$Exercices\ MP/MP^*$

Table des matières

1 Intégration 2

1 Intégration

Exercice 1.1. Soit f continue strictement positive de $[a,b] \subset \mathbb{R}$ dans \mathbb{R}_+^* et

$$S: [a,b] \to \mathbb{R}$$

$$x \mapsto \int_a^x f$$
(1)

Montrer que pour tout $n \ge 1$, pour tout $k \in [1, n]$, il existe un unique $x_k \in [a, b]$ tel que $S(x_k) = k \frac{S(b)}{n}$. Évaluer ensuite $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(x_k)$.

Exercice 1.2. Soit f continue non identiquement nulle et $g(x) = \left(\int_0^1 |f(t)|^x dt\right)^{\frac{1}{x}}$.

- 1. Montrer que $\lim_{x \to +\infty} g(x) = ||f||_{\infty}$.
- 2. On suppose |f| > 0, calculer $\lim_{x \to 0} g(x)$.

Exercice 1.3. Soit $f: [0, a] \to \mathbb{R}$ strictement croissante continue avec f(0) = 0. Soit $g: [0, f(a)] \to [0, a] = f^{-1}$ (continue strictement croissante). Soit $(x, y) \in [0, a] \times [0, f(a)]$. Montrer que

$$xy \leqslant \int_0^x f + \int_0^y g. \tag{2}$$

Expliciter le cas d'égalité.

Exercice 1.4. Existence et calcul de

$$I = \int_{\frac{1}{\pi}}^{1} \frac{\ln(x)}{(1+x)\sqrt{1-x^2}} dx.$$
 (3)

Exercice 1.5. Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{\pi}{4}} \tan^n(x) dx$.

- 1. Exprimer I_n en fonction de n.
- 2. Que vaut $\lim_{n\to+\infty} I_n$ (sous réserve d'existence)?
- 3. En déduire $\frac{\pi}{4}$ et $\ln(2)$ comme somme de séries.

Exercice 1.6. Soit $E = \{ f \in \mathcal{C}^0 ([a, b], \mathbb{R}_+^*) \}$. On définit

$$\phi: E \to \mathbb{R}
f \mapsto \int_a^b f \times \int_a^b \frac{1}{f} \tag{4}$$

- 1. Montrer que l'on peut définir $m = \min_{f \in E} \phi(f)$ et évaluer m. Déterminer les $f \in E$ tels que $\phi(f) = m$.
- 2. Montrer que f n'est pas majorée sur E.
- 3. Déterminer $\phi(E)$.

Exercice 1.7. Existence et calcul de $I = \int_0^{+\infty} \frac{\sqrt{x} \ln(x)}{(1+x)^2} dx$.

Exercice 1.8. Existence et calcul de $I = \int_0^1 \frac{\ln(t)}{\sqrt{t(1-t)^3}} dt$.

Exercice 1.9. Existence et calcul de $I = \int_0^{\frac{\pi}{4}} \frac{\cos^3(t)}{\sqrt{\cos(2t)}} dt$.

Exercice 1.10. Soit $f: [a,b] \to \mathbb{R}$ ou \mathbb{C} continue par morceaux et $g: \mathbb{R} \to \mathbb{R}$ ou \mathbb{C} continue par morceaux T-périodique (T>0). Évaluer $\lim_{\lambda \to +\infty} \int_a^b f(t)g(\lambda t) dt$. Cas particulier : pour $f: [0,2\pi] \to \mathbb{R}$ continue, évaluer $\lim_{n \to +\infty} \int_0^{2\pi} \frac{f(t)}{3+2\cos(nt)} dt$.

Exercice 1.11. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ uniformément continue et intégrable.

- 1. Montrer que $\lim_{x \to +\infty} f(x) = 0$.
- 2. Montrer que $f^2 \in \mathcal{L}^1(\mathbb{R}_+)$.

Exercice 1.12. Soit

$$f_n: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{n}{\sqrt{\pi}} e^{-n^2 x^2}$$
(5)

- 1. Étudier la convergence simple, la convergence uniforme et en moyenne.
- 2. Soit g continue et bornée sur \mathbb{R} , évaluer $\lim_{x\to +\infty} \int_{-\infty}^{+\infty} g(t) f_n(t) dt$.

Exercice 1.13. Existence et calcul de $I = \int_1^{+\infty} \frac{1}{x} - \arcsin\left(\frac{1}{x}\right) dx$.

Exercice 1.14. Existence et calcul de $I = \int_0^{\frac{\pi}{2}} \ln(\sin(t)) dt$. On pourra poser $J = \int_0^{\frac{\pi}{2}} \ln(\cos(t)) dt$.

