

FERROELECTRICS Volume 196 (1997)

CONTENTS—PART II

Note on Pagination, Author Index and Table of Castent

The Proceedings of The First Aslam Meeting on Ferroclectricity (AMF-I) are being published in three volumes of Ferroelectrics (Volumes 195-197). To facilitate indexing and referring to these Proceedings, the page numbers of Volumes 196 and 197 run continuously from the end of Volume 195. The complete Table of Contents and an Author Index appear in Volume 197.

GUEST EDITORIAL	χi
LIST OF SPONSORS	xiii
ORGANIZING COMMITTEES	xv
FABRICATION OF THE SINGLE GRAINED PZT THIN FILM DEVICE	
JAE-HYUN JOO, YOU-JIN LEE, SEUNG-KI JOO	1/[321]
DOMAIN STRUCTURES OF EPITAXIAL PT, PLT AND PZT THIN FILMS ON MgO(001) SINGLE CRYSTAL SUBSTRATES	•
YOUNG MIN KANG, KYEONG SEOK LEE, AND SUNGGI BAIK	5/[325]
RAPID THERMAL ANNEALING EFFECT OF (Ba,Sr)TiO, THIN FILMS	
NOBORU ICHINOSE AND TAKASHI OGIWARA	9/(329)
ATOMIC FORCE MICROSCOPIC INVESTIGATION OF PZT THIN FILMS BY MOD TECHNOLOGY	
W. LU, W. ZHU, AND X. YAO	17/(337)
EPITAXIAL GROWTH AND PROPERTIES OF BATIO, THIN FILMS PREPARED BY LASER DEPOSITION	
Z.H. CHEN, D.F. CUI, J. ZHANG, H.B. LU, Y.L. ZHOU, L. LI AND G.Z. YANG	23/[343]
PREPARATION AND STRUCTURE OF PbZrO, FILMS BY Krf Pulsed Laser deposition	
ILL WON KIM, BYUNG MOON JIN, S. TROLIER-MCKINSTRY, J.P. DOUGHERTY	27[347]
STUDY ON THE DIELECTRIC PROPERTY OF DIPHASIC POLAR GLASS-CERAMICS	
XIE WEIMIN, DING ZHENYA AND ZHANG PEILIN	31/[351]

Ferroelectrics, 1997, Vol. 196, pp. 205-209 Reprints available directly from the publisher Photocopying permitted by license only

1:9.

O 1997 OPA (Oversas Publishers Association) Amsterdam B.Y. Published in The Netherlands under license by Gordon und Breach Science Publishers Printed in India

ON THE PEROVSKITE-RELATED MATERIALS OF HIGH DIELECTRIC PERMITTIVITY WITH SMALL TEMPERATURE DEPENDENCE AND LOW DIELECTRIC LOSS

(B)20100420341

TETSURO NAKAMURA (PAI-HSUAN SUN, YUE JIN SHAN
Department of Applied Chemistry, Faculty of Engineering Visunomiya University, 2753 Ishii-Cho, Utsunomiya 321, Japan (YOSHIYUKI INAGUMA, MITSURU ITOH, IN-SEON KIM-1, JEONG-HO SOHN*2, MICHIHIRO IKEDA*3, JOSHIKI KITAMURA*4, HIDEAKI KONAGAYA*5 Research Laboratory of Engineering Materials, Tokyo Institute of Technology. 4259 Nagatsuta, Yokohama 226, Japan

Present Adresses:

*1. Superconductivity Laboratory, Korea Research Institute of Standards and Science *2. Depterment of Inorganic Materials Engineering, Kyungpook National University
*3. Adanced Materials Labolatory, Research and Development Devision Kurosaki
Development Center, Missbish Chemical Corporation

*4. INS Center, Network Center, RECRUIT Company

*5. Central Research Laboratory, Sumitomo Mining Co., Ltd.

(Received 5 October 1995; In final form 23 August 1996)

Abstract Dielectric properties of quantum paraelectric materials, SrTiO3, CaTiO3 and (La1/2Na1/2)TiO3, were presented and discussed since they show the titled dielectric properties in the lowest temperature range. In order to show our strategy to obtain the titled materials for microwave resonator applications, dielectric properties of several solid solution systems, SrTiO3-LaAlO3, Sr2TiO4-SrLaAlO4 and BaTiO₃-B₂(Mg_{1/3}Ta_{1/3})O₃ were exemplified. Concerning about relaxor ferroelectric materials, it is pointed out that a drestic broadening of ferroelectric phase transitions in the KNbO₃-BaTiO₃ and BaTiO₃-Ba(Fe_{1/2}Ta_{1/2})O₃ solid solution systems is caused by a strong local field fractuation come from the randomly oriented permanent electric dipoles produced by the beterogeneous cationic charge distribution in the solid solution.

