Self-supervised Graph Learning for Recommendation

Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, Xing Xie SIGIR 2021

目录

01/ 背景

02/ 模型

03/ 实验

背景

传统基于GCN推荐模型的局限性

- 长尾问题:高度的结点对表征学习起了主导作用,导致对低度(长尾)项目的推荐变得困难
- ▶ 鲁棒性问题: 节点表示容易受到噪声交互的影响

解决方案

在传统监督任务的基础上,增加辅助的自监督学习任务,提高二分图推荐的准确性和鲁棒性

背景

本文贡献

- > 第一个为基于图的推荐任务开发自监督学习的工作
- ▶ 设计了一个新的学习范式SGL,将节点自识别作为自监督任务,为节点表征学习提供辅助监督信号
- ➤ 在三个数据集上进行大量实验,证明了SGL的优越性

有监督任务流程

一、数据增强, 产生多个视图

二、学习不同视图上 的节点表示,并在这 些表示上做对比学习

三、融合有监督任务 和自监督任务,利用 多目标学习框架优化

模型: 数据增强

GCN节点编码范式: $Z^l = H(Z^{l-1}, G)$

输入: 上一层的结点表征向量和原始图

输出:该层的结点表征向量

模型:数据增强

增强ID嵌入

- embedding masking (IM)
- embedding dropout (ID)

$$\mathbf{Z}' = H(t'(\mathbf{E}), \mathcal{G}), \quad \mathbf{Z}'' = H(t''(\mathbf{E}), \mathcal{G}), \quad t', t'' \sim \mathcal{T},$$
$$t'(\mathbf{E}) = \mathbf{M}' \odot \mathbf{E}, \quad t''(\mathbf{E}) = \mathbf{M}'' \odot \mathbf{E}, \quad M', M'' \in \{0, 1\}^{|\mathcal{V}| \times d}$$

作用:降低对某些信息的依赖性,提高模型的健壮性 M', M''通过伯努利分布 $m\sim Bernoulli(\rho)$ 随机生成, ρ 为dropout概率, M', M''完全独立

模型: 数据增强

增强图结构

- Node Dropout (ND)
- Edge Dropout (ED)

$$\mathbf{Z}' = H(\mathbf{E}, s'(\mathcal{G})), \quad \mathbf{Z}'' = H(\mathbf{E}, s''(\mathcal{G})), \quad s', s'' \sim \mathcal{S},$$

$$s'(\mathcal{G}) = (\mathbf{M}' \odot \mathcal{V}, \mathcal{E}), \quad s''(\mathcal{G}) = (\mathbf{M}'' \odot \mathcal{V}, \mathcal{E}),$$

$$(ND)$$

$$s'(\mathcal{G}) = (\mathcal{V}, \mathbf{M}' \odot \mathcal{E}), \quad s''(\mathcal{G}) = (\mathcal{V}, \mathbf{M}'' \odot \mathcal{E}),$$

$$M', M'' \in \{0, 1\}^{|\mathcal{V}| \times d}$$

作用:从不同的视图中识别出有影响的节点,并降低表示学习对结构变化敏感性

模型: 数据增强

模型:对比学习

同一节点在视图下可以产生不同的表示向量

- ➤ 正样本: $\{(Z'_u, Z''_u) | u \in U\}$
- ▶ 负样本: $\{(Z'_u, Z''_v)|u, v \in U, u \neq v\}$

目标:最大化同一结点不同视图表征向量之间的相似性,最小化不同结点表征之间

的相似性

$$\mathcal{L}_{ssl}^{user} = \sum_{u \in \mathcal{U}} -\log \frac{\exp(s(\mathbf{z}_u', \mathbf{z}_u'')/\tau)}{\sum_{v \in \mathcal{U}} \exp(s(\mathbf{z}_u', \mathbf{z}_v'')/\tau)},$$

$$\mathcal{L}_{ssl} = \mathcal{L}_{ssl}^{user} + \mathcal{L}_{ssl}^{item}.$$

模型:多任务训练

本文采用多任务学习的方式训练模型

$$\mathcal{L} = \mathcal{L}_{main} + \lambda_1 \mathcal{L}_{ssl} + \lambda_2 \|\Theta\|_2^2$$