Exercice 1.15. Pour $\alpha > 1$, on note

$$f_{\alpha}: \mathbb{R}_{+} \to \mathbb{R}$$

$$x \mapsto \frac{1}{1+x^{\alpha}|\sin(x)|}$$
(6)

Montrer que f_{α} est intégrable sur \mathbb{R}_{+} .

Exercice 1.16.

- 1. Soit $f: [a,b] \to \mathbb{R}$ continue telle que pour tout $n \in \mathbb{N}$, $\int_a^b f(t) dt = 0$. Montrer que f = 0.
- 2. Calculer, pour $n \in \mathbb{N}$, $I_n = \int_0^{+\infty} t^n e^{(i-1)t} dt$.
- 3. En déduire $f: \mathbb{R}_+ \to \mathbb{R}$ non nulle telle que pour tout $n \in \mathbb{N}$, $\int_0^{+\infty} t^n f(t) dt = 0$ (avec pour tout $n \in \mathbb{N}$, $t \to t^n f(t)$ intégrables sur \mathbb{R}_+).

Exercice 1.17 (Transformée de Laplace). Soit $f: \mathbb{R}_+ \to \mathbb{R}$ ou \mathbb{C} continue par morceaux. On suppose qu'il existe $a \in \mathbb{R}$ telle que $\int_0^{+\infty} e^{-at} f(t) dt = \mathcal{L}f(a)$ converge. On définit $g(t) = \int_0^t e^{-au} f(u) du$.

1. Montrer que pour tout b > a, $\mathcal{L}f(b)$ converge et que

$$\mathcal{L}f(b) = (b-a) \int_0^{+\infty} e^{-(b-a)t} g(t) dt.$$
 (7)

2. Soit h vérifiant les mêmes conditions que f, montrer que si pour tout $b \ge a$, $\mathcal{L}f(b) = \mathcal{L}h(b)$, alors f = h (injectivité de la transformée de Laplace).

Exercice 1.18. On dit que f est continue à support compact si $f: \mathbb{R} \to \mathbb{R}$ ou \mathbb{C} est continue et il existe $A \geqslant 0$ tel que pour tout $x \in \mathbb{R}$, si $|x| \geqslant A$, f(x) = 0.

- 1. Montrer que l'on peut définir, pour tout $x \in \mathbb{R}$, $\widehat{f}(x) = \int_{-\infty}^{+\infty} e^{itx} f(t) dt$, et que \widehat{f} est C^{∞} est C^{∞} sur \mathbb{R} .
- 2. On suppose que \hat{f} est continue à support compact, montrer que f=0.

Exercice 1.19. Soit $f: I \to \mathbb{R}$ continue, montrer que f est convexe si et seulement si pour tout $(a,b) \in I^2$ avec a < b, $(b-a)f\left(\frac{a+b}{2}\right) \leqslant \int_a^b f(t) dt$.

Exercice 1.20. Soit x > 0.

1. Montrer que

$$\lim_{n \to +\infty} \underbrace{\int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} t^{x-1} dt}_{I_{n}(x)} = \Gamma(x) = \int_{0}^{+\infty} t^{x-1} e^{-t} dt.$$
 (8)

2. En déduire que

$$\Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{x(x+1)\dots(x+n)}.$$
 (9)

3. Montrer que

$$\frac{1}{\Gamma(x)} = x e^{\gamma x} \prod_{k=1}^{+\infty} \left(1 + \frac{x}{k} \right) e^{-\frac{x}{k}},\tag{10}$$

 $où \gamma$ est la constante d'Euler.

4. Donner un développement en série de $\frac{\Gamma'}{\Gamma}$.

Exercice 1.21 (Théorème de D'Alembert-Gauss par l'indice).

1. Soit $f: \mathbb{R} \to \mathbb{C}^*$ 2π -périodique et \mathcal{C}^1 . On définit l'indice de f par

$$d(f) = \frac{1}{2i\pi} \int_0^{2\pi} \frac{f'}{f}.$$
 (11)

Montrer que $e^{2i\pi d(f)} = 1$ si et seulement si $d(f) \in \mathbb{Z}$.

2. Soit $P \in \mathbb{C}[X]$ de degré $n \ge 1$, de coefficient $a_n \ne 0$, on suppose que P ne s'annule pas $sur \mathbb{C}$. Soit $t \ge 0$, on pose

$$f_r: \mathbb{R} \to \mathbb{C}^*$$

$$t \mapsto P(re^{it}) \tag{12}$$

3. Évaluer $d(f_0)$ et $\lim_{r\to+\infty} d(f_r)$, montrer que $r\mapsto d(f_r)$ est continue. Conclure.

