Gait Recognition Using 3-D Human Body Shape Inference Paper Review 04/29

Bo Han, Chen

National Yang Ming Chiao Tung University, Taiwan bhchen312551074.cs12@nycu.edu.tw

April 29, 2024

- Title: Gait Recognition Using 3-D Human Body Shape Inference [1]
- Authors: Zhu, Haidong and Zheng, Zhaoheng and Nevatia, Ram
- Conference: IEEE/CVF Winter Conference on Applications of Computer Vision
- Year: 2023

Motivation

- Gait recognition based on 2-D images is difficult.
- Camera positions, carried objects, and clothing, etc.

Figure 1: Variance of 2-D silhouette images

Proposed Method

- 3-D body shape inference from silhouettes sequences
- Knowledge distillation for body shape

Proposed Method

Gait Feature Extraction

Figure 2: Overview of the proposed method

Bo Han, Chen (NYCU) Paper Review 04/29 April 29, 2024 5/1

Proposed Method

Body Shape Feature Encoder

- sequence of silhouettes
- feature weights of different frame (12.5%)

Body shape feature extractor

Figure 3: Body Shape Feature Encoder

Bo Han, Chen (NYCU) Paper Review 04/29 April 29, 2024 6/14

Body Prior Inference

- SMPLify-X
- Time consumption select single RGB image

$$L_{KD} = \mathbb{E}_{q(v_{br}, v_{bs}|C=1)}[\log h(v_{br}, v_{bs})] + \mathbb{E}_{q(v_{br}, v_{bs}|C=0)}[\log(1 - h(v_{br}, v_{bs}))]$$

$$h(s,t) = \frac{\exp(f_1(v_{bs})^T \cdot f_2(v_{br}))}{\exp(f_1(v_{bs})^T \cdot f_2(v_{br})) + \frac{N}{M}}$$
(1)

Figure 4: Contrastive Representation Distillation

Experiments

Dataset

- CASIA-B
 - 20% of sequence for data distillation
 - three scenario
 - normal walking
 - carrying bags
 - different clothing
- OUMVLP
 - lack of RGB video sequence
 - using shape encoder pre-trained on CASIA-B

Results

Probe	Stats	HBS	Method								
	States	IIDO	GaitSet [6]	GaitPart [10]	GLN [15]	GaitGL [23]	Change				
		Х	95.6	96.4	96.5	97.3					
NM #5-6	Mean (†)	✓	96.0	96.6	96.8	97.5	+0.3				
		Δ	+0.3	+0.2	+0.3	+0.2					
	STD. (\dagger)	×	3.4	2.8	2.8	1.7					
		✓	3.2	3.0	2.4	1.6	-0.1				
		Δ	-0.2	+0.2	-0.4	-0.1					
BG #1-2		Х	90.1	91.2	93.1	94.4					
	Mean (†)	✓	90.5	91.7	93.6	94.8	+0.4				
		Δ	+0.4	+0.5	+0.5	+0.4					
	STD. (\dagger)	×	4.6	4.2	3.3	2.7					
		✓	4.2	3.5	3.2	2.7	-0.3				
		Δ	-0.4	-0.7	-0.1	0.0					
CL #1-2		×	75.1	78.6	81.5	83.5					
	Mean (†)	✓	76.0	76.0 79.7 83.2		84.1	+1.1				
		Δ	+0.9	+1.1	+1.7	+0.6					
		×	6.2	5.8	5.5	8.0					
	STD. (↓)	✓	5.9	5.6	5.5	7.0	-0.4				
		Δ	-0.3	-0.2	0.0	-1.0					

Method	Camera Positions												Mean		
	0°	15°	30°	45°	60°	75°	90°	180°	195°	210°	225°	240°	255°	270°	Wican
GEINet [35]	23.2	38.1	48.0	51.8	47.5	48.1	43.8	27.3	37.9	46.8	49.9	45.9	45.7	41.0	42.5
GaitSet [6]	79.2	87.7	89.9	90.1	87.9	88.6	87.7	81.7	86.4	89.0	89.2	87.2	87.7	86.2	87.0
GaitPart [10]	82.8	89.2	90.9	91.0	89.7	89.9	89.3	85.1	87.7	90.0	90.1	89.0	89.0	88.1	88.7
GaitGL [23]	84.2	89.8	91.3	91.7	90.8	91.0	90.4	88.1	88.2	90.5	90.5	89.5	89.7	88.8	89.6
GaitSet-HBS	79.0	87.9	90.4	90.6	88.4	89.2	88.4	82.3	87.1	89.6	89.6	87.7	88.4	86.9	87.5
GaitPart-HBS	82.4	89.1	91.1	91.3	89.8	90.2	89.7	84.8	88.0	90.3	90.3	89.2	89.4	88.4	88.9
GaitGL-HBS	84.7	90.2	91.4	91.7	90.9	91.0	90.5	88.4	88.7	90.5	90.5	89.6	89.6	88.9	89.8

Figure 5: OUMVLP Results

Experiments

Results

- criteria
 - performance
 - viewpoints
 - appearance variance
- novel viewpoints

Conclusion

- Relay on exist model
- Quality of RGB video sequence
- Using skeleton for gait recognition?

References

[1] Haidong Zhu, Zhaoheng Zheng, and Ram Nevatia. "Gait recognition using 3-d human body shape inference". In: *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*. 2023, pp. 909–918.

Thanks for Listening

Q & A