## Weighted A\*

Basics

#### Weighted A\* (with duplicate detection and re-opening)

```
\begin{array}{l} \textit{open} := \mathbf{new} \ \mathsf{priority} \ \mathsf{queue} \ \mathsf{ordered} \ \mathsf{by} \ \mathsf{ascending} \ g(\mathit{state}(\sigma)) + \textit{W} * \textit{h}(\mathit{state}(\sigma)) \\ \textit{open}.\mathsf{insert}(\mathsf{make-root-node}(\mathsf{init}())) \\ \textit{closed} := \emptyset \\ \textit{best-g} := \emptyset \\ \textit{while not } \mathit{open}.\mathsf{empty}(): \\ \sigma := \mathit{open}.\mathsf{pop-min}() \\ \textit{if } \mathit{state}(\sigma) \notin \mathit{closed} \ \mathsf{or} \ g(\sigma) < \mathit{best-g}(\mathit{state}(\sigma)): \\ \mathit{closed} := \mathit{closed} \cup \{\mathit{state}(\sigma)\} \\ \mathit{best-g}(\mathit{state}(\sigma)) := g(\sigma) \\ \textit{if } \mathit{is-goal}(\mathit{state}(\sigma)): \ \textit{return} \ \mathsf{extract-solution}(\sigma) \\ \textit{for } \mathit{each}(a,s') \in \mathit{succ}(\mathit{state}(\sigma)): \\ \sigma' := \mathsf{make-node}(\sigma,a,s') \\ \textit{if } \mathit{h}(\mathit{state}(\sigma')) < \infty: \mathit{open}.\mathsf{insert}(\sigma') \\ \\ \textit{return} \ \mathsf{unsolvable} \\ \end{array}
```

Basics

The weight  $W \in \mathbb{R}_0^+$  is an algorithm parameter:

For W = 0, weighted  $A^*$  behaves like

Heuristic Functions

Basics

#### The weight $W \in \mathbb{R}_0^+$ is an algorithm parameter:

- For W = 0, weighted A\* behaves like uniform-cost search.
- For W = 1, weighted  $A^*$  behaves like

Basics

#### The weight $W \in \mathbb{R}_0^+$ is an algorithm parameter:

- For W = 0, weighted A\* behaves like uniform-cost search.
- For W = 1, weighted  $A^*$  behaves like  $A^*$ .
- For  $W \to \infty$ , weighted A\* behaves like

#### The weight $W \in \mathbb{R}_0^+$ is an algorithm parameter:

For W = 0, weighted A\* behaves like uniform-cost search.

Heuristic Functions

- For W = 1, weighted A\* behaves like A\*.
- For  $W \to \infty$ , weighted A\* behaves like greedy best-first search.

#### **Properties:**

Basics

For W > 1, weighted A\* is bounded suboptimal: if h is admissible, then the solutions returned are at most a factor W more costly than the optimal ones.

### Agenda

Basics

- 5 Local Search Algorithms

## Hill-Climbing

Basics

### Hill-Climbing

```
\begin{split} \sigma &:= \mathsf{make\text{-}root\text{-}node}(\mathsf{init}()) \\ \textbf{forever} &: \\ & \quad \textbf{if is\text{-}goal}(\mathsf{state}(\sigma)) \text{:} \\ & \quad \textbf{return } \mathsf{extract\text{-}solution}(\sigma) \\ & \quad \Sigma' := \big\{ \, \mathsf{make\text{-}node}(\sigma, a, s') \mid (a, s') \in \mathsf{succ}(\mathsf{state}(\sigma)) \, \big\} \\ & \quad \sigma := \mathsf{an } \mathsf{element } \mathsf{of } \Sigma' \mathsf{ minimizing } h \, /^* \, (\mathsf{random } \mathsf{tie } \mathsf{breaking}) \, ^*/ \end{split}
```

# Hill-Climbing

Basics

```
Hill-Climbing
\sigma := \mathsf{make}\text{-root-node}(\mathsf{init}())
forever:

If is-goal(state(\sigma)):
    return extract-solution(\sigma)
\Sigma' := \{ \mathsf{make}\text{-node}(\sigma, a, s') \mid (a, s') \in \mathsf{succ}(\mathsf{state}(\sigma)) \}
\sigma := \mathsf{an element of } \Sigma' \mathsf{minimizing } h \not \text{" (random tie breaking) */}
```

#### Remarks:

- Makes sense only if h(s) > 0 for  $s \notin S^G$ .
- Is this complete or optimal?

