Неограниченное при $t\to +\infty$ решение обозначим $\Psi(t)$. Поскольку это решение линейной однородной системы, любой столбец $k\Psi(t), k\neq 0$ также является решением, при этом неограниченным. Найдём точку t_0 такую, что $|\Psi(t_0)|\neq 0$.

при этом неограниченным. Найдём точку t_0 такую, что $|\Psi(t_0)| \neq 0$. Положим $\varepsilon=1,\ \delta>0$ — произвольное число и $\Psi_\delta(t)=\frac{\delta}{2|\Psi(t_0)|}\cdot\Psi(t)$. Тогда $|\Psi_\delta(t_0)|=\frac{\delta}{2}<\delta$. Этот столбец является неограниченным решением, значит с вы-

 $\left|\Psi_{\delta}(t_{0})\right|=\frac{\sigma}{2}<\delta$. Этот столбец является неограниченным решением, значит с выбранными ε и δ существует такое число $t_{1}>t_{0}$, что $\left|\Psi_{\delta}(t_{1})\right|\geqslant1=\varepsilon$. Неустойчивость нулевого решения показана.