1 Syntax

1.1 V-AST Syntax

An abstract syntax tree with variability (V-AST) can be represented using the syntax given in (1). A tree vertex (or an object) obj can be either a presence condition (pc), a language element (lang) or a generic node (node). All V-AST types have corresponding types in the Java/XTend code as shown in Tbl. 1.

$$\begin{array}{rcl} obj & ::= & pc \mid lang \mid node \\ node & ::= & (name, pair) \\ pair & ::= & \epsilon \mid obj :: pair \end{array} \tag{1}$$

Objects. Objects are represented only as identifiers $o_{1?}$, $o_{2?}$.

Nodes. A node is a tuple of two elements: a string name and a pair which contains the children. It can be represented as an identifier $n_{1\circ}$, $n_{2\circ}$, as a tuple (Conditional, $p_{()}$) or by using the name Conditional. The name of the node can be accessed through the function name (e.g. Conditional, name). The node type also has an index accessor for its children (e.g. (Conditional, $p_{()}$)[i] is accessing child i as ordered in the pair $p_{()}$).

Pair. A pair can either be empty (ϵ) or it can be formed of a head of type obj and a tail of type pair. The head and tail can be accessed through their respective functions: $p_{1()}$.head and $p_{1()}$.tail.

V-AST	$\mathbf{Java}/\mathbf{XTend}$
obj	Object
pc	PresenceCondition
lang	Language <ctag></ctag>
node	GNode
pair	Pair <object></object>

Table 1: Mapping from V-AST vertices to Java classes.

type	representations	
obj	$o_{1?}, o_{2?}$	
pc	$pc_{1\phi},\ pc_{2\phi},\ \phi_1,\ \psi_1,\ true_{\phi},\ false_{\phi},\ \phi \wedge false$	
	$\phi \wedge false$	
lang	$ln_{@}$	
node	n_{\circ} , (Conditional, $p_{()}$), Conditional _o	
pair	p_{0}	

Table 2: Various representations for vertices.

1.2 Rule Syntax

A rule has a name, an input pattern, an output pattern and an algorithm.

REMONERULE				
Input pair()	Output _()	Algorithm		
$\begin{bmatrix} Conditional_{\circ} \\ true_{\phi} \\ \mathit{children}_{()} \\ \mathit{tail}_{()} \end{bmatrix}$	$\left[\begin{array}{c} children_{()} \\ tail_{()} \end{array}\right]$	$\begin{array}{l} \operatorname{preconditions}: \\ \operatorname{pair}_() := \epsilon \\ \operatorname{pair}_().\operatorname{head}: \ (\operatorname{Conditional},_) \\ \operatorname{pair}_().\operatorname{head}. \ \operatorname{filter} (\operatorname{pc}).\operatorname{size} = 1 \\ \operatorname{pair}_().\operatorname{head} [0] = \operatorname{true}_{\phi} \\ \\ \operatorname{do}: \\ \operatorname{return} \ \operatorname{pair}_().\operatorname{head} \\ \operatorname{.getChildrenGuardedBy(true}_{\phi}) \\ \operatorname{.append}(\operatorname{pair}_().\operatorname{tail}) \end{array}$		
REMZERORULE				
Input pair()	Output _()	Algorithm		
$\begin{bmatrix} Conditional_{\circ} \\ false_{\phi} \\ \mathit{children}_{()} \\ \mathit{tail}_{()} \end{bmatrix}$	$tail_{()}$	$\begin{array}{l} \operatorname{preconditions:} \\ \operatorname{pair_{()}} := \epsilon \\ \operatorname{pair_{()}}.\operatorname{head} : \ (\operatorname{Conditional},_) \\ \operatorname{pair_{()}}.\operatorname{head}.\ \operatorname{filter}(\operatorname{pc}).\operatorname{size} = 1 \\ \operatorname{pair_{()}}.\operatorname{head}[0] = \operatorname{false}_{\phi} \\ \\ \operatorname{do:} \\ \operatorname{return} \ \operatorname{pair_{()}}.\operatorname{tail} \end{array}$		
SPLITCONDITION	NALRULE			
Input pair()	Output _()	Algorithm		
$ \begin{bmatrix} \text{Conditional}_{\circ} \\ \phi_1 \\ -children_{1}() \\ \phi_2 \\ -children_{2}() \\ \phi_n \\ -children_{n}() \\ tail_{()} \end{bmatrix} $	$ \begin{bmatrix} Conditional_o \\ \phi_1 \\ children_1() \\ - Conditional_o \\ \phi_2 \\ children_2() \\ - Conditional_o \\ \phi_n \\ children_n() \\ tail() \end{bmatrix} $	$\begin{array}{l} \operatorname{preconditions}: \\ \operatorname{pair}_() := \epsilon \\ \operatorname{pair}_().head: \ (\operatorname{Conditional},_) \\ \operatorname{pair}_().head. \ \operatorname{filter} (\operatorname{pc}). \ \operatorname{size} >= 2 \\ \\ \operatorname{do}: \\ \operatorname{newPair}_() = \epsilon \\ \\ \operatorname{for} \ (\phi_i \ \operatorname{in} \ [\phi_1\phi_n]) \\ \operatorname{newPair}_() = \operatorname{newPair}_(). \\ \operatorname{append}(\\ (\operatorname{Conditional}, \\ \phi_i :: \operatorname{pair}_(). \\ \operatorname{head.getChildrenGuardedBy}(\phi_i))) \\ \\ \operatorname{return} \ \operatorname{pair}_(). \\ \operatorname{tail} \end{array}$		

