

AI1/AI&ML - k-Nearest Neighbours

Dr Leonardo Stella

Aims of the Session

This session aims to help you:

Explain the steps of k-Nearest Neighbours

 Apply k-Nearest Neighbours to problems involving numeric, ordinal and categorical input attributes

Use evaluation procedures to estimate the performance of a predictor

Overview

- Introduction
- k-Nearest Neighbours
- k-NN algorithm and pros/cons
- Evaluation Procedures

Introduction

- Linear regression (as well as neural networks)
 - Uses the training data to estimate a fixed set of parameters w
 - Defines our hypothesis $h_w(x)$, thus making the training data useless
- A learning model that summarises data with a set of parameters of fixed size is called parametric model

Introduction

- Linear regression (as well as neural networks)
 - Uses the training data to estimate a fixed set of parameters w
 - Defines our hypothesis $h_{\mathbf{w}}(\mathbf{x})$, thus making the training data useless
- A learning model that summarises data with a set of parameters of fixed size is called parametric model

- In this lecture, we will be using the following notation:
 - Variables are denoted by lowercase letters, e.g., x or y
 - Vectors are denoted by letters in bold, e.g., x

Nonparametric Models

- A nonparametric model is a model that cannot be characterised by a bounded set of parameters
 - For instance, suppose that each prediction we make will consider all training examples, including the one from the previous prediction(s)
 - The set of examples grows over time, thus nonparametric

Nonparametric Models

- A nonparametric model is a model that cannot be characterised by a bounded set of parameters
 - For instance, suppose that each prediction we make will consider all training examples, including the one from the previous prediction(s)
 - The set of examples grows over time, thus nonparametric
- This approach is also called instance- or memory-based learning
 - The simplest method for instance-based learning is table lookup
 - For table lookup, we put all training examples in a table, and when looking for a value, we return the corresponding value
 - Problem: if the value does not exist, then a default value is returned

Nonparametric Models

- We can improve on table lookup with a slight variation:
 - Given a query x_q , find the k examples that are *nearest* to x_q
- This variation is called k-Nearest Neighbours (or k-Nearest Neighbors)

Also, we can use the abbreviation k-NN

- The notation $NN(k, x_q)$ denotes the set of k nearest neighbours

Overview

- Introduction
- k-Nearest Neighbours
- k-NN algorithm and pros/cons
- Evaluation Procedures

k-Nearest Neighbours (k-NN or KNN)

- Consider the following two-dimensional problem
 - Two classes: green or red $(y \in \{g,r\})$
 - New example (blue) to classify (majority vote)

Image: taken from Ashraf *et al.*, "A Review of Intrusion Detection Systems Using Machine and Deep Learning in Internet of Things: Challenges, Solutions and Future Directions", *Electronics*, vol. 9, no. 7,2020.

k-Nearest Neighbours (k-NN or KNN)

- Consider the following two-dimensional problem
 - Two classes: green or red $(y \in \{g,r\})$
 - New example (blue) to classify (majority vote)
 - Look at the k nearest neighbours
 - Let k = 3, to avoid issues
 - We want to predict the class of the new example

Image: taken from Ashraf *et al.*, "A Review of Intrusion Detection Systems Using Machine and Deep Learning in Internet of Things: Challenges, Solutions and Future Directions", *Electronics*, vol. 9, no. 7,2020.

k-Nearest Neighbours (k-NN or KNN)

- Consider the following two-dimensional problem
 - Two classes: green or red $(y \in \{g,r\})$
 - New example (blue) to classify (majority vote)
 - Look at the k nearest neighbours
 - Let k = 3, to avoid issues
 - We want to predict the class of the new example
 - In this case, we predict green
 - Intuitively, a distance metric on the input space

Image: taken from Ashraf *et al.*, "A Review of Intrusion Detection Systems Using Machine and Deep Learning in Internet of Things: Challenges, Solutions and Future Directions", *Electronics*, vol. 9, no. 7,2020.

