

Laboratorio 5

R. Ferrero Politecnico di Torino

Dipartimento di Automatica e Informatica (DAUIN)

Torino - Italy

This work is licensed under the Creative Commons (CC BY-SA) License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/

Esercizio

- Si scriva un programma in Assembly ARM in grado di moltiplicare due matrici.
- La prima matrice ha N righe e M colonne.
- La seconda matrice ha M righe e P colonne.
- La matrice risultato ha N righe e P colonne.
- Tutte le matrice contengono numeri con segno espressi su una word.
- N, M, P sono costanti da definire con EQU.

Dichiarazione delle matrici

- Le prime due matrici sono definite come costanti in un'area di memoria READONLY.
- La terza matrice deve essere allocata in un'area DATA READWRITE.

Moltiplicazione di matrice

- sia a_{ik} l'elemento alla riga i e colonna k della matrice A
- sia b_{kj} l'elemento alla riga k e colonna j della matrice B
- il prodotto delle matrici A e B genera una matrice C i cui elementi sono:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Esempio 1

$$N = 3$$
, $M = 4$, $P = 2$

$$A = \begin{pmatrix} 4 & -3 & 5 & 1 \\ 3 & -5 & 0 & 11 \\ -5 & 12 & 4 & -5 \end{pmatrix} \qquad B = \begin{pmatrix} -2 & 3 \\ 5 & -1 \\ 4 & 3 \\ 9 & -7 \end{pmatrix}$$

$$B = \begin{pmatrix} -2 & 3 \\ 5 & -1 \\ 4 & 3 \\ 9 & -7 \end{pmatrix}$$

$$C = \begin{pmatrix} 6 & 23 \\ 68 & -63 \\ 41 & 20 \end{pmatrix}$$

Gestione dell'overflow

- Le somme intermedie devono essere calcolate su due word.
- Al termine di un prodotto riga*colonna, si controlla la word più significativa della somma parziale.
- In caso di overflow, occorre memorizzare come risultato il massimo numero (positivo o negativo, in base al tipo di overflow) esprimibile su una word.

Condizioni di overflow

- Se una delle due condizioni seguenti è vera, il risultato non è rappresentabile in una word:
 - La word più significativa è diversa da 0 o da 0xFFFFFFF
 - La word più significativa è uguale a 0 o a 0xFFFFFFF, ma il bit più significativo della word meno significativa è diverso dai bit della word più significativa.

Esempio 2: matrice A

- N = 4, M = 7, P = 5
- Tutti i numeri sono in esadecimale

A =

/00000BB8	000036B0	FFFFC568	00002328	00006590	FFFF30F8	00001388\
00015BA8	000013498	00000BB8	000059D8	00014820	FFFFE890	FFFF8AD0
0000A7F8	FFFFF448	00014438	00006978	FFFFDCD8	0000C350	00006D60
\FFFEA840	0000A028	00017AE8	FFFE6DA8	00010D88	00009858	FFFFDCD8/

Esempio 2: matrice B

B =										
	/00009088	FFFE7578	0	0000E290	FFFFB1E0\					
	00002328	00012110	00016F30	FFFFF060	0000E678					
	FFFFA628	00015F90	FFFECF50	00003E80	FFFFF060					
	0	FFFF0DD0	00014FF0	00004E20	00015BA8					
	00002328	00014FF0	00006D60	0	FFFF7B30					
	00014050	00001388	000084D0	FFFFADF8	000003E8					
	\00011170	FFFEFA48	00002328	00014050	000036B0/					

Esempio 2: matrice C

C =7FFFFFFF 2D4CAE00 80000000 1B7A4D40 5E3C2540 6164DC80 7FFFFFF 7D1C32C0 7FFFFFFF 7FFFFFFF 80000000 6A372980 7FFFFFFF BA5279C0 7FFFFFFF 80000000 7FFFFFF 80000000 80000000 8D05CBC0

Esempio 2: calcolo di c_{1,3}

- 1. 00000BB8 * 00000000 =000000000 00000000 Risultato parziale: 000000000 00000000
- 2. 000036B0 * 00016F30 = 00000000 4E709100 Risultato parziale: 00000000 4E709100
- 3. FFFFC568 * FFFECF50=00000000 45BCC880 Risultato parziale: 00000000 942D5980
- 4. 00002328 * 00014FF0 = 00000000 2E224D80
 Risultato parziale: 00000000 C24FA700

Esempio 2: calcolo di c_{1,3}

- 5. 00006590 * 00006D60 = 00000000 2B646600 Risultato parziale: 00000000 EDB40D00
- 6. FFFF30F8 * 000084D0=FFFFFFF 9497A980 Risultato parziale: 00000000 824BB680
- 7. 00001388 * 00002328 = 00000000 02AEA540 Risultato finale: 00000000 84FA5BC0
- Il risultato non è rappresentabile con una word perché il primo bit della word meno significativa è diverso dai bit della word più significativa.
- $c_{1,3} = 7FFFFFFF$

Esempio 2: calcolo di c_{2,1}

- 1. 00015BA8 * 00009088 = 000000000 C4473140 Risultato parziale: 000000000 C4473140
- 2. 000013498 * 00002328 = 00000000 2A60FFC0 Risultato parziale: 00000000 EEA83100
- 3. 00000BB8 * FFFFA628=FFFFFFF FBE324C0 Risultato parziale: 00000000 EA8B55C0
- 4. 000059D8 * 00000000 = 00000000 00000000 Risultato parziale: 00000000 EA8B55C0

Esempio 2: calcolo di c_{2,1}

- 5. 00014820 * 00002328 = 00000000 2D0FA500 Risultato parziale: 00000001 179AFAC0
- 6. FFFFE890 * 00014050=FFFFFFFF E2ACAD00 Risultato parziale: 00000000 FA47A7C0
- 7. FFFF8AD0 * 00011170 =FFFFFFF 82D48B00 Risultato finale: 00000000 7D1C32C0
- Nonostante al passo 5 il risultato parziale sia su 2 word, il risultato finale è rappresentabile con una sola word.

Esempio 2: calcolo di c_{1,1}

- 00015BA8 * FFFE7578=FFFFFFD E836BEC0 Risultato parziale: FFFFFFD E836BEC0
- 2. 000013498 * 00012110 = 00000001 5C72E180 Risultato parziale: FFFFFFF 44A9A040
- 3. 00000BB8 * 00015F90= 00000000 1017DF80 Risultato parziale: FFFFFFF 54C17FC0
- 4. 000059D8 * FFFF0DD0=FFFFFFF AB00F780 Risultato parziale: FFFFFF FFC27740

Esempio 2: calcolo di c_{1,1}

- 5. 00014820 * 00014FF0 = 00000001 AE957E00 Risultato parziale: 00000000 AE57F540
- 6. FFFFE890 * 00001388=FFFFFFFF FE363C80 Risultato parziale: 00000000 AC8E31C0
- 7. FFFF8AD0 * FFFEFA48=00000000 77CE2A80 Risultato finale: 00000001 245C5C40
- Il risultato non è rappresentabile con una word perché la word più significativa è diversa da 0 e da FFFFFFF.
- $C_{1,1} = 7FFFFFFF$