RÉDUCTION ALGÉBRIQUE

Polynômes annulateurs

Solution 1

 φ est clairement un endomorphisme de $\mathcal{M}_2(\mathbb{R})$ et on constate que $\varphi^4 = \mathrm{Id}_{\mathcal{M}_2(\mathbb{R})}$. Ainsi $X^4 - 1$ est un polynôme annulateur de φ . Par conséquent,

$$\operatorname{Sp}(\varphi) \subset \{-1,1\}$$
. On trouve que $\operatorname{E}_1(\varphi) = \operatorname{vect}\left(\left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right)\right)$ et $\operatorname{E}_{-1}(\varphi) = \operatorname{vect}\left(\left(\begin{array}{cc} 1 & -1 \\ 1 & -1 \end{array}\right)\right)$. Puisque

$$\dim E_1(\varphi) + \dim E_{-1}(\varphi) = 2 < 4 = \dim \mathcal{M}_2(\mathbb{R})$$

φ n'est pas diagonalisable.

Solution 2

1. Supposons $x \neq 0$ et soit $M \in E_x$. Alors

$$-\frac{1}{x}M(M + I_n) = -\frac{1}{x}(M + I_n)M = I_n$$

donc $M \in GL_n(\mathbb{R})$ et $M^{-1} = -\frac{1}{r}(M + I_n)$.

Soit $M \in E_0$. Alors $M^2 + M = 0$. Si M est inversible, alors, en multipliant par M^{-1} , $M = -I_n$ et $-I_n$ est bien inversible. La seule matrice inversible de E_0 est $-I_n$.

2. Remarquons que $P_x = X^2 + X + x$ est un polynôme annulateur de toutes les matrices de E_x .

Si le discriminant de P_x est strictement négatif i.e. $x > \frac{1}{4}$, alors les matrices de E_x ne possèdent pas de valeur propre réelle et ne sont donc pas diagonalisables dans $\mathcal{M}_2(\mathbb{R})$.

Si le discriminant de P_x est strictement positif i.e. $x < \frac{1}{4}$, alors P_x est scindé sur \mathbb{R} à racines simples donc toutes les matrices de E_x sont diagonalisables.

Si
$$x = \frac{1}{4}$$
, $P_{\frac{1}{4}} = \left(X + \frac{1}{2}\right)^2$. On vérifie que $\begin{pmatrix} -\frac{1}{2} & 1\\ 0 & -\frac{1}{2} \end{pmatrix}$ appartient à $E_{\frac{1}{4}}$ mais n'est pas diagonalisable.

Ainsi E_x ne contient que des matrices diagonalisables si et seulement si $x < \frac{1}{4}$.

3. Remarquons que $P_{-2} = (X - 1)(X + 2)$. Les spectres des matrices de E_{-2} sont inclus dans $\{1, -2\}$. Leurs traces peuvent donc valoir 1 + 1 = 2, 1 - 2 = -1 et -2 - 2 = -4. Il existe effectivement des matrices de E_{-2} dont les traces valent 2, -1 et -4, à savoir $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$,

$$\begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} \text{ et } \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}. \text{ Ainsi T} = \{2, -1, -4\} \text{ et card T} = 3.$$

Solution 3

Soit $\lambda \in \operatorname{Sp}(v)$. On montre classiquement que $\operatorname{E}_{\lambda} = \operatorname{Ker}(v - \lambda \operatorname{Id}_{\operatorname{E}})$ est stable par u:u induit donc un endomorphisme u_{λ} de $\operatorname{E}_{\lambda}$. Puisque u est diagonalisable, u annule un polynôme scindé à racines simples à coefficients dans \mathbb{K} . A fortiori, u_{λ} annule ce même polynôme et est donc également diagonalisable. Notons \mathcal{B}_{λ} une base de $\operatorname{E}_{\lambda}$ dans laquelle la matrice de u_{λ} est diagonale. Notons alors \mathcal{B} la juxtaposition des bases \mathcal{B}_{λ} pour $\lambda \in \operatorname{Sp}(u)$. Comme v est diagonalisable, E est la somme directe des sous-espaces propres de v et \mathcal{B} est donc une base de E. Par construction, la matrice de u dans \mathcal{B} est diagonale et celle de v l'est évidemment puisque \mathcal{B} est la juxtaposition de bases de sous-espaces propres de v.

Solution 4

A est diagonalisable donc admet un polynôme annulateur P scindé à racines simples. Alors $P(A^T) = P(A)^T = 0$ donc A^T est également scindé à racines simples.

1

Solution 5

On fait l'hypothèse de récurrence HR(n) suivante :

Si u et v sont deux endomorphismes trigonalisables d'un espace vectoriel E de dimension n tels que $u \circ v = v \circ u$, alors u et v trigonalisent dans une base commune.

Initialisation : HR(1) est trivialement vraie puisque, dans ce cas, la matrice de tout endomorphisme dans une base quelconque est triangulaire supérieur.

Hérédité: Supposons HR(n) pour un certain $n \ge 1$. Soient alors E un espace vectoriel de dimension n + 1 et u et v deux endomorphismes de E qui commutent. Montrons tout d'abord que u et v possèdent un vecteur propre commun. Puisque v est trigonalisable, v possède au moins une valeur propre λ . On montre alors classiquement que le sous-espace propre $E_{\lambda} = \text{Ker}(v - \lambda \text{Id}_{E})$ est stable par u. u induit un endomorphisme u_{λ} de E_{λ} . Comme u est trigonalisable, u annule un polynôme scindé à coefficients dans k. A fortiori, k annule ce même polynôme et est donc également trigonalisable. Par conséquent, k possède une valeur propre et donc un vecteur propre k de k de

Comme $e_1 \neq 0_E$, on peut compléter ce vecteur en une base $(e_1, e_2, \dots, e_{n+1})$ de E. Les matrice de u et v dans cette base sont respectivement de la forme :

$$A = \begin{pmatrix} \lambda & * & \dots & * \\ \hline 0 & & & \\ \vdots & & A' & \\ 0 & & & \end{pmatrix}$$

$$B = \begin{pmatrix} \mu & * & \dots & * \\ \hline 0 & & & \\ \vdots & & B' & \\ 0 & & & \end{pmatrix}$$

avec A', B' $\in \mathcal{M}_n(\mathbb{K})$. Posons E' = vect (e_2, \dots, e_{n+1}) et soient u' et v' les endomorphismes de E' de matrices respectives A' et B' dans la base (e_2, \dots, e_{n+1}) de E'.

On montre alors que si P est un polynôme, alors

$$A = \begin{pmatrix} P(\lambda) & * & \dots & * \\ \hline 0 & & & \\ \vdots & & P(A') \\ 0 & & & \end{pmatrix}$$

Comme u est trigonalisable, u annule un polynome scindé à coefficients dans \mathbb{K} et donc A annule ce même polynôme. La remarque précédente montre que A' annule également ce polynôme : A' est donc trigonalisable et u' également. On montre de même que v' est trigonalisable. Puisque u et v commutent, A et B commutent, ce qui entraîne la commutativité de A' et B' après un calcul par blocs et enfin la commutativité de u' et v'. On peut alors appliquer HR(n) : il existe donc une base (e'_2, \dots, e'_{n+1}) de E' dans laquelle les matrices de u' et v' sont triangulaires supérieures. Il suffit alors de vérifier que les matrices de u et v dans la base $(e_1, e'_2, \dots, e'_{n+1})$ de E sont également triangulaires supérieures. Conclusion : Par récurrence, HR(n) est vraie pour tout $n \ge 1$.

Solution 6

- 1. Puisque X^2-1 est un polynôme annulateur de A scindé à racines simples, A est diagonalisable et $Sp(A) \subset \{-1,1\}$. Notons $\lambda_1, \ldots, \lambda_n$ les valeurs propres de A comptées avec multiplicité. Ainsi pour tout $k \in [1,n]$, $\lambda_k = \pm 1$ et, a fortiori, $\lambda_k \equiv 1[2]$. Puisque $tr(A) = \sum_{k=1}^n \lambda_k$, $tr(A) \equiv n[2]$.
- 2. Les valeurs propres de A ne peuvent pas toutes être égales à 1 ou -1 sinon, A serait semblable à I_n ou $-I_n$ et donc égale à I_n ou $-I_n$. En notant a le nombre de valeurs propres égales à 1 et b le nombre de valeurs propres égales à -1. On a donc a+b=n, $1 \le a \le n-1$ et $1 \le b \le n-1$. Ainsi $\operatorname{tr}(A) = a-b$ est compris entre -n+2 et n-2 i.e. $|\operatorname{tr}(A)| \le n-2$.

Solution 7

Soit $\lambda \in \operatorname{Sp}(u)$ et M un vecteur propre associé. Alors $M + \operatorname{tr}(M)I_n = \lambda M$ puis en considérant la trace des deux membres, $(n+1)\operatorname{tr}(M) = \lambda \operatorname{tr}(M)$. Si $\lambda = n+1$ ou $\operatorname{tr}(M) = 0$. Si $\operatorname{tr}(M) = 0$ alors $M = \lambda M$ et donc $\lambda = 1$. Ainsi $\operatorname{Sp}(u) \subset \{1, n+1\}$.

Déterminons les sous-espaces propres associés à ces potentielles valeurs propres. Clairement, le sous-espace associé à la valeur propre 1 est l'hyperplan des matrices de traces nulles. De plus, I_n est clairement un vecteur propre associé à la valeur propre n+1 donc le sous-espace propre associé à la valeur propre n+1 est vect (I_n) puisque la somme des dimensions des sous-espaces propres ne peut excéder la dimension de $\mathcal{M}_n(\mathbb{R})$.

Remarque. On constate que u est diagonalisable puisque la somme des dimensions des sous-espaces propres est égale à la dimension de $\mathcal{M}_n(\mathbb{R})$.

Remarque. Si n = 1, 1 n'est en fait pas valeur propre puisqu'alors le sous-espace vectoriel des matrices de trace nulle est le sous-espace nul.

Solution 8

- 1. Soit A une matrice vérifiant la condition de l'énoncé. Le polynôme $X^2 3X + 2 = (X 1)(X 2)$ annule A et est scindé à racines simples : A est donc diagonalisable et $Sp(A) \subset \{1, 2\}$.
 - Si la seule valeur propre de A est 1, alors $A = I_2$.
 - Si la seule valeur propre de A est 2, alors $A = 2I_2$.
 - Si A admet 1 et 2 pour valeurs propres, alors il existe $P \in GL_2(\mathbb{R})$ telle que $A = PBP^{-1}$ avec $B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

Réciproquement les matrices I_2 , $2I_2$ et PBP^{-1} avec $P \in GL_2(\mathbb{R})$ conviennent.

- 2. Soit A une matrice vérifiant la condition de l'énoncé. Le polynôme $X^3 8X^2 + 21X 18 = (X 2)(X 3)^2$ annule A. D'après le lemme des noyaux, $\mathbb{R}^2 = \text{Ker}(A 2I_2) \oplus \text{Ker}(A 3I_2)^2$.
 - Si dim $Ker(A 2I_2) = 2$, alors $A = 2I_2$.
 - Si dim Ker $(A 2I_2) = \dim \text{Ker}(A 3I_2)^2 = 1$, alors il existe $P \in GL_2(\mathbb{R})$ telle que $A = PBP^{-1}$ avec $B = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.
 - Si dim Ker $(A I_3)^2 = 2$, alors le polynôme $(X 3)^2$ annule A : A est trigonalisable et $Sp(A) = \{3\}$. Il existe donc $P \in GL_2(\mathbb{R})$ et $a \in \mathbb{R}$ telle que $A = P\begin{pmatrix} 3 & a \\ 0 & 3 \end{pmatrix} P^{-1}$.

Réciproquement, les matrices ci-dessus conviennent.

Remarque. On peut en fait montrer qu'on peut se ramener à a=1 dans le dernier cas.

Solution 9

Soit $n \in \mathbb{N}^*$ tel qu'il existe $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M^3 - M^2 - M - 2I_n = 0$ et $\operatorname{tr}(M) = 0$. Le polynôme $P = X^3 - X^2 - X - 2 = (X-2)(X-j)(X-\bar{j})$ est un polynôme annulateur de M. On en déduit que $\operatorname{Sp}(M) \subset \{2,j,\bar{j}\}$. Notons p,q,r les dimensions respectives de $\operatorname{Ker}(M-2I_n)$, $\operatorname{Ker}(M-jI_n)$ et $\operatorname{Ker}(M-\bar{j}I_n)$. On a donc $\operatorname{tr}(M) = 2p + qj + r\bar{j} = 0$. En passant aux perties réelle et imaginaire, on en déduit $2p - \frac{q}{2} - \frac{r}{2} = 0$ et q - r = 0 puis 2p = q = r. Ainsi n = p + q + r = 5p est un multiple de 5.

Réciproquement soit $n \in \mathbb{N}^*$ un multiple de 5. Il existe donc $p \in \mathbb{N}^*$ tel que n = 5p. Il suffit alors de considérer la matrice diagonale M de taille n possédant p fois le nombre 2, 2p fois le nombre j et 2p fois le nombre j sur la diagonale.

Solution 10

Soit $M \in \mathcal{M}_n(\mathbb{C})$ vérifiant les conditions de l'énoncé. Alors $X^5 - X^2 = X^2(X^3 - 1)$ est un polynôme annulateur de M. On en déduit que $Sp(M) \subset \{0, 1, j, \overline{j}\}$. Notons $m_0, m_1, m_{\overline{j}}, m_{\overline{j}}$ les multiplicités respectives (éventuellement nulles) de $0, 1, j, \overline{j}$. Alors

$$0m_0 + m_1 + jm_j + \overline{j}m_{\overline{j}} = \operatorname{tr}(\mathbf{M}) = n$$

En considérant la partie réelle, on obtient

$$m_1-\frac{1}{2}m_j-\frac{1}{2}m_{\overline{j}}=n$$

Or $m_1 \le n$, $m_j \ge 0$ et $m_{\overline{j}} \ge 0$ donc $m_1 = n$ et $m_j = m_{\overline{j}} = 0$. Par ailleurs

$$m_0 + m_1 + m_j + m_{\bar{i}} = n$$

donc $m_0 = 0$. Ainsi 0 n'est pas valeur propre de M. Par conséquent, M est inversible. Comme $M^5 - M^2 = 0$, $M^3 - I_n = 0$ en multipliant par M^{-2} . Par conséquent, $X^3 - 1$ est un polynôme annulateur de M scindé à racines simples. On en déduit que M est diagonalisable. Comme 1 est sa seule valeur propre, $M = I_n$.

