Database Systems - Homework 3 - Functional Dependencies & Normal Forms

Yosef Goren & Yonatan Kahalani

June 22, 2023

Contents

1																													2
	1.1																												2
	1.2																												2
	1.3																												2
	1.4																								_		_		2
	1.5																												3
2	Sche	eme	. A	n	\mathbf{al}	ys	is																						3
	2.1																												3
	2.2																												3
	2.3																												4
	2.4																												4
3	Sche	eme	A	n	al	ys	is																						4
	3.1					_																							4
	3.2																												5
	3.3																												5
	3.4																												6
4	Vati	atio	on	sc	n	A	\r:	m	st	rc	or	ıg	's	1	4.5	κi	or	ns	s										6
	4.1											_																	6
	4.2																												6
5	Mor	ıgol	DΕ	3																									7
	5.1	_																											7
	5.2																												7
	5.3																												7
	5.4																												8

1

1.1

X is not in BCNF.

Proof.

From transitivity and reflexivity, $CG \rightarrow H$.

Note CG is not a superkey in R_3 since D is not implied by any FD since it only appears as the left operand.

Thus $CG \to D$ is not satisfied and $R_3 \notin BCNF \Rightarrow X \notin BCNF$.

1.2

No.

Proof.

- \bullet e only appears as the right operand.
- \bullet e is not prime.
- Any properkey does not contain e.
- c is not a superkey in R_2 .
- $c \to e$ violates the properties of 3NF.

1.3

By running the algorithm seen in class we get to:

A	В	С	D	Е	G	Н		A	В	С	D	Е	G	Η
	b	С	d						b	С	d	e		
		c		e		h	$\Longrightarrow_{C \to E}$			c		е		h
		c	d		g	h				c	d	e	g	h

And thus no more steps can be deduces and via the correctness of the algorithm - the decomposition does not preserve information.

1.4

Let

$$R := \{(a_1, b, c, d, e, g_1, a_1), (a_2, b, c, d, e, g_2, a_2)\}$$

Note that $R \models F$, additionally $(a_2, b, c, d, e, g_1, a_2) \in R_1 \bowtie R_2 \bowtie R_3$, thus the decomposition does not preserve information.

First we apply the confusing algorithm seen in the tutorial:

- $Z_F := \{A, H\}$
- On inspecting R_1 : $\{A, H\} \cup (\{A, H\} \cap \{B, C, D\})^+ \cap \{B, C, D\}) = \{A, H\}$
- On inspecting R_2 : $B \notin R_2 \Rightarrow B \notin Z_F$
- On inspecting R_3 : $B \notin R_3 \Rightarrow B \notin Z_F$

Thus $B \notin Z_F \Rightarrow$ Dependencies are not preserved.

2 Scheme Analysis

2.1

The keys:

• $K_1 := EG$.

By applying the algorithm we see:

Note that A can be derrived from BCDEG by the FD $G \to ABCD$ and the Decomposition property.

By applying the algorithm for finding keys 3 more times, we get rid of BCD. And we are left with EG.

Note that $E \not\to G$ and $G \not\to E$ - hence K_1 is a proper-key.

• $K_2 := ABCD$.

By the rule $BD \to G$ we get rid of G, and by the rule $AC \to D$ we get rid of D.

Thus we are left with K_2 while not more attributes can be removed - so by the correctness of the algorithm - K_2 is a proper-key.

2.2

Let the decomposition be: $X = \{R_1(A, C, G), R_2(B, D, E), R_3(B, D, G)\}$. Running the algorithm:

A	В	С	D	Е	G			[A	В	С	D	Е	G	
a		c			g			_ [a		\mathbf{c}			g	
	b		d	e			BD-	$\rightarrow G$		р		d	e	g	$\Rightarrow_{G \to ABCD}$
	b		d		g					b		d		g	
						A	В	С	D	Е	G				
						a		c			g	7			
						a	b	c	d	е	g				
							b		d		g				

Thus by the correctness of the algorithm, the decomposition is information preserving.

2.3

The claim is correct.

Proof.

Let $K := A_{i_1} A_{i_2} ... A_{i_k}$ s.t. K is the left operand in f, and so $\forall j \in \{1...k\} : i_j \in \{1...n\}$.

Now we show that K is a super-key:

Let $j \in \{1...n\} : A_j \notin K$.

 A_j must be the right operand of f, Thus by Decomposition be can derive that $K \to A_j$. Thus $K^+ = R$.

Thus F satisfies the BCNF property and from a theorem from the lectures, this sufficient to show that $(R, F) \in BCNF$.

2.4

The claim is incorrect.

Example.

Let $F := A_1 \rightarrow A_2 A_3$.

Each A_i appears exactly once. But by the definition of a minimal cover - on the right side of each operand in the cover - there must be exactly one attribute.

3 Scheme Analysis

3.1

The key is K := ADEG.

Now we show for each attribute in R that it can be derrived from K.

