Chapter 29. Unsupervised

Learning

Background

- Focusing on clustering
- Used less often than supervised learning
 - Harder to apply and measure success
 - The curse of dimensionality

Use Cases

- Pattern recognition
- Finding anomalies in data
- Topic modeling

Clustering model scalability

Table 29-1. Clustering model scalability reference

Model	Statistical recommendation	Computation limits	Training examples
k-means	50 to 100 maximum	Features x clusters < 10 million	No limit
Bisecting k-means	50 to 100 maximum	Features x clusters < 10 million	No limit
GMM	50 to 100 maximum	Features x clusters < 10 million	No limit
LDA	An interpretable number	1,000s of topics	No limit

Dataset

```
// Create Vector Assembler.
     // in Scala
     import org.apache.spark.ml.feature.VectorAssembler
     val va = new VectorAssembler()
     .setInputCols(Array("Quantity", "UnitPrice"))
     .setOutputCol("features")
 import org.apache.spark.ml.feature.VectorAssembler
 va: org.apache.spark.ml.feature.VectorAssembler = vecAssembler_89e2f29b104b
 Command took 0.24 seconds -- by simpson145@live.missouristate.edu at 11/26/2018, 4:06:29 PM on My Cluster
Cmd 2
  1 // Data Set for Chapter 29
  val sales = va.transform(spark.read.format("csv")
  3 .option("header", "true")
  4 .option("inferSchema", "true")
     .load("/databricks-datasets/definitive-guide/data/retail-data/by-day/*.csv")
  6 .limit(50)
  7 .coalesce(1)
  8 .where("Description IS NOT NULL"))
  9 sales.cache()
  (5) Spark Jobs
  sales: org.apache.spark.sql.DataFrame = [InvoiceNo: string, StockCode: string ... 7 more fields]
 sales: org.apache.spark.sql.DataFrame = [InvoiceNo: string, StockCode: string ... 7 more fields]
 res14: sales.type = [InvoiceNo: string, StockCode: string ... 7 more fields]
```

Dataset Shown

1 sales.show()

```
▶ (1) Spark Jobs
```

[nvoiceN	StockCode	Description	Quantity	In		UnitPrice	CustomerID		Country	feature
58053	3 23084	RABBIT NIGHT LIGHT	48	2011-12-05			-	United	Kingdom	[48.0,1.79]
58053	3 23077	DOUGHNUT LIP GLOSS	20	2011-12-05	08:38:00	1.25	14075.0	United	Kingdom	[20.0,1.25]
58053	3 22906	12 MESSAGE CARDS	24	2011-12-05	08:38:00	1.65	14075.0	United	Kingdom	[24.0,1.65]
58053	3 21914	BLUE HARMONICA IN	24	2011-12-05	08:38:00	1.25	14075.0	United	Kingdom	[24.0,1.25]
58053	3 22467	GUMBALL COAT RACK	6	2011-12-05	08:38:00	2.55	14075.0	United	Kingdom	[6.0,2.55]
58053	3 21544	SKULLS WATER TRA	48	2011-12-05	08:38:00	0.85	14075.0	United	Kingdom	[48.0,0.85]
58053	3 23126	FELTCRAFT GIRL AM	8	2011-12-05	08:38:00	4.95	14075.0	United	Kingdom	[8.0,4.95]
58053	3 21833	CAMOUFLAGE LED TORCH	24	2011-12-05	08:38:00	1.69	14075.0	United	Kingdom	[24.0,1.69]
58053	9 21479	WHITE SKULL HOT W	4	2011-12-05	08:39:00	4.25	18180.0	United	Kingdom	[4.0,4.25]
58053	9 84030E	ENGLISH ROSE HOT	4	2011-12-05	08:39:00	4.25	18180.0	United	Kingdom	[4.0,4.25]
58053	9 23355	HOT WATER BOTTLE	4	2011-12-05	08:39:00	4.95	18180.0	United	Kingdom	[4.0,4.95]
58053	9 22111	SCOTTIE DOG HOT W	3	2011-12-05	08:39:00	4.95	18180.0	United	Kingdom	[3.0,4.95]
58053	9 21115	ROSE CARAVAN DOOR	8	2011-12-05	08:39:00	1.95	18180.0	United	Kingdom	[8.0,1.95]
58053	9 21411	GINGHAM HEART DO	8	2011-12-05	08:39:00	1.95	18180.0	United	Kingdom	[8.0,1.95]
58053	9 23235	STORAGE TIN VINTA	12	2011-12-05	08:39:00	1.25	18180.0	United	Kingdom	[12.0,1.25]
58053	9 23239	SET OF 4 KNICK KN	6	2011-12-05	08:39:00	1.65	18180.0	United	Kingdom	[6.0,1.65]
58053	9 22197	POPCORN HOLDER	36	2011-12-05	08:39:00	0.85	18180.0	United	Kingdom	[36.0,0.85]
58053	9 22693	GROW A FLYTRAP OR	24	2011-12-05	08:39:00	1.25	18180.0	United	Kingdom	[24.0,1.25]
58053	9 22372	AIRLINE BAG VINTA	4	2011-12-05	08:39:00	4.25	18180.0	United	Kingdom	[4.0,4.25]
58053	9 22375	AIRLINE BAG VINTA		2011-12-05			18180.0	United	Kingdom	[4.0,4.25]

K-means

- One of the most popular clustering algorithms
- Centroid
- Terminate condition
 - Finite number of iterations
 - Centroid locations does not update anymore
- https://stanford.edu/~cpiech/cs221/handouts/kmeans.ht
 ml

How to choose the number of clusters?

