1 Лабораторная работа №1

«Исследование цепей постоянного и переменного тока»

1.1 Цель работы

Экспериментальные исследования цепей постоянного и переменного тока. Приобретение практических навыков измерения электрических параметров с помощью электро- и радиоизмерительных приборов.

1.2 Постановка задачи

1.2.1 Рассчитать параметры делителя напряжения на резисторах для заданных входного и выходного напряжений и сопротивления нагрузки в соответствии с заданным вариантом (Таблица 1.1).

Таблица 1.1 – Исходные данные для делителя напряжения

Вариант	Входное	Выходное	Сопротивление		
	напряжение, В	напряжение, В	нагрузки, кОм		
17	12	5	2		

- 1.2.2 Составить в среде моделирования Proteus схему делителя с заданными параметрами и экспериментально измерить выходное напряжение делителя.
- 1.2.3 Исследовать зависимость выходного напряжения делителя при изменении сопротивления нагрузки от максимального значения до 0,1% от Rн.
- 1.2.4 Составить в среде моделирования, дифференцирующие и интегрирующие RC-цепи при заданных значениях сопротивления и емкости (Таблица 1.2).

Таблица 1.2 – Исходные данные для RC-цепей

Вариант	Частота	Амплитуда	Диф. цепочка		Интегрирующая		
	импульсов,	импульсов,	R, кОм	С, пФ	R, кОм	С, нФ	
	Гц	В					
17	1000	2	10	100	100	10	

- 1.2.5 Исследовать временные диаграммы сигналов на выходах дифференцирующих И интегрирующих цепочек при подаче ВХОД последовательности прямоугольных импульсов типа меандр с частотой и амплитудой импульсов, заданной соответствующим вариантом (Таблица 1.2).
- 1.2.6 Исследовать АЧХ и ФЧХ дифференцирующей и интегрирующей цепей в диапазоне частот от 0 до 1 МГц в линейном и логарифмическом масштабах.

1.3 Ход работы

1.3.1 Требуется рассчитать параметры R_1 делителя напряжения на резисторах для исходных значений. Из формулы:

$$U_{\text{вых}} = \frac{U_{\text{вх}} R_2}{R_1 + R_2} \tag{1.1}$$

получена формула для расчёта неизвестного параметра:

$$R_1 = \frac{R_2(U_{BX} - U_{BbIX})}{U_{BbIY}} \tag{1.2}$$

Для заданного $R_{\rm H}=2$ к Ом получено значение $R_2=2000/100=20$ Ом. Значит:

1.3.2 В среде моделирования «Proteus» была составлена схема делителя с исходными данными (Рисунок 1.1). После чего резистору R1_1 было присвоено значение, полученное в прошлом пункте. Запущена симуляция процесса, полученный результат был подтверждён экспериментальным путём (Рисунок 2.2).

Рисунок 1.1 – Схема делителя напряжения

Рисунок 1.2 – Симуляция процесса

1.3.3 Требуется исследовать зависимость «сопротивление нагрузки — выходное напряжение». В Таблице 1.3 продемонстрированы результаты измерений выходного напряжения при изменении сопротивления нагрузки от максимального значения до 0.1% от RH с шагом 0.1.

Процент от $R_{\rm H}$, %	100	75	50	25	15	10	5	3	0.8	0.1
Значение сопротивления нагрузки, Ом	2000	1500	1000	500	300	200	100	60	16	2
Выходное напряжение, В	7.55	7.54	7.52	7.47	7.4	7.31	7.06	6.75	5.19	1.62

1.3.4 В среде моделирования были составлены RC-цепи (Рисунок 1.3). Элементы C10 и R10 образуют дифференцирующую цепочку, а элементы R11 и C11 – интегрирующую.

Рисунок 1.3 – Схема RC-цепей

1.3.5 К составленной в прошлом пункте схеме были добавлены осциллограф и генератор прямоугольных импульсов типа меандр с значениями частоты и амплитуды импульсов из таблицы 1.2. Была получена схема, представленная на рисунке 1.4. После запуска симуляции были получены диаграммы, продемонстрированные на Рисунке 1.5. На диаграмме: график жёлтого цвета — исходный импульс, график синего цвета — импульс на выходе дифференцирующей цепочки, график красного цвета — импульс на выходе интегрирующей цепочки.

Рисунок 3.4 — Схема измерения импульсов на выходах каждой из RC-цепей

Рисунок 1.5 – Показания осциллографа

1.3.6 Для проведения исследований АЧХ и ФЧХ для каждой из RC-цепей исходная схема была изменена (рисунок 1.6). В результате исследований были получены диаграммы, представленные на рисунках 1.7-1.10.

Рисунок 1.6 – Схема для исследования АЧХ и ФЧХ для каждой из RC-цепей