

Introdução

A inferência bayesiana, como alternativas aos conceitos centrais de inferência estatística convencional, pela abordagem bayesiana, tem-se como objetivo o estudo:

$$p(\theta|x)$$

- 1. Estimação de parâmetros
- 2. Teste de hipóteses
- 3. Previsão

Análise Bayesiana de Decisão

- Os 4 elementos básicos presentes em toda Análise Bayesiana de Decisão são:
 - 1. **Decisões** Uma lista (exaustiva e exclusiva) de possíveis decisões (ações) alternativas: $\delta_1, ..., \delta_m$.
 - **2. Eventos** Uma lista (exaustiva e exclusiva) de eventos incertos (ou hipóteses alternativas) $\theta_1, ..., \theta_n$. Trata-se do conjunto dos possíveis "estados da natureza". As incertezas associadas aos eventos ou hipóteses são representadas por uma distribuição de probabilidade $p(\theta)$.
 - 3. **Perdas** A cada combinação de δ_i e θ_i está associado uma potencial consequência (c_{ij}) usualmente determinada por uma função $c_{ij} = L(\delta_i, \theta_i)$. Quando se trata de consequências desfavoráveis, elas são denominadas perdas e quando representam ganhos, são denominadas utilidades.
 - **4. Probabilidades dos Eventos** A coleta de dados, seja por experimentos controlados ou por estudos observacionais, poderá reduzir a incerteza associada aos eventos θ_j . Essa informação obtida a partir dos dados será simbolizada pela letra x. A descrição completa e atualizada das incertezas sobre os θ_i 's estão contida nas probabilidades posteriores $p(\theta_i|x)$

Peixe-galo

Decisão	Estados da Natureza ($ heta$)					Perda	
(δ)	< 20	20 ⊢ 25	25 ⊢ 30	30 ⊢ 35	35 ⊢ 40	≥ 40	Esperada
Α	1	0	2	4	6	8	2.334
В	3	2	1	0	2	4	0.934
С	4	3	2	1	0	2	1.854
$P(\theta x)$	0.005	0.125	0.607	0.234	0.024	0.004	

Exemplo 6.1 – Peixe Galo

Peixe-galo

Decisão	Estados da Natureza ($ heta$)					Perda	
(δ)	< 20	20 ⊢ 25	25 ⊢ 30	30 ⊢ 35	35 ⊢ 40	≥ 40	Esperada
Α	1	0	2	4	6	8	2.334
В	3	2	1	0	2	4	0.934
С	4	3	2	1	0	2	1.854
$P(\theta x)$	0.005	0.125	0.607	0.234	0.024	0.004	1

Decisões:

$$\delta_1 \equiv \operatorname{rede} A \quad \delta_2 \equiv \operatorname{rede} B \quad \delta_3 \equiv \operatorname{rede} C$$

Eventos:

$$\theta_1 \equiv LT50 \in [0,20), \dots, \theta_6 \equiv LT50 \in [40,100)$$

Perdas:

$$B(\delta_2) \to \theta_5 \equiv LT50 \in [35,40) \Rightarrow c_{2,5} = 2$$

Probabilidades dos Eventos:

$$p(\theta_1|x) = 0.005, ..., p(\theta_6|x) = 0.004$$

Perda

- lpha O estimador de Bayes do parâmetro heta, simbolizado por $\delta_B(x)$, é o valor que minimiza a perda esperada com relação à distribuição posterior, em que a função de verossimilhança é a função que determina o cálculo de perda.
- Essa definição indica que o estimador de Bayes dependerá das incertezas (resumidas na posterior) e da função de perda que quantifica as consequências. Sendo as funções mais utilizadas:
 - a. Perda quadrática:

$$L(\theta, \delta(x)) = [\theta - \delta(x)]^2$$

b. Perda absoluta:

$$L(\theta, \delta(x)) = |\theta - \delta(x)|$$

c. Perda 0-1:

$$L(\theta, \delta(x)) = \begin{cases} 0, & se \ \theta = \delta(x) \\ 1, & caso \ contrário \end{cases}$$

Exemplo 6.2 – Análise da eficiência do RU 486 como "contraceptivo do dia seguinte"

- lpha heta: probabilidade de que ocorra uma gravidez no grupo de mulheres tratadas com RU 486.
- $\bowtie p(\theta|x) \sim Beta(\alpha = 1, \beta = 5)$
- $\text{Beta}(\alpha, \beta): \quad \underline{\text{M\'edia}}: \frac{\alpha}{\alpha + \beta} \to \alpha > 0 \ e \ \beta > 0; \quad \underline{\text{Variancia}}: \quad \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$
- × Variância $(p(\theta|x))$: $V_{\delta}(x) = E^{p(\theta|X)}[\theta \delta(x)]^2 = V(\theta|x) + [E^p[\theta|x] \delta(x)]^2$
- lpha **Objetivo**: Obter uma estimativa para θ e seu desvio padrão posterior como uma medida de precisão.

