Particle spectrograph

Wave operator and propagator

								$\omega_{0^+}^{\#1}$				$f_{0+}^{#1}$ $f_{0+}^{#2}$		2	$\omega_0^{\#1}$		~										
$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)^2}$	0	$-\frac{4k^2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	$\omega_{0^{+}}^{\#1}$ $f_{0^{+}}^{\#1}$	+	_		7/ 40)			(7#1 0 7#1	$\frac{2^{i}\sqrt{2}}{\alpha_0 k}$			$\omega_{2^{+}}^{\#1} \dagger^{\alpha \beta}$ $f_{2^{+}}^{\#1} \dagger^{\alpha \beta}$	$\omega_{2}^{\#1}{}_{\alpha\beta}$ $\frac{\alpha_{0}}{4} + \beta_{1}$ $\frac{i(\alpha_{0}-4\beta_{1})}{2\sqrt{2}}$		$1 \frac{i(\alpha_0 - 4\beta_1)k}{2\sqrt{2}}$		0		
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	ω_{0}^{+1}				0 0		00 -			$\sigma_{2}^{\#1} + \alpha \beta$ $\frac{16\beta_{1}}{\alpha_{0}^{2} - 4\alpha_{0}\beta_{1}}$ $\frac{2i\sqrt{2}}{\alpha_{0}k}$		0	$\omega_2^{\#1} + \alpha \beta \chi$					$\frac{\alpha_0}{4} + \beta_1$		
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$		0	0	0	$i(\alpha_0-4\beta_1)k$	0	0	0		$\sigma_{2}^{#1} + \alpha^{\beta}$	$t_2^{*+} + \alpha \beta$	$\sigma_{2}^{*1} + \alpha \beta \chi$	enerators	$\sigma_{0}^{\#1}$	0	0		$\frac{2}{\alpha_0-4\beta_1+2\alpha_3k^2}$		
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	$\omega_{1}^{\#2}{}_{lpha}$ $f_{1}^{\#1}{}_{lpha}$	0 0	0 0	0 0	$\frac{\alpha_0 - 4\beta_1}{2\sqrt{2}} 0 -\frac{1}{2}I$	0 0 0	SO(3) irr $\tau_{0^{+}}^{\#2} == 0$	SO(3) irreps Multip				$\tau_{0}^{\#1}$ $\tau_{0}^{\#2}$	$ \begin{array}{c c} C_{0+}^{\#1} \\ \hline -i\sqrt{2} \\ \hline -i\sqrt{2} \\ \hline -1 \\ \hline 0 \\ 0 \end{array} $							
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2k^2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0	$\omega_{1}^{\#1}{}_{lpha}$ $\omega_{1}^{:}$	0	0	0	$\frac{1}{4} (\alpha_0 - 4 \beta_1) - \frac{\alpha_0}{2}$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$\frac{1}{2}i(\alpha_0-4\beta_1)k$	$\frac{\tau_1^{\#1}{}^{\alpha} = 0}{\tau_1^{\#1}{}^{\alpha\beta} + 1}$ Total co	$i k \sigma_{1}^{\#2}$:S:	10								
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$\frac{2}{(\alpha_0 - 4 \beta_1) (1 + k^2)^2}$	$\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0	$f_{\alpha\beta}^2 f_{1+\alpha\beta}^{*1}$		0 0	0 0	0 0	0 0	0 0	0 0	S ==	Quadratic (free) action $S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - \frac{1}{2} \alpha_0 (\omega_{\alpha\chi\beta} \omega^{\alpha\beta\chi} + \omega^{\alpha\beta}_{\alpha} \omega_{\beta\chi}^{\chi} + 2 f^{\alpha\beta} \partial_{\beta} \omega_{\alpha\chi}^{\chi} - 2 \partial_{\beta} \omega_{\alpha}^{\alpha\beta} - 2 f^{\alpha\beta} \partial_{\chi} \omega_{\alpha\beta}^{\chi} + 2 f^{\alpha}_{\alpha} \partial_{\chi} \omega_{\beta}^{\beta\chi}) +$										
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	10	0	0	0	0	$\omega_{1+lphaeta}^{*1}$ ω_{1+}^{*2}	$\frac{1}{4} \left(\alpha_0 - 4 \beta_1 \right) \left \frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}} \right $		* 		0	0	0	eta_1 (2 α 2 $\partial_{eta} f^{lpha_i}$ $\partial_{eta} f_{lpha_X} \delta$	$\beta_{1} \left(2 \ \omega^{\alpha\beta}_{\alpha} \ \omega^{X}_{\beta} - 4 \ \omega^{X}_{\alpha} \ \partial_{\beta} f^{\alpha\beta} + 4 \ \omega^{X}_{\beta} \ \partial^{\beta} f^{\alpha}_{\alpha} - 2 \ \partial_{\beta} f^{X}_{\lambda} \partial^{\beta} f^{\alpha}_{\alpha} - 2 \ $										
	$\sigma_{1}^{\#1} + \alpha^{\beta}$	$\sigma_1^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} +^{\alpha \beta}$	$\sigma_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$\sigma_{1}^{\#2} \dagger^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$		$\int_{1}^{\#1} + \alpha \beta$	$\int_{1}^{\#2} + \alpha \beta$	${r_1^{*1} + \alpha \beta}$	$\omega_{1}^{\#1}\dagger^{lpha}$	$\omega_{1}^{\#2} \dagger^{lpha}$	$f_{1}^{#1} \dagger^{\alpha}$	$f_{1}^{#2} \dagger^{\alpha}$		$\frac{1}{3} \alpha_3 (4 \partial_{\beta} \omega_{\alpha \chi \delta} - 2 \partial_{\beta} \omega_{\alpha \delta \chi} + 2 \partial_{\beta} \omega_{\chi \delta \alpha} - \partial_{\chi} \omega_{\alpha \beta \delta} + \partial_{\delta} \omega_{\alpha \beta \chi} - 2 \partial_{\delta} \omega_{\alpha \chi \beta})$ $\partial^{\delta} \omega^{\alpha \beta \chi})[t, x, y, z] dz dy dx dt$										

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{\alpha_3} > 0$$
Polarisations: 1
Square mass: $-\frac{\alpha_0-4\beta_1}{2\alpha_3} > 0$
Spin:
Parity: Odd

Unitarity conditions

$$\alpha_0 > 0 \&\& \alpha_3 < 0 \&\& \beta_1 < \frac{\alpha_0}{4}$$