Computer System Architecture

DR. Howida Youssry

MEMORY COMPONENTS

- Each word has a unique address
- Access to a word requires the same time independent of the location of the word

n data output lines

Memory a	ddress
----------	--------

Binary	Decimal	Memory contents
0000000000	0	1011010101011100
0000000001	1	10101011 10001001
000000010	2	00001101 01000110
		•
		•
	•	•
1111111101	1021	10011101 00010101
1111111110	1022	00001101 00011110
1111111111	1023	11011110 00100100

Select = 0 (cell disable)

Select = 1 (cell enable)

Contents of a 1024 × 16 Memory

Control Inputs to Memory Chip

Memory Enable	Read/Write	Memory Operation
0	X	None
1	0	Write to selected word
1	1	Read from selected word

16-Word by 1-Bit RAM Chip

READ ONLY MEMORY(ROM)

Characteristics

- Perform read operation only, write operation is not possible
- Information stored in a ROM is made permanent during production, and cannot be changed
- Organization

Information on the data output line depends only on the information on the address input lines.

READ ONLY MEMORY(ROM)

TYPES OF ROM

ROM

- Store information (function) during production
- Mask is used in the production process
- Unalterable
- Low cost for large quantity production --> used in the final products

PROM (Programmable ROM)

- Store info electrically using PROM programmer at the user's site
- Unalterable
- Higher cost than ROM -> used in the system development phase
 -> Can be used in small quantity system

EPROM (Erasable PROM)

- Store info electrically using PROM programmer at the user's site
- Stored info is erasable (alterable) using UV light (electrically in some devices) and rewriteable
- Higher cost than PROM but reusable --> used in the system development phase. Not used in the system production due to erasability

INTEGRATED CIRCUITS

Classification by the Circuit Density

- SSI several (less than 10) independent gates
 MSI 10 to 200 gates; Perform elementary digital functions;
 - Decoder, adder, register, parity checker, etc
- LSI 200 to few thousand gates; Digital subsystem Processor, memory, etc
- VLSI Thousands of gates; Digital system Microprocessor, memory module

Classification by Technology

- TTL Transistor-Transistor Logic Bipolar transistors NAND
- ECL Emitter-coupled Logic Bipolar transistor NOR
- MOS Metal-Oxide Semiconductor Unipolar transistor High density
- CMOS Complementary MOS

 Low power consumption

REGISTER TRANSFER LANGUAGE

A digital system is ar interconnection of digital hardware modules that accomplish a specific information processing task.

The various modules are interconnected with common data and control paths to form a digital compute system.

General Computer organization

Hardware Organization of Digital Computer

Hardware organization of a digital computer is defined by specifying:

- The set of register it contains and their function.
- The sequence of micro-operations performed on the binary information stored in the registers.
- The control that initiates the sequence of microoperations

Micro-operation

Micro-operations are the basis for microprocessors.

The operation executed on data stored in register are called micro-operation

That is, a microprocessor performs the micro-operations in order to realize the instruction.

An instruction is fetched from memory, decoded and executed by performing a sequence of micro-operations.

The micro-operations only specify which data transfers may occur; they don't specify when or how they may occur.

MICROOPERATION

An elementary operation performed during one clock pulse, on the information stored in one or more registers

 $R \leftarrow f(R, R)$

f: shift, count, clear, load, add,...

MICRO-OPERATIONS

Four types of microoperations

- Register transfer microoperations
- Arithmetic microoperations
- Logic microoperations
- Shift microoperations

* Summary of Arithmetic Micro-Operations

R3 ← R1 + R2	Contents of R1 plus R2 transferred to R3
R3 ← R1 - R2	Contents of R1 minus R2 transferred to R3
R2 ← R2'	Complement the contents of R2
R2 ← R2'+ 1	2's complement the contents of R2 (negate)
R3 ← R1 + R2'+ 1	subtraction
R1 ← R1 + 1	Increment
R1 ← R1 - 1	Decrement

REGISTER TRANSFER LANGUAGE

For any function of the computer, a sequence of microoperations is used to describe it

- ----> Register transfer language
 - A symbolic language
 - A convenient tool for describing the internal organization of digital computers
 - Can also be used to facilitate the design process of digital systems.

REGISTER TRANSFER

Designation of a register - a register

- portion of a register
- a bit of a register

Common ways of drawing the block diagram of a register

Representation of a transfer(parallel)

R2 ← R1

A simultaneous transfer of all bits from the source to the destination register, during one clock pulse

Representation of a controlled(conditional) transfer

P: R2 ← R1

A binary condition(p=1) which determines when the transfer is to occur

If (p=1) then $(R2 \leftarrow R1)$

HARDWARE IMPLEMENTATION OF CONTROLLED TRANSFERS

Implementation of controlled transfer

P: R2 ← R1

Block diagram

Timing diagram

Basic Symbols for Register Transfers

Symbols	Description	Meaning
Capital letters and numerals	Denotes a register	MAR, R2
Parentheses ()	Denotes a part of a register	R2(0-7), R2(L)
Arrow ←	Denotes transfer of information	R2 ← R1
Colon:	Denotes termination of control function	P:
Comma ,	Separates two micro-operations	$A \leftarrow B, B \leftarrow A$