Metaheurísticas

Desde su origen, concepto y principales algoritmos Jesús Emmanuel Martínez García

Introducción

- Las metaheurísticas son estrategias de optimización de alto nivel.
- Diseñadas para guiar heurísticas hacia soluciones óptimas o casi óptimas.
- Propuesto el término por Fred Glover (1986).
- Usadas para resolver problemas complejos y no lineales.

Motivación

- Resolver problemas donde los métodos exactos son inviables por tiempo o costo.
- Aplicadas en:
 - Logística
 - Ingeniería
 - Inteligencia Artificial
 - Planificación y diseño

¿Qué son las metaheurísticas?

- Procedimientos generales de optimización aplicables a muchos tipos de problemas.
- No garantizan la solución óptima, pero buscan buenas soluciones en tiempo razonable.
- Inspiradas en:
 - Procesos naturales (evolución, física, comportamiento animal).
 - Estrategias probabilísticas y matemáticas.

Ejemplo visual

- Las metaheurísticas permiten escapar de mínimos locales.
- Combinan **exploración** (buscar nuevas zonas) y **explotación** (mejorar soluciones existentes).

Definición formal

Sea un problema de optimización:

- Minimizar o maximizar una función objetivo f(x)
- Sujeto a restricciones x ∈ S

Metaheurística: busca x* tal que $f(x*) \approx f(opt)$ en tiempo computacional reducido.

Características principales

- Independientes del tipo de problema.
- No requieren derivadas ni gradientes.
- Incorporan aleatoriedad.
- Manejan espacios no convexos o discontinuos.
- Permiten escapar de óptimos locales.
- Requieren una función objetivo clara.

Clasificación general

- Basadas en trayectorias (Trajectory-based):
 - Exploran una sola solución y la modifican iterativamente.
 - Ejemplo: Temple Simulado, Búsqueda Tabú.
- 2 Basadas en poblaciones (Population-based):
 - Mantienen un conjunto de soluciones.
 - Ejemplo: Algoritmos Genéticos, PSO, ACO.

Temple Simulado

(Simulated Annealing)

Origen

- Inspirado en el proceso físico del recocido del metal.
- Propuesto por Kirkpatrick, Gelatt y Vecchi (1983).
- Imitación del enfriamiento lento para alcanzar una estructura estable.

Principio básico

- Parte de una solución inicial.
- En cada iteración:
 - Genera una solución vecina.
 - Si mejora → se acepta.
 - Si empeora → puede aceptarse con cierta probabilidad que depende de la temperatura.

Fórmula de aceptación

Una solución peor x' se acepta con probabilidad:

$$P(aceptar) = exp(-(\Delta E) / T)$$

Donde:

- $\Delta E = f(x') f(x)$
- T = temperatura actual.

A menor temperatura → menor probabilidad de aceptar soluciones peores.

Pseudocódigo

- 1. Inicializar T = T0
- 2. Elegir solución inicial x
- 3. Mientras T > Tmin:
 - Generar solución vecina x¹
 - \circ Calcular $\Delta E = f(x') f(x)$
 - Si ΔE < 0 , aceptar x'
 - \circ Si $\Delta E > 0$, aceptar con exp($-\Delta E / T$)
 - Reducir T gradualmente
- 4. Devolver la mejor solución encontrada

Ventajas y desventajas

Ventajas:

- Escapa de óptimos locales.
- Fácil de implementar.
- Requiere pocos parámetros.

Desventajas:

- Alta dependencia del plan de enfriamiento.
- Puede ser **lento** en espacios grandes.

(Tabu Search)

Contexto histórico

- Propuesta por Fred Glover (1986).
- Extiende la búsqueda local usando memoria adaptativa.
- Evita volver a explorar soluciones ya visitadas.

Principio básico

- 1. Comenzar con una solución inicial.
- 2. Explorar el vecindario.
- 3. Seleccionar el mejor movimiento no tabú.
- 4. Actualizar la lista tabú.
- 5. Repetir hasta cumplir un criterio de parada.

Componentes clave

- Lista Tabú: movimientos prohibidos temporalmente.
- Criterio de aspiración: permite ignorar tabú si la solución es excelente.
- Intensificación: profundiza en buenas zonas.
- Diversificación: explora nuevas áreas del espacio.

Ventajas y desventajas

Ventajas:

- Evita ciclos.
- Excelente exploración global.
- Combinable con otras metaheurísticas.

Desventajas:

- Sensible al tamaño de la lista tabú.
- Costosa si el vecindario es muy grande.

Comparación

Temple Simulado vs Búsqueda Tabú

Característica	Temple Simulado	Búsqueda Tabú
Inspiración	Física (recocido)	Memoria adaptativa
Aceptación	Probabilística	Determinística (según lista tabú)
Memoria	No usa	Usa memoria explícita
Control	Temperatura	Lista tabú + estrategias
Escapa de óptimos	Aleatoriamente	Evitando ciclos

* Aplicaciones comunes

- Programación de tareas y horarios.
- Diseño de rutas de transporte.
- Optimización de redes.
- Diseño de circuitos.
- Machine Learning (tuning de hiperparámetros).

S Conclusión

- Las metaheurísticas equilibran exploración y explotación.
- Permiten resolver problemas complejos sin requerir métodos exactos.
- **Temple Simulado** y **Búsqueda Tabú** son pilares fundamentales en optimización moderna.

Referencias

- Glover, F. (1986). Future paths for integer programming and links to artificial intelligence.
- Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). *Optimization by Simulated Annealing*.
- Talbi, E.-G. (2009). Metaheuristics: From Design to Implementation. Wiley.