ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ И ЕГО ОБОБЩЕНИЯ

- 1. Определение определенного интеграла, его геометрический и механический смысл, основные свойства
- 2. Методы вычисления определенного интеграла. Формула Ньютона-Лейбница
- 3. Геометрические и физические приложения определенного интеграла
- 4. Несобственные интегралы
- 5. Двойной интеграл
- 6. Криволинейный интеграл первого рода (по длине дуги)

1. Определение определенного интеграла, его геометрический и механический смысл, основные свойства

Пусть на отрезке [a,b] определена некоторая функция f(x), $x \in [a,b]$. Осуществим n-pазбиениe промежутка [a;b] на n частей точками $x_0, x_1, ..., x_n$: $a = x_0 < x_1 < \cdots < x_{i-1} < x_i < x_{i+1} < \cdots < x_n = b$. Обозначим через $\Delta x_i = x_i - x_{i-1}$ длину i-го промежутка, наибольшую из этих длин d_n назовем **диаметром разбиения**: $d_n = \max_{1 \le i \le n} \Delta x_i$. На каждом из частичных промежутков $[x_{i-1}, x_i]$ выберем произвольно точку ξ_i : $\xi_i \in [x_{i-1}, x_i]$, и составим **интегральную сумму**:

$$\sigma_n = \sum_{i=1}^n f(\xi_i) \Delta x_i.$$

Если существует конечный предел $\lim_{d_n\to +0} \sigma_n$ интегральных сумм σ_n , когда диаметр разбиения d_n стремится к нулю, и этот предел не зависит ни от выбора разбиения, ни от выбора точек ξ_i на частичных промежутках, то этот предел называется определенным интегралом (ОИ) от функции f(x) по промежутку [a,b] и обозначается $\int_a^b f(x) dx$, при этом функция f(x) называется интегрируемой на отрезке [a,b].

Таким образом,
$$\int_{a}^{b} f(x) dx = \lim_{d_n \to +0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i;$$

здесь f(x) – подынтегральная функция, f(x)dx – подынтегральное выражение, x – переменная интегрирования, a – нижний, b – верхний пределы интегрирования.

Рассмотрим на плоскости *Оху* фигуру – *криволинейную трапецию* T_f , ограниченную снизу осью Ox, сверху – графиком неотрицательной функции $y = f(x), x \in [a,b], a < b,$ и с боков – прямыми x = aи x = b. (см. рис. 1).

Рис. 1. Геометрический смысл определенного интеграла.

Геометрический смысл ОИ: интеграл по промежутку от неотрицательной на этом промежутке функции равен площади соответствующей криволинейной трапеции:

$$\int_{a}^{b} f(x)dx = S_{\kappa p.mp.T_f}$$

 $\begin{bmatrix} \int\limits_a^b f(x) dx = S_{\kappa p.mp.T_f} \\ . \end{bmatrix}.$ Механический смысл ОИ: если $f(x) = \rho(x)$ — плотность (линейная) в точке x неоднородного стержня [a,b], то интеграл от плотности по промежутку [a,b] выражает **массу** $m_{[a,b]}$ стержня [a,b]:

$$\int_{a}^{b} \rho(x) dx = m_{[a,b]}.$$

Свойства определенного интеграла

Из определения ОИ вытекает необходимое условие интегрируемости: если функция интегрируема по промежутку, то она ограничена на этом промежутке.

Достаточное условие интегрируемости: если функция непрерывна на промежутке (отрезке), то она интегрируема по этому промежутку.

В дальнейшем будем считать рассматриваемые функции интегрируемыми на соответствующих промежутках. Тогда имеют места следующие свойства ОИ:

1.Интеграл от единичной функции выражает длину отрезка [a,b]:

$$\int_{a}^{b} dx = b - a.$$

2. По определению полагают

$$\int_{a}^{a} f(x)dx = 0,$$

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx.$$

3. Линейность:

$$\int_{a}^{b} C \cdot f(x) dx = C \cdot \int_{a}^{b} f(x) dx, C - \text{const}$$

(постоянную можно выносить за знак интеграла);

$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

(интеграл от суммы (разности) интегрируемых функций равен сумме (разности) интегралов от этих функций).

