GPS: Genetic Prompt Search for Efficient Few-shot Learning

Presented by:

Tang Nhat¹ Le Minh Nhut¹ Tran Dinh Khanh Dang¹ Ho Trong Duy Quang¹ Vo Dinh Khanh¹ Instructor: PhD. Luong Ngoc Hoang¹

¹Department of Computer Science University of Information Technology

CS410 Final Project Presentation, June 13th 2025

Table of Contents

Introduction and Motivation

2 Genetic Prompt Search

3 Experiments and Demo

Table of Contents

1 Introduction and Motivation

2 Genetic Prompt Search

3 Experiments and Demo

Pre-trained Language Model (PLMs)

- Pre-trained Language Models (PLMs) like BERT [1], T5 [2], GPT series have become foundational in Natural Language Processing (NLP). These models are trained on massive text corpora, thus acquiring broad linguistic knowledge.
- The standard paradigm involves pretraining followed by fine-tuning.
 While effective, the fine-tuning approach requires a substantial
 labeled datasets for each downstream task to achieve high
 performance.

PLMs Enhancing Methods

- Manual Prompt Engineering
- Parameters-Based Methods
- Parameter-Frozen Methods

Prompting

- Another paradigm, "prompting", particularly catalyzed by large models GPT-3 [3]. Instead of reformulating downstream tasks to fit the model's pretraining objectives, prompting reformulates the input to match the model's original pretraining format. This is done by adding a textual "prompt" or template to the input example.
 - For instance, a sentiment analysis task might be framed as:
 "Input: [Sentence]. Sentiment: [MASK]".
- Prompting has shown remarkable potential for In-Context learning, allowing PLMs to perform tasks with minimal or no task-specific examples, simply by providing the right instructions or demonstrations within the prompt.

The Challenge of Manual Prompt Engineering

- Prompting's effectiveness heavily depends on the quality of the prompt template. It requires significant human effort, domain expertise, and extensive trial-and-error. Furthermore, some research indicates that:
 - Manually crafted prompts are frequently suboptimal.
 - PLM performance can be highly sensitive to minor changes in prompt phrasing, leading to unstable results.
 - Optimal prompts often vary significantly across different tasks and even different PLMs.
- Recent efforts have tried to mitigate this by collecting diverse prompts or using human feedback, often involving large-scale data collection or model fine-tuning.

Parameters-based Tuning

These methods adapt the PLM to the downstream task using limited data, involving gradient-based updates.

- Model Fine-Tuning: Some few-shot tuning methods focus on template design and update all the parameters of pretrained language models.
- Parameter-Efficient Fine-Tuning (PEFT): These methods aim to reduce the computational and storage cost of fine-tuning by updating only a small subset of parameters or adding small auxiliary modules. Some methods fall into this category are:

Parameter-Efficient Fine-Tuning (PEFT)

Parameter-Efficient Fine-Tuning (PEFT): These methods aim to reduce the computational and storage cost of fine-tuning by updating only a small subset of parameters or adding small auxiliary modules. Some methods fall into this category are:

- Prompt Tuning [4]
- Adapters [5], Bit-Fit [6], LoRA [7]: Involve adding or modifying specific modules or parameters within the model
- Black-Box Tuning [8]

Prompt Tuning

Prompt Tuning [4]: Optimizes continuous vector tokens (soft prompts) in prompts via gradient-based optimization, while the pretrained language model remains frozen

Figure 1: Prompt Tuning Pipeline

Black-Box Tuning

Black-Box Tuning [8]: A gradient-free optimization method for prompt tuning, but it searches for continuous prompt embeddings rather than discrete text prompts

Figure 2: BPT Pipeline

Parameters-based Tuning

These methods adapt the PLM to the downstream task using limited data, involving gradient-based updates.

- Model Fine-Tuning: Some few-shot tuning methods focus on template design and update all the parameters of pretrained language models.
- Parameter-Efficient Fine-Tuning (PEFT): These methods aim to reduce the computational and storage cost of fine-tuning by updating only a small subset of parameters or adding small auxiliary modules.
 Some methods fall into this category are:

Limitations: While it can improve performance, it is time-consuming and requires subjective interpretation.

