Instrumentación I: *Mediciones de Temperatura*

Juan J. Rojas, Hugo Sanchez Ortiz

Instituto Tecnológico de Costa Rica 18 de septiembre de 2025

Definición de Temperatura

- La temperatura es una manifestación del promedio de energía cinética, ondulatoria y de traslación de las moléculas de una sustancia.
- Es una propiedad física que determina si un sistema se encuentra o no en equilibrio térmico con otros sistemas (Ley cero de la termodinámica)

Ciclo de la máquina térmica descrita por Carnot, , el calor entra al sistema a través de una temperatura inicial (aquí se muestra como T_h) y fluye a través del mismo obligando al sistema a ejercer un trabajo sobre sus alrededores, y luego pasa al medio frío, el cual tiene una temperatura final (T_r).

Escala de Temperatura

- Lo que se necesita para construir una medida de temperatura, son puntos fijos. Es decir, procesos en los cuales la temperatura es constante.
- Existen varias escalas de temperaturas:
 - Kelvin K
 - Celsius °C
 - Farenheit °F
 - Rankine R
 - Reamur Re

Escalas de Temperatura

Escala	Cero Absoluto	Fusión del hielo	Evaporación	
Kelvin	0 K	273 K	373,2K	
Rankine	0R	491,7R	671,7R	
Reamur	$-285,\!5\mathrm{Re}$	0Re	$80 \mathrm{Re}$	
Centígrada	$-273,2^{\circ}\mathrm{C}$	0°C	100° C	
Farenheit	$-459,7^{\circ}{ m F}$	$32^{\circ}\mathrm{F}$	$212,\!0^{\circ}\mathrm{F}$	

Tabla: Distintas escalas de temperatura [?]

Conversión entre escalas

Kelvin a Celsius ${}^{\circ}\mathrm{C} = \mathrm{K} - 273{,}15$	${}^{\circ}\mathrm{F} = \frac{9(\mathrm{K} - 273,15)}{5} + 32$
Farenheit a Celsius ${}^{\circ}\mathrm{C} = \frac{5({}^{\circ}\mathrm{F} - 32)}{9}$	${\rm K} = \frac{{\rm Farenheit~a~Kelvin}}{5(^{\circ}{\rm F}-32)} + 273{,}15$
Celsius a Kelvin $\mathbf{K} = {^{\circ}\mathbf{C}} + 273{,}15$	Celsius a Farenheit ${}^{\circ}\mathrm{F} = \frac{9({}^{\circ}\mathrm{C})}{5} + 32$

Tabla: Distintas escalas de temperatura [?]

Formas de medición de temperatura

Termómetros

- El termómetro es uno de los instrumentos más utilizados para la medición de temperatura.
- Se compone de dos partes importantes:
 - transductor de temperatura
 - escala numérica de conversión
- Los principios sobre los que operan estos instrumentos son conocidos desde la cultura griega.

Figura: Tipos de termómetros [?]

Termómetros de vidrio

- Contiene un depósito de vidrio que contiene una sustancia, e.g. mercurio, y que al calentarse se expande y sube en el tubo capilar.
- Márgenes de operación [?]
 - Mercurio: -35°C hasta 280°C
 - Mercurio (tubo capilar lleno de gas): -35°C hasta 450°C
 - Pentano: -200°C hasta 20°C
 - Alcohol: -110° C hasta 50° C
 - Tolueno: -70° C hasta 100° C

Tomado de aquí

Termómetros bimetálicos

- Se basan en el distinto coeficiente de dilatación de dos metales diferentes e.g.latón y una aleacción de ferroníquel.
- La diferencia en el coeficiente de expasión de cada metal hace que el elemento bimetálico se doble.
- La exactitud del instrumento es de 1 % y su campo de medida es de −200°C hasta 500°C

Tomado de aquí

$$\alpha = \frac{360}{\pi} \cdot \frac{a \cdot l}{s} \cdot (t_2 - t_1)$$

Termopares(Termocuplas)

- Se basa en el efecto Seebeck (Thomas Seebeck, 1821).
- Un termopar, se componen dos metales diferentes cuyas uniones, producen una pequeña tensión cuando la junta se calienta.
- Está tensión solo depende de las características de los materiales y la temperatura.

