MAJOR SECTIONS OF THIS THESIS DEFENSE

- Problem Statement
- Objectives
- Scope & Limitations
- Theoretical Framework Literature Review
- Methodology

Case Study of Service Provider Y for gym & fitness

Thesis Defense

— SUBMITTED BY
NGUYEN THUY KHANH

PERSONALIZED RFM-ANALYSIS BASED RECOMMENDER by COLLABORATIVE FILTERING

BACKGROUND

CUSTOMER BEHAVIOR TRANSFORMATION LEADS TO THE URGE OF BIG DATA ANALYTICS ADOPTION

Customer interaction: Company Y adopted an online business upgrade

- Marketing (Mailing / Mobile App): update promo/info to all users weekly to monthly
- Nearly no record improvements in user interactions, rates of active users and newcomers

Customer segmentation based on standard Marketing rules

- No customized contents delivered to particular customers

The need for an effective way to:

- target specific customer groups
- communicate with potential customers, reactivate at-risk clients and retain valued ones

The thesis promotes RS integration with other systems, in the case of firm Y, the market segmentation base is therefore proposed and implemented.

Personalized Recommender system is hereby the answer

- PART 1

Problem Statement - CASE STUDY

Objectives

THIS STUDY PROPOSES AN INTEGRATED FRAMEWORK OF A PERSONALIZED PRODUCT RECOMMENDER BASED ON WEIGHTED RECENCY, FREQUENCY, MONETARY (RFM) ANALYSIS.

- Derived priorities for each variable by the AHP method, the weighted RFM analysis is employed where conducts and compares k-means and fuzzy c-means clustering algorithms; then obtains the optimal number of customer segments.
- Finally, the model implements **User-based collaborative filtering** to provide product recommendations to each segment. To highlight our model benmarch, compare our model vs both the traditional CF system and Non-weighted RFM.

SCOPE

- 30,000 historical customer transactions were collected from 28 August 2020 to 19 May 2021 at all 6 Ho Chi Minh city stores
- The key assumption of our research: customers in the same segment would likely share the same purchasing behavior

LIMITATION

- Product attributes are overlooked
- Limited data to current demographical users (around the South Vietnam area)
- None customer communication trackings (via mobile application/email) except transactions -> only can measure indirectly the Real-time model performance.

Theoretical Framework - PART 2

RECOMMENDER SYSTEM (RS)

Information Filtering that allows predicting products, services, and content that users may be interested in based on information collected

RS includes Content-based (CBF) and Collaborative Filtering (CF)

- Two types of CF models have been researched: memory-based CF (User-user /Item-item CF) and model-based (e.g. Association Rules)

THE RENOWNED RFM BY CLUSTERING TECHNIQUES

- (i) Recency (R) measures the **time** since the **last** transaction
- (ii) Frequency (F) measures **number of purchases** during a specific period
- (iii) Monetary (M) measures the amount of **money** that customer **spends during a period.**

WELL-KNOWN APPLICATION FOR CUSTOMER SEGMENTATION (CS)

- 3 variables describes behavior are objective
- easy to formulate and understand
- Pareto Principle is at the core base

The streams of the Literature:

• DATA-DRIVEN MARKET SEGMENTATION

RFM analysis by many mining techniques for specific goals of the business fields Some applied weighting methods to improve the reliability of the system

• REVISED COLLABORATIVE FILTERING

Mostly put efforts to ease the storage issue, sparsity of traditional CF Compare Approaches of CF

	Approach							
The literature	RFM analysis by Clustering techniques	Recommender system						
Vohra et al. (2020). Using self organizing maps and K means clustering based on RFM model for customer segmentation in the online retail business	Combine K-Means (KM) and Self- organizing maps (SOM)	None						
Imani et al. (2021). Customer Segmentation to Identify Key Customers Based on RFM Model by Using Data Mining Techniques	Weighted RFM by AHP Compare K-Means (KM) and Two steps' clustering	None						
Boström (2017). Comparison of user-based and item-based collaborative filtering recommendation services.	None	User_ kNN and Item_kNN algorithms	Li					
Shi et al. (2015). An Intelligent Recommendation System based on Customer Segmentation.	FCM Clustering	Only proposed association rules approach suggestion						
Rodrigues et al. (2016). Product recommendation based on shared customer's behaviour.	K-Means (KM) clustering	An association rule data mining-based recommendation						
Our proposed study: The Personalized RFM analysis based recommender of CF	Weighted RFM variables by AHP Compare KM and FCM algorithms	User_ kNN algorithms with rating score integrated by RFM weighted values						

iterary Review

CASE STUDY PREFERENCE:

Focus: User attributes
Personalized RS suitable with local-size

business resources

Methodology

Customer number	Recency (R)	Frequency (F)	Monetary (M)
001	18	3	1900317
002	EE	6	2007000

RESULT ANALYSIS

Evaluate our model

Compare & Evaluate

F1-metrics for the final model

Our model performance vs the traditional CF model

Our model performance vs the non-weighted RFM model

(A) SEGMENTATION BASED ON RFM ANALYSIS

Once obtained the number of clusters, the Silhouette index validates and compares clustering performance to select the greater alternative for this research.

(B) USER-BASED COLLABORATIVE RECOMMENDER FOR EACH SEGMENT

Apply User-kNN algorithms for computing user similarity

-> Predictions -> top N-recommendation list

TEST PERFORMANCE ON TRAINING DATA

Segmentation based on RFM analysis

makers.

