α) Αφού το πολυώνυμο P(x) έχει παράγοντα το x-1, θα ισχύει ότι P(1)=0.

Eίναι
$$P(1) = 0 \Leftrightarrow 2-9+\alpha-2-6=0 \Leftrightarrow \alpha=15$$
.

β) Για
$$\alpha = 15$$
 έχουμε $P(x) = 2x^3 - 9x^2 + 13x - 6$.

i. Η διαίρεση $P(x):(x^2-3x+2)$ φαίνεται παρακάτω.

Η ταυτότητα της διαίρεσης είναι η εξής: $P(x) = (x^2 - 3x + 2)(2x - 3)$.

ii. Αξιοποιώντας την παραπάνω ταυτότητα διαίρεσης έχουμε :

$$P(x) < 0 \Leftrightarrow \left(x^2 - 3x + 2\right)\left(2x - 3\right) < 0$$

Το πρόσημο του πολυωνύμου $P(x) = (x^2 - 3x + 2)(2x - 3)$ φαίνεται στον παρακάτω πίνακα.

x	-∞	1	$\frac{3}{2}$	2	2 +∞
$x^2 - 3x + 2$	+		-	- (+
2x-3	-		- 0	+	+
P(x)	-	•	+ 0	- (+

Συνεπώς η ανίσωση $P(x) < 0 \Leftrightarrow \left(x^2 - 3x + 2\right)\left(2x - 3\right) < 0$ αληθεύει για κάθε $x \in \left(-\infty, 1\right) \cup \left(\frac{3}{2}, 2\right)$.

iii. Είναι $\ln 2 < \ln e \Leftrightarrow \ln 2 < 1$ οπότε αφού δείξαμε παραπάνω ότι P(x) < 0 για $\kappa \text{άθε } x \in \left(-\infty,1\right) \cup \left(\frac{3}{2},2\right) \text{, είναι } P(\ln 2) < 0 \text{ .}$