Angle bisector theorem

Created by Mr. Francis Hung on 20140925. Last updated: 2021-11-24

In the figure, AC = b, AB = c, AD is the angle bisector of $\angle A$, cutting BC at D. $\angle BAD = \angle CAD = \theta$.

Then
$$\frac{BD}{DC} = \frac{c}{b}$$
.

Proof: Let $\angle ADB = \alpha$, $\angle ADC = 180^{\circ} - \alpha$ (adj. \angle s on st. line)

Apply sine rule on $\triangle ABD$ and $\triangle ACD$.

$$\frac{BD}{\sin \theta} = \frac{c}{\sin \alpha}$$
 (1) and $\frac{DC}{\sin \theta} = \frac{b}{\sin(180^{\circ} - \alpha)}$ (2)

Using the fact that $\sin(180^\circ - \alpha) = \sin \alpha$, $(1) \div (2)$: $\frac{BD}{DC} = \frac{c}{b}$

Converse of angle bisector theorem, if $\frac{BD}{DC} = \frac{c}{b}$, then AD is the angle bisector of $\angle A$.

Proof: Apply sine rule on $\triangle ABD$ and $\triangle ACD$.

$$\frac{BD}{\sin \angle BAD} = \frac{c}{\sin \alpha} \quad \dots \quad (3) \text{ and } \frac{DC}{\sin \angle CAD} = \frac{b}{\sin \left(180^{\circ} - \alpha\right)} \quad \dots \quad (4)$$

Using the fact that $\sin(180^{\circ} - \alpha) = \sin \alpha$, (3) ÷ (4): $\frac{BD}{DC} \cdot \frac{\sin \angle CAD}{\sin \angle BAD} = \frac{c}{b}$

Given that
$$\frac{BD}{DC} = \frac{c}{b}$$
. $\therefore \frac{\sin \angle CAD}{\sin \angle BAD} = 1$

 $\sin \angle BAD = \sin \angle CAD$

$$\angle BAD = \angle CAD$$

AD is the angle bisector of $\angle A$.

External angle bisector theorem

In the figure, AC = b < AB = c, AE is the external angle bisector of $\angle BAC$, cutting BC produced at E. BA is produced to F. $\angle CAE = \angle FAE = \beta$, $\angle BAE = 180^{\circ} - \beta$ (adj. $\angle s$ on st. line)

Then
$$\frac{BE}{EC} = \frac{c}{b}$$
.

Proof: Apply sine rule on $\triangle ABE$ and $\triangle ACE$.

$$\frac{BE}{\sin(180^{\circ} - \beta)} = \frac{c}{\sin \angle AEC} \quad \cdots \quad (5) \text{ and } \frac{EC}{\sin \beta} = \frac{b}{\sin \angle AEC} \quad \cdots \quad (6)$$

Using the fact that $\sin(180^\circ - \beta) = \sin \beta$, (5) ÷ (6): $\frac{BE}{EC} = \frac{c}{b}$

Converse of external angle bisector theorem, if $\frac{BE}{EC} = \frac{c}{b}$, then AE is the external angle bisector of

 $\angle BAC$.

Proof: Apply sine rule on $\triangle ABE$ and $\triangle ACE$.

$$\frac{BE}{\sin(180^{\circ} - \angle EAF)} = \frac{c}{\sin \angle AEC} \quad \cdots \quad (7) \text{ and } \frac{EC}{\sin \angle CAE} = \frac{b}{\sin \angle AEC} \quad \cdots \quad (8)$$

Using the fact that $\sin(180^\circ - \angle EAF) = \sin \angle EAF$, (7) ÷ (8): $\frac{BE}{EC} \cdot \frac{\sin \angle CAE}{\sin \angle EAF} = \frac{c}{b}$

Given that
$$\frac{BE}{EC} = \frac{c}{b}$$
. $\therefore \frac{\sin \angle CAE}{\sin \angle EAF} = 1$

$$\sin \angle CAE = \sin \angle EAF$$

$$\angle CAE = \angle EAF$$

AE is the external angle bisector of $\angle BAC$.