Spis treści

1	\mathbf{Drz}	rzewa decyzyjne						
	1.1	.1 Definicje						
	1.2	Schemat konstrukcji	4					
		1.2.1 Testy atrybutów	4					
		1.2.2 Kryteria stopu	6					
		1.2.3 Ocena jakości	6					
	1.3	Algorytmy konstrukcji drzew decyzyjnych	6					
2	Pro	gramowanie równoległe	9					
	2.1	Podstawowe pojęcia	S					
	2.2	Rodzaje procesów	10					
	2.3	Rodzaje dekompozycji problemów obliczeniowych	12					
	2.4	Wzorce programowania równoległego						
		2.4.1 Wzorzec Master-Slave	13					
		2.4.2 Wzorzec Fork-Join	14					
		2.4.3 Wzorzec Map-Reduce	14					
		2.4.4 Wzorzec Work Pool	15					
		2.4.5 Wzorzec Pipeline	16					
3	\mathbf{Prz}	egląd literatury	17					
	3.1	Równoległa konstrukcja algorytmu C4.5						
	3 2	2. Zostawienie artykułów						

1. Drzewa decyzyjne

Drzewo decyzyjne (ang. decision tree) to rodzaj algorytmu uczenia maszynowego wykorzystywanego do klasyfikacji danych. Na podstawie danych wejściowych budowany jest model, który pozwala na podejmowanie decyzji. Drzewo decyzyjne przedstawiane jest graficznie jako struktura zbudowana z węzłów, gałęzi i liści. Każdy węzeł reprezentuje test, na podstawie którego algorytm podejmuje decyzję. Gałęzie symbolizują możliwe wyniki testu. Ostateczne decyzje, które mogą zostać podjęte przez algorytm, reprezentowane są przez liście.

Według matematycznej definicji drzewo decyzyjne to acykliczny graf skierowany. Gałęzie odpowiadają krawędziom grafu. Wierzchołki grafu nazywane są węzłami. Węzły, które nie mają żadnych potomków, określane są liśćmi, natomiast węzeł nieposiadający rodzica nazywany jest korzeniem [1].

1.1. Definicje

Rekord (inaczej nazywany krotką, wierszem lub obiektem) jest wektorem wartości atrybutów. Zbiór $n \in \mathbb{N}$ atrybutów wejściowych oznaczany jest przez $A = \{a_1, ..., a_i, ..., a_n\}$. Atrybut a_i przyjmuje wartości, których zbiór oznaczany jest przez $dom(a_i) = \{v_{i,1}, v_{i,2}, ..., v_{i,|dom(a_i)|}\}$, gdzie $|dom(a_i)|$ oznacza moc zbioru wartości atrybutu a_i . Atrybut wyjściowy nazywany jest decyzją i oznaczany jest przez y. Możliwe wartości decyzji $dom(y) = \{c_1, ..., c_{|dom(y)|}\}$ nazywane są klasami decyzyjnymi. Przestrzeń rekordów wyznaczona jest jako iloczyn kartezjański wszystkich zbiorów atrybutów wejściowych $X = dom(a_1) \times ... \times dom(a_i) \times ... \times dom(a_n)$ oraz zbioru atrybutów wyjściowych dom(y) i oznaczana jest literą $U = X \times dom(y)$ [2].

Zbiór danych S to zbiór m par takich, że $S = (\langle x_1, y_1 \rangle, ..., \langle x_m, y_m \rangle)$, gdzie: $m \in \mathbb{N}$, $x_q \in X$, $y_q \in dom(y)$. Zbiór S graficznie przedstawiany jest jako tabela i nazywany jest tabelą decyzyjną. Rekordy tworzą wiersze tabeli a kolumny grupują wartości atrybutów [2].

a_1	a_2	a_3	y
$v_{1,1}$	$v_{2,1}$	$v_{3,1}$	c_1
$v_{1,2}$	$v_{2,1}$	$v_{3,2}$	c_3
$v_{1,1}$	$v_{2,1}$	$v_{3,1}$	c_1
$v_{1,2}$	$v_{2,1}$	$v_{3,3}$	c_3
$v_{1,2}$	$v_{2,2}$	$v_{3,4}$	c_2

Tabela 1: Tabela decyzyjna dla m = 5, |dom(y)| = 3, $|dom(a_1)| = 2$, $|dom(a_2)| = 2$, $|dom(a_3)| = 4$ i n = 3.

Zazwyczaj zakłada się, że rekordy, które należą do zbioru S generowane są losowo zgodnie z pewnym nieznanym, wspólnym rozkładem prawdopodobieństwa D nad przestrzenią U.

Selekcja (σ) względem atrybutów przedstawiona jest za pomocą notacji używanej w algebrze. Przykładowo wybranie z Tabeli 1 rekordów, które dla atrybutu a_3 przyjmują wartość $v_{3,1}$ opisywane jest wyrażaniem $\sigma_{a_3=v_{3,1}}S$.

Testem t nazywany jest warunek dla podziału danych. W celu wyznaczenia najlepszego testu wykorzystywane są różne kryteria podziału.

Na podstawie tabeli decyzyjnej przy użyciu testów na atrybutach konstruowane jest drzewo decyzyjne DT. Klasyfikator, który został stworzony ze zbioru danych S oznaczany jest jako DT(S). Korzystając z klasyfikatora DT(S) możliwe jest wyznaczenie predykcji $DT(S)(x_q)$ dla wybranego elementu $x_q \in X$. Rozmiar drzewa decyzyjnego DT(S) oraz dokładność predykcji $DT(S)(x_q)$ w dużym stopniu zależy od wielkości zbioru S. Jeśli zbiór danych jest zbyt mały, to dokładność predykcji będzie niska.

Błąd klasyfikacji drzewa DT(S) jest prawdopodobieństwem błędnej predykcji obiektu wybranego zgodnie z rozkładem D. Błąd ε zdefiniowany jest następująco (w przypadku atrybutów ciągłych znak sumy zastępowany jest całką):

$$\varepsilon(DT(S), D) = \sum_{\langle x, y \rangle \in U} D(x, y) \cdot L(y, DT(S)(x)), \tag{1}$$

$$L(y, DT(S)(x)) = \begin{cases} 1, & DT(S)(x) = y, \\ 0, & DT(S)(x) \neq y. \end{cases}$$
 (2)

Dokładność klasyfikacji obliczana jest jako $1-\varepsilon$. Rzeczywista wartość błędu ε jest jednak rzadko wyznaczana, ponieważ najczęściej rozkład D nie jest znany. W zamian, jako oszacowanie błędu klasyfikacji, korzysta się z błędu $\hat{\varepsilon}$ obliczanego tylko na zbiorze danych. Dokładność klasyfikacji wyznaczana jest wtedy jako $\frac{\hat{\varepsilon}}{|S|}$.

$$\hat{\varepsilon}(DT(S), S) = \sum_{\langle x, y \rangle \in S} L(y, DT(S)(x)), \tag{3}$$

Wykorzystywanie błędu $\hat{\varepsilon}$ wyliczanego na podstawie całego zbioru danych S zazwyczaj daje jednak zbyt optymistycznie oszacowanie błędu ε . Z tego powodu zbiór danych dzieli się na zbiór treningowy oraz testowy. Zbiór treningowy jest większy i na jego podstawie buduje się klasyfikator. Zbiór testowy wykorzystywany jest do wyliczania $\hat{\varepsilon}$, który zwykle zapewnia lepsze oszacowanie błędu ε [2].

Nadmierne dopasowanie (ang. overfitting) to sytuacja, w której utworzony klasyfikator jest zbyt dobrze dopasowany do danych treningowych. Wystąpienie nadmiernego dopasowania sprawia, że klasyfikator dobrze sprawdza się dla danych treningowych, jednak zmniejsza się jego zdolność generalizacji. Oznacza to, że dla elementu $x_q \in X$, mniejsze jest prawdopodobieństwo na otrzymanie poprawnej predykcji $DT(S)(x_q)$. W przypadku drzew decyzyjnych nadmierne dopasowanie występuje najczęściej, gdy drzewo ma zbyt wiele węzłów w stosunku do ilości dostępnych danych treningowych.

W celu uniknięcia lub minimalizacji zjawiska nadmiernego dopasowania stosuje się technikę przycinania drzewa (ang. pruning). Polega ona na odpowiednim upraszczaniu drzewa poprzez zmniejszanie jego rozmiaru. W drzewie decyzyjnym wycina się wybrane fragmenty (poddrzewa), których znaczenie jest niewielkie podczas przeprowadzania predykcji obiektów. Poddrzewo, które zostało wybrane do wycięcia, najczęściej zastępuje się liściem z etykietą klasy, która najczęściej występuje w wycinanym podzbiorze. Przekształcenia drzewa mogą pogorszyć dokładność klasyfikacji na zbiorze danych treningowych, jednak często skutkują dokładniejszymi predykcjami na obiektach spoza zbioru treningowego.

1.2. Schemat konstrukcji

Proces budowania drzewa oparty jest na wielokrotnym podziałe danych. Pierwszy krok polega na przypisaniu korzeniowi wszystkich obiektów ze zbioru treningowego S. Następnie, stosując kryterium podziału zależne od użytego algorytmu, wyznaczany jest atrybut wejściowy względem którego zostanie wykonany podział obiektów. Najlepszym podziałem jest ten, który najmniej różnicuje obiekty ze względu na ich klasę decyzyjną. Gdy wybrany zostanie atrybut, wykonywany jest test, który przydziela obiekty nowym węzłom potomnym. Po dopasowaniu obiektów do nowych węzłów, proces podziału jest powtarzany według takiej samej zasady. Podział wykonywany jest tak długo, aż osiągnięte zostanie kryterium stopu.

1.2.1. Testy atrybutów

Reguły definiujące podział w drzewach decyzyjnych są najczęściej jednowymiarowe. Oznacza to, że test dokonywany jest na podstawie tylko jednego atrybutu. Podziały wielowymiarowe są spotykane zdecydowanie rzadziej ze względu na wysoką złożoność obliczeniową [3]. Testy dzieli się w zależności od rodzaju atrybutów. Wyróżniane są dwa różne podziały dla atrybutów typu dyskretnego i dwa kolejne dla atrybutów ciągłych:

- dla atrybutów dyskretnych:
 - podział oparty na wartościach atrybutu:

$$t(x) = a_i(x),$$

gdzie:

 $x \in X$

podział oparty na równości:

$$t(x) = \begin{cases} 1, & \text{gdy } a_i(x) = v_{i,j}, \\ 0, & \text{w przeciwnym wypadku,} \end{cases}$$

gdzie:

 $v_{ij} \in dom(a_i),$

- dla atrybutów ciągłych:
 - podział oparty na nierównościach:

$$t(x) = \begin{cases} 1, & \text{gdy } a_i(x) \leq p, \\ 0, & \text{w przeciwnym wypadku,} \end{cases}$$

gdzie:

 $p \in dom(a_i)$ – wartość progowa,

- podział oparty na przedziałach:

$$t(x) = \begin{cases} 1, & \text{gdy } a_i(x) \in I_1, \\ 2, & \text{gdy } a_i(x) \in I_2, \\ 3, & \text{gdy } a_i(x) \in I_3, \\ \vdots & & \\ k, & \text{gdy } a_i(x) \in I_l, \end{cases}$$

gdzie:

 $l \in \mathbb{N}$.

 $I_1,I_2,I_3,...,I_l\subset dom(a_i),$

 $j \neq k \implies I_j \cap I_k = \varnothing.$

1.2.2. Kryteria stopu

Faza rozbudowy drzewa trwa do momentu, gdy któryś z warunków stopu zostanie spełniony. Wyróżnia się następujące kryteria zatrzymania konstruowania drzewa decyzyjnego:

- pusty zbiór treningowy,
- \bullet jednorodność obiektów wszystkie rekordy mają taką samą wartość y (należą do tej samej klasy decyzyjnej),
- drzewo osiągnęło maksymalną wysokość,
- brak możliwość odnalezienia testu, który pozwoliłby na dokonanie podziału [2].

1.2.3. Ocena jakości

Dwie składowe, które wpływają na ocenę jakości Q drzewa decyzyjnego DT(S), to dokładność klasyfikacji oraz wielkość drzewa decyzyjnego. Wielkość drzewa decyzyjnego wyznaczana jest na różne sposoby. Miarą może być wysokość drzewa, liczba węzłów lub liczba liści. We wszystkich przypadkach występuje jednak taka sama zasada – im mniejsze drzewo, które umożliwia przeprowadzanie poprawnych predykcji, tym wyższa jest jego jakość. Jakość drzewa decyzyjnego może oceniona być za pomocą (4):

$$Q(DT, S) = \alpha \cdot \hat{\varepsilon}(DT(S), S) + \beta \cdot h(DT), \tag{4}$$

gdzie:

 $\alpha, \beta \in \mathbb{R}$

h – wysokość drzewa decyzyjnego.

1.3. Algorytmy konstrukcji drzew decyzyjnych

Algorytm ID3 jest uważany za jeden z prostszych algorytmów konstrukcji drzew decyzyjnych. Jako kryterium podziału wykorzystany jest zysk informacji *InformationGain*, który obliczany jest przy wykorzystaniu entropii *H*:

$$H(y,S) = -\sum_{c_j \in dom(y)} \frac{\sigma_{y=c_j} S}{|S|} \cdot log_2 \frac{\sigma_{y=c_j} S}{|S|},$$
 (5)

$$InformationGain(a_i, S) = H(y, S) - \sum_{v_{i,j} \in dom(a_i)} \frac{\sigma_{a_i = v_{i,j}} S}{|S|} \cdot H(y, \sigma_{a_i = v_{i,j}} S).$$
 (6)

Atrybut a_i dla którego zysk informacji jest najwyższy wybierany jest do wyznaczenia podziału. Budowanie drzewa kończy się, gdy wszystkie obiekty w węźle mają taką samą wartość klasy lub gdy najlepszy obliczony zysk informacji nie jest większy od zera [1].

Algorytm stosowany jest dla atrybutów dyskretnych. Jeśli atrybuty są ciągłe, wówczas muszą zostać przekształcone. ID3 nie sprawdza się w przypadku, gdy zbiór treningowy składa się z rekordów, którym brakuje wartości pojedynczych atrybutów. ID3 jest algorytmem zachłannym, dlatego nie daje gwarancji odnalezienia rozwiązania optymalnego, ponieważ może utknąć w optimum lokalnym [2].

Algorytm C4.5 jest ulepszoną wersją ID3 zaproponowaną przez tego samego autora. Jako kryterium podziału wykorzystany został współczynnik względnego zysku informacji *GainRatio*, który zdefiniowany jest następująco:

$$GainRatio(a_i, S) = \frac{InformationGain(a_i, S)}{H(a_i, S)},$$
(7)

W przeciwieństwie do algorytmu ID3, algorytm C4.5 może przetwarzać zarówno atrybuty dyskretne jak i ciągłe. Obsługa atrybutów ciągłych uzyskiwana jest poprzez podział wartości atrybutu na dwa podzbiory zgodnie z najlepszym znalezionym progiem. Dodatkowo jest on dostosowany do obsługi rekordów z brakującymi wartościami atrybutów. Kolejnym usprawnieniem jest zastosowanie procedury przycinania. Pozwala ona na usuwanie gałęzi wraz z połączonymi węzłami potomnymi, które nie przyczyniają się do poprawienia dokładności klasyfikatora i zastępowanie ich jednym węzłem liścia. Komercyjnie wykorzystuje się algorytm C5.0, który jest zaktualizowaną wersją algorytmu C4.5. Jest on zoptymalizowany pod kątem czasu obliczeń i wykorzystanej pamięci [2].

Algorytm CART pozwala na konstruowanie drzew opartych są na binarnym podziale atrybutów. Kryterium podziału wykorzystuje indeks Gini, który mierzy rozbieżności między rozkładami prawdopodobieństwa wartości atrybutów. Kryterium oceny wyboru atrybutu a_i zdefiniowane jest jako GiniGain [2]:

$$Gini(y,S) = 1 - \sum_{c_j \in dom(y)} \left(\frac{|\sigma_{y=c_j} S|}{|S|} \right)^2, \tag{8}$$

$$GiniGain(a_i, S) = Gini(y, S) - \sum_{v_{i,j} \in dom(a_i)} \frac{|\sigma_{a_i = v_{i,j}} S|}{|S|} \cdot Gini(y, \sigma_{a_i = v_{i,j}} S)$$
(9)

Podobnie jak w algorytmie C4.5 dopuszczalne są zarówno atrybuty dyskretne jak i ciągłe.

Algorytm CHAID (ang. Chi-squared Automatic Interaction Detectorest) to jeden z najstarszych algorytmów budowy drzew decyzyjnych, który można wykorzystać zarówno dla atrybutów ciągłych jak i dyskretnych. Drzewa stworzone przy wykorzystaniu algorytmu CHAID są drzewami niebinarnymi.

Dla każdego atrybutu a_i znajdywana jest para wartości $\langle v_{ij}, v_{ik} \rangle$, która jest najmniej różna w odniesieniu do decyzji. Różnica jest mierzona poprzez wykonanie testu statystycznego, którego wybór zależy od rodzaju atrybutu wyjściowego. Gdy jest on typu dyskretnego kryterium podziału opiera się na teście Chi-kwadrat, w przeciwnym wypadku wykorzystuje się test F.

Dla każdej pary wartości sprawdza się, czy wynik testu statystycznego jest większy od progu scalania. Jeśli wynik testu jest większy to wartości są łączone, a następnie ponownie wykonuje się proces wyboru pary. Proces powtarza się do momentu, gdy nie będzie możliwe odnalezienie żadnej znaczącej pary. Następnie wybierany jest najlepszy atrybut wejściowy, który zostanie użyty do podziału bieżącego węzła, tak aby każdy węzeł potomny składał się z grupy jednorodnych wartości wybranego atrybutu [2].

Algorytm CHAID obsługuje brakujące wartości, które traktuje jako jedną kategorie. W algorytmie nie stosuje się przycinania.

2. Programowanie równoległe

Rozdział ma na celu uporządkowanie istotnych pojęć związanych z tematem programowania równoległego. Opisane zostały podstawowe zagadnienia, różnice między programowaniem współbieżnym i równoległym, rodzaje dekompozycji zadań, a także wzorce, stosowane w równoległych implementacjach algorytmów.

2.1. Podstawowe pojęcia

Przetwarzanie równoległe jest tematem omawianym w ramach dziedziny systemów operacyjnych. Mimo, że celem pracy nie jest analiza zagadnień specyficznych dla systemów operacyjnych, poniżej przestawione zostały pojęcia, których zrozumienie jest konieczne do tworzenia równoległych implementacji algorytmów.

Procesor to jednostka sprzętowa, która pobiera dane z pamięci operacyjnej, interpretuje je i wykonuje. Pojęcie procesor używane jest w dwóch kontekstach. Pierwszy, zgodny z podaną definicją, używany jest głównie w elektronice. Drugie znaczenie procesora wykorzystywane jest częściej w programowaniu. Wówczas pojęcie procesor jest synonimem pojęcia rdzeń.

Rdzeniem fizycznym (ang. core) określany jest fizyczny element procesora, który pozwala na wykonywanie obliczeń. W uproszczeniu, im więcej rdzeni posiada procesor, tym więcej obliczeń może on wykonać w jednostce czasu, co definiowane jest jako moc obliczeniowa. Jest to jeden z czynników branych pod uwagę przy ocenie wydajności procesora. Obecnie używa się głównie procesorów wielordzeniowych.

Rdzeń logiczny (ang. logical core, thread) przygotowuje dane wykorzystywane podczas obliczeń wykonywanych przez rdzeń fizyczny. Do niedawna na jeden rdzeń fizyczny przypadał jeden rdzeń logiczny. Obecnie najczęściej każdemu rdzeniowi fizycznemu przypisuje się dwa rdzenie logiczne. Rdzenie logiczne uzależnione są od rdzenia fizycznego, do którego są przypisane, natomiast nie są zależne od operacji rdzeni logicznych przypisanych do innego rdzenia fizycznego.

Rozkazem nazywane jest pojedyncze polecenie, zapisane jest w postaci liczb binarnych, które wykonywane jest przez procesor.

Instrukcja definiowana jest jako bardziej złożone zadanie, które składa się ze zbioru rozkazów. Instrukcje mogą być niskopoziomowe (napisane w np. asemblerze) lub wysokopoziomowe (napisane w np. C, Java). Instrukcje wysokopoziomowe tłumaczone są na kilka instrukcji niskopoziomowych, natomiast instrukcje niskopoziomowe tłumaczone są na zbiór rozkazów. Zbiór rozkazów może być dzielony na podzbiory w celu uruchomienia każdego

podzbioru na innym procesorze.

Program jest zbiorem instrukcji, który pozwala na rozwiązanie pewnego problemu obliczeniowego.

Proces najprościej definiowany jest jako program, który jest w trakcie wykonywania. Pod pojęciem procesu zawiera się jednak wiele mechanizmów, przy pomocy których system operacyjny zarządza wykonywaniem programu. System operacyjny przydziela każdemu nowemu procesowi zasoby m.in. odrębny obszar pamięci operacyjnej, nadaje unikatowy numer PID (process identifier), kontroluje stan procesu oraz zarządza plikami, z których korzysta proces [5].

Wątek (ang. thread) jest częścią procesu. Jest to niezależny strumień instrukcji, który uruchamiany jest przez system operacyjny. Na jeden proces najczęściej składa się wiele strumieni instrukcji. Instrukcje składające się na wątek są wykonywane sekwencyjnie. Wszystkie wątki istniejące w ramach jednego procesu współdzielą przestrzeń adresową – mają dostęp do pamięci wspólnej. Z tego powodu komunikacja między wątkami należącymi do jednego procesu jest łatwa i nie wymaga wsparcia systemu operacyjnego. Przekazanie danych polega na podaniu jedynie wskaźnika do miejsca w pamięci. Programiści często definiują wątek nieco inaczej. Wątek traktowany jest jako nieblokująca metoda, która wykonywana jest niezależnie od procesu, który ją uruchomił [5]. Określenie wątek jest również używane wymiennie z określeniem rdzeń logiczny. Wątek w znaczeniu rdzenia logicznego nie jest jednak równoznaczny przedstawionej definicji wątku.

2.2. Rodzaje procesów

Proces sekwencyjny P charakteryzuje się tym, że każda kolejna instrukcja i wykonywania jest dopiero wtedy, gdy zakończy się wykonywanie poprzedniej. Kolejność wykonywania instrukcji jest jednoznacznie określona, dlatego proces sekwencyjny określany jest jako pojedynczy ciąg instrukcji [6]. W przypadku procesu sekwencyjnego wątek nie jest częścią procesu, natomiast jest z nim utożsamiany [7].

Rysunek 1: Proces sekwencyjny. Źródło: Opracowanie własne na podstawie [6]

Procesy sekwencyjne, które zachodzą na siebie w czasie, określane są jako **proces współ- bieżny**. Innymi słowami proces współbieżny to proces, który składa się z wielu strumieni instrukcji. Instrukcje należące do jednego wątku, wykonywane są, zanim ukończone zostanie wykonywanie wszystkich instrukcji tworzących drugi, wcześniej uruchomiony wątek.

Dane są dwa procesy sekwencyjne P_1 i P_2 , instrukcje $i_{1,1}, i_{1,2} \in P_1$ oraz $i_{2,1}, i_{2,2} \in P_2$. Rysunek 2 przedstawia jedną z wielu możliwych realizacji procesu P_1 oraz P_2 .

Rysunek 2: Proces współbieżny. Źródło: Opracowanie własne na podstawie [6]

Procesy wykonywane w przeplocie są procesami współbieżnymi, w których wątki uruchamiane są naprzemiennie. Podczas wykonywania procesu P_1 następuje wstrzymanie procesu P_2 Gdy przerywane jest działanie procesu P_1 to przez pewien czas wykonywany jest proces P_2 . Metoda przeplotu pozwala na zastosowanie współbieżności w procesorach jednordzeniowych.

Rysunek 3: Procesy wykonywane metodą przeplotu. Źródło: Opracowanie własne na podstawie [6]

Proces równoległy jest szczególnym rodzajem procesu współbieżnego, w którym wątki uruchamiane są jednocześnie. Wątki mogą zostać rozdzielone między różne rdzenie procesora – wtedy konieczne jest wykorzystanie procesora z kilkoma rdzeniami. Inną możliwością jest zastosowanie architektury rozproszonej. Wówczas wątki dzielone są między zbiór komputerów, które połączone są ze sobą siecią. Proces równoległy nazywany jest wtedy rozproszonym.

Rysunek 4: Procesy równoległe. Źródło: Opracowanie własne na podstawie [6]

2.3. Rodzaje dekompozycji problemów obliczeniowych

W celu równoległego wykonywania programu istotne jest zaprojektowanie podziału zadań obliczeniowych. Podział problemu na zadania nazywany jest dekompozycją. Wyróżniane są cztery rodzaje dekompozycji [6].

Dekompozycja danych to jeden z najczęściej wykorzystywanych rodzajów dekompozycji. Swoje zastosowanie znajduje szczególnie w przypadkach, gdzie przetwarzane są bardzo duże ilości danych. Dekompozycja danych dzieli się na dekompozycję danych wejściowych i wyjściowych. Pierwsza z nich polega na podziale danych wejściowych na względnie równe części, które przetwarzane są w ramach osobnych zadań. Najczęściej zadania polegają na wykonaniu dokładnie takiego samego rodzaju obliczeń. Taki rodzaj dekompozycji charakteryzuje się tym, że po zakończeniu zadań, konieczne jest ich zsumowanie.

Dekompozycja danych wyjściowych jest możliwa, gdy elementy danych wyjściowych mogą zostać wyznaczone niezależnie od siebie. Wówczas każdemu zadaniu przydzielone zostają te dane wejściowe, które konieczne są do otrzymania poszczególnych elementów danych wyjściowych. Wadą takiego podejścia jest stosunkowo niski stopień współbieżności [6].

Podejście, w którym zrównoleglanie osiągane jest poprzez zastosowanie dekompozycji danych, określany jest pojęciem *równoległość danych*.

Dekompozycja funkcjonalna polega na wyodrębnieniu obliczeń, których wykonanie konieczne jest do rozwiązania problemu. Obliczenia dzielone są na grupy, które formowane są w funkcje. Zadania funkcji różnią się od siebie i najczęściej przetwarzają różne rodzaje danych [6]. Zastosowanie dekompozycji funkcjonalnej oznacza wykorzystanie *równoległości zadań*.

Dekompozycja rekursywna stosowana jest przy rozwiązywaniu problemów metodą "dziel i zwyciężaj". Problem dzielony jest na mniejsze podproblemy, które są od siebie niezależne. Każdy podproblem jest mniejszym przypadkiem pierwotnego problemu. Podział wy-

konywany jest tak długo, aż podproblemy stają się trywialne do rozwiązania. Następnie wszystkie rozwiązania scalane są w jedno, które jest ostatecznym rozwiązaniem [6].

Dekompozycja eksploracyjna używana jest wtedy, gdy zadanie obliczeniowe polega na przeszukiwaniu przestrzeni rozwiązań. Przestrzeń dzielona jest na części, które eksplorowane są równolegle przez odrębne zadania. Jeśli rozwiązanie zostanie znalezione w którejś części przestrzeni, wówczas wykonywanie pozostałych zadań jest przerywane [6].

2.4. Wzorce programowania równoległego

Istnieje wiele wzorców programowania równoległego. Podczas implementacji algorytmu równoległego ciężko jest dobrać jeden, najlepiej pasujący wzorzec. Z tego powodu wzorce traktowane są raczej jako ogólne wskazówki, które mogą być przydatne podczas projektowania algorytmu. Najczęściej programy tworzone są zgodnie z kilkoma wzorcami, które łączone są ze sobą w celu stworzenia implementacji dopasowanej do konkretnego przypadku. W tym rozdziale opisane zostały wybrane wzorce programowania równoległego.

2.4.1. Wzorzec Master-Slave

Wzorzec inaczej nazywany jest wzorcem Manager-Worker. Wątek, który nazywany jest zarządcą (Master/Manager) definiuje zadania i rozdziela je pomiędzy wykonawców (Worker/Slave). Gdy wykonawca zrealizuje zadanie, przesyła otrzymane wyniki zarządcy, którego zadaniem jest scalić wszystkie zgromadzone wyniki w jedno rozwiązanie problemu. Wzorzec nie sprawdza się w problemach o dużym rozdrobnieniu zadań. Wówczas dochodzi do sytuacji, w której wykonawcy realizują poszczególne zadania szybciej, niż zarządca jest w stanie je generować i rozdzielać [6].

Rysunek 5: Wzorzec Master-Slave. Źródło: Opracowanie własne.

2.4.2. Wzorzec Fork-Join

Wzorzec Fork-Join to jeden z najczęściej stosowanych wzorców. Wykonywanie programu rozpoczyna się w ramach jeden wątku głównego. W momencie, gdy w kodzie programu pojawia się instrukcja, która wymaga równoległego przetwarzania, tworzone są dodatkowe wątki poboczne. Dopóki wszystkie wątki poboczne nie zakończą równoległej pracy i nie zostaną zniszczone, wątek główny nie może wznowić wykonywania sekwencyjnej części kodu. Etap "fork" polega na ustaleniu argumentów, które następnie otrzymuje każdy wątek. Etap "join" łączy wyniki po zakończeniu pracy wszystkich wątków równoległych. Etapy "fork" i "join" mogę wykonywane być dowolną ilość razy. [4].

