DIALOG(R)File 352:Derwent WPI

(c) 2004 Thomson Derwent. All rts. reserv.

014808929 **Image available**
WPI Acc No: 2002-629635/200268

XRPX Acc No: N02-497723

Manufacturing color filter for liquid crystal device, with each filter

element formed by applying ink certain number of times

Patent Assignee: SEIKO EPSON CORP (SHIH)

Inventor: ARUGA H; KATAGAMI S; KAWASE T; KIGUCHI H; SHIMIZU M

Number of Countries: 031 Number of Patents: 011

Patent Family:

Patent No Kind Date Applicat No Kind Date Week 200268 B EP 1208985 A2 20020529 EP 2001309573 Α 20011113 CN 1358626 20020717 CN 2001130306 20011120 200268 Α Α JP 2002221616 A 20020809 JP 2001294725 Α 20010926 200268 20020809 JP 2001294727 20010926 200268 JP 2002221617 A Α JP 2002225259 A 20020814 JP 2001294726 Α 20010926 200268 20011120 200268 US 20020067400 A1 20020606 US 2001988743 Α KR 2002039614 A 20020527 KR 200172184 Α 20011120 200275 TW 514593 Α 20021221 TW 2001128326 Α 20011115 200358 US 6660332 B2 20031209 US 2001988743 Α 20011120 200381 20040108 JP 2001294726 20010926 200405 JP 2004004803 A Α JP 2003121804 Α 20030425 JP 3491155 20040126 JP 2001294726 20010926 200410 Α

Priority Applications (No Type Date): JP 2001294725 A 20010926; JP 2000354543 A 20001121

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

EP 1208985 A2 E 44 B41J-002/14

Designated States (Regional): AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI TR

CN 1358626 Α B41J-002/01 JP 2002221616 A 30 G02B-005/20 JP 2002221617 A 30 G02B-005/20 JP 2002225259 A 26 B41J-002/01 US 20020067400 A1 B41J-002/01 KR 2002039614 A G02B-005/20 TW 514593 Α B41J-002/01 US 6660332 B2 B05D-005/06

JP 2004004803 A 34 G02B-005/20 Div ex application JP 2001294726 JP 3491155 B2 29 B41J-002/01 Previous Publ. patent JP 2002225259

Abstract (Basic): EP 1208985 A2

NOVELTY - Filter element regions (7) are filled by repeated discharge of ink. When first scan is complete, inkjet head (22) is returned to start position and moved in second scanning direction (Y) by predetermined second scanning distance (delta). CPU divides nozzles (27) of ink jet head into groups (n). First and second scanning is repeated to complete each column of filter to complete one color.

Filter is then moved to another ink jet unit and procedure repeated for next color.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS included for apparatus to manufacture color filter, manufacture method and apparatus for liquid crystal device, apparatus and method to manufacture electro-luminescent device, control unit for ink jet head, method and apparatus to discharge material.

USE - Manufacture of color filter using in liquid crystal display ADVANTAGE - Provides uniform light transmission characteristics of color filter as compensates for variation between discharge amount of nozzles to prevent variation in layer thicknesses among filter elements, avoids need to complex photolithographic process

DESCRIPTION OF DRAWING(S) - Plan view showing steps for making color filter. Filter element regions (7)

Color filter forming region of substrate (11)

Substrate (12)

Ink jet head (22)

Length of nozzle line (L)

Scanning positions (a-k)

Ink jet head nozzles (27)

pp; 44 DwgNo 1/23

Title Terms: MANUFACTURE; COLOUR; FILTER; LIQUID; CRYSTAL; DEVICE; FILTER;

ELEMENT; FORMING; APPLY; INK; NUMBER; TIME

Derwent Class: P42; P75; P81; T04; U11; U14

International Patent Class (Main): B05D-005/06; B41J-002/01; B41J-002/14;

G02B-005/20

International Patent Class (Additional): B05C-005/00; B05D-001/26;

B05D-001/30; G02F-001/13; G02F-001/1335; G09F-009/00; G09F-009/30;

G09F-009/35; H05B-033/10; H05B-033/12; H05B-033/14

File Segment: EPI; EngPI

DIALOG(R)File 347:JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

07353125 **Image available**

METHOD AND DEVICE FOR MANUFACTURING COLOR FILTER, METHOD AND DEVICE FOR MANUFACTURING LIQUID CRYSTAL DEVICE, METHOD AND DEVICE FOR MANUFACTURING EL DEVICE, DEVICE FOR CONTROLLING INKJET HEAD, METHOD AND DEVICE FOR

DISCHARGING MATERIAL AND ELECTRONIC INSTRUMENT

PUB. NO.:

2002-221616 [JP 2002221616 A]

PUBLISHED:

August 09, 2002 (20020809)

INVENTOR(s): KAWASE TOMOKI

ARIGA HISASHI KATAUE SATORU SHIMIZU MASAHARU KIGUCHI HIROSHI

APPLICANT(s): SEIKO EPSON CORP

APPL. NO.:

2001-294725 [JP 20011294725]

FILED:

September 26, 2001 (20010926)

PRIORITY:

2000-354543 [JP 2000354543], JP (Japan), November 21, 2000

(20001121)

INTL CLASS:

G02B-005/20; B41J-002/01; G02F-001/1335; G09F-009/30;

G09F-009/35; H05B-033/10; H05B-033/12; H05B-033/14

ABSTRACT

PROBLEM TO BE two-dimensionally SOLVED: To uniformize optical optical characteristics of members such light transmission characteristics of a color filter, color displaying characteristics of a liquid crystal light emitting device, characteristics an EL(electroluminescence) light emitting face or the like. SOLUTION: The method for manufacturing the color filter consists of manufacturing the same prepared by aligning a plurality of dot shaped filter elements 3 on a substrate 12. While principally scanning the substrate 12 in X-direction with an inkjet head 22 having a nozzle row 28 composed of a plurality of nozzles 27 aligned in a row shape, filter materials are selectively discharged from a plurality of the nozzles 27 and filter elements 3 are formed on filter element regions 7. A plurality of the nozzles 27 are divided into a plurality of groups and the principal scanning is repeated two or more times by subsidiarily scanning the inkjet head 22 in Y-direction with a distance δ so as to make these nozzle groups scan the same part of the substrate 12 in duplication.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-221616 (P2002-221616A)

(43)公開日 平成14年8月9日(2002.8.9)

(F1) 1									
(51) Int.Cl.'		戲別記号		F	ī				f-7J-}*(参考)
G02B	5 /20	101		G n	2 B	5/20			
B41J	2/01							101	2C056
G02F	1/1335			G 0	2 F	1/1335		505	2H048
_	•	505		G 0	9 F	9/30		349B	2H091
G09F	9/30	349				•			-
		365						365Z	3 K O O 7
				9/35			5C094		
			審査請求	有	請求	項の数23	OL	(全 30 頁)	最終頁に続く

(21)出願番号	特願2001-294725(P2001-294725
() Tribe H .)	1018(2001 - 294/25(P200) - 29472

(22)出顧日 平成13年9月26日(2001.9.26)

(31) 優先権主張番号 特願2000-354543 (P2000-354543)

(32) 優先日 平成12年11月21日(2000.11.21) (33)優先権主張国

日本 (JP)

(71)出願人 000002369

セイコーエブソン株式会社

東京都新宿区西新宿2丁目4番1号

(72)発明者 川瀬 智己

長野県諏訪市大和3丁目3番5号 セイコ

ーエプソン株式会社内

(72)発明者 有賀 久

長野県諏訪市大和3丁目3番5号 セイコ

ーエブソン株式会社内

(74)代理人 100095728

弁理士 上柳 雅替 (外2名)

最終頁に続く

(54) [発明の名称] カラーフィルタの製造方法及び製造装置、液晶装置の製造方法及び製造装置、EL装置の製造方 法及び製造装置、インクジェットヘッドの制御装置、材料の吐出方法及び材料の吐出装置、並び

(57)【要約】

【課題】 カラーフィルタの光透過特性、液晶装置のカ ラー表示特性、E L 発光面の発光特性等といった光学部 材の光学特性を平面的に均一にする。

【解決手段】 基板12上に複数のドット状のフィルタ エレメント3を配列して成るカラーフィルタを製造する カラーフィルタの製造方法である。複数のノズル27を 列状に配列して成るノズル列28を有するインクジェッ トヘッド22によって基板12を×方向へ主走査しつ つ、複数のノズル27から選択的にフィルタ材料を吐出 してフィルタエレメント領域7にフィルタエレメント3 を形成する。複数のノズル27を複数のグループに分割 し、これらのノズルグループが基板12の同じ部分を重 ねて走査するようにインクジェットヘッド22をY方向 へ距離るだけ副走査させながら主走査を複数回繰り返し て行う。

【特許請求の範囲】

【請求項1】 基板上に複数のフィルタエレメントを配列して成るカラーフィルタを製造するカラーフィルタの製造方法であって、

複数のノズルを列状に配列して成るノズル列を有し、該 ノズル列が複数のグループに分割されてなるインクジェットヘッド、及び前記基板のうちの一方を他方に対して 主走査方向に移動させる工程と、

前記複数のノズルから選択的にフィルタ材料を吐出して 前記基板上に前記フィルタエレメントを形成する工程 レ

各前記グループの少なくとも一部が前記基板の同じ部分を前記主走査方向に走査できるように、前記インクジェットへッド及び前記基板のうちの一方を他方に対して副走査させる工程と、を具備することを特徴とするカラーフィルタの製造方法。

【請求項2】 請求項1において、前記インクジェット ヘッド及び基板のうちの一方を前記ノズルグループの副 走査方向の長さの整数倍の長さで他方に対して副走査移 動させることを特徴とするカラーフィルタの製造方法。

【請求項3】 請求項1又は請求項2において、前記ノ ズル列は前記副走査方向に対して傾斜することを特徴と するカラーフィルタの製造方法。

【請求項4】 請求項1から請求項3のうちのいずれか1つにおいて、前記ノズル列の長さをL、前記分割によって形成される前記ノズルグループの数をn、前記ノズル列が前記副走査方向と成す角度を θ とするとき、前記副走査移動量 δ は、

 $\delta = (L/n) \cos \theta$

であることを特徴とするカラーフィルタの製造方法。

【請求項5】 請求項1から請求項3のうちのいずれか1つにおいて、前記ノズル列の両端部分の数個のノズルからはインクを吐出させないことを特徴とするカラーフィルタの製造方法。

【請求項6】 請求項5において、前記ノズル列のうち前記インクを吐出させないことにした両端部ノズルを除いた部分の長さをし、前記分割によって形成される前記ノズルグループの数をn、前記ノズル列が前記副走査方向と成す角度を θ とするとき、前記副走査移動量 δ は、 δ \subseteq (L/n) c o s θ

であることを特徴とするカラーフィルタの製造方法。

【請求項7】 請求項1において、前記インクジェットへッドは複数個設けられるとともに、各々のインクジェットへッドのノズル列からは互いに異なる色のフィルタ材料が吐出されることを特徴とするカラーフィルタの製造方法。

【請求項8】 請求項1において、前記インクジェット ヘッドは複数の前記ノズル列が設けられるとともに、各 前記ノズル列からは互いに異なる色の前記フィルタ材料 が吐出されることを特徴とするカラーフィルタの製造方 法。

【請求項9】 基板上に複数のフィルタエレメントを配列して成るカラーフィルタを製造するカラーフィルタの製造装置であって、

複数のノズルを列状に配列して成るノズル列を有し、該 ノズル列が複数のグループに分割されてなるインクジェットヘッドと、

該インクジェットヘッドヘフィルタ材料を供給するイン ク供給手段と、

前記インクジェットヘッド及び前記基板のうちの一方を 他方に対して主走査方向に移動させる主走査駆動手段 レ

前記インクジェットヘッド及び前記基板のうちの一方を 他方に対して副走査方向に移動させる副走査駆動手段 と、

前記複数のノズルからのインクの吐出を制御するノズル 吐出制御手段と、

前記主走査駆動手段の動作を制御する主走査制御手段と

前記副走査駆動手段の動作を制御する副走査制御手段と を有し、

各前記グループの少なくとも一部が前記基板の同じ部分を前記主走査方向に走査できるように、前記インクジェットヘッド及び前記基板のうちの一方を他方に対して副走査させることを特徴とするカラーフィルタの製造装置

【請求項10】 液晶を挟持する一対の基板と、少なくとも一方の基板上に複数のフィルタエレメントを配列して成るカラーフィルタとを有する液晶装置の製造方法であって、

複数のノズルを列状に配列して成るノズル列を有し、該 ノズル列が複数のグループに分割されてなるインクジェットヘッド、及び前記基板のうちの一方を他方に対して 主走査方向に移動させる工程と、

前記複数のノズルから選択的にフィルタ材料を吐出して 前記基板上に前記フィルタエレメントを形成する工程 と、

各前記グループの少なくとも一部が前記基板の同じ部分を前記主走査方向に走査できるように、前記インクジェットヘッド及び前記基板のうちの一方を他方に対して副走査させる工程と、を具備することを特徴とする液晶装置の製造方法。

