El desarrollo de un paquete computacional para la estimación del modelo resulto ser la tarea, al mismo tiempo, más retadora y cautivante de este trabajo. El código, conecta la teoría del modelo con el componente probabilista y lo lleva a un terreno práctico y más tangible. Durante este esfuerzo, se vio la necesidad de desarrollar funcionalidad adicional para ir probando cada parte del modelo, desde la estimación de la matriz F hasta las proyecciones de ejemplos en 2D. La capacidad y flexibilidad del paquete se ven reflejadas en la simpleza de su uso en su estado actual.

El paquete se desarrolló en el lenguaje de programación estadístico R por dos razones: por la familiaridad con la que se contaba y por la practicidad del lenguaje para manejar objetos matemáticos como vectores, matrices y listas.

La idea del paquete es poder usar el modelo de una forma sencilla, asimismo, poderlo validar y explorarlo sin tener que programar demasiado. En general, se busca respetar la sintaxis clásica de R para la estimación y exploración de objetos. En la Tabla 1 se presenta un ejemplo mínimiamente funcional de como se puede correr un bpwpm.

```
mod <- bpwpm(datos y parámetros)
summary(mod)
plot(mod)
plot_2D(mod) # Si los datos están en 2D

# Datos X y Y en muestra o fuera de ella
mod_res <- predict(mod,X,Y)
summary(mod_res)
plot(mod_res)</pre>
```

Tabla 1: Ejemplo mínimamente funcional

0.0.1. Listado de funciones

Función $bpwpm_gibbs$

Encontrada en el archivo bpwpm_gibbs.R.

 $bpwpm_gibbs(y, X, M, J, K, ...)$: esta es la función principal del paquete que realiza la simulación de la cadena de Markov usando los datos para el entrenamiento y los parámetros especificados.

Función predict.bpwpm

Encontrada en el archivo predict_funcs.R.

predict.bpwpm(object, \tilde{y} , \tilde{X} , thin, burn-in, type, ...): función genérica de la clase S3 que realiza predicciones de un nuevo conjunto de datos \tilde{X} dado un objeto de la clase bpwpm y los prueba contra las etiquetas reales \tilde{y} .

Funciones matemáticas

Funciones auxiliares relacionadas con procedimientos matemáticos más complejos. Encontradas en el archivo math_utils.R.

calculate_Phi (X, M, J, K, d, τ) : calcula la expansión de bases $\Psi_j(X, \mathcal{P})$ para $j = 1, \ldots, d$ y cada una de las observaciones con base en los parámetros M, J, K.

calc_F(Ψ , w, d,intercept): calcula la matriz $F = \Psi \mathbf{w}$ donde cada columna representa la transformación f_j .

 $log_loss(y, \hat{p}, ...)$: calcula la función log_loss dados los valores reales y y las probabilidades ajustadas \hat{p} .

mode(x): calcula la moda de un vector x.

 ${\tt calc_proy}(F,\beta)$: calcula el vector de medias para cada observación $f=F\beta$.

 ${\tt model_proy}(\tilde{X}, {\tt params})$: calcula la función de proyección f para un conjunto de datos \tilde{X} , pueden ser con los que se entrenaron los parámetros o un conjunto de datos nuevos.

 ${\tt post_probs}(\tilde{X},\,{\tt params}):$ calcula la probabilidad posterior de la clasificación.

 $acurracy(\tilde{y}, \hat{\mathbf{p}})$: calcula la precisión total del modelo.

contingency_table($\tilde{y}, \hat{\mathbf{p}}$): calcula la matriz de contingencia.

ergodic_mean(mcmc_chain): calcula la media ergódica de una cadena MCMC.

Funciones útiles

Funciones auxiliares para la simplificación de procesos en en las funciones de más alto nivel. Encontradas en el archivo utils.R.

thin_chain(mcmc_chain, thin, burn_in): dada una matriz de una cadena MCMC esta función auxiliar recorta y adelgaza la cadena.

thin_bpwpm(bpwpm, thin, burn_in): adelgaza todos los parámetros de un modelo bpwpm y regresa un objeto del mismo tipo.

post_params(bpwpm, thin, burn_in, type): dado un objeto de la clase bpwpm, la función hace la estimación puntual de los parámetros del modelo β y w utilizando el tipo de estimación puntual (media, moda o mediana) especificado en type. Además, recorta y adelgaza la cadena y regresa un objeto conteniendo todos los parámetros con clase bpwpm_params.

Funciones gráficas

Funciones que habilitan el análisis gráfico de los datos y el modelo de forma rápida y sencilla. Existen 3 funciones importante que toman el papel *envoltorio*¹ para las demás: plot.bpwpm, plot.bpwpm_predictions y plot_2D. Encontradas en el archivo plot_funcs.R.

1. wrapper function

plot.bpwpm(object, n): para un objeto del tipo bpwpm, grafica las trazas y los histogramas para los parámetros β y cada w_i .

plot_chains(mcmc_chains, n, title): grafica la traza de una cadena MCMC.

plot_hist(mcmc_chains, n, title): grafica el histograma de una cadena MCMC.

plot.bpwpm_predictions(object, ...): dado un objeto del tipo bpwpm_prediction, grafica las f_j del modelo ya estimado. Se usa como wraper para la función plot_each_F.

 $plot_each_F(y, X, F)$: grafica cada una de las las funciones f_j .

plot_2D(\mathbf{y} , X bpwpm_params, n, alpha): dados los datos en 2D, se realizan todas las gráficas posibles para este caso particular de los modelos. El parámetro alpha controla la transparencia de los puntos proyectados y el parámetro n la finura de la malla.

 $plot.2D_data(y, X)$: grafica de puntos de los datos originales usando el paquete ggplot2.

plot.2D_proj(y, Xbpwpm.params, n, alpha): grafica la proyección de f en el espacio de covariables \mathcal{X} para datos bivariados. Bueno para identificar las regiones de clasificación y visualizar los resultados del modelo.

plot.3D_proj(X, bpwpm.params, n): usando el paquete de lattice, se crea una gráfica de malla para representar la función f en 3D, únicamente se puede utilizar cuando se tengan datos en 2D. El parámetro n controla la finura de la malla.

plot.ergodic_mean(bpwpm, thin, burn_in): grafica la media ergódica para las cadenas de un bpwpm para todos los parámetros β y w_i .

Funciones de resumen

Estas tres funciones, son métodos S3 para la rápida exploración de los objetos del paquete. Se encuentran en el archivo summary_funcs.R.

summary.bpwpm(objeto y parámetros): imprime en pantalla la información sobre la llamada del modelo y los principales resúmenes numéricos de las cadenas para los parámetros β y w.

summary.bpwpm_params(objeto y parámetros): imprime la estimación sobre los parámetros posteriores $\hat{\beta}$ y $\hat{\mathbf{w}}$.

summary.bpwpm_prediction(objeto y parámetros): resume e imprime la información sobre una predicción con el modelo. Esto es: la precisión, la medida log-loss, el tipo de estimación puntual usada, la tabla de contingencia, los nodos y los parámetros posteriores entrenados.