1 Laboratorium 1 i 2.

Wczytaj do jakiegoś pakietu statystycznego dane $(x_1, y_1), \ldots, (x_n, y_n)$ z pliku lab1.txt.

- 1. Dla każdej ze zmiennych y i x pojawiających się w pliku wyznacz podstawowe wskaźniki numeryczne charakteryzujące próbę: średnią, wariancję, odchylenie standardowe, medianę, pierwszy i trzeci kwartyl, minimum i maksimum. Skonstruuj też histogramy i box-ploty.
- 2. Wykonaj wykres rozproszenia zmiennych y i x i oblicz współczynnik korelacji próbkowej tych zmiennych. Czy chmura punktów na tym wykresie ma (w przybliżeniu) charakter liniowy? Uzasadnij dlaczego można wykorzystać model regresji liniowej

$$y = \beta_0 + \beta_1 \cdot x + \varepsilon$$

do opisu zależności między zmiennymi y i x?

- 3. Wyznacz wartości estymatorów najmniejszych kwadratów $\widehat{\beta}_0$ i $\widehat{\beta}_1$ parametrów β_0 i β_1 .
- 4. Znajdź wartość estymatora $\widehat{\sigma}^2 := \frac{\sum_{i=1}^n (y_i \widehat{y}_i)^2}{n-2}$ parametru σ^2 .

Uwaga. Symbol \widehat{y}_i oznacza prognozowaną przez model wartość zmiennej objaśnianej y, odpowiadającą wartości x_i zmiennej objaśniającej x, czyli $\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 \cdot x_i$.

5. Na poziomie istotności $\alpha=0,05$ zweryfikuj hipotezę $H_0:\beta_1=0$ przy hipotezie alternatywnej $H_1:\beta_1\neq 0$. Jaka jest p-wartość dla tego testu? Czy na podstawie tych wyników można stwierdzić, że rozpatrywany w tym przykładzie model regresji liniowej ma sens?

Uwaga. Niech $SE_{\beta_1}^2:=\frac{\widehat{\sigma}^2}{\sum_{i=1}^n(x_i-\overline{x})^2}$. Jeśli prawdziwa jest hipoteza zerowa, a błędy $\varepsilon_1,\ldots,\varepsilon_n$ są niezależne i mają ten sam rozkład $N(0,\sigma^2)$, to statystyka $T:=\frac{\widehat{\beta}_1}{SE_{\beta_1}}$ ma rozkład t_{n-2} (t-Studenta z n-2 stopniami swobody). Na poziomie istotności α test odrzuca H_0 , gdy $|T| \geq t_{\alpha/2,n-2}$ ($t_{\alpha/2,n-2}$ to kwantyl rzędu $1-\alpha/2$ rozkładu t_{n-2}).

6. Skonstruuj przedział ufności dla β_1 na poziomie ufności 0.99.

Uwaga. Jeśli $\varepsilon_1, \dots, \varepsilon_n$ *i.i.d.* $N(0, \sigma^2)$ to przedział ufności na poziomie ufności $1 - \alpha$ dla współczynnika β_1 ma postać $\widehat{\beta}_1 \pm t_{\alpha/2, n-2} \times SE_{\beta_1}$.

7. Dla $x_0 = 1$ oblicz prognozowaną przez model wartość $\widehat{Y}(x_0)$. Następnie wyznacz przedziały ufności na poziomie ufności 0,99 dla $Y(x_0)$.

Uwaga. Jeśli $\varepsilon_1, \ldots, \varepsilon_n$ *i.i.d.* $N(0, \sigma^2)$, to przedział ufności na poziomie ufności $1-\alpha$ dla prognozowanej przez model wartości $Y(x_0)$ ma postać

$$\widehat{Y}(x_0) \pm t_{\alpha/2, n-2} \times SE_{\widehat{Y}(x_0) - Y(x_0)},$$

gdzie $\widehat{Y}(x_0) = \widehat{\beta_0} + \widehat{\beta_1} x_0$ i

$$SE_{\widehat{Y}(x_0)-Y(x_0)}^2 = \widehat{\sigma}^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right)$$

