Kriptografik Protokoller: Uygulamalar ve Güvenlik

Dr. Hamdi Murat Yıldırım

Bilgisayar Teknolojisi ve Bilişim Sistemleri Bölümü Bilkent Üniversitesi

> http://hmurat.bilkent.edu.tr hmurat@bilkent.edu.tr @h_muratyildirim

Uluslararası Adli Bilişim Sempozyum 2014 31 Mayıs – 01 Haziran

Protokol Tanımı (Wikipedia)

- (haberleşme) protokolu bilgisayar içinde ve bilgisayarlar arasında veri değişimi için dijital kurallar sistemidir (wikipedia)
- Kurallar, algoritmalar ve veri yapıları ile ifade edilebilir.
- Bir protokol mutlaka sözdizilimi (syntax), anlamsal ve haberleşmenin eş zamanlığını; belirtilen davranışları, nasıl gerçekleştireceğinden bağımsız tanımlamalıdır.

Protokol Tanımı

Bazı Temel Protokol Gereksinimleri (Wikipedia)

- Takas edilen verinin formati
- Alıcı ve gönderinin adresi
- Alındı mesajı
- Akış kontrolü

Biçimsel Gösterimleri (Wikipedia)

- Abstract Syntax Notation One (an ISO standart) veya
- Augmented Backus-Naur form (an IETF standart).
- Biçimsel olarak protokol etkileşimlerinin gösterimi

Kriptografik Protokoller

- Bir güvenlik (Kriptografik protokol), güvenlik ile ilgili bir işlemi uygulayan, bir dizi kriptografik algoritmaları kullan bir soyut protokoldür.
- Böyle bir protokol, bu algoritmaların nasıl kullanacağını tanımlar.
- İzleyenlerin bir veya daha fazlasını Kriptografik protokol içerebilir:
 - Gizli anahtar paylaşmı
 - Varlığının (entity) kimlik denetimi
 - Simetrik şifreleme
 - İnkar edilememezlik metodları

... (Wikipedia)

Kriptografik Protokoller, Örnek

Transport Layer Security (TLS), güvenli web (HTTP) bağlantıları kurmak için kullanılan bir kriptografik protokol

- X.509 sertifikaları kullanan (Açık anahtar Altyapısı -PKI- tabanlı)
- Simetrik anahtar oluşturma ve paylaşma Diffie-Hellman anahtar değişimi protokolü kullanımı-, aşamaları -asimetrik şifreleme kullanılarak.

.... (Wikipedia)

Diğer Protokol örnekleri:

- * Anahtar Değişim Protokolü Internet Key Exchange (IKE or IKEv2) -
- * IPSec
- * Kerberos
- * Point-to-Point Protokol

Diffie-Hellman Anahtar Değişimi

- •Gizli anahtarlı sistemlerde şifreleme ve şifre çözme için ortak bir anahtar gerekmektedir.
- Diffie-Hellman anahtar değişimi bu anahtarı oluşturmak için kullanılmaktadır
- •Sonlu cisimler üzerinde veya eliptik eğri aritmetiğinde bu anahtar değişiminin uygulaması yapılabilmektedir.

Barıs, cantanın içine belgelerini

Ayrık Logaritma Problemi

```
>Z_p *= \{1, 2, ..., p-1\}
```

 Z_p^* 'de **g** ve **y** verilmiş ve $g^x = y$ (mod p) ise **x** kaçtır?

