paez ramirez jean carlos KNN

March 11, 2025

```
[1]: # Librerías básicas
     import pandas as pd
     import numpy as np
     # Librerías de visualización
     import matplotlib.pyplot as plt
     import seaborn as sns
     # Librerías de scikit-learn
     from sklearn.preprocessing import StandardScaler, MinMaxScaler
     from sklearn.model_selection import (
         train_test_split,
         GridSearchCV,
         cross_val_score,
         StratifiedKFold
     )
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.metrics import (
         accuracy_score,
         classification_report,
         confusion_matrix,
         roc_curve,
         auc,
         precision_recall_curve,
         f1_score
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.feature_selection import SelectFromModel
     # Librería para manejo de desbalance de clases
     from imblearn.over_sampling import SMOTE
     from imblearn.pipeline import Pipeline
     from imblearn.metrics import classification_report_imbalanced
     # Configuración de warnings
     import warnings
     warnings.filterwarnings('ignore')
```

```
# Configuración de visualización
plt.style.use('default')
sns.set_theme()

# Configuración adicional de matplotlib
plt.rcParams.update({
    'figure.figsize': (12, 8),
    'axes.grid': True,
    'figure.autolayout': True,
    'font.size': 10,
    'axes.labelsize': 12,
    'axes.titlesize': 14
})

# Configuración para reproducibilidad
RANDOM_STATE = 42
np.random.seed(RANDOM_STATE)
```

0.1 Cargar los Datos

```
[2]: def load_and_check_data(file_paths):
         11 11 11
         Carga y realiza verificaciones iniciales de los datos
         for path in file_paths:
             try:
                 df = pd.read_csv(path)
                 print(f"Dataset cargado exitosamente desde: {path}")
                 # Verificación inicial de datos
                 print("\nInformación básica del dataset:")
                 print(df.info())
                 # Verificar valores faltantes
                 missing_values = df.isnull().sum()
                 print("\nValores faltantes por columna:")
                 print(missing_values[missing_values > 0])
                 # Verificar tipos de datos
                 print("\nTipos de datos:")
                 print(df.dtypes)
                 return df
             except FileNotFoundError:
                 continue
```

```
\textbf{raise FileNotFoundError("No se pudo encontrar el archivo en ninguna de las_{\sqcup}

¬rutas especificadas")
# Uso de la función
file_paths = [
    "../data/WA_Fn-UseC_-Telco-Customer-Churn.csv",
    "data/WA_Fn-UseC_-Telco-Customer-Churn.csv"
df = load_and_check_data(file_paths)
```

 ${\tt Dataset\ cargado\ exitosamente\ desde:\ ../data/WA_Fn-UseC_-Telco-Customer-Churn.csv}$

Información básica del dataset:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 7043 entries, 0 to 7042 Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype			
		7040				
0	customerID	7043 non-null	object			
1	gender	7043 non-null	object			
2	SeniorCitizen	7043 non-null	int64			
3	Partner	7043 non-null	object			
4	Dependents	7043 non-null	object			
5	tenure	7043 non-null	int64			
6	PhoneService	7043 non-null	object			
7	MultipleLines	7043 non-null	object			
8	InternetService	7043 non-null	object			
9	OnlineSecurity	7043 non-null	object			
10	OnlineBackup	7043 non-null	object			
11	${\tt DeviceProtection}$	7043 non-null	object			
12	TechSupport	7043 non-null	object			
13	${\tt StreamingTV}$	7043 non-null	object			
14	${\tt StreamingMovies}$	7043 non-null	object			
15	Contract	7043 non-null	object			
16	PaperlessBilling	7043 non-null	object			
17	${\tt PaymentMethod}$	7043 non-null	object			
18	MonthlyCharges	7043 non-null	float64			
19	TotalCharges	7043 non-null	object			
20	Churn	7043 non-null	object			
dtypes: float64(1), int64(2), object(18)						
memory usage: 1.1+ MB						
None						

