Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики

Высшая школа прикладной математики и вычислительной физики

Отчёт по лабораторной работе №3

по дисциплине «Интервальный анализ»

Выполнила студентка группы 5030102/20202

Чинь Тхи Тху Хоай

Проверил

Преподаватель Баженов Александр Николаевич

Санкт-Петербург 2025

Содержание

1	Цель работы				
2	Постановка задачи	3			
3	Теоретическая часть	4			
	3.1 Интервальное представление и параметры	4			
	3.2 Распознающий функционал	4			
	3.3 Условие разрешимости	4			
	3.4 Описание последовательности действий и методов коррекции	4			
4 Результат					
	$4.1 A_1 x = b_1 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	5			
	$4.2 A_2 x = b_2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	8			
	$4.3 A_3x = b_3 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	11			
	4.4 Сравнительный анализ методов коррекции	13			
5	Программная реализация	13			
6	Вывод	14			
7	Приложение	1/			

1 Цель работы

Изучить методы анализа и коррекции интервальных линейных систем уравнений (ИС-ЛАУ) с использованием распознающего функционала Tol(x, A, b). Закрепить навыки построения допусковых множеств решений и исследовать влияние A-, b- и Ab- коррекций на разрешимость системы.

2 Постановка задачи

Дан набор интервальных систем линейных уравнений:

$$A_i x = b_i, \quad x = (x_1, x_2), \quad i = \overline{1, 3}$$

$$A_{1} = \begin{pmatrix} [0.65, 1.25] & [0.70, 1.30] \\ [0.75, 1.35] & [0.70, 1.30] \end{pmatrix}, A_{2} = \begin{pmatrix} [0.65, 1.25] & [0.70, 1.30] \\ [0.75, 1.35] & [0.70, 1.30] \end{pmatrix}, A_{3} = \begin{pmatrix} [0.65, 1.25] & [0.70, 1.30] \\ [0.75, 1.35] & [0.70, 1.30] \\ [0.80, 1.40] & [0.70, 1.30] \end{pmatrix}$$

$$b_1 = \begin{pmatrix} [0.96, 1.01] \\ [1.00, 1.05] \end{pmatrix}, b_2 = \begin{pmatrix} [0.96, 1.01] \\ [1.00, 1.05] \\ [1.02, 1.07] \end{pmatrix}, b_3 = \begin{pmatrix} [0.96, 1.01] \\ [1.00, 1.05] \\ [1.02, 1.07] \\ [0.63, 0.68] \end{pmatrix}$$

Для каждой системы $A_i x = b_i$ необходимо:

- А. Проверить непустоту допускового множества ИСЛАУ. В случае, если допусковое множество непусто:
 - А.1. Найти argmax Tol и образующие допускового функционала
 - А.2. Построить график функционала Tol(x), отметить точку максимума
 - А.3. Построить графики допускового множества ИСЛАУ на плоскости, отметить точку максимума
- В. Если допусковое множество пусто, необходимо скорректировать систему каждым из описанных ниже способов:
 - В.1. С помощью коррекции правой части ИСЛАУ b-коррекция
 - В.2. С помощью коррекции матрицы ИСЛАУ А-коррекция
 - В.З. С помощью комбинации предыдущих методов (В.1, В.2) с одновременным изменением правой части и матрицы ИСЛАУ Аb-коррекция

С. Сравнить влияние разных видов коррекций на форму и положение допускового множества. Определить, какой вид коррекции является наименее искажением исходных данных при достижении разрешимости.

3 Теоретическая часть

3.1 Интервальное представление и параметры

Интервал $\mathbf{a} = [\underline{a}, \overline{a}]$ определяется его срединной точкой mida и радиусом rada:

$$\operatorname{mid} a = \frac{\overline{a} + \underline{a}}{2}, \quad \operatorname{rad} a = \frac{\overline{a} - \underline{a}}{2}$$

3.2 Распознающий функционал

Распознающий функционал используется для проверки совместимости системы в точке x:

$$Tol(x, A, b) = \min_{1 \le i \le m} \left\{ \operatorname{rad}(b_i) - \left| \operatorname{mid}(b_i) - \sum_{j=1}^n \operatorname{mid}(a_{ij})(x_j) \right| - \sum_{j=1}^n \operatorname{rad}(a_{ij})|x_j| \right\}$$

3.3 Условие разрешимости

Система ИСЛАУ $\mathbf{A}x = \mathbf{b}$ имеет **непустое** допусковое множество решений $\Xi_{tol}(\mathbf{A}, \mathbf{b})$ (разрешима) тогда и только тогда, когда:

$$\max_{x \in \mathbb{R}^n} Tol(x, A, b) \ge 0$$

3.4 Описание последовательности действий и методов коррекции

Для каждой интервальной системы выполнялась следующая последовательность:

- 1. Проверка исходной системы: вычислялось максимальное значение допуска Tol_{max} с помощью функции ip.linear.Tol.maximize. Если $Tol_{max} < 0$, система считалась неразрешимой.
- 2. **А-коррекция:** корректировались интервалы коэффициентов матрицы A. Для каждого ненулевого интервала A_{ij} вычислялся параметр e:

$$e = \alpha \cdot \operatorname{rad}(A_{ij}),$$

где $\mathrm{rad}(A_{ij})$ — радиус интервала A_{ij} , а $\alpha \in (0,1)$ задаёт степень сужения. Далее интервал сужался:

$$A_{ij} = [A_{ij}^{\text{low}} + e, A_{ij}^{\text{high}} - e].$$

- 3. **b-коррекция:** корректировалась правая часть b. Параметр K подбирался бинарным поиском: интервалы b_i расширялись на [-K, K], пока система не становилась разрешимой ($\mathrm{Tol}_{\mathrm{max}} \geq 0$).
- 4. **Аb-коррекция:** комбинированная коррекция. Сначала применялась A-коррекция до достижения почти нулевого Tol_{max} , затем подбирался минимальный K для b-коррекции. Такой подход минимизирует искажение исходных данных при достижении разрешимости.
- 5. **Визуализация:** для каждой системы строились 3D-график функции допуска Tol и 2D-контур допустимой области. Красные и черные точки показывают максимальное значение Tol и соответствующее решение. Это позволяет наглядно оценить влияние разных видов коррекции на форму и положение допустимого множества.

