Aussagenlogik

Endlose Schmerzen

Verzweifelte Studierende

18. Dezember 2023

Inhaltsverzeichnis

Aussage Beispiele	2 2
Aussagenvariable	2
Symbole, Junktoren	2
Aussagenlogische Begriffe	2
Aussagenlogische Gesetze	3
Logische Beweise	4
Bedingungen	5

Aussage

Eine (elementare) Aussage beschreibt ein bestimmtes Prädikat und Subjekts das einen eindeutigen Wahrheitswert hat.

Beispiele

Aussage	Keine Aussage
3 ist eine Primzahl. Ich glaube, dass es morgen regnen wird.	Sie wird eine gute Informatikerin. Löse die Gleichung $x^3+1=0$
Die Sonne scheint.	Dieser Satz ist falsch.

Prinzip des ausgeschlossenen Dritten Es gibt nur wahr oder falsch, keine dritte Option.

Aussagenvariable

Steht für eine bestimmte Aussage

Symbole, Junktoren

 $\textbf{Negation} \ \neg p$

 $\mathbf{Und}\ p \wedge q$

 $\mathbf{Oder}\ p\vee q$

Xor $p\dot{\lor}q$

Alternative: $p \dot{\lor} q \iff (p \lor q) \land \neg (p \land q)$

Implikation $p \rightarrow q$

Alternative: $p \to q \iff \neg p \lor q$

Negation: $\neg(p \to q) \Leftrightarrow (p \land \neg q)$

Kontraposition: $\neg q \rightarrow \neg q$ ist logisch äquivalent zu $p \rightarrow q$

Äquivalenz $p \leftrightarrow q$

Alternative: $p \to q \land (q \to p)$ oder $(\neg p \lor q) \land (p \lor \neg q)$

Aussagenlogische Begriffe

Tautologie Aussagenlogische Formel ist bei allen Belegungen der Variablen wahr.

Englisch: Tautology

Symbol: \top

Kontradiktion Aussagenlogische Formel ist bei allen Belegungen der Variablen falsch

Englisch: Contradiction, Unsatisfiable

Symbol: ⊥

Erfüllbar Aussagenlogische Formel ist bei mindestens einer Belegung der Variablen ist wahr

English: Satisfiable

Logische Äquivalenz Zwei aussagenlogische Formeln r_1, r_2 sind ident, wenn gilt $r_1 \leftrightarrow r_2$.

 r_1 und r_2 müssen dieselbe Wahrheitstabelle haben.

 $r_1 \Leftrightarrow r_2$ ist eine Meta-Aussage

Meta-Aussage Eine Aussage über Aussagen

Eine Aussage über die Logik selbst

Aussagenlogische Formel Ausdrücke die aus elementaren Aussagen und der Verknüpfungen gebildet werden können

- w und f sind aussagenlogische Formeln
- $\bullet \ \, \text{für zwei AF} \,\, p \,\, \text{und} \,\, q , \, \text{sind auch} \,\, p \wedge q , \,\, p \vee q , \,\, p \rightarrow q , \,\, p \leftrightarrow q \,\, \text{und} \,\, \neg p \,\, \text{aussagenlogische Formeln}$
- Keine anderen Gebilde sind AF

Aussagenlogische Gesetze

Gesetz			V			
Kommutativität	$p \wedge q$	\iff	$q \wedge p$	$p \lor q$	\iff	$q \lor p$
Assoziativität	$(p \wedge q) \wedge r$	\iff	$p \wedge (q \wedge r)$	$(p \lor q) \lor r$	\iff	$p \lor (q \lor r)$
Distributivität	$p \wedge (q \vee r)$	\iff	$(p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r)$	\iff	$(p \lor q) \land (p \lor r)$
Identität	$p \wedge \top$	\iff	p	$p \lor \bot$	\iff	p
Negation	$p \wedge \neg p$	\iff		$p \vee \neg p$	\iff	Т
Doppelte Negation	$\neg(\neg p)$	\iff	p			
Idempotenz	$p \wedge p$	\iff	p	$p \lor p$	\iff	p
De Morgan	$\neg (p \land q)$	\iff	$\neg p \lor \neg q$	$\neg (p \lor q)$	\iff	$\neg p \wedge \neg q$
Universale Grenze	$p \wedge \bot$	\iff	\perp	$p \lor \top$	\iff	T
Absorption	$p \wedge (p \vee q)$	\iff	p	$p \lor (p \land q)$	\iff	p
Tautologie/Kontradiktion	¬T	\iff		□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	\iff	Т

Duale Form Bei Aussagen, die nur die Junktoren \wedge und \vee enthält, ist die duale Formel r^d jene, bei denen sowohl alle \vee und \wedge als auch jedes \top und \bot vertauscht werden.