Conclusion

Basics

#### Enforced Hill-Climbing: Procedure improve

```
\begin{array}{l} \operatorname{def} \mathit{improve}(\sigma_0) \colon \\ \mathit{queue} \coloneqq \operatorname{new} \ \mathsf{fifo} \ \mathsf{queue} \\ \mathit{queue.push-back}(\sigma_0) \\ \mathit{closed} \coloneqq \emptyset \\ \mathsf{while} \ \mathsf{not} \ \mathit{queue.empty}() \colon \\ \sigma = \mathit{queue.pop-front}() \\ \mathsf{if} \ \mathit{state}(\sigma) \notin \mathit{closed} \colon \\ \mathit{closed} \coloneqq \mathit{closed} \cup \{\mathit{state}(\sigma)\} \\ \mathsf{if} \ \mathit{h}(\mathit{state}(\sigma)) < \mathit{h}(\mathit{state}(\sigma_0)) \colon \mathsf{return} \ \sigma \\ \mathsf{for} \ \mathsf{each} \ (\mathit{a}, \mathit{s'}) \in \mathsf{succ}(\mathit{state}(\sigma)) \colon \\ \sigma' \coloneqq \mathsf{make-node}(\sigma, \mathit{a}, \mathit{s'}) \\ \mathit{queue.push-back}(\sigma') \\ \mathsf{fail} \end{array}
```

 $\rightarrow$  Breadth-first search for state with strictly smaller h-value.

## Enforced Hill-Climbing, ctd.

#### **Enforced Hill-Climbing**

 $\sigma := \mathsf{make}\mathsf{-root}\mathsf{-node}(\mathsf{init}())$ 

while not is-goal(state( $\sigma$ )):

 $\sigma := \mathsf{improve}(\sigma)$ 

**return** extract-solution( $\sigma$ )

#### **Enforced Hill-Climbing**

```
\begin{split} \sigma := \mathsf{make\text{-}root\text{-}node}(\mathsf{init}()) \\ \mathbf{while} \ \ \mathbf{not} \ \ \mathsf{is\text{-}goal}(\mathsf{state}(\sigma)) \\ \sigma := \mathsf{improve}(\sigma) \\ \mathbf{return} \ \ \mathsf{extract\text{-}solution}(\sigma) \end{split}
```

#### Remarks:

Basics

- Makes sense only if h(s) > 0 for  $s \notin S^G$ .
- Is this optimal?

#### Agenda

Basics

- 6 Conclusion

Chris Ewin & Tim Miller



With slides by Nir Lipovetsky

 Languages
 Complexity
 Computational Approaches
 IPC
 Conclusion

 00000000
 0000
 0000
 0000
 0000

#### Beating Kasparov is great . . .



 Languages
 Complexity
 Computational Approaches
 IPC
 Conclusion

 00000000
 0000
 0000
 0000
 0000

#### Beating Kasparov is great . . . but how to play Mario?





- You (and your brother/sister/little nephew) are better than Deep Blue at everything - except playing Chess.
- Is that (artificial) 'Intelligence'?
- → How to build machines that automatically solve **new** problems?

# Planning: Motivation

Models

How to develop systems or 'agents' that can make decisions on their own?

#### Autonomous Behavior in Al

Models

The key problem is to select the action to do next. This is the so-called control problem. Three approaches to this problem:

- Programming-based: Specify control by hand
- Learning-based: Learn control from experience
- Model-based: Specify problem by hand, derive control automatically

- → Approaches not orthogonal; successes and limitations in each . . .
- → Different models yield different types of controllers ...

