삼각비의 활용(
$$\overline{AB}=5$$
, $\overline{AC}=4$, $\angle A=60^\circ$) (Application of Trigonometric Ratio($\overline{AB}=5$, $\overline{AC}=4$, $\angle A=60^\circ$))

$$\sin 60^\circ = \frac{\overline{\text{CH}}}{4}$$

$$\sin 60^{\circ} = \frac{\overline{\text{CH}}}{4}$$

$$\overline{\text{CH}}$$

40149141141 1 000

$$\sin 60^\circ = \frac{\overline{\text{CH}}}{4}$$

 $\overline{\rm CH} = 4\sin 60^\circ$

$$\sin 60^\circ = \frac{\overline{\text{CH}}}{4}$$

$$\overline{\mathrm{CH}} = 4\sin 60^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2}$$

$$\sin 60^{\circ} = \frac{\overline{\text{CH}}}{4}$$

$$\overline{\text{CH}} = 4\sin 60^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2}$$

$$\therefore \overline{\text{CH}} = 2\sqrt{3}$$

$$\therefore \overline{\text{CH}} = 2\sqrt{3}$$

$$\sin 60^{\circ} = \frac{\overline{\text{CH}}}{4}$$

$$\overline{\text{CH}} = 4\sin 60^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2}$$

$$\therefore \overline{\text{CH}} = 2\sqrt{3}$$

$$\therefore \overline{\text{CH}} = 2\sqrt{3}$$

$$\sin 60^{\circ} = \frac{\overline{\text{CH}}}{4}$$

$$\overline{\text{CH}} = 4\sin 60^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2}$$

$$\therefore \overline{\text{CH}} = 2\sqrt{3}$$

$$\therefore \overline{\text{CH}} = 2\sqrt{3}$$

$$\sin 60^{\circ} = \frac{\overline{\text{CH}}}{4}$$

$$\sin 60^{\circ} = \frac{\overline{\text{CH}}}{4}$$

$$\therefore \overline{\text{CH}} = 2\sqrt{3}$$

$$\sin 60^{\circ} = \frac{\overline{\text{CH}}}{4}$$

 $\cos 60^{\circ}$

$$\sin 60^{\circ} = \frac{\overline{CH}}{4} \qquad \cos 60^{\circ} = \frac{\overline{AH}}{4}$$

$$\overline{CH} = 4 \sin 60^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2}$$

$$\therefore \overline{CH} = 2\sqrt{3}$$

$$\sin 60^{\circ} = \frac{\overline{CH}}{4} \qquad \cos 60^{\circ} = \frac{\overline{AH}}{4}$$

$$\overline{CH} = 4 \sin 60^{\circ} \qquad \overline{AH}$$

$$= 4 \times \frac{\sqrt{3}}{2}$$

$$\therefore \overline{CH} = 2\sqrt{3}$$

$$\sin 60^{\circ} = \frac{\overline{\text{CH}}}{4}$$
 $\cos 60^{\circ} = \frac{\overline{\text{AH}}}{4}$

$$\overline{\text{CH}} = 4 \sin 60^{\circ} \quad \overline{\text{AH}} = 4 \cos 60^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2}$$

$$\therefore \overline{\text{CH}} = 2\sqrt{3}$$

$$\sin 60^{\circ} = \frac{\overline{\text{CH}}}{4}$$
 $\cos 60^{\circ} = \frac{\overline{\text{AH}}}{4}$

$$\overline{\text{CH}} = 4 \sin 60^{\circ}$$
 $\overline{\text{AH}} = 4 \cos 60^{\circ}$

$$= 4 \times \frac{\sqrt{3}}{2}$$
 $= 4 \times \frac{1}{2}$

$$\sin 60^{\circ} = \frac{\overline{CH}}{4} \qquad \cos 60^{\circ} = \frac{\overline{AH}}{4}$$

$$\overline{CH} = 4\sin 60^{\circ} \qquad \overline{AH} = 4\cos 60^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2} \qquad = 4 \times \frac{1}{2}$$

$$\therefore \overline{CH} = 2\sqrt{3} \qquad \therefore \overline{AH} = 2$$

$$\sin 60^{\circ} = \frac{\overline{\text{CH}}}{4} \qquad \cos 60^{\circ} = \frac{\overline{\text{AH}}}{4}$$

$$\overline{\text{CH}} = 4 \sin 60^{\circ} \qquad \overline{\text{AH}} = 4 \cos 60^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2} \qquad = 4 \times \frac{1}{2}$$

$$\therefore \overline{\text{CH}} = 2\sqrt{3} \qquad \therefore \overline{\text{AH}} = 2$$

$$\sin 60^{\circ} = \frac{\overline{\text{CH}}}{4} \qquad \cos 60^{\circ} = \frac{\overline{\text{AH}}}{4}$$

