Differential Geometry

Jayadev Naram

Contents

1	Smooth Manifolds	2
2	Smooth Maps	4
3	Partitions of Unity	5
4	Tangent Vectors	5

1 Smooth Manifolds

Definition 1. A topological space \mathcal{M} is said to be **locally Euclidean of dimension** n if every point of \mathcal{M} has a neighborhood in \mathcal{M} that is homeomorphic to an open subset of \mathbb{R}^n .

Lemma 1. A topological space \mathcal{M} is locally Euclidean of dimension n if and only if either of the following properties holds:

- (a) Every point of \mathcal{M} has a neighborhood homeomorphic to an open ball in \mathbb{R}^n .
- (b) Every point of \mathcal{M} has a neighborhood homeomorphic to \mathbb{R}^n .

Proof Sketch. For (a) one need to show that any open subset of \mathbb{R}^n is homeomorphic to the unit open ball in \mathbb{R}^n . Note that the unit open ball is homeomorphic to any open ball in \mathbb{R}^n . For (b) it suffices to show that unit open ball in \mathbb{R}^n is homeomorphic to \mathbb{R}^n .

Definition 2. Suppose \mathcal{M} is a topological space. \mathcal{M} is a **topological manifold of dimension** n or a **topological n-manifold** if it has the following properties:

- (a) \mathcal{M} is a **Hausdorff space**.
- (b) \mathcal{M} is a second-countable.
- (c) \mathcal{M} is locally Euclidean of dimension n.

A coordinate chart (or just a chart) on \mathcal{M} is a pair (U, φ) , where U is an open subset of \mathcal{M} and $\varphi: U \to \hat{U}$ is a homeomorphism from U to an open subset $\hat{U} = \varphi(U) \subseteq \mathbb{R}^n$. The set U is called a coordinate domain or a coordinate neighborhood of each of its points. The map φ is called a (local) coordinate map, and the component functions (x^1, \dots, x^n) of φ , defined by $\varphi(p) = (x^1(p), \dots, x^n(p))$, are called local coordinates on U.

Proposition 1. A nonempty n-dimensional topological manifold cannot be homeomorphic to an m-dimensional manifold unless m = n.

Example. Here are some examples of topological manifolds.

- (i) Open subset of a topological n-manifold.
- (ii) Graphs of Continuous Functions.
- (iii) Spheres.
- (iv) Projective Spaces.
- (v) Product Manifolds.

Definition 3. Let \mathcal{M} be a topological n-manifold. If $(U, \varphi), (V, \psi)$ are two charts such that $U \cap V \neq \emptyset$, the composite map $\psi \circ \varphi^{-1} : \varphi(U \cap V) \to \psi(U \cap V)$ is called **transition map from** φ **to** ψ . Two charts $(U, \varphi), (V, \psi)$ are said to be **smoothly compatible** if either $U \cap V = \emptyset$ or the transition map $psi \circ \varphi^{-1}$ is a (\mathcal{C}^{∞}) diffeomorphism.

Remark 1. In the above definition, since $\psi(U \cap V)$ and $\varphi(U \cap V)$ are open subsets of \mathbb{R}^n , smoothness of the transition map $\psi \circ \varphi^{-1}$ can be interpreted in the ordinary sense of having continuous partial derivatives of all orders.

Definition 4. We define an **atlas for** \mathcal{M} to be a collection of charts whose domains cover \mathcal{M} . An atlas \mathcal{A} is called a **smooth atlas** if any two charts in \mathcal{A} are smoothly compatible with each other.

Remark 2. To show that an atlas is smooth, we need only verify that each transition map $\psi \circ \varphi^{-1}$ is smooth whenever $(U, \varphi), (V, \psi)$ are charts in \mathcal{A} such that $U \cap V \neq \emptyset$; once we have proved this, it follows that $\psi \circ \varphi^{-1}$ is a diffeomorphism because its inverse $(\psi \circ \varphi^{-1})^{-1} = \varphi \circ \psi^{-1}$ is one of the transition maps we have already shown to be smooth. Alternatively, given two particular charts $(U, \varphi), (V, \psi)$, it is often easiest to show that they are smoothly compatible by verifying that $\psi \circ \varphi^{-1}$ is smooth and injective with nonsingular Jacobian at each point, and appealing to a variant inverse function theorem([1, Corollary C.36]).

