Math 527 Homework 3

Mathew Houser - Written Responses and Conclusions are included in the written portion of this assignment.

CE 4.1.2

Find the polynomial of degree 10 that interpolates the function arctan(x) at 11 equally spaced points in the interval [1,6].

```
p_{10}(x) =
x=linspace(1,6,11);
y=atan(x);
mx = length(x);
my = length(y);
       if mx ~= my, error('Input vectors must be the same length');
T=zeros(mx, mx);
T(:,1) = y';
for j = 2:mx
      for i = 1: (mx-j+1)
             T(i,j) = (T(i+1,j-1)-T(i,j-1))/(x(i+j-1)-x(i));
      end
end
a=T(1,:);
fprintf('Coefficient of the Newton Interpolating Polynomial\n\n')
for i = 1:length(a)
       fprintf('5.0f\t{15.10f\n'}, i-1,a(i));
end
```

Print the coefficients in the Newton form of the polynomial.

```
Coefficient of the Newton Interpolating Polynomial
      n
           Coefficient
      0
            0.7853981634
      1
          0.3947911197
          -0.1460811306
           0.0424357369
         -0.0099989661
       5
          0.0019334873
       6
          -0.0003029475
          0.0000359312
      8
          -0.0000022713
         -0.0000002850
      10
          0.0000001379
```

Compute and print the difference between the polynomial and the function at 33 equally spaced points in the interval [0,8].

```
xp=linspace(0,8,33);
fprintf('Approximate Value of y(x) \n')
fprintf('n x p(x)');
fprintf('atan(x) Difference\n');
x2=zeros(1, length(xp));
p2= zeros(1,length(xp));
px= zeros(1,length(xp));
for i = 1: length(xp)
      p=xp(i);
      funval=atan(p);
      m = length(a);
      sum = 0;
      for k = 1:m
            prodx = 1;
            for j = 1 : k-1
                  prodx=prodx*(p-x(j));
            end
            sum=sum+a(k)*prodx;
      end
      pn = sum;
      px(i)=pn;
      p2(i)=funval;
      x2(i) = p;
      Diff=abs(funval-pn);
      fprintf('*5.0f\t*5.10f\t*15.10f\t*15.10f\t*15.10f\n' , i, p, pn,
      funval, Diff);
end
                                            atan(x)
                                                             Difference
                          p(x)
    1 0.0000000000
                    -0.1053163147
                                         0.0000000000
                                                            0.1053163147
    2 0.2500000000
                     0.2130806365
                                         0.2449786631
                                                            0.0318980266
    3 0.5000000000
                      0.4563962815
                                         0.4636476090
                                                            0.0072513275
    4 0.7500000000
                      0.6424669733
                                         0.6435011088
                                                            0.0010341355
    5 1.0000000000
                     0.7853981634
                                         0.7853981634
                                                            0.000000000
    6 1.2500000000
                     0.8960899620
                                                            0.0000345774
                                         0.8960553846
    7 1.5000000000
                      0.9827937232
                                         0.9827937232
                                                            0.000000000
    8 1.7500000000
                     1.0516462667
                                         1.0516502125
                                                            0.0000039459
    9 2.0000000000
                                                            0.000000000
                     1.1071487178
                                         1.1071487178
   10 2.2500000000
                      1.1525728741
                                         1.1525719972
                                                            0.0000008769
   11 2.5000000000
                      1.1902899497
                                         1.1902899497
                                                            0.000000000
   12 2.7500000000
                      1.2220250013
                                         1.2220253232
                                                            0.0000003219
   13 3.0000000000
                      1.2490457724
                                         1.2490457724
                                                            0.000000000
   14 3.2500000000
                      1.2722975763
                                         1.2722973952
                                                            0.0000001811
   15 3.5000000000
                     1.2924966678
                                         1.2924966678
                                                            0.000000000
   16 3.7500000000
                                                            0.0000001511
                     1.3101937839
                                         1.3101939350
   17 4.0000000000
                     1.3258176637
                                         1.3258176637
                                                            0.000000000
   18 4.2500000000
                      1.3397058456
                                         1.3397056596
                                                            0.000001860
   19 4.5000000000
                      1.3521273809
                                         1.3521273809
                                                            0.000000000
   20 4.7500000000
                      1.3632997547
                                         1.3633001004
                                                            0.0000003457
```

```
21 5.0000000000
                   1.3734007669
                                      1.3734007669
                                                         0.000000000
22 5.2500000000
                                                         0.0000010339
                   1.3825758554
                                      1.3825748215
                                                         0.000000000
23 5.5000000000
                   1.3909428270
                                      1.3909428270
24 5.7500000000
                   1.3985996839
                                      1.3986055123
                                                         0.0000058284
25 6.0000000000
                   1.4056476494
                                      1.4056476494
                                                         0.000000000
26 6.2500000000
                   1.4122511123
                                      1.4121410646
                                                         0.0001100477
27 6.5000000000
                   1.4187694760
                                      1.4181469984
                                                         0.0006224776
28 6.7500000000
                   1.4260133110
                                      1.4237179714
                                                         0.0022953396
29 7.0000000000
                   1.4356992391
                                      1.4288992722
                                                         0.0067999669
30 7.2500000000
                   1.4512050950
                                      1.4337301525
                                                         0.0174749425
                                                         0.0405148159
31 7.5000000000
                   1.4787596104
                                      1.4382447945
32 7.7500000000
                   1.5292396036
                                      1.4424730991
                                                         0.0867665045
33 8.0000000000
                   1.6207929289
                                      1.4464413322
                                                         0.1743515967
```