Sind r und s zwei logisch äquivalente Formeln, so sind auch die dazu dualen Formeln äquivalent:

Wenn
$$r \Leftrightarrow s$$
, dann $r^d \Leftrightarrow s^d$

$$r:(p \land \neg q) \lor (r \land \bot)$$
 dual $r:(p \lor \neg q) \land (r \lor \top)$

Substitutionsregel Sei P eine logische Formel und p eine Variable aus P.

- Ist P eine Tautologie, und ersetzt man jedes p in der Formel durch immer dasselbe q, so entsteht eine neue Formel P_1 die ebenfalls eine Tautologie.
- Sei q eine eine logisch äquivalente Aussage, also $p \Leftrightarrow q$. Ersetzt man in der Formel P einige p durch q, so erhält man eine neue Formel P_2 für welche gilt $P_1 \Leftrightarrow P$.

Logische Beweise

Schlussfolge Ist eine Implikation von sogenannten Voraussetzungen (Prämissen) $p_1,...,p_n$ auf eine Folgerung (Konklusion / Behauptung) q

Notation: $p_1 \wedge p_2 \wedge ... \wedge p_n \rightarrow q$

Wie Entails (\models) in Logic

			Voraussetzu	Konklusion	
p	q	r	$p \vee (q \vee r)$	$\neg r$	$p \lor q$
W	W	W	W	f	W
W	W	f	W	W	W
W	f	W	w	f	w
W	f	f	W	W	W
f	W	W	w	f	w
f	W	f	W	W	W
f	f	W	w	f	f
f	f	f	f	W	f

Modus Ponens Wenn $p \rightarrow q$ wahr ist und p wahr ist, muss q wahr sein.

$$p \to q$$

Modus Tollens Wenn $p \to q$ wahr ist und $\neg q$ wahr ist, muss $\neg p$ wahr sein.

$$p \to q$$

$$\neg q$$

Syllogismus (Kettenschluss) Wenn $p \to q$ wahr ist und $q \to r$ wahr ist, gilt $p \to r$.

$$p \rightarrow q$$

$$q \rightarrow r$$

$$p \rightarrow r$$

Kontradiktionsregel Man nimmt das Gegenteil dessen an, was man beweisen will, und führt diese (negierte) Aussage ad absurdum.

$$\neg p \rightarrow \bot$$

Bedingungen

Bedingung	Erforderlich	Ausreichend
Notwendige Bedingungen	✓	×
Hinreichende Bedingungen	×	✓
Notwendig und hinreichende Bedingungen	\checkmark	✓

			Präm	nissen			Konklusion	kritisch?	Konklusion auch wahr?
р	q	r	q o r	p o q	$p \wedge r$	q	$(p \wedge r) \leftrightarrow q$	KIILISCII!	Nonkiusion auch want:
f	f	f	W	W	f	f	W	ja	ja
f	f	W	W	w	f	f	W	ja	ja
f	w	f	f	W	f	w	f	nein	irrelevant
f	w	W	W	W	f	W	f	ja	nein*
W	f	f	W	f	f	f	W	nein	irrelevant
W	f	W	W	f	W	f	f	nein	irrelevant
W	W	f	f	W	f	W	f	nein	irrelevant
W	w	W	W	W	W	w	W	ја	ja

Die Gültigkeit des obigen Schlusses scheitert also wegen der mit * gekennzeichneten Zeile. Dieser Fall ist jener, wo zwar die notwendige Bedingung r erfüllt ist, aber die hinreichende Bedingung p nicht gilt. Die Aussage q kann dennoch aus (alternativen) Gründen $\neq p$ erfüllt, also wahr, sein; dennoch wäre, da p falsch ist, die "gemeinsame Bedingung" $p \land r$ falsch, obgleich q erfüllt ist. Damit ist die Schlussweise falsch, und $p \land r$ keine notwendige-undhinreichende Bedingung für q