 $x = log_q y$ bulunması zor bir problemdir.

```
Örnek: Z_{17}'de g=3 ve y=11,

3^x = 11 \pmod{17} => x = ?
```

```
3 \mod 17 = 3
3^2 \mod 17 = 9
3^3 \mod 17 = 10
3^4 \mod 17 = 13
3^5 \mod 17 = 5
3^6 \mod 17 = 15
3^7 \mod 17 = 11
3^8 \mod 17 = 16
3^9 \mod 17 = 14
3^{10} \mod 17 = 8
3^{11} \mod 17 = 7
3^{12} \mod 17 = 4
3^{13} \mod 17 = 12
3^{14} \mod 17 = 2
3^{15} \mod 17 = 6
3^{16} \mod 17 = 1
3^{17} \mod 17 = 3
```

Diffie-Hellman (DH) Anahtar Değişimi

 $K = A^b \mod p = (g^a \mod p)^b \mod p = g^{ab} \mod p = (g^b \mod p)^a \mod p = B^a \mod p$

a: Ayşe'nin kapalı anahtarı; b: Barış'ın kapalı anahtarı

A: Ayşe'nin açık anahtarı; B: Barış'ın açık anahtarı

DH Anahtar Değişimi protokolüne ortadaki adam saldırısı -man in the middle-

DH Anahtar Değişimi protokolüne ortadaki adam saldırısı -man in the middle-

E: Simetrik Şifreleme; D: Simetrik Deşifreleme

DH Anahtar Değişimi protokolüne ortadaki adam saldırısı -man in the middle-

E: Simetrik Şifreleme; D: Simetrik Deşifreleme

paylaştı.

DH Anahtar Değişimi Protokolüne ortadaki adam saldırısını <u>önlemek</u>

- Kimlik denetimi kullanmak: anahtarı değişinen tarafları, dijital imza kullanarak doğrulamak
- Endüstriyel yaklaşım: X.509 sertifika kullanımı
 Ayşe'nin paylaştığı A, DH açık anahtarının, dijital imzası Sig(A) oluşturulur ve AllSig(A), Barış'a
 - Barış'ın paylaştığı B, DH açık anahtarının, dijital imzası Sig(B) oluşturulur ve B||Sig(B), Barış'a gönderilir.
- Diğer yaklaşım: PGP anahtarları ile, DH açık anahtarlarını imzalamak. GNU PG ve bunun kullanan yazılımlar önerilir.

gönderilir.

KEP Protokolü

 E-posta gönderiminin yasal olarakta geçerliliğini sağlayacak, gönderildi ve alındı bildirimleri gibi kanıtları sağlayan temeli kriptografik yapılara dayanan protokol olarak tanımlanabilir.

KEP Çeşitleri

- Güvenilir Üçüncü Taraf (Trusted Third Party) içeren yöntemler
 - Inline TTP
 - Çevrim dışı (Offline) TTP
 - Çevrim içi (Online) TTP
- Güvenilir Üçüncü Taraf içermeyen yöntemler

KEP Çeşitleri

Protokollerin karşılaştırılması

TABLE I: Comparison of the properties of CEM protocols

Property	[7]	[14]	[13]	[31]	[29]	[16]	[5]	[8]
TTP Involvement	Inline	Inline	Inline	Inline	Online	Online	Offline	Offline
Fairness	✓	✓	✓	✓	✓	✓	✓	✓
Confidentiality		✓	✓	✓	✓			
Timeliness	✓		✓		✓		✓	
Transparent							✓	1
Verifiable	1	✓	✓	✓	✓	✓		
Stateful	1	✓	✓	✓	✓	✓		
Stateless							1	1

KEP Protokol Özellikleri

- Adillik (Fairness)
- Gönderildi bildirimi (Sending Receipt)
- Kaynağın inkar edilememesi (Non-repudiastion of origin)
- Alındı bildiriminin inkar edilememesi (Non-repudiation of receipt)
- Kimlik doğrulama (Authenticity)
- Bütünlük (Integrity)
- Gizlilik (Confidentiality)
- Zaman aralığı/Yerindelik (Timeliness)
- Zamansal kimlik doğrulama (Temporal Authentication)

Kaynağın inkar edilememesi (Non-repudiation of origin)

 E-posta gönderimini başlatan taraf mesajın kendisi tarafından gönderildiğini inkar edememeli, alıcı taraf mesajın kaynağına dair kanıta sahip olmalı

