# Elektronik 2

FS 24 Guido Keel (Michael Lehmann)

Autoren:

Authors

Version: 1.0.20240317

https://github.com/P4ntomime/elektronik-2



# **Inhaltsverzeichnis**

| L | reideffekt-fransistoren                    | 4 |   | 2.5 Transistor-Transistor-Logik (TTL)                    | - |
|---|--------------------------------------------|---|---|----------------------------------------------------------|---|
|   | 1.1 FET-Typen und Symbole                  | 2 |   |                                                          |   |
|   | 1.2 Sperrschicht-FET / Junction FET (JFET) | 2 | 3 | 3 CMOS-Logik                                             | 3 |
|   | 1.3 MOS-FETs                               | 2 |   | 3.1 Grundgatter in CMOS-Logik                            |   |
|   | 1.4 Verstärkerschaltungen mit FETs         | 2 |   | 3.2 Dualität NMOS - PMOS                                 |   |
|   | 1.5 MOS-FET als (Leistungs-)Schalter       | 2 |   | 3.3 Verlustleistung bei CMOS-Logik                       |   |
|   | 1.6 Transmission Gate                      | 2 |   | 3.4 Volzogorungszent                                     | ٠ |
|   |                                            |   | 4 | Schmitt-Trigger                                          | 3 |
| 2 | Transistor-Transistor-Logik                | 2 |   | 4.1 Aufbau nichtinvertierender digitaler Schmitt-Trigger | 3 |
|   | 2.1 Resistor Transistor Logik (RTL)        | 2 |   | 4.2 Aufbau invertierender digitaler Schmitt-Trigger      | 3 |
|   | 2.2 Dioden-Transistor-Logik (DTL)          | 3 |   | 4.3 Schmitt-Trigger vs. CMOS-Logik                       | 3 |
|   |                                            |   |   |                                                          |   |

# 1 Feldeffekt-Transistoren

# 1.1 FET-Typen und Symbole



#### 1.1.1 Anschlüsse eines FET

Kanal von Drain zu Source (Stromfluss), gesteuert von Gate (und Bulk)

#### 1.2 Sperrschicht-FET / Junction FET (JFET)

#### 1.2.1 Kennlinien



#### Ausgangskennlinien



#### 1.2.2 Linearer Bereich (gesteuerter Widerstand)



- Für kleinen Spannung-Unterschied  ${\cal V}_{DS}$
- $V_{GS}$  ändert Dicke der Raumladungszone (Kanal)
- n-Kanal JFET: Je negativer  $V_{GS}$ , desto weniger Strom fliesst bzw. desto enger der Kanal

$$I_{D} = \frac{2 \cdot I_{DSS}}{V_{p}^{2}} \left( V_{GS} - V_{p} - \frac{V_{DS}}{2} \right) V_{DS}$$

# 1.2.3 Sättigungs-Bereich (Stromquelle)



- Für hohes  $V_{DS}$  wird leitender Kanal abgeschürt →Strom kann nicht weiter steigen (Stromquelle)
- Übergang gest. Widerstand zu Stromquelle @  ${\cal V}_{DSP}$  $\Rightarrow V_{DSP} = V_{GS} - V_p \ (V_p = \text{Pinch-Off-Spannung})$

$$I_D = \frac{I_{DSS}}{V_p^2} \cdot (V_{GS} - V_p)^2$$

Verstärkungsmass Transkonduktanz:

$$g_m = \frac{2 \cdot I_{DSS}}{V_p^2} \cdot (V_{GS} - V_p) = \frac{2}{|V_p|} \cdot \sqrt{I_{DSS} \cdot I_D} \qquad [g_m] = S$$

# 1.3 MOS-FETs

# 1.3.1 Aufbau



- L Länge des Transistors
- W Breite des Transistors
- · N-Kanal FET: Drain und Source sind n-dotiert
- · Kanal ist p-dotiert

# 1.3.2 Kennlinien

# Eingangskennlinie

# Ausgangskennlinien



#### 1.3.3 Bereiche

- Sperrbereich:  $V_{GS} < V_{TH}$
- Linearer (Widerstands-)Bereich / Anlaufbereich:  $V_{GS} > V_{TH}$
- Sättigungsbereich (Stromquelle):  $V_{DS} > V_{GS} V_{TH}$

# **Anlaufbereich (Linearer Bereich)**

Sättigungsbereich (Stromquelle)

$$I_{D,lin} = \beta \cdot (V_{GS} - V_{TH} - \frac{V_{DS}}{2}) \cdot V_{DS} \qquad \qquad I_{D,sat} = \frac{\beta}{2} \cdot (V_{GS} - V_{TH})^2$$

# 1.3.4 Kleinsignal-Ersatzschaltung (MOS-FET)



# 1.3.5 Temperaturabhängigkeit der Übrtragungskennlinie



Für den n-Kanal FET gilt:

- Threshold-Spannung  $V_{TH}$  sinkt mit 1-2  $\frac{\mu V}{K}$
- $\beta$  sinkt mit steigender Temperatur
- Im Kompensationspunkt bleibt  $I_D$  für fixes  $V_{GS}$

# 1.4 Verstärkerschaltungen mit FETs

#### 1.4.1 Source-Schaltung mit Lastwiderstand

Um den Arbeitspunkt der Schaltung zu bestimmen, wird die Lastgerade von  $\mathcal{R}_L$  in das Ausgangskennlinienfeld eingezeichnet





