Set Theory

Definition (Sample Space). The set S, of all possible outcomes of a particular experiment is called the sample space for the experiment.

Notation: Sample Space = $S = \Omega$ Example: Single coin flip. $S = \{H, T\}$

Definition (Event). An event is any collection of possible outcomes of an experiment. That is, any possible subset of S (including S itself).

Example: An experiment where a coin is flipped two times consequtively. $S = \{HH, HT, TH, TT\}$ Let $A = \text{First flip is heads} = \{HH, HT\}$

Elementary Set Operations

Definition (Union). The union of A and B are the set of elements that belong to either A OR B.

Notation: $A \cup B$ $A \cup B = \{x : x \in Aorx \in B\}$

Definition (Intersection). The intersection of A and B are the set of elements that belong to both A AND B.

Notation: $A \cap B$ $A \cap B = \{x : x \in Aandx \in B\}$

Definition (Complement). The complement of A is the set of all elements not in A.

Notation: A^c $A^c = \{x : x \notin A\}$

Theorem. 1.1.4: Useful Set Properties

For any events A, B, C, defined on a sample space S.

Commutativity:

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Associativity:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributive Laws:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

DeMorgan's Laws:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Definition (Disjoint, Pairwise Disjoint). Two events A and B are disjoint or mutually exclusive if $A \cap B = \emptyset$. The events A_1, A_2, \cdots are pairwise disjoint if $A_i \cap A_j = \emptyset \ \forall \ i \neq j$

Definition (Partition). If A_1, A_2, \cdots are pairwise disjoint and $\bigcup_{i=1}^{\infty} A_i = S$ then the collection A_1, A_2, \cdots forms a partition of S.

Probability Theory

Definition (Sigma Algebra). A collection of subsets of S is called a textbfsigma algebra (or Borel field), denoted by β , if it satisfies the following three properties:

- 1. $\theta \in \beta$
- 2. If $A \in beta$ then $A^c \in \beta$ (β is closed under complementation).
- 3. If $A_1, A_2, \dots \in \beta$ then $\bigcup_{i=1}^{\infty} A_i \in \beta$ (β is closed under countable unions).