▼ Análise Exploratória. Jailson

#Importando as bibliotecas
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use("seaborn")

#Upload do arquivo
from google.colab import files
arq = files.upload()

Escolher arquivos AdventureWorks.xlsx

• AdventureWorks.xlsx(application/vnd.openxmlformats-officedocument.spreadsheetml.sheet) - 85328 bytes, last modified: 09/06/2020 - 100% done Saving AdventureWorks.xlsx to AdventureWorks (1).xlsx

#Criando nosso DataFrame
df = pd.read_excel("/AdventureWorks.xlsx")

#Visualiza as 5 primeiras linhas
df.head(5)

	Data Venda	Data Envio	ID Loja	ID Produto	ID Cliente	No. Venda	Custo Unitário	Preço Unitário	Quantic
0	2008- 05-09	2008- 05-29	199	384	18839	200805093CS607	348.58	758.0	
1	2008- 05-12	2008- 05-17	306	384	19051	200805123CS567	348.58	758.0	
2	2008- 05-14	2008- 05-20	306	384	19052	200805143CS576	348.58	758.0	
3	2008- 05-21	2008- 05-27	306	384	19052	200805213CS576	348.58	758.0	
4	2008- 06-20	2008- 06-27	306	384	19053	200806203CS586	348.58	758.0	

(904, 16)

#Tipos de dados
df.dtypes

<pre>datetime64[ns] datetime64[ns]</pre>
int64
int64
int64
object
float64
float64
int64
float64
float64
object

#Qual a Receita total?
df["Valor Venda"].sum()

dtype: object

5984606.1426

#Custo Total
df["custo"] = df["Custo Unitário"].mul(df["Quantidade"]) #Criando a coluna

df.head(1)

Produ	Valor Venda	Valor Desconto	Quantidade	Preço Unitário	Custo Unitário	No. Venda	ID Cliente)
Advent Wc Laptop15. M1548 F	4548.0	0.0	6	758.0	348.58	200805093CS607	18839	ļ

```
#Qual o Custo total?
round(df["custo"].sum(), 2)
```

2486783.05

#Agora que temos a receita e custo e o total, podemos achar o Lucro total
#Vamos criar uma coluna de Lucro que será Receita - Custo
df["lucro"] = df["Valor Venda"] - df["custo"]

df.head(1)

;)	No. Venda	Custo Unitário	Preço Unitário	Quantidade	Valor Desconto	Valor Venda	Produto	Fabr
)	200805093CS607	348.58	758.0	6	0.0	4548.0	Adventure Works Laptop15.4W M1548 Red	Ad

'enda	Custo Unitário	Preço Unitário	Quantidade	Valor Desconto	Valor Venda	Produto	Fabricante	Ма
S607	348.58	758.0	6	0.0	4548.0	Adventure Works Laptop15.4W M1548 Red	Adventure Works	Adven W

**Agora, queremos saber a média do tempo de envio para cada marca, e para isso precisamos transformar a coluna Tempo_envio em númerica

```
#Extrindo apena os dias
df["Tempo_envio"] = (df["Data Envio"] - df["Data Venda"]).dt.days
df.head(1)
```

```
Data
               Data
                                          ID
                                                                           Preço
                                                                 Custo
                                                   No. Venda
#Verificar o tipo da coluna Tempo_envio
df["Tempo_envio"].dtype
    dtype('int64')
#Média do tempo de envio por marca
df.groupby("Marca")["Tempo_envio"].mean()
    Marca
    Adventure Works
                       8.663866
    Contoso
                       8.470930
                       8.510121
     Fabrikam
    Name: Tempo_envio, dtype: float64
#Verificar se temos dados faltantes
df.isnull().sum()
    Data Venda
                       0
    Data Envio
    ID Loja
     ID Produto
     ID Cliente
                      0
    No. Venda
    Custo Unitário
                      0
    Preço Unitário
    Quantidade
    Valor Desconto
    Valor Venda
                       0
    Produto
                       0
     Fabricante
    Marca
```

Tempo_envio
dtype: int64

Classe

custo lucro

Cor

▼ *Saber o Lucro por Ano e Por Marca?

