

(11) EP 3 539 551 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

06.10.2021 Bulletin 2021/40

(51) Int Cl.: A61K 38/00 (2006.01) A61K 38/08 (2019.01)

C07K 14/72 (2006.01) A61K 38/04 (2006.01)

(21) Application number: 19158126.3

(22) Date of filing: 28.12.2012

(54) METHOD OF TREATING MELANOCORTIN-4 RECEPTOR-ASSOCIATED DISORDERS IN HETEROZYGOUS CARRIERS

VERFAHREN ZUR BEHANDLUNG VON MELANOCORTIN-4-REZEPTORASSOZIIERTEN ERKRANKUNGEN BEI HETEROZYGOTEN TRÄGERN

PROCÉDÉ DE TRAITEMENT DE TROUBLES ASSOCIÉS AU RÉCEPTEUR DE LA MÉLANOCORTINE-4 DANS DES PORTEURS HÉTÉROZYGOTES

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

- (30) Priority: 29.12.2011 US 201161581391 P
- (43) Date of publication of application: 18.09.2019 Bulletin 2019/38
- (60) Divisional application: 21194299.0
- (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 12863862.4 / 2 797 615

- (73) Proprietor: Rhythm Pharmaceuticals, Inc. Boston, MA 02116 (US)
- (72) Inventors:
 - TARTAGLIA, Louis, A. Newton, MA 02459 (US)
 - HENDERSON, Bart Belmont, MA 02478 (US)
- (74) Representative: J A Kemp LLP 14 South Square Gray's Inn London WC1R 5JJ (GB)
- (56) References cited:

WO-A1-2011/017209 WO-A2-2008/156677

P 3 539 551 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

10

15

20

30

35

50

RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional Application No. 61/581,391, filed on December 29, 2011.

INCORPORATION BY REFERENCE OF MATERIAL IN ASCII TEXT FILE

[0002] This application incorporates by reference the Sequence Listing contained in the following ASCII text file being submitted concurrently herewith:

a) File name: 46051001.txt; created December 26, 2012, 314 KB in size.

BACKGROUND OF THE INVENTION

[0003] Melanocortin 4 receptor (MC4R) mutations can result in genetically derived cause of human obesity or metabolic syndrome. MC4R receptor is a heterotrimeric G-protein-coupled receptor, which transduces signals by activating adenylate cyclase. Expressed in hypothalamic nuclei and other neuronal and non-neuronal tissues, controlling feeding behavior and enegy homeostasis, MC4R integrates an agonist (anorexigenic) signal provided by the α -melanocyte stimulating hormone (α -MSH), and an antagonist (orexigenic) signal provided by the agouti-related peptide (AGPR).

[0004] As shown in FIG. 1, MC4R is a part of the leptin-melanocortin pathway. Leptin is released from adipose tissue and binds to leptin receptors (LEPR) on AGPR- and pro-opiomelanocortin (POMC)-releasing neurons in the arcuate nucleus (ARC) of the hypothalamus. Leptin binding inhibits AGPR release and stimulates the release of POMC, which undergoes post-translational modification by the prohormone convertase PC1/3 to generate a range of peptides, including α -MSH. AGPR binding to MC4R suppresses MC4R activity, while α -MSH binding stimulates the MC4R. Suppressed receptor activity generates or exigenic signal, whereas stimulated receptor activity generates anorexigenic signal. Signals from MC4R modulate feeding behavior through secondary effector neurons.

[0005] Humans affected by a monogenic MC4R-caused disorders, e.g., obesity, are mostly heterozygous carriers of mutant human MC4R (hMC4R) gene with an autosomal dominant inheritance and penetrance and expressivity that varies with age and generational influences. The functional consequences of hMC4R mutations can be schematically divided into the following categories: nonfunctional receptor (e.g. due to missense or frameshift mutations), intracellular retention of the expressed receptor, altered basal activity of the receptor, and altered α -MSH stimulation of the receptor.

SUMMARY OF THE INVENTION

[0006] The need exists for a method of treating disorders associated with MC4R mutations. It has now been discovered that certain individuals that carry an MC4R mutations can respond to pharmacological agents that activate MC4R-mediated signaling pathway. These individuals are heterozygous carriers of an MC4R mutation. Based on this discovery, it is now possible to treat MC4R-mediated disorders in a class of patients that was previously considered unresponsive to MC4R agonists.

[0007] Accordingly, an example embodiment of the present invention is a method of treating a disorder in a subject in need thereof. The method comprises administering to said subject an effective amount of an agonist of the melanocortin-4 receptor (MC4R). The subject is a heterozygous carrier of an MC4R mutation, and the disorder results from an attenuated response of MC4R to α -melanocortin stimulating hormone (a-MSH).

[0008] In a particular embodiment, the disorder is obesity (for example, obesity caused by an MC4R mutation, such as loss of function) and the subject is heterozygous with respect to the MC4R gene. In this embodiment, treatment of such a subject with a pharmacological agent that activates MC4R-mediated signaling pathway, such as described herein, may confer a number of unexpected advantages and benefits. For instance, most subjects heterozygous for MC4R may respond to treatment with sustained weight loss. A proportion of subjects may have MC4R functionality restored to wild type levels, resulting in body weight and body composition normalization. Additional benefits may include overcoming hyperinsulinemia, and improving glucose control and hyperphagia. A further benefit may be that weight loss is sustained throughout the treatment period as well as for prolonged periods of time on treatment cessation.

[0009] Additional unexpected benefits of treating an MC4R-mediated obesity in an MC4R-heterozygous subject by a a pharmacological agent that activates MC4R-mediated signaling pathway, when compared to an obese subject that is wild-type with respect to MC4R, may include one or more of: an unexpectedly long ability to sustain a drug holiday, without gaining weight; a more profound improvement in insulin and glucose management; a longer lasting and sustained reduction in meal size and food intake; a more profound effect on reducing sleep apnea and increasing quality of sleep; an unexpected and more profound improvement effect on parameters of male or female sexual dysfunction; a more

profound reduction in the incidence of obesity-associated cancers; a more profoundly reduced incidence in obesity-associated inflammatory disease including rheumatoid arthritis and endothelial and micro-vascular dysfunction; a more profoundly reduced incidence of heart attack and stroke; more profound improvements in cardiovascular parameters including heart rate and blood pressure.

[0010] There are additional benefits to treatment of an MC4R-mediated obesity in an MC4R-heterozygous subject (MC4R +/-) by a pharmacological agent that activates MC4R-mediated signaling pathway, when compared to an obese subject that is wild-type with respect to MC4R. MC4R +/- obese individuals are more at risk than wild type obese individuals of the consequences of obesity because of the intractability of their obesity, and the duration of the MC4R-mediated obesity, that often has a high rate of childhood onset. For example, MC4+/- obese individuals are resistant to weight management by diet/exercise regimens. (Reinhhr et. al, "Lifestyle Intervention in Obese Children With Variations in the Melanocortin 4 Receptor Gene," Obesity Journal, Vol. 17 No. 2, 2009). It is well-established, however, that higher childhood body-mass index (BMI) values elevate the risk of having a Coronary Heart Disease event in adulthood. (Baker et al., "Childhood Body-Mass Index and the Risk of Coronary Heart Disease in Adulthood," N. Engl. J. Med 2007; 357:2329-2337 (2007).) Treatment of this higher risk patient group may provide a treatment option not previously available (e.g., a treatment that achieves long term weight management).

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.

[0012] The foregoing will be apparent from the following more particular description of example embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of the present invention.

FIG. 1 is a schematic diagram of the leptin-melanocortin pathway.

FIGS. 2A and 2B show Tables 1 and 2 which list examples of the MC4R mutations that cause obesity in humans. FIG. 3 is a bar plot showing the effect of administration of a compound of SEQ ID NO: 140 to mice as described in Example 1.

DETAILED DESCRIPTION OF THE INVENTION

[0013] A description of example embodiments of the invention follows.

[0014] The present invention relates to a method of treating a disorder in a subject suffering from an attenuated response of MC4R to α -melanocortin stimulating hormone (a-MSH). The method comprises administering an effective amount of an agonist of the melanocortin-4 receptor (MC4R). In an example embodiment, the subject is a heterozygous carrier of an MC4R mutation resulting in the attenuated response of MC4R to α -melanocortin stimulating hormone (a-MSH). Because heterozygous carriers retain an ability to respond to the natural ligand of MC4R, treating MC4R-associated disorders in heterozygous carriers by administration of an MC4R agonist does not rely on the knowledge of the type of the MC4R mutation.

[0015] In one example embodiment, the disorder is obesity, for example, MC4R-associated obesity. In another example embodiment, the disorder is metabolic syndrome.

[0016] As used herein, the term "obese" refers to a subject having a body mass index (BMI) within the ranges defined as "obese" by the Center for Desease Control. See, URL http://www.cdc.gov/obesity/defining.html, last accessed on October 28, 2011. For example, an adult who has a BMI of 30 or higher is considered obese,

[0017] As used herein, the term "metabolic syndrome" refers to a group of symptoms that occur together and increase the risk for coronary artery disease, stroke, and type 2 diabetes. According to the American Heart Association and the National Heart, Lung, and Blood Institute, metabolic syndrome also referred to as Syndrom X) is present if a subject has three or more of the following signs:

- 1) Blood pressure equal to or higher than 130/85 mmHg;
- 2) Fasting blood sugar (glucose) equal to or higher than 100 mg/dL;
- 3) Large waist circumference (length around the waist):
- Men 40 inches or more;
- Women 35 inches or more;
- 4) Low HDL cholesterol:

50

55

10

20

25

30

Men - under 40 mg/dL;

5

10

30

35

40

45

50

55

- Women under 50 mg/dL;
- 5) Triglycerides equal to or higher than 150 mg/dL.

Metabolic syndrome can be diagnosed by testing subject's blood pressure, blood glucose level, HDL cholesterol level, LDL cholesterol level, and triglyceride level.

[0018] As used herein, the phrase "attenuated response" refers to reduction, but not complete abrogation, of a signaling activity of a receptor in response to its cognate naturally occurring or synthetic ligand.

[0019] As used herein, the term "agonist" refers to any chemical compound, either naturally occurring or synthetic, that, upon interacting with (e.g., binding to) its target, here, MC4R, raises the signaling activity of MC4R above its basal level. An agonist can be a superagonist (i.e. a compound that is capable of producing a greater maximal response than the endogenous agonist for the target receptor, and thus has an efficacy of more than 100%), a full agonist (i.e. a compound that elicits a maximal response following receptor occupation and activation) or a partial agonist (i.e. a compounds that can activate receptors but are unable to elicit the maximal response of the receptor system).

[0020] Examples of naturally occurring MC4R agonists include α -MSH, β -MSH, γ -MSH and adenocorticitropic hormone (ACTH) or a functional fragment thereof. Examples of synthetic MC4R agonists will be described in detail below.

[0021] As used herein, an "effective amount" is a therapeutically or prophylactically sufficient amount of the MC4R agonist to treat the target disorder. Examples of effective amounts typically range from about from 0.005 mg/kg of body weight to 500 mg/kg of body weight. In other examples, effective amounts range from about from 0.01 mg/kg of body weight to 50 mg/kg of body weight, or from 0.01 mg/kg of body weight to 20 mg/kg of body weight.

[0022] As used herein "treating" includes achieving, partially or substantially, one or more of the following results: partially or totally reducing the body weight (as measured, for example, by a body mass index, BMI); ameliorating or improving a clinical symptom or indicators associated with obesity, such as type-II diabetes, pre-diabetic condition, blood level of haemoglobin A1C (HblAc) above 6%, hyperinsulimenia, hyperlipidemia, insulin insensitivity, glucose intolerance etc; delaying, inhibiting or preventing the progression of obesity and obesity related indication; or partially or totally delaying, inhibiting or preventing the onset or development of obesity or obesity related indication. Delaying, inhibiting or preventing the progression of the obesity includes for example, delaying, inhibiting or preventing the progression of a subject having normal weight to obesity.

[0023] The term "treating" further includes partially or totally reducing the risk for coronary artery disease, stroke, and type 2 diabetes associated with the metabolic syndrome as well as ameliorating or improving a clinical symptom or signs of metabolic syndrome associated with metabolic syndrome, such as any one or more of the five indicators listed above. For example, the term "treating" includes delaying, inhibiting or preventing the progression of parameters associated with the metabolic syndrome, including insulin resistance, glucose clearance and parameters of cardiovascular disease including heart rate and blood pressure.

[0024] "Prophylactic treatment" refers to treatment before onset of obesity to prevent, inhibit or reduce its occurrence.
[0025] As used herein, the term "subject" refers to a mammal, preferably a human, but can also mean an animal in need of veterinary treatment, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, sheep, pigs, horses, and the like) and laboratory animals (e.g., rats, mice, guinea pigs, and the like).

[0026] hMC4R is a well-characterized protein encoded by a genomic sequence having GenBank accession number CH471077.

[0027] Mutations in the MC4R receptor are an associated cause of severe childhood obesity. The carrier prevalence for MC4R mutations in a juvenile-onset obese population has been noted to be around 2.5% with a highest prevalence of 6% among severe obese children. Humans with MC4R mutations show a more or less similar phenotype as has been described for mice with mutations in the MC4 receptor gene. Those people show clear hyperphagia, hyperinsulinaemia, increased fat mass, accompanied by lean body mass, bone mineral density and linear growth rate, with no changes in cortisol levels, gonadotropin, thyroid and sex steroid levels. In contrast to MC4 receptor deletion, hyperphagia and hyperinsulinaemia tends to subside with age in human subjects. Similar to the MC4R knockout mice, the phenotype in heterozygote carriers is intermediate in comparison to homozygote carriers. The exhibited hyperphagia observed upon a test meal is less severe than that observed in people with a leptin deficiency. The severity of MC4 receptor dysfunction seen in assays in vitro can predict the amount of food ingested at a test meal by the subject harboring that particular mutation and correlates with the onset and severity of the obese phenotype. At east 90 different MC4 receptor mutations have been associated with obesity and additional mutations in the MC4 receptor are likely to be discovered, leading to a similar obesity phenotype.

[0028] Examples of the MC4R mutations that cause obesity in humans are shown in FIGS. 2A and 2B as Table 1 and Table 2 (adopted from Farooqi et al., The Journal of Clinical Investigation, July 2000, vol. 106 (2), pp. 271-279 and Vaisse et al., The Journal of Clinical Investigation, July 2000, vol. 106(2), pp. 253-262).

[0029] Additional mutations that potentially casue obesity in humans include, R18H, R18L, S36Y, P48S, V50M, F51L,

E61K, I69T, D90N, S94R, G98R, I121T, A154D, Y157S, W174C, G181D, F202L, A219 V, I226T, G231S, G238D, N240S, C271R, S295P, P299L, E308K, I317V, L325F, and 750DelGA, as described in Xiang et al., "Pharmacological characterization of 30 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists, synthetic agonists, and the endogenous agouti-related protein antagonist." Biochemistry, 2010 Jun 8; 49(22):4583-600.

[0030] Further examples of mutations that potentially cause obesity in humans are those listed in Online Mendelian Inheritance in Man (OMIM), a database of human genes and genetic disorders, under the accession number 155541 (MC4R) (more precisely, accession nos. 155541.0001-155541.0023) at the URL http://omim.org/entry/155541. Representative examples include 4-BP DEL, NT631; 4-BP INS, NT732; TYR35TER; ASP37VAL; SER58CYS; ILE102SER; ASN274SER; 1-BP INS, 112A; 4-BP DEL, 211CTCT; ILE125LYS; ALA175THR; ILE316SER; TYR287TER; ASN97ASP; 15-BP DEL (delta88-92 codons); and SER127LEU.

[0031] In example embodiments, the MC4R mutation results in retention of the MC4R signaling activity.

[0032] Mutations in the genomic sequence encoding MC4R can be detected by the methods that are well known to a person of ordinary skill in the art. For example, the genomic sequence can be cloned using nucleotide primers, such as e.g., the primers described in Farooqi et al., The Journal of Clinical Investigation, July 2000, vol. 106 (2), pp. 271-279 and Vaisse et al., The Journal of Clinical Investigation, July 2000, vol. 106(2), pp. 253-262, and the cloned sequence analyzed using commercially available sequencers and software.

[0033] Activity of MC4R can be measured by the methods well known to a person of ordinary skill in the art. For example, cells can be transiently transfected with the cloned MC4R DNA, the transfected cells contacted by an agonist of MC4R (e.g. α-MSH), and the intracellular level of cAMP, the secondary messenger of MC4R, measured by an electrochemiluminescence assay described, e.g., in Roubert et al., Journal of Endocrinology (2010) 207, pp. 177-183. A reduction in MC4R signaling can be ascertained by comparing the intracellular level of cAMP produced in response to a given agonist by a wild type MC4R to that produced by a mutant MC4R.

[0034] In an example embodiment, an agonist employed by the methods of the present invention can be any known agonist of MC4R. In some example embodiment, the MC4R agonist is not an adrenocorticotropic hormone (ACTH) or a fragment thereof.

[0035] In an example embodiment, an MC4R agonist is any of the peptides disclosed in International Application published as WO/2005/000339. Specifically, examples include peptides of the following structural formula:

wherein

5

10

15

30

35

40

45

50

55

W is Glu, Gln, Asp, Asn, Ala, Gly, Thr, Ser, Pro, Met, Ile, Val, Arg, His, Tyr, Trp, Phe, Lys, Leu, Cya, or is absent; R¹ is -H, -C(O)CH $_3$, -C(O)(CH $_2$) $_{1-4}$ CH $_3$, -C(O)(CH $_2$) $_{1-4}$ NHC(NH)NH $_2$, Tyr- $_3$ Arg-, Ac-Tyr- $_3$ -hArg-, gluconoyl-Tyr-Arg-, Ac-diaminobutyryl-, Ac-diaminopropionyl-, N-propionyl-, N-butyryl-, N-valeryl-, N-methyl-Tyr-Arg-, N-glutaryl-Tyr-Arg-, N-succinyl-Tyr-Arg-, R $_3$ -SO $_2$ NHC(O)CH $_2$ CH $_2$ C(O)-, R $_3$ -SO $_2$ NHC(O)CH $_2$ CH $_3$ C(O)-, R $_3$ -SO $_3$ NHCH $_3$ CH $_3$ C(O)-, C $_3$ -C $_3$ -Cycloalkylcarbonyl, phelylsulfonyl, C $_3$ -C1 $_4$ bicyclic arylsulfonyl, phenyl-(CH $_3$) $_4$ C(O)-, C $_3$ -C1 $_4$ bicyclic aryl-(CH $_3$) $_4$ C(O)-,

or

10

15

25

30

35

5

wherein

 $R^2 \ \ \, \text{is} \ \ \, \text{-H}, \ \ \, \text{-NH}_2, \ \ \, \text{-NHC(O)(CH}_2)_{1-4}\text{CH}_3, \ \ \, \text{-NH-TyrC(O)CH}_3, \ \ \, \text{R}^6\text{SO}_2\text{NH-}, \ \ \, \text{Ac-Cya-NH-}, \ \ \, \text{Tyr-NH-}, \ \ \, \text{HO-}(C_6H_5)\text{-CH}_2\text{CH}_2\text{C}(\text{O})\text{NH-}, \ \ \, \text{or} \ \ \, \text{CH}_3\text{-}(C_6H_5)\text{-C}(\text{O})\text{CH}_2\text{CH}_2\text{C}(\text{O})\text{NH-}; \ \ \, \text{CH}_3\text{-}(C_6H_5)\text{-C}(\text{O})\text{CH}_2\text{CH}_2\text{C}(\text{O})\text{NH-}; \ \ \, \text{CH}_3\text{-}(C_6H_5)\text{-C}(\text{O})\text{CH}_2\text{CH}_2\text{C}(\text{O})\text{NH-}; \ \ \, \text{CH}_3\text{-}(C_6H_5)\text{-C}(\text{O})\text{CH}_3\text{-}(\text{O})\text{CH}_3$

R³ is C₁-C₄ straight or branched alkyl, NH₂-CH₂-(CH₂)_q-, HO-CH₂-, (CH₃)₂CHNH(CH₂)₄-, R⁶(CH₂)_q-, R⁶SO₂NH-, Ser, Ile,

 $(CH_2)_q$ $(CH_2)_q$

q is 0, 1, 2, or 3;

R⁶ is a phenyl or C₈-C₁₄ bicyclic aryl;

m is 1 or 2;

n is 1, 2, 3, or 4;

 R^9 is $(CH_2)_p$ or $(CH_3)_2C$ -;

p is 1 or 2;

40 R₁₀ is NH- or is absent;

 R^7 is a 5- or 6-membered heteroaryl or a 5- or 6-membered heteroaryl ring optionally substituted with R^4 ;

R⁴ is H, C₁-C₄ straight or branched alkyl, phenyl, benzyl, or (C₆H₅)-CH₂-O-CH₂-;

R8 is phenyl, a phenyl ring optionally substituted with X, or cyclohexyl;

X is H, Cl, F, Br, methyl, or methoxy;

 R^{11} is -C(O) or -CH₂;

 R^5 is -NH₂, -OH, glycinol, NH₂-Pro-Ser-, NH₂-Pro-Lys-, HO-Ser-, HO-Pro-Ser-, HO-Lys-, Ser alcohol, -Ser-Pro alcohol, -Lys-Pro alcohol, HOCH₂CH₂-O-CH₂CH₂NH-, NH₂-Phe-Arg-, NH₂-Glu-, NH₂CH₂RCH₂NH-, RHN-, RO-where R is a C₁-C₄ straight or branched alkyl; and

L is -S-S- or -S-CH₂-S-.

[0036] Other examples of MC4R agonists include peptides of the following structural formula:

55

15 wherein:

W is a single bond, Glu, Gln, Asp, Asn, Ala, Gly, Thr, Ser, Pro, Met, Ile, Val, Arg, His, Tyr, Trp, or Phe; $R^1 \text{ is -H, -C(O)CH}_3, -C(O)(CH_2)_{1-4}CH_3, -C(O)(CH_2)_{1-4}-NHC(NH)NH_2, Tyr-\beta Arg, gluconoyl-Tyr-Arg, Ac-Dab, Ac-Dap, N-succinyl-Tyr-Arg, N-propionyl, N-valeryl, N-glutaryl-Tyr-Arg, N-butyryl,$

20

30

25

35 or

40

wherein

 R^2 is -H, -NH₂, -NHC(O)CH₃, -NHC(O)(CH₂)₁₋₄CH₃, or -NH-TyrC(O)CH₃; R^3 is C₁-C₄ straight or branched alkyl, Ser, Ile,

50

55

45

q is 0, 1, 2, or 3;

m is 1 or 2;

p is 1 or 2;

5

10

15

20

30

35

40

45

50

55

R⁴ is H or C₁-C₄ straight or branched alkyl;

X is H, Cl, F, Br, methyl, or methoxy; and

 R^5 is -NH $_2$, -OH, glycinol, -Ser-Pro-NH $_2$, -Lys-Pro-NH $_2$, -Ser-OH, -Ser-Pro-OH, -Lys-Pro-OH -Arg-Phe-NH $_2$, -Glu-NH $_2$, -NHR, or -OR, where R is a C_1 - C_4 straight or branched alkyl.

[0037] In yet another example embodiment, the MC4R agonist can be represented by the following structural formula:

wherein

25

W is Glu, Gln, Asp, Ala, Gly, Thr, Ser, Pro, Met, Ile, Val, Arg, His, Tyr, Trp, Phe, Lys, Leu, Cya, or is absent; $R^1 \text{ is -H, -C}(O)\text{CH}_3, -\text{C}(O)(\text{CH}_2)_{1-4}\text{CH}_3, -\text{C}(O)(\text{CH}_2)_{1-4}\text{NHC}(\text{NH})\text{NH}_2, Tyr-\beta\text{Arg-, Ac-Tyr-}\beta\text{-hArg-, gluconoyl-Tyr-Arg-, Ac-diaminobutyryl-, Ac-diaminopropionyl-, N-propionyl-, N-butyryl-, N-valeryl-, N-methyl-Tyr-Arg-, N-succinyl-Tyr-Arg-, R^6-SO_2NHC(O)CH_2CH_2C(O)-, R^6-SO_2NHC(O)CH_2CH_2C(O)\text{Arg-, R}^6-SO_2NHCH_2CH_2C(O)-, C_3-C_7 cycloalkylcarbonyl, phenylsulfonyl, C_8-C_{14} bicyclic arylsulfonyl, phenyl-(CH_2)_qC(O)-, C_8-C_{14} bicyclic aryl-(CH_2)_qC(O)-, C_8-C_{14} bicyclic ar$

or

wherein

 R^3 is C_1 - C_4 straight or branched alkyl, NH_2 - CH_2 - $(CH_2)_q$ -, HO- CH_2 -, $(CH_3)_2$ CHNH $(CH_2)_4$ -, R^6 ($CH_2)_q$ -, R^6 SO₂NH-, Ser, IIe,

5 (CH₂)_q

15 q is 0, 1, 2, or 3;

R⁶ is a phenyl or C₈-C₁₄ bicyclic aryl;

m is 1 or 2;

p is 1 or 2;

20

35

40

45

50

R⁴ is H, C₁-C₄ straight or branched alkyl, phenyl, benzyl, or (C₆H₅)-CH₂-O-CH₂-;

X is H, Cl, F, Br, methyl, or methoxy; and

 R^5 is -NH $_2$, -OH, glycinol, NH $_2$ -Pro-Ser-, NH $_2$ -Pro-Lys-, HO-Ser-, HO-Pro-Ser-, HO-Lys-, -Ser alcohol, -Ser-Pro alcohol, -Lys-Pro alcohol, HOCH $_2$ CH $_2$ -O-CH $_2$ CH $_2$ NH-, NH $_2$ -Phe-Arg-, NH $_2$ -Glu-, NH $_2$ CH $_2$ RCH $_2$ NH-, or RO- where R is a C $_1$ -C $_4$ straight or branched alkyl.

[0038] Additional examples of MC4R agonists useful to practice the present invention are found in WO2011104378; WO2011104379; WO201060901; WO200887189, WO200887188, WO200887187, WO200887186; US20110065652; WO2010144341; WO2010144344; WO201065799; WO201065800; WO201065801; WO201065802; WO201037081; WO2009152079; WO2009151383; US20100311648; US20100280079; WO201081666; WO201034500; WO200910299; WO2008116665; WO201052256; WO201052255; WO201126015; US20100120783; WO201096854; US20100190793;

[0039] WO201025142; and WO201015972. Further examples of MC4R agonists useful to practice the present invention are found in U.S. Pat. No. 8,263,608; U.S. Pat. No. 8,247,530; U.S. Pat. No. 8,114,844; and U.S. Pat. No. 7,968,548. [0040] In one example embodiment, the agonist of MC4R is a tripeptide D-Phe-Arg-Trp (SEQ ID NO: 560) or a pharmaceutical salt thereof. In another example, the agonist is any peptide that includes SEQ ID NO: 560 or a pharmaceutical salt thereof. In yet another example, the MC4R agonist is an acetylated tripeptide Ac-D-Phe-Arg-Trp-NH₂ (SEQ ID NO: 561) or a pharmaceutical salt thereof.

[0041] In an example embodiment, the agonists of MC4R are those of Formula (I) or a pharmaceutically acceptable salt, hydrate, solvate or a prodrug thereof (see International Patent Application Publication Number WO 2007/008704):

$$(R^2R^3)-A^1-c(A^2-A^3-A^4-A^5-A^6-A^7-A^8-A^9)-A^{10}-R^1$$
 (I).

In Formula (I):

 A^1 is Acc, $HN-(CH_2)_m$ -C(O), L- or D-amino acid, or deleted;

A² is Cys, D-Cys, hCys, D-hCys, Pen, D-Pen, Asp, or Glu;

 A^3 is Gly, Ala, β -Ala, Gaba, Aib, D-amino acid, or deleted;

 A^4 is H is, 2-Pal, 3-Pal, 4-Pal, Taz, 2-Thi, 3-Thi, or $(X^1, X^2, X^3, X^4, X^5)$ Phe;

A⁵ is D-Phe, D-1-Nal, D-2-Nal, D-Trp, D-Bal, D-(X¹, X², X³, X⁴, X⁵)Phe, L-Phe or D-(Et)Tyr;

 A^6 is Arg, hArg, Dab, Dap, Lys, Orn, or HN-CH((CH₂)_n-N(R⁴ R⁵))-C(O);

A⁷ is Trp, 1-Nal, 2-Nal, Bal, Bip, D-Trp, D-2-Nal, D-Bal or D-Bip;

A⁸ is Gly, D-Ala, Acc, Ala, 13-Ala, Gaba, Apn, Ahx, Aha, HN-(CH₂)_s-C(O), or deleted;

 A^9 is Cys, D-Cys, hCys, D-hCys, Pen, D-Pen, Dab, Dap, Orn, or Lys;

 A^{10} is Acc, HN-(CH₂)_f-C(O), L- or D-amino acid, or deleted;

R¹ is OH or NH₂;

each of R^2 and R^3 is, independently for each occurrence, selected from the group consisting of H, (C_1-C_{30}) alkyl, (C_1-C_{30}) heteroalkyl, (C_1-C_{30}) acyl, (C_2-C_{30}) alkenyl, (C_2-C_{30}) alkynyl, aryl (C_1-C_{30}) alkyl, aryl (C_1-C_{30}) acyl, substituted (C_1-C_{30}) alkyl, substituted (C_1-C_{30}) alkynyl, substituted aryl (C_1-C_{30}) alkyl, and substituted aryl (C_1-C_{30}) acyl;

each of R⁴ and R⁵ is, independently for each occurrence, H, (C_1-C_{40}) alkyl, (C_1-C_{40}) heteroalkyl, (C_1-C_{40}) acyl, (C_2-C_{40}) alkenyl, (C_2-C_{40}) alkynyl, aryl (C_1-C_{40}) alkyl, aryl (C_1-C_{40}) acyl, substituted (C_1-C_{40}) alkyl, substituted (C_1-C_{40}) alkyl, substituted (C_2-C_{40}) alkyl, substituted aryl (C_1-C_{40}) alkyl, substituted aryl (C_1-C_{40}) alkyl, substituted aryl (C_1-C_{40}) alkyl, substituted aryl (C_1-C_{40}) alkylsulfonyl, or (C_1-C_1) alkyl, substituted aryl (C_1-C_2) alkyl, substituted aryl (C_1-C_3) alkyl, substituted aryl (C_1-C_4) alkyl, substituted aryl, substituted ar

m is, independently for each occurrence, 1, 2, 3, 4, 5, 6 or 7;

n is, independently for each occurrence, 1, 2, 3, 4 or 5;

s is, independently for each occurrence, 1, 2, 3, 4, 5, 6, or 7;

t is, independently for each occurrence, 1, 2, 3, 4, 5, 6, or 7;

 X', X^2, X^3, X^4 , and X^8 each is, independently for each occurrence, H, F, Cl, Br, I, (C_{1-10}) alkyl, substituted (C_{1-10}) alkyl, (C_{2-10}) alkenyl, substituted (C_{2-10}) alkynyl, substituted (C_{2-10}) alkynyl, aryl, substituted aryl, OH, NH₂, NO₂, or CN.

[0042] In exemplary embodiments of the agonists of Formula (I):

- (I) when R^4 is (C_1-C_{40}) acyl, aryl (C_1-C_{40}) acyl, substituted (C_1-C_{40}) acyl, substituted aryl (C_1-C_{40}) acyl, (C_1-C_{40}) alkyl-sulfonyl, or $-C(NH)-NH_2$, then R^5 is H or (C_1-C_{40}) alkyl, (C_1-C_{40}) heteroalkyl, (C_2-C_{40}) alkenyl, (C_2-C_{40}) alkynyl, aryl (C_1-C_{40}) alkyl, substituted (C_1-C_{40}) alkyl, substituted (C_2-C_{40}) alkynyl, or substituted aryl (C_1-C_{40}) alkyl;
- (II) when R^2 is (C_1-C_{30}) acyl, aryl (C_1-C_{30}) acyl, substituted (C_1-C_{30}) acyl, or substituted aryl (C_1-C_{30}) acyl, then R^3 is H, (C_1-C_{30}) alkyl, (C_1-C_{30}) heteroalkyl, (C_2-C_{30}) alkenyl, (C_2-C_{30}) alkynyl, aryl (C_1-C_{30}) alkyl, substituted (C_1-C_{30}) alkyl, substituted (C_1-C_{30}) alkyl, substituted (C_2-C_{30}) alkenyl, substituted (C_2-C_{30}) alkyl;
 - (III) either A³ or A⁸ or both must be present in said compound;
 - (IV) when A² is Cys, D-Cys, hCys, D-hCys, Pen, or D-Pen, then A⁹ is Cys, D-Cys, hCys, D-hCys, Pen, or D-Pen;
 - (V) when A² is Asp or Glu, then A⁹ is Dab, Dap, Orn, or Lys;
 - (VI) when A⁸ is Ala or Gly, then A¹ is not NIe; and
 - (VII) when A¹ is deleted, then R² and R³ cannot both be H.

[0043] In an example embodiment, the agonists employed by the methods described herein are the compounds of Formula I, wherein:

 A^1 is A6c, Arg, D-Arg, Cha, D-Cha, hCha, Chg, D-Chg, Gaba, Ile, Leu, hLeu, Met, β -hMet, 2-Nal, D-2-Nal, Nip, NIe, Oic, Phe, D-Phe, hPro, Val, or deleted;

A² is Asp, Cys, D-Cys, hCys, D-hCys, Glu, Pen, or D-Pen;

A³ is D-Abu, Aib, Ala, β-Ala, D-Ala, D-Cha, Gaba, D-Glu, Gly, D-Ile, D-Leu, D-Tle, D-Val, or deleted;

A⁴ is H is or 3-Pal;

25

35

50

A⁵ is D-Bal, D-1-Nal, D-2-Nal, D-Phe, D-Trp, or D-(Et)Tyr;

A⁶ is Arg, or hArg;

A⁷ is Bal, Bip, 1-Nal, 2-Nal, Trp, D-Trp;

40 A8 is A6c, D-Ala, Aha, Ahx, Ala, β-Ala, Apn, Gaba, Gly or deleted;

A⁹ is Cys, D-Cys, hCys, D-hCys, Lys, Pen, or D-Pen;

A¹⁰ is Thr, or deleted,

wherein at least one of A³ or A⁸ is deleted, but not both, or pharmaceutically acceptable salts thereof.

[0044] In an example embodiments, agonists of Formula (I) useful in practicing the invention described herein are compounds of the following formula or a pharmaceutically acceptable salt thereof:

```
SEQ ID NO: 1 Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-β-Ala-Lys)-NH<sub>2</sub>;
SEQ ID NO: 2 Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-A6c-Lys)- NH<sub>2</sub>;
SEQ ID NO: 3 Ac-Nle-c(Cys-His-D-Phe-Arg-Trp-Aha-Cys)- NH<sub>2</sub>;
SEQ ID NO: 4 D-Phe-c(Cys-His-D-Phe-Arg-Trp-Ala-D-Cys)-Thr- NH<sub>2</sub>;
```

SEQ ID NO: 5 D-Phe-c(Cys-His-D-Phe-Arg- Trp-p-Ala-D-Cys)- Thr-NH₂;

SEQ ID NO: 6 D-Phe-c(Cys-His-D-Phe-Arg-Trp-Gaba-D-Cys)-Thr-NH₂;

SEQ ID NO: 7 Ac-NIe-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-NH₂;

55 SEQ ID NO: 8 Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-Apn-Lys)-NH₂;

SEQ ID NO: 9 Ac-A6c-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-NH₂;

SEQ ID NO: 10 Ac-D-2-Nal-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-NH₂;

SEQ ID NO: 11 Ac-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-NH₂;

```
SEQ ID NO: 12 Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-NH<sub>2</sub>;
           SEQ ID NO: 13 Ac-NIe-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 14 Ac-NIe-c(Cys-β-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 15 Ac-NIe-c(Cys-Gaba-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
5
           SEQ ID NO: 16 Ac-NIe-c(Cys-Aib-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 17 Ac-NIe-c(Cys-Gly-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 18 Ac-NIe-c(D-Cys-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 19 Ac-NIe-c(D-Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 20 Ac-NIe-c(D-Cys-β-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
10
           SEQ ID NO: 21 Ac-NIe-c(D-Cys-Gaba-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 22 Ac-NIe-c(D-Cys-Aib-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 23 Ac-NIe-c(D-Cys-Gly-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 24 Ac-NIe-c(Cys-D-Ala- His-D-Phe-Arg-Trp- D-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 25 Ac-NIe-c(Cys-β-Ala-His-D-Phe-Arg-Trp-D-Cys)-NH<sub>2</sub>:
15
           SEQ ID NO: 26 Ac-NIe-c(Cys-Gaba-His-D-Phe-Arg-Trp-D-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 27 Ac-NIe-c(Cys-Aib-His-D-Phe-Arg-Trp-D-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 28 Ac-NIe-c(Cys-Gly-His-D-Phe-Arg-Trp-D-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 29 Ac-NIe-c(D-Cys-Ala-His-D-Phe-Arg-Trp-D-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 30 Ac-NIe-c(D-Cys-D-Ala-His-D-Phe-Arg-Trp-D-Cys)- NH<sub>2</sub>;
20
           SEQ ID NO: 31 Ac-NIe-c(D-Cys-β-Ala-His-D-Phe-Arg-Trp-D-Cys)- NH<sub>2</sub>; SEQ ID NO: 32 Ac-NIe-c(D-Cys-Gaba-His-
           D-Phe-Arg-Trp-D-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 33 Ac-NIe-c(D-Cys-Aib-His-D-Phe-Arg-Trp-D-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 34 Ac-Oic-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-NH<sub>2</sub>;
           SEQ ID NO: 35 Ac-Chg-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)- NH<sub>2</sub>;
25
           SEQ ID NO: 36 Ac-hCha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)- NH<sub>2</sub>;
           SEQ ID NO: 37 Ac-D-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)- NH<sub>2</sub>;
           SEQ ID NO: 38 Ac-D-hCha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)- NH<sub>2</sub>;
           SEQ ID NO: 39 Ac-Nip-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)- NH<sub>2</sub>;
           SEQ ID NO:40 Ac-hPro-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)- NH2; SEQ ID NO:41 Ac-hLeu-c(Asp-His-D-Phe-Arg-
30
           Trp-Gaba-Lys)-NH<sub>2</sub>;
           SEQ ID NO: 42 Ac-Phe-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)- NH<sub>2</sub>;
           SEQ ID NO: 43 Ac-D-Phe-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-NH<sub>2</sub>;
           SEQ ID NO: 44 Ac-D-Chg-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-NH<sub>2</sub>;
           SEQ ID NO: 45 n-butanoyl-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)- NH<sub>2</sub>;
35
           SEQ ID NO: 46 n-butyryl-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)- NH<sub>2</sub>;
           SEQ ID NO: 47 Ac-hPhe-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)- NH<sub>2</sub>;
           SEQ ID NO: 48 Ac-β-hMet-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)- NH<sub>2</sub>;
           SEQ ID NO: 49 Ac-Gaba-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)- NH<sub>2</sub>:
           SEQ ID NO: 50 Ac-Cha-c(Asp-His-D-Phe-Arg-D-Trp-Ala-Lys)- NH<sub>2</sub>;
40
           SEQ ID NO: 51 Ac-hCha-c(Asp-His-D-Phe-Arg-D-Trp-Ala-Lys)- NH<sub>2</sub>;
           SEQ ID NO: 52 Ac-Leu-c(Asp-His-D-Phe-Arg-D-Trp-Ala-Lys)- NH<sub>2</sub>;
           SEQ ID NO: 53 Ac-hLeu-c(Asp-His-D-Phe-Arg-D-Trp-Ala-Lys)- NH<sub>2</sub>;
           SEQ ID NO: 54 Ac-Phe-c(Asp-His-D-Phe-Arg-D-Trp-Ala-Lys)- NH<sub>2</sub>;
           SEQ ID NO: 55 Ac-NIe-c(Asp-His-D-Phe-Arg-D-Trp-D-Ala-Lys)- NH<sub>2</sub>;
45
           SEQ ID NO: 56 Ac-NIe-c(Asp-His-D-Phe-Arg-D-Trp-p-Ala-Lys)- NH<sub>2</sub>;
           SEQ ID NO: 57 Ac-NIe-c(Asp-His-D-Phe-Arg-D-Trp-Gaba-Lys)- NH<sub>2</sub>;
           SEQ ID NO: 58 Ac-NIe-c(Asp-His-D-Phe-Arg-D-Trp-Aha-Lys)- NH<sub>2</sub>;
           SEQ ID NO: 59 Ac-NIe-c(Asp-His-D-Phe-Arg-D-Trp-Apn-Lys)- NH<sub>2</sub>;
           SEQ ID NO: 60 Ac-NIe-c(Cys-His-D-Phe-Arg-D-Trp-Apn-Cys)- NH<sub>2</sub>;
50
           SEQ ID NO: 61 Ac-NIe-c(Cys-His-D-Phe-Arg-D-Trp-Gaba-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 62 Ac-NIe-c(Cys-His-D-Phe-Arg-D-Trp-Ahx-Cys)- NH<sub>2</sub>;
           SEQ ID NO: 63 Ac-NIe-c(Cys-His-D-Phe-Arg-D-Tip-β-Ala-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 64 Ac-NIe-c(Cys-His-D-Phe-Arg-D-Trp-D-Ala-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 65 Ac-NIe-c(Cys-D-Ala-His-D-2-Nal-Arg-Trp-Cys)- NH<sub>2</sub>;
55
           SEQ ID NO: 66 Ac-NIe-c(Cys-D-Ala-His-D-2-Nal-Arg-2-Nal-Cys)- NH<sub>2</sub>;
           SEQ ID NO: 67 Ac-NIe-c(Cys-D-Ala-His-D-2-Nal-Arg-1-Nal-Cys)-NH<sub>2</sub>;
           SEQ ID NO: 68 n-butanoyl-Nle-c(Cys-D-Ala-His-D-Phe-Arg-2-Nal-Cys)- NH<sub>2</sub>;
           SEQ ID NO: 69 n-butanoyl-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)- NH<sub>2</sub>;
```

```
SEQ ID NO: 70 Ac-NIe-c(Cys-D-Ala-His-D-Phe-Arg-2-Nal-Cys)- NH<sub>2</sub>;
          SEQ ID NO: 71 Ac-NIe-c(Cys-D-Ala-His-D-Phe-Arg-1-Nal-Cys)- NH<sub>2</sub>;
          SEQ ID NO: 72 Ac-NIe-c(Cys-D-Ala-His-D-Phe-Arg-Bal-Cys)-NH<sub>2</sub>;
          SEQ ID NO: 73 Ac-NIe-c(Cys-D-Glu-His-D-Phe-Arg-Trp-Cys)- NH<sub>2</sub>;
5
          SEQ ID NO: 74 Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-D-Ala-Lys)- NH<sub>2</sub>;
          SEQ ID NO: 75 Ac-NIe-c(Cys-D-Ala-His-D-2-Nal-Arg-Bal-Cys)- NH<sub>2</sub>;
          SEQ ID NO: 76 Ac-NIe-c(Pen-D-Ala-His-D-Phe-Arg-Trp-Cys)- NH<sub>2</sub>;
          SEQ ID NO: 77 Ac-NIe-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Pen)- NH<sub>2</sub>;
          SEQ ID NO: 78 Ac-NIe-c(Pen-D-Ala-His-D-Phe-Arg-Trp-Pen)- NH<sub>2</sub>;
10
          SEQ ID NO: 79 D-Phe-c(Cys-His-D-Phe-hArg-Trp-β-Ala-D-Cys)-Thr- NH<sub>2</sub>;
          SEQ ID NO: 80 D-Phe-c(Cys-His-D-(Et)Tyr-Arg-Trp-β-Ala-D-Cys)-Thr-NH<sub>2</sub>;
          SEQ ID NO: 81 D-Phe-c(Cys-His-D-Phe-Arg-Bip-β-Ala-D-Cys)-Thr- NH<sub>2</sub>;
          SEQ ID NO: 82 D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Trp-β-Ala-D-Cys)-Thr- NH<sub>2</sub>;
          SEQ ID NO: 83 D-Phe-c(Cys-His-D-Phe-hArg-Bip-β-Ala-D-Cys)-Thr- NH<sub>2</sub>;
15
          SEQ ID NO: 84 D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Bip-β-Ala-D-Cys)-Thr- NH<sub>2</sub>:
          SEQ ID NO: 85 NIe-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)- NH<sub>2</sub>;
          SEQ ID NO: 86 Ac-NIe-c(Asp-D-Ala-His-D-Phe-Arg-Trp-Lys)- NH<sub>2</sub>;
          SEQ ID NO: 87 Ac-NIe-c(Asp-D-Ala-His-D-Phe-Arg-Bal-Lys)-NH<sub>2</sub>;
          SEQ ID NO: 88 Ac-NIe-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Pen)-OH;
20
          SEQ ID NO: 89 Ac-NIe-c(Cys-D-Abu-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          SEQ ID NO: 90 Ac-NIe-c(Cys-D-Val-His-D-Phe-Arg-Trp-Cys)- NH<sub>2</sub>;
          SEQ ID NO: 91 Ac-NIe-c(Cys-D-IIe-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          SEQ ID NO: 92 Ac-NIe-c(Cys-D-Leu-His-D-Phe-Arg-Trp-Cys)- NH<sub>2</sub>;
          SEQ ID NO: 93 Ac-NIe-c(Cys-D-TIe-His-D-Phe-Arg-Trp-Cys)- NH<sub>2</sub>;
25
          SEQ ID NO: 94 Ac-NIe-c(Cys-D-Cha-His-D-Phe-Arg-Trp-Cys)- NH<sub>2</sub>;
          SEQ ID NO: 95 Ac-NIe-c(Pen-His-D-Phe-Arg-Trp-Gaba-Cys)- NH<sub>2</sub>;
          SEQ ID NO: 96 Ac-NIe-c(Cys-His-D-Phe-Arg-Trp-Gaba-Pen)- NH<sub>2</sub>;
          SEQ ID NO: 97 Ac-NIe-c(Pen-His-D-Phe-Arg-Trp-Gaba-Pen)- NH<sub>2</sub>;
          SEQ ID NO: 98 Ac-Leu-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-NH<sub>2</sub>:
30
          SEQ ID NO: 99 Ac-Cha-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-NH<sub>2</sub>;
          SEQ ID NO: 100 Ac-Ile-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)- NH<sub>2</sub>;
          SEQ ID NO: 101 Ac-Phe-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-NH<sub>2</sub>;
          SEQ ID NO: 102 Ac-Val-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-NH<sub>2</sub>;
          SEQ ID NO: 103 Ac-2-Nal-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-NH<sub>2</sub>;
35
          SEQ ID NO: 104 NIe-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-NH<sub>2</sub>;
          SEQ ID NO: 105 Phe-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-NH<sub>2</sub>;
          SEQ ID NO: 106 Ac-NIe-c(Cvs-3-Pal-D-Phe-Arg-Trp-Gaba-Cvs)-NH<sub>2</sub>:
          SEQ ID NO: 107 Ac-NIe-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-OH;
          SEQ ID NO: 108 Ac-NIe-c(Cvs-His-Phe-Arg-D-Trp-Gaba-Cvs)-NH<sub>2</sub>:
40
          SEQ ID NO: 109 Ac-NIe-c(Asp-His-D-2-Nal-Arg-Trp-Ala-Lys)-NH<sub>2</sub>;
          SEQ ID NO: 110 Ac-NIe-c(Asp-His-D-2-Nal-Arg-Trp-P-Ala-Lys)- NH<sub>2</sub>;
          SEQ ID NO: 111 Ac-NIe-c(Cys-His-D-2-Nal-Arg-Trp-Gaba-Cys)- NH<sub>2</sub>;
          SEQ ID NO: 112 Ac-NIe-c(Cys-His-D-2-Nal-Arg-Trp-Ahx-Cys)- NH<sub>2</sub>;
          SEQ ID NO: 113 Ac-hPhe-c(Asp-His-D-2-Nal-Arg-Trp-Gaba-Lys)- NH<sub>2</sub>;
45
          SEQ ID NO: 114 Ac-Cha-c(Asp-His-D-2-Nal-Arg-Trp-Gaba-Lys)- NH<sub>2</sub>;
          SEQ ID NO: 115 Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-β-Ala-Lys)-OH;
          SEQ ID NO: 116 Ac-NIe-c(Cys-His-D-Phe-Arg-Trp-Ahx-Cys)-OH;
          SEQ ID NO: 117 D-Phe-c(Cys-His-D-Phe-Arg-Trp-Ala-D-Cys)-Thr-OH;
          SEQ ID NO: 118 D-Phe-c(Cys-His-D-Phe-Arg-Trp-β-Ala-D-Cys)-Thr-OH;
50
          SEQ ID NO: 119 D-Phe-c(Cys-His-D-Phe-Arg-Trp-Gaba-D-Cys)-Thr-OH;
          SEQ ID NO: 120 Ac-NIe-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-OH;
          SEQ ID NO: 121 Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-Apn-Lys)-OH;
          SEQ ID NO: 122 Ac-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-OH;
          SEQ ID NO: 123 Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-OH;
55
          SEQ ID NO: 124 Ac-Chg-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-OH;
          SEQ ID NO: 125 Ac-D-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-OH;
          SEQ ID NO: 126 Ac-hCha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-OH;
          SEQ ID NO: 127 Ac-D-Chg-c(Asp-His-D-Phe-Arg-Tip-Gaba-Lys)-OH;
```

```
SEQ ID NO: 128 Ac-hPhe-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-OH;
          SEQ ID NO: 129 Ac-NIe-c(Cys-His-D-Phe-Arg-D-Trp-Gaba-Cys)-OH;
          SEQ ID NO: 130 Ac-NIe-c(Cys-His-D-Phe-Arg-D-Trp-Ahx-Cys)-OH;
          SEQ ID NO: 131 Ac-NIe-c(Cys-His-D-Phe-Arg-D-Trp-β-Ala-Cys)-OH;
5
          SEQ ID NO: 132 Ac-NIe-c(Cys-His-D-Phe-Arg-D-Trp-D-Ala-Cys)-OH;
          SEQ ID NO: 133 Ac-NIe-c(Cys-D-Ala-His-D-2-Nal-Arg-Trp-Cys)-OH;
          SEQ ID NO: 134 Ac-NIe-c(Cys-D-Ala-His-D-2-Nal-Arg-2-Nal-Cys)-OH;
          SEQ ID NO: 135 Ac-NIe-c(Cys-D-Ala-His-D-2-Nal-Arg-1-Nal-Cys)-OH;
          SEQ ID NO: 136 Ac-NIe-c(Cys-D-Ala-His-D-2-Nal-Arg-Bal-Cys)-OH;
10
          SEQ ID NO: 137 Ac-NIe-c(Pen-D-Ala-His-D-Phe-Arg-Trp-Cys)-OH;
          SEQ ID NO: 138 Ac-NIe-c(Cys-His-D-Phe-Arg-Trp-Gaba-Pen)-OH;
          SEQ ID NO: 139 Ac-Arg-c(Cys-D-Ala-His-D-2-Nal-Arg-Trp-Cys)- NH<sub>2</sub>;
          SEQ ID NO: 140 Ac-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)- NH<sub>2</sub>;
          SEQ ID NO: 141 Ac-D-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)- NH<sub>2</sub>;
          SEQ ID NO: 142 Ac-D-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Pen)- NH<sub>2</sub>;
15
          SEQ ID NO: 143 Ac-D-Arg-c(Cys-His-D-Phe-Arg-Trp-Gaba-Pen)-NH<sub>2</sub>;
          SEQ ID NO: 144 Ac-Arg-c(Cys-His-D-Phe-Arg-Trp-Gaba-Pen)- NH<sub>2</sub>;
          SEQ ID NO: 145 Ac-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Pen)- NH<sub>2</sub>;
          SEQ ID NO: 146 Ac-D-Arg-c(Asp-His-D-Phe-Arg-Trp-Ala-Lys)- NH<sub>2</sub>;
20
          SEQ ID NO: 147 Ac-Arg-c(Asp-His-D-Phe-Arg-Trp-Ala-Lys)- NH<sub>2</sub>;
```

or pharmaceutically acceptable salts thereof.

[0045] In an example embodiment, an agonist of MC4R receptor useful for practicing methods described herein is any of the compounds described by Formula (II) or a pharmaceutically acceptable salt, hydrate, solvate or a prodrug thereof (see International Patent Application Publication Number WO 2007/008704):

$$(R^2R^3)-A^1-c(A^2-A^3-A^4-A^5-A^6-A^7-A^8-A^9)-NH_2$$
 (II)

30 [0046] In formula (II):

A¹ is Nle or deleted;

A² is Cys or Asp;

A³ is Glu or D-Ala;

35 A⁴ is H is;

45

50

A⁵ is D-Phe;

A⁶ is Arg;

A⁷ is Trp, 2-Nal or Bal;

A⁸ is Gly, Ala, D-Ala, (3-Ala, Gaba or Apn;

40 A9 is Cys or Lys;

each of R^2 and R^3 is independently selected from the group consisting of H or (C_1-C_6) acyl.

[0047] In exemplary embodiments of Formula (II):

- (I) when R^2 is (C_1-C_6) acyl, then R^3 is H; and
 - (II) when A² is Cys, then A⁹ is Cys.

[0048] In alternative example embodiments of the present invention, the compounds useful for practicing the methods disclosed herein are:

```
SEQ ID NO: 148 Ac-NIe-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Gly-Cys)- NH<sub>2</sub>;
SEQ ID NO: 149 Ac-NIe-c(Cys-D-Ala-His-D-Phe-Arg-Trp-D-Ala-Cys)-NH<sub>2</sub>;
SEQ ID NO: 150 Ac-NIe-c(Cys-D-Ala-His-D-Phe-Arg-Trp-β-Ala-Cys)-NH<sub>2</sub>;
SEQ ID NO: 151 Ac-NIe-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Gaba-Cys)- NH<sub>2</sub>;
SEQ ID NO: 152 Ac-NIe-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Apn-Cys)- NH<sub>2</sub>;
SEQ ID NO: 153 Ac-c(Cys-Glu-His-D-Phe-Arg-Trp-Ala-Cys)-NH<sub>2</sub>;
SEQ ID NO: 154 Ac-c(Cys-Glu-His-D-Phe-Arg-2-Nal-Ala-Cys)-NH<sub>2</sub>;
SEQ ID NO: 155 Ac-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Ala-Cys)- NH<sub>2</sub>;
```

SEQ ID NO: 156 Ac-c(Cys-D-Ala-His-D-Phe-Arg-2-Nal-Ala-Cys)- NH₂; SEQ ID NO: 157 Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Ala-Cys)- NH₂; or SEQ ID NO: 158 Ac-Nle-c(Asp-D-Ala-His-D-Phe-Arg-Bal-Ala-Lys)-NH₂;

5

or a pharmaceutically acceptable salt thereof.

[0049] In an exemplary embodiment, the agonists of MC4R useful for practicing the methods described herein is any of the compounds of Formula (III), or a pharmaceutically acceptable salt, hydrate, solvate or a prodrug thereof (see International Application Publication Number WO 2007/008684):

10

20

25

35

40

45

 $(R^2R^3)-B^1-A^1-c(A^2-A^3-A^4-A^5-A^6-A^7-A^8-A^9)-A^{10}-A^{11}-A^{12}-A^{13}-B^2-B^3-R^1$ (III).

[0050] In Formula (III):

B¹ is a peptide moiety which contains 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 amino acids, wherein at least 5 amino acids are independently selected from the group consisting of L-Arg, D-Arg, L-hArg and D-hArg, or B¹ is optionally deleted:

 A^1 is Acc, $HN-(CH_2)_m$ -C(O), L- or D-amino acid or deleted;

A² is Cys, D-Cys, hCys, D-hCys, Pen, D-Pen, Asp or Glu;

 A^3 is Gly, Glu, Ala, β -Ala, Gaba, Aib, D-amino acid or deleted;

A⁴ is H is, 2-Pal, 3-Pal, 4-Pal, Taz, 2-Thi, 3-Thi or (X', X², X³, X⁴, X⁵) Phe;

A⁵ is D-Phe, D-1-Nal, D-2-Nal, D-Trp, D-Bal, D-(X¹, X², X³, X⁴, X⁵)Phe, D-(Et)Tyr, D-Dip, D-Bip or D-Bpa;

A⁶ is Arg, hArg, Dab, Dap, Lys, Orn or HN-CH((CH_2)_n-N(R^4R^5))-C(O);

A⁷ is Trp, 1-Nal, 2-Nal, Bal, Bip, Dip, Bpa, D-Trp, D-1-Nal, D-2-Nal, D-Bal, D-Bip, D-Dip or D-Bpa;

A⁸ is Gly, D-Ala, Acc, Ala, β-Ala, Gaba, Apn, Ahx, Aha, HN-(CH₂)_s-C(O) or deleted;

A⁹ is Cys, D-Cys, hCys, D-hCys, Pen, D-Pen, Dab, Dap, Orn or Lys;

A¹⁰ is Acc, HN-(CH₂)_f-C(O), Pro, hPro, 3-Hyp, 4-Hyp, Thr, an L- or D-amino acid or deleted;

A¹¹ is Pro, hPro, 3-Hyp, 4-Hyp or deleted;

A¹² is Lys, Dab, Dap, Arg, hArg or deleted;

30 A¹³ is Asp, Glu or deleted;

B² is a peptide moiety containing 1, 2, 3, 4, or 5 amino acids or deleted,

B³ is a peptide moiety which contains 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acids wherein at least 5 amino acids are independently selected from the group consisting of L-Arg, D-Arg, L-hArg and D-hArg, or is deleted; R¹ is OH or NH₂;

 R^2 and R^3 each is, independently for each occurrence, selected from the group consisting of H, (C_1-C_{30}) alkyl, (C_1-C_{30}) heteroalkyl, (C_1-C_{30}) alkenyl, (C_2-C_{30}) alkynyl, aryl (C_1-C_{30}) alkyl, aryl (C_1-C_{30}) acyl, substituted (C_1-C_{30}) alkyl, substituted (C_1-C_{30}) alkyl, substituted (C_2-C_{30}) alkyl, substituted aryl (C_1-C_{30}) alkyl

 R^4 and R^5 each is, independently for each occurrence, H, $(C_1\text{-}C_{40})$ alkyl, $(C_1\text{-}C_{40})$ heteroalkyl, $(C_1\text{-}C_{40})$ acyl, $(C_2\text{-}C_{40})$ alkenyl, $(C_2\text{-}C_{40})$ alkynyl, aryl $(C_1\text{-}C_{40})$ alkyl, aryl $(C_1\text{-}C_{40})$ acyl, substituted $(C_1\text{-}C_{40})$ alkyl, substituted $(C_1\text{-}C_{40})$ alkyl, substituted $(C_2\text{-}C_{40})$ alkyl, substituted aryl $(C_1\text{-}C_{40})$ alkyl, substituted aryl, substi

n is, independently for each occurrence, 1, 2, 3, 4 or 5;

m is, independently for each occurrence, 1, 2, 3, 4, 5, 6 or 7;

s is, independently for each occurrence, 1, 2, 3, 4, 5, 6 or 7;

t is, independently for each occurrence, 1, 2, 3, 4, 5, 6 or 7;

 X^1 , X^2 , X^3 , X^4 and X^5 each is, independently for each occurrence, H, F, Cl, Br, I, (C_{1^-10}) alkyl, substituted (C_{1^-10}) alkyl, substituted (C_{2^-10}) alkenyl, substituted (C_{2^-10}) alkynyl, substituted (C_{2^-10}) alkynyl, aryl, substituted aryl, OH, NH₂, NO₂ or CN.

