Chap. 4 Properties of Regular Languages

Agenda of Chapter 4

How general are regular languages?
What happens when we perform operations on regular languages?
How can we tell whether a given language is regular or not?

- Closure Properties of Regular Languages
- Elementary Questions about Regular Languages
- Identifying Nonregular Languages
 - Using the Pigeonhole Principle
 - A Pumping Lemma

Closure under Simple Set Operations (1/3)

- Closure property under an operation
 - For any given two elements x, y in a set S,
 - $(x \star y)$ is also in $S \Leftrightarrow S$ is closed under the operation \star

[THEOREM 4.1]

Regular languages is closed under \$\mathcal{U}_{\color}^{\color}\), concatenation , c , *.

- \Leftrightarrow Let L₁, L₂ are regular languages.
 - Then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1^c and L_1^* . \longrightarrow Regular 1 12
- Proof) 😽 💝
 - 1. Closure under union, concatenation and star-closure are immediate. (Use regular expressions!)
 - 2. Closure under complementation who we will be a let $M=(Q,\Sigma,\delta,q_0,F)$ be a dfa that accepts L_1 . Then $M^c=(Q,\Sigma,\delta,q_0,Q-F)$ accepts L_1^c

Log occupt the I reject

Mr & (Qt, a) = (

Closure under Simple Set Operations (2/3)

Proof continued)

3. Closure under intersection

Let
$$L_1=L(M_1)$$
 and $M_1=(Q,\Sigma,\delta_1,q_0,F_1)$ M_1 and $M_2=(P,\Sigma,\delta_2,p_0,F_2)$ M_2 and $M_3=(P,\Sigma,\delta_2,p_0,F_2)$

Then we can construct a combined fa M' accepting $L_1 \cap L_2$

Set
$$M' = (Q', \Sigma, \delta', (q_0, p_0), F')$$
 where $A \in A$ and $A \in A$ when $A = \{(q_i, p_j) | q_i \in F_1, p_j \in F_2\}$ when $A = \{(q_i, p_j) | q_i \in F_1, p_j \in F_2\}$ when $A = \{(q_i, p_j) | q_i \in F_1, p_j \in F_2\}$ when $A = \{(q_i, p_j) | q_i \in F_1, p_j \in F_2\}$ when $A = \{(q_i, p_j), a\} = \{(q_i, p_j), a\} = \{(q_i, p_j), a\}$ and $A = \{(q_i, q_i), a\}$ and $A = \{(q_$

[Another proof by using other closure properties]

$$\begin{array}{c} L_{1},L_{2} \text{ regular.} \\ \end{array} \begin{pmatrix} L_{1} \cup L_{2} \\ L_{1} \cap L_{2} \end{pmatrix}, \text{ per} \\ \end{array} \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{1} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2} \\ L_{2} \cap L_{2} \\ \end{pmatrix}. \\ \begin{pmatrix} L_{1} \cup L_{2}$$

Closure under Simple Set Operations (3/3)

Ex4.1] If L_1 , L_2 are regular then $L_1 - L_2$ is regular.

[THEOREM 4.2] Regular languages is closed under eversal.

NFA

MR accepting
$$L^R: \mathcal{S}_{P}.(\mathcal{O}_{J}, \alpha) = \mathcal{O}_{I}$$
 ($\mathcal{O}_{J}, \mathcal{I}, \mathcal{S}_{P}, \mathcal{O}_{F}, \mathcal{I}, \mathcal{O}_{O}$).

All accepting $L: \mathcal{S}(\mathcal{O}_{I}, \alpha) = \mathcal{O}_{J}$ ($\mathcal{O}_{J}, \mathcal{I}, \mathcal{O}_{J}, \mathcal{O$

Closure under Other Operations (1/4)

Definition] Homomorphism otes symbol all de symbol a Let Σ and Γ are alphabets. - A function $h: (\Sigma) + (\Gamma)$ is called a **homomorphism**. When $w = a_1 a_2 ... a_n$, $h(w) = h(a_1)h(a_2)...h(a_3)$ homomorphic image of a language L on Σ $h(L) = \{h(w) \mid w \in L\}$ Ex4.2] $\Sigma = \{a,b\}, \Gamma = \{a,b,c\},$ = < aa, oba homomorphism h(a)=ab, h(b)=bbch coa) = hay hay = abab. Let L={aa,aba} - Then homomorphic image of L h(L) = 7 abab, abbbeab)

Closure under Other Operations (

(2/4)

[THEOREM 4.3]

L is regular => h(1) is regular

Regular languages is closed under arbitrary homomorphism,

Ex4.3] $\Sigma = \{a,b\}$, $\Gamma = \{b,c,d\}$, h(a) = dbcc, h(b) = bdc

- A regular language L is denoted by $r=(a+b^*)(aa)^*$
- Then h(L): (dbat clots) (dba dbac)
- Thus, h(L) is Regular languages

Closure under Other Operations (3/4)

Definition] Right quotient

- $-(L_1,(L_2)$: languages on the same alphabet.
- Right quotient of L_1 with L_2 $L_1/L_2 = \{x | (xy \in L_1) \text{ for some } y \in L_2\}$

$$Ex4.4] = \begin{cases} a \text{ and about the property of th$$

Show that L_1 , L_2 and L_1/L_2 are all regular by using dfa.

