From isolates to assemblies with PacBio

A pipeline of the Vonaesch Lab for the curnagl cluster

Simon Yersin

With the help of Julian Garneau, the SAGE team and Garance Sarton-Lohéac

Introduction

This bioinformatic pipeline slides attempts to describe the steps to go from PacBio sequences of bacterial isolates to assembled genomes.

https://www.sciencedirect.com/science/article/pii/S2001037021004931

Isolations and DNA extraction

- 1. Isolation of bacteria
- 2. Grow in liquid broth overnight and perform DNA extraction using:
 - 1. Promega Wizard Genomic DNA Purification Kit
 - 2. Promega Maxwell RSC PureFood GMO and Authentication Kit
- 3. Prepare DNA samples for PacBio sequencing at the GTF facility
 - 1. Elute DNA in a TE buffer
 - 2. 500 ng of DNA in 25ul = 20ng/ul
 - 3. Prepare 4ul aliquot in PCR strip at 1ng/ul for DNA integrity analysis https://wp.unil.ch/gtf/technology/

PacBio sequencing

- Main applications:
 - De novo genome sequencing
- HiFi long read sequencing:

They are loaded in a SMRT cell for Single Molecule Real Time sequencing. Sequencing movies can last for up to 30 hours.

PacBio sequencing

WHOLE GENOME SEQUENCING — HOW PACBIO COMPARES

	PacBio HiFi	Illumina	Oxford Nanopore
Average read length ¹	15-20 kb	2 x 150 bp	10-100 kb
Average read accuracy ¹	99.95% (Q33)	99.92% (Q31)	99.26% (Q21)
Coverage ²	Unbiased	Reduced at low and high [GC]	Reduced in low-complexity runs
Variant calling: SNVs	✓	✓	✓
Variant calling: indels	~	✓	×
Variant calling: SVs	~	×	✓
Genome assembly: contiguity	~	×	✓
Genome assembly: accuracy	✓	✓	×
Epigenetics: 5mC	✓	×	✓

^{1.} PacBio HiFi: HG003 18 kb library, Sequel II system chemistry 2.0, precisionFDA *Truth Challenge* V2 (https://doi.org/10.1101/2020.11.13.380741), Illumina: HG002 2×150 bp NovaSeq library, precisionFDA *Truth Challenge* V2 (https://doi.org/10.1101/2020.11.13.380741), ONT: Q20+ chemistry (R10.4, Kit 12), Oct 2021 GM24385 Q20+ Simplex Dataset Release (https://doi.org/10.1101/2021.05.26.445798, HiFi+Illumina: Logsdon 2020 https://doi.org/10.1101/2021.05.26.445798, HiFi+Illumina: Logsdon 2020 https://doi.org/10.1101/2022.01.11.475254

DRAFT VS COMPLETE GENOME ASSEMBLY

Missing sequencing leads to missed genes and limits biological interpretation

A comprehensive structural, functional and organizational picture of the genome

Metrics for high quality genome

- Compute: HiFi assemblies are faster than traditional long read assemblies
- Contiguity: we want fewer contigs and long contigs for a continuous assembly
- Completeness: total size
- Correctness: Proportion of the assembly that is free of mistakes

N50: size of the shortest contig covering 50% of the total assembly → we want higher

L50: number of contig making up 50% of the cumulated contig length → we want small

General pipeline

STEP 0: PREPARATION

- > Prepare your working directory with sub-directories:
- ► S_salivarius_pacbio
 - Raw data
 - **Scripts**
 - Outputs
- Then copy your raw data from the nas to Raw_data folder:
 - cp /nas/FAC/FBM/DMF/pvonaesc/default/D2c/Simon\ Yersin/<raw data directory> ~/S_salivarius_pacbio/Raw_data
- ➤ Wait for the copy to finish and verify with ls that all your files are copied
- ➤ In the terminal, run:
 - > module purge
 - > dcsrsoft use arolle

STEP 1: STATISTICS AND QC

> Extract read length of your fastq files using:

- ➤ Download the readLength.txt files on your local computer
- R Switch to RStudio and follow the script:
 - ReadLength_PacBio.Rmd
 - > Save the histogram, the cumulative summary and the calculations
- ➤ Adapt and use read_count.sh to save a file with the number of reads before filtering
 - read_count.sh

STEP 2: FILTERING

> Filter your reads using *Filtlong*:

```
2 02_filtlong.sh
```

- > Adapt the variables:
 - > MINIMUM read LENGTH
 - ➤ Min_mean_q
 - > Length weight
 - ➤ Target bases
 - ➤ Variable with directory + array
- ➤ Adapt and use read_count.sh to save a file with the number of reads after filtering

```
read_count.sh
```

STEP 3: ASSEMBLY

> Assemble your genome using *flye*:

1 03 flye assembler.sh

- ➤ Adapt variables and array
- Follow the progress of the job with Squeue, sacct or by opening the log file of the assembly
- Download assembly graph (assembly_graph.gfa) and open it on Bandage
 - File > load graph
 - > Draw graph
 - > Save assembly graph

STEP 4-5: POLISHING & QC

Polishing allows to remove errors such as SNVs and INDELS. Usually, a first round of polishing is done with the long-reads assemblies then a second round with the short-reads (we do not have short reads in our case)

- > Decompress filtered read files
 - gzip –d *.fatsq.gz
- ➤ Polish the assembled genome using *Graphmap* and *Racon*:

 104 polishing.sh
- ➤ Inspect the quality of your polishing using *Quast*:
 - 205_qc_polishing.sh

Download report.html to visualize the QC

STEP 6: Evaluate the assemblies

- > Copy final assemblies into new folder: comp_genomics/genomes
- This script uses the conda environment checkm. It is activated at the start of the script
- Evaluate the quality of your assemblies using *CheckM*:

 106 checkM.sh
- Download report: CheckM_QC_stats.tsv

STEP 7: GTDB-TK

- ➤ GTDB-TK is a software toolkit for assigning objective taxonomic classifications to bacterial and archaeal genomes based on the Genome Database Taxonomy.
- This script uses the conda environment gtdbtk. It is activated at the start of the script.
- ➤ Run GTDB-TK to obtain the taxonomic classification of your genomes, using:
 - 107_gtdb_tk.sh
- ➤ Download the output file: gtdbtk.bac120.summary.tsv

Downstream steps and analysis

- From here we have assembled, filtered, QC controlled, and taxonomy assigned genomes from Illumina short reads
- The next steps depend on the research question, here are some options:
 - > Genes annotation and comparative genomic (Anv'io, discuss with Julian)
 - > Strain diversity analysis using fastANI or inStrain
 - > Phylogeny

FINAL NOTES

- The standard output files .err and .out can be erased once runs are completed without failures or errors
- ➤ Download all scripts files or save them on the NAS for reproducibility
- > Download output files needed for downstream analysis
- ➤ Clean conda with: conda clean —tarballs —packages

Good job!