MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI MINISZTÉRIUM

Fontos tudnivalók

Formai előírások:

- A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, és a tanári gyakorlatnak megfelelően jelölni a hibákat, hiányokat stb.
- A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerül.
- **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- Hiányos/hibás megoldás esetén kérjük, hogy az egyes **részpontszámokat** is írja rá a dolgozatra.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **eltérő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- A pontozási útmutató pontjai tovább **bonthatók**. Az adható pontszámok azonban csak egész pontok lehetnek.
- Nyilvánvalóan helyes gondolatmenet és végeredmény esetén maximális pontszám adható akkor is, ha a leírás az útmutatóban szereplőnél **kevésbé részletezett**.
- Ha a megoldásban számolási hiba, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, akkor a következő részpontszámokat meg kell adni
- Elvi hibát követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot.
- Ha a megoldási útmutatóban zárójelben szerepel egy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.
- Egy feladatra adott többféle megoldási próbálkozás közül **csak egy** (a magasabb pontszámú) **értékelhető**.
- A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

I.

1		
1.		
a)		
Az oldalfelező merőlegesek metszéspontja a köré írt	1 pont	
kör középpontja.	1 point	
A köré írt kör egyenlete átalakítva:	1 pont	
$(x-3)^2 + (y-2)^2 = 25$.	1 pont	
Ebből az oldalfelező merőlegesek metszéspontja:	1 pont	
O(3; 2).	1 pont	
Összesen:	3 pont	
b)		
A C pont illeszkedik az y tengelyre, ezért ha c jelöli	1 pont	
a C pont második koordinátáját, akkor $C(0; c)$.	_	
C illeszkedik a körre, ezért $(-3)^2 + (c-2)^2 = 25$,	1 pont	
tehát $(c-2)^2 = 16$.	1 pont	
Ebből $c_1 = 6, c_2 = -2$, azaz a C csúcsra két lehetőség		
van: $C_1(0;6)$, $C_2(0;-2)$.	2 pont	
Az ABC ₁ háromszög súlypontja:		
$S_1\left(\frac{8-1+0}{3};\frac{2+5+6}{3}\right) = S_1\left(\frac{7}{3};\frac{13}{3}\right).$	2 pont	
(3 3) (3 3)		
Az ABC ₂ háromszög súlypontja:		Egy megoldás
$\left(8-1+0\ 2+5-2\right)$ $\left(7\ 5\right)$	2 pont	megtalálása esetén
$S_2\left(\frac{8-1+0}{3};\frac{2+5-2}{3}\right) = S_2\left(\frac{7}{3};\frac{5}{3}\right).$		összesen legfeljebb 5
Öggggggg	Q non4	pont adható.
Összesen:	8 pont	

2.		
a)		
A kézfogások száma: $\frac{5\cdot 4}{2} = 10$.	3 pont	Ez a pontszám nem bontható.
Összesen:	3 pont	
b)		
Mivel Dani és Ernő együtt érkezett, ezért négy különböző időpontban érkezhettek. A lehetséges érkezési sorrendek száma: 4!(=24).	3 pont	5! válasz esetén 1 pont adható.
Összesen:	3 pont	
c)		
Minden mérkőzés során egy fiú pihen, ezért a pályán levő négy játékosra 5 lehetőség van.	1 pont	
A pályán lévő négy fiúból kettő kiválasztására $\binom{4}{2}$ = 6 lehetőség van.	2 pont	

Viszont ekkor minden mérkőzést kétszer számolunk, így rögzített pihenő fiú esetén három különböző teniszparti lehetséges.	2 pont	
Ezek alapján a különböző lehetséges páros mérkőzések száma: $5 \cdot 3 = 15$.	1 pont	
Összesen:	6 pont	

3.		
a)		
A nagypapa kilenc alkalommal tett pénzt a perselybe. A Péter által kapott összeg egy olyan számtani sorozat első 9 elemének összege, amelynek első eleme 5000, differenciája 1000.	2 pont	
A kérdéses összeg: $\frac{9}{2} \cdot (2 \cdot 5000 + (9 - 1) \cdot 1000) = 81000$.	3 pont	
Péter 81000 Ft-ot kapott.	<i>F</i> 4	
Összesen:	5 pont	
b)		T
$t_0 = 60000$, $t_n = t_0 \cdot 1,04^n = 60000 \cdot 1,04^n$, $ahol \ n \in \mathbb{Z}^+$.	2 pont	
A feltétel szerint $60000 \cdot 1,04^n \ge 100000$.	2 pont	
Osszuk mindkét oldalt 60000-rel, majd vegyük mindkét oldal 10-es alapú logaritmusát: $\lg 1{,}04^n \ge \lg \frac{5}{3}.$	3 pont	
Innen $n \ge \frac{\lg \frac{5}{3}}{\lg 1,04} \approx 13,024 > 13$, ami azt jelenti, hogy legalább 14 évet kell Péternek várnia.	2 pont	Az utolsó 2 pont helyett 1 pont jár, ha 13 évet írt a vizsgázó.
Összesen:	9 pont	

