Relazione di laboratorio: Energia cinetica di rotazione

Laboratorio di Fisica 1

Federica Ingrassia, Giulia De Luca, Giuseppe Di Silvestre, Dennis Angemi

08/11/2021, Dipartimento Fisica e Astronomia - Università degli Studi di Catania

Introduzione e scopo

Calcolare il momento di inerzia della ruota di un carrello metallico che si muove di moto rettilineo uniformemente accelerato su una rotaia inclinata sfruttando il principio di conservazione dell'energia.

Cenni teorici

Consideriamo un carrello di massa m_c avente 4 ruote di raggio r alle quali vengono aggiunte 2 ruote posteriori di raggio R e massa M vincolate in modo tale da non entrare in contatto con la superficie del piano inclinato.

Trascurando le forze di attrito, sul sistema agiscono le forze illustrate in 1

Figura 1: Diagramma delle forze

Il carrello si muove quindi di moto rettilineo uniformemente accelerato per effetto della componente della forza peso $\overrightarrow{P_{\parallel}}$ parallela al piano e valgono le seguenti equazioni del moto

$$\begin{cases} v_1 = a_1 \langle t_1 \rangle \\ s = \frac{1}{2} a_1 \langle t_1 \rangle^2 \end{cases}$$
 (1)

$$\begin{cases} v_2 = a_2 \langle t_2 \rangle \\ s = \frac{1}{2} a_2 \langle t_2 \rangle^2 \end{cases}$$
 (2)

dalle quali si ottiene

$$v_1 = \frac{2s}{\langle t_1 \rangle}$$
, $v_2 = \frac{2s}{\langle t_2 \rangle}$.

Per il principio di conservazione dell'energia

$$\begin{cases}
 m_{tot}gh = \frac{1}{2}m_{tot}v_1^2 \\
 m_{tot}gh = \frac{1}{2}m_{tot}v_2^2 + \frac{1}{2}(2I\omega^2)
\end{cases}$$
(3)

in cui:

- v_1 rappresenta la velocità finale del carrello al quale sono vincolate posteriormente due ruote aggiuntive di massa Me raggio R libere in modo tale che non ruotino;
- v_2 rappresenta la velocità finale del carrello al quale sono oppurtunamente vincolate le ruote (precedentemente descritte) bloccate in modo tale che ruotino solidalmente alle ruote di raggio r;
- $\omega = \frac{v_2}{r}$ è la velocità angolare delle ruote di raggio r.

La prima equazione esprime il principio di conservazione dell'energia meccanica nella configurazione in cui l'energia potenziale iniziale corrisponde all'energia cinetica finale in quanto i momenti di inerzia delle ruote di raggio r influiscono minimamente sul sistema e viene trascurato l'attrito tra le ruote e le rotaie.

Nella seconda equazione, oltre al termine che esprime l'energia cinetica traslazionale, compare il termine dell'energia cinetica rotazionale che sfrutteremo per calcolare il momento di inerzia Idelle ruote di raggio R.

$$\frac{1}{2}m_{tot} v_1^2 = \frac{1}{2} m_{tot} v_2^2 + \frac{1}{2} (2I\omega^2)$$

$$I = \frac{1}{2} m_{tot} r^2 \left[\left(\frac{\langle t_2 \rangle}{\langle t_1 \rangle} \right)^2 - 1 \right]$$

Il momento di inerzia nel caso di un punto materiale è definito come il prodotto della massa per il quadrato della distanza del punto dell'asse di rotazione. Il momento di inerzia I di un corpo dipende dalla geometria di quest'ultimo per tanto approssimiamo la geometria di una ruota ad un parallelipedo solido di massa m e raggio R. Noi otterremo tale valore sfruttando il principio di conservazione dell'energia e lo confronteremo con il valore ottenuto considerando le caratteristiche geometriche della ruota (cilindro).

Apparato sperimentale e descrizione esperienza

L'apparato sperimentale è costituito da una rotaia inclinata sulla quale si muove un carrello precedentemente introdotto e da due fotocellule azionate nell'istante del passaggio del carrello in modo tale da determinare l'intervallo di tempo impiegato dal corpo a percorrere la distanza che separa le fotocellule.

