### Databricks genAl 2024 Hackathon 지원기

염은지

# 목차

- 1. Databricks genAI 2024 Hackathon?
- 2. 연관개념
  - a. Databricks, AI Agent, RAG, LangChain, LangGraph
- 3. 프로젝트 진행 내용
  - a. 참가 동기, 선정 주제, 활용 기술, 구조도, 데모
- 4. 느낀점
- 5. Q & A

#### Databricks genAl 2024 Hackathon

- Databricks라는 회사에서 주최한 기업 해커톤 대회
- Gen AI 기술을 활용해 실생활의 문제를 해결하거나 개선하는 Application 개발
- 팀당 최대 \$500의 플랫폼 크레딧 제공
- 세부내용
  - AI / Data 직무 종사자 대상 + 만 20세 이상
  - 2~4인의 팀 구성
  - 전 세계를 세 지역으로 나누어 3등까지 수상
- 대회링크
- 수상결과



#### **Databricks**

● 데이터 엔지니어링, 데이터 분석, ML 및 AI 워크플로를 통합적으로 지원하는 데이터 및 AI 플랫폼

- 주요기능
  - a. 통합 워크스페이스 제공
  - b. 다양한 클라우드 환경 연동 지원 (AWS, MS Azure, GCP 다 지원)
  - c. 스케일링을 통한 비용 최적화 가능
  - d. Databricks Unity Catalog를 통해 데이터 보안 및 거버넌스 관리 가능
  - e. Delta Lake기반의 데이터의 버전 관리, 거버넌스, ACID 트랜잭션 지원
  - f. ETL 파이프라인을 손쉽게 구축하도록 지원
  - g. Apache Spark와 통합되어 대규모 데이터 처리에 적합
  - h. 사용자에게 친숙한 인터페이스를 가진 Databricks SQL 지원
  - i. MLflow와 통합되어 ML 모델의 실험 추적, 모델 배포 및 관리 가능
  - j. Jupyter Notebook과 유사한 Databricks Notebook 지원 (다른 사용자와 같은 노트북 공동 작업 가능 + 버전 관리 제공)
  - k. AutoML을 통해 코드 없이 머신러닝 모델을 빠르게 생성 가능
  - I. Hugging Face, Mosaic ML 와 통합하여 Gen AI 모델의 빠른 프로토타이핑 가능
- 요약하자면... Databricks만 쓰면 AI 관련한 업무 다 해결 가능해요! 입니다.



#### **Databricks**

- 기본적으로 Web 기반 사용 (우측 탭을 클릭하여 원하는 페이지로 접속한 후 원하는 작업 진행)
- IDE (VS Code) Extension, Databricks CLI 도 지원하고 있음



#### Al Agent

- 특정 작업이나 목적을 위해 설계된 시스템
- 사용자와 상호작용 하거나 주어진 목표를 수행하기 위해 자율적으로 의사결정을 내리는 AI
  시스템
- 강화학습과 유사한 면이 있죠? 실제로 비교가 많이 됩니다.
  - a. 기존의 state + reward에 기반하여 Policy를 가지는 강화하스비다 다 바꾸다 하다.
- LLM 모델 활용
- 추론 능력이 중요
  - a. CoT, Prompt Chaining 기반의 추론 과정 포함 가능
  - b. 부족한 부분은 외부 환경(검색, DB)을 연동해 보강
- 예시
  - a. 커머스 기업 고객센터 Agent (문의 처리)



## **Al Agent**

● Fine-tuning과 비교

| 특성       | Fine-tuning       | Al Agent                 |
|----------|-------------------|--------------------------|
| 핵심 목표    | 특정 작업에서 성능 향상     | 자율적으로 문제 해결 및 작업 수행      |
| 학습 데이터   | 특정 도메인 또는 태스크 데이터 | (학습 X) 실시간으로 의사결정과 학습 수행 |
| 작업 범위    | 하나의 작업에 집중        | 복합적이고 다단계 작업 수행 가능       |
| 외부 도구 사용 | 없음 (내부 지식으로만 응답)  | API, DB, 클라우드 도구와 통합 가능  |
| 성능 제한    | 학습 데이터와 태스크에 한정   | 다양한 환경에서 동적으로 문제 해결      |

#### Al Agent

#### Multi-Agent

- a. 여러개의 AI Agent를 활용하여 문제를 해결하는 시스템
- b. 각각의 Agent는 자율적으로 동작하며, 상호작용(협력 / 경쟁)을 통해 효율성 상승 및 더 큰 작업 가능
- c. 필요한 경우?
  - 풀어야 될 문제가 복잡한 경우
  - 참고해야 될 데이터 수가 많은 경우
  - 할루시네이션을 낮춰야 될 경우



## **RAG** (Retrieval-Augmented Generation)

- LLM의 응답 성능을 강화하고 할루시네이션을 줄이기 위해 정보 검색( information Retrieval)을 적용한 기술
- 모델 내부의 학습된 데이터를 기반으로 LLM의 답변을 생성 활용해 정확하고 최신의 정보 제공 가능
- 단계
  - a. Retrieval
    - 대상 데이터를 임베딩하여 Vector DB 색인 (Indexing)
    - 질의가 들어왔을 때 Vector DB 검색을 통해 문맥적으로 관련된 텍스트 검색
    - LLM에 추가 입력으로 제공
  - b. Generation
    - 검색된 데이터를 바탕으로 LLM을 사용해 질의에 대한 최종 답변 생성



