KENDRIYA VIDYALAYA SANGATHAN MODEL QUESTION PAPER-5 BLUE PRINT

CLASSS XII COMPUTER SCIENCE (083)

TIME: 03:00 Hrs. MAX. MARKS: 70

THVIE: US	TIME: 03:00 Hrs.		MAX. MARKS			70
S.No.	UNIT	VS	SA	SA	L	TOTAL
		\mathbf{A}	Ι	II	\mathbf{A}	
		(1	(2	(3	(4	
		Mark)	Marks)	Marks)	Marks)	
	Review of C++ covered in					
1	Class XI	1(1)	8 (4)	3(1)		12 (6)
2	Object Oriented Programming in					
	C++					
	a) Introduction to OOP using C++		2(1)		4(1)	6(2)
	b) Constructor & Destructor		2(1)			
	c) Inheritance				4 (4)	2(1)
					4(1)	4 (1)
	+					4(1)
2	D-4- C4					
3	Data Structure & Pointers					
	a) Address Calculation			3(1)		3(1)
	a) radices calculation			3(1)		3(1)
	b) Static Allocation of Objects			3(1)		5 (2)
			2(1)			
	c) Dynamic Allocation of		()			4(1)
	Objects d) Infix & Postfix				4(1)	, ,
	Expressions					2(1)
			2(1)			
4	Data File Handling in C++					
	a) Fundamentals of File	1 (1)				1 (1)
	Handling b) Text File	1(1)				1(1)
	c) Binary Files		2(1)			2(1)
			2(1)			2(1)
				3(1)		3(1)
				3 (1)		3 (1)
5	Databases and SQL					
	a) Database Concepts					
			2(1)			2(1)
	b) Structured Query Language					
			2(1)		4(1)	6(2)
6	Boolean Algebra					
	a) Introduction to Boolean					
	Algebra					

	& Laws		2(1)			2(1)
	b) SOP & POS	1(1)				1(1)
	c) Karnaugh Map			3(1)		3 (1)
	d) Basic Logic Gates		2(1)			2(1)
7	Communication & Open Source Concepts					
	a) Introduction to Networking	2(2)				2(2)
	b) Media, Dvices, Topologies & Protocols				4(1)	4(1)
	c) Security	2(2)				2(2)
	d) Webservers	1(1)				1(1)
	e) Open Source Terminologies	1(1)				1(1)
	TOTAL	9 (9)	26 (13)	15 (5)	20 (5)	70 (32)

KENDRIYA VIDYALAYA SANGATHAN

MODEL QUESTION PAPER-5 Class XII- COMPUTER SCIENCE (083)

TIME ALLOWED: 3:00 Hrs. Max. Marks: 70 **Instructions:** All questions are compulsory. i)ii) *Programming language: C++.* **Q.1.** (a) What is the difference between call by value and call by reference? Also, give a suitable C++ code to illustrate both. [2] (b) Name the header file(s) required for successful compilation of the given code: [1] void main() int Rno=24; { char Name[]= "Aman"; cout<<setw(10)<<Rno<<setw(20)<<Name<<endl; } (c) Rewrite the following program after removing all the syntactical errors underlining each correction, if any: [2] #include <iostream.h> class FLIGHT long FlightCode; char Description[25]; public void AddInfo(){cin>>FlightCode; gets(Description);} void ShowInfo(){cout<< FlightCode<<:<<Description<<endl;}</pre> **}**; void main() FLIGHT F; AddInfo.F(); F.ShowInfo(); } (d) Write the output of the following program segment: [3] #include<iostream.h> struct THREE_D int x,y,z; **}**; void movein(THREE_D &T, int step=1) T.x+=step;T.y-=step; T.z+=step;void moveout(THREE_D &T, int step=1) T.x-=step;T.y+=step;

```
T.z-=step;
       }
       void main( )
              THREE D T1=\{10,20,5\}, T2=\{30,10,40\};
              movein(T1);
              moveout(T2,5);
              cout<<T1.x<<","<<T1.y<<","<<T1.z<<endl;
              cout<<T2.x<<","<<T2.y<<","<<T2.z<<endl;
              movein(T2,10);
              cout<<T2.x<<","<<T2.y<<","<<T2.z<<endl;
       }
(e) Write the output of the following program segment:
                                                                                        [2]
              #include<iostream.h>
              #include<ctype.h>
              void main( )
              {
                             char Mystring[] = "what@ANIDea!";
                             for(int I=0; Mystring [I] ! = '\0'; I++)
                                    if(!isalpha (Mystring[I]) )
                                            Mystring[I] = ' * ';
                                    else if(isupper (Mystring[I] ))
                                            Mystring[I] = Mystring[I]+1;
                                    else
                                            Mystring[I] = Mystring[I+1];
                     cout<<Mystring;</pre>
(f) In the following program, find the correct possible output(s) from the given options:
       # include <iostream.h>
       # include <stdlib.h>
              const int limit = 4;
              void main()
                     int points;
              {
                     randomize ();
                      points = 100 + \text{random (limit)};
                     for (int P= points; P >= 100; P--)
                             cout << P << "#";
                      cout <<endl;
              }
       Output options:
       i) 103#102#101#100#
       ii) 100#101#102#103#
       iii) 100#
       iv) 104#103#102#101#100#
```