plot(x2,px);
hold on;
plot(x2,p2);
plot(x,y);
hold off

What conclusion can be drawn?

CE 4.2.1

Using 21 equally spaced nodes on the interval [-5,5], find the interpolating polynomial p of degree 20 for the function $f(x) = (x^2 + 1)^{-1}$.

```
p_{20}(x) =
      f = @(x) (x.^2+1).^(-1);
      x = linspace(-5, 5, 21);
      y = f(x);
      mx = length(x);
      my=length(y);
      if mx ~= my, error('Input vectors must be the same length');
      end
      T=zeros(mx,mx);
      T(:,1) = y';
      for j = 2:mx
             for i = 1: (mx-j+1)
                    T(i,j) = (T(i+1,j-1)-T(i,j-1))/(x(i+j-1)-x(i));
             end
      end
      a=T(1,:)
```

Print the values of f(x) and p(x) at 41 equally spaces points, including the nodes.

```
xp = linspace(-5, 5, 41);
fprintf(' n xi f(xi) ' );
fprintf('p(xi)|f(xi)-p(xi)|\n\n');
x2=zeros(1, length(xp));
y2=zeros(1, length(xp));
p2=zeros(1,length(xp));
for i = 1: length(xp)
      xpi = xp(i);
      x2(i)=xpi;
      ype = f(xpi);
      y2(i) = ype;
      m = length(a);
      sum = 0;
      for k = 1:m
            prodx = 1;
            for j = 1 : k-1
                  prodx=prodx.*(xpi-x(j));
            end
            sum=sum+a(k).*prodx;
      end
```

```
pn = sum;
      ypi = pn;
      p2(i)=ypi;
      fprintf('%5.0f %10.5f %15.10f %15.10f %15.10f\n', i,xpi,ype,ypi,
      abs(ype-ypi));
end
                                          |f(xi) - p(xi)|
 n
                 f(xi)
                                 p(xi)
                            0.0384615385
 1 -5.00000 0.0384615385
                                          0.000000000
 2 -4.75000 0.0424403183 -39.9524490330 39.9948893513
  3 -4.50000 0.0470588235
                            0.0470588235
                                          0.000000000
  4 -4.25000 0.0524590164
                                          3.4024987835
                            3.4549577999
  5 -4.00000 0.0588235294
                            0.0588235294
                                          0.000000000
  6 -3.75000 0.0663900415
                          -0.4470519607
                                          0.5134420022
  7 -3.50000 0.0754716981
                            0.0754716981
                                          0.0000000000
 8 -3.25000 0.0864864865
                            0.2024226157
                                          0.1159361292
 9 -3.00000 0.1000000000
                            0.1000000000
                                          0.0000000000
10 -2.75000 0.1167883212
                            0.0806599934
                                          0.0361283277
11 -2.50000 0.1379310345
                            0.1379310345
                                          0.0000000000
12 -2.25000 0.1649484536
                            0.1797626299
                                          0.0148141763
13 -2.00000 0.2000000000
                            0.2000000000
                                          0.0000000000
14 -1.75000 0.2461538462
                            0.2384459337
                                          0.0077079124
15 -1.50000 0.3076923077
                            0.3076923077
                                          0.0000000000
16 -1.25000 0.3902439024
                            0.3950930537
                                          0.0048491512
17 -1.00000 0.5000000000
                            0.5000000000
                                          0.000000000
18 -0.75000 0.6400000000
                            0.6367553359
                                          0.0032446641
 19 -0.50000 0.8000000000
                            0.8000000000
                                          0.0000000000
20 -0.25000 0.9411764706
                            0.9424903797
                                          0.0013139092