Leyes de los termopares

Se caracterizan por tres leyes fundamentales:

- Ley de circuito homogéneo: En un conductor metálico homogéneo no puede sostenerse la circulación de una corriente eléctrica por la aplicación exclusiva de calor.
- Ley de las temperaturas intermedias: En un termopar con las juntas de los metales A y B a las temperaturas T1 y T2 la fem termoeléctrica generada es independiente de las temperaturas intermedias en los conductores A y B.

Tomado de aquí

Leyes de los termopares

Continua...

■ Ley de los metales intermedios: Si en un termopar insertamos un segmento de conductor de un tercer metal C, en alguno de los dos conductores metálicos A ó B, la fem generada será independiente de la existencia de este tercer conductor siempre que las temperaturas de las juntas del mismo sean iguales.

Tomado de aquí

Termopares(Termocuplas)

- El diamétro de los cables varia entre 0.1 y 3mm. A menor diámetro mayor tiempo de respuesta.
- La selección de los alambres para termopares se hace de forma que tengan una resistencia eléctrica y que el aumento de f.e.m sea paralelo al aumento de temperatura.
- Existen distintos tipos de acople de temperatura.

Insulated thermocouple twisted and welded

Butt-welded thermocouple with fish-spine insulator

[?]

Tipos de termopares

Tipos de termopares

Ti- po	Material	Rango medida	Rango trabajo	Uso
•		[°C]	[°C]	
E	Cromel-Constatán	$-100 \sim 1270$	$-40 \sim 900$	Puede usarse en vacío
Т	Cobre-Constatán	$-200\sim371$	$-40\sim350$	Resiste la corrosión
J	Hierro-Constatán	$-190 \sim 760$	$-40 \sim 750$	Atmósferas inertes.
K	Cobre-Alumel	$-190\sim1260$	$-40 \sim 1000$	Atmósferas oxidantes
R	Platino-Rodio	$0 \sim 1450$	$0 \sim 1200$	Atmósferas oxidantes
S	Platino-Rodio	$0 \sim 1450$	$0 \sim 1200$	Similar a R
В	Platino-Rodio	$0 \sim 1950$	$0 \sim 1800$	Altas Temperaturas
N	Cobre-Constatán	$0 \sim 2316$	$0 \sim 2100$	Sustituto de K

Tabla: Comparación entre distintos tipos de sensores[?]

Tipos de termopares https://srdata.nist.gov/its90/download/download.html

Termopar tipo B - f.e.m. en mV (ITS-90)

°C	0	1	2	3	4	5	6	7	8	9	10
0	0.000	0.000	0.000	-0.001	-0.001	-0.001	-0.001	-0.001	-0.002	-0.002	-0.002
10	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.003	-0.003	-0.003
20	-0.003	-0.003	-0.003	-0.003	-0.003	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
30	-0.002	-0.002	-0.002	-0.002	-0.002	-0.001	-0.001	-0.001	-0.001	-0.001	0.000
40	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.002
50	0.002	0.003	0.003	0.003	0.004	0.004	0.004	0.005	0.005	0.006	0.006
60	0.006	0.007	0.007	0.008	0.008	0.009	0.009	0.010	0.010	0.011	0.011
70	0.011	0.012	0.012	0.013	0.014	0.014	0.015	0.015	0.016	0.017	0.017
80	0.017	0.018	0.019	0.020	0.020	0.021	0.022	0.022	0.023	0.024	0.025
90	0.025	0.026	0.026	0.027	0.028	0.029	0.030	0.031	0.031	0.032	0.033
100	0.033	0.034	0.035	0.036	0.037	0.038	0.039	0.040	0.041	0.042	0.043
110	0.043	0.044	0.045	0.046	0.047	0.048	0.049	0.050	0.051	0.052	0.053
120	0.053	0.055	0.056	0.057	0.058	0.059	0.060	0.062	0.063	0.064	0.065
130	0.065	0.066	0.068	0.069	0.070	0.072	0.073	0.074	0.075	0.077	0.078
140	0.078	0.079	0.081	0.082	0.084	0.085	0.086	0.088	0.089	0.091	0.092
150	0.092	0.094	0.095	0.096	0.098	0.099	0.101	0.102	0.104	0.106	0.107

