Kodowanie predykcyjne

Kodowanie i kompresja danych - Wykład 6

Maciek Gebala

4 kwietnia 2022

Maciek Gebala

odowanie predykcyjne

Motywacje

- W tekstach naturalnych symbole bardzo często zależą od siebie.
- W językach naturalnych na podstawie już przeczytanych symboli można z bardzo dużym prawdopodobieństwem przewidzieć następny symbol (mocna zależność od historii).
- Często zamiast kompresować ciąg wejściowy kompresujemy różnicę miedzy tym ciągiem a ciągiem generowanym przez pewien "zgadywacz".

Maciek Gęba

Kodowanie predykcyjne

Przykład wykorzystania kontekstu

	Α	В	C
Α	0.1	0.3	0.6
В	0.6	0.1	0.3
С	0.3	0.6	0.1

- Łatwo sprawdzić, że $P(A)=P(B)=P(C)=\frac{1}{3},$ stąd normalny kod Huffmana będzie miał średnią długość $\frac{5}{3}.$
- Co będzie jeśli wykorzystamy informację o tym po jakiej literze występuje kolejna, czyli stworzymy trzy kodowania Huffmana, kolejno dla liter występujących po A, B, C?
- Łatwo policzyć, że wtedy średnia długość kodu spadnie do ¹³/₁₀.
- Gdybyśmy wydłużyli historię (kontekst) moglibyśmy uzyskać większy stopień kompresji, ale ilość kodów rosłaby szybko.

Maciek Gębala

Kodowanie predykcyjn

Predykcja z częściowym dopasowaniem (PPM)

- Algorytm dynamiczny wykorzystujący kontekst.
- Specjalny symbol wyjścia oznaczający brak istniejącego kontekstu danej długości (<esc>).
- Ustalamy maksymalny rozmiar kontekstu.
- Dla danej litery szukamy maksymalnego kontekstu, jeśli nie istnieje to wysyłamy symbol wyjścia i sprawdzamy krótszy kontekst. Jeśli istnieje to wysyłamy odpowiedni kod a liczbę użycia litery w tym kontekście zwiększamy o 1.
- Jeśli symbol pojawia się po raz pierwszy dodajemy go bez kontekstu, (kontekst długości -1) z prawdopodobieństwem równym dla każdej litery.

Notatki
Notatki
Notatki
Notatki
Notatki
Notatki

Przykład

- Kodujemy tekst: this-is-the-tithe.
- Przyjmujemy, że najdłuższy kontekst ma długość 2 (mamy konteksty długości -1, 0, 1 i 2).
- Po zakodowaniu this-is mamy odpowiednie tabele kontekstów.

Kontekst długości -1		
	Litera	Licznik
	t	1
	h	1
	i	1
	S	1
	-	1

faciek Gebala

Kodowanie predykcyjne

Przykład (this-is)

Kontekst długości 0			
	Litera	Licznik	
	<esc></esc>	1	
	t	1	
	h	1	
	i	2	
	s	2	
	-	1	

Maciek Gębal

Kodowanie predykcyjne

Przykład (this-is)

Kontekst długości 1				
	Kontekst	Litera	Licznik	
	t	<esc></esc>	1	
		h	1	
	h	<esc></esc>	1	
		i	1	
	i	<esc></esc>	1	
		S	2	
	S	<esc></esc>	1	
		-	1	
	-	<esc></esc>	1	
		i	1	

Maciek Gebala

Kodowanie predykcyjne

Przykład (this-is)

Kontekst długości 2				
	Kontekst	Litera	Licznik	
•	th	<esc></esc>	1	
		i	1	
	hi	<esc></esc>	1	
		S	1	
•	is	<esc></esc>	1	
		-	1	
,	s-	<esc></esc>	1	
		i	1	
	-i	<esc></esc>	1	
		S	1	

Notatki
Notatki
Notatki
Notatki
Notatki
Notatki
Notatki

_	_	 П

- Dla każdego kontekstu możemy teraz utworzyć dynamiczne kody Huffmana.
- Albo wykorzystać dany kontekst z liczbą wystąpień jako prawdopodobieństwa do podziału odcinka w kodowaniu arytmetycznym.
- Najczęściej za maksymalną długość kontekstu przyjmuje się 5.

Maciek Gehala

odowanie predykcyjne

CALIC - Context Adaptative Lossless Image Compresion

		NN	NNE
	NW	N	NE
WW	W	Χ	

Sprawdzamy czy w sąsiedztwie są krawędzie pionowe lub poziome, w tym celu liczymy wartości pomocnicze

$$d_h = |W - WW| + |N - NW| + |NE - N|$$

$$d_v = |W - NW| + |N - NN| + |NE - NNE|$$

Maciek Gębal

Kodowanie predykcyjne

CALIC - Context Adaptative Lossless Image Compresion

Pseudokod algorytmu:

$$\begin{split} &\text{if } d_h - d_v > 80 \text{ then } \widehat{X} \leftarrow N \\ &\text{else if } d_v - d_h > 80 \text{ then } \widehat{X} \leftarrow W \\ &\text{else} \\ &\widehat{X} \leftarrow (N+W)/2 + (NE-NW)/4 \\ &\text{if } d_h - d_v > 32 \text{ then } \widehat{X} \leftarrow (\widehat{X}+N)/2 \\ &\text{else if } d_v - d_h > 32 \text{ then } \widehat{X} \leftarrow (\widehat{X}+W)/2 \\ &\text{else if } d_h - d_v > 8 \text{ then } \widehat{X} \leftarrow (3\widehat{X}+N)/4 \\ &\text{else if } d_v - d_h > 8 \text{ then } \widehat{X} \leftarrow (3\widehat{X}+W)/4 \end{split}$$

Predykcję \hat{X} można jeszcze bardziej uszczegółowić.

