Décima ayudantía

Lenguajes libres de contexto

Teresa Becerril Torres terebece1508@ciencias.unam.mx

11 de abril de 2023

Gramática libre de contexto

Una gramática libre de contexto (CFG) es una gramática $G = (\Sigma, \Delta, S, R)$ tal que:

- $\Sigma = \{a_1, a_2, ..., a_n\}$ es un conjunto finito de símbolos terminales.
- $\Delta = \{X_1, X_2, ..., X_k\}$ es un conjunto finito de símbolos no-terminales.
- $S \in \Delta$ es el símbolo inicial.
- $R \subseteq \Delta \times (\Delta \cup \Sigma)^*$ son las producciones de la gramática, de la forma:

$$X \rightarrow \gamma$$

Donde $X \in \delta$ y $\gamma \in (\Delta \cup \Sigma)^*$

Definamos una gramática $G=(\Sigma,\Delta,S,R)$, donde $\Sigma=\{a,\,b,\,c\}$, $\Delta=\{E,\,I\}$, E es el símbolo inicial y las reglas R están dadas por:

$$\begin{array}{l} \mathsf{E} \to \mathsf{I} \, | \, \mathsf{aEa} \, | \, \mathsf{bEb} \\ \mathsf{I} \to \mathsf{c} \end{array}$$

Mostrar que abacaba es parte del lenguaje:

	Cadena	Var	Regla	De
(i)	С		I o c	-
(ii)	С	Ε	$E\toI$	(i)
(iii)	aca	Ε	$E \to aEa$	(ii)
(iv)	aca	Ε	$E \to aEa$	(iii)
(v)	bacab	Ε	$E\tobEb$	(iv)
(vi)	abacaba	Ε	$E \to aEa$	(v)

Derivación por la izquierda:

 $\mathsf{E}\Rightarrow_{lm}\mathsf{aEa}\Rightarrow_{lm}\mathsf{abEba}\Rightarrow_{lm}\mathsf{abaEaba}\Rightarrow_{lm}\mathsf{abalaba}\Rightarrow_{lm}\mathsf{abacaba}$

Lenguaje de la gramática

El lenguaje producido por la gramática es:

$$L(G) = \{w \in \Sigma^* \,|\, w = xcx^R \text{ con } x \in Sigma^*\}$$

Árbol sintáctico:

Definamos una gramática $G=(\Sigma,\Delta,S,R)$, donde $\Sigma=\{0,\,1\}$, $\Delta=\{S,\,U,\,V,\,T\}$, S es el símbolo inicial y las reglas R están dadas por:

$$S \rightarrow U \mid V$$

 $U \rightarrow T0U \mid T0T$
 $V \rightarrow T1V \mid T1T$
 $T \rightarrow 0T1T \mid 1T0T \mid \varepsilon$

Mostrar que 0110100 es parte del lenguaje:

	Cadena	Var	Regla	De
(i)	ε	Т	T o arepsilon	-
(ii)	10	Т	$T\to 1T0T$	(i), (i)
(iii)	1010	Τ	$T\to 1T0T$	(i), (ii)
(iv)	011010	Τ	$T \to 0T1T$	(i), (iii)
(v)	0110100	U	$U\toT0T$	(iv), (i)
(vi)	0110100	S	$S\toU$	(v)

Derivación por la izquierda:

$$\begin{split} \mathsf{S} \Rightarrow_{lm} \mathsf{U} \Rightarrow_{lm} \mathsf{TOT} \Rightarrow_{lm} \mathsf{0T1TOT} \Rightarrow_{lm} \mathsf{0}\varepsilon\mathsf{1TOT} \Rightarrow_{lm} \mathsf{01TOT} \\ \Rightarrow_{lm} \mathsf{011T0TOT} \Rightarrow_{lm} \mathsf{011}\varepsilon\mathsf{0TOT} \Rightarrow_{lm} \mathsf{0110TOT} \\ \Rightarrow_{lm} \mathsf{01101T0TOT} \Rightarrow_{lm} \mathsf{01101}\varepsilon\mathsf{0TOT} \Rightarrow_{lm} \mathsf{011010TOT} \\ \Rightarrow_{lm} \mathsf{011010}\varepsilon\mathsf{0T} \Rightarrow_{lm} \mathsf{0110100T} \Rightarrow_{lm} \mathsf{0110100}\varepsilon \Rightarrow_{lm} \mathsf{0110100} \end{split}$$

Lenguaje de la gramática

El lenguaje producido por la gramática es:

$$L(G) = \{ w \in \Sigma^* \, | \, w = (a+b)^* \}$$

Árbol sintáctico:

Definamos una gramática $G=(\Sigma,\Delta,S,R)$, donde $\Sigma=\{a,\,b\}$, $\Delta=\{S,\,Y\}$, S es el símbolo inicial y las reglas R están dadas por:

$$\begin{split} \mathsf{S} &\to \mathsf{bSa} \,|\; \mathsf{aY} \,|\; \mathsf{Yb} \\ \mathsf{Y} &\to \mathsf{bY} \,|\; \mathsf{aY} \,|\; \varepsilon \end{split}$$

Mostrar que bbbaa es parte del lenguaje:

	Cadena	Var	Regla	De
(i)	ε	Υ	Y o arepsilon	-
(ii)	b	Υ	$S\toYb$	(i)
(iii)	bba	S	$S\tobSa$	(ii)
(iv)	bbbaaa	S	$S\tobSa$	(iii)

Derivación por la izquierda:

 $\mathsf{S}\Rightarrow_{lm}\mathsf{bSa}\Rightarrow_{lm}\mathsf{bbSaa}\Rightarrow_{lm}\mathsf{bbYbaa}\Rightarrow_{lm}\mathsf{bb}arepsilon$ bbaa

Lenguaje de la gramática

El lenguaje producido por la gramática es:

$$L(G) = \{ w \in \Sigma^* \mid w = b^n x a^n \text{ con } x \in Sigma^+ \}$$

Árbol sintáctico:

