Санкт-Петербургский политехнический университет

Петра Великого

Физико-Механический институт

Кафедра "Прикладная математика"

Отсчет

По лабораторным работам №5-8

По дисциплине

"Математическая статистика"

Выполнил студен:

Золотухин Илья Сергеевич

Группа:

5030102/90101

Проверил:

К.ф.-м.н., доцент

Баженов Александр Николаевич

Санкт-Петербург

Таблица 1 Двумерное нормальное распределение, n = 20	9
ТАБЛИЦА 2 ДВУМЕРНОЕ НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ, N = 60	9
ТАБЛИЦА З ДВУМЕРНОЕ НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ, N = 100	10
Таблица 4 Смесь нормальных распределений	10
ТАБЛИЦА 5 ВЫЧИСЛЕНИЕ ХИ-КВАДРАТ ПРИ ПРОВЕРКЕ ГИПОТЕЗЫ О НОРМАЛЬНОМ ЗАКОНЕ РАСПРЕДЕЛЕНИЯ	
$N(x,\mu,\sigma)$	14
Таблица 6 Вычисление хи-квадрат при проверке гипотезы распределения Лапласа	15
Таблица 7 Доверительные интервалы для параметров нормального распределения	15
Таблица 8 Доверительный интервалы для параметров произвольного распределения.	
Асимптотический подход	16
РИСУНОК 1 ДВУМЕРНОЕ НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ N = 20	11
Рисунок 2 Двумерное нормальное распределение, n = 60	11
РИСУНОК З ДВУМЕРНОЕ НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ, N = 100	
Рисунок 4 Выборка без возмущений	12
Рисунок 5 Выборка с возмущениями	

1 Постановка задачи

1. Сгенерировать двумерные выборки размерами 20, 60, 100 для нормального двумерного распределения $N(x, y, 0, 0, 1, 1, \rho)$.

Коэффициент корреляции ρ взять равны 0,0.5,0.9.

Каждая выборка генерируется 1000 раз и для неё вычисляются: среднее значение, среднее значение квадрата и дисперсия коэффициентов корреляции Пирсона, Спирмена и квадрантного коэффициента корреляции.

Повторить все вычисления для смеси нормальных распределений:

$$f(x, y) = 0.9N(x, y, 0.0, 1.1, 0.9) + 0.1N(x, y, 0.0, 10, 10, -0.9).$$

Изобразить сгенерированные точки на плоскости и нарисовать эллипс равновероятности.

- 2. Найти оценки коэффициентов линейной регрессии $y_i = a + bx_i + e_i$, используя 20 точек на отрезке [-1.8;2] с равномерным шагом равны 0.2. Ошибку e_i считать нормально распределённой с параметрами (0,1). В качестве эталонной зависимости взять $y_i = 2 + 2x_i + e_i$. При построении оценок коэффициентов использовать два критерия: критерий наименьших квадратов и критерий наименьших модулей. Проделать то же самое для выборки, у которой в значения y_1 и y_{20} вносятся возмущения 10 и -10.
- 3. Сгенерировать выборку объёмом 100 элементов для нормального распределения N(x,0,1). По сгенерированной выборке оценить параметры μ и σ нормального закона методом максимального правдоподобия. В качестве основной гипотезы H_0 будем считать, что сгенерированное распределение имеет вид $N(x,\hat{\mu},\hat{\sigma})$. Проверить основную гипотезу, используя критерий согласия χ^2 . В качестве уровня значимости взять $\alpha=0.05$. Привести таблицу вычислений χ^2 .
- 4. Для двух выборок размерами 20 и 100 элементов, сгенерированных согласно нормальному закону N(x,0,1), для параметров положения и масштаба построить асимптотически нормальные интервальные оценки на основе точечных оценок метода максимального правдоподобия и классические интервальные оценки на основе статистик χ^2 и Стьюдента. В качестве параметра надёжности взять $\gamma=0.95$.

