Лекция 11

Верификация параллельных программных и аппаратных систем

Шошмина Ирина Владимировна Карпов Юрий Глебович

План курса

- Введение
- 2. Метод Флойда-Хоара доказательства корректности программ
- 3. Исчисление взаимодействующих систем (CCS) Р.Милнера
- 4. Темпоральные логики
- 5. Алгоритм model checking для проверки формул CTL
- 6. Автоматный подход к проверке выполнения формул LTL
- 7. Система верификации Spin и язык Promela. Примеры верификации
- 8. Структура Крипке как модель реагирующих систем
- 9. Темпоральные свойства систем
- 10. Применения метода верификации model checking
- 11. Символьная верификация: BDD
- 12. Символьный алгоритм верификации model checking
- 13. Количественный анализ дискретных систем при их верификации
- 14. Верификация систем реального времени
- 15. Консультации по курсовой работе

Лекция 11

Символьная верификация: BDD

Алгоритм маркировки для CTL формул.

Конечное число состояний

$$f_1 = p$$
 $f_1: \{s0, s4\}$ $f_2 = \neg f_1$ $f_2: \{s1, s2, s3\}$ $f_3 = q$ $f_3: \{s2, s4\}$ $f_4 = r$ $f_4: \{s2, s3\}$ $f_5 = E(f3 U f4)$ $f_5: \{s2, s3, s4\}$ $f_6 = f_2 \rightarrow f_5$ $f_6: \{s0, s2, s3, s4\}$ $f_7 = \Phi = AX f_6$ $f_7: \{s1, s3, s4\}$ Bерификация. Model checking

Какого объема системы можно верифицировать?

- Алгоритм Model checking работает с состояниями и подмножествами состояний || системы процессов
- Системы с каким числом состояний можно верифицировать?
- Явное представление состояний списком:
 - Каждое состояние ~100 байт
 - какие подформулы истинны в нем;
 - с какими состояниями связано;
 - из каких состояний переходы;
 - нужно хранить множество подмножеств.
- Пусть в компьютере 1 терабайт (10¹² байт).
- Можно работать ~ с 10⁷ (миллионами) состояний.

Верификация реактивных систем: State explosion problem

 $2^{10} \sim 10^3$

Классические алгоритмы верификации реактивных систем могут работать только с игрушечными системами – число состояний реальных систем очень велико

Обычная техника Model checking работает с системами $\sim 10^6$ - 10^7 состояний представление каждого состояния требует ~50 - 100 байт

Пример: три процесса, три канала связи

Простая система, а число состояний миллионы миллиардов!!

Каждая подсистема – 4 состояния + 1 целая переменная (short, 1 байт) + каналы для передачи целых (байт) значений.

Пусть для простоты очередь каждом из в 3-х каналах не больше 1 сообщения

Всего $(4 \times 2^8)^3 \times (2^8)^3 = 2^{54} = 10^{16}$ глобальных состояний системы - State Explosion Problem. Система в своей жизни проходит ничтожную долю своих возможных состояний, но мы не знаем, какие именно!! Число частиц во Вселенной $\sim 10^{78}$ Ю.Г.Карпов

State explosion problem: интерливинг

Два параллельных процесса с тремя состояниями каждый:
 экспоненциальный рост числа глобальных состояний для анализа.

Example - ADGS-2100 Adaptive Display & Guidance System

ADVANCED COMPUTING SYSTEMS

Requirement

Drive the Maximum Number of Display Units Given the Available Graphics Processors

Counterexample Found in 5 Seconds!

Checking 373 Properties Found Over 60 Errors 883 Subsystems

9,772 Simulink Blocks

2.9 x 1052 Reachable States

- Число состояний в реальных системах $\sim 10^{50}$ и более.
- При использовании явного представления состояний нужна память в 10¹⁰⁰ байт только для одного множества состояний.
- Современные компьютеры Терабайты (верхний предел).
 - Килобайт 10³ байт
 - Мегабайт 10⁶ байт
 - Гигабайт 10⁹ байт
 - Терабайт − 10¹² байт
 - Петабайт 10¹⁵ байт
 - Экзабайт 10¹⁸ байт

Ю.Г.Карпов

Что делать?

Использовать специальные эффективные методы представления подмножеств конечных множеств и операций над ними

Этот подход называется "СИМВОЛЬНОЙ ВЕРИФИКАЦИЕЙ"

Ю.Г.Карпов

What Are Model Checkers?

