Luis Vinicius Costa Silva

Prova 2 - Parte 2

Modelagem Computacional Prof. Thiago Alves de Queiroz Data de Entrega: 04/12/2018

Questão 3

A questão 3 pede uma comparação entre o Método do Tiro Linear e o Método de Diferenças Finitas Linear na resolução da seguinte EDP:

$$y'' = -4x^{-1}y' + 2x^{-2}y - 2x^{-2}ln(x) \quad 1 \leq x \leq 2 \quad y(1) = \frac{1}{2} \quad y(2) = ln(2) \quad \text{onde a solução exata \'e:}$$

$$y(x) = 4x^{-1} - 2x^{-2} + \ln(x) - \frac{3}{2}$$
(1)

Utilizando h=0.01, a execução do algoritmo resultou nas soluções apresentadas pelas tabelas abaixo:

i	X	W	ex	erro
1	1.000000	0.500000	0.500000	0.000000
2	1.010000	0.506441	0.509754	0.003314
3	1.020000	0.512722	0.519034	0.006312
4	1.030000	0.518844	0.527862	0.009018
5	1.040000	0.524810	0.536262	0.011452
6	1.050000	0.530621	0.544255	0.013634
7	1.060000	0.536278	0.551861	0.015582
8	1.070000	0.541784	0.559099	0.017315
9	1.080000	0.547141	0.565987	0.018847
10	1.090000	0.552349	0.572542	0.020193
11	1.100000	0.557412	0.578781	0.021369
12	1.110000	0.562332	0.584719	0.022386
13	1.120000	0.567112	0.590370	0.023258
14	1.130000	0.571752	0.595747	0.023995
15	1.140000	0.576256	0.600865	0.024609
16	1.150000	0.580627	0.605735	0.025109
17	1.160000	0.584866	0.610370	0.025504
18	1.170000	0.588976	0.614780	0.025804
19	1.180000	0.592960	0.618976	0.026016
20	1.190000	0.596820	0.622968	0.026148
21	1.200000	0.600559	0.626766	0.026207

Continuação da tabela 1 da página anterior

i	X	w	ex	erro
22	1.210000	0.604180	0.630379	0.026199
23	1.220000	0.607685	0.633815	0.026130
24	1.230000	0.611076	0.637082	0.026006
25	1.240000	0.614357	0.640189	0.025833
26	1.250000	0.617530	0.643144	0.025614
27	1.260000	0.620597	0.645952	0.025355
28	1.270000	0.623561	0.648621	0.025060
29	1.280000	0.626425	0.651157	0.024732
30	1.290000	0.629191	0.653567	0.024376
31	1.300000	0.631862	0.655855	0.023994
32	1.310000	0.634440	0.658029	0.023589
33	1.320000	0.636928	0.660093	0.023165
34	1.330000	0.639328	0.662052	0.022724
35	1.340000	0.641643	0.663910	0.022268
36	1.350000	0.643875	0.665674	0.021799
37	1.360000	0.646026	0.667346	0.021320
38	1.370000	0.648099	0.668932	0.020833
39	1.380000	0.650096	0.670435	0.020339
40	1.390000	0.652019	0.671858	0.019840
41	1.400000	0.653871	0.673207	0.019336
42	1.410000	0.655653	0.674484	0.018831
43	1.420000	0.657368	0.675692	0.018323
44	1.430000	0.659018	0.676834	0.017816
45	1.440000	0.660605	0.677915	0.017310
46	1.450000	0.662131	0.678936	0.016805
47	1.460000	0.663598	0.679900	0.016303
48	1.470000	0.665007	0.680811	0.015803
49	1.480000	0.666361	0.681670	0.015308
50	1.490000	0.667662	0.682480	0.014818
51	1.500000	0.668911	0.683243	0.014332
52	1.510000	0.670110	0.683962	0.013852
53	1.520000	0.671260	0.684638	0.013378
54	1.530000	0.672364	0.685275	0.012910

