Če je linearni program Π : max c^Tx pri pogojih Ax < b, x > 0, je njegov dualni program Π : min b^Ty pri pogojih $A^Ty > c, c > 0$.

Šibki izrek o dualnosti: Naj bo $x \in D(\Pi)$ in $y \in D(\Pi')$. Potem je $c^T x \leq b^T y$.

Posledica ŠID: Naj bo $x^* \in D(\Pi)$ in $y^* \in D(\Pi')$. Če $c^Tx^* = b^Ty^*$, je $x^* \in Opt(\Pi)$ in $y^* \in Opt(\Pi')$

Krepki izrek dualnosti: Če ima Π optimalno rešitev, jo ima tudi Π ' in njuni vrednosti sta enaki.

Za par (Π,Π') velja natanko ena od treh možnosti:

- i oba sta nedopustna,
- ii eden od njiju je neomejen, drugi pa nedopusten,
- iii oba imata optimalno rešitev.

Izrek o dualnem dopolnjevanju: Naj bo Π LP $\max c^T x$ pri pogojih $Ax \leq b, x \geq 0$. Naj bo $x \in D(\Pi)$ in $y \in D(\Pi')$. Potem $x \in Opt(\Pi)$ in $y \in Opt(\Pi') \iff$

- (1) za i = 1, ..., m je $\sum_{j=1}^{n} a_{ij} x_j = b_i$ ali $y_i = 0$ in (2) za j = 1, ..., n je $\sum_{i=1}^{m} a_{ij} y_i = c_j$ ali $x_j = 0$.

Posledica IDD: Naj bo $x \in Opt(\Pi)$. Potem vsaka optimalna rešitev y programa Π' zadošča sistemu enačb:

- (1) $y_i = 0$, če $x_{n+1} \neq 0$, (i = 1, ..., m) (uvedemo dodatne spremenljivke x_{n+i} ,
- (2) $\sum_{i=1}^{m} a_{ij} y_i = c_j$, če $x_j \neq 0 (j = 1, ..., n)$,
- (3) y ni nujno optimalna rešitev Π' , preveriti je potrebno, da je $y \in D(\Pi')!$

PAZI: Če pri pogojih LP nastopa enačba, lahko iz nje izraziš eno od spremenljivk, vendar mora še vedno veljati, da je ta spremenljivka ≥ 0 , torej pridobiš nov pogoj.

2. Matrične igre

Definicija 2.1. *Matrična igra* je igra za dva igralca, pri kateri ima prvi igralec n izbir (1, 2, ..., n), drugi igralec m izbir (1, 2, ..., m). Izid igre določa $plačilna\ matrika\ A \in \mathbb{R}^{n \times m}$, kjer je a_{ij} plačilo drugega igralca prvemu, če je prvi izbral izbiro i, drugi pa izbiro j.

Načelo najmanjšega tveganja:

1. igralec: če izbere i, dobi vsaj min a_{ij} . Torej lahko vselej dobi vsaj

$$M_1 = \max_i \min_j a_{ij}$$
 (največji vrstični minimum).

2. igralec: če izbere j, ne izgubi več kot $\max a_{ij}$. Torej mu ni treba izgubiti več kot

$$M_2 = \min_{i} \max_{i} a_{ij}$$
 (najmanjši stolpčni maksimum).

Trditev:Pri vsaki matrični igri je $M_1 \leq M_2$.

Definicija: Element matrike A na mestu (i_0, j_0) je \underline{sedlo} matrike, če je najmanjši svoji vrstici in največji v svojem stolpcu, torej:

$$\min_{i} a_{i_0 j} = a_{i_0 j_0} = \max_{i} a_{i j_o}.$$

Izrek: A ima sedlo $\iff M_1 = M_2$.

