Practise problems 3

1. Write the dual of the following problems:

(a) Maximize
$$x_1 + x_2$$
 subject to $-x_1 + x_2 + x_3 \ge 1$
$$x_1 + 2x_2 + 3x_3 = 2$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$$

(b) Maximize
$$x_1 + x_2 + x_3$$
 subject to $-x_1 + x_2 + x_3 \le 2$
$$x_1 + 2x_2 + 3x_3 \ge 2$$

$$x_1 \ge 0, x_2 \ge 0.$$

(c) Maximize
$$x_1 - x_2 + x_3$$
 subject to $-x_1 + x_2 + x_3 \le 2$ $x_1 + 2x_2 + 3x_3 = 2$.

Hint: Write x_i as $x_i = z_i - w_i$, where $z_i, w_i \ge 0$.

Check whether the above problems have optimal solutions by using the dual(you need not find the optimal solutions).

- 2. Find an infeasible (that has no feasible solution) primal problem which also has an infeasible dual.
- 3. (a) Using similar results done in class show that exactly one of the following two systems has a solution.

$$\mathbf{x} \ge \mathbf{0}, A\mathbf{x} > \mathbf{0}$$
 (all components of $A\mathbf{x}$ is positive). (1) $\mathbf{y} \ge \mathbf{0}, \mathbf{y} \ne \mathbf{0}, A^T\mathbf{y} \le \mathbf{0}.$

Hence can the feasible region of both a primal problem (in standard form) and its dual be bounded?

Hint: Answer is No.

(b) Can both the feasible regions be unbounded?

Hint: Answer is Yes.

4. Fill up the blank with a restatement of the complementary slackness theorem: Consider a LPP (P) of the form given below (primal):

Maximize
$$\mathbf{c}^T \mathbf{x}$$

subject to $A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}$.

Let $\mathbf{x}_0 \in Fea(P)$ and $\mathbf{y}_0 \in Fea(D)$, then \mathbf{x}_0 and \mathbf{y}_0 are optimal for (P) and (D) respectively, if and only if

5. Consider a LPP of the type:

Maximize
$$\mathbf{c}^T \mathbf{x}$$

subject to
$$A_{m \times n} \mathbf{x} \leq \mathbf{b}$$
.

Write the dual of the above problem such that it (the dual) has only n constraints.

6. Given a LPP of the type:

Minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to
$$A\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}$$
.

- (a) Write the dual of the above problem.
- (b) Obtain the complementary slackness conditions of the above problem.
- 7. Using the complementary slackness conditions obtain the optimal solution of the following problem and show that it is unique.

Minimize
$$x_1 + 3x_2 + x_3$$

subject to $3x_1 + x_2 \ge 6$
 $x_1 + x_2 - x_3 \ge 2$
 $x_1 + x_3 \ge 2$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$.

Does the dual have a unique solution? Obtain feasible solutions \mathbf{x} and \mathbf{y} of the primal(P) and the dual(D) respectively, which does **not** mutually satisfy the complementary slackness condition.

8. Consider the problem

Minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to
$$A\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}$$

where A has m rows and n columns. Suppose an optimal solution exists such that only $x_1, x_2, ..., x_k$ are positive and $x_j = 0$ for j = k + 1, k + 2, ..., n. Now change the vector **b** to **b**'. Prove that if there exists a $\mathbf{z} \geq \mathbf{0}$ such that $A\mathbf{z} = \mathbf{b}'$ and $z_j = 0$ for j = k + 1, k + 2, ..., n, then this **z** is automatically optimal for the changed problem.

9. Consider the following problem (P) given below:

Minimize
$$x_1 + 3x_2 + x_3$$

subject to $x_1 - x_2 = 6$
 $x_1 - x_2 - 2x_3 = 2$
 $x_3 = 2$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$.