ADVANCED COMPUTING SYSTEMS

- Breakthrough Technology of the 1990's
- Widely Used in Hardware Verification (Intel, Motorola, IBM, ...)
- Several Different Types of Model Checkers
 - Explicit, Symbolic, Bounded, Infinite Bounded, ...
- Exhaustive Search of the Global State Space
 - Consider All Combinations of Inputs and States
 - Equivalent to Exhaustive Testing of the Model
 - Produces a Counter Example if a Property is Not True
- Easy to Use
 - "Push Button" Formal Methods
 - Very Little Human Effort Unless You're at the Tool's Limits
- Limitations
 - State Space Explosion (10¹⁰⁰ 10³⁰⁰ States)

Верификация методом Model checking

- Алгоритмы Model checking весьма эффективны: сложность проверки выполнимости формулы СТL Ф на структуре Крипке К пропорциональна числу подформул Ф и сложности К
- Какой сложности структуру Крипке можно разместить в памяти современного компьютера при явном представлении состояний?
- ~ 50 байт на состояние
- Каждое отношение множество пар, ~ 100 байт на пару
- Число пар в отношении порядка квадрата числа состояний
- Вся память пусть 1 терабайт = 10¹² байт
- Вывод: явное представление состояний структуры Крипке позволяет работать с такими структурами, содержащими $\sim 10^6$ состояний

Структуры Крипке реальных систем содержат $10^{100} - 10^{200}$ состояний

Что делать?

Методы борьбы со "state explosion problem":

- 1. Символьная верификация
- 2. Редукция частичных порядков
- 3. Композициональная верификация

Использование бинарных решающих диаграмм (BDD) для представления множеств состояний позволило повысить число состояний систем, к которым можно применить алгоритмы верифицикации

от 10^7 до 10^{300}

в триллионы триллионов триллионов триллионов триллионов триллионов триллионов ... раз

Возможность борьбы с state explosion problem при верификации реальных программных систем стало одним из самых удивительных применений BDD.

Ю.Г.Карпов

- BDD совершили революцию в представлении конечных структур данных и алгоритмах работы с ними.
- "Бинарные решающие диаграммы (BDD) удивительны, чем больше я играю с ними, тем больше я их люблю. Около 15 месяцев я был как ребенок с новой игрушкой, получив возможность решать такие проблемы, о которых я никогда не думал, что они могут быть решены"

– Дональд Кнут

Binary Decision Diagrams

что это такое??

Представления булевых функций

Работать с БФ легко и удобно — если число переменных 3-4-5

1. Таблица истинности:

pqr f		
000	1	
001	1	
010	1	
011	0	
100	0	
101	0	
110	1	
111	0	

2.Семантическое

Каноническое представление

- Произвольная формула, ДНФ и КНФ не являются каноническими представлениями
- ТИ, семантическое дерево, СДНФ и СКНФ, полином Жегалкина являются каноническими представлениями

3. Логическая формула $f(p,q,r) = \neg p \lor q \oplus rq(p \lor r)$

4. СДНФ:
$$f(p,q,r) = \neg p \neg qr \lor \neg p \neg q \neg r \lor qp \neg r \lor q \neg p \neg r$$

5. ДНФ:
$$f(p,q,r) = \neg p \neg q \lor q \neg r$$

6. KH
$$\Phi$$
: $f(p,q,r) = (\neg p \lor q) (\neg q \lor \neg r)$

7. Полином Жегалкина:
$$f(p,q,r) = 1 \oplus p \oplus pq \oplus qr$$
 Ю.Г.Карпов Верификация. Model checking

Но все они громоздки!!

Немасштабируемость решения задач с БФ

БФ, представленные стандартными способами, не позволяют эффективно решать проблемы вследствие экспоненциального роста представления БФ

Это - отражение главного положения теории сложности вычислений:

задача является практически неразрешимой, если время, требуемое для решения конкретных экземпляров этой задачи, растет экспоненциально с увеличением размеров этих экземпляров

Пример.

ТИ функции от 20 переменных имеет $2^{20} = 10^6$ строк, нужно оперировать мегабайтами информации

ТИ функции от 50 переменных имеет $2^{50} = 10^{15}$ строк, тысячи терабайт

Как вычислять значение двоичной функции по бинарному решающему дереву

Значение функции вычисляется простым движением по ветвям от корня к листу

BDD – новая форма представления булевых функций

В 1986 г. Randell Briant предложил новую очень эффективную форму представления БФ, которая называется Binary Decision Diagrams (BDD)

BDD – это представление функции в виде направленного графа - решающей диаграммы, в которой нет избыточностей

BDD имеют множество хороших свойств, с их помощью в настоящее время решаются многие задачи

Представление в BDD используемых на практике БФ растет полиномиально, или даже линейно

Наиболее экономно использование BDD там, где есть симметрия (например, аппаратные системы)

■R.E.Bryant. Graph-based algorithms for boolean functions manipulation. *IEEE Transactios on Computers*, 8 (C35), 1986

BDD – Бинарные решающие диаграммы (Binary Decision Diagrams)

Семантическое

дерево:

BDD-это семантическое дерево без избыточностей

BDD – ациклический орграф, в котором отсутствуют повторения в структуре, с одной корневой вершиной, двумя листьями, помеченными 0 и 1, и промежуточными вершинами. Корневые и промежуточные вершины помечены переменными, из них выходят ровно два ребра

Binary – потому что двоичные переменные

Decision – потому что решения принимаются при

Как вычислять значение двоичной функции по бинарному решающему дереву

Вычисление f на наборе <0,1,0>: f(0,1,0) = 1

ТИ

Binary Decision Tree

Binary Decision Diagram

Значение функции вычисляется простым движением по ветвям от корня к листу

Алгоритм Reduce: преобразование семантического дерева в BDD

С1: Если в графе имеются одинаковые подструктуры, то остается только одна из них

С2: Если обе выходные дуги вершины v ведут в одну вершину, то вершина v выбрасывается

Повторное применение C1, C2 в любом порядке к семантическому дереву функции f или к любому полученному из него графу, приводит к минимальному представлению f, которое называется BDD

Что такое BDD (формально)

Разложение Шеннона:

$$f = \neg x f_{x=0} \lor x f_{x=1}$$

Семантическое дерево::

Булева функция ite(p,q,r):

$$f(p,q,r) = If p then f(1,q,r) else f(0,q,r)$$

BDD - это минимальное представление f в базисе $\{$ ite $(p,q,r), 0, 1\}$

Вычисление значений функции по BDD

$$F(a,b,c) = ab \lor a \neg bc$$

Вид функции в ДНФ определяют те пути, которые из корневой вершины идут в 1

BDD, OBDD и ROBDD

Не любая BDD является каноническим представлением, нужно еще ограничение на порядок переменных

Ordered BDD - это BDD, в которой переменные не повторяются и встречаются в фиксированном порядке

Reduced Ordered BDD - это редуцированная OBDD. Именно ROBDD обладает всеми хорошими свойствами

BDD, но не OBDD

Чаще всего ROBDD называют просто BDD

R.E.Bryant. Symbolic function manipulation with ordered binary-decision diagrams. *ACM Computing Surveys*, 24(3), 1992

Примеры ROBDD

$$f=x_1x_3x_5\neg x_7 \lor x_2 \neg x_4x_5 \lor x_2 \neg x_3 \neg x_6x_7 \lor x_5x_6 \lor x_7 \neg x_8$$
 $f=(a_1\equiv b_1)(a_2\equiv b_2)$

$$f = (a_1 \equiv b_1)(a_2 \equiv b_2)$$

a1<b1<a2<b2

Сложность BDD зависит от порядка переменных

$$f = a_1b_1 \lor a_2b_2 \lor a_3b_3$$

Задача проверки оптимальности порядка является NP полной

Существуют эвристики для нахождения субоптимального порядка

Какова сложность BDD при оптимальной упорядоченности?

a1<b1<a2<b2<a3<b3

 $a_1 < a_2 < a_3 < b_1 < b_2 < b_3$ Рост экспоненциален

Параллельный сумматор: при одном порядке переменных – линейная сложность, при другом - экспоненциальная

Для подавляющего числа встречающихся на практике функций сложность BDD линейна

Представление BDD

n	var	low	high
0			
1			
2	5	0	1
3	3	0	2
4	2	0	3
5	1	1	4

- BDD представляется таблицей, в которой указываются номер вершины, номер переменной, и куда направлены два выхода, 0 и 1
- Вместо таблицы можно использовать связный список
- Сложность представления БФ в BDD пропорциональна числу вершин

Булевы операции над BDD – операция Apply

Бинарные операции – на основе разложения Шеннона:

$$F(x_1,...,x_n) \otimes \Phi(x_1,...,x_n) = x_i (F(x_1,...,1,...,x_n) \otimes \Phi(x_1,...,1,...,x_n)) \vee \neg x_i (F(x_1,...,0,...,x_n) \otimes \Phi(x_1,...,0,...,x_n))$$

Булевы операции над BDD – операция Apply

$$[x \to (p_0,\,p_1)] \otimes [x \to (q_0,\,q_1)] = [x \to (p_0 \otimes q_0 \;,\, p_1 \otimes q_1)]$$

Как построить BDD по булевой функции

 $x \le y \le z$

Свойства BDD

- 1. BDD каноническое представление **любая** БФ имеет единственное BDD-представление
- 2. Сложность зависит от порядка переменных.

```
Пример: функция (a_1 \oplus b_1) \& \dots \& (a_n \oplus b_n) при порядке a_1 \dots a_n \ b_1 \dots b_n имеет сложность 3 \times 2^{n-1} при порядке a_1b_1a_2b_2 \dots a_nb_n имеет сложность 3 \times n+2
```

- 3. Проблема нахождения оптимального порядка NP трудна. Но есть эвристики
- 4. BDD для большинства функций имеет линейную сложность. Некоторые классы функций имеют экспоненциальную сложность BDD при любом порядке переменных (пример: функция, выдающая средний бит результата произведения A × B n-разрядных переменных A и B)
- 5. Булевы операции над БФ, представленными в BDD, просты. Теорема. Сложность выполнения булевых операций над двумя функциями f и g, представленными в BDD, полиномиальна: O(|f| x |g|)

Свойства BDD (2)

- Выполнимость (Теорема Кука: "Проблема выполнимости булевой формулы NP-полна")
 - Для BDD проверка выполнимости, невыполнимости и общезначимости тривиальны – не является ли BDD вырожденной (значения 0 или 1)
 - Но построение представления функции в BDD в худшем случае занимает экспоненциальное время

Вырожденные BDD:

• Совершенно неожиданно:

Для того, чтобы эффективно работать с двоичными функциями, нужно оперировать не формулами, а графами.

Ю.Г.Карпов

Библиотеки

ABCD: The ABCD package by Armin Biere

http://fmv.jku.at/abcd/.

BuDDy: A BDD Package by Jørn Lind-Nielsen.

http://sourceforge.net/projects/buddy/

CMU BDD, BDD package, Carnegie Mellon University, Pittsburgh

http://www.cs.cmu.edu/~modelcheck/bdd.html

CUDD: BDD package, University of Colorado, Boulder

http://vlsi.colorado.edu/~fabio/CUDD/

JavaBDD, a Java port of BuDDy that also interfaces to CUDD, CAL, and JDD

http://javabdd.sourceforge.net/

The Berkeley CAL package which does breadth-first manipulation

http://embedded.eecs.berkeley.edu/Research/cal_bdd/

TUD BDD: A BDD Package and a World-Level package by Stefan Höreth

http://www.rs.e-technik.tu-darmstadt.de/~sth/

Vahidi's JDD, a java library that supports common BDD and ZBDD operations

http://javaddlib.sourceforge.net/jdd/

Применения BDD

- "Прямые" применения
 - Минимизация логических функций
 - Операции над БФ от большого числа переменных
 - Синтез логических схем по их представлению в форме BDD
 - Верификация и проверка эквивалентности логических схем
- Борьба с "проклятием размерности"
 - Упрощение любых алгоритмов, манипулирующих конечными структурами данных большого объема
 - Компрессия изображений, Поиск в БД, Алгоритмы на графах ...
 - Верификация реактивных (reactive) систем
 - С использованием BDD стало возможным увеличить сложность верифицируемых систем на многие порядки!
- Расширения BDD

4

Как сократить представление логической функции

Многокорневые BDD – совместное представление БФ

 Представление двух функций с помощью BDD с двумя корневыми вершинами – фактически, совместная минимизация нескольких функций

Библиотеки обычно содержат операции над многокорневыми BDD В 2010 в С.Петербургском университете разработана еще одна подобная библиотека

Д.Ю.Бугайченко, И.П.Соловьев. Библиотека многокорневых бинарных решающих диаграмм BddFunctions и её применение // DmitryBugaychenko@math.spbu.ru

Проверка эквивалентности булевых функций

$$F = a \neg bc + abc + ab \neg c$$
 $G = ac + bc$

$$G = ac + bc$$

$$F = G(?)$$

Поскольку BDD – каноническое представление, проверка эквивалентности двух функций, представленных в BDD, сводится к проверке совпадения направленных графов

Применение BDD: удовлетворяет ли логическая схема ее спецификации?

Спецификация: ТИ или

формула

Аналогично проверяется эквивалентность двух схем

Как построить BDD по структуре схемы

- 1. Сначала строятся BDD исходных переменных
- 2. Затем по ярусам строятся BDD всех промежуточных подфункций
- 3. Результирующая BDD представляет ЛФ, реализуемую схемой

Как построить BDD по структуре схемы

- 1. Сначала строятся BDD исходных переменных
- 2. Затем по ярусам строятся BDD всех промежуточных подфункций
- 3. Результирующая BDD представляет ЛФ, реализуемую схемой

Эквивалентность двух схем – общий случай

- Строим БФ F для композиции и проверяем, существуют ли интерпретации, на которых F равна 1? Но это проблема SAT!
- С BDD эта проблема ОБЫЧНО решается просто!

Автоматическая генерация программы для вычисления значений функции по BDD

$$F = -x1 - x2 - x3 - x4 - x5 \lor -x1 - x2 \ x3 - x4 - x5 \lor \dots \lor -x1 - x2 \lor x1x2x3 - x4x5 \lor x1x2x3x4x5$$

Вычисление значений БФ по BDD – просто движение по упорядоченному графу.