Distance Metrics

- lacktriangle Consider a problem with n dimensions, $oldsymbol{x}^{(q)}$ being the new example
- The Minkowski distance (or L^p norm) is defined as

$$L^{p}(\mathbf{x}^{(q)}, \mathbf{x}^{(i)}) = \sqrt[p]{\sum_{j=1}^{n} |x_{j}^{(q)} - x_{j}^{(i)}|^{p}}$$

Distance Metrics

- With p=1, the previous distance reduces to the **Manhattan distance**
- With Boolean attribute values, the so-called Hamming distance is used
- In general, the **Euclidean distance** is used, namely, when p=2

$$L^{2}(\mathbf{x}^{(q)}, \mathbf{x}^{(i)}) = \sqrt[2]{\sum_{j=1}^{n} (x_{j}^{(q)} - x_{j}^{(i)})^{2}}$$

- Let us consider a problem with 2 dimensions (green and red), $\mathbf{x}^{(4)} = [0.1, 0.6]$ being the new example and the following training examples are given: $\mathbf{x}^{(1)} = [0.4, 0.2] \in \{green\}, \mathbf{x}^{(2)} = [0.4, 0.1] \in \{green\}, \mathbf{x}^{(3)} = [0.2, 0.6] \in \{red\}$
- Let us use the Euclidean distance to predict the class of $x^{(4)}$, with k = 1

$$L^{2}(x^{(4)}, x^{(1)}) = \sqrt[2]{\sum_{j=1}^{n} (x_{j}^{(4)} - x_{j}^{(1)})^{2}} =$$

- Let us consider a problem with 2 dimensions (green and red), $\boldsymbol{x}^{(4)} = [0.1, 0.6]$ being the new example and the following training examples are given: $\boldsymbol{x}^{(1)} = [0.4, 0.2] \in \{green\}, \, \boldsymbol{x}^{(2)} = [0.4, 0.1] \in \{green\}, \, \boldsymbol{x}^{(3)} = [0.2, 0.6] \in \{red\}$
- Let us use the Euclidean distance to predict the class of $x^{(4)}$, with k = 1

$$L^{2}(\boldsymbol{x}^{(4)}, \boldsymbol{x}^{(1)}) = \sqrt[2]{\sum_{j=1}^{n} (x_{j}^{(4)} - x_{j}^{(1)})^{2}} = \sqrt{(x_{1}^{(4)} - x_{1}^{(1)})^{2} + (x_{2}^{(4)} - x_{2}^{(1)})^{2}}$$

- Let us consider a problem with 2 dimensions (green and red), $\boldsymbol{x}^{(4)} = [0.1, 0.6]$ being the new example and the following training examples are given: $\boldsymbol{x}^{(1)} = [0.4, 0.2] \in \{green\}, \, \boldsymbol{x}^{(2)} = [0.4, 0.1] \in \{green\}, \, \boldsymbol{x}^{(3)} = [0.2, 0.6] \in \{red\}$
- Let us use the Euclidean distance to predict the class of $oldsymbol{x}^{(4)}$, with k = 1

$$L^{2}(\mathbf{x}^{(4)}, \mathbf{x}^{(1)}) = \sum_{j=1}^{2} (x_{j}^{(4)} - x_{j}^{(1)})^{2} = \sqrt{(x_{1}^{(4)} - x_{1}^{(1)})^{2} + (x_{2}^{(4)} - x_{2}^{(1)})^{2}}$$
$$= \sqrt{(0.1 - 0.4)^{2} + (0.6 - 0.2)^{2}} = \sqrt{0.09 + 0.16} = 0.5$$

We repeat the process for all the points:

$$L^{2}(\mathbf{x}^{(4)}, \mathbf{x}^{(1)}) = 0.5$$

 $L^{2}(\mathbf{x}^{(4)}, \mathbf{x}^{(2)}) =$
 $L^{2}(\mathbf{x}^{(4)}, \mathbf{x}^{(3)}) =$

We repeat the process for all the points:

$$L^{2}(\mathbf{x}^{(4)}, \mathbf{x}^{(1)}) = 0.5$$

 $L^{2}(\mathbf{x}^{(4)}, \mathbf{x}^{(2)}) = 0.583$
 $L^{2}(\mathbf{x}^{(4)}, \mathbf{x}^{(3)}) = 0.1$

We repeat the process for all the points:

$$L^{2}(\mathbf{x}^{(4)}, \mathbf{x}^{(1)}) = 0.5$$

 $L^{2}(\mathbf{x}^{(4)}, \mathbf{x}^{(2)}) = 0.583$
 $L^{2}(\mathbf{x}^{(4)}, \mathbf{x}^{(3)}) = 0.1$

We repeat the process for all the points:

$$L^{2}(\mathbf{x}^{(4)}, \mathbf{x}^{(1)}) = 0.5$$

$$L^{2}(\mathbf{x}^{(4)}, \mathbf{x}^{(2)}) = 0.583$$

$$L^{2}(\mathbf{x}^{(4)}, \mathbf{x}^{(3)}) = 0.1$$

What happens if k = 2? What if k = 3?

