

Version: 2023/12/12

Chapter 4 Design Examples

	Contents
1	BCD to Seven-Segment Display Decoder
2	A BCD Adder
3	32-Bit Adders
4	Traffic Light Controller
5	State Graphs for Control Circuits
6	Scoreboard and Controller
7	Synchronization and Debouncing
8	Add-and-Shift Multiplier
9	Array Multiplier
10	A Signed Integer/Fraction Multiplier
11	Keypad Scanner
12	Binary Dividers

11 Keypad Scanner

Keypad with Three Columns and Four Rows

11 Keypad Scanner

Scanner modules

K: key press

Kd: debounded key press

4.11.1 Scanner

Step 1: Apply logic 1's to C0, C1, C2 and wait

Step 2: If any key is pressed, apply a 1 to C0->C1->C2

4.11.1 Scanner

Step 3: If Ri is detected, set V = 1

Step 4: Apply 1's to C0, C1, C2 and wait until no key is pressed

4.11.2 Debouncer

Debouncing and Synchronizing Circuit

- R0~3 are connected to an OR gate to form K
- K turns on when a key is pressed and a column signal is applied

- Decoder is combinational circuit, it output will change as the keypad is scanned
- At the a valid key is detected (K=1 and V=1), decoder will have the correct output and this value can be saved in a register

Logic Equations for Decoder

Truth Table for Decoder

	R	$_3$ R $_2$	R_1	R_0	C_0	C_1	C_2	N ₃	N ₂	N_1	N ₀	
	0	0	0	1	1	0	0	0	0	0	1	
	0	0	0	1	0	1	0	0	0	1	0	
	0	0	0	1	0	0	1	0	0	1	1	
•	0	0	1	0	1	0	0	0	1	0	0	
	0	0	1	0	0	1	0	0	1	0	1	
	0	0	1	0	0	0	1	0	1	1	0	
	0	1	0	0	1	0	0	0	1	1	1	
	0	1	0	0	0	1	0	1	0	0	0	
	0	1	0	0	0	0	1	1	0	0	1	
	1	0	0	0	1	0	0	1	0	1	0	(*)
	1	0	0	0	0	1	0	0	0	0	0	
	1	0	0	0	0	0	1	1	0	1	1	(#)

R	$_3R_2$	R_1	R_0	C_0	C_1	C_2	N ₃	N_2	N_1	N_0	
0	0	0	1	1	0	0	0	0	0	1	
0	0	0	1	0	1	0	0	0	1	0	
0	0	0	1	0	0	1	0	0	1	1	
0	0	1	0	1	0	0	0	1	0	0	
0	0	1	0	0	1	0	0	1	0	1	
0	0	1	0	0	0	1	0	1	1	0	
0	1	0	0	1	0	0	0	1	1	1	
0	1	0	0	0	1	0	1	0	0	0	
0	1	0	0	0	0	1	1	0	0	1	
1	0	0	0	1	0	0	1	0	1	0	(*)
1	0	0	0	0	1	0	0	0	0	0	
1	0	0	0	0	0	1	1	0	1	1	(#)

\R3R2 R1R0\	00	01	11	10
00	X		X	
01		X	X	X
11	X	X	X	X
10		X	X	X

R	$_3$ R $_2$	R_1	R_0	C_0	C_1	C_2	N_3	N_2	N_1	N_0	
0	0	0	1	1	0	0	0	0	0	1	
0	0	0	1	0	1	0	0	0	1	0	
0	0	0	1	0	0	1	0	0	1	1	
0	0	1	0	1	0	0	0	1	0	0	
0	0	1	0	0	1	0	0	1	0	1	
0	0	1	0	0	0	1	0	1	1	0	
0	1	0	0	1	0	0	0	1	1	1	
0	1	0	0	0	1	0	1	0	0	0	
0	1	0	0	0	0	1	1	0	0	1	
1	0	0	0	1	0	0	1	0	1	0	(*)
1	0	0	0	0	1	0	0	0	0	0	
1	0	0	0	0	0	1	1	0	1	1	(#)

