Assignment 6

1

EE24BTECH11049 Patnam Shariq Faraz Muhammed

1) If \rightarrow denotes increasing order of intensity, then the meaning of the words [dry \rightarrow arid \rightarrow parched] is analogous to [diet \rightarrow fast \rightarrow _____]. Which one of the

c) feast

d) deny

given options is approriate to fill the blank?

b) reject

a) starve

2)	If two distinct non $(x - y)$ then the val		d y are such that (x	+ y) is proportional to
	a) depends on xyb) depends only onc) depends only ond) is a constant	x and not on y		
3)	Consider the follow 9, 18, 11, 14, 15, 1 The median of the		es:	
	a) 13.5	b) 14	c) 11	d) 18.7
4)				minations that a person ge of money in 5 rupee
	a) 21 %	b) $14\frac{2}{7}\%$	c) 10 %	d) 30 %
5)	For positive non-ze	ero real variables p and	and q , if	
		$\log p^2 + q^2 = \log p^2 + q^2 + q^2 = \log p^2 + q^2 + q^2 = \log p^2 + q^2 + $	$g p + \log q + 2\log 3$	
	then, the value of 1	$\frac{p^4+q^4}{p^2q^2}$ is		
	a) 79	b) 81	c) 9	d) 83
6)	blanks. Steve was advised	to keep his head (i) head (iii) ba	before headi	e best match for all the ng (ii) to bat; do so with a cool head

- b) (i) on (ii) down (iii) for (iv) on
- c) (i) down (ii) out (iii) for (iv) on
- d) (i) on (ii) out (iii) on (iv) for
- 7) A rectangular paper sheet of dimensions $54cm \times 4cm$ is taken. The two longer edges of the sheet are joined together to create a cylindrical tube. A cube whose surface area is eqal to the area of the sheet is also taken.

Then, the ratio of the volume of the cylindrical tube to the volume of the cube is

- a) $\frac{1}{\pi}$
- b) $\frac{2}{\pi}$
- c) $\frac{3}{\pi}$
- d) $\frac{4}{\pi}$
- 8) The pie chart presents the percentage contribution of different macro-nutrients to a typical 200 kCal diet of a person.

The typical energy density (kCal/g) of these macro-nutrients is given in the table.

Macronutrient	Energy density (kCal/g)
Carbohydrates	4
Proteins	4
Unsaturated fat	9
Saturated fat	9
Trans fat	9

The total fat (all three types), in grams, this person consumes is

- a) 44.4
- b) 77.8
- c) 100
- d) 3,600
- 9) A rectangular paper of $20cm \times 8cm$ is folded 3 times. Each fold is made along the line of symmetry, which is perpendicular to its long edge. The perimeter of the final folded sheet (in cm) is
 - a) 18

b) 24

c) 20

- d) 21
- 10) The least number of squares to be added in the figure to make AB a line of symmetry is

a) 6

b) 4

c) 5

d) 7

11) The following system of linear equations

$$7x - 3y + z = 0$$

$$3x - y + z = 0$$

$$x - y - z = 0$$

has

- a) infinitely many solutions
- c) no solution

b) a unique solution

- d) three solutions
- 12) The acceleration of a body travelling in a straight line is given by

$$\alpha = -C_1 - C_2 v^2$$

where v is the velocity, and C_1, C_2 are positive constants. Starting with an initial positive velocity v_0 , the distance travelled by the body before before coming to rest for the first time:

a)
$$\frac{1}{2C_2}ln\left(1 + \frac{C_2}{C_1}v_0^2\right)$$

b) $\frac{1}{2C_2}ln\left(1 - \frac{C_2}{C_1}v_0^2\right)$

c)
$$\frac{1}{2C_2}ln(C_1 + C_2v_0^2)$$

d) $\frac{1}{2C_2}ln(1 + C_2v_0^2)$

b)
$$\frac{1}{2C_2}ln\left(1-\frac{C_2}{C_1}v_0^2\right)$$

d)
$$\frac{1}{2G}ln(1+C_2v_0^2)$$

13) The three dimensional stress-strain relationship for an isotropic material is given as

$$\begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{yz} \\ \tau_{xz} \\ \tau_{xy} \end{pmatrix} = \begin{pmatrix} P & Q & Q & 0 & 0 & 0 \\ Q & P & Q & 0 & 0 & 0 \\ Q & Q & P & 0 & 0 & 0 \\ 0 & 0 & 0 & R & 0 & 0 \\ 0 & 0 & 0 & 0 & R & 0 \\ 0 & 0 & 0 & 0 & 0 & R \end{pmatrix} \begin{pmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ \epsilon_{zz} \\ \epsilon_{yz} \\ \epsilon_{xz} \\ \epsilon_{xy} \end{pmatrix}$$

where, P, Q and R are the three elastic constants, σ and τ represent normal and shear stresses, and ϵ and γ represent normal and engineering shear strains. Which one of the following options is correct?

a)
$$R = \frac{P - Q}{2}$$
 b) $R = \frac{Q - P}{2}$ c) $Q = \frac{P - R}{2}$ d) $Q = \frac{R - P}{2}$

b)
$$R = \frac{Q - R}{2}$$

c)
$$Q = \frac{P-1}{2}$$

d)
$$Q = \frac{R - P}{2}$$