a. Perda quadrática:

$$\delta_B(x) = E^p[\theta|x] = \frac{1}{1+5} = \frac{1}{6} \approx 0.167$$

$$\delta_B(x) = E^p[\theta|x] = \frac{1}{1+5} = \frac{1}{6} \approx 0.167 \qquad \sqrt{V_{\delta_B}(x)} = \sqrt{\frac{1*5}{(1+5)^2*(1+5+1)}} + (0.167 - 0.167) \approx 0.141$$

b. Perda absoluta:

$$\delta_B(x) \Rightarrow qbeta(0.5, 1, 5) = 0.129$$

$$\sqrt{V_{\delta_B}(x)} = \sqrt{\frac{1*5}{(1+5)^2*(1+5+1)} + (0.167 - 0.129)} \cong 0.413$$

Intervalo de Credibilidade

 $\stackrel{\text{\tiny $\&$}}{\sim}$ O intervalo de credibilidade de $95(IC_{r95\%})$ para θ é o intervalo delimitado pelos percentis $2.5\%(\theta_{[2.5\%]})$ e $(\theta_{[97.5\%]})$ da distribuição posterior $p(\theta|x)$ para θ .

$$IC_{r95\%}$$
 para $Beta(\alpha = 1, \beta = 5)$

$$E^{p}[\theta|x] = 0.167$$

$$\approx 2.5\%(\theta_{[2.5\%]})$$
:

$$qbeta(0.025, 1, 5) = 0.0050$$

 \approx 97. 5% $(\theta_{[97.5\%]})$:

$$qbeta(0.975, 1, 5) = 0.5218$$

Testes de hipóteses

A alternativa bayesiana aos testes de hipóteses convencionais, parte de uma tabela decisória estruturada especificamente para esse fim:

	Realidade (desconhecida)		
Decisão	$m{H_0}$ é verdadeira	$\pmb{H_1}$ é verdadeira	
δ_0	0	w_1	
δ_1	w_0	0	

$$p_0(x) = P(H_0|x) = P(\theta \in \theta_0|x)$$
 Probabilidade posterior de que H_0 é verdadeiro; e

$$p_1(x) = P(H_1|x) = P(\theta \in \theta_1|x)$$
 Probabilidade posterior de que H_1 é verdadeiro

lpha A decisão de Bayes será δ_1 (rejeição de H_0) somente se a perda esperada para a decisão δ_1 for menor que para δ_0 :

$$w_0 p_0(x) < w_1 p_1(x)$$

Rejeitar a hipótese nula H_0 sempre que sua probabilidade posterior for **inferior** a $\frac{w_1}{w_0+w_1}$. Caso contrário, preferir H_0 a H_1 .

Teste de hipótese unilateral

$$H_0$$
: $\theta \leq \theta_0$ versus H_1 : $\theta > \theta_0$

- A taxa de crescimento populacional (r) é um dos parâmetros de interesse no estudo relacionado à dinâmica populacional da baleia jubarte.
- ☼ Queremos testar a hipótese de que a taxa anual de crescimento populacional de jubartes no Banco de Abrolhos é maior que 7% (r > 0.07).
- Em uma amostra de 2000 valores de r que foram geradas da distribuição posterior (por simulação computacional), verifica-se que 627 são menores ou iguais a 0.07.
- Em biologia de conservação é recomendado que se adote o "princípio da precaução" na escolha de estratégias de gestão. Assim, a ideia é que adotar equivocadamente a concepção que a taxa de crescimento é maior que 0.07 (sobrestimativa) é um erro comparativamente mais grave que a subestimativa da taxa de crescimento. O que justifica estabelecer como penalidades $w_0 = 2$ e $w_1 = 1$. Ou seja, decidir por um crescimento acima de 7% quando, de fato, isso não acontece.

$$H_0: r \le 0.07$$
 $H_1: r > 0.07$

$$P(r \le 0.07 | x) < \frac{1}{2+1} = 0.33$$

$$\frac{627}{2000} = 0.3135$$

Rejeitar a hipótese nula H_0 sempre que sua probabilidade posterior for **inferior** a $\frac{w_1}{w_0+w_1}$. Caso contrário, preferir H_0 a H_1 .

Há evidências suficientemente fortes para rejeitar H_0 e dizer que a taxa anual de crescimento populacional de jubartes no Banco de Abrolhos tende ser maior que 7%.

