DroneMOM

Drone Model Output Machine

Taylor Nelms, John Marcao, Eric Micallef

Overview

Create a tool that converts incoming visual and inertial measurement unit data from an Unmanned Aerial Vehicle and use it to generate gITF models of classified objects in the scene.

Hardware

Nvidia Jetson Nano

Powerful chip but has its limitations!

What is ROS

- ROS stands for Robot Operating System
- Publisher Subscriber message passing middleware
- Rosbags allow easy playback for refining algorithms
- Rosbags allow us all to work independently without dependencies
- Unified interfaces
- Open source

Classification and Segmentation

Accomplished

- ROS pipeline architecture implemented
- Integrated testing in ROS for images and video
- Some object detection and segmentation.

Challenges

- \circ Have seen "This is a known issue and will be fixed in our next release." too many times...
- Have seen "This issue has been fixed in current release." (Current release not supported on jetson nano)
- Getting about 5 FPS without tensorRT

Next Week

- Look into Mask R-CNN (Thanks shadow team!)
- Need to resize incoming images. (should make it more accurate and faster)
- Convert pb to UFF format
- Figure out how to load a UFF file with tensorRT

Classification + Detection

Objects Detected: person.jpg predicted in 0.522 seconds Objects Detected: person dog horse messi.jpg predicted in 0.516 seconds Objects Detected: person person sports ball dog.jpg predicted in 0.512 seconds Objects Detected: bicycle truck dog herd of horses.jpg predicted in 0.512 seconds Objects Detected: horse horse horse horse office.jpg predicted in 0.528 seconds Objects Detected: chair chair chair chair chair chair diningtable img3.jpg predicted in 0.544 seconds Objects Detected: car car car car car car car truck traffic light SUMMARY Task : Time Taken (in seconds) Reading addresses : 0.001 Loading batch : 3.607 Detection (8 images) : 4.296 Output Processing : 0.000 Drawing Boxes : 0.172 Average time_per_img : 1.009

Point Cloud Generation

Accomplished

- Camera transformations for generating image position
- Integrated point cloud generation node into ROS pipeline
- Found and integrated relevant libraries for storing and manipulating data

Challenges

- Generating accurate pose data for camera from IMU sensor data
- Estimating depth data from multiple images

Next Week

- Generate depth data points for FLANN-matched feature points
- Allow for building of point cloud incrementally (avoiding duplicate points)

GLTF Mesh Construction

Accomplished

- Mesh construction from Test ROS data
- Integration with PCL libraries
- Output to VTK File Format

Challenges

- Too many data points
- Too slow (2 FPS)

Next Week

- Output to GLTF File Format
- Separate data reading and file construction
- Downsample incoming data

End