Contrôle 1 : Ensembles de nombres

Exercice 1: Compléter en utilisant le symbole qui convient parmi \in , \notin , \subset ou $\not\subset$ les phrases suivantes :

$$\mathbb{D} \dots \mathbb{Z} \quad ; \quad \frac{2}{8} \dots \mathbb{D} \quad ; \quad \frac{7}{11} \dots \mathbb{Q} \quad ; \quad \sqrt{9} + \sqrt{4} \dots \mathbb{N}$$
$$\{-1; 0; 2; 5\} \dots \mathbb{Z}^* \quad ; \quad \{\frac{15}{3}; \sqrt{64}\} \dots \mathbb{N} \quad ; \quad \pi \dots]3, 14; 3, 15[\quad ; \quad \mathbb{Q} \dots \mathbb{N}$$

/4 Exercice 2 : Compléter le tableau suivant :

Intervalle	Inégalité	Représentation
[-5,5;2]		
$[\pi;+\infty[$		
	$-3 \le x < 9$	
	$x \ge -1$	

/6 Exercice 3: Représenter les intervalles I et J. Puis déterminer les ensembles $I \cap J$ et $I \cup J$:

(a)
$$I = [-6; 8]$$
 et $J = [-2; 12]$ (b) $I = [1; 8]$ et $J = [5; 9]$

(b)
$$I =]1; 8[$$
 et $J = [5; 9]$

(c)
$$I =]0; \sqrt{2}]$$
 et $J = [1; +\infty[$ (d) $I =]-\infty; 3[$ et $J = [3; +\infty[$

(d)
$$I =]-\infty; 3[$$
 et $J = [3; +\infty[$

/3 Exercice 4 : Indiquer si les propositions suivantes sont vraies ou fausses. Aucune justification n'est demandée.

(a)
$$10^{-7} \notin]-\infty;0[$$

(b)
$$-4 \in]-\infty;4[$$

(a)
$$10^{-7} \notin]-\infty;0[$$
 (b) $-4 \in]-\infty;4[$ (c) $\frac{1}{3} \notin [0;0,333[$

(d)
$$]-\infty;-2]\cup]-2;7[=]-\infty;7]$$
 (e) $]-\infty;2[\cap]-1;15[=]-1;2]$ (f) $]-\infty;-2]\cap]-2;7[=\{-2\}$

(e)
$$]-\infty; 2[\cap]-1; 15[=]-1; 2]$$

(f)
$$]-\infty;-2]\cap]-2;7[=\{-2\}$$

Exercice 5: Toutes les affirmations suivantes sont fausses. Pour chacune d'elle, donner un contre-exemple.

- 1) Si $x \in [0; 10]$, alors x est un entier naturel.
- **2)** Si $1 \le x \le 3$ alors $x \in]1; 3[$.
- 3) Pour tout entier n, si n est divisible par 3, il est divisible par 6.

Exercice 6: BONUS

Soit n+1 et n deux entiers consécutifs.

Démontrer que la somme de ces deux entiers est égale à la différence de leurs carrés.