

National Chiao Tung University Institute of Electronic Engineering

CAD HW4 Modeling Mixed-Signal System and Simulating with AMS

Teaching Assistant: Chih-Yun Chou

Date: December 13, 2021

Lab: ED-413

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: Modeling Ideal Circuit with Verilog-A

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: Modeling Ideal Circuit with Verilog-A

What is AMS Designer

- Top-down system-on-chip simulation for complex mixed-signal designs
- A single executable simulator incorporating the fastest in digital and most flexible analog simulation capability
 - Digital: NC-Sim
 - Analog: Spectre
- Simulation of complex designs incorporating any and all of the following:
 - Verilog, VHDL
 - Verilog-A, Verilog-AMS, VHDL-AMS
 - Spectre
 - SPICE
 - Composer schematics

What is AMS Designer(cont.)

Mxed-Signal Electronic Design Automation Lab.

Mixed-Signal Simulation with Model

- The mixed-signal behavioral model simulation can verify:
 - System behavior is correct or not?
 - System requirement is met or not?
 - System performance is satisfied or not?
- Weaknesses:
 - Only time domain information can be obtained directly
 - All behavioral model should be converted into time domain
 - Other characteristics might be calculated from time domain data

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: Modeling Ideal Circuit with Verilog-A

Environment Setting

- NC-Verilog / Verilog-XL
 - e.g > source /usr/cad/cadence/CIC/incisiv.cshrc
- Spectre
 - e.g > source /usr/cad/cadence/CIC/mmsim.cshrc
- Composer / Virtuoso
 - e.g > source /usr/cad/cadence/CIC/ic_06.17.709.cshrc

Simulation Flow

Step 1. > virtuoso &

Step 2. Open library manager

- Create library
- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Open library manager

Simulation Flow

Create Verilog-A Cells

- Create library
- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Create a new cell view

- 1. Choose your library
- Input the name on the Cell Name column
- Choose the **VerilogA** type for Analog model
- 4. OK

Mxed-Signal Electronic Design Automation Lab.

Designing with Verilog-A

- Create library
- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Mxed-Signal Electronic Design Automation Lab.

Create Top Cell - Schematic

- Create library
- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Input the name on the Cell Name column and choose the Schematic

Create Top Cell - Schematic

- Create library
- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Add Instance: Create→instance (i)

Add connection: Create \rightarrow wire (w) Add input/output: Create \rightarrow pin (p)

Simulation Environment

 Open Analog Design Environment (ADE) in schematic editing window

Through Setup -> Simulator/Directory/Host

Give input information (1/2)

Give input information (2/2)

Choose Analysis Type

Mixed-Signal Electronic Design Automation Lab.

Save Output Nodes

Submit the Simulation

- Execute the simulation job with Run
- Tools → Results Brower

1.

Mxed-Signal Electronic Design Automation Lab.

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: Modeling Ideal Circuit with Verilog-A

Create Verilog Cells

Import Digital Design

X		Verilog In@linux12	×				
Import	Options Global Net Op	otions Schematic Generation Options					
	Verilog Files To Impor	t ams/amsta01/2018ams/DAC/Verilog/DAC	Â				
	Target Library Name	Digital_import					
	Reference Libraries	sample basic					
▶ Ove	erwrite Options						
▼ Im	port Modules as						
	Structural Module:	functional 🔽					
	Verilog Cell Module	s Create Symbol Only		File Edit View Design Ma		SE/ams/amsta01/Model – ^C	
	Schematic View Name	schematic		Show Categories	Show Files		П
	Netlist View Name		=	Library	Cell	View	ш
	Functional View Name			Filter: Ctrl-Enter to filter Digital_import	Filter: Ctrl-Enter to filte DAC	Filter: Ctrl-Enter to filter functional	Ш
╽┺	Symbol View Name	symbol symbol		DAC_modelwriter Digital_import	DAC	View A Lock Size functional	ш
▶ Filt	er Modules			PLL US_8ths ahdlLib		symbol	ш
▼ Other Ir	put Options			analogLib basic			н
	-f Options			cdsDefTechLib connectLib			н
	-v Options			functional			
	-y Options						
	Library Extension						

Design Hierarchy – AMS

 Before creating the top schematic cell (add instance and connection), creating a config view for AMS simulation

Create Config View for Simulation

- The mixed-signal simulation hierarchy is controlled by **Hierarchy-Editor**
 - It must have to be defined in the config cell view.

Set New Configuration

New Configuration@linux12	New Configuration@linux12
Select schematic view of top cell Cell: pll mix View: schematic Global Bindings Library List: Wew list: Stop List: Constraint List: Description OK Cancel Use Template Help	Library: PLL Cell: pll_mix View: schematic Change to your library Library List: PLL View List: nal systemVerilog schematic veriloga vhdl vhdlams wreal Stop List: symbol Constraint List: Description Default config view template for AMS netlister(s) in ADE. Note: Please remember to replace Top Cell Library, Cell, and View fields with the actual names used by your design.
Use Template@linux12 Template Name: AMS From File: /usr/ic/share/cdssetup/hierEditor/templates/AMS Select AMS simulator in template OK Cancel Apply Help	OK Cancel Use Template Help

Configuration Setting

Open Simulation Tool

- Finish create config
 - Click config at library manager to open simulation tool

• The simulation steps are the same as analog Confirm the title has "config"

Except give input information

Mxed-Signal Electronic Design Automation Lab.

