Antonio Rodríguez Garzón

Final

Este examen pertenece al Banco de Exámenes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

1. Teoría

- 1. Define el concepto de dominio euclídeo y cita dos ejemplos de éste y uno de dominio de integridad que no sea euclídeo. Demuestra que en cualquier dominio euclídeo todo elemento no nulo y no unidad tiene factorización como producto de irreducibles.
- 2. a) Se considera la aplicación norma $N : \mathbb{Z}[i] \to \mathbb{N}$ definida por $N(a+bi) = a^2 + b^2$. Razona si N es una aplicación inyectiva, sobreyectiva, biyectiva o ninguna de estos tipos y calcula las clases de los elementos 1 + i y 2 + i en el conjunto cociente $\mathbb{Z}[i]/R_N$, donde R_N es la relación de equivalencia en $\mathbb{Z}[i]$ inducida por la aplicación N.
 - b) Si se considera en $\mathbb{Z}[i]$ la relación binaria definida por:

$$\alpha R\beta \iff \alpha \ y \ \beta \ \text{son asociados}.$$

Razona que R es una relación de equivalencia y calcula las clases de los elementos 1+i y 2+i en el conjunto cociente $\mathbb{Z}[i]/R$. ¿Hay alguna relación entre R y R_N ?

3. Dado el sistema de congruencias siguiente en $\mathbb{Z}[\sqrt{-2}]$:

- a) Discute su solución sin resolver el sistema.
- b) Calcula la solución general.
- c) Halla una solución $a + b\sqrt{-2}$ tal que 100 < a < 110 y 15 < b < 40. ¿Cuántas soluciones hay con esa propiedad?
- 4. a) Factoriza en irreducibles los siguientes polinomios:

$$x^6 + 3x^2 + 1 \in \mathbb{Z}[x]$$

$$-\frac{1}{3}x^7 + x^2 + 5 \in \mathbb{Q}[x]$$

$$3x^4 + x^3 + 3x^2 + 1 \in \mathbb{Z}[x]$$

b) Del polinomio $f(x) = x^5 - 3x^4 + 2x^2 + 2x - 1 \in \mathbb{Z}[x]$ sabemos que tiene un factor p(x) de grado 2 que reducido módulo 3 es $p_3(x) = x^2 + 1$. Utiliza el método de interpolación de Lagrange para calcular este factor p(x) y factoriza en irreducibles f(x).

2. Test

En las siguientes cuestiones sólo una de las respuestas dadas es correcta. Anota tu respuesta en la hoja adjunta.

- 1. La correspondencia $f(x) = \frac{1}{x}$:
 - a) Determina una aplicación inyectiva $f: \mathbb{Z} \to \mathbb{Q}$.
 - b) Determina un homomorfismo de anillos $f: \mathbb{Z} \to \mathbb{Q}$.
 - c) No determina una aplicación $f: \mathbb{Z} \to \mathbb{Q}$.
- 2. El conjunto $R = \{(0,0), (1,1), (1,0)\}$:
 - a) Es una relación de equivalencia en $X = \{0, 1\}$.
 - b) Es una relación de orden en $X = \{0, 1\}$.
 - c) No es una relación ni de orden ni de equivalencia, es sólo un subconjunto de $X \times X$.
- 3. Sea $f: \mathbb{Z}_{13} \times \mathbb{Z}_{13} \to \mathbb{Z}_{169}$ una aplicación. Entonces:
 - a) f es inyectiva si y solamente si es biyectiva.
 - b) Si f es biyectiva entonces es inyectiva pero el recíproco no es cierto.
 - c) f no está bien definida puesto que $[0]_{13} = [13]_{13}$ pero $[0]_{169} \neq [13]_{169}$.
- 4. Si $f:\to Y$ es una aplicación inyectiva entonces la aplicación inducida $f^*:P(Y)\to P(X)$:
 - a) Es sobreyectiva.
 - b) Es inyectiva.
 - c) Ninguna de las anteriores.
- 5. El anillo $\mathbb{Z}_6[x]$:
 - a) Tiene infinitas unidades.
 - b) Tiene 2 unidades.
 - c) Tiene 6 unidades.
- 6. El cuerpo de fracciones de $\mathbb{Z}[x]$:
 - a) Es $\mathbb{Q}[x]$.
 - b) No existe.
 - c) Ninguna de las anteriores.
- 7. Si $m \in \mathbb{Z}^+$, $m \neq 0, 1$, el sistema:

$$\begin{cases} (m-1)x & \equiv 1 \bmod m \\ mx & \equiv 1 \bmod m + 1 \end{cases}$$

