Integrating Multifunctional Forests into the Rubber Tree Industry in São Paulo, Brazil:

A Model for Balancing Resource Availability and Market Constraints

Silvana Ribeiro Nobre Luísa Ribeiro von Glehn Nobre Marc Eric McDill Luiz Carlos Estraviz Rodriguez

Agreement

Financial Institution

Future Contract to reduce risks

Industry

RL Restoration

Raw Material to expand Rubber production

Landowner

Where would the best locations be for the beginning of negotiations?

Key considerations:

- Inclusion of small landowners
- Prioritize clusters with collection points
- Minimize logistical costs
- Assume only ~10% acceptance rate
- Restrict planting to the Legal Reserve (RL)
- Use 50% rubber trees and 50% native species

Mill Location

Build Clusters along the main roads

(*) Private Properties National Database

51°W

Clusters defined with a GIS tool:

- Each includes a collection point within a
 20 km radius
- Total cluster diameter: 40 km
- Minimum of 4,000 ha of Legal Reserve (RL) within the cluster
- Transportation distance (latex or dry rubber) varies by industry type:
- \rightarrow Latex: up to 20 km

Optimization Model

What does the model do?

Selects a set of clusters that:

- satisfy area and inclusion constraints,
- are suitable for negotiation (considering acceptance rate),
- do not overlap,
- minimize the total distance to the rubber mill.

Key Assumptions:

- Need to secure at least 150,000 ha of total RL area.
- From this area, expect only 10% acceptance rate → ~15,000 ha planted.
- Each cluster contains ~4,000 ha of Legal Reserve (RL).
- Production: 1 ton of dry rubber per hectare/year.
- Goal: 15,000 t/year of rubber \rightarrow enough to expand 15%
- Each cluster must include at least 1/3 of small landowners' RL area.
- Clusters that spatially intersect are mutually exclusive.

Model Formulation

Let:

 $x_i \in \{0,1\}$: binary variable to indicate cluster i selection

 d_i : distance from cluster i to the mill

 A_i : cluster i's RL area

 S_i : cluster i's smal properties RL area

 τ : set of conflicting (intersecting) cluster pairs

I : set of clusters

Objective function:

Minimize total distance

$$\min Z = \sum_{i=1}^{I} d_i \cdot x_i$$

Constraints:

1) Minimum total Area Selected

3) No overlapping clusters:

$$\sum_{i=1}^{r} A_i \cdot x_i \ge 150,000$$

$$\sum_{i=1}^{r} A_i \cdot x_i \ge 150,000$$

$$\sum_{i=1}^{l} S_i \cdot x_i - 0.33 \cdot \sum_{i=1}^{l} A_i \cdot x_i \ge 0$$

$$x_i + x_j \le 1 \ \forall (i,j) \in \tau$$

$$x_i \in \{0,1\} \ \forall i$$

Selected Clusters

Selected Clusters	Distance to the Mill (Km)	RL area (ha)	RL in Small Properties (ha)
7	36	11,636	3,352
8	36	11,405	4,582
37	47	10,397	5,867
38	47	11,853	4,013
5	76	11,582	3,292
6	76	12,516	2,898
35	87	10,673	4,180
51	90	11,053	2,445
52	90	3,681	489
3	115	7,521	2,854
4	115	7,550	3,141
19	123	6,822	2,771
34	126	11,179	3,026
49	130	3,536	1,130
18	164	11,943	2,917
28	214	7,100	2,924
		150,448	49,880
			33.15%
Acc	eptance rate%	10%	
Area	to be planted	15,045	ha
Production	of Dry Rubber	15,000	t/ha.year

- 1. It is a preliminary model to show that we can choose the: "negotiation space" with criteria
- 2. Model will be improved:
 - a) More constraints
 - related to characteristics of the landowners
 - region characteristics (like soil, water proximality)
 - Labor availability
 - b) Different parameters
 - Total Area
 - Acceptance rate
 - Productivity
 - Cluster size
 - Cluster location
- 3. Apply to other industries: Tropical fruits, Juçara, Macaúba

Thanks!!

<u>silvana@atriumforest.com.br</u> <u>www.atriumforest.com.br</u>

If somebody asks how we plant rubber tree with other species

x x x x	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			x x x x	x x	0 0 0 0 0 0 0 0	0	0	0 0 0 0 0	x x x	> × × × ×	0	0 0		0 0		× x	> × ×	0 1			0 0	_	X X	× x		0 0	0 (
x x x x	0 0 0 0 0 0 0 0 0		0 0 0	x x x x	x x x	0 0	0	0	0 0	x	х	0	0 0				x						_	x				
x x x	0 0 0 0 0 0 0 0		0 0 0	X X X	x x x	0 0	0	0	0 0	x					0 0	0	х	X	0 1	0 0		0 0	0	х	Х	0	0 0	0 1
x x	0 0 0		0 0 0	x x	x x	0 0	0			х	X	0																
x	0 0 0		0 0 0	х	x			0					0 0		0 0	0	Х	х	0 1		0	0 0	0	х	Х	0	0 0	0 (
						0 0	11000		0 0	х	Х	0	0 0		0 0	0	Х	х	0 1	0 0	C	0 0	0	х	Х	0	0 0	0 (
х	000		0 0 0	v			0	0	0 0	х	Х	0	0 0		0 0	0	Х	х	0 1	0 0	C	0 0	0	х	Х	0	0 0	0 (
				^	Х	0 0	0	0	0 0	х	Х	0	0 0		0 0	0	х	х	0 1	0 0	C	0 0	0	х	Х	0	0 0	0 (
20	200		74.7	12	27	0			37	76	1/2				12		2	4	12			2			-37		20	100
2	20)		18.7	2	2	0			20	76	172				12		12	3	12			2		20	-37		201	12
20	20		12.7	12	20	20			-37	77.5	12				32		2	22	12			23			-37		20	75
25	200		743	12		20			37	77.5	132		20		122		-	0	12			20		20	37		20	44
-25	201		18.7	-	20				37	796	132				42		2	22				20			27		201	10.
x	0 0 0		0 0 0	х	x	0 0	0		0 0	х	х	0	0 0		0 0	0	х	x	0 1	0 0		0 0	0	х	х	0	0 0	0 (
x	0 0 0		0 0 0		x	0 0			0 0	х	х		0 0		0 0		х	х	0 1			0 0		x	х		0 0	0 (
	0 0 0		0 0 0			0 0			0 0	x	x		0 0				x	x	0 1			0 0		x			0 0	0
																												0
																	×	×	0 1									0
x		0 0 0	0 0 0	000 000	0 0 0 0 0 0 0 X	0 0 0 0 0 0 0 0 X X X	0 0 0 0 0 0 0 0 X X 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 X X 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 000	000 000	000 000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 000	000 000	000 000

If somebody asks about technology

- Solver: Gurobi
- Optimization software: Python + Pyomo + Pandas
- Cluster building: R and packages
 - data: dplyr
 - GIS functions: sf, geosdist, dodgr
 - Vizualization: ggplot2