UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma D - 2018/2Prova da área I

1-6	7	8	Total

Nome:	Cartão:	

 ${\bf Regras\ Gerais:}$

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f = f(x, y, z) e g = g(x, y, z) são funções escalares; $\vec{F} = \vec{F}(x, y, z)$ e $\vec{G} = \vec{G}(x, y, z)$ são funções vetoriais.

	(17,971)
1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$\vec{\nabla} \cdot \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \cdot \vec{F} + \vec{\nabla} \cdot \vec{G}$
3.	$\vec{ abla} imes \left(\vec{F} + \vec{G} ight) = \vec{ abla} imes \vec{F} + \vec{ abla} imes \vec{G}$
4.	$ec{ abla}\left(fg ight)=fec{ abla}g+gec{ abla}f$
5.	$ec{ abla}\cdot\left(fec{F} ight)=\left(ec{ abla}f ight)\cdotec{F}+f\left(ec{ abla}\cdotec{F} ight)$
6.	$\vec{\nabla} imes \left(f \vec{F} \right) = \vec{\nabla} f imes \vec{F} + f \vec{\nabla} imes \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$\vec{\nabla} \times \left(\vec{\nabla} f \right) = 0$
9.	$ec{ abla} \cdot \left(ec{ abla} imes ec{F} ight) = 0$
10.	$ec{ abla} imes \left(ec{ abla} imes ec{F} ight) = ec{ abla} \left(ec{ abla} \cdot ec{F} ight) - ec{ abla}^2 ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$\vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right)$
14.	$\vec{\nabla} f(r) = f'(r)\hat{r}, \vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$

Curvatura, torçat	Ourvatura, torção e aceleração:			
Nome	Definição			
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}''(t)\ ^3}$			
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$			
Módulo da torção	$ au = \left\ \frac{d\vec{B}}{ds} \right\ = \left\ \frac{\frac{d\vec{B}}{dt}}{\frac{ds}{dt}} \right\ $			
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$			
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$			

Equações de Frenet-Serret:

$\frac{d\vec{T}}{ds}$	=		$\kappa ec{N}$	
$\frac{d\vec{N}}{ds}$	=	$-\kappa \vec{T}$		$+ au ec{B}$
$\frac{d\vec{B}}{ds}$	=		$-\tau \vec{N}$	

 \bullet Questão 1 (1.0 ponto) Considere a curva plana parametrizada por:

$$x(t) = t\cos(t), \quad y(t) = t\sin(t), \quad z(t) = 0, \quad -t \ge 0$$

Pode-se afirmar que o vetor tangente unitário e a curvatura em $t=\frac{\pi}{2}$ são respectivamente:

Vetor \vec{T} :

Curvatura
$$\kappa$$
:

$$(\)\ \frac{\pi\vec{i}+2\vec{j}}{\sqrt{4+\pi^2}}$$

$$(\)\ \frac{16+2\pi^2}{(4+\pi^2)^{3/2}}$$

$$(\)\ \frac{-\pi \vec{i} + 2\vec{j}}{\sqrt{4 + \pi^2}}$$

$$() \frac{8+\pi^2}{(4+\pi^2)^{3/2}}$$

$$(\)\ \frac{\pi \vec{i} - 2\vec{j}}{\sqrt{4 + \pi^2}}$$

$$() \frac{8+2\pi^2}{(4+\pi^2)^{3/2}}$$

$$(\) \frac{-\pi \vec{i} - 2\vec{j}}{\sqrt{4 + \pi^2}}$$

$$(\)\ \frac{4+\pi^2}{(4+\pi^2)^{3/2}}$$

$$(\quad)\quad \frac{2\vec{i}+\pi\vec{j}}{\sqrt{4+\pi^2}}$$

$$(\)\ \frac{4+2\pi^2}{(4+\pi^2)^{3/2}}$$

$$(\)\ \frac{-2\vec{i}+\pi\vec{j}}{\sqrt{4+\pi^2}}$$

()
$$\frac{2+\pi^2}{(4+\pi^2)^{3/2}}$$

• Questão 2 (1.0 ponto) Em um determinado instante, a posição, velocidade e aceleração de uma partícula são dadas por:

$$\vec{r}(t) = \vec{i} - 2\vec{j} + \vec{k}, \quad \vec{v}(t) = 3\vec{i} + 4\vec{k}, \quad \vec{a}(t) = 5\vec{i} + 2\vec{j}$$

Pode-se afirmar que a aceleração tangencial e o vetor normal unitário no dado instante são, respectivamente:

Aceleração tangencial:

()
$$\frac{\sqrt{5}}{25} \left[8\vec{i} + 5\vec{j} - 6\vec{k} \right]$$

()
$$\frac{\sqrt{5}}{25} \left[-5\vec{i} + 8\vec{j} + 6\vec{k} \right]$$

()
$$\frac{\sqrt{5}}{25} \left[5\vec{i} + 8\vec{j} - 6\vec{k} \right]$$

()
$$\frac{\sqrt{5}}{25} \left[-6\vec{i} + 5\vec{j} + 8\vec{k} \right]$$

()
$$\frac{\sqrt{5}}{25} \left[6\vec{i} + 5\vec{j} - 8\vec{k} \right]$$

• Questão 3 (1.0 ponto) Considere o campo radial $\vec{F} = r^n \hat{r}$, $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$, $n \ge 0$. Seja C a circunferência de raio a no plano xy centrada na origem e orientada no sentido horário e S a esfera centrada na origem de raio a > 0 orientada para fora. Assinale a alternativa que indica $W := \oint_C \vec{F} \cdot d\vec{r}$ e $\Phi := \oiint_C \vec{F} \cdot d\vec{s}$.

