Lecture 13

Structural Equations

Usually take the form endogenous = f(endogenous, exogenous).

Example 1:

$$\begin{cases} Q^D = \alpha_0 + \alpha_1 P + \alpha_2 Y + u \\ Q^S = \beta_0 + \beta_1 P + \beta_2 r + v \\ Q^D = Q^S \end{cases}$$

- The variables are:
 - Q^D : quantity demanded, Q^S : quantity supplied;
 - o P: price;
 - \circ Y: income, r: rainfall.
 - To know more about the *rainfall* variable, see the Model IV in Professor <u>Jeffrey A. Parker</u>'s <u>notes</u> and Section 9.2, p. 253, of <u>Hanushek & Jackson, 1977</u>.
- There are 2 behavioral equations and 1 equilibrium condition.
- More on simultaneous supply and demand equations here.

$$\begin{array}{c|c}
r, Y \\
\hline
S(r) = D(Y)
\end{array}$$

- The system has 2 endogenous variables ($Q\equiv Q^D=Q^S$ and P) and 3 exogenous variables (Y,r and the constants*).
 - Didactically, the constants will be the column of ones added to the model, which multiplies α_0 , β_0 etc.
 - \circ The number of endogenous variables will be denoted as G.
 - In the supply and demand model above, G=2.
 - \circ The number of exogenous variables will be denoted as K.
 - In the supply and demand model above, K=3.

Example 2:

$$\begin{cases} C_t = \alpha_0 + \alpha_1 Y_t^D + \alpha_2 Y_{t-1}^D + u_t \\ I_t = \beta_0 + \beta_1 Y_t + \beta_2 Y_{t-1} + v_t \\ Y_t = C_t + I_t + G_t \\ Y_t^D \equiv Y_t - T_t \end{cases}$$

- The variables are:
 - C_t : consumption, I_t : investment, Y_t^D : disposable income;
 - G_t : government spending, Y_t : income, T_t : taxes.
- There are 2 behavioral equations, 1 equilibrium condition and 1 identity.
- The system features:
 - 4 endogenous variables (Y_t, C_t, I_t, Y_T^D) ;

- \circ 2 predetermined variables (Y_{t-1}^D , Y_{t-1}), which were endogenous in the previous step (t-1), but now work as if they were exogenous;
- 3 exogenous variables (G_t , T_t and the constants).

Another type of equation that can feature in simultaneous models is the technical equation.

- One notable example is the production function Y = f(K, L).
 - E. g., $\ln Y = d_0 + d_1 \ln K + d_2 \ln L$.
- Rather than modeling a behavior, this type of equation describes the transformation of inputs into output.

Reduced-form equations

Take the form endogenous = f(exogenous).

Resuming the supply-demand model:

$$\begin{cases} Q = \alpha_0 + \alpha_1 P + \alpha_2 Y + u \\ Q = \beta_0 + \beta_1 P + \beta_2 r + v \end{cases}$$

- Putting the two equation together, we get: $\alpha_0 + \alpha_1 P + \alpha_2 Y + u = \beta_0 + \beta_1 P + \beta_2 r + v$.
 - \circ Solving for $P:P=rac{1}{lpha_1-eta_1}igg[(eta_0-lpha_0)-lpha_2Y+eta_2r+v-uigg].$
 - That can be rewritten as: $P = \frac{\beta_0 \alpha_0}{\alpha_1 \beta_1} \frac{\alpha_2}{\alpha_1 \beta_1} Y + \frac{\beta_2}{\alpha_1 \beta_1} r + \frac{v u}{\alpha_1 \beta_1}$, which is the reduced form equation for *P*.
- For purposes of simplification, the equation will be rewritten as $P = \lambda_0 + \lambda_1 Y + \lambda_2 r + \varepsilon_1$:

$$\begin{array}{l} \circ \ \ \lambda_0 = \frac{\beta_0 - \alpha_0}{\alpha_1 - \beta_1}; \\ \circ \ \ \lambda_1 = -\frac{\alpha_2}{\alpha_1 - \beta_1}; \\ \begin{array}{l} \beta_0 \end{array}$$