Parameter-Frozen Tuning

These methods focus on improving performance by finding better discrete prompts or demonstrations, without changing model weights.

- In-Context Learning (ICL): Requires human efforts to provide manual prompts, and sensitive to labeled examples.
- GRIPS (Gradient-Free) [9]: Concurent method.
- GPS (Gradient-Free): Proposed method.

GRIPS - Gradient-free Instructional Prompt Search

- Is an edit-based search approach that focuses on refining existing natural language instructions within prompts.
- GRIPS splits the input into syntactic phrases and applies edit operations: delete (del), swap (swap), paraphrase (par), and add (add) previously deleted phrases at random positions.

June 13th 2025

Table of Contents

Introduction and Motivation

2 Genetic Prompt Search

Experiments and Demo

GPS: Genetic Prompt Search

- The paper proposes Genetic Prompt Search (GPS) as an automated, efficient method to discover high-performing prompts specifically for few-shot learning scenarios.
- GPS aims to address the limitations of manual prompting by:
 - Automating Search.
 - 2 Easy and Cost-efficient.
 - Low data Requirement.
 - Improved Performance.

GPS: Genetic Prompt Search (cont.)

Figure 4: The paradigms of Model Tuning, Prompt Tuning, and GPS.

- Model Tuning: Gradient-based, update all PLM parameters, task specific, need a training set.
- Prompt Tuning: Gradient-based, PLM frozen, task specific, need a tranining set.
- **GPS**: Gradient-free, PLM frozen, need a small validation set.

GPS: Genetic Prompt Search

- GPS employs a genetic algorithm to automatically search for high-performing "hard prompts" (prompts in the discrete word space) to enhance few-shot learning.
- Unlike GRIPS's direct edits, GPS focuses on generating new prompt formulations through "reproduction" strategies
- GPS starts with a set of handcrafted prompts for initialization. It then
 iteratively "reproduces the current generation of prompts" and selects
 candidates based on their performance on a small validation set.

Genetic Prompt Search Algorithm

Figure 5: Overall pipeline of GPS algorithm.

Genetic Prompt Search Algorithm

Algorithm 1 Genetic Prompt Search

Require: G^0 , D_{dev} , f_{GPS} , g_{GPS} , T, K; Ensure: Final optimized prompts, G^{T+1}

- 1: obtain handcrafted prompts G^0 as initialization
- 2: for each $t \in [0, T]$ do do
- 3: store G^t
- 4: calculate score for each prompt in G^t using f_{GPS} ,
- 5: from G^t , select top K prompts as reproductive group G_*^t ,
- 6: generate G^{t+1} based on G_*^t using g_{GPS} ,
- 7: end for
- 8: from stored $\{G_*^0, \dots, G_*^T\}$, select top K prompts as optimal prompts group G^{T+1} using g_{GPS} .
- 9: **return** *G* ^{*T*+1};

Prompt Generation Strategies

Three main strategies have been evaluated:

- Back Translation
- Cloze
- Sentence Continuation

Back Translation

- A common technique for data augmentation in NLP.
- Applied here for prompt reproduction.
- Steps:
 - Translate prompts from English to 11 languages: Chinese, Japanese, Korean, French, Spanish, Italian, Russian, German, Arabic, Greek, Cantonese.
 - Then, translate back to English.
- Prompt scoring: score each prompt based on its accuracy on D_{dev} .

Example: Back Translation

Original Prompt:

"Summarize the following paragraph in one sentence."

Step 1 – Translate to Other Languages:

- Spanish: Resume el siguiente párrafo en una oración.
- French: Résumez le paragraphe suivant en une seule phrase.
- German: Fassen Sie den folgenden Absatz in einem Satz zusammen.

Step 2 - Translate Back to English:

- "Summarize this paragraph in one sentence."
- "Provide a one-sentence summary of the paragraph below."
- "Condense the paragraph into a single sentence."

