

A NOVELTY 5G TECHNOLOGY

Group2 – IEMS5701

ZHU, Shengtong | FAN, Bowen | ZHANG, Yaling

- Background Motivation
- Key Design Challenges Key Principles
- 03 Use Cases
- 04 Conclusion

1.1 Background

1.2 Motivation

eMBB

Enhanced Mobile Broadband

Gbps

3D Video, Ultra-HD Screen

Cloud Service

Augmented/Virtual Reality

Consumer-level

Industrial-level

Smart Home/Building

Smart City

Industry automation

Mission Critical applications

Autonomous driving

Ultra-Reliable Low Latency Communication

mMTC

Massive Machine Type Communication

Design Challenges of URLLC

High reliability rate 99.999% | Small latency period 1ms | 32-byte long small packet

2.1 Low Latency

Frame Structure

Expanded numerology

N	0	1	2	3	4	5
Subcarrier Spacing(kHz)	15	30	60	120	240	480

2.1 Low Latency

Packet Structure

Uplink Grant-free HARQ Scheme^[1]

2.2 High Reliability

Multi-Antenna Diversity

Reinforcement Learning

Use Cases

E2E Latency: 1-10ms Reliability: 99.999%

- Robot Control
- Power System Automation
- Process Control & Safety

Intelligent Transportation

E2E Latency: 3-5ms Reliability: 99.999%

- Autonomous Driving
- Traffic Management
- Pedestrian Assistance

Remote Healthcare

E2E Latency: 1ms Reliability: 99.999%

- Remote Surgery
- Online Consultation
- Urgent Scenarios

Conclusion

Objective	Methods	Solution	Relations to Design Challenges			
Low Latency	Frame Structure	Short time interval ensure fast transmission of data payloads	Data/Control Channel			
	Traine Structure	Mini-slot preempting scheduling policy to multiplex with eMBB	Processing time of multiplexing with other services			
	Packet Structure	Fixed Radio frame and subframe structure to multiplex with 4G LTE	Processing time of multiplexing with other services Data/Control Channel			
	i acket structure	New Structure to reduce the processing and transmission delay				
	Uplink Grant-free HARQ	Short HARQ round-trip time to allow retransmissions within the latency	Retransmission time Flexible link adaptation			
	Scheme	budget				
High	Multi-Antenna Diversity	Uplink: Coherent vs Non-coherent Downlink: Beamforming & SVD	Processing time of multiplexing with other services			
Reliability	Reinforcement Learning	An innovative machine learning based trial in communication area	Data/Control Channel			
Application						
Smart Factory		Intelligent Transportation	Remote Healthcare			

