28. a.	Explain the stages of conjugate gradient method and Quasi-Newton	10	3	3	2,3
20. 4.	method of Multi-variable optimization.				
h	(OR) Minimize using Repulty function method for a function $f(x) = x x$	10	3	3	2,3
υ.	Minimize using Penalty function method for a function $f(x) = -x_1x_2$ subject to $g(x) = x_1 + 2x_2 - 4 \le 0$				
29. a.	Explain the simulated annealing method of optimization. How the cross over and mutation operator work in GA?	10	3	4	2,3
	(OR)				
b.	State schema theorem. Explain how it works in different stages in genetic Algorithm.	10	3	4	2,3
30. a.	A steel bar is to be Machined on a CNC late using P20 carbide tool. The	10	4	5	2,3
	lathe has a 10 kW motor and a transmission efficiency of 75%. A				
	maximum allowable cutting force of 5000 N is applied. The operation will remove 219, 912 mm ³ of material. The step time during which tool does				
	not cut have been assumed as 0.15, 0.2 and 0.05 mins respectively. The				
	objectives are minimization of operation time and used tool life. Formulate the problem as a multi-objective optimization problem.				
h	(OR) Draw a 2 dimensional dynamic model of a car suspension system	10	4	5	2,3
0.	considering sprung mass supported on two axles by means of suspension				
	coil spring and shock absorber. Each axle contains some unsprung mass				
	supported by the tyre. List the design parameters and formulate the objective function to minimize the transmissibility factor based on				
	bouncing amplitude of the spring mass and road excitation Amplitude.				
	* * * *				

Reg. No.								

B.Tech. DEGREE EXAMINATION, MAY 2022

Sixth and Seventh Semester

18MEE402T - OPTIMIZATION IN ENGINEERING DESIGN

(For the candidates admitted from the goodemic year 2018 2010 to 2010 2020)

	(1 or the candidates dumitied from the academic year 2018-2019 to 2019-20	120)				
Note:						
(i)	Part - A should be answered in OMR sheet within first 40 minutes and OMR shover to hall invigilator at the end of 40 th minute.	eet shoul	id be	han	ided	
(ii)	Part - B should be answered in answer booklet.					
Time	Max. Marks: 75					
	$PART - A (25 \times 1 = 25 Marks)$	Marks	BL	CO	PO	
	Answer ALL Questions	₽				
	1. The techniques for selecting a new point depends upon	1	1	1	2,3	
	(A) Scope of the problem (B) Nature of the problem					
	(C) Range of the problem (D) Analysis of the problem					

- 2. A "≤" type constraint expressed in the standard form is active at a design point if it has
 - (B) More than zero (A) Zero value (C) Less than zero (D) Infinite value
- 3. The degrees of freedom for an optimization problem that has four design variables is
 - (A) 1/4
 - (D) 2 (C) $\sqrt[4]{4}$
- 4. The function $f(x) = 3x^2 + 2x + 5$ has Minimum at $x = \frac{1}{2}$ Maximum at x =
 - (D) Maximum at $x = \frac{-1}{2}$ Minimum at $x = \frac{-1}{3}$
- 1 1 1,3 5. The variables in the design process are called
 - (B) Free points (A) Constraints
 - (C) Pre-assigned parameters (D) Decision variables
- 6. The direct search methods require only the objective function values but not the partial derivatives of the function is given by
 - (A) Non-gradient methods (B) Gradient methods (C) Newton's method
 - (D) Pattern search method
- 7. For what value of 'x', is the function $x^2 2x 6$ be minimized? (B) 1 (A) 0
 - (D) 3 (C) 5
- 8. In solving an unconstrained minimization problem, find out the method which doesn't belongs to an unconstrained minimization?
- (A) Univariate method