Cloze

- A prompt generation approach based on the cloze task and pretrained language models.
- Initially follows LM-BFF (Gao et al., 2021b) for few-shot learning.
- Uses T5 to automatically generate prompts by filling in templates with placeholders.
- This method performs poorly in a no-parameter-update setting.
- Instead, the authors:
 - Manually design prompts with some tokens replaced by placeholders.
 - Use **T5** to fill in the blanks.
- Prompt scoring: score the prompts with average logits on D_{dev} .

Example: Cloze

Manual Template:

"The sentiment of the sentence: 'The movie was amazing' is

T5 Fills the Placeholder:

- "positive"
- "great"
- "favorable"

Sentence Continuation

- An alternative approach for prompt augmentation.
- Inspired by DINO (Schick and Schütze, 2021).
- Uses a pretrained language model to generate new prompts.
- Uses the following template as input:
 - "Write two sentences that mean the same thing: Sentence 1: Manual Prompt, Sentence 2:"
- The model continues the prompt to generate Sentence 2 as a new prompt.
- Experiments conducted with:
 - **GPT2-XL** (1.5B parameters)
 - T5LM-XXL (11B parameters)
- Prompt scoring: score each prompt using accuracy on D_{dev}.

Example: Sentence Continuation

Input Template:

"Write two sentences that mean the same thing: Sentence 1: Classify the sentiment of the sentence. Sentence 2:"

Generated Prompts (Sentence 2):

- "Determine whether the sentiment is positive or negative."
- "Identify the emotional tone of the sentence."
- "Analyze the sentiment expressed in the sentence."

June 13th 2025

Table of Contents

Introduction and Motivation

2 Genetic Prompt Search

3 Experiments and Demo

Evaluation Tasks

Evaluation Protocol:

- Use the 10 test tasks from T0, which are not included in the training prompt set.
- The goal is to evaluate the performance of (GPS) and compare it to other baselines.
- For each task, we compute the average accuracy over different generated prompts.
- Natural Language Inference:
 - ANLI R1, ANLI R2, ANLI R3
 - CB, RTE
- Coreference Resolution:
 - WSC, Winogrande

- Sentence Completion:
 - COPA, HellaSwag
- Word Sense Disambiguation:
 - WiC

Setting up

- Due to computational cost constraints, we use T0-3B and T5-XL, instead of T0 (11.1B) and T5-XXL as used in the original paper.
- In each training run:
 - T0-3B is used for *prompt evaluation* via downstream metrics.
 - **T5-XL** is used for *prompt generation*.
- We reduce the batch size from 8 to 2.
- The original paper sets max_step = 9, while we only experiment with values from 1 to 7.

Overall Comparision

Methods	Serving Efficiency	Tunable Parameters	Performance	Computation Cost [†]	
Model Tuning	Х	100%	61.73 (Paper results)	11.1x	
Prompt Tuning	✓	$\sim 0.01\%$	58.56 (Paper results)	11.1x	
Black-Box Tuning	✓	$\sim 0.001\%$	57.82 (Paper results)	9.3x	
In-Context Learning	X ‡	0%	51.28 (Paper results)	0x	
GRIPS	✓	0%	58.66 (Paper results)	Not mentioned	
GPS	✓	0%	60.12 (Paper results)	1.0x	
GPS	✓	0%	50.39 (Our Results)	1.0x	

Table 1: Comparison of few-shot learning methods in efficiency, tunable parameters, performance, and computation cost. †: Includes training and prompt search. ‡: Incontext learning incurs high inference cost due to long sequences.

