Residential	9				9.5				9.5																		
HEAVY INDUSTRY	78	31.8	7.4	0.1	3.1				42.4	8.7	7.0	15.0	0.3			35.8									4		
Mining	8	3.5	1.4		2.5				7.4				0.0			0.3											
Smelting and Refining (Non Ferrous Metals)	10	2.8		0.0	0.2				3.0	0.0		5.6		1.2		6.8											
Pulp and Paper	8	5.2	2.2	0.0	0.1				7.5	0.0				0.0		0.1											
Iron and Steel	16	6.3	0.1	0.0	0.2				6.6			9.3		0.2		9.5											
Cement	11	4.0			0.0				4.0	7.2				0.0		7.2											
Lime & Gypsum	2	0.9			0.0				0.9	1.4				0.0		1.4											
Chemicals & Fertilizers	24	9.2	3.7	0.1	0.1				13.0	0.1	7.0		0.3	3.1		10.6											
BUILDINGS	92	77.4	0.7						78.1				9.0		0.5	14.4											
Service Industry	46	32.2	0.7						32.9				7.3		0.5	12.6											
Residential	47	45.2							45.2				1.7			1.7											
AGRICULTURE	73	3.7	0.0		10.0				13.7					0.1		0.1	7.9	24.1	27.3	59.4							
On Farm Fuel Use ^h	14	3.7	0.0		10.0				13.7					0.1		0.1											
Crop Production	24																		23.7	23.7							
Animal Production	36																7.9	24.1	3.6	35.7							
WASTE	18												0.0			0.0					12.3	0.4	1.1	0.4		17.7	
Solid Waste ⁱ	16												0.0			0.0					12.3	0.4			3.4	16.1	
Wastewater	1																						1.1			1.1	
Waste Incineration	0																							0.4	,	0.4	
COAL PRODUCTION	3	0.5			0.7	1.3			2.5																		
LIGHT MANUFACTURING, CONSTRUCTION & FOREST RESOURCES	22	12.8	0.4	0.0	7.6				20.9	0.2			0.4	0.5	0.0	1.1											
Light Manufacturing	14	11.4	0.4	0.0	1.5				13.3	0.2			0.4	0.4	0.0	1.0											
Construction	6	1.4	0.0		4.9				6.3					0.0		0.0											
	1	0.1			1.2				1.3					0.0		0.0									T		
Forest Resources	1	0.1														0.0	1										

Notes:

Totals may not add up due to rounding. Economic category totals rounded to nearest megatonne (Mt). The estimates for the economic categories may not add up to the National Inventory Totals due to rounding and statistical differences in the RESD for the IP category of Other & Undifferentiated Production. Estimates presented here are under continual improvement. Historical emissions may be change in future publications as new data becomes available and methods and models are refined and improved.

Indicates emissions of less than 0.5 Mt CO₂ eq

- o Indicates emissions of less than 0.5 Mt CO₂ eq

 a. Categorization of emissions is consistent with the IPCC's sectors following the reporting requirement of the UNFCC.

 b. National totals exclude all GHGs from the Land Use, Land Use Change and Forestry Sector.

 c. Industrial cogeneration includes emissions associated with the simultaneous production of heat and power. At some facilities, a portion of this power is generated by onsite utility-owned generators. As such, the cogeneration emissions for these specific facilities are included under the Public Electricity and Heat Generation category in the National Inventory (UNFCCC) format.

 d. Mineral products includes cement production, nitric acid production, petrochemical production.

 e. Chemical industry includes ammonia production, nitric acid production, adminum production, and steel production, aluminum production, and SF₆ used in magnesium smelters and casters.

 g. Emissions from the consumption of propane and natural gas in Transportation are allocated to Cars, Light Trucks and Buses

 h. On Farm Fuel Use includes emissions associated with the use of lube oils and greases.

 i. Emission estimates for Solid Waste include emissions from municipal solid waste landfills, wood waste landfills, wood waste landfills, wood waste landfills, wood waste landfills, and municipal solid waste composting.

 j. Some facilities capture CO₂ emissions. This is displayed as a negative quantity, as it is computed as an emission reduction at the source. Though the CO₂ has been captured, this does not imply permanent storage; some portion may be subsequently re-emitted (for instance, as fugitive releases) in another activity in such cases, the re-emissions are reported in the economic sectors where they occur.

Canada.ca/ghg-inventory National Inventory Report—2020 Edition Part 3

PROVINCIAL/ TERRITORIAL GREENHOUSE GAS EMISSION TABLES BY IPCC SECTOR, 1990–2018

This annex contains summary tables (Table A11-1 to Table A11-28) illustrating GHG emissions by province/ territory and year for each IPCC sector.

To account for the creation of Nunavut in 1999, separate time-series are provided from 1999 onwards for both the Northwest Territories and Nunavut (Table A11-24 and Table A11-26); emissions for the years 1990–1998 are presented as a combined region in Table A11-28.

Provincial/territorial GHG emissions allocated to Canadian economic sectors are provided in Annex 12 of this report.

Although the UNFCCC reporting guidelines only require reporting national-level information, provincial and territorial information is important, owing to differences in regional emission levels and trends. Note that provincial and territorial emission estimates may not necessarily sum to the national totals due to rounding.

Several Canadian provinces develop independent inventories of provincial GHG emissions, in some cases making use of alternate methodologies, data inputs and/or inclusions/omissions of GHG source categories. While Canada is developing a national emission inventory consistent with IPCC guidelines and international obligations, provincial governments may elect to develop an inventory structure in accordance with specific provincial needs. Environment and Climate Change Canada encourages collaboration with provinces and territories for quality assurance and continuous improvement of this annual National Inventory Report.

Provincial/territorial greenhouse gas emission tables are also available in electronic file format online at https://open.canada.ca.

GHG Emissions by IPCC Sector:

Table A11–2 Newfoundland and Labrador, Selected Years	15
Table A11–3 2018—Newfoundland and Labrador	16
Table A11–4 Prince Edward Island, Selected Years	17
Table A11–5 2018—Prince Edward Island	18
Table A11-6 Nova Scotia, Selected Years	19
Table A11-7 2018—Nova Scotia	20
Table A11–8 New Brunswick, Selected Years	21
Table A11–9 2018—New Brunswick	22
Table A11–10 Quebec, Selected Years	23
Table A11–11 2018—Quebec	24
Table A11–12 Ontario, Selected Years	25
Table A11–13 2018—Ontario	26
Table A11–14 Manitoba, Selected Years	27
Table A11–15 2018—Manitoba	28
Table A11–16 Saskatchewan, Selected Years	29
Table A11–17 2018—Saskatchewan	30
Table A11–18 Alberta, Selected Years	31
Table A11–19 2018—Alberta	32
Table A11–20 British Columbia, Selected Years	33
Table A11–21 2018—British Columbia	34
Table A11–22 Yukon, Selected Years	35
Table A11–23 2018—Yukon	36
Table A11–24 Northwest Territories, Selected Years	37
Table A11–25 2018—Northwest Territories	38
Table A11–26 Nunavut, Selected Years	39
Table A11–27 2018—Nunavut	40
Table A11–28 Northwest Territories & Nunavut, 1990–1998	41

GH	IG Source/Sink Categories	
	ERGY	
	Stationary Combustion Sources	
	Public Electricity and Heat Production	Emissions from fuel consumed by utility electricity generation and steam production (for sale)
	Petroleum Refining Industries	Emissions from fuel consumed by petroleum refining industries
	Oil and Gas Extraction	Emissions from fuel consumed by oil and gas extraction industries
	Mining	Emissions from fuel consumed by:
		– Metal and non-metal mines, coal mines, stone quarries, and gravel pits
		– Mineral exploration and contract drilling operations
	Manufacturing Industries	Emissions from fuel consumed by the following industries:
		Iron and Steel (steel foundries, casting and rolling mills) Non-ferrous metals (aluminium, magnesium and other production)
		- Chemical (fertilizer manufacturing, organic and inorganic chemical manufacturing)
		- Pulp and Paper (primarily pulp, paper, and paper product manufacturers)
		- Cement and other non-metallic mineral production
		- Other manufacturing industries not listed (such as automobile manufacturing, textiles, food and beverage industries)
	Construction	Emissions from fuels consumed by the construction industry—buildings, highways etc.
	Commercial & Institutional	Emissions from fuel consumed by:
		- Service industries related to mining, communication, wholesale and retail trade, finance and insurance, real estate, education, etc
		- Federal, provincial and municipal establishments
		- National Defence and Canadian Coast Guard
	Daridontial	- Train stations, airports and warehouses
	Residential Agriculture & Forestry	Emissions from fuel consumed for personal residences (homes, apartment hotels, condominiums and farm houses) Emissions from fuel consumed by:
	Agriculture & Forestry	- Forestry and logging service industry
		Agricultural, hunting and trapping industry (excluding food processing, farm machinery manufacturing and repair)
b.	Transportation	Emissions resulting from the:
	Domestic Aviation	- Consumption of fossil fuels by aircrafts flying domestically with Canadian purchased fuel
	Road Transportation	- Consumption of fuels (excluding the biogenic CO ₂ emissions from Ethanol and biodiesel) by vehicles licensed to operate on roads
	Railways	– Consumption of fuels (excluding the biogenic CO₂ emissions from Ethanol and biodiesel) by Canadian railways
	Domestic Navigation	- Consumption of fuels (excluding the biogenic CO ₂ emissions from Ethanol and biodiesel) by marine vessels navigating between
	0.1	Canadian ports (inclusive of international fishing and military operations)
	Others—Off-road	– Consumption of fuels (excluding the biogenic CO ₂ emissions from Ethanol and biodiesel) by mobile combustion devices not licensed to operate on roads
	Others—Pipeline Transport	- Transportation and distribution of crude oil, natural gas and other products
ε.	·	Intentional and unintentional releases of greenhouse gases from the following activities:
-	Coal Mining	- Underground and surface mining, abandoned underground coal mines
	Oil and Natural Gas	- Conventional and unconventional oil and gas exploration, production, transportation and distribution
d.	CO ₂ Transport and Storage	Intentional and unintentional releases of greenhouse gases from the transport and storage of carbon dioxide
INI	DUSTRIAL PROCESSES AND PRODUCT USE	Emissions resulting from the following process activities:
a.	Mineral Products	- Cement production, lime production, and mineral product use (which includes glass production, other uses of soda ash, magnesit
		use, and limestone and dolomite use)
D.	Chemical Industry	- Production of ammonia, nitric acid, adipic acid, carbide, other uses of urea and petrochemicals. Petrochemical production include: production of carbon black, ethylene, ethylene dichloride, ethylene oxide, methanol and styrene
с.	Metal Production	- Aluminum production, iron and steel production, and magnesium production and casting
d.	Production and Consumption of	- By-product production of HFC-23; use of HFCs and/or PFCs in air conditioning units, refrigeration units, fire extinguishers, aerosol cans,
	Halocarbons, SF ₆ and NF ₃	solvents, foam blowing, semiconductor manufacturing and electronics industry, and use of SF_6 and NF_3 in semiconductor manufacturing
e.	Non-Energy Products from Fuels and Solvent Use	– Non-energy use of fossil fuels (including solvents and lubricants) that are not accounted for elsewhere under the Industrial Processes and Product Use Sector
f.	Other Product Manufacture and Use	Use of N₂O as an anaesthetic and propellant; use of urea in selective catalytic reduction (SCR) equipped vehicles; use of SF ₆ in
١.	Other Froduct Manufacture and Ose	electrical equipment; and PFCs in electronics industry
AG	RICULTURE	Emissions resulting from:
a.	Enteric Fermentation	– Eructation of CH ₄ during the digestion of plant material by (mainly) ruminants
b.	Manure Management	- Release of CH ₄ and N ₂ O due to microbial activity during the storage of feces, urine and bedding materials from the cleaning of bar
		and pens
_	Aguigulaugal Cail-	– Indirect N ₂ O emissions from volatilization and leaching of nitrogen from animal manure during storage
c.	Agricultural Soils Direct sources	- Direct N₂O emissions from inorganic nitrogen fertilizers, manure and biosolids applied on cropland, pasture range and paddock,
	Direct sources	— Direct N₂O emissions from inorganic nitrogen fertilizers, manure and biosoilds applied on cropiand, pasture range and paddock, crop residue, tillage, summerfallow, irrigation and cultivation of organic soils
	Indirect Sources	 Indirect N₂O emissions from volatilization and leaching of animal manure and biosolid nitrogen, inorganic nitrogen fertilizer and
		crop residue nitrogen
d.	Field Burning of Agricultural Residues	– CH ₄ and N ₂ O emissions from crop residue burning
e.	Liming, Urea Application and Other	– Direct emissions of CO₂ from the application of lime, urea and other fertilizers containing carbon
W /	Carbon-containing Fertilizers ASTE	Emissions resulting from:
9 V P	Solid Waste Disposal	- Municipal solid waste management sites (landfills)
a. b.	Biological Treatment of Solid Waste	- Composting of municipal solid waste
J. :.	Wastewater Treatment and Discharge	- Municipal and industrial wastewater treatment
d.	Incineration and Open Burning of Waste	- Municipal solid, hazardous and clinical waste, and sewage sludge incineration
e.	Industrial Wood Waste Landfills	-Private, dedicated wood waste landfills
LA	ND USE, LAND-USE CHANGE AND FORESTRY	Emissions and removals resulting from:
a.	Forest Land	- Managed forests and lands converted to forests; reports emissions and removals from forest growth and anthropogenic
		disturbances related to forest management but tracks separately emissions and removals from fire and most insect disturbances
b.	Cropland	 Management practices on lands in annual crops, summerfallow and perennial crops (forage, specialty crops, orchards); immediate and residual emissions from lands converted to cropland
c.	Grassland	– Managed agricultural grassland
c. d.	Wetlands	Peatlands disturbed for peat extraction, or land flooded from hydro reservoir development
u. e.	Settlements	- Forest and grassland converted to built-up land (settlements, transport infrastructure, oil & gas infrastructure, mining, etc); urban tree growth
	Sectionicity	Use and disposal of harvested wood products manufactured from wood coming from forest harvest and forest conversion activities in Canada

Greenhouse Gas Categories	1990	2005	2013	2014	2015	2016	2017	2018
				kt CC)₂ eq			
TOTAL	9 780	10 500	9 960	10 900	10 900	11 100	11 000	11 000
ENERGY	8 940	9 640	9 120	10 100	10 100	10 300	10 100	10 100
a. Stationary Combustion Sources	5 5 5 0	4 770	4 600	5 140	5 150	5 330	5 180	4 880
Public Electricity and Heat Production	1 640	819	867	1 210	1 340	1 520	1 530	1 130
Petroleum Refining Industries	1 000	950	960	920	1 000	1 200	980	930
Oil and Gas Extraction Mining	1 160	764 1 130	1 060 700	1 130 742	1 030 692	1 170 373	1 170 390	1 320
Manufacturing Industries	506	276	700	40	35	40	82	557 96
Construction	33	24	6	7	18	5	6	7
Commercial and Institutional	320	358	544	630	599	572	488	316
Residential	828	443	390	453	378	445	527	508
Agriculture and Forestry	25	8	8	11	12	10	9	7
b. Transport ^a	3 350	3 960	3 960	4 260	4 400	4 400	4 300	4 390
Domestic Aviation	191	199	234	219	208	204	197	205
Road Transportation	1 570	2 120	2 590	2 940	3 100	3 120	3 030	3 060
Light-Duty Gasoline Vehicles	678	604	629	679	684	640	627	589
Light-Duty Gasoline Trucks	440	646	956	1 090	1 160	1 160	1 220	1 210
Heavy-Duty Gasoline Vehicles	86	102	194	208	223	232	253	255
Motorcycles	3	2	6	8	9	9	10	10
Light-Duty Diesel Vehicles	4	5	6	7	8	8	6	6
Light-Duty Diesel Trucks	2	6	4	6	8	10	10	11
Heavy-Duty Diesel Vehicles	358	756	790	943	1 020	1 060	903	981
Propane and Natural Gas Vehicles	0.05	0.03	0.00	0.00	0.00	0.00	0.00	0.00
Railways Demostic Navigation	974	1 120	762	659	- 554			E E 1
Domestic Navigation Other Transportation	-	1 120	763			553	552	551
Off-Road Agriculture & Forestry	614 25	513 34	372 19	442 21	530 26	522 23	521 22	576 26
Off-Road Commercial & Institutional	31	48	41	46	50	21	11	12
Off-Road Manufacturing, Mining & Construction	223	282	201	242	307	335	341	393
Off-Road Residential	7	25	X	28	30	29	29	29
Off-Road Other Transportation	328	124	86	105	117	114	117	116
Pipeline Transport	-	-	X	-	-	-	-	
c. Fugitive Sources	41	910	560	660	560	560	660	840
Coal Mining	-	-	-	-	-	-	-	-
Oil and Natural Gas	41	910	560	660	560	560	660	840
Oil	6	49	38	36	30	35	37	38
Natural Gas	0.00	1	2	2	2	2	2	2
Venting	25	52	50	39	46	45	59	56
Flaring	11	810	470	580	490	480	560	740
d. CO ₂ Transport and Storage	-	-	-	-	-	-	-	
INDUSTRIAL PROCESSES AND PRODUCT USE a. Mineral Products	98 64	148	211 0.56	192 0.59	189 0.76	202 0.84	241	255
Cement Production	60	-	0.56	0.59	- 0.76	0.84	1	1
Lime Production	-	-	_					
Mineral Products Use	4	2	0.56	0.59	0.76	0.84	1	1
b. Chemical Industry ^b	-	-	-	-	-	-	-	
Adipic Acid Production	-	-	-	-	-	-	-	
c. Metal Production	-	-	-	-	-	-	-	
Iron and Steel Production	-	-	-	-	-	-	-	
Aluminum Production	-	-	-	-	-	-	-	
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-	-	-	-	
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	-	71	140	160	160	160	170	190
e. Non-Energy Products from Fuels and Solvent Use	29	68	66	28	19	27	57	56
f. Other Product Manufacture and Use	5	7	6	6	9	10	9	10
AGRICULTURE	54	65	100	96	89	90	90	88
a. Enteric Fermentation	23	31	32	32	31	31	31	33
b. Manure Management c. Agricultural Soils	16	20 14	25	25	25	25	25 18	25
Direct Sources	12 10	12	17 14	18	19 15	18 15	14	19 15
Indirect Sources	2	3	3	3	3	3	3	13
d. Field Burning of Agricultural Residues	-	-	-	-	-	-	-	
e. Liming, Urea Application and Other Carbon-containing Fertilizers	3	-	25	21	14	17	17	1:
WASTE	690	600	530	540	540	560	560	560
a. Solid Waste Disposal	470	440	450	470	470	490	490	490
b. Biological Treatment of Solid Waste	-	-	-	-	-	0.07	0.07	0.07
c. Wastewater Treatment and Discharge	23	21	22	22	22	24	26	26
d. Incineration and Open Burning of Waste	100	80	4	1	1	0.70	0.70	0.70
e. Industrial Wood Waste Landfills	60	60	50	50	50	50	40	40

a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.

b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.

c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃. Indicates no emissions

^{0.00} Indicates emissions truncated due to rounding

Global Warming Potential Unit TOTAL ENERGY a. Stationary Combustion Sources Public Electricity and Heat Production Petroleum Refining Industries Oil and Gas Extraction Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry b. Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport c. Fugitive Sources Coal Mining Oil and Natural Gas Venting Flaring d. CO ₂ Transport and Storage INDUSTRIAL PROCESSES AND PRODUCT USE a. Mineral Products Cement Production	Kt 9780 9780 9780 9780 9710 4650 1120 930 1240 554 96 7 314 384 7 4330 203 3020 582 1200 248 10 6 11 964 0.00 - 546 560 25 11 387	kt 36 12 7 0.02 0.02 3 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.04 0.00 0.00	CH ₄ 25 kt CO ₂ eq 900 310 200 0.46 0.60 80 0.40 0.09 100 0.00 15 0.20 5 1 2 0.20 0.09 0.00 0.01 1 1 0.00	N₂O kt 0.47 0.30 0.10 0.02 0.01 0.03 0.01 0.00 0.00 0.01 0.05 0.00 0.13 0.01 0.02 0.04 0.02 0.00 0.00 0.00 0.00 0.00	Greenhot N₂O 298 kt CO₂eq 140 90 40 6 3 9 0.59 0.03 53 2 20 0.03 53 11 6 0.05 0.15	HFCs ^d kt CO ₂ eq 190	PFCs ^d kt CO ₂ eq 0.05	SF ₆ 22 800 kt CO ₂ eq	NF ₃ 17 200 kt CO ₂ eq	TOTA kt CO ₂ : 11 00 10 10 4 88 1 1 3 9 3 1 3 3 5 9 2 20 3 06 3 58 1 2 1
Global Warming Potential Unit FOTAL ENERGY a. Stationary Combustion Sources Public Electricity and Heat Production Petroleum Refining Industries Oil and Gas Extraction Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry Domestic Aviation Road Transport* Domestic Aviation Road Transport Suspine Vehicles Light-Duty Gasoline Vehicles Light-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transport Fugitive Sources Coal Mining Oil and Natural Gas Venting Flaring I. Co ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE Mineral Production	kt 9780 9780 9710 4650 1120 930 1240 554 96 7 314 384 7 4330 203 3 020 582 1 200 248 10 6 11 964 0.00 - 546 560 25 11	kt 36 12 7 0.02 0.02 3 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.35	25 kt CO ₂ eq 900 310 200 0.46 0.60 80 0.40 0.08 0.00 0.09 100 0.20 5 1 2 0.20 0.09 0.00 0.00 15 0.20 1 2 0.20 0.00 0.00	kt 0.47 0.30 0.10 0.02 0.01 0.03 0.00 0.00 0.00 0.01 0.05 0.00 0.18 0.01 0.10 0.02 0.04 0.02 0.04 0.02 0.00 0.00 0.0	298 kt CO ₂ eq 140 90 40 6 3 9 3 0.59 0.03 2 20 0.03 53 2 39 6 11 6 0.05	kt CO ₂ eq 190	kt CO ₂ eq 0.05	22 800 kt CO ₂ eq	17 200 kt CO ₂ eq	kt CO ₂ / 11 00 10 10 10 10 10 10 10 10 10 10 10
Unit INERGY Stationary Combustion Sources Public Electricity and Heat Production Petroleum Refining Industries Oil and Gas Extraction Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Commercial & Institutional Off-Road Commercial & Institutional Off-Road Residential Off-Road Residential Off-Road Natural Gas Oil Natural Gas Venting Flaring I. Co ₂ Transport and Storage NUSTRIAL PROCESSES AND PRODUCT USE Mineral Products Cement Production	9 780 9 710 4 650 1 120 930 1 240 554 96 7 314 384 7 4 330 203 3 020 582 1 200 248 10 6 11 964 0.00 - 546 556 560 25 11 387	36 12 7 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0	kt CO ₂ eq 900 310 200 0.46 0.60 80 0.40 0.08 0.00 0.09 100 0.20 5 1 2 0.20 0.20 0.09 1.00 1.	0.47 0.30 0.10 0.02 0.01 0.03 0.01 0.00 0.00 0.01 0.05 0.00 0.18 0.01 0.13 0.02 0.04 0.02 0.00	kt CO2 eq 140 90 40 6 3 9, 3 0.59 0.03 2 20 10 3 6 11 6 0.05	190	0.05	kt CO ₂ eq 2	kt CO ₂ eq	11 0 1 1 4 8 1 1 1 1 9 1 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
INERGY INDUSTRIAL PROCESSES AND PRODUCT USE Indivation Indivativan Indivatival indivativas Indivatival Products Indivatival Products Intered	9 780 9 710 4 650 1 120 930 1 240 554 96 7 314 384 7 4 330 203 3 020 582 1 200 248 10 6 11 964 0.00 - 546 556 560 25 11 387	36 12 7 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0	900 310 200 0.46 0.60 80 0.40 0.08 0.00 0.09 100 0.00 15 0.20 5 1 2 0.20 0.09 0.00 1 1 1 1 1 1 1 1 1 1 1 1 1	0.47 0.30 0.10 0.02 0.01 0.03 0.01 0.00 0.00 0.01 0.05 0.00 0.18 0.01 0.13 0.02 0.04 0.02 0.00	140 90 40 6 3 9 3 0.59 0.03 2 20 0.03 53 2 39 6 111 6	190	0.05			11 0 1 1 4 8 1 1 1 1 9 1 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Public Electricity and Heat Production Public Electricity and Heat Production Petroleum Refining Industries Oil and Gas Extraction Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry Domestic Aviation Road Transport* Domestic Aviation Light-Duty Gasoline Vehicles Light-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Manufacturing, Mining & Construction Pipeline Transport Fugitive Sources Coal Mining Oil and Natural Gas Venting Flaring Is Coz Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE Mineral Production	9 710 4 650 1 120 930 1 240 554 96 7 314 384 7 4 330 2 03 3 020 5 82 1 200 2 48 10 6 11 964 0.00 - 546 560 2 5 11 387	12 7 0.02 3 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.20 0.04 0.09 0.01 0.00 0.	310 200 0.46 0.60 80 0.40 0.08 0.00 0.09 100 0.20 5 1 2 0.20 0.20 0.09 0.00 15 0.20	0.30 0.10 0.02 0.01 0.03 0.01 0.00 0.00 0.01 0.05 0.00 0.18 0.01 0.13 0.02 0.04 0.02 0.00	90 40 6 3 9 3 0.59 20 0.03 53 2 20 11 6 0.05			-		10 1 4 8 8 9 1 3 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Public Electricity and Heat Production Petroleum Refining Industries Oil and Gas Extraction Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry Domestic Aviation Road Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining Oil and Natural Gas Venting Flaring I. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE Mineral Production	1 120 930 1 240 554 96 7 314 384 7 4 330 203 3 020 582 1 200 248 10 6 11 964 0.00 - 546 560 25 11 387	0.02 0.02 3 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.09 0.01 0.00 0.0	0.46 0.60 80 0.40 0.08 0.00 0.09 100 0.20 5 1 2 0.20 0.09 0.00 0.00 1 1 1 0.00	0.02 0.01 0.03 0.01 0.00 0.00 0.05	6 3 9 3 0.59 0.03 2 20 0.03 53 2 39 6 11 6			-		1 1 1 9 9 1 3 3 5 5 4 3 2 3 0 5 5
Public Electricity and Heat Production Petroleum Refining Industries Oil and Gas Extraction Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry Domestic Aviation Road Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining Oil and Natural Gas Venting Flaring I. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE Mineral Production	930 1 240 554 96 7 314 384 7 4 330 203 3 020 582 1 200 248 10 6 11 964 0.00 - 546 560 25 11	0.02 3 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.20 0.04 0.09 0.01 0.00 0.0	0.60 80 0.40 0.08 0.00 0.09 100 0.00 15 0.20 5 1 2 0.20 0.09 0.00 1 1 2	0.01 0.03 0.01 0.00 0.00 0.01 0.05 0.00 0.18 0.01 0.01 0.02 0.04 0.02	3 9 3 0.59 0.03 2 20 0.03 53 2 39 6 11 6		-	-		1 1 1 9 9 1 3 3 5 5 4 3 3 0 5 5
Petroleum Refining Industries Oil and Gas Extraction Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Agriculture & Forestry Off-Road Residential Off-Road Other Transportation Pipeline Transport Coal Mining Oil and Natural Gas Venting Flaring Industrial Gas Venting Flaring Industrial Gas Venting Flaring Industrial FRODUCT USE Mineral Production Industrial Gas Venent Production	930 1 240 554 96 7 314 384 7 4 330 203 3 020 582 1 200 248 10 6 11 964 0.00 - 546 560 25 11	0.02 3 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.20 0.04 0.09 0.01 0.00 0.0	0.60 80 0.40 0.08 0.00 0.09 100 0.00 15 0.20 5 1 2 0.20 0.09 0.00 1 1 2	0.01 0.03 0.01 0.00 0.00 0.01 0.05 0.00 0.18 0.01 0.01 0.02 0.04 0.02	3 9 3 0.59 0.03 2 20 0.03 53 2 39 6 11 6		-	-		9 1 3 5 3 5 4 3 3 2 3 0 5
Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Vehicles Heavy-Duty Gasoline Vehicles Light-Duty Gasoline Vehicles Light-Duty Gasoline Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fusitive Sources Coal Mining Oil and Natural Gas Venting Flaring Flaring I. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE Mineral Production	554 96 7 7 314 384 7 4 330 203 3 020 582 1 200 248 10 6 11 964 0.00 - 546 560 25 11 387	0.01 0.00 0.00 0.00 4 0.00 0.60 0.01 0.20 0.04 0.09 0.01 0.00 0.0	0.40 0.08 0.00 0.09 100 0.00 15 0.20 5 1 2 0.20 0.09 0.00 1 1	0.01 0.00 0.00 0.01 0.05 0.00 0.18 0.01 0.13 0.02 0.04 0.02	3 0.59 0.03 2 20 0.03 53 2 39 6 11 6 0.05			-	-	3 5 4 3 2 3 0 5
Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry D. Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring I. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE A Mineral Production	96 7 314 384 7 4 330 203 3 020 582 1 200 248 10 6 11 964 0.00 - 546 560 25 11 387	0.00 0.00 0.00 4 0.00 0.60 0.01 0.20 0.04 0.09 0.01 0.00 0.0	0.08 0.00 0.09 100 0.00 15 0.20 5 1 2 0.20 0.09 0.00 0.00 1 1	0.00 0.00 0.01 0.05 0.00 0.18 0.01 0.13 0.02 0.04 0.02 0.00 0.00 0.00	0.59 0.03 2 20 0.03 53 2 39 6 11 6 0.05		-	-	-	3 5 43 2 30 5
Construction Commercial and Institutional Residential Agriculture and Forestry Domestic Aviation Road Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining Oil and Natural Gas Venting Flaring I. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE Mineral Production	7 314 384 7 4330 203 3 020 582 1 200 248 10 6 11 964 0.00 - 546 560 25 11	0.00 0.00 4 0.00 0.60 0.01 0.20 0.01 0.09 0.01 0.00 0.0	0.00 0.09 100 0.00 15 0.20 5 1 2 0.20 0.09 0.00 0.00 1 1	0.00 0.01 0.05 0.00 0.18 0.01 0.13 0.02 0.04 0.02 0.00 0.00 0.00	0.03 2 20 0.03 53 2 39 6 11 6 0.05		-	- - - - - - -		3 5 4 3 2 3 0 5
Commercial and Institutional Residential Agriculture and Forestry Dransport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Trucks Heavy-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Menufacturing, Mining & Construction Pipeline Transport Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring S. CO2 Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE Mineral Production	314 384 7 4 330 203 3 020 582 1 200 248 10 6 11 964 0.00 - 546 560 25 11 387	0.00 4 0.00 0.60 0.01 0.20 0.04 0.09 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01	0.09 100 0.00 15 0.20 5 1 2 0.20 0.09 0.00 0.01 1	0.01 0.05 0.00 0.18 0.01 0.13 0.02 0.04 0.02 0.00 0.00 0.00	2 20 0.03 53 2 39 6 11 6 0.05	- - - - - - -	- - - - - - -	- - - - - -		4 3 2 3 0 5
Residential Agriculture and Forestry 7. Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Agriculture & Forestry Figure Transport Figure Transport Figure Transport Figure Transport Fueline Transport Fueline Transport Fueline Transport Fueline Transport Fuelitive Sources Coal Mining Oil and Natural Gas Venting Flaring Flaring I. Co ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE A. Mineral Production	384 7 4 330 203 3 020 582 1 200 248 10 6 11 964 0.00 - 546 560 25 11 387	4 0.00 0.60 0.01 0.20 0.04 0.09 0.01 0.00 0.00 0.04 0.00 0.04	100 0.00 15 0.20 5 1 2 0.20 0.09 0.00 0.01 1 0.00	0.05 0.00 0.18 0.01 0.13 0.02 0.04 0.02 0.00 0.00 0.00	20 0.03 53 2 39 6 11 6 0.05	- - - - - -	- - - - - -	- - - - -	-	4 3 2 3 0 5
Agriculture and Forestry D. Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring L. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE 3. Mineral Production	7 4 330 203 3 020 582 1 200 248 10 6 11 964 0.00 - 546 560 25 11	0.00 0.60 0.01 0.20 0.04 0.09 0.01 0.00 0.00 0.00 0.04 0.00 0.04 0.00	0.00 15 0.20 5 1 2 0.20 0.09 0.00 0.01 1 0.00	0.00 0.18 0.01 0.13 0.02 0.04 0.02 0.00 0.00 0.00	0.03 53 2 39 6 11 6 0.05	- - - - -	- - - - -	- - - -	-	4 3 2 3 0 5
Domestic Aviation Road Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring L. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE Mineral Production	4 330 203 3 020 582 1 200 248 10 6 11 964 0.00 - 546 560 25 11 387	0.60 0.01 0.20 0.04 0.09 0.01 0.00	15 0.20 5 1 2 0.20 0.09 0.00 0.01 1	0.18 0.01 0.13 0.02 0.04 0.02 0.00 0.00 0.00	53 2 39 6 11 6 0.05	- - - -	-	- - - -	- - - -	3 0 5
Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Menufacturing, Mining & Construction Pipeline Transport Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring LOCO_Transport and Storage INDUSTRIAL PROCESSES AND PRODUCT USE A. Mineral Production	203 3 020 582 1 200 248 10 6 11 964 0.00 - 546 560 25 11	0.01 0.20 0.04 0.09 0.01 0.00 0.00 0.00 0.04 0.00 -	0.20 5 1 2 0.20 0.09 0.00 0.01 1 0.00	0.01 0.13 0.02 0.04 0.02 0.00 0.00 0.00	2 39 6 11 6 0.05	- - - -	- - - -	- - -		3 0 5
Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Agriculture & Forestry Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport C. Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring d. CO ₂ Transport and Storage INDUSTRIAL PROCESSES AND PRODUCT USE a. Mineral Production	3 020 582 1 200 248 10 6 11 964 0.00 - 546 560 25 11 387	0.20 0.04 0.09 0.01 0.00 0.00 0.00 0.04 0.00 -	5 1 2 0.20 0.09 0.00 0.01 1 0.00	0.13 0.02 0.04 0.02 0.00 0.00 0.00	39 6 11 6 0.05	- - -	- - -			3 0 5
Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fuffitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring L. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE A. Mineral Production	582 1 200 248 10 6 11 964 0.00 - 546 560 25 11	0.04 0.09 0.01 0.00 0.00 0.00 0.04 0.00 - 0.05 0.35	1 2 0.20 0.09 0.00 0.01 1 0.00	0.02 0.04 0.02 0.00 0.00	6 11 6 0.05	- - -	- - -	-	-	5
Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport : Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring I. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE Mineral Production	1 200 248 10 6 11 964 0.00 - 546 560 25 11 387	0.09 0.01 0.00 0.00 0.00 0.04 0.00 - 0.05 0.35	2 0.20 0.09 0.00 0.01 1 0.00	0.04 0.02 0.00 0.00 0.00	11 6 0.05	-	-	-	-	
Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring I. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE 3. Mineral Production	248 10 6 11 964 0.00 - 546 560 25 11 387	0.01 0.00 0.00 0.00 0.04 0.00 - 0.05 0.35	0.20 0.09 0.00 0.01 1 0.00	0.02 0.00 0.00 0.00	6 0.05	-	-			1 2
Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Mesidential Off-Road Other Transportation Pipeline Transport c. Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring d. CO ₂ Transport and Storage INDUSTRIAL PROCESSES AND PRODUCT USE a. Mineral Production	10 6 11 964 0.00 - 546 560 25 11 387	0.00 0.00 0.00 0.04 0.00 - 0.05 0.35	0.09 0.00 0.01 1 0.00	0.00 0.00 0.00	0.05			-		
Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Trucks Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fufitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring L. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE A. Mineral Production	6 11 964 0.00 - 546 560 25 11 387	0.00 0.00 0.04 0.00 - 0.05 0.35	0.00 0.01 1 0.00	0.00		-			-	2
Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring L. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE A. Mineral Production	11 964 0.00 - 546 560 25 11 387	0.00 0.04 0.00 - 0.05 0.35	0.01 1 0.00	0.00	0.15		-	-	-	
Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring L. CO ₂ Transport and Storage INDUSTRIAL PROCESSES AND PRODUCT USE A. Mineral Production	964 0.00 - 546 560 25 11 387	0.04 0.00 - 0.05 0.35	0.00		05	-	-	-	-	
Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring CO2 Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE Mineral Products Cement Production	0.00 - 546 560 25 11 387	0.00 - 0.05 0.35	0.00	0.05	0.27	-	-	-	-	
Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring CO2 Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE A. Mineral Products Cement Production	546 560 25 11 387	0.05 0.35		0.05	16	-	-	-	-	9
Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring L. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE A. Mineral Products Cement Production	546 560 25 11 387	0.05 0.35	-	0.00	0.00	-	-	-	-	0.
Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring L. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE A. Mineral Production	560 25 11 387	0.35		-	-	-	-	-	-	
Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport C. Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring C. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE A. Mineral Products Cement Production	25 11 387		1	0.01	4	-	-	-	-	5
Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport c. Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring d. CO ₂ Transport and Storage INDUSTRIAL PROCESSES AND PRODUCT USE a. Mineral Production	11 387		9	0.03	8	-	-	-	-	5
Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring CO2 Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE Mineral Products Cement Production	387	0.00	0.04	0.00	0.50	-	-	-	-	
Off-Road Residential Off-Road Other Transportation Pipeline Transport Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring Co2 Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE Mineral Products Cement Production		0.01	0.36	0.00	0.10	-	-	-	-	
Off-Road Other Transportation Pipeline Transport C. Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring C. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE A. Mineral Products Cement Production		0.03	0.68	0.02	6	-	-	-	-	3
Pipeline Transport Fugitive Sources Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring CO2 Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE A. Mineral Products Cement Production	28	0.05	1	0.00	0.20	-	-	-	-	
Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring CO2 Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE A. Mineral Products Cement Production	109	0.25	6	0.00	0.90	-	-	-	-	1
Coal Mining Oil and Natural Gas Oil Natural Gas Venting Flaring d. CO ₂ Transport and Storage INDUSTRIAL PROCESSES AND PRODUCT USE a. Mineral Products Cement Production	-	-	-	-	-	-	-		-	
Oil and Natural Gas Oil Natural Gas Venting Flaring J. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE a. Mineral Products Cement Production	730	4	110	0.01	2	-	-	-	-	8
Oil Natural Gas Venting Flaring d. CO ₂ Transport and Storage NDUSTRIAL PROCESSES AND PRODUCT USE a. Mineral Products Cement Production	-	-	-	-	-	-	-	-	-	
Natural Gas Venting Flaring d. CO ₂ Transport and Storage INDUSTRIAL PROCESSES AND PRODUCT USE a. Mineral Products Cement Production	730	4	110	0.01	2	-	-	-	-	8
Venting Flaring d. CO ₂ Transport and Storage INDUSTRIAL PROCESSES AND PRODUCT USE a. Mineral Products Cement Production	0.16	1	36	0.01	2	-	-	-	-	
Flaring d. CO ₂ Transport and Storage INDUSTRIAL PROCESSES AND PRODUCT USE a. Mineral Products Cement Production	0.02	0.08	2	-	-	-	-	-	-	
d. CO ₂ Transport and Storage INDUSTRIAL PROCESSES AND PRODUCT USE a. Mineral Products Cement Production	55	0.02	0.43	-	-	-	-	-	-	
INDUSTRIAL PROCESSES AND PRODUCT USE a. Mineral Products Cement Production	670	3	67	0.00	0.40	-	-	-	-	7
a. Mineral Products Cement Production	-	-	-	-	-	-	-	-	-	
Cement Production	58	-	-	0.02	7	190	0.04	2	-	2
	1	-	-	-	-	-	-	-	-	
ii b i ii	-	-	-	-	-	-	-	-	-	
Lime Production	-	-	-	-	-	-	-	-	-	
Mineral Products Use	1	-	-	-	-	-	-	-	-	
o. Chemical Industry ^b	-	-	-	-	-	-	-	-	-	
Adipic Acid Production	-	-	-	-	-	-	-	-	-	
c. Metal Production	-	-	-	-	-	-	-	-	-	
Iron and Steel Production	-	-	-	-	-	-	-	-	-	
Aluminum Production		-	-	-	-	-	-	-	-	
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-	-	-	-	-	-	
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	-	-	-	-	-	190	0.03	-	-	1
e. Non-Energy Products from Fuels and Solvent Use	56	-	-	-	-	-	-	-	-	
f. Other Product Manufacture and Use	0.57	-	-	0.03	7	-	0.02	2	-	
AGRICULTURE	12	2	45	0.11	31	-	-	-	-	
a. Enteric Fermentation	-	1	33	-	-	-	-	-	-	
o. Manure Management	-	0.49	12	0.04	10	-	-	-	-	
. Agricultural Soils	-	-	-	0.06	19	-	-	-	-	
Direct Sources	-	-	-	0.05	15	-	-	-	-	
Indirect Sources	-	-	-	0.01	3	-	-	-	-	
d. Field Burning of Agricultural Residues	-	-	-	-	-	-	-	-	-	
e. Liming, Urea Application and Other Carbon-containing Fertilizers	12	-	-	-	-	-	-	-	-	
VASTE	0.09	22	550	0.02	7	-	-	-	-	5
a. Solid Waste Disposal	-	20	490	-	-	-	-	-	-	4
o. Biological Treatment of Solid Waste	-	0.00	0.04	0.00	0.03	-	-	-	-	0.
Wastewater Treatment and Discharge		0.78	19	0.02	7	-	-	-	-	
d. Incineration and Open Burning of Waste e. Industrial Wood Waste Landfills	0.09	0.02	0.60 40	0.00	0.01	-	-	-	-	0.

- Notes:
 a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
 b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.
 c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.
 d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

- d. IPCC's Fourth Assessment Report provides global warming potentials (GVPPs) for the various species of PPCs. Chapter 1, habite 11 of this report provides a list of GWP 3 used.

