Statistical Vices and Virtues

CLPS 2908 L7 | Feb 21, 2019

Consider Your Results

Case 1: Most of your studies show the effect, p < .05

- 5 of 6 3 of 4 2 of 3 1 of 2
- · What to do with the outlier study: report? ignore? try to explain?
- What if the outlier study is first or last?
- · Remedy: effect sizes, mini meta-analysis, moderators
 - · New best practice: report everything, somewhere

Case 2: You run 40 subjects.

- A. You get p = .20. You run 20 more subjects, p < .05.
- **B.** You get p < .05. You don't run any more subjects.
 - For A: Report as two studies, one replicating the first; could do mini meta-analysis
 - For B: Replicate

50% check significance before deciding to run more subjects
John, L. K., Loewenstein, G. & Prelec, D. (2012). Measuring the prevalence of questionable research

practices with incentives for truth telling. Psychological Science, 23, 5234-532.

Origins of "Significance" Threshold

Statistical "significance" (Fisher, 1925)

- · .05, a "convenient" cut-off
- · Later relativized, but too late... categorical thinking had taken hold

The "null hypothesis" — why are really afraid of it

- Two ways of being wrong; and their differential costs
 - α error = (claim | false). We avoid it like the pest, allowing .05 of this error rate.
 - β error = (deny | true); 1β = (declare | true) = statistical power.
 - We are very tolerant (or ignorant), allowing .20 (or often more) of this error rate.

The reasonable concern:

- · We shouldn't believe false claims (but should we be ignorant about true claims?)
- Maybe worse: Colquhoun, 2014: 30% of our p < .05 results are false claims

Significance Testing Procedure

Problems with standard approach:

- Dichotomy vs. continuum
- Doesn't actually test hypotheses of interest (e.g., H_1 vs. H_2)
 - We are testing against chance (is H_0 our greatest concern?)
- Ignores effect sizes, what *actually* generalizes (**not** a probability of replication but $p(\text{data} \mid H_0)$.
- Power problems, partly due to overly stringent α , especially in replications due to effect size sampling errors.
- Accepting / rejecting individual tests vs. accumulation of results (Rosenthal & Rosnow, Schmidt) → meta-analysis

Powerless: Two-sample t test, M_1 = 2.8, M_2 = 4.1

Assume: true ES = .50, $s_e(ES)$ = .38 Data: $N_E = N_C = 15$

p-value Roulette

https://www.youtube.com/watch?v=ez4DgdurRPg

Simulating d = .50 at power $\sim .50$

How many times would you (or your advisor) gamble before you stop if the criterion of winning is p < .05?

Amplifiers of p obsession

Publication pressure (→ researcher decisions)

Publication bias (→ audience judgments)

Little public regulation until recently

Replication crisis has changed things

Lilienfeld, S. (2010) Scientific American, 303, 18

Two factors fostering confirmation bias in science:

- 1. Data show that eminent scientists tend to be more arrogant and confident than other scientists.
 - → especially vulnerable to confirmation bias
- 2. Pressure on scholars to conduct single-hypothesis-driven research programs supported by huge federal grants is a recipe for trouble.
 - highly motivated to disregard or selectively reinterpret negative results that could doom one's career.

p Practices

Past: Search until you find...

EDA done right and wrong

What you needed to reach until recently: p < .05, p < .01, p < .001

- · Sometimes incredible efforts to get below the threshold
- New best practice: report exact p; leave interpretation to body of evidence

Effect size reporting

- Past: strategic pactices (yes, when large and p > .05; no, when small but p < .05)
- New best practice: always report (typically d)

3,627 p values from JEP: General; JPSP; Psychological Science: 12 issues each

Surge of p-values between .041 and .049 across time and disciplines

Wicherts, Bakker, and Molenaar (2011) found that researchers were especially unlikely to share their published data for reanalysis if their p values were just below .05.

Percentage of positive results in published articles

A Collection of Vices

Two groups, N = 20 each.

Situation A: three *t* tests, one on each of two dependent variables and a third on their average. Pick.

Situation B: one t test after collecting n = 20 per cell and another after collecting additional n = 10 per cell.

Situation C: one *t* test, an analysis of variance adding a gender main effect, and an analysis of covariance with a gender interaction.

	Effective False Positives if:		
Researcher degrees of freedom	p < .1	p < .05	10. > q
Situation A: two dependent variables $(r = .50)$	17.8%	9.5%	2.2%
Situation B: addition of 10 more observations per cell	14.5%	7.7%	1.6%
Situation C: controlling for gender or interaction of gender with treatment	21.6%	11.7%	2.7%
Situation D: dropping (or not dropping) one of three conditions	23.2%	12.6%	2.8%
Combine Situations A and B	26.0%	14.4%	3.3%
Combine Situations A, B, and C	50.9%	30.9%	8.4%
Combine Situations A, B, C, and D	81.5%	60.7%	21.5%

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. *Psychological Science*, 22, 1359–1366.