계산력 연습

[영역] 1.수와 연산

중 1 과정

1-2-3.최대공약수와 최소공배수의 관계, 분수를 자연수로 만들기

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2016-02-16

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

계산시 참고사항

1. 최대공약수와 최소공배수의 관계

두 자연수 A, B의 최대공약수를 G, 최소공배수를 L이라 하면

- (1) $A = a \times G$, $B = b \times G$ (a, b는 서로소)
- (2) $L = a \times b \times G$
- (3) $A \times B = L \times G$

2. 분수를 자연수로 만들기

두 분수 $\frac{a}{b}$, $\frac{c}{d}$ 중 어느것에 곱해도 그 결과가 자연수가 되도록 하는

가장 작은 기약분수를 $\frac{A}{B}$ 라 하면

- (1) A는 두 분모의 최소공배수, 즉 b, d의 최소공배수이다.
- (2) B는 두 분자의 최대공약수, 즉 a, c의 최대공약수이다.

참고

● 두 수의 곱은 최대공약수와 최소공 ■배수의 곱과 같다.

🖒 최대공약수와 최소공배수의 관계

☑ 다음 두 수의 최대공약수를 구하여라.

- 1. 곱이 450이고, 최소공배수가 90인 두 수
- 2. 곱이 675이고, 최소공배수가 45인 두 수

☑ 다음 두 수의 최소공배수를 구하여라.

- 3. **곱이** 108이고, 최대공약수가 6인 두 수
- 4. 곱이 360이고, 최대공약수가 6인 두 수

- \blacksquare 두 자연수 A,B의 곱 $A \times B$ 와 최대공약수 G가 다음과 같을 때, 최소공배수 L의 값을 구하여라.
- 5. $A \times B = 120, G = 2$
- 6. $A \times B = 96, G = 3$
- 7. $A \times B = 128, G = 4$
- 8. $A \times B = 243, G = 9$
- 9. $A \times B = 360, G = 3$

10.
$$A \times B = 384, G = 8$$

11.
$$A \times B = 864, G = 24$$

12.
$$A \times B = 360, G = 60$$

13.
$$A \times B = 810, G = 90$$

14.
$$A \times B = 96$$
, $G = 4$

15.
$$A \times B = 125$$
, $G = 5$

16.
$$A \times B = 160$$
, $G = 4$

17.
$$A \times B = 486$$
, $G = 9$

$oldsymbol{\square}$ 두 자연수 A,B의 최대공약수 G와 최소공배수 L이 다음 과 같을 때, $A \times B$ 의 값을 구하여라.

18.
$$G=3, L=24$$

19.
$$G = 5, L = 35$$

20.
$$G=1, L=15$$

21.
$$G = 6, L = 12$$

22.
$$G = 7, L = 28$$

23.
$$G=7$$
, $L=21$

24.
$$G=5$$
, $L=50$

25.
$$G = 10$$
, $L = 100$

26.
$$G=12, L=72$$

27.
$$G=9, L=45$$

28.
$$G = 12, L = 48$$

$oldsymbol{\square}$ 두 자연수 A,B의 곱 A imes B와 최소공배수 L이 다음과 같 을 때, 최대공약수 G의 값을 구하여라.

29.
$$A \times B = 40$$
, $L = 20$

30.
$$A \times B = 54$$
, $L = 18$

31.
$$A \times B = 162$$
, $L = 18$

- 32. $A \times B = 640$, L = 80
- 33. $A \times B = 600, L = 120$
- 34. $A \times B = 882, L = 21$
- 35. $A \times B = 480, L = 80$
- 36. $A \times B = 64, L = 16$
- 37. $A \times B = 384, L = 48$
- 38. $A \times B = 756, L = 126$
- 39. $A \times B = 972, L = 108$
- $\ \square$ 두 자연수의 최대공약수와 최소공배수가 주어질 때, A를 구하여라.
- 40. 두 자연수 $2^2 \times 3^2$ 과 A의 최대공약수가 $2^2 \times 3$, 최소공배수 가 $2^2 \times 3^2 \times 5$ 일 때
- 41. 두 자연수 $3^2 \times 5$ 와 A의 최대공약수가 3×5 , 최소공배수가 $2 \times 3^2 \times 5^2$ 일 때