2 Теория

2.1 Двумерное нормальное распределение

Двумерная случайная величина (X,Y) называется распределённой нормально (или просто нормальной), если её плотность вероятности определена формулой

$$N(x, y, \hat{x}, \hat{y}, \sigma_x, \sigma_y, \rho) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \times exp\left\{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\overline{x})^2}{\sigma_x^2} - 2\rho\frac{(x-\overline{x})}{\sigma_x\sigma_y} + \frac{(y-\overline{y})^2}{\sigma_y^2}\right]\right\} (1)$$

Компоненты X, Y двумерной нормальной случайной величины также распределены с математическими ожиданиями $\overline{x}, \overline{y}$ и средними квадратическими отклонениями σ_x, σ_y соответственно. [1,c.133-134]

Параметр ρ называется коэффициентом корреляции.

2.2 Корреляционный момент(ковариация) и коэффициент корреляции

Корреляционный момент, иначе ковариация, двух случайных величин Х и У:

$$K = cov(X, Y) = M[(X - \overline{x})(Y - \overline{y})]$$
 (2)

Коэффициент корреляции ρ двух случайных величин X и Y:

$$\rho = \frac{K}{\sigma_{x}\sigma_{y}} \tag{3}$$

2.3 Выборочные коэффициенты корреляции

2.3.1 Выборочный коэффициент корреляции Пирсона:

Выборочный коэффициент корреляции Пирсона:

$$r = \frac{\frac{1}{n}\sum(x_i - \overline{x})\sum(y_i - \overline{y})}{\sqrt{\frac{1}{n}\sum(x_i - \overline{x})^2\frac{1}{n}\sum(y_i - \overline{y})^2}} = \frac{K}{s_X s_Y}$$
(4)

Где K, S_X^2 , S_Y^2 — выборочные ковариация и дисперсия с.в. X и Y [1,c.535]

2.3.2 выборочный квадратный коэффициент корреляции

Выборочный квадратный коэффициент корреляции

$$r_Q = \frac{(n_1 + n_3) - (n_2 + n_4)}{n} \tag{5}$$

Где n_1, n_2, n_3 и n_4 - количества точек с координатами (x_i, y_i) , попавшими соответственно в I, II, III, IV квадраты декартовой системы с осями x' = x - medx, y' = y - medy и с центром в точке с координатами (medx, medy) [1,c.539]

2.3.3 Выборочный коэффициент ранговой корреляции Спирмена

Обозначим ранги, соответствующие значениям переменной X, через u, а ранги, соответствующие значениям переменной Y, - через v.

Выборочный коэффициент ранговой корреляции Спирмена:

$$r_{S} = \frac{\frac{1}{n} \sum (u_{i} - \overline{u})(v_{i} - \overline{v})}{\sqrt{\frac{1}{n} \sum (u_{i} - \overline{u})^{2} \frac{1}{n} \sum (v_{i} - \overline{v})^{2}}}$$
(7)

Где $\overline{u} = \overline{v} = \frac{1+2+\dots+n}{n} = \frac{n+1}{2}$ – среднее значение рангов [1,с.540-541].

2.4 Эллипсы рассеивания

Уравнение проекции эллипса рассеивания на плоскость x0y:

$$\frac{(x-\overline{x})^2}{\sigma_x^2} - 2\rho \frac{(x-\overline{x})(y-\overline{y})}{\sigma_x \sigma_y} + \frac{(y-\overline{y})^2}{\sigma_y^2} = const$$
 (7)

Центр эллипса (7) находится в точке с координатами $(\overline{x}, \overline{y})$; оси симметрии эллипса составляют с осью 0x углы, определяемые уравнением:

$$tg2\alpha = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 - \sigma_y^2} \tag{8}$$

2.5 Простая линейная регрессия

2.5.1 Модель простой линейной регрессии

Регрессионную модель описания данных называют простой линейной регрессией, если

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, i = 1, \dots, n \tag{9}$$

Где $x_1, ..., x_n$ — заданные числа (значение фактора); $y_1, ..., y_n$ — наблюдаемые значения отклика; $\epsilon_1, ..., \epsilon_n$ — независимые, нормально распределённые $N(0, \sigma)$ с нулевым математическим ожиданием и одинаковой(неизвестной) дисперсией случайной величины (ненаблюдаемые); β_0, β_1 — неизвестные параметры, подлежащие оцениванию.

