by A is called a ring of finite character. K and let A be of finite character then the ring determined Definition S. Let A be a family of valuations of a field

Krull type if it has a defining family of valuations consisto Griffin, a ring R of finite character is called a ring of equal to $R_{\mathbf{v}}$ we call \mathbf{v} an essential valuation. And according is called the centre of v on R. If the localization $R_{\mathrm{Z}(v)}$ is the maximal ideal of R_V , then the prime ideal $R \cap M_V = \Sigma(V)$ ations, let $R_{\mathbf{v}}$ be a valuation ring of $\mathbf{v} \in \Omega$, and let $M_{\mathbf{v}}$ be Now let R be a ring determined by a family A of valu-

Equivalently we can define a ring of Krull type as ting of essential valuations only.

Krull type if, there exists a family of prime ideals Definition 3. An integral domain R is said to be a ring of

(1) Rp is a valuation domain for each $\alpha \in I$ To take I such that he lose so seems of the seems of the

only a finite number of members of $\{P_{\alpha} \stackrel{\xi}{\sim} I$ (2) every non zero non unit element of R is contained in

assumed to be such that Pa, Pare incomparable w.r.t. of a ring of Krull type. The family | P | Ger I can be We shall adopt Definition 3, as the standard definition

so Rp n Rp = Rp i.e. P can be dropped from the family. inclusion for each $\alpha \neq \beta \in I$ Because if $P_{\alpha} \subset P_{\beta}$; $R_{P_{\alpha}} \cap R_{P_{\alpha}}$ and

In other words we can assume that { P_{α} } consists of the exist we can replace the elements of C by P = U.Q , 3 e C. since the unions and intersections of all the elements of C in [Pa] i.e.P C P or P C P for each pair P, P E C then Moreover if there exists a chain of prime ideals { Par'} = C