EP1LabNum

Patrícia da Silva Rodrigues

April 2022

Parte 1: Método do ponto fixo

O método do ponto fixo

Para a função $f(x)=e^x-2x^2$ quando igualamos f(x)=0 os pontos que encontramos são as raizes reais. Se $f(x)=0 \Rightarrow g(x)=x$

Portanto para
$$e^x - 2x^2 = 0$$
 temos $g_1(x) = \sqrt{\left(\frac{e^x}{2}\right)} = x$; $g_2(x) = -\sqrt{\left(\frac{e^x}{2}\right)}$ $g_3(x) = \ln(2x^2)$

Critérios de convergência

- 1. A função g(x) e g'(x) têm que ser contínuas no intervalo [a,b]
 - 2. A |g'(x)| < 1

Avaliando o critério de convergencia para

 $\mathbf{a} \ g_1(x)$

Temos
$$g_1(x) = \sqrt{\left(\frac{e^x}{2}\right)} = x$$
 e

$$g_1'(x) = \left(\frac{2^{\left(\frac{1}{2}\right) * e^{\left(\frac{x}{2}\right)}}}{4}\right)$$

Verificando o primeiro critério de convergência

1. Critério de convergência:

Para que uma função seja ontinua ela precisa atender a três critérios:

- a) f(a) está definida;
- b) $\lim_{x \to a} f(x) existir;$
- c) $\lim_{x \to a} f(x) = f(a)$.

Pela figura (inserir) podemos verificar que as raizes da função f(x) estão dentro do interval[-1,3]. Portanto adotaremos esse intervalo para verificar a continuidade.

Verificando a continuidade de $g_1(x)$:

Figure 1: Gráico de $g_1(x)$

- a) Podemos ver pelo gráico que todos os pontos de x no intervalo [-1,3] têm uma imagem em, portanto a função está definida;
 - b)
 - O $\lim_{x\to -1} g_1(x)$ existe e vale 0.42888... O $\lim_{x\to 3} g_1(x)$ existe e vale 3.16903...

 - c) $g_1(-1) = \sqrt{\left(\frac{e^{-1}}{2}\right)} = 0.42888...$ $g_1(3) = \sqrt{\left(\frac{e^3}{2}\right)}$
- = 3.16903... Portanto o limite da função applicado ao ponto a e b é igual a f(x) aplicada a a e b.

Conclusão: A função é contínua

Verificando a continuidade de $g'_1(x)$:

Figure 2: Gráico de $g'_1(x)$

- a) Podemos ver pelo gráico que todos os pontos de x no intervalo [-1,3] têm uma imagem em, portanto a função está definida;
 - b)
 - O $\lim_{x \to -1} g_1'(x)$ existe e vale 0.21444... O $\lim_{x \to 3} g_1(x)$ existe e vale 1.58451...

c)
$$g'_1(-1) = \left(\frac{2^{\left(\frac{1}{2}\right)*e^{\left(\frac{-1}{2}\right)}}}{4}\right) = 0.21444...$$
 $g'_1(-1) = \left(\frac{2^{\left(\frac{1}{2}\right)*e^{\left(\frac{3}{2}\right)}}}{4}\right) = 1.58451...$ Portanto o limite da função

$$\left(\frac{2^{\left(\frac{1}{2}\right)*e^{\left(\frac{3}{2}\right)}}}{4}\right) = 1.58451... \text{ Portanto o limite da função}$$

applicado ao ponto a e b é igual a f(x) aplicada a a e b.

Conclusão: A função é contínua

Verificando o segundo critério de convergência

$$A \mid g'(x) \mid < 1$$

$$g'_{1}(x) = \left(\frac{2^{\left(\frac{1}{2}\right)} * e^{\left(\frac{x}{2}\right)}}{4}\right)$$

$$-1 \mid \left(\frac{2^{\left(\frac{1}{2}\right)} * e^{\left(\frac{x}{2}\right)}}{4}\right) < 1$$

$$-4 \mid 2^{\left(\frac{1}{2}\right)} * e^{\left(\frac{x}{2}\right)} < 4$$

$$\frac{-4}{2^{\left(\frac{1}{2}\right)}} < e^{\left(\frac{x}{2}\right)} < \frac{4}{2^{\left(\frac{1}{2}\right)}}$$

