EE 709 Assignment 1 Boolean Algebras

Rohan Rajesh Kalbag Roll: 20D170033

January 2023

1 Solutions to the provided problem set

1.1 Problem 1

The 0 and 1 elements in a Boolean Algebra are unique

Proof. Let \exists two zero elements $0_1, 0_2 \in \mathbb{B} = \{\Omega, +, \cdot\}$, then

$$0_1 + 0_2 = 0_1$$
 $(a + 0 = a) - (1)$
 $0_2 + 0_1 = 0_2$ $(a + 0 = a) - (2)$
 $0_1 + 0_2 = 0_2 + 0_1$ (commutativity of +)
 $0_1 = 0_2$ from (1) and (2)
 $\iff 0_1 = 0_2 \equiv 0$

Proof. Let \exists two one elements $1_1, 1_2 \in \mathbb{B} = \{\Omega, +, \cdot\}$, then

$$1_1 \cdot 1_2 = 1_1$$
 $(a \cdot 1 = a) - (1)$
 $1_2 \cdot 1_1 = 1_2$ $(a \cdot 1 = a) - (2)$
 $1_1 \cdot 1_2 = 1_2 \cdot 1_1$ (commutativity of .)
 $1_1 = 1_2$ from (1) and (2)
 $\iff 1_1 = 1_2 \equiv 1$

1.2 Problem 2

 $a \cdot 0 = 0$ for each element a

Proof. Let $a \in \mathbb{B} = \{\Omega, +, \cdot\}$, then

$$a \cdot 0 = a \cdot 0 + 0$$
 $(a + 0 = a)$
 $= a \cdot 0 + a \cdot \bar{a}$ $(a \cdot \bar{a} = 0)$
 $= a \cdot (0 + \bar{a})$ (distributivity of .)
 $= a \cdot \bar{a}$ $(a + 0 = a)$
 $= 0$ $(a \cdot \bar{a} = 0)$

1.3 Problem 3

a + 1 = 1 for each element a

Proof. Let $a \in \mathbb{B} = \{\Omega, +, \cdot\}$, then $a + 1 = (a + 1) \cdot 1 \qquad (a \cdot 1 = a)$ $= (a + 1) \cdot (a + \bar{a}) \qquad (a + \bar{a} = 1)$ $= a + 1 \cdot \bar{a} \qquad (distributivity of +)$ $= a + \bar{a} \qquad (a \cdot 1 = a)$ $\equiv 1 \qquad (a + \bar{a} = 1)$

1.4 Problem 4

For each element a, a + a = a, and $a \cdot a = a$

Proof. Let $a \in \mathbb{B} = \{\Omega, +, \cdot\}$, then

$$a+a=a+a\cdot 1$$
 $(a\cdot 1=a)$
= $a\cdot (1+1)$ (distributivity of .)
= $a\cdot 1$
 $\equiv a$ $(a\cdot 1=a)$

Proof. Let $a \in \mathbb{B} = \{\Omega, +, \cdot\}$, then

$$a \cdot a = a \cdot a + 0$$
 $(a + 0 = a)$
 $= a \cdot a + a \cdot \bar{a}$ $(a \cdot \bar{a} = 0)$
 $= a \cdot (a + \bar{a})$ (distributivity of .)
 $= a \cdot 1$ $(a + \bar{a} = 1)$
 $= a$ $(a \cdot 1 = a)$

1.5 Problem 5

 $= \bar{a} + 1$

The second De Morgan's Law $(\overline{a\cdot b} = \overline{a} + \overline{b})$

Proof. Let $a, b \in \mathbb{B} = \{\Omega, +, \cdot\}$, then

 $\forall x \in \mathbb{B}$, we know that $\bar{x} \cdot x = 0$, $\bar{x} + x = 1$

we need $(a \cdot b) \cdot (\bar{a} + \bar{b}) = 0$ and $(a \cdot b) + (\bar{a} + \bar{b}) = 1$

$$(a \cdot b) \cdot (\bar{a} + \bar{b}) = a \cdot b \cdot \bar{a} + a \cdot b \cdot \bar{b}$$

$$= b \cdot 0 + a \cdot 0$$
(distributivity of +)
$$(a \cdot \bar{a} = 0)$$

 $\equiv 0$ $(a \cdot 0 = 0 \text{ proved in Problem 3})$

$$(a \cdot b) + (\bar{a} + \bar{b}) = (a \cdot b + \bar{a}) + \bar{b}$$

$$= ((a + \bar{a}) \cdot (\bar{a} + b)) + \bar{b} = \bar{a} + (\bar{b} + b)$$

$$(a \cdot 0 = 0 \text{ proved in Problem 3})$$

$$(commutativity of +)$$

$$(distributivity of +)$$

 $(a + \bar{a} = 1)$

 $\equiv 1$ (a+1=1 proved in Problem 3)

