

CSE 1326: Digital Logic Design Lab Multiplexers

United International University

Objective

• Study 4-input and 8-input multiplexers (MUX)

- Application: Design and implement the Boolean Function
 - $F(A,B,C) = \sum_{m} (0,1,4,7) = \sum_{m} (1,3,4,6)$

Using

- 1. 8 input MUX and necessary basic gates
- 2. 4 input MUX and necessary basic gates

74151: 8-input multiplexer

PIN NO.	SYMBOL	NAME AND FUNCTION multiplexer inputs	
4, 3, 2, 1, 15, 14, 13, 12	I ₀ to I ₇		
5	Υ	multiplexer output	
6	Y	complementary multiplexer output	
7	Ē	enable input (active LOW)	
8	GND	ground (0 V)	
11, 10, 9	S ₀ , S ₁ , S ₂	select inputs	
16	Vcc	positive supply voltage	

74153: Dual 4-input multiplexer

PIN NO.	SYMBOL	NAME AND FUNCTION		
1, 15	1Ē, 2Ē	output enable inputs (active LOW)		
14, 2	S ₀ , S ₁	common data select inputs		
6, 5, 4, 3	1l ₀ to 1l ₃	data inputs from source 1		
7	1Y	multiplexer output from source 1		
8	GND	ground (0 V)		
9	2Y	multiplexer output from source 2		
10, 11, 12, 13	2l ₀ to 2l ₃	data inputs from source 2		
16	Vcc	positive supply voltage		

What to do (1)

• Implement $F(A,B,C) = \sum_{m} (0, 1, 4, 7)$ using 8-input multiplexer

Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

What to do (2)

• Implement $F(A,B,C) = \sum_{m} (0, 1, 4, 7)$ using 4-input multiplexer

Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Writing Report

- Provide pin diagram of 74151 and 74153.
- Circuit diagram of implementation of F(A,B,C) = ∑_m
 (1, 3, 4, 6) using 4 input MUX and necessary basic gates
- Truth table, input functions, and circuit diagram of implementation of the function F(A,B,C) = ∑_m (1, 3, 4, 6) using 2-to-1 MUX and necessary basic gates.