4. *Аддитивность*: интеграл по промежутку $[a,b] = [a,c] \cup [c,b]$ равен сумме интегралов по составляющим промежуткам:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$
5. *Монотонность*: если $f(x) \ge g(x)$ для всех $x \in [a,b]$ и $a < b$, то

 $\int_{0}^{b} f(x)dx \ge \int_{0}^{b} g(x)dx$, в частности, для непрерывной на [a,b] функции f имеет место **теорема об оценках**:

$$m_*(b-a) \le \int_a^b f(x) dx \le m^*(b-a),$$
 где $m_* = \min_{x \in [a,b]} f(x), \ m^* = \max_{x \in [a,b]} f(x).$ 5. **Теорема о среднем**. Если функция f непре

5. **Теорема о среднем**. Если функция f непрерывна на [a,b], то найдется точка $c \in (a,b)$ такая, что $\int_{a}^{b} f(x)dx = f(c)(b-a)$ и $f(c) = \frac{1}{b-a} \int_a^b f(x) dx$ — *среднее значение* функции f на промежутке [a,b].

 Γ еометрический смысл теоремы о среднем: в случае неотрицательной на [a,b] функции f найдется точка $c \in (a,b)$ такая, что площадь соответствующей криволинейной трапеции равна площади прямоугольника с основанием b-a и высотой f(c) (см. рис. 2).

Рис. 2. Геометрический смысл теоремы о среднем.

Пусть функция f(x) интегрируема на [a;b] и для каждого $x \in [a;b]$ рассмотрим интеграл $\int_a^x f(t)dt = \Phi(x) - \pmb{\phi}$ ункцию переменного верхнего предела. Если f(x) интегрируема, то $\Phi(x)$ непрерывна.

Теорема о дифференцировании определенного интеграла по переменному верхнему пределу: в каждой точке $x \in (a,b)$, где f(x) непрерывна, функция $\Phi(x)$ является дифференцируемой, причем производная определенного интеграла по переменному верхнему пределу равна подынтегральной функции, вычисленной на этом переменном верхнем пределе:

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = \Phi'(x) = f(x), \ x \in (a,b).$$

2. Методы вычисления определенного интеграла. Формула Ньютона-Лейбница

Если функция f(x) непрерывна на [a;b], то справедлива формула Ньютона-Лейбница:

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a),$$

где F(x) — произвольная первообразная для f(x). Выражение $F(x)\Big|_{a}^{b} = F(b) - F(a)$ называется **двойной подстановкой**.

Формула Ньютона-Лейбница позволяет свести вычисление определенного интеграла к нахождению соответствующего неопределенного интеграла и является основной формулой интегрального исчисления.

Формула интегрирования по частям в ОИ: если u = u(x) и v = v(x) – непрерывные на промежутке [a,b] функции, то

$$\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du \Big|_{a}.$$

Формула замены переменной в ОИ (интегрирование подстанов- $\kappa o \check{u}$): если функция f(x) непрерывна на промежутке [a;b], а функция $x = \varphi(t)$ непрерывно дифференцируема на промежутке $[t_0; t_1]$, причем $a = \varphi(t_0); b = \varphi(t_1)$ и множество значений функции φ не выходит за $a = \varphi(t_0)$; $v - \psi(t_1)$ пределы промежутка [a, b]. то $\int_a^b f(x) dx = \int_{t_0}^{t_1} f(\varphi(t)) \cdot \varphi'(t) dt.$

$$\int_{a}^{b} f(x) dx = \int_{t_0}^{t_1} f(\varphi(t)) \cdot \varphi'(t) dt.$$

Замечание. Замена переменной в ОИ обладает тем преимуществом по сравнению с НИ, что не требуется возвращаться к исходной переменной, однако при этом приходится пересчитывать пределы интегрирования.

В случае, когда промежуток интегрирования [-a,a] симметричен относительно начала координат и интегрируемая на нем ϕ ункция fявляется либо четной, либо нечетной, имеют место равенства:

1)
$$\int_{-a}^{a} f(x)dx = 0$$
 для нечетной функции и

$$2) \int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$
 для четной функции.

