Рівняння з відокремлюваними змінними Практичне заняття з курсу "Диференціальні рівняння"

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д.

Київський національний університет імені Тараса Шевченка кафедра моделювання складних систем

2020

= 0 (1)

f

Означення

називається диференціальним рівнянням.

Означення

п називається порядком диференціального рівняння.

о І. І., Васін П. О., Волощук С. Д. (Ки<mark>ївський н</mark>аціональний університет іменРівняння :

відокремлюваними змінними **2020 2 / 385**

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Ки<mark>ї</mark>вський національний університет іменРівняння з відокремлюваними змінними **2020 3 / 385**

Означення

Функція y(x) називається розв'язком диференціального рівняння (1), якщо вона n-разів неперервно диференційована на деякому інтервалі (a, b) = I і задовольняє диференціальному рівнянню (1) $\forall x \in I$.

Приклад

$$y^{00} + 3xy^0 + 2y = x^2$$

диференціальне рівняння другого порядку

2020 4 / 385

Диференціальне рівняння

Означення

При n = 1 диференціальне рівняння (1) називається диференціальним рівнянням першого порядку

$$F(x, y, y^0) = 0.$$
 (2)

Означення

Диференціальне рівняння (2) називається розвязаним відносно похідної, якщо його можна представити у вигляді

2020 5 / 385

Диференціальне рівняння. Розв'язок

Означення

Розвязком диференціального рівняння (3) на інтервалі І назвемо фун кцію

$$y = \phi(x)$$
,

визначену і неперервно диференційовану на І, яка не виходить з області визначення функції f(x, y) і яка перетворює диференціальне рівняння (3) в тотожність $\forall x \in I$, тобто

 $d\phi(x)$

$$dx^{\equiv} f(x, y(x)), x \in I.$$

Приклад

$$y^{0} = y$$
$$y = e^{x}$$
$$y = 2e^{x}$$

І. І., Васін П. О., Волощук С. Д. (Ки<mark>ївський н</mark>аціональний університет іменРівняння з

відокремлюваними змінними 2020 6 / 385

Диференціальне рівняння. Розв'язок

частинний розв'язок загальний розв'язок

особливий розв'язок загальний інтеграл інтеграл

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменРівняння : відокремлюваними змінними 2020 7 / 385

Диференціальне рівняння в диференціальній формі

Означення Поряд з _{dv}

$$dx = f(x, y)$$

будемо розглядати еквівалентне диференціальне рівняння, записане в диференціальній формі

$$dy - f(x, y)dx = 0$$

або в більш загальному вигляді

$$M(x, y)dx + N(x, y)dy = 0. (4)$$

M(x, y), N(x, y) – неперервні в деякій області.

2020 8 / 385

Задача Коші

Означення

dy

dx = f(x, y)

Знайти такий розв'язок y = y(x), який проходить через задану точку (x_0, y_0)

 $y(x_0) = y_0$. (5)

Задача Коші

Огюстен Луї Коші

Рівняння з відокремленими змінними

Означення

Розглянемо рівняння

$$X(x)dx + Y(y)dy = 0, (6)$$

де X(x), Y (y) – неперервні функції своїх аргументів. Диференціальне рівняння (6) називається рівнянням з відокремлени ми змінними.

Рівняння з відокремленими змінними

$$X(x)dx + Y(y)dy = 0$$

$$\begin{array}{ccc}
 & m \\
 & Z & Z \\
 & X(x)dx & Y(y)dy = 0 \\
 & & + & \end{array}$$

m

Загальний розв'язок в квадратурах Z Z
$$X(x)dx + Y(y)dy = C, (7)$$

С – довільна константа.

. В., Матвієнко В. Т., Харченко I. Волошук С. Д. (Київський національний університет іменРівняння відокремлювани<u>ми змінними 2020 13 / 385</u>

Рівняння з відокремленими змінними

$$X(s)ds + Z_{y}y_{0}$$

$$Y(s)ds = C.$$

$$Z_{x}x_{0}$$
(8)

Якщо потрібно знайти розв'язок задачі Коші
$$y(x_0) = y_0$$
, то $C = 0$ $Z_x x_0$ $X(s)ds + Z_y y_0$ $Y(s)ds = 0$ (9)

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменРівняння відокремлюваними змінними 2020 14 / 385

Рівняння з відокремлюваними змінними

Рівняння вигляду

$$m(x)n(y)dx + f(x)g(y)dy = 0 (10)$$

називають рівнянням з відокремлюваними змінними. Тут m(x), n(y), f(x), g(y) — неперервні функції.