### LangChain

- LLM을 활용한 Application 개발을 지원하는 Python 및 JavaScript 기반 오픈소스 Framework
- LLM과 외부 데이터, API, 메모리와 용이하게 결합하고 복잡한 기능을 구현하는데 도움
- 코드 중심의 LLM 워크플로우 설계
- Wikidocs
- 구성 요소
  - a. Prompt Templates : LLM에 제공할 프롬포트
  - b. Chains: 여러 작업을 연결하여 파이프라인 형태로 실행
  - c. Agents : 외부 도구 (API 등)을 활용해 작업을 수행 가능하도록 설정
  - d. Memory: 대화의 컨텍스트를 유지
  - e. Retrieval: Vector DB에서 유사한 정보를 검색해 LLM 입력으로 제공
  - f. Tools : API 호출, DB Query, 계산 작업 등 다양한 도구와 통합



### LangGraph

● LangChain의 기능을 확장하여 복잡한 LLM 기반 워크플로를 그래프 형태로 설계, 시각화 및 관리할 수 있는 도구

● 주로 Multi-Agent 시스템과 작업 흐름을 모델링하고 관리하는 데 사용

- Wikidocs
- 주요 특징
  - a. 그래프 기반 설계 : 워크플로와 Agent를 시각적으로 구성
    - Node는 Agent의 작업, Edge는 작업 간의 데이터 흐름
  - b. LangChain과 통합: LangChain의 Chains, Agent 등을 그래프 구조로 변환 가능
  - c. 복잡한 시스템 관리 : Agent 간의 상호작용, 데이터 흐름, 의존성을 관리하고
  - d. 확장성과 유연성 : 새로운 노드를 추가하거나 수정하여 시스템 확장에 용이
  - e. 디버깅 및 모니터링 : 그래프를 통해 작업 흐름을 추적하고 문제를 빠르게 파악 가능



### 참가 동기

- 사이드 프로젝트 관련 세미나를 수강한 상태
  - 사이드 프로젝트를 하나 해야겠다고 마음먹음
- 대회 종료 2주 전에, 해커톤이 진행되고 있다는 사실을 우연히 알게됨
- 수상 가능성은 희박! 공부 목적으로 진행하는 건 좋을 듯 하다는 생각
- 현재상태
  - o Databricks를 이용해 본 적 없음
  - Al Agent 프로젝트 경험이 없음
- 마음맞는 친구를 설득해 2인 1팀으로 참가

### 프로젝트 진행 과정

- 남은 시간은 2주 + 둘 다 많은 시간을 할애할 수 없는 상황 -> 1주에 1번씩 만나기
- 다음과 같은 순서로 진행
  - a. (각자) 플랫폼, API 이용법 공부
  - b. (오프라인 만남) 주제 선정 + 데이터셋 결정
  - c. (각자) 1명은 데이터 수급하여 Vector DB 색인 / 1명은 코드 개발
  - d. (오프라인 만남) 코드와 데이터 병합 후 데모 영상 녹화
  - e. (리더) 코드 리팩토링, Git repo 정리, 프로젝트 설명서 제작
  - f. 제출

### 선정 주제

● 경제 전망을 예측 / 설명해주는 GenAl Application 개발

- 선정이유
  - 즐겁게 프로젝트 하기 위해 관심있는 주제 선택
  - 경기가 안좋아서 AI의 경제 전망이라도 알고자 하는 마음...^^



그 유명한 제롬 파월 의장님...

#### ● 활용 Dataset

- 2015.03.18 ~ 2024.09.18 기간의 FOMC Press Conference 전문 (63개 파일, 총 11MB)
- o Federal Reserve System 홈페이지에서 PDF 파일 다운로드 가능
- FOMC (Federal Open Market Committee)?
  - 미국 연방공개시장위원회
  - Fed의 주요 통화정책을 결정하는 핵심 기구
  - 미국 경제의 물가 안정, 최대 고용, 금융 시스템 안정성을 목표로 통화정책 조율

## 활용 기술

#### Model

- a. 임베딩 모델: bge\_small\_en\_v1\_5\_v3
- b. LLM 모델: llama\_v3\_8b\_instruct

#### Databricks Tools

- a. Workspace
- b. Catalog
- c. Compute
- d. Dashboards
- e. Experiments
- f. Registered
- g. Models
- h. Serving Endpoints

## 구조도

#### Process

- a. Text Reading
- b. Chunking
  - 특정 문장 및 단락 수준에서 높은 정확도를 제공하기 위함
  - 긴 벡터를 활용할 경우 연산이 비효율적
- c. Embedding
- d. Vector DB Indexing
- e. Retrievering
- f. Generate LLM Chat Response
  - Date Extraction
    - 시간이 중요하므로 질의에서 Vector Search 대상 기간 추출
  - Final Answer



# 데모



데모 주소 : https://vimeo.com/1025217497

#### 느낀점

- 사이드 프로젝트의 일환으로써 해커톤 참여는 좋은 선택이었음
  - 공부가 확실히 되었음 + 이력서도 업데이트 가능
- Databricks 환경 및 사용법 공부 시간이 추가적으로 소요됨
  - 대회 참여 대상자에게 3시간 분량의 교육 영상을 제공해주었음 (모두 다 영어)
  - 개개인마다 공부 시간의 편차가 클 것 같음
  - 퀴즈를 통과하면 수료증을 줌
- 주제 선정의 중요성을 느낌
  - 실제 수급 가능한 데이터인지 / 해당 데이터로 원하는 예측 값이 생성이 가능할지 / 해당 주제에 대해 수요가 있을지
- \$500 credits 이내로 Databricks 플랫폼 자원을 써야 했기에, 맘 편히 실험을 진행하지 못했음
  - 예측 성능도 일부 샘플 케이스에 대해 눈으로 확인하는 정도로 정리

## **Q&A**