2.5.2 Метод наименьших квадратов

Метод наименьших квадратов (МНК):

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 \to \min_{\beta_0, \beta_1}$$
 (10)

2.5.3 Расчётные формулы для МНК-оценок

МНК-оценки параметров β_0 и β_1 :

$$\widehat{\beta_1} = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - (\overline{x})^2},\tag{11}$$

$$\overline{\beta_0} = \overline{y} - \overline{x}\widehat{\beta_1}. \tag{12}$$

2.6 Робастные оценки коэффициентов линейной регрессии

Метод наименьших модулей:

$$\sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i| \to \min_{\beta_0, \beta_1}$$
 (13)

$$\hat{\beta}_{1R} = r_Q \frac{q_y^*}{q_x^*},\tag{14}$$

$$\hat{\beta}_{0R} = medy - \hat{\beta}_{1R} medx, \tag{15}$$

$$r_Q = \frac{1}{n} \sum_{i=1}^n sgn(x_i - medx) sgn(y_i - medy), \qquad (16)$$

$$q_y^* = \frac{y_{(j)} - y_{(l)}}{k_q(n)}, q_x^* = \frac{x_{(j)} - x_{(l)}}{k_q(n)}$$
(17)

$$l = \begin{cases} [n/4] + 1 & \text{при} & n/4 \text{ дробном} \\ n/4 & \text{при} & n/4 \text{ целом.} \end{cases}$$

$$sgn z = \begin{cases} 1 & \text{при z} > 0 \\ 0 & \text{при z} = 0 \\ -1 & \text{при z} < 0 \end{cases}$$

Уравнение регрессии здесь имеет вид:

$$y = \hat{\beta}_{0R} + \hat{\beta}_{1R} x \tag{18}$$

2.7. Метод максимального правдоподобия

 $L(x_1, ..., x_n, \theta)$ — функция правдоподобия (ФП), рассматриваемая как функция неизвестного параметра θ :

$$L(x_1, \dots, x_n, \theta) = f(x_1, \theta) f(x_2, \theta), \dots, f(x_n, \theta)$$
(19)

Оценка максимального правдоподобия:

$$\hat{\theta}_{\text{MII}} = argmax_{\theta} L(x_1, \dots, x_n, \theta) \tag{20}$$

Система уравнений правдоподобия (в случае дифференцируемости правдоподобия):

$$\frac{\partial L}{\partial \theta_k} = 0$$
 или $\frac{\partial lnL}{\partial \theta_k} = 0, k = 1, ..., m$ (21)

2.8 Проверка гипотезы о законе распределения генеральной совокупности. Метод хи-квадрат

Выдвинута гипотеза H_0 о генеральном законе распределения с функцией распределения F(x).

Рассматриваем случай, когда гипотетическая функция распределения F(x) не содержит неизвестных параметров.

Правило проверки гипотезы о законе распределения по методу χ^2 :

- 1. Выбираем уровень значимости α
- 2. По таблице [3, с.358] находим квантиль $\chi_{1-\alpha}^2(k-1)$ распределения хи-квадрат с k 1 степенями свободы порядка $1 - \alpha$.
- 3. С помощью гипотетической функции распределения F(x) вычисляем вероятности $p_i = P(x \in \Delta_i), i = 1, \dots k$
- 4. Находим частоты n_i попадания элементов выборки в подмножества Δ_i , i=1,...,k
- 5. Вычисляем выборочное значение статистики критерия χ^2 :

$$\chi_B^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$

- 6. Сравниваем χ_B^2 и квантиль $\chi_{1-\alpha}^2(k-1)$.

 - а) Если $\chi_B^2 < \chi_{1-\alpha}^2(k-1)$, то гипотеза H_0 на данном этапе проверки принимается. b) Если $\chi_B^2 > \chi_{1-\alpha}^2(k-1)$, то гипотеза H_0 отвергается, выбирается одно из альтернативных распределений, и процедура проверки повторяется

2.9. Доверительные интервалы для параметров нормального распределения

2.9.1 Доверительный интервал для математического ожидания т нормального распределения

Дана выборка $(x_1, x_2, ..., x_n)$ объёма п из нормальной генеральной совокупности. На её основе строим выборочное среднее \overline{x} и выборочное среднее квадратическое отклонение s. Параметры mи σ нормального распределения неизвестны.