Definition 5. Let \mathcal{M} be a topological manifold. A smooth atlas \mathcal{A} on \mathcal{M} is **maximal** if it is not properly contained in any larger smooth atlas.

Remark 3. If A is a maximal smooth atlas on M, then any chart that is smoothly compatible with every chart in A is already in A.

Definition 6. Let \mathcal{M} be a topological manifold. A **smooth structure on** \mathcal{M} is a maximal smooth atlas. A **smooth manifold** is a pair $(\mathcal{M}, \mathcal{A})$ where \mathcal{M} is a topological manifold and \mathcal{A} is a smooth structure on \mathcal{M} . Any chart (U, φ) in \mathcal{A} is called a **smooth chart** and the corresponding coordinate map φ and the domain U of φ are called **smooth coordinate map** and **smooth coordinate domain** or **smooth coordinate neighborhood** respectively.

Theorem 2. Let \mathcal{M} be a topological manifold.

- (a) Every smooth atlas A on M is contained in a unique maximal smooth atlas, called the smooth structure determined by A.
- (b) Two smooth at lases for \mathcal{M} determine the same smooth structure iff their union is a smooth at last.

Example. Here are some examples of smooth manifolds.

- (i) Euclidean Spaces.
- (ii) Finite-Dimensional Vector Spaces.
- (iii) Space of Matrices.
- (iv) Open Submanifolds.
- (v) The General Linear Group.
- (vi) Matrices of Full Rank.
- (vii) Spaces of Linear Maps.
- (viii) Graphs of Continuous Functions.
 - (ix) Spheres.
 - (x) Level Sets.
 - (xi) Projective Spaces.
- (xii) Smooth Product Manifolds.
- (xiii) Grassmann Manifolds.

Solve the exercise questions 1-1 to 1-10 from [1, Ch 1].

2 Smooth Maps

Note 1. For the sake of convenience, we reserve the word function for a map whose codomain is \mathbb{R} (a real-valued function) or \mathbb{R}^k for some k > 1 (a vector-valued function). Either of the words map or mapping can mean any type of map, such as a map between arbitrary manifolds.

Definition 7. Suppose \mathcal{M} is a smooth n-manifold, k is a nonnegative integer, and $f: \mathcal{M} \to \mathbb{R}^k$ is any function. We say that f is a **smooth function** if for every $p \in \mathcal{M}$, there exists a smooth chart (U, φ) for \mathcal{M} whose domain contains p and such that the composite function $f \circ \varphi^{-1}$ is smooth on the open subset $\hat{U} = \varphi(U) \subseteq \mathbb{R}^n$.

Note 2. The most important special case is that of smooth real-valued functions $f: \mathcal{M} \to \mathbb{R}$; the set of all such functions is denoted by $C^{\infty}(\mathcal{M})$. Because sums and constant multiples of smooth functions are smooth, $C^{\infty}(\mathcal{M})$ is a vector space over \mathbb{R} .

Proposition 2. Let \mathcal{M} be a smooth manifold, and suppose $f: \mathcal{M} \to \mathbb{R}^k$ is a smooth function. Then $f \circ \varphi^{-1}: \varphi(U) \to \mathbb{R}^k$ is smooth for every smooth chart (U, φ) for \mathcal{M} .

Definition 8. Given a function $f: \mathcal{M} \to \mathbb{R}^k$, and a chart (U, φ) for \mathcal{M} , the function $\hat{f}: \varphi(U) \to \mathbb{R}^k$ defined by $\hat{f}(x) = f \circ \varphi^{-1}(x)$ is called the **coordinate representation of f**.