1.6 Problem 6

In finite Boolean Algebra with at least two elements, $0 \neq 1$

Proof. Suppose \mathbb{B} is a finite boolean algebra with n elements $n \geq 2$ and suppose $0 \equiv 1 \equiv m$. Let $a \in \mathbb{B} \neq m$, the existence of a is justified as $n \geq 2$.

$$a+m=a$$
 $(a+0=a)$
 $a+m=m$ $(a+1=1 \text{ proved in Problem 3})$
 $\implies a=m$ (contradiction to $a \neq m$)

Hence proved $0 \neq 1$ by contradiction

1.7 Problem 7

In a finite Boolean algebra with at least two elements, the set of atoms is non-empty.

Proof. Let \mathbb{B} is a finite boolean algebra with n elements $n \geq 2$. Let A denote the set of all atoms a. Suppose for contradiction, the set of atoms A is empty. Suppose $x \in \mathbb{B}$ is an element then $\exists a \leq x$, where a is an atom (From **Problem 11**)

$$\implies \mathcal{N}(A) \ge 1$$

Hence proved that the set A is non empty.

1.8 Problem 8

If a is an atom, then for any element $x \neq 0$, either $a \leq x$ or $a \leq \bar{x}$. However, it is not possible that $a \leq x$ and $a \leq \bar{x}$.

Proof. Let $A = \{b_1, b_2, b_3...\}$ be the set of all atoms in \mathbb{B} . Let $A_x = \{p_i\}$ be the set of all atoms $m \leq x$ and $A_{\bar{x}} = \{q_i\}$ be the set of all atoms $m \leq \bar{x}$. The existence of these sets is proved in **Problem 7**

Since A is the set of all atoms in \mathbb{B} , we have $A_x \subseteq A$ and $A_{\bar{x}} \subseteq A$. We also have that all atoms $a \in \mathbb{B}$ satisfy $a \leq 1$ as $a \cdot 1 = a$. So we have $A_1 \equiv A$

$$x + \bar{x} = 1$$

= $(\sum_{p_i \in A_x} p_i) + (\sum_{q_i \in A_{\bar{x}}} q_i) = 1$

 $x + \bar{x}$ will contain atoms $m \in A_x \cup A_{\bar{x}}$ as if \exists terms $p_i = q_j$ we have $p_i + q_j = p_i = q_j$. As we have $x + \bar{x} = 1$, we have

$$A_x \cup A_{\bar{x}} = A$$

Thus if we have $a \in A \implies a \in A_x$ or $a \in A_{\bar{x}}$. So we have $a \leq x$ or $a \leq \bar{x}$

Suppose $\exists m \neq 0 \in A_x \text{ and } m \in A_{\bar{x}}$

$$m \cdot x = m$$
 (definition of \leq)
 $m \cdot \bar{x} = m$ (using \cdot in above two relations)
 $\implies (m \cdot m) \cdot (x \cdot \bar{x}) = (m \cdot m)$
 $\implies m \cdot 0 = m \implies m = 0$ ($a \cdot a = a$ proved in **Problem 4**)
 $(a \cdot 0 = 0$ proved in **Problem 2**)
 $(a \cdot \bar{a} = 0)$

Which is a contradiction hence it is not possible that $\exists a : a \leq x \text{ and } a \leq \bar{x}$.

Thus we can conclude that every atom a satisfies either $a \leq x$ or $a \leq \bar{x}$ but not both together.