Exercice 1.22. Soit $f: [0,1] \to \mathbb{R}$ de classe C^2 . On pose, pour tout $n \in \mathbb{N}^*$,

$$v_n = \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right) + \frac{1}{2n} \left(f(0) + f(1)\right). \tag{13}$$

Donner un développement à l'ordre 2 de v_n quand $n \to +\infty$. On pourra montrer l'égalité de Taylor-Lagrange : si f est de classe C^n sur [a,b], a < b, alors il existe $\xi \in]a,b[$ tel que

$$f(b) - f(a) - \sum_{k=1}^{n-1} \frac{f^{(k)}(a)}{k!} = \frac{(b-a)^n}{n!} f^{(n)}(\xi), \tag{14}$$

et et l'appliquer à $F(x) = \int_0^x f$.

Exercice 1.23. Pour $n \in \mathbb{N}$, on pose

$$I_n = \int_0^{\frac{\pi}{4}} \tan^n(t) dt. \tag{15}$$

Exprimer I_n sous forme d'une somme, puis donner un équivalent de I_n quand $n \to +\infty$. Qu'en déduit-on sur $\frac{\pi}{4}$?

Exercice 1.24. Soit

$$f: \]0,1] \rightarrow \mathbb{R}$$

$$x \mapsto \int_{x^2}^x \frac{e^t}{\operatorname{arcsin}(t)} dt$$

$$(16)$$

Analyser la continuité, la dérivabilité et le comportement au voisinage de 0.

Exercice 1.25. Existence et calcul de

$$I_n = \int_{-\frac{1}{2}}^{+\infty} \frac{\mathrm{d}x}{(x^2 + x + 1)^n},\tag{17}$$

pour $n \geqslant 1$.

Exercice 1.26. Soit $f: [0,1] \to \mathbb{R}$ de classe C^1 . On pose, pour $n \in \mathbb{N}^*$,

$$u_n = \frac{1}{n} \sum_{i=0}^{n-1} f\left(\frac{i}{n}\right) f'\left(\frac{i}{n}\right). \tag{18}$$

Déterminer $\lim_{n\to+\infty} u_n$.

Exercice 1.27. Soit a, b > 0. Montrer que

$$\lim_{x \to 1} \int_{x^a}^{x^b} \frac{\mathrm{d}t}{\ln(t)} = \ln\left(\frac{b}{a}\right). \tag{19}$$

Exercice 1.28. Soit φ convexe de $\mathbb{R} \to \mathbb{R}$ (donc continue). Soit $f: [a, b] \to \mathbb{R}$ continue avec a < b.

1. Montrer que

$$\varphi\left(\frac{1}{b-a}\int_{a}^{b}f(t)\mathrm{d}t\right) \leqslant \frac{1}{b-a}\int_{a}^{b}\varphi(f(t))\mathrm{d}t.$$
 (20)

2. On suppose de plus φ strictement convexe, montrer que l'on a égalité dans ce qui précède si et seulement si f est constante.

Exercice 1.29. Trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues telles que pour tout $(x, y) \in \mathbb{R}^2$, on a

$$\int_{x-y}^{x+y} f(t)dt = f(x)f(y). \tag{21}$$

Exercice 1.30. Soit f continue de [a,b] dans \mathbb{R} avec a < b. On pose

$$I_n = \left(\int_a^b |f(t)|^n\right)^{\frac{1}{n}} = \|f\|_n.$$
 (22)

Déterminer $\lim_{n\to+\infty} I_n$.

Exercice 1.31. Soit $\theta \in \mathbb{R}$ et $\rho \in \mathbb{R}^*_+ \setminus \{1\}$.

- 1. Montrer que $F(\rho, \theta) = \int_{-\pi}^{\pi} \ln \left| e^{it} \rho e^{i\theta} \right| dt$ existe.
- 2. Montrer que $F(\rho, \theta)$ ne dépend pas de θ .

3. Calculer $F(\rho, \theta)$ en utilisant une somme de Riemann sur $[0, 2\pi]$.

Exercice 1.32. On définit C_0 l'ensemble des fonctions continues à support compact de \mathbb{R} dans \mathbb{R} , i.e. si $f \in C_0$, alors il existe $A \geqslant 0$ tel que pour tout $|t| \geqslant A$, alors f(t) = 0. On note C