

第四章 关系

郑征

zhengz@buaa.edu.cn

软件与控制研究室

第3讲关系幂运算与关系闭包

1. 关系幂(power)运算

2. 关系闭包(closure)

1. 关系幂(POWER)运算

关系的幂运算

- n次幂的定义
- 指数律
- 幂指数的化简

关系的n次幂

• 关系的n次幂(*n*th power): 设R⊆A×A, n∈N, 则

(1)
$$R^0 = I_A$$
; I_A : 恒等关系
(2) $R^{n+1} = R^n \circ R$, $(n \ge 1)$.

- $R^n = \underbrace{R \circ R \circ \cdots \circ R}_{n \uparrow R}$
- Rⁿ表示的关系,是R的关系图中长度为n的有向路径的起点与终点的关系.

关系幂运算是否有指数律?

- 指数律:
 - (1) $R^m \bigcirc R^n = R^{m+n}$;
 - (2) $(R^m)^n = R^{mn}$.
- 说明:

对一般关系R来说, m, n \in N. 也就是定义与和值域可以互换对满足 I_A \subseteq R且A \subseteq dom R \cap ran R的关系R来说, m, n \in N, Z, 例如R 2 \bigcirc R $^{-5}$ = R $^{-3}$, 因为可以定义 R $^{-n}$ = (R $^{-1}$) n

• 定理17: 设 R⊆A×A, m,n∈N,则

$$(1) \quad \mathsf{R}^{\mathsf{m}} \bigcirc \mathsf{R}^{\mathsf{n}} = \mathsf{R}^{\mathsf{m}+\mathsf{n}} \; ;$$

(2)
$$(R^{m})^{n} = R^{mn}$$
.

定理17(证明(1))

- (1) $R^m \bigcirc R^n = R^{m+n}$;
- 证明: (1) 给定m, 对n归纳. n=0时,

$$R^m \bigcirc R^n = R^m \bigcirc R^0 = R^m \bigcirc I_A = R^m = R^{m+0}$$
.

假设 $R^m \cap R^n = R^{m+n}$,则 $R^m \cap R^{n+1}$

- $=R^{m}\bigcirc(R^{n}\bigcirc R^{1})=(R^{m}\bigcirc R^{n})\bigcirc R^{1}=R^{m+n}\bigcirc R$
- $= R^{(m+n)+1} = R^{m+(n+1)}.$
- (2) 同样对n归纳. #

R⁰,R¹,R²,R³,…是否互不相等?

- 定理16: 设 |A|=n, R⊆A×A, 则 ∃s,t∈N, 并 且 0≤s<t≤2^{n²} 使得 R^s = R^t.
- 证明: P(A×A)对幂运算是封闭的,即
 ∀R, R∈P(A×A) ⇒ R^k∈P(A×A), ⟨k∈N⟩.
 |P(A×A)| = 2^{n²} 在R⁰,R¹,R²,..., R^{2^{n²}} 这
 2^{n²} +1 个集合中,必有两个是相同的.
 所以∃s,t∈N,并且 0≤s<t≤2^{n²} 使得 R^s = R^t. #

无论怎么合成,其中所含有序对中的元素永远属于A

鸽巢原理(pigeonhole principle)

- 鸽巢原理(pigeonhole principle): 若把n+1 只鸽子装进n只鸽巢,则至少有一只鸽巢 装2只以上的鸽子.
- 又名抽屉原则(Dirichlet drawer principle),
 (Peter Gustav Lejeune Dirichlet,1805~1859)
- 推广形式: 若把m件物品装进k只抽屉, 则至少有一只抽屉装 一只以上的物品.
- \[\begin{align*} \

- 定理18: 设 R⊆A×A, 若 ∃s,t∈N (s<t),使得R^s = R^t,则
 - (1) $R^{s+k} = R^{t+k}$;
 - (2) $R^{s+kp+i} = R^{s+i}$, 其中 $k,i \in \mathbb{N}$, p=t-s;
 - (3) 令S={R⁰,R¹,...,R^{t-1}}, 则∀q∈N, R^q∈S.

