1

以下の、ラウチの比較定理の version を認めることにする.

命題 1.1. (ラウチ比較定理の ver). M, \bar{M} を完備リーマン多様体、 $\gamma, \bar{\gamma}$ をそれぞれ $\gamma_0 = p \in M, \bar{\gamma}_0 = \bar{p} \in \bar{M}$ なる M, \bar{M} の正規測地線とする. J, \bar{J} をそれぞれ, J, \bar{J} を J_0, \bar{J}_0 でそれぞれ $\gamma, \bar{\gamma}$ に接し, $\|J_0\| = \|\bar{J}_0\|$, $\|\nabla_t J_0\| = \|\nabla_t \bar{J}_0\|$, $(\dot{\gamma}_0, \nabla_t J_0) = \langle \dot{\bar{\gamma}}_0, \nabla_t \bar{J}_0 \rangle$ をみたす $\gamma, \bar{\gamma}$ に沿ったヤコビ場とする. $t_0(p), \bar{t}_0(\bar{p})$ をそれぞれ p, \bar{p} における, $\gamma, \bar{\gamma}$ に沿った第一共役値とする. このとき, $(t_0(p) \leq \bar{t}_0(\bar{p})$ が成り立ち,)

$$||J_t|| \le ||\tilde{J}_t|| \quad (0 \le t < t_0(p))$$

が成り立つ.

注意 1.2. 一般的な用語ではない全くの造語であるが、ここで、 $p\in M$ に対して $\exp_p|_{B(o_p:r)}$ がはめ込みとなる r の上限をはめ込み半径、埋め込み(同相なはめ込み)となる r の上限を埋め込み半径と呼ぶことにする。

命題 1.3. M, \bar{M} を完備リーマン多様体, p, \bar{p} をそれぞれ M, \bar{M} の一点とする. p のはめ込み半径を r_1, \bar{p} の埋め 込み半径を r_2 とし, $r \leq \max r_1, r_2$ とする.

証明.

定義 **1.4.** $p, p_1, p_2 \in \mathbb{R}^2$ を $p = \frac{1}{2}p_1 + \frac{1}{2}p_2$ をみたす 3 点とする.

$$l_p := \left\{ tp_1 + (1-t)p_2 \in \mathbb{R}^2 \mid t \in (0,1) \right\}$$

を p を中心とする開線分という.また,単位ベクトル $\frac{p_2-p_1}{\|p_2-p_1\|}\in S^1$ をこの開線分の方向という.

問題. $f:\mathbb{R}^2 \to \mathbb{R}^2$ を C^∞ 級の写像とする. $p \in \mathbb{R}^2$ を任意の点とする. このとき, p を中心とする開線分 l_p で (条件) 任意の $q \in l_p$ に対して $\frac{f(q)}{\|f(q)\|} \in \mathbb{R}^2$ が l_p の方向と一致しない. を満たすものは存在するか.

解答.