

Multi-Level Region Matching for Fine-Grained Sketch-Based Image Retrieval

Zhixin Ling 1069066484@qq.com Fudan University

Zhen Xing zxing20@fudan.edu.cn Fudan University

Jiangtong Li keep_moving-Lee@sjtu.edu.cn Shanghai Jiao Tong University

Li Niu* ustcnewly@sjtu.edu.cn Shanghai Jiao Tong University

Triplet loss 1: $\mathcal{L}_{gtrp-in}$ targets at semantic correspondence between paired regions.

Triplet loss 2: $\mathcal{L}_{gtrp-rn}$ targets at global matching distance.

Triplet loss 3: $\mathcal{L}_{ltrp-in}$ targets at semantic distinctiveness across unpaired regions.

Experiments

Triplet loss 4: $\mathcal{L}_{ltrp-rn}$ targets at hard negative samples.

Overview of the property

- ➤ In DRE, we propose a LAMA structure to attend multi-level CNN feature maps.
- In RLA, we adopt a transformer-based at attention weights for different regions ar
- At last, we aggregate region/level-wise d distance.

②			Sketchy (%) QMUL-C	hairV2 (%)	QMUL-ShoeV2 (%)	QMUL-Chair (%)	QMUL-Shoe (%)
attention addition regions x channels x width x height		Song et al. [32] (CVPR '16)	-		_	-	78.4	50.4
		GN Triplet [29] (TOG '16)	37.1		_	-	_	_
3x128 concatenate 12x128		SaN Triplet [42] (CVPR '16)	36.2	50	6.6	30.9	72.2	52.2
		Quadruplet [30] (ACM MM '1	17) 42.2		-	-	н.	-
Multi-Head		DSSA [33] (ICCV '17)	-		-	33.7	81.4	61.7
→ 3x128		Radenovic et al. [27] (ECCV '	18) -		-	=	85.6	54.8
Add&Norm		DCCRM [40] (PR '19)	46.2		-	=	-	-
x K		TC-Net [19] (ACM MM '19)) 40.8	6.5	5.3	40.2	95.9	63.5
3x128 Feed Forward	1	Bhunia et al. [5] (CVPR '20)	-	(89	9.7)	(79.6)	H	-
Add&Norm		Pang et al. [26] (CVPR '20)	-		-	36.5	96.0	56.5
3x128		Bhunia et al. [3] (CVPR '21)	-	60	0.2	39.1	Ε.	-
0.1 0.1 0.0 -	- I	LA [37] (ACM MM '21)	43.1	64	4.8	42.3	93.8	57.4
0.4 0.7 0.7	3 0.1	DLA [37] (ACM MM '21)	54.9	69	9.2	50.2	99.0	79.1
	weights	Zhang et al. [43] (PR '22)	-		-	=	84.4	65.7
3x128 0.06 0.03 0.		AE-Net [7] (PR '22)	46.0		-	-	-	-
3x128 0.30 0.06 0. 0.24 0.21 0.		Bhunia et al. [4](CVPR '22)	-	64	4.8	43.7	-	-
ositional embeddings global weight Region and Level Attention (RLA)		MLRM (ours)	57.2	74.3	(98.2)	50.4(87.9)	99.0	67.0
			Table 1: acc	@1(acc@10)	comparis	on with previous	works.	
posed MLRM		_	27. 23340/00e21/38239512 905564 (187350401 18750				LRM (ours)	
1.00			QMUL-ChairV2	Time (s)	5.3	27.5 236.7	11.8	
to extract different attention maps			QMUL-Chairv2	acc@1 (%)	65.3	64.8 69.2	74.3	
			Sketchy	Time (s)	8.2	46.8 639.3	14.1	
		_		acc@1 (%)	40.8	43.1 54.9	57.2	
ttentive matching module to obtain	,		Table 2: Retr	ieval time co	omparison	n using the same (GPU.	
itemive matering module to obtain	1							T T I
nd levels.					AH		赤木木	1 1
1d 10 v C15.								
listances by weights as a retrieval								* * *
							A 7 1	1
		(Z)2				TABLE AND		3
		(4)	(5			(6)		A CONTRACTOR OF THE CONTRACTOR
			1 60					15. St. St. St. St. St. St. St. St. St. St
CAMA		TO	11			·)\	(4) (4) (7)	

Figure 2: LAMA and CAMA structure.

Coarse-Grained Sketch-Based

Image Retrieval (CG-SBIR)

Figure 4: LAMA and CAMA quantitative comparison.

$$\mathcal{L}_{ovl-cama} = \frac{1}{N} \sum_{x,y} \mathbf{M}_1 \odot \mathbf{M}_2 \odot \cdots \odot \mathbf{M}_N, \qquad \mathcal{L}_{ovl-lama} = \frac{1}{N \times N} \sum_{r \leq N} \sum_{x,y} \mathbf{M}_r \odot MaxPool(\prod_{r' \neq r,r' \leq N} \mathbf{M}_{r'}).$$

 $(1) \mathcal{L}_{ovl-cama}$

- Inspired by CAMA, we propose LAMA to extract discriminative regions.
- LAMA merges different network branch copies into one, saving a large number of parameters when improving model performance.
- LAMA adopts an improved overlapping penalty, learning better geometrically discriminative regions.

Figure 6: Top-5 retrieval visualization on QMUL-ChairV2(row (1)-(3)) and Sketchy(row (4)-(6)). The sketches bordered in blue are queries. The images bordered in green/red are positive/negative cases.

- > Our MLRM achieved SOTA on all datasets except QMUL-Shoe, on which MLRM is the second best.
- > Our MLRM does not introduce much extra computation overhead.
- > Our MLRM can well extract both geometrically and semantically discriminative regions.

Conclusion

- To establish fine-grained correspondence between sketches and im_x0002_ages, we propose Multi-Level Region Matching (MLRM).
- MLRM consists of DRE that generates discriminative regions and RLA to obtain attention weights for different regions and levels.
- Comprehensive experiments have demonstrated that MLRM achieves SOTA acc@1 at the cost of a relatively low computation overhead.

Acknowledgements

The work is supported by Shanghai Municipal Science and Technology Major Project, China (2021SHZDZX0102), and Shanghai Municipal Science and Technology Key Project (Grant No. 20511100300), and National Science Foundation of China (61902247).