Ответ всегда не более, чем за N шагов

Реализация схемы по BDD

Используется мультиплексор (MUX) — схема, с тремя входами и одним выходом Существует технология PTL (Pass Transistor Logic) построения ЛС на основе MUX

PTL синтез, основанный на "прямом" BDD mapping

Интенсивно развивается направление BDD-Based Synthesis с PTL и комбинации PTL с CMOS логикой

Ю.Г.Карпов

- а) двумерное черно-белое изображение
- б) разбиение изображения на множество пикселей
- в) соответствующая двоичная функция $x_1x_2 \vee x_2 \neg x_4$
- г) BDD, представляющая изображение

Для представления мегабайтного изображения нужна BDD функции от 23 переменных (поскольку $\lceil \log (8*10^6) \rceil = 23$)

Ю.Г.Карпов

Логические задачи, решаемые с помощью БФ

Задача о расстановке ферзей

Если ферзь в клетке (*i,j*), *TO*: $(x_{ij} \Rightarrow)$:

на і торизонтали нет ферзей:

И на ј-й вертикали нет ферзей:

И на с-з диагонали нет ферзей:

И на с-в диагонали нет ферзей:

 \wedge 1 $\leq k \leq N$, $k \neq j$ $\neg X_{ik}$

 \land 1 $\leq k \leq N$, $k \neq i$ $\neg X_{kj}$

 $\bigwedge_{1 \le k \le N, \ 1 \le j+k-j \le N \ k \ne i} \neg X_{k,j+k-i}$

 $\bigwedge_{1 \le k \le N, \ 1 \le j+1-k \le N \ k \ne i} \neg X_{k,j+i-k}$

И на каждой горизонтали есть ферзь: $\bigwedge_{1 \le i \le N} X_{i1} \lor X_{i2} \lor X_{i3} ... \lor X_{iN}$ Конъюнкция всех этих формул даст такую БФ F, что любая

интерпретация, на которой F=1, будет решением

Для решения задачи нужна BDD для ф-ции от 64 переменных

Программирование в ограничениях

Constrained programming (Constraint Satisfaction Problem, CSP)

Основано на описании модели задачи, а не алгоритма ее решения

Модель специфицируется в виде отношений – ограничений, которые отражают связи, существующие между параметрами задачи

Постановка задачи

На переменные $Z_1,...,Z_n$ ($Z_i \in D_i$) наложены ограничения C_k ($Z_1,...,Z_n$) - уравнения, неравенства, логические выражения и т.п

Найти наборы значений $< a_1, ..., a_n > (a_i \in D_i)$, удовлетворяющие ограничениям

Использование BDD:

Значения в каждой области D_i кодируются двоичными наборами

Каждое ограничение C_k преобразуется в логическую функцию f_k , которая представляется в форме BDD

Множество ограничений представляется конъюнкцией этих функций $F = \&_i f_i$

Решение определяется такими наборами кодировок, на которых F=1

Пример: логическая головоломка

Задача (С.Расел, П.Норвиг: Искусственный интеллект. Современный подход)

В пяти домах разного цвета живут лица разных национальностей, которые пьют разные напитки, держат разных животных, курят разные сигареты

```
D^1: Цвет = { красный, синий, желтый, зеленый, белый} = { 000, ..., 100 } (x_i^1, y_i^1, z_i^1) = { 000, ..., 100 } (x_i^2, y_i^2, z_i^2) = { 000, ..., 100 } (x_i^2, y_i^2, z_i^2) = { 000, ..., 100 } (x_i^3, y_i^3, z_i^3) = { 000, ..., 100 } (x_i^4, y_i^4, z_i^4) = { 000, ..., 100 } (x_i^4, y_i^4, z_i^4) = { 000, ..., 100 } (x_i^5, y_i^5, z_i^5) = { 000, ..., 100 } (x_i^5, y_i^5, z_i^5)
```

Ограничения

 C_1 : Англичанин живет в желтом доме

С₂: Человек, держащий лису, пьет сок

 C_3 : ...

 C_1 : Англ \Rightarrow Желтый

 C_2 : Лиса \Rightarrow Сок

$$f_1 = \&_i (\neg x_i^2 \neg y_i^2 \neg z_i^2 \Rightarrow \neg x_i^1 \ y_i^1 \neg z_i^1)$$

$$f_2 = \&_i (\neg x_i^4 \neg y_i^4 \ z_i^4 \Rightarrow \neg x_i^3 \neg y_i^3 \neg z_i^3)$$

 Q_1 , ..., Q_5 – объекты (дома)

 X_i^j – j-й параметр i-го объекта (25 переменных) x_i^j , y_i^j , z_i^j – двоичные разряды кода X_i^j

Возможные наборы параметров задаются теми наборами, на которых $F=\&_i f_i=1$

BDD для функции F от 75 двоичных переменных решает задачу

Пример: сложные комбинаторные задачи

Судоку:

9						1	2	
			1		2			
		5		8		6		
	7		8					4
		4				9		2
	3						8	
4		2		6			9	
5					9	3		
			7	4				