June 13th 2025

GPS Experiment

max_step	Author	Our Results						
Dataset	9	1	2	3	4	5	6	7
anli.r1	44.06	33.81	33.98	33.94	34.28	33.70	33.52	33.65
anli.r2	38.10	33.11	32.55	31.91	31.53	31.71	32.12	32.14
anli.r3	41.51	33.97	34.44	34.14	34.54	34.73	34.68	34.91
hellaswag	38.85	27.28	27.04	26.67	27.05	27.60	28.01	28.28
super_glue.cb	80.12	43.56	55.36	56.67	57.03	56.89	56.18	56.31
super_glue.copa	93.50	73.09	74.98	75.67	76.24	74.08	75.98	75.41
super_glue.rte	84.22	64.55	69.66	72.53	72.09	73.68	73.25	73.79
super_glue.wic	57.65	50.69	52.34	53.09	53.44	53.76	55.08	55.01
super glue.wsc	63.62	61.50	66.06	65.34	64.42	63.96	64.85	64.00
winogrande.winogrande.xl	59.59	51.20	51.44	51.44	50.76	50.14	50.60	50.60
Avg.	60.12	47.81	50.08	50.19	50.22	50.27	50.36	50.39

Table 2: Comparison between Author (max_step = 9) and Our Results (max_step = $1 \rightarrow 7$) on GPS

GPS Performance

Figure 6: Performance over prompt search iteration (Our Results)

Examples of original prompts and generated prompts by GPS (in red) for each dataset:

- ANLI R1: "{{premise}} Using only the above description and what
 you know about the world, "{{hypothesis}}" is definitely correct,
 incorrect, or inconclusive? ||| {{ answer_choices[label] }}"
- ANLI R1: "Given {{premise}} a test of "{{hypothesis}}" What is the conclusion of this test? ||| {{ answer_choices[label] }}"
- ANLI R2: {{premise}} Using only the above description and what you know about the world, "{{hypothesis}}" is definitely correct, incorrect, or inconclusive? ||| {{ answer_choices[label] }}
- ANLI R2: "{{premise}} What other alternative "{{hypothesis}}" is more likely to be true. ||| {{ answer choices[label]

- ANLI R3: "{{premise}} Using only the above description and what you know about the world, "{{hypothesis}}" is definitely correct, incorrect, or inconclusive? ||| {{ answer_choices[label] }}
- ANLY R3: "{{premise}} What should be the "{{hypothesis}}" of this test? ||| {{ answer _choices[label]}}"
- CB: "Suppose {{premise}} Can we infer that "{{hypothesis}}"? Yes, no, or maybe? ||| {% if label !=-1 %}{{ answer_choices[label] }}{% endif %} "
- CB: "Inferred {{premise}}: "{{hypothesis}}" is true. No, no, or maybe? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}"

- RTE: "{{premise}} Using only the above description and what you know about the world, is "{{hypothesis}}" definitely correct? Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}"
- RTE: "Yes, given that {{premise}} Therefore, it must be true that "{{hypothesis}}" ? Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}"
- WSC: "{{ text }}In the previous sentence, does the pronoun "{{ span2_text.lower() }}" refer to {{ span1_text }}? Yes or no? ||| {% if label != -1 %}{{ answer_choices[label]}}{% endif %}"
- WSC: "{{ text }} In the above sentence, can the pronoun "{{ span2_text }}" be replaced with "{{ span1_text }}" ? Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}"

- Winogrande: "{{ sentence }} _ refers to my brother {{ option1 }} or {{ option2 }}? ||| {% if answer == "1" %} {{option1}} {% else %} {{ option2 }} {% endif %}"
- Winogrande: "{{ sentence }} In the previous sentence, does _ refer to {{ option1 }} or {{ option2 }}? ||| {% if answer == "1" %} {{ option1}} {% else %} {{ option2 }} {% endif %}"

- COPA: "Exercise: choose the most plausible alternative.
 {{ premise }} {% if question == "cause" %} because... {% else %} so... {% endif %}
 {{choice1}}
 {{choice2}} ||| {% if label != -1 %}{{ answer_choices[label]}
- COPA: "{{ premise }} {% if question == "cause" %} This happened because... {% else %} As a consequence... {% endif %} What about this scenario?
 - {{choice1}}

}}{%endif%}"

- {{choice2}} ||| {% if label != -1 %} {{ answer_choices[label] }}{%endif%}"