因为合成算子满足结合律

定理18(说明)

定理18 (证明(1)(3))

- (1) $R^{s+k} = R^{t+k}$;
 - (3) \diamondsuit S={R⁰,R¹,...,R^{t-1}}, 则 \forall q \in N, R^q \in S.
- 证明: (1) R^{s+k} = R^s○R^k = R^t○R^k = R^{t+k};
 - (3) 若 q>t-1≥s, 则令 q=s+kp+i,(构造法) 其中 k,i∈N, p=t-s, s+i<s+p=s+t-s=t; 于是 R^q = R^{s+kp+i} = R^{s+i}∈S.

基本思路: 若q小于等于t-1,则显然;若q大于t-1,则根据(2)进行

定理18(证明(2))

- (2) R^{s+kp+i} = R^{s+i}, 其中k,i∈N, p=t-s;
- 证明: (2) k=0时,显然; k=1时,即(1);

设 k≥2. 则

$$R^{s+kp+i} = R^{s+k(t-s)+i} = R^{s+t-s+(k-1)(t-s)+i}$$

$$= R^{t+(k-1)(t-s)+i} = R^{s+(k-1)(t-s)+i} = ...$$

幂指数的化简

 $R^{s+kp+i} = R^{s+i}$; p=t-s

- 方法: 利用定理16, 定理18.
- 例6: 设 R⊆A×A, 化简R¹00的指数. 已知 (1) $R^7 = R^{15}$; (2) $R^3 = R^5$; (3) $R^1 = R^3$.
- (1) $R^{100}=R^{7+11\times8+5}=R^{7+5}=R^{12}\in\{R^0,R^1,\ldots,R^{14}\};$
- (2) $R^{100}=R^{3+48\times2+1}=R^{3+1}=R^4\in\{R^0,R^1,...,R^4\};$
- (3) $R^{100}=R^{1+49\times2+1}=R^{1+1}=R^2\in\{R^0,R^1,R^2\}.$

2. 关系闭包

关系的闭包

- 自反闭包r(R)
- 对称闭包s(R)
- 传递闭包t(R)
- 闭包的性质, 求法, 相互关系

什么是闭包

- 闭包(closure): 包含一些给定对象, 具有指定性质的最小集合
- · "最小":任何包含同样对象,具有同样性质的集合,都包含这个闭包集合
- 例: (平面上点的凸包)

一个点集,其中任何两个点连线 上的点还属于这个集合

自反闭包(reflexive closure)

- ★自反闭包:包含给定关系R的最小自反关系, 称为R的自反闭包,记作r(R).
 - (1) $R \subseteq r(R)$; (包)
 - (2) r(R)是自反的; (自反)
 - (3) ∀S((R⊆S∧S自反)→r(R)⊆S). (闭)

自反闭包举例

- 在数学中经常要用到小于关系表示量之间的 关系,但是有时感到用小于关系不方便,而 用小于等于关系,实际上是将量之间的关系 进行扩大,不自觉地用了小于的自反闭包,
- 日常生活中我们按同龄或同班或同乡关系将人分组,一般来说同龄,同班,同乡关系指两个不同的人之间的一种关系,这种关系就不具有自反性,如果我们约定了自己与自己同龄,同班,同乡,此时它们就有了自反性。

对称闭包(symmetric closure)

- ★对称闭包:包含给定关系R的最小对称关系, 称为R的对称闭包,记作s(R).
 - (1) $R \subseteq s(R)$; (包)
 - (2) s(R)是对称的; (对称)
 - (3) ∀S((R⊆S ∧ S对称) → s(R)⊆S).