\R3R2 R1R0\	00	01	11	10
00	X		X	
01		X	X	X
11	X	X	X	X
10		X	X	X

R	3R ₂	R_1	R_0	C_0	C_1	C_2	N ₃	N_2	N_1	N_0	
0	0	0	1	1	0	0	0	0	0	1	
0	0	0	1	0	1	0	0	0	1	0	
0	0	0	1	0	0	1	0	0	1	1	
0	0	1	0	1	0	0	0	1	0	0	
0	0	1	0	0	1	0	0	1	0	1	
0	0	1	0	0	0	1	0	1	1	0	
0	1	0	0	1	0	0	0	1	1	1	
0	1	0	0	0	1	0	1	0	0	0	
0	1	0	0	0	0	1	1	0	0	1	
1	0	0	0	1	0	0	1	0	1	0	(*)
1	0	0	0	0	1	0	0	0	0	0	
1	0	0	0	0	0	1	1	0	1	1	(#)

\R3R2 R1R0\	00	01	11	10
00	X	C0'	X	C1'
01	0	X	X	X
11	X	X	X	X
10	0	X	X	X

R	3R ₂	R_1	R_0	C_0	C_1	C_2	N ₃	N_2	N_1	N_0	
0	0	0	1	1	0	0	0	0	0	1	
0	0	0	1	0	1	0	0	0	1	0	
0	0	0	1	0	0	1	0	0	1	1	
0	0	1	0	1	0	0	0	1	0	0	
0	0	1	0	0	1	0	0	1	0	1	
0	0	1	0	0	0	1	0	1	1	0	
0	1	0	0	1	0	0	0	1	1	1	
0	1	0	0	0	1	0	1	0	0	0	
0	1	0	0	0	0	1	1	0	0	1	
1	0	0	0	1	0	0	1	0	1	0	(*)
1	0	0	0	0	1	0	0	0	0	0	
1	0	0	0	0	0	1	1	0	1	1	(#)

\R3R2 R1R0\	00	01	11	10
00	X	C0'	X	C1'
01	0	X	X	X
11	X	X	X	Х
10	0	Х	X	Х

$$N3 = R2C0' + R3C1'$$

R	$_3$ R $_2$	R_1	R_0	C_0	C_1	C_2	N ₃	N_2	N_1	N_0	
0	0	0	1	1	0	0	0	0	0	1	
0	0	0	1	0	1	0	0	0	1	0	
0	0	0	1	0	0	1	0	0	1	1	
0	0	1	0	1	0	0	0	1	0	0	
0	0	1	0	0	1	0	0	1	0	1	
0	0	1	0	0	0	1	0	1	1	0	
0	1	0	0	1	0	0	0	1	1	1	
0	1	0	0	0	1	0	1	0	0	0	
0	1	0	0	0	0	1	1	0	0	1	
1	0	0	0	1	0	0	1	0	1	0	(*)
1	0	0	0	0	1	0	0	0	0	0	
1	0	0	0	0	0	1	1	0	1	1	(#)

\R3R2 R1R0\	00	01	11	10
00	X		X	
01		X	X	X
11	X	X	X	X
10		X	X	X

R	$_3R_2$	R_1	R_0	C_0	C_1	C_2	N_3	N_2	N_1	N_0	
0	0	0	1	1	0	0	0	0	0	1	
0	0	0	1	0	1	0	0	0	1	0	
0	0	0	1	0	0	1	0	0	1	1	
0	0	1	0	1	0	0	0	1	0	0	
0	0	1	0	0	1	0	0	1	0	1	
0	0	1	0	0	0	1	0	1	1	0	
0	1	0	0	1	0	0	0	1	1	1	
0	1	0	0	0	1	0	1	0	0	0	
0	1	0	0	0	0	1	1	0	0	1	
1	0	0	0	1	0	0	1	0	1	0	(*)
1	0	0	0	0	1	0	0	0	0	0	
1	0	0	0	0	0	1	1	0	1	1	(#)

