DEEP REINFORCEMENT LEARNING FOR POKEMON BATTLING

Kevin Zhang

Battling Environment

Pokemon Battles offer unique challenges

- Stochastic: Accuracy, Status, Crits
- Partially-Observable: Stats, abilities, moves
- Very large state/search space:
 Embedding of above
- Additionally- Information may be entirely known by "testing" during battle

Pokemon Showdown Environment

Turning Pokemon into an OpenAI Gym environment

- Pokemon Showdown offers an opensource method for generating and conducting battles
- Poke-Environment acts as an interface to Python for this data
- Select an action at each state, and use each turn as a transition
 - Follow Gymnasium's specification
 - Integrate Agents trained using Pytorch

Training Design

There are many options for training methodology

- Algorithm-
 - Optimization Method: DQN, PPO, GIGAθ, WPL, etc.
 - Opponent Design: Baseline, Selfplay, etc.
- Information Structure-
 - Embedding huge information space
- Reward Design-

Algorithm 1: Pseudo-code for a worker thread running GIGA0 using -greedy exploration.

```
Input: Globally, target network update period \tau, on-line and target Q-networks,
   on-line and target policy networks, on-line and target average policy network
    weights, exploration rate \epsilon, and maximum iterations T_{\text{max}}. Locally, on-line Q,
    policy and average policy networks.
1: for iteration T \leftarrow 0, T_{max} do
2: Synchronize local on-line networks as copies of global on-line networks
         Execute random action with probability \epsilon, otherwise execute action
           from policy network
          Sample new state and reward
          Compute Q-network targets with target Q-network
          Compute policy networks' targets with GIGA-WoLF's update equations
          Compute loss of local on-line Q, policy, and average policy networks
          Accumulate gradients by minimizing the loss
       until terminal state
12: Update global on-line networks weights with the accumulated gradients of
       local on-line networks
     Synchronize global target networks as copies of global on-line networks
       every \(\tau\) time-steps
14: end for
Output: A converged Q-network to approximate the value function as Q(s, a, \theta),
   and a converged policy network to approximate the policy function as
```

Competitive Deep Reinforcement Learning over a Pokémon Battling Simulator (Simoes et. al)

Deep Reinforcement Learning

Q Networks

Reinforcement Learning is based on the Bellman Equations

$$v_{\pi}(s) = \mathbb{E}_{\pi} [R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]$$

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a \right]$$

- Storing these mappings is difficult: Learn them with a neural network
 - State -> Q-values for each action
- Deep Q Network (DQN) Train a NN to select actions via argmax
 - Improvements such as Replay and Target networks improve stability

Human Level Control through Deep Reinforcement Learning (Mnih et. al)

Strategies

After integrating with environment, test:

- Algorithms:
 - DQN, and improvements (n-step learning, priority replay)
 - GIGA0, WPL
- Embeddings and Reward:
 - Naïve: Only take into account power & hp
 - Hand Designed: Take into account stats of bench and opponent
 - Future- Reward Network
- Opponent
 - Random & MaxPower Baseline
 - Selfplay

Results

Initial Results-

- DQN with Random and MaxPower Baseline: 5 runs
 - Training over 10,000 env steps

Training against Max			Training against Rand		
Agent-Rand	Agent-Max	Agent-Heuristic	Agent-Rand	Agent-Max	Agent- Heuristic
0.9	0.38	0.1	0.58	0.2	0.02
0.94	0.4	0.12	0.82	0.22	0.04
0.84	0.44	0.14	0.76	0.38	0.06
0.9	0.56	0.12	0.64	0.26	0.06
0.9	0.3	0.2	0.7	0.22	0.06
0.896	0.416	0.136	0.7	0.256	0.048
0.035777088	0.095289034	0.038470768	0.09486833	0.072663608	0.017888544

 Beating similar student project's performance ~65% - 70% : Kalose et. al.

https://web.stanford.edu/class/aa228/reports/2018/final151.pdf

Results

Figure 5. Final win-rate results for a sample size of n=5 runs. Error bars show sample standard deviation. The x-axis corresponds with the opponent in testing, the two graphs shows the results of models trained against different baseline models. The dashed line shows a win-rate of 0.5 for approximate parity in strength.

	Win-rate			
Experiment	Agent-Rand	Agent-Max	Agent-Heuristic	
MaxPower DQN	0.896 ± 0.036	0.416 ± 0.095	0.136 ± 0.0385	
Heuristic DQN	0.66 ± 0.105	0.276 ± 0.056	0.072 ± 0.023	
Adam DQN	0.712 ± 0.107	0.344 ± 0.0385	0.152 ± 0.048	

Figure 6. Final win-rate results for a sample size of n=5 runs. Adam DQN is trained with an Adam optimizer against the MaxPower baseline agent. Errors show sample standard deviation.

Future Work

Directions for this Project

- Simple:
 - Develop Embeddings & Reward
 - Implement other algorithms/improvements (Rainbow is all you need)
 - Hyperparameter tuning
- Advanced:
 - Reward network
 - Develop novel training algorithms
 - Potentially tackle IL/BC or Few-shot

Figure 1: Prototypical Networks in the few-shot and zero-shot scenarios. Left: Few-shot prototypes \mathbf{c}_k are computed as the mean of embedded support examples for each class. Right: Zero-shot prototypes \mathbf{c}_k are produced by embedding class meta-data \mathbf{v}_k . In either case, embedded query points are classified via a softmax over distances to class prototypes: $p_{\phi}(y=k|\mathbf{x}) \propto \exp(-d(f_{\phi}(\mathbf{x}), \mathbf{c}_k))$.