Package 'mmease'

Type Package

Version 1.0.0

Title enhanced analytical workflow for single-cell metabolomics

Author Qingxia Yang

Maintainer Qingxia Yang <yangqx@zju.edu.cn>

Depends R (>= 4.3.3)

Imports multtest, mixOmics, e1071, adabag, C50, pROC, kknn, MASS, AUC, multiROC, caret, mlbench, dummies, randomForest, metabolomics, ropls, varSelRF, magrittr.

Description mmease provides entire analytical workflow of single-cell metabolomics. Specifically, mmease can (*a*) provide the most comprehensive workflow for enabling data processing and (*b*) realize systematical analytical functions for cellular heterogeneity.

License MIT + file LICENSE

URL https://github.com/mmease2025/mmease

RoxygenNote 7.3.2

NeedsCompilation no

LazyData true

R topics documented:

filtering	2
imputation	
ransformation	
normalization	
batch_correction	
differential	
classification	6

Index

Description

Data filtering for single-cell metabolomics data using the tolerable percentage of missing values in each metabolite.

Usage

filtering(data, percentage)

percentage of missing values must be between 0 and 1.

Arguments

data	Data frame of single-cell metabolomics, where cell name, cell
	class, cell type, and batch information are required in the first
	four columns of the input file. In the following columns, the raw
	peak intensities across all cells are further provided. Unique
	metabolite IDs or peaks are listed in the first row.
percentage	Percentage of missing values is an important parameter in single-
	cell metabolomics to assess data quality by quantifying missing
	values in data filtering.

Value

Filtered data is returned.

Examples

```
filted_data <- filtering(data, percentage = 0.2)
head(filted_data)
```

imputation

Data imputation of single-cell metabolomics data

Description

Imputation for missing values in single-cell metabolomics data.

Usage

imputation(data, method = "KNN")

Arguments

data Data frame of single-cell metabolomics.

method Imputation method for imputing missing values. The method can

be 1/5 of minimum positive value or KNN.

Value

Imputed data is returned.

Examples

```
imputed data <- imputation(data, method = "KNN")
```

head(imputed_data)

transformation

Data transformation for single-cell metabolomics data

Description

Data transformation of single-cell metabolomics data matrix.

Usage

transformation(data, method = "G-log")

Arguments

data Data frame of single-cell metabolomics.

method Data transformation method, which can be G-log, log2, or log10.

Value

Transformed data is returned.

Examples

```
transformed_data <- transformation(data, method = "G-log")
head(transformed_data)
```

normalization

Data normalization for single-cell metabolomics data

Description

Data normalization for single-cell metabolomics data

Usage

normalization(data, method = "Auto Scaling")

Arguments

data Data frame of single-cell metabolomics.

method The method for data normalization. The method can be Auto

Scaling, Mean, Median, MSTUS or SIS. If SIS is selected, the

internal standard name must be clearly specified in parameter IS.

Value

Normalized data is returned.

Examples

normalized data <- normalization(data, method = "Auto Scaling")

head(normalized data)

1 . 1	•
hatch	correction
Daten	COLLCCTION

Remove batch effects for single-cell metabolomics data

Description

Batch correction for different analytical experiments of single-cell metabolomics data

Usage

batch correction(data, method = "ComBat")

Arguments

data Data frame of single-cell metabolomics.

method The batch correction method can be ComBat or Limma.

Value

Corrected data is returned.

Examples

```
corrected_data <- batch_correction(data, method = "ComBat")</pre>
```

head(corrected_data)

differential	Identifying differential metabolites for single-cell metabolomics data
--------------	--

Description

Identifying differential metabolites for single-cell metabolomics data.

Usage

marker <- differential(data, label_col = 3, method = "t_test")

Arguments

data Data frame of single-cell metabolomics.

label_col label_col specifies the column of labels.

method The method can be t test, ANOVA, FC, PLS-DA, OPLS-DA,

RF RFE, Kruskal Wallis or symrfeFeatureRanking.

Value

Identified differential metabolites are returned.

Examples

table <- differential(data, label_col = 3, method = "t_test")

classification Constructing classification models for identified differential metabolites	classification	0		models	for	identified
---	----------------	---	--	--------	-----	------------

Description

Constructing classification models for identified differential metabolites

Usage

```
classification(data, label_col = 3, method = "AdaBoost")
classification plots(class)
```

Arguments

data Data frame of single-cell metabolomics.

label col label col specifies the column of labels.

method The method can be AdaBoost, Bagging, Decision Trees, K-

Nearest Neighbor, Naive Bayes, Linear Discriminat Analysis,

Random Forest or Support Vector Machine.

class The result of classification model.

Value

Receiver operating characteristic (ROC) curve and area under the curve (AUC) value in classification model are returned.

Examples

class <- classification(data, label_col = 3, method = "AdaBoost")
classification_plots(class)</pre>