Доверительный интервал для m и с с доверительной вероятностью $\gamma = 1 - \alpha$

$$P\left(\overline{x} - \frac{sx}{\sqrt{n-1}} < m < \overline{x} + \frac{sx}{\sqrt{n-1}}\right) = 2F_T(x) - 1 = 1 - \alpha.$$

$$P\left(\overline{x} - \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}} < m < \overline{x} + \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}}\right) = 1 - \alpha$$
 (22)

2.9.2 Доверительный интервал для среднего квадратического отклонения σ нормального распределения

Дана выборка $(x_1, x_2, ..., x_n)$ объёма п из нормальной генеральной совокупности. На её основе строим выборочную дисперсия s^2 . Параметры m и σ нормального распределения неизвестны.

Задаёмся уровнем значимости α .

Доверительный интервал для σ с доверительной вероятностью $\gamma=1$ – α

$$P\left(\frac{s\sqrt{n}}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}} < \sigma < \frac{s\sqrt{n}}{\sqrt{\chi_{\alpha/2}^2(n-1)}}\right) = 1 - \alpha,\tag{23}$$

2.10 Доверительные интервалы для математического ожидания m и среднего квадратического отклонения σ произвольного распределения при большом объёме выборки. Асимптотический подход

При большом объёме выборки для построения доверительный интервалов может быть использован асимптотический метод на основе центральной предельной теоремы.

2.10.1 Доверительный интервал для математического ожидания т произвольной генеральной совокупности при большой объёме выборки

Предполагаем, что исследуемое генеральное распределение имеет конечные математическое ожидание m и дисперсию σ^2 .

 $u_{1-\alpha/2}$ – квантиль нормального распределения N(0,1) порядка $1-\alpha/2$.

Доверительный интервал для m с доверительной вероятностью $\gamma = 1 - \alpha$:

$$P\left(\overline{x} - \frac{su_{1-\alpha/2}}{\sqrt{n}} < m < \overline{x} + \frac{su_{1-\alpha/2}}{\sqrt{n}}\right) \approx \gamma \tag{24}$$

2.10.2 Доверительный интервал для среднего квадратического отклонения σ произвольной генеральной совокупности при большом объёме выборки

Предполагаем, что исследуемая генеральная совокупность имеет конечные первые четыре момента.

 $u_{1-\alpha/2}$ – квантиль нормального распределения N(0,1) порядка $1-\alpha/2$

 $E=rac{\mu_4}{\sigma^4}-3$ – эксцесс генерального распределения, $e=rac{m_4}{s^4}-3$ – выборочный эксцесс;

 $m_4 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^4$ – четвертый выборочный центральный момент.

$$s(1+U)^{-1/2} < \sigma < s(1-U)^{-1/2}$$
(25)

Или

$$s(1 - 0.5U) < \sigma < s(1 + 0.5U) \tag{26}$$

Где
$$U = u_{1-\alpha/2}\sqrt{(e+2)/n}$$

Формулы (25) или (26) дают доверительный интервал для σ с доверительной вероятностью $\gamma = 1 - \alpha \left[1, \text{c.}461 - 462\right]$

Замечание: Вычисление по формуле (25) дают более надёжный результат так как в ней меньше грубых приближений.

3 Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки jupyter notebook. Исходный код лабораторной работы приведен в приложении

4 Результаты

4.1 Выборочные коэффициенты корреляции

$\rho = 0$	r	r_{S}	r_Q
E(z)	0.00	0.00	-0.01
$E(z^2)$	0.05	0.05	0.05
D(z)	0.05	0.05	0.05
$\rho = 0.5$	r	r_{S}	r_Q
E(z)	0.50	0.50	0.33
$E(z^2)$	0.28	0.26	0.16
D(z)	0.03	0.04	0.05
$\rho = 0.9$	r	r_{S}	r_Q
E(z)	0.90	0.87	0.70
$E(z^2)$	0.81	0.76	0.51
D(z)	0.00	0.00	0.03

Tаблица 1 Двумерное нормальное распределение, n=20

$\rho = 0$	r	r_{S}	r_Q
E(z)	0.00	-0.01	0.00
$E(z^2)$	0.02	0.02	0.02
D(z)	0.02	0.02	0.02
$\rho = 0.5$	r	r_{S}	r_Q
E(z)	0.50	0.48	0.33
$E(z^2)$	0.26	0.24	0.12
D(z)	0.01	0.01	0.01
$\rho = 0.9$	r	r_{S}	r_Q
E(z)	0.90	0.88	0.71
$E(z^2)$	0.81	0.78	0.51
D(z)	0.00	0.00	0.01

