

# Protocol-Level Performance Analysis and Implementation for Anti-Collision Protocols in RFID Systems

By Mohammed Berhea
Supervisor: Dr. Chunhong Chen



## RFID System





## Problems with RFID Systems

- Problems with RFID systems
  - Tags might not be read due to collisions
- Types of collisions:
  - Single Reader-Multiple Tags interference
  - Single Tag-Multiple Readers interference
  - Reader-to-Reader interference



## Single Reader-Multiple Tags interference

- Why countermeasures for tag collisions?
  - Library books, airline baggage, garment, and retail applications, etc.
- Resolution approach:
  - Need a systematic way of arbitration based on multiple access



## Collision Resolution Protocols





## Tree Algorithm

Reading tags with IDs: 100, 110, 111



| Reader | Tag         | Identified |
|--------|-------------|------------|
| 0      | No response |            |
| 1      | *           |            |
| 0      | 0           | 100        |
| 1      | *           |            |
| 0      | 0           | 110        |
| 1      | 1           | 111        |

Search on a binary tree



## Query Tree Algorithm



**Example of Query Tree** 



### Related Work

#### Based on the literature:

 "Low Power Implementation of Anti-Collision Protocols for Radio-Frequency Identification Systems" by Feng Zhou and Chunghon Chen

#### Discusses:

- Circuit level implementation of
  - Binary-Tree Protocol
  - Query-Tree Protocol
  - Improved Query-Tree Protocol
- Compares the three protocols in terms of power dissipation (Cost function):
- 1) Improved Query and Binary:
  - For  $R \le 14.4n 274.2$ ,

- 2) Query and Binary:
  - For  $R \le 4n 75$ ,

- 3) Improved Query and Binary:
  - For  $R \le 153.96$ ,



Where, 
$$R = \frac{C \cdot V_{drop}}{C_{load} \cdot V_{dd}}$$

and n is the ID length of a tag



## Problem with the previous work and Motivation for this work

#### Problem:

Circuit level power analysis bi-passing protocol level



#### Motivation:

Power estimation is fast and inexpensive in protocol level



### Work Done

- Formulated protocol level metric equations for different protocols
- Proposed a better protocol
- Performed evaluation of the protocols at protocol level
- Implemented the protocols
- · Performed evaluation of the protocols at layout level



#### Variables:

- N = Total number of ID bits that represent a specific tag
- n = number of tags that exit simultaneously for interrogation
- T = number of transitions that a tag makes from state to state
- Clk = total number of clock cycles a tag needs before read

#### Condition:

- Worst-case scenario
  - For any N and distribution of tags (n), the analysis will focus on the last tag to be read
    by the reader

#### Metrics:

- Optimize in terms of number of transitions, clock cycles, power consumption, and energy for best performance
- Power dissipation considered to be directly proportional to the total number of transitions
- Energy dissipation evaluated as total number of transitions per total clock cycles



#### **Binary Protocol**

for any N and n, under worst case scenario:



• For 
$$2 \le n \le 2^{N-2}$$
,

$$CLK_{B} = 3 + n(2N - 1)$$
 (1)

$$T_B = T_{0-1} + T_{1-0} + T_{1-2} + T_{2-1} + T_{2-3}$$
 (2)

$$T_{B} = 2 + (n - 2^{l}) \times 2(N - l - 1) + \sum_{j=1}^{l} [2^{j}(N - j)] + 2N - 1$$
$$= 2^{(l+2)} + 2n(N - l - 1) - 1$$
(3)

For  $2^{N-2} \le n \le 2^{N-1}$ .

$$CLK_{R} = n(2N - 1) \tag{4}$$

$$T_{B} = 2(n-2^{l}) + 2N - 1 + \sum_{j=1}^{l} [2^{j}(N-j)]$$
$$= 2^{(l+1)}(N-l) + 2n - 3$$
 (5)

