Clinton Bowen

https://www.torrho.com Clinton.Bowen@gmail.com | 818.687.1941

EDUCATION

CAL STATE NORTHRIDGE

MASTERS IN APPLIED MATHEMATICS TECHNOLOGIST Expected May 2015

BS IN APPLIED MATHEMATICS May 2010

LINKS

: LinkedIn

SOFTWARE

LANGUAGES

 $\mathbb{C}++$

C#

Java

MTFX Mathematica Mathematica

Matlab

Python

SQL (MySQL, PostgreSQL, SQLite)

FRAMEWORKS & LIBRARIES

.NFT

Sage Python

SciPy

RSA BSAFE

Gurobi

CPLEX

Diango (and GeoDiango)

PeachFuzz

MiniFuzz

DEVELOPMENT OPERATIONS

IC-Agile Certified Professional Secure Development Lifecycle Practitioner

Top Secret SCI Active (No FSP)

SKILLS

SYSTEM ENGINEERING

GPS

Subject Matter Expert (SME) on C/A and CNAV

CRYPTOGRAPHY + CYBER-SEC Engineering Standards

SME on FIPS 140 to 202 • Cyber-Security Framework • SME on Special Publications 800 Series • RFCs • CNSSPs • DODAF

EXPERIENCE

BOOZ ALLEN HAMILTON ENGINEERING SERVICES, LLC

June 2010 - Present | El Segundo, CA

- Directing weekly technical meetings between a team of software developers and clients for project management
 - Capture customer input into software development and system engineering requirements and tasks
 - Provide schedule and progress of software development & system engineering tasks and backlog items
 - Illustrate and present system designs and constraints to customers in DOD Architectural Framework formats
 - Prioritize software development tasks for software development
- Provides mentorship for software development interns
 - Issue tasks for interns
 - Provide guidance for completion of tasks
- Provided cryptographic analysis for a GPS CNAV project
 - Identified feasible cryptographic solutions
 - Assisted in drafting a cryptographic protocol for authentication of associated data and high level overview of key management
 - Consulted and developed software for prototyping the cryptographic concept
- Designed a SOAP software architecture for GPS SAASM Mission Planning System
- Designed C# framework, ATLAS, for internal use within the Booz Allen Hamilton Advanced Research and Development office
- Desgined, developed, & tested a MATLAB Reed-Solomon error correction code library without the MATLAB Communication Toolbox
- Developed & demonstrated a cryptographic use case using SHA-3 based algorithms in embedded C software for a PIC24HJ12GP201I Controller
- Built and demonstrated Zigbee 802.15.4 wireless data transfer software in C to potential business partners
- Designed, developed, & tested a random number generation test suite in C# based on NIST SP800-21
- Developed & tested C/C# cryptographic (ECDSA & SHA-2) software for a software GPS receiver • Designed, developed, & tested message optimization software for GPS L2C
- and L5 signals in python • Modeled, developed, & tested message packing software for GPS C/A signal
- in python • Corrected NIST test vectors for SHA-2 based digital signature algorithms
- Contributed the 'K' in SHAKE for NIST FIPS-202
- Designed and prototyped a cradle to grave management system for NIST compliant cryptographic keys that met NIST SP800-53 SC-12 (1) and (2)
- Drafted CONOPS documents for cryptographic systems
- Drafted command and control software operator manuals
- Drafted key management plans and non-standard key handling agreements for cryptography systems

COURSEWORK

GRADUATE

Markov Chains
Measure Theory
Partial Differential Equations (PDEs)
Regression Analysis
Functional Analysis
Set Topology
Numerical Methods for Interpolation
Numerical Methods for PDEs
Mathematical Modelling

COURSERA

Discrete Optimization Linear and Discrete Optimization

BLACK HAT 2014

C and C++ Source Code Auditing Application Security for Developers and Attackers

RESEARCH

LIE GROUPS, HOMOGENEOUS MANIFOLDS, AND COMPLEX PROJECTIVE SPACES | Co-Authored with Mayra Moran and

ATOUR BEAN

May 2009

Partially funded by NSF Grant DMS-0502258

MESSAGE OPTIMIZATION OVER GPS CIVIL NAVIGATION SIGNALS | SUBMITTING TO ION GNSS+ 2015

2015

In this paper, we pose the problem of maximizing the number of special messages allowed while observing the messaging constraints defined in IS-200 and IS-705 for the GPS signals L2C and L5. The problem is posed using a graph of feasible message sequencing and then modelling the graphs as linear constraints for a linear programming (LP) problem.

PRESENTATIONS

2014	Permutation and Construction Library: A Library for Permutation Based Cryptography
2014	What the Heck is Fuzz-Testing?
2014	BlackHat, DEFCON, SHA-3, & DIAC: The Summer Conferences
2014	Configuration Management within Booz Allen Hamilton
	and an Introduction to C# Phalanx
2014	Message Optimization over L2C and L5
2013	Error Correction Codes over Finite Fields
2012	Mission Planning Optimization
2010	Reed Solomon Error Correction Codes

MISCELLANEOUS SOFTWARE DEVELOPMENT

SOFTWARE DEVELOPMENT IN ACADEMIA August 2007 – May 2014 | Cal State Northidge

- Developed a python script to generate random trees using Markov chains
- Developed R scripts to perform multiregression analysis (ANOVA, \mathbb{R}^2 , principle component analysis) on car data to model miles per gallon
- Developed R scripts for bootstapping limited samples to develop statistical tests over the sampling distribution
- Developed a MATLAB application which was able to identify individuals from their voice using partial differential equations
- Used C++ OpenCV to identify text in arabic and english from a digital images. Application was used for an unmanned air vehicle project
- Developed a python application to optimize resource scheduling management software using evolution algorithms
- Modeled Joukowski air foils (aircraft wing lift) as a system of partial differential equations in Mathematica
- Modeled growth and decay of animal and bacteria populations as a system of partial differential equations in Mathematica

PERSONAL SOFTWARE DEVELOPMENT June 2004 - Present

- Currently developing an open source, formally verified, symbolically tested, library for standardized cryptographic permutations and constructions
 - Using LLVM KLEE based platforms for symbolic testing
 - Permutations slated for inclusion are Keccak and any permutation that is selected for the second round of the authenticated encyrption associated data algorithm competition, CAESAR.
- Developed python code for interpolating stochastic differential equations for use in modern portfolio theory and management
- Web development in Drupal CMS (version 4,5, and 6)