Math 417 Problem Set 2

Starred (*) problems are due Friday, September 7.

(*) 9. Use the Euclidean algorithm to find the inverses of the elements 2, 5, and 7 in the group $G = (\mathbb{Z}_{141}^*, \cdot, 1)$.

We want to find, for a=2,5,7, the element(s) $b \in \mathbb{Z}_{141}$ with $ab \equiv_{141} 1$, i.e., ab=1+141k for some k. So we want to solve ab-141k=1 for b (and k). We can use the Euclidean algorithm to do this:

 $141 = 70 \cdot 2 + 1$, so $1 = 141 \cdot 1 + (-70) \cdot 2$, so $1 \equiv_{141} (-70) \cdot 2 \equiv_{141} 71 \cdot 2$. So $2^{-1} = 71$ in \mathbb{Z}_{141}^* .

$$141 = 28 \cdot 5 + 1$$
, so $1 = 141 \cdot 1 + (-28) \cdot 5$, and so $5^{-1} = -28 = 113$ in \mathbb{Z}_{141}^* .

$$141 = 20 \cdot 7 + 1$$
, so $1 = 141 \cdot 1 + (-20) \cdot 7$, and so $7^{-1} = -20 = 121$ in \mathbb{Z}_{141}^* .

OK, those went a lot faster than your instructor had intended.....

(*) 10. Find the inverse of the element $\begin{pmatrix} 2 & 6 \\ 3 & 5 \end{pmatrix}$ in $GL(2, \mathbb{Z}_7)$ and in $GL(2, \mathbb{Z}_{11})$.

[The answers are different!]

We can either use the (determinant) formula for the inverse of a 2-by-2 matrix, or use superaugmented forms and row reduction. Using the determinant,

$$\begin{pmatrix} 2 & 6 \\ 3 & 5 \end{pmatrix}^{-1} = (2 \cdot 5 - 6 \cdot 3)^{-1} \begin{pmatrix} 5 & -6 \\ -3 & 2 \end{pmatrix} = (-8)^{-1} \begin{pmatrix} 5 & -6 \\ -3 & 2 \end{pmatrix} = (-1)^{-1} \begin{pmatrix} 5 & -6 \\ -3$$

in $GL(2,\mathbb{Z}_7)$. On the other hand,

$$\begin{pmatrix} 2 & 6 \\ 3 & 5 \end{pmatrix}^{-1} = (2 \cdot 5 - 6 \cdot 3)^{-1} \begin{pmatrix} 5 & -6 \\ -3 & 2 \end{pmatrix} = (-8)^{-1} \begin{pmatrix} 5 & -6 \\ -3 & 2 \end{pmatrix} = (3)^{-1} \begin{pmatrix} 5 & -6 \\ -3 & 2 \end{pmatrix} = 4 \begin{pmatrix} 5 & -6 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} 20 & -24 \\ -12 & 8 \end{pmatrix} = \begin{pmatrix} 9 & 9 \\ 10 & 8 \end{pmatrix}$$

in $GL(2, \mathbb{Z}_{11})$, since $3^{-1} = 4$ in \mathbb{Z}_{11}^* .

Using row reduction, for the second one (you should try the first one for practice!), working over \mathbb{Z}_{11} , this looks like

$$\begin{pmatrix} 2 & 6 & | & 1 & 0 \\ 3 & 5 & | & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 6 & | & 1 & 0 \\ 1 & -1 & | & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & -1 & 1 \\ 2 & 6 & | & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & -1 & 1 \\ 0 & 8 & | & 3 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & -1 & 1 \\ 0 & 56 & | & 21 & -14 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & -1 & 1 \\ 0 & 1 & | & 10 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & | & 9 & 9 \\ 0 & 1 & | & 10 & 8 \end{pmatrix},$$

and so
$$\begin{pmatrix} 2 & 6 \\ 3 & 5 \end{pmatrix}^{-1} = \begin{pmatrix} 9 & 9 \\ 10 & 8 \end{pmatrix}$$
 in $GL(2, \mathbb{Z}_{11})$.

(*) 12. (Gallian, p.57, #34) Prove that if G is a group and $a, b \in G$ then $(ab)^2 = a^2b^2$ if and only if ab = ba.

By definition, $(ab)^2 = (ab)(ab) = abab$ and $a^2b^2 = (aa)(bb) = aabb$. If the two are equal, abab = aabb, then multiplying by a^{-1} on the left yields

$$bab = (a^{-1}a)bab = a^{-1}(abab) = a^{-1}(aabb) = (a^{-1}a)abb = abb.$$

Then multiplying by b^{-1} on the right yields

$$ba = ba(bb^{-1}) = (bab)b^{-1} = (abb)b^{-1} = (ab)(bb^{-1}) = ab,$$

and so ba = ab, as desired. On the other hand, if we know that ba = ab, then

$$aba = a(ba) = a(ab) = aab$$
, and so

$$(ab)^2 = abab = (aba)b = (aab)b = (aa)(bb) = a^2b^2.$$

A selection of further solutions

11. (Gallian, p.57, #42) Suppose that $F_1 = M(\theta)$ and $F_2 = M(\psi)$ (in Gallian's/our notation) are reflections in lines through the origin of slope θ and ψ , with $\theta \neq \psi$, and $F_1 \circ F_2 = F_2 \circ F_1$. Show that then $F_1 \circ F_2 = R(\pi)$ is rotation by angle π .

[Your results from Problem #1 might help!]

From Problem #1 we know that $F_1 \circ F_2 = F(\theta) \circ F(\psi) = R(2\theta - 2\psi)$, and (so) $F_2 \circ F_1 = F(\psi) \circ F(\theta) = R(2\psi - 2\theta)$. If these two rotations are equal, then their rotation angles must be equal, up to a multiple of 2π . (That is, their difference is a multiple of 2π .) If we interpret the question as saying that θ and ψ are between 0 and 2π and unequal, then $0 < |(2\theta - 2\psi) - (2\psi - 2\theta)| < 4\pi$, so $|(2\theta - 2\psi) - (2\psi - 2\theta)| = |4(\theta - \psi)| = 2\pi$, and $2\theta - 2\psi = \pm \pi$. So $F_1 \circ F_2 = R(\pm \pi)$ is rotation by π (which is equal to rotation by $-\pi$).