Нечеткие нейронные сети в задачах классификации

Ким Евгения Ивановна, 522-я группа

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель — Засл. работник ВШ РФ, действ. член РАЕН, д.ф.-м.н., профессор М.К.Чирков Рецензент — к.ф.-м.н., доцент **А.Ю.Пономарева**

Санкт-Петербург 2010г.

Постановка задачи классификации

- Задача классификации представляет собой задачу отнесения образца к одному из нескольких классов.
- Математическая постановка задачи.

X — множество описаний объектов,

Y — множество номеров (или наименований) классов.

Известно: $X^m = \{(x_1, y_1), \dots, (x_m, y_m)\}$ — обучающая выборка.

Требуется: построить отображение $f: X \to Y, f(x_i) = y_i$.

Постановка задачи

- Построение модели нечеткой нейронной сети, применимой в задачах классификации, путем соединения системы нечеткого вывода и нейронной сети.
- Реализация нечеткой нейронной сети, используемой для решения задач классификации.
- Рассмотрение преимуществ нечеткой нейронной сети.

Нейронная сеть

- Основной инструмент нечеткой нейронной сети — многослойная нейронная сеть.
- Нейрон состоит из элементов трех типов:
 - синапсы
 - сумматор

$$s = \sum_{i=1}^{n} x_i w_i + b,$$

- нелинейный преобразователь
- Для подборки параметров сети (обучения) используется алгоритм обратного распространения.

- Формирование базы правил систем нечеткого вывода
- Фаззификация входных переменных
- ③ Агрегирование подусловий в нечетких правилах продукций
- Активизация или композиция подзаключений в нечетких правилах продукций
- Аккумулирование заключений нечетких правил продукций
- Дефаззификация выходных переменных

- Формирование базы правил систем нечеткого вывода
- 2 Фаззификация входных переменных
- ③ Агрегирование подусловий в нечетких правилах продукций
- Активизация или композиция подзаключений в нечетких правилах продукций
- Аккумулирование заключений нечетких правил продукций
- Дефаззификация выходных переменных

- Формирование базы правил систем нечеткого вывода
- Фаззификация входных переменных
- 3 Агрегирование подусловий в нечетких правилах продукций
- Активизация или композиция подзаключений в нечетких правилах продукций
- 5 Аккумулирование заключений нечетких правил продукций
- Дефаззификация выходных переменных

- Формирование базы правил систем нечеткого вывода
- Фаззификация входных переменных
- 3 Агрегирование подусловий в нечетких правилах продукций
- Активизация или композиция подзаключений в нечетких правилах продукций
- 5 Аккумулирование заключений нечетких правил продукций
- Дефаззификация выходных переменных

- Формирование базы правил систем нечеткого вывода
- Фаззификация входных переменных
- 3 Агрегирование подусловий в нечетких правилах продукций
- Активизация или композиция подзаключений в нечетких правилах продукций
- Аккумулирование заключений нечетких правил продукций
- Дефаззификация выходных переменных

- Формирование базы правил систем нечеткого вывода
- Фаззификация входных переменных
- 3 Агрегирование подусловий в нечетких правилах продукций
- Активизация или композиция подзаключений в нечетких правилах продукций
- Аккумулирование заключений нечетких правил продукций
- Дефаззификация выходных переменных

Сравнение двух подходов

Система нечеткого вывода.

- + "прозрачность" нечетких систем, которая возможна благодаря их лингвистической интерпретации в виде нечетких продукционных правил. Лингвистическая структура этих правил способствует пониманию и анализу системы.
- априорное определение компонентов таких моделей (нечетких высказываний, функций принадлежности для лингвистических переменных , структуры базы нечетких правил и т.д.).

Нейронная сеть.

- возможность выявления закономерностей в данных, т.е. извлечение знаний из данных
- сложность определения размера и структуры нейронной сети (конструктивный и деструктивный методы определения размера)

Мотивация построения нечеткой нейронной сети

- Компенсация недостатков одной системы за счет достоинств другой.
- Лингвистическая структура базы правил способствует пониманию и анализу системы.
- Нечеткий вывод в интегрированных системах реализован с помощью нейронных сетей.
- Нейронные сети используются для настройки параметров функций принадлежности, которые применяются в системах нечеткого вывода.
- Нечеткие нейронные сети типа ANFIS (adaptive neuro-fuzzy inference system), используемые для решения задачи аппроксимации, показали хорошие результаты.

ANFIS-сети непосредственно не применимы к задачам классификации

Мотивация построения нечеткой нейронной сети

- Компенсация недостатков одной системы за счет достоинств другой.
- Лингвистическая структура базы правил способствует пониманию и анализу системы.
- Нечеткий вывод в интегрированных системах реализован с помощью нейронных сетей.
- Нейронные сети используются для настройки параметров функций принадлежности, которые применяются в системах нечеткого вывода.
- Нечеткие нейронные сети типа ANFIS (adaptive neuro-fuzzy inference system), используемые для решения задачи аппроксимации, показали хорошие результаты.

ANFIS-сети непосредственно не применимы к задачам классификации

Нечеткая нейронная сеть

- Слой 1. На выходе элементов этого слоя формируются степени принадлежности входных переменных к определенным для них нечетких множествам A_i, B_i .
- Слой 2. Каждый нейрон этого слоя выполняет операцию Т-нормы.
- Слои 3–4. Элементы этих слоев предназначены для взвешенного суммирования значений выходов элементов предыдущего слоя. А значения на выходах элементов слоя 4 формируются с использованием активационных функций сигмоидного типа.
- Слои 1–2 являются «нечеткими» (выполняют этапы 2–5 системы нечеткого вывода), нейроны слоев 3–4 обычные нейроны.

