Multi-core RISC Processor Design and Implementation (Rev. 2.02)

ELEC5881M - Final Report

Ben David Lancaster

Student ID: 201280376

Submitted in accordance with the requirements for the degree of Master of Science (MSc) in Embedded Systems Engineering

Supervisor: Dr. David Cowell Assessor: Mr David Moore

University of Leeds

School of Electrical and Electronic Engineering

August 24, 2019

Word count: 4689

Abstract

This interim report details the 4-month progress on a project to design, implement, and verify, a multi-core FPGA RISC processor. The project has been split into two stages: firstly to build a functional single-core RISC processor, and then secondly to add multiprocessor principles and functionality to it.

Current multiprocessor and network-on-chip communication methods have been discussed and how they could be included in this multi-core RISC design. To-date, a 16-bit instruction set architecture has been designed featuring common load/store instructions, comparison, and bitwise operations. A single-core processor has been implemented in Verilog and verified using simulations/test benches running various simple software programs.

Future tasks have been planned and will focus on the second stage of the project. Work will start on designing a loosely coupled multiprocessor communication interface and bringing them to the single-core processor.

Declaration of Academic Integrity

The candidate confirms that the work submitted is his/her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated in the report. The candidate confirms that appropriate credit has been given within the report where reference has been made to the work of others.

This copy has been supplied on the understanding that no quotation from the report may be published without proper acknowledgement. The candidate, however, confirms his/her consent to the University of Leeds copying and distributing all or part of this work in any forms and using third parties, who might be outside the University, to monitor breaches of regulations, to verify whether this work contains plagiarised material, and for quality assurance purposes.

The candidate confirms that the details of any mitigating circumstances have been submitted to the Student Support Office at the School of Electronic and Electrical Engineering, at the University of Leeds.

Name: Ben David Lancaster

Date: August 24, 2019

Acknowledgements

I would like to thank my supervisor, David Cowell, and assessor, David Moore, for giving me the opportunity to explore a project of my choosing.

Revision History

Date	Version	Changes
10/04/2019	2.02	Update future stages.
05/04/2019	2.01	Fix processor RTL diagram.
04/04/2019	2.00	Initial processor RTL diagram.
01/04/2019	1.00	Initial section outline.

Document revisions.

Table of Contents

1	Intr	oductio	n	11
	1.1	Why N	Multi-core?	11
	1.2	Why R	RISC?	12
	1.3	Why F	PGA?	12
2	Bac	kground	d.	13
	2.1	Amdal	hl's Law and Parallelism	13
	2.2	Loosel	y and Tightly Coupled Processors	13
	2.3	Netwo	ork-on-chip Architectures	14
3	Proj	ect Ove	erview	16
	3.1	Project	Deliverables	16
		3.1.1	Core Deliverables (CD)	16
		3.1.2	Extended Deliverables (ED)	17
	3.2	Project	t Timeline	18
		3.2.1	Project Stages	18
		3.2.2	Project Stage Detail	18
		3.2.3	Timeline	20
	3.3	Resour	rces	20
		3.3.1	Hardware Resources	21
		3.3.2	Software Resources	22
	3.4	Legal a	and Ethical Considerations	22
4	Sing	gle-core	Design	24
	4.1	Introd	uction	24
	4.2	Design	and Implementation	24
		4.2.1	Instruction Set Architecture	2 5
		4.2.2	Memory Management Unit	26
		4.2.3	Instruction and Data Memory	26
		4.2.4	ALU Design	26
		4.2.5	Decoder Design	28
		4.2.6	Pipelining	28
		4.2.7	Design Optimisations	29
	13	Intorn	unto	20

TABLE OF CONTENTS 5

		4.3.1 Overview	30
		4.3.2 Hardware Implementation	30
		4.3.3 Software Interface	31
		4.3.4 Design Improvements	32
	4.4	Verification	33
5	Into	rconnect	34
3	5.1	Introduction	
	5.1	5.1.1 Comparison of On-chip Buses	
	5.2	Overview	
	J.Z	5.2.1 Design Considerations	
	5.3	Interfaces	37
	5.5	5.3.1 Master to Slave Interface	
		5.3.2 Multi-master Support	38
	E 1		39
	5.4	Further Work	39
6	Mer	nory Mapping	40
	6.1	Introduction	40
	6.2	Address Decoding	4 0
		6.2.1 Decoder Optimisations	41
	6.3	Memory Map	43
7	Mul	ti-core Communication	45
	7.1	Introduction	45
		7.1.1 Design Goals	45
		7.1.2 Context Identification	45
		7.1.3 Thread Synchronisation	46
	7.2	Design Challenges	48
		7.2.1 Memory Constraints	
8	Ana	lysis & Results	50
_			
Re	ferer	nces	52
Aŗ	pend	dices	53
A	Peri	pheral Information	53
	A.1	Special Registers	53
		Watchdog Timer	54
	A.3	GPIO Interface	54
	A.4	Timer with Interrupt	55
	A.5	UART Interface	55

TABLE OF CONTENTS 6

B	Add	litional Figures	56
	B.1	Register Set Multiplex	56
	B.2	Instruction Set Architecture	57
C	Con	figuration Options	58
	C .1	System-on-chip Configuration Options	58
	C.2	Core Options	59
	C.3	Peripheral Options	60
D	Viva	a Demonstration Examples	61
	D.1	2-core Timer Interrupt and ISR	61
	D.2	1-160 Core Parallel Summation	63
E	Cod	e Listing	65
	E.1	SoC Code Listing	65
		E.1.1 vmicro16_soc_config.v	65
		E.1.2 top_ms.v	67
		E.1.3 vmicro16_soc.v	68
		E.1.4 vmicro16.v	74
	E.2	Peripheral Code Listing	88

List of Figures

2.1	and IO modules and uses a Message Transfer System to perform inter-node communication. Image source: [3]	14
2.2	A tightly coupled multiprocessor system. Nodes are directly connected to memory and IO modules. Image source: [3].	14
2.3	A multiprocessor network-on-chip architecture with 16 processing nodes. Nodes are connected in a grid formation with routers and links. Image source: [6].	15
3.1	Project stages in a Gantt chart.	20
3.2	Terasic DE1-SoC development board featuring the Altera Cyclone V FPGA and many peripherals. Image source: [10].	21
3.3	Minispartan-6+ development board featuring the Xilinx Spartan 6 XC6SLX9. Note that the XC6SLX9 and XC6SLX25 FPGAs share the same board. Image source: [11].	22
4.1	Vmicro16 RISC 5-stage RTL diagram showing: instruction pipelining (data passed forward through clocked register banks at each stage); branch address calculation; ALU operand calculation (rd2 or imm); and program counter incrementing.	25
4.2	Vmicro16 ALU diagram showing clocked inputs from the previous IDEX stage being	27
4.3	Time diagram showing the TIMR0 peripheral emitting a 1us periodic interrupt signal (out) to the processor. The processor acknowledges the interrupt (int_pending_ack) and enters the interrupt mode (regs_use_int) for a period of time. When the interrupt handler reaches the Interrupt Return instruction (indicated by w_intr) the processor returns to normal mode and restores the	2,
4.4	normal state	31
4.4	The interrupt vector $(0x0100 - 0x0107)$ consists of eight 16-bit values that point to memory addresses of the instruction memory to jump to	31
4.5	Interrupt Mask register (0x0108). Each bit corresponds to an interrupt source. 1 signifies the interrupt is enabled for/visible to the core. Bits [7:2] are left to the designer to assign. Bit 0 is assigned to TIMR0's interval timer. Bit 1 is assigned to the UART0's receiver (unassigned if DEF_USE_REPROG is enabled).	
5.1	Waveform showing an APB read transaction	35

LIST OF FIGURES 8

5.25.3	Block diagram of the Vmicro16 system-on-chip	36 38
6.1	Schematic showing the address decoder (addr_dec) accepting the active PADDR	41
6.2	signal and outputting PSEL chip enable signals to each peripheral Example 4-bit binary comparator which compares the bits (a, b, c, d) to the constant value 1010. The 0s of the constant are inverted and then all are passed	41
6.3	to a wide-AND	41
0.5	a PSEL signal. In addition, a default error case is shown allowing the address	40
6.4	decoder to detect incorrect PADDR values (e.g. if no PSEL signals are generated). Partial address decoding used by the Vmicro16 SoC design. Each peripheral	
6.5	shown only needs to decode a signal bit to determine if it is enabled	42 44
		77
7.1	Block digram showing the main multi-processing components: the CPU array and a peripheral interconnect used for core synchronisation	46
7.2	Vmicro16 Special Registers layout (0x0080 - 0x008F)	46
7.3	Assembly code for locking a mutex. r1 is the address to lock. r3 is zero. r4 is the branch address	47
7.5	•	48
7.4	Assembly code for a memory barrier. Threads will wait in the barrier_wait	
	function until all other threads have reached that code point	49
A.1	Vmicro16 Special Registers layout (0x0080 - 0x008F)	54
B.1	Normal mode (bottom) and interrupt mode (top) register sets are multiplexed	-
B.2	to switch between contexts	56 57

List of Tables

3.1	Project stages throughout the life cycle of the project	19
C .1	SoC Configuration Options	58
C.2	Core Options	59
C .3	Peripheral Options	60

List of Listings

1	ALU branch detection using flags: zero (Z), overflow (V), and negative (N)	27
2	Vmicro16's ALU implementation named vmicro16_alu. vmicro16.v	28
3	Vmicro16's ALU implementation named vmicro16_alu. vmicro16.v	28
4	Vmicro16's decoder module code showing nested bit switches to determine the	
	intended opcode. vmicro16.v	28
5	Variable size inputs and outputs to the interconnect.	39
6	RAM and lock memories instantiated by the shared memory peripheral	47

Chapter 1

Introduction

1.1	Why Multi-core?	11
1.2	Why RISC?	12
1.3	Why FPGA?	12

This project will detail the design, implementation, and verification, of a new multi-core RISC processor aimed at FPGA devices. This project was chosen due to my interest in processor design, in which I have only previously designed single-core RISC processors, and wish to extend this knowledge to gain a basic understanding of multi-core communication, design considerations, and the challenges of software and hardware parallelism first hand.

I will use this opportunity to further develop my knowledge of FPGA and processor design by implementing, designing, and verifying, a multi-core RISC processor from scratch, including the design of a communication interface between multiple cores.

1.1 Why Multi-core?

Moore's Law states that the number of transistors in a chip will double every 2 years []. CPU designers would utilize the additional transistors to add more pipeline stages in the processor to reduce the propagation delay [] which would allow for higher clock frequencies.

The size of transistors have been decreasing [] and today can be manufactured in sub-10 nanometer range. However, the extremely small transistor size increases electrical leakage and other negative effects resulting in unreliability and potential damage to the transistor []. The high transistor count produces large amounts of heat and requires increasing power to supply the chip. These trade-offs are currently managed by reducing the input voltage, utilising complex cooling techniques, and reducing clock frequency. These factors limit the performance of the chip significantly. These are contributing factors to Moore's Law *slowing* down. The capacity limit of the current-generation planar transistors is approaching and so in order for performance increases to continue, other approaches such as alternate transistor technologies like Multigate transistors [1], software and hardware optimisations, and multi-processor architectures are employed.

This report will focus on the latter: to produce a small multi-core processor that can utilise software-based parallelism to gain performance benefits, compared to a larger single-core

design.

1.2 Why RISC?

RISC architectures feature simpler and fewer instructions compared to CISC, which emphasises instructions that perform larger tasks. A single CISC instruction might be performed with multiple RISC instructions. Because of the fewer and simpler instructions, RISC machines rely heavily on software optimisations for performance. RISC instruction sets are based on load/store architectures, where most instructions are either register-to-register or memory reading and writing [2]. This constraint greatly reduces complexity.

RISC architectures are easier to design implement, especially for beginners, due to their simpler instructions that share the same pipeline, compared to CISC where there may be different pipeline for each instruction, which would greatly consume FPGA resources.

1.3 Why FPGA?

Field programmable gate arrays (FPGA) are a great choice for prototyping digital logic designs due to their programmable nature and quick development times.

My previous experience with FPGAs in previous projects will reduce risk and learning times and allow for more time to be spent on adding and extending features (discusses further in section 3.1).

FPGAs, however, may not be suitable for prototyping all register-transistor logic (RTL) projects. Larger RTL projects, such as large commercial processors, may greatly exceed the logic cell resources available in today's high-end FPGA devices and may only be prototyped through silicon fabrication, which can be expensive. This resource limitation will not be problem as the project aims to produce a small and minimal design specifically for learning about multi-core architectures.

Chapter 2

Background

2.1	Amdahl's Law and Parallelism	13
2.2	Loosely and Tightly Coupled Processors	13
2.3	Network-on-chip Architectures	14

2.1 Amdahl's Law and Parallelism

In many applications, not restricted to software, there may exists many opportunities for processes or algorithms to be performed in parallel. These algorithms can be split into two parts: a serial part that cannot be parallised, and a part that can be parallelised. Amdahl's Law defines a formula for calculating the maximum *speedup* of a process with potential parallelism opportunities when ran in parallel with n many processors. Speedup is a term used to describe the potential performance improvements of an algorithm using an enhanced resource (in this case, adding parallel processors) compared to the original algorithm. Amdalh's Law is defined below, where the potential speedup S_p is dependant on the portion of program that can be parallelised p and the number of processing cores n:

$$S_p = \frac{1}{(1-p) + \frac{p}{n}} \tag{2.1}$$

This formula will be used throughout the project to gauge the the performance of the multi-core design running various software algorithms.

2.2 Loosely and Tightly Coupled Processors

Multiprocessor systems can be generalised into two architectures: loosely and tightly coupled, and each architecture has advantages and disadvantages. In loosely coupled systems, each processing node is self-contained – each node has it's own dedicated memory and IO modules. Communication between nodes is performed over a *Message Transfer System (MTS)* [3] in a master-slave control architecture.

Scalability in loosely coupled systems is generally easier to implement as each node can simply be appended to the shared MTS interface without large modifications to the rest of the system. Scalability is an important concern in this project as I wish to test the developed solution with a range of processing nodes.

As loosely coupled system's nodes feature there own memory and IO modules, they generally perform better in cases where interaction between nodes is not prominent – each node can store a separate part of the software program in it's memory module allowing simultaneous executing of the program.

In scenarios where inter-node communication is prominent however, access to the MTS interface must be scheduled to avoid access conflicts which introduces delays and idle times in the software programs execution, resulting in lower throughput. Figure 2.1 shows a general layout of a loosely coupled multiprocessor system.

Tightly coupled systems feature processing nodes that do not have their own dedicated memory or IO modules – each node is directly connected to a shared memory module using a dedicated port. In scenarios where inter-node communication is prominent, tightly coupled systems are generally better suited as nodes are directly connected to a shared memory and do not need to wait to use a shared bus.

Figure 2.1: A loosely coupled multiprocessor system. Each node features it's own memory and IO modules and uses a Message Transfer System to perform inter-node communication. Image source: [3].

Figure 2.2: A tightly coupled multiprocessor system. Nodes are directly connected to memory and IO modules. Image source: [3].

This project will utilise a loosely coupled architecture due to it's easier scalability implementation and my previous experience with the design of single-core processors. Although it will require a scheduler to access the MTS, the experience and knowledge gained from this task will be greatly beneficial for future projects.

2.3 Network-on-chip Architectures

Network-on-chip (NoC) architectures implement on-chip communication mechanisms that are based on network communication principles, such as routing, switching, and massive scalability [4]. NoC's can generally support hundreds to millions of processing cores. Figure 2.3 shows an example 16-core network-on-chip architecture. NoC's can scale to very large sizes while not sacrificing performance because each processor core is able to drive the network rather than needing to wait for a shared bus to become free before doing so.

The greater the number of cores in a network-on-chip design, the greater quality of service

(QoS) problems arise. As such, network-on-chip architectures suffer the same problems as networks, such as fairness and throughput [5].

Figure 2.3: A multiprocessor network-on-chip architecture with 16 processing nodes. Nodes are connected in a grid formation with routers and links. Image source: [6].

Chapter 3

Project Overview

3.1	Projec	t Deliverables	16
	3.1.1	Core Deliverables (CD)	16
	3.1.2	Extended Deliverables (ED)	17
3.2	Projec	t Timeline	18
	3.2.1	Project Stages	18
	3.2.2	Project Stage Detail	18
	3.2.3	Timeline	20
3.3	Resou	rces	2 0
	3.3.1	Hardware Resources	21
	3.3.2	Software Resources	22
3.4	Legal	and Ethical Considerations	22

This chapter discusses the the project's requirements, goals, and structure.

3.1 Project Deliverables

The project's deliverables are split into two sections: core deliverables (CD) – each deliverable must be satisfied for the project to be a minimum viable product (MVP), and extended deliverables (ED) – deliverables that are not required for a MVP – features that only improve upon an existing feature.

3.1.1 Core Deliverables (CD)

The project's core deliverables are described below.

CD1 Design a compact 16-bit RISC instruction set architecture.

The instruction set will be the primary interface to control the processor from software. An instruction set will be required to implement the custom multi-core communication interface.

It was decided to design a new instruction set rather than to extend an existing architecture as this will increase my knowledge of the constraints to consider when designing instruction sets and processors.

CD2 Design and implement a Verilog RISC core that implements the ISA in CD1.

The Verilog RISC core will be able to run software program written for the instruction set architecture.

CD3 Design and implement an on-chip interconnect for multi-core processing (2 to 32 cores) using the RISC core from CD2.

The interconnect will be a chief requirement to enable multi-core communication. The interconnect should support up to 32 cores, however FPGA implementation constraints may limit this due to limited resources.

The interconnect will control communication between the cores to enable software parallelism.

CD4 Analyse performance of serial and parallel software algorithms, such as parallel DFT, on the processor.

To evaluate the effectiveness of the developed solution, a serial and parallel implementation of a simple computing algorithm (parallel reduction, sorting) will be ran on the processor and it's performance analysed. Effectiveness will be rated on total algorithm run-time and the speed-up gained by adding more cores.

CD5 Allow the RISC core to be easily compiled to multiple FPGA vendors (Xilinx, Altera).

The developed solution should be generic and portable to allow it to be used across a wide-range of FPGA vendors and devices.

Verilog is a generic implementation-independent hardware-description language and so designing implementation specific modules is recommended.

A key consideration for this requirement is to consider the varying hard IP provided by the FPGA vendors (such as BRAM, ethernet, and PCIe [7, 8]). To overcome this problem, the developed Verilog code will conditionally compile where vendor specific requirements are present.

3.1.2 Extended Deliverables (ED)

The project's extended deliverables are described below.

- **ED1** Design a RISC core with an instructions-per-clock (IPC) rating of at least 1.0 (a single-cycle CPU).
- **ED2** Design a RISC core with a pipe-lined data path to increase the design's clock speed.
- **ED3** Design a scalable multi-core interconnect supporting arbitrary (more than 32) RISC core instances (manycore) using Network-on-Chip (NoC) architecture.
- **ED4** Design a compiler-backend for the PRCO304 [9] compiler to support the ISA from **CD1**. This will make it easier to build complex multi-core software for the processor.
- **ED5** The RISC core can communicate to peripherals via a memory-mapped addresses using the Wishbone bus.

- **ED6** Implement various memory-mapped peripherals such as UART, GPIO, LCD, to aid visual representation of the processor during the demonstration viva.
- **ED7** Store instruction memory in SPI flash.
- ED8 Reprogram instruction memory at runtime from host computer.
- ED9 Processor external debugger using host-processor link.

3.2 Project Timeline

3.2.1 Project Stages

The project is split up into many stages to aid planning and management of the project. There are 8 unique stage areas: 1. Inital project conception; 2 Basic RISC core development; 3. Extended RISC core development; 4. Multi-core development; 5. Processor quality-of-life (QoL) improvements; 6. Compiler development; 7. Demo preparation, and 8. Final report.

The project stages are shown in Table 3.1.

3.2.2 Project Stage Detail

Stages 1.0 through 1.2 – Research and Project Conception

These stages cover initial research of existing problems and solutions in the multiprocessor area. The instruction set architecture is also proposed that later stages will implement.

Stages 2.1 through 2.3 - Processor module Design, Implementation, and Integration

These stages cover the design, implementation, and integration of key processor core modules such as the instruction decoder, register sets and local memory. Integration of all the modules is a challenging task because some modules have both asynchronous and synchronous signals that need to be timed correctly in order for other modules to receive valid data. An example of this is the register set which has asynchronous read ports that are later clocked in the instruction decode stage.

Stages 3.1 through 3.4 – Advanced Processor Implementation

These stages add advanced features to the processor to provide a more functional product. Although these stages are classified as extended, their technical requirement to design and implement is not great and so are have time allocations in the project schedule. The extended features that these stages introduce are: pipelined processor stages – to drastically increase processor performance; provide a memory-mapped peripheral interface through the MMU; provide a Wishbone master interface to the MMU – allowing external peripherals such as GPIO and LCD displays to be utilised in a modular fashion; and to implement a cache memory for each processor core.

Stage	Title	Start Date	Days	Core	Applicable Deliverables
1.0	Research	Feb 04	7	x	
1.1	Requirement gathering/review	Feb 11	14	х	
1.1	Processor specification, architecture, ISA	Feb 18	100	х	CD1
1.2	Stage/Time Allocation Planning	Feb 25	7	x	
2.1	Decoder, Register Set, impl & integration	Feb 25	14	x	CD2
2.2	Register set impl & integration	Mar 04	14	x	CD2
2.3	Local memory impl & integration	Mar 11	14	х	CD2
3.1	Memory mapped register layout & impl	Apr 01	21		ED5
3.2	Wishbone peripheral bus connected to MMU	Apr 08	21		ED5
3.3	Pipelined implementation and verification	Apr 15	21		ED2
3.4	Cache memory design & impl	Apr 22	28		ED2
4.1	Multi-core communication interface	TBD	TBD	x	CD3
4.2	Shared-memory controller	TBD	TBD	x	CD3
4.3	Scalable multi-core interface (10s of cores)	TBD	TBD	x	CD3
4.4	Multi-core example program (reduction)	TBD	TBD	x	CD4
5.1	SPI-FPGA interface for OTG programming	TBD	TBD		ED7
5.2	FPGA-PC interfacing	TBD	TBD		ED9
5.3	FPGA-PC debugging (instruction breakpoints)	TBD	TBD		ED9
6.1	Compiler backend for vmicro16	TBD	TBD		ED4
6.2	Compiler support for multi-core codegen	TBD	TBD		ED4
7.1	Wishbone peripherals for demo	TBD	TBD	x	CD4
8.1	Final Report	TBD	TBD	x	

 Table 3.1: Project stages throughout the life cycle of the project.

Stages 4.1 through 4.4 – Multiprocessor Functionality

These stages are dedicated to adding multiprocessor functionality using a loosely coupled architecture to the processor.

Stages 5.1 through 5.3 – Debugging Features

These stages cover debugging features and are classified as extended due to the large development time required to implement them as well as not being related to multiprocessor systems.

Stages 6.1 through 6.2 - Compiler Backends

These stages cover the implementation of a compiler backend to ease software writing and programming of the processor.

Stage 7.1 – Wishbone Peripherals

Additional Wishbone peripherals, such as SPI and timers will be added to produce a more useful multiprocessor system.