Circulação W:

Fluxo
$$\Phi$$
:

$$(\)\ -2\pi a^{n+2}$$

()
$$4\pi a^{n+1}$$

$$(\)\ -2\pi a^{n+1}$$

$$(\)\ 4\pi a^{n+2}$$

()
$$2\pi a^{n+2}$$

$$(\)\ 4\pi a^{n+3}$$

()
$$2\pi a^{n+1}$$

()
$$4\pi a$$
 () $4\pi a^{n+1}/3$

()
$$2\pi a^{n+1}$$

$$() 4\pi a^{n+2}/3$$

$$)$$
 $4\pi a$ /3

$$() 4\pi a^{n+3}/3$$

• Questão 4 (1.0 ponto) Considere a superfície dada por

$$z = f(x, y) = \cos(x^2 + 2y^2), \quad \sqrt{x^2 + 2y^2} \le \sqrt{\frac{\pi}{2}}$$

Assinale a alternativa que indica as curvas de nível da função f(x,y) e o vetor normal unitário à superfície no ponto $x = \frac{\sqrt{\pi}}{2}$ e y = 0 orientado para fora da concavidade.

As curvas de nível são:

- () Circunferências
- () Elipses de semieixos distintos
- () Parábolas
- () Hipérboles
- () Nenhuma das anteriores

Vetor normal:

$$() \frac{\sqrt{2\pi}\,\vec{j} + 2\vec{k}}{\sqrt{4 + 2\pi}}$$

$$(\)\ \frac{-\sqrt{2\pi}\,\vec{i} + 2\vec{k}}{\sqrt{4 + 2\pi}}$$

()
$$\frac{-\sqrt{2\pi}\,\vec{j} + 2\vec{k}}{\sqrt{4 + 2\pi}}$$

• Questão 5 (1.0 ponto) Considere o campo $\vec{F} = \vec{\nabla} (x^2 + y + yz^3 + xy(1-z) + 5)$ e os caminhos C_1 e C_2 parametrizados por:

$$C_1: \vec{r}(t) = t^2 \vec{i} + (1+t)\vec{j} + t^5 \vec{k}, \quad 0 \le t \le 1.$$

$$C_2: \vec{r}(t) = \cos(t)\vec{j} + \sin(t)\vec{k}, \quad 0 \le t \le 2\pi.$$

Assinale a alternativa que indica o valor das integrais de linha de $W_1 = \int_{C_1} \vec{F} \cdot d\vec{r}$ e $W_2 = \int_{C_2} \vec{F} \cdot d\vec{r}$.

 W_1 :

$$W_2$$
:

- () 2
- () 0

()

 $() -\pi$

() 1

 $(\)\ 0$

• Questão 6 (1.0 ponto) Considere o campo $\vec{F}(x,y,z) = f(x,y)\vec{i}$ esboçado na figura ao lado e os caminhos C_1 , C_2 e C_3 . C_1 é a reta que começa no ponto (-3,-3,0) e terminam no ponto (3,3,0). O círculo C_2 está no no plano xy centrado na origem e é orientado no sentido anti-horário. C_3 é uma elipse no plano xy orientado no sentido anti-horário. Defina $W_1 = \int_{C_1} \vec{F} \cdot d\vec{r}$, $W_2 = \oint_{C_2} \vec{F} \cdot d\vec{r}$ e $W_3 = \oint_{C_3} \vec{F} \cdot d\vec{r}$. Assinale as alternativas corretas:

- () $W_3 < 0 = W_2 < W_1$
- () $W_1 < 0 = W_2 < W_3$
- () $0 = W_1 < W_2 = W_3$
- () $W_1 < W_2 = W_3 = 0$
- () $W_1 < W_2 < W_3 < 0$
- () $\vec{\nabla} \cdot \vec{F} < 0 \text{ em } (2,2).$
- () $\vec{\nabla} \cdot \vec{F} \ge 0$ em todos os pontos.
- () $\vec{\nabla} \times \vec{F} \neq \vec{0}$ em alguns pontos, mas $\oint_C \vec{F} \cdot$ $d\vec{r} = 0$ para todo caminho fechado.
 - () $\vec{k} \cdot \vec{\nabla} \times \vec{F} = 0$ em todos pontos.
 - () $\vec{k} \cdot \vec{\nabla} \times \vec{F} > 0$ em (2, 2).

• Questão 7 (2.0 ponto) Considere o campo $\vec{F} = -z\vec{i} + x\vec{j} + x\vec{k}$ e a superfície circular S no plano xy orientada no sentido z positivo e limitada pelo caminho circuferência C de raio unitário centrada na origem e orientada no sentido anti-horário. Calcule o valor da integral de linha de $W = \int_C \vec{F} \cdot d\vec{r}$ e de superfície $\Phi = \int_S \vec{F} \cdot d\vec{S}$.

 \bullet Questão 8 (2.0 pontos) Considere a superfície fechada orientada para fora composta por

$$x^2 + y^2 + z^2 = 1, x \ge 0$$

$$y^2 + z^2 < 1, x = 0$$

 $y^2+z^2\leq 1, x=0.$ Seja o campo vetorial dado por $\vec{F}=\vec{\nabla}\left(x^3+z+yz+1\right).$ Calcule o valor do fluxo

a o campo vetorial dado por
$$F = V(x^z + z + yz + 1)$$
.
Calcule o valor do fluxo

$$\iint \vec{F} \cdot d\vec{S}$$