4 Результат

4.1 $A_1x = b_1$

$$A_1 = \begin{pmatrix} [0.65, 1.25] & [0.70, 1.30] \\ [0.75, 1.35] & [0.70, 1.30] \end{pmatrix}, b_1 = \begin{pmatrix} [0.96, 1.01] \\ [1.00, 1.05] \end{pmatrix}$$

Α.

argmax Tol =
$$-0.277 < 0$$

 $argmax(x_1*, x_2*) = [0.4, 0.605]$

Рис. 1: График для системы $A_1x=b_1$

$$\label{eq:argmax} \begin{split} & \text{argmax Tol} = 0.092 > 0 \\ & argmax(x_1*, x_2*) = [0.4, 0.605] \end{split}$$

Рис. 2: График после b-коррекции для системы $A_1x=b_1$

B.2

Рис. 3: График после А-коррекции для системы $A_1x=b_1$

Рис. 4: График после Аb-коррекции для системы $A_1x=b_1$

4.2 $A_2x = b_2$

$$A_2 = \begin{pmatrix} [0.65, 1.25] & [0.70, 1.30] \\ [0.75, 1.35] & [0.70, 1.30] \\ [0.80, 1.40] & [0.70, 1.30] \end{pmatrix}, b_2 = \begin{pmatrix} [0.96, 1.01] \\ [1.00, 1.05] \\ [1.02, 1.07] \end{pmatrix}$$

Α.

$$\operatorname{argmax} \text{Tol} = -0.277 < 0 \\
\operatorname{argmax}(x_1 *, x_2 *) = [0.4, 0.605]$$

Рис. 5: График для системы $A_2x=b_2$

 $\label{eq:argmax} \begin{aligned} & \text{argmax Tol} = 0.092 > 0 \\ & argmax(x_1*, x_2*) = [0.4, 0.605] \end{aligned}$

Рис. 6: График после b-коррекции для системы $A_2x=b_2$

B.2

Рис. 7: График после А-коррекции для системы $A_2x=b_2$

Рис. 8: График после Аb-коррекции для системы $A_2x=b_2$

4.3 $A_3x = b_3$

$$A_{3} = \begin{pmatrix} [0.65, 1.25] & [0.70, 1.30] \\ [0.75, 1.35] & [0.70, 1.30] \\ [0.80, 1.40] & [0.70, 1.30] \\ [-0.30, 0.30] & [0.70, 1.30] \end{pmatrix}, b_{3} = \begin{pmatrix} [0.96, 1.01] \\ [1.00, 1.05] \\ [1.02, 1.07] \\ [0.63, 0.68] \end{pmatrix}$$

Α.

$$\begin{aligned} & \text{argmax Tol} = -0.28 < 0 \\ & argmax(x_1*, x_2*) = [0.355, 0.652] \end{aligned}$$

Рис. 9: График для системы $A_3x=b_3$

$$\label{eq:argmax} \begin{split} & \text{argmax Tol} = 0.088 > 0 \\ & argmax(x_1*, x_2*) = [0.355, 0.652] \end{split}$$

Рис. 10: График после b-коррекции для системы $A_3x=b_3$

B.2

Рис. 11: График после А-коррекции для системы $A_3x=b_3$

argmax Tol =
$$0.0108 > 0$$

 $argmax(x_1*, x_2*) = [0.355, 0.652]$

Рис. 12: График после Аb-коррекции для системы $A_3x=b_3$

4.4 Сравнительный анализ методов коррекции

Система	Без коррекции	А-коррекция	b-коррекция	Ab-коррекция
1	0.000000	0.006020	0.169677	0.006020
2	0.000000	0.004387	0.157331	0.004387
3	0.000000	0.000612	0.035200	0.000612

Таблица 1: Площади областей разрешимости для различных методов коррекции

5 Программная реализация

Лабораторная работа выполнена на языке Python 3.12.6 в среде разработки Visual Studio Code. Использовались дополнительные библиотеки:

- 1. numpy
- 2. matplotlib
- 3. intvalpy

В приложении находится ссылка на GitHub репозиторий с исходным кодом.

6 Вывод

Анализ интервальных систем показал:

- Без коррекции все системы неразрешимы ($Tol_{max} < 0$).
- **А-коррекция:** после минимального изменения исходных интервалов A значение $\operatorname{Tol}_{\max}$ становится положительным, и система становится разрешимой. Метод обеспечивает хорошее улучшение при незначительном искажении исходных данных.
- **b-коррекция:** $Tol_{max} > 0$, система полностью разрешима, но область решений значительно расширена, что приводит к наибольшему искажению исходных данных.
- **Аb-коррекция:** система разрешима при минимальном изменении как A, так и b, наименее искажающий метод и оптимальный компромисс между разрешимостью и сохранением исходных данных.

Вывод: для достижения разрешимости при минимальном искажении исходных данных рекомендуется использовать **Аb-коррекцию**.

7 Приложение

Код программы GitHub URL:

https://github.com/Akira1707/IntervalAnalysis/tree/main/Lab