Leggi di Newton e urti centrali elastici e anelastici analisi dati

Ali Matteo, Broggi Diana, Cantarini Giulia

urti tra due carrelli

Grafico $v_{(t)}$ run 1 urto elastico

$$v_{fR} = v_{iB} \frac{2m_B}{m_R + m_B}$$

carrello blu $\boldsymbol{v}_f = \boldsymbol{0}$

carrello rosso $v_i = 0$

run	$v_i \text{ (m/s)}$
1:	0.531
2:	0.474
3:	0.380
4:	0.558
5:	0.642

run	$v_{fosservata}$ (m/s)	$v_{fattesa} (\mathrm{m/s})$
1:	0.516	0.528
2:	0.469	0.472
3:	0.368	0.378
4:	0.544	0.555
5:	0.618	0.639

$$v_{fR} = v_{iB} \frac{2(0.270Kg)}{0.543Kg}$$

$$t = \frac{|\bar{v_{oss}} - \bar{v_{att}}|}{\sqrt{\sigma_{vosservata}^2 + \sigma_{vattesa}^2}} = 0.19$$

 \rightarrow la probabilità che la differenza sia dovuta solo ad errori casuali è del 85%.

Grafico $\boldsymbol{v}_{(t)}$ run 1 urto elastico (con carrello blu caricato con 500g)

carrello blu $\boldsymbol{v}_f = \boldsymbol{0}$

carrello rosso $v_i = 0$

run	$v_i \text{ (m/s)}$
1:	0.524
2:	0.400
3:	0.376
4:	0.612
5:	0.829

run	$v_{fosservata} \text{ (m/s)}$	$v_{fattesa} (\mathrm{m/s})$
1:	0.752	0.775
2:	0.576	0.592
3:	0.543	0.556
\parallel 4:	0.881	0.906
5:	0.808	0.828

$$v_{fR} = v_{iB} \frac{2(0.777Kg)}{1.050Kg}$$

$$t = \frac{|v_{oss}^- - v_{att}^-|}{\sqrt{\sigma_{vosservata}^2 + \sigma_{vattesa}^2}} = 0.2$$

 \rightarrow la probabilità che la differenza sia dovuta solo ad errori casuali è del 84%.

Grafico $\boldsymbol{v}_{(t)}$ run 1 urto elastico (con carrello rosso caricato con 500g)

carrello blu $v_f = 0$

carrello rosso $v_i = 0$

run	$v_i \text{ (m/s)}$
1:	0.635
2:	0.640
3:	0.405
4:	0.547
5:	0.528

run	$v_{fosservata}$ (m/s)	$v_{fattesa} (\mathrm{m/s})$
1:	0.315	0.327
2:	0.320	0.330
3:	0.201	0.209
4:	0.277	0.282
5:	0.264	0.272

$$v_{fR} = v_{iB} \frac{2(0.270Kg)}{1.050Kg}$$

$$t = \frac{|v_{oss}^- - v_{att}^-|}{\sqrt{\sigma_{vosservata}^2 + \sigma_{vattesa}^2}} = 0.28$$

 \rightarrow la probabilità che la differenza sia dovuta solo ad errori casuali è del 78%.

urto anaelastico (carrelli vuoti, $v_{iR}=0$)

Tabella variazione della quantità di moto

run	Δp carrello blu (Kg m/s)	Δp carrello rosso (Kg m/s)	Δp totale (Kg m/s)
1:	0.055 - 0.110 = -0.055	0.054 - 0 = 0.054	-0.001
2:	0.060 - 0.121 = -0.061	0.061 - 0 = 0.061	0
3:	0.060 - 0.123 = -0.063	0.060 - 0 = 0.060	-0.003
4:	0.052 - 0.108 = -0.056	0.053 - 0 = 0.053	-0.003
5:	0.072 - 0.148 = -0.076	0.073 - 0 = 0.073	-0.003

$$t = \frac{\left| \bar{\Delta p} - 0 \right|}{\sigma_{\Delta p}} = 3.3$$

 \to la probabilità che la discrepanza con $\Delta p=0$ sia dovuto solo ad errori casuali è del 0.1 %, risultato non accettabile.

