Cálculo I Series de números reales

Universidad de Granada Departamento de Análisis Matemático

Condición necesaria para la convergencia de una serie

Para que la serie $\sum_{n\geq 1} a_n$ sea convergente es necesario que $\lim \{a_n\} = 0$.

Esta condición necesaria no es suficiente: $\{\frac{1}{n}\} \to 0$ pero la serie armónica $\sum \frac{1}{n}$ no es convergente. Se trata de una condición necesaria para la convergencia de una serie, por tanto cuando dicha condición no se cumple la serie no es convergente.

Una serie $\sum a_n$ tal que $a_n \ge 0$ para todo $n \in \mathbb{N}$, se dice que es una *serie de términos positivos*.

Una serie de términos positivos es una sucesión creciente por lo que o bien es convergente (cuando está mayorada) o es positivamente divergente.

Criterio básico de convergencia para series de términos positivos Una serie de términos positivos $\sum_{n\geqslant 1} a_n$ es convergente si, y sólo si, está mayorada, es decir, existe un número M>0 tal que para todo $n\in\mathbb{N}$ se verifica que $\sum_{k=1}^{n} a_k \leqslant M$, en cuyo caso su suma viene dada por:

$$\sum_{n=1}^{\infty} a_n = \sup \left\{ \sum_{k=1}^{n} a_k : n \in \mathbb{N} \right\}.$$

Una serie de términos positivos que no está mayorada es (positivamente) divergente.

Ejemplo. La serie $\sum_{n\geq 1} \frac{1}{n^2}$ es convergente.

Criterio básico de comparación

Sean $\sum_{n\geq 1} a_n$ y $\sum_{n\geq 1} b_n$ dos series de términos positivos. Supongamos que hay un número $k\in\mathbb{N}$ tal que $a_n\leqslant b_n$ para todo n>k. Entonces se verifica que si la serie $\sum_{n\geq 1} b_n$ es convergente, también $\sum_{n\geq 1} a_n$ es convergente o, equivalentemente, si la serie $\sum_{n\geq 1} a_n$ es divergente también $\sum_{n\geq 1} b_n$ es divergente.

Criterio límite de comparación

Sean $\sum_{n\geq 1} a_n$ y $\sum_{n\geq 1} b_n$ dos series de términos positivos, y supongamos que

$$\left\{\frac{a_n}{b_n}\right\} \to L \in \mathbb{R}_0^+ \cup \{+\infty\}.$$

- Si $L = +\infty$ y $\sum_{n \ge 1} b_n$ es divergente también $\sum_{n \ge 1} a_n$ es divergente.
- Si L = 0 y $\sum_{n \ge 1} b_n$ es convergente también $\sum_{n \ge 1} a_n$ es convergente.
- Si $L \in \mathbb{R}^+$ las series $\sum_{n \ge 1} a_n$ y $\sum_{n \ge 1} b_n$ son ambas convergentes o ambas divergentes.

Criterio límite de comparación

Sean $\sum_{n\geq 1} a_n$ y $\sum_{n\geq 1} b_n$ dos series de términos positivos, y supongamos que

$$\left\{\frac{a_n}{b_n}\right\} \to L \in \mathbb{R}_0^+ \cup \{+\infty\}.$$

- Si $L = +\infty$ y $\sum_{n \ge 1} b_n$ es divergente también $\sum_{n \ge 1} a_n$ es divergente.
- Si L = 0 y $\sum_{n \ge 1} b_n$ es convergente también $\sum_{n \ge 1} a_n$ es convergente.
- Si $L \in \mathbb{R}^+$ las series $\sum_{n \ge 1} a_n$ y $\sum_{n \ge 1} b_n$ son ambas convergentes o ambas divergentes.

En particular, si dos sucesiones de números positivos, $\{a_n\}$ y $\{b_n\}$ son asintóticamente equivalentes, las respectivas series, $\sum a_n$ y $\sum b_n$ ambas convergen o ambas divergen.