- (a) Check that (P) has a feasible solution.
- (b) If the feasible region region of (P) is written as $S = \{\mathbf{x} : A_{3\times 3}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ then check that rank(A) = 2. Hence by deleting a constraint write the feasible region S as $S = \{\mathbf{x} : A'_{2\times 3}\mathbf{x} = \mathbf{b}', \mathbf{x} \geq \mathbf{0}\}$, where A' is the matrix obtained from A by deleting a row of A and \mathbf{b}' is obtained from \mathbf{b} by deleting the corresponding component of \mathbf{b} .
- (c) Obtain a basic feasible solution of (P) and write a corresponding basis matrix. If possible obtain both a degenerate basic feasible solution and a non degenerate basic feasible solution of (P).
- (d) By changing the R.H.S of the third equation and and then by deleting the third constraint show that in general $S = \{\mathbf{x} : A_{3\times 3}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}\} \neq S' = \{\mathbf{x} : A_{2\times 3}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$. So can you give a general condition on S such that S = S'?
- (e) Give the set of all extreme directions of S.
- (f) Check whether this problem has an optimal solution.
- 10. Consider the problem (P) given below:

Maximize
$$x_1 + x_2$$

subject to $-x_1 + x_2 + x_3 \le 1$
 $x_1 + 2x_2 + 3x_3 = 2$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$.

Consider the extreme point \mathbf{x}^0 which lies in the hyperplanes corresponding to the first constraint, second constraint and the constraint $x_1 \geq 0$. Write the corresponding feasible solution $[\mathbf{x}^0, s_1]^T$ of the system,

$$-x_1 + x_2 + x_3 + s_1 = 1$$
$$x_1 + 2x_2 + 3x_3 = 2$$
$$x_1 > 0, x_2 > 0, x_3 > 0, s_1 > 0.$$

Verify that $[\mathbf{x}^0, s_1]^T$ is a basic feasible solution of the above system. Verify that $[0, 0, \frac{2}{3}, \frac{1}{3}]^T$ is a basic feasible solution of the above system. Verify that $[0, 0, \frac{2}{3}]^T$ is an extreme point of Fea(P).

11. Use simplex algorithm to solve the following problem:

Min
$$4x_1 + 4x_2 - 2x_3$$

Subject to $2x_1 + 3x_2 - 2x_3 \le 10$
 $2x_1 - x_2 + 3x_3 \le 4$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$.

12. For a linear programming problem (P) of the form,

Minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $A_{m \times n} \mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0},$

check the correctness of the following statements with proper justification.

- (a) If $c_1 z_1 > 0$ in some iteration (table) and if $\tilde{\mathbf{a}}_1$ is made to enter the basis, then the new solution obtained will not be feasible.
- (b) If for some basic feasible solution $\overline{\mathbf{x}}$, $\mathbf{c}^T\overline{\mathbf{x}} = 10$ and for no feasible \mathbf{x} , $\mathbf{c}^T\mathbf{x} = 5$, then (P) has an optimal solution.
- (c) For m = 2 and n = 4 in the linear programming problem (P), if $[1, 2, 3, 0]^T$ is an optimal solution, then (P) has infinitely many solutions.
- (d) For m = 2 and n = 4 in the linear programming problem (P), if in some iteration (table) of the simplex method, $\tilde{\mathbf{a}}_2$ enters the basis, then $\tilde{\mathbf{a}}_2$ can leave the basis in the next iteration (table).
- (e) For m = 2 and n = 4 in the linear programming problem (P), if in some iteration (table) of the simplex method, $\tilde{\mathbf{a}}_2$ leaves the basis, then $\tilde{\mathbf{a}}_2$ can again enter the basis in the next iteration (table).
- (f) If **B** is the basis matrix corresponding to the optimal table (of the simplex method) where $\mathbf{c}_1 \mathbf{z}_1 = 0$ and $\mathbf{B}^{-1}\tilde{\mathbf{a}_1} \leq \mathbf{0}$, then the optimal solutions of (P) is an unbounded set.
- (g) If $\mathbf{c}^T \mathbf{x}^0 = \mathbf{b}^T \mathbf{y}^0$ for some \mathbf{x}_0 feasible but not optimal for (P), then \mathbf{y}^0 is not feasible for the dual.
- (h) For m = 2 and n = 4 in (P) if $x_1 = 1$ and $x_2 = 3$ are the basic variables of a basic feasible solution of (P), then there exists a feasible solution of (P) with $x_1 > 0, x_2 > 0, x_3 > 0$.
- (i) If for some basic feasible solution \mathbf{x} and a nonbasic column $\tilde{\mathbf{a}}_s$, $min\{\frac{x_i}{u_{is}}:u_{is}>0\}=\frac{x_t}{u_{ts}}=\frac{x_r}{u_{rs}}>0$ for some $t\neq r$, then there exists a basic feasible solution of (P) which corresponds to two different basis.
- 13. Given a LPP with feasible region F as follows

$$S = \{ \mathbf{x} \in \mathbb{R}^2 : A\mathbf{x} \le \mathbf{b}, \mathbf{x} \ge \mathbf{0} \}.$$

It is given that the feasible region S has only the three extreme points $[0,0]^T$, $[0,3]^T$ and $[2,5]^T$.