50

55

[0051] In an example embodiments of Formula (III):

(I) when R^4 is (C_1-C_{40}) acyl, $aryl(C_1-C_{40})$ acyl, substituted (C_1-C_{40}) acyl, substituted $aryl(C_1-C_{40})$ acyl, (C_1-C_{40}) alkyl-sulfonyl or $C(NH)-NH_2$, then R^5 is H, (C_1-C_{40}) alkyl, (C_1-C_{40}) alkyl, (C_2-C_{40}) alkyl, substituted (C_2-C_{40}) alkyl, substituted (C_1-C_{40}) alkyl, substituted (C_2-C_{40}) alkyl, substituted (C_2-C_{40}) alkyl, substituted (C_2-C_{40}) alkyl, substituted (C_2-C_{40}) alkyl, substituted (C_3-C_{40}) alkyl);

(II) when R^2 is (C_1-C_{30}) acyl, aryl (C_1-C_{30}) acyl, substituted (C_1-C_{30}) acyl or substituted aryl (C_1-C_{30}) acyl, then R^3 is H, (C_1-C_{30}) alkyl, (C_1-C_{30}) alkyl, (C_2-C_{30}) alkyl, (C_2-C_{30}) alkyl, aryl (C_1-C_{30}) alkyl, substituted (C_1-C_{30}) alkyl, aryl (C_1-C_{30}) alkyl, substituted (C_1-C_{30}) alkyl, aryl (C_1-C_{30}) alkyl, aryl (C_1-C_{30}) alkyl, substituted (C_1-C_{30}) alkyl, aryl (C_1-C_{30}) alkyl, substituted (C_1-C_{30}) alkyl, aryl (C_1-C_{30}) alkyl, substituted (C_1-C_{30}) alkyl, aryl (C_1-C_{30}) alkyl, aryl (C_1-C_{30}) alkyl, aryl (C_1-C_{30}) alkyl, substituted (C_1-C_{30}) alkyl, aryl $(C_1-C_{$

substituted (C_1 - C_{30})heteroalkyl, substituted (C_2 - C_{30})alkenyl, substituted (C_2 - C_{30})alkyl;

(III) neither B^1 nor B^2 contains one or more of the following amino acid sequences: $Arg-(Lys)_2-(Arg)_2-Gln-(Arg)_3$, Tyr-Ala-Arg-Lys-Ala-(Arg)₂-Gln-Ala-(Arg)₂, Tyr-Ala-Arg-(Arg)₂-(Arg)₂-(Arg)₂, Tyr-Ala-(Arg)₉,

Tyr-(Ala)₃-(Arg)₇, Tyr-Ala-Arg-Ala-Pro-(Arg)₂-Ala-(Arg)₃ or Tyr-Ala-Arg-Ala-Pro-(Arg)₂-Pro-(Arg)₂;

(IV) either B¹ or B² or both must be present in said compound;

- (V) when A^2 is Cys, D-Cys, hCys, D-hCys, Pen or D-Pen, then A^9 is Cys, D-Cys, hCys, D-hCys, Pen or D-Pen; and (VI) when A^2 is Asp or Glu, then A^9 is Dab, Dap, Orn or Lys.
- 10 [0052] In exemplary embodiments, in Formula (III);

B¹ is Arg-Lys-Gln-Lys-(Arg) $_5$, Arg-(Lys) $_2$ -Arg-Gln-(Arg) $_4$, Arg-(Lys) $_2$ -(Arg) $_3$ -Gln-(Arg) $_2$, Arg-(Lys) $_2$ -(Arg) $_3$ -Gln-(Arg) $_5$, Arg-Gln-(Arg) $_5$, Arg-Gln-(Lys) $_2$ -(Arg) $_5$, Arg-Gln-(Arg) $_5$, Arg-Gln-(Arg) $_6$, (Arg) $_2$ -Gln-(Arg) $_6$, (Arg) $_3$ -Gln-(Arg) $_5$, (Arg) $_3$ -Gln-(Arg) $_6$, (Arg) $_3$ -Gln-(Arg) $_4$, (Arg) $_4$ -Gln-(Arg) $_5$, (Arg) $_5$ -Gln-(Arg) $_5$, (Arg) $_5$ -Gln-(Arg) $_5$, (Arg) $_5$ -Gln-(Arg) $_6$, (Arg) $_6$ -Gln-(Arg) $_6$, (Arg) $_7$ -Gln-(Arg) $_7$ -Gln-(Arg) $_7$ -Gln-(Arg) $_8$, (Arg)s-Gln-Arg, (Arg) $_9$ -Gln, (D-Arg) $_5$, (D-Arg) $_6$, (D-Arg) $_7$, (D-Arg) $_8$, (D-Arg) $_9$, Gln-Arg-(Lys) $_2$ -(Arg) $_7$ -Gln-(Arg) $_8$, Gln-(Arg) $_9$, Tyr-Gly-Arg-(Lys) $_7$ -Gln-(Arg) $_7$ -Gl

20 B^3 is Arg-Lys-Gln-Lys-(Arg)₅, Arg-Lys-(Arg)₃-Gln-(Arg)₃, Arg-(Lys)₂-Arg-Gln-(Arg)₄, Arg-(Lys)₂-Gln-(Arg)₅, $Arg-(Lys)_2-(Arg)_2-Gln-(Arg)_3, \ Arg-(Lys)_2-(Arg)_3-Gln-(Arg)_2, \ Arg-(Lys)_2-(Arg)_4-Gln-Arg, \ Arg-(Lys)_2-(Arg)_5-Gln, \ Arg-(Lys)_2-(Arg)_4-Gln-Arg, \ Arg-(Lys)_2-(Arg)_5-Gln, \ Arg-(Lys)_2-(Arg)_5-($ $Gln-(Lys)_2-(Arg)_5$ $Arg-Gln-(Arg)_7$, Arg-Gln-(Arg)_s, $(Arg)_2$ -Lys- $(Arg)_2$ -Gln- $(Arg)_3$, $(Arg)_2$ -Gln- $(Arg)_6$, $(Arg)_2$ -Gln- $(Arg)_7$, $(Arg)_3$ -Gln- $(Arg)_5$, $(Arg)_3$ -Gln- $(Arg)_6$, $(Arg)_4$ -Gln- $(Arg)_4$, (Arg)₄-Gln-(Arg)₅, $(Arg)_s$ -Gln- $(Arg)_3$, $(Arg)_5$ -Gln- $(Arg)_4$, $(Arg)_6$, $(Arg)_6$ -Gln- $(Arg)_3$, $(Arg)_7$, $(Arg)_7$ -Gln- $(Arg)_2$, $(Arg)_8$, $(Arg)_8$ -Gln-Arg, 25 (Arg)₉, (Arg)₉-Gln, (D-Arg)₅, (D-Arg)₆, (D-Arg)₇, (D-Arg)₈, (D-Arg)₉, Gln-Arg-(Lys)₂-(Arg)₅, Gln-(Arg)₈, Gln-(Arg)₉, or deleted:

 A^1 is A6c, Cha, hCha, Chg, D-Chg, hChg, Gaba, hLeu, Met, β -hMet, D-2-Nal, Nip, Nle, Oic, Phe, D-Phe, hPhe, hPro, or deleted:

A² is Cvs;

5

15

A³ is D-Abu, Aib, Ala, β-Ala, D-Ala, D-Cha, Gaba, Glu, Gly, D-Ile, D-Leu, D-Met, D-Nle, D-Phe, D-Tle, D-Tyr, D-Val, or deleted;

A⁴ is H:

A⁵ is D-Bal, D-1-Nal, D-2-Nal, D-Phe, D-(X¹, X², X³, X⁴, X⁵)Phe, D-Trp, or D-(Et)Tyr;

A⁶ is Arg or hArg;

³⁵ A⁷ is Bal, Bip, 1-Nal, 2-Nal, Trp, or D-Trp;

 A^8 is A5c, A6c, Aha, Ahx, Ala, $\beta\text{-Ala},$ Apn, Gaba, Gly, or deleted;

A⁹ is Cys, D-Cys, hCys, D-hCys, Lys, Pen, or D-Pen;

A¹⁰ is Pro, Thr or deleted:

A¹¹ is Pro or deleted;

40 A¹² is arg, Lys, or deleted;

A¹³ is Asp or deleted;

each of R^2 and R^3 is, independently, H or acyl;

or pharmaceutically acceptable salts thereof.

[0053] In exemplary embodiments, the MC4R agonists useful for practicing the methods of the present invention are at least one of the following compounds:

(SEQ ID NO: 159)

Tyr-Gly-Arg-(Lys)₂-(Arg)₂-Gln-(Arg)₃-Nle-c(Asp-His-D-2-Nal-Arg-Trp-

Lys)- NH_2 ;

55

	(SEQ ID NO: 160)
	Tyr-Gly-Arg-(Lys) ₂ -(Arg) ₂ -Gln-(Arg) ₃ -Doc-Nle-c(Asp-His-D-2-Nal-Arg-
5	Trp-Lys)-NH ₂ ;
	(SEQ ID NO: 161)
10	$\label{eq:local_policy} Nle-c(Asp-His-D-2-Nal-Arg-Trp-Lys)-\beta-Ala-Tyr-Gly-Arg-(Lys)_2-(Arg)_2-Arg-(Lys)_2-(Arg)_2-Arg-(Lys)_2-(Arg)_2-Arg-(Lys)_2-(Arg)_2-Arg-(Lys)_2-(Arg)_2-Arg-(Lys)_2-(Arg)_2-Arg-(Lys)_2-(Arg)_2-Arg-(Lys)_2-(Arg)_2-Arg-(Lys)_2-(Arg)_2-Arg-(Lys)_2-(Arg)_2-Arg-(Lys)_2-(Arg)_2-Arg-(Lys)_2-(Arg)_2-Arg-(Lys)_2-(Arg)_2-Arg-(Lys)_2-(Arg)_2-(Ar$
	$Gln-(Arg)_3-NH_2;$
15	(SEQ ID NO: 162)
	Ac-Nle-c(Asp-His-D-2-Nal-Arg-Trp-Lys)-β-Ala-Tyr-Gly-Arg-(Lys) ₂ -
20	$(Arg)_2$ -Gln- $(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 163)
25	Nle-c(Asp-His-D-2-Nal-Arg-Trp-Lys)-(Doc) ₂ -Tyr-Gly-Arg-(Lys) ₂ -(Arg) ₂
	$Gln-(Arg)_3-NH_2;$
30	(SEQ ID NO: 164)
	Ac-Nle-c(Asp-His-D-2-Nal-Arg-Trp-Lys)-(Pro) ₂ -Lys-Asp-Tyr-Gly-Arg-
35	$(Lys)_2$ - $(Arg)_2$ - Gln - $(Arg)_3$ - NH_2 ;
	(SEQ ID NO: 165)
40	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Gly-Cys)-(Pro) ₂ -Lys-Asp-Tyr-Gly-
, ∪	$Arg-(Lys)_2-(Arg)_2-Gln-(Arg)_3-NH_2;$
45	(SEQ ID NO: 166)
40	Ac-Nle-c(Asp-His-D-2-Nal-Arg-Trp-Lys)-(β-Ala) ₂ -Tyr-Gly-Arg-(Lys) ₂ -
	$(Arg)_2$ -Gln- $(Arg)_3$ -NH ₂ ;
50	(SEQ ID NO: 167)
	Ac-Nle-c(Asp-His-D-2-Nal-Arg-Trp-Lys)-(Pro) ₂ -Lys-Asp-Doc-Tyr-Gly-
	$Arg-(Lys)_2-(Arg)_2-Gln-(Arg)_3-NH_2;$

	(SEQ ID NO: 168)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Gly-Cys)-(Pro) ₂ -Lys-Asp-Doc-Tyr-
5	Gly-Arg- $(Lys)_2$ - $(Arg)_2$ -Gln- $(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 169)
10	$\label{eq:conditional} Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}Trp\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}Trp\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Ala$
	Gly-Arg-(Lys) ₂ -(Arg) ₂ -Gln-(Arg) ₃ -NH ₂ ;
15	(SEQ ID NO: 170)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Ala-Cys)-(Pro)2-Lys-Asp-Doc-Tyr-
	$Gly-Arg-(Lys)_2-(Arg)_2-Gln-(Arg)_3-NH_2;$
20	(SEQ ID NO: 171)
	Ac-Nle-c(Asp-His-D-2-Nal-Arg-Trp-Lys)-(Doc)2-Tyr-Gly-Arg-(Lys)2-
25	$(Arg)_2$ -Gln- $(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 172)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-Tyr-
30	$Gly-Arg-(Lys)_2-(Arg)_2-Gln-(Arg)_3-NH_2;$
	(SEQ ID NO: 173)
35	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Bal-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-(Arg) ₅ -
	Gln-(Arg) ₃ -NH ₂ ;
40	(CDO IDNIO 174)
	(SEQ ID NO: 174)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Bal-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-Gly-
45	$(Arg)_5$ -Gln- $(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 175)
50	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Bal-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-Tyr-
	$Gly-(Arg)_5-Gln-(Arg)_3-NH_2;$

	(SEQ ID NO: 176)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-Ty
5	Gly-Arg-(Lys) ₂ -Arg-Gln-(Arg) ₄ -NH ₂ ;
	(SEQ ID NO: 177)
10	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-Tyr
	Gly-Arg-(Lys) ₂ -Gln-(Arg) ₅ -NH ₂ ;
15	(SEQ ID NO: 178)
	$Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}Trp\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr}$
	Gly-Arg-Lys-Gln-Lys-(Arg) ₅ -NH ₂ ;
20	
	(SEQ ID NO: 179)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-Tyr
25	$Gly-Arg-(Lys)_2-(Arg)_4-Gln-Arg-NH_2;$
	(SEQ ID NO: 180)
30	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Bal-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-Tyr
	Aib-Arg-(Lys) ₂ -(Arg) ₂ -Gln-(Arg) ₃ -NH ₂ ;
35	(SEQ ID NO: 181)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-1-Nal-Ala-Cys)-(Pro) ₂ -Arg-Asp-β-Ala-
40	$(Arg)_5$ -Gln- $(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 182)
45	Ac-c(Cys-Glu-His-D-2-Nal-Arg-1-Nal-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-
45	$(Arg)_5$ -Gln- $(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 183)
50	Ac-c(Cys-Glu-His-D-2-Nal-Arg-1-Nal-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-
	$(Arg)_6$ -Gln- $(Arg)_3$ -NH ₂ ;
55	(SEQ ID NO: 184)

	Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Ala-Cys)-(Pro) ₂ -Arg-Asp-β-Ala-(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ;
5	(8)3 (8)32)
	(SEQ ID NO: 185)
	$Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}2\text{-}Nal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}}$
10	$(Arg)_5$ -Gln- $(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 186)
15	Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-
	$(Arg)_6$ -Gln- $(Arg)_3$ -NH ₂ ;
20	(SEQ ID NO: 187)
	$Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Asp\text{-}Ala\text{-}Arg\text{-}Asp\text{-}Ala\text{-}Arg\text{-}Asp\text{-}Ala\text{-}Arg\text{-}Asp\text{-}Ala\text{-}Arg\text{-}Asp\text{-}Ala\text{-}Arg\text{-}Asp\text{-}Ala\text{-}Arg\text{-}Asp\text{-}Ala\text{-}Arg\text{-}Asp\text{-}Ala\text{-}Arg\text{-}Asp\text{-}Ala\text{-}Arg\text{-}Asp\text{-}Ala\text{-}Arg\text{-}Asp\text{-}Ala\text{-}Arg\text{-}Asp\text{-}Asp\text{-}Ala\text{-}Arg\text{-}Asp\text{-}Asp\text{-}Ala\text{-}Arg\text{-}Asp\text{-}Asp\text{-}Asp\text{-}Ala\text{-}Arg\text{-}Asp-$
	$(Arg)_6$ -Gln- $(Arg)_3$ -NH ₂ ;
25	(CEO ID NO. 100)
	(SEQ ID NO: 188) Ac-c(Cys-Glu-His-D-2-Nal-Arg-Bal-Ala-Cys)-(Pro) ₂ -Arg-Asp-β-Ala-
30	(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ;
30	(Aig)5-Oil-(Aig)3-Nii2,
	(SEQ ID NO: 189)
35	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Bal-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-(Arg) ₆ -
	Gln-(Arg) ₃ -NH ₂ ;
40	(SEQ ID NO: 190)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-Tyr-
	$Gly-Arg-(Lys)_2-(Arg)_3-Gln-(Arg)_2-NH_2;$
45	
	(SEQ ID NO: 191)
	$Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}Trp\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Asp\text{-}\beta\text{-}Ala\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Asp\text{-}\beta\text{-}Ala\text{-}\beta\text{-}Ala\text{-}\beta\text{-}Ala\text{-}\beta\text{-}Ala\text{-}\beta\text{-}Ala\text{-}\beta\text{-}\beta\text{-}Ala\text{-}\beta\text{-}Ala\text{-}\beta\text{-}\beta\text{-}Ala\text{-}\beta\text{-}\beta\text{-}\beta\text{-}Ala\text{-}\beta\text{-}\beta\text{-}\beta\text{-}\beta\text{-}\beta\text{-}\beta\text{-}\beta\text{-}\beta$
50	Gly-Arg-Gln-(Lys) ₂ -(Arg) ₅ -NH ₂ ;
	(SEQ ID NO: 192)
55	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-Tyr-
	Gly-Arg-(Lys) ₂ -(Arg) ₅ -Gln-NH ₂ ;

(SEQ ID NO: 193) Ac-c(Cys-Glu-His-D-2-Nal-Arg-1-Nal-Ala-Cys)-(Pro)₂-Lys-Asp-β-Ala-Tyr-5 Gly-Arg-(Lys)₂-(Arg)₂-Gln-(Arg)₃-NH₂; (SEQ ID NO: 194) 10 Ac-c(Cys-Glu-His-D-2-Nal-Arg-Bal-Ala-Cys)-(Pro)₂-Lys-Asp-β-Ala-Tyr-Gly-Arg-(Lys)₂-(Arg)₂-Gln-(Arg)₃-NH₂; (SEQ ID NO: 195) 15 Ac-c(Cys-Glu-His-D-2-Nal-Arg-1-Nal-Ala-Cys)-(Pro)₂-Lys-Asp-β-Ala- $(Arg)_2$ -Lys- $(Arg)_2$ -Gln- $(Arg)_3$ -NH₂; 20 (SEQ ID NO: 196) Ac-c(Cys-Glu-His-D-2-Nal-Arg-1-Nal-Ala-Cys)-(Pro)₂-Lys-Asp-β-Ala-Arg-Lys- $(Arg)_3$ - $Gln-(Arg)_3$ - NH_2 ; 25 (SEQ ID NO: 197) Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Ala-Cys)-(Pro)₂-Lys-Asp-β-Ala-30 $(Arg)_2$ -Lys- $(Arg)_2$ -Gln- $(Arg)_3$ -NH₂; (SEQ ID NO: 198) 35 Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Ala-Cys)-(Pro)₂-Lys-Asp-β-Ala-Tyr-Gly-(Arg)₂-Lys-(Arg)₂-Gln-(Arg)₃-NH₂; 40 (SEQ ID NO: 199) Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Ala-Cys)-(Pro)₂-Lys-Asp-β-Ala-Gly- $(Arg)_2$ -Lys- $(Arg)_2$ -Gln- $(Arg)_3$ -NH₂; 45 (SEQ ID NO: 200) Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Ala-Cys)-(Pro)₂-Lys-Asp-β-Ala-Gly-50 Arg-Lys-(Arg)₃-Gln-(Arg)₃-NH₂; (SEQ ID NO: 201) 55 Ac-c(Cys-Glu-His-D-2-Nal-Arg-1-Nal-Ala-Cys)-(Pro)₂-Lys-Asp-β-Ala-Tyr-Gly-(Arg)₂-Lys-(Arg)₂-Gln-(Arg)₃-NH₂;

(SEQ ID NO: 202) Ac-c(Cys-Glu-His-D-2-Nal-Arg-1-Nal-Ala-Cys)-(Pro)₂-Lys-Asp-β-Ala-Tyr-Gly-Arg-Lys-(Arg)₃-Gln-(Arg)₃-NH₂; 5 (SEQ ID NO: 203) Ac-c(Cys-Glu-His-D-2-Nal-Arg-1-Nal-Ala-Cys)-(Pro)2-Lys-Asp-B-Ala-Gly-10 $(Arg)_2$ -Lys- $(Arg)_2$ -Gln- $(Arg)_3$ -NH₂; (SEQ ID NO: 204) 15 Ac-c(Cys-Glu-His-D-2-Nal-Arg-1-Nal-Ala-Cys)-(Pro)₂-Lys-Asp-β-Ala-Gly-Arg-Lys-(Arg)₃-Gln-(Arg)₃-NH₂; 20 (SEQ ID NO: 205) Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Ala-Cys)-(Pro)₂-Lys-Asp-β-Ala-25 $(Arg)_2$ -Lys- $(Arg)_2$ -Gln- $(Arg)_3$ -NH₂; (SEQ ID NO: 206) 30 Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Ala-Cys)-(Pro)₂-Lys-Asp-β-Ala-Arg-Lys- $(Arg)_3$ - $Gln-(Arg)_3$ - NH_2 ; (SEQ ID NO: 207) 35 Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Ala-Cys)-(Pro)₂-Lys-Asp-β-Ala-Tyr-Gly-Arg-Lys-(Arg)₃-Gln-(Arg)₃-NH₂; 40 (SEQ ID NO: 208) Ac-c(Cys-Glu-His-D-2-Nal-Arg-Bal-Ala-Cys)-(Pro)₂-Lys-Asp-β-Ala-(Arg)₂-Lys- $(Arg)_2$ - $Gln-(Arg)_3$ - NH_2 ; 45 (SEQ ID NO: 209) Ac-c(Cys-Glu-His-D-2-Nal-Arg-Bal-Ala-Cys)-(Pro)₂-Lys-Asp-β-Ala-Arg-Lys- $(Arg)_3$ - $Gln-(Arg)_3$ - NH_2 ; 50 (SEQ ID NO: 210) Ac-c(Cys-Glu-His-D-2-Nal-Arg-Bal-Ala-Cys)-(Pro)₂-Lys-Asp-β-Ala-Tyr-55

Gly-(Arg)₂-Lys-(Arg)₂-Gln-(Arg)₃-NH₂;

	(SEQ ID NO: 211)
	$Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}$
5	Gly-Arg-Lys-(Arg) ₃ -Gln-(Arg) ₃ -NH ₂ ;
	(SEQ ID NO: 212)
10	$Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Gly$
	$(Arg)_2$ -Lys- $(Arg)_2$ -Gln- $(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 213)
15	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Bal-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-Gly-
	$Arg-Lys-(Arg)_3-Gln-(Arg)_3-NH_2;$
20	(SEQ ID NO: 214)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-
	$(Arg)_5$ -Gln- $(Arg)_3$ -NH ₂ ;
25	
	(SEQ ID NO: 215)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Ala-Cys)-(Pro) ₂ -Arg-Asp-β-Ala-
30	$(Arg)_5$ -Gln- $(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 216)
35	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-Tyr-
	Gly-(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ;
40	
	(SEQ ID NO: 217)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Ala-Cys)-(Pro) ₂ -Arg-Asp-β-Ala-Tyr-
45	Gly-(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ;
	(SEQ ID NO: 218)
50	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-
	$(Arg)_5$ -Gln- $(Arg)_4$ -NH ₂ ;

	(SEQ ID NO: 219)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Ala-Cys)-(Pro) ₂ -Arg-Asp-β-Ala-
5	$(Arg)_5$ -Gln- $(Arg)_4$ -NH ₂ ;
40	(SEQ ID NO: 220)
10	$Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}Trp\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Asp\text{-}\beta\text{-}Ala\text{-}\beta\text{-}Ala\text{-}\beta\text{-}Ala\text{-}\beta\text{-}Ala\text{-}\beta\text{-}Ala\text{-}\beta\text{-}Ala\text{-}\beta\text{-}Ala\text{-}\beta\text{-}Ala\text{-}\beta\text{-}Ala\text{-}\beta\text{-}Ala\text{-}\beta\text{-}Ala\text{-}\beta\text{-}\beta\text{-}Ala\text{-}\beta\text{-}\beta\text{-}Ala\text{-}\beta\text{-}\beta\text{-}\beta\text{-}Ala\text{-}\beta\text{-}\beta\text{-}\beta\text{-}\beta\text{-}\beta\text{-}\beta\text{-}\beta\text{-}\beta$
	Gly-(Arg) ₅ -Gln-(Arg) ₄ -NH ₂ ;
15	(SEQ ID NO: 221)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Ala-Cys)-(Pro) ₂ -Arg-Asp-β-Ala-Tyr-
20	Gly-(Arg) ₅ -Gln-(Arg) ₄ -NH ₂ ;
	(SEQ ID NO: 222)
25	Ac-c(Cys-Glu-His-D-2-Nal-Arg-1-Nal-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-
	(Arg) ₅ -Gln-(Arg) ₄ -NH ₂ ;
30	(SEQ ID NO: 223)
	$Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}1\text{-}Nal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Pro)_2\text{-}Arg\text{-}Asp\text{-}A$
	(Arg) ₅ -Gln-(Arg) ₄ -NH ₂ ;
35	
	(SEQ ID NO: 224)
40	Ac-c(Cys-Glu-His-D-2-Nal-Arg-1-Nal-Ala-Cys)-(Pro) ₂ -Arg-Asp-β-Ala-
40	$(Arg)_6$ -Gln- $(Arg)_3$ -NH ₂ ;
45	(SEQ ID NO: 225)
70	Ac-c(Cys-Glu-His-D-2-Nal-Arg-1-Nal-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-Tyr-
	$Gly-(Arg)_5-Gln-(Arg)_3-NH_2;$
50	(SEQ ID NO: 226)
55	Ac-c(Cys-Glu-His-D-2-Nal-Arg-1-Nal-Ala-Cys)-(Pro) ₂ -Arg-Asp-β-Ala-Tyr-
	Gly-(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ;

	(SEQ ID NO: 227)
_	$\label{eq:condition} Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}1\text{-}Nal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Isspection}$
5	Gly-(Arg) ₅ -Gln-(Arg) ₄ -NH ₂ ;
	(SEQ ID NO: 228)
10	Ac-c(Cys-Glu-His-D-2-Nal-Arg-1-Nal-Ala-Cys)-(Pro) ₂ -Arg-Asp-β-Ala-Tyr-
	Gly-(Arg) ₅ -Gln-(Arg) ₄ -NH ₂ ;
15	(SEQ ID NO: 229)
	$Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}1\text{-}Nal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala$
	Gly-(Arg) ₆ -Gln-(Arg) ₃ -NH ₂ ;
20	(SEQ ID NO: 230)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-1-Nal-Ala-Cys)-(Pro) ₂ -Arg-Asp-β-Ala-Tyr-
25	Gly-(Arg) ₆ -Gln-(Arg) ₃ -NH ₂ ;
	(SEQ ID NO: 231)
30	Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Ala-Cys)-(Pro) ₂ -Arg-Asp-β-Ala-
	$(Arg)_6$ -Gln- $(Arg)_3$ -NH ₂ ;
35	(SEQ ID NO: 232)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-
	$(Arg)_5$ -Gln- $(Arg)_4$ -NH ₂ ;
40	(CEO ID NO. 222)
	(SEQ ID NO: 233)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Ala-Cys)-(Pro) ₂ -Arg-Asp-β-Ala-
45	$(Arg)_5$ -Gln- $(Arg)_4$ -NH ₂ ;
	(SEQ ID NO: 234)
50	Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-Tyr-
	Gly-(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ;
EE.	(SEQ ID NO: 235)
55	$Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}2\text{-}Nal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Arg\text{-}Asp\text{-}As$
	Gly-(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ;

	(SEQ ID NO: 236)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-Tyr-
5	Gly-(Arg) ₆ -Gln-(Arg) ₃ -NH ₂ ;
	(SEQ ID NO: 237)
10	$\label{eq:condition} Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}2\text{-}Nal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}}$
	Gly-(Arg) ₆ -Gln-(Arg) ₃ -NH ₂ ;
45	(SEQ ID NO: 238)
15	$Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}2\text{-}Nal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Ala\text{-}Tyr\text{-}Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Al$
	Gly-(Arg) ₅ -Gln-(Arg) ₄ -NH ₂ ;
20	(SEQ ID NO: 239)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Ala-Cys)-(Pro) ₂ -Arg-Asp-β-Ala-Tyr-
	Gly-(Arg) ₅ -Gln-(Arg) ₄ -NH ₂ ;
25	
	(SEQ ID NO: 240)
30	$Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}(Arg)_5\text{-}Ala\text{-}Ala\text{-}Ala\text{-}Ala\text{-}Ala\text{-}Ala\text{-}Ala\text{-}Ala\text{-}Ala\text{-}Ala\text{-}Ala\text{-}Ala\text{-}A$
	Gln-(Arg) ₄ -NH ₂ ;
35	(SEQ ID NO: 241)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Bal-Ala-Cys)-(Pro) ₂ -Arg-Asp-β-Ala-
	$(Arg)_5$ -Gln- $(Arg)_4$ -NH ₂ ;
40	
	(SEQ ID NO: 242)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Bal-Ala-Cys)-(Pro) ₂ -Arg-Asp-β-Ala-Tyr-
45	$Gly-(Arg)_5-Gln-(Arg)_3-NH_2;$
	(SEQ ID NO: 243)
50	$Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Lys\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}}$
	$Gly-(Arg)_5-Gln-(Arg)_4-NH_2;$
55	(SEQ ID NO: 244)
	$Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Asp\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Asp\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Asp$
	Gly-(Arg) ₅ -Gln-(Arg) ₄ -NH ₂ ;

	(SEQ ID NO: 245)
	Ac-c(Cys-Glu-His-D-2-Nal-Arg-Bal-Ala-Cys)-(Pro) ₂ -Lys-Asp-β-Ala-Tyr-
5	$Gly-(Arg)_6-Gln-(Arg)_3-NH_2;$
	(SEQ ID NO: 246)
10	$Ac\text{-}c(Cys\text{-}Glu\text{-}His\text{-}D\text{-}2\text{-}Nal\text{-}Arg\text{-}Bal\text{-}Ala\text{-}Cys)\text{-}(Pro)_2\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Arg\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Arg\text{-}Arg\text{-}Asp\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Arg\text$
	Gly-(Arg) ₆ -Gln-(Arg) ₃ -NH ₂ ;
15	(SEQ ID NO: 247)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-(Doc) ₂ -Tyr-Gly-Arg-(Lys) ₂ -
20	$(Arg)_2$ -Gln- $(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 248)
25	$Ac\text{-Nle-c}(Cys\text{-D-Ala-His-D-Phe-Arg-Trp-Cys})\text{-}\beta\text{-Ala-Tyr-Gly-Arg-}(Lys)_2\text{-}$
	Arg-Gln-(Arg) ₄ -NH ₂ ;
30	(SEQ ID NO: 249)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-Doc-Tyr-Gly-Arg-(Lys) ₂ -
35	$(Arg)_2$ -Gln- $(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 250)
40	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-β-Ala-(Arg) ₅ -Gln-(Arg) ₃ -
	NH_2 ;
45	(SEQ ID NO: 251)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-β-Ala-Gly-(Arg) ₅ -Gln-
	$(Arg)_3$ -NH ₂ ;
50	(SEQ ID NO: 252)
	$Ac\text{-}Nle\text{-}c(Cys\text{-}D\text{-}Ala\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Instance (Arg)_5\text{-}Gln\text{-}Instance (Arg)_5\text{-}Gln\text{-}Instanc$
55	$(Arg)_3$ -NH ₂ ;

	(SEQ ID NO: 253)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-β-Ala-Gly-(Arg)5-Gln-
5	$(Arg)_4$ -NH ₂ ;
40	(SEQ ID NO: 254)
10	$Ac\text{-Nle-c}(Cys\text{-}D\text{-}Ala\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_2\text{-}Lys\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_2\text{-}Lys\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_2\text{-}Lys\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_2\text{-}Lys\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}D\text{-}Phe\text{-}D\text{-}Ph$
	$(Arg)_2$ -Gln- $(Arg)_3$ -NH ₂ ;
15	(SEQ ID NO: 255)
	$Ac\text{-}Nle\text{-}c(Cys\text{-}D\text{-}Ala\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}Arg\text{-}Lys\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}Arg\text{-}Lys\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}Arg\text{-}Lys\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}Arg\text{-}Lys\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}D\text{-}Phe\text{-}D\text{-}Phe\text{-}D\text{-}D\text{-}Phe\text{-}D\text{-}Phe\text{-}D\text{-}D\text{-}Phe\text{-}D\text{-}D\text{-}D\text{-}D\text{-}D\text{-}D\text{-}D\text{-}D$
20	$(Arg)_3$ -Gln- $(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 256)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-β-Ala-Gly-(Arg) ₂ -Lys-
25	$(Arg)_2$ -Gln- $(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 257)
30	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-β-Ala-Gly-Arg-Lys-(Arg) ₃ -
	Gln-(Arg) ₃ -NH ₂ ;
35	(SEQ ID NO: 258)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-β-Ala-(Arg) ₂ -Lys-(Arg) ₂ -
40	Gln-(Arg) ₃ -NH ₂ ;
	(GEO ID NO. 250)
	(SEQ ID NO: 259)
45	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-β-Ala-Arg-Lys-(Arg) ₃ -Gln-
	$(Arg)_3$ -NH ₂ ;
50	(SEQ ID NO: 260)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-(β-Ala) ₂ -(Arg) ₅ -Gln-(Arg) ₃ -
	NH_2 ;
55	

	(SEQ ID NO: 261)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-(β-Ala) ₂ -Gly-(Arg) ₅ -Gln-
5	$(Arg)_3$ -NH ₂ ;
40	(SEQ ID NO: 262)
10	$\label{eq:conditional} Ac\text{-Nle-c}(Cys\text{-D-Ala-His-D-Phe-Arg-Trp-Cys})\text{-}(\beta\text{-Ala})_2\text{-Tyr-Gly-}(Arg)_5\text{-}$
	$Gln-(Arg)_3-NH_2;$
15	(SEQ ID NO: 263)
	$\label{eq:Ac-Nle-c} Ac-Nle-c (Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-Doc-(Arg)_5-Gln-(Arg)_3-Cln-(Arg)_5-G$
20	NH_2 ;
	(SEQ ID NO: 264)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-Doc-Gly-(Arg)5-Gln-(Arg)3-
25	NH_2 ;
	(SEQ ID NO: 265)
30	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-Doc-Tyr-Gly-(Arg) ₅ -Gln-
	$(Arg)_3$ -NH ₂ ;
35	(SEQ ID NO: 266)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-(Doc) ₂ -(Arg) ₅ -Gln-(Arg) ₃ -
	NH_2 ;
40	(SEQ ID NO: 267)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-(Doc) ₂ -Gly-(Arg) ₅ -Gln-
45	$(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 268)
50	As Mis of Cyra D. Alo Hig D. Pha Arra True Cyra) (Doo). Tyre City (Arra)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-(Doc) ₂ -Tyr-Gly-(Arg) ₅ -
	Gln-(Arg) ₃ -NH ₂ ;
55	

	(SEQ ID NO: 269)
	$Ac\text{-Nle-c}(Cys\text{-D-Ala-His-D-Phe-Arg-Trp-Cys})-\beta\text{-Ala-}(Arg)_5\text{-Gln-}(Arg)_4\text{-}$
5	$\mathrm{NH}_{2};$
	(SEQ ID NO: 270)
10	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)- β -Ala-Tyr-Gly-(Arg) $_5$ -Gln-
	$(Arg)_4$ -NH ₂ ;
15	(SEQ ID NO: 271)
	$Ac\text{-Nle-c}(Cys\text{-D-Ala-His-D-Phe-Arg-Trp-Cys})\text{-}(\beta\text{-Ala})_2\text{-}(Arg)_5\text{-Gln-}(Arg)_4\text{-}(Arg)_5\text{-}(Arg)_5\text{-}(Arg)_5\text{-}(Arg)_6\text{-}(Arg$
	NH_2 ;
20	
	(SEQ ID NO: 272)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-(β-Ala) ₂ -Gly-(Arg) ₅ -Gln-
25	$(Arg)_4$ -NH ₂ ;
	(SEQ ID NO: 273)
30	$\label{eq:conditional} Ac\text{-Nle-c}(Cys\text{-D-Ala-His-D-Phe-Arg-Trp-Cys})\text{-}(\beta\text{-Ala})_2\text{-Tyr-Gly-}(Arg)_5\text{-}$
	$Gln-(Arg)_4-NH_2;$
35	(SEQ ID NO: 274)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-Doc-(Arg) ₅ -Gln-(Arg) ₄ -
	NH ₂ ;
40	11112,
	(SEQ ID NO: 275)
45	$Ac\text{-Nle-c}(Cys\text{-}D\text{-}Ala\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}Doc\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}(Arg)_4\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}Doc\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}(Arg)_4\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}Doc\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}(Arg)_4\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}Doc\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}(Arg)_4\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}Doc\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}(Arg)_4\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}Doc\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}(Arg)_4\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}D\text{-}Phe\text{-}Arg\text{-}D\text{-}Phe\text{-}Arg\text{-}D\text{-}Phe\text{-}D\text{-}$
70	NH_2 ;
50	(SEQ ID NO: 276)
50	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-Doc-Tyr-Gly-(Arg) ₅ -Gln-
	$(Arg)_4$ -NH ₂ ;
55	

	(SEQ ID NO: 277)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-(Doc) ₂ -(Arg) ₅ -Gln-(Arg) ₄ -
5	NH_2 ;
	(SEQ ID NO: 278)
10	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-(Doc) ₂ -Gly-(Arg) ₅ -Gln-
	$(Arg)_4$ -NH ₂ ;
15	(SEQ ID NO: 279)
	$\label{eq:Ac-Nle-c} Ac-Nle-c (Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-(Doc)_2 - Tyr-Gly-(Arg)_5 - Cys-D-Ala-His-D-Phe-Arg-Trp-Cys) - (Doc)_2 - Tyr-Gly-(Arg)_5 - Cys-D-Phe-Arg-Trp-Cys) - (Doc)_2 - Tyr-Gly-(Arg)_5 - Cys-D-Phe-Arg-Trp-Cys-D-Phe-$
	$Gln-(Arg)_4-NH_2;$
20	
	(SEQ ID NO: 280)
	Ac-Nle-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)- β -Ala-Tyr-Gly- (Arg) $_5$ -Gln-
25	$(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 281)
30	Ac-Nle-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-β-Ala-(Arg) ₅ -Gln-(Arg) ₃ -
	NH_2 ;
35	(GEO ID NO. 202)
	(SEQ ID NO: 282)
	Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-Ala-Lys)-β-Ala-Tyr-Gly-(Arg) ₅ -Gln-
40	$(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 283) Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-Ala-Lys)- β -Ala-(Arg) $_5$ -Gln-(Arg) $_3$ -NH $_2$; (SEQ ID NO: 284)
45	(SEQ ID NO: 284)
	Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-Lys)-β-Ala-Tyr-Gly-(Arg) ₅ -Gln-(Arg) ₃ -
	$\mathrm{NH}_2;$
50	(SEQ ID NO: 285) Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-Lys)- β -Ala-Gly-(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ; (SEQ ID NO: 286) Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-Lys)- β -Ala-(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ; (SEQ ID NO: 287)
55	

```
(SEQ ID NO: 287)
                              Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-Lys)-(β-Ala)<sub>2</sub>-Tyr-Gly-(Arg)<sub>5</sub>-Gln-
                              (Arg)_3-NH<sub>2</sub>;
5
            (SEQ ID NO: 288)
                           (SEQ ID NO: 288)
10
                          Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-Lys)-(β-Ala)<sub>2</sub> -Gly-(Arg)<sub>5</sub> -Gln-(Arg)<sub>3</sub> -
                          NH<sub>2</sub>;
            (SEQ ID NO: 289) Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-Lys)-(\beta-Ala)<sub>2</sub>-(Arg)_5-Gln-(Arg)_3-NH<sub>2</sub>;
15
                           (SEQ ID NO: 290)
                          Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-Lys)-Doc-Tyr-Gly-(Arg)<sub>5</sub>-Gln-(Arg)<sub>3</sub> -
20
                          NH<sub>2</sub>;
25
            (SEQ ID NO: 291) Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-Lys)-Doc-Gly-(Arg)<sub>5</sub>-Gln-(Arg)<sub>3</sub> -NH<sub>2</sub>;
            (SEQ ID NO: 292) Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-Lys)-Doc-(Arg)<sub>5</sub>-Gln-(Arg)<sub>3</sub>-NH<sub>2</sub>;
                         (SEQ ID NO: 293)
30
                         Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-Lys)-(Doc)<sub>2</sub>-Tyr-Gly-(Arg)<sub>5</sub>-Gln-(Arg)<sub>3</sub>-
                         NH<sub>2</sub>;
35
                            (SEO ID NO: 294)
                           Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-Lys)-(Doc)<sub>2</sub> -Gly-(Arg)<sub>5</sub>-Gln-(Arg)<sub>3</sub> -
                           NH<sub>2</sub>;
40
            (SEQ ID NO: 295) Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-Lys)-(Doc)<sub>2</sub>-(Arg)<sub>5</sub>-Gln-(Arg)<sub>3</sub>-NH<sub>2</sub>;
                          (SEQ ID NO: 296)
45
                         Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-Lys)-β-Ala-Tyr-Gly-(Arg)<sub>5</sub> -Gln-(Arg)<sub>4</sub> -
                         NH<sub>2</sub>;
            (SEQ ID NO: 297) Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-Lys)-β-Ala-Gly-(Arg)<sub>5</sub>-Gln-(Arg)<sub>4</sub>-NH<sub>2</sub>;
            (SEQ ID NO: 298) Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-Lys)-β-Ala-(Arg)<sub>5</sub>-Gln-(Arg)<sub>4</sub>-NH<sub>2</sub>;
50
                              (SEQ ID NO: 299)
                             Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-Lys)-(β-Ala)<sub>2</sub> -Tyr-Gly-(Arg)<sub>5</sub>-Gln-
55
                             (Arg)_4-NH_2;
```

```
(SEQ ID NO: 300)
                          Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-Lys)-(β-Ala)<sub>2</sub> -Gly-(Arg)<sub>5</sub>-Gln-(Arg)<sub>4</sub>-
5
                         NH<sub>2</sub>;
           (SEQ ID NO: 301) Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-Lys)-(β-Ala)<sub>2</sub>-(Arg)<sub>5</sub>-Gln-(Arg)<sub>4</sub>-NH<sub>2</sub>;
10
                           (SEQ ID NO: 302)
                          Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-Lys)-Doc-Tyr-Gly-(Arg)<sub>5</sub> -Gln-(Arg)<sub>4</sub> -
                          NH_2;
15
           (SEQ ID NO: 303) Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-Lys)-Doc-Gly-(Arg)<sub>5</sub>-Gln-(Arg)<sub>4</sub>-NH<sub>2</sub>;
           (SEQ ID NO: 304) Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-Lys)-Doc-(Arg)<sub>5</sub>-Gln-(Arg)<sub>4</sub>-NH<sub>2</sub>;
20
                        (SEQ ID NO: 305)
                        Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-Lys)-(Doc)2-Tyr-Gly-(Arg)5-Gln-(Arg)4-
                       NH_2;
25
                         (SEQ ID NO: 306)
                          Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-Lys)-(Doc)<sub>2</sub> -Gly-(Arg)<sub>5</sub> -Gln-(Arg)<sub>4</sub> -
30
                         NH<sub>2</sub>;
           (SEQ ID NO: 307) Ac-NIe-c(Asp-His-D-Phe-Arg-Trp-Lys)-(Doc)<sub>2</sub>-(Arg)<sub>5</sub>-Gln-(Arg)<sub>4</sub>-NH<sub>2</sub>;
35
                        (SEQ ID NO: 308)
                         Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-β-Ala-Lys)-β-Ala-Tyr-Gly-(Arg)<sub>5</sub>-Gln-
                        (Arg)_3-NH<sub>2</sub>;
40
                         (SEQ ID NO: 309)
                         Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-β-Ala-Lys)-β-Ala-(Arg)<sub>5</sub> -Gln-(Arg)<sub>3</sub> -
45
                         NH_2;
                         (SEQ ID NO: 310)
50
                          Ac-Nle-c(Cys-His-D-Phe-Arg-Trp-Ahx-Cys)-β-Ala-Tyr-Gly-(Arg)<sub>5</sub> -Gln-
                         (Arg)_3 - NH_2;
55
```

	(SEQ ID NO: 311)
	Ac-Nle-c(Cys-His-D-Phe-Arg-Trp-Ahx-Cys)-β-Ala-(Arg) ₅ -Gln-(Arg) ₃ -
5	$\mathrm{NH}_2;$
	(SEQ ID NO: 312)
10	D-Phe-c(Cys-His-D-Phe-Arg-Trp- β -Ala-D-Cys)-Thr- β -Ala-Tyr-Gly-(Arg) $_5$ -
	$Gln-(Arg)_3 - NH_2;$
15	(SEQ ID NO: 313)
	D-Phe-c(Cys-His-D-Phe-Arg-Trp-β-Ala-D-Cys)-Thr-β-Ala-(Arg) ₅ -Gln-
20	$(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 314)
25	Ac-Nle-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-β-Ala-Tyr-Gly-(Arg) ₅ -Gln-
	$(Arg)_3$ -NH ₂ ;
30	(SEQ ID NO: 315)
	Ac-Nle-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-β-Ala-(Arg) ₅ -Gln-(Arg) ₃ -
35	NH_2 ;
	(SEQ ID NO: 316)
40	Ac-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-β-Ala-Tyr-Gly- (Arg) ₅ -Gln-
	$(Arg)_3$ -NH ₂ ;
45	(SEQ ID NO: 317)
	Ac-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-β-Ala-(Arg) ₅ -Gln-(Arg) ₃ -
50	NH_2 ;
	(SEQ ID NO: 318)
55	Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-β-Ala-Tyr-Gly-(Arg) ₅ -Gln-
	$(Arg)_3$ -NH ₂ ;

	(SEQ ID NO: 319)
	Ac-Nle-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)- β -Ala-(Arg) ₅ -Gln-(Arg) ₃ -
5	NH_2 ;
10	(SEQ ID NO: 320)
10	Ac-Chg-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)- β -Ala-Tyr-Gly-(Arg) ₅ -Gln-
	$(Arg)_3$ -NH ₂ ;
15	(SEQ ID NO: 321)
	Ac-Chg-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)- β -Ala-(Arg) ₅ -Gln-(Arg) ₃ -
20	NH_2 ;
	(SEQ ID NO: 322)
	Ac-hCha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-β-Ala-Tyr-Gly-(Arg) ₅ -Gln-
25	(Arg) ₃ - NH ₂ ;
	(SEQ ID NO: 323)
30	$\label{eq:conditional} Ac\text{-}hCha\text{-}c(Asp\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Gaba\text{-}Lys)\text{-}}\beta\text{-}Ala\text{-}(Arg)_5\text{-}Gln\text{-}(Arg)_3\text{-}$
	NH_2 ;
35	(SEQ ID NO: 324)
	Ac-hCha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(β -Ala) ₂ -Tyr-Gly-(Arg) ₅ -
	$Gln-(Arg)_3 - NH_2;$
40	
	(SEQ ID NO: 325)
45	$Ac-hCha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(\beta-Ala)_2-(Arg)_5-Gln-(Arg)_3-(Arg)_5-Gln-(Arg)_3-(Arg)_5-Gln-(Arg)_3-(Arg)_5-Gln-(Arg)_3-(Arg)_5-Gln-(Arg)_3-(Arg)_5-Gln-(Arg)_3-(Arg)_5-Gln-(Arg)_3-(Arg)_5-Gln-(Arg)_3-(Arg)_5-Gln-(Arg)_3-(Arg)_5-Gln-(Arg)_3-(Arg)_5-Gln-(Arg$
45	$\mathrm{NH}_2;$
	(SEQ ID NO: 326)
50	Ac-hCha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-Doc-Tyr-Gly-(Arg) ₅ -Gln-
	$(Arg)_3$ -NH ₂ ;
55	

	(SEQ ID NO: 327)
	$\label{eq:Ac-hCha-c} Ac-hCha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-Doc-(Arg)_5-Gln-(Arg)_3-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-Doc-(Arg)_5-Gln-(Arg)_3-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-Doc-(Arg)_5-Gln-(Arg)_3-Cha-c(Arg)_5-Gln-(Arg)_3-Cha-c(Arg)_5-Gln-(Arg)_3-Cha-c(Arg)_5-Gln-(Arg)_5-Gln-(Arg)_3-Cha-c(Arg)_5-Gln-($
5	NH_2 ;
40	(SEQ ID NO: 328)
10	$\label{eq:Ac-hCha-c} Ac-hCha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(Doc)_2-Tyr-Gly-(Arg)_5-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(Doc)_2-Tyr-Gly-(Arg)_5-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(Doc)_2-Tyr-Gly-(Arg)_5-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(Doc)_2-Tyr-Gly-(Arg)_5-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(Doc)_2-Tyr-Gly-(Arg)_5-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(Doc)_2-Tyr-Gly-(Arg)_5-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(Doc)_2-Tyr-Gly-(Arg)_5-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(Doc)_2-Tyr-Gly-(Arg)_5-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(Doc)_2-Tyr-Gly-(Arg)_5-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(Doc)_2-Tyr-Gly-(Arg)_5-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(Doc)_2-Tyr-Gly-(Arg)_5-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(Doc)_2-Tyr-Gly-(Arg)_5-Cha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(Doc)_2-Tyr-Gaba-Lys)-(Doc)$
	$Gln-(Arg)_3-NH_2;$
15	(SEQ ID NO: 329)
	$\label{eq:Ac-hCha-c} Ac-hCha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(Doc)_2-(Arg)_5-Gln-(Arg)_3-Cln-(Arg)_3-Cln-(Arg)_5-Gln-(Arg)_3-Cln-(Arg)_5-Gln-(Arg)$
20	$\mathrm{NH}_2;$
	(SEQ ID NO: 330)
	Ac-hCha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-β-Ala-Tyr-Gly-(Arg) ₅ -Gln-
25	(Arg) ₄ -NH ₂ ;
	(SEQ ID NO: 331)
30	Ac-hCha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-β-Ala-(Arg) ₅ -Gln-(Arg) ₄ -
	NH_2 ;
35	(SEQ ID NO: 332)
	Ac-hCha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(β-Ala) ₂ -Tyr-Gly-(Arg) ₅ -
40	Gln-(Arg) ₄ - NH ₂ ;
	(SEQ ID NO: 333)
45	$Ac\text{-}hCha\text{-}c(Asp\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Gaba\text{-}Lys)\text{-}(\beta\text{-}Ala)_2\text{-}(Arg)_5\text{-}Gln\text{-}(Arg)_4\text{-}$
	NH_2 ;
50	(SEQ ID NO: 334)
00	Ac-hCha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-Doc-Tyr-Gly-(Arg) ₅ -Gln-
	$(Arg)_4$ -NH ₂ ;
55	

	(SEQ ID NO: 335)
	Ac-hCha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-Doc-(Arg) ₅ -Gln-(Arg) ₄ -
5	NH ₂ ;
10	(SEQ ID NO: 336)
	(GEO ID NO. 227)
	(SEQ ID NO: 337) As InChas (Astr. His D. Pha, Ang Time Caha Live) (Doo), (Ang), Gla (Ang),
15	Ac-hCha-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-(Doc) ₂ -(Arg) ₅ -Gln-(Arg) ₄ -
	NH_2 ;
	(SEQ ID NO: 338)
20	Ac-D-Chg-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)- β -Ala-Tyr-Gly-(Arg)5 -
	$Gln-(Arg)_3-NH_2;$
25	(SEQ ID NO: 339)
	Ac-D-Chg-c(Asp-His-D-Phe-Arg-Trp-Gaba-Lys)-β-Ala-(Arg) ₅ -Gln-(Arg) ₃ -
	NH ₂ ;
30	
	(SEQ ID NO: 340)
	$Ac\text{-hPhe-c}(Asp\text{-His-D-Phe-Arg-Trp-Gaba-Lys})-\beta\text{-Ala-Tyr-Gly-}(Arg)_5\text{-Gln-}$
35	$(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 341)
40	$Ac\text{-hPhe-c}(Asp\text{-His-D-Phe-Arg-Trp-Gaba-Lys})\text{-}\beta\text{-}Ala\text{-}(Arg)_5\text{-}Gln\text{-}(Arg)_3\text{-}$
	NH_2 ;
45	(SEQ ID NO: 342)
	Ac-Nle-c(Cys-His-D-Phe-Arg-D-Trp-Apn-Cys)-β-Ala-Tyr-Gly-(Arg) ₅ -Gln-
50	$(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 343)
55	$Ac\text{-Nle-c}(Cys\text{-His-D-Phe-Arg-D-Trp-Apn-Cys})-\beta\text{-Ala-}(Arg)_5\text{-Gln-}(Arg)_3\text{-}$
	NH_2 ;

5	(SEQ ID NO: 344) Ac-Nle-c(Cys-His-D-Phe-Arg-D-Trp-Ahx-Cys)-β-Ala-Tyr-Gly-(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ;
10	(SEQ ID NO: 345) Ac-Nle-c(Cys-His-D-Phe-Arg-D-Trp-Ahx-Cys)-β-Ala-(Arg) ₅ -Gln-(Arg) ₃ - NH ₂ ;
15	(SEQ ID NO: 346) Ac-Nle-c(Cys-His-D-Phe-Arg-D-Trp-β-Ala-Cys)-β-Ala-Tyr- Gly-(Arg) ₅ -
20	Gln-(Arg) ₃ -NH ₂ ; (SEQ ID NO: 347)
25	Ac-Nle-c(Cys-His-D-Phe-Arg-D-Trp-β-Ala-Cys)-β-Ala-(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ;
30	(SEQ ID NO: 348) Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Pen)-β-Ala-Tyr-Gly -(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ;
35	(SEQ ID NO: 349)
40	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Pen)-β-Ala-Gly-(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ; (SEQ ID NO: 350)
45	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Pen)-β-Ala-(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ;
50	(SEQ ID NO: 351) Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Pen)-(β-Ala) ₂ -Tyr-Gly-(Arg) ₅ -Gln-(Arg) ₃ - NH ₂ ;
55	om (1115/3 11112)

	(SEQ ID NO: 352)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Pen)-(β-Ala) ₂ -Gly-(Arg) ₅ -Gln-
5	$(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 353)
10	$\label{eq:conditional} Ac\text{-Nle-c}(Cys\text{-D-Ala-His-D-Phe-Arg-Trp-Pen})-(\beta\text{-Ala})_2-(Arg)_5-Gln-(Arg)_3-gln-(Arg$
	NH_2 ;
15	(SEQ ID NO: 354)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Pen)-Doc-Tyr-Gly-(Arg) ₅ -Gln-
••	$(Arg)_3$ -NH ₂ ;
20	(SEQ ID NO: 355)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Pen)-Doc-Gly-(Arg) ₅ -Gln-(Arg) ₃ -
25	NH ₂ ;
	11112,
	(SEQ ID NO: 356)
30	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Pen)-Doc-(Arg) ₅ -Gln-(Arg) ₃ -
	NH_2 ;
35	(SEQ ID NO: 357)
40	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Pen)-(Doc) ₂ -Tyr-Gly-(Arg) ₅ -Gln-
	$(Arg)_3$ -NH ₂ ;
45	(SEQ ID NO: 358)
	$Ac\text{-}Nle\text{-}c(Cys\text{-}D\text{-}Ala\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Pen)\text{-}(Doc)_2\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Phe\text{-}Arg\text{-}Phe\text{-}Arg\text{-}Phe\text{-}Phe\text{-}Arg\text{-}Phe$
	$(Arg)_3$ -NH ₂ ;
50	(SEQ ID NO: 359)
	Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Pen)-(Doc) ₂ -(Arg) ₅ -Gln-(Arg) ₃ -
	NH_2 ;
55	

	(SEQ ID NO: 360)
	D-Phe-c(Cys-His-D-(Et)Tyr-Arg-Trp- β -Ala-D-Cys)- β -Ala-Tyr-Gly-(Arg) $_5$ -
5	$Gln-(Arg)_3 - NH_2;$
10	(SEQ ID NO: 361)
70	D-Phe-c(Cys-His-D-(Et)Tyr-Arg-Trp- β -Ala-D-Cys)- β -Ala-(Arg) $_5$ -Gln-
	$(Arg)_3$ -NH ₂ ;
15	(SEQ ID NO: 362)
	D-Phe-c(Cys-His-D-(Et)Tyr-Arg-Trp-β-Ala-D-Cys)-β-Ala-Gly-(Arg) ₅ -Gln-
20	$(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 363)
25	D-Phe-c(Cys-His-D-(Et)Tyr-Arg-Trp-β-Ala-D-Cys)-β-Ala-(Arg) ₅ -Gln-
	(Arg) ₄ -NH ₂ ;
30	(SEQ ID NO: 364)
	D-Phe-c(Cys-His-D-(Et)Tyr-Arg-Trp-β-Ala-D-Cys)-(β-Ala) ₂ -Tyr-Gly-
	$(Arg)_5$ -Gln- $(Arg)_3$ -NH ₂ ;
35	
	(SEQ ID NO: 365)
	D-Phe-c(Cys-His-D-(Et)Tyr-Arg-Trp- β -Ala-D-Cys)-(β -Ala) ₂ -(Arg) ₅ -Gln-
40	$(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 366)
45	D-Phe-c(Cys-His-D-(Et)Tyr-Arg-Trp- β -Ala-D-Cys)-(β -Ala) $_2$ -Gly-(Arg) $_5$ -
	$Gln-(Arg)_3 - NH_2;$
50	(SEQ ID NO: 367)
	D-Phe-c(Cys-His-D-(Et)Tyr-Arg-Trp-β-Ala-D-Cys)-(β-Ala) ₂ -(Arg) ₅ -Gln-
55	$(Arg)_4$ -NH ₂ ;

	(SEQ ID NO: 368)
	D-Phe-c(Cys-His-D-(Et)Tyr-Arg-Trp- β -Ala-D-Cys)-Doc-Tyr- Gly-(Arg) $_5$ -
5	Gln-(Arg) ₃ -NH ₂ ;
10	(SEQ ID NO: 369)
10	D-Phe-c(Cys-His-D-(Et)Tyr-Arg-Trp-β-Ala-D-Cys)-Doc-(Arg) ₅ -Gln-(Arg) ₃ -
	NH_2 ;
15	(SEQ ID NO: 370)
	D-Phe-c(Cys-His-D-(Et)Tyr-Arg-Trp-β-Ala-D-Cys)-Doc-Gly-(Arg) ₅ -Gln-
	$(Arg)_3$ -NH ₂ ;
20	(SEQ ID NO: 371)
	D-Phe-c(Cys-His-D-(Et)Tyr-Arg-Trp-β-Ala-D-Cys)-Doc-(Arg) ₅ -Gln-(Arg) ₄ -
25	NH ₂ ;
	(SEQ ID NO: 372)
30	D-Phe-c(Cys-His-D-(Et)Tyr-Arg-Trp-β-Ala-D-Cys)-(Doc) ₂ -Tyr-Gly-(Arg) ₅ -
	$Gln-(Arg)_3-NH_2;$
35	(SEQ ID NO: 373)
	D-Phe-c(Cys-His-D-(Et)Tyr-Arg-Trp-β-Ala-D-Cys)-(Doc) ₂ -(Arg) ₅ -Gln-
	$(Arg)_3$ -NH ₂ ;
40	
	(SEQ ID NO: 374)
45	$D\text{-Phe-c}(\text{Cys-His-D-}(\text{Et})\text{Tyr-Arg-Trp-}\beta\text{-Ala-D-Cys})\text{-}(\text{Doc})_2\text{-Gly-}(\text{Arg})_5\text{-}$
40	$Gln-(Arg)_3-NH_2;$
	(SEQ ID NO: 375)
50	$D\text{-Phe-c}(Cys\text{-His-D-}(Et)Tyr\text{-}Arg\text{-}Trp\text{-}\beta\text{-}Ala\text{-}D\text{-}Cys)\text{-}(Doc)_2\text{-}(Arg)_5\text{-}Gln\text{-}$
	$(Arg)_4$ -NH ₂ ;
55	

	(SEQ ID NO: 376)		
	D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Trp-β-Ala-D-Cys)-Thr-β- Ala-Tyr-Gly-		
5	$(Arg)_5$ -Gln- $(Arg)_3$ -NH ₂ ;		
	(SEQ ID NO: 377)		
10	D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Trp- β -Ala-D-Cys)-Thr- β - Ala-(Arg) $_5$ -		
	Gln-(Arg) ₃ -NH ₂ ;		
15	(SEQ ID NO: 378)		
20	$D\text{-Phe-c}(Cys\text{-His-D-}(Et)Tyr\text{-hArg-Trp-}\beta\text{-Ala-D-Cys})\text{-Thr-}(\beta\text{-Ala})_2\text{-Tyr-Gly-}$		
	$(Arg)_5$ -Gln- $(Arg)_3$ -NH ₂ ;		
25	(SEQ ID NO: 379)		
	$D\text{-Phe-c}(Cys\text{-His-D-}(Et)Tyr\text{-hArg-Trp-}\beta\text{-Ala-D-}Cys)\text{-Thr-}(\beta\text{-Ala})_2\text{-}(Arg)_5\text{-}(Ar$		
	$Gln-(Arg)_3-NH_2;$		
30	(CEO ID NO. 200)		
	(SEQ ID NO: 380) D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Trp-β-Ala-D-Cys)-Thr-Doc-Tyr-Gly-		
35	(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ;		
33			
	(SEQ ID NO: 381)		
40	D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Trp-β-Ala-D-Cys)-Thr-Doc-(Arg) ₅ -Gln-		
	$(Arg)_3$ -NH ₂ ;		
	(SEQ ID NO: 382)		
45	$D\text{-Phe-c}(Cys\text{-His-D-}(Et)Tyr\text{-hArg-Trp-}\beta\text{-Ala-D-Cys})\text{-Thr-}(Doc)_2\text{-Tyr-Gly-}$		
	$(Arg)_5$ -Gln- $(Arg)_3$ -NH ₂ ;		
50	(SEQ ID NO: 383)		
	D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Trp-β-Ala-D-Cys)-Thr-β- Ala-Tyr-Gly-		
	(Arg) ₅ -Gln-(Arg) ₄ -NH ₂ ;		
55	(O) (O) (= 20		

	(SEQ ID NO: 384)
	D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Trp- β -Ala-D-Cys)-Thr- β -Ala-(Arg) $_5$ -
5	Gln-(Arg) ₄ -NH ₂ ;
	(SEQ ID NO: 385)
10	$D\text{-Phe-c}(Cys\text{-His-D-}(Et)Tyr\text{-hArg-Trp-}\beta\text{-Ala-D-Cys})\text{-Thr-}(\beta\text{-Ala})_2\text{-Tyr-Gly-}$
	$(Arg)_5$ -Gln- $(Arg)_4$ -NH ₂ ;
15	(SEQ ID NO: 386)
	D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Trp- β -Ala-D-Cys)-Thr-(β -Ala) ₂ -(Arg) ₅ -
	$Gln-(Arg)_4-NH_2;$
20	(SEQ ID NO: 387)
	D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Trp-β-Ala-D-Cys)-Thr-Doc-Tyr-Gly-
25	$(Arg)_5$ -Gln- $(Arg)_4$ -NH ₂ ;
	(SEQ ID NO: 388)
30	$D\text{-Phe-c}(Cys\text{-His-D-}(Et)Tyr\text{-hArg-Trp-}\beta\text{-Ala-D-Cys})\text{-Thr-Doc-}(Arg)_5\text{-}Gln\text{-}$
	$(Arg)_4$ -NH ₂ ;
35	(SEQ ID NO: 389)
	D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Trp-β-Ala-D-Cys)-Thr-(Doc) ₂ -Tyr-Gly-
	(Arg) ₅ -Gln-(Arg) ₄ -NH ₂ ;
40	
	(SEQ ID NO: 390)
	D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Trp-β-Ala-D-Cys)-Thr-(Doc) ₂ -(Arg) ₅ -
45	$Gln-(Arg)_4 - NH_2;$
	(SEQ ID NO: 391)
50	D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Bip-β-Ala-D-Cys)-Thr-β- Ala-Tyr-Gly-
	$(Arg)_5$ -Gln- $(Arg)_3$ -NH ₂ ;

	(SEQ ID NO: 392)
	D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Bip-β-Ala-D-Cys)-Thr-β-Ala-Tyr-Gly-
5	$(Arg)_5$ -Gln- $(Arg)_4$ -NH ₂ ;
40	(SEQ ID NO: 393)
10	$\label{eq:def:def:D-Phe-c} D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Bip-\beta-Ala-D-Cys)-Thr-\beta-Ala-(Arg)_5-Phe-c(Cys-His-D-(Et)Tyr-hArg-Bip-\beta-Ala-D-Cys)-Thr-\beta-Ala-(Arg)_5-Phe-c(Cys-His-D-(Et)Tyr-hArg-Bip-\beta-Ala-D-Cys)-Thr-\beta-Ala-(Arg)_5-Phe-c(Cys-His-D-(Et)Tyr-hArg-Bip-\beta-Ala-D-Cys)-Thr-\beta-Ala-(Arg)_5-Phe-c(Cys-His-D-(Et)Tyr-hArg-Bip-\beta-Ala-D-Cys)-Thr-\beta-Ala-(Arg)_5-Phe-c(Cys-His-D-(Et)Tyr-hArg-Bip-\beta-Ala-D-Cys)-Thr-B-Ala-(Arg)_5-Phe-c(Cys-His-D-(Et)Tyr-hArg-Bip-Bip-B-(Et)Tyr-hArg-Bip-Bip-B-(Et)Tyr-hArg-Bip-B-(Et)Tyr-hArg-Bip-Bip-Bip-Bip-Bip-Bip-Bip-Bip-Bip-Bip$
	Gln-(Arg) ₃ -NH ₂ ;
15	(SEQ ID NO: 394)
	D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Bip-β-Ala-D-Cys)-Thr-(β-Ala) ₂ -Tyr-Gly-
20	$(Arg)_5$ -Gln- $(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 395)
	D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Bip- β -Ala-D-Cys)-Thr-(β -Ala) ₂ -(Arg) ₅ -
25	$Gln-(Arg)_3-NH_2;$
	(SEQ ID NO: 396)
30	D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Bip-β-Ala-D-Cys)-Thr-Doc-Tyr-Gly-
	$(Arg)_5$ -Gln- $(Arg)_3$ -NH ₂ ;
35	(SEQ ID NO: 397)
	$D\text{-Phe-c}(Cys\text{-His-D-}(Et)Tyr\text{-hArg-Bip-}\beta\text{-Ala-D-}Cys)\text{-Thr-Doc-Tyr-Gly-}$
	$(Arg)_5$ -Gln- $(Arg)_4$ -NH ₂ ;
40	
	(SEQ ID NO: 398)
	$D\text{-Phe-c}(Cys\text{-His-D-}(Et)Tyr\text{-hArg-Bip-}\beta\text{-Ala-D-Cys})\text{-Thr-Doc-}(Arg)_5\text{-}Gln\text{-}$
45	$(Arg)_3$ -NH ₂ ;
50	(SEQ ID NO: 399)
	D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Bip-β-Ala-D-Cys)-Thr-(Doc) ₂ -Tyr-Gly-
55	$(Arg)_5$ -Gln- $(Arg)_3$ -NH ₂ ;

```
(SEQ ID NO: 400)
                        D-Phe-c(Cys-His-D-(Et)Tyr-hArg-Bip-β-Ala-D-Cys)-Thr-(Doc)<sub>2</sub> -(Arg)<sub>5</sub> -
                        Gln-(Arg)_3-NH_2;
5
                        (SEO ID NO: 401)
                       Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Gly-Cys)-β-Ala-Tyr -Gly-(Arg)<sub>5</sub>-
10
                       Gln-(Arg)_3-NH_2;
                          (SEO ID NO: 402)
15
                          Ac-Nle-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Gly-Cys)-β-Ala-(Arg)<sub>5</sub>-Gln-
                          (Arg)_3-NH<sub>2</sub>;
                       (SEQ ID NO: 403)
20
                      Nle-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-β-Ala-Tyr-Gly-(Arg)<sub>5</sub>-Gln-(Arg)<sub>3</sub>-
                      NH_2;
25
           (SEQ ID NO: 404) NIe-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-β-Ala-(Arg)<sub>5</sub>-Gln-(Arg)<sub>3</sub>-NH<sub>2</sub>;
                          (SEQ ID NO: 405)
                          Nle-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-(β-Ala)<sub>2</sub>-Tyr-Gly-(Arg)<sub>5</sub>-Gln-
30
                          (Arg)_3 - NH_2;
           (SEQ ID NO: 406) NIe-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-(β-Ala)<sub>2</sub> -(Arg)<sub>5</sub>-Gln-(Arg)<sub>3</sub>-NH<sub>2</sub>;
35
                       (SEQ ID NO: 407)
                       Nle-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-β-Ala-Tyr-Gly-(Arg)<sub>5</sub>-Gln-(Arg)<sub>4</sub>-
                       NH<sub>2</sub>;
40
           (SEQ ID NO: 408) NIe-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-β-Ala-(Arg)<sub>5</sub>-Gln-(Arg)<sub>4</sub> -NH<sub>2</sub>
                          (SEQ ID NO: 409)
45
                          Nle-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-(β-Ala)<sub>2</sub>-Tyr-Gly-(Arg)<sub>5</sub>-Gln-
                          (Arg)_4 - NH_2;
50
           (SEQ ID NO: 410) NIe-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-(β-Ala)<sub>2</sub>-(Arg)<sub>5</sub>-Gln-(Arg)<sub>4</sub>-NH<sub>2</sub>;
                                                          (SEQ ID NO: 411)
55
```