4.		
a)		I
$f(x) = x^2 - 6x + 5 = (x - 3)^2 - 4 $	1 pont	
★ y		
12		
5		
4		
		X
y 1 3 5		
		Ha a vizsgázó nem jól veszi figyelembe az
Ábrázolás.	3 pont	értelmezési tartományt,
		akkor legfeljebb 2 pont adható az ábrázolásra.
Összesen:	4 pont	dunitio de doi destasi d.
b)		11 1.1 / ^1 /1
		Ha hibás grafikonról, annak megfelelően
fértékkészlete: [0;12]	2 pont	helyes értékkészletet ad
		meg a vizsgázó, akkor is jár a 2 pont.
Összesen:	2 pont	J = F 3.00.
c) A labotaágos magaldásak száma a grafikanrál		Annah a foliam anhahim
A lehetséges megoldások száma a grafikonról leolvasható.		Annak a felismeréséért, hogy a megoldások
	1 pont	száma p és a függvény értékkészletének
	_	viszonyától függ.
		1 23

Ha $p < 0$, akkor nincs megoldás.	1 pont	Ha algebrai megoldás
Ha $p = 0$, akkor 2 megoldás van.	1 pont	során adódnak a jó
Ha $0 , akkor 4 megoldás van.$	1 pont	megoldások, a megfelelő
Ha $p = 4$, akkor 3 megoldás van.	1 pont	pontszámok akkor is
Ha $4 , akkor 2 megoldás van.$	1 pont	járnak. Ha rossz
Ha $5 , akkor 1 megoldás van.$	1 pont	grafikon alapján egy másik egyenletet vizsgál
Ha $12 < p$, akkor nincs megoldás.	1 pont	jól a vizsgázó, akkor legfeljebb 4 pont adható.
Összesen:	8 pont	

II.

5.		
A logaritmus miatt <i>x</i> és <i>y</i> 1-től különböző pozitív számok lehetnek.	1 pont	
Az első egyenlet bal oldalát alakítsuk a logaritmus azonosságainak felhasználásával. $\log_x(x^2y^3) + \log_y(x^3y) =$ $= 2 + 3\log_x y + 3\log_y x + 1 =$ $= 3 + 3(\log_x y + \log_y x)$	3 pont	
Így az első egyenlet: $\log_x y + \log_y x = 2$.	1 pont	
A $\log_x y$ és a $\log_y x$ egymás reciprokai, és összegük 2.	2 pont	Ha a kapott egyenletben közös alapra hoz a vizsgázó, és egy másodfokúra visszavezethető
Ez pontosan akkor teljesül, ha mindkettő 1-gyel egyenlő, amiből kapjuk, hogy x=y.	2 pont	egyenletből kapja, hogy x = y, a 4 pont természetesen akkor is jár.
Beírva ezt a második egyenletbe: $\cos 2x + \cos 0 = 0$, ahonnan $\cos 2x = -1$.	2 pont	
Ez akkor és csak akkor teljesül, ha $2x = \pi + 2k\pi$, azaz $x = \frac{\pi}{2} + k\pi$, ahol $k \in \mathbb{Z}$.	3 pont	Ha x megfelelő értékeit fokokban vagy periódus nélkül vagy rossz periódussal adja meg a vizsgázó, akkor legfeljebb 1 pont adható.
Összevetve az x, y>0, \neq 1 feltétellel, $x = y = \frac{\pi}{2} + k\pi$, $k \in \mathbb{N}$.	2 pont	
Összesen:	16 pont	

 $2 \cdot 8 + 2 \cdot 4 + 8 \cdot 7 +$

osztható, ha az osztályzatok:

(1; 2), (1; 5), (2; 4), (3; 3), (4; 5). A kedvező esetek száma így: 2 pont

2 pont

A kiválasztott tanulók osztályzatainak összege 3-mal

 $\binom{9}{2} + 7 \cdot 4 = 144$.

A keresett valószínűség: $P = \frac{144}{435} = \frac{48}{145} \approx 0.33$.	2 pont	
Összesen:	8 pont	

7. (azaz, a feladatlap 14. oldalán lévő 6. feladat) a) A kapott alakzat egy csonkakúp, magassága LM, az alapkörök sugarai KL és MN. A csonkakúp térfogata: $V = \frac{m \cdot \pi}{3} \cdot \left(R^2 + r^2 + Rr\right) \approx 13326,47 térfogategység$ Összesen: 4 pont

b)

Legyen AB = a, BC = b, CD = c, DA = d. A beírt kör sugara r, középpontja O, az AD oldallal vett érintési pontja E. A D-ből induló magasság talppontja az AB oldalon T.

