

A carga é uma propriedade elétrica das partículas atômicas que compõem a matéria.

Carga elementar (A menor carga que se pode isolar): $e=1.6\cdot 10^{-19}\ C$ A carga é medida em Columbs (C)

Corrente elétrica é a denominação dada ao fluxo de cargas, representado pela letra "i", cuja unidade é o Ampère (A).

Corrente (A)	Tensão (V)
$i = \frac{dq}{dt}$	$v = \frac{d\omega}{dq}$

Potência (W)	Energia (J)
$p = \frac{d\omega}{dt}$	$\omega = \int p dt$

- Para a corrente indicamos a direção do fluxo da corrente
- Para a tensão indicamos a polaridade
- Potência é a velocidade com que se consome energia

•
$$p = v \cdot i$$

Convenção passiva: Sempre que a direção de referência para a corrente em um elemento estiver na queda de tensão, use um sinal positivo em qualquer expressão que relacione tensão com a corrente. Caso contrário (elevação de tensão) use um sinal negativo.

Caracterização dos bipolos pela potência

Interpretação do sinal algébrico da potência

Se o sinal for **positivo** o bipolo está absorvendo potência (i.e. comportamento de uma lâmpada)

Se o sinal for **negativo** o bipolo está fornecendo potência (i.e. comportamento de uma pilha ideal)

- A **tensão** sempre será medida em **paralelo** (mensura a diferença de potencial)
- A corrente sempre será medida em série utilizar um bypass (mensura o fluxo de cargas)

Simbologia

A lista de simbologias em circuitos é muito extensa, abaixo os símbolos básicos

Fontes de tensão Independente	Fontes de corrente Independente	Fontes de corrente e tensão – dependentes
+		+
Capacitores	Resistores	Indutores
<u>+</u>	\{\bar{\}}	7777

Modelos de fontes

- A fontes são representações gráficas de modelos matemáticos
- Estão presentes em circuitos que representam pilhas, motores, transistores e etc.
- São capazes de converter energia elétrica em não elétrica e vice versa, ou seja podem fornecer ou absorver potência.

Representações gráficas de fontes ideais

Fontes de tensão	Fontes de corrente	Fontes de corrente e
Independente	Independente	tensão – dependentes
+		+

Fontes (Tensão independente) ◄

Fonte de Tensão independente é um elemento de circuito que mantém a tensão prescrita em seus terminais independente da corrente.

Alguns exemplos

Em uma fonte de tensão independente o valor da **tensão é fixo**, porém a **corrente pode variar**.

Fontes (Corrente independente) ◄

Fonte de Corrente independente é um elemento de circuito que mantém a corrente prescrita independente da tensão em seus terminais.

Alguns exemplos

Em uma fonte de corrente independente o valor da corrente é fixo, porém a tensão pode variar.

Interconexões entre fontes ideais

Exercício: Verifique se as conexões abaixo são permissíveis ou não permissíveis

Interconexões entre fontes ideais

Exercício: Verifique se as conexões abaixo são permissíveis ou não permissíveis

Lei de Ohm

A partir de medidas experimentais, Simon Ohm concluiu de que todos os materiais sujeitos a uma diferença de potencial, apresentam uma resistência R de valor constante à passagem da corrente elétrica. O fluxo de cargas cresce proporcionalmente ao valor da tensão aplicada, obedecendo à equação abaixo:

$$v = R \cdot i$$
 ou $R = \frac{v}{i}$

Resistência Elétrica (Ω)

- Resistência elétrica é a propriedade dos materiais de se opor ao fluxo de cargas elétricas.
- A resistência é representada pela letra R, cuja a unidade é o Ohms (Ω)

Representação gráfica de uma resistência

Resistor

- O resistor é um bipolo receptor, ou seja, apenas dissipa energia
- A corrente sempre estará no sentido de queda de tensão em um resistor
- A potência de um resistor sempre será positiva

Lei de Ohm

Exercício: Analise o comportamento da tensão e corrente nos casos abaixo:

$$\infty > R_{ab} > 0$$

$$R_{ab} = 0$$

Curto circuito (a-b)

$$R_{ab} = \infty$$

Circuito aberto (a-b)

Lei de Ohm

Exercício: Analise o comportamento da tensão e corrente nos casos abaixo:

$$\infty > R_{ab} > 0$$

 $v = R \cdot i$

i = 3mA

Se $R = 10K\Omega e v = 30V$

$$R_{ab} = 0$$

$$R_{ab} = \infty$$

Curto circuito (a-b)

Não há conversão de energia

$$v_{ab} = R_{ab} \cdot i \quad (R = 0)$$

 $v_{ab} = 0$
 $i \rightarrow max$

Circuito aberto (a-b)

Não há fluxo de corrente

$$i = \lim_{R_{ab} \to \infty} \frac{v_{ab}}{R_{ab}} = 0$$

$$v_{ab} \rightarrow max$$

Resistor variável

A resistividade em um condutor, varia em relação ao coeficiente de resistividade elétrica, em relação ao comprimento e a área da secção.