0

0

0

```
#Vamos Agrupar por ano e marca
df.groupby([df["Data Venda"].dt.year, "Marca"])["lucro"].sum()
```

Data Venda	Marca	
2008	Adventure Works	306,641.16
	Contoso	56,416.00
	Fabrikam	1,557,020.55
2009	Adventure Works	405,395.08
	Contoso	138,258.95
	Fabrikam	1,034,091.35

Name: lucro, dtype: float64

Ouantic

pd.options.display.float_format = '{:20,.2f}'.format #Melhora as numerações cient

#Resetando o index

lucro_ano = df.groupby([df["Data Venda"].dt.year, "Marca"])["lucro"].sum().reset_ lucro_ano

	Data Venda	Marca	lucro
0	2008	Adventure Works	306,641.16
1	2008	Contoso	56,416.00
2	2008	Fabrikam	1,557,020.55
3	2009	Adventure Works	405,395.08
4	2009	Contoso	138,258.95
5	2009	Fabrikam	1,034,091.35

#Qual o total de produto vendido
df.groupby("Produto")["Quantidade"].sum().sort_values(ascending=False)

Produto

Headphone Adapter for Contoso Phone E130 Silver	25232
Headphone Adapter for Contoso Phone E130 White	25008
Adventure Works Laptop15.4W M1548 Black	1089
Fabrikam Trendsetter 2/3'' 17mm X100 Grey	1087
Adventure Works Laptop15.4W M1548 Red	1047
Fabrikam Trendsetter 2/3'' 17mm X100 Black	926
Fabrikam Trendsetter 1/3'' 8.5mm X200 Black	884
Fabrikam Trendsetter 1/3'' 8.5mm X200 Grey	845
Fabrikam Trendsetter 1/3'' 8.5mm X200 White	789

Name: Quantidade, dtype: int64

#Grafico Total de produto vendido
df.groupby("Produto")["Quantidade"].sum().sort_values(ascending=True).plot.barh(t
plt.xlabel("Total")
plt.ylabel("Produto");

Total Produto Vendido

Headphone Adapter for Contoso Phone E130 Silver

df.groupby(df["Data Venda"].dt.year)["lucro"].sum().plot.bar(title="Lucro x Ano")
plt.xlabel("Ano")
plt.ylabel("Receita");

df.groupby(df["Data Venda"].dt.year)["lucro"].sum()

Data Venda

2008 1,920,077.71 2009 1,577,745.38 Name: lucro, dtype: float64

#Selionando apenas as vendas de 2009
df_2009 = df[df["Data Venda"].dt.year == 2009]

df_2009.head()

	Data Venda	Data Envio	ID Loja	ID Produto	ID Cliente	No. Venda	Custo Unitário	Preço Unitário	Quanti
1′	2009- 05-02	2009- 05-14	199	384	18938	200905023CS847	348.58	758.00	
12	2009- 05-16	2009- 05-27	306	384	19067	200905163CS746	348.58	758.00	
4'	_	2009-	306	201	10062	200000531309749	3/10 ፫0	7 5 0 00	
	o meu luc .groupby(a Venda"]	.dt.month)["lucro"].sum().	plot(title	e="Lucro	

#Saber o meu lucro por mes
df_2009.groupby(df_2009["Data Venda"].dt.month)["lucro"].sum().plot(title="Lucro
plt.xlabel("Mês")
plt.ylabel("Lucro");

df_2009.groupby("Marca")["lucro"].sum().plot.bar(title="Lucro x Marca")
plt.xlabel("Mês")
plt.ylabel("Lucro")
plt.xticks(rotation='horizontal');


```
#lucro por classe
df_2009.groupby("Classe")["lucro"].sum().plot.bar(title="Lucro x Classe")
plt.xlabel("Classe")
plt.ylabel("Lucro");
plt.xticks(rotation='horizontal');
```


df["Tempo_envio"].describe() #analise estatisticas

coun ⁻	t		904.00
mean			8.54
std			3.06
min			4.00
25%			6.00
50%			9.00
75%			11.00
max			20.00
	_	_	

Name: Tempo_envio, dtype: float64

```
#Grafico de Boxplot
plt.boxplot(df["Tempo_envio"]);
```


#Histograma
plt.hist(df["Tempo_envio"]);

#Tempo minimo de envio
df["Tempo_envio"].max()

20

df[df["Tempo_envio"] ==20] #Indentificando o Outlier

	a Data a Envio		ID Produto	ID Cliente	No. Venda	Custo Unitário	Preço Unitário	Quantic
2008	- 2008- 9 05-29	199	384	18839	200805093CS607	348.58	758.00	

#Satvalido ciii .CSv

df.to_csv("df_vendas_novo.csv", index=False)

✓ 0s conclusão: 13:41