Q.2.

(a) Define the term Data Hiding in the context of Object Oriented Programming. Give a suitable example using a C++ code to illustrate the same. [2]

```
[2]
(b) Answer the questions (i) and (ii) after going through the following class.
       class Basketball
              int Time;
              public:
               Basketball()
                                                                           //Function 1
                      Time = 0:
                      cout << "Match commences "<< endl;
               void Details()
                                                                           //Function 2
               { cout<<"Inter Section Basketball Match"<<endl; }
               Basketball(int Duration)
                                                                           //Function 3
                      Time = Duration;
                      cout<<"Another match begins now"<<endl; }</pre>
               Basketball(Basketball &M)
                                                                           //Function 4
                      Time = M.Duration;
                      cout<<"Like Previous Match"<<endl; }</pre>
```

- (i) Which category of constructor Function 4 belongs to and what is the purpose of using it?
- (ii) Write statements that would call the member Function 1 and Function 3.
- (c) Define a class **POWER** in C++ with following description:

[4]

Private Members:

};

MNO of type long (Meter Number)
Name of type string (Consumer's Name)
Units of type long (Power Unit's Consumed)

Charges of type float (Charges to be paid by Consumer)

A member function CALCCHARGES() to calculate Charges according to the following conditions:

UnitsChargesBelow 100 UnitsRs. 2.00 per UnitBelow 200 Units and > = 100 UnitsRs. 3.00 per Unit> = 200 UnitsRs. 5.00 per UnitFor Example:

If the Units are 132, Charges should be calculated as Charges = 99 * 2 + (Units - 99) * 3;

Public Members:

A constructor to initialize MNO as 251786, Name as "Moti Lal", Units as 100, Charges as 201.

A Function EnterData() to allow user to enter values for MNO, Name, Units & call the function CALCCHARGES() to calculate the Charges.

A Function ShowBill() to allow user to view the content of all the data members.

(d). Consider the following declarations and answer the questions given below:

[4]

```
class Car
       char Model[10];
       char Date_of_purchase[10];
       char Company[20];
       public:
       Car();
       void entercardetail( );
       void showcardetail( );
};
class Accessories: private Car
       protected:
       char stereo_tape[30];
       char sheet_cover[20];
       public:
       float Price:
       Accessories();
       void enteraccessoriesdetails();
       void showaccessoriesdetails();
};
class Dealer: public Accessories
       int No_of_dealers;
       char dealers_name[20];
       int No_of_products;
       public:
       Dealer();
       void enterdealerdetails( );
       void showdealerdetails( );
};
```

- (i) Name the type of Inheritance depicted in the above example.
- (ii) How many bytes will be required by an object of class Accessories?
- (iii) Write names of all the members which are accessible from the objects of class Dealer.
- (iv) Write names of all data members accessible from member functions of class Dealer.

Q.3.