【請求項11】 液晶を挟持する一対の基板と、少なくとも一方の基板上に複数のフィルタエレメントを配列して成るカラーフィルタとを有する液晶装置の製造装置において、

複数のノズルを列状に配列して成るノズル列を有し、該 ノズル列が複数のグループに分割されてなるインクジェットヘッドと、

該インクジェットヘッドヘフィルタ材料を供給するイン

ク供給手段と、

前記インクジェットヘッド及び前記基板のうちの一方を 他方に対して主走査方向に移動させる主走査駆動手段 と、

前記インクジェットヘッド及び前記基板のうちの一方を 他方に対して副走査方向に移動させる副走査駆動手段 と、

前記複数のノズルからのインクの吐出を制御するノズル 吐出制御手段と、

前記主走査駆動手段の動作を制御する主走査制御手段と、

前記副走査駆動手段の動作を制御する副走査制御手段と を有し、

各前記グループの少なくとも一部が前記基板の同じ部分を前記主走査方向に走査できるように、前記インクジェットヘッド及び前記基板のうちの一方を他方に対して副走査させることを特徴とする液晶装置の製造装置。

【請求項12】 それぞれがEL発光層を含む複数の絵素ピクセルを基板上に配列して成るEL装置の製造方法において、

複数のノズルを列状に配列して成るノズル列を有し、該 ノズル列が複数のグループに分割されてなるインクジェットヘッド、及び前記基板のうちの一方を他方に対して 主走査方向に移動させる工程と、

前記複数のノズルから選択的にEL発光材料を吐出して 前記基板上に前記EL発光層を形成する工程と、

各前記グループの少なくとも一部が前記基板の同じ部分を前記主走査方向に走査できるように、前記インクジェットヘッド及び前記基板のうちの一方を他方に対して副走査させる工程と、を具備することを特徴とするEL装置の製造方法。

【請求項13】 それぞれがEL発光層を含む複数の絵 素ピクセルを基板上に配列して成るEL装置の製造装置 において、

複数のノズルを列状に配列して成るノズル列を有し、該 ノズル列が複数のグループに分割されてなるインクジェットヘッドと、

該インクジェットヘッドへEL発光材料を供給するイン ク供給手段と、

複数のノズルを列状に配列して成るノズル列を有し、該 ノズル列が複数のグループに分割されてなるインクジェ ットヘッドと、

前記インクジェットヘッドへ前記EL発光材料を供給するインク供給手段と、

前記インクジェットヘッド及び前記基板のうちの一方を 他方に対して主走査方向に移動させる主走査駆動手段 と、

前記インクジェットヘッド及び前記基板のうちの一方を 他方に対して副走査方向に移動させる副走査駆動手段 と、 前記複数のノズルからのインクの吐出を制御するノズル 吐出制御手段と、

前記主走査駆動手段の動作を制御する主走査制御手段 と、

前記副走査駆動手段の動作を制御する副走査制御手段 と、を有し、

各前記グループの少なくとも一部が前記基板の同じ部分を前記主走査方向に走査できるように、前記インクジェットヘッド及び前記基板のうちの一方を他方に対して副走査させることを特徴とするEL装置の製造装置。

【請求項14】 基板上に複数の色パターンを配列して 成る光学部材を製造する際に用いられるインクジェット ヘッドの制御装置において、

複数のノズルを列状に配列して成るノズル列を有し、該 ノズル列が複数のグループに分割されてなるインクジェ ットヘッドと、

該インクジェットヘッドへフィルタ材料を供給するイン ク供給手段と、

前記インクジェットヘッド及び前記基板のうちの一方を 他方に対して主走査方向に移動させる主走査駆動手段 と、

前記インクジェットヘッド及び前記基板のうちの一方を 他方に対して副走査方向に移動させる副走査駆動手段 と、

前記複数のノズルからのインクの吐出を制御するノズル 吐出制御手段と、

前記主走査駆動手段の動作を制御する主走査制御手段 と、

前記副走査駆動手段の動作を制御する副走査制御手段と を有し、

各前記グループの少なくとも一部が前記基板の同じ部分を前記主走査方向に走査できるように、前記インクジェットヘッド及び前記基板のうちの一方を他方に対して副走査させることを特徴とするインクジェットヘッドの制御装置。

【請求項15】 対象物に材料を吐出するための方法であって、

複数のノズルを列状に配列して成るノズル列を有し、前記ノズル列が複数のグループに分割されてなるヘッド、 及び前記対象物のうちの一方を他方に対して主走査方向 に移動させる工程と、

前記複数のノズルから前記対象物に向かって選択的に材料を吐出する工程と、

各前記グループの少なくとも一部が前記基板の同じ部分を前記主走査方向に走査できるように、前記ヘッド及び前記対象物のうちの一方を他方に対して副走査させる工程と、

を具備することを特徴とする材料の吐出方法。

【請求項16】 請求項15において、前記ヘッド、及 び対象物の一方を前記グループの副走査方向の長さの整 数倍の長さで副走査移動させながら前記主走査を複数回 繰り返して行うことを特徴とする材料の吐出方法。

【請求項17】 請求項15又は請求項16において、 前記複数のノズルは前記副走査方向に対して傾斜するよ うに配列されてなることを特徴とする材料の吐出方法。

【請求項18】 請求項15から請求項17のうちのいずれか1つにおいて、前記ノズル列の長さをし、前記分割によって形成される前記グループの数をn、前記ノズル列が前記副走査方向と成す角度を θ とするとき、前記副走査移動量 δ は、

 $\delta = (L/n) \cos \theta$

であることを特徴とする材料の吐出方法。

【請求項19】 請求項15から請求項17のうちのいずれか1つにおいて、前記ノズル列の両端部分の数個のノズルからは材料を吐出させないことを特徴とする材料の吐出方法。

【請求項20】 請求項19において、前記ノズル列の うち前記材料を吐出させないことにした両端部ノズルを 除いた部分の長さをL、前記分割によって形成される前記ノズルグループの数をn、前記ノズル列が前記副走査 方向と成す角度を θ とするとき、前記副走査移動量 δ は、

 $\delta = (L/n) \cos \theta$

であることを特徴とする材料の吐出方法。

【請求項21】 対象物に材料を吐出するための材料の 吐出装置であって、

複数のノズルを列状に配列して成るノズル列を有し、該 ノズル列が複数のグループに分割されてなるヘッドと、 該ヘッドヘタ材料を供給する材料供給要素と、

前記ヘッド及び前記対象物のうちの一方を他方に対して主走査方向に移動させる主走査駆動要素と、

前記インクジェットヘッド及び前記基板のうちの一方を 他方に対して副走査方向に移動させる副走査駆動要素 と、

前記複数のノズルからの前記材料の吐出を制御するノズル吐出制御要素と、

を有し、

各前記グループが前記対象物の同じ部分を前記主走査方向に走査できるように、前記インクジェットヘッド及び前記対象物のうちの一方を他方に対して副走査させることを特徴とする材料の吐出装置。

【請求項22】 請求項10に記載の液晶装置の製造方法を用いて製造した液晶装置を搭載した電子機器。

【請求項23】 請求項12に記載のEL装置の製造方法を用いて製造したEL装置を搭載した電子機器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、液晶装置等といった光学装置に用いられるカラーフィルタを製造する製造 方法及び製造装置に関する。また、本発明は、カラーフ ィルタを有する液晶装置の製造方法及び製造装置に関する。また、本発明は、EL発光層を用いて表示を行うEL装置の製造方法及び製造装置に関する。また、対象物に材料を吐出する材料の吐出方法、及び材料の吐出装置に関する。更には、これら製造方法を用いて製造された液晶装置、又はEL装置を搭載した電子機器に関する。【0002】

【従来の技術】近年、携帯電話機、携帯型コンピュータ等といった電子機器の表示部に液晶装置、E L装置等といった表示装置が広く用いられている。また最近では、表示装置によってフルカラー表示を行うことが多くなっている。液晶装置によるフルカラー表示は、例えば、液晶層によって変調される光をカラーフィルタに通すことによって行われる。そして、カラーフィルタは、ガラス、プラスチック等によって形成された基板の表面に、例えば、R (赤), G (緑), B (青)のドット状の各色フィルタエレメントをストライブ配列、デルタ配列又はモザイク配列等といった所定の配列で並べることによって形成される。

【0003】また、EL装置によってフルカラー表示を 行う場合には、例えば、ガラス、プラスチック等によっ て形成された基板の表面に、例えば、R(赤), G

(緑), B(青)のドット状の各色EL発光層をストライプ配列、デルタ配列又はモザイク配列等といった所定の配列で並べ、これらのEL発光層を一対の電極で挟持して絵素ピクセルを形成し、これらの電極に印加する電圧を絵素ピクセルごとに制御することによって当該絵素ピクセルを希望の色で発光させ、これにより、フルカラーの表示を行う。

【0004】従来、カラーフィルタのR、G、B等の各色フィルタエレメントをパターニングする場合や、EL装置のR、G、B等の各色絵素ピクセルをパターニングする場合に、フォトリソグラフィー法を用いることは知られている。しかしながらこのフォトリソグラフィー法を用いる場合には、工程が複雑であることや、各色材料やフォトレジスト等を多量に消費するのでコストが高くなる等といった問題があった。

【0005】この問題を解消するため、インクジェット 法によってフィルタ材料やEL発光材料等をドット状に 吐出することによりドット状配列のフィラメントやEL 発光層等を形成する方法が提案された。

【0006】今、図22(a)において、ガラス、プラスチック等によって形成された大面積の基板、いわゆるマザーボード301の表面に設定される複数のパネル領域302の内部領域に、図22(b)に示すように、ドット状に配列された複数のフィルタエレメント303をインクジェット法に基づいて形成する場合を考える。この場合には、例えば図22(c)に示すように、複数のノズル304を列状に配列して成るノズル列305を有するインクジェットへッド306を、図22(b)に矢

印A1及び矢印A2で示すように、1個のパネル領域302に関して複数回(図22では2回)主走査させながら、それらの主走査の間に複数のノズルから選択的にインクすなわちフィルタ材料を吐出することによって希望位置にフィルタエレメント303を形成する。

【0007】フィルタエレメント303はR, G, B等の各色をストライプ配列、デルタ配列、モザイク配列等といった適宜の配列形態で配列することによって形成されるものであるので、図22(b)に示すインクジェットヘッド306によるインク吐出処理は、R, G, Bの単色を吐出するインクジェットヘッド306をR, G, B等の3色分だけ予め設けておいて、それらのインクジェットヘッド306を順々に用いて1つのマザーボード301上にR, G, B等の3色配列を形成する。【0008】

【発明が解決しようとする課題】ところで、インクジェットへッド306に関しては、一般に、ノズル列305を構成する複数のノズル304のインク吐出量にバラツキがあり、例えば図23(a)に示すように、ノズル列305の両端部に対応する位置の吐出量が多く、その中央部がその次に多く、それらの中間部の吐出量が少ないというようなインク吐出特性Qを有する。

【0009】従って、図22(b)に示すようにしてインクジェットヘッド306によってフィルタエレメント303を形成したとき、図23(b)に示すように、インクジェットヘッド306の端部に対応する位置P1又は中央部P2、或いはP1及びP2の両方に濃度の濃いスジが形成されてしまい、カラーフィルタの平面的な光透過特性が不均一になるという問題があった。

【0010】本発明は、上記の問題点に鑑みて成されたものであって、カラーフィルタの光透過特性、液晶装置のカラー表示特性、EL発光面の発光特性等といった光学部材の光学特性を平面的に均一にできる各光学部材の製造方法及び製造装置を提供することを目的とする。

[0011]

【課題を解決するための手段】(1)上記の目的を達成するため、本発明に係るカラーフィルタの製造方法は、基板上に複数のフィルタエレメントを配列して成るカラーフィルタを製造するカラーフィルタの製造方法であって、複数のノズルを列状に配列して成るノズル列を有し、該ノズル列が複数のグループに分割されてなるインクジェットへッド、及び前記基板のうちの一方を他方に対して主走査方向に移動させる工程と、前記複数のノズルから選択的にフィルタ材料を吐出して前記基板上に前記フィルタエレメントを形成する工程と、各前記グループの少なくとも一部が前記基板の同じ部分を前記主走査方向に走査できるように、前記インクジェットへッド及び前記基板のうちの一方を他方に対して副走査させる工程と、を具備することを特徴とする。

【0012】この構成のカラーフィルタの製造方法によ

れば、カラーフィルタ内の個々のフィルタエレメントは、インクジェットへッドの1回の走査によって形成されるのではなくて、異なるノズルグループに属する複数のノズルによって重ねてインク吐出を受けることにより所定の膜厚に形成されるので、仮に複数のノズル間においてインク吐出量にバラツキが存在する場合でも、複数のフィルタエレメント間で膜厚にバラツキが生じることを防止でき、それ故、カラーフィルタの光透過特性を平面的に均一にすることができる。

【0013】もちろん、本発明のカラーフィルタの製造 方法はインクジェットヘッドを用いる方法であるので、 フォトリソグラフィー法を用いる方法のような複雑な工 程を経る必要も無く、また、材料を浪費することも無 い。

