Corrigé Partiel 7/4/2009

Sum-of-the-odds

Soit $N\geqslant 1$ et $X_1,...,X_N$ des v.a. indépendantes telles que $X_j\sim \text{Bernoulli}(p_j)$ avec $p_j\in [0,1],\ j=1,...,N$. On observe les $\{X_j\}_{j=1,...,N}$ une à la fois et on peut s'arrêter à tout moment. Si on s'arrêt à j on gagne si $X_j=1$ et si $X_k=0$ pour $j\leqslant k\leqslant N$ (c-à-d si X_j est la dernière v.a. à valoir 1). Soit $L=\sup\{k\in [1,N]: X_k=1\}$ (on utilise la convention que $\sup\emptyset=+\infty$). La probabilité de gagner en s'arrêtant au temps d'arrêt T est donc $V(T)=\mathbb{P}(T=L)=\mathbb{P}(X_T=1,X_{T+1}=0,...,X_N=0)$. On veut maximiser la probabilité de victoire parmi tous les t.a. T bornés par N et associés à la filtration $\{\mathcal{F}_k\}_{k=1,...,N}$ engendrée par les $\{X_k\}_{k=1,...,N}$. On note $V_N=\sup_{T\leqslant N}V(T)$ le gain optimal pour le problème d'arrêt d'horizon N.

- a) Donner la définition de temps d'arrêt. La v.a. L est-elle un temps d'arrêt?
- b) Montrer que $Y_k = \mathbb{P}(L = k | \mathcal{F}_k) = \prod_{j=k+1}^N (1 p_j) \mathbb{I}_{X_k = 1}$ pour k = 1, ..., N.
- c) Montrer que l'on peut écrire la probabilité de victoire $V(T) = \mathbb{P}(L = T)$ en s'arrêtant au t.a. T comme $\mathbb{E}[Y_T]$.
- d) Montrer par un calcul explicite que $\mathbb{E}[Z_N|\mathcal{F}_{N-1}]$ est une constante.
- e) Montrer par induction que $\mathbb{E}[Z_{k+1}|\mathcal{F}_k] = \mathbb{E}[Z_{k+1}]$ pour tout k=1,...,N-1.
- f) Montrer que $\mathbb{E}[Z_k], k=1,...,N$ est une fonction décroissante de k.
- g) Rappeler la définition de T^* et montrer qu'il est un temps d'arrêt pour \mathcal{F} .
- h) Montrer qu'il existe un entier $r \in [1, N]$ tel que $T^* = T_r$ où

$$T_r = \inf_{N} \{k \in [r, N]: X_k = 1\}$$

(Rappel: $\inf_N A = \inf_A A = \inf_A A = \emptyset$ et $\inf_N A = N = \emptyset$).

i) Montrer que

$$G(r) = V(T_r) = \left[\prod_{k=r}^{N} (1 - p_k)\right] \sum_{k=r}^{N} \frac{p_k}{1 - p_k}.$$

et donc que la règle d'arrêt optimale est T_{r_*} où r_* est la valeur qui maximise G(r).

- j) Donner une expression pour $\mathbb{E}[Z_1]$.
- k) Calculer G(r) G(r-1) pour r=2,...,N et donner une condition explicite pour r_* .
- l) Calculer r_{\star} et $G(r_{\star})$ pour N=10 et $p_k=0.2$ pour $k=1,\ldots,10$.

Corrigé

(a) Une v.a. $T: \Omega \to \mathbb{N}$ est un t.a. ssi $\{T \leq k\} \in \mathcal{F}_k$ pour tout $k \in \mathbb{N}$. L n'est pas un t.a. car pour déterminer si $L \leq k$ on a besoin de connaître le valeurs de X_j pour j = k+1, ..., N et donc $\{L = k\} \notin \mathcal{F}_k$.

(b) On a $\mathbb{P}(L=k|\mathcal{F}_k) = \mathbb{P}(X_k=1,X_{k+1}=0,...,X_N=0|X_1,...,X_k)$. Par indépendance des $\{X_k\}_k$ cette expression devient $\mathbb{P}(X_k=1|X_1,...,X_k)\mathbb{P}(X_{k+1}=0)\cdots\mathbb{P}(X_N=0)$ et donc

$$\mathbb{P}(L=k|\mathcal{F}_k) = \mathbb{I}_{X_k=1} (1-p_{k+1}) \cdots (1-p_N)$$

pour tout k = 1, ..., N.

