## **AMS 572 Review**

Solha Park

# **C**ONTENTS

Introduction

# **01** Introduction

### 1. What is Inferential Statistic?

### **Finals**

- Chapters 7, 8, 9, 10, 12, 14

### **Inferential Statistics**

#### Key concepts:

- 1. Population and Sample
- 2. Hypothesis Testing
- 3. Confidence Intervals
- 4. Regression Analysis
- 5. ANOVA
- 6. ...

# **01** Introduction

### **Table of Contents Titles**

### **CH7: Inferences for Single Samples**

- 7.1 Inferences on Mean (Large Samples)
  - 7.1.1 Large Sample Confidence Intervals on Mean
  - 7.1.2 Hypothesis Tests on Mean (Large Sample)
- 7.2 Inferences on Mean (Small Samples)
  - 7.2.1 Confidence Intervals on Mean
  - 7.2.2 Hypothesis Tests on Mean (Large Sample)
- 7.3 Inferences on Variance
  - 7.3.1 Confidence Intervals on Variance
  - 7.3.2 Hypothesis Tests on Variance

### **CH8: Inferences for Two Samples**

- 8.3 Comparing Means of Two Populations
  - 8.3.1 Independent Samples Design
    - (1) Inferences for Large Samples
    - (2) Inferences for Small Samples
      - (i) Case 1:  $\sigma_1^2 = \sigma_2^2$
      - (ii) Case 2:  $\sigma_1^2 \neq \sigma_2^2$
  - 8.3.2 Matched Pairs Design
- 8.4 Comparing Variances of Two Populations

### **CH9: Inferences for Proportions and Count Data**

- 9.1 Inferences on Proportion
  - 9.1.1 Large Sample Confidence Interval for Proportions
  - 9.1.2 Large Sample Hypothesis Tests on Proportion
  - 9.1.3 Small Sample Hypothesis Tests on Proportion

- 9.2 Inferences on Comparing Two Proportions
  - 9.2.1 Independent Sample Design
  - 9.2.2 Matched Pairs Design
- 9.3 Inferences for One-Way Count Data

## **C**ONTENTS

2 CH7: Inferences for Single Samples

## 7.1 Inferences on Mean (Large Samples)

### 7.1 Inferences on Mean (Large Samples)

- To estimate by a confidence interval (CI) or to test a hypothesis on the **unknown mean**  $\mu$  of a population using a **random** sample  $X_1, ..., X_n$  from that population
- For a large sample size n, the **CLT** tells us that  $\bar{X}$  is approximately  $N(\mu, \sigma^2/n)$  distributed, even if the population n is not normal.
- As long as the sample size is large enough (say  $\geq 30$ ) the following methods can be applied *even if* the sample comes from a nonnormal population with unknown variance.
- Use z-test

### 7.1 Inferences on Mean (Large Samples)

### 7.1.1 Large Sample Confidence Intervals on Mean

#### Pivotal random variable

(a function of the sample and parameter of interest whose probability distribution does not depend on the unknown parameters)

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

Two-sided  $100(1-\alpha)\%$  CI for  $\mu$ :

$$\bar{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

(The following probability statement leads to the CI for  $\mu$ )

$$P\left[-z_{\frac{\alpha}{2}} \le Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \le z_{\frac{\alpha}{2}}\right] = 1 - \alpha$$

### 7.1 Inferences on Mean (Large Samples)

### 7.1.1 Large Sample Confidence Intervals on Mean

Sample Size Determination for a z-Interval

Margin of error

$$E = z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

and solve for *n*,

$$n = \left[\frac{\frac{Z\alpha\sigma}{2}}{E}\right]^2$$

## 7.1 Inferences on Mean (Large Samples)

### 7.1.2 Hypothesis Tests on Mean (Large Sample)

$$H_0: \mu = \mu_0 \ vs \ H_1: \mu \neq \mu_0$$

When  $H_0$  is true,

The test statistic

Reject  $H_0$  if

equivalently,

$$E(\bar{X}) = \mu_0, Var(\bar{X}) = \frac{\sigma^2}{n}$$

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

$$|z| > z_{\alpha/2}$$

$$|\bar{x} - \mu_0| > z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$



## 7.1 Inferences on Mean (Large Samples)

#### 7.1.2 Hypothesis Tests on Mean (Large Sample)

**P-value :** a probability of observing more extreme or equally extreme test statistic values than observed test statistic values under the null hypothesis

