Southern University of Science and Technology Advanced Linear Algebra Spring 2023

MA109- Quiz #2

2023/03/05

Student Nu	${f mber}$: _						
1 T / T/	$(c/\sqrt{2})$	$c(\cdot)$	 n	- C	- 7+)	11 177	

1. Let $V = \{f(\sqrt{2}) : f(x) = a_0 + a_1x + \dots + a_nx^n, a_0, a_1, \dots, a_n \in \mathbf{Q}, n \in \mathbf{Z}^+\}$, prove that V is a vector space over \mathbf{Q} , what's the dimension of V?

Solution $\forall f(x) = a_0 + a_1 x + \dots + a_n x^n \in P(\mathbf{Q}), \exists a, b \in \mathbf{Q}, \text{ s.t.}$

$$f(\sqrt{2}) = a_0 + a_1\sqrt{2} + \dots + a_n(\sqrt{2})^n = a + b\sqrt{2}.$$
 (1)

So $V \subset \{a+b\sqrt{2}: a,b \in \mathbf{Q}\}$. On the other hand, it's obvious that $\{a+b\sqrt{2}: a,b \in \mathbf{Q}\} \subset V$. Therefore, we have

$$V = \{ a + b\sqrt{2} : a, b \in \mathbf{Q} \}.$$
 (2)

It's easy to check that $\{a+b\sqrt{2}: a,b\in \mathbf{Q}\}$ contains 0, and is closed under addition and scalar multiplication. So V is a vector space over \mathbf{Q} .

Let $\xi_1 = 1, \xi_2 = \sqrt{2}$. Both of them belong to V. $\forall \eta = a + b\sqrt{2} \in V$, we have

$$\eta = a\xi_1 + b\xi_2. \tag{3}$$

Hence, $V = \text{span } \{\xi_1, \xi_2\}$. Obviously, ξ_1, ξ_2 are linearly independent, which can imply ξ_1, ξ_2 is a basis of V. So dim V = 2

- 2. Let $V = \{A \in \mathbf{R}^{n \times n} : A \text{ is symmetric } \}$. It's obvious that V is a vector space over \mathbf{R} corresponding to matrix addition and scalar multiplication. Let $U = \{A \in V : A = (a_{ij})_{n \times n}, \sum_{i=1}^{n} a_{ii} = 0\}$, $W = \{\lambda I : \lambda \in \mathbf{R}\}$, where I is the identity matrix. It's easy to check U and W are subspaces of V.
 - 1. Find bases for U and W respectively, further compute the dimensions of U and W.
 - 2. Try to prove $V = U \oplus W$.

Solution

1. It's obvious that I is a basis of W, so dim W = 1.

Let E_{ij} be the n by n matrix with 1 on the ith row and jth coloum, 0 on the other position. $\forall A \in U$, let

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & a_{3n} & \cdots & a_{nn} . \end{bmatrix}$$

$$(4)$$

Since $a_{nn} = -\sum_{i=1}^{n-1} a_{ii}$, we can get

$$A = \sum_{i \neq j} a_{ij} (E_{ij} + E_{ji}) + \sum_{i=1}^{n-1} a_{ii} (E_{ii} - E_{nn}).$$
 (5)

So $U = \text{span } \{E_{ij} + E_{ji} : i, j = 1, 2, \dots, n, i \neq j\} \cup \{E_{ii} - E_{nn} : i = 1, 2, \dots, n\}$. And it's easy to check the matrices above are linearly independent. Therefore, $\{E_{ij} + E_{ji} : i, j = 1, 2, \dots, n, i \neq j\} \cup \{E_{ii} - E_{nn} : i = 1, 2, \dots, n\}$ is a basis of U and

$$\dim U = (1+2+\dots+(n-1)) + (n-1) = \frac{(n+2)(n-1)}{2}.$$
 (6)

2. It's easy to check $U \cap W = \{0\}$. And dim $U + \dim W = \frac{(n+2)(n-1)}{2} + 2 = \frac{(n+1)n}{2} = \dim V$. So $V = U \oplus W$.