【0014】上記構成のカラーフィルタの製造方法において、前記インクジェットヘッド及び基板のうちの一方を前記ノズルグループの副走査方向の長さの整数倍の長さで他方に対して副走査移動させることができる。こうすれば、複数のノズルグループが前記基板の同じ部分を重ねて走査することになり、各ノズルグループ内のノズルによって個々のフィルタエレメント領域にインクが重ねて供給される。

【0015】また、上記構成のカラーフィルタの製造方法において、前記ノズル列は前記副走査方向に対して傾斜して配置することができる。ノズル列は複数のノズルを列状に配列することによって形成される。この場合、ノズル列の配置状態がインクジェットへッドの副走査方向に対して平行であるとすると、ノズルから吐出されたフィルタエレメント材料によって形成されるフィルタエレメントの隣り合うものの間の間隔、すなわちエレメント間ビッチは、ノズル列を形成する複数のノズルのノズル間ビッチに等しくなる。

【0016】エレメント間ピッチがノズル間ピッチに等しくて良い場合には上記のままで良いのであるが、このような場合はどちらかといえば稀なケースであり、通常は、エレメント間ピッチとノズル間ピッチとが異なる場合には、エレメント間ピッチとノズル間ピッチとが異なる場合には、上記構成のように、ノズル別をインクジェットへッドの副走査方向に対して傾斜させることにより、ノズル間ピッチの副走査方向に沿った長さをエレメント間ピッチに合わせることができる。なお、この場合には、ノズル列を構成する各ノズルの位置が主走査方向に関して前後にずれることになるが、これに対しては各ノズルからのフィルタエレメント材料の吐出タイミングをずらせることにより、各ノズルからのインク滴を希望の位置に供給できる。

【0017】また、上記構成のカラーフィルタの製造方法において、インクジェットヘッドの副走査移動の長さは次のようにして決定できる。すなわち、前記ノズル列

の長さをし、前記分割によって形成される前記グループ の数をn、前記ノズル列が前記副走査方向と成す角度を θ とするとき、前記副走査移動の長さ δ は、

 $\delta = (L/n) \cos \theta$

とすることができる。この構成によれば、インクジェットへッドは複数のノズルを副走査方向へノズルグループ ごとに移動させることができる。この結果、例えば、ノズル列が4個のノズルグループに分割される場合を考えれば、基板上の各部は4個のノズルグループによって重ねて主走査される。

【0018】次に、上記構成のカラーフィルタの製造方法において、前記ノズル列の両端部分の数個のノズルからはフィルタエレメント材料を吐出させないという制御方法を採用できる。一般のインクジェットへッドにおいてインク吐出分布がノズル列の両端部分において他の部分に比べて変化することは図23(a)に関連して説明した通りである。このようなインク吐出分布特性を有するインクジェットへッドに関しては、変化の大きいノズル列両端部分の数個のノズルを除いた、インク吐出分布が一様な複数のノズルを使うことにすれば、フィルタエレメントの膜厚を平面的に均一にすることができる。

【0019】また、上記のようにノズル列の両端部分の数個のノズルを使用せずに処理を行う場合には、インクジェットへッドの副走査移動の長さは次のようにして決定できる。すなわち、前記ノズル列のうち前記インクを吐出させないことにした両端部ノズルを除いた部分の長さをし、前記分割によって形成される前記グループの数をn、前記ノズル列が前記副走査方向と成す角度を θ とするとき、前記副走査移動の長さ δ は、

 $\delta = (L/n) \cos \theta$ $\delta = (L/n) \cos \theta$

【0020】次に、上記構成のカラーフィルタの製造方法によって製造されるカラーフィルタは、R(レッド)、G(グリーン)、B(ブルー)、或いはC(シアン)、Y(イエロー)、M(マゼンダ)等の複数色フィルタエレメントを平面的に適宜のパターンに配列することによって形成されると考えられる。このようなカラーフィルタを製造する場合には、複数色のうちの1種類のフィルタ材料をノズル列から吐出するインクジェットへッドを色数分それぞれ個々に独立して設け、「前記ノズル列内の各ノズルグループが前記基板の同じ部分を重ねて走査するように前記インクジェットへッドを副走査させながら前記主走査を複数回繰り返して行う」という工程は、前記1個の基板に対して各色毎のインクジェットへッドを別々に用いて順次に行うことによって実現できる。

【0021】また、上記のようなR、G、B、或いはC、Y、M等の複数色フィルタエレメントを有するカラーフィルタを製造する場合、各色を吐出する複数種類のノズル列を1つのヘッドの内部に形成することによって

前記インクジェットへッドを形成し、「前記ノズル列内 の各ノズルグループが前記基板の同じ部分を重ねて走査 するように前記インクジェットへッドを副走査させなが ら前記主走査を複数回繰り返して行う」という工程は、 前記インクジェットへッドによって複数色に対して同時 に行うこともできる。

【0022】(2)次に、本発明に係るカラーフィルタ の製造装置は、基板上に複数のフィルタエレメントを配 列して成るカラーフィルタを製造するカラーフィルタの 製造装置であって、複数のノズルを列状に配列して成る ノズル列を有し、該ノズル列が複数のグループに分割さ れてなるインクジェットヘッドと、該インクジェットへ ッドへフィルタ材料を供給するインク供給手段と、前記 インクジェットヘッド及び前記基板のうちの一方を他方 に対して主走査方向に移動させる主走査駆動手段と、前 記インクジェットヘッド及び前記基板のうちの一方を他 方に対して副走査方向に移動させる副走査駆動手段と、 前記複数のノズルからのインクの吐出を制御するノズル 吐出制御手段と、前記主走査駆動手段の動作を制御する 主走査制御手段と、前記副走査駆動手段の動作を制御す る副走査制御手段とを有し、各前記グループの少なくと も一部が前記基板の同じ部分を前記主走査方向に走査で きるように、前記インクジェットヘッド及び前記基板の うちの一方を他方に対して副走査させることを特徴とす

【0023】(3)次に、本発明に係る液晶装置の製造方法は、液晶を挟持する一対の基板と、少なくとも一方の基板上に複数のフィルタエレメントを配列して成るカラーフィルタとを有する液晶装置の製造方法であって、複数のノズルを列状に配列して成るノズル列を有し、該ノズル列が複数のグループに分割されてなるインクジェットへッド、及び前記基板のうちの一方を他方に対して主走査方向に移動させる工程と、前記複数のノズルから選択的にフィルタ材料を吐出して前記基板上に前記フィルタエレメントを形成する工程と、各前記グループの少なくとも一部が前記基板の同じ部分を前記主走査方向に走査できるように、前記インクジェットへッド及び前記基板のうちの一方を他方に対して副走査させる工程と、を具備することを特徴とする。。

【0024】(4)次に、本発明に係る液晶装置の製造装置は、液晶を挟持する一対の基板と、少なくとも一方の基板上に複数のフィルタエレメントを配列して成るカラーフィルタとを有する液晶装置の製造装置において、複数のノズルを列状に配列して成るノズル列を有し、該ノズル列が複数のグループに分割されてなるインクジェットへッドと、該インクジェットへッドへフィルタ材料を供給するインク供給手段と、前記インクジェットへッド及び前記基板のうちの一方を他方に対して主走査方向に移動させる主走査駆動手段と、前記インクジェットへッド及び前記基板のうちの一方を他方に対して副走査方

向に移動させる副走査駆動手段と、前記複数のノズルからのインクの吐出を制御するノズル吐出制御手段と、前記主走査駆動手段の動作を制御する主走査制御手段と、前記副走査駆動手段の動作を制御する副走査制御手段とを有し、各前記グループの少なくとも一部が前記基板の同じ部分を前記主走査方向に走査できるように、前記インクジェットヘッド及び前記基板のうちの一方を他方に対して副走査させることを特徴とする。ことを特徴とする液晶装置の製造装置。

【0025】(5)次に、本発明に係るEL装置の製造方法は、それぞれがEL発光層を含む複数の絵素ピクセルを基板上に配列して成るEL装置の製造方法において、複数のノズルを列状に配列して成るノズル列を有し、該ノズル列が複数のグループに分割されてなるインクジェットへッド、及び前記基板のうちの一方を他方に対して主走査方向に移動させる工程と、前記複数のノズルから選択的にEL発光材料を吐出して前記基板上に前記EL発光層を形成する工程と、各前記グループの少なくとも一部が前記基板の同じ部分を前記主走査方向に走査できるように、前記インクジェットへッド及び前記基板のうちの一方を他方に対して副走査させる工程と、を具備することを特徴とする。

【0026】(6)次に、本発明に係るEL装置の製造 装置は、 それぞれがEL発光層を含む複数の絵素ピク セルを基板上に配列して成るEL装置の製造装置におい て、複数のノズルを列状に配列して成るノズル列を有 し、該ノズル列が複数のグループに分割されてなるイン クジェットヘッドと、該インクジェットヘッドヘEL発 光材料を供給するインク供給手段と、複数のノズルを列 状に配列して成るノズル列を有し、該ノズル列が複数の グループに分割されてなるインクジェットヘッドと、該 インクジェットヘッドへ前記EL発光材料を供給するイ ンク供給手段と、前記インクジェットヘッド及び前記基 板のうちの一方を他方に対して主走査方向に移動させる 主走査駆動手段と、前記インクジェットヘッド及び前記 基板のうちの一方を他方に対して副走査方向に移動させ る副走査駆動手段と、前記複数のノズルからのインクの 吐出を制御するノズル吐出制御手段と、前記主走査駆動 手段の動作を制御する主走査制御手段と、前記副走査駆 動手段の動作を制御する副走査制御手段と、を有し、各 前記グループの少なくとも一部が前記基板の同じ部分を 前記主走査方向に走査できるように、前記インクジェッ トヘッド及び前記基板のうちの一方を他方に対して副走 査させることを特徴とする。

【0027】(7)次に、本発明に係るインクジェットへッドの制御装置は、基板上に複数の色パターンを配列して成る光学部材を製造する際に用いられるインクジェットへッドの制御装置において、複数のノズルを列状に配列して成るノズル列を有し、該ノズル列が複数のグループに分割されてなるインクジェットへッドと、該イン

クジェットヘッドヘフィルタ材料を供給するインク供給 手段と、前記インクジェットヘッド及び前記基板のうち の一方を他方に対して主走査方向に移動させる主走査駆動手段と、前記インクジェットヘッド及び前記基板のうちの一方を他方に対して副走査方向に移動させる副走車の 駆動手段と、前記複数のノズルからのインクの吐出を制御するノズル吐出制御手段と、前記主走査駆動手段の動作を制御する主走査制御手段と、前記副走査駆動手段の動作を制御する副走査制御手段とを有し、各前記グループの少なくとも一部が前記基板の同じ部分を前記主走査 方向に走査できるように、前記インクジェットヘット及び前記基板のうちの一方を他方に対して副走査させることを特徴とする。

【0028】上記構成のインクジェットへッドの制御装置において、「光学部材」としてはカラーフィルタ、EL装置等が考えられる。また、光学部材としてカラーフィルタを考える場合には、「色パターン」としてはR、G、Bの各フィルタエレメントが該当する。また、光学部材としてEL装置を考える場合には、「色パターン」としてはR、G、Bの各色発光層や正孔注入層等が該当する。

[0029]

【発明の実施の形態】(第1実施形態)以下、カラーフィルタの製造方法及びその製造装置の一実施形態について説明する。まず、それらの製造方法及び製造装置を説明するのに先立って、それらの製造方法等を用いて製造されるカラーフィルタについて説明する。図5(a)はカラーフィルタの一実施形態の平面構造を模式的に示している。また、図6(d)は図5(a)のVI-VI線に従った断面構造を示している。

【0030】本実施形態のカラーフィルタ1は、ガラス、プラスチック等によって形成された方形状の基板2の表面に複数のフィルタエレメント3をドットパターン状、本実施形態ではドットマトリクス状に形成し、さらに図6(d)に示すように、その上に保護膜4を積層することによって形成されている。なお、図5(a)は保護膜4を取り除いた状態のカラーフィルタ1を平面的に示している。

【0031】フィルタエレメント3は、透光性のない樹脂材料によって格子状のパターンに形成された隔壁6によって区画されてドットマトリクス状に並んだ複数の方形状の領域を色材で埋めることによって形成される。また、これらのフィルタエレメント3は、それぞれが、R(赤)、G(緑)、B(青)のうちのいずれか1色の色材によって形成され、それらの各色フィルタエレメント3が所定の配列に並べられている。この配列としては、例えば、図7(a)に示すストライプ配列、図7(b)に示すモザイク配列、図7(c)に示すデルタ配列等が知られている。

【0032】ストライプ配列は、マトリクスの縦列が全

て同色になる配色である。モザイク配列は、縦横の直線上に並んだ任意の3つのフィルタエレメントがR, G, Bの3色となる配色である。そして、デルタ配列は、フィルタエレメントの配置を段違いにし、任意の隣接する3つのフィルタエレメントがR, G, Bの3色となる配色である。

【0033】カラーフィルタ1の大きさは、例えば、1.8インチである。また、1個のフィルタエレメント3の大きさは、例えば、30 μ m $\times 100$ μ mである。また、各フィルタエレメント3の間の間隔、いわゆるエレメント間ピッチは、例えば、75 μ mである。