where

$$l = \lceil \log_2 n \rceil - 1 \tag{6}$$



Fig. 1. State diagram

| Table 1. Identification Process of Two Tags by Binary-Tree Protocol for $N = 4$ |    |                        |                |           |           |           |     |            |          |  |
|---------------------------------------------------------------------------------|----|------------------------|----------------|-----------|-----------|-----------|-----|------------|----------|--|
| Reader                                                                          | PS | $T_{\theta \text{-}I}$ | $T_{I-\theta}$ | $T_{I-2}$ | $T_{2-I}$ | $T_{2-3}$ | Clk | NS         | Tag      |  |
| Null                                                                            | SO | 1                      |                |           |           |           | 1   | S1         |          |  |
| 0                                                                               | S1 |                        | 1              |           |           |           | 1   | S0         |          |  |
|                                                                                 | S0 |                        |                |           |           |           | 1   | <b>S</b> 0 | No       |  |
|                                                                                 |    |                        |                |           |           |           |     |            | Response |  |
| Reset                                                                           | SO | 1                      |                |           |           |           | 1   | S1         |          |  |
| 1                                                                               | S1 |                        |                | 1         |           |           | 1   | <b>S</b> 2 |          |  |
|                                                                                 | S2 |                        |                |           | 1         |           | 1   | S1         |          |  |
| 1                                                                               | S1 |                        |                | 1         |           |           | 1   | <b>S</b> 2 |          |  |
|                                                                                 | S2 |                        |                |           | 1         |           | 1   | S1         |          |  |
| 0                                                                               | S1 |                        | 1              |           |           |           | 1   | S2,<br>S0  |          |  |
|                                                                                 | S2 |                        |                |           |           |           | 1   | S3         | #12      |  |
| Reset                                                                           | SO | 1                      |                |           |           |           | 1   | S1         |          |  |
| 1                                                                               | S1 |                        |                | 1         |           |           | 1   | S2         |          |  |
|                                                                                 | S2 |                        |                |           | 1         |           | 1   | S1         |          |  |
| 1                                                                               | S1 |                        |                | 1         |           |           | 1   | S2         |          |  |
|                                                                                 | S2 |                        |                |           | 1         |           | 1   | S1         |          |  |
| 1                                                                               | S1 |                        |                | 1         |           |           | 1   | S2         |          |  |
|                                                                                 | S2 |                        |                |           |           | 1         | 1   | S3         | #14      |  |
| Total                                                                           | -  | 3                      | 2              | 5         | 4         | 1         | 17  | -          | -        |  |



#### Query Protocol

Total number of clock cycles ( $CLK_Q$ ) and total transitions ( $T_Q$ ) for any N and n, under worst case scenario:

$$T_{Q} = T_{0-1} + T_{1-0} + T_{1-2} + T_{2-0}$$

$$= T_{QT}(n, N) - T_{1-1} - T_{2-2}$$
(7)

where  $T_{\rm QT}(n,\,N)$  is total state transitions including the self-loops ( $T_{\rm 1-1}$  and  $T_{\rm 2-2}$ ) .



$$CLK_{\varrho} = (2n-1)(N+2) \tag{8}$$

$$T_{QT}(n,N) = \left[2(n-2^{l})-1\right](N-l)+2^{(l+1)}(N-l+2)+\frac{l^{2}+3l}{2}$$
 (9)

$$T_{l-1} = 2n(N-l-2) + 2^{(l+2)} - 2N + l + 1$$
(10)

$$T_{2-2} = (N-1) + \sum_{j=1}^{l} j = (N-1) + l\left(\frac{l+1}{2}\right)$$
 (11)