Таблица 2 Двумерное нормальное распределение, n=60

$\rho = 0$	r	r_{S}	r_Q
E(z)	0.00	0.00	0.00
$E(z^2)$	0.01	0.01	0.01
D(z)	0.01	0.01	0.01
$\rho = 0.5$	r	r_{S}	r_Q
E(z)	0.50	0.48	0.34
$E(z^2)$	0.26	0.24	0.12
D(z)	0.01	0.01	0.01
$\rho = 0.9$	r	r_{S}	r_Q
E(z)	0.90	0.89	0.71
$E(z^2)$	0.81	0.79	0.51
D(z)	0.00	0.00	0.00

Таблица 3 Двумерное нормальное распределение, n=100

n = 20	r	r_{S}	r_Q
E(z)	-0.08	-0.08	-0.06
$E(z^2)$	0.06	0.06	0.06
D(z)	0.06	0.06	0.05
n = 60	r	r_{S}	r_Q
E(z)	-0.10	-0.09	-0.06
$E(z^2)$	0.26	0.03	0.02
D(z)	0.02	0.02	0.02
n = 100	r	$r_{\mathcal{S}}$	r_Q
E(z)	-0.10	-0.09	-0.06
$E(z^2)$	0.02	0.02	0.01
D(z)	0.01	0.01	0.01

Таблица 4 Смесь нормальных распределений

4.2 Эллипсы рассеивания

Pисунок 1 Двумерное нормальное распределение n=20

Рисунок 2 Двумерное нормальное распределение, n = 60

Рисунок 3 Двумерное нормальное распределение, n=100

4.3 Оценка коэффициентов линейной регрессии

4.3.1 Выборка без возмущений

• Критерий наименьших квадратов:

$$\hat{a} \approx 2.10, \hat{b} \approx 1.96$$

• Критерий наименьших модулей:

$$\hat{a} \approx 2.52, \hat{b} \approx 1.74$$

Рисунок 4 Выборка без возмущений

Критерий оптимальности:

dist MHK = 57.5

dist MHM = 322.8

4.3.2 выборка с возмущениями

• Критерий наименьших квадратов:

$$\hat{a} \approx 1.76, \hat{b} \approx 0.67$$

• Критерий наименьших модулей:

$$\hat{a} \approx 1.70, \hat{b} \approx 1.04$$

Рисунок 5 Выборка с возмущениями

Критерий оптимальности:

dist MHK = 459.57

dist MHM = 255.80

4.4 Проверка гипотезы о законе распределения генеральной совокупности. Метод хи-квадрат

Метод максимального правдоподобия:

$$\hat{\mu} \approx -0.018, \hat{\sigma} \approx 1.01$$

Критерий согласия χ^2 :

- Критерий промежутков k = 6
- Уровень значимости $\alpha = 0.05$.
- Тогда квантиль из таблицы [3, с.358] $\chi^2_{1-\alpha}(k-1) = \chi^2_{0.95}$

i	Границы, Δ_i a_{i-1} , a_i	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	-∞, -2.45	1	0.01	0.82	-0.81	0.04
2	-2.45, -1.30	11	0.09	9.21	-9.12	0.35
3	-1.30, -0.15	34	0.34	33.70	-33.37	0.00
4	-0.15,1.00	34	0.40	39.53	-39.13	0.77
5	1.00 2.14	20	0.15	14.90	-14.75	1.75
6	2.14, +∞	0	0.02	1.85	-1.83	1.85
\sum	-	100	1.00	100.00	0	4.76

Таблица 5 Вычисление хи-квадрат при проверке гипотезы H_0 о нормальном законе распределения $N(x,\hat{\mu},\hat{\sigma})$

Сравним $\chi^2_{0.95}(5) \approx 11.07$ и найденное $\chi^2_B \approx 4.76:11.07 > 4.76$. Следовательно, гипотезу H^*_0 Можно принять на данном этапе

Исследование на чувствительность

Рассмотрим гипотезу H_0^* , что выборка распределена согласно закону $Laplace\left(x,\hat{\mu},\frac{\hat{\sigma}}{\sqrt{2}}\right)$

Используем критерий согласия χ^2 :