### Programming-Based Approach

- → Control specified by programmer, e.g.:
  - If Mario finds no danger, then run...
  - If danger appears and Mario is big, jump and kill ...

- Advantage: domain-knowledge easy to express
- Disadvantage: cannot deal with situations not anticipated by programmer

 Languages
 Complexity
 Computational Approaches
 IPC
 Conclusion

 00000000
 0000
 0000
 0000
 0000

## Learning-Based Approach

- → Learns a controller from experience or through simulation:
  - **Unsupervised** (Reinforcement Learning):
    - penalize Mario each time that 'dies'
    - reward agent each time oponent 'dies' and level is finished, . . .
  - Supervised (Classification)
    - learn to classify actions into good or bad from info provided by teacher
  - Evolutionary:
    - from pool of possible controllers: try them out, select the ones that do best, and mutate and recombine for a number of iterations, keeping best

- Advantage: does not require much knowledge in principle
- Disadvantage: in practice, hard to know which features to learn, and is slow

# General Problem Solving

Models

**Ambition**: Write one program that can solve all problems.

- $\rightarrow$  Write  $X \in \{algorithms\}$ : for all  $Y \in \{`problems'\}$ : X`solves'Y
- → What is a 'problem'? What does it mean to 'solve' it?

Ambition 2.0: Write one program that can solve a large class of problems

Ambition 3.0: Write one program that can solve a large class of problems effectively

(some new problem) → (describe problem → use off-the-shelf solver) → (solution competitive with a human-made specialized program)

→ Beat humans at coming up with clever solution methods! (Link: GPS started on 1959)

#### Model-Based Approach / General Problem Solving

- → specify model for problem: actions, initial situation, goals, and sensors
- → let a solver compute controller automatically



Models

Conclusion

#### Model-Based Approach / General Problem Solving

#### → Advantage:

- Powerful: In some applications generality is absolutely necessary
- Quick: Rapid prototyping. 10s lines of problem description vs. 1000s lines of C++ code. (Language generation!)
- Flexible & Clear: Adapt/maintain the description.
- Intelligent & domain-independent: Determines automatically how to solve a complex problem effectively! (The ultimate goal, no?!)
- → Disadvantage: need a model; computationally intractable
  - Efficiency loss: Without any domain-specific knowledge about Chess, you don't beat Kasparov . . .
- → Trade-off between 'automatic and general' vs. 'manualwork but effective'

Model-based approach to intelligent behavior called **Planning** in Al

# Agenda

- 1 Models
- 2 Languages
- 3 Complexity
- 4 Computational Approaches
- 5 IPC
- 6 Conclusion

# Basic State Model: Classical Planning

#### Ambition:

Models

000000

Write one program that can solve all classical search problems.

#### State Model:

- finite and discrete state space S
- **a** known initial state  $s_0 \in S$
- $\blacksquare$  a set  $S_G \subseteq S$  of goal states
- $\blacksquare$  actions  $A(s) \subseteq A$  applicable in each  $s \in S$
- **a** deterministic transition function s' = f(a, s) for  $a \in A(s)$
- $\blacksquare$  positive action costs c(a, s)
- $\rightarrow$  A **solution** is a sequence of applicable actions that maps  $s_0$  into  $S_G$ , and it is **optimal** if it minimizes **sum of action costs** (e.g., # of steps)
- ightarrow Different **models** and **controllers** obtained by relaxing assumptions in **blue** . . .

Conclusion

#### Uncertainty but No Feedback: Conformant Planning

- finite and discrete state space S
- **a** set of possible initial state  $S_0 \in S$
- $\blacksquare$  a set  $S_G \subseteq S$  of goal states
- actions  $A(s) \subseteq A$  applicable in each  $s \in S$
- a non-deterministic transition function  $F(a, s) \subseteq S$  for  $a \in A(s)$
- uniform action costs c(a, s)
- → A solution is still an action sequence but must achieve the goal for any possible initial state and transition
- → More complex than **classical planning**, verifying that a plan is **conformant** intractable in the worst case; but special case of planning with partial observability