\R3R2 R1R0\	00	01	11	10
00	X	C0	X	0
01	0	X	X	X
11	X	X	X	X
10	1	X	X	X

R	3R ₂	R_1	R_0	C_0	C_1	C_2	N_3	N_2	N_1	N_0	
0	0	0	1	1	0	0	0	0	0	1	
0	0	0	1	0	1	0	0	0	1	0	
0	0	0	1	0	0	1	0	0	1	1	
0	0	1	0	1	0	0	0	1	0	0	
0	0	1	0	0	1	0	0	1	0	1	
0	0	1	0	0	0	1	0	1	1	0	
0	1	0	0	1	0	0	0	1	1	1	
0	1	0	0	0	1	0	1	0	0	0	
0	1	0	0	0	0	1	1	0	0	1	
1	0	0	0	1	0	0	1	0	1	0	(*)
1	0	0	0	0	1	0	0	0	0	0	
1	0	0	0	0	0	1	1	0	1	1	(#)

\R3R2 R1R0\	00	01	11	10
00	X	C0	X	0
01	0	X	X	X
11	X	X	Х	Х
10	1	X	X	Х

$$N2 = R2C0 + R1$$

R	3R ₂	R_1	R_0	C_0	C_1	C_2	N_3	N_2	N_1	N_0	
0	0	0	1	1	0	0	0	0	0	1	
0	0	0	1	0	1	0	0	0	1	0	
0	0	0	1	0	0	1	0	0	1	1	
0	0	1	0	1	0	0	0	1	0	0	
0	0	1	0	0	1	0	0	1	0	1	
0	0	1	0	0	0	1	0	1	1	0	
0	1	0	0	1	0	0	0	1	1	1	
0	1	0	0	0	1	0	1	0	0	0	
0	1	0	0	0	0	1	1	0	0	1	
1	0	0	0	1	0	0	1	0	1	0	(*)
1	0	0	0	0	1	0	0	0	0	0	
1	0	0	0	0	0	1	1	0	1	1	(#)

\R3R2 R1R0\	00	01	11	10	
00	X	C1'	X	C2	
01	C1'	Χ	X	X	
11	X	X	X	Х	
10	C1	X	Χ	X	

N0 = R1C1 + R3C2 + R3'R1'C1'

R	$_3$ R $_2$	R_1	R_0	C_0	C_1	\mathbb{C}_2	N_3	N_2	N_1	No	
0	0	0	1	1	0	0	0	0	0	1	
0	0	0	1	0	1	0	0	0	1	0	
0	0	0	1	0	0	1	0	0	1	1	
0	0	1	0	1	0	0	0	1	0	0	
0	0	1	0	0	1	0	0	1	0	1	
0	0	1	0	0	0	1	0	1	1	0	
0	1	0	0	1	0	0	0	1	1	1	
0	1	0	0	0	1	0	1	0	0	0	
0	1	0	0	0	0	1	1	0	0	1	
1	0	0	0	1	0	0	1	0	1	0	(*)
1	0	0	0	0	1	0	0	0	0	0	
1	0	0	0	0	0	1	1	0	1	1	(#)

$$N3 = R2C0' + R3C1'$$

R	3R ₂	R_1	R_0	C_0	C_1	C ₂	N_3	N_2	N_1	No	
0	0	0	1	1	0	0	0	0	0	1	
0	0	0	1	0	1	0	0	0	1	0	
0	0	0	1	0	0	1	0	0	1	1	
0	0	1	0	1	0	0	0	1	0	0	
0	0	1	0	0	1	0	0	1	0	1	
0	0	1	0	0	0	1	0	1	1	0	
0	1	0	0	1	0	0	0	1	1	1	
0	1	0	0	0	1	0	1	0	0	0	
0	1	0	0	0	0	1	1	0	0	1	
1	0	0	0	1	0	0	1	0	1	O	(*)
1	0	0	0	0	1	0	0	0	0	0	
1	0	0	0	0	0	1	1	0	1	1	(#)