Размер нечеткой нейронной сети

Определить размер введенной сети легко:

- В слое 1 необходимое число нейронов равно количеству функций принадлежностей, определенных для всех входных переменных.
- В слое 2 ровно столько нейронов, сколько правил в базе правил нечетких продукций.
- В слоях 3–4 количество нейронов равно количеству классов в рассматриваемой задаче.

Обучение нечеткого классификатора

Подбор параметров осуществляется с помощью нейронных сетей. Для этого используется алгоритм обратного распространения.

Шаг 1. Вычислить выходное значение каждого наблюдения из обучающей выборки.

Шаг 2. Вычислить ошибку для каждого наблюдения из обучающей выборки и общую ошибку

$$E = \frac{1}{K} \sum_{k=1}^{K} E^{(k)},$$

где $E^{(k)}$ — ошибка для k-го наблюдения, $k\in\overline{1,K},K$ — объем обучающей выборки.

Шаг 3. Если $E > E_{max}$, корректировать параметры сети (параметры функций принадлежности, веса):

$$a_{ij}(t+1) = a_{ij}(t) - \eta \frac{\partial E^{(k)}(t)}{\partial a_{ij}(t)},$$

$$b_{ij}(t+1) = b_{ij}(t) - \eta \frac{\partial E^{(k)}(t)}{\partial b_{ij}(t)},$$

$$w_l(t+1) = w_l(t) - \eta \frac{\partial E^{(k)}(t)}{\partial w_l(t)}.$$

Пока $E > E_{max}$, повторять шаги 1-3.

Реализация метода

- Программа написана на языке Scala (мультипарадигмальный язык программирования, автор Мартин Одерски).
- Состоит из следующих компонентов:
 - нейроны каждого слоя
 - парсеры
 - свойства
 - класс main.
- База правил и функции принадлежности, определенные пользователем, читаются из текстового файла.
 - формат правил максимально приближен к формату, в котором эксперт составляет базу правил
 - файл с функциями принадлежности содержит названия функций и начальные параметры функций

Применение нечеткой нейронной сети к задаче о двух спиралях

- Задача о двух спиралях была предложена А. Уилэндом (Alexis P. Wieland).
 На плоскости заданы две концентрические спирали.
 Требуется построить нейросетевую систему, которая по заданным координатам точки (два входа) относит ее либо к одной, либо ко второй спирали.
- В качестве Т-нормы возьмем следующую (Hamacher's t-norm):

$$T(a,b,\gamma) = \frac{a \cdot b}{\gamma + (1-\gamma) \cdot (a+b-a \cdot b)}$$

 Функция активации гиперболический тангенс:

$$f(a,s) = tanh(as).$$

После обучения (37 итераций) сеть классифицирует точки спиралей со 100%-ной точностью.

Применение нечеткой нейронной сети к задаче о двух спиралях

- Задача о двух спиралях была предложена А. Уилэндом (Alexis P. Wieland).
 На плоскости заданы две концентрические спирали.
 Требуется построить нейросетевую систему, которая по заданным координатам точки (два входа) относит ее либо к одной, либо ко второй спирали.
- В качестве Т-нормы возьмем следующую (Hamacher's t-norm):

$$T(a,b,\gamma) = \frac{a \cdot b}{\gamma + (1-\gamma) \cdot (a+b-a \cdot b)}$$

 Функция активации гиперболический тангенс:

$$f(a,s) = tanh(as).$$

97%-ная точность классификации.

Задача классификации гиперлипопротеинемии

• База нечетких правил продукций (Э. Санчес).

x_1	x_2	x_3	x_4	x_5
норм.	норм.	норм.	норм.	норм.
увел.	заметно	норм.	сильно	слегка
	увел.		увел.	умен.
увел.	заметно	слегка	увел.	увел.
	увел.	увел.		
сильно	увел.	заметно	умен.	сильно
увел.		увел.		увел.
	норм. увел. увел.	норм. норм. увел. заметно увел. увел. заметно увел. сильно увел. увел.	норм. норм. норм. увел. заметно увел. норм. увел. заметно слегка увел. сильно увел. заметно	норм. норм. норм. норм. увел. заметно увел. увел. увел. увел. заметно увел. увел. увел. сильно увел. заметно увел. умен. увел. увел. увел.

 x_1 — уровень содержания липидов (г/л),

$$x_4$$
 — уровень содержания β -липопротеинов (%),

$$x_5$$
 — уровень содержания пре- β -липопротеинов(%).

- Сеть обучается и классифицирует данные со 100%-ной точностью.
- Полученные параметры согласуются с данными, опубликованными Э.Санчесом.
- Сеть подбирает нужные параметры вне зависимости от начальных параметров.

 x_2 — уровень содержания холестерина (ммоль/л),

 x_3 — уровень содержания триглециридов (ммоль/л),

Результаты

- Построена модель нечеткой нейронной сети, применимой в задачах классификации.
- Реализована нечеткая нейронная сеть.
- Нечеткая нейронная сеть показала хорошие результаты в обеих задачах классификации
- Достоинства нечеткой нейронной сети:
 - автоматизирована система нечеткого вывода
 - эксперт может ввести априорную информацию об исследуемой проблеме в виде базы правил
 - подборка точных параметров осуществляется с помощью нейронной сети
 - легко определить необходимый размер сети.