Réciproquement, I_n vérifie bien les conditions de l'énoncé : c'est donc l'unique matrice vérifiant les conditions de l'énoncé.

Solution 11

Puisque F est stable par u, on peut considérer l'endomorphisme $u_{|F}$ induit par u. On remarque que P est aussi un polynôme annulateur de $u_{|F}$. Les polynômes P_i étant premiers entre eux deux à deux, le lemme des noyaux permet d'affirmer que $F = \bigoplus_{i=1}^r \operatorname{Ker} P_i(u_{|F})$. Or pour tout

$$i \in [\![1,r]\!], \operatorname{Ker} \mathsf{P}_i(u_{|\mathcal{F}}) = \mathcal{F} \cap \operatorname{Ker} \mathsf{P}_i(u) = \mathcal{F} \cap \mathcal{N}_i. \text{ Ainsi } \mathcal{F} = \bigoplus_{i=1}^r \mathcal{F} \cap \mathcal{N}_i.$$

Solution 12

On remarque que $C^3 - C^2 - 3C = 0$. Ainsi $X^3 - X^2 - 3X = X(X^2 - X - 3)$ est un polynôme scindé à racines simples (le polynôme de degré 2 n'admet évidemment pas 0 pour racine et est de disciminant strictement positif). Par conséquent C est diagonalisable et donc semblable à une matrice diagonale D. On voit alors aisément que $A = 3C - C^2$ est semblable à la matrice diagonale $3D - D^2$ et que $B = C^2 - 2C$ est semblable à la matrice diagonale $D^2 - 2D$. A et B sont donc diagonalisables.

Solution 13

Comme P(0) = 0 et P'(0) = 0, 0 est racine simple de P. Il existe donc Q non divisible par X tel que P = XQ. Comme X est irréductible, X et Q sont premiers entre eux. D'après le lemme des noyaux,

$$E = \operatorname{Ker} P(f) = \operatorname{Ker}(f) \oplus \operatorname{Ker} Q(f)$$

Comme XQ = P, $Q(f) \circ f = P(f) = 0$ donc Im $f \subset Ker Q(f)$. Par ailleurs, il existe $R \in K[X]$ tel que Q = Q(0) + XR. Ainsi

$$Q(f) = Q(0)\operatorname{Id}_{E} + f \circ R(f)$$

Si on se donne $x \in \text{Ker Q}(f)$, on a donc $Q(0)x + f \circ R(f)(x) = 0_E$ et donc $x = -\frac{1}{Q(0)}f(R(f)(x)) \in \text{Im } f$ car $Q(0) \neq 0$. Ainsi Ker $Q(f) \subset \text{Im } f$ puis Ker Q(f) = Im f par double inclusion, ce qui permet de conclure.

Remarque. Si on suppose E de dimension finie, on peut se passer de montrer l'inclusion $\operatorname{Ker} Q(f) \subset \operatorname{Im} f$. En effet, on sait déjà que

$$\dim E = \dim \operatorname{Ker} f + \dim \operatorname{Ker} Q(f)$$

et le théorème du rang montre que

$$\dim E = \dim \operatorname{Ker} f + \dim \operatorname{Im} f$$

Ainsi dim Im $f = \dim \operatorname{Ker} Q(f)$ et, comme Im $f \subset \operatorname{Ker} Q(f)$, Im $f = \operatorname{Ker} Q(f)$, ce qui permet de conclure.

Solution 14

 $X^3 + X^2 + X = X(X - j)(X - \bar{j})$ est un polynôme annulateur de A scindé à racines simples. Ainsi $\mathrm{Sp}_{\mathbb{C}}(A) \subset \{0, j, \bar{j}\}$ et A est diagonalisable. Notons $m_0, m_j, m_{\bar{j}}$ les multiplicités (éventuellement nulles) de $0, j, \bar{j}$. Comme A est à coefficients réels, il en est de même de son polynôme caractéristique de sorte que $m_j = m_{\bar{j}}$. De plus, $m_0 + m_j + m_{\bar{j}} = n$ donc $m_0 = n - 2m_j$. Comme A est diagonalisable, $m_0 = \dim \mathrm{Ker}\, A$. D'après le théorème du rang, rg $A = n - \dim \mathrm{Ker}\, A = 2m_j$. Le rang de A est donc bien pair.

Polynôme minimal

Solution 15

1. On calcule le polynôme caractéristique

$$\chi_{A_m}(X) = \begin{vmatrix} X+m+1 & -m & -2 \\ m & X-1 & -m \\ 2 & -m & X+m-3 \end{vmatrix}$$

$$= \begin{vmatrix} X+m-1 & -m & -2 \\ 0 & X-1 & -m \\ X+m-1 & -m & X+m-3 \end{vmatrix} \qquad C_1 \leftarrow C_1 + C_3$$

$$= (X+m-1) \begin{vmatrix} 1 & -m & -2 \\ 0 & X-1 & -m \\ 1 & -m & X+m-3 \end{vmatrix} \qquad \text{en factorisant la première colonne}$$

$$= (X+m-1) \begin{vmatrix} 1 & -m & -2 \\ 0 & X-1 & -m \\ 1 & -m & X+m-1 \end{vmatrix} \qquad L_3 \leftarrow L_3 - L_1$$

$$= (X+m-1)^2(X-1)$$

On traite d'abord le cas m=0. Alors $\chi_{A_0}=(X-1)^3$. Comme π_{A_0} divise χ_{A_0} et est unitaire, π_{A_0} vaut (X-1), $(X-1)^2$ ou $(X-1)^3$. On $M\neq I_3$, $\pi_{A_0}\neq X-1$. Un calcul montre que $(A_0-I_3)^2=0$ donc $\pi_{A_0}=(X-1)^2$. On suppose ensuite $m\neq 0$. Puisque $Sp(A_m)=\{1,1-m\}$ et π_{A_m} divise χ_{A_m} , π_{A_m} vaut (X-1)(X+m-1) ou $(X-1)(X+m-1)^2$.

$$(A - I3)(A + (m - 1)I3) = \begin{pmatrix} m(2 - m) & 0 & m(m - 2) \\ 0 & 0 & 0 \\ m(2 - m) & 0 & m(m - 2) \end{pmatrix}$$

Cette matrice n'est nulle que si m=2. On en déduit que $\pi_{A_2}=(X+1)(X-1)$ et si $m\neq 2$, $\pi_{A_m}=(X-1)(X+m-1)^2$. On récapitule :

- $\pi_{A_0} = (X-1)^2$;
- $\pi_{A_2} = (X-1)(X+1)$;
- $\pi_{A_m} = (X-1)(X+m-1)^2$ si $m \notin \{0,2\}$.

Solution 16

Remarquons que X^n-1 est un polynôme annulateur de A donc le polynôme minimal π_A divise X^n-1 . De plus, il n'existe pas de polynôme annulateur de A de degré strictement inférieur à n sinon la famille $(I_n, A, A^2, ..., A^{n-1})$ serait libre. On en déduit que $\pi_A = X^n - 1$. Or π_A divise χ_A et deg $\chi_A = n$ donc $\chi_A = \pi_A = X^n - 1$. Les valeurs propres de A sont donc les racines $n^{\text{èmes}}$ de l'unité et sont toutes de multiplicités 1. Ainsi

$$tr(A) = \sum_{\omega \in \mathbb{U}_n} \omega = \sum_{k=0}^{n-1} e^{\frac{2ik\pi}{n}} = \frac{e^{2i\pi} - 1}{e^{\frac{2i\pi}{n}} - 1} = 0$$

Solution 17

On notera classiquement π_{M} le polynôme minimal d'une matrice M.

