Friday, October 9, 2015 11:42 AM

Energy Conservation for Central Conservative Forces

For motron in a central, conservative force know $\vec{J} = m\vec{r} \times \vec{r}$ is constant, but also know that V(r), the PE, can be defined $(\vec{F} = -\vec{\nabla} V)$, so there is an energy conservation eqn that can be written as $\frac{1}{2}m\vec{r}^2 + V(r) = E = const$.

Rewrite both these conservation laws in polar form:

$$mr^2 \theta = 5$$
 $t_{2m}(\dot{r}^2 + r^2 \dot{\theta}^2) + V(r) = E$

Combine: $\frac{1}{2}m\dot{r}^2 + \frac{1}{2}m\dot{r}^2 + \frac{1}{2}m\dot{r}$

For a given J, can define an effective potential energy function $U(r) = J^2 + V(r)$ 2mr²

- . Energy egin: - [mr2+U(r) = E

The JZ term corresponds to a force JZ which is the centrifugal force

So, if there is some initial radial motion, will so to in i back out w/ no limit
Ex: A chazed particle w/ chaze q, moving in the field of another point charge w/ the exact same charge. Initillar it is approaching the center w/ velocity V (at a lage distance) which would pass the central charge at a distance b. Find the actual distance of closest approach.
would pass the central charge at a distance 6. Find the actual distance of closest approach.
The distance b is called The impact parameter
far away so that $E = \frac{1}{2}mv^2$ (ie, $V(\infty) = 0$)
What about $5? = m\vec{r} \times \vec{v}$
$ \vec{J} = M \vec{r}_{\perp} \vec{v} $ where $ \vec{r}_{\perp} $ is the coup of $\vec{r} \perp t \circ \vec{v}$ $= mbV$
The distance of closest approach, r , is when $r=0$
$E = U(r_1)$ $\Rightarrow \frac{1}{2}mv^2 = \frac{m^2b^2v^2}{2mv_1^2} + \frac{K}{V_1}$
$V_1^2 \left(\frac{1}{2}mv^2\right) = Kv_1 + mb^2v^2$ $V_1^2 - \frac{2Kv_1}{mv^2} - b^2 = 0$
$\int_{-\infty}^{\infty} \sqrt{1 - \frac{K^2}{m^2 v^4}} + \frac{k^2}{b^2}$ where $k = \frac{q^2}{4\pi\epsilon_0}$
The Win train is the amultational const

If K<O, this is the growitational case.

Define l = 52

m|k| The effective PE function is $U(r) = |K| \left(\frac{l}{2r^2} - \frac{1}{r} \right)$ (4/2)