Vertex of the Quadratic

Given a quadratic $w(q) = a q^2 + b q + c$ compute its value at $q_1 = -\frac{b}{2a}$ namely $w(q_1) = C - \frac{b^2}{4a}$ Now compute the same quadratic at $\mathsf{q}_{1^+}\mathsf{h}$, namely

 $w(q_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = W(q_1 + h) - W(q_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum!

However if ${\sf a<0}$ then ${\vartriangle<0}$ or vertex is the global maximum!

Secant Line 1

Example 2.

-5