о І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменРівняння з відокремлюваними змінними 2020 15 / 385

Відокремлюємо змінні

Припустимо

$$f(x)n(y) 6=0$$

$$f(x)dx + g(y)$$

$$m(x)$$

$$n(y)dy = 0. (11)$$

Загальний інтеграл диференціального рівняння (10)

$$Z_{m(x)}$$
 $Z_{g(y)}$

$$f(x)^{dx}$$
 +

n(y)dy = C, (12)

С – довільна константа.

При діленні на f(x)n(y) ми можемо втратити розв'язки, які визначаю ться рівняннями n(y) = 0, f(x) = 0.

Задача 1

Розв'язати рівняння

$$y^0 \sin x = y \ln y$$

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменРівняння з відокремлюваними змінними 2020 17 / 385

Розв'язок

$$\frac{dy}{dx}\sin x = y \ln y$$

Розділивши змінні, отримаємо рівняння

$$y \ln y = dx$$

 dy
 $\sin x$

Проінтегрувавши, знайдемо

Пічкур В. В., Матвієнко В. Т., Харченко I., I., Васін П. О., Волощук С. Д. (Київський н<mark>аціональний університет іменРівняння</mark> з

відокремлюваними змінними 2020 18 / 385

Розв'язок

$$y \ln y^=$$
 Z_{dx} z_{dx} z_{dx} z_{dx} z_{dx} z_{dy} z_{dy}

Z_{dy}

Пічкур В. В., Матвієнко В. Т., Харченк<mark>о</mark> І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменРівняння з відокремлюваними змінними **2020 19** / 385

Розв'язок

```
Другий інтеграл Z_1 Оскільки Z_{d\cos x} (1 - \cos x)(1 + \sin x^{dx}) = \frac{Z_{\sin x}}{\sin^2 x^{dx}} = -\frac{Z_{d\cos x}}{\cos x}
```

$$(1 - \cos x)(1 + \cos x) = \frac{1}{2} 1$$

$$(1 - \cos x) + 1 (1 + \cos x)$$

$$TOZ_1$$

$$\sin x dx = -\frac{1}{2}Z 1$$

$$1 - \cos x + 1$$

$$1 + \cos x$$

1 1 1 $x = 2\ln|1 - \cos x| - 2\ln|1 + \cos x| = \ln tg 2$

константа.

$$tg^{X}$$
 + ln C

С – довільна

 $\ln |\ln y| = \ln$

J

In
$$y = C tg^{x_2}$$

JL

 $y = e^{C t g_{X_2}}$ загальний розв'язок рівняння. Тут C -

довільна константа.

2020 21 / 385

Розв'язок

При y = 1 функція y In y = 0. Підставляємо y = 1 в

 $y^0 \sin x = y \ln y$

Одержуємо тотожність.

y(x) = 1 -розв'язок, який ми втратили при розділенні змінних Аналогічно

перевіряємо x = 0 – не є розв'язком.

Відповідь

$$y = e^{C tg} x_2$$

загальний розв'язок рівняння, С –

довільна константа, y = 1

о І. І., Васін П. О., Волощук С. Д. (Ки<mark>ївський національний</mark>

університет іменРівняння з відокремлюваними змінними **2020 22 / 385**

Задача 2

Розв'язати рівняння

$$x^2y^2y^0 + y = 1.$$

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменРівняння з відокремлюваними змінними 2020 23 / 385

Розв'язок

$$x^2y \frac{2dy}{dx} + y = 1.$$

$$x^2 y \frac{2dy}{dx} + y - 1 = 0.$$

$$x^2y^2dy + (y - 1)dx = 0.$$

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменРівняння з відокоемлюваними змінними 2020 24 / 385

Розв'язок

$$x^2y^2dy + (y-1)dx = 0.$$

Розділимо на $x^2(y-1)$

$$y - 1^{ay} +$$

$$Z_{1}$$

$$y - 1^{dy} = y$$

$$Z_{y^{2} - 1}$$

$$y - 1^{dy} + z$$

$$(y + 1)dy + y^{2}$$

$$y - 1dy = y^{2} + y + \ln|y|$$

$$-1|^{z} dx$$

$$x^{2} = -x$$

⁻1

$$2+ y + \ln |y - 1| - x = C$$
 загальний інтеграл рівняння. Тут $C -$

довільна константа.

