CS221 Section 1

Foundations

Roadmap

Python

Matrix Calculus

Recurrence Relation

Probability Theory

Syntactic Sugar

- List comprehension
- List slicing
- Passing functions
- Reading and writing files

Gotchas

- Integer division
- Tied objects
- Global variables

References

• Official Documentation (has a tutorial):

```
https://docs.python.org/2.7/
```

Learn X in Y minutes:

```
http://learnxinyminutes.com/docs/python/
```

• You don't need to know numpy. But if you want to:

http://nbviewer.ipython.org/gist/rpmuller/5920182

Roadmap

Python

Matrix Calculus

Recurrence Relation

Probability Theory

Useful Properties

"
$$\mathbf{v} - squared$$
" = $\|\mathbf{v}\|_2^2 = \mathbf{v} \cdot \mathbf{v} = \mathbf{v}^T \mathbf{v}$

$$(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$$

$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$$

Matrix Calculus

$$f(\mathbf{w}) = (\mathbf{a} \cdot \mathbf{w} + 1)^2$$

Compute $\nabla_{\mathbf{w}} f(\mathbf{w})$

Matrix Calculus

$$f(\mathbf{w}) = (\mathbf{a} \cdot \mathbf{w} + 1)^2$$

Compute $\nabla_{\mathbf{w}} f(\mathbf{w})$

$$\nabla_{\mathbf{w}}(\mathbf{a} \cdot \mathbf{w} + 1)^2 = \mathbf{2}(\mathbf{a} \cdot \mathbf{w} + \mathbf{1})\mathbf{a}$$

A Useful Quantity

$$\nabla_{\mathbf{w}} \mathbf{w}^{\top} C \mathbf{w} = (C + C^{\top}) \mathbf{w}$$

Matrix Calculus

$$f(\mathbf{w}) = \|\mathbf{w}\|_2^2$$

Compute $\nabla_{\mathbf{w}} f(\mathbf{w})$

Matrix Calculus

$$f(\mathbf{w}) = \|\mathbf{w}\|_2^2$$

Compute $\nabla_{\mathbf{w}} f(\mathbf{w})$

$$\nabla_{\mathbf{w}} \|\mathbf{w}\|_2^2 = 2\mathbf{w}$$

Roadmap

Python

Matrix Calculus

Recurrence Relation

Probability Theory

Coin Payment

Problem

Suppose you have an unlimited supply of coins with values 2 and 3 cents

How many ways can you pay for an item costing 8 cents?

Coin Payment

Recurrence Relation: Break down into smaller problems

Memoization: Remember what you already calculated

 Refer to the extra section handout for more information regarding how the code computing this would look like.

Roadmap

Python

Matrix Calculus

Recurrence Relation

Probability Theory

Probability

Probability of event A:

$$\mathbb{P}(A)$$

Independence:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

Conditional probability:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Probability

Law of total probability:

$$\mathbb{P}(A) = \sum_{n} \mathbb{P}(A \cap B_n) = \sum_{n} \mathbb{P}(B_n | A) \mathbb{P}(B_n)$$

Bayes' rule:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

Discrete:

$$\mathbb{P}(A=a)$$
 or $p_A(a)$

Continuous:

$$A = 0$$
 $A = 1$ $A = 2$ $A = 3$

$$\mathbf{B} = \mathbf{0}$$
 0.1 0.25 0.1 0.05

$$\mathbf{B} = \mathbf{1}$$
 0.15 0 0.15 0.2

- What is $\mathbb{P}(A=2)$
- What is $\mathbb{P}(A=2 \mid B=1)$

•
$$\mathbb{P}(A=2) = 0.1 + 0.15 = 0.25$$

• $\mathbb{P}(A=a|B=b) = \frac{\mathbb{P}(A=a,B=b)}{\mathbb{P}(B)}$

• $\mathbb{P}(A=2|B=1) = \frac{0.15}{0.15+0+0.15+0.2} = 0.3$

Independence:

$$\forall a, b, \ \mathbb{P}(A = a, B = b) = \mathbb{P}(A = a)\mathbb{P}(B = b)$$

$$\forall a, b, \ f_{A,B}(a,b) = f_A(a)f_B(b)$$

Expectation:

$$\mathbb{E}[A] = \sum_{a} a \, \mathbb{P}(A = a)$$

$$\mathbb{E}[A] = \int a f_A(a) da$$

$$A = 0$$
 $A = 1$ $A = 2$ $A = 3$

$$\mathbf{B} = \mathbf{0}$$
 0.1 0.25 0.1 0.05

$$\mathbf{B} = \mathbf{1}$$
 0.15 0 0.15 0.2

- Are A and B independent?
- ullet What are $\mathbb{E}[A]$, $\mathbb{E}[B]$, $\mathbb{E}[A+B]$

Linearity of Expectation:
$$\mathbb{E}[A + B] = \mathbb{E}[A] + \mathbb{E}[B]$$

Regardless of whether A and B are independent!

- **A** and **B** are not independent. For proof, consider $\mathbb{P}(A=0,B=0)$, $\mathbb{P}(A=0)$ and $\mathbb{P}(B=0)$ • $\mathbb{E}[A]=1.5$
- $\bullet \ \mathbb{E}[B] = 0.5$

 $\bullet \ \mathbb{E}[A+B]=2$

Hat Toss

Problem

Suppose n hatted people toss their hats into the air and pick up one hat at random

In expectation, how many people get their own hats back?

Hint: linearity of expectation

•
$$X_i = \begin{cases} 1 & \text{if i selects own hat} \\ 0 & \text{otherwise} \end{cases}$$
• $\mathbb{P}(X_i = 1) = \frac{1}{n}$
• $\mathbb{E}[X_i] = \frac{1}{n}$
• X_i are not independent, why?

 $\bullet X = X_1 + X_2 + ... + X_n$

• $\mathbb{E}[X] = n\frac{1}{n} = 1$

Variance:

$$Var[A] = \mathbb{E}[(A - \mathbb{E}[A])^2] = \mathbb{E}[A^2] - \mathbb{E}[A]^2$$

Covariance:

$$Cov[A, B] = \mathbb{E}[(A - \mathbb{E}[A])(B - \mathbb{E}[B])]$$
$$= \mathbb{E}[AB] - \mathbb{E}[A]\mathbb{E}[B]$$

If Cov[A, B] = 0, we say A and B are uncorrelated

If A and B are independent, then

• $Cov[A, B] = \mathbb{E}[AB] - \mathbb{E}[A]\mathbb{E}[B] = 0$

Independence implies uncorrelatedness

But the converse is **not** true!

Questions?