$$P(|Z| \ge |z| |H_0) = 2(1 - \Phi(z))$$



## 7.1 Inferences on Mean (Large Samples)

### 7.1.2 Hypothesis Tests on Mean (Large Sample)

Power Calculation for two-sided z-tests

$$\pi(\mu) = P(\text{Test rejects } H_0 \mid \mu)$$

Consider the problem of testing

$$H_0$$
:  $\mu = \mu_0 \ vs \ H_1$ :  $\mu \neq \mu_0$ 



$$\begin{split} \pi(\mu) &= P\left(\bar{X} < \mu_0 + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \,\middle|\, \mu\right) + P\left(\bar{X} > \mu_0 + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \,\middle|\, \mu\right) \\ &= P\left(Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < -z_{\alpha/2} + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}\right) + P\left(Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} > z_{\alpha/2} + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}\right). \\ &= \Phi\left[-z_{\alpha/2} + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}\right] + 1 - \Phi\left[z_{\alpha/2} + \frac{\mu_0 - \mu}{\frac{\sigma}{\sqrt{n}}}\right] \\ &= \Phi\left[-z_{\alpha/2} + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}\right] + \Phi\left[z_{\alpha/2} + \frac{\mu - \mu_0}{\sigma/\sqrt{n}}\right] \end{split}$$

## 7.1 Inferences on Mean (Large Samples)

### 7.1.2 Hypothesis Tests on Mean (Large Sample)

Sample Size Determination for a two-Sided z-test

The treatment effect

$$\delta = \mu - \mu_0$$

$$\iff \mu = \mu_0 + \delta$$

Consider power function

$$\pi(\mu) = \Phi \left[ -z_{\alpha/2} + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}} \right] + \Phi \left[ z_{\alpha/2} + \frac{\mu - \mu_0}{\sigma/\sqrt{n}} \right]$$
 Solve for  $n$ ,

Put  $\mu_0 + \delta$  or  $\mu_0 - \delta$  instead of  $\mu$ 

$$\pi(\mu_0 + \delta) = \pi(\mu_0 - \delta)$$

$$= \Phi\left[-z_{\alpha/2} - \frac{\delta}{\sigma/\sqrt{n}}\right] + \Phi\left[-z_{\alpha/2} + \frac{\delta}{\sigma/\sqrt{n}}\right] = 1 - \beta$$

A simple approximation can be obtained because for  $\delta > 0$ ,  $\Phi \left[ -z_{\alpha/2} - \frac{\delta}{\sigma/\sqrt{n}} \right]$  is negligible

Using the fact that  $\Phi[z_{eta}]\cong 1-eta$ ,  $-z_{lpha}+rac{\delta}{\sigma/\sqrt{n}}\cong z_{eta}$ 

$$n = \left[\frac{\left(z_{\alpha/2} + z_{\beta}\right)\sigma}{\delta}\right]^{2}$$

### 7.2 Inferences on Mean (Small Samples)

#### 7.2.1 Confidence Intervals on Mean (Small Sample)

Pivotal random variable

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

Two-sided 100(1- $\alpha$ )% CI for  $\mu$ :

$$\bar{x} - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$$

(The following probability statement leads to the CI for  $\mu$ )

$$P\left[-t_{n-1,\alpha/2} \le T = \frac{\overline{X} - \mu}{s/\sqrt{n}} \le t_{n-1,\alpha/2}\right] = 1 - \alpha$$

## 7.2 Inferences on Mean (Small Samples)

### 7.2.2 Hypothesis Tests on Mean (Small Sample)

$$H_0: \mu = \mu_0 \ vs \ H_1: \mu \neq \mu_0$$

When  $H_0$  is true,

The test statistic

Reject  $H_0$  if

equivalently,

$$E(\bar{X}) = \mu_0, Var(\bar{X}) = \frac{s^2}{n}$$

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

$$|t| > t_{n-1,\alpha/2}$$

$$|\bar{x} - \mu_0| > t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

## 7.2 Inferences on Mean (Small Samples)

### 7.2.2 Hypothesis Tests on Mean (Small Sample)

P-value

$$P(|T_{n-1}| \ge |t| | H_0) \text{ or } 2P(T_{n-1} \ge |t| | H_0)$$

Power Calculation for two-sided *z*-tests

$$\pi(\mu) = P(\text{Test rejects } H_0 \mid \mu)$$
$$= P\left(\left|\frac{\bar{X} - \mu_0}{s / \sqrt{n}}\right| > |t_{n-1,\alpha/2}| \mu\right)$$

where  $\mu$  is the true mean

### 7.3 Inferences on Variance

#### 7.3.1 Confidence Intervals on Variance

Pivotal random variable

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

Two-sided 100(1- $\alpha$ )% CI for  $\sigma^2$ :

$$\frac{(n-1)S^2}{\chi_{n-1,\frac{\alpha}{2}}^2} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{n-1,1-\frac{\alpha}{2}}^2}$$

(The following probability statement leads to the CI for  $\sigma^2$ )

$$P\left[\chi_{n-1,1-\frac{\alpha}{2}}^{2} \le \frac{(n-1)S^{2}}{\sigma^{2}} \le \chi_{n-1,\frac{\alpha}{2}}^{2}\right] = 1 - \alpha$$

### 7.3 Inferences on Variance

### 7.3.2 Hypothesis Tests on Variance

$$H_0: \sigma^2 = \sigma_0^2 \ vs \ H_1: \ \sigma^2 \neq \sigma_0^2$$

When  $H_0$  is true,

The test statistic

Reject  $H_0$  if

P-value

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} \sim \chi_{n-1}^2$$

$$\chi^2 > \chi^2_{n-1,\alpha/2}$$
 or  $\chi^2 < \chi^2_{n-1,1-\alpha/2}$ 

$$P(\chi_{n-1}^2 \ge \chi^2 \mid H_0)$$

### **HW Problem**

In order to test the accuracy of speedometers purchased from a subcontractor, the purchasing department of an automaker orders a test of a sample of speedometers at a controlled speed of 55 mph. At this speed, it is estimated that the readings will range  $\pm 2$  mph around the mean.

- (a) Set up the hypotheses to detect if the speedometers have any bias.
- (b) How many speedometers need to be tested to have a 95% power to detect a bias of 0.5 mph or greater using a 0.01-level test? Use the rough estimate of σ obtained from the range.
- (c) A sample of the size determined in (b) has a mean of  $\bar{x} = 55.2$  and s = 0.8. Can you conclude that the speedometers have a bias?
- (d) Calculate the power of the test if 50 speedometers are tested and the actual bias is 0.5 mph. Assume  $\sigma = 0.8$ .

## **C**ONTENTS

**3** CH8: Inferences for Two Samples

## **03** CH8: Inferences for Two Samples

### 8.1 Independent Samples and Matched Pairs Designs

### 8.1 Independent Samples and Matched Pairs Designs

- Independent sample design

Sample 1: 
$$x_1, x_2, ..., x_{n_1}$$

Sample 2: 
$$y_1, y_2, ..., y_{n_2}$$
.

- Matched pairs design

Sample 1: 
$$x_1$$
  $x_2$  ...  $x_n$ 

Sample 2: 
$$y_1$$
  $y_2$  ...  $y_n$ 

### 8.3.1 Independent Samples Design

- (1) <u>Inferences for Large Samples</u>
- Suppose that the observations  $x_1, x_2, ..., x_{n_1}$  and  $y_1, y_2, ..., y_{n_2}$  are random samples from two populations wi th means  $\mu_1$  and  $\mu_2$  and variances  $\sigma_1^2$  and  $\sigma_2^2$ , respectively.
- The goal is to compare  $\mu_1$  and  $\mu_2$  in terms of their differences  $\mu_1 \mu_2$ .

$$E(\bar{X} - \bar{Y}) = \mu_1 - \mu_2$$

$$Var(\bar{X} - \bar{Y}) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

### 8.3.1 Independent Samples Design

(1) Inferences for Large Samples

The standardized random variable

$$Z = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

By the central limit theorem (CLT).

For large samples,  $\sigma_1^2$  and  $\sigma_2^2$  can be replaced by  $s_1^2$  and  $s_2^2$ 

Two-sided 100(1- $\alpha$ )% CI for  $\mu_1 - \mu_2$ :

$$\bar{x} - \bar{y} - z_{\frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \le \mu_1 - \mu_2 \le \bar{x} - \bar{y} + z_{\frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

### 8.3.1 Independent Samples Design

(1) <u>Inferences for Large Samples</u> **Testing the hypothesis** 

$$H_0: \mu_1 - \mu_2 = \delta_0 \text{ vs } H_1: \mu_1 - \mu_2 \neq \delta_0$$

where  $\delta_0 = \mu_1 - \mu_2$  under  $H_0$ .

