COURSE PLAN

Department : Instrumentation & Control Engineering

Course Name & code : Modern Control Theory & 3153

Semester & branch : V sem & E & I

Name of the faculty : Mr. Bipin Krishna & Mr. Mukund Kumar Menon

No of contact hours/week:

1	т	D	•
٥		-	C
3	1	0	4

Course Outcomes (COs)

	At the end of this course, the student should be able to:	No. of Contact Hours	Marks
CO1:	Understand the basic concept of state space analysis and apply to obtain the stae model in different forms.	10	20
CO2:	Analyze the stability, performance and apply state transformation technique.	8	18
CO3:	Design observer and state variable feedback control law.	6	12
CO4:	Understand different types of nonlinearities and analyse non linear system behaviour	16	32
CO5:	Analyse the stability of system using Lyaponuv Theory.	8	18
	Total	48	100

(Page 1 of 5) MIT/GEN/F-01/R2

Assessment Plan

Components	Assignments	Sessional Tests	End Semester/ Make-up Examination
Duration	20 to 30 minutes	60 minutes	180 minutes
Weightage	20 % (4 X 5 marks)	30 % (2 X 15 Marks)	50 % (1 X 50 Marks)
Typology of Questions	Understanding; Applying; Analyzing; Evaluating; Creating	Remembering; Understanding; Applying	Understanding; Applying; Analyzing; Evaluating; Creating
Pattern	Answer one randomly selected question from the problem sheet (Students can refer their class notes)	MCQ (10 marks): 10 questions of 0.5 marks each Short Answers (10 marks): questions of 2 or 3 marks	Answer all 5 full questions of 10 marks each. Each question may have 2 to 3 parts of 3/4/5/6/7 marks
Schedule	As notified by Associate Director (Academics) at the start of each semester	Calendared activity	Calendared activity
Topics Covered	Assignment 1 (L _{x1-x2} & T _{y1-y2}) (CO x) Assignment 2 (L _{x3-x4} & T _{y3-y4}) (CO x) Assignment 3 (L _{x5-x6} & T _{y5-y6}) (CO x) Assignment 4 (L _{x7-x8} & T _{y7-y8}) (CO x)	Test 1 (L _{a1-a2} & T _{b1-b2}) (CO x) Test 2 (L _{a3-a4} & T _{b3-b4}) (CO x)	Comprehensive examination covering full syllabus. Students are expected to answer all questions (CO1-5)

<u>Lesson Plan</u>

L. No.	Topics	Course Outcome Addressed
LO	Introduction to the course & Introduction to state concept. State space & Transfer function representation	CO1
L1	State space modelling & analysis State equation of linear continuous data systems – Electrical System	CO1
L2	State equation of linear continuous data systems – Mechanical System	CO1
L3	State equation of linear continuous data systems – Electromechanical System	CO1
T1	Tutorial/ Problem solving	CO1
L4	State equation of linear continuous data systems – Electromechanical System	CO1
L5	Phase variable form of state representation	CO1
L6	Canonical form of state representation	CO2
T2	Tutorial/ Problem solving	CO1

(Page 2 of 5) MIT/GEN/F-01/R2

L7	Derivation of state models from ordinary differential equations	CO1
L8	Direct, cascade, parallel realizations	CO1
L9	Stability analysis	CO2
Т3	Tutorial/ Problem solving	CO2
L10	Eigen values, Eigen vectors, sytem realisation : examples	CO2
L11	Diagonalization	CO2
L12	Transformation into canonical forms	CO2
T4	Tutorial/ Problem solving	CO2
L13	Solution of state equations	CO2
L14	State transition matrix-Cayley Hamilton theorem	CO2
L15	Controllability and observability: examples	CO3
Т5	Tutorial/ Problem solving	CO3
L16	Pole placement –Ackerman's formula: Examples	CO3
L17	State feedback and output feedback	CO3
L18	Observer design	CO3
T6	Tutorial/ Problem solving	CO3
L19	Introduction to Nonlinear Systems, Characteristics of non-linear systems.	CO4
L20	Linearization of NLS, Common type of nonlinearities.	CO4
L21	Phase plane Analysis of NLS, Singular Points on Phase Plane.	CO4
L22	Construction of the phase trajectory by Isocline's method	CO4
L23	Pell's Method and Delta Method for constructing phase trajectories	CO4
Т7	Tutorial/ Example	CO4
L24	Introduction to Describing function; Determination of describing function for various non linearities.	CO4
L25	On-off, dead zone, on-off with dead zone.	CO4
L26	Describing function of Saturation, Saturation With Dead Zone, Hysteresis, On-Off With Hysteresis	CO4
L27	Examples	CO4
L28	Linear Transfer Through Dead Zone, Square Nonlinearity, Cubic Nonlinearity	CO4
L29	Examples	CO4
L30	Application of describing function of stability analysis of systems with single nonlinearity	CO4

L31	Examples	CO4
Т8	Tutorial/Problems	CO4
L32	Introduction to Lyapunov stability analysis- Technical terms used, Definitions of boundesness, stability, Asymptotic stability, Instability.	CO5
L33	Sign definiteness of scalar functions. Sylvester's Criterion.	CO5
L34	Examples	CO5
Т9	Tutorial/ Problem solving on stability analysis	CO5
L35	Lyapunov Theorems of Stability, Instability and asymptotic stability, Illustrative examples on the application of Lyapunov second method	CO5
L36	Examples	CO5
T10	Tutorials	CO5
L37	Recap of State concepts	СО
L38	Recap of nonlinear control	CO
L/T	Click or tap here to enter text.	

References:

- 1. K. Ogata, "Modern control engineering", Prentice Hall India. 2002.
- 2. M. Gopal, "Modern control system theory", Wiley Eastern Limited 1984.
- 3. J.E.Gibson "Nonlinear automatic control", McGraw Hill. 1963.
- 4. Cunningham W.J. "Introduction to nonlinear analysis", McGraw Hill.1959.
- 5. K. Ogata "State space analysis of control systems" Prentice Hall India 1967.
- 6. A.Ramakalyan, "Control Engineering- A comprehensive foundation", Vikas Publishing House, New Delhi. 2004.
- 7. Click or tap here to enter text.

Submitted by: BIPIN KRISHNA

` •	ure of th	e faculty)	1
Date:	25-07-2022		
Approv	ved by:	DR. SHREESHA C.	
(Signati	ure of HO	וחנ	
Jigilace		,,,	
	25-07-2		

FACULTY	SECTION	FACULTY	SECTION
Mr. Bipin Krishna	Α		
Mr. Mukund Kumar Menon	В		

(Page 5 of 5)

MIT/GEN/F-01/R2