	Nle-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-Doc-Tyr-Gly-(Arg) ₅ -Gln-(Arg) ₃ -
	NH_2 ;
5	(SEQ ID NO: 412) NIe-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-Doc-(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ;
10	(SEQ ID NO: 413)
10	Nle-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-(Doc) ₂ -Tyr-Gly-(Arg) ₅ -Gln-
	$(Arg)_3$ -NH ₂ ;
15	(SEQ ID NO: 414) NIe-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-(Doc) ₂ -(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ;
	(SEQ ID NO: 415)
20	Nle-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-Doc-Tyr-Gly-(Arg) ₅ -Gln-(Arg) ₄ -
	NH_2 ;
	(SEQ ID NO: 416) NIe-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-Doc-(Arg) ₅ -Gln-(Arg) ₄ -NH ₂ ;
25	(SEQ ID NO: 417)
	$Nle-c (Cys-His-D-Phe-Arg-Trp-Apn-Cys)-(Doc)_2-Tyr-Gly-(Arg)_5-Gln-Doc)_5-Tyr-Gly-(Arg)_5-Gln-Doc)_5-Tyr-Gly-(Arg)_5-Tyr-Doc)_5$
30	$(Arg)_4$ -NH ₂ ;
	(SEQ ID NO: 418) NIe-c(Cys-His-D-Phe-Arg-Trp-Apn-Cys)-(Doc) ₂ -(Arg) ₅ -Gln-(Arg) ₄ -NH ₂ ;
35	(SEQ ID NO: 419)
	$Ac\text{-Nle-c}(Cys\text{-}D\text{-}Leu\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}}\beta\text{-}Ala\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gly\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gly\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gly\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gly\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gly\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gly\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gly\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gly\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gly\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gly\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gly\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gly\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gly\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gly\text{-}Gln\text{-}Arg\text{-}Tyr\text{-}Gln-$
	$(Arg)_3$ -NH ₂ ;
40	
	(SEQ ID NO: 420)
45	Ac-Nle-c(Cys-D-Leu-His-D-Phe-Arg-Trp-Cys)-β-Ala-(Arg) ₅ -Gln-(Arg) ₃ -
	$\mathrm{NH}_{2};$
	(SEQ ID NO: 421)
50	Ac-Nle-c(Cys-D-Leu-His-D-Phe-Arg-Trp-Cys)- $(\beta$ -Ala) ₂ -Tyr-Gly-(Arg) ₅ -
	$Gln-(Arg)_3-NH_2;$
55	

(SEQ ID NO: 422) Ac-Nle-c(Cys-D-Leu-His-D-Phe-Arg-Trp-Cys)-(β-Ala)₂-(Arg)₅-Gln-(Arg)₃-5 NH₂; (SEQ ID NO: 423) 10 Ac-Nle-c(Cys-D-Leu-His-D-Phe-Arg-Trp-Cys)-Doc-Tyr-Gly-(Arg)5 -Gln- $(Arg)_3$ -NH₂; 15 (SEQ ID NO: 424) Ac-Nle-c(Cys-D-Leu-His-D-Phe-Arg-Trp-Cys)-Doc-(Arg)₅-Gln-(Arg)₃ -20 NH_2 ; (SEQ ID NO: 425) 25 Ac-Nle-c(Cys-D-Leu-His-D-Phe-Arg-Trp-Cys)-(Doc)₂ -Tyr-Gly-(Arg)₅ -Gln-(Arg)₃-NH₂; 30 (SEQ ID NO: 426) Ac-Nle-c(Cys-D-Leu-His-D-Phe-Arg-Trp-Cys)-(Doc)2-(Arg)5-Gln-(Arg)3- NH_2 ; 35 (SEO ID NO: 427) Ac-Nle-c(Cys-D-Leu-His-D-Phe-Arg-Trp-Cys)-β-Ala-Tyr-Gly-(Arg)₅ -Gln-40 $(Arg)_4-NH_2;$ (SEQ ID NO: 428) 45 Ac-Nle-c(Cys-D-Leu-His-D-Phe-Arg-Trp-Cys)-β-Ala-(Arg)₅-Gln-(Arg)₄-NH₂; 50 (SEO ID NO: 429) Ac-Nle-c(Cys-D-Leu-His-D-Phe-Arg-Trp-Cys)-(β-Ala)₂ -Tyr-Gly-(Arg)₅-Gln-(Arg)₄-NH₂; 55

	(SEQ ID NO: 430)
	$Ac\text{-Nle-c}(Cys\text{-D-Leu-His-D-Phe-Arg-Trp-Cys})\text{-}(\beta\text{-Ala})_2\text{-}(Arg)_5\text{-Gln-}(Arg)_4\text{-}(Arg)_5\text{-}(Arg)_5\text{-}(Arg)_5\text{-}(Arg)_6\text{-}(Arg$
5	NH ₂ ;
	(SEQ ID NO: 431)
10	Ac-Nle-c(Cys-D-Leu-His-D-Phe-Arg-Trp-Cys)-Doc-Tyr-Gly-(Arg) ₅ -Gln-
	$(Arg)_4$ -NH ₂ ;
15	(SEQ ID NO: 432)
	Ac-Nle-c(Cys-D-Leu-His-D-Phe-Arg-Trp-Cys)-Doc-(Arg) ₅ -Gln-(Arg) ₄ -
20	$\mathrm{NH}_{2};$
	(SEQ ID NO: 433)
	$\label{eq:Ac-Nle-c} Ac\text{-Nle-c}(Cys\text{-D-Leu-His-D-Phe-Arg-Trp-Cys})\text{-}(Doc)_2\text{Tyr-Gly-}(Arg)_5$
25	Gln-(Arg) ₄ - NH ₂ ;
	(SEQ ID NO: 434)
30	Ac-Nle-c(Cys-D-Leu-His-D-Phe-Arg-Trp-Cys)-(Doc) ₂ -(Arg) ₅ -Gln-(Arg) ₄ -
	NH_2 ;
35	(SEQ ID NO: 435)
	Ac-Nle-c(Cys-D-Cha-His-D-Phe-Arg-Trp-Cys)-β-Ala-Tyr-Gly-(Arg) ₅ -Gln-
40	(Arg) ₃ -NH ₂ ;
	(SEQ ID NO: 436)
45	Ac-Nle-c(Cys-D-Cha-His-D-Phe-Arg-Trp-Cys)-β-Ala-(Arg) ₅ -Gln-(Arg) ₃ -
	$\mathrm{NH}_2;$
50	(SEQ ID NO: 437)
	$Ac\text{-Nle-c}(Cys\text{-}D\text{-}Cha\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}(\beta\text{-}Ala)_2\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}(\beta\text{-}Ala)_2\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}(\beta\text{-}Ala)_2\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}(\beta\text{-}Ala)_2\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}(\beta\text{-}Ala)_2\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}(\beta\text{-}Ala)_2\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}(\beta\text{-}Ala)_2\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}D\text{-}Phe\text$
	Gln-(Arg) ₃ -NH ₂ ;
55	

	(SEQ ID NO: 438)
	$Ac\text{-Nle-c}(Cys\text{-D-Cha-His-D-Phe-Arg-Trp-Cys})\text{-}(\beta\text{-Ala})_2\text{-}(Arg)_5\text{-Gln-}(Arg)_3\text{-}(Arg)_5\text{-Gln-}(Arg)_3\text{-}(Arg)_5\text{-Gln-}(Arg)_3\text{-}(Arg)_5\text{-Gln-}(Arg)_5\text{-Gln-}(Arg)_3\text{-}(Arg)_5\text{-Gln-}(Arg)_5-Gln$
5	NH_2 ;
	(SEQ ID NO: 439)
10	$\label{lem:conditional} Ac\text{-Nle-c}(Cys\text{-}D\text{-}Cha\text{-}His\text{-}D\text{-}Phe\text{-}Arg\text{-}Trp\text{-}Cys)\text{-}Doc\text{-}Tyr\text{-}Gly\text{-}(Arg)_5\text{-}Gln\text{-}Instantial}$
	$(Arg)_3$ -NH ₂ ;
	(SEQ ID NO: 440)
15	Ac-Nle-c(Cys-D-Cha-His-D-Phe-Arg-Trp-Cys)-Doc-(Arg) ₅ -Gln-(Arg) ₃ -
	NH_2 ;
20	(SEQ ID NO: 441)
	Ac-Nle-c(Cys-D-Cha-His-D-Phe-Arg-Trp-Cys)-(Doc) ₂ -Tyr-Gly-(Arg) ₅ -
	Gln-(Arg) ₃ -NH ₂ ;
25	(SEQ ID NO: 442)
	Ac-Nle-c(Cys-D-Cha-His-D-Phe-Arg-Trp-Cys)-(Doc) ₂ -(Arg) ₅ -Gln-(Arg) ₃ -
30	NH_2 ;
	(SEQ ID NO: 443)
35	Ac-Nle-c(Cys-D-Cha-His-D-Phe-Arg-Trp-Cys)-β-Ala-Tyr-Gly-(Arg) ₅ -Gln-
	$(Arg)_4$ -NH ₂ ;
40	(SEQ ID NO: 444)
	(550 170. 111)
	Ac-Nle-c(Cys-D-Cha-His-D-Phe-Arg-Trp-Cys)-β-Ala-(Arg) ₅ -Gln-(Arg) ₄ -
45	NH_2 ;
50	(SEQ ID NO: 445)
	Ac-Nle-c(Cys-D-Cha-His-D-Phe-Arg-Trp-Cys)-(β-Ala) ₂ -Tyr-Gly-(Arg) ₅ -
	Gln-(Arg) ₄ -NH ₂ ;
55	

	(SEQ ID NO: 446)
	Ac-Nle-c(Cys-D-Cha-His-D-Phe-Arg-Trp-Cys)-(β-Ala) ₂ -(Arg) ₅ -Gln-(Arg) ₄
5	NH_2 ;
	(SEQ ID NO: 447)
10	Ac-Nle-c(Cys-D-Cha-His-D-Phe-Arg-Trp-Cys)-Doc-Tyr-Gly-(Arg) ₅ -Gln-
	$(Arg)_4$ -NH ₂ ;
15	(SEQ ID NO: 448)
	Ac-Nle-c(Cys-D-Cha-His-D-Phe-Arg-Trp-Cys)-Doc-(Arg) ₅ -Gln-(Arg) ₄ -
	$\mathrm{NH_2};$
20	(SEQ ID NO: 449)
	Ac-Nle-c(Cys-D-Cha-His-D-Phe-Arg-Trp-Cys)-(Doc) ₂ -Tyr-Gly-(Arg) ₅ -Glr
25	$(Arg)_4$ -NH ₂ ;
	(SEQ ID NO: 450)
30	Ac-Nle-c(Cys-D-Cha-His-D-Phe-Arg-Trp-Cys)-(Doc) ₂ -(Arg) ₅ -Gln-(Arg) ₄ -
	NH ₂ ;
35	(SEQ ID NO: 451)
	Nle-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-β-Ala-Tyr-Gly-(Arg) ₅ -Gln-
	$(Arg)_3$ -NH ₂ ;
40	(SEQ ID NO: 452) NIe-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-β-Ala-(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ;
	(SEQ ID NO: 453)
45	Nle-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-(β-Ala) ₂ -Tyr-Gly-(Arg) ₅ -Gln-
	$(Arg)_3$ -NH ₂ ;
50	(SEQ ID NO: 454) NIe-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-(β-Ala) ₂ -(Arg) ₅ -Gln-(Arg) ₃ -NH ₂ ;
	(SEQ ID NO: 455)
55	

```
Nle-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-β-Ala-Tyr-Gly-(Arg)<sub>5</sub>-Gln-
                           (Arg)_4-NH_2;
5
           (SEQ ID NO: 456) NIe-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-β-Ala-(Arg)<sub>5</sub>-Gln-(Arg)<sub>4</sub>-NH<sub>2</sub>;
                          (SEQ ID NO: 457)
10
                          Nle-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-(β-Ala)<sub>2</sub>-Tyr-Gly-(Arg)<sub>5</sub>-Gln-
                          (Arg)_4-NH_2;
           (SEQ ID NO: 458) NIe-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-(\beta-Ala)<sub>2</sub>-(Arg)_5-Gln-(Arg)_4-NH<sub>2</sub>;
15
                        (SEQ ID NO: 459)
                        Nle-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-Doc-Tyr-Gly-(Arg)<sub>5</sub>-Gln-(Arg)<sub>3</sub>-
20
                        NH_2;
           (SEQ ID NO: 460) NIe-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-Doc-(Arg)<sub>5</sub>-Gln-(Arg)<sub>3</sub>-NH<sub>2</sub>;
25
                           (SEO ID NO: 461)
                           Nle-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-(Doc)2-Tyr-Gly-(Arg)5-Gln-
                           (Arg)_3-NH<sub>2</sub>;
30
           (SEQ ID NO: 462) NIe-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-(Doc)<sub>2</sub>-(Arg)<sub>5</sub>-Gln-(Arg)<sub>3</sub>-NH<sub>2</sub>;
                        (SEQ ID NO: 463)
35
                        Nle-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-Doc-Tyr-Gly-(Arg)<sub>5</sub>-Gln-(Arg)<sub>4</sub>-
                        NH_2;
40
           (SEQ ID NO: 464) NIe-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-Doc-(Arg)<sub>5</sub>-Gln-(Arg)<sub>4</sub>-NH<sub>2</sub>;
                           (SEQ ID NO: 465)
45
                          Nle-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-(Doc)2-Tyr-Gly-(Arg)5-Gln-
                           (Arg)_4-NH_2;
50
           (SEQ ID NO: 466) NIe-c(Cys-His-D-Phe-Arg-Trp-Gaba-Cys)-(Doc)<sub>2</sub>-(Arg)<sub>5</sub>-Gln-(Arg)<sub>4</sub>-NH<sub>2</sub>, or pharmaceutically ac-
           ceptable salts thereof.
      [0054] In an example embodiment, the compounds useful for practicing the methods described herein are the com-
55
      pounds of Formula (IV):
                          Ac-c(Cys-Glu-His-A<sup>1</sup>-Arg-A<sup>2</sup>-A<sup>3</sup>-Cys)-(Pro)<sub>2</sub>-Lys-Asp-NH<sub>2</sub>
                                                                                                     (IV)
```

or pharmaceutically acceptable salts thereof. In Formula (IV):

A¹ is the D-isomer of X-Phe or 2-Nal where X is halogen;

A² is Bal, 1-Nal, 2-Nal, or Trp; and

 A^3 is Aib, Ala, β -Ala or Gly,

5

10

15

20

25

30

40

45

55

[0055] In an example embodiments, the at least on eof the following compounds is used:

(SEQ ID NO: 467) Ac-c(Cys-Glu-His-D-4-Br-Phe-Arg-Trp-Gly-Cys)-(Pro)₂-Lys-Asp-NH₂;

(SEQ ID NO: 468) Ac-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Ala-Cys)-(Pro)₂-Lys-Asp-NH₂;

(SEQ ID NO: 469) Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Ala-Cys)-(Pro)₂-Lys-Asp-NH₂;

(SEQ ID NO: 470) Ac-c(Cys-Glu-His-D-2-Nal-Arg-1-Nal-Ala-Cys)-(Pro)₂-Lys-Asp-NH₂;

(SEQ ID NO: 471) Ac-c(Cys-Glu-His-D-2-Nal-Arg-Bal-Ala-Cys)-(Pro)₂-Lys-Asp-NH₂;

(SEQ ID NO: 472) Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-β-Ala-Cys)-(Pro)₂-Lys-Asp-NH2;

(SEQ ID NO: 472) Ac-c(Cys-Giu-His-D-2-Nai-Arg-2-Nai- β -Aia-Cys)-(Pro)₂-Lys-Asp-NH2 or

(SEQ ID NO: 473) Ac-c(Cys-Glu-His-D-2-Nal-Arg-2-Nal-Aib-Cys)-(Pro)₂-Lys-Asp-NH₂;

or pharmaceutically acceptable salts thereof.

[0056] In example embodiments, an MC4R agonist useful for practicing the methods described herein is at least one compound modified with a hydantoin moiety according to Formula (V), (VI) or (VII), or a pharmaceutically acceptable salt, hydrate, solvate or a prodrug thereof.

[0057] Formula (V) is described below: (see International Patent Application Number PCT/US08/06675).

[0058] In Formula (V):

35 X is selected from the group consisting of $-CH_2$ -S-S- $-CH_2$ -, $-C(CH_3)_2$ -S-S- $-CH_2$ -, $-CH_2$ -S-S- $-C(CH_3)_2$ -, $-C(CH_3)_2$ -S-S- $-C(CH_3)_2$ -S-S--

 R^2 each is, independently, H, (C_1-C_{10}) alkyl or substituted (C_1-C_{10}) alkyl;

 R^3 is -OH or -NH₂;

 R^4 and R^5 each is, independently, H, (C_1-C_{10}) alkyl or substituted (C_1-C_{10}) alkyl; X^1 is

⁵⁰ A¹ is H is, 2-Pal, 3-Pal, 4-Pal, (X¹, X², X³, X⁴, X⁵)Phe, Taz, 2-Thi, 3-Thi or is deleted;

A² is D-Bal, D-1-Nal, D-2-Nal, D-Phe or D-(X¹,X²,X³,X⁴,X⁵)Phe;

 A^3 is Arg, hArg, Dab, Dap, Lys or Orn;

A⁴ is Bal, 1-Nal, 2-Nal, (X¹, X², X³, X⁴, X⁵)Phe or Trp;

 R^6 and R^7 each is, independently for each occurrence thereof, H, (C_1-C_{10}) heteroalkyl, aryl (C_1-C_5) alkyl, substituted (C_1-C_{10}) heteroalkyl or substituted aryl (C_1-C_5) alkyl provided that R^6 and R^7 may be joined together to form a ring;

 R^8 is H, (C_1-C_{10}) alkyl or substituted (C_1-C_{10}) alkyl;

r is, independently for each occurrence thereof, 1, 2, 3, 4 or 5; and t is, independently for each occurrence thereof, 1 or 2.

5

25

55

[0059] Compounds according the foregoing formula can include compounds wherein X¹ is selected from the group consisting of:

[0060] Representative embodiments of the foregoing class of compounds are as follows:

```
(SEQ ID NO: 474 c[Hydantoin(C(O)-(Cys-D-Ala))-His-D-Phe-Arg-Trp-Cys]-NH<sub>2</sub>;
           (SEQ ID NO: 475) c[Hydantoin(C(O)-(hCys-D-Ala))-His-D-Phe-Arg-Trp-Cys]-NH<sub>2</sub>;
30
           (SEQ ID NO: 476) c[Hydantoin(C(O)-(Cys-D-Ala))-His-D-2-Nal-Arg-Trp-Cys]-NH<sub>2</sub>;
           (SEQ ID NO: 477) c[Hydantom(C(O)-(hCys-D-Ala))-His-D-2-Nal-Arg-Trp-Cys]-NH<sub>2</sub>;
           (SEQ ID NO: 478) c[Hydantoin(C(O)-(Asp-D-Ala))-His-D-Phe-Arg-Trp-Lys]-NH<sub>2</sub>;
           (SEQ ID NO: 479) c[Hydantoin(C(O)-(Asp-D-Ala))-His-D-Phe-Arg-Trp-Orn]-NH<sub>2</sub>;
           (SEQ ID NO: 480) c[Hydantoin(C(O)-(Asp-D-Ala))-His-D-Phe-Arg-Trp-Dab]-NH<sub>2</sub>;
35
           (SEQ ID NO: 481) c[Hydantoin(C(O)-(Asp-D-Ala))-His-D-Phe-Arg-Trp-Dap]-NH<sub>2</sub>;
           (SEQ ID NO: 482) c[Hydantoin(C(O)-(Asp-His))-D-2-Nal-Arg-Trp-Lys]-NH<sub>2</sub>;
           (SEQ ID NO: 483) c[Hydantoin(C(O)-(Asp-His))-D-Phe-Arg-Trp-Lys]-NH<sub>2</sub>;
           (SEQ ID NO: 484) c[Hydantoin(C(O)-(Asp-A3c))-D-Phe-Arg-Trp-Lys]-NH<sub>2</sub>;
           (SEQ ID NO: 485) c[Hydantoin(C(O)-(Asp-A5c))-D-Phe-Arg-Trp-Lys]-NH<sub>2</sub>;
40
           (SEQ ID NO: 486) c[Hydantoin(C(O)-(Asp-A6c))-D-Phe-Arg-Trp-Lys]-NH<sub>2</sub>;
           (SEQ ID NO: 487) c[Hydantoin(C(O)-(Asp-A3c))-D-2-Nal-Arg-Trp-Lys]-NH<sub>2</sub>;
           (SEQ ID NO: 488) c[Hydantoin(C(O)-(Asp-A5c))-D-2-Nal-Arg-Trp-Lys]-NH<sub>2</sub>;
           (SEQ ID NO: 489) c[Hydantoin(C(O)-(Asp-A6c))-D-2-Nal-Arg-Trp-Lys]-NH<sub>2</sub>;
           (SEQ ID NO: 490) c[Hydantoin(C(O)-(Asp-Aic))-D-Phe-Arg-Trp-Lys]-NH_2;
45
           (SEQ ID NO: 491) c[Hydantoin(C(O)-(Asp-Apc))-D-Phe-Arg-Trp-Lys]-NH<sub>2</sub>;
           (SEQ ID NO: 492) c[Hydantoin(C(O)-(Asp-Aic))-D-2-Nal-Arg-Trp-Lys]-NH<sub>2</sub>;
           (SEQ ID NO: 493) c[Hydantoin(C(O)-(Asp-Apc))-D-2-Nal-Arg-Trp-Lys]-NH<sub>2</sub>;
           (SEQ ID NO: 494) c[Hydantoin(C(O)-(Glu-D-Ala))-His-D-Phe-Arg-Trp-Orn]-NH<sub>2</sub>;
           (SEQ ID NO: 495) c[Hydantoin(C(O)-(Glu-D-Ala))-His-D-Phe-Arg-Trp-Dab]-NH<sub>2</sub>;
50
           (SEQ ID NO: 496) c[Hydantoin(C(O)-(Glu-D-Ala))-His-D-Phe-Arg-Trp-Dap]-NH<sub>2</sub>;
           (SEQ ID NO: 497) c[Hydantoin(C(O)-(Glu-D-Ala))-His-D-Phe-Arg-Trp-Lys]-NH<sub>2</sub>;
           (SEQ ID NO: 498) c[Hydantoin(C(O)-(Glu-His))-D-Phe-Arg-Trp-Dap]-NH<sub>2</sub>;
           (SEQ ID NO: 499) c[Hydantoin(C(O)-(Glu-His))-D-Phe-Arg-Trp-Lys]-NH<sub>2</sub>.
```

[0061] In an example embodiment, an MC4R agonist useful for practicing the methods described herein is at least one compound of Formula (VI), a pharmaceutically-acceptable salt, hydrate, solvate and/or prodrugs thereof (see International Patent Application Number PCT/US08/06675)

In Formula (VI):

10 X¹is

R⁶ R⁵ S

X² is

20

25

35

45

N R⁹ O

A¹ is Asp, Cys, D-Cys, Dab, Dap, Glu, Lys, Orn, Pen or D-Pen;

A² is an L- or D-amino acid;

³⁰ A³ is H is, 2-Pal, 3-Pal, 4-Pal, (X¹, X², X³, X⁴, X⁵)Phe, Taz, 2-Thi or 3-Thi;

A⁴ is D-Bal, D-1-Nal, D-2-Nal, D-Phe or D-(X¹, X², X³, X⁴, X⁵)Phe;

A⁵ is Arg, hArg, Dab, Dap, Lys or Orn;

A⁶ is Bal, 1-Nal, 2-Nal, (X¹, X², X³, X⁴, X⁵)Phe or Trp;

A⁷ is Asp, Cys, D-Cys, Dab, Dap, Glu, Lys, Orn, Pen or D-Pen;

 R^1 is H, (C_1-C_{10}) alkyl or substituted (C_1-C_{10}) alkyl;

 R^2 and R^3 each is, independently, H, (C_1-C_{10}) alkyl, (C_1-C_{10}) heteroalkyl, aryl (C_1-C_5) alkyl, substituted (C_1-C_{10}) heteroalkyl or substituted aryl (C_1-C_5) alkyl or R^2 and R^3 may be fused together form a cyclic moiety:

R⁴ is CO₂H or C(O)NH₂;

R⁵ and R⁶ each is, independently, H, (C₁-00)alkyl, (C₁-C₁₀)heteroalkyl, aryl(C₁-C₅)alkyl, substituted (C₁-C₁₀)alkyl, substituted (C₁-C₁₀)heteroalkyl or substituted aryl(C₁-C₅)alkyl or R⁵ and R⁶ may be fused together form a cyclic moiety;

 R^7 and R^8 each is, independently, H, (C_1-C_{10}) alkyl, (C_1-C_{10}) heteroalkyl, aryl (C_1-C_5) alkyl, substituted (C_1-C_{10}) alkyl, substituted (C_1-C_{10}) heteroalkyl or substituted aryl (C_1-C_5) alkyl; or R^7 and R^8 may be fused together form a cyclic moiety;

 R^9 is H, (C_1-C_{10}) alkyl or substituted (C_1-C_{10}) alkyl; and

n is, independently for each occurrence thereof, 1, 2, 3, 4, 5, 6 or 7;

or a pharmaceutically acceptable salt thereof.

50 [0062] Exemplary embodiments of the compounds of Formula (VI) are those compounds wherein:

A¹ is Cys;

A² is D-Ala, Asn, Asp, Gln, Glu or D-Phe;

A³ is H is;

55 A⁴ is D-2-Nal or D-Phe;

A⁵ is Arg;

A⁶ is Trp; and

A⁷ is Cys or Pen;

```
each of R', R<sup>2</sup>, R<sup>3</sup>, and R<sup>9</sup> is, independently, H; R<sup>4</sup> is C(O)NH_2; each of R<sup>5</sup> and R<sup>6</sup> is, independently, H, (C_1-C_{10})heteroalkyl, substituted (C_1-C_{10})alkyl or substituted (C_1-C_{10})heteroalkyl or R<sup>5</sup> and R<sup>6</sup> may be fused together form a cyclic moiety; and each of R<sup>7</sup> and R<sup>8</sup> is, independently, H, (C_1-C_{10})alkyl, (C_1-C_{10})heteroalkyl, substituted (C_1-C_{10})alkyl or substituted (C_1-C_{10})heteroalkyl;
```

or pharmaceutically acceptable salts thereof.

5

[0063] Example compounds of the immediately foregoing Formula (VI) include:

```
10
          (SEQ ID NO: 500) Hydantoin(C(O)-(Arg-Gly))-c(Cys-Glu-His-D-Phe-Arg-Trp-Cys)-NH2;
          (SEQ ID NO: 501) Hydantoin(C(O)-(NIe-Gly))-c(Cys-Glu-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 502) Hydantoin(C(O)-(Gly-Gly))-c(Cys-Glu-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 503) Hydantoin(C(O)-(NIe-Gly))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 504) Hydantoin(C(O)-(Gly-Gly))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
15
          (SEQ ID NO: 505) Hydantoin(C(O)-(NIe-Gly))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Pen)-NH<sub>2</sub>;
          (SEQ ID NO: 506) Hydantoin(C(O)-(Gly-Gly))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Pen)-NH<sub>2</sub>;
          (SEQ ID NO: 507) Hydantoin(C(O)-(Ala-Gly))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 508) Hydantoin(C(O)-(D-Ala-Gly))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 509) Hydantoin(C(O)-(Aib-Gly))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH2;
20
          (SEQ ID NO: 510) Hydantoin(C(O)-(Val-Gly))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH2;
          (SEQ ID NO: 511) Hydantoin(C(O)-(Ile-Gly))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 512) Hydantoin(C(O)-(Leu-Gly))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH2;
          (SEQ ID NO: 513) Hydantoin(C(O)-(Gly-Gly))-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 514) Hydantoin(C(O)-(NIe-Gly))-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Cys)-NH<sub>2</sub>;
25
          (SEQ ID NO: 515) Hydantoin(C(O)-(D-Arg-Gly))-c(Cys-Glu-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 516) Hydantoin(C(O)-(D-Arg-Gly))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 517) Hydantoin(C(O)-(Arg-Gly))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH2;
          (SEQ ID NO: 518) Hydantoin(C(O)-(D-Arg-Gly))-c(Cys-D-Ala-His-D-2-Nal-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 519) Hydantoin(C(O)-(Arg-Gly))-c(Cys-D-Ala-His-D-2-Nal-Arg-Trp-Cys)-NH<sub>2</sub>;
30
          (SEQ ID NO: 520) Hydantoin(C(O)-(Ala-Nle))-c(Cys-Glu-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 521) Hydantoin(C(O)-(Val-Nle))-c(Cys-Glu-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>.
          (SEQ ID NO: 522) Hydantoin(C(O)-(Gly-Nle))-c(Cys-Glu-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 523) Hydantoin(C(O)-(A6c-Nle))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 524) Hydantoin(C(O)-(Gly-Nle))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
35
          (SEQ ID NO: 525) Hydantoin(C(O)-(Ala-Nle))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH2;
          (SEQ ID NO: 526) Hydantoin(C(O)-(D-Ala-Nle))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 527) Hydantoin(C(O)-(Val-Nle))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 528) Hydantoin(C(O)-(Leu-Nle))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 529) Hydantoin(C(O)-(Cha-Nle))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
40
          (SEQ ID NO: 530) Hydantoin(C(O)-(Aib-Nle))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH2;
          (SEQ ID NO: 531) Hydantoin(C(O)-(Gly-Arg))-c(Cys-Glu-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 532) Hydantoin(C(O)-(Gly-Arg))-c(Cys-Glu-His-D-2-Nal-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 533) Hydantoin(C(O)-(Gly-Arg))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 534) Hydantoin(C(O)-(Gly-Arg))-c(Cys-D-Ala-His-D-2-Nal-Arg-Trp-Cys)-NH<sub>2</sub>;
45
          (SEQ ID NO: 535) Hydantoin(C(O)-(Gly-D-Arg))-c(Cys-Glu-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 536) Hydantoin(C(O)-(Gly-D-Arg))-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>
          (SEQ ID NO: 537) Hydantoin(C(O)-(Gly-D-Arg))-c(Cys-D-Ala-His-D-2-Nal-Arg-Trp-Cys)-NH<sub>2</sub>;
          (SEQ ID NO: 538) Hydantoin(C(O)-(Nle-Ala))-c(Cys-Glu-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
```

or a pharmaceutically acceptable salt thereof.

[0064] In an example embodiment, the MC4R agonists useful for practicing the methods described herein are compounds having a structure according to Formula (VII) as depicted below (see International Patent Application Number PCT/US08/06675):

55

5
$$R^{2}$$
 R^{3} R^{4} R^{5} R^{5} (VII).

wherein:

5

20

25

X is selected from the group consisting of $-CH_2$ -S-S- CH_2 -, $-C(CH_3)_2$ SSC H_2 -, $-CH_2$ -S-S- $C(CH_3)_2$ -, $-C(CH_3)_2$ -S-S- $C(CH_3)_2$ -S- $C(CH_3)_2$ -S-C($C(CH_3)_z^{-}$, $-(CH_2)_2^{-}$, $-CH_2^{-}$, $-CH_2^{-}$, $-CH_2^{-}$, $-(CH_2)_2^{-}$, 15 $-(CH_2)_{t-}C(O)-NR^8-(CH_2)_{t-}$ and $-(CH_2)-NR^8-C(O)-(CH_2)_{t-}$;

each of R^1 and R^5 is, independently, H, (C_1-C_{10}) alkyl or substituted (C_1-C_{10}) alkyl;

each of \mathbb{R}^2 and \mathbb{R}^3 is, independently, H, $(\mathbb{C}_1 - \mathbb{C}_{10})$ alkyl, $(\mathbb{C}_1 - \mathbb{O}_1)$ heteroalkyl, aryl $(\mathbb{C}_1 - \mathbb{C}_5)$ alkyl, substituted $(\mathbb{C}_1 - \mathbb{C}_{10})$ alkyl, substituted (C₁-C₁₀)heteroalkyl or substituted aryl(C₁-C₅)alkyl or R² and R³ may be fused together to form a ring; R⁴ is OH or NH₂;

each of R^6 and R^7 is, independently, H, (C_1-C_{10}) alkyl or substituted (C_1-C_{10}) alkyl;

A¹ is an L- or D-amino acid or deleted;

A² is H is, 2-Pal, 3-Pal, 4-Pal, (X¹, X², X³, X⁴, X⁵)Phe, Taz, 2-Thi or 3-Thi;

A³ is D-Bal, D-1-Nal, D-2-Nal, D-Phe or D-(X¹, X², X³, X⁴, X⁵)Phe;

A4 is Arg, hArg, Dab, Dap, Lys or Orn;

A⁵ is Bal, 1-Nal, 2-Nal, (X¹, X², X³, X⁴, X⁵)Phe or Trp;

r is, independently for each occurrence thereof, 1, 2, 3, 4 or 5; and

t is, independently for each occurrence thereof, 1 or 2;

30 or pharmaceutically acceptable salts thereof.

> [0065] In an example embodiment of the compounds of Formula (VII), A¹ is Ala, D-Ala, Asn, Asp, Gln, Glu or Gly. [0066] Example compounds according to Formula (VII) include the following compounds:

(SEQ ID NO: 539) c[Hydantoin(C(O)-(NIe-Cys))-D-Ala-His-D-Phe-Arg-Trp-Cys]-NH₂; 35 (SEQ ID NO: 540) c[Hydantoin(C(O)-(Ala-Cys))-D-Ala-His-D-Phe-Arg-Trp-Cys]-NH₂; (SEQ ID NO: 541) c[Hydantoin(C(O)-(D-Ala-Cys))-D-Ala-His-D-Phe-Arg-Trp-Cys]-NH₂; (SEQ ID NO: 542) c[Hydantoin(C(O)-(Aib-Cys))-D-Ala-His-D-Phe-Arg-Trp-Cys]-NH₂; (SEQ ID NO: 543) c[Hydantoin(C(O)-(Val-Cys))-D-Ala-His-D-Phe-Arg-Trp-Cys]-NH₂; (SEQ ID NO: 544) c[Hydantoin(C(O)-(Abu-Cys))-D-Ala-His-D-Phe-Arg-Trp-Cys]-NH₂; 40 (SEQ ID NO: 545) c[Hydantoin(C(O)-(Leu-Cys))-D-Ala-His-D-Phe-Arg-Trp-Cys]-NH₂; (SEQ ID NO: 546) c[Hydantoin(C(O)-(Ile-Cys))-D-Ala-His-D-Phe-Arg-Trp-Cys]-NH₂; (SEQ ID NO: 547) c[Hydantoin(C(O)-(Cha-Cys))-D-Ala-His-D-Phe-Arg-Trp-Cys]-NH₂; (SEQ ID NO: 548) c[Hydantoin(C(O)-(A6c-Cys))-D-Ala-His-D-Phe-Arg-Trp-Cys]-NH₂; (SEQ ID NO: 549) c[Hydantoin(C(O)-(Phe-Cys))-D-Ala-His-D-Phe-Arg-Trp-Cys]-NH₂; 45 (SEQ ID NO: 550) c[Hydantoin(C(O)-(Gly-Cys))-D-Ala-His-D-Phe-Arg-Trp-Cys]-NH₂; (SEQ ID NO: 551) c[Hydantoin(C(O)-(Gly-Cys))-Glu-His-D-Phe-Arg-Trp-Cys]-NH₂;

or pharmaceutically acceptable salts thereof.

50 [0067] In an example embodiment, the MC4R agonist useful for practicing the methods described herein is at least one compound according to Formula (VIII) (see International Patent Application Number PCT/US08/07411):

$$(R^2R^3)-A^0-A^1-c(A^2-A^3-A^4-A^5-A^6-A^7-A^8-A^9)-A^{10}-R^1$$
 (VIII)

55 In Formual (VIII):

A⁰ is an aromatic amino acid

 A^1 is Acc, HN-(CH₂)_{mf}-C(O), an L- or D-amino acid;

```
A<sup>2</sup> is Asp, Cys, D-Cys, hCys, D-hCys, Glu, Pen, or D-Pen;
                                      A^3 is Aib, Ala, \beta-Ala, Gaba, Gly or a D-amino acid;
                                      A<sup>4</sup> is H is, 2-Pal, 3-Pal, 4-Pal, (X<sup>1</sup>, X<sup>2</sup>, X<sup>3</sup>, X<sup>4</sup>, X<sup>5</sup>)Phe, Taz, 2-Thi, or 3-Thi;
                                      A<sup>5</sup> is D-Bal, D-1-Nal, D-2-Nal, D-Phe, L-Phe, D-(X<sup>1</sup>, X<sup>2</sup>, X<sup>3</sup>, X<sup>4</sup>, X<sup>5</sup>)Phe, L-Phe, D-Trp or D-(Et)Tyr;
                                      A^6 is Arg, hArg, Dab, Dap, Lys, Orn, or HN-CH((CH<sub>2</sub>)<sub>n</sub>-N(R<sup>4</sup>R<sup>5</sup>))-C(O);
                                      A<sup>7</sup> is Bal, D-Bal, Bip, D-Bip, 1-Nal, D-1-Nal, 2-Nal, D-2-Nal, or D-Trp;
                                      A<sup>8</sup> is Acc, Aha, Ahx, Ala, D-Ala, β-Ala, Apn, Gaba, Gly, HN-(CH<sub>2</sub>)<sub>s</sub>-C(O), or deleted;
                                      A<sup>9</sup> is Cys, D-Cys, hCys, D-hCys, Dab, Dap, Lys, Orn, Pen, or D-Pen;
                                      A<sup>10</sup> is Acc, HN-(CH<sub>2</sub>)<sub>r</sub>-C(O), L- or D-amino acid, or deleted;
10
                                      R<sup>1</sup> is OH, or NH<sub>2</sub>;
                                      each of R^2 and R^3 is, independently for each occurrence selected from the group consisting of H, (C_1-C_{30}) alkyl,
                                      (C_1-C_{30})heteroalkyl, (C_1-C_{30})acyl, (C_2-C_{30})alkenyl, (C_2-C_{30})alkynyl, aryl(C_1-C_{30})alkyl, aryl(C_1-C_{30})acyl, substituted
                                      (C_1-C_{30})alkyl, substituted (C_1-C_{30})heteroalkyl, substituted (C_1-C_{30})acyl, substituted (C_2-C_{30})alkenyl, substituted
                                      (C_2-C_{30})alkynyl, substituted aryl(C_1-C_{30})alkyl, and substituted aryl(C_1-C_{30})acyl;
15
                                      each of R<sup>4</sup> and R<sup>5</sup> is, independently for each occurrence, H, (C<sub>1</sub>-C<sub>40</sub>)alkyl, (C<sub>1</sub>-C<sub>40</sub>)heteroalkyl, (C<sub>1</sub>-C<sub>40</sub>)acyl,
                                      (C_2-C_{40}) \\ alkenyl, \quad (C_2-C_{40}) \\ alkynyl, \quad aryl(C_1-C_{40}) \\ alkyl, \quad aryl(C_1-C_{40}) \\ acyl, \quad substituted \\ (C_1-C_{40}) \\ alkyl, \quad substituted \\ (C_1-C_{40}) \\ alkyl, \quad aryl(C_1-C_{40}) \\ aryl(C_1-C_{40}) 
                                      (C<sub>1</sub>-C<sub>40</sub>)heteroalkyl, substituted (C<sub>1</sub>-C<sub>40</sub>)acyl, substituted (C<sub>2</sub>-C<sub>40</sub>)alkenyl, substituted (C<sub>2</sub>-C<sub>40</sub>)alkynyl, substituted
                                      aryl(C_1-C_{40})allyl, substituted aryl(C_1-C_{40})acyl, (C_1-C_{40})alkylsulfonyl, or -C(NH)-NH<sub>2</sub>;
                                      m is, independently for each occurrence, 1, 2, 3, 4, 5, 6 or 7;
20
                                      n is, independently for each occurrence, 1, 2, 3, 4 or 5;
                                      s is, independently for each occurrence, 1, 2, 3, 4, 5, 6, or 7;
                                      t is, independently for each occurrence, 1, 2, 3, 4, 5, 6, or 7;
                                      X^1, X^2, X^3, X^4, and X^5 each is, independently for each occurrence, H, F, Cl, Br, I, (C_{1-10}) alkyl, substituted (C_{1-10}) alkyl,
                                      (C<sub>2-10</sub>)alkenyl, substituted (C<sub>2-10</sub>)alkenyl, (C<sub>2-10</sub>)alkynyl, substituted (C<sub>2-10</sub>)alkynyl, aryl, substituted aryl, OH, NH<sub>2</sub>,
25
                                      NO<sub>2</sub>, or CN.
                       [0068] In example embodiments of Formual (VIII),
                                      (I) when R^4 is (C_1-C_{40})acyl, aryl(C_1-C_{40})acyl, substituted (C_1-C_{40})acyl, substituted aryl(C_1-C_{40})acyl, (C_1-C_{40})alkyl-
30
                                      sulfonyl, \ or \ -C(NH)-NH_2, \ then \ R^5 \ is \ H \ or \ (C_1-C_{40})alkyl, \ (C_1-C_{40})heteroalkyl, \ (C_2-C_{40})alkenyl, \ (C_2-C_{40})alkynyl, \ arrow (C_1-C_{40})alkynyl, \ arrow 
                                      y|(C_1-C_{40})a|ky|, substituted (C_1-C_{40})a|ky|, substituted (C_1-C_{40})a|ky|, substituted (C_2-C_{40})a|ky|, substituted
                                      (C_2-C_{40})alkynyl, or substituted aryl(C_1-C_{40})alkyl;
                                       (II) \ when \ R^2 \ is \ (C_1-C_{30}) acyl, \ aryl(C_1-C_{30}) acyl, \ substituted \ (C_1-C_{30}) acyl, \ or \ substituted \ aryl(C_1-C_{30}) acyl, \ then \ R^3 \ is \ (C_1-C_{30}) acyl, \ constituted \ aryl(C_1-C_{30}) acyl, \ constituted \ aryl(C_
                                      H, (C_1 - C_{30}) \\ alkyl, (C_1 - C_{30}) \\ alkyl, (C_2 - C_{30}) \\ alkynyl, \\ aryl(C_1 - C_{30}) \\ alkyl, \\ substituted \\ (C_1 - C_{30}) \\ alkyl, \\ aryl(C_1 - C_{30}) \\ aryl(C_1 - C_{
                                      substituted (C_1-C_{30})heteroalkyl, substituted (C_2-C_{30})alkenyl, substituted (C_2-C_{30})alkynyl, or substituted ar-
35
                                      yl(C_1-C_{30})alkyl;
                                      (III) when A<sup>2</sup> is Cys, D-Cys, hCys, D-hCys, Pen, or D-Pen, then A<sup>9</sup> is Cys, D-Cys, hCys, D-hCys, Pen, or D-Pen;
                                      (IV) when A<sup>2</sup> is Asp or Glu, then A<sup>9</sup> is Dab, Dap, Orn, or Lys;
                                      (V) when A<sup>8</sup> is Ala or Gly, then A<sup>1</sup> is not NIe; or pharmaceutically acceptable salts thereof.
40
                      [0069] In example embodiments of compounds of Formula (VIII):
                                      A<sup>0</sup> is 1-Nal, 2-Nal, H is, Pff, Phe, Trp, or Tyr;
                                      A<sup>1</sup> is Arg;
45
                                      A<sup>2</sup> is Cys;
                                      A3 is D-Ala;
                                      A4 is H is;
                                      A5 is D-Phe
                                      A<sup>6</sup> is Arg;
50
                                      A7 is Trp
                                      A<sup>8</sup> is deleted;
                                      A9 is Cys; and
                                      A<sup>10</sup> is deleted:
```

Particular compounds of the immediately foregoing group of compounds are of the formula:

(SEQ ID NO: 552) Ac-Tyr-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH₂;

or pharmaceutically acceptable salts thereof.

```
(SEQ ID NO: 553) Ac-2-Nal-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>; (SEQ ID NO: 554) Ac-1-Nal-Arg-c(Cys-D-Ala-His-DPhe-Arg-Trp-Cys)-NH<sub>2</sub>; (SEQ ID NO: 555) Ac-Phe-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>; (SEQ ID NO: 556) Ac-Trp-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>; (SEQ ID NO: 557) Ac-Pff-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>; (SEQ ID NO: 558) H-His-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>; or (SEQ ID NO: 559) Ac-His-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH<sub>2</sub>;
```

or a pharmaceutically acceptable salt thereof.

5

20

30

35

40

[0070] In one example embodiment, the MC4R agonist is Ac-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH₂ (SEQ ID NO: 140) or a pharmaceutically acceptable salt thereof. In another example embodiment, the MC4R agonist is Hydantoin(C(O)-(Arg-Gly))-c(Cys-Glu-His-D-Phe-Arg-Trp-Cys)-NH₂ (SEQ ID NO: 500) or a pharmaceutically acceptable salt thereof

[0071] Administration of a compound or pharmaceutically acceptable salt thereof or a composition comprising a compound or pharmaceutical salt of a compound of the invention useful to practice the methods described herein, can be continuous, hourly, four times daily, three time daily, twice daily, once daily, once every other day, twice weekly, once weekly, once every two weeks, once a month, or once every two months, or longer or some other intermittent dosing regimen.

[0072] Examples of administration of a compound or composition comprising a compound or pharmaceutical salt of a compound of the invention include peripheral administration. Examples of peripheral administration include oral, subcutaneous, intraperitoneal, intramuscular, intravenous, rectal, transdermal or intranasal forms of administration.

[0073] As used herein, peripherial administration includes all forms of administration of a compound or a composition comprising a compound of the instant invention which excludes intracranial administration. Examples of peripheral administration include, but are not limited to, oral, parenteral (e.g., intramuscular, intraperitoneal, intravenous or subcutaneous injection, extended release, slow release implant, depot and the like), nasal, vaginal, rectal, sublingual or topical routes of administration, including transdermal patch applications and the like.

[0074] The nomenclature used to define the peptides is that typically used in the art wherein the amino group at the N-terminus appears to the left and the carboxyl group at the C-terminus appears to the right. Where the amino acid has D and L isomeric forms, it is the L form of the amino acid that is represented unless otherwise explicitly indicated.

[0075] The compounds of the invention useful for practicing the methods described herein may possess one or more chiral centers and so exist in a number of stereoisomeric forms. All stereoisomers and mixtures thereof are included in the scope of the present invention. Racemic compounds may either be separated using preparative HPLC and a column with a chiral stationary phase or resolved to yield individual enantiomers utilizing methods known to those skilled in the art. In addition, chiral intermediate compounds may be resolved and used to prepare chiral compounds of the invention. [0076] The compounds described herein may exist in one or more tautomeric forms. All tautomers and mixtures thereof are included in the scope of the present invention. For example, a claim to 2-hydroxypyridinyl would also cover its tautomeric form, α-pyridonyl.

[0077] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.

	Symbol	Meaning
	Abu	lpha-aminobutyric acid
45	Ac	acyl group
43	Acc	1-amino-1-cyclo(C ₃ -C ₉)alkyl carboxylic acid
	A3c	1-amino-1cyclopropanecarboxylic acid
	A4c	1 -amino -1 -cyclobutanecarboxylic acid
	A5c	1-amino-1-cyclopentanecarboxylic acid
50	A6c	1-amino-1-cyclohexanecarboxylic acid
	Aha	7-aminoheptanoic acid
	Ahx	6-aminohexanoic acid
	Aib	lpha-aminoisobutyric acid
55	Aic	2-aminoindan-2-carboxylic acid
55	Ala or A	alanine
	β-Ala	β -alanine
	Apc	denotes the structure:

(continued)

	Symbol	Meaning
	•	H N
5		N
40		
10		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		-{-NH }
		5
15		Ö
70	Apn	5-aminopentanoic acid (HN-(CH2) ₄ -C(O)
	Arg or R	arginine
	hArg Asn or N	homoarginine
20	Asn or N Asp or D	asparagine aspartic acid
	Bal	3-benzothienylalanine
	Bip	4,4'-biphenylalanine, represented by the structure
25		
		Y
30		
35		
		ĊH₂ Q
40		н [1
40		
	Вра	4-benzoylphenylalanine
	4-Br-Phe	4-bromo-phenylalanine
45	Cha	β-cyclohexylalanine
	hCha	homo-cyclohexylalanine
	Chg	cyclohexylglycine
	Cys or C hCys	cysteine homocysteine
50	Dab	2,4-diaminobutyric acid
	Dap	2,3-diaminopropionic acid
	Dip	β, β -diphenylalanine
	Doc	8-amino-3,6-dioxaoctanoic acid with the structure of:

58

(continued)

		· , , , , , , , , , , , , , , , , , , ,
	Symbol	Meaning
5		22 N O St
		ς,
10	2-Fua	β-(2-furyl)-alanine
70	Gaba	4-aminobutyric acid
	Gln or Q	glutamine
	Glu or E	glutamic acid
	Gly or G	glycine
15	His or H	histidine
	3-Hyp	trans-3-hydroxy-L-proline, i.e., (2S,3S)-3-hydroxy-pyrrolidine-2-carboxylic acid
	4-Hyp	4-hydroxyproline, i.e., (2S,4R)-4-hydorxypyrrolidine-2-carboxylic acid
	lle or 1 Leu or L	isoleucine leucine
20	hLeu	homoleucine
20		
	Lys or K Met or M	lysine methionine
	β-hMet	β-homomethionine
25	ր-nwet 1-Nal	β-(1-naphthyl)alanine
	2-Nal	β-(2-naphthyl)alanine
	Nip	nipecotic acid
	Nle	norleucine
	Ole	octahydroindole-2-carboxylic acid
30	Orn	ornithine
	2-Pal	β-(2-pyridiyl)alanine
	3-Pal	β-(3-pyridiyl)alanine
	4-Pal	β-(4-pyridiyl)alanine
35	Pen	penicillamine
	Pff	(S)-pentafluorophenylalanine
	Phe or F	phenylalanine
	hPhe	homophenylalanine
	Pro or P	proline
40	hProP	homoproline
	Ser or S	Serine
	Tle	tert-Leucine
	Taz	β-(4-thiazolyl)alanine
45	2-Thi	β-(2-thienyl)alanine
	3-Thi	β-(3-thienyl)alanine
	Thr or T	threonine
	Trp or W	tryptopham
	Tyr or Y	tyrosine
50	D-(Et) Tyr	has a structure of

(continued)

Symbol	Meaning	
		, o
		4
		_{___________________
		3 ji 5
Val or V	Valine	н О
vai Ol V	vaiirie	

[0078] Certain other abbreviations used herein are defined as follows:

Boc: tert-butyloxycarbonyl

Bzl: benzyl

5

10

15

20

30

DCM: dichloromethane

N,N-diisopropylcarbodiimide DIC:

DIEA: diisopropylethyl amine

4-{N-(1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methylbutyl)-amino}benzyl Dmab:

DMAP: 4-(dimethylamino)pyridine

DMF: dimethylformamide DNP: 2,4-dinitrophenyl Fm: fluorenylmethyl

fluorenylmethyloxycarbonyl Fmoc:

For: formyl

HBTU: 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate

cHex cyclohexyl

35 HOAT: O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate

1-hydroxy-benzotriazole HOBt: **MBNA** 4-methylbenzhydrylamine

Mmt: 4-methoxytrityl NMP: N-methylpyrrolidone

O-tBu oxy-tert-butyl

> Pbf: 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl PyBroP bromo-tris-pyrrolidino-phosphonium hexafluorophosphate

tBu: tert-butyl

triisopropylsilane TIS:

45 TOS: tosyl Trt trityl

TFA: trifluoro acetic acide

TFFH: tetramethylfluoroforamidiaium hexafluorophosphate

benzyloxycarbonyl

[0079] Unless otherwise indicated, with the exception of the N-terminal amino acid, all abbreviations (e.g. Ala) of amino acids in this disclosure stand for the structure of -NH-C(R)(R')-CO-, wherein R and R' each is, independently, hydrogen or the side chain of an amino acid (e.g., R=CH₃ and R'=H for Ala), or R and R' may be joined to form a ring system. [0080] For the N-terminal amino acid, the abbreviation stands for the structure of:

55

5

[0081] The designation "NH₂" in e.g., Ac-NIe-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH₂ (SEQ ID NO:13), indicates that the C-terminus of the peptide is amidated. Ac-NIe-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys) (SEQ ID NO:107), or alternatively Ac-NIe-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-OH (SEQ ID NO: 107), indicates that the C-terminus is the free

10

[0082] "-c(Cys-Cys)-" or "-cyclo(Cys-Cys)-" denotes the structure:

15

"-c(Cys-Pen)-" or "-cyclo(Cys-Pen)-" denotes the structure:

20

25

"-c(Asp-Lys)-" or "-cyclo(Asp-Lys)-" denotes the structure:

30

35

[0083] Applicants have devised the following shorthand used in naming the specific embodiments and/or species:

40

45

[0084] "HydantoinC(O)-(Aa-Ab)" denotes the structure:

wherein amino acid "Aa" has the structure:

50

55

and amino acid "Ab" the structure:

[0085] For example, a compound represented as "c[Hydantoin(C(O)-(Cys- A^b))- A^1 - A^2 - A^3 - A^4 -Cys]-" would have the following the structure:

5

10

15

20

25

30

35

40

45

50

55

whereas a compound represented as "c[Hydantoin(C(O)-(Ab-Cys))-A1-A2-A3-A4-Cys]-" would have the structure:

[0086] For further guidance, "c[Hydantoin(C(O)-(Asp-Ab))-A1-A2-A3-A4-Lys]-" represents the following compound:

whereas $"c[Hydantoin(C(O)-(Dap-A^b))-A^1-A^2-A^3-A^4-Asp]-"$ has the following formula:

[0087] "Acyl" refers to R"-C(O)-, where R" is H, alkyl, substituted alkyl, heteroalkyl, substituted heteroalkyl, alkenyl, substituted alkenyl, aryl, alkylaryl, or substituted alklyaryl, and is indicated in the general formula of a particular embodiment as "Ac".

[0088] "Alkyl" refers to a hydrocarbon group containing one or more carbon atoms, where multiple carbon atoms if present are joined by single bonds. The alkyl hydrocarbon group may be straight-chain or contain one or more branches or cyclic groups.

[0089] "Hydroxyalkyl" refers to an alkyl group wherein one or more hydrogen atoms of the hydrocarbon group are

substituted with one or more hydroxy radicals, such as hydroxymethyl, hydroxyethyl, hydroxypropyl, hydroxybutyl, hydroxypentyl, hydroxyhexyl and the like.

[0090] "Substituted alkyl" refers to an alkyl wherein one or more hydrogen atoms of the hydrocarbon group are replaced with one or more substituents selected from the group consisting of halogen, (i.e., fluorine, chlorine, bromine, and iodine), -OH, -CN, -SH, -NH₂, -NHCH₃, -NO₂, and -C₁₋₂₀ alkyl, wherein said -C₁₋₂₀ alkyl optionally may be substituted with one or more substituents selected, independently for each occurrence, from the group consisting of halogens, -CF₃, -OCH₃,-OCF₃, and -(CH₂)₀₋₂₀-COOH. In different embodiments 1, 2, 3 or 4 substituents are present. The presence of -(CH₂)₀₋₂₀-COOH results in the production of an alkyl acid. Non-limiting examples of alkyl acids containing, or consisting of, -(CH₂)₀₋₂₀-COOH include 2-norbornane acetic acid, tert-butyric acid, 3-cyclopentyl propionic acid, and the like.

[0091] The term "halo" encompasses fluoro, chloro, bromo and iodo.

[0092] "Heteroalkyl" refers to an alkyl wherein one of more of the carbon atoms in the hydrocarbon group is replaced with one or more of the following groups: amino, amido, -O-, -S- or carbonyl. In different embodiments 1 or 2 heteroatoms are present.

[0093] "Substituted heteroalkyl" refers to a heteroalkyl wherein one or more hydrogen atoms of the hydrocarbon group are replaced with one or more substituents selected from the group consisting of halogen, (i.e., fluorine, chlorine, bromine, and iodine), -OH, -CN, -SH, -NH₂, -NHCH₃, -NO₂, and -C₁₋₂₀ alkyl, wherein said -C₁₋₂₀ alkyl optionally may be substituted with one or more substituents selected, independently for each occurrence, from the group consisting of halogens, -CF₃, -OCH₃, -OCF₃, and -(CH₂)₀₋₂₀-COOH. In different embodiments 1, 2, 3 or 4 substituents are present.

[0094] "Alkenyl" refers to a hydrocarbon group made up of two or more carbons where one or more carbon-carbon double bonds are present. The alkenyl hydrocarbon group may be straight-chain or contain one or more branches or cyclic groups.

[0095] "Substituted alkenyl" refers to an alkenyl wherein one or more hydrogens are replaced with one or more substituents selected from the group consisting of halogen (i.e., fluorine, chlorine, bromine, and iodine), -OH, -CN, -SH, -NH₂,-NHCH₃,-NO₂, and -C₁₋₂₀ alkyl, wherein said -C₁₋₂₀ alkyl optionally may be substituted with one or more substituents selected, independently for each occurrence, from the group consisting of halogens, -CF₃, -OCH₃, -OCF₃, and -(CH₂)₀₋₂₀-COOH. In different embodiments 1, 2, 3 or 4 substituents are present. "Aryl" refers to an optionally substituted aromatic group with at least one ring having a conjugated pi-electron system, containing up to three conjugated or fused ring systems. Aryl includes carbocyclic aryl, heterocyclic aryl and biaryl groups. Preferably, the aryl is a 5- or 6-membered ring. Preferred atoms for a heterocyclic aryl are one or more sulfur, oxygen, and/or nitrogen. Non-limiting examples of aryl include phenyl, 1-naphthyl, 2-naphthyl, indole, quinoline, 2-imidazole, 9-anthracene, and the like. Aryl substituents are selected from the group consisting of -C₁₋₂₀ alkyl, -C₁₋₂₀ alkoxy, halogen (i.e., fluorine, chlorine, bromine, and iodine), -OH, -CN, -SH, -NH₂, -NO₂, -C₁₋₂₀ alkyl substituted with halogens, -CF₃, -OCF₃, and -(CH₂)₀₋₂₀-COOH. In different embodiments the aryl contains 0, 1, 2, 3, or 4 substituents.

[0096] "Alkylaryl" refers to an "alkyl" joined to an "aryl".

30

35

50

[0097] The term " (C_{1-12}) hydrocarbon moiety" encompasses alkyl, alkenyl and alkynyl and in the case of alkenyl and alkynyl there is C_2 - C_{12} .

[0098] For the avoidance of doubt, unless otherwise indicated, the term substituted means substituted by one or more defined groups. In the case where groups may be selected from a number of alternative groups, the selected groups may be the same or different. For the avoidance of doubt, the term independently means that where more than one substituent is selected from a number of possible substituents, those substituents may be the same or different.

[0099] The pharmaceutically acceptable salts of the compounds of the invention which contain a basic center are, for example, non-toxic acid addition salts formed with inorganic acids such as hydrochloric, hydrobromic, hydroiodic, sulfuric and phosphoric acid, with carboxylic acids or with organo-sulfonic acids. Examples include the HCI, HBr, HI, sulfate or bisulfate, nitrate, phosphate or hydrogen phosphate, acetate, benzoate, succinate, saccharate, fumarate, maleate, lactate, citrate, tartrate, gluconate, camsylate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate and pamoate salts. Compounds of the invention can also provide pharmaceutically acceptable metal salts, in particular non-toxic alkali and alkaline earth metal salts, with bases. Examples include the sodium, potassium, aluminum, calcium, magnesium, zinc and diethanolamine salts (Berge, S. M. et al., J. Pharm. Sci., 66:1-19 (1977); Gould, P. L., Int'l J. Pharmaceutics, 33:201-17 (1986); and Bighley, L. D. et al., Encyclo. Pharma. Tech., Marcel Dekker Inc, New York, 13:453-97 (1996).

[0100] The pharmaceutically acceptable solvates of the compounds of the invention include the hydrates thereof. Also included within the scope of the invention and various salts of the invention are polymorphs thereof. Hereinafter, compounds their pharmaceutically acceptable salts, their solvates or polymorphs, defined in any aspect of the invention (except intermediate compounds in chemical processes) are referred to as "compounds of the invention".

[0101] Designation "(amino acid)_n" means that an amino acid is repeated n times. For example, designation "(Pro)₂" or "(Arg)₃" mean that proline or arginine residues are repeated, respectively, two or three times.

