COMP 543: Tools & Models for Data Science Optimization-Gradient Descent

Chris Jermaine & Risa Myers

Rice University

Optimization

- At the heart of all "learning" frameworks discussed
 - Is optimization!
- Why?
 - Well, it's explicit in case of loss functions, MLE
 - Implicitly in case of Bayesian
- Means we need to ask: how to solve optimization problems?
 - Fundamental question in data science!!

Desired Properties

- To be useful for data science, an optimization framework should be
 - Easily applied to many types of optimization problems
 - Scalable (easily built in Spark, for example)
 - Fast (quick convergence)

Most Widely Used Optimization Framework Is...

- For (big) data science, at least...
 - Gradient descent!
- What's the idea?
 - GD is an iterative algorithm
 - Goal: choose Θ^* to minimize/maximize the Loss function $L(\Theta)$
 - Tries to incrementally improve current solution
 - At step i, Θ_i is current guess for Θ^*

Gradient Descent Intuition

- Look at the slope of L
- Go in the direction of steepest descent
- Don't go too far!
- Stop when your parameter values aren't changing much
- Can end up oscillating if your step size is too big

Gradient Descent

■ Basic algorithm:

```
\begin{array}{l} \Theta_1 \leftarrow \text{non-stupid guess for } \Theta^* \,; \\ i \leftarrow 1 \,; \\ \text{repeat } \{ \\ \Theta_{i+1} \leftarrow \Theta_i - \lambda \nabla L(\Theta_i) \,; \\ i \leftarrow i+1 \,; \\ \} \text{ while } (||\Theta_i - \Theta_{i-1}||_1 > \varepsilon) \end{array}
```

- $\lambda \nabla L(\Theta_i)$ is some distance along the direction of steepest descent
- $||\Theta_i \Theta_{i-1}||_1$ is the absolute value of the change in parameter value(s)

Gradient Descent

■ Basic algorithm:

```
\begin{array}{l} \Theta_1 \leftarrow \text{non-stupid guess for } \Theta^*; \\ i \leftarrow 1; \\ \text{repeat } \{ \\ \Theta_{i+1} \leftarrow \Theta_i - \lambda \nabla L(\Theta_i); \\ i \leftarrow i+1; \\ \} \text{ while } (||\Theta_i - \Theta_{i-1}||_1 > \varepsilon) \end{array}
```

- \blacksquare λ is the "learning rate"
 - how far you go a each step in the direction of steepest descent
 - Controls speed of convergence
 - If too big, algorithm will oscillate
 - If too small, algorithm will take a very long time to run
- \blacksquare $\nabla L(\Theta_i)$ is the gradient of L evaluated at Θ_i

Stopping Condition

Here we use

while
$$(||\Theta_i - \Theta_{i-1}||_1 > \varepsilon)$$

- Easy to compute
- Efficient because it just requires checking for small changes in **model**
- Serves as a proxy for the change in the loss function
- But does not always make sense (big change in model can mean small change in accuracy)

Stopping Condition

If feasible, instead use

while
$$(|L(\Theta_i) - L(\Theta_{i-1})| > \varepsilon)$$

- Drawback: requires loss computation... can be expensive
- Can be more expensive than another iteration
- Alternative: Stochastic Gradient Descent or Minibatch
 - Use a small sample of the dataset
 - Note: the parameters (Θ) will never stop changing, due to different data points used each time
 - Much more difficult to decide when to stop

A Gradient

- What's a "gradient"?
- Gradient is the multi-dimensional analog to a derivative
 - If *L*(.) accepts a vector
 - lacktriangle ∇L is a vector-valued function
 - That is, accepts a vector Θ
 - Returns a vector, Θ'
 - \blacksquare whose *i*th entry is *i*th partial derivative evaluated at Θ

Example

■ Returning to linear regression...

