Metabolische Flussanalyse Verwendung der Maximum-Entropie-Methode

Carola Heinzel

Dr. Katharina Nöh, Johann Fredrik Jadebeck

27.09.2023

Inhaltsverzeichnis

Motivation

- 2 Maximum-Entropie-Verfahren
 - Intuitive Herleitung
 - Anwendung
- 3 Ausblick

Motivation

- $\mathbf{v} \in \mathbb{R}^d$: Fluss-Vektor
- Ziel: Löse $A\mathbf{v} \leq \mathbf{b}$ und beachte dabei
 - (i) die durchschnittliche Wachstumsrate μ_{λ}
 - (ii) μ_{λ} und die empirische Varianz der Wachstumsrate σ_{λ}^2
- Dazu: Verwende *Maximum-Entropie (MaxEnt)*

MaxEnt - intuitive Herleitung im Diskreten

- K Urnen
- n_i: Anzahl Bälle in Urne i
- $N = n_1 + \ldots + n_K$: Gesamtanzahl Bälle
- ullet Ω : Anzahl Möglichkeiten N Bälle in K Urnen zu legen
- $p_i = n_i/N$: Wahrscheinlichkeit, dass ein gezogener Ball aus Urne i kommt
- Entropie $H = -\sum_{i=1}^{K} p_i \ln(p_i)$
- $\Omega=\frac{N!}{n_1!\cdots n_K!}\approx e^{HN}$ —> Maximale Anzahl an Möglichkeiten \Leftrightarrow Maximale Entropie

MaxEnt - intuitive Herleitung im Diskreten

- Teile N Kugeln zufällig auf K Urnen auf: Die wahrscheinlichsten Werte von n_1, \ldots, n_K sind diejenigen mit der maximalen Entropie
- D.h. Wähle die Dichte $p=(p_1,\ldots,p_K)$ aus, welche die maximale Entropie hat (p_{max}) .
- ullet Ohne weitere Bedingungen: p_{max} ist die Dichte der Gleichverteilung
- MaxEnt-Verteilung = Verteilung, welche die Bedingungen erfüllt und "bestmöglich" zu den Daten passt.
- Hier: Betrachte Zellen (Bälle) und ihre Flussvektoren (Urnen) mit zusätzlichen Bedingungen $\mu_\lambda, \sigma_\lambda^2$

MaxEnt - 1. Fall

- Bekannt: μ_{λ}
- $\lambda(\mathbf{v})$: Wachstumsrate
- $Z(\beta) := \int_{\mathcal{P}} e^{\beta \lambda(\mathbf{v})} d\mathbf{v}$
- MaxEnt -> Boltzmann-Verteilung

$$p(\mathbf{v}) = \frac{1}{Z(\beta)} e^{\beta \lambda(\mathbf{v})}.$$

• Bestimme β durch Lösen von

$$\frac{1}{\int_{\mathcal{P}} e^{\beta \lambda(\mathbf{v})} d\mathbf{v}} \int_{\mathcal{P}} \lambda(\mathbf{v}) e^{\beta \lambda(\mathbf{v})} d\mathbf{v} = \mu_{\lambda}$$

• Näherung:

$$\frac{1}{\int_{\mathcal{P}} e^{\beta \lambda(\mathbf{v})} d\mathbf{v}} \int_{\mathcal{P}} \lambda(\mathbf{v}) e^{\beta \lambda(\mathbf{v})} d\mathbf{v} \approx \frac{\sum_{i} \lambda(\mathbf{v}^{(i)}) e^{\beta \lambda(\mathbf{v}^{(i)})}}{\sum_{i} e^{\beta \lambda(\mathbf{v}^{(i)})}}$$

Boltzmann-Verteilung

Abb.: Dichte der Boltzmann-Verteilung für verschiedene Parameter

Relativer Monte-Carlo-Fehler

• Stichprobengröße: 1000

• Hier: zu wenig betrachtete Fälle

Abb.: Relativer Monte-Carlo-Fehler

MaxEnt - 2. Fall

- Bekannt: $\mu_{\lambda}, \sigma_{\lambda}^2$
- Dann gilt

$$p(\mathbf{v}) = c \cdot exp\left(-rac{(\lambda(\mathbf{v}) - \mu_{\lambda})^2}{2\sigma_{\lambda}^2}\right).$$

Theoretische Anwendung

- **1** Bestimme $\mu_{\lambda}, \sigma_{\lambda}^2$ aus den Daten: Regression
- **2** Bestimme $\lambda(\mathbf{v})$: Steht im Modell
- Sestimme den Parameter der Boltzmann-Verteilung: Löse die dazugehörige Gleichung Parameter der Normalverteilung: Bereits bestimmt
- **④** Finde **v**, sodass A**v** ≤ **b** mit Verwendung der Informationen $\mu_{\lambda}, \sigma_{\lambda}^{2}$: hopsy

Abb.: Bestimmung der Wachstumsrate durch Regression

Abb.: Balkendiagramm zur Darstellung der simülierten v

Zusammenfassung und Ausblick

- Haben Infos $\mu_{\lambda}, \sigma_{\lambda}^2$ zur Bestimmung von ${\bf v}$ verwendet
- ESS \approx 28, $\hat{R} \approx 1.14$
- Bestimmung der richtigen Einheiten
- ullet Fehlerschätzung der Näherung von eta
- Bestimmung des Einflusses von β und $\mu_{\lambda}, \sigma_{\lambda}^2$ auf die Ergebnisse: Wasserstein-Distanz, Vergleich von zwei Vektoren, statistische Tests?

Vielen Dank für die Aufmerksamkeit!