None

Valores faltantes por columna:

Series([], dtype: int64)

Tipos de datos:

customerID	object
gender	object
SeniorCitizen	int64
Partner	object
Dependents	object
tenure	int64
PhoneService	object
MultipleLines	object
InternetService	object
OnlineSecurity	object
OnlineBackup	object
DeviceProtection	object
TechSupport	object
StreamingTV	object
StreamingMovies	object
Contract	object
PaperlessBilling	object
PaymentMethod	object
MonthlyCharges	float64
TotalCharges	object
Churn	object
dtype: object	

0.2 Análisis Exploratorio de Dato

```
[3]: # Resumen Estadístico:
     print("Resumen Estadístico:")
     print(df.describe())
     print("\n")
```

Resumen Estadístico:

```
SeniorCitizen
                                    MonthlyCharges
                            tenure
                                        7043.000000
         7043.000000
count
                      7043.000000
            0.162147
                         32.371149
                                          64.761692
mean
            0.368612
                         24.559481
                                          30.090047
std
            0.000000
                          0.000000
                                          18.250000
min
25%
            0.00000
                          9.000000
                                          35.500000
50%
            0.000000
                         29.000000
                                          70.350000
75%
            0.000000
                         55.000000
                                          89.850000
max
            1.000000
                         72.000000
                                         118.750000
```

```
[4]: # Distribución de Clases:
     plt.figure(figsize=(8, 6))
     sns.countplot(data=df, x='Churn')
     plt.title('Distribución de Churn')
```


Variables Categóricas:

Distribución de gender:

gender

Male 3555 Female 3488

Name: count, dtype: int64

Distribución de Partner:

Partner

No 3641 Yes 3402

Name: count, dtype: int64

Distribución de Dependents:

Dependents

No 4933 Yes 2110

Name: count, dtype: int64

Distribución de PhoneService:

PhoneService Yes 6361 No 682

Name: count, dtype: int64

Distribución de MultipleLines:

MultipleLines

No 3390 Yes 2971 No phone service 682 Name: count, dtype: int64

Distribución de InternetService:

 ${\tt InternetService}$

Fiber optic 3096 DSL 2421 No 1526

Name: count, dtype: int64

Distribución de OnlineSecurity:

OnlineSecurity

No 3498
Yes 2019
No internet service 1526
Name: count, dtype: int64

Distribución de OnlineBackup:

OnlineBackup

No 3088
Yes 2429
No internet service 1526
Name: count, dtype: int64

Distribución de DeviceProtection:

DeviceProtection

No 3095 Yes 2422 No internet service 1526 Name: count, dtype: int64

Distribución de TechSupport:

TechSupport

No 3473 Yes 2044 No internet service 1526 Name: count, dtype: int64

Distribución de StreamingTV:

 ${\tt StreamingTV}$

No 2810 Yes 2707 No internet service 1526 Name: count, dtype: int64

Distribución de StreamingMovies:

StreamingMovies

No 2785 Yes 2732 No internet service 1526 Name: count, dtype: int64

Distribución de Contract:

Contract

Month-to-month 3875
Two year 1695
One year 1473
Name: count, dtype: int64

Distribución de PaperlessBilling:

PaperlessBilling

Yes 4171 No 2872

Name: count, dtype: int64

Distribución de PaymentMethod:

PaymentMethod

Electronic check 2365
Mailed check 1612
Bank transfer (automatic) 1544
Credit card (automatic) 1522

Name: count, dtype: int64

Distribución de TotalCharges:

TotalCharges

	11
20.2	11
19.75	9
20.05	8
19.9	8
130.15	1
3211.9	1
7843.55	1
2196.3	1
197.4	1

Name: count, Length: 6531, dtype: int64

Distribución de Churn:

Churn

No 5174 Yes 1869

Name: count, dtype: int64


```
[6]: # Correlación entre Variables Numéricas:
    numeric_columns = df.select_dtypes(include=['float64', 'int64']).columns
    corr_matrix = df[numeric_columns].corr()

plt.figure(figsize=(10, 8))
    sns.heatmap(corr_matrix, annot=True, cmap="coolwarm", fmt='.2f')
    plt.title("Matriz de correlación de variables numéricas")
    plt.tight_layout()
    plt.show()
```



```
[7]: # Histograma de Ingresos:
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x='MonthlyCharges', bins=30, kde=True)
plt.title('Distribución de MonthlyCharges')
plt.xlabel('MonthlyCharges')
```

```
plt.ylabel('Frecuencia')
plt.show()

# Información adicional sobre el dataset
print("\nInformación del Dataset:")
print(df.info())

# Valores faltantes
print("\nValores faltantes por columna:")
print(df.isnull().sum())
```


Información del Dataset:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	customerID	7043 non-null	object
1	gender	7043 non-null	object
2	SeniorCitizen	7043 non-null	int64
3	Partner	7043 non-null	object
4	Dependents	7043 non-null	object
5	tenure	7043 non-null	int64
6	PhoneService	7043 non-null	object
7	MultipleLines	7043 non-null	object

```
8
    InternetService
                      7043 non-null
                                      object
 9
    OnlineSecurity
                      7043 non-null
                                      object
 10 OnlineBackup
                      7043 non-null
                                      object
 11 DeviceProtection 7043 non-null
                                      object
 12 TechSupport
                      7043 non-null
                                      object
 13 StreamingTV
                      7043 non-null
                                      object
 14 StreamingMovies 7043 non-null
                                      object
 15 Contract
                      7043 non-null
                                      object
 16 PaperlessBilling 7043 non-null
                                      object
 17 PaymentMethod
                      7043 non-null
                                      object
    MonthlyCharges
 18
                      7043 non-null
                                      float64
 19
    TotalCharges
                      7043 non-null
                                      object
20 Churn
                      7043 non-null
                                      object
dtypes: float64(1), int64(2), object(18)
memory usage: 1.1+ MB
None
```

Valores faltantes por columna:

customerID gender 0 SeniorCitizen 0 Partner 0 Dependents tenure 0 PhoneService 0 0 MultipleLines InternetService 0 0 OnlineSecurity OnlineBackup DeviceProtection TechSupport 0 StreamingTV0 StreamingMovies Contract 0 PaperlessBilling PaymentMethod 0 MonthlyCharges 0 TotalCharges 0 Churn 0

dtype: int64

0.2.1 Función de evaluación del modelo

```
[8]: def evaluate_model(y_true, y_pred, y_prob=None):
         Función para evaluar el modelo con múltiples métricas
```

```
print("\n=== Métricas de Evaluación ===")
# Métricas básicas
print("\nInforme de clasificación detallado:")
print(classification_report(y_true, y_pred))
# Matriz de confusión
plt.figure(figsize=(10, 8))
cm = confusion_matrix(y_true, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
            xticklabels=['No Churn', 'Churn'],
            yticklabels=['No Churn', 'Churn'])
plt.title("Matriz de Confusión")
plt.xlabel("Predicción")
plt.ylabel("Real")
plt.show()
if y_prob is not None:
    # Curva ROC
   fpr, tpr, _ = roc_curve(y_true, y_prob[:, 1])
   roc_auc = auc(fpr, tpr)
   plt.figure(figsize=(10, 8))
   plt.plot(fpr, tpr, color='darkorange', lw=2,
             label=f'ROC curve (AUC = {roc_auc:.2f})')
   plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
   plt.xlim([0.0, 1.0])
   plt.ylim([0.0, 1.05])
   plt.xlabel('Tasa de Falsos Positivos')
   plt.ylabel('Tasa de Verdaderos Positivos')
   plt.title('Curva ROC')
   plt.legend(loc="lower right")
   plt.show()
    # Curva Precisión-Recall
   precision, recall, _ = precision_recall_curve(y_true, y_prob[:, 1])
   plt.figure(figsize=(10, 8))
   plt.plot(recall, precision, color='blue', lw=2)
   plt.xlabel('Recall')
   plt.ylabel('Precision')
   plt.title('Curva Precisión-Recall')
   plt.show()
```