3. Геометрические и физические приложения определенного интеграла

Вычисление площадей плоских фигур. Пусть D – криволинейная трапеция, ограниченная снизу графиком функции $y = f_1(x)$, сверху — графиком функции $y = f_2(x)$, где $f_2(x) \ge f_1(x)$, $x \in [a;b]$, с боков — прямыми x = a и x = b (a < b) (см. рис. 3). Тогда ее площадь S_D вычисляется по формуле

$$S_D = \int_a^b (f_2(x) - f_1(x)) dx.$$

Рис. 3. Вычисление площади криволинейной трапеции.

Вычисление длин дуг плоских кривых. Если кривая L задана явно как график функции $y = y(x), x \in [a;b]$, то длина дуги этой кривой вычисляется по формуле

$$|L| = \int_{a}^{b} \sqrt{1 + \left(y_{x}^{\prime}\right)^{2}} dx.$$

Вычисление объемов тел по площадям поперечных сечений. Пусть тело G расположено между плоскостями x=a и x=b, и S(C) - площадь поперечного сечения тела плоскостью x=C, причем S(C) является непрерывной функцией при $C \in [a;b]$. Тогда объем тела G вычисляется по формуле:

$$V_G = \int_a^b S(x) dx.$$

Вычисление объемов тел вращения. Пусть тело G получено вращением фигуры, ограниченной линиями $y = f(x) \ge 0, y = 0, x = a, x = b$, вокруг оси Ox. Тогда площадь попе-

речного сечения — площадь круга: $S(x) = \pi y^2(x)$, поэтому объем $V_G=V_x$ тела G выражается формулой $\overline{V_x=\pi \int\limits_{-a}^b y^2\left(x\right)dx}=\pi \int\limits_{-a}^b f^2\left(x\right)dx.$

$$V_x = \pi \int_a^b y^2(x) dx = \pi \int_a^b f^2(x) dx.$$

Аналогично объем тела вращения вокруг оси Оу фигуры, ограниченной линиями $x = x(y) \ge 0$, x = 0, y = c, y = d., равен

$$V_{y} = \pi \int_{c}^{d} x^{2}(y) dy.$$

Вычисление площадей поверхностей вращения. Площадь $S_{\Pi}=S_{x}$ поверхности Π , образованную вращением кривой

$$y = f(x) \ge 0, x \in [a;b]$$
, вокруг оси Ox ., равна
$$S_x = 2\pi \int_a^b y(x) ds(x) = 2\pi \int_a^b y\sqrt{1+(y_x')^2} dx = 2\pi \int_a^b f(x)\sqrt{1+(f'(x))^2} dx.$$
 Аналогично площадь поверхности вращения криг

кривой $x = x(y) \ge 0, y \in [c;d]$, вокруг оси *Oy*. вычисляется по формуле

$$S_y = 2\pi \int_c^d x(y) \sqrt{1 + (x'(y))^2} dy.$$

Вычисление работы. Пусть материальная точка передвигается по прямолинейному пути [a;b] под воздействием постоянной по направлению силы переменной величины F(x), $x \in [a;b]$. Тогда работа A силы F(x) на промежутке $\begin{bmatrix} a; b \end{bmatrix}$ равна

$$A = \int_{a}^{b} F(x) dx.$$

4. Несобственные интегралы

Как вытекает из определения ОИ, интегрируемая функция должна: 1) быть ограниченной, 2) рассматриваться на конечном интервале [a;b]. В приложениях часто возникает необходимость интегрировать как функции, определенные на бесконечном промежутке, так и функции, являющиеся неограниченными.

В этих двух случаях непосредственно применить ОИ нельзя и, таким образом, возникает потребность в обобщении понятия ОИ, что приводит к понятию несобственных интегралов. Существует два основных типа несобственных интегралов: 1) интегралы по бесконечному промежутку и 2) интегралы от неограниченных функций.