【0034】本実施形態のカラーフィルタ1をフルカラー表示のための光学要素として用いる場合には、R. G. B3個のフィルタエレメント3を1つのユニットとして1つの画素を形成し、1画素内のR. G. Bのいずれか1つ又はそれらの組み合わせに光を選択的に通過させることにより、フルカラー表示を行う。このとき、透光性のない樹脂材料によって形成された隔壁6はブラックマトリクスとして作用する。

【0035】上記のカラーフィルタ1は、例えば、図5(b)に示すような大面積のマザー基板12から切り出される。具体的には、まず、マザー基板12内に設定された複数のカラーフィルタ形成領域11のそれぞれの表面にカラーフィルタ1の1個分のパターンを形成し、さらにそれらのカラーフィルタ形成領域11の周りに切断用の溝を形成し、さらにそれらの溝に沿ってマザー基板12を切断することにより、個々のカラーフィルタ1が形成される。

【0036】以下、図5(a)に示すカラーフィルタ1を製造する製造方法及びその製造装置について説明する。

【0037】図6はカラーフィルタ1の製造方法を工程順に模式的に示している。まず、マザー基板12の表面に透光性のない樹脂材料によって隔壁6を矢印B方向から見て格子状パターンに形成する。格子状パターンの格子穴の部分7はフィルタエレメント領域である。この隔壁6によって形成される個々のフィルタエレメント領域7の矢印B方向から見た場合の平面寸法は、例えば30μm×100μm程度に形成される。

【0038】隔壁6は、フィルタエレメント領域7に供給されるフィルタエレメント材料の流動を阻止する機能及びブラックマトリクスの機能を併せて有する。また、隔壁6は任意のパターニング手法、例えばフォトリソグラフィー法によって形成され、さらに必要に応じてヒータによって加熱されて焼成される。

【0039】隔壁6の形成後、図6(b)に示すように、フィルタエレメント材料の液滴8を各フィルタエレメント領域7に供給することにより、各フィルタエレメント領域7をフィルタエレメント材料13で埋める。図

6 (b) において、符号13RはR(赤)の色を有するフィルタエレメント材料を示し、符号13GはG(緑)の色を有するフィルタエレメント材料を示し、そして符号13BはB(青)の色を有するフィルタエレメント材料を示している。

į ;

【0040】各フィルタエレメント領域7に所定量のフィルタエレメント材料が充填されると、ヒータによってマザー基板12を例えば70℃程度に加熱して、フィルタエレメント材料の溶媒を蒸発させる。この蒸発により、図6(c)に示すようにフィルタエレメント材料13の体積が減少し、平坦化する。体積の減少が激しい場合には、カラーフィルタとして十分な膜厚が得られるまで、フィルタエレメント材料の液滴の供給とその液滴の加熱とを繰り返して実行する。以上の処理により、最終的にフィルタエレメント材料の固形分のみが残留して膜化し、これにより、希望する各色フィルタエレメント3が形成される。

【0041】以上によりフィルタエレメント3が形成された後、それらのフィラメント3を完全に乾燥させるために、所定の温度で所定時間の加熱処理を実行する。その後、例えば、スピンコート法、ロールコート法、リッピング法、又はインクジェット法等といった適宜の手法を用いて保護膜4を形成する。この保護膜4は、フィルタエレメント3等の保護及びカラーフィルタ1の表面の平坦化のために形成される。

【0042】図8は、図6(b)に示したフィルタエレ メント材料の供給処理を行うためのインクジェット装置 の一実施形態を示している。このインクジェット装置1 6はR, G, Bのうちの1色、例えばR色のフィルタエ レメント材料をインクの液滴として、マザー基板12 (図5(b)参照)内の各カラーフィルタ形成領域11 内の所定位置に吐出して付着させるための装置である。 G色のフィルタエレメント材料及びB色のフィルタエレ メント材料のためのインクジェット装置もそれぞれに用 意されるが、それらの構造は図8のものと同じにするこ とができるので、それらについての説明は省略する。 【0043】図8において、インクジェット装置16 は、インクジェットヘッド22を備えたヘッドユニット 26と、インクジェットヘッド22の位置を制御するへ ッド位置制御装置17と、マザー基板12の位置を制御 する基板位置制御装置18と、インクジェットヘッド2 2をマザー基板12に対して主走査移動させる主走査駆 動装置19と、インクジェットヘッド22をマザー基板 12に対して副走査移動させる副走査駆動装置21と、 マザー基板12をインクジェット装置16内の所定の作 業位置へ供給する基板供給装置23と、そしてインクジ ェット装置16の全般の制御を司るコントロール装置2 4とを有する。

【0044】ヘッド位置制御装置17、基板位置制御装置18、インクジェットヘッド22をマザー基板12に

対して主走査移動させる主走査駆動装置19、そして副 走査駆動装置21の各装置はベース9の上に設置され る。また、それらの各装置は必要に応じてカバー14に よって覆われる。

; ;

【0045】インクジェットヘッド22は、例えば図10に示すように、複数のノズル27を列状に並べることによって形成されたノズル列28を有する。ノズル27の数は例えば180個であり、ノズル27の孔径は例えば28μmであり、ノズル27間のノズルピッチは例えば141μmである。図5(a)及び図5(b)においてカラーフィルタ1及びマザー基板12に対する主走査方向×及びそれに直交する副走査方向Yは図10において図示の通りに設定される。

【0046】インクジェットヘッド22は、そのノズル列28が主走査方向×と交差する方向へ延びるように位置設定され、この主走査方向×へ平行移動する間に、インクとしてのフィルタエレメント材料を複数のノズル27から選択的に吐出することにより、マザー基板12(図5(b)参照)内の所定位置にフィルタエレメント材料を付着させる。また、インクジェットヘッド22は副走査方向Yへ所定距離だけ平行移動することにより、インクジェットヘッド22による主走査位置を所定の間隔でずらせることができる。

【0047】インクジェットヘッド22は、例えば、図12(a)及び図12(b)に示す内部構造を有する。 具体的には、インクジェットヘッド22は、例えばステンレス製のノズルプレート29と、それに対向する振動板31と、それらを互いに接合する複数の仕切部材32とを有する。ノズルプレート29と振動板31との間には、仕切部材32によって複数のインク室33と液溜り34とが形成される。複数のインク室33と液溜り34とが形成される。複数のインク室33と液溜り34とは通路38を介して互いに連通している。

【0048】振動板31の適所にはインク供給孔36が形成され、このインク供給孔36にインク供給装置37が接続される。このインク供給装置37はR, G, Bのうちの1色、例えばR色のフィルタエレメント材料Mをインク供給孔36へ供給する。供給されたフィルタエレメント材料Mは液溜り34に充満し、さらに通路38を通ってインク室33に充満する。

【0049】ノズルプレート29には、インク室33からフィルタエレメント材料Mをジェット状に噴射するためのノズル27が設けられている。また、振動板31のインク室33を形成する面の裏面には、該インク室33に対応させてインク加圧体39が取り付けられている。このインク加圧体39は、図12(b)に示すように、圧電素子41並びにこれを挟持する一対の電極42a及び42bを有する。圧電素子41は電極42a及び42bへの通電によって矢印Cで示す外側へ突出するように撓み変形し、これによりインク室33の容積が増大する。すると、増大した容積分に相当するフィルタエレメ

ント材料Mが液溜り34から通路38を通ってインク室 33へ流入する。

【0050】次に、圧電素子41への通電を解除すると、該圧電素子41と振動板31は共に元の形状へ戻る。これにより、インク室33も元の容積に戻るためインク室33の内部にあるフィルタエレメント材料Mの圧力が上昇し、ノズル27からマザー基板12(図5(b)参照)へ向けてフィルタエレメント材料Mが液滴8となって噴出する。なお、ノズル27の周辺部には、液滴8の飛行曲がりやノズル27の孔詰まり等を防止するために、例えばNiーテトラフルオロエチレン共析メッキ層から成る撓インク層43が設けられる。

【0051】図9において、ヘッド位置制御装置17は、インクジェットヘッド22を面内回転させる α モータ44と、インクジェットヘッド22を副走査方向Yと 平行な軸線回りに揺動回転させる β モータ46と、インクジェットヘッド22を主走査方向と平行な軸線回りに揺動回転させる γ モータ47と、そしてインクジェットヘッド22を上下方向へ平行移動させるZモータ48を有する。

【0052】図8に示した基板位置制御装置18は、図9において、マザー基板12を載せるテーブル49と、そのテーブル49を矢印ののように面内回転させるのモータ51とを有する。また、図8に示した主走査駆動装置19は、図9に示すように、主走査方向×へ延びるガイドレール52と、パルス駆動されるリニアモータを内蔵したスライダ53とを有する。スライダ53は内蔵するリニアモータが作動するときにガイドレール52に沿って主走査方向へ平行移動する。

【0053】また、図8に示した副走査駆動装置21は、図9に示すように、副走査方向Yへ延びるガイドレール54と、バルス駆動されるリニアモータを内蔵したスライダ56とを有する。スライダ56は内蔵するリニアモータが作動するときにガイドレール54に沿って副走査方向Yへ平行移動する。

【0054】スライダ53やスライダ56内においてパルス駆動されるリニアモータは、該モータに供給するパルス信号によって出力軸の回転角度制御を精細に行うことができ、従って、スライダ53に支持されたインクジェットへッド22の主走査方向×上の位置やテーブル49の副走査方向Y上の位置等を高精細に制御できる。なお、インクジェットへッド22やテーブル49の位置制御はパルスモータを用いた位置制御に限られず、サーボモータを用いたフィードバック制御や、その他任意の制御方法によって実現することもできる。

【0055】図8に示した基板供給装置23は、マザー基板12を収容する基板収容部57と、マザー基板12を搬送するロボット58とを有する。ロボット58は、床、地面等といった設置面に置かれる基台59と、基台59に対して昇降移動する昇降軸61と、昇降軸61を

中心として回転する第1アーム62と、第1アーム62 に対して回転する第2アーム63と、第2アーム63の 先端下面に設けられた吸着パッド64とを有する。吸着 パッド64は空気吸引等によってマザー基板12を吸着 できる。

【0056】図8において、主走査駆動装置19によって駆動されて主走査移動するインクジェットへッド22の軌跡下であって副走査駆動装置21の一方の脇位置に、キャッピング装置76及びクリーニング装置77が配設される。また、他方の脇位置に電子天秤78が配設される。クリーニング装置77はインクジェットへッド22を洗浄するための装置である。電子天秤78はインクジェットへッド22内の個々のノズル27(図10参照)から吐出されるインクの液滴の重量をノズルごとに測定する機器である。そして、キャッピング装置76はインクジェットへッド22が待機状態にあるときにノズル27(図10参照)の乾燥を防止するための装置である。

【0057】インクジェットヘッド22の近傍には、そのインクジェットヘッド22と一体に移動する関係でヘッド用カメラ81が配設される。また、ベース9上に設けた支持装置(図示せず)に支持された基板用カメラ82がマザー基板12を撮影できる位置に配置される。

【0058】図8に示したコントロール装置24は、プロセッサを収容したコンピュータ本体部66と、入力装置としてのキーボード67と、表示装置としてのCRT (Cathode Ray Tube) ディスプレイ68とを有する。上記プロセッサは、図14に示すように、演算処理を行うCPU (Central Processing Unit) 69と、各種情報を記憶するメモリすなわち情報記憶媒体71とを有する。

【0059】図8に示したヘッド位置制御装置17、基板位置制御装置18、主走査駆動装置19、副走査駆動装置21、そして、インクジェットヘッド22内の圧電素子41(図12(b)参照)を駆動するヘッド駆動回路72の各機器は、図14において、入出力インターフェース73及びバス74を介してCPU69に接続される。また、基板供給装置23、入力装置67、ディスプレイ68、電子天秤78、クリーニング装置77及びキャッピング装置76の各機器も入出力インターフェース73及びバス74を介してCPU69に接続される。

【〇〇6〇】メモリ71は、RAM (Random Access Memory)、ROM (Read Only Memory)等といった半導体メモリや、ハードディスク、CD-ROM読取り装置、ディスク型記憶媒体等といった外部記憶装置等を含む概念であり、機能的には、インクジェット装置16の動作の制御手順が記述されたプログラムソフトを記憶する記憶領域や、図7に示す各種のR、G、B配列を実現するためのR、G、Bのうちの1色のマザー基板12(図5参照)内における吐出位置を座標データとして記憶する

ための記憶領域や、図9における副走査方向Yへのマザー基板12の副走査移動量を記憶するための記憶領域や、CPU69のためのワークエリアやテンポラリファイル等として機能する領域や、その他各種の記憶領域が設定される。

【0061】CPU69は、メモリ71内に記憶されたプログラムソフトに従って、マザー基板12に表面の所定位置にインク、すなわちフィルタエレメント材料を吐出するための制御を行うものであり、具体的な機能実現部として、クリーニング処理を実現するための演算を行うクリーニング演算部と、キャッピング処理を実現するためのキャッピング演算部と、電子天秤78(図8参照)を用いた重量測定を実現するための演算を行う重量測定演算部と、インクジェットによってフィルタエレメント材料を描画するための演算を行う描画演算部とを有する。