2020 26 / 385

Розв'язок

При y = 1 функція y - 1 = 0. Підставляємо y = 1 в

$$x^2y^2dy + (y - 1)dx = 0.$$

Одержуємо тотожність.

$$y(x) = 1 -$$
розв'язок, який ми втратили при розділенні змінних

$$2+y+\ln|y-1|-\frac{1}{x}=C$$

загальний інтеграл рівняння, С – довільна

константа, y = 1

2020 27 / 385

Спеціальний випадок

$$dx = f(ax + by + c),$$

де a, b = 0, c — сталі, f(x) — неперервна функція.

Зробимо заміну

$$z = ax + by + c$$

$$dx = a + b \frac{dy}{dx}$$

$$\psi$$

$$\begin{array}{c}
 1 & dz & a \\
 dx = b & dx - b \\
 dy
 \end{array}$$

Спеціальний

Підставляємо в _{dy}

випадок

$$dx = \int_{0}^{1} dx - \int_{0}^{a} dy$$
$$dx = f(ax + by + c)$$

$$dx = a + bf(z)$$

Маємо рівняння з відокремлюваними змінними

dz

$$a + bf(z)^{-} dx = 0$$

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волошук С. Д. (Київський національний університет іменРівняння :

ідокремлюваними змінними 2020 29 / 385

Задача 3

Розв'язати рівняння

$$y^0 = {}^{p}4x + 2y - 1.$$

Розв'язок

Введемо заміну змінних

$$z = 4x + 2y - 1.$$

$$z^{0} = 4 + 2y^{0}$$

$$z^{0} - 4 = 2^{\sqrt{z}}$$

$$z^{0} = 4 + 2^{\sqrt{z}}$$

$$dz$$

$$2 + \frac{1}{z^{2}} = 2dx.$$

Z 2dx + C,

C – довільна константа

$$Z_{dz}$$
 $\frac{4}{2}$

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменРівняння відокремлюваними змінними 2020 31 / 385

Розв'язок

Знайдемо

$$Z_{dz}$$

Заміна

$$z = t, dz = 2tdt, 2 + \sqrt{z} = 2 + t,$$

$$2 + z = 2 + t = 2$$

$$Z = 2tdt$$

$$z = t, dz = 2tdt, 2 + z = 2 + t$$

$$z + z = 2 + t = 2$$

$$z + t = 2$$

$$z + t = 2$$

$$t + 2dt =$$
 = 2t - 4 ln |2 + t| = 2z - 4 ln 2 + z.

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменРівняння з відокремлюваними змінними 2020 32 / 385

Розв'язок *С* – довільна константа

 $\frac{dz}{dz}$ Z $\frac{dz}{dz}$ = $\frac{2dx + C}{dz}$

$$z = 4x + 2y - 1$$

Відповідь
$$4x + 2y - 1 - x = C$$
, $2y - 1^{-1} - x = C$, $2y - 1^{-1} - x = C$,

$$p$$
 $4x + 2y - 1 - 2 \ln 2 + 4x + 2y - 1^{--} x = C,$

о І. І., Васін П. О., Волошук С. Д. (Київський національний університет іменРівняння відокоємлюваними змінними 2020 33 / 385

Розв'язати рівняння

$$x(1 + y^2) + y(1 + x^2) \frac{dy}{dx} = 0.$$

Розв'язок

Представимо дане рівняння у вигляді

$$x(1 + y^2)dx + y(1 + x^2)dy = 0.$$

Розділивши обидві частини цього рівняння на $(1+x^2)(1+y^2)$, отримаємо рівняння з розділеними змінними

$$\begin{array}{ccc}
1 + x^2 & & & \\
x & & & \\
1 + y^2 & & & \\
\end{array}$$

Розв'язок

Інтегруючи це рівняння, послідовно знаходимо

$$Z_{ydy}$$

$$Z_{xdx}$$

$$1 + x^{2} + 1 + y^{2} = C_{1},$$

$$2\ln(1 + x^{2}) + 2\ln(1 + y^{2}) = 2\ln C + 2\ln C = C_{1}.$$

Звідси
$$(1 + x^2)(1 + y^2) = C$$
.

