MATH 131—HOMEWORK 7

Ricardo J. Acuña (862079740)

Q1 Suppose U,V and W are finite-dimensional vector spaces and $S \in \mathcal{L}(V,W)$ and $T \in \mathcal{L}(U,V)$. Prove that $\dim(\text{range }ST) \leq \min\{\dim(\text{range }S),\dim(\text{range }T)\}$

Pf.

Let U,V and W be finite-dimensional vector spaces and $S \in \mathcal{L}(V,W)$ and $T \in \mathcal{L}(U,V)$.

$$ST: U \to W$$
 defined by $ST(u) = S(T(u)), u \in U$

$$\mathrm{range}\; ST = ST(U) = S(T(U)) = S(\mathrm{range}\; T)$$

$$\Rightarrow$$
 range $ST = \{ \mathbf{w} \in W | \exists \mathbf{v} \in \text{range } T : \mathbf{w} = S(v) \}$

 \Rightarrow range $ST \le \text{range } S \Rightarrow \text{dim}(\text{range } ST) \le \text{dim}(\text{range } S)$ (1)

Let
$$B_{T(U)} = \{v_i\}_{i=1}^n$$
 be a basis for range T ,

then
$$B_{S(T(U))} = \{S(v_i)\}_{i=1}^n$$
 spans range ST (by Q2 HW6)

If T is surjective, then range T = V,

so range
$$ST = S(V) = \text{range } S$$

If T is not surjective, then either $B_{S(T(U))}$ is linearly independent or not.

If $B_{S(T(U))}$ is linearly independent, then $\dim(\operatorname{range} ST) = n = \dim(\operatorname{range} T)$

If $B_{S(T(U))}$ is not linearly independent, then we can reduce it to a basis of range ST,

accordingly $\dim(\text{range } ST) < n = \dim(\text{ range } T)$

In both cases, $\dim(\text{range } ST) < \dim(\text{ range } T)$ (2)

If $\dim(\operatorname{range} S) < \dim(\operatorname{range} T)$, then $\dim(\operatorname{range} ST) \leq \dim(\operatorname{range} S)$, which is always true by (1).

If $\dim(\text{range }T) \leq \dim(\text{range }S)$, then $\dim(\text{range }ST) \leq \dim(\text{range }T)$, by (2).

So, $\dim(\operatorname{range} ST) \leq \min\{\dim(\operatorname{range} T), \dim(\operatorname{range} S)\}.$

Q2 Pf.

Q3 Pf.

Q4 Pf...

Q5 Pf.

Q6 Pf.