Sono state effettuate 40 osservazioni (Table 1):

- 20 misurazioni dell'intervallo di tempo nella configurazione "ruote libere";
- 20 misurazioni dell'intervallo di tempo nella configurazione "ruote bloccate".

Figura 2: This is a caption

Strumenti di misura

Le misurazioni riportate nei prossimi paragrafi sono state effettuate con i seguenti strumenti.

Strumento	Sensibilità	udm
Bilancia	0.0001	kg
Flessometro	0.001	\mathbf{m}
Calibro cinquantesimale	0.00005	\mathbf{m}
Calibro ventesimale	0.00002	\mathbf{m}
Cronometro	0.001	\mathbf{s}

Dati sperimentali ed elaborazione

Di seguito vengono riportati tutti i dati sperimentali prodotti durante l'esperienza

Table 1

index	t1	t2	incertezza	udm
1	1.545	2.029	0.001	s
2	1.545	2.042	0.001	\mathbf{s}
3	1.546	2.032	0.001	\mathbf{S}
4	1.545	2.022	0.001	\mathbf{s}
5	1.541	2.027	0.001	\mathbf{s}
6	1.545	2.027	0.001	\mathbf{S}
7	1.536	2.004	0.001	\mathbf{S}
8	1.542	2.028	0.001	\mathbf{S}
9	1.536	2.035	0.001	\mathbf{S}
10	1.542	2.025	0.001	\mathbf{S}
11	1.533	2.026	0.001	\mathbf{S}
12	1.531	2.021	0.001	\mathbf{S}

index	t1	t2	incertezza	udm
13	1.539	2.023	0.001	s
14	1.536	2.014	0.001	\mathbf{S}
16	1.539	2.021	0.001	\mathbf{S}
15	1.541	2.034	0.001	\mathbf{S}
17	1.541	2.015	0.001	\mathbf{S}
18	1.547	2.018	0.001	\mathbf{S}
19	1.534	2.015	0.001	\mathbf{s}
20	1.537	1.996	0.001	\mathbf{S}

Al fine della determinazione di I mediante l'eq. (4), calcoliamo il tempo medio impiegato dal carrello a percorrere la distanza che separa le due fotocellule

$$\langle t_1 \rangle = \sum_{i=1}^{20} t_{1i}$$
$$\langle t_2 \rangle = \sum_{i=1}^{20} t_{2i}$$

$$\langle t_2 \rangle = \sum_{i=1}^{20} t_{2i}$$

Table 2

descrizione	valore	incertezza	udm	strumento
Massa ruota grande 1 (dx)	1.1205	0.0001	kg	Bilancia
Massa ruota grande 2 (sx)	1.1234	0.0001	kg	Bilancia
Massa carrello (privo di ruote grandi)	3.8871	0.0001	kg	Bilancia
Diametro ruote piccole	0.04965	0.00005	m	Calibro cinquantesimale
Diametro ruote grandi	0.09886	0.00002	m	Calibro ventesimale

$$\delta I = \left[\left(\frac{\langle t_2 \rangle}{\langle t_1 \rangle} \right)^2 - 1 \right] \left(m_{tot} r \delta r + \frac{3}{2} r^2 \delta m \right) + r^2 m_{tot} \left(\frac{\langle t_2 \rangle}{\langle t_1 \rangle} \right)^2 \left(\frac{1}{\langle t_1 \rangle} + \frac{1}{\langle t_2 \rangle} \right) \delta t$$

$$I = (0.00137 \pm 0.00001) \, kg \, m^2$$

$$I' = \frac{m_1 R^2}{2}$$

$$\delta I' = \frac{\partial I'}{\partial m_1} \delta m_1 + \frac{\partial I'}{\partial R} \delta R = R \left(\frac{R \delta m}{2} + m_1 \delta R \right)$$

 $I' = (0.0013689 \pm 0.0000007) \, kg \, m^2$

Conclusione

I valori ottenuti di I e I' risultano essere compatibili

Note

Software utilizzati

• MATLAB: Data Analysis

• Google Spreadsheet: Data entry

• Adobe Experience Design: Images designing

 \bullet $\mathbf{GitHub}:$ Resource sharing

Risorse condivise

- GitHub Repository
- Table 1 Download CSV
- Table 2 Download CSV
- MATLAB livescript