

Assessment of Climate Indices in the Mediterranean island Corsica

13.06.2022

Presented by:

Supervised by:

Sandeep Allampalli
MSc in Environmental and Resource Management
BTU Cottbus-Senftenberg

Prof. Dr. Katja Trachte Department of Atmospheric Processes BTU Cottbus-Senftenberg

Table of contents

- Objective
- Study area
- Data, Methodology and Tools
- Process
- Climate indices
- Results
- Key takeaways and Conclusion

• To observe the climate change using temporal Analysis of extreme climate indices by evaluating Trends and Variabilities.

Study Area

- Corsica 'Beauty island' and 'The mountain in the sea'.
- Mediterranean climate with hot summers and mild, sunny winters.

Table 1: Station data for the study region

Station	Longitude	Latitude	Elevation
Ajaccio	8.793	41.918	5m
Solenzara	9.401	41.922	12m

Figure 1: Study region

Study Area

- The pleasant winter and spring weather is often interrupted, however, by cold and blustery weather brought by a northerly wind called the Mistral.
- Cyclones passing over Corsica transporting moisture from the Atlantic cause precipitation events in Ajaccio.
- In contrast the eastern part of the island often experiences a rainshadow effect due to the north-south oriented terrain.

Figure 2: Types and direction of winds

Source: Mattei, F. (2016)

Brandenburgische Technische Universität Cottbus - Senftenberg

Data

_

Period: 1981-2018

Format: netCDF

Nature of data: RR, Tmax, Tmin

Methodology

- Mann-Kendall Tau test
- Linear Regression
 - Ordinary Least Squares method
 - Theil-Sen regression method
- A differenced first order auto regressive method (ARIMA)

Brandenburgische Technische Universität Cottbus - Senftenberg

Tools

 Python (numpy, xarray, xclim, pandas, seaborn, matplotlib, statsmodels, sklearn, scipy)

• Tableau

Process

Selection and calculation of suitable temperature and precipitation indices

Trends and variabilities using
Regression analysis and statistical
techniques

- 8 indices:
 - 4 indices related to temperature
 - 4 indices related to precipitation
- Indices are driven from:
 - Maximum temperature
 - Minimum temperature
 - Precipitation

Table 1: Selected climate indices and their definitions for the study

Climatic parameter	Type of index	ID	Name	Definition	Units
	Percentile	tx90p	Warm days	Percentage of days when TX>90th percentile	days
Temperature	Duration	WSDI	Warm spell duration indicator	Annual count of days with at least 6 consecutive days when TX > 90th percentile	days
	Absolute	TXx	Max TXx	Monthly maximum value of daily maximum temp	°C
		TNn	Min TNn	Monthly minimum value of daily minimum temp	°C
	Threshold	R10	Number of heavy precipitation days	Annual count of days when PRCP>=10mm	days
Precipitation	Titlesiloid	R20	Number of very heavy precipitation days	Annual count of days when PRCP>=20mm	days
	Duration	CWD	Consecutive Wet Days	Maximum number of consecutive days with RR<1mm	days
	Duration	CDD	Consecutive Dry Days	Maximum number of consecutive days with RR>=1mm	days

Results

_

Bar plots: Temperature indices

Figure 3: Annual and Decadal bar plots of temperature indices a) tx90p, b) WSDI, c) TXx and d) TNn.

The hottest years in the last 15 years were 2003, 2006, 2014, 2015, 2016, 2017 and 2018.

Barplots: Precipitation indices

Figure 4: Annual and Decadal bar plots of precipitation indices a) R10mm, b) R20mm, c) CDD and d) CWD.

- The decade 1981-1990 is characterized as "very dry."
- The decade 1991-2000 is characterized by a series of significant surpluses and deficits.
- The decade 2001-2010 is characterized by a dry period followed by wetter period.

Source: Mattei, F. (2016)

Distribution plots: Climate indices

Figure 5: Distribution plots of temperature indices a) tx90p, b) WSDI, c) TXx and d) TNn and Distribution plots of precipitation indices a) R10mm, b) R20mm, c) CDD and d) CWD.

- Shape
- Center
- Spread
- Outliers

Box plots: Temperature indices

Figure 6: Annual and Decadal box plots of temperature indices a) tx90p, b) WSDI, c) TXx and d) TNn.

Box plots: Precipitation indices

Accuracy Metric

- R-squared statistic provides a measure of fit.
- Always takes on a value between 0 and 1.
- Represents how much of our data is being explained by our model.