WEIGHTED RFM VALUES EXTRACTION

Construct **Pairwise** Comparisons + Normalize values according to the opinion of decision

Example of RFM pairwise comparison matrix Recency Frequency Monetary Recency 1 5 7 Frequency 1/5 1 3								
	Recency	Frequency	Monetary					
Recency	1	5	7					
Frequency	1/5	1	3					
Monetary	1/7	1/3	1					

$$w_i = \frac{\sum_{j=1}^n b_{ij}}{n}.$$

Check the consistency < 0.1

Compute the consistency ratio: CR = CI/RI

Obtain weighted RFM values

Customer id	Weighted R	Weighted F	Weighted M
000001	R x W _R	$F \times W_F$	$M \times W_M$

CLUSTERINGS: KM- FCM

R, F, M -> RFM ca riêng user

Tuning Initialize Number of clusters

Compare & Select: K means vs Fuzzy C-means

Average of the Silhouette index amount for deciding about choosing optimal clusters and comparing between 2 clusterings

$$S_i = (b_i - a_i) / max (a_i, b_i)$$
 for $a_i > b_i$

The flowchart & formulas of Clustering algorithms

$$u_{ij} = 1/\sum_{k=1}^{C} \left(\frac{\|x_j - c_j\|}{\|x_i - c_k\|}\right)^{\frac{2}{m-1}} (5)$$

$$\mu_k = \frac{1}{n}$$

$$c_j = \frac{\sum_{i=1}^N u_{ij}^m . x_i}{\sum_{i=1}^N u_{ij}^m} \ (6$$

$$\mu_k = \frac{1}{n} (x^{(k_1)} + x^{(k_2)} + \dots + x^{(k_n)})$$
 (2)

Start

Select number of cluster

Randomly select initial center

 μ_1, \dots, μ_k in data x

Assign points to the closet

clusters

Update centroids

No point changes

clusters?

Yes

$$c_j = \frac{\sum_{i=1}^N u_{ij}^m x_i}{\sum_{i=1}^N u_{ii}^m}$$
 (6
$$c^{(i)} = argmin_k ||x_i - \mu_k||^2$$
 (3)

→ The core function is to minimize the sum of errors

Collaborative filtering each segments and recommend list

RFM ANALYSIS FOR SEGMENT

Apply AHP to generate weights for each segment

cluster i

Obtain Score of each user to each item

$$C_{I}^{j} = W_{R} \times C_{R}^{j} + W_{F} \times C_{F}^{j} + W_{M} \times C_{M}^{j}$$

1 COMPUTING SIMILARITY

Pearson Correlation coefficient

$$sim(u,v) = \frac{\sum_{i \in I_{uv}} [(R_{ui}.\overline{R_u}).(R_{vi}-\overline{R_v})]}{\sqrt{\sum_{i \in I_{uv}} (R_{ui}-\overline{R_u})^2} \sqrt{\sum_{i \in I_{uv}} (R_{vi}-\overline{R_v})^2}}$$

THE USER-ITEM MATRIX

	Item_1		$Item_{j}$		$Item_n$			
U_1	$R_{1.1}$		0		$R_{1,n}$			
:	÷	÷	÷	÷	÷			
U_{i}	$R_{1,1}$		$R_{i,j}$		0			
:	÷	÷	:	÷	:			
U_m	$R_{m,1}$		0		$R_{m,n}$			

2 COMPUTING PREDICTIONS

$$P_{u,i} = \overline{R_u} + \frac{\sum_{v \in N} sim(u,v)(R_{vi} - \overline{R_v})}{\sum_{v \in N} sim(u,v)}$$

R_ij -> RFM ca user-item

TOP-N RECOMMENDATION SET WITH THE HIGHEST PREDICTED SCORE

▲User-based CF

STAGE A -> RFM ANALYSIS: CLUSTERS PATTERNS

Each cluster represents a market-segmentation. RFM analysis + AHP weights for each segment:

STAGE B: RECOMMENDATION

THE K-NEAREST NEIGHBOR MODEL (USER_KNN)

PERFORMANCE MEASUREMENT:

F1-METRICS

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = 2 * \frac{Precision * Recal}{Precision + Recal}$$

PERSONALIZED RFM-ANALYSIS BASED RECOMMENDER by COLLABORATIVE FILTERING

RECOMMENDER SYSTEM BASED ON CUSTOMER SEGMENTATION

RFM ANALYSIS

CLUSTERING ALGORITHMS

USER-BASED COLLABORATIVE FILTERING

Sincerely Thank for your listening!

ACTIVITY STADT FINISH DVD ATVON						WEEKS																	
ACTIVITY	START	FINISH	DURATION	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Choosing topic	1	1	0																				
(Chapter I: 1	ntroduction	n																				
Background	1	1	0																				
Problem statement	2	2	0																				
Objectives	2	3	1																				
Scope and Limitations	2	3	1																				
C	hapter II: F	Related wor	ks																				
Overview	4	4	0																				
Literature review	4	7	3																				
Design Concepts Considered	5	6	1																				
	Chap III: M	1ethodology	y																				
Approaches Comparison and Selection	7	8	1																				
Conceptual Design Description	8	8	0																				
	Chapter IV	: Modelling	g																				
Model or Prototype Development	10	15	5																				
Solution Development	13	15	2																				
Cl	napter V: R	esult Analy	rsis																				
Results	16	18	2																				
Analysis	18	19	1																				
	Chap VI:	Conclusion																					
Conclusion	20	20	0																				
References	4	20	16																				

Thesis timeline