- 1 [選択] 次の中から1つを選び、その定義を述べなさい。(6点)
- (a) ベクトルの内積
- (b) 空間ベクトルの外積
- (c) 原点 O, 基底 $\{\vec{e_1},\vec{e_2}\}$ によって定まる平面の座標系において, 「点 P の座標が (x,y) であること」
- (d) 直交行列

- **2** 空間ベクトル $\vec{a}=(3,1,-2), \vec{b}=(1,1,2)$ について、次の各間に答えなさい。(各 5 点)

(2) \vec{a} と \vec{b} の両方に直交するベクトルをひとつ求めなさい.

- 3 [選択] 次の2つの中から1つ選び、その問に答えなさい。
- (a) 方程式 $y=2x^2-4x-1$ で与えられる座標平面上の曲線を $\mathcal C$ と する. この座標系を

$$\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} X \\ Y \end{array}\right) + \left(\begin{array}{c} a \\ b \end{array}\right)$$

と変換 (原点の平行移動) すると, $\mathcal C$ の方程式は $Y=2X^2$ になったとする。このとき, a,b の値を求めなさい。(5点)

(b) 平面の基底 $\{\vec{e_1}, \vec{e_2}\}$ と $\{\vec{f_1}, \vec{f_2}\}$ が関係式

$$\vec{f_1} = \frac{1}{2}\vec{e_1} + \frac{\sqrt{3}}{2}\vec{e_2}, \qquad \vec{f_2} = -\frac{\sqrt{3}}{2}\vec{e_1} + \frac{1}{2}\vec{e_2}$$

を満たすとする. $\{O; \vec{e_1}, \vec{e_2}\}$ -座標系での点 P の座標が (1,2) のとき, $\{O; \vec{f_1}, \vec{f_2}\}$ -座標系での点 P の座標を求めなさい. (10 点)

$$\boxed{\textbf{4}} \quad 行列 \ A = \left(\begin{array}{cc} 3 & -2 \\ 4 & -3 \end{array} \right) \, \texttt{とベクトル} \ \vec{d} = \left(\begin{array}{c} -1 \\ 2 \end{array} \right) \, \texttt{に対して},$$

$$f(\vec{p}) = A\vec{p} + \vec{d}$$

で定まるアフィン変換 f について以下の問に答えなさい.

- (1) $f(\vec{p})=\left(egin{array}{c} 3 \\ 1 \end{array}
 ight)$ となる点 \vec{p} を求めなさい。 (6 点)
- (2) f の逆変換 f^{-1} を $f^{-1}(\vec{p}) = B\vec{p} + \vec{e}$ とおくとき,行列 B とベクトル \vec{e} を求めなさい.(8点)

点/40 点

- [5] [選択] 次の3つの命題の中から1つ選んで証明しなさい.
- (a) 行列 $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ によって定義される線形変換 $f(\vec{p}) = R_{\theta}\vec{p}$ は原点を中心とする回転変換である. (8 点)
- (b) 直交行列 A によって定義される線形変換 $g(\vec{p}) = A\vec{p}$ は 2 点間の長さを保つ変換である. (8 点)
- (c) 任意の空間ベクトル \vec{a} , \vec{b} に対し、外積 $\vec{a} \times \vec{b}$ と \vec{a} は直交する。(5 点)