Elbow method

 The idea is to find the K at which the SSE decreases most abruptly.

$$SSE = \sum_{i=1}^{K} \sum_{x \in c_i} dist(x, c_i)^2$$

Hyperparameters

Params	Description
К	number of clusters

Training Parameters

Params	Values	Description
initMode	random and k-means (default)	the starting locations of the centroids
initSteps	greater than 0 (default is 2.)	number of steps for K-means
maxIter	default is 20.	Total number of iterations over the data before stopping.
tol	default is 0.0001	threshold by which changes in centroids show that the model is optimized

```
// Kmeans Example
// in Scala
import org.apache.spark.ml.clustering.KMeans
val km = new KMeans().setK(5)
println(km.explainParams())
val kmModel = km.fit(sales)
```

```
val summary = kmModel.summary
summary.clusterSizes // number of points
kmModel.computeCost(sales)
println("Cluster Centers: ")
kmModel.clusterCenters.foreach(println)
```

Metrics Summary

- val summary = kmModel.summary summary.clusterSizes // number of points
- kmModel.computeCost(sales)
- println("Cluster Centers: ")
- kmModel.clusterCenters.foreach(println)

Bisecting K-means

- Bisecting K-means is a top-down clustering method.
- It will start by creating a single group and then splitting that group into smaller groups in order to end up with the number of clusters specified by the user.
- usually a faster method than K-means and will yield different results.

Bisecting K-means

Hyperparameters

Params	Description
К	number of clusters

Training Parameters

Params	Values	Description
minDivisibleClusterSize	default is 1.0	The minimum number of points (if greater than or equal to 1.0) or the minimum proportion of points (if less than 1.0) of a divisible cluster
maxIter	default is 20.	Total number of iterations over the data before stopping.

Code Example

```
// Bisecting Kmeans
   // in Scala
   import org.apache.spark.ml.clustering.BisectingKMeans
 5 val bkm = new BisectingKMeans().setK(5).setMaxIter(5)
6 println(bkm.explainParams())
 7 val bkmModel = bkm.fit(sales)
▶ (17) Spark Jobs
featuresCol: features column name (default: features)
k: The desired number of leaf clusters. Must be > 1. (default: 4, current: 5)
maxIter: maximum number of iterations (>= 0) (default: 20, current: 5)
minDivisibleClusterSize: The minimum number of points (if >= 1.0) or the minimum proportion of points (if < 1.0) of a divisible cluster. (default: 1.0)
predictionCol: prediction column name (default: prediction)
seed: random seed (default: 566573821)
import org.apache.spark.ml.clustering.BisectingKMeans
bkm: org.apache.spark.ml.clustering.BisectingKMeans = bisecting-kmeans_5c958c0c6ad9
bkmModel: org.apache.spark.ml.clustering.BisectingKMeansModel = bisecting-kmeans 5c958c0c6ad9
Command took 1.66 seconds -- by simpson145@live.missouristate.edu at 11/26/2018, 4:06:30 PM on My Cluster
```

Bisecting K-means Summary

This includes information about the clusters created, as well as their relative sizes (number of examples):

```
// in Scala
val summary = bkmModel.summary
summary.clusterSizes // number of points
kmModel.computeCost(sales)
println("Cluster Centers: ")
kmModel.clusterCenters.foreach(println)
```

Bisecting K-Means Output

```
// Bisecting Kmeans Summary
    // ERROR IN THE BOOK, FIXED HERE.
   // in Scala
   val summary = bkmModel.summary
   summary.clusterSizes // number of points
   bkmModel.computeCost(sales)
   println("Cluster Centers: ")
   bkmModel.clusterCenters.foreach(println)
(2) Spark Jobs
Cluster Centers:
[4.8125,4.095625]
[2.5,11.24375]
[10.923076923076923,1.1423076923076922]
[23.2000000000000003,0.956000000000000001]
[44.0,1.163333333333333333]
summary: org.apache.spark.ml.clustering.BisectingKMeansSummary = org.apache.spark.ml.clustering.BisectingKMeansSummary@2920d042
```

Gaussian Mixture Models

Weakness of the K-means algorithm

Poorly handled overlapping element

Gaussian Mixture Models

- Clustering algorithm
- What is Gaussian distribution?
 - A function of a continuous random variable

Gaussian Mixture Models (Cont.)

- Probability distribution that consists of multiple probability distributions.
- Measures the **probability** that any point belongs to the given cluster
- Soft-boundaries

Hyperparameters

Params	Description
К	number of clusters

Training Parameters

Params	Values	Description
maxIter	default is 100.	Total number of iterations over the data before stopping.
tol	default is 0.0001	threshold by which changes in centroids show that the model is optimized

GMM Example

```
import org.apache.spark.ml.clustering.GaussianMixture
val gmm = new GaussianMixture().setK(5)
println(gmm.explainParams())
val model = gmm.fit(sales)
```

Gaussian Mixture Model Summary

val summary = model.summary
model.weights
model.gaussiansDF.show()
summary.cluster.show()
summary.clusterSizes
summary.probability.show()

References

- http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html
- https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussianmixtures.html
- https://github.com/llSourcell/Gaussian Mixture Models/blob/master/intro t o gmm %26 em.ipynb
- https://spark.apache.org/docs/latest/mllib-clustering.html#bisecting-k-means
- https://www.linkedin.com/pulse/initial-investigation-k-means-bisectingalgorithms-dave-blodgett/
- https://medium.com/nanonets/topic-modeling-with-lsa-psla-lda-and-lda2vec-555ff65b0b05