Несобственные интегралы по бесконечному промежутку

Пусть $I - o\partial uh$ из промежутков вида: $(-\infty; a], [b; +\infty)$ или $(-\infty; +\infty)$. Пусть на промежутке I определена функция f(x), которая является интегрируемой на любом конечном промежутке, содержащемся в I. Тогда несобственный интеграл по промежутку I (несобственный интеграл 1-го рода) определяется следующим образом:

1)
$$\int_{-\infty}^{a} f(x)dx = \lim_{A \to -\infty} \int_{A}^{a} f(x)dx$$
, если $I = (-\infty; a]$;

2)
$$\int_{b}^{+\infty} f(x)dx = \lim_{B \to +\infty} \int_{b}^{B} f(x)dx$$
, если $I = [b; +\infty)$;

1)
$$\int_{-\infty}^{a} f(x)dx = \lim_{A \to -\infty} \int_{A}^{a} f(x)dx$$
, если $I = (-\infty; a]$;
2)
$$\int_{b}^{+\infty} f(x)dx = \lim_{B \to +\infty} \int_{b}^{B} f(x)dx$$
, если $I = [b; +\infty)$;
3)
$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{A \to -\infty} \int_{A}^{B} f(x)dx$$
, если $I = (-\infty; +\infty)$,

если предел существует и конечен (в этом случае соответствующий интеграл называется сходящимся); если предел не существует или не является конечным, интеграл считается расходящимся.

Если наряду со сходимостью интеграла от функции f(x) по промежутку I имеет место и сходимость интеграла от модуля этой функции, то такая сходимость называется абсолютной.

Непредельный признак сравнения несобственных интегралов. Пусть $0 \le f(x) \le g(x)$, $x \in I$; тогда:

если сходится интеграл от функции g(x) по промежутку I, то и сходится и интеграл от функции f(x) по этому промежутку;

если же расходится интеграл от функции f(x) по промежутку I, то и расходится и интеграл от функции g(x) по этому промежутку;

Предельный признак сравнения несобственных интегралов. Если существует конечный отличный от нуля предел $\lim_{x\to c} \frac{f(x)}{g(x)} \neq 0$, где $c=-\infty$ в случае $I=(-\infty;a],\ c=+\infty$ для $I=[b;+\infty)$ и $c=\infty$ для $I = (-\infty; +\infty)$, то несобственные интегралы от функций f(x) и g(x)по промежутку I сходятся (или расходятся) одновременно.

Интегралы вида $\int_{1}^{+\infty} \frac{dx}{x^n}$, $\int_{-\infty}^{-1} \frac{dx}{x^n}$ часто используются при применении

признаков сравнения для несобственных интегралов по бесконечному промежутку.

Несобственные интегралы от неограниченных функций

Пусть на промежутке I=(a;b] (или I=[a;b), или I=[a;b]) задана функция f, которая имеет на этих промежутках единственную «особенность» — точку c, в окрестности которой функция не является ограниченной. Точка c=a для первого случая, c=b для второго и $c\in(a;b)$ для третьего промежутков. Предположим далее, что функция f интегрируема на любом замкнутом промежутке, целиком лежащем в I. Тогда можно определить несобственный интеграл от неограниченной функции I (несобственный интеграл 2-го рода) формулами:

1)
$$\int_{a}^{b} f(x)dx = \lim_{\epsilon \to +0} \int_{a+\epsilon}^{b} f(x)dx$$
, если $I = (a;b]$;
2)
$$\int_{a}^{b} f(x)dx = \lim_{\epsilon \to +0} \int_{a}^{b-\epsilon} f(x)dx$$
, если $I = [a;b)$;
3)
$$\int_{a}^{b} f(x)dx = \lim_{\epsilon_{1} \to +0} \left(\int_{\epsilon_{2} \to +0}^{c-\epsilon_{1}} f(x)dx + \int_{c+\epsilon_{2}}^{b} f(x)dx \right)$$
, если $I = [a;b]$,

если предел существует и конечен (в этом случае соответствующий интеграл называется *сходящимся*); если предел не существует или не является конечным, интеграл считается *расходящимся*.