Tipos de termopares

	Alloy Com	bination	Colour (Coding	Magnetic	Tolerances
CODE	+ Lead	- Lead	Thermocouple Grade	Extension Grade		Standard Limits Special Limits
J	IRON Fe (magnetic)	CONSTANTAN Cu-Ni		É :	Yes No	± 2.2°C or .75% ± 1.1°C or .40%
К	CHROMEL Ni-Cr	ALUMEL Ni-Al (magnetic)	6	F :	No Yes	± 2.2°C or .75% ± 1.1°C or .40%
т	COPPER Cu	CONSTANTAN COPPER-NICKEL Cu-Ni	*	F	No No	±1.0°C or .75% ±0.5°C or .40%
Е	CHROMEL L NICKEL-CHROMIUM NI-Cr	CONSTANTAN COPPER -NICKEL Cu-Ni		E	No No	± 1.7°C or .50% ± 1.0°C or .40%
N	NICROSIL Ni-Cr-Si	NISIL Ni-Si-Mg		E :	No No	± 2.2°C or .75% ± 1.1°C or .40%
R	PLATINUM 13% RHODIUM Pt-13% Rh	PLATINUM Pt	NONE ESTABLISHED	*	No No	± 1.5°C or .25% ± 0.6°C or .10%
s	PLATINUM 10% RHODIUM Pt-10% Rh		NONE ESTABLISHED		No No	± 1.5°C or .25% ± 0.6°C or .10%
=	COPPER Cu	COPPER LOW NICKEL Cu Ni	NONE ESTABLISHED		No No	
В	PLATINUM 30% RHODIUM Pt 30% Rh	PLATINUM 6% RHODIUM Pt 6% Rh	NONE ESTABLISHED		No No	± .50% ± .25%
G (W)	TUNGSTEN W	TUNGSTEN 26% RHENIUM VV-26% Re	NONE ESTABLISHED	6 :	No No	

Tomado de aquí

Tubos de protección

Tomado de aquí

Lectura de datos termocoupla

- El voltaje de salida es muy bajo, por lo que se requiere un sistema de acondicionamiento de la señal, para amplificar dicha señal.
- La sensibilidad es muy baja. Pero presentan una respuesta muy lineal. Además no requieren alimentación de ningún tipo.
- El sistema a de acondicionamiento selecciona en función del sensor.

[?]

Compensación de la unión fría (CJC)

- Los voltajes de referencia están referidas a una unión fría, por lo que se requiere una compensación.
- Esta compensación se puede realizar de varias maneras, incluso en software.
- Siempre es necesario integrar este tipo de integración de sistemas de adquisición de datos (recientemente se puede realizar de forma digital)

Tomado de aquí

Detector de temperatura por Resistencia (RTD)

- Estos detectores de temperatura dependen de la variación de la resistencia del material en función de la temperatura.
- El elemento consiste en un arrollamiento de hilo muy fino del conductor adecuado bobinado entre capas de material aislante y protegido con un revestimiento de vidrio o cerámica.
- Relación dada por:

$$R_T = R_0 \cdot (1 + \alpha \cdot T)$$

Tomado de aquí

Fabricación RTD

Tomado de aquí

- Hilo bobinado: el embobinado de platino es soportado por un vidrio resistente de alta temperatura dentro de un tubo de cerámica.
- Película fina:Regularmente fabricados de platino y aceros que son depositados en una membrana de silicio.

Características sondas RTD

Elemen- to	Intervalo Útil	Resistencia básica	Sensibilidad $[\Omega/^{\circ}\text{C de }0^{\circ}\text{C a }100^{\circ}\text{C}]$	Ventajas	Desventajas
Platino	−260°C a 850°C	100Ω a 0° C	0,39	Mayor intervalo, me- jor estabilidad, bue- na linealidad	Costo
Cobre	$-100^{\circ}\mathrm{C}$ a $260^{\circ}\mathrm{C}$	10Ω a 25° C	0,04	Buena linealidad	Baja resistividad
Níquel	−100°C a 260°C	100Ω а 0° С	0,62	Bajo Costo, Alta sen- sibilidad	Falta de linealidad, variaciones coefi- ciente de resistencia
Níquel- Hierro	$-100^{\circ}\mathrm{C}$ a $204^{\circ}\mathrm{C}$	604Ω a 0° C	3,13	Bajo costo, muy alta sensibilidad	Relación reducida

Tabla: Comparación entre distintos tipos de sensores[?]

Estándar de tolerancias RTD

- Los RTD son construidos bajo distintos estándares y curvas. La más común es la DIN/IEC 60751.
- Este estándar divide por clases en función de la respuesta de la resistencia del platino por temperatura.
- Clase A
 - Tolerancia de Temperatura: $\pm (0.15 + .002|T|^{\circ}$ CC)
- Clase B
 - Tolerancia de Temperatura: $\pm (0.30 + .005|T|^{\circ}CC)$
- Clase C
 - Tolerancia de Temperatura: $\pm (1,2+,005|T|^{\circ}CC)$

Algunas consideraciones RTD

- Son especiales en precisión en linealidad.
- No se requieren recalibraciones anuales, y se mantienen estables por muchos años.
- Requieren una fuente de corriente precisa.