Stage 8.1 – Final Report

This stage is dedicated to the final report write-up. It is expected to be an iterative task that is active throughout the lifespan of the project.

3.2.3 Timeline

The project stages from Table 3.1 are displayed below in a Gantt chart.

Figure 3.1: Project stages in a Gantt chart.

3.3 Resources

This section describes the hardware and software resources required to fulfil the project.

3.3.1 Hardware Resources

Core deliverable CD5 requires the designed RISC core to be implemented and demonstrated on multiple FPGA devices. Although my design should synthesise for physical IC implementation, due to high costs and lengthy production times, it is not a primary development target. Due to having past experience with Xilinx FPGAs from my placement work and experience with Altera from university modules it was decided to target the Xilinx Spartan 6 XC6SLX9 and the Altera Cyclone V.

Terasic DE1-SoC Development Board

The Terasic DE1-SoC development board features a large Cyclone V FPGA and many peripherals, such as seven-segment displays, 64 MB SDRAM, ADCs, and buttons and switches, which will aid demonstration of the project. The development board is available through the university so the cost is negligible. Figure 3.2 shows the peripherals (green) available to the FPGA.

Figure 3.2: Terasic DE1-SoC development board featuring the Altera Cyclone V FPGA and many peripherals. Image source: [10].

Minispartan 6+ FPGA Development Board

The Minispartan 6+ is a hobbyist FGPA development board with fewer peripherals than the DE1-SoC. The board features a Xilinx Spartan 6 XC6LX9 which has far fewer resources than the DE1-SoC's Cyclone V however it's simplicity and my familiarity with Xilinx's software suite will speed up development. The development board is shown in Figure 3.3.

Figure 3.3: Minispartan-6+ development board featuring the Xilinx Spartan 6 XC6SLX9. Note that the XC6SLX9 and XC6SLX25 FPGAs share the same board. Image source: [11].

3.3.2 Software Resources

Intel Quartus

Intel Quartus Prime is a paid-for SoC, CPLD, and FPGA software suite targeting Intel's Stratix, Arria, and Cyclone based FPGAs. The university provides student licences which will be used via VPN.

Xilinx ISE Webpack

Xilinx ISE Webkpack is Xilinx's free software suite for FPGA development for Spartan 6 based FPGAs. Due to ISE's intuitive and fast work flow, most of the initial simulation and verification processes will be performed using ISE. This will greatly improve development times.

Verilator

Verilator is an open-source Verilog to C++ transpiler which provides a C++ interface to simulate Verilog modules and read/write values similar to a test bench. Verilator will be used for specific modules within the RISC core such as the ALU and decoder as Verilator is useful when performing exhaustive verification.

3.4 Legal and Ethical Considerations

The RISC core is designed to be used as an academic research and educational tool to aid learning and understanding of RISC and multi-core machines. It should not be use for roles where mission critical or safety is a factor.

The processor does not provide any memory protection features and any software running on the processor has full access to all memory.

The processor does not store/track/predict software instructions. The processor uses pipelining techniques to improve performance which results in future instructions entering

the pipeline even if the software's logical sequence does not include these instructions. This could result in security vulnerabilities similar to Intel's Spectre vulnerability [12].

Chapter 4

Single-core Design

4.1	Introd	roduction		
4.2	Design and Implementation		24	
	4.2.1	Instruction Set Architecture	25	
	4.2.2	Memory Management Unit	26	
	4.2.3	Instruction and Data Memory	26	
	4.2.4	ALU Design	26	
	4.2.5	Decoder Design	28	
	4.2.6	Pipelining	28	
	4.2.7	Design Optimisations	<u> 2</u> 9	
4.3	Interr	upts 2	29	
	4.3.1	Overview	30	
	4.3.2	Hardware Implementation	30	
	4.3.3	Software Interface	31	
	4.3.4	Design Improvements	32	
4.4	Verific	ration 3	33	

4.1 Introduction

While the majority of this report will focus on the multi-processing functionality of this project, it is important understand the design decisions of the single core to understand the features and limitations of the multi-core system-on-chip as a whole.

4.2 Design and Implementation

The single-core design is a traditional 5-stage RISC processor (fetch, decode, execute, memory, write-back). The core uses separate instruction and data memories in the style of a Harvard architecture [?].

To satisfy CD5, the Verilog code will be self-contained in a single file. This reduces the hierarchical complexity and eases cross-vendor project set-up as only a single file is required to be included.

Figure 4.1: Vmicro16 RISC 5-stage RTL diagram showing: instruction pipelining (data passed forward through clocked register banks at each stage); branch address calculation; ALU operand calculation (rd2 or imm); and program counter incrementing.

A small reduction in size within the single-core will result in substantial size reductions in

4.2.1 Instruction Set Architecture

Core deliverable CD1 details the background for the requirement of a custom instruction set architecture. The 16-bit instruction set listing is shown in Figure B.2.

In this proposed architecture, most instructions are *destructive*, meaning that source operands also act as the destination, hence effectively *destroying* the original source operand.

This design decision reduces the complexity of the ISA as traditional three operand instructions, for example add r0, r1, can be encoded using only two operands add r0, r1. However, this does increase the complexity of compilers as they may need to make temporary copies of registers as the instructions will *destroy* the original source data.

The instruction set is split into 7 categories (highlighted by colours in Figure B.2):

- Special instructions, such as halting and interrupt returns;
- Bitwise operations, such as XOR and AND;
- Signed arithmetic;
- Unsigned arithmetic;
- Conditional branches and compare instructions;
- and Load/store instructions, with their atomic equivalents.

4.2.2 Memory Management Unit

It was decided to use a memory management unit (MMU) to make it easier and extensible to communicate with external peripherals or additional registers. This method transparently uses the existing LW[EX]/SW[EX] to easily provide an arbitrary number of peripherals/special purpose addresses to the software running on the processor.

4.2.3 Instruction and Data Memory

The design uses separate instruction and data memories similar to a Harvard architecture computer. This architecture was chosen due because it is generally easier to implement, however later resulted in design challenges in large multi-core designs. This is discussed later in the report.

Each single-core has it's own *scratch* memory – a small RAM-like memory which can be used for stack-space and arrays too large to fit into the 8 registers. These memories are provided as is – meaning it's up to the software to implement and provide any stack-frame, function, and calling, functionality. Each core also features it's own read-only instruction memory that is programmed at compile time of the design, or via the UARTO reciever interface (discussed later). Both of these memories map onto synchronous, read-first, single-port, FPGA block RAMs to minimise LUT requirements.

Users can customise the size of these memories by tweaking the following parameters in the vmicro16_soc_config.v file: DEF_MEM_INSTR_DEPTH for the instruction memory, and DEF_MEM_SCRATCH_DEPTH for the scratch memory.

4.2.4 ALU Design

The Vmicro16's ALU is an asynchronous module that has 3 inputs: data a; data b; and opcode op; and outputs data c. The ALU is able to operate on both register data (rd1 and rd2) and

immediate values. A switch is used to set the b input to either the rd2 or imm value from the previous stage.

Figure 4.2: Vmicro16 ALU diagram showing clocked inputs from the previous IDEX stage being

The ALU also performs comparison (CMP) operations in which it returns flags similar to X86's overflow, signed, and zero, flags. The combination of these flags can be used to easily compute relationships between the two input operands. For example, if the zero flag is not equal to the signed flag, then the relationship between inputs a and b is that a < b.

```
module branch (
 1
2
                        input [3:0]
input [7:0]
output reg
                                                 flags,
 3
4
5
6
7
8
9
                        always @(*)
                                 1;
(flags[`VMICRO16_SFLAG_Z]
(flags[`VMICRO16_SFLAG_Z]
(flags[`VMICRO16_SFLAG_Z]
(flags[`VMICRO16_SFLAG_N]
                                                                                       en =
                                                                                                                                                                   0);
0) &&
10
11
                                                                                      en
                                                                                                                                                             == flags[`VMICRO16_SFLAG_V]);
!= flags[`VMICRO16_SFLAG_N]);
== flags[`VMICRO16_SFLAG_N]);
                                                                                                 (flags['VMICRO16_SFLAG_N]
(flags['VMICRO16_SFLAG_Z]
(flags['VMICRO16_SFLAG_Z]
(flags['VMICRO16_SFLAG_Z]
(flags['VMICRO16_SFLAG_N]
                                           TVMICRO16_OP_BR_L:
TVMICRO16_OP_BR_GE:
TVMICRO16_OP_BR_LE:
13
14
                                                                                      en =
                                                                                      en
                                                                                      en
                                                                                                                                                            != flags[`VMICRO16_SFLAG_V]);
16
17
18
19
                                          default:
                                                                                       en
                                 endcase
               endmodule
```

Listing 1: ALU branch detection using flags: zero (Z), overflow (V), and negative (N).

The Verilog implementation of the ALU is shown in Listing 2. The ALU's asynchronous output is clocked with other registers, such as destination register rs1 and other control signals, in the EXME register bank.

```
always @(*) case (op)

// branch/nop, output nothing

VMICRO16_ALU_BR,

VMICRO16_ALU_NOP: c = {DATA_WIDTH{1'b0}};

// load/store addresses (use value in rd2)

VMICRO16_ALU_LW,

VMICRO16_ALU_SW: c = b;

// bitwise operations

VMICRO16_ALU_BIT_OR: c = a | b;

VMICRO16_ALU_BIT_AND: c = a & b;

VMICRO16_ALU_BIT_NOT: c = a & b;

VMICRO16_ALU_BIT_RSHFT: c = a << b;

VMICRO16_ALU_BIT_RSHFT: c = a >> b;
```

Listing 2: Vmicro16's ALU implementation named vmicro16_alu. vmicro16.v

4.2.5 Decoder Design

Instruction decoding occurs in the between the IFID and IDEX stages. The decoder extracts register selects and operands from the input instruction. The decoder outputs are asynchronous which allows the register selects to be passed to the register set and register data to be read asynchronously. The register selects and register read data is then clocked into the IDEX register bank.

Listing 4: Vmicro16's decoder module code showing nested bit switches to determine the intended opcode. vmicro16.v

In Listing 4, it can be seen that the first 4 opcode cases (BR, MULT, CMP, SETC) are represented using the same 15-11 (opcode) bits, however the BIT instructions share the same opcode and so require another bit range to be compared to determine the output function.

4.2.6 Pipelining

In the interim progress update, the processor design featured *instruction pipelining* to meet requirement **ED1**. Instruction pipelining allows instructions executions to be overlapped in the pipeline, resulting in higher throughput (up to one instruction per clock) at the expense of 5-6 clocks of latency and *significant* code complexity. As the development of the project shifted from single-core to multi-core, it became obvious that the complexity of the pipelined processor would inhibit the integration of multi-core functionality. It was decided to remove the instruction pipelining functionality and use a simpler state-machine based pipeline that is much simpler to extend and would cause fewer challenges later in the project.

4.2.7 Design Optimisations

In a design that has many instantiations of the same component, a small resource saving improvement within the component can have a significant overall savings improvement if it is instantiated many times. Project requirement CD5 requires the design to be compiled for a range of FPGA sizes, and so space saving optimisations are considered.

Register Set Size Improvements

A register set in a CPU is a fast, temporary, and small memory that software instructions directly manipulate to perform computation. In the Vmicro16 instruction set, eight registers named r0 to r7 are available to software. The instruction set allows up to two registers to be references in most instructions, for example the instruction add r0, r1 tells the processor to perform the following actions:

- Clock 1. Fetch r0 and r1 from the register set
- Clock 2. Add the two values together in the ALU
- **Clock 3.** Store the result back the register set in r0

For Clock 1, it was originally decided to use a dual port register set (meaning that two data reads can be performed in a single clock, in this case r0 and r1), however due to the asynchronous design of the register set (for speed) the RTL produced consumed a significant amount of FPGA resources, approximately 256 flip-flops (16 (data width) * 8 (registers) * 2 (ports)). To reduce this, it was decided to split task 1 into two steps over two clock cycles using a single-port register set. This required the processor pipe-line to use another clock cycle resulting in slightly lower performance, however the size improvements will allow for more cores to be instantiated in the design. This optimisation is also applied to the interrupt register set, resulting in a saving of approximately 256 flip-flops per core (128 in the normal mode register set, and 128 in the interrupt register set). As shown, adding a single clock delay saves a significant amount of LUTs. This saving will be amplified in designs with many cores.

4.3 Interrupts

Interrupts are a technique used by processors to run software functions when an event occurs within the processor, such as exceptions, or signalled from an external source, such as a UART receiver signalling it has received new data. Today, it is common for micro-controllers, soft-processors, and desktop processors, to all feature interrupts. Modern implementations support an *interrupt vector* which is a memory array that contains addresses to different *interrupt handlers* (a software function called when a particular interrupt is received).

Although interrupts are not a requirement for a multi-core system, it was decided to implement this functionality to boost my understanding of such systems. In addition, example demos provided with this project are better visualised with a interrupt functionality.

4.3.1 Overview

The interrupt functionality in this project supports the following:

- Per-core 8 cell interrupt vector accessible to software.
 Software programs running on the Vmicro16 processor can edit the interrupt vector to add their own interrupt handlers at runtime.
- Fast context switching.

A dedicated interrupt register set is multiplexed with the normal mode register set to provide faster context switching. It should be noted that only the registers are saved during a context switch. The means that the stack is not saved. A schematic of the register multiplex is shown in Figure B.1.

• Parametrised interrupt sources and widths.

Users can configure the width of the interrupt in signals and the data width per interrupt source via the vmicro16_soc_config.v. By default, 8 interrupt sources are available and each can provide 8-bits of data.

4.3.2 Hardware Implementation

Context Switching

When acting upon an incoming interrupt the current state the processor must be saved so that changes from the interrupt handler, such as register writes and branches, do not affect the current state. After the interrupt handler function signals it has finished (by using the *Interrupt Return* INTR instruction) the saved state is restored. In the case of the Vmicro16 processor, the program counter r_pc[15:0] and register set regs instance are the only states that are saved. Going forth, the terms *normal mode* and *interrupt mode* are used to describe what registers the processor should use when executing instructions.

When saving the state, to avoid clocking 128 bits (8 registers of 16 bits) into another register (which would increase timing delays and logic elements), a dedicated register set for the interrupt mode (regs_isr) is multiplexed with the normal mode register set (regs). Then depending on the mode (identified by the register regs_use_int) the processor can easily switch between the two large states without significantly affecting timing.

The timing diagram in Figure 4.3 shows the behavioural logic for the TIMR0 interrupt source.

Figure 4.3: Time diagram showing the TIMR0 peripheral emitting a 1us periodic interrupt signal (out) to the processor. The processor acknowledges the interrupt (int_pending_ack) and enters the interrupt mode (regs_use_int) for a period of time. When the interrupt handler reaches the Interrupt Return instruction (indicated by w_intr) the processor returns to normal mode and restores the normal state.

4.3.3 Software Interface

A memory-mapped software interface is provided through the MMU to allow easy software control of the interrupt behaviour. The interface is provided at the address range 0x0100 to 0x0108. This interface is per-core allowing each core to individually control what interrupts it receives and what functions to call upon an interrupt. This enables complex functionality, such as allowing each core to execute different functions upon the same interrupt.

Figure 4.4: The interrupt vector (0x0100 - 0x0107) consists of eight 16-bit values that point to memory addresses of the instruction memory to jump to.

Interrupt Vector (0x0100-0x0107)

The interrupt vector is a per-core register that is used to store the addresses of interrupt handlers. An interrupt handler is simply a software function residing in instruction memory that is branched to when a particular interrupt is received.

Interrupt Mask (0x0108)

The interrupt mask is a per-core register that is used to mask/listen specific interrupt sources. This enables processing cores to individually select which interrupts they respond to. This allows for multi-processor designs where each core can be used for a particular interrupt

Figure 4.5: Interrupt Mask register (0x0108). Each bit corresponds to an interrupt source. 1 signifies the interrupt is enabled for/visible to the core. Bits [7:2] are left to the designer to assign. Bit 0 is assigned to TIMR0's interval timer. Bit 1 is assigned to the UART0's receiver (unassigned if DEF_USE_REPROG is enabled).

source, improving the time response to the interrupt for time critical programs. The Interrupt Mask register is an 8-bit read/write register where each bit corresponds to a particular interrupt source and each bit corresponds with the interrupt handler in the interrupt vector. The interrupt mask register is shown in Figure 4.5.

Software Example

To better understand the usage of the described interrupt registers, a simple software program is described below. The following software program produces a simple and power efficient routine to initialise the interrupt vector and interrupt mask.

```
1
      setup_interrupts:
          // Set interrupt vector at 0x100
2
          // Move address of isr0 function to vector[0]
3
                  r0, isr0
4
          // create 0x100 value by left shifting 1 8 bits
5
6
          movi
                  r1, #0x1
          movi
                  r2, #0x8
          lshft
                  r1, r2
          // write isr0 address to vector[0]
10
                  r0, r1
11
      enable_interrupts:
12
          // enable all interrupts by writing 0x0f to 0x108
13
          movi
                  r0, #0x0f
14
                  r0, r1 + #0x8 // (0x100 + 0x8 = 0x108)
15
          SW
                                 // enter low power idle state
16
17
                                   ' arbitrary name
      isr0:
18
                  r0, #0xff
                                    do something
          movi
19
                                  // return from interrupt
20
          intr
```

A more complex example software program utilising interrupts and the TIMR0 interrupt is described in section D.1.

4.3.4 Design Improvements

The hardware and software interrupt design have changed throughout the projects cycle. In initial versions of the interrupt implementation, the software program, while waiting for an interrupt, would be in a tight infinite loop (branching to the same instruction). This resulted in the processor using all pipeline stages during this time. The pipeline stages produce many logic transitions and memory fetches which raise power consumption and temperatures. This is quite noticeable especially when running on the Spartan-6 LX9 FPGA.

To improve this, it was decided to implement a new state within the processor's state machine that, when entered, did not produce high frequency logic transitions or memory fetches. The HALT instruction was modified to enter this state and the only way to leave is from an interrupt or top-level reset. This removes the need for a software infinite loop that produces high frequency logic transitions (decoding, ALU, register reads, etc.) and memory fetches.

4.4 Verification

Various verification techniques are employed to ensure correct operation of the processor.

The first technique involves using static assertions to identify incorrect configuration parameters at compile time, such as having zero instruction memory and scratch memory depth. These assertions use the static_assert for top level checks and static_assert_ng for checks inside generate blocks.

The second verification technique is to use assertions in always blocks to identify incorrect behavioural states. This is done using the rassert (run-time assert) macro.

The third verification technique is to use automatic verifying test benches. These test benches drive components of the processor, such as the ALU and decoder, and check the output against the correct value. This uses the rassert macro.

The final method of verification is to verify the complete design via a behavioural test bench. The design is passed a compiled software program with a known expected output, and is ran until the r_halt signal is raised. The test bench then checks the value on the debug0, debug1, and debug2 signals against the expected value. If this matches, then it is assumed that sub-components of the design also operate correctly. This technique does not monitor the states of sub-components and statistics (such as time taken to execute an instruction), there leaves the possibility that some components could have entered an illegal state.

Chapter 5

Interconnect

5.1	Introd	luction	4
	5.1.1	Comparison of On-chip Buses	4
5.2	Overv	riew	5
	5.2.1	Design Considerations	6
5.3	Interfa	aces	7
	5.3.1	Master to Slave Interface	7
	5.3.2	Multi-master Support	8
5.4	Furth	er Work	9

5.1 Introduction

The Vmicro16 processor needs to communicate with multiple peripheral modules (such as UART, timers, GPIO, and more) to provide useful functionality for the end user.

Previous peripheral interface designs of mine have been directly connected to a main driver with unique inputs and outputs that the peripheral required. For example, a timer peripheral would have dedicated wires for it's load and prescaler values, wires for enabling and resetting, and wires for reading. A memory peripheral would have wires for it's address, read and write data, and a write enable signal. This resulted in each peripheral having a unique interface and unique logic for driving the peripheral, which consumed significant amounts of limited FPGA resources.

It can be seen that many of the peripherals need similar inputs and outputs (for example read and write data signals, write enables, and addresses), and because of this, a standard interface can be used to interface with each peripheral. Using a standard interface can reduce logic requirements as each peripheral can be driven by a single driver.

5.1.1 Comparison of On-chip Buses

The choice of on-chip interconnect has changed multiple times over the life-cycle of this project, primary due to ease of implementation and resource requirements.

Originally, it was planned to use the Wishbone bus [?] due to it's popularity within open-source FPGA modules and good quality documentation.

Late in the project, it was decided to use the AMBA APB protocol [?] as it is more commonly used in large commercial designs and understanding how the interface worked would better benefit myself. APB describes an intuitive and easy to implement 2-state interface aimed at communicating with low-throughput devices, such as UARTs, timers, and watchdogs.

Figure 5.1: Waveform showing an APB read transaction.

5.2 Overview

The system-on-chip design is split into 3 main parts: peripheral interconnect (red), CPU array (gray), and the instruction memory interconnect (green).

A block diagram of this project is shown in Figure 5.2

Figure 5.2: Block diagram of the Vmicro16 system-on-chip.

5.2.1 Design Considerations

There are several design issues to consider for this project. These are listed below:

• Design size limitations

The target devices for this project are small to medium sized FPGAs (featuring approximately 10,000 to 30,000 logic cells). Because of this, it is important to use a bus interconnect that has a small logic footprint yet is able to scale reasonably well.

• Ease of implementation

The interconnect and any peripherals should be easy to implement within the time allocations specified in Figure 3.1.

• Scalable

The interconnect should allow for easy scalability of master and slave interfaces with minimal code changes.

5.3 Interfaces

5.3.1 Master to Slave Interface

20	19	18 17 16	15 0	_
LE	SE	CORE_ID	Address	PADDR[20:0]
			Write data	PWDATA[15:0]
			Read Data	PRDATA[15:0]
			WE	PWRITE[0:0]
			品	PENABLE[0:0]

5.3.2 Multi-master Support

In this design, each processor can act as an APB master to communicate with peripherals, for example to write a value to UART or to the shared memory peripheral. Because each core runs independently from other cores, it is likely, especially is many-core systems, that two or more processors will want to use the peripheral bus at the same time.

As the peripheral and instruction interconnects use a shared one-to-many (one master to many slaves) bus architecture, only one master can use the bus at any-time. To enable multiple masters to use the bus, a device called an *arbiter* must be used to control which master gets access to drive the shared interconnect.

Arbiters can vary in complexity, mostly relative to throughput requirements.

An ideal arbiter for this interconnect, which ideally features many, possibly tens of, high-throughput masters, would likely feature a priority-based and pipelined arbiter with various devices to improve performance such as cache-coherencies.

Overview

Due to this project's limited time, and my personal knowledge in this area, a simple rotating arbiter is used. This arbitration scheme is likely the simplest that can be thought of. A schematic of arbiter interconnect is shown in Figure 5.3.