    0.00000 1.0000000000
                            1.0000000000
                                          0.000000000
22
    0.25000 0.9411764706
                            0.9424903797
                                          0.0013139092
23
    0.50000 0.8000000000
                            0.8000000000
                                          0.000000000
    0.75000 0.6400000000
24
                            0.6367553359
                                          0.0032446641
    1.00000 0.5000000000
                            0.5000000000
                                          0.0000000000
    1.25000 0.3902439024
                            0.3950930537
                                          0.0048491512
    1.50000 0.3076923077
                            0.3076923077
                                          0.000000000
    1.75000 0.2461538462
                            0.2384459337
                                          0.0077079124
29
    2.00000 0.2000000000
                                          0.0000000000
                            0.2000000000
30
    2.25000 0.1649484536
                            0.1797626299
                                          0.0148141763
    2.50000 0.1379310345
                            0.1379310345
31
                                          0.0000000000
    2.75000 0.1167883212
                            0.0806599934
                                          0.0361283277
    3.00000 0.1000000000
                            0.1000000000
33
                                          0.0000000000
    3.25000 0.0864864865
                            0.2024226157
                                          0.1159361292
35
    3.50000 0.0754716981
                            0.0754716981
                                          0.0000000000
    3.75000 0.0663900415
                          -0.4470519607
                                          0.5134420022
37
    4.00000 0.0588235294
                            0.0588235294
                                          0.000000000
38
    4.25000 0.0524590164
                            3.4549577999
                                          3.4024987835
39
    4.50000 0.0470588235
                            0.0470588235
                                          0.0000000000
    4.75000 0.0424403183 -39.9524490330 39.9948893513
40
 41
    5.00000 0.0384615385
                            0.0384615385
                                          0.0000000000
```

Observe the large discrepancy between f(x) and p(x).

```
plot(x2,y2);
```

hold on; plot(x2,p2); hold off

CE 4.2.2

(Continuation) Perform the experiment in the preceding computer problem, using Chebyshev nodes $x_i = 5cos(\frac{i\pi}{20})$, where $0 \le i \le 20$.

```
fprintf('x = 5*cos(i*pi/20)\n');
f = @(x) (x.^2+1).^(-1);
i = 0:1:20;
x = 5*cos(i*pi/20);
y = f(x);
mx=length(x);
my=length(y);
if mx ~= my, error('Input vectors must be the same length');
end
T=zeros(mx,mx);
T(:,1)=y';
for j = 2:mx
```

```
for i = 1: (mx-j+1)
            T(i,j) = (T(i+1,j-1)-T(i,j-1))/(x(i+j-1)-x(i));
      end
end
a=T(1,:);
i = 0: 0.5: 20
xp = 5*cos(i*pi/20);
fprintf(' n xi f(xi) ');
fprintf(' p(xi) | f(xi) - p(xi) | \n\n');
x2=zeros(1, length(xp));
p2=zeros(1,length(xp));
y2=(1, length(xp));
for i = 1: length(xp)
      xpi = xp(i);
      x2(i)=xpi;
      ype = f(xpi);
      y2(i) = ype;
      m = length(a);
      sum = 0;
      for k = 1:m
            prodx = 1;
             for j = 1 : k-1
                   prodx=prodx*(xpi-x(j));
             end
            sum=sum+a(k)*prodx;
      End
      pn = sum;
      ypi = pn;
      p2(i)=ypi;
      fprintf('%5.0f %10.5f %15.10f %15.10f %15.10f\n', i,xpi,ype,ypi,
      abs(ype-ypi));
end
plot(x2,y2);
hold on;
plot(x2,p2);
hold off;
```