Kodujemy ciąg różnic $X - \widehat{X}$.

Maciek Gebala

Kodowanie predykcyjne

JPEG-LS (bezstratny)

7 schematów predykcji:

- $\widehat{X} = W$
- $\widehat{X} = N$
- $\widehat{X} = NW$
- $\widehat{X} = N + W NW$
- $\widehat{X} = N + (W NW)/2$
- **3** $\hat{X} = W + (N NW)/2$
- $\widehat{X} = (N + W)/2$

Notatki
Notatki
Notatki
Notatki
Notain

JPEG-LS (bezstratny)

NW	N
W	Χ

Nowy standard:

$$\begin{split} &\text{if } NW \geqslant \max(W,N) \text{ then } \widehat{X} \leftarrow \max(W,N) \\ &\text{else if } NW \leqslant \min(W,N) \text{ then } \widehat{X} \leftarrow \min(W,N) \\ &\text{else } \widehat{X} \leftarrow W + N - NW \end{split}$$

Maciek Gehala

ndowanie predykcyjne

Wykorzystanie poziomów rozdzielczości

- Kodujemy obraz wysyłając najpierw średni kolor kwadratów 2^k x2^k a następnie różnice między tą średnią a średnią kwadratów o rozmiarach 2^{k-1} x2^{k-1}.
- Kończymy na pikslach (kwadraty 20 x20).
- Różnice nie są dużymi liczbami i łatwo poddają się kompresji.

Maciek Gęb

Kodowanie predykcyjn

JBIG - idea

- Obraz przesyłamy "progresywnie", coraz wyższa rozdzielczość.
- Prawdopodobieństwo wystąpienia czarnego punktu w "białym" sąsiedztwie jest zdecydowanie niższe niż w sąsiedztwie zawierającym już czarne piksele.
- Sąsiedztwo stanowią zakodowane wcześniej piksele (np. kilka poprzednich wierszy obrazu) wraz z wyszczególnionym pikselem A (zmiany jego położenia są przesyłane do dekodera).
- Algorytm wykorzystuje od 1024 do 4096 różnych koderów (tzn. dla różnych kontekstów kodowanego piksela).
- W procesie kodowania wykorzystywane jest kodowanie arytmetyczne

Maciek Gebala

Kodowanie predykcyjne

JBIG - sąsiedztwo

Sąsiedztwo 3- i 2-wierszowe

Piksele **O** i **A** stanowią "sąsiedztwo" kodowanego piksela **X**. Położenie **A** może być zmieniane, tak by oddać charakter danych (np. pionowe pasy co 50 pikseli).

Notatki	
Notatki	
AL . III	
Notatki	
Notatki	

Kodowanie obrazów czarno-białych (faksy) – MH

•		•		•		•					
•	•						•		•		

- Linie takich obrazów zawierają na przemian bloki białe i czarne.
- Możemy przesyłać więc tylko długości takich bloków (zakładając, że pierwszy jest biały).
- Dodatkowo każdą liczbę przedstawiamy jako parę m,t, gdzie l=64m+t dla $t=0,\ldots,63$ i $m=0,\ldots,27$.
- Do kodowania białych i czarnych serii używamy różnych koderów.
- … ale możemy wykorzystać korelację pomiędzy kolejnymi liniami obrazu.

Maciek Gębala

odowanie predykcyjne

Kodowanie faksów – MR

- a_0 ostatni piksel znany koderowi i dekoderowi (lub fikcyjny biały piksel).
- a_1 pierwszy piksel przejścia na prawo od a_0 (innego koloru!).
- a2 drugi piksel przejścia na prawo od a0.
- b_1 pierwszy piksel przejścia na prawo i powyżej od a_0 o kolorze przeciwnym.
- b_2 pierwszy piksel przejścia na prawo od b_1 .

Maciek Gębala

Kodowanie predykcyjn

Kodowanie faksów – MR (2)

Jeżeli b_1 i b_2 znajdują się pomiędzy a_1 i a_2 , to wysyłamy kod 0001, nowym pikselem a_0 staje się piksel pod b_2 , pozostałe aktualizujemy zgodnie z definicją.

Niektóre wiersze (co pewną wartość) są kodowane bez uwzględnienia wartości poprzedniego wiersza, aby zapobiec propagacji błędów.

Maciek Gebala

Kodowanie predykcyjn

Kodowanie faksów – MR (3)

Jeżeli a_1 znajduje się przed b_2 rozpatrujemy 2 przypadki:

- jeżeli odległość od a₁ do b₂ mniejsza lub równa trzy, to przesyłamy odpowiedni kod do dekodera i aktualizujemy pozycje (a₀ na a₁ itd.) – tzw. tryb pionowy,
- jeżeli odległość jest większa, to postępujemy podobnie jak w przypadku kodowania jednowymiarowego (MH).

Notatki
Notatki
Notatki

Kompresja bezstratna – podsumowanie

- Techniki oparte na prawdopodobieństwach: kody Huffmana, Tunstalla, kodowanie arytmetyczne.
- Metody słownikowe: LZ77, LZ78, LZW.
- Kodowanie predykcyjne: PPM, CALIC, JPEG-LS, run-length encoding.
- Stosowanie kilku metod po kolei (bzip2).

Maciek Gębala

Notatki
Notatki
Notatki
Notatki
Notatki
Notatki
Notatki