Announcements

- -HW#3 du Tues
- Virtual O Hours tonight 2 5:30 pm (+ HWI review)

Today:

- O. Review
- 1. Rushdown automata: automata w/nemon?
- 2. PDAs recognize the context-free languages
 2.1 CFG-> Rushdown actornation (CFLs).
 2.2 PDA-> CFG. (stated w/o proof.)

Context - Free Regular Languages. Languages (DFAs) (NFAs) (Regex)

Grammar reminder:

Procedure: exchange single variables for new strings of variables and terminals until we get a terminal string.

$$V = \{S,A,B\}$$

$$S = \{1, 2, +, =\}$$

$$R = \{S \rightarrow 1A2\}$$

$$A \rightarrow 1A1 \mid B$$

$$B \rightarrow +1 = 3$$

$$A \rightarrow 1A12 \Rightarrow 11B12 \Rightarrow 11+1=12$$

 $5 \Rightarrow 1A2 \Rightarrow 11A12 \Rightarrow 11B12 \Rightarrow 11+1=12$

eguivalently:

"how do I choose a rule"? All chieces are OK.

$$S \rightarrow OAO \qquad | B1 \qquad | SS$$

$$A \rightarrow AA \qquad | 1B \qquad | B1 \qquad |$$

1. Pashdown Acitomata: Acitomata w/memory!

Program for recognizing strings in A:

balance = 0

while (next char 0):

balance += 1

while (next char 1):

balance -= 1

if balance == 0: YES // DFA/NFA can't Smulak this - we can't Store 'balance' in ausp fixed finite # of states

Solin: Give our actomorton access to a stack memory.

DFA/NFA:

internal

state

input

Each step of computation: (PDA)
(1) read in an input char (or E) (2) pop something off the top of stack (or E) (3) more to a new state (4) push something onto the stack.
Informal state diagram for 30 1 n = 03:
(read in E) (pop E) (pop E) - push a 0 onto the stack. - push a 1 - read in a 1 - pep off a 0 (push nothing)
(read nothing) (82) pap of a O (push nothing) (push nothing)
(As before, we accept if at least one branch of computation is at the accept state after reading in all input.)
We can see only our current state, the west input symbol, and what pops of the stack. Which branch? On 00011:
On 000111, a stack trace: [] X push [] [] (Why \$ is impartant)

Break: back at 2:40

DA Puzzles. - Follow $a,b \rightarrow c$ if we can read a and pop b (specify $Z = \{0,1\}$) - accept if some branch accepts after reading in all input.

(1) PDA state diagram that pushes all input on stack, then accepts.

(Recall: $a,b \rightarrow c = "read a, pop b, push c"$ $a, E \rightarrow a = "read a, pop nothing, push a or stack")$ PDA Puzzles. (2) PDA that pushes all input onto the stack pops all injud off the stack. then accepts. (3) PDA for C= { wwR | w∈ {0,13*3 (++) A PDA for D= {acbick li=j, OR j=k, for (i,j, k ≥03, on Z = {a, b, c}. - like "E-fraus" in NFA (1)Muly won't this accept ? E,E → examples: 01100110

011001	1-04	On E, 5	
Def (PDA, Formal.) A 6-tuple (Q, Z, Q is a set of states, Z is the input alphabet,	Rushdown Au T, go, F, S), where:	
T is the stack alphabet, go is the start state, F is the set of accept so and 8: Q × 2	ates/	$\rightarrow \mathbb{P}(\mathbb{Q} \times$	
	(new state, this	ng to push)."	what if we did Qx[E] "DPDA" Sipser 2.4
$PDA P = Q, Z, \Gamma, g_0, F, S$ $Q = 3g_0, g_1, g_2, g_3$ $Z = 70, 13$ $\Gamma = 70, 1, 3	$): \qquad \overbrace{0, \varepsilon \rightarrow 1}^{\circ}$ $\delta \left(g_{\circ}, \varepsilon, \varepsilon \right)$	(g_2) (g_3) (g_3) (g_4) (g_4) (g_4) (g_4) (g_4) (g_4) (g_4) (g_4) (g_4)	
$F = \{g_2, g_3\}$	all other input	$(g_3, 1)$	<u> </u>

Our PDA accepts an input $\omega = \omega_1 \omega_2 \cdots \omega_n$, with each $\omega_i \in \mathbb{Z}_s$ if then is a sequence of states Fo, F, ... In EQ, and a sequence of strings So, S,,... Sn E M* such that: (1) ro=go, so=E, and meF, (2) for $i = 0, 1, 2, \dots, n-1$ S(ri, witz, a) > (ritz, b) where Si=at and Si+1 bt for a, b $\in \Gamma_{\epsilon}$ and $t \in \Gamma_{\epsilon}^{*}$ Break: Back of 3:33

Theorem: PDAs recognize exactly the CFLs.

Lemma 1. Any PDA => Equivalent CFG. (Sipser pp. 121-124)

Lemma 2. Any CFG => Equivalent PDA. (Siper Lemma 2.21)

-sketch below.

Idea: CFG => PDA.

PDA will nondeforministically guess all derivations of the input string.

Some branch will accept <-> input string has a Regitimate derivation in fluis CFG.

 $G: S \longrightarrow aTb \mid b$ $T \longrightarrow Ta \mid E$

Estart

Push \$ Posh 5

All rules in G:

1 actually

 $E, S \rightarrow b$ $E, S \rightarrow b$ $E, S \rightarrow b$ $E, T \rightarrow Ta$ $E, T \rightarrow E$ (in reverse)

And thing roles: $E, E \rightarrow a$ $E, E \rightarrow a$

Video: LR #6: Pushdoan Automata.