INTRODUCTION

I will be the the the state of the state of

With the rapid popularization of mobile communications on the microwave, the demands for dielectric resonator applications increase progressively. The materials with high dielectric constant, ε , small temperature coefficient of ε , τ_{ε} value are desired for the application of microwave dielectric resonators. Several solid solution systems designed to approach the above dielectric properties are presented. Besides the mentioned materials, some quantum paraelectric materials and relaxor ferroelectric materials are given.

OUANTUM PARAELECTRIC MATERIALS

Quantum paraelectricity found in perovskite-type oxides $SrTiO_3^1$ may satisfy the titled dielectric properties only in the lowest temperature region - 4 K. However, "higher quantum paraelectricity" have been recently found in $CaTiO_3^2$, $(La_{L/2}Na_{1/2})TiO_3^3$ etc. Figure 1 shows the temperature dependence of dielectric constant for $CaTiO_3$, $Ca_4Ti_3O_{10}$ and $(La_{1/2}Na_{1/2})TiO_3$. Since the thermal energy in T=1 K corresponds to the photon energy hv of microwave in v=20.8 GHz, an excitation of optical vibrational mode in $CaTiO_3$ and $(La_{1/2}Na_{1/2})TiO_3$ with microwave of v=20 GHz is neglectable for the range 10×-25 K, where the values of ε are constants. This means that there do not exist thermal excitation of optical modes. Therefore, the dielectric loss in the microwave region can be small for $CaTiO_3$ and $(La_{1/2}Na_{1/2})TiO_3$ at 10×-25 K. Table I lists the constants involved in the following Barrett formula⁴ for several perovskite-type oxides.

$$\varepsilon = \frac{C}{\left(\frac{T_i}{2}\right) \coth\left(\frac{T_i}{2T}\right) - T_o}$$

High temperature quantum paraelectric materials are desired. The occurrence of high permittivity in perovskite-type titanates ATiO₃ (A = Pb, Ba, Cd, Sr, Ca) may be ascribed to an accidental coincidence of ionic masses $m(Ti^{4+}) = 3m(O^{2-}) = 48$, not only a pertinent space available for Ti^{4+} ions in the oxygen octahedral sites. These fortunate conditions

FIGURE 1 Temperature dependence of the dicleratic constant of CaTiO₃(s), Ca₄Ti₃O₁₀(b) and (La_{1/2}Na_{1/2})TiO₃(c).

TABLE I The constents involved in the Earren formula for several perovskite-type oxides

	€ m	Tm*/K	CIK	<i>T</i> ₁ / K	τ ₀ /Κ
SrTiO3	2.00 × 10 ⁴	- 4	9.0×10^{4}	84	38
CaTiO ₃	3.70×10^{2}	- 30	7.7×10^4	104	-1.59×10^{2}
(Na _{1/2} La _{1/2})TiO ₃	1.34×10^{2}	- 32	1.2 × 10 ⁵	180	-7.70×10^{2}
(Na _{1/2} Sm _{1/2})TiO ₃	1.13×10^2	~ 40	3.1×10^5	205	-2.66×10^{2}
(Na _{1/2} Od _{1/2})TiO ₃	1.02×10^{2}	- 55	2.9 × 10 ⁵	261	- 2.69 × 10 ²

^{*:} The onset temperature that & becomes maximum and constant.

may facilitate the lattice vibration of Slater soft mode in ATiO₃. Actually, three ferroelectrics, PbTiO₃ (Tc = 763 K), BaTiO₃ (Tc = 393 K), CdTiO₃ (Tc = 55 K) present in the ATiO₃ series with heavier masses $m(A^{2+}) > m(TiO_3) = 96$. This evidence suggests a coexistence of the Last and Slater soft modes. In the lighter titanates SrTiO₃ and CaTiO₃, tilts or deformation of oxygen octahedra occur at certain higher temperatures than the temperatures where softening of the Slater or Last mode can occur. The tilts or deformation of oxygen octahedra changes the reduced masses and force constants of soft modes for ferroelectricity, hardens the modes, and results in a quantum paraelectricity.