ConstrainNestedConditionalsRule					
Input $node_{\circ}$	Output _o	Algorithm			
ancestors: $(Conditional, \psi_1 :: _())$ $(Conditional, \psi_2 :: _())$ $(Conditional, \psi_n :: _())$ $(Conditional_\circ$	$Conditional_\circ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$preconditions: \\ node_{\circ}.name = Conditional \\ node_{\circ}. filter(pc).size = 1 \\ do: \\ simpl_{\phi} = constrain(\phi, node_{\circ}.presenceCondition) \\ if (simpl_{\phi}! = \phi) \\ return (Conditional, simpl_{\phi}::node_{\circ}.toPair.tail) \\ else \\ return node_{\circ}$			
ConditionPushDownRule					
Input pair()	Output _()	Algorithm			
$ \begin{bmatrix} \text{Conditional}_{\circ} \\ & \psi_1 \\ & \text{Conditional}_{\circ} \\ & & \psi_{11} \\ & & children_{11}() \\ & & \psi_2 \\ & & \text{Conditional}_{\circ} \\ & & & \phi_{21} \\ & & children_{21}() \\ & & \phi_{22} \\ & & children_{22}() \\ & & \text{Conditional}_{\circ} \\ & & & \psi_{n1} \\ & & & children_{n1}() \\ & & & \psi_{n1} \\ & & & children_{n1}() \\ & & & tail() \end{bmatrix} $	$\begin{bmatrix} Conditional_o \\ & \phi_{11} \wedge \psi_1 \\ & children_{11()} \end{bmatrix}$ $= Conditional_o \\ & & \phi_{21} \wedge \psi_2 \\ & & children_{21()} \\ & & \phi_{22} \wedge \psi_2 \\ & & children_{22()} \end{bmatrix}$ $= Conditional_o \\ & & \phi_{31} \wedge \psi_2 \\ & & children_{31()} \end{bmatrix}$ $= Conditional_o \\ & & \phi_{n1} \wedge \psi_n \\ & & children_{n1()} \\ & & tail_{()} \end{bmatrix}$	$\begin{array}{l} \operatorname{preconditions}: \\ \operatorname{pair}_{()} := \epsilon \\ \operatorname{pair}_{()} .\operatorname{head} : \left(\operatorname{Conditional}, _\right) \\ \operatorname{pair}_{()} .\operatorname{head} .\operatorname{forall}\left[\operatorname{it}: \{\phi} \vee \operatorname{it}: \left(\operatorname{Conditional}, _\right)\right] \\ \operatorname{do}: \\ \operatorname{pair}_{()} .\operatorname{head} .\operatorname{filter}\left(\operatorname{cond}\right). \\ \operatorname{map}\left[\operatorname{node}_{\circ} \mid \\ \left(\operatorname{Conditional}, \operatorname{node}_{\circ} .\operatorname{map}\left[\operatorname{child}_{?}\mid \\ \operatorname{if}\left(\operatorname{child}_{?}: \{\phi}\right) \operatorname{child}_{\phi} \wedge \operatorname{pcOf}(\operatorname{node}_{\circ}) \\ \operatorname{else} \ \operatorname{child}_{?} \\ \end{array}\right]) \\ \operatorname{local}_{\circ} \\ $			