 1. Indicates no emissions truncated due to rounding value of the provided in the provided i

Greenhouse Gas Categories	1990	2005	2013	2014	2015	2016	2017	2018
				kt CO	₂ eq			
TOTAL	1 970	2 080	1 750	1 700	1 630	1 700	1 700	1 680
ENERGY	1 520	1 530	1 330	1 230	1 190	1 200	1 210	1 160
a. Stationary Combustion Sources	781	647	565	475	426	395	399	366
Public Electricity and Heat Production	104	5	4	4	14	4	9	3
Petroleum Refining Industries	-	-	-	-	-	-	-	
Oil and Gas Extraction	-	-	-	-	-	-	-	
Mining	0.89	X	X	X	X	X	X	>
Manufacturing Industries	55	145	116	75	63	67	74	55
Construction	11	Х	Х	X	Х	X	X)
Commercial and Institutional	202	152	102	93	96	67	57	61
Residential	389	311	328	288	241	243	246	233
Agriculture and Forestry	19	24	13	12	10	11	11	12
b. Transporta Domestic Aviation	736	882	764	752	764	802	815	792
	18	14	20	19	19	20	21	22
Road Transportation	467	624	586	590	612	648 206	657	632
Light-Duty Gasoline Vehicles	234	243	201	195	196		207	187
Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles	127 41	228 47	222 42	218 40	222 40	247 44	263 47	254 44
Motorcycles	0.58	0.98	1	1	1	2	2	2
Light-Duty Diesel Vehicles	0.58	0.98	2	2	3	3	2	2
Light-Duty Diesel Trucks	0.45	0.90	0.60	0.67	1	1	1	2
Heavy-Duty Diesel Vehicles	62	102	116	133	149	146	133	142
Propane and Natural Gas Vehicles	- 62	102	- 116	133	149	146	133	142
Railways	-	-	-	-	-	-	-	
Domestic Navigation	124	137	79	58	37	35	34	32
Other Transportation	124	107	79	85	96	99	103	106
Off-Road Agriculture & Forestry	47	48	34	36	42	37	31	34
Off-Road Commercial & Institutional	5	9	9	9	9	8	8	7
Off-Road Manufacturing, Mining & Construction	15	15	13	14	17	26	35	38
Off-Road Residential	0.86	7	5	5	5	6	6	6
Off-Road Other Transportation	60	28	19	21	22	23	24	21
Pipeline Transport	-	-	- 12	-	-	-		
c. Fugitive Sources	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coal Mining	-	-	-	-	-	-	-	
Oil and Natural Gas	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Oil	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Natural Gas	-	-	-	-	-	-	-	
Venting	-	-	-	-	-	-	-	
Flaring	-	-	-	-	-	-	-	
d. CO ₂ Transport and Storage	-	-	-	-	-	-	-	
INDUSTRIAL PROCESSES AND PRODUCT USE	6	30	51	54	53	55	57	64
a. Mineral Products	0.34	0.91	0.63	0.61	0.66	0.57	0.36	0.34
Cement Production	-	-	-	-	-	-	-	
Lime Production	-	-	-	-	-	-	-	
Mineral Products Use	0.34	0.91	0.63	0.61	0.66	0.57	0.36	0.34
b. Chemical Industry ^b	-	-	-	-	-	-	-	
Adipic Acid Production	-	-	-	-	-	-	-	
c. Metal Production	-	-	-	-	-	-	-	
Iron and Steel Production	-	-	-	-	-	-	-	
Aluminum Production	-	-	-	-	-	-	-	
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-	-	-	-	
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	-	25	47	51	50	51	54	58
e. Non-Energy Products from Fuels and Solvent Use	5	2	2	1	0.86	0.89	0.66	3
f. Other Product Manufacture and Use	0.83	2	1	1	2	2	2	2
AGRICULTURE	370	440	310	350	320	380	370	400
a. Enteric Fermentation	140	130	110	110	110	110	110	110
b. Manure Management	47	51	41	40	39	37	38	38
c. Agricultural Soils	180	250	150	200	170	230	220	240
Direct Sources	150	210	130	170	140	200	190	210
Indirect Sources	30	40	30	30	30	40	40	40
d. Field Burning of Agricultural Residues	0.10	0.20	0.20	0.10	0.20	0.20	0.20	0.20
e. Liming, Urea Application and Other Carbon-containing Fertilizers	5	5	2	2	3	3	2	:
WASTE	76	79	66	65	64	63	62	6
a. Solid Waste Disposal	67	64	51	50	49	48	47	47
		-	-	-	-		2	4
b. Biological Treatment of Solid Waste	-	5	3	3	3	4	3	
b. Biological Treatment of Solid Waste c. Wastewater Treatment and Discharge d. Incineration and Open Burning of Waste	8 0.02	9	11 0.10	11 0.10	11 0.10	10 0.10	10 0.10	0.10

a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.

b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.

c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.

Indicates no emissions

^{0.00} Indicates emissions truncated due to rounding

x Indicates data has been suppressed to respect confidentiality

					Greenhou	use Gases				
Greenhouse Gas Categories	CO ₂	CH₄	CH ₄	N ₂ O	N ₂ O	HFCsd	PFCsd	SF ₆	NF ₃	TOTAL
Global Warming Potential	_		25		298			22 800	17 200	
Unit	kt	kt	kt CO ₂ eq	kt	kt CO₂ eq	kt CO₂ eq	kt CO₂ eq	kt CO ₂ eq	kt CO₂ eq	kt CO ₂ e
TOTAL	1 110	9	230	0.96	290	58	0.02	-	-	1 68
ENERGY	1 100	2	39	0.05	20	-	-	-	-	1 16
a. Stationary Combustion Sources	324	1	40	0.02	6	-	-	-	-	36
Public Electricity and Heat Production	3	0.00	0.00	0.00	0.01	-	-	-	-	
Petroleum Refining Industries	-	-	-	-	-	-	-	-	-	
Oil and Gas Extraction	-	-	-	-	-	-	-	-	-	
Mining	х	Х	х	Х	X	х	х	х	х	
Manufacturing Industries	55	0.00	0.02	0.00	0.31	-	-	-	-	
Construction	х	Х	х	Х	X	X	х	X	х	
Commercial and Institutional	60	0.01	0.22	0.00	0.60	-	-	-	-	
Residential	193	1	40	0.02	5	-	-	-	-	2
Agriculture and Forestry	12	0.00	0.00	0.00	0.05	-	-	-	-	
b. Transport ^a	778	0.13	3	0.03	10	-	-	-	-	7
Domestic Aviation	22	0.00	0.01	0.00	0.20	-	-	-	-	
Road Transportation	622	0.05	1	0.03	9	-	-	-	-	6
Light-Duty Gasoline Vehicles	184	0.02	0.40	0.01	2	-	-	-	-	1
Light-Duty Gasoline Trucks	250	0.02	0.60	0.01	3	-	-	-	-	2
Heavy-Duty Gasoline Vehicles	43	0.00	0.04	0.00	1	-	-	-	-	
Motorcycles	2	0.00	0.02	0.00	0.01	-	-	-	-	
Light-Duty Diesel Vehicles	2	0.00	0.00	0.00	0.05	-	-	-	-	
Light-Duty Diesel Trucks	1	0.00	0.00	0.00	0.04	-	-	-	-	
Heavy-Duty Diesel Vehicles	140	0.01	0.10	0.01	2	-	-	-	-	1
Propane and Natural Gas Vehicles	-	-	-	-	-	-	-	-	-	
Railways	-	-	-	-	-	-	-	-	-	
Domestic Navigation	31	0.00	0.07	0.00	0.30	-	-	-	-	
Other Transportation	103	0.08	2	0.00	1	-	-	-	-	1
Off-Road Agriculture & Forestry	34	0.00	0.03	0.00	0.40	-	-	-	-	
Off-Road Commercial & Institutional	7	0.01	0.22	0.00	0.06	-	-	-	-	
Off-Road Manufacturing, Mining & Construction	37	0.01	0.13	0.00	0.50	-	-	-	-	
Off-Road Residential	5	0.01	0.27	0.00	0.04	-	-	-	-	
Off-Road Other Transportation	20	0.05	1	0.00	0.10	_	_	-	-	
Pipeline Transport	-	-	-	-	-	-	-	-	-	
c. Fugitive Sources	-	0.00	0.00	-	-	_	-	-	-	0.0
Coal Mining	-	-	-	-	-	-	-	-	-	
Oil and Natural Gas	-	0.00	0.00	-	-	_	-	-	-	0.
Oil	-	0.00	0.00	-	-	-	-	-	-	0.
Natural Gas	-	-	-		-	_	_	-	-	
Venting	-	_	-	_	_	_	_	-	-	
Flaring	-		_		_	_	_	_	-	
d. CO ₂ Transport and Storage	-	-	-	-	-	-	-	-	-	
NDUSTRIAL PROCESSES AND PRODUCT USE	3	-	-	0.01	2	58	0.02	-	-	
a. Mineral Products	0.34		-	-	_	-		-	-	0.
Cement Production			_		_	_	_	_	-	
Lime Production	-		-	-	-	_	-	_	-	
Mineral Products Use	0.34		-		_	_	-	-	-	0.
b. Chemical Industry ^b	0.51		-			_		-	-	
Adipic Acid Production	-				_	_	_	_	-	
Metal Production	-				-	-	-	-	-	
Iron and Steel Production	_				_	_	_	_	_	
Aluminum Production	-				_	_	-	_	_	
SF ₆ Used in Magnesium Smelters and Casters	-		-		_	_	_	-	_	
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃	-	-	-		-	58	0.01	-	_	
e. Non-Energy Products from Fuels and Solvent Use	3		-		-	- 38	0.01	-	-	
f. Other Product Manufacture and Use					2		0.01			
AGRICULTURE	0.09	- 5	120	0.01		-	0.01	-	-	4
a. Enteric Fermentation	2	5 4	130	0.89	270	-	-	-	-	
b. Manure Management	-	0.70	110 17	0.07	20	-	-	-		1
o. Manure Management o. Agricultural Soils	-	0.70	17	0.07	240	-	-	-	-	2
-	-		-			-	-	-	-	
Direct Sources		-		0.69	210					2
Indirect Sources	-	0.01	0.20	0.10	40	-	-	-	-	_
d. Field Burning of Agricultural Residues	-	0.01	0.20	0.00	0.05	-	-	-	-	0.
e. Liming, Urea Application and Other Carbon-containing	2	-	-	-	-	-	-	-	-	
Fertilizers WASTE	0.10	2	58	0.01	3	-	-	-		
a. Solid Waste Disposal	0.10	2	47	0.01	-	-	-	-	-	
	-	0.08	2	0.01	1	-	-	-	-	
	-	0.00	4	0.01		_	-		_	
b. Biological Treatment of Solid Waste		0 22	0	0.01						
Biological Treatment of Solid Waste Wastewater Treatment and Discharge Incineration and Open Burning of Waste	0.10	0.33	0.00	0.01	0.00	-	-	-	-	0.

- Notes:
 a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
 b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.
 c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.
 d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

- d. IPCC's Fourth Assessment Report provides global warming potentials (GVPPs) for the various species of PPCs. Chapter 1, habite 11 of this report provides a list of GWP 3 used.

 1. Indicates no emissions truncated due to rounding value of the provided in the provided i

Greenhouse Gas Categories	1990	2005	2013	2014	2015	2016	2017	2018
				kt CO				
TOTAL	19 600	23 100	18 400	16 600	16 700	15 600	16 200	17 00
ENERGY	18 100	21 600	16 900	15 200	15 400	14 200	14 800	15 50
a. Stationary Combustion Sources	11 600	15 600	11 600	10 400	10 200	9 000	9 240	9 57
Public Electricity and Heat Production	6 900	10 800	7 600	7 250	7 020	6 400	6 690	7 01
Petroleum Refining Industries	620	1 100	820	Х	х	х	X	
Oil and Gas Extraction	46	302	536	727	565	415	284	18
Mining	39	39	6	5	4	4	4	
Manufacturing Industries	775	556	418	417	398	366	370	35
Construction	50	X	10	X 520	X	X 520	X	
Commercial and Institutional	820	X	616	538	651	539	571	56
Residential Agriculture and Forestry	2 230 104	1 410 96	1 590 38	1 460 33	1 480 28	1 240 24	1 280	14
b. Transport ^a	4 870	5 820	5 110	4 650	5 160	5 160	5 430	5 81
Domestic Aviation	293	267	254	241	241	237	245	26
Road Transportation	3 100	4 100	3 790	3 410	3 910	3 930	4 080	4 36
Light-Duty Gasoline Vehicles	1 490	1 350	1 100	971	1 190	1 200	1 190	1 24
Light-Duty Gasoline Trucks	735	1 190	1 130	1 030	1 310	1 390	1 470	1 62
Heavy-Duty Gasoline Vehicles	165	237	255	224	272	288	302	32
Motorcycles	6	5	8	7	9	10	11	
Light-Duty Diesel Vehicles	29	42	47	44	44	38	37	
Light-Duty Diesel Trucks	6	9	8	8	12	12	15	
Heavy-Duty Diesel Vehicles	664	1 260	1 240	1 120	1 070	991	1 050	1 1
Propane and Natural Gas Vehicles	4	2	0.01	0.00	0.00	0.00	0.00	0.
Railways	66	115	104	х	х	х	151	1
Domestic Navigation	601	693	478	х	х	х	339	3
Other Transportation	815	638	487	486	550	537	620	6
Off-Road Agriculture & Forestry	86	90	65	60	63	51	57	
Off-Road Commercial & Institutional	43	66	63	68	74	65	68	
Off-Road Manufacturing, Mining & Construction	225	235	197	188	208	211	273	2
Off-Road Residential	9	38	32	32	38	х	X	
Off-Road Other Transportation	452	175	127	129	161	164	177	19
Pipeline Transport	-	35	4	9	6	Х	Х	
c. Fugitive Sources	1 700	230	160	79	53	49	110	12
Coal Mining	2 000	100	80	0.70	0.60	0.70	70	1(
Oil and Natural Gas Oil	51 7	130	78	79	52	48	38	
Natural Gas	-	5 13	3	0.00	0.00	0.00	0.00	0.0
Venting	30	80	43	33	20	18	13	
Flaring	13	32	22	32	19	17	12	
d. CO₂ Transport and Storage	-	-	-	-	- 19	- 17	-	
INDUSTRIAL PROCESSES AND PRODUCT USE	331	497	652	527	530	537	572	6:
a. Mineral Products	180	250	200	190	200	200	210	2:
Cement Production	180	250	190	190	200	200	210	2
Lime Production	-	-	-	-	-	-	-	
Mineral Products Use	4	3	3	2	2	1	1	
b. Chemical Industry ^b	-	-	-	-	-	-	-	
Adipic Acid Production	-	-	-	-	-	-	-	
. Metal Production	-	-	-	-	-	-	-	
Iron and Steel Production	-	-	-	-	-	-	-	
Aluminum Production	-	-	-	-	-	-	-	
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-	-	-	-	
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	-	140	240	260	260	270	280	3
e. Non-Energy Products from Fuels and Solvent Use	120	71	170	35	24	30	21	(
f. Other Product Manufacture and Use	29	40	47	42	42	39	53	
AGRICULTURE	470	440	410	410	390	390	390	38
n. Enteric Fermentation	230	210	170	170	170	170	170	1
o. Manure Management	80	100	100	100	99	91	92	- 1
Agricultural Soils	120	120	110	110	110	110	110	1
Direct Sources Indirect Sources	95	99	88	93	88	93	92	
d. Field Burning of Agricultural Residues	20 0.06	20 0.10	20 0.04	20 0.05	20 0.05	20 0.07	0.08	0.
e. Liming, Urea Application and Other Carbon-containing Fertilizers	38	13	24	20	15	17	17	0.
WASTE	690	540	470	480	450	490	490	5
a. Solid Waste Disposal	580	400	340	350	320	360	370	3
b. Biological Treatment of Solid Waste	-	20	30	30	30	30	30	3
c. Wastewater Treatment and Discharge	53	54	48	51	55	52	49	
d. Incineration and Open Burning of Waste	-	-						
e. Industrial Wood Waste Landfills	60	60	50	50	50	50	50	

a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.

b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.

c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃. Indicates no emissions

^{0.00} Indicates emissions truncated due to rounding

x Indicates data has been suppressed to respect confidentiality

Estimates for the latest year (2018) are based on preliminary energy data; these data, though the best available information at the time of publication, are subject to revision in the next submission year. Provincial/Territorial GHG emissions allocated to Canadian economic sectors are provided in Annex 12 of this report

					Greenhou	use Gases				
Greenhouse Gas Categories	CO ₂	CH₄	CH₄	N ₂ O	N ₂ O	HFCs ^d	PFCsd	SF ₆	NF ₃	TOTAL
Global Warming Potential	CO2	C114	25	1120	298	TH C3	11 63	22 800	17 200	10171
Unit	kt	kt	kt CO ₂ eq	kt	kt CO ₂ eq	kt CO₂ eq	kt CO₂ eq	kt CO ₂ eq	kt CO ₂ eq	kt CO ₂ e
TOTAL	15 300	42	1 000	1	360	310	0.49	25	Rt CO2Cq	17 0
ENERGY	15 000	14	360	0.50	200		- 0.45	-	-	15 5
. Stationary Combustion Sources	9 280	9	200	0.30	80	-	-	-	-	9 5
Public Electricity and Heat Production	6 970	0.30	8	0.10	30	-	-	-	-	7.0
Petroleum Refining Industries	X	X	X	х	X	х	Х	Х	Х	
Oil and Gas Extraction	171	0.40	10	0.00	1	-	-	-	-	1
Mining	4	0.00	0.00	0.00	0.04	_	_	-	-	
Manufacturing Industries	349	0.05	1	0.03	8	-	-	-	-	
Construction	X	X	x	X	X	х	Х	Х	Х	
Commercial and Institutional	560	0.01	0.23	0.01	4	-	-	-	-	
Residential	1 190	8	200	0.10	30	-	-	-	-	1 4
Agriculture and Forestry	33	0.00	0.01	0.00	0.20	-	-	-	-	
o. Transport ^a	5 690	1	28	0.29	85	-	-	-	-	5 8
Domestic Aviation	262	0.01	0.10	0.01	2	_	_	_	_	3
Road Transportation	4 290	0.30	7	0.19	56	_	-	_	-	4 3
Light-Duty Gasoline Vehicles	1 230	0.10	2	0.19	12	_	_	_	-	12
Light-Duty Gasoline Venicles Light-Duty Gasoline Trucks	1 600	0.10	3	0.04	16	_	_	_	_	1 6
Heavy-Duty Gasoline Vehicles	320	0.10	0.30	0.00	8	_	_	_	_	3
Motorcycles	11	0.00	0.10	0.00	0.06	-	-	_	_	<u> </u>
Light-Duty Diesel Vehicles	26	0.00	0.10	0.00	0.64	_	_	_	_	
Light-Duty Diesel Trucks	16	0.00	0.01	0.00	0.39			-	-	
Heavy-Duty Diesel Vehicles	1 090	0.00	1	0.06	18	-		-	-	1 '
Propane and Natural Gas Vehicles	0.00	0.03	0.00	0.00	0.00	-		-	-	0
Railways	146	0.00	0.00	0.06	20	_	_	_	-	
Domestic Navigation	337	0.01	0.20	0.00	3	-		-	-	
Other Transportation	655	0.03	19	0.01	8	-	-	-	-	-
·	61	0.00	0.09	0.03	1	-		-	-	-
Off-Road Agriculture & Forestry Off-Road Commercial & Institutional	70	0.00	0.09	0.00	0.60	-	-	-	-	
										-
Off-Road Manufacturing, Mining & Construction	290	0.04	0.97	0.01	4	-	-	-	-	2
Off-Road Residential	X	X	X	X	X	Х	Х	X	Х	L .
Off-Road Other Transportation	186	0.49	12	0.01	1	-	-	-	-	1
Pipeline Transport	X	X	X	Х	Х	х	Х	Х	х	
. Fugitive Sources	6	5	120	0.00	0.00	-	-	-	-	1
Coal Mining	-	4	100	-	-	-	-	-	-	1
Oil and Natural Gas	6	0.86	21	0.00	0.00	-	-	-	-	
Oil	-	0.00	0.00	-	-	-	-	-	-	0
Natural Gas	0.01	0.53	13	-	-	-	-	-	-	
Venting	0.01	0.29	7	-	-	-	-	-	-	
Flaring	6	0.04	0.94	0.00	0.00	-	-	-	-	
d. CO ₂ Transport and Storage	-	-	-	-	-	-	-	-	-	
INDUSTRIAL PROCESSES AND PRODUCT USE	283	-	-	0.05	13	310	0.49	25	-	6
a. Mineral Products	220	-	-	-	-	-	-	-	-	2
Cement Production	220	-	-	-	-	-	-	-	-	2
Lime Production	-	-	-	-	-	-	-	-	-	
Mineral Products Use	1	-	-	-	-	-	-	-	-	
o. Chemical Industry ^b	-	-	-	-	-	-	-	-	-	
Adipic Acid Production	-	-	-	-	-	-	-	-	-	
. Metal Production	-	-	-	-	-	-	-	-	-	
Iron and Steel Production	-	-	-	-	-	-	-	-	-	
Aluminum Production	-	-	-	-	-	-	-	-	-	
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-	-	-	-	-	-	
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	-	-	-	-	-	310	0.05	-	-	3
e. Non-Energy Products from Fuels and Solvent Use	60	-	-	-	-	-	-	-	-	
. Other Product Manufacture and Use	0.66	-	-	0.05	13	-	0.43	25	-	
AGRICULTURE	12	8	210	0.53	160	-	-	-	-	3
a. Enteric Fermentation	-	7	170	-	-	-	-	-	-	1
o. Manure Management	-	2	43	0.20	50	-	-	-	-	
. Agricultural Soils	-	-	-	0.38	110	-	-	-	-	1
Direct Sources	-	-	-	0.32	94	-	-	-	-	
Indirect Sources	-	-	-	0.07	20	-	-	-	-	
d. Field Burning of Agricultural Residues	-	0.00	0.04	0.00	0.01	-	-	-	-	0
e. Liming, Urea Application and Other Carbon-containing Fertilizers	12	-	-	-	-	-	-	-	-	
NASTE	-	19	480	0.08	20	-	-	-	-	!
a. Solid Waste Disposal	-	15	380		-	-	-	-	-	3
o. Biological Treatment of Solid Waste	-	0.60	20	0.04	10	-	-	-	-	
. Wastewater Treatment and Discharge	-	2	37	0.04	10	-	-	-	-	
d. Incineration and Open Burning of Waste	-	-	-	-	-	-	-	-	-	
a. Incineration and Open burning of waste										

- Notes:
 a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
 b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.
 c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.
 d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

- d. IPCC's Fourth Assessment Report provides global warming potentials (GVPPs) for the various species of PPCs. Chapter 1, habite 11 of this report provides a list of GWP 3 used.

 1. Indicates no emissions truncated due to rounding value of the provided in the provided i

Table A11–8 GHG Emission Summary for New B								
Greenhouse Gas Categories	1990	2005	2013	2014	2015	2016	2017	2018
				kt CO				
TOTAL	16 200	20 000	14 700	13 600	13 900	14 500	13 500	13 200
ENERGY	14 900	18 500	12 800	12 100	12 500	13 000	12 000	11 700
a. Stationary Combustion Sources	10 800	13 100	8 570	8 240	8 290	8 480	7 890	7 660
Public Electricity and Heat Production	6 020	8 060	4 190	3 780	3 800	4 010	3 350	3 710
Petroleum Refining Industries	1 200	2 300	2 500	X	X	X	X	X
Oil and Gas Extraction	-	-	41	35	29	26	26	34
Mining	126	161	60	X	X 750	X	X	X
Manufacturing Industries	1 630	1 170	848	680	759	615	621	667
Construction	69	6	9	10	28	17	10	10
Commercial and Institutional	580	602	320	403	428	380	271	309
Residential	1 160	834	570	617	747	685	672	664
Agriculture and Forestry	53	33	57	60	25	31	36	34
b. Transporta Domestic Aviation	4 090	5 140	4 050	3 730	3 990	4 360	3 920	3 880
	142	125	113	109	106	103	102	107
Road Transportation	2 260	3 590	3 090	2 790	3 090	3 420	3 010	2 980
Light-Duty Gasoline Vehicles	931	1 030	827	716	851	943	810	770
Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles	533 125	985 197	1 010 218	894 182	1 100 216	1 290 251	1 180 227	1 190 222
Motorcycles	3	6	7	7	9	10	9	9
Light-Duty Diesel Vehicles	15	22	16	16	16	15	12	9
Light-Duty Diesel Trucks	6	10	4	4	6	7	7	7
Heavy-Duty Diesel Vehicles				975				
Propane and Natural Gas Vehicles	649 0.67	1 340 0.15	1 010 0.00	9/5	891 0.00	902 0.00	768 0.00	772 0.00
Railways	129	284	198				157	160
Domestic Navigation	278	310	198	152	113	118	122	127
Other Transportation	1 280	829	461				534	508
Off-Road Agriculture & Forestry	123	167	95	96	98	87	81	77
Off-Road Commercial & Institutional	30	55	47	46	48	48	44	42
Off-Road Manufacturing, Mining & Construction	151	194	128	130	138	155	157	151
Off-Road Residential	5	X X	X X	X	X	X	30	28
Off-Road Other Transportation	971	386	169	172	205	229	211	200
Pipeline Transport		X	X	- 1/2	-	13	10	11
c. Fugitive Sources	61	220	180	160	180	190	220	170
Coal Mining	1	0.30	-	-	-	-	-	
Oil and Natural Gas	60	220	180	160	180	190	220	170
Oil	8	18	17	15	17	17	16	13
Natural Gas	0.07	20	14	16	16	19	19	19
Venting	36	150	130	100	120	130	150	110
Flaring	15	31	26	21	25	27	31	23
d. CO ₂ Transport and Storage	-	-	-	-	-	-	-	
INDUSTRIAL PROCESSES AND PRODUCT USE	188	268	934	456	446	452	521	546
a. Mineral Products	90	97	54	57	54	55	58	56
Cement Production	-	-	-	-	-	-	-	-
Lime Production	80	89	50	54	50	51	54	53
Mineral Products Use	10	8	4	3	4	3	3	3
b. Chemical Industry ^b	-	-	-	-	-	-	-	-
Adipic Acid Production	-	-	-	-	-	-	-	-
c. Metal Production	-	-	-	-	-	-	-	-
Iron and Steel Production	-	-	-	-	-	-	-	-
Aluminum Production	-	-	-	-	-	-	-	-
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-	-	-	-	-
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	-	130	230	240	240	240	250	270
e. Non-Energy Products from Fuels and Solvent Use	92	37	650	150	140	150	200	210
f. Other Product Manufacture and Use	5	9	8	8	9	9	12	13
AGRICULTURE	490	540	480	480	430	480	470	470
a. Enteric Fermentation	200	180	160	150	150	150	150	150
b. Manure Management	60	74	64	61	60	58	59	60
c. Agricultural Soils	160	230	150	180	160	200	190	200
Direct Sources	140	190	120	150	130	170	160	170
Indirect Sources	30	40	20	30	20	30	30	30
d. Field Burning of Agricultural Residues	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.02
e. Liming, Urea Application and Other Carbon-containing Fertilizers	68	55	110	92	62	73	72	51
WASTE	550	640	510	520	520	500	510	520
a. Solid Waste Disposal	460	520	390	410	410	390	410	420
b. Biological Treatment of Solid Waste	6	20	20	20	20	20	20	20
c. Wastewater Treatment and Discharge	47	48	50	50	51	49	46	46
d. Incineration and Open Burning of Waste	-	0.04	1	1	1	0.20	-	-

- a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
- b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.
- c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.

 Indicates no emissions
- 0.00 Indicates emissions truncated due to rounding
- x Indicates data has been suppressed to respect confidentiality

					Greenhou	use Gases				
Greenhouse Gas Categories	CO ₂	CH₄	CH ₄	N ₂ O	N ₂ O	HFCsd	PFCsd	SF ₆	NF ₃	TOTAL
Global Warming Potential			25		298			22 800	17 200	
Unit	kt	kt	kt CO ₂ eq	kt	kt CO₂ eq	kt CO₂ eq	kt CO ₂ e			
TOTAL	11 700	35	870	1	400	270	0.05	1	-	13 20
ENERGY	11 400	7	180	0.50	100	-	-	-	-	11 70
a. Stationary Combustion Sources	7 460	5	100	0.20	70	-	-	-	-	7 66
Public Electricity and Heat Production	3 690	0.23	6	0.06	20	-	-	-	-	3 71
Petroleum Refining Industries	X	Х	X	Х	Х	Х	Х	Х	Х	
Oil and Gas Extraction	34	0.00	0.01	0.00	0.70	-	-	-	-	34
Mining Manufacturing Industries	X 625	X 0.16	X 4	0.10	28	Х	X -	Х	Х	66
Construction	635 10	0.16	0.00	0.10	0.04	-	-	-	-	66
Commercial and Institutional	306	0.00	0.00	0.00	2				-	30
Residential	528	5	100	0.01	20		_		_	66
Agriculture and Forestry	34	0.00	0.01	0.00	0.10	_	_	_	_	3
b. Transport ^a	3 790	0.87	22	0.22	66	-	-	-	-	3 88
Domestic Aviation	106	0.01	0.20	0.00	1	_	-	_	-	10
Road Transportation	2 930	0.20	5	0.14	42	-	-	-	-	2 98
Light-Duty Gasoline Vehicles	759	0.07	2	0.03	9	-	-	-	-	77
Light-Duty Gasoline Trucks	1 170	0.10	3	0.05	14	-	-	-	-	1 19
Heavy-Duty Gasoline Vehicles	217	0.01	0.20	0.02	6	-	-	-	-	22
Motorcycles	9	0.00	0.08	0.00	0.05	-	-	-	-	
Light-Duty Diesel Vehicles	9	0.00	0.00	0.00	0.22	-	-	-	-	1
Light-Duty Diesel Trucks	7	0.00	0.01	0.00	0.17	-	-	-	-	
Heavy-Duty Diesel Vehicles	758	0.03	0.80	0.04	12	-	-	-	-	77.
Propane and Natural Gas Vehicles	0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.0
Railways	143	0.01	0.20	0.06	20	-	-	-	-	16
Domestic Navigation	126	0.01	0.30	0.00	1	-	-	-	-	12
Other Transportation	487	0.63	16	0.02	6	-	-	-	-	50
Off-Road Agriculture & Forestry	76	0.01	0.15	0.00	1	-	-	-	-	7
Off-Road Manufacturing Mining & Construction	40	0.05	0.57	0.00	0.40	-	-	-	-	42
Off-Road Manufacturing, Mining & Construction Off-Road Residential	148	0.02	0.57	0.01	0.20	-	-	-	-	15
Off-Road Other Transportation	186	0.08	12	0.00	0.20	-	-			200
Pipeline Transport	100	0.48	0.26	0.00	0.08	-	_		-	1
c. Fugitive Sources	140	1	29	0.00	4	-		-	-	170
Coal Mining	-	· ·	-		-	-	-	-	-	
Oil and Natural Gas	140	1	29	0.01	4	-	-	-	-	170
Oil	0.09	0.37	9	0.01	4	-	-	-	-	1.
Natural Gas	0.01	0.76	19	-	-	-	-	-	-	1:
Venting	110	0.01	0.20	-	-	-	-	-	-	110
Flaring	23	0.00	0.05	0.00	0.01	-	-	-	-	2:
d. CO ₂ Transport and Storage	-	-	-	-	-	-	-	-	-	
INDUSTRIAL PROCESSES AND PRODUCT USE	265	-	-	0.04	11	270	0.05	1	-	540
a. Mineral Products	56	-	-	-	-	-	-	-	-	50
Cement Production	-	-	-	-	-	-	-	-	-	
Lime Production	53	-	-	-	-	-	-	-	-	5
Mineral Products Use	3	-	-	-	-	-	-	-	-	
b. Chemical Industry ^b	-	-	-	-	-	-	-	-	-	
Adipic Acid Production	-	-	-	-	-	-	-	-	-	
c. Metal Production	-	-	-	-	-	-	-	-	-	
Iron and Steel Production	-	-	-	-	-	-	-	-		
Aluminum Production	-		-	-	-	-	-	-	-	
SF ₆ Used in Magnesium Smelters and Casters d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	-		-		-	270	0.05		-	27
e. Non-Energy Products from Fuels and Solvent Use	210				-	2/0	0.03		-	210
f. Other Product Manufacture and Use	0.46	-	-	0.04	11	-	0.01	1	-	1:
AGRICULTURE	51	7	180	0.77	230	-	-	-	-	470
a. Enteric Fermentation	-	6	150	0.77	230		-			150
b. Manure Management	-	1	30	0.10	30	_	_	-	-	60
c. Agricultural Soils	-	·	-	0.67	200	-	-	-	-	20
Direct Sources	-	-	-	0.57	170	-	-	-	-	17
Indirect Sources	-	-	-	0.10	30	-	-	-	-	3(
d. Field Burning of Agricultural Residues	-	0.00	0.01	0.00	0.01	-	-	-	-	0.0
e. Liming, Urea Application and Other Carbon-containing	51	-	-	-	-	-	-	-	-	5
Fertilizers										
WASTE	-	20	510	0.06	20	-	-	-	-	520
a. Solid Waste Disposal	-	17	420		-	-	-	-	-	420
b. Biological Treatment of Solid Waste	-	0.40	10	0.02	7	-	-	-	-	20
c. Wastewater Treatment and Discharge	-	1	36	0.03	10	-	-	-	-	46
d. Incineration and Open Burning of Waste	-	-	-	-	-	-	-	-	-	
e. Industrial Wood Waste Landfills	-	2	40	-	-	-	-	-	-	4

- Notes:
 a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
 b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.
 c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.
 d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

- d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

 1. Indicates no emissions

 1. Indicates emissions truncated due to rounding

 2. Indicates data has been suppressed to respect confidentiality

 1. Estimates for the latest year (2018) are based on preliminary energy data; these data, though the best available information at the time of publication, are subject to revision in the next submission year.

 1. Provincial/Territorial GHG emissions allocated to Canadian economic sectors are provided in Annex 12 of this report

Greenhouse Gas Categories	199	0	2005	2013	2014	2015	2016	2017	2018
3			l l		kt CO	₂ eq			
TOTAL	86 7	700	86 100	80 300	78 300	78 600	78 500	80 400	82 60
ENERGY	59 0	000	61 200	57 500	55 500	56 400	55 800	57 800	59 50
a. Stationary Combustion Sources	31 5	500	27 400	22 500	22 200	22 500	21 400	21 700	21 60
Public Electricity and Heat Production	1 4	490	621	367	245	205	233	239	25
Petroleum Refining Industries	3 5	500	3 700	2 100	2 000	2 200	1 900	1 700	2 10
Oil and Gas Extraction		-	-	-	-	-	-	-	
Mining		824	319	1 080	722	570	648	826	87
Manufacturing Industries	12 3		10 000	9 340	9 250	9 450	8 370	8 760	8 39
Construction		458	314	367	374	351	345	363	39
Commercial and Institutional		440	5 450	4 380	4 610	4 800	4 770	5 140	4 83
Residential		290	6 680	4 440	4 500	4 450	4 600	4 200	4 26
Agriculture and Forestry b. Transport ^a		291	367	480	469 33 100	484	496	467	47
b. Transport ^a Domestic Aviation	27 1		33 300	34 700		33 600	34 100	35 800	37 50
Road Transportation	18 1	820	747 26 300	733 27 800	677 26 400	675 26 800	697 27 400	756 28 600	30 10
Light-Duty Gasoline Vehicles	10 6		10 800	9 610	9 110	9 170	9 120	9 210	9 66
Light-Duty Gasoline Venicles Light-Duty Gasoline Trucks		580	6 900	7 460	7 270	7 530	7 880	8 390	9 34
Heavy-Duty Gasoline Vehicles		785	1 620	2 040	1 790	1 800	1 880	2 010	2 1
Motorcycles	,	17	71	72	65	68	70	74	21.
Light-Duty Diesel Vehicles	2	210	151	191	196	204	194	191	1
Light-Duty Diesel Trucks		57	69	98	122	156	184	225	2
Heavy-Duty Diesel Vehicles	2.8	820	6 680	8 370	7 880	7 890	8 040	8 470	8 4
Propane and Natural Gas Vehicles		2	0.99	0.04	0.22	0.20	0.17	0.11	0.
Railways	5	567	706	869	776	682	673	621	6
Domestic Navigation	7	768	1 020	900	862	824	856	887	9
Other Transportation	6.8	800	4 580	4 340	4 300	4 630	4 490	4 970	5 0
Off-Road Agriculture & Forestry	Ç	999	780	743	691	739	678	713	6
Off-Road Commercial & Institutional		359	456	548	575	585	687	877	8
Off-Road Manufacturing, Mining & Const	truction 2 0	030	1 620	1 750	1 660	1 890	1 870	2 130	2 0
Off-Road Residential		61	264	252	244	251	216	225	2
Off-Road Other Transportation	3 3	330	1 120	773	765	829	854	939	1 0
Pipeline Transport		26	338	268	359	326	189	80	
c. Fugitive Sources	4	130	380	270	270	290	310	330	3
Coal Mining		-	-	- 270	- 270	-	- 210	- 220	
Oil and Natural Gas	2	430	380	270	270	290	310	330	3
Natural Gas		22 260	28 74	20 50	22 48	22 49	23 52	20 53	
Venting		99	240	170	170	190	200	220	2
Flaring		40	47	31	29	32	35	39	
d. CO ₂ Transport and Storage		-	-	-	-	-	-	39	
INDUSTRIAL PROCESSES AND PRODUCT USE	14 8		12 700	11 700	11 500	10 300	10 000	10 500	10 5
a. Mineral Products		900	2 100	1 700	1 800	1 800	1 800	2 100	2 3
Cement Production		400	1 300	1 200	1 200	1 300	1 300	1 600	18
Lime Production		280	480	430	470	440	440	470	4
Mineral Products Use	2	200	260	69	70	72	68	52	
o. Chemical Industry ^b		-	-	-	-	-	-	-	
Adipic Acid Production		-	-	-	-	-	-	-	
c. Metal Production	10 9	900	7 560	5 830	5 320	5 280	5 160	5 250	4 7
Iron and Steel Production		-	-	31	28	29	29	19	
Aluminum Production	8 6	560	7 460	5 780	5 280	5 240	5 130	5 220	4 7
SF ₆ Used in Magnesium Smelters and Ca	sters 2.2	280	103	20	11	11	8	11	
d. Production and Consumption of Halocarb		2	1 100	2 000	2 200	2 200	2 300	2 300	2 5
e. Non-Energy Products from Fuels and Solve		900	1 900	2 000	2 200	830	630	720	7:
f. Other Product Manufacture and Use		80	120	150	98	160	180	140	1
AGRICULTURE		000	7 600	7 700	7 700	7 900	8 000	7 600	8 2
a. Enteric Fermentation		100	3 100	2 700	2 700	2 600	2 600	2 600	27
b. Manure Management c. Agricultural Soils		100	1 600 2 700	1 600 3 100	1 600	1 600	1 700	1 700 3 100	17
Agricultural Soils Direct Sources		100	2 300	2 700	3 200 2 700	3 400 2 900	3 500 3 000	2 700	3 6 3 1
Indirect Sources		400	400	500	500	500	500	500	5
d. Field Burning of Agricultural Residues		.30	0.30	0.20	0.20	0.20	0.20	0.10	0.
e. Liming, Urea Application and Other Carbon-c		220	160	300	270	220	260	230	2
WASTE		900	4 600	3 400	3 600	4 100	4 600	4 500	44
a. Solid Waste Disposal		000	3 500	2 500	2 700	3 200	3 800	3 700	3 6
b. Biological Treatment of Solid Waste	30	-	50	70	70	60	50	50	30
c. Wastewater Treatment and Discharge	2	210	210	260	260	260	250	240	2
d. Incineration and Open Burning of Waste		200	200	40	40	40	40	50	
a. Inclueration and Open purning of waste									

a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.

b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.

c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.

Indicates no emissions

^{0.00} Indicates emissions truncated due to rounding

x Indicates data has been suppressed to respect confidentiality

					Greenhou	ise Gases				
Greenhouse Gas Categories	CO ₂	CH₄	CH₄	N ₂ O	N ₂ O	HFCs ^d	PFCsd	SF ₆	NF ₃	TOTAL
Global Warming Potential	202	C114	25	1120	298	111 C3	1103	22 800	17 200	TOTAL
Unit	kt	kt	kt CO ₂ eq	kt	kt CO₂ eq	kt CO₂ eq	kt CO2 eq	kt CO ₂ eq	kt CO ₂ eq	kt CO₂ ec
TOTAL	64 200	400	9 900	18	5 300	2 500	580	83	0.10	82 60
ENERGY	56 700	72	1 800	3	1 000	2 300	- 300	- 65	0.10	59 50
a. Stationary Combustion Sources	19 700	60	2 000	1	400	-	-	-	-	21 60
Public Electricity and Heat Production	254	0.01	0.13	0.00	1	_	_	_	-	25
Petroleum Refining Industries	2 100	0.04	1	0.02	7	-	_	_	-	2 10
Oil and Gas Extraction		-	-		-	_	_	_	_	
Mining	874	0.03	0.80	0.02	5	_	_	_	-	87
Manufacturing Industries	8 270	0.57	14	0.35	100	_	_	_	-	8 39
Construction	390	0.01	0.18	0.01	2	-	-	-	-	39
Commercial and Institutional	4 790	0.18	5	0.10	40	-	-	-	-	4 83
Residential	2 500	60	2 000	0.80	200	-	-	-	-	4 26
Agriculture and Forestry	471	0.01	0.20	0.02	7	-	-	-	-	47
b. Transport ^a	36 800	7	170	2	560	-	-	-	-	37 50
Domestic Aviation	831	0.03	0.70	0.02	7	-	-	-	-	83
Road Transportation	29 600	2	50	1	410	-	-	-	-	30 10
Light-Duty Gasoline Vehicles	9 540	0.80	20	0.36	110	-	-	-	-	9 66
Light-Duty Gasoline Trucks	9 220	0.80	20	0.34	100	-	-	-	-	9 34
Heavy-Duty Gasoline Vehicles	2 100	0.07	2	0.18	55	-	-	-	-	2 15
Motorcycles	76	0.03	0.70	0.00	0.42	-	-	-	-	7
Light-Duty Diesel Vehicles	171	0.00	0.08	0.01	4	-	-	-	-	17
Light-Duty Diesel Trucks	225	0.01	0.10	0.02	6	-	-	-	-	23
Heavy-Duty Diesel Vehicles	8 290	0.40	9	0.47	140	-	-	-	-	8 44
Propane and Natural Gas Vehicles	0.11	0.00	0.00	0.00	0.00	-	-	-	-	0.1
Railways	623	0.04	0.90	0.20	70	-	-	-	-	69
Domestic Navigation	909	0.09	2	0.02	7	-	-	-	-	91
Other Transportation	4 840	4	110	0.20	60	-	-	-	-	5 01
Off-Road Agriculture & Forestry	669	0.04	0.87	0.03	10	-	-	-	-	68
Off-Road Commercial & Institutional	852	1	29	0.03	8	-	-	-	-	889
Off-Road Manufacturing, Mining & Construction	2 010	0.33	8	0.10	30	-	-	-	-	2 050
Off-Road Residential	236	0.52	13	0.01	2	-	-	-	-	25
Off-Road Other Transportation	977	2	57	0.03	8	-	-	-	-	1 040
Pipeline Transport	93	0.09	2	0.00	0.70		-	-	-	96
c. Fugitive Sources	210	4	93	0.02	5	-	-	-	-	310
Coal Mining	-	-	-	-	-	-	-	-	-	
Oil and Natural Gas	210	4	93	0.02	5	-	-	-	-	310
Oil	0.13	0.56	14	0.02	5	-	-	-	-	2
Natural Gas	0.04	2	53	-	-	-	-	-	-	5.
Venting	170	1	26	-	-	-	-	-	-	20
Flaring	35	0.00	0.02	0.00	0.01	-	-	-	-	3:
d. CO ₂ Transport and Storage	-	-	-	-	-	-	-	-	-	
INDUSTRIAL PROCESSES AND PRODUCT USE	7 260	0.00	0.01	0.39	117	2 500	583	83	0.10	10 50
a. Mineral Products	2 300	-	-	-	-	-	-	-	-	2 30
Cement Production	1 800	-	-	-	-	-	-	-	-	1 80
Lime Production	460	-	-	-	-	-	-	-	-	46
Mineral Products Use	51	-	-	-	-	-	-	-	-	5
b. Chemical Industry ^b	-	-	-	-	-	-	-	-	-	
Adipic Acid Production	-	-	-	-	-	-	-	-	-	
c. Metal Production	4 170	0.00	0.01	-	-	-	573	24	-	4 77
Iron and Steel Production	21	0.00	0.01	-	-	-	-	-	-	2
Aluminum Production	4 150	-	-	-	-	-	573	13	-	4 74
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-	-	-	-	11	-	1
d. Production and Consumption of Halocarbons, SF $_{\rm 6}$ and NF $_{\rm 3}{}^{\rm c}$	-	-	-	-	-	2 500	2	1	0.10	2 50
e. Non-Energy Products from Fuels and Solvent Use	780	-	-	-	-	-	-	-	-	78
f. Other Product Manufacture and Use	5	-	-	0.39	120	-	9	58	-	19
AGRICULTURE	250	150	3 800	14	4 100	-	-	-	-	8 20
a. Enteric Fermentation	-	110	2 700	-	-	-	-	-	-	2 70
b. Manure Management	-	48	1 200	2	500	-	-	-	-	1 70
c. Agricultural Soils	-	-	-	12	3 600	-	-	-	-	3 60
Direct Sources	-	-	-	10	3 100	-	-	-	-	3 10
Indirect Sources	-	-	-	2	500	-	-	-	-	50
d. Field Burning of Agricultural Residues	-	0.01	0.10	0.00	0.04	-	-	-	-	0.2
e. Liming, Urea Application and Other Carbon-containing	250	-	-	-	-	-	-	-	-	25
Fertilizers			4							
WASTE	8	170	4 200	0.60	200	-	-	-	-	4 40
a. Solid Waste Disposal	-	140	3 600	-	-	-	-	-	-	3 60
b. Biological Treatment of Solid Waste	-	1	30	0.06	20	-	-	-	-	5
c. Wastewater Treatment and Discharge	-	5	130	0.40	100	-	-	-	-	24
d. Incineration and Open Burning of Waste	8	0.00	0.03	0.10	40	-	-	-	-	5
e. Industrial Wood Waste Landfills	-	20	500	-	-	-	-	_	-	50

- Notes:
 a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
 b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.
 c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.
 d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

- d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

 1. Indicates no emissions

 1. Indicates emissions truncated due to rounding

 2. Indicates data has been suppressed to respect confidentiality

 1. Estimates for the latest year (2018) are based on preliminary energy data; these data, though the best available information at the time of publication, are subject to revision in the next submission year.