Conexiones RTD (2 hilos)

Tomado de aquí

- Proporciona una conexión eléctrica a la salida de cada elemento.
- Solución más económica
- Requieren una fuente de corriente precisa.

Conexiones RTD (3 hilos)

- Se obtiene mayor precisión, ya que se contrarrestra el efecto del puente de *Wheatstone*
- Es la forma más utilizada en la industria.
- El cable 3 no conduce corriente.

Tomado de aquí

Conexiones RTD (4 hilos)

- Son especiales en precisión en linealidad.
- No se requieren recalibraciones anuales, y se mantienen estables por muchos años.
- Requieren una fuente de corriente precisa.

Termistores

- Es una contracción de las palabras thermal y resistor
- Este tipo de medidores son semiconductores de partículas de óxido de metal.
- Existen dos grupos: NTC (Negative Temperature Coeficient) y PTC (Positive Temperature Coeficient)

Curvas Termistores

$$R_t = R_0 e^{\beta(\frac{1}{T_1})(\frac{1}{T_2})}$$

$$\frac{1}{T} = A + B \cdot \ln R_1 + C \cdot (\ln R_1)^3$$

Tomado de aquí

Termistores

- Se les denominad *Sensor on a chip* por su tamaño reducido y facilidad para encapsular en vidrio o epoxi.
- Su tiempo de respuesta depende de la capacidad térmica y masa del termistor, variando de 0,5 a 10 segundos.
- La precisión de un termistor se encuentra entre ± 0.1 °C a ± 0.2 °C. Con un rango de -50°C a 200°C.
- Se usan para la protección contra calentamiento de PC, baterías de litio o regular contraste en un LCD.

Tomado de aquí

Medición de termistores

Tomado de aquí

- La curva de un termistor no es lineal.
- Con circuitos sencillos se puede linealizar su característica de forma deseable.
- Se requiere de una fuente de precisión y una resistencia fija de precisión también.
- La fuente puede ser de corriente también.

Pirómetros

- Este tipo de dispositivos se utiliza por medios eléctricos y sin contacto.
- Se clasifican en función del fenómeno físico:
 - Pirómetros de radiación
 - Pirómetro ópticos
 - De resistencia y termoeléctricos

Tomado de aquí

Pirómetros de radiación

■ Se fundan en la ley de Stefan-Boltzmann, que dice que la intensidad de energía radiante emitida por la superficie de un cuerpo aumenta proporcionalmente a la cuarta potencia de la temperatura absoluta (Kelvin) del cuerpo.

$$W = K \times T^4$$

■ El pirómetro dirigido sobre una superficie incandescente no nos dará su verdadera temperatura si la superficie no es perfectamente negra, es decir, que absorba absolutamente todas las radiaciones y no refleje ninguna.

Tomado de aquí

Pirómetros ópticos

Tomado de aquí

- Se basan en la comparación visual de la luminosidad del objeto radiante con el filamento de una lámpara incandescente.
- El sistema óptico del pirómetro restringe el ancho de onda de 0,65 µm a 0,66 µm (zona roja del espectro) y dispone de filtros para reducir la intensidad de la radiación recibida, permitiendo la medida de un amplio margen de temperaturas.
 - La exactitud de los pirómetros ópticos es del $\pm 1\,\%$ al $\pm 2\,\%$

Criterios de Selección

Criterios selección

- Exactitud
- Rango
- Estabilidad
- Instalación
- Costo
- Ambiente

Criterios de Selección

Tomado de aquí

Criterios de Selección

Tipo de Sensor	Exacti- tud	Rango típico	Tiempo de respuesta	Costo
Termopa- res	Ваја	-200°C a 1800°C	1 <i>s</i>	Вајо
RTD Clase A, Estándar IEC	Alta	-200°C a 800°C	1-5 <i>s</i>	Alto
Termistor NTC	Alta	-200°C a 1800°C	< 1 s	Alto
Sensores Infrarrojos	Mediana	-20°C a 1370°C	< 1 s	Вајо

Tabla: Comparación entre distintos tipos de sensores

Referencias