Overview

- Introduction
- k-Nearest Neighbours
- k-NN algorithm and pros/cons
- Evaluation Procedures

k-NN Algorithm

Input: training examples $x^{(i)} \in x$ and their corresponding class $y^{(i)}$, a new query example $x^{(q)}$, number of neighbours k

Output: prediction of the new query example $x^{(q)}$

For each training example $x^{(i)} \in x$

Calculate the distance between the training example $x^{(i)}$ and the new query example $x^{(q)}$

Keep the best k distances (the shortest distance) in a data structure T

Return the majority (or plurality in case of non-binary classification) vote (or average/median) of the class $y^{(i)}$ for the first k entries of T

k-NN for Regression Problems

- Consider the following two-dimensional problem
 - Let us consider examples that take a value between 1 and 5 $(y \in [1, 5])$
 - Each example has a value in y, e.g., 3.2 or 4.1

k-NN for Regression Problems

- Consider the following two-dimensional problem
 - Let us consider examples that take a value between 1 and 5 ($y \in [1, 5]$)
 - Each example has a value in y, e.g., 3.2 or 4.1
 - We calculate the distances between the new query example and all the other examples in the training set
 - Look at the k nearest neighbours
 - We predict the value of the new example
 - In this case, we predict the average or median of the values of the k nearest neighbours

■ Let us consider a problem with 2 dimensions (green and red), $x^{(4)} = [0.1, 0.6]$ being the new example and the following training examples are given: $x^{(1)} = [0.4, 0.2] \in \{3.6\}$, $x^{(2)} = [0.4, 0.1] \in \{3.9\}$, $x^{(3)} = [0.2, 0.6] \in \{2.2\}$

• Let k = 2. We know the distances from the previous example:

$$L^{2}(\mathbf{x}^{(4)}, \mathbf{x}^{(1)}) = 0.5$$

 $L^{2}(\mathbf{x}^{(4)}, \mathbf{x}^{(2)}) = 0.583$
 $L^{2}(\mathbf{x}^{(4)}, \mathbf{x}^{(3)}) = 0.1$

■ Let us consider a problem with 2 dimensions (green and red), $x^{(4)} = [0.1, 0.6]$ being the new example and the following training examples are given: $x^{(1)} = [0.4, 0.2] \in \{3.6\}$, $x^{(2)} = [0.4, 0.1] \in \{3.9\}$, $x^{(3)} = [0.2, 0.6] \in \{2.2\}$

• Let k = 2. We know the distances from the previous example:

• The average is: $y^{(4)} = 2.9$

Problem with Numeric Independent Variables

Different numeric attributes may have different scales

• For example, if x_1 is in [0,1] and x_2 is in [1, 10], x_2 will affect the distance more

Problem with Numeric Independent Variables

 To avoid this problem, we normalise the numeric input attributes of all data as in the following

$$normalise\left(x_{j}^{(i)}\right) = \frac{x_{j}^{(i)} - \min_{j}}{\max_{j} - \min_{j}}$$

• Another approach is to calculate mean μ_j and standard deviation σ_j for each dimension j as: $(x_i^{(i)} - \mu_i)/\sigma_i$

• Consider examples with two dimensions, where x_1 represents the age of a patient and and x_2 represents their weight, $y \in \{yes, no\}$

• Let us calculate the normalised values for $x^{(1)}$:

Days	x_1	x_2	y
$x^{(1)}$	14	70	yes
$x^{(2)}$	12	90	no
$x^{(3)}$	15	66	yes

Consider examples with two dimensions, where x_1 represents the age of a patient and and x_2 represents their weight, $y \in \{yes, no\}$

Let us calculate the normalised values for $x^{(1)}$:

■ normalise
$$(x_1^{(1)}) = \frac{x_1^{(1)} - \min}{\max_1 - \min_1} =$$

■ normalise $(x_2^{(1)}) = \frac{x_2^{(1)} - \min_1}{\max_2 - \min_2} =$

•
$$normalise\left(x_2^{(1)}\right) = \frac{x_2^{(1)} - \min}{\max_2 - \min_2} =$$