- 42. 두 자연수 $2^4 \times 3$, A의 최대공약수가 24이고 최소공배수가 144일 때
- 43. 두 자연수 $2^2 \times 3 \times 7$ 과 A의 최대공약수가 3×7 , 최소공배 수가 $2^2 \times 3^2 \times 7^2$ 일 때
- 44. 두 자연수 $2^4 \times 5^2$ 과 A의 최대공약수가 $2^2 \times 5$, 최소공배수 가 $2^4 \times 3 \times 5^2$ 일 때
- 45. 두 자연수 70, *A*의 최대공약수가 14이고, 최소공배수가 420일 때
- 46. **두 자연수** 24**와** *A*의 최대공약수가 12, 최소공배수가 120 일 때
- 47. 두 자연수 12와 A의 최대공약수가 2이고, 최소공배수가 60일 때
- 48. 두 자연수 60과 A의 최대공약수가 15이고, 최소공배수가 300일 때
- 49. **두 자연수** 28**과** *A***의 최대공약수가** 4, 최소공배수가 280**일** 때
- 50. 두 자연수 48과 A의 최대공약수가 12이고, 최소공배수가 144일 때

 \square a, b, c는 모두 자연수 일 때, 식의 값을 구하여라.

- 51. 두 자연수 $2^a \times 3^3$, $2^2 \times 3^b \times 5$ 의 최대공약수가 $2^2 \times 3$, 최 소공배수가 $2^4 \times 3^3 \times 5$ 일 때, a+b의 값
- 52. 두 자연수 $2\times3^2\times5^a$, $2^2\times3^b\times5\times7$ 의 최소공배수가 $2^2\times3^3\times5^2\times7$ 일 때, a-b의 값
- 53. 세 수 $2^3 \times 3^a$, $2^3 \times 3 \times 7^b$, $2^c \times 3 \times 7$ 의 최대공약수가 12, 최소공배수가 504일 때 a+b-c의 값
- 54. 두 수 $2^2 \times 3^a \times 5$, $2^b \times 3^2 \times c$ 의 최대공약수는 $2^2 \times 3$ 이고 최소공배수는 $2^3 \times 3^2 \times 5 \times 7$ 일 때, a+b+c의 값
- 55. 두 수 $2^a \times 3^3 \times 5$, $2^3 \times 3^b \times c$ 의 최대공약수는 $2^2 \times 3$ 이고, 최소공배수는 $2^3 \times 3^3 \times 5 \times 7$ 일 때, a+b+c의 값
- 56. 두 수 $2^2 \times 3 \times 5$ 와 $2^a \times 3^b \times c$ 의 최대공약수가 2×3 이고, 최소공배수가 $2^2 \times 3^3 \times 5 \times 7$ 일 때, $a \times b \times c$ 의 값
- 57. 두 수 $2^a \times 3^2 \times 5$ 과 $2^2 \times 3^b \times c$ 의 최대공약수가 $2^2 \times 3^2$ 이 고. 최소공배수가 $2^4 \times 3^3 \times 5 \times 7$ 일 때, a+b+c의 값
- 58. 두 수 $2^a \times 7^2$, $2^3 \times b \times 7^3$ 의 최대공약수는 $2^2 \times 7^2$, 최소공 배수는 $2^3 \times 3 \times 7^c$ 일 때, a+b+c의 값

