Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado		
	Álgebra y Matemática Discreta	Previo: 30 min.		
Facultad Informática Universidad Murcia	Aritmética Modular	Clase: 20 min.		

Vídeo: https://youtu.be/PFXWULTmk44

1. Resumen

Empezaremos viendo cómo calcular las tablas de sumar y multiplicar en \mathbb{Z}_5 que vimos anteriormente.

+	0	1	2	3	4			0	1	2	3	4
0	0	1	2	3	4	-					0	
1	1	2	3	4	0		1	0	1	2	3	4
2	2	3	4	0	1		2	0	2	4	1	3
3	3	4	0	1	2		3	0	3	1	4	2
4	4	0	1	2	3		4	0	4	3	2	1

Dados dos números a y b, para calcular su suma, resta o su producto en \mathbb{Z}_5 se realiza dicha operación como números enteros ordinarios y luego se suman o se restan múltiplos de 5 hasta dejar el resultado en $\{0,1,2,3,4\}$.

Esta regla nos lleva a la definición general:

Definición 1. Sea n entero positivo y sean $a, b \in \mathbb{Z}$. Diremos que a y b son congruentes módulo n (lo escribiremos $a \equiv b \pmod{n}$, $a \equiv b \pmod{n}$ o simplemente a = b cuando estemos sobre un módulo fijo) cuando a - b sea un múltiplo de n, es decir, cuando a - b = nt para algún $t \in \mathbb{Z}$.

Denotaremos \mathbb{Z}_n al conjunto $\{0,1,2,\cdots,n-1\}$ con las operaciones definidas salvo múltiplos de n.

Proposición 2. Para cualquier entero positivo n y cualquier a en \mathbb{Z} , existe un elemento $r \in \{0, 1, \dots, n-1\}$ tal que $a \equiv r \pmod{n}$. Esto garantiza que el resultado de cualquier operación aritmética en \mathbb{Z}_n se podrá poner de nuevo en \mathbb{Z}_n eligiendo este elemento r que llamaremos reducido módulo n correspondiente a a.

Demostración. Si dividimos a entre n tenemos un cociente q y un resto r enteros. El resto será un número menor que el divisor, es decir, entre 0 y n-1, y se cumplirá la relación fundamental de que dividendo es igual a divisor por cociente más resto. Es decir,

$$a = nq + r$$

por lo tanto a-r=nq que es un múltiplo de n y por lo tanto $a\equiv r\pmod n$.

Al hacer operaciones en aritmética modular, no es necesario estar reduciendo constantemente al elemento más reducido posible. No hay ningún problema si se suman o restan múltiplos del módulo en cualquier operación intermedia. Esto permite una mayor agilidad a la hora de operar.

2. Erratas

(No detectadas)

3. Ejercicios

Conviene hacer operaciones y reducirlas módulo n para distintos módulos y distintas formas de reducir, por ejemplo, si queremos calcular módulo 5 la operación $3 \cdot 4 - 3$ podemos hacer:

$$3 \cdot 4 - 3 = 12 - 3 = 9 \equiv 4 \pmod{5}$$

o también

$$3 \cdot 4 - 3 = 12 - 3 \equiv 2 - 3 = -1 \equiv 4 \pmod{5}$$

Para practicar, utilizando varios módulos pequeños como el 2, 3 ó 5 realiza operaciones combinadas de sumas y productos haciendo las reducciones en lugares diferentes y comprobando que el resultado es el mismo.