ANALYSIS QUALIFYING EXAM JANUARY 1994.

Throughout this examination, unless otherwise specified, the terms measurable, a.e., refer to the Lebesgue measure m on the real line \mathbb{R} , and L^p of an interval to L^p of that interval with respect to Lebesgue measure on that interval. Integrals w.r.t. Lebesgue measure will be denoted by $\int f dx$. Problems one through eight are 10 points each. Problem 9 is 20 points.

- 1. Let f_n be measurable on \mathbb{R} . Let $E = \{x \in \mathbb{R} : \lim_{n \to \infty} f_n(x) \text{ exists}\}$. Prove that E is measurable.
- 2. Let f be integrable over \mathbb{R} and let $E_n = \{x : |f(x)| \ge n\}$. Prove that $n \cdot m(E_n) \to 0$ as $n \to \infty$.
- 3. Let f be a measurable function on [0,1] such that f(x)>0 a.e.. Let $E_n\subset [0,1]$ be measurable sets such that $\int_{E_n}f(x)\,dx\to 0$ as $n\to\infty$. Prove that $m(E_n)\to 0$ as $n\to\infty$.
- 4. Let f be an integrable function on [a,b]. Prove that for all $\epsilon > 0$ there exists a polynomial p such that $\int_a^b |f-p| \, dx < \epsilon$.
- 5. Let $1 and <math>\alpha = 1 \frac{1}{p}$. Assume that f is absolutely continuous on [a,b] and that $f' \in L^p([a,b])$. Prove that $f \in \operatorname{Lip}_{\alpha}$, i.e., that there exists a constant M such that $|f(x) f(y)| \leq M|x y|^{\alpha}$ for all $x, y \in [a,b]$.
- 6. Let f(z) be analytic on a domain Ω , except for poles in Ω . Prove that the only singularities of

$$g(z) = \frac{f'(z)}{f(z) - A}$$

are simple poles at all the poles of f and all the points $z \in \Omega$ such that f(z) = A.

7. Compute

$$\oint_C \frac{z}{(z-1)(z-2)^2} \, dz,$$

where C is the circle $|z-2|=\frac{1}{2}$, traversed counterclockwise.

8. Let $\{f_n\}$ be a uniformly bounded sequence of analytic functions on Ω such that $f_n(z)$ converges pointwise for all $z \in \Omega$. Prove that $\{f_n\}$ converges uniformly on every compact subset of Ω . (Hint: Apply the Dominated Convergence Theorem to the Cauchy formula for $f_n - f_m$.)

- 9. True or False. Prove, disprove or give a counterexample.

 (a) Let $f_n \in L_p([a,b])$ $(1 \le p < \infty)$ such that $\sum_{n=1}^{\infty} \|f_n\|_p < \infty$. $f_n(x) \to 0$ a.e. on [a, b].
- b. Let f be a continuous function on [0,1] such that f=0 a.e. Then f(x) = 0 for all x in [0,1].
 - There exists a function f(z) analytic in a neighborhood of 0 such that

$$f'(-\frac{1}{n}) = f'(\frac{1}{n}) = \frac{1}{n^3}.$$

by d. Let $f:[a,b] \to \mathbb{R}$ be a function such that for all $x \in [a,b]$ there exists a $\delta>0$ such that f is bounded on $(x-\delta,x+\delta)\cap [a,b]$. Then f is bounded on [a,b].