Если наряду со сходимостью интеграла от функции f(x) по промежутку I имеет место и сходимость интеграла от модуля этой функции, то такая сходимость называется *абсолютной*.

Непредельный признак сравнения несобственных интегралов.

Пусть $0 \le f(x) \le g(x)$, $x \in I$; тогда:

если сходится интеграл от функции g(x) по промежутку I, то сходится и интеграл от функции f(x) по этому промежутку;

если же расходится интеграл от функции f(x) по промежутку I , то и расходится и интеграл от функции g(x) по этому промежутку;

Предельный признак сравнения несобственных интегралов. Если существует конечный отличный от нуля предел $\lim_{x\to c} \frac{f(x)}{g(x)} \neq 0$, где c=a в случае $I=(a;b],\ c=b$ для I=[a;b) и $c\in(a;b)$ для I=[a;b], то несобственные интегралы от функций f(x) и g(x) по промежутку

I сходятся (или расходятся) одновременно.

Интеграл вида $\int_0^b \frac{dx}{x^n}$ часто используется при применении признаков сравнения для несобственных интегралов от неограниченных функций.

Несобственные интегралы обладают всеми основными свойствами определенных интегралов, в частности свойствами линейности и аддитивности. В общем случае, когда на промежутке *I* имеется несколько (конечное число) особенностей, этот промежуток разбивается на конечное число промежутков, где особенности только на концах, затем по свойству аддитивности интеграл по всему промежутку сводится к сумме интегралов по частичным промежуткам, интегрирование по каждому из которых проводится с отступлением от особенностей и последующим предельным переходом.

5. Двойной интеграл

Рассмотрим в плоскости Oxy квадрируемую — uзмеримую, т. е. имеющую nлощадь, фигуру (область) D, на которой определена некоторая функция $f(M), M \in D$. Осуществим далее n-разбиение области D на n пересекающихся, разве лишь, по линиям квадрируемых частичных областей $D_1,...,D_n$ так, чтобы:

- 1) $D = D_1 \cup D_2 \cup ... \cup D_n$,
- 2) площадь $D_i \cap D_j$ равна нулю $(i \neq j)$

и составим сумму

$$\sigma_n = \sum_{i=1}^n f(M_i) \Delta S_i, \tag{1}$$

где ΔS_i – площадь D_i , M_i – произвольная точка, принадлежащая D_i .

Если теперь существует конечный предел интегральных сумм (1) при диаметре разбиения, стремящемся к нулю, независимо как от способа разбиения области D на части, так и от выбора точек M_i в частичных областях, то этот предел называется двойным интегралом от функции f по области D и обозначается $\iint f(x;y) dxdy$.

Таким образом,

$$\iint_{D} f(x; y) dx dy = \lim_{\lambda_{n} \to 0} \sum_{i=1}^{n} f(M_{i}) \Delta S_{i}.$$
 (2)

Функция f(M) = f(x; y) в этом случае называется интегрируемой в области D.

Как и в случае определенного интеграла, имеют место следующие условия интегрируемости:

необходимое: если функция интегрируема, то она ограничена и достаточное: если функция непрерывна, то она интегрируема.

Свойства двойного интеграла

Основные свойства двойного интеграла аналогичны свойствам определенного интеграла.

- 1. Интеграл от единичной функции выражает площадь области интегрирования: $\iint dx dy = S_D$ — площадь фигуры D.
 - 2. Линейность: $\iint_D C \cdot f(x,y) dx dy = C \cdot \iint_D f(x,y) dx dy, \quad C const$

(постоянную можно выносить за знак интеграла);
$$\iint\limits_D (f(x,y)\pm g(x,y)) dx dy = \iint\limits_D f(x,y) dx dy \pm \iint\limits_D g(x,y) dx dy$$
 (интеграл от суммы (разности) интегрируемых функций равен сумме

(разности) интегралов от этих функций).