Rysunek 6: Wzorzec Fork-Join. Źródło: Opracowanie własne.

2.4.3. Wzorzec Map-Reduce

Wzorzec Map-Reduce jest podobny do wzorca Fork-Join. Dane wejściowe są przetwarzane równolegle przez wiele wątków. Następnie wszystkie uzyskane wyniki są łączone, aż do momentu uzyskania jednego rozwiązania. W działaniu obydwa wzorce są prawie identycznie, jednak wywodzą się z różnych pomysłów. Idea mapowania pochodzi z technik stosowanych w funkcjonalnych językach programowania. Kilka mapowań może być połączonych w łańcuchy składające się na większe funkcje. Etapy "map" i "reduce" są od siebie bardziej niezależne niż etapy "fork" i "join". Mapowanie może występować bez redukcji, a redukcja bez mapowania [4].

Rysunek 7: Wzorzec Map-Reduce. Źródło: Opracowanie własne.

2.4.4. Wzorzec Work Pool

Wzorzec puli zadań (Work Pool) wykorzystywany jest w algorytmach, w których zadania generowane są dynamicznie lub gdy istotnie różnią się złożonością. Zadania przechowywane są w strukturze danych, która dostępna jest w pamięci współdzielonej. Najczęściej wykorzystywane struktury to lista, kolejka priorytetowe czy tablica z haszowaniem. W momencie, gdy wątek zakończył obliczanie zadania, dostarczane jest mu kolejne zadanie przechowywane w strukturze [6].

Rysunek 8: Wzorzec Work Pool. Źródło: Opracowanie własne.

2.4.5. Wzorzec Pipeline

Wzorzec Pipeline polega na potokowym przetwarzaniu danych. Nazywany jest również metodą producenta i konsumenta. Strumień danych przekazywany jest do kolejnych wątków, które modyfikują oryginalny strumień. Każdy z wątków wykonuje inny rodzaj obliczeń, które tworzą etapy potoku. Dane wyjściowe jednego etapu stają się danymi wejściowymi kolejnego etapu. Stosowanie wzorca jest efektywne, jeśli czasy realizacji poszczególnych etapów są podobne [6].

Rysunek 9: Wzorzec Pipeline. Źródło: Opracowanie własne.

3. Przegląd literatury

Rozdział trzeci zawiera przegląd publikacji naukowych. Tematem omawianych prac są różne metody programowania równoległego stosowane w algorytmach uczenia maszynowego.

3.1. Równoległa konstrukcja algorytmu C4.5

W artykule [8] zostało przedstawionych kilka strategii konstrukcji algorytmów drzew decyzyjnych, które oparte są o techniki takie jak: równoległość zadań, równoległość danych oraz równoległość hybrydowa. W pracy zaprezentowana została autorska implementacja równoległej konstrukcji drzewa decyzyjnego algorytmem C4.5. Na zakończenie autorzy przedstawili wyniki działania algorytmu i postawili wstępne wnioski dotyczące jego działania.

Artykuł rozpoczyna się od zaprezentowania trudności, które pokazują, jak złożonym zadaniem jest implementacja równoległych algorytmów do budowy drzew decyzyjnych. Wymienione zostają m.in. problemy z zastosowaniem statycznego, jak i dynamicznego przydzielania procesorów. Nieregularny kształt drzewa, który określany jest dopiero w momencie działania programu, jest dużą przeszkodą do stosowania statycznej alokacji. Takie podejście prowadzi najczęściej do nierównomiernego rozłożenia obciążenia. W przeciwnej sytuacji, gdy dane przetwarzane są przez dynamicznie przydzielane procesory, problemem staje się konieczność zaimplementowania przekazywania danych. Współdzielenie danych jest wymagane, ponieważ część danych związanych z rodzicami musi dostępna być również dla potomków.

Autorzy szczegółowo opisują różnice pomiędzy równoległością zadań, równoległością danych oraz równoległością hybrydową. Równoległość zadań określana jest jako dynamiczne rozdzielanie węzłów decyzyjnych między procesory, w celu kontynuowania ich rozbudowy. Wadą takiego podejścia jest konieczność replikacji całego zbioru treningowego lub, alternatywnie, zapewnienie dużej ilości komunikacji pomiędzy procesorami. Równoległość danych przedstawiona jest jako wykonywanie tego samego zbioru instrukcji algorytmu przez wszystkie zaangażowane procesory. Zbiór treningowy zostaje podzielony pionowo lub poziomo. Podział poziomy (horyzontalny) polega na na takim podziale danych między procesory, że każdy z nich odpowiedzialny jest za inny zestaw przykładów ze zbioru treningowego. Podział pionowy (wertykalny) rozdziela przetwarzanie poszczególnych atrybutów między procesory.

Autorzy zwracają uwagę, że przetwarzanie z pionowym podziałem danych narażone jest na wystąpienie nierównowagi obciążenia. Równoległość hybrydowa scharakteryzowana jest jako połączenie równoległości zadań oraz danych. Dla węzłów, które muszą przetworzyć dużą liczbę przykładów, wykorzystywana jest równoległość danych. W ten sposób unika się

problemów związanych z nierównomiernym obciążeniem. W przypadku węzłów z przypisaną mniejszą ilością przykładów czas, potrzebny do komunikacji może być większy niż czas potrzebny do przetwarzania przykładów. Zastosowanie równoległości zadań w takie sytuacji pozwala uniknąć dysproporcji.

W kolejnej części artykułu przestawiona została implementacja równoległej konstrukcji drzewa decyzyjnego. Program został stworzony do wykonywania w środowisku pamięci rozproszonej, w której każdy z procesorów ma własną pamięć prywatną. Autorzy zaproponowali takie podejście, ponieważ ma ono rozwiązywać dwa problemy wspominane na początku pracy: równoważenie obciążenia oraz konieczność przekazywania danych. Każdy z procesorów ma za zadanie tworzyć własne listy atrybutów i klas na podstawie przydzielonych podzbiorów przykładów. Wykorzystanie obydwu list jest kluczem do osiągnięcia efektywnego paralelizmu. Wpisy w liście klas zawierają etykietę klasy, indeks globalny przykładu w zbiorze treningowym oraz wskaźnik do węzła w drzewie, do którego należy dany przykład. Listy atrybutów również zawierają wpis dla każdego przykładu z atrybutem, jak również indeks wskazujący na odpowiadający wpis w liście klas. Każdy procesor znajduje własne, najlepsze podziały lokalnego zbioru dla każdego atrybutu. Następnie komunikuje się z pozostałymi procesorami, w celu ustalenia jednego, najlepszego podziału. Po podziale (utworzeniu węzła) następuje aktualizacja list atrybutów przez każdy procesor, dokonana poprzez rozdzielenie atrybutów w zależności od wartości wybranego atrybutu dzielącego.

Zaprezentowane przez autorów wyniki określone są jako wstępne i wymagające udoskonaleń. Autorzy zdecydowali się jednak na wykorzystanie ich do przewidzenia oczekiwanego
zachowania algorytmu. Implementacja wykorzystuje takie same kryteria oceny jak stosowane w algorytmie C4.5, dlatego autorzy skupili się głównie na analizie czasu potrzebnego do
zbudowania drzewa. Do wszystkich testów wykorzystany był zestaw danych syntetycznych
Agrawal, w którym każdy przykład ma dziewięć atrybutów (pięć ciągłych i trzy dyskretne).

Z przedstawionych rezultatów testów wynika, że algorytm wykazał dobre wyniki przyspieszania. Twórcy artykułu przeprowadzili również testy mające na celu sprawdzenie skalowalności. Jak w pierwszym przypadku, testy wykazały, że algorytm osiąga dobre wyniki skalowania.

3.2. Zestawienie artykułów

W literaturze można znaleźć wiele artykułów na temat metod programowania równoległego, które wykorzystywane są do optymalizacji algorytmów konstruujących drzewa decyzyjne. W pracach przedstawione są implementacje różnych wzorców programowania równoległe-

go. W celu przybliżenia różnorodności oraz przedstawienia dokładniejszego obrazu na temat wykorzystywanych wzorców i metod, artykuły zestawione zostały w tabeli.

Tabela 2 zawiera odnośniki do tytułów artykułów, słowa kluczowe oraz krótki opis przybliżający tematykę poruszaną w każdym z artykułów.

Artykuł	Słowa kluczowe	Opis
[9]	równoległość	Autorzy przedstawili oraz porównali wydajność czterech
	wewnątrzwęzło-	metod do równoległej implementacji algorytmu C4.5.
	wa, równoległość	W analizie uwzględniony został rodzaj danych wykorzy-
	międzywęzłowa	stywanych do konstrukcji drzewa, który okazał się mieć
		duży wpływ na wyniki wydajności porównywanych me-
		tod. Wyszczególnione zostały trzy rodzaje techniki we-
		wnątrzwęzłowej, które wykorzystują zrównoleglanie prze-
		twarzania danych. Równolegle przetwarzane mogą być re-
		kordy, atrybuty lub ich kombinacja (podejście hybrydo-
		we). W technice międzywęzłowej równolegle przetwarza-
		ne są całe węzły – wszystkie operacje, które muszą zo-
		stać przeprowadzone do stworzenia węzła, wykonywane
		są przez jeden wątek.
[10]	węzły Hoeffdin-	Autorzy artykułu zdecydowali się na zrównoleglanie tylko
	ga, architektura	fragmentów algorytmu tj. szukania najlepszego atrybu-
	Master-Slave	ty do podziału węzła. Zadania przydzielane przez głów-
		ny procesor (master) innym procesorom (slave) polegają
		na obliczenia zysku informacyjnego dla określonego atry-
		butu. Zastosowana architektura oraz zrównoleglanie tylko
		wyszukiwania atrybutów skutkuje jednak w niskiej skalo-
		walności. Pomimo tego, testy wykazały, że przyspiesze-
		nie działania algorytmu jest dość efektywne. Dzięki za-
		stosowaniu nierówności Hoeffdinga, do podziału drzewa
		nie muszą być używane wszystkie dane. Ma to dodatko-
		wy wpływ na szybkość działania algorytmu.

[11]	równoległość	W artykule przedstawiono algorytm ParDTLT. Algorytm
	w węźle, duże	jest równoległą wersją algorytmu DTLT (Decision Tre-
	zbiory danych	es from Large Training sets), który nie wymaga ładowa-
		nia w całości wszystkich danych treningowych do pamięci
		komputera. ParDTLT oparty jest na idei sekwencyjnej bu-
		dowy struktury drzewa oraz równoległym przetwarzaniu
		danych w każdym węźle. W danym czasie wszystkie pro-
		cesory dostępne są dla jednego węzła. W węźle uprzywile-
		jowanym tworzona jest kolejka atrybutów, dla których ob-
		liczany jest zrównoważony zysk informacji. Analiza kolej-
		nych atrybutów przydzielane są procesorom do momentu,
		aż kolejka będzie pusta. Pozostałe węzły drzewa czekają,
		aż staną się węzłem uprzywilejowanym. Autorzy artykuły
		przeprowadzili testy algorytmu, które wykazały, że ParD-
		TLT jest szybszy od algorytmów jak np. DTLT czy C4.5.
[12]	pamięć	Modyfikacjom został poddany algorytm ID3. Przedsta-
	współdzielona,	wiono dwie różne implementacje wykorzystujące równole-
	algorytm ID3	głość. Pierwsza polega na stworzeniu tylu wątków, ile ist-
		nieje atrybutów, dla których obliczony musi zostać przy-
		rost informacji. Gdy atrybut dzielący zostanie odnalezio-
		ny, tworzony jest węzeł. Następnie ponownie tworzone są
		kolejne wątki, które przetwarzają atrybuty nowo powsta-
		łych węzłów. Dopiero gdy wszystkie wątki zakończą pra-
		cę, z dostarczonych wyników składane jest drzewo. Różni-
		ca w drugiej implementacji polega na wykorzystaniu pa-
		mięci współdzielonej, dzięki czemu algorytm jest bardziej
		wydajny pamięciowo. Węzeł główny jest współdzielony,
		dlatego każdy nowy węzeł może być tworzony, gdy tylko
		atrybut dzielący został odnaleziony.

[19]	-1	IDə	W/
[13]	algorytm	ID3,	W pracy został zaprezentowany równoległy algorytm do
	wzorzec	Map-	budowy drzewa decyzyjnego, który oparty jest na mode-
	Reduce		lu Map-Reduce. W pierwszej części, przedstawione zo-
			stały dwie główne metody podziału danych – metoda
			dynamiczna i statyczna. Podobnie jak w [8], w ramach
			statycznej metody podziału danych wyróżniony został
			podział pionowy i poziomy. Autorzy proponują zmody-
			fikowaną implementację algorytmu ID3 z wykorzysta-
			niem biblioteki <i>MapReduce</i> . Dane prezentowane są ja-
			ko para (klucz, wartość). Etap "map" polega na piono-
			wym i poziomym podziale danych oraz generowaniu par
			klucz-wartość. Etap "reduce" zawiera w sobie sumowa-
			nie częściowych wyników, odnalezieniu najlepszego atry-
			butu oraz przeprowadzaniu podziału. Omówiony na ko-
			niec przykład potwierdza, że tak skonstruowany algorytm
			jest w stanie w efektywny sposób przetwarzać duże ilości
			danych.

Tabela 2: Zestawienie artykułów poruszających tematykę równoległości w algorytmach drzew decyzyjnych

Spis tabel

1	Tabela decyzyjna dla $m = 5$, $ dom(y) = 3$, $ dom(a_1) = 2$, $ dom(a_2) = 2$,	
	$ dom(a_3) = 4 i n = 3. \dots$	2
2	Zestawienie artykułów poruszających tematykę równoległości w algorytmach	
	drzew decyzyjnych	21
Spis	rysunków	
1	Proces sekwencyjny. Źródło: Opracowanie własne na podstawie [6]	10
2	Proces współbieżny. Źródło: Opracowanie własne na podstawie [6]	11
3	Procesy wykonywane metodą przeplotu. Źródło: Opracowanie własne na pod-	
	stawie [6]	11
4	Procesy równoległe. Źródło: Opracowanie własne na podstawie [6]	12
5	Wzorzec Master-Slave. Źródło: Opracowanie własne	13
6	Wzorzec Fork-Join. Źródło: Opracowanie własne.	14
7	Wzorzec Map-Reduce. Źródło: Opracowanie własne	15
8	Wzorzec Work Pool. Źródło: Opracowanie własne	15
9	Wzorzec Pipeline. Źródło: Opracowanie własne.	16

Literatura

- [1] Kozak, J., & Juszczuk, P. (2016). Algorytmy do konstruowania drzew decyzyjnych w przewidywaniu skuteczności kampanii telemarketingowej banku. Studia Informatica Pomerania nr 1/2016 (39). doi: 10.18276/si.2016.39-05
- [2] Lior Rokach, Oded Maimon. Data Mining with Decision Trees. Theory and Applications. World Scientific Publishing Company. Israel, 2014.
- [3] Dariusz Majerek. Eksploracja danych. [Online] https://dax44.github.io/datamining/drzewa-decyzyjne.html#w%C4%99z%C5%82y-i-ga%C5%82%C4%99zie. Dostęp: 02.12.2022
- [4] OpenCSF Project. [Online] https://w3.cs.jmu.edu/kirkpams/OpenCSF/Books/csf/html/ParallelDesign.html. Dostep: 12.12.2022
- [5] Andrzej Karbowski, Ewa Niewiadomska-Szynkiewicz. Programowanie równoległe i rozproszone. Oficyna Wydawnicza Politechniki Warszawskiej. Warszawa, 2009.
- [6] Czech Zbigniew J. Wprowadzenie do obliczeń równoległych. Wydawnictwo Naukowe PWN. Wyd. 2, 2013.
- [7] Krzysztof Banaś, Skrypt. Programowanie równoległe i rozproszone. Wydział Fizyki, Matematyki i Informatyki Politechniki Krakowskiej. Kraków, 2011.
- [8] Amado, N., Gama, J., & Silva, F. (2001). Parallel Implementation of Decision Tree Learning Algorithms. Lecture Notes in Computer Science, 6-13. doi:10.1007/3-540-45329-6_4
- [9] Kubota, K., Nakase, A., Sakai, H., & Oyanagi, S. (2000). Parallelization of decision tree algorithm and its performance evaluation. Proceedings Fourth International Conference/Exhibition on High Performance Computing in the Asia-Pacific Region. doi:10.1109/hpc.2000.843500
- [10] Cal, P., & Woźniak, M. (2013). Parallel Hoeffding Decision Tree for Streaming Data. Advances in Intelligent Systems and Computing, 27-35. doi:10.1007/978-3-319-00551-5_4
- [11] Rcega, A. F.-A., Suarez-Cansino, J., & Flores-Flores, L. G. (2013). A parallel algorithm to induce decision trees for large datasets. 2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT). doi:10.1109/icat.2013.6684045

- [12] Maheshwari, S., Jatav, VK., & Meena, YK. (2011). Improved ID3 Decision Tree Generation using Shared-Memory and Multi-Threading Approach. 2011 International Conference on Education Technology and Computer (ICETC 2011). doi:10.13140/2.1.3216.2247
- [13] Gu, Y., Shi, G., Cai, H., Chen, Y. & Sun, Y. (2013). Research of Parallel Decision Tree Algorithm Based on Mapreduce. Information Technology Journal, 12: 7345-7352. doi: 10.3923/itj.2013.7345.7352