$$N2 = R1 + R2C0$$

R	3R ₂	R_1	R ₀	C_0	C_1	\mathbb{C}_2	N_3	N_2	N_1	N ₀	
0	0	0	1	1	0	0	0	0	0	1	
0	0	0	1	0	1	0	0	0	1	0	
0	0	0	1	0	0	1	0	0	1	1	
0	0	1	0	1	0	0	0	1	0	0	
0	0	1	0	0	1	0	0	1	0	1	
0	0	1	0	0	0	1	0	1	1	0	
0	1	0	0	1	0	0	0	1	1	1	
0	1	0	0	0	1	0	1	0	0	0	
0	1	0	0	0	0	1	1	0	0	1	
1	0	0	0	1	0	0	1	0	1	0	(*)
1	0	0	0	0	1	0	0	0	0	0	
1	0	0	0	0	0	1	1	0	1	1	(#)

$$N1 = R0C0' + R2'C2 + R0'R1'C0$$

$$N0 = R1C1 + R1'C2 + R3'R1'C1'$$

State graph for Keypad Scanner_V1

S2: C0=1, so if the pressed key is in column 0, K = 1, and the circuit outpus V=1 and goes to S5

S1: wait with output C0=C1=C2=1 until a key is pressed

S5: The circuit waits until all key are released and Kd goes to 0 before resetting

S3, S4: If no key is found in column 0, column 1 is checked, and if necessary, column 2 is checked

State graph for Keypad Scanner V1

Why we use K here instead of Kd?

For example ...

Example: assume 5 is pressed

When S2, C1 = 0, K = 0

However, due to the two flip-flops, Kd will keep 1 for 2 clock periods

Timing problem with State graph V1

Problem 1: Is K=1 whenever a button is pressed?

- No. Although K is true if any one of the row signals R_1 , R_2 , R_3 , or R_4 is true
- if the column scan signals are not active, none of R_1 – R_4 can be true, although the button is pressed

Timing problem with State graph V1

A button is pressed $\Rightarrow K = 1$

A button is pressed & corresponding Ci is active $\Rightarrow K = 1$

Timing problem with State graph_V1

Problem 2: Can Kd=0 when a button is continuing to be pressed?

- > Yes. Signal *Kd* is nothing but *K* delayed by two clock cycles
- K can go to 0 during the scan process even when the button is being pressed

> For example...

Timing problem with State graph_V1

Example: consider the case when a key in the rightmost column is pressed

- During scan of the first two columns, K goes to 0
- ➢ If K goes to 0 at any time, Kd will go to zero two cycles later

Neither K nor Kd is the same as pressing the button

Timing problem with State graph_V1

Problem 3: Can S5 go to S1 when a button is still pressed?

- ➤ **Yes**. S4-to-S5 transition could happen when Kd = 0. Kd might have become false while scanning C0 and C1
- ➤ Hence, it is possible that one reaches back to S1 when the key is still being pressed

➤ For example...

Timing problem with State graph_V1

- Let us assume that a button is pressed in column C2
- > This is to be detected in S4

During the scan in S4, the correct key can be found ➤ However, the system can reach S5 when Kd is still 0 and a malfunction can happen