- 1. Posons $n = \deg \pi_A$ et $P = X^n \pi_A \left(\frac{1}{X}\right)$. Comme A est inversible, le coefficient constant de π_A est non nul et $\deg P = n$. P est un polynôme annulateur de A^{-1} donc $\pi_{A^{-1}}$ divise P. En particulier, $\deg \pi_{A^{-1}} \le n$. De même, en posant $p = \deg \pi_{A^{-1}}$ et $Q = X^p \pi_{A^{-1}} \left(\frac{1}{X}\right)$, $\deg Q = p$ et on trouve que π_A divise Q. En particulier, $\deg \pi_A \le p$. Finalement, $\deg \Pi_{A^{-1}} = \deg P$. En notant a le coefficient constant (non nul) $\deg \pi_A$, on a $\pi_{A^{-1}} = \frac{1}{a}P$ car $\pi_{A^{-1}}$ est unitaire par convention.
- 2. Puisque pour tout polynôme P et toute matrice M à coefficients réels

$$P(M) = 0 \iff P(M)^{T} = 0 \iff P(M^{T}) = 0$$

A et $A^T = A^{-1}$ ont le même polynôme minimal. Si ce polynôme minimal était de degré impair, il admettrait une racine réelle λ . Ainsi A admettrait λ pour valeur propre. Soit X un vecteur propre associé à cette valeur propre. On a donc $AX = \lambda X$ et donc $||AX|| = ||\lambda|| ||X||$ où ||.|| désigne la norme euclidienne de \mathbb{R}^n . Mais comme A est orthogonale, ||AX|| = ||X|| d'où $\lambda = \pm 1$ ($||X|| \neq 0$ car un vecteur propre est non nul). Ceci contredit l'énoncé. C'est donc que le polynôme minimal de A est de degré pair.

Solution 18

1. On procède par récurrence. Tout d'abord,

$$f^0 \circ g - g \circ f^0 = 0 = 0 f^0$$

Supposons que $f^n \circ g - g \circ f^n = nf^n$ pour un certain $n \in \mathbb{N}$. Alors en composant par f à gauche,

$$f^{n+1} \circ g - f \circ g \circ f^n = nf^{n+1}$$

Mais

$$f \circ g = g \circ f + f$$

donc

$$f^{n+1} \circ g - g \circ f^{n+1} - f^{n+1} = n f^{n+1}$$

ou encore

$$f^{n+1} \circ g - g \circ f^{n+1} = (n+1)f^{n+1}$$

Ainsi $f^n \circ g - g \circ f^n = nf^n$ pour tout $n \in \mathbb{N}$ d'après le principe de récurrence.

- 2. D'après la question précédente, les applications $\left\{ \begin{array}{ccc} \mathbb{K}[X] & \longrightarrow & \mathcal{L}(E) \\ P & \longmapsto & P(f) \circ g g \circ P(f) \end{array} \right. \\ \text{et} \left\{ \begin{array}{ccc} \mathbb{K}[X] & \longrightarrow & \mathcal{L}(E) \\ P & \longmapsto & f \circ P'(f) \end{array} \right. \\ \text{coïncident sur la base canonique de } \mathbb{K}[X]. \\ \text{Elles sont donc égales et on en déduit le résultat voulu.}$
- 3. Si on applique la question précédente à $P = \pi_f$ le polynôme minimal de f, on obtient $f \circ \pi'_f(f) = 0$. Le polynôme $X\pi'_f$ annule donc f de sorte que π_f divise $X\pi'_f$. En considérant le degré p de π_f et le coefficient dominant, on a donc $p\pi_f = X\pi'_f$. Ainsi $\frac{\pi'_f}{\pi_f} = \frac{p}{X}$ de sorte que $\pi_f = X^p$. f est donc nilpotent.

Solution 19

- 1. Les deux premières colonnes de A ne sont pas colinéaires et les autres colonnes sont toutes colinéaires à la seconde. Ainsi rg(A) = 2 puis dim Ker(A) = n 2.
- 2. La matrice A est symétrique réelle donc diagonalisable.
- 3. Comme A est diagonalisable, la multiplicité de la valeur propre 0 est la dimension du sous-espace propre associé, c'est-à-dire n-2.
- 4. Remarquons que $\chi_{A}(1) = \begin{vmatrix} 0 & -2 & \cdots & \ddots & -n \\ -2 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ -n & 0 & \cdots & 0 & 1 \end{vmatrix}$. Via l'opération $C_{1} \leftarrow 2C_{2} + 3C_{3} + \cdots + nC_{n}, \chi_{A}(1) = \begin{vmatrix} \alpha & -2 & \cdots & \ddots & -n \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{vmatrix} = \alpha$

où $\alpha = -\sum_{k=2}^{n} k^2 < 0$. Comme $\lim_{x \to +\infty} \chi_A(x) = +\infty$, χ_A admet une racine $\lambda > 1$ d'après le théorème des valeurs intermédiaires. Ainsi il existe $\mu \in \mathbb{R}$ tel que $\chi_A = X^{n-2}(X-\lambda)(X-\mu)$. Mais $\operatorname{tr}(A) = 1 = \lambda + \mu$ donc $\mu = 1 - \lambda$. On en déduit que $\operatorname{Sp}(A) = \{0, \lambda, 1 - \lambda\}$ avec $\lambda > 1$

5. Comme A est diagonalisable, π_A est scindé à racines simples et ses racines sont les valeurs propres de A. Ainsi $\pi_A = X(X - \lambda)(X - 1 + \lambda) = X^3 - X^2 + \lambda(1 - \lambda)X$ est un polynôme annulateur de A. Or $\chi_A = X^{n-2}(X - \lambda)(X - 1 + \lambda)$ donc, comme vu à la question précédente,

$$\lambda(1 - \lambda) = \chi_{A}(1) = -\sum_{k=2}^{n} k^{2}$$

Finalement, un polynôme annulateur de A est $X^3 - X^2 - \left(\sum_{k=2}^n k^2\right)X$.

Solution 20

1. Soit $M \in \mathcal{M}_n(\mathbb{R})$.

$$u^{2}(M) = u(M) + tr(u(M))I_{n} = u(M) + (n+1)tr(M)I_{n} = (n+2)u(M) - (n+1)M$$

Ainsi $X^2 - (n+2)X + (n+1)$ est un polynôme annulateur de u.

- 2. On constate que $X^2 (n+2)X + (n+1) = (X-1)(X-(n+1))$ est scindé à racines simples donc u est diagonalisable.
- 3. Le polynôme minimal π_u divise (X-1)(X-(n+1)). Or on a clairement $u \neq \operatorname{Id}_{\mathcal{M}_n(\mathbb{R})}$ et, comme $n \geq 2$, $u \neq (n+1)\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})}$ donc $\pi_u \neq X-1$ et $\pi_u \neq X-(n+1)$. Ainsi $\pi_u = (X-1)(X-(n+1))$. Notamment $\operatorname{Sp}(u) = \{1, n+1\}$. Le sous-espace propre associé à la valeur propre 1 est clairement l'hyperplan des matrices de trace nulle. Le sous-espace propre associé à la valeur popre n+1 est donc une droite. Comme u est diagonalisable, les multiplicités des valeurs propres de u dans le polynôme caractéristique sont égales aux dimensions des sous-espaces propres. Ainsi $\chi_u = (X-1)^{n^2-1}(X-(n+1))$.

