Pevné Látky

Jakub Rádl

26. ledna 2019

Obsah

1	Pevné látky	2
2	Struktura pevných látek	2
	2.1 Atomy a chemické vazby	2
	2.2. Vlastnosti monokrystalů	6

1 Pevné látky

- 1. Jaká je nejpevnější látka? (tvrdost diamant, tah pavoučí vlákna, dnes uhlíková nanovlákna, ...)
- 2. Jaká jsou využití křemíku? (polovodiče, silikony, ...)
- 3. Proč mají sněhové vločky pravidelný tvar? (díky úhlům v molekule H_2O tvoří 6-úhelník, krystalizuje okolo krystalizačních jader)
- 4. Co je to koeficient bezpečnosti? (udává, kolikrát více produkt vydrží oproti tomu, na kolik je hodnocen)
- 5. Co je to nanotechnologie? (technologie < 100nm např. počítačové čipy)

2 Struktura pevných látek

2.1 Atomy a chemické vazby

Vazby

- kovalentní (nevodiče)
- kovová (umožňuje volný pohyb elektronů -; vodiče)
- iontová
- slabé (vodíková, ...)

Rozdělení látek

- monokrystalické pravidelná struktura (diamant, křemík)
- polykrystalické pravidelná struktura v rozdělených oblastech na mikroskopické úrovni (kovy, led)
- amorfní absolutně nepravidelná struktura (sklo, vosk, makromolekulární látky)

Mezi amorfními a polykrystalickými látkami je těžko rozlišitelná hranice.

• směsi (beton)

2.2 Vlastnosti monokrystalů

- pravidelnost
- kmitání atomů kolem rovnovážných poloh

Krystalová mřížka

- určuje geometrickou souměrnost
- 7 soustav (matematicky dokázáno, že jich nemůže být více)
 - o krychlová, jednoklonná, trojklonná, klencová, šesterečná, čtverečná, kosočtverečná

Elementární buňka

• základní jednotka krystalu, periodicky se opakuje

Př.: železo α

• elementární buňkou jsou pouze vnitřní jeden rohový atom

 $^{{}^{1}\}rm https://upload.wikimedia.org/wikipedia/commons/a/a3/Cubic-body-centered.svg$

Př.: spočítejte hustotu železa z informací o jeho el. buňce

•
$$\rho = \frac{m}{V} = \frac{2 \cdot m_{Fe}}{a^3} = \frac{2 \cdot A_r \cdot m_u}{a^3} = \frac{2 \cdot 56 \cdot 1.66 \cdot 10^{-27}}{(0.287 \cdot 10^{-9})^3} \doteq 7864 kg \cdot m^{-3}$$

pozn.: Struktura a velikost krystalu se určuje pomocí rentgenové difrakce.

Př.: struktura diamantu

Př.: struktura fullerenu

Př.: struktura grafitu

Reálný krystal

- 1. obsahuje příměsi \rightarrow změna vlastností
- 2. poruchy pravidelnosti
 - dislokace

3

 $^{^2 \}rm https://upload.wikimedia.org/wikipedia/commons/4/41/C60a.png$

³https://i.stack.imgur.com/dqwRb.jpg