补 A3: 常用积分

周潇翔

摘要. 列一下 A3 中证明的非平凡的积分公式供概率论临时使用。

• Gauss 积分:
$$\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$
概率论记忆法:
$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 1$$

• Dirichlet $\Re \mathcal{H}$: $\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$

• Laplace $\Re \mathcal{H}: I(\beta) := \int_0^{+\infty} \frac{\cos \beta x}{x^2 + \alpha^2} dx$ $J(\beta) := \int_0^{+\infty} \frac{x \sin \beta x}{x^2 + \alpha^2} dx$

• Fresnel 积分: $\int_0^{+\infty} \sin x^2 dx = \int_0^{+\infty} \cos x^2 dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}$

• Γ 函数: $\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin p\pi}$, $\Gamma(1/2) = \sqrt{\pi}$, $\lim_{x \to +\infty} \frac{x^a \Gamma(x)}{\Gamma(x+a)} = 1$ B 函数: $B(p,q) = \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)}$

就我个人经历,概率论中我用到的主要是 Gauss 积分、 Γ 函数与 B 函数。

School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, P.R. China,

Email address: xx352229@mail.ustc.edu.cn

数分A3期中复了补充(数项级数 &函数项级数)

一 级数的乘法

(Cauchy)
$$\stackrel{\sim}{\sum}$$
 $a_n = A$ $\stackrel{\sim}{\sum}$ $b_n = B$ 绝对 $\Rightarrow \stackrel{\sim}{\sum}$ $a_i b_j = AB$
(Mertens) $\stackrel{\sim}{\sum}$ $a_n = A$ 绝对 $\stackrel{\sim}{\sum}$ $b_n = B$ $\Rightarrow \stackrel{\sim}{\sum}$ $c_n = AB$
(Abel) $\stackrel{\sim}{\sum}$ $a_n = A$ $\stackrel{\sim}{\sum}$ $b_n = B$ $\stackrel{\sim}{\sum}$ $c_n = AB$

=. Dirichlet & & Abel

三一致收敛性质 & Dini定理

$$f_n \in C(I) \quad f_n \Rightarrow f \Rightarrow f \in C(I) \quad u_n(x) \in C(I) \quad \Sigma u_n(x) \Rightarrow S(x) \Rightarrow S(x) \in C(I)$$

$$f_n \in R([a,b]) \quad f_n \Rightarrow f \Rightarrow f \in R([a,b]) \quad u_n(x) \in R([a,b]) \quad \Sigma u_n(x) \Rightarrow S(x) \Rightarrow S(x) \in R([a,b])$$

$$f_n(x_0)$$
數數 $f_n \in C'(I) \quad f_n' \Rightarrow g \Rightarrow f \in C'(I) \quad \Sigma u_n(x_0) \Rightarrow S(x_0) \Rightarrow S(x_0) \in C'(I)$

$$\Sigma u_n(x_0) \Rightarrow S(x_0) \Rightarrow S(x_0) \Rightarrow S(x_0) \in C'(I)$$

(Dini 定理) 紧区间的性质 $f_n \in Q[a,b]) f_n \xrightarrow{\searrow} f \in Q[a,b]) \Rightarrow f_n \Rightarrow f$ $u_n(x) \in C([a,b]) \sum u_n(x) \rightarrow S(x) \in C([a,b]) \quad u_n(x) \geq 0 \implies \sum u_n(x) \Rightarrow S(x)$

四、幂级数内部边界性质

$$R = \frac{1}{\lim_{n \to \infty} \eta_{[n]}}$$
 内闭一致收敛,可以随意求导积分 (Abel第二定理) $S(R)$ 显 $a_n R^n = \lambda \lim_{n \to \infty} a_n R^n$ $i.e[o,R]$ 上一致收敛 (Tauber定理) $\lim_{n \to \infty} a_n x^n = A$ $a_n = o(\frac{1}{n}) \Rightarrow \sum_{n = \infty}^{\infty} a_n = A$

五.幂级数展形式

六、紧区间上的多项式逼近与 列紧性

後 (多项式一致逼近) $f \in d[a,b]$ 3 所以) 多项式函数列 $P_n(x) \Rightarrow f(x)$ (Arzelà-Ascoli定理) fn∈C(I) 等度连续且一致有界 I=[a,b] $\Rightarrow \exists \{f_{kn}\} f_{kn}(x) \Rightarrow f(x)$

定义
$$F[f(x)] = \int_{-\infty}^{+\infty} f(x)e^{-i\lambda x} dx$$

反变换 $f(x) = \int_{-\infty}^{+\infty} f(x)e^{-i\lambda x} dx$
 $F[F[f(x)]] = 2\pi f(-x)$

线性性 $F[c_1f_1(x)+c_2f_2(x)]=c_1F[f_1(x)]+c_2F[f_2(x)]$ 射動性 $F[f(dx)]=\frac{1}{|Q|}F[f(dx)]$ 步列物性 $F[e^{i\lambda_0x}f(x)]=F[f(x)]$ 时物性 $F[f(x-x_0)]=F[f(x)]e^{-ix_0\lambda}$

機分 $F[f(x)] = i\lambda F[f(x)]$ 程分 $F[\int_{-\infty}^{x} f(s)ds] = i F[f(x)]$ 卷积 F[f*g(x)] = F[f(x)]F[g(x)]

微分 $F^{-1}[i\lambda g(\lambda)] = (F^{-1}[g(\lambda)])'$ 积分 $F^{-1}[i\lambda g(\lambda)] = \int_{-\infty}^{\infty} F^{-1}[f(\lambda)]_{f}^{f} df$ 卷积 $F^{-1}[f(\lambda)g(\lambda)] = F^{-1}[f(\lambda)] * F^{-1}[g(\lambda)]$

代数所 e.9

+ 変点 有理分式
$$n+n+0$$
+ 変点 有理分式 $n+n+0$
- 根点 e^{2} $o+0+1$
- 根点 e^{2} $o+0+1$

× 本性奇点 e^{2} $o+0+1$

× 本性奇点 e^{2} $o+0+1$

× 本性奇点 e^{2} $e^{$

 $|f(z)-g(z)| < |f(z)| \Rightarrow Zevo|_{\gamma_h}(f) = Zevo|_{\gamma_h}(g)$ 角斜析函数局部性质 !在每一点 Taylov 展开

2. f(z)= zⁿg(z) g(o) ≠ o (n=1时:局部同胚性质) ⇒ ∃ε>o ∃δ>o s.t Ы al<δ f(z)=a在 z<ε中有 n/根 解析函数全局性质: 1. Liouville 定理:有界整函数为常值函数 2. 开映射定理 ⇒ 极大值原理