Tania Soutonglang

CS 583-01

April 20, 2024

CS 583 - Assignment 4

1. We have three variables: X, Y, and Z. X and Z are binary with domain {T, F} and Y has three possible values: {R, G, B}. The Bayesian network has the following structure: $X \to Y \to Z$. Here are the counts for a dataset D. If a count is zero, it is not listed.

Х	Υ	Z	Counts
Т	R	Т	10
Т	R	F	20
T	В	Т	30
F	R	F	40
F	В	Т	50

Note that we need to estimate P(X), P(Y|X), and P(Z|Y) for this network.

P(X)	Counts	P(X) = Counts / 150		P(Xnext D)		P(Xnext D)	
Т	60	60/150 = 6/15 = 2/5	0.4	61/152	0.40132	66/162	0.40741
F	90	90/150 = 9/15 = 3/5	0.6	91/152	0.59868	96/162	0.59259

P(Y X = T)	Counts	P(X) = Counts / 60		P(Xnext D)		P(Xnext D)	
R	30	30/60 = 3/6 = 1/2	0.5	31/63	0.49206	32/66	0.48485
G	0	0	0	1/63	0.01587	2/66	0.03030
В	30	30/60 = 3/6 = 1/2	0.5	31/63	0.49206	32/66	0.48485
P(Y X = F)	Counts	P(X) = Counts / 90		P(Xnext D)		P(Xnext D)	
R	40	40/90 = 4/9	0.444	41/93	0.44086	42/96	0.43750
G	0	0	0	1/93	0.01075	2/96	0.02083
В	50	50/90 = 5/9	0.556	50/93	0.53763	52/96	0.54167

P(Z Y = R)	Counts	P(X) = Counts / 70		P(Xnext D)		P(Xnext D)	
Т	10	10/70 = 1/7	0.14286	11/72	0.15278	12/74	0.16216
F	60	60/70 = 6/7	0.85714	61/72	0.84722	62/74	0.83784
P(Z Y = G)	Counts	P(X) = Counts / 0		P(Xnext D)		P(Xnext D)	

Т	0	0	0	1/2	0.5	2/4	0.5
F	0	0	0	1/2	0.5	2/4	0.5
P(Z Y = B)	Counts	P(X) = Counts / 80		P(Xnext D)		P(Xnext D)	
Т	80	80/80	1.00000	81/82	0.98780	82/84	0.97619
F	0	0	0	1/82	0.01220	2/84	0.02381

a. What are the MLE estimates?

$$P(X) = \langle \frac{2}{5}, \frac{3}{5} \rangle = \langle 0.4, 0.6 \rangle$$

$$P(Y|X = T) = \langle \frac{1}{2}, 0, \frac{1}{2} \rangle = \langle 0.5, 0, 0.5 \rangle$$

$$P(Y|X = F) = \langle \frac{4}{9}, 0, \frac{5}{9} \rangle = \langle 0.444, 0, 0.556 \rangle$$

$$P(Z|Y = R) = \langle \frac{1}{7}, \frac{6}{7} \rangle = \langle 0.14286, 0.85714 \rangle$$

$$P(Z|Y = G) = \langle 0, 0 \rangle$$

$$P(Z|Y = R) = \langle 1, 0 \rangle$$

b. Assuming a uniform prior and K2 approach to Bayesian estimation, what are the predictive for next X, Y|X, and Z|Y?

$$P(X) = \langle ^{61}/_{152}, ^{91}/_{152} \rangle = \langle 0.40132, 0.59868 \rangle$$

$$P(Y|X = T) = \langle ^{31}/_{63}, ^{1}/_{63}, ^{31}/_{63} \rangle = \langle 0.49206, 0.01587, 0.49206 \rangle$$

$$P(Y|X = F) = \langle ^{41}/_{93}, ^{1}/_{93}, ^{50}/_{93} \rangle = \langle 0.44086, 0.01075, 0.53763 \rangle$$

$$P(Z|Y = R) = \langle ^{11}/_{72}, ^{61}/_{72} \rangle = \langle 0.15278, 0.84722 \rangle$$

$$P(Z|Y = G) = \langle ^{1}/_{2}, ^{1}/_{2} \rangle = \langle 0.5, 0.5 \rangle$$

$$P(Z|Y = R) = \langle ^{81}/_{82}, ^{1}/_{82} \rangle = \langle 0.98780, 0.01220 \rangle$$

c. Assuming a |D`| = probabilities 12 and P` is uniform, and a BDE approach to estimation, what are the predictive probabilities for next X, Y|X, and Z|Y?

$$P(X) = \langle ^{66}/_{162}, ^{96}/_{162} \rangle = \langle 0.40741, 0.59259 \rangle$$

$$P(Y|X = T) = \langle ^{32}/_{66}, ^{2}/_{66}, ^{32}/_{66} \rangle = \langle 0.48485, 0.03030, 0.48485 \rangle$$

$$P(Y|X = F) = \langle ^{42}/_{96}, ^{2}/_{96}, ^{52}/_{96} \rangle = \langle 0.43750, 0.02083, 0.54167 \rangle$$

$$P(Z|Y = R) = \langle ^{12}/_{74}, ^{62}/_{74} \rangle = \langle 0.16216, 0.83784 \rangle$$

$$P(Z|Y = G) = \langle ^{22}/_{4}, ^{2}/_{4} \rangle = \langle 0.5, 0.5 \rangle$$

$$P(Z|Y = R) = \langle ^{82}/_{84}, ^{2}/_{84} \rangle = \langle 0.97619, 0.02381 \rangle$$