0.2.2 Selección de Características

```
[9]: def select features(X, y):
         Selección de características usando Random Forest
         rf = RandomForestClassifier(n_estimators=100, random_state=RANDOM_STATE)
         selector = SelectFromModel(rf, prefit=False)
         selector.fit(X, y)
         # Obtener características importantes
         feature_importance = pd.DataFrame({
             'feature': X.columns,
             'importance': selector.estimator_.feature_importances_
         })
         feature importance = feature importance.sort values('importance', );
      →ascending=False)
         # Visualizar importancia de características
         plt.figure(figsize=(12, 6))
         sns.barplot(data=feature_importance.head(10), x='importance', y='feature')
         plt.title('Top 10 Características más Importantes')
         plt.show()
         return selector.get_support(), feature_importance
```

0.3 Preparación de Datos

```
[10]: # Convertir 'TotalCharges' a numérico
    df['TotalCharges'] = pd.to_numeric(df['TotalCharges'], errors='coerce')

# Rellenar valores faltantes en 'TotalCharges' con la mediana
    df['TotalCharges'] = df['TotalCharges'].fillna(df['TotalCharges'].median())

# Codificar la columna objetivo 'Churn' como binaria
    df['Churn'] = df['Churn'].map({'Yes': 1, 'No': 0})

# Eliminar columnas irrelevantes
    df = df.drop(['customerID'], axis=1)

# Codificar variables categóricas
    df_encoded = pd.get_dummies(df, drop_first=True)

# Separar características y variable objetivo

X = df_encoded.drop('Churn', axis=1)
    y = df_encoded['Churn']
```

```
# Selección de características
support_mask, feature_importance = select_features(X, y)
X_selected = X.loc[:, support_mask]
# División estratificada de datos
X_train, X_test, y_train, y_test = train_test_split(
   X_selected, y,
   test_size=0.2,
   random_state=RANDOM_STATE,
    stratify=y
)
# Normalización
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Aplicar SMOTE para balance de clases
smote = SMOTE(random_state=RANDOM_STATE)
X_train_balanced, y_train_balanced = smote.fit_resample(X_train_scaled, y_train)
print("Distribución original de clases en entrenamiento:")
print(pd.Series(y_train).value_counts(normalize=True))
print("\nDistribución después de SMOTE:")
print(pd.Series(y_train_balanced).value_counts(normalize=True))
```


Distribución original de clases en entrenamiento: Churn $\,$

0.734647

```
1 0.265353
Name: proportion, dtype: float64
Distribución después de SMOTE:
Churn
0 0.5
1 0.5
Name: proportion, dtype: float64
```

0.4 Implementación de KNN

0.4.1 Entrenamiento del Modelo

```
[11]: # Definir parámetros para búsqueda
      param_grid = {
          'n neighbors': range(1, 21),
          'weights': ['uniform', 'distance'],
          'metric': ['euclidean', 'manhattan']
      }
      # Crear validación cruzada estratificada
      cv = StratifiedKFold(n splits=5, shuffle=True, random state=RANDOM STATE)
      # Búsqueda de hiperparámetros
      grid_search = GridSearchCV(
          KNeighborsClassifier(),
          param_grid,
          cv=cv,
          scoring='f1',
          n_{jobs=-1}
      # Ajustar el modelo
      grid_search.fit(X_train_balanced, y_train_balanced)
      # Mostrar mejores parámetros
      print("Mejores parámetros:", grid_search.best_params_)
      print("Mejor puntuación F1:", grid_search.best_score_)
      # Entrenar modelo final con mejores parámetros
      best_knn = KNeighborsClassifier(**grid_search.best_params_)
      best_knn.fit(X_train_balanced, y_train_balanced)
      # Predicciones
      y_pred = best_knn.predict(X_test_scaled)
      y_prob = best_knn.predict_proba(X_test_scaled)
      # Evaluación completa
```

evaluate_model(y_test, y_pred, y_prob)

