Population Structure using PCA

We are going to use a small subset of HashMap project data: 279 samples of 9026 SNPs taken from 4 different populations—Centreal European (CEU), African (YRI), Japanese (JPT) and Chinese (HCB). We're going to see if PCA can identify population structure.

```
library(rafalib)
e <- read.csv("data/genotype_population.csv", row.names=1)
tab <- read.csv("data/population_info.csv", row.names=1)
head(t(e))[,1:5] # rows represent genes</pre>
```

##		NA19152	NA19139	NA18912	NA19160	NA07034
##	rs1695824	2	1	2	2	0
##	rs13328662	1	1	1	1	0
##	rs4654497	0	0	1	1	0
##	rs10915489	1	1	2	2	2
##	rs12132314	2	2	2	2	2
##	rs12042555	1	2	2	1	2

Standardizing data

We begin by standardizing each SNP to have 0 mean and standard deviation of 1.

```
E <- scale(e) # standardize
```

Dimension reduction

Dimension reduction is performed to better visualize data. We can use principal components analysis (PCA) for this. Say that the original data is represented by n data points. The goal is to reduce this to a subspace of d points while mainting the variability in data. The new subspace is represented by d orthogonal vectors called principal components, and d < n.

Let us see dimension reduction over feature space.

```
pca <- prcomp(t(E), center=FALSE, scale=FALSE)
pca.var <- pca$sdev^2
pca.percent_var <- pca.var/sum(pca.var)
barplot(pca.percent_var[1:20], ylab="Percent Variances", xlab="Principal Components") # Feature space</pre>
```


Principal Components

As you can see, most of the variation in the data is expressed by the first three components. Similarly, we can perform dimension reduction over sample space.

Scatter plots