Days	x_1	x_2	y
$x^{(1)}$	14	70	yes
$x^{(2)}$	12	90	no
$x^{(3)}$	15	66	yes

- Consider examples with two dimensions, where x_1 represents the age of a patient and and x_2 represents their weight, $y \in \{yes, no\}$
- Let us calculate the normalised values for $x^{(1)}$:

$$normalise \left(x_1^{(1)}\right) = \frac{x_1^{(1)} - \min}{\max_1 - \min_1} = \frac{14 - 12}{15 - 12} = 0.667$$

$$normalise \left(x_2^{(1)}\right) = \frac{x_2^{(1)} - \min_1}{\max_2 - \min_2} = \frac{70 - 66}{90 - 66} = 0.167$$

• normalise
$$\left(x_2^{(1)}\right) = \frac{x_2^{(1)} - \min}{\max_2 - \min} = \frac{70 - 66}{90 - 66} = 0.167$$

Days	x_1	x_2	y
$x^{(1)}$	14	70	yes
$x^{(2)}$	12	90	no
$x^{(3)}$	15	66	yes

k-NN Algorithm with Normalisation

Input: training examples $x^{(i)} \in x$ and their corresponding class $y^{(i)}$, a new query example $x^{(q)}$, number of neighbours k

Output: prediction of the new query example $x^{(q)}$

For each training example $x^{(i)} \in x$

Calculate the normalised distance between the training example $x^{(i)}$ and the new query example $x^{(q)}$

Keep the best k distances (the shortest distance) in a data structure T

Return the majority (or plurality in case of non-binary classification) vote (or average/median) of the class $y^{(i)}$ for the first k entries of T

Different Input Attributes

- For numeric input attributes, e.g., age in [0, 100], we calculate the distance as shown in previous examples
- For ordinal input attributes, e.g., sunny in {yes, no}, we can convert the values to numeric values: yes = 1, no = 0
- For categorical input attributes, e.g., phone_brand in {samsung, apple, nokia}, we can use the following approach:
 - If the value of the query example is the same as the value for example i, then their difference is 0. Formally, if $\left(x_i^{(q)}=x_i^{(i)}\right)$, then $\left(x_i^{(q)}-x_i^{(i)}\right)=0$
 - Otherwise, their difference is 1. Formally, if $\left(x_j^{(q)} \neq x_j^{(i)}\right)$, then $\left(x_j^{(q)} x_j^{(i)}\right) = 1$

Summary

k-NN Learning Algorithm

- The algorithm does not have proper training
- We simply store all training data, which increase over time
- We normalise by calculating the minimum and maximum in the training data

k-NN Model

All training data, the values of the numeric input attributes

k-NN prediction for an instance $(x^{(q)}, y =?)$

- Find the k nearest neighbours whose distance to $x^{(i)}$ is the smallest
- For classification problems, majority vote. For regression problems, average/median

Pros and Cons of k-NN

Pros

- Training is simple and fast: just store training data
- Find the class of the new example based on most similar examples present in the training data

Cons

- It uses large space in memory: we need to store all data
- Running the algorithm can be slow if we have many training examples and many dimensions

Complexity

 Given a set of N examples and a query example, we calculate the distance to the query example from each one and keep the best k

Complexity

 Given a set of N examples and a query example, we calculate the distance to the query example from each one and keep the best k

• The above runs in O(N) with a (sequential) table

 However, these methods are designed for large datasets. Therefore, better data structure are desirable

Complexity

 Given a set of N examples and a query example, we calculate the distance to the query example from each one and keep the best k

- The above runs in O(N) with a (sequential) table
- However, these methods are designed for large datasets. Therefore, better data structure are desirable

• A binary tree runs in $O(\log N)$, whereas a hash table runs in O(1)

Discussion

Nonparametric methods are still subject to under- and overfitting

Discussion

- Nonparametric methods are still subject to under- and overfitting
- In the above case, 1-NN is overfitting as it reacts too much to the black outlier in the upper right and the white at (5.4, 3.7)
- The 5-NN decision boundary is good; higher k would underfit

Overview

- Introduction
- k-Nearest Neighbours
- k-NN algorithm and pros/cons
- Evaluation Procedures

Evaluation Procedures

- A supervised learning method consists of 3 main elements:
 - Model, namely, the form of function we want to learn (with free parameters)
 - Cost function, namely, the misfit between a particular function from the model (provided a training set)
 - Training algorithm, namely, gradient descent minimisation of cost function

Running the training algorithm on training data learns the "best" values
of the free parameters, yielding a predictor

Evaluation of Predictor before Deployment

 We use evaluation procedures to determine how good our model is. In other words, we want to estimate the future performance of a predictor

- To do so, we randomly split the available annotated data into:
 - A **training set** to estimate all the free parameters
 - A test set to evaluate the trained predictor before deployment

