CHAPTER 5

Logical Agents in Al

Compiled by-

Prof. Bilal Naseem Shaikh
Department of CS/IT
Somaiya Vidyavihar University

Motivation of Knowledge-Based Agents

- Humans know things and do reasoning, which are important for artificial agents
- Knowledge-based agents benefit from knowledge expressed in general forms, combining information to suit various purposes
- Knowledge and reasoning is important when dealing with partially observable environments
- Understanding natural language requires inferring hidden states
- Flexibility for accepting new tasks

Knowledge Bases

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
 - Tell it what it needs to know
 - Then it can Ask itself what to do answers should follow from the KB
- Both "Tell" and "Ask" involve inference deriving new sentences from old

A Simple Knowledge-Based Agent

- Details hidden in three functions
- Similar to agent with internal state in Chapter 2
- Agents can be viewed at the knowledge level
 i.e., what they know, regardless of how they are implemented
- Or at the implementation level
 - i.e., data structures in KB and algorithms that manipulate them

Agent's Requirements

- The agent must be able to:
 - Represent states, actions, etc.
 - Incorporate new percepts
 - Update internal representations of the world
 - Deduce hidden properties of the world
 - Deduce appropriate actions

Our New Toy Problem – Wumpus World

Wumpus World PEAS

- Performance measure
 - gold +1000, death -1000
 - -1 per step, -10 for using the arrow
- Environment
 - 4x4 grid of rooms
 - Agent always starts at [1,1]
 - Wumpus and gold randomly chosen
 - Each square other than start is pit with 0.2 probability

SS SSSS Stendt S		Breeze	PIT
12 P	SS SSS Stench S	PIT	Breeze
\$5555 Stench \$		Breeze	
START	Breeze	PIT	Breeze
1	2	3	4

3

2

Wumpus World PEAS

- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot, Climb
 - Shooting kills wumpus if you are facing it
 - Shooting uses up the only arrow
 - Grabbing picks up gold if in same square
 - Releasing drops the gold in same square
 - Climbing out of the cave from [1, 1]
- Sensors (percepts): Stench, Breeze,
 Glitter, Bump, Scream
 - Squares adjacent to wumpus are smelly
 - Squares adjacent to pit are breezy
 - Glitter iff gold is in the same square
 - Bump when agent walks into a wall
 - When wumpus is killed, it screams

3

2

Wumpus World Properties

- Fully observable?
 - No only local perception
- Deterministic?
 - Yes outcomes exactly specified
- Episodic?
 - No sequential at the level of actions
- Static?
 - Yes Wumpus and Pits do not move
- Discrete?
 - Yes
- Single-agent?
 - Yes Wumpus is essentially a natural feature

Agent's initial knowledge base contains the rules of the environment: it knows that it's at [1,1] and it's safe at [1,1]

percept: [none, none, none, none, none]

CS 420: Artificial Intelligence

10

percept: [none, breeze, none, none, none]

percept: [none, breeze, none, none, none]

our cautious agent will go back and to [2,1]

percept: [stench, none, none, none, none]

percept: [none, none, none, none, none]

percept: [stench, breeze, glitter, none, none]

Logical Reasoning

 In each case where the agent draws a conclusion from the available information, that conclusion is guaranteed to be correct if the available information is correct

The above is the fundamental of logical reasoning

Logic in General

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences in the language
- Semantics define the "meaning" of sentences;
 - i.e., define truth of a sentence in a world
- E.g., the language of arithmetic
 - $x+2 \ge y$ is a sentence; $x2+y > \{\}$ is not a sentence
 - x+2 ≥ y is true iff the number x+2 is no less than the number y
 - $x+2 \ge y$ is true in a world where x = 7, y = 1
 - $x+2 \ge y$ is false in a world where x = 0, y = 6

Entailment

- Now, we have a notion of truth, we are ready to study logical reasoning, which involves logical entailment between sentences
- Entailment means that one thing follows from another:

- Knowledge base KB entails sentence a if and only if
 a is true in all worlds where KB is true
 - E.g., the KB containing "the Giants won" and "the Reds won" entails "Either the Giants won or the Reds won"
 - E.g., x+y = 4 entails 4 = x+y
 - Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Models

- We use the term "model" to represent "possible world"
- We say m is a model of a sentence a if a is true in model m
- M(a) is the set of all models of a
- Then KB \models a iff $M(KB) \subseteq M(a)$
 - E.g. KB = Giants won and Reds won, a = Giants won

Entailment in the Wumpus World

- Situation after detecting nothing in [1,1], moving right, breeze in [2,1]
- Consider possible models for KB assuming only pits
- 3 Boolean choices ⇒ 8 possible models

■ KB = wumpus-world rules + observations

- KB = wumpus-world rules + observations
- $a_1 = "[1,2]$ is safe", $KB \models a_1$, proved by model checking
 - enumerate all possible models to check that a is true in all models in which KB is true

■ KB = wumpus-world rules + observations

CS 420: Artificial Intelligence

26

- KB = wumpus-world rules + observations
- $a_2 = "[2,2] \text{ is safe"}, KB \models a_2?$

- KB = wumpus-world rules + observations
- $a_2 = "[2,2]$ is safe", $KB \not\models a_2$

Soundness and Completeness

- An inference algorithm that derives only entailed sentences is called sound
- An inference algorithm is complete if it can derive any sentence that is entailed
- If KB is true in the real world, then any sentence derived from KB by a sound inference procedure is also true in the real world

Grounding Problem

- Grounding: how do we know that KB is true in the real world?
 - Agent's sensors create the connection
 - Meaning and truth of percept sentences through sensing and sentence construction
 - General rules
 - From perceptual experience

Propositional Logic: Syntax

- Propositional logic is the simplest logic illustrates basic ideas
- The proposition symbols S₁, S₂ etc are sentences
 - If S is a sentence, ¬S is a sentence (negation)
 - If S₁ and S₂ are sentences, S₁ ∧ S₂ is a sentence (conjunction)
 - If S₁ and S₂ are sentences, S₁ ∨ S₂ is a sentence (disjunction)
 - If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
 - If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Propositional Logic: Semantics

Each model specifies true/false for each proposition symbol

E.g.
$$P_{1,2}$$
 $P_{2,2}$ $P_{3,1}$ false true false

With these symbols, 8 possible models, can be enumerated automatically.

Rules for evaluating truth with respect to a model *m*:

$\neg S$	is true iff	S is false		
$S_1 \wedge S_2$	is true iff	S ₁ is true	and	S ₂ is true
$S_1 \vee S_2$	is true iff	S ₁ is true	or	S ₂ is true
$S_1 \Rightarrow S_2$	is true iff	S_1 is false	or	S ₂ is true
i.e.,	is false iff	S ₁ is true	and	S ₂ is false
$S_1 \Leftrightarrow S_2$	is true iff	$S_1 \Rightarrow S_2$ is true	and	$S_2 \Rightarrow S_1$ is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

$$\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (true \lor false) = true \land true = true$$

Truth Tables for Connectives

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Wumpus World Sentences

- Let P_{i,j} be true if there is a pit in [i, j]
- Let B_{i,j} be true if there is a breeze in [i, j]
 - R1: ¬P_{1,1}
 - R2: ¬B_{1,1}
 - R3: B_{2,1}
- "Pits cause breezes in adjacent squares"
 - R4: $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$
 - R5: $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$
- The KB consists of the above 5 sentences. It can also be considered as a single sentence – the conjunction R1 ∧ R2 ∧ R3 ∧ R4 ∧ R5

Inference

- The aim of logical inference is to decide whether KB = O for some sentence O.
- Is P_{2,2} entailed?
- Our first algorithm for inference will be a direct implementation of the definition of entailment:
 - Enumerate the models, and check that a is true in every model in which KB is true