Typically  $\delta_0 = 0$  is used, which corresponds to testing

$$H_0$$
:  $\mu_1 = \mu_2 \ vs \ H_1$ :  $\mu_1 \neq \mu_2$ 

The test statistic

$$z = \frac{\bar{x} - \bar{y} - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

## **03** CH8: Inferences for Two Samples

## 8.3 Comparing Means of Two Populations

### 8.3.1 Independent Samples Design

(1) <u>Inferences for Large Samples</u>

Reject  $H_0$  if

or equivalently if

P-value

$$|z| > z_{\alpha}$$

$$|\bar{x} - \bar{y} - \delta_0| > z_{\frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

$$P(|Z| \ge |z| | H_0) = 2P(Z \ge |z|)$$

## **03** CH8: Inferences for Two Samples

## 8.3 Comparing Means of Two Populations

### 8.3.1 Independent Samples Design

(2) <u>Inferences for Small Samples</u>

(i) Case 1: 
$$\sigma_1^2 = \sigma_2^2$$

(ii) Case 2: 
$$\sigma_1^2 \neq \sigma_2^2$$

### 8.3.1 Independent Samples Design

- (2) <u>Inferences for Small Samples</u>
  - (i) Case 1:  $\sigma_1^2 = \sigma_2^2$
- Denote the common value of  $\sigma_1^2$  and  $\sigma_2^2$  by  $\sigma_2^2$ , which is unknown.
- An unbiased estimator of this parameter is the sample mean difference  $\bar{X} \bar{Y}$ .
- The **sample variances** from the two samples,

$$S_1^2 = \frac{\sum (X_i - \bar{X})^2}{n_1 - 1}$$
 and  $S_2^2 = \frac{\sum (Y_i - \bar{Y})^2}{n_2 - 1}$ 

are both unbiased estimators of  $\sigma^2$ 

- The **pooled estimator** is given by

$$S^{2} = \frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{(n_{1} - 1) + (n_{2} - 1)} = \frac{\sum (X_{i} - \bar{X})^{2} + \sum (Y_{i} - \bar{Y})^{2}}{n_{1} + n_{2} - 2}$$

which has  $n_1 + n_2 - 2$  d.f.

### 8.3.1 Independent Samples Design

(2) <u>Inferences for Small Samples</u>

(i) Case 1: 
$$\sigma_1^2 = \sigma_2^2$$

The **pivotal random variable** for  $\mu_1 - \mu_2$  is

$$T = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

which has  $n_1 + n_2 - 2$  d.f.

Two-sided 100(1- $\alpha$ )% CI for  $\mu_1 - \mu_2$ :

$$\bar{x} - \bar{y} - t_{n_1 + n_2 - \frac{\alpha}{2}} s \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \le \mu_1 - \mu_2 \le \bar{x} - \bar{y} + t_{n_1 + n_2 - \frac{\alpha}{2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

### 8.3.1 Independent Samples Design

(2) <u>Inferences for Small Samples</u>

(i) Case 1: 
$$\sigma_1^2 = \sigma_2^2$$

Testing the hypothesis

$$H_0: \mu_1 - \mu_2 = \delta_0 \text{ vs } H_1: \mu_1 - \mu_2 \neq \delta_0$$

where  $\delta_0 = \mu_1 - \mu_2$  under  $H_0$ .

Typically  $\delta_0 = 0$  is used, which corresponds to testing

$$H_0$$
:  $\mu_1 = \mu_2 \ vs \ H_1$ :  $\mu_1 \neq \mu_2$ 

The test statistic

$$t = \frac{\bar{x} - \bar{y} - \delta_0}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

### 8.3.1 Independent Samples Design

(2) <u>Inferences for Small Samples</u>

(i) Case 1: 
$$\sigma_1^2 = \sigma_2^2$$

Reject  $H_0$  if

or equivalently if

$$|t| > t_{n_1 + n_2 - 2, \alpha/2}$$

$$|\bar{x} - \bar{y} - \delta_0| > t_{n_1 + n_2 - 2, \alpha/2} s \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

