$\mathbf{ULB} \\ \mathbf{2018/2019}$

MATHF3001 - Théorie de la mesure

Assistant : Robson Nascimento Titulaire : Céline Esser

LISTE 3 – MESURE DE LEBESGUE

Exercice 1. Soient $\mathcal{B}(\mathbb{R})$ la σ -algèbre de Borel sur \mathbb{R} et m la mesure de Lebesgue sur $\mathcal{B}(\mathbb{R})$.

- a) Montrer que pour tout $x \in \mathbb{R}$ l'ensemble $\{x\}$ est un borélien et que $m(\{x\}) = 0$.
- b) Montrer que \mathbb{Q} est un ensemble de Borel et que $m(\mathbb{Q}) = 0$.
- c) Montrer qu'une union non dénombrable d'ensembles négligeables n'est pas forcément un ensemble négligeable.
- d) Montrer que $N \in \mathcal{B}(\mathbb{R})$ est un ensemble négligeable si, et seulement si, pour tout $\varepsilon > 0$ il existe un ouvert U_{ε} tel que $N \subset U_{\varepsilon}$ et $m(U_{\varepsilon}) < \varepsilon$.

Exercice 2. Soit E une droite dans \mathbb{R}^2 . Montrer que la mesure de Lebesgue de E est nulle.

Suggestion : Etudier ce qui se passe sur un segment de E. Ensuite, considérer un recouvrement de E par une réunion de rectangles dont la mesure est arbitrairement petite.

Exercice 3. Soient $\mathcal{B}(\mathbb{R}^n)$ la σ -algèbre de Borel sur \mathbb{R}^n et m la mesure de Lebesgue sur $\mathcal{B}(\mathbb{R}^n)$. Pour $B \in \mathcal{B}(\mathbb{R}^n)$ et $\lambda > 0$, définissons

$$\lambda B = {\lambda b = (\lambda b_1, \dots, \lambda b_n) : b = (b_1, \dots, b_n) \in B}.$$

a) Montrer que $\lambda B \in \mathcal{B}(\mathbb{R}^n)$, pour tout $B \in \mathcal{B}(\mathbb{R}^n)$ et $\lambda > 0$.

Suggestion : Considérer $\mathcal{B}_{\lambda} = \{ B \in \mathcal{B}(\mathbb{R}^n) : \lambda B \in \mathcal{B}(\mathbb{R}^n) \}.$

b) Montrer que $m(\lambda B) = \lambda^n m(B)$.

Suggestion : Considérer ν sur $\mathcal{B}(\mathbb{R}^n)$ définie par $\nu(B) = m(\lambda B)$.

Exercice 4 (Vrai ou Faux). Justifier les affirmations suivantes :

- a) Si $E \subset \mathbb{R}^n$ est négligeable, alors sa fermeture \overline{E} est aussi négligeable.
- b) Il existe un ensemble non mesurable sur \mathbb{R}^n tel que son complémentaire ait la mesure extérieure de Lebesgue nulle.
- c) Ils existent des ensembles non mesurables dont l'union est mesurable.
- d) Si $A \subset \mathbb{R}^n$ satisfait $m(\text{int}(A)) = m(\overline{A})$, alors A est mesurable.