In this scheme, access to the bus is given incrementally to each master port, even if the master port has not requested to use the bus. The active master port can use the bus for as long as it requires, and signals it has finished by lowering the PSEL signal. When the PSEL signal is lowered, the arbiter grants access to the next master port. If this next master port has not raised it's PSEL signal (i.e. it has not requested access to the bus) then the arbiter grants access to the next master port, and so on. In Verilog, this is simply an incremental counter which is used to index the master ports array.

```
[MASTER_PORTS*BUS_WIDTH-1:0]
       input
                                                            S_PADDR
                      [MASTER_PORTS-1:0]
[MASTER_PORTS-1:0]
2
       input
                                                             S PWRITE.
                                                             S_PSELx,
3
       input
                      [MASTER_PORTS-1:0]
                                                             S_PENABLE,
4
       input
       input [MASTER_PORTS*DATA_WIDTH-1:0]
output reg [MASTER_PORTS*DATA_WIDTH-1:0]
                                                             S_PWDATA,
5
                                                             S_PRDATA,
6
       output reg [MASTER_PORTS-1:0]
                                                             S_PREADY.
```

Listing 5: Variable size inputs and outputs to the interconnect.

83	62	41	20 0
Core N-1		Core 1	Core 0

5.4 Further Work

The submitted design is acceptable for a multi-core system as it fulfils the following requirements:

• Support an arbitrary number of peripherals.

Figure 5.3: Foo

- Supports memory-mapped address decoding.
- Supports multiple master interfaces.

Chapter 6

Memory Mapping

6.1	Introduction	40
6.2	Address Decoding	4 0
	6.2.1 Decoder Optimisations	41
6.3	Memory Map	43

The Vmicro16 processor uses a memory-mapping scheme to communicate with peripherals and other cores. This chapter describes the design decisions and implementation of the memory-map used in this project.

6.1 Introduction

Memory mapping is a common technique used by CPUs, micro-controllers, and other systemon-chip devices, that enables peripherals and other devices to be accessed via a memory address on a common bus. In a processor use-case, this allows for the reuse of existing instructions (commonly memory load/store instructions) to communicate with external peripherals with little additional logic.

6.2 Address Decoding

An address decoder is used to determine the peripheral that the address is requesting. The address decoder module, addr_dec in apb_intercon.v, takes the 16-bit PADDR from the active APB interface and checks for set bits to determine which peripheral to select. The decoder outputs a chip enable signal PSEL for the selected peripheral. For example, if bit 12 is set in PADDR then the shared memory peripheral's PSEL is set high and others to low. A schematic for the decoder is shown in Figure 6.1.

Figure 6.1: Schematic showing the address decoder (addr_dec) accepting the active PADDR signal and outputting PSEL chip enable signals to each peripheral.

6.2.1 Decoder Optimisations

Performing a 16-bit equality comparison of the PADDR signal against each peripheral memory address consumes a significant amount of logic. Depending on the synthesis tools and FPGA features, a 16-bit comparator might require a fixed 16-bit value input to compare against (where the 0s are inverted) and a wide-AND to reduce and compare [13, 14]. An example 4-bit comparator is shown below in Figure 6.2.

Figure 6.2: Example 4-bit binary comparator which compares the bits (a, b, c, d) to the constant value 1010. The 0s of the constant are inverted and then all are passed to a wide-AND.

As we are targeting FPGAs, which use LUTs to implement combinatorial logic, we can conveniently utilise Verilog's == operator on fairly large operands without worrying about consuming too many resources. The targeted FPGA devices in this project, the Cyclone V and Spartan 6, feature 6-input LUTs which allow 64 different configurations [15, 16]. Knowing this, we can design the address decoder to utilise the FPGA's LUTs more effectively and reduce it's footprint significantly.

We can use part of the PADDR signal as a chip select and the other bits as sub-addresses to interface with the peripheral. The addressing bits are passed into the FPGA's 6-input LUTs which are programmed (via the bitstream) to output 1 or 0 depending on the address. Figure 6.3 below shows a LUT based approach to address decoding which will utilise approximately one ALM/CLB module per peripheral chip select (PSEL) and one for error detection. This method

of comparison (LUT based) is utilised in the addr_dec module in apb_intercon.v.

Figure 6.3: Bits [7:3] of an 8-bit PADDR signal are used as inputs to 5-bit LUTs to generate a PSEL signal. In addition, a default error case is shown allowing the address decoder to detect incorrect PADDR values (e.g. if no PSEL signals are generated).

The address decoding methods discussed above are examples of *full-address* decoding, where each bit (whether required or not) is compared. It is possible to further reduce the required logic by utilising *partial-address* decoding [17]. Partial-address decoding can reduce logic requirements by not using all bits. For example, if bits in address 0x0100 do not conflict with bits in other addresses (i.e. bit 8 is high in more than 1 address), then the address decoder needs only concern bit 8, not the other bits. This is visualised in Figure 6.4 below. This method is utilised in the MMU's address decoder (module vmicro16_mmu in vmicro16.v:181). As this is an optimisation per core, significant resources can be saved when a large number of cores are used.

Figure 6.4: Partial address decoding used by the Vmicro16 SoC design. Each peripheral shown only needs to decode a signal bit to determine if it is enabled.

6.3 Memory Map

The system-on-chip's memory map is shown below in Figure 6.5. The addresses for each peripheral have been carefully chosen for both:

- Easy software access creating addresses via software requires few instructions (normally one to four MOVI and LSHIFT instructions to address 0x0000 to 0xffff), which increases software performance.
- and Reducing address decoding logic most addresses can be decoded using partial decoding techniques.

Figure 6.5: Memory map showing addresses of various memory sections.

Chapter 7

Multi-core Communication

7.1	Introd	uction
	7.1.1	Design Goals
	7.1.2	Context Identification
	7.1.3	Thread Synchronisation
7.2	Design	n Challenges
	7.2.1	Memory Constraints

So far we have discussed the features and design of the Vmicro16 system-on-chip. This section will discuss the multi-processing functionality and how to use it.

7.1 Introduction

Multi-processing functionality is the primary deliverable of this project.

7.1.1 Design Goals

• Support common synchronisation primitives.

Software should be able to implement common synchronisation primitives, such as mutexes, semaphores, and memory barriers, to perform atomic operations and avoid race conditions, which are critical in parallel and concurrent software applications.

• Context identification.

The SoC should expose configuration information such as: the number of processing cores, amount of shared and scratch memory, and the CORE_ID, to each thread.

7.1.2 Context Identification

A goal of the multi-processing functionality of this project is allow software written for it to be run on any number of cores. This means that a software program will scale to use all cores in the SoC without needing to rewrite the software. To enable this functionality, the software must be able to read contextual information about the SoC, such as the number of cores, how much global and scratch memory is available, and what the CORE_ID of the current core is.

Figure 7.1: Block digram showing the main multi-processing components: the CPU array and a peripheral interconnect used for core synchronisation.

This information is provided through the Special Registers peripheral (0x0080 - 0x008F), shown in Figure 7.1. This register set provides relevant information for writing software that can dynamically scale for various SoC configurations.

Figure 7.2: Vmicro16 Special Registers layout (0x0080 - 0x008F).

7.1.3 Thread Synchronisation

In multi-threaded software it is important

The mutex functionality is implemented using a similar scheme to that of ARM's *Global Monitor* [?].

Mutexes

In software, a mutex is an object used to control access to a shared resource. The term *object* is used as it's implementation is normally platform dependant, meaning that the processor may provide a hardware mechanism or is left for the operating system to provide.

In this project, mutexes are provided by the processor through the Shared Memory Peripheral (0x1000 to 0x1FFF) which provides a large RAM-style memory accessible by all cores through the peripheral interconnect bus. This large memory is explicitly defined to use the FPGA's BRAM blocks using Xilinx's Verilog ram_style="block" attribute to avoid wasting LUTs when using high core counts. The peripheral allows each memory cell to be *locked*, meaning that only the cell owner can modify it's contents. This is implemented by using another large memory, locks, to store the CORE_ID + 1 of the owner, as shown in Listing 6. In this system, a lock containing the value zero indicates an unlocked cell. As CORE_IDs are indexed from zero, one is added to each cell. For example, if core two wants to lock a memory cell, the value three is written to the lock.

```
reg [15:0] ram [0:8191]; // 16KB large RAM memory reg [clog2(CORES):0] locks [0:8181]; // memory cell owner
```

Listing 6: RAM and lock memories instantiated by the shared memory peripheral.

To lock and unlock cells, the instructions LWEX and SWEX instructions are used. These instructions are similar to the LW/SW instructions but provide locking functionality. The *EX* in the instruction names indicate *exclusive access*. LWEX is used to read memory contents (like LW) and also lock the cell if not already locked. If a core attempts to lock an already locked cell, the lock does not change. Unlocking is done by the SWEX instruction, which conditionally writes to the memory cell if it is locked by the same core. Unlike SW, SWEX returns a zero for success and one for failure if it is locked by another core.

```
lock_mutex:
1
                // attempt lock
2
                lwex r0, r1
// check success
3
4
5
                swex r0, r1
6
                cmp r0, r3
                /ar{/} if not equal (NE), retry
8
                movi r4, lock_mutex
                     r4, BR_NE
      critical:
10
           // core has the mutex
11
```

Figure 7.3: Assembly code for locking a mutex. r1 is the address to lock. r3 is zero. r4 is the branch address.

Figure 7.3 shows a simple assembly function to lock a memory cell.

Barriers

Barriers are a useful software sequence used to block execution until all other threads (or a subset) have reached the same point. Barriers are often used for broadcast and gather actions (sending values to each core or receiving them). They are also used to synchronise program execution if some threads have more work to do than others.

The Vmicro16 processor provides barrier

synchronisation through the Shared Memory Peripheral. Like the mutex code, the barrier code uses the LWEX and SWEX instructions to lock a memory cell. Instead of immediately checking the lock as an abstract object, the barrier code treats the cell as a normal memory cell containing a numeric value. Figure 7.4 shows a software example of this. When the barrier_reached code is reached, the code will increment the shared memory value by 1, indicating that the number of threads that have reached this point has increased by one (r5). The barrier_wait function

is then entered which waits until this numeric value (r5) is equal to the number of threads (r7) in the system. If this is true, then all threads have reached the barrier_wait function and can continue with normal program execution.

7.2 Design Challenges

7.2.1 Memory Constraints

Figure 7.5: ●

```
barrier_reached:
// load latest count
lwex r0, r5
// try increment count
// increment by 1
1
2
3
4
                 addi r0, r3 + #0x01

// attempt store

swex r0, r5
6
8
9
                  // check success (== 0)
10
                cmp r0, r3
// branch if failed
movi r4, barrier_reached
br r4, BR_NE
11
12
13
14
15
          barrier_wait:
16
                 // load the count
lw r0, r5
// compare with number of threads
17
18
                 cmp r0, r7
// jump back to barrier if not equal
20
21
                              r4, barrier_wait r4, BR_NE
                 movi
22
                 br
23
```

Figure 7.4: Assembly code for a memory barrier. Threads will wait in the barrier_wait function until all other threads have reached that code point.

Chapter 8

Analysis & Results

REFERENCES 51

References

[1] V. Subramanian, "Multiple gate field-effect transistors for future CMOS technologies," *IETE Technical review*, vol. 27, no. 6, pp. 446–454, 2010.

- [2] M. J. Flynn, Computer architecture: Pipelined and parallel processor design. Jones & Bartlett Learning, 1995.
- [3] Tech Differences, "Difference between loosely coupled and tightly coupled multiprocessor system (with comaprison chart)," Jul 2017. [Online]. Available: https://techdifferences.com/difference-between-loosely-coupled-and-tightly-coupled-multiprocessor-system. html (Accessed 2019-04-20).
- [4] L. Benini and G. De Micheli, "Networks on Chips: A new SoC paradigm," *Computer*, vol. 35, pp. 70–78, 02 2002.
- [5] D. Zhu, L. Chen, S. Yue, T. M. Pinkston, and M. Pedram, "Balancing On-Chip Network Latency in Multi-application Mapping for Chip-Multiprocessors," in 2014 IEEE 28th International Parallel and Distributed Processing Symposium, May 2014, pp. 872–881.
- [6] N. Chatterjee, S. Paul, and S. Chattopadhyay, "Fault-tolerant dynamic task mapping and scheduling for network-on-chip-based multicore platform," *ACM Transactions on Embedded Computing Systems*, vol. 16, pp. 1–24, 05 2017.
- [7] Xilinx, Spartan-6 FPGA Block RAM Resources, Xilinx.
- [8] Altera, Recommended HDL Coding Styles QII51007-9.0.0, Altera.
- [9] B. Lancaster, "FPGA-based RISC Microprocessor and Compiler," vol. 3.14, pp. 37–50. [Online]. Available: https://github.com/bendl/prco304 (Accessed March 2018).
- [10] Terasic Technologies, "SoC Platform Cyclone DE1-SoC Board." [Online]. Available: https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English& No=836 (Accessed 2019-04-20).
- [11] *MiniSpartan6*+, Scarab Hardware, 2014. [Online]. Available: https://www.scarabhardware.com/minispartan6/ (Accessed 2019-04-20).
- [12] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, "Spectre attacks: Exploiting speculative execution," arXiv preprint arXiv:1801.01203, 2018.
- [13] A. Palchaudhuri and R. S. Chakraborty, High Performance Integer Arithmetic Circuit Design on FPGA: Architecture, Implementation and Design Automation. Springer, 2015, vol. 51.
- [14] V. Salauyou and M. Gruszewski, "Designing of hierarchical structures for binary comparators on fpga/soc," in *IFIP International Conference on Computer Information Systems and Industrial Management*. Springer, 2015, pp. 386–396.
- [15] Xilinx, Spartan-6 FPGA Configurable Logic Block User Guide UG384, Xilinx.

REFERENCES 52

[16] Altera, Cyclone V Device Handbook - Device Interfaces and Integration - CV-5V2, Altera.

[17] A. S. Tanenbaum, Structured Computer Organization. Pearson Education India, 2016.

Appendix A

Peripheral Information

A.1	Special Registers	53
A.2	Watchdog Timer	5 4
A.3	GPIO Interface	54
A.4	Timer with Interrupt	55
A.5	UART Interface	55
B.1	Register Set Multiplex	56
B.2	Instruction Set Architecture	57

To provide user's with useful functionality, common system-on-chip peripherals were created. This section describes each peripheral and it's design decisions. The full memory-map is shown in Figure 6.5.

A.1 Special Registers

From the software perspective, it is important for both the developer and software algorithms to know the target system's architecture to better utilise the resources available to them. Software written for one architecture with N cores must also run on an architecture with M cores. To enable such portability, the software must query the system for information such as: number of processor cores and the current core identifier. Without this information, the developer would be required to produce software for each individual architecture (e.g. an Intel i5 with 4 cores or an Intel i7 with 8 cores, or an NVIDIA GTX 970 with 1664 CUDA cores.

The special register peripheral is shown below.

Figure A.1: Vmicro16 Special Registers layout (0x0080 - 0x008F).

A.2 Watchdog Timer

In any multi-threaded system there exists the possibility for a deadlock – a state where all threads are in a waiting state – and algorithm execution is forever blocked. This can occur either by poor software programming or incorrect thread arbitration by the processor. A common method of detecting a deadlock is to make each thread signal that it is not blocked by resetting a countdown timer. If the countdown timer is not reset, it will eventually reach zero and it is assumed that all threads are blocked as none have reset the countdown.

In this system-on-chip design, software can reset the watchdog timer by writing any 16-bit value to the address 0x00B8.

This peripheral is optional and can be enabled using the configuration parameters described in Configuration Options.

A.3 GPIO Interface

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_
	GPIO0 Output										0090 RW					
	GPIO1 Output										0091 RW					
GPIO2 Ou								Out	put			0092 RW				
										G]	PIO	3 Inp	ut			0093 R

On the DE1-SoC board, GPIO0 is assigned to the LEDs, and GPIO1 and GPIO2 to the 6 seven-segment displays.

A.4 Timer with Interrupt

Clock Frequency Uses top level FPGA clock (normally 50 MHz).

Load Value Value to count down from each clock.

I Interrupt enable bit. Default 0.

R Reset Load Value and Prescaler values to their last written value.

S Start the timer countdown. 1 = start. 0 = stop.

Prescaler Number of clocks per FPGA clock to wait between each decrement.

A.5 UART Interface

E Enable the UART component.

I Enable an interrupt upon receiving new data. Default 1.

Note: If DEF_USE_REPROG is enabled in vmicro16_soc_config.v then the receiver port will be reserved for programming the instruction memory, resulting in reads and writes to addresses 0x00A1 and 0x00A2 to return 0.

Appendix B

Additional Figures

B.1 Register Set Multiplex

Figure B.1: Normal mode (bottom) and interrupt mode (top) register sets are multiplexed to switch between contexts.

B.2 Instruction Set Architecture

	15-11	10-8	7-5	4-0	rd ra simm5
-	15-11	10-8	7-0	4-0	rd imm8
-	15-11	10-0	7-0		nop
-	15	14:12	11:0		extended immediate
SPCL	00000	11 bits	11.0		NOP
SPCL	00000	11h'000			NOP
SPCL	00000	11h'000			HALT
SPCL	00000	11h'001			
LW	00000	Rd	Ra	-5	Return from interrupt
				s5	Rd <= RAM[Ra+s5]
SW	00010	Rd Rd	Ra	s5	RAM[Ra+s5] <= Rd
BIT			Ra	s5	bitwise operations
BIT_OR	00011	Rd	Ra	00000	Rd <= Rd Ra
BIT_XOR	00011	Rd	Ra	00001	Rd <= Rd ^ Ra
BIT_AND	00011	Rd	Ra	00010	Rd <= Rd & Ra
BIT_NOT	00011	Rd	Ra	00011	Rd <= ~Ra
BIT_LSHFT	00011	Rd	Ra	00100	Rd <= Rd << Ra
BIT_RSHFT	00011	Rd	Ra	00101	Rd <= Rd >> Ra
MOV	00100	Rd	Ra	X	Rd <= Ra
MOVI	00101	Rd	_	8	Rd <= i8
ARITH_U	00110	Rd	Ra	s5	unsigned arithmetic
ARITH_UADD	00110	Rd	Ra	11111	Rd <= uRd + uRa
ARITH_USUB	00110	Rd	Ra	10000	Rd <= uRd - uRa
ARITH_UADDI	00110	Rd	Ra	OAAAA	Rd <= uRd + Ra + AAAA
ARITH_S	00111	Rd	Ra	s5	signed arithmetic
ARITH_SADD	00111	Rd	Ra	11111	Rd <= sRd + sRa
ARITH_SSUB	00111	Rd	Ra	10000	Rd <= sRd - sRa
ARITH_SSUBI	00111	Rd	Ra	OAAAA	Rd <= sRd - sRa + AAAA
BR	01000	Rd	i	8	conditional branch
BR_U	01000	Rd	0000	0000	Any
BR_E	01000	Rd	0000	0001	Z=1
BR_NE	01000	Rd	0000	0010	Z=0
BR_G	01000	Rd	0000	0011	Z=0 and S=O
BR_GE	01000	Rd	0000	0100	S=O
BR_L	01000	Rd	0000	0101	S != O
BR_LE	01000	Rd	0000	0110	Z=1 or (S != O)
BR_S	01000	Rd	0000	0111	S=1
BR_NS	01000	Rd	0000	1000	S=0
CMP	01001	Rd	Ra	Х	SZO <= CMP(Rd, Ra)
SETC	01010	Rd	Im	m8	Rd <= (Imm8 _f_ SZO) ? 1 : 0
MULT	01011	Rd	Ra	Х	Rd <= uRd * uRa
HALT	01100		Х		
LWEX	01101	Rd	Ra	s5	Rd <= RAM[Ra+s5]
LVVLA	01101	Nu	Na	33	RAM[Ra+s5] <= Rd
CIMEN	01110	Dd	D-	-E	
SWEX	01110	Rd	Ra	s5	Rd <= 0 1 if success

Figure B.2: Vmicro16 instruction set architecture.

Appendix C

Configuration Options

C .1	System-on-chip Configuration Options	58
C.2	Core Options	59
C.3	Peripheral Options	60
D.1	2-core Timer Interrupt and ISR	61
D.2	1-160 Core Parallel Summation	63

The following configuration options are defined in vmicro16_soc_config.v.

Defaults with empty/blank values signifies that the preprocessor define is commented out/not defined/disabled by default/computed by other parameters.

C.1 System-on-chip Configuration Options

Macro	Default	Purpose
CORES	4	Number of CPU cores in the SoC
SLAVES	8	Number of peripherals
DEF_USE_WATCHDOG	//	Enable watchdog module to recover from dead- locks and infinite loops
DEF_GLOBAL_RESET	//	Enable synchronous reset logic. Will consume more LUT resources. Does not reset BRAM blocks.

Table C.1: SoC Configuration Options

C.2 Core Options

Macro	Default	Purpose
DATA_WIDTH	16	Width of CPU registers in bits
DEF_CORE_HAS_INSTR_MEM	//	Enable a per core instruction memory cache
DEF_MEM_INSTR_DEPTH	64	Instruction memory cache per core
DEF_MEM_SCRATCH_DEPTH	64	RW RAM per core
DEF_ALU_HW_MULT	1	Enable/disable HW multiply (1 clock)
FIX_T3	//	Enable a T3 state for the APB transaction
DEF_USE_REPROG	//	Programme instruction memory via UARTO. Requires DEF_GLOBAL_RESET. Enabling this will reserve the UARTO RX port for exclusive use for programming the instruction memory. Software reads of UARTO RX will return 0.