P-value

$$P(|T_{n_1+n_2-2}| \ge |t|) = 2P(|T_{n_1+n_2-2}| \ge |t|)$$

### 8.3.1 Independent Samples Design

- (2) <u>Inferences for Small Samples</u>
  - (i) Case 1:  $\sigma_1^2 = \sigma_2^2$
- Denote the common value of  $\sigma_1^2$  and  $\sigma_2^2$  by  $\sigma_2^2$ , which is unknown.
- An unbiased estimator of this parameter is the sample mean difference  $\bar{X} \bar{Y}$ .
- The **sample variances** from the two samples,

$$S_1^2 = \frac{\sum (X_i - \bar{X})^2}{n_1 - 1}$$
 and  $S_2^2 = \frac{\sum (Y_i - \bar{Y})^2}{n_2 - 1}$ 

are both unbiased estimators of  $\sigma^2$ 

- The **pooled estimator** is given by

$$S^{2} = \frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{(n_{1} - 1) + (n_{2} - 1)} = \frac{\sum (X_{i} - \bar{X})^{2} + \sum (Y_{i} - \bar{Y})^{2}}{n_{1} + n_{2} - 2}$$

which has  $n_1 + n_2 - 2$  d.f.

### 8.3.1 Independent Samples Design

(2) <u>Inferences for Small Samples</u>

(i) Case 1: 
$$\sigma_1^2 = \sigma_2^2$$

The **pivotal random variable** for  $\mu_1 - \mu_2$  is

$$T = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

which has  $n_1 + n_2 - 2$  d.f.

Two-sided 100(1- $\alpha$ )% CI for  $\mu_1 - \mu_2$ :

$$\bar{x} - \bar{y} - t_{n_1 + n_2 - \frac{\alpha}{2}} s \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \le \mu_1 - \mu_2 \le \bar{x} - \bar{y} + t_{n_1 + n_2 - \frac{\alpha}{2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

### 8.3.1 Independent Samples Design

(2) <u>Inferences for Small Samples</u>

(ii) Case 
$$2:\sigma_1^2 \neq \sigma_2^2$$

The **pivotal random variable** for  $\mu_1 - \mu_2$  is

$$T = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_1^2}{n_2}}}$$

This *T* does not have a Student *t*-distribution. But the distribution of *T* can be *approximated* by Student's *t* wit h d.f. *v*. computed as follows.

Denote the standard errors of the means by  $SEM_1 = SEM(\bar{x}) = s_1/\sqrt{n_1}$  and  $SEM_2 = SEM(\bar{y}) = s_2/\sqrt{n_2}$ 

## **03** CH8: Inferences for Two Samples

## 8.3 Comparing Means of Two Populations

### 8.3.1 Independent Samples Design

(2) <u>Inferences for Small Samples</u>

(ii) Case 
$$2:\sigma_1^2 \neq \sigma_2^2$$

Let

$$w_1 = SEM_1^2 = \frac{S_1^2}{n_1}$$
 and  $w_2 = SEM_2^2 = \frac{S_2^2}{n_2}$ 

Then the **degrees of freedom** are given by

$$v = \frac{(w_1 + w_2)^2}{w_1^2(n_1 - 1) + w_2^2(n_2 - 1)}$$

\*\* The d.f. are estimated from data and are not a function of the sample sizes alone.

\*\* The d.f. are generally fractional. For convenience, we will truncate them town to the nearest integer.

### 8.3.1 Independent Samples Design

(2) <u>Inferences for Small Samples</u>

(ii) Case 
$$2:\sigma_1^2 \neq \sigma_2^2$$

Approximate Two-sided 100(1- $\alpha$ )% CI for  $\mu_1 - \mu_2$ :

$$\bar{x} - \bar{y} - t_{v,\frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \le \mu_1 - \mu_2 \le \bar{x} - \bar{y} + t_{n_1 + n_2 - \frac{\alpha}{2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

#### 8.3.1 Independent Samples Design

(2) <u>Inferences for Small Samples</u>

(ii) Case 
$$2:\sigma_1^2 \neq \sigma_2^2$$

#### Testing the hypothesis

$$H_0: \mu_1 - \mu_2 = \delta_0 \text{ vs } H_1: \mu_1 - \mu_2 \neq \delta_0$$

where  $\delta_0 = \mu_1 - \mu_2$  under  $H_0$ .