- (a) An array S[40][30] is stored in the memory along the row with each of the element occupying 2 bytes, find out the memory location for the element S[15][5], if an element S[20][10] is stored at the memory location 5500. [3]
- (b) Write a function SWAP(int P[], int N) in C++ to modify the content of the array in such a way that the elements, which are multiples of 10 swap with the value present in the very next position in the array. [3]

```
For eg. If the content of the array P is 91, 50, 54, 22, 30, 56
Then, the content of array P should become 91, 54, 50, 22, 56, 30
```

(c) Write a function in C++ to print the product of each column of a two dimensional array passed as the arguments of the function. [2]

Example : If the two dimensional array contains Then the output should appear as: Product of Column 1 = 24Product of Column 2 = 30Product of Column 3 = 240

(d) Write a function to perform *Insert* operation in a *dynamic Queue* containing DVD's information. [4] struct DVD
{ long No; //DVD No char Title[20]; //DVD Title DVD *Link; };

(e) Evaluate the following postfix notation of expression: True, False, AND, True, True, NOT, OR, AND [2]

Q.4.

(a) Observe the program segment given below carefully and fill the blanks marked as Statement 1 and Statement 2 using seekg() and tellg() functions for performing the required task. [1]

```
#include <fstream.h>
       class Employee
           int Eno; char Ename[20];
       public:
           //Function to count the total number of records
           int Countrec();
       };
       int Item::Countrec()
              fstream File;
              File.open("EMP.DAT",ios::binary|ios::in);
                                                                           //Statement 1
              int Bytes =
                                                                           //Statement 2
              int Count = Bytes / sizeof(Item);
              File.close();
              return Count:
}
```

- (b) Write a function in C++ to read the content of a text file "PLACES.TXT" and display all those lines on screen, which are either starting with 'P' or starting with 'S'. [2]
- (c) Write a function in C++ to search for a Pcode from a binary file "PRODUCT.DAT", assuming the binary file is containing the objects of the following class.
 [3] class PRODUCTS

 int Pcode;
 char Pname[20];

float Price;

```
public :
     void getproducts()
     {
          cin>>Pcode>>Pname>>Price;
     }
     void showproducts()
     {
          cout<<Pcode<<Pname<<Price<<endl;
     }
     int getproduct()
     {
               return Pcode;
          }
};</pre>
```

Q.5.

- (a) What do you understand by Candidate key & Primary key in a table? Give a suitable example of Candidate key and Primary key from a table containing some meaningful data.
- (b) Consider the following tables SCHOOL and ADMIN. Write SQL commands for the statements (i) to (iv) and give outputs for SQL queries (v) to (viii). [6]

SCHOOL

CODE	TEACHERNAME	SUBJECT	DOJ	PERIODS	EXPERIENCE
1001	RAVI SHANKAR	ENGLISH	12/03/2000	24	10
1009	PRIYA RAI	PHYSICS	03/09/1998	26	12
1203	LISA ANAND	ENGLISH	09/04/2000	27	5
1045	YASHRAJ	MATHS	24/08/2000	24	15
1123	GANAN	PHYSICS	16/07/1999	28	3
1167	HARISH B	CHEMISTRY	19/10/1999	27	5
1215	UMESH	PHYSICS	11/05/1998	22	16

ADMIN

CODE	GENDER	DESIGNATION
1001	MALE	VICE PRINCIPAL
1009	FEMALE	COORDINATOR
1203	FEMALE	COORDINATOR
1045	MALE	HOD
1123	MALE	SENIOR TEACHER
1167	MALE	SENIOR TEACHER
1215	MALE	HOD

- i) To decrease period by 10% of the teachers of English subject.
- ii) To display TEACHERNAME, CODE and DESIGNATION from tables SCHOOL and ADMIN whose gender is male.
- iii) To Display number of teachers in each subject.
- iv) To display details of all teachers who have joined the school after 01/01/1999 in descending order of experience.

- v) SELECT SUM (PERIODS), SUBJECT FROM SCHOOL GROUP BY SUBJECT;
- vi) SELECT TEACHERNAME, GENDER FROM SCHOOL, ADMIN WHERE DESIGNATION = 'COORDINATOR' AND SCHOOL.CODE=ADMIN.CODE;
- vii) SELECT DESIGNATION, COUNT (*) FROM ADMIN GROUP BY DESIGNATION HAVING COUNT (*) >1;
- viii) SELECT COUNT (DISTINCT SUBJECT) FROM SCHOOL;

Q.6.