Solution 21

- 1. On sait que le rang de B est le rang de la famille de ses colonnes. Comme les n dernières colonnes de B sont également les n dernières, le rang de B est celui de $\begin{pmatrix} A \\ 0 \end{pmatrix}$. Mais le rang de B est également le rang de la famille de ses lignes donc rg B = rg A.
- **2.** Une récurrence simple montre que $B^p = \begin{pmatrix} A^p & A^p \\ 0 & 0 \end{pmatrix}$ pour tout $p \in \mathbb{N}^*$. De plus, $B^0 = I_{2n} = \begin{pmatrix} I_n & 0 \\ 0 & I_n \end{pmatrix}$. Soit $P = \sum_{n=0}^{+\infty} a_n X^p \in \mathbb{R}[X]$. Alors

Remarque. On peut vérifier que le sous-espace propre asssocié à la valeur propre 1 est $\text{vect}(I_n)$.

$$P(B) = a_0 I_{2n} + \sum_{p=1}^{+\infty} a_p B^p$$

$$= a_0 \begin{pmatrix} I_n & 0 \\ 0 & I_n \end{pmatrix} + \sum_{p=1}^{+\infty} a_p \begin{pmatrix} A^p & A^p \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} P(A) & P(A) - a_0 I_n \\ 0 & a_0 I_n \end{pmatrix}$$

$$= \begin{pmatrix} P(A) & P(A) \\ 0 & 0 \end{pmatrix} + P(0) \begin{pmatrix} 0 & -I_n \\ 0 & I_n \end{pmatrix}$$

 $car a_0 = P(0).$

3. Comme A est diagonalisable, le polynôme minimal π_A de A est scindé à racines simples. Supposons que A n'est pas inversible. Alors $0 \in Sp(A)$ donc 0 est racine de π_A i.e. $\pi_A(0) = 0$. D'après la question précédente, $\pi_A(B) = 0$ et donc B est diagonalisable puisque π_A est scindé à racines simples.

Supposons que A est inversible. Alors 0 n'est pas racine de π_A . Le polynôme $P = X\pi_A$ est donc encore scindé à racines simples et annule B d'après la question précédente. B est encore diagonalisable.

Solution 22

1. Il suffit de développer le déterminant définissant χ_A par rapport à sa dernière colonne.

- 2. Soit u l'endomorphisme canoniquement associé à A. Notons (e_1, \dots, e_n) la base canonique de \mathbb{K}^n . On a donc $u(e_k) = e_{k+1}$ pour tout $k \in [1, n-1]$. Ainsi $e_k = u^{k-1}(e_1)$ pour tout $k \in [1, n]$. Il s'ensuit que $(u^k(e_1))_{0 \le k \le n-1}$ est la base canonique de \mathbb{K}^n . En particulier, c'est une famille libre. Posons $p = \deg \pi_A$ et supposons p < n. Posons $\pi_A = X^p + \sum_{k=0}^{p-1} c_k X^k$. On sait que $\pi_A = \pi_u$ annule u. Ainsi $u^p + \sum_{k=0}^{p-1} c_k u^k = 0$. En particulier, $u^p(e_1) + \sum_{k=0}^{p-1} c_k u^k(e_1) = 0$. La famille $(u^k(e_1))_{0 \le k \le p}$ est donc liée ce qui contredit la liberté de la famille $(u^k(e_1))_{0 \le k \le n-1}$. Par conséquent, p = n. Ainsi deg $\pi_A = \deg \chi_A$, π_A divise χ_A et π_A et χ_A sont unitaires, ce qui permet d'affirmer que $\pi_A = \chi_A$.
- 3. On sait que $\chi_{A^T} = \chi_A = P$. Ainsi $Sp(A^T)$ est l'ensemble des racines de P. Soit donc λ une racine de P.

Alors
$$X = \begin{pmatrix} x_0 \\ \vdots \\ x_{n-1} \end{pmatrix} \in E_{\lambda}(A^T)$$
 si et seulement si

$$\begin{cases} \forall k \in [\![0,n-2]\!], \ x_{k+1} = \lambda x_k \\ -\sum_{k=0}^{n-1} a_k x_k = \lambda x_{n-1} \end{cases}$$

Ceci équivaut à

$$\begin{cases} \forall k \in [0, n-1], \ x_k = \lambda^k x_0 \\ P(\lambda) x_0 = 0 \end{cases}$$

La dernière égalité est toujours vraie puisque λ est racine de P. On en déduit que $E_{\lambda}(A^{T}) = \text{vect}((1, \lambda, ..., \lambda^{n-1}))$.

Solution 23

- **a.** Soit $x \in E$. Vérifions que $I_{u,x}$ est un idéal de $\mathbb{K}[X]$.
 - Il est clair que $0 \in I_{u,x}$.
 - Soit $(P, Q) \in I_{u,x}^2$. Alors

$$(P + Q)(u)(x) = P(u)(x) + Q(u)(x) = 0_E$$

donc $P + Q \in I_{u,x}$.

• Soit $(P, Q) \in \mathbb{K}[X] \times I_{u,x}$. Alors

$$(PQ)(u)(x) = P(u)(Q(u)(x)) = P(u)(0_E) = 0_E$$

donc PQ \in I_{u,x}.

Puisque π_u est un polynôme annulateur de u, a fortiori, $\pi_u(u)(x)=0_{\rm E}$ donc $\pi_u\in {\rm I}_{u,x}$. Comme $\pi_{u,x}$ est un générateur de ${\rm I}_{u,x}$, π_u est un multiple de $\pi_{u,x}$.

b. Soit $x \in E$. $E_{u,x}$ est l'image de l'application linéaire $\begin{cases} \mathbb{K}[X] & \longrightarrow & E \\ P & \longmapsto & P(u)(x) \end{cases} : c'est donc un sous-espace vectoriel de E.$

Soit $y \in E_{u,x}$. Alors il existe $P \in K[X]$ tel que y = P(u)(x). Notons Q et R le quotient et le reste de la division euclidienne de P par $\pi_{u,x}$. Alors P = $Q\pi_{u,x}$ + R puis y = P(u)(x) = R(u)(x) puisque $Q\pi_{u,x} \in I_{u,x}$. Or deg R $\leq \deg \pi_{u,x} - 1$ donc

$$y \in \operatorname{vect}(u^k(x))_{0 \le k \le \deg \pi_{u,x}-1}, \text{ ce qui prouve que } (u^k(x))_{0 \le k \le \deg \pi_{u,x}-1} \text{ est une famille génératrice de } E_{u,x}.$$

$$\operatorname{Soit}(\lambda_k)_{0 \le k \le \deg \pi_{u,x}-1} \text{ tel que } \sum_{k=0}^{\deg \pi_{u,x}-1} \lambda_k u^k(x) = 0_E. \text{ Posons } R = \sum_{k=0}^{\deg \pi_{u,x}-1} \lambda_k X^k. \text{ On a donc } R(u)(x) = 0_E \text{ i.e. } R \in I_{u,x}. \text{ R est donc un multiple de } \pi_{u,x} \text{ et comme deg } R < \deg \pi_{u,x}, R = 0 \text{ i.e. } \lambda_k = 0 \text{ pour tout } k \in [0, \deg \pi_{u,x}-1]. \text{ Ceci prouve que la } I_{u,x}$$

famille $(u^k(x))_{0 \le k \le \deg \pi_{u.x} - 1}$ est libre.