Criterio de condensación de Cauchy

Sea $\{a_n\}$ una sucesión decreciente de números positivos. Se verifica que las series $\{A_n\}$ y $\{B_n\}_{n\in\mathbb{N}_0}$, donde

$$A_n = a_1 + a_2 + \dots + a_n$$
, $B_n = a_1 + 2a_2 + 4a_4 + \dots + 2^n a_{2^n}$

ambas convergen o ambas divergen.

$$A_n \le a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + \dots + (a_{2^n} + a_{2^n+1} + \dots + a_{2^{n+1}-1}) \le a_1 + 2a_2 + 4a_4 + \dots + 2^n a_{2^n} = B_n$$

$$\frac{1}{2}B_n = \frac{1}{2}a_1 + a_2 + 2a_4 + 4a_8 + \dots + 2^{n-1}a_{2^n} \le
\le a_1 + a_2 + (a_3 + a_4) + (a_5 + a_6 + a_7 + a_8) + \dots + (a_{2^{n-1}+1} + \dots + a_{2^n})
= A_{2^n}$$

Series de Riemann

Dado un número real α , la serie $\sum_{n \ge 1} \frac{1}{n^{\alpha}}$ se llama serie de Riemann de exponente α . Dicha serie es convergente si, y sólo si, $\alpha > 1$.

Series de Bertrand

La serie $\sum_{n\geqslant 2} \frac{1}{n^{\alpha}(\log n)^{\beta}}$ converge si $\alpha > 1$ cualquiera sea β , y también si $\alpha = 1$ y $\beta > 1$. En cualquier otro caso es divergente.

Criterio del cociente o de D'Alembert (1768)

Supongamos que $a_n > 0$ para todo $n \in \mathbb{N}$.

- a) Si $\limsup \left\{ \frac{a_{n+1}}{a_n} \right\} = L < 1$ la serie $\sum_{n \ge 1} a_n$ es convergente.
- b) Si $\liminf \left\{ \frac{a_{n+1}}{a_n} \right\} = \ell > 1$ o si hay un número $k \in \mathbb{N}$ tal que para todo $n \ge k$ es $\frac{a_{n+1}}{a_n} \ge 1$, entonces $\{a_n\}$ no converge a cero y por tanto $\sum_{n \ge 1} a_n$ no es convergente.

Cuando se verifica que

$$\liminf \left\{ \frac{a_{n+1}}{a_n} \right\} \leqslant 1 \leqslant \limsup \left\{ \frac{a_{n+1}}{a_n} \right\}$$

la serie puede ser convergente o divergente.

En particular, si se verifica que $\lim \left\{ \frac{a_{n+1}}{a_n} \right\} = L \in \mathbb{R}_0^+ \cup \{+\infty\}$ entonces:

- a) Si L < 1 la serie $\sum_{n \ge 1} a_n$ converge.
- b) Si L > 1 o si $L = +\infty$, la sucesión $\{a_n\}$ no converge a cero y por tanto la serie $\sum_{n \ge 1} a_n$ no es convergente.

Cuando L = 1 la serie puede ser convergente o divergente.

Criterio de la raíz o de Cauchy (1821)

Sea $\sum_{n\geq 1} a_n$ una serie de términos positivos y sea

$$\limsup \left\{ \sqrt[q]{a_n} \right\} = L \in \mathbb{R}_0^+ \cup \{+\infty\}.$$

- a) Si L < 1 la serie $\sum_{n \ge 1} a_n$ es convergente.
- b) Si L > 1 o si $L = +\infty$ o si hay un número $k \in \mathbb{N}$ tal que para todo $n \ge k$ es $\sqrt[n]{a_n} \ge 1$, entonces $\{a_n\}$ no converge a cero y por tanto la serie $\sum_{n \ge 1} a_n$ es divergente.

En el caso de que $\limsup \{\sqrt[4]{a_n}\} = 1$ la serie puede ser convergente o divergente.

