

Pilani Campus

BITS Pilani presentation

SS ZC416 Mathematical Foundations for Data Science Brief Introduction to Boolean Functions

- Introduction to Graphs
 - Undirected & Directed Graphs
 - Simple Graphs & Multigraphs
 - Special Graphs
 - Adjacency Matrix & Incidence Matrix
 - Connectedness
 - Hamiltonian Paths & Circuits

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland.
- Wrote An Investigation of the Laws *of Thought* (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT.

Scanned at the American stitute of Physics

Α	Ν	D
, ,		

NOT
$$\bar{X}$$
 X'

Boolean Algebra

Boolean algebra provides the operations and the rules for working with the set **{0, 1}.**

We are going to focus on three operations:

- Boolean complementation,
- o Boolean sum, and
- Boolean product

Boolean Operations

The **complement** is denoted by a bar or a '. It is defined by

$$0' = 1$$
 and $1' = 0$.

The **Boolean sum**, denoted by + or by OR, has the following values:

$$1 + 1 = 1$$
, $1 + 0 = 1$, $0 + 1 = 1$, $0 + 0 = 0$

The **Boolean product**, denoted by · or by AND, has the following values:

$$1 \cdot 1 = 1$$
, $1 \cdot 0 = 0$, $0 \cdot 1 = 0$, $0 \cdot 0 = 0$

Boolean Functions and Expressions

Definition: Let $B = \{0, 1\}$. The variable x is called a **Boolean variable** if it assumes values only from B.

A function from B^n , the set $\{(x_1, x_2, ..., x_n) \mid x_i \in B, 1 \le i \le n\}$, to B is called a **Boolean function of degree n**.

Boolean functions can be represented using expressions made up from the variables and Boolean operations.

achieve

Construct the Truth Table for F(x, y) = (x').y

Example

×	y	F(x, y)
0	0	0
0	1	1
1	0	0
1	1	0

Construct the Truth Table for F(x, y, z) = (xz + y)

X	У	z	XZ	xz+y	(xz + y)'
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	0	0	1
1	0	1	1	1	0
1	1	0	0	1	0
1	1	1	1	1	0

Equivalence

Definition: The Boolean functions F and G of n variables are **equal** if and only if $F(b_1, b_2, ..., b_n) = G(b_1, b_2, ..., b_n)$ whenever $b_1, b_2, ..., b_n$ belong to B.

Two different Boolean expressions that represent the same function are called **equivalent**.

 For example, the Boolean expressions xy, xy + 0, and xy·1 are equivalent.

Complement of a Function

The **complement** of the Boolean function F is the function F', where

$$F'(b_1, b_2, ..., b_n) = (F(b_1, b_2, ..., b_n))'$$

Let F and G be Boolean functions of degree n. The **Boolean sum F+G** and **Boolean product FG** are then defined by

$$(F + G)(b_1, b_2, ..., b_n) = F(b_1, b_2, ..., b_n) + G(b_1, b_2, ..., b_n)$$

 $(FG)(b_1, b_2, ..., b_n) = F(b_1, b_2, ..., b_n) G(b_1, b_2, ..., b_n)$

Boolean algebra

A Boolean algebra comprises...

- A set of elements B
- Binary operators {+ , •} Boolean sum and product
- A unary operation { ' } (or { }) example: A' or A
- ...and the following axioms
- 1. The set B contains at least two elements $\{a b\}$ with $a \neq b$
- 2. Closure: a+b is in B a•b is in B
- 3. Commutative: a+b=b+a $a \cdot b=b \cdot a$
- 4. Associative: a+(b+c) = (a+b)+c a•(b•c) = (a•b)•c
- 5. Identity: a+0 = a $a \cdot 1 = a$
- 6. Distributive: a+(b+c)=(a+b)+(a+c) a*(b+c)=(a*b)+(a*c)
- 7. Complementarity: a+a'=1 $a \cdot a'=0$

$$\overline{A} \bullet B + C = ((\overline{A}) \bullet B) + C$$

Thank you!!