Remark 4. By Def.7, f is smooth iff its coordinate representation is smooth in some smooth chart around each point. By Prop.2, smooth functions have smooth coordinate representations in every smooth chart.

Proposition 3. Let U be an open submanifold of \mathbb{R}^n with its standard smooth manifold structure. Then a function $f: U \to \mathbb{R}^k$ is smooth in the sense of Def.7 iff it is smooth in the sense of ordinary calculus.

Definition 9. Let \mathcal{M}, \mathcal{N} be smooth manifolds, and let $F : \mathcal{M} \to \mathcal{N}$ be any map. We say that F is a **smooth map** if for every $p \in \mathcal{M}$, there exist smooth charts (U, φ) containing p and (V, ψ) containing F(p) such that $F(U) \subseteq V$ and the composite map $\psi \circ F \circ \varphi^{-1}$ is smooth from $\varphi(U)$ to $\psi(V)$.

Note 3. Def.7 can be viewed as a special case of Def.9 by taking $\mathcal{N} = V = \mathbb{R}^k$ and $\psi = Id$: $\mathbb{R}^k \to \mathbb{R}^k$.

Proposition 4. Every smooth map is continuous.

Proposition 5 (Equivalent Characterizations of Smoothness). Suppose \mathcal{M} and \mathcal{N} are smooth manifolds, and $F: \mathcal{M} \to \mathcal{N}$ is a map. Then F is smooth iff either of the following conditions is satisfied:

- (a) For every $p \in \mathcal{M}$, there exists smooth charts (U, φ) containing p and (V, ψ) containing F(p) such that $U \cap F^{-1}(V)$ is open in \mathcal{M} and the composite map $\psi \circ F \circ \varphi^{-1}$ is smooth from $\varphi(U \cap F^{-1}(V))$ to $\psi(V)$.
- (b) F is continuous and there exist smooth atlases $\{(U_{\alpha}, \varphi_{\alpha})\}$ and $\{(V_{\beta}, \psi_{\beta})\}$ for \mathcal{M} and \mathcal{N} , respectively, such that for each α and β , $\psi_{\beta} \circ F \circ \varphi_{\alpha}^{-1}$ is smooth from $\varphi_{\alpha}(U_{\alpha} \cap F^{-1}(V_{\beta}))$ to $\psi_{\beta}(V_{\beta})$.

Proposition 6 (Smoothness is Local). Let \mathcal{M}, \mathcal{N} be smooth manifolds, and let $F : \mathcal{M} \to \mathcal{N}$ be a map.

(a) If every point $p \in \mathcal{M}$ has a neighborhood U such that the restriction $F|_U$ is smooth, then F is smooth.

(b) Conversely, if F is smooth, then its restriction to every open subset is smooth.

Proposition 7 (Gluing Lemma for Smooth Maps). Let \mathcal{M}, \mathcal{N} be smooth manifolds, and let $\{U_{\alpha}\}_{{\alpha}\in A}$ be an open cover of \mathcal{M} . Suppose that for each $\alpha\in A$, we are given a smooth map $F_{\alpha}:U_{\alpha}\to \mathcal{N}$ such that the maps agree on overlaps: $F_{\alpha}|_{U_{\alpha}\cap U_{\beta}}=F_{\beta}|_{U_{\alpha}\cap U_{\beta}}$ for all α and β . Then there exists a unique smooth map $F:\mathcal{M}\to \mathcal{N}$ such that $F|_{U_{\alpha}}=F_{\alpha}$ for each $\alpha\in A$.

Definition 10. Given a map $F: \mathcal{M} \to \mathcal{N}$, and smooth charts (U, φ) and (V, ψ) for \mathcal{M} and \mathcal{N} , respectively, the function $\hat{F}: \varphi(U \cap F^{-1}(V)) \to \psi(V)$ defined by $\hat{F}(x) = \psi \circ F \circ \varphi^{-1}(x)$ is called the **coordinate representation of** F.

Proposition 8. Suppose $F: \mathcal{M} \to \mathcal{N}$ is a smooth map between smooth manifolds. Then the coordinate representation of F with respect to every pair of smooth charts for \mathcal{M} and \mathcal{N} is smooth.

Proposition 9. Let \mathcal{M} , \mathcal{N} , and \mathcal{P} be smooth manifolds.

- (a) Every constant map $c: \mathcal{M} \to \mathcal{N}$ is smooth.
- (b) The identity map of \mathcal{M} is smooth.
- (c) If $U \subseteq \mathcal{M}$ is an open submanifold, then the inclusion map $U \hookrightarrow \mathcal{M}$ is smooth.
- (d) If $F: \mathcal{M} \to \mathcal{N}$ and $G: \mathcal{N} \to \mathcal{P}$ are smooth, then so is $G \circ F: \mathcal{M} \to \mathcal{P}$.

Proposition 10. Suppose $\mathcal{M}_1, \ldots, \mathcal{M}_k$ and \mathcal{N} are smooth manifolds. For each i, let π_i : $\mathcal{M}_1 \times \ldots \times \mathcal{M}_k \to \mathcal{M}_i$ denote the projection onto the \mathcal{M}_i factor. A map $F: \mathcal{N} \to \mathcal{M}_1 \times \ldots \times \mathcal{M}_k$ is smooth iff each of the component maps $F_i = \pi_i \circ F: \mathcal{N} \to \mathcal{M}_i$ is smooth.

3 Partitions of Unity

4 Tangent Vectors

Definition 11. Given a point $x \in \mathbb{R}^n$, the **geometric tangent space** to \mathbb{R}^n at x, denoted by \mathbb{R}^n_x , is the set

$$\mathbb{R}_x^n = \{x\} \times \mathbb{R}^n = \{(x, v) : v \in \mathbb{R}^n\}.$$

A geometric tangent vector in \mathbb{R}^n is an element of \mathbb{R}^n_x for some $x \in \mathbb{R}^n$. As a matter of notation, we abbreviate (x, v) as v_x or $v|_x$. We think of v_x as the vector v with its initial point at x.

Note 4. The set \mathbb{R}^n_x is a real vector space under the natural operations

$$v_x + w_x = (v + w)_x, \quad c(v_x) = (cv)_x.$$

Consequently, the vectors $e_i|_x$, i = 1, ..., n, are a basis for \mathbb{R}^n_x .

Definition 12. If x is a point of \mathbb{R}^n , a map $w : \mathcal{C}^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ is called a **derivation at** x if it is linear over \mathbb{R} and satisfies the following product rule:

$$w(fq) = f(x)wq + q(x)wf.$$

Let $T_x\mathbb{R}^n$ denote the set of all derivation of $\mathcal{C}^{\infty}(\mathbb{R}^n)$ at x.

Note 5. Clearly, $T_x\mathbb{R}^n$ is a vector space under the operations

$$(w_1 + w_2)f = w_1f + w_2f$$
, $(cw)f = c(wf)$.

Note 6. For any geometric tangent vector $v_x \in \mathbb{R}^n_x$ we define a derivation to be a map which takes the directional derivative of any $f \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ in the direction v at x:

$$D_v|_x f = Df(x)[v] = \frac{d}{dt}\Big|_{t=0} f(x+tv) = \lim_{t\to 0} \frac{f(x+tv) - f(x)}{t}.$$

It is indeed true that it is linear over \mathbb{R} since for any $f,g\in\mathcal{C}^{\infty}(\mathbb{R}^n)$ and $\alpha,\beta\in\mathbb{R}$, we have

$$\begin{split} D_v|_x\left(\alpha f + \beta g\right) &= D(\alpha f + \beta g)(x)[v] &= \lim_{t \to 0} \frac{\alpha f(x+tv) + \beta g(x+tv) - \alpha f(x) - \beta g(x)}{t} \\ &= \alpha \lim_{t \to 0} \frac{f(x+tv) - f(x)}{t} + \beta \lim_{t \to 0} \frac{g(x+tv) - g(x)}{t} \\ &= \alpha Df(x)[v] + \beta Dg(x)[v] = \alpha \left. D_v|_x f + \beta \left. D_v|_x g. \end{split}$$