1.9 Problem 9

If a is an atom, then $a \le x + y \iff a \le x$ or $a \le y$

Proof. Let $a \neq 0$ be an atom $\in \mathbb{B}$ s.t $a \leq x + y$. Let A_x and A_y be the set of atoms s.t $x = \sum_{p_i \in A_x} p_i$ and $y = \sum_{q_i \in A_y} q_i$

$$a \cdot (x+y) = a$$
 (definition of \leq)
 $x+y = (\sum_{p_i \in A_x} p_i) + (\sum_{q_i \in A_y} q_i)$

x+y will only contain atoms $m \in A_x \cup A_y$ as for all the terms $p_i = q_j$ we have $p_i + q_j = p_i = q_j$. Also we know from set theory that $A_x \cup A_y \supseteq A_x$ and $A_x \cup A_y \supseteq A_y$. So the atoms satisfy the condition $m \in A_x$ or $m \in A_y$

Thus
$$a \cdot (x \cdot y) = a \implies a \in m \implies a \in A_x \text{ or } a \in A_y$$

$$a \cdot x = a \implies a \le x \qquad (a \in A_x)$$

$$a \cdot y = a \implies a \le y \qquad (a \in A_y)$$

Thus proved $a \le x + y \implies a \le x$ or $a \le y$

Let $\underbrace{a \leq x}_{p_1}$ or $\underbrace{a \leq y}_{p_2}$, for $p_1 \vee p_2$, we check that $p_1 \wedge p_2$, $\neg p_1 \wedge p_2$ and $p_1 \wedge \neg p_2$ are true

1) For $p_1 \wedge p_2$

$$a \le x \implies a \cdot x = a$$
 (definition of \le)
 $a \le y \implies a \cdot y = a$
 $a \cdot (x + y) = a \cdot x + a \cdot y = a + a = a$ (distributivity of \cdot and $a + a = a$ proved in **Problem 4**)

2) For $p_1 \wedge \neg p_2$

$$a \le x \implies a \cdot x = a$$
 (definition of \le)
 $a \cdot (x + y) = a \cdot x + a \cdot y = a + a \cdot y$ (distributivity of \cdot)
 $= a \cdot (1 + y) = a \cdot 1 = a$ (1 + a = 1 proved in **Problem 3** and $a \cdot 1 = a$)

Similarly, one can prove $\neg p_1 \land p_2$ by symmetry Thus proved $a \le x + y \iff a \le x$ and $a \le y$

Hence proved the equivalence $a \le x + y \iff a \le x$ and $a \le y$

1.10 Problem 10

If a is an atom, then $a \le x \cdot y \iff a \le x$ and $a \le y$

Proof. Let $a \neq 0$ be an atom $\in \mathbb{B}$ s.t $a \leq x \cdot y$. Let A_x and A_y be the set of atoms s.t $x = \sum_{p_i \in A_x} p_i$ and $y = \sum_{q_i \in A_y} q_i$

$$a \cdot (x \cdot y) = a$$
 (definition of \leq)
 $x \cdot y = (\sum_{p_i \in A_x} p_i) \cdot (\sum_{q_i \in A_y} q_i)$

 $x \cdot y$ will only contain atoms $m \in A_x \cap A_y$ as for all the terms $p_i \neq q_j$ we have $p_i \cdot q_j = 0$. Also we know from set theory that $A_x \cap A_y \subseteq A_x$ and $A_x \cap A_y \subseteq A_y$. So the atoms $m \in A_x$ and $m \in A_y$

Thus
$$a \cdot (x \cdot y) = a \implies a \in m \implies a \in A_x$$
 and $a \in A_y$

$$a \cdot x = a \implies a \le x \qquad (a \in A_x)$$

$$a \cdot y = a \implies a \le y \qquad (a \in A_y)$$

Thus proved $a \le x \cdot y \implies a \le x$ and $a \le y$

Suppose $a \leq x$ and $a \leq y$

$$a \le x \implies a \cdot x = a$$
 (definition of \le)
 $a \le y \implies a \cdot y = a$
 $a \cdot (x \cdot y) = (a \cdot x) \cdot y = a \cdot y = a$ (commutativity of \cdot)

Thus proved $a \le x \cdot y \iff a \le x \text{ and } a \le y$

Hence proved the equivalence $a \leq x \cdot y \iff a \leq x$ and $a \leq y$

1.11 Problem 11

In a finite Boolean algebra with at least two elements, for every $x \neq 0$ there is at least one atom $a \leq x$