$$T_{Q} = T_{QT} - T_{1-1} - T_{2-2} = l + 4n (12)$$



Table 2. Identification Process of Two Tags by Query-Tree Protocol for N=5

| Reader | PS | $T_{OI}$ | $T_{I-0}$ | $T_{I-I}$ | $T_{I-2}$ | $T_{2-0}$ | $T_{2-2}$ | Clk | NZ  | Tag |
|--------|----|----------|-----------|-----------|-----------|-----------|-----------|-----|-----|-----|
| Null   | S0 | 1        |           |           |           |           |           | 1   | S1  |     |
| Null   | S1 |          |           |           |           |           |           | 1   | S2  |     |
|        | 4* |          |           |           |           |           | 4         | 4   | 4*  |     |
|        | S2 |          |           |           |           |           |           |     | S2  |     |
|        | S2 |          |           |           |           | 1         |           | 1   | SO  |     |
| Null   | S0 | 1        |           |           |           |           |           | 1   | S2  |     |
| 1      | S1 |          |           | 1         |           |           |           | 1   | S1  |     |
| 1      | S1 |          |           | 1         |           |           |           | 1   | S1  |     |
| 1      | S1 |          |           | 1         |           |           |           | 1   | S1  |     |
| 0      | S1 |          | 1         |           |           |           |           | 1   | S1, |     |
|        |    |          |           |           |           |           |           |     | S0  |     |
| Null   | S1 |          |           |           |           |           |           | 1   | S2  |     |
|        | S2 |          |           |           |           |           |           | 1   | S0  | #28 |
| Null   | S0 | 1        |           |           |           |           |           | 1   | S1  |     |
| 1      | S1 |          |           | 1         |           |           |           | 1   | S2  |     |
| 1      | S1 |          |           | 1         |           |           |           | 1   | S1  |     |
| 1      | S1 |          |           | 1         |           |           |           | 1   | S1  |     |
| 1      | S1 |          |           | 1         |           |           |           | 1   | S2  |     |
| Null   | S1 |          |           |           | 1         |           |           | 1   | S1  |     |
|        | S2 |          |           |           |           | 1         |           | 1   | S3  | #30 |
| Total  | -  | 3        | 1         | 7         | 2         | 2         | 4         | 21  | -   | -   |



#### Improved Query Protocol

Same as Query-Tree Protocol except the 'Stop-Send' command during collision

• For  $2 \le n \le 2^{N-1}$ ,

$$\rightarrow$$
 total transitions  $(T_{/Q}) = (T_{Q})$ 

$$T_{IO} = T_O = l + 4n \tag{13}$$

Total number of clock cycles ( $CLK_{IO}$ )

$$CLK_{IQ} = \left\{ \sum_{j=0}^{l-1} \left[ \left( \inf \left( \frac{n - 2^{(j+1)} - 1}{2^{(j+2)}} \right) + 1 \right) (N+1-j) \right] + (N+2)[1+n+k] \right]$$
(14)

where, 
$$k = \left\lceil \frac{n-3}{2} \right\rceil$$

• As a special case, if  $n = 2^m$ , then

$$CLK_{IQ}(n=2^m)=2^{(m-1)}(4N+6)+(m-N-1)$$
 (15)



Table 3. Identification Process of Two Tags by Improved Query-Tree Protocol for N = 5

| Reader | PS | $T_{\theta - I}$ | $T_{I-\theta}$ | $T_{I-I}$ | $T_{I-2}$ | $T_{2-\theta}$ | $T_{2-2}$ | Clk | NS  | Tag |
|--------|----|------------------|----------------|-----------|-----------|----------------|-----------|-----|-----|-----|
| Null   | S0 | 1                |                |           |           |                |           | 1   | S1  |     |
| Null   | S1 |                  |                |           | 1         |                |           | 1   | S2  |     |
|        | 4* |                  |                |           |           |                | 4         | 4*  | S2  |     |
|        | S2 |                  |                |           |           |                |           | S2  |     |     |
| SS     | S2 |                  |                |           |           | 1              |           | 1   | S0  |     |
| Null   | S0 | 1                |                |           |           |                |           | 1   | S2  |     |
| 1      | S1 |                  |                | 1         |           |                |           | 1   | S1  |     |
| 1      | S1 |                  |                | 1         |           |                |           | 1   | S1  |     |
| 1      | S1 |                  |                | 1         |           |                |           | 1   | S1  |     |
| 0      | S1 |                  | 1              |           |           |                |           | 1   | S1, |     |
|        |    |                  |                |           |           |                |           |     | SO  |     |
| Null   | S1 |                  |                |           |           |                |           | 1   | S2  |     |
|        | S2 |                  |                |           |           |                |           | 1   | S0  | #28 |
| Null   | S0 | 1                |                |           |           |                |           | 1   | S1  |     |
| 1      | S1 |                  |                | 1         |           |                |           | 1   | S1  |     |
| 1      | S1 |                  |                | 1         |           |                |           | 1   | S1  |     |
| 1      | S1 |                  |                | 1         |           |                |           | 1   | S1  |     |
| 1      | S1 |                  |                | 1         |           |                |           | 1   | S1  |     |
| Null   | S1 |                  |                |           | 1         |                |           | 1   | S2  |     |
|        | S2 |                  |                |           |           | 1              |           | 1   | SO  | #30 |
| Total  | -  | 3                | 1              | 7         | 2         | 2              | 4         | 21  | -   | -   |



