

- 5.1. Array basics
- 5.2. Multidimensional Arrays
- 5.3. Strings (Arrays of char)
- 5.4. Arrays as function parameters
- 5.5. Reading char arrays from the terminal
- 5.6. Lambda Expressions and foreach Loops

5.1. Arrays: Reminders

Types (int, float, double, bool, char, etc.) tell the compiler:

- the size of the variables (e.g., 4, 8, 1 bytes) in memory
- how these bits in memory should be interpreted
- and know the possible operations on them

For example:

if height and width are variables of type int, then the compiler knows

- that 4 bytes need to be reserved for each of them,
- which are organized so they span the whole numbers from -2147483648 to 2147483647
- and that height * width is a legal operation

5.1. Arrays

- An array is a serially numbered collection of variables that are all of the same type
- The number of elements is the size of the array
- Array elements are accessible via their index, from 0 to size-1

For example:

float myArray[7]; is an array of 7 float variables, indexed from 0 to 6:

Memory						
element 1 4 bytes	element 2 4 bytes	element 3 4 bytes	element 4 4 bytes	element 5 4 bytes	element 6 4 bytes	element 7 4 bytes
myArray[0]	myArray[1]	myArray[2]	myArray[3]	myArray[4]	myArray[5]	myArray[6]

5.1. Arrays: Initialization, sizeof

• An array can be initialized by listing the elements between curly braces, { and }, and separated by commas:

```
double myArray[] = {1.09, 2.18, 4.36, 8.72};
In this case, the array will automatically get the size 4
```

• **sizeof** is built-in operator that returns the number of *bytes* for the given variable or type:

```
int myArraySize = sizeof(myArray) / sizeof(myArray[0]); // 16/4
```

Loops are typically used for larger arrays:

```
bool myArray[400];
for (int i = 0; i < 400; i++) myArray[i] = false;</pre>
```


5.1. Arrays

Example: a three-dimensional vector

5.1. Arrays: Writing beyond the array boundary

- Most C++ compilers allow using any array indices to access array elements, even incorrect ones
- Non-existing array elements are usually other parts of memory, such as other variables or program code:

```
int myArray[4] = {9, 8, 7, 6};
int myInteger = 5;
std::cout << myArray[4] << std::endl; // returns only a warning</pre>
```

What could happen: myArray[4] returns the value of myInteger:

```
        Memory

        9
        8
        7
        6
        5

        myArray[0]
        myArray[1]
        myArray[2]
        myArray[3]
        myInteger
```


5.1. Arrays

return 0;

Example 01 (difficulty level:)

```
/**
  Write a program that initializes an array of 50 booleans, repeatedly having two
  elements with a true value, followed by one element with false.
  So the array starts with: true, true, false, true, true, false, true, true, ...
  Do not use any variables other than myArray and a loop iteration variable.
*/
int main() {
  bool myArray[50];
```


5.1. Arrays

Example 02 (difficulty level:)

```
/**
 Write a program that lets a user fill an array of 10 integers, using a loop,
 and then calculate and output the average of all given numbers to the terminal.
 Assume that the user enters a valid number each time.
 */
#include <iostream> // to allow use of std::cout, std::cin, and std::endl
int main() {
 int myArray[10];
 return 0;
```


5.1. Arrays

```
/**
  Write a program that draws a histogram or bar chart through
 an array of 17 integers. To 'draw' the bars, use the string
  "\u2589" or an empty space.
  */
#include <iostream> // std::cout, std::cin, and std::endl
#include <random>
                     // rand(), returns a pseudo-random int
int main() {
  int myArray[17];
  for (int i = 0; i < 17; i++) { // fill array with random
    myArray[i] = ( rand() % 25 ); // numbers between 0 and 24
    // draw here with std::cout and std::endl
    std::cout << myArray[i] << '\n';</pre>
  return 0;
```

```
example output:
```


5.2. Multidimensional Arrays

• An array can be multidimensional, for example 2-dimensional:

```
int myTable[2][4] = \{ \{1, 2, 3, 4\}, \{5, 6, 7, 8\} \};
```

- This array is essentially an array of 2 arrays: myTable[0], myTable[1]
- Initialization of larger arrays typically needs nested loops:

```
double map[100][20];
for (int x = 0; x < 100; x++) {
   for (int y = 0; y < 20; y++) {
      map[x][y] = 0.0;
   }
}</pre>
```

- sizeof(myTable) will return the total size, so 2x4x4=32 bytes
- sizeof(myTable[0]) will return 4x4 = 16 bytes

5.2. Multidimensional Arrays: Maze Game v.3.00

- Expand on version 2.00 by drawing an actual maze in the screen background, in a tiled way (since the screen can be any size)
- Add this as a two-dimensional array that you initialize yourself in the clearScreen function to build up a maze, for example:

5.2. Multidimensional Arrays: Maze Game v.3.00

```
/* Third draft of Maze Game: We add an actual maze to our module "drawMaze" */
#include "drawMaze.h" // functions related to drawing the maze and player
int main() {
 auto c = ' '; // used for user key input
 auto x = 10, y = 10; // (x,y) position of player: start at (10,10)
 initNCurses();  // initialize ncurses window and draw the maze
 while ( c != 'q' ) { // as long as the user doesn't press q ..
   clearScreen();
   draw(x, y, '@', 2); // draw our player and maze, check for collisions
   c = getch();  // capture the user's pressed key
   switch (c) {
     case 'w': y--; break; // go up
     case 's': y++; break; // go down
     case 'a': x--; break; // go left
     case 'd': x++; break; // go right
 endwin();
                   // ncurses function: close the ncurses window
```