Відповідь

Загальний інтеграл рівняння

$$(1 + x^2)(1 + y^2) = C$$

С – довільна константа

2020 36 / 385

Задача 5

Знайти частинний розв'зок рівняння

$$(1 + e^x)yy^0 = e^x,$$

який задовольнить початкову умову

$$y(0) = 1$$
.

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменРівняння з відокремлюваними змінними 2020 37 / 385

Розв'язок

$$(1 + e^x)_y dy dx = e^x$$
.

Розділюючи змінні, отримуємо

$$ydy = e^{x}dx$$

$$1 + e^{x}.$$

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменРівняння з відокремлюваними змінними 2020 38 / 385

Розв'язок

Інтегруючи, знайдемо загальний інтеграл

$$y^2$$

$$_2$$
= ln(1 + e^x) + C . (13)

Підставлюючи в (13) x = 0 та y = 1, матимемо

1
$$_2$$
 = ln 2 + C , звідки $C = \frac{1}{_2}$ – ln 2.

Підставляючи в (13) знайдене значення С, отримуємо

$$y^2$$
₂= ln(1 + e^x) + $\frac{1}{2}$ - ln 2.

Відповідь

2020 40 / 385

Однорідні рівняння та ті, що до них ЗВОДЯТЬСЯ Практичне заняття з курсу "Диференціальні рівняння"

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д.

Київський національний університет імені Тараса Шевченка кафедра моделювання складних систем

Однорідні функції

Означення

Функція f(x, y) називається однорідною функцією виміру m, якщо для довільного t > 0 знайдеться m таке, що для будь-яких x, y

$$f(tx,ty)=t^m f(x, y).$$

$$f(x, y) = x^2 + y^2$$

$$f(x, y) = \frac{x^2 + y^2}{x^2 - y^2}$$

2020 42 / 385

Однорідне диференціальне рівняння

Означення

$$M(x, y)dx + N(x, y)dy = 0, (14)$$

в якому функції M(x, y) і N(x, y) є однорідними функціями однієї і тієї ж степені однорідності т, називається однорідним диференціальним рівнянням.

Однорідне рівняння можна звести до рівняння вигляду

$$dx = f(x, y), (15)$$

в якому функція f(x, y) — однорідна функція нульового виміру f(tx, ty) = f(x, y).

о І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменОднорідно оівняння та ті, що до них зводяться 2020 43 / 385

Заміна змінних

Заміна змінних

$$y = zx$$
,

де z– нова шукана функція від x, приводить до рівняння з відокрем люваними змінними.

$$dy = d(zx) = zdx + xdz$$

о І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменОднорідноі рівняння та ті, що до них зводяться **2020 44 / 385**

Розв'язування

$$M(x, y)dx + N(x, y)dy = 0$$

$$y = zx$$
, $dy = d(zx) = zdx + xdz$

$$M(x, zx)dx + N(x, zx)(zdx + xdz) = 0$$

$$x^{m}M(1, z)dx + x^{m}N(1, z)(zdx + xdz) = 0,$$

JL

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменОднорідн

рівняння та ті, що до них зводяться **2020 45 / 385**

Розв'язування

$$(M(1, z) + zN(1, z)) dx + xN(1, z)dz = 0$$

одержуємо рівняння з відокремлюваними змінними \varPsi

$$_{X}+N(1, z)$$

In |x| +

dx

С – довільна константа

$$M(1, z) + zN(1, z)dz = 0$$

JL

 $Z_{N(1, z)}$

$$M(1, z) + zN(1, z)dz = \text{In } C \Downarrow$$

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський націонал<u>ьний університет іменОднорід</u>-

івняння та ті. що до них зводяться **2020 46 / 385**

Розв'язування

$$y = zx$$
, $z = x$

Загальний інтеграл

$$x = e^{\phi(\underline{y}_x)}$$

де
$$\phi(z) = R_{N(1,z)}$$

$$M(1,z)+zN(1,z)dz.$$

При відокремленні змінних ми могли загубити розв'язки з

рівності
$$M(1, z) + N(1, z)z = 0$$
.