#### The Proposed Protocol

combines binary-tree and query-tree protocols

Total number of clock cycles ( $CLK_{BQ}$ ) and total transitions ( $T_{BQ}$ ) derivation, under worst case scenario:



Fig. 4. State diagram

$$T_{BO} = T_{BOT} - T_{1-1} - T_{2-2} (16)$$

• For  $2 \le n \le 2^{N-1}$ ,

$$CLK_{BO} = n(N+3)-1 \tag{17}$$

$$T_{BQT} = 2^{(l+1)} + l(2-n) + Nn + 2$$
 (18)

$$T_{1-1} = n(N-l-2) + 2^{(l+1)} - N + l + 1$$
 (19)

$$T_{2-2} = (N-l) - 2 \tag{20}$$

$$T_{BQ} = T_{BQT} - T_{1-1} - T_{2-2} = 2(l+n) + 3$$
 (21)

| Table 4. Identification Process | of Two Tags b | v Combined Binarv | 'Ouerv-Tree l | Protocol for N = 5 |
|---------------------------------|---------------|-------------------|---------------|--------------------|

| D2     | D.C. | T <sub>0-1</sub> | T <sub>1-0</sub> | T <sub>1-1</sub> | T <sub>1-2</sub> | T <sub>2-0</sub> | T <sub>2-2</sub> | T <sub>2-3</sub> | T <sub>3-2</sub> | T <sub>3-0</sub> | cm. | 3.757      | 7   |
|--------|------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----|------------|-----|
| Reader | PS   |                  | 11-0             | 11-1             | 11-2             | 1 2-0            | 1 2-2            | 1 2-3            | 1 3-2            | 1 3-0            | Clk | NS'        | Tag |
| Null   | S0   | 1                |                  |                  |                  |                  |                  |                  |                  |                  | 1   | S1         |     |
| Null   | S1   |                  |                  |                  | 1                |                  |                  |                  |                  |                  | 1   | S2         |     |
|        | S2   |                  |                  |                  |                  |                  | 3                |                  |                  |                  | 3   | S2         |     |
| SS     | S2   |                  |                  |                  |                  |                  |                  | 1                |                  |                  | 1   | S3         |     |
| 0      | S3   |                  |                  |                  |                  |                  |                  |                  |                  | 1                | 1   | S0,S2      |     |
|        | S2   |                  |                  |                  |                  |                  |                  |                  |                  |                  | 1   | <b>S</b> 0 | #28 |
| Null   | SO   | 1                |                  |                  |                  |                  |                  |                  |                  |                  | 1   | S1         |     |
| 1      | S1   |                  |                  | 1                |                  |                  |                  |                  |                  |                  | 1   | S0,S1      |     |
| 1      | S1   |                  |                  | 1                |                  |                  |                  |                  |                  |                  | 1   | S0,S1      |     |
| 1      | S1   |                  |                  | 1                |                  |                  |                  |                  |                  |                  | 1   | S0,S1      |     |
| 1      | S1   |                  |                  | 1                |                  |                  |                  |                  |                  |                  | 1   | S0,S1      |     |
| Null   | S1   |                  |                  |                  | 1                |                  |                  |                  |                  |                  | 1   | S2         |     |
|        | S2   |                  |                  |                  |                  | 1                |                  |                  |                  |                  | 1   | S0         | #30 |
| Total  |      | 2                | 0                | 4                | 2                | 1                | 3                | 1                | 0                | 1                | 15  |            |     |



## Protocol-level Performance Evaluation of different protocols

- The performance of Binary, Query, and Improved-Query tree protocols is evaluated in terms of
  - total number of state transitions, number of clock cycles, energy and power dissipation, all under their worst cases
- Number of state transitions is a key metric for estimation of power and energy dissipation
- Number of clock cycles determines how fast the tags can be identified
- For fair power dissipation comparison, the three protocols need to have same latency
  - i.e. protocol with less clock cycles can use a lower clock frequency to achieve power reduction
- Choosing the Improved-Query-tree protocol as a reference, equivalent transitions are:

$$T_{B,eq} = T_{B} \left( \frac{CLK_{B}}{CLK_{IQ}} \right)$$

$$T_{Q,eq} = T_{Q} \left( \frac{CLK_{Q}}{CLK_{IQ}} \right)$$

$$T_{IQ,eq} = T_{IQ}$$

(22)

Where  $T_{B\,eq}$  and  $T_{Q\,eq}$  are the equivalent number of state transitions for Binary and Query protocols respectively



### Comparison of the three tree-based protocols

- Comparison of the above three protocols is shown in the following figure
  - it is plotted using the equations derived and assuming n = 4.