June 13th 2025

```
• HellaSwag: "Complete the description with an appropriate ending:
  First, {{ ctx a.lower() }} Then, {{ ctx b.lower() }} ...
  (a) {{ answer choices[0] }}
  (b) {{ answer choices[1] }} (c) {{ answer choices[2] }} (d) {{
  answer choices[3] }}
  {{ answer choices[label | int()] }}"

    HellaSwag: "the question ends with a phrase {{ctx}}

  (a) {{answer choices[0]}}
  (b) {{answer choices[1]}}
  (c) {{answer choices[2]}}
  (d) {{answer choices[3]}}
  Hint: the topic of the sentence is {{activity label}}
  {{answer choices [label | int()]}}"
```

• WiC: "Does the word "{{word}}" have the same meaning in these two sentences? Yes, No? {{sentence1}} {{sentence2}} ||| {% if label != -1%} {{answer choices[label]}} {% endif %}" WiC: "Where is the word '{{word}}' {{sentence1}} {{sentence2}} $||| \{\% \text{ if } \setminus || \text{label}| = -1\% \}|$ {{answer choices[label]}}

{% endif %}"

Demo

References |

- [1] J. Devlin, M. Chang, K. Lee, and K. Toutanova, "BERT: pre-training of deep bidirectional transformers for language understanding," in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds., Association for Computational Linguistics, 2019, pp. 4171–4186. [Online]. Available: https://doi.org/10.18653/v1/n19-1423.
- [2] C. Raffel, N. Shazeer, A. Roberts, et al., Exploring the limits of transfer learning with a unified text-to-text transformer, 2023. arXiv: 1910.10683 [cs.LG]. [Online]. Available: https://arxiv.org/abs/1910.10683.

References II

- [3] T. B. Brown, B. Mann, N. Ryder, et al., Language models are few-shot learners, 2020. arXiv: 2005.14165 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2005.14165.
- [4] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing, 2021. arXiv: 2107.13586 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2107.13586.
- [5] N. Houlsby, A. Giurgiu, S. Jastrzebski, et al., "Parameter-efficient transfer learning for NLP," in *Proceedings of the 36th International* Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, K. Chaudhuri and R. Salakhutdinov, Eds., ser. Proceedings of Machine Learning Research, vol. 97, PMLR, 2019, pp. 2790-2799. [Online]. Available: http://proceedings.mlr.press/v97/houlsby19a.html.

June 13th 2025

References III

- [6] E. B. Zaken, Y. Goldberg, and S. Ravfogel, "Bitfit: Simple parameter-efficient fine-tuning for transformer-based masked language-models," in *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022*, S. Muresan, P. Nakov, and A. Villavicencio, Eds., Association for Computational Linguistics, 2022, pp. 1–9. [Online]. Available: https://doi.org/10.18653/v1/2022.acl-short.1.
- [7] E. J. Hu, Y. Shen, P. Wallis, et al., "Lora: Low-rank adaptation of large language models," in *The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022*, OpenReview.net, 2022. [Online]. Available: https://openreview.net/forum?id=nZeVKeeFYf9.

References IV

- [8] L. Yu, Q. Chen, J. Lin, and L. He, "Black-box prompt tuning for vision-language model as a service," in *Proceedings of the* Thirty-Second International Joint Conference on Artificial Intelligence. IJCAI 2023, 19th-25th August 2023, Macao, SAR, China, ijcai.org, 2023, pp. 1686–1694. [Online]. Available: https://doi.org/10.24963/ijcai.2023/187.
- [9] A. Prasad, P. Hase, X. Zhou, and M. Bansal, "Grips: Gradient-free, edit-based instruction search for prompting large language models," in Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2023, Dubrovnik, Croatia, May 2-6, 2023, A. Vlachos and I. Augenstein, Eds., Association for Computational Linguistics, 2023, pp. 3827–3846. [Online]. Available:

https://doi.org/10.18653/v1/2023.eacl-main.277.