

CLAIMS

1 1. A method of combining data to arrive at a composite graphical representation of a
2 construction site comprising, the steps of:
3 providing subsurface mapping data;
4 creating a subsurface model of subsurface features from the subsurface mapping
5 data;
6 creating a wire frame model of an above surface feature;
7 overlaying the wire frame model with a pictorial representation of the above
8 surface feature; and
9 combining the wire frame model with the subsurface model to produce the
10 composite graphical representation.

1 2. The method of claim 1 wherein the subsurface mapping data is resistivity data.

1 3. The method of claim 2 wherein the resistivity data is taken from an AGI
2 SuperSting program.

1 4. The method of claim 2 further comprising the step of removing a statistical outlier
2 from the resistivity data.

1 5. The method of claim 4 wherein a word processing program is used to remove the
2 outlier.

1 6. The method of claim 5 wherein the word processing program is WORDPAD.

1 7. The method of claim 2 further comprising the step of performing a least squares
2 data inversion analysis on the resistivity data.

1 8. The method of claim 7 wherein the least squares data inversion analysis is
2 performed by a RES3DINV program.

1 9. The method of claim 7 wherein the least squares data inversion analysis is
2 performed by a RES2DINV program.

1 10. The method of claim 2 further comprising the step of performing a kriging
2 analysis on the resistivity data.

1 11. The method of claim 10 wherein the analysis is performed by SURFER software.

1 12. The method of claim 2 further comprising the step of performing a cokriging
2 analysis on the resistivity data.

1 13. The method of claim 1 wherein the subsurface mapping data is ground penetrating
2 radar data.

1 14. The method of claim 13 wherein the ground penetrating radar data is acquired
2 through a SIR-3000 ground penetrating radar system.

1 15. The method of claim 13 wherein the data is enhanced.

1 16. The method of claim 15 wherein the program Radan is used to enhance the data.

1 17. The method of claim 1 wherein the subsurface mapping data is seismic data.

1 18. The method of claim 17 wherein the seismic data is acquired from a SmartSeis
2 seismic imaging system.

1 19. The method of claim 17 wherein the data is enhanced.

1 20. The method of claim 19 wherein the program SizeImager is used to enhance the
2 data.

1 21. The method of claim 1 wherein the wire frame model is created using
2 AUTOCAD software.

1 22. The method of claim 1 wherein the wire frame model includes a model of
2 vegetation.

1 23. The method of claim 1 wherein the wire frame model includes a model of a
2 building.

1 24. The method of claim 1 wherein the pictorial representation is an aerial
2 photograph.

1 25. The method of claim 24 wherein the aerial photograph is imported into
2 EVS software.

1 26. The method of claim 1 wherein the subsurface model comprises at least
2 one 2-dimensional graph.

1 27. The method of claim 1 wherein the subsurface model comprises at least
2 one 3-dimensional graph.

1 28. The method of claim 1 wherein the composite graphical representation is
2 produced in Visual Reduction Modeling Language.

1 29. The method of claim 28 wherein the graphical representation is viewed as
2 a web page.

1 30. The method of claim 1 comprising the further step of displaying the
2 composite graphical representation.

1 31. The method of claim 1 wherein the composite graphical representation can
2 be rotated.

1 32. The method of claim 1 wherein the pictorial representation is a
2 representation of texture.

1 33. The method of claim 1 including the additional step of viewing a 2-
2 dimensional slice of the composite graphical representation.

1 34. The method of claim 1 wherein the graphical representation is used in a
2 .AVI file.

1 35. The method of claim 1 wherein the wire frame model includes below
2 surface ground structures.

1 36. A 3-dimensional model of a construction site comprising:
2 a graphical model of subsurface mapping data;
3 a spatial model of an above ground object; and
4 a 2-dimensional image of the above ground object superimposed on the
5 spatial model and spatially synchronized with the graphical model of resistivity data.

1 37. The 3-dimensional model of claim 36 wherein the graphical model is
2 prepared using kriging.

1 38. The 3-dimensional model of claim 36 wherein the spatial model is
2 prepared using AUTOCAD.

1 39. The 3-dimensional model of claim 36 wherein the 3-dimensional model is
2 rendered in Visual Reduction Modeling Language.

1 40. The 3-dimensional model of claim 36 wherein the subsurface mapping
2 data is resistivity data.

1 41. The 3-dimensional model of claim 40 wherein the resistivity data includes
2 data related to moisture content.

1 42. The 3-dimensional model of claim 40 wherein the resistivity data includes
2 data related to a void.

1 43. The 3-dimenstional model of claim 40 wherein the resistivity data includes
2 data related to a subsurface anomaly.

1 44. The 3-dimenstional model of claim 40 wherein the resistivity data is
2 derived through use of the equation:

3 $R = (V/I)K;$

4 where K is an electrode geometric constant;

5 R is resistance;

6 V is voltage; and

7 I is current.

1 45. The 3-dimensional model of claim 36 wherein the subsurface mapping
2 data is ground penetrating radar data.

1 46. The 3-dimensional model of claim 36 wherein the subsurface mapping
2 data is seismic data.

1 47. A method of creating a graphical model comprising the steps of:
2 testing to determine subsurface mapping data;
3 enhancing the data;
4 constructing a wire frame model of an above ground structure;
5 providing a pictorial representation of a plan view of the above ground
6 structure;
7 combining the pictorial representation with the wire frame model;
8 aligning the subsurface mapping data with the combined pictorial
9 representation and wire frame model; and
10 merging the subsurface mapping data with the combined pictorial
11 representation and wire frame model.

1 48. The method of claim 47 wherein the subsurface mapping data is resistivity
2 data.

1 49. The method of claim 48 wherein the data is enhanced by performing a
2 least squares data inversion analysis on the subsurface mapping data.

1 50. The method of claim 48 wherein the data is enhanced by performing a
2 kriging analysis on the subsurface mapping data.

1 51. The method of claim 50 wherein the step of testing includes choosing a
2 placement for electrodes.

1 52. The method of claim 50 wherein the placement is the Wenner
2 arrangement.

1 53. The method of claim 51 wherein the placement is the Schlumberger
2 arrangement.

1 54. The method of claim 51 wherein the placement is the dipole dipole
2 arrangement.

1 55. The method of claim 47 wherein the step of combining is carried out with
2 AUTOCAD software.

1 56. The method of claim 47 wherein the step of merging is carried out with
2 EVS software.

1 57. The method of claim 47 wherein the step of merging results in a VRML
2 file.

1 58. The method of claim 47 further comprising the step of visually displaying
2 the merged subsurface mapping data, combined pictorial representation and wire frame
3 model.

1 59. The method of claim 58 wherein the pictorial representation can be
2 rotated.

1 60. The method of claim 47 wherein the step of merging results in an HTML
2 file.

1 61. The method of claim 47 wherein the subsurface mapping data is ground
2 penetrating radar data.

1 62. The method of claim 61 wherein the program Radan is used to enhance
2 the data.

1 63. The method of claim 47 wherein the subsurface mapping data is seismic
2 data.

1 64. The method of claim 61 wherein the program SizeImager is used to
2 enhance the data.

1 65. The method of claim 48 wherein the wire frame model includes below
2 ground structures.