Este característica pode ser utilizada em resistores variáveis – Reostatos, potenciômetros ou resistor variável

2ª Lei de Ohm

Potenciômetro

Simbologia de um reostato

Curva característica Corrente x Tensão

Curva característica corrente-tensão é um gráfico que representa a relação entre a tensão aplicada e a corrente fluindo através de um componente, circuito ou material.

Exercício: Indique o componente correspondente a cada gráfico

Curva característica Corrente x Tensão

Curva característica corrente-tensão é um gráfico que representa a relação entre a tensão aplicada e a corrente fluindo através de um componente, circuito ou material.

Exercício: Indique o componente correspondente a cada gráfico

Variações da lei de Ohms x Potência ◀

Lei de ohm

$$v = R \cdot i \ \therefore \ i = \frac{v}{R}$$

Potência

$$p = v \cdot i$$

Potência em um resistor

$$p = v \cdot \left(\frac{v}{R}\right) = \frac{v^2}{R}$$

$$p = i \cdot (R \cdot i) = i^2 \cdot R$$

Comportamento Ôhmico x Não Ôhmico

Comportamento Ôhmico é aquele que respeita a Lei de Ohm ($v = R \cdot i$). Existem diversos componentes, como por exemplo o resistor, possuem o comportamento Ôhmico em sua essência, entretanto nem todo os componentes apresentam tal característica.

Em alguns casos podemos aproximar o comportamento de um componente a um comportamento Ôhmico.

Quando um componente ou circuito apresenta comportamento Ôhmico, pode ser substituído por um resistor

Comportamento Ôhmico

Comportamento Não Ôhmico

PROF. HENRIQUE AMORIM

Exercício <

Exercício: Encontre o valor da corrente "i" e a potencia da fonte.

Exercício: Um apontador de lápis elétrico de 240mW/6V é conectado a uma bateria de 9V. Calcule o valor da resistência para que a queda de tensão permita que o apontado funcione de forma adequada

$$R_X = 75\Omega$$

Exercício: João quer "tunar" seu carro, para tal irá utilizar a bateria do carro (**12V**) para ligar um LED alto brilho. Desenhe o circuito.

*** Considere que o LED alto brilho possui as seguintes características: 60mW/3V.

$$R_X = 450\Omega$$

Exercício: Encontre o valor da corrente "i" e a potencia da fonte.

$$i = \frac{v}{R} = \frac{30}{5000} = 6mA$$

$$v_R = 3m \cdot 10K = 30V$$

$$P = v \cdot i = 30 \cdot 6m = -180mW$$

$$P = v \cdot i = 30 \cdot 3m = -90mW$$

Exercício: Um apontador de lápis elétrico de 240mW/6V é conectado a uma bateria de 9V. Calcule o valor da resistência para que a queda de tensão permita que o apontado funcione de forma adequada

$$V_{Rx} = 9 - 6 = 3V$$

$$P_{motor} = v \cdot i$$

$$240m = 6 \cdot i_{motor}$$

$$i_{motor} = 40mA$$

$$R_{\chi} = \frac{v}{i}$$

$$R_{x} = \frac{3}{40m}$$

$$R_x = 75\Omega$$

Exercício: João quer "tunar" seu carro, para tal irá utilizar a bateria do carro (12V) para ligar um LED alto brilho. Desenhe o circuito Considere que o LED alto brilho possui as seguintes características: 60mW/3V.

$$V_{Rx} = 12 - 3 = 9V$$

$$P_{LED} = v \cdot i$$

$$60m = 3 \cdot i_{LED}$$

$$i_{LED} = 20mA$$

$$R_{\chi} = \frac{v}{i}$$

$$R_{\chi} = \frac{9}{20m}$$

$$R_x = 450\Omega$$