Timing problem with State graph V1

- > S5 is intended to sense the release of the key
- ➤ However, Kd is not synonymous to pressing the button and Kd' does not truly indicate that the button got released

state, the system can go from S5 to S1 without a key release

State graph for Keypad Scanner V1

State graph for Keypad Scanner V2

4.11.5 VHDL Code

```
entity scanner is
 port(R0, R1, R2, R3, CLK: in bit;
                                                                            D<sub>B</sub> Q<sub>B</sub>
    C0, C1, C2: inout bit;
    N0, N1, N2, N3, V: out bit);
end scanner:
                                                  N3 = R2 C0' + R3 C1'
                                                  N2 = R1 + R2 C0
architecture behavior of scanner is
                                                  N1 = R0 C0' + R2'C2 + R1'R0'C0
signal QA, K, Kd: bit;
                                                  N0 = R1 C1 + R1'C2 + R3'R1'C1'
signal state, nextstate: integer range 0 to 5;
begin
 K <= R0 or R1 or R2 or R3;
                                                                      Decoder
 N3 <= (R2 and not C0) or (R3 and not C1);
 N2 \leq R1 or (R2 and C0);
 N1 <= (R0 and not C0) or (not R2 and C2) or (not R1 and not R0 and C0);
 N0 <= (R1 and C1) or (not R1 and C2) or (not R3 and not R1 and not C1);
```

```
process(state, R0, R1, R2, R3, C0, C1, C2, K, Kd, QA)
begin
 C0 <= '0': C1 <= '0': C2 <= '0': V <= '0':
                                                                 Scanner
 case state is
                                                                                                                   c_2
                                                                                                                         c_1
                                                                                                                               c_0
   when 0 => nextstate <= 1;
   when 1 => C0 <= '1'; C1 <= '1'; C2 <= '1';
                                                                                                       3
    if (Kd and K) = '1' then nextstate <= 2;
                                                                                  <u></u>
    else nextstate <= 1;
                                                                                                                    Keypad
    end if;
                                                                                                                    Scanner,
                                                                                  *
                                                                                                                    Debouncer.
   when 2 => C0 <= '1':
                                                                                                                    & Decoder
                                                                                  <u>~</u>
    if (Kd and K) = '1' then V <= '1'; nextstate <= 5;
    elsif K = '0' then nextstate <= 3;
    else nextstate <= 2;
    end if:
   when 3 => C1 <= '1';
                                                                                                                      clock
    if (Kd and K) = '1' then V <= '1'; nextstate <= 5;
    elsif K = '0' then nextstate <= 4;
    else nextstate <= 3:
    end if:
   when 4 => C2 <= '1':
    if (Kd and K) = '1' then V \le '1'; nextstate \le 5;
                                                                                                                                       Kd'+K'
    else nextstate <= 4;
                                                                                                  Kd'K
                                                                                                                     Kd'K
    end if;
                                                                                                      K'
                                                                                                               S_3
                                                                                                                       K'
                                                                                                                                S_4
                                                                           S_1
                                                                                   KdK
   when 5 => C0 <= '1': C1 <= '1': C2 <= '1':
                                                                                                               \overline{C_1}
                                                                                                                                \overline{C_2}
                                                                         C_0C_1C_2
    if Kd = '0' then nextstate <= 1;
    else nextstate <= 5;
                                                                                                   KdK/V
                                                                                                           KdK/V
                                                                                                                     KdK/V
    end if;
                                                                                      Kd'
                                                                         Kd'+K'
 end case;
                                                           \frac{S_0}{0}
end process;
                                                                                                   C_0C_1C_2
                                                                                           Kd
```

```
process(CLK)
begin
if CLK = '1' and CLK'EVENT then
  state <= nextstate;
  QA <= K;
  Kd <= QA;
  end if;
end process;
end behavior;</pre>
```