- 59. $2^2 \times 3 \times 5^a$ 와 $2 \times 3^b \times 5 \times c$ 의 최대공약수가 $2 \times 3 \times 5$, 최 소공배수가 $2^2 \times 3^3 \times 5 \times 7$ 일 때, |a-b-c|의 값
- 60. 두 수 $2^a \times 3^b \times 5^c$, $2^2 \times 3^2 \times d$ 의 최대공약수가 $2^2 \times 3^2$, 최 소공배수가 $2^2 \times 3^4 \times 5 \times 7$ 일 때, a+b+c+d의 값
- 61. 세 수 $2^a \times 5^2 \times 7^3$, $2^3 \times 5 \times 7^b$, $2^2 \times 5^4 \times 7^2$ 의 최대공약수가 $2 \times 5^c \times 7^2$ 이고, 최소공배수가 $2^3 \times 5^d \times 7^4$ 일 때, 자연수 a, b, c, d에 대하여 a+b+c+d의 값
- 62. 자연수 a, b, c에 대하여 $2^3\times5^2\times7$, $2^a\times3\times5$, $2^4\times5$ 의 최대공약수가 $2^2\times b$ 이고, 최소공배수가 $2^c\times3\times5^2\times7$ 일 때, a+b-c의 값

B

분수를 자연수로 만들기

- □ 다음 두 분수를 자연수로 만드는 자연수 n의 값 중 가장 큰 수를 구하여라.
- 63. $\frac{12}{n}$, $\frac{27}{n}$
- 64. $\frac{20}{n}$, $\frac{24}{n}$
- 65. $\frac{12}{n}$, $\frac{30}{n}$
- 66. $\frac{18}{n}$, $\frac{24}{n}$
- 67. $\frac{56}{n}$, $\frac{72}{n}$

68.
$$\frac{81}{n}$$
, $\frac{90}{n}$

69.
$$\frac{75}{n}$$
, $\frac{105}{n}$

70.
$$\frac{40}{n}$$
, $\frac{72}{n}$

71.
$$\frac{84}{n}$$
, $\frac{132}{n}$

72.
$$\frac{70}{n}$$
, $\frac{110}{n}$

73.
$$\frac{32}{n}$$
, $\frac{80}{n}$

☑ 두 분수 중 어느 것에 곱해도 그 결과가 자연수가 되도록 하는 가장 작은 자연수를 구하여라.

74.
$$\frac{1}{4}$$
, $\frac{1}{6}$

75.
$$\frac{1}{3}$$
, $\frac{1}{6}$

76.
$$\frac{1}{5}$$
, $\frac{1}{9}$

77.
$$\frac{1}{8}$$
, $\frac{1}{48}$

78.
$$\frac{1}{8}$$
, $\frac{1}{12}$

79.
$$\frac{1}{12}$$
, $\frac{1}{15}$

☑ 다음 두 분수 중 어느 것에 곱해도 그 결과가 자연수가 되도록 하는 기약분수 중에서 가장 작은 수를 구하여라.

80.
$$\frac{8}{15}$$
, $\frac{28}{5}$

81.
$$\frac{15}{2}$$
, $\frac{20}{3}$

82.
$$\frac{12}{5}$$
, $\frac{15}{7}$

83.
$$\frac{9}{16}$$
, $\frac{27}{8}$

84.
$$\frac{35}{12}$$
, $\frac{20}{9}$

85.
$$\frac{14}{21}$$
, $\frac{18}{49}$

86.
$$1\frac{1}{15}$$
, $2\frac{2}{7}$

- 87. $6\frac{1}{8}$, $2\frac{1}{10}$
- 88. $1\frac{1}{27}$, $\frac{35}{72}$, $1\frac{10}{81}$
- 89. $\frac{100}{9}$, $\frac{50}{3}$, $\frac{125}{6}$
- 90. $\frac{20}{3}$, $\frac{30}{7}$, $\frac{25}{2}$
- 91. $\frac{8}{15}$, $\frac{24}{35}$, $\frac{12}{25}$
- 92. $\frac{14}{15}$, $\frac{35}{18}$, $\frac{42}{25}$
- 93. $\frac{14}{5}$, $\frac{7}{3}$, $\frac{49}{15}$
- 94. $\frac{5}{3}$, $\frac{10}{7}$, $\frac{20}{9}$
- 95. $\frac{9}{5}$, $\frac{36}{7}$, $\frac{15}{14}$

