Mask Scoring R-CNN 一种为Mask打分的新方法

CVPR 2019 Oral 文章解读

冯芮苇 21821245

21821245@zju.edu.cn

摘要(Abstract)

让深层网络意识到其预测质量是一个有趣但重要的问题。在实例分割任务中,大多数实例分割框架使用实例分类的置信度作为Mask的质量分数。然而,量化为Mask实例与其ground truth之间的IoU,这一结果通常与分类分数没有很强的相关性。本文研究了这个问题并提出了一个包含网络块的Mask Score R-CNN来学习预测实例Mask的质量。所提出的网络块将实例特征与对应的预测掩码组合以回溯Mask IoU。Mask scoring策略可以校正Mask质量和Mask Scoring之间的偏差,并通过在COCO AP评估过程中优先处理更准确的预测,从而提高分割性能。通过对COCO数据集的广泛评估,Mask Scoring R-CNN为不同的模型带来了一致和显著的好处,并且优于目前最先进的Mask R-CNN。我们希望我们简单有效的方法将为改进实例分割提供新的方向。

1. Introduction

本文是一篇研究实例分割问题的文章,发表在2019年CVPR并获得了oral的机会。文章中提出的方法在coco图像实例分割任务上超越了何恺明的Mask R-CNN。文中提出了一种新的实例分割打分的方法,相

比于Mask R-CNN的打分方法(根据目标区域的分类置信度打分),文中提出的打分方法能够实现和Mask质量具有更高的一致性。

1.1. Related work

目前,关于实例分割的方法大体上分为两类,一类是 基于检测的分割方法,比如: Faster-RCNN、R-FCN等, 首先获取每个实例的区域,然后在区域内预测每个实例 的Mask; DeepMask方法通过对一个滑动窗口中心目标 进行分割和分类从而实现实例分割; Instance-sensitive FCN、position-sensitive FCIS等通过生成位置敏感的映 射,从而得到Mask; Mask R-CNN等通过增加语义分割 分支,以及MaskLab等利用位置敏感分数来获得更好的 结果。另一类方法是基于分割的实例分割方法:首先对 每个像素的类别标签进行预测,然后将其分组形成实例 分割结果。这类方法包括聚类、边缘检测、预测像素级 的能量值等,以及一些其他的使用度量学习来学习嵌入 的方法。然而,这两类方法在Mask的质量评价上存在 较大的问题。通过分类置信度来衡量Mask的质量,会 存在较大的偏差。如图 1 所示。分类置信度只用于区分 proposal的语义类别,对于实例Mask的实际质量和完整 性等并不能有更精确的表示。

图 1 Mask R-CNN分数较高但是实际效果并不好的例子

1.2. Main contribution

本文的主要贡献如下:

提出了Mask Score R-CNN。这是第一个解决实例分割假设评分问题的框架,为提高实例分割模型的性能开辟了新的方向。文中的方法考虑到实例Mask的完整性,如果实例Mask的分类置信度较高但是预测所得的Mask不够好,则可以对实例Mask的分数进行扣分。

提出一种简单有效的分支MaskIoU head。在coco测试集上的实验结果表明当使用Mask Scoring R-CNN提出的Mask Score而不仅仅使用置信度时,AP字不同的主干网络上能够平均提高 1.5%。

2. Method

为了定量分析当前Mask R-CNN中存在的分类分数和Mask实际质量不完全匹配的问题,文中将Mask R-CNN的 Mask Score 与预测的Mask及其相应的Ground Truth Mask(MaskIoU)之间的实际IoU进行比较。

对比: Mask R-CNN(ResNet-18 FPN)coco2017 val-dataset

对比二者的关系(挑选detection proposal中二者都大于 0.5 的Soft-NMS检测假设)Mask R-CNN表现。

因此,文中提出了为每一个proposal都能根据 MaskIoU得到一个校准的mask score。只是在Mask R-CNN的基础上加了一个MaskIoU Head。

MaskIoU在分类分数上的分布情况如图 2 (a)所示,每个MaskIoU区间的平均分类分数如图 2 (c)所示为蓝色,说明在Mask R-CNN中,分类分数与MaskIoU的相关性并不好。