Page 1 of 4

- (B) Newton's method
- (C) Pattern search method
- (D) Tabu search method

9.	The method is used on	generating a sequence of improved	1 1	2	2,3	20. Large changes in the parameter vector dependent on other parameter	-1	1	4 2	2,3
	approximations to the minimum	n each derived from preceding				vectors is applicable in				
	approximation.					(A) Mutation (B) Selection				
	(A) Random search	(B) Random walk				(C) Macro-mutation (D) Cross over				
	(C) Random jump	(D) Grid search								
						21. For analyzing a two bar truss element, the analysis functions that is used?	1	1	5 2	2,3
10.	Choose one of the following which	is not a one dimensional minimization	1 1	2	2,3	(A) Height of truss (B) Weight				
	method.					(C) Modulus of elasticity (D) Thickness				
	(A) Unrestricted search method	(B) Fibonacci method				(2) Includes				
	(C) Golden section method	(D) Penalty function method				22. models are based on the underlying principles that govern any	1	1	5 2	2 3
	(C) Golden section method	(D) Tenanty function method					•	•		-,-
1.1	In an anatosinal autimination to the	1:-1:-1:	1 1	3	2.3	design problems.				
11.		que, which one is not a direct method?		,	2,5	(A) Physical (B) Experimental				
	(A) Random search method	(B) Complex method				(C) Numerical (D) Analytical				
	(C) Fibonacci method	(D) Transformation of variable								
		technique				23. To design a shaft with ultimate strength, the following constraints can be	1	2	5 2	2,3
						rewritten as $4 \le \text{diameter ratio} \le 16$.				
12.	method coupled with	powell method of unconstrained	1 1	3	2,3	(A) Diameter ratio ≤ 16 (B) Diameter ratio ≥ 16				
		of one dimensional search is used to				Diameter ratio ≥ 4 Diameter ratio ≤ 4				
	solve a problem.	or one differentiational sources to about to								
	_	(D) Interior nanolty function				(C) Diameter ratio ≤ 4 (D) Diameter ratio ≥ 4				
	(A) Exterior penalty function	(B) Interior penalty function				Diameter ratio ≤16 Diameter ratio ≥16				
	(C) Explicit function	(D) Quasi-Newton								
						24. Most engineering designs represented a compromise among	1	1	5 2	2,3
13.	In geometric programming the emph	asis is on	1 1	. 3	2,3	(A) Similar objectives (B) Conflicting objectives				
	(A) Optimal distribution	(B) Single distribution				(C) Single dependent objectives (D) Multiple dependent objectives				
	(C) Variable distribution	(D) Linear distribution				(2) Transple dependent cojecutes				
							1	2		2 2
						In order to decion a robust coring element, the relative cize of wire dia and	1	_	5 2	2,3
14.	When we solve a problem using of	conjugate gradient method, it can be	1 1	. 3	2,3	25. In order to design a robust spring element, the relative size of wire dia and	1	۷	5 2	2,3
14.		conjugate gradient method, it can be	1 1	. 3	2,3	coil dia should be	1		5 2	2,3
14.	simplified in 'n' iterations if it is rob	ust and	1 1	3	2,3	coil dia should be (A) Restrained (B) Neglected	1		5 2	2,3
14.	simplified in 'n' iterations if it is rob (A) Diverges	ust and (B) Converges	1 1	. 3	2,3	coil dia should be	1	2	5 2	2,3
14.	simplified in 'n' iterations if it is rob	ust and	1 1	. 3	2,3	coil dia should be (A) Restrained (B) Neglected		2	5 2	2,3
	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric	ust and (B) Converges (D) Non-symmetric	1 1			coil dia should be (A) Restrained (B) Neglected (C) Minimized (D) Maximized				
	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric In unconstrained optimization techni	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method?	1 1		2,3	coil dia should be (A) Restrained (B) Neglected (C) Minimized (D) Maximized PART - B (5 × 10 = 50 Marks)	Marks			
	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric In unconstrained optimization techni (A) Interior penalty function	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function	1 1			coil dia should be (A) Restrained (B) Neglected (C) Minimized (D) Maximized	Marks			
	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric In unconstrained optimization techni	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function (D) Sequential quadratic	1 1			coil dia should be (A) Restrained (B) Neglected (C) Minimized (D) Maximized PART - B (5 × 10 = 50 Marks)	Marks			
	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric In unconstrained optimization techni (A) Interior penalty function	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function	1 1			coil dia should be (A) Restrained (B) Neglected (C) Minimized (D) Maximized PART - B (5 × 10 = 50 Marks) Answer ALL Questions	Marks	BL		PO
15.	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric In unconstrained optimization techni (A) Interior penalty function (C) Larange multiplier method	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function (D) Sequential quadratic programming	1 1			coil dia should be (A) Restrained (B) Neglected (C) Minimized (D) Maximized PART - B (5 × 10 = 50 Marks) Answer ALL Questions 26. a. What are the differences between static and dynamic optimization		BL	CO 3	PO