Definicija: Strategija 1. igralca je verjetnostna porazdelitev (x_1, \ldots, x_n) , kjer je x_i verjetnost, da 1. igralec izbere i. Velja:

$$x \ge 0, \quad \sum_{i=1}^{n} x_i = 1.$$

Strategija 2. igralca je verjetnostna porazdelitev (y_1,\ldots,y_m) , kjer je y_i verjetnost, da 2. igralec izbere j. Velja:

$$y \ge 0, \quad \sum_{i=1}^{m} y_j = 1.$$

i-tačista strategija prvega igralca je $c^{(i)}=(0,\dots,0,1,0,\dots,0),$ kjer je 1 na $i\text{-}\mathrm{tem}$ mestu.

E(x,y) označuje povprečni dobitek 1. igralca, če 1. igralc
c uporablja strategijo x, 2. igralcc pa strategijo y.

$$E(x,y) = \sum_{i=1}^{n} \sum_{i=1}^{m} a_{ij} x_i y_j = \sum_{i=1}^{n} x_i \sum_{i=1}^{m} a_{ij} y_j = \langle x, Ay \rangle = \langle A^T x, y \rangle.$$

Če prvi igralec uporablja strategijo x, bo dobil v povprečju vsaj $\min_y E(x,y)$, torej lahko dobi v povprečju vsaj $\max_x \min_y E(x,y)$.

Če drugi igralec uporablja strategijo y, izgubi v povprečju kvečjemu $\max_x E(x,y)$, torej mu ni treba izgubiti več kot $\min_y \max_x E(x,y)$.

Trditev: $\max_x \min_y E(x,y) \leq \min_y \max_x E(x,y)$. Obe vrednosti vedno obstajata.

Lema: Za vsako strategijo x obstaja $\min_y < x, Ay >$ in velja $\min_y < x, Ay >$ = $\min_{1 \le j \le m} \sum_{i=1}^n a_{ij}x_i$. Lema: Za vsako strategijo y obstaja $\max_x < x, Ay >$ in velja $\max_x < x, Ay >$ = $\max_{1 \le i \le n} \sum_{j=1}^m a_{ij}y_j$.

Definicija: Število $v(A) = \max_x \min_y E(x, y) = \max_x \min_y < x, Ay >$ imenujemo vrednost igre z matriko A. Igra je poštena, če v(A) = 0. **Preverjanje** optimalnosti strategij:

Trditev: Naj bo x strategija 1. igralca, y strategija 2. igralca, $s = \min_j \sum_{i=1}^n a_{ij} x_i$, $\max_i \sum_{j=1}^m a_{ij} y_j$. Potem: x, y optimalni $\iff s = t$. V tem primeru je v(A) = s = t.

Posebni primeri matričnih iger:

(1) Igre s sedlom

Trditev Naj bo (i_0, j_0) sedlo matrike A. Potem je $v(A) = a_{i_0, j_0}$ in čisti strategiji x^{i_0}, y^{j_0} sta optimalni.

Definicija: Igra z matriko A je <u>simetrične</u>, če je $A^T = -A$.

Trditev: Simetrična igra je poštena, množici optimalnih strategij prvega in drugega igralca sta enaki.

(3) Igre z dominacijo

Definicija: $a, b \in \mathbb{R}^k$. $a \underline{dominira}$ nad b, če $a \geq b$.

Trditev: Naj bo A plačilna matrika igre.

- (a) Če v A vrstica i dominira nad vrstico $i_0 \neq i$, se vrednost igre ne spremeni, če vrstico i_0 izpustimo.
- (b) Če v A stolpec j_0 dominira nad stolpecm $j \neq j_0$, se vrednost igre ne spremeni, če stolpec j_0 izpustimo.

2

3. Problem razvoza

 $G=(V,E), V=\{v_1,v_2,\ldots,v_m\}, E=\{e_1,e_2,\ldots,e_n\}$. Uvedemo vektorje b,c,x: (pišemo $b_{v_i}=b_i$ povpraševanje/ponudba v vozlišču $v_i,\,c_{e_j}=c_j$ stroški prevoza vzdolž $e_j,\,x_{e_j}=x_j$ količina dobrine, prepeljane po e_j). Iščemo min c^Tx p.p. $Ax=b,x\geq 0$, kjer A incidenčna matrika usmerjenega grafa.