Trends

Figure 8: Climate indices with increasing trends a)tx90p b)TXx and c)TNn.

muex	
tx90p	
	S
WSDI	
WSDI	S
TXx	
177	S
TNn	
INII	S
DlOmm	
R10mm	S
D20	
R20mm	S
CWD	
CWD	S
CDD	
CDD	S

Index

Loca

Location	p-value	Trend	
Ajaccio	0	1.01	
Solenzara	0	.90	
Ajaccio	.887	0	
Solenzara	.456	0	
Ajaccio	.004	.042	
Solenzara	.001	.018	
Ajaccio	0	.047	
Solenzara	.001	.045	
Ajaccio	.221	.115	
Solenzara	.742	0	
Ajaccio	.238	.057	
Solenzara	.323	.047	
Ajaccio	.543	0	
Solenzara	.896	0	
Ajaccio	.624	.157	
Solenzara	.279	.363	

Table 2: p-value Trend and R-squared of extreme climate indices.

Linear Regression: Climate indices

Figure 9: Line of best fit for Temperature indices a) tx90p b) WSDI c) TXx d) TNn and Precipitation indices e)R10mm f) R20mm g) CWD h) CDD.

Linear Regression: Climatic parameters

Figure 10: Line of best fit for the climatic parameters a) RR, b) Tmax, and c) Tmin

Table 3: p-value and Trend value of RR, Tmax, and Tmin for Ajaccio and Solenzara

	F	RR		T _{max}	T _{min}	
Region	p-value	Trend	p-value	Trend	p-value	Trend
Ajaccio	0.49	0	0	+0.04°C/yr	0	+0.03°C/yr
Solenzara	0.35	0	0	+0.01°C/yr	0	+0.03°C/yr

Global readings

 Global surface temperature has increased ≈0.2°C per decade in the past 30 year.

Figure 11: Yearly surface temperature compared to the 20th-century average from 1880–2020.

Source: Lindsey, R. (2021)

Brandenburgische Technische Universität Cottbus - Senftenberg

Projected Climate Change at the horizon of 2050

Figure 12: Projected changes of the Mediterranean climate domain (MCD) under scenario RCP4.5 and RCP8.5 in two future periods in relation to the reference period (1981–2010)

Source: Barredo, J. I.(2018)

RCP 8.5 refers to the concentration of carbon that delivers global warming at an average of 8.5 watts per square meter across the planet. The RCP 8.5 pathway delivers a temperature increase of about 4.3°C by 2100, relative to pre-industrial temperatures.

- The climate of Corsica will remain Mediterranean and won't convert into arid even in RCP 8.5 scenario.
- However, a small decrease of precipitation could result in a transition from Mediterranean to arid climate type.

A differenced first order auto regressive method (ARIMA)

Figure 13: A differenced first order auto regressive method for tx90p of Ajaccio and Solenzara a)Actual Vs Predicted values b) Residuals c) QQ-plot

A differenced first order auto regressive method (ARIMA)

Table 4(a): R^2 and RMSE of Temperature indices

Index	Station	R ²	RMSE
tx90p	Ajaccio	.80	6.28
	Solenzara	.66	9.18
WSDI	Ajaccio	.46	4.14
	Solenzara	.46	4.14
TXx	Ajaccio	.36	.64
	Solenzara	.32	.57
TNn	Ajaccio	.48	.52
	Solenzara	.44	.60

Table 4(b): R² and RMSE of Precipitation indices

Index	Station	R ²	RMSE
R10	Ajaccio	.56	3.6
	Solenzara	.48	3.65
R20	Ajaccio	.47	2.44
	Solenzara	.34	2.8
CDD	Ajaccio	.50	13.21
	Solenzara	.73	8.58
CWD	Ajaccio	.28	1.15
	Solenzara	.55	.82