(a) Verify the following algebraically. [2]

X'Y + X.Y' = (X'+Y').(X+Y)

(b) Write the equivalent Boolean expression for the following logic circuit: [2]

(c) Given the following truth table, write the sum-of-product form of the function F(x, y, z).

Z X Y F 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1

(d) Reduce the following Boolean expression using K-Map
$$F(A,B,C,D) = \pi (0,1,3,4,5,6,7,9,10,11,13,15).$$

Q.7.

(a) What is the importance of URL in networking? [1]

(b) Expand the following terminologies with respect to Networking: [1]

i) XML ii) CDMA.

(c) Define the term firewall.

(d)Name one client side scripting language and one server side scripting language. [1]

Page: 9

(e) "NEXTGEN CLASSES" is located in Jaipur and is planning to go in for networking of four wings for better interaction. The details are as shown below: [4]

The distance between various wings are:

Student to Admin	265m
Student to Admission	495m
Student to Hostel	525m
Admission to Admin	200m
Admission to Hostel	195m
Admin to Hostel	325m

Number of computers are:

Student Wing	312
Admission Wing	156
Admin Wing	26
Hostel Wing	125

- (i) Suggest a most suitable cable layout of the connection between the wings and topology.
- (ii) Suggest the placement of the following devices with reasons :
 - a) Modem
- b) Switch
- (iii) The Institute is planning to link its another branch "ABHI CLASSES" in Andaman & Nicobar. Suggest the type of network and a way to connect it with reasonably high speed, cost is not the factor. Justify your answer.
- (iv) Suggest the type of networking (LAN, MAN, WAN) for connecting Hostel Wing to Admin Wing. Justify your answer.

