

SIPMOS ® Power Transistor

- N channel
- Enhancement mode
- Logic Level
- Avalanche-rated
- dv/dt rated
- 175°C operating temperature
- also in SMD available

Pin 1	Pin 2	Pin 3
G	D	S

Туре	V _{DS}	l _D	R _{DS(on)}	Package	Ordering Code
BUZ111SL	55 V	80 A	0.01 Ω	TO-220 AB	Q67040-S4003-A2

Maximum Ratings

Parameter	Symbol	Values	Unit
Continuous drain current	I _D		А
<i>T</i> _C = 100 °C		80	
Pulsed drain current	I _{Dpuls}		
$T_{\rm C}$ = 25 °C		320	
Avalanche energy, single pulse	E _{AS}		mJ
$I_{D} = 80 \; A, \; V_{DD} = 25 \; V, \; R_{GS} = 25 \; \Omega$			
$L = 220 \mu H, T_j = 25 \text{ °C}$		700	
Avalanche current, limited by T_{jmax}	I _{AR}	80	А
Avalanche energy,periodic limited by T_{jmax}	E _{AR}	25	mJ
Reverse diode dv/dt	dv/dt		kV/µs
$I_{\rm S} = 80 \; {\rm A}, \; V_{\rm DS} = 40 \; {\rm V}, \; {\rm d}i_{\rm F}/{\rm d}t = 200 \; {\rm A/\mu s}$			
$T_{\text{jmax}} = 175 ^{\circ}\text{C}$		6	
Gate source voltage	V_{GS}	± 14	V
Power dissipation	P _{tot}		W
<i>T</i> _C = 25 °C		250	

Maximum Ratings

Parameter	Symbol	Values	Unit
Operating temperature	T _j	-55 + 175	°C
Storage temperature	T _{stg}	-55 + 175	
Thermal resistance, junction - case	R_{thJC}	≤ 0.6	K/W
Thermal resistance, junction - ambient	R_{thJA}	≤ 62	
IEC climatic category, DIN IEC 68-1		55 / 175 / 56	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static Characteristics					
Drain- source breakdown voltage	V _{(BR)DSS}				V
$V_{\rm GS}$ = 0 V, $I_{\rm D}$ = 0.25 mA, $T_{\rm j}$ = 25 °C		55	-	-	
Gate threshold voltage	V _{GS(th)}				
$V_{\rm GS} = V_{\rm DS,} I_{\rm D} = 240 \ \mu \rm A$		1.2	1.6	2	
Zero gate voltage drain current	I _{DSS}				μA
$V_{\rm DS} = 50 \; {\rm V}, \; V_{\rm GS} = 0 \; {\rm V}, \; T_{\rm j} = -40 \; {\rm ^{\circ}C}$		-	-	0.1	
$V_{\mathrm{DS}} = 50 \; \mathrm{V}, \; V_{\mathrm{GS}} = 0 \; \mathrm{V}, \; T_{\mathrm{j}} = 25 \; \mathrm{^{\circ}C}$		-	0.1	1	
$V_{\rm DS} = 50 \; \rm V, \; V_{\rm GS} = 0 \; \rm V, \; T_{\rm j} = 150 \; ^{\circ}\rm C$		-	-	100	
Gate-source leakage current	I _{GSS}				nA
$V_{GS} = 20 \text{ V}, \ V_{DS} = 0 \text{ V}$		-	10	100	
Drain-Source on-resistance	R _{DS(on)}				Ω
$V_{GS} = 4.5 \text{ V}, I_{D} = 80 \text{ A}$		-	0.0085	0.01	
$V_{GS} = 10 \text{ V}, I_D = 80 \text{ A}$		-	0.0055	0.007	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Dynamic Characteristics					
Transconductance	g_{fS}				S
$V_{\rm DS} \ge 2 * I_{\rm D} * R_{\rm DS(on)max} = 2 \text{ V}, I_{\rm D} = 80 \text{ A}$		30	95	-	
Input capacitance	C _{iss}				pF
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		-	3850	4800	
Output capacitance	Coss				
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		-	1090	1357	
Reverse transfer capacitance	C _{rss}				
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		-	570	715	
Turn-on delay time	$t_{d(on)}$				ns
$V_{\rm DD} = 30 \ {\rm V}, \ V_{\rm GS} = 4.5 \ {\rm V}, \ I_{\rm D} = 80 \ {\rm A}$					
$R_{\rm G}$ = 1.3 Ω		-	30	45	
Rise time	t _r				
$V_{\rm DD} = 30 \ {\rm V}, \ V_{\rm GS} = 4.5 \ {\rm V}, \ I_{\rm D} = 80 \ {\rm A}$					
$R_{\rm G}$ = 1.3 Ω		-	37	56	
Turn-off delay time	t _{d(off)}				
$V_{\rm DD} = 30 \ {\rm V}, \ V_{\rm GS} = 4.5 \ {\rm V}, \ I_{\rm D} = 80 \ {\rm A}$					
$R_{\rm G}$ = 1.3 Ω		-	70	105	
Fall time	t _f				
$V_{\rm DD} = 30 \; \rm V, \; V_{\rm GS} = 4.5 \; \rm V, \; \it I_{\rm D} = 80 \; \rm A$					
$R_{\rm G}$ = 1.3 Ω		-	36	55	
Gate charge at threshold	Q _{g(th)}				nC
$V_{\rm DD} = 40 \text{ V}, I_{\rm D} \ge 0.1 \text{ A}, V_{\rm GS} = 0 \text{ to } 1 \text{ V}$		-	3.8	5.7	
Gate charge at 5.0 V	Q _{g(5)}				
$V_{\rm DD} = 40 \text{ V}, I_{\rm D} = 80 \text{ A}, V_{\rm GS} = 0 \text{ to } 5 \text{ V}$		-	92	138	
Gate charge total	Q _{g(total)}				
$V_{DD} = 40 \text{ V}, I_{D} = 80 \text{ A}, V_{GS} = 0 \text{ to } 10 \text{ V}$		-	155	232	
Gate plateau voltage	V _(plateau)				V
$V_{\rm DD} = 40 \text{ V}, I_{\rm D} = 80 \text{ A}$		-	3.4	-	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse Diode					
Inverse diode continuous forward current	I _S				А
$T_{\rm C}$ = 25 °C		-	-	80	
Inverse diode direct current,pulsed	/ _{SM}				
$T_{\rm C}$ = 25 °C		-	-	320	
Inverse diode forward voltage	V _{SD}				V
$V_{GS} = 0 \text{ V}, I_{F} = 160 \text{ A}$		-	1.25	1.8	
Reverse recovery time	t _{rr}				ns
$V_{R} = 30 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$		-	105	157	
Reverse recovery charge	Q _{rr}				μC
$V_{R} = 30 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$		-	0.31	0.47	