$$\lambda_1 = -\frac{\alpha_2}{\alpha_1 - \beta_1}$$

$$\lambda_2 = \frac{\beta_2}{\alpha_1 - \beta_1};$$

$$\varepsilon_1 = \frac{v - u}{\alpha_1 - \beta_1}.$$

$$\circ \ \varepsilon_1 = \frac{v-u}{\alpha_1 - \beta_1}.$$

- Thus, to solve it for Q, we plug P back into one the original equations:
 - \circ For the first equation, $Q = \alpha_0 + \alpha_1 (\lambda_0 + \lambda_1 Y + \lambda_2 r + \varepsilon_1) + \alpha_2 Y + u$.
 - Rewriting: $Q=(\alpha_0+\alpha_1\lambda_0)+(\alpha_1\lambda_1+\alpha_2)Y+\alpha_1\lambda_2r+(u+\alpha_1\varepsilon_1)$. This is the reduced form equation for Q.
- Again, for purposes of simplification: $Q=\gamma_0+\gamma_1Y+\gamma_2r+arepsilon_2$

$$\circ \ \gamma_0 = \alpha_0 + \alpha_1 \lambda_0;$$

$$\circ \ \gamma_1 = \alpha_1 \lambda_1 + \alpha_2;$$

$$\circ$$
 $\gamma_2 = \alpha_1 \lambda_2$.

$$\circ$$
 $\varepsilon_2 = u + \alpha_1 \varepsilon_1$.

• The reduced form of this system is, then, $\begin{cases} P = \lambda_0 + \lambda_1 Y + \lambda_2 r + \varepsilon_1 \\ Q = \gamma_0 + \gamma_1 Y + \gamma_2 r + \varepsilon_2 \end{cases}$

Resuming the income model:

$$\begin{cases} C_t = \alpha_0 + \alpha_1 Y_t^D + \alpha_2 Y_{t-1}^D + u_t \\ I_t = \beta_0 + \beta_1 Y_t + \beta_2 Y_{t-1} + v_t \\ Y_t = C_t + I_t + G_t \\ Y_t^D \equiv Y_t - T_t \end{cases}$$

ullet We can solve it for Y_t by substituting the other LHS variables into its equation:

$$\begin{array}{l} \circ & Y_t = (\alpha_0 + \alpha_1 Y_t^D + \alpha_2 Y_{t-1}^D + u_t) + (\beta_0 + \beta_1 Y_t + \beta_2 Y_{t-1} + v_t) + G_t \\ & = \alpha_0 + \alpha_1 (Y_t - T_t) + \alpha_2 (Y_{t-1} - T_{t-1}) + u_t + \beta_0 + \beta_1 Y_t + \beta_2 Y_{t-1} + v_t + G_t \\ \circ & \text{Isolating } Y_t \colon Y_t (1 - \alpha_1 - \beta_1) = (\alpha_0 + \beta_0) - \alpha_1 T_t - \alpha_2 T_{t-1} + (\alpha_2 + \beta_2) Y_{t-1} + G_t + u_t + v_t. \end{array}$$

$$Y_t = \frac{\alpha_0 + \beta_0}{1 - \alpha_1 - \beta_1} - \frac{\alpha_1}{1 - \alpha_1 - \beta_1} T_t - \frac{\alpha_2}{1 - \alpha_1 - \beta_1} T_{t-1} + \frac{\alpha_2 + \beta_2}{1 - \alpha_1 - \beta_1} Y_{t-1} + \frac{1}{1 - \alpha_1 - \beta_1} G_t + \frac{u_t + v_t}{1$$

• Simplifying: $Y_t = \lambda_0 + \lambda_1 T_t + \lambda_2 T_{t-1} + \lambda_3 Y_{t-1} + \lambda_4 G_t + \varepsilon_t^Y$, which is the reduced form equation for Y_t .

Simultaneity bias

Consider the simple model:

$$\begin{cases} y_t = \alpha x_t + u_t \\ x_t = \beta y_t + v_t \end{cases}$$

In this case, x_t is function of y_t which, in turn, is a function of u_t .

- The terms x_t and u_t in the first equation are correlated.
 - \circ Then, any estimate of α will be biased.
 - \circ As seen before, $\operatorname{plim} \hat{lpha} = lpha + rac{\operatorname{Cov}(x,u)}{\operatorname{Var}(x)}.$
- Were β equal to zero, there would not be bias.
 - There would be a correlation between x_t and u_t , given that x_t would not be a function of y_t .
 - \circ In that case, x_t would then be an exogenous variable, since v_t is random.
- The reduced form equations for y_t and x_t are: $\begin{cases} y_t = \frac{1}{1-\alpha\beta}(\alpha v_t + u_t) \\ x_t = \frac{1}{1-\alpha\beta}(\beta u_t + v_t) \end{cases}.$
 - $\qquad \text{o That being so, } \mathrm{Var}(x) = \left(\frac{1}{1-\alpha\beta}\right)^2 \Big[\beta^2 \mathrm{Var}(u) + \mathrm{Var}(v)\Big].$

TO BE CONTINUED...