Table C.2: Core Options

C.3 Peripheral Options

Macro	Default	Purpose
APB_WIDTH		AMBA APB PADDR signal width
APB_PSELX_GPIO0	0	GPIO0 index
APB_PSELX_UART0	1	UART0 index
APB_PSELX_REGS0	2	REGS0 index
APB_PSELX_BRAM0	3	BRAM0 index
APB_PSELX_GPIO1	4	GPIO1 index
APB_PSELX_GPIO2	5	GPIO2 index
APB_PSELX_TIMR0	6	TIMR0 index
APB_BRAM0_CELLS	4096	Shared memory words
DEF_MMU_TIM0_S	16'h0000	Per core scratch memory start/end address
DEF_MMU_TIM0_E	16'h007F	"
DEF_MMU_SREG_S	16'h0080	Per core special registers start/end address
DEF_MMU_SREG_E	16'h008F	n e e e e e e e e e e e e e e e e e e e
DEF_MMU_GPIO0_S	16'h0090	Shared GPIOn start/end address
DEF_MMU_GPIO0_E	16'h0090	"
DEF_MMU_GPIO1_S	16'h0091	"
DEF_MMU_GPIO1_E	16'h0091	"
DEF_MMU_GPIO2_S	16'h0092	"
DEF_MMU_GPIO2_E	16'h0092	"
DEF_MMU_UART0_S	16'h00A0	Shared UART start/end address
DEF_MMU_UART0_E	16'h00A1	"
DEF_MMU_REGS0_S	16'h00B0	Shared registers start/end address
DEF_MMU_REGS0_E	16'h00B7	n e e e e e e e e e e e e e e e e e e e
DEF_MMU_BRAM0_S	16'h1000	Shared memory with global monitor start/end address
DEF_MMU_BRAM0_E	16'h1FFF	n e e e e e e e e e e e e e e e e e e e
DEF_MMU_TIMR0_S	16'h0200	Shared timer peripheral start/end address
DEF_MMU_TIMR0_E	16'h0202	l l'

 Table C.3: Peripheral Options

Appendix D

Viva Demonstration Examples

D.1 2-core Timer Interrupt and ISR

This example demo, shown during the viva, blinks an LED every 0.5 seconds via a timer interrupt. Core 0 sets up the interrupt vector (by writing the isr0 function address to the interrupt vector) and enables all interrupt sources. Core 1 sets up the timer interval peripheral to produce an interrupt every 0.5 seconds. Core 1 also performs the interrupt handler (isr0): toggle an LED, write the state to UART0, and resets the watchdog.

```
2
               Toggle LED in ISR
         entry:
    // get core idx 0x80 in r7
    movi    r7, #0x80
    lw    r7, r7
               10
11
14
               // Set interrupt vector (0)
15
               movi r0, isr0
movi r1, #0x1
movi r2, #0x08
lshft r1, r2
17
18
20
                           r0, r1
21
               //\ enable\ all\ interrupts
               movi r0, #0x0f
sw r0, r1 + #0x8
23
24
25
               // enter idle state
halt r0, r0
                        r0, r0
28
              // set timr0 address 0x200 into r0
// shift left 8 places
movi r0, #0x01
movi r1, #0x09
lshft r0, r1
31
33
35
                // Set load value
36
                //movi r1, #0x31
//sw r1, r0
               ///sw r1, r0
// test we the expected value back
//lw r2, r0
39
40
                // set load = 0x3000
               movi r1, #0x3
movi r2, #0x0C
//movi r2, #0x
43
44
               //movi r2, #0x04
lshft r1, r2
47
                          r1, r0
48
               // Set prescale value to 0x1000
```

```
// 20ns * load * prescaler = nanosecond delay

// 20ns * 10000 * 5000 = 1.0s

// 20.0 * 0x3000 * 0x1000 = ~1.0s
51
52
                       // 20.0 * 0x3000 * 0x10
movi r1, #0x1
// 1.0 second
// movi r2, #0x0C
// 0.5 second
movi r2, #0x0B
// 0.25 second
// movi r2, #0x0a
// 0.0625 second
// movi r2, #0x04
lshft r1, r2
sw r1, r0 + #0x02
53
54
55
56
57
59
60
61
63
64
65
                         // Start the timer (write 0x0001 to 0x0101)
                        movi r1, #0x01
sw r1, r0 + #0x01
66
67
68
69
                       // enter idle state
halt r0, r0
70
71
72
73
74
75
76
77
78
               isr0:
                       movi r0, #0x90
lw r1, r0
// xor with 1
movi r2, #0x1
xor r1, r2
                        // write back
sw r1, r
80
                                       r1, r0
81
82
                         // write ascii value to uart0
                       movi r0, #0xa0
movi r2, #0x30
add r1, r2
sw r1, r0
83
84
85
86
87
                        // reset watchdog
movi    r0, #0xb8
sw    r1, r0
88
89
91
                         // return from interrupt
intr r0, r0
92
```

D.2 1-160 Core Parallel Summation

This example demo performs a parallel summation of numbers 1 to 320. The algorithm *assigns* each core a subset of the summation space. It does this using the core's ID and the number of cores in the system. The following formulas determine where the subset begins and ends for each core. Core 0 broadcasts the number to sum to then each core calculates its subset start and end positions. Each core then performs a summation over it's subset then adds the result to a global shared value. After pushes it's results, the global shared value will contain the final summation result.

$$N_{samples} = 320 (D.1)$$

$$N_{threads} = 64 (D.2)$$

$$subset = N_{samples} / N_{threads}$$
 (D.3)

$$start = ID * subset$$
 (D.4)

$$end = start + subset$$
 (D.5)

```
// sum64.s
// Simple 1-160 core summation program
2
3
         // Set up common values, such as: Core id (r6), number of threads (cores) (r7), shared memory addresses (r5) \,
4
5
        entry:
// Core id in r6
r0. #0x8
6
              movi r0, #0x80
lw r0, r0
             lw
              // store in r6
10
12
             // get number of threads
movi r0, #0x81
13
14
              lw r0, r0
// store in r7
15
                        r0, r0
16
17
              // BRAMO shared memory 0x1000
19
                       r5, #0x01
r2, #0x0C
             movi
20
21
22
23
              lshft
        jmp_to_barrier:
    // NOT_ROOT
    // wait a
24
                  wait_at barrier
26
27
                     r6, r3
r4, barrier_arrive
              cmp
28
                        r4, BR_NE
30
              // ROOT
31
                    calculates nsamples_per_thread
32
                     ns = 100

nst = ns / (num_threads)

nst = ns >> (num_threads - 1)

r0 = (num_threads - 1) WRONG!!!
33
34
35
36
37
        root_broadcast:
38
              // The root (core idx 0) broadcasts the number of samples
39
              // 16 cores
40
                          r4, #0x14
41
42
              // 32 cores
              //movi
                          r4, #0x0a
43
              // 64 cores
44
45
                        r4, #0x05
              46
47
              // 160 cores
48
              //movi
                          r4, #0x02
49
              // ROOT
51
              // Do the broadcast
52
                   write nsamples_per_thread to shared bram (broadcast)
                  0x1001
                        r4, r5 + #0x01
55
```

```
// Reach the barrier to tell everone // that we have arrived
 58
 59
            barrier_arrive:
                  // load latest count
                 lwex r0, r5
// try increment count
// increment by 1
addi r0, r3 + #0x01
// attempt store
swex r0, r5
 61
 62
 63
 64
 65
 66
 67
                  // check success (== 0)
                 cmp r0, r3
// branch if failed
movi r4, barrier_arrive
br r4, BR_NE
69
70
 71
 72
           // Wait in an infinite loop
// for all cores to 'arrive'
73
74
           barrier:
 75
 76
                  // load the count
                 ٦w
                          r0, r5
 77
 78
                  // compare with number of threads
                 cmp r0, r7
// jump back to barrier if not equal
movi r4, barrier
br r4, BR_NE
 79
 80
 81
 82
 83
 84
           // EACH CORE
// All cores have arrived and in sync
 85
 86
           synced1:
                 // Retrieve load the nsamples_per_thread
lw r4, r5 + #0x01
// Calculate nstart = idx * nsamples_per_thread
// in r2
 87
 88
                 // in r2
mov
 89
 90
                          r2, r6
r2, r4
                 mult
 92
 93
                 // Loop limit in r4
// samples_per_thread -> samples_per_thread + nstart
add r4, r2
 94
 96
 97
           // Perform the summation in a tight for loop
// Sum numbers from nstart to limit
sum_loop:
 98
 99
100
                 // sum += i
101
                 add
                             r1, r2
                 // increment i
addi r2, r3 + #0x01
103
104
                  // check end
105
                        r2, r4
r0, sum_loop
r0, BR_NE
107
                 movi
108
                 br
109
           // Summation of the subset finished, result is in r1 // Now use a mutex to add it to the global sum value in shared mem
110
111
           sum_mutex:
112
                  // load latest count
113
                 lwex r0, r5 + #0x2
// try increment count
// increment by 1
114
115
116
                            r0, r1
                 // make copy as swex has a return value
mov r2, r0
// attempt store
swex r0, r5 + #0x02
118
119
120
121
                  // check success (== 0)
122
                 cmp r0, r3
// branch if failed
movi r4, sum_mutex
br r4, BR_NE
123
124
126
127
           // Write the latest global sum value to gpio1
128
           write_gpio:
movi r3, #0x91
129
130
131
                             r2, r3
            // Write the latest global sum value to uart0 tx
133
           write_uart_done:
    movi r3, #0xa0
134
135
136
                 movi
                             r2, #0x30
                             r2, r6
r2, r3
137
                 add
138
                 SW
139
           // This core has finished
140
            // Enter a low power state
141
142
           exit:
143
                 halt
                             r0, r0
```

Appendix E

Code Listing

E.1	SoC Code Listing	65
	E.1.1 vmicro16_soc_config.v	65
	E.1.2 top_ms.v	67
	E.1.3 vmicro16_soc.v	68
	E.1.4 vmicro16.v	74
E.2	Peripheral Code Listing	88

E.1 SoC Code Listing

E.1.1 vmicro16_soc_config.v

Configuration file for configuring the vmicro16_soc.v and vmicro16.v features.

```
// Configuration defines for the umicro16_soc and umicro16 cpu.
2
         `ifndef VMICRO16_SOC_CONFIG_H
         `define VMICRO16_SOC_CONFIG_H
5
         `include "clog2.v"
6
7
         `define FORMAL
8
9
         `define CORES
10
         define SLAVES
11
12
         13
        14
16
17
18
        // Top level data width for registers, memory cells, bus widths `define DATA_WIDTH 16\,
20
21
        // Set this to use a workaround for the MMU's APB T2 clock //`define FIX_T3 \,
23
24
25
        // Instruction memory (read only)
// Must be large enough to support software program.
ifdef DEF_CORE_HAS_INSTR_MEM
// 64 16-bit words per core
idefine DEF_MEM_INSTR_DEPTH 64
27
28
29
31
              // 4096 16-bit words global
`define DEF_MEM_INSTR_DEPTH 4096
32
33
34
35
         `endif
         // Scratch memory (read/write) on each core.
// See `DEF_MMU_TIMO_* defines for info.
`define DEF_MEM_SCRATCH_DEPTH 64
36
```

```
// Enables hardware multiplier and mult rr instruction `define DEF_ALU_HW_MULT 1 \,
 40
 41
 42
          // Enables global reset (requires more luts)
//`define DEF_GLOBAL_RESET
 43
 44
 45
          // Enable a watch dog timer to reset the soc if threadlocked
 46
          //`define DEF_USE_WATCHDOG
 47
 48
          // Enables instruction memory programming via UARTO
 49
          //`define DEF_USE_REPROG
 50
 51
          `ifdef DEF_USE_REPROG

`ifndef DEF_GLOBAL_RESET

`error_DEF_USE_REPROG_requires_DEF_GLOBAL_RESET
 52
 53
 54
                `endif
 55
          `endif
 56
 57
          58
          59
 60
 61
 62
           `define APB_PSELX_GPI00 0
 63
          `define APB_PSELX_UARTO 1
`define APB_PSELX_REGSO 2
 64
 65
           `define APB_PSELX_BRAMO 3
           define APB_PSELX_GPI01 4
define APB_PSELX_GPI02 5
define APB_PSELX_TIMRO 6
 67
 68
 69
           `define APB_PSELX_WDOGO 7
 70
 71
          `define APB_GPI00_PINS 8
`define APB_GPI01_PINS 16
`define APB_GPI02_PINS 8
 72
 73
 74
 75
          // Shared memory words
`define APB_BRAMO_CELLS 4096
 76
 77
 78
          79
          // Memory mapping
 80
 81
 82
          // TIMO
// Number of scratch memory cells per core
'define DEF_MMU_TIMO_CELLS 64
'define DEF_MMU_TIMO_S 16'h0000
'define DEF_MMU_TIMO_E 16'h007F
 83
 84
 85
 86
          // SREG
 87
          `define DEF_MMU_SREG_S
`define DEF_MMU_SREG_E
                                                 16'h0080
 88
                                                 16'h008F
 89
          // GPI00
 90
          `define DEF_MMU_GPIOO_S
`define DEF_MMU_GPIOO_E
// GPIO1
                                                 16'h0090
                                                 16'h0090
 92
 93
          `define DEF_MMU_GPI01_S
`define DEF_MMU_GPI01_E
 94
 95
                                                 16'h0091
          // GPI02
 96
          `define DEF_MMU_GPI02_S
`define DEF_MMU_GPI02_E
 97
 98
                                                 16'h0092
 99
          // UARTO
           define DEF_MMU_UARTO_S
                                                 16'h00A0
100
          `define DEF_MMU_UARTO_E
                                                16'h00A1
101
102
          // REGSO
          `define DEF_MMU_REGSO_S
`define DEF_MMU_REGSO_E
                                                 16'h00B0
103
                                                 16'h00B7
104
          // WDOGO
105
          `define DEF_MMU_WDOGO_S
`define DEF_MMU_WDOGO_E
                                                 16'h00B8
106
107
                                                 16'h00B8
          // BRAMO
108
           `define DEF_MMU_BRAMO_S
`define DEF_MMU_BRAMO_E
                                                 16'h1000
109
110
                                                 16'h1fff
          // TIMRO
111
          `define DEF_MMU_TIMRO_S
`define DEF_MMU_TIMRO_E
                                                 16'h0200
112
                                                 16'h0202
113
114
          115
116
              Interrupts
          // Interrupts
/// Interrupts
// Enable/disable interrupts
// Disabling will free up resources for other features
define DEF_ENABLE_INT
117
118
119
120
          '/ Number of interrupt in signals
'define DEF_NUM_INT 8

// Default interrupt bitmask (0 = hidden, 1 = enabled)
'define DEF_INT_MASK 0
122
123
124
          '/ Bit position of the TIMRO interrupt signal
'define DEF_INT_TIMRO 0

// Interrupt vector memory location
'define DEF_MMU_INTSV_S 16'h0100
'define DEF_MMU_INTSV_E 16'h0107
125
126
127
129
```

E.1.2 top_ms.v

Top level module that connects the SoC design to hardware pins on the FPGA.

```
module seven_display # (
     parameter INVERT = 1
) (
 2
 3
                      input [3:0] n,
output [6:0] segments
 4
 5
 6
                      reg [6:0] bits;
                      assign segments = (INVERT ? ~bits : bits);
                       always @(n)
10
                      case (n)
4'h0: bits = 7'b0111111; // 0
11
12
                              4'h0: bits = 7'b0111111; // v
4'h1: bits = 7'b0000110; // 1
4'h2: bits = 7'b1011011; // 2
4'h3: bits = 7'b1001111; // 3
4'h4: bits = 7'b1100110; // 4
4'h5: bits = 7'b1101101; // 5
13
14
17
                              4'h6: bits = 7'b1101101; // 6
4'h6: bits = 7'b1111101; // 6
4'h7: bits = 7'b0000111; // 7
4'h8: bits = 7'b1111111; // 8
4'h9: bits = 7'b1100111; // 9
4'hA: bits = 7'b1110111; // A
18
19
20
21
22
                              4 hA: bits = 7 billoll; // A
4 hB: bits = 7 billillo; // B
4 hC: bits = 7 bollilol; // C
4 hD: bits = 7 billillol; // D
4 hE: bits = 7 billillol; // E
4 hF: bits = 7 billillol; // F
23
24
25
26
27
                      endcase
28
29
              endmodule
30
31
               // minispartan6+ XC6SLX9
33
34
             module top_ms # (
    parameter GPIO_PINS = 8
35
                       input
                                                        CLK50,
37
38
                      input [3:0]
// UART
39
                      input
                      output
// Peripherals
output [7:0]
40
41
                                                        LEDS.
42
43
                       // 3v3 input from the s6 on the delsoc input S6_3v3,
44
45
                      input
46
                       // SSDs
47
                      output [6:0] ssd0,
output [6:0] ssd1,
output [6:0] ssd2,
output [6:0] ssd3,
output [6:0] ssd4,
output [6:0] ssd5
48
49
50
51
53
             );
54
55
                       //wire [15:0]
                                                                    M_PADDR;
                       //wire
//wire [5-1:0]
                                                                    M_PWRITE;
56
                                                                    M_PSELx;
M_PENABLE;
                                                                                          // not shared
                       //wire
//wire [15:0]
58
                                                                    M_PWDATA;
M_PRDATA; // input to intercon
M_PREADY; // input to intercon
59
                       //wire [15:0]
60
61
                       //wire
62
                      wire [7:0] gpio0;
wire [15:0] gpio1;
wire [7:0] gpio2;
63
64
65
                      vmicro16_soc soc (
.clk (CLK50)
67
68
                                               (~SW[0]),
69
70
                               //.M_PADDR (M_PADDR),
//.M_PWRITE (M_PWRITE),
                               //.M_PADDR
71
```

```
//.M_PSELx
//.M_PENABLE
                                                                           (M_PSELx),
(M_PENABLE),
(M_PWDATA),
73
74
 75
                                        //.M_PWDATA
 76
                                        //.M_PRDATA
                                                                            (M_PRDATA),
 77
                                        //.M_PREADY
                                                                            (M_PREADY),
 78
79
                                        // UART
                                        .uart_tx (TXD),
 80
                                        .uart_rx (RXD),
 82
                                        // GPIO
 83
                                        .gpio0
                                                                (LEDS[3:0]),
 84
                                        .gpio1
                                                                (gpio1),
 86
                                        .gpio2
                                                                (gpio2),
 87
                                        // DBUG
 88
                                        .dbug0
                                                             (LEDS[4])
 89
 90
                                        //.dbug1 (LEDS[7:4])
                             );
 91
 92
                              assign LEDS[7:5] = \{TXD, RXD, S6_3v3\};
                            // SSD displays (split across 2 gpio ports 1 and 2)
wire [3:0] ssd_chars [0:5];
assign ssd_chars[0] = gpio1[3:0];
assign ssd_chars[1] = gpio1[7:4];
assign ssd_chars[2] = gpio1[11:8];
assign ssd_chars[3] = gpio1[15:12];
assign ssd_chars[4] = gpio2[3:0];
assign ssd_chars[5] = gpio2[7:4];
seven_display ssd_0 (.n(ssd_chars[0]), .segments (ssd0));
seven_display ssd_1 (.n(ssd_chars[1]), .segments (ssd1));
seven_display ssd_2 (.n(ssd_chars[2]), .segments (ssd2));
seven_display ssd_4 (.n(ssd_chars[4]), .segments (ssd3));
seven_display ssd_5 (.n(ssd_chars[5]), .segments (ssd4));
seven_display ssd_5 (.n(ssd_chars[5]), .segments (ssd5));
 94
 95
 96
 97
 98
 99
100
101
103
104
105
106
107
108
109
                   endmodule
110
```