Models

000000

### Planning with Markov Decision Processes

#### MDPs are **fully observable**, **probabilistic** state models:

a state space S

- initial state  $s_0 \in S$
- $\blacksquare$  a set  $G \subseteq S$  of goal states
- actions  $A(s) \subseteq A$  applicable in each state  $s \in S$
- transition probabilities  $P_a(s'|s)$  for  $s \in S$  and  $a \in A(s)$
- **action costs** c(a, s) > 0
- → Solutions are functions (policies) mapping states into actions
- → Optimal solutions minimize expected cost to goal

### Partially Observable MDPs (POMDPs)

#### POMDPs are partially observable, probabilistic state models:

 $\blacksquare$  states  $s \in S$ 

Models

000000

- actions  $A(s) \subseteq A$
- transition probabilities  $P_a(s'|s)$  for  $s \in S$  and  $a \in A(s)$
- initial belief state b<sub>0</sub>
- $\blacksquare$  final belief state  $b_f$
- **sensor model** given by probabilities  $P_a(o|s)$ ,  $o \in Obs$
- → Belief states are probability distributions over S
- → Solutions are policies that map belief states into actions
- $\rightarrow$  **Optimal** policies minimize **expected** cost to go from  $b_0$  to G

 Languages
 Complexity
 Computational Approaches
 IPC
 Conclusion

 00000000
 0000
 0000
 0000
 0000

#### Example

Models

Agent A must reach G, moving one cell at a time in known map



- If actions deterministic and initial location known, planning problem is classical
- If actions stochastic and location observable, problem is an MDP
- If actions stochastic and location partially observable, problem is a **POMDP**

Different combinations of uncertainty and feedback: three problems, three models

# Agenda

Models

- Models
- 2 Languages
- 3 Complexity
- 4 Computational Approaches
- 5 IPC
- Conclusion

Conclusion

### Models, Languages, and Solvers

Models

A planner is a solver over a class of models; it takes a model description, and computes the corresponding controller

$$Model \Longrightarrow \boxed{Planner} \Longrightarrow Controller$$

- Many models, many solution forms: uncertainty, feedback, costs, ...
- Models described in suitable planning languages (Strips, PDDL, PPDDL, ...) where states represent interpretations over the language.

Models

### A Basic Language for Classical Planning: Strips

- A **problem** in STRIPS is a tuple  $P = \langle F, O, I, G \rangle$ :
  - F stands for set of all atoms (boolean vars)
  - O stands for set of all operators (actions)
  - $I \subseteq F$  stands for initial situation
  - $G \subseteq F$  stands for goal situation
- lacktriangle Operators  $o \in O$  represented by
  - the Add list  $Add(o) \subseteq F$
  - the Delete list  $Del(o) \subseteq F$
  - the Precondition list  $Pre(o) \subseteq F$

### From Language to Models (STRIPS Semantics)

#### A STRIPS problem $P = \langle F, O, I, G \rangle$ determines **state model** S(P) where

- the states  $s \in S$  are collections of atoms from F.  $S = 2^F$
- $\blacksquare$  the initial state  $s_0$  is I
- the goal states s are such that  $G \subseteq s$
- the actions a in A(s) are ops in O s.t.  $Prec(a) \subseteq s$
- the next state is s' = s Del(a) + Add(a)
- action costs c(a, s) are all 1

Languages

- $\rightarrow$  (Optimal) **Solution** of P is (optimal) **solution** of  $\mathcal{S}(P)$
- → Slight language extensions often convenient: negation, conditional effects, **non-boolean variables**; some required for describing richer models (costs. probabilities, ...).

### (Oh no it's) The Blocksworld



- **Propositions:** on(x, y), onTable(x), clear(x), holding(x), armEmpty().
- Initial state:  $\{onTable(E), clear(E), \dots, onTable(C), on(D, C), clear(D), armEmpty()\}.$
- Goal:  $\{on(E, C), on(C, A), on(B, D)\}.$
- **Actions**: stack(x, y), unstack(x, y), putdown(x), pickup(x).
- $\blacksquare$  stack(x, y)?