Continuação da tabela 1 da página anterior

i	x	w	ex	erro
55	1.540000	0.673423	0.685872	0.012450
56	1.550000	0.674438	0.686434	0.011996
57	1.560000	0.675412	0.686961	0.011549
58	1.570000	0.676345	0.687454	0.011110
59	1.580000	0.677238	0.687917	0.010678
60	1.590000	0.678095	0.688349	0.010255
61	1.600000	0.678914	0.688754	0.009839
62	1.610000	0.679699	0.689131	0.009432
63	1.620000	0.680450	0.689483	0.009033
64	1.630000	0.681169	0.689811	0.008642
65	1.640000	0.681856	0.690116	0.008260
66	1.650000	0.682513	0.690399	0.007886
67	1.660000	0.683141	0.690661	0.007520
68	1.670000	0.683741	0.690905	0.007164
69	1.680000	0.684314	0.691129	0.006815
70	1.690000	0.684861	0.691337	0.006476
71	1.700000	0.685384	0.691528	0.006144
72	1.710000	0.685882	0.691704	0.005822
73	1.720000	0.686357	0.691865	0.005507
74	1.730000	0.686810	0.692012	0.005202
75	1.740000	0.687242	0.692146	0.004905
76	1.750000	0.687653	0.692269	0.004616
77	1.760000	0.688045	0.692380	0.004335
78	1.770000	0.688417	0.692480	0.004063
79	1.780000	0.688771	0.692571	0.003800
80	1.790000	0.689108	0.692652	0.003544
81	1.800000	0.689428	0.692725	0.003297
82	1.810000	0.689732	0.692790	0.003058
83	1.820000	0.690020	0.692847	0.002827
84	1.830000	0.690293	0.692897	0.002604
85	1.840000	0.690552	0.692941	0.002389
86	1.850000	0.690797	0.692980	0.002182
87	1.860000	0.691029	0.693013	0.001983

Continuação da tabela 1 da página anterior

i	X	W	ex	erro
88	1.870000	0.691249	0.693041	0.001792
89	1.880000	0.691456	0.693064	0.001609
90	1.890000	0.691651	0.693084	0.001433
91	1.900000	0.691835	0.693100	0.001265
92	1.910000	0.692008	0.693113	0.001105
93	1.920000	0.692171	0.693124	0.000953
94	1.930000	0.692324	0.693132	0.000808
95	1.940000	0.692468	0.693138	0.000670
96	1.950000	0.692602	0.693142	0.000540
97	1.960000	0.692727	0.693144	0.000417
98	1.970000	0.692844	0.693146	0.000302
99	1.980000	0.692953	0.693147	0.000194
100	1.990000	0.693054	0.693147	0.000093
101	2.000000	0.693147	0.693147	0.000000

Tabela 1: Solução apresentada pelo Método do Tiro Linear

i	X	W	Solução Exata	Erro
1	1.000000	0.500000	0.500000	0.000000
2	1.010000	0.506442	0.509754	0.003313
3	1.020000	0.512723	0.519034	0.006310
4	1.030000	0.518847	0.527862	0.009015
5	1.040000	0.524814	0.536262	0.011448
6	1.050000	0.530625	0.544255	0.013630
7	1.060000	0.536283	0.551861	0.015578
8	1.070000	0.541790	0.559099	0.017309
9	1.080000	0.547147	0.565987	0.018840
10	1.090000	0.552356	0.572542	0.020187
11	1.100000	0.557420	0.578781	0.021362
12	1.110000	0.562340	0.584719	0.022379
13	1.120000	0.567120	0.590370	0.023250
14	1.130000	0.571760	0.595747	0.023987
15	1.140000	0.576265	0.600865	0.024600