E.1.3 vmicro16_soc.v

```
11
2
        `include "vmicro16_soc_config.v"
`include "clog2.v"
`include "formal.v"
5
6
        module pow_reset # (
             parameter INIT = 1,
parameter N = 8
9
10
11
             input
                            clk,
             input reset, output reg resethold
13
14
16
             initial resethold = INIT ? (N-1) : 0;
17
             always @(*)
18
                  resethold = |hold;
19
20
             reg [`clog2(N)-1:0] hold = (N-1);
21
             always @(posedge clk)
22
23
                  if (reset)
                       hold \leq N-1;
24
25
                  else
26
                       if (hold)
27
                            hold <= hold - 1;
28
29
        endmodule
         // Vmicro16 multi-core SoC with various peripherals
30
31
         // and interrupts
32
        module vmicro16_soc (
             input clk, input reset,
33
34
35
             // UARTO
36
37
             input
                                                      uart_rx,
             output
38
                                                      uart_tx,
39
             output [`APB_GPI00_PINS-1:0]
output [`APB_GPI01_PINS-1:0]
                                                      gpio0,
40
41
                                                      gpio1,
             output [ APB_GPIO2_PINS-1:0]
42
                                                      gpio2,
             output
44
                                                      halt.
```

```
45
               output
                               [ CORES-1:0]
46
                                                            dbug0,
                               [`CORES*8-1:0]
47
               output
                                                            dbug1
48
49
                wire [`CORES-1:0] w_halt;
50
                assign halt = &w_halt;
51
                assign dbug0 = w_halt;
52
53
                // Watchdog reset pulse signal.
// Passed to pow_reset to generate a longer reset pulse
54
55
                wire wdreset;
56
57
                wire prog_prog;
58
59
                // soft register reset hold for brams and registers
                wire soft_reset;
`ifdef DEF_GLOBAL_RESET
60
61
                    pow_reset # (
62
63
                           .INIT
                                            (1),
                           . N
                                            (8)
65
                     ) por_inst (
                          .clk (clk),
`ifdef DEF_USE_WATCHDOG
66
67
68
                           .reset
                                           (reset | wdreset | prog_prog),
69
                            else
70
                           .reset
`endif
                                           (reset).
71
72
                           .resethold (soft_reset)
73
74
                     );
                `else
75
                     assign soft_reset = 0;
                `endif
76
77
                // Peripherals (master to slave)
wire [`APB_WIDTH-1:0]
78
79
                                                            M_PADDR;
                                                            M_PWRITE;
M_PSELx;
80
                 wire
                                                                         // not shared
                 wire [`SLAVES-1:0]
81
                                                            M_PENABLE;
82
                 wire
                 wire [`DATA_WIDTH-1:0] M_PWDATA;
wire [`SLAVES*`DATA_WIDTH-1:0] M_PRDATA; // input to intercon
wire [`SLAVES-1:0] M_PREADY; // input
83
84
85
86
                // Master apb interfaces
wire [`CORES*`APB_WIDTH-1:0]
wire [`CORES-1:0]
87
88
                                                           w_PADDR;
89
                wire [ CURES-1:0] w_PWRITE;
wire [ CORES-1:0] w_PSELx;
wire [ CORES-1:0] w_PENABLE
wire [ CORES* DATA_WIDTH-1:0] w_PWDATA;
wire [ CORES* DATA_WIDTH-1:0] w_PRDATA;
wire [ CORES-1:0] w_PREADY;
                                                            w PWRITE:
                                                            w_PSELx;
w_PENABLE;
90
91
92
93
94
95
          // Interrupts
ifdef DEF_ENABLE_INT
wire ['DEF_NUM_INT-1:0] ints;
wire ['DEF_NUM_INT*'DATA_WIDTH-1:0] ints_data;
96
97
98
99
               100
101
102
103
104
               apb_intercon_s # (
.MASTER_PORTS
.SLAVE_PORTS
105
                                           ( CORES)
106
                                           (`SLAVES)
107
                                           ( APB_WIDTH)
108
                     .BUS_WIDTH
109
                     .DATA_WIDTH
                                            ('DATA_WIDTH),
110
                      .HAS_PSELX_ADDR (1)
               ) apb (
111
                     .clk
112
                                      (clk),
                                     (soft_reset),
113
                     .reset
                     // APB master to slave
.S_PADDR (w PADDR)
114
                                     (w_PADDR)
115
                                     (w_PWRITE)
                     .S_PWRITE
116
                     .S_PSELx
                                      (w_PSELx),
117
                     .S_PENABLE
                                     (w_PENABLE),
118
                                      (w_PWDATA),
119
                     .S PWDATA
                     .S_PRDATA
                                      (w_PRDATA),
120
                     .S_PREADY
                                     (w_PREADY),
121
122
                     // shared bus
                     .M_PADDR
123
                                     (M_PADDR)
124
                     .M PWRITE
                                     (M_PWRITE),
(M_PSELx),
                     .M PSELx
125
                     M_PENABLE
                                     (M_PENABLE),
126
127
                     .M_PWDATA
                                      (M_PWDATA),
                                     (M_PRDATA)
(M_PREADY)
128
                     .M_PRDATA
                     .M_PREADY
129
               );
130
131
          `ifdef DEF_USE_WATCHDOG
132
               vmicro16_watchdog_apb # (
133
```

```
134
                       .BUS_WIDTH
                                        (`APB_WIDTH),
                                         ("WDOGO")
135
                       NAME.
                 ) wdog0_apb (
136
                       .clk
137
                                         (clk),
                       reset (),
// apb slave to master interface
.S_PADDR (),
138
139
140
                                        (M_PWRITE),
(M_PSELx[`APB_PSELX_WDOGO]),
                       .S_PWRITE
141
                       .S_PSELx
142
143
                       .S_PENABLE
                                         (M_PENABLE),
                       .S PWDATA
                                        (),
144
                       .S_PRDATA
145
                       .S_PREADY
                                        (M_PREADY[ APB_PSELX_WDOGO]),
146
147
148
                       .wdreset
                                        (wdreset)
           );
`endif
149
150
151
                 vmicro16_gpio_apb # (
   .BUS_WIDTH (`APB_WIDTH),
   .DATA_WIDTH (`DATA_WIDTH)
152
153
154
155
                       .PORTS
                                         (`APB_GPIOO_PINS),
156
                       NAME.
                                         ("GPI00")
                 ) gpio0_apb (
157
                       .clk
                                        (clk),
158
                                        (soft_reset),
159
                       .reset
                       // apb slave to master interface
.S_PADDR (M_PADDR),
160
161
                                        (M_PWRITE),
(M_PSELx[^APB_PSELX_GPI00]),
                       .S_PWRITE
162
                       .S_PSELx
163
164
                       .S_PENABLE
                                        (M_PENABLE),
                                        (M_PWDATA),
(M_PWDATA),
(M_PRDATA[^APB_PSELX_GPIOO*`DATA_WIDTH +: `DATA_WIDTH]),
(M_PREADY[^APB_PSELX_GPIOO]),
165
                       .S_PWDATA
                       .S PRDATA
166
                       S PREADY
167
                       .gpio
                                         (gpio0)
168
169
                 );
170
                 // GPI01 for Seven segment displays (16 pin)
171
                 vmicro16_gpio_apb # (
    .BUS_wIDTH (`APB_WIDTH),
    .DATA_WIDTH (`DATA_WIDTH),
    .PORTS (`APB_GPIO1_PINS),
    .NAME ("GPIO1")
172
173
174
175
176
177
                 ) gpio1_apb (
178
                       .clk
                                        (clk),
179
                       .reset
                                        (soft_reset),
                       // apb slave to master interface .S_PADDR (M_PADDR),
180
181
182
                       .S_PWRITE
                                         (M_PWRITE)
                                        (M_PSELx[`APB_PSELX_GPI01]),
(M_PENABLE),
                       .S_PSELx
.S PENABLE
183
184
                                        (M_PWDATA),
(M_PWDATA),
(M_PRDATA[^APB_PSELX_GPI01*^DATA_WIDTH +: `DATA_WIDTH]),
(M_PREADY[^APB_PSELX_GPI01]),
                       .S_PWDATA
185
                       .S_PRDATA
186
187
                       .S_PREADY
188
                       .gpio
                                         (gpio1)
                );
189
190
191
                  // GPI02 for Seven segment displays (8 pin)
                 vmicro16_gpio_apb # (
   .BUS_WIDTH (`APB_WIDTH),
   .DATA_WIDTH (`DATA_WIDTH)
192
193
194
                                        (`APB_GPI02_PINS),
("GPI02")
195
                       .PORTS
196
                       . NAME
197
                 ) gpio2_apb (
                                        (clk),
198
                       .clk
                                        (soft_reset),
199
                       .reset
                                 slave to master interface
DR (M_PADDR),
ITE (M_PWRITE),
                       // apb s
200
201
                       S PWRITE
202
                                         (M_PSELx[`APB_PSELX_GPI02]),
203
                       .S_PSELx
                       .S_PENABLE
                                         (M_PENABLE),
204
                                        (M_PWDATA),
(M_PWDATA),
(M_PRDATA[^APB_PSELX_GPI02*`DATA_WIDTH +: `DATA_WIDTH]),
(M_PREADY[^APB_PSELX_GPI02]),
205
                       .S_PWDATA
206
                       .S PRDATA
                       .S PREADY
207
                       .gpio
                                         (gpio2)
208
209
                apb_uart_tx # (
    .DATA_WIDTH (8),
    ADDR_EXP (4) //2^^4 = 16 FIF0 words
210
211
212
213
214
215
                       .reset (soft_reset),
// apb slave to master interface
216
217
                       .S_PADDR
                                         (M_PADDR),
218
                                        (M_PWRITE),
(M_PSELx[^APB_PSELX_UARTO]),
(M_PENABLE),
                       .S_PWRITE
219
220
                       .S_PSELx
                       .S_PENABLE
221
                       .S_PWDATA
                                         (M_PWDATA),
```

```
(M_PRDATA[`APB_PSELX_UARTO*`DATA_WIDTH +: `DATA_WIDTH]),
(M_PREADY[`APB_PSELX_UARTO]),
223
                       .S_PRDATA
224
                      .S PREADY
225
                      // wart wires
226
                      .tx_wire
                                        (uart_tx),
227
                      .rx_wire
                );
228
229
230
                 timer_apb timr0 (
                                        (clk),
231
                      .clk
232
                      .reset
                                        (soft_reset),
                      // apb slave to master interface
.S_PADDR (M_PADDR),
233
234
                                        (M_PWRITE),
(M_PSELx[`APB_PSELX_TIMRO]),
235
                      .S_PWRITE
236
                       .S_PSELx
                       .S PENABLE
237
                                        (M_PENABLE),
                                        (M_PWDATA),
(M_PRDATA[^APB_PSELX_TIMRO*`DATA_WIDTH +: `DATA_WIDTH]),
(M_PREADY[^APB_PSELX_TIMRO])
                       .S PWDATA
238
239
                      .S_PRDATA
240
                       .S_PREADY
241
                        ifdef DEF_ENABLE_INT
242
                                                      [`DEF_INT_TIMRO]),
                      ,.out
243
                                        (ints
244
                        .int_data
                                        (ints_data[`DEF_INT_TIMRO*`DATA_WIDTH +: `DATA_WIDTH])
245
                        endif
                ):
246
247
                 // Shared register set for system-on-chip info
                249
250
                                                    ( APB_WIDTH)
251
                                                   (`DATA_WIDTH),
252
                      .CELL_DEPTH (8),
.PARAM_DEFAULTS_R0 (CORES),
.PARAM_DEFAULTS_R1 (SLAVES)
253
254
255
                 ) regs0_apb (
256
257
                      .clk
                                        (clk),
258
                       .reset
                                        (soft_reset),
                      // apb slave to master interface
.S_PADDR (M_PADDR),
259
260
                                        (M_PWRITE)
261
                      .S_PWRITE
                      .S_PSELx
                                        (M_PSELx[`APB_PSELX_REGSO]),
262
                       S PENABLE
263
                                      (M_PENABLE),
                                        (M_PWDATA),
(M_PRDATA['APB_PSELX_REGSO*'DATA_WIDTH +: 'DATA_WIDTH]),
(M_PREADY['APB_PSELX_REGSO])
264
                       .S_PWDATA
265
                      .S_PRDATA
                       .S_PREADY
266
267
                );
268
                vmicro16_bram_ex_apb # (
269
                      BUS_WIDTH (`APB_WIDTH),

.MEM_WIDTH (`APB_WIDTH),

.MEM_DEPTH (`APB_BRAMO_CELLS),

.CORE_ID_BITS (`clog2(`CORES))
270
271
272
273
274
                 ) bram_apb (
275
276
                       .reset
                                        (soft_reset),
                      // apb slave to master interface
.S_PADDR (M_PADDR),
277
278
                                        (M_PWRITE),
(M_PSELx[`APB_PSELX_BRAMO]),
279
                      .S_PWRITE
280
                       .S_PSELx
281
                       .S_PENABLE
                                        (M_PENABLE),
                                        (M_PWDATA),
(M_PRDATA),
(M_PRDATA[^APB_PSELX_BRAMO*^DATA_WIDTH +: `DATA_WIDTH]),
(M_PREADY[^APB_PSELX_BRAMO])
                      .S_PWDATA
282
                      .S_PRDATA
283
284
                      .S_PREADY
285
                );
286
                 // There must be atleast 1 core
287
                 `static_assert(`CORES > 0)
`static_assert(`DEF_MEM_INSTR_DEPTH > 0)
`static_assert(`DEF_MMU_TIMO_CELLS > 0)
288
289
290
291
292
           // Single instruction memory
`ifndef DEF_CORE_HAS_INSTR_MEM
// slave input/outputs from interconnect
293
294
295
                 wire [ APB_WIDTH-1:0]
                                                             instr_M_PADDR;
296
                                                             instr_M_PWRITE;
instr_M_PSELx;
instr_M_PENABLE;
297
                 wire
                                                                                     // not shared
                wire [1-1:0]
298
299
                 wire
                 wire ['DATA_WIDTH-1:0]
                                                              instr_M_PWDATA;
300
                wire [1*`DATA_WIDTH-1:0]
wire [1-1:0]
                                                             instr_M_PRDATA; // slave response
instr_M_PREADY; // slave response
301
302
303
                // Master apb interfaces
wire [`CORES*`APB_WIDTH-1:0]
wire [`CORES-1:0]
304
305
                                                             instr_w_PADDR;
306
                                                             instr_w_PWRITE;
                                                             instr_w_PSELx;
instr_w_PENABLE;
                        [ CORES-1:0]
307
                 wire
                 wire ['CORES-1:0]
308
                wire ['CORES*'DATA_WIDTH-1:0]
wire ['CORES*'DATA_WIDTH-1:0]
wire ['CORES-1:0]
309
                                                             instr_w_PWDATA;
310
                                                             instr_w_PRDATA;
                                                              instr_w_PREADY;
311
```

```
312
               `ifdef DEF_USE_REPROG
  wire [`clog2(`DEF_MEM_INSTR_DEPTH)-1:0] prog_addr;
  wire [`DATA_WIDTH-1:0] prog_data;
313
314
315
316
                    wire prog_we;
                    uart_prog rom_prog (
    .clk (clk),
317
318
                                          (reset | wdreset),
319
                          .reset
320
                          // input str
321
                          .uart_rx
                                          (uart_rx),
                          // programmer
322
                                          (prog_addr),
(prog_data),
323
324
                          .data
325
                                          (prog_we),
326
                          .prog
                                          (prog_prog)
327
               `endif
328
329
               `ifdef DEF_USE_REPROG
330
331
                    vmicro16_bram_prog_apb
332
                else
                    vmicro16_bram_apb
333
               `endif
334
335
               # (
                    .BUS_WIDTH .MEM_WIDTH
                                          (`APB_WIDTH), (`DATA_WIDTH)
336
337
                     .MEM_DEPTH
                                          (`DEF_MEM_INSTR_DEPTH),
338
                     .USE_INITS
339
340
                     .NAME
                                          ("INSTR_ROM_G")
341
               ) instr_rom_apb (
342
                    .clk
                                          (clk).
343
                    .reset
                                          (reset),
344
                     .S_PADDR
                                          (instr_M_PADDR),
345
                     .S_PWRITE
                                          (0),
                                          (instr_M_PSELx)
                     .S PSELx
346
                    .S_PENABLE
.S_PWDATA
                                          (instr_M_PENABLE),
347
348
                                          (0),
349
                     .S_PRDATA
                                          (instr_M_PRDATA),
350
                     .S_PREADY
                                          (instr_M_PREADY)
351
352
                    `ifdef DEF_USE_REPROG
353
                          addr
354
                                         (prog_addr),
                                         (prog_data),
355
                          .data
356
                          .we
                                         (prog_we),
                     .prog
`endif
357
                                         (prog_prog)
358
              ):
359
360
361
               apb_intercon_s # (
                    .MASTER_PORTS
.SLAVE_PORTS
362
                                          ( CORES),
                                          (1),
(`APB_WIDTH),
(`DATA_WIDTH),
363
                     .BUS_WIDTH
364
365
366
                     .HAS_PSELX_ADDR (0)
367
               ) apb_instr_intercon (
                                    (clk),
368
                    .clk
369
                     .reset
                                    (soft_reset),
                    // APB master from cores
// master
.S_PADDR (instr_w_PAD
370
371
                                     (instr_w_PADDR)
372
                     .S_PWRITE
                                    (instr_w_PWRITE),
373
374
                     .S_PSELx
                                     (instr_w_PSELx),
375
                     .S_PENABLE
                                     (instr_w_PENABLE),
                     .S PWDATA
                                    (instr_w_PWDATA),
(instr_w_PRDATA),
(instr_w_PREADY),
376
                     .S_PRDATA
377
                     .S_PREADY
378
                    // shared bus slaves
// slave outputs
379
380
                                    (instr_M_PADDR),
(instr_M_PWRITE),
(instr_M_PSELx),
                     M PADDR
381
                     .M_PWRITE
382
                     .M_PSELx
383
384
                     .M_PENABLE
                                     (instr_M_PENABLÉ),
385
                     .M_PWDATA
                                    (instr_M_PWDATA),
(instr_M_PRDATA),
                     .M PRDATA
386
                     .M_PREADY
                                     (instr_M_PREADY)
387
388
          `endif
389
390
391
392
               generate for(i = 0; i < `CORES; i = i + 1) begin : cores</pre>
393
                    vmicro16_core # (
.CORE_ID
.DATA_WIDTH
394
                                                     (i),
(`DATA_WIDTH),
395
396
397
                          .MEM_INSTR_DEPTH
                                                     (`DEF_MEM_INSTR_DEPTH),
398
                          .MEM_SCRATCH_DEPTH (`DEF_MMU_TIMO_CELLS)
399
400
                    ) c1 (
```

```
401
                         .clk
                                        (clk),
402
                         .reset
                                        (soft_reset),
403
                         // debug
404
405
                         .halt
                                        (w_halt[i]),
406
                         // interrupts
407
408
                         .ints
                                        (ints),
                         .ints_data (ints_data),
409
410
                         // Output master port 1
411
                                        (w_PADDR
                                                      [`APB_WIDTH*i +: `APB_WIDTH]
[i]
                         .w_PADDR
412
                         .w_PWRITE
                                        (w_PWRITE
413
                                        (w_PSELx
414
                         .w_PSELx
                                                      [i]
                                      (w_PENABLE [i] /, (w_PWDATA ['DATA_WIDTH*i +: 'DATA_WIDTH]), (w_PRDATA ['DATA_WIDTH*i +: 'DATA_WIDTH]),
                         .w_PENABLE
415
                         .w_PWDATA
416
                         .w_PRDATA
417
                                                     [i]
418
                         .w_PREADY
                                        (w_PREADY
419
         `ifndef DEF_CORE_HAS_INSTR_MEM
420
                        // APB instruction rom
, // Output master port 2
.w2_PADDR (instr_w_PADDR [`APB_WIDTH*i +: `APB_WIDTH] ),
//.w2_PWRITE (instr_w_PWRITE [i] ),
.w2_PSELx (instr_w_PSELx [i] ),
421
422
423
424
425
                         .w2_PENABLE (instr_w_PENABLE [i]
426
                         //.w2_PWDATA (instr_w_PWDATA [ DATA_WIDTH*i +: DATA_WIDTH]),
w2_PRDATA (instr_w_PRDATA [ DATA_WIDTH*i +: DATA_WIDTH]),
w2_PREADY (instr_w_PREADY [i] )
                                                                                      `DATA_WIDTH]),
427
428
429
430
         `endif
431
                   );
432
              end
433
              endgenerate
434
435
              436
437
              // Formal Verification
              `ifdef FORMAL
438
439
              wire all_halted = &w_halt;
440
              441
              442
443
444
              reg [15:0] bus_core_times
reg [15:0] core_work_times
reg [15:0] instr_fetch_times
                                                       [0: CORES-1];
[0: CORES-1];
445
446
447
                                                       [0: CORES-1]:
448
              integer i2;
              initial
449
                   for(i2 = 0; i2 < `CORES; i2 = i2 + 1) begin
  bus_core_times[i2] = 0;</pre>
450
451
                        core_work_times[i2] = 0;
452
                   \quad \text{end} \quad
453
454
               // total bus time
455
              generate
456
457
                   genvar g2;
                    458
459
460
                                         bus_core_times[g2] <= bus_core_times[g2] + 1;
461
462
                                   // Core working time
`ifndef DEF_CORE_HAS_INSTR_MEM
    if (!w_PSELx[g2] && !instr_w_PSELx[g2])
463
464
465
466
                                   `else
467
                                         if (!w_PSELx[g2])
                                   `endif
468
469
                                                if (!w_halt[g2])
                                                       core_work_times[g2] <= core_work_times[g2] + 1;</pre>
470
471
472
                           end
                      end
473
474
              endgenerate
475
476
              reg [15:0] bus_time_average = 0;
              reg [15:0] bus_reqs_average = 0;
reg [15:0] fetch_time_average = 0;
477
478
              reg [15:0] work_time_average = 0;
479
480
              always @(all_halted) begin
for (i2 = 0; i2 < `CORES; i2 = i2 + 1) begin
481
482
                        bus_time_average = bus_time_average + bus_core_times[i2];
bus_reqs_average = bus_reqs_average + bus_core_reqs_count[i2];
work_time_average = work_time_average + core_work_times[i2];
483
484
485
486
                         fetch_time_average = fetch_time_average + instr_fetch_times[i2];
487
                   end
488
                   bus_time_average = bus_time_average / `CORES;
489
```

```
bus_reqs_average = bus_reqs_average / `CORES;
work_time_average = work_time_average / `CORES;
fetch_time_average = fetch_time_average / `CORES;
490
491
492
493
494
               495
496
497
498
499
500
501
               // storage for counters for each core
reg [15:0] bus_core_reqs_count [0:`CORES-1];
503
504
               initial
                    for(i2 = 0; i2 < `CORES; i2 = i2 + 1)
505
                          bus_core_reqs_count[i2] = 0;
506
507
               // 1 clk delay to detect rising edge always @(posedge clk)
508
509
510
                     bus_core_reqs_last <= w_PSELx;
511
512
               generate
513
                    genvar g3;
                             for (g3 = 0; g3 < `CORES; g3 = g3 + 1) begin : formal_for_reqs
514
                             // Detect new regs for each core
assign bus_core_reqs_real[g3] = w_PSELx[g3] >
515
516
                                                                                      bus_core_reqs_last[g3];
517
518
                             always @(posedge clk)
    if (bus_core_reqs_real[g3])
519
520
                                            bus_core_reqs_count[g3] <= bus_core_reqs_count[g3] + 1;</pre>
521
522
523
                      end
               endgenerate
524
525
526
               `ifndef DEF_CORE_HAS_INSTR_MEM
527
                     528
                     530
531
532
533
                          for(i3 = 0; i3 < `CORES; i3 = i3 + 1)
  instr_fetch_times[i3] = 0;</pre>
534
535
536
                    \ensuremath{/\!/} total bus time \ensuremath{/\!/} Instruction fetches occur on the w2 master port
537
538
539
                     generate
                          genvar g4;
for (g4 = 0; g4 < `CORES; g4 = g4 + 1) begin : formal_for_fetch_times
    always @(posedge clk)
         if (instr_w_PSELx[g4])
              instr_fetch_times[g4] <= instr_fetch_times[g4] + 1;</pre>
540
541
542
543
544
545
546
                    endgenerate
               `endif
547
548
549
               `endif // end FORMAL
550
551
          endmodule
```

