TALF / Procesadores del lenguaje

Junio. 16-5-16

Nombre: DNI:

 $\underline{\text{NOTA:}}$ Es necesario un mínimo de 3 ptos¹ en la prueba para sumar las prácticas correspondientes. La duración del examen es de 2 horas.

1. (1.5 ptos) Razonar la verdad o falsedad de la afirmación siguiente:

"Dados \mathcal{L}_1 y \mathcal{L}_2 conjuntos regulares, entonces $\mathcal{L}_1 \setminus \mathcal{L}_2$ también lo es"

Si \mathcal{L}_2 es regular, entonces $\bar{\mathcal{L}}_2$ también lo es, y puesto que los conjuntos regulares son cerrados a la intersección, $\mathcal{L}_1 \cap \bar{\mathcal{L}}_2$ lo es igualmente. Dado que $\mathcal{L}_1 \setminus \mathcal{L}_2 = \mathcal{L}_1 \cap \bar{\mathcal{L}}_2$ la afirmación es cierta.

 $^{^150\%}$ de la puntuación total de teoría.

 $2.\ (1.5\ \mathrm{ptos})$ Razonar la verdad o falsedad de la afirmación siguiente:

" El conjunto $\mathcal{L}=\{a^{n^2},\;n\geq 1\}$ es un lenguaje independiente del contexto."

La afirmación es cierta y la demostración se hizo en clase de teoría.

3. (1.5 ptos) Razonar la verdad o falsedad de la afirmación siguiente:

"Dados \mathcal{L}_1 y \mathcal{L}_2 , lenguages independientes del contexto, entonces $\mathcal{L}_1 \cap \mathcal{L}_2$ también lo es"

La afirmación es falsa. Basta considerar los lenguajes $\mathcal{L}_1 := \{a^nb^nc^m, \text{ con } n, m \geq 1\}$ y $\mathcal{L}_2 := \{a^nb^mc^m, \text{ con } n, m \geq 1\}$. Ambos son independientes del contexto, sin embargo $\mathcal{L}_1 \cap \mathcal{L}_2 = \{a^nb^nc^n, n \geq 1\}$, que vimos en clase que no era independiente del contexto.

 $4.\ (1.5\ \mathrm{ptos})$ Dado el AFN de la figura, encontrar el DFA equivalente.

El resultado puede expresarse mediante la siguiente tabla de transiciones:

	a	b
q_0	$q_{1,2}$	q_0
$q_{1,2}$	$q_{0,2}$	$q_{1,2}$
$q_{0,2}$	$q_{0,1,2}$	$q_{0,1}$
$q_{0,1}$	$q_{1,2}$	$q_{0,1,2}$
$q_{0,1,2}$	$q_{0,1,2}$	$q_{0,1,2}$