$$\ln \frac{-4}{2^{\left(\frac{1}{2}\right)}} < \ln e^{\left(\frac{x}{2}\right)} < \ln \frac{4}{2^{\left(\frac{1}{2}\right)}}$$

$$\ln \frac{-4}{2^{\left(\frac{1}{2}\right)}} < \frac{x}{2} < \ln \frac{4}{2^{\left(\frac{1}{2}\right)}}$$

$$\left(\frac{x}{2}\right) < \ln \frac{4}{2^{\left(\frac{1}{2}\right)}}$$

$$(x) < 2 * \ln \frac{4}{2^{\left(\frac{1}{2}\right)}}$$

$$(x) < 2.07944154...$$

Portanto, para que a função converja, é inportante que o x0 inicial seja ; 2.07944154...

Critério de parada o Critério de parada deverá atender aos seguintes critérios:

$$\epsilon_1 = \epsilon_2 = 0.000001$$

- 1. $|f(x)| < \epsilon_1$
- 2. $|x_{k+1} x_k| < \epsilon_2$

A quantidade de iterações necessárias para a $g_1(x)$ convergir com a f(x) foram 25 e a raiz 1 encontrada foi: 1.488575...

O grafico a seguir mostra a convergência. Podemos obervar que a função converge exponencialmente.

deltx	delt y	delt y / delt x
1.000.000	0.693147	#VALOR!
0.693147	-0.039879	#VALOR!
-0.039879	-5.750.681	#VALOR!
-5.750.681	4.191.784	-1,37189345
4.191.784	3.559.400	1,177665899
3.559.400	3.232.331	1,101186729
3.232.331	3.039.554	1,063422792
3.039.554	2.916.569	1,042167698
2.916.569	2.833.963	1,029148581
2.833.963	2.776.499	1,020696568
2.776.499	2.735.529	1,014976993
2.735.529	2.705.797	1,01098826
2.705.797	2.683.940	1,008143625
2.683.940	2.667.719	1,006080475
2.667.719	2.655.595	1,004565455
2.655.595	2.646.484	1,003442681
2.646.484	2.639.611	1,002603793
2.639.611	2.634.411	1,001973876
2.634.411	2.630.466	1,001499734
2.630.466	2.627.469	1,001140641
2.627.469	2.625.190	1,000868128
2.625.190	2.623.453	1,000662104
2.623.453	2.622.130	1,000504552
2.622.130	2.621.121	1,00038495
2.621.121	2.620.352	1,000293472
2.620.352	2.619.764	1,000224448
2.619.764	2.619.316	1,000171037
2.619.316	2.618.973	1,000130967
2.618.973	2.618.712	1,000099667
2.618.712	2.618.512	1,000076379
2.618.512	2.618.360	1,000058052
2.618.360	2.618.243	1,000044686
2.618.243		

Figure 3: Gráico de $\mathbf{g}_1'(x)$

O gráfico abaixo mostra a intersecção de $\delta x/\delta y$ com o gráfico da função g(x)

É possível observar que a convergencia é linear, pois os de

$$\delta x/\delta y$$

variam de maneira linear como pe possível observar no gráfico.

A baixo temos a tabela de variação $\left(\frac{\delta y}{\delta x}\right)$

Figure 4: Gráico de $g'_1(x)$

Pela tabela podemos ver também que $\left(\frac{\delta y}{\delta x}\right)$ varialinearmente. O código da função $g_1(x)$ foi feito em C

Avaliando os critérios de convergência aplicados a $g_2(x)$

Avaliando a continuidade da função a $g_2(x)$

Temos
$$g_2(x) = -\sqrt{\left(\frac{e^x}{2}\right)}$$
 e

$$g_2'(x) = -\left(\frac{2^{\left(\frac{1}{2}\right) * e^{\left(\frac{x}{2}\right)}}}{4}\right)$$

Para que a função $g_2(x)converja$, elaprecisa a tendera os <math>2crit'erios

Figure 5: Gráico de $gx_2(x)$

Pelo grafico, obeservamos que:

- a) Podemos ver pelo gráico que todos os pontos de x no intervalo [-1,3] têm uma imagem em, portanto a função está definida;
 - b)
 - O $\lim_{x \to -1} g_2'(x)$ existe e vale -0.21444... O $\lim_{x \to 3} g_2(x)$ existe e vale -1.58451...

c)
$$g_2'(-1) = \left(\frac{2^{\left(\frac{1}{2}\right)*e^{\left(\frac{-1}{2}\right)}}}{4}\right) = -0.21444...$$
 $g_2'(-1) = \left(\frac{2^{\left(\frac{1}{2}\right)*e^{\left(\frac{3}{2}\right)}}}{4}\right) = -1.58451...$ Portanto o limite da função aplicado ao ponto a e b é igual a f(x) aplicada a a e b.