E.1.4 vmicro16.v

Vmicro16 CPU core module.

```
// This file contains multiple modules.
// Verilator likes 1 file for each module

/* verilator lint_off DECLFILENAME */

/* verilator lint_off UNUSED */

/* verilator lint_off BLKSEQ */

/* verilator lint_off WIDTH */

// Include Vmicro16 ISA containing definitions for the bits

include "vmicro16_isa.v"

include "clog2.v"

include "formal.v"
```

```
// This module aims to be a SYNCHRONOUS, WRITE_FIRST BLOCK RAM
// https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
 17
                         https://www.xilinx.com/support/accumentation/user_guides/ug383.pdf
https://www.xilinx.com/support/documentation/user_guides/ug383.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_4/ug901-vivado-synthesis.pdf
 18
 19
               module vmicro16_bram # (
 20
                      parameter MEM_WIDTH parameter MEM_DEPTH
 21
 22
                                                                       = 64,
 23
                       parameter CORE_ID
                                                                       = 0,
                       parameter USE_INITS = 0,
parameter PARAM_DEFAULTS_RO = 0,
 24
 25
 26
                       parameter PARAM_DEFAULTS_R1 = 0,
                       parameter PARAM_DEFAULTS_R2 = 0,
parameter PARAM_DEFAULTS_R3 = 0,
 27
 28
 29
                       parameter NAME
               ) (
 30
 31
                       input clk,
 32
                       input reset.
 33
                                              [`clog2(MEM_DEPTH)-1:0] mem_addr, [MEM_WIDTH-1:0] mem_in,
 34
                        input
 35
                       input
 36
                       input
                                                                                                mem we.
 37
                       output reg [MEM_WIDTH-1:0]
                                                                                                mem_out
 38
               ):
                       // memory vector
(* ram_style = "block" *)
reg [MEM_WIDTH-1:0] mem [0:MEM_DEPTH-1];
 39
 40
 41
 42
 43
                        // not synthesizable
                       integer i;
initial begin
 44
 45
                              for (i = 0; i < MEM_DEPTH; i = i + 1) mem[i] = 0;
mem[0] = PARAM_DEFAULTS_R0;
mem[1] = PARAM_DEFAULTS_R1;
mem[2] = PARAM_DEFAULTS_R2;</pre>
 46
 47
 48
 49
                               mem[3] = PARAM_DEFAULTS_R3;
 50
 51
                                if (USE_INITS) begin
 52
                                        //`define TEST_SW
`ifdef TEST_SW
 53
 54
                                        $readmemh("E:\\Projects\\uni\\vmicro16\\sw\\verilog_memh.txt", mem);
 55
 56
 57
 58
                                        `define TEST_ASM
`ifdef TEST_ASM
 59
                                        $readmemh("E:\\Projects\\uni\\vmicro16\\sw\\asm.s.hex", mem);
 60
 61
 62
                                       //`define TEST_COND
`ifdef TEST_COND
mem[0] = {`VMICR016_OP_MOVI,
mem[0] = {`VMICR016_OP_MOVI,
 63
 64
                                                                                                         3'h7, 8'hCO}; // lock
3'h7, 8'hCO}; // lock
 65
 66
 67
 68
                                       69
 70
                                                                                                          3'h0, 8'h0A};
3'h1, 8'h0B};
 71
 72
 73
                                                                                                          3'h1, 3'h0, 5'h1};
 74
75
                                          endif
                                        //`define TEST_LWEX
`ifdef TEST_LWEX
 76
 77
                                       mem[0] = {\text{VMICR016_OP_MOVI,}}
mem[1] = {\text{VMICR016_OP_SW,}}
mem[2] = {\text{VMICR016_OP_LW,}}
mem[3] = {\text{VMICR016_OP_LWEX,}}
mem[4] = {\text{VMICR016_OP_SWEX,}}
                                                                                                         3'h0, 8'hC5};
3'h0, 3'h0, 5'h1};
3'h2, 3'h0, 5'h1};
3'h2, 3'h0, 5'h1};
 78
79
 80
 81
 82
                                                                                                          3'h3. 3'h0. 5'h1}:
 83
                                          endif
                                      //`define TEST_MULTICORE

`ifdef TEST_MULTICORE

`ifdef TEST_MULTICORE

mem[0] = {`VMICR016_OP_MOVI,
mem[1] = {`VMICR016_OP_SW,
mem[3] = {`VMICR016_OP_MOVI,
mem[4] = {`VMICR016_OP_LW,
mem[5] = {`VMICR016_OP_MOVI,
mem[6] = {`VMICR016_OP_MOVI,
mem[7] = {`VMICR016_OP_MOVI,
mem[8] = {`VMICR016_OP_MOVI,
mem[9] = {`VMICR016_OP_SW,
`endif
 84
 85
 86
                                                                                                          3'h0, 8'h90};
 87
                                                                                                          3'h1, 8'h33}
 88
                                                                                                          3'h1, 3'h0,
                                                                                                                                   5'h0};
 89
                                                                                                          3 h1, 3 h0, 5 h0,
3'h0, 8'h80};
3'h2, 3'h0, 5'h0};
3'h1, 8'h33};
3'h1, 8'h33};
 90
 91
 92
 93
                                                                                                          3'h1, 8'h33};
3'h0, 8'h91};
3'h2, 3'h0, 5'h0};
 94
 95
 96
 97
                                          endif
 98
                                       //`define TEST_BR

`ifdef TEST_BR
mem[0] = {`VMICR016_OP_MOVI, 3'h0, 8'h0};
mem[1] = {`VMICR016_OP_MOVI, 3'h3, 8'h3};
mem[2] = {`VMICR016_OP_MOVI, 3'h1, 8'h2};
mem[3] = {`VMICR016_OP_ARITH_U, 3'h0, 3'h1, 5'b11111};
mem[4] = {`VMICR016_OP_BR, 3'h3, `VMICR016_OP_BR_U};
 99
100
101
102
103
104
105
```

```
mem[5] = {`VMICRO16_OP_MOVI, 3'h0, 8'hFF};
106
107
                                            endif
108
                                          //`define ALL_TEST
`ifdef ALL_TEST
109
110
                                          // Standard all test
// REGS0
111
112
                                                                                                                3'h0, 8'h81};
3'h1, 3'h0, 5'h0}; // MMU[0x81] = 6
3'h2, 3'h0, 5'h1}; // MMU[0x82] = 6
                                          mem[0] = {`VMICR016_0P_MOVI,
mem[1] = {`VMICR016_0P_SW,
mem[2] = {`VMICR016_0P_SW,
113
114
115
                                           // GPI00
116
                                         rem[3] = {`VMICRO16_OP_MOVI,
mem[4] = {`VMICRO16_OP_MOVI,
mem[5] = {`VMICRO16_OP_SW,
mem[6] = {`VMICRO16_OP_LW,
definition
                                                                                                                 3'h0, 8'h90};
117
                                                                                                                3'h1, 8'hD};
3'h1, 3'h0, 5'h0};
3'h2, 3'h0, 5'h0};
119
120
                                           // TIMO
121
                                          mem[7] = { `VMICRO16_OP_MOVI, mem[8] = { `VMICRO16_OP_LW,
                                                                                                                3'h0, 8'h07};
3'h3, 3'h0, 5'h03};
122
123
                                           // UARTO
                                         // UARTO

mem[9] = {`VMICRO16_OP_MOVI,
    mem[10] = {`VMICRO16_OP_MOVI,
    mem[11] = {`VMICRO16_OP_MOVI,
    mem[12] = {`VMICRO16_OP_MOVI,
    mem[13] = {`VMICRO16_OP_SW,
    mem[14] = {`VMICRO16_OP_MOVI,
    mem[15] = {`VMICRO16_OP_SW,
    mem[16] = {`VMICRO16_OP_SW,
    mem[17] = {`VMICRO16_OP_SW,
    mem[18] = {`VMICRO16_OP_SW,
    mem[19] = {`VMICRO16_OP_SW,
    mem[19] = {`VMICRO16_OP_SW,
    mem[20] = {`VMICRO16_OP_SW,
    mem[20] = {`VMICRO16_OP_SW,
    mem[21] = {`VMICRO16_OP_SW,
    mem[21] = {`VMICRO16_OP_SW,
124
                                                                                                                  3'h0, 8'hA0};
3'h1, 8'h41};
3'h1, 3'h0, 5'h0};
                                                                                                                                                           // UARTO
125
                                                                                                                                                          // ascii A
126
127
                                                                                                                 3'h1, 3'h0, 5'h0};
3'h1, 8'h42}; // ascii B
3'h1, 3'h0, 5'h0};
3'h1, 8'h43}; // ascii C
3'h1, 3'h0, 5'h0};
3'h1, 8'h44}; // ascii D
3'h1, 3'h0, 5'h0};
3'h1, 8'h45}; // ascii D
3'h1, 3'h0, 5'h0};
3'h1, 8'h46}; // ascii E
3'h1, 3'h0, 5'h0};
128
129
130
131
132
133
134
135
136
137
                                          mem[21] = { VMICRO16_OP_SW,
                                           // BRAMO
138
                                         // BRAMO
mem[22] = {`VMICRO16_OP_MOVI,
mem[23] = {`VMICRO16_OP_MOVI,
mem[24] = {`VMICRO16_OP_SW,
mem[25] = {`VMICRO16_OP_LW,
                                                                                                                  3'h0, 8'hC0};
139
                                                                                                                  3'h1, 8'hA};
3'h1, 3'h0, 5'h5};
3'h2, 3'h0, 5'h5};
140
141
142
                                         143
                                                                                                                  3'h0, 8'h91};
144
                                                                                                                  3'h1, 8'h12};
3'h1, 3'h0, 5'h0};
3'h2, 3'h0, 5'h0};
145
146
147
                                          // GPI02
148
                                          mem[30] = {\text{VMICRO16_OP_MOVI,}}
mem[31] = {\text{VMICRO16_OP_MOVI,}}
mem[32] = {\text{VMICRO16_OP_SW,}}
                                                                                                                  3'h0, 8'h92};
149
                                                                                                                 3'h1, 8'h56};
3'h1, 3'h0, 5'h0};
150
151
152
                                            endif
153
                                         //`define TEST_BRAM

`ifdef TEST_BRAM

// 2 core BRAMO test

mem[0] = {`VMICRO16_OP_MOVI,
mem[1] = {`VMICRO16_OP_SW,
mem[2] = {`VMICRO16_OP_LW,
154
155
156
157
                                                                                                                3'h0, 8'hC0};
                                                                                                                3'h1, 8'hA};
3'h1, 3'h0, 5'h5};
3'h2, 3'h0, 5'h5};
158
159
160
                                            endif
161
162
                                 end
163
                        end
164
165
                        always @(posedge clk) begin
                                 // synchronous WRITE_FIRST (page 13)
if (mem_we) begin
166
167
                                          mem[mem_addr] <= mem_in;
$display($time, "\t\t%s[%h] <= %h",</pre>
168
169
                                                           NAME, mem_addr, mem_in);
170
171
                                 end else
                                         mem_out <= mem[mem_addr];</pre>
172
                         end
173
174
                         // TODO: Reset impl = every clock while reset is asserted, clear each cell one at a time, mem[i++] <= 0
175
176
177
               endmodule
178
179
               module vmicro16_core_mmu # (
180
                                                                     = 16,
= 64,
                       parameter MEM_WIDTH
parameter MEM_DEPTH
181
182
183
184
                        parameter CORE_ID
                        parameter CORE_ID_BITS = `clog2(`CORES)
185
               ) (
186
                         input clk.
187
188
                         input reset
189
                        input req,
output busy,
190
191
192
193
                          // From core
                        input [MEM_WIDTH-1:0] mmu_addr,
194
```

```
195
                input
                                [MEM_WIDTH-1:0] mmu_in,
196
                input
                                                         mmu_we,
mmu_lwex,
197
                input
198
                input
                                                         mmu_swex,
199
                output reg [MEM_WIDTH-1:0] mmu_out,
200
                 // interrupts
201
                output reg [`DATA_WIDTH*`DEF_NUM_INT-1:0] ints_vector,
output reg [`DEF_NUM_INT-1:0] ints_mask,
202
203
204
205
                 // TO APB interconnect
                output reg [`APB_WIDTH-1:0]
206
                                                          M_PADDR
207
                output reg
                                                           M PWRITE.
                                                          M_PSELx,
                output reg
208
                                                          M_PENABLE.
                output reg
209
210
                output reg [MEM_WIDTH-1:0]
                                                          M_PWDATA,
                // from interconnect
input [MEM_WIDT]
211
                              [MEM_WIDTH-1:0]
                                                          M_PRDATA,
212
                input
                                                          M_PREADY
213
214
          );
                localparam MMU_STATE_T1 = 0;
localparam MMU_STATE_T2 = 1;
localparam MMU_STATE_T3 = 2;
215
216
217
218
                reg [1:0] mmu_state
                                                     = MMU_STATE_T1;
219
                reg [MEM_WIDTH-1:0] per_out = 0;
wire [MEM_WIDTH-1:0] tim0_out;
220
221
222
                assign busy = req || (mmu_state == MMU_STATE_T2);
223
224
                 // more luts than below but easier
225
                226
227
228
                                    && (mmu_addr <= `DEF_MMU_SREG_E)
                //wire intv_en = (mmu_addr >= `DEF_MMU_INTSV_S)
// &\mathbb{S} (mmu_addr <= `DEF_MMU_INTSV_E);
//wire intm_en = (mmu_addr >= `DEF_MMU_INTSM_S)
230
231
232
                                    && (mmu_addr <= `DEF_MMU_INTSM_E);
233
234
235
                wire timO_en = ~mmu_addr[12] && ~mmu_addr[9] && ~mmu_addr[7];
                wire sreg_en = mmu_addr[7] && ~mmu_addr[4] && ~mmu_addr[5];
wire intv_en = mmu_addr[8] && ~mmu_addr[3];
236
237
                wire intm_en = mmu_addr[8] && mmu_addr[3];
238
239
                                    = !(|{tim0_en, sreg_en, intv_en, intm_en});
= (tim0_en && mmu_we);
= (intv_en && mmu_we);
= (intm_en && mmu_we);
240
                wire apb en
                wire tim0_we
241
242
                wire intv_we
243
                wire intm_we
244
                 // Special register selects
245
                localparam SPECIAL_REGS = 8;
246
247
                wire [MEM_WIDTH-1:0] sr_val;
248
249
                   ' Interrupt vector and mask
250
                initial ints_vector = 0;
                initial ints_mask = 0;
wire [2:0] intv_addr = mmu_addr[`clog2(`DEF_NUM_INT)-1:0];
                                            = 0;
251
252
                always @(posedge clk)
253
254
255
                            ints_vector[intv_addr*`DATA_WIDTH +: `DATA_WIDTH] <= mmu_in;</pre>
256
                always @(posedge clk)
257
                      if (intm_we)
258
259
                            ints_mask <= mmu_in;</pre>
260
261
262
                always @(ints_vector)
263
                      $display($time,
                                  "\tC%d\t\tints_vector W: | %h ", CORE_ID,
264
265
                           CURE_ID,
ints_vector[0*`DATA_WIDTH +: `DATA_WIDTH],
ints_vector[1*`DATA_WIDTH +: `DATA_WIDTH],
ints_vector[2*`DATA_WIDTH +: `DATA_WIDTH],
ints_vector[3*`DATA_WIDTH +: `DATA_WIDTH],
ints_vector[4*`DATA_WIDTH +: `DATA_WIDTH],
ints_vector[5*`DATA_WIDTH +: `DATA_WIDTH],
ints_vector[6*`DATA_WIDTH +: `DATA_WIDTH],
ints_vector[7*`DATA_WIDTH +: `DATA_WIDTH]
);
266
267
268
269
270
272
273
274
                            ):
275
276
                always @(intm_we)
                      $display($time, "\tC%d\t\tintm_we W: %b", CORE_ID, ints_mask);
277
278
                always @(*)
if (+-
279
280
                                 (tim0_en) mmu_out = tim0_out;
281
                      else if (sreg_en) mmu_out = sr_val;
else if (intv_en) mmu_out = ints_vector[mmu_addr[2:0]*`DATA_WIDTH
282
283
```

```
284
                                                                                                            +: `DATA_WIDTH];
                            else if (intm_en) mmu_out = ints_mask;
285
286
                                                            mmu_out = per_out;
                            else
287
288
                     // APB master to slave interface
                    always @(posedge clk)
if (reset) begin
mmu_state <= MMU_STATE_T1;
M_PENABLE <= 0;
M_PADDR <= 0;
289
290
292
293
                                   M_PWDATA <= 0;
M_PSELx <= 0;
M_PWRITE <= 0;
294
295
296
297
                            end
298
                                   casex (mmu_state)

MMU_STATE_T1: begin

if (req && apb_en) begin

M_PADDR <= {mmu_lwe}
299
300
301
302
                                                                           <= {mmu_lwex,
                                                                                  mmu_swex,
CORE_ID[CORE_ID_BITS-1:0],
303
304
                                                                                   mmu_addr[MEM_WIDTH-1:0]};
305
306
                                                         M_PWDATA <= mmu_in;
M_PSELx <= 1;
M_PWRITE <= mmu_we;</pre>
307
308
309
310
                                                         mmu_state <= MMU_STATE_T2;</pre>
311
312
                                                  end
313
                                           end
314
                                           `ifdef FIX_T3
     MMU_STATE_T2: begin
     M_PENABLE <= 1;</pre>
315
316
317
318
                                                         if (M_PREADY == 1'b1) begin
    mmu_state <= MMU_STATE_T3;</pre>
319
320
                                                         end
321
322
                                                  end
323
                                                  MMU_STATE_T3: begin
// Slave has output a ready signal (finished)
M_PENABLE <= 0;</pre>
324
325
326
                                                         M_PADDR <= 0;
M_PWDATA <= 0;
M_PSELx <= 0;
M_PWRITE <= 0;
327
328
329
330
                                                         // Clock the peripheral output into a reg,
// to output on the next clock cycle
per_out <= M_PRDATA;
331
332
333
                                                         per_out
334
                                                         mmu_state <= MMU_STATE_T1;</pre>
335
336
                                                  end
337
                                           `else
                                                 ie
// No FIX_T3
MMU_STATE_T2: begin
   if (M_PREADY == 1'b1) begin
        M_PENABLE <= 0;
        M_DADDR <= 0;</pre>
338
339
340
341
                                                                M_PADDR <= 0;
M_PWDATA <= 0;
342
343
                                                                M_PSELx <= 0;
M_PWRITE <= 0;
// Clock the peripheral output into a reg,
// to output on the next clock cycle
per_out <= M_PRDATA;
344
345
346
347
349
                                                                mmu_state <= MMU_STATE_T1;</pre>
350
351
                                                          end else begin
                                                                M_PENABLE <= 1;
352
                                                         end
353
354
                                                  end
                                          `endif
355
                                   endcase
356
357
358
                     (* ram_style = "block" *)
                     (* ram_style = "block" *)
vmicro16_bram # (
    .MEM_WIDTH (MEM_WIDTH),
    .MEM_DEPTH (SPECIAL_REGS),
    .USE_INITS (0),
    .PARAM_DEFAULTS_RO (CORE_ID),
    .PARAM_DEFAULTS_RO (CORE_ID),
359
360
361
362
363
                            .PARAM_DEFAULTS_R1 (`CORES),
.PARAM_DEFAULTS_R2 (`APB_BRAMO_CELLS),
.PARAM_DEFAULTS_R3 (`SLAVES),
364
365
366
367
                            .NAME
                                                  ("ram_sr")
368
                     ) ram_sr (
                                                  (clk).
369
                            .clk
                                                  (reset)
370
                            .reset
                            .mem_addr
                                                  (mmu_addr[`clog2(SPECIAL_REGS)-1:0]),
371
372
                            .mem_in
373
                            .mem we
                                                  (),
```

```
374
                      .mem_out
                                      (sr_val)
375
                ):
376
                 // Each M core has a TIMO scratch memory
(* ram_style = "block" *)
377
378
                 vmicro16_bram # (
.MEM_WIDTH (MEM_WIDTH),
379
380
                       .MEM_DEPTH
                                        (MEM_DEPTH),
381
382
                       .USE_INITS (0),
                                         ("TIMO")
383
                       .NAME
                ) TIMO (
384
                      .clk
                                         (clk).
385
                                         (reset)
                       .reset
386
387
                       .{\tt mem\_addr}
                                        (mmu_addr[7:0]),
388
                       .mem_in
                                         (mmu_in),
                      .mem_we .mem_out
                                        (tim0_we),
(tim0_out)
389
390
391
                );
392
           endmodule
393
394
395
           module vmicro16_regs # (
396
                parameter CELL_WIDTH
parameter CELL_DEPTH
                                                          = 16,
397
                                                          = 8,
= `clog2(CELL_DEPTH),
398
                parameter CELL_SEL_BITS
parameter CELL_DEFAULTS
parameter DEBUG_NAME
399
                                                          = 0,
400
401
                 parameter CORE_ID = 0,
parameter PARAM_DEFAULTS_RO = 16'h0000,
402
          parameter PARAM_DEFAULTS_R1 = 16'h0000
) (
403
404
405
                input clk,
input reset,
// Dual port register reads
input [CELL_SEL_BITS-1:0] rs1, // port 1
output [CELL_WIDTH-1 :0] rd1,
//input [CELL_WIDTH-1 :0] rs2, // port 2
//output [CELL_WIDTH-1 :0] rd2,
// stage write back
ye.
406
                 input clk,
407
408
410
411
412
413
                input
input [CELL_SEL_BITS-1:0]
input [CELL_WIDTH-1:0]
414
415
                                                                ws1,
416
                                                                wd
417
                 (* ram_style = "distributed" *)
418
                 reg [CELL_WIDTH-1:0] regs [0:CELL_DEPTH-1] /*verilator public_flat*/;
419
420
421
                 // Initialise registers with default values
                // Really only used for special registers used by the soc // TODO: How to do this on reset?
422
423
                 integer i;
424
425
                 initial
426
                      if (CELL_DEFAULTS)
427
                             $readmemh(CELL_DEFAULTS, regs);
428
                       else begin
                            for(i = 0; i < CELL_DEPTH; i = i + 1)
429
                             regs[i] = 0;
regs[0] = PARAM_DEFAULTS_RO;
regs[1] = PARAM_DEFAULTS_R1;
430
431
432
433
434
                 `ifdef ICARUS
435
                      always @(regs)
436
                             $display($time, "\tC%02h\t\t| %h %h %h %h %h %h %h %h %h ", CORE_ID,
437
438
                                  regs[0], regs[1], regs[2], regs[3],
regs[4], regs[5], regs[6], regs[7]);
439
440
441
                 `endif
442
                always @(posedge clk)
   if (reset) begin
      for(i = 0; i < CELL_DEPTH; i = i + 1)
           regs[i] <= 0;
      regs[0] <= PARAM_DEFAULTS_R0;
      regs[1] <= PARAM_DEFAULTS_R1;
end</pre>
443
444
445
446
447
448
                      end
449
                      450
451
452
453
454
                             // Perform the write
455
                            regs[ws1] <= wd;
456
457
458
                 // sync writes, async reads
                 assign rd1 = regs[rs1];
//assign rd2 = regs[rs2];
459
460
           endmodule
461
462
```

```
module vmicro16_dec # (
parameter INSTR_WIDTH = 16
parameter INSTR_OP_WIDTH = 5,
parameter INSTR_RS_WIDTH = 3,
463
                                                                                                                                                                = 16,
464
465
466
                                                 parameter ALU_OP_WIDTH
467
468
                                                  //input clk, // not used yet (all combinational) //input reset, // not used yet (all combinational) % \left( \frac{1}{2}\right) =\frac{1}{2}\left( \frac{1}{2}\right) \left( \frac{1}{2}
469
470
471
                                                  input [INSTR_WIDTH-1:0]
                                                                                                                                                                         instr.
472
473
                                                  output [INSTR_OP_WIDTH-1:0] opcode,
output [INSTR_RS_WIDTH-1:0] rd,
output [INSTR_RS_WIDTH-1:0] ra,
474
475
476
                                                   output [3:0]
                                                                                                                                                                                imm4
477
                                                   output [7:0]
output [11:0]
478
                                                                                                                                                                                imm8.
479
                                                                                                                                                                                imm12
480
                                                   output [4:0]
                                                                                                                                                                              simm5
481
                                                   // This can be freely increased without affecting the isa output reg [ALU_OP_WIDTH-1:0] alu_op,
482
483
484
                                                   output reg has_imm4, output reg has_imm8,
485
486
                                                  output reg has_imm12, output reg has_we,
487
488
489
                                                   output reg has_br,
490
                                                   output reg has_mem
                                                  output reg has_mem_we, output reg has_cmp,
491
492
493
                                                  output halt, output intr,
494
495
496
                                                  output reg has_lwex,
output reg has_swex
497
498
499
500
                                                    // TODO: Use to identify bad instruction and
                                                 // raise exceptions
//,output is bad
501
502
503
                                );
504
                                                   assign opcode = instr[15:11];
505
                                                   assign rd = instr[10:8];
                                                                                                                 = instr[7:5];
506
                                                   assign ra
                                                                                                             = instr[3:0];
507
                                                   assign imm4
508
                                                   assign imm8
                                                                                                             = instr[7:0]
                                                  assign imm12 = instr[11:0];
assign simm5 = instr[4:0];
509
510
511
                                                 512
513
514
515
516
                                                                                                                                                                                                         alu_op = `VMICRO16_ALU_NOP;
alu_op = `VMICRO16_ALU_NOP; endcase
517
518
519
                                                                                                                                                                                                         alu_op = `VMICRO16_ALU_LW;
alu_op = `VMICRO16_ALU_SW;
alu_op = `VMICRO16_ALU_LW;
alu_op = `VMICRO16_ALU_SW;
                                                                   `VMICRO16_OP_LW:
`VMICRO16_OP_SW:
`VMICRO16_OP_LWEX:
520
521
522
523
                                                                     `VMICRO16_OP_SWEX:
524
                                                                                                                                                                                                         alu_op = `VMICRO16_ALU_MOV;
alu_op = `VMICRO16_ALU_MOVI;
                                                                      `VMICRO16_OP_MOV:
525
                                                                   `VMICRO16_OP_MOVI:
526
527
                                                                                                                                                                                                        alu_op = `VMICRO16_ALU_BR;
alu_op = `VMICRO16_ALU_MULT;
                                                                     `VMICRO16_OP_BR:
528
                                                                    `VMICRO16_OP_MULT:
529
530
                                                                                                                                                                                                         alu_op = `VMICRO16_ALU_CMP;
alu_op = `VMICRO16_ALU_SETC;
                                                                   `VMICRO16_OP_CMP:
`VMICRO16_OP_SETC:
531
532
533
                                                                     VMICR016_OP_BIT: casez

VMICR016_OP_BIT_OR:

VMICR016_OP_BIT_XOR:

VMICR016_OP_BIT_AND:

VMICR016_OP_BIT_NOT:

VMICR016_OP_BIT_LSHET:
534
                                                                                                                                                                      casez (simm5)
                                                                                                                                                                                                        alu_op = `VMICRO16_ALU_BIT_OR;
alu_op = `VMICRO16_ALU_BIT_XOR;
535
536
                                                                                                                                                                                                        alu_op = `VMICRO16_ALU_BIT_XOR;
alu_op = `VMICRO16_ALU_BIT_AND;
alu_op = `VMICRO16_ALU_BIT_NOT;
alu_op = `VMICRO16_ALU_BIT_LSHFT;
alu_op = `VMICRO16_ALU_BIT_RSHFT;
alu_op = `VMICRO16_ALU_BAD; endcase
537
538
539
540
                                                                                       `VMICRO16_OP_BIT_RSHFT:
541
                                                                                      default:
542
                                                                                      CRO16_OP_ARITH_U: casez (simm5)

`VMICRO16_OP_ARITH_UADD: alu_op = `VMICRO16_ALU_ARITH_UADD;

`VMICRO16_OP_ARITH_USUB: alu_op = `VMICRO16_ALU_ARITH_USUB;

`VMICRO16_OP_ARITH_UADDI: alu_op = `VMICRO16_ALU_ARITH_UADDI;
default: alu_op = `VMICRO16_ALU_BAD; endcase
543
                                                                    `VMICRO16_OP_ARITH_U:
544
545
546
547
548
                                                                                      CRO16_OP_ARITH_S: casez (simm5)

`VMICRO16_OP_ARITH_SADD: alu_op = `VMICRO16_ALU_ARITH_SADD;

`VMICRO16_OP_ARITH_SSUB: alu_op = `VMICRO16_ALU_ARITH_SSUB;

`VMICRO16_OP_ARITH_SSUBI: alu_op = `VMICRO16_ALU_ARITH_SSUBI;
                                                                    `VMICRO16_OP_ARITH_S:
549
550
551
552
```

```
553
                        default:
                                                         alu_op = `VMICRO16_ALU_BAD; endcase
554
555
                   default: begin
556
                                                        alu_op = `VMICRO16_ALU_NOP;
                        $display($time, "\tDEC: unknown opcode: %h ... NOPPING", opcode);
557
                   end
558
559
560
              // Special opcodes
//assign nop == ((opcode == `VMICRO16_OP_SPCL) & (~instr[0]));
assign halt = ((opcode == `VMICRO16_OP_SPCL) & instr[0]);
assign intr = ((opcode == `VMICRO16_OP_SPCL) & instr[1]);
561
562
563
564
565
              566
567
568
569
570
572
573
                   VMICRO16_OP_ARITH_U,
VMICRO16_OP_ARITH_S,
VMICRO16_OP_SETC,
VMICRO16_OP_BIT,
574
575
576
577
                   VMICRO16_OP_MULT:
                                                 has_we = 1'b1;
has_we = 1'b0;
578
579
                   default:
              endcase
580
582
               // Contains 4-bit immediate
              583
584
585
586
                        has_imm4 = 1'b1;
587
                   else
                        has_imm4 = 1'b0;
588
589
              590
591
592
                   VMICRO16_OP_BR:
                                                 has_imm8 = 1'b1;
has_imm8 = 1'b0;
593
                   default:
594
              endcase
595
596
              //// Contains 12-bit immediate
//always @(*) case (opcode)
// `VMICRO16_OP_MOVI_L: I
597
598
              // `VMICRO16
// default:
                                                   has_imm12 = 1'b1;
599
                                                  has\_imm12 = 1'b0;
600
601
              //endcase
602
              // Will branch the pc
              // Will branch the pc
always @(*) case (opcode)
    'VMICRO16_OP_BR: has_br = 1'b1;
    default: has_br = 1'b0;
603
604
605
606
              endcase
607
608
              // Requires external memory
always @(*) case (opcode)
    `VMICR016_OP_LW,
    `VMICR016_OP_SW,
    `VMICR016_OP_SWEX;
    has_mem = 1'b1;
default:    has mem = 1'b0:
609
610
611
612
613
614
                   default:
                                           has_mem = 1'b0;
              endcase
616
617
              618
620
621
622
623
              endcase
624
              625
626
627
628
629
630
              631
632
633
634
              endcase
635
636
              637
638
639
              endcase
640
641
         endmodule
642
```

```
643
           module vmicro16_alu # (
   parameter OP_WIDTH = 5,
   parameter DATA_WIDTH = 16,
644
645
646
647
                 parameter CORE_ID
648
                  // input clk, // TODO: make clocked
649
650
                                   [OP_WIDTH-1:0] op,
[DATA_WIDTH-1:0] a, // rs1/dst
[DATA_WIDTH-1:0] b, // rs2
651
                  input
652
                  input
653
                  input
                                                            flags,
654
                  input
                 output reg [DATA_WIDTH-1:0] c
655
656
                 localparam TOP_BIT = (DATA_WIDTH-1);
657
                 // 17-bit register
reg [DATA_WIDTH:0] cmp_tmp = 0; // = {carry, [15:0]}
658
659
660
                 wire r_setc;
661
                  always @(*) begin
662
663
                        cmp\_tmp = 0;
                       case (op)
// branch/nop, output nothing
VMICRO16_ALU_BR,
664
665
666
667
                        `VMICRO16_ALU_NOP:
                                                                  c = \{DATA\_WIDTH\{1'b0\}\};
                        // load/store addresses (use value in rd2)
`VMICRO16_ALU_LW,
668
669
                        `VMICRO16_ALU_SW:
670
                       // bitwise operations
`VMICRO16_ALU_BIT_OR:
`VMICRO16_ALU_BIT_XOR:
671
672
673
                                                                   c = a | b;
c = a ^ b;
                                                                   c = a & b;
c = ~(b);
c = a << b;
                         VMICRO16_ALU_BIT_AND:
674
                       `VMICRO16_ALU_BIT_NOT:
`VMICRO16_ALU_BIT_LSHFT:
675
676
                        `VMICRO16_ALU_BIT_RSHFT:
                                                                  c = a \gg b;
677
678
                       `VMICRO16_ALU_MOV:
`VMICRO16_ALU_MOVI:
`VMICRO16_ALU_MOVI_L:
                                                                   c = b;
679
                                                                   c = b;
680
681
682
                        `VMICRO16_ALU_ARITH_UADD:
                                                                  c = a + b;
c = a - b;
683
                        `VMICRO16_ALU_ARITH_USUB:
684
                        // TODO: ALU should have simm5 as input 

`VMICRO16_ALU_ARITH_UADDI: c = a + b;
685
686
687
688
                        `ifdef DEF_ALU_HW_MULT
689
                              `VMICRO16_ALU_MULT: c = a * b;
                        `endif
690
691
                       692
693
694
695
696
                        `VMICRO16_ALU_CMP: begin
697
                              // TODO: Do a-b in 17-bit register
// Set zero, overflow, carry, signed bits in result
698
699
                              cmp\_tmp = a - b;
700
701
                              c = 0;
702
                              // N Negative condition code flag
// Z Zero condition code flag
// C Carry condition code flag
// V Overflow condition code flag
703
704
705
706
                              c[`VMICRO16_SFLAG_N] = cmp_tmp[TOP_BIT];
c[`VMICRO16_SFLAG_Z] = (cmp_tmp == 0);
c[`VMICRO16_SFLAG_C] = 0; //cmp_tmp[TOP_BIT+1]; // not used
707
708
709
710
711
                              // Uverflow flag
// https://stackoverflow.com/questions/30957188/
// https://github.com/bendl/prco304/blob/master/prco_core/rtl/prco_alu.v#L50
case(cmp_tmp[TOP_BIT+1:TOP_BIT])
    2'b01: c['VMICR016_SFLAG_V] = 1;
    2'b10: c['VMICR016_SFLAG_V] = 0;
endese.
713
714
715
716
717
718
719
                              endcase
                              $display($time, "\tc%02h: ALU CMP: %h %h = %h = %b", CORE_ID, a, b, cmp_tmp, c[3:0]);
720
721
722
                        end
723
                        `VMICRO16_ALU_SETC: c = { {15{1'b0}}, r_setc };
724
725
726
                       // TODO: Parameterise
default: begin
                              $display($time, "\tALU: unknown op: %h", op);
727
728
                              cmp\_tmp = 0;
729
730
                       end
                                    endcase
731
```

```
733
                branch setc_check (
734
                 .flags (flags),
.cond (b[7:0]),
735
736
737
                     .en
                                       (r_setc)
738
739
                );
          endmodule
740
          // flags = 4 bit r_cmp_flags register // cond = 8 bit VMICRO16\_OP\_BR\_? value. See vmicro16\_isa.v module branch (
741
742
743
               input [3:0] flags,
input [7:0] cond,
744
746
                output reg en
747
          );
                    748
                always Q(*)
749
750
751
752
753
754
755
756
757
758
759
760
          endmodule
761
762
763
764
765
          module vmicro16_core # (
               parameter DATA_WIDTH = 16,
parameter MEM_INSTR_DEPTH = 64,
parameter MEM_SCRATCH_DEPTH = 64,
766
                                                        = 64,
767
768
                                                        = 16,
769
                parameter MEM WIDTH
          parameter CORE_ID
) (
770
771
772
773
774
                input
                                   clk.
                input
                                  reset.
775
776
777
778
                output [7:0] dbug,
                output
                                  halt,
779
                // interrupt sources
input ['DEF_NUM_INT-1:0] ints,
input ['DEF_NUM_INT*'DATA_WIDTH-1:0] ints_data,
780
781
782
                output [ DEF_NUM_INT-1:0]
783
                                                                       ints_ack,
784
                // APB master to slave interface (apb_intercon)
785
                output [`APB_WIDTH-1:0] w_PADDR,
786
787
                output
788
789
                                                        w_PSELx,
w_PENABLE,
                output
                output
                output [DATA_WIDTH-1:0]
790
                                                        w_PWDATA,
791
                input
                           [DATA_WIDTH-1:0]
                                                        w_PRDATA,
792
793
                input
                                                        w_PREADY
794
           `ifndef DEF_CORE_HAS_INSTR_MEM
                , // APB master interface to slave instruction memory output reg [`APB_WIDTH-1:0] w2_PADDR, output reg w2_PWRITE,
795
796
797
798
                output reg
                                                             w2_PSELx,
799
                output reg
                                                            w2_PENABLE,
                output reg [DATA_WIDTH-1:0] input [DATA_WIDTH-1:0]
                                                            w2_PWDATA,
w2_PRDATA,
800
801
                                                             w2_PREADY
802
                input
           `endif
803
          );
804
                localparam STATE_IF = 0;
localparam STATE_R1 = 1;
localparam STATE_R2 = 2;
localparam STATE_ME = 3;
805
806
807
808
                localparam STATE_WB = 4;
localparam STATE_FE = 5;
localparam STATE_IDLE = 6;
localparam STATE_HALT = 7;
810
811
812
                reg [2:0] r_state = STATE_IF;
813
814
                reg [DATA_WIDTH-1:0] r_pc
reg [DATA_WIDTH-1:0] r_pc_saved
reg [DATA_WIDTH-1:0] r_instr
                                                                   = 16'h0000;
815
                                                                = 16'h0000;
= 16'h0000;
816
817
818
                wire [DATA_WIDTH-1:0] w_mem_instr_out;
819
                wire
                                                w halt:
820
                assign dbug = {7'h00, w_halt};
assign halt = w_halt;
821
822
```

```
823
824
             wire [4:0]
                                       r_instr_opcode;
             wire [4:0]
wire [2:0]
                                       r_instr_alu_op;
r_instr_rsd;
825
826
                   [2:0]
827
             wire
                                       r_instr_rsa;
                   [DATA_WIDTH-1:0] r_instr_rdd = 0;
[DATA_WIDTH-1:0] r_instr_rda = 0;
             reg
828
829
             reg
             wire [3:0]
                                       r_instr_imm4;
r_instr_imm8;
830
             wire [7:0]
831
832
             wire [4:0]
                                       r_instr_simm5;
                                       r_instr_has_imm4;
r_instr_has_imm8;
833
             wire
834
             wire
835
                                       r_instr_has_we;
             wire
836
             wire
                                       r_instr_has_br;
                                       r_instr_has_cmp:
837
             wire
                                       r_instr_has_mem;
838
             wire
839
             wire
                                       r_instr_has_mem_we;
                                       r_instr_halt;
840
             wire
                                       r_instr_has_lwex;
841
             wire
842
                                       r_instr_has_swex;
             wire
843
             wire [DATA_WIDTH-1:0] r_alu_out;
844
845
846
             wire [DATA_WIDTH-1:0] r_mem_scratch_addr = $signed(r_alu_out) + $signed(r_instr_simm5);
             847
848
849
850
851
             wire
                                       r_mem_scratch_busy;
852
                                       r_reg_rs1 = 0;
853
             reg
             854
855
856
             //wire [15:0] r_reg_rd2;
857
             wire [DATA_WIDTH-1:0] r_reg_wd = (r_instr_has_mem) ? r_mem_scratch_out : r_alu_out;
wire r_reg_we = r_instr_has_we && (r_state == STATE_WB);
858
859
860
             // branching
w_intr;
861
863
             wire
                           w_branch_en;
                                           = r_instr_has_br && w_branch_en;
= 4'h00; // N, Z, C, V
                           w_branching
864
             wire
865
             reg [3:0] r_cmp_flags
866
             867
868
869
             // 2 cycle register fetch
always @(*) begin
    r_reg_rs1 = 0;
870
871
872
                  if (r_state == STATE_R1)
873
                  r_reg_rs1 = r_instr_rsd;
else if (r_state == STATE_R2)
r_reg_rs1 = r_instr_rsa;
874
875
876
877
                  else
                      r_reg_rs1 = 3'h0;
878
             end
879
880
             reg regs_use_int = 0;
`ifdef DEF_ENABLE_INT
wire [`DEF_NUM_INT*`DATA_WIDTH-1:0] ints_vector;
881
882
883
884
             wire ['DEF_NUM_INT-1:0]
                                                        ints_mask;
                                                        has_int = ints & ints_mask;
885
             wire
886
             reg int_pending_ack =
always @(posedge clk)
887
888
                  if (int_pending_ack)
    // We've now branched to the isr
889
890
                  int_pending <= 0;
else if (has_int)
   // Notify fsm to switch to the ints_vector at the last stage
int_pending <= 1;
else if (w.intr)</pre>
891
892
893
894
                  else if (w_intr)
895
                       // Return to Interrupt instruction called,
896
                       // so we've finished with the interrupt int_pending <= 0;
897
898
899
900
             // Next program counter logic
reg [`DATA_WIDTH-1:0] next_pc = 0;
901
902
             always @(posedge clk)
903
904
                  if (reset)
                  r_pc <= 0;
else if (r_state == STATE_WB) begin
   ifdef DEF_ENABLE_INT</pre>
905
906
907
908
                       if (int_pending) begin
                           909
910
                                ints_vector[0 +: `DATA_WIDTH]);
911
                           // TODO: check bounds
```

```
913
                                  // Save state
                                 r_pc_saved <= r_pc + 1;
regs_use_int <= 1;
914
915
916
                                  int_pending_ack <= 1;</pre>
                                 // Jump to ISR <= ints_vector[0 +: `DATA_WIDTH];
917
                            918
919
 920
921
                                       CORE_ID, r_pc_saved);
922
923
                                  // Restore state
                                 924
925
                                 int_pending_ack <= 0;</pre>
926
 927
                            end else
928
                             endif
                           indIT
if (w_branching) begin
    $display($time, "\tC%02h: branching to %h", CORE_ID, r_instr_rdd);
    r_pc <= r_instr_rdd;</pre>
929
930
 931
932
                                  `ifdef DEF_ENABLE_INT
933
                                      int_pending_ack <= 0;</pre>
934
                                 `endif
935
                            end else if (r_pc < (MEM_INSTR_DEPTH-1)) begin
936
                                 // normal increment
// pc <= pc + 1</pre>
937
938
939
                                 r_pc
                                                       <= r_pc + 1;
940
                                 `ifdef DEF_ENABLE_INT
941
 942
                                      int_pending_ack <= 0;</pre>
943
                                 `endif
944
                            end
                      end // end r_state == STATE_WB
else if (r_state == STATE_HALT) begin
   ifdef DEF_ENABLE_INT
945
946
947
                            // Only an interrupt can return from halt // duplicate code form STATE_ME!
948
949
                            if (int_pending) begin
950
                                 $display($time, "\tC%"
// TODO: check bounds
// Save state
                                                        "\tC%02h: Jumping to ISR: %h", CORE_ID, ints_vector[0 +: `DATA_WIDTH]);
951
952
953
                                                       <= r_pc;// + 1; HALT = stay with same PC
 954
                                 r_pc_saved
                                 regs_use_int <= 1;
int_pending_ack <= 1;
// Jump_to_ISR
955
956
957
                                 r_pc
                                                       <= ints_vector[0 +: `DATA_WIDTH];</pre>
                            r_pc <= ints_vector[0 +: DATA_WIDIH];
end else if (w_intr) begin
    $\display(\text{stime}, \text{"\tc%02h}: Returning from ISR: \text{%h", CORE_ID, r_pc_saved});
    r_pc <= r_pc_saved;
    regs_use_int <= 0;</pre>
959
960
961
 962
963
                                 int_pending_ack <= 0;</pre>
                            end
964
 965
                             endif
 966
                      \quad \text{end} \quad
967
           `ifndef DEF_CORE_HAS_INSTR_MEM
 968
                initial w2_PSELx = 0;
initial w2_PENABLE = 0;
initial w2_PADDR = 0;
970
971
           `endif
973
                 // cpu state machine
974
                always @(posedge clk)
 975
                      if (reset) begin
 976
977
                           r_state
                                                     <= STATE_IF;
                           r_instr <= 0;
r_mem_scratch_req <= 0;
978
 979
 980
                            r_instr_rdd
                                                     <= 0;
981
                            r_{instr_rda}
                                                     <= 0:
 982
                      else begin
 983
984
           985
 986
 987
                                      r_instr <= w_mem_instr_out;
988
989
                                       $display("");
                                       %display($time, "\tc%02h: PC: %h", CORE_ID, r_pc); $display($time, "\tc%02h: INSTR: %h", CORE_ID, w_mem_instr_out);
 990
991
992
993
                                      r_state <= STATE_R1;
           `else
995
                           // wait for global instruction rom to give us our instruction
if (r_state == STATE_IF) begin
   // wait for ready signal
   if (!w2_PREADY) begin
996
997
 998
999
                                      w2_PSELx <= 1;
w2_PWRITE <= 0;
1000
1001
                                       w2_PENABLE <= 1;
```

```
w2_PWDATA <= 0;
w2_PADDR <= r_pc;</pre>
1003
                                 w2_PADDR
end else begin
1004
1005
                                       w2_PSELx <= 0;
w2_PWRITE <= 0;
w2_PENABLE <= 0;
1006
1007
1008
                                       w2_PWDATA <= 0;
1009
1010
                                       r_instr <= w2_PRDATA;
1011
1012
1013
                                       $display("");
                                       $display($time, "\tC%02h: PC: %h", CORE_ID, r_pc);
$display($time, "\tC%02h: INSTR: %h", CORE_ID, w2_PRDATA);
1014
1015
1016
1017
                                      r_state <= STATE_R1;
                                 end
1018
1019
           `endif
1020
1021
                            else if (r_state == STATE_R1) begin
1022
                                 if (w_halt) begin
    $display("");
    $display("");
1023
1024
1025
                                       %display($time, "\tC%02h: PC: %h HALT", CORE_ID, r_pc);
r_state <= STATE_HALT;</pre>
1026
1027
1028
                                 end else begin
                                      // primary operand
r_instr_rdd <= r_reg_rd1;
r_state <= STATE_R2;</pre>
1029
1030
1031
1032
                                 end
1033
                            end
                            else if (r_state == STATE_R2) begin
1034
                                 if (r_state == SIMIL_RZ) begin
// Choose secondary operand (register or immediate)
if (r_instr_has_imm8) r_instr_rda <= r_instr_imm8;
else if (r_instr_has_imm4) r_instr_rda <= r_reg_rd1 + r_instr_imm4;
else r_instr_rda <= r_reg_rd1;</pre>
1035
1036
1037
1038
1039
1040
                                 if (r_instr_has_mem) begin
                                                               <= STATE_ME;
                                      r_state
// Pulse req
1041
1042
                                       r_mem_scratch_req <= 1;
1043
1044
                                 end else
                                      r_state <= STATE_WB;
1045
1046
1047
                            else if (r_state == STATE_ME) begin
                                 // Pulse req
1048
                                 r_mem_scratch_req <= 0;
1049
                                 // Wait for MMU to finish
1050
1051
                                 if (!r_mem_scratch_busy)
1052
                                      r_state <= STATE_WB;
1053
                            end
1054
                            else if (r_state == STATE_WB) begin
                                 1055
1056
1057
1058
1059
                                 r_state <= STATE_FE;</pre>
1060
1061
                            else if (r_state == STATE_FE)
1062
                            r_state <= STATE_IF;
else if (r_state == STATE_HALT) begin
`ifdef DEF_ENABLE_INT
1063
1064
1065
                                      if (int_pending) begin
    r_state <= STATE_FE;</pre>
1066
1067
                                       end
1068
                                 `endif
1069
1070
                            end
                      end
1071
1072
1073
           `ifdef DEF_CORE_HAS_INSTR_MEM
1074
                 // Instruction ROM
(* rom_style = "distributed" *)
1075
                 vmicro16_bram # (
1076
                      .MEM_WIDTH
                                             (DATA_WIDTH)
1077
                                             (MEM_INSTR_DEPTH),
1078
                       .MEM DEPTH
                      .CORE_ID
.USE_INITS
                                             (CORE_ID),
1079
1080
                                             (1),
                      . NAME
                                             ("INSTR_MEM")
1081
1082
                 ) mem_instr (
1083
                      .clk
                                             (clk)
                                             (reset),
1084
                       .reset
                      // port 1
1085
1086
                       .mem_addr
                                             (r_pc),
                                            (0),
(1'b0), // ROM
1087
                       .mem_in
1088
                       .mem we
                                             (w_mem_instr_out)
1089
                      .mem_out
1090
1091
           `endif
1092
```

```
1093
                 // MMU
                vmicro16_core_mmu # (
1094
                      .MEM_WIDTH
.MEM_DEPTH
                                            (DATA_WIDTH),
1095
                                            (MEM_SCRATCH_DEPTH),
1096
1097
                      .CORE_ID
                                            (CORE_ID)
                ) mmu (
1098
                      .clk
                                            (clk).
1099
                                            (reset),
1100
                      .reset
                                            (r_mem_scratch_req)
1101
                      .req
1102
                      .busy
                                            (r_mem_scratch_busy),
                      // interrupts
.ints_vector
1103
                                            (ints vector).
1104
                                            (ints_mask),
1105
                      .ints_mask
1106
                      // port 1
1107
                      .\mathtt{mmu\_addr}
                                            (r_mem_scratch_addr),
                                            (r_mem_scratch_in),
(r_mem_scratch_we),
1108
                      .mmu_in
1109
                      .mmu we
1110
                      .mmu_lwex
                                            (r_instr_has_lwex),
1111
                      .mmu_swex
                                            (r_instr_has_swex)
1112
                      .mmu_out
                                            (r_mem_scratch_out),
                      // APB maste
.M_PADDR
1113
                                            r to slave
                                            (w_PADDR),
1114
                                            (w_PWRITE),
(w_PSELx),
(w_PENABLE),
                      .M_PWRITE
                      .M PSELx
1116
                      M PENABLE
1117
                                            (w_PWDATA),
                      .M_PWDATA
1118
                      .M_PRDATA
                                            (w_PRDATA),
1119
1120
                      .M_PREADY
                                            (w_PREADY)
1121
                ):
1122
1123
                 // Instruction decoder
1124
                vmicro16_dec dec (
                      // input
1125
                                            (r_instr),
1126
                      // output async
1127
1128
                      .opcode
1129
                      .rd
                                            (r_instr_rsd),
1130
                      .ra
                                            (r_instr_rsa)
                      .imm4
1131
                                            (r instr imm4).
1132
                      .imm8
                                            (r_instr_imm8),
1133
                      .imm12
                                            (),
                                            (r_instr_simm5)
1134
                      .simm5
                      .alu_op
.has_imm4
.has_imm8
                                            (r_instr_alu_op),
(r_instr_has_imm4),
1135
1136
                                            (r_instr_has_imm8),
1137
1138
                      .has_we
                                            (r_instr_has_we),
1139
                      .has_br
                                            (r_instr_has_br)
                                            (r_instr_has_cmp);
(r_instr_has_mem);
1140
                      .has cmp
1141
                      .has_mem
1142
                      .has_mem_we
                                            (r_instr_has_mem_we),
1143
                      .halt
                                            (w_halt),
                                            (w_intr),
(r_instr_has_lwex),
1144
                      .intr
                      .has_lwex
1145
1146
                      .has_swex
                                            (r_instr_has_swex)
1147
                ):
1148
                 // Software registers
1149
                vmicro16_regs # (
.CORE_ID (CORE_ID),
1150
1151
                      .CELL_WIDTH (`DATA_WIDTH)
1152
                ) regs (
1153
1154
                                      (clk),
                                      (reset),
1155
                      .reset
1156
                      // async port 0
1157
                      .rs1
                                      (r_reg_rs1),
                                      (r_reg_rd1_s),
1158
                      .rd1
                      // async port 1
//.rs2 (),
//.rd2 (),
// write port
1159
1160
1161
1162
                                      (r_reg_we && ~regs_use_int),
(r_instr_rsd),
(r_reg_wd)
                      .we
1163
1164
                      .ws1
1165
1166
1167
                \begin{tabular}{ll} // & Interrupt & replacement & registers \\ \tt `ifdef & DEF\_ENABLE\_INT \\ \end{tabular}
1168
1169
                vmicro16_regs # (
.CORE_ID (CORE_ID),
.CELL_WIDTH (`DATA_WIDTH),
.DEBUG_NAME ("REGSINT")
1170
1171
1172
1173
1174
                ) regs_intr (
1175
                      .clk
                                      (clk)
                      .reset
                                      (reset),
1176
                      // async port 0
1177
                                      (r_reg_rs1)
1178
1179
                      .rd1
                                      (r_reg_rd1_i),
                      // async port 1 //.rs2 (
1180
1181
```

```
//.rd2
// write port
1182
1183
                                     (r_reg_we && regs_use_int),
(r_instr_rsd),
1184
                     .we
1185
                     .ws1
1186
                     .wd
                                     (r_reg_wd)
1187
                 endif
1188
1189
                // ALU
1190
               vmicro16_alu # (
.CORE_ID(CORE_ID)
1191
1192
                ) alu (
1193
1194
                                     (r_instr_alu_op),
                    .op
1195
                                     (r_instr_rdd),
1196
                     .b
                                     (r_instr_rda),
                                     (r_cmp_flags),
1197
                     .flags
                     // async output
1198
1199
                                     (r_alu_out)
1200
                );
1201
1202
                branch branch_check (
                     .flags (r_cmp_flags),
.cond (r_instr_imm8),
.en (w_branch_en)
1203
1204
1205
               );
1206
1207
1208
          endmodule
```