2020 47 / 385

Задача 1

Розв'язати рівняння

$$(x^2 + xy + y^2)dx - x^2dy = 0$$

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменОднорідні рівняння та ті, що до них зводяться 2020 48 / 385

Розв'язок

$$(x^2 + xy + y^2)dx - x^2dy = 0$$

Це однорідне рівняння m = 2.

$$M(x, y) = x^{2} + xy + y^{2}$$

$$M(tx,ty) = t^{2}M(x, y)$$

$$N(x, y) = x^{2}$$

$$N(tx,ty) = t^{2}N(x, y)$$

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменОднорідн рівняння та ті, що до них зводяться **2020 49 / 385**

рынини та т, що до них зводиться 202

Розв'язок

$$(x^2 + xy + y^2)dx - x^2dy = 0$$

Зробимо заміну y = zx, dy = zdx + xdz

$$(1 + z + z^2)dx - (xdz + zdx) = 0$$

$$(1+z^2)dx - xdz = 0$$

одержуємо рівняння з відокремлюваними

та ті, що до них зводяться **2020 50 / 385**

Розв'язок

$$_{\chi}$$
_dz

$$dx = 0$$

$$1 + z = 0$$

$$\ln |x| - arctg z = \ln C$$

С – довільна константа

$$x = Ce^{arctg z}$$

$$y = zx$$
, $z = x$

Відповідь

$$x = Ce^{arctg_{\nu_x}}$$

загальний інтеграл, C — довільна константа x = 0 — також розв'язок, який загубили при діленні

2020 51 / 385

Задача 2

Розв'язати рівняння

$$xy^0 = ^p x^2 - y^2 + y$$

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменОднорідн рівняння та ті, що до них зводяться **2020 52 / 385**

Розв'яз ^{рівняння} y =

ОК

так що дане рівняння виявляється однорідним щодо х та у.

Покладемо
$$u = x^{y}$$

або v = ux. Тоді

$$y^0 = xu^0 + u.$$

Підставляючи в рівняння вирази для y та y^0 , отримуємо

$$\int_{x}^{du} dx = p_1 - u^2$$
.

Васін П. О., Волошук С. Д. (Київський національний університет іменОднорідн Пічкур В. В., Матвієнко В. Т., Харченко І. І.,

рівняння та ті, що до них зводяться 2020 53 / 385

Розв'язок

Підставляючи в рівняння вирази для y та y^0 , отримуємо

$$\int_{x}^{du} dx = p_1 - u^2$$
.

Розділюючи змінні, отримуємо

$$\frac{1}{\sqrt{1 - u^2}} dx$$

$$\frac{du}{du} = x^{y}$$

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменОднорідн

Звідси інтегруванням знаходимо

 $\arcsin u = \ln |x| + \ln C_1 (C_1 > 0)$, and $\arcsin u = \ln C_1 |x|$.

Так як $C_1|x| = \pm C_1 x$, то, позначаючи $\pm C_1 = C$, отримуємо arcsin $u = \ln C x$, де $|\ln C x| \le \frac{\pi}{2}$ або $e^{-\pi/2} \le C x \le e^{\pi/2}$. Замінюючи u на $\frac{y}{x}$, мати мемо загальний інтеграл

$$\arcsin \frac{y}{x} = \ln Cx.$$

Розв'язок

Звідси загальний розв'язок

$$y = x \sin \ln Cx$$
.

При розділенні змінних ми ділили обидві частини рівняння на

добуток
$$_{X}^{p}$$
1 – u^{2} ,

тому могли втратити розв'язок, які звертають в нуль цей добуток. Покладемо тепер x=0 та $\sqrt[4]{1-u^2}=0$.

Розв'язок

При x 6= 0, $u = \frac{y}{x}$ з співвідношення

$$p_1 - u^2 = 0$$

отримуємо, що

$$y^2$$

$$x^2 = 1$$

звідки $y = \pm x$.

Безпосередньо перевіркою переконуємося, що функція y = -x і y = x також є розв'язок даного рівняння.

$$y = x \sin \ln Cx$$

загальний розв'язок, C – довільна константа y = -x, y = x

2020 57 / 385

Рівняння, яке зводиться до однорідного

$$(a_1x + b_1y + c_1)dx + (a_2x + b_2y + c_2)dy = 0$$

$$6 = 0 \stackrel{\Delta}{=} a_2 b_2$$

$$(a_1b_1)$$

$$a_1x + b_1y + c_1 = 0,$$

$$a_2x + b_2y + c_2 = 0.$$

$$x_0, y_0$$

Заміна

$$u = x - x_0,$$

$$v = y - y_0.$$

$$du = dx, dv = dy$$

приходимо до однорідного рівняння

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет і рівняння та ті, що до них зволяться 2020 58 / 385

