

Topic Introduction

Related Work

CRISP-DM

Initial Model Evaluation

Conclusion

Further Work and Limitation(s)

Outline

Introduction

Neurological attack whereby the brain is deprived of blood flow and oxygen to function.

Worrying health issue

Stroke moved up from 3rd to

2nd largest cause of death.

Problem Statement

Reduce misdiagnosis in *Emergency Rooms* (ERs) and *Primary Care Doctors* (PCDs)

Related Work

<u>Age</u>

Older, higher risk of stroke (Khan & Vohra, 2006)

<u>Smoker</u>

1.5-2.9x more at-risk (Khan & Vohra, 2006) At-risk 10 years earlier (Frank et al., 2021)

Heart disease & Diabetes

Past ischemic attack history (Khan & Vohra, 2006)
Diabetic individuals, especially females (Khan & Vohra, 2006)
(Roy-O Reilly & McCullough, 2018)

CRISP-DM

Cross-Industry Standard Process for Data Mining

Business Understanding

What does the business need?

Data Understanding

What data do we need? Is the data clean?

Data Preparation

How is the data prepped for modelling?

Modelling

Which models should we apply?

Evaluation

Which model best meets the business objectives?

Business Understanding

Business Problem

Identify individuals who are at-risk of incidence of stroke, provide them with the necessary treatments ASAP.

Business Analytics Problem

- Build and identify the best performing predictive model to predict individuals at-risk of incidence of stroke
- Based on:
 - 1. Demographical profile
 - 2. Medical History
 - 3. Conditions

Data Understanding

Features	Description	Data Type	Values
id	Patient record id	Int	9046
gender	Patient gender	Object	Male
age	Patient age	Float	67.0
hypertension	Whether patient has hypertension	Int	0
heart_disease	Whether patient has/had heart disease(s)	Int	1
ever_married	Patient marital status	Object	Yes
work_type	Patient employment type	Object	Private
Residence_type	Patient residential area	Object	Urban
avg_glucose_level	Patient glucose reading	Float	228.69
bmi	Patient BMI reading	Float	36.60000
smoking_status	Patient smoking status	Object	formerly smoked
stroke	Occurrence of stroke	Int	1

5,110 Samples

11 Input Features

Target Variable

Data Exploration

Stroke

- Rare event
- Largely imbalanced
- Skewed towards non-incidence of stroke
 - '0' (no stroke): 4,861
 - '1' (stroke): 249

```
[4]: # count number of stroke occurrence
     strokeCount = strokeData['stroke'].value_counts()
     strokeCount.plot(kind='bar', rot=0)
     strokeCount
          4861
     Name: stroke, dtype: int64
     5000
     4000
     3000
     2000
     1000
```

Data Exploration

Gender

Age

Data Exploration

Hypertension & Heart Disease

fig, ax = plt.subplots(1, 2, figsize=(10, 5)) sns.countplot(x='stroke', hue='hypertension', data=strokeData, ax=ax[0]) sns.countplot(x='stroke', hue='heart_disease', data=strokeData, ax=ax[1]) plt.show() hypertension heart disease 0 4000 1 1 4000 3000 3000 2000 1000 1000 stroke stroke

Glucose Levels

```
fig, ax = plt.subplots(1, 2, figsize=(15,5))
strokeData.loc[strokeData['stroke']==0]['avg_glucose_level'].plot(kind='hist', bins=20, edgecolor='black', ax=ax[0])
x1 = list(range(40, 320, 20)) # create x-axis range
ax[0].set xticks(x1)
ax[0].set_title('stroke=0') # give subplot title
strokeData.loc[strokeData['stroke']==1]['avg_glucose_level'].plot(kind='hist', bins=20, color='red', edgecolor='black', ax=ax[1])
x2 = list(range(40, 320, 20)) # create x-axis range
ax[1].set_xticks(x2)
ax[1].set_title('stroke=1') # give subplot title
plt.show()
                            stroke=0
                                                                                            stroke=1
                                                                  25
                                                                 ₾ 20
                                                                  10
        60 80 100 120 140 160 180 200 220 240 260 280 300
                                                                    40 60 80 100 120 140 160 180 200 220 240 260 280 300
```

. Data Exploration

Smoking Status

Tools Used

Python

Why?

