Homework list 2

Complex Analysis

John Möller

_							
C	റ	n	t	Δ	n	t	c
·	u		L	C		L	3

1 Problems 1

1 Problems

Problem 1.1 (Exercise 1). Mark each of the following statements as true or false.

- 1. Every power series $\sum a_n z^n$ converges for some $z \in \mathbb{C}$.
- 2. The radius of convergence of $\Sigma a_n z^n$ is at most equal to $\max\{|a_n|:n\in\mathbb{N}\}.$
- 3. $\exp : \mathbb{C} \to \mathbb{C}^{\times}$ is a surjective function.
- 4. $\log_{\alpha} z \neq \log_{\beta} z$ for all real numbers $\alpha \neq \beta$ and all $z \in \mathbb{C}$
- 5. $\log(zw) = \log z + \log w$ for all $z, w \in U_{-1}$.

Solution 1.1.1. 1. True (let z = 0)

- 2. False (consider the exponential function then $\max\{|a_n|:n\in\mathbb{N}\}=1$, but the radius of convergence is infinite)
- 3. True
- 4. False
- 5. True

Problem 1.2 (Exercise 2). 1. Determine the radius R of convergence for $\sum_{n=0}^{\infty} (-2)^n z^n$. Show that for $z \in D_R(0)$, we have $\sum_{n=0}^{\infty} (-2)^n z^n = \frac{1}{1+2z}$.

2. Determine the radius R of convergence for

$$1 + \sum_{n > 2, \text{ even}} \frac{i^n 2^{n-1}}{n!} z^n$$

and show that it equals $(\cos z)^2$ as a power series. Show that $(\cos z)^2 + (\sin z)^2 = 1$ as power series.

Solution 1.2.1. We have that

$$R = \frac{1}{\limsup |(-2)^n|^{\frac{1}{n}}}$$
$$= \frac{1}{2}.$$

Let $z \in D_{\frac{1}{2}}(0)$ and define x = -2z we then have that $x \in D_1(0)$. Thus we can expand

as the following:

$$\frac{1}{1+2z} = \frac{1}{1-x}$$

$$= \sum_{n=0}^{\infty} x^n$$

$$= \sum_{n=0}^{\infty} (-2z)^n$$

$$= \sum_{n=0}^{\infty} (-2)z^n.$$

Lemma 1.1.

$$(m!)^{\frac{1}{m}} \ge$$

Solution 1.2.2. We have that

$$a_n = \frac{i^n 2^{n-1}}{n!}$$

(technically we want to investigate a_{2n} but we'll mention it again later). First we have that

$$|a_n| = \frac{2^{n-1}}{n!}.$$

From the lecture we saw that we can reason as following:

$$(n!)^{\frac{1}{n}} \ge \left(\left(\frac{n}{2}\right)^n\right)^{\frac{1}{n}} = \frac{n}{2}.$$

Thus we have that

$$|a_n|^{\frac{1}{n}} = \frac{2^{\frac{n-1}{n}}}{(n!)^{\frac{1}{n}}}$$

$$\leq \frac{2^{\frac{n-1}{n}}}{n/2}$$

$$= \frac{2^{\frac{n-1}{n}+1}}{n}$$

$$= \frac{2^{\frac{2n-1}{n}}}{n}$$

$$= \frac{2^{2-\frac{1}{n}}}{n}$$

$$= \frac{4 \cdot 2^{\frac{1}{n}}}{n}.$$

The last line converges to 0 and since $0 \le |a_n|^{\frac{1}{n}}$ we have that $|a_n|^{\frac{1}{n}}$ converges to 0 which means the subsequence $|a_{2n}|^{\frac{1}{2n}}$ also converges to zero, which also means that the upper limit of a_{2n} is zero. Thus we get the radius of convergence to be $\frac{1}{0}$ which we defined to be all of \mathbb{C} .

We have that

$$\cos z = \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m)!} z^{2m}.$$

Let n = 2m then we have that

$$\cos z = \sum_{n \ge 0, n \text{ even}}^{\infty} \frac{(-1)^{\frac{n}{2}}}{n!} z^n$$

Using the Cauchy Multiplication theorem we get that

$$(\cos z)^{2} = (\cos z) (\cos z)$$

$$= \sum_{i>0, i \text{ even}}^{\infty} \sum_{k\geq 0}^{\infty} \frac{(-1)^{\frac{i}{2}}}{i!} z^{i} \cdot \frac{(-1)^{\frac{i-k}{2}}}{(i-k)!} z^{i-k}$$

$$= \sum_{i>0, i \text{ even}}^{\infty} \sum_{k\geq 0}^{\infty} \frac{(-1)^{\frac{2i-k}{2}}}{i! (i-k)!} z^{2i-k}$$