Typically  $\delta_0=0$  is used, which corresponds to testing

$$H_0$$
:  $\mu_1 = \mu_2 \ vs \ H_1$ :  $\mu_1 \neq \mu_2$ 

The test statistic

$$t = \frac{\bar{x} - \bar{y} - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

## **03** CH8: Inferences for Two Samples

### 8.3 Comparing Means of Two Populations

#### 8.3.1 Independent Samples Design

(2) <u>Inferences for Small Samples</u>

(ii) Case 
$$2:\sigma_1^2 \neq \sigma_2^2$$

Reject  $H_0$  if

or equivalently if

$$|t| > t_{v,\alpha/2}$$

$$|\bar{x} - \bar{y} - \delta_0| > t_{v,\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

P-value

$$P(|T_v| \ge |t|) = 2P(|T_v| \ge |t|)$$

This method of obtaining approximate CI's and hypothesis tests based on the approximate *t*-distribution of r.v. *T* is known as the **Welch-Satterthwaite method**.

## **03** CH8: Inferences for Two Samples

## 8.4 Comparing Variances of Two Populations

- Check the assumption of equal variances used for the pooled variances (Case 1) methods in Section 8.3.1.
- The methods below are applicable only under the assumption of normality of the data.
- We consider only the <u>independent samples design</u>.

Sample 1:  $x_1, x_2, ..., x_{n_1}$  is a random sample from an  $N(\mu_1, \sigma_1^2)$  distribution Sample 2:  $y_1, y_2, ..., y_{n_2}$  is a random sample from an  $N(\mu_2, \sigma_2^2)$  distribution

- To compare the two population variances, we use the ratio  $\frac{\sigma_1^2}{\sigma_2^2}$ .
- The ratio is estimated by  $s_1^2/s_2^2$

# **03** CH8: Inferences for Two Samples

## 8.4 Comparing Variances of Two Populations

Testing the hypothesis

$$H_0$$
:  $\frac{\sigma_1^2}{\sigma_2^2} = 1 \text{ vs } H_1$ :  $\frac{\sigma_1^2}{\sigma_2^2} \neq 1$ 

The pivotal r.v.

$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$$

which follows F-distribution with  $n_1 - 1$  and  $n_2 - 1$  d.f.

Reject  $H_0$  if

$$F < f_{n_1 - 1, n_2 - 1, 1 - \alpha/2}$$

or

$$F > f_{n_1 - 1, n_2 - 1, \alpha/2}$$

# **03** CH8: Inferences for Two Samples

## 8.4 Comparing Variances of Two Populations

Two-sided 100(1- $\alpha$ )% CI for  $\sigma_1^2/\sigma_2^2$ :

$$\frac{1}{f_{n_1-1,n_2-1,\alpha/2}} \le \frac{\sigma_1^2}{\sigma_2^2} \le \frac{1}{f_{n_1-1,n_2-1,1-\alpha/2}}$$

\*\* Note that

$$\frac{1}{f_{n_1-1,n_2-1,1-\alpha/2}} = f_{n_2-1,n_1-1,\alpha/2}$$

### **HW Problem**

Two brands of water filters are to be compared in terms of the mean reduction in impurities measured in parts per million (ppm). Twenty-one water samples were tested with each filter and reduction in the impurity level was measured, resulting in the following data:

Filter 1: 
$$n_1 = 21$$
  $\bar{x} = 8.0$   $s_1^2 = 4.5$   
Filter 2:  $n_2 = 21$   $\bar{y} = 6.5$   $s_2^2 = 2.0$ 

- (a) Calculate a 95% confidence interval for the mean difference  $\mu_1 \mu_2$  between the two filters, assuming  $\sigma_1^2 = \sigma_2^2$ . Is there a statistically significant difference at  $\alpha = .05$  between the two filters?
- (b) Repeat (a) without assuming  $\sigma_1^2 = \sigma_2^2$ . Compare the results.

## **C**ONTENTS

4 CH9: Inferences for Proportions and Count Data

## 9.1 Inferences on Proportion

#### 9.1.1 Large Sample Confidence Interval for Proportion

Sample proportion

$$\hat{p} = \frac{Y}{n} = \frac{\sum_{i=1}^{n} X_i}{n}$$

is an unbiased estimator of *p*.

By applying the **CLT**,  $\hat{p}$  is approximately  $N\left(p, \frac{pq}{n}\right)$  distributed for large n.