Closure under Other Operations (4/4)

[THEOREM 4.4] Lib reg = Lib reg

Regular languages are closed under right quotient with a regular languages.

Proof) Let $L_1 = L(M)$, $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. Construction of dfa $M' = (Q, \Sigma, \delta, q_0, F') \rightarrow \frac{1}{2} + \frac{1}{2} +$

- 1. For each $q_i \in Q$, consider a dfa $M_i = (Q, \Sigma, \delta, q_i, F)$ and If there exists a $y \in L_2 \cap L(M_i)$ then add q_i to F'.
- 2. Repeat this for every $q_i \in Q$. Then we finally have F' for M'.

Verification of $L(M') = L_1/L_2$.

i)
$$\forall x \in L_1/L_2$$
, $x \in L(M')$.

ii)
$$\forall x \in L(M'), x \in L_1/L_2$$
.

Ex4.5]
$$L_1 = L(a^*baa^*), L_2 = L(ab^*)$$

 $L_1/L_2 =$

Questions on Languages

[Q1] Membership question

- Given a language L and a string w,
 can we determine whether or not w) is an element of L?
- We need a membership algorithm

[Q2] Finiteness of a language

— Is a language is empty, finite, or infinite?

[Q3] Equality of languages

— Are two languages L₁ and L₂ equal to each other?

For regular languages, we can answer to the questions

Answers for Regular Languages

[THEOREM 4.5] Given a standard representation of any regular languages L on Σ and any $w \in \Sigma^*$, there exist a membership algorithm for w and L.

Tips for Proof) Use dfa

[THEOREM 4.6] There exist an algorithm for determining the emptiness and infiniteness.

Sketch of Proof)

- 1. Find a dfa accepting the L
- 2. If there exist a path from q_0 to q_f , then L is **not empty**
- 3. Find all bases of some cycle in the dfa.
- 4. If any of the bases are on the path form q_0 to q_f , then L is **infinite**.

intenite.

Answers for Regular Languages

[THEOREM 4.7]

Given a standard representation of regular languages L_1 and L_2 , there exist an algorithm to determine whether or not $L_1=L_2$.

Sketch of Proof)

Let
$$L_3 = (L_1 \cap L_2^c) \cup (L_1^c \cap L_2) \rightarrow L_3^c$$
 power $A_1^c \rightarrow A_1^c \rightarrow A_1$

Note that L_3 is regular.

Find a dfa accepting L_3 .

$$L_3$$
 is empty $\Leftrightarrow L_1 = L_2$.

Using Pigeonhole Principle

- Pigeonhole principle
 - If we put n objects into m boxes (n>m),
 then at least one box must have more than one item.

Ex4.6] Show that $L=\{a^nb^n|n \ge 0\}$ not regular Proof using pigeon hole principle)

- Assume that L is regular. (\exists dfa M=(Q, Σ , δ ,q₀,F) accepting L)
- Note that |Q|<∞
- Take a string $w=a^nb^n$ (n>|Q|) and use pigeonhole principle

a regular layorage 中国 相對.

Theorem 4.8] Pumping Lemma for regular languages - L: an infinite regular language. Then there exists some positive integers m such that any $w \in L$ with $(|w| \ge m)$ can be decomposed as w = xyz, with $|xy| \le m$ a and $|y| \ge 1$, such that $w_i = xy^iz$ is also in L for all i = 0, 1, 2, ...

H L is. Infinite regular language.

I = fa(ab). | 120 |

Amoo such that:

Vel Clwl>m)

I a dramposition

W=xyz(lxy|\pm,

y=1)

Such that

Vi=xyz.

I = fa(ab). | 120 |

Wi=xyz.

(ab) + pompting set.).

"W=xyz.

I = xyz.

I = xyz.

I = xyz.

Wi=xy; z ∈ L

Such that Wi=xyiz is also in L.

for all i=0,1,2...

Identifying Nonregular languages

A Pumping Lemma (2/10)

Proof)

L is regular \Rightarrow There is a dfa with n+1 states $q_0, q_1, q_2, \dots, q_n$

L is infinite \Rightarrow There is a string $w \in L$, $|w| \ge m = n + D$

The sequence of states for accepting w:

$$q_0, q_i, q_j, \dots, q_r, \dots q_r, \dots, q_f,$$

$$q_0$$
 q_i

Note that there exist at least one repeated state. —

$$\delta^*(q_0,x)=q_r$$
, $\delta^*(q_r,y)=q_r$, $\delta^*(q_r,z)=q_f$, with $|xy| < n+1=m$ and $|y| > 1$

with
$$|xy| \le n+1=m$$
 and $|y| \ge 1$.

