

全国大学生电子设计竞赛 2014年TI 杯模拟电子系统设计邀请赛 **简易高速差分探头(B题)**

1、 任务

设计并制作一个简易有源高速差分示波器探头,实现差分输入、单端输出功能。同时设计一个用于测试该差分探头的差模信号源。示意图如图 1 所示。

图 1. 差模信号源及其与差分探头连接示意图

2、 要求

- (1) 自制一个用于测试差分探头的差模信号源,实现将单端信号 $V_{\rm in}$ 转换为差模信号输出 $(V_{\rm A} \times V_{\rm B})$ 。单端信号 $V_{\rm in}$ 为正弦波,频率范围为 $DC\sim20{\rm MHz}$,振幅为 $100{\rm mV}\sim2{\rm V}$ 。差模信号源的要求如下:
 - a. 差模信号源的输入阻抗为 50Ω , V_A 、 V_B 路对地输出阻抗为 50Ω ;
 - b. 输出差模信号对称, 无明显失真;
 - c. 差模信号源的放大倍数为 2(差模信号源的放大倍数定义为 $(V_A V_B) / V_{in})$;
 - d. $V_{\rm A}$ 、 $V_{\rm B}$ 端的直流分量在 $\pm 2.0 {\rm V}$ 范围内可手动调节(见说明(2))。
- - a. 输出单端信号 $V_{\rm E}$ 的最大允许输出范围应能达到 $\pm 4V$;
 - b. $V_{\rm C}$ 、 $V_{\rm D}$ 输入阻抗应大于或等于 150kΩ, $V_{\rm E}$ 端的输出阻抗为 50Ω;
 - c. 差分探头的增益(定义为 $V_{\rm E}/(V_{\rm C}-V_{\rm D})$)可设定为 1 倍或 10 倍。

(3) 连接差模信号源及差分探头,要求:

- (40分)
- a. 设定差分探头的增益为 10 倍,在 DC-20MHz 范围内, V_{in} 到 V_{E} 的带内起伏不大于 1dB,并尽可能扩展 1dB 起伏带宽(见说明(4))。
- b. 设定差分探头的增益为 10 倍,当 $V_{\rm in}$ 接地时, $V_{\rm E}$ 的输出振幅不大于 10 mV, $V_{\rm E}$ 的输出直流偏置的绝对值不大于 50 mV。
- c. 设定差分探头增益为 10 倍时,调节 $V_{\rm A}$ 、 $V_{\rm B}$ 上的输出直流分量在 ± 2 V 间变化时,输出 $V_{\rm E}$ 应无明显失真;
- d. 设定差分探头增益为 1 倍时,改变 $V_{\rm in}$ 为频率 DC \sim 3MHz,振幅 100mV \sim 2V 的方波信号时,输出信号 $V_{\rm E}$ 应无明显失真。
- (4) 设定差分探头的增益为 10,在(3) a 中测得的 1dB 起伏带宽范围内测量差分探头的共模抑制比,要求在 DC~1MHz 的共模抑制比不小于 40dB, 1MHz~20MHz 的共模抑制比不小于 32dB。(见说明(5)) (15分)
- (5) 其他创新发挥(5分)
- (6) 设计报告(10分)

项目	主要内容	分数
系统方案	方案描述、比较与选择	2
理论分析与计算	单端转双端放大器设计 频带内增益起伏控制 增益调整 共模抑制比	4
电路设计	电路设计	2
测试方案与测试结果	测试方案 测试结果完整性 测试结果分析	2
总分		10

3、 说明

- (1) 现场可以为本题制作不超过两块印制电路板,要求如下:
 - ①电路板为单双面板,长宽不超过6cm×10cm;
 - ②在线路所在层利用 Place String 放置自己组的编号,大小适中;
 - ③印制电路板设计工艺要求详见竞赛 U 盘中 "2014年 TI 杯模拟专题邀请赛 PCB 制板须知"文件;

- ④电路板需自行打孔。
- (2) V_A , V_B 的直流分量如图 2 中 V_{DC} 所示:

图 2 $V_{\rm in}$ 、 $V_{\rm A}$ 、 $V_{\rm B}$ 与 $V_{\rm DC}$ 的图例(此时差模信号源的放大倍数为 1)

- (3) 测试 2 (2) 时,可以使用自制差模信号源,或台式信号源输出的差模信号对;
- (4) 1dB 起伏带宽的定义:

图 3 1dB 起伏带宽示意

串联单端转差分电路和差分探头,设定差分探头的增益电路为 10 倍,在 V_{in} 处输入振幅为 200mV 的正弦信号,从 1KHz 开始向上增加 V_{in} 的频率,当 V_{E} 的振幅降低到小于 3.56V,或 V_{E} 的振幅上升到大于 4.49V 时,记录此时 V_{in} 的频率为 f_{1dB}

(5) 差分探头共模抑制比测量方法:调节输入正弦信号 V_{in2} 的振幅为 4V,通过等长走线确保 V_{C} 和 V_{D} 的输入同相(注意信号源与差分探头应就近共地),调节 V_{in2} 的频率(-1dB 带宽范围内)并记录对应频率下 V_{E} 的输出信号振幅:

图 4. 共模抑制比测量示意图

(6) 作品输入和输出连接均用 BNC 公制接头,其中 $V_{\rm A}$ 、 $V_{\rm B}$ 的输出同时可使用 2.54mm 的标准间距排针座输出, $V_{\rm C}$ 和 $V_{\rm D}$ 的输入同时可使用 2.54mm 的标准间距排针输入。