Training set

Test set

Choosing the Model

- Hyperparameters are "higher-level" free parameters
- Each hyperparameter value corresponds to a different model
- Which model? We need a criterion to estimate future performance

Evaluating Models for Model Choice

Do not confuse this with evaluating a predictor (model already chosen)

The <u>training set</u> is used for training within a chosen model

The <u>test set</u> is used to evaluate the performance of the trained predictor

- None of the above can be used to choose the model!
 - If we are tempted to use the test set, we no longer have an independent dataset to evaluate the final predictor before deployment

Evaluating Models for Model Choice

 Idea: to choose between models or hyperparameters, take a subset of the training set and create a validation set

- Methods
 - Holdout validation
 - Cross-validation
 - Leave-one-out validation

Method 1: Holdout Validation

- 1. Randomly choose 30% of data to form a validation set
- 2. Keep the rest in the training set
- 3. Train your model on the training set
- 4. Estimate the test performance on the validation set
- 5. Choose model with lowest validation error
- 6. Re-train with chosen model on joined training and validation to obtain predictor
- 7. Estimate future performance on test set
- 8. Ready to deploy predictor

Example: Holdout Validation

Model 1
Mean Squared Validation Error = 2.4

Model 2
Mean Squared Validation Error = 0.9

Model 3
Mean Squared Validation Error = 2.2

Example: Holdout Validation

Method 1: Holdout Validation, Step 4

4. Estimate the test performance on the validation set

- Different approaches for <u>regression</u> and for <u>classification</u>:
 - <u>In regression</u>, we compute the cost function (mean square error) on the examples of the validation set (instead of the training set)
 - In classification, we compute the 0-1 error metric on validation set, i.e.,

$$\frac{\text{# wrong predictions}}{\text{# predictions}} = 1 - Accuracy$$

Method 2: k-Fold Cross-Validation

- Randomly split the training set into k disjoint sets of equal size (k=3 in this example)
- 2. Use the k-1 of those together for training
- 3. Use the remaining one for validation
- 4. Permute the k sets and repeat k times
- 5. Average the performance on the k validation sets

Test set

Validation set

Validation set

Training set

Randomly split the dataset into k=3 partitions

Randomly split the dataset into k=3 partitions

Blue partition: train on all the data <u>except</u> the blue partition. Compute the validation error using the data in the blue partition

Randomly split the dataset into k=3 partitions

Blue partition: train on all the data <u>except</u> the blue partition. Compute the validation error using the data in the blue partition

Green partition: train on all the data <u>except</u> the green partition. Compute the validation error using the data in the green partition

Randomly split the dataset into k=3 partitions

Blue partition: train on all the data <u>except</u> the blue partition. Compute the validation error using the data in the blue partition

Green partition: train on all the data <u>except</u> the green partition. Compute the validation error using the data in the green partition

Purple partition: train on all the data <u>except</u> the purple partition. Compute the validation error using the data in the purple partition

Take the mean of these errors

Method 3: Leave-One-Out Validation

- We leave out a single example for validation, and train on all the remaining annotated data
- For a total of *N* examples, we repeat this process *N* times, each time leaving out a single example
- Take the <u>average of the validation errors</u> as measured on the left-out examples

Method 3: Leave-One-Out Validation

- We leave out a single example for validation, and train on all the remaining annotated data
- For a total of *N* examples, we repeat this process *N* times, each time leaving out a single example
- Take the <u>average of the validation errors</u> as measured on the left-out examples

Same as N-fold cross-validation where N is the number of labelled examples

Advantages and Disadvantages

	Advantages	Disadvantages	
Holdout validation	Computationally cheapest	Most unreliable if sample size is not large enough	Large sample
3-fold	Slightly more reliable than holdout	 Wastes 1/3-rd annotated data. Computationally 3-times as expensive as holdout 	
10-fold	Only wastes 10%Fairly reliable	 Wastes 10% annotated data Computationally 10-times as expensive as holdout 	
Leave- one-out	Doesn't waste data	Computationally most expensive	↓ Small sample

Aims of the Session

You should now be able to:

Explain the steps of k-Nearest Neighbours

 Apply k-Nearest Neighbours to problems involving numeric, ordinal and categorical input attributes

Use evaluation procedures to estimate the performance of a predictor

References

- Russell, A. S., and Norvig, P. (2010), Artificial Intelligence A Modern Approach, 3rd Edition. Prentice Hall.
 - Chapter 18 Learning from Examples (Section 18.8 up to 18.8.1, Section 18.8.4)