15.	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric In unconstrained optimization techni (A) Interior penalty function (C) Larange multiplier method The basic feature of genetic algorithm	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function (D) Sequential quadratic programming m is a	1 1			coil dia should be (A) Restrained (B) Neglected (C) Minimized (D) Maximized PART - B (5 × 10 = 50 Marks) Answer ALL Questions 26. a. What are the differences between static and dynamic optimization problem? Explain with example, How non-traditional optimization method		BL	CO 3	PO
15.	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric In unconstrained optimization technic (A) Interior penalty function (C) Larange multiplier method The basic feature of genetic algorithm (A) Deterministic mutation	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function (D) Sequential quadratic programming m is a (B) Fitness based selection	1 1			coil dia should be (A) Restrained (B) Neglected (C) Minimized (D) Maximized PART - B (5 × 10 = 50 Marks) Answer ALL Questions 26. a. What are the differences between static and dynamic optimization		BL	CO 3	PO
15.	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric In unconstrained optimization techni (A) Interior penalty function (C) Larange multiplier method The basic feature of genetic algorithm	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function (D) Sequential quadratic programming m is a	1 1			coil dia should be (A) Restrained (B) Neglected (C) Minimized (D) Maximized PART - B (5 × 10 = 50 Marks) Answer ALL Questions 26. a. What are the differences between static and dynamic optimization problem? Explain with example, How non-traditional optimization method is better for searching the global optima?		BL	CO 3	PO
15. 16.	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric In unconstrained optimization technic (A) Interior penalty function (C) Larange multiplier method The basic feature of genetic algorithm (A) Deterministic mutation (C) Hill climbing search selection	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function (D) Sequential quadratic programming m is a (B) Fitness based selection	1 1	. 3	2,3	coil dia should be (A) Restrained (B) Neglected (C) Minimized (D) Maximized PART - B (5 × 10 = 50 Marks) Answer ALL Questions 26. a. What are the differences between static and dynamic optimization problem? Explain with example, How non-traditional optimization method is better for searching the global optima? (OR)	10	BL 3	co 1	PO 2,3
15. 16.	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric In unconstrained optimization techni (A) Interior penalty function (C) Larange multiplier method The basic feature of genetic algorithm (A) Deterministic mutation (C) Hill climbing search selection Parameters space to be searched	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function (D) Sequential quadratic programming m is a (B) Fitness based selection (D) Random selection	1 1	. 3		coil dia should be (A) Restrained (B) Neglected (C) Minimized PART - B (5 × 10 = 50 Marks) Answer ALL Questions 26. a. What are the differences between static and dynamic optimization problem? Explain with example, How non-traditional optimization method is better for searching the global optima? (OR) b. How adequate and optimum design differ? What are the objectives of	10	BL 3	CO 3	PO 2,3
15. 16.	simplified in 'n' iterations if it is robing (A) Diverges (C) Symmetric In unconstrained optimization technic (A) Interior penalty function (C) Larange multiplier method The basic feature of genetic algorithm (A) Deterministic mutation (C) Hill climbing search selection Parameters space to be searched (A) Chromosomes	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function (D) Sequential quadratic programming m is a (B) Fitness based selection	1 1	. 3	2,3	coil dia should be (A) Restrained (B) Neglected (C) Minimized (D) Maximized PART - B (5 × 10 = 50 Marks) Answer ALL Questions 26. a. What are the differences between static and dynamic optimization problem? Explain with example, How non-traditional optimization method is better for searching the global optima? (OR)	10	BL 3	co 1	PO 2,3
15. 16.	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric In unconstrained optimization techni (A) Interior penalty function (C) Larange multiplier method The basic feature of genetic algorithm (A) Deterministic mutation (C) Hill climbing search selection Parameters space to be searched	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function (D) Sequential quadratic programming m is a (B) Fitness based selection (D) Random selection	1 1	. 3	2,3	coil dia should be (A) Restrained (B) Neglected (C) Minimized PART - B (5 × 10 = 50 Marks) Answer ALL Questions 26. a. What are the differences between static and dynamic optimization problem? Explain with example, How non-traditional optimization method is better for searching the global optima? (OR) b. How adequate and optimum design differ? What are the objectives of optimum design? What is a multi-objective optimization problem?	10	BL 3	co 1 2 1 2 1 2 2	PO 2,3