【0062】描画演算部を詳しく分割すれば、インクジェットへッド22を描画のための初期位置へセットするための描画開始位置演算部と、インクジェットへッド22を主走査方向×へ所定の速度で走査移動させるための制御を演算する主走査制御演算部と、マザー基板12を副走査方向Yへ所定の副走査量だけずらせるための制御を演算する副走査制御演算部と、そして、インクジェットへッド22内の複数のノズル27のうちのいずれを作動させてインクすなわちフィルタエレメント材料を吐出するかを制御するための演算を行うノズル吐出制御演算部等といった各種の機能演算部を有する。

【0063】なお、本実施形態では、上記の各機能をCPU69を用いてソフト的に実現することにしたが、上記の各機能がCPUを用いない単独の電子回路によって実現できる場合には、そのような電子回路を用いることも可能である。

【0064】以下、上記構成から成るインクジェット装置16の動作を図15に示すフローチャートに基づいて説明する。

【0065】オペレータによる電源投入によってインクジェット装置16が作動すると、まず、ステップS1において初期設定が実行される。具体的には、ヘッドユニット26や基板供給装置23やコントロール装置24等が予め決められた初期状態にセットされる。

【0066】次に、重量測定タイミングが到来すれば(ステップS2でYES)、図9のヘッドユニット26を主走査駆動装置19によって図8の電子天秤78の所まで移動させて(ステップS3)、ノズル27から吐出されるインクの量を電子天秤78を用いて測定する(ステップS4)。そして、ノズル27のインク吐出特性に合わせて、各ノズル27に対応する圧電素子41に印加する電圧を調節する(ステップS5)。

【0067】次に、クリーニングタイミングが到来すれば(ステップS6でYES)、ヘッドユニット26を主

走査駆動装置19によってクリーニング装置77の所まで移動させて(ステップS7)、そのクリーニング装置77によってインクジェットヘッド22をクリーニングする(ステップS8)。

【0068】重量測定タイミングやクリーニングタイミ ングが到来しない場合(ステップS2及びS6でN O)、あるいはそれらの処理が終了した場合には、ステ ップS9において、図8の基板供給装置23を作動させ てマザー基板12をテーブル49へ供給する。具体的に は、基板収容部57内のマザー基板12を吸着バッド6 4によって吸引保持し、次に、昇降軸61、第1アーム 62及び第2アーム63を移動させてマザー基板12を テーブル49まで搬送し、さらにテーブル49の適所に 予め設けてある位置決めピン50(図9)に押し付け る。なお、テーブル49上におけるマザー基板12の位 置ズレを防止するため、空気吸引等の手段によってマザ 一基板12をテーブル49に固定することが望ましい。 【0069】次に、図8の基板用カメラ82によってマ ザー基板12を観察しながら、図9の θ モータ51の出 力軸を微小角度単位で回転させることによりテーブル4 9を微小角度単位で面内回転させてマザー基板12を位 置決めする (ステップS10) . 次に、 図8のヘッド用 カメラ81によってマザー基板12を観察しながらイン クジェットヘッド22によって描画を開始する位置を演 算によって決定し(ステップS11)、そして、主走査 駆動装置19及び副走査駆動装置21を適宜に作動させ てインクジェットヘッド22を描画開始位置へ移動する (ステップS12)。

【0070】このとき、インクジェットヘッド22は、図1の(a)位置に示すように、ノズル列28がインクジェットヘッド22の副走査方向Yに対して角度ので傾斜するように配設される。これは、通常のインクジェット装置の場合には、隣り合うノズル27の間の間隔であるノズル間ピッチと、隣り合うフィルタエレメント3すなわちフィルタエレメント形成領域7の間の間隔であるエレメントピッチとが異なることが多く、インクジェットヘッド22を主走査方向×へ移動させるときに、ノズル間ピッチの副走査方向Yの寸法成分がエレメントピッチと幾何学的に等しくなるようにするための措置である。

【0071】図15のステップS12でインクジェットへッド22が描画開始位置に置かれると、図1においてインクジェットへッド22は(a)位置に置かれる。その後、図15のステップS13で主走査方向×への主走査が開始され、同時にインクの吐出が開始される。具体的には、図9の主走査駆動装置19が作動してインクジェットへッド22が図1の主走査方向×へ一定の速度で直線的に走査移動し、その移動中、インクを供給すべきフィルタエレメント領域7に対応するノズル27が到達したときにそのノズル27からインクすなわちフィルタ

エレメント材料が吐出される。

【0072】なお、このときのインク吐出量は、フィルタエレメント領域7の容積全部を埋める量ではなく、その全量の数分の1、本実施形態では全量の1/4の量である。これは、後述するように、各フィルタエレメント領域7はノズル27からの1回のインク吐出によって埋められるのではなくて、数回のインク吐出の重ね吐出によって、本実施形態では4回の重ね吐出によって容積全部を埋めることになっているからである。

【0073】インクジェットヘッド22は、マザー基板12に対する1ライン分の主走査が終了すると(ステップS14でYES)、反転移動して初期位置(a)へ復帰する(ステップS15)。そしてさらに、インクジェットヘッド22は、副走査駆動装置21によって駆動されて副走査方向Yへ予め決められた副走査量δだけ移動する(ステップS16)。

【0075】従って、1ライン分の主走査が終了して初期位置(a)へ復帰したインクジェットへッド22は図1において副走査方向Yへ距離るだけ平行移動して位置(b)へ移動する。なお、図1では位置(a)と位置(b)とが主走査方向×に関して少しずれて描かれているが、これは説明を分かり易くするための措置であり、実際には、位置(a)と位置(b)は主走査方向×に関しては同じ位置である。

【0076】位置(b)へ副走査移動したインクジェットへッド22は、ステップS13で主走査移動及びインク吐出を繰り返して実行する。この主走査移動時には、マザー基板12上におけるカラーフィルタ形成領域11内の2列目のラインが先頭のノズルグループによって初めてインク吐出を受けると共に、1列目のラインは先頭から2番目のノズルグループによって2回目のインク吐出を受ける。

【0077】これ以降、インクジェットへッド22は、位置(c)~位置(k)のように副走査移動を繰り返しながら主走査移動及びインク吐出を繰り返し(ステップS13~ステップS16)、これにより、マザー基板12のカラーフィルタ形成領域11の1列分のインク付着処理が完了する。本実施形態では、ノズル列28を4つのグループに分割して副走査量8を決定したので、上記のカラーフィルタ形成領域11の1列分の主走査及び副

走査が終了すると、各フィルタエレメント領域7は4個のノズルグループによってそれぞれ1回ずつ、合計で4回のインク吐出処理を受けて、その全容積内に所定量のインクすなわちフィルタエレメント材料が全量供給される。

【0078】こうしてカラーフィルタ形成領域11の1列分のインク吐出が完了すると、インクジェットヘッド22は副走査駆動手段21によって駆動されて次列のカラーフィルタ形成領域11の初期位置へ搬送され(ステップS19)、そして当該列のカラーフィルタ形成領域11に対して主走査、副走査及びインク吐出を繰り返してフィルタエレメント形成領域7内にフィルタエレメントを形成する(ステップS13~S16)。

【0079】その後、マザー基板12内の全てのカラーフィルタ形成領域11に関してR、G、Bの1色、例えばR1色のフィルタエレメント3が形成されると(ステップS18でYES)、ステップS20でマザー基板12を基板供給装置23によって、又は別の搬送機器によって、処理後のマザー基板12が外部へ排出される。その後、オペレータによって処理終了の指示がなされない限り(ステップS21でNO)、ステップS2へ戻って別のマザー基板12に対するR1色に関するインク吐着作業を繰り返して行う。

【0080】オペレータから作業終了の指示があると (ステップS21でYES)、CPU69は図8におい てインクジェットヘッド22をキャッピング装置76の 所まで搬送して、そのキャッピング装置76によってイ ンクジェットヘッド22に対してキャッピング処理を施 す(ステップS22)。

【0081】以上により、カラーフィルタを構成する R, G, B3色のうちの第1色、例えばR色についての パターニングが終了し、その後、マザー基板12をR, G, Bの第2色、例えばG色をフィルタエレメント材料とするインクジェット装置16へ搬送してG色のパターニングを行い、さらに最終的にR, G, Bの第3色、例えばB色をフィルタエレメント材料とするインクジェット装置16へ搬送してB色のパターニングを行う。これにより、ストライプ配列等といった希望のR, G, Bのドット配列を有するカラーフィルタ1(図5(a))が複数個形成されたマザー基板12が製造される。このマザー基板12をカラーフィルタ領域11ごとに切断することにより、1個のカラーフィルタ1が複数個切り出される。

【0082】なお、本カラーフィルタ1を液晶装置のカラー表示のために用いるものとすれば、本カラーフィルタ1の表面にはさらに電極や配向膜等が積層されることになる。そのような場合、電極や配向膜等を積層する前にマザー基板12を切断して個々のカラーフィルタ1を切り出してしまうと、その後の電極等の形成工程が非常に面倒になる。よって、そのような場合には、マザー基

板12上でカラーフィルタ1が完成した後に、直ぐにマ ザー基板12を切断してしまうのではなく、電極形成や 配向膜形成等といった必要な付加工程が終了した後にマ ザー基板12を切断することが望ましい。

【0083】以上のように、本実施形態に係るカラーフィルタの製造方法及び製造装置によれば、図5(a)に示すカラーフィルタ1内の個々のフィルタエレメント3はインクジェットへッド22(図1参照)の1回の主走査×によって形成されるのではなくて、各1個のフィルタエレメント3は異なるノズルグループに属する複数のノズル27によってn回、本実施形態では4回、重ねてインク吐出を受けることにより所定の膜厚に形成される。このため、仮に複数のノズル27間においてインク吐出量にバラツキが存在する場合でも、複数のフィルタエレメント3間で膜厚にバラツキが生じることを防止でき、それ故、カラーフィルタの光透過特性を平面的に均一にすることができる。

【0084】もちろん、本実施形態の製造方法では、インクジェットヘッド22を用いたインク吐出によってフィルタエレメント3を形成するので、フォトリソグラフィー法を用いる方法のような複雑な工程を経る必要も無く、また、材料を浪費することも無い。

【0085】ところで、インクジェットヘッド22のノズル列28を形成する複数のノズル27のインク吐出量の分布が不均一になることは図23(a)に関連して説明した通りである。また、特にノズル列28の両端部に存在する数個、例えば片端側10個ずつ、のノズル27が特にインク吐出量が大きくなることも記述の通りである。このようにインク吐出量が他のノズルに比べて特に多いノズルを使用することは、インク吐膜すなわちフィルタエレメントの膜厚を均一にすることに関して好ましくない。

【0086】従って、望ましくは、図13に示すように、ノズル列28を形成する複数のノズル27のうちノズル列28の両端部Eに存在する数個、例えば10個程度は予めインクを吐出しないものと設定しておき、残りの部分Fに存在するノズル27を複数、例えば4個のグループに分割して、そのノズルグループ単位で副走査移動を行うことが良い。

【0087】本第1実施形態においては、隔壁6として透光性のない樹脂材料を用いたが、透隔壁6として透光性の樹脂材料を用いることももちろん可能である。その場合にあっては、フィルタエレメント間に対応する位置、例えば隔壁6の上、隔壁6の下等に別途遮光性の金属膜或いは樹脂材料を設けてブラックマスクとしてもよい。また、透光性の樹脂材料で隔壁6を形成し、ブラックマスクを設けない構成としてもよい。

【0088】また本第1実施形態においては、フィルタ エレメントとしてR, G、Bを用いたがもちろん、R, G. Bに限定されることはなく、例えばC(シアン), M (マゼンダ), Y (イエロー) を採用してもかまわない。その場合にあっては、R, G, Bのフィルタエレメント材料、に変えて、C, M、Yの色を有するフィルタエレメント材料を用いればよい。

【0089】また、本第1実施形態においては、隔壁6をフォトリソグラフィーによって形成したが、カラーフィルタ同様にインクジェット法により隔壁6を形成することも可能である。

【0090】(第2実施形態)図2は、本発明に係るカラーフィルタの製造方法及び製造装置の他の実施形態によってインクジェットへッド22を用いてマザー基板12内のカラーフィルタ形成領域11内の各フィルタエレメント形成領域7へインクすなわちフィルタエレメント材料を吐出によって供給する場合を模式的に示している。

【0091】本実施形態によって実施される概略の工程は図6に示した工程と同じであり、インク吐着のために用いるインクジェット装置も図8に示した装置と機構的には同じである。また、図14のCPU69がノズル列28を形成する複数のノズル27を概念的にn個、例えば4つにグループ分けして、各ノズルグループの長さし/n又はL/4に対応させて副走査量δを決定することも図1の場合と同じである。

【0092】本実施形態が図1に示した先の実施形態と 異なる点は、図14においてメモリ71内に格納したプログラムソフトに改変を加えたことであり、具体的には CPU69によって行う主走査制御演算と副走査制御演 算に改変を加えたことである。