4.11.6 Test Bench for Keypad Scanner

```
R_{3-0}
library IEEE;
                                                         C_{2-0}
use IEEE.numeric_bit.all;
                                        TEST1
                                                                     SCANNER
                                                         N_{3-0}
entity scantest is
                                                         CLK
end scantest;
architecture test1 of scantest is
component scanner
 port(R0, R1, R2, R3, CLK: in bit;
                                        Scanner is treated as a component and
    C0, C1, C2: inout bit;
                                        embedded in test bench
    N0, N1, N2, N3, V: out bit);
end component;
type arr is array (0 to 23) of integer; -- array of keys to test
constant KARRAY: arr := (2,5,8,0,3,6,9,11,1,4,7,10,1,2,3,4,5,6,7,8,9,10,11,0);
signal C0, C1, C2, V, CLK, R0, R1, R2, R3: bit; -- interface signals
signal N: unsigned(3 downto 0);
                                        -- key number to test
signal KN: integer;
```



```
-- this section tests scanner
process
 begin
  for i in 0 to 23 loop
                                -- test every number in key array
    KN <= KARRAY(i);
                                 -- simulates keypress
                                                        CLK = '1' and CLK'EVENT
   wait until (V = '1' and rising_edge(CLK));
    assert (to_integer(N) = KN) -- check if output matches
     report "Numbers don't match"
     severity error;
    KN <= 15;
                              -- equivalent to no key pressed
   wait until rising edge(CLK); -- wait for scanner to reset
   wait until rising_edge(CLK);
   wait until rising_edge(CLK);
  end loop;
  report "Test Complete.";
 end process;
 scanner1: scanner port map(R0,R1,R2,R3,CLK,C0,C1,C2,N(0),N(1),N(2),N(3),V);
                          -- connect test1 to scanner
end test1;
```


Chapter 4 Design Examples

	Contents
1	BCD to Seven-Segment Display Decoder
2	A BCD Adder
3	32-Bit Adders
4	Traffic Light Controller
5	State Graphs for Control Circuits
6	Scoreboard and Controller
7	Synchronization and Debouncing
8	Add-and-Shift Multiplier
9	Array Multiplier
10	A Signed Integer/Fraction Multiplier
11	Keypad Scanner
12	Binary Dividers

4.12.1 Unsigned Divider(无符号数除法器)

Division can be carried out by a series of **subtract** & **shift** operations

Cotroller outputs:

- > Sh: shift dividend one bit to the left
- Su: subtract divisor Y(3:0) from X(8:4) and set quotient bit X(0) to 1

Controller inputs:

- > St: Start signal
- C: C=0 when divisor > X(8:4); otherwise, C=1

12 Binary Dividers

Overflow (溢出)

Overflow occurs when the quotient contains more bits than are available for storing the quotient

12 Binary Dividers

12 Binary Dividers

12 Binary Dividers

Overflow

Example: 135 / 7

$$X_8X_7X_6X_5X_4 \ge Y_3Y_2Y_1Y_0$$

$$\frac{X_8X_7X_6X_5X_4X_3X_2X_1X_0}{Y_3Y_2Y_1Y_0} \ge \frac{X_8X_7X_6X_5X_40000}{Y_3Y_2Y_1Y_0} = \frac{X_8X_7X_6X_5X_4 \times 16}{Y_3Y_2Y_1Y_0} \ge 16$$

State Diagram for Divider Control Circuit

State Table for Divider Control Circuit

	StC				StC			
State	00	01	11	10	00	01	11	10
S_0	S_0	S_0	S ₁	S ₁	0	0	Load	Load
S_1	S_2	S_{0}			Sh	V		
S_2	S_3	S_2			Sh	Su		
S_3	S_4	S_3			Sh	Su		
S_4	S_{5}	S_4			Sh	Su		
S_5	S_{0}	S_{0}			0	Su		

--: "don't care" because St = 0 in S1~S5

4.12.2 Signed Divider

4.12.2 Signed Divider

- Cm2: Enable complement
- A positive divisor is complemented and a negative divisor is not