- *H*:
 - $-G \to H \text{ (from } F)$
 - $-K \rightarrow KH$ (Augmentation)
 - $-KH \rightarrow H$ (Reflexivity)
 - $-K \to H$ (Transitivity)
- *B*:
 - $-G \to B \text{ (from } F)$
 - $-K \rightarrow KB$ (Augmentation)
 - $-KB \rightarrow B$ (Reflexivity)
 - $-K \rightarrow B$ (Transitivity)

- C:
 - $-E \to CH \text{ (from } F)$
 - $-CH \rightarrow C$ (Reflexivity)
 - $-E \to C \text{ (from } F)$
 - $-K \rightarrow KC$ (Augmentation)
 - $-KC \rightarrow C$ (Reflexivity)
 - $-K \to C$ (Transitivity)

1. The claim is correct.

Proof.

Direction '⇒'

- (a) $B \to G$ (from F)
- (b) $BG \to G$ (Augmentation)
- (c) $BG \to E \text{ (from } F)$
- (d) $G \to H$ (from F)
- (e) $BG \to BH$ (Augmentation)
- (f) $BH \to H$ (Reflexivity)
- (g) $BG \to H$ (e, f, Transitivity)
- (h) $BH \to EGH$ (b,c,g, Union)

Direction ' \Leftarrow ' Let $A_i \notin F$.

- $\Rightarrow A_i$ cannot be derrived from the left operand of f
- \Rightarrow The left operand of f is not a super-key
- $\Rightarrow (R, F) \notin BCNF$
- 2. The claim is incorrect.

Example.

Let $R := \{(a_1, b_1, c_1, d_1, e_1, g_1, h_1), (a_2, b_2, c_1, d_1, e_2, g_2, h_1)\}.$

Note that $R \models F$, while $R \not\models (CH \rightarrow AE)$ thus, from the soundness theorem - we can deduce there is no proof.

3.3

A	В	С	D	Е	G	Н		A	В	С	D	Е	G	Н
a	b				g			a	b				g	
	b	С		е			$\Longrightarrow_{B \to G}$		b	c		е	g	
			d	е		h					d	е		h

	A	В	С	D	E	G	Η	
	a	b			e	g		
$\Longrightarrow_{BG\to E}$		b	c		e	g		$\Longrightarrow_{E\to CH}$
				d	e		h	

A	В	С	D	E	G	Н		A	В	С	D	E	G	Н
a	b	c		e	g	h	$\Rightarrow_{G \setminus D}$	a	b	c	d	е	g	h
	b	c		e	g	h	$\Longrightarrow_{C \to D}$		b	c	d	е	g	h
		c	d	е		h				c	d	е		h

	X_2	X_3
BCNF	√	Х
3NF	1	Х

Both X's can be demostrated by $C \to D$.

4 Vatiations on Armstrong's Axioms

4.1

Yes. Since this system has less of freedom than the armstrong system, any proof generated by the reduced system is also a proof in the armstrong system. In particular - our system is satisfied by the correctness of the armstrong system.

4.2

No.

For example, let $F := \{A \to B, A \to C\}.$

Lemma 1 In our reduced axiom system - regarding F, for any rule $X \to Y$: The number of attributes in the right operand is never larger than the number of attributes in the left operand. We denote this as $|X| \ge |Y|$.

Lemma Proof.

By induction on the number of lines in a formal proof the rule.

Base: By reflexivity or FD from F.

Step: Reflexivity or FD like in the Base case. Transitivity:

We have already shown $W \to Y$, and that $Z \to W$. We now show $Z \to Y$. From the induction hypothesis - $|W| \ge |Y| \wedge |Z| \ge |W|$ Thus $|Z| \ge |Y|$.

Due to the lemma, in the reduced system, $A \to BC$ cannot be implied by F. While union is provable in the armstrong system (which means $A \to BC$ can be implied by F in the armstring system).

5 MongoDB

```
5.1
```

```
db.s.distinct("university", {seniority_year: 2023})
5.2
db.SeniorStaff.aggregate([
 {
    $match: {
      seniority_year: { $gt: 2013 }
 },
   $group: {
    _id: "$university",
   staff_members: {
     $push: {
        staff_member_name: "$staff_member_name",
        staff_member_id: "$staff_member_id"
])
5.3
db.SeniorStaff.aggregate([
   $group: {
    _id: {
     university: "$university",
     estimated_retirement_year: "$estimated_retirement_year"
   total_current_salary: { $sum: "$salary" },
    total_retirement_salary: { $sum: "$estimated_retirement_salary" }
   }
 },
   $group: {
    _id: "$_id.university",
   retirement_years: {
     estimated_retirement_year: "$_id.estimated_retirement_year",
     salary_delta: { $subtract: ["$total_current_salary", "$total_retirement_salary"] }
   }
    }
 },
    $sort: {_id: 1}
  ])
```

```
db.s.mapReduce(
  function() {
   emit(this.university, [this.estimated_retirement_year, this.salary, this.estimated_retirement_salary]);
 },
 function(university, staff_memebers) {
    expensive_staff_memebers_count = 0;
   for(memebr_details in staff_memebers){
     retire_year = memebr_details[0];
      cur_salary = memebr_details[1];
      retire_salary = memebr_details[2];
      if(retire_salary*1.5 <= cur_salary){</pre>
        expensive_staff_memebers_count++;
        if(expensive_staff_memebers_count > 20){
          break;
        }
     }
   if(expensive_staff_memebers_count > 0){
     return 1;
   } else {
     return 0;
 },
{
    query: {estimated_retirement_year: {$gte:2025, $1te:2030}},
   out: "expensive_staff_unis"
)
```