

UNIVERSIDADE FEDERAL DO CEARÁ

CAMPUS DE RUSSAS

Algoritmos em Grafos

Aula 13: Caminho Mínimo (Bellman-Ford)

Professor Pablo Soares

2022.1

Sumário

- Dijkstra(últimas aula);
 - a. Caminho mínimo;
 - i. Grafo Ponderado com pesos positivos;
 - ii. Complexidade de Tempo (|V|+|E|)lg|V|;
 - iii. Estrutura \rightarrow Fila de Prioridade.
- 2. Ciclo Negativo;
- 3. Bellman-Ford.
 - a. Introdução;
 - i. Dijkstra e grafos com arestas negativas;
 - ii. Pseudocódigo do Algoritmo;
 - iii. Tempo de Execução.

Ciclo Negativo

- Dijkstra e Bellman-Ford
 - Não funcionam em grafos que possuem ciclo negativo.

Introdução

- <u>Dijkstra</u>
 - Invariante → algo que não se altera...
 - o vetor *dist*
 - \blacksquare valores exatamente corretos ou superestimados (∞)
 - atualizações: dist[v] ← min{dist[v], dist[u] + w(u, v) }
 - Não funciona em grafos com arestas com pesos negativos;

Introdução

- Dijkstra pode ser definido como uma sequência de atualizações
- No máximo quantas arestas pode possuir um caminho?
 - \circ |V| 1

- Se não sabemos todos os caminhos entre "s" e "t"
 - Como faremos as atualizações das arestas corretas na ordem correta?
- Atualizar todas as arestas |V| 1 vezes \rightarrow Bellman-Ford

Algoritmo de Bellman-Ford

- Pseudocódigo
- Complexidade de Tempo
 - \circ O(|V| * |E|)

```
BellmanFord(G, s)
    para cada vértice u ← V[G]
         dist[u] ←∞
         \pi[u] \leftarrow NULL
     fimpara
 5. dist[s] \leftarrow 0
     Repita |V| - 1 vezes
        para cada aresta (u, v) ∈ E
            se dist[v] > dist[u] + w(u, v)
 8.
               dist[v] \leftarrow dist[u] + w(u, v)
10.
               \pi[v] \leftarrow u
11.
           fimse
12.
       fimpara
     fimrepita
 Fim.
```

```
BellmanFord(G, s)
     para cada vértice u ← V[G]
         dist[u] ←∞
          \pi[u] \leftarrow NULL
     fimpara
 5.
    dist[s] \leftarrow 0
     Repita |V| - 1 vezes
        para cada aresta (u, v) ∈ E
8.
            se dist[v] > dist[u] + w(u, v)
               dist[v] \leftarrow dist[u] + w(u, v)
10.
               \pi[v] \leftarrow u
11.
           fimse
12.
       fimpara
13.
    fimrepita
 Fim.
```

				Iter	ação)		
Vértice/ dist	0	1	2	3	4	5	6	7
S								
A								
В								
C								
D								
E								
F								
G								

7

- 1. SA 8. EB
- 2. SG 9. FA
- 3. AE 10. FE
- 4. BA 11. GF
- 5. BC
- 6. CD
- 7. DE

				Iter	ação)		
Vértice/ dist	0	1	2	3	4	5	6	7
S								
A								
В								
С								
D								
E								
F								
G								

- 1. SA 8. EB
- 2. SG 9. FA
- 3. AE 10. FE
- 4. BA 11. GF
- 5. BC
- 6. CD
- 7. DE

				Iter	ação)		
Vértice/ dist	0	1	2	3	4	5	6	7
S	0							
A	∞							
В	∞							
C	∞							
D	∞							
E	∞							
F	∞							
G	∞							

- 1. SA 8. EB
- 2. SG 9. FA
- 3. AE 10. FE
- 4. BA 11. GF
- 5. BC
- 6. CD
- 7. DE

				Iter	ação)		
Vértice/ dist	0	1	2	3	4	5	6	7
S	0	0						
A	∞	10						
В	8	∞						
C	∞	∞						
D	8	∞						
E	8	∞						
F	∞	∞						
G	∞	8						

- 1. SA 8. EB
- 2. SG 9. FA
- 3. AE 10. FE
- 4. BA 11. GF
- 5. BC
- 6. CD
- 7. DE

				Iter	ação)		
Vértice/ dist	0	1	2	3	4	5	6	7
S	0	0	0					
A	∞	10	10					
В	∞	∞	10					
C	∞	∞	∞					
D	∞	∞	∞					
E	∞	∞	12					
F	∞	∞	9					
G	∞	8	8					

- 1. SÅ 8. EB
- 2. SG 9. FA
- 3. AE 10. FE
- 4. BA 11. GF
- 5. BC
- 6. CD
- 7. DE

				Iter	ação	1		
Vértice/ dist	0	1	2	3	4	5	6	7
S	0	0	0	0				
A	∞	10	10	5				
В	8	∞	∞	10				
C	∞	∞	∞	11				
D	8	∞	∞	14				
E	∞	∞	12	8				
F	∞	∞	9	9				
G	∞	8	8	8				

- 1. SÅ 8. EB
- 2. SG 9. FA
- 3. AE 10. FE
- 4. BA 11. GF
- 5. BC
- 6. CD
- 7. DE

				Iter	ação)		
Vértice/ dist	0	1	2	3	4	5	6	7
S	0	0	0	0	0			
A	∞	10	10	5	5			
В	∞	∞	∞	10	5			
C	∞	∞	∞	11	11			
D	∞	∞	∞	14	14			
E	∞	∞	12	8	7			
F	∞	∞	9	9	9			
G	∞	8	8	8	8			

- 1. SÁ 8. EB
- 2. SG 9. FA
- 3. AE 10. FE
- 4. BA 11. GF
- 5. BC
- 6. CD
- 7. DE

				Iter	ação)		
Vértice/ dist	0	1	2	3	4	5	6	7
S	0	0	0	0	0	0		
A	∞	10	10	5	5	5		
В	8	∞	∞	10	5	5		
C	8	8	∞	11	11	6		
D	8	∞	∞	14	14	9		
E	8	8	12	8	7	7		
F	∞	∞	9	9	9	9		
G	∞	8	8	8	8	8		

- 1. SA 8. EB
- 2. SG 9. FA
- 3. AE 10. FE
- 4. BA 11. GF
- 5. BC
- 6. CD
- 7. DE

				Iter	ação)		
Vértice/ dist	0	1	2	3	4	5	6	7
S	0	0	0	0	0	0	0	
A	∞	10	10	5	5	5	5	
В	8	∞	∞	10	5	5	5	
C	∞	∞	∞	11	11	6	6	
D	∞	∞	∞	14	14	9	9	
E	∞	∞	12	8	7	7	7	
F	∞	∞	9	9	9	9	9	
G	∞	8	8	8	8	8	8	

Aqui já poderia finalizar a execução do algoritmo

Exemplo com Ciclo Negativo

Exemplo com Ciclo Negativo

Efetuar mais uma iteração para verificar a existência de ciclo negativo

Exercício de Fixação

Encontre a menor distância do vértice S para todos os outros vértices do

grafo.

UNIVERSIDADE FEDERAL DO CEARÁ

CAMPUS DE RUSSAS

Algoritmos em Grafos

Aula 13: Caminho Mínimo (Bellman-Ford)

Professor Pablo Soares

2022.1