 2. Provincial/Territorial GHG emissions allocated to Canadian economic sectors are provided in Annex 12 of this report

Greenhouse Gas Categories	1990	2005	2013	2014	2015	2016	2017	2018
dieeimouse das Categories	1990	2003	2013	kt CC		2010	2017	2016
TOTAL	179 000	203 000	167 000	165 000	163 000	160 000	155 000	165 000
ENERGY	132 000	162 000	129 000	126 000	125 000	120 000	117 000	126 000
a. Stationary Combustion Sources	83 400	97 000	67 400	66 300	63 500	59 500	55 700	62 500
Public Electricity and Heat Production	25 900	35 400	10 300	6 030	6 250	5 540	2 560	4 450
Petroleum Refining Industries	6 200	6 900	6 100	6 000	5 600	5 400	3 800	4 200
Oil and Gas Extraction	100	169	99	61	72	76	31	59
Mining	493	420	530	569	436	529	553	446
Manufacturing Industries	22 000	18 800	16 100	16 600	16 000	15 700	16 400	16 500
Construction	571	637	361	380	350	341	305	314
Commercial and Institutional	9 190	12 800	12 000	13 300	12 700	12 200	12 600	13 300
Residential	18 200	20 700	20 200	21 800	20 700	18 100	18 100	21 800
Agriculture and Forestry	775	1 040	1 650	1 500	1 420	1 510	1 360	1 410
b. Transport ^a	47 200	63 500	59 900	58 200	59 600	59 400	60 000	62 400
Domestic Aviation	2 240	2 250	2 290	2 190	2 190	2 200	2 300	2 420
Road Transportation	29 300	47 800	47 400	45 500	46 300	46 600	46 800	48 400
Light-Duty Gasoline Vehicles	16 400	16 600	13 500	12 800	12 900	12 700	12 100	12 000
Light-Duty Gasoline Trucks	7 210	15 800	16 600	16 400	16 900	17 700	18 000	19 000
Heavy-Duty Gasoline Vehicles	1 480	3 150	3 550	3 310	3 310	3 420	3 410	3 430
Motorcycles	27	61	87	86	88	93	95	9:
Light-Duty Diesel Vehicles	127	217	326	327	363	337	339	338
Light-Duty Diesel Trucks	34	72	192	241	328	376	467	52
Heavy-Duty Diesel Vehicles	3 970	11 800	13 200	12 300	12 400	11 900	12 300	13 000
Propane and Natural Gas Vehicles	68	55	1 222	0.91	0.65	0.74	0.53	0.53
Railways	1 780	1 550	1 320	1 410	1 430	1 450	1 450	1 540
Domestic Navigation	156	210	197	201	204	210	215	220
Other Transportation	13 700	11 700	8 730	8 970	9 500	8 930	9 250	9 83
Off-Road Agriculture & Forestry	1 340	1 410	1 200	1 110	1 170	1 040	1 040	1 120
Off-Road Commercial & Institutional	561	960	1 050	1 020	993	1 040	1 200	1 250
Off-Road Manufacturing, Mining & Construction	3 130	3 310	3 310	3 130	3 540	3 420	3 790	3 950
Off-Road Residential	89	491	471	480	475	452	460	47
Off-Road Other Transportation	6 340	2 460	1 630	1 700	1 770	1 780	1 850	1 890
Pipeline Transport	2 280	3 070	1 070	1 530	1 550	1 200	914	1 150
c. Fugitive Sources Coal Mining	1 600	1 600	1 400	1 500	1 500	1 500	1 500	1 500
Oil and Natural Gas	1 600	1 600	1 400	1 500	1 500	1 500	1 500	1 50
Oil Oil	64	42	36	36	34	33	27	2
Natural Gas	1 000	960	830	920	920	940	960	960
Venting			440	440	440	450	450	450
Flaring	340 160	460 100	73	65	67	60	61	62
d. CO ₂ Transport and Storage	100	-	- 73	- 03	-	-	-	0.
INDUSTRIAL PROCESSES AND PRODUCT USE	30 500	25 100	23 000	23 800	23 200	24 600	23 300	24 100
a. Mineral Products	3 900	4 800	3 400	3 400	3 500	3 500	3 700	3 800
Cement Production	2 400	3 700	2 700	2 700	2 800	2 800	3 000	3 100
Lime Production	1 100	800	570	620	570	580	620	600
Mineral Products Use	380	320	130	120	130	120	88	86
b. Chemical Industry ^b	10 300	2 550	-	-	-	120	-	0,
Adipic Acid Production	10 000	2 500	_	-	_	_	_	
c. Metal Production	11 200	11 400	8 200	9 140	8 710	9 370	9 080	9 43
Iron and Steel Production	10 500	10 300	8 010	8 900	8 490	9 240	8 960	9 31
Aluminum Production	-	- 10 300	-			-	-	731
SF ₆ Used in Magnesium Smelters and Casters	687	1 130	192	238	215	124	117	122
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	970	2 000	3 900	4 200	4 200	4 300	4 400	4 700
e. Non-Energy Products from Fuels and Solvent Use	4 100	4 100	7 300	6 900	6 600	7 200	5 900	5 800
f. Other Product Manufacture and Use	140	200	190	180	200	220	250	280
AGRICULTURE	10 000	10 000	10 000	9 700	9 500	10 000	10 000	9 900
a. Enteric Fermentation	4 300	4 100	3 400	3 300	3 300	3 300	3 300	3 30
b. Manure Management	1 800	2 000	1 800	1 800	1 800	1 800	1 800	1 90
c. Agricultural Soils	3 900	3 800	4 700	4 400	4 200	4 600	4 600	4 50
Direct Sources	3 300	3 200	4 000	3 800	3 600	4 000	4 000	3 900
Indirect Sources	600	600	700	600	600	600	600	60
d. Field Burning of Agricultural Residues	3	0.60	0.30	0.30	0.30	0.30	0.20	0.2
e. Liming, Urea Application and Other Carbon-containing Fertilizers	250	160	230	190	150	200	210	20
WASTE	6 300	6 000	5 500	5 200	5 200	4 800	4 800	4 600
a. Solid Waste Disposal	5 500	5 000	4 400	4 000	4 100	3 600	3 700	3 40
b. Biological Treatment of Solid Waste	50	100	200	200	200	200	200	20
c. Wastewater Treatment and Discharge	290	340	380	390	390	390	390	40
d. Incineration and Open Burning of Waste	100	200	200	300	300	300	300	30
e. Industrial Wood Waste Landfills	300	400	300	300	300	300	300	30

- a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
- b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.
- c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.

 Indicates no emissions
- 0.00 Indicates emissions truncated due to rounding
- x Indicates data has been suppressed to respect confidentiality

					Greenhou	ise Gases				
Greenhouse Gas Categories	CO ₂	CH₄	CH₄	N ₂ O	N ₂ O	HFCs ^d	PFCsd	SF ₆	NF ₃	TOTAL
Global Warming Potential	CO ₂	C114	25	1120	298	111 C3	1103	22 800	17 200	TOTAL
Unit	kt	kt	kt CO ₂ eq	kt	kt CO ₂ eq	kt CO₂ eq	kt CO₂ eq	kt CO ₂ eq	kt CO ₂ eq	kt CO ₂ ec
TOTAL	142 000	430	11 000	26	7 800	4 700	12	180	- Kt CO2 Cq	165 00
ENERGY	122 000	92	2 300	6	2 000		-	-	-	126 00
a. Stationary Combustion Sources	61 200	30	800	2	500	-	-	-	-	62 50
Public Electricity and Heat Production	4 380	1	28	0.10	40	-	_		-	4 45
Petroleum Refining Industries	4 200	0.08	2	0.03	8	-	_		-	4 20
Oil and Gas Extraction	59	0.00	0.03	0.00	0.30	-	_		-	5
Mining	439	0.01	0.20	0.02	7	-	_	_	-	44
Manufacturing Industries	16 400	0.54	14	0.40	120	_	_	-	-	16 50
Construction	311	0.01	0.14	0.01	3	_	_	-	-	31
Commercial and Institutional	13 200	0.35	9	0.30	90	-	_	-	-	13 30
Residential	20 800	30	700	0.70	200	-	_	-	-	21 80
Agriculture and Forestry	1 390	0.03	0.60	0.03	10	_	_		-	1 41
b. Transport ^a	60 900	12	290	4	1 200	-	-	-	-	62 40
Domestic Aviation	2 400	0.08	2	0.07	20	-	_		-	2 42
Road Transportation	47 400	3	80	3	910	_	_		-	48 40
Light-Duty Gasoline Vehicles	11 700	0.90	20	0.79	240	-	_	-	-	12 00
Light-Duty Gasoline Venicles Light-Duty Gasoline Trucks	18 600	1	30	1	340				-	19 00
Heavy-Duty Gasoline Vehicles	3 340	0.10	30	0.30	90	-			-	3 43
Motorcycles	94	0.10	0.90	0.00	0.54	-	-	-	-	3 43
Light-Duty Diesel Vehicles	330	0.04	0.90	0.00	8		-	-	-	33
Light-Duty Diesel Trucks	512	0.01	0.20	0.03	13	-	-			52
Heavy-Duty Diesel Trucks Heavy-Duty Diesel Vehicles	12 800	0.01	10	0.04	220	-	-	-	-	13 00
		0.50			0.00					
Propane and Natural Gas Vehicles	0.52		0.01	0.00		-	-	-	-	0.5
Railways	1 380	0.08	2	0.50	200	-	-	-	-	1 54
Domestic Navigation	218	0.02	0.50	0.01	2	-	-	-	-	22
Other Transportation	9 500	9	210	0.40	100	-	-	-	-	9 83
Off-Road Agriculture & Forestry	1 110	0.05	1	0.05	10	-	-	-	-	1 12
Off-Road Commercial & Institutional	1 200	2	37	0.04	10	-	-	-	-	1 25
Off-Road Manufacturing, Mining & Construction	3 870	0.63	16	0.20	60	-	-	-	-	3 95
Off-Road Residential	443	0.98	25	0.01	4	-	-	-	-	47
Off-Road Other Transportation	1 770	4	110	0.05	20	-	-	-	-	1 89
Pipeline Transport	1 110	1	27	0.03	9	-	-	-	-	1 15
c. Fugitive Sources	260	49	1 200	0.02	6	-	-	-	-	1 50
Coal Mining	-	-	-	-	-	-	-	-	-	
Oil and Natural Gas	260	49	1 200	0.02	6	-	-	-	-	1 50
Oil	0.16	0.85	21	0.02	6	-	-	-	-	2
Natural Gas	2	38	960	-	-	-	-	-	-	96
Venting	200	10	250	-	-	-	-	-	-	45
Flaring	59	0.11	3	0.00	0.03	-	-	-	-	6
d. CO ₂ Transport and Storage	-	-	-	-	-	-	-	-	-	
INDUSTRIAL PROCESSES AND PRODUCT USE	18 900	2	45	0.76	226	4 700	12	180	-	24 10
a. Mineral Products	3 800	-	-	-	-	-	-	-	-	3 80
Cement Production	3 100	-	-	-	-	-	-	-	-	3 10
Lime Production	600	-	-	-	-	-	-	-	-	60
Mineral Products Use	86	-	-	-	-	-	-	-	-	8
b. Chemical Industry ^b	-	-	-	-	-	-	-	-	-	
Adipic Acid Production	-	-	-	-	-	-	-	-	-	
c. Metal Production	9 310	0.09	2	-	-	-	-	122	-	9 43
Iron and Steel Production	9 3 1 0	0.09	2	-	-	-	-	-	-	9 31
Aluminum Production	-	-	-	-	-	-	_	-	-	
SF ₆ Used in Magnesium Smelters and Casters	-	_	-	_	-	_	_	122	-	12
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	-	-	-	-	-	4 700	2	0.65	-	4 70
e. Non-Energy Products from Fuels and Solvent Use	5 800		-	0.10	-	-			-	5 80
f. Other Product Manufacture and Use	9	-	-	0.67	200	-	11	57	-	28
AGRICULTURE	200	170	4 300	18	5 400	-	-	-	-	9 90
a. Enteric Fermentation	200	130	3 300	- 10	3 400				-	3 30
b. Manure Management	-	39	970	3	900				-	1 90
c. Agricultural Soils	-	- 39		15	4 500			-	-	4 50
Direct Sources			-	13	3 900				-	3 90
Indirect Sources			-	2	600	-	-	-	-	60
d. Field Burning of Agricultural Residues	-					-	-	-	-	
		0.01	0.20	0.00	0.05		-			0.2
e. Liming, Urea Application and Other Carbon-containing Fertilizers	200	-	-	-	-	-	-	-	-	20
WASTE	200	160	4 000	1	400	-	-	-	-	4 60
a. Solid Waste Disposal	-	140	3 400		400	-	-	-	-	3 40
b. Biological Treatment of Solid Waste	-	5	100	0.30	80	-	-	-	-	20
		8	210	0.60	200		-	-	-	40
s Wastowator Troatmont and Dischause										40
c. Wastewater Treatment and Discharge d. Incineration and Open Burning of Waste	200	0.02	0.50	0.40	100		-	-	-	30

- Notes:
 a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
 b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.
 c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.
 d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

- d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

 1. Indicates no emissions

 1. Indicates emissions truncated due to rounding

 2. Indicates data has been suppressed to respect confidentiality

 1. Estimates for the latest year (2018) are based on preliminary energy data; these data, though the best available information at the time of publication, are subject to revision in the next submission year.

 2. Provincial/Territorial GHG emissions allocated to Canadian economic sectors are provided in Annex 12 of this report

Cranhausa Cas Catanarias	1000	2005	2012	2014	2015	2016	2017	2010
Greenhouse Gas Categories	1990	2005	2013	2014	2015	2016	2017	2018
TOTAL	10 200	20.100	20.000	kt CO		20.000	20.000	21.000
TOTAL	18 300	20 100	20 900	20 900 13 100	20 600 12 600	20 900	20 800	21 800
ENERGY a. Stationary Combustion Sources	12 500	12 300	12 800			12 800	12 500	13 400
•	4 980	4 590	4 250	4 250	4 080	4 070	3 560	3 710
Public Electricity and Heat Production Petroleum Refining Industries	519	358	120	127	124	69	69	41
-		0.46	0.46		- 0.00	-	-	
Oil and Gas Extraction Mining	1 79	0.46 96	0.46 107	0.31	0.00	59	97	120
Manufacturing Industries	1 180			1 190	78 1 400		1 490	120 1 520
-		1 470	1 220			1 500		
Construction	63	86	123	111	104	122	113	125
Commercial and Institutional	1 400	1 420	1 390	1 450	1 300	1 260	607	632
Residential	1 690	1 130	1 240	1 250	1 040	1 040	1 140	1 220
Agriculture and Forestry b. Transport ^a	43	43	43	34	32	26	40	49
	7 090	7 520	8 060	8 460	8 120	8 320	8 610	9 280
Domestic Aviation	471	543	496	458	421	415	451	481
Road Transportation	3 260	4 180	5 440	5 560	5 250	5 540	5 660	6 010
Light-Duty Gasoline Vehicles	1 540	1 210	1 290	1 230	1 140	1 130	1 080	1 110
Light-Duty Gasoline Trucks	915	1 470	2 040	2 100	2 080	2 150	2 130	2 330
Heavy-Duty Gasoline Vehicles	318	443	544	500	487	497	487	520
Motorcycles	4	4	16	8 16	-	9	9	10
Light-Duty Diesel Vehicles	8	10	16		14	15	17	
Light-Duty Diesel Trucks	6	1.020	10	11	11	1 720	15	15
Heavy-Duty Diesel Vehicles	443	1 020	1 540	1 690	1 500	1 720	1 930	2 010
Propane and Natural Gas Vehicles	31	7	0.20	0.09	0.07	0.05	0.08	0.09
Railways	605	299	570	656	704	660	803	88
Domestic Navigation	0.93	2	8	4	0.93	1	2	
Other Transportation	2 750	2 490	1 550	1 780	1 740	1 710	1 690	1 900
Off-Road Agriculture & Forestry	1 060	1 310	939	971	890	908	919	93
Off-Road Commercial & Institutional	41	81	96	100	92	84	88	90
Off-Road Manufacturing, Mining & Construction	193	229	200	213	215	238	297	30
Off-Road Residential	6	45	46	51	51	51	51	5
Off-Road Other Transportation	604	222	156	177	185	182	182	205
Pipeline Transport	848	601	109	268	311	245	155	304
c. Fugitive Sources	450	210	440	440	410	400	370	380
Coal Mining	- 450	- 210	- 440	- 440	- 410	- 400	- 270	200
Oil and Natural Gas Oil	450	210	440	440	410	400	370	380
	6	65	120	120	110	100	91	98
Natural Gas	380 41	72 40	110 74	130	120 67	120 64	120	110
Venting Flaring				72	-		58	62
d. CO ₂ Transport and Storage	29	31	130	130	120	110	99	110
INDUSTRIAL PROCESSES AND PRODUCT USE	484	700	914	864	918	909	918	1 020
a. Mineral Products	220	69	59	63	60	60	62	61
Cement Production	150	-	-	-	-	-		
Lime Production	61	59	54	58	54	54	58	57
Mineral Products Use	6	10	6	6	6	6	4	2/
b. Chemical Industry ^b	-	-	-	-	-	-	- 4	-
Adipic Acid Production	-	-	-	-	-	-	-	
c. Metal Production	-	-	-	-	-	-	-	
Iron and Steel Production	-		-	-	-		-	
Aluminum Production	-	-	-	-	-		-	
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-			-	
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	-							
-	250	190	400	430	430	450	450	490
e. Non-Energy Products from Fuels and Solvent Use	250	420	450	360	410	390	390	440
f. Other Product Manufacture and Use	11	18	13	13	14	18	20	2
AGRICULTURE	4 700	6 3 0 0	6 500	6 100	6 300	6 500	6 600	6 70
a. Enteric Fermentation	1 900	3 200	2 400	2 400	2 300	2 300	2 400	2 40
b. Manure Management	410	780	690	690	710	720	740	740
c. Agricultural Soils	2 100	2 100	3 100	2 800	3 000	3 100	3 200	3 20
Direct Sources	1 700	1 600	2 500	2 300	2 500	2 500	2 600	2 60
Indirect Sources	400	400	600	500	600	600	600	60
d. Field Burning of Agricultural Residues	100	10	20	20	20	20	20	20
e. Liming, Urea Application and Other Carbon-containing Fertilizers	130	190	280	240	260	280	310	31
WASTE	610	810	790	760	770	700	710	720
a. Solid Waste Disposal	550	730	710	670	690	620	630	64
b. Biological Treatment of Solid Waste	0.50	2	6	8	9	9	9	9
•								
c. Wastewater Treatment and Discharge	39	42	51	51	47	49	49	4
-	39 0.40 30	0.40 30	0.05 30	0.05 20	47 0.05 20	0.05 20	0.05 20	0.0 2

a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.

b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.

c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.

Indicates no emissions

^{0.00} Indicates emissions truncated due to rounding

x Indicates data has been suppressed to respect confidentiality

					Greenhou	ise Gases				
Croonhouse Cas Categories	CO ₂	CH₄	CH₄	N ₂ O	N ₂ O	HFCs ^d	PFCsd	SF ₆	NF ₃	TOTAL
Greenhouse Gas Categories Global Warming Potential	CO ₂	C114	25	11/20	298	111 C3	FICS	22 800	17 200	TOTAL
<u>_</u>	kt	kt	-	let.		let CO on	let CO on			let CO o
Unit			kt CO ₂ eq	kt	kt CO ₂ eq	kt CO₂ eq	kt CO ₂ e			
TOTAL	13 500	160	3 900	13	3 900	490	0.94	2	-	21 80
ENERGY	12 800	15	380	0.80	200	-	-	-	-	13 400
a. Stationary Combustion Sources	3 620	2	50	0.10	30	-	-	-	-	3 710
Public Electricity and Heat Production	41	0.00	0.07	0.00	0.20	-	-	-	-	4
Petroleum Refining Industries	-		-	-	-	-	-	-	-	
Oil and Gas Extraction	-	-	-	-	-	-	-	-	-	
Mining	118	0.00	0.05	0.01	2	-	-	-	-	120
Manufacturing Industries	1 510	0.05	1	0.04	12	-	-	-	-	1 52
Construction	124	0.00	0.06	0.00	0.71	-	-	-	-	12
Commercial and Institutional	627	0.01	0.30	0.02	5	-	-	-	-	63
Residential	1 160	2	50	0.05	10	-	-	-	-	1 220
Agriculture and Forestry	48	0.00	0.02	0.00	0.90	-	-	-	-	49
b. Transport ^a	9 030	2	42	0.70	210	-	-	-	-	9 280
Domestic Aviation	477	0.01	0.40	0.01	4	-	-	-	-	48
Road Transportation	5 910	0.40	10	0.31	92	-	-	-	-	6 010
Light-Duty Gasoline Vehicles	1 100	0.10	3	0.05	15	-	-	-	-	1 110
Light-Duty Gasoline Trucks	2 300	0.20	6	0.10	29	-	-	-	-	2 330
Heavy-Duty Gasoline Vehicles	506	0.02	0.50	0.05	14	_	-	_	_	52
Motorcycles	9	0.00	0.09	0.00	0.06	-	-	-	-	1
Light-Duty Diesel Vehicles	14	0.00	0.03	0.00	0.35			_	_	1.
Light-Duty Diesel Trucks	15	0.00	0.01	0.00	0.37			_	-	1
Heavy-Duty Diesel Vehicles	1 970	0.00	2	0.00	33			-	-	2 01
Propane and Natural Gas Vehicles	0.09	0.08	0.00	0.11	0.00	-	-	-	-	0.0
					90			-		
Railways	788	0.04	1	0.30		-	-		-	88
Domestic Navigation	2	0.00	0.00	0.00	0.02	-	-	-	-	1.00
Other Transportation	1 850	1	29	0.07	20	-	-	-	-	1 90
Off-Road Agriculture & Forestry	926	0.04	1	0.04	10	-	-	-	-	93
Off-Road Commercial & Institutional	92	0.14	4	0.00	0.90	-	-	-	-	9
Off-Road Manufacturing, Mining & Construction	299	0.06	2	0.02	5	-	-	-	-	30
Off-Road Residential	53	0.13	3	0.00	0.40	-	-	-	-	5
Off-Road Other Transportation	191	0.49	12	0.01	2	-	-	-	-	205
Pipeline Transport	294	0.30	7	0.01	2	-	-	-	-	304
c. Fugitive Sources	99	11	280	0.00	0.10	-	-	-	-	380
Coal Mining	-	-	-	-	-	-	-	-	-	
Oil and Natural Gas	99	11	280	0.00	0.10	-	-	-	-	38
Oil	0.24	4	98	_	-	_	_	-	-	9
Natural Gas	6	4	110	0.00	0.04	_	_	_	-	110
Venting	0.44	3	62	-	-	_	_	_	_	6
Flaring	93	0.59	15	0.00	0.05	_	_	_	-	11
d. CO ₂ Transport and Storage	-	0.59	-	0.00	0.03	-	-	-	-	111
<u> </u>	452			0.24	71		0.94	2	-	1 020
INDUSTRIAL PROCESSES AND PRODUCT USE		-	-	0.24	- /1	490	0.94	-	-	
a. Mineral Products	61									6
Cement Production		-	-	-	-	-	-	-	-	
Lime Production	57	-	-	-	-	-	-	-	-	5
Mineral Products Use	4	-	-	-	-	-	-	-	-	
b. Chemical Industry ^b	-	-	-	-	-	-	-	-	-	
Adipic Acid Production	-	-	-	-	-	-	-	-	-	
c. Metal Production	-	-	-	-	-	-	-	-	-	
Iron and Steel Production	-	-	-	-	-	-	-	-	-	
Aluminum Production	-	-	-	-	-	-	-	-	-	
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-	-	-	-	-	-	
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	-	-	-	-	-	490	0.08	-	-	49
e. Non-Energy Products from Fuels and Solvent Use	х	-	-	х	х	-	-	-	-	44
f. Other Product Manufacture and Use	х	-	-	х	х	-	0.86	2	-	2
AGRICULTURE	310	110	2 800	12	3 500	-		-	-	6 70
a. Enteric Fermentation	-	95	2 400		- 500			-	-	2 40
b. Manure Management		18	450	1	300			-	-	74
c. Agricultural Soils		-	450	11	3 200			-	-	3 20
Direct Sources	-		-	9	2 600		-	_	-	2 60
			-		600					
Indirect Sources	-			2		-	-	-	-	60
d. Field Burning of Agricultural Residues	-	0.60	10	0.01	4	-	-	-	-	2
e. Liming, Urea Application and Other Carbon-containing	310	-	-	-	-	-	-	-	-	31
Fertilizers WASTE	0.05	20	600	0.07	30					70
WASTE	0.05	28	690	0.07	20	-	-	-	-	72
a. Solid Waste Disposal	-	25	640	-	-	-	-	-	-	64
b. Biological Treatment of Solid Waste	-	0.20	5	0.01	4	-	-	-	-	
c. Wastewater Treatment and Discharge	-	1	31	0.06	20	-	-	-	-	4
d. Incineration and Open Burning of Waste	0.05	0.00	0.00	0.00	0.00	-	-	-	-	0.0
e. Industrial Wood Waste Landfills		0.90	20	-	-	-	-	-	-	2

- Notes:
 a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
 b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.
 c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.
 d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

- d. IPCC's Fourth Assessment Report provides global warming potentials (GVPPs) for the various species of PPCs. Chapter 1, habite 11 of this report provides a list of GWP 3 used.

 1. Indicates no emissions truncated due to rounding value of the provided in the provided i

Table A11–16 GHG Emission Summary for Saska	terre train,	Jeicetea !	cars					
Greenhouse Gas Categories	1990	2005	2013	2014	2015	2016	2017	2018
				kt CO	₂ eq			
TOTAL	44 500	68 100	72 200	75 000	77 200	74 500	76 700	76 400
ENERGY	35 800	54 000	57 200	61 000	62 900	59 900	62 000	61 700
a. Stationary Combustion Sources	20 000	27 400	27 800	29 400	30 500	29 700	30 700	30 400
Public Electricity and Heat Production	11 100	15 300	15 100	15 200	16 100	16 000	16 600	16 100
Petroleum Refining Industries	630	780	1 200	1 200	1 300	1 300	1 300	1 200
Oil and Gas Extraction	2 950	6 080	5 140	6 040	6 520	5 940	5 840	5 880
Mining	974	1 280	1 800	1 930	1 920	1 810	2 000	1 980
Manufacturing Industries	790	534	752	970	851	804	864	792
Construction	70	42	36	39	67	39	45	43
Commercial and Institutional	985	1 510	1 120	1 130	1 110	1 300	1 470	1 620
Residential	2 140	1 630	1 870	1 870	1 720	1 680	1 820	1 970
Agriculture and Forestry b. Transport ^a	296	256	772	997	870	783 16 400	815	785
Domestic Aviation	9 160	11 500	16 100	16 600	16 900		16 600	17 400
	259	193 5 170	234	223	218	213	210	216
Road Transportation	3 780		8 680	8 660	9 060	9 110	9 320	9 400
Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks	1 480 1 230	1 370 1 720	1 480 2 960	1 320 2 860	1 400 3 200	1 380 3 350	1 300 3 380	1 220 3 350
Heavy-Duty Gasoline Vehicles	628	777	1 150	898	971	1 000	1 000	976
Motorcycles	2	3	7	898 7	7	8	8	9/6
Light-Duty Diesel Vehicles	5	11	24	25	26	24	25	24
Light-Duty Diesel Trucks	8	39	31	33	37	36	39	40
Heavy-Duty Diesel Vehicles	386							
Propane and Natural Gas Vehicles	386	1 250 5	3 030 0.28	3 520 0.16	3 420 0.14	3 310 0.27	3 580 0.50	3 790 0.51
Railways	584	410	695	718	802	781	1 120	1 280
Domestic Navigation	304	410	- 093	710	- 002	701	1 120	1 200
Other Transportation	4 540	5 730	6 530	6 990	6 790	6 300	5 960	6 490
Off-Road Agriculture & Forestry	2 130	3 240	3 690	3 830	3 870	3 770	4 070	4 450
Off-Road Commercial & Institutional	32	77	133	131	128	54	32	32
Off-Road Manufacturing, Mining & Construction	166	238	342	392	438	304	283	308
Off-Road Residential	4	35	48	50	51	59	62	60
Off-Road Other Transportation	612	243	253	268	292	294	300	289
Pipeline Transport	1 590	1 900	2 060	2 320	2 010	1 830	1 210	1 350
c. Fugitive Sources	6 700	15 000	13 000	15 000	16 000	14 000	15 000	14 000
Coal Mining	20	20	20	20	20	20	20	20
Oil and Natural Gas	6 700	15 000	13 000	15 000	16 000	14 000	15 000	14 000
Oil	660	1 300	1 000	1 100	1 000	980	1 000	1 000
Natural Gas	2 100	2 000	2 500	2 400	2 300	2 600	2 600	2 600
Venting	3 500	10 000	7 500	9 000	9 500	7 900	8 400	8 000
Flaring	390	1 500	2 200	2 500	2 700	2 400	2 700	2 100
d. CO ₂ Transport and Storage	-	0.09	0.09	0.10	0.20	0.20	0.20	0.20
INDUSTRIAL PROCESSES AND PRODUCT USE	354	846	1 190	876	870	854	802	795
a. Mineral Products	95	10	8	8	8	7	6	6
Cement Production	87	-	-	-	-	-	-	-
Lime Production	-	-	-	-	-	-	-	-
Mineral Products Use	8	10	8	8	8	7	6	6
b. Chemical Industry ^b	-	-	-	-	-	-	-	_
Adipic Acid Production	-	-	-	-	-	-	-	-
c. Metal Production	-	-	-	-	-	-	-	-
Iron and Steel Production	-	-	-	-	-	-	-	-
Aluminum Production	-	-	-	-	-	-	-	-
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-	-	-	-	-
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	-	180	370	400	410	410	430	470
e. Non-Energy Products from Fuels and Solvent Use	250	650	810	450	440	420	350	300
f. Other Product Manufacture and Use	8	13	12	12	13	15	18	19
AGRICULTURE	7 700	12 000	13 000	12 000	13 000	13 000	13 000	13 000
a. Enteric Fermentation	3 300	6 100	4 800	4 600	4 600	4 600	4 700	4 600
b. Manure Management	710	1 300	1 100	1 000	1 000	1 100	1 100	1 000
c. Agricultural Soils	3 500	4 500	6 400	5 800	6 100	6 400	6 400	6 600
Direct Sources	3 000	3 700	5 200	4 700	5 000	5 200	5 200	5 300
Indirect Sources	500	900	1 000	1 000	1 000	1 000	1 000	1 000
d. Field Burning of Agricultural Residues	70	30	30	30	40	30	30	30
e. Liming, Urea Application and Other Carbon-containing Fertilizers	190	450	910	850	950	940	1 000	1 000
WASTE	580	730	710	710	700	700	720	730
a. Solid Waste Disposal	440	580	550	550	560	560	580	590
b. Biological Treatment of Solid Waste	0.02	0.60	5	5	5	5	5	5
c. Wastewater Treatment and Discharge	39	39	44	43	37	34	33	33
				0.00				0.00
d. Incineration and Open Burning of Waste	0.00	0.02	0.02	0.02	0.02	0.02	0.02	0.02

a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.

b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.

c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.

Indicates no emissions

^{0.00} Indicates emissions truncated due to rounding

x Indicates data has been suppressed to respect confidentiality

					Greenhoi	use Gases				
Greenhouse Gas Categories	CO ₂	CH₄	CH₄	N ₂ O	N ₂ O	HFCsd	PFCsd	SF ₆	NF ₃	TOTA
Global Warming Potential	202		25	20	298	1.1. C3	11.03	22 800	17 200	
Unit	kt	kt	kt CO₂ eq	kt	kt CO ₂ eq	kt CO₂ eq	kt CO₂ eq	kt CO ₂ eq	kt CO ₂ eq	kt CO ₂
TOTAL	50 600	690	17 000	27	8 000	470	0.40	0.27	-	76 4
ENERGY	49 300	470	12 000	2	600	-	-	-	-	617
a. Stationary Combustion Sources	29 900	10	300	0.70	200	-	-	-	-	30 4
Public Electricity and Heat Production	16 000	1	34	0.40	100	_	-	_	-	16 1
Petroleum Refining Industries	1 200	0.03	0.60	0.01	4	-	-	-	-	1.2
Oil and Gas Extraction	5 590	10	300	0.10	40	-	-	-	-	5 8
Mining	1 970	0.04	1	0.04	10	-	-	-	-	1 9
Manufacturing Industries	784	0.03	0.73	0.02	7	-	-		-	7
Construction	42	0.00	0.02	0.00	0.31	-	-	-	-	
Commercial and Institutional	1 610	0.03	0.81	0.03	10	-	-	-	-	1 6
Residential	1 920	1	30	0.05	10	-	-	-	-	1 9
Agriculture and Forestry	780	0.01	0.40	0.02	5	_	_	_	-	
b. Transport ^a	17 000	3	81	1	350	_	-	_	-	17 4
Domestic Aviation	214	0.02	0.40	0.01	2	_	_	_	-	
Road Transportation	9 240	0.70	20	0.49	150	_	_	_	-	9 4
Light-Duty Gasoline Vehicles	1 200	0.10	3	0.49	17	_	_	_	-	1.2
Light-Duty Gasoline Venicles Light-Duty Gasoline Trucks	3 300	0.10	8	0.00	40	_	-	_	-	3 3
Heavy-Duty Gasoline Vehicles	950	0.30	0.90	0.13	25	_		_	-	3
Motorcycles	8	0.04	0.90	0.00	0.05	-			-	
Light-Duty Diesel Vehicles	23	0.00	0.08	0.00	0.03	-	-	-	-	
Light-Duty Diesel Venicies Light-Duty Diesel Trucks	39	0.00	0.01	0.00	0.57	-	-	-	-	
Heavy-Duty Diesel Vehicles	3 720	0.00	0.03	0.00	62	-	-		-	3
Propane and Natural Gas Vehicles	0.50	0.20	0.01	0.21	0.00	-	-	-	-	3
						-		-	-	
Railways	1 150	0.06	2	0.40	100					1.
Domestic Navigation	- 260	-	- 62	- 0.20		-	-	-	-	
Other Transportation	6 360	3	63	0.20	70	-	-	-	-	6
Off-Road Agriculture & Forestry	4 400	0.18	5	0.20	50	-	-	-	-	4 4
Off-Road Commercial & Institutional	31	0.06	2	0.00	0.30	-	-	-	-	
Off-Road Manufacturing, Mining & Construction	302	0.04	0.93	0.02	5	-	-	-	-	
Off-Road Residential	56	0.13	3	0.00	0.50	-	-	-	-	
Off-Road Other Transportation	268	0.74	19	0.01	2	-	-	-	-	
Pipeline Transport	1 310	1	34	0.04	10	-	-	-	-	1 :
c. Fugitive Sources	2 400	450	11 000	0.26	77	-	-	-	-	14 (
Coal Mining	-	0.70	20	-	-	-	-	-	-	
Oil and Natural Gas	2 400	450	11 000	0.30	80	-	-	-	-	14 (
Oil	4	38	960	0.30	80	-	-	-	-	1 (
Natural Gas	50	100	2 600	-	-	-			-	2 (
Venting	430	300	7 600	-	-	-	-	-	-	8
Flaring	2 000	7	170	0.01	2	-	-	-	-	2
d. CO ₂ Transport and Storage	0.20	-	-	-	-	-	-	-	-	0
NDUSTRIAL PROCESSES AND PRODUCT USE	296	-	-	0.09	28	470	0.40	0.27	-	1
a. Mineral Products	6	-	-	-	-	-	-	-	-	
Cement Production	-	-	-	-	-	-	-	-	-	
Lime Production	-	-	-	-	-	-	-	-	-	
Mineral Products Use	6	-	-	-	-	-	-	-	-	
b. Chemical Industry ^b	-	-	-	-	-	-	-	-	-	
Adipic Acid Production	-	-	-	-	-	-	-	-	-	
c. Metal Production	-	-	-	-	-	-	-	-	-	
Iron and Steel Production	-	-	-	-	-	-	-	-	-	
Aluminum Production	-	-	-	-	-	-	-	-	-	
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-	-	-	-	-	-	
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃	-		-		-	470	0.07	-	-	-
e. Non-Energy Products from Fuels and Solvent Use	х		- 1	х	х	-	-	-	-	
f. Other Product Manufacture and Use	X		-	X	X	-	0.33	0.27	-	_
AGRICULTURE	1 000	200	4 900	25	7 300	-	-	-	-	13
a. Enteric Fermentation	-	180	4 600		-	_	-	-	-	4
o. Manure Management	-	12	310	2	700	-	-	-	-	1
Agricultural Soils	-	- 12	3.0	22	6 600	-			_	6
Direct Sources	-		-	18	5 300	-		_	-	5
Indirect Sources	-		-	4	1 000	_	-	_	-	1
d. Field Burning of Agricultural Residues	-	0.90	20	0.02	7	_				- 1
							-		-	- 1
e. Liming, Urea Application and Other Carbon-containing Fertilizers	1 000	-	-	-	-	-	-	-	-	1
WASTE	0.02	28	710	0.06	20	_	_	_	_	
a. Solid Waste Disposal	0.02	23	590	- 0.06	-	-	-	-	-	
	-		3	0.01	2	-	-	-	-	
o. Biological Treatment of Solid Waste c. Wastewater Treatment and Discharge	-	0.10				-	-	-	-	
c. Wastewater Treatment and Discharge	-	0.72	18	0.05	20	_	-	-	-	
d. Incineration and Open Burning of Waste	0.02	0.00	0.00	0.00	0.00	-	-	_	-	(

- Notes:
 a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
 b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.
 c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.
 d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

- d. IPCC's Fourth Assessment Report provides global warming potentials (GVPPs) for the various species of PPCs. Chapter 1, habite 11 of this report provides a list of GWP 3 used.

 1. Indicates no emissions truncated due to rounding value of the provided in the provided i

Greenhouse Gas Categories	1990	2005	2013	2014	2015	2016	2017	2018
Greenhouse das Categories	1990	2003	2013	kt CC		2010	2017	2016
TOTAL	173 000	232 000	272 000	277 000	276 000	265 000	272 000	273 000
ENERGY	151 000	199 000	238 000	244 000	242 000	232 000	240 000	239 000
a. Stationary Combustion Sources	95 300	129 000	156 000	161 000	163 000	158 000	164 000	160 000
Public Electricity and Heat Production	39 800	52 000	48 200	49 200	51 500	45 800	46 700	36 200
Petroleum Refining Industries	3 000	4 000	4 200	4 500	4 700	4 900	4 900	4 800
Oil and Gas Extraction	29 200	49 700	76 100	79 300	82 000	83 400	86 900	90 200
Mining	249	294	257	199	151	142	139	150
Manufacturing Industries	10 500	8 850	11 800	11 400	10 200	9 570	8 640	10 300
Construction	238	171	306	298	297	307	343	382
Commercial and Institutional	5 040	5 660	6 210	6 340	5 770	6 300	7 580	8 350
Residential	6 850	7 620	8 780	9 160	8 260	7 130	8 600	8 970
Agriculture and Forestry	477	240	339	347	346	358	390	385
b. Transport ^a	22 300	34 000	42 800	44 000	41 800	40 000	42 500	45 000
Domestic Aviation	1 130	1 350	1 550	1 510	1 480	1 400	1 430	1 570
Road Transportation	11 900	19 400	27 300	28 300	26 400	25 800	27 200	28 500
Light-Duty Gasoline Vehicles	4 200	3 680	3 320	3 370	3 040	3 120	3 090	3 080
Light-Duty Gasoline Trucks	3 400	5 140	6 550	7 020	6 910	7 380	7 610	7 950
Heavy-Duty Gasoline Vehicles	1 720	3 200	3 570	3 390	3 180	3 390	3 490	3 580
Motorcycles	13	28	41	100	44	47	48	50
Light-Duty Diesel Vehicles	21	51	97	100	90	77	82	82
Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles	16	52	85	107	122	119	144	13.600
Propane and Natural Gas Vehicles	2 180 395	7 200 97	13 600 2	14 200 0.97	13 000 0.96	11 600	12 800 2	13 600
Railways	1 760	2 780	2 990	2 910	2 530	1 890	2 070	1 910
Domestic Navigation	1 700	2 7 8 0	2 990	2 9 10	2 330	1 690	2 070	1910
Other Transportation	7 460	10 400	11 000	11 300	11 300	11 000	11 700	13 000
Off-Road Agriculture & Forestry	2 520	3 430	3 090	3 030	2 870	2 490	2 710	3 010
Off-Road Commercial & Institutional	165	295	349	392	363	237	204	215
Off-Road Manufacturing, Mining & Construction	1 520	2 610	4 690	4 750	4 710	4 010	4 390	4 870
Off-Road Residential	20	128	116	126	119	128	136	144
Off-Road Other Transportation	1 940	751	544	611	607	609	636	670
Pipeline Transport	1 300	3 210	2 190	2 360	2 660	3 500	3 640	4 120
c. Fugitive Sources	34 000	37 000	39 000	40 000	37 000	34 000	33 000	34 000
Coal Mining	400	300	300	200	300	300	200	200
Oil and Natural Gas	33 000	37 000	39 000	39 000	37 000	33 000	33 000	34 000
Oil	4 000	4 300	4 400	4 300	4 100	3 900	3 900	4 200
Natural Gas	8 500	9 700	8 500	8 500	8 000	7 900	7 800	7 800
Venting	17 000	21 000	22 000	23 000	22 000	19 000	19 000	19 000
Flaring	3 600	2 000	3 400	3 200	2 900	2 200	2 400	2 800
d. CO₂ Transport and Storage	-	-	-	-	0.04	0.09	0.09	0.09
INDUSTRIAL PROCESSES AND PRODUCT USE	6 790	11 600	14 100	12 500	14 100	13 500	13 100	14 200
a. Mineral Products	1 100	1 500	1 200	1 200	1 200	1 200	1 300	1 300
Cement Production	790	1 100	900	890	940	930	1 000	1 000
Lime Production	110	120	110	120	110	110	120	120
Mineral Products Use b. Chemical Industry ^b	190	250	140	140	160	160	150	150
Adipic Acid Production	-	-				-	-	
c. Metal Production	-	-	-	-	1	0.68	0.65	
Iron and Steel Production		-			1	0.68	0.65	
Aluminum Production		-			-	0.08	- 0.03	
SF ₆ Used in Magnesium Smelters and Casters	_	_		_	_	_	_	
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	0.27	710	1 400	1 600	1 600	1 600	1 700	1 800
e. Non-Energy Products from Fuels and Solvent Use	5 700	9 400	11 000	9 700	11 000	11 000	10 000	11 000
f. Other Product Manufacture and Use	17	40	43	47	51	56	65	73
AGRICULTURE	14 000	19 000	18 000	18 000	18 000	18 000	17 000	18 000
a. Enteric Fermentation	7 800	12 000	9 500	9 400	9 400	9 500	9 400	9 300
b. Manure Management	1 500	2 400	2 000	2 000	2 000	2 000	2 000	2 000
aa.c management	4 100	4 600	6 000	6 000	6 000	5 900	5 300	5 600
			4.000	4 900	4 900	4 800	4 300	4 600
	3 400	3 600	4 900					
c. Agricultural Soils Direct Sources Indirect Sources		3 600 900	1 000	1 000	1 000	1 000	1 000	1 000
c. Agricultural Soils Direct Sources Indirect Sources d. Field Burning of Agricultural Residues	3 400						1 000 0.80	
c. Agricultural Soils Direct Sources Indirect Sources d. Field Burning of Agricultural Residues e. Liming, Urea Application and Other Carbon-containing Fertilizers	3 400 700	900	1 000	1 000 1 790	1 000 1 870	1 000		0.80
c. Agricultural Soils	3 400 700 4	900 0.70 370 1 700	1 000 1 770 1 800	1 000 1 790 1 900	1 000 1 870 1 900	1 000 0.80 730 1 900	0.80 610 1 900	0.80 720 2 000
c. Agricultural Soils	3 400 700 4 260	900 0.70 370 1 700 920	1 000 1 770	1 000 1 790 1 900 1 100	1 000 1 870 1 900 1 100	1 000 0.80 730 1 900 1 200	0.80 610 1 900 1 200	0.80 720 2 000
c. Agricultural Soils	3 400 700 4 260 1 200 560	900 0.70 370 1 700 920 40	1 000 1 770 1 800 1 000 40	1 000 1 790 1 900 1 100 40	1 000 1 870 1 900 1 100 40	1 000 0.80 730 1 900 1 200 40	0.80 610 1 900 1 200 40	0.80 720 2 000 1 300
c. Agricultural Soils Direct Sources Indirect Sources d. Field Burning of Agricultural Residues e. Liming, Urea Application and Other Carbon-containing Fertilizers WASTE a. Solid Waste Disposal b. Biological Treatment of Solid Waste c. Wastewater Treatment and Discharge	3 400 700 4 260 1 200 560	900 0.70 370 1 700 920 40	1 000 1 770 1 800 1 000 40 130	1 000 1 790 1 900 1 100 40	1 000 1 870 1 900 1 100 40	1 000 0.80 730 1 900 1 200 40 120	0.80 610 1 900 1 200 40 120	0.86 720 2 000 1 300 40
c. Agricultural Soils	3 400 700 4 260 1 200 560	900 0.70 370 1 700 920 40	1 000 1 770 1 800 1 000 40	1 000 1 790 1 900 1 100 40	1 000 1 870 1 900 1 100 40	1 000 0.80 730 1 900 1 200 40	0.80 610 1 900 1 200 40	1 000 0.80 720 2 000 1 300 40 120 40

a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.

b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.

c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.

Indicates no emissions

^{0.00} Indicates emissions truncated due to rounding

x Indicates data has been suppressed to respect confidentiality

					Greenhou	ise Gases				
Greenhouse Gas Categories	CO ₂	CH₄	CH₄	N ₂ O	N ₂ O	HFCs ^d	PFCsd	SF ₆	NF ₃	TOTAL
Global Warming Potential	202	C1 14	25	1120	298	111 C3	11 63	22 800	17 200	101712
Unit	kt	kt	kt CO ₂ eq	kt	kt CO ₂ eq	kt CO₂ eq	kt CO₂ eq	kt CO ₂ eq	kt CO ₂ eq	kt CO₂ e
TOTAL	223 000	1 500	38 000	33	9 900	1 800	3	3	- Kt CO2 Eq	273 00
ENERGY	211 000	1 000	26 000	6	2 000	1 800	-	-	-	239 00
a. Stationary Combustion Sources	157 000	80	2 000	3	900	-	-	-	-	160 00
Public Electricity and Heat Production	35 900	3	72	0.70	200	-	_		-	36 20
Petroleum Refining Industries	4 800	0.09	2	0.70	5	-	_		-	4 80
Oil and Gas Extraction	88 000	70	2 000	2	500	_	_		_	90 20
Mining	149	0.00	0.08	0.00	0.80	-	_		-	15
Manufacturing Industries	10 200	0.44	11	0.30	90		_		-	10 30
Construction	378	0.44	0.17	0.01	4		_		_	38
Commercial and Institutional	8 290	0.16	4	0.20	50	_	_		-	8 35
Residential	8 770	5	100	0.20	70	-	-	_	-	8 97
Agriculture and Forestry	382	0.01	0.20	0.20	2		_		_	38
b. Transport ^a	43 900	9	220	3	840	-			-	45 00
Domestic Aviation	1 560	0.03	0.70	0.04	10		-		-	1 57
Road Transportation	28 000	0.20	40 7	0.12	450 39	-	-	-	-	28 50
Light-Duty Gasoline Vehicles	3 030	0.30		0.13	88	-	-	-	-	3 08
Light-Duty Gasoline Trucks	7 850	0.70	20	0.30		-			-	7 95
Heavy-Duty Gasoline Vehicles	3 480	0.10	3	0.31	92	-	-	-	-	3 58
Motorcycles	50	0.02	0.50	0.00	0.28	-	-	-	-	5
Light-Duty Diesel Vehicles	80	0.00	0.04	0.01	2	-	-	-	-	8
Light-Duty Diesel Trucks	153	0.00	0.10	0.01	4	-	-	-	-	15
Heavy-Duty Diesel Vehicles	13 300	0.60	10	0.76	230	-	-	-	-	13 60
Propane and Natural Gas Vehicles	2	0.00	0.02	0.00	0.01	-	-	-	-	
Railways	1 710	0.10	2	0.70	200	-	-	-	-	1 91
Domestic Navigation	-	-	-	-	-	-	-	-	-	
Other Transportation	12 700	7	170	0.60	200	-	-	-	-	13 00
Off-Road Agriculture & Forestry	2 970	0.14	4	0.10	40	-	-	-	-	3 01
Off-Road Commercial & Institutional	201	0.51	13	0.01	2	-	-	-	-	21
Off-Road Manufacturing, Mining & Construction	4 760	0.28	7	0.30	100	-	-	-	-	4 87
Off-Road Residential	136	0.28	7	0.00	1	-	-	-	-	14
Off-Road Other Transportation	624	2	41	0.02	5	-	-	-	-	67
Pipeline Transport	3 990	4	98	0.10	30	-	-	-	-	4 12
c. Fugitive Sources	10 000	940	24 000	0.05	16	-	-	-	-	34 00
Coal Mining	-	9	200	-	-	-	-	-	-	20
Oil and Natural Gas	10 000	930	23 000	0.05	20	-	-	-	-	34 00
Oil	560	140	3 600	0.04	10	-	-	-	-	4 20
Natural Gas	43	310	7 700	-	-	-	-	-	-	7 80
Venting	7 200	470	12 000	-	-	-	-	-	-	19 00
Flaring	2 600	9	230	0.02	5	-	-	-	-	2 80
d. CO ₂ Transport and Storage	0.09	-	-	-	-	-	-	-	-	0.0
INDUSTRIAL PROCESSES AND PRODUCT USE	11 200	4	100	4	1 080	1 800	3	3	-	14 20
a. Mineral Products	1 300	-	-		-	-	-	-	-	1 30
Cement Production	1 000	-	-	-	-	-	-	-	-	1 00
Lime Production	120	-	-	-	-	-	-	_	-	12
Mineral Products Use	150	-	-	-	-	-	-	_	-	15
b. Chemical Industry ^b	-		-		-	-	-	-	-	- 13
Adipic Acid Production	-		-		-	-	-	_	-	
c. Metal Production	_		-		_		-	-	-	
Iron and Steel Production	_		-		_		_		_	
Aluminum Production	-		-		-	-			-	
	-		-		_		_		_	
SF ₆ Used in Magnesium Smelters and Casters	-									1 0 0
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃			-		-	1 800	0.47	0.13	-	1 80
e. Non-Energy Products from Fuels and Solvent Use	9 900		-		-	-	-		-	11 00
f. Other Product Manufacture and Use	720	400	- 0.000	0.20	60	-	3	2	-	10.00
AGRICULTURE	720	400	9 900	23	6 900	-	-	-	-	18 00
a. Enteric Fermentation	-	370	9 300		-	-	-	-	-	9 30
b. Manure Management	-	26	650	5	1 000	-	-	-	-	2 00
c. Agricultural Soils	-	-	-	19	5 600	-	-	-	-	5 60
Direct Sources	-		-	15	4 600	-	-	-	-	4 60
Indirect Sources	-	-	-	3	1 000	-	-	-	-	1 00
d. Field Burning of Agricultural Residues	-	0.02	0.60	0.00	0.20	-	-	-	-	0.8
e. Liming, Urea Application and Other Carbon-containing	720	-	-	-	-	-	-	-	-	72
Fertilizers			4							
WASTE	30	76	1 900	0.30	90	-	-	-	-	2 00
a. Solid Waste Disposal	-	52	1 300	-	-	-	-	-	-	1 30
b. Biological Treatment of Solid Waste	-	1	20	0.06	20	-	-	-	-	4
c. Wastewater Treatment and Discharge	-	3	61	0.20	60	-	-	-	-	12
d. Incineration and Open Burning of Waste	30	0.00	0.07	0.05	20	-	-	-	-	4
e. Industrial Wood Waste Landfills	-	20	500	-	-	-	-	-	-	50

- Notes:
 a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
 b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.
 c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.
 d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

- d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

 1. Indicates no emissions

 1. Indicates emissions truncated due to rounding

 2. Indicates data has been suppressed to respect confidentiality

 1. Estimates for the latest year (2018) are based on preliminary energy data; these data, though the best available information at the time of publication, are subject to revision in the next submission year.

 1. Provincial/Territorial GHG emissions allocated to Canadian economic sectors are provided in Annex 12 of this report

Greer	nhouse Gas Categories	1990	2005	2013	2014	2015	2016	2017	2018
					kt CO				
TOTA		51 600	62 000	60 300	60 200	59 300	61 800	63 300	65 500
ENER		42 000	50 500	50 400	50 500	49 600	51 800	53 400	55 400
	tationary Combustion Sources	19 500	21 900	21 400	21 500	19 900	21 100	21 900	22 400
	ublic Electricity and Heat Production	804	1 340	596	578	503	677	574	689
	etroleum Refining Industries	1 200	500	520	570	590	690	550	410
	vil and Gas Extraction	2 140 616	5 390 386	8 160 588	8 230 561	7 070 456	7 440 490	7 610 486	8 270 521
	Manufacturing Industries	6 490	6 190	4 100	4 400	4 420	4 670	4 850	4 900
	onstruction	307	114	68	66	71	95	95	104
	ommercial and Institutional	2 960	3 180	2 740	2 650	2 420	2 450	2 820	2 720
	esidential	4 590	4 680	4 270	4 090	3 950	3 990	4 410	4 140
A	griculture and Forestry	323	75	385	382	413	563	560	602
b. T	ransport ^a	18 500	23 300	23 600	23 800	24 900	26 300	27 200	28 700
D	omestic Aviation	1 340	1 580	1 340	1 300	1 310	1 330	1 430	1 550
R	oad Transportation	9 600	15 500	16 300	16 300	16 800	18 000	18 200	19 200
	Light-Duty Gasoline Vehicles	3 900	4 450	3 690	3 680	3 800	4 110	4 030	3 970
	Light-Duty Gasoline Trucks	2 110	3 910	4 200	4 380	4 680	5 260	5 370	5 540
	Heavy-Duty Gasoline Vehicles	950	1 860	1 800	1 750	1 740	1 960	1 990	2 050
	Motorcycles	15	21	24	25	27	30	30	30
	Light-Duty Diesel Vehicles Light-Duty Diesel Trucks	44	93	128	121	131	128	127	131
	Heavy-Duty Diesel Vehicles	17 1 940	45	76	86	107	119	135	157
	Propane and Natural Gas Vehicles	624	4 890 214	6 390 14	6 270 7	6 300	6 350	6 520 7	7 270
R	ailways	1 430	430	534	664	665	789	1 100	1 000
	omestic Navigation	838	1 100	1 420	1 540	1 660	1 670	1 680	1 700
	other Transportation	5 240	4 710	3 990	3 960	4 500	4 540	4 800	5 290
	Off-Road Agriculture & Forestry	707	873	618	588	656	576	660	791
	Off-Road Commercial & Institutional	243	330	361	356	359	301	284	316
	Off-Road Manufacturing, Mining & Construction	1 350	1 460	1 330	1 260	1 410	1 440	1 650	2 040
	Off-Road Residential	35	183	154	165	169	145	140	147
	Off-Road Other Transportation	2 050	867	514	561	608	634	647	682
	Pipeline Transport	862	998	1 020	1 040	1 300	1 440	1 410	1 320
	ugitive Sources	4 100	5 400	5 300	5 100	4 800	4 400	4 300	4 300
	oal Mining	800	1 000	1 000	1 000	900	1 000	900	1 000
0	il and Natural Gas	3 300	4 400	4 200	4 100	4 000	3 500	3 400	3 300
	Oil Natural Con	190	85	42	46	45	50	46	45
	Natural Gas Venting	870 1 900	880	820	760	770 2 600	770 2 100	780	820
	Flaring	360	2 700 690	2 800 540	2 600 670	590	510	2 000 570	1 900 570
d C	O ₂ Transport and Storage	-	-	340	-	390	310	-	370
	STRIAL PROCESSES AND PRODUCT USE	3 310	4 630	3 920	3 880	3 660	4 080	3 940	4 160
	lineral Products	870	1 500	1 200	1 200	1 200	1 200	1 100	1 100
	Cement Production	650	1 300	980	970	1 000	1 000	1 000	1 000
	Lime Production	170	190	170	180	170	120	67	65
	Mineral Products Use	53	51	20	23	25	23	21	20
b. C	hemical Industry ^b	-	-	-	-	-	-	-	
	Adipic Acid Production	-	-	-	-	-	-	-	
c. N	letal Production	1 670	1 220	759	547	477	867	794	772
	Iron and Steel Production	-	-	-	-	-	-	-	
	Aluminum Production	1 670	1 220	758	546	476	867	793	771
-1 -0	SF ₆ Used in Magnesium Smelters and Casters roduction and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	-	1	0.54	0.63	0.60	0.73	0.76	0.74
	on-Energy Products from Fuels and Solvent Use	690	620 1 200	1 200 670	1 400 710	1 400 470	1 500 540	1 500 460	1 600 530
	ther Product Manufacture and Use	77	97	85	710	70	71	88	88
	CULTURE	2 200	2 700	2 300	2 200	2 300	2 400	2 400	2 500
	nteric Fermentation	1 400	1 800	1 300	1 300	1 400	1 400	1 400	1 500
	lanure Management	310	440	390	390	400	400	410	420
c. A	gricultural Soils	510	500	540	470	490	520	510	550
	Direct Sources	410	380	430	380	390	410	400	440
	Indirect Sources	100	100	100	100	100	100	100	100
	ield Burning of Agricultural Residues	-	-	-	-	-	-	-	
	iming, Urea Application and Other Carbon-containing Fertilizers	25	24	26	21	23	26	28	33
WAST		4 100	4 200	3 700	3 700	3 700	3 600	3 600	3 500
	olid Waste Disposal	1 800	1 600	1 400	1 400	1 400	1 300	1 400	1 300
b. B	iological Treatment of Solid Waste	-	50	80	90	90	100	100	100
- 14	Instagrator Transmont and Dischause	110	140	140		150	150	160	
	Vastewater Treatment and Discharge	110 20	140	140	150	150	150 0.50	160 2	160

a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.

b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.

c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.

Indicates no emissions

^{0.00} Indicates emissions truncated due to rounding

x Indicates data has been suppressed to respect confidentiality

Greenhouse Gas Categories Global Warming Potential Unit TOTAL ENERGY a. Stationary Combustion Sources Public Electricity and Heat Production Petroleum Refining Industries Oil and Gas Extraction Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry b. Transporta Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Railways Domestic Navigation Other Transportation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Other Transportation Pipeline Transport C. Fugitive Sources Coal Mining Oil and Natural Gas	kt 53 100 50 700 21 400 673 410 7760 517 4 760 103 2 700 3 840 598 27 900 1 530 18 700 3 870 5 360 2 000 30 127 153 7 140 7 897	CH ₄ kt 350 150 0.19 0.01 20 0.01 0.77 0.00 0.05 1 0.30 0.40 0.09 0.00 0.00	CH ₄ 25 kt CO ₂ eq 8 800 3 800 700 5 0.20 400 0.20 19 0.05 1 200 0.30 130 1 30 8 10 2	N ₂ O kt 6 3 0.90 0.04 0.00 0.20 0.01 0.41 0.00 0.07 0.20 0.01 2 0.04 2 0.04 0.05 0.05 0.06 0.07 0.07 0.07 0.09 0	Greenhot N ₂ O 298 kt CO ₂ eq 1 900 300 300 0.70 60 3 120 0.65 20 60 3 640 10	HFCs ^d kt CO ₂ eq 1 600	PFCs ^d kt CO ₂ eq 21 - - - - - - - - - - - - -	SF ₆ 22 800 kt CO ₂ eq 12	NF ₃ 17 200 kt CO ₂ eq	tt CO ₂ 65 50 55 40 22 40 68 41 8 27 52 4 90 10 2 72 4 14
Global Warming Potential Unit TOTAL ENERGY a. Stationary Combustion Sources Public Electricity and Heat Production Petroleum Refining Industries Oil and Gas Extraction Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry b. Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Agriculture & Forestry Off-Road Other Transportation Pipeline Transport C. Fugitive Sources Coal Mining	kt 53 100 50 700 21 400 673 410 7 760 517 4 760 103 2 700 3 840 598 27 900 1 530 18 700 3 870 5 360 2 000 30 127 153 7 140 7 897 1 680	kt 350 150 30 0.19 0.01 20 0.01 0.77 0.00 0.05 10 0.01 5 0.05 1 0.30 0.40 0.09 0.01 0.00	25 kt CO ₂ eq 8 800 3 800 700 5 0.20 400 0.20 19 0.05 1 200 0.30 130 1 30 8	kt 6 3 0.90 0.04 0.00 0.20 0.01 0.41 0.00 0.07 0.20 0.01 2 0.04 2 0.31	298 kt CO ₂ eq 1 900 900 10 0.70 60 3 120 0.65 20 60 3 640 10	kt CO ₂ eq 1 600 - - - - - - - -	kt CO2 eq 21	22 800 kt CO ₂ eq 12	17 200 kt CO ₂ eq	kt CO ₂ 65 50 55 40 22 40 688 41 8 27 522 4 90 10 2 72 4 14
TOTAL ENERGY a. Stationary Combustion Sources Public Electricity and Heat Production Petroleum Refining Industries Oil and Gas Extraction Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry b. Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transport Fugitive Sources Coal Mining	53 100 50 700 21 400 673 410 7 760 517 4 760 103 2 700 3 840 598 27 900 1 530 18 700 3 870 5 360 2 000 30 127 153 7 140 7 897 1 680	350 150 30 0.19 0.01 20 0.01 0.77 0.00 0.05 10 0.01 5 0.30 0.40 0.09 0.01	kt CO ₂ eq 8 800 3 800 5 0.20 400 0.20 19 0.05 1 200 130 130 8 10 2	6 3 0.90 0.04 0.00 0.20 0.01 0.41 0.00 0.07 0.20 0.01 2 0.04	kt CO ₂ eq 1 900 900 300 10 0.70 60 3 120 0.65 20 60 3 640 10	1600	21	kt CO ₂ eq 12	kt CO ₂ eq	65 50 55 40 22 40 68 41 8 27 52 4 90 10 2 72 4 14
A Stationary Combustion Sources Public Electricity and Heat Production Petroleum Refining Industries Oil and Gas Extraction Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry Domestic Aviation Road Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Commercial & Institutional Off-Road Mesidential Off-Road Residential Off-Road Mining	53 100 50 700 21 400 673 410 7 760 517 4 760 103 2 700 3 840 598 27 900 1 530 18 700 3 870 5 360 2 000 30 127 153 7 140 7 897 1 680	350 150 30 0.19 0.01 20 0.01 0.77 0.00 0.05 10 0.01 5 0.30 0.40 0.09 0.01	8 800 3 800 700 5 0.20 400 0.20 19 0.05 1 200 0.30 130 1 30 8 10 2	6 3 0.90 0.04 0.00 0.20 0.01 0.41 0.00 0.07 0.20 0.01 2 0.04	1 900 900 300 10 0.70 60 3 120 0.65 20 60 3 640 10 440	1600	21	12	-	65 50 55 40 22 40 68 41 8 27 52 4 90 10 2 72 4 14
Reserve Associated and Policia Electricity and Heat Production Petroleum Refining Industries Oil and Gas Extraction Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Vehicles Light-Duty Gasoline Vehicles Light-Duty Gasoline Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Road Transportation Anotorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Pouty Diesel Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Residential Off-Road Residential Off-Road Residential Off-Road Residential Fusitive Sources Coal Mining	50 700 21 400 673 410 7 760 517 4 760 103 2 700 3 840 598 27 900 1 530 18 700 3 870 5 360 2 000 30 127 153 7 140 7 897	150 30 0.19 0.01 20 0.01 0.77 0.00 0.05 10 0.01 5 0.30 0.40 0.90	3 800 700 5 0.20 400 0.20 19 0.05 1 200 0.30 130 1 30 8 10 2	3 0.90 0.04 0.00 0.20 0.01 0.41 0.00 0.07 0.20 0.01 2 0.04 2	900 300 10 0.70 60 3 120 0.65 20 60 3 640 10	-	-	-	-	55 40 22 40 68 41 8 27 52 4 90 10 2 72 4 14
Public Electricity and Heat Production Petroleum Refining Industries Oil and Gas Extraction Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Vehicles Light-Duty Gasoline Vehicles Light-Duty Diesel Vehicles Dropane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Residential Off-Road Residential Off-Road Residential Off-Road Residential Off-Road Nining	21 400 673 410 7 760 517 4 760 103 2 700 3 840 598 27 900 1 530 18 700 3 870 5 360 2 000 3 870 5 360 2 127 153 7 140 7 897 1 680	30 0.19 0.01 20 0.01 0.77 0.00 0.05 10 0.01 5 0.05 1 0.30 0.40 0.09	700 5 0.20 400 0.20 19 0.05 1 200 0.30 130 1 30 8 10 2	0.90 0.04 0.00 0.20 0.01 0.41 0.00 0.07 0.20 0.01 2 0.04 2	300 10 0.70 60 3 120 0.65 20 60 3 640 10			- - - - - - - -	-	22 40 68 41 8 27 52 4 90 10 2 72 4 14
Public Electricity and Heat Production Petroleum Refining Industries Oil and Gas Extraction Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry b. Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Aught-Duty Diesel Vehicles Light-Duty Diesel Vehicles Clight-Duty Diesel Vehicles Dight-Duty Diesel Vehicles Fropane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport C. Fugitive Sources Coal Mining	673 410 7 760 517 4 760 103 2 700 3 840 598 27 900 1 530 18 700 3 870 5 360 2 000 30 127 153 7 140 7 897	0.19 0.01 20 0.01 0.77 0.00 0.05 10 0.05 5 0.05 1 0.30 0.40 0.09 0.01	5 0.20 400 0.20 19 0.05 1 200 0.30 130 1 30 8 10 2	0.04 0.00 0.20 0.01 0.41 0.00 0.07 0.20 0.01 2 0.04 2	10 0.70 60 3 120 0.65 20 60 3 640 10		- - - - - - -	- - - - - - - -	- - - - - - - -	68 41 8 27 52 4 90 10 2 72 4 14
Petroleum Refining Industries Oil and Gas Extraction Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Railways Domestic Aviation Road Transportation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transport Fugitive Sources Coal Mining	410 7 760 517 4 760 103 2 700 3 840 598 27 900 1 530 18 700 3 870 5 360 2 000 30 127 153 7 140 7 897 1 680	0.01 20 0.01 0.77 0.00 0.05 10 0.01 5 0.05 1 0.30 0.40 0.09	0.20 400 0.20 19 0.05 1 200 0.30 130 1 30 8 10 2	0.00 0.20 0.01 0.41 0.00 0.07 0.20 0.01 2 0.04 2 0.31	0.70 60 3 120 0.65 20 60 3 640 10	- - - - - - -	- - - - - -	- - - - - -	- - - - - -	4° 8 2° 52 4 90 10 2 7° 4 14
Oil and Gas Extraction Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Railway-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Ofther Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Transport Transport Fuffive Sources Coal Mining	7 760 517 4 760 103 2 700 3 840 598 27 900 1 530 18 700 3 870 5 360 2 000 30 127 153 7 140 7 897	20 0.01 0.77 0.00 0.05 10 0.05 1 0.30 0.40 0.09 0.01	400 0.20 19 0.05 1 200 0.30 130 1 30 8 10 2	0.20 0.01 0.41 0.00 0.07 0.20 0.01 2 0.04 2 0.31	60 3 120 0.65 20 60 3 640 10	-	- - - -	- - - - -	-	8 2 5 5 4 90 10 2 7 7 4 14 60
Mining Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry Domestic Aviation Road Transport* Domestic Aviation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Light-Duty Diesel Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining	517 4 760 103 2 700 3 840 598 27 900 1 530 1 8 700 3 870 5 360 2 000 3 0 127 153 7 140 7 897 1 680	0.01 0.77 0.00 0.05 10 0.01 5 0.05 1 0.30 0.40 0.09 0.01	0.20 19 0.05 1 200 0.30 130 1 30 8 10 2	0.01 0.41 0.00 0.07 0.20 0.01 2 0.04 2 0.31	3 120 0.65 20 60 3 640 10 440	-	- - - -	- - - -	-	52 4 90 10 2 72 4 14
Manufacturing Industries Construction Commercial and Institutional Residential Agriculture and Forestry Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Agriculture Serope Serop	4 760 103 2 700 3 840 598 27 900 1 530 18 700 3 870 5 360 2 000 30 127 153 7 140 7 897 1 680	0.77 0.00 0.05 10 0.01 5 0.05 1 0.30 0.40 0.09 0.01	19 0.05 1 200 0.30 130 1 30 8 10	0.41 0.00 0.07 0.20 0.01 2 0.04 2	120 0.65 20 60 3 640 10 440	- - - -	- - - -	- - - -	- - - -	4 9 1 2 7 4 1
Construction Commercial and Institutional Residential Agriculture and Forestry Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Reavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transport Fugitive Sources Coal Mining	103 2 700 3 840 598 27 900 1 530 18 700 3 870 5 360 2 000 30 127 153 7 140 7 897 1 680	0.00 0.05 10 0.01 5 0.05 1 0.30 0.40 0.09 0.01	0.05 1 200 0.30 130 1 30 8 10	0.00 0.07 0.20 0.01 2 0.04 2 0.31	0.65 20 60 3 640 10 440	- - - -	- - -		- - -	2 7 4 1
Commercial and Institutional Residential Agriculture and Forestry Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fufitive Sources Coal Mining	2 700 3 840 598 27 900 1 530 18 700 3 870 5 360 2 000 30 127 153 7 140 7 897 1 680	0.05 10 0.01 5 0.05 1 0.30 0.40 0.09 0.01	1 200 0.30 130 1 30 8 10 2	0.07 0.20 0.01 2 0.04 2 0.31	20 60 3 640 10 440	- - -				2 7 4 1 6
Residential Agriculture and Forestry b. Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fufitive Sources Coal Mining	3 840 598 27 900 1 530 18 700 3 870 5 360 2 000 30 127 153 7 140 7 897 1 680	10 0.01 5 0.05 1 0.30 0.40 0.09 0.01	200 0.30 130 1 30 8 10 2	0.20 0.01 2 0.04 2 0.31	60 3 640 10 440	- - -	-	-	-	41
Agriculture and Forestry b. Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fufitive Sources Coal Mining	598 27 900 1 530 1 8 700 3 8 70 5 3 60 2 000 30 127 153 7 140 7 897 1 680	0.01 5 0.05 1 0.30 0.40 0.09 0.01 0.00	0.30 130 1 30 8 10 2	0.01 2 0.04 2 0.31	3 640 10 440	-			-	6
b. Transport* Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Propane and Natural Gas Vehicles Propane and Natural Gas Vehicles Propane da Natural Gas Vehicles Propane and Natural Gas Vehicles Anailways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining	27 900 1 530 18 700 3 870 5 360 2 000 30 127 153 7 140 7 897 1 680	5 0.05 1 0.30 0.40 0.09 0.01	130 1 30 8 10 2	0.04 2 0.31	10 440	-				
Domestic Aviation Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining	1 530 18 700 3 870 5 360 2 000 30 127 153 7 140 7 897 1 680	0.05 1 0.30 0.40 0.09 0.01 0.00	1 30 8 10 2	0.04 2 0.31	10 440		_		_	28 7
Road Transportation Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining	18 700 3 870 5 360 2 000 30 127 153 7 140 7 897 1 680	1 0.30 0.40 0.09 0.01 0.00	30 8 10 2	0.31	440		_	_	_	15
Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fufitive Sources Coal Mining	3 870 5 360 2 000 30 127 153 7 140 7 897 1 680	0.30 0.40 0.09 0.01 0.00	8 10 2	0.31		_	_	_	_	19 2
Light-Duty Gasoline Trucks Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining	5 360 2 000 30 127 153 7 140 7 897 1 680	0.40 0.09 0.01 0.00	10		94		_	_	_	3 9
Heavy-Duty Gasoline Vehicles Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport C. Fugitive Sources Coal Mining	2 000 30 127 153 7 140 7 897 1 680	0.09 0.01 0.00	2		170	-	-	-	-	5 54
Motorcycles Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining	30 127 153 7 140 7 897 1 680	0.01 0.00		0.37	50	-	-	-	-	2 0
Light-Duty Diesel Vehicles Light-Duty Diesel Trucks Heavy-Duty Diesel Trucks Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Other Transportation Pipeline Transport Fuffitive Sources Coal Mining	127 153 7 140 7 897 1 680	0.00	0.30	0.17	0.17	-	-	-	-	20
Light-Duty Diesel Trucks Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Other Transportation Pipeline Transport C. Fugitive Sources Coal Mining	153 7 140 7 897 1 680		0.30	0.00	3	-	-	-	-	1
Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles Railways Domestic Navigation Offer Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Ofter Transportation Pipeline Transport Fugitive Sources Coal Mining	7 140 7 897 1 680	0.00	0.06	0.01	4	-	-	-	-	1
Propane and Natural Gas Vehicles Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining	7 897 1 680	0.20	0.10		120	-	-	-	-	7 2
Railways Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport C. Fugitive Sources Coal Mining	897 1 680	0.30	0.07	0.41	0.04	-	-	-	-	/ 2
Domestic Navigation Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport C. Fugitive Sources Coal Mining	1 680									1.0
Other Transportation Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport C. Fugitive Sources Coal Mining		0.05	1	0.40	100	-	-	-	-	10
Off-Road Agriculture & Forestry Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining		0.16	4	0.05	10	-	-	-	-	17
Off-Road Commercial & Institutional Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining	5 130	4	96	0.20	70	-	-	-	-	5 2
Off-Road Manufacturing, Mining & Construction Off-Road Residential Off-Road Other Transportation Pipeline Transport c. Fugitive Sources Coal Mining	776	0.05	1	0.05	10	-	-	-	-	7
Off-Road Residential Off-Road Other Transportation Pipeline Transport Fugitive Sources Coal Mining	302	0.46	12	0.01	3	-	-	-	-	3
Off-Road Other Transportation Pipeline Transport c. Fugitive Sources Coal Mining	2 000	0.29	7	0.10	30	-	-	-	-	2 04
Pipeline Transport c. Fugitive Sources Coal Mining	138	0.30	8	0.00	1	-	-	-	-	14
c. Fugitive Sources Coal Mining	639	2	37	0.02	6	-	-	-	-	6
Coal Mining	1 280	1	31	0.03	10		-	-	-	1 3:
	1 400	120	2 900	0.00	1	-	-	-	-	4 30
Oil and Natural Gas	-	40	1 000	-	-	-	-	-	-	1 0
	1 400	77	1 900	0.00	1	-	-	-	-	3 30
Oil	0.21	2	43	0.00	0.90	-	-	-	-	
Natural Gas	6	32	810	-	-	-	-	-	-	8
Venting	890	40	1 000	-	-	-	-	-	-	1 9
Flaring	500	3	70	0.00	0.30	-	-	-	-	5
d. CO ₂ Transport and Storage	-	-	-	-	-	-	-	-	-	
INDUSTRIAL PROCESSES AND PRODUCT USE	2 410	-	-	0.23	70	1 600	21	12	-	4 10
a. Mineral Products	1 100	-	-	-	-	-	-	-	-	1 10
Cement Production	1 000	-	-	-	-	-	-	-	-	1 0
Lime Production	65	-	-	-	-	-	-	-	-	
Mineral Products Use	20	-	-	-	-	-	-	-	-	
o. Chemical Industry ^b	-	-	-	-	-	-	-	-	-	
Adipic Acid Production	-	-	-	-	-	-	-	-	-	
c. Metal Production	753	-	-	-	-	-	18	0.74	-	7
Iron and Steel Production	-	-	-	-	-	-	-	-	-	<u> </u>
Aluminum Production	753	-	-	-	-	-	18	-	-	7
SF ₆ Used in Magnesium Smelters and Casters	-	_	-	_	-	_	-	0.74	-	0.
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	-		-		-	1 600	0.28	- 0.74	-	1 6
e. Non-Energy Products from Fuels and Solvent Use	530	-	-	-	-	-		-	-	5
f. Other Product Manufacture and Use	5	-	-	0.23	70	-	2	12	-	
AGRICULTURE	33	66	1 700	3	790	-	-	14	-	2.5
a. Enteric Fermentation	-	59	1 500	-	-		-	_	-	1 5
o. Manure Management	-	7	180	0.80	200	-	-	_	-	4
Agricultural Soils			100	2	550	-	-		-	5
Direct Sources	-			2	440	-	-	_	-	4
			-		100			-		
Indirect Sources	-	-	-	0.40	- 100	-	-	-	-	1
d. Field Burning of Agricultural Residues		-				-	-		-	-
e. Liming, Urea Application and Other Carbon-containing	33	-	-	-	-	-	-	-	-	
Fertilizers WASTE	-	140	3 400	0.40	100	-	-	_	-	3 5
a. Solid Waste Disposal	-		1 300	0.40	100	-	-	-	-	13
-		54		0.10	40				_	
b. Biological Treatment of Solid Waste	-	2	60	0.10	40	-	-	-	-	1
c. Wastewater Treatment and Discharge	-	4	93	0.20	70	-	-	-	-	1
d. Incineration and Open Burning of Waste e. Industrial Wood Waste Landfills	-	0.00	2 000	0.01	2	-				

- Notes:
 a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
 b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.
 c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.
 d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

- d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

 1. Indicates no emissions

 1. Indicates emissions truncated due to rounding

 2. Indicates data has been suppressed to respect confidentiality

 1. Estimates for the latest year (2018) are based on preliminary energy data; these data, though the best available information at the time of publication, are subject to revision in the next submission year.

 2. Provincial/Territorial GHG emissions allocated to Canadian economic sectors are provided in Annex 12 of this report

Greenhouse Gas Categories	1990	2005	2013	2014	2015	2016	2017	2018
				kt CO ₂	eq			
TOTAL	534	545	579	474	500	502	539	619
ENERGY	527	531	555	449	475	476	510	587
a. Stationary Combustion Sources	218	193	118	67	68	66	68	85
Public Electricity and Heat Production	90	22	17	16	18	19	24	33
Petroleum Refining Industries	-	-	-	-	-	-	-	
Oil and Gas Extraction	0.31	67	-	-	-	-	-	
Mining	8	8	5	4	4	4	Х	
Manufacturing Industries	6	-	15	14	14	15	16	1
Construction	4	2	2	1	0.62	1.00	Х	
Commercial and Institutional	77	41	57	25	25	22	17	2
Residential	31	45	23	7	5	5	6	
Agriculture and Forestry	1	8	-	-	-	-	-	0.8
o. Transport ^a	309	328	437	382	407	410	442	50
Domestic Aviation	34	35	46	39	35	38	42	4
Road Transportation	220	256	357	314	343	346	375	42
Light-Duty Gasoline Vehicles	73	36	31	30	31	35	34	3
Light-Duty Gasoline Trucks	32	80	77	78	81	91	92	10
Heavy-Duty Gasoline Vehicles	15	25	32	33	37	43	45	5
Motorcycles	0.26	0.24	0.40	0.42	0.41	0.42	0.38	0.4
Light-Duty Diesel Vehicles	2	0.92	1	1	1	0.99	1	
Light-Duty Diesel Trucks	0.28	7	8	6	6	5	6	
Heavy-Duty Diesel Vehicles	96	107	208	165	186	171	197	22
Propane and Natural Gas Vehicles	1	-	-	-	-	-	-	
Railways	-	-	-	-	-	-	-	
Domestic Navigation	3	6	9	6	3	3	3	
Other Transportation Off-Road Agriculture & Forestry	52	31	26	23	26	23	23	2
,	0.48	0.31	0.25	0.20	0.25	1	0.28	0.3
Off-Road Commercial & Institutional	3	3	3	3	3	1	0.70	0.8
Off-Road Manufacturing, Mining & Construction	28	18	16	13	15	13	13	1
Off-Road Residential	0.69	X	X	X	X	X	X	
Off-Road Other Transportation Pipeline Transport	20	8	5	6	7	7	7	
Fugitive Sources	0.02	10	0.03	0.03	0.03	0.03	0.03	0.0
Coal Mining	- 0.02	-	0.03		- 0.03	0.03		0.0
Oil and Natural Gas	0.02	10	0.03	0.03	0.03	0.03	0.03	0.0
Oil	0.02	-	0.05	0.05	0.03	0.03	0.05	
Natural Gas	0.02	2	0.03	0.03	0.03	0.03	0.03	0.0
Venting		6	-	-	-	-		
Flaring	-	1	-	-	_	-	-	
d. CO ₂ Transport and Storage	-	-	-	-	-	-	-	
NDUSTRIAL PROCESSES AND PRODUCT USE	2	8	15	16	16	17	19	2
a. Mineral Products	0.11	-	-	-	-	-	-	
Cement Production	-	-	-	-	-	-	-	
Lime Production	-	-	-	-	_	-	-	
Mineral Products Use	0.11	-	-	-	-	-	-	
o. Chemical Industry ^b	-	-	-	-	-	-	-	
Adipic Acid Production	-	-	-	-	-	-	-	
. Metal Production	-	-	-	-	-	-	-	
Iron and Steel Production	-	-	-	-	-	-	-	
Aluminum Production	-	-	-	-	-	-	-	
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-	-	-	-	
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	-	7	14	14	15	16	18	2
e. Non-Energy Products from Fuels and Solvent Use	2	0.48	0.72	0.99	0.28	0.06	0.06	0.0
. Other Product Manufacture and Use	0.17	0.37	0.39	0.41	0.46	0.64	1	
AGRICULTURE	-	-	-	-	-	-	-	
. Enteric Fermentation	-	-	-	-	-	-	-	
o. Manure Management	-	-	-	-	-	-	-	
. Agricultural Soils	-	-	-	-	-	-	-	
Direct Sources	-	-	-	-	-	-	-	
Indirect Sources	-	-	-	-	-	-	-	
d. Field Burning of Agricultural Residues	-	-	-	-	-	-	-	
e. Liming, Urea Application and Other Carbon-containing Fertilizers	-	-	-	-	-	-	-	
WASTE	5	6	9	9	9	10	10	1
a. Solid Waste Disposal	0.94	2	4	4	4	4	4	
b. Biological Treatment of Solid Waste	-	0.20	0.40	0.40	0.50	0.50	0.40	0.4
. Wastewater Treatment and Discharge	4	4	5	5	5	5	5	
d. Incineration and Open Burning of Waste	-	0.02			-			

- a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
- b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.
- c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.
- Indicates no emissions
- 0.00 Indicates emissions truncated due to rounding
- Indicates data has been suppressed to respect confidentiality

Estimates for the latest year (2018) are based on preliminary energy data; these data, though the best available information at the time of publication, are subject to revision in the next submission year.