Continuação da tabela ${\bf 2}$ da página anterior

i	X	w	Solução Exata	Erro
16	1.150000	0.580636	0.605735	0.025100
17	1.160000	0.584875	0.610370	0.025495
18	1.170000	0.588985	0.614780	0.025795
19	1.180000	0.592970	0.618976	0.026006
20	1.190000	0.596830	0.622968	0.026138
21	1.200000	0.600569	0.626766	0.026197
22	1.210000	0.604190	0.630379	0.026188
23	1.220000	0.607695	0.633815	0.026120
24	1.230000	0.611087	0.637082	0.025996
25	1.240000	0.614367	0.640189	0.025822
26	1.250000	0.617540	0.643144	0.025604
27	1.260000	0.620607	0.645952	0.025345
28	1.270000	0.623571	0.648621	0.025049
29	1.280000	0.626435	0.651157	0.024722
30	1.290000	0.629201	0.653567	0.024365
31	1.300000	0.631872	0.655855	0.023983
32	1.310000	0.634450	0.658029	0.023579
33	1.320000	0.636938	0.660093	0.023155
34	1.330000	0.639338	0.662052	0.022714
35	1.340000	0.641653	0.663910	0.022258
36	1.350000	0.643884	0.665674	0.021789
37	1.360000	0.646035	0.667346	0.021311
38	1.370000	0.648108	0.668932	0.020824
39	1.380000	0.650105	0.670435	0.020330
40	1.390000	0.652028	0.671858	0.019830
41	1.400000	0.653880	0.673207	0.019327
42	1.410000	0.655662	0.674484	0.018822
43	1.420000	0.657377	0.675692	0.018315
44	1.430000	0.659027	0.676834	0.017808
45	1.440000	0.660613	0.677915	0.017301
46	1.450000	0.662139	0.678936	0.016797
47	1.460000	0.663606	0.679900	0.016295
48	1.470000	0.665015	0.680811	0.015796

Continuação da tabela 2 da página anterior

i	X	W	Solução Exata	Erro
49	1.480000	0.666369	0.681670	0.015301
50	1.490000	0.667669	0.682480	0.014810
51	1.500000	0.668918	0.683243	0.014325
52	1.510000	0.670117	0.683962	0.013845
53	1.520000	0.671267	0.684638	0.013371
54	1.530000	0.672371	0.685275	0.012904
55	1.540000	0.673429	0.685872	0.012443
56	1.550000	0.674444	0.686434	0.011989
57	1.560000	0.675418	0.686961	0.011543
58	1.570000	0.676350	0.687454	0.011104
59	1.580000	0.677244	0.687917	0.010673
60	1.590000	0.678100	0.688349	0.010249
61	1.600000	0.678919	0.688754	0.009834
62	1.610000	0.679704	0.689131	0.009427
63	1.620000	0.680455	0.689483	0.009028
64	1.630000	0.681173	0.689811	0.008638
65	1.640000	0.681860	0.690116	0.008255
66	1.650000	0.682517	0.690399	0.007882
67	1.660000	0.683145	0.690661	0.007516
68	1.670000	0.683745	0.690905	0.007160
69	1.680000	0.684318	0.691129	0.006812
70	1.690000	0.684865	0.691337	0.006472
71	1.700000	0.685387	0.691528	0.006141
72	1.710000	0.685885	0.691704	0.005818
73	1.720000	0.686360	0.691865	0.005504
74	1.730000	0.686813	0.692012	0.005199
75	1.740000	0.687245	0.692146	0.004902
76	1.750000	0.687656	0.692269	0.004613
77	1.760000	0.688047	0.692380	0.004333
78	1.770000	0.688419	0.692480	0.004061
79	1.780000	0.688774	0.692571	0.003797
80	1.790000	0.689110	0.692652	0.003542
81	1.800000	0.689430	0.692725	0.003295

Continuação da tabela 2 da página anterior

i	x	W	Solução Exata	Erro
82	1.810000	0.689734	0.692790	0.003056
83	1.820000	0.690022	0.692847	0.002825
84	1.830000	0.690295	0.692897	0.002602
85	1.840000	0.690554	0.692941	0.002388
86	1.850000	0.690799	0.692980	0.002181
87	1.860000	0.691031	0.693013	0.001982
88	1.870000	0.691250	0.693041	0.001791
89	1.880000	0.691457	0.693064	0.001608
90	1.890000	0.691652	0.693084	0.001432
91	1.900000	0.691836	0.693100	0.001265
92	1.910000	0.692009	0.693113	0.001104
93	1.920000	0.692172	0.693124	0.000952
94	1.930000	0.692325	0.693132	0.000807
95	1.940000	0.692468	0.693138	0.000670
96	1.950000	0.692602	0.693142	0.000540
97	1.960000	0.692727	0.693144	0.000417
98	1.970000	0.692844	0.693146	0.000302
99	1.980000	0.692953	0.693147	0.000194
100	1.990000	0.693054	0.693147	0.000093
101	2.000000	0.693147	0.693147	0.000000

