

- ●第三章 接口概念
 - ■1. 接口和端口的定义
 - ■2. 端口的访问方式
 - ■3. 端口地址的编址
 - ■4. 数据传输方式
 - ■5.8088输入输出综合实例
 - ■6.8088的存储器

0 0 0 0 0		
	第1节 接口和端口的定义	
0 0 0 0		

第1节接口定义

- ●接口定义
 - ■接口是一组特殊控制电路,介于CPU与内存、 CPU与 外设之间。桥梁作用
 - ■任何两电路或设备间的连接电路都可称接口。

1.接口定义(续)

- 各种外设都必须通过接口才能和CPU(或总线)相连
 - ■寻址:通过接口区分设备;
 - ■缓冲:外设与CPU工作速度不一致;
 - ■转换:外设与CPU信息格式、类型、幅度不一致;
 - ■时序匹配:外设与CPU的工作时序不同。

1.接口定义(续)

- ●接口电路的组成
 - ■一组数据寄存器,暂存数据
 - ■一组状态寄存器,暂存状态。
 - ■一组命令寄存器,暂存命令。

微机的端口

- 16根I/O线: 地址空间2¹⁶ = 64K
- IBM: A_{0~9}线有效,地址空间2¹⁰ = 1K: 000H~3FFH;
- PC系统IO端口的分配
 - ■前256个端口: 000h-0FFh, 系统I/O芯片
 - 后768个端口: 100h-3FFh, 扩展槽常规外设I/O。

微机的端口

●微机的端口分配

I/0芯片名称	端口地址
DMA控制器1 DMA控制器2 DMA页面寄存器	000~01FH 0C0~0DFH 080~09FH
中断控制器1中断控制器2	020∼03FH 0A0∼0BFH
定时器 并行接口芯片 RT/COMS RAM 协处理器	040~05FH 060~06FH 070~07FH 0F0~0FFH

表1 系统I/0芯片的端口地址

I/O接口名称	端口地址
游戏控制卡	200∼20FH
并行口控制卡1	370∼37FH
并行口控制卡2	270∼27FH
串行口控制卡1	3F8∼3FFH
串行口控制卡1	2F0∼2FFH
原型插件板	300∼31FH
同步通信卡1	3A0∼3AFH
同步通信卡2	380∼38FH
单显MDA	3B0∼3BFH
彩显CGA	3DO∼3DFH
彩显EGA/VGA	3C0 ∼3CF
硬驱控制卡	1F0∼1FFH
软驱控制卡	3F0∼3F7H
PC网卡	360∼36FH

表2 扩展卡的端口地址

0 0 0 0	なった いしょ ここつ
00000	第2节 端口访问

2. 端口的访问

- ●端口访问
 - ■端口地址(000h~3FFh)
 - ■端口属性: 只写, 只读, 可读可写
 - ■端口操作:写(OUT),读(IN)
 - ■区别设备操作
- ●访问指令
 - ■输入指令(读) IN
 - ◆从指定端口取信息送入累加器。
 - ■输出指令(写) OUT
 - ◆把累加器的信息送往指定端口。

2. 端口的访问(续)

- 输入指令 IN
 - ■四种形式【PORT, DX 指端口地址】
 - ♦IN AL, PORT
 - ♦IN AX, PORT
 - ♦IN AL, DX
 - ♦IN AX, DX
 - ■例子
 - ◆IN AL, 60H ; 60H为系统板8255的PA端口地址
 - ◆MOV DX, 300H ; 300H为扩展板8255的PA端口地址

IN AL, DX

2. 端口的访问(续)

- 输出指令 OUT
 - ■四种形式【PORT, DX 指端口地址】
 - ◆OUT PORT, AL ;数据是单字节;端口地址单字节
 - ◆OUT PORT, AX ;数据是双字节;端口地址单字节
 - ◆OUT DX, AL ;数据是单字节;端口地址双字节
 - ◆OUT DX, AX ;数据是双字节;端口地址双字节
 - ■例子
 - ◆OUT 61H, AL ; 61H为系统板8255的PB端口地址
 - ◆MOV DX,301H;301H为扩展板8255的PB端口地址 OUT DX,AL

0000	
	第3节 端口的编址和地址译码

端口地址编址方式

- ●两种编址方式
 - ■独立编址(I/O映射方式)
 - ◆端口地址单独编址而不和存储器空间合在一起
 - 统一编址(存储器映射方式)
 - ◆端口地址和存储器地址统一编址

- ●独立编址的端口访问原理
 - ■AB和DB由内存和端口共用。根据指令(IN/OUT MOV)区分内存和端口。

端口地址译码

- 概念: 根据给定的地址识别端口(接口/设备)。
 - ■端口地址译码电路
- ●三个前提
 - ■有效I/O地址线10位: **A**_{9~0}
 - ■考虑DMA操作: 地址允许信号AEN
 - ◆AEN=0,即非DMA操作时,端口可以访问;
 - ◆AEN=1,即是DMA操作时,端口不能访问;
 - ■端口读写属性(只读/只写/可读可写)

