ZAVRŠNI ISPIT IZ DIGITALNE LOGIKE

Grupa D

Funkciju $f(A, B, C) = \overline{B} \cdot (A \oplus C)$ potrebno je ostvariti uporabom konfigurabilnog bloka sklopa FPGA. Što treba upisati u preglednu tablicu (LUT)? U ponuđenim odgovorima vrijednosti su upisane počev od ulaza D0.

- a) 0, 1, 0, 0, 1, 0, 0, 0
- b) 0, 0, 0, 1, 0, 0, 1, 0
- c) 0, 1, 1, 0, 0, 0, 0, 0
- d) 0, 0, 0, 0, 0, 1, 1, 0
- e) 0, 1, 1, 0, 1, 0, 0, 1
- f) ništa od navedenoga

2. Sklopom temeljenim na ispisnoj memoriji potrebno je realizirati funkciju P(i) koja za zadani i vraća i-ti element iz niza $\{3,3,1,0,2,1,0,0,2,2,1,0,2,1,3,1\}$ (numeracija kreće od nule). Što treba upisati u ispisnu memoriju? U ponuđenim odgovorima prikazan je sadržaj po memorijskim lokacijama, počev od adrese 0, u heksadekadskom obliku, pri čemu je bit d_3 bit najveće težine.

- a) E, E, 3, 0, C, 3, 5, 1
- b) E, E, 3, 0, C, 3, 9, 1
- c) D, D, 3, 0, C, 3, 6, 2
- d) D, D, 3, 0, C, 3, A, 2
- e) 0, 3, 5, F, F, C, A, 1
- f) ništa od navedenoga
- Zadana je funkcija $f(A, B, C, D) = \sum m(0,4,5,13,14,15)$? Koliko ta funkcija ima primarnih implikanata / bitnih primarnih implikanata?
 - a) 6/3
 - b) 5 / 3
 - c) 5/2

- d) 4/3
- e) 3/2
- f) ništa od navedenog
- 4. Funkciju $f(A, B, C) = \sum m(0,2,4)$ potrebno je ostvariti multipleksorom 2/1 (s podatkovnim ulazima D_0 i D_1). Ako na selekcijski ulaz multipleksora dovedemo varijablu A, koju funkciju trebamo dovesi na podatkovni ulaz D_1 ?
 - a) 0
 - b) B+C
 - c) $\overline{B \oplus C}$

- d) $\overline{B \cdot C}$
- e) $\overline{B+C}$
- f) ništa od navedenog

5. Sklopom PLA prikazanim na slici ostvarena je funkcija f. O kojoj se funkciji radi?

a)
$$f(A, B, C) = \sum m(2,3,4,7)$$

b)
$$f(A, B, C) = \sum m(3,5,6,7)$$

c)
$$f(A, B, C) = \sum_{n=0}^{\infty} m(1,2,3,6)$$

d)
$$f(A, B, C) = \sum m(0,1,3,7)$$

e)
$$f(A, B, C) = \sum m(1,2,4,6,7)$$

- f) ništa od navedenoga
- 6. Prilikom minimizacije Mooreovog stroja s konačnim brojem stanja razmatraju se stanja S1 i S4. Odgovarajući dio tablice stroja stanja prikazan je u nastavku.

Trenutno stanje	Pobuda	Sljedeće stanje	Izlaz
S1	0	S3	1
	1	S5	1
S4	0	S3	1
	1	S7	1

Što možemo zaključiti o stanjima S1 i S4? Poznato je da stanja S5 i S7 nisu ekvivalentna.

- a) stanja su ekvivalentna
- d) stanja su ekvivalentna, ali imaju različite izlaze
- b) stanja nisu ekvivalentna
- e) stanja su ekvivalentna jer imaju ista sljedeća stanja
- c) stanja su možda ekvivalentna
- f) ništa od navedenog
- Na raspolaganju je težinski 4-bitni D/A pretvornik s operacijskim pojačalom (za kod 8421). Ako je najveći otpor u težinskom dijelu 4 k Ω , otpor R_F u povratnoj vezi operacijskog pojačala 1 k Ω , a referentni napon napajanja U_{REF}=2V, koliki će se napon dobiti na izlazu pretvornika kada na ulaz dovedemo podatak 8?
 - a) -2V

d) -8V

b) -4V

e) -10V

c) -5V

- f) ništa od navedenog
- Sekvencijski sklop izveden je kao Mooreov stroj s konačnim brojem stanja, čije stanje pohranjuju 8. bistabili B₀, B₁ i B₂ (čiji su izlazi Q₀, Q₁ i Q₂), a ulazi su X i Y. Koja od sljedećih funkcija može predstavljati njegov izlaz Z?
 - a) $Z = \overline{X} \cdot Q_2$

d) $Z = Q_1 \oplus Y + Q_2$

b) $Z = (Q_0 + Q_2) \cdot Q_1$

e) $Z = Y + Q_2 X$

c) Z = XY

- f) ništa od navedenog
- 9. Memorija kapaciteta 512×1 bit organizirana je na način 2 ½ D. Ako je poznato da dekoder retka može adresirati 64 memorijske riječi, koliko adresnih ulaza ima multipleksor/demultipleksor stupca?
 - a) 5

d) 2

b) 4

e) 1

f) ništa od navedenog

- c) 3

- 10. Pogledajte VHDL opis sklopa sa slike 1. Kako glasi minimalna lista osjetljivosti bloka process?