Fig. 5. Performance comparison of binary-tree, query-tree and Improved-query-tree protocols under their worst cases.



## Comparison of protocols with the Proposed Protocol

- Comparison of The proposed protocol with others is shown in the following figure
  - it is plotted with n = 4.



Fig. 6. Performance comparison of binary-tree, guery-tree and combined binary-query-tree protocols under their worst cases.

#### From the figure

- the proposed protocol outperforms other two protocols in terms of number of transitions, number of clock cycles and power.
- from the energy dissipation point of view, the query-tree protocol shows the best performance.



## Implementation of protocols and Layout-level Performance Evaluation

- All protocols are implemented with the following information:
  - N = 4, n = 4, and for the worst case tag ( tag # 15)
  - Verilog code was designed using Verilog-XL from Cadence
  - Simulation was performed using SimVision from Cadence
  - Gate level synthesis using design vision from Synopsys
  - Layout using Encounter and Virtuoso from Cadence
- A) Binary Protocol



Fig. 7. Simulation output for Tag # 15, N = 4, n = 4: Binary-Tree Protocol.



#### A) Binary Protocol



Fig. 8. Schematic for Tag # 15, N = 4: Binary-Tree Protocol



Fig. 9. Layout for Tag # 15, N = 4: Binary-Tree Protocol



### Implementation of Query protocol

#### B) Query-Tree Protocol



Fig. 10. Simulation output for Tag # 15, N = 4, n = 4: Query-Tree Protocol.



Fig. 11. Schematic for Tag # 15, N = 4: Query-Tree Protocol.



### Implementation of Improved-Query protocol

#### C) Improved-Query-Tree Protocol



Fig. 12. Simulation output for Tag # 15, N = 4, n = 4: Improved-Query-Tree Protocol.



Fig. 13. Schematic for Tag # 15, N = 4: Query-Tree Protocol.



### Implementation of the Proposed protocol

#### D) Combined-Binary-Query-Tree Protocol



Fig. 14. Simulation output for Tag # 15, N = 4, n = 4: Combined-Binary-Query-Tree Protocol.



Fig. 15. Schematic for Tag # 15, N = 4: Combined-Binary-Query-Tree Protocol.



## Layout-level Performance Evaluation of the four protocols

#### For each protocol:

- number of clock cycles is calculated from the simulation output
  - Clock Cycles = Total read time \* 20MHz
- Power dissipation is determined using
  - Total switching activity by generating a VCD file
  - Total capacitance obtained from the layout level
  - Supply voltage = 1.62V
  - Frequency of operation = 20MHz
- General Power Equations are:

$$P_{sw} = 0.5 * C_{load} * V_{dd}^{2} * f_{clk} * E(transition s)$$

$$where, \qquad C_{load} = \sum_{allfanout} C_{G}^{i} + C_{wire}$$
(23)

$$P_{\text{int}} = 0.5 * V_{dd}^{2} * f_{clk} * \sum_{i=1}^{N} \left[ C_{G}^{i} * E^{i}(transition \ s) \right]$$
 (24)

- P<sub>sw</sub> and P<sub>int</sub> are switching and internal powers, N<sub>in</sub> is # of internal nodes,
- C<sub>G</sub><sup>i</sup> is gate capacitance of i<sup>th</sup> fanout and C<sub>wire</sub> is interconnect capacitance of the driver net
- E<sup>i</sup>(transitions) is expected # of transitions at node i.