En particular, si se verifica que $\lim \{\sqrt[q]{a_n}\} = L \in \mathbb{R}_0^+ \cup \{+\infty\}$ entonces:

- a) Si L < 1 la serie $\sum_{n>1} a_n$ converge.
- b) Si L > 1 o si $L = +\infty$, entonces $\{a_n\}$ no converge a cero y por tanto la serie $\sum_{n \ge 1} a_n$ es divergente.

En el caso de que $\lim \{\sqrt[n]{a_n}\} = 1$ la serie puede ser convergente o divergente.

Criterio de Raabe (1832)

Supongamos que $a_n > 0$ para todo $n \in \mathbb{N}$, y pongamos $R_n = n\left(1 - \frac{a_{n+1}}{a_n}\right)$. Supongamos que $\lim \{R_n\} = L \in \mathbb{R} \cup \{-\infty, +\infty\}$.

- i) Si L > 1 o $L = +\infty$, la serie $\sum_{n \ge 1} a_n$ es convergente.
- ii) Si L < 1 o $L = -\infty$ o si existe algún $k \in \mathbb{N}$ tal que $R_n \le 1$ para todo $n \ge k$, entonces la serie $\sum_{n \ge 1} a_n$ es divergente.

Forma alternativa del criterio de Raabe

Sea $a_n > 0$ para todo $n \in \mathbb{N}$ y supongamos que lim $\frac{a_{n+1}}{a_n} = 1$. Pongamos

$$S_n = \left(\frac{a_n}{a_{n+1}}\right)^n.$$

- i) Si $S_n \to e^L \operatorname{con} L > 1$ o si $S_n \to +\infty$, la serie $\sum_{n \ge 1} a_n$ es convergente.
- ii) Si $S_n \to e^L \operatorname{con} L < 1$ o si $S_n \to 0$, la serie $\sum_{n \ge 1} a_n$ es divergente.

Se dice que una serie $\sum_{n\geq 1} a_n$ es **conmutativamente convergente** si para toda

biyección $\pi: \mathbb{N} \to \mathbb{N}$, se verifica que la serie definida por la sucesión $\{a_{\pi(n)}\}$, es decir la serie

$$\sum_{n\geq 1} a_{\pi(n)} = \{a_{\pi(1)} + a_{\pi(2)} + \cdots + a_{\pi(n)}\}\$$

es convergente.

Se dice que una serie $\sum_{n\geq 1} a_n$ es **absolutamente convergente** si la serie

$$\sum_{n\geq 1} |a_n| \text{ es convergente.}$$

Toda serie absolutamente convergente es convergente.

Toda serie absolutamente convergente es conmutativamente convergente.

Además, si la serie $\sum_{n\geq 1} a_n$ es absolutamente convergente, entonces para toda

biyección $\pi: \mathbb{N} \to \mathbb{N}$ se verifica que:

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{\pi(n)}$$

Teorema de Riemann. Sea $\sum_{n\geqslant 1} a_n$ una serie convergente pero no absolutamente convergente y sea $\alpha\in\mathbb{R}\cup\{-\infty,+\infty\}$. Entonces existe una biyección $\pi:\mathbb{N}\to\mathbb{N}$ tal que la serie $\sum a_{\pi(n)}$ verifica que

$$\sum_{n=1}^{\infty} a_{\pi(n)} = \alpha.$$

Convergencia absoluta ← Convergencia conmutativa

Criterio de Leibniz para series alternadas

Supongamos que la sucesión $\{a_n\}$ es decreciente y convergente a cero. Entonces la serie alternada $\sum_{\substack{n \ge 1 \\ \infty}} (-1)^{n+1} a_n$ es convergente. Además, si

$$S_n = \sum_{k=1}^n (-1)^{k+1} a_k \text{ y } S = \sum_{n=1}^\infty (-1)^{n+1} a_n, \text{ entonces para todo } n \in \mathbb{N} \text{ se verifica}$$

$$\text{que } |S - S_n| \leq a_{n+1}.$$