其中, θ 表示图卷积神经网络的参数

Algorithm 1: Learning algorithm for SGL-EDInput: Adjacency matrix of user-item graph, $\lambda_1, \lambda_2, \tau, \rho$ 1 while not converge do2foreach epoch do3Perform Eq. (8) for data augmentation4foreach batch do5Evaluate \mathcal{L}_{main} according to Eq. (5)6Evaluate \mathcal{L}_{self} according to Eq. (11)7Evaluate \mathcal{L} according to Eq. (12)8Update the parameters by gradient descent9end10end11end

Table 2:	Statistics	of the	datasets.
----------	------------	--------	-----------

Dataset	#Users	#Items	#Interactions	Density
Yelp2018	31,668	38,048	1,561,406	0.00130
Amazon-Book	52,643	91,599	2,984,108	0.00062
Alibaba-iFashion	300,000	81,614	1,607,813	0.00007

Table 4: Overall Performance Comparison.

Dataset	Yelp2018		Amazon-Book		Alibaba-iFashion	
Method	Recall	NDCG	Recall	NDCG	Recall	NDCG
NGCF	0.0579	0.0477	0.0344	0.0263	0.1043	0.0486
LightGCN	0.0639	0.0525	0.0411	0.0315	0.1078	0.0507
Mult-VAE	0.0584	0.0450	0.0407	0.0315	0.1041	0.0497
SGL-ED	0.0675	0.0555	0.0478	0.0379	0.1126	0.0538

消融分析

Dataset		Yelp2018		Amazon-Book		Alibaba-iFashion	
#Layer	Method	Recall	NDCG	Recall	NDCG	Recall	NDCG
1 Layer SO	LightGCN	0.0631	0.0515	0.0384	0.0298	0.0990	0.0454
	SGL-ID	0.0634(+0.5%)	0.0518(+0.6%)	0.0417(+8.6%)	0.0322(+8.1%)	0.1141(+15.3%)	0.0540(+18.9%)
	SGL-IM	0.0631(+0%)	0.0513(-0.4%)	0.0429(11.7%)	0.0331(+11.1%)	0.1116(+12.7%)	0.0530(+16.7%)
	SGL-ND	0.0643(+1.9%)	0.0529(+2.7%)	0.0432(+12.5%)	0.0334(+12.1%)	0.1133(+14.4%)	0.0539(+18.7%)
	SGL-ED	0.0637(+1.0%)	0.0526(+2.1%)	0.0451(+17.4%)	0.0353(+18.5%)	0.1132(+14.3%)	0.0539(+18.7%)
2 Layers	LightGCN	0.0622	0.0504	0.0411	0.0315	0.1066	0.0505
	SGL-ID	0.0659(+5.9%)	0.0539(+6.9%)	0.0436(+6.1%)	0.0342(+8.6%)	0.1089(+2.2%)	0.0517(+2.4%)
	SGL-IM	0.0657(+5.6%)	0.0538(+6.7%)	0.0434(+5.6%)	0.0338(+7.3%)	0.1085(+1.8%)	0.0517(+2.4%)
	SGL-ND	0.0658(+5.8%)	0.0538(+6.7%)	0.0427(+3.9%)	0.0335(+6.3%)	0.1106(+3.8%)	0.0526(+4.2%)
	SGL-ED	0.0668(+7.4%)	0.0549(+8.9%)	0.0468(+13.9%)	0.0371(+17.8%)	0.1091(+2.3%)	0.0520(+3.0%)
3 Layers	LightGCN	0.0639	0.0525	0.0410	0.0318	0.1078	0.0507
	SGL-ID	0.0649(+1.6%)	0.0533(+1.5%)	0.0450(+9.8%)	0.0353(+11.0%)	0.1119(+3.8%)	0.0529(+4.3%)
	SGL-IM	0.0652(+2.0%)	0.0536(+2.1%)	0.0449(+9.5%)	0.0353(+11.0%)	0.1121(+4.0%)	0.0537(+5.9%)
	SGL-ND	0.0644(+0.8%)	0.0528(0.6%)	0.0440(+7.3%)	0.0346(+8.8%)	0.1126(4.5%)	0.0536(+5.7%)
	SGL-ED	0.0675(+5.6%)	0.0555(+5.7%)	0.0478(+16.6%)	0.0379(+19.2%)	0.1126(+4.5%)	0.0538(+6.1%)

长尾推荐

分组ID越小, 度数越小, 越长尾

鲁棒性分析

在训练集中加入对抗样本