

Proposta de um algoritmo híbrido para a solução do Problema de Escalonamento de Tripulação

Renan S. Silva

uber.renan@gmail.com

Departamento de Ciência da Computação Centro de Ciências e Tecnológias Universidade do Estado de Santa Catarina

28 de Novembro de 2016

Overview

Introdução

Formulação

Geração de colunas

Proposta

Conclusões parciais

Introdução

Introdução

- O planejamento operacional de uma empresa de transporte de urbano pode ser dividido conforme a figura 1;
- Este trabalho tem como objetivo propor um algoritmo para resolver problema do Escalonamento de Tripulação (CSP);

Figura 1: Etapas do planejamento

Relevância

- Teória O CSP é um problema \mathcal{NP} -Hard, que pode ser reduzido para o problema de cobertura ou particionamento de conjuntos;
- Prática (Zeren, 2012) afirma que os gastos com a tripulação são a segunda maior fonte de gastos das empresas, atrás apenas dos gastos com combustíveis;

Definição

O CSP consiste determinar jornadas para um conjunto de tripulantes, onde

- Tarefa É uma atividade que deve ser realizada, que possui um tempo de inicio e fim predefinidos;
- Jornada É um conjunto de tarefas que devem ser executadas por uma mesma tripulação;
 - Jornadas possuem restrições, carga horaria máxima, etc;
 - Existe um custo para deslocar-se entre duas tarefas;
 - Deseja-se minimizar o custo total de cobrir todas as jornadas;

Formulação

Problema de cobertura e particionamento

Dentre as possíveis modelagens possíveis para o CSP, utilizou-se uma com base no problema de particionamento de conjuntos(SPP);

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \end{pmatrix} \qquad \begin{aligned} & \min \sum_{j \in J} c_j x_j & \text{(1a)} \\ & \sum_{j \in J} a_{ij} x_j = 1, \forall i \in I & \text{(1b)} \\ & x_j \in \{0, 1\}, \forall j \in J & \text{(1c)} \end{aligned}$$

$$\min \sum_{i \in I} c_i x_i \qquad (1a)$$

$$\sum_{j\in J} a_{ij} x_j = 1, \forall i \in I \qquad \text{(1b)}$$

$$x_j \in \{0,1\}, \forall j \in J$$
 (1c)

Modelando o CSP com o SPP

Figura 2: Possíveis jornadas representadas em um grafo

- Deve-se enumerar todos as possíveis jornadas viáveis;
- O número de jornadas cresce exponencialmente em função do número de tarefas;
- Se não forem enumeradas todas as jornadas, perde-se a solução ótima;
- Enumerar todas as jornadas é inviável;

Geração de colunas

Geração de colunas

O método de geração de colunas é capaz de:

- Lidar com um grande número de variáveis;
- Considerar implicitamente todas as jornadas;
- Iniciar com um conjunto reduzido de jornadas;
- Encontrar iterativamente todas as jornadas necessárias para encontrar a solução ótima;

Estrutura

A geração de colunas é dividida em dois problemas menores: **Problema mestre** e **subproblema**;

- O problema mestre é o problema original com um conjunto reduzido de jornadas(colunas);
- O subproblema é um problema de programação linear inteira que determina qual jornada deve ser inserida no problema mestre;

Funcionamento

Figura 3: Processo de geração de colunas

Problema mestre

O problema mestre para resolver o CSP:

- É um problema de SPP;
- Necessita de um conjunto inicial de colunas;
- Resolve-se a relaxação linear;
- Fornece preços duais para guiar o subproblema;

(2a)

Formulação do problema mestre

$$\min \sum_{j \in \tilde{J}} c_j x_j$$

$$\sum_{j\in \widetilde{J}}a_{tj}x_j=1, \forall t\in T \tag{2b}$$

$$\sum_{j \in \tilde{J}} x_j = NJ$$
 (2c)
$$x_j \ge 0, \forall j \in \tilde{J}$$
 (2d)

$$g_j \ge 0, \forall j \in \tilde{J}$$
 (2d)