MergeSequentialMutexConditionalRule				
Input pair()	Output _()	Algorithm		
$\begin{bmatrix} Conditional_\circ \\ & \phi_1 \\ & children_1() \\ & Conditional_\circ \\ & & \phi_2 \\ & children_2() \\ & tail() \end{bmatrix}$	$\begin{bmatrix} Conditional_{\circ} \\ & \phi_1 \lor \phi_2 \\ & children_{1()} \\ & tail_{()} \end{bmatrix}$	$\begin{aligned} &\operatorname{preconditions}:\\ &\operatorname{pair}_() := \epsilon\\ &\operatorname{pair}_().\operatorname{size} >= 2\\ &\operatorname{pair}_().\operatorname{head}: \ (\operatorname{Conditional},_)\\ &\operatorname{pair}_().\operatorname{head}. \ \operatorname{filter} (\operatorname{cond}).\operatorname{size} == 1\\ &\operatorname{pair}_().\operatorname{tail}.\operatorname{head}: \ (\operatorname{Conditional},_)\\ &\operatorname{pair}_().\operatorname{tail}.\operatorname{head}: \ \operatorname{filter} (\operatorname{cond}).\operatorname{size} == 1\\ &\operatorname{areMutex}(\phi_1,\phi_2)\\ &\operatorname{structurallyEquals}(\operatorname{children}_{1()},\operatorname{children}_{2()}) \end{aligned}$ $\operatorname{do}: \\ &(\operatorname{Conditional}, \ \phi_1 \lor \phi_2 :: \operatorname{children}_{1()}) :: \operatorname{tail}_{()}$		

1.3 Functions

Constrain / Generalized cofactor. The constrain function (2), a.k.a. the generalized cofactor, constrains a presence condition ϕ by another presence condition ψ that has already been decided to be true and eliminates any redundant variables.

$$\begin{aligned} & \operatorname{models}(\phi) = \{M \,|\, M \implies \phi\} \\ & \operatorname{constrain}(\phi, \psi) = \phi' \, \middle| \begin{array}{c} \phi' \wedge \psi \implies \phi \\ & \operatorname{models}(\phi') = \operatorname{models}(\phi) \backslash \operatorname{models}(\psi) \end{array} \end{aligned} \tag{2}$$

For example, $\operatorname{constrain}(A \wedge C, A \wedge B) = C$ shows that, having decided that $A \wedge B$ holds, C is the minimal proposition required to show that $A \wedge C$ also holds: $C \wedge A \wedge B \to A \wedge C$.

Another example: $\operatorname{constrain}(B \vee C, A \wedge B) = \operatorname{true}$ shows that, having decided that $A \wedge B$ holds, true is the minimal proposition required to show that $B \vee C$ also holds: $\operatorname{true} \wedge A \wedge B \to B \vee C$.