Provincial/Territorial GHG emissions allocated to Canadian economic sectors are provided in Annex 12 of this report

					Greenho	use Gases				
Greenhouse Gas Categories	CO ₂	CH₄	CH ₄	N ₂ O	N ₂ O	HFCs ^d	PFCsd	SF ₆	NF ₃	TOTA
Global Warming Potential	202	C.1.4	25	11,20	298	65		22 800	17 200	
Unit	kt	kt	kt CO₂ eq	kt	kt CO ₂ eq	kt CO₂ eq	kt CO₂ eq	kt CO ₂ eq	kt CO ₂ eq	kt CO ₂
TOTAL	578	0.43	11	0.03	9	20	0.00	0.68	-	61
ENERGY	577	0.06	1	0.03	8	-	-	-	-	58
a. Stationary Combustion Sources	84	0.00	0.10	0.00	0.70	-	-	-	-	8
Public Electricity and Heat Production	33	0.00	0.09	0.00	0.10	-	-	-	-	
Petroleum Refining Industries	-	-	-	-	-	-	-	-	-	
Oil and Gas Extraction	-	-	-	-	-	-	-	-	-	
Mining	X	Х	X	Х	х	Х	Х	Х	х	
Manufacturing Industries	16	0.00	0.00	0.00	0.06	-	-	-	-	
Construction	X	X	X	X	X	X	Х	Х	X	
Commercial and Institutional	23	0.00	0.01	0.00	0.30	-	-	-	-	
Residential	6	0.00	0.00	0.00	0.10	-	-	-	-	_
Agriculture and Forestry	0.83	0.00	0.00	0.00	0.00	-	-	-	-	0.
b. Transport ^a	493	0.05	1 0.07	0.02	7	-	-	-	-	5
Domestic Aviation	46	0.00	0.07	0.00	0.40	-	-	-	-	4
Road Transportation	417	0.02	0.50	0.02	6	-	-	-	-	4
Light-Duty Gasoline Vehicles	37	0.00	0.07	0.00	0.36	-	-	-	-	1
Light-Duty Gasoline Trucks	102	0.01	0.20	0.00	0.96	-	-	-	-	1
Heavy-Duty Gasoline Vehicles	0.39	0.00	0.04	0.00	0.00	-		-		
Motorcycles		0.00		0.00		-	-	-	-	0.
Light-Duty Diesel Vehicles	1	0.00	0.00	0.00	0.03		-		-	
Light-Duty Diesel Trucks	310	0.00	0.00	0.00	0.14	-	-	-	-	2
Heavy-Duty Diesel Vehicles Propane and Natural Gas Vehicles	218	0.01	0.20	0.01	4	-	-	-	-	2
	-		-		-	-	-	-	-	
Railways Domestic Navigation	3	0.00	0.01	0.00	0.02	-	-	-	-	
Other Transportation	27	0.00	0.70	0.00	0.02	-	_		_	
Off-Road Agriculture & Forestry	0.33	0.00	0.00	0.00	0.30	_	_	_	_	0.
Off-Road Commercial & Institutional	0.33	0.00	0.00	0.00	0.01	-	-			0.
Off-Road Manufacturing, Mining & Construction	16	0.00	0.05	0.00	0.20	_	_	_	_	0.
Off-Road Residential	X		0.03 X	0.00 X	0.20 X					
Off-Road Other Transportation	9	0.02	0.52	0.00	0.07	X -	X -	X -	X -	
Pipeline Transport	X		0.32 X	X	0.07 X	X	x	x	X	
c. Fugitive Sources	- X	0.00	0.03	- *	_ X	_ X	-	-	-	0.0
Coal Mining	-	0.00	0.03		-	-	-	-	-	0.0
Oil and Natural Gas	-	0.00	0.03		_	-	_		_	0.
Oil	-	0.00	0.03		_	-	_		_	0.
Natural Gas	-	0.00	0.03		_	_	_	_	-	0.
Venting	-	0.00	0.03			_				0.
Flaring	-		-		_	_	_	_	_	
d. CO ₂ Transport and Storage		-	-		_	-	-	-	-	
INDUSTRIAL PROCESSES AND PRODUCT USE	0.23		-	0.00	0.57	20	0.00	0.68		
a. Mineral Products			-	-	-	-	-	-	-	
Cement Production	-		-		_	_	_	_	_	
Lime Production	-		-	-	-	_	-	-	-	
Mineral Products Use	-		-		_	_	_	_	_	
b. Chemical Industry ^b	_		-		_				-	
Adipic Acid Production	_		-		_	_	-	_	-	
c. Metal Production	_	-	-		_		-	-	-	
Iron and Steel Production	-				_	_	_	_	_	
Aluminum Production			-		_	_	_	_	_	
SF ₆ Used in Magnesium Smelters and Casters			-		_	_		_	-	
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	_		-		_	20	0.00		_	
e. Non-Energy Products from Fuels and Solvent Use	0.09	-	-		-	-	-		-	0.
	0.13	-	-	0.00	0.57	-	-	0.68	-	0.
			-		0.57	_	_			
. Other Product Manufacture and Use				-	-	-	-		-	
f. Other Product Manufacture and Use AGRICULTURE	-					_		_	_	
f. Other Product Manufacture and Use AGRICULTURE a. Enteric Fermentation	-	-	-	_	_	_	_	_	_	
i. Other Product Manufacture and Use AGRICULTURE a. Enteric Fermentation b. Manure Management	-	-	-	-	-	-	-	-	-	
f. Other Product Manufacture and Use AGRICULTURE a. Enteric Fermentation b. Manure Management c. Agricultural Soils		-	-	-	-	-	-	-	-	
f. Other Product Manufacture and Use AGRICULTURE a. Enteric Fermentation b. Manure Management c. Agricultural Soils Direct Sources	-	-	-		-					
f. Other Product Manufacture and Use AGRICULTURE a. Enteric Fermentation b. Manure Management c. Agricultural Soils Direct Sources Indirect Sources		- - -	- - -	-						
f. Other Product Manufacture and Use AGRICULTURE a. Enteric Fermentation b. Manure Management c. Agricultural Soils Direct Sources Indirect Sources d. Field Burning of Agricultural Residues	-	- - - -		- - -	- - -	- - -	- - -	- - -	- - -	
f. Other Product Manufacture and Use AGRICULTURE a. Enteric Fermentation b. Manure Management c. Agricultural Soils Direct Sources Indirect Sources d. Field Burning of Agricultural Residues e. Liming, Urea Application and Other Carbon-containing		- - -	- - -	- - -						
f. Other Product Manufacture and Use AGRICULTURE a. Enteric Fermentation b. Manure Management c. Agricultural Soils Direct Sources Indirect Sources d. Field Burning of Agricultural Residues	-	- - - -	-	- - - -	- - - -	- - -	- - -	- - -	- - -	
f. Other Product Manufacture and Use AGRICULTURE a. Enteric Fermentation b. Manure Management c. Agricultural Soils Direct Sources Indirect Sources d. Field Burning of Agricultural Residues e. Liming, Urea Application and Other Carbon-containing Fertilizers WASTE		- - - - -		- - -	- - -	- - - -	- - - -	- - - -	- - - -	
f. Other Product Manufacture and Use AGRICULTURE a. Enteric Fermentation b. Manure Management c. Agricultural Soils Direct Sources Indirect Sources d. Field Burning of Agricultural Residues e. Liming, Urea Application and Other Carbon-containing Fertilizers WASTE a. Solid Waste Disposal	-	0.37	- - - - - - - - 9	0.00	- - - - - 0.70	-	- - - -			
f. Other Product Manufacture and Use AGRICULTURE a. Enteric Fermentation b. Manure Management c. Agricultural Soils		0.37	- - - - - - - 9	0.00	- - - - - 0.70	-	- - - - -			
f. Other Product Manufacture and Use AGRICULTURE a. Enteric Fermentation b. Manure Management c. Agricultural Soils Direct Sources Indirect Sources d. Field Burning of Agricultural Residues e. Liming, Urea Application and Other Carbon-containing Fertilizers		0.37 0.17 0.01	- - - - - - - 9 4 0.20	0.00	- - - - - 0.70	- - - - - -	- - - - - -	- - - - - -	- - - - - -	0.

- Notes:
 a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
 b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.
 c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.
 d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

- d. IPCC's Fourth Assessment Report provides global warming potentials (GVPPs) for the various species of PPCs. Chapter 1, habite 11 or this report provides a list of GWP 3 used.

 1. Indicates no emissions truncated due to rounding various species of indicates and the provided and the provided indicates emissions truncated due to rounding various species of the latest year (2018) are based on preliminary energy data; these data, though the best available information at the time of publication, are subject to revision in the next submission year. Provincial/Territorial GHG emissions allocated to Canadian economic sectors are provided in Annex 12 of this report

Greenhouse Gas Categories	1999	2005	2013	2014	2015	2016	2017	2018
				kt CO	₂ eq			
TOTAL	1 220	1 590	1 330	1 500	1 690	1 590	1 280	1 230
ENERGY	1 210	1 560	1 300	1 460	1 660	1 550	1 240	1 190
a. Stationary Combustion Sources	598	720	561	580	612	563	385	451
Public Electricity and Heat Production	88	X	Х	X	X	Х	Х	Х
Petroleum Refining Industries	-	-	-	-	-	-	-	-
Oil and Gas Extraction	128	214	2	2	1	5	13	11
Mining Manufacturing Industries	104	164	219	210	205	220	198	201
Construction	0.83	1	Х	X	X	X	X	X
Commercial and Institutional	192	141	187	181	190	200	62	115
Residential	85	102	89	104	97	67	49	57
Agriculture and Forestry	0.02	2	-	-	-		-	
b. Transport ^a	594	819	716	864	1 030	971	853	734
Domestic Aviation	125	170	131	112	114	108	109	122
Road Transportation	277	473	422	551	670	672	586	499
Light-Duty Gasoline Vehicles	41	12	11	15	14	16	15	15
Light-Duty Gasoline Trucks	26	41	52	68	69	77	74	78
Heavy-Duty Gasoline Vehicles	16	9	14	18	20	24	24	25
Motorcycles	0.16	0.12	0.23	0.30	0.29	0.30	0.26	0.26
Light-Duty Diesel Vehicles	3	2	2	2	2	3	2	2
Light-Duty Diesel Trucks	0.74	19	10	13	16	16	13	11
Heavy-Duty Diesel Vehicles	191	390	333	435	548	538	457	369
Propane and Natural Gas Vehicles	0.80	-	-	-	-	-	-	-
Railways	3	6	11	18	16	14	14	14
Domestic Navigation	19	29	44	32	20	20	20	21
Other Transportation	170	141	108	150	210	157	125	80
Off-Road Agriculture & Forestry	0.65	0.58	0.34	0.44	0.64	0.57	0.61	0.37
Off-Road Commercial & Institutional	11	9	7	9	12	2	0.76	0.61
Off-Road Manufacturing, Mining & Construction	130	116	89	126	180	137	107	65
Off-Road Residential	2	2	Х	3	3	3	2	2
Off-Road Other Transportation	21	10	8	12	14	15	14	11
Pipeline Transport	4	3	X	1	0.77	0.27	0.27	0.27
c. Fugitive Sources	15	18	20	19	15	16	5	6
Coal Mining Oil and Natural Gas	15	18	20	19	- 15	- 16	5	- 6
Oil Oil	4	4	20	2	2	2	0.27	0.54
Natural Gas	5	5	5	5	4	5	3	4
Venting	2	2	0.90	0.86	0.74	0.69	0.03	0.13
Flaring	4	7	12	12	8	8	0.83	1
d. CO ₂ Transport and Storage	-	-	-	-	-	-	-	
INDUSTRIAL PROCESSES AND PRODUCT USE	9	20	24	28	27	27	27	29
a. Mineral Products	0.01	0.16	0.04	0.05	0.05	0.04	0.02	0.02
Cement Production	-	-	-	-	-	-	-	-
Lime Production	-	-	-	-	-	-	-	-
Mineral Products Use	0.01	0.16	0.04	0.05	0.05	0.04	0.02	0.02
b. Chemical Industry ^b	-	-	-	-	-	-	-	-
Adipic Acid Production	-	-	-	-	-	-	-	-
c. Metal Production	-	-	-	-	-	-	-	
Iron and Steel Production	-	-	-	-	-	-	-	-
Aluminum Production	-	-	-	-	-	-	-	-
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-	-	-	-	-
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃	5	12	19	21	21	21	23	26
e. Non-Energy Products from Fuels and Solvent Use	4	7	5	7	5	4	2	1
f. Other Product Manufacture and Use	0.52	0.51	0.49	0.58	0.71	0.81	0.86	0.84
AGRICULTURE	-	-	-	-	-	-	-	-
a. Enteric Fermentation b. Manure Management	-	-	-	-	-	-	-	
b. Manure Management c. Agricultural Soils	-	-	-					
Direct Sources	-	-	-		-	-	-	
Indirect Sources	-	-	-	-	-	-	-	
d. Field Burning of Agricultural Residues	-	-	-	-	-	-	-	
e. Liming, Urea Application and Other Carbon-containing Fertilizers	-	-	-	-	-	-	-	
WASTE	8	9	10	10	10	10	11	11
a. Solid Waste Disposal	6	7	7	8	8	8	8	
b. Biological Treatment of Solid Waste	-	-	0.02	0.03	0.06	0.08	0.10	0.10
c. Wastewater Treatment and Discharge	2	2	2	2	2	2	2	2
d. Incineration and Open Burning of Waste	0.20	0.01	0.01	0.01	0.01	0.01	0.01	0.01
e. Industrial Wood Waste Landfills				-				

a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.

b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.

c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.

⁻ Indicates no emissions

^{0.00} Indicates emissions truncated due to rounding

x Indicates data has been suppressed to respect confidentiality

					Greenhou	ise Gases				
Greenhouse Gas Categories	CO ₂	CH₄	CH ₄	N ₂ O	N ₂ O	HFCs ^d	PFCsd	SF ₆	NF ₃	ТОТА
Global Warming Potential	202		25	.1,20	298	65		22 800	17 200	10171
Unit	kt	kt	kt CO ₂ eq	kt	kt CO₂ eq	kt CO₂ eq	kt CO₂ eq	kt CO ₂ eq	kt CO ₂ eq	kt CO ₂
TOTAL	1 170	0.67	17	0.05	15	26	0.01	-	-	1 23
ENERGY	1 170	0.26	7	0.05	10	-	-	-	-	1 19
a. Stationary Combustion Sources	448	0.04	0.90	0.01	2	-	-	-	-	45
Public Electricity and Heat Production	x	Х	Х	Х	Х	Х	Х	Х	Х	
Petroleum Refining Industries	-	-	-	-	-	-	-	-	-	
Oil and Gas Extraction	10	0.03	0.60	0.00	0.07	-	-	-	-	
Mining	200	0.01	0.10	0.00	0.80	-	-	-	-	2
Manufacturing Industries	х	Х	Х	Х	Х	Х	Х	Х	Х	
Construction	X	X	X	X	X	Х	Х	Х	Х	
Commercial and Institutional	114	0.00	0.05	0.00	0.80	-	-	-	-	1
Residential	57	0.00	0.02	0.00	0.30	-	-	-	-	
Agriculture and Forestry	721	- 0.06	- 1	- 0.04	- 12	-	-	-	-	7
b. Transporta	721	0.06	0.20	0.04	12	-	-		-	1
Domestic Aviation	121	0.01	0.20	0.00	8	-	-	-	-	
Road Transportation	491 14	0.02	0.60	0.03	0.14	-	-	-	-	4
Light-Duty Gasoline Vehicles Light-Duty Gasoline Trucks	77	0.00	0.03	0.00	0.14	-	-	-	-	
Heavy-Duty Gasoline Vehicles	25	0.00	0.20	0.00	0.72	-	-	-	-	
Motorcycles	0.25	0.00	0.02	0.00	0.00	_	-	_	-	0.
Light-Duty Diesel Vehicles	2	0.00	0.00	0.00	0.00	_	-	-	-	 0.
Light-Duty Diesel Verlicles	11	0.00	0.00	0.00	0.03	_	_	_	_	
Heavy-Duty Diesel Vehicles	362	0.00	0.40	0.00	6	_	-	_	-	3
Propane and Natural Gas Vehicles	-		- 0.40		-	_	_	_	_	+
Railways	12	0.00	0.02	0.01	1	-	_	-	-	
Domestic Navigation	20	0.00	0.05	0.00	0.20	_	_	-	-	
Other Transportation	78	0.02	0.59	0.00	1	_	-	_	-	
Off-Road Agriculture & Forestry	0.36	0.00	0.00	0.00	0.01	-	-	-	-	0.
Off-Road Commercial & Institutional	0.58	0.00	0.02	0.00	0.01	-	-	-	-	0.
Off-Road Manufacturing, Mining & Construction	64	0.00	0.08	0.00	1	-	-	-	-	-
Off-Road Residential	2	0.00	0.07	0.00	0.02	-	-	-	-	
Off-Road Other Transportation	11	0.02	0.42	0.00	0.10	-	-	-	-	
Pipeline Transport	0.27	0.00	0.00	0.00	0.00	-	-	-	-	0.2
c. Fugitive Sources	1	0.17	4	0.00	0.00	-	-	-	-	
Coal Mining	-	-	-	-	-	-	-	-	-	
Oil and Natural Gas	1	0.17	4	0.00	0.00	-	-	-	-	
Oil	0.00	0.02	0.54	-	-	-	-	-	-	0.
Natural Gas	0.00	0.14	4	-	-	-	-	-	-	
Venting	0.00	0.01	0.13	-	-	-	-	-	-	0.
Flaring	1	0.00	0.06	0.00	0.00	-	-	-	-	
d. CO₂ Transport and Storage	-	-	-	-	-	-	-	-	-	
INDUSTRIAL PROCESSES AND PRODUCT USE	2	-	-	0.00	0.62	26	0.01	-	-	:
a. Mineral Products	0.02	-	-	-	-	-	-	-	-	0.0
Cement Production	-	-	-	-	-	-	-	-	-	
Lime Production	-	-	-	-	-	-	-	-	-	
Mineral Products Use	0.02	-	-	-	-	-	-	-	-	0.
b. Chemical Industry ^b	-	-	-	-	-	-	-	-	-	
Adipic Acid Production	-	-	-	-	-	-	-	-	-	
c. Metal Production	-	-	-	-	-	-	-	-	-	
Iron and Steel Production	-	-	-	-	-	-	-	-	-	
Aluminum Production	-	-	-	-	-	-	-	-	-	
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-	-	-	-	-	-	ļ.,
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	-	-	-	-	-	26	0.01	-	-	1
e. Non-Energy Products from Fuels and Solvent Use	1	-	-	-	-	-	-	-	-	-
f. Other Product Manufacture and Use	0.22	-	-	0.00	0.62	-	-	-	-	0.
AGRICULTURE	-	-	-	-	-	-	-	-	-	
a. Enteric Fermentation b. Manure Management	-	-	-	-	-	-	-	-	-	+
· ·	-		-		-	-	-	-	-	+
Agricultural Soils Direct Sources	-		-		-	-	-	-	-	+
Indirect Sources	-		-		-	-	-	-	-	+
d. Field Burning of Agricultural Residues	-		-		-	-	-	-	-	
e. Liming, Urea Application and Other Carbon-containing	-		-		-	-	-		-	+
e. Linning, Orea Application and Other Carbon-Containing	-	-	-	-	_	_	_	_	_	
Fertilizers		0.41	10	0.00	0.60	-	-	_	-	
Fertilizers WASTE	0.01	0.41	10						-	
WASTE	0.01	0.33	8	-	-	-	-	-	-	
					1	-				
WASTE a. Solid Waste Disposal	-	0.33	8	-	-		-	-	-	
WASTE a. Solid Waste Disposal b. Biological Treatment of Solid Waste	-	0.33 0.00	8 0.07	0.00	0.05	-	-	-	-	0.

- Notes:
 a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
 b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.
 c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.
 d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

- d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

 1. Indicates no emissions

 1. Indicates emissions truncated due to rounding

 2. Indicates data has been suppressed to respect confidentiality

 1. Estimates for the latest year (2018) are based on preliminary energy data; these data, though the best available information at the time of publication, are subject to revision in the next submission year.

 2. Provincial/Territorial GHG emissions allocated to Canadian economic sectors are provided in Annex 12 of this report

Greenhouse Gas Categories	1999	2005	2013	2014	2015	2016	2017	2018
				kt CO	₂ eq			
TOTAL	393	566	762	705	596	695	704	702
ENERGY	386	554	744	686	576	674	681	675
a. Stationary Combustion Sources	104	128	69	118	113	135	137	164
Public Electricity and Heat Production	17	х	Х	Х	х	Х	Х	>
Petroleum Refining Industries	-	-	-	-	-	-	-	
Oil and Gas Extraction	-	-	-	-	-	-	-	
Mining	87	0.26	-	-	-	-	-	
Manufacturing Industries	-	Х	Х	Х	Х	Х	Х)
Construction	-	-	-	-	-	-	-	
Commercial and Institutional Residential	-	х	-	-	-	-	-	
Agriculture and Forestry	-	-	-	-	-	-	-	
b. Transport ^a	283	426			463	539	544	512
Domestic Aviation			676	568				
Road Transportation	111 19	140 94	141 231	128 202	121 163	113 236	129 243	151 207
Light-Duty Gasoline Vehicles	3	2	231	202	2	230	243	207
Light-Duty Gasoline Venicles Light-Duty Gasoline Trucks	5	18	30	29	28	36	36	31
Heavy-Duty Gasoline Vehicles	3	4	8	8	8	11	12	11
Motorcycles	0.01	0.02	0.06	0.05	0.04	0.05	0.05	0.04
Light-Duty Diesel Vehicles	0.01	0.02	0.06	0.05	0.04	0.03	0.03	0.02
Light-Duty Diesel Trucks	0.07	1	4	4	3	4	4	0.09
Heavy-Duty Diesel Vehicles	8	69	185	159	122	183	190	160
Propane and Natural Gas Vehicles	0.86	-	103	139	- 122	103	130	100
Railways	0.80	-	-	-	-	-	-	
Domestic Navigation	137	131	201	158	115	116	117	118
Other Transportation	16	62	103	80	64	74	55	35
Off-Road Agriculture & Forestry	-	-	-	-	-		-	
Off-Road Commercial & Institutional	2	7	11	8	7	1	0.89	0.61
Off-Road Manufacturing, Mining & Construction	10	45	72	54	42	54	36	22
Off-Road Residential	0.62	3	5	4	4	3	2	
Off-Road Other Transportation	4	8	15	13	12	15	16	11
Pipeline Transport	-	-	-	-		-	-	
c. Fugitive Sources	-	-	-	-	-	-	-	
Coal Mining	-	-	-	-	-	-	-	
Oil and Natural Gas	-	-	-	-	-	-	-	
Oil	-	-	-	-	-	-	-	
Natural Gas	-	-	-	-	-	-	-	
Venting	-	-	-	-	-	-	-	
Flaring	-	-	-	-	-	-	-	
d. CO ₂ Transport and Storage	-	-	-	-	-	-	-	
INDUSTRIAL PROCESSES AND PRODUCT USE	3	7	12	14	14	15	17	20
a. Mineral Products	0.01	0.16	0.04	0.05	0.05	0.04	0.02	0.02
Cement Production	-	-	-	-	-	-	-	
Lime Production	-	-	-	-	-	-	-	
Mineral Products Use	0.01	0.16	0.04	0.05	0.05	0.04	0.02	0.02
b. Chemical Industry ^b	-	-	-	-	-	-	-	
Adipic Acid Production	-	-	-	-	-	-	-	
c. Metal Production	-	-	-	-	-	-	-	
Iron and Steel Production	-	-	-	-	-	-	-	
Aluminum Production	-	-	-	-	-	-	-	
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-	-	-	-	
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c	2	6	12	13	14	14	16	19
e. Non-Energy Products from Fuels and Solvent Use	0.04	0.13	0.07	0.15	0.09	0.11	0.13	0.23
f. Other Product Manufacture and Use	0.34	0.36	0.37	0.39	0.41	0.51	0.61	0.64
AGRICULTURE	-	-	-	-	-	-	-	
a. Enteric Fermentation	-	-	-	-	-	-	-	
b. Manure Management	-	-	-	-	-	-	-	
c. Agricultural Soils	-	-	-	-	-	-	-	
Direct Sources	-	-	-	-	-	-	-	
Indirect Sources	-	-	-	-	-	-	-	
d. Field Burning of Agricultural Residues	-	-	-	-	-	-	-	
e. Liming, Urea Application and Other Carbon-containing Fertilizers	-	-	-	-	-	-	-	
WASTE	4	5	6	6	6	6	6	7
a. Solid Waste Disposal	3	4	4	5	5	5	5	
b. Biological Treatment of Solid Waste	-	-	-	-	-	-	-	
	1	2	1	1	1	1	1	1
c. Wastewater Treatment and Discharge d. Incineration and Open Burning of Waste	1 -	0.06	0.08	0.08	0.08	0.08	0.08	0.08

- a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
- b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.
- c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.
 - Indicates no emissions
- 0.00 Indicates emissions truncated due to rounding
- x Indicates data has been suppressed to respect confidentiality

					Greenho	use Gases				
Greenhouse Gas Categories	CO ₂	CH₄	CH ₄	N ₂ O	N ₂ O	HFCs ^d	PFCsd	SF ₆	NF ₃	TOTA
Global Warming Potential	CO ₂	C114	25	11/20	298	111 C3	FICS	22 800	17 200	1017
Unit	kt	kt	kt CO₂ eq	kt	kt CO ₂ eq	kt CO₂ eq	kt CO₂ eq	kt CO ₂ eq	kt CO ₂ eq	kt CO ₂
TOTAL	668	0.29	7	0.03	7	19	0.00	-	-	70
NERGY	668	0.05	1	0.02	6	-	-	-	-	67
. Stationary Combustion Sources	163	0.01	0.10	0.00	0.40	-	-	-	-	16
Public Electricity and Heat Production	x	Х	x	Х	х	Х	Х	Х	х	
Petroleum Refining Industries	-	-	-	-	-	-	-	-	-	
Oil and Gas Extraction	-	-	-	-	-	-	-	-	-	
Mining	-	-	-	-	-	-	-	-	-	
Manufacturing Industries	х	Х	X	X	X	Х	х	X	х	
Construction	-	-	-	-	-	-	-	-	-	
Commercial and Institutional	-	-	-	-	-	-	-	-	-	
Residential	-	-	-	-	-	-	-	-	-	
Agriculture and Forestry	-	- 0.05	-		-	-	-	-	-	
Demostic Aviation	505	0.05	0.06	0.02	6	-	-	-	-	5 1
Domestic Aviation Road Transportation	150 204	0.00	0.06 0.20	0.00	3	-	-	-	-	_
Light-Duty Gasoline Vehicles	204	0.01	0.20	0.00	0.02	-	-	-	-	2
Light-Duty Gasoline Venicles Light-Duty Gasoline Trucks	31	0.00	0.06	0.00	0.02	-	_	_	-	
Heavy-Duty Gasoline Vehicles	11	0.00	0.00	0.00	0.29	-	_	_	-	
Motorcycles	0.04	0.00	0.00	0.00	0.00	-	-	-	-	0
Light-Duty Diesel Vehicles	0.09	0.00	0.00	0.00	0.00	-	-	-	-	0
Light-Duty Diesel Trucks	3	0.00	0.00	0.00	0.07	-	-	-	-	
Heavy-Duty Diesel Vehicles	158	0.01	0.20	0.01	3	-	-	-	-	1
Propane and Natural Gas Vehicles	-	-	-	-	-	-	-	-	-	
Railways	-	-	-	-	-	-	-	-	-	
Domestic Navigation	117	0.01	0.27	0.00	0.90	-	-	-	-	1
Other Transportation	34	0.02	0.58	0.00	0.50	-	-	-	-	
Off-Road Agriculture & Forestry	-	-	-	-	-	-	-	-	-	
Off-Road Commercial & Institutional	0.58	0.00	0.02	0.00	0.01	-	-	-	-	0
Off-Road Manufacturing, Mining & Construction	22	0.00	0.03	0.00	0.30	-	-	-	-	
Off-Road Residential	2	0.00	0.07	0.00	0.01	-	-	-	-	
Off-Road Other Transportation	10	0.02	0.46	0.00	0.10	-	-	-	-	
Pipeline Transport	-	-	-	-	-	-	-	-	-	-
. Fugitive Sources	-	-	-	-	-	-	-	-	-	-
Coal Mining Oil and Natural Gas	-	-	-	-	-	-	-	-	-	-
Oil and Natural Gas	-		-		-	-	-		-	-
Natural Gas	-		-		_	_	_	_	_	-
Venting	_		-		_	_	_	_		
Flaring	_	_	-		_	_	_	_	_	
d. CO ₂ Transport and Storage	-	-	-		-	-	_	-	-	_
NDUSTRIAL PROCESSES AND PRODUCT USE	0.35		-	0.00	0.54	19	0.00	-	-	
a. Mineral Products	0.02	-	-	-	-	-	-	-	-	0.
Cement Production	-	-	-	-	-	-	-	-	-	
Lime Production	-	-	-	-	-	-	-	-	-	
Mineral Products Use	0.02	-	-	-		-	-		-	0
. Chemical Industry ^b	-	-	-	-	-	-	-	-	-	
Adipic Acid Production	-	-	-	-	-	-	-	-	-	
. Metal Production	-	-	-	-	-	-	-	-	-	
Iron and Steel Production	-	-	-	-	-	-	-	-	-	
Aluminum Production	-	-	-	-	-	-	-	-	-	
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-	-	-	-	-	-	
I. Production and Consumption of Halocarbons, SF ₆ and NF ₃	-	-	-	-	-	19	0.00	-	-	_
. Non-Energy Products from Fuels and Solvent Use	0.23	-	-	-		-	-	-	-	0
Other Product Manufacture and Use	0.10	-	-	0.00	0.54	-	-	-	-	0
GRICULTURE . Enteric Fermentation					-				-	
. Manure Management	-	-	-		-	-	-	-	-	-
Agricultural Soils	-				-	-	_	_	_	
Direct Sources	-		-		-	-	-	-	-	+
Indirect Sources	-		-		-	-	_	-	-	_
. Field Burning of Agricultural Residues	-	-	-	-	-	-	-	-	-	_
Liming, Urea Application and Other Carbon-containing Fertilizers	-	-	-	-	-	-	-	-	-	
VASTE	0.08	0.23	6	0.00	0.50	-	-	-	-	
. Solid Waste Disposal	-	0.21	5	-	-	-	-	-	-	
. Biological Treatment of Solid Waste	-	-	-	-	-	-	-	-	-	
. Wastewater Treatment and Discharge	-	0.03	0.69	0.00	0.50	-	-	-	-	
	0.08	0.00	0.00	0.00	0.00	-	-	-	-	0
I. Incineration and Open Burning of Waste	0.00	0.00	0.00							
. Incineration and Open Burning of Waste . Industrial Wood Waste Landfills	-	-	-	-	-	-	-	-	-	

- Notes:
 a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.
 b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.
 c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.
 d. IPCC's Fourth Assessment Report provides global warming potentials (GWPs) for the various species of HFCs and PFCs. Chapter 1, Table 1-1 of this report provides a list of GWPs used.

- d. IPCC's Fourn Assessment Report provides global warming potentials (GVPS) for the various species of FPCs and FPCs. Chapter 1, habite FPCs that a consistency of the second of the sec

Table A11–28 GHG Emission Summary for Nort									
Greenhouse Gas Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998
TOTAL	1.640	1.610	1.410	1.600	kt CO ₂ eq	1.000	1.000	1.720	1.550
TOTAL ENERGY	1 640	1 610	1 410	1 680	1 840	1 890	1 890	1 720	1 550
a. Stationary Combustion Sources	1 630 915	1 580 986	1 400 848	1 640 946	1 720 1 010	1 800 1 150	1 880 1 020	1 700 970	1 530 728
Public Electricity and Heat Production	156	156	126	137	139	155	118	129	173
Petroleum Refining Industries	8	6	7	5	12	11	4	129	1/3
Oil and Gas Extraction	276	195	111	136	135	139	149	130	125
Mining	36	42	18	36	109	212	150	158	133
Manufacturing Industries	26	16	18	8	14	20	-	-	-
Construction	6	5	6	3	4	21	0.68	0.70	0.53
Commercial and Institutional	250	367	357	389	401	474	405	371	207
Residential	156	188	192	230	190	118	196	181	90
Agriculture and Forestry	2	9	12	2	2	0.01	-	0.01	0.02
b. Transport ^a	618	496	461	603	652	581	796	718	796
Domestic Aviation	245	218	223	236	240	224	234	229	229
Road Transportation	173	130	116	170	183	155	236	227	273
Light-Duty Gasoline Vehicles	49	43	44	60	60	50	58	59	46
Light-Duty Gasoline Trucks	23	20	21	28	29	26	31	33	27
Heavy-Duty Gasoline Vehicles	11	10	10	14	15	12	16	18	16
Motorcycles	0.18	0.14	0.13	0.16	0.16	0.12	0.14	0.13	0.09
Light-Duty Diesel Vehicles	2	1	0.79	1	1	1	2	2	3
Light-Duty Diesel Trucks	0.08	0.07	0.07	0.14	0.18	0.18	0.40	0.39	0.66
Heavy-Duty Diesel Vehicles	86	54	39	65	75	64	127	114	178
Propane and Natural Gas Vehicles	0.80	0.79	2	1	3	2	1	1	1
Railways	3	2	2	2	1	2	1	3	2
Domestic Navigation	18	17	16	16	15	14	15	16	18
Other Transportation	180	129	104	179	211	186	309	243	274
Off-Road Agriculture & Forestry	0.38	0.26	0.20	0.37	0.45	0.40	0.70	0.56	0.75
Off-Road Manufacturing Mining & Construction	12	9	7	12	15	13	23	18	23
Off-Road Manufacturing, Mining & Construction Off-Road Residential	128	90	69	126	151	135	234	180	207
Off-Road Other Transportation	3 37	28	1	3 38	3 40	3 34	5 47	4 40	5 39
Pipeline Transport	-	28	26		2	0.13	0.09	0.04	- 39
c. Fugitive Sources	97	100	89	94	65	65	61	12	10
Coal Mining	-	-	-		-	-	-	- 12	
Oil and Natural Gas	97	100	89	94	65	65	61	12	10
Oil	5	5	5	5	5	5	4	4	4
Natural Gas	0.92	0.98	0.97	1	0.90	0.92	0.87	0.85	0.82
Venting	2	2	2	2	3	3	2	2	2
Flaring	89	95	81	86	57	57	53	6	4
d. CO ₂ Transport and Storage	-	-	-	-	-	-	-	-	-
INDUSTRIAL PROCESSES AND PRODUCT USE	5	13	4	26	106	88	3	4	6
a. Mineral Products	-	-	-	-	-	0.03	0.03	0.03	0.00
Cement Production	-	-	-	-	-	-	-	-	-
Lime Production	-	-	-	-	-	-	-	-	-
Mineral Products Use	-	-	-	-	-	0.03	0.03	0.03	0.00
b. Chemical Industry ^b	-	-	-	-	-	-	-	-	-
Adipic Acid Production	-	-	-	-	-	-	-	-	-
c. Metal Production	-	-	-	-	-	-	-	-	-
Iron and Steel Production	-	-	-	-	-	-	-	-	-
Aluminum Production	-	-	-	-	-	-	-	-	-
SF ₆ Used in Magnesium Smelters and Casters	-	-	-	-	-	1	2	-	5
d. Production and Consumption of Halocarbons, SF ₆ and NF ₃ ^c e. Non-Energy Products from Fuels and Solvent Use	-	- 12	3	- 26	110			3	
e. Non-Energy Products from Fuels and Solvent Use f. Other Product Manufacture and Use	5 0.37	13 0.36	0.33	26 0.32	110 0.36	86 0.42	0.49 0.47	0.43 0.48	0.11
AGRICULTURE	0.57	0.30	0.55	0.52	0.30	0.42	-	0.46	0.00
a. Enteric Fermentation	-	-	-		-	-	-	-	
b. Manure Management	-	_	-	-	-	-	-	_	
c. Agricultural Soils	-	_	-	-	-	-	-	-	-
Direct Sources	-	-	-	-	-	-	-	-	-
Indirect Sources	-	-	-	-	-	-	-	-	-
d. Field Burning of Agricultural Residues	-	-	-	-	-	-	-	-	-
e. Liming, Urea Application and Other Carbon-containing Fertilizers	-	-	-	-	-	-	-	-	-
WASTE	9	9	9	10	10	10	11	11	12
a. Solid Waste Disposal	5	6	6	6	6	7	7	8	8
b. Biological Treatment of Solid Waste	-	-	-	-	-	-	-	-	-
		_	-	-	-	-	_		4
c. Wastewater Treatment and Discharge	3	3	3	3	3	3	3	4	
c. Wastewater Treatment and Discharge d. Incineration and Open Burning of Waste e. Industrial Wood Waste Landfills	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20

a. Emissions from ethanol and biodiesel are included in the Transport categories using gasoline and diesel respectively.

b. Emissions from Ammonia Production, Nitric Acid Production and Petrochemical Production and Carbon Black categories are included in Non-Energy Products from Fuels and Solvent Use as CO₂ eq values within provincial/territorial tables.

c. HFC and PFC consumption began in 1995; HFC emissions occurring as a by-product of HCFC production (HCFC-22 exclusively) only occurred in Canada from 1990–1992 and PFC emissions prior to 1995 are the result of by-product CF₄ emissions from the use of NF₃.

⁻ Indicates no emissions
0.00 Indicates emissions truncated due to rounding

x Indicates data has been suppressed to respect confidentiality

Provincial/Territorial GHG emissions allocated to Canadian economic sectors are provided in Annex 12 of this report

ANNEX 12

PROVINCIAL/ TERRITORIAL GREENHOUSE GAS EMISSION TABLES BY CANADIAN ECONOMIC SECTOR, 1990–2018

This annex contains summary tables (Table A12–2 to Table A12–15) illustrating GHG emissions by province/ territory, allocated to Canadian economic sectors, from 1990–2018. To account for the creation of Nunavut in 1999, a time series from 1999–2018 is provided for both Northwest Territories and Nunavut (Table A12–13 and Table A12–14), and the years 1990–1998 are presented as a combined region in Table A12–15. In addition, Table A12–1 provides a brief description of each economic sector.

Provincial/territorial GHG emissions allocated to IPCC sectors are provided in Annex 11 of this report.

Reallocating provincial/territorial emissions from IPCC sectors into Canadian economic sectors is useful for the purposes of analyzing trends and policies, as most people associate GHG emissions with a particular economic activity (e.g. producing electricity, farming, or driving a car). This re-allocation simply re-categorizes emissions under different headings but does not change the overall magnitude of the provincial/territorial emission estimates. Estimates for each economic sector include emissions from energy-related and non energy related processes.

Although the UNFCCC reporting guidelines require that only national-level detail be reported, provincial- and territorial-level detail is important, owing to the regional differences in emission levels and trends. Note that provincial and territorial emission estimates may not necessarily sum to the national totals due to rounding.

Provincial/territorial greenhouse gas emission tables are also available in electronic file format online at: https://open.canada.ca.

Table A12–1	Canadian Economic Sector
Descriptions	

GHG Emissions by Canadian Economic Sector:

A40 0 No. 4 II... I ... II... I ...

43

Table A12–2 Newloundland and Labrador	44
Table A12–3 Prince Edward Island	45
Table A12–4 Nova Scotia	46
Table A12–5 New Brunswick	47
Table A12–6 Quebec	48
Table A12–7 Ontario	49
Table A12–8 Manitoba	50
Table A12–9 Saskatchewan	51
Table A12–10 Alberta	52
Table A12–11 British Columbia	53
Table A12–12 Yukon	54
Table A12–13 Northwest Territories	55
Table A12–14 Nunavut	56
Table A12–15 Northwest Territories & Nunavut 1990–1998	, 57

Economic Sector	Description
OIL AND GAS	·
Upstream Oil and Gas	Stationary combustion, onsite transportation, electricity and steam production, fugitive and process emissions from:
Natural Gas Production and Processing	– natural gas production and processing
Conventional Oil Production	Emissions resulting from:
Conventional Light Oil Production	- conventional light crude oil production
Conventional Heavy Oil Production	- conventinoal heavy crude oil production
Frontier Oil Production	- offshore and arctic production of crude oil
Oil Sands (Mining, In-situ, Upgrading)	Stationary combustion, onsite transportation, electricity and steam production, fugitive and process emissions from:
Mining and Extraction	- crude bitumen mining and extraction
In-situ	- in-situ extraction of crude bitumen including primary extraction, cyclic steam stimulation (CSS), steam-assisted gravity drainage (SAGD) and other experimental techniques.
Upgrading	- crude bitumen and heavy oil upgrading to synthetic crude oil
Oil, Natural Gas and CO ₂ Transmission	Combustion and fugitive emissions from the transport and storage of crude oil and natural gas
Downstream Oil and Gas	Emissions resulting from:
Petroleum Refining	Stationary combustion, onsite transportation, electricity and steam production, fugitive and process emissions from petroleum refining industries
Natural Gas Distribution	Combustion and fugitive emissions from local distribution of natural gas
ELECTRICITY	Combustion and process emissions from utility electricity generation, steam production (for sale) and transmission. Excludes utility owned cogeneration at industrial sites.
TRANSPORTATION	Mobile related emissions including all fossil fuels and non-CO ₂ emission from biofuels.
Passenger Transport	Mobile related combustion, process and refrigerant emissions from the vehicles that primarily move people around.
Cars, Light Trucks and Motorcycles	– Light duty cars and trucks up to 4 500 lb. GVWR and motorcycles.
Bus, Rail and Domestic Aviation	- All buses and the passenger component of rail and domestic aviation
Freight Transport	Mobile related combustion, process and refrigerant emissions from the vehicles that primarily move cargo or freight around.
Heavy Duty Trucks, Rail	– Vehicles above 4 500 lb. GVWR and the freight component of rail
Domestic Aviation and Marine	- Cargo component of domestic aviation and all domestic navigation
Other: Recreational, Commercial and Residential	Combustion emissions from the non-industrial use of off-road engines (e.g., ATVs, snowmobiles, personal watercraft), including portable engines (e.g., generators, lawn mowers, chain saws).
HEAVY INDUSTRY	Stationary combustion, onsite transportation, electricty and steam production, and process emissions from:
Mining	– Metal and non-metal mines, stone quarries, and gravel pits
Smelting and Refining (Non Ferrous Metals)	- Non-ferrous Metals (aluminium, magnesium and other production)
Pulp and Paper	- Pulp and Paper (primarily pulp, paper, and paper product manufacturers)
Iron and Steel	- Iron and Steel (steel foundries, casting, rolling mills and iron making)
Cement	- Cement and other non-metallic mineral production
Lime & Gypsum	– Lime and Gypsum product manufacturing
Chemicals & Fertilizers	- Chemical (fertilizer manufacturing, organic and inorganic chemical manufacturing)
BUILDINGS	Stationary combustion and process (i.e. air conditioning) emissions from:
Service Industry	- Service industries related to mining, communication, wholesale and retail trade, finance and insurance, real estate, education, etc.; offices, health, arts, accommodation, food, information & cultural; Federal, provincial and municipal establishments; National Defence and Canadian Coast Guard; Train stations, airports and warehouses
Residential	- Personal residences (homes, apartment hotels, condominiums and farm houses)
AGRICULTURE	Emissions resulting from:
On Farm Fuel Use	- Stationary combustion, onsite transportation and process emissions from the agricultural, hunting and trapping industry (excluding food processing, farm machinery manufacturing, and repair)
Crop Production	Application of biosolids and inorganic nitrogen fertilizers, decomposition of crop residues, loss of soil organic carbon, cultivation of organic soils, indirect emissions from leaching and volatilization, field burning of agricultural residues, liming, and urea application
Animal Production	Animal housing, manure storage, manure deposited by grazing animals, and application of manure to managed soils
WASTE	Non-CO ₂ Emissions from biomass resulting from:
Solid Waste	Municipal solid waste management sites (landfills), dedicated wood waste landfills, and composting of municipal solid waste
Wastewater	- Municipal and industrial wastewater treatment
Waste Incineration	- Municipal solid, hazardous and clinical waste, and sewage sludge incineration
COAL PRODUCTION	Stationary combustion, onsite transportation and fugitive emissions from underground and surface coal mines
LIGHT MANUFACTURING, CONSTRUCTION & FOREST RESOURCES	Stationary combustion, onsite transportation, electricty and steam production, and process emissions from (excluding LULUCF):
Light Manufacturing	- All other manufacturing industries not included in the Heavy Industry category above
Construction	- Construction of buildings, highways etc.
Forest Resources	- Forestry and logging service industry

	1990	2005	2013	2014	2015	2016	2017	2018
				Mt CC	D₂ eq			
GHG TOTAL	9.8	10.5	10.0	10.9	10.9	11.1	11.0	11.0
OIL AND GAS	1.1	2.6	2.6	2.7	2.6	2.9	2.9	3.1
Upstream Oil and Gas	0.0	1.6	1.6	1.7	1.5	1.7	1.8	2.1
Natural Gas Production and Processing	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Conventional Oil Production	0.0	1.6	1.6	1.7	1.5	1.7	1.8	2.
Conventional Light Oil Production	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Conventional Heavy Oil Production	-	-	-	-	-	-	-	
Frontier Oil Production	0.0	1.6	1.6	1.7	1.5	1.7	1.8	2.
Oil Sands (Mining, In-situ, Upgrading)	-	-	-	-	-	-	-	
Mining and Extraction	-	-	-	-	-	-	-	
ln-situ	-	-	-	-	-	-	-	
Upgrading	-	-	-	-	-	-	-	
Oil, Natural Gas and CO ₂ Transmission	-	0.0	0.0	0.0	0.0	0.0	0.0	0.
Downstream Oil and Gas	1.1	1.0	1.0	1.0	1.1	1.3	1.1	1.
Petroleum Refining	1.1	1.0	1.0	1.0	1.1	1.3	1.1	1.
Natural Gas Distribution	-	-	-	-	-	-	-	
ELECTRICITY	1.6	0.8	0.9	1.2	1.3	1.5	1.5	1.
TRANSPORTATION	3.1	3.7	3.8	4.1	4.1	4.1	4.0	4.
Passenger Transport	1.3	1.5	1.9	2.1	2.1	2.1	2.1	2.
Cars, Light Trucks and Motorcycles	1.1	1.3	1.6	1.8	1.9	1.9	1.9	1.
Bus, Rail and Domestic Aviation	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.
Freight Transport	1.4	2.0	1.8	1.8	1.8	1.8	1.7	1.
Heavy Duty Trucks, Rail	0.4	0.8	1.0	1.1	1.2	1.3	1.1	1.
Domestic Aviation and Marine	1.0	1.2	0.8	0.7	0.6	0.6	0.6	0.
Other: Recreational, Commercial and Residential	0.4	0.2	0.2	0.2	0.2	0.2	0.2	0.
HEAVY INDUSTRY	1.8	1.6	0.8	0.9	0.8	0.5	0.6	0.
Mining	1.3	1.3	0.8	0.8	0.8	0.4	0.5	0.
Smelting and Refining (Non Ferrous Metals)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Pulp and Paper	0.4	0.3	0.0	0.0	0.0	0.0	0.1	0.
Iron and Steel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Cement	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.
Lime & Gypsum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Chemicals & Fertilizers	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
BUILDINGS	1.2	0.9	1.1	1.2	1.1	1.1	1.1	1.
Service Industry	0.3	0.4	0.7	0.7	0.7	0.7	0.6	0.
Residential	0.8	0.4	0.4	0.5	0.4	0.5	0.5	0.
AGRICULTURE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.
On Farm Fuel Use	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Crop Production	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Animal Production	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.
WASTE	0.7	0.6	0.5	0.5	0.5	0.6	0.6	0.
Solid Waste	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.
Wastewater	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Waste Incineration	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.
COAL PRODUCTION	-	-	-	-	-	-	-	
LIGHT MANUFACTURING, CONSTRUCTION & FOREST RESOURCES	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.
Light Manufacturing	0.1	0.0	0.1	0.1	0.1	0.1	0.0	0.
Construction	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.
Forest Resources	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.