n	xi	f(xi)	p(xi)	f(xi) - p(xi)
1	5.00000	0.0384615385	0.0384615385	0.000000000
2	4.98459	0.0386905504	0.0381324095	0.0005581409
3	4.93844	0.0393883673	0.0393883673	0.000000000
4	4.86185	0.0405883994	0.0422876413	0.0016992419
5	4.75528	0.0423500690	0.0423500690	0.000000000
6	4.61940	0.0447650923	0.0418461131	0.0029189792
7	4.45503	0.0479678063	0.0479678063	0.000000000
8	4.26320	0.0521515616	0.0564366000	0.0042850384
9	4.04508	0.0575946877	0.0575946877	0.000000000
10	3.80203	0.0647021757	0.0588090551	0.0058931206
11	3.53553	0.0740740741	0.0740740741	0.000000000
12	3.24724	0.0866208157	0.0945103018	0.0078894861
13	2.93893	0.1037636361	0.1037636361	0.000000000
14	2.61249	0.1277935877	0.1172934145	0.0105001732
15	2.26995	0.1625306848	0.1625306848	0.000000000
16	1.91342	0.2145386292	0.2285279626	0.0139893334
17	1.54508	0.2952214653	0.2952214653	0.000000000
18	1.16723	0.4232950352	0.4055736993	0.0177213359
19	0.78217	0.6204268545	0.6204268545	0.000000000
20	0.39230	0.8666294216	0.8791312171	0.0125017954
21	0.00000	1.0000000000	1.0000000000	0.000000000
22	-0.39230	0.8666294216	0.8791312171	0.0125017954
23	-0.78217	0.6204268545	0.6204268545	0.000000000
24	-1.16723	0.4232950352	0.4055736993	0.0177213359
25	-1.54508	0.2952214653	0.2952214653	0.000000000

```
26
      -1.91342
                  0.2145386292
                                   0.2285279626
                                                   0.0139893334
27
      -2.26995
                  0.1625306848
                                   0.1625306848
                                                   0.000000000
28
      -2.61249
                  0.1277935877
                                   0.1172934145
                                                   0.0105001732
29
      -2.93893
                  0.1037636361
                                   0.1037636361
                                                   0.000000000
30
      -3.24724
                  0.0866208157
                                   0.0945103018
                                                   0.0078894861
31
      -3.53553
                  0.0740740741
                                   0.0740740741
                                                   0.000000000
      -3.80203
                  0.0647021757
                                   0.0588090551
                                                   0.0058931206
33
      -4.04508
                  0.0575946877
                                                   0.000000000
                                   0.0575946877
34
      -4.26320
                  0.0521515616
                                   0.0564366000
                                                   0.0042850384
35
      -4.45503
                  0.0479678063
                                   0.0479678063
                                                   0.000000000
36
      -4.61940
                  0.0447650923
                                   0.0418461131
                                                   0.0029189792
37
                  0.0423500690
                                                   0.000000000
      -4.75528
                                   0.0423500690
38
      -4.86185
                  0.0405883994
                                   0.0422876413
                                                   0.0016992419
39
      -4.93844
                  0.0393883673
                                   0.0393883673
                                                   0.000000000
40
      -4.98459
                                   0.0381324095
                                                   0.0005581409
                  0.0386905504
41
      -5.00000
                  0.0384615385
                                   0.0384615385
                                                   0.000000000
```

