

Exam SS 2016

Information Theory and Coding

Name:	Immatriculation number:	
	Points	of
Problem 1		
Problem 2		
Problem 3		
Total points		
Grade		

- The following aids are allowed in this exam:
 - o 2 Din A4 sheets, handwritten on both sides (4 pages in total)
 - o calculator (non-programmable)
 - o Pens
- Other aids are not allowed.
- Please use a separate solution sheet for each task.
- Write your name and matriculation number on each solution sheet.
- An arrow next to a question means that this part of the task can be solved independently of the previous questions.
- Please do not write with pencils and do not use a red pen.
- The duration of the exam is 90 minutes.
- The exam consists of **5** pages (including this cover page).
- Switch off your cell phones!

Good luck!

Problem 1: Conditional Entropy

Show, that H(X/Y)=0 holds for the conditional entropy H(X/Y), if the random variable X is a function of the random variable Y.

Help: $0 \cdot \log 0 = 0$ (for convention, since $x \cdot \log x \to 0$ for $x \to 0$).

Problem 2: Capacity of a Complex AWGN Channel

We consider a discrete-time complex AWGN channel as depicted in the following figure:

 $X \xrightarrow{N} Y$

The complex noise N is circularly symmetric white and Gaussian with power P_N . The complex AWGN channel could be the equivalent baseband channel of a bandpass transmission scheme. The complex AWGN channel can be represented by two independent real AWGN subchannels (real part and imaginary part) as depicted in the following figure:

The additive white Gaussian noise in real part and imaginary part is uncorrelated, i.e. $E\{N_RN_I\} = E\{N_R\} E\{N_I\}$ and has the same power $E\{N_R^2\} = E\{N_I^2\} = P_N/2$.

The total transmit power of the complex AWGN channel is given by P_X .

- a) Determine the optimum allocation of the transmit power to the two parallel subchannels (real part and imaginary part).
- b) State the equation for the channel capacity of one of the two subchannels, e.g. for the real part, depending on its input power P_R .
 - c) Derive the equation for the channel capacity of the complex AWGN channel starting from your result from b).
- d) Sketch qualitatively the channel capacity *C* of the complex AWGN channel vs. the SNR in dB. Label the axes completely.
- e) Sketch qualitatively in your plot from d) the capacity C_{QPSK} of the complex AWGN channel, when the transmit symbols are restricted to QPSK.
- f) Discuss, if it makes sense from an information theory point of view to apply QPSK modulation at low SNR or high SNR, respectively.

Problem 3: Code Extension

Code extension refers to a method, where an overall parity check bit is added to each codeword of a given channel code. We denote the parity check matrix of the linear original code by \mathbf{H} . The parity check matrix \mathbf{H}_e of the extended code can be obtained by adding first an all-zeros row and then an all-ones column to the original parity check matrix \mathbf{H} :

$$\mathbf{H}_{e} = \begin{bmatrix} & & & 1 \\ & \mathbf{H} & & \vdots \\ & & & 1 \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

- \implies a) Is the code rate R_e of the extended code increased or decreased compared to the code rate R of the original code? Give reasons!
- b) Assume that the original code has an odd minimum Hamming weight w_{\min} . Determine the minimum Hamming distance $d_{\min,e}$ of the extended code depending on the minimum Hamming distance d_{\min} of the original code.
- \longrightarrow c) Assume that the original code has an even minimum Hamming weight w_{\min} . Determine the minimum Hamming distance $d_{\min,e}$ of the extended code depending on the minimum Hamming distance d_{\min} of the original code.
 - d) Does code extension make sense regarding the error detection/error correction capabilities for codes with even or odd minimum Hamming distance, respectively? Give reasons!

For the remaining problems, we consider an original code with parity check matrix

$$\mathbf{H} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

4

e) Which type of code is defined by the parity check matrix **H**?

- \implies f) Determine a systematic generator matrix **G** for the original code.
- \implies g) Determine the minimum Hamming distance d_{\min} of the original code.
- \implies h) Determine the parity check matrix \mathbf{H}_e of the extended code.
 - i) Determine the set of code words of the extended code.
 - j) Determine the minimum Hamming distance $d_{\min,e}$ of the extended code.