[0102] MC4R agonists and pharmaceutically acceptable salts thereof described herein can also be used to treat individuals, including human subjects sdefective melanocortin receptor signaling, due to mutations/defects upstream of

the MC4R. MC4R agonists and pharmaceutically acceptable salts thereof described herein can also be used to treat individuals, including human subjects that carry mutations in the genes coding for pro-opiomelanocortin (POMC) and leptin such that these mutations result in POMC haplo-insufficientcy or haplo-deficiency and/or leptin haplo-insufficiency or haplo-deficiency.

[0103] In one example embodiment, an MC4R agonist is a compound represented by structural formula (X):

$$H_2N$$
 H_2N
 H_2N
 H_3
 R_4
 R

or a pharmaceutically acceptable salt thereof. In structural formula (X), the chemical substituents are defined as follows:

5

10

15

20

25

30

35

 $\begin{array}{l} R_1 \text{ is -NH-C(O)- or -C(O)-NH-;} \\ R_2 \text{ is -H, -CH}_2\text{-, or, } R_2 \text{, together with } R_3 \text{, forms a pyrrolidine ring optionally substituted with -OH;} \\ R_3 \text{ is -(CH}_2)_2\text{- if } R_2 \text{ is -CH}_2\text{-, and otherwise } R_3 \text{ is selected from} \end{array}$

and

5

20

25

45

55

 R_{4a} , R_{4b} , and R_{4c} are each independently selected from hydrogen, halo, (C_1-C_{10}) alkyl-halo, (C_1-C_{10}) alkyl-dihalo, (C_1-C_{10}) alkyl-trihalo, (C_1-C_{10}) alkyl, (C_1-C_{10}) alkoxy, (C_1-C_{10}) alkylthio, aryl, aryloxy, nitro, nitrile, sulfoniamide, amino, hydroxyl, carboxy, and akoxy-carbonyl. In one example embodiment, R_{4a} , R_{4b} , and R_{4c} is not hydrogen. R_5 is -OH or -N(R_{6a})(R_{6b});

 $\rm R_{6a}$ and $\rm R_{6b}$ are each independently H or $\rm C_1$ to $\rm C_4$ linear, branched or cyclic alkyl chain;

 R_7 is -H or -C(O)-NH₂;

w is in each instance independently 0 to 5;

x is 1 to 5;

y is 1 to 5;

z is in each instance independently 1 to 5.

[0104] An example of a compound of structural formula (X) is a cyclic peptide defined by structural formula (XI):

30
$$H_{2}NH$$

$$NH$$

$$NH$$

$$NH$$

$$NH_{2}$$

$$(XI),$$

or a pharmaceutically acceptable salt thereof.

EXEMPLIFICATION

50 Example 1: Model for Evaluating Whether Obese MC4R +/- Heterozygotic Mice Are Responsive to Treatment with Compound of SEQ ID NO: 140

[0105] The effect of MC4R agonist administration on a subject can be evaluated according to the following procedure. [0106] The effects of a MC4 agonist in heterozygous MC4+/- mice and in weight-matched diet-induced-obesity (DIO) mice is evaluated. Heterozygous MC4+/- mice express a mild hyperphagic and obese phenotype when compared to the homozygous MC4-/- mice while retaining a putative response to MC4 stimulation. Weight-matched DIO mice are expressing the MC4 receptor (wild-type). In the course of the study, the effect of MC4 agonism on food intake and body weight in mice that are phenotypically obese but differ genetically in terms of the expression of the MC4 receptor is being

characterized.

10

15

20

25

30

35

[0107] Pre-Study activities: C57BL/6 mice (N = 50, males, 4 weeks of age) are pre-fed a high fat (HF) diet, commercially available from Research Diets Inc, New Brunswick, NJ, for10 weeks prior to enrollment onto study. The HF diet (D12492) is fed to the animals ad libitum.

[0108] Species (number, sex, age/weight): C57BL/6 mice (N = 40, males, 14 weeks of age at initiation of dose administration). Study criteria for animal enrollment based on body weight. B6-129/S-MC4+/- heterozygous mice (Jackson Labs or Taconic; N = 40, males, body weight matching the DIO mice, 12-14 weeks of age).

[0109] Formulations: all test materials are formulated once weekly.

[0110] Treatment: All animals are surgically implanted with a subcutaneous osmotic minipump (infusion duration of 14 days).

[0111] The design of this study is symmarized in Table A:

Table A

Group No.	Mice	Animals per Group	Treatment	Dose Level and Volume	Treatment Regimen	Observation Period
1	MC4 ^{+/-}	10	Vehicle	0	Chronic Constant Infusion by Osmotic Minipump (Option 2)	14 days
2	DIO	10				
3	MC4+/-	10	Peptide drug	Low		
4	DIO	10				
5	MC4+/-	10		Mid		
6	DIO	10				
7	MC4 ^{+/-}	10		High		
8	DIO	10				

[0112] Cage side and clinical observations are performed daily, clinical observations are noted per exception. Food intake by mice is permitted daily. Body Weights: All animals have body weights measured once weekly during the prefeed and twice weekly during administration, initiating prior to the initial dose administration. Doses are based on most recently collected body weight.

[0113] Fasting Whole Blood Glucose Levels and Plasma Sample Collection: Following an overnight fast, all animals have a fasting whole blood glucose level (via glucometer) and blood sample collected (\sim 100 μ L) on Days -1 and 14.

[0114] Euthanasia and Tissue Collection: All animals are scheduled for euthanasia on Day 15 in the AM. All animals have a maximum terminal blood collection made. Blood samples are processed for plasma for insulin measurement. All animals have the retroperitoneal adipose tissue and liver excised and weighed.

[0115] Insulin measurement: Insulin levels are determined in terminal plasma samples using a mouse insulin ELISA assay by the testing facility.

[0116] Reporting: Data submission including clinical observations, food intakes, body weights, insulin levels, fasting blood glucose and plasma collections, mortality record (if applicable), the study protocol and associated amendments, and all protocol deviations.

Example 2: Models for Clinical Evaluation of the Efficacy of Treatment of MC4R-Mediated Obesity Using Compounds Disclosed Herein

1. RANDOMIZED, DOUBLE-BLIND, PLACEBO-CONTROLLED, MULTIPLE ASCENDING DOSE STUDY TO EVALU-ATE THE SAFETY, TOLERABILITY, PHARMACOKINETICS AND PHARMACODYNAMICS OF COMPOUNDS OF THE PRESENT INVENTION ADMINISTERED TO HEALTHY OBESE NON-DIABETIC VOLUNTEERS

Objectives

Priamry:

55

[0117]

• Investigate the safety and tolerability of multiple dose levels of the compounds of the present invention when given by continuous subcutaneous (SC) infusion for 14 or 28 days.

Secondary:

[0118]

5

10

15

30

35

50

55

• Evaluate the pharmacokinetics (PK) of multiple dose levels of the compounds of the present invention when given by SC continuous infusion for 14 or 28 days.

Exploratory pharmacodynamic (PD) objectives of this study are to evaluate the effect of multiple dose levels of the compounds of the present invention when given by SC continuous infusion for 14 or 28 days on:

- Caloric intake, weight and waist circumference.
- Insulin sensitivity as measured by a Meal Tolerance Test (MTT).
- Hunger and satiety as measured by a Hunger/Satiety Questionnaire.
- Resting energy expenditure (REE) as measured by indirect calorimetry (to be performed at select centers with this
 capability).
- 20 Study Design

[0119] The study is designed to evaluate safety and tolerability of the compounds of the present invention administered up to 1 mg/kg/day for 14 or 28 days as a SC continuous infusion. The highest dose proposed to use in the study is no higher than 1 mg/kg. This is a randomized, double-blind, placebo-controlled, multiple ascending dose study during which 5 sequential cohorts of subjects will receive the compounds of the present invention or placebo by SC continuous infusion for 14 (Cohorts dosed for 14 days) or 28 days (Cohorts dosed for 28 days). Nine subjects will be enrolled in each cohort and subjects will be randomly allocated to receive the compounds of the present invention or placebo in a 6:3 ratio.

[0120] All subjects will remain confined to the Phase 1 clinical unit during treatment and under observation for at least 24 hours after the end of the study drug infusion.

[0121] A Clinical Safety Committee (CSC) will review blinded interim safety data from each dose level. Dose escalation will be recommended only if the previous dose level was deemed to be safe and well tolerated. Where appropriate, for safety reasons, additional interim dose levels (lower than the next scheduled dose) may be administered. Additionally, a sub-set of the general obese population may be enrolled. These subjects will meet all inclusion and exclusion criteria outlined in below, as well as one additional criterion: subjects must be heterozygous with a loss-of-function mutation in one of their two copies of the MC4 receptor gene. These subjects will have been pre-identified as having an MC4 receptor mutation. The rationale for this cohort is the lesser MC4 tone that is seen in heterozygous subjects, may give an altered sensitivity for these subjects to MC4 agonists such as the compounds of the present invention. If this cohort is enrolled, it is anticipated to be at a select site, nearer the end of the study.

40 Number of Subjects Planned

[0122] A sufficient number of healthy obese adult male and female subjects will be screened so that approximately 45 eligible subjects qualify for the study and are randomized. It is expected that approximately 45 subjects will be enrolled in approximately 5 dose groups to evaluate multiple days of dosing (14 or 28 days) of the compounds of the present invention administered by SC continuous infusion. Up to an additional 63 subjects may be enrolled to further characterize the compounds of the present invention with a maximum of approximately 108 subjects planned for treatment in the study. The additional subjects will be recruited in the event a subject needs to be replaced, a cohort is to be expanded or an intermediate dose is recommended by the CSC. It is intended that most cohorts will consist of 9 subjects (in a ratio of 2 active: 1 placebo). However some cohorts may be increased in order to enhance the sample size and further define any prior findings.

Diagnosis and Main Criteria for Inclusion

[0123] Subjects must meet all of the following inclusion criteria to be eligible for the study.

Inclusion criteria

[0124]

- Able to provide voluntary, written informed consent with comprehension of all aspects of the protocol, prior to any study procedures.
- Healthy obese male and female volunteers aged 18 to 55 years, inclusive.
- In good general health, without significant medical history, physical examination findings, or clinical laboratory abnormalities.
- Body Mass Index of 30-40 kg/m², inclusive.
- Stable body weight during the previous 6 months, based on Investigator judgment.
- Blood pressure <140/90 mmHg at Screening and D-1. Measurement may be repeated once within 24 hours, based on Investigator judgment.
- Females must not be pregnant and must have a negative serum pregnancy test result at the Screening Visit and Day -1.
 - Females of childbearing potential must agree to be abstinent or else use any two of the following medically acceptable forms of contraception from the Screening Period through the Final Study Visit: hormonal, condom with spermicidal jelly, diaphragm or cervical cap with spermicidal jelly, or IUD. Hormonal contraception must have started at least 3 months prior to screening. A female whose male partner has had a vasectomy must agree to use one additional form of medically acceptable contraception. Subjects must agree to practice the above birth control methods for 30 days from the final visit as a safety precaution.
 - Females of non-childbearing potential, defined as surgically sterile (status post hysterectomy, bilateral oophorectomy, or bilateral tubal ligation) or post-menopausal for at least 12 months (and confirmed with a screening FSH level in the post-menopausal range), do not require contraception during the study.
 - Males with female partners of childbearing potential must agree to use two medically acceptable forms of contraception as described above, with one of the two forms being condom with spermicide, from the Screening Period through the Final Study Visit. Males with female partners of childbearing potential who themselves are surgically sterile (status post vasectomy) must agree to use condoms with spermicide over the same period of time. Male subjects must agree to practice the above birth control methods for 30 days from the final visit as a safety precaution.

Additional Inclusion Criteria for Heterozygous MC4 receptor mutation cohort:

[0125]

5

15

20

25

30

Mutation of MC4R gene resulting in partial loss or complete loss of function of one of the MC4 receptor genes.

Exclusion criteria

³⁵ [0126]

- Fasting blood glucose >126 mg/dL at screening.
- Resting heart rate <45 bpm or >90 bpm at screening.
- Abnormal thyroid stimulating hormone (TSH) or thyroxine (T₄) levels on screening.
- Elevated ALT or serum creatinine on screening or any clinically significant abnormalities on screening laboratory tests as determined by the Investigator.
 - History of diabetes or of treated or medically diagnosed hypertension.
 - Presence of a skin lesion suspicious for malignancy.
 - History of malignancy except for treated cervical carcinoma in situ in the past 5 years.
- Active or history of any clinically significant medical condition including renal, hepatic, pulmonary, gastrointestinal, cardiovascular, genitourinary, endocrine, immunologic, metabolic, neurologic, psychiatric or hematological disease, based on Investigator judgment.
 - Acute illness or history of illness, which in the opinion of the Investigator, could pose a threat or harm to the subject
 or obscure interpretation of laboratory test results or interpretation of study data.
- Positive hepatitis B surface antigen, positive hepatitis C antibody or positive HIV test at screening or a history of positive testing (e.g. liver biopsy, serology) suggesting acute or chronic hepatitis.
 - Abnormal 12-lead electrocardiogram (ECG) at screening or pre-dose (Day -1 or Day 1), except minor deviations
 deemed to be of no clinical significance by the Investigator.
 - Received any experimental drugs or devices within 30 days or 5 half lives, whichever is longer, prior to dosing.
- Ongoing participation in a prior clinical study at the time of screening.
 - Blood donation within 60 days prior to screening or intent to donate within 60 days after Final Study Visit.
 - Hospitalization for major surgery including but not limited to abdominal, thoracic, or cardiovascular surgery within the past 3 months prior to screening, or for a clinically significant non-surgical illness, based on Investigator judgment,

within the past 3 months.

10

15

25

30

- Planned elective surgery within 30 days of the Final Study Visit.
- · Poor venous access or inability to tolerate venipuncture.
- · History of drug hypersensitivity or anaphylaxis.
- History of hypersensitivity to proteins (e.g., allergy shots).
 - Use of prescription medications on a regular basis. The last use of any prescription medication must have been greater than 5 half-lives for the specific medication or at least 14 days prior to admission (Day -1), whichever is longer. Hormonal contraception is allowed for female subjects.
 - Use of a non-prescription drug and herbal substances during the study (through the Final Study Visit). The last dose of any non-prescription drug must have been taken greater than 5 half-lives for that drug before receiving study drug.
 - Inability to attend all study visits or to comply with protocol requirements including fasting and restrictions on alcohol, caffeine, nicotine and concomitant medication intake.
 - A significant history of drug/solvent abuse within 5 years of screening or a positive test for drugs of abuse test at screening or on Day -1.
 - Positive alcohol (breath test) or nicotine screen at Screening Visit or Day -1.
 - History of alcohol abuse (defined as average intake of three or more units of alcohol per day) within 5 years of the Screening Visit.
 - History of tobacco or tobacco product use unless abstinent for at least one year prior to the Screening Visit.
 - Previously randomized and dosed in this study.
- Any other reason, which in the opinion of the Investigator would confound proper evaluation of the study.

Test Products, Doses, and Mode of Administration

[0127] The compounds of the present invention and the placebo are formulated for administration by SC continuous infusion using an infusion pump.

[0128] The 5 dose levels planned, in ascending order, are:

- 0.01 mg/kg/24 hrs
- 0.1 mg/kg/24 hrs
- 0.25 mg/kg/24 hrs
 - 0.5 mg/kg/24 hrs
 - 1.0 mg/kg/24 hrs

[0129] The compounds of the present invention or placebo will be given by SC continuous infusion for 14 or 28 days.

The dose levels evaluated may be modified based upon data from the single ascending dose study, or the prior MAD cohort.

Duration of Treatment

[0130] Overall study duration will be approximately 7 months. Individual subject participation in the study (screening, dosing, post-dosing assessments, follow-up) will be approximately 72 and 86 days for Cohorts dosed for 14 days and dosed for 28 days respectively.

[0131] The study will consist of a Screening Period, a Treatment Period and a Follow-up Period. The Screening Period will occur within 30 days prior to enrollment. The Treatment Period will consist of administration of a SC continuous infusion initiated on Day 1 and completed on Day 15 or Day 29 for Cohorts dosed for 14 days and Cohorts dosed for 28 days, respectively. Subjects will remain confined in the clinical research center (CRC) for approximately 24 hours following completion of the infusion and will be discharged from the CRC on Day 16 or 30 after all study procedures have been completed. Follow-up study visits are scheduled 1 and 4 weeks after the end of the study drug infusion.

50 Study Procedures

[0132] The procedures for each study period are briefly outlined below and are depicted in detail in the Schedule of Assessments (SOA).

55 Screening Period (Days -30 to -1)

[0133] After informed consent is obtained and eligibility assessed, screening assessments will be performed including: medical history; pregnancy test (all females); drug, nicotine and alcohol screen; safety laboratory tests (including clinical

chemistry, hematology and urinalysis), HbAlc and fructosamine, full physical examination (including weight, waist circumference and height), comprehensive skin examination performed by a Dermatologist, vital signs (including supine systolic and diastolic blood pressure, pulse rate, respiratory rate and body temperature); 12-lead electrocardiogram (ECG); HBsAg, HCV-Ab, HIV screening; samples of antibodies against the compounds of the present invention; Fitz-patrick scale; dietary recall review, indirect calorimetry (within 3 days of Day 1); previous and concomitant medication use.

Treatment Period

10

25

30

35

40

50

55

[0134] Subjects will be admitted to the research unit on Day -1. After continued eligibility is confirmed, the following assessments will be performed: abbreviated physical exams including weight and waist circumference; vital signs; 12 lead ECG; safety laboratory tests (including clinical chemistry, hematology and urinalysis); lipid profile; level of antibodies against the compounds of the present invention; serum sample for storage; quantitative skin color measurement; photographic skin evaluation; Hunger/Satiety questionnaire; initiation of cardiac telemetry and ambulatory blood pressure (ABPM) monitoring; sample collection for 24 hour urine catecholamine and cortisol level determination; estimated caloric intake; Meal Tolerance Test (MTT), randomization; monitoring for AEs and concomitant medications.

[0135] Upon initiation of study treatment on Day 1, the following assessments will be performed on Days 1-16 (Cohorts dosed for 14 days) or Days 1-29 (Cohorts dosed for 28 days) according to the SOA: abbreviated physical exam including weight and waist circumference; vital signs; cardiac telemetry, ABPM, 12-lead ECG, safety laboratory tests; lipid profile; sample collection for 24 hour urine catecholamine and cortisol level determination; sample collection for plasma free metanephrine levels, PK blood and urine sampling, melanocortin receptor genotyping; infusion site evaluation; quantitative skin color measurement; photographic skin evaluation; estimated caloric intake; MTT; HbAlc and fructosamine; Hunger/Satiety questionnaire; indirect calorimetry, monitoring for AEs and concomitant medications. Prior to discharge from the research unit, a serum pregnancy test will be performed on all females, and a comprehensive skin evaluation will be performed by a Dermatologist.

Follow-up Period

[0136] One and 4 weeks after completion of the study treatment infusion, subjects will return to the research unit for the following assessments: complete physical exam including weight and waist circumference; comprehensive skin exam performed by a Dermatologist, quantitative skin color measurement; photographic skin evaluation; infusion site evaluation; vital signs; safety laboratory tests; lipid profile; HbAlc and fructosamine; levels of antibodies against the compounds of the present invention; Hunger/Satiety questionnaire, monitoring for AEs and concomitant medications.

Study Endpoints

Safety

[0137] Safety will be evaluated by assessment of adverse events, ECGs, cardiac telemetry, ambulatory blood pressure monitoring, clinical laboratory evaluations (hematology, clinical chemistry including fasting blood glucose levels and urinalysis), lipid profile; levels of antibodies against the compounds of the present invention, urinary catecholamine levels, urinary free cortisol levels, plasma free metanephrine levels, vital signs (including blood pressure, respiratory rate, heart rate, and body temperature), physical examinations including infusion site evaluations and concomitant medication review.

45 Pharmacokinetic

[0138] Serial blood sampling and urine collections for measurement of plasma and urinary levels of the compounds of the present invention will be conducted. All samples will be assayed for the compounds of the present invention from which the following PK parameters will be computed for each subject: $AUC_{0-\tau}$, C_{ave} , C_{max} , T_{max} , λz , $T_{1/2}$, CL/F, Vz/F, accumulation ratios, total urinary excretion and renal clearance.

Pharmacodynamic

[0139] Caloric intake, weight and waist circumference, insulin sensitivity (as measured by MTT), hunger and satiety (using a Hunger/Satiety Questionnaire) and REE (using indirect calorimetry) will be assessed as exploratory PD endpoints. HbAc1 and fructosamine levels will also be assessed.

Sample Size Determination

[0140] The sample size for this Phase 1 first multiple-dose study in humans was not based on formal statistical determinations. The sample size for this study was chosen in consideration of limiting exposure to this new compound while providing information to evaluate the safety and effect of the compounds of the present invention in a Phase 1 first multiple-dose study.

Statistical Methods

[0141] Continuous variables will be summarized by dose (all placebo pooled) with descriptive statistics (number of observations, mean, SD, median, maximum, and minimum). Categorical variables will be tabulated by frequency of subjects by dose (all placebo pooled) and for the active treatment doses combined. The PD endpoints may be analyzed via analysis of variance if appropriate. All subject information and safety measurements will be based on the Safety Population.

CSC Data Review and Stopping Rules

[0142] The study design is such that successively higher doses will be administered to different groups of subjects after the safety and tolerability of the preceding dose has been established. Dose escalation recommendations are to be made by the CSC based upon a review of clinical safety data through Day 16 (Cohorts dosed for 14 days) or Day 30 (Cohorts dosed for 28 days).

Rules for Suspension of Dosing for a Subject:

25 [0143]

15

20

30

35

40

- An increase in SBP, sustained for a minimum of 30 minutes, either to >35 mmHg above mean baseline pre-dose SBP, or to >165 mmHg;
- An increase in DBP, sustained for a minimum of 30 minutes, either to >20 mmHg above mean baseline pre-dose DBP, or to >100 mmHg;
 - Any increase in BP that is judged to be symptomatic, per the Investigator, regardless of duration;
 - An increase in HR, sustained for a minimum of 30 minutes (or less in the judgment of the Investigator), to >35 bpm above mean baseline pre-dose HR;
 - A prolonged spontaneous erection lasting more than 60 minutes, or a spontaneous painful erection of any duration based on Investigator judgment;
 - Any other treatment-emergent AE that in the judgment of the Investigator poses a significant safety risk for that subject in the context of continued infusion of study drug.

Rules for Suspension or Termination of Dose Escalation:

[0144]

- An SAE that is deemed by the Investigator to be possibly or probably related to study drug occurs in any subject treated with the compounds of the present invention;
- A CTCAE Grade 3 (severe treatment emergent AE) or higher that is possibly or probably related occurs in a subject treated with the compounds of the present invention;
 - A possibly or probably related treatment emergent AE not listed by the CTCAE occurs in a subject treated with the
 compounds of the present invention that is graded as severe or life threatening.
- 50 **[0145]** The CSC may also recommend suspension of the compounds of the present invention dose escalation based upon other conditions as deemed medically appropriate.

Rules for Suspension of Further Dosing:

- ⁵⁵ **[0146]** The study may be immediately suspended and no additional doses administered if one or more subjects at any dose level develop any of the following adverse events deemed to be possibly or probably attributable to study drug:
 - · Anaphylaxis (i.e., angioedema, hypotension, bronchospasm, hypoxia or respiratory distress) in a subject treated

with the compounds of the present invention;

Any clinically significant treatment-related AE that poses an undue risk to subjects in the opinion of the CSC.

2. RANDOMIZED, DOUBLE-BLIND, PLACEBO-CONTROLLED STUDY TO EVALUATE THE SAFETY AND EFFICACY

5 OF THE COMPOUND OF THE PRESENT INVENTION IN PATIENTS WITH OBESITY DUE TO AN MC4R MUTATION

Objectives

10

15

25

30

35

50

[0147] The primary objective is to assess the effect of the compounds of the present invention vs. placebo on mean percent body weight loss when administered for 90 days by continuous SC infusion.

[0148] Secondary objectives are to assess:

- The mean body weight (BW) loss in the active treatment group compared to the placebo group from baseline to Day 90.
- The proportion of patients who lose ≥5% of their baseline body weight in the active treatment group compared to the placebo group from baseline to Day 90.
- The pharmacokinetics (PK) of the compounds of the present invention when given by continuous SC infusion for 90 days.
- The safety and tolerability of the compounds of the present invention when given by continuous SC infusion for 90 days.
- The effect of the compounds of the present invention versus placebo on ambulatory blood pressure monitoring parameters (ABPM) when given by continuous SC infusion for 90 days (sub-study).
 - The mean percent weight loss, mean weight loss, and proportion of patients who lose ≥ 5% of their baseline body
 weight in the active treatment group compared to the placebo group from baseline to Day 90 in patients who are
 severely obese (e.g., BMI ≥ 40 Kg/m²; sub-study).

Exploratory pharmacodynamic objectives of this study are to evaluate the effect of the compounds of the present invention when given by SC continuous infusion for 90 days in all patients, and those in the severely obese sub-study, on:

- The proportion of patients who achieve a ≥ 10% decrease in body weight in the active treatment group compared to placebo from baseline to Day 90.
 - The change in glucose and insulin during a Meal Tolerance Test (MTT) from Baseline to Day 90.
 - Change in fasting glucose, insulin, insulin sensitivity, triglycerides, cholesterol, HDL, LDL, hs-CRP and HbAlc from Baseline to Day 90.
 - Change in waist circumference from Baseline to Day 90.
- Change in body composition (assessed by Dual Energy X-Ray Absorptiometry (DXA)) from Baseline to Day 90 (sub-study).
- Change in hunger and satiety from Baseline to Day 90.
- Change in Impact of Weight on Quality of Life Lite questionnaire (IWQOL-Lite) total score from Baseline to Day 90.
- Change in depression/suicidality score (assessed by PHQ-9 and C-SSRS) from Baseline to Day 90.
- Change in skin pigmentation (assessed by mexameter) from Baseline to Day 90.

Study Design

[0149] This is a randomized, double-blind, placebo-controlled study designed to evaluate the efficacy and safety of the compounds of the present invention when administered for 90 days to obese patients, inclusive of a sub-set of patients who are severely obese (BMI \geq 40 Kg/m²).

[0150] Patients who are obese (BMI between 35-50 Kg/m²), but otherwise healthy, will be enrolled. This study will be conducted on an outpatient basis. All patients will be required to self-administer study drug via an approved insulin infusion pump (OmniPod®) during the \sim 7 day placebo practice period. Patients with continued eligibility who have demonstrated the ability to successfully manage self-administration of placebo during the practice period will be randomized to the double blind 90 day Treatment Period.

Number of Patients Planned

[0151] Approximately 70 patients will be enrolled into the study. There will be three sub-studies within the protocol. The first will include those patients who are severely obese (BMI ≥ 40 Kg/m², who will be stratified separately). Approximately 20 severely obese patients will be enrolled into this sub-study; these subjects will be recruited at all sites. The two remaining sub-studies will be enrolled at select sites. The first will be an ABPM sub-study where approximately 30

patients will be enrolled, and the final sub-study will include DXA scans on approximately 20 patients.

Diagnosis and Main Criteria for Inclusion

- 5 [0152] Patients must meet all of the following inclusion criteria to be eligible for the study:
 - 1. MC4R heterozygous patients: mutation of MC4R gene.
 - 2. Be between the age of 18 and 65.
 - 3. Able to provide voluntary, written informed consent with comprehension of all aspects of the protocol, prior to any study procedures.
 - 4. In good general health, without significant medical history, physical examination findings, or clinical laboratory abnormalities.
 - 5. Body Mass Index: 35-50 Kg/m², inclusive. It is planned that approximately 20 of these patients will have a BMI \geq 40 Kg/m².
 - 6. Stable body weight (+/- 5 Kg) during previous 6 months.
 - 7. Blood pressure (<140/90 mmHg); may include stable dose (≥ 30 days of use) of up to two anti-hypertensive medications to achieve control that are intended to remain on a stable dose during the protocol.
 - 8. Willingness and demonstrates ability to self administer study medication subcutaneously via a continuous infusion pump during the placebo practice period.
 - 9. Willing to maintain a healthy diet and exercise regime throughout study as recommended by counseling at study start
 - 10. Females of childbearing potential must agree to be abstinent or else use any two of the following medically acceptable forms of contraception from the Screening Period through the completion of study treatment: hormonal, condom with spermicidal jelly, diaphragm or cervical cap with spermicidal jelly, or IUD. Hormonal contraception must have started at least 3 months prior to screening. A female whose male partner has had a vasectomy must agree to use one additional form of medically acceptable contraception. Patients must agree to practice the above birth control methods for 30 days after completion of study treatment as a safety precaution.
 - 11. Females of non-childbearing potential, defined as surgically sterile (status post hysterectomy, bilateral oophorectomy, or bilateral tubal ligation) or post-menopausal for at least 12 months (and confirmed with a screening FSH level in the post-menopausal range), do not require contraception during the study.
 - 12. Males with female partners of childbearing potential must agree to use two medically acceptable forms of contraception as described above, with one of the two forms being condom with spermicide, from the Screening Period through 90 days after completion of study treatment. Males with female partners of childbearing potential who themselves are surgically sterile (status post vasectomy) must agree to use condoms with spermicide over the same period of time.

If any of the following exclusion criteria are met, the patient is not eligible for the study:

- 1. Fasting blood glucose greater than 140 mg/dL.
- 2. HbAlc ≥6.5%.
 - 3. TSH level outside the normal range.
 - 4. Creatinine > 1.5 times the upper limit of normal.
 - 5. Liver function tests > 2 times the upper limit of normal.
 - 6. Active or history of any significant medical condition including renal, hepatic, pulmonary, gastrointestinal, cardiovascular, genitourinary, endocrine, immunologic, metabolic, neurologic or hematological disease.
 - 7. Patients with a history of the following:
 - a. Uncontrolled hypertension;
 - b. Diabetes requiring medical treatment, presently or in the past;
 - c. Major depressive disorder within the last 2 years;
 - d. Any lifetime history of a suicide attempt;
 - e. Any suicidal behavior in the last month;
 - f. Other severe psychiatric disorders (e.g. schizophrenia, bipolar disorder, severe eating disorders including bulimia).
 - 8. A PHQ-9 score of ≥15.
 - 9. Any suicidal ideation of type 4 or 5 on the C-SSRS.
 - 10. Prior bariatric surgery.

55

10

15

20

25

30

35

40

45

50

- 11. History or close family history (parents or siblings) of melanoma.
- 12. Significant dermatologic findings as part of the Screening comprehensive skin evaluation performed by the dermatologist. Any concerning lesions identified during the screening period will be biopsied and results known to be benign prior to randomization. If the pre-treatment biopsy results are of concern, the patient will be excluded from the study.
- 13. Treated with anorectic agents or drugs with anorexia as a frequent side event.
- 14. Taking 3 or more anti-hypertensive medications.
- 15. Acute illness or history of illness, which in the opinion of the Investigator, could pose a threat or harm to the patient or obscure interpretation of laboratory test results or interpretation of study data.
- 16. History of any malignancy, past or present, including skin cancer, multiple severely dysplastic nevi, or nevoid basal cell carcinoma.
 - 17. History of HIV infection.

5

20

30

35

40

45

50

55

- 18. History of significant drug hypersensitivity or anaphylaxis.
- 19. History of hypersensitivity to proteins (e.g., allergy shots).
- 20. Any clinically significant abnormalities on screening laboratories as determined by the Investigator.
 - 21. Abnormal 12-lead electrocardiogram (ECG) at screening or pre-dose (Day 1), except minor deviations deemed to be of no clinical significance by the Investigator. QTc must be < 450 ms.
 - 22. Received any experimental drugs or devices or have participated in a clinical study within 30 days prior to dosing.
 - 23. Blood donation within 60 days prior to screening or intent to donate up to 60 days after Final Study Visit.
 - 24. Hospitalization for surgery within the 3 months prior to screening except for minor outpatient procedures, or any planned hospitalizations during the study period.
 - 25. Poor venous access or inability to tolerate venipuncture.
 - 26. Inability to attend all study visits or comply with protocol requirements including fasting and restrictions on concomitant medication intake.
- 27. Participation in weight loss programs during the study period, including nutritional supplements/ replacements other than as recommended by nutritional counseling provided at study start.
 - 28. Use of prescription medications on a regular basis with the following exceptions:
 - a. Contraceptives (must be on for ≥3 months);
 - b. Hormone replacement therapy (must be on stable dose for ≥3 months);
 - c. Antihypertensives (<3 medications on a stable dose for ≥ 30 days);
 - d. Statins (dose must be \leq half the maximum dose; must be on a stable dose \geq 3 months);
 - e. Fibrates (must be on stable dose for ≥3 months);
 - f. Niacin (must be on stable dose for ≥3 months);
 - g. Thyroxin (stable dose for \geq 30 days);
 - h. The last use of any other prescription medication must have been greater than 5 half-lives for the specific medication or at least 14 days prior to randomization, whichever is longer.
 - 29. Women who are pregnant or are breast feeding.
 - 30. Previously randomized and dosed in this study or previously exposed to the compounds of the present invention.
 - 31. History of alcohol or drug abuse within 5 years of Screening Visit.
 - 32. Any other reason, which in the opinion of the Investigator would confound proper evaluation of the study.

Test Products, Doses, and Mode of Administration

[0153] The compounds of the present invention will be supplied as sterile solutions for infusion. The product will be manufactured at a concentration of 2.0 mg/mL at pH 5 with a fill volume of 11 mL/vial. Placebo will be vehicle. Drug products and placebo consist of sodium phosphate and citric acid, including 0.5% phenol as a preservative. Both the compounds of the present invention and placebo multipue vials may be punctured multiple times under sterile conditions.

The compounds of the present invention and placebo will be administered as a continuous subcutaneous infusion using the FDA approved insulin infusion pump, Insulet's OmniPod® (infusion pump which is wireless/tubeless and does not require a traditional infusion set, inclusive of an auto-injector whereby the patient never sees the needle or cannula). A total daily dose of 1 mg/24 hours of the compounds of the present invention, or equivalent volume of placebo, will be self-administered via continuous SC infusion during the treatment period.

Duration of Treatment

[0154] The overall study duration will be approximately 9 months, as currently planned. Individual patient participation

in the study (Screening Period, Treatment Period and Follow-up Period) will be approximately 7 months. Screening, inclusive of the placebo practice period, will occur within 30 days prior to randomization. Patients who successfully complete the open label placebo practice period will be randomized to double blind treatment for 90 days. The Final Visit will occur approximately 90 days after the last dose of study drug is administered (Day 180).

Study Procedures

5

10

15

20

25

30

35

40

50

55

[0155] The study will consist of a Screening Period inclusive of 2 visits. Patients who demonstrate compliance with the continuous infusion will be randomized to a double-blind treatment regimen (at Visit 3) and will begin 90 days of double-blind, self-administered SC continuous infusion, outpatient treatment. Additional clinic visits are scheduled on approximately Day 7 (Visit 4), Day 14 (Visit 5), Day 28 (Visit 6), Day 56 (Visit 7) and at the end of treatment (Day 90, Visit 8). Patients will also be contacted by telephone weekly during the first month of treatment, followed by bi-weekly contact during the remaining Treatment Period to encourage compliance and to assess adverse events. Follow up Visits will be scheduled monthly for 3 months after completion of the 90-day Treatment Period. The Final Visit will occur ~90 days after the last dose of study drug is administered (Day 180, Visit 11).

Screening Period (Days -30 to -1)

[0156] The Screening Period consists of 2 visits; the first where patients will be assessed for study qualification. Eligible patients will then proceed onto the second screening visit which will consist of an open label placebo practice period to ensure study patients can self-administer placebo drug via an FDA approved SC insulin infusion pump for approximately 1 week.

Visit 1

[0157] During Visit 1, following signed, written informed consent, confirmation of eligibility will be performed. Medical history, physical examination (including vital signs, height and weight and waist circumference measurements), a comprehensive skin exam will be conducted by the Dermatologist, quantitative skin measurement, Fitzpatrick scale and Edmond Obesity Staging System (EOSS) assessments, concomitant medication review, clinical laboratory tests including HbA1c, serum pregnancy test or follicle-stimulating hormone test, and a 12-lead ECG will be performed at this visit. The PHQ-9 and C-SSRS will be administered. Hunger and satiety questionnaire will also be administered.

Visit 2

[0158] During visit 2, patients confirmed to be eligible at Visit 1 and who continue to meet the inclusion and exclusion criteria upon review of medical history since the prior visit as well as AE and concomitant medication review, will have their weight and waist circumference measured and vital signs measured. Study staff will train patients and instruct them on proper technique of how to use the OmniPod® at this visit. Patients will be required to demonstrate understanding by successfully filling the OmniPod® with placebo, successfully placing the pod on an appropriate body area, and starting the infusion while at site. The study patients will change the OmniPod® approximately 2-3 times during the ~7 day period between Visits 2 and 3.

[0159] For those patients participating in the ABPM sub-study, an additional clinic visit will be necessary.

Treatment Period (Days 1-90)

45

[0160] Patients will return to the clinic approximately 7 days after starting the placebo practice period. Study patients who successfully complete the open label placebo practice period will return for Visit 3 (Day 1), and be randomized to 90 days of double-blind study treatment. Additional clinic visits are scheduled on approximately Day 7 (Visit 4), Day 14 (Visit 5), Day 28 (Visit 6), Day 56 (Visit 7) and at the end of treatment (Day 90, Visit 8). During these visits, a variety of efficacy, safety and exploratory assessments will be performed, according to the SOA.

[0161] Efficacy will be evaluated by measuring body weight. Safety will be evaluated by assessment of adverse events, vital signs (including blood pressure, respiratory rate, heart rate, and body temperature), ECGs, ABPM (sub-study), clinical laboratory evaluations (hematology, clinical chemistry including fasting blood glucose and insulin levels and urinalysis), lipid profile; levels of antibodies against the compounds of the present invention, quantitative skin assessments (mexameter) and photographic skin evaluation, protocol defined pigmented skin lesion biopsies, physical examinations including infusion site evaluations and concomitant medication review. Additionally, changes in depression/suicidality as assessed by the C-SSRS and PHQ-9 will be monitored. Plasma concentrations of the compounds of the present invention will be summarized and may be compared to PD parameters.

[0162] Exploratory measurements will be assessed by insulin sensitivity (as measured by MTT and HOMA-IR), effects on Hs-CRP and HbA1c, hunger and satiety (using a Hunger/Satiety Questionnaire), body composition (using DXA at select sites), changes in waist circumference, and changes in IWQOL-Lite, PHQ-9 and C-SSRS will be assessed as exploratory endpoints.

[0163] For patients who do not complete the full 90 day treatment period, attempts will be made to have the patient return for continued follow-up visits in order to monitor patient safety, as well as any effects on pharmacodynamic assessments.

Follow-up Period (Days 91-180)

[0164] Upon completion of the 90 day Treatment Period, Patients will enter a 90 day post-treatment Follow-up Period consisting of 3 monthly visits, where a variety of safety and efficacy assessments according to the SOA. The Final Study Visit will occur on approximately Day 180.

[0165] In the event an AE is ongoing at the time of the Final Visit, additional visits should be scheduled, at a frequency deemed appropriate by the Investigator, in order to follow the event to resolution. If a patient experiences a Serious Adverse Event for which follow-up laboratories and review are required, the Investigator will schedule additional post-treatment visits as necessary.

Study Endpoints

[0166] The primary endpoint will be evaluated by assessment of mean percent body weight loss. Secondary endpoints will be evaluated by assessments of weight, as well as safety and tolerability, including the ABPM sub-study. Plasma concentrations of the compounds of the present invention will be summarized and may be compared to various endpoints. In addition, weight loss parameters will be summarized in the severely obese patient sub-study.

Safety

10

20

25

30

[0167] Safety will be evaluated by assessment of adverse events, vital signs (including blood pressure, respiratory rate, heart rate, and body temperature), ECGs, clinical laboratory evaluations (hematology, clinical chemistry including fasting blood glucose and insulin levels and urinalysis), lipid profile; levels of antibodies against the compounds of the present invention, quantitative skin assessments (mexameter) and photographic skin evaluation, protocol defined pigmented skin lesion biopsies, physical examinations including infusion site evaluations and concomitant medication review. Additionally, changes in depression/suicidality as assessed by the C- SSRS and PHQ-9 will be monitored.

35 Pharmacokinetic

[0168] Plasma concentrations of the compounds of the present invention will summarized and may be compared to PD endpoints.

40 Exploratory

[0169] Exploratory measurements will be assessed by insulin sensitivity (as measured by MTT and HOMA-IR), effects on Hs-CRP and HbA1c, hunger and satiety (using a Hunger/Satiety Questionnaire), body composition (using DXA at select sites), changes in waist circumference, and changes in IWQOL-Lite and C-SSRS will be assessed as exploratory endpoints.

Sample Size Determination

[0170] Sample size per arm was calculated to target a 5 percentage point difference in mean weight change between a treatment arm and the placebo arm. From data reported by Gadde (2011), an SD of 5.7% was computed for weight change after 16 weeks of treatment. Assuming the SD in this study will be 5% to 6%, the sample size of N=30 completing subjects (accounting for 5 dropouts per dose group) has 97% power to yield a statistically significant (alpha=0.025, 1-sided) difference between an active dose group and placebo if the true underlying difference in means is 5 percentage points, and the SD is 5%. If the SD is 6%, there is 89% power.

Statistical Methods

[0171] Continuous variables will be summarized by dose group with descriptive statistics (e.g., number of observations,

76

55

50

45

mean, SD, median, maximum, and minimum). Categorical variables will be tabulated by frequency of patients per dose group. All patient information and safety measurements will be based on the Safety Population, which will include all patients who receive a dose of study drug and have a post baseline observation.

[0172] Analyses will be based on observed data only; no data will be imputed.

[0173] Continuous efficacy endpoints will be assessed via a longitudinal mixed analysis of variance model which will include fixed effects terms for treatment, timepoint, treatment-by-timepoint interaction, and baseline covariate, and random effect for subjects. The assumption of normality will be assessed via the Shapiro-Wilk statistic. If substantial departure from normality is observed, a transformation such as log (post/pre) or rank may be used to analyze the data.

[0174] The comparison of the compounds of the present invention with placebo will be carried out via 1-sided statistical test at alpha=0.025.

Guidelines for Additional Safety Monitoring and Suspension of Dosing of a Patient

[0175] Patients will be monitored carefully during the treatment period during on site clinic visits as well as periodic telephone calls made to the patients by the study staff. In the event a patient is withdrawn from treatment due to an AE, the patient should be encouraged to complete the remaining study visits in order to monitor the event to resolution and obtain additional protocol defined safety assessments. Additionally, guidance will be provided for any worsening of depression or suicidality during the study. At all times, this guidance is subject to the clinical judgment of the Investigator and study consultants (if applicable).

[0176] The Investigator shall notify the Medical Monitor in the event any study participant fulfills any of the criteria defined in the appendices noted above, or undergoes additional monitoring for any of the events defined herein.

Example 3: Treatment of Obese MC4R +/- Heterozygotic Mice with Compound of SEQ ID NO: 140

[0177] Diet induced obesity (DIO) littermate C57B1/6J mice that were either wild type with respect to MC4R gene (+/+), or heterozygous for the MC4R gene (+/-), or homozygous MC4R knockout mice that do not express the MC4R gene at all (-/-) were exposed to the compound of SEQ ID NO: 140: Ac-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH₂ by Alzet pump infusion of at a concentration of 1200 nmol/kg/day for 8 days. Body weight was measured.

[0178] The data is presented in FIG. 3. The data shows that mice that were heterozygous for the MC4R gene (+/-) lost significant body weight (about 1 gram) over the treatment period while rodents that did not express the MC4R gene, did not show significant weight loss over this time period.

[0179] The weight change due to the exposure to the compound of SEQ ID NO: 140 in mice that are either wild type for the MC4R gene, or express only a single MC4R allele, or mice without any MC4R protein expression were compared. The data suggests that human patients with one functional MC4R allele, where their obesity is caused by the loss of function of the MC4R allele, will respond to the SEQ ID NO: 140, resulting in weight loss.

SEQUENCE LISTING

10

15

20

30

35

40

45

50

55

77

[0180]

```
5
        <110> RHYTHM PHARMACEUTICALS, INC.
        <120> METHOD OF TREATING MELANOCORTIN-4 RECEPTOR-ASSOCIATED DISORDERS IN HETERO-
        ZYGOUS CARRIERS
10
        <130> N403305EP-A
        <150> 61/581,391
        <151> 2011-12-29
15
        <160> 559
        <170> PatentIn version 3.5
        <210> 1
20
        <211>8
        <212> PRT
        <213> Artificial Sequence
        <220>
25
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <223> N-term Ac
30
        <220>
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
35
        <220>
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
40
        <220>
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-Phe
45
        <220>
        <221> MOD_RES
        <222> (7)..(7)
        <223> Beta-Ala
        <220>
50
        <223> C-term NH2
        <400> 1
55
                                     Xaa Asp His Phe Arg Trp Ala Lys
        <210> 2
```

```
<211> 8
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
10
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
15
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
25
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> A6c
30
         <220>
         <223> C-term NH2
         <400> 2
35
                                       Xaa Asp His Phe Arg Trp Xaa Lys
                                                             5
         <210> 3
40
         <211> 8
         <212> PRT
         <213> Artificial Sequence
45
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
         <220>
50
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
55
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Ahx
10
         <220>
         <223> C-term NH2
         <400> 3
15
                                     Xaa Cys His Phe Arg Trp Xaa Cys
         <210> 4
20
         <211>9
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD_RES
         <222> (1)..(1)
30
         <223> D-Phe
         <220>
         <221> DOMAIN
         <222> (2)..(8)
35
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
40
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (8)..(8)
45
         <223> D-Cys
         <220>
         <223> C-term NH2
         <400> 4
50
                                  Phe Cys His Phe Arg Trp Ala Cys Thr
                                                       5
55
         <210> 5
         <211> 9
         <212> PRT
```

<213> Artificial Sequence

```
<220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
5
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
         <220>
10
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
15
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
20
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
         <220>
25
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
         <220>
30
         <223> C-term NH2
         <400> 5
                                    Phe Cys His Phe Arg Trp Ala Cys Thr
35
                                    1
                                                         5
         <210> 6
         <211>9
         <212> PRT
40
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
         <220>
50
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
55
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
```

```
<220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
5
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
10
         <220>
         <223> C-term NH2
         <400> 6
15
                                  Phe Cys His Phe Arg Trp Xaa Cys Thr
         <210>7
20
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
35
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
45
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
         <220>
50
         <223> C-term NH2
         <400> 7
55
                                     Xaa Cys His Phe Arg Trp Xaa Cys
```

<210>8

82

```
<211> 8
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
10
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
15
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
25
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
30
         <220>
         <223> C-term NH2
         <400> 8
35
                                       Xaa Asp His Phe Arg Trp Xaa Lys
                                                             5
         <210>9
40
         <211> 8
         <212> PRT
         <213> Artificial Sequence
45
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
         <220>
50
         <221> MOD_RES
         <222> (1)..(1)
         <223> A6c
55
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
10
         <220>
         <223> C-term NH2
         <400> 9
15
                                     Xaa Asp His Phe Arg Trp Xaa Lys
         <210> 10
20
         <211>8
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-2-Nal
35
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
45
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
         <220>
50
         <223> C-term NH2
         <400> 10
55
                                     Xaa Asp His Phe Arg Trp Xaa Lys
```

<210> 11

```
<211> 8
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
10
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Cha
15
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
25
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
30
         <220>
         <223> C-term NH2
         <400> 11
35
                                       Xaa Asp His Phe Arg Trp Xaa Lys
                                                             5
         <210> 12
40
         <211> 8
         <212> PRT
         <213> Artificial Sequence
45
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
         <220>
50
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
55
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
10
         <220>
         <223> C-term NH2
         <400> 12
15
                                      Xaa Asp His Phe Arg Trp Xaa Lys
         <210> 13
20
         <211>8
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
35
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
45
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
50
         <223> C-term NH2
         <400> 13
55
                                      Xaa Cys Ala His Phe Arg Trp Cys
```

<210> 14

86

```
<211> 8
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
10
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
15
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> Beta-Ala
25
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
30
         <220>
         <223> C-term NH2
         <400> 14
35
                                       Xaa Cys Ala His Phe Arg Trp Cys
         <210> 15
40
         <211> 8
         <212> PRT
         <213> Artificial Sequence
45
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
         <220>
50
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
55
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> Gaba
5
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
10
         <220>
         <223> C-term NH2
         <400> 15
15
                                     Xaa Cys Xaa His Phe Arg Trp Cys
         <210> 16
20
         <211>8
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
35
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> Aib
45
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
50
         <223> C-term NH2
         <400> 16
55
                                     Xaa Cys Xaa His Phe Arg Trp Cys
```

<210> 17

```
<211> 8
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
10
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
15
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
25
         <220>
         <223> C-term NH2
         <400> 17
30
                                       Xaa Cys Gly His Phe Arg Trp Cys
                                                             5
         <210> 18
35
         <211>8
         <212> PRT
         <213> Artificial Sequence
         <220>
40
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
50
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
55
         <220>
         <221> MOD_RES
         <222> (2)..(2)
         <223> D-Cys
```

	<220>								
	<221> MOD_RES								
	<222> (5)(5)								
	<223> D-Phe								
5									
	<220>								
	<223> C-term NH2								
	.100: 10								
10	<400> 18								
10			_				_	_	_
		aa	Cys	Ala	His		Arg	Trp	Cys
	1					5			
	<210> 19								
15	<211> 8								
	<212> PRT								
	<213> Artificial Sequence								
	2.0 7 mm.o.a. 00quo00								
	<220>								
20	<223> Description of Artificial Seque	ence	e: Svr	nthetic	peptio	le			
			- · · j ·		P - P	-			
	<220>								
	<223> N-term Ac								
25	<220>								
	<221> MOD_RES								
	<222> (1)(1)								
	<223> Nle								
30	<220>								
	<221> DOMAIN								
	<222> (2)(8)								
	<223> Cyclic								
	000								
35	<220>								
	<221> MOD_RES								
	<222> (2)(2)								
	<223> D-Cys								
40	<220>								
40	<221> MOD_RES								
	<222> MOD_REG <222> (3)(3)								
	<223> D-Ala								
45	<220>								
	<221> MOD_RES								
	<222> (5)(5)								
	<223> D-Phe								
50	<220>								
	<223> C-term NH2								
	<400> 19								
55		aa	Cys	Ala	His		Arg	${\tt Trp}$	Cys
	1					5			
	<210 > 20								
	<210> 20								

```
<211> 8
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
10
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
15
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (2)..(2)
         <223> D-Cys
25
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> Beta-Ala
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
35
         <220>
         <223> C-term NH2
         <400> 20
40
                                       Xaa Cys Ala His Phe Arg Trp Cys
                                                             5
         <210> 21
45
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
55
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
```

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (2)..(2)
         <223> D-Cys
10
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> Gaba
15
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
20
         <220>
         <223> C-term NH2
         <400> 21
25
                                      Xaa Cys Xaa His Phe Arg Trp Cys
                                                            5
         <210> 22
30
         <211> 8
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (2)..(2)
         <223> D-Cys
55
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> Aib
```

	<220>
	<221> MOD_RES
	<222> (5)(5)
	<223> D-Phe
5	
	<220>
	<223> C-term NH2
	<400> 22
10	
	Xaa Cys Xaa His Phe Arg Trp Cys
	1 5
	1
	<210> 23
15	<211> 8
	<212> PRT
	<213> Artificial Sequence
	12 13 Artificial Sequence
	-220
00	<220>
20	<223> Description of Artificial Sequence: Synthetic peptide
	<220>
	<223> N-term Ac
25	<220>
	<221> MOD_RES
	<222> (1)(1)
	<223> Nle
30	<220>
	<221> DOMAIN
	<222> (2)(8)
	<223> Cyclic
	•
35	<220>
	<221> MOD_RES
	<222> (2)(2)
	<223> D-Cys
	-225. B 030
40	<220>
	<221> MOD_RES
	<222> (5)(5)
	<223> D-Phe
45	4000
45	<220>
	<223> C-term NH2
	<400> 23
50	Xaa Cys Gly His Phe Arg Trp Cys
	1 5
	<210> 24
	<211> 8
55	<212> PRT
	<213> Artificial Sequence
	<220>

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
10
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
15
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
20
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
25
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
30
         <220>
         <223> C-term NH2
         <400> 24
35
                                       Xaa Cys Ala His Phe Arg Trp Cys
                                                             5
         <210> 25
40
         <211> 8
         <212> PRT
         <213> Artificial Sequence
45
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
         <220>
50
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
55
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> Beta-Ala
5
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
15
         <220>
         <223> C-term NH2
         <400> 25
20
                                      Xaa Cys Ala His Phe Arg Trp Cys
         <210> 26
25
         <211> 8
         <212> PRT
         <213> Artificial Sequence
30
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
35
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
40
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> Gaba
         <220>
50
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
55
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
```

	<220> <223> C-term NH2								
5	<400> 26								
		Xaa 1	Cys	Xaa	His	Phe 5	Arg	Trp	Cys
10	<210> 27 <211> 8 <212> PRT <213> Artificial Sequence								
15	<220> <223> Description of Artificial Se	quenc	ce: Syr	nthetic	peption	de			
	<220> <223> N-term Ac								
20	<220> <221> MOD_RES <222> (1)(1) <223> Nie								
25	<220> <221> DOMAIN <222> (2)(8) <223> Cyclic								
30	<220> <221> MOD_RES <222> (3)(3) <223> Aib								
35	<220> <221> MOD_RES <222> (5)(5) <223> D-Phe								
40	<220> <221> MOD_RES <222> (8)(8) <223> D-Cys								
45	<220> <223> C-term NH2								
	<400> 27								
50		Xaa 1	Cys	Xaa	His	Phe 5	Arg	Trp	Cys
55	<210> 28 <211> 8 <212> PRT <213> Artificial Sequence								
	<220>								

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
10
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
15
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
20
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
25
         <220>
         <223> C-term NH2
         <400> 28
30
                                       Xaa Cys Gly His Phe Arg Trp Cys
                                                1
                                                                      5
35
         <210> 29
         <211>8
         <212> PRT
40
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
50
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
55
         <222> (2)..(8)
         <223> Cyclic
         <220>
```

```
<221> MOD_RES
         <222> (2)..(2)
         <223> D-Cys
5
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
15
         <220>
         <223> C-term NH2
         <400> 29
20
                                      Xaa Cys Ala His Phe Arg Trp Cys
         <210> 30
         <211>8
25
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <223> N-term Ac
         <220>
35
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
40
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
45
         <221> MOD_RES
         <222> (2)..(2)
         <223> D-Cys
         <220>
         <221> MOD_RES
50
         <222> (3)..(3)
         <223> D-Ala
         <220>
55
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
```

	<220>
	<221> MOD_RES
	<222> (8)(8)
	<223> D-Cys
5	-220° B 030
Ü	-000
	<220>
	<223> C-term NH2
	<400> 30
10	
	You Crea Ala Hia Dha Ana Tun Crea
	Xaa Cys Ala His Phe Arg Trp Cys
	1 5
	40405-04
	<210> 31
15	<211> 8
	<212> PRT
	<213> Artificial Sequence
	<220>
20	<223> Description of Artificial Sequence: Synthetic peptide
	12232 Description of Artificial Sequence. Synthetic peptide
	-000
	<220>
	<223> N-term Ac
25	<220>
	<221> MOD_RES
	<222> (1)(1)
	<223> Nie
	-220-140
30	<220>
30	
	<221> DOMAIN
	<222> (2)(8)
	<223> Cyclic
35	<220>
	<221> MOD_RES
	<222> (2)(2)
	<223> D-Cys
	12237 D-0y8
40	.000
40	<220>
	<221> MOD_RES
	<222> (3)(3)
	<223> Beta-Ala
45	<220>
	<221> MOD_RES
	<222> (5)(5)
	<223> D-Phe
50	<220>
	<221> MOD_RES
	<222> (8)(8)
	<223> D-Cys
	•
55	<220>
	<223> C-term NH2
	<400> 31

Xaa Cys Ala His Phe Arg Trp Cys 1 5

```
<210> 32
5
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
10
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (2)..(2)
         <223> D-Cys
30
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> Gaba
35
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
40
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
45
         <220>
         <223> C-term NH2
         <400> 32
50
                                      Xaa Cys Xaa His Phe Arg Trp Cys
                                                            5
         <210> 33
         <211>8
55
         <212> PRT
         <213> Artificial Sequence
         <220>
```

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
10
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
15
         <220>
         <221> MOD_RES
         <222> (2)..(2)
         <223> D-Cys
20
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> Aib
25
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
30
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
35
         <220>
         <223> C-term NH2
         <400> 33
40
                                       Xaa Cys Xaa His Phe Arg Trp Cys
                                                             5
         <210> 34
45
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
55
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Oic
```

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
15
         <220>
         <223> C-term NH2
         <400> 34
20
                                      Xaa Asp His Phe Arg Trp Xaa Lys
         <210> 35
25
         <211> 8
         <212> PRT
         <213> Artificial Sequence
30
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
35
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Chg
40
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
50
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
55
         <220>
         <223> C-term NH2
         <400> 35
```

Xaa Asp His Phe Arg Trp Xaa Lys

```
<210> 36
5
         <211>8
         <212> PRT
         <213> Artificial Sequence
         <220>
10
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> hCha
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
30
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
35
         <220>
         <223> C-term NH2
         <400> 36
40
                                       Xaa Asp His Phe Arg Trp Xaa Lys
         <210> 37
         <211> 8
45
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
         <220>
55
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Cha
```

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
15
         <220>
         <223> C-term NH2
         <400> 37
20
                                      Xaa Asp His Phe Arg Trp Xaa Lys
         <210> 38
25
         <211> 8
         <212> PRT
         <213> Artificial Sequence
30
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
35
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-hCha
40
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
50
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
55
         <220>
         <223> C-term NH2
         <400> 38
```

Xaa Asp His Phe Arg Trp Xaa Lys

```
<210> 39
5
         <211>8
         <212> PRT
         <213> Artificial Sequence
         <220>
10
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nip
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
30
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
35
         <220>
         <223> C-term NH2
         <400> 39
40
                                       Xaa Asp His Phe Arg Trp Xaa Lys
         <210> 40
         <211> 8
45
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
         <220>
55
         <221> MOD_RES
         <222> (1)..(1)
         <223> hPro
```

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
15
         <220>
         <223> C-term NH2
         <400> 40
20
                                      Pro Asp His Phe Arg Trp Xaa Lys
         <210> 41
25
         <211> 8
         <212> PRT
         <213> Artificial Sequence
30
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
35
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> hLeu
40
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
50
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
55
         <220>
         <223> C-term NH2
         <400> 41
```

Leu Asp His Phe Arg Trp Xaa Lys

```
<210> 42
5
         <211>8
         <212> PRT
         <213> Artificial Sequence
         <220>
10
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
15
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
25
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
30
         <220>
         <223> C-term NH2
         <400> 42
35
                                       Phe Asp His Phe Arg Trp Xaa Lys
         <210> 43
         <211>8
40
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
50
         <222> (1)..(1)
         <223> D-Phe
         <220>
55
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
10
         <220>
         <223> C-term NH2
         <400> 43
15
                                     Phe Asp His Phe Arg Trp Xaa Lys
         <210> 44
20
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Chg
35
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
45
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
         <220>
50
         <223> C-term NH2
         <400> 44
55
                                      Xaa Asp His Phe Arg Trp Xaa Lys
```

<210> 45

```
<211> 8
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <223> N-term n-butanoyl
10
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Cha
15
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
25
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
30
         <220>
         <223> C-term NH2
         <400> 45
35
                                       Xaa Asp His Phe Arg Trp Xaa Lys
                                                             5
         <210> 46
40
         <211> 8
         <212> PRT
         <213> Artificial Sequence
45
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term n-butyryl
         <220>
50
         <221> MOD_RES
         <222> (1)..(1)
         <223> Cha
55
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
10
         <220>
         <223> C-term NH2
         <400> 46
15
                                      Xaa Asp His Phe Arg Trp Xaa Lys
         <210> 47
20
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> hPhe
35
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
45
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
         <220>
50
         <223> C-term NH2
         <400> 47
```

55

Phe Asp His Phe Arg Trp Xaa Lys

1 5 <210> 48 5 <211> 8 <212> PRT <213> Artificial Sequence <220> 10 <223> Description of Artificial Sequence: Synthetic peptide <220> <223> N-term Ac 15 <220> <221> MOD_RES <222> (1)..(1) <223> Beta-hMet 20 <220> <221> DOMAIN <222> (2)..(8) <223> Cyclic 25 <220> <221> MOD_RES <222> (4)..(4) <223> D-Phe 30 <220> <221> MOD_RES <222> (7)..(7) <223> Gaba 35 <220> <223> C-term NH2 <400> 48 40 Met Asp His Phe Arg Trp Xaa Lys <210> 49 <211> 8 45 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic peptide 50 <220> <223> N-term Ac

<220>

<221> MOD_RES <222> (1)..(1) <223> Gaba

55

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
15
         <220>
         <223> C-term NH2
         <400> 49
20
                                      Xaa Asp His Phe Arg Trp Xaa Lys
         <210> 50
25
         <211> 8
         <212> PRT
         <213> Artificial Sequence
30
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
35
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Cha
40
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
50
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
55
         <220>
         <223> C-term NH2
         <400> 50
```

Xaa Asp His Phe Arg Trp Ala Lys

```
<210> 51
5
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
10
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> hCha
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
30
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
35
         <220>
         <223> C-term NH2
         <400> 51
40
                                       Xaa Asp His Phe Arg Trp Ala Lys
         <210> 52
         <211> 8
45
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
         <220>
55
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
10
         <220>
         <223> C-term NH2
         <400> 52
15
                                     Leu Asp His Phe Arg Trp Ala Lys
         <210> 53
20
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> hLeu
35
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
45
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
         <220>
50
         <223> C-term NH2
         <400> 53
55
                                     Leu Asp His Phe Arg Trp Ala Lys
```

<210> 54

```
<211> 8
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
10
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
15
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
20
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
25
         <220>
         <223> C-term NH2
         <400> 54
30
                                       Phe Asp His Phe Arg Trp Ala Lys
                                                             5
         <210> 55
35
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
40
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
50
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
55
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
```

```
<220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
5
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> D-Ala
10
         <220>
         <223> C-term NH2
         <400> 55
15
                                      Xaa Asp His Phe Arg Trp Ala Lys
         <210> 56
20
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
35
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
45
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
         <220>
50
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
55
         <220>
         <223> C-term NH2
         <400> 56
```

Xaa Asp His Phe Arg Trp Ala Lys 1

```
<210> 57
5
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
10
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
30
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
35
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
40
         <220>
         <223> C-term NH2
         <400> 57
45
                                       Xaa Asp His Phe Arg Trp Xaa Lys
                                       1
                                                             5
         <210> 58
         <211> 8
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <223> N-term Ac
```

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
20
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Aha
25
         <220>
         <223> C-term NH2
         <400> 58
30
                                      Xaa Asp His Phe Arg Trp Xaa Lys
                                                            5
         <210> 59
35
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
40
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
50
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
55
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
```

```
<220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
5
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
10
         <220>
         <223> C-term NH2
         <400> 59
15
                                      Xaa Asp His Phe Arg Trp Xaa Lys
         <210> 60
20
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
35
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
45
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
         <220>
50
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
55
         <220>
         <223> C-term NH2
         <400> 60
```

Xaa Cys His Phe Arg Trp Xaa Cys 1