Truth Tables for Inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	α_1
false	true							
false	false	false	false	false	false	true	false	true
:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	false	true
false	true	false	false	false	false	true	\underline{true}	\underline{true}
false	true	false	false	false	true	false	\underline{true}	\underline{true}
false	true	false	false	false	true	true	true	true
false	true	false	false	true	false	false	false	true
:	:	1	:	:	1	:	:	:
true	false	false						

 $P_{1,2}$ is false, cannot decide on $p_{2,2}$ $a_1 = "[1,2]$ is safe"

Inference by Enumeration

Depth-first enumeration of all models is sound and complete

```
function TT-Entails?(KB, \alpha) returns true or false
symbols \leftarrow \text{a list of the proposition symbols in } KB \text{ and } \alpha
\text{return TT-Check-All}(KB, \alpha, symbols, [])
function TT-Check-All}(KB, \alpha, symbols, model) returns true or false
\text{if Empty?}(symbols) \text{ then}
\text{if PL-True?}(KB, model) \text{ then return PL-True?}(\alpha, model)
\text{else return } true
\text{else do}
P \leftarrow \text{First}(symbols); rest \leftarrow \text{Rest}(symbols)
\text{return TT-Check-All}(KB, \alpha, rest, \text{Extend}(P, true, model) \text{ and}
\text{TT-Check-All}(KB, \alpha, rest, \text{Extend}(P, false, model)
```

For n symbols, time complexity is $O(2^n)$, space complexity is O(n) PL-TRUE? returns true if a sentence holds within a model.

Proof Methods In General

- Proof methods divide into (roughly) two kinds:
 - Model checking
 - truth table enumeration (always exponential in n)
 - improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL)
 - heuristic search in model space (sound but incomplete)
 - e.g., min-conflicts-like hill-climbing algorithms
 - Application of inference rules
 - Legitimate (sound) generation of new sentences from old
 - Proof = a sequence of inference rule applications
 - Can use inference rules as operators in a standard search algorithm
 - Typically require transformation of sentences into a normal form

Validity and Satisfiability

- A sentence is valid if it is true in all models, also known as tautology
 - e.g., *True*, $A \vee \neg A$, $A \Rightarrow A$, $(A \wedge (A \Rightarrow B)) \Rightarrow B$
- Validity is connected to inference via the Deduction Theorem
 - $KB \models a$ if and only if $(KB \Rightarrow a)$ is valid
- A sentence is satisfiable if it is true in some model
 - e.g., A ∨ B, C
- A sentence is unsatisfiable if it is true in no models
 - e.g., A ∧ ¬A
- Satisfiability is connected to inference via the following:
 - $KB \models a$ if and only if $(KB \land \neg a)$ is unsatisfiable
 - Thus proof by contradiction

Equivalence Rules

Two sentences are logically equivalent iff they are true in the same models: $a \equiv \beta$ iff $a \models \beta$ and $\beta \models a$