【0093】より具体的に説明すれば、図2において、インクジェットへッド22は主走査方向×への走査移動の終了後に初期位置へ復帰移動することなく、1方向への主走査移動の終了後に直ぐに副走査方向へノズルグループ1個分に相当する移動量をだけ移動して位置(b)へ移動した後、主走査方向×の上記1方向の反対方向へ走査移動を行って初期位置(a)から副走査方向へ距離をだけずれた位置(b')へ戻るように制御される。なお、位置(a)から位置(b)までの主走査の間及び位置(b)から位置(b')への主走査移動の間の両方の期間において複数のノズル27から選択的にインクが吐出されることはもちろんである。

【0094】つまり、本実施形態ではインクジェットへッド22の主走査及び副走査が復帰動作を挟むことなく連続して交互に行われるものであり、これにより、復帰動作のために費やされた時間を省略して作業時間を短縮化できる。

【0095】(第3実施形態)図3は、本発明に係るカラーフィルタの製造方法及び製造装置の他の実施形態によってインクジェットヘッド22を用いてマザー基板12内のカラーフィルタ形成領域11内の各フィルタエレメント形成領域7ヘインクすなわちフィルタエレメント

材料を吐出によって供給する場合を模式的に示している。

【0096】本実施形態によって実施される概略の工程は図6に示した工程と同じであり、インク吐着のために用いるインクジェット装置も図8に示した装置と機構的には同じである。また、図14のCPU69がノズル列28を形成する複数のノズル27を概念的にn個、例えば4つにグループ分けすることも図1の場合と同じである。

【0097】本実施形態が図1に示した先の実施形態と異なる点は、図15のステップS12でインクジェットヘッド22をマザー基板12の描画開始位置にセットしたとき、そのインクジェットヘッド22は図3の(a)位置に示すように、ノズル列28の延びる方向が副走査方向Yと平行である点である。このようなノズルの配列構造は、インクジェットヘッド22に関するノズル間ピッチとマザー基板12に関するエレメント間ピッチとが等しい場合に有利な構造である。

【0098】この実施形態においても、インクジェットへッド22は初期位置(a)から終端位置(k)に至るまで、主走査方向×への走査移動、初期位置への復帰移動及び副走査方向Yへの移動量&での副走査移動を繰り返しながら、主走査移動の期間中に複数のノズル27から選択的にインクすなわちフィルタエレメント材料を吐出し、これにより、マザー基板12内のカラーフィルタ形成領域11内のフィルタエレメント形成領域7内へフィルタエレメント材料を付着させる。

【0099】なお、本実施形態では、ノズル列28が副 走査方向Yに対して平行に位置設定されるので、副走査 移動量8は分割されたノズルグループの長さL/nすな わちL/4と等しく設定される。

【0100】(第4実施形態)図4は、本発明に係るカラーフィルタの製造方法及び製造装置の他の実施形態によってインクジェットへッド22を用いてマザー基板12内のカラーフィルタ形成領域11内の各フィルタエレメント形成領域7へインクすなわちフィルタエレメント材料を吐出によって供給する場合を模式的に示している。

【0101】本実施形態によって実施される概略の工程は図6に示した工程と同じであり、インク吐着のために用いるインクジェット装置も図8に示した装置と機構的には同じである。また、図14のCPU69がノズル列28を形成する複数のノズル27を概念的にn個、例えば4つにグループ分けすることも図1の場合と同じである。

【0102】本実施形態が図1に示した先の実施形態と異なる点は、図15のステップS12でインクジェットヘッド22をマザー基板12の描画開始位置にセットしたとき、そのインクジェットヘッド22は図4(a)に示すように、ノズル列28の延びる方向が副走査方向Y

と平行である点と、図2の実施形態の場合と同様にインクジェットヘッド22の主走査及び副走査が復帰動作を挟むことなく連続して交互に行われる点である。

【0103】なお、図4に示す本実施形態及び図3に示す先の実施形態では、主走査方向×がノズル列28に対して直角の方向となるので、ノズル列28を図11に示すように主走査方向×に沿って2列設けることにより、同じ主走査ラインに載った2つのノズル27によって1つのフィルタエレメント領域7にフィルタエレメント材料を供給することができる。

【0104】(第5実施形態)図16は、本発明に係るカラーフィルタの製造方法及び製造装置のさらに他の実施形態に用いられるインクジェットへッド22Aが図10に示すインクジェットへッド22Aが図10に示すインクジェットへッド22Aが図10に示すインクジェットへッド22と異なる点は、R色インクを吐出するノズル列28Rと、G色インクを吐出するノズル列28Bといった3種類のノズル列を1個のインクジェットへッド22Aに形成し、それら3種類のそれぞれに図12(a)及び図12(b)に示したインク吐出系にはRインク供給装置37Rを接続し、G色ノズル列28Gに対応するインク吐出系にはGインク供給装置37Gを接続し、そしてB色ノズル列28Bに対応するインク吐出系にはGインク供給装置37Bを接続したことである。

【0105】本実施形態によって実施される概略の工程は図6に示した工程と同じであり、インク吐着のために用いるインクジェット装置も基本的には図8に示した装置と同じである。また、図14のCPU69がノズル列28R,28G,28Bを形成する複数のノズル27を概念的にn個、例えば4つにグループ分けして、それらのノズルグループごとにインクジェットへッド22Aを副走査移動量&で副走査移動させることも図1の場合と同じである。

【0106】図1に示した実施形態では、インクジェットへッド22に1種類のノズル列28が設けられるだけであったので、R, G, B3色によってカラーフィルタを形成する際には図8に示したインクジェットへッド22がR, G, Bの3色それぞれについて準備されていなければならなかった。これに対し、図16に示す構造のインクジェットへッド22Aを使用する場合には、インクジェットへッド22Aの主走査方向×への1回の主走査によってR, G, Bの3色を同時にマザー基板12へ付着させることができるので、インクジェットへッド22は1つだけ準備しておけば足りる。また、各色のノズル列間隔をマザー基板のフィルタエレメント領域のピッチに合わせることにより、RGB3色の同時打ちが可能となる。

【0107】(第6実施形態)図17は、本発明に係る液晶装置の製造方法の一実施形態を示している。また、

図18はその製造方法によって製造される液晶装置の一実施形態を示している。また、図19は図18における I×-I×線に従った液晶装置の断面構造を示している。液晶装置の製造方法及び製造装置の説明に先立って、まず、その製造方法によって製造される液晶装置をその一例を挙げて説明する。なお、本実施形態の液晶装置は、単純マトリクス方式でフルカラー表示を行う半透過反射方式の液晶装置である。

【0108】図18において、液晶装置101は、液晶パネル102に半導体チップとしての液晶駆動用IC103a及び103bを実装し、配線接続要素としてのFPC (Flexible Printed Circuit) 104を液晶パネル102に接続し、さらに液晶パネル102の裏面側に照明装置106をバックライトとして設けることによって形成される。

【0109】液晶パネル102は、第1基板107aと第2基板107bとをシール材108によって貼り合わせることによって形成される。シール材108は、例えば、スクリーン印刷等によってエポキシ系樹脂を第1基板107a又は第2基板107bの内側表面に環状に付着させることによって形成される。また、シール材108の内部には図19に示すように、導電性材料によって球状又は円筒状に形成された導通材109が分散状態で含まれる。

【0110】図19において、第1基板107aは透明なガラスや、透明なプラスチック等によって形成された板状の基材111aを有する。この基材111aの内側表面(図19の上側表面)には反射膜112が形成され、その上に絶縁膜113が積層され、その上に第1電極114aが矢印D方向から見てストライプ状(図18参照)に形成され、さらにその上に配向膜116aが形成される。また、基材111aの外側表面(図19の下側表面)には偏光板117aが貼着等によって装着される。

【0111】図18では第1電極114aの配列を分かり易く示すために、それらのストライプ間隔を実際よりも大幅に広く描いており、よって、第1電極114aの本数が少なく描かれているが、実際には、第1電極114aはより多数本が基材111a上に形成される。

【0112】図19において、第2基板107bは透明なガラスや、透明なプラスチック等によって形成された板状の基材111bを有する。この基材111bの内側表面(図19の下側表面)にはカラーフィルタ118が形成され、その上に第2電極114bが上記第1電極114aと直交する方向へ矢印D方向から見てストライプ状(図18参照)に形成され、さらにその上に配向膜116bが形成される。また、基材111bの外側表面(図19の上側表面)には偏光板117bが貼着等によって装着される。

【0113】図18では、第2電極1146の配列を分

かりやすく示すために、第1電極114aの場合と同様に、それらのストライプ間隔を実際よりも大幅に広く描いており、よって、第2電極114bの本数が少なく描かれているが、実際には、第2電極114bはより多数本が基材111b上に形成される。

【0114】図19において、第1基板107a、第2基板107b及びシール材108によって囲まれる間隙、いわゆるセルギャップ内には液晶、例えばSTN (SuperTwisted Nematic)液晶しが封入されている。第1基板107a又は第2基板107bの内側表面には微小で球形のスペーサ119が多数分散され、これらのスペーサ119がセルギャップ内に存在することによりそのセルギャップの厚さが均一に維持される。

【0115】第1電極114aと第2電極114bは互いに直交関係に配置され、それらの交差点は図19の矢印D方向から見てドット・マトリクス状に配列する。そして、そのドット・マトリクス状の各交差点が1つの絵素ピクセルを構成する。カラーフィルタ118は、R(赤)、G(緑)、B(青)の各色要素を矢印D方向から見て所定のパターン、例えば、ストライプ配列、デルタ配列、モザイク配列等のパターンで配列させることによって形成されている。上記の1つの絵素ピクセルはそれらR、G、Bの各1つずつに対応しており、そしてR、G、Bの3色絵素ピクセルが1つのユニットになって1画素が構成される。

【0116】ドット・マトリクス状に配列される複数の 絵素ピクセル、従って画素、を選択的に発光させること により、液晶パネル102の第2基板107bの外側に 文字、数字等といった像が表示される。このようにして 像が表示される領域が有効画素領域であり、図18及び 図19において矢印Vによって示される平面的な矩形領 域が有効表示領域となっている。

【0117】図19において、反射膜112はAPC合金、A1(アルミニウム)等といった光反射性材料によって形成され、第1電極114aと第2電極114bとの交差点である各絵素ピクセルに対応する位置に開口121が形成されている。結果的に、開口121は図19の矢印D方向から見て、絵素ピクセルと同じドット・マトリクス状に配列されている。

【0118】第1電極114a及び第2電極114bは、例えば、透明導電材であるITOによって形成される。また、配向膜116a及び116bは、ポリイミド系樹脂を一様な厚さの膜状に付着させることによって形成される。これらの配向膜116a及び116bがラビング処理を受けることにより、第1基板107a及び第2基板107bの表面上における液晶分子の初期配向が決定される。

【0119】図18において、第1基板107aは第2 基板107bよりも広い面積に形成されており、これら の基板をシール材108によって貼り合わせたとき、第

1基板107aは第2基板107bの外側へ張り出す基 板張出し部107cを有する。 そして、 この基板張出し 部107cには、第1電極114aから延び出る引出し 配線114c、シール材108の内部に存在する導通材 109 (図19参照)を介して第2基板107b上の第 2電極114bと導通する引出し配線114d、液晶駆 動用IC103aの入力用バンプ、すなわち入力用端子 に接続される金属配線114e、そして液晶駆動用IC 103bの入力用バンプに接続される金属配線114f 等といった各種の配線が適切なパターンで形成される。 【0120】本実施形態では、第1電極114aから延 びる引出し配線114c及び第2電極114 bに導通す る引出し配線114 dはそれらの電極と同じ材料である ITO、すなわち導電性酸化物によって形成される。ま た、液晶駆動用IC103a及び103bの入力側の配 線である金属配線114e及び114fは電気抵抗値の 低い金属材料、例えばAPC合金によって形成される。 APC合金は、主としてAgを含み、付随してPd及び Cuを含む合金、例えば、Ag98%、Pd1%、Cu 1%から成る合金である。

【0121】液晶駆動用IC103a及び液晶駆動用IC103bは、ACF(Anisotropic Conductive Film: 異方性導電膜)122によって基板張出し部107 cの表面に接着されて実装される。すなわち、本実施形態では基板上に半導体チップが直接に実装される構造の、いわゆるCOG(Chip On Glass)方式の液晶パネルとして形成されている。このCOG方式の実装構造においては、ACF122の内部に含まれる導電粒子によって、液晶駆動用IC103a及び103bの入力側パンプと金属配線114e及び114fとが導電接続され、液晶駆動用IC103a及び103bの出力側パンプと引出し配線114c及び114dとが導電接続される。

【0122】図18において、FPC104は、可撓性の樹脂フィルム123と、チップ部品124を含んで構成された回路126と、金属配線端子127とを有する。回路126は樹脂フィルム123の表面に半田付けその他の導電接続手法によって直接に搭載される。また、金属配線端子127はAPC合金、Cr、Cuその他の導電材料によって形成される。FPC104のうち金属配線端子127が形成された部分は、第1基板107aのうち金属配線114e及び金属配線114fが形成された部分にACF122によって接続される。そして、ACF122の内部に含まれる導電粒子の働きにより、基板側の金属配線114e及び114fとFPC側の金属配線端子127とが導通する。

【0123】FPC104の反対側の辺端部には外部接続端子131が形成され、この外部接続端子131が図示しない外部回路に接続される。そして、この外部回路から伝送される信号に基づいて液晶駆動用IC103a