정답 및 해설

- 1) 5
- \Rightarrow (두 수의 곱)= $G \times L$ 이므로 $450 = G \times 90$ $\therefore G = 5$
- 2) 15
- \Leftrightarrow (두 수의 곱)= $G \times L$ 이므로 $675 = G \times 45$ $\therefore G = 15$
- 3) 18
- \Rightarrow 최대공약수를 G, 최소공배수를 L이라고 하면 (두 수의 $\mathbf{G}) = G \times L$, $108 = 6 \times L$ $\therefore L = 18$
- 4) 60
- \Rightarrow (두 수의 곱)= $G \times L$ 이므로 $360 = 6 \times L$ $\therefore L = 60$
- 5) 60
- 6) 32
- 7) 32
- 8) 27
- 9) 120
- $\Rightarrow L = (A \times B) \div G = 360 \div 3 = 120$
- 10) 48
- $\Rightarrow L = (A \times B) \div G = 384 \div 8 = 48$
- 11) 36
- $\Rightarrow L = (A \times B) \div G = 864 \div 24 = 36$
- 12) 6
- $\Rightarrow L = (A \times B) \div G = 360 \div 60 = 6$
- 13) 9
- $\Rightarrow L = (A \times B) \div G = 810 \div 90 = 9$
- 14) 24
- ☆ (A,B의 최소공배수) = 96 ÷ 4 = 24
- 15) 25
- ⇒ (A,B의 최소공배수) = 125 ÷ 5 = 25
- 16) 40
- 17) 5/
- 18) 72

- 19) 175
- $\Rightarrow A \times B = L \times G = 35 \times 5 = 175$
- 20) 15
- 21) 72
- $\Rightarrow A \times B = L \times G = 12 \times 6 = 72$
- 22) 196
- $\Rightarrow A \times B = L \times G = 28 \times 7 = 196$
- 23) 147
- $\Rightarrow A \times B = L \times G = 21 \times 7 = 147$
- 24) 250
- $\Rightarrow A \times B = L \times G = 50 \times 5 = 250$
- 25) 1000
- $\Rightarrow A \times B = L \times G = 100 \times 10 = 1000$
- 26) 864
- $\Rightarrow A \times B = L \times G = 72 \times 12 = 864$
- 27) 405
- $\Rightarrow A \times B = L \times G = 45 \times 9 = 405$
- 28) 576
- $\Rightarrow A \times B = L \times G = 48 \times 12 = 576$
- 29) 2
- □ (A,B의 최대공약수) = 40 ÷ 20 = 2
- 30) :
- 31) 9
- 32) 8
- ⇒ (A,B의 최대공약수) = 640 ÷ 80 = 8
- 33) 5
- 34) 42
- \Rightarrow $G = (A \times B) \div L = 882 \div 21 = 42$
- 35) 6
- 36) 4
- \Rightarrow $G = (A \times B) \div L = 64 \div 16 = 4$
- 37) 8
- \Rightarrow $G = (A \times B) \div L = 384 \div 48 = 8$
- 38) 6
- \Rightarrow $G = (A \times B) \div L = 756 \div 126 = 6$

- 39) 9
- $\Rightarrow G = (A \times B) \div L = 972 \div 108 = 9$
- 40) 60
- $\Rightarrow 2^2 \times 3^2 \times A = (2^2 \times 3) \times (2^2 \times 3^2 \times 5)$ $\therefore A = 2^2 \times 3 \times 5 = 60$
- 41) 150
- $\Rightarrow 3^2 \times 5 \times A = (3 \times 5) \times (2 \times 3^2 \times 5^2)$ $\therefore A = 2 \times 3 \times 5^2 = 150$
- 42) $2^3 \times 3^2$
- \Rightarrow 최대공약수 $24=2^3\times 3$, 최소공배수 $144=2^4\times 3^2$ 이므로 $A=2^3\times 3^2$
- 43) 441
- $\Rightarrow 2^2 \times 3 \times 7 \times A = (3 \times 7) \times (2^2 \times 3^2 \times 7^2)$ $\therefore A = 3^2 \times 7^2 = 441$
- 44) 60
- $\Rightarrow 2^4 \times 5^2 \times A = (2^2 \times 5) \times (2^4 \times 3 \times 5^2)$ $\therefore A = 2^2 \times 3 \times 5 = 60$
- 45) 84
- 다 두 수의 곱은 두 수의 최대공약수와 최소공배수의 곱과 같으므로 $70 \times A = 14 \times 420$ 에서 A = 84
- 46) 60
- $\Rightarrow 24 \times A = 12 \times 120$ $\therefore A = 60$
- 47) 10
- $\Rightarrow 12 \times A = 2 \times 60$ $\therefore A = 10$
- 48) 75
- \Rightarrow 60 × A = 15 × 300 \therefore A = 75
- 49) 40
- $\Rightarrow 28 \times A = 4 \times 280 \qquad \therefore A = 40$
- 50) 36