Definicija: $\underline{\mathit{Drevo}}$ je povezan graf brez ciklov.

 $\mathit{Vpet\ podgraf}$ grafaGje podgraf, ki vsebuje vsa vozliščaG.

 $\overline{Vpeto\ drevo}$ je vpet podgraf, ki je drevo (m vozlišč, m-1 povezav).

Dopustna rešitev $x \in \mathbb{R}^n$ za PR je drevesna (ddr), če v G obstaja vpeto drevo T, da velja $e \notin E(T) \Longrightarrow x_e = 0$.

IZBOLJŠAVA DDR:

Najprej preveri, če se skupna ponudba in povpraševanje seštejeta v 0. Če se, nadaljuj takole:

- 1. Naj bo T vpeto drevo. Razvozi dobrine tako, da zadostiš povpraševanju in Kirchhoffovim zakonom.
- 2. Izberemo vstopajočo povezavo $e = ij \notin E(T)$ med povezavami, za katere je $y_i + c_{ij} < y_j$. Vstopajočo povezavo e dodamo drevesu T. V grafu T + e nastane natanko en cikel C.
- 3. Povezave na ciklu C so preme (določajo isto orientacijo C kot e) in obratne (sicer). Na vsaki premi povezavi razvoz povečamo za t, na vsaki obratni pa zmanjšamo za t, kjer je $t = \min\{x_{uv}|uv$ obratna povezava na C.

Za izstopajočo povezavo f izberemo obratno povezavo, na kateri je x = t. Odstranimo jo iz grafa t + e in dobimo novo vpeto drevo T + e - f.

4. postopek ponavljamo, dokler ne moremo dodati nobene povezave več.

Dvofazna sx metoda: Če se ponudba in povpraševanje ne seštejeta v 0, dodaš novo vozlišče (skladišče), v katerega iz vozlišč s ponudbo napelješ povezave s ceno 0 in rešuješ ta PR. Stroške razvoza dobiš tako, da množiš ceno povezave na vpetem grafu T z istoležno ceno povezave v G in produkte sešteješ.

Izrek Če za vse povezave $ij \in E(g)$ velja: $y_i + c_{ij} \ge y_j$, je trenutna ddr optimalna. Če pri reševanju PR z sx metodo ne moremo izbrati vstopajoče povezave, je trenutna ddr optimalna.

 $\mathbf{Trditev}$: Če na ciklu C v grafu T+e ni obratnih povezav, je PR neomejen in je C usmerjeni cikel z negativno vsoto prevoznih stroškov.

4. Prirejanja in pokritja

Definicija: G = (V, E) neusmerjen graf.

- 1. $M \subseteq E$ je prirejanje v G, če povezave iz M nimajo skupnih krajišč.
- 2. $P \subseteq V$ je $\overline{pokritje}$ v G, če ima vsaka povezava G vsaj eno krajišče v P.
- 3. Oznake: $\mu(G)$ je moč največjega prirejanja v G, $\tau(G)$ pa moč najmanjšega pokritja v G.

Trditev: G graf.

- (1) Za vsako prirejanje M v G in vsako pokritje P v G je $|M| \leq |P|$.
- (2) $|M| = |P| \Longrightarrow M$ največje prirejanje in P najmanjše pokritje v G.
- (3) $\mu(G) \le \tau(G)$.

Definicija: G graf, M prirejanje vG.

- (1) Povezave iz M so <u>vezane</u>, ostale so proste.
- (2) Vozlišče v je \underline{vezano} , če je krajišče $\overline{\text{kakšne}}$ povezave iz M, sicer je \underline{prosto} .
- (3) $\operatorname{prosta}(M) = \{v \in V(G) | v \operatorname{prosto} \operatorname{za} M \}.$
- (4) Če $uv \in M$, je u = par(v), v = par(u).