```
<210> 61
5
         <211>8
         <212> PRT
         <213> Artificial Sequence
         <220>
10
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
30
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
35
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
40
         <220>
         <223> C-term NH2
         <400> 61
45
                                       Xaa Cys His Phe Arg Trp Xaa Cys
         <210> 62
         <211> 8
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <223> N-term Ac
```

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
20
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Ahx
25
         <220>
         <223> C-term NH2
         <400> 62
30
                                      Xaa Cys His Phe Arg Trp Xaa Cys
                                                            5
         <210> 63
35
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
40
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
50
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
55
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
```

```
<220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
5
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
10
         <220>
         <223> C-term NH2
         <400> 63
15
                                      Xaa Cys His Phe Arg Trp Ala Cys
         <210> 64
20
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
35
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
45
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
         <220>
50
         <221> MOD_RES
         <222> (7)..(7)
         <223> D-Ala
55
         <220>
         <223> C-term NH2
         <400> 64
```

Xaa Cys His Phe Arg Trp Ala Cys

```
<210> 65
5
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
10
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-2-Nal
35
         <220>
         <223> C-term NH2
         <400> 65
40
                                       Xaa Cys Ala His Xaa Arg Trp Cys
         <210> 66
         <211> 8
45
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
         <220>
55
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
```

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
10
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-2-Nal
15
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> 2-Nal
20
         <220>
         <223> C-term NH2
         <400> 66
25
                                      Xaa Cys Ala His Xaa Arg Xaa Cys
                                                            5
         <210> 67
30
         <211> 8
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
55
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-2-Nal
```

	<220>								
	<221> MOD_RES								
	<222> (7)(7)								
	<223> 1-Nal								
5									
	<220>								
	<223> C-term NH2								
	<400> 67								
10									
	,	/aa	Cura	712	uic	Vaa	Arg	Vaa	Cve
	1		Cys	лта	1113	5	ALG	Add	Cys
	•	•				5			
	<210> 68								
15	<211> 8								
	<212> PRT								
	<213> Artificial Sequence								
	12 10° / titiliolal dequellee								
	<220>								
20		uono	0. Svr	thotic	nontic	10			
20	<223> Description of Artificial Sequence	uenc	e. Syi	illielic	pepuc	ie			
	<2205								
	<220>								
	<223> N-term n-butanoyl								
05	.000								
25	<220>								
	<221> MOD_RES								
	<222> (1)(1)								
	<223> Nle								
30	<220>								
	<221> DOMAIN								
	<222> (2)(8)								
	<223> Cyclic								
35	<220>								
	<221> MOD_RES								
	<222> (3)(3)								
	<223> D-Ala								
40	<220>								
	<221> MOD_RES								
	<222> (5)(5)								
	<223> D-Phe								
45	<220>								
	<221> MOD_RES								
	<222> (7)(7)								
	<223> 2-Nal								
50	<220>								
	<223> C-term NH2								
	-220° O CHIIINIIZ								
	<400> 68								
	- 								
55	_	·	~	3 1 -		DI:		17	~ =
			cys	ата	HIS		Arg	хаа	cys
	1	L				5			
	<210> 69								
	74 1U UU								

```
<211> 8
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <223> N-term n-butanoyl
10
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
15
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
25
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
30
         <220>
         <223> C-term NH2
         <400> 69
35
                                       Xaa Cys Ala His Phe Arg Trp Cys
         <210> 70
40
         <211> 8
         <212> PRT
         <213> Artificial Sequence
45
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
         <220>
50
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
55
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
5
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> 2-Nal
15
         <220>
         <223> C-term NH2
         <400> 70
20
                                      Xaa Cys Ala His Phe Arg Xaa Cys
         <210> 71
25
         <211> 8
         <212> PRT
         <213> Artificial Sequence
30
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
35
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
40
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
50
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
55
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> 1-Nal
```

	<220> <223> C-term NH2								
5	<400> 71								
		Xaa 1	Cys	Ala	His	Phe 5	Arg	Xaa	Cys
10	<210> 72 <211> 8 <212> PRT <213> Artificial Sequence								
15	<220> <223> Description of Artificial Se	equenc	ce: Syr	nthetic	peption	de			
	<220> <223> N-term Ac								
20	<220> <221> MOD_RES <222> (1)(1) <223> NIe								
25	<220> <221> DOMAIN <222> (2)(8) <223> Cyclic								
30	<220> <221> MOD_RES <222> (3)(3) <223> D-Ala								
35	<220> <221> MOD_RES <222> (5)(5) <223> D-Phe								
40	<220> <221> MOD_RES <222> (7)(7) <223> Bal								
45	<220> <223> C-term NH2								
	<400> 72								
50		Xaa 1	Cys	Ala	His	Phe 5	Arg	Xaa	Cys
55	<210> 73 <211> 8 <212> PRT <213> Artificial Sequence								
	<220>								

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
10
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
15
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Glu
20
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
25
         <220>
         <223> C-term NH2
         <400> 73
30
                                       Xaa Cys Glu His Phe Arg Trp Cys
                                                             5
         <210> 74
35
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
40
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
50
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
55
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
```

	<220> <221> MOD_RES
	<222> (7)(7) <223> D-Ala
5	<220> <223> C-term NH2
10	<400> 74
70	Xaa Asp His Phe Arg Trp Ala Lys 1 5
15	<210> 75 <211> 8 <212> PRT <213> Artificial Sequence
20	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<220> <223> N-term Ac
25	<220> <221> MOD_RES <222> (1)(1) <223> NIe
30	<220> <221> DOMAIN <222> (2)(8) <223> Cyclic
35	<220> <221> MOD_RES <222> (3)(3) <223> D-Ala
40	<220> <221> MOD_RES <222> (5)(5) <223> D-2-Nal
45	<220> <221> MOD_RES <222> (7)(7) <223> Bal
50	<220> <223> C-term NH2
	<400> 75
55	Xaa Cys Ala His Xaa Arg Xaa Cys 1 5

<210> 76

130

```
<211> 8
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
10
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
15
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (2)..(2)
         <223> Pen
25
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
35
         <220>
         <223> C-term NH2
         <400> 76
40
                                       Xaa Xaa Ala His Phe Arg Trp Cys
                                                             5
         <210> 77
45
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
50
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
55
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
```

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
10
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> Pen
20
         <220>
         <223> C-term NH2
         <400> 77
25
                                      Xaa Cys Ala His Phe Arg Trp Xaa
                                                            5
         <210> 78
30
         <211> 8
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (2)..(2)
         <223> Pen
55
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
```

```
<220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> Pen
10
         <220>
         <223> C-term NH2
         <400> 78
15
                                      Xaa Xaa Ala His Phe Arg Trp Xaa
         <210> 79
20
         <211>9
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD_RES
         <222> (1)..(1)
30
         <223> D-Phe
         <220>
         <221> DOMAIN
         <222> (2)..(8)
35
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
40
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (5)..(5)
45
         <223> hArg
         <220>
         <221> MOD_RES
         <222> (7)..(7)
50
         <223> Beta-Ala
         <220>
         <221> MOD_RES
         <222> (8)..(8)
55
         <223> D-Cys
         <220>
         <223> C-term NH2
```

<400> 79

```
Phe Cys His Phe Arg Trp Ala Cys Thr
5
         <210> 80
         <211>9
         <212> PRT
         <213> Artificial Sequence
10
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
15
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
         <220>
20
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
25
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
         <220>
30
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
         <220>
35
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
         <220>
40
         <223> C-term NH2
         <400> 80
                                   Phe Cys His Tyr Arg Trp Ala Cys Thr
45
         <210> 81
         <211>9
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
```

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> Bip
15
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
20
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
25
         <220>
         <223> C-term NH2
         <400> 81
30
                                   Phe Cys His Phe Arg Xaa Ala Cys Thr
                                                         5
         <210> 82
35
         <211>9
         <212> PRT
         <213> Artificial Sequence
         <220>
40
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD_RES
         <222> (1)..(1)
45
         <223> D-Phe
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
50
         <220>
         <221> MOD_RES
         <222> (4)..(4)
55
         <223> D-(Et)Tyr
         <221> MOD_RES
```

```
<222> (5)..(5)
         <223> hArg
         <220>
5
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
         <220>
10
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
         <220>
15
         <223> C-term NH2
         <400> 82
                                   Phe Cys His Tyr Arg Trp Ala Cys Thr
20
                                                        5
         <210> 83
         <211>9
         <212> PRT
25
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
35
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
45
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
         <220>
50
         <221> MOD_RES
         <222> (6)..(6)
         <223> Bip
55
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
```

```
<220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
5
         <220>
         <223> C-term NH2
         <400> 83
10
                                   Phe Cys His Phe Arg Xaa Ala Cys Thr
                                                         5
         <210> 84
15
         <211>9
         <212> PRT
         <213> Artificial Sequence
20
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD_RES
         <222> (1)..(1)
25
         <223> D-Phe
         <220>
         <221> DOMAIN
         <222> (2)..(8)
30
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (4)..(4)
35
         <223> D-(Et)Tyr
         <220>
         <221> MOD RES
         <222> (5)..(5)
40
         <223> hArg
         <220>
         <221> MOD_RES
         <222> (6)..(6)
45
         <223> Bip
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
50
         <220>
         <221> MOD_RES
         <222> (8)..(8)
55
         <223> D-Cys
         <220>
         <223> C-term NH2
```

<400> 84

```
Phe Cys His Tyr Arg Xaa Ala Cys Thr
5
         <210> 85
         <211> 8
         <212> PRT
         <213> Artificial Sequence
10
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
15
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
20
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
25
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
30
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
         <220>
35
         <223> C-term NH2
         <400> 85
                                      Xaa Cys His Phe Arg Trp Xaa Cys
40
         <210> 86
         <211> 8
         <212> PRT
45
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
50
         <223> N-term Ac
         <220>
         <221> MOD_RES
55
         <222> (1)..(1)
         <223> Nle
         <220>
```

```
<221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
10
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
15
         <220>
         <223> C-term NH2
         <400> 86
20
                                      Xaa Asp Ala His Phe Arg Trp Lys
         <210> 87
         <211> 8
25
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <223> N-term Ac
         <220>
35
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
40
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
45
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
         <220>
50
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
55
         <221> MOD_RES
         <222> (7)..(7)
         <223> Bal
```

	<220> <223> C-term NH2								
5	<400> 87								
		Xaa 1	Asp	Ala	His	Phe 5	Arg	Xaa	Lys
10	<210> 88 <211> 8 <212> PRT <213> Artificial Sequence								
15	<220> <223> Description of Artificial Se	quenc	e: Syr	nthetic	peptio	de			
	<220> <223> N-term Ac								
20	<220> <221> MOD_RES <222> (1)(1) <223> Nie								
25	<220> <221> DOMAIN <222> (2)(8) <223> Cyclic								
30	<220> <221> MOD_RES <222> (3)(3) <223> D-Ala								
35	<220> <221> MOD_RES <222> (5)(5) <223> D-Phe								
40	<220> <221> MOD_RES <222> (8)(8) <223> Pen								
45	<220> <223> C-term OH								
	<400> 88								
50		Xaa 1	Cys	Ala	His	Phe 5	Arg	Trp	Xaa
55	<210> 89 <211> 8 <212> PRT <213> Artificial Sequence								
	<220>								

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
10
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
15
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Abu
20
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
25
         <220>
         <223> C-term NH2
         <400>89
30
                                       Xaa Cys Xaa His Phe Arg Trp Cys
                                                             5
         <210> 90
35
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
40
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
50
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
55
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Val
```

	<220>
	<221> MOD_RES
	<222> (5)(5)
	<223> D-Phe
5	
	<220>
	<223> C-term NH2
	<400> 90
10	
	Xaa Cys Val His Phe Arg Trp Cys
	1 5
	.040. 04
45	<210> 91
15	<211> 8
	<212> PRT
	<213> Artificial Sequence
	<220>
20	<223> Description of Artificial Sequence: Synthetic peptide
20	1220 Description of Artificial Sequence. Synthetic peptide
	<220>
	<223> N-term Ac
25	<220>
	<221> MOD_RES
	<222> (1)(1)
	<223> Nle
30	<220>
	<221> DOMAIN
	<222> (2)(8)
	<223> Cyclic
35	<220>
	<221> MOD_RES
	<222> (3)(3)
	<223> D-lle
	222
40	<220>
	<221> MOD_RES
	<222> (5)(5)
	<223> D-Phe
45	<220>
40	<223> C-term NH2
	VZZOZ G-LETTI NI IZ
	<400> 91
	100- 01
50	
	Xaa Cys Ile His Phe Arg Trp Cys
	1 5
	1 3
55	040.00
	<210> 92
	<211> 8
	<212> PRT

```
<213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
5
         <220>
         <223> N-term Ac
         <220>
10
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
15
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
20
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Leu
         <220>
25
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
30
         <223> C-term NH2
         <400> 92
                                       Xaa Cys Leu His Phe Arg Trp Cys
35
         <210> 93
         <211>8
         <212> PRT
40
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
50
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
55
         <222> (2)..(8)
         <223> Cyclic
         <220>
```

```
<221> MOD_RES
         <222> (3)..(3)
         <223> D-Tle
5
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
10
         <220>
         <223> C-term NH2
         <400> 93
15
                                     Xaa Cys Xaa His Phe Arg Trp Cys
         <210> 94
         <211>8
20
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
25
         <220>
         <223> N-term Ac
         <220>
30
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
35
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
40
         <221> MOD_RES
        <222> (3)..(3)
         <223> D-Cha
         <220>
45
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
50
         <223> C-term NH2
         <400> 94
                                     Xaa Cys Xaa His Phe Arg Trp Cys
55
         <210> 95
```

<211> 8

```
<212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
10
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
15
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (2)..(2)
         <223> Pen
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
30
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
35
         <220>
         <223> C-term NH2
         <400> 95
40
                                       Xaa Xaa His Phe Arg Trp Xaa Cys
         <210> 96
         <211> 8
45
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
         <220>
55
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
```

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
15
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> Pen
20
         <220>
         <223> C-term NH2
         <400> 96
25
                                      Xaa Cys His Phe Arg Trp Xaa Xaa
                                                            5
         <210> 97
30
         <211> 8
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (2)..(2)
         <223> Pen
55
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
```

	<220>								
	<221> MOD_RES								
	<222> (7)(7)								
	<223> Gaba								
5									
	<220>								
	<221> MOD_RES								
	<222> (8)(8)								
	<223> Pen								
10									
	<220>								
	<223> C-term NH2								
	<400> 97								
15									
			Xaa	His	Phe	Arg	\mathtt{Trp}	Xaa	Xaa
		1				5			
	<210> 98								
20	<211> 8								
20									
	<212> PRT								
	<213> Artificial Sequence								
	<220>								
25	<223> Description of Artificial Se	allena	- Sv	nthetic	nanti	46			
	1220 Description of Artificial oc	quenc	JC. Oy	illictic	pepu	JC .			
	<220>								
	<223> N-term Ac								
30	<220>								
	<221> DOMAIN								
	<222> (2)(8)								
	<223> Cyclic								
35	<220>								
	<221> MOD_RES								
	<222> (4)(4)								
	<223> D-Phe								
40	<220>								
	<221> MOD_RES								
	<222> (7)(7)								
	<223> Gaba								
45	<220>								
	<223> C-term NH2								
	<100> 00								
	<400> 98								
50		T	~		D1	3		 -	~
		Leu 1	cys	HIS	Lue	Arg 5	rrp	xaa	cys
		1				J			
	<210> 99								
	<211> 8								
55	<212> PRT								
	<213> Artificial Sequence								
	•								
	<220>								

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Cha
10
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
15
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
20
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
25
         <220>
         <223> C-term NH2
         <400>99
30
                                       Xaa Cys His Phe Arg Trp Xaa Cys
                                                            5
         <210> 100
35
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
40
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
55
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
```

	<220> <223> C-term NH2								
5	<400> 100								
		Ile 1	Cys	His	Phe	Arg 5	Trp	Xaa	Cys
10	<210> 101 <211> 8 <212> PRT <213> Artificial Sequence								
15	<220> <223> Description of Artificial Se	equend	ce: Sy	nthetic	pepti	de			
	<220> <223> N-term Ac								
20	<220> <221> DOMAIN <222> (2)(8) <223> Cyclic								
25	<220> <221> MOD_RES <222> (4)(4) <223> D-Phe								
30	<220> <221> MOD_RES <222> (7)(7) <223> Gaba								
35	<220> <223> C-term NH2								
	<400> 101								
40		Phe 1	Cys	His	Phe	Arg 5	Trp	Xaa	Cys
45	<210> 102 <211> 8 <212> PRT <213> Artificial Sequence								
	<220> <223> Description of Artificial Se	egueno	ce: Sv	nthetic	pepti	de			
50			,						
	<220> <223> N-term Ac								
55	<220> <221> DOMAIN <222> (2)(8) <223> Cyclic								

```
<220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
10
         <220>
         <223> C-term NH2
         <400> 102
15
                                     Val Cys His Phe Arg Trp Xaa Cys
         <210> 103
20
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> 2-Nal
35
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
45
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
         <220>
50
         <223> C-term NH2
         <400> 103
55
                                      Xaa Cys His Phe Arg Trp Xaa Cys
```

<210> 104

150

```
<211> 8
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD_RES
10
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
15
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD_RES
20
         <222> (4)..(4)
         <223> D-Phe
         <220>
         <221> MOD RES
25
         <222> (7)..(7)
         <223> Gaba
         <220>
         <223> C-term NH2
30
         <400> 104
                                       Xaa Cys His Phe Arg Trp Xaa Cys
35
         <210> 105
         <211>8
         <212> PRT
         <213> Artificial Sequence
40
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
45
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD_RES
50
         <222> (4)..(4)
         <223> D-Phe
         <220>
55
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
```

	<220> <223> C-term NH2								
5	<400> 105								
		Phe 1	Cys	His	Phe	Arg 5	Trp	Xaa	Cys
10	<210> 106 <211> 8 <212> PRT <213> Artificial Sequence								
15	<220> <223> Description of Artificial Se	equenc	ce: Syr	nthetic	peption	de			
	<220> <223> N-term Ac								
20	<220> <221> MOD_RES <222> (1)(1) <223> NIe								
25	<220> <221> DOMAIN <222> (2)(8) <223> Cyclic								
30	<220> <221> MOD_RES <222> (3)(3) <223> 3-Pal								
35	<220> <221> MOD_RES <222> (4)(4) <223> D-Phe								
40	<220> <221> MOD_RES <222> (7)(7) <223> Gaba								
45	<220> <223> C-term NH2								
	<400> 106								
50		Xaa 1	Cys	Xaa	Phe	Arg 5	Trp	Xaa	Cys
55	<210> 107 <211> 8 <212> PRT <213> Artificial Sequence								
	<220>								

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
10
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
15
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
20
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
25
         <220>
         <223> C-term OH
         <400> 107
30
                                       Xaa Cys Ala His Phe Arg Trp Cys
                                                             5
         <210> 108
35
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
40
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
50
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
55
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
```

```
<220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
5
         <220>
         <223> C-term NH2
         <400> 108
10
                                      Xaa Cys His Phe Arg Trp Xaa Cys
                                                            5
         <210> 109
15
         <211> 8
         <212> PRT
         <213> Artificial Sequence
20
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
25
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
30
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
35
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
40
         <220>
         <223> C-term NH2
         <400> 109
45
                                      Xaa Asp His Xaa Arg Trp Ala Lys
                                      1
                                                            5
         <210> 110
         <211> 8
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <223> N-term Ac
```

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
15
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
20
         <220>
         <223> C-term NH2
         <400> 110
25
                                      Xaa Asp His Xaa Arg Trp Ala Lys
                                                            5
         <210> 111
30
         <211> 8
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
55
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
```

```
<220>
         <223> C-term NH2
         <400> 111
5
                                      Xaa Cys His Xaa Arg Trp Xaa Cys
         <210> 112
10
         <211> 8
         <212> PRT
         <213> Artificial Sequence
15
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
20
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
25
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
30
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
35
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Ahx
40
         <220>
         <223> C-term NH2
         <400> 112
45
                                      Xaa Cys His Xaa Arg Trp Xaa Cys
                                                            5
         <210> 113
         <211> 8
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <223> N-term Ac
```

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> hPhe
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
15
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
20
         <220>
         <223> C-term NH2
         <400> 113
25
                                      Phe Asp His Xaa Arg Trp Xaa Lys
                                      1
                                                            5
         <210> 114
30
         <211>8
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Cha
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
55
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
```

	<220> <223> C-term NH2								
5	<400> 114								
		Xaa As	sp	His	Xaa	Arg 5	Trp	Xaa	Lys
10	<210> 115 <211> 8 <212> PRT <213> Artificial Sequence								
15	<220> <223> Description of Artificial Se	quence:	Syn	thetic	peptio	de			
	<223> N-term Ac								
20	<220> <221> MOD_RES <222> (1)(1) <223> Nie								
25	<220> <221> DOMAIN <222> (2)(8) <223> Cyclic								
30	<220> <221> MOD_RES <222> (4)(4) <223> D-Phe								
35	<220> <221> MOD_RES <222> (7)(7) <223> Beta-Ala								
40	<220> <223> C-term OH								
	<400> 115								
45		Xaa As 1	gρ	His	Phe	Arg 5	Trp	Ala	Lys
50	<210> 116 <211> 8 <212> PRT <213> Artificial Sequence								
55	<220> <223> Description of Artificial Se <220> <223> N-term Ac	equence:	Syn	thetic	peption	de			

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Ahx
20
         <220>
         <223> C-term OH
         <400> 116
25
                                      Xaa Cys His Phe Arg Trp Xaa Cys
         <210> 117
30
         <211> 9
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD RES
         <222> (1)..(1)
40
         <223> D-Phe
         <220>
         <221> DOMAIN
         <222> (2)..(8)
45
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (4)..(4)
50
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (8)..(8)
55
         <223> D-Cys
         <220>
         <223> C-term OH
```

<400> 117

```
Phe Cys His Phe Arg Trp Ala Cys Thr
5
         <210> 118
         <211>9
         <212> PRT
         <213> Artificial Sequence
10
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
15
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
         <220>
20
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
25
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
30
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
         <220>
35
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
         <220>
40
         <223> C-term OH
         <400> 118
                                   Phe Cys His Phe Arg Trp Ala Cys Thr
45
         <210> 119
         <211>9
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
```

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
15
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
20
         <220>
         <223> C-term OH
         <400> 119
25
                                   Phe Cys His Phe Arg Trp Xaa Cys Thr
                                   1
         <210> 120
30
         <211>8
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
55
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
```

	<220> <223> C-term OH								
_	<400> 120								
5		Xaa 1	Cys	His	Phe	Arg 5	Trp	Xaa	Cys
10	<210> 121 <211> 8 <212> PRT <213> Artificial Sequence	e							
15	<220> <223> Description of Artif	ficial Sequen	ce: Sy	nthetic	peptio	de			
20	<223> N-term Ac <220> <221> MOD_RES <222> (1)(1) <223> NIe								
25	<220> <221> DOMAIN <222> (2)(8) <223> Cyclic								
30	<220> <221> MOD_RES <222> (4)(4) <223> D-Phe								
35	<220> <221> MOD_RES <222> (7)(7) <223> Apn								
40	<220> <223> C-term OH								
45	<400> 121	Xaa 1	Asp	His	Phe	Arg 5	Trp	Xaa	Lys
50	<210> 122 <211> 8 <212> PRT <213> Artificial Sequence	e							
55	<220> <223> Description of Artif <220> <223> N-term Ac	ficial Sequen	ce: Sy	nthetic	peptio	de			

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Cha
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
20
         <220>
         <223> C-term OH
         <400> 122
25
                                      Xaa Asp His Phe Arg Trp Xaa Lys
                                                           5
         <210> 123
30
         <211>8
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
55
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
```

	<220> <223>	C-term C	Н									
5	<400>	123										
5					Xaa 1	Asp	His	Phe	Arg 5	Trp	Xaa	Lys
10	<210> <211> <212> <213>	8 PRT	Sequence									
15	<220>		on of Artifi	cial Se	equenc	ce: Syı	nthetic	peption	de			
20	<220> <221>	MOD_RI (1)(1) Chg										
25	<220> <221> <222>	DOMAIN (2)(8) Cyclic										
30	<222>	MOD_RI (4)(4) D-Phe	ΞS									
35		MOD_RI (7)(7) Gaba	ES									
40		C-term C	Н									
45	<400>	124			Xaa 1	Asp	His	Phe	Arg 5	Trp	Xaa	Lys
50	<210><211><211><212><213>	8 PRT	Sequence									
55	<220>	Descripti N-term A	on of Artifi	cial Se	equenc	ce: Syı	nthetic	; peptio	de			

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Cha
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
20
         <220>
         <223> C-term OH
         <400> 125
25
                                      Xaa Asp His Phe Arg Trp Xaa Lys
                                                           5
         <210> 126
30
         <211>8
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> hCha
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
55
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
```

	<220>								
	<223> C-term OH								
	<400> 126								
5		V	Asp	ui a	Dho	7 ~~	П 222	V	T a
		1	тэр	птэ	FIIE	5	пр	naa	пуъ
	<210> 127								
10	<211> 8								
	<212> PRT								
	<213> Artificial Sequence								
	<220>		_						
15	<223> Description of Artificial Se	equen	ce: Syı	nthetic	pepti	de			
	<220>								
	<223> N-term Ac								
20	<220>								
	<221> MOD_RES								
	<222> (1)(1)								
	<223> D-Chg								
25	<220>								
	<221> DOMAIN								
	<222> (2)(8) <223> Cyclic								
	12237 Gyelle								
30	<220>								
	<221> MOD_RES								
	<222> (4)(4) <223> D-Phe								
35	<220>								
	<221> MOD_RES <222> (7)(7)								
	<223> Gaba								
40									
40	<220> <223> C-term OH								
	\225\ O-leftill Of 1								
	<400> 127								
45			Asp	His	Phe	Arg	Trp	Xaa	Lys
		1				5			
	<210> 128								
	<211> 8								
50	<212> PRT								
	<213> Artificial Sequence								
	<220>								
<i></i>	<223> Description of Artificial Se	equen	ce: Syı	nthetic	pepti	de			
55	<220>								
	<223> N-term Ac								
	-								

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> hPhe
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
20
         <220>
         <223> C-term OH
         <400> 128
25
                                      Phe Asp His Phe Arg Trp Xaa Lys
                                      1
                                                            5
         <210> 129
30
         <211>8
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
55
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
```

```
<220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
5
         <220>
         <223> C-term OH
         <400> 129
10
                                     Xaa Cys His Phe Arg Trp Xaa Cys
                                                           5
         <210> 130
15
         <211> 8
         <212> PRT
         <213> Artificial Sequence
20
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
25
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
30
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
35
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
40
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
45
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Ahx
         <220>
50
         <223> C-term OH
         <400> 130
55
                                      Xaa Cys His Phe Arg Trp Xaa Cys
```

<210> 131

```
<211> 8
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
10
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
15
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
25
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
30
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
35
         <220>
         <223> C-term OH
         <400> 131
40
                                       Xaa Cys His Phe Arg Trp Ala Cys
                                                             5
         <210> 132
45
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
55
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
```

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
15
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> D-Ala
20
         <220>
         <223> C-term OH
         <400> 132
25
                                      Xaa Cys His Phe Arg Trp Ala Cys
                                                            5
         <210> 133
30
         <211>8
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
55
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-2-Nal
```

	<220> <223> C-term OH								
5	<400> 133								
		Xaa 1	Cys	Ala	His	Xaa 5	Arg	Trp	Cys
10	<210> 134 <211> 8 <212> PRT <213> Artificial Sequence								
15	<220> <223> Description of Artificial Se	quenc	ce: Syı	nthetic	pepti	de			
	<220> <223> N-term Ac								
20	<220> <221> MOD_RES <222> (1)(1) <223> Nie								
25	<220> <221> DOMAIN <222> (2)(8) <223> Cyclic								
30	<220> <221> MOD_RES <222> (3)(3) <223> D-Ala								
35	<220> <221> MOD_RES <222> (5)(5) <223> D-2-Nal								
40	<220> <221> MOD_RES <222> (7)(7) <223> 2-Nal								
45	<220> <223> C-term OH								
	<400> 134								
50		Xaa 1	Cys	Ala	His	Xaa 5	Arg	Xaa	Cys
55	<210> 135 <211> 8 <212> PRT <213> Artificial Sequence								
	<220>								

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
10
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
15
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
20
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-2-Nal
25
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> 1-Nal
30
         <220>
         <223> C-term OH
         <400> 135
35
                                       Xaa Cys Ala His Xaa Arg Xaa Cys
         <210> 136
40
         <211> 8
         <212> PRT
         <213> Artificial Sequence
45
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
         <220>
50
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
55
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
5
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-2-Nal
10
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Bal
15
         <220>
         <223> C-term OH
         <400> 136
20
                                      Xaa Cys Ala His Xaa Arg Xaa Cys
         <210> 137
25
         <211> 8
         <212> PRT
         <213> Artificial Sequence
30
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
35
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
40
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (2)..(2)
         <223> Pen
50
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
55
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
```

	<220> <223> C-term OH								
5	<400> 137								
		Xaa 1	Xaa	Ala	His	Phe 5	Arg	Trp	Cys
10	<210> 138 <211> 8 <212> PRT <213> Artificial Sequence								
15	<220> <223> Description of Artificial Se	equenc	ce: Syr	nthetic	pepti	de			
	<223> N-term Ac								
20	<220> <221> MOD_RES <222> (1)(1) <223> Nie								
25	<220> <221> DOMAIN <222> (2)(8) <223> Cyclic								
30	<220> <221> MOD_RES <222> (4)(4) <223> D-Phe								
35	<220> <221> MOD_RES <222> (7)(7) <223> Gaba								
40	<220> <221> MOD_RES <222> (8)(8) <223> Pen								
45	<220> <223> C-term OH								
	<400> 138								
50		Xaa 1	Cys	His	Phe	Arg 5	Trp	Xaa	Xaa
55	<210> 139 <211> 8 <212> PRT <213> Artificial Sequence								
	<220>								

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
15
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-2-Nal
20
         <220>
         <223> C-term NH2
         <400> 139
25
                                       Arg Cys Ala His Xaa Arg Trp Cys
                                                             5
         <210> 140
30
         <211>8
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
40
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
         <220>
50
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
55
         <220>
         <223> C-term NH2
         <400> 140
```

Arg Cys Ala His Phe Arg Trp Cys 1

```
<210> 141
5
         <211>8
         <212> PRT
         <213> Artificial Sequence
         <220>
10
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Arg
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
35
         <220>
         <223> C-term NH2
         <400> 141
40
                                       Arg Cys Ala His Phe Arg Trp Cys
         <210> 142
         <211> 8
45
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
         <220>
55
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Arg
```

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
10
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> Pen
20
         <220>
         <223> C-term NH2
         <400> 142
25
                                      Arg Cys Ala His Phe Arg Trp Xaa
                                                            5
         <210> 143
30
         <211>8
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Arg
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
55
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
```

	<220>							
	<221> MOD_RES							
	<222> (8)(8)							
	<223> Pen							
5								
	<220>							
	<223> C-term NH2							
	.100: 110							
10	<400> 143							
10	_	_			_	_		
		rg Cys	His	Phe		Trp	Xaa	Xaa
	1				5			
	<210> 144							
15	<211> 8							
	<212> PRT							
	<213> Artificial Sequence							
	<220>							
20	<223> Description of Artificial Sequ	uence: Svi	nthetic	peptic	le			
				F - F				
	<220>							
	<223> N-term Ac							
25	<220>							
	<221> DOMAIN							
	<222> (2)(8)							
	<223> Cyclic							
30	<220>							
	<221> MOD_RES							
	<222> (4)(4)							
	<223> D-Phe							
35	<220>							
	<221> MOD_RES							
	<222> (7)(7)							
	<223> Gaba							
40	42205							
40	<220>							
	<221> MOD_RES							
	<222> (8)(8) <223> Pen							
	\223> FeII							
45	<220>							
40	<223> C-term NH2							
	1223 C-term NH2							
	<400> 144							
	1100							
50	7	ra Cus	uic	Dho	7 ~~	Trn	Vaa	Vaa
	1	rg Cys	1112	T.116	Arg 5	тъ	naa	nad
	_	•			J			
	<210> 145							
	<211> 8							
55	<212> PRT							
	<213> Artificial Sequence							
	•							
	<220>							

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
15
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
20
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> Pen
25
         <220>
         <223> C-term NH2
         <400> 145
30
                                       Arg Cys Ala His Phe Arg Trp Xaa
                                                             5
         <210> 146
35
         <211>8
         <212> PRT
         <213> Artificial Sequence
         <220>
40
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Arg
         <220>
50
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
55
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
```

```
<220>
         <223> C-term NH2
         <400> 146
5
                                      Arg Asp His Phe Arg Trp Ala Lys
         <210> 147
10
         <211> 8
         <212> PRT
         <213> Artificial Sequence
15
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
30
         <220>
         <223> C-term NH2
         <400> 147
35
                                      Arg Asp His Phe Arg Trp Ala Lys
                                                            5
         <210> 148
40
         <211>9
         <212> PRT
         <213> Artificial Sequence
45
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
50
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
55
         <220>
         <221> DOMAIN
         <222> (2)..(9)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
5
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
10
         <220>
         <223> C-term NH2
         <400> 148
15
                                   Xaa Cys Ala His Phe Arg Trp Gly Cys
         <210> 149
20
         <211> 9
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
35
         <220>
         <221> DOMAIN
         <222> (2)..(9)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
45
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
50
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Ala
55
         <220>
         <223> C-term NH2
         <400> 149
```

Xaa Cys Ala His Phe Arg Trp Ala Cys 1 5

```
<210> 150
5
         <211>9
         <212> PRT
         <213> Artificial Sequence
         <220>
10
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
20
         <220>
         <221> DOMAIN
         <222> (2)..(9)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
35
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> Beta-Ala
40
         <220>
         <223> C-term NH2
         <400> 150
45
                                    Xaa Cys Ala His Phe Arg Trp Ala Cys
                                    1
                                                          5
         <210> 151
         <211> 9
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <223> N-term Ac
```

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
5
         <220>
         <221> DOMAIN
         <222> (2)..(9)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
15
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
20
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> Gaba
25
         <220>
         <223> C-term NH2
         <400> 151
30
                                   Xaa Cys Ala His Phe Arg Trp Xaa Cys
         <210> 152
35
         <211>9
         <212> PRT
         <213> Artificial Sequence
         <220>
40
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
50
         <221> DOMAIN
         <222> (2)..(9)
         <223> Cyclic
55
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
```

```
<220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> Apn
10
         <220>
         <223> C-term NH2
         <400> 152
15
                                   Xaa Cys Ala His Phe Arg Trp Xaa Cys
         <210> 153
20
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
35
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
40
         <220>
         <223> C-term NH2
         <400> 153
45
                                      Cys Glu His Phe Arg Trp Ala Cys
         <210> 154
         <211> 8
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <223> N-term Ac
```

```
<220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> 2-Nal
15
         <220>
         <223> C-term NH2
         <400> 154
20
                                      Cys Glu His Phe Arg Xaa Ala Cys
         <210> 155
25
         <211> 8
         <212> PRT
         <213> Artificial Sequence
30
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
35
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (2)..(2)
         <223> D-Ala
45
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
50
         <223> C-term NH2
         <400> 155
55
                                      Cys Ala His Phe Arg Trp Ala Cys
```

<210> 156

```
<211> 8
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
10
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
15
         <220>
         <221> MOD_RES
         <222> (2)..(2)
         <223> D-Ala
20
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
25
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> 2-Nal
30
         <220>
         <223> C-term NH2
         <400> 156
35
                                       Cys Ala His Phe Arg Xaa Ala Cys
                                                             5
         <210> 157
40
         <211> 9
         <212> PRT
         <213> Artificial Sequence
45
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
         <220>
50
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
55
         <220>
         <221> DOMAIN
         <222> (2)..(9)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
5
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
10
         <220>
         <223> C-term NH2
         <400> 157
15
                                   Xaa Cys Ala His Phe Arg Trp Ala Cys
         <210> 158
20
         <211> 9
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
35
         <220>
         <221> DOMAIN
         <222> (2)..(9)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
45
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
50
         <221> MOD_RES
         <222> (7)..(7)
         <223> Bal
55
         <220>
         <223> C-term NH2
         <400> 158
```

Xaa Asp Ala His Phe Arg Xaa Ala Lys

```
1
                                                                     5
5
         <210> 159
         <211> 18
         <212> PRT
10
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> MOD_RES
         <222> (12)..(12)
         <223> Nle
20
         <220>
         <221> DOMAIN
         <222> (13)..(18)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (15)..(15)
         <223> D-2-Nal
30
         <220>
         <223> C-term NH2
         <400> 159
35
                 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Xaa Asp His Xaa Arg
                                                                10
                 Trp Lys
40
         <210> 160
         <211> 19
         <212> PRT
         <213> Artificial Sequence
45
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD_RES
50
         <222> (12)..(12)
         <223> Doc
         <220>
55
         <221> MOD_RES
         <222> (13)..(13)
         <223> Nle
```

```
<220>
        <221> DOMAIN
         <222> (14)..(19)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (16)..(16)
         <223> D-2-Nal
10
         <220>
         <223> C-term NH2
         <400> 160
15
                Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Xaa Xaa Asp His Xaa
                                                               10
20
                Arg Trp Lys
         <210> 161
         <211> 19
         <212> PRT
25
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
35
         <220>
         <221> DOMAIN
         <222> (2)..(7)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
45
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> Beta-Ala
         <220>
50
         <223> C-term NH2
         <400> 161
```

189

55

Xaa Asp His Xaa Arg Trp Lys Ala Tyr Gly Arg Lys Lys Arg Arg Gln 1 5 10 15

```
5
                Arg Arg Arg
         <210> 162
         <211> 19
         <212> PRT
10
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <223> N-term Ac
         <220>
         <221> MOD_RES
20
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
25
         <222> (2)..(7)
         <223> Cyclic
         <220>
         <221> MOD RES
30
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
         <221> MOD_RES
35
         <222> (8)..(8)
         <223> Beta-Ala
         <220>
         <223> C-term NH2
40
         <400> 162
                Xaa Asp His Xaa Arg Trp Lys Ala Tyr Gly Arg Lys Lys Arg Arg Gln
                                                                10
45
                Arg Arg Arg
         <210> 163
         <211> 20
50
         <212> PRT
         <213> Artificial Sequence
55
         <223> Description of Artificial Sequence: Synthetic peptide
         <221> MOD_RES
```

```
<222> (1)..(1)
         <223> Nle
         <220>
5
         <221> DOMAIN
         <222> (2)..(7)
         <223> Cyclic
         <220>
10
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
15
         <221> MOD_RES
         <222> (8)..(9)
         <223> Doc
         <220>
20
         <223> C-term NH2
         <400> 163
                Xaa Asp His Xaa Arg Trp Lys Xaa Xaa Tyr Gly Arg Lys Lys Arg Arg
25
                                     5
                                                               10
                                                                                          15
                Gln Arg Arg Arg
                                20
30
         <210> 164
         <211> 22
         <212> PRT
         <213> Artificial Sequence
35
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
40
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
45
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(7)
         <223> Cyclic
50
         <220>
         <221> MOD_RES
         <222> (4)..(4)
55
         <223> D-2-Nal
         <220>
         <223> C-term NH2
```

<400> 164 Xaa Asp His Xaa Arg Trp Lys Pro Pro Lys Asp Tyr Gly Arg Lys Lys 5 Arg Arg Gln Arg Arg Arg 10 <210> 165 <211> 23 <212> PRT <213> Artificial Sequence 15 <220> <223> Description of Artificial Sequence: Synthetic peptide <220> <223> N-term Ac 20 <220> <221> DOMAIN <222> (1)..(8) <223> Cyclic 25 <220> <221> MOD_RES <222> (4)..(4) <223> D-2-Nal 30 <220> <223> C-term NH2 <400> 165 35 Cys Glu His Xaa Arg Trp Gly Cys Pro Pro Lys Asp Tyr Gly Arg Lys 40 Lys Arg Arg Gln Arg Arg Arg 20 <210> 166 <211> 20 45 <212> PRT

```
<220>
         <221> DOMAIN
         <222> (2)..(7)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
10
         <220>
         <221> MOD_RES
         <222> (8)..(9)
         <223> Beta-Ala
15
         <220>
         <223> C-term NH2
         <400> 166
20
                Xaa Asp His Xaa Arg Trp Lys Ala Ala Tyr Gly Arg Lys Lys Arg Arg
                                                                10
25
                Gln Arg Arg Arg
                                20
         <210> 167
         <211> 23
30
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
35
         <220>
         <223> N-term Ac
         <220>
40
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
45
         <221> DOMAIN
         <222> (2)..(7)
         <223> Cyclic
         <220>
         <221> MOD_RES
50
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
55
         <221> MOD_RES
         <222> (12)..(12)
         <223> Doc
```

```
<220>
        <223> C-term NH2
        <400> 167
5
                Xaa Asp His Xaa Arg Trp Lys Pro Pro Lys Asp Xaa Tyr Gly Arg Lys
                                                             10
10
                Lys Arg Arg Gln Arg Arg
                               20
        <210> 168
        <211> 24
15
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
20
        <220>
        <223> N-term Ac
        <220>
25
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
30
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
35
        <221> MOD_RES
        <222> (13)..(13)
        <223> Doc
        <220>
40
        <223> C-term NH2
        <400> 168
                Cys Glu His Xaa Arg Trp Gly Cys Pro Pro Lys Asp Xaa Tyr Gly Arg
45
                                                             10
                Lys Lys Arg Arg Gln Arg Arg Arg
                               20
50
        <210> 169
        <211> 24
        <212> PRT
        <213> Artificial Sequence
55
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
```

```
<220>
         <223> N-term Ac
         <220>
5
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
         <220>
10
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
15
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
         <220>
20
         <223> C-term NH2
         <400> 169
                Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
25
                                     5
                                                               10
                                                                                         15
                Lys Lys Arg Arg Gln Arg Arg Arg
30
         <210> 170
         <211> 24
         <212> PRT
         <213> Artificial Sequence
35
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
40
         <223> N-term Ac
         <220>
         <221> DOMAIN
         <222> (1)..(8)
45
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
50
         <220>
         <221> MOD_RES
         <222> (13)..(13)
55
         <223> Doc
         <220>
         <223> C-term NH2
```

<400> 170

```
Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Lys Asp Xaa Tyr Gly Arg
5
                Lys Lys Arg Arg Gln Arg Arg Arg
                               20
10
        <210> 171
        <211> 20
        <212> PRT
        <213> Artificial Sequence
15
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <223> N-term Ac
20
        <220>
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
25
        <220>
        <221> DOMAIN
        <222> (2)..(7)
        <223> Cyclic
30
        <220>
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
35
        <220>
        <221> MOD RES
        <222> (8)..(9)
        <223> Doc
40
        <220>
        <223> C-term NH2
        <400> 171
45
                Xaa Asp His Xaa Arg Trp Lys Xaa Xaa Tyr Gly Arg Lys Lys Arg Arg
                                                             10
50
                Gln Arg Arg Arg
                               20
        <210> 172
        <211> 24
55
        <212> PRT
        <213> Artificial Sequence
        <220>
```

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
15
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> 2-Nal
20
         <220>
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
25
         <220>
         <223> C-term NH2
         <400> 172
30
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
                                                                                           15
                                                                10
35
                Lys Lys Arg Arg Gln Arg Arg Arg
                                20
         <210> 173
         <211> 22
40
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <223> N-term Ac
         <220>
         <221> DOMAIN
50
         <222> (1)..(8)
         <223> Cyclic
         <220>
55
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
```

```
<220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> Bal
5
         <220>
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
10
         <220>
         <223> C-term NH2
         <400> 173
15
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Arg Arg Arg
                                                               10
20
                Arg Arg Gln Arg Arg Arg
                                20
         <210> 174
         <211> 23
25
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <223> N-term Ac
         <220>
35
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
         <220>
40
         <221> MOD RES
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
45
         <221> MOD_RES
         <222> (6)..(6)
         <223> Bal
         <220>
         <221> MOD_RES
50
         <222> (13)..(13)
         <223> Beta-Ala
         <220>
55
         <223> C-term NH2
         <400> 174
```

5

Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Gly Arg Arg 10

```
Arg Arg Gln Arg Arg Arg
                                20
        <210> 175
        <211> 24
10
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
15
        <220>
        <223> N-term Ac
        <220>
20
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
25
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
30
        <221> MOD_RES
        <222> (6)..(6)
        <223> Bal
        <220>
35
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
40
        <223> C-term NH2
        <400> 175
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
45
                                                              10
                Arg Arg Arg Gln Arg Arg Arg
50
        <210> 176
        <211> 24
        <212> PRT
        <213> Artificial Sequence
55
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
```

```
<220>
        <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
10
         <220>
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
15
         <220>
         <223> C-term NH2
         <400> 176
20
                Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
                                                               10
25
                Lys Lys Arg Gln Arg Arg Arg
                                20
         <210> 177
         <211> 24
30
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
35
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
45
         <220>
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
50
         <220>
         <223> C-term NH2
         <400> 177
55
```

```
Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
1 5 10 15
```

```
5
                Lys Lys Gln Arg Arg Arg Arg
                                20
        <210> 178
        <211> 24
10
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
15
        <220>
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
20
        <220>
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
25
        <220>
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
30
        <220>
        <223> C-term NH2
        <400> 178
35
                Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
                                                              10
40
                Lys Gln Lys Arg Arg Arg Arg
                               20
        <210> 179
        <211> 24
45
        <212> PRT
        <213> Artificial Sequence
        <223> Description of Artificial Sequence: Synthetic peptide
50
        <220>
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
55
        <220>
        <221> MOD RES
        <222> (4)..(4)
```

```
<223> D-2-Nal
         <220>
         <221> MOD_RES
5
         <222> (13)..(13)
         <223> Beta-Ala
         <220>
         <223> C-term NH2
10
         <400> 179
                Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
                                                                                        15
15
                Lys Lys Arg Arg Arg Gln Arg
                                20
20
         <210> 180
         <211> 24
         <212> PRT
         <213> Artificial Sequence
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
35
         <220>
         <221> MOD RES
         <222> (4)..(4)
         <223> D-2-Nal
40
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> Bal
45
         <220>
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
50
         <220>
         <221> MOD RES
         <222> (15)..(15)
         <223> Aib
55
         <220>
         <223> C-term NH2
```

<400> 180

```
Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Xaa Arg
5
               Lys Lys Arg Arg Gln Arg Arg Arg
                              20
10
        <210> 181
        <211> 22
        <212> PRT
        <213> Artificial Sequence
15
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <223> N-term Ac
20
        <220>
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
25
        <220>
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
30
        <220>
        <221> MOD_RES
        <222> (6)..(6)
        <223> 1-Nal
35
        <220>
        <221> MOD RES
        <222> (13)..(13)
        <223> Beta-Ala
40
        <220>
        <223> C-term NH2
        <400> 181
45
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Arg Arg
                                                            10
50
               Arg Arg Gln Arg Arg Arg
                              20
        <210> 182
        <211> 22
55
        <212> PRT
        <213> Artificial Sequence
        <220>
```

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
15
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> 1-Nal
20
         <220>
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
25
         <220>
         <223> C-term NH2
         <400> 182
30
                 Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Arg Arg Arg
                                                                10
35
                 Arg Arg Gln Arg Arg Arg
                                 20
         <210> 183
         <211> 23
40
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <223> N-term Ac
         <220>
         <221> DOMAIN
50
         <222> (1)..(8)
         <223> Cyclic
         <220>
55
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
```

```
<220>
        <221> MOD_RES
        <222> (6)..(6)
        <223> 1-Nal
5
        <220>
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
10
        <220>
        <223> C-term NH2
        <400> 183
15
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Arg Arg Arg
                                                              10
20
                Arg Arg Gln Arg Arg Arg
                                20
        <210> 184
        <211> 22
25
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
30
        <220>
        <223> N-term Ac
        <220>
35
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
40
        <221> MOD RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
45
        <221> MOD_RES
        <222> (6)..(6)
        <223> 2-Nal
        <220>
        <221> MOD_RES
50
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
55
        <223> C-term NH2
        <400> 184
```

Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Arg Arg 1 5 10 15

```
5
                Arg Arg Gln Arg Arg Arg
                                20
         <210> 185
         <211> 22
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <223> N-term Ac
         <220>
20
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
         <220>
25
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
30
         <221> MOD_RES
         <222> (6)..(6)
         <223> 2-Nal
         <220>
35
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
         <220>
40
         <223> C-term NH2
         <400> 185
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Arg Arg Arg
45
                                                               10
                Arg Arg Gln Arg Arg Arg
                                20
50
         <210> 186
        <211> 23
         <212> PRT
         <213> Artificial Sequence
55
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
```

```
<220>
        <223> N-term Ac
        <220>
5
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
10
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
15
        <221> MOD_RES
        <222> (6)..(6)
        <223> 2-Nal
        <220>
20
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
25
        <223> C-term NH2
        <400> 186
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Arg Arg Arg
30
                                                              10
                Arg Arg Gln Arg Arg Arg
                                20
35
        <210> 187
        <211> 23
        <212> PRT
        <213> Artificial Sequence
40
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
45
        <223> N-term Ac
        <220>
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
50
        <220>
        <221> MOD_RES
        <222> (4)..(4)
55
        <223> D-2-Nal
        <220>
        <221> MOD_RES
```

```
<222> (6)..(6)
        <223> Bal
        <220>
5
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
10
        <223> C-term NH2
        <400> 187
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Arg Arg
15
                Arg Arg Gln Arg Arg Arg
20
        <210> 188
        <211> 22
        <212> PRT
        <213> Artificial Sequence
25
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
30
        <223> N-term Ac
        <220>
        <221> DOMAIN
        <222> (1)..(8)
35
        <223> Cyclic
        <220>
        <221> MOD RES
        <222> (4)..(4)
40
        <223> D-2-Nal
        <220>
        <221> MOD_RES
        <222> (6)..(6)
45
        <223> Bal
        <220>
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
50
        <220>
        <223> C-term NH2
55
        <400> 188
```

Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Arg Arg 1 5 10 15

```
5
                Arg Arg Gln Arg Arg Arg
                                20
         <210> 189
         <211> 23
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <223> N-term Ac
         <220>
20
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
         <220>
25
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
30
         <221> MOD_RES
         <222> (6)..(6)
         <223> Bal
         <220>
35
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
         <220>
40
         <223> C-term NH2
         <400> 189
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Arg Arg Arg
45
                                                               10
                Arg Arg Gln Arg Arg Arg
                                20
50
         <210> 190
         <211> 24
         <212> PRT
         <213> Artificial Sequence
55
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
```

```
<220>
         <223> N-term Ac
         <220>
5
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
         <220>
10
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
15
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
         <220>
20
         <223> C-term NH2
         <400> 190
                Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
25
                                     5
                                                               10
                                                                                        15
                Lys Lys Arg Arg Gln Arg Arg
                                20
30
         <210> 191
         <211> 24
         <212> PRT
         <213> Artificial Sequence
35
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
40
         <223> N-term Ac
         <220>
         <221> DOMAIN
         <222> (1)..(8)
45
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
50
         <220>
         <221> MOD_RES
         <222> (13)..(13)
55
         <223> Beta-Ala
         <220>
         <223> C-term NH2
```

<400> 191

```
Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
5
                Gln Lys Lys Arg Arg Arg Arg
                               20
10
        <210> 192
        <211> 24
        <212> PRT
        <213> Artificial Sequence
15
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <223> N-term Ac
20
        <220>
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
25
        <220>
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
30
        <220>
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
35
        <220>
        <223> C-term NH2
        <400> 192
40
                Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
                                    5
                                                             10
                                                                                      15
45
                Lys Lys Arg Arg Arg Arg Gln
                               20
        <210> 193
        <211> 24
        <212> PRT
50
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
55
        <220>
        <223> N-term Ac
```

```
<220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
10
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> 1-Nal
15
         <220>
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
20
         <220>
         <223> C-term NH2
         <400> 193
25
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
                                     5
                                                               10
                                                                                         15
                1
30
                Lys Lys Arg Arg Gln Arg Arg Arg
                                20
         <210> 194
         <211> 24
35
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
40
         <220>
         <223> N-term Ac
         <220>
45
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
         <220>
         <221> MOD_RES
50
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
55
         <221> MOD_RES
         <222> (6)..(6)
         <223> Bal
```

```
<220>
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
5
        <220>
        <223> C-term NH2
        <400> 194
10
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
                                    5
                                                             10
                                                                                      15
15
                Lys Lys Arg Arg Gln Arg Arg Arg
                               20
        <210> 195
        <211> 22
20
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
25
        <220>
        <223> N-term Ac
        <220>
30
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
35
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
        <221> MOD_RES
40
        <222> (6)..(6)
        <223> 1-Nal
        <220>
45
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
        <223> C-term NH2
50
        <400> 195
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Arg Arg Lys
55
```

Arg Arg Gln Arg Arg Arg 20

```
<210> 196
         <211> 22
         <212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
10
         <223> N-term Ac
         <220>
         <221> DOMAIN
         <222> (1)..(8)
15
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
20
         <223> D-2-Nal
         <220>
         <221> MOD_RES
         <222> (6)..(6)
25
         <223> 1-Nal
         <220>
         <221> MOD_RES
         <222> (13)..(13)
30
         <223> Beta-Ala
         <220>
         <223> C-term NH2
35
         <400> 196
                 Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Arg Lys Arg
40
                 Arg Arg Gln Arg Arg Arg
                                 20
         <210> 197
45
         <211> 22
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
55
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
5
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> 2-Nal
10
         <220>
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
15
         <220>
         <223> C-term NH2
         <400> 197
20
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Arg Arg Lys
                                                               10
25
                Arg Arg Gln Arg Arg Arg
                                20
         <210> 198
         <211> 24
30
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
35
         <220>
         <223> N-term Ac
         <220>
40
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
         <220>
45
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
         <221> MOD_RES
50
         <222> (6)..(6)
         <223> 2-Nal
         <220>
55
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
```

```
<220>
        <223> C-term NH2
        <400> 198
5
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
                                                            10
10
               Arg Lys Arg Arg Gln Arg Arg Arg
                              20
        <210> 199
        <211> 23
15
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
20
        <220>
        <223> N-term Ac
        <220>
25
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
30
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
35
        <221> MOD_RES
        <222> (6)..(6)
        <223> 2-Nal
        <220>
40
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
45
        <223> C-term NH2
        <400> 199
               Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Gly Arg Arg
50
               1
                                   5
                                                            10
                                                                                     15
               Lys Arg Arg Gln Arg Arg Arg
                              20
55
        <210> 200
        <211> 23
        <212> PRT
```

```
<213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
5
         <220>
         <223> N-term Ac
         <220>
10
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
         <220>
15
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
20
         <221> MOD_RES
         <222> (6)..(6)
         <223> 2-Nal
         <220>
25
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
         <220>
30
         <223> C-term NH2
         <400> 200
                 Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Gly Arg Lys
35
                 1
                                      5
                 Arg Arg Gln Arg Arg Arg
40
         <210> 201
         <211> 24
         <212> PRT
         <213> Artificial Sequence
45
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
50
         <220>
         <221> DOMAIN
         <222> (1)..(8)
55
         <223> Cyclic
         <220>
         <221> MOD_RES
```

```
<222> (4)..(4)
         <223> D-2-Nal
         <220>
5
         <221> MOD_RES
         <222> (6)..(6)
         <223> 1-Nal
         <220>
10
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
         <220>
15
         <223> C-term NH2
         <400> 201
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
20
                                                               10
                Arg Lys Arg Arg Gln Arg Arg Arg
                                20
25
         <210> 202
         <211> 24
         <212> PRT
         <213> Artificial Sequence
30
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
35
         <223> N-term Ac
         <220>
         <221> DOMAIN
         <222> (1)..(8)
40
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (4)..(4)
45
         <223> D-2-Nal
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> 1-Nal
50
         <220>
         <221> MOD_RES
         <222> (13)..(13)
55
         <223> Beta-Ala
         <220>
         <223> C-term NH2
```

<400> 202

```
Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
                                                             10
5
                                    Lys Arg Arg Gln Arg Arg Arg
                                                   20
        <210> 203
10
        <211> 23
        <212> PRT
        <213> Artificial Sequence
15
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <223> N-term Ac
20
        <220>
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
25
        <220>
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
30
        <220>
        <221> MOD_RES
        <222> (6)..(6)
        <223> 1-Nal
35
        <220>
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
40
        <220>
        <223> C-term NH2
        <400> 203
45
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Gly Arg Arg
                1
                                    5
                                                             10
                                                                                       15
                Lys Arg Arg Gln Arg Arg Arg
50
                               20
        <210> 204
        <211> 23
        <212> PRT
55
        <213> Artificial Sequence
        <223> Description of Artificial Sequence: Synthetic peptide
```

```
<220>
        <223> N-term Ac
        <220>
5
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
10
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
15
        <221> MOD_RES
        <222> (6)..(6)
        <223> 1-Nal
        <220>
20
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
25
        <223> C-term NH2
        <400> 204
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Gly Arg Lys
30
                                                              10
                Arg Arg Gln Arg Arg Arg
                                20
35
        <210> 205
        <211> 22
        <212> PRT
        <213> Artificial Sequence
40
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
45
        <223> N-term Ac
        <220>
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
50
        <220>
        <221> MOD_RES
        <222> (4)..(4)
55
        <223> D-2-Nal
        <220>
        <221> MOD_RES
```

```
<222> (6)..(6)
         <223> 2-Nal
         <220>
5
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
         <220>
10
         <223> C-term NH2
         <400> 205
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Arg Arg Lys
15
                Arg Arg Gln Arg Arg Arg
                                20
20
         <210> 206
         <211> 22
         <212> PRT
         <213> Artificial Sequence
25
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
30
         <223> N-term Ac
         <220>
         <221> DOMAIN
         <222> (1)..(8)
35
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
40
         <223> D-2-Nal
         <220>
         <221> MOD_RES
         <222> (6)..(6)
45
         <223> 2-Nal
         <220>
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
50
         <220>
         <223> C-term NH2
55
         <400> 206
```

Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Arg Lys Arg 1 5 10 15

```
5
                Arg Arg Gln Arg Arg Arg
                                20
         <210> 207
         <211> 24
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <223> N-term Ac
         <220>
20
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
         <220>
25
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
30
         <221> MOD_RES
         <222> (6)..(6)
         <223> 2-Nal
         <220>
35
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
         <220>
40
         <223> C-term NH2
         <400> 207
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
45
                                                               10
                                                                                         15
                Lys Arg Arg Gln Arg Arg Arg
                                20
50
         <210> 208
         <211> 22
         <212> PRT
         <213> Artificial Sequence
55
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
```

```
<220>
         <223> N-term Ac
         <220>
5
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
         <220>
10
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
15
         <221> MOD_RES
         <222> (6)..(6)
         <223> Bal
         <220>
20
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
         <220>
25
         <223> C-term NH2
         <400> 208
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Arg Arg Lys
30
                                                               10
                Arg Arg Gln Arg Arg Arg
                                20
35
         <210> 209
         <211> 22
         <212> PRT
         <213> Artificial Sequence
40
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
45
         <223> N-term Ac
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
50
         <220>
         <221> MOD_RES
         <222> (4)..(4)
55
         <223> D-2-Nal
         <220>
         <221> MOD_RES
```

```
<222> (6)..(6)
         <223> Bal
         <220>
5
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
         <220>
10
         <223> C-term NH2
         <400> 209
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Arg Lys Arg
15
                                                               10
                                          Arg Arg Gln Arg Arg Arg
                                                          20
20
         <210> 210
         <211> 24
         <212> PRT
         <213> Artificial Sequence
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
35
         <220>
         <221> MOD RES
         <222> (4)..(4)
         <223> D-2-Nal
40
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> Bal
45
         <220>
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
50
         <220>
         <223> C-term NH2
         <400> 210
55
```

Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg 1 5 10 15

```
5
                Arg Lys Arg Arg Gln Arg Arg Arg
                                20
         <210> 211
         <211> 24
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <223> N-term Ac
         <220>
20
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
         <220>
25
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
30
         <221> MOD_RES
         <222> (6)..(6)
         <223> Bal
         <220>
35
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
         <220>
40
         <223> C-term NH2
         <400> 211
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
45
                                                               10
                Lys Arg Arg Gln Arg Arg Arg
                                20
50
         <210> 212
        <211> 23
         <212> PRT
         <213> Artificial Sequence
55
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
```

```
<220>
         <223> N-term Ac
         <220>
5
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
         <220>
10
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
15
         <221> MOD_RES
         <222> (6)..(6)
         <223> Bal
         <220>
20
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
         <220>
25
         <223> C-term NH2
         <400> 212
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Gly Arg Arg
30
                                                               10
                Lys Arg Arg Gln Arg Arg Arg
                                20
35
         <210> 213
         <211> 23
         <212> PRT
         <213> Artificial Sequence
40
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
45
         <223> N-term Ac
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
50
         <220>
         <221> MOD_RES
         <222> (4)..(4)
55
         <223> D-2-Nal
         <220>
         <221> MOD_RES
```

```
<222> (6)..(6)
        <223> Bal
        <220>
5
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
10
        <223> C-term NH2
        <400> 213
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Gly Arg Lys
15
                                                            10
               Arg Arg Gln Arg Arg Arg
20
        <210> 214
        <211> 22
        <212> PRT
        <213> Artificial Sequence
25
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
30
        <223> N-term Ac
        <220>
        <221> DOMAIN
        <222> (1)..(8)
35
        <223> Cyclic
        <220>
        <221> MOD RES
        <222> (4)..(4)
40
        <223> D-2-Nal
        <220>
        <221> MOD_RES
        <222> (13)..(13)
45
        <223> Beta-Ala
        <220>
        <223> C-term NH2
        <400> 214
50
                Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Lys Asp Ala Arg Arg Arg
55
               Arg Arg Gln Arg Arg Arg
```

20

```
<210> 215
         <211> 22
         <212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
10
         <223> N-term Ac
         <220>
         <221> DOMAIN
         <222> (1)..(8)
15
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
20
         <223> D-2-Nal
         <220>
         <221> MOD_RES
         <222> (13)..(13)
25
         <223> Beta-Ala
         <220>
         <223> C-term NH2
30
         <400> 215
                 Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Arg Asp Ala Arg Arg Arg
                 1
                                                                 10
                                                                                           15
35
                 Arg Arg Gln Arg Arg Arg
                                 20
         <210> 216
40
         <211> 24
         <212> PRT
         <213> Artificial Sequence
45
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
         <220>
50
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
55
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
```

```
<220>
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
5
        <220>
        <223> C-term NH2
        <400> 216
10
               Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
                                   5
                                                            10
                                                                                    15
15
               Arg Arg Arg Gln Arg Arg Arg
                              20
        <210> 217
        <211> 24
20
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
25
        <220>
        <223> N-term Ac
        <220>
30
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
35
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
40
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
45
        <223> C-term NH2
        <400> 217
               Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Arg Asp Ala Tyr Gly Arg
50
               1
                                   5
                                                            10
                                                                                    15
               Arg Arg Arg Gln Arg Arg Arg
                              20
55
        <210> 218
        <211> 23
        <212> PRT
```