Conclusão: A função é contínua Verificando a continuidade de $g'_2(x)$:

Figure 6: Gráico de $g_2'(x)$

- a) Podemos ver pelo gráico que todos os pontos de x no intervalo [-1,3] têm uma imagem em, portanto a função está definida;
 - b)
 - O $\lim_{x \to -1} g_2'(x)$ existe e vale 0.21444...
 - O $\lim_{x\to 3} g_2(x)$ existe e vale 1.58451...

c)
$$g_2'(-1) = \left(\frac{2^{\left(\frac{1}{2}\right)*e^{\left(\frac{-1}{2}\right)}}}{4}\right) = 0.21444...$$
 $g_2'(-1) = \left(\frac{2^{\left(\frac{1}{2}\right)*e^{\left(\frac{3}{2}\right)}}}{4}\right) = 1.58451...$ Portanto o limite da função applicado ao ponto a e b é igual a f(x) aplicada a a e b.

Conclusão: A função é contínua

Verificando o segundo critério de convergência

$$A | g_2'(x) | < 1$$

$$g_1'(x) = -\left(\frac{2^{\left(\frac{1}{2}\right)} * e^{\left(\frac{x}{2}\right)}}{4}\right)$$

$$-1 | -\left(\frac{2^{\left(\frac{1}{2}\right)} * e^{\left(\frac{x}{2}\right)}}{4}\right) < 1$$

$$1 | \left(\frac{2^{\left(\frac{1}{2}\right)} * e^{\left(\frac{x}{2}\right)}}{4}\right) > -1$$

$$-4 | 2^{\left(\frac{1}{2}\right)} * e^{\left(\frac{x}{2}\right)} < 4$$

$$\frac{-4}{2^{\left(\frac{1}{2}\right)}} < e^{\left(\frac{x}{2}\right)} < \frac{4}{2^{\left(\frac{1}{2}\right)}}$$

$$\ln \frac{-4}{2^{\left(\frac{1}{2}\right)}} < \ln e^{\left(\frac{x}{2}\right)} < \ln \frac{4}{2^{\left(\frac{1}{2}\right)}}$$

$$\ln \frac{-4}{2^{\left(\frac{1}{2}\right)}} < \frac{x}{2} < \ln \frac{4}{2^{\left(\frac{1}{2}\right)}}$$

$$\left(\frac{x}{2}\right) < \ln \frac{4}{2^{\left(\frac{1}{2}\right)}}$$

$$(x) < 2 * \ln \frac{4}{2^{\left(\frac{1}{2}\right)}}$$

$$(x) < 2.07944154...$$

Como se trata do módulo, o intervalo de x que deverá convergir é o mesmo. Portanto, para que a função converja, é importante que o x0 inicial seja j 2.07944154...

Critério de parada o Critério de parada deverá atender aos seguintes critérios:

$$\epsilon_1 = \epsilon_2 = 0.000001$$

- 1. $| f(x) | < \epsilon_1$
- $2. \mid x_{k+1} x_k \mid <$

A quantidade de iterações necessárias para a $g_2(x)$ convergir com a f(x) foram 8 e a raiz 1 encontrada foi: -0.539725...