Mejores parámetros: {'metric': 'euclidean', 'n_neighbors': 4, 'weights':

'distance'}

Mejor puntuación F1: 0.8136512367016442

=== Métricas de Evaluación ===

Informe de clasificación detallado:

	precision	recall	f1-score	support
0	0.83	0.72	0.77	1035
1	0.44	0.60	0.51	374
accuracy			0.69	1409
macro avg	0.64	0.66	0.64	1409
weighted avg	0.73	0.69	0.70	1409

0.4.2 Visualización de Precisión para Diferentes Vecinos

```
[13]: # Probar diferentes valores de n_neighbors y encontrar el mejor k
accuracies = []
best_accuracy = 0
best_k = 1

for k in range(1, 21):
    knn = KNeighborsClassifier(n_neighbors=k)
    knn.fit(X_train, y_train)
    y_pred = knn.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    accuracies.append(accuracy)

# Actualizar el mejor k si encontramos una mejor precisión
if accuracy > best_accuracy:
    best_accuracy = accuracy
    best_k = k
```

```
print(f"Mejor número de vecinos (k): {best_k}")
print(f"Mejor precisión: {best_accuracy:.4f}")

# Visualizar los resultados
plt.figure(figsize=(10, 6))
plt.plot(range(1, 21), accuracies, marker='o', label='Precisión')
plt.axvline(x=best_k, color='r', linestyle='--', label=f'Mejor k = {best_k}')
plt.title("Precisión vs Número de Vecinos")
plt.xlabel("Número de Vecinos")
plt.ylabel("Precisión")
plt.xticks(range(1, 21))
plt.legend()
plt.grid()
plt.show()
```

Mejor número de vecinos (k): 10 Mejor precisión: 0.7963

0.4.3 Curvas de Aprendizaje

```
[15]: def plot_learning_curve(estimator, X, y, cv=5):
    """

    Genera curvas de aprendizaje para evaluar el rendimiento del modelo
    """

    train_sizes = np.linspace(0.1, 1.0, 10)
```

```
# Cambiar el scoring a 'accuracy' en lugar de 'f1'
   train_sizes, train_scores, test_scores = learning_curve(
        estimator, X, y,
       cv=cv,
       n_{jobs=-1},
       train_sizes=train_sizes,
       scoring='accuracy' # Cambiado de 'f1' a 'accuracy'
   )
   train mean = np.mean(train scores, axis=1)
   train_std = np.std(train_scores, axis=1)
   test_mean = np.mean(test_scores, axis=1)
   test_std = np.std(test_scores, axis=1)
   plt.figure(figsize=(10, 6))
   plt.plot(train_sizes, train_mean, label='Training score')
   plt.plot(train_sizes, test_mean, label='Cross-validation score')
   plt.fill_between(train_sizes, train_mean - train_std,
                     train_mean + train_std, alpha=0.1)
   plt.fill_between(train_sizes, test_mean - test_std,
                     test_mean + test_std, alpha=0.1)
   plt.xlabel('Training Examples')
   plt.ylabel('Accuracy Score') # Cambiado de 'F1 Score' a 'Accuracy Score'
   plt.title('Learning Curves')
   plt.legend(loc='best')
   plt.grid(True)
   plt.show()
# Aplicar SMOTE para balancear los datos
smote = SMOTE(random_state=42)
X train_balanced, y_train_balanced = smote.fit_resample(X train, y_train)
# Crear y entrenar el modelo KNN con los mejores parámetros
best_knn = KNeighborsClassifier(n_neighbors=18)
best_knn.fit(X_train_balanced, y_train_balanced)
# Generar las curvas de aprendizaje
plot_learning_curve(best_knn, X_train_balanced, y_train_balanced)
```