Tabela 2: Solução apresentada pelo Método das Diferenças Finitas

Nota-se que o Método do Tiro Linear e o Método das Diferenças Finitas obtiveram resultados extremamente similares, com um erro na ordem 10^{-2} na maioria das vezes (10^{-1} em alguns casos). Em uma comparação do erro acumulado entre os dois, nota-se que o Método do Tiro Linear obteve uma aproximação sutilmente melhor (da ordem de 10^{-5}). Neste caso em específico, é seguro afirmar que o Método do Tiro Linear é um pouco melhor que o Método das Diferenças Finitas, visto que, apesar de necessitar de um pouco mais de iterações, ainda assim obtém uma solução (infimamente) melhor que o Método das Diferenças Finitas. Adicionalmente o Método do Tiro Linear possui uma implementação menos laboriosa.

Questão 4

A questão 4 pede a análise da pressão em p(x,t) durante o calibramento de um pneu para um $(x,t)=(\frac{1}{2},1)$, onde x é a quantidade de pressão na posição x do pneu em um instante t. A EDP abaixo (e suas condições de contorno) modela o sistema para uma mangueira de comprimento L=1:

$$\frac{\partial^2 p}{\partial x^2} - \frac{1}{2} \frac{\partial^2 p}{\partial t^2} = 0 \qquad 0 \le x \le L \qquad t \ge 0$$

$$\begin{cases} p(0,t) = 0.5 \\ p(L,t) = 1.8 \end{cases} \begin{cases} p(x,0) = \cos(x)\sin(2\pi x) \\ \frac{\partial p}{\partial t}(x,0) = \cos(2\pi x) \end{cases} \qquad 0 \le x \le L$$

Foi utilizado o algoritmo das diferenças finitas para a resolução da Equação da Onda sob um passo de h=k=0.05, entretanto, para tais parâmetros de passo foi notado que ocorre um blow-up da solução, dada a estabilidade do método numérico utilizado estar condicionado a $\lambda=\alpha\frac{k}{h}\leq 1$ [1]. Logo, se utilizou um h=0.05 e um k=0.01, a fim de satisfazer a condição citada anteriormente. As tabelas abaixo representam a solução apresentada pelo algoritmo para h=k=0.05 e h=0.05, k=0.01:

Parâmetros de entrada:

$$\begin{cases} f = \cos(x)\sin(2\pi x) \\ g = \cos(2\pi x) \\ l = 1 \\ T = 1 \\ ya = \sqrt{2} \\ h = 0.05 \\ k = 0.05 \end{cases}$$
 para a primeira execução, 0.01 para a segunda execução

i	X	W	ex	erro
1	1.000000	0.500000	0.500000	0.000000
2	1.010000	0.506441	0.509754	0.003314
3	1.020000	0.512722	0.519034	0.006312
4	1.030000	0.518844	0.527862	0.009018
5	1.040000	0.524810	0.536262	0.011452
6	1.050000	0.530621	0.544255	0.013634
7	1.060000	0.536278	0.551861	0.015582
8	1.070000	0.541784	0.559099	0.017315
9	1.080000	0.547141	0.565987	0.018847
10	1.090000	0.552349	0.572542	0.020193
11	1.100000	0.557412	0.578781	0.021369

Continuação da tabela 3 da página anterior

i	X	W	ex	erro
12	1.110000	0.562332	0.584719	0.022386
13	1.120000	0.567112	0.590370	0.023258
14	1.130000	0.571752	0.595747	0.023995
15	1.140000	0.576256	0.600865	0.024609
16	1.150000	0.580627	0.605735	0.025109
17	1.160000	0.584866	0.610370	0.025504
18	1.170000	0.588976	0.614780	0.025804
19	1.180000	0.592960	0.618976	0.026016
20	1.190000	0.596820	0.622968	0.026148
21	1.200000	0.600559	0.626766	0.026207
22	1.210000	0.604180	0.630379	0.026199
23	1.220000	0.607685	0.633815	0.026130
24	1.230000	0.611076	0.637082	0.026006
25	1.240000	0.614357	0.640189	0.025833
26	1.250000	0.617530	0.643144	0.025614
27	1.260000	0.620597	0.645952	0.025355
28	1.270000	0.623561	0.648621	0.025060
29	1.280000	0.626425	0.651157	0.024732
30	1.290000	0.629191	0.653567	0.024376
31	1.300000	0.631862	0.655855	0.023994
32	1.310000	0.634440	0.658029	0.023589
33	1.320000	0.636928	0.660093	0.023165
34	1.330000	0.639328	0.662052	0.022724
35	1.340000	0.641643	0.663910	0.022268
36	1.350000	0.643875	0.665674	0.021799
37	1.360000	0.646026	0.667346	0.021320
38	1.370000	0.648099	0.668932	0.020833
39	1.380000	0.650096	0.670435	0.020339
40	1.390000	0.652019	0.671858	0.019840
41	1.400000	0.653871	0.673207	0.019336
42	1.410000	0.655653	0.674484	0.018831
43	1.420000	0.657368	0.675692	0.018323
44	1.430000	0.659018	0.676834	0.017816

