E1 222 Stochastic Models and Applications Problem Sheet 4–1

- 1. Let $\{X_n\}$ be *iid* with density $f(x) = e^{-x+\theta}, x > \theta > 0$. Let $N_n = \min(X_1, \dots, X_n)$. Does N_n converge in probability?
- 2. Given $P[X_n = 0] = 1 n^{-2}$, $P[X_n = e^n] = n^{-2}$. Show that X_n converge almost surely but not in r^{th} mean.
- 3. Given $P[X_n = 0] = 1 1/n$, $P[X_n = n^{1/2r}] = 1/n$, X_n are independent. Show that $E|X_n|^r \to 0$ but the sequence does not converge to zero almost surely.
- 4. Let $\Omega = [0, 1]$ and let P be the usual length measure. Let $X_n = n^{0.25}I_{[0, 1/n]}$, $n = 1, 2, \dots$, where I_A denotes indicator of event A. Does the sequence converge in (i) probability, (ii) r^{th} mean for some r?
- 5. Let $\{X_n\}$ be random variables with $EX_n = m_n$ and $Var(X_n) = \sigma_n^2$. Find some sufficient condition such that $X_n m_n$ converges to zero in (i). probability, (ii) almost surely.
- 6. Let X_1, X_2, \dots , be random variables with distributions

$$F_{X_n}(x) = 0$$
 if $x < -n$
 $= \frac{x+n}{2n}$ if $-n \le x \le n$
 $= 1$ if $x \ge n$

Does $\{X_n\}$ converge in distribution?

7. Let $\Omega = [0, 1]$. Consider a sequence of binary random variables: X_{nk} , $k = 1, \dots, n, n = 1, 2, \dots$. That is, the sequence is $X_{11}, X_{21}, X_{22}, X_{31}, X_{32}, X_{33}, \dots$. These random variables are defined by

$$X_{nk}(\omega) = 1 \text{ iff } \frac{k-1}{n} \le \omega < \frac{k}{n}, \ 1 \le k \le n, n = 1, 2, \dots$$

Show that the sequence converges to zero in probability but it does not converge with probability one