Foundations of Machine Learning

Module 5:

Part B: Introduction to Support Vector Machine

Sudeshna Sarkar IIT Kharagpur

Support Vector Machines

- SVMs have a clever way to prevent overfitting
- They can use many features without requiring too much computation.

Logistic Regression and Confidence

Logistic Regression:

$$p(y = 1|x) = h_{\beta}(x) = g(\beta^T x)$$

- Predict 1 on an input x iff $h_{\beta}(x) \geq 0.5$, equivalently, $\beta^T x \geq 0$
- The larger the value of $h_{\beta}(x)$, the larger is the probability, and higher the confidence.
- Similarly, confident prediction of y = 0 if $\beta^T x \ll 0$
- More confident of prediction from points (instances) located far from the decision surface.

Preventing overfitting with many features

- Suppose a big set of features.
- What is the best separating line to use?
- Bayesian answer:
 - Use all
 - Weight each line by its posterior probability
- Can we approximate the correct answer efficiently?

Support Vectors

- The line that maximizes the minimum margin.
- This maximum-margin separator is determined by a subset of the datapoints.
 - called "support vectors".
 - we use the support vectors to decide which side of the separator a test case is on.

The support vectors are indicated by the circles around them.

Functional Margin

- Functional Margin of a point (x_i, y_i) wrt (w,b)
 - Measured by the distance of a point (x_i, y_i) from the decision boundary (w,b) $\gamma^i = y_i(w^T x_i + b)$

$$\gamma^i = y_i(w^T x_i + b)$$

- Larger functional margin →more confidence for correct prediction
- Problem: w and b can be scaled to make this value larger
- Functional Margin of training set $\{(x_1,y_1), (x_2,y_2), ..., (x_m,y_m)\}$ wrt (w,b) is $\gamma = \min \gamma^l$ $1 \le i \le m$

Geometric Margin

- For a decision surface (w,b)
- the vector orthogonal to it is given by w.
- The unit length orthogonal vector is $\frac{w}{\|w\|}$ • $P = Q + \gamma \frac{w}{\|w\|}$

Geometric Margin

$$P = Q + \gamma \frac{w}{\|w\|}$$

$$(b1,b2) = (a1,a2) - \gamma \frac{w}{\|w\|}$$

$$\to w^{T} \left((a1,a2) - \gamma \frac{w}{\|w\|} \right) + b = 0$$

$$\to \gamma = \frac{w^{T}(a1,a2) + b}{\|w\|}$$

$$= \frac{w}{\|w\|^{T}} (a1,a2) + \frac{b}{\|w\|}$$

$$= \frac{w}{\|w\|^{T}} (a1,a2) + \frac{b}{\|w\|}$$

$$\gamma = y. \left(\frac{w}{\|w\|^{T}} (a1,a2) + \frac{b}{\|w\|} \right)$$

Geometric margin : ||w|| = 1Geometric margin of (w,b) wrt S={ (x_1,y_1) , (x_2,y_2) , ..., (x_m,y_m) } -- smallest of the geometric margins of individual points. Maximize margin width o denotes +1

denotes +1

Assume linearly separable training examples.

 The classifier with the maximum margin width is robust to outliners and thus has strong generalization ability

Maximize Margin Width

- Maximize $\frac{\gamma}{\|w\|}$ subject to $y_i(w^Tx_i + b) \ge \gamma$ for i = 1, 2, ..., m
- Scale so that $\gamma = 1$ Maximizing $\frac{1}{\|w\|}$ is the same as minimizing $\|w\|^2$
- Minimize w.w subject to the constraints
- for all (x_i, y_i) , i = 1,...,m:

$$w^{T}x_{i} + b \ge 1 \text{ if } y_{i} = 1$$

 $w^{T}x_{i} + b \le -1 \text{ if } y_{i} = -1$

Large Margin Linear Classifier

• Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

such that

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$

Solving the Optimization Problem

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

s.t.
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$

- Optimization problem with convex quadratic objectives and linear constraints
- Can be solved using QP.
- Lagrange duality to get the optimization problem's dual form,
 - Allow us to use kernels to get optimal margin classifiers to work efficiently in very high dimensional spaces.
 - Allow us to derive an efficient algorithm for solving the above optimization problem that will typically do much better than generic QP software.