

Overview

01 Introduction

03 Evaluation

02 Approach

04 Insight

Introduction

Telecom Churning ML Project							
Target Industry Telecom							
Target Metric	Customer Churn Rate						
Goal	Analyze historical customer data Predict whether a customer is likely to leave the service						
Dataset	Customer Account Data Subscription Details User Behavior Target Variable (Churn)						
	https://www.kaggle.com/datasets/mnassrib/telecom-churn-datasets						

Approach: EDA (2)

- No missing values or duplicate records
- Most variables follow a normal distribution
- Features have different scales
- Class imbalance: majority are non-churned customers
- Multicollinearity exists (e.g., minutes & charges)
- Higher service usage & charges increase churn probability
- · Geographic location (State) significantly impacts churn
- Outliers retained as they reflect valid behavior

Evaluation Best Strategy for handling

imbalance-Class Weights

Unbalanced Dataset

Reflects the real-world scenario

Class-Weighted

Pay more attention to 'churn'

Balanced Dataset (SMOTE) Changes the data distribution bu

Model Accuracy Precision DecisionTree 0.946027

XGBoost

RandomForest

DecisionTree

RandomForest

Unbalanced Dataset Results:

LogisticRegression 3 **XGBoost**

2

3

2

3

2

1

0.854573

0.962519

0.943028

0.910045

0.934033

0.866567

Unbalanced Dataset (Class-Weighted Models) Results: Model Accuracy Precision

0.921348

0.932988

0.911989

0.883909

0.730295

0.944564 0.946027

0.934978 0.934033

0.842035 0.866567

0.961916 0.962519

0.940876 0.943028

0.910045

0.935532

0.916042

0.868066

0.833751 0.812594

0.854573

Recall F1 Score ROC AUC

0.927063

0.835073

0.787561

0.940862

0.914029

0.933581

0.913286

0.943086 0.913583

0.939085

0.823259

0.927202

0.944583 0.894574

LogisticRegression

Balanced Dataset (SMOTE) Results:

XGBoost

RandomForest

LogisticRegression

DecisionTree

0.785607

Model Accuracy Precision

0.935532

0.916042

0.868066

0.812594

0.866687

0.785607 0.811100 0.831868

0.874322 0.824941

0.821768 0.810020

0.923214

Recall F1 Score ROC AUC 0.917544

Evaluation

Best Model-XGBoost

Highest Recall & F1

Critical for identifying churners accurately.

Strong ROC AUC

Excellent at distinguishing churners vs. non-churners.

Consistent

PerformanceMaintains top performance on both class-weighted and SMOTE datasets.

Unbalanced Dataset Results: Model Accuracy Precision

DecisionTree

XGBoost

RandomForest

DecisionTree

XGBoost

RandomForest

DecisionTree

LogisticRegression

	Model	Accuracy	Precision	Recall	F1 Score	ROC AUC		
Unbalanced Dataset (Class-Weighted Models) Results:								
3	XGBoost	0.854573	0.730295	0.854573	0.787561	0.927202		
0	LogisticRegression	0.866567	0.842035	0.866567	0.835073	0.823259		
2	RandomForest	0.934033	0.934978	0.934033	0.927063	0.939085		

0.944564 0.946027

0.961916 0.962519

0.940876 0.943028

0.921348 0.910045

3

2

1

3

2

LogisticRegression

0.785607

0.962519

0.943028

0.910045

0.935532

0.916042

0.868066

0.812594

0.946027

Balanced Dataset (SMOTE) Results:

Model Accuracy Precision

0.866687

0.932988

0.911989

0.883909

0.833751 0.812594

0.935532

0.916042

0.868066

0.785607

Recall F1 Score ROC AUC

0.933581

0.913286

0.940862

0.914029

Recall F1 Score ROC AUC

0.943086 0.913583

0.961192 0.939935

0.811100 0.831868

0.821768 0.810020

0.944583

0.894574

0.917544

0.923214 0.874322 0.824941

Evaluation

ROC Curve

The larger the area under the curve (AUC), the more effectively the model can distinguish churners from non-churners.

Logistic Regression

- 0.83

Decision Tree

- 0.95

Random Forest

- 0.94

XGBoost

- 0.95

Evaluation

Logistic Regression

- False Positives (FP): 119
- False Negatives (FN): 24

Decision Tree

- False Positives (FP): 42
- False Negatives (FN): 18

RandomForest:

- False Positives (FP): 11
- False Negatives (FN): 27

XGBoost:

- False Positives (FP): 5
- False Negatives (FN): 20

Insight SHAP Feature Importance

Monthly Charge

- Personalized Pricing Plans
- Loyalty Discounts
- Bundled Services

International Plan

- Discounts
- Seasonal Promotions

Customer Service Calls

- Early Intervention
- Improve Self-Service Channels

Insight Test Case

```
ample_customer = {
   'Account length': 120,
   'State': 'OH',
   'Area code': 415,
   'International plan': 'No',
   'Voice mail plan': 'Yes',
   'Number vmail messages': 30,
   'Total day minutes': 250.0,
   'Total day calls': 105,
   'Total day charge': 38.0,
   'Total eve minutes': 160.0,
   'Total eve calls': 100,
   'Total eve charge': 22.0,
   'Total night minutes': 220.0,
   'Total night calls': 95,
   'Total night charge': 10.0,
   'Total intl minutes': 8.0.
   'Total intl calls': 2,
   'Total intl charge': 2.0,
   'Customer service calls': 1
```


Churn Probability

Predicted churn probability for the sample customer

Customer Segment

High-Risk

Conclusion

Objective: Predict customer churn in the telecom industry

Model Performance: Among the tested models, XGBoost has the best performance, demonstrating its effectiveness in handling class imbalance and complex relationships

Feature Importance: The most influential predictors of churn are Monthly Charge,

International Plan, and Customer Service Calls , highlighting the impact of usage patterns and

Customer Segmentation: Customers are divided into low-risk, medium-risk, and high-risk categories based on churn probability, allowing for tailored intervention strategies.

Business Value

customer dissatisfaction.