KENDRIYA VIDYALAYA SANGATHAN MODEL QUESTION PAPER-5 Class XII- COMPUTER SCIENCE (083) MARKING SCHEME

Time Allowed: 3 Hours Max. Marks: 70

Q.No	Answer	Marks
1) a.	In call by value the changes made in formal arguments are not reflected	2 (1 Mark for correct
	back to the actual arguments.	definition & 1 mark for
	But in call by reference changes made in formal arguments are reflected	example)
	back to the actual arguments.	
	Example: Any correct example for both	
1) b.	iostream.h, (for cin, cout)	1 (½ Mark for
	iomanip.h (for setw)	mentioning name of
1)		each header file)
1) c.	#include <iostream.h></iostream.h>	2 (½ Mark for
	#include <stdio.h></stdio.h>	mentioning each error)
	class FLIGHT	
	{ long FlightCode; char Description[25];	
	public:	
	void AddInfo(){cin>>FlightCode; gets(Description);}	
	void ShowInfo()	
	{cout< <flightcode<<<u>":"<<description<<endl;}< td=""><td></td></description<<endl;}<></flightcode<<<u>	
	};	
	void main()	
	{ FLIGHT F;	
	F.AddInfo();	
	F.ShowInfo();	
	}	
1) d.	11,19,6	3 (1 Mark for each
	25,15,35	correct line of output)
	35,5,45	
1) e.	hat@*BOJEa!*	2 marks for correct
4) 0	'\ 1'''\	output
1) f.	i) and iii)	2 (1 Mark for each
2)		correct option)
2) a.	Data Hiding: Keeping the data in private visibility mode of the class to	2 (1 Mark for correct
	prevent it from accidental change is known as Data Hiding. Or	(1 Mark for correct definition & 1 mark for
	Unessential features or background details are hidden from the outside	example)
	world.	example)
	Example: Any one correct example	_
2) b.	i) Funtion 4- Copy Constructor	2
	It passes the values of one object into another object of same type.	(1 Mark for correctly
	ii) For calling function F1- Basketball B1; But the B2(00)	answering to each part.)
2)	For calling function F1- Basketball B2(90);	4
2) c.	class POWER	4
	{ private:	(½ Mark each for data
	char Name[30];	members and
	long MNO, Units;	constructor)
	float Charges; void CALCCHARGES()	(1 Mark for each function definition)
	VUIU CALCUTARUES()	Tunction definition)

```
{ if (Unit< 100)
           Charges= Units*2;
         else if (Units<200)
            Charges = 99*2 + (Units-99)*3;
            Charges = 99*2 + 100*3 + (Units-199)*5;
         public:
           POWER()
           { strcpy(Name, "Moti Lal");
            MNO= 251786:
            Units= 100:
            Charges= 201;
         void EnterData()
         { gets(Name);
         cin>> NMO>> Units;
         CALCCHARGES();
         void ShowBill( )
         { cout<<MNO<<Name<<Units<< Charges;
2) d.
         i) Multilevel inheritance
         ii) 94 bytes
                                                                                  (1
                                                                                       Mark
                                                                                               for
                                                                                                     each
         iii) Data members- Price.
                                                                                  correct answer.)
         Member functions- enteraccessories details(), showaccessories details(),
                                                                                  No marks to be given
         enterdealerdetails(),
                                                                                  for partial answers
         showdealerdetails().
         iv) Data members- Price, No_of_dealers, dealers_name,
         No_of_products, stereo_tape, sheet_cover.
3) a.
         Given.
         W=2
                                                                                  (1 Mark for correct
         N_r = 40
                                                                                  formula/substitution of
         N_{c} = 30
                                                                                  values in formula)
         Address(S[20][10])=5500
                                                                                  (1 Mark for correctly
                                                                                  calculating Base
         Row Major Formula:
         Address (S[I][J]) = B + W [N_c (I - L_r) + (J - L_c)]
                                                                                  Address)
         Address (S[20][10]) = B + 2 [30(20 - 0) + (10 - 0)]
                                                                                  (1 Mark for correctly
         5500 = B + 2 [600 + 10]
                                                                                  calculating address of
         B= 5500-1220=4280
                                                                                  desired location)
         Address (S[15][5]) = 4280 + 2[30(15 - 0) + (5 - 0)]
         =4280 + 2 [450 + 5]
         =4280 + 910 = 5190
3) b.
         void SWAP(int P[ ],int N)
         { int temp;
                                                                                  ( ½ Mark for function
         for(int i=0;i< N:i++)
                                                                                  header with desired
         \{ if(P[i]\% 10==0 \&\& i< N-1) \}
                                                                                  parameters)
            { temp= P[i];
                                                                                  ( ½ Mark initialising
              P[i]=P[i+1];
                                                                                  counters in loop)
              P[i+1]=temp;
                                                                                  (1 Mark for correct
                                                                                  condition)
         }
                                                                                  (1 Mark for correct
                                                                                  swapping of elements
                                                                                  in array)
```

3) c.	void productcol(int A[][],int r,int c)	2
	{ int i,j;	(½ Mark for function
	for(j=0;j< c;j++)	header with desired
	{ int prod[j]=1;	parameters)
	for(i=0;i < r;i++)	(½ mark for correct
	{ prod[j]=prod[j]*A[i][j];	formation of loop)
	}	(½ Mark for correct
	cout<<"\nProduct of Column "< <j+1<<" "<<pre="" =="">prod[j];</j+1<<">	condition)
	}	(½ Mark for correct
	}	output format)
3) d.	void Insert()	4
	{	(½ Mark for
	DVD *ptr = new DVD;	appropriate function
	cout<<"Enter DVD No";	header)
	cin>>ptr->No;	(½ Mark for declaring
	cout<<"Enter DVD Title";	a Temporary pointer -
	gets(ptr->Title);	ptr)
	ptr->Link=NULL;	(1 Mark for input
	if (rear = = NULL)	values)
	front= rear= ptr;	(1 Mark for correct
	else	condition)
	{	(1 Mark for correct
	rear->Link = ptr;	statements)
	rear= ptr;	
	}	
2)		
3) e.	Step 1: Push	2
		(1½ Mark for showing
		stack position for
		operations NOT,OR
	True	and AND)
	Step 2: Push	(½ Mark for correctly evaluating the final
		result)
		iesuit)
	False	
	True	
	Step 3: AND	
	Push	
	Pop Pop	
	Op1=False Op1=False	
	Op2=True	
	True False	
	G. A.D. 1	
	Step 4: Push	
	Tr	
	True	
	False	
	Ston 5: Duch	
	Step 5: Push	
	Trace	
	True	
	True	
1	False	