The guideline for treating n as large is

$$n\hat{p} \ge 10 \ and \ n(1-\hat{p}) \ge 10.$$

Approximate  $(1 - \alpha)$ -level CI for p is

$$\hat{p} - z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}} \le p \le \hat{p} + z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

## 9.1 Inferences on Proportion

### 9.1.1 Large Sample Confidence Interval for Proportion

Sample Size Determination for a Confidence Interval on Proportion

$$E = z_{\alpha} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

Solving this equation for *n* gives

$$n = \left(\frac{Z_{\alpha}}{F}\right)^2 \hat{p}\hat{q}$$

### 9.1 Inferences on Proportion

#### 9.1.2 Large Sample Hypothesis Tests on Proportion

$$H_0$$
:  $p = p_0 \ vs \ H_1$ :  $p \neq p_0$ 

When  $H_0$  is true,

$$\hat{p} \approx N\left(p_0, \frac{p_0 q_0}{n}\right), \qquad Y = n\hat{p} \approx N(np_0, np_0 q_0)$$

The standardized statistic:

$$z = \frac{\hat{p} - p_0}{\sqrt{p_0 q_0 / n}} = \frac{y - n p_0}{\sqrt{n \hat{p} \hat{q}}}$$

Then the  $\alpha$ -level two-sided z-test of  $H_0$ :  $p=p_0$  is equivalent to rejecting  $H_0$  when  $p_0$  falls outside the  $(1-\alpha)$ -level CI.

## 9.1 Inferences on Proportion

#### 9.1.2 Large Sample Hypothesis Tests on Proportion

Power Calculation and Sample Size Determination for Large Sample Tests on Proportion

$$E(Z) = \frac{\hat{p} - p_0}{\sqrt{p_0 q_0/n}} \text{ and } Var(Z) = \frac{pq}{p_0 q_0}$$

$$\pi(p) = P\{Z > Z_{\alpha}|p\} = \Phi\left[\frac{p - p_0\sqrt{n} - z_{\alpha}\sqrt{p_0q_0}}{\sqrt{pq}}\right]$$

$$n = \left[ \frac{z_{\alpha} \sqrt{p_0 q_0} + z_{\beta} \sqrt{p_1 q_1}}{\delta} \right]^2$$

### 9.1 Inferences on Proportion

#### 9.1.3 Small Sample Hypothesis Tests on Proportion

- Large sample hypothesis tests on p are based on the asymptotic normal distribution of the sample proportion  $\hat{p}$  or equivalently of  $n\hat{p} = Y$ , which is the sample sum.

#### **Exact binomial distribution**

$$H_0: p \le p_0 \text{ vs } H_1: p > p_0$$

$$P - value = P(Y \ge y \mid p = p_0) = \sum_{i=y}^{n} {n \choose i} p_0^i (1 - p_0)^{n-i}$$

## 9.2 Inferences for Comparing Two Proportions

### 9.2.1 Independent Sample Design

relative risk = 
$$\frac{p_1}{p_2}$$
, odds ratio =  $\frac{\frac{p_1}{1-p_1}}{\frac{p_2}{1-p_2}}$ 

#### (1) Inferences for Large Samples

The guideline for large samples:

$$\begin{split} n_1 \hat{p}_1, n_1 (1 - \hat{p}_1) &\geq 10 \quad and \quad n_2 \hat{p}_2, n_2 (1 - \hat{p}_2) \geq 10 \\ E(\hat{p}_1 - \hat{p}_2) &= p_1 - p_2 \\ Var(\hat{p}_1 - \hat{p}_2) &= \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2} \end{split}$$

For large  $n_1, n_2$ ,

$$Z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}} \approx N(0,1)$$

## 9.2 Inferences for Comparing Two Proportions

#### 9.2.1 Independent Sample Design

The null hypothesis to be tested is  $H_0$ :  $p_1 = p_2$  (i. e.  $\delta_0 = 0$ ).

A pooled estimate of *p* is

An alternative test statistic

$$\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2} = \frac{x + y}{n_1 + n_2}$$

$$z = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

## 9.2 Inferences for Comparing Two Proportions

#### 9.2.1 Independent Sample Design

(2) Inferences for Small Samples

Fisher's exact test

**Table 9.3** A 2 × 2 Table for Data from Two Independent Bernoulli Samples

|              | Outcome |           | Row            |
|--------------|---------|-----------|----------------|
|              | Success | Failure   | Total          |
| Sample 1     | x       | $n_1 - x$ | $n_1$          |
| Sample 2     | y       | $n_2 - y$ | n <sub>2</sub> |
| Column Total | m       | n-m       | n              |

The test is derived by regarding the total number of successes m as fixed, i.e. by conditioning on X + Y = m.

$$P(X = i \mid X + Y = m) = \frac{\binom{n_1}{i}\binom{2}{m-i}}{\binom{n}{m}}$$

## 9.2 Inferences for Comparing Two Proportions

#### 9.2.2 Matched Pair Design

A + B + C + D = n and the probabilities of the four possible outcomes on a single trial:  $p_A$ ,  $p_B$ ,  $p_C$ ,  $p_D$ , where  $p_A + p_B + p_C + p_D = 1$ .