$$\overline{\text{CH}} = 4 \sin 60^{\circ} \qquad \overline{\text{AH}} = 4 \cos 60^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2} \qquad = 4 \times \frac{1}{2}$$

$$\therefore \overline{\text{CH}} = 2\sqrt{3} \qquad \therefore \overline{\text{AH}} = 2$$

$$\sin 60^{\circ} = \frac{\overline{CH}}{4} \qquad \cos 60^{\circ} = \frac{\overline{AH}}{4}$$

$$\overline{CH} = 4 \sin 60^{\circ} \qquad \overline{AH} = 4 \cos 60^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2} \qquad = 4 \times \frac{1}{2}$$

$$\therefore \overline{CH} = 2\sqrt{3} \qquad \therefore \overline{AH} = 2$$

$$\sin 60^{\circ} = \frac{\overline{CH}}{4} \qquad \cos 60^{\circ} = \frac{\overline{AH}}{4}$$

$$\overline{CH} = 4\sin 60^{\circ} \qquad \overline{AH} = 4\cos 60^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2} \qquad = 4 \times \frac{1}{2}$$

$$\therefore \overline{CH} = 2\sqrt{3} \qquad \therefore \overline{AH} = 2$$

$$\sin 60^{\circ} = \frac{\overline{CH}}{4} \qquad \cos 60^{\circ} = \frac{\overline{AH}}{4}$$

$$\overline{CH} = 4 \sin 60^{\circ} \qquad \overline{AH} = 4 \cos 60^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2} \qquad = 4 \times \frac{1}{2}$$

$$\therefore \overline{CH} = 2\sqrt{3} \qquad \therefore \overline{AH} = 2$$

$$\overline{BC}^{2}$$

$$\sin 60^{\circ} = \frac{\overline{CH}}{4} \qquad \cos 60^{\circ} = \frac{\overline{AH}}{4}$$

$$\overline{CH} = 4\sin 60^{\circ} \qquad \overline{AH} = 4\cos 60^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2} \qquad = 4 \times \frac{1}{2}$$

$$\therefore \overline{CH} = 2\sqrt{3} \qquad \therefore \overline{AH} = 2$$

$$\overline{BC}^{2} = \left(2\sqrt{3}\right)^{2} + 3^{2}$$

$$\sin 60^{\circ} = \frac{\overline{CH}}{4} \qquad \cos 60^{\circ} = \frac{\overline{AH}}{4}$$

$$\overline{CH} = 4\sin 60^{\circ} \qquad \overline{AH} = 4\cos 60^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2} \qquad = 4 \times \frac{1}{2}$$

$$\therefore \overline{CH} = 2\sqrt{3} \qquad \therefore \overline{AH} = 2$$

$$\overline{BC}^{2} = (2\sqrt{3})^{2} + 3^{2} = 12 + 9$$

$$\sin 60^{\circ} = \frac{\overline{CH}}{4} \qquad \cos 60^{\circ} = \frac{\overline{AH}}{4}$$

$$\overline{CH} = 4 \sin 60^{\circ} \qquad \overline{AH} = 4 \cos 60^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2} \qquad = 4 \times \frac{1}{2}$$

$$\therefore \overline{CH} = 2\sqrt{3} \qquad \therefore \overline{AH} = 2$$

$$\overline{BC}^{2} = (2\sqrt{3})^{2} + 3^{2} = 12 + 9 = 21$$

$$\sin 60^{\circ} = \frac{\overline{CH}}{4} \qquad \cos 60^{\circ} = \frac{\overline{AH}}{4}$$

$$\overline{CH} = 4\sin 60^{\circ} \qquad \overline{AH} = 4\cos 60^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2} \qquad = 4 \times \frac{1}{2}$$

$$\therefore \overline{CH} = 2\sqrt{3} \qquad \therefore \overline{AH} = 2$$

$$\overline{BC}^{2} = (2\sqrt{3})^{2} + 3^{2} = 12 + 9 = 21$$

$$\therefore \overline{BC} = \sqrt{21}$$

$$\sin 60^{\circ} = \frac{\overline{CH}}{4} \qquad \cos 60^{\circ} = \frac{\overline{AH}}{4}$$

$$\overline{CH} = 4\sin 60^{\circ} \qquad \overline{AH} = 4\cos 60^{\circ}$$

$$= 4 \times \frac{\sqrt{3}}{2} \qquad = 4 \times \frac{1}{2}$$

$$\therefore \overline{CH} = 2\sqrt{3} \qquad \therefore \overline{AH} = 2$$

$$\overline{BC}^{2} = (2\sqrt{3})^{2} + 3^{2} = 12 + 9 = 21$$

$$\therefore \overline{BC} = \sqrt{21}$$

Github:

https://min7014.github.io/math20200127001.html

Click or paste URL into the URL search bar, and you can see a picture moving.