15. 16.	simplified in 'n' iterations if it is robing (A) Diverges (C) Symmetric In unconstrained optimization technic (A) Interior penalty function (C) Larange multiplier method The basic feature of genetic algorithm (A) Deterministic mutation (C) Hill climbing search selection Parameters space to be searched (A) Chromosomes (C) Generation	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function (D) Sequential quadratic programming m is a (B) Fitness based selection (D) Random selection (B) Population (D) Colony	1 1	. 3	2,3	coil dia should be (A) Restrained (B) Neglected (C) Minimized PART - B (5 × 10 = 50 Marks) Answer ALL Questions 26. a. What are the differences between static and dynamic optimization problem? Explain with example, How non-traditional optimization method is better for searching the global optima? (OR) b. How adequate and optimum design differ? What are the objectives of optimum design? What is a multi-objective optimization problem?	10	BL 3	co 1	PO 2,3
15. 16.	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric In unconstrained optimization techni (A) Interior penalty function (C) Larange multiplier method The basic feature of genetic algorithm (A) Deterministic mutation (C) Hill climbing search selection Parameters space to be searched (A) Chromosomes (C) Generation Which chemical is released by ants to	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function (D) Sequential quadratic programming in is a (B) Fitness based selection (D) Random selection (B) Population (D) Colony to keep track of their path?	1 1	. 3	2,3	coil dia should be (A) Restrained (B) Neglected (C) Minimized PART - B (5 × 10 = 50 Marks) Answer ALL Questions 26. a. What are the differences between static and dynamic optimization problem? Explain with example, How non-traditional optimization method is better for searching the global optima? (OR) b. How adequate and optimum design differ? What are the objectives of optimum design? What is a multi-objective optimization problem?	10	BL 3	co 1 2 1 2 1 2 2	PO 2,3
15. 16.	simplified in 'n' iterations if it is robing (A) Diverges (C) Symmetric In unconstrained optimization technic (A) Interior penalty function (C) Larange multiplier method The basic feature of genetic algorithm (A) Deterministic mutation (C) Hill climbing search selection Parameters space to be searched (A) Chromosomes (C) Generation Which chemical is released by ants to (A) De oxyribonucleic acid (DNA)	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function (D) Sequential quadratic programming m is a (B) Fitness based selection (D) Random selection (B) Population (D) Colony o keep track of their path? (B) Pheromone	1 1	. 3	2,3	coil dia should be (A) Restrained (B) Neglected (C) Minimized (D) Maximized PART - B (5 × 10 = 50 Marks) Answer ALL Questions 26. a. What are the differences between static and dynamic optimization problem? Explain with example, How non-traditional optimization method is better for searching the global optima? (OR) b. How adequate and optimum design differ? What are the objectives of optimum design? What is a multi-objective optimization problem? 27. a. Minimize $f(x) = 0.65 - \frac{0.75}{1+x^2} - 0.65x \tan^{-1}(\frac{1}{x})$ in the interval (0,3) using	10	BL 3	co 1 2 1 2 1 2 2	PO 2,3
15. 16.	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric In unconstrained optimization techni (A) Interior penalty function (C) Larange multiplier method The basic feature of genetic algorithm (A) Deterministic mutation (C) Hill climbing search selection Parameters space to be searched (A) Chromosomes (C) Generation Which chemical is released by ants to	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function (D) Sequential quadratic programming in is a (B) Fitness based selection (D) Random selection (B) Population (D) Colony to keep track of their path?	1 1 1 1 1 1 1 1	. 3	2,3	coil dia should be (A) Restrained (B) Neglected (C) Minimized PART - B (5 × 10 = 50 Marks) Answer ALL Questions 26. a. What are the differences between static and dynamic optimization problem? Explain with example, How non-traditional optimization method is better for searching the global optima? (OR) b. How adequate and optimum design differ? What are the objectives of optimum design? What is a multi-objective optimization problem?	10	BL 3	co 1 2 1 2 1 2 2	PO 2,3
15. 16. 17.	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric In unconstrained optimization technic (A) Interior penalty function (C) Larange multiplier method The basic feature of genetic algorithm (A) Deterministic mutation (C) Hill climbing search selection Parameters space to be searched (A) Chromosomes (C) Generation Which chemical is released by ants to (A) De oxyribonucleic acid (DNA) (C) H ₂ O	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function (D) Sequential quadratic programming m is a (B) Fitness based selection (D) Random selection (B) Population (D) Colony o keep track of their path? (B) Pheromone (D) Citric acid	1 1 1 1 1 1 1 1 1 1	. 4	2,3	coil dia should be (A) Restrained (B) Neglected (C) Minimized (D) Maximized PART - B (5 × 10 = 50 Marks) Answer ALL Questions 26. a. What are the differences between static and dynamic optimization problem? Explain with example, How non-traditional optimization method is better for searching the global optima? (OR) b. How adequate and optimum design differ? What are the objectives of optimum design? What is a multi-objective optimization problem? 27. a. Minimize $f(x) = 0.65 - \frac{0.75}{1+x^2} - 0.65x \tan^{-1}(\frac{1}{x})$ in the interval (0,3) using Fibonacci method for n = 6.	10	BL 3	co 1 2 1 2 1 2 2	PO 2,3
