ASSIGNMENT 13

1

EE24BTECH11034 - K Teja Vardhan

I. JEE PYQ 2024 FEB 1, SHIFT 2 16 - 30

1) Let $f(x) = \begin{cases} x-1, & x \text{ is even} \\ 2x, & x \text{ is odd} \end{cases}$, $x \in \mathbb{N}$. If for some $a \in \mathbb{N}$, f(f(f(a))) = 21, then

2) Let the system of equations x+2y+3z=5, 2x+3y+z=9, $4x+3y+\lambda z=\mu$

c) 169

d) 225

 $\lim_{x\to a} \left[\frac{|x|^3}{a} - \left[\frac{x}{a}\right]\right]$ is equal to:

b) 144

have infinite number of solutions. Then $\lambda + 2\mu$ is equal to:

a) 121

a) 28	b) 17	c) 22	d) 15			
3) Consider 10 observations x_1, x_2, \ldots, x_{10} such that $\sum_{i=1}^{10} (x_i - \alpha) = 2$ and $\sum_{i=1}^{10} (x_i - \beta)^2 = 40$, where α, β are positive integers. Let the mean and the variance of the observations be $\frac{6}{5}$ and $\frac{84}{25}$, respectively. The $\frac{\beta}{\alpha}$ is equal to:						
a) 2	b) $\frac{3}{2}$	c) $\frac{5}{2}$	d) 1			
4) Let Ajay will not appear in JEE exam with probability $p=\frac{2}{7}$, while both Ajay and Vijay will appear in the exam with probability $q=\frac{1}{5}$. Then the probability that Ajay will appear in the exam and Vijay will not appear is:						
a) $\frac{9}{35}$	b) $\frac{18}{35}$	c) $\frac{24}{35}$	d) $\frac{3}{35}$			
5) Let the locus of the mid points of the chords of the circle $x^2 + (y-1)^2 = 1$ drawn from the origin intersect the line $x + y = 1$ at P and Q . Then, the length of PQ is:						
a) $\frac{1}{\sqrt{2}}$	b) $\sqrt{2}$	c) $\frac{1}{2}$	d) 1			
6) If three successive terms of a G.P. with common ratio r $(r > 1)$ are the lengths of the sides of a triangle and $[r]$ denotes the greatest integer less than or equal to r , then $3[r] + [-r]$ is equal to:						
a) 1	b) 7	c) 8	d) 9			
7) Let $A = I_2 - 2MM^T$, where M is a real matrix of order 2×1 such that the relation $M^TM = I_1$ holds. If λ is a real number such that the relation $AX = \lambda X$ holds for some non-zero real matrix X of order 2×1 , then the sum of squares of all possible values of λ is equal to:						

9)	9) If $y = \frac{(\sqrt{x}+1)(x^2-\sqrt{x})}{x\sqrt{x}+x+\sqrt{x}} + \frac{1}{15}(3\cos^2 x - 5)\cos^3 x$, then $96y(\frac{\pi}{6})$ is equal to:						
	a) 105	b) 13	c) 15	d) 17			
10)	D) Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = -\hat{i} - 8\hat{j} + 2\hat{k}$, and $\vec{c} = 4\hat{i} + c_2\hat{j} + c_3\hat{k}$ be three vectors such that $\vec{b} \times \vec{a} = \vec{c} \times \vec{a}$. If the angle between the vector \vec{c} and the vector $3\hat{i} + 4\hat{j} + \hat{k}$ is 0, then the greatest integer less than or equal to $\tan^2 \theta$ is:						
	a) 38	b) 2	c) 3	d) 4			
11)	1) The lines L_1, L_2, \ldots, L_{20} are distinct. For $n = 1, 2, 3, \ldots, 10$ all the lines L_{2n-1} are parallel to each other and all the lines L_{2n} pass through a given point P . The maximum number of points of intersection of pairs of lines from the set $\{L_1, L_2, \ldots, L_{20}\}$ is equal to:						
	a) 101	b) 191	c) 192	d) 193			
12)	2) Three points $O(0,0)$, $P(a,a^2)$, $Q(-b,b^2)$, $a>0$, $b>0$ are on the parabola $y=x^2$. Let S_1 be the area of the region bounded by the line PQ and the parabola, and S_2 be the area of the triangle OPQ . If $S_1=\frac{1}{2}S_2$, then $a+b$ is equal to:						
	a) 4	b) 5	c) 6	d) 7			

b) 2

b) 144

8) Let $f((0,\infty)) \to \mathbb{R}$ and $F(x) = \int_0^x t f(t) dt$. If $F(x^2) = x^4 + x^5$, then $\sum_{r=1}^{12} f(r^2)$ is equal to:

a) 1

a) 219

c) 3

c) 156

d) 4

d) 168