TOWARD MICROWAVE DIFLECTRIC MATERIALS

Since the materials with the titled dielectric properties are quite rare in nature, we have intended to get them under the strategy by forming a solid solution system from the following two classes of isostructural materials,

The material of class I is the paraelectric material with a purposely high ε value and a negative temperature coefficient ($\tau_{\varepsilon} < 0$) around the room temperature for practical use. The material of class I may have ferroelectric or antiferroelectric phase transitions much below the room temperature. It is believed that the domain wall motion is sensitive under the microwave frequency region and ready to lower the Q value in the ferroelectric materials. Therefore, in order to avoid a formation of ferroelectric domains in the resultant solid solution system, the material of class II should be a paraelectric or an antiferroelectric materials with a purposely high ε value and a positive temperature coefficient ($\tau_{\varepsilon} > 0$). A quantum paraelectric perovskite SrTiO₃¹ was chosen as the material of class I and an antiferrodistortive perovskite LaAlO₃^{5.6}, whose transition temperature locates at $T_N = 810$ K, was chosen as the material of class II. The dielectric properties of the SrTiO₃-LaAlO₃ solid solution system are shown in Fig.2. Table 2 lists the dielectric data versus composition of the solid solution system. We have studied the

T. NAKAMURA el Gi.

FIGURE 2 Dielectric constant, temperature coefficient and Q value in x S(TiO₃ - (1-x)LaAlO₃.

dielectric properties of Ruddlesdon-Popper series compound $Sr_{n+1}Ti_nO_{5n+1}$ ($n=1,2,...\infty$). It is found that $SrTiO_3$ shows the largest ε , while Sr_2TiO_4 shows the smallest ε . The dielectric properties of Ruddlesdon-Popper solid solution Sr_2TiO_4 - $SrLaAlO_4$ at microwave range are shown in Fig.3. The ε , of Sr_2TiO_4 - $SrLaAlO_4$ system are lower than that of $SrTiO_3$ -LaAlO3 system. Similar tendency as in Fig.2 can be seen in Fig.3. $SrTiO_3$ -LaAlO3 system has very good dielectric properties at microwave range, it shows high Q value, low τ_1 and purposely high ε value. The practical application of $SrTiO_3$ -LaAlO3 is expectable.

DIFFUSE FERROELECTRIC PHASE TRANSITION IN RELAXORS

Concerning the origin of relaxor materials 7,8, it is pointed out that the broadening of the

TABLE II Microwave dielectric properties of xSrTiO3 (1-x)LaAlO3?

	£	Q	∫/ GH2	Qf/GHz	ту **/ ppm K-1
0.00*	21	1500	8.6	12900	- 49
0.25*	24	6800	11.1	74800	- 35
0.45	29	6200	9.8	60800	- 21
0.50*	31	4100	9.6	39400	0 ·
0.50	33	6000	9.0	54000	- 13
0.55	34	6900	8.8	60720	- 8
0.75*	46	2300	10.7	24600	170
1.00=	204	400	_10.6	4200	1700

*: by coprecipitation from aqueous solutions

a: linear thermal expansion cofficient

1/ : temperture cofficient of resonant frequency

ferroelectric phase transitions versus composition is more drastic in the KNbO3-BaTiO39 and BaTiO3-Ba(Fe1/2Ta1/2)O310 solid solution systems than in the KNbO3-KTaO311 and BaTiO3-BaSnO310 solid solution systems, respectively. The cause of this diffuse ferroelectric phase transitions in the KNbO3-BaTiO3 and BaTiO3-Ba(Fe1/2Ta1/2)O3 systems is discussed and gets a conclusion that it originates from the randomly oriented various permanent electric dipoles produced by the random distribution of the cationic charge over the octahedral and the cubocrahedral sites in the former solid solution system. The random distribution of the cationic charge gives a strong fractuation upon the local fileds of every sites for cations and anions, and results in a violent damage to the longrange cooperative ferroelectric interactions.

REFERENCES

- K.A. Müller and H. Burkard, Phys. Rev. B, 19, 3593 (1979).
 I-S. Klm, M. Itoh and T. Nakamura, J. Solid State chem., 101, 77 (1992).
- 3. Y. Inaguma, J-H. Sohn, I-S. KIm, M. Itoh and T. Nakamura, J. Phys. Soc. Jpn. 61, 383 (1992).
- 4: J.H. Barrett, Phys. Rev., 86, 118 (1952).
- 5. K.A. Müller, W. Berlinges and F. Waldner, Phys. Rev. Lett., 21, 814 (1968).
- 6. J.G. Bednonz, K.A. Müller, H. Arend and H. Granicher, Mat. Res. Bull., 18. 181 (1983).
- 7. G.A. Smolenskii, V.A. Isupov, V.A. Agranovskaya and N.N. Krainik, Sov. Phys. Solid State, 2, 2584 (1961).
- 8. L.E. Cross, Ferroelectrics, 76, 241 (1987).
- 9. R.J.Bratton and T.Y. Tien, J. Am. Ceram. Soc., 50, 90 (1967).
 10. T. Nakamura and S. Nomura, Japa. J. Appl. Phys., 5, 1191 (1966).
- 11. S. Triebwasser, Phys. Rev., 114, 63 (1959).