

Tölvunarfræði 1

Fyrirlestur 18: Endurkvæmni II

Hjálmtýr Hafsteinsson Haust 2015

Í síðasta fyrirlestri

- Endurkvæmni (recursion)
- Dæmi um endurkvæmni
 - Factorial
 - Reiknirit Evklíðs
 - Fibonacci tölur
- Eiginleikar endurkvæmni

Kafli 2.3

Í þessum fyrirlestri

- Endurkvæmni í myndum
- Gray kóðar
- Endurkvæm grafík
 - H-tré
 - Þríhyrningur Sierpinskis
 - Brotamyndir

Kafli 2.3

Endurkvæmar myndir

"Royal tryggir öruggan bakstur"

frá New Yorker tímaritinu, ágúst 2008

Droste kakó umbúðir hafa endurkvæma mynd

Endurkvæmar sögur

Dýr sem segir sögu til þess að sleppa við að verða étin. Sagan er um dýr sem segir sögu til þess að sleppa við að verða étin. ...

I MET ATRAVELER FROM AN ANTIQUE LAND WHO SAID: "I MET ATRAVELER FROM AN AN-TIQUE LAND, WHO SAID: "I MET ATRAVELER FROM AN ANTIQUE LAND, WHO SAID: "I MET...

frá xkcd.com

Endurkvæmar hreyfimyndir

Turnarnir í Hanoi

- Færa allar skífurnar frá vinstri staurnum yfir á hægri staurinn
 - Aðeins hægt að færa eina skífu í einu
 - Má aðeins setja minni skífu ofan á stærri

Endir

(Hreyfimynd)

Erfitt að sjá hvaða færslur á að gera. Endurkvæmni hjálpar!

Endurkvæm lausn

Upphafsstaða

Færa *n*-1 minnstu skífurnar til hægri

Færa stærstu skífuna til vinstri

Vefst yfir til hægri

Endurkvæmni

Endurkvæmni

Færa *n*-1 minnstu skífurnar til hægri

Lokastaða

Java kóði

Færa *n*-1 minnstu skífurnar til "hægri"

Færa stærstu skífuna til "vinstri"

Færa *n*-1 minnstu skífurnar til "hægri"

Keyrsla

- % java TowersOfHanoi 3
- 1 left
- 2 right
- 1 left
- 3 left
- 1 left
- 2 right
- 1 left

Fjöldi hreyfinga: 7

(Java Visualizer)

- % java TowersOfHanoi 4
- 1 right
- 2 left
- 1 right
- 3 right
- 1 right
- 2 left
- 1 right
- 4 left
- 1 right
- 2 left
- 1 right
- 3 right
- 1 right
- 2 left
- 1 right

Önnur hver hreyfing er færsla á minnstu skífunni

Hægt að sanna:
Fjöldi hreyfinga til að leysa Hanoi-turn með *n* skífum er 2ⁿ-1

Fjöldi hreyfinga: 15

Óendurkvæm lausn

- Með því að skoða færslurnar sem koma út úr endurkvæmu aðferðinni sést:
 - Önnur hver hreyfing er færsla á minnstu skífunni
 - Minnsta skífan færist alltaf í sömu áttina (til hægri ef n jöfn tala)
- Lausnaraðferð:
 - Gera til skiptis:
 - Færa minnstu skífuna til hægri (vinstri ef n er oddatala)
 - Gera löglega færslu sem ekki nota minnstu skífuna

Fyrirlestraræfing

- 1. Skrifið forritsbút sem setur rökbreytuna ilagi sem true ef öll stökin í fylkinu a eru á milli lo og hi, en false annars
- 2. Hvað tekur langan tíma að leysa Hanoi þrautina með 20 skífum ef hver færsla tekur 1 sek.?
- 3. Hver er næsta færsla í myndinni hér fyrir neðan?

Gray kóðar

- Leikritaskáldið Samuel Beckett samdi leikritið Quad
 - Fjórar persónur, koma og fara af sviðinu ein í einu
 - Hvert hlutmengi persóna er aðeins á sviðinu nákvæmlega einu sinni
- Hvernig eiga leikararnir að koma inn og fara út af sviðinu?
 - Getum ekki notað venjulega bitaröð
 - Á eftir 0111 kemur 1000 of miklar breytingar

code	subset	move
0000	empty	
0001	1	enter 1
0011	2 1	enter 2
0010	2	exit 1
0110	3 2	enter 3
0111	3 2 1	enter 1
0101	3 1	exit 2
0100	3	exit 1
1100	4 3	enter 4
1101	4 3 1	enter 1
1111	4 3 2 1	enter 2
1110	4 3 2	exit 1
1010	4 2	exit 3
1011	4 2 1	enter 1
1001	4 1	exit 2
1000	4	exit 1

Gray kóðar

- n-bita Gray kóði er röð n-bita strengja
 - Hver strengur er aðeins frábrugðinn forvera sínum í nákvæmlega einum bita
- Skilgreindur af Frank Gray, Bell Labs árið 1947
- Notkun:

HÁSKÓLI ÍSLANDS

- Upphafleg: Til að aðeins einn rofi þyrfti að breytast í hvert sinn
- Núna: Í villukóðun og leiðréttingu gagna í sendingum
- Núna: Í gagnasendingum á milli mismunandi klukkutíðna

Að búa til Gray kóða

- Notum endurkvæmni til að búa til Gray kóða
- n-bita Gray kóði:
 - Fyrst kemur (n-1)-bita kóði með 0 fyrir framan
 - Síðan kemur (n-1)-bita kóði í öfugri röð með 1 fyrir framan
- Grunntilfellið:
 - 0-bita Gray kóði er tómi strengurinn
 - Þá er 1-bita Gray kóði: 0 og svo 1

2-, 3-, and 4-bit Gray codes

Java forrit fyrir Gray kóða

(Java Visualizer)

```
public class GrayCode {
  public static void yarg(String prefix, int n) {
      if (n == 0) StdOut.println(prefix);
      else {
         gray(prefix + "1", n - 1);
         yarg(prefix + "0", n - 1);
   }
  public static void gray(String prefix, int n) {
      if (n == 0) StdOut.println(prefix);
      else {
         gray(prefix + "0", n - 1);
         yarg(prefix + "1", n - 1);
   }
  public static void main(String[] args) {
      int N = Integer.parseInt(args[0]);
      gray("", N);
```

Fallið yarg (pre,n) býr til n-bita viðsnúinn Gray kóða með pre fyrir framan og prentar hann út

Fallið gray (pre,n) býr til n-bita Gray kóða með pre fyrir framan og prentar hann út

Áhugaverð endurkvæmni með tveimur föllum, sem skiptast á

Java kóði fyrir Quad

Forrit til að skrifa út hvenær leikararnir eiga að fara á sviðið og af sviðinu

Mjög svipað forritinu fyrir Turnana í Hanoi

```
% java Beckett 3
enter 1
enter 2
exit 1
enter 3
enter 1
exit 2
exit 1
```


Gray kóðar og ofurteningar

110

 Hægt að setja Gray kóða fram sem ferðalag um ofurtening (hypercube)

Hver lína (stika) breytir einum bita í kóðanum

111

1111

Endurkvæm teikning

- Flestar brotamyndir (fractals) eru búnar til endurkvæmt
- Skoðum H-tré (H-tree)
- Notkun:
 - Senda tímamerki til allra punkta í rökrás. Jafnlangir vírar til allra
 - Skipulag örbylgjuloftneta
 - Leggja út tvíundartré

H-tré

- H-tré af stigi n:
 - Teikna eitt H
 - Teikna 4 (n-1)-stigs H-tré, sem hvert er tengt við einn enda H-sins

H-tré í Java

```
public class Htree {
   public static void draw(int n, double sz, double x, double y) {
       if (n == 0) return;
      double x0 = x - sz/2, x1 = x + sz/2;
      double y0 = y - sz/2, y1 = y + sz/2;
                                                         Teikna H-ið með miðju í (x, y)
       StdDraw.line(x0, y, x1, y);
       StdDraw.line(x0, y0, x0, y1);
       StdDraw.line(x1, y0, x1, y1);
                                                        Endurkvæmt teikna fjögur H af
                                                        hálfri stærð með miðjur í endum
      draw(n-1, sz/2, x0, y0);
                                                              upphaflega H-sins
      draw(n-1, sz/2, x0, y1);
      draw(n-1, sz/2, x1, y0);
      draw(n-1, sz/2, x1, y1);
                                                                         \bullet (x_1, y_1)
                                                                  (x, y)
   public static void main(String[] args) {
       int n = Integer.parseInt(args[0]);
      draw(n, .5, .5, .5);
                                                                         \bullet (x_1, y_0)
                         Fyrsta H-ið er með miðju í (0.5, 0.5) og af stærð 0.5
```


Samantekt

- Hvernig á að skrifa endurkvæm forrit?
 - Muna eftir grunntilviki, endurkvæmt skref
 - Rekja keyrslu endurkvæmra forrita
 - Teikna upp framkvæmd
- Af hverju að læra endurkvæmni?
 - Ný leið til að hugsa um lausn verkefna
 - Mikilvægt verkfæri fyrir forritara

Aðferðafræðin Deila-og-drottna (*Divide-and-conquer*) byggir á endurkvæmri hugsun, þó lausnirnar verði ekki endilega endurkvæmar

Fyrirlestraræfing

- 4. Í Gray kóðum breytist aðeins einn biti milli hliðstæðra strengja. Hversu margir bitar geta breyst á milli hliðstæðra strengja í venjulegum 8-bita tvíundarkóða?
- 5. Hvaða strengur kemur næst á eftir 11010 í 5-bita Gray kóða?
- 6. Útskýrið hvernig hægt væri að teikna einskonar endurkvæmt snjókorn á svipaðan hátt og H-tré eru teiknuð (Þá er + í stað H)

Samantekt

Kafli 2.3

- Í þessum tíma:
 - Fleiri endurkvæm föll
 - Endurkvæm grafík
- Í næsta tíma:
 - Sýnidæmi: Síun (percolation) Kafli 2.4
 - Stórt forrit fyrir alvöru verkefni