3. Аддитивность: интеграл по области, состоящей из областей, пересекающихся только по границе, равен сумме интегралов по составляющим областям

$$\iint\limits_D f(x,y) dx dy = \iint\limits_{D_1} f(x,y) dx dy + \iint\limits_{D_2} f(x,y) dx dy.$$
 4. *Монотонность*: если в области D имеет место неравенство

- $f(x,y) \ge 0$, то $\iint_{\mathbb{R}} f(x,y) dx dy \ge 0$; если $f(x,y) \ge g(x,y)$ для любых
- 5. *Теорема о среднем*. Если функция f непрерывна в области D, то в области D найдется точка (ξ, η) такая, что

$$\iint_D f(x,y)dxdy = f(\xi,\eta) \cdot S_D;$$

величина $f(\xi,\eta) = \frac{1}{S_D} \iint\limits_D f(x,y) dx dy$ называется *средним значением* функции f в области D.

Вычисление двойного интеграла в декартовых координатах

Двойные интегралы вычисляются сведением к повторным.

Пусть область D ограничена снизу и сверху двумя непрерывными кривыми $y = y_1(x)$ и $y = y_2(x)$, с боков – вертикальными прямыми x = a и x = b (рис. 4)

Рис. 4. Область интегрирования

Предположим, что каждая прямая x = const, $x \neq a$, $x \neq b$, пересекает границу области D не более чем в двух точках с ординатами $y = y_1(x)$ и $y = y_2(x)$. Тогда

$$\iint_{D} f(M)ds = \iint_{D} f(x;y)dxdy = \int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} f(x;y)dy .$$
 (3)

Правую часть (3) называют **повторным интегралом** с внешним интегрированием по x и внутренним по y.

Пусть теперь область D имеет вид (рис. 5):

Рис. 5. Криволинейная трапеция

Предположим, что каждая прямая y = const пересекает границу области D не более чем в двух точках с абсциссами $x = x_1(y)$ и $x = x_2(y)$. Тогда

$$\iint_{D} f(x;y) dx dy = \int_{c}^{d} dy \int_{x_{1}(y)}^{x_{2}(y)} f(x;y) dx.$$
 (4)

Правая часть формулы (4) — *повторный интеграл* с внешним интегрированием по y и внутренним по x.

В формулах (3) и (4) сначала вычисляются внутренние интегралы как обычные определенные интегралы, при этом переменная внешнего интеграла считается постоянной, а затем вычисляются внешние интегралы.

Пределы у внешних интегралов всегда постоянны. Если внешний интеграл вычисляется по x, то пределы внутреннего интеграла могут зависеть от x или быть постоянными; если же внешний интеграл вычисляется по y, то пределы внутреннего интеграла могут зависеть от y или быть постоянными.

Внутренние и внешние npedenb в повторных интегралах (в декартовых координатах) nocmoshhb тогда и только тогда, когда область D является npsmoyzonbhukom.

Геометрические приложения двойного интеграла

- 1. Площадь S_D плоской фигуры D равна $S_D = \iint\limits_D dx dy$.
- 2. Объем V цилиндрического тела, ограниченного сверху непрерывной поверхностью $z = f(x; y) \ge 0$, снизу замкнутой областью D в плоскости Oxy и с боков цилиндрической поверхностью с направ-

ляющей — границей области D и образующей, параллельной оси Oz, выражается интегралом $V = \iint\limits_D f(x;y) dx dy$.

Физические приложения двойного интеграла

1. *Масса* m_D материальной пластины D с поверхностной плотностью $\gamma = \gamma(x; y)$ в точке M(x; y) вычисляется по формуле

$$m_D = \iint_D \gamma(x; y) dx dy.$$

2. Координаты x_c, y_c центра тяжести (масс) фигуры могут быть вычислены по формулам

$$x_c = \frac{1}{m} \iint_D x \gamma(x; y) dx dy, \quad y_c = \frac{1}{m} \iint_D y \gamma(x; y) dx dy.$$

6. Криволинейный интеграл первого рода (по длине дуги)

Пусть на плоскости Oxy задана непрерывная кривая L(AB), в каждой точке которой задана некоторая непрерывная функция $f(x;y),(x;y)\in L$. Произвольным образом разобьем кривую L на n частей (дуг) точками $A=M_1,M_2,...,M_n=B$, длину частичной дуги обозначим $\Delta\ell_i$, назовем **диаметром разбиения** $d_n=\max_{1\leq i\leq n}\Delta\ell_i$, наибольшую из длин частичных дуг. На каждой из полученных дуг L_i выберем произвольную точку $M_i(\xi_i;\eta_i)$ и составим **интегральную сумму**:

$$\sigma_n = \sum_{i=1}^n f(\xi_i; \eta_i) \Delta \ell_i$$
.