Finalement, $(u^k(x))_{0 \le k \le \deg \pi_{u,x}-1}$ est une base de $E_{u,x}$. On en déduit que dim $E_{u,x} = \deg \pi_{u,x}$.

c. Soit $y \in E_{u,x}$. Il existe donc $P \in K[X]$ tel que y = P(u)(x). Alors u(y) = (XP)(u)(x) appartient également à $E_{u,x}$. Ainsi $E_{u,x}$ est stable par u.

Soit $Q \in I_{u,x}$. Alors $Q(u)(y) = (PQ)(u)(x) = P(u)(Q(u)(x)) = P(u)(0_E) = 0_E$ donc Q est un polynôme annulateur de $u_{|E_{u,x}}$. Réciproquement soit Q un polynôme annulateur de $u_{|E_{u,x}}$. En particulier, $Q(u)(x) = 0_E$ donc $Q \in I_{u,x}$. Ainsi $I_{u,x}$ est l'idéal annulateur de $u_{|E_{u,x}}$ de sorte que $\pi_{u,x} = \pi_{u_{|E_{u,x}}}$

2. **a.** Posons $P_i = \prod_{j \in [\![1,p]\!] \setminus \{i\}} \pi_{u,x_j}$ pour $i \in [\![1,p]\!]$. Alors

$$P(u)(x) = \sum_{i=1}^{p} P(u)(x_i) = \sum_{i=1}^{n} P_i(u) \left(\pi_{u,x_i}(x_i) \right) = \sum_{i=1}^{n} P_i(u)(0_E) = 0_E$$

donc $P \in I_{u,x}$ de sorte que $\pi_{u,x}$ divise P.

b. Soit $(y_1, \dots, y_p) \in \prod_{i=1}^p \mathbb{E}_{u, x_i}$ tel que $\sum_{i=1}^p y_i = 0_{\mathbb{E}}$. Il existe des polynômes Q_1, \dots, Q_p de $\mathbb{K}[X]$ tels que $y_i = Q(u)(x_i)$ pour tout $i \in [1, p]$. On a donc

$$\sum_{j=1}^{p} Q_j(u)(x_j) = 0_E$$

Fixons $i \in [1, p]$. En appliquant $P_i(u)$ à l'égalité précédente, on obtient

$$\sum_{j=1}^{p} P_i(u) \left(Q_j(u)(x_j) \right) = 0_E$$

Mais comme pour $j \neq i$

$$P_i(u)\left(Q_j(u)(x_j)\right) = Q_j(u)\left(P_i(u)(x_j)\right) = Q_j(0_E) = 0_E$$

il reste $(P_iQ_i)(u)(x_i) = 0_E$. On en déduit que π_{u,x_i} divise P_iQ_i . Or π_{u,x_i} est premier avec P_i donc π_{u,x_i} divise Q_i par le théorème de Gauss. Ainsi $y_i = Q_i(u)(x_i) = 0_E$.

Ceci montre que E_{x_1}, \dots, E_{x_n} sont en somme directe.

c. Par définition, $\pi_{u,x}(x) = 0_E$ i.e. $\sum_{i=1}^p \pi_{u,x}(x_i) = 0_E$. Mais pour tout $i \in [1, p]$, $\pi_{u,x}(x_i) \in E_{u,x_i}$. Puisque $E_{u,x_1}, \dots, E_{u,x_p}$ sont en somme directe, $\pi_{u,x}(x_i) = 0_E$ pour tout $i \in [1, p]$. Ainsi π_{u,x_i} divise $\pi_{u,x}$ pour tout $i \in [1, p]$. Mais comme $\pi_{u,x_1}, \dots, \pi_{u,x_p}$ sont premiers entre eux deux à deux, P divise $\pi_{u,x}$. Or on a déjà vu que $\pi_{u,x}$ divisait P donc $P = \pi_{u,x}$ puisqu'il s'agit de deux polynômes unitaires.

Il est clair que $E_{u,x} \subset \bigoplus_{i=1}^p E_{u,x_i}$. De plus,

$$\dim \mathbf{E}_{u,x} = \deg \pi_{u,x} = \deg \mathbf{P} = \sum_{i=1}^p \deg \pi_{u,x_i} = \sum_{i=1}^p \dim \mathbf{E}_{u,x_i} = \dim \left(\bigoplus_{i=1}^p \mathbf{E}_{u,x_i} \right)$$

donc
$$E_{u,x} = \bigoplus_{i=1}^{p} E_{u,x_i}$$
.

3. La décomposition en facteurs irréductibles de π_{μ} s'écrit

$$\pi_u = \prod_{i=1}^p M_i^{\alpha_i}$$

où M_1, \dots, M_p sont des polynômes irréductibles unitaires de $\mathbb{K}[X]$ distincts deux à deux et $\alpha_1, \dots, \alpha_p$ sont des entiers naturels non nuls. En particulier, les polynômes $M_1^{\alpha_1}, \dots, M_p^{\alpha_p}$ sont premiers entre eux deux à deux. Le lemme des noyaux permet alors d'affirmer que

$$E = \operatorname{Ker} \pi_u(u) = \bigoplus_{i=1}^p \operatorname{Ker} M_j^{\alpha_j}(u)$$

Supposons qu'il existe $i \in [1, p]$ tel que $\operatorname{Ker} \operatorname{M}_i^{\alpha_i-1}(u) = \operatorname{Ker} \operatorname{M}_i^{\alpha_i}(u)$. Alors le lemme des noyaux permet d'affirmer que le polynôme $\frac{\pi_u}{\operatorname{M}_i}$ est un polynôme annulateur de u, ce qui contredit la minimalité de π_u . Ainsi pour tout $i \in [1, p]$, $\operatorname{Ker} \operatorname{M}_i^{\alpha_i-1}(u) \subsetneq \operatorname{Ker} \operatorname{M}_i^{\alpha_i}(u)$.

Pour tout $i \in [1, p]$, il existe donc $x_i \in (\operatorname{Ker} M_i^{\alpha_i}(u)) \setminus (\operatorname{Ker} M_i^{\alpha_{i-1}}(u))$.

