CSC 226

Algorithms and Data Structures: II
Planar Graphs
Tianming Wei
twei@uvic.ca
ECS 466

Planar Graphs

Graphs

- **Definition** A *simple undirected graph* G = (V, E), consists of a finite, nonempty set of *vertices*, V, and $E \subseteq V \times V$, where for each $u, v \in V$, with $u \neq v$, there is at most one edge $\{u, v\} \in E$.
- **Definition** For each $v \in V$, the *degree of* v, denoted deg(v), is the number of edges in G incident upon v.
- Theorem If G=(V,E) is a graph with n vertices and m edges then,

$$\sum_{v \in V} \deg(v) = 2m$$

• **Proof** – Every edge contributes to the degree of exactly 2 distinct vertices.

Complete Graphs

• **Definition** – Let V be a set of n vertices. The complete graph on V, denoted K_n , is a simple undirected graph such that for all $u, v \in V$, where $u \neq v$, there is an edge $\{u, v\}$.

• Examples – Draw K_n for n=1,2,3,4, and 5.

Bipartite Graphs

• **Definition** – A graph G = (V, E) is **bipartite** if $V = V_1 \cup V_2$ with $V_1 \cap V_2 = \emptyset$ and for every edge $\{u, v\} \in E$, then $u \in V_1$ and $v \in V_2$.

Complete Bipartite Graphs

• **Definition** – Let G = (V, E) be a bipartite graph with $V = V_1 \cup V_2$ such that $|V_1| = m$ and $|V_2| = n$. Then, G is **complete bipartite**, denoted $K_{m,n}$, if for each $u \in V_1$ and $v \in V_2$, there exists an edge $\{u, v\} \in E$.

Examples

 $K_{3,3}$

Planar Graphs

- **Definition** A graph G = (V, E) is called **planar** if G can be drawn in the plane with its edges intersecting only at vertices of G.
- Also called an embedding of G in the plane.

Planar Graphs?

• Examples – Look at K_1 to K_5 . Which are planar?

• Examples – Look at $K_{m,n}$ for m,n=1,2,3. Which are planar?

• $K_{2,3}$:

Nonplanar Graphs

• K_5 and $K_{3,3}$ are not planar.

Subgraphs and Isomorphisms

- **Definition** A graph $H = (V_H, E_H)$ is a **subgraph** of $G = (V_G, E_G)$ if and only if $V_H \subseteq V_G$ and $E_H \subseteq E_G$.
- **Definition** Two graphs G_1 and G_2 are *isomorphic* if there exists a one-to-one function f from G_1 to G_2 such that $\{u, v\} \in E_1$ if and only if $\{f(u), f(v)\} \in E_2$.

Elementary Subdivisions and Homeomorphisms

• **Definition** – An *elementary subdivision* of a graph G = (V, E) is obtained by repeated operations of removing an edge $\{u, v\}$ from G and adding two new edges $\{u, w\}$ and $\{w, v\}$ such that $w \notin V$.

• **Definition** – Two graphs G_1 and G_2 are homeomorphic if they are isomorphic or they can both be obtained from the same graph H by a sequence of elementary subdivisions.

Kuratowski's Theorem

• Theorem – A graph is *nonplanar* if and only if it contains a *subgraph* that is *homeomorphic* to K_5 or $K_{3,3}$.

Euler's Formula

• **Theorem** – Let G = (V, E) be a connected planar graph with |V| = n and |E| = m. Let r be the number of regions (faces) determined by the embedding of G in the plane (including the unbounded face). Then,

$$n-m+r=2$$

• **Proof** – By induction on m, the number of edges, where m=n-1 is the base case.

• Ex:

$$n = 5$$
 $m = 7$
 $r = 4$

Corollaries to Euler's Formula

- Corollary Let G = (V, E) be a planar graph with |V| = n, |E| = m > 2, and r faces. Then, $3r \le 2m$ and $m \le 3n 6$.
- **Ex** Show that K_5 is not planar.
- Corollary Let G=(V,E) be a planar graph with |V|=n>2, |E|=m, and r faces. If all the cycles in G have length ≥ 4 , then $4r\leq 2m$ and $m\leq 2n-4$.
- **Ex** Show that $K_{3,3}$ is not planar.
- Corollary Let G = (V, E) be a planar graph, then G has a vertex of degree at most 5. That is, there exists a $v \in V$ such that $\deg(v) \leq 5$.

Linear time algorithms for embedding:

Hopcroft & Tarjan, '74

Booth and Lueker, '76

Boyer & Myrvold, '01

OPEN: Find a really simple O(n) or maybe O(n log n) algorithm.

Graph Colouring Problem

- Definition A colouring of a graph G assigns a colour to each vertex (or edge, or face, etc.) of G, with the restriction that two adjacent vertices never have the same colour.
 - Can 2-colour a graph using DFS or BFS if 2-colourable.

• **Definition** – The *chromatic number* of G, $\chi(G)$, is the minimum number of colours needed to colour G.

Basic Theorems

- **Theorem** The chromatic number of K_n is n.
- **Theorem** The chromatic number of $K_{m,n}$ is 2.

• Theorem – If all $v \in V$ of graph G = (V, E) have degree $\leq D$, then G can be coloured with D+1 colours.

P versus NP

- **P** = Set of problems solvable in deterministic polynomial time.
- **NP** = Set of problems that are solvable in nondeterministic polynomial time.
 - i.e. Verifiable in deterministic polynomial time
- NP-Hard = Set of problems, H, such that for every $C \in NP$, C can be reduced to H in polynomial time.
- NP-Complete = Set of problems that are NP-Hard and are verifiable in polynomial time.
 - i.e. Intersection of NP and NP-Hard.

Computing Colours

- Unfortunately, in general, graph colouring problems require exponential time to solve.
 - Either calculating a chromatic number or determining if a graph is k-colourable for some k.
- Most versions of these questions are either NPcomplete or NP-Hard.
- But, Planar graphs are much easier to colour.

The Four-Colour Theorem

- According to the four-color-theorem of Appel and Haken the chromatic number of a planar graph is at most 4.
- This bound cannot be improved.
- Proof is quite complicated.
- Actually, depends on a program to exhaustively search multiple cases
 - Originally 1,936 cases (1976)
- Much simpler proof 6-Colour Planar Graphs
 - Planar graphs have at least one vertex with degree < 6
 - If all $v \in V$ have degree $\leq D$, then G can be coloured with D+1 colours.