Subproblema

- O subproblema é um problema de PLI, cujo objetivo é encontrar uma nova coluna para o problema mestre;
- Utiliza os preços duais fornecidos pelo problema mestre;
- É um caminho mínimo com restrições (\mathcal{NP} -hard);

Subproblema

	Figura	4:	Grafo	do	subproblema
--	--------	----	-------	----	-------------

Jornada	Custo	Duração			
$1 \rightarrow 3$	5	13			
1 ightarrow 5	6	14			
$2 \rightarrow 3$	3	13			
$2 \rightarrow 4$	4	9			
$2 \rightarrow 4 \rightarrow 5$	7	14			
$2 \rightarrow 4 \rightarrow 3$	8	13			
$2 \rightarrow 5$	6	14			

Tabela 1: Enumeração de todas as jornadas viáveis

Formulação do Subproblema

$$\min \sum_{a \in A} c_a y_a - \sum_{t \in T} \tilde{\pi}_t v_t - \tilde{\mu}$$
 (3a)

$$\sum_{a \in \delta^+(v_0)} y_a = \sum_{a \in \delta^-(v_f)} y_a = 1 \tag{3b}$$

$$\sum_{a \in \delta^{+}(v_{t})} y_{a} = \sum_{a \in \delta^{-}(v_{t})} y_{a} = v_{t}, \forall t \in T$$
 (3c)

$$\sum_{a \in A} d_a y_a \le MaxW \tag{3d}$$

$$v_t, y_a \in \{0, 1\}, \forall v_j \in V, \forall a \in A$$
 (3e)

Adição de tarefas fictícias

Figura 5: Grafo com e sem nós fictícios

Proposta

Proposta

- Encorporar o uso de (meta) heurísticas na solução do subproblema;
- Segundo (Santos, 2008) a utilização de meta heurísticas pode acelerar o processo de solução;
- Utilizar as heurísticas do subproblema para gerar um conjunto inicial de colunas;

Proposta

Figura 6: Proposta de geração de colunas, adaptado de (Santos, 2008)

(Meta) heurísticas estudadas

- Busca gulosa baseada em relaxação linear;
- Subida de encosta;
- Simmulated annealing (SA);
- Ant colony optimization (ACO);
- Busca Tabu;

Conclusões parciais

Conclusões parciais

- Pode-se identificar um problema teórico e com interesse prático;
- Realizou-se uma revisão bibliográfica onde:
 - Identificou-se um método de solução para o problema;
 - Identificou-se possíveis métodos para melhorar o desempenho do algoritmo;
- Identificou-se um solver (CPLEX, GLKP, SCIP, Cbc, ...) para utilizar na solução do problema mestre e subproblema;
- Implementou-se um protótipo de geração de colunas capaz de resolver o CSP de forma exata;

Próximas etapas

- Seleção, implementação e avaliação das (meta) heurísticas para aplicar no subproblema;
- Utilização do banco de dados da OR-Libary para avaliar a implementação final;
- Escrita do TCC-II;

Publicações

- Artigo publicado na SBPO XLVIII;
- Escrita de um artigo contemplando os resultados deste trabalho;

Cronograma

Etapas	2016				2017						
	Α	S	0	N	D	J	F	М	Α	М	J
1	✓	√	√								
2		✓	✓	✓							
3		✓	✓	✓	✓						
4		✓	✓	✓	✓						
5			√	✓	√						
6						✓	✓	✓	√		
7							√	√	√	1	~
8								√	√	1	✓
9				√	✓						

Tabela 2: Cronograma proposto com atividades completas em destaque

André Gustavo dos Santos. "Método de Geração de Colunas e Meta-heurísticas para Alocação de Tripulação". Tese de doutoramento. Universidade Federal de Minas Gerais, 2008.

Bahadir Zeren et al. "An improved genetic algorithm for crew pairing optimization". Em: (2012).