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{de Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{de Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}
```

Inference Rules

From	Can Derive	Abbreviation for rule	
$R, R \rightarrow S$	S	Modus Ponens- mp	
$R \rightarrow S, S'$	R′	Modus Tollens- mt	
R, S	RΛS	Conjunction-con	
RΛS	R, S	Simplification- sim	
R	RVS	Addition- add	

- R1: $\neg P_{1,1}$
- R2: $B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}$
- R3: $B_{2,1} \Leftrightarrow P_{1,1} \vee P_{2,2} \vee P_{3,1}$
- R4: $\neg B_{1,1}$
- R5: B_{2,1}
- Can we prove $\neg P_{1,2}$?

Now, Your Turn

From	Can Derive	Abbreviation for rule	
$R, R \rightarrow S$	S	Modus Ponens- mp	
$R \rightarrow S, S'$	R′	Modus Tollens- mt	
R, S	RΛS	Conjunction-con	
RΛS	R, S	Simplification- sim	
R	RVS	Addition- add	

Prove $\neg P_{2,1}$ and $P_{3,1}$ given:

 $R1: \neg P_{1,1}$

 $R2: B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}$

 $R3: B_{2,1} \Leftrightarrow P_{1,1} \vee P_{2,2} \vee P_{3,1}$

 $R4: \neg B_{1,1}$

 $R5: B_{2,1}$

 $R6: \neg P_{2,2}$

4

3

2

1

Proof Problem as Search Problem

- Initial state: initial knowledge base
- Actions:
 - set of actions consists of all the inference rules applied to all the sentences that match the left half of the inference rule
- Result: add the sentence in the right half of the inference rule
- Goal: the goal is a state that contains the sentence we are trying to prove
- Practically, finding a proof can be more efficient because the proof can ignore irrelevant propositions, no matter how many of them there are

Resolution

- The inference rules can be applied whenever suitable premises are found in the KB
- The conclusion of the rule must follow regardless of what else is in the KB
- The above rules are sound, but if the available inference rules are inadequate, then it's not complete
- Now, we introduce a single inference rule, resolution, that gives a complete inference algorithm when coupled with any complete search algorithm

Example

Recall our previous proof of P_{3,1} given:

 $R1: \neg P_{1,1}$

 $R2: B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}$

 $R3: B_{2,1} \Leftrightarrow P_{1,1} \vee P_{2,2} \vee P_{3,1}$

 $R4: \neg B_{1,1}$

 $R5:B_{2,1}$

 $R6: \neg P_{2,2}$

	1	_	_
SS SSSS		Breeze	PIT
Vii	SS SSS SS Stench S	PIT	- Breeze
SS SSSS Stench S		Breeze -	
START	Breeze	PIT	Breeze
1	2	3	4

3

2

Unit resolution

• • •

 $R9: P_{1,1} \vee P_{2,2} \vee P_{3,1}$

 $R10: P_{2,2} \vee P_{3,1}$ Resolution rule: $\neg P_{1,1}$ resolves with $P_{1,1}$ in R9

 $R11:P_{3,1}$ Resolution rule: $\neg P_{2,2}$ resolves with $P_{2,2}$ in R10

Resolution Rules

- Unit resolution
 - li and m are complementary literals

$$\frac{\ell_1 \vee ... \vee \ell_k, \qquad m}{\ell_1 \vee ... \vee \ell_{i-1} \vee \ell_{i+1} \vee ... \vee \ell_k}$$

Generalized resolution rule

$$\frac{\ell_1 \vee ... \vee \ell_k, \qquad \qquad m_1 \vee ... \vee m_n}{\ell_1 \vee ... \vee \ell_{i-1} \vee \ell_{i+1} \vee ... \vee \ell_k \vee m_1 \vee ... \vee m_{j-1} \vee m_{j+1} \vee ... \vee m_n}$$

where li and mj are complementary literals

Soundness and Completeness

- Soundness of resolution inference rule:
 - if l_i is true, then m_i is false
 - ▶ hence $(m_1 \lor ... \lor m_{j-1} \lor m_{j+1} \lor ... \lor m_n)$ must be true
 - if l_i is false, then
 - $(l_1 \vee ... \vee l_{i-1} \vee l_{i+1} \vee ... \vee l_k)$ must be true
 - no matter what
 - $(l_1 \vee ... \vee l_{i-1} \vee l_{i+1} \vee ... \vee l_k) \vee (m_1 \vee ... \vee m_{j-1} \vee m_{j+1} \vee ... \vee m_n)$ is true
- Any complete search algorithm, applying only the resolution rule, can derive any conclusion entailed by any knowledge base in propositional logic

 A resolution-based theorem prover can, for any sentences a and β in propositional logic, decide whether a | β

Resolution and CNF

- Resolution rule applies only to disjunctions of literals
- Every sentence of propositional logic is logically equivalent to a conjunction of disjunctions of literals
- Conjunctive Normal Form (CNF):
 - conjunction of disjunctions of literals clauses
 - E.g., $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$

$$P_{1,3} \vee P_{2,2}, \qquad \neg P_{2,2}$$

 $P_{1,3}$

Conversion to CNF

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

- 1. Eliminate \Leftrightarrow , replacing $a \Leftrightarrow \beta$ with $(a \Rightarrow \beta) \land (\beta \Rightarrow a)$. $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- 2. Eliminate \Rightarrow , replacing $a \Rightarrow \beta$ with $\neg a \lor \beta$. $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- 3. Move ¬ inwards using de Morgan's rules and double-negation:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$

4. Apply distributive law (\land over \lor) and flatten: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

Resolution Algorithm

- To show that $KB \models a$, we show that $(KB \land \neg a)$ is unsatisfiable, proof by contradiction
- First, (KB $\land \neg a$) is converted into CNF
- Then the resolution rule is applied to the resulting clauses
 - Each pair that contains complementary literals is resolved to produce a new clause, which is added to the set if it's not present
- Process continues until:
 - no new clauses can be added, thus KB does not entail a
 - two clauses resolve to yield {}, thus KB entails a
- {} is a disjunction of no disjuncts is equivalent to False, thus the contradiction

CS 420: Artificial Intelligence

51

Resolution Algorithm

Proof by contradiction, i.e., show that $KB \land \neg \alpha$ is unsatisfiable