(Continuation) Perform the experiment in the preceding computer problem, using Chebyshev nodes $x_i = 5cos(\frac{(2i+1)\pi}{42})$, where $0 \le i \le 20$.

```
fprintf('x = 5*cos((2.*i+1)*pi/42)\n');
f = @(x) (x.^2+1).^(-1);
i = 0:1:20;
x = 5*\cos((2.*i+1)*pi/42);
y = f(x);
mx = length(x);
my=length(y);
if mx ~= my, error('Input vectors must be the same length');
T=zeros (mx, mx);
T(:,1)=y';
for j = 2:mx
    for i = 1: (mx-j+1)
        T(i,j) = (T(i+1,j-1)-T(i,j-1))/(x(i+j-1)-x(i));
    end
end
a=T(1,:);
i = 0: 1: 40;
xp = 5*cos((i+1)*pi/42);
                                                        ');
fprintf('
             n
                        хi
fprintf(' p(xi)
                      |f(xi) - p(xi)| \langle n \rangle;
x3=zeros(1,length(xp));
p3=zeros(1,length(xp));
y3=zeros(1,length(xp));
for i = 1: length(xp)
      xpi = xp(i);
      x3(i) = xpi;
      ype = f(xpi);
      y3(i) = ype;
      m = length(a);
```

```
sum = 0;
      for k = 1:m
            prodx = 1;
            for j = 1 : k-1
                  prodx=prodx*(xpi-x(j));
            end
            sum=sum+a(k)*prodx;
      End
      pn = sum;
      ypi = pn;
      p3(i)=ypi;
                       %10.5f %15.10f %15.10f %15.10f\n',
      fprintf('%5.0f
      i,xpi,ype,ypi, abs(ype-ypi));
end
plot(x3,y3);
hold on
plot(x3,p3);
hold off
```


n	xi	f(xi)	p(xi)	f(xi) - p(xi)
1	4.98602	0.0386691841	0.0386691841	0.0000000000
2	4.94415	0.0393009770	0.0333094413	0.0059915357
3	4.87464	0.0403842793	0.0403842793	0.0000000000
4	4.77786	0.0419674603	0.0481503183	0.0061828580
5	4.65437	0.0441244960	0.0441244960	0.0000000000
6	4.50484	0.0469624179	0.0404390325	0.0065233854

7	4.33013	0.0506329114	0.0506329114	0.000000000
8	4.13119	0.0553502590	0.0624010531	0.0070507941
9	3.90916	0.0614193583	0.0614193583	0.0000000000
10	3.66526	0.0692802590	0.0614503446	0.0078299144
11	3.40086	0.0795806176	0.0795806176	0.0000000000
12	3.11745	0.0932967383	0.1022650071	0.0089682689
13	2.81660	0.1119415032	0.1119415032	0.0000000000
14	2.50000	0.1379310345	0.1272983041	0.0106327304
15	2.16942	0.1752425254	0.1752425254	0.0000000000
16	1.82671	0.2305820193	0.2435698520	0.0129878327
17	1.47378	0.3152569893	0.3152569893	0.0000000000
18	1.11260	0.4468496572	0.4315195529	0.0153301042
19	0.74521	0.6429462667	0.6429462667	0.0000000000
20	0.37365	0.8774895799	0.8875995600	0.0101099801
21	0.00000	1.0000000000	1.0000000000	0.0000000000
22	-0.37365	0.8774895799	0.8875995600	0.0101099801
23	-0.74521	0.6429462667	0.6429462667	0.0000000000
24	-1.11260	0.4468496572	0.4315195529	0.0153301042
25	-1.47378	0.3152569893	0.3152569893	0.0000000000
26	-1.82671	0.2305820193	0.2435698520	0.0129878327
27	-2.16942	0.1752425254	0.1752425254	0.0000000000
28	-2.50000	0.1379310345	0.1272983041	0.0106327304
29	-2.81660	0.1119415032	0.1119415032	0.0000000000
30	-3.11745	0.0932967383	0.1022650071	0.0089682689
31	-3.40086	0.0795806176	0.0795806176	0.0000000000
32	-3.66526	0.0692802590	0.0614503446	0.0078299144
33	-3.90916	0.0614193583	0.0614193584	0.0000000000
34	-4.13119	0.0553502590	0.0624010531	0.0070507941
35	-4.33013	0.0506329114	0.0506329114	0.0000000000
36	-4.50484	0.0469624179	0.0404390325	0.0065233854
37	-4.65437	0.0441244960	0.0441244960	0.0000000000
38	-4.77786	0.0419674603	0.0481503183	0.0061828580
39	-4.87464	0.0403842793	0.0403842793	0.0000000000
40	-4.94415	0.0393009770	0.0333094413	0.0059915357
41	-4.98602	0.0386691841	0.0386691841	0.000000000