面積の $\frac{1}{3}$ 公式

放物線 $y=ax^2+bx+c$ と,この放物線の接線,及び y 軸に平行な直線で囲まれる部分の面積を S とする。

図のように,接点の x 座標と,y 軸に平行な直線と x 軸との交点の x 座標の差を l とすると

$$S=rac{1}{3}|a|\,l^3$$

証明

放物線と接線の接点の x 座標を α , y 軸に平行な直線の式を , $x=\beta$ とする。 ($\alpha<\beta$ の場合のみ証明)

$$y = ax^2 + bx + c$$
 を微分すると

$$y' = 2ax + b$$

よって , 点 $(\alpha,\ a\alpha^2+b\alpha+c)$ における放物線の接線の方程式は $y-(a\alpha^2+b\alpha+c)=(2a\alpha+b)(x-\alpha)$

整理すると

$$y = (2a\alpha + b)x - a\alpha^2 + c$$

i) a > 0 のとき

ii) a < 0 のとき

$$S = \int_{\alpha}^{\beta} \left[\left\{ (2a\alpha + b)x - a\alpha^2 + c \right\} - (ax^2 + bx + c) \right] dx$$

$$= \int_{\alpha}^{\beta} \left(-ax^2 + 2a\alpha x - a\alpha^2 \right) dx = -a \int_{\alpha}^{\beta} (x^2 - 2\alpha x + \alpha^2) dx$$

$$= -a \int_{\alpha}^{\beta} (x - \alpha)^2 dx = -a \left[\frac{1}{3} (x - \alpha)^3 \right]^{\beta} = -\frac{1}{3} a(\beta - \alpha)^3 \quad \cdots 2$$

① , ②より ,
$$S = \left\{ \begin{array}{ll} \frac{1}{3}a(\beta-\alpha)^3 & (a>0 \ \text{のとき}) \\ -\frac{1}{3}a(\beta-\alpha)^3 & (a<0 \ \text{のとき}) \end{array} \right.$$
 これをまとめて , $S = \frac{1}{3}|a|(\beta-\alpha)^3$

$$eta-lpha=l$$
 とすれば , $S=rac{1}{3}|a|\,l^3$

| 例題 | 次の問いに答えなさい。

(1) 放物線 $y=x^2-4x+5$ と , この放物線上の点 $(3,\ 2)$ における接線 , および y 軸で囲まれた図形の面積を求めなさい。

$$y$$
 軸は,直線 $x=0$ であるから
$$l=3-0=3$$

よって
$$S = \frac{1}{3} \cdot |1| \cdot 3^3$$
$$= 9$$

(2) 放物線 $y=\frac{1}{2}x^2+x+\frac{1}{2}$ と直線 x=1 , および x 軸で囲まれた図形の面積を求めなさい。

〔解答〕

放物線の式は , $y=\frac{1}{2}(x+1)^2$ と変形できるので , 放物線は点 $(-1,\ 0)$ で x 軸に接している。

$$l = 1 - (-1) = 2$$

$$S = \frac{1}{3} \cdot \left| \frac{1}{2} \right| \cdot 2^3$$
$$= \frac{4}{3}$$

(3) 放物線 $y=-2x^2+2$ と,この放物線に接する傾きが -2 の直線,および直線 x=2 で囲まれた図形の面積を求めなさい。

〔解答〕

$$y=-2x^2+2$$
 を微分すると, $y'=-4x$

よって,傾きが-2である接線と放物線の接点のx座標は,

$$y'=-4x=-2$$
 より , $x=rac{1}{2}$

$$l = 2 - \frac{1}{2} = \frac{3}{2}$$

$$S = \frac{1}{3} \cdot |-2| \cdot \left(\frac{3}{2}\right)^3$$
$$= \frac{9}{4}$$