Рівняння, яке зводиться до однорідного

$$(a_1x + b_1y + c_1)dx + (a_2x + b_2y + c_2)dy = 0$$
 = 0 $b_1 6 = 0$. Заміна $\Delta =$

Припустимо

 $a_1 b_1 a_2 b_2$

$$z = a_1 x + b_1 y$$
, $a_2 x + b_2 y + c_2 = kz$,

k – коефіцієнт пропорційності,

$$dz = a_1 dx + b_1 dy \Rightarrow dy = dz - a_1 dx$$
$$b_1$$

приходимо до рівняння з відокремлюваними змінними

$$(z + c_1)dx + (kz + c_2)dz - a_1dx$$

 $b_1 = 0$

<u> Пічкур В. В., Матвієнко В. Т., Х</u>арченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменОднорідн

рівняння та ті. що до них зводяться **2020** 59 / 385

Задача 3

Розв'язати рівняння

$$(x-1)dy = (x+y+2)dx$$

Заміна

$$(x + y + 2)dx - (x - 1)dy = 0$$

$$1 1 = 1$$

$$\Delta = (-10)$$

$$x + y + 2 = 0,$$

$$x - 1 = 0.$$

$$x_0 = 1, y_0 = -3$$

$$(u = x - 1,$$

$$v = y + 3.$$

$$du = dx, dv = dy$$

$$(u+v)du-udv=0$$

Це однорідне рівняння m = 1.

$$M(u, v) = u + v$$

$$M(tu,tu) = tM(u, u)$$

$$N(x, y) = -u$$

$$N(tu,tu) = tN(u, v)$$

$$(u + v)du - udv = 0$$

Зробимо заміну
 $v = zu$, $dv = zdu + udz$
 $(u + uz)du - u(udz + zdu) = 0$
 $(1 + z)du - udz - zdu = 0$

du - udz = 0 одержуємо рівняння з відокремлюваними

ЗМІННИМИ Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О.,

Волощук С. Д. (Київський національний університет іменОднорідні рівняння

та ті, що до них зводяться <mark>2020 63 / 385</mark>

$$u^- dz = 0$$

$$\ln |u| - z = \ln C$$

С – довільна константа

$$u = Ce^z$$

$$v = zu, z = u$$
$$u = Ce^{x}u$$

загальний інтеграл, C – довільна константа u = 0 – також розв'язок, який загубили при діленні

Пічкур В. В., Матвієнко В. Т., Харченк<mark>о І. І., Васін П. О., Волощук С. Д. (Ки</mark>ївський наці<mark>ональний університет іменОднорідн</mark>

рівняння та ті, що до них зводяться 2020 64 / 385

Відповідь

$$x - 1 = Ce^{\frac{y+3}{x-2}}$$

загальний інтеграл, C – довільна константа, x = 1

Задача 4

Розв'язати рівняння

$$(x + y + 1)dx + (2x + 2y - 1)dy = 0$$

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменОднорідн

$$(x + y + 1)dx + (2x + 2y - 1)dy = 0$$

Заміна

1122

$$z = x + y, dz = dx + dy, 2z = 2x + 2y$$
$$dy = dz - dx$$

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменОднорідн

рівняння та ті, що до них зводяться **2020 67 / 385**

$$(z + 1)dx + (2z - 1)(dz - dx) = 0$$

$$(2-z)dx + (2z-1)dz = 0$$

приходимо до рівняння з відокремлюваними змінними

$$dx - 2z - 1$$
$$z - 2dz = 0$$

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменОднорідн

івняння та ті, що до них зводяться 2020 68 / 385

$$x - 2z - 3 \ln |z - 2| = -C$$

С – довільна константа

$$-x - 2y - 3 \ln |x + y - 2| = -C$$

 $x + 2y + 3 \ln |x + y - 2| = C$

C – довільна константа z = 2 також розв'язок, x + y = 2

Відповідь

$$x + 2y + 3 \ln |x + y - 2| = C$$

загальний інтеграл, C — довільна константа, x + y = 2

2020 69 / 385

Узагальнено-однорідні диференціальні рівняння Рівняння

$$M(x, y)dx + N(x, y)dy = 0 (16)$$

називається узагальнено однорідним, якщо існує таке число k, що ліва частина рівняння стає однорідною функцією від величин

