Project 2 - Ames Housing Data Challenge

Introduction and Problem Statement

• When it comes to real estate pricing, there is a famous old saying:

"There are three things that matter in property: location, location."

• This project aims to produce a model can be used as a tool by real estate agents to aid their price evaluation of residential properties and seek to identify any attributes that influence property prices.

Data Available

- Ames, Iowa housing price data set is used to train our model
- Recoded in 2006 to 2010
- 81 features

Data cleaning

Simple imputation:

- 460 observations for `lot_frontage` imputed using median values.
- Observations Id 2237 and Id 1357 for `garage_yr_blt` imputed using median values
- Observation Id 1578 for `electrical` imputed using mode
- Observation Id 1357 `garage_finish` imputed using mode
- Observation Id 2237 `garage_finish`, `garage_cars`, `garage_area`, `garage_qual`, `garage_cond` imputed with median values or mode

Logical imputation:

• For the remaining missing values, it was assumed that each of the value was meant to be "None" or "0" but was incorrectly left empty instead.

Exploratory Data Analysis

- Visualised the histogram, scatter plot, box plot, and qq plot
- Issues that could impact machine learning:
 - o skewed data,
 - Outliers
 - Poor distribution

Modeling

• First iteration

Summary of results on unseen data set:

	Dummy regression	Linear regression	Ridge	Lasso	Elastic net
r2	-5.251×10^{-5}	-9.320 ×10 ¹⁹	0.9322	0.9289	0.9309
rmse	0.3847	1.174×10^{12}	0.1002	0.1026	0.1011
rmse*	74990	N.A.	17400	17140	17210

Modeling

- Second iteration
- Top 30 features from lasso model in the first iteration
- The performance of all 3 models were very similar
- Elastic net is chosen instead. As final model. i.e. reduces the coefficients of predictors while not eliminating them

	Linear regression	Ridge	Lasso	Elastic net
r2	0.9164	0.9180	0.9171	0.9179
rmse	0.1112	0.1101	0.1108	0.1102
rmse*	18140	18047	18120	18070

Coefficients of the elastic model

Coefficients transformation

Features

reatures	Oberricients	transionnation	runctional_ryp	0.010411	3.77
gr_liv_area	0.132990	log	heating_Grav	-0.014586	-
overall_qual	0.084052	-	year_remod/add	0.012948	
overall_cond	0.056268	log			
year_built	0.069774	square	neighborhood_StoneBr	0.014512	- -
total_bsmt_sf	0.045902	log	screen_porch	0.012728	log
lot_area	0.048071	log	kitchen_abvgr	-0.012605	log
ms_zoning_A (agr)	-0.036443	-	bsmt_exposure	0.011451	log
bsmtfin_sf_1	0.026404	log	heating_qc	0.017885	-
ms_zoning_C (all)	-0.018633	-			
bsmt_qual	0.015030	square	fireplaces	0.015078	log
garage_cars	0.030172	-	sale_type_New	0.016299	-
neighborhood_NridgHt	0.015355	-	neighborhood_Crawfor	0.014046	n-
exterior_1st_BrkFace	0.015216	-	paved_drive	0.008841	square
kitchen_qual	0.020225	-	• · · · · · · · · · · · · · · · · · · ·		
bsmt_full_bath	0.018473	log	neighborhood_Edwards	-0.008357	-
neighborhood_GrnHill	0.015582	-	condition_1_Norm	0.014311	-

functional Typ

0.016411

Residual plots and distribution plots

Conclusions

Key housing attributes that influence prices

- RMSE score 19,953 in kaggle
- top predictors that influenced the target price the most were gr_liv_area,
 overall_qual, overall_cond, year_built, total_bsmt_sf, lot_area.
- Log transformation reduces the interpretability of the model's coefficients i.e. practical relationship between individual feature against sale price.

Improvement:

Review the features used in final model as of the features used in final model as of the features are poorly distributed and likely not a good candidate as a predictor e.g. paved_driveures

Recommendations

Final model is fit for price housing price prediction in Ames, Iowa. Nevertheless, as the most of the predictors were skewed, transformation was applied and hence complicate the interpretation of the linear coefficients. As such, for this model, it is not easy to directly quantify the influence of sale price for every unit increase of each predictor.