Versatile (many libraries)

Challenge myself

IBM SPSS Modeler not widely used outside

- Removing Duplicated Samples
 - All samples are <u>unique</u>
 - 5,110 samples

2. Replace Missing Values

- BMI has <u>201</u> missing values
 - 40 had stroke

			Features	Count
		_	id	5,110
			gender	5,110
			age	5,110
			hypertension	5,110
read dataset into da trokeData = pd.read_c: trokeData.info()			heart_disease	5,110
class 'pandas.core.fra angeIndex: 5110 entric	es, 0 to 5109		ever_married	5,110
ata columns (total 12 # Column 	columns): Non-Null Count	Dtype	work_type	5,110
0 id 1 gender 2 age	5110 non-null 5110 non-null 5110 non-null	int64 object float64	Residence_type	5,110
3 hypertension 4 heart_disease 5 ever married	5110 non-null 5110 non-null 5110 non-null	int64 int64 object	avg_glucose_level	5,110
	5110 non-null 5110 non-null 5110 non-null	object object float64	bmi	4,909
9 bmi 10 smoking_status 11 stroke	4909 non-null 5110 non-null 5110 non-null	float64 object int64	smoking_status	5,110
types: float64(3), intermory usage: 479.2+ KM	t64(4), object(5)		stroke	5,110
count null values	()()			

```
fig, ax = plt.subplots(1, 2, figsize=(15,5))
strokeData.loc[strokeData['stroke']==0]['bmi'].plot(kind='hist', bins=20, edgecolor='black', ax=ax[0])
x1 = list(range(0, 80, 5)) # create x-axis range
ax[0].set_xticks(x1)
ax[0].set_title('stroke=0') # give subplot title
strokeData.loc[strokeData['stroke']==1]['bmi'].plot(kind='hist', bins=20, color='red', edgecolor='black', ax=ax[1])
x2 = list(range(0, 80, 5)) # create x-axis range
ax[1].set_xticks(x2)
ax[1].set_title('stroke=1') # give subplot title
plt.show()
                              stroke=0
                                                                                                stroke=1
  1200
                                                                     60
  1000
                                                                     50
   800
                                                                   equency
&
   600
   400
                                                                     20 -
   200
                                                                     10 -
      0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
                                                                          5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
```

- 2. Replace Missing Values (cont'd)
 - BMI has 201 missing values
 - 40 had stroke

```
[25]: corrmat = strokeData.corr()
top_corr_features = corrmat.index
plt.figure(figsize=(10,10))

# plot heatmap
raw_RFE = sns.heatmap(strokeData[top_corr_features].corr(), annot=True, cmap="RdYlGn")
raw_RFE.set_xticklabels(g.get_xticklabels(), rotation=45)
```

	id	bmi
0	9046	36.600000
1	51676	NaN

	id	bmi
0	9046	36.600000
1	51676	28.893237

before

<u>after</u>

- 3. Transforming Categorical Features
 - Scikit-learn
 - Cannot take categorical features
 - OneHotEncoder
 - Categorical → Numeric
 - Each entry would be a feature on its own

	gender
0	Male
1	Female
2	Male

	gender_Female	gender_Male
0	0.0	1.0
1	1.0	0.0
2	0.0	1.0

<u>before</u>

<u>after</u>

Features	Data Type
age	Float
hypertension	Int
heart_disease	Int
avg_glucose_level	Float
bmi	Float
stroke	Int
gender_Female	Float
gender_Male	Float
married_No	Float
married_Yes	Float
work_Govt_job	Float
work_Never_worked	Float
work_Private	Float
work_Self-employed	Float
work_children	Float
residence_Rural	Float
residence_Urban	Float
smoke_Unknown	Float
smoke_formerly smoked	Float
smoke_never	Float
smoke_smokes	Float

