Chapter 1

Eigenvectors and eigenvalues

We will study the eigenvalue-eigenvector condition $\,$

 $A\mathbf{v} = \lambda \mathbf{v}.$

Finding eigenvalues

Remember that the eigenvalue-eigenvector condition is $A\mathbf{v} = \lambda \mathbf{v}$, which we have rewritten as

$$(A - \lambda I)\mathbf{v} = 0.$$

If there is a nonzero vector ${\bf v}$ that satisfies this equation, then

$$\det(A - \lambda I) = 0,$$

which we have called the *characteristic equation*.

- **1.** Suppose we have the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$.
 - (a) Form the matrix $A \lambda I$ and find the characteristic polynomial $\det(A \lambda I)$.

(b) Find the eigenvalues λ by solving the characteristic equation $\det(A - \lambda I) = 0$.

(c) For each eigenvalue λ , find a basis for the corresponding eigenspace E_{λ} by solving the equation $(A - \lambda I)\mathbf{v} = 0$.

- 2. In this exercise, we will find the eigenvalues of two more matrices.
 - (a) Find the characteristic polynomial of the matrix $B = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ and use it to find the eigenvalues of B. For each eigenvalue λ , find a basis for the corresponding eigenspace E_{λ} .

(b) Find the characteristic polynomial of the matrix $C = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. What does this tell you about the eigenvalues of C?