O grafico a seguir mostra a convergência

Figure 7: Gráico de $g_2(x)$

O gráfico abaixo mostra a intersecção de $\delta x/\delta y$ com o gráfico da função g(x)

Figure 8: Gráico de $g_2(x)$

É possível observar que a convergencia é linear até certo ponto. A tabela abaixo mostra como a convergencia dos valores cresce ($\delta yOcódigoda funcãog_2(x)$ foi feito em C

delt y	delt y
-1.922.116	-0.270460
-0.270460	-0.617668
-0.617668	-0.519230
-0.519230	-0.545426
-0.545426	-0.538328
-0.538328	-0.540242
-0.540242	

Verificando os critérios de convergencia aplicados a $q_3(x)$

Verificando a continuidade para a $g_3(x)$ $g_3(x) = \ln(2x^2)$

Figure 9: Gráico de $g_3'(x)$

a) Podemos observar que a função é definida no intervalo [-1,0) e (0,3] pelo gráfico, pois todos os pontos de x têm uma imagem g(x) nos eixos das ordenadas.

b)

Para -1:

O $\lim_{x \to -1} g_3(x)$ existe e vale 0.69314... A $g_3(-1) \acute{e} 0.69314...$ Para 3:

O $\lim_{x\to 3} g_3(x)$ existe e vale 2.89037175... A $g_3(3) \acute{e} 2.89037175...$

Conclusão: A função é contínua

Verificando se a $g_3'(x)$ écontinua : $g_3'(x) = \frac{2}{x}$ (inserir grafico)

a) Podemos observar que a função é definida no intervalo [-1,3] pelo gráfico, pois todos os pontos de x têm uma imagem g(x) nos eixos das ordenadas.

b)

Para -1:

O $\lim_{x \to -1} g_3'(x)$ existe e vale -2 A $g_3(-1)\acute{e} - 2$

Para 3:

O $\lim_{x\to 3} g_3(x)$ existe e vale 0.66666...

A $g_3(3)\acute{e}0.66666...$

Conclusão: A função é contínua

Verificando o segundo critério de convergência

A
$$|g_3'(x)| < 1$$

 $-1 < 2/x < 1$
 $1 > x/2 > -1$
 $2 > x > -2$

Portanto, para que x converja, é importante que o x transite dentro do intervalo [2,-2].

Critério de parada o Critério de parada deverá atender aos seguintes critérios:

$$\epsilon_1 = \epsilon_2 = 0.000001$$

1.
$$|f(x)| < \epsilon_1$$

2.
$$|x_{k+1} - x_k| < \epsilon_2$$

A quantidade de iterações necessárias para a $g_2(x)$ convergir com a f(x) foram 33 e a raiz 1 encontrada

foi: 2.618155...

Figure 10: Gráico de convergencia $g_3(X)'(x)$

O gráfico abaixo mostra a intersecção de $\delta x/\delta y$ com o gráfico da função g(x)

É possível observar que a convergencia é supralinear.

A tabela abaixo mostra

Digite algo...

Figure 11: Gráfico de intersecção entre $g_3(x)edelty/deltx$

O código da função $g_2(x)$ foi feito em C

delt y	delt x	delt y / de
2.000.000	1.922.116	1,04052
1.922.116	1.848.703	1,039711
1.848.703	1.782.074	1,037388
1.782.074	1.723.683	1,033876
1.723.683	1.674.087	1,029626
1.674.087	1.633.083	1,025108
1.633.083	1.599.943	1,020713
1.599.943	1.573.650	1,016708
1.573.650	1.553.098	1,013233
1.553.098	1.537.220	1,010329
1.537.220	1.525.064	1,007971
1.525.064	1.515.823	1,006096
1.515.823	1.508.835	1,004631
1.508.835	1.503.572	1,0035
1.503.572	1.499.621	1,002635
1.499.621	1.496.662	1,001977
1.496.662	1.494.449	1,001481
1.494.449	1.492.796	1,001107
1.492.796	1.491.563	1,000827
1.491.563	1.490.643	1,000617
1.490.643	1.489.958	1,00046
1.489.958	1.489.448	1,000342
1.489.448	1.489.068	1,000255
1.489.068	1.488.785	1,00019
1.488.785		

Parte 2: Fractal de newton

The Newton fractal is a boundary set in the complex plane which is characterized by Newton's method applied to a fixed polynomial p(Z) [Z] or transcendental function. It is the Julia set of the meromorphic function z = p(z)/p(z)

As funções utilizadas como teste no fractal são essas:

Para $z^2 - 2$:

Figure 12: Fractal

Para $z^4 - 2 * z - 1$

Figure 13: ractal

Para 2*z³

Para $2z^4 + 1$

Para $z^{3} + z^{2} + 1$

Figure 16: fractal