Power dissipation

SIEMENS

$$P_{\mathsf{tot}} = f(T_{\mathsf{C}})$$

Drain current

$$I_{\mathsf{D}} = f(T_{\mathsf{C}})$$

parameter: V_{GS} ≥ 4 V

Safe operating area

$$I_{D} = f(V_{DS})$$

parameter: $D = 0$, $T_{C} = 25$ °C

Transient thermal impedance

$$Z_{\text{th JC}} = f(t_{\text{p}})$$

 $Z_{\text{th JC}} = f(t_{\text{p}})$ parameter: $D = t_{\text{p}} / T$

SIEMENS

Typ. output characteristics

 $I_{\mathsf{D}} = f(V_{\mathsf{DS}})$

parameter: $t_p = 80 \mu s$

Typ. drain-source on-resistance

 $R_{\rm DS~(on)} = f(I_{\rm D})$ parameter: $t_{\rm p} = 80~\mu \rm s,~T_{\rm j} = 25~^{\circ} C$

Typ. transfer characteristics $I_D = f(V_{GS})$

parameter: $t_p = 80 \mu s$

 $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

SIEMENS

Drain-source on-resistance

$$R_{\rm DS~(on)} = f(T_{\rm j})$$
 parameter: $I_{\rm D} = 80$ A, $V_{\rm GS} = 4.5$ V

Typ. capacitances

$$C = f(V_{DS})$$

parameter:
$$V_{GS} = 0V$$
, $f = 1MHz$

Gate threshold voltage

$$V_{GS(th)} = f(T_j)$$

parameter:
$$V_{GS} = V_{DS}$$
, $I_D = 240 \mu A$

Forward characteristics of reverse diode

$$I_{\mathsf{F}} = f(V_{\mathsf{SD}})$$

parameter:
$$T_j$$
, $t_p = 80 \mu s$

SIEMENS

Avalanche energy $E_{AS} = f(T_j)$ parameter: $I_D = 80$ A, $V_{DD} = 25$ V $R_{GS} = 25 \Omega$, $L = 220 \mu H$

Typ. gate charge

 $V_{\mathsf{GS}} = f(Q_{\mathsf{Gate}})$

parameter: $I_{D \text{ puls}} = 80 \text{ A}$

Drain-source breakdown voltage

$$V_{(\mathsf{BR})\mathsf{DSS}} = f(T_{\mathsf{j}})$$