Если существует конечный предел интегральных сумм σ_n при $d_n \to 0$ и этот предел не зависит от способа разбиения кривой L на части и от выбора точек M_i , то такой предел называется **криволиней-ным интегралом первого рода** (КРИ-1) — интегралом по длине дуги от функции f(x;y) по кривой L и обозначается

$$\int_{I} f(x;y)d\ell.$$

Таким образом $\int_L f(x;y) d\ell = \lim_{d_n \to 0} \sum_{i=1}^n f(\xi_i;\eta_i) \Delta \ell_i$

Теорема. Если функция f(x; y) непрерывна в каждой точке кривой L, и кривая L гладкая (в каждой точке существует касательная к кри-

вой и положение ее непрерывно меняется при перемещении точки по кривой), то КРИ-1 существует.

Аналогично определяются КРИ-1 в пространстве:

$$\int_{L} f(x;y;z)d\ell$$

Свойства КРИ-1

- 1. КРИ-1 не зависит от направления пути интегрирования: $\int_{AB} f(x;y)d\ell = \int_{BA} f(x;y)d\ell.$

$$\int\limits_{L} (\alpha \, f \, \big(x, y \big) + \ldots + \beta g \, \big(x, y \big)) d \ell = \alpha \int\limits_{L} f \, (x; y) d \ell + \ldots + \beta \int\limits_{L} g (x; y) d \ell,$$
 3. Аддитивность: если разбить кривую L , на две части L_1 и L_2 , то

- $\int\limits_L f\big(x,y\big)d\ell=\int\limits_{L_1} f(x;y)d\ell+\int\limits_{L_2} \mathrm{f}(x;y)d\ell,$ 4.Монотонность: если $f(x;y)\geq g(x;y)$ для любых $(x;y)\in L$, то
- $\int_{L} f(x; y) d\ell \ge \int_{L} g(x; y) d\ell.$
- 5. Теорема о среднем: на кривой L найдется такая точка $C(x_c; y_c) \in L$, что $\int\limits_L f(x;y) d\ell = f(x_c;y_c)\ell$, где ℓ — длина дуги L .

Вычисление КРИ-1

КРИ-1 сводится к определенному интегралу, для чего достаточно вспомнить формулы вычисления длины дуги с помощью определенного интеграла, в зависимости от способа задания дуги.

1. Дуга L задана явно $y = y(x), x \in [a;b],$

$$\int_{L} f(x; y) d\ell = \int_{a}^{b} f(x; y(x)) \sqrt{1 + (y'(x))^{2}} dx, a < b$$

 $\int_{L} f(x;y)d\ell = \int_{a}^{b} f(x;y(x))\sqrt{1+(y'(x))^{2}} \, dx, \, a < b$ 2. Дуга L задана параметрически $L:\begin{cases} x=x(t) \\ y=y(t) \end{cases} t \in T=[t_{1};t_{2}],$

$$\int_{L} f(x;y)d\ell = \int_{t_{1}}^{t_{2}} f(x(t);y(t))\sqrt{(x'(t))^{2} + (y'(t))^{2}} dt.$$

Геометрический смысл КРИ-1 - длина дуги L: $\int d\ell = \ell$.

Физический смысл КРИ-1: масса m_L материальной дуги L с ли-

нейной плотностью $\rho(x;y;z)$ в точке $M(x;y;z)\in L$ равна $\int\limits_L \rho(x;y;z)d\ell = m_\ell\,.$

Кроме того, аналогично формулам для вычисления координат центра тяжести плоской фигуры с помощью двойного интеграла, с помощью КРИ-1 вычисляются координаты центра тяжести кривой.