```
<213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
5
         <220>
         <223> N-term Ac
         <220>
10
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
         <220>
15
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
20
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
         <220>
25
         <223> C-term NH2
         <400> 218
                Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Lys Asp Ala Arg Arg Arg
30
                                        Arg Arg Gln Arg Arg Arg
                                                        20
35
         <210> 219
         <211> 23
         <212> PRT
         <213> Artificial Sequence
40
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
45
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
50
         <220>
         <221> MOD RES
         <222> (4)..(4)
         <223> D-2-Nal
55
         <220>
         <221> MOD RES
         <222> (13)..(13)
```

```
<223> Beta-Ala
        <220>
        <223> C-term NH2
5
        <400> 219
               Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Arg Asp Ala Arg Arg Arg
10
               Arg Arg Gln Arg Arg Arg
                              20
15
        <210> 220
        <211> 25
        <212> PRT
        <213> Artificial Sequence
20
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <223> N-term Ac
25
        <220>
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
30
        <220>
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
35
        <220>
        <221> MOD RES
        <222> (13)..(13)
        <223> Beta-Ala
40
        <220>
        <223> C-term NH2
        <400> 220
45
               Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
                                                           10
50
               Arg Arg Arg Gln Arg Arg Arg
                              20
        <210> 221
        <211> 25
55
        <212> PRT
        <213> Artificial Sequence
        <220>
```

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
15
         <220>
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
20
         <220>
         <223> C-term NH2
         <400> 221
25
                Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Arg Asp Ala Tyr Gly Arg
                                                                10
                1
                                     5
                                                                                          15
30
                Arg Arg Arg Gln Arg Arg Arg Arg
                                20
                                                          25
         <210> 222
         <211> 23
35
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
40
         <220>
         <223> N-term Ac
         <220>
45
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
         <220>
         <221> MOD_RES
50
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
55
         <221> MOD_RES
         <222> (6)..(6)
         <223> 1-Nal
```

```
<220>
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
5
        <220>
        <223> C-term NH2
        <400> 222
10
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Arg Arg Arg
                                     5
                                                              10
15
                Arg Arg Gln Arg Arg Arg
                                20
        <210> 223
        <211> 23
20
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
25
        <220>
        <223> N-term Ac
        <220>
30
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
35
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
40
        <221> MOD_RES
        <222> (6)..(6)
        <223> 1-Nal
        <220>
45
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
        <223> C-term NH2
50
        <400> 223
```

55

Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Arg Arg 1 5 10 15

```
5
                Arg Arg Gln Arg Arg Arg
                                20
        <210> 224
        <211> 23
10
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
15
        <220>
        <223> N-term Ac
        <220>
20
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
25
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
30
        <221> MOD_RES
        <222> (6)..(6)
        <223> 1-Nal
        <220>
35
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
40
        <223> C-term NH2
        <400> 224
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Arg Arg Arg
45
                                                              10
                Arg Arg Gln Arg Arg Arg
                                20
50
        <210> 225
        <211> 24
        <212> PRT
        <213> Artificial Sequence
55
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
```

```
<220>
        <223> N-term Ac
        <220>
5
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
10
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
15
        <221> MOD_RES
        <222> (6)..(6)
        <223> 1-Nal
        <220>
20
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
25
        <223> C-term NH2
        <400> 225
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
30
                                                              10
                Arg Arg Arg Gln Arg Arg Arg
                                20
35
        <210> 226
        <211> 24
        <212> PRT
        <213> Artificial Sequence
40
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
45
        <223> N-term Ac
        <220>
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
50
        <220>
        <221> MOD_RES
        <222> (4)..(4)
55
        <223> D-2-Nal
        <220>
        <221> MOD_RES
```

```
<222> (6)..(6)
         <223> 1-Nal
         <220>
5
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
         <220>
10
         <223> C-term NH2
         <400> 226
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Tyr Gly Arg
15
                                                               10
                Arg Arg Arg Gln Arg Arg Arg
                                20
20
         <210> 227
         <211> 25
         <212> PRT
         <213> Artificial Sequence
25
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
30
         <223> N-term Ac
         <220>
         <221> DOMAIN
         <222> (1)..(8)
35
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
40
         <223> D-2-Nal
         <220>
         <221> MOD_RES
         <222> (6)..(6)
45
         <223> 1-Nal
        <220>
         <221> MOD_RES
         <222> (13)..(13)
         <223> Beta-Ala
50
         <220>
         <223> C-term NH2
55
         <400> 227
```

Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
1 5 10 15

Arg Arg Arg Arg Gln Arg Arg Arg Arg
20 25

<210> 228 <211> 25

10 <212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<220>

15

<223> N-term Ac

<220>

20 <221> DOMAIN

<222> (1)..(8)

<223> Cyclic

<220>

²⁵ <221> MOD_RES

<222> (4)..(4)

<223> D-2-Nal

<220>

30 <221> MOD_RES

<222> (6)..(6)

<223> 1-Nal

<220>

35 <221> MOD_RES

<222> (13)..(13)

<223> Beta-Ala

<220>

40 <223> C-term NH2

<400> 228

Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Tyr Gly Arg 1 5 10 15

Arg Arg Arg Gln Arg Arg Arg Arg 20 25

50

<210> 229

<211> 25

<220>

<212> PRT

<213> Artificial Sequence

55

<223> Description of Artificial Sequence: Synthetic peptide

```
<220>
        <223> N-term Ac
        <220>
5
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
10
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
15
        <221> MOD_RES
        <222> (6)..(6)
        <223> 1-Nal
        <220>
20
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
25
        <223> C-term NH2
        <400> 229
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
30
                                                              10
                Arg Arg Arg Arg Gln Arg Arg Arg
                                20
35
        <210> 230
        <211> 25
        <212> PRT
        <213> Artificial Sequence
40
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
45
        <223> N-term Ac
        <220>
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
50
        <220>
        <221> MOD_RES
        <222> (4)..(4)
55
        <223> D-2-Nal
        <220>
        <221> MOD_RES
```

```
<222> (6)..(6)
        <223> 1-Nal
        <220>
5
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
10
        <223> C-term NH2
        <400> 230
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Tyr Gly Arg
15
                                                              10
                Arg Arg Arg Arg Gln Arg Arg
20
        <210> 231
        <211> 23
        <212> PRT
        <213> Artificial Sequence
25
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
30
        <223> N-term Ac
        <220>
        <221> DOMAIN
        <222> (1)..(8)
35
        <223> Cyclic
        <220>
        <221> MOD RES
        <222> (4)..(4)
40
        <223> D-2-Nal
        <220>
        <221> MOD_RES
        <222> (6)..(6)
45
        <223> 2-Nal
        <220>
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
50
        <220>
        <223> C-term NH2
55
        <400> 231
```

Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Arg Arg 1 5 10 15

```
5
                Arg Arg Gln Arg Arg Arg
                                20
        <210> 232
        <211> 23
10
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
15
        <220>
        <223> N-term Ac
        <220>
20
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
25
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
30
        <221> MOD_RES
        <222> (6)..(6)
        <223> 2-Nal
        <220>
35
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
40
        <223> C-term NH2
        <400> 232
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Arg Arg Arg
45
                                                              10
                Arg Arg Gln Arg Arg Arg
                                20
50
        <210> 233
        <211> 23
        <212> PRT
        <213> Artificial Sequence
55
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
```

```
<220>
        <223> N-term Ac
        <220>
5
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
10
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
15
        <221> MOD_RES
        <222> (6)..(6)
        <223> 2-Nal
        <220>
20
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
25
        <223> C-term NH2
        <400> 233
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Arg Arg
30
                                                              10
                Arg Arg Gln Arg Arg Arg
                                20
35
        <210> 234
        <211> 24
        <212> PRT
        <213> Artificial Sequence
40
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
45
        <223> N-term Ac
        <220>
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
50
        <220>
        <221> MOD_RES
        <222> (4)..(4)
55
        <223> D-2-Nal
        <220>
        <221> MOD_RES
```

```
<222> (6)..(6)
        <223> 2-Nal
        <220>
5
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
10
        <223> C-term NH2
        <400> 234
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
15
                                                              10
                Arg Arg Arg Gln Arg Arg Arg
                                20
20
        <210> 235
        <211> 24
        <212> PRT
        <213> Artificial Sequence
25
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
30
        <223> N-term Ac
        <220>
        <221> DOMAIN
        <222> (1)..(8)
35
        <223> Cyclic
        <220>
        <221> MOD RES
        <222> (4)..(4)
40
        <223> D-2-Nal
        <220>
        <221> MOD_RES
        <222> (6)..(6)
45
        <223> 2-Nal
        <220>
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
50
        <220>
        <223> C-term NH2
55
        <400> 235
```

Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Tyr Gly Arg 1 5 10 15

```
5
                Arg Arg Arg Gln Arg Arg Arg
                               20
        <210> 236
        <211> 25
10
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
15
        <220>
        <223> N-term Ac
        <220>
20
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
25
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
30
        <221> MOD_RES
        <222> (6)..(6)
        <223> 2-Nal
        <220>
35
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
40
        <223> C-term NH2
        <400> 236
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
45
                                                              10
                Arg Arg Arg Arg Gln Arg Arg
50
        <210> 237
        <211> 25
        <212> PRT
        <213> Artificial Sequence
55
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
```

```
<220>
        <223> N-term Ac
        <220>
5
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
10
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
15
        <221> MOD_RES
        <222> (6)..(6)
        <223> 2-Nal
        <220>
20
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
25
        <223> C-term NH2
        <400> 237
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Tyr Gly Arg
30
                                                              10
                Arg Arg Arg Arg Gln Arg Arg Arg
                                20
35
        <210> 238
        <211> 25
        <212> PRT
        <213> Artificial Sequence
40
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
45
        <223> N-term Ac
        <220>
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
50
        <220>
        <221> MOD RES
        <222> (4)..(4)
55
        <223> D-2-Nal
        <220>
        <221> MOD_RES
```

```
<222> (6)..(6)
        <223> 2-Nal
        <220>
5
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
10
        <223> C-term NH2
        <400> 238
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
15
                                                              10
                Arg Arg Arg Gln Arg Arg Arg
20
        <210> 239
        <211> 25
        <212> PRT
        <213> Artificial Sequence
25
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
30
        <223> N-term Ac
        <220>
        <221> DOMAIN
        <222> (1)..(8)
35
        <223> Cyclic
        <220>
        <221> MOD RES
        <222> (4)..(4)
40
        <223> D-2-Nal
        <220>
        <221> MOD_RES
        <222> (6)..(6)
45
        <223> 2-Nal
        <220>
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
50
        <220>
        <223> C-term NH2
55
        <400> 239
```

Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Tyr Gly Arg 1 5 10 15

```
5
                Arg Arg Arg Gln Arg Arg Arg
                               20
        <210> 240
        <211> 23
10
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
15
        <220>
        <223> N-term Ac
        <220>
20
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
25
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
30
        <221> MOD_RES
        <222> (6)..(6)
        <223> Bal
        <220>
35
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
40
        <223> C-term NH2
        <400> 240
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Arg Arg Arg
45
                                                              10
                Arg Arg Gln Arg Arg Arg
                               20
50
        <210> 241
        <211> 23
        <212> PRT
        <213> Artificial Sequence
55
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
```

```
<220>
        <223> N-term Ac
        <220>
5
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
10
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
15
        <221> MOD_RES
        <222> (6)..(6)
        <223> Bal
        <220>
20
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
25
        <223> C-term NH2
        <400> 241
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Arg Arg
30
                                                              10
                Arg Arg Gln Arg Arg Arg
                                20
35
        <210> 242
        <211> 24
        <212> PRT
        <213> Artificial Sequence
40
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
45
        <223> N-term Ac
        <220>
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
50
        <220>
        <221> MOD_RES
        <222> (4)..(4)
55
        <223> D-2-Nal
        <220>
        <221> MOD_RES
```

```
<222> (6)..(6)
        <223> Bal
        <220>
5
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
10
        <223> C-term NH2
        <400> 242
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Tyr Gly Arg
15
                                                              10
                Arg Arg Arg Gln Arg Arg Arg
20
        <210> 243
        <211> 25
        <212> PRT
        <213> Artificial Sequence
25
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
30
        <223> N-term Ac
        <220>
        <221> DOMAIN
        <222> (1)..(8)
35
        <223> Cyclic
        <220>
        <221> MOD RES
        <222> (4)..(4)
40
        <223> D-2-Nal
        <220>
        <221> MOD_RES
        <222> (6)..(6)
45
        <223> Bal
        <220>
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
50
        <220>
        <223> C-term NH2
55
        <400> 243
```

Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg

10 5 Arg Arg Arg Gln Arg Arg Arg 20 <210> 244 <211> 25 10 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide 15 <220> <223> N-term Ac <220> 20 <221> DOMAIN <222> (1)..(8) <223> Cyclic <220> 25 <221> MOD_RES <222> (4)..(4) <223> D-2-Nal <220> 30 <221> MOD_RES <222> (6)..(6) <223> Bal <220> 35 <221> MOD_RES <222> (13)..(13) <223> Beta-Ala <220> 40 <223> C-term NH2 <400> 244 Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Tyr Gly Arg 45 10 Arg Arg Arg Gln Arg Arg Arg 50 <210> 245 <211> 25 <212> PRT <213> Artificial Sequence 55 <220>

<223> Description of Artificial Sequence: Synthetic peptide

```
<220>
        <223> N-term Ac
        <220>
5
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
        <220>
10
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-2-Nal
        <220>
15
        <221> MOD_RES
        <222> (6)..(6)
        <223> Bal
        <220>
20
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
25
        <223> C-term NH2
        <400> 245
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp Ala Tyr Gly Arg
30
                                                              10
                Arg Arg Arg Arg Gln Arg Arg Arg
                                20
35
        <210> 246
        <211> 25
        <212> PRT
        <213> Artificial Sequence
40
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
45
        <223> N-term Ac
        <220>
        <221> DOMAIN
        <222> (1)..(8)
        <223> Cyclic
50
        <220>
        <221> MOD_RES
        <222> (4)..(4)
55
        <223> D-2-Nal
        <220>
        <221> MOD_RES
```

```
<222> (6)..(6)
        <223> Bal
        <220>
5
        <221> MOD_RES
        <222> (13)..(13)
        <223> Beta-Ala
        <220>
10
        <223> C-term NH2
        <400> 246
                Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Arg Asp Ala Tyr Gly Arg
15
                                                              10
                Arg Arg Arg Arg Gln Arg Arg
20
        <210> 247
        <211> 21
        <212> PRT
        <213> Artificial Sequence
25
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
30
        <223> N-term Ac
        <220>
        <221> MOD_RES
        <222> (1)..(1)
35
        <223> Nle
        <220>
        <221> DOMAIN
        <222> (2)..(8)
40
        <223> Cyclic
        <220>
        <221> MOD_RES
        <222> (3)..(3)
45
        <223> D-Ala
        <220>
        <221> MOD_RES
        <222> (5)..(5)
        <223> D-Phe
50
        <220>
        <221> MOD_RES
        <222> (9)..(10)
55
        <223> Doc
        <220>
        <223> C-term NH2
```

<400> 247

<210> 249

```
Xaa Cys Ala His Phe Arg Trp Cys Xaa Xaa Tyr Gly Arg Lys Lys Arg
5
                Arg Gln Arg Arg Arg
10
        <210> 248
        <211> 20
        <212> PRT
        <213> Artificial Sequence
15
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <223> N-term Ac
20
        <220>
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
25
        <220>
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
30
        <220>
        <221> MOD_RES
        <222> (3)..(3)
        <223> D-Ala
35
        <220>
        <221> MOD RES
        <222> (5)..(5)
        <223> D-Phe
40
        <220>
        <221> MOD_RES
        <222> (9)..(9)
        <223> Beta-Ala
45
        <220>
        <223> C-term NH2
        <400> 248
50
                Xaa Cys Ala His Phe Arg Trp Cys Ala Tyr Gly Arg Lys Lys Arg Gln
                                                             10
55
                Arg Arg Arg Arg
                               20
```

```
<211> 20
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
10
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
15
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
25
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
30
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Doc
35
         <220>
         <223> C-term NH2
         <400> 249
40
                 Xaa Cys Ala His Phe Arg Trp Cys Xaa Tyr Gly Arg Lys Lys Arg Arg
                                                                 10
45
                 Gln Arg Arg Arg
                                 20
         <210> 250
         <211> 18
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <223> N-term Ac
```

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
15
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
20
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
25
         <220>
         <223> C-term NH2
         <400> 250
30
                Xaa Cys Ala His Phe Arg Trp Cys Ala Arg Arg Arg Arg Gln Arg
                                                               10
35
                Arg Arg
         <210> 251
         <211> 19
         <212> PRT
40
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <223> N-term Ac
         <220>
         <221> MOD RES
         <222> (1)..(1)
50
         <223> Nle
         <220>
         <221> DOMAIN
55
         <222> (2)..(8)
         <223> Cyclic
         <220>
```

```
<221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
5
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
15
         <220>
         <223> C-term NH2
         <400> 251
20
                Xaa Cys Ala His Phe Arg Trp Cys Ala Gly Arg Arg Arg Arg Gln
                                     5
                                                               10
                Arg Arg Arg
25
         <210> 252
         <211> 20
         <212> PRT
         <213> Artificial Sequence
30
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
35
         <223> N-term Ac
         <220>
         <221> MOD RES
         <222> (1)..(1)
40
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(8)
45
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
50
         <220>
         <221> MOD_RES
         <222> (5)..(5)
55
         <223> D-Phe
         <220>
         <221> MOD_RES
```

```
<222> (9)..(9)
         <223> Beta-Ala
         <220>
5
         <223> C-term NH2
         <400> 252
                Xaa Cys Ala His Phe Arg Trp Cys Ala Tyr Gly Arg Arg Arg Arg
10
                                     5
                                                               10
                                                                                         15
                Gln Arg Arg Arg
                                20
15
         <210> 253
         <211> 20
         <212> PRT
         <213> Artificial Sequence
20
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
25
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
30
         <223> Nle
         <220>
         <221> DOMAIN
        <222> (2)..(8)
35
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (3)..(3)
40
         <223> D-Ala
         <220>
         <221> MOD_RES
         <222> (5)..(5)
45
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
50
         <220>
         <223> C-term NH2
55
         <400> 253
```

Xaa Cys Ala His Phe Arg Trp Cys Ala Gly Arg Arg Arg Arg Gln

```
10
5
                Arg Arg Arg Arg
                                20
         <210> 254
         <211> 20
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <223> N-term Ac
         <220>
20
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
25
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
30
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
         <220>
35
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
40
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
         <220>
45
         <223> C-term NH2
         <400> 254
                Xaa Cys Ala His Phe Arg Trp Cys Ala Tyr Gly Arg Arg Lys Arg Arg
50
                                     5
                1
                                                               10
                                                                                        15
                Gln Arg Arg Arg
                                20
55
         <210> 255
```

<211> 20 <212> PRT

```
<213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
5
         <220>
         <223> N-term Ac
         <220>
10
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
15
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
20
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
         <220>
25
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
30
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
         <220>
35
         <223> C-term NH2
         <400> 255
                Xaa Cys Ala His Phe Arg Trp Cys Ala Tyr Gly Arg Lys Arg Arg Arg
40
                                                                10
                Gln Arg Arg Arg
                                 20
45
         <210> 256
         <211> 19
         <212> PRT
         <213> Artificial Sequence
50
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
55
         <223> N-term Ac
         <220>
         <221> MOD_RES
```

```
<222> (1)..(1)
         <223> Nle
         <220>
5
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
10
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
         <220>
15
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
20
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
         <220>
25
         <223> C-term NH2
         <400> 256
                Xaa Cys Ala His Phe Arg Trp Cys Ala Gly Arg Arg Lys Arg Arg Gln
30
                Arg Arg Arg
35
         <210> 257
         <211> 19
         <212> PRT
         <213> Artificial Sequence
40
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
50
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
55
         <220>
         <221> MOD RES
         <222> (3)..(3)
```

```
<223> D-Ala
         <220>
         <221> MOD_RES
5
         <222> (5)..(5)
         <223> D-Phe
         <220>
         <221> MOD_RES
10
         <222> (9)..(9)
         <223> Beta-Ala
         <220>
         <223> C-term NH2
15
         <400> 257
                Xaa Cys Ala His Phe Arg Trp Cys Ala Gly Arg Lys Arg Arg Arg Gln
                                                               10
20
                Arg Arg Arg
         <210> 258
25
         <211> 18
         <212> PRT
         <213> Artificial Sequence
30
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
35
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
40
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
         <220>
50
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
55
         <220>
         <221> MOD_RES
         <222> (9) .. (9)
         <223> Beta-Ala
```

```
<220>
        <223> C-term NH2
        <400> 258
5
                Xaa Cys Ala His Phe Arg Trp Cys Ala Arg Arg Lys Arg Arg Gln Arg
10
                Arg Arg
        <210> 259
        <211> 18
        <212> PRT
15
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
20
        <220>
        <223> N-term Ac
        <220>
        <221> MOD RES
25
        <222> (1)..(1)
        <223> Nle
        <220>
        <221> DOMAIN
30
        <222> (2)..(8)
        <223> Cyclic
        <220>
        <221> MOD_RES
35
        <222> (3)..(3)
        <223> D-Ala
        <220>
        <221> MOD RES
40
        <222> (5)..(5)
        <223> D-Phe
        <220>
        <221> MOD_RES
45
        <222> (9)..(9)
        <223> Beta-Ala
        <220>
        <223> C-term NH2
50
        <400> 259
                Xaa Cys Ala His Phe Arg Trp Cys Ala Arg Lys Arg Arg Gln Arg
                                                             10
55
```

Arg Arg

```
<210> 260
         <211> 19
         <212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
10
         <223> N-term Ac
         <220>
         <221> MOD RES
         <222> (1)..(1)
15
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(8)
20
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (3)..(3)
25
         <223> D-Ala
         <220>
         <221> MOD_RES
         <222> (5)..(5)
30
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (9)..(10)
35
         <223> Beta-Ala
         <220>
         <223> C-term NH2
40
         <400> 260
                 Xaa Cys Ala His Phe Arg Trp Cys Ala Ala Arg Arg Arg Arg Gln
                                                                10
45
                 Arg Arg Arg
         <210> 261
         <211> 20
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <223> N-term Ac
```

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
15
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
20
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Beta-Ala
25
         <220>
         <223> C-term NH2
         <400> 261
30
                Xaa Cys Ala His Phe Arg Trp Cys Ala Ala Gly Arg Arg Arg Arg
35
                Gln Arg Arg Arg
                                20
         <210> 262
         <211> 21
         <212> PRT
40
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
50
         <222> (1)..(1)
         <223> Nle
         <220>
55
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
5
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Beta-Ala
15
         <220>
         <223> C-term NH2
         <400> 262
20
                Xaa Cys Ala His Phe Arg Trp Cys Ala Ala Tyr Gly Arg Arg Arg Arg
25
                Arg Gln Arg Arg Arg
                                20
         <210> 263
         <211> 18
30
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
35
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
40
         <222> (1)..(1)
         <223> Nle
         <220>
45
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD_RES
50
         <222> (3)..(3)
         <223> D-Ala
         <220>
55
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
```

```
<220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Doc
5
         <220>
         <223> C-term NH2
         <400> 263
10
                Xaa Cys Ala His Phe Arg Trp Cys Xaa Arg Arg Arg Arg Gln Arg
                                     5
                                                               10
                                                                                         15
15
                Arg Arg
         <210> 264
         <211> 19
         <212> PRT
20
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
25
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
30
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
35
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD_RES
40
         <222> (3)..(3)
         <223> D-Ala
         <220>
         <221> MOD_RES
45
         <222> (5)..(5)
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (9)..(9)
50
         <223> Doc
         <220>
         <223> C-term NH2
55
         <400> 264
```

Xaa Cys Ala His Phe Arg Trp Cys Xaa Gly Arg Arg Arg Arg Gln 1 5 10 15

```
5
                Arg Arg Arg
         <210> 265
         <211> 20
         <212> PRT
10
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <223> N-term Ac
         <220>
         <221> MOD_RES
20
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
25
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD RES
30
         <222> (3)..(3)
         <223> D-Ala
         <220>
         <221> MOD_RES
35
         <222> (5)..(5)
         <223> D-Phe
         <220>
         <221> MOD RES
40
         <222> (9)..(9)
         <223> Doc
         <220>
         <223> C-term NH2
45
         <400> 265
                Xaa Cys Ala His Phe Arg Trp Cys Xaa Tyr Gly Arg Arg Arg Arg
                                                               10
50
                Gln Arg Arg Arg
                                20
55
         <210> 266
         <211> 19
         <212> PRT
         <213> Artificial Sequence
```

```
<220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
5
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
10
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(8)
15
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (3)..(3)
20
         <223> D-Ala
         <220>
         <221> MOD_RES
         <222> (5)..(5)
25
         <223> D-Phe
         <220>
         <221> MOD RES
         <222> (9)..(10)
30
         <223> Doc
         <220>
         <223> C-term NH2
35
         <400> 266
                Xaa Cys Ala His Phe Arg Trp Cys Xaa Xaa Arg Arg Arg Arg Gln
                                                                10
                                                                                          15
40
                Arg Arg Arg
         <210> 267
         <211> 20
45
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
         <220>
55
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
```

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
10
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Doc
20
         <220>
         <223> C-term NH2
         <400> 267
25
                Xaa Cys Ala His Phe Arg Trp Cys Xaa Xaa Gly Arg Arg Arg Arg Arg
                1
                                     5
                                                               10
                                                                                          15
30
                Gln Arg Arg Arg
                                20
         <210> 268
         <211> 21
35
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
40
         <220>
         <223> N-term Ac
         <220>
45
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
50
         <222> (2)..(8)
         <223> Cyclic
         <220>
55
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
```

```
<220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Doc
10
         <220>
         <223> C-term NH2
         <400> 268
15
                Xaa Cys Ala His Phe Arg Trp Cys Xaa Xaa Tyr Gly Arg Arg Arg Arg
                                                               10
20
                Arg Gln Arg Arg Arg
                                20
         <210> 269
         <211> 19
25
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <223> N-term Ac
         <220>
35
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
40
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
45
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
         <220>
         <221> MOD_RES
50
         <222> (5)..(5)
         <223> D-Phe
         <220>
55
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
```

<220> <223> C-term NH2 <400> 269 5 Xaa Cys Ala His Phe Arg Trp Cys Ala Arg Arg Arg Arg Gln Arg 1 5 10 15 10 Arg Arg Arg <210> 270 15 <211> 21 <212> PRT <213> Artificial Sequence 20 <223> Description of Artificial Sequence: Synthetic peptide <220> <223> N-term Ac 25 <220> <221> MOD_RES <222> (1)..(1) <223> Nle 30 <220> <221> DOMAIN <222> (2)..(8) <223> Cyclic 35 <220> <221> MOD_RES <222> (3)..(3) <223> D-Ala 40 <220> <221> MOD_RES <222> (5)..(5) <223> D-Phe 45 <220> <221> MOD_RES <222> (9)..(9) <223> Beta-Ala <220> 50 <223> C-term NH2 <400> 270

55

Xaa Cys Ala His Phe Arg Trp Cys Ala Tyr Gly Arg Arg Arg Arg Arg

10

```
5
                Gln Arg Arg Arg Arg
                                20
        <210> 271
        <211> 20
10
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
15
        <220>
        <223> N-term Ac
        <220>
20
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
        <220>
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
        <220>
30
        <221> MOD_RES
        <222> (3)..(3)
        <223> D-Ala
        <220>
35
        <221> MOD_RES
        <222> (5)..(5)
        <223> D-Phe
        <220>
40
        <221> MOD RES
        <222> (9)..(10)
        <223> Beta-Ala
        <220>
45
        <223> C-term NH2
        <400> 271
                Xaa Cys Ala His Phe Arg Trp Cys Ala Ala Arg Arg Arg Arg Gln
50
                                     5
                1
                                                              10
                                                                                        15
                Arg Arg Arg Arg
                                20
55
        <210> 272
        <211> 21
        <212> PRT
```

```
<213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
5
         <220>
         <223> N-term Ac
         <220>
10
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
15
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
20
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
         <220>
25
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
30
         <221> MOD_RES
         <222> (9)..(10)
         <223> Beta-Ala
         <220>
35
         <223> C-term NH2
         <400> 272
                Xaa Cys Ala His Phe Arg Trp Cys Ala Ala Gly Arg Arg Arg Arg
40
                                      5
                                                                10
                Gln Arg Arg Arg Arg
                                20
45
         <210> 273
         <211> 22
         <212> PRT
         <213> Artificial Sequence
50
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
55
         <223> N-term Ac
         <220>
         <221> MOD_RES
```

```
<222> (1)..(1)
         <223> Nle
         <220>
5
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
10
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
         <220>
15
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
20
         <221> MOD_RES
         <222> (9)..(10)
         <223> Beta-Ala
         <220>
25
         <223> C-term NH2
         <400> 273
                Xaa Cys Ala His Phe Arg Trp Cys Ala Ala Tyr Gly Arg Arg Arg
30
                                                               10
                Arg Gln Arg Arg Arg Arg
                                20
35
         <210> 274
         <211> 19
         <212> PRT
         <213> Artificial Sequence
40
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
45
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
50
         <220>
         <221> DOMAIN
         <222> (2)..(8)
55
         <223> Cyclic
         <220>
         <221> MOD_RES
```

```
<222> (3)..(3)
         <223> D-Ala
         <220>
5
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
10
         <221> MOD_RES
         <222> (9)..(9)
         <223> Doc
         <220>
15
         <223> C-term NH2
         <400> 274
                Xaa Cys Ala His Phe Arg Trp Cys Xaa Arg Arg Arg Arg Gln Arg
20
                                                               10
                                                  Arg Arg Arg
25
         <210> 275
         <211> 20
         <212> PRT
         <213> Artificial Sequence
30
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
35
         <220>
         <221> MOD RES
         <222> (1)..(1)
         <223> Nle
40
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
50
         <220>
         <221> MOD RES
         <222> (5)..(5)
         <223> D-Phe
55
         <220>
         <221> MOD RES
         <222> (9)..(9)
```

```
<223> Doc
        <220>
        <223> C-term NH2
5
        <400> 275
                Xaa Cys Ala His Phe Arg Trp Cys Xaa Gly Arg Arg Arg Arg Gln
10
                Arg Arg Arg Arg
                                20
15
        <210> 276
        <211> 21
        <212> PRT
        <213> Artificial Sequence
20
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <223> N-term Ac
25
        <220>
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
30
        <220>
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
35
        <220>
        <221> MOD RES
        <222> (3)..(3)
        <223> D-Ala
40
        <220>
        <221> MOD_RES
        <222> (5)..(5)
        <223> D-Phe
45
        <220>
        <221> MOD_RES
        <222> (9)..(9)
        <223> Doc
50
        <220>
        <223> C-term NH2
        <400> 276
```

55

Xaa Cys Ala His Phe Arg Trp Cys Xaa Tyr Gly Arg Arg Arg Arg Arg

10

```
5
                Gln Arg Arg Arg Arg
                                20
        <210> 277
        <211> 20
10
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
15
        <220>
        <223> N-term Ac
        <220>
20
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
        <220>
25
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
        <220>
30
        <221> MOD_RES
        <222> (3)..(3)
        <223> D-Ala
        <220>
35
        <221> MOD_RES
        <222> (5)..(5)
        <223> D-Phe
        <220>
40
        <221> MOD RES
        <222> (9)..(10)
        <223> Doc
        <220>
45
        <223> C-term NH2
        <400> 277
                Xaa Cys Ala His Phe Arg Trp Cys Xaa Xaa Arg Arg Arg Arg Gln
50
                                     5
                1
                                                              10
                                                                                        15
                Arg Arg Arg Arg
                                20
55
        <210> 278
        <211> 21
        <212> PRT
```

```
<213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
5
         <223> N-term Ac
         <220>
10
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
15
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
20
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
         <220>
25
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
30
         <221> MOD_RES
         <222> (9)..(10)
         <223> Doc
         <220>
35
         <223> C-term NH2
         <400> 278
                Xaa Cys Ala His Phe Arg Trp Cys Xaa Xaa Gly Arg Arg Arg Arg
40
                                      5
                                                                10
                                                                                          15
                Gln Arg Arg Arg Arg
                                20
45
         <210> 279
         <211> 22
         <212> PRT
         <213> Artificial Sequence
50
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
55
         <223> N-term Ac
         <220>
         <221> MOD_RES
```

```
<222> (1)..(1)
         <223> Nle
         <220>
5
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
10
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
         <220>
15
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
20
         <221> MOD_RES
         <222> (9)..(10)
         <223> Doc
         <220>
25
         <223> C-term NH2
         <400> 279
                Xaa Cys Ala His Phe Arg Trp Cys Xaa Xaa Tyr Gly Arg Arg Arg Arg
30
                Arg Gln Arg Arg Arg Arg
35
                     20
         <210> 280
40
         <211> 20
         <212> PRT
         <213> Artificial Sequence
45
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
50
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
55
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
10
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
15
         <220>
         <223> C-term NH2
         <400> 280
20
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Tyr Gly Arg Arg Arg Arg Arg
25
                Gln Arg Arg Arg
                                20
         <210> 281
         <211> 18
30
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
35
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
40
         <222> (1)..(1)
         <223> Nle
         <220>
45
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD_RES
50
         <222> (4)..(4)
         <223> D-Phe
         <220>
55
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
```

```
<220>
        <221> MOD_RES
        <222> (9)..(9)
        <223> Beta-Ala
5
        <220>
        <223> C-term NH2
        <400> 281
10
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Arg Arg Arg Arg Gln Arg
                                                            10
15
                Arg Arg
        <210> 282
        <211> 20
        <212> PRT
20
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
25
        <220>
        <223> N-term Ac
        <220>
        <221> MOD RES
30
        <222> (1)..(1)
        <223> Nle
        <220>
        <221> DOMAIN
35
        <222> (2)..(8)
        <223> Cyclic
        <220>
        <221> MOD RES
40
        <222> (4)..(4)
        <223> D-Phe
        <220>
        <221> MOD_RES
45
        <222> (9) .. (9)
        <223> Beta-Ala
        <220>
        <223> C-term NH2
50
        <400> 282
                Xaa Asp His Phe Arg Trp Ala Lys Ala Tyr Gly Arg Arg Arg Arg
55
                Gln Arg Arg Arg
```

20

```
<210> 283
         <211> 18
         <212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
10
         <223> N-term Ac
         <220>
         <221> MOD RES
         <222> (1)..(1)
15
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(8)
20
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (4)..(4)
25
         <223> D-Phe
         <220>
         <221> MOD RES
         <222> (9) .. (9)
30
         <223> Beta-Ala
         <220>
         <223> C-term NH2
35
         <400> 283
                 Xaa Asp His Phe Arg Trp Ala Lys Ala Arg Arg Arg Arg Gln Arg
                                                                10
40
                                                      Arg Arg
         <210> 284
         <211> 19
45
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
         <220>
55
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
```

```
<220>
        <221> DOMAIN
         <222> (2)..(7)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> Beta-Ala
15
         <220>
         <223> C-term NH2
         <400> 284
20
                Xaa Asp His Phe Arg Trp Lys Ala Tyr Gly Arg Arg Arg Arg Gln
                                                               10
25
                Arg Arg Arg
         <210> 285
         <211> 18
         <212> PRT
30
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
35
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
40
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
45
         <222> (2)..(7)
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
50
         <223> D-Phe
         <220>
         <221> MOD_RES
55
         <222> (8)..(8)
         <223> Beta-Ala
         <220>
```

```
<223> C-term NH2
        <400> 285
5
                Xaa Asp His Phe Arg Trp Lys Ala Gly Arg Arg Arg Arg Gln Arg
                Arg Arg
10
        <210> 286
        <211> 17
        <212> PRT
        <213> Artificial Sequence
15
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
20
        <223> N-term Ac
        <220>
        <221> MOD_RES
        <222> (1)..(1)
25
        <223> Nle
        <220>
        <221> DOMAIN
        <222> (2)..(7)
30
        <223> Cyclic
        <220>
        <221> MOD_RES
        <222> (4)..(4)
35
        <223> D-Phe
        <220>
        <221> MOD RES
        <222> (8)..(8)
40
        <223> Beta-Ala
        <220>
        <223> C-term NH2
45
        <400> 286
                Xaa Asp His Phe Arg Trp Lys Ala Arg Arg Arg Arg Gln Arg Arg
                                    5
                                                             10
                1
                                                                                      15
50
                Arg
        <210> 287
        <211> 20
55
        <212> PRT
        <213> Artificial Sequence
        <220>
```

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
10
         <220>
         <221> DOMAIN
         <222> (2)..(7)
         <223> Cyclic
15
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
20
         <220>
         <221> MOD_RES
         <222> (8)..(9)
         <223> Beta-Ala
25
         <220>
         <223> C-term NH2
         <400> 287
30
                Xaa Asp His Phe Arg Trp Lys Ala Ala Tyr Gly Arg Arg Arg Arg
                                                                10
35
                Gln Arg Arg Arg
                                 20
         <210> 288
         <211> 19
40
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
50
         <222> (1)..(1)
         <223> Nle
         <220>
55
         <221> DOMAIN
         <222> (2)..(7)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (8)..(9)
         <223> Beta-Ala
10
         <220>
         <223> C-term NH2
         <400> 288
15
                Xaa Asp His Phe Arg Trp Lys Ala Ala Gly Arg Arg Arg Arg Gln
                                                               10
20
                Arg Arg Arg
         <210> 289
         <211> 18
         <212> PRT
25
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
35
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(7)
40
         <223> Cyclic
         <220>
         <221> MOD_RES
45
         <222> (4)..(4)
         <223> D-Phe
         <220>
         <221> MOD RES
         <222> (8)..(9)
50
         <223> Beta-Ala
         <220>
         <223> C-term NH2
55
         <400> 289
```

Xaa Asp His Phe Arg Trp Lys Ala Ala Arg Arg Arg Arg Gln Arg 1 5 10 15

```
5
                Arg Arg
         <210> 290
         <211> 19
         <212> PRT
10
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
20
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
25
         <222> (2)..(7)
         <223> Cyclic
         <220>
         <221> MOD RES
30
         <222> (4)..(4)
         <223> D-Phe
         <220>
         <221> MOD_RES
35
         <222> (8)..(8)
         <223> Doc
         <220>
         <223> C-term NH2
40
         <400> 290
                Xaa Asp His Phe Arg Trp Lys Xaa Tyr Gly Arg Arg Arg Arg Gln
                                      5
                                                                10
45
                                                   Arg Arg Arg
         <210> 291
         <211> 18
50
         <212> PRT
         <213> Artificial Sequence
         <220>
55
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
```

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
5
         <220>
         <221> DOMAIN
         <222> (2)..(7)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> Doc
20
         <220>
         <223> C-term NH2
         <400> 291
25
                Xaa Asp His Phe Arg Trp Lys Xaa Gly Arg Arg Arg Arg Gln Arg
                                     5
                                                               10
                                                                                         15
30
                Arg Arg
         <210> 292
         <211> 17
         <212> PRT
35
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
40
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
45
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
50
         <222> (2)..(7)
         <223> Cyclic
         <220>
         <221> MOD_RES
55
         <222> (4)..(4)
         <223> D-Phe
         <220>
```

```
<221> MOD_RES
        <222> (8)..(8)
        <223> Doc
5
        <220>
        <223> C-term NH2
        <400> 292
10
               Xaa Asp His Phe Arg Trp Lys Xaa Arg Arg Arg Arg Gln Arg Arg
               Arg
15
        <210> 293
        <211> 20
        <212> PRT
        <213> Artificial Sequence
20
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
25
        <223> N-term Ac
        <220>
        <221> MOD_RES
        <222> (1)..(1)
30
        <223> Nle
        <220>
        <221> DOMAIN
        <222> (2)..(7)
35
        <223> Cyclic
        <220>
        <221> MOD RES
        <222> (4)..(4)
40
        <223> D-Phe
        <220>
        <221> MOD_RES
        <222> (8)..(9)
45
        <223> Doc
        <220>
        <223> C-term NH2
        <400> 293
50
               Xaa Asp His Phe Arg Trp Lys Xaa Xaa Tyr Gly Arg Arg Arg Arg
55
               Gln Arg Arg Arg
```

20

```
<210> 294
         <211> 19
         <212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
10
         <223> N-term Ac
         <220>
         <221> MOD RES
         <222> (1)..(1)
15
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(7)
20
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (4)..(4)
25
         <223> D-Phe
         <220>
         <221> MOD RES
         <222> (8)..(9)
30
         <223> Doc
         <220>
         <223> C-term NH2
35
         <400> 294
                Xaa Asp His Phe Arg Trp Lys Xaa Xaa Gly Arg Arg Arg Arg Gln
                                                                10
40
                Arg Arg Arg
         <210> 295
         <211> 18
45
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
         <220>
55
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
```

```
<220>
        <221> DOMAIN
         <222> (2)..(7)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (8)..(9)
         <223> Doc
15
         <220>
         <223> C-term NH2
         <400> 295
20
                Xaa Asp His Phe Arg Trp Lys Xaa Xaa Arg Arg Arg Arg Gln Arg
                                                               10
25
                Arg Arg
         <210> 296
         <211> 20
         <212> PRT
30
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
35
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
40
         <223> Nle
         <220>
         <221> DOMAIN
45
         <222> (2)..(7)
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
50
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (8)..(8)
55
         <223> Beta-Ala
         <220>
```

```
<223> C-term NH2
        <400> 296
5
                Xaa Asp His Phe Arg Trp Lys Ala Tyr Gly Arg Arg Arg Arg Gln
                                    5
                                                            10
                Arg Arg Arg Arg
10
                               20
        <210> 297
        <211> 19
        <212> PRT
15
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
20
        <220>
        <223> N-term Ac
        <220>
        <221> MOD RES
25
        <222> (1)..(1)
        <223> Nle
        <220>
        <221> DOMAIN
30
        <222> (2)..(7)
        <223> Cyclic
        <220>
        <221> MOD_RES
35
        <222> (4)..(4)
        <223> D-Phe
        <220>
        <221> MOD RES
40
        <222> (8)..(8)
        <223> Beta-Ala
        <220>
        <223> C-term NH2
45
        <400> 297
                Xaa Asp His Phe Arg Trp Lys Ala Gly Arg Arg Arg Arg Gln Arg
                                    5
                                                            10
50
                                                Arg Arg Arg
        <210> 298
55
        <211> 18
        <212> PRT
        <213> Artificial Sequence
```

```
<220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
5
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
10
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(7)
15
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
20
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (8)..(8)
25
         <223> Beta-Ala
         <220>
         <223> C-term NH2
30
         <400> 298
                Xaa Asp His Phe Arg Trp Lys Ala Arg Arg Arg Arg Gln Arg Arg
                 1
                                      5
                                                                10
                                                                                           15
35
                Arg Arg
         <210> 299
         <211> 21
40
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
50
         <222> (1)..(1)
         <223> Nle
         <220>
55
         <221> DOMAIN
         <222> (2)..(7)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (8)..(9)
         <223> Beta-Ala
10
         <220>
         <223> C-term NH2
         <400> 299
15
                Xaa Asp His Phe Arg Trp Lys Ala Ala Tyr Gly Arg Arg Arg Arg Arg
                                                               10
20
                Gln Arg Arg Arg Arg
                                20
         <210> 300
         <211> 20
25
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <223> N-term Ac
         <220>
35
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
40
         <221> DOMAIN
        <222> (2)..(7)
         <223> Cyclic
         <220>
45
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
50
         <221> MOD_RES
         <222> (8)..(9)
         <223> Beta-Ala
         <220>
55
         <223> C-term NH2
         <400> 300
```

Xaa Asp His Phe Arg Trp Lys Ala Ala Gly Arg Arg Arg Arg Gln 1 5 10 15

```
5
                Arg Arg Arg Arg
                                20
         <210> 301
         <211> 19
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <223> N-term Ac
         <220>
20
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
25
         <221> DOMAIN
         <222> (2)..(7)
         <223> Cyclic
         <220>
30
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
35
         <221> MOD_RES
         <222> (8)..(9)
         <223> Beta-Ala
         <220>
40
         <223> C-term NH2
         <400> 301
                Xaa Asp His Phe Arg Trp Lys Ala Ala Arg Arg Arg Arg Gln Arg
45
                Arg Arg Arg
         <210> 302
50
         <211> 20
         <212> PRT
         <213> Artificial Sequence
55
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
```

```
<223> N-term Ac
         <220>
         <221> MOD_RES
5
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
10
         <222> (2)..(7)
         <223> Cyclic
         <220>
         <221> MOD RES
15
         <222> (4)..(4)
         <223> D-Phe
         <220>
         <221> MOD_RES
20
         <222> (8)..(8)
         <223> Doc
         <220>
         <223> C-term NH2
25
         <400> 302
                 {\tt Xaa\ Asp\ His\ Phe\ Arg\ Trp\ Lys\ Xaa\ Tyr\ Gly\ Arg\ Arg\ Arg\ Arg\ Gln}
                 1
                                      5
                                                                 10
                                                                                            15
30
                 Arg Arg Arg Arg
                                 20
35
         <210> 303
         <211> 19
         <212> PRT
         <213> Artificial Sequence
40
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
50
         <220>
         <221> DOMAIN
         <222> (2)..(7)
         <223> Cyclic
55
         <220>
         <221> MOD RES
         <222> (4)..(4)
```

```
<223> D-Phe
        <220>
        <221> MOD_RES
        <222> (8)..(8)
5
        <223> Doc
        <220>
        <223> C-term NH2
10
        <400> 303
                Xaa Asp His Phe Arg Trp Lys Xaa Gly Arg Arg Arg Arg Gln Arg
                                                            10
                                                                                     15
15
               Arg Arg Arg
        <210> 304
20
        <211> 18
        <212> PRT
        <213> Artificial Sequence
        <220>
25
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <223> N-term Ac
30
        <220>
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
35
        <220>
        <221> DOMAIN
        <222> (2)..(7)
        <223> Cyclic
40
        <220>
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-Phe
45
        <220>
        <221> MOD_RES
        <222> (8)..(8)
        <223> Doc
        <220>
50
        <223> C-term NH2
        <400> 304
55
               Xaa Asp His Phe Arg Trp Lys Xaa Arg Arg Arg Arg Gln Arg Arg
                                                            10
```

Arg Arg

```
<210> 305
5
         <211> 21
         <212> PRT
         <213> Artificial Sequence
         <220>
10
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
20
         <220>
         <221> DOMAIN
         <222> (2)..(7)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
30
         <220>
         <221> MOD_RES
         <222> (8)..(9)
         <223> Doc
35
         <220>
         <223> C-term NH2
         <400> 305
40
                Xaa Asp His Phe Arg Trp Lys Xaa Xaa Tyr Gly Arg Arg Arg Arg Arg
                                                                10
                Gln Arg Arg Arg Arg
45
                                 20
         <210> 306
         <211> 20
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <223> N-term Ac
         <220>
```

```
<221> MOD_RES
         <222> (1)..(1)
         <223> Nle
5
         <220>
         <221> DOMAIN
         <222> (2)..(7)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (8)..(9)
         <223> Doc
20
         <220>
         <223> C-term NH2
         <400> 306
25
                Xaa Asp His Phe Arg Trp Lys Xaa Xaa Gly Arg Arg Arg Arg Gln
                                                               10
                Arg Arg Arg Arg
30
                                20
         <210> 307
         <211> 19
         <212> PRT
35
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
40
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
45
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
50
         <222> (2)..(7)
         <223> Cyclic
         <220>
         <221> MOD_RES
55
         <222> (4)..(4)
         <223> D-Phe
         <220>
```

```
<221> MOD_RES
         <222> (8)..(9)
         <223> Doc
5
         <220>
         <223> C-term NH2
         <400> 307
10
                Xaa Asp His Phe Arg Trp Lys Xaa Xaa Arg Arg Arg Arg Gln Arg
                Arg Arg Arg
15
         <210> 308
         <211> 20
         <212> PRT
         <213> Artificial Sequence
20
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
25
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
30
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(8)
35
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
40
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (7)..(7)
45
         <223> Beta-Ala
         <220>
         <221> MOD_RES
         <222> (9) .. (9)
50
         <223> Beta-Ala
         <220>
         <223> C-term NH2
55
         <400> 308
```

```
Xaa Asp His Phe Arg Trp Ala Lys Ala Tyr Gly Arg Arg Arg Arg 1 5 10 15

Gln Arg Arg 20
```

20 <210> 309

<211> 18 10 <212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

15 <220>

<223> N-term Ac

<220>

20 <221> MOD_RES <222> (1)..(1)

<223> Nle

<220>

25 <221> DOMAIN

<222> (2)..(8) <223> Cyclic

<220>

30 <221> MOD_RES

<222> (4)..(4) <223> D-Phe

<220>

35 <221> MOD_RES

<222> (7)..(7) <223> Beta-Ala

<220>

40 <221> MOD RES

<222> (9) .. (9)

<223> Beta-Ala

<220>

45 <223> C-term NH2

<400> 309

Xaa Asp His Phe Arg Trp Ala Lys Ala Arg Arg Arg Arg Gln Arg
1 5 10 15

Arg Arg

55 <210> 310

<211> 20

<212> PRT

<213> Artificial Sequence

```
<220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
5
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
10
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(8)
15
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
20
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (7)..(7)
25
         <223> Ahx
         <220>
         <221> MOD_RES
         <222> (9) .. (9)
30
         <223> Beta-Ala
         <220>
         <223> C-term NH2
35
         <400> 310
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Tyr Gly Arg Arg Arg Arg
40
                Gln Arg Arg Arg
                                20
         <210> 311
45
         <211> 18
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
55
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
```

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Ahx
15
         <220>
         <221> MOD_RES
         <222> (9) .. (9)
         <223> Beta-Ala
20
         <220>
         <223> C-term NH2
         <400> 311
25
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Arg Arg Arg Arg Gln Arg
                                     5
                                                                                         15
30
                Arg Arg
         <210> 312
         <211> 21
         <212> PRT
35
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
55
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
```

```
<220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
5
         <220>
         <221> MOD_RES
         <222> (10)..(10)
         <223> Beta-Ala
10
         <220>
         <223> C-term NH2
         <400> 312
15
                Phe Cys His Phe Arg Trp Ala Cys Thr Ala Tyr Gly Arg Arg Arg Arg
                                                               10
20
                Arg Gln Arg Arg Arg
                                20
         <210> 313
         <211> 19
25
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
35
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
45
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
50
         <220>
         <221> MOD RES
         <222> (8)..(8)
         <223> D-Cys
55
         <220>
         <221> MOD RES
         <222> (10)..(10)
```

```
<223> Beta-Ala
         <220>
         <223> C-term NH2
5
         <400> 313
                Phe Cys His Phe Arg Trp Ala Cys Thr Ala Arg Arg Arg Arg Gln
                                                               10
10
                Arg Arg Arg
         <210> 314
15
         <211> 20
         <212> PRT
         <213> Artificial Sequence
20
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
25
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
30
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
35
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
40
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
45
         <220>
         <221> MOD_RES
         <222> (9) .. (9)
         <223> Beta-Ala
         <220>
50
         <223> C-term NH2
         <400> 314
```

304

55

Xaa Cys His Phe Arg Trp Xaa Cys Ala Tyr Gly Arg Arg Arg Arg Arg

10

```
5
                Gln Arg Arg Arg
                                20
         <210> 315
         <211> 18
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <223> N-term Ac
         <220>
20
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
25
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
30
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
35
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
         <220>
40
         <221> MOD_RES
         <222> (9) .. (9)
         <223> Beta-Ala
         <220>
45
         <223> C-term NH2
         <400> 315
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Arg Arg Arg Arg Gln Arg
50
                                     5
                                                               10
                                                                                         15
                Arg Arg
55
         <210> 316
         <211> 20
         <212> PRT
         <213> Artificial Sequence
```

```
<220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
5
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
10
         <223> Cha
         <220>
         <221> DOMAIN
         <222> (2)..(8)
15
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
20
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (7)..(7)
25
         <223> Gaba
         <220>
         <221> MOD_RES
         <222> (9) .. (9)
30
         <223> Beta-Ala
         <220>
         <223> C-term NH2
35
         <400> 316
                Xaa Asp His Phe Arg Trp Xaa Lys Ala Tyr Gly Arg Arg Arg Arg
                                                                10
40
                Gln Arg Arg Arg
                                20
         <210> 317
45
         <211> 18
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
55
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Cha
```

```
<220>
        <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
15
         <220>
         <221> MOD_RES
         <222> (9) .. (9)
         <223> Beta-Ala
20
         <220>
         <223> C-term NH2
         <400> 317
25
                Xaa Asp His Phe Arg Trp Xaa Lys Ala Arg Arg Arg Arg Gln Arg
                                     5
                                                               10
                                                                                         15
30
                Arg Arg
         <210> 318
         <211> 20
         <212> PRT
35
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
40
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
45
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
50
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD_RES
55
         <222> (4)..(4)
         <223> D-Phe
         <220>
```

```
<221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
5
         <220>
         <221> MOD_RES
         <222> (9) .. (9)
         <223> Beta-Ala
10
         <220>
         <223> C-term NH2
         <400> 318
15
                Xaa Asp His Phe Arg Trp Xaa Lys Ala Tyr Gly Arg Arg Arg Arg Arg
                                     5
                                                               10
                                                                                         15
                Gln Arg Arg Arg
20
                                20
         <210> 319
         <211> 18
         <212> PRT
25
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
35
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
40
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD_RES
45
         <222> (4)..(4)
         <223> D-Phe
         <220>
         <221> MOD RES
         <222> (7)..(7)
50
         <223> Gaba
         <220>
         <221> MOD_RES
55
         <222> (9) .. (9)
         <223> Beta-Ala
         <220>
```

```
<223> C-term NH2
        <400> 319
5
               Xaa Asp His Phe Arg Trp Xaa Lys Ala Arg Arg Arg Arg Gln Arg
               Arg Arg
10
        <210> 320
        <211> 20
        <212> PRT
        <213> Artificial Sequence
15
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
20
        <223> N-term Ac
        <220>
        <221> MOD_RES
        <222> (1)..(1)
25
        <223> Chg
        <220>
        <221> DOMAIN
        <222> (2)..(8)
30
        <223> Cyclic
        <220>
        <221> MOD_RES
        <222> (4)..(4)
35
        <223> D-Phe
        <220>
        <221> MOD RES
        <222> (7)..(7)
40
        <223> Gaba
        <220>
        <221> MOD_RES
        <222> (9) .. (9)
45
        <223> Beta-Ala
        <220>
        <223> C-term NH2
        <400> 320
50
               Xaa Asp His Phe Arg Trp Xaa Lys Ala Tyr Gly Arg Arg Arg Arg
55
               Gln Arg Arg Arg
```

20

```
<210> 321
         <211> 18
         <212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
10
         <223> N-term Ac
         <220>
         <221> MOD RES
         <222> (1)..(1)
15
         <223> Chg
         <220>
         <221> DOMAIN
         <222> (2)..(8)
20
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (4)..(4)
25
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (7)..(7)
30
         <223> Gaba
         <220>
         <221> MOD_RES
         <222> (9) .. (9)
35
         <223> Beta-Ala
         <220>
         <223> C-term NH2
40
         <400> 321
                 Xaa Asp His Phe Arg Trp Xaa Lys Ala Arg Arg Arg Arg Gln Arg
                                                                10
45
                 Arg Arg
         <210> 322
         <211> 20
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <223> N-term Ac
```

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> hCha
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
20
         <220>
         <221> MOD_RES
         <222> (9) .. (9)
         <223> Beta-Ala
25
         <220>
         <223> C-term NH2
         <400> 322
30
                Xaa Asp His Phe Arg Trp Xaa Lys Ala Tyr Gly Arg Arg Arg Arg
                                                               10
35
                Gln Arg Arg Arg
                                20
         <210> 323
         <211> 18
         <212> PRT
40
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
50
         <222> (1)..(1)
         <223> hCha
         <220>
55
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
10
         <220>
         <221> MOD_RES
         <222> (9) .. (9)
         <223> Beta-Ala
15
         <220>
         <223> C-term NH2
         <400> 323
20
                Xaa Asp His Phe Arg Trp Xaa Lys Ala Arg Arg Arg Arg Gln Arg
25
                Arg Arg
         <210> 324
         <211> 21
         <212> PRT
30
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
35
         <220>
         <223> N-term Ac
         <220>
         <221> MOD RES
40
         <222> (1)..(1)
         <223> hCha
         <220>
         <221> DOMAIN
45
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
50
         <223> D-Phe
         <220>
         <221> MOD_RES
55
         <222> (7)..(7)
         <223> Gaba
         <220>
```

```
<221> MOD_RES
        <222> (9)..(10)
        <223> Beta-Ala
5
        <220>
        <223> C-term NH2
        <400> 324
10
                Xaa Asp His Phe Arg Trp Xaa Lys Ala Ala Tyr Gly Arg Arg Arg
                                                              10
                Arg Gln Arg Arg Arg
15
                                20
        <210> 325
        <211> 19
        <212> PRT
20
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
25
        <220>
        <223> N-term Ac
        <220>
        <221> MOD RES
30
        <222> (1)..(1)
        <223> hCha
        <220>
        <221> DOMAIN
35
        <222> (2)..(8)
        <223> Cyclic
        <220>
        <221> MOD RES
40
        <222> (4)..(4)
        <223> D-Phe
        <220>
        <221> MOD_RES
45
        <222> (7)..(7)
        <223> Gaba
        <220>
        <221> MOD RES
        <222> (9)..(10)
50
        <223> Beta-Ala
        <220>
        <223> C-term NH2
55
        <400> 325
```

Xaa Asp His Phe Arg Trp Xaa Lys Ala Ala Arg Arg Arg Arg Gln 1 5 10 15

```
5
                Arg Arg Arg
        <210> 326
        <211> 20
        <212> PRT
10
        <213> Artificial Sequence
        <223> Description of Artificial Sequence: Synthetic peptide
15
        <223> N-term Ac
        <220>
        <221> MOD_RES
20
        <222> (1)..(1)
        <223> hCha
        <220>
        <221> DOMAIN
25
        <222> (2)..(8)
        <223> Cyclic
        <220>
        <221> MOD RES
30
        <222> (4)..(4)
        <223> D-Phe
        <220>
        <221> MOD_RES
35
        <222> (7)..(7)
        <223> Gaba
        <220>
        <221> MOD RES
40
        <222> (9) .. (9)
        <223> Doc
        <220>
        <223> C-term NH2
45
        <400> 326
                Xaa Asp His Phe Arg Trp Xaa Lys Xaa Tyr Gly Arg Arg Arg Arg
                                                              10
50
                Gln Arg Arg Arg
                                20
55
        <210> 327
        <211> 18
        <212> PRT
        <213> Artificial Sequence
```

```
<220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
5
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
10
         <223> hCha
         <220>
         <221> DOMAIN
         <222> (2)..(8)
15
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
20
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (7)..(7)
25
         <223> Gaba
         <220>
         <221> MOD RES
         <222> (9) .. (9)
30
         <223> Doc
         <220>
         <223> C-term NH2
35
         <400> 327
                Xaa Asp His Phe Arg Trp Xaa Lys Xaa Arg Arg Arg Arg Gln Arg
                                                                10
40
                Arg Arg
         <210> 328
         <211> 21
45
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
         <220>
55
         <221> MOD_RES
         <222> (1)..(1)
         <223> hCha
```

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
15
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Doc
20
         <220>
         <223> C-term NH2
         <400> 328
25
                Xaa Asp His Phe Arg Trp Xaa Lys Xaa Xaa Tyr Gly Arg Arg Arg Arg
                1
                                     5
                                                               10
                                                                                         15
30
                Arg Gln Arg Arg Arg
                                20
         <210> 329
         <211> 19
35
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
40
         <220>
         <223> N-term Ac
         <220>
45
         <221> MOD_RES
         <222> (1)..(1)
         <223> hCha
         <220>
         <221> DOMAIN
50
         <222> (2)..(8)
         <223> Cyclic
         <220>
55
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
```

```
<220>
        <221> MOD_RES
        <222> (7)..(7)
        <223> Gaba
5
        <220>
        <221> MOD_RES
        <222> (9)..(10)
        <223> Doc
10
        <220>
        <223> C-term NH2
        <400> 329
15
                Xaa Asp His Phe Arg Trp Xaa Lys Xaa Xaa Arg Arg Arg Arg Gln
                                                              10
20
                Arg Arg Arg
        <210> 330
        <211> 21
        <212> PRT
25
        <213> Artificial Sequence
        <223> Description of Artificial Sequence: Synthetic peptide
30
        <220>
        <223> N-term Ac
        <220>
        <221> MOD_RES
35
        <222> (1)..(1)
        <223> hCha
        <220>
        <221> DOMAIN
40
        <222> (2)..(8)
        <223> Cyclic
        <220>
        <221> MOD_RES
45
        <222> (4)..(4)
        <223> D-Phe
        <220>
        <221> MOD RES
        <222> (7)..(7)
50
        <223> Gaba
        <220>
        <221> MOD_RES
55
        <222> (9) .. (9)
        <223> Beta-Ala
        <220>
```

```
<223> C-term NH2
        <400> 330
5
               Xaa Asp His Phe Arg Trp Xaa Lys Ala Tyr Gly Arg Arg Arg Arg
                                   5
               Gln Arg Arg Arg Arg
10
                               20
        <210> 331
        <211> 19
        <212> PRT
15
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
20
        <220>
        <223> N-term Ac
        <220>
        <221> MOD RES
25
        <222> (1)..(1)
        <223> hCha
        <220>
        <221> DOMAIN
30
        <222> (2)..(8)
        <223> Cyclic
        <220>
        <221> MOD_RES
35
        <222> (4)..(4)
        <223> D-Phe
        <220>
        <221> MOD RES
40
        <222> (7)..(7)
        <223> Gaba
        <220>
        <221> MOD_RES
45
        <222> (9)..(9)
        <223> Beta-Ala
        <220>
        <223> C-term NH2
50
        <400> 331
               Xaa Asp His Phe Arg Trp Xaa Lys Ala Arg Arg Arg Arg Gln Arg
                                                            10
                                                                                     15
55
```

Arg Arg Arg

```
<210> 332
         <211> 22
         <212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
10
         <223> N-term Ac
         <220>
         <221> MOD RES
         <222> (1)..(1)
15
         <223> hCha
         <220>
         <221> DOMAIN
         <222> (2)..(8)
20
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (4)..(4)
25
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (7)..(7)
30
         <223> Gaba
         <220>
         <221> MOD_RES
         <222> (9)..(10)
35
         <223> Beta-Ala
         <220>
         <223> C-term NH2
40
         <400> 332
                Xaa Asp His Phe Arg Trp Xaa Lys Ala Ala Tyr Gly Arg Arg Arg
45
                                         5
                                                                   10
                    1
                                                                                             15
                    Arg Gln Arg Arg Arg Arg
                                   20
50
         <210> 333
         <211> 20
         <212> PRT
         <213> Artificial Sequence
55
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
```

```
<220>
        <223> N-term Ac
        <220>
5
        <221> MOD_RES
        <222> (1)..(1)
        <223> hCha
        <220>
10
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
        <220>
15
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-Phe
        <220>
20
        <221> MOD_RES
        <222> (7)..(7)
        <223> Gaba
        <220>
25
        <221> MOD_RES
        <222> (9)..(10)
        <223> Beta-Ala
        <220>
30
        <223> C-term NH2
        <400> 333
                Xaa Asp His Phe Arg Trp Xaa Lys Ala Ala Arg Arg Arg Arg Gln
35
                Arg Arg Arg Arg
                                20
40
        <210> 334
        <211> 21
        <212> PRT
        <213> Artificial Sequence
45
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
50
        <223> N-term Ac
        <220>
        <221> MOD_RES
        <222> (1)..(1)
55
        <223> hCha
        <220>
        <221> DOMAIN
```

```
<222> (2)..(8)
        <223> Cyclic
        <220>
5
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-Phe
        <220>
10
        <221> MOD_RES
        <222> (7)..(7)
        <223> Gaba
        <220>
15
        <221> MOD_RES
        <222> (9) .. (9)
        <223> Doc
        <220>
20
        <223> C-term NH2
        <400> 334
                Xaa Asp His Phe Arg Trp Xaa Lys Xaa Tyr Gly Arg Arg Arg Arg
25
                                     5
                Gln Arg Arg Arg Arg
                                20
30
        <210> 335
        <211> 19
        <212> PRT
        <213> Artificial Sequence
35
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
40
        <223> N-term Ac
        <220>
        <221> MOD_RES
        <222> (1)..(1)
45
        <223> hCha
        <220>
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
50
        <220>
        <221> MOD_RES
        <222> (4)..(4)
55
        <223> D-Phe
        <220>
        <221> MOD_RES
```

```
<222> (7)..(7)
         <223> Gaba
         <220>
5
         <221> MOD_RES
         <222> (9) .. (9)
         <223> Doc
         <220>
10
         <223> C-term NH2
         <400> 335
                Xaa Asp His Phe Arg Trp Xaa Lys Xaa Arg Arg Arg Arg Gln Arg
15
                                                               10
                Arg Arg Arg
20
         <210> 336
         <211> 22
         <212> PRT
         <213> Artificial Sequence
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> hCha
35
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
45
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
50
         <220>
         <221> MOD RES
         <222> (9)..(10)
         <223> Doc
55
         <220>
         <223> C-term NH2
```

<400> 336

```
Xaa Asp His Phe Arg Trp Xaa Lys Xaa Xaa Tyr Gly Arg Arg Arg
5
               Arg Gln Arg Arg Arg Arg
10
        <210> 337
        <211> 20
        <212> PRT
        <213> Artificial Sequence
15
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <223> N-term Ac
20
        <220>
        <221> MOD_RES
        <222> (1)..(1)
        <223> hCha
25
        <220>
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
30
        <220>
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-Phe
35
        <220>
        <221> MOD RES
        <222> (7)..(7)
        <223> Gaba
40
        <220>
        <221> MOD_RES
        <222> (9)..(10)
        <223> Doc
45
        <220>
        <223> C-term NH2
        <400> 337
50
               Xaa Asp His Phe Arg Trp Xaa Lys Xaa Xaa Arg Arg Arg Arg Gln
                                   5
               1
                                                            10
                                                                                    15
                                             Arg Arg Arg Arg
55
                                                            20
        <210> 338
        <211> 20
```

```
<212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
10
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Chg
15
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
25
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
30
         <220>
         <221> MOD_RES
         <222> (9) .. (9)
         <223> Beta-Ala
35
         <220>
         <223> C-term NH2
         <400> 338
40
                 Xaa Asp His Phe Arg Trp Xaa Lys Ala Tyr Gly Arg Arg Arg Arg Arg
                                                                10
                 Gln Arg Arg Arg
45
                                 20
         <210> 339
         <211> 18
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <223> N-term Ac
         <220>
```

```
<221> MOD_RES
         <222> (1)..(1)
         <223> D-Chg
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
20
         <220>
         <221> MOD_RES
         <222> (9) .. (9)
         <223> Beta-Ala
25
         <220>
         <223> C-term NH2
         <400> 339
30
                Xaa Asp His Phe Arg Trp Xaa Lys Ala Arg Arg Arg Arg Gln Arg
                                     5
                                                               10
                                                                                         15
                1
                Arg Arg
35
         <210> 340
         <211> 20
         <212> PRT
         <213> Artificial Sequence
40
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
45
         <223> N-term Ac
        <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> hPhe
50
         <220>
         <221> DOMAIN
         <222> (2)..(8)
55
         <223> Cyclic
         <220>
         <221> MOD_RES
```

```
<222> (4)..(4)
        <223> D-Phe
        <220>
5
        <221> MOD_RES
        <222> (7)..(7)
        <223> Gaba
        <220>
10
        <221> MOD_RES
        <222> (9) .. (9)
        <223> Beta-Ala
        <220>
15
        <223> C-term NH2
        <400> 340
                Phe Asp His Phe Arg Trp Xaa Lys Ala Tyr Gly Arg Arg Arg Arg
20
                                                              10
                Gln Arg Arg Arg
                                20
25
        <210> 341
        <211> 18
        <212> PRT
        <213> Artificial Sequence
30
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
35
        <223> N-term Ac
        <220>
        <221> MOD RES
        <222> (1)..(1)
40
        <223> hPhe
        <220>
        <221> DOMAIN
        <222> (2)..(8)
45
        <223> Cyclic
        <220>
        <221> MOD_RES
        <222> (4)..(4)
50
        <223> D-Phe
        <220>
        <221> MOD_RES
        <222> (7)..(7)
55
        <223> Gaba
        <220>
        <221> MOD_RES
```

```
<222> (9) .. (9)
         <223> Beta-Ala
         <220>
5
         <223> C-term NH2
         <400> 341
                Phe Asp His Phe Arg Trp Xaa Lys Ala Arg Arg Arg Arg Gln Arg
10
                                      5
                                                                10
                                                                                          15
                Arg Arg
15
         <210> 342
         <211> 20
         <212> PRT
         <213> Artificial Sequence
20
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
25
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
30
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
35
         <220>
         <221> MOD RES
         <222> (4)..(4)
         <223> D-Phe
40
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> D-Trp
45
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
50
         <220>
         <221> MOD RES
         <222> (9) .. (9)
         <223> Beta-Ala
55
         <220>
         <223> C-term NH2
```

<400> 342

```
Xaa Cys His Phe Arg Trp Xaa Cys Ala Tyr Gly Arg Arg Arg Arg
5
                Gln Arg Arg Arg
                                20
10
         <210> 343
         <211> 18
         <212> PRT
         <213> Artificial Sequence
15
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
20
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
25
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
30
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
35
         <220>
         <221> MOD RES
         <222> (6) .. (6)
         <223> D-Trp
40
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
45
         <220>
         <221> MOD_RES
         <222> (9) .. (9)
         <223> Beta-Ala
50
         <220>
         <223> C-term NH2
         <400> 343
55
```

Xaa Cys His Phe Arg Trp Xaa Cys Ala Arg Arg Arg Arg Gln Arg 10

```
5
                Arg Arg
         <210> 344
         <211> 20
         <212> PRT
10
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <223> N-term Ac
         <220>
         <221> MOD_RES
20
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
25
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD RES
30
         <222> (4)..(4)
         <223> D-Phe
         <220>
         <221> MOD_RES
35
         <222> (6) .. (6)
         <223> D-Trp
         <220>
         <221> MOD RES
40
         <222> (7)..(7)
         <223> Ahx
         <220>
         <221> MOD_RES
45
         <222> (9) .. (9)
         <223> Beta-Ala
         <220>
         <223> C-term NH2
50
         <400> 344
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Tyr Gly Arg Arg Arg Arg
55
                Gln Arg Arg Arg
```

20

```
<210> 345
         <211> 18
         <212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
10
         <223> N-term Ac
         <220>
         <221> MOD RES
         <222> (1)..(1)
15
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(8)
20
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (4)..(4)
25
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (6) .. (6)
30
         <223> D-Trp
         <220>
         <221> MOD_RES
         <222> (7)..(7)
35
         <223> Ahx
         <220>
         <221> MOD RES
         <222> (9) .. (9)
40
         <223> Beta-Ala
         <220>
         <223> C-term NH2
45
         <400> 345
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Arg Arg Arg Arg Gln Arg
                1
                                     5
                                                               10
                                                                                          15
50
                Arg Arg
         <210> 346
         <211> 20
55
         <212> PRT
         <213> Artificial Sequence
```

<220>

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
10
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
15
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
20
         <220>
         <221> MOD_RES
         <222> (6) .. (6)
         <223> D-Trp
25
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
30
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
35
         <220>
         <223> C-term NH2
         <400> 346
40
                 Xaa Cys His Phe Arg Trp Ala Cys Ala Tyr Gly Arg Arg Arg Arg Arg
                                                                 10
45
                 Gln Arg Arg Arg
                                 20
         <210> 347
         <211> 18
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <223> N-term Ac
```

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (6) .. (6)
         <223> D-Trp
20
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
25
         <220>
         <221> MOD_RES
         <222> (9) .. (9)
         <223> Beta-Ala
30
         <220>
         <223> C-term NH2
         <400> 347
35
                Xaa Cys His Phe Arg Trp Ala Cys Ala Arg Arg Arg Arg Gln Arg
40
                Arg Arg
         <210> 348
         <211> 20
         <212> PRT
45
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
50
         <223> N-term Ac
         <220>
         <221> MOD_RES
55
         <222> (1)..(1)
         <223> Nle
         <220>
```

```
<221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
10
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> Pen
20
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
25
         <220>
         <223> C-term NH2
         <400> 348
30
                Xaa Cys Ala His Phe Arg Trp Xaa Ala Tyr Gly Arg Arg Arg Arg Arg
                                                               10
                1
                                     5
                Gln Arg Arg Arg
35
                                20
         <210> 349
         <211> 19
         <212> PRT
40
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
50
         <223> Nle
         <220>
         <221> DOMAIN
55
         <222> (2)..(8)
         <223> Cyclic
         <220>
```

```
<221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
5
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> Pen
15
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
20
         <220>
         <223> C-term NH2
         <400> 349
25
                Xaa Cys Ala His Phe Arg Trp Xaa Ala Gly Arg Arg Arg Arg Gln
                Arg Arg Arg
30
         <210> 350
         <211> 18
         <212> PRT
         <213> Artificial Sequence
35
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
40
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
45
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
50
         <220>
         <221> MOD_RES
         <222> (3)..(3)
55
         <223> D-Ala
         <220>
         <221> MOD_RES
```

<222> (5)..(5) <223> D-Phe <220> 5 <221> MOD_RES <222> (8)..(8) <223> Pen <220> 10 <221> MOD_RES <222> (9)..(9) <223> Beta-Ala <220> 15 <223> C-term NH2 <400> 350 Xaa Cys Ala His Phe Arg Trp Xaa Ala Arg Arg Arg Arg Gln Arg 20 5 1 10 15 25 Arg Arg <210> 351 <211> 21 <212> PRT 30 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide 35 <220> <223> N-term Ac <220> <221> MOD_RES <222> (1)..(1) 40 <223> Nle <220> <221> DOMAIN 45 <222> (2)..(8) <223> Cyclic <220> <221> MOD RES <222> (3)..(3) 50 <223> D-Ala <220> <221> MOD_RES 55 <222> (5)..(5) <223> D-Phe <220>

```
<221> MOD_RES
        <222> (8)..(8)
        <223> Pen
5
        <220>
        <221> MOD_RES
        <222> (9)..(10)
        <223> Beta-Ala
10
        <220>
        <223> C-term NH2
        <400> 351
15
                Xaa Cys Ala His Phe Arg Trp Xaa Ala Ala Tyr Gly Arg Arg Arg
                                                                                        15
                Arg Gln Arg Arg Arg
20
                                20
        <210> 352
        <211> 20
        <212> PRT
25
        <213> Artificial Sequence
        <223> Description of Artificial Sequence: Synthetic peptide
30
        <220>
        <223> N-term Ac
        <220>
        <221> MOD_RES
35
        <222> (1)..(1)
        <223> Nle
        <220>
        <221> DOMAIN
40
        <222> (2)..(8)
        <223> Cyclic
        <220>
        <221> MOD_RES
45
        <222> (3)..(3)
        <223> D-Ala
        <220>
        <221> MOD_RES
        <222> (5)..(5)
50
        <223> D-Phe
        <220>
        <221> MOD_RES
55
        <222> (8)..(8)
        <223> Pen
        <220>
```

```
<221> MOD_RES
         <222> (9)..(10)
         <223> Beta-Ala
5
         <220>
         <223> C-term NH2
         <400> 352
10
                Xaa Cys Ala His Phe Arg Trp Xaa Ala Ala Gly Arg Arg Arg Arg
                                                               10
                Gln Arg Arg Arg
15
                                20
         <210> 353
         <211> 19
         <212> PRT
20
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
25
         <220>
         <223> N-term Ac
         <220>
         <221> MOD RES
30
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
35
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD RES
40
         <222> (3)..(3)
         <223> D-Ala
         <220>
         <221> MOD_RES
45
         <222> (5)..(5)
         <223> D-Phe
         <220>
         <221> MOD RES
         <222> (8)..(8)
50
         <223> Pen
         <220>
         <221> MOD_RES
55
         <222> (9)..(10)
         <223> Beta-Ala
         <220>
```

<223> C-term NH2

55

<400> 354

```
<400> 353
5
                {\tt Xaa~Cys~Ala~His~Phe~Arg~Trp~Xaa~Ala~Ala~Arg~Arg~Arg~Arg~Arg~Gln}
                Arg Arg Arg
10
         <210> 354
         <211> 20
         <212> PRT
         <213> Artificial Sequence
15
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
20
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
25
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(8)
30
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (3)..(3)
35
         <223> D-Ala
         <220>
         <221> MOD RES
         <222> (5)..(5)
40
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (8)..(8)
45
         <223> Pen
         <220>
         <221> MOD_RES
         <222> (9)..(9)
50
         <223> Doc
         <220>
         <223> C-term NH2
```

Xaa Cys Ala His Phe Arg Trp Xaa Xaa Tyr Gly Arg Arg Arg Arg 1 5 10 15

```
5
                Gln Arg Arg Arg
                                20
        <210> 355
        <211> 19
10
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
15
        <220>
        <223> N-term Ac
        <220>
20
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
        <220>
25
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
        <220>
30
        <221> MOD_RES
        <222> (3)..(3)
        <223> D-Ala
        <220>
35
        <221> MOD_RES
        <222> (5)..(5)
        <223> D-Phe
        <220>
40
        <221> MOD RES
        <222> (8)..(8)
        <223> Pen
        <220>
45
        <221> MOD_RES
        <222> (9)..(9)
        <223> Doc
        <220>
        <223> C-term NH2
50
        <400> 355
                Xaa Cys Ala His Phe Arg Trp Xaa Xaa Gly Arg Arg Arg Arg Gln
55
                                                               10
```

Arg Arg Arg

```
<210> 356
         <211> 18
         <212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
10
         <223> N-term Ac
         <220>
         <221> MOD RES
         <222> (1)..(1)
15
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(8)
20
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (3)..(3)
25
         <223> D-Ala
         <220>
         <221> MOD_RES
         <222> (5)..(5)
30
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (8)..(8)
35
         <223> Pen
         <220>
         <221> MOD RES
         <222> (9)..(9)
40
         <223> Doc
         <220>
         <223> C-term NH2
45
         <400> 356
                Xaa Cys Ala His Phe Arg Trp Xaa Xaa Arg Arg Arg Arg Gln Arg
                1
                                     5
                                                               10
                                                                                         15
50
                Arg Arg
         <210> 357
         <211> 21
55
         <212> PRT
         <213> Artificial Sequence
         <220>
```

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
10
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
15
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
20
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
25
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> Pen
30
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Doc
35
         <220>
         <223> C-term NH2
         <400> 357
40
                Xaa Cys Ala His Phe Arg Trp Xaa Xaa Xaa Tyr Gly Arg Arg Arg Arg
                                                                10
                 1
                                      5
                                                                                          15
45
                Arg Gln Arg Arg Arg
                                 20
         <210> 358
         <211> 20
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <223> N-term Ac
```

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
15
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
20
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> Pen
25
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Doc
30
         <220>
         <223> C-term NH2
         <400> 358
35
                Xaa Cys Ala His Phe Arg Trp Xaa Xaa Xaa Gly Arg Arg Arg Arg
                                                                                         15
                                               Gln Arg Arg Arg
40
                                                               20
         <210> 359
         <211> 19
         <212> PRT
45
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
50
         <223> N-term Ac
         <220>
         <221> MOD_RES
55
         <222> (1)..(1)
         <223> Nle
         <220>
```

```
<221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
10
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> Pen
20
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Doc
25
         <220>
         <223> C-term NH2
         <400> 359
30
                Xaa Cys Ala His Phe Arg Trp Xaa Xaa Xaa Arg Arg Arg Arg Gln
                                     5
                                                               10
                                                                                         15
                1
                Arg Arg Arg
35
         <210> 360
         <211> 20
         <212> PRT
         <213> Artificial Sequence
40
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
45
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
         <220>
         <221> DOMAIN
50
         <222> (2)..(8)
         <223> Cyclic
         <220>
55
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
```

```
<220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
5
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
10
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
15
         <220>
         <223> C-term NH2
         <400> 360
20
                Phe Cys His Tyr Arg Trp Ala Cys Ala Tyr Gly Arg Arg Arg Arg Arg
                                                               10
25
                Gln Arg Arg Arg
                                20
         <210> 361
         <211> 18
30
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
35
         <220>
         <221> MOD RES
         <222> (1)..(1)
         <223> D-Phe
40
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
50
         <220>
         <221> MOD RES
         <222> (7)..(7)
         <223> Beta-Ala
55
         <220>
         <221> MOD RES
         <222> (8)..(8)
```

```
<223> D-Cys
         <220>
         <221> MOD_RES
5
         <222> (9)..(9)
         <223> Beta-Ala
         <220>
         <223> C-term NH2
10
         <400> 361
                Phe Cys His Tyr Arg Trp Ala Cys Ala Arg Arg Arg Arg Gln Arg
                                     5
                                                               10
                                                                                         15
15
                Arg Arg
         <210> 362
20
         <211> 19
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD_RES
         <222> (1)..(1)
30
         <223> D-Phe
         <220>
         <221> DOMAIN
         <222> (2)..(8)
35
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
40
         <223> D-(Et)Tyr
         <220>
         <221> MOD_RES
         <222> (7)..(7)
45
         <223> Beta-Ala
        <220>
         <221> MOD_RES
         <222> (8)..(8)
50
         <223> D-Cys
         <220>
         <221> MOD_RES
         <222> (9)..(9)
55
         <223> Beta-Ala
         <220>
```

<223> C-term NH2

<400> 362

```
Phe Cys His Tyr Arg Trp Ala Cys Ala Gly Arg Arg Arg Arg Gln
                                                            10
5
               Arg Arg Arg
        <210> 363
10
        <211> 19
        <212> PRT
        <213> Artificial Sequence
15
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <221> MOD RES
        <222> (1)..(1)
20
        <223> D-Phe
        <220>
        <221> DOMAIN
        <222> (2)..(8)
25
        <223> Cyclic
        <220>
        <221> MOD RES
        <222> (4)..(4)
30
        <223> D-(Et)Tyr
        <220>
        <221> MOD_RES
        <222> (7)..(7)
35
        <223> Beta-Ala
        <220>
        <221> MOD RES
        <222> (8)..(8)
40
        <223> D-Cys
        <220>
        <221> MOD_RES
        <222> (9)..(9)
45
        <223> Beta-Ala
        <220>
        <223> C-term NH2
        <400> 363
50
               Phe Cys His Tyr Arg Trp Ala Cys Ala Arg Arg Arg Arg Gln Arg
                1
                                    5
                                                            10
                                                                                     15
55
               Arg Arg Arg
        <210> 364
```

```
<211> 21
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD_RES
10
         <222> (1)..(1)
         <223> D-Phe
         <220>
         <221> DOMAIN
15
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD_RES
20
         <222> (4)..(4)
         <223> D-(Et)Tyr
         <220>
         <221> MOD RES
25
         <222> (7)..(7)
         <223> Beta-Ala
         <220>
         <221> MOD RES
30
         <222> (8)..(8)
         <223> D-Cys
         <220>
         <221> MOD_RES
35
         <222> (9)..(10)
         <223> Beta-Ala
         <220>
         <223> C-term NH2
40
         <400> 364
                Phe Cys His Tyr Arg Trp Ala Cys Ala Ala Tyr Gly Arg Arg Arg Arg
                                      5
                                                                                           15
45
                                             Arg Gln Arg Arg Arg
                                                              20
         <210> 365
         <211> 19
50
         <212> PRT
         <213> Artificial Sequence
         <220>
55
         <223> Description of Artificial Sequence: Synthetic peptide
         <221> MOD_RES
```

```
<222> (1)..(1)
         <223> D-Phe
         <220>
5
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
10
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
         <220>
15
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
         <220>
20
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
         <220>
25
         <221> MOD_RES
         <222> (9)..(10)
         <223> Beta-Ala
         <220>
30
         <223> C-term NH2
         <400> 365
                Phe Cys His Tyr Arg Trp Ala Cys Ala Ala Arg Arg Arg Arg Gln
35
                Arg Arg Arg
40
         <210> 366
         <211> 20
         <212> PRT
         <213> Artificial Sequence
45
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD_RES
         <222> (1)..(1)
50
         <223> D-Phe
         <220>
         <221> DOMAIN
55
         <222> (2)..(8)
         <223> Cyclic
         <220>
```

```
<221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
5
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
10
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
15
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Beta-Ala
20
         <220>
         <223> C-term NH2
         <400> 366
25
                Phe Cys His Tyr Arg Trp Ala Cys Ala Ala Gly Arg Arg Arg Arg Arg
                                                               10
                Gln Arg Arg Arg
30
                                20
         <210> 367
         <211> 20
         <212> PRT
35
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
55
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
```

```
<220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
5
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Beta-Ala
10
         <220>
         <223> C-term NH2
         <400> 367
15
                Phe Cys His Tyr Arg Trp Ala Cys Ala Ala Arg Arg Arg Arg Gln
                                                               10
20
                Arg Arg Arg Arg
                                20
         <210> 368
         <211> 20
25
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
35
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
45
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
50
         <220>
         <221> MOD RES
         <222> (8)..(8)
         <223> D-Cys
55
         <220>
         <221> MOD RES
         <222> (9)..(9)
```

```
<223> Doc
         <220>
         <223> C-term NH2
5
         <400> 368
                Phe Cys His Tyr Arg Trp Ala Cys Xaa Tyr Gly Arg Arg Arg Arg
                                                               10
10
                Gln Arg Arg Arg
                               20
15
         <210> 369
         <211> 18
         <212> PRT
         <213> Artificial Sequence
20
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD RES
25
         <222> (1)..(1)
         <223> D-Phe
         <220>
         <221> DOMAIN
30
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD_RES
35
         <222> (4)..(4)
         <223> D-(Et)Tyr
         <220>
         <221> MOD_RES
40
         <222> (7)..(7)
         <223> Beta-Ala
         <220>
         <221> MOD_RES
45
         <222> (8)..(8)
         <223> D-Cys
         <220>
         <221> MOD RES
         <222> (9)..(9)
50
         <223> Doc
         <220>
         <223> C-term NH2
55
         <400> 369
```

Phe Cys His Tyr Arg Trp Ala Cys Xaa Arg Arg Arg Arg Arg Gln Arg 1 5 10 15

```
5
                Arg Arg
        <210> 370
        <211> 19
        <212> PRT
10
        <213> Artificial Sequence
        <223> Description of Artificial Sequence: Synthetic peptide
15
        <220>
        <221> MOD_RES
        <222> (1)..(1)
        <223> D-Phe
20
        <220>
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
25
        <220>
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-(Et)Tyr
30
        <220>
        <221> MOD_RES
        <222> (7)..(7)
        <223> Beta-Ala
35
        <220>
        <221> MOD_RES
        <222> (8)..(8)
        <223> D-Cys
40
        <220>
        <221> MOD_RES
        <222> (9)..(9)
        <223> Doc
45
        <220>
        <223> C-term NH2
        <400> 370
50
                Phe Cys His Tyr Arg Trp Ala Cys Xaa Gly Arg Arg Arg Arg Gln
                                     5
                                                              10
                Arg Arg Arg
55
        <210> 371
        <211> 19
        <212> PRT
```

```
<213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
5
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
10
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
15
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
20
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
25
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
30
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Doc
35
         <220>
         <223> C-term NH2
         <400> 371
40
                 Phe Cys His Tyr Arg Trp Ala Cys Xaa Arg Arg Arg Arg Gln Arg
                                                                10
                                                                                           15
                                      5
45
                 Arg Arg Arg
         <210> 372
         <211> 21
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
```

```
<220>
        <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
10
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
15
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
20
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Doc
25
         <220>
         <223> C-term NH2
         <400> 372
30
                Phe Cys His Tyr Arg Trp Ala Cys Xaa Xaa Tyr Gly Arg Arg Arg
                                                               10
35
                Arg Gln Arg Arg Arg
                                20
         <210> 373
         <211> 19
         <212> PRT
40
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
50
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
55
         <220>
         <221> MOD RES
         <222> (4)..(4)
```

```
<223> D-(Et)Tyr
         <220>
         <221> MOD_RES
5
         <222> (7)..(7)
         <223> Beta-Ala
         <220>
         <221> MOD_RES
10
         <222> (8)..(8)
         <223> D-Cys
         <220>
         <221> MOD RES
15
         <222> (9)..(10)
         <223> Doc
         <220>
         <223> C-term NH2
20
         <400> 373
                Phe Cys His Tyr Arg Trp Ala Cys Xaa Xaa Arg Arg Arg Arg Gln
                                                               10
25
                Arg Arg Arg
         <210> 374
30
         <211> 20
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD RES
         <222> (1)..(1)
40
         <223> D-Phe
         <220>
         <221> DOMAIN
         <222> (2)..(8)
45
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (4)..(4)
50
         <223> D-(Et)Tyr
         <220>
         <221> MOD_RES
         <222> (7)..(7)
55
         <223> Beta-Ala
         <220>
         <221> MOD_RES
```

```
<222> (8)..(8)
         <223> D-Cys
         <220>
5
         <221> MOD_RES
         <222> (9)..(10)
         <223> Doc
         <220>
10
         <223> C-term NH2
         <400> 374
                Phe Cys His Tyr Arg Trp Ala Cys Xaa Xaa Gly Arg Arg Arg Arg
15
                                                               10
                Gln Arg Arg Arg
20
         <210> 375
         <211> 20
         <212> PRT
         <213> Artificial Sequence
25
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
30
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
         <220>
35
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
40
         <221> MOD_RES
        <222> (4)..(4)
         <223> D-(Et)Tyr
         <220>
45
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
         <220>
         <221> MOD_RES
50
         <222> (8)..(8)
         <223> D-Cys
         <220>
55
         <221> MOD_RES
         <222> (9)..(10)
         <223> Doc
```

```
<220>
         <223> C-term NH2
         <400> 375
5
                Phe Cys His Tyr Arg Trp Ala Cys Xaa Xaa Arg Arg Arg Arg Gln
                                                               10
10
                Arg Arg Arg Arg
                                20
         <210> 376
         <211> 21
15
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
20
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
25
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
30
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
35
         <220>
         <221> MOD RES
         <222> (5)..(5)
         <223> hArg
40
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
45
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
50
         <220>
         <221> MOD RES
         <222> (10)..(10)
         <223> Beta-Ala
55
         <220>
         <223> C-term NH2
```

Phe Cys His Tyr Arg Trp Ala Cys Thr Ala Tyr Gly Arg Arg Arg

<400> 376

55

<400> 377

```
10
5
                                              Arg Gln Arg Arg Arg
                                                               20
         <210> 377
10
         <211> 19
         <212> PRT
         <213> Artificial Sequence
15
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD RES
         <222> (1)..(1)
20
         <223> D-Phe
         <220>
         <221> DOMAIN
         <222> (2)..(8)
25
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
30
         <223> D-(Et)Tyr
         <220>
         <221> MOD_RES
         <222> (5)..(5)
35
         <223> hArg
         <220>
         <221> MOD RES
         <222> (7)..(7)
40
         <223> Beta-Ala
         <220>
         <221> MOD_RES
         <222> (8)..(8)
45
         <223> D-Cys
         <220>
         <221> MOD_RES
         <222> (10)..(10)
         <223> Beta-Ala
50
         <220>
         <223> C-term NH2
```

Phe Cys His Tyr Arg Trp Ala Cys Thr Ala Arg Arg Arg Arg Gln 1 5 10 15

```
5
                 Arg Arg Arg
         <210> 378
         <211> 22
         <212> PRT
10
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
35
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
40
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
45
         <220>
         <221> MOD_RES
         <222> (10)..(11)
         <223> Beta-Ala
         <220>
50
         <223> C-term NH2
         <400> 378
```

359

55

Phe Cys His Tyr Arg Trp Ala Cys Thr Ala Ala Tyr Gly Arg Arg 1 5 10 15

```
5
                 Arg Arg Gln Arg Arg Arg
                                 20
         <210> 379
         <211> 20
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
35
         <220>
         <221> MOD RES
         <222> (7)..(7)
         <223> Beta-Ala
40
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
45
         <220>
         <221> MOD_RES
         <222> (10)..(11)
         <223> Beta-Ala
50
         <220>
         <223> C-term NH2
         <400> 379
55
```

Phe Cys His Tyr Arg Trp Ala Cys Thr Ala Ala Arg Arg Arg Arg 1 5 10 15

```
5
                 Gln Arg Arg Arg
                                 20
         <210> 380
         <211> 21
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
35
         <220>
         <221> MOD RES
         <222> (7)..(7)
         <223> Beta-Ala
40
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
45
         <220>
         <221> MOD_RES
         <222> (10)..(10)
         <223> Doc
50
         <220>
         <223> C-term NH2
         <400> 380
55
```

Phe Cys His Tyr Arg Trp Ala Cys Thr Xaa Tyr Gly Arg Arg Arg 1 5 10 15

```
5
                 Arg Gln Arg Arg Arg
                                 20
         <210> 381
         <211> 19
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
35
         <220>
         <221> MOD RES
         <222> (7)..(7)
         <223> Beta-Ala
40
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
45
         <220>
         <221> MOD_RES
         <222> (10)..(10)
         <223> Doc
50
         <220>
         <223> C-term NH2
         <400> 381
55
```

Phe Cys His Tyr Arg Trp Ala Cys Thr Xaa Arg Arg Arg Arg Gln 1 5 10 15

```
5
                 Arg Arg Arg
         <210> 382
         <211> 22
         <212> PRT
10
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
35
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
40
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
45
         <220>
         <221> MOD_RES
         <222> (10)..(11)
         <223> Doc
         <220>
50
         <223> C-term NH2
         <400> 382
```

55

Phe Cys His Tyr Arg Trp Ala Cys Thr Xaa Xaa Tyr Gly Arg Arg 1 5 10 15

```
5
                 Arg Arg Gln Arg Arg Arg
                                 20
         <210> 383
         <211> 22
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
35
         <220>
         <221> MOD RES
         <222> (7)..(7)
         <223> Beta-Ala
40
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
45
         <220>
         <221> MOD_RES
         <222> (10)..(10)
         <223> Beta-Ala
50
         <220>
         <223> C-term NH2
         <400> 383
55
```

Phe Cys His Tyr Arg Trp Ala Cys Thr Ala Tyr Gly Arg Arg Arg 1 5 10 15

```
5
                 Arg Gln Arg Arg Arg
                                 20
         <210> 384
         <211> 20
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
35
         <220>
         <221> MOD RES
         <222> (7)..(7)
         <223> Beta-Ala
40
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
45
         <220>
         <221> MOD_RES
         <222> (10)..(10)
         <223> Beta-Ala
50
         <220>
         <223> C-term NH2
         <400> 384
55
```

Phe Cys His Tyr Arg Trp Ala Cys Thr Ala Arg Arg Arg Arg Gln 1 5 10 15

```
5
                 Arg Arg Arg Arg
                                 20
         <210> 385
         <211> 23
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
35
         <220>
         <221> MOD RES
         <222> (7)..(7)
         <223> Beta-Ala
40
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
45
         <220>
         <221> MOD_RES
         <222> (10)..(11)
         <223> Beta-Ala
50
         <220>
         <223> C-term NH2
         <400> 385
55
```

Phe Cys His Tyr Arg Trp Ala Cys Thr Ala Ala Tyr Gly Arg Arg 1 5 10 15

```
5
                 Arg Arg Gln Arg Arg Arg
                                 20
         <210> 386
         <211> 21
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
35
         <220>
         <221> MOD RES
         <222> (7)..(7)
         <223> Beta-Ala
40
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
45
         <220>
         <221> MOD_RES
         <222> (10)..(11)
         <223> Beta-Ala
50
         <220>
         <223> C-term NH2
         <400> 386
55
```

Phe Cys His Tyr Arg Trp Ala Cys Thr Ala Ala Arg Arg Arg Arg 1 5 10 15

```
5
                 Gln Arg Arg Arg Arg
                                 20
         <210> 387
         <211> 22
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
35
         <220>
         <221> MOD RES
         <222> (7)..(7)
         <223> Beta-Ala
40
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
45
         <220>
         <221> MOD_RES
         <222> (10)..(10)
         <223> Doc
50
         <220>
         <223> C-term NH2
         <400> 387
55
```

Phe Cys His Tyr Arg Trp Ala Cys Thr Xaa Tyr Gly Arg Arg Arg 1 5 10 15

```
5
                 Arg Gln Arg Arg Arg
                                 20
         <210> 388
         <211> 20
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
35
         <220>
         <221> MOD RES
         <222> (7)..(7)
         <223> Beta-Ala
40
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
45
         <220>
         <221> MOD_RES
         <222> (10)..(10)
         <223> Doc
50
         <220>
         <223> C-term NH2
         <400> 388
55
```

Phe Cys His Tyr Arg Trp Ala Cys Thr Xaa Arg Arg Arg Arg Gln 1 5 10 15

```
5
                 Arg Arg Arg Arg
                                 20
         <210> 389
         <211> 23
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
35
         <220>
         <221> MOD RES
         <222> (7)..(7)
         <223> Beta-Ala
40
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
45
         <220>
         <221> MOD_RES
         <222> (10)..(11)
         <223> Doc
50
         <220>
         <223> C-term NH2
         <400> 389
55
```

Phe Cys His Tyr Arg Trp Ala Cys Thr Xaa Xaa Tyr Gly Arg Arg 1 5 10 15

```
5
                 Arg Arg Gln Arg Arg Arg
                                 20
         <210> 390
         <211> 21
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
35
         <220>
         <221> MOD RES
         <222> (7)..(7)
         <223> Beta-Ala
40
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
45
         <220>
         <221> MOD_RES
         <222> (10)..(11)
         <223> Doc
50
         <220>
         <223> C-term NH2
         <400> 390
55
```

Phe Cys His Tyr Arg Trp Ala Cys Thr Xaa Xaa Arg Arg Arg Arg 1 5 10 15

```
5
                 Gln Arg Arg Arg Arg
                                 20
         <210> 391
         <211> 21
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
30
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
35
         <220>
         <221> MOD RES
         <222> (6)..(6)
         <223> Bip
40
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
45
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
50
         <220>
         <221> MOD RES
         <222> (10)..(10)
         <223> Beta-Ala
55
         <220>
         <223> C-term NH2
```

Phe Cys His Tyr Arg Xaa Ala Cys Thr Ala Tyr Gly Arg Arg Arg

<400> 391

```
5
                 Arg Gln Arg Arg Arg
10
         <210> 392
         <211> 22
         <212> PRT
         <213> Artificial Sequence
15
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD_RES
20
         <222> (1)..(1)
         <223> D-Phe
         <220>
         <221> DOMAIN
25
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD RES
30
         <222> (4)..(4)
         <223> D-(Et)Tyr
         <220>
         <221> MOD_RES
35
         <222> (5)..(5)
         <223> hArg
         <220>
         <221> MOD RES
40
         <222> (6)..(6)
         <223> Bip
         <220>
         <221> MOD_RES
45
         <222> (7)..(7)
         <223> Beta-Ala
         <220>
         <221> MOD RES
50
         <222> (8)..(8)
         <223> D-Cys
         <220>
         <221> MOD_RES
55
         <222> (10)..(10)
         <223> Beta-Ala
         <220>
```

```
<223> C-term NH2
        <400> 392
5
                Phe Cys His Tyr Arg Xaa Ala Cys Thr Ala Tyr Gly Arg Arg Arg
                                     5
                                                              10
                Arg Gln Arg Arg Arg Arg
10
        <210> 393
        <211> 19
        <212> PRT
15
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
20
        <220>
        <221> MOD_RES
        <222> (1)..(1)
        <223> D-Phe
25
        <220>
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
30
        <220>
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-(Et)Tyr
35
        <220>
        <221> MOD_RES
        <222> (5)..(5)
        <223> hArg
40
        <220>
        <221> MOD_RES
        <222> (6)..(6)
        <223> Bip
45
        <220>
        <221> MOD_RES
        <222> (7)..(7)
        <223> Beta-Ala
        <220>
50
        <221> MOD_RES
        <222> (8)..(8)
        <223> D-Cys
55
        <220>
        <221> MOD_RES
```

<222> (10)..(10) <223> Beta-Ala

```
<220>
         <223> C-term NH2
         <400> 393
5
                Phe Cys His Tyr Arg Xaa Ala Cys Thr Ala Arg Arg Arg Arg Gln
10
                Arg Arg Arg
         <210> 394
        <211> 22
         <212> PRT
15
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
20
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
25
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
30
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
35
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
40
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> Bip
45
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
         <220>
50
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
55
         <220>
         <221> MOD_RES
         <222> (10)..(11)
         <223> Beta-Ala
```

```
<220>
         <223> C-term NH2
         <400> 394
5
                Phe Cys His Tyr Arg Xaa Ala Cys Thr Ala Ala Tyr Gly Arg Arg Arg
                                                               10
10
                Arg Arg Gln Arg Arg Arg
                                20
         <210> 395
         <211> 20
15
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
20
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
25
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
30
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
35
         <220>
         <221> MOD RES
         <222> (5)..(5)
         <223> hArg
40
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> Bip
45
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
50
         <220>
         <221> MOD RES
         <222> (8)..(8)
         <223> D-Cys
55
         <220>
         <221> MOD RES
         <222> (10)..(11)
```

```
<223> Beta-Ala
         <220>
         <223> C-term NH2
5
         <400> 395
                Phe Cys His Tyr Arg Xaa Ala Cys Thr Ala Ala Arg Arg Arg Arg
                                                               10
10
                Gln Arg Arg Arg
                                20
15
         <210> 396
         <211> 21
         <212> PRT
         <213> Artificial Sequence
20
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD RES
25
         <222> (1)..(1)
         <223> D-Phe
         <220>
         <221> DOMAIN
30
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD_RES
35
         <222> (4)..(4)
         <223> D-(Et)Tyr
         <220>
         <221> MOD RES
40
         <222> (5)..(5)
         <223> hArg
         <220>
         <221> MOD_RES
45
         <222> (6)..(6)
         <223> Bip
         <220>
         <221> MOD RES
         <222> (7)..(7)
50
         <223> Beta-Ala
         <220>
         <221> MOD_RES
55
         <222> (8)..(8)
         <223> D-Cys
         <220>
```

```
<221> MOD_RES
         <222> (10)..(10)
         <223> Doc
5
         <220>
         <223> C-term NH2
         <400> 396
10
                Phe Cys His Tyr Arg Xaa Ala Cys Thr Xaa Tyr Gly Arg Arg Arg Arg
                                                               10
                Arg Gln Arg Arg Arg
15
                                20
         <210> 397
         <211> 22
         <212> PRT
20
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
25
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
30
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
35
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
40
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
45
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> Bip
         <220>
50
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
55
         <220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
```

```
<220>
         <221> MOD_RES
         <222> (10)..(10)
         <223> Doc
5
         <220>
         <223> C-term NH2
         <400> 397
10
                Phe Cys His Tyr Arg Xaa Ala Cys Thr Xaa Tyr Gly Arg Arg Arg
                                     5
15
                Arg Gln Arg Arg Arg Arg
                                20
         <210> 398
         <211> 19
20
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
25
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
30
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
35
         <220>
         <221> MOD RES
         <222> (4)..(4)
         <223> D-(Et)Tyr
40
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
45
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> Bip
50
         <220>
         <221> MOD RES
         <222> (7)..(7)
         <223> Beta-Ala
55
         <220>
         <221> MOD_RES
         <222> (8)..(8)
```

```
<223> D-Cys
         <220>
         <221> MOD_RES
5
         <222> (10)..(10)
         <223> Doc
         <220>
         <223> C-term NH2
10
         <400> 398
                Phe Cys His Tyr Arg Xaa Ala Cys Thr Xaa Arg Arg Arg Arg Gln
                                     5
                                                                                         15
15
                Arg Arg Arg
         <210> 399
20
         <211> 22
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD_RES
         <222> (1)..(1)
30
         <223> D-Phe
         <220>
         <221> DOMAIN
         <222> (2)..(8)
35
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
40
         <223> D-(Et)Tyr
         <220>
         <221> MOD_RES
         <222> (5)..(5)
45
         <223> hArg
         <220>
         <221> MOD_RES
         <222> (6)..(6)
50
         <223> Bip
         <220>
         <221> MOD_RES
         <222> (7)..(7)
55
         <223> Beta-Ala
         <220>
         <221> MOD_RES
```

```
<222> (8)..(8)
         <223> D-Cys
         <220>
5
         <221> MOD_RES
         <222> (10)..(11)
         <223> Doc
         <220>
10
         <223> C-term NH2
         <400> 399
                Phe Cys His Tyr Arg Xaa Ala Cys Thr Xaa Xaa Tyr Gly Arg Arg Arg
15
                Arg Arg Gln Arg Arg Arg
                                20
20
         <210> 400
         <211> 20
         <212> PRT
         <213> Artificial Sequence
25
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
30
         <221> MOD_RES
         <222> (1)..(1)
         <223> D-Phe
         <220>
35
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
40
         <221> MOD_RES
        <222> (4)..(4)
         <223> D-(Et)Tyr
         <220>
45
         <221> MOD_RES
         <222> (5)..(5)
         <223> hArg
         <220>
         <221> MOD_RES
50
         <222> (6)..(6)
         <223> Bip
         <220>
55
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
```

```
<220>
         <221> MOD_RES
         <222> (8)..(8)
         <223> D-Cys
5
         <220>
         <221> MOD_RES
         <222> (10)..(11)
         <223> Doc
10
         <220>
         <223> C-term NH2
         <400> 400
15
                Phe Cys His Tyr Arg Xaa Ala Cys Thr Xaa Xaa Arg Arg Arg Arg Arg
                                                               10
20
                Gln Arg Arg Arg
                                20
         <210> 401
         <211> 21
25
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <223> N-term Ac
         <220>
35
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
40
         <221> DOMAIN
        <222> (2)..(9)
         <223> Cyclic
         <220>
45
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Ala
         <220>
         <221> MOD_RES
50
         <222> (5)..(5)
         <223> D-Phe
         <220>
55
         <221> MOD_RES
         <222> (10)..(10)
         <223> Beta-Ala
```

```
<220>
        <223> C-term NH2
        <400> 401
5
                Xaa Cys Ala His Phe Arg Trp Gly Cys Ala Tyr Gly Arg Arg Arg Arg
                                                             10
10
                Arg Gln Arg Arg Arg
                               20
        <210> 402
        <211> 19
15
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
20
        <220>
        <223> N-term Ac
        <220>
25
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
        <220>
30
        <221> DOMAIN
        <222> (2)..(9)
        <223> Cyclic
        <220>
35
        <221> MOD_RES
        <222> (3)..(3)
        <223> D-Ala
        <220>
        <221> MOD_RES
40
        <222> (5)..(5)
        <223> D-Phe
        <220>
45
        <221> MOD_RES
        <222> (10)..(10)
        <223> Beta-Ala
        <220>
        <223> C-term NH2
50
        <400> 402
                Xaa Cys Ala His Phe Arg Trp Gly Cys Ala Arg Arg Arg Arg Gln
55
```

Arg Arg Arg

```
<210> 403
         <211> 20
         <212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
10
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
15
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
20
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
25
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
         <220>
30
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
         <220>
35
         <223> C-term NH2
         <400> 403
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Tyr Gly Arg Arg Arg Arg
40
                                                                10
                Gln Arg Arg Arg
                                 20
45
         <210> 404
         <211> 18
         <212> PRT
         <213> Artificial Sequence
50
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
55
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
```

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
15
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
20
         <220>
         <223> C-term NH2
         <400> 404
25
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Arg Arg Arg Arg Gln Arg
                                                               10
                                     5
                                                                                         15
30
                Arg Arg
         <210> 405
         <211> 21
         <212> PRT
35
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
55
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
```

```
<220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Beta-Ala
5
         <220>
         <223> C-term NH2
         <400> 405
10
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Ala Tyr Gly Arg Arg Arg Arg
15
                Arg Gln Arg Arg Arg
                                20
         <210> 406
         <211> 19
20
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
25
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
30
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
35
         <220>
         <221> MOD RES
         <222> (4)..(4)
         <223> D-Phe
40
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
45
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Beta-Ala
50
         <220>
         <223> C-term NH2
         <400> 406
55
```

Xaa Cys His Phe Arg Trp Xaa Cys Ala Ala Arg Arg Arg Arg Gln 1 5 10 15

```
5
                 Arg Arg Arg
         <210> 407
         <211> 21
         <212> PRT
10
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
30
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
35
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
40
         <220>
         <223> C-term NH2
         <400> 407
45
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Tyr Gly Arg Arg Arg Arg Arg
                1
                                      5
                                                                10
                                                                                          15
                Gln Arg Arg Arg Arg
50
                                20
         <210> 408
         <211> 19
         <212> PRT
55
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
```

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
20
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
25
         <220>
         <223> C-term NH2
         <400> 408
30
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Arg Arg Arg Arg Gln Arg
                                                               10
35
                Arg Arg Arg
         <210> 409
         <211> 22
         <212> PRT
40
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
50
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
55
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
```

```
<220>
        <221> MOD_RES
        <222> (7)..(7)
        <223> Apn
5
        <220>
        <221> MOD_RES
        <222> (9)..(10)
        <223> Beta-Ala
10
        <220>
        <223> C-term NH2
        <400> 409
15
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Ala Tyr Gly Arg Arg Arg Arg
                                                              10
20
                Arg Gln Arg Arg Arg
                                20
        <210> 410
        <211> 20
25
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
30
        <220>
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
35
        <220>
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
40
        <220>
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-Phe
45
        <220>
        <221> MOD_RES
        <222> (7)..(7)
        <223> Apn
50
        <220>
        <221> MOD RES
        <222> (9)..(10)
        <223> Beta-Ala
55
        <220>
        <223> C-term NH2
```

<400> 410

```
Xaa Cys His Phe Arg Trp Xaa Cys Ala Ala Arg Arg Arg Arg Gln
5
               Arg Arg Arg Arg
                               20
10
        <210> 411
        <211> 20
        <212> PRT
        <213> Artificial Sequence
15
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <221> MOD_RES
20
        <222> (1)..(1)
        <223> Nle
        <220>
        <221> DOMAIN
25
        <222> (2)..(8)
        <223> Cyclic
        <220>
        <221> MOD RES
        <222> (4)..(4)
30
        <223> D-Phe
        <220>
        <221> MOD_RES
35
        <222> (7)..(7)
        <223> Apn
        <220>
        <221> MOD RES
40
        <222> (9)..(9)
        <223> Doc
        <220>
        <223> C-term NH2
45
        <400> 411
               Xaa Cys His Phe Arg Trp Xaa Cys Xaa Tyr Gly Arg Arg Arg Arg
                                                            10
50
               Gln Arg Arg Arg
                               20
55
        <210> 412
        <211> 18
        <212> PRT
        <213> Artificial Sequence
```

```
<220>
         <223> Description of Artificial Sequence: Synthetic peptide
5
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
10
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
15
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
20
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
         <220>
25
         <221> MOD_RES
         <222> (9)..(9)
         <223> Doc
         <220>
30
         <223> C-term NH2
         <400> 412
                Xaa Cys His Phe Arg Trp Xaa Cys Xaa Arg Arg Arg Arg Gln Arg
35
                Arg Arg
40
         <210> 413
         <211> 21
         <212> PRT
         <213> Artificial Sequence
45
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD RES
         <222> (1)..(1)
50
         <223> Nle
         <220>
         <221> DOMAIN
55
         <222> (2)..(8)
         <223> Cyclic
         <220>
```

```
<221> MOD_RES
        <222> (4)..(4)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
10
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Doc
15
         <220>
         <223> C-term NH2
         <400> 413
20
                Xaa Cys His Phe Arg Trp Xaa Cys Xaa Xaa Tyr Gly Arg Arg Arg Arg
                                                               10
                Arg Gln Arg Arg Arg
25
                                20
         <210> 414
         <211> 19
         <212> PRT
30
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
35
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
40
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
50
         <221> MOD_RES
         <222> (7)..(7)
         <223> Apn
55
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Doc
```

```
<220>
        <223> C-term NH2
        <400> 414
5
               Xaa Cys His Phe Arg Trp Xaa Cys Xaa Xaa Arg Arg Arg Arg Gln
10
               Arg Arg Arg
        <210> 415
        <211> 21
        <212> PRT
15
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
20
        <220>
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
25
        <220>
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
30
        <220>
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-Phe
35
        <220>
        <221> MOD_RES
        <222> (7)..(7)
        <223> Apn
40
        <220>
        <221> MOD_RES
        <222> (9)..(9)
        <223> Doc
45
        <220>
        <223> C-term NH2
        <400> 415
50
               Xaa Cys His Phe Arg Trp Xaa Cys Xaa Tyr Gly Arg Arg Arg Arg Arg
                                                            10
               Gln Arg Arg Arg Arg
55
                              20
        <210> 416
        <211> 19
```

```
<212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD_RES
         <222> (1)..(1)
10
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(8)
15
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (4)..(4)
20
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (7)..(7)
25
         <223> Apn
         <220>
         <221> MOD RES
         <222> (9)..(9)
30
         <223> Doc
         <220>
         <223> C-term NH2
35
         <400> 416
                Xaa Cys His Phe Arg Trp Xaa Cys Xaa Arg Arg Arg Arg Gln Arg
                                                                10
40
                Arg Arg Arg
         <210> 417
         <211> 22
45
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <221> MOD RES
         <222> (1)..(1)
         <223> Nle
55
         <220>
         <221> DOMAIN
         <222> (2)..(8)
```

```
<223> Cyclic
        <220>
        <221> MOD_RES
5
        <222> (4)..(4)
        <223> D-Phe
        <220>
        <221> MOD_RES
10
        <222> (7)..(7)
        <223> Apn
        <220>
        <221> MOD RES
15
        <222> (9)..(10)
        <223> Doc
        <220>
        <223> C-term NH2
20
        <400> 417
                Xaa Cys His Phe Arg Trp Xaa Cys Xaa Xaa Tyr Gly Arg Arg Arg
25
                Arg Gln Arg Arg Arg
30
        <210> 418
        <211> 20
        <212> PRT
        <213> Artificial Sequence
35
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <221> MOD_RES
40
        <222> (1)..(1)
        <223> Nle
        <220>
        <221> DOMAIN
45
        <222> (2)..(8)
        <223> Cyclic
        <220>
        <221> MOD RES
        <222> (4)..(4)
50
        <223> D-Phe
        <220>
        <221> MOD_RES
55
        <222> (7)..(7)
        <223> Apn
        <220>
```

```
<221> MOD_RES
        <222> (9)..(10)
        <223> Doc
5
        <220>
        <223> C-term NH2
        <400> 418
10
                Xaa Cys His Phe Arg Trp Xaa Cys Xaa Xaa Arg Arg Arg Arg Gln
                   1
                                        5
                                                                  10
                                                                                            15
15
                   Arg Arg Arg Arg
        <210> 419
20
        <211> 20
        <212> PRT
        <213> Artificial Sequence
        <220>
25
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <223> N-term Ac
30
        <220>
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
35
        <220>
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
40
        <220>
        <221> MOD_RES
        <222> (3)..(3)
        <223> D-Leu
45
        <220>
        <221> MOD_RES
        <222> (5)..(5)
        <223> D-Phe
        <220>
50
        <221> MOD_RES
        <222> (9)..(9)
        <223> Beta-Ala
55
        <220>
        <223> C-term NH2
        <400> 419
```

Xaa Cys Leu His Phe Arg Trp Cys Ala Tyr Gly Arg Arg Arg Arg Arg

10

```
5
                Gln Arg Arg Arg
                                20
         <210> 420
         <211> 18
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <223> N-term Ac
         <220>
20
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
25
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
30
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Leu
         <220>
35
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
40
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
         <220>
45
         <223> C-term NH2
         <400> 420
                Xaa Cys Leu His Phe Arg Trp Cys Ala Arg Arg Arg Arg Gln Arg
50
                                     5
                                                               10
                                                                                         15
                Arg Arg
55
         <210> 421
         <211> 21
         <212> PRT
         <213> Artificial Sequence
```

```
<220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
5
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
10
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(8)
15
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (3)..(3)
20
         <223> D-Leu
         <220>
         <221> MOD_RES
         <222> (5)..(5)
25
         <223> D-Phe
         <220>
         <221> MOD RES
         <222> (9)..(10)
30
         <223> Beta-Ala
         <220>
         <223> C-term NH2
35
         <400> 421
                 Xaa Cys Leu His Phe Arg Trp Cys Ala Ala Tyr Gly Arg Arg Arg
40
                 Arg Gln Arg Arg Arg
                                20
         <210> 422
45
         <211> 19
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
55
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
```

```
<220>
        <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Leu
10
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Beta-Ala
20
         <220>
         <223> C-term NH2
         <400> 422
25
                Xaa Cys Leu His Phe Arg Trp Cys Ala Ala Arg Arg Arg Arg Gln
                1
                                                               10
                                                                                         15
                                     5
30
                Arg Arg Arg
         <210> 423
         <211> 20
         <212> PRT
35
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
40
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
45
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
50
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD_RES
55
         <222> (3)..(3)
         <223> D-Leu
         <220>
```

```
<221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Doc
10
         <220>
         <223> C-term NH2
         <400> 423
15
                Xaa Cys Leu His Phe Arg Trp Cys Xaa Tyr Gly Arg Arg Arg Arg Arg
                                                               10
                                                                                         15
                                               Gln Arg Arg Arg
                                                               20
20
         <210> 424
         <211> 18
         <212> PRT
         <213> Artificial Sequence
25
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
30
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
35
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(8)
40
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (3)..(3)
45
         <223> D-Leu
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
50
         <220>
         <221> MOD_RES
         <222> (9)..(9)
55
         <223> Doc
         <220>
         <223> C-term NH2
```

<400> 424

```
Xaa Cys Leu His Phe Arg Trp Cys Xaa Arg Arg Arg Arg Gln Arg
5
               Arg Arg
        <210> 425
10
        <211> 21
        <212> PRT
        <213> Artificial Sequence
15
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <223> N-term Ac
20
        <220>
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
25
        <220>
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
30
        <220>
        <221> MOD_RES
        <222> (3)..(3)
        <223> D-Leu
35
        <220>
        <221> MOD_RES
        <222> (5)..(5)
        <223> D-Phe
40
        <220>
        <221> MOD_RES
        <222> (9)..(10)
        <223> Doc
45
        <220>
        <223> C-term NH2
        <400> 425
50
               Xaa Cys Leu His Phe Arg Trp Cys Xaa Xaa Tyr Gly Arg Arg Arg
                                                            10
               Arg Gln Arg Arg Arg
55
                              20
        <210> 426
        <211> 19
```

```
<212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
10
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
15
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Leu
25
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
30
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Doc
35
         <220>
         <223> C-term NH2
         <400> 426
40
                Xaa Cys Leu His Phe Arg Trp Cys Xaa Xaa Arg Arg Arg Arg Gln
                                                                10
                Arg Arg Arg
45
         <210> 427
         <211> 21
         <212> PRT
         <213> Artificial Sequence
50
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
55
         <223> N-term Ac
         <220>
         <221> MOD_RES
```

```
<222> (1)..(1)
         <223> Nle
         <220>
5
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
10
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Leu
         <220>
15
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
20
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
         <220>
25
         <223> C-term NH2
         <400> 427
                Xaa Cys Leu His Phe Arg Trp Cys Ala Tyr Gly Arg Arg Arg Arg
30
                                                               10
                Gln Arg Arg Arg Arg
                                20
35
         <210> 428
         <211> 19
         <212> PRT
         <213> Artificial Sequence
40
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
45
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
50
         <220>
         <221> DOMAIN
         <222> (2)..(8)
55
         <223> Cyclic
         <220>
         <221> MOD_RES
```

```
<222> (3)..(3)
         <223> D-Leu
         <220>
5
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
10
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
         <220>
15
         <223> C-term NH2
         <400> 428
                Xaa Cys Leu His Phe Arg Trp Cys Ala Arg Arg Arg Arg Gln Arg
20
                Arg Arg Arg
25
         <210> 429
         <211> 22
         <212> PRT
         <213> Artificial Sequence
30
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
35
         <220>
         <221> MOD RES
         <222> (1)..(1)
         <223> Nle
40
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Leu
50
         <220>
         <221> MOD RES
         <222> (5)..(5)
         <223> D-Phe
55
         <220>
         <221> MOD RES
         <222> (9)..(10)
```

```
<223> Beta-Ala
        <220>
        <223> C-term NH2
5
        <400> 429
                Xaa Cys Leu His Phe Arg Trp Cys Ala Ala Tyr Gly Arg Arg Arg
10
                Arg Gln Arg Arg Arg Arg
                                20
15
        <210> 430
        <211> 20
        <212> PRT
        <213> Artificial Sequence
20
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <223> N-term Ac
25
        <220>
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
30
        <220>
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
35
        <220>
        <221> MOD RES
        <222> (3)..(3)
        <223> D-Leu
40
        <220>
        <221> MOD_RES
        <222> (5)..(5)
        <223> D-Phe
45
        <220>
        <221> MOD_RES
        <222> (9)..(10)
        <223> Beta-Ala
50
        <220>
        <223> C-term NH2
        <400> 430
55
```

Xaa Cys Leu His Phe Arg Trp Cys Ala Ala Arg Arg Arg Arg Gln

```
10
5
                Arg Arg Arg Arg
                               20
        <210> 431
        <211> 21
10
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
15
        <220>
        <223> N-term Ac
        <220>
20
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
        <220>
25
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
        <220>
30
        <221> MOD_RES
        <222> (3)..(3)
        <223> D-Leu
        <220>
35
        <221> MOD_RES
        <222> (5)..(5)
        <223> D-Phe
        <220>
40
        <221> MOD RES
        <222> (9)..(9)
        <223> Doc
        <220>
45
        <223> C-term NH2
        <400> 431
                Xaa Cys Leu His Phe Arg Trp Cys Xaa Tyr Gly Arg Arg Arg Arg
50
                                     5
                                                              10
                                                                                       15
                1
                Gln Arg Arg Arg Arg
                               20
55
        <210> 432
```

<211> 19 <212> PRT

```
<213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
5
         <223> N-term Ac
         <220>
10
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
15
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
20
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Leu
         <220>
25
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
         <220>
30
         <221> MOD_RES
         <222> (9)..(9)
         <223> Doc
         <220>
35
         <223> C-term NH2
         <400> 432
                 Xaa Cys Leu His Phe Arg Trp Cys Xaa Arg Arg Arg Arg Gln Arg
40
                                                                10
                Arg Arg Arg
45
         <210> 433
         <211> 22
         <212> PRT
         <213> Artificial Sequence
50
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
55
         <220>
         <221> MOD_RES
         <222> (1)..(1)
```

```
<223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(8)
5
         <223> Cyclic
         <220>
         <221> MOD_RES
10
         <222> (3)..(3)
         <223> D-Leu
         <220>
         <221> MOD RES
15
         <222> (5)..(5)
         <223> D-Phe
         <220>
         <221> MOD_RES
20
         <222> (9)..(10)
         <223> Doc
         <220>
         <223> C-term NH2
25
         <400> 433
                Xaa Cys Leu His Phe Arg Trp Cys Xaa Xaa Tyr Gly Arg Arg Arg
                1
                                     5
                                                              10
                                                                                        15
30
                Arg Gln Arg Arg Arg
                                20
35
         <210> 434
         <211> 20
         <212> PRT
         <213> Artificial Sequence
40
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
50
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
55
         <220>
         <221> MOD RES
         <222> (3)..(3)
```

```
<223> D-Leu
         <220>
         <221> MOD_RES
5
         <222> (5)..(5)
         <223> D-Phe
         <220>
         <221> MOD_RES
10
         <222> (9)..(10)
         <223> Doc
         <220>
         <223> C-term NH2
15
         <400> 434
                 {\tt Xaa\ Cys\ Leu\ His\ Phe\ Arg\ Trp\ Cys\ Xaa\ Xaa\ Arg\ Arg\ Arg\ Arg\ Gln}
                                                                10
20
                 Arg Arg Arg Arg
                                 20
25
         <210> 435
         <211> 20
         <212> PRT
         <213> Artificial Sequence
30
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
35
         <220>
         <221> MOD RES
         <222> (1)..(1)
         <223> Nle
40
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Cha
50
         <220>
         <221> MOD RES
         <222> (5)..(5)
         <223> D-Phe
55
         <220>
         <221> MOD_RES
         <222> (9)..(9)
```

```
<223> Beta-Ala
         <220>
         <223> C-term NH2
5
         <400> 435
                Xaa Cys Xaa His Phe Arg Trp Cys Ala Tyr Gly Arg Arg Arg Arg
                                                               10
10
                Gln Arg Arg Arg
                                20
15
         <210> 436
         <211> 18
         <212> PRT
         <213> Artificial Sequence
20
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
25
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
30
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
35
         <220>
         <221> MOD RES
         <222> (3)..(3)
         <223> D-Cha
40
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
45
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
50
         <220>
         <223> C-term NH2
         <400> 436
55
```

Xaa Cys Xaa His Phe Arg Trp Cys Ala Arg Arg Arg Arg Arg Gln Arg 1 5 10 15

```
5
                Arg Arg
         <210> 437
         <211> 21
         <212> PRT
10
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <223> N-term Ac
         <220>
         <221> MOD_RES
20
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
25
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD RES
30
         <222> (3)..(3)
         <223> D-Cha
         <220>
         <221> MOD_RES
35
         <222> (5)..(5)
         <223> D-Phe
         <220>
         <221> MOD RES
40
         <222> (9)..(10)
         <223> Beta-Ala
         <220>
         <223> C-term NH2
45
         <400> 437
                Xaa Cys Xaa His Phe Arg Trp Cys Ala Ala Tyr Gly Arg Arg Arg
                                                               10
50
                Arg Gln Arg Arg Arg
                                20
55
         <210> 438
         <211> 19
         <212> PRT
         <213> Artificial Sequence
```

```
<220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
5
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
10
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(8)
15
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (3)..(3)
20
         <223> D-Cha
         <220>
         <221> MOD_RES
         <222> (5)..(5)
25
         <223> D-Phe
         <220>
         <221> MOD RES
         <222> (9)..(10)
30
         <223> Beta-Ala
         <220>
         <223> C-term NH2
35
         <400> 438
                Xaa Cys Xaa His Phe Arg Trp Cys Ala Ala Arg Arg Arg Arg Gln
                                                                10
                                                                                          15
40
                Arg Arg Arg
         <210> 439
         <211> 20
45
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
         <220>
55
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
```

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Cha
10
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Doc
20
         <220>
         <223> C-term NH2
         <400> 439
25
                Xaa Cys Xaa His Phe Arg Trp Cys Xaa Tyr Gly Arg Arg Arg Arg Arg
                1
                                     5
                                                               10
                                                                                         15
30
                Gln Arg Arg Arg
                                20
         <210> 440
         <211> 18
35
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
40
         <220>
         <223> N-term Ac
         <220>
45
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
50
         <222> (2)..(8)
         <223> Cyclic
         <220>
55
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Cha
```

```
<220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Doc
10
         <220>
         <223> C-term NH2
         <400> 440
15
                Xaa Cys Xaa His Phe Arg Trp Cys Xaa Arg Arg Arg Arg Gln Arg
                                                               10
20
                Arg Arg
         <210> 441
         <211> 21
         <212> PRT
25
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <223> N-term Ac
         <220>
         <221> MOD_RES
35
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
40
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD_RES
45
         <222> (3)..(3)
         <223> D-Cha
         <220>
         <221> MOD_RES
         <222> (5)..(5)
50
         <223> D-Phe
         <220>
         <221> MOD_RES
55
         <222> (9)..(10)
         <223> Doc
         <220>
```

```
<223> C-term NH2
        <400> 441
5
               Xaa Cys Xaa His Phe Arg Trp Cys Xaa Xaa Tyr Gly Arg Arg Arg
                                   5
                                                            10
               Arg Gln Arg Arg Arg
10
        <210> 442
        <211> 19
        <212> PRT
        <213> Artificial Sequence
15
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
20
        <220>
        <223> N-term Ac
        <220>
        <221> MOD RES
25
        <222> (1)..(1)
        <223> Nle
        <220>
        <221> DOMAIN
30
        <222> (2)..(8)
        <223> Cyclic
        <220>
        <221> MOD_RES
35
        <222> (3)..(3)
        <223> D-Cha
        <220>
        <221> MOD RES
40
        <222> (5)..(5)
        <223> D-Phe
        <220>
        <221> MOD RES
45
        <222> (9)..(10)
        <223> Doc
        <220>
        <223> C-term NH2
50
        <400> 442
               Xaa Cys Xaa His Phe Arg Trp Cys Xaa Xaa Arg Arg Arg Arg Gln
55
```

Arg Arg Arg

```
<210> 443
         <211> 21
         <212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
10
         <223> N-term Ac
         <220>
         <221> MOD RES
         <222> (1)..(1)
15
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(8)
20
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (3)..(3)
25
         <223> D-Cha
         <220>
         <221> MOD RES
         <222> (5)..(5)
30
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (9)..(9)
35
         <223> Beta-Ala
         <220>
         <223> C-term NH2
40
         <400> 443
                 Xaa Cys Xaa His Phe Arg Trp Cys Ala Tyr Gly Arg Arg Arg Arg Arg
45
                 Gln Arg Arg Arg Arg
                                 20
         <210> 444
         <211> 19
50
         <212> PRT
         <213> Artificial Sequence
         <220>
55
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
```

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Cha
15
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
20
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
25
         <220>
         <223> C-term NH2
         <400> 444
30
                Xaa Cys Xaa His Phe Arg Trp Cys Ala Arg Arg Arg Arg Gln Arg
                                                               10
35
                Arg Arg Arg
         <210> 445
         <211> 22
         <212> PRT
40
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <223> N-term Ac
         <220>
         <221> MOD RES
         <222> (1)..(1)
50
         <223> Nle
         <220>
         <221> DOMAIN
55
         <222> (2)..(8)
         <223> Cyclic
         <220>
```

```
<221> MOD_RES
         <222> (3)..(3)
         <223> D-Cha
5
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Beta-Ala
15
         <220>
         <223> C-term NH2
         <400> 445
20
                Xaa Cys Xaa His Phe Arg Trp Cys Ala Ala Tyr Gly Arg Arg Arg Arg
                                                               10
                Arg Gln Arg Arg Arg Arg
25
                                20
         <210> 446
         <211> 20
         <212> PRT
30
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
35
         <220>
         <223> N-term Ac
         <220>
         <221> MOD RES
40
         <222> (1)..(1)
         <223> Nle
         <220>
         <221> DOMAIN
45
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (3)..(3)
50
         <223> D-Cha
         <220>
         <221> MOD_RES
55
         <222> (5)..(5)
         <223> D-Phe
         <220>
```

```
<221> MOD_RES
        <222> (9)..(10)
        <223> Beta-Ala
5
        <220>
        <223> C-term NH2
        <400> 446
10
                Xaa Cys Xaa His Phe Arg Trp Cys Ala Ala Arg Arg Arg Arg Gln
                                                              10
                Arg Arg Arg Arg
15
                                20
        <210> 447
        <211> 21
        <212> PRT
20
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
25
        <220>
        <223> N-term Ac
        <220>
        <221> MOD RES
30
        <222> (1)..(1)
        <223> Nle
        <220>
        <221> DOMAIN
35
        <222> (2)..(8)
        <223> Cyclic
        <220>
        <221> MOD_RES
40
        <222> (3)..(3)
        <223> D-Cha
        <220>
        <221> MOD_RES
45
        <222> (5)..(5)
        <223> D-Phe
        <220>
        <221> MOD RES
        <222> (9)..(9)
50
        <223> Doc
        <220>
        <223> C-term NH2
55
        <400> 447
```

Xaa Cys Xaa His Phe Arg Trp Cys Xaa Tyr Gly Arg Arg Arg Arg

10

```
5
                Gln Arg Arg Arg Arg
                                20
        <210> 448
        <211> 19
10
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
15
        <220>
        <223> N-term Ac
        <220>
20
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
        <220>
25
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
        <220>
30
        <221> MOD_RES
        <222> (3)..(3)
        <223> D-Cha
        <220>
35
        <221> MOD_RES
        <222> (5)..(5)
        <223> D-Phe
        <220>
40
        <221> MOD RES
        <222> (9)..(9)
        <223> Doc
        <220>
45
        <223> C-term NH2
        <400> 448
                Xaa Cys Xaa His Phe Arg Trp Cys Xaa Arg Arg Arg Arg Gln Arg
50
                1
                                     5
                                                              10
                                                                                        15
                Arg Arg Arg
55
        <210> 449
        <211> 22
        <212> PRT
```

<213> Artificial Sequence

```
<220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
5
         <223> N-term Ac
         <220>
         <221> MOD_RES
         <222> (1)..(1)
10
         <223> Nle
         <220>
         <221> DOMAIN
         <222> (2)..(8)
15
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (3)..(3)
20
         <223> D-Cha
         <220>
         <221> MOD_RES
         <222> (5)..(5)
25
         <223> D-Phe
         <220>
         <221> MOD RES
         <222> (9)..(10)
30
         <223> Doc
         <220>
         <223> C-term NH2
35
         <400> 449
                Xaa Cys Xaa His Phe Arg Trp Cys Xaa Xaa Tyr Gly Arg Arg Arg
                                                               10
40
                Arg Gln Arg Arg Arg Arg
                                20
         <210> 450
45
         <211> 20
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
55
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
```

```
<220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Cha
10
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Doc
20
         <220>
         <223> C-term NH2
         <400> 450
25
                Xaa Cys Xaa His Phe Arg Trp Cys Xaa Xaa Arg Arg Arg Arg Gln
                1
                                     5
                                                               10
                                                                                         15
30
                Arg Arg Arg Arg
                                20
         <210> 451
         <211> 20
35
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
50
         <220>
         <221> MOD RES
         <222> (4)..(4)
         <223> D-Phe
55
         <220>
         <221> MOD_RES
         <222> (7)..(7)
```

```
<223> Gaba
        <220>
        <221> MOD_RES
5
        <222> (9)..(9)
        <223> Beta-Ala
        <220>
        <223> C-term NH2
10
        <400> 451
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Tyr Gly Arg Arg Arg Arg
                                                               10
15
                Gln Arg Arg Arg
                                20
20
        <210> 452
        <211> 18
        <212> PRT
        <213> Artificial Sequence
25
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <221> MOD RES
30
        <222> (1)..(1)
        <223> Nle
        <220>
        <221> DOMAIN
35
        <222> (2)..(8)
        <223> Cyclic
        <220>
        <221> MOD RES
40
        <222> (4)..(4)
        <223> D-Phe
        <220>
        <221> MOD_RES
45
        <222> (7)..(7)
        <223> Gaba
        <220>
        <221> MOD RES
        <222> (9)..(9)
50
        <223> Beta-Ala
        <220>
        <223> C-term NH2
55
        <400> 452
```

Xaa Cys His Phe Arg Trp Xaa Cys Ala Arg Arg Arg Arg Gln Arg 1 5 10 15

```
5
                Arg Arg
         <210> 453
         <211> 21
         <212> PRT
10
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
20
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
30
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
35
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Beta-Ala
40
         <220>
         <223> C-term NH2
         <400> 453
45
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Ala Tyr Gly Arg Arg Arg Arg
                 1
                                      5
                                                                10
                                                                                          15
                Arg Gln Arg Arg Arg
50
                                 20
         <210> 454
         <211> 19
         <212> PRT
55
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
```

```
<220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
5
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
20
         <220>
         <221> MOD_RES
         <222> (9)..(10)
         <223> Beta-Ala
25
         <220>
         <223> C-term NH2
         <400> 454
30
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Ala Arg Arg Arg Arg Gln
                                                               10
35
                Arg Arg Arg
         <210> 455
         <211> 21
         <212> PRT
40
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
50
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
55
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
```

```
<220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
5
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Beta-Ala
10
         <220>
         <223> C-term NH2
         <400> 455
15
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Tyr Gly Arg Arg Arg Arg Arg
                                                               10
20
                Gln Arg Arg Arg Arg
                                20
         <210> 456
         <211> 19
25
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
35
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
45
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
50
         <220>
         <221> MOD RES
         <222> (9)..(9)
         <223> Beta-Ala
55
         <220>
         <223> C-term NH2
```

<400> 456

```
Xaa Cys His Phe Arg Trp Xaa Cys Ala Arg Arg Arg Arg Gln Arg
5
               Arg Arg Arg
        <210> 457
10
        <211> 22
        <212> PRT
        <213> Artificial Sequence
15
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <221> MOD RES
        <222> (1)..(1)
20
        <223> Nle
        <220>
        <221> DOMAIN
        <222> (2)..(8)
25
        <223> Cyclic
        <220>
        <221> MOD RES
        <222> (4)..(4)
30
        <223> D-Phe
        <220>
        <221> MOD_RES
        <222> (7)..(7)
35
        <223> Gaba
        <220>
        <221> MOD RES
        <222> (9)..(10)
40
        <223> Beta-Ala
        <220>
        <223> C-term NH2
45
        <400> 457
               Xaa Cys His Phe Arg Trp Xaa Cys Ala Ala Tyr Gly Arg Arg Arg
                1
                                    5
                                                            10
50
                Arg Gln Arg Arg Arg Arg
                               20
        <210> 458
55
        <211> 20
        <212> PRT
        <213> Artificial Sequence
```

```
<220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
5
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
10
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
15
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
20
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
         <220>
25
         <221> MOD_RES
         <222> (9)..(10)
         <223> Beta-Ala
         <220>
30
         <223> C-term NH2
         <400> 458
                Xaa Cys His Phe Arg Trp Xaa Cys Ala Ala Arg Arg Arg Arg Gln
35
                                      5
                                                                                          15
                Arg Arg Arg Arg
                                20
40
         <210> 459
         <211> 20
         <212> PRT
         <213> Artificial Sequence
45
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD_RES
50
         <222> (1)..(1)
         <223> Nle
         <220>
55
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
```

```
<220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
5
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
10
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Doc
15
         <220>
         <223> C-term NH2
         <400> 459
20
                Xaa Cys His Phe Arg Trp Xaa Cys Xaa Tyr Gly Arg Arg Arg Arg Arg
                                                               10
25
                Gln Arg Arg Arg
                                20
         <210> 460
         <211> 18
30
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
35
         <220>
         <221> MOD RES
         <222> (1)..(1)
         <223> Nle
40
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
50
         <220>
         <221> MOD RES
         <222> (7)..(7)
         <223> Gaba
55
         <220>
         <221> MOD RES
         <222> (9)..(9)
```

```
<223> Doc
        <220>
        <223> C-term NH2
5
        <400> 460
               Xaa Cys His Phe Arg Trp Xaa Cys Xaa Arg Arg Arg Arg Gln Arg
                                                            10
10
               Arg Arg
        <210> 461
15
        <211> 21
        <212> PRT
        <213> Artificial Sequence
20
        <223> Description of Artificial Sequence: Synthetic peptide
        <220>
        <221> MOD_RES
        <222> (1)..(1)
25
        <223> Nle
        <220>
        <221> DOMAIN
        <222> (2)..(8)
30
        <223> Cyclic
        <220>
        <221> MOD_RES
        <222> (4)..(4)
35
        <223> D-Phe
        <220>
        <221> MOD RES
        <222> (7)..(7)
40
        <223> Gaba
        <220>
        <221> MOD_RES
        <222> (9)..(10)
45
        <223> Doc
        <220>
        <223> C-term NH2
        <400> 461
50
               Xaa Cys His Phe Arg Trp Xaa Cys Xaa Xaa Tyr Gly Arg Arg Arg
55
               Arg Gln Arg Arg Arg
```

20

```
<210> 462
         <211> 19
         <212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
10
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
         <220>
15
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
         <221> MOD_RES
20
         <222> (4)..(4)
         <223> D-Phe
         <220>
25
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
         <220>
30
         <221> MOD_RES
         <222> (9)..(10)
         <223> Doc
         <220>
35
         <223> C-term NH2
         <400> 462
                Xaa Cys His Phe Arg Trp Xaa Cys Xaa Xaa Arg Arg Arg Arg Gln
40
                                      5
                                                                10
                Arg Arg Arg
45
         <210> 463
         <211> 21
         <212> PRT
         <213> Artificial Sequence
50
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> MOD_RES
55
         <222> (1)..(1)
         <223> Nle
         <220>
```

```
<221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
10
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
15
         <220>
         <221> MOD_RES
         <222> (9)..(9)
         <223> Doc
20
         <220>
         <223> C-term NH2
        <400> 463
25
                Xaa Cys His Phe Arg Trp Xaa Cys Xaa Tyr Gly Arg Arg Arg Arg Arg
                                                               10
                Gln Arg Arg Arg Arg
30
                                20
         <210> 464
         <211> 19
         <212> PRT
35
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Nle
45
         <220>
         <221> DOMAIN
         <222> (2)..(8)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
55
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Gaba
```

```
<220>
        <221> MOD_RES
        <222> (9)..(9)
        <223> Doc
5
        <220>
        <223> C-term NH2
        <400> 464
10
                Xaa Cys His Phe Arg Trp Xaa Cys Xaa Arg Arg Arg Arg Gln Arg
                                     5
                1
                                                              10
                                                                                        15
15
                Arg Arg Arg
        <210> 465
        <211> 22
        <212> PRT
20
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
25
        <220>
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
30
        <220>
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
35
        <220>
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-Phe
40
        <220>
        <221> MOD_RES
        <222> (7)..(7)
        <223> Gaba
45
        <220>
        <221> MOD_RES
        <222> (9)..(10)
        <223> Doc
        <220>
50
        <223> C-term NH2
        <400> 465
```

433

55

```
Xaa Cys His Phe Arg Trp Xaa Cys Xaa Xaa Tyr Gly Arg Arg Arg 1 5 10 15
```

```
5
                Arg Gln Arg Arg Arg Arg
                                20
        <210> 466
        <211> 20
10
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Synthetic peptide
15
        <220>
        <221> MOD_RES
        <222> (1)..(1)
        <223> Nle
20
        <220>
        <221> DOMAIN
        <222> (2)..(8)
        <223> Cyclic
25
        <220>
        <221> MOD_RES
        <222> (4)..(4)
        <223> D-Phe
30
        <220>
        <221> MOD_RES
        <222> (7)..(7)
        <223> Gaba
35
        <220>
        <221> MOD RES
        <222> (9)..(10)
        <223> Doc
40
        <220>
        <223> C-term NH2
        <400> 466
45
                Xaa Cys His Phe Arg Trp Xaa Cys Xaa Xaa Arg Arg Arg Arg Arg Gln
                                                              10
50
                Arg Arg Arg Arg
                                20
        <210> 467
        <211> 12
55
        <212> PRT
        <213> Artificial Sequence
        <220>
```

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-4-Br-Phe
15
         <220>
         <223> C-term NH2
         <400> 467
20
                           Cys Glu His Phe Arg Trp Gly Cys Pro Pro Lys Asp
         <210> 468
25
         <211> 12
         <212> PRT
         <213> Artificial Sequence
30
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
35
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
45
         <220>
         <223> C-term NH2
         <400> 468
50
                           Cys Glu His Xaa Arg Trp Ala Cys Pro Pro Lys Asp
                                                                           10
         <210> 469
         <211> 12
55
         <212> PRT
         <213> Artificial Sequence
         <220>
```

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
5
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
15
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> 2-Nal
20
         <220>
         <223> C-term NH2
         <400> 469
25
                            Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp
                                                 5
                                                                            10
         <210> 470
30
         <211> 12
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
40
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
50
         <221> MOD_RES
         <222> (6)..(6)
         <223> 1-Nal
55
         <220>
         <223> C-term NH2
         <400> 470
```

Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp

```
<210> 471
5
         <211> 12
         <212> PRT
         <213> Artificial Sequence
         <220>
10
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
15
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
25
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> Bal
30
         <220>
         <223> C-term NH2
         <400> 471
35
                            Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp
         <210> 472
         <211> 12
40
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <223> N-term Ac
         <220>
         <221> DOMAIN
50
         <222> (1)..(8)
         <223> Cyclic
         <220>
55
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
```

```
<220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> 2-Nal
5
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Beta-Ala
10
         <220>
         <223> C-term NH2
         <400> 472
15
                           Cys Glu His Xaa Arg Xaa Ala Cys Pro Pro Lys Asp
         <210> 473
20
         <211> 12
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
30
         <220>
         <221> DOMAIN
         <222> (1)..(8)
         <223> Cyclic
35
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
40
         <220>
         <221> MOD_RES
         <222> (6)..(6)
         <223> 2-Nal
45
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Aib
         <220>
50
         <223> C-term NH2
         <400> 473
55
                           Cys Glu His Xaa Arg Xaa Xaa Cys Pro Pro Lys Asp
         <210> 474
```

```
<211> 5
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(5)
10
         <223> Cyclic
         <220>
         <221> MOD RES
15
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Cys-D-Ala))-His
         <220>
         <221> MOD_RES
20
         <222> (2)..(2)
         <223> D-Phe
         <220>
         <223> C-term NH2
25
         <400> 474
                                                His Phe Arg Trp Cys
                                                                      5
                                                1
30
         <210> 475
         <211> 5
         <212> PRT
         <213> Artificial Sequence
35
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
40
         <221> DOMAIN
         <222> (1)..(5)
         <223> Cyclic
         <220>
45
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(hCys-D-Ala))-His
         <220>
         <221> MOD_RES
50
         <222> (2) .. (2)
         <223> D-Phe
         <220>
55
         <223> C-term NH2
         <400> 475
```

```
His Phe Arg Trp Cys
1 5
```

```
<210> 476
5
         <211> 5
         <212> PRT
         <213> Artificial Sequence
         <220>
10
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(5)
15
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (1)..(1)
20
         <223> Hydantoin(C(O)-(Cys-D-Ala))-His
         <220>
         <221> MOD_RES
         <222> (2) .. (2)
25
         <223> D-2-Nal
         <220>
         <223> C-term NH2
30
         <400> 476
                                                His Xaa Arg Trp Cys
                                                1
                                                                      5
35
         <210> 477
         <211> 5
         <212> PRT
         <213> Artificial Sequence
40
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
45
         <222> (1)..(5)
         <223> Cyclic
         <220>
         <221> MOD RES
50
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(hCys-D-Ala))-His
         <220>
         <221> MOD_RES
55
         <222> (2) .. (2)
         <223> D-2-Nal
         <220>
```

```
<223> C-term NH2
         <400> 477
5
                                               His Xaa Arg Trp Cys
         <210> 478
         <211> 5
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> DOMAIN
         <222> (1)..(5)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Asp-D-Ala))-His
25
         <220>
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Phe
30
         <220>
         <223> C-term NH2
         <400> 478
35
                                               His Phe Arg Trp Lys
                                                                     5
         <210> 479
40
         <211> 5
         <212> PRT
         <213> Artificial Sequence
45
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(5)
         <223> Cyclic
50
         <220>
         <221> MOD RES
         <222> (1)..(1)
55
         <223> Hydantoin(C(O)-(Asp-D-Ala))-His
         <221> MOD_RES
```

```
<222> (2) .. (2)
         <223> D-Phe
         <220>
5
         <221> MOD_RES
         <222> (5)..(5)
         <223> Orn
         <220>
10
         <223> C-term NH2
         <400> 479
                                              His Phe Arg Trp Xaa
15
                                              1
                                                                    5
         <210> 480
         <211> 5
         <212> PRT
20
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
25
         <220>
         <221> DOMAIN
         <222> (1)..(5)
         <223> Cyclic
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Asp-D-Ala))-His
35
         <220>
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Phe
40
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> Dab
45
         <220>
         <223> C-term NH2
         <400> 480
50
                                              His Phe Arg Trp Xaa
                                                                    5
         <210> 481
         <211>5
55
         <212> PRT
         <213> Artificial Sequence
         <220>
```

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(5)
5
         <223> Cyclic
         <220>
         <221> MOD_RES
10
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Asp-D-Ala))-His
         <220>
         <221> MOD RES
         <222> (2) .. (2)
15
         <223> D-Phe
         <220>
         <221> MOD_RES
20
         <222> (5)..(5)
         <223> Dap
         <220>
         <223> C-term NH2
25
         <400> 481
                                               His Phe Arg Trp Xaa
                                               1
                                                                     5
30
         <210> 482
         <211> 4
         <212> PRT
         <213> Artificial Sequence
35
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
40
         <221> DOMAIN
         <222> (1)..(4)
         <223> Cyclic
         <220>
45
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Asp-His))-D-2-Nal
         <220>
         <223> C-term NH2
50
         <400> 482
                                                  Xaa Arg Trp Lys
55
                                                  1
         <210> 483
         <211> 4
```

```
<212> PRT
         <213> Artificial Sequence
         <220>
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(4)
10
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (1)..(1)
15
         <223> Hydantoin(C(O)-(Asp-His))-D-Phe
         <220>
         <223> C-term NH2
20
         <400> 483
                                                   Phe Arg Trp Lys
25
         <210> 484
         <211> 4
         <212> PRT
         <213> Artificial Sequence
30
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
35
         <222> (1)..(4)
         <223> Cyclic
         <220>
         <221> MOD RES
40
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Asp-A3c))-D-Phe
         <220>
         <223> C-term NH2
45
         <400> 484
                                                   Phe Arg Trp Lys
50
         <210> 485
         <211> 4
         <212> PRT
         <213> Artificial Sequence
55
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
```

```
<220>
         <221> DOMAIN
         <222> (1)..(4)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Asp-A5c))-D-Phe
10
         <220>
         <223> C-term NH2
         <400> 485
15
                                                  Phe Arg Trp Lys
         <210> 486
20
         <211> 4
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(4)
30
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (1)..(1)
35
         <223> Hydantoin(C(O)-(Asp-A6c))-D-Phe
         <220>
         <223> C-term NH2
40
         <400> 486
                                                  Phe Arg Trp Lys
45
         <210> 487
         <211> 4
         <212> PRT
         <213> Artificial Sequence
         <220>
50
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
55
         <222> (1)..(4)
         <223> Cyclic
         <220>
```

```
<221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Asp-A3c))-D-2-Nal
5
         <220>
         <223> C-term NH2
         <400> 487
10
                                                  Xaa Arg Trp Lys
         <210> 488
         <211> 4
15
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
20
         <220>
         <221> DOMAIN
         <222> (1)..(4)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Asp-A5c))-D-2-Nal
30
         <220>
         <223> C-term NH2
         <400> 488
35
                                                  Xaa Arg Trp Lys
         <210> 489
40
         <211> 4
         <212> PRT
         <213> Artificial Sequence
45
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(4)
         <223> Cyclic
50
         <220>
         <221> MOD RES
         <222> (1)..(1)
55
         <223> Hydantoin(C(O)-(Asp-A6c))-D-2-Nal
         <220>
         <223> C-term NH2
```

<400> 489 Xaa Arg Trp Lys 5 <210> 490 <211> 4 <212> PRT <213> Artificial Sequence 10 <220> <223> Description of Artificial Sequence: Synthetic peptide <220> 15 <221> DOMAIN <222> (1)..(4) <223> Cyclic <220> 20 <221> MOD_RES <222> (1)..(1) <223> Hydantoin(C(O)-(Asp-Aic))-D-Phe <220> 25 <223> C-term NH2 <400> 490 Phe Arg Trp Lys 30 <210> 491 <211> 4 <212> PRT 35 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide 40 <220> <221> DOMAIN <222> (1)..(4) <223> Cyclic 45 <220> <221> MOD_RES <222> (1)..(1) <223> Hydantoin(C(O)-(Asp-Apc))-D-Phe <220> 50 <223> C-term NH2

Phe Arg Trp Lys 1

<210> 492

<400> 491

```
<211> 4
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(4)
10
         <223> Cyclic
         <220>
         <221> MOD RES
15
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Asp-Aic))-D-2-Nal
         <220>
         <223> C-term NH2
20
         <400> 492
                                                   Xaa Arg Trp Lys
25
         <210> 493
         <211> 4
         <212> PRT
         <213> Artificial Sequence
30
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
35
         <221> DOMAIN
         <222> (1)..(4)
         <223> Cyclic
         <220>
40
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Asp-Apc))-D-2-Nal
         <220>
45
         <223> C-term NH2
         <400> 493
                                                   Xaa Arg Trp Lys
50
                                                   1
         <210> 494
         <211>5
         <212> PRT
55
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
```

```
<220>
         <221> DOMAIN
         <222> (1)..(5)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Glu-D-Ala))-His
10
         <220>
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (5)..(5)
         <223> Orn
20
         <220>
         <223> C-term NH2
         <400> 494
25
                                               His Phe Arg Trp Xaa
                                               1
                                                                    5
         <210> 495
30
         <211> 5
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(5)
40
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (1)..(1)
45
         <223> Hydantoin(C(O)-(Glu-D-Ala))-His
         <220>
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Phe
50
         <220>
         <221> MOD_RES
         <222> (5)..(5)
55
         <223> Dab
         <220>
         <223> C-term NH2
```

<400> 495

```
His Phe Arg Trp Xaa
                                                                     5
5
         <210> 496
         <211> 5
         <212> PRT
         <213> Artificial Sequence
10
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
15
         <221> DOMAIN
         <222> (1)..(5)
         <223> Cyclic
         <220>
20
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Glu-D-Ala))-His
         <220>
25
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Phe
         <220>
30
         <221> MOD_RES
         <222> (5)..(5)
         <223> Dap
         <220>
35
         <223> C-term NH2
         <400> 496
                                               His Phe Arg Trp Xaa
40
                                               1
                                                                     5
         <210> 497
         <211>5
         <212> PRT
45
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
50
         <221> DOMAIN
         <222> (1)..(5)
         <223> Cyclic
55
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Glu-D-Ala))-His
```

```
<220>
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Phe
5
         <220>
         <223> C-term NH2
         <400> 497
10
                                               His Phe Arg Trp Lys
         <210> 498
15
         <211> 4
         <212> PRT
         <213> Artificial Sequence
20
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(4)
25
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (1)..(1)
30
         <223> Hydantoin(C(O)-(Glu-His))-D-Phe
         <220>
         <221> MOD_RES
         <222> (4)..(4)
35
         <223> Dap
         <220>
         <223> C-term NH2
40
         <400> 498
                                                  Phe Arg Trp Xaa
45
         <210> 499
         <211> 4
         <212> PRT
         <213> Artificial Sequence
50
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
55
         <222> (1)..(4)
         <223> Cyclic
         <220>
```

```
<221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Glu-His))-D-Phe
5
         <220>
         <223> C-term NH2
         <400> 499
10
                                                  Phe Arg Trp Lys
         <210> 500
         <211>7
15
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
20
         <220>
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Arg-Gly))-Cys
30
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
35
         <220>
         <223> C-term NH2
         <400> 500
40
                                          Cys Glu His Phe Arg Trp Cys
                                                               5
         <210> 501
45
         <211> 7
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <221> DOMAIN
         <222> (1)..(7)
55
         <223> Cyclic
         <220>
         <221> MOD_RES
```

```
<222> (1)..(1)
         <223> Hydantoin(C(O)-(Nle-Gly))-Cys
         <220>
5
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
10
         <223> C-term NH2
         <400> 501
                                          Cys Glu His Phe Arg Trp Cys
15
         <210> 502
         <211> 7
         <212> PRT
         <213> Artificial Sequence
20
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
25
         <220>
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Gly-Gly))-Cys
35
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
40
         <220>
         <223> C-term NH2
         <400> 502
45
                                          Cys Glu His Phe Arg Trp Cys
                                                               5
         <210> 503
         <211> 7
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <221> DOMAIN
         <222> (1)..(7)
```

```
<223> Cyclic
         <220>
         <221> MOD_RES
5
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Nle-Gly))-Cys
         <220>
         <221> MOD_RES
10
         <222> (2) .. (2)
         <223> D-Ala
         <220>
         <221> MOD RES
15
         <222> (4)..(4)
         <223> D-Phe
         <220>
         <223> C-term NH2
20
         <400> 503
                                         Cys Ala His Phe Arg Trp Cys
25
         <210> 504
         <211> 7
         <212> PRT
         <213> Artificial Sequence
30
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
35
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
         <220>
40
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Gly-Gly))-Cys
         <220>
45
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Ala
         <220>
         <221> MOD_RES
50
         <222> (4)..(4)
         <223> D-Phe
         <220>
55
         <223> C-term NH2
         <400> 504
```

Cys Ala His Phe Arg Trp Cys

```
<210> 505
5
         <211> 7
         <212> PRT
         <213> Artificial Sequence
         <220>
10
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(7)
15
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (1)..(1)
20
         <223> Hydantoin(C(O)-(Nle-Gly))-Cys
         <220>
         <221> MOD_RES
         <222> (2) .. (2)
25
         <223> D-Ala
         <220>
         <221> MOD RES
         <222> (4)..(4)
30
         <223> D-Phe
         <220>
         <221> MOD_RES
         <222> (7)..(7)
35
         <223> Pen
         <220>
         <223> C-term NH2
40
         <400> 505
                                          Cys Ala His Phe Arg Trp Xaa
45
         <210> 506
         <211> 7
         <212> PRT
         <213> Artificial Sequence
         <220>
50
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
55
         <222> (1)..(7)
         <223> Cyclic
         <220>
```

```
<221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Gly-Gly))-Cys
5
         <220>
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Ala
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
15
         <220>
         <221> MOD_RES
         <222> (7)..(7)
         <223> Pen
20
         <220>
         <223> C-term NH2
         <400> 506
25
                                         Cys Ala His Phe Arg Trp Xaa
         <210> 507
         <211> 7
30
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
35
         <220>
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Ala-Gly))-Cys
45
         <220>
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Ala
50
         <220>
         <221> MOD RES
         <222> (4)..(4)
         <223> D-Phe
55
         <220>
         <223> C-term NH2
```

<400> 507

```
Cys Ala His Phe Arg Trp Cys
5
         <210> 508
         <211> 7
         <212> PRT
         <213> Artificial Sequence
10
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
15
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
         <220>
20
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(D-Ala-Gly))-Cys
         <220>
25
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Ala
         <220>
30
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
35
         <223> C-term NH2
         <400> 508
                                          Cys Ala His Phe Arg Trp Cys
40
         <210> 509
         <211> 7
         <212> PRT
45
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
50
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
55
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Aib-Gly))-Cys
```

```
<220>
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Ala
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
10
         <220>
         <223> C-term NH2
         <400> 509
15
                                         Cys Ala His Phe Arg Trp Cys
         <210> 510
20
         <211> 7
         <212> PRT
         <213> Artificial Sequence
         <220>
25
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(7)
30
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (1)..(1)
35
         <223> Hydantoin(C(O)-(Val-Gly))-Cys
         <220>
         <221> MOD RES
         <222> (2) .. (2)
40
         <223> D-Ala
         <220>
         <221> MOD_RES
         <222> (4)..(4)
45
         <223> D-Phe
         <220>
         <223> C-term NH2
         <400> 510
50
                                         Cys Ala His Phe Arg Trp Cys
55
         <210> 511
         <211> 7
         <212> PRT
```

<213> Artificial Sequence

```
<220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
5
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
         <220>
10
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Ile-Gly))-Cys
         <220>
15
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Ala
         <220>
20
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
25
         <223> C-term NH2
         <400> 511
                                          Cys Ala His Phe Arg Trp Cys
30
                                                                5
         <210> 512
         <211> 7
         <212> PRT
35
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
40
         <220>
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Leu-Gly))-Cys
         <220>
50
         <221> MOD_RES
         <222> (2)..(2)
         <223> D-Ala
55
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
```

```
<220>
         <223> C-term NH2
         <400> 512
5
                                          Cys Ala His Phe Arg Trp Cys
         <210> 513
10
         <211> 7
         <212> PRT
         <213> Artificial Sequence
15
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(7)
20
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (1)..(1)
25
         <223> Hydantoin(C(O)-(Gly-Gly))-Cys
         <220>
         <221> MOD RES
         <222> (4)..(4)
30
         <223> D-2-Nal
         <220>
         <223> C-term NH2
35
         <400> 513
                                          Cys Glu His Xaa Arg Trp Cys
                                                               5
40
         <210> 514
         <211> 7
         <212> PRT
         <213> Artificial Sequence
45
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
50
         <222> (1)..(7)
         <223> Cyclic
         <220>
         <221> MOD_RES
55
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Nle-Gly))-Cys
         <220>
```

```
<221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
5
         <220>
         <223> C-term NH2
         <400> 514
10
                                         Cys Glu His Xaa Arg Trp Cys
         <210> 515
         <211> 7
15
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
20
         <220>
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(D-Arg-Gly))-Cys
30
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
35
         <220>
         <223> C-term NH2
         <400> 515
40
                                         Cys Glu His Phe Arg Trp Cys
                                                               5
         <210> 516
45
         <211> 7
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <221> DOMAIN
         <222> (1)..(7)
55
         <223> Cyclic
         <220>
         <221> MOD_RES
```

```
<222> (1)..(1)
         <223> Hydantoin(C(O)-(D-Arg-Gly))-Cys
         <220>
5
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Ala
         <220>
10
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
15
         <223> C-term NH2
         <400> 516
                                          Cys Ala His Phe Arg Trp Cys
20
         <210> 517
         <211> 7
         <212> PRT
25
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
35
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Arg-Gly))-Cys
40
         <220>
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Ala
45
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
50
         <223> C-term NH2
         <400> 517
55
```

Cys Ala His Phe Arg Trp Cys

1 5 <210> 518 5 <211> 7 <212> PRT <213> Artificial Sequence <220> 10 <223> Description of Artificial Sequence: Synthetic peptide <220> <221> DOMAIN <222> (1)..(7) 15 <223> Cyclic <220> <221> MOD RES <222> (1)..(1) 20 <223> Hydantoin(C(O)-(D-Arg-Gly))-Cys <220> <221> MOD_RES <222> (2) .. (2) 25 <223> D-Ala <220> <221> MOD RES <222> (4)..(4) 30 <223> D-2-Nal <220> <223> C-term NH2 35 <400> 518 Cys Ala His Xaa Arg Trp Cys 5 40 <210> 519 <211> 7 <212> PRT <213> Artificial Sequence 45 <220> <223> Description of Artificial Sequence: Synthetic peptide <220> <221> DOMAIN 50 <222> (1)..(7) <223> Cyclic <220> <221> MOD_RES 55 <222> (1)..(1) <223> Hydantoin(C(O)-(Arg-Gly))-Cys

<220>

```
<221> MOD_RES
         <222> (2) .. (2)
         <223> D-Ala
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
10
         <220>
         <223> C-term NH2
         <400> 519
15
                                         Cys Ala His Xaa Arg Trp Cys
                                                               5
         <210> 520
         <211> 7
20
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
25
         <220>
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Ala-Nle))-Cys
35
         <220>
         <221> MOD RES
         <222> (4)..(4)
         <223> D-Phe
40
         <220>
         <223> C-term NH2
         <400> 520
45
                                         Cys Glu His Phe Arg Trp Cys
         <210> 521
         <211> 7
50
         <212> PRT
         <213> Artificial Sequence
         <220>
55
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
```

```
<222> (1)..(7)
         <223> Cyclic
         <220>
5
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Val-Nle))-Cys
         <220>
10
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
15
         <223> C-term NH2
         <400> 521
                                         Cys Glu His Phe Arg Trp Cys
20
         <210> 522
         <211> 7
         <212> PRT
25
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
35
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Gly-Nle))-Cys
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
45
         <220>
         <223> C-term NH2
         <400> 522
50
                                         Cys Glu His Phe Arg Trp Cys
                                                               5
         <210> 523
         <211> 7
55
         <212> PRT
         <213> Artificial Sequence
         <220>
```

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(7)
5
         <223> Cyclic
         <220>
         <221> MOD_RES
10
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(A6c-Nle))-Cys
         <220>
         <221> MOD RES
15
         <222> (2) .. (2)
         <223> D-Ala
         <220>
         <221> MOD_RES
20
         <222> (4)..(4)
         <223> D-Phe
         <220>
         <223> C-term NH2
25
         <400> 523
                                          Cys Ala His Phe Arg Trp Cys
                                                                5
30
         <210> 524
         <211> 7
         <212> PRT
         <213> Artificial Sequence
35
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
40
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
         <220>
45
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Gly-Nle))-Cys
         <220>
         <221> MOD_RES
50
         <222> (2) .. (2)
         <223> D-Ala
         <220>
55
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
```

```
<220>
         <223> C-term NH2
         <400> 524
5
                                          Cys Ala His Phe Arg Trp Cys
         <210> 525
10
         <211> 7
         <212> PRT
         <213> Artificial Sequence
         <220>
15
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(7)
20
         <223> Cyclic
         <220>
         <221> MOD_RES
         <222> (1)..(1)
25
         <223> Hydantoin(C(O)-(Ala-Nle))-Cys
         <220>
         <221> MOD_RES
         <222> (2) .. (2)
30
         <223> D-Ala
         <220>
         <221> MOD_RES
         <222> (4)..(4)
35
         <223> D-Phe
         <220>
         <223> C-term NH2
40
         <400> 525
                                          Cys Ala His Phe Arg Trp Cys
45
         <210> 526
         <211> 7
         <212> PRT
         <213> Artificial Sequence
         <220>
50
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
55
         <222> (1)..(7)
         <223> Cyclic
         <220>
```

```
<221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(D-Ala-Nle))-Cys
5
         <220>
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Ala
10
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
15
         <220>
         <223> C-term NH2
         <400> 526
20
                                         Cys Ala His Phe Arg Trp Cys
         <210> 527
         <211> 7
25
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
35
         <220>
         <221> MOD RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Val-Nle))-Cys
40
         <220>
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Ala
45
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
50
         <220>
         <223> C-term NH2
         <400> 527
55
                                         Cys Ala His Phe Arg Trp Cys
```

5

```
<210> 528
         <211> 7
         <212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
10
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
         <220>
15
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Leu-Nle))-Cys
20
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Ala
         <220>
25
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
30
         <223> C-term NH2
         <400> 528
                                          Cys Ala His Phe Arg Trp Cys
35
                                                                5
         <210> 529
         <211>7
         <212> PRT
40
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
45
         <220>
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
         <220>
50
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Cha-Nle))-Cys
55
         <220>
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Ala
```

	<220>							
	<221> MOD_RES							
	<222> (4)(4)							
	<223> D-Phe							
5								
	<220>							
	<223> C-term NH2							
	400 500							
10	<400> 529							
10								
		Cys	Ala	His	Phe	Arg	Trp	Cys
15			1				5	
	<210> 530							
	<211> 7							
	<212> PRT							
20	<213> Artificial Sequence							
	<220>							
	<223> Description of Artificial Seque	ence:	Synth	etic pe	eptide			
25	1000							
25	<220>							
	<221> DOMAIN <222> (1)(7)							
	<223> Cyclic							
	<2237 Cyclic							
30	<220>							
	<221> MOD_RES							
	<222> (1)(1)							
	<223> Hydantoin(C(O)-(Aib-Nle))-C	ys						
35	<220>							
	<221> MOD_RES							
	<222> (2) (2)							
	<223> D-Ala							
40	<220>							
40	<221> MOD_RES							
	<222> (4)(4)							
	<223> D-Phe							
	220 5 1 110							
45	<220>							
	<223> C-term NH2							
	<400> 530							
50		Cys	Ala	His	Phe	Arg	\mathtt{Trp}	Cys
		1				5		
	<210 - F21							
	<210> 531							
55	<211> 7 <212> PRT							
	<213> Artificial Sequence							
	-2 10- 7 translat Ocquette							
	<220>							

```
<223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(7)
5
         <223> Cyclic
         <220>
         <221> MOD_RES
10
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Gly-Arg))-Cys
         <220>
         <221> MOD RES
15
         <222> (4)..(4)
         <223> D-Phe
         <220>
         <223> C-term NH2
20
         <400> 531
                                          Cys Glu His Phe Arg Trp Cys
25
         <210> 532
         <211> 7
         <212> PRT
         <213> Artificial Sequence
30
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
35
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
         <220>
40
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Gly-Arg))-Cys
         <220>
45
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
         <223> C-term NH2
50
         <400> 532
                                          Cys Glu His Xaa Arg Trp Cys
55
                                                               5
         <210> 533
         <211> 7
```

```
<212> PRT
         <213> Artificial Sequence
5
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(7)
10
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (1)..(1)
15
         <223> Hydantoin(C(O)-(Gly-Arg))-Cys
         <220>
         <221> MOD RES
         <222> (2) .. (2)
20
         <223> D-Ala
         <220>
         <221> MOD_RES
         <222> (4)..(4)
25
         <223> D-Phe
         <220>
         <223> C-term NH2
30
         <400> 533
                                          Cys Ala His Phe Arg Trp Cys
                                                                5
35
         <210> 534
         <211> 7
         <212> PRT
         <213> Artificial Sequence
40
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
45
         <222> (1)..(7)
         <223> Cyclic
         <220>
         <221> MOD RES
50
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Gly-Arg))-Cys
         <220>
         <221> MOD_RES
55
         <222> (2) .. (2)
         <223> D-Ala
         <220>
```

```
<221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
5
         <220>
         <223> C-term NH2
         <400> 534
10
                                         Cys Ala His Xaa Arg Trp Cys
         <210> 535
         <211> 7
15
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
20
         <220>
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Gly-D-Arg))-Cys
30
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
35
         <220>
         <223> C-term NH2
         <400> 535
40
                                         Cys Glu His Phe Arg Trp Cys
         <210> 536
45
         <211> 7
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <221> DOMAIN
         <222> (1)..(7)
55
         <223> Cyclic
         <220>
         <221> MOD_RES
```

```
<222> (1)..(1)
         <223> Hydantoin(C(O)-(Gly-D-Arg))-Cys
         <220>
5
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Ala
         <220>
10
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Phe
         <220>
15
         <223> C-term NH2
         <400> 536
                                         Cys Ala His Phe Arg Trp Cys
20
                                                              5
         <210> 537
         <211> 7
         <212> PRT
25
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
30
         <220>
         <221> DOMAIN
         <222> (1)..(7)
         <223> Cyclic
35
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Gly-D-Arg))-Cys
40
         <220>
         <221> MOD_RES
         <222> (2) .. (2)
         <223> D-Ala
45
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-2-Nal
         <220>
50
         <223> C-term NH2
         <400> 537
55
                                         Cys Ala His Xaa Arg Trp Cys
         <210> 538
```

```
<211> 7
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(7)
10
         <223> Cyclic
         <220>
         <221> MOD RES
15
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Nle-Ala))-Cys
         <220>
         <221> MOD_RES
20
         <222> (4)..(4)
         <223> D-Phe
         <220>
         <223> C-term NH2
25
         <400> 538
                                          Cys Glu His Phe Arg Trp Cys
                                                                5
30
         <210> 539
         <211> 6
         <212> PRT
         <213> Artificial Sequence
35
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
40
         <221> DOMAIN
         <222> (1)..(6)
         <223> Cyclic
         <220>
45
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Nle-Cys))-D-Ala
         <220>
         <221> MOD_RES
50
         <222> (3)..(3)
         <223> D-Phe
         <220>
55
         <223> C-term NH2
         <400> 539
```

Ala His Phe Arg Trp Cys 1 5

```
<210> 540
5
         <211> 6
         <212> PRT
         <213> Artificial Sequence
         <220>
10
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(6)
15
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (1)..(1)
20
         <223> Hydantoin(C(O)-(Ala-Cys))-D-Ala
         <220>
         <221> MOD_RES
         <222> (3)..(3)
25
         <223> D-Phe
         <220>
         <223> C-term NH2
30
         <400> 540
                                             Ala His Phe Arg Trp Cys
                                             1
                                                                   5
35
         <210> 541
         <211> 6
         <212> PRT
         <213> Artificial Sequence
40
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
45
         <222> (1)..(6)
         <223> Cyclic
         <220>
         <221> MOD RES
50
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(D-Ala-Cys))-D-Ala
         <220>
         <221> MOD_RES
55
         <222> (3)..(3)
         <223> D-Phe
         <220>
```

```
<223> C-term NH2
         <400> 541
5
                                            Ala His Phe Arg Trp Cys
         <210> 542
         <211>6
10
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
15
         <220>
         <221> DOMAIN
         <222> (1)..(6)
         <223> Cyclic
20
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Aib-Cys))-D-Ala
25
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Phe
30
         <220>
         <223> C-term NH2
         <400> 542
35
                                            Ala His Phe Arg Trp Cys
                                                                  5
40
         <210> 543
         <211> 6
         <212> PRT
         <213> Artificial Sequence
45
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
50
         <222> (1)..(6)
         <223> Cyclic
         <220>
         <221> MOD_RES
55
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Val-Cys))-D-Ala
         <220>
```

```
<221> MOD_RES
         <222> (3)..(3)
         <223> D-Phe
5
         <220>
         <223> C-term NH2
         <400> 543
10
                                            Ala His Phe Arg Trp Cys
                                                                 5
         <210> 544
         <211>6
15
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
20
         <220>
         <221> DOMAIN
         <222> (1)..(6)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Abu-Cys))-D-Ala
30
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Phe
35
         <220>
         <223> C-term NH2
         <400> 544
40
                                            Ala His Phe Arg Trp Cys
                                                                 5
         <210> 545
45
         <211> 6
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <221> DOMAIN
         <222> (1)..(6)
55
         <223> Cyclic
         <220>
         <221> MOD_RES
```

```
<222> (1)..(1)
         <223> Hydantoin(C(O)-(Leu-Cys))-D-Ala
         <220>
5
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Phe
         <220>
10
         <223> C-term NH2
         <400> 545
                                            Ala His Phe Arg Trp Cys
15
                                             1
         <210> 546
         <211> 6
         <212> PRT
         <213> Artificial Sequence
20
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
25
         <220>
         <221> DOMAIN
         <222> (1)..(6)
         <223> Cyclic
30
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Ile-Cys))-D-Ala
35
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Phe
40
         <220>
         <223> C-term NH2
         <400> 546
45
                                            Ala His Phe Arg Trp Cys
                                             1
                                                                  5
         <210> 547
         <211> 6
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <221> DOMAIN
         <222> (1)..(6)
```

```
<223> Cyclic
         <220>
         <221> MOD_RES
5
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Cha-Cys))-D-Ala
         <220>
         <221> MOD_RES
10
         <222> (3)..(3)
         <223> D-Phe
         <220>
         <223> C-term NH2
15
         <400> 547
                                            Ala His Phe Arg Trp Cys
                                                                  5
20
         <210> 548
         <211> 6
         <212> PRT
         <213> Artificial Sequence
25
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
30
         <221> DOMAIN
         <222> (1)..(6)
         <223> Cyclic
         <220>
35
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(A6c-Cys))-D-Ala
         <220>
40
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Phe
         <220>
45
         <223> C-term NH2
         <400> 548
                                            Ala His Phe Arg Trp Cys
50
                                            1
                                                                  5
         <210> 549
         <211>6
         <212> PRT
55
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
```

```
<220>
         <221> DOMAIN
         <222> (1)..(6)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Phe-Cys))-D-Ala
10
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Phe
15
         <220>
         <223> C-term NH2
         <400> 549
20
                                           Ala His Phe Arg Trp Cys
                                                                 5
         <210> 550
25
         <211> 6
         <212> PRT
         <213> Artificial Sequence
30
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <221> DOMAIN
         <222> (1)..(6)
35
         <223> Cyclic
         <220>
         <221> MOD RES
         <222> (1)..(1)
40
         <223> Hydantoin(C(O)-(Gly-Cys))-D-Ala
         <220>
         <221> MOD_RES
         <222> (3)..(3)
45
         <223> D-Phe
         <220>
         <223> C-term NH2
         <400> 550
50
                                           Ala His Phe Arg Trp Cys
                                           1
                                                                 5
55
         <210> 551
         <211> 6
         <212> PRT
```

```
<213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
5
         <220>
         <221> DOMAIN
         <222> (1)..(6)
         <223> Cyclic
10
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Hydantoin(C(O)-(Gly-Cys))-Glu
15
         <220>
         <221> MOD_RES
         <222> (3)..(3)
         <223> D-Phe
20
         <220>
         <223> C-term NH2
         <400> 551
25
                                             Glu His Phe Arg Trp Cys
                                             1
                                                                   5
         <210> 552
30
         <211>9
         <212> PRT
         <213> Artificial Sequence
35
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
40
         <220>
         <221> DOMAIN
         <222> (3)..(9)
         <223> Cyclic
45
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Ala
         <220>
50
         <221> MOD_RES
         <222> (6) .. (6)
         <223> D-Phe
55
         <220>
         <223> C-term NH2
         <400> 552
```

Tyr Arg Cys Ala His Phe Arg Trp Cys 1

```
<210> 553
5
         <211>9
         <212> PRT
         <213> Artificial Sequence
         <220>
10
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
15
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> 2-Nal
20
         <220>
         <221> DOMAIN
         <222> (3)..(9)
         <223> Cyclic
25
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Ala
30
         <220>
         <221> MOD_RES
         <222> (6) .. (6)
         <223> D-Phe
35
         <220>
         <223> C-term NH2
         <400> 553
40
                                    Xaa Arg Cys Ala His Phe Arg Trp Cys
         <210> 554
         <211> 9
45
         <212> PRT
         <213> Artificial Sequence
         <223> Description of Artificial Sequence: Synthetic peptide
50
         <220>
         <223> N-term Ac
         <220>
55
         <221> MOD_RES
         <222> (1)..(1)
         <223> 1-Nal
```

```
<220>
         <221> DOMAIN
         <222> (3)..(9)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Ala
10
         <220>
         <221> MOD_RES
         <222> (6) .. (6)
         <223> D-Phe
15
         <220>
         <223> C-term NH2
         <400> 554
20
                                   Xaa Arg Cys Ala His Phe Arg Trp Cys
         <210> 555
25
         <211> 9
         <212> PRT
         <213> Artificial Sequence
30
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
35
         <220>
         <221> DOMAIN
         <222> (3)..(9)
         <223> Cyclic
40
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Ala
45
         <220>
         <221> MOD_RES
         <222> (6) .. (6)
         <223> D-Phe
         <220>
50
         <223> C-term NH2
         <400> 555
55
                                   Phe Arg Cys Ala His Phe Arg Trp Cys
                                   1
                                                        5
```

<210> 556

```
<211> 9
         <212> PRT
         <213> Artificial Sequence
5
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
10
         <220>
         <221> DOMAIN
         <222> (3)..(9)
         <223> Cyclic
15
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Ala
20
         <220>
         <221> MOD_RES
         <222> (6) .. (6)
         <223> D-Phe
25
         <220>
         <223> C-term NH2
         <400> 556
30
                                    Trp Arg Cys Ala His Phe Arg Trp Cys
                                                          5
         <210> 557
35
         <211>9
         <212> PRT
         <213> Artificial Sequence
         <220>
40
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term Ac
45
         <220>
         <221> MOD_RES
         <222> (1)..(1)
         <223> Pff
         <220>
50
         <221> DOMAIN
         <222> (3)..(9)
         <223> Cyclic
55
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Ala
```

```
<220>
         <221> MOD_RES
         <222> (6) .. (6)
         <223> D-Phe
5
         <220>
         <223> C-term NH2
         <400> 557
10
                                   Xaa Arg Cys Ala His Phe Arg Trp Cys
         <210> 558
15
         <211>9
         <212> PRT
         <213> Artificial Sequence
20
         <223> Description of Artificial Sequence: Synthetic peptide
         <220>
         <223> N-term H
25
         <220>
         <221> DOMAIN
         <222> (3)..(9)
         <223> Cyclic
30
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Ala
35
         <220>
         <221> MOD_RES
         <222> (6) .. (6)
         <223> D-Phe
40
         <220>
         <223> C-term NH2
         <400> 558
45
                                   His Arg Cys Ala His Phe Arg Trp Cys
                                    1
                                                         5
         <210> 559
         <211>9
         <212> PRT
50
         <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence: Synthetic peptide
55
         <220>
         <223> N-term Ac
```

```
<220>
         <221> DOMAIN
         <222> (3)..(9)
         <223> Cyclic
5
         <220>
         <221> MOD_RES
         <222> (4)..(4)
         <223> D-Ala
10
         <220>
         <221> MOD RES
         <222> (6) .. (6)
         <223> D-Phe
15
         <220>
         <223> C-term NH2
         <400> 559
20
       His Arg Cys Ala His Phe Arg Trp Cys
                          5
25
```

Claims

30

35

40

45

50

55

- A composition for use in a method of treating obesity or a metabolic syndrome in a subject in need thereof, wherein
 the composition comprises Ac-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH₂ (SEQ ID NO: 140) or a pharmaceutically acceptable salt thereof, and the subject has a gene mutation or a gene defect upstream of the melanocortin4 receptor (MC4R).
- **2.** The composition for use of claim 1, wherein the gene mutation or a gene defect occurs in the gene encoding for pro-opiomelanocortin (POMC).
- **3.** The composition for use of claim 1, wherein the gene mutation or a gene defect occurs in the gene encoding for leptin or leptin receptor (LEPR).
- **4.** The composition for use of any one of claims 1-3, wherein the obesity or metabolic syndrome results from an attenuated response of MC4R to α -melanocortin stimulating hormone (a-MSH).
 - 5. The composition for use of any one of claims 1-4, wherein the composition is used in a method of treating obesity.

- **6.** The composition for use of any one of claims 1-4, wherein the composition is used in a method of treating a metabolic syndrome.
- 7. The composition for use of any one of claims 1-6, wherein the Ac-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH₂ (SEQ ID NO: 140) or a pharmaceutically acceptable salt thereof is an agonist of a melacortin-4 receptor (MC4R).
 - **8.** The composition for use of any one of claims 1-7, wherein the subject is a human.

10 Patentansprüche

5

15

25

35

45

55

- Zusammensetzung für die Verwendung in einem Verfahren zum Behandeln von Fettleibigkeit oder eines metabolischen Syndroms in einem Subjekt, das dessen Bedarf, wobei die Zusammensetzung Ac-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH₂ (SEQ ID NO: 140) oder ein pharmazeutisch unbedenkliches Salz davon umfasst, und das Subjekt eine Genmutation oder einen Gendefekt stromaufwärts des Melanocortin-4-Rezeptors (MC4R) aufweist.
- **2.** Zusammensetzung für die Verwendung nach Anspruch 1, wobei die Genmutation oder ein Gendefekt in dem Gen auftritt, das für Pro-Opiomelanocortin (POMC) kodiert.
- 20 3. Zusammensetzung für die Verwendung nach Anspruch 1, wobei die Genmutation oder der Gendefekt in dem Gen auftritt, das für Leptin oder den Leptinrezeptor (LEPR) kodiert.
 - **4.** Zusammensetzung für die Verwendung nach einem der Ansprüche 1-3, wobei die Fettleibigkeit oder das metabolische Syndrom aus einer abgeschwächten Reaktion von MC4R auf α-Melanocortin-stimulierendes Hormon (a-MSH) resultiert.
 - 5. Zusammensetzung für die Verwendung nach einem der Ansprüche 1-4, wobei die Zusammensetzung in einem Verfahren zum Behandeln von Fettleibigkeit verwendet wird.
- 30 **6.** Zusammensetzung für die Verwendung nach einem der Ansprüche 1-4, wobei die Zusammensetzung in einem Verfahren zum Behandeln eines metabolischen Syndroms verwendet wird.
 - 7. Zusammensetzung für die Verwendung nach einem der Ansprüche 1-6, wobei das Ac-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH₂ (SEQ ID NO: 140) oder ein pharmazeutisch unbedenkliches Salz davon ein Agonist eines Melacortin-4-Rezeptors (MC4R) ist.
 - 8. Zusammensetzung für die Verwendung nach einem der Ansprüche 1-7, wobei das Subjekt ein Mensch ist.

40 Revendications

- 1. Composition destinée à être utilisée dans une méthode de traitement de l'obésité ou d'un syndrome métabolique chez un sujet qui en a besoin, la composition comprenant Ac-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH₂ (SEQ ID NO : 140) ou un sel pharmaceutiquement acceptable de celui-ci, et le sujet présentant une mutation génétique ou un défaut génétique en amont du récepteur de la mélanocortine 4 (MC4R).
- 2. Composition destinée à être utilisée selon la revendication 1, dans laquelle la mutation génétique ou un défaut génétique se produit dans le gène codant pour la proopiomélanocortine (POMC).
- **3.** Composition destinée à être utilisée selon la revendication 1, dans laquelle la mutation génétique ou un défaut génétique se produit dans le gène codant pour la leptine ou le récepteur de la leptine (LEPR).
 - **4.** Composition destinée à être utilisée selon l'une quelconque des revendications 1 à 3, dans laquelle l'obésité ou le syndrome métabolique résulte d'une réponse atténuée de MC4R à l'hormone stimulant la mélanocortine α (α-MSH).
 - **5.** Composition destinée à être utilisée selon l'une quelconque des revendications 1 à 4, la composition étant utilisée dans une méthode de traitement de l'obésité.

488

	6.	Composition destinée à être utilisée selon l'une quelconque des revendications 1 à 4, la composition étant utilisée dans une méthode de traitement d'un syndrome métabolique.
5	7.	Composition destinée à être utilisée selon l'une quelconque des revendications 1 à 6, dans laquelle Ac-Arg-c(Cys-D-Ala-His-D-Phe-Arg-Trp-Cys)-NH $_2$ (SEQ ID NO : 140) ou un sel pharmaceutiquement acceptable de celui-ci est un agoniste d'un récepteur de la mélanocortine 4 (MC4R).
10	8.	Composition destinée à être utilisée selon l'une quelconque des revendications 1 à 7, dans laquelle le sujet est un être humain.
15		
20		
25		
30		
35		
40		
45		
50		

FIG. 1

Table 1

Sequence variants of MC4R detected in 243 subjects with severe early-onset obesity

Sequence Variant	Number of obese subjects with mutation ^A	Number of controls with mutation ^B	Number of subjects previously described
GT insertion at codon 279	7	0	None
C deletion 28-bp downstream of stop codon	П	0	None
N62S	1 (hom)	0	None
T112M	П	0	2 (11, 12)
R165Q	_	0	None
V253I	1	0	None
C271Y	1	0	None
1251L	7	3	1 (12)
V103I	3	1	2 (11, 12)

FIG. 2A

Table 2

MC4-R mutation screening in morbidly obese patients and nonobese controls

Base change	Effect on amino acid sequence	Morbidly obese $(n-209)$	Control 1 $(n-254)$	Control 2 (n – 112)
A-307-G	Val103 Ile	~	~	3
A-751-C	Ile251Leu	3	3	0
C-593-T	Silent	1	ND	1
47-48insG	16 + 12 amino-acids	1	0	0
A-31-G	Thr11Ser	1	0	0
C-52-T	Arg18Cys	1	0	0
C-449-T	Thr150Ile	1	0	0
A-508-G	Ile170Val	1	0	0
C-493-T	Arg165Trp	1	0	0
T-749-A	Leu250Gln	1	0	0
T-902-C	Ile301Thr	1	0	0

The morbidly obese and the control 2 populations were screened by PCR-SSCP. The control 1 population was screened by PCT-RFLP for every functionally relevant mutation detected in the morbidly obese population. ND, not determined.

FIG. 2B

FIG. 3

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 61581391 [0001]
- WO 2005000339 A [0035]
- WO 2011104378 A [0038]
- WO 2011104379 A [0038]
- WO 201060901 A [0038]
- WO 200887189 A [0038]
- WO 200887188 A [0038]
- WO 200887187 A [0038]
- WO 200887186 A [0038]
- US 20110065652 A [0038]
- WO 2010144341 A [0038]
- WO 2010144344 A [0038]
- WO 201065799 A [0038]
- WO 201065800 A [0038]
- WO 201065801 A [0038]
- WO 201065802 A [0038]
- WO 201037081 A [0038]
- WO 2009152079 A [0038]
- WO 2009151383 A [0038]
- US 20100311648 A [0038]
- US 20100280079 A [0038]

- WO 201081666 A [0038]
- WO 201034500 A [0038]
- WO 200910299 A [0038]
- WO 2008116665 A [0038]
- WO 201052256 A [0038]
- WO 201052255 A [0038]
- WO 201126015 A [0038]
- US 20100120783 A [0038]
- WO 201096854 A **[0038]**
- US 20100190793 A [0038]
- WO 201025142 A **[0039]**
- WO 201015972 A [0039]
- US 8263608 B [0039]
- US 8247530 B [0039]
- US 8114844 B [0039]
- US 7968548 B **[0039]**
- WO 2007008704 A [0041]
- WO 2007008684 A [0049]
- US 0806675 W [0057] [0061] [0064]
- WO 61581391 A [0180]

Non-patent literature cited in the description

- REINHHR. Lifestyle Intervention in Obese Children With Variations in the Melanocortin 4 Receptor Gene. Obesity Journal, 2009, vol. 17 (2 [0010]
- BAKER et al. Childhood Body-Mass Index and the Risk of Coronary Heart Disease in Adulthood. N. Engl. J. Med 2007, 2007, vol. 357, 2329-2337 [0010]
- FAROOQI et al. The Journal of Clinical Investigation, July 2000, vol. 106 (2), 271-279 [0028] [0032]
- VAISSE et al. The Journal of Clinical Investigation, July 2000, vol. 106 (2), 253-262 [0028] [0032]
- XIANG et al. Pharmacological characterization of 30 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists, synthetic agonists, and the endogenous agouti-related protein antagonist. *Biochemistry*, 08 June 2010, vol. 49 (22), 4583-600 [0029]
- ROUBERT et al. Journal of Endocrinology, 2010, vol. 207, 177-183 [0033]
- BERGE, S. M. et al. J. Pharm. Sci., 1977, vol. 66, 1-19 [0099]
- **GOULD, P. L.** *Int'l J. Pharmaceutics*, 1986, vol. 33, 201-17 **[0099]**
- BIGHLEY, L. D. et al. Encyclo. Pharma. Tech. Marcel Dekker Inc, 1996, vol. 13, 453-97 [0099]