## Layout-level Performance Evaluation of the four protocols

 Table 5 shows summery of the comparative metric results for the four protocols for N = 4 and n = 4

Table 5. Implementation results for the Binary, Query, Improved-Query, and Combined-Binary-Query protocols for N = 4 and n = 4

|                         |          |          | Improved- |          |
|-------------------------|----------|----------|-----------|----------|
| Metrics                 | Binary   | Query    | Query     | Combined |
| Clock cycles (Clk)      | 31       | 42       | 41        | 27       |
| Total capacitance       |          |          |           |          |
| (pF)                    | 0.99641  | 1.156905 | 1.317833  | 1.49723  |
| Switching power<br>(uW) | 4.1094   | 4.4749   | 5.1409    | 5.9422   |
| Internal power (uW)     | 31.593   | 31.838   | 33.044    | 32.653   |
| Leakage power (uW)      | 0.028176 | 0.027653 | 0.031744  | 0.029359 |
| Total power (uW)        | 35.731   | 36.341   | 38.217    | 38.625   |
| Total activity          | 574      | 746      | 873       | 757      |
| Total Energy (pJ)       | 55.38305 | 76.316   | 78.345    | 52.144   |
|                         |          |          |           |          |
| Physical parameters     |          |          |           |          |
| # of cells              | 23       | 23       | 25        | 34       |
| # of nets               | 28       | 28       | 31        | 39       |
| # of pins               | 85       | 90       | 99        | 123      |
| # of I/Os               | 5        | 5        | 5         | 5        |

• With equal read-time (clock cycles): Total power for Combined = 33.64 uW as compared to that of binary of 35.731uW.



## Layout-level Performance Evaluation of the four protocols

- From Table 5, we see that
  - total clock cycles obtained from simulation results exactly matches the predicted clock cycles from protocol level analysis
  - Other metrics, such as power and energy do not reflect the results obtained in protocol level analysis, because
    - power analysis in protocol level was confined to state transitions only, but in layout level it was highly dependant on total capacitance and total switching activity.
  - The Combined Binary-Tree protocol is better than the rest of the three tree protocols in terms of all the used metrics.



### Conclusion

- Protocol-level performance analysis for anti-collision protocols in RFID systems was studied
- Since the performance of a particular protocol depends on the ID distribution of the tags, discussions are confined to the worst-case scenario for a given number of tags available
- In particular, an improved protocol that combines the binary-tree and query-tree protocols was proposed.
- In protocol level, for binary-tree, query-tree, improved-query tree and combined query-tree, formulas for the number of state transitions and clock cycles were derived
- Simulation, synthesis and implementation for all protocols were done
- It has been shown that the new protocol has better performance in terms of speed, power and energy dissipation.



### References

- [1] F. Zhou and C. Chen, et al, "Evaluating and Optimizing Power Consumption of Anti- Collision Protocols for Applications in RFID Systems," in *Proc. of 2004 IEEE International Symposium on Low Power Electronics and Design*, pp. 357-362, 2004.
- [2] P. Sorrelss, "Passive RFID Basics," Application Note AN680, MICROCHIP, pp. 1-7, 1998.
- [3] Klaus Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification (2nd edition). Wiley, 2003.
- [4] C. Law, K. Lee, K. Y. Siu, "Efficient Memoryless Protocol for Tag Identification," In *Proc. of the 4th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications*, pp. 75–84, 2000.
- [5] J. I. Capetanakis, "Tree Algorithms for Packet Broadcast Channels," *IEEE Trans. Information Theory*, vol. 25, pp. 505-515, Sept. 1979.
- [6] D. R. Hush and C. Wood, "Analysis of Tree Algorithms for RFID Arbitration," in *Proc. of IEEE International Symposium on Information Theory*, pp. 107-112, 1998.
- [7] S. Lee, S.D. Joo, and C.W. Lee, "An Enhanced Dynamic Framed Slotted Aloha Algorithm for RFID Tag Identification," in *Proc. of Mobiguitous* 2005, pp. 166-172.
- [8] J. Myung and W. Lee, "Adaptive Binary Splitting: A RFID Tag Collision Arbitration Protocol for Tag Identification," *IEEE Communications Letter*, vol. 10, no. 3, pp. 141-146, March 2006.
- [9] Shih, D., Sun, P., Yen, D., Huang, S., "Taxonomy and survey of RFID anti-collision protocols", *Elsevier Computer Communications*, vol. 29, pp. 2150–2166, 2006
- [10] Verilog –XL Reference, Product version 3.4, Jan. 2002, Cadence
- [11] Man Page for design\_vision, snpsDocBrouser::getManIndex 2 commands
- [12] Encounter Menu Reference, Product Version 5.2.5, Cadence28
- [13] Y. Cheng, C. Tsai, C. Teng, and S. Kang, *Electrothermal Analysis of VLSI Systems: Book chapter, Power Analysis for CMOS Ciruits*. Kluwer Acadamic Publishers, 2002.