PyPandas: A scalable data cleaning library

Pei-Lun Liao New York University pll273@nyu.edu Chia-Hsien Lin New York University chl566@nyu.edu Shang-Hung Tsai New York University st3127@nyu.edu

ABSTRACT

Data cleaning become a challenge[3] in data mining and machine learning tasks. In this paper, we propose PyPandas, a scalable library running on Spark[23], to provide better solutions to data cleaning tasks. PyPandas provides basic cleaning features such as missing values handling, outlier detection and data scaling. Morevoer, advanced features like text cleaning are supported as well.

1 INTRODUCTION

In recent years, as storage devices become cheaper and cheaper, storing big data in thousands of computers is easier than before. People start thinking about how to extract useful information from the huge datasets. The term, Big Data, was created to describe this phenomenon[13]. As the result, data mining[9, 18] and machine learning[21] get popular nowadays. The quality of data is one of the key factors to successful data mining[2]. Hence, data cleaning becomes a challenge in the first step of data management and analysis[3, 10, 19].

To process huge dataset efficiently, distributed systems and parallel computing frameworks[4, 5, 22] are introduced. Spark[23] is one of the most popular open source projects for industry and academia. It is built on Hadoop[22] and provides a way to manage distributed memory. PySpark[15] is an extended library for Python programmers to work with Spark.

In the Python machine learning and data mining ecosystem, Pandas[14] is the most popular data management library. Pandas dataframe provides convenient ways to collect data and transform data from Python primitive data structures or Numpy[16] array. Moreover, Pandas provides several data management methods such as missing value filling, data indexing and data profiling.

However, Pandas can only be used in a single machine and could not be scaled to manage huge dataset. In this paper, we propose PyPandas, a library built on top of PySpark, that support basic data management features, missing value handling or duplicated data removing. Moreover, we add common data processing features into our library to provide user friendly usage such as outlier detection and numerical data scaling. These features are important for the machine learning tasks and are supported in Scikit-Learn[17], a mainstream machine learning library, as well.

Furthermore, text data is another common data type in our storage. Text data are hard to process because of different languages, newly invented words, typos, abbreviations, urls and emoji etc. Although we have NLTK[1], a popular text cleaning library, there is no scalable text cleaning library. In this paper, we also provide tools for users to clean text easily.

The features of our library is summarized below.

- Scalable data management library runs on Spark
- Missing value handling, duplicated data removing, outlier detection and numerical data scaling

 Text processing such as url detection, punctuation removing, pattern searching and replacement.

2 RELATED WORK

There exists a number of open-source library for data cleaning and parallel data computing.

- Optimus[11] is a framework that can perform distributed data cleaning and preprocessing. This framework works well with Spark and its DataFrame can scale in big cluster. Optimus comes with helpful tools such as removing special characters and replacing null values.
- Dask[20] is another open-source library that supports parallel analytic computing. It provides scalable parallel data structures that extend interfaces like pandas. At the same time, it offers low latency and high responsiveness.
- SparklingPandas[12] attempts to combine the power of spark and pandas to scale data analysis. It provides a Pandas-like API that is built using Spark's DataFrame class. Unfortunately, it only support spark v1.4 and Python 2.7, and its development has ended.

3 PROPOSED METHODS

In this project, we will to build our library on top of PySpark[15, 23]. We will handle RDD data structure and implement useful data cleaning functions in our library. The ways to do that are collecting common cleaning functions into library and customizing map functions to do advanced cleaning task such as pattern searching and replacement with regular expression. We will survey the Pandas[14] and Scikit-Learn[17] libraries to find out key features and create Pandas-like and Scikit-Learn-like API to provide easy usage and seamless adaptation.

4 EXPERIMENT

4.1 Dataset

Three datasets are chosen for the experiments. Each of them has different properties and can be used to test different aspects of the library. The summary of datasets could be found in table 1.

- 311 Service Requests[6] This dataset contains all 311 Service Requests from 2010 to present. The majority of data has string type, including both categorical data (e.g. City, Status) and variable length data (e.g. Address, Description). This can be useful in testing the string-related features of the library.
- DOB Permit Issuance[7] The dataset consists of a list of permits for buildings in NYC issued by Department of Building.
 It has diverse data types, including categorical, string, numerical, and geographical data. Hence, it provides a good test case for the versatility of the library.
- DOB Job Application Filings[8] The dataset stores job applications filed through the Borough Offices in NYC for a

Table 1: Selected dataset

	(Row, Col)	Size	Missing Value
311 Service Requests	(9M, 53)	6.01 GB	28%
Permit Issuance	(3M, 60)	1.43 GB	20%
Job Application Filings	(5M, 89)	2.88 GB	40%

particular day. There are many columns containing numerical data, such as fee and number of stories. It can be used to test the data scaling and outlier detection features.