- 8. Narysuj histogram i wykres kwantylowy dla rezyduów. Narysuj też wykresy rozproszenia dla prób $(\widehat{y}_1, e_1), \ldots, (\widehat{y}_n, e_n)$ i $(x_1, e_1), \ldots, (x_n, e_n)$. Czy na podstawie tych rysunków można stwierdzić, że któreś założeń modelu regresji nie jest spełnione (patrz zadanie teoretyczne 3.)?
- 9. Zmodyfikuj dane z pliku lab1.txt, przyjmując, że ostatnią obserwacją jest 6,9347 i 148,6400, a nie 6,9347 i 14,8640. Wyznacz estymatory najmniejszych kwadratów parametrów β_0 i β_1 i porównaj je z estymatorami otrzymanymi poprzednio. Co zauważasz? Czy obserwacja (6,9347;148,640) jest a) odstająca, b) wpływowa?
- 10. Niech $n = 100, x_1, x_2, \dots, x_n$ iid $U(0, 1), \varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ iid $N(0, \sigma^2), \sigma = 0.1, \beta_0 = 1, \beta_1 = 2.$
 - (a) Wygeneruj obserwacje y_1, y_2, \dots, y_n , takie że

$$y_i = \beta_0 + \beta_1 \cdot x_i + \varepsilon_i, \quad i = 1, \dots, n.$$

- (b) Wykonaj wykres rozproszenia dla próby $(x_1, y_1), \ldots, (x_n, y_n)$. Czy chmura punktów ma (w przybliżeniu) charakter liniowy?
- (c) W oparciu o próbę $(x_1, y_1), \ldots, (x_n, y_n)$ wyznacz estymatory najmniejszych kwadratów $(\widehat{\beta}_0, \widehat{\beta}_1)$ parametrów (β_0, β_1) . Porównaj wartości tych estymatorów z wartościami (β_0, β_1) ?
- (d) Powtórz obliczenia dla $\sigma = 0.5$ i $\sigma = 1$. Jak zmieniają się precyzja estymatorów i współczynnik R^2 , gdy rośnie σ^2 ?

Zadania teoretyczne. Rozważmy model regresji liniowej z jedną zmienną objaśniającą $y = \beta_0 + \beta_1 \cdot x + \varepsilon$, tworzony na podstawie próby $(x_1, y_1), \dots, (x_n, y_n)$.

1. Wyprowadź wzory na estymatory najmniejszych kwadratów $\widehat{\beta}_0$ i $\widehat{\beta}_1$ parametrów β_0 i β_1 , wiedząc że $\widehat{\beta}_0$ i $\widehat{\beta}_1$ są rozwiązaniem następującego problemu minimalizacyjnego:

$$(\widehat{\beta}_0, \widehat{\beta}_1) = \arg\min_{(\beta_0, \beta_1)} \left[\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 \right].$$

- 2. Uzasadnij, przeprowadzając odpowiednie rachunki, że $\widehat{\beta}_1$ można zapisać w równoważnej postaci $\widehat{\beta}_1 = r \frac{s_y}{s_x}$, gdzie r jest współczynnikiem korelacji próbkowej Pearsona, a s_y^2 i s_x^2 oznaczają wariancje próbkowe w próbach y-ów i x-ów.
- 3. Niech e_1, \ldots, e_n oznaczają kolejne rezydua, tzn. niech $e_i := y_i \widehat{y}_i$, $i = 1, \ldots, n$. Uzasadnij, przeprowadzając odpowiednie rachunki (!), następujący fakt: Jeśli model regresji liniowej poprawnie opisuje zależność między zmiennymi y i x, to
 - współczynnik korelacji próbkowej dla próby $(\widehat{y}_1, e_1), \ldots, (\widehat{y}_n, e_n)$ jest równy zero;
 - współczynnik korelacji próbkowej dla próby $(x_1, e_1), \ldots, (x_n, e_n)$ jest równy zero;

Jak powinny wyglądać wykresy rozproszenia dla tych prób?