Analysis by Dr. Susanne Weller These analyses is still preliminary! Graphs should not be used for presentations and publications!

Dr. Susanne Weller, 05/06/2014 HICF1_Objectives for publication:

Present all relevant genetic data in an association chart (-> will be done once we decide which are the important ones)
2)Built a tree model with only genetic data
- 2a) assess Missclassification error
- 2b) assess quality (variance) via bootstrapping
- 2c) built a couple of trees
3) Built a tree with only clinical data
- 3a) assess Missclassification error
- 3b) assess quality (variance) via bootstrapping
- 3c) built a couple of trees
4) Built a tree with clinical data and genetic data
- 4a) built model
- 4b) assess quality via bootstrapping
- 40) assess quality via bootstrapping
5) Final comparison

- How much did we improve forecasting of MRD+/- with genetics?

- Are there certain subgroups of patients that benefit particularly from genetic testing?

- How well do both models perform seperately?

(2) Built a tree with only our genetic data

MRD clones **CNAs** SAMHD1 1mutationONLY SAMHD1_biallelic_all TP53 mutationONLY TP53biallelic SF3B1 mutation NOTCH1 mutation trisomy12 trisomy18 trisomy19 XPO1amplificationALL XPO1mutationALL MYD88mutation MED12mutation POT1mutation X8g24amplification ZFPM2mutation Del14qi del8p X2pgain del4p X8qqain X6qMDR3 X17q11q12 X18q21p23 No alterations independent_13q. X13q_hom X13q_het X13 refinedMDR loss 4 X3_newMDR_gain X9 refinedMDR loss ATM mutation BIRC3 mutation X11q mono del X11q biallelic SAMHD1

TP53

Only our genetic findings

Missclassification error=fraction of patients that will be put in wrong group

2c) tree1: Only our genetic findings cp=0.001, endgroup=1, MissClassErr~11%

This is the best tree with only genetics, but highly specific to our data!

2c) tree2:Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

This is a fairly general reasonable tree, parameters deducted from where all error curves coerce into one point.

Please check if it makes sense in a clinical setting

This gives an overview about tree aesthetics: There are around 100 more options to costumise the tree, just give me any ideas you have, and I'll implement them!

2c) tree3: Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

All branches same length, total patient numbers displayed

2c) tree4:Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

All branches same length, group correct classification rate displayed

2c) tree5:Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

All branches same length, group correct classification rate displayed

2c) tree6:Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

Branch length proportional to fit of model, group correct classification rate displayed

2c) tree7:Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

Branch length proportional to fit of model, group correct classification rate displayed

2c) tree8:Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

All branches same length, total patient numbers displayed, individual node labelled (type1)

2c) tree9:Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

All branches same length, total patient numbers displayed, nodes labelled above split (type2)

2c) tree10:Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

2c) tree11:Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

All branches same length, missclassified patients displayed (extra=3)

2c) tree12:Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

All branches same length, correctly classified patients & total percentage in dataset displayed (extra=102)

2c) tree13:Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

All branches same length, correctly classified patients & total percentage in dataset displayed (extra=102)

2c) tree14:Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

All branches same length, total patient numbers displayed

2c) tree15:Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

All branches same length, total patient numbers displayed, 'fallen leaves'

2c) tree16:Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

All branches same length, total patient numbers displayed, 'branch=0'

2c) tree17:Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

All branches same length, total patient numbers displayed, 'branch=0.8'

2c) tree18:Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

All branches same length, total patient numbers displayed, 'xflip=TRUE'

2c) tree19:Only our genetic findings cp=0.01, endgroup=8, MissClassErr~27%

All branches same length, total patient numbers displayed, 'yflip=TRUE'

(3) Built a tree with commonly used clinical data

vhmut Binet gender **MRD** cd38 haem plat **WBC** ALC_Lym_l

Only clinical data

3c) tree20: All clinical data cp=0.01, endgroup=8, MissClassErr=23.4%

ree has quite a good Missclassification error, but does not make much sense clinic Note:vhmut=1 -> 98-100% mutated (which is good?

3c) tree21:All clinical data cp=0.01, endgroup=6, MissClassErr=21%

This tree has quite a good Missclassification error, but is quite complicated. One idea would be to use either Lymphos OR WBC and platelets OR haem (See next trees)

WBC and Lymphos are highly correlated

3c) tree22:All clinical data, using only WBC cp=0.01, endgroup=8, MissClassErr=23.9%

3c) tree23:All clinical data, using only Lymphos cp=0.01, endgroup=8, MissClassErr=24.4%

3c) tree24:All clinical data, using only Lymphos cp=0.03, endgroup=8, MissClassErr=32%

Trying to make the tree less complex results in increase in missclassification.

Note that platelets and haem are not important anymore.

3c) tree25:All clinical data, using only Lymphos and only plat cp=0.01, endgroup=8, MissClassErr=26.3%

Note that platelets don't seem to be important anymore once you take out haem.

3c) tree26:All clinical data, using only Lymphos and only haem cp=0.01, endgroup=8, MissClassErr=25.4%

lote that haem doesn't seem to be important anymore once you take out platelets.

3c) tree27:All clinical data, using only Lymphos and only plat cp=0.03, endgroup=8, MissClassErr=32%

Trying to make the tree less complex results in increase in missclassification. Note that platelets don't seem to be important anymore once you take out haem.

Question1: Is there a way to group full blood count data? Are there any common standards that are used for deciding if a blood count is abnormal? I attach an overview of how the data is distributed.

Histogram of genclinv3\$ALC_Lympho

Histogram of genclinv3\$plat

Histogram of genclinv3\$haem

(4) Built a tree with clinical and genetic data (treegenclin1)

vhmut Binet gender MRD cd38 clones CNAs SAMHD1_1mutationONLY SAMHD1 biallelic all TP53_mutationONLY TP53biallelic SF3B1_mutation NOTCH1 mutation trisomy12 trisomy18 trisomy19 XPO1amplificationALL XPO1mutationALL MYD88mutation MED12mutation POT1mutation X8q24amplification ZFPM2mutation Del14qi del8p X2pgain del4p X8qgain X6qMDR3 X17q11q12 X18q21p23 No_alterations independent_13q. X13q_hom X13q_het X13_refinedMDR_loss_4 X3_newMDR_gain X9_refinedMDR_loss ATM_mutation BIRC3_mutation X11q_mono_del X11q_biallelic SAMHD1 TP53 haem plat ALC_Lympho

All data without age, WBC and Neutrophils (treegenclin1)

Missclassification error=fraction of patients that will be put in wrong group

4c) tree 28:All data (treegenclin1) cp=0.01, endgroup=8, MissClassErr=20%

5) Comparison

How much did we improve forecasting of MRD+/- with genetics?

-> This would at the moment mean that we go from 24.4% to 20% missclassification error.

How well do both models perform seperately?

-> Both models perform quite well, but are highly dependend on which variables we decide to have in.

Are there certain subgroups of patients that benefit particularly from genetic testing?

-> Will go into more detail of this question soon...