Fixons $i \in [1, p]$. Puisque $M_i^{\alpha_i}(u)(x_i) = 0_E$, π_{u,x_i} divise $M_i^{\alpha_i}$. Puisque M_i est irréductible, il existe un entier naturel $\beta_i \leq \alpha_i$ tel que

$$\begin{split} \pi_{u,x_i} &= \mathbf{M}_i^{\beta_i}. \text{ Mais puisque } \mathbf{M}_i^{\alpha_i-1}(u)(x_i) \neq \mathbf{0_E}, \, \beta_i = \alpha_i. \text{ Ainsi } \pi_{u,x_i} = \mathbf{M}_i^{\alpha_i}. \end{split}$$
 Posons alors $x = \sum_{i=1}^p x_i$. D'après la question précédente,

$$\pi_{u,x} = \prod_{i=1}^{p} \pi_{u,x_i} = \prod_{i=1}^{p} M_i^{\alpha_i} = \pi_u$$

- 4. On procède par implications circulaires.
 - (i) \Longrightarrow (ii) Supposons que $\pi_u = \chi_u$. On sait qu'il existe $x \in E$ tel que $\pi_{u,x} = \pi_u$. En particulier, dim $E_{u,x} = \deg \pi_{u,x} = \deg \pi_u = \deg \chi_u = n$. Ainsi $E_{u,x} = E$.
 - (ii) \implies (iii) Supposons qu'il existe $x \in E$ tel que $E_{u,x} = E$. Alors $(u^k(x))_{0 \le k \le n-1}$ est une base de $E_{u,x} = E$. En posant $u^n(x) = -\sum_{k=0}^{n-1} a_k u^k(x)$, la matrice de u dans cette base est bien de la forme voulue.
 - (iii) \Longrightarrow (i) Supposons qu'il existe une base de E dans laquelle la matrice de u est de la forme de l'énoncé. Si on note x le premier vecteur de cette base, alors cette base est $(u^k(x))_{0 \le k \le n-1}$. Ainsi $E = \text{vect}(u^k(x))_{0 \le k \le n-1} \subset E_{u,x}$. Puisqu'on a évidemment $E_{u,x} \subset E$, on a alors $E_{u,x} = E$. En particulier, $\deg \pi_{u,x} = \dim E_{u,x} = n$. Puisque $\pi_{u,x}$ divise π_u qui lui-même divise χ_u et que $\deg \chi_u = n$, il s'ensuit que $\pi_{u,x} = \pi_u = \chi_u$.

Solution 24

- 1. On constate que $U^2 = nU$ donc $X^2 nX = X(X n)$ est un polynômale annulateur de U. Or ni X ni X n n'annulent U. Donc $\pi_U = X(X n)$.
- 2. On en déduit que U est diagonalisable (π_U est scindé à racines simples) et $Sp(U) = \{0, n\}$. De plus, il est clair que $\operatorname{rg} U = 1$ donc $\dim E_0(u) = \dim \operatorname{Ker} U = n-1$. Par conséquent, $\dim E_n(U) = 1$. Notons (e_1, \dots, e_n) la base canonique de $\mathcal{M}_n(\mathbb{K})$. On vérifie que $e_1 e_i$ appartient à $E_0(U)$ pour $i \in [2, n]$. Ces vecteurs sont clairement linéairement indépendants et $\dim E_0(U) = n-1$ donc ils forment une base de $E_0(U)$. Soit $v \in \mathcal{M}_{n,1}(\mathbb{K})$ dont tous les coefficients valent 1. Alors $v \in E_n(U)$ et $\dim E_n(U) = 1$ donc (v) est une base de $E_n(U)$. En notant $P = (e_1 e_2 \dots e_1 e_n v)$ et D la matrice dont tous les coefficients sont nuls sauf celui en position (n,n) qui vaut 1, on a $U = \operatorname{PDP}^{-1}$.

Exponentielles

Solution 25

1. Comme $\mathcal{M}_n(\mathbb{R})$ est de dimension finie, l'endomorphisme $M \in \mathcal{M}_n(\mathbb{R}) \mapsto M^T$ est continu. En notant $S_p = \sum_{k=0}^p \frac{A^k}{k!}$, on a donc

$$\begin{split} \exp(\mathbf{A}^{\mathrm{T}}) &= (\lim_{p \to +\infty} \mathbf{S}_p)^{\mathrm{T}} \\ &= \lim_{p \to +\infty} \mathbf{S}_p^{\mathrm{T}} \quad \text{par continuit\'e de la transposition} \\ &= \lim_{p \to +\infty} \left(\sum_{k=0}^p \frac{\mathbf{A}^k}{k!} \right)^{\mathrm{T}} \\ &= \lim_{p \to +\infty} \sum_{k=0}^p \frac{(\mathbf{A}^k)^{\mathrm{T}}}{k!} \quad \text{par lin\'earit\'e de la transposition} \\ &= \lim_{p \to +\infty} \sum_{k=0}^p \frac{(\mathbf{A}^{\mathrm{T}})^k}{k!} \quad \text{par propri\'et\'e de la transposition} \\ &= \exp(\mathbf{A}^{\mathrm{T}}) \end{split}$$

2. Puisque A est symétrique, $A^T = A$. Ainsi, d'après la question précédente,

$$(\exp(A))^T = \exp(A^T) = \exp(A)$$

de sorte que exp(A) est symétrique.

3. Puisque $\frac{1}{2}$ A commute avec elle-même

$$\exp(A) = \exp(A/2 + A/2) = \exp(A/2)^2$$

Par propriété du déterminant,

$$\det(\exp(A)) = \det(\exp(A/2)^2) = \det(\exp(A/2))^2 \ge 0$$

De plus, $\exp(A)$ est inversible puisque $\exp(A) \exp(-A) = \exp(0) = I_n (A \text{ et } -A \text{ commutent}) \text{ donc } \det(\exp(A)) \neq 0$. Ainsi $\det(\exp(A)) > 0$.

4.

$$\exp(A)^T \exp(A) = \exp(A^T) \exp(A)$$
 d'après la première question
 $= \exp(-A) \exp(A)$ car A est antisymétrique
 $= \exp(-A + A)$ car A et $-A$ commutent
 $= \exp(0) = I_n$

Ainsi $\exp(A) \in O_n(\mathbb{R})$. Mais la question précédente prouve que $\det(\exp(A)) > 0$ donc $\exp(A) \in SO_n(\mathbb{R})$.

Solution 26

Méthode n°1

On sait que $\chi_A = X^2 - tr(A)X + det(A) = X^2 - 5X + 6 = (X - 2)(X - 3)$. On effectue la division euclidienne de X^n par χ_A . Il existe un polynôme Q_n et deux réels a_n et b_n tels que

$$X^n = \chi_A Q_n + a_n X + b_n$$

Après évaluation en 2 et 3, on obtient le système $\begin{cases} 2a_n + b_n = 2^n \\ 3a_n + b_n = 3^n \end{cases}$. On en déduit que $a_n = 3^n - 2^n$ et $b_n = 3 \cdot 2^n - 2 \cdot 3^n$. Ainsi, d'après le théorème de Cayley-Hamilton,

$$A^n = \chi_A(A)Q_n(A) + a_nA + b_nI_2 = (3^n - 2^n)A + (3 \cdot 2^n - 2 \cdot 3^n)I_2$$

Par conséquent,

$$\exp(\mathbf{A}) = \sum_{n=0}^{+\infty} \frac{\mathbf{A}^n}{n!} = \left(\sum_{n=0}^{+\infty} \frac{3^n}{n!} - \sum_{n=0}^{+\infty} \frac{3^n}{n!}\right) \mathbf{A} + \left(3 \sum_{n=0}^{+\infty} \frac{2^n}{n!} - 2 \sum_{n=0}^{+\infty} \frac{3^n}{n!}\right) \mathbf{I}_2 = (e^3 - e^2) \mathbf{A} + (3e^2 - 2e^3) \mathbf{I}_2 = \left(2e^2 - e^3 - e^2 - e^3\right) \mathbf{I}_2 = \left(2e^3 - e^3\right) \mathbf{I}_3 =$$