Digital Stimulus

- Create a behavioral or functional view for the stimulus block
 - The stimulus (Verilog) could be created to symbol view as the same procedure with digital cell

```
//Verilog HDL for "PLL", "stimulus_D" "functional"

'timescale 1ns/10ps
module stimulus_D (rst);
output rst;
reg rst;
initial begin
    rst=1'b0;
    #1 rst=1'b1;
end
endmodule
```

Analog Stimulus

The analog stimulus can be added as circuit instance

Add Instance

Choose analogLib & vpulse cell

Set voltage & frequency

- 1. Setup
 - ✓ Simulator choose AMS
- 2. Analysis
 - ✓ Tran analysis
 - ✓ Set simulation time and enable
- 3. Outputs
 - ✓ Save all or select on design
- 4. Run
- 5. Waveform viewer

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: Modeling Ideal Circuit with Verilog-A

PLL Analog Model

- All Verilog-A models are given
 - PFD, CP, LF, VCO, sin2plus, divider
- Import the Verilog-A models and setup ADE

Additional Description

- Connection
 - Connect up (sigout_A) signal of PFD to siginc signal of CP
 - Connect <u>dn</u> (<u>sigout_B</u>) signal of <u>PFD</u> to <u>sigdec</u> signal of <u>CP</u>
 - Connect in signal of divider to sin2pulse
 - Charge pump(CP)
 - Connect vsrc to GND
- VDD = 1.8V GND = 0V
- Simulator: **spectre**
- Input
 - Fin=50M Hz : Set the ADE Stimuli
- Simulation time $\geq 6 \mu s$
 - Related to the lock time of PLL

Results

Show the waveform of vctrl signal and schematic view

Top schematic cell Observe the waveform of Vctrl **Open Results Brower**

Mxed-Signal Electronic Design Automation Lab.

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: Modeling Ideal Circuit with Verilog-A

PLL Mixed-Signal Model

- All models are given
 - Analog model (Verilog-A): PFD, CP, LF, VCO, sin2plus
 - Digital model (Verilog): divider
- Import all models and create a testbench
 - Testbench: generate rst signal for divider

Mxed-Signal Electronic Design Automation Lab.

Additional Description

- Connection
 - Connect up (sigout_A) signal of PFD to signal of CP
 - Connect <u>dn</u> (<u>sigout_B</u>) signal of <u>PFD</u> to <u>sigdec</u> signal of <u>CP</u>
 - Connect in signal of divider to sin2pulse
 - Charge pump(CP)
 - Connect vsrc to GND
- VDD = 1.8V GND = 0V
- Simulator: AMS
- Input
 - Fin=50M Hz, Adding voltage source instance
- Simulation time $\geq 6 \mu s$
 - Related to the lock time of PLL

Results

• Show the waveform of vctrl, output of the divider and schematic view

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: Modeling Ideal Circuit with Verilog-A

Description

- Create a system includes:
 - A DAC Verilog-A model
 - A clock counter
 - Generate a 3-bits bus for DAC model
 - Digital input -> the testbench includes three signals:
 - Reset
 - Enable
 - clk

DAC Verilog-A Behavioral Model

A 3-bit counter-controlled D/A Converter

Type: binary weighted D/A Converter

$$\sum I = V_{REF} \left(\frac{B_3}{R} + \frac{B_2}{2R} + \frac{B_1}{4R} + \frac{B_0}{8R} \right)$$

$$V_{OUT} = I \cdot R_f = V_{REF} \left(B_3 + \frac{B_2}{2} + \frac{B_1}{4} + \frac{B_0}{8} \right)$$

$$V_{OUT} = V_{REF} \sum \frac{B_i}{2^{n-i-1}}$$

$$= V_{REF} \cdot \text{Digital Value} \cdot \text{Resolution}$$

Parameters of Ideal DAC Model

- Non-multiplier Reference Voltages: 0.8 V
- Resolution : 3bit $\rightarrow 0.2 \text{ V}(V_{LSB})$
- R=1k, Rref=R
- Linearity

Out (V)		
0		
-0.2		
-0.4		
-0.6		
-0.8		
-1.0		
-1.2		
-1.4		

Circuit Behavior:

Mxed-Signal Electronic Design Automation Lab.

BM Results

- Hand in:
 - The waveform of outputs of counter and DAC model respectively
 - Schematic cellveiw

Choose two nets:

Hand in

- Please upload a compressed file includes:
 - Programming files (Verilog and Verilog-A files)
 - Lab2: Stimuli (testbech.v)
 - Lab3: DAC.va, counter.v, testbench.v
 - Mini report
 - Three simulation waveforms
 - Lab1: Analog simulation (Vctrl)
 - Lab2: Mixed-signal simulation (Vctrl & output of the divider)
 - Lab3: Outputs of counter and DAC (outputs of counter and DAC model)
 - Three schematic cellviews
 - What you have learned from this homework
 - Questions and solutions
- Deadline: 23:55, January 3(Mon), 2022