及び103bが駆動され、第1電極114a及び第2電極114bの一方に走査信号が供給され、他方にデータ信号が供給される。これにより、有効表示領域V内に配列されたドット・マトリクス状の絵素ピクセルが個々のピクセルごとに電圧制御され、その結果、液晶Lの配向が個々の絵素ピクセルごとに制御される。

【0124】図18において、いわゆるバックライトとして機能する照明装置106は、図19に示すように、アクリル樹脂等によって構成された導光体132と、その導光体132の光出射面132bに設けられた拡散シート133と、導光体132の光出射面132bの反対面に設けられた反射シート134と、発光源としてのLED (Light Emitting Diode) 136とを有する。

【0125】LED136はLED基板137に支持され、そのLED基板137は、例えば導光体132と一体に形成された支持部(図示せず)に装着される。LED基板137が支持部の所定位置に装着されることにより、LED136が導光体132の側辺端面である光取込み面132aに対向する位置に置かれる。なお、符号138は液晶パネル102に加わる衝撃を緩衝するための緩衝材を示している。

【0126】LED136が発光すると、その光は光取込み面132aから取り込まれて導光体132の内部へ導かれ、反射シート134や導光体132の壁面で反射しながら伝播する間に光出射面132bから拡散シート133を通して外部へ平面光として出射する。

【0127】本実施形態の液晶装置101は以上のように構成されているので、太陽光、室内光等といった外部光が十分に明るい場合には、図19において、第2基板107b側から外部光が液晶パネル102の内部へ取り込まれ、その光が液晶しを通過した後に反射膜112で反射して再び液晶しへ供給される。液晶しはこれを挟持する電極114a及び114bによってR,G,Bの絵素ピクセルごとに配向制御されており、よって、液晶しへ供給された光は絵素ピクセルごとに変調され、その変調によって偏光板117bを通過する光と、通過できない光とによって液晶パネル102の外部に文字、数字等といった像が表示される。これにより、反射型の表示が行われる。

【0128】他方、外部光の光量が十分に得られない場合には、LED136が発光して導光体132の光出射面132bから平面光が出射され、その光が反射膜112に形成された開口121を通して液晶Lへ供給される。このとき、反射型の表示と同様にして、供給された光が配向制御される液晶Lによって絵素ピクセルごとに変調され、これにより、外部へ像が表示される。これにより、透過型の表示が行われる。

【0129】上記構成の液晶装置101は、例えば、図17に示す製造方法によって製造される。この製造方法において、工程P1~工程P6の一連の工程が第1基板

107aを形成する工程であり、工程P11~工程P14の一連の工程が第2基板107bを形成する工程である。第1基板形成工程と第2基板形成工程は、通常、それぞれが独自に行われる。

【0130】まず、第1基板形成工程について説明すれば、透光性ガラス、透光性プラスチック等によって形成された大面積のマザー原料基材の表面に液晶パネル102の複数個分の反射膜112をフォトリソグラフィー法等を用いて形成し、さらにその上に絶縁膜113を周知の成膜法を用いて形成し(工程P1)、次に、フォトリソグラフィー法等を用いて第1電極114a及び配線114c,114d,114e,114fを形成する(工程P2)。

【0131】次に、第1電極114aの上に塗布、印刷等によって配向膜116aを形成し(工程P3)、さらにその配向膜116aに対してラビング処理を施すことにより液晶の初期配向を決定する(工程P4)。次に、例えばスクリーン印刷等によってシール材108を環状に形成し(工程P5)、さらにその上に球状のスペーサ119を分散する(工程P6)。以上により、液晶パネル102の第1基板107a上のパネルパターンを複数個分有する大面積のマザー第1基板が形成される。

【0132】以上の第1基板形成工程とは別に、第2基板形成工程(図17の工程P11~工程P14)を実施する。まず、透光性ガラス、透光性プラスチック等によって形成された大面積のマザー原料基材を用意し、その表面に液晶パネル102の複数個分のカラーフィルタ118を形成する(工程P11)。このカラーフィルタの形成工程は図6に示した製造方法を用いて行われ、その製造方法中のR、G、Bの各色フィルタエレメントの形成は図8のインクジェット装置16を用いて図1、図2、図3、図4等に示したインクジェットへッドの制御方法に従って実行される。これらカラーフィルタの製造方法及びインクジェットへッドの制御方法は既に説明した内容と同じであるので、それらの説明は省略する。

【0133】図6(d)に示すようにマザー基板12すなわちマザー原料基材の上にカラーフィルタ1すなわちカラーフィルタ118が形成されると、次に、フォトリソグラフィー法によって第2電極114bが形成され(工程P12)、さらに塗布、印刷等によって配向膜116bが形成され(工程P13)、さらにその配向膜116bに対してラビング処理が施されて液晶の初期配向が決められる(工程P14)。以上により、液晶パネル102の第2基板107b上のパネルパターンを複数個分有する大面積のマザー第2基板が形成される。

【0134】以上により大面積のマザー第1基板及びマザー第2基板が形成された後、それらのマザー基板をシール材108を間に挟んでアライメント、すなわち位置合わせした上で互いに貼り合わせる(工程P21)。これにより、液晶パネル複数個分のパネル部分を含んでい

て未だ液晶が封入されていない状態の空のパネル構造体 が形成される。

【0135】次に、完成した空のパネル構造体の所定位置にスクライブ溝、すなわち切断用溝を形成し、さらにそのスクライブ溝を基準にしてパネル構造体をブレイク、すなわち切断する(工程P22)。これにより、各液晶パネル部分のシール材108の液晶注入用開口110(図18参照)が外部へ露出する状態の、いわゆる短冊状の空のパネル構造体が形成される。

【0136】その後、露出した液晶注入用開口110を通して各液晶パネル部分の内部に液晶しを注入し、さらに各液晶注入口110を樹脂等によって封止する(工程P23)。通常の液晶注入処理は、例えば、貯留容器の中に液晶を貯留し、その液晶が貯留された貯留容器と短冊状の空パネルをチャンバー等に入れ、そのチャンバー等を真空状態にしてからそのチャンバーの内部において液晶の中に短冊状の空パネルを浸漬し、その後、チャンバーを大気圧に開放することによって行われる。このとき、空パネルの内部は真空状態なので、大気圧によって加圧される液晶が液晶注入用開口を通してパネルの内部へ導入される。液晶注入後の液晶パネル構造体のまわりには液晶が付着するので、液晶注入処理後の短冊状パネルは工程24において洗浄処理を受ける。

【0137】その後、液晶注入及び洗浄が終わった後の短冊状のマザーパネルに対して再び所定位置にスクライブ溝を形成し、さらにそのスクライブ溝を基準にして短冊状パネルを切断することにより、複数個の液晶パネルが個々に切り出される(工程P25)。こうして作製された個々の液晶パネル102に対して図18に示すように、液晶駆動用IC103a、103bを実装し、照明装置106をバックライトとして装着し、さらにFPC104を接続することにより、目標とする液晶装置101が完成する(工程P26)。

【0138】以上に説明した液晶装置の製造方法及び製 造装置は、特にカラーフィルタを製造する段階において 次のような特徴を有する。すなわち、図5 (a) に示す カラーフィルタ1すなわち図19のカラーフィルタ11 8内の個々のフィルタエレメント3はインクジェットへ ッド22 (図1参照) の1回の主走査×によって形成さ れるのではなくて、各1個のフィルタエレメント3は異 なるノズルグループに属する複数のノズル27によって n回、例えば4回、重ねてインク吐出を受けることによ り所定の膜厚に形成される。このため、仮に複数のノズ ル27間においてインク吐出量にバラツキが存在する場 合でも、複数のフィルタエレメント3間で膜厚にバラツ キが生じることを防止でき、それ故、カラーフィルタの 光透過特性を平面的に均一にすることができる。このこ とは、図19の液晶装置101において、色むらのない 鮮明なカラー表示が得られるということである。

【0139】また、本実施形態の液晶装置の製造方法及

び製造装置では、図8に示すインクジェット装置16を 用いることによりインクジェットヘッド22を用いたインク吐出によってフィルタエレメント3を形成するので、フォトリソグラフィー法を用いる方法のような複雑な工程を経る必要も無く、また、材料を浪費することも 無い。

【0140】(第7実施形態)図20は、本発明に係るEL装置の製造方法の一実施形態を示している。また、図21はその製造方法の主要工程及び最終的に得られるEL装置の主要断面構造を示している。図21(d)に示すように、EL装置201は、透明基板204上に画素電極202を形成し、各画素電極202間にバンク205を矢印G方向から見て格子状に形成し、それらの格子状凹部の中に正孔注入層220を形成し、矢印G方向から見てストライプ配列等といった所定配列となるようにR色発光層203R、G色発光層203G及びB色発光層203Bを各格子状凹部の中に形成し、さらにそれらの上に対向電極213を形成することによって形成される。

【0141】上記画素電極202をTFD (Thin Film Diode:薄膜ダイオード)素子等といった2端子型のアクティブ素子によって駆動する場合には、上記対向電極213は矢印G方向から見てストライプ状に形成される。また、画素電極202をTFT (Thin Film Transi stor:薄膜トランジスタ)等といった3端子型のアクティブ素子によって駆動する場合には、上記対向電極213は単一な面電極として形成される。

【0142】各画素電極202と各対向電極213とによって挟まれる領域が1つの絵素ピクセルとなり、R,G,B3色の絵素ピクセルが1つのユニットとなって1つの画素を形成する。各絵素ピクセルを流れる電流を制御することにより、複数の絵素ピクセルのうちの希望するものを選択的に発光させ、これにより、矢印H方向に希望するフルカラー像を表示することができる。

【0143】上記EL装置201は、例えば、図20に示す製造方法によって製造される。すなわち、工程P51及び図21(a)のように、透明基板204の表面にTFD素子やTFT素子等といった能動素子を形成し、さらに画素電極202を形成する。形成方法としては、例えば、フォトリソグラフィー法、真空状着法、スパッタリング法、パイロゾル法等を用いることができる。画素電極の材料としてはITO(Indium Tin Oxide)、酸化スズ、酸化インジウムと酸化亜鉛との複合酸化物等を用いることができる。

【0144】次に、工程P52及び図21(a)に示すように、隔壁すなわちバンク205を周知のパターニング手法、例えばフォトリソグラフィー法を用いて形成し、このバンク205によって各透明電極202の間を埋めた。これにより、コントラストの向上、発光材料の混色の防止、画素と画素との間からの光漏れ等を防止す

ることができる。バンク205の材料としては、EL材料の溶媒に対して耐久性を有するものであれば特に限定されないが、フロロカーボンガスプラズマ処理によりフッ素処理できること、例えば、アクリル樹脂、エボキシ樹脂、感光性ポリイミド等といった有機材料が好ましい。

【0145】次に、正孔注入層用インクを塗布する直前に、基板204に酸素ガスとフロロカーボンガスプラズマの連続プラズマ処理を行った(工程P53)。これにより、ポリイミド表面は脱水化され、ITO表面は親水化され、インクジェット液滴を微細にパターニングするための基板側の濡れ性の制御ができる。プラズマを発生する装置としては、真空中でプラズマを発生する装置でも、大気中でプラズマを発生する装置でも同様に用いることができる。

【0146】次に、工程P54及び図21(a)に示すように、正孔注入層用インクを図8のインクジェット装置16のインクジェットへッド22から吐出し、各画索電極202の上にパターニング塗布を行った。具体的なインクジェットへッドの制御方法は図1、図2、図3又は図4に示した方法を用いた。その塗布後、真空(1torr)中、室温、20分という条件で溶媒を除去して工程P55)、その後、大気中、20℃(ホットプレート上)、10分の熱処理により、発光層用インクと相溶しない正孔注入層220を形成した(工程P56)。膜厚は40nmであった。

【0147】次に、工程P57及び図21(b)に示すように、各フィルタエレメント領域内の正孔注入層220の上にインクジェット手法を用いてR発光層用インク及びG発光層用インクを塗布した。ここでも、各発光層用インクは、図8のインクジェット装置16のインクジェットへッド22から吐出し、さらにインクジェットへッドの制御方法は図1、図2、図3又は図4に示した方法に従った。インクジェット方式によれば、微細なパターニングを簡便に且つ短時間に行うことができる。また、インク組成物の固形分濃度及び吐出量を変えることにより膜厚を変えることが可能である。

【0148】発光層用インクの塗布後、真空(1torr)中、室温、20分等という条件で溶媒を除去し(工程P58)、続けて窒素雰囲気中、150℃、4時間の熱処理により共役化させてR色発光層203R及びG色発光層203Gを形成した(工程P59)。膜厚は50nmであった。熱処理により共役化した発光層は溶媒に不溶である。

【0149】なお、発光層を形成する前に正孔注入層220に酸素ガスとフロロカーボンガスプラズマの連続プラズマ処理を行っても良い。これにより、正孔注入層220上にフッ素化物層が形成され、イオン化ポテンシャルが高くなることにより正孔注入効率が増し、発光効率の高い有機EL装置を提供できる。

