| CS 4375 ASSIGNMENT3                                              |  |
|------------------------------------------------------------------|--|
| Names of students in your group:<br>John Kenney<br>Mohammad Syed |  |
| Number of free late days used: 0                                 |  |

Please list clearly all the sources/references that you have used in this assignment.

for each assignment. After that, there will be a penalty of 10% for each late day.

Note: You are allowed a **total** of 4 free late days for the **entire semester**. You can use at most 2

Part 1 E(E:(x)) = 0 for all i 2. E(E; (x) E; (x)) = 0 for all i +j Eags = m Earg

Sh E E (E: (X) ] = m [m = E (E: (X) ] [ [ ] Σ Σ ξ ω ε ω ] = [ (ε ω ε ω) M2 E[E: (x)E; (x)] = 1 = = [ [ [ (x) [ (x) ] = M = [ (E; (x) E; (x) ) ] = M = [ (E; (x) E; (x) ) ] = [ (E; (x) E; (x) E; (x) ) ] = [ (E; (x) E; (x) E; (x) ) ] = [ (E; (x) E; (x) E; (x) ) ] = [ (E; (x) E; (x) E; (x) ) ] = [ (E; (x) E; (x) E; (x) E; (x) ) ] = [ (E; (x) E; (x)  $(\sum_{i=1}^{M} \lambda_i x_i)^2 \leq \sum_{i=1}^{M} \lambda_i x_i^2$ Eags = [[f(m £ E. (x))] by jenson inequality tagg & Eary

| 3) | Error Et Aller Adaboost process can be                                                                                                                                   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | measured w/ respect to De as                                                                                                                                             |
|    | 82 (121)                                                                                                                                                                 |
|    | $E_{\epsilon} = \sum_{i} D_{\epsilon}(i)$                                                                                                                                |
|    | when they the to the description of the state of                                                                                                                         |
|    | error at time 6 is the sum of weights                                                                                                                                    |
|    | corresponding to all points i which are                                                                                                                                  |
|    | mis- classified \$ -0 he (i) # yi                                                                                                                                        |
|    | $D_{\ell+1}(i) = D_{\ell}(i) e^{-\ell \ln \ell(i) g(i)}$                                                                                                                 |
|    | De 5 notion                                                                                                                                                              |
|    | WAR BELLEVIEW OF                                                                                                                                                         |
|    | since he (i) & g(i) are both in { 1,-1},                                                                                                                                 |
|    | this recurance gives                                                                                                                                                     |
|    |                                                                                                                                                                          |
|    |                                                                                                                                                                          |
|    | + Z, Z2 ZE                                                                                                                                                               |
|    | = 1 e = 2 d 3 h 3 (t) 9 (e)                                                                                                                                              |
|    | TT 2:                                                                                                                                                                    |
|    | j=1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                              |
|    |                                                                                                                                                                          |
|    | = 1 e-9(i) to (i) where for (i) = \( \frac{1}{2} \) by (i')                                                                                                              |
|    | $= \frac{1}{N} e^{-9(i)} f_{\bullet}(i)$ where $f_{\downarrow}(i) = \frac{1}{2} f_{\downarrow}(i)$ $\lim_{i \to 1} f_{\downarrow}(i)$ $\lim_{i \to 1} f_{\downarrow}(i)$ |
|    |                                                                                                                                                                          |
|    | tole for Will his tole . (1)                                                                                                                                             |
|    | Total training case error of H(x)                                                                                                                                        |
|    | THE = 1 E ie; any of mis-classified points                                                                                                                               |
|    |                                                                                                                                                                          |
|    |                                                                                                                                                                          |



Now to minimize error the TH, It comes out to be 1 1-to SO ZE = 2/6 (1-60) now,  $f = \frac{1}{2} - Yt$  given the Ze = Z((1/2 - Y6) (1/2 + Y6) = 11-4Y2 Since, 1+x = ex + n GR =D 1-4V+2 = e-4V+2 : ZE = Ve-47+2 = e-27+2 Putting Zt in gives D TH = II e Z Y+2 TH & e - 2 \ Y & 2