图 2 Mask R-CNN和MS R-CNN中Scoring

和MaskIOU相关性的对比

在大多数实例分割评估协议中,如COCO,检测假设的MaskIoU低,分数高是有害的。在许多实际应用中,确定检测结果何时可信以及何时不可用非常重要。这促使我们根据MaskIoU为每一个检测假设学习一个校准过的Mask Score。在不丧失通用性的情况

下,我们研究了Mask R-CNN框架,并提出了Mask Score R-CNN (MS R-CNN), 这是一个带有附加 MaskIoU模块的MaskR-CNN, 该模块学习Mask对齐的Mask评分。

2.1. Mask scoring R-CNN

Mask scoring R-CNN概念简单: Mask RCNN带 MaskIoU Head,将实例特征与预测Mask一起作为输入,预测输入Mask与gtMask之间的IoU,如图 3 所示。

图 3 Mask RCNN with MaskIoU Head

2.2. Mask scoring

将Smask定义为预测Mask的评分。理想的smask等于预测mask和gt之间的像素级 IoU(之前表示为MaskIoU); 理想的smask只在gt类上有值而其他为 0。

Smask predicted Mask的最终得分

Scls 对proposal进行分类

Siou 侧重于回归MaskIOU

Smask = Scls • Siou

Mask score 对于语义类别信息和实例Mask的完整 性都能够很好的体现。

2.3. MaskIOU head

在Mask R-CNN的基础上增加的module(MaskIOU head),让模型学会针对mask的得分规则。接收mask head的输出和ROI的feature作为输入,做一个简单的回归损失进行训练。只做gt class 的regression(test predicted)4个卷积层3个全连接层。暗送秋波结构如图2所示。

2.4. Training

对于MaskIoU head的训练,我们使用RPN proposal 作为训练样本。训练样本在proposal box和匹配的 ground truth box之间需要有一个IoU大于 0.5,与Mask R-CNN的Mask head的训练样本相同。为了生成每个

训练样本的回归目标,我们首先得到目标类的预测 Mask,并使用 0.5 的阈值对预测Mask进行二值化,然后利用二进制Mask与其匹配的ground truth之间的 Mask 作为目标 Mask。 我们使用 12 损失来回归 MaskIoU,损失权重设置为 1。将提出的MaskIoU head 集成到Mask R-CNN中,对整个网络进行端到端训练。

2.5. Inference

在推理过程中,我们只使用MaskIoU head对R-CNN生成的分类分数进行校正。具体假设Mask R-CNN的R-CNN阶段输出N个边框,其中选取SoftNMS[2]后的top-k(即k=100)计分框。然后将top-k盒输入MaskIoUhead,生成多类Mask。这是标准的Mask R-CNN推断过程。我们也遵循这个过程,并输入top-k目标Mask来预测Mask。将预测的Mask与分类分数相乘,得到新的校准Mask分数作为最终Mask置信度。

3. Experiments

所有实验均在COCO数据集上进行,对象类别 80 个。我们遵循COCO 2017 设置,使用 115k图像训练分割进行训练,5k验证分割进行验证,20k测试开发分割进行测试。我们使用COCO评估指标AP(平均超过IoU阈值)报告结果,包括AP@0.5、AP@0.75 和APS、APM、APL(不同规模的AP)。AP@0.5(或AP@0.75)表示使用IoU阈值 0.5(或 0.75)来确定在评估中预测的边框或Mask是否为正。除非特别说明,AP使用mask IoU进行评估。首先设置了对比backbone和framework的实验,不同的backbone设置不同大小的输入(resize)。表格 1 是使用文中提出来的完整网络(mask scoring r-cnn)不同的backbone。APm:instance segmentation results; Apb:detection results.*(换backbone效果也很稳定)。

Table 1. COCO 2017 validation results. We report both detection and instance segmentation results. AP_m denotes instance segmentation results and AP_0 denotes detection results. The results without \checkmark are those of M_{BR} R-CNN, while with \checkmark are those of our MS R-CNN. The results show that our method is insensitive to different backbone networks.