5.3. Arrays: Strings (Arrays of char)

- Strings are sequences of symbols, for example to store textual data
- In C++, there is no built-in (primitive) string type. Sequences of characters can easily be implemented as an array of char variables, which always end with a zero (a character that has the value 0, or also: '\0', but NOT '0'): char myName[10] = {'S', 'l', 'i', 'm', 'S', 'h', 'a', 'd', 'y', 0}; std::cout << myName << '\n'; // returns contents of myName</p>

```
| 'S' | '1' | 'i' | 'm' | 'S' | 'h' | 'a' | 'd' | 'y' | '\0' | | myName[0] myName[1] myName[2] myName[3] myName[4] myName[5] myName[6] myName[8] myName[9]
```


5.3. Arrays: Strings (Arrays of char)

Constant C strings can be used for initializing:

We have already used constant strings when writing output for the terminal:

```
#include <iostream>
std::cout << "This is a string!\n";</pre>
```

- The ending zero (which also is present in the constant strings such as these two above) makes sure that we never go beyond the end of the string
- As such, the empty string "" contains still one character (with value 0, or also: '\0', but NOT '0')

5.3. Arrays: Strings (Arrays of char)

With arrays of characters, you can manage any string already, but you will see that strings are not as easy to deal with as the basic types (int, float, double, bool, char). For example concatenating two strings is lots of work:

```
/** Write a program that concatenates two strings, s1 and s2, no matter
   what size they have */
#include <iostream> // use std::cout, std::cin, and std::endl
int main() {
   char s1[] = "Apples and ", s2[] = "oranges";
   // create a new string s, which contains s1 and s2 below:
   std::cout << "Concatenated string: " << s << '\n';
}</pre>
```


5.4. Arrays as function parameters

In C++, array parameters are passed by reference

```
void swap( int a[10], int i, int j) {  // this swap function works!
  int temp = a[i];  // after this function ends, the original array a
  a[i] = a[j];  // will have swapped the values in its elements i
  a[j] = temp;  // and j. Variables i, j, and temp were created
}  // at function start and are removed from memory
```

- The function above thus uses the actual array parameter, not a copy
- With call-by-reference, variables given as actual parameters may be changed by the function
- In a function declaration, arrays can be of unspecified length:
 void swap(int a[], int i, int j); // Note we'll have to check for a's size

5.5. Reading char arrays from the terminal

When trying our this approach:

```
char buffer[80];
std::cin >> buffer;
```

you will see this has a few flaws: **cin** stops reading beyond the first whitespace character (so we cannot input sentences), and we might have a buffer overrun when we enter more than 80 characters

The correct approach is to use:

```
char buffer[80];
std::cin.get( buffer, 80 ); // Reads at most 79 characters, 0 is last element
```

In the above, get() seems to be a function, but: What exactly is cin?

5.6. Lambda Expressions (since C++11)

- Lambda expressions construct a closure: an unnamed function object that is capable of capturing variables in scope
- They are often used as callbacks (functions as arguments), for example when iterating over containers such as arrays (see also STL later)
- These are typically used for short code snippets that are not reused (they are inline) and do not specifically require a name:

```
auto x = [](char symbol) { std::cout << symbol << ' '; };
auto x = [](double d, int t) -> double { return (d<t)?0:d; };</pre>
```

capture clause (see next slide) parameters return type function body

5.6. Lambda Expressions (since C++11)

- We can capture external variables from the enclosing scope in three ways using the capture clause:
 - [&]: capture all external variables by reference
 - [=]: capture all external variables by value
 - o [a, &b]: capture variable a by value, and variable b by reference

```
int a = 7, b = 14;
auto swap = [&a, &b]() -> { int t = a; a = b; b = t; };
```

 Lambdas are the simplest way of passing functions as arguments, two other methods are (1) passing functions as pointers and (2) using the std::function<> template class → see [more in-depth information] or later in this course

5.7. Range-based Loops (since C++11)

- The foreach loop or <u>range-based for loop</u> eases iterating over data
- It leaves out the iterator, initialization and stopping conditions:

```
#include <iostream> // output to the console
int main() {
   int array[]= { 8, 2, 7, 2, 8, 7, 9, 1};
   for ( auto value : array ) { // foreach loop over array
     std::cout << value << ' ';
   }
   std::cout << '\n';
}</pre>
```


5.7. Range-based Loops (since C++11)

 for multi-dimensional arrays, foreach loops look like this (using references → see later in chapter 7):

```
#include <iostream> // output to the console
int main() {
  int array[][]= { {8, 2, 7}, {2, 8, 7}, {9, 1, 0} };
  for ( auto & row : array ) {      // loop over 2d array rows
    for ( auto & element : row ) { // loop over row's elements
      std::cout << element << ' ';</pre>
  std::cout << '\n';</pre>
```


- 5.7. Range-based Loops (since C++11)
 - Example 04 (difficulty level:)

```
#include <iostream> // output to the console with std::cout
int main() {
 int myArray[7][7];
 // use foreach loops to initialize myArray, so that each
  // element's value is one higher than the previous:
  // print myArray using foreach loops, one row per line,
  // zero-pad the elements if they are smaller than 10:
```


5.7. Range-based Loops (since C++11)

- std::for_each loops are similar to range-based for loops, and provided in <iostream>
- They apply a *function* to each of the elements in the range [first,last):