Semi-Supervised Dependency Parsing with Variational Autoencoder

Wang Ge 2019/3/20

Why is Semi-Supervised Learning Necessary

- Learning a reliable dependency parser requires a large amount of labelled data, e.g. Penn Treebank (39000+ sentence for training).
- Labelling data with dependency parse trees is a challenging and laborious work. For many languages, enough labelled data are not available.
- Unsupervised methods require POS tag information, lacking robustness over different annotation criteria such as WSJ and UD

Variational Autoencoder

An elegant generative model with latent variables

 Easy to be applied to semi-supervised learning, not suitable for structured latent variable like parse tree

Recent Work Combining Semi-Supervised Parsing with VAE

Graphical Model and Computational Graph

Decoder Implementation

Model Detail

Generative Story

$$T \sim p(T|n)$$

$$\boldsymbol{z} \sim p(\boldsymbol{z}|n)$$

$$\boldsymbol{s} \sim p(\boldsymbol{s}|\boldsymbol{T},\boldsymbol{z},n)$$

Objective Function

$$\log p_{\theta}(\boldsymbol{s}) = \mathbb{E}_{q_{\phi}(\boldsymbol{T},\boldsymbol{z}|\boldsymbol{s})}[\log p_{\theta}(\boldsymbol{s}|\boldsymbol{T},\boldsymbol{z})] - \text{KL}[q_{\phi}(\boldsymbol{T},\boldsymbol{z}|\boldsymbol{s})|p(\boldsymbol{T},\boldsymbol{z})] + \text{KL}[q_{\phi}(\boldsymbol{T},\boldsymbol{z}|\boldsymbol{s})||p_{\theta}(\boldsymbol{T},\boldsymbol{z}|\boldsymbol{s})]$$

$$\log p_{\theta}(\boldsymbol{s}) \geq \mathbb{E}_{q_{\phi}(\boldsymbol{T},\boldsymbol{z}|\boldsymbol{s})}[\log p_{\theta}(\boldsymbol{s}|\boldsymbol{T},\boldsymbol{z})] - \text{KL}[q_{\phi}(\boldsymbol{T},\boldsymbol{z}|\boldsymbol{s})|p(\boldsymbol{T},\boldsymbol{z})] = \tilde{\mathcal{E}}_{\theta,\phi}(\boldsymbol{s})$$

$$\bar{\mathcal{E}}_{\theta,\phi}(\boldsymbol{s},\boldsymbol{T}) = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{s})}[\log p_{\theta}(\boldsymbol{s}|\boldsymbol{T},\boldsymbol{z})] - \mathrm{KL}[q_{\phi}(\boldsymbol{z}|\boldsymbol{s})|p(\boldsymbol{z})]$$

$$\bar{\mathcal{E}}_{\theta,\phi}(\boldsymbol{s},\boldsymbol{T}) = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{s})}[\log p_{\theta}(\boldsymbol{s}|\boldsymbol{T},\boldsymbol{z})] - \mathrm{KL}[q_{\phi}(\boldsymbol{z}|\boldsymbol{s})|p(\boldsymbol{z})]$$

Encoder and Decoder

For the encoder:

$$m{W} = ext{DepWeights}(m{s})$$
 $m{m}, \log m{v}^2 = ext{EmbParams}(m{s})$ $q_{\phi}(m{T}|m{s}) = rac{\exp(\sum_{i,j} W_{i,j} T_{i,j})}{\sum_{m{T}'} \exp(\sum_{i,j} W_{i,j} T'_{i,j})}$ $q_{\phi}(m{z}|m{s}) = \mathcal{N}(m{z}|m{m}, m{v})$

For the decoder:

$$oldsymbol{g}^i = anh\left(ext{MLP}^{\bigcirc}(oldsymbol{o}^i) + \sum_{h=0}^{i-1} T_{h,i} imes ext{MLP}^{\curvearrowright}(oldsymbol{o}^h) + \sum_{m=0}^{i-1} T_{i,m} imes ext{MLP}^{\curvearrowleft}(oldsymbol{o}^m)
ight)$$

Differentiable Perturb-and-Parse

Sampling dependency tree by perturbing weight matrix

Sampling dependency tree by perturbing weight matrix
 Replace the one-hot-argmax
 peaked-softmax

$$o_i = \mathbb{1}[\forall 1 \le j \le k, j \ne i : v_i > v_j]$$
 with $o_i = \frac{\exp(1/\tau \ v_i)}{\sum_{1 \le j \le k} \exp(1/\tau \ v_j)}$

Experiment Results

(a) Parsing results

	English	French	Swedish
Supervised	88.79 / 84.74	84.09 / 77.58	86.59 / 78.95
VAE w. z	89.39 / 85.44	84.43 / 77.89	86.92 / 80.01
VAE w/o z	89.50 / 85.48	84.69 / 78.49	86.97 / 79.80
Kipperwasser & Goldberg	89.88 / 86.49	84.30 / 77.83	86.93 / 80.12

(b) Dependency length analysis

Distance	Supervised Re / Pr	Semi-sup. Re / Pr
(to root)	93.46 / 89.30	93.84 / 92.41
1	95.61 / 94.07	95.33 / 94.57
2	93.01 / 90.88	92.50 / 92.09
36	85.95 / 88.13	87.31 / 87.93
>7	72.47 / 83.26	78.72 / 83.11

(c) Dependency label analysis

Label	Supervised	Semi-sup.	
Label	Re / Pr	Re / Pr	
mwe	75.58 / 81.25	90.70 / 84.78	
advmod	87.27 / 85.95	87.32 / 87.51	
appos	77.49 / 80.27	81.39 / 81.03	