```
function PL-RESOLUTION(KB, \alpha) returns true or false
clauses \leftarrow \text{the set of clauses in the CNF representation of } KB \land \neg \alpha
new \leftarrow \{ \}
loop \ do
for \ each \ C_i, \ C_j \ in \ clauses \ do
resolvents \leftarrow \text{PL-RESOLVE}(C_i, C_j)
if \ resolvents \ contains \ the \ empty \ clause \ then \ return \ true
new \leftarrow new \cup \ resolvents
if \ new \ \subseteq \ clauses \ then \ return \ false
clauses \leftarrow \ clauses \cup new
```

Resolution Example

■
$$KB = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1} \quad a = \neg P_{1,2}$$

Horn Clauses

- Why horn clauses?
 - In many practical situations, however, the full power of resolution is not needed
 - Real-world KBs often contain some restricted clauses – Horn clauses
- Horn Form (restricted)
 - KB = conjunction of Horn clauses
 - Horn clause = disjunction of literals of which at most one is positive
 - E.g., $(\neg L_{1,1} \lor \neg Breeze \lor B_{1,1})$

Properties of Horn Clauses

- Every horn clause can be written as an implication whose premise is a conjunction of positive literals and whose conclusion is a single positive literal
 - E.g., $(L_{1,1} \land Breeze) \Rightarrow B_{1,1}$
- Modus Ponens (for Horn Form): complete for Horn KBs $a_1, ..., a_n, \qquad a_1 \wedge ... \wedge a_n \Rightarrow \beta$
- Definite clause: horn clauses with exactly one positive literal
 - The positive literal is called the head and the negative literals form the body
 - Definite clauses form the basis for logic programming
- Can be used with forward chaining or backward chaining
- These algorithms are very natural and run in linear time

Forward Chaining

Idea:

- fire any rule whose premises are satisfied in the *KB*
- add its conclusion to the KB, until query is found

$$\begin{array}{c} P \Rightarrow Q \\ L \wedge M \Rightarrow P \\ B \wedge L \Rightarrow M \\ A \wedge P \Rightarrow L \\ A \wedge B \Rightarrow L \\ A \end{array}$$

Forward Chaining Algorithm

```
function PL-FC-Entails? (KB, q) returns true or false
  local variables: count, a table, indexed by clause, initially the number of premises
                      inferred, a table, indexed by symbol, each entry initially false
                     agenda, a list of symbols, initially the symbols known to be true
   while agenda is not empty do
       p \leftarrow \text{Pop}(agenda)
        if p = q then return true
        if inferred[p] = false then
           inferred[p] = true
           for each clause c in KB where p is in c.Premise do
              decrement count[c]
              if count[c] = 0 then add c.Conclusion to agenda
   return false
```

Forward chaining is sound and complete for Horn KB