Totals may not add up due to rounding.

National GHG emissions allocated to IPCC sectors are provided in Annex 9 of this report.

Provincial/territorial GHG emissions allocated to IPCC sectors are provided in Annex 11 of this report.

Estimates presented here are under continual improvement. Historical emissions may be change in future publications as new data becomes available and methods and models are refined and improved.

- 0 indicates emissions of less than $0.5\ Mt\ CO_2$ eq; truncated due to rounding
- indicates no emissions

	1990	2005	2013	2014	2015	2016	2017	2018
				Mt C	O ₂ eq			
NATIONAL GHG TOTAL	2.0	2.1	1.8	1.7	1.6	1.7	1.7	1.7
OIL AND GAS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Upstream Oil and Gas	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Natural Gas Production and Processing		-	-	-	-	-	-	-
Conventional Oil Production	_	_		_	_	_	_	_
Conventional Light Oil Production	_	_	_	_	_	_	_	_
Conventional Heavy Oil Production	_	_	_	_	_	_	_	_
Frontier Oil Production	_	_	_	_	_	_	_	_
Oil Sands (Mining, In-situ, Upgrading)	_	_	_	_	_	_	_	_
Mining and Extraction	_	_			_	_	_	_
In-situ	_	_	_	_	_	_	_	_
Upgrading		_	_	_	_	_	_	_
Oil, Natural Gas and CO ₂ Transmission	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Downstream Oil and Gas	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Petroleum Refining	0.0	0.0	0.0	0.0	0.0	0.0		-
Natural Gas Distribution	- 0.0	-	0.0	0.0	-		_	_
ELECTRICITY	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TRANSPORTATION	0.7	0.8	0.7	0.7	0.7	0.8	0.8	0.7
Passenger Transport	0.7	0.5	0.7	0.7	0.7	0.5	0.5	0.7
Cars, Light Trucks and Motorcycles	0.4	0.5	0.4	0.4	0.4	0.5	0.5	0.5
Bus, Rail and Domestic Aviation	0.0	0.0	0.4	0.4	0.4	0.0	0.0	0.0
·	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Freight Transport	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2
Heavy Duty Trucks, Rail Domestic Aviation and Marine	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Other: Recreational, Commercial and Residential	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HEAVY INDUSTRY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mining	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Smelting and Refining (Non Ferrous Metals) Pulp and Paper	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ron and Steel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cement	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lime & Gypsum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Chemicals & Fertilizers	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BUILDINGS	0.6	0.5	0.5	0.4	0.4	0.3	0.3	0.3
Service Industry	0.0	0.3	0.3	0.4	0.4	0.3	0.3	0.3
Residential	0.4	0.2	0.1	0.1	0.1	0.1	0.1	0.1
AGRICULTURE	0.4	0.5	0.4	0.3	0.4	0.4	0.3	0.2
On Farm Fuel Use	0.4	0.3	0.4	0.4	0.0	0.0	0.4	0.0
Crop Production	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Animal Production	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.2
WASTE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Solid Waste Wastewater	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	0.0							
Waste Incineration	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COAL PRODUCTION LIGHT MANUFACTURING, CONSTRUCTION & FOREST RESOURCES	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1
Light Manufacturing	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0
Construction	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Forest Resources	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Totals may not add up due to rounding.

National GHG emissions allocated to IPCC sectors are provided in Annex 9 of this report.

Provincial/territorial GHG emissions allocated to IPCC sectors are provided in Annex 11 of this report.

Estimates presented here are under continual improvement. Historical emissions may be change in future publications as new data becomes available and methods and models are refined and improved.

- 0 indicates emissions of less than 0.5 Mt CO₂ eq; truncated due to rounding
- indicates no emissions

	1990	2005	2013	2014	2015	2016	2017	2018
		ı	ı	Mt C	⊃₂ eq	ı	ı	
NATIONAL GHG TOTAL	19.6	23.1	18.4	16.6	16.7	15.6	16.2	17.0
OIL AND GAS	0.7	1.5	1.4	0.8	0.6	0.5	0.3	0.2
Upstream Oil and Gas	0.0	0.4	0.6	0.8	0.6	0.5	0.3	0.2
Natural Gas Production and Processing	0.0	0.4	0.6	0.8	0.6	0.5	0.3	0.2
Conventional Oil Production	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Conventional Light Oil Production	_	-	-	-	-	-	-	-
Conventional Heavy Oil Production	_	_	_	_	_	_	_	_
Frontier Oil Production	_	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Oil Sands (Mining, In-situ, Upgrading)	_		-	-	-	-	-	0.0
Mining and Extraction	_	_	_	_		_	_	
In-situ		_	_	_	_	_	_	
Upgrading		_	_	_		_	_	
Oil, Natural Gas and CO ₂ Transmission								
		0.0	0.0	0.0	0.0	0.0	0.0	0.0
Downstream Oil and Gas	0.7	1.1	0.9	0.0	0.0	0.0	0.0	0.0
Petroleum Refining	0.7	1.1	0.8	-	0.0	0.0	-	-
Natural Gas Distribution	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ELECTRICITY	6.9	10.8	7.6	7.3	7.1	6.4	6.7	7.0
TRANSPORTATION	4.6	5.5	4.9	4.5	4.9	5.0	5.2	5.5
Passenger Transport	2.5	2.9	2.6	2.4	2.9	2.9	3.0	3.2
Cars, Light Trucks and Motorcycles	2.3	2.6	2.3	2.1	2.6	2.7	2.8	3.0
Bus, Rail and Domestic Aviation	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Freight Transport	1.5	2.3	2.1	1.9	1.8	1.7	1.8	1.9
Heavy Duty Trucks, Rail	0.9	1.6	1.6	1.4	1.4	1.4	1.5	1.6
Domestic Aviation and Marine	0.7	0.7	0.5	0.4	0.4	0.4	0.4	0.4
Other: Recreational, Commercial and Residential	0.5	0.3	0.2	0.2	0.3	0.3	0.3	0.3
HEAVY INDUSTRY	1.0	0.8	0.5	0.5	0.5	0.5	0.5	0.5
Mining	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1
Smelting and Refining (Non Ferrous Metals)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pulp and Paper	0.4	0.3	0.1	0.1	0.1	0.1	0.1	0.1
ron and Steel	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cement	0.3	0.4	0.3	0.3	0.3	0.3	0.3	0.3
Lime & Gypsum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Chemicals & Fertilizers	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0
BUILDINGS	3.1	2.8	2.5	2.2	2.3	2.0	2.1	2.3
Service Industry	0.8	1.4	0.9	0.7	0.8	0.7	0.8	0.8
Residential	2.2	1.4	1.6	1.5	1.5	1.3	1.3	1.5
AGRICULTURE	0.6	0.6	0.5	0.5	0.5	0.4	0.4	0.4
On Farm Fuel Use	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1
Crop Production	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Animal Production	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.3
WASTE	0.7	0.5	0.5	0.5	0.4	0.5	0.5	0.5
Solid Waste	0.6	0.5	0.4	0.4	0.4	0.4	0.4	0.5
Wastewater	0.1	0.1	0.0	0.1	0.1	0.1	0.0	0.0
Waste Incineration	-	-	-	-	-	-	-	_
COAL PRODUCTION	1.6	0.1	0.1	0.0	0.0	0.0	0.1	0.1
LIGHT MANUFACTURING, CONSTRUCTION & FOREST RESOURCES	0.4	0.4	0.4	0.4	0.3	0.3	0.4	0.4
ight Manufacturing	0.2	0.2	0.3	0.3	0.2	0.2	0.2	0.2
Construction	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Forest Resources	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Totals may not add up due to rounding.

National GHG emissions allocated to IPCC sectors are provided in Annex 9 of this report.

Provincial/territorial GHG emissions allocated to IPCC sectors are provided in Annex 11 of this report.

Estimates presented here are under continual improvement. Historical emissions may be change in future publications as new data becomes available and methods and models are refined and improved.

- 0 indicates emissions of less than $0.5\ Mt\ CO_2$ eq; truncated due to rounding
- indicates no emissions

	1990	2005	2013	2014	2015	2016	2017	2018
					O ₂ eq			
NATIONAL GHG TOTAL	16.2	20.0	14.7	13.6	13.9	14.5	13.5	13.2
OIL AND GAS	1.2	2.8	3.6	3.2	3.0	3.3	3.5	3.0
Upstream Oil and Gas	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1
Natural Gas Production and Processing	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Conventional Oil Production	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Conventional Light Oil Production	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Conventional Heavy Oil Production	-	-	-	-	-	-	-	0.0
Frontier Oil Production	_				_	_	_	
Oil Sands (Mining, In-situ, Upgrading)						_	_	
	-	-	-	-	-	-	-	
Mining and Extraction								
In-situ	-	-	-	-	-	-	-	-
Upgrading	-	-	-	-	-	-	-	
Oil, Natural Gas and CO₂ Transmission	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Downstream Oil and Gas	1.2	2.7	3.5	3.1	3.0	3.2	3.5	2.9
Petroleum Refining	1.2	2.7	3.5	3.1	3.0	3.2	3.4	2.9
Natural Gas Distribution	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ELECTRICITY	6.0	7.8	3.8	3.4	3.5	3.7	3.0	3.2
TRANSPORTATION	3.8	4.8	3.9	3.6	3.8	4.2	3.7	3.7
Passenger Transport	1.6	2.3	2.0	1.8	2.1	2.4	2.2	2.1
Cars, Light Trucks and Motorcycles	1.5	2.1	1.9	1.7	2.0	2.3	2.0	2.0
Bus, Rail and Domestic Aviation	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1
Freight Transport	1.2	2.1	1.6	1.5	1.4	1.4	1.3	1.3
Heavy Duty Trucks, Rail	0.9	1.8	1.4	1.4	1.3	1.3	1.1	1.1
Domestic Aviation and Marine	0.3	0.3	0.2	0.2	0.1	0.1	0.1	0.1
Other: Recreational, Commercial and Residential	1.0	0.5	0.2	0.2	0.3	0.3	0.3	0.3
HEAVY INDUSTRY	1.8	1.2	0.9	0.8	0.9	0.8	0.8	0.8
Mining	0.2	0.3	0.1	0.1	0.1	0.1	0.1	0.1
Smelting and Refining (Non Ferrous Metals)	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2
Pulp and Paper	1.3	0.7	0.5	0.4	0.5	0.4	0.3	0.4
ron and Steel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cement	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lime & Gypsum	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Chemicals & Fertilizers	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BUILDINGS	1.8	1.5	1.1	1.2	1.3	1.2	1.1	1.2
Service Industry	0.6	0.7	0.5	0.6	0.6	0.5	0.4	0.5
Residential	1.2	0.8	0.6	0.6	0.8	0.7	0.7	0.7
AGRICULTURE	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.5
On Farm Fuel Use	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Crop Production	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Animal Production	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.3
WASTE	0.6	0.6	0.5	0.5	0.5	0.5	0.5	0.5
Solid Waste	0.5	0.6	0.5	0.5	0.5	0.4	0.5	0.5
Wastewater	0.0	0.0	0.3	0.5	0.3	0.4	0.0	0.0
Waste Incineration	-	0.0	0.0		0.0		- 0.0	0.0
				0.0	0.0	0.0	-	
COAL PRODUCTION LIGHT MANUFACTURING, CONSTRUCTION & FOREST RESOURCES	0.0	0.0	0.4	0.3	0.3	0.3	0.3	0.3
Light Manufacturing	0.2	0.4	0.3	0.2	0.2	0.2	0.2	0.2
Construction	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
zonou weston	0.1	V. I	V. I	V.1	J. 1	V. I	V. I	0.1

Totals may not add up due to rounding.

National GHG emissions allocated to IPCC sectors are provided in Annex 9 of this report.

Provincial/territorial GHG emissions allocated to IPCC sectors are provided in Annex 11 of this report.

Estimates presented here are under continual improvement. Historical emissions may be change in future publications as new data becomes available and methods and models are refined and improved.

- 0 indicates emissions of less than 0.5 Mt CO₂ eq; truncated due to rounding
- indicates no emissions

	1990	2005	2013	2014	2015	2016	2017	2018
				Mt C	O ₂ eq			
NATIONAL GHG TOTAL	86.7	86.1	80.3	78.3	78.6	78.5	80.4	82.6
OIL AND GAS	3.9	4.4	2.7	2.6	2.8	2.4	2.1	2.5
Upstream Oil and Gas	0.2	0.3	0.3	0.3	0.3	0.2	0.1	0.1
Natural Gas Production and Processing							-	
Conventional Oil Production	_	_	_	_	_	_	_	_
Conventional Light Oil Production	_	_	_	_	_	_	_	_
Conventional Heavy Oil Production	_	_	_	_	_	_	_	_
Frontier Oil Production	_	_	_	_	_	_	_	_
Oil Sands (Mining, In-situ, Upgrading)	_	_	_	_	_	_	_	
Mining and Extraction	_	_	_	_	_	_	_	
In-situ		_	_	_	_	_	_	
		_	_	_	_	_	_	
Upgrading Oil Natural Cas and CO-Transmission	0.2	0.3	0.3	0.3	0.3	0.2	0.1	0.1
Oil, Natural Gas and CO ₂ Transmission								
Downstream Oil and Gas	3.7	4.1	2.4	2.3	2.5	2.2	2.0	2.4
Petroleum Refining	3.6	4.0	2.3	2.2	2.4	2.1	1.9	2.4
Natural Gas Distribution	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
ELECTRICITY	1.5	0.7	0.4	0.3	0.3	0.3	0.3	0.3
TRANSPORTATION	24.1	31.0	32.5	30.8	31.1	31.8	33.3	35.2
Passenger Transport	15.5	19.3	18.9	18.1	18.5	18.8	19.5	21.0
Cars, Light Trucks and Motorcycles	14.6	18.2	17.7	17.0	17.4	17.7	18.3	19.7
Bus, Rail and Domestic Aviation	0.9	1.0	1.2	1.1	1.1	1.1	1.2	1.3
Freight Transport	4.9	9.9	12.0	11.1	11.0	11.3	11.8	12.0
Heavy Duty Trucks, Rail	4.0	8.7	11.0	10.2	10.1	10.3	10.8	11.0
Domestic Aviation and Marine	0.9	1.2	1.0	1.0	0.9	1.0	1.0	1.1
Other: Recreational, Commercial and Residential	3.7	1.8	1.6	1.6	1.7	1.8	2.0	2.2
HEAVY INDUSTRY	24.9	19.6	17.5	17.4	16.7	15.3	16.4	15.9
Mining	2.1	1.5	1.9	1.7	1.6	1.6	1.7	1.8
Smelting and Refining (Non Ferrous Metals)	12.9	9.8	7.8	7.3	7.4	7.3	7.4	6.6
Pulp and Paper	4.5	2.8	1.6	1.2	1.3	1.4	1.5	1.6
Iron and Steel	1.2	0.9	2.1	2.2	1.2	1.1	1.2	1.3
Cement	2.5	2.5	2.2	2.2	2.3	2.1	2.6	2.6
Lime & Gypsum	0.5	0.9	0.7	0.8	0.8	0.8	0.8	0.7
Chemicals & Fertilizers	1.2	1.2	1.2	2.0	2.0	1.1	1.2	1.2
BUILDINGS	13.0	13.2	10.3	10.8	10.9	11.1	11.2	11.1
Service Industry	4.7	6.5	5.7	6.0	6.2	6.2	6.7	6.5
Residential	8.3	6.8	4.6	4.7	4.7	4.8	4.5	4.7
AGRICULTURE	8.1	8.5	8.7	8.6	8.8	9.0	8.5	9.0
On Farm Fuel Use	1.1	0.9	1.0	0.9	1.0	0.9	0.9	0.9
Crop Production	1.8	1.9	2.5	2.5	2.7	2.8	2.4	2.9
Animal Production	5.1	5.7	5.3	5.2	5.2	5.3	5.3	5.3
WASTE	5.9	4.6	3.4	3.6	4.1	4.6	4.5	4.4
Solid Waste	5.5	4.2	3.1	3.3	3.8	4.3	4.2	4.1
Wastewater	0.2	0.2	0.3	0.3	0.3	0.3	0.2	0.2
Waste Incineration	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0
COAL PRODUCTION	-	-	-	-	-	-	-	
LIGHT MANUFACTURING, CONSTRUCTION & FOREST RESOURCES	5.3	4.1	5.0	4.2	3.9	4.0	4.1	4.1
ight Manufacturing	3.7	2.9	3.7	3.0	2.6	2.6	2.6	2.6
Construction	1.4	1.0	1.1	1.0	1.0	1.1	1.3	1.2
	0.2	0.2	0.3	0.2	0.3	0.3	0.3	0.3

Totals may not add up due to rounding.

National GHG emissions allocated to IPCC sectors are provided in Annex 9 of this report.

Provincial/territorial GHG emissions allocated to IPCC sectors are provided in Annex 11 of this report.

Estimates presented here are under continual improvement. Historical emissions may be change in future publications as new data becomes available and methods and models are refined and improved.

- 0 indicates emissions of less than $0.5\ Mt\ CO_2$ eq; truncated due to rounding
- indicates no emissions

	1990	2005	2013	2014	2015	2016	2017	2018
	1990	2003	2013	-	2013 O₂ eq	2016	2017	2018
NATIONAL GHG TOTAL	179.3	203.2	167.2	164.7	162.6	159.6	155.4	165.0
OIL AND GAS				104.7				
	10.3	11.8	10.3		10.2	9.7	7.7	8.1
Upstream Oil and Gas	3.3	3.9	1.8	2.3	2.3	1.9	1.6	1.9
Natural Gas Production and Processing	0.3	0.4	0.2	0.2	0.2	0.2	0.1	0.2
Conventional Oil Production	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Conventional Light Oil Production	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Conventional Heavy Oil Production	-	-	-	-	-	-	-	
Frontier Oil Production	-	-	-	-	-	-	-	
Oil Sands (Mining, In-situ, Upgrading)	-	-	-	-	-	-	-	
Mining and Extraction	-	-	-	-	-	-	-	
In-situ	-	-	-	-	-	-	-	
Upgrading	-	-	-	-	-	-	-	
Oil, Natural Gas and CO ₂ Transmission	3.0	3.6	1.5	2.1	2.1	1.7	1.5	1.3
Downstream Oil and Gas	7.0	7.9	8.5	8.5	7.9	7.7	6.1	6.3
Petroleum Refining	6.6	7.3	8.0	8.0	7.4	7.2	5.6	5.
Natural Gas Distribution	0.4	0.6	0.5	0.5	0.5	0.6	0.5	0.
ELECTRICITY	26.0	33.9	9.2	5.0	5.2	4.8	2.2	3.8
TRANSPORTATION	40.8	56.5	55.3	53.4	54.3	54.6	55.3	57.4
Passenger Transport	26.2	35.8	33.9	33.0	33.7	34.3	34.2	35.4
Cars, Light Trucks and Motorcycles	24.1	33.3	31.2	30.4	31.1	31.7	31.6	32.
Bus, Rail and Domestic Aviation	2.1	2.5	2.7	2.6	2.6	2.6	2.6	2.
Freight Transport	7.6	16.8	18.3	17.3	17.4	17.1	17.6	18.
Heavy Duty Trucks, Rail	7.0	16.2	17.8	16.7	16.9	16.5	17.0	17.
Domestic Aviation and Marine	0.6	0.6	0.5	0.5	0.5	0.5	0.6	0.
Other: Recreational, Commercial and Residential	7.0	3.9	3.1	3.2	3.2	3.3	3.5	3.0
HEAVY INDUSTRY	43.2	35.3	29.2	30.4	29.4	30.5	28.9	29.
Mining	1.0	0.9	1.3	1.3	1.2	1.3	1.3	1.2
Smelting and Refining (Non Ferrous Metals)	1.5	1.9	0.9	0.8	0.7	0.9	1.0	0.9
Pulp and Paper	3.2	2.1	2.0	1.8	1.7	1.5	1.5	1.0
Iron and Steel	15.0	15.1	12.4	13.7	13.0	13.7	13.8	14.
Cement	4.5	6.4	4.4	4.4	4.2	4.2	4.4	4.4
								-
Lime & Gypsum Chemicals & Fertilizers	1.8	1.7	1.0	1.1	1.1	1.1	1.2	1.0 5.9
	16.2	7.2	7.1	7.4	7.7	7.8	5.7	
BUILDINGS	28.0	36.3	35.9	39.1	37.3	34.4	35.2	40.0
Service Industry	9.8	15.4	15.4	16.8	16.1	15.9	16.5	17.0
Residential	18.2	20.8	20.5	22.2	21.2	18.5	18.6	22.
AGRICULTURE	12.4	12.4	12.8	12.2	12.0	12.4	12.3	12.4
On Farm Fuel Use	2.1	2.3	2.8	2.5	2.5	2.5	2.3	2.4
Crop Production	3.1	2.8	3.9	3.6	3.3	3.8	3.8	3.
Animal Production	7.2	7.3	6.2	6.1	6.2	6.2	6.2	6.3
WASTE	6.3	6.0	5.5	5.2	5.2	4.8	4.8	4.0
Solid Waste	5.9	5.4	4.9	4.5	4.6	4.1	4.1	3.
<i>N</i> astewater	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.
	0.1	0.2	0.2	0.3	0.3	0.3	0.3	0.
Waste Incineration				_	-	-	-	
Naste Incineration COAL PRODUCTION	-	-						
	12.4	11.1	9.0	8.6	8.9	8.4	8.9	9.
COAL PRODUCTION LIGHT MANUFACTURING, CONSTRUCTION & FOREST	- 12.4 9.8	11.1	9.0	8.6	8.9 6.4	8.4 6.1	8.9 6.3	9. 6.

Totals may not add up due to rounding.

National GHG emissions allocated to IPCC sectors are provided in Annex 9 of this report.

Provincial/territorial GHG emissions allocated to IPCC sectors are provided in Annex 11 of this report.

Estimates presented here are under continual improvement. Historical emissions may be change in future publications as new data becomes available and methods and models are refined and improved.

- 0 indicates emissions of less than $0.5\ Mt\ CO_2$ eq; truncated due to rounding
- indicates no emissions

	1990	2005	2013	2014	2015	2016	2017	2018
					O₂ eq			
NATIONAL GHG TOTAL	18.3	20.1	20.9	20.9	20.6	20.9	20.8	21.8
OIL AND GAS	1.3	0.8	0.6	0.7	0.7	0.6	0.5	0.7
Upstream Oil and Gas	1.3	0.8	0.5	0.7	0.7	0.6	0.5	0.7
Natural Gas Production and Processing		-	-	-	-	-	-	- 0.7
Conventional Oil Production	0.1	0.2	0.4	0.4	0.4	0.4	0.3	0.3
Conventional Light Oil Production	0.1	0.2	0.4	0.4	0.4	0.4	0.3	0.3
Conventional Heavy Oil Production	-	-	-	-	-	-	-	0.5
Frontier Oil Production	_	-	-	-	-	-	-	
Oil Sands (Mining, In-situ, Upgrading)	_	-	-	-	-	-	-	
Mining and Extraction	_	_	_	-	_	-	-	
In-situ	_	_	_	_	_	_	_	
Upgrading	_	_	_	_	_	_	_	ļ .
Oil, Natural Gas and CO ₂ Transmission	1.2	0.6	0.1	0.3	0.3	0.3	0.2	0.3
Downstream Oil and Gas	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Petroleum Refining	0.0	-	0.0	-	-	-	-	0.0
Natural Gas Distribution	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ELECTRICITY	0.5	0.4	0.1	0.1	0.1	0.1	0.1	0.0
TRANSPORTATION	5.0	5.5	6.9	7.1	6.8	7.1	7.4	7.9
Passenger Transport	2.9	3.3	3.9	3.9	3.8	3.8	3.8	4.1
Cars, Light Trucks and Motorcycles	2.5	2.8	3.4	3.4	3.3	3.4	3.3	3.5
Bus, Rail and Domestic Aviation	0.4	0.5	0.5	0.5	0.4	0.4	0.5	0.5
Freight Transport	1.4	1.8	2.7	2.9	2.7	2.9	3.3	3.5
Heavy Duty Trucks, Rail	1.3	1.7	2.6	2.8	2.7	2.9	3.2	3.4
Domestic Aviation and Marine	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Other: Recreational, Commercial and Residential	0.6	0.3	0.3	0.3	0.3	0.3	0.3	0.4
HEAVY INDUSTRY	1.3	1.6	1.4	1.2	1.3	1.3	1.2	1.3
Mining	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
Smelting and Refining (Non Ferrous Metals)	0.3	0.2	0.1	0.1	0.0	0.0	0.1	0.0
Pulp and Paper	0.2	0.2	0.0	0.1	0.0	0.1	0.0	0.0
ron and Steel	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1
Cement	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lime & Gypsum	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Chemicals & Fertilizers	0.3	0.9	1.0	0.8	0.9	1.0	0.8	0.9
BUILDINGS	3.1	2.7	2.9	3.0	2.6	2.6	2.1	2.2
Service Industry	1.4	1.6	1.6	1.7	1.6	1.5	0.9	1.0
Residential	1.7	1.1	1.3	1.3	1.1	1.1	1.2	1.3
AGRICULTURE	5.8	7.7	7.5	7.1	7.3	7.4	7.6	7.7
On Farm Fuel Use	1.1	1.4	1.0	1.0	0.9	0.9	1.0	1.0
Crop Production	2.2	2.0	3.1	2.8	3.0	3.2	3.2	3.3
Animal Production	2.5	4.3	3.4	3.3	3.3	3.3	3.4	3.4
WASTE	0.6	0.8	0.8	0.8	0.8	0.7	0.7	0.7
Solid Waste	0.6	0.8	0.7	0.7	0.7	0.6	0.7	0.7
<i>N</i> astewater	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0
Naste Incineration	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COAL PRODUCTION	-	-	-	-	-	-	-	
LIGHT MANUFACTURING, CONSTRUCTION & FOREST RESOURCES	0.6	0.8	0.8	0.8	1.0	1.1	1.2	1.3
Light Manufacturing	0.4	0.5	0.5	0.6	0.8	0.8	0.9	0.9
			_					

Totals may not add up due to rounding.

National GHG emissions allocated to IPCC sectors are provided in Annex 9 of this report.

Provincial/territorial GHG emissions allocated to IPCC sectors are provided in Annex 11 of this report.

Estimates presented here are under continual improvement. Historical emissions may be change in future publications as new data becomes available and methods and models are refined and improved.

- 0 indicates emissions of less than $0.5\ Mt\ CO_2$ eq; truncated due to rounding
- indicates no emissions

	1990	2005	2013	2014	2015	2016	2017	201
				Mt C	O ₂ eq			
NATIONAL GHG TOTAL	44.5	68.1	72.2	75.0	77.2	74.5	76.7	76.4
OIL AND GAS	11.9	24.3	22.1	25.1	25.8	23.4	23.5	22.
Upstream Oil and Gas	10.7	23.3	20.6	23.6	24.2	21.8	21.9	21.
Natural Gas Production and Processing	2.1	3.8	3.2	3.3	3.2	3.4	3.4	3.
Conventional Oil Production	6.2	14.8	12.4	15.1	16.1	13.5	14.4	13.
Conventional Light Oil Production	1.6	2.6	5.1	6.7	7.3	6.3	7.1	7.
Conventional Heavy Oil Production	4.6	12.2	7.3	8.5	8.8	7.2	7.3	6.
Frontier Oil Production	-	-	-	-	-	-	-	0.
Oil Sands (Mining, In-situ, Upgrading)	0.0	2.4	2.6	2.4	2.5	2.6	2.4	2.
Mining and Extraction		-			2.3			
In-situ		_	_	_	_	_	_	
Upgrading	0.0	2.4	2.6	2.4	2.5	2.6	2.4	2.
Oil, Natural Gas and CO ₂ Transmission	2.4	2.3	2.5	2.8	2.5	2.3	1.7	1.
Downstream Oil and Gas	1.2	1.1	1.4	1.5	1.6	1.6	1.6	1.
Petroleum Refining	0.7	0.8	1.4	1.3	1.4	1.4	1.4	1.
Natural Gas Distribution			0.2			0.2		0.
	0.5	0.2		0.2	0.2		0.2	
ELECTRICITY	11.1	14.9	14.1	14.3	15.2	15.0	15.6	15.
TRANSPORTATION	5.3	6.2	10.2	10.2	10.7	10.7	11.2	11.
Passenger Transport	3.0	3.4	4.9	4.6	5.0	5.2	5.1	5.0
Cars, Light Trucks and Motorcycles	2.8	3.2	4.6	4.3	4.7	4.9	4.8	4.
Bus, Rail and Domestic Aviation	0.3	0.2	0.3	0.3	0.3	0.3	0.3	0.
Freight Transport	1.6	2.5	4.9	5.2	5.2	5.1	5.7	6.
Heavy Duty Trucks, Rail	1.6	2.4	4.9	5.1	5.2	5.1	5.7	6.
Domestic Aviation and Marine	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.
Other: Recreational, Commercial and Residential	0.6	0.4	0.4	0.4	0.5	0.4	0.4	0.
HEAVY INDUSTRY	1.6	2.2	3.5	3.3	3.4	3.2	3.4	3.
Mining	1.0	1.3	2.5	2.6	2.6	2.5	2.6	2.
Smelting and Refining (Non Ferrous Metals)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Pulp and Paper	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.
ron and Steel	0.0	0.1	0.1	0.1	0.1	0.1	0.2	0.
Cement	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.
Lime & Gypsum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Chemicals & Fertilizers	0.2	0.6	0.8	0.5	0.6	0.6	0.5	0.
BUILDINGS	3.2	3.3	3.3	3.3	3.1	3.3	3.6	3.
Service Industry	1.0	1.7	1.4	1.4	1.4	1.5	1.7	1.
Residential	2.1	1.6	1.9	1.9	1.8	1.7	1.9	2.
AGRICULTURE	10.2	16.0	17.6	17.2	17.5	17.6	18.1	18.
On Farm Fuel Use	2.4	3.5	4.5	4.8	4.7	4.5	4.9	5.
Crop Production	3.5	4.6	7.0	6.4	6.8	7.0	7.1	7.
Animal Production	4.3	7.9	6.2	6.0	5.9	6.0	6.0	6.
WASTE	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.
iolid Waste	0.5	0.7	0.7	0.7	0.7	0.7	0.7	0.
Vastewater	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Vaste Incineration	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
COAL PRODUCTION	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
LIGHT MANUFACTURING, CONSTRUCTION & FOREST RESOURCES	0.6	0.4	0.7	0.9	0.8	0.7	0.6	0.
ight Manufacturing	0.5	0.2	0.4	0.6	0.5	0.4	0.5	0.
Construction	0.1	0.2	0.2	0.2	0.3	0.2	0.2	0.
Forest Resources	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.

Totals may not add up due to rounding.

National GHG emissions allocated to IPCC sectors are provided in Annex 9 of this report.

Provincial/territorial GHG emissions allocated to IPCC sectors are provided in Annex 11 of this report.

Estimates presented here are under continual improvement. Historical emissions may be change in future publications as new data becomes available and methods and models are refined and improved.

- 0 indicates emissions of less than 0.5 Mt CO₂ eq; truncated due to rounding
- indicates no emissions

	1990	2005	2013	2014	2015	2016	2017	2018
				Mt C	O ₂ eq			
NATIONAL GHG TOTAL	173.1	232.0	272.3	276.8	276.2	265.2	272.2	272.
OIL AND GAS	67.6	97.1	127.2	131.0	131.4	130.1	133.8	138.
Upstream Oil and Gas	63.9	92.4	122.0	125.5	125.8	124.3	127.8	133.
Natural Gas Production and Processing	29.1	41.1	35.7	36.9	35.3	34.7	34.1	34.
Conventional Oil Production	16.0	12.4	17.1	17.4	15.2	13.0	12.0	12.
Conventional Light Oil Production	8.8	7.7	9.4	9.5	8.4	7.6	7.2	7.
Conventional Heavy Oil Production	7.2	4.7	7.8	7.9	6.8	5.4	4.8	4
Frontier Oil Production	_	-	-	-	-	-	-	
Oil Sands (Mining, In-situ, Upgrading)	15.0	35.0	65.9	68.1	71.9	72.2	77.2	81.
Mining and Extraction	4.5	9.5	15.3	15.6	17.1	17.5	18.4	18
In-situ	4.4	11.2	27.3	29.5	32.9	35.0	38.5	40
Upgrading	6.1	14.3	23.3	23.0	22.0	19.7	20.3	21
Oil, Natural Gas and CO ₂ Transmission	3.9	4.0	3.2	3.1	3.4	4.4	4.6	5
Downstream Oil and Gas	3.6	4.7	5.2	5.5	5.6	5.8	5.9	5.
Petroleum Refining	3.2	4.4	5.1	5.3	5.4	5.6	5.8	5
Natural Gas Distribution	0.4	0.3	0.2	0.2	0.2	0.2	0.2	0
ELECTRICITY	39.8	48.8	44.6	45.1	47.4	42.6	43.5	32
TRANSPORTATION	17.0	25.1	33.3	34.4	32.1	30.5	32.2	33.
Passenger Transport	9.1	10.6	12.0	12.5	12.0	12.4	12.7	13.
Cars, Light Trucks and Motorcycles	8.0	9.1	10.3	10.8	10.4	10.9	11.1	11
Bus, Rail and Domestic Aviation	1.1	1.4	1.7	1.7	1.6	1.5	1.6	1
Freight Transport	5.8	13.3	20.4	20.8	19.0	17.1	18.6	19
Heavy Duty Trucks, Rail	5.5	13.1	20.2	20.6	18.8	17.0	18.4	19
Domestic Aviation and Marine	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0
Other: Recreational, Commercial and Residential	2.1	1.2	1.0	1.1	1.1	1.0	1.0	1
HEAVY INDUSTRY	12.6	17.7	19.5	19.8	19.7	17.8	17.3	19
Mining	0.2	0.3	0.6	0.7	0.6	0.4	0.3	0.
Smelting and Refining (Non Ferrous Metals)	0.4	0.6	0.8	0.7	1.1	0.8	0.8	0.
Pulp and Paper	0.5	0.8	0.8	1.0	0.9	1.0	1.2	1
Iron and Steel	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0
Cement	1.2	1.8	1.5	1.4	1.5	1.3	1.5	1
Lime & Gypsum	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.
Chemicals & Fertilizers	10.0	13.8	15.5	15.6	15.3	14.0	13.3	14
BUILDINGS	12.1	16.2	20.3	19.4	18.8	17.7	20.0	21
Service Industry	5.3	8.5	11.5	10.1	10.4	10.4	11.2	12
Residential	6.9	7.7	8.9	9.3	8.4	7.3	8.8	9.
AGRICULTURE	16.6	22.7	21.6	21.5	21.3	20.8	20.2	20
On Farm Fuel Use	2.9	3.5	3.3	3.2	3.1	2.7	2.9	3
Crop Production	3.7	4.0	6.1	6.1	6.2	5.9	5.2	5
Animal Production	9.9	15.2	12.2	12.1	12.1	12.2	12.1	12
WASTE	1.2	1.7	1.8	1.9	1.9	1.9	1.9	2
Solid Waste	1.1	1.6	1.6	1.7	1.7	1.8	1.8	1.
Wastewater	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
	0.0							0
Waste Incineration		0.0	0.0	0.0	0.1	0.0	0.0	0
COAL PRODUCTION	0.6	0.5	0.9	0.6	0.6	0.6	0.4	0
LIGHT MANUFACTURING, CONSTRUCTION & FOREST RESOURCES	5.6	2.2	3.1	3.1	3.0	3.1	2.8	2
Light Manufacturing	4.8	1.4	2.4	2.5	2.3	2.3	2.0	2
Construction	0.7	0.7	0.5	0.6	0.5	0.6	0.7	0
Forest Resources	0.1	0.2	0.1	0.1	0.2	0.1	0.2	0

Totals may not add up due to rounding.

National GHG emissions allocated to IPCC sectors are provided in Annex 9 of this report.

Provincial/territorial GHG emissions allocated to IPCC sectors are provided in Annex 11 of this report.

Estimates presented here are under continual improvement. Historical emissions may be change in future publications as new data becomes available and methods and models are refined and improved.

- 0 indicates emissions of less than 0.5 Mt CO₂ eq; truncated due to rounding
- indicates no emissions

	1990	2005	2013	2014	2015	2016	2017	2018
	1990	2003	2013		O ₂ eq	2010	2017	2010
NATIONAL GHG TOTAL	51.6	62.0	60.3	60.2	59.3	61.8	63.3	65.5
OIL AND GAS	7.6	11.9	14.4	14.5	13.4	13.6	13.7	13.9
Upstream Oil and Gas	6.2	11.3	13.7	13.7	12.6	12.8	12.9	13.2
•	3.9	9.2		11.9	10.6	10.5		
Natural Gas Production and Processing			11.7				10.7	11.1
Conventional Oil Production	0.8	0.7	0.6	0.6	0.6	0.6	0.6	0.6
Conventional Light Oil Production	0.8	0.7	0.6	0.6	0.6	0.6	0.6	0.6
Conventional Heavy Oil Production	-	-	-	-	-	-	-	-
Frontier Oil Production	-	-	-	-	-	-	-	-
Oil Sands (Mining, In-situ, Upgrading)	-	-	-	-	-	-	-	-
Mining and Extraction	-	-	-	-	-	-	-	-
In-situ	-	-	-	-	-	-	-	-
Upgrading	-	-	-	-	-	-	-	-
Oil, Natural Gas and CO ₂ Transmission	1.5	1.4	1.4	1.2	1.5	1.6	1.6	1.5
Downstream Oil and Gas	1.5	0.6	0.7	0.7	0.8	0.9	0.8	0.6
Petroleum Refining	1.3	0.5	0.6	0.6	0.7	0.8	0.6	0.5
Natural Gas Distribution	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
ELECTRICITY	0.9	1.0	0.4	0.3	0.3	0.2	0.2	0.4
TRANSPORTATION	15.6	20.2	21.0	21.3	21.9	23.2	23.8	24.9
Passenger Transport	7.9	10.3	9.6	9.7	10.2	11.1	11.3	11.5
Cars, Light Trucks and Motorcycles	6.7	8.8	8.3	8.4	8.9	9.8	9.8	10.0
Bus, Rail and Domestic Aviation	1.2	1.5	1.3	1.3	1.3	1.4	1.4	1.6
reight Transport	5.4	8.6	10.4	10.4	10.6	11.0	11.5	12.3
Heavy Duty Trucks, Rail	4.3	7.2	8.7	8.7	8.7	9.1	9.6	10.3
Domestic Aviation and Marine	1.1	1.4	1.6	1.7	1.9	1.9	1.9	1.9
Other: Recreational, Commercial and Residential	2.3	1.4	1.0	1.1	1.1	1.1	1.1	1.1
HEAVY INDUSTRY	8.7	7.1	5.4	5.6	5.7	6.2	6.4	6.5
Mining	0.5	0.3	0.2	0.3	0.3	0.3	0.4	0.5
Smelting and Refining (Non Ferrous Metals)	2.0	1.7	1.3	1.0	0.9	1.3	1.2	1.1
Pulp and Paper	4.0	1.8	1.8	1.9	1.9	2.0	2.1	2.1
ron and Steel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cement	1.0	2.0	1.5	1.8	2.0	2.1	2.2	2.3
.ime & Gypsum	0.2	0.3	0.2	0.3	0.2	0.2	0.1	0.1
Chemicals & Fertilizers	0.9	0.9	0.4	0.3	0.3	0.4	0.4	0.3
BUILDINGS	7.7	8.5	8.0	8.0	7.5	7.7	8.5	8.3
	3.1	3.8	3.7	3.8	3.4	3.5	3.9	3.9
Service Industry Residential	4.6	4.7	4.4	4.2	4.1	4.1		4.4
							4.6	
AGRICULTURE	2.8	3.1	2.8	2.8	2.9	3.1	3.1	3.3
On Farm Fuel Use	0.6	0.3	0.6	0.6	0.6	0.7	0.7	0.8
Crop Production	0.4	0.3	0.4	0.3	0.3	0.4	0.4	0.4
Animal Production	1.8	2.4	1.9	1.9	2.0	2.0	2.0	2.1
VASTE	4.1	4.2	3.7	3.7	3.7	3.6	3.6	3.5
Solid Waste	4.0	4.0	3.6	3.5	3.5	3.4	3.4	3.4
Vastewater	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2
Vaste Incineration	0.0	-	-	-	-	0.0	0.0	0.0
COAL PRODUCTION	1.8	1.7	2.0	1.9	1.6	1.8	1.7	2.0
IGHT MANUFACTURING, CONSTRUCTION & FOREST RESOURCES	2.6	4.3	2.5	2.2	2.4	2.4	2.5	2.8
ight Manufacturing	1.4	3.1	1.6	1.4	1.5	1.4	1.3	1.5
Construction	0.6	0.5	0.4	0.3	0.4	0.6	0.6	0.7
Forest Resources	0.5	0.7	0.5	0.4	0.5	0.4	0.5	0.0

Totals may not add up due to rounding.

