CONVERSIÓN ANALÓGICO-DIGITAL

ELEMENTOS EN UN SISTEMA MUESTREADO DE DATOS

Fuente: Application Note AN-282 Analogue Devices.

SEÑALES ANALÓGICAS Y SEÑALES DISCRETAS

(a) Onda acústica original (función seno) con los puntos de muestreo en intervalos de tiempo regulares (eje X); (b) valores muestreados; (c) representación digital de la onda según los valores de la figura b; (d) reconstrucción de la señal analógica mediante la utilización de un filtro pasa-bajo para suavizar los cambios escalonados (altas frecuencias) de la señal c.

EFECTO DE LA CUANTIFICACIÓN

EFECTO DE LA FRECUENCIA DE MUESTREO (aliasing)

ERRORES EN CONVERSORES DAC

CONVERTIDOR DAC CON RESISTENCIAS PONDERADAS

CONVERTIDOR DAC CON ESTRUCTURA R-2R

MUESTREO Y RETENCIÓN

CONVERTIDOR ADC DE TIPO FLASH

Two-step flash ADC

- ☐ Greatly reduce the number of comparators
 - Ex: for an 8-bit ADC, comparator no. $255 \Rightarrow 30$

CONVERTIDOR ADC DE TIPO HALF-FLASH

CONVERTIDOR ADC DE RAMPA EN ESCALERA (contador ascendente)

CONVERTIDOR ADC DE SEGUIMIENTO (contador de cuenta reversible)

SC= START CONVERSION EOC= END OF CONVERSION

CONVERTIDOR ADC DE APROXIMACIONES SUCESIVAS

Table 12.4 8-Bit Successive Approximation Conversion

Bit	New Digital Value	Analog Equivalent	$V_{analog} \ge V_{DAC}$?	Comparator Output	Accumulated Digital Value
Q_7	10000000	6 V	Yes	1	10000000
Q_6	11000000	9 V	Yes	1	11000000
Q5	11100000	10.5 V	No	0	11000000
Q_4	11010000	9.75 V	No	0	11000000
Q_3	11001000	9.375 V	Yes	1	11001000
Q_2	11001100	9.5625 V	No	0	11001000
Q_1	11001100	9.46875 V	Yes	1	11001010
Q_0	11001011	9.515625 V	No	0	11001010

Successive Approximation A/D Conversion

CONVERTIDOR ADC DE DOBLE RAMPA

FIRST-ORDER SIGMA-DELTA ADC

CONVERTIDOR ADC SIGMA-DELTA (Σ - Δ)

$$V_{IN} = + \frac{V_{ref}}{2}$$
$$= 3/4$$
$$= 6/8$$

SYSTEM ARCHITECTURE	RESOLUTION	SPEED	MAXIM ADCs	ADVANT AGE S/DR AWBAC KS	
Flash	8 bits	250Msps=1Gsps	MAX100 MAX101A MAX104*	+ Extremely fast + High input bandwidth - Highest power consumption - Large die size - High input capacitance - Expensive - Sparkle codes**	
SAR	10 bits-16 bits	76ksps-250ksps	MAX195 MAX144(MAX145 MAX115* MAX157(MAX159 MAX186(MAX188	+ High resolution and accuracy + Low power consumption + Few external components - Low imput bandwidth - Limited sampling rate - V _W must remain constant during conversion	
Integrating	> 18 bits	< 50ksps	MAX132 MAX135	High resolution Low supply current Excellent noise rejection Low speed	
Sigma-Delta (Σ-Δ)	> 16 bits	> 200ksps	MAX1400 + High resolution + High input bandwidth + Digital on-chip filtering - External T/H - Limited sampling rate		
Pipalins	12 bits-16 bits	1Mps=80Msps	MAX1200 MAX1201 MAX1205	High throughput rate Low power consumption Digital error correction and on-chip self-calibration Requires 50 % duty cycle typical Requires minimum clock frequency	

^{*}Future product—contact factory for amilability:

^{**}Sparkle codes are erratic errors caused by metastable comparators or out-of-sequence output codes (thermometer bubbles), which in turn are