```
\begin{array}{l} P \Rightarrow Q \\ L \wedge M \Rightarrow P \\ B \wedge L \Rightarrow M \\ A \wedge P \Rightarrow L \\ A \wedge B \Rightarrow L \\ A \end{array}
```



```
\begin{array}{l} P \Rightarrow Q \\ L \wedge M \Rightarrow P \\ B \wedge L \Rightarrow M \\ A \wedge P \Rightarrow L \\ A \wedge B \Rightarrow L \\ A \end{array}
```



```
\begin{array}{l} P \Rightarrow Q \\ L \wedge M \Rightarrow P \\ B \wedge L \Rightarrow M \\ A \wedge P \Rightarrow L \\ A \wedge B \Rightarrow L \\ A \end{array}
```



```
\begin{array}{l} P \Rightarrow Q \\ L \wedge M \Rightarrow P \\ B \wedge L \Rightarrow M \\ A \wedge P \Rightarrow L \\ A \wedge B \Rightarrow L \\ A \end{array}
```



```
\begin{array}{l} P \Rightarrow Q \\ L \wedge M \Rightarrow P \\ B \wedge L \Rightarrow M \\ A \wedge P \Rightarrow L \\ A \wedge B \Rightarrow L \\ A \end{array}
```



```
\begin{array}{l} P \Rightarrow Q \\ L \wedge M \Rightarrow P \\ B \wedge L \Rightarrow M \\ A \wedge P \Rightarrow L \\ A \wedge B \Rightarrow L \\ A \end{array}
```


Proof of Soundness

 Every inference is an application of Modus Ponens

Proof of Completeness

- FC derives every atomic sentence that is entailed by KB
 - FC reaches a fixed point where no new atomic sentences are derived
 - Consider the final state as a model m, assigning true/false to symbols; true for each symbol inferred, false otherwise
 - 3. Every definite clause in the original KB is true in m $a_1 \wedge ... \wedge a_k \Rightarrow b$, assuming the opposite, then it contradicts "fixed point"
 - 4. Hence, every entailed atomic sentence will be derived

Backward Chaining

- Idea: work backwards from the query q:
 - to prove q by BC
 - check if q is known already, or
 - prove by BC all premises of some rule concluding q
- Avoid loops: check if new subgoal is already on the goal stack
- Avoid repeated work: check if new subgoal
 - has already been proved true, or
 - has already failed

Forward vs. Backward Chaining

- FC is data-driven, automatic, unconscious processing
 - e.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be much less than linear in size of KB

Inference-Based Agents in the Wumpus World

A wumpus-world agent using propositional logic:

$$\begin{array}{l} \neg P_{1,1} \\ \neg W_{1,1} \\ B_{x,y} \Leftrightarrow (P_{x,y+1} \vee P_{x,y-1} \vee P_{x+1,y} \vee P_{x-1,y}) \\ S_{x,y} \Leftrightarrow (W_{x,y+1} \vee W_{x,y-1} \vee W_{x+1,y} \vee W_{x-1,y}) \\ W_{1,1} \vee W_{1,2} \vee ... \vee W_{4,4} \\ \neg W_{1,1} \vee \neg W_{1,2} \\ \neg W_{1,1} \vee \neg W_{1,3} \\ ... \end{array}$$

 \Rightarrow 64 distinct proposition symbols, 155 sentences

Expressiveness Limitation

- KB contains "physics" sentences for every single square
- For every time t and every location [x,y], $L_{x,y} \wedge FacingRight^t \wedge Forward^t \Rightarrow L_{x+1,y}$

Rapid proliferation of clauses

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
 - syntax: formal structure of sentences
 - semantics: truth of sentences based on models
 - entailment: necessary truth of one sentence given another
 - inference: deriving sentences from other sentences
 - soundness: derivations produce only entailed sentences
 - completeness: derivations can produce all entailed sentences
- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
- Resolution is complete for propositional logic Forward, backward chaining are linear-time, complete for Horn clauses
- Propositional logic lacks expressive power