1. Исследователь Вениамин наблюдает стационарный процесс y_t с $\mathbb{C}\mathrm{ov}(y_t,u_{t+h})=0$ при h>0 и уравнением

$$y_t = \alpha u_{t-1} + u_t,$$

где u_t — ненаблюдаемый белый шум с $\mathbb{E}(u_t)=0$, $\mathbb{V}\mathrm{ar}(u_t)=\sigma^2$ и $\mathbb{C}\mathrm{ov}(u_t,u_{t+h})=0$ при h>0.

У Вениамина есть три наблюдения, y_1 , y_2 , y_3 .

- а) Найдите ковариационную матрицу вектора $y = (y_1, y_2, y_3);$
- б) Предполагая совместную нормальность u_t , выпишите логарифмическую функцию правдоподобия для оценки данной модели.
- в) Для $\alpha=1$ постройте автокорреляционную и частную автокорреляционную функцию.
- 2. Рассмотрим центрированные вектора y и $x_1, x_2, ..., x_k$. Существует разложение R^2 в регрессии y на все (x_i) :

$$\hat{\beta}_1 \hat{\gamma}_1 + \hat{\beta}_2 \hat{\gamma}_2 + \ldots + \hat{\beta}_k \hat{\gamma}_k = R^2,$$

где $\hat{\beta}_j$ — это коэффициент перед x_j в регрессии y на все (x_j) , и $\hat{\gamma}_j$ — коэффициент в регрессии x_j на y.

Некоторые авторы склонны интепретировать это как вклад каждого фактора в \mathbb{R}^2 . Осознавая спорность этой интерпретации, докажите данное разложение.

Хинт-вопрос: что получится если j-ую строку обратной матрицы помножить на j-ый столбец исходной? Осталось только вспомнить, что там, в этих матрицах :)

3. Во многих учебниках пишут, что процесс $y_t = 2y_{t-1} + u_t$ нестационарный. Давайте разберёмся и аккуратнее рассмотрим уравнение

$$y_t = 2y_{t-1} + u_t$$

где u_t — ненаблюдаемый белый шум с $\mathbb{E}(u_t)=0$, $\mathbb{V}\mathrm{ar}(u_t)=\sigma^2$ и $\mathbb{C}\mathrm{ov}(u_t,u_{t+h})=0$ при h>0.

- а) Приведите пример y_0 такого, что получающийся процесс y_t будет нестационарным.
- б) Постройте явно стационарный y_t , удовлетворяющий данному уравнению. То есть выразите y_t через белый шум (u_t) .
- в) Выполнено ли для построенного примера условие $Cov(y_t, u_{t+h}) = 0$ при h > 0?
- г) Чему в построенном примере равно y_0 ?
- 4. Рассмотрим задачу логистической регрессии

$$\begin{cases} y_i^* = \beta_1 + \beta_2 x_i + \beta_3 z_i + u_i; \\ y_i = \begin{cases} 1, \text{ если } y_i^* \ge 0; \\ 0, \text{ иначе.} \end{cases}$$

- а) Выпишите функцию правдоподобия для данной модели;
- б) Найдите квадратичную аппроксимацию функции правдоподобия в окрестности $\beta_1 = \beta_2 = \beta_3 = 0;$
- в) Какие оценки $\hat{\beta}$ получатся, если максимизировать квадратичную аппроксимацию функции правдоподобия?

- 5. Величины $X_1, X_2,$...независимы и нормальны $\mathcal{N}(0; \sigma^2)$. Известно, что по 1000 наблюдений оказалось, что $\sum X_i^2 = 1100$.
 - а) Постройте оценку $\hat{\sigma}^2$ методом максимального правдоподобия;
 - б) Проведите LM, LR и тест Вальда для гипотезы H_0 : $\sigma^2=1$ на уровне значимости $\alpha=0.05$.
- 6. Рассмотрим классическую задачу линейной регрессии $y = X\beta + u$ с нормальными ошибками $u_i \sim \mathcal{N}(0; \sigma^2)$. Для удобства будем считать, что единичный столбец отсутствует, а все регрессоры предварительно центрированы.
 - а) Выведите формулу для LM, LR и теста Вальда для гипотезы H_0 : $\beta=0$.
 - б) Какая статистика скрывается за формулой nR^2 ?
 - в) На какую из полученных формул больше всего похожа F-статистика для проверки данной гипотезы? В чём состоит отличие?
- 7. Заброшенный в глубокий тыл противника майор Пронин в целях конспирации строит только простейшие регрессии вида $\hat{y}_i = \hat{\beta} x_i$.
 - а) Сколько конспиративных регрессий ему придётся построить чтобы оценить все коэффициенты модели $y_i = \beta_1 x_i + \beta_2 z_i + \beta_3 w_i$.
 - б) Сформулируйте и докажите теорему Фриша-Во-Ловела алгебраически в общем виде.