National GHG emissions allocated to IPCC sectors are provided in Annex 9 of this report.

Provincial/territorial GHG emissions allocated to IPCC sectors are provided in Annex 11 of this report.

Estimates presented here are under continual improvement. Historical emissions may be change in future publications as new data becomes available and methods and models are refined and improved.

- 0 indicates emissions of less than 0.5 Mt \mbox{CO}_2 eq; truncated due to rounding
- indicates no emissions

	1990	2005	2013	2014	2015	2016	2017	2018
				Mt C	O₂ eq	ı	ı	
NATIONAL GHG TOTAL	0.5	0.5	0.6	0.5	0.5	0.5	0.5	0.6
OIL AND GAS	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Upstream Oil and Gas	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Natural Gas Production and Processing	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Conventional Oil Production	-	-	-	-	-	-	-	
Conventional Light Oil Production	_	-	-	-	-	-	-	
Conventional Heavy Oil Production	_	_	_	_	_	_	_	
Frontier Oil Production	_	-	_	-	_	-	-	
Oil Sands (Mining, In-situ, Upgrading)	_	_	_	_	_	_	_	
Mining and Extraction	_	_	_	_	_	_	_	
In-situ	_	_	_	_	_	_	_	
Upgrading		_	_	_	_	_	_	
Oil, Natural Gas and CO ₂ Transmission	_	_	_	_	_	_	_	
Downstream Oil and Gas	0.0	0.0	0.0	0.0	0.0	0.0	_	
Petroleum Refining	0.0	0.0	0.0	0.0	0.0	0.0		
Natural Gas Distribution	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	0.0		
ELECTRICITY	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.
TRANSPORTATION	0.1	0.0	0.4	0.4	0.4	0.4	0.4	0.
Passenger Transport	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.
	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.
Cars, Light Trucks and Motorcycles Bus, Rail and Domestic Aviation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
·								
Freight Transport	0.1	0.1	0.3	0.2 0.2	0.2	0.2	0.2	0.
Heavy Duty Trucks, Rail	0.1	0.1	0.2		0.2	0.2	0.2	0.
Domestic Aviation and Marine	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Other: Recreational, Commercial and Residential	0.0	0.0					0.0	
HEAVY INDUSTRY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Mining	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Smelting and Refining (Non Ferrous Metals)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Pulp and Paper	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Iron and Steel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Cement	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Lime & Gypsum	0.0	-	-	0.0	0.0	-	-	_
Chemicals & Fertilizers	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
BUILDINGS	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.
Service Industry	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.
Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
AGRICULTURE	0.0	0.0	-	-	-	0.0	-	0.
On Farm Fuel Use	0.0	0.0	-	-	-	0.0	-	0.
Crop Production	-	-	-	-	-	-	-	
Animal Production	-	-	-	-	-	-	-	
WASTE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Solid Waste	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Wastewater	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Naste Incineration	-	0.0	-	-	-	-	-	
COAL PRODUCTION	-	-	-	-	-	-	-	
LIGHT MANUFACTURING, CONSTRUCTION & FOREST RESOURCES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
ight Manufacturing	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Construction	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Forest Resources	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0

Totals may not add up due to rounding.

National GHG emissions allocated to IPCC sectors are provided in Annex 9 of this report.

Provincial/territorial GHG emissions allocated to IPCC sectors are provided in Annex 11 of this report.

Estimates presented here are under continual improvement. Historical emissions may be change in future publications as new data becomes available and methods and models are refined and improved.

- 0 indicates emissions of less than 0.5 Mt CO₂ eq; truncated due to rounding
- · indicates no emissions

	4000	2027	2012	2011	2015	2011	201-	
	1999	2005	2013	2014	2015	2016	2017	2018
NATIONAL CUCTOTAL	4.2	1.0	1.0	Mt Co		1.0	1.2	
NATIONAL GHG TOTAL	1.2	1.6	1.3	1.5	1.7	1.6	1.3	1.2
OIL AND GAS	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0
Upstream Oil and Gas	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0
Natural Gas Production and Processing	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Conventional Oil Production	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Conventional Light Oil Production	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Conventional Heavy Oil Production	-	-	-	-	-	-	-	-
Frontier Oil Production	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Oil Sands (Mining, In-situ, Upgrading)	-	-	-	-	-	-	-	-
Mining and Extraction	-	-	-	-	-	-	-	-
In-situ	-	-	-	-	-	-	-	-
Upgrading	-	-	-	-	-	-	-	-
Oil, Natural Gas and CO ₂ Transmission	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Downstream Oil and Gas	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Petroleum Refining	-	-	-	-	-	-	-	-
Natural Gas Distribution	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ELECTRICITY	0.1	Х	Х	Х	Х	Х	Х	х
TRANSPORTATION	0.5	0.7	0.6	0.7	0.9	0.8	0.8	0.7
Passenger Transport	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Cars, Light Trucks and Motorcycles	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Bus, Rail and Domestic Aviation	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Freight Transport	0.2	0.5	0.4	0.5	0.6	0.6	0.5	0.4
Heavy Duty Trucks, Rail	0.2	0.4	0.4	0.5	0.6	0.6	0.5	0.4
Domestic Aviation and Marine	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0
Other: Recreational, Commercial and Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HEAVY INDUSTRY	0.2	0.3	0.3	0.3	0.4	0.3	0.3	0.3
Mining	0.2	0.3	0.3	0.3	0.4	0.3	0.3	0.3
Smelting and Refining (Non Ferrous Metals)	- 0.2	0.0	-	0.0	0.0	-	-	0.5
Pulp and Paper		0.0		0.0	0.0			
ron and Steel		0.0		0.0	0.0		-	-
Cement	-	0.0	-	0.0	0.0		-	
Lime & Gypsum	-	0.0	-	0.0	0.0	-	-	-
Chemicals & Fertilizers	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BUILDINGS	0.3	0.2	0.3	0.3	0.3	0.3	0.1	0.2
Service Industry	0.2	0.1	0.2	0.2	0.2	0.2	0.1	0.1
Residential	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
AGRICULTURE	0.0	0.0	-	-	-	-	-	-
On Farm Fuel Use	0.0	0.0	-	-	-	-	-	-
Crop Production	-	-	-	-	-	-	-	-
Animal Production	-	-	-	-	-	-	-	-
WASTE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Solid Waste	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nastewater	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Waste Incineration	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COAL PRODUCTION	-	-	-	-	-	-	-	
LIGHT MANUFACTURING, CONSTRUCTION & FOREST RESOURCES	0.0	Х	х	х	х	х	х	Х
ight Manufacturing	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Construction	0.0	х	х	х	х	х	х	х
Forest Resources	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Totals may not add up due to rounding.

National GHG emissions allocated to IPCC sectors are provided in Annex 9 of this report.

Provincial/territorial GHG emissions allocated to IPCC sectors are provided in Annex 11 of this report.

Estimates presented here are under continual improvement. Historical emissions may be change in future publications as new data becomes available and methods and models are refined and improved.

- 0 indicates emissions of less than 0.5 Mt CO₂ eq; truncated due to rounding
- indicates no emissions
- ${\bf x}~$ indicates data has been suppressed to respect confidentiality

	1999	2005	2013	2014	2015	2016	2017	2018
				Mt C	O₂ eq			
NATIONAL GHG TOTAL	0.4	0.6	0.8	0.7	0.6	0.7	0.7	0.7
OIL AND GAS	0.0	0.0	0.0	0.0	0.0	0.0	-	
Upstream Oil and Gas	-	-	-	-	-	-	-	
Natural Gas Production and Processing	_	-	-	-	-	-	-	
Conventional Oil Production	_	-	-	-	-	-	-	
Conventional Light Oil Production	_	-	-	-	-	-	-	
Conventional Heavy Oil Production	_	-	-	-	-	-	-	
Frontier Oil Production	_	_	_	_	_	_	_	
Oil Sands (Mining, In-situ, Upgrading)	_	_	_	_	_	_	_	
Mining and Extraction	_	_	_	_	_	_	_	
In-situ	_	_	_	_	_	_	_	
Upgrading	_	_	_	_	_	_	_	
Oil, Natural Gas and CO ₂ Transmission	_	_	_	_	_	_	_	
Downstream Oil and Gas	0.0	0.0	0.0	0.0	0.0	0.0	-	
							-	
Petroleum Refining	0.0	0.0	0.0	0.0	0.0	0.0		
Natural Gas Distribution	-	- V	- V	- V	- V	- V	- V	
ELECTRICITY	0.0	X	X	X	X	X	X	
TRANSPORTATION	0.3	0.4	0.6	0.5	0.4	0.5	0.5	0.
Passenger Transport	0.1	0.1	0.2	0.2	0.1	0.1	0.2	0.
Cars, Light Trucks and Motorcycles	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Bus, Rail and Domestic Aviation	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.
Freight Transport	0.2	0.2	0.4	0.3	0.3	0.3	0.3	0.
Heavy Duty Trucks, Rail	0.0	0.1	0.2	0.2	0.1	0.2	0.2	0.
Domestic Aviation and Marine	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.
Other: Recreational, Commercial and Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
HEAVY INDUSTRY	0.1	0.0	0.1	0.0	0.0	0.1	0.0	0.
MINING	0.1	0.0	0.1	0.0	0.0	0.1	0.0	0.
Smelting and Refining (Non Ferrous Metals)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Pulp and Paper	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
ron and Steel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Cement	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Lime & Gypsum	-	-	-	-	-	-	-	
Chemicals & Fertilizers	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
BUILDINGS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Service Industry	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
AGRICULTURE	-	-	-	-	-	-	-	
On Farm Fuel Use	-	-	-	-	-	-	-	
Crop Production	-	-	-	-	-	-	-	
Animal Production	-	-	-	-	-	-	-	
WASTE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Solid Waste	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Nastewater	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Waste Incineration		0.0	0.0	0.0	0.0	0.0	0.0	0.
COAL PRODUCTION	_	-	-	-	-	-	-	J.
LIGHT MANUFACTURING, CONSTRUCTION & FOREST LESOURCES	0.0	Х	Х	Х	Х	Х	Х	
ight Manufacturing	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Construction	0.0	x	х	х	x	x	x	
	0.0	^	^	^	^	^		

Totals may not add up due to rounding.

National GHG emissions allocated to IPCC sectors are provided in Annex 9 of this report.

Provincial/territorial GHG emissions allocated to IPCC sectors are provided in Annex 11 of this report.

Estimates presented here are under continual improvement. Historical emissions may be change in future publications as new data becomes available and methods and models are refined and improved.

- 0 indicates emissions of less than 0.5 Mt CO₂ eq; truncated due to rounding
- indicates no emissions
- ${\bf x}_{-}$ indicates data has been suppressed to respect confidentiality

	1990	1991	1992	1993	1994	1995	1996	1997	1998
					Mt CO ₂ eq				
NATIONAL GHG TOTAL	1.6	1.6	1.4	1.7	1.8	1.9	1.9	1.7	1.0
OIL AND GAS	0.4	0.3	0.2	0.2	0.2	0.2	0.2	0.1	0.
Upstream Oil and Gas	0.4	0.3	0.2	0.2	0.2	0.2	0.2	0.1	0.
Natural Gas Production and Processing	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.
Conventional Oil Production	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.
Conventional Light Oil Production	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Conventional Heavy Oil Production	-	-	-	-	-	-	-	-	
Frontier Oil Production	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.
Oil Sands (Mining, In-situ, Upgrading)	-	-	-	-	-	-	-	-	
Mining and Extraction	-	-	-	-	-	-	-	-	
ln-situ	-	-	-	-	-	-	-	-	
Upgrading	-	-	-	-	-	-	-	-	
Oil, Natural Gas and CO ₂ Transmission	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Downstream Oil and Gas	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Petroleum Refining	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Natural Gas Distribution	-	-	-	-	-	-	-	-	
ELECTRICITY	0.2	0.2	0.1	0.1	0.1	0.2	0.1	0.1	0.
TRANSPORTATION	0.5	0.4	0.4	0.5	0.5	0.4	0.6	0.5	0.
Passenger Transport	0.3	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.
Cars, Light Trucks and Motorcycles	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.
Bus, Rail and Domestic Aviation	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.
Freight Transport	0.2	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.
Heavy Duty Trucks, Rail	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.
Domestic Aviation and Marine	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0
Other: Recreational, Commercial and Residential	0.1	0.0	0.0	0.1	0.1	0.0	0.1	0.1	0.
HEAVY INDUSTRY	0.1	0.1	0.1	0.1	0.2	0.3	0.4	0.3	0.
Mining	0.1	0.1	0.1	0.1	0.2	0.3	0.4	0.3	0.
Smelting and Refining (Non Ferrous Metals)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Pulp and Paper	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
ron and Steel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Cement	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Lime & Gypsum	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
Chemicals & Fertilizers	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
BUILDINGS	0.4	0.6	0.6	0.6	0.7	0.7	0.6	0.6	0.
Service Industry	0.3	0.4	0.4	0.4	0.5	0.6	0.4	0.4	0.
Residential	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.
AGRICULTURE	0.0	0.0	0.0	0.0	0.0	0.0	-	0.0	0.
On Farm Fuel Use	0.0	0.0	0.0	0.0	0.0	0.0	-	0.0	0.
Crop Production		-				-	_		0.
Animal Production		-		-				-	
WASTE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Solid Waste	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Wastewater	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Vaste Incineration COAL PRODUCTION	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
IGHT MANUFACTURING, CONSTRUCTION & FOREST RESOURCES	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
ight Manufacturing	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Construction	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Forest Resources	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0

Totals may not add up due to rounding.

National GHG emissions allocated to IPCC sectors are provided in Annex 9 of this report.

Provincial/territorial GHG emissions allocated to IPCC sectors are provided in Annex 11 of this report.

Estimates presented here are under continual improvement. Historical emissions may be change in future publications as new data becomes available and methods and models are refined and improved.

Emission estimates for Solid Waste include emissions from municipal solid waste landfills, wood waste landfills and municipal solid waste composting.

- 0 indicates emissions of less than 0.5 Mt CO₂ eq; truncated due to rounding
- indicates no emissions

Canada.ca/ghg-inventory National Inventory Report—2020 Edition Part 3

ANNEX 13

ELECTRICITY IN CANADA: SUMMARY AND INTENSITY TABLES

This annex presents detailed greenhouse gas (GHG) information related to the generation of electricity by the Public Electricity and Heat Production category (IPCC Category 1.A.1.a), on a national and provincial level.

The Canadian electricity generation industry produces electricity by transforming the energy in falling water, coal, natural gas, refined petroleum products (RPPs), other miscellaneous fuels, biomass, nuclear, wind and solar resources. The process of supplying electricity to the public involves not only power generation at the plant, but also distribution through the electricity grid. The efficiency of the transmission system has an impact on the amount of electricity available to consumers. GHG emission estimates and electricity generation values are therefore based on activities that occur at the generating plant, and efforts have been made to include the impact of the transmission and distribution infrastructure (including sulphur hexafluoride (SF₆) emissions associated with switchgear and other electrical equipment, which is accounted for in the Industrial Processes and Product Use sector).

The electricity generation industry in Canada is composed of entities whose main activity is the production of electricity (main activity producers) and those who generate either partially or wholly for their own use (autoproducers). Main activity producers sell their electricity to the grid, can be either public or private generators and are reported under North American Industrial Classification System (NAICS) code 22111. Autoproducers are generally private companies that are generating electricity either to feed their operations or as a by-product of their operation. They may sell some or all of their electricity to the grid. Any industry that generates electricity, but whose main business is something other than electric power generation, is reported under the NAICS code associated with their primary business activity. However, in some cases, a company may have

Electricity Generation and GHG Emission Details for:

59
60
61
62
63
64
65
66
67
68
69
70
71
72

divided their operations so that the electric power generation is a separate business entity (even if the operations are on the same site). In this case, the electric power generation is included under the Public Electricity and Heat Production category.

The analysis in this section only includes main activity producers. This analysis relies on a variety of data sources; fuel consumption and electricity production data are published by Statistics Canada in the *Report on Energy Supply and Demand in Canada* (RESD) (Statistics Canada 57-003-X), in the publication *Electric Power Generation, Transmission and Distribution* (EPGTD) (Statistics Canada 57-202-X) and online via Statistics Canada (StatCan) Data Tables 25-10-0019-01, 25-10-0020-01 and 25-10-0021-01.

A "generation intensity" indicator is derived to reflect the GHG emissions intensity of electricity as it is delivered to the electricity grid. Electricity generation intensity values were derived for each fuel type using GHG emission estimates and electricity generation data. The methodology used to develop the GHG emissions is discussed in Chapter 3 and Annex 3.1 of this report. GHG emissions are based on the total fuel consumed by the public utility sector, as provided in the RESD,¹ while generation data are from StatCan Data Tables (2005–2018) and the EPGTD publication (1990–2004).

A "consumption intensity" indicator was also derived to reflect the GHG emissions intensity of electricity as it is delivered to the consumer. Accordingly, electric energy losses (mainly) in transmission and distribution are subtracted from overall total electricity generation, while SF₆ emissions associated with equipment used in electricity transmission and distribution are added to overall total GHG emissions. The electric energy losses in transmission, distribution and anywhere else are taken to be the utility sector's share of "unallocated energy," as presented in Table A13-1 to Table A13-14 and calculated from data provided by StatCan Data Table 25-10-0021-01. Likewise, the SF₆ emission values are based on the electric utility sector's share of total SF₆ emissions from equipment used in electricity transmission and distribution.

Electricity intensity values for Canada, the provinces and the territories are provided in Table A13–1 to Table A13–14.

 $^{1\,}$ Occasionally, Statistics Canada revises some of its historic data, which can affect the values provided in Table A13–1 to Table A13–14.

2000

132 000

109 000

13 800

9 380

27

2005

125 000

98 200

15 400

11 300

52

87 400

63 800

19 300

4 270

63

2014

Greenhouse Gas Emissions^b kt CO2 equivalent

83 800

60 300

18 600

4 9 1 0

73

2015

87 000

62 300

19 300

5 450

87

2016

80 500

57 100

18 300

5 040

80

2017

78 400

57 200

16 300

4 8 2 0

78 500

99 300

55 900

35 100

8 290

3 100

2 170

3 000

95 600

361 000

32 100

588 000

200

130

0.01

0.003

17 000

140

140

130

80

2018a

69 800

44 100

21 000

4 690

69 900

98 800

47 000

43 300

8 440

2 880

1 950

3 600

95 000

353 000

34 000

581 000

210

120

0.01

120

25 000

160

130

0.003

78

Table A13-1 Electricity Generation and GHG Emission Details for Canada 1990

94 500

80 500

2 720

11 300

0

Notes:

Combustion

Natural Gas

Other Fuels

Other Emissions

Coal

Data presented include emissions, generation and intensity for facilities classified under NAICS code 22111—Electric Power Generation.

270

240

Indicates no emissions or no electricity generation

Consumption Intensity (g CO₂ eq / kWh)^r

- 0 Indicates emissions or electricity generation value less than 0.1
- a. Preliminary data
- b. Emissions based on data taken from the Report on Energy Supply-Demand in Canada, Catalogue No. 57-003-XIB, Statistics Canada.
- Includes GHG emissions from the combustion of refined petroleum products (light fuel oil, heavy fuel oil, and diesel), petroleum coke, still gas and other fuels not

240

160

150

160

140

- d. GHG emissions from on-site combustion of fuel not directly related to electricity generation
- GHG emissions from the flooding of land for hydro dams are not included.
- f. Totals may not add up to overall total due to rounding
- g. Any CO2 captured for the purpose of long term storage is not included in the total
- h. Taken from StatCan Data Tables 25-10-0019-01 and 25-10-0020-01 (2005-2018).
- Taken from the Electric Power Generation, Transmission and Distribution (EPGTD) publication, Catalogue No. 57-202-XIB, Statistics Canada (for 1990–2004).
- From 2014 onward, this includes the electricity generated from the by-product steam associated with the fuel combustion. Prior to 2014, it was not possible to break this data into the original fuel source, so it was included in Other Generation
- k. Other Renewables—includes electricity generation by wind, tidal and solar.
- I. NAICS category 221119, Other Electric Power Generation.
- m. Prior to 2014, this includes electricity generation from steam from waste heat. From 2014 onward, electricity generation from steam from waste heat is reported as part of its original fuel source.
- n. Intensity values have been rounded so as to present the estimated level of accuracy.
- o. Adapted from StatCan Data Table 25--10-0021-001 (2005-2018) or Cat. No. 57-202-XIB (1990-2004).
- p. Includes transmission line losses, metering differences and other losses.
- q. The electric utility sector's share of emissions from electrical equipment from CRF Category 2.F.viii (Production and Consumption of Halocarbons and SF₆).
- Consumption intensity values are impacted by unallocated energy and SF₆ transmission emissions.

	1990	2000	2005	2013	2014	2015	2016	2017	2018a		
				Greenh	ouse Gas Em	issions ^b					
				kt (CO₂ equivaler	it					
Combustion	1 640	822	819	867	1 210	1 340	1 520	1 530	1 130		
Coal	_	_	-	-	_	-	_	-	_		
Natural Gas	-	-	_	-	_	-	_	-	-		
Other Fuels ^c	1 640	822	819	867	1 210	1 340	1 520	1 530	1 130		
Other Emissions ^d	_	-	_	-	_	-	-	-	_		
Overall Total ^{e, f, g}	1 640	822	819	867	1 210	1 340	1 520	1 530	1 130		
				Electr	icity Genera	tion ^{h, i}					
					GWh						
Combustion ^j	2 090	1 020	1 360	1 090	1 470	1 560	1 800	1 800	1 370		
Coal	-	-	-	-	-	-	-	-	-		
Natural Gas	-	-		-	-	-	-	-	-		
Other Fuels	2 090	1 020	1 360	1 090	1 470	1 560	1 800	1 800	1 370		
Nuclear	_	-	_	-	-	-	-	-	-		
Hydro	34 300	41 800	38 900	40 500	38 200	38 800	39 500	36 500	41 800		
Other Renewables ^k	0	-	-	192	177	172	190	186	206		
Other Generation ^{I, m}	-	-	-	-	-	-	-	-	-		
Overall Total ^f	36 400	42 800	40 300	41 800	39 800	40 500	41 500	38 500	43 400		
				Greenh	ouse Gas Int	ensity ⁿ					
			Generatio	on Intensity (g	g GHG / kWh e	electricity ger	erated)				
CO ₂ intensity (g CO ₂ / kWh)	45	19	20	21	30	33	36	39	26		
CH ₄ intensity (g CH ₄ / kWh)	0.0005	0.0002	0.0002	0.0003	0.0004	0.0005	0.0006	0.0006	0.0004		
N ₂ O intensity (g N ₂ O / kWh)	0.001	0.0004	0.0	0.0	0.001	0.001	0.001	0.001	0.0		
Generation Intensity (g CO ₂ eq / kWh) ^f	45	19	20	21	30	33	37	40	26		
					Losses						
Unallocated Energy (GWh) ^{o, p}	990	1 300	810	1 400	1 200	1 100	780	673	941		
SF ₆ Emissions (kt CO₂ eq) ^q	0.94	0.92	0.50	1.0	1.3	3.4	3.8	1.7	2.2		
			Consumpt	tion Intensity	(g GHG / kWł	electricity co	onsumed)	06 0.0006 0 01 0.001 87 40 80 673 .8 1.7			
Consumption Intensity (g CO ₂ eq / kWh) ^r	46	20	21	21	31	34	38	40	27		

Data presented include emissions, generation and intensity for facilities classified under NAICS code 22111—Electric Power Generation.

- Indicates no emissions or no electricity generation
- 0 Indicates emissions or electricity generation value less than 0.1
- a. Preliminary data.
- b. Emissions based on data taken from the Report on Energy Supply-Demand in Canada, Catalogue No. 57-003-XIB, Statistics Canada.
- c. Includes GHG emissions from the combustion of refined petroleum products (light fuel oil, heavy fuel oil, and diesel), petroleum coke, still gas and other fuels not easily categorized.
- d. GHG emissions from on-site combustion of fuel not directly related to electricity generation.
- e. GHG emissions from the flooding of land for hydro dams are not included.
- f. Totals may not add up to overall total due to rounding.
- g. Any CO₂ captured for the purpose of long term storage is not included in the total
- h. Taken from StatCan Data Tables 25-10-0019-01 and 25-10-0020-01 (2005-2018).
- i. Taken from the Electric Power Generation, Transmission and Distribution (EPGTD) publication, Catalogue No. 57-202-XIB, Statistics Canada (for 1990–2004).
- j. From 2014 onward, this includes the electricity generated from the by-product steam associated with the fuel combustion. Prior to 2014, it was not possible to break this data into the original fuel source, so it was included in Other Generation.
- k. Other Renewables—includes electricity generation by wind, tidal and solar.
- I. NAICS category 221119, Other Electric Power Generation.
- m. Prior to 2014, this includes electricity generation from steam from waste heat. From 2014 onward, electricity generation from steam from waste heat is reported as part of its original fuel source.
- n. Intensity values have been rounded so as to present the estimated level of accuracy.
- o. Adapted from StatCan Data Table 25--10-0021-001 (2005-2018) or Cat. No. 57-202-XIB (1990-2004).
- p. Includes transmission line losses, metering differences and other losses.
- $q. \ \ \, \text{The electric utility sector's share of emissions from electrical equipment from CRF Category 2.F.viii (Production and Consumption of Halocarbons and SF_6)}.$
- r. Consumption intensity values are impacted by unallocated energy and SF_6 transmission emissions.

TABLES

Table A13–3 Electricity Generation	and GHG	Emission	Details for	Prince Ed	ward Islan	ıd			
	1990	2000	2005	2013	2014	2015	2016	2017	2018 ^a
				Greenh	ouse Gas Em	issions ^b			
				kt	CO₂ equivaler	nt			
Combustion	104	53.0	4.76	3.9	4.3	13.9	4.2	8.6	2.8
Coal	_	-	_	_	_	_	_	-	-
Natural Gas	-	-	-	-	-	-	_	-	-
Other Fuels ^c	104	53.0	4.76	3.9	4.3	13.9	4.2	8.6	2.8
Other Emissions ^d	-	-	_	_	-	_	_	-	-
Overall Total ^{e, f, g}	104	53.0	4.76	3.9	4.3	13.9	4.2	8.6	2.8
				Electi	ricity Genera	tion ^{h, i}			
					GWh				
Combustion ^j	81.1	48.1	6.31	8.2	8.3	9.8	9.8	5.6	3.0
Coal	-	-	-	-	-	-	_	-	-
Natural Gas	_	-	-	_	_	_	-	-	-
Other Fuels	81.1	48.1	6.31	8.2	8.3	9.8	9.8	5.6	3.0
Nuclear	-	-	_	_	_	_	-	-	-
Hydro	-	-	_	_	_	_	-	-	-
Other Renewables ^k	-	-	40.1	499	611	606	594	604	640
Other Generation ^{I, m}	-	-	-	_	-	_	_	-	-
Overall Total ^f	81.1	48.1	46.4	507	620	616	603	610	643
				Greenh	nouse Gas In	tensity ⁿ			
			Generation	on Intensity (g GHG / kWh	electricity ger	nerated)		
CO ₂ intensity (g CO ₂ / kWh)	1 300	1 100	100	8	7	22	7	14	4
CH ₄ intensity (g CH ₄ / kWh)	0.01	0.01	0.001	0.0002	0.0001	0.0007	0.0002	0.0005	0.0003
N ₂ O intensity (g N ₂ O / kWh)	0.03	0.02	0.002	0.0001	0.0001	0.0004	0.0001	0.0002	0.0
Generation Intensity (g CO ₂ eq / kWh) ^f	1 300	1 100	100	8	7	23	7	14	4
					Losses				
Unallocated Energy (GWh) ^{o, p}	unk	unk	unk	20	33	20	22	10	20
SF ₆ Emissions (kt CO ₂ eq) ^q	0	0	_	0	0	0	0	0	0
			Consump	tion Intensity	(g GHG / kW	h electricity c	onsumed)		
Consumption Intensity (g CO ₂ eq / kWh) ^r	**	**	**	**	**	**	**	**	**

Data presented include emissions, generation and intensity for facilities classified under NAICS code 22111—Electric Power Generation.

- Indicates no emissions or no electricity generation
- 0 Indicates emissions or electricity generation value less than 0.1

unk Indicates unknown as appropriate data were unavailable

- * For years where unallocated energy data was not available, values were interpolated
- ** Due to the high level of imports from New Brunswick, values for New Brunswick are more indicative of GHG consumption intensity.
- a. Preliminary data.
- b. Emissions based on data taken from the Report on Energy Supply-Demand in Canada, Catalogue No. 57-003-XIB, Statistics Canada.
- c. Includes GHG emissions from the combustion of refined petroleum products (light fuel oil, heavy fuel oil, and diesel), petroleum coke, still gas and other fuels not easily categorized.
- d. GHG emissions from on-site combustion of fuel not directly related to electricity generation.
- e. GHG emissions from the flooding of land for hydro dams are not included.
- f. Totals may not add up to overall total due to rounding.
- g. Any ${\rm CO_2}$ captured for the purpose of long term storage $\,$ is not included in the total
- h. Taken from StatCan Data Tables 25-10-0019-01 and 25-10-0020-01 (2005-2018).
- i. Taken from the Electric Power Generation, Transmission and Distribution (EPGTD) publication, Catalogue No. 57-202-XIB, Statistics Canada (for 1990–2004).
- j. From 2014 onward, this includes the electricity generated from the by-product steam associated with the fuel combustion. Prior to 2014, it was not possible to break this data into the original fuel source, so it was included in Other Generation.
- $\label{eq:k.decomposition} \textbf{k. Other Renewables} \textbf{includes electricity generation by wind, tidal and solar.}$
- I. NAICS category 221119, Other Electric Power Generation.
- m. Prior to 2014, this includes electricity generation from steam from waste heat. From 2014 onward, electricity generation from steam from waste heat is reported as part of its original fuel source.
- n. Intensity values have been rounded so as to present the estimated level of accuracy.
- o. Adapted from StatCan Data Table 25--10-0021-001 (2005-2018) or Cat. No. 57-202-XIB (1990-2004).
- p. Includes transmission line losses, metering differences and other losses.
- q. The electric utility sector's share of emissions from electrical equipment from CRF Category 2.F.viii (Production and Consumption of Halocarbons and SF₆).
- r. Consumption intensity values are impacted by unallocated energy and SF₆ transmission emissions.

	1990	2000	2005	2013	2014	2015	2016	2017	2018a			
				Greenh	ouse Gas Em	issions ^b						
					CO₂ equivalen							
Combustion	6 900	9 600	10 800	7 600	7 250	7 020	6 400	6 690	7 010			
Coal	5 110	8 320	5 520	5 170	4 850	4 450	4 390	4 740	4 890			
Natural Gas	-	-	Х	Х	760	690	640	730	780			
Other Fuels ^c	1 790	1 280	х	Х	1 640	1 890	1 370	1 220	1 330			
Other Emissions ^d	-	-	-	-	_	_	-	-	_			
Overall Total ^{e, f, g}	6 900	9 600	10 800	7 600	7 250	7 020	6 400	6 690	7 010			
				Electr	icity Genera	tion ^{h, i}						
					GWh							
Combustion ^j	8 440	10 500	11 100	8 770	8 560	8 220	7 820	7 700	7 710			
Coal	6 020	8 850	6 770	5 500	5 250	4 870	4 830	4 840	4 970			
Natural Gas	-	-	181	1 370	1 470	1 300	1 240	1 440	1 420			
Other Fuels	2 430	1 610	4 110	1 890	1 840	2 050	1 750	1 410	1 310			
Nuclear	-	-	-	-	-	-	-	-	_			
Hydro	1 120	887	1 040	964	1 100	1 010	803	850	923			
Other Renewables ^k	26.1	0	113	780	764	821	979	1 270	1 090			
Other Generation ^{I, m}	-	-	-	-	-	-	-	-	-			
Overall Total ^f	9 590	11 300	12 200	10 500	10 400	10 000	9 610	9 810	9 710			
				Greenh	ouse Gas Int	ensity ⁿ						
			Generatio	n Intensity (g	g GHG / kWh e	electricity gen	erated)					
CO ₂ intensity (g CO ₂ / kWh)	720	840	880	720	690	700	660	680	720			
CH ₄ intensity (g CH ₄ / kWh)	0.007	0.009	0.02	0.03	0.03	0.03	0.03	0.03	0.03			
N ₂ O intensity (g N ₂ O / kWh)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01			
Generation Intensity (g CO ₂ eq / kWh) ^f	720	850	880	720	700	700	670	680	720			
					Losses							
Unallocated Energy (GWh)°, p	580	830	770	570	680	570	630	640	410			
SF ₆ Emissions (kt CO ₂ eq) ^q	23	23	29	39	33	33	28	40	25			
			Consumpt	tion Intensity	(g GHG / kWh	electricity co	ty consumed)					
Consumption Intensity (g CO ₂ eq / kWh) ^r	770	920	950	770	750	740	720	730	760			

- Indicates no emissions or no electricity generation
- 0 Indicates emissions or electricity generation value less than 0.1
- x Indicates data not shown due to statistical limitations
- * For years where unallocated energy data was not available, values were interpolated
- a. Preliminary data.
- b. Emissions based on data taken from the Report on Energy Supply-Demand in Canada, Catalogue No. 57-003-XIB, Statistics Canada.
- c. Includes GHG emissions from the combustion of refined petroleum products (light fuel oil, heavy fuel oil, and diesel), petroleum coke, still gas and other fuels not easily categorized.
- d. GHG emissions from on-site combustion of fuel not directly related to electricity generation.
- e. GHG emissions from the flooding of land for hydro dams are not included.
- f. Totals may not add up to overall total due to rounding.
- g. Any CO_2 captured for the purpose of long term storage is not included in the total
- h. Taken from StatCan Data Tables 25-10-0019-01 and 25-10-0020-01 (2005-2018).
- i. Taken from the Electric Power Generation, Transmission and Distribution (EPGTD) publication, Catalogue No. 57-202-XIB, Statistics Canada (for 1990–2004).
- j. From 2014 onward, this includes the electricity generated from the by-product steam associated with the fuel combustion. Prior to 2014, it was not possible to break this data into the original fuel source, so it was included in Other Generation.
- I. NAICS category 221119, Other Electric Power Generation.
- m. Prior to 2014, this includes electricity generation from steam from waste heat. From 2014 onward, electricity generation from steam from waste heat is reported as part of its original fuel source.
- n. Intensity values have been rounded so as to present the estimated level of accuracy.
- o. Adapted from StatCan Data Table 25--10-0021-001 (2005-2018) or Cat. No. 57-202-XIB (1990-2004).
- p. Includes transmission line losses, metering differences and other losses.
- q. The electric utility sector's share of emissions from electrical equipment from CRF Category 2.F.viii (Production and Consumption of Halocarbons and SF₆).
- r. Consumption intensity values are impacted by unallocated energy and SF₆ transmission emissions.

Table A13–5 Electricity Generation	and GHG	Emission	Details for	New Brun	swick								
Table A13–3 Electricity deficiation						2015	2016	2017	20103				
	1990	2000	2005	2013	2014	2015	2016	2017	2018ª				
	I				ouse Gas Em								
					CO ₂ equivalen								
Combustion	6 020	8 970	8 060	4 190	3 780	3 800	4 010	3 350	3 710				
Coal	1 180	3 130	2 910	Х	1 330	1 160	1 490	1 370	1 530				
Natural Gas	_	_	Х	Х	1 040	1 040	1 000	580	650				
Other Fuels ^c	4 840	5 840	Х	1 150	1 410	1 610	1 510	1 400	1 520				
Other Emissions ^d	_	-	-		_	-	-	-					
Overall Total ^{e, f, g}	6 020	8 970	8 060	4 190	3 780	3 800	4 010	3 350	3 710				
				Electr	icity Genera	tion ^{h, i}							
					GWh								
Combustion ^j	7 630	11 000	12 100	5 310	6 980	5 630	6 100	4 390	4 780				
Coal	1 270	3 820	2 920	2 250	2 560	1 650	2 160	2 090	2 330				
Natural Gas	-	-	1 970	1 770	2 570	2 320	2 360	1 300	980				
Other Fuels	6 360	7 210	7 210	1 290	1 850	1 650	1 580	1 000	1 480				
Nuclear	5 340	3 960	4 380	4 480	5 010	4 280	4 540	5 120	4 870				
Hydro	3 460	3 220	3 820	3 400	2 960	2 620	3 260	2 600	2 530				
Other Renewables ^k	_	-	-	737	786	792	766	781	825				
Other Generation ^{I, m}	-	-	-	-	-	-	-	-	_				
Overall Total ^f	16 400	18 200	20 300	14 500	15 700	13 300	14 700	12 900	13 000				
				Greenh	ouse Gas Int	ensity ⁿ	·	,					
			Generatio	on Intensity (c	GHG / kWh e	electricity ger	nerated)						
CO ₂ intensity (g CO ₂ / kWh)	360	490	390	290	240	280	270	260	280				
CH ₄ intensity (g CH ₄ / kWh)	0.004	0.005	0.01	0.02	0.02	0.02	0.02	0.02	0.02				
N ₂ O intensity (g N ₂ O / kWh)	0.007	0.009	0.007	0.004	0.004	0.005	0.005	0.004	0.005				
Generation Intensity (g CO ₂ eq / kWh) ^f	370	490	400	290	240	290	270	260	290				
, , , , , , , , , , , , , , , , , , , ,					Losses								
Unallocated Energy (GWh) ^{o, p}	990	1 300	1 100	440	470	400	590	220	430				
SF ₆ Emissions (kt CO ₂ eq) ^q	0.71	0.70	_	0.82	0.58	0.83	0.59	1.50	1.40				
			Consump		(g GHG / kWh								
Consumption Intensity (g CO ₂ eg / kWh) ^r	390	530	420	300	250	290	280	260	300				

- Indicates no emissions or no electricity generation
- 0 Indicates emissions or electricity generation value less than 0.1
- x Indicates data not shown due to statistical limitations
- For years where unallocated energy data was not available, values were interpolated
- a. Preliminary data.
- b. Emissions based on data taken from the Report on Energy Supply-Demand in Canada, Catalogue No. 57-003-XIB, Statistics Canada.
- c. Includes GHG emissions from the combustion of refined petroleum products (light fuel oil, heavy fuel oil, and diesel), petroleum coke, still gas and other fuels not easily categorized.
- d. GHG emissions from on-site combustion of fuel not directly related to electricity generation.
- e. GHG emissions from the flooding of land for hydro dams are not included.
- f. Totals may not add up to overall total due to rounding.
- g. Any ${\rm CO_2}$ captured for the purpose of long term storage $\,$ is not included in the total
- h. Taken from StatCan Data Tables 25-10-0019-01 and 25-10-0020-01 (2005-2018).
- i. Taken from the Electric Power Generation, Transmission and Distribution (EPGTD) publication, Catalogue No. 57-202-XIB, Statistics Canada (for 1990–2004).
- j. From 2014 onward, this includes the electricity generated from the by-product steam associated with the fuel combustion. Prior to 2014, it was not possible to break this data into the original fuel source, so it was included in Other Generation.
- I. NAICS category 221119, Other Electric Power Generation.
- m. Prior to 2014, this includes electricity generation from steam from waste heat. From 2014 onward, electricity generation from steam from waste heat is reported as part of its original fuel source.
- n. Intensity values have been rounded so as to present the estimated level of accuracy.
- o. Adapted from StatCan Data Table 25--10-0021-001 (2005-2018) or Cat. No. 57-202-XIB (1990-2004).
- p. Includes transmission line losses, metering differences and other losses.
- q. The electric utility sector's share of emissions from electrical equipment from CRF Category 2.F.viii (Production and Consumption of Halocarbons and SF₆).
- r. Consumption intensity values are impacted by unallocated energy and SF₆ transmission emissions.