Tabella variazione della energia cinetica

run	ΔEc carrello blu (J)	ΔEc carrello rosso (J)	ΔEc totale (J)
1:	0.005 - 0.022 = -0.017	0.0054 - 0 = 0.0054	-0.012
2:	0.006 - 0.027 = -0.021	0.0067 - 0 = 0.0067	-0.014
3:	0.007 - 0.028 = -0.021	0.007 - 0 = 0.007	-0.014
4:	0.0049 - 0.0214 = -0.017	0.005- $0 = 0.005$	-0.012
5:	0.010 - 0.040 = -0.030	0.010 - 0 = 0.010	-0.02

urto anaelastico (carrello blu caricato con 500
g, $v_{iR}=0)\,$

(b) energia cinetica

Tabella variazione della quantità di moto

run	Δp carrello blu (Kg m/s)	Δp carrello rosso (Kg m/s)	Δp totale (Kg m/s)
1:	0.200 - 0.272 = -0.072	0.071 - 0 = 0.071	-0.001
2:	0.328 - 0.456 = -0.128	0.114-0 = 0.114	-0.014
3:	0.213 - 0.295 = -0.082	0.076 - 0 = 0.076	-0.006
4:	0.227 - 0.311 = -0.084	0.0813-0 = 0.081	-0.003
5:	0.233 - 0.317 = -0.084	0.082 - 0 = 0.082	-0.002

$$t = \frac{\left|\bar{\Delta p} - 0\right|}{\sigma_{\Delta p}} = 2.2$$

 \to la probabilità che la discrepanza con $\Delta p=0$ sia dovuto solo ad errori casuali è del 3%, risultato non accettabile.

Tabella variazione della energia cinetica

Ī	run	ΔEc carrello blu (J)	ΔEc carrello rosso (J)	ΔEc totale (J)
	1:	0.025 - 0.048 = -0.023	0.009 - 0 = 0.009	-0.014
	2:	0.069 - 0.134 = -0.065	0.024 - 0 = 0.024	0.041
l	3:	0.029 - 0.056 = -0.027	0.011 - 0 = 0.011	-0.016
	4:	0.033 - 0.062 = -0.029	0.012 - 0 = 0.012	-0.017
	5:	0.035 - 0.065 = -0.030	0.012 - 0 = 0.012	-0.018

urto anaelastico (carrello rosso caricato con 500g, $v_{iR} = 0$)

(b) energia cinetica

Tabella variazione della quantità di moto

run	Δp carrello blu (Kg m/s)	Δp carrello rosso (Kg m/s)	Δp totale (Kg m/s)
1:	0.040 - 0.156 = -0.116	0.116 - 0 = 0.116	0
2:	0.044 - 0.169 = -0.125	0.126 - 0 = 0.126	0.001
3:	0.049 - 0.188 = -0.139	0.140 - 0 = 0.140	0.001
4:	0.039 - 0.162 = -0.123	0.122 - 0 = 0.122	-0.001
5:	0.050 + 0.202 = -0.152	0.151 - 0 = 0.151	-0.001

$$t = \frac{\left|\bar{\Delta p} - 0\right|}{\sigma_{\Delta p}} = 0$$

 \rightarrow la probabilità che la discrepanza con $\Delta p=0$ nei diversi run sia dovuto solo ad errori casuali è del 100%.

Tabella variazione della energia cinetica

run	ΔEc carrello blu (J)	ΔEc carrello rosso (J)	ΔEc totale (J)
1:	0.003 - 0.045 = -0.042	0.009 - 0 = 0.009	-0.033
2:	0.004 - 0.053 = -0.049	0.010 - 0 = 0.010	-0.039
3:	0.004 - 0.065 = -0.061	0.013 - 0 = 0.013	-0.048
4:	0.003 - 0.048 = -0.045	0.010 - 0 = 0.010	-0.035
5:	0.005 - 0.075 = -0.070	0.015 - 0 = 0.015	-0.055

calcolo del coefficiente di attrito

Grafico ${\cal F}_{(x)}$ con un libro davanti al carrello sottoposto a tensione

1 Libro, $m_{libro} = 0.482 Kg$

run	F_a (N)	μ
1:	0.26	0.055
2:	0.27	0.057
3:	0.29	0.06
4:	0.22	0.005
5:	0.13	0.027

Grafico ${\cal F}_{(x)}$ con due libri davanti al carrello sottoposto a tensione

2 Libri, $m_{libritot} = 0.798 Kg$

run	F_a (N)	μ
1:	0.19	0.024
2:	0.19	0.024
3:	0.04	0.005
4:	0.10	0.013
5:	0.25	0.032

urto anaelastico (carrello rosso caricato con 500g, $v_{iR} = 0$)

(a) discesa: coefficiente angolare = 1.96 ± 0.0014

(b) salita: coefficiente angolare = 2.05 ± 0.0019

Grafico $v_{(t)}$ con $\theta=12^{\circ}$

Grafico ${\cal F}_{(x)}$ con due libri davanti al carrello sottoposto a tensione

