

☆ Top > Plastic Scintillating Fibers (Materials and Structures)

Plastic Scintillating Fibers (Materials and Structures)

Plastic Scintillating Fibers
Plastic Imaging Fibers
-to contribute for the development of the natural science-

Materials

		Material	Refractive index	Density (g/cm³)	No. of atom per cm ³
Core		Polystyrene (PS)	n D=1.59	1.05	C:4.9x10 ²² H:4.9x10 ²²
Cladding	for single cladding inner for multi cladding	Polymethylmethacrylate (PMMA)	n D=1.49	1.19	C:3.6x10 ²² H:5.7x10 ²² O:1.4x10 ²²
	outer for multi cladding	Fluorinated polymer (FP)	n D=1.42	1.43	

Cross-section and Cladding Thickness

	Single Cladding	Multi Cladding (M)	
Round Fiber (D)	Cladding (PMMA) Core (PS) Cladding Thickness: T=3% of D Numerical Aperture: NA=0.55 Trapping Efficiency: 3.1%	Outer Cladding (FP) Inner Cladding (PMMA) Core (PS) Cladding Thickness: T = 3% (To)+3% (Ti) =6% of D Numerical Aperture: NA=0.72 Trapping Efficiency: 5.4%	
Square Fiber (SQ)	Cladding (PMMA) Core (PS) T Cladding Thickness: T=2% of S	Not available	

Trapping Efficiency : 4.2%

Cladding and Transmission mechanism

Single Cladding

Single cladding is standard type of cladding.

Multi Cladding

Multi cladding fiber(M) 50% has higher light yield than single cladding fiber because of large trapping efficiency.

Clear-PS fiber of this cladding has extremely higher NA than conventional PMMA or PS fiber, and very useful as light guide fiber.

Multicladding fiber has long attenuation length equal to single cladding fiber.

Type of Polymer Orientation of PS Core

Standard type (Non-S type)

PS core is of almost no oriented polystyrene chain and is optically isotropic and very transparent.

This conventional standard type has good attenuation length, but it showed weakness against cracking caused by bending or handling during assembling.

S type (S)

Core has molecular orientation along drawing direction. This fiber is mechanically stronger against cracking at the cost of transparency.

The attenuation length of this type is nearly 10% shorter than standard type.

Dimensions and Tolerance

Cross-sectional Dimension

Minimum: 0.2mm, Maximum: 2.0mm, typically as follows.

Round (Single and Multi Cladding): 0.2, 0.5, 1.0, 1.5, 2.0mm dia.

Square (Single Cladding): 0.2x0.2, 0.5x0.5, 1.0x1.0, 2.0x2.0mm side

Tolerance of Diameter

Cut Fiber (1-5m long) :

$$\left| \frac{\Delta D}{\overline{D}} \right|$$
 < 2.0% for round fiber $\left| \frac{\Delta S}{\overline{D}} \right|$ < 3.0% for square fiber

- Endless Spool Fiber:

Bending Loss and Minimum Bending Diameter

Bending Loss

The following figure shows bending loss of Clear-PSM and Clear PSMS. S type is better than Non-S type.

s type is better triair Non-S type

The rapid increase of bending loss of non-S type is due to cracking of core.

S type does not show such cracking.

Measurement Method

Minimum Bending Diameter

We recommend minimum bending diameter as the following table on safety side and long term reliability.

Туре	2mmΦFiber	1mmΦFiber	0.5mmΦFiber
S type	200mm	100mm	50mm
Non-S type	400mm	200mm	100mm

Wavelength Shifting Fibers

Sitemap

▶ Privacy Policy

All contents @ copyright KURARAY CO., LTD All right reserved.