 a) clock, F, Qint
 b) clock, E, F, G, H
 c) clock, E, F, G, H, Qint
 d) clock, E, F
 e) Qint, Qout
 f) ništa od navedenog
- 11. Pogledajte VHDL opis sklopa sa slike 1. Koji ulazi modeliranog sinkronog sklopa djeluju asinkrono?

 a) clock
 b) E
 c) F

 d) clock, G, H
 e) E, F, G, H
 f) ništa od navedenog
- 12. Pogledajte VHDL opis sklopa sa slike 1. Koji je ulaz (od asinkronih) ulaz najvećeg prioriteta?

 a) clock
 b) G
 c) H
 f) ništa od navedenog
- 13. Posmačnim registrom sa slike potrebno je ostvariti brojilo koje broji u ciklusu 1,4,2,5,6,7,3. Sklop mora imati sigurni start. Koji od sljedećih izraza opisuje minimalni oblik funkcije f? Prilikom očitavanja stanja izlaz Q2 predstavlja bit najveće težine. Posmak se obavlja u smjeru strelice.

- a) $f = Q_1 \overline{Q}_0 + \overline{Q}_1 Q_0 + \overline{Q}_2 \overline{Q}_1$
- b) $f = Q_1 \overline{Q}_0 + \overline{Q}_2 Q_1$
- c) $f = \overline{Q}_1 \overline{Q}_0 + \overline{Q}_2 Q_1 Q_0$
- d) $f = \overline{Q}_2 Q_0 + Q_2 \overline{Q}_0 + \overline{Q}_1 \overline{Q}_0$
- e) $f = \overline{Q}_2 \overline{Q}_0 + Q_2 \overline{Q}_1 Q_0$
- f) ništa od navedenoga
- 14. Analizom nekog zaštitnog koda utvrđeno je da se sve kodne riječi međusobno razlikuju za 9 ili 11 bitova, izuzev dvije kodne riječi koje se razlikuju za 13 bitova. Koliko najviše pogrešaka takav kod može ispraviti?
 - a) 1
 - b) 2
 - c) 3
 - d) 4
 - e) 5
 - f) ništa od navedenoga

```
entity Element is port (
   clock, E, F, G, H: in std_logic;
   Qout: out std logic);
end Element;
architecture beh of Element is
  signal Qint: std_logic;
begin
  process(clock, E, F, G, H, Qint)
     variable sel: std_logic_vector(1 downto 0);
   begin
      if F='1' then Qint<= '1';
      elsif rising edge(clock) then
        if E='1' then Qint<= '0'; else
          sel:=G&H;
          case sel is
           when "00"=> Qint<= '0';
           when "01"=> Qint<= not Qint;
           when "10"=> Qint<= not Qint;
           when "11"=> Qint<= '1';
           when others=> null;
          end case;
        end if;
      end if;
      Qout <= Qint;
   end process;
end beh;
```

Slika 1. VHDL kod uz zadatke 10, 11 i 12

15.	Pogledajte sklop sa slike 2. Poznati sljedeći parametri: t _{dls} =4ns, t _{hold} =10ns, t _{setup} =12ns, t _{db} =20ns.
	Kolika je maksimalna frekvencija signala takta uz koju će sklop još raditi ispravno?

- a) 50 MHz
- b) 40 MHz
- c) 25 MHz

- d) 20 MHz
- e) 10 MHz
- f) ništa od navedenog
- 16. Pogledajte sklop sa slike 2. U kojem ciklusu broji to brojilo?
 - a) 0, 3, 5, 2, 1, 7, 6, 4
 - b) 0, 2, 5, 1, 7, 3, 4, 6
 - c) 0, 5, 1, 7, 3, 4, 2, 6

- d) 0, 2, 3, 7, 5, 4, 6, 1
- e) 0, 1, 3, 4, 2, 6, 5, 7
- f) ništa od navedenog
- 17. Pogledajte sklop sa slike 2. Ako bistabil B0 zamijenimo s D bistabilom, što bi tada trebalo dovoditi na njegov ulaz D, kako ne bi promijenili rad sklopa?
 - a) $D = Q_1 \oplus Q_0$
 - b) $D = \overline{Q}_2 \overline{Q}_1 + Q_2 Q_0$
 - c) $D = Q_1 \overline{Q}_0 + Q_2$

- d) $D = Q_1Q_0 + \overline{Q}_1\overline{Q}_0$
- e) $D = \overline{Q}_2 Q_1 \overline{Q}_0$
- f) ništa od navedenog

- 18. Koju funkciju obavlja sklop u negativnoj logici, ako u pozitivnoj obavlja funkciju NILI?
 - a) I
 - b) ILI
 - c) NI

- d) NILI
- e) Ex-ILI
- f) ništa od navedenog
- 19. Neki 8-bitni A/D pretvornik sa sukcesivnom aproksimacijom ulazni napon od 5V pretvara 120 ns. Koliko vremena će mu trebati za pretvorbu dvostruko većeg ulaznog napona?
 - a) 30 ns

d) 240 ns

b) 60 ns

e) 480 ns

c) 120 ns

- f) ništa od navedenog
- 20. Booleova funkcija od 5 varijable u kanonskom zapisu produkta maksterma sadrži 6 maksterma. Koliko maksterma, u istom zapisu, sadrži komplement te funkcije?
 - a) 5
 - 1) 2
 - b) 6
 - c) 15

- d) 25
- e) 26
- f) ništa od navedenog