- $\alpha 0.05 уровень значимости,$
- n = 20 размер выборки,
- $k \coloneqq [1 + 3.3lg20] = [5.3] = 5 количество промежутков$
- *Квантиль* $\chi^2_{1-\alpha} = \chi^2_{0.95}(4) \approx 9.49$ из таблицы [3, с.358]

i	Границы, Δ_i a_{i-1} , a_i	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	-∞, -2.45	1	0.05	4.53	-4.48	2.76
2	-2.45, -0.92	15	0.16	15.68	-15.53	0.03
3	-0.92,0.61	54	0.52	52.08	-51.56	0.07
4	0.61,2.15	30	0.22	21.50	-21.29	3.36
5	2.15 +∞	0	0.06	6.21	-6.14	6.21
Σ	-	100	1.00	100.00	-99	12.41

Таблица 6 Вычисление хи-квадрат при проверке гипотезы H_0^* о Laplace $\left(x,\hat{\mu},\frac{\hat{\sigma}}{\sqrt{2}}\right)$

Сравним $\chi^2_{0.95}(4)\approx 9.49$ и найденное $\chi^2_B\approx 12.41$: 9.49<12.41. Следовательно гипотеза H^*_0 на данном этапе проверки отвергается

Для равномерного распределения: U(0,1)

Рассмотрим гипотезу H_0^* , что выборка распределена согласно закону U(0,1)

При k = 5

 $\chi^2_{0.95} \approx 515037.54$. Следовательно, гипотеза H^*_0 на данном этапе проверки отвергается

4.5 Доверительные интервалы для параметров нормального распределения

n = 20	m	σ
	-0.87 < m < 0.39	$0.74 < \sigma < 2.44$
n = 100	-0.07 < m < 0.33	$0.90 < \sigma < 3.47$

Таблица 7 Доверительные интервалы для параметров нормального распределения.

4.6 Доверительные интервалы для параметров произвольного распределения. Асимптотический подход.

n = 20	m	σ
	-0.50 < m < 0.15	$0.75 < \sigma < 1.25$
n = 100	-0.26 < m < 0.12	$0.84 < \sigma < 1.11$

Таблица 8 Доверительный интервалы для параметров произвольного распределения. Асимптотический подход

5 Обсуждение

5.1 Выборочные коэффициенты корреляции и эллипсы рассеяния

Сравним дисперсии выборочных коэффициентов корреляции

- Для двумерного нормального распределения дисперсии выборочных коэффициентов корреляции упорядочены следующим образом: $r < r_S < r_O$
- Для смеси нормальных распределений дисперсии выборочных коэффициентов корреляции упорядочены следующим образом: $r_Q < r_S < r$

Процент попавших элементов выборки в эллипс рассеивания (95-% доверительная область) примерно равен его теоретическому значению

5.2 Оценки коэффициентов линейной регрессии

Критерий квадратов точнее оценивает коэффициенты линейной регрессии на выборке без возмущений

Критерий наименьших модулей точнее оценивает коэффициенты линейной регрессии на выборке с возмущениями.

Критерий наименьших модулей устойчив к редким выбросам

5.3 Проверка гипотезы о законе распределения генеральной совокупности. Метод Хи-квадрат

- По результатам проверки на близость с помощью критерия хи-квадрат можно принять гипотезу H_0^* о нормальном распределении $N(x, \hat{\mu}, \hat{\sigma})$ на уровне значимости $\alpha = 0.05$ для выборки, сгенерированный согласно N(x, 0, 1).
- Видим так же, что критерий не принял гипотезу о том, что 20-элементная выборка, сгенерированная согласно N(x,0,1) описывается законом распределения $Laplace\left(x,\hat{\mu},\frac{\hat{\sigma}}{\sqrt{2}}\right)$
- По исследованию на чувствительность видим, что при небольших объемах выборки уверенности в полученных результатах нет, критерий может ошибаться. Это обусловлено тем, что теорема Пирсона говорит про асимптотическое распределение, а при малых размерах выборки результат не будет получаться достоверным.

Список литературы

Вентцель Е.С. Теория вероятностей: Учеб. для вузов. — 6-е изд. стер. . (1999).

Вероятностные разделы математики. Учебник для бакалавров технических направлений.//Под ред. Максимова Ю.Д. — Спб.: «Иван Федоров»,. (2001.).

Максимов Ю.Д. Математика. Теория и практика по математической статистике. Конспектсправочник по теории вероятностей: учеб. пособие /. (2009).