	if (Found—0)	
	if (Found==0)	
	cout<<"Sorry! Product not found!!!"< <endl;< th=""><th></th></endl;<>	
	fin.close();	
5) -	Condidate have All attailantee combinations incide a relation that con-	2 (1 monty for each
5) a.	Candidate key- All attributes combinations inside a relation that can	2 (1 mark for each
	serve as primary key are Candidate keys as they are candidates for the	correct definition and 1
	Primary Key position.	mark for correct
	Primary key- It is a set of one or more attributes that can uniquely	example)
	identify tuples within the relation.	
	Eg. A table STUDENT having columns rollno, regno, name, class,	
	percentage. In which columns rollno and regno are candidate key as they	
	are candidates for the Primary Key position. But we can declare any	
	column as primary key because both uniquely identify tuples within the	
-	relation.	
5) b.	i) update school set periods=periods – 0.10*periods	6
	where subject="English";	(1 mark for each
	ii) select teachername, A.code, designation from School S, Admin A	correct query)
	where S.code=A.code and gender="male";	(½ mark for each
	iii) select count(*) from school group by subject;	correct output)
	iv) select * from school where doj>'01/01/1999'	
	order by experience desc;	
	v) <u>sum(periods)</u> <u>subject</u>	
	51 English	
	76 Physics	
	24 Maths 27 Chemistry	
	1	
	vi) <u>teachername</u> <u>gender</u> Priva Rai female	
	Priya Rai female Lisa Anand female	
	vii) designation count(*)	
	Coordinator 2 HOD 2	
	Senior teacher 2	
	viii) count(distinct subject) 4	
6) a.	X'Y + X.Y' = (X'+Y').(X+Y)	2 (1 mark for stating
0) a.	RHS = (X'+Y').(X+Y)	the correct law &
		1 mark for the
	= XX' + X'Y + Y'X + Y'Y	appropriate verification
	= 0 + X'Y + Y'X + 0 [X.X'=0 By Complementarity Law]	using algebraic
	= X'Y+ Y'X [Y'X=XY' By Commutative Law]	method)
	= X'Y + XY' = LHS	ŕ
6) b.	((A+B)+(A+B)'+(B+C))'	2 marks for obtaining
		the correct Boolean
		Expression for the
		Logic Circuit
6) c.	F(x,y,z) = x'y'z + x'yz' + xy'z' + xyz	(1 mark for correct
		SOP representation)

6) d.

	C+D	C+D'	C'+D'	C'+D
A+B	0	(1)	0	
		4	12	8
A+B'	0	9	0	Ò
		5	13	9
A'+B'		0	0	
	3	7	15	11
A'+B		0	(0)	0
	2	6	14	10

F(A,B,C,D)=(B'). (A+C). (A+B'). (A'+B+C')

(1 mark for correctly drawing K-Map with 0s represented on right places)

(1 mark for minimizing each Octet, Quad and Pair)

(1 mark for writing the complete Boolean Expression)

7) a.	A URL (Uniform Resource Locator) that specifies the distinct	1Mark for correct
	address for each resource on the internet.	definition
7) b.	XML- eXtensible Markup Language	1 (½ Mark for each
	CDMA- Code Division Multiple Access	correct expansion)
7) c.	A system designed to prevent unauthorized access to or from	1 Mark for correct
	a private network is called firewall.	definition
7) d.	Client side scripting language- JavaScript, VBScript	1 (½ Mark for each
	server side scripting language- JSP, ASP	correct example)

7) e. (i) Layout Option 1: Star topology

(1 mark for any of the correct Layout)

(ii)	a) Modem in student wing as it has maximum no of computers & this wing is suitable for server position.b) Switch in all the four wings to connect all the computers with each other.	1 (½ Mark for each correct answer)
(iii)	WAN (Wide Area Network) & Satellite is a way to connect it with reasonably high speed as distance of ABHI classes is far away from NEXTGEN classes.	,
(iv)	LAN (Local Area Network) as distance is less which is within the wings of a building.	1 mark for correct answer