Successioni

1 Sottosuccessione

Sia $\{a_n\}$ una successione. Se $\{k_n\}$ è una successione

- strettamente crescente
- con valori in \mathbb{N}
- illimitata (superiormente), cioè $\lim_{n\to+\infty} k_n = +\infty$

allora la successione $\{a_{k_n}\}$ è una **sottosuccessione** di $\{a_n\}$.

In pratica, una sottosuccessione si ottiene scegliendo, in base a $\{k_n\}$, alcuni (infiniti) termini della successione originale $\{a_n\}$.

1.1 Esempi

•
$$a_n = e^n$$
, $k_n = 2n \implies a_{2n} = e^{2n}$

$$\{e^n\}: 1, e, e^2, e^3, e^4, e^5, e^6, \dots$$

 $\{e^{2n}\}: 1, e^2, e^4, e^6, \dots$

•
$$a_n = (-1)^n$$

 $-k_n = 2n \implies a_{2n} = (-1)^{2n} = 1$
 $-k_n = 2n+1 \implies a_{2n+1} = (-1)^{2n+1} = -1$

$$\{(-1)^n\}: 1, -1, 1, -1, 1, -1, \dots$$

 $\{(-1)^{2n}\}: 1, 1, 1, \dots$
 $\{(-1)^{2n+1}\}: -1, -1, \dots$

1.2 Limiti e sottosuccessioni

Teorema: Sia $\{a_n\}$ una successione. Allora,

$$\lim_{n \to +\infty} a_n = l \in \mathbb{R}^*$$

se e solo se il limite di tutte le sottosuccessioni di $\{a_n\}$ è uguale a l.

Ogni successione ha infinite sottosuccessioni, quindi non è pratico usare questo teorema per dimostrare un limite. Esso è invece utile per negare l'esistenza di un limite: basta trovare due sottosuccessioni con limiti diversi, o anche solo una sottosuccessione che non ammetta limite.

1.2.1 Esempio

 $\{(-1)^n\}$ non ammette limite perché ha sottosuccessioni con limiti diversi:

$$\lim_{n \to +\infty} (-1)^{2n} = 1$$

$$\lim_{n \to +\infty} (-1)^{2n+1} = -1$$

2 Teorema ponte

Teorema: Sia $f: X \to \mathbb{R}$ una funzione e $x_0 \in \mathbb{R}^*$ un punto di accumulazione per X. Allora,

$$\lim_{x \to x_0} f(x) = l \in \mathbb{R}^*$$

se e solo se, $\forall \{a_n\} \subseteq X$ tale che $\lim_{n \to +\infty} a_n = x_0$, si ha

$$\lim_{n \to +\infty} f(a_n) = l$$

Questo teorema si può usare, in modo simile a quello relativo alle sottosuccessioni, per negare l'esistenza l'esistenza del limite di una funzione f(x), trovando due successioni che tendono a x_0 lungo le quali f(x) ha limiti diversi, oppure una successione lungo la quale f(x) non ammette limite.

Inoltre, collegando i limiti di funzioni e di successioni (da cui il nome "ponte"), questo teorema permette di applicare anche alle successioni i limiti notevoli e gli asintotici validi per le funzioni.

2.1 Esempi: non esistenza di limiti

• $\sharp \lim_{x \to +\infty} \sin x$, perché

$$a_n = n\pi \to +\infty \implies \lim_{n \to +\infty} \sin(n\pi) = 0$$

$$b_n = \frac{\pi}{2} + 2n\pi \to +\infty \implies \lim_{n \to +\infty} \sin\left(\frac{\pi}{2} + 2n\pi\right) = 1$$

• $\sharp \lim_{x \to +\infty} \cos x$, perché

$$a_n = 2n\pi \to +\infty \implies \lim_{n \to +\infty} \cos(2n\pi) = 1$$

 $b_n = \frac{\pi}{2} + n\pi \to +\infty \implies \lim_{n \to +\infty} \sin\left(\frac{\pi}{2} + n\pi\right) = 0$

2.2 Esempi: limiti notevoli e asintotici

- $\lim_{n \to +\infty} \frac{\sin a_n}{a_n} = 1 \text{ se } a_n \to 0$
- $\lim_{n \to +\infty} \frac{\sqrt{1 + e^{-n}} 1}{e^{-n}} = \frac{1}{2} \text{ perch\'e}$

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha, \quad \alpha = \frac{1}{2}$$

$$a_n = e^{-n} \to 0$$

•
$$\lim_{n \to +\infty} \frac{e^{\frac{1}{n}} - 1}{\log(1 + \frac{1}{n}) + \frac{1}{2n^2}} = \lim_{n \to +\infty} \frac{\frac{1}{n}}{\frac{1}{n} + \frac{1}{2n^2}} = \lim_{n \to +\infty} \frac{\frac{1}{n}}{\frac{1}{n}} = 1$$

•
$$\lim_{n \to +\infty} \frac{n \log n^2 + 2^{-n}}{n \log n^3 + \sqrt{n}} = \lim_{n \to +\infty} \frac{2n \log n}{3n \log n} = \frac{2}{3}$$