	1990	2000	2005	2013	2014	2015	2016	2017	2018a
	1990	2000	2003		ouse Gas Em		2010	2017	2010
					CO ₂ equivaler				
Combination	1 400	F.C.7					222	220	255
Combustion	1 490	567	616	367	245	205	233	239	255
Coal	-	-	-	-	-	-	-	-	-
Natural Gas	114	194	269	144	13	0	1	1 220	2
Other Fuels	1 380	373	347	223	231	205	232	238	253
Other Emissions ^d	-	2.5	4.6	-	-	-	<u>-</u>	_	
Overall Total ^{e, f, g}	1 490	569	621	367	245	205	233	239	255
	I			Electr	ricity Genera	tion ^{h, i}			
		1	1	I	GWh			I	
Combustion ^j	1 980	1 150	1 390	1 140	1 010	960	1 290	1 310	1 360
Coal	-	-	-	-	-	_	_	-	-
Natural Gas	-	191	212	14	14	0	0	0	0
Other Fuels	1 980	961	1 170	1 130	1 000	960	1 290	1 310	1 360
Nuclear	4 070	4 890	4 480	0	0	0	0	0	0
Hydro	112 000	153 000	155 000	182 000	177 000	175 000	177 000	182 000	180 000
Other Renewables ^k	_	173	416	1 030	1 010	6 420	9 420	9 530	10 200
Other Generation ^{I, m}	-	_	_	_	_	-	_	_	-
Overall Total ^f	118 000	160 000	161 000	184 000	179 000	182 000	188 000	193 000	191 000
				Greenh	ouse Gas In	tensity ⁿ			
			Generation	on Intensity (g GHG / kWh	electricity gei	nerated)		
CO ₂ intensity (g CO ₂ / kWh)	13	3.5	3.7	2.0	1.4	1.1	1.2	1.2	1.3
CH ₄ intensity (g CH ₄ / kWh)	0.0004	0.0005	0.0010	0.0002	0.0	0.0	0.0	0.0	0.0
N ₂ O intensity (g N ₂ O / kWh)	0.0003	0.0002	0.0004	0.0	0.0	0.0	0.0	0.0	0.0
Generation Intensity (g CO ₂ eq / kWh) ^f	13	3.6	3.9	2.0	1.4	1.1	1.2	1.2	1.3
					Losses	,			
Unallocated Energy (GWh) ^{o, p}	7 300	13 000	9 100	12 000	13 000	2 600	9 000	12 000	10 000
SF ₆ Emissions (kt CO ₂ eq) ^q	37	36	30	67	17	74	81	22	58
* •*			Consump	tion Intensity	(g GHG / kW	h electricity c	onsumed)		1
Consumption Intensity (g CO ₂ eq / kWh) ^r	14	4.1	4.3	2.5	1.6	1.6	1.8	1.4	1.7

Data presented include emissions, generation and intensity for facilities classified under NAICS code 22111—Electric Power Generation.

- Indicates no emissions or no electricity generation
- 0 Indicates emissions or electricity generation value less than 0.1
- a. Preliminary data.
- b. Emissions based on data taken from the Report on Energy Supply-Demand in Canada, Catalogue No. 57-003-XIB, Statistics Canada.
- c. Includes GHG emissions from the combustion of refined petroleum products (light fuel oil, heavy fuel oil, and diesel), petroleum coke, still gas and other fuels not easily categorized.
- d. GHG emissions from on-site combustion of fuel not directly related to electricity generation.
- e. GHG emissions from the flooding of land for hydro dams are not included.
- f. Totals may not add up to overall total due to rounding.
- g. Any CO₂ captured for the purpose of long term storage is not included in the total
- h. Taken from StatCan Data Tables 25-10-0019-01 and 25-10-0020-01 (2005-2018).
- i. Taken from the Electric Power Generation, Transmission and Distribution (EPGTD) publication, Catalogue No. 57-202-XIB, Statistics Canada (for 1990–2004).
- j. From 2014 onward, this includes the electricity generated from the by-product steam associated with the fuel combustion. Prior to 2014, it was not possible to break this data into the original fuel source, so it was included in Other Generation.
- k. Other Renewables—includes electricity generation by wind, tidal and solar.
- I. NAICS category 221119, Other Electric Power Generation.
- m. Prior to 2014, this includes electricity generation from steam from waste heat. From 2014 onward, electricity generation from steam from waste heat is reported as part of its original fuel source.
- n. Intensity values have been rounded so as to present the estimated level of accuracy.
- o. Adapted from StatCan Data Table 25--10-0021-001 (2005-2018) or Cat. No. 57-202-XIB (1990-2004).
- p. Includes transmission line losses, metering differences and other losses.
- $q. \ \ The \ electric \ utility \ sector's \ share \ of \ emissions \ from \ electrical \ equipment \ from \ CRF \ Category \ 2.F.viii \ (Production \ and \ Consumption \ of \ Halocarbons \ and \ SF_6).$
- r. Consumption intensity values are impacted by unallocated energy and SF₆ transmission emissions.

TABLES

Table A13-7 Electricity Generation	and GHG	Emission	Details for	Ontario					
	1990	2000	2005	2013	2014	2015	2016	2017	2018a
				Greenh	ouse Gas Em	issions ^b			
				kt	CO₂ equivaler	nt			
Combustion	25 900	44 200	35 400	10 300	6 030	6 250	5 540	2 560	4 450
Coal	24 700	38 800	29 000	3 150	95	_	_	-	_
Natural Gas	8	4 930	6 210	7 040	5 810	6 170	5 420	2 420	4 320
Other Fuels ^c	1 160	477	185	60	120	80	120	140	130
Other Emissions ^d	-	0.77	1.4	_	_	-	_	_	-
Overall Total ^{e, f, g}	25 900	44 200	35 400	10 300	6 030	6 250	5 540	2 560	4 450
				Electi	ricity Genera	tion ^{h, i}			
					GWh				
Combustion ^j	29 200	52 200	40 900	17 500	15 600	15 900	13 600	6 800	11 100
Coal	27 800	40 800	29 400	2 900	100	0	0	0	0
Natural Gas	3	10215	10 000	13 900	14 700	15 300	12 700	5 900	10 200
Other Fuels	1 430	1 140	1 440	720	780	640	900	870	850
Nuclear	59 400	59 800	78 000	93 100	96 200	91 800	91 100	90 400	90 200
Hydro	38 700	36 600	34 600	36 900	38 200	34 800	36 100	39 500	37 800
Other Renewables ^k	-	1	26	4 240	3 660	12 200	12 100	11 800	26
Other Generation ^{I, m}	_	_	-	3 340	-	-	_	_	-
Overall Total ^f	127 000	138 000	137 000	149 000	148 000	150 000	145 000	150 000	153 000
				Greenh	nouse Gas In	tensity ⁿ			
			Generation	on Intensity (g GHG / kWh	electricity ge	nerated)		
CO ₂ intensity (g CO ₂ / kWh)	200	200	200	300	280	270	280	220	29
CH ₄ intensity (g CH ₄ / kWh)	0.002	0.011	0.013	0.012	0.010	0.010	0.009	0.004	0.01
N_2O intensity (g N_2O / kWh)	0.003	0.005	0.004	0.002	0.001	0.001	0.001	0.001	0.001
Generation Intensity (g CO ₂ eq / kWh) ^f	200	300	230	70	40	40	40	20	29
					Losses				
Unallocated Energy (GWh) ^{o, p}	10 000	12 000	12 000	22 000	9 000	5 000	13 000	13 000	13 000
SF ₆ Emissions (kt CO ₂ eq) ^q	76	75	50	64	43	56	62	56	57
			Consump	tion Intensity	(g GHG / kW	n electricity c	onsumed)		
Consumption Intensity (g CO ₂ eq / kWh) ^r	220	320	250	80	40	40	40	20	30

- Indicates no emissions or no electricity generation
- 0 Indicates emissions or electricity generation value less than 0.1
- x Indicates data not shown due to statistical limitations
- * For years where unallocated energy data was not available, values were interpolated
- a. Preliminary data
- b. Emissions based on data taken from the Report on Energy Supply-Demand in Canada, Catalogue No. 57-003-XIB, Statistics Canada.
- c. Includes GHG emissions from the combustion of refined petroleum products (light fuel oil, heavy fuel oil, and diesel), petroleum coke, still gas and other fuels not easily categorized.
- d. GHG emissions from on-site combustion of fuel not directly related to electricity generation.
- e. GHG emissions from the flooding of land for hydro dams are not included.
- f. Totals may not add up to overall total due to rounding.
- g. Any ${\rm CO_2}$ captured for the purpose of long term storage $\,$ is not included in the total
- h. Taken from StatCan Data Tables 25-10-0019-01 and 25-10-0020-01 (2005-2018).
- i. Taken from the Electric Power Generation, Transmission and Distribution (EPGTD) publication, Catalogue No. 57-202-XIB, Statistics Canada (for 1990–2004).
- j. From 2014 onward, this includes the electricity generated from the by-product steam associated with the fuel combustion. Prior to 2014, it was not possible to break this data into the original fuel source, so it was included in Other Generation.
- I. NAICS category 221119, Other Electric Power Generation.
- m. Prior to 2014, this includes electricity generation from steam from waste heat. From 2014 onward, electricity generation from steam from waste heat is reported as part of its original fuel source.
- n. Intensity values have been rounded so as to present the estimated level of accuracy.
- o. Adapted from StatCan Data Table 25--10-0021-001 (2005-2018) or Cat. No. 57-202-XIB (1990-2004).
- p. Includes transmission line losses, metering differences and other losses.
- q. The electric utility sector's share of emissions from electrical equipment from CRF Category 2.F.viii (Production and Consumption of Halocarbons and SF₆).
- r. Consumption intensity values are impacted by unallocated energy and SF_{θ} transmission emissions.

	1990	2000	2005	2013	2014	2015	2016	2017	2018a
				Greenh	ouse Gas Em	issions ^b			
				kt (CO₂ equivaler	nt			
Combustion	519	1 067	349	104.4	110.1	103.0	54.0	53.9	25.1
Coal	х	х	х	х	77.4	71.3	33.4	29.6	5.6
Natural Gas	Х	Х	х	Х	31.0	31.8	7.5	11.7	7.1
Other Fuels ^c	48.6	11.8	15.1	1.7	1.7	-	13.2	12.6	12.4
Other Emissions ^d	-	4.8	8.8	16	16	21	15	16	16
Overall Total ^{e, f, g}	519	1 072	358	120	127	124	69	69	41
				Electr	icity Genera	tion ^{h, i}			
					GWh				
Combustion ^j	399	881	447	91	96	107	56	62	30
Coal	375	869	421	65.4	68.9	63.4	28.5	29.5	5.3
Natural Gas	0.904	_	10.6	24.0	25.2	29.4	11.7	17.0	9.7
Other Fuels	22.4	12.4	15.1	1.5	1.6	14.4	15.5	15.2	15.0
Nuclear	-	-	-	-	-	-	-	-	_
Hydro	19 800	31 500	36 400	35 300	34 500	34 800	36 600	36 000	30 700
Other Renewables ^k	-	-	53.4	868	911	903	966	927	873
Other Generation ^{I, m}	-	-	-	-	-	-	-	-	-
Overall Total ^f	20 200	32 400	36 900	36 300	35 500	35 800	37 600	37 000	31 600
				Greenh	ouse Gas Int	ensityn			
			Generatio	on Intensity (g	g GHG / kWh e	electricity ger	nerated)		
CO ₂ intensity (g CO ₂ / kWh)	26	33	9.6	3.3	3.5	3.4	1.8	1.9	1.3
CH ₄ intensity (g CH ₄ / kWh)	0.0004	0.0004	0.0002	0.0003	0.0003	0.0003	0.0001	0.0001	0.0001
N_2O intensity (g N_2O / kWh)	0.001	0.001	0.0002	0.0001	0.0001	0.0001	0.0	0.0	0.0
Generation Intensity (g CO ₂ eq / kWh) ^f	26	33	9.7	3.3	3.6	3.5	1.8	1.9	1.3
					Losses				
Unallocated Energy (GWh) ^{o, p}	2 100	3 750	1 900	3 800	3 900	3 700	2 800	450	390
SF ₆ Emissions (kt CO ₂ eq) ^q	4.3	4.2	4.0	1.2	0.9	1.0	2.4	1.1	2.4
			Consump	tion Intensity	(g GHG / kWl	electricity co	onsumed)		
Consumption Intensity (g CO ₂ eg / kWh) ^r	29	38	10.3	3.7	4.0	3.9	2.1	1.9	1.4

- Indicates no emissions or no electricity generation
- 0 Indicates emissions or electricity generation value less than 0.1
- x Indicates data not shown due to statistical limitations
- a. Preliminary data
- b. Emissions based on data taken from the Report on Energy Supply-Demand in Canada, Catalogue No. 57-003-XIB, Statistics Canada.
- c. Includes GHG emissions from the combustion of refined petroleum products (light fuel oil, heavy fuel oil, and diesel), petroleum coke, still gas and other fuels not easily categorized.
- d. GHG emissions from on-site combustion of fuel not directly related to electricity generation.
- e. GHG emissions from the flooding of land for hydro dams are not included.
- f. Totals may not add up to overall total due to rounding.
- g. Any CO₂ captured for the purpose of long term storage is not included in the total
- h. Taken from StatCan Data Tables 25-10-0019-01 and 25-10-0020-01 (2005-2018).
- i. Taken from the Electric Power Generation, Transmission and Distribution (EPGTD) publication, Catalogue No. 57-202-XIB, Statistics Canada (for 1990–2004).
- j. From 2014 onward, this includes the electricity generated from the by-product steam associated with the fuel combustion. Prior to 2014, it was not possible to break this data into the original fuel source, so it was included in Other Generation.
- k. Other Renewables—includes electricity generation by wind, tidal and solar.
- I. NAICS category 221119, Other Electric Power Generation.
- m. Prior to 2014, this includes electricity generation from steam from waste heat. From 2014 onward, electricity generation from steam from waste heat is reported as part of its original fuel source.
- n. Intensity values have been rounded so as to present the estimated level of accuracy.
- o. Adapted from StatCan Data Table 25--10-0021-001 (2005-2018) or Cat. No. 57-202-XIB (1990-2004).
- p. Includes transmission line losses, metering differences and other losses.
- q. The electric utility sector's share of emissions from electrical equipment from CRF Category 2.F.viii (Production and Consumption of Halocarbons and SF₆).
- r. Consumption intensity values are impacted by unallocated energy and SF₆ transmission emissions.

Table A13–9 Electricity Generation	and GHG	Emission	Details for	Saskatch	ewan				
	1990	2000	2005	2013	2014	2015	2016	2017	2018a
				Greenh	ouse Gas Em	issions ^b			
				kt	CO₂ equivaler	nt			
Combustion	11 100	14 500	15 200	15 100	15 200	16 100	16 000	16 500	16 100
Coal	х	х	х	Х	12 600	12 600	12 200	12 500	11 700
Natural Gas	х	Х	Х	Х	2 580	3 520	3 780	4 030	4 400
Other Fuels ^c	6.47	10.4	4.30	0.27	6.36	9.12	9.40	9.40	9.40
Other Emissions ^d	_	10	18	35	35	39	42	41	41
Overall Total ^{e, f, g}	11 100	14 500	15 300	15 100	15 200	16 100	16 000	16 600	16 100
				Electr	icity Genera	tion ^{h, i}			
					GWh				
Combustion ^j	9 660	14 070	14 800	15 280	14 760	19 080	20 270	20 650	19 370
Coal	9 340	11 390	12 170	11 760	10 220	12 090	12 040	11 980	10 350
Natural Gas	310	2 660	2 610	3 510	4 530	6 990	8 220	8 660	9 020
Other Fuels	10	10	10	10	10	0	10	10	10
Nuclear	_	_	-	_	_	-	_	-	_
Hydro	4 210	3 050	4 570	4 450	4 710	3 430	3 280	3 850	3 590
Other Renewables ^k	-	-	92	640	615	620	746	739	694
Other Generation ^{I, m}	-	-	-	878	-	-	-	-	-
Overall Total ^f	13 900	17 100	19 500	21 300	20 100	23 100	24 300	25 200	23 700
				Greenh	ouse Gas Int	ensity			
			Generatio	on Intensity (g GHG / kWh e	electricity ger	nerated)		
CO ₂ intensity (g CO ₂ / kWh)	800	840	780	710	750	690	650	650	680
CH ₄ intensity (g CH ₄ / kWh)	0.02	0.03	0.03	0.04	0.04	0.05	0.05	0.05	0.06
N ₂ O intensity (g N ₂ O / kWh)	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Generation Intensity (g CO ₂ eq / kWh) ^f	800	850	780	710	760	700	660	660	680
					Losses			· ·	
Unallocated Energy (GWh)°, p	1 300	1 700	1 400	1 900	3 200	1 400	1 200	2 200	1 000
SF ₆ Emissions (kt CO ₂ eq) ^q	1.8	1.7	1.3	0.91	0.42	0.73	0.38	0.80	0.27
			Consump	tion Intensity	(g GHG / kWl	n electricity co	onsumed)		
Consumption Intensity (g CO ₂ eq / kWh) ^r	890	940	840	780	900	740	690	720	710

- Indicates no emissions or no electricity generation
- 0 Indicates emissions or electricity generation value less than 0.1
- x Indicates data not shown due to statistical limitations
- a. Preliminary data
- b. Emissions based on data taken from the Report on Energy Supply-Demand in Canada, Catalogue No. 57-003-XIB, Statistics Canada.
- c. Includes GHG emissions from the combustion of refined petroleum products (light fuel oil, heavy fuel oil, and diesel), petroleum coke, still gas and other fuels not easily categorized.
- d. GHG emissions from on-site combustion of fuel not directly related to electricity generation.
- e. GHG emissions from the flooding of land for hydro dams are not included.
- f. Totals may not add up to overall total due to rounding.
- g. Any CO_2 captured for the purpose of long term storage $\,$ is not included in the total
- h. Taken from StatCan Data Tables 25-10-0019-01 and 25-10-0020-01 (2005-2018).
- i. Taken from the Electric Power Generation, Transmission and Distribution (EPGTD) publication, Catalogue No. 57-202-XIB, Statistics Canada (for 1990–2004).
- j. From 2014 onward, this includes the electricity generated from the by-product steam associated with the fuel combustion. Prior to 2014, it was not possible to break this data into the original fuel source, so it was included in Other Generation.
- I. NAICS category 221119, Other Electric Power Generation.
- m. Prior to 2014, this includes electricity generation from steam from waste heat. From 2014 onward, electricity generation from steam from waste heat is reported as part of its original fuel source.
- n. Intensity values have been rounded so as to present the estimated level of accuracy.
- o. Adapted from StatCan Data Table 25--10-0021-001 (2005-2018) or Cat. No. 57-202-XIB (1990-2004).
- p. Includes transmission line losses, metering differences and other losses.
- q. The electric utility sector's share of emissions from electrical equipment from CRF Category 2.F.viii (Production and Consumption of Halocarbons and SF₆).
- r. Consumption intensity values are impacted by unallocated energy and SF_6 transmission emissions.

	1990	2000	2005	2013	2014	2015	2016	2017	2018a	
					ouse Gas Em	issions ^b				
				kt (CO₂ equivaler	nt				
Combustion	39 800	50 300	52 000	48 200	49 200	51 400	45 800	46 700	36 200	
Coal	38 000	44 200	46 800	40 700	41 400	44 100	39 000	38 600	26 000	
Natural Gas	1 700	5 740	5 170	7 520	7 820	7 360	6 810	8 030	10 180	
Other Fuels ^c	11.4	300	69.0	18.6	16.9	17.6	1.7	0	0	
Other Emissions ^d	_	5.7	10	6	14	19	17	16	15	
Overall Total ^{e, f, g}	39 800	50 300	52 000	48 200	49 200	51 500	45 800	46 700	36 200	
	Electricity Generation ^{h, i}									
					GWh					
Combustion ^j	39 900	51 300	54 200	53 200	59 700	54 100	53 200	54 800	51 000	
Coal	37 300	40 700	42 200	38 500	43 400	39 100	38 900	37 000	29 400	
Natural Gas	2 510	10 200	11 600	14 100	15 700	14 500	13 900	17 300	21 000	
Other Fuels	21.6	443	424	630	550	517	448	576	662	
Nuclear	_	-	-	-	-	-	-	-	_	
Hydro	2 060	1 760	2 240	1 990	1 820	1 980	1 970	2 060	1 990	
Other Renewables ^k	-	88.9	837	2 260	3 520	4 090	4 590	4 630	4 140	
Other Generation ^{I, m}	-	-	-	-	-	-	-	-	-	
Overall Total ^f	41 900	53 200	57 300	59 700	65 200	60 300	59 900	61 700	57 400	
				Greenh	ouse Gas Int	ensityn				
			Generatio	n Intensity (g	g GHG / kWh e	electricity ger	nerated)			
CO ₂ intensity (g CO ₂ / kWh)	940	940	900	800	750	850	760	750	620	
CH ₄ intensity (g CH ₄ / kWh)	0.02	0.04	0.03	0.04	0.04	0.04	0.04	0.04	0.05	
N ₂ O intensity (g N ₂ O / kWh)	0.02	0.02	0.02	0.02	0.01	0.02	0.01	0.01	0.01	
Generation Intensity (g CO ₂ eq / kWh) ^f	950	950	910	810	760	850	760	750	630	
					Losses					
Unallocated Energy (GWh) ^{o, p}	3 400	4 100	4 900	4 600	5 000	2 300	4 700	3 100	4 500	
SF ₆ Emissions (kt CO ₂ eq) ^q	1.6	1.6	0.43	2.4	3.1	3.2	2.7	1.4	2.4	
			Consumpt	tion Intensity	(g GHG / kWł	electricity co	onsumed)			
Consumption Intensity (g CO ₂ eq / kWh) ^r	1 000	1 000	990	880	820	890	830	790	680	

- Indicates no emissions or no electricity generation
- 0 Indicates emissions or electricity generation value less than 0.1
- x Indicates data not shown due to statistical limitations
- * For years where unallocated energy data was not available, values were interpolated
- a. Preliminary data.
- b. Emissions based on data taken from the Report on Energy Supply-Demand in Canada, Catalogue No. 57-003-XIB, Statistics Canada.
- c. Includes GHG emissions from the combustion of refined petroleum products (light fuel oil, heavy fuel oil, and diesel), petroleum coke, still gas and other fuels not easily categorized.
- d. GHG emissions from on-site combustion of fuel not directly related to electricity generation.
- e. GHG emissions from the flooding of land for hydro dams are not included.
- f. Totals may not add up to overall total due to rounding.
- g. Any CO_2 captured for the purpose of long term storage is not included in the total
- h. Taken from StatCan Data Tables 25-10-0019-01 and 25-10-0020-01 (2005-2018).
- i. Taken from the Electric Power Generation, Transmission and Distribution (EPGTD) publication, Catalogue No. 57-202-XIB, Statistics Canada (for 1990–2004).
- j. From 2014 onward, this includes the electricity generated from the by-product steam associated with the fuel combustion. Prior to 2014, it was not possible to break this data into the original fuel source, so it was included in Other Generation.
- k. Other Renewables—includes electricity generation by wind, tidal and solar.
- I. NAICS category 221119, Other Electric Power Generation.
- m. Prior to 2014, this includes electricity generation from steam from waste heat. From 2014 onward, electricity generation from steam from waste heat is reported as part of its original fuel source.
- n. Intensity values have been rounded so as to present the estimated level of accuracy.
- o. Adapted from StatCan Data Table 25--10-0021-001 (2005-2018) or Cat. No. 57-202-XIB (1990-2004).
- p. Includes transmission line losses, metering differences and other losses.
- q. The electric utility sector's share of emissions from electrical equipment from CRF Category 2.F.viii (Production and Consumption of Halocarbons and SF₆).
- r. Consumption intensity values are impacted by unallocated energy and SF₆ transmission emissions.

Table A13–11 Electricity Generatio	n and GHO	Emission	Details fo	r British C	olumbia				
	1990	2000	2005	2013	2014	2015	2016	2017	2018ª
				Greenh	ouse Gas Em	issions ^b			
				kt	CO₂ equivaler	nt			
Combustion	804	1 930	1 340	590	571	496	671	567	682
Coal	-	-	-	-	_	-	-	-	_
Natural Gas	Х	Х	Х	Х	517	447	628	516	631
Other Fuels ^c	Х	Х	Х	Х	53	49	43	51	51
Other Emissions ^d	-	2.4	4.6	6.7	7.4	7.2	6.5	6.5	6.9
Overall Total ^{e, f, g}	804	1 940	1 340	596	578	503	677	574	689
				Electr	icity Genera	tion ^{h, i}			
					GWh				
Combustion ^j	1 390	3 930	3 820	1 820	1 780	1 610	1 560	1 410	1 600
Coal	-	-	-	_	-	-	_	-	_
Natural Gas	1 310	3 350	3 140	892	936	788	603	457	543
Other Fuels	79.4	585	689	926	846	818	956	950	1 060
Nuclear	-	-	-	-	-	-	-	-	-
Hydro	46 400	50 800	50 300	50 500	49 000	52 400	54 500	57 100	52 900
Other Renewables ^k	-	-	-	152	849	868	1 220	1 590	1 690
Other Generation ^{I, m}	-	-	-	2 520	2 240	0	0	0	0
Overall Total ^f	47 800	54 700	54 100	55 000	53 900	54 800	57 300	60 100	56 200
				Greenh	ouse Gas Int	ensity ⁿ			
			Generatio	on Intensity (g GHG / kWh e	electricity ger	nerated)		
CO ₂ intensity (g CO ₂ / kWh)	17	35	24	10.5	10.4	8.9	11.5	9.3	12.0
CH ₄ intensity (g CH ₄ / kWh)	0.004	0.009	0.007	0.003	0.003	0.003	0.003	0.003	0.003
N ₂ O intensity (g N ₂ O / kWh)	0.0004	0.001	0.0016	0.0008	0.0008	0.0007	0.0008	0.0007	0.0007
Generation Intensity (g CO ₂ eq / kWh) ^f	17	35	25	11	11	9.2	12	9.5	12.3
					Losses				
Unallocated Energy (GWh) ^{o, p}	2 200	2 300	2 100	-	3 900	2 100	2 200	2 300	1 500
SF ₆ Emissions (kt CO ₂ eq) ^q	57	56	48	42	26	20	14	19	12
			Consump	tion Intensity	(g GHG / kWl	n electricity c	onsumed)		
Consumption Intensity (g CO ₂ eq / kWh) ^r	19	38	27	12	12	9.9	13	10.2	12.8

- Indicates no emissions or no electricity generation
- 0 Indicates emissions or electricity generation value less than 0.1
- x Indicates data not shown due to statistical limitations
- * For years where unallocated energy data was not available, values were interpolated
- a. Preliminary data
- b. Emissions based on data taken from the Report on Energy Supply-Demand in Canada, Catalogue No. 57-003-XIB, Statistics Canada.
- c. Includes GHG emissions from the combustion of refined petroleum products (light fuel oil, heavy fuel oil, and diesel), petroleum coke, still gas and other fuels not easily categorized.
- d. GHG emissions from on-site combustion of fuel not directly related to electricity generation.
- e. GHG emissions from the flooding of land for hydro dams are not included.
- f. Totals may not add up to overall total due to rounding.
- g. Any ${\rm CO_2}$ captured for the purpose of long term storage $\,$ is not included in the total
- h. Taken from StatCan Data Tables 25-10-0019-01 and 25-10-0020-01 (2005-2018).
- i. Taken from the Electric Power Generation, Transmission and Distribution (EPGTD) publication, Catalogue No. 57-202-XIB, Statistics Canada (for 1990–2004).
- j. From 2014 onward, this includes the electricity generated from the by-product steam associated with the fuel combustion. Prior to 2014, it was not possible to break this data into the original fuel source, so it was included in Other Generation.
- I. NAICS category 221119, Other Electric Power Generation.
- m. Prior to 2014, this includes electricity generation from steam from waste heat. From 2014 onward, electricity generation from steam from waste heat is reported as part of its original fuel source.
- n. Intensity values have been rounded so as to present the estimated level of accuracy.
- o. Adapted from StatCan Data Table 25--10-0021-001 (2005-2018) or Cat. No. 57-202-XIB (1990-2004).
- p. Includes transmission line losses, metering differences and other losses.
- q. The electric utility sector's share of emissions from electrical equipment from CRF Category 2.F.viii (Production and Consumption of Halocarbons and SF₆).
- r. Consumption intensity values are impacted by unallocated energy and SF_{θ} transmission emissions.

	1990	2000	2005	2013	2014	2015	2016	2017	2018ª
	1990	2000	2005		ouse Gas Em		2016	2017	2010
Combination	00.2	24.2	22.0		CO₂ equivalen		10.0	22.6	22.0
Combustion	90.2	21.3	22.0	16.9	16.4	18.2	19.2	23.6	32.8
Coal	-	-	-	-	-	-	-	-	
Natural Gas	-	-	-	-	-	-	- 47.5	-	-
Other Fuels	90.2	21.3	22.0	16.9	16.4	17.5	17.5	19.9	21.2
Other Emissions ^d	-	-	-	-	-	-	-	_	
Overall Total ^{e, f, g}	90.2	21.3	22.0	16.9	16.4	18.2	19.2	23.6	32.8
				Electr	icity Genera	tion ^{h, i}			
					GWh				
Combustion ^j	62.1	36.7	22.4	23.3	22.7	25.5	27.0	36.6	59.3
Coal	-	-	-	_	-	-	-	-	_
Natural Gas	-	-	_	_	_	-	-	-	_
Other Fuels	62.1	36.7	22.4	23.3	22.7	24.2	23.8	26.8	29.2
Nuclear	-	-	-	-	-	-	-	-	_
Hydro	423	261	320	425	411	422	419	448	419
Other Renewables ^k	-	0.388	0.890	0.277	0.334	0.650	0.509	0.033	0.0
Other Generation ^{I, m}	-	-	-	-	-	-	-	-	-
Overall Total ^f	485	298	344	449	434	448	447	485	478
				Greenh	ouse Gas Int	ensity ⁿ			
			Generatio	on Intensity (g	g GHG / kWh e	lectricity gen	nerated)		
CO ₂ intensity (g CO ₂ / kWh)	190	71	64	38	38	41	43	48	68
CH ₄ intensity (g CH ₄ / kWh)	0.005	0.002	0.002	0.001	0.001	0.002	0.002	0.003	0.007
N ₂ O intensity (g N ₂ O / kWh)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Generation Intensity (g CO ₂ eq / kWh) ^f	190	71	64	38	38	41	43	49	69
		,	,		Losses				
Unallocated Energy (GWh)°, p	47	24	45	55	17	54	48	55	56
SF ₆ Emissions (kt CO ₂ eq) ^q	-	_	_	-	_	-	-	-	-
-		l	Consump	tion Intensity	(g GHG / kWł	electricity co	onsumed)		
Consumption Intensity (g CO ₂ eq / kWh) ^r	210	78	74	43	39	46	48	56	79

Data presented include emissions, generation and intensity for facilities classified under NAICS code 22111—Electric Power Generation.

- Indicates no emissions or no electricity generation
- 0 Indicates emissions or electricity generation value less than 0.1
- a. Preliminary data.
- b. Emissions based on data taken from the Report on Energy Supply-Demand in Canada, Catalogue No. 57-003-XIB, Statistics Canada.
- c. Includes GHG emissions from the combustion of refined petroleum products (light fuel oil, heavy fuel oil, and diesel), petroleum coke, still gas and other fuels not easily categorized.
- d. GHG emissions from on-site combustion of fuel not directly related to electricity generation.
- e. GHG emissions from the flooding of land for hydro dams are not included.
- f. Totals may not add up to overall total due to rounding.
- g. Any CO_2 captured for the purpose of long term storage $\,$ is not included in the total
- h. Taken from StatCan Data Tables 25-10-0019-01 and 25-10-0020-01 (2005-2018).
- i. Taken from the Electric Power Generation, Transmission and Distribution (EPGTD) publication, Catalogue No. 57-202-XIB, Statistics Canada (for 1990–2004).
- j. From 2014 onward, this includes the electricity generated from the by-product steam associated with the fuel combustion. Prior to 2014, it was not possible to break this data into the original fuel source, so it was included in Other Generation.
- k. Other Renewables—includes electricity generation by wind, tidal and solar.
- I. NAICS category 221119, Other Electric Power Generation.
- m. Prior to 2014, this includes electricity generation from steam from waste heat. From 2014 onward, electricity generation from steam from waste heat is reported as part of its original fuel source.
- n. Intensity values have been rounded so as to present the estimated level of accuracy.
- o. Adapted from StatCan Data Table 25--10-0021-001 (2005-2018) or Cat. No. 57-202-XIB (1990-2004).
- p. Includes transmission line losses, metering differences and other losses.
- q. The electric utility sector's share of emissions from electrical equipment from CRF Category 2.F.viii (Production and Consumption of Halocarbons and SF₆).
- r. Consumption intensity values are impacted by unallocated energy and SF_θ transmission emissions.

TABLES

	1990	2000	2005	2013	2014	2015	2016	2017	2018a
<u> </u>				Greenho	ouse Gas Emi	ssionsb			
				kt (O₂equivalen	t			
Combustion	156	105	91	64	83	118	68	62	67
Coal	-	-	-	-	-	-	-	-	-
Natural Gas	х	х	х	х	4.82	6.17	7.71	7.71	3.86
Other Fuels ^c	х	х	х	х	78	112	61	54	63
Other Emissions ^d	0	2	5	-	-	-	-	-	_
Overall Total ^{e, f, g}	156	106	96	64	83	118	68	62	67
				Electri	icity Generat	ion ^{h, i}			
					GWh				
Combustion ^j	227	195	78	84	109	161	163	158	167
Coal	_	_	-	_	-	-	_	-	_
Natural Gas	-	15.8	23.3	5.77	7.53	10.7	31.3	31.2	66.1
Other Fuels	227	179	54	79	102	150	131	127	100
Nuclear	-	_	-	-	-	-	-	-	-
Hydro	226	247	259	263	234	164	243	249	253
Other Renewables ^k	-	-	-	-	-	-	-	-	-
Other Generation ^{I, m}	-	-	-	-	-	-	-	-	-
Overall Total ^f	453	442	337	347	343	325	406	408	420
				Greenh	ouse Gas Int	ensity ⁿ			
			Generatio	n Intensity (g	GHG / kWh e	lectricity gen	erated)		
CO ₂ intensity (g CO ₂ / kWh)	340	240	280	180	240	360	170	150	160
CH ₄ intensity (g CH ₄ / kWh)	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01
N ₂ O intensity (g N ₂ O / kWh)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Generation Intensity (g CO ₂ eq / kWh) ^f	350	240	280	180	240	360	170	150	160
					Losses				
Unallocated Energy (GWh)°, p	21	21	19	17	58	9	36	26	7
SF ₆ Emissions (kt CO ₂ eq) ^q	-	-	-	_	-	-	_	-	-
		,	Consumpt	tion Intensity	(g GHG / kWh	electricity co	onsumed)		
Consumption Intensity (g CO ₂ eq / kWh) ^r	360	250	300	190	290	370	180	160	160

- Indicates no emissions or no electricity generation
- 0 Indicates emissions or electricity generation value less than 0.1
- a. Preliminary data.
- b. Emissions based on data taken from the Report on Energy Supply-Demand in Canada, Catalogue No. 57-003-XIB, Statistics Canada.
- c. Includes GHG emissions from the combustion of refined petroleum products (light fuel oil, heavy fuel oil, and diesel), petroleum coke, still gas and other fuels not easily categorized.
- d. GHG emissions from on-site combustion of fuel not directly related to electricity generation.
- e. GHG emissions from the flooding of land for hydro dams are not included.
- f. Totals may not add up to overall total due to rounding.
- g. Any CO₂ captured for the purpose of long term storage is not included in the total
- h. Taken from StatCan Data Tables 25-10-0019-01 and 25-10-0020-01 (2005-2018).
- i. Taken from the Electric Power Generation, Transmission and Distribution (EPGTD) publication, Catalogue No. 57-202-XIB, Statistics Canada (for 1990–2004).
- j. From 2014 onward, this includes the electricity generated from the by-product steam associated with the fuel combustion. Prior to 2014, it was not possible to break this data into the original fuel source, so it was included in Other Generation.
- k. Other Renewables—includes electricity generation by wind, tidal and solar.
- I. NAICS category 221119, Other Electric Power Generation.
- m. Prior to 2014, this includes electricity generation from steam from waste heat. From 2014 onward, electricity generation from steam from waste heat is reported as part of its original fuel source.
- n. Intensity values have been rounded so as to present the estimated level of accuracy.
- o. Adapted from StatCan Data Table 25--10-0021-001 (2005-2018) or Cat. No. 57-202-XIB (1990-2004).
- p. Includes transmission line losses, metering differences and other losses.
- $q. \ \ \, \text{The electric utility sector's share of emissions from electrical equipment from CRF Category 2.F.viii (Production and Consumption of Halocarbons and SF_6)}.$
- r. Consumption intensity values are impacted by unallocated energy and SF₆ transmission emissions.

	1990	2000	2005	2013	2014	2015	2016	2017	2018a
				Greenho	use Gas Em	issions ^b	'		
	kt CO₂ equivalent								
Combustion	**	**	х	х	118	113	135	137	164
Coal	**	**	-	-	-	-	-	-	_
Natural Gas	**	**	Х	х	-	-	-	-	-
Other Fuels ^c	**	**	х	х	118	113	135	137	164
Other Emissions ^d	**	**	-	-	_	-	-	-	-
Overall Total ^{e, f, g}	**	**	х	х	118	113	135	137	164
				Electri	city General	tion ^{h, i}			
					GWh				
Combustion ^j	**	**	142	98	158	157	189	190	194
Coal	**	**	-	_	_	_	-	-	_
Natural Gas	**	**	-	-	_	_	-	-	_
Other Fuels	**	**	142	98	158	157	189	190	194
Nuclear	**	**	-	-	_	-	-	-	-
Hydro	**	**	-	-	-	-	-	-	-
Other Renewables ^k	**	**	-	-	-	-	-	-	-
Other Generation ^{I, m}	**	**	-	-	-	-	-	-	-
Overall Total ^f	**	**	142	98	158	157	189	190	194
				Greenh	ouse Gas Int	ensity ⁿ			
			Generatio	n Intensity (g	GHG / kWh e	electricity gen	erated)		
CO ₂ intensity (g CO ₂ / kWh)	**	**	Х	700	740	720	710	720	840
CH ₄ intensity (g CH ₄ / kWh)	**	**	Х	0.0	0.0	0.0	0.0	0.0	0.0
N ₂ O intensity (g N ₂ O / kWh)	**	**	Х	0.0	0.0	0.0	0.0	0.0	0.0
Generation Intensity (g CO ₂ eq / kWh) ^f	**	**	х	700	750	720	710	720	840
					Losses				
Unallocated Energy (GWh) ^{o, p}	**	**	7	2	5	5	6	9	10
SF ₆ Emissions (kt CO ₂ eq) ^q	**	**	-	_	-	-	-	-	-
			Consump	tion Intensity	(g GHG / kWh	electricity co	onsumed)	,	
Consumption Intensity (g CO ₂ eq / kWh) ^r	**	**	880	710	770	750	740	760	890

- Indicates no emissions or no electricity generation
- 0 Indicates emissions or electricity generation value less than 0.1
- * For years where unallocated energy data was not available, values were interpolated
- ** Data is only available aggregated with Northwest Territories. Please refer to table A13-13 for values.
- a. Preliminary data
- b. Emissions based on data taken from the Report on Energy Supply-Demand in Canada, Catalogue No. 57-003-XIB, Statistics Canada.
- c. Includes GHG emissions from the combustion of refined petroleum products (light fuel oil, heavy fuel oil, and diesel), petroleum coke, still gas and other fuels not easily categorized.
- d. GHG emissions from on-site combustion of fuel not directly related to electricity generation.
- e. GHG emissions from the flooding of land for hydro dams are not included.
- f. Totals may not add up to overall total due to rounding.
- g. Any CO_2 captured for the purpose of long term storage is not included in the total
- h. Taken from StatCan Data Tables 25-10-0019-01 and 25-10-0020-01 (2005-2018).
- i. Taken from the Electric Power Generation, Transmission and Distribution (EPGTD) publication, Catalogue No. 57-202-XIB, Statistics Canada (for 1990–2004).
- j. From 2014 onward, this includes the electricity generated from the by-product steam associated with the fuel combustion. Prior to 2014, it was not possible to break this data into the original fuel source, so it was included in Other Generation.
- k. Other Renewables—includes electricity generation by wind, tidal and solar.
- I. NAICS category 221119, Other Electric Power Generation.
- m. Prior to 2014, this includes electricity generation from steam from waste heat. From 2014 onward, electricity generation from steam from waste heat is reported as part of its original fuel source.
- n. Intensity values have been rounded so as to present the estimated level of accuracy.
- o. Adapted from StatCan Data Table 25--10-0021-001 (2005-2018) or Cat. No. 57-202-XIB (1990-2004).
- p. Includes transmission line losses, metering differences and other losses.
- q. The electric utility sector's share of emissions from electrical equipment from CRF Category 2.F.viii (Production and Consumption of Halocarbons and SF₆).
- r. Consumption intensity values are impacted by unallocated energy and SF₆ transmission emissions.

REFERENCES

Annex 8, Rounding Protocol

ICF Consulting. 2004. *Quantitative Assessment of Uncertainty in Canada's National GHG Inventory Estimates for 2001*. Unpublished report. Contract No.: K-2362-3-0060. Submitted to Environment Canada.

ICF Consulting 2005. Quantitative Assessment of Uncertainty in Canada's National GHG Inventory Estimates for 2001—Supplementary Analysis. Unpublished report. Contract No.: K2362-04-0121. Submitted to Environment Canada.

[IPCC] Intergovernmental Panel on Climate Change. 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK): Cambridge University Press.

[IPCC] Intergovernmental Panel on Climate Change. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme. Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K, editors. Kanagawa (JP): Institute for Global Environmental Studies. Available online at www.ipcc-nggip.iges.or.jp/public/2006gl/index.html.

[IPCC/OECD/IEA] Intergovernmental Panel on Climate Change, Organisation for Economic Co-operation and Development, and International Energy Agency. 1997. *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories*. Available online at http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.html.

Annex 10, Canada's Greenhouse Gas Emission Tables by Canadian Economic Sector, 1990–2018

Cheminfo Services Inc., and Clearstone Engineering Ltd. 2014. Compilation of a National Inventory of Greenhouse Gas and Fugitive VOC Emissions by the Canadian Coal Mining Industry. Final report submitted to the Energy Group, PIRD, Environment Canada.

[CEEDC] Canadian Energy and Emissions Data Centre. 2019. CEEDC Database on Energy, Production and Intensity Indicators for Canadian Industry. [cited 2019 Nov 20]. Available online at: https://cieedacdb.rem.sfu.ca/naics-database-download/.

Environment Canada. 2014. *Technical Report on Canada's Upstream Oil and Gas Industry. Vols.* 1 – 4. Prepared for

Environment Canada. Calgary (AB): Clearstone Engineering Ltd.

Statistics Canada. 2003 - . Report on Energy Supply and Demand in Canada. Catalogue No. 57-003-X. Available online at: http://www5.statcan.gc.ca/olc-cel/olc.action?objld=57-003-X&objType=2&lang=en&limit=0.

Statistics Canada. 2019. *Table 25-10-0017-01 Electric Power generation, annual fuel consumed by electric utility thermal plants.* Available online at: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=2510001701.

Annex 13, Electricity in Canada: Summary and Intensity Tables

Statistics Canada. *Electric Power Generation, Transmission and Distribution* (annual). Catalogue No. 57-202-X.

Statistics Canada. *Report on Energy Supply and Demand in Canada* (annual). Catalogue No. 57-003-X.

Statistics Canada. Table 25-10-0019-01 Electricity from fuels, annual generation by electric utility thermal plants. [released 2018 October 31, accessed 2019 February 14].

Statistics Canada. Table 25-10-0020-01 Electric power, annual generation by class of producer. [release 2018 October 31, accessed 2019 February 14].

Statistics Canada. Table 25-10-0021-01 Electric power, electric utilities and industry, annual supply and disposition [released 2018 October 31, accessed 2019 February 14].

Statistics Canada. Table 25-10-0017-01 Electric power generation, annual fuel consumed by electric utility thermal plants [released 2018 October 31, accessed 2019 February 14].