Teste de hipótese bilateral

$$H_0$$
: $\theta = \theta_0 \ versus \ H_1$: $\theta \neq \theta_0$

- Teste A/B
- \bowtie Deseja-se saber se há diferença entre os testes, ou seja, $\theta=0.5$.
- Após cuidadosa avaliação relativas dos dois possíveis erros de decisão, especialistas concluem que $w_0 = 4 e w_1 = 1$.
- Definir um intervalo de amplitude 2h em torno de θ_0 que seja aceitável como indicativo de equivalência entre os tratamentos. Por exemplo: $h = 0.1 \rightarrow 0.40 \le \theta \le 0.60$.
- $p_0^{0.1} = 0.0672$

Solução:

$$H_0: \theta = 0.5$$
 $H_1: \theta \neq 0.5$

$$\frac{1}{4+1} = 0.2$$

Rejeitar a hipótese nula H_0 sempre que sua probabilidade posterior for **inferior** a $\frac{w_1}{w_0+w_1}$. Caso contrário, preferir H_0 a H_1 .

A conclusão é pela rejeição de H_0 pois a probabilidade é menor que o limite de decisão.

Fator de Bayes

O Fator de Bayes é definido como sendo a razão entre as chances posteriores e as chances a priori:

$$FB_{1,0} = \frac{o(1,0|x)}{o(1,0)}$$

$$o(1,0|x) = \frac{p_1(x)}{p_0(x)}$$

$$o(1,0) = \frac{p_1}{p_0}$$

Chance posterior contra H_0 . Uma chance muito maior que 1 é indicativo de que as evidências favorecem H_1 .

Chance a priori contra H_0. Uma chance muito maior que 1 é indicativo de que as evidências favorecem H_1 .

Critérios para a interpretação do Fator de Bayes.

$FB_{1,0}$	Evidências contra $oldsymbol{H}_{oldsymbol{0}}$
1.0 ⊢ 3.2	fraca (*)
$3.2 \vdash 10.0$	substancial (**)
$10.0 \vdash 100.0$	forte (***)
100.0 ⊢ ∞	decisiva (****)

Rejeitar a hipótese nula H_0 sempre que o Fator de Bayes satisfazer à desigualdade $FB_{(1,0)}>\frac{w_0}{w_1}*\frac{1}{o(1,0)}$. Caso contrário, preferir H_0 a H_1 .

Fator de Bayes

H_0 : $\theta \leq \theta_0$ versus H_1 : $\theta > \theta_0$

- A taxa de crescimento populacional (r) é um dos parâmetros de interesse no estudo relacionado à dinâmica populacional da baleia jubarte.
- Queremos testar a hipótese de que a taxa anual de crescimento populacional de jubartes no Banco de Abrolhos é maior que 7% (r > 0.07).
- Em uma amostra de 2000 valores de r que foram geradas da distribuição posterior (por simulação computacional), verifica-se que 627 são menores ou iguais a 0.07.
- Em biologia de conservação é recomendado que se adote o "princípio da precaução" na escolha de estratégias de gestão. Assim, a ideia é que adotar equivocadamente a concepção que a taxa de crescimento é maior que 0.07 (sobrestimativa) é um erro comparativamente mais grave que a subestimativa da taxa de crescimento. O que justifica estabelecer como penalidades $w_0 = 2$ e $w_1 = 1$. Ou seja, decidir por um crescimento acima de 7% quando, de fato, isso não acontece.

$$H_0: r \le 0.07$$
 $H_1: r > 0.07$
 $p_0(x) = \frac{627}{2000} = 0.3135$
 $p_1(x) = 0.68$
 $p_0 = 0.52$
 $p_1 = 0.48$

$$FB_{1,0} = \frac{o(1,0|x)}{o(1,0)}$$

$$o(1,0) = \frac{p_1}{p_0}$$

$$o(1,0|x) = \frac{p_1(x)}{p_0(x)}$$

$$FB_{(1,0)} > \frac{w_0}{w_1} * \frac{1}{o(1,0)}$$

$$o(1,0|x) = \frac{0.48}{0.52} = 0.92$$

$$o(1,0|x) = \frac{0.68}{0.31} = 2.19$$

$$FB_{(1,0)} = \frac{2.19}{0.92} = 2.37$$

$$\frac{w_0}{w_1} * \frac{1}{o(1,0)} = \frac{2}{1} * \frac{1}{0.92} = 2.1$$

Como $FB_{(1,0)}$ é maior que o limite de decisão, então deve-se rejeitar H_0 .

Mas como $FB_{(1,0)} < 3.2$, então a rejeição de H_0 pode ser equivocada, pois a evidência contra H_0 é fraca.

Considerações Finais

Qualidade de ajuste

- 1. Estudo da construção de modelos probabilísticos completos.
- 2. Avaliar a validade do modelo comparando dados preditos com os dados observados.
- 3. Uma vez satisfeito com o modelo, passamos a utilizar a distribuição posterior para fazer inerências.

Próximos passos (cursos)

- Métodos de simulação estocástica
- Modelos preditivos

andre@metodosexatos.com.br