【0150】次に、工程P60及び図21(c)に示すように、B色発光層203Bを各絵素ピクセル内のR色発光層203G及び正孔注入層220の上に重ねて形成した。これにより、R,G,Bの3原色を形成するのみならず、R色発光層203R及びG色発光層203Gとバンク205との段差を埋めて平坦化することができる。これにより、上下電極間のショートを確実に防ぐことができる。B色発光層203Bの膜厚を調整することで、B色発光層203BはR色発光層203R及びG色発光層203Gとの積層構造において、電子注入輸送層として作用してB色には発光しない。

【0151】以上のようなB色発光層203Bの形成方法としては、例えば湿式法として一般的なスピンコート法を採用することもできるし、あるいは、R色発光層203R及びG色発光層203Gの形成法と同様のインクジェット法を採用することもできる。

【0152】その後、工程P61及び図21(d)に示すように、対向電極213を形成することにより、目標とするEL装置201を製造した。対向電極213はそれが面電極である場合には、例えば、Mg、Ag、Al、Li等を材料として、蒸着法、スパッタ法等といった成膜法を用いて形成できる。また、対向電極213がストライプ状電極である場合には、成膜された電極層をフォトリソグラフィー法等といったパターニング手法を用いて形成できる。

【0153】以上に説明したEL装置の製造方法及び製 造装置によれば、インクジェットヘッドの制御方法とし て図1、図2、図3又は図4等に示した制御方法を採用 したので、図21における各絵素ピクセル内の正孔注入 層220及びR, G, B各色発光層203R, 203 G, 203Bは、インクジェットヘッド22(図1参 照)の1回の主走査×によって形成されるのではなく て、1個の絵素ピクセル内の正孔注入層及び/又は各色 発光層は異なるノズルグループに属する複数のノズル2 7によって n回、例えば4回、重ねてインク吐出を受け ることにより所定の膜厚に形成される。このため、仮に 複数のノズル27間においてインク吐出量にバラッキが 存在する場合でも、複数の絵素ピクセル間で膜厚にバラ ツキが生じることを防止でき、それ故、EL装置の発光 面の発光分布特性を平面的に均一にすることができる。 このことは、図21(d)のEL装置201において、 色むらのない鮮明なカラー表示が得られるということで

【0154】また、本実施形態のEL装置の製造方法及 び製造装置では、図8に示すインクジェット装置16を 用いることによりインクジェットヘッド22を用いたイ ンク吐出によってR, G, Bの各色絵業ピクセルを形成 するので、フォトリソグラフィー法を用いる方法のよう な複雑な工程を経る必要も無く、また、材料を浪費する ことも無い。

【0155】(その他の実施形態)以上、好ましい実施 形態を挙げて本発明を説明したが、本発明はその実施形 態に限定されるものでなく、請求の範囲に記載した発明 の範囲内で種々に改変できる。

【0156】例えば、図8及び図9に示したカラーフィルタの製造装置では、インクジェットへッド22を主走査方向×へ移動させて基板12を主走査し、基板12を副走査駆動装置21によって移動させることによりインクジェットへッド22によって基板12を副走査することにしたが、これとは逆に、基板12の移動によって主走査を実行し、インクジェットへッド22の移動によって副走査を実行することもできる。

【0157】また、上記実施形態では、圧電素子の撓み 変形を利用してインクを吐出する構造のインクジェット ヘッドを用いたが、他の任意の構造のインクジェットへ ッドを用いることもできる。また、上記実施形態では、 主走査方向と副走査方向とが直交する最も一般的な構成 についてのみ例示したが、主走査方向と副走査方向との 関係は直交関係には限られず、任意の角度で交差してい ればよい。吐出させる材料としては、基板等の対象物上 に形成する要素に応じて種々選択可能であり、例えば上 述してきたインク、EL発光材料の他にも、シリカガラ ス前駆体、金属化合物等の導電材料、誘電体材料、又は 半導体材料がその一例として挙げられる。また、上記実 施形態では、カラーフィルタの製造方法及び製造装置、 液晶装置の製造方法及び製造装置、EL装置の製造方法 及び製造装置、を例として説明してきたが、本発明はこ れらに限定されることなく、対象物上に微細パターニン グを施す工業技術全般に用いることが可能である.例え ば、各種半導体素子 (薄膜トランジスタ、薄膜ダイオー ド等)、各種配線パターン、及び絶縁膜の形成等がその 利用範囲の一例として挙げられる。ヘッドから吐出させ る材料としては、基板等の対象物上に形成する要素に応 じて種々選択可能であり、例えば上述してきたインク、 EL発光材料の他にも、シリカガラス前駆体、金属化合 物等の導電材料、誘電体材料、又は半導体材料がその一 例として挙げられる。また、上記実施形態では、簡便の ため「インクジェットヘッド」と呼称してきたが、この インクジェットヘッドから吐出される吐出物はインクに は限定されず、例えば、前述のEL発光材料、シリカガ ラス前駆体、金属化合物等の導電性材料、誘電体材料、 又は半導体材料等様々であることはいうまでもない。上 記実施形態の製造方法により製造された液晶装置、EL 装置は、例えば携帯電話機、携帯型コンピュータ等とい った電子機器の表示部に搭載することができる。

[0158]

【発明の効果】本発明に係るカラーフィルタの製造方法 及び製造装置によれば、カラーフィルタ内の個々のフィ ルタエレメントはインクジェットヘッドの1回の走査に よって形成されるのではなくて、各1個のフィルタエレメントは異なるノズルグループに属する複数のノズルによって重ねてインク吐出を受けることにより所定の膜厚に形成されるので、仮に複数のノズル間においてインク吐出量にバラツキが存在する場合でも、複数のフィルタエレメント間で膜厚にバラツキが生じることを防止でき、それ故、カラーフィルタの光透過特性を平面的に均一にすることができる。

【0159】また、本発明はインクジェットヘッドを用いる方法であるので、フォトリソグラフィー法を用いる方法のような複雑な工程を経る必要も無く、また、材料を浪費することも無い。

【0160】また、本発明に係る液晶装置の製造方法及び製造装置によれば、カラーフィルタを製造する段階において、カラーフィルタ内の個々のフィルタエレメントはインクジェットへッドの1回の走査によって形成されるのではなくて、各1個のフィルタエレメントは異なるノズルグループに属する複数のノズルによって重ねてインク吐出を受けることにより所定の膜厚に形成されるので、仮に複数のノズル間においてインク吐出量にバラッキが存在する場合でも、複数のフィルタエレメント間で膜厚にバラッキが生じることを防止でき、それ故、カラーフィルタの光透過特性を平面的に均一にすることができる。この結果、色むらの無い鮮明なカラー像を表示することができる。

【0161】また、本発明に係るEL装置の製造方法及び製造装置によれば、各絵素ピクセル内のR, G, Bの各色発光層はインクジェットへッドの1回の主走査によって形成されるのではなくて、それらの各色発光層は異なるノズルグループに属する複数のノズルによって重ねてインク吐出を受けることにより所定の膜厚に形成される。このため、仮に複数のノズル間においてインク吐出量にバラツキが存在する場合でも、複数の絵素ピクセル間で膜厚にバラツキが生じることを防止でき、それ故、EL装置の発光面の発光分布特性を平面的に均一にすることができ、この結果、色むらのない鲜明なカラー表示を得ることができる。

【0162】また、本発明のEL装置の製造方法及び製造装置では、インクジェットヘッドを用いたインク吐出によってR、G、Bの各色絵素ピクセルを形成するので、フォトリソグラフィー法を用いる方法のような複雑な工程を経る必要も無く、また、材料を浪費することも無い。

【0163】また、本発明に係るインクジェットヘッドの制御装置によれば、個々の色パターンはインクジェットヘッドの1回の走査によって形成されるのではなくて、各1個の色パターンは異なるノズルグループに属する複数のノズルによって重ねてインク吐出を受けることにより所定の膜厚に形成されるので、仮に複数のノズル間においてインク吐出量にバラッキが存在する場合で

も、複数の色パターン間で膜厚にバラツキが生じること を防止でき、それ故、色パターンの光学特性を光学部材 の平面内で均一に揃えることができる。

【0164】これにより、光学部材としてのカラーフィルタにおける色パターンとしてのR, G, B各色フィルタエレメントを平面的に均一な膜厚で形成することができる。また、光学部材としてのEし紫子における色パターンとしてのR, G, B発光層や正孔注入層を平面的に均一な膜厚で形成することができる。

【図面の簡単な説明】

【図1】本発明に係るカラーフィルタの製造方法の一実施形態の主要工程を模式的に示す平面図である。

【図2】本発明に係るカラーフィルタの製造方法の他の 実施形態の主要工程を模式的に示す平面図である。

【図3】本発明に係るカラーフィルタの製造方法のさら に他の実施形態の主要工程を模式的に示す平面図である。

【図4】本発明に係るカラーフィルタの製造方法のさら に他の実施形態の主要工程を模式的に示す平面図である。

【図5】本発明に係るカラーフィルタの一実施形態及び その基礎となるマザー基板の一実施形態を示す平面図で ある。

【図6】図5(a)のVI-VI線に従った断面部分を 用いてカラーフィルタの製造工程を模式的に示す図であ る。

【図7】カラーフィルタにおけるR, G, B3色の絵素 ピクセルの配列例を示す図である。

【図8】本発明に係るカラーフィルタの製造装置、本発明に係る液晶装置の製造装置及び本発明に係るEL装置の製造装置といった各製造装置の主要部分であるインクジェット装置の一実施形態を示す斜視図である。

【図9】図8の装置の主要部を拡大して示す斜視図である。

【図10】図9の装置の主要部であるインクジェットへッドを拡大して示す斜視図である。

【図11】インクジェットヘッドの改変例を示す斜視図 である。

【図12】インクジェットヘッドの内部構造を示す図であって、(a)は一部破断斜視図を示し、(b)は(a)のJ-J線に従った断面構造を示す。

【図13】 インクジェットヘッドの他の改変例を示す平面図である。

【図14】図8のインクジェットヘッド装置に用いられる電気制御系を示すブロック図である。

【図15】図14の制御系によって実行される制御の流れを示すフローチャートである。

【図16】インクジェットヘッドのさらに他の改変例を 示す斜視面図である。

【図17】本発明に係る液晶装置の製造方法の一実施形

態を示す工程図である。

【図18】本発明に係る液晶装置の製造方法によって製造される液晶装置の一例を分解状態で示す斜視図である。

【図19】図18におけるI×-I×線に従って液晶装置の断面構造を示す断面図である。

【図20】本発明に係るEL装置の製造方法の一実施形態を示す工程図である。

【図21】図20に示す工程図に対応するEL装置の断面図である。

【図22】従来のカラーフィルタの製造方法の一例を示す図である。

【図23】従来のカラーフィルタの特性を説明するための図である。

【符号の説明】

【付写り訳	19A)				
1	カラーフィルタ				
2	基板				
3	フィルタエレメント				
4	保護膜				
6	隔壁				
7	フィルタエレメント形成領域				
1 1	カラーフィルタ形成領域				
12	マザー基板				
13	フィルタエレメント材料				
16	インクジェット装置				
1 7	ヘッド位置制御装置				
18	基板位置制御装置				
19	主走查駆動装置				
21	副走査駆動装置				
22	インクジェットヘッド				
26	ヘッドユニット				
27	ノズル				
28	ノズル列				
39	インク加圧体				
4 1	圧電衆子				
49	テーブル				
76	キャッピング装置				
77	クリーニング装置				
78	電子天秤				
81	ヘッド用カメラ				
82	基板用カメラ				
101	液晶装置				
102	液晶パネル				
107a,	107b 基板				
111a,	111b 基材				
114a,	114b 電極·				
118	カラーフィルタ				
201	1 EL装置				
202	画素電極				
203R.	203G, 203B 発光層				

(21))02-221616 (P2002-22JJL8

204	基板	L	液晶	
205	バンク	M	フィルタエレメント材料	
213	対向電極	×	主走査方向 副走査方向	
220	正孔注入層	Y		

【図1】

【図2】

【図8】

ţ·

【図14】

【図15】

フロントページの続き

(51) Int. Cl G O 9 F	9/35		FI HO5B	33/10	テーマコード(参考)
H05E				33/12	В
	33/12			33/14	Α
	33/14		B41J	3/04	101Z
	片上 悟 長野県諏訪市大和3丁目3番5号 ーエプソン株式会社内 清水 政春 長野県諏訪市大和3丁目3番5号 ーエプソン株式会社内 木口 浩史 長野県諏訪市大和3丁目3番5号 ーエプソン株式会社内	セイコ	Fターム(₹	2H04 2H09 3K00	66 FA15 FB01 HA10 HA22 18 BA11 BA64 BB01 BB02 BB28 BB37 BB44 11 FA02X FA02Y FA02Z FB12 FC01 LA12 LA15 LA18 17 AB04 AB18 BA06 BB06 CA01 CA05 CB01 DA00 DB03 EB00 FA00 FA01 14 AA08 BA29 BA43 CA19 CA24 ED03 GB10

【発明の名称】

カラーフィルタの製造方法及び製造装置、液晶装置の製造方法及び製造装置、EL装置の製造方 法及び製造装置、インクジェットヘッドの制御装置、材料の吐出方法及び材料の吐出装置、並び に電子機器 THE REFERENCE OF THE PROPERTY.