ecture 4 Classification

K-Nearest Neighbour.

-) Instance based method. Consider all instances corresponding to points in the n-dimentional space R. - corresponding to points in the n-dimentional space R. - Con be used for both classification & negression. - In classification, we have fixed number of

categories.

reighbours, calculating distance. (2) Manhattan Distance -> NoFind St 111 Euclidean Dietance

1 (215 As) (いい)

ED = 16-213+67-913

MO = a + p = - |x, -x2 + |y, -y2

fixed number of categories. -> In classification, we have > Either 1 or & category

So will be in A.

Drice prediction) problem. -) If we take Regression Utouse

Rooms Hous Size 1.6M 5M 1.917 5 M 2.1 M 511 517 2.511

Price of test deta= 1.6+1.9+2.1+2+2.2

= 1

Numerical Example:			(5)
Reting Duation	Gente	180	
8.0 (Missin In) 160	Action	1700	(x x
6.2 (Gadas) 170	Action	164	
7.2 (Rockey) 168	Comedy	And the second	
	1 Conedy	150	
of 7.4 & 114 minute	vie with duration. Pr	eapling deuse	4 8 12
Step 1 Calculate Bre the Meightours each of	ED beb	e. the re	us and
E. Dist to (8.0, 160) = 1	(7.4-8.0)2 +	(114-160) = 10	= 56.01 = 56.01
ED 6. (6.2,10) =			= 20.01
" (1:2, 168)		"	= 41
" (8.2,155)=		•	-1
Step 2			
Select K reason	E Meighbo	er.	14=3
boe Ir= J	ing a second	A	Lion, Comedy, Come
Por Ic= 1 So "Come	dy .	S	Lion, Comedy, Conedo "Comedy".
1/201		**	, i
Majority 1	edy".		
Limitations:		e cote bec	2 of distance
1) Mot feasible for calculations involve	d.	A STATE OF THE SECOND	4 / 3 / 4 /
calculations to	outliers.		KA X X X X X X X X X X X X X X X X X X X
2) Very sensitive to mi			XXXXX
3) Sensitive Com	J	3	1 2 2

Numerical Example:

Positively labelled Data points E(3). (3). (6). (6) Megatively labelled data points 9(10).(0).(0).(0)]

(2) スーシン UZE-D Three support vectors (1), S== (3)} Augmenting each vector with 1 as bias 8 (3), 83= (3) } input 80 as. 8. + a282.8, + a 5.8, = -1 d, 51. 52 + d, 52. 82 + d3 53. 52 = + 1 a, \$, . \$ = + 0, \$2. \$3 + 0, \$3. \$3 = +1 a. (0)(0) + a2 (3)(0) + a3 (3). (0) =-1 q. (1).(1) + q2 (3)(3) + q3 (7)(3) = 1 $\alpha_{1} \left(\frac{1}{2} \right) \cdot \left(\frac{3}{2} \right) + \alpha_{2} \left(\frac{3}{2} \right) \cdot \left(\frac{3}{2} \right) + \alpha_{3} \left(\frac{3}{2} \right) \cdot \left(\frac{3}{2} \right) = 1$ a, (100+1) + d2 (3+0+1) + d3 (3+0+1)=-1 a. (3+0+1) + a2 (9+1+1) + a3 (9-1+1)=1 a, (3+0+1) + a2 (9-1+1) + d3 (9+1+1)=) Zx, +4x2 +4x2 = -1 4d, + 11a2 + 9d3=1 4a, + 9a2 + 11a3 = 1 a, =-3.5; a=0.75; a=0.75 Calculating Weight factor تَنْ ۽ کِرِم: عُز = -3.5(0) + 0.75(3) + 0.75(-1)

Equating last entry to bias Hyperplane Equation

W=(') & b=-2

-> SVM Types:

1) Linear Sum

2) Non-linear SVM

Accuracy = 50%

-) Convert from ED (10w dimension) into high dimension using SVM Kernels. ED = 40

-) There are three types 11) Polynomial Kernels, & RIBE Kernels; & (3) Sigmoid Kernel.

for example