译码接口电路的设计例子

- 使用门电路设计端口地址**2F8H**的只读地址译码电路。
- ●分析
 - 若要译码电路选中2F8H地址,亦即仅当地址总线输入2F8H 时其输出有效低电平,而其它输入产生高电平。

地址线 0 0 A₉ A₈ A₇ A₆ A₅ A₄ A₃ A₂ A₁ A₀ 十六进制 **2 F 8** 二进制 0 0 1 0 1 1 1 1 1 0 0 0

端口地址译码(续)

- ●含有多个端口的接口地址译码
 - ■例子:某接口有4个端口: 384H~387H。
 - ◆1) 画出地址译码电路【门电路】
 - ◆2) 改成74LS04/20/30/32等芯片构成
 - ■步骤
 - ◆第1步: 选中接口
 - ◆第2步: 选中接口中的某个端口

端口地址译码

- ●第2步: 选中特定端口(138译码器)
 - ■使用F信号和A1A0两根线继续寻址端口。

思考:如果A1,A0分别连到138的A,B引脚,结果会怎样?Y0,Y1,Y2,Y3的地址是多少?

端口地址译码

- ●接口地址的构成形式和实现方法
 - ■单端口
 - ◆门电路直接译码
 - ■多端口
 - ◆两级译码
 - □门电路
 - □译码器(简洁,可靠)
 - ■地址可变
 - ◆通过跳线或编程改变端口的地址

- 选用I/0端口地址时要注意
 - 已占用地址不能使用;
 - ■保留地址不要使用;
 - ■为避免地址冲突,最好采用地址开关。(地址可变)
 - ■用户一般可使用300~31FH地址

0 0 0 0	第4节 数据传输方式

- 数据传送的控制方式■ 无条件传送方式
 - 查询传送方式(条件传送)
 - ■中断传送方式
 - DMA控制方式

- 1. 无条件传送(同步传送)
 - 当需要输入或输出数据时,不查询外设状态,假定外设已经准备就绪,直接使用I/O指令(IN或OUT)与外设传送数据。
 - ■外设准备就绪
 - ◆输入设备:数据已经放入数据端口,CPU可以读取数据;
 - ◆输出设备:数据端口已空,CPU可以向它写入数据。
 - ■由于不查询外设状态,接口电路不需要状态端口
 - ■说明
 - ◆通常接口硬件确保端口读写操作能同步进行。

查询传送方式(异步传送)

- 传送数据之前先确定外设是否准备好?!
- 传送过程
 - (1) 先获取外设状态: 执行IN指令读取外设状态端口
 - (2) 根据外设状态判断:
 - ◆如果状态是"忙碌"或"未准备就绪",则回到(1);
 - ◆如果状态是"空闲"或"准备已就绪",则continue;
 - (3) 执行数据传送: 对数据端口执行OUT或IN指令。
- ●说明
 - ■查询式接口要有数据端口和状态端口。
 - ■端口一般都是8位,状态端口一般只需其中1位即可。

查询传送方式——输入

● 过程: 读状态寄存器→读数据寄存器。

数据寄存器 D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0 状态寄存器 D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0 \uparrow "READY"

- 当REDAY为 1 时,表明输入数据已 准备好;
- 当用IN指令完成数据输入后,READY 自动变0。

● 输入过程的典型程序

POLL: IN AL, PORT_S ; 读状态寄存器: PORT_S

TEST AL, 80H ; 检查READY位是否为1

JZ POLL ; 未准备好,转POLL

IN AL, PORT_D ; 读数据寄存器: PORT_D

指令简介:

- (1) TEST: 类同AND指令,不影响操作数,仅影响标志位ZF
- (2) JZ: 等于0则转移

查询传送方式——输出

● 过程: 读状态寄存器→读数据寄存器

数据寄存器 D₇ D₆ D₅ D₄ D₃ D₂ D₁ D₀ 状态寄存器 D₇ D₆ D₅ D₄ D₃ D₂ D₁ D₀ #BUSY"

- ■BUSY为0时表明设备空闲,能接收来 自CPU输出的数据。
- ■一旦OUT指令执行完成,CPU完成数据输出,BUSY自动变1。

● 输出过程的典型程序

POLL: IN AL, PORT_S ; 输入状态信息

TEST AL, 10H ; 检查BUSY位是否为0

JNZ POLL ; 外设忙碌转POLL

MOV AL, [DADA] ; DATA是需要输出的数据

OUT PORT_D, AL ; 向数据寄存器中输出数据

指令简介:

TEST: AND,不影响操作数,仅影响标志位: ZF

JNZ:不等于0转移

数据传输方式(续)

- 3. 中断传送方式
- 4. 直接存储器存取方式 (DMA)