- a) Siempre tiene solución.
- b) Nunca tiene solución.
- c) Solo tiene solución si m es primo.
- 8. Si D es un D.E (dominio euclídeo) entonces:
 - a) Cualquier subanillo suyo es un D.E.
 - b) Cualquier ideal suyo es impropio.
 - c) Ninguna de las anteriores.
- 9. En \mathbb{Z}_{140} se tiene que $[429^{531}] [9]^{-1}$:
 - a) Es una unidad.
 - b) Es [20].
 - c) Ninguna de las anteriores.
- 10. El anillo cociente $\frac{\mathbb{Z}[i]}{(1+i)}$:
 - a) Tiene característica 3.
 - b) Tiene característica cero.
 - c) Tiene característica 2.
- 11. Para todo $n \ge 1$ se verifica:
 - a) $2^n \equiv (-1)^{n+1} \pmod{3}$.
 - b) $3 \mid 2^n + (-1)^{n+1}$.
 - c) Ninguna de las anteriores.
- 12. Las igualdades $-2 = (1 + \sqrt{3})(1 \sqrt{3}) = (5 + 3\sqrt{3})(5 3\sqrt{3})$:
 - a) Representan dos descomposiciones en irreducibles, que no son esencialmente idénticas, de -2 en $\mathbb{Z}[\sqrt{3}]$
 - b) Representan dos descomposiciones en irreducibles de -2 en $\mathbb{Z}[\sqrt{3}]$ pero son esencialmente idénticas.
 - c) No representan dos descomposiciones en irreducibles de -2 en $\mathbb{Z}[\sqrt{3}]$ ya que los factores no son irreducibles por tener norma negativa.
- 13. El polinomio $10x^{17} + 6x + 6$:
 - a) Es irreducible en $\mathbb{Z}[x]$ por el criterio de Eisenstein utilizando el primo p=3.
 - b) Es irreducible en $\mathbb{Z}[x]$ ya que al reducir módulo 5 nos queda x+1 que es un polinomio de grado uno y por tanto irreducible..
 - c) Es reducible en $\mathbb{Z}[x]$.
- 14. El ideal $\mathbb{Z}[i]$ generado por 2 y -1 + 3i:

- a) No es principal puesto que está generado por dos elementos.
- b) Es principal y está generado por 1 + i.
- c) Es todo $\mathbb{Z}[i]$.
- 15. El elemento $3 + \sqrt{-2} \in \mathbb{Z}[\sqrt{-2}]$:
 - a) Es irreducible pero no es primo.
 - b) Es primo pero no es irreducible.
 - c) Es irreducible y también primo.
- 16. Sea $n \in \mathbb{Z}$. Entonces:
 - a) m.c.d.(n, n + 5) = 5.
 - b) m.c.d.(n, n + 5) = 1.
 - c) m.c.d.(n, n + 5) = 1 si n no acaba en cero o cinco.
- 17. Sea A un anillo conmutativo:
 - a) Si A es un D.E. entonces A[x] es un D.E.
 - b) Si A es un D.I. entonces A[x] es un D.I.
 - c) Si A es un cuerpo entonces A[x] es un cuerpo.
- 18. Sea D un D.I. (dominio de integridad):
 - a) Si D es un D.E. entonces D tiene todos sus ideales principales.
 - b) Si D es un D.F.U. (dominio de factorización única) entonces D es un D.E..
 - c) Si D es un D.F.U. entonces todos sus ideales son principales.
- 19. En el anillo $\mathbb{Z}_4[x]$:
 - a) No hay unidades porque \mathbb{Z}_4 no es un D.I.
 - b) Hay polinomios no constantes que son unidades.
 - c) Las únicas unidades son $1,3 \in \mathbb{Z}_4$.
- 20. En el anillo $\mathbb{Z}[\sqrt{2}]$:
 - a) $3 2\sqrt{2}$ es irreducible.
 - b) $3 \sqrt{2}$ es reducible.
 - c) 3 es irreducible.