15. 16. 17.	simplified in 'n' iterations if it is robing (A) Diverges (C) Symmetric In unconstrained optimization technic (A) Interior penalty function (C) Larange multiplier method The basic feature of genetic algorithm (A) Deterministic mutation (C) Hill climbing search selection Parameters space to be searched (A) Chromosomes (C) Generation Which chemical is released by ants to (A) De oxyribonucleic acid (DNA) (C) H ₂ O The cooling strategy in simulated and	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function (D) Sequential quadratic programming in is a (B) Fitness based selection (D) Random selection (B) Population (D) Colony o keep track of their path? (B) Pheromone (D) Citric acid mealing does not determine the	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 4	2,3	coil dia should be (A) Restrained (B) Neglected (C) Minimized (D) Maximized PART - B (5 × 10 = 50 Marks) Answer ALL Questions 26. a. What are the differences between static and dynamic optimization problem? Explain with example, How non-traditional optimization method is better for searching the global optima? (OR) b. How adequate and optimum design differ? What are the objectives of optimum design? What is a multi-objective optimization problem? 27. a. Minimize $f(x) = 0.65 - \frac{0.75}{1+x^2} - 0.65x \tan^{-1}(\frac{1}{x})$ in the interval (0,3) using Fibonacci method for n = 6.	10	BL 3	1 2 1 2 2 2 2	PO 2,3 2,3
15. 16. 17.	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric In unconstrained optimization techni (A) Interior penalty function (C) Larange multiplier method The basic feature of genetic algorithm (A) Deterministic mutation (C) Hill climbing search selection Parameters space to be searched (A) Chromosomes (C) Generation Which chemical is released by ants to (A) De oxyribonucleic acid (DNA) (C) H ₂ O The cooling strategy in simulated and (A) Selection of successor state	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function (D) Sequential quadratic programming m is a (B) Fitness based selection (D) Random selection (B) Population (D) Colony o keep track of their path? (B) Pheromone (D) Citric acid mealing does not determine the (B) Temperature-decrease steps	1 1 1 1 1 1 1 1 1 1 1	. 4	2,3	coil dia should be (A) Restrained (B) Neglected (C) Minimized PART - B (5 × 10 = 50 Marks)	10	BL 3	1 2 1 2 2 2 2	PO 2,3 2,3
15. 16. 17.	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric In unconstrained optimization techni (A) Interior penalty function (C) Larange multiplier method The basic feature of genetic algorithm (A) Deterministic mutation (C) Hill climbing search selection Parameters space to be searched (A) Chromosomes (C) Generation Which chemical is released by ants to (A) De oxyribonucleic acid (DNA) (C) H ₂ O The cooling strategy in simulated and (A) Selection of successor state (C) Number of iterations for each	ust and	1 1 1 1 1 1 1 1 1	. 4	2,3	coil dia should be (A) Restrained (B) Neglected (C) Minimized (D) Maximized PART - B (5 × 10 = 50 Marks) Answer ALL Questions 26. a. What are the differences between static and dynamic optimization problem? Explain with example, How non-traditional optimization method is better for searching the global optima? (OR) b. How adequate and optimum design differ? What are the objectives of optimum design? What is a multi-objective optimization problem? 27. a. Minimize $f(x) = 0.65 - \frac{0.75}{1+x^2} - 0.65x \tan^{-1}(\frac{1}{x})$ in the interval (0,3) using Fibonacci method for n = 6.	10	BL 3	1 2 1 2 2 2 2	PO 2,3 2,3
15. 16. 17.	simplified in 'n' iterations if it is rob (A) Diverges (C) Symmetric In unconstrained optimization techni (A) Interior penalty function (C) Larange multiplier method The basic feature of genetic algorithm (A) Deterministic mutation (C) Hill climbing search selection Parameters space to be searched (A) Chromosomes (C) Generation Which chemical is released by ants to (A) De oxyribonucleic acid (DNA) (C) H ₂ O The cooling strategy in simulated and (A) Selection of successor state	ust and (B) Converges (D) Non-symmetric ques, which is not a indirect method? (B) Exterior penalty function (D) Sequential quadratic programming m is a (B) Fitness based selection (D) Random selection (B) Population (D) Colony o keep track of their path? (B) Pheromone (D) Citric acid mealing does not determine the (B) Temperature-decrease steps	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 4	2,3	coil dia should be (A) Restrained (B) Neglected (C) Minimized PART - B (5 × 10 = 50 Marks)	10	BL 3	1 2 1 2 2 2 2	PO 2,3 2,3

Page 2 of 4