Projekt II

Patrycja Lewczuk

29 maja 2022

Dane:

grupa:	1	2	3	4
1	14.5	1.4	14.8	6.75
2	11.4	8.5	4.1	16.74
3	8.8	10.5	11.3	3.94
4	12.3	13.2	8.5	8.76
5	12.4	9.2	6.0	14.22
6	7.7	13.4	6.1	9.72
7	6.9	7.0	9.1	10.81
8	16.2	12.1	6.7	11.39
9	12.1	14.7	10.5	11.65
10	4.1	11.0	7.3	10.29
11	15.4	6.9	13.5	5.63
12	9.6	8.9	11.0	7.02
13	7.1		7.2	11.58
14	14		10.8	12.72
15				6.85

Hipoteza zerowa: H_0 : Średnia wartość obserwowanej cechy ilościowej nie różni się w różnych grupach.

Hipoteza alternatywna: H_A : Średnia wartość obserwowanej cechy ilościowej różnią się w grupach.

1. Statystyki opisowe.

grupa:	1	2	3	4
mediana:	11.75	9.85	8.8	10.29
kwartyl 1.:	7.975	8.125	6.825	6.935
kwartyl 3.:	13.6	12.375	10.950	11.615
w. minimalna:	4.1	1.4	4.1	3.94
w. maksymalna:	16.2	14.7	14.8	16.74
średnia:	10.893	9.733	9.064	9.871
wariancja:	13.06379	13.21515	9.362473	11.79137

Wykresy pudełkowe:

Patrząc na długość wąsów, można zauważyć, że wszystkie grupy posiadają skrajne dane górne i dolne. Informują też o rozproszeniu danych; przyjmują bardziej różniące się wartości. Możemy zauważyć stanowczą asymetrię w 2 i 4 grupie. W 3 grupie natomiast symetryczny kształt. Również w 1 można byłoby zauważyć symetryczność, jednak widać, że mediana nie leży na środku i dolny wąs jest dłuższy, zatem jest asymetryczny.

2. Tabela jednoczynnikowej analizy wariancji.

źródło zmienności	liczba stopni	suma kwadratów	średnia kwadratów	wartość
	swobody			statystyki F
między grupami	3	23.92	7.9744	0.6756
wewnątrz grup	51	601.99	11.8037	
razem	54	625.91		

Wartość statystyki F wynosi zatem 0.6756. Dla poziomu istotności $\alpha = 0.05$ wartość krytyczna statystyki F wynosi $F_{0.05}(3,51) = 0.0714$. Zatem nie mamy podstaw do odrzuceja hipotezy zerowej H_0 .

3. Testy post hoc:

Ponieważ średnie w poszczególnych grupach nie są sobie równe, wykonujemy test Tukey'a

	diff	lwr	upr	p adj
2-1	-1.1595238	-4.749051	2.430003	0.8263249
3-1	-1.8285714	-5.277277	1.620134	0.5001847
4-1	-1.0215238	-4.412264	2.369217	0.8540332
3-2	-0.6690476	-4.258575	2.920479	0.9598454
4-2	0.1380000	-3.395872	3.671872	0.9995952
4-3	0.8070476	-2.583693	4.197788	0.9212020

Wartości p-value (ostatnia kolumna) dla każdej możliwej pary grup są większe od 0.05, zatem różnica między dowolnymi dwiema grupami nie jest znacząca na poziomie istnotności $\alpha=0.05$.

95% family-wise confidence level

4. Założenia ANOVA

W teście ANOVA przyjmujemy dwa istotne założenia:

1. rozkład wyników w każdej grupie ma rozkład zbliżony do normalnego. Patrząc na wykres Q-Q plot możemy stwierdzić, że to założenie jest spełnione.

Normal Q-Q Plot

2. wariancje w grupach są jednorodne. Aby to sprawdzić wykonujemy test Bartelett'a: Bartlett's K-squared = 0.45074, df = 3, p-value = 0.9296. p-value jest duże zatem nie mamy podstaw, aby nie twierdzić, że wariancje są jednorodne.

Założenia są spełnione zatem nie mamy potrzeby, aby brac pod uwagę konsekwencji ich naruszenia.

Wniosek:

Na poziomie istotności $\alpha = 0.05$ nie mamy podstaw, aby odrzucić hipotezę zerową H_0 .