Alındı bildiriminin inkar edilememesi (Non-repudiation of receipt)

 Alıcı mesajı aldığını inkar edememeli, protokol sonunda gönderici alıcının mesajı aldığına dair bir kanıta sahip olmalı

Adillik (Fairness)

 Protokol adil olmalı: her iki tarafta gerekli bilgileri almalı yada hiçbiri yarar sağlayacak bir bilgiyi elde edememeli

Gönderildi bildirimi (Sending Receipt)

 Gönderici e-posta göndermeyi başlattığına dair kanıt sağlayacak gönderildi bildirimine sahip olmalı

Kimlik doğrulama (Authenticity)

Protokole katılan taraflar için kimlik doğrulama sağlanmalı

Bütünlük (Integrity)

 Protokole katılan taraflar fark ettirmeden gönderilen mesajların bütünlüğünü bozamamalı

Gizlilik (Confidentiality)

 Sadece gönderici ve alıcı mesaj alışverişleri sonucu orijinal mesaja ulaşabilmeli

Zaman Aralığı (Timeliness)

 Protokol süresi sonlu bir zaman olmalı, belirlenen zaman zarfında protokol sonlanamıyorsa protokol sonlandırılmalı.

Zamansal Kimlik Doğrulama (Temporal Authentication)

 Mesaj alışverişinin başlama tarihi sertifikalanmalı ve protokoldeki yer alan taraflarca ulaşılabilmeli

(Zaman Damgası)

Bahreman and Tygar Protokolünün Genişletilmiş Sürümü (Inline TTP)

- Stelvio Cimato, Clemente Galdi, Raffaella Giordano, Barbara Masucci ve Gildo Tomasco tarafından öne sürülmüştür.
- Bahremen ve Tygar'ın öne sürdüğü protokole ek olarak zaman damgası fonksiyonelitesi eklenmiştir.
- KEP gereksinimlerinin hepsini karşıladığı öne sürülmüştür.

Protokol Tanımları

Sig_A(M): M mesajının A tarafından imzalanmış hali

- h(.): Özet fonksiyon
- PK_B (M): M mesajının B'nin açık anahtarı ile şifrelenmiş hali
- E_K (M): m mesajının K gizli anahtarı ile şifrelenmiş hali

In-line TTP CEP by Cimato et al. (2005)

İlk in-line TTP KEP protokolü (Bahreman and Tygar, 1994) üzerine inşa

Sender

Trusted Third Party

Receiver

$$m_1 = \langle Sig_S(m_{desc}, E_k(m), PK_{TTP}(PK_R(k))) \rangle$$

$$m_2 = \langle Sig_{TTP}(h(m_1), T) \rangle$$

$$m_3 = \langle Sig_{TTP}(m_1) \rangle$$

$$m_4 = \langle Sig_R(m_3) \rangle$$

$$m_5 = \langle Sig_{TTP}(m_4) \rangle$$

$$m_6 = \langle Sig_{TTP}(PK_R(k)) \rangle$$

Özellikler: Fairness, Sending Receipt, NRO, NRR, Authenticity, Integrity, Confidentiality, Timeliness, Temporal Authentication

Kayıtlı E-posta Protokolleri Saldırıları önlemek için bazı önlem ve tasarım prensipleri

 Kılavuz #1 (Shao et al, 2005): İletişim kanalları ile ilgili protokol varsayımlar ve gereksinimler açıkça tanımlanmalı. Böylece, uygulayıcılar da protokolü anlamalı ve rahat bir şekilde gerçekleştirebilmeli

 Guideline 2 (Shao et al, 2005): Protokol tasarımdan kullanılan kriptografik algoritmalar, güvenlik seviyeleri ve kullanım yöntemleri belirtilmeli.

Kayıtlı E-posta Protokolleri Saldırıları önlemek için bazı önlem ve tasarım prensipleri

• Kılavuz #3 (Shao et al, 2005): Protokol adımını başlatan, alıcı ve belki 3. güvenilir şahış kimlikleri, inkar edilememezlik kanıtınıyla ilişkilendirilmeli.

