AIFA: PLANNING

02/04/2024

Koustav Rudra

POP Example: Get Tea, Biscuits, Book

Initial State:

```
Op( ACTION: Start,

EFFECT: At(Home) ∧ Sells(BS, Book)

∧ Sells(TS, Tea)

∧ Sells(TS, Biscuits))
```

Goal State:

```
Op( ACTION: Finish,
PRECOND: At(Home) ∧ Have(Tea)
∧ Have(Biscuits)
∧ Have(Book))
```

Actions:

```
Op( ACTION: Go(y),
PRECOND: At(x),
EFFECT: At(y) ∧ ¬At(x))
```

```
Op( ACTION: Buy(x),
PRECOND: At(y) ∧ Sells(y, x),
EFFECT: Have(x))
```


 $At(Home) \land Sells(BS, Book) \land Sells(TS, Tea) \land Sells(TS, Biscuits)$

- Ordering
- Causal Constraints

Example

```
• Initial Plan
• Plan(
    • STEPS: {
        • S1: Op(ACTION: Start,
             • EFFECT: At(Home) \land Sells(BS, Book) \land Sells(TS, Tea) \land Sells(TS, Biscuits)),
        • S2: Op( ACTION: Finish,
             • PRECOND: At(Home) \land Have(Tea) \land Have(Biscuits) \land Have(Book)),
        • },
    • ORDERINGS: \{S_1 \prec S_2\},
    • BINDINGS: {},
    • LINKS: {}
```

Partial Order Planning Algorithm

- Function POP(initial, goal, operators)
- // Returns plan
 - $plan \leftarrow Make Minimal Plan(initial, goal)$
 - Loop do
 - if Solution(plan) then return plan
 - $S, c \leftarrow Select Subgoal(plan)$
 - Choose Operator(plan, operators, S, c)
 - Resolve Threats(plan)
 - *End*

POP: Selecting-Subgoals

- Function Select-Subgoal(plan)
- //Returns S, c
 - pick a plan step S from STEPS(plan)
 - with a precondition c that has not been achieved
 - Return S, c

- Procedure Choose-Operator(plan, operators, S, c)
 - choose a step S' from operators or STEPS(plan) that has c as an effect
 - if there is no such step \rightarrow fail
 - add the causal link $S' \rightarrow c$: S to LINKS(plan)
 - add the ordering constraint $S' \prec S$ to ORDERINGS(plan)
 - if S is a newly added step from operators then add S to STEPS(plan) and add
 - Start < S' < Finish to ORDERINGS(plan)

POP: Solve Goal via Variable Binding

- Procedure Resolve-Threats(plan)
 - for each S' that threatens a link $S_i \rightarrow c: S_j$ in LINKS(plan) do
 - Choose either
 - Promotion: Add $S' \prec S_i$ to ORDERINGS(plan)
 - Demotion: $AddS_i \prec S'$ to ORDERINGS(plan)
 - if not Consistent(plan) \rightarrow fail

Demotion of *S'*

Partially Instantiated Operators

- So far we have not mentioned anything about binding constraints
- Should an operator that has the effect, say, $\sim At(x)$ be considered a threat to the condition At(Home)?
 - Indeed it is a possible threat because x may be bound to Home

Dealing with potential threats

- Resolve now with an equality constraint
 - Blind x to something that resolves the threat (say x = TS)
- Resolve now with an inequality constraint
 - Extend the language of variable binding to allow $x \neq Home$
- Resolve later
 - Ignore possible threats
 - If x = Home is added later into the plan, then we will attempt to resolve the threat (by promotion or demotion)

- Procedure Choose-Operator(plan, operators, S, c)
 - choose a step S' from operators or STEPS(plan) that has c as an effect
 - if there is no such step \rightarrow fail
 - add the causal link $S' \rightarrow c$: S to LINKS(plan)
 - add the ordering constraint $S' \prec S$ to ORDERINGS(plan)
 - if S is a newly added step from operators then add S to STEPS(plan) and add
 - Start < S' < Finish to ORDERINGS(plan)

- Procedure Choose-Operator(plan, operators, S, c)
 - choose a step S' from operators or STEPS(plan) that has c'as an effect
 - such that u = UNIFY(c, c', BINDINGS(plan))
 - if there is no such step \rightarrow fail
 - add u to BINDINGS(plan)
 - add the causal link $S' \rightarrow c$: S to LINKS(plan)
 - add the ordering constraint $S' \prec S$ to ORDERINGS(plan)
 - if S is a newly added step from operators then add S to STEPS(plan) and add
 - Start < S' < Finish to ORDERINGS(plan)

- Procedure Resolve-Threats(plan)
 - for each S' that threatens a link $S_i \rightarrow c: S_j$ in LINKS(plan) do
 - Choose either
 - Promotion: Add $S' \prec S_i$ to ORDERINGS(plan)
 - Demotion: $AddS_i \prec S'$ to ORDERINGS(plan)
 - if not Consistent(plan) \rightarrow fail

- Procedure Resolve-Threats(plan)
 - for each $S_i \rightarrow c$: S_j in LINKS(plan) do
 - for each S'in STEPS(plan) do
 - for each c'in EFFECTS(S') do
 - if $SUBST(BINDINGS(plan), c) = SUBST(BINDINGS(plan), \sim c')$
 - Choose either
 - Promotion: $Add S' \prec S_i$ to ORDERINGS(plan)
 - Demotion: $Add S_i \prec S'$ to ORDERINGS(plan)
 - if not Consistent(plan) \rightarrow fail

Thank You