#### 1.4.2 Push-Pull / Digitaler Inverter



- $V_{in}$  geht auf NMOS und PMOS
- · Ermöglicht grössere Verstärkung

Für  $V_{in} \approx \frac{V_{DD}}{2}$  gilt:

$$A_{V0} = -(g_{m1} + g_{m2}) \cdot (r_{DS1} || r_{DS2})$$

#### 1.5 MOS-FET als (Leistungs-)Schalter

Wenn der FET als Schalter eingesetzt wird, so arbeitet er im linearen Bereich  $(V_{GS} > V_{TH}, \text{d.h. } V_{out} < V_{DD} - V_{TH})$ 

$$I_{D,lin} = \beta \cdot (V_{GS} - V_{TH} - \frac{V_{DS}}{2}) \cdot V_{DS} \qquad r_{DS} = \frac{\mathrm{d}V_{DS}}{\mathrm{d}I_D} = \frac{1}{\beta \cdot (V_{GS} - V_{TH})}$$

$$r_{DS} = \frac{\mathrm{d}V_{DS}}{\mathrm{d}I_D} = \frac{1}{\beta \cdot (V_{GS} - V_{TH})}$$

Schalter geschlossen:  $R_{FET} = R_{DS(on)}$ 

Schalter offen:  $R_{FET} = \infty$ 

#### 1.5.1 Verlustleistung / Erwärmung

$$P_V = R_{DS} * I_{DS}^2 = 0 \,\mathrm{W}$$

$$\Delta T = R_{th} \cdot P_V$$

#### 1.6 Transmission Gate



Im Bild links gilt:  $V_{DD}=5\,\mathrm{V},V_{SS}=0\,\mathrm{V}$ 

- NMOS (oben) leitet für  $V_{in} < V_{DD} T_{TH,n}$
- PMOS (unten) leitet für  $V_{in} > V_{SS} T_{TH,p}$
- · Source und Drain austauschbar
  - →Strom kann in beide Richtungen fliessen

# **Transistor-Transistor-Logik**

- · Meist statischer Stromverbrauch
- Asymmetrische Schaltschwellen (weniger Marge als CMOS-Logik)

#### 2.1 Resistor Transistor Logik (RTL)



Bild: NOR-Gate

- Ausgangsspannung  $V_{out} = V_{+}$  oder  $V_{out} = V_{CE,sat}$
- Fan-Out ist begrenzt (Werden zu viele weitere Gatter an den Ausgang gehängt, so reicht der Strom nicht mehr, um diese zu treiben → Spannungslevel stimmen nicht mehr, um Transisoren durchzusteuern)

# 2.2 Dioden-Transistor-Logik (DTL)



Bild: NAND-Gate

- Fan-Out grösser, da Transistor aktiv nach '0' zieht
- $R_2$  muss keine Gatter treiben (kein grosser Stromfluss)
- · Nachteile: Sehr tiefer Störabstand; Transistor leitet schon bei Spannungen, welche kaum  $> 0\,\mathrm{V}$  sind

#### 2.3 Transistor-Transistor-Logik (TTL)



- · Schaltschwelle am Eingang wird durch Dioden  $V_3$  und  $V_4$  um  $1.4~\mathrm{V}$  erhöht
- Dioden  $V_1$  und  $V_3$  bilden npn-Struktur →npn-Transistor

#### 3 CMOS-Logik

- Entweder leitender Pfad nach  $V_{SS}$  (NMOS) oder  $V_{DD}$  (PMOS)
- Kein statischer Stromverbrauch
- · Langsamer als Bipolar
- Symmetrische Schaltschwellen bei ca.  $\frac{V_{DD}}{2}$  (Übertrgaungskennlinie)
   Output-Level  $V_{ol}, V_{oh}$  näher bei Speisung als Input Level  $V_{il}, V_{ih}$   $\rightarrow$ mehr Marge
- Höhere Speisespannung → weniger propagation delay

#### 3.1 Grundgatter in CMOS-Logik



# 3.2 Dualität NMOS - PMOS



#### 3.3 Verlustleistung bei CMOS-Logik

$$P_V = C \cdot V_{CC}^2 \cdot f$$

CKapazität (aus Datenblatt)

fFrequenz

## 3.4 Verzögerungszeit

#### Linearer Bereich

$$t_{pHL} = 0.69 \cdot R_{on} \cdot C_L$$

→ Exponentielle Entladung!

#### Sättigung (Stromquellen-Bereich)

$$t_{pHL} = \frac{C_L \cdot \frac{V_{swing}}{2}}{I_{sat}} \approx \frac{C_L}{k_n \cdot V_{DD}}$$

→Lineare Entladung!

# 4 Schmitt-Trigger

- · Schaltschwellen müssen nicht sehr genau sein
- Schmitt-Trigger garantieren auch bei verrauschten Signalen saubere (einmalige) Schaltschwellen, dank der Hysterese

#### 4.1 Aufbau nichtinvertierender digitaler Schmitt-Trigger



- $M_1, M_2$ : Digitale Inverter
- $M_3, M_4$ : 'gesteuerte Widerstände
- Für  $V_{out} = 0$ :  $M_4$  leitet,  $M_3$  sperrt
- Für  $V_{out} = 1$ :  $M_3$  leitet,  $M_4$  sperrt
- $M_3, M_4$  verschieben Schaltschwellen abhängig von  $V_{out} \rightarrow \text{Hysterese}$

# 4.2 Aufbau invertierender digitaler Schmitt-Trigger



- Ohne  $M_5, M_6$ : Normaler Inverter mit je 2 Serie-
- Für  $V_{out} = 1$ : Durch  $M_5$  fliesst Strom in  $M_1$
- $V_{in}$  muss höher sein, um Strom der PMOS aufzunehmen → Höhere Schaltschwelle für High-Log-Übergang
- 'Inverses' gilt für  $M_6$  und  $M_4$

#### 4.3 Schmitt-Trigger vs. CMOS-Logik