4.2 Evaluation

We will evaluate our project by comparing it against other existing open-source libraries, including Optimus[11], Dask[20], and SparkingPandas[12].

- 4.2.1 Features. We will compare our data cleaning features with previous works, particularly those frequently used functionality in data science such as null value handling, special character removal, duplicate detection, etc.
- 4.2.2 Performance. We will evaluate the performance of our library by measuring the time and space consumed and drawing comparison with existing libraries. This performance evaluation will show that this library is efficient and can be useful in production
- 4.2.3 Userbility. We might assess the usability of our library by doing a survey among a random group of users. We will compare the installation process and APIs provided and generate scores of user experience.

5 CONCLUSIONS

Due to the lack of useful scalable data cleaning library on Spark, we propose PySpark, a scalable data cleaning library. We provide basic data cleaning features such as missing value handling, duplicated data removing and data scaling. Moreover, our library supports text cleaning feature with regular expression.

6 REFERENCE

REFERENCES

- Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Language Processing with Python (1st ed.). O'Reilly Media, Inc.
- [2] Li Cai and Yangyong Zhu. 2015. The Challenges of Data Quality and Data Quality Assessment in the Big Data Era. Data Science Journal 14, 2 (2015), 1–10. https://doi.org/10.5334/dsj-2015-002
- [3] Xu Chu, Ihab F. Ilyas, Sanjay Krishnan, and Jiannan Wang. 2016. Data Cleaning: Overview and Emerging Challenges. In Proceedings of the 2016 International Conference on Management of Data (SIGMOD '16). ACM, New York, NY, USA, 2201–2206. https://doi.org/10.1145/2882903.2912574
- [4] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113. https://doi.org/10. 1145/1327452.1327492
- [5] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google File System. In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles (SOSP '03). ACM, New York, NY, USA, 29–43. https://doi.org/10.1145/ 945445.945450
- [6] NYC government. 2018. NYC OpenData. (2018). https://data.cityofnewyork.us/ Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
- [7] NYC government. 2018. NYC OpenData. (2018). https://data.cityofnewyork.us/ Housing-Development/DOB-Permit-Issuance/ipu4-2q9a/data

- [8] NYC government. 2018. NYC OpenData. (2018). https://data.cityofnewyork.us/ Housing-Development/DOB-Job-Application-Filings/ic3t-wcy2
- [9] Jiawei Han, Micheline Kamber, and Jian Pei. 2011. Data Mining: Concepts and Techniques (3rd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
- [10] Ihab F. Ilyas and Xu Chu. 2015. Trends in Cleaning Relational Data: Consistency and Deduplication. Foundations and TrendsÂô in Databases 5, 4 (2015), 281–393. https://doi.org/10.1561/1900000045
- [11] Iron. 2018. Optimus. (2018). https://github.com/ironmussa/Optimus
- [12] Holden Karau and Juliet Hougland. 2015. SparklingPandas. (2015). https://github.com/sparklingpandas/sparklingpandas
- [13] A. Katal, M. Wazid, and R. H. Goudar. 2013. Big data: Issues, challenges, tools and Good practices. In 2013 Sixth International Conference on Contemporary Computing (IC3). 404–409. https://doi.org/10.1109/IC3.2013.6612229
- [14] Wes McKinney. pandas: a Foundational Python Library for Data Analysis and Statistics. (????).
- [15] Amit Nandi. 2015. Spark for Python Developers. Packt Publishing.
- [16] Travis E. Oliphant. 2015. Guide to NumPy (2nd ed.). CreateSpace Independent Publishing Platform, USA.
- [17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.
- [18] Anand Rajaraman and Jeffrey David Ullman. 2011. Mining of Massive Datasets. Cambridge University Press, New York, NY, USA.
- [19] Vijayshankar Raman and Joseph M. Hellerstein. 2001. Potter's Wheel: An Interactive Data Cleaning System. In Proceedings of the 27th International Conference on Very Large Data Bases (VLDB '01). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 381–390. http://dl.acm.org/citation.cfm?id=645927.672045
- [20] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms and Task Scheduling. In Proceedings of the 14th Python in Science Conference, Kathryn Huff and James Bergstra (Eds.). 130 – 136.
- [21] Vladimir N. Vapnik. 1995. The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc., New York, NY, USA.
- [22] Tom White. 2009. Hadoop: The Definitive Guide (1st ed.). O'Reilly Media, Inc.
- [23] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud'10). USENIX Association, Berkeley, CA, USA, 10–10. http://dl.acm.org/citation.cfm? id=1863103.1863113