4.12.2 Signed Divider

5. If an overflow condition is present, go to the done state

St/Ldu Lds

-/Ldl

S/Cm1 Ldd

S'/Ldd

 S_3

 S_4

-/Sh

Rdy

6. Else carry out the division by a series of shifts and subtracts


```
architecture Signdiv of sdiv is
signal State: integer range 0 to 6;
signal Count: unsigned(3 downto 0); -- integer range 0 to 15
signal Sign, C, Cm2: bit;
signal Divisor, Sum, Compout: unsigned(15 downto 0);
signal Dividend: unsigned(31 downto 0);
alias Acc: unsigned(15 downto 0) is Dividend(31 downto 16);
```



```
when 4 =>
   if C = '1' then
      V <= '1';
      State \leq 0;
   else
      Dividend <= Dividend(30 downto 0) & '0';
      Count \leftarrow Count + 1;
      State <= 5:
   end if:
when 5 =>
   if C = '1' then
      Acc <= Sum; -- subtract
      Dividend(0) <= '1';
   else
      Dividend <= Dividend(30 downto 0) & '0'; -- left shift
      if Count = 15 then State <= 6; end if: -- KC'
      Count \leftarrow Count + 1:
   end if;
```


Test bench for signed divider

```
library IEEE;
use IEEE.numeric bit.all;
entity testsdiv is
end testsdiv:
architecture test1 of testsdiv is
component sdiv
 port (CLK, St: in bit;
       Dbus: in unsigned (15 downto 0);
       Quotient: out unsigned(15 downto 0);
       V, Rdv: out bit);
end component;
constant N: integer := 12; -- test sdiv1 N times
type arrl is array(1 to N) of unsigned(31 downto 0);
type arr2 is array(1 to N) of unsigned(15 downto 0);
constant dividendarr: arrl := (X"0000006F", X"07FF00BB", X"FFFFFE08",
 X"FF80030A", X"3FFF8000", X"3FFF7FFF", X"C0008000", X"C0008000",
 X"C0008001", X"00000000", X"FFFFFFFF", X"FFFFFFFF");
constant divisorarr: arr2 := (X"0007", X"E005", X"001E", X"EFFA", X"7FFF", X"7FFF",
        X"7FFF", X"8000", X"7FFF", X"0001", X"7FFF", X"0000");
signal CLK, St, V, Rdy: bit;
signal Dbus, Quotient, divisor: unsigned(15 downto 0);
signal Dividend: unsigned(31 downto 0);
signal Count: integer range 0 to N;
```

Test bench for signed divider

```
begin
 CLK <= not CLK after 10 ns:
 process
 begin
   for i in 1 to N loop
     St <= '1';
     Dbus <= dividendarr(i) (31 downto 16);
     wait until (CLK'event and CLK = '1');
     Dbus <= dividendarr(i) (15 downto 0);
     wait until (CLK'event and CLK='1');
     Dbus <= divisorarr(i);
     St <= '0';
     dividend <= dividendarr(i) (31 downto 0); -- save dividend for listing
     divisor <= divisorarr(i); -- save divisor for listing
     count <= i;
  end loop;
 end process;
 sdiv1: sdiv port map(CLK, St, Dbus, Quotient, V, Rdy);
end test1:
```

Test bench for signed divider

VSIM 70> add list -notrigger dividend divisor quotient V -trigger count VSIM 71> run 5300 ns

List - Default												
ns-		/testsdiv/Dividend /testsdiv/V										
delta—		/testsdiv/divisor-										
		/testsdiv/Quotient-										
		/testsdiv/Count-										
0	+0	00000000	0000	0000 0 0								
470	+3	0000006F	0007	000F 0 1								
910	+3	07FF00BB	E005	BFFE 0 2								
1330	+3	FFFFE08	001E	FFF0 0 3								
1910	+3	FF80030A	EFFA	07FC 0 4								
2010	+3	3FFF8000	7FFF	0000 1 5								
2710	+3	3FFF7FFF	7FFF	7FFF 0 6								
2810	+3	C0008000	7FFF	0000 1 7								
3510	+3	C0008000	8000	7FFF 0 8								
4210	+3	C0008001	7FFF	8001 0 9								
4610	+3	00000000	0001	0000 0 A								
5010	+3	FFFFFFFF	7FFF	0000 0 B								
5110	+3	FFFFFFFF	0000	0002 1 C								