Continuação da tabela 3 da página anterior

i	X	W	ex	erro
45	1.440000	0.660605	0.677915	0.017310
46	1.450000	0.662131	0.678936	0.016805
47	1.460000	0.663598	0.679900	0.016303
48	1.470000	0.665007	0.680811	0.015803
49	1.480000	0.666361	0.681670	0.015308
50	1.490000	0.667662	0.682480	0.014818
51	1.500000	0.668911	0.683243	0.014332
52	1.510000	0.670110	0.683962	0.013852
53	1.520000	0.671260	0.684638	0.013378
54	1.530000	0.672364	0.685275	0.012910
55	1.540000	0.673423	0.685872	0.012450
56	1.550000	0.674438	0.686434	0.011996
57	1.560000	0.675412	0.686961	0.011549
58	1.570000	0.676345	0.687454	0.011110
59	1.580000	0.677238	0.687917	0.010678
60	1.590000	0.678095	0.688349	0.010255
61	1.600000	0.678914	0.688754	0.009839
62	1.610000	0.679699	0.689131	0.009432
63	1.620000	0.680450	0.689483	0.009033
64	1.630000	0.681169	0.689811	0.008642
65	1.640000	0.681856	0.690116	0.008260
66	1.650000	0.682513	0.690399	0.007886
67	1.660000	0.683141	0.690661	0.007520
68	1.670000	0.683741	0.690905	0.007164
69	1.680000	0.684314	0.691129	0.006815
70	1.690000	0.684861	0.691337	0.006476
71	1.700000	0.685384	0.691528	0.006144
72	1.710000	0.685882	0.691704	0.005822
73	1.720000	0.686357	0.691865	0.005507
74	1.730000	0.686810	0.692012	0.005202
75	1.740000	0.687242	0.692146	0.004905
76	1.750000	0.687653	0.692269	0.004616
77	1.760000	0.688045	0.692380	0.004335

Continuação da tabela 3 da página anterior

i	X	W	ex	erro
78	1.770000	0.688417	0.692480	0.004063
79	1.780000	0.688771	0.692571	0.003800
80	1.790000	0.689108	0.692652	0.003544
81	1.800000	0.689428	0.692725	0.003297
82	1.810000	0.689732	0.692790	0.003058
83	1.820000	0.690020	0.692847	0.002827
84	1.830000	0.690293	0.692897	0.002604
85	1.840000	0.690552	0.692941	0.002389
86	1.850000	0.690797	0.692980	0.002182
87	1.860000	0.691029	0.693013	0.001983
88	1.870000	0.691249	0.693041	0.001792
89	1.880000	0.691456	0.693064	0.001609
90	1.890000	0.691651	0.693084	0.001433
91	1.900000	0.691835	0.693100	0.001265
92	1.910000	0.692008	0.693113	0.001105
93	1.920000	0.692171	0.693124	0.000953
94	1.930000	0.692324	0.693132	0.000808
95	1.940000	0.692468	0.693138	0.000670
96	1.950000	0.692602	0.693142	0.000540
97	1.960000	0.692727	0.693144	0.000417
98	1.970000	0.692844	0.693146	0.000302
99	1.980000	0.692953	0.693147	0.000194
100	1.990000	0.693054	0.693147	0.000093
101	2.000000	0.693147	0.693147	0.000000

Tabela 3: Solução da EDP para h=0.05 e k=0.01

Referências

[1] Isaacson, Eugene and Keller, Herbert Bishop. Analysis of Numerical Methods, Iohn Wiley and Sons Inc., New York, 1966.