Correlation: Climate indices

		No. 1 of the second						on a reserve where	CONTRACTOR OF STREET		
,		Aj tx90p	Aj WSDI	Aj TXx	Aj TNn	So tx90p	So WSDI	So TXx	So TNn	Correlation Coeffici	ent
a)	Aj tx90p		0.37	0.67	0.76	0.87	0.32	0.44	0.75		
	Aj WSDI	0.37		0.34	0.21	0.30	0.55	0.02	0.18	0.02	0.87
	Aj TXx	0.67	0.34		0.58	0.54	0.19	0.40	0.52		
	Aj TNn	0.76	0.21	0.58		0.61	0.17	0.38	0.86		
	So tx90p	0.87	0.30	0.54	0.61		0.47	0.57	0.67		
	So WSDI	0.32	0.55	0.19	0.17	0.47		0.15	0.14		
	So TXx	0.44	0.02	0.40	0.38	0.57	0.15		0.43		
	So TNn	0.75	0.18	0.52	0.86	0.67	0.14	0.43			
			0.20	0.52	.0000	0.07	0.14	0.45			
b)		Aj CDD	Aj CWD	Aj R10	Aj R20	So CDD	So CWD	So R10	So R20	Correlation Coeffici	ent
b)	Aj CDD			ADVICE CONTRACTOR		A CONTRACTOR			So R20 -0.10	Correlation Coeffici	ent
b)			Aj CWD	Aj R10	Aj R20	So CDD	So CWD	So R10			ent 0.86
b)	Aj CDD	Aj CDD	Aj CWD	Aj R10 0.02	Aj R20 0.11	So CDD 0.68	So CWD	So R10 -0.19	-0.10		
b)	Aj CDD Aj CWD	Aj CDD	Aj CWD 0.03	Aj R10 0.02	Aj R20 0.11 0.37	So CDD 0.68 0.13	So CWD 0.15 0.01	So R10 -0.19 0.09	-0.10 0.01		
b)	Aj CDD Aj CWD Aj R10	Aj CDD 0.03 0.02	Aj CWD 0.03 0.36	Aj R10 0.02 0.36	Aj R20 0.11 0.37	So CDD 0.68 0.13 -0.31	So CWD 0.15 0.01 0.01	So R10 -0.19 0.09 0.24	-0.10 0.01 0.15		
b)	Aj CDD Aj CWD Aj R10 Aj R20	0.03 0.02 0.11	Aj CWD 0.03 0.36 0.37	Aj R10 0.02 0.36 0.86	Aj R20 0.11 0.37 0.86	So CDD 0.68 0.13 -0.31	So CWD 0.15 0.01 0.01 0.05	So R10 -0.19 0.09 0.24 0.21	-0.10 0.01 0.15 0.11		
b)	Aj CDD Aj CWD Aj R10 Aj R20 So CDD	Aj CDD 0.03 0.02 0.11 0.68	Aj CWD 0.03 0.36 0.37 0.13	Aj R10 0.02 0.36 0.86 -0.31	Aj R20 0.11 0.37 0.86	So CDD 0.68 0.13 -0.31 -0.19	So CWD 0.15 0.01 0.01 0.05	So R10 -0.19 0.09 0.24 0.21 -0.15	-0.10 0.01 0.15 0.11 0.00		

Figure 14: Correlation coefficients of a)Temperature indices and b)Precipitation indices

- Climate extremes are a sign of the climate change.
- Temperature and Warm days increased in magnitude and intensity.
- No significant trend pattern was observed in Precipitation and related indices.
- There is an increase in extreme events. 38 were recorded from 1958 to 2017, versus 4 in the previous 120 years.
- Plantation areas, forest fires risk and Surface water availability.
- Drought issues.
- Higher water demands and lower water availability.

References

- Barredo, J. I., A. Mauri, G. Caudullo and A. Dosio. (2018), 'Assessing Shifts of Mediterranean and Arid
 Climates under Rcp4.5 and Rcp8.5 Climate Projections in Europe', Pure and applied geophysics Vol. 175,
 No. 11, pp. 3955-3971.
- Brown, P. J., Bradley, R. S., & Keimig, F. T. (2010). Changes in Extreme Climate Indices for the Northeastern United States, 1870–2005. Journal of Climate, 23(24), 6555–6572.
 https://doi.org/10.1175/2010jcli3363.1
- Climate Change: Global Temperature | NOAA Climate.gov. (2021). Climate.Gov.
 https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature
- D. Laffoley, J. Baxter, C. Pergent-Martini, G. Pergent, M.M. Otero & F. Simard, 2018. Climate change and the marine environment in Corsica, Report Card 2018. IUCN, Gland, Switzerland.

 https://www.iucn.org/sites/dev/files/changement_climatique_et_milieu_marin_en_corse.pdf

References

- Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., & Medina-Elizade, M. (2006). Global temperature change. Proceedings of the National Academy of Sciences, 103(39), 14288–14293.
 https://doi.org/10.1073/pnas.0606291103
- Kostopoulou, E. (2005, June 20). Assessment of climate extremes in the Eastern Mediterranean.
 SpringerLink.
 https://link.springer.com/article/10.1007/s00703-005-0122-2?error=cookies_not_supported&code=7e6f6
 cc5-a3b4-41d0-9225-3ab2428297cb
- Lindsey, R. (2021). Climate Change: Global Temperature. Climate.Gov.
 https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature
- Mattei, F. (2016). Oliu di Corsica: The challenge of adapting geographical indications to climate change.
 Rouse. Retrieved April 24, 2022, from
 https://rouse.com/media/zmedoxul/rouse-oliu-di-corsica-the-challenge-of-adapting-geographical-indications-to-climate-change.pdf

Thank you for your time!

28