Then A,B,C,D have a multinomial distribution with sample size = n and the given outcome probabilities.

Table 9.5 A 2 × 2 Table for Data from Two Matched Pairs Bernoulli Samples Condition 2 Response

The response (success) probability under condition 1 is  $p_1 = p_A + p_B$  and under condition 2 is  $p_2 = p_C + p_D$ . Note that  $p_1 - p_2 = p_B - p_C$ . (Testing the difference between  $p_1$  and  $p_2$ )

$$B \sim Bin\left(m, p = \frac{p_B}{p_B + p_C}\right)$$

## 9.2 Inferences for Comparing Two Proportions

#### 9.2.2 Matched Pair Design

 $H_0$ :  $p_B = p_C$  becomes  $H_0$ :  $p = \frac{1}{2}$ , which can be tested by using binomial distribution. (**McNemar's test**). \*\* (2\* 2 contingency table)

$$H_0: p = \frac{1}{2} \text{ vs } H_1: p > \frac{1}{2}$$

The P-value corresponding to the observed test statistic *b* is

$$P - value = P(B \ge b | B + C = m) = \sum_{i=b}^{m} {m \choose i} \left(\frac{1}{2}\right)^{i} \left(\frac{1}{2}\right)^{m-i} = \left(\frac{1}{2}\right)^{m} \sum_{i=b}^{m} {m \choose i}$$

### 9.2 Inferences for Comparing Two Proportions

#### 9.2.2 Matched Pair Design

If *m* is large, then the large sample z-statistic with a **continuity correction** can be applied by calculating

$$z = \frac{b - mp_0 - \frac{1}{2}}{\sqrt{mp_0(1 - p_0)}} = \frac{b - \frac{m}{2} - \frac{1}{2}}{\sqrt{\frac{m}{4}}} = \frac{b - c - 1}{\sqrt{b + c}}$$

### 9.3 Inferences for One-Way Count Data

#### 9.3.1 A test for the Multinomial Distribution

- Denote the cell probabilities by  $p_1, p_2, ..., p_c$ , the observed cell counts by  $n_1, n_2, ..., n_c$ , and the corresponding random variables by  $N_1, N_2, ..., N_c$  with  $\sum_{i=1}^c p_i = 1$  and  $\sum_{i=1}^c n_i = \sum_{i=1}^c N_i = n$ .
- The joint distribution of the  $N_i$  is the **multinomial distribution** given by

$$P\{N_1 = n_1, N_2 = n_2, \dots, N_c = n_c\} = \frac{n!}{n_1! \, n_2! \dots n_c!} p_1^{n_1} p_2^{n_2} \dots p_c^{n_c}$$

We consider the problem of testing

$$H_0: p_1 = p_{10}, p_2 = p_{20}, ..., p_c = p_{c0} \text{ vs } H_1: At \text{ least one } p_i \neq p_{i0}$$

- Assuming that  $H_0$  is true, the expected cell counts  $e_i$  is

$$e_i = np_{i0}$$
  $(i = 1, 2, ..., c)$ 

## 9.3 Inferences for One-Way Count Data

#### 9.3.1 A test for the Multinomial Distribution

The measure of discrepancy is using Pearson chi-square statistic

$$\chi^{2} = \sum_{i=1}^{c} \frac{(n_{i} - e_{i})^{2}}{e_{i}} = \sum \frac{(\text{observed} - \text{expected})^{2}}{\text{expected}}$$

When  $H_0$  is ture, the large sample distribution of the r.v. can be rejected at level  $\alpha$  if

$$\chi^2 > \chi^2_{c-1,\alpha}$$

where  $\chi^2_{c-1,\alpha}$  is the upper  $\alpha$  critical point of the  $\chi^2$ -distribution with c-1 d.f.

## 9.3 Inferences for One-Way Count Data

#### 9.3.2 Chi-Squared Goodness of Fit Test

- To determine whether a specified distribution fits a set of data
- If any parameters of the distribution are estimated from the data, then one d.f. is deducted for each independent estimated parameter from the total d.f. *c*-1.

Thank you!