Цифры от 1 до 9, все разные:

на каждой горизонтали, на каждой вертикали и в каждом квадрате

$$A [M, N, I, J] \in \{1, 2, \dots, 9\}$$

M, N, I, J, m, n, i, $j \in \{1, 2, 3\}$

Горизонталь: $\forall M \ \forall I \ \forall J \ \forall n \ \forall j \ [\ (n \neq N) \ \lor \ (j \neq J) \Rightarrow A \ [\ M, \ N, \ I, \ J \] \neq A \ [\ M, \ n, \ I, \ j \] \]$

Вертикаль: $\forall M \ \forall I \ \forall J \ \forall m \ \forall i \ [\ (m \neq M) \lor (\ i \neq I \) \Rightarrow A \ [\ M, \ N, \ I, \ J \] \neq A \ [\ m, \ N, \ i, \ J \] \]$

Квадрат: $\forall M \ \forall N \ \forall I \ \forall J \ \forall i \ \forall j \ [\ (i \neq I) \ \lor (j \neq J) \ \Rightarrow \ A \ [\ M, N, I, J\] \neq A \ [\ M, N, I, J\]\]$

Для решения задачи нужна BDD для ф-ции от 324 переменных

Конечные структуры данных и BDD: характеристическая функция множества

$x_1x_2x_3$	f
000	1
001	1
010	1
011	0
100	0
101	0
110	1

111

0

Пусть S — конечное множество из m элементов, $k=\lceil \log_2(m) \rceil$. Закодируем произвольно все элементы S векторами двоичных переменных $x_1, x_2, ..., x_k$.

Пусть S состоит из 8 элементов: $\{a_0, a_1, ..., a_7\}$. Закодируем элементы S (k=3): $a_0 \Leftrightarrow 000, a_1 \Leftrightarrow 001, ..., a_7 \Leftrightarrow 111$ Характеристическая булева функция множества из 2^m элементов = 1

Пусть A \subseteq S, A= {a₀, a₁, a₂, a₆}. Соответствующее множество двоичных кодов { 000, 001, 010, 110}.

Булева функция может задать подмножество конечного множества, если она равна 1 на наборах, которые в это подмножество входят $f(x_1,x_2,x_3)$ задает множество { 000, 001, 010, 110}

Любое подмножество конечного множества может быть задано с помощью булевой функции и, следовательно, с помощью ее BDD.

Эта функция называется характеристической функцией множества

Характеристические функции

Обозначим χ_A характеристическую функцию множества А. Она равна 1 на наборах, кодирующих элементы из А, т.е. на $\{000, 001, 010, 110\}$

	f
000	1
001	1
010	1
011	0
100	0
101	0
110	1
111	0

Пусть x_1, x_2, x_3 — разряды кодировки.

Тогда:

$$\chi_{A} = -x_{1} - x_{2} - x_{3} \lor -x_{1} - x_{2} - x_{3} \lor -x_{1} x_{2} - x_{3} \lor x_{1} x_{2} - x_{3}$$

задает $A = \{000, 001, 010, 110\}$

Подмножества конечного множества можно задавать логической формулой, представляющей характеристическую функцию множества.

Будем писать $A = \{000, 001, 010, 110\}$ (x_1, x_2, x_3) , чтобы показать переменные кодировки и их порядок

Операции над множествами

Нульарные операции (константы):

- полное множество: $\chi_S = \text{True}$

- пустое множество: $\chi_{\varnothing} = \text{False}$

Унарная операция:

- дополнение множества: $\chi_{S-O} = -\chi_O$

Бинарные операции:

- пересечение множеств: $\chi_{P \cap Q} = \chi_P \wedge \chi_Q$

- объединение множеств: $\chi_{P \cup Q} = \chi_P \vee \chi_Q$

- разность множеств: $\chi_{P-Q} = \chi_P \wedge \neg \chi_Q$

ВСЕ операции над множествами можно выразить через булевы операции над характеристическими булевыми функциями

Представление отношений с помощью BDD

Пусть $S = \{a_0, ..., a_{n-1}\}$ — множество

Введем кодирование: $a_0 \Leftrightarrow 000$, $a_1 \Leftrightarrow 001$, ... , $a_7 \Leftrightarrow 111$

Бинарное отношение на S – подмножество пар из S, R= $\{(a_2,a_3),(a_7,a_4),(a_5,a_7)\}$

 χ_R - характеристическая функция R равна 1 на кодировках $\{(a_2,a_3), (a_7,a_4), (a_5,a_7)\}$, т.е. на наборах 6 булевых переменных $\{\ 010\ 011,\ 111\ 100,\ 101\ 111\ \}$

Первый элемент отношения R — это текущее состояние (pre-state), разряды его кода обозначим v (например, x_1 , x_2 , x_3). Второй элемент отношения — следующее состояние (post-state) и его код — v' (например, x_1' , x_2' , x_3')

Характеристическую функцию χ_R отношения R можно записать: $(\neg x_1 x_2 \neg x_3 \neg x_1' x_2' x_3') \lor (x_1 x_2 x_3 x_1' \neg x_2' \neg x_3') \lor (x_1 \neg x_2 x_3 x_1' x_2' x_3')$

Характеристическая функция отношения может быть определена как логическая формула над штрихованными и нештрихованными переменными с одним и тем же порядком

Ограничение отношения на подмножестве

Пусть R – бинарное отношение на S, и A – подмножество S.