- (c) $\mathbb{P}(L=T) = \sum_{k=1}^{N} \mathbb{P}(L=k, T=k) = \sum_{k=1}^{N} \mathbb{E}[\mathbb{E}[\mathbb{I}_{L=k}|\mathcal{F}_{k}]\mathbb{I}_{T=k}] = \sum_{k=1}^{N} (1-p_{k+1})\cdots(1-p_{N})\mathbb{E}[\mathbb{I}_{X_{k}=1}\mathbb{I}_{T=k}] = \sum_{k=1}^{N} (1-p_{k+1})\cdots(1-p_{N})\mathbb{E}[\mathbb{I}_{X_{T}=1}\mathbb{I}_{T=k}] = \sum_{k=1}^{N} \mathbb{E}[Y_{T}\mathbb{I}_{T=k}] = \mathbb{E}[Y_{T}] \text{ car } T \text{ est un t.a.}$
- (d) Par définition on a que $Z_N = Y_N \in \sigma(X_N)$ et donc $\mathbb{E}[Z_N | \mathcal{F}_{N-1}] = \mathbb{E}[Z_N]$ par indépendance de X_N par rapport à \mathcal{F}_{N-1} .
- (e) On sait déjà que $Z_N \in \sigma(X_N)$, on veut montrer que $Z_k \in \sigma(X_k)$ pour tout k=1,...,N. Faisons dont l'hypothèse de récurrence H_ℓ que $Z_k \in \sigma(X_k)$ pour tout $k=\ell,...,N$. On a que H_N est vraie. Si on montre que $H_{\ell+1} \Rightarrow H_\ell$ alors par récurrence on aura que H_k est vraie pour tout k=1,...,N et donc que H_1 est vraie. Montrons donc que si $H_{\ell+1}$ est vraie alors $Z_\ell \in \sigma(X_\ell)$ (ce qu'implique que H_ℓ est vraie). Par définition on a que $Z_\ell = \sup (Y_\ell, \mathbb{E}[Z_{\ell+1}|\mathcal{F}_\ell])$. L'hypothèse $H_{\ell+1}$ implique que $Z_{\ell+1} \in \sigma(X_{\ell+1})$ et donc, par indépendance, que $\mathbb{E}[Z_{\ell+1}|\mathcal{F}_\ell] = \mathbb{E}[Z_{\ell+1}]$: une constante. Par conséquence $Z_\ell = \sup (Y_\ell, \mathbb{E}[Z_{\ell+1}]) \in \sigma(X_\ell)$ car $Y_\ell \in \sigma(X_\ell)$. Donc $Z_k \in \sigma(X_k)$ pour tout k=1,...,N ce qu'implique que $\mathbb{E}[Z_{k+1}|\mathcal{F}_k] = \mathbb{E}[Z_{k+1}]$.
- (f) Le processus $(Z_k)_{k=1,...,N}$ est une sur-martingale (par définition) et donc $Z_k \geqslant \mathbb{E}[Z_{k+1}|\mathcal{F}_k]$. En prenant l'espérance des deux cotées on a $\mathbb{E}[Z_k] \geqslant \mathbb{E}[Z_{k+1}]$ et donc $\mathbb{E}[Z_k]$ est une fonction décroissante de k.
- (g) $T^* = \inf\{k \in [1, N]: Y_k = Z_k\} = \inf_N \{k \in [1, N-1]: Y_k \geqslant \mathbb{E}[Z_{k+1}|\mathcal{F}_k]\}$. L'evenement $\{T^* \leqslant l\}$ est équivalent à dire qu'il existe $k \leqslant l$ tel que $Y_k = Z_k$. Les processus $(Y_k)_k$ et $(Z_k)_k$ sont adaptés, donc l'evenement $Y_k = Z_k$ appartient à \mathcal{F}_k et cela implique que $\{\exists k \leqslant l: Y_k = Z_k\} = \bigcup_{k=1}^l \{Y_k = Z_k\} \in \mathcal{F}_l$. Donc T^* est un t.a.
- (h) On peut écrire $T^* = \inf_N \{k \in [1, N-1]: Y_k \geqslant \mathbb{E}[Z_{k+1}|\mathcal{F}_k]\} = \inf_N \{k \in [1, N-1]: Y_k \geqslant \mathbb{E}[Z_{k+1}]\} = \inf_N \{k \in [1, N-1]: X_k = 1, q_k \geqslant \mathbb{E}[Z_{k+1}]\}$ où $q_k = \prod_{j=k+1}^N (1-p_k)$. La fonction $k \mapsto q_k$ est croissante en k et la fonction $k \mapsto \mathbb{E}[Z_{k+1}]$ est décroissante en k. Soit $r \in [1, N-1]$ le premier instant k où $q_k \geqslant \mathbb{E}[Z_{k+1}]$ si cet instant existe ou soit r = N si $q_k < \mathbb{E}[Z_{k+1}]$ pour tout $k = 1, \dots, N-1$. Alors $T^* = \inf_N \{k \in [1, N-1]: X_k = 1, q_k \geqslant \mathbb{E}[Z_{k+1}]\} = \inf_N \{k \in [r, N-1]: X_k = 1\} = \inf_N \{k \in [r, N]: X_k = 1\}$ car si $r \leqslant k \leqslant N-1$ on a par définition de r que $q_k \geqslant \mathbb{E}[Z_{k+1}]$. Bien sûr, si r = N alors $T^* = N$.
- (i) On calcul $G(r) = \mathbb{P}(L = T_r)$ pour r = 1, ..., N:

$$\begin{split} G(r) &= \mathbb{E}[Y_{T_r}] = \sum_{k=r}^N \mathbb{E}[Y_k \, \mathbb{I}_{T_r=k}] = \sum_{k=r}^N \, (1-p_N) \cdots (1-p_{k+1}) \mathbb{P}(X_k = 1, X_{k-1} = 0, ..., X_r = 0) \\ &= \sum_{k=r}^N \, (1-p_N) \cdots (1-p_{k+1}) p_k (1-p_{k-1}) \cdots (1-p_r) = \prod_{j=r}^N \, (1-p_j) \sum_{k=r}^N \, \frac{p_k}{1-p_k} \end{split}$$

(j) $\mathbb{E}[Z_1] = V_N = G(r_*)$ ou r_* est tel que $G(r_*) \geqslant G(r)$ pour tout r = 1, ..., N.

(k)

$$G(r) - G(r - 1) = \prod_{j=r}^{N} (1 - p_j) \left[\sum_{k=r}^{N} \frac{p_k}{1 - p_k} - p_{r-1} - (1 - p_{r-1}) \sum_{k=r}^{N} \frac{p_k}{1 - p_k} \right]$$

$$= p_{r-1} \prod_{j=r}^{N} (1 - p_j) \left[\sum_{k=r}^{N} \frac{p_k}{1 - p_k} - 1 \right]$$

donc $G(r)-G(r-1)\geqslant 0$ ssi $\sum_{k=r}^{N}\frac{p_k}{1-p_k}\geqslant 1$. Le maximum est donc atteint pour le dernier valeur de r=2,...,N tel que $\sum_{k=r}^{N}\frac{p_k}{1-p_k}\geqslant 1$ où à 1 si $\sum_{k=2}^{N}\frac{p_k}{1-p_k}< 1$.

$$r_{\star} = \sup (\{1\} \cup \{r \in [2, N]: \sum_{k=r}^{N} \frac{p_k}{1 - p_k} \ge 1\})$$

(l) Si $p_k = 0.2$ alors

$$\sum_{k=r}^{N} \frac{p_k}{1 - p_k} = \frac{1}{4}(N - r + 1)$$

qui est $\geqslant 1$ ssi $N-r+1\geqslant 4.$ Avec N=10ça donne $r\leqslant 7$ et donc $r_\star=7$ et

$$G(r_{\star}) = 0.8^4 = 0.4096.$$