Proof. Let \mathbb{B} is a finite boolean algebra with n elements $n \geq 2$ and for the sake of contradiction, let $\exists x \neq 0 \in \mathbb{B}$ s.t there is no atom $a \leq x \implies x$ is not an atom

$$x \neq 0 \implies \exists \ y : y \neq 0, y \neq x, y \leq x$$
 (otherwise x is an atom)
 $y \neq 0 \implies \exists \ z_1 : z_1 \neq 0, z_1 \neq x, z_1 \neq y, z_1 \leq y$ (otherwise y is an atom)

We can keep finding distinct elements that are not atoms $z_2, z_3, z_4 \cdots : z_1 \geq z_2 \geq z_3 \ldots$. That would make the boolean algebra have infinite elements, which contradicts $\mathbb B$ being finite. For $\mathbb B$ to be finite $\exists z_n : z_n \neq 0, z_n \leq z_{n-1} \implies z_n = z_{n-1}$, which makes z_n an atom s.t $z_n \leq x$. Hence proved by contradiction.

1.12 Problem 12

If $a \le b$ and $c \le b$ then $(a+c) \le b$

Proof. Let $a, b, c \in \mathbb{B}$ and $a \leq b, c \leq b$

$$a \le b \implies a \cdot b = a$$
 (definition of \le)
 $c \le b \implies c \cdot b = c$ (definition of \le)
 $(a + c) \cdot b = a \cdot b + c \cdot b = a + c$ (distributivity of \cdot)

Hence $(a+c) \cdot b = a+c \implies (a+c) \le b$ completes the proof

1.13 Problem 13

If $a \leq b$ then $\bar{b} \leq \bar{a}$

Proof. Let $a, b \in \mathbb{B}$ and $a \leq b$

$$a \leq b \implies a \cdot b = a$$
 (definition of \leq)
 $\bar{b} \cdot \bar{a} = \bar{b} \cdot (\bar{a} \cdot \bar{b}) = \bar{b} \cdot (\bar{a} + \bar{b})$ (De Morgan's Law proved in **Problem 5**)
 $\implies \bar{b} \cdot \bar{a} + \bar{b} = \bar{b} \cdot (1 + \bar{a}) = \bar{b}$ (distributivity of \cdot)

Hence $\bar{b} \cdot \bar{a} = \bar{b} \implies \bar{b} \leq \bar{a}$ completes the proof

1.14 Problem 14

If $a \le b$ and $a \le c$ then $a \le b \cdot c$

Proof. Let $a, b, c \in \mathbb{B}$ and $a \leq b, a \leq c$

$$a \le b \implies a \cdot b = a$$
 (definition of \le)
 $a \le c \implies a \cdot c = a$ (definition of \le)
 $a \cdot (b \cdot c) = (a \cdot b) \cdot c = a \cdot c = a$ (commutativity of \cdot)

Hence $a \cdot (b \cdot c) = a \implies a \le b \cdot c$ completes the proof

1.15 Problem 15

Prove that $\bar{a} \cdot b + a \cdot b = b$

Proof. Let $a, b \in \mathbb{B}$

$$\bar{a} \cdot b + a \cdot b = b \cdot (a + \bar{a})$$
 (distributivity of ·)
= b ($a + \bar{a} = 1$)

Hence this completes the proof

1.16 Problem 16

Prove that $a.\bar{b}.c + a.\bar{b}.\bar{c} + \bar{a}.\bar{b} = \bar{b}$

Proof. Let
$$a, b, c \in \mathbb{B}$$

$$\begin{array}{ll} a.\bar{b}.c+a.\bar{b}.\bar{c}+\bar{a}.\bar{b}=a\cdot\bar{b}\cdot(c+\bar{c})+\bar{a}.\bar{b} & \text{(distributivity of } \cdot \text{)} \\ &=a\cdot\bar{b}+\bar{a}\cdot\bar{b} & \text{(}a+\bar{a}=1\text{)} \\ &=\bar{b}\cdot(a+\bar{a}) & \text{(distributivity of } \cdot \text{)} \\ &=\bar{b} & \text{(}a+\bar{a}=1\text{)} \end{array}$$

Hence this completes the proof