Convert the feasible region S (by adding variables) to the form $S' = \{[\mathbf{x}, \mathbf{s}]^T \in \mathbb{R}^4 : A'[\mathbf{x}, \mathbf{s}]^T = \mathbf{b}, \mathbf{x} \geq \mathbf{0}, \mathbf{s} \geq \mathbf{0}\}$, where A' = [A : I].

The following is the simplex table for the basic feasible solution corresponding to the basis $B = [\mathbf{a}_1, \mathbf{a}_2]$.

- (a) How many constraints (other than the non negativity constraints) does S have?
- (b) If possible give all the missing entries of the above table.
- (c) If possible give a direction $[\mathbf{d}, \mathbf{s}]^T = [d_1, d_2, s_1, s_2]^T$ of S' such that the corresponding direction $\mathbf{d} = [d_1, d_2]^T$ of the feasible region S satisfies $\mathbf{a}_1^T \mathbf{d} < 0$ while $\mathbf{a}_2^T \mathbf{d} = 0$.
- (d) If possible give a direction $[\mathbf{d}', \mathbf{s}]^T = [d'_1, d'_2, s_1, s_2]^T$ of S' such that the corresponding direction $\mathbf{d}' = [d'_1, d'_2]^T$ of the feasible region S satisfies $\mathbf{a}_1^T \mathbf{d}' < 0$ and $\mathbf{a}_2^T \mathbf{d}' < 0$.
- (e) Obtain a feasible region S of the above problem.
- (f) Let \mathbf{u} and \mathbf{v} be the extreme points of S' corresponding to the extreme points $[0,0]^T$ and $[0,3]^T$, respectively. Give a $[\mathbf{d},\mathbf{s}]^T$ such that $\mathbf{u} + \alpha[\mathbf{d},\mathbf{s}]^T = \mathbf{v}$. Give the value of α .
- (g) Similarly let \mathbf{v} and \mathbf{w} be the extreme points of S' corresponding to the extreme points $[0,3]^T$ and $[2,5]^T$, respectively. If $[\mathbf{d},\mathbf{s}]^T$ is such that $\mathbf{v} + \alpha[\mathbf{d},\mathbf{s}]^T = \mathbf{w}$, $\alpha > 0$ then can \mathbf{d} be a nonnegative vector?
- (h) Which of the following can possibly constitute a basis matrix for the above problem:
 - $B = [\tilde{\mathbf{a}}_2, \mathbf{e}_1], B = [\tilde{\mathbf{a}}_1, \mathbf{e}_1], B = [\mathbf{e}_1, \mathbf{e}_2]$ and $B = [\tilde{\mathbf{a}}_2, \mathbf{e}_2]$, where \mathbf{e}_i denotes the *i* th column of the identity matrix.
- (i) Find a **c** such that if the objective function is of the form: Minimize $\mathbf{c}^T \mathbf{x}$ then the problem does not have an optimal solution.
- 14. Consider a LPP for which we get the following optimal table.

$c_j - z_j$	0	0	1	0	0	
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}_2}$	$B^{-1}\tilde{\mathbf{a}_3}$	$B^{-1}\tilde{\mathbf{a}_4}$	$B^{-1}\tilde{\mathbf{a}_5}$	$B^{-1}\mathbf{b}$
$-\tilde{a_1}$		-1				4
$ ilde{a_4}$		-2				4
		-3				3

- (a) Can you suggest two different optimal solutions for this problem?
- (b) If you change the entry -1 in the above table to +1, can you find two optimal basic feasible solutions, by entering a new variable in the basis?
- (c) If there are two optimal basic feasible solutions then there are infinitely many optimal solutions of a LPP. What about the converse?