Rotate right – Rotate left

From 2 inputs data (X & Y) comes from 2 input ports do the following operations

A = Rotate right (X).

B = Rotate left (Y).

Then out the results thought two output port to view through 2 seven segments

Code

2. First Rotate right (A):

```
LD E,02H
IN A, (00H)
LD B,A
AND 01H
LD D,A
LD A,B
```

- E: Divisor for Div subroutine
- B:Stores the initial number to be rotate
- D:Stores the LSB
- The input A will be input at gate (00h)
- Check the LSB by Anding with 01h

2.

```
CALL DIV
LD A,00H
ADD A,D
JP NZ,ONER
LD A,C
```

- Call DIV subroutine to divide by 2 to shift right
 - Then check D register

If D=1:

```
ONER LD A,C
OR 80H
JP CONR
```

• Oring the Shifted right number with 80h to complete rotate right If D=0:

then we have already the rotated right number.

second Rotate left (B):

```
LD E,02H
IN A, (10H)
LD B,A
AND 80H
LD D,A
LD A,B
ADD A,A
LD B,A
LD B,A
LD A,00H
ADD A,D
JP NZ,ONEL
LD A,B
```

- The input B will be input at gate (10h)
- Check the MSB by Anding with 80h
- Shift left by adding A+A
- Then store the shifted in reg B
- Then check D register If D=1:

Oring the Shifted right number with 01h to complete rotate left If D=0:

Then we have already the rotated left number.

3. to Output the BCD for both outputs we have 2 sub routines:

```
BCDR LD E, OAH
       CALL DIV
       OUT (05H), A
       LD A, C
       CALL DIV
       OUT (04H), A
       LD A, C
       OUT (03H), A
       RET
BCDL LD E, OAH
       CALL DIV
       OUT (15H), A
       LD A, C
       CALL DIV
       OUT (14H), A
       LD A, C
       OUT (13H),A
       RET
```

- To get the BCD we divide the resulted number by 10
- So we load 0Ah in the devisor E
- Then Call DIV subroutine

4. DIV subroutine

```
DIV LD C,00H
LOOP INC C
SUB E
JP C,MIN
JP NZ,LOOP
END RET
MIN DEC C
ADD A,E
JP END
```

5. full code:

LD E,02H

IN A,(00H)

LD B,A

AND 01H

LD D,A

LD A,B

CALL DIV

LD A,00H

ADD A,D

JP NZ,ONER

LD A,C

CONR CALL BCDR

LD E,02H

IN A,(10H)

LD B,A

AND 80H

LD D,A

LD A,B

ADD A,A

LD B,A

LD A,00H

ADD A,D

JP NZ,ONEL

LD A,B

CONL CALL BCDL

HALT SUB E

JP C,MIN

JP NZ,LOOP

ONER LD A,C

OR 80H

JP CONR

ONEL LD A,B

OR 01H

JP CONL

DIV LD C,00H

LOOP INC C

END RET

MIN DEC C

ADD A,E

JP END

BCDR LD E,0AH

CALL DIV

OUT (05H),A

LD A,C

CALL DIV

OUT (04H),A

LD A,C

OUT (03H),A

RET

BCDL LD E,0AH

CALL DIV

OUT (15H),A

LD A,C

CALL DIV

OUT (14H),A

LD A,C

OUT (13H),A

RET

6. Circuit

1. ADC

2. Data presentation:

