Problema 1

Calcula la densidad superficial de carga en la superficie externa (r=b), de un cascaron conductor que tiene una carga total de 10 μC, si en el interior del cascaron se encuentra una esfera aislante de radio a y con densidad de carga volumétrica de uniforme de 20 μC/m³. Considera a=0.1 m y b= 0.3 m

Respuesta

•
$$\sigma = 8.92 \ \mu C/m^2$$

b)
$$\sigma = 0.92 \, \mu \text{C/m}^2$$

•
$$\sigma = 4.02 \ \mu C/m^2$$

Problema 2

Una barra delgada de longitud L lleva una densidad de carga lineal uniforme λ y se ubica sobre el eje X,

$$\vec{E} = \frac{1}{x^2} \vec{u}_y$$
, calcula la fuerza

desde x=L hasta x=2L, si esta dentro de un campo eléctrico dado por: eléctrica que actúa sobre la barra.

Respuesta

Problema 3

Se colocan dos cargas como se muestra en la figura. La magnitud de q₁ es de 3 μC pero se desconoce el signo y el valor de la carga q₂.La dirección del campo eléctrico neto en el punto P está enteramente en la dirección Y negativa. Calcula la magnitud del campo eléctrico

Respuesta

a)
$$E = 1.17 \text{ N/C}.$$

b) $E = 0.17 \times 10^7 \text{ N/C}.$
c) $E = 1.17 \times 10^7 \text{ N/C}.$
d) Ninguno

Problema 2

Si una carga -2q se encuentra en el origen de coordenadas, otra carga q se encuentra en (a,0) y una tercera carga q se encuentra en (-a,0), calcula el campo eléctrico en la posición (0,y) considerando que y>>a.(NO OLVIDES APLICAR TAYLOR)

Respuesta

$$\vec{E} = -\frac{3qa^2}{4\pi\epsilon_0 y^4} \vec{u}_y \qquad \vec{E} = \frac{qa^2}{4\pi\epsilon_0 y^4} \vec{u}_y \qquad \vec{E} = -\frac{3qa^2}{4\epsilon_0 y^2} \vec{u}_y \qquad \text{d) Ninguno}$$

La carga Q está distribuida uniformemente a lo largo del eje positivo Y entre y=0 y y=a, otra carga puntal - q se encuentra en el eje positivo X, a una distancia x del origen. Calcula la magnitud de la fuerza que la distribución de carga Q ejerce sobre -q.

$$\vec{F} = \frac{qQ}{4\pi\varepsilon_0} \left[-\frac{\vec{u}_x}{x\sqrt{x^2 + a^2}} + \left(\frac{1}{x} - \frac{1}{\sqrt{x^2 + a^2}} \right) \vec{u}_y \right]$$

$$\vec{F} = \frac{qQ}{4\pi\varepsilon_0} \left[-\frac{\vec{u}_x}{x\sqrt{x^2 + a^2}} + \frac{1}{a} \left(-\frac{1}{\sqrt{x^2 + a^2}} \right) \vec{u}_y \right]$$

$$\vec{F} = \frac{qQ}{4\pi\varepsilon_0} \left[-\frac{\vec{u}_x}{x\sqrt{x^2 + a^2}} + \frac{1}{a} \left(\frac{1}{x} - \frac{1}{\sqrt{x^2 + a^2}} \right) \vec{u}_y \right]$$
s)

d) Ninguno

Problema 1

Se tiene una distribución de carga compuesta de: un alambre infinito vertical con 10^{-6} C/m de densidad lineal de carga uniformemente distribuida y una esfera de 1m de radio con densidad volumétrica de carga dada por: ρ =Ar, donde A= 10^{-6} C/m⁴, cuyo centro se encuentra a 3m del alambre infinito, como se muestra en la figura. Calcula el modulo del campo eléctrico total a 1 m del alambre infinito sobre la línea que une una el alambre y el centro de la esfera.