

CV501

USN

M S RAMAIAH INSTITUTE OF TECHNOLOGY

(AUTONOMOUS INSTITUTE, AFFILIATED TO VTU) **BANGALORE - 560 054**

SEMESTER END EXAMINATIONS - JANUARY 2016

Course & Branch : B.E.- Civil Engineering

Semester

Subject

: Structural Analysis-II

Max. Marks: 100

Subject Code

: CV501

Duration 3 Hrs

Instructions to the Candidates:

- Answer one full question from each unit.
- Any data missing can be assumed suitably.

UNIT - I

1. (20)Analyze the continuous beam shown in fig-1 by slope deflection CO1 method. Draw SFD,BMD & EC.

2. Analyse the rigid frame shown in fig-2 by slope deflection method.

CO1 (20)

CV501

UNIT - II

3. Analyze the continuous beam shown in fig-3 by moment distribution CO1 (20) method and draw BMD.

fig.3

4. Analyze the frame shown in fig-4 by moment distribution method and CO2 (20) draw BMD.

UNIT-III

- 5. a) Define flexibility co-efficient and show that the flexibility matrix is CO3 (05) symmetrical.
 - b) Analyze the continuous beam shown in fig-5 by flexibility matrix CO3 (15) method and draw BMD. Flexural rigidity is uniform.

(12)

- 9. a) Determine the shape factor for rectangular section. CO4 (05).
 - b) Determine the plastic moment capacity of the given continuous beam CO4 (15) shown in fig 9.take load factor =1.5

- 10. a) Define plastic hinge, yield moment, plastic moment and shape factor. CO4 (08)
 - b) Calculate shape factor of an unsymmetrical I-section having top CO4 flange = 100x15, web =20 mm thick and bottom flange = 250x15 with total depth = 230 mm, if yield stress of the material is 350 N/mm². Calculate yield and plastic moment.

6. Analyze the pin jointed frame shown in fig-6 by flexibility matrix CO3 (20) method.

UNIT - IV

7. Analyze the Continuous beam shown in fig7 by stiffness matrix CO3 (20) method.

8. a) Analyze the following frame shown in fig-8 by displacement method. CO3 (20) Take EI as uniform.