Please work the problems in a neat, clear manner. Show enough detail to allow me to follow your solutions; Make it easy for me to grade.

- 1. Let $\vec{a} = \langle 1, 1, -2 \rangle$ and $\vec{b} = \langle 9, 2, -6 \rangle$. Find:
 - (a) $\vec{a} \cdot \vec{b}$
 - (b) $\vec{a} \times \vec{b}$
 - (c) $\|\vec{b}\|$
 - (d) $\hat{\mathbf{b}}$ (a unit vector in the direction of \vec{b} .
 - (e) The angle (to the nearest degree) between \vec{a} and \vec{b} .
 - (f) The area of the parallelogram that can be formed by vectors \vec{a} and \vec{b} .
 - (g) $\operatorname{proj}_{\vec{a}}\vec{b}$
- 2. Given vectors \vec{a} and \vec{b} such that $||\vec{a}|| = 3$, $||\vec{b}|| = 4$ and $\vec{a} \cdot \vec{b} = 6\sqrt{3}$, find $||(\vec{a} + 2\vec{b}) \times (3\vec{a} \vec{b})||$.
- 3. Find all values of b such that the vectors $\langle -6, b, 2 \rangle$ and $\langle b, b^2, b \rangle$ are orthogonal.
- 4. Find the parametric and symmetric equations of the line that goes through the point P(-2, 3, 5) and is parallel to the line with vector equation $\vec{r}(t) = \langle 1 t, 2 + t, -4 4t \rangle$.
- 5. Find an equation (ax + by + cz = d) of the plane that contains the point (-2, 1, 3) and is perpendicular to the line through the points (-2, 1, 3) and (1, 0, -1).