CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2024

Admin

Lab 2 grades & feedback posted on Moodle

Outline for today

- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Introduction to probability

Outline for today

- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Introduction to probability

Goals of Evaluation

 Think about what metrics are important for the problem at hand

Compare different methods or models on the same problem

Common set of tools that other researchers/users can understand

Training and Testing

(high-level idea)

- Separate data into "train" and "test"
 - -n = num training examples
 - -m = num testing examples
- Fit (create) the model using training data
 - e.g. sea_ice_1979-2012.csv
- Evaluate the model using testing data
 - e.g. sea_ice_2013-2020.csv

Predicted class

Predicted class

Predicted class

False Positive Rate:

$$FP/(TN+FP) = FP/N$$

• Precision: of all the "flagged" examples, which ones are actually relevant (i.e. positive)?

(Purity)

 <u>Recall</u>: of all the relevant results, which ones did I actually return?

(Completeness)

- Precision?
- Recall?

- Precision = TP/(FP+TP) = 3/5
- Recall?

- Precision = TP/(FP+TP) = 3/5
- Recall = TP/(FN+TP) = 3/6

- Precision = 5/16
- Recall = 5/6

ROC curve (Receiver Operating Characteristic)

https://en.wikipedia.org/wiki/Receiver operating characteristic

ROC curve example: comparing methods

Example of a ROC curve Chan, Perrone, Spence, Jenkins, Mathieson, Song

How to get a ROC curve for probabilistic methods?

Usually we use 0.5 as a threshold for binary classification

Vary the threshold! (i.e. choose 0, 0.1, 0.2,...)

$$-P(y=1 \mid x) >= 0.2$$
 => classify as 1 (positive)

$$-P(y=1 \mid x) < 0.2$$
 => classify as 0 (negative)

Handout 8

$$TPR = 18/20 = 0.9$$

Outline for today

- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Introduction to probability

- ullet The **probability** of an **event** e has a number of epistemological interpretations
- Assuming we have **data**, we can count the number of times e occurs in the dataset to estimate the probability of e, P(e).

$$P(e) = \frac{\mathrm{count}(e)}{\mathrm{count}(\mathrm{all\ events})}.$$

• If we put all events in a bag, shake it up, and choose one at random (called **sampling**), how likely are we to get e?

- Suppose we flip a fair coin
- What is the probability of heads, P(e=H)?

- Suppose we flip a fair coin
- What is the probability of heads, P(e=H)?
- ullet We have "all" of two possibilities, $e \in \{H,T\}$.

•
$$P(e = H) = \frac{count(H)}{count(H) + count(T)}$$

- Suppose we have a fair 6-sided die.
- What's the probability of getting "1"?

- Suppose we have a fair 6-sided die.
- What's the probability of getting "1"?

$$rac{count(s)}{count(1) + count(2) + count(3) + \cdots + count(6)} = rac{1}{1 + 1 + 1 + 1 + 1 + 1} = rac{1}{6}$$

- ullet What about a die with on ly three numbers $\{1,2,3\}$, each of which appears twice?
- What's the probability of getting "1"?

- ullet What about a die with on ly three numbers $\{1,2,3\}$, each of which appears twice?
- What's the probability of getting "1"?

$$P(e=1) = rac{count(1)}{count(1) + count(2) + count(3)} = rac{2}{2 + 2 + 2} = rac{1}{3}.$$

- ullet The set of all probabilities for an event e is called a **probability distribution**
- Each coin toss is an independent event (Bernoulli trial).

• Which is greater, P(HHHHHH) or P(HHTHH)?

- Which is greater, P(HHHHHH) or P(HHTHH)?
- Since the events are independent, they're equal

Probability Axioms

- 1. Probabilities of events must be no less than 0. $P(e) \geq 0$ for all e.
- 2. The sum of all probabilities in a distribution must sum to 1. That is, $P(e_1) + P(e_2) + \ldots + P(e_n) = 1.$ Or, more succinctly,

$$\sum_{e \in E} P(e) = 1.$$

Joint Probability

The probability that two independent events e_1 and e_2 both occur is given by their product.

$$P(e_1 \wedge e_2) = P(e_1 \cap e_2) = P(e_1)P(e_2)$$
 when $e_1 \cap e_2 = \emptyset$

- Intuitively, think of every probability as a scaling factor.
- You can think of a probability as the fraction of the probability space occupied by an event e_1 .
 - \circ $P(e_1 \wedge e_2)$ is the fraction of of e_1 's probability space wherein e_2 also occurs.
 - \circ So, if $P(e_1)=rac{1}{2}$ and $P(e_2)=rac{1}{3}$, then $P(e_2,e_1)$ is a third of a half of the probability space or $rac{1}{3} imesrac{1}{2}$.

Joint Probability

Conditional Probability

- A **conditional probability** is the probability that one event occurs given that we take another for granted.
- The probability of e_2 given e_1 is $P(e_2 \mid e_1)$.
- ullet This is the probability that e_2 will occur given that we take for granted that e_1 occurs.

Conditional Probability