Definicija: G graf, M prirejanje v G. Pot P v G je <u>izmenična</u> za M, če se na P izmenjujejo proste in vezane povezave. Izmenična pot za M je <u>povečujoča</u> za M, če ima prosti krajišči. Prirejanje M je <u>popolno</u>, če so vsa vozlišča G vezana glede na M

Lastnosti popolnih prirejanj:

- $K_{n,n}$ ima n! popolnih prirejanj.
- G ima popolno prirejanje $\Longleftrightarrow \mu(G) = |V(G)|/2.$
- K_n : $\mu(K_n) = \lfloor \frac{n}{2} \rfloor$, (če n sod, je to popolno prirejanje), $\tau(K_n) = n 1$.
- $K_{m,n}$: $\mu(K_{m,n}) = \min\{m,n\} = \tau(K_{m,n})$
- Pot P_n : $\mu(P_n) = \lfloor \frac{n}{2} \rfloor = \tau(P_n)$
- Cikel C_n : $\mu(C_n) = \lfloor \frac{n}{2} \rfloor$, (če n sod je to popolno prirejanje), $\tau(C_n) = \lfloor \frac{n+1}{2} \rfloor$

Trditev: G graf, M prirejanje v G, P povečujoča pot za M v G. Potem je $M \oplus E(P)$ prirejanje v G in $|M \oplus E(P)| = |M| + 1$. $(A \oplus B = (A \setminus B) \cup (B \setminus A))$ **Bergev izrek:** Naj bo M prirejanje v G. M največje prirejanje v $G \iff$ v G ni povečujočih poti za M.

Konstrukcija največjega prirejanja v G:

- 1. M = poljubno prirejanje v G (čim večje)
- 2. dokler obstaja povečujoča pot PvG za M, ponavljaj: $M=M\oplus E(P)$
- 3. vrni M

Madžarska metoda (MM) za dvodelne grafe brez uteži poišče največje prirejanje in najmanjše pokritje v dvodelnem grafu $G = (X \cup Y, E)$. Postopek: König-Egerváryjev izrek: V dvodelnem grafu F je $\mu(G) = \tau(G)$.

Madžarska metoda z utežmi (MMU): za iskanje najcenejšega popolnega prirejanja v $G = K_{n,n}$ (Najcenejše popolno prirejanje opravil). $C \in \mathbb{R}^{n \times n}$, $c_{ij} = \text{cena povezave } x_i y_j$

- 1. korak
 - a Od elementov vsake vrstice odštejemo njen najmanjši element.
 - b Od elementov vsakega stolpca odštejemo njegov najmanjši element.
- 2. korak:
 - a Če lahko vC izberemo n ničel, v vsaki vrstici in vsakem stolpcu natanko eno, potem indeksi izbranih elementov določajo najcenejše popolno prirejanje vG.
 - b Sicer izberemo množico < n vrstic in/ali stolpcev C. ki skupaj vsebujejo vse ničle v C. Naj bo to množica P.
- 3. Naj bo ϵ najmanjši nepokriti element v C. Vsem nepokritim elementom v C ϵ odštejemo, dvakrat pokritim pa prištejemo. Nazaj na korak 2.

5. Pretoki in prerezi

Iščemo največji pretok f iz s – izvor v t – ponor v grafu G s prepustnostmi povezav c_{ij} .

Definicija: Naj bo F pretok v(G, s, t, c). Oprežje (G_f, s, t, r) , kjer je $V(G_f) = V(G)$, $E(G_f) = ij \in E(G) | r_{ij} > 0$, $r: V \times V \longrightarrow \mathbb{R}_+$, $r_{ij} = c_{ij} - f(i, j)$ za vse $i, j \in V$, je <u>residualno omrežje</u> G glede na f. <u>Povečujoča pot</u> za f v(G, s, t, c) je vsaka usmerjene pot $s \longrightarrow t$ v (G_f, s, t, r) .

Trditev: Naj bo \overline{f} pretok v G, $\overline{f'}$ pretok v G_f . Potem: $\overline{f+f'}$ pretok v G in |f+f'|=|f|+|f'|. **Posledica:** Usmerjena pot $s\longrightarrow t$ v (G,s,t,c) je povečujoča, če ne vsebuje zasičenih povezav.

Avtor: Klemen Sajovec