

Function Approximation Methods

Reinforcement Learning

December 1, 2022

Function Approximation

- Approximate the state- or action-value function by a parametrized function
- The objective (or loss function) is to minimize the mean square error between the value function and its approximation

$$\overline{VE}(\mathbf{w}) = \sum_{s \in \mathcal{S}} \mu(s) [v_{\pi}(s) - \hat{v}(s, \mathbf{w})]^2$$

Stochastic gradient descent

Assume that in each step we observe a state s and its (true) value under the policy.

We can use stochastic gradient-descend (SGD) by adjusting the weights vector to minimize the error in the observed examples

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla [v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t)]^2$$
$$= \mathbf{w}_t + \alpha [v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t)] \nabla \hat{v}(S_t, \mathbf{w}_t)$$

TD(0) Prediction

```
Semi-gradient TD(0) for estimating \hat{v} \approx v_{\pi}
Input:
   a policy \pi
   a differentiable function \hat{v}: \mathbb{S} \times \mathbb{R}^d \to \mathbb{R} with parameters w
   (\hat{v}(\text{terminal},\cdot)) \text{ must be } 0)
   a step size parameter \alpha > 0
Initialize:
   w arbitrarily
Loop for each episode)
   Initialize S
   Loop for each step of the episode:
       A \leftarrow \text{action given by } \pi \text{ for } S
       Take action A, observe R, S'
      \mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})] \nabla \hat{v}(S, \mathbf{w})
       S \leftarrow S'
   until S is terminal
```

Semi-gradient Sarsa for estimating $\hat{q} \approx q_*$

```
Input:
```

a differentiable function $\hat{q}: \mathbb{S} \times A \times \mathbb{R}^d \to \mathbb{R}$ with parameters **w** a step size parameter $\alpha > 0$, small $\epsilon > 0$

Initialize:

w arbitrarily

Loop for each episode)

Initialize S

Choose A as a function of $\hat{q}(S, ., \mathbf{w})$ (e.g., ϵ -greedy)

Loop for each step of the episode:

Take action A, observe R, S'

If S' is terminal:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha [R - \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w})$$

Go to next episode

Choose A' as a function of $\hat{q}(S', ., \mathbf{w})$ (e.g., ϵ -greedy)

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{q}(S', A', \mathbf{w}) - \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w})$$

$$S \leftarrow S'$$

$$A \leftarrow A'$$

Deep Q-Learning

Deep Q-Learning uses a deep Q network (DQN), that estimates the action value function

- Uses experience replay
- Updates the action-values iteratively towards target
- Target values are only updated periodically

$$J(\mathbf{w}_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[(r + \gamma \max_{a} Q(s', a', \mathbf{w}_i^-) - Q(s, a, \mathbf{w}_i)^2 \right]$$

Deep Q-Learning: Network Configuration

Deep Q-Learning with experience replay

Initialize:

the replay memory D to capacity N action-value function Q with random weights \mathbf{w} target action-value function \hat{Q} with weights $\mathbf{w}^- = \mathbf{w}$ Loop for each episode:

Initialize S_1

For every step t = 1, T in the episode:

Choose A_t as a function of $Q(S_t, ., \mathbf{w})$ (e.g., ϵ -greedy)

Take action A_t , observe R_t, S_{t+1}

Store transition (S_t, A_t, R_r, S_{t+1}) in D

Sample a random minibatch of transitions (S_j, A_j, R_j, S_{j+1}) from D

$$y_{j} = \begin{cases} R_{j} & \text{if } S_{j+1} \text{ is terminal} \\ R_{j} + \gamma \max_{A'} \hat{Q}(S_{j+1}, A', \mathbf{w}^{-}) & \text{otherwise} \end{cases}$$

Perform a gradient step on $(y_j - Q(S_j, A_j, \mathbf{w}))^2$ with respect to \mathbf{w}

Every C steps reset $\hat{Q} = Q$