Обозначим χ_R - и χ_A – характеристические функции R и A

Характеристическая функция ограничения R на A строится как $\chi_{\mathsf{A}} \& \chi_{\mathsf{R}}$

Это все те пары отношения R, первый элемент которых принадлежит A

Операции над отношениями: Прямой и обратный образы

Пусть ХФ χ_R (v,v') определяет бинарное отношение (множество переходов)

ХФ множества тех состояний, в которые переходы возможны, задается операцией Прямой образ: $Post(R) = \exists v.\chi_R(v')$ - это ХФ множества $\{a_3, a_4, a_5, a_6\}$ — в них есть переходы из каких-то элементов множества S. (функции только от штрихованных переменных)

ХФ множества тех состояний, из которых переходы возможны, задается операцией Обратный образ: $Pre(R) = \exists V' \cdot \chi_R(v) - \exists v \cdot$

Как реализовать эти функции в BDD?

Операция квантификации над функциями

Пусть множество $A=\{0010, 0101, 1011, 0110, 0011, 1100\}$ представлено характеристической функцией от булевых переменных (x_1, x_2, x_3, x_4)

Квантификация по переменной x_2 (это просто выбрасывание этой переменной) определяет множество

```
B = \{0010, 0101, 1011, 0110, 0011, 1100\}
= \{010, 001, 111, 010, 011, 100\}
= \{010, 001, 111, 011, 100\}
от переменных (x_1, x_3, x_4)
```

Определение квантификации характеристической функции:

```
\exists (x).f(x,y) = f(0,y) \lor f(1,y);
```

– результат не зависит от х. Это проекция на оставшиеся переменные

```
Пример: Операция квантификации: \exists x_2.\chi_A определяет ХФ множества \{0010, 0110, 0101, 0001, 1011, 1111, 0010, 0111, 1100, 1000\} \{x_1, x_2, x_3, x_4\} = \{010, 001, 111, 011, 100\} \{x_1, x_2, x_3, x_4\}
```

Квантификация по нескольким переменным вычисляется последовательно

Прямой Образ для бинарных отношений

Пусть А⊆S – подмножество S, R – бинарное отношение на S В какие элементы S можно перейти из A?

1. Определяем ограничение отношения R на тех начальных элементах R из S, которые принадлежат A:

$$\chi_{A(v)}$$
 & $\chi_{R(v, v')}$

2. Строим B= Forward Image (A,R)=Прямой Образ A относительно R:

$$\chi_{\text{Image(A,R) (v)}} = \exists v. [\chi_{A(v)} \& \chi_{R(v,v')}] < v/v' >$$
 Переходы из элементов $\in A$

(< v / v > - это замена переменными v штрихованных значений v')

Итак, чтобы найти множество В всех тех элементов S, которые достижимы за один шаг отношения R из элементов множества A, нужно выполнить с булевыми характеристическими функциями $\chi_{A(v)}$ и $\chi_{R(v,v')}$ две операции: конъюнкцию и квантификацию, и выполнить переименование переменных

Обратный Образ для бинарных отношений

Пусть В⊆S – подмножество S, R – бинарное отношение на S Из каких элементов S можно перейти в В?

1. Строим ограничение отношения R на тех вторых элементах R из S, которые принадлежат B:

$$\chi_{B(v')}$$
 & $\chi_{R(v,v')}$

2. Строим A= Reverse Image (B,R) = обратный образ В относительно R:

 $\chi_{RImage(B,R)\ (\ v\)} = \exists v'. (\ \chi_{B\ (v')}\ \&\ \chi_{R\ (v,v\ ')}\)$ — выбрасываем все вторые элементы

Чтобы найти множество A всех тех элементов S, из которых за один шаг отношения R достижимы элементы заданного множества B, нужно выполнить с булевыми характеристическими функциями $\chi_{B(v')}$ и $\chi_{R(v,v')}$ переименование и две операции: конъюнкцию и квантификацию

Решение проблем с помощью BDD

Пост.проблемы

Выбор моделей

Разработка (использование) теории

Выбор структур данных

Разработка алгоритмов

Решение проблемы

Ю.Г.Карпов

Пример: анализ достижимости на графе $\Gamma = (S,R,S_0)$

Пусть S_i – множество вершин, достижимых после i или меньшего числа переходов из S_0 .