Models

- 1. Logistic Regression (LR)
- 2. K-Nearest Neighbours (kNN)
- 3. Random Forest (RF)
- 4. Support Vector Machines (SVM)

Train-Test Split

Train – 70% Test – 30%

Incidence of Stroke	Count
0	4,861
1	249

Possible Solutions

- 1. Oversampling
- 2. Under-sampling
- 3. Combination

Incidence of Stroke	Count
0	3,403
1	3,403

Incidence of Stroke	Count
0	160
1	160

Evaluation Metrics

- 1. Accuracy
 - How accurate the model is
- 2. Precision rate
 - Correctly predicted at-risk vs. not at-risk
- 3. Recall rate
 - aka <u>Sensitivity</u> rate
 - How accurate the model is able to identify relevant data
 - True Positives
- 4. F1-score
 - Harmonic mean
 - Precision and Recall <u>equally important</u>

Imbalanced Dataset Results

LR	Precision	Recall	F1-score	Support
noStroke	0.95	1.00	0.98	1,458
stroke	1.00	0.01	0.03	75
accuracy			0.95	1,533
macro avg	0.98	0.51	0.50	1,533
weighted avg	0.95	0.95	0.93	1,533
RF	Precision	Recall	F1-score	Support
				• •
noStroke	0.95	1.00	0.97	1,458
noStroke stroke	0.95	1.00	0.97 0.00	
				1,458
stroke			0.00	1,458 75

kNN	Precision	Recall	F1-score	Support
noStroke	0.95	1.00	0.97	1,458
stroke	0.00	0.00	0.00	75
accuracy			0.95	1,533
macro avg	0.48	0.50	0.49	1,533
weighted avg	0.90	0.95	0.93	1,533
SVM	Precision	Recall	F1-score	Support
SVM noStroke	Precision 0.95	Recall 1.00	F1-score 0.97	Support 1,458
noStroke	0.95	1.00	0.97	1,458
noStroke stroke	0.95	1.00	0.97 0.00	1,458 75

Oversampling Dataset Results

LR	Precision	Recall	F1-score	Support
noStroke	0.98	0.75	0.85	1,458
stroke	0.12	0.69	0.21	75
accuracy			0.74	1,533
macro avg	0.55	0.72	0.53	1,533
weighted avg	0.94	0.74	0.82	1,533
RF	Precision	Recall	F1-score	Support
				Jappoit
noStroke	0.96	0.97	0.96	1,458
noStroke stroke	0.96 0.26			
		0.97	0.96	1,458
stroke		0.97	0.96 0.24	1,458 75

kNN	Precision	Recall	F1-score	Support
noStroke	0.98	0.68	0.81	1,458
stroke	0.11	0.79	0.20	75
accuracy			0.69	1,533
macro avg	0.55	0.73	0.50	1,533
weighted avg	0.94	0.69	0.78	1,533
SVM	Precision	Recall	F1-score	Support
SVM noStroke	Precision 0.98	Recall 0.74	F1-score 0.84	Support 1,458
noStroke	0.98	0.74	0.84	1,458
noStroke stroke	0.98	0.74	0.84 0.21	1,458 75

Conclusion

- Choice of model for oversampling:
 K-Nearest Neighbours
 - Highest Recall rate: 78.67%

kNN	Precision	Recall	F1-score	Support
noStroke	0.98	0.68	0.81	1,458
stroke	0.11	0.79	0.20	75
accuracy			0.69	1,533
macro avg	0.55	0.73	0.50	1,533
weighted				
avg	0.94	0.69	0.78	1,533

```
# recall score
recall = recall_score(y_test, y_pred)
print(recall)

0.7866666666666666

print(f"K-Nearest Neighbour recall rate: {recall*100:.2f}%")

K-Nearest Neighbour recall rate: 78.67%
```

Future Work

- Under-sampling
- Combination
- Further fine-tuning of parameters
- More models
 - Decision Trees, Neural Networks
- Compare Results
- Find out which feature/s affects incidence of stroke

Limitation

- Missing BMI cannot simply be replaced by mean or median
- Dealing with an actual human

Thank You!