- Want a line to fit points (118, 122, 145, 149, 186)
- At time ticks t in $\langle 1, 2, 3, 4, 5 \rangle$
- Prediction $f(t|b,m) = b + m \times t$
- Loss $L(c,m) = \sum_{i} (f(t_i|b,m) x_i)^2$
- Model parameters: {b,m} {intercept, slope}
- Use L₂ loss: Least Squares

Example

- Prediction $f(t|b,m) = b + m \times t$
- Loss $L(b,m) = \sum_{i} (f(t_i|b,m) x_i)^2$
- First we deal with b and then with m:

$$\frac{\partial L}{\partial b} = \frac{\partial \sum_{i} (f(t_{i}|b,m) - x_{i})^{2}}{\partial b}$$

$$= \sum_{i} 2(f(t_{i}|b,m) - x_{i}) \frac{\partial (f(t_{i}|b,m) - x_{i})}{\partial b}$$

$$= \sum_{i} 2(f(t_{i}|b,m) - x_{i})$$

$$\frac{\partial L}{\partial m} = \frac{\partial \sum_{i} (f(t_{i}|b,m) - x_{i})^{2}}{\partial m}$$

$$= \sum_{i} 2(f(t_{i}|b,m) - x_{i}) \frac{\partial (f(t_{i}|b,m) - x_{i})}{\partial m}$$

$$= \sum_{i} 2t_{i} (f(t_{i}|b,m) - x_{i})$$

Grad Descent and Big Data

■ So
$$\nabla L(b,m) = \langle \sum_i 2(f(t_i|b,m) - x_i), \sum_i 2t_i(f(t_i|b,m) - x_i) \rangle$$

- Gradient of this form (summing up values over all the data points) is very common
- ? Why is this so good for "big data", MapReduce/Spark?

Grad Descent and Big Data

So
$$\nabla L(b,m) = \langle \sum_i 2(f(t_i|b,m)-x_i), \sum_i 2t_i(f(t_i|b,m)-x_i) \rangle$$

- Gradient of this form (summing up values over all the data points) is very common
- Why is this so good for "big data", MapReduce/Spark?
 - Sums are easily parallelized

The Learning Rate

■ Reconsider the algorithm:

```
\begin{array}{l} \Theta_1 \leftarrow \text{non-stupid guess for } \Theta^*; \\ i \leftarrow 1; \\ \text{repeat } \{ \\ \Theta_{i+1} \leftarrow \Theta_i - \lambda \nabla L(\Theta_i); \\ i \leftarrow i+1; \\ \} \text{ while } (||\Theta_i - \Theta_{i-1}||_1 > \varepsilon) \end{array}
```

- How to choose λ ?
- Super important
 - Too small: many, many passes thru the data to converge
 - Too large: oscillate into oblivion
- There are two classic approaches

Line Search

- Best option (in terms of results) but most expensive:
 - Solve another mini-optimization problem at each iteration
 - That is, choose λ so as to minimize $L(\Theta_{i+1})$
 - At lest now, it's a 1-dimensional optimization problem!
 - Called a "line search"

Line Search

- Sort of like a binary search
- But try to find a minimum, not a specific value
 - Always have two bounds l and h on λ
 - At each iteration, choose two l', h' within [l,h]
 - Breaks line segment between *l* and *h* three ways (two ends and a middle)
 - Evaluate loss at l', h'
 - Cut off the worse of the two ends

Line Search

```
l \leftarrow 0:
h \leftarrow 999999;
while (h-l>\varepsilon) do {
   h' \leftarrow l + \frac{1}{6}(h-l);
    l' \leftarrow h - \frac{1}{6}(h-l);
    loss_h \leftarrow L(\Theta_i - h'\nabla L(\Theta_i));
    loss_l \leftarrow L(\Theta_i - l'\nabla L(\Theta_i));
    if (loss_h < loss_l) {
        l \leftarrow l':
    else
        h \leftarrow h':
```


■ "Golden section search": $c = \frac{1}{2}(1+\sqrt{5}) = 1.618$

Problems with Line Search

- Line search is costly!
 - We have to keep recalculating the value of the loss function
 - This is not feasible for big data!

Other Ways To Choose Learning Rate

- Other standard method is "Bold Driver"
 - Widely used approach
- Approach
 - Make a very conservative initial guess for λ
 - At each iteration, compute $L(\Theta_i)$
 - Better than last time? Increment λ just a little bit: $\lambda \leftarrow \lambda \times 1.05$
 - Worse than last time? Reduce λ by a lot: $\lambda \leftarrow \lambda \times 0.5$
 - Just one eval of loss function per iteration!

Bold Driver Intuition

- Increase λ slowly so we don't miss a divergence
- At first sign of a divergence, back up massively
- Theory says that if you choose reasonable increment and decrement factors, the algorithm is guaranteed to converge

Questions?