रेशेस

This immediately follows that

$$\delta^*(q_0,xz) = q_f, \ \delta^*(q_r,xy^2z) = q_f, \ \delta^*(q_r,xy^3z) = q_f, \ and so on$$

p. Lis take - Lis not regular.

A Pumping Lemma (3/10) Ling - Pl is the

- \square Proving ``L is not regular" using proof by $olimins_{\circ}$ ontradiction
 - Assume L is regular and show that pumping lemma is false.

[Steps for Proving L is not regular]

Assume L is regular.

Show that the <u>negation of pumping lemma</u> is true → contradiction!

pumping lana = #78 ~

Thus, we have the conclusion: L is not regular

[Negation of pumping Lemma]

 $\exists w \in L (|w| \ge m)$ such that

for all possible decompositions w=xyz ($|xy| \le m$, $|y| \ge 1$)

<code>∄i</code>such that w_i=xyⁱz ∉L

BE MOH STORK

A Pumping Lemma (4/10)

Ex4.7] Show that L={aⁿbⁿ|n≥0} is not regular

- Assume L is regular
- For any m, we can choose $w=a^mb^m$.
- Consider all possible decompositions of w=xyz ($|xy| \le m, |y| \ge 1$) w=a....ab....b → $y=a^k$ (1 $\le k$ $\le m$)
- For any y, set i=0 then $w_0 = xz = a^{m-k}b^m \in L$
- This implies that pumping lemma is false → contradiction!
- Thus, L is not regular.

A Pumping Lemma (5/10)

Ex4.8] Show that $L=\{ww^R|w\in\{a,b\}^*\}$ is not regular

- Assume L is regular
- For any m, we choose $w \notin (\mathcal{N}_b)$
- ww. = 0 h b b 0 h E L.
- Consider all possible decomposition of $ww^R = a^m b^{2m} a^m = xyz (xy | \le m, |y| \ge 1)$.

Since
$$ww^R = a...ab....ba...a$$
, we have $y = a^k$ ($1 \le k \le m$)

- For any $y=a^k$, set i=0, then $w_0=xz=a^{m-k}b^mb^ma^m$
- Thus, L is not regular.

A Pumping Lemma (6/10)

Ex4.9] L=
$$\{w \in \{a,b\}^* \mid n_a(w) < n_b(w)\}$$
 is not regular.

Assume Lis Agrier

 $\forall m > 0$, we chase $w = 0$ in $[m+1]$.

Consider all possible decomp of $w = 20$ p . ($[ay] \neq m$, $[y] \geq 1$).

 $y \mapsto bas$ the form. $y = a^k$ ($[ak \neq m]$).

Set $i = 0$ $w \Rightarrow b$ e .

 $i = 0$ $i = 0$

A Pumping Lemma (7/10)

Ex4.10] L= $\{(ab)^n a^k | n > k, k \ge 0\}$ is not regular OMEL (.. MI-SEM.) Ymx, we choose w= (ab) m+1 cm. EL. (Iwl>m.) Consider + possible decomb of $w = xy_2$. ($|xy| \le m$., $|y| \ge 1$) 7 (W+1.) + i= 2z= (db) mth - x / 1 20 Hyeyoung Park, School of CSE, KNU

A Pumping Lemma (8/10)

Ex4.11] L= $\{a^{n!}|n\geq 0\}$ is not regular

Assume.
$$L$$
 is regular. $(m\geq 3)$.

 $\forall m > 0$, we choose $w = 0$ $\subseteq L$ $(|w| \geq m \cdot)$.

Consider \forall bosoible. decomposition. of $w = z \neq z$ $(|z \neq | \geq m \cdot |y| \geq 1 \cdot)$.

 $w = \alpha \cdots \alpha$

we have $y = \alpha^k$ $(| \leq k \leq m)$

set $i = 0$ $w = (mi - k) \cdot \not = L$. pumpling Lemma is false.

 $(mi - k \geq mi - m \cdot) \cdot (m - i) i$

A Pumping Lemma (9/10)

Ex4.12] L= $\{a^nb^kc^{n+k}|n\geq 0, k\geq 0\}$ is not regular

ACL) is Regular language to. Define (h(c) = a) $h(l) = \int_{-\infty}^{\infty} \int_{-\infty}^{$ Assume L is pegular

Use pumping lemma

22

A Pumping Lemma (10/10)

Ex4.13] Show that $L=\{a^nb^l|n\neq l\}$ is not regular

- Use known fact (L= $\{a^nb^n|n\ge 0\}$ is not regular)

L is regular.
$$L_1 = |\Omega^n b^n| = |C \cap L(\Omega^n b^n)| \rightarrow reg = pression$$

(Regular. Language.) $L_1 = |\Omega^n b^n|$ is regular. \longrightarrow contradiction!

 \longrightarrow L is not regular.

Use pumping lemma