Очевидно, $S_{i+1} = S_i \cup Прямой Образ (S_i, R)$

Алгоритм с помощью BDD

- 1. Представляем множества S_0 и R в форме BDD, т.е. определяем множество v переменных, кодирующих состояния из S, а также функции χ_{SO} (v) и χ_{R} (v,v') в форме BDD
- **2.** Полагаем $S_i = S_0$, т.е. $\chi_{Si(v)} = \chi_{S0(v)}$

Решение проблем с помощью BDD

Пример: анализ достижимости на графе $\Gamma = (S,R,S_0)$

Выбор моделей

Разработка (использование) теории

Выбор структур данных

Разработка алгоритмов

Решение проблемы Ю.Г.Карпов

- 1. Представляем множества S_0 и R в форме BDD, т.е. определяем множество v переменных, кодирующих состояния из S, а также функции χ_{SO} (v) и χ_{R} (v,v') в форме BDD
- **2.** Полагаем $S_i = S_0$, т.е. $\chi_{Si(v)} = \chi_{S0(v)}$
- 3. Итеративно вычисляем ограничение R на S_i

$$\chi_{R|Si\ (v,v')} = \chi_{Si\ (v)} \& \chi_{R\ (v,v')}$$
, и куда можем перейти из S_i :

$$\chi_{\text{Si+1(v)}} = [\chi_{\text{Si (v)}} \lor \exists \text{v. } \chi_{\text{R|Si (v,v')}} \text{ (v / v')]}$$

Решение проблем с помощью BDD

— Пример: анализ достижимости на графе

Разработка (использование) теории

Пост.проблемы

Выбор моделей

- Выбор структур данных
- Разработка алгоритмов

Решение проблемы

Ю.Г.Карпов

- 1. Представляем множества S_0 и R в форме BDD, т.е. определяем множество v переменных, кодирующих состояния из S, а также функции χ_{SO} (v) и χ_{R} (v,v') в форме BDD
- **2.** Полагаем $S_i = S_0$, т.е. $\chi_{Si(v)} = \chi_{S0(v)}$
- 3. Итеративно вычисляем ограничение R на S_i

 $\chi_{R|Si (v,v')} = \chi_{Si (v)} \& \chi_{R (v,v')}$, и куда можем перейти из S_i :

- $\chi_{\text{Si+1(v)}} = \left[\chi_{\text{Si (v)}} \vee \exists v. \chi_{\text{R|Si (v,v')}} (v / v') \right]$
- **4.** Алгоритм останавливается, когда $\chi_{Si+1(v)} = \chi_{Si}(v)$

Используем характеристические булевы функции для S_0 и R, а не работаем с каждой вершиной и ребром - сложность полиномиальна на структурах, растущих экспоненциально Верификация. Model checking 64

Randal Bryant (Carnegie Mellon Uni)

Название 1-20

Randal Bryant

™ Подписаться ▼

Год

Процитировано

Carnegie Mellon University
Formal verification, binary decision diagrams
Подтвержден адрес электронной почты в домене cs.cmu.edu Главная страница

Trasbatino 1 20	проципровано	ГОД
Graph-based algorithms for boolean function manipulation RE Bryant Computers, IEEE Transactions on 100 (8), 677-691	10357	1986
Symbolic Boolean manipulation with ordered binary- decision diagrams RE Bryant ACM Computing Surveys (CSUR) 24 (3), 293-318	2567	1992
Efficient implementation of a BDD package KS Brace, RL Rudell, RE Bryant ACM/IEEE Proc. 27th DAC, 40-45	1587 *	1990
Semantics-aware malware detection M Christodorescu, S Jha, SA Seshia, D Song, RE Bryant Security and Privacy, 2005 IEEE Symposium on, 32-46	714	2005

Google Академия

Соавторы Все соавторы...

Jinbo Huang

Статья про BDD 1986 г. более 10 тыс раз использовалась в публикациях

Ю.Г.Карпов 65

Заключение

- БФ удобны для решения многих задач, но реально с классическими представлениями БФ можно работать только с 4-6 переменными
- BDD новая компактная форма представления полностью определенных БФ в виде направленного графа. Сложность BDD зависит от порядка переменных
- Для большинства БФ представление в BDD линейно или полиномиально.
 Но существуют классы БФ, для которых представление в BDD экспоненциально
- BDD имеют множество привлекательных свойств:
 - каноническое представление
 - логические операции с BDD выполняются эффективно (линейно)!!!
 - многие задачи (например, SAT) решаются эффективно
 - BDD может представлять любые конечные структуры данных на основе использования булевых характеристических функций множеств, отношений, функций и т.п.
 - ...
- Основное свойство BDD возможность работы с полиномиальным временем на структурах, растущих экспоненциально
- Существует много расширений BDD

Спасибо за внимание!