Méthode n°2

Comme χ_A est scindé à racines simples, A est diagonalisable. De plus, $Sp(A) = \{2,3\}$. On calcule sans peine $E_2(A) = \text{vect}\left(\begin{pmatrix} 1 \\ -1 \end{pmatrix}\right)$ et

$$E_3(A) = \text{vect}\left(\begin{pmatrix} 1 \\ -2 \end{pmatrix}\right)$$
. Ainsi, en posant $D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix}$, on a $A = PDP^{-1}$ puis

$$\exp(A) = P \exp(D)P^{-1} = P \begin{pmatrix} e^2 & 0 \\ 0 & e^3 \end{pmatrix} P^{-1}$$

Un rapide calcul donne $P^{-1} = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix}$ puis

$$\exp(\mathbf{A}) = \begin{pmatrix} 2e^2 - e^3 & e^2 - e^3 \\ 2e^3 - 2e^2 & 2e^3 - e^2 \end{pmatrix}$$

Solution 27

Méthode n°1

On calcule $\chi_A = (X-2)^2(X-3)$. On effectue la division euclidienne de X^n par χ_A . Il existe un polynôme deux polynômes Q_n et R_n tels que

$$X^n = \chi_A Q_n + R_n$$
 et $\deg R_n < 3$

Alors 2 est racine double de $X^n - R_n$ et 3 est racine simple de $X^n - R^n$ ce qui donne

$$(X^n - R_n)(2) = (X^n - R_n)(3) = (X^n - R_n)'(3) = 0$$

En notant $R_n = a_n X^2 + b_n X + c_n$ avec $(a_n, b_n, c_n) \in \mathbb{R}^3$, on obtient le système

$$\begin{cases} 4a_n + 2b_n + c_n = 2^n \\ 9a_n + 3b_n + c_n = 3^n \\ 6a_n + b_n = 3n^{n-1}n \end{cases}$$

On en déduit que

$$\begin{cases} a_n = 3^{n-1}n - 3^n + 2^n \\ b_n = 6 \cdot 3^n - 5 \cdot 3^{n-1}n - 6 \cdot 2^n \\ c_n = 9 \cdot 2^n + 6 \cdot 3^{n-1}n - 8 \cdot 3^n \end{cases}$$

D'après le théorème de Cayley-Hamilton,

$$A^n = \chi_A(A)Q_n(A) + R_n(A) = R_n(A) = a_nA^2 + b_nA + c_nI_3$$

Par conséquent,

$$\exp(\mathbf{A}) = \sum_{n=0}^{+\infty} \frac{\mathbf{A}^n}{n!} = \left(\sum_{n=0}^{+\infty} \frac{a_n}{n!}\right) \mathbf{A}^2 + \left(\sum_{n=0}^{+\infty} \frac{b_n}{n!}\right) \mathbf{A} + \left(\sum_{n=0}^{+\infty} \frac{c_n}{n!}\right) \mathbf{I}_3 = e^2 \mathbf{A}^2 + (e^3 - 6e^2) \mathbf{A} + (9e^2 - 2e^3) \mathbf{I}_3 = \begin{pmatrix} -6e^2 + 3e^3 & -4e^2 + 4e^3 & -6e^3 + 10e^2 \\ -6e^2 + 3e^3 & -3e^2 + 4e^3 & -6e^3 + 9e^2 \\ -7e^2 + 3e^3 & -4e^2 + 4e^3 & -6e^3 + 11e^2 \end{pmatrix}$$

Méthode n°2

Comme χ_A est scindé, A est trigonalisable. De plus, $Sp(A) = \{2, 3\}$. On calcule sans peine $E_2(A) = \text{vect}\begin{pmatrix} 4 \\ 3 \\ 4 \end{pmatrix}$ et $E_3(A) = \text{vect}\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Enfin, on recherche $U \in \mathcal{M}_{3,1}(\mathbb{R})$ tel que

$$AU = 2U + \begin{pmatrix} 4 \\ 3 \\ 4 \end{pmatrix}$$

On trouve $U = \begin{pmatrix} -2 \\ 0 \\ -1 \end{pmatrix}$. Ainsi, $A = PTP^{-1}$ en posant

$$T = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \qquad \text{et} \qquad P = \begin{pmatrix} 4 & -2 & 1 \\ 3 & 0 & 1 \\ 4 & -1 & 1 \end{pmatrix}$$

On en déduit que $exp(A) = P exp(T)P^{-1}$. Or

$$\exp\left(\left(\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array}\right)\right) = \exp\left(\left(\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right)\right) \exp\left(\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)\right) = e^2 \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

donc

$$\exp(T) = \begin{pmatrix} e^2 & e^2 & 0\\ 0 & e^2 & 0\\ 0 & 0 & e^3 \end{pmatrix}$$

et

$$P^{-1} = \begin{pmatrix} -1 & -1 & 2 \\ -1 & 0 & 1 \\ 3 & 4 & -6 \end{pmatrix}$$

de sorte que

$$\exp(A) = \begin{pmatrix} -6e^2 + 3e^3 & -4e^2 + 4e^3 & -6e^3 + 10e^2 \\ -6e^2 + 3e^3 & -3e^2 + 4e^3 & -6e^3 + 9e^2 \\ -7e^2 + 3e^3 & -4e^2 + 4e^3 & -6e^3 + 11e^2 \end{pmatrix}$$

Solution 28

Notons *p* l'indice de nilpotence de *u*. Alors

$$\exp(u) = \sum_{n=0}^{+\infty} \frac{u^n}{n!} = \sum_{n=0}^{p-1} \frac{u^n}{n!}$$

Remarquons que

$$\exp(u) - \mathrm{Id}_{\mathrm{E}} = \sum_{n=1}^{p-1} \frac{u^n}{n!} = \left(\sum_{n=1}^{p-1} \frac{u^{n-1}}{n!}\right) \circ u = u \circ \left(\sum_{n=1}^{p-1} \frac{u^{n-1}}{n!}\right)$$

On en déduit automatiquement que $\operatorname{Ker}(u) \subset \operatorname{Ker}(\exp(u) - \operatorname{Id}_{E})$ et $\operatorname{Im}(\exp(u) - \operatorname{Id}_{E}) \subset \operatorname{Im}(u)$.

Soit $x \in \text{Ker}(\exp(u) - \text{Id}_{\text{E}})$. On a alors

$$\sum_{k=1}^{p-1} \frac{u^k(x)}{k!} = 0_{\rm E}$$

Supposons $u(x) \neq 0_E$. Notons alors ℓ le plus grand entier naturel non nul vérifiant $u^\ell(x) \neq 0_E$. En appliquant $u^{\ell-1}$ à la dernière relation, on obtient $u^\ell(x) = 0_E$, ce qui est contradictoire. On en déduit que $u(x) = 0_E$ i.e. $x \in \text{Ker}(u)$. Par double inclusion, $\text{Ker}(\exp(u) - \text{Id}_E) = \text{Ker}(u)$. D'après le théorème du rang, $\text{rg}(\exp(u) - \text{Id}_E) = \text{rg}(u)$. Or $\text{Im}(\exp(u) - \text{Id}_E) \subset \text{Im}(u)$ donc $\text{Im}(\exp(u) - \text{Id}_E) = \text{Im}(u)$.