Massachusetts Institute of Technology

Instructors: Gilbert Strang

Problem Set 4

Problem Set 4

Name: Ziyou Ren

Problem 4-1.

Compute the eigenvalues and eigenvectors of A and A^{-1} . Check the trace!

$$A = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} -1/2 & 1 \\ 1/2 & 0 \end{bmatrix}$.

 A^{-1} has the <u>same</u> eigenvectors as A. when A has eigenvalues λ_1 and λ_2 , its inverse has eigenvalues $1/\lambda_1$ and $1/\lambda_2$.

Problem 4-2.

The eigenvalues of A equal the eigenvalues of A^T . This is because $\det(A - \lambda I)$ equals $\det(A^T - \lambda I)$. That is true because you can pick a row in $A - \lambda I$ to compute the determinant and a column in $A^T - \lambda I$, which is the same line. Show by an example that the eigenvectors of A and A^T are *not* the same.

Solution:

A simple 2-by-2 matrix is able to show that, we can use the A in the first problem, the eigenvalues and eigenvectors are shown by coding below:

```
1 Eigenvalues for B: [-1. 2.]
2 Eigenvectors for B
3   [[-0.89442719 -0.70710678]
4   [ 0.4472136  -0.70710678]]
5 Eigenvalues for B.T: [-1. 2.]
6 Eigenvectors for B.T
7   [[-0.70710678 -0.4472136]]
8   [ 0.70710678 -0.89442719]]
```

Problem 4-3.

(a) Factor these two matrices into $A = X\Lambda X^{-1}$:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \quad \text{and} A = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}$$

(b)If
$$A=X\Lambda X^{-1}$$
 then $A^3=\underline{(X)(\Lambda^3)(X^{-1})}$ and $A^{-1}=\underline{(X)(\Lambda^{-1})(X^{-1})}$

Solution:

(a)The matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ has eigenvalues 1 and 3, and eigenvectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$, which gives the factorized matrices :

$$X = \begin{bmatrix} 1 & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix}, \quad \Lambda = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}.$$

The matrix $A = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}$ has eigenvalues 0 and 4, and eigenvectors $\begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$ and $\begin{bmatrix} -1/\sqrt{10} \\ -3/\sqrt{10} \end{bmatrix}$, which gives the factorized matrices :

$$X = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{10} \\ 1/\sqrt{2} & -3/\sqrt{10} \end{bmatrix}, \quad \Lambda = \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}.$$