E.2 Peripheral Code Listing

Various memory-mapped APB peripherals, such as GPIO, UART, timers, and memory.

```
// Vmicro16 peripheral modules
2
           `include "vmicro16_soc_config.v"
`include "formal.v"
 4
 5
          // Simple watchdog peripheral
module vmicro16_watchdog_apb # (
 6
7
                parameter BUS_WIDTH = 16,
parameter NAME = "WD",
parameter CLK_HZ = 50_000_000
10
                input clk,
input reset,
12
13
                 // APB Slave to master interface
15
                                                                  S_PADDR, // not used (optimised out)
S_PWRITE,
                input [0:0]
16
17
                 input
                                                                  S_PSELx,
                 input
                                                                  S_PENABLE,
19
                 input
                          [0:0]
                                                                  S_PWDATA,
20
                 input
21
                // prdata not used
output [0:0]
22
                                                                  S_PRDATA,
23
                                                                  S_PREADY,
24
                output
25
26
                 // watchdog reset, active high
                output reg
27
                                                                  wdreset
28
                \label{eq:continuous} $$//assign S_PRDATA = (S_PSELx & S_PENABLE) ? gpio : 16'h0000; assign S_PREADY = (S_PSELx & S_PENABLE) ? 1'b1 : 1'b0; wire we = (S_PSELx & S_PENABLE & S_PWRITE);
29
30
31
32
33
                 // countdown timer
34
35
                reg [`clog2(CLK_HZ)-1:0] timer = CLK_HZ;
                wire w_wdreset = (timer == 0);
36
                // infer a register to aid timing
initial wdreset = 0;
39
                always @(posedge clk)
wdreset <= w_wdreset;
40
42
                always @(posedge clk)
    if (we) begin
43
44
                            $display($time, "\t\%s <= RESET", NAME);
timer <= CLK_HZ;</pre>
45
                      end else begin
   timer <= timer - 1;</pre>
47
48
                       end
          endmodule
```

```
module timer_apb # (
    parameter CLK_HZ = 50_000_000
) (
52
53
54
55
               input clk,
56
               input reset,
57
58
               input clk_en,
59
60
               // 0 16-bit value R/W
               // 1 16-bit control R
// 2 16-bit prescaler
input [1:0]
61
                                                b0 = start, b1 = reset
62
                                                           S PADDR.
63
               input
64
                                                           S_PWRITE,
65
               input
                                                           S_PSELx,
S_PENABLE,
66
               input
67
               input
                              [ DATA_WIDTH-1:0]
68
                                                           S_PWDATA.
               input
                                                           S PRDATA
               output reg [`DATA_WIDTH-1:0]
70
71
                                                           S PREADY
               output
72
               output out,
73
               output ['DATA_WIDTH-1:0] int_data
74
75
               76
77
78
79
80
               reg [`DATA_WIDTH-1:0] r_counter = 0;
81
               reg ['DATA_WIDTH-1:0] r_load = 0;
reg ['DATA_WIDTH-1:0] r_pres = 0;
reg ['DATA_WIDTH-1:0] r_ctrl = 0;
82
83
84
85
               localparam CTRL_START = 0;
localparam CTRL_RESET = 1;
localparam CTRL_INT = 2;
86
87
88
89
               localparam ADDR_LOAD = 2'b00;
90
               localparam ADDR_CTRL = 2'b01;
localparam ADDR_PRES = 2'b10;
91
93
               always @(*) begin
S_PRDATA = 0;
94
95
96
                     if (en)
                          case(S_PADDR)
97
                               aDDR_LOAD: S_PRDATA = r_counter;
ADDR_CTRL: S_PRDATA = r_ctrl;
//ADDR_CTRL: S_PRDATA = r_pres;
default: S_PRDATA = 0;
98
100
101
                          endcase
102
103
               end
104
               // prescaler counts from r_pres to 0, emitting a stb signal
// to enable the r_counter step
reg [`DATA_WIDTH-1:0] r_pres_counter = 0;
105
106
107
108
               wire counter_en = (r_pres_counter == 0);
               always @(posedge clk)
109
                    if (r_pres_counter == 0)
    r_pres_counter <= r_pres;</pre>
110
111
112
                     else
113
                          r_pres_counter <= r_pres_counter - 1;</pre>
114
115
               always @(posedge clk)
116
                     if (we)
                          case(S PADDR)
117
                               // Write to the load register:
// Set load register
// Set counter register
118
119
120
                                ADDR_LOAD: begin r_load r_counter
121
                                     122
123
124
                                end
125
                                ADDR_CTRL: begin
r_ctrl <= S_PWDATA;
127
                                     $display($time, "\t\ttimr0: WRITE CTRL: %h", S_PWDATA);
128
                                end
129
                                ADDR_PRES: begin
r_pres <= S_PWDATA;
131
                                     $display($time, "\t\ttimr0: WRITE PRES: %h", S_PWDATA);
132
                                end
133
134
                          endcase
135
                    else
                          if (r_ctrl[CTRL_START]) begin
136
                               if (r_counter == 0)
r_counter <= r_load;
137
138
                               else if(counter_en)
   r_counter <= r_counter -1;</pre>
139
140
```

```
141
                          end else if (r_ctrl[CTRL_RESET])
142
                               r_counter <= r_load;
143
               // generate the output pulse when r_counter == 0
// out = (counter reached zero && counter started)
assign out = (r_counter == 0) && r_ctrl[CTRL_START]; // && r_ctrl[CTRL_INT];
assign int_data = {`DATA_WIDTH{1'b1}};
144
145
146
147
          endmodule
148
149
150
151
          // APB wrapped programmable vmicro16_bram
          module vmicro16_bram_prog_apb # (
parameter BUS_WIDTH = 16,
parameter MEM_WIDTH = 16,
152
153
154
               parameter MEM_DEPTH
155
               parameter APB_PADDR
parameter USE_INITS
                                              = 0,
156
                                             = 0,
= "BRAMPROG",
157
               parameter NAME
158
         parameter CORE_ID
159
                                              = 0
160
               input clk.
161
162
               input reset,
163
                // APB Slave to master interface
               input [`clog2(MEM_DEPTH)-1:0] S_PADDR,
164
                                                          S_PWRITE,
S_PSELx,
165
               input
166
               input
167
               input
                                                          S PENABLE
               input [BUS_WIDTH-1:0]
168
                                                          S_PWDATA,
169
170
               output [BUS_WIDTH-1:0]
                                                           S_PRDATA,
171
               output
                                                          S_PREADY
172
                // interface to program the instruction memory
input [^clog2(^DEF_MEM_INSTR_DEPTH)-1:0] addr,
173
174
               input
                             [`DATA_WIDTH-1:0]
175
               input
                                                                             data,
176
               input
                                                                             we.
177
               input
                                                                            prog
178
          );
               wire [MEM_WIDTH-1:0] mem_out;
179
180
               assign S_PRDATA = (S_PSELx & S_PENABLE) ? mem_out : 16'h0000;
assign S_PREADY = (S_PSELx & S_PENABLE) ? 1'b1 : 1'b0;
181
182
               wire s_we = (S_PSELx & S_PENABLE & S_PWRITE);
183
184
               wire [`clog2(`DEF_MEM_INSTR_DEPTH)-1:0] mem_addr = we ? addr : S_PADDR;
wire [`DATA_WIDTH-1:0] mem_data = we ? data : S_PWDATA;
185
                                                                                 = we | s_we;
187
               wire
                                                                      mem we
188
189
               vmicro16_bram # (
                     .MEM_WIDTH
                                     (MEM_WIDTH),
190
191
                     .MEM_DEPTH
                                     (MEM_DEPTH)
192
                     NAME.
                                     ("BRAMPROG").
                     .USE_INITS
                                     (0),
(-1)
193
                     .CORE_ID
194
195
               ) bram_apb (
196
                    .clk
                                     (clk)
                                     (reset).
197
                     .reset
198
                     .{\tt mem\_addr}
                                     (mem_addr),
199
200
                     .mem_in
                                     (mem_data),
201
                     .mem_we
                                     (mem_we)
                                     (mem_out)
                     .mem_out
202
203
204
          endmodule
205
          // APB wrapped umicro16_bram
206
         module vmicro16_bram_apb # (
parameter BUS_WIDTH =
parameter MEM_WIDTH =
parameter MEM_DEPTH =
207
                                             = 16,
208
                                              = 16,
209
                                              = 64,
210
               parameter APB_PADDR
parameter USE_INITS
                                              = 0,
211
                                              = 0,
= "BRAM",
212
               parameter NAME
213
               parameter CORE_ID
214
                                              = 0
          ) (
215
216
               input clk,
               input reset,
217
218
                // APB Slave to master interface
               input [`clog2(MEM_DEPTH)-1:0] S_PADDR,
219
                                                           S PWRITE.
220
               input
                                                           S_PSELx,
221
               input
222
               input
                                                           S_PENABLE,
                         [BUS_WIDTH-1:0]
223
               input
                                                          S PWDATA.
224
225
               output [BUS_WIDTH-1:0]
                                                           S_PRDATA,
226
               output
                                                          S_PREADY
          ):
227
               wire [MEM_WIDTH-1:0] mem_out;
228
230
               assign S_PRDATA = (S_PSELx & S_PENABLE) ? mem_out : 16'h0000;
```

```
231
                                                                           : 1'b0;
232
              assign we
233
              always @(*)
234
235
                   if (S_PSELx && S_PENABLE)
                        $\display(\$time, "\t\t\s" => \h", NAME, mem_out);
236
237
238
              always @(posedge clk)
                  if (we)
239
                        $display($time, "\t\t%s[%h] <= %h", NAME,
S_PADDR, S_PWDATA);</pre>
240
241
242
243
              vmicro16_bram # (
                   .MEM_WIDTH (MEM_WIDTH),
.MEM_DEPTH (MEM_DEPTH),
244
245
                   . NAME
                                  (NAME),
246
                   .USE_INITS
247
                                (1),
248
                   .CORE_ID
249
              ) bram_apb (
                                  (clk).
250
                   .clk
251
                   .reset
                                  (reset),
252
                                 (S_PADDR), (S_PWDATA),
253
                   .{\tt mem\_addr}
254
                   .mem_in
                                  (we),
255
                   .mem_we
                                  (mem_out)
                   .mem_out
257
             ):
         endmodule
258
259
        260
261
262
263
             parameter MEM_DEPTH = 64,
parameter CORE_ID_BITS = 3,
parameter SWEX_SUCCESS = 16'h0000,
                                         = 64,
264
265
266
             parameter SWEX_FAIL
                                         = 16'h0001
         ) (
268
              input clk.
269
              input reset,
270
271
              272
                                                             S_PADDR /
273
274
275
                                                     S PWRITE.
276
              input
277
                                                     S_PSELx,
              input
278
                                                     S_PENABLE,
              input
              input [MEM_WIDTH-1:0]
279
                                                     S_PWDATA,
280
              output reg [MEM_WIDTH-1:0]
281
                                                     S_PRDATA,
282
                                                     S_PREADY
        );
283
             // exclusive flag checks
wire [MEM_WIDTH-1:0] mem_out;
284
285
286
             reg
                                       swex_success = 0;
287
             localparam ADDR_BITS = `clog2(MEM_DEPTH);
288
289
290
              // hack to create a 1 clock delay to S_PREADY
             // for bram to be ready reg cdelay = 1;
291
292
              always @(posedge clk)
293
294
                   if (S_PSELx)
                        cdelay <= 0;
295
296
                   else
297
                        cdelay <= 1;</pre>
298
              //assign S_PRDATA = (S_PSELx & S_PENABLE) ? swex_success ? 16'hF0F0 : 16'h0000;
299
              assign S_PREADY = (S_PSELx & S_PENABLE & (!cdelay)) ? 1'b1 : 1'b0; assign we = (S_PSELx & S_PENABLE & S_PWRITE);
300
301
302
                      en
                                = (S_PSELx & S_PENABLE);
              wire
303
304
              // Similar to:
                   http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204f/Cihbghef.html
305
306
              // mem_wd is the CORE_ID sent in bits [18:16]
localparam TOP_BIT_INDEX = `APB_WIDTH -1;
localparam PADDR_CORE_ID_MSB = TOP_BIT_INDEX - 2;
localparam PADDR_CORE_ID_LSB = PADDR_CORE_ID_MSB - (CORE_ID_BITS-1);
307
308
309
310
311
              // [LWEX, CORE_ID, mem_addr] from S_PADDR
312
                               lwex = S_PADDR[TOP_BIT_INDEX];
swex = S_PADDR[TOP_BIT_INDEX-1];
BITS-1:0] core_id = S_PADDR[PADDR_CORE_ID_MSB:PADDR_CORE_ID_LSB];
313
              wire
314
              wire
              wire [CORE_ID_BITS-1:0] core_id
315
              // CORE_ID to write to ex_flags register
wire [ADDR_BITS-1:0] mem_addr = S_
316
                                                        = S_PADDR[ADDR_BITS-1:0];
317
318
              wire [CORE_ID_BITS:0] ex_flags_read;
319
                                                             = |ex_flags_read;
320
              wire
                                           is\_locked
```

```
321
              wire
                                             is_locked_self = is_locked && (core_id == (ex_flags_read-1));
322
323
               // Check exclusive access flags
              always Q(*) begin
324
325
                    swex_success = 0;
326
                   if (en)
327
                            bug!
                         if (!swex && !lwex)
328
329
                              swex_success = 1;
330
                         else if (swex)
                             if (is_locked && !is_locked_self)
// someone else has locked it
swex_success = 0;
331
332
333
                              else if (is_locked && is_locked_self) swex_success = 1;
334
335
              end
337
              always @(*)
338
                   if (swex)
339
340
                         if (swex_success)
341
                             S_PRDATA = SWEX_SUCCESS;
                         else
342
343
                             S_PRDATA = SWEX_FAIL;
344
                        S_PRDATA = mem_out;
345
346
347
              wire reg_we = en && ((lwex && !is_locked)
348
                                     || (swex && swex_success));
349
350
              reg [CORE_ID_BITS:0] reg_wd;
              always @(*) begin
    reg_wd = {{CORE_ID_BITS}{1'b0}};
351
352
353
354
                   if (en)
                         // if wanting to lock the addr if (lwex)
355
356
                              // and not already locked if (!is_locked) begin
357
358
                                  reg_wd = (core_id + 1);
359
                              end
                         else if (swex)
361
                             if (is_locked && is_locked_self)
    reg_wd = {{CORE_ID_BITS}{1'b0}};
362
363
364
              end
365
              // Exclusive flag for each memory cell
vmicro16_bram # (
366
367
                    .MEM_WIDTH
                                   (CORE_ID_BITS + 1),
368
369
                    .MEM_DEPTH
                                   (MEM_DEPTH),
370
                    .USE_INITS
                                   (0),
                    NAME
                                   ("rexram")
371
              ) ram_exflags (
372
373
                   .clk
                                   (clk),
374
                    .reset
                                   (reset),
375
                    .mem_addr
                                   (mem_addr),
376
377
                    .{\tt mem\_in}
                                   (reg_wd),
378
                    .mem_we
                                   (reg_we),
379
                    .mem_out
                                   (ex_flags_read)
380
381
382
              always @(*)
                    if (S_PSELx && S_PENABLE)
383
                        $display($time, "\t\tBRAMex[%h] READ %h\tCORE: %h
384
                             mem_addr, mem_out, S_PADDR[16 +: CORE_ID_BITS]);
385
386
387
              always @(posedge clk)
    if (we)
388
                         $display($time, "\t\tBRAMex[%h] WRITE %h\tCORE: %h",
    mem_addr, S_PWDATA, S_PADDR[16 +: CORE_ID_BITS]);
389
390
391
              vmicro16_bram #
392
                   .MEM_WIDTH
                                   (MEM_WIDTH),
393
                    .MEM_DEPTH
                                   (MEM_DEPTH),
                                   (0),
("BRAMexinst")
395
                    .USE_INITS
396
                    .NAME
397
              ) bram_apb (
398
                   .clk
                                   (clk),
399
                    .reset
                                   (reset),
400
                    .{\tt mem\_addr}
                                   (mem_addr),
401
                                   (S_PWDATA),
402
                    .mem_in
403
                    .mem_we
                                   (we && swex_success),
404
                    .mem_out
                                   (mem_out)
              ):
405
         endmodule
406
407
         // Simple APB memory-mapped register set module vmicro16_regs_apb \# (
408
409
```

```
410
               parameter BUS_WIDTH
                                                     = 16,
               parameter DATA_WIDTH parameter CELL_DEPTH
                                                     = 16,
411
                                                    = 8,
412
               parameter PARAM_DEFAULTS_R0 = 0, parameter PARAM_DEFAULTS_R1 = 0
413
414
          ) (
415
416
               input clk,
               input reset,
// APB Slave to master interface
417
418
               input ['clog2(CELL_DEPTH)-1:0] S_PADDR,
419
420
               input
                                                           S_PSELx,
S PENABLE.
421
               input
422
               input
423
               input [DATA_WIDTH-1:0]
                                                           S_PWDATA,
424
                                                           S_PRDATA,
S_PREADY
               output [DATA_WIDTH-1:0]
425
426
               output
427
          );
428
               wire [DATA_WIDTH-1:0] rd1;
429
               430
431
432
433
               always @(*)
434
435
                     if (reg_we)
                          436
437
438
439
               always @(*)
                      rassert(reg_we == (S_PSELx & S_PENABLE & S_PWRITE))
440
441
               vmicro16_regs # (
.CELL_DEPTH
.CELL_WIDTH
442
                                               (CELL_DEPTH),
443
                                                (DATA_WIDTH),
444
                     .PARAM_DEFAULTS_RO (PARAM_DEFAULTS_RO),
.PARAM_DEFAULTS_R1 (PARAM_DEFAULTS_R1)
445
446
447
               ) regs_apb (
                     .clk (clk),
.reset (reset),
448
                    .clk
449
450
                     // port 1
451
                     .rs1
                               (S PADDR).
                                (rd1),
(reg_we),
(S_PADDR)
                     .rd1
452
453
                     .we
454
                     .ws1
455
                     .wd
                                (S_PWDATA)
                     // port 2 unconnected //.rs2 (),
456
                                  (),
457
458
                     //.rd2
                                  0
459
               );
          endmodule
460
461
462
          // Simple GPIO write only peripheral
         module vmicro16_gpio_apb # (
parameter BUS_WIDTH = 16,
parameter DATA_WIDTH = 16,
parameter PORTS = 8,
463
464
465
                                       = 8,
= "GPIO"
         parameter PORTS
parameter NAME
) (
466
467
468
469
470
               input reset,
               // APB Slave to master interface input [0:0]
471
                                                           S_PADDR, // not used (optimised out)
472
473
                                                           S_PWRITÉ,
               input
474
               input
                                                           S_PSELx,
                                                           S_PENABLE,
S_PWDATA,
475
               input
               input [DATA_WIDTH-1:0]
476
477
478
               output [DATA_WIDTH-1:0]
                                                           S_PRDATA,
S_PREADY,
479
               output
               output reg [PORTS-1:0]
480
                                                           gpio
481
          );
               assign S_PRDATA = (S_PSELx & S_PENABLE) ? gpio : 16'h0000; assign S_PREADY = (S_PSELx & S_PENABLE) ? 1'b1 : 1'b0; assign ports_we = (S_PSELx & S_PENABLE & S_PWRITE);
482
483
484
485
486
               always @(posedge clk)
                    if (reset)
   gpio <= 0;
else if (ports_we) begin
   $display($time, "\t\%s <= %h", NAME, S_PWDATA[PORTS-1:0]);
gpio <= S_PWDATA[PORTS-1:0];</pre>
487
488
489
490
491
                     end
492
          endmodule
```