对称闭包举例

- 小于关系是不对称,它的逆关系大于关系也是不对称,但将两者关系并起来(将关系看成集合),得不等关系却是的对称的,不等关系是小于或大于关系的对称闭包;
- 夫对妻的关系是不对称的,妻对夫的关系也是不对称的,但对称闭包婚姻关系却是对称的(考虑到男女平等,即对称性)。

传递闭包(transitive closure)

- ★传递闭包:包含给定关系R的最小传递关系,称为R的传递闭包,记作t(R).
 - (1) $R \subseteq t(R)$;
 - (2) t(R)是传递的;
 - (3) ∀S((R⊆S∧S传递)→t(R)⊆S).

传递闭包举例

• 例1: 如果 *X* 是(生或死)人的集合,而 *R* 是关系 "为父子",则 *R* 的传递闭包是关系 "*x* 是 *y* 的祖先"。

• 例2: 如果 X 是空港的集合而关系,xRy 为"从空港 x 到空港 y 有直航",则 R 的传递闭包是"可能经一次或多次航行从 x 飞到y"。

- 定理19: 设R⊆A×A且A≠Ø,则
 - (1) R自反 \Leftrightarrow r(R) = R;
 - (2) R对称 ⇔ s(R) = R;
 - (3) R传递 ⇔ t(R) = R;

证明: (1) R⊆R ∧ R自反 ⇒ r(R)⊆R (根据自反闭包最小的定义)

 定理20: 设 R₁⊆R₂⊆A×A 且 A≠∅, 则 (1) $r(R_1) \subseteq r(R_2)$; (2) $s(R_1) \subseteq s(R_2)$; (3) $t(R_1) \subseteq t(R_2)$; 证明: (1) R₁⊆R₂⊆ r(R₂)自反, $:: r(R_1) \subseteq r(R_2)$ (根据自反闭包最小的定义) (2)(3) 类似可证. #

如何求闭包?

• 问题:

(1)
$$r(R) = R \cup$$

?

(2)
$$s(R) = R \cup$$

?

(3)
$$t(R) = R \cup$$

?

定理22~24

- 定理22~24: 设 R⊆A×A 且 A≠Ø, 则
 - $(1) \quad \mathsf{r}(\mathsf{R}) = \mathsf{R} \cup \mathsf{I}_{\mathsf{A}};$
 - (2) $s(R) = R \cup R^{-1}$;
 - (3) $t(R) = R \cup R^2 \cup R^3 \cup$
- 对比: R自反 ⇔ I_A⊆R R对称 ⇔ R=R-1 R传递 ⇔ R²⊂R

证明自学

- 定理22: 设 R⊆A×A 且 A≠∅, 则
 r(R) = R∪I₄;
- 证明: (1) R ⊆ R∪I_A;

证明r(R)⊆R∪IA

- (2) $I_A \subseteq R \cup I_A \Leftrightarrow R \cup I_A$ 自反 ⇒ $r(R) \subseteq R \cup I_A$; (根据闭包的最小)证明 $R \cup I_A \subseteq r(R)$
- (3) R⊆r(R)∧r(R)自反
- $\Rightarrow R \subseteq r(R) \land I_A \subseteq r(R) \Rightarrow R \cup I_A \subseteq r(R)$
 - \therefore r(R) = R \cup I_A.

- 定理23: 设 R⊂A×A 且 A≠∅. 则 $s(R) = R \cup R^{-1};$
- 证明: (1) R ⊆ R∪R⁻¹;
- (2) (R∪R⁻¹)⁻¹=R∪R⁻¹ ⇔ R∪R⁻¹对称

- (3) R⊆s(R) ∧ s(R) 对称
- \Rightarrow R \subseteq s(R) \land R⁻¹ \subseteq s(R) \Rightarrow R \cup R⁻¹ \subseteq s(R)
 - \therefore s(R) = R \cup R⁻¹.