 $48 \times A = 12 \times 144$ 에서 $A = \frac{12 \times 144}{48} = 36$

- 51) 5
- \Rightarrow 최대공약수가 $2^2 \times 3$ 이므로 y=1 이고 최소공배수가 $2^4 \times 3^3 \times 5$ 이므로 x=4 그러므로 x+y=5
- 52) -1
- \Rightarrow 최소공배수는 공통인 소인수에서 지수가 큰 것을 써준다. 그러므로 $a=2,\ b=3$ 에서 a-b=-1

- 53) 1
- ⇒ 최대공약수가 12=2²×3 이고,
 최소공배수가 504=2³×3²×7 이므로
 a=2, b=1, c=2 에서 a+b-c=2+1-2=1이다.
- 54) 11
- \Rightarrow 최대공약수가 $2^2 \times 3$ 이므로 a=1 최소공배수가 $2^3 \times 3^2 \times 5 \times 7$ 이므로 b=3, c=7 a+b+c=1+3+7=11
- 55) 10
- \Rightarrow 최대공약수가 $2^2 \times 3$ 이므로 a=2, b=1최소공배수가 $2^3 \times 3^3 \times 5 \times 7$ 이므로 c=7 $\therefore a+b+c=2+1+7=10$
- 56) 21
- \Rightarrow 최대공약수가 2×3 이므로 a=1 최소공배수가 $2^2\times 3^3\times 5\times 7$ 이므로 $b=3,\ c=7$ 그러므로 $a\times b\times c=1\times 3\times 7=21$
- 57) 14
- \Rightarrow 최대공약수가 $2^2 \times 3^2$ 이고 최소공배수가 $2^4 \times 3^3 \times 5 \times 7$ 이므로 a=4, b=3, c=7 에서 a+b+c=14
- 58) 8
- ightharpoonup 최대공약수가 $2^2 \times 7^2$ 이므로 a=2 최소공배수가 $2^3 \times 3 \times 7^c$ 이므로 $b=3,\ c=3$ 따라서 a+b+c=2+3+3=8
- 59) 9
- $\Rightarrow a=1, b=3, c=70$ $\Rightarrow |a-b-c|=|1-3-7|=9$
- 60) 14
- $\Rightarrow a=2, b=4, c=1, d=70$ 으로 a+b+c+d=2+4+1+7=14
- 61) 10
- \Rightarrow 최대공약수가 $2 \times 5^c \times 7^2$ 이므로 a=1, c=1최소공배수가 $2^3 \times 5^d \times 7^4$ 이므로 b=4, d=4 $\therefore a+b+c+d=1+1+4+4=10$
- 62) 3
- \Rightarrow 최대공약수가 $2^2 \times b$ 이므로 $a=2,\ b=5$ 최소공배수가 $2^c \times 3 \times 5^2 \times 7$ 이므로 c=4 에서 \therefore a+b-c=2+5-4=3
- 63) 3
- ⇒ 구하는 수는 12와 27의 최대공약수이므로 3이다.
- 64) 4
- ⇒ 구하는 수는 20과 24의 최대공약수이므로 4이다.

65) 6

다 n은 12, 30의 공약수가 되어야 한다. 이때 $12=2^2\times 3,\ 30=2\times 3\times 5$ 의 최대공약수가 $n=2\times 3=6$

66) 6

다 n은 $18=2\times 3^2$, $24=2^3\times 3$ 의 공약수이면서 가장 큰 수이므로 두 수의 최대공약수 $n=2\times 3=6$ 이다.

