Podstawy uczenia maszynowego: plan kursu

Krzysztof Ślot

13 maja 2019

- 1. Podstawowe koncepcje klasyfikacji danych
 - (a) Klasyfikacja danych
 - Metody bazujące na ocenie odległości od klasy (niparametryczne: NN, k-NN, parametryczne: NM)
 - Koncepcje: model klasy i trening modelu,odległość próbki od klasy
 - Metody bazujące na ocenie prawdopodobieństwa przynależności próbki do klasy (parametryczne: klasyfikacja Bayesowska)
 - Koncepcje: p-stwo warunkowe, p-stwa a priori i a posteriori, Likelihood, MLE
 - (b) Regresja
 - Liniowa
 - Koncepcje: kryterium uczenia błąd średniokwadratowy (MSE), błędy uchybu (bias) i wariancji
 - (c) Klasyfikacja danych, c.d.
 - Podział przestrzeni cech: powierzchnie decyzyjne i regiony decyzyjne
 - Regresja logistyczna funkcja logistyczna, rozkład dwumianowy, kryterium log-prob
- 2. Klasyfikacja w przestrzeniach wielowymiarowych
 - (a) Klasyfikacja minimalnoodległościowa i Bayesowska danych wielowymiarowych macierz kowariancji
 - (b) Klasyfikacja przez podział przestrzeni cech: drzewa decyzyjne i maszyny wektorów wspierających (SVM)
- 3. Uczenie nienadzorowane
 - (a) Grupowanie (klasteryzacja)

- Bazujące na reprezentacji skupień (k-means, EM, k-medoids)
- Bazujące na podobieństwie próbek (Spektralne SC, DBSCAN)
- (b) Budowa przestrzeni cech
 - Selekcja cech (kryterium Fishera)
 - Ekstrakcja cech (PCA, LDA, MDS, ICA)
- 4. Nieliniowe problemy klasyfikacji
 - (a) Agregacje klasyfikatorów
 - Lasy decyzyjne (bagging)
 - Wzmacnianie (Ada-boost)
 - (b) Rozbudowa klasycznych metod klasyfikacji
 - Probabilistycznych GMM (Gaussian Mixture Models)
 - Minimalnoodległościowych (drzewa k-wymiarowe + k-NN, NM dla wielu modów)
 - SVM z wykorzystaniem funkcji jądra (kernel methods)

Zalecana literatura

- Materiały kursu
- Podręczniki dostępne w sieci:
 - Understanding Machine Learning: From Theory to Algorithms, Shai Shalev-Shwartz, Shai Ben-David, Cambridge University, 2014 (dostępne on-line za darmo)
 - 2. The Hundred-Page Machine Learning Book, Andriy Burkov (dostępne on-line za darmo na stronie Autora)
 - 3. "Deep Learning", Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Francis Bach, (dostępne rozdziały)
 - 4. "The Elements of Statistical Learning", Trevor Hastie, Robert Tibshirani, and Jerome Friedman, 2013 (dostępne)