Mivel a trapéz szárain fekvő szögek összege 180°, és O a belső szögfelezők metszéspontja, ezért az AOD	2 pont	
háromszög derékszögű, a derékszög <i>O</i> -ban van.		
Ennek a derékszögű háromszögnek az átfogóhoz		
tartozó magassága éppen az OE sugár, ezért a		
magasságtétel és a feltétel alapján	2 pont	
$r^2 = \frac{3d^2}{16}$, ahonnan $r = \frac{d\sqrt{3}}{4}$.	1	
Így viszont $b = 2r = \frac{d\sqrt{3}}{2}$, amiből adódik, hogy a		
TDA háromszög egy szabályos háromszög fele.	2 pont	
Ebből következik, hogy $a = c + \frac{d}{2}$.		
$d + \frac{d\sqrt{3}}{2} = 20$, ahonnan	1 pont	

$d = \frac{40}{2 + \sqrt{3}} = 40(2 - \sqrt{3}) \approx 10,72.$		
$b = \frac{d\sqrt{3}}{2} = 20(2\sqrt{3} - 3) \approx 9{,}28.$	1 pont	
$a+c=2c+\frac{d}{2}=20$, ebből $c=10(\sqrt{3}-1)\approx 7,32$.	1 pont	
$a = 20 - c = 10(3 - \sqrt{3}) \approx 12,68$.	1 pont	
Összesen:	12 pont	

8.		
a)		
Ha az első kiránduláson az osztály 60%-a vett részt, akkor csak a második és harmadik kiránduláson az osztály 40%-a. Hasonlóan adódik, hogy csak az első és harmadik kiránduláson az osztály 30%-a, csak az első és második kiránduláson az osztály 20%-a vett részt.	3 pont	
Mivel nem volt olyan tanuló, aki csak egy kiránduláson vett volna részt, ezért az osztály 10%-a vett részt minden kiránduláson.	2 pont	
Az előző megállapítás és a feltétel alapján az osztály létszáma 30.	1 pont	
Összesen:	6 pont	
Algebrai megoldás: $x+y+3=0,6 (3+x+y+z)$ II. $y+z+3=0,7 (3+x+y+z)$ z+x+3=0,8 (3+x+y+z) 0 0 0 0 0 0 0 0	3 pont	Az egyenletrendszer felállításáért
$ \begin{array}{c} x-y=3\\2x-3y=0 \end{array} $	1 pont	Kétismeretlenes egyenletrendszerért
x=9; y=6; z=12	1 pont	
Az osztálylétszám 6+9+12+3=30 fő	1 pont	
Összesen:	6 pont	
b)		,
Ha minden tanuló legfeljebb két mérkőzést játszott volna, akkor eddig 10 mérkőzés zajlott volna le.	2 pont	
Mivel 11 mérkőzés volt, ezért a skatulya-elv alapján lennie kell olyan tanulónak, aki három mérkőzést játszott	2 pont	
Összesen:	4 pont	

c)		
A második kiránduláson 21 tanuló volt.	1 pont	
Jelölje a kiránduláson résztvevők átlagmagasságát \overline{h} . Ezzel a feltételek alapján: $174,3 = \frac{21 \cdot \overline{h} + 9 \cdot 182}{30},$	3 pont	
ahonnan $\overline{h} = 171 \mathrm{cm}$.	2 pont	
Összesen:	6 pont	

9. (1. megoldás)		
Jelölje a az eredeti kocka élhosszát, b pedig a 99., nem egységkocka élhosszát centiméterben mérve. A feltételek alapján a és b pozitív egészek, és $98 = a^3 - b^3 = (a - b)(a^2 + ab + b^2)$.	3 pont	
Mivel $98 = 2 \cdot 7^2$ és $a - b < a^2 + ab + b^2$, ezért három eset lehetséges:	2 pont	
I. $a-b=1$ és $a^2+ab+b^2=98$. Ekkor $a=b+1$ helyettesítéssel a második egyenletből adódik, hogy $3b^2+3b=97$, ami nem lehet, hiszen a 3 nem osztója a 97-nek.	3 pont	
II. $a-b=2$ és $a^2+ab+b^2=49$. Ekkor $b^2+2b=15$, ahonnan a feltételeknek megfelelő megoldás $b=3$, $a=5$.	3 pont	
III. $a-b=7$ és $a^2+ab+b^2=14$. Ekkor $3b^2+21b=-35$, ami nem lehetséges, ugyanis a b pozitív egész szám.	3 pont	Jó indoklás az is, hogy - 35 nem osztható 3-mal.
Azt kaptuk, hogy az eredeti kocka éle 5 cm, így a térfogata 125 cm ³ .	2 pont	
Összesen:	16 pont	
9. (2. megoldás)	Г	T
$a^3 - b^3 = 98$ $b > 1$	2 pont	
Ebből következik, hogy $\sqrt[3]{98} < a \text{ és } a \in \mathbb{N}$.	3 pont	
Tehát $5 \le a$.	2 pont	
Mivel $a \ge b + 1$, ezért $a^3 - (a-1)^3 \le 98$,	2 pont	
és mivel $7^3 - 6^3 = 127 > 98$ miatt $a < 7$,	2 pont	A másodfokú egyenlőt- lenség megoldásával is
igy a = 5 vagy a = 6.	2 pont	eljuthat a helyes értékek- hez.
a = 5 esetén $b = 3$, ami megfelel a feltételeknek.	1 pont	
$a = 6$ esetén $b^3 = 118$, ami nem köbszám, nem megoldás.	1 pont	
Tehát a kocka térfogata: 125 cm ³ .	1 pont	
Összesen:	16 pont	