67) 8

⇒ 구하는 수는 56과 72의 최대공약수이므로 8이다.

68) 9

⇨ 구하는 수는 81과 90의 최대공약수이므로 9이다.

69) 15

⇨ 구하는 수는 75와 105의 최대공약수이므로 15이다.

70) 8

⇒ 구하는 *n*의 값은 40과 72의 최대공약수인 8이다.

71) 12

⇒ 구하는 *n*의 값은 84와 132의 최대공약수인 12이다.

72) 10

73) 16

⇒ 구하는 n의 값은 32와 80의 최대공약수인 16이다.

74) 12

⇨ (구하는 수) = (4와 6의 최소공배수) = 12

75) 6

□ (구하는 수) = (3과 6의 최소공배수) = 6

76) 45

⇨ (구하는 수) = (5와 9의 최소공배수) = 45

77) 48

78) 24

⇒ (구하는 수) = (8과 12의 최소공배수) = 24

79) 60

80) $\frac{15}{4}$

□ (구하는 수) = (15와 5의 최소공배수) (8과 28의 최대공약수) = 15/4

81) $\frac{6}{5}$

□ (구하는 수) = (2와 3의 최소공배수) (15와 20의 최대공약수) = 6/5

82) $\frac{35}{3}$

□ (구하는 수) = (5와 7의 최소공배수) (12와 15의 최대공약수) = 35/3

83) $\frac{16}{9}$

□ (구하는 수) = (16과 8의 최소공배수) = 16/9 27의 최대공약수) = 16/9

84) $\frac{36}{5}$

□ (구하는 수) = (12와 9의 최소공배수) / (35와 20의 최대공약수) = 36

85) $\frac{147}{2}$

86) $\frac{105}{16}$

 $\Rightarrow 1\frac{1}{15} = \frac{16}{15}, 2\frac{2}{7} = \frac{16}{7}$ 에 곱하여

자연수가 되는 분수를 $\frac{a}{b}$ 이라고 할 때

a는 15, 7의 공배수이면서 가장 작은 수가 되어야 하므로 두 수의 최소공배수 105이고, b는 16, 16의 공약수이면서 가장 큰 수가 되어야 하므로 16이다.

$$\therefore \quad \frac{a}{b} = \frac{105}{16}$$

- 87) $\frac{40}{7}$
- 88) $\frac{648}{7}$
- 89) $\frac{18}{25}$
- 90) $\frac{42}{5}$
- \Rightarrow 구하려는 분수를 $\frac{a}{b}$ 라고 할 때

a는 3, 7, 2의 공배수이면서 최소가 되어야 하므로 세 수의 최소공배수인 42이다.

*b*는 20, 30, 25의 공약수이면서 최대가 되어야 하므로 세수의 최대공약수인 5이다.

$$\therefore \frac{a}{b} = \frac{42}{5}$$

91) $\frac{525}{4}$

- 92) $\frac{450}{7}$
- ⇒ 분자는 15, 18, 25의 공배수 중 가장 작은 수이므로 15, 18, 25 의 최소공배수 450
 분모는 14, 35, 42 의 공약수 중 가장 큰 수이므로 14, 35, 42 의 최대공약수 7
 그러므로 a/b = 450/7 이다.
- 93) $\frac{15}{7}$
- ⇒ 분모는 14, 7, 49 를 나누는 수가 되어야 하므로
 14, 7, 49의 최대공약수인 7,
 분자 는 5, 3, 15 으로 나누어지는 수가 되어야 하므로
 5, 3, 15의 최소공배수인 15
 그러므로 15/7
- 94) $\frac{63}{5}$
- ⇒ 분자는 3, 7, 9의 최소공배수 63 이고 분모는 5, 10, 20의 최대공약수 5 이므로 분수는 $\frac{63}{5}$ 이다.
- 95) $\frac{70}{3}$
- ⇒ 분자는 5, 7, 14 의 최소공배수 70분모는 9, 36, 15 의 최대공약수 3