Backbone	MaskIoU head	APm	$AP_m@0.5$	$AP_{m}@0.75$	APb	$AP_b@0.5$	AP _b @0.75
ResNet-18 FPN	1	27.7 29.3	46.9 46.9	29.0 31.3	31.2 31.5	50.4 50.8	33.2 33.5
ResNet-50 FPN	✓	34.5 36.0	55.8 55.8	36.7 38.8	38.6 38.6	59.2 59.2	42.5 42.5
ResNet-101 FPN	4	36.6 38.2	58.6 58.4	39.0 41.5	41.3 41.4	61.7 61.8	45.9 46.3

表格 2 是使用resnet101 为backbone换不同的网络。前两行是用的faster r-cnn,三四行用了FPN,最后两行用 了 DCN+FPN (RPN proposal) 。

Table 2. COCO 2017 validation results. We report detection and instance segmentation results. AP_m denotes instance segmentation results and AP_p denotes detection results. In the results area, rows 1&2 use the Faster R-CNN framework; rows 3&4 additionally use the DCN+FPN. The results show that consistent improvement of the proposed MaskIoU head.

Backbone	MaskIoU head	FPN	DCN APm	$AP_m@0.5$	$AP_{\rm m}@0.75$	APb	$AP_b@0.5$	AP _b @0.75
			33.9 35.0	53.9 54.0	36.2 37.7	38.6 38.7	57.3 57.4	42.8 43.0
ResNet-101	· ·	✓	36.6	58.6	39.0	41.3	61.7	45.9
Resnet-101	✓	V	38.2 37.7	58.4 60.3	41.5 40.0	41.4 42.9	61.8 63.4	46.3 47.8
	✓	¥/	√ 39.1	60.0	42.4	43.1	63.5	47.7

试验结果表明:对于不同的backbone、不同的framework都是有明显的而且稳定的提升。

Table 3. Comparing different instance segmentation methods on COCO 2017 test-dev.

Method	Backbone	AP	AP@0.5	AP@0.75	APS	AP_{M}	AP_{L}
MNC [7]	ResNet-101	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [23]	ResNet-101	29.2	49.5	-	-	-1	-1
FCIS+++ [23]	ResNet-101	33.6	54.5	Η.	-	-	-
Mask R-CNN [15]	ResNet-101	33.1	54.9	34.8	12.1	35.6	51.1
Mask R-CNN [15]	ResNet-101 FPN	35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN [15]	ResNeXt-101 FPN	37.1	60.0	39.4	16.9	39.9	53.5
MaskLab [3]	ResNet-101	35.4	57.4	37.4	16.9	38.3	49.2
MaskLab+[3]	ResNet-101	37.3	59.8	36.6	19.1	40.5	50.6
MaskLab+[3]	ResNet-101 (JET)	38.1	61.1	40.4	19.6	41.6	51.4
Mask R-CNN	ResNet-101	34.3	55.0	36.6	13.2	36.4	52.2
MS R-CNN	Kesnet-101	35.4	54.9	38.1	13.7	37.6	53.3
Mask R-CNN	ResNet-101 FPN	37.0	59.2	39.5	17.1	39.3	52.9
MS R-CNN	Resnet-101 FPN	38.3	58.8	41.5	17.8	40.4	54.4
Mask R-CNN	ResNet-101 DCN+FPN	38.4	61.2	41.2	18.0	40.5	55.2
MS R-CNN	Resnet-101 DCN+FFN	39.6	60.7	43.1	18.8	41.5	56.2

此外,文章还设计了丰富的消融实验。

1) 研究MaskIOU head的不同输入设计对于最终结果的影响。具体方案如图所示:

实验结果表明,MaskIoU head对于不同种类的融合 Mask预测和RoI特征的方法是鲁棒的。结果如表 4 所示:

表 4: 不同融合方法对应的预测结果

Setting	AP	AP@0.5	AP@0.75
Mask R-CNN baseline	27.7	46.9	29.0
(a) Target mask + RoI	29.3	46.9	31.3
(b) Target mask × RoI	29.1	46.6	30.9
(c) All masks + RoI	29.1	46.6	30.8
(d) Target mask + HR RoI	29.1	46.7	31.1

2)文中设计的计算Mask Score是通过两个部分: 一是mask classification,另一个是maskIoU regression。能否直接得到mask score呢?应该同时学习所有类别的MaskIoU么?因此,文中针对这一问题做了消融实验。调整不同的训练目标对比试验结果,如表 5 所示:

表 5: 使用不同训练目标的训练结果

Setting	AP	AP@0.5	AP@0.75
Mask R-CNN baseline	27.7	46.9	29.0
Setting #1: Target ins.	29.3	46.9	31.3
Setting #2: All cls.	24.5	41.6	25.6
Setting #3: Positive ins.	28.2	45.5	30.2

3)使用不同的训练样本。从试验结果可以看出,使用全部的训练样本能够达到最好的效果(前提:boxlevel的IoU>0.5)。

表 6: 使用不同训练样本训练MaskIOU head结果对比

Threshold	AP	AP@0.5	AP@0.75
$\tau = 0.0$	29.3	46.9	31.3
$\tau = 0.3$	29.2	46.6	31.1
$\tau = 0.5$	29.0	46.5	30.9
$\tau = 0.7$	28.8	46.9	30.5

4) 对比两个不同的backbone的效果,用gt和predicted mask-IoU的相关性来衡量预测的MaskIoU的质量。如图 5 所示。

图 5: MaskIoU质量的可视化

5)设计实验给出MS R-CNN的表现上限。

表 7: 对比MS R-CNN和Mask R-CNN换用不同的backbone的实验结果,以及对应的上限。

Method	Backbone	AP	
Mask R-CNN MS R-CNN MS R-CNN*	ResNet-18 FPN	27.7 29.3 31.5	
Mask R-CNN MS R-CNN MS R-CNN*	ResNet-101 DCN+FPN	37.7 39.1 41.7	

4. Conclusion

本文研究了实例分割中为Mask打分的问题,通过在Mask R-CNN中添加一个MaskIoU head,实现Mask

Score与MaskIoU的对齐(这在大多数实例分割框架中通常被忽略)。实验证明,文中提出的MaskIOU head非常有效,并且容易实施,能很好地进行迁移并具有良好的鲁棒性。它也可以应用于其他实例分割网络,以获得更可靠的Mask score。

References

- [1] Huang Z, Huang L, Gong Y, et al. Mask Scoring R-CNN[J].
- [2] M. Bai and R. Urtasun. Deep watershed transform for instance segmentation. In IEEE Conference on Computer Vision and Pattern Recognition, pages 2858–2866, 2017. 2
- [3] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis. Softnmsimproving object detection with one line of code. In IEEE International Conference on Computer Vision, pages 5562–5570, 2017.
- [4] L.-C. Chen, A. Hermans, G. Papandreou, F. Schroff, P. Wang, and H. Adam. Masklab: Instance segmentation by refining object detection with semantic and direction features. arXiv preprint arXiv:1712.04837, 2017.
- [5] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on Pattern Analysis and Machine Intelligence, pages 834–848, 2018.
- [6] B. Cheng, Y. Wei, H. Shi, R. Feris, J. Xiong, and T. Huang. Revisiting rcnn: On awakening the classification power of faster rcnn. In European Conference on Computer Vision, pages 473–490, 2018.
- [7] J. Dai, K. He, Y. Li, S. Ren, and J. Sun. Instance-sensitive fully convolutional networks. In European Conference on Computer Vision, pages 534–549, 2016.
- [8] J. Dai, K. He, and J. Sun. Instance-aware semantic segmentation via multi-task network cascades. In IEEE Conference on Computer Vision and Pattern Recognition, pages 3150–3158, 2016.
- [9] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection via region-based fully convolutional networks. In Advances in Neural Information Processing Systems, pages 379–387, 2016.
- [10] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei. Deformable convolutional networks. In IEEE International Conference on Computer Vision, pages 764–773, 2017.
- [11] B. De Brabandere, D. Neven, and L. Van Gool. Semantic instance segmentation with a discriminative loss function. arXiv preprint arXiv:1708.02551, 2017.
- [12] A. Fathi, Z. Wojna, V. Rathod, P. Wang, H. O. Song, S. Guadarrama, and K. P. Murphy. Semantic instance segmentation via deep metric learning. arXiv preprint arXiv:1703.10277, 2017.
- [13] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition, pages 580–587, 2014.