Date: 02/08/2016

In addition to Part-I (General Handout) for all courses appended to the time table), this portion gives further specific details regarding the course.

Course No : EEE G594

Course Title : Advanced VLSI Devices

Instructor-in-charge: Arnab Hazra

1. Scope of the course:

The present course will basically deal with the Physics, Analysis, and Design of Novel and Advanced VLSI Device (Mostly in Nano-scale dimensions) Structures. The main topics for this course center around Nano FETs (Field-Effect Devices) the most promising VLSI Device till date.

2. Objective of the course:

At the end of the course, one will be able to:

- Make projections about CMOS device scaling and how it affects circuit/system performance.
- Recognize the relevant device physics that underlies CMOS device design.
- Go to a conference or read a journal article about CMOS devices and use the knowledge obtained in this course to understand the material.
- Develop an intuitive feel in addition to solving equations.
- Obtain necessary skills to explore the research space of state-of-the-art VLSI technology.

3. Course Description:

This course examines the device physics of and engineering of advanced transistors and the way such devices enter into the development of new technologies. Focus is given on the review of metal oxide semiconductor (MOS) fundamentals along with quasi-ballistic and ballistic transport. Short-channel effects (SCEs) in sub-micron (towards nanometer regime) metal oxide semiconductor field-effect transistors (MOSFETs) including device scaling considerations are also included. Device physics and engineering issues of sub 100 nm MOSFETs (towards nanometer regime) are the primary objectives. Limits of the state-of-the-art silicon device technology and key issues in the miniaturization of devices are also integrated here. Alternative device structures (non-conventional MOSFETs) and transport in novel nano-devices are also part of this course.

4. Pre-requisite:

Students, want to go through the course, only should have a little background of Electron Devices [EEE/INSTR F214], and Physics & Modeling of Microelectronics Devices [MEL G631] (but may not be too stringent !!)

5. Related Books:

- [1] S. M. Sze and K. K. Ng, *Physics of Semiconductor Devices*, Third Edition, Wiley, 2006.
- [2] S. M. Sze, Semiconductor Devices: Physics and Technology, Second Edition, Wiley, 2002
- [3] Sima Dimitrijev, Principles of Semiconductor Devices, Second edition, Oxford University Press, 2013
- [4] J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures, CUP, 2007
- [5] S. D. Brotherton, Introduction to Thin Film Transistors: Physics and Technology of TFTs, Springer, 2013
- [6] Cherie R. Kagan, Paul Andry, Thin Film Transistors, Marcel Dekker, Inc., 2016
- [7] Charles P. Poole, Frank J. Owens, Introduction to Nanotechnology, Wiley, 2011

6. Course Plan:

Lect.	Topic	Learning Objective	Refere					
No.			nces					
Part I: Review of long channel MOSFETs								
1-2	MOS Capacitor Device Physics	Review the basic concepts of MOS	Study					
		Device Physics.	Materials will be					
3-4	Fundamental of MOSFETs	Review the basic concepts of MOSFET	will be provided					
		device structure, operation, I-V	I-V					
		characteristics, device modelling etc.						
5-8	MOSFET Scaling: Short Channel Effects	To realize the significance of Second						
	(SCEs), Mobility reduction, Subthreshold	Order Effects on the device operation						
	Current, Channel Length Modulation,	and other performance limitations of						
	Drain Induced Barrier Lowering (DIBL)	conventional MOSFET due to the						
	and Finite Output Resistance.	device scaling.						
	Part II: Nanosca	ale MOSFETs						
9	Challenges of Nanoscale MOSFETs	Down Scaling benefits and rules.	Study					
10-12	Limitations of Nanoscale MOSFETs:	To realize the overall limitations of	Materials will be					
	Subthreshold Leakage, Threshold Voltage	Nanoscale MOSFETs considering the	will be provided					
	Variation, Mobility Degradation, Hot	Channel, Gate, Drain/Source and	provinci					
	Carrier Effects, Source Drain Tunnelling,	Substrate related issues individually.						
	Parasitic Resistance and Capacitance,							
	Reverse Biased Junction Leakage Current							
	etc.							
	Part III: Advanc	ed MOSFETs						
	(Reduction of Short Channel Effects and I							
13-18	Silicon-on-Insulator (SOI) MOSFETs:	To gain the idea about Silicon-on-	Study					
	Fully Depleted (FD) SOI, Partially	Insulator (SOI) devices and its	Materials will be					
	Depleted (PD) SOI, Junction Less SOI.	structures, manufacturing materials,	provided					
		operations, characterizations,	Provide					
		modelling and applications to control of						
		short channel effects.						
19-24	Other Multigate SOI-MOSFETs: Double	Study the advanced MOSFETs						
	Gate, FinFET, π Gate, Ω Gate, Gate-All-	structures and device characteristics to						
	Around (GAA) or surrounding gate,	realize the advantages, drawbacks to						
	Silicon on Nothing (SON), Nanowire FET	propose the possible solutions.						

25-30	(i)Channel Engineering: Retrograde Substrate and Halo Doping profiles;	Study the complete device engineering towards more advanced MOSFET						
	1 0 1							
	(ii)Gate Engineering: High-k gate	device structures.						
	dielectrics, Metal Gate-Stack;							
	(iii) Sorce/Drain (S/D) Engineering: S/D							
	Engineering of nanoscale double gate SOI							
	MOSFETs, Schottky-barrier S/D							
	Technology;							
	(iv) Material Engineering: high mobility							
	materials (e.g. Ge, GaAs/InGaAs etc.) for							
	channel of FET;							
Part IV: Promising Nanodevices Beyond CMOS								
31-33	Thin Film Transistors (TFT):	Study the a-Si:H material, a-Si:H TFT	Study					
	Hydrogenated amorphous silicon (a-Si:H)	architecture, fabrication process, layout,	Materials					
	TFT	performance and characterizations.	will be					
34-37	Single Electron Transistors (SETs): Single	Development of fundamental concepts	provided					
	Electron Box, Quantum dot, Charge	on Single Electron Transistors (SETs).						
	quantization, Coulomb Blockade.	on onigie Electron Transistors (eETs).						
38-40	Impact-Ionization MOSFETs	Development of fundamental concepts						
	(IMOSFETs); Tunnel FETs (TFETs);	on IMOSFETs, TFETs, SBTFETs, and						
		CNTFET.						
	Schottky-Barrier FETs (SBTFETs);	CITIEI.						
	Cabron Nanotube-FETs (CNTFET)							

7. Other Home and Reading Assignments: These will be specified from time to time.

8. Evaluation Scheme:

Component	Duration	Mark	Date and	Remarks
		S	Time	
Mid Sem Test	90 Mints.	70	3/10	Open Book
			4:00 - 5:30	
			PM	
Assignment (Laboratory Computer Simulation		20	To be	Demo / test
/Device Modeling)			announced	
Comprehensive	3 hrs	110	2/12	Closed Book
1			AN	
TOTAL		200		

- 9. Chamber Consultation Hour: To be announced in Class (arnab.hazra@pilani.bits-pilani.ac.in)
- **10. Make-up Policy**: Make-up will be given on extremely genuine grounds only. Prior application should be made for seeking the make-up examination.
- 11. Notices: Notices, if any, concerning the course will be put up on EEE Notice Board.

Instructor In Charge EEE G594