对称闭包的性质。请

•基本思路: 同前 •自学

- 定理24: 设 R⊆A×A 且 A≠Ø, 则 t(R) = R∪R²∪R³∪…;
- 证明: (1) R ⊆ R∪R²∪R³∪…;

R是传递的 ⇔ R○R<u>⊆</u>R

- (2) $(R \cup R^2 \cup R^3 \cup ...)^2 = R^2 \cup R^3 \cup ... \subseteq R \cup R^2 \cup R^3 \cup ...$
- ⇔ R∪R²∪R³∪…传递 ⇒ t(R)⊆R∪R²∪R³∪…;
- (3) R⊆t(R) ∧ t(R)传递
- $\Rightarrow R \subseteq t(R) \land R^2 \subseteq t(R) \land R^3 \subseteq t(R) \land ...$
- $\Rightarrow R \cup R^2 \cup R^3 \cup ... \subseteq t(R)$

$$\therefore t(R) = R \cup R^2 \cup R^3 \cup \dots$$

32

定理24的推论

- *****推论: 设 R⊆A×A 且 0<|A|<∞, 则∃ $\ell \in \mathbb{N}$,使 得 t(R) = R∪R²∪R³∪…∪R ℓ ;
- **★**证明: 由定理16知 ∃s,t∈N, 使得 R^s = R^t.

由定理18 知 R,R²,R³,...∈{ R⁰,R¹,...,R^{t-1}}.

取 l=t-1, 由定理24知

$$t(R) = R \cup R^2 \cup R^3 \cup \dots$$

 $= R \cup R^2 \cup R^3 \cup ... \cup R^{\ell}$

$$\therefore t(R) = R \cup R^2 \cup R^3 \cup ... \cup R^{\ell}.$$
#

该推论说明求取传递闭包可以经过有限次运算 证明采用构造法

例8

例8: 设 A = { a,b,c,d },
 R = { <a,b>,<b,a>,<b,c>,<c,d> }.
 求 r(R), s(R), t(R).

例8(续)

解(续):

$$M(R) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

$$M(r(R)) = \begin{vmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{vmatrix}.$$

$$M(s(R)) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

例8(续2)

解(续2):

$$M(R) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathsf{M}(\mathsf{R}^2) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \bullet \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

$$\mathsf{M}(\mathsf{R}^3) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \bullet \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

例8(续3)

• 解(续3):

$$M(R^2) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

$$M(R) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

$$M(R^3) = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathsf{M}(\mathsf{R}^4) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \bullet \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \mathsf{M}(\mathsf{R}^2).$$

例8(续4)

• 解(续4):

38

闭包运算是否保持关系性质?

- 问题:
 - (1) R自反 ⇒ s(R), t(R)自反?
 - (2) R对称 ⇒ r(R), t(R)对称?
 - (3) R传递 ⇒ s(R), r(R)传递?

- 定理25: 设R⊆A×A且A≠Ø,则
 - (1) R自反 ⇒ s(R)和t(R)自反;
 - (2) R对称 \Rightarrow r(R)和t(R)对称;
 - (3) R传递 ⇒ r(R)传递;

定理25(反例)

• 反例: R传递, 但是s(R)非传递.

*小结:闭包运算保持下列关系性质.

	自反性	对称性	传递性
r(R)	√ (定义)	√(定理25(2))	√(定理25(3))
s(R)	√ _{(定理25(1))}	√(定义)	×(反例)
t(R)	√(定理25(1))	√(定理25(2))	√(定义)

闭包运算是否可以交换顺序?

• 问题:

- (1) rs(R) = sr(R)?
- (2) rt(R) = tr(R)?
- (3) st(R) = ts(R)?
- 说明: rs(R) = r(s(R))

- 定理26: 设 R⊆A×A 且 A≠Ø, 则
 - (1) rs(R) = sr(R);
 - (2) rt(R) = tr(R);
 - (3) st(R) \subseteq ts(R);

定理26((3)反例)

• (3) st(R) = ts(R)?

反例: st(R) ⊂ ts(R)

总结

- 关系幂运算
- 关系闭包