 Kılavuz #4 (Shao et al, 2005): Her adil değişim protokolü dahil olmak üzere, anlaşmazlık çözüm politikalarının detayları, tanımları sunulmalı ve doğrulanmaları sunulmalı.

Kayıtlı E-posta Protokolleri Saldırıları önlemek için bazı önlem ve tasarım prensipleri

- Tasarım Prensipleri (Gürgens et al. 2005):
 - Protokol adımlarındaki mesaj kısımları imzanın içinde yer almalı
 - Mesajı alan herkes, mesajının imzasını doğrulayabilmeli
 - Alıcı, mesajın protokolün hangi aşamasına ait olduğunu anlayabilmeli
 - TTP anlamlı kararlar alabilmeli
 - TTP, her isteğe cevap verebilmeli

Kayıtlı E-posta Protokolleri Saldırıları önlemek için bazı önlem ve tasarım prensipleri

- Tasarım Prensipleri (Kremer et al. 2002)
 - İnkar edilememezlik (dijital imzalar ve ilgili anahtarlar) kanıtları iyi yönetilmeli
 - Eğer asimetrik sisteminin kullandığı açık anahtarının sertifikası iptal edildiyse, bu anahtar da iptal edilmeli
 - Dijital imzanın ne zaman oluşturulduğu belirlenmeli (sertifika iptalinden önce veya sonra)

Çözüm: Zaman Damgası kullanımı

Otomatik Protokol Doğrulama

- Protokollerin, güvenlik özelliklerinin sağlayıp, sağlamadıklarını kontrol edilir.
- Scyther (http://www.cs.ox.ac.uk/people/cas.cremers/scyther/), otomatik güvenlik protokol doğrulama araçıdır.

Scyther ve birkaç benzeri karşılaştırmalarını içeren ve Scyther kullanılan makaler:

- ASICS: Authenticated Key Exchange Security Incorporating Certification Systems
- Evaluation of ISO/IEC 9798 Protocols
- Provably Repairing the ISO/IEC 9798 Standard for Entity Authentication
- Automated Analysis of Diffie-Hellman Protocols and Advanced Security Properties
- Key Exchange in IPsec revisited: Formal Analysis of IKEv1 and IKEv2 http://www.cs.ox.ac.uk/people/cas.cremers/publications/index.html

Otomatik Protokol Doğrulama

- ProVerif: Kriptografik protokol doğrulama, biçimsel model ile http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
 - Birçok farklı kriptografik algoritmayı, DH anahtar değişimi destekleniyor.

Diğer bir araç: AVISPA: Automated Validation of Internet Security Protocols and Applications (http://www.avispa-project.org/)

Protokol Saldırıları

- Gizli Dinleme (pasif saldırı)
- Değiştirme (aktif saldırı)
- Tekrar oynatma -replay- (saldırgan protokoldeki kayıtları aynen ve değiştirilmiş halini, başka bir saldırıya zemin olması adına kullanır)
- Yazma (Typing) saldırısı (saldırgan, şifrelenen kısmı bir başka şifreli kısım ile değiştirebilir)
- Kriptanaliz uygulamak

•

Kaynak Tavsiyesi

Internet Security Protocols:

http://www.youtube.com/watch?v=CZzd3i7Bs2o

 ADVANCING AUTOMATED SECURITY PROTOCOL VERIFICATION (Thesis)

http://e-collection.library.ethz.ch/eserv/eth:7011/eth-7011-02.pdf

- Security Protocol Verification: Symbolic and Computational Models http://cs.ioc.ee/etaps12/invited/blanchet-slides.pdf
- SECURE KEY MANAGEMENT PROTOCOL IN WIMAX
- https://www.idconline.com/technical_references/pdfs/data_communications/SECURE %20KEY.pdf
- Enhanced Mobile SET Protocol with Formal Verification

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6394714