Design And Analysis of Algorithms -Assignment-01

Manne - Piyush Pandey Section - CCIG-CIS

University Rall No-2014996 Class Rall No- 23

1. A symptotic Notations - These notations are used to tell the complexity

of an algorithm when the input is large.

(i) Theta (0): It gives the Second in which the function will fluctuate. That gives

the "tight upper and lower bound" both.

(ii) Big-On (0): O giver the "tight upper" bound of fin), where, frai = O(gcn).

It implies fins convener go beyond gon.

in Omega (r): fous = regens

gens is "tight lower" & leocurd of fras. uttich geves, flas will never perform better than gens.

2. Time Complexity: for(i=1 to n) Li=i+2}

) i= 1,2,4,8,...n | 1 = 1, A= 2 = 2.

: fk= ay 44 = 1x(2)K-1

 $\Rightarrow f_K = \frac{2^K}{2} \Rightarrow 2n = 2^K.$

on taking $log_2 j$ - $K log_2 2 = log_2 2 + log_2 n$

K = log_2(N+1 K = logg cons : Jime Comp. =) Ton) = O (log_cns) the Tons = 2 3Ton-1) if n>0, otherwise 1} TCN = 1. 3 TCM = 3TCM+1 -0 put N= cn+s in eq O 8 TCn-1) = 3TCn-2), put this value in eq 1. → Tcn) = 3[3T(n-2)] = 9.T(n-2) Similarly, Ten = 27.T(n-3) and the state of the second of the second of the second Ton = 34. T(n-k) -3 T(n-K)=1 # : n= K+1 or k=n-1. ·· T(n) = 3n-1. T(1) = 3n-1. T(n) = 0 (37) / Aug 1 1. 36 4 4 28 1. 1. 1. 4. Ton = 2.T(n-1) -1 TCI) = 1. + Ton = 2. Ton-1 - 1. put n=n+, then we get. → Tcn) = 2[2, T(n-1)-1]-1 $=2^2 \cdot T(n-2) - 2 - 1$ put n=n-2, they we get. > Tcn) = 23. Tcn-3) - 4-2-1

$$T(n) = 2^{k} (T \cdot (n-k)) - 2^{n-k} 2^{n-2} ... 2^{n-k}$$

$$T(0) = 1$$

$$m-k = 1$$

$$n = 1+k. \quad or = k = n-1.$$

$$T(n) = 2^{n-1} ... T(1) - 2^{n-1} - 2^{n}$$

$$T(n) = 2^{n-1} - 2^{n-1} - 2^{n}$$

$$T(n) = 0 \text{ (1)} \quad f_{nk}$$

5.
$$T(n) = 0 \text{ (1)} \quad f_{nk}$$

5.
$$T(n) = 0 \text{ (1)} \quad f_{nk}$$

7.
$$T(n) = \frac{n}{2} \times log(n) \times log(n)$$

$$= \frac{m}{2} \cdot (log(n))^{2}$$

$$\therefore T(n) = 0 \text{ (n. } log(n)^{2}) \quad f_{nk}$$

8.
$$T(n) = n \times n \times n$$

$$T(n) = n \times n \times n$$

$$T(n) = n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n$$

$$T(n) = n \times n \times n \times n$$

$$T(n) = n \times n \times n$$

$$T($$

- 10. At the growth of palynomials is slow. so, exponential has upper bound of O(aa), fer a= 2, no = 2.
 - 11. T(n) = Q(su).
 - 12. Recursince Relation for fishonaci Series:

het TCOH) ~ TCO-25

Ton) = 2 Ton-1) + 1, apply Backward

-O substitution.

put n = n-1 in ead

Ton = 2.2. Ton-2) + 2 + 1

put n = n-2 ia eq 0.

-> T(n) = 2.2.2. T(n-3) + 84+2+1.

:. T(n) = 2 F. T(n-K) +2 F + KA

3 n-K= \$1 8/= K= n-1

Tons = 2n. $T(n-k) + 2^{n} + 2^{n}$ $= 2^{n-1} + 2^{n-1} = 2^{n}$ $Tons = 0(2n) \int_{-\infty}^{\infty} ds$

13. $\frac{T(n)}{int} = O(n \log u).$ ## void funct! (int n) $\int_{0}^{\infty} for(i=1 \text{ fon } i \text{ } i+t)$ $\int_{0}^{\infty} for(j=1 \text{ fon } n \text{ } i \text{ } j \text{ } j \text{ } t \text{ } 2)$ $\int_{0}^{\infty} for(j=1 \text{ fon } n \text{ } i \text{ } j \text{ } t \text{ } 2)$

```
T(n)=0(n3)
  # Void fund2(ut4)
    L'int count=0;
for(i=alton; i++)
         for (j=0.tor, j++)
           for (K=0 to m, K++)
                cocent++;
     Tons-flag (logn))
 # void fund 3 ( Lut n)
      int count = 0;

for(i=n;i>1; l=pow(i,k))
14. Ton) = Ton(4) + Ton/2) + cn/2
   Assume, T(n/2) > T(n/4)
        : - T(n) = 2T(n/2) + cn2
        K = \log_b a = \log_2^2 = 1
  KnK = f(n)
  := \left| T(n) = O(n^2) \right|  And
15. T(n) = O(n logn) his
16. T(n) = O(log(log(n)). My
17. T(n) = T(9n/10) + T(n/10) +O(n)
      for 99% and 1%.
   Toni= T (99/100) + T(10/100) + O(n)
```


for 10%, To = O(log100 n.m) or shorter branch for 99%, To = O(log100)aann) or longer branch either way base complexity remains same as

Ton = O(nlogn).

18. (a) 100 $\angle \sqrt{n}$ $\angle \log(\log n)$ $\angle \log n$ \angle

(b) $1 < \log(\log n) < \sqrt{\log n} < \log n < \log n < \log 2n < 2\log n$ $< n < \log n < 2n < 4n = 2(2^n) < n! < n^2$

(c) $96 < log_2 n < log_3 n! < n log_2 n < n log_6 n < 5n$ $< n! < 8n^2 < 7n^3 < 8^{2n}$

19. Linear_Search (Am, n, Key, flag)

& Begin,

for (i = 0 to (n-1) by 1)

if (Arr[i] = fap) set flag = 1, break;

if flag = 1 eke return -1 end & 20. Lucertion Soit -2terative insertion Sort (int a [], int n) L for (i=1 to no ly 1) h Value = 9 [17, j=1; while lg >0 and ali-17-val) $\mathcal{L}_{acjl} = acj-17;$ 4 acj7=val; S(WRW)

Recursive ->

insustionSort (int at I, ind i, ind m) L int val = atig . j = 1while (j > 0 and q t = 1) > value) L at j = a t = 1; j = -i; j = -i; j = i = i = i; j = i

· American sort is called outine Sort, because on outine platform, one doesnot know the input tize, and we want some aftimum result, unide it provides.

21.		Best	Average	Worst
Ø1.	Selection	JL (N2)	Ocnes	O(n2)
	Bubble	J(n)	OCN2	0 (n2)
	Merge	n(n logn)	O(n(ogn)	(n logn)
	Heap	scnlegn.	o(nlogn)	O(nlogn)
	Quertion	2 (n)	0(n2)	O(n2)
	Quick	sc(n(ogn)	O(n(ogn)	$O(n^2)$

- 22. Bubble sort, insertion sort and relection bast eve interfaced sorting algorithm.
 - · Bubble sort and insertion sort con le applied as stable algo leut selection sort connot.
 - · Murge fort is a stable algo but not an implace algo.
 - . Quick sort is not stable but is an implace algo.
 - . Mag Sort is an implace algo-lint not stable

or how , will be given the man tan ever a size , so it so

the factor of th

3. Storative Binary Search :-

```
int binary Search (int am [o], int l, intr, intr)

Leoulle (l <= r)

fut m = (l+r)/2;

if (arr [m] = x)

return m;

if (arr [m] < x)

l = m+1;

else

r = m-1;

return -1;
```

It. linear. Best > O(1), Av. O(n), Worst. O(n)

0(1)

It. Burary.

OU

 $O((eg_2n)$

O(log,n)

OCI

Recu. Bivony

0(1)

0 (log=n) 0 (log=n)

Best - O(1), Av -0 ((0g2n)

worst - O (logen).

T(n) = T(n/2) +1 = sy 24.