при умові, що вони вважаються величинами відповідно першого, k-го, нульового і k – 1-го порядків.

x 1 y k dx 0 dy k - 1

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменОдноріді

Узагальнено-однорідні диференціальні

рівняння Це означає, що рівність

$$M(tx,t^ky)dx + N(tx,t^ky)t^{k-1}dy = t^m[M(x, y)dx + N(x, y)dy]$$
 (17)

виконується при всіх t для довільних x, y, dx та dy або, іншими словами, при всіх t виконуються

$$M(tx,t^ky) = t^m M(x, y),$$
 однорідне рівняння.) $N(tx,t^ky) = t^{m-k+1}N(x, y).$ (18)

При k = 1 маємо звичайне

Алгоритм

Розбиваємо ліву частину рівняння M(x, y)dx + N(x, y)dy на додан ки, які не містять додавання і віднімання Оцінюємо вагу кожного доданку за правилом, яке наведене у та блиці. Вага добутку рівна сумі їхніх ваг Знаходимо k так, щоб ваги кожного доданку співпали Робимо підстановку (19) Приходимо до рівняння з розділеними змінними

x 1 x^mm

$$y = zx^{k}$$
, $dy = d(zx^{k}) = x^{k}dz + kx^{k-1}zdx$ (19)

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменОднорідні

рівняння та ті, що до них зводяться **2020 72 / 385**

Задача 5

Розв'язати рівняння

$$(6 - x^2y^2)dx + x^2dy = 0. (20)$$

Пічкур В. В., Матвієнко В. Т., Харчені

Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменОднорідн

рівняння та ті, що до них зводяться <mark>2020 73 / 385</mark>

Розв'язок

$$(6 - x^2y^2)dx + x^2dy = 0$$

Розбиваємо на доданки

$$6dx - x^{2}y^{2}dx + x^{2}dy = 0$$

$$x 1$$

$$x^{m}m$$

$$y k$$

$$y^{s}sk$$

$$dx 0$$

$$dy k - 1$$

$$0 = 2 + 2k = 2 + k - 1.$$
 (21)

Ця система сумісна,

$$k = -1$$
.

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменОднорідн

o I. I., Васін П. О., Волощук С. Д. (Київський національний університет іменОднор рівняння та ті. що до них зводяться **2020 74 / 385**

Підстановка

$$y = {}^{Z}_{X}(22)$$

$$df(x) = f^{0}(x)dx$$

$$d(f(x)g(x)) = g(x)df(x) + f(x)dg(x)$$

$$xdz - (z^2 + z - 6)dx = 0.$$
 (23)

Маємо рівняння з відокремлюваними змінними. Інтегруючи,

знаходимо
$$z^2 + z - 6 - x = 0$$

$$dz$$

$$Z_{dx}$$

$$Z_{dz}$$

$$x = \ln C_1$$

$$z^2 + z - 6^-$$

$$Z_{dz}$$

$$(z-2)(z+3)^{-\ln|x|} = \ln C_1$$

$$(z-2)(z+3)=1$$

$$5(z-2)-1$$

$$5(z+3)$$

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д. (Київський національний університет іменОднорідні рівняння та ті, що до них зводяться **2020 76 / 385**

$$Z_{dz}$$

$$(z-2)(z+3)^{-\ln|x|} = \ln C_1$$
 Z_{dz}
 $5(z-2)^{-1}$

$$Z_{dz}$$
 C_1
 $5(z+3)^{-\ln|x|} = \ln$
 $5\ln|z-2| - {}^{1}5\ln|z+3| - \ln|x| = \ln C_1$
 $\ln|z-2| - \ln|z+3| - 5\ln|x| = 5\ln C_1$
 $\ln|z-2| - \ln|z+3| - \ln|x|^{5} = \ln C_{1}^{5}$, $C_{1}^{5} = C_{1}^{5}$

$$z - 2$$

$$(z+3)x^5 = C(24)$$

$$z = xy$$

Відповідь

$$xy - 2$$

$$(xy + 3)x = C$$

загальний інтеграл, С – довільна константа

2020 78 / 385

Маріус Софус Лі

Лінійні диференціальні рівняння першого порядку Практичне заняття з курсу "Диференціальні рівняння"

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д.

Київський національний університет імені Тараса Шевченка кафедра моделювання складних систем

2020