One can also note that this map satisfies the product rule(or chain rule):

$$D_v|_r(fg) = f(x) D_v|_r g + g(x) D_v|_r f.$$

If $v_a = \sum_{i=1}^n v^{(i)} e_i|_a$ in terms of the standard basis, then by the chain rule $D_v|_a f$ can be written more concretely as

$$D_v|_a f = \sum_{i=1}^n v^{(i)} \frac{\partial f}{\partial x^{(i)}}(a).$$

Lemma 3 (Properties of Derivations). Suppose $x \in \mathbb{R}^n$, $w \in T_x \mathbb{R}^n$, and $f, g \in \mathcal{C}^{\infty}(\mathbb{R}^n)$.

- (a) If f is a constant function, then wf = 0.
- (b) If f(x) = g(x) = 0, then w(fg) = 0.

Proposition 11. Let $x \in \mathbb{R}^n$.

- (a) For each geometric tangent vector $v_x \in \mathbb{R}^n_x$, the map $D_v|_x : \mathcal{C}^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ defined in Note 6 is a derivation at x.
- (b) The map $v_x \mapsto D_v|_x$ is an isomorphism from \mathbb{R}^n_x onto $T_x\mathbb{R}^n$.

Corollary 3.1. For any $a \in \mathbb{R}^n$, the n derivations

$$\frac{\partial}{\partial x^{(1)}}\Big|_{a}, \dots, \frac{\partial}{\partial x^{(n)}}\Big|_{a}$$
 defined by $\frac{\partial}{\partial x^{(i)}}\Big|_{a} f = \frac{\partial f}{\partial x^{(i)}}(a)$

form a basis for $T_a\mathbb{R}^n$, which therefore has dimension n.

Definition 13. Let \mathcal{M} be a smooth manifold, and let p be a point of \mathcal{M} . A linear map v: $\mathcal{C}^{\infty}(\mathcal{M}) \to \mathbb{R}$ is called a **derivation at** p if it satisfies

$$v(fg) = f(p)vg + g(p)vf$$
, for all $f, g \in \mathcal{C}^{\infty}(\mathcal{M})$.

The set of all derivations of $C^{\infty}(\mathcal{M})$ at p, denoted by $T_p\mathcal{M}$, is a vector space called the **tangent** space to \mathcal{M} at p. An element of $T_p\mathcal{M}$ is called a **tangent vector at** p.

Lemma 4 (Properties of Tangent Vectors on Manifolds). Suppose \mathcal{M} is a smooth manifold, $p \in \mathcal{M}$, $v \in T_p \mathcal{M}$, and $f, g \in \mathcal{C}^{\infty}(\mathcal{M})$.

- (a) If f is a constant function, then vf = 0.
- (b) If f(p) = g(p) = 0, then v(fg) = 0.

Definition 14. If \mathcal{M} and \mathcal{N} are smooth manifolds and $F: \mathcal{M} \to \mathcal{N}$ is a smooth map, for each $p \in \mathcal{M}$ we define a map $dF_p: T_p\mathcal{M} \to T_{F(p)}\mathcal{N}$, called the **differential of F at p**, as follows. Given $v \in T_p\mathcal{M}$, we let $dF_p(v)$ be the derivation at F(p) that acts on $f \in \mathcal{C}^{\infty}(\mathcal{N})$ by the rule

$$dF_p(v)(f) = v(f \circ F).$$

Remark 5. The operator $dF_p: \mathcal{C}^{\infty}(\mathcal{N}) \to \mathbb{R}$ is linear because v is, and is a derivation at F(p) because for any $f, g \in \mathcal{C}^{\infty}(\mathcal{N})$ we have

$$dF_p(v)(fg) = v((fg) \circ F) = v((f \circ F)(g \circ F))$$

= $f(F(p))v(g \circ F) + g(F(p))v(f \circ F)$
= $f(F(p))dF_p(v)(g) + g(F(p))dF_p(v)(f)$.

Proposition 12 (Properties of Differentials). Let \mathcal{M}, \mathcal{N} , and \mathcal{P} are smooth manifolds, let $F: \mathcal{M} \to \mathcal{N}$ and $G: \mathcal{N} \to \mathcal{P}$ be smooth maps, and let $p \in \mathcal{M}$,

- 1. $dF_p: T_p\mathcal{M} \to T_{F(p)}\mathcal{N}$ is linear.
- 2. $d(G \circ F)_p = dG_{F(p)} \circ dF_p : T_p \mathcal{M} \to T_{G \circ F(p)} \mathcal{P}.$
- 3. $d(Id_{\mathcal{M}}) = Id_{T_{p}\mathcal{M}} : T_{p}\mathcal{M} \to T_{p}\mathcal{M}$.
- 4. If F is a diffeomorphism, then $dF_p: T_p\mathcal{M} \to T_{F(p)}\mathcal{N}$ is an isomorphism, and $(dF_p)^{-1} = d(F^{-1})_{F(p)}$.

Proposition 13 (Tangent vectors act locally). Let \mathcal{M} be a smooth manifold, $p \in \mathcal{M}$ and $v \in T_p \mathcal{M}$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on some neighborhood of p, then vf = vg.

Proposition 14 (The Tangent Space to an Open Submanifold). Let \mathcal{M} be a smooth manifold, let $U \subseteq \mathcal{M}$ be an open subset, and let $\iota : U \to \mathcal{M}$ be the inclusion map. For every $p \in U$, the differential $d\iota_p : T_pU \to T_p\mathcal{M}$ is an isomorphism.

Proposition 15 (Dimension of the Tangent Space). If \mathcal{M} is an n-dimensional smooth manifold, then for each $p \in \mathcal{M}$, the tangent space $T_p \mathcal{M}$ is an n-dimensional vector space.

Proposition 16 (The Tangent Space to a Vector Space). Suppose V is a finite-dimensional vector space with its standard smooth structure. For any vector $v \in V$, we define a map $D_v|_a : \mathcal{C}^{\infty}(V) \to \mathbb{R}$ by

$$D_v|_a f = \frac{d}{dt}\Big|_{t=0} f(a+tv).$$

Then, the map $v \mapsto D_v|_a$ defined above is an isomorphism from v to T_aV , such that for any linear map $L: V \to W$ we have $dL_a(D_v|_a) = D_{Lv|_{La}}$.

Proposition 17 (The Tangent Space to a Product Manifold). Let $\mathcal{M}_1, \ldots, \mathcal{M}_k$ be smooth manifolds, and for each j, let $\pi_j : \mathcal{M}_1 \times \ldots \times \mathcal{M}_k \to \mathcal{M}_j$ denote the projection onto the \mathcal{M}_j factor. For any point $p = (p_1, \ldots, p_k) \in \mathcal{M}_1 \times \ldots \times \mathcal{M}_k$, the map

$$\alpha: T_p(\mathcal{M}_1 \times \ldots \times \mathcal{M}_k) \to T_{p_1} \mathcal{M}_1 \oplus \ldots \oplus T_{p_k} \mathcal{M}_k$$

defined by

$$\alpha(v) = (d(\pi_1)_p(v), \dots, d(\pi_k)_p(v))$$

is an isomorphism.

Proposition 18. Let \mathcal{M} be a smooth n-manifold, and let $p \in \mathcal{M}$. Then $T_p\mathcal{M}$ is an n-dimensional vector space, and for any smooth chart $(U,(x^{(i)}))$ containing p, the coordinate vectors $\partial/\partial x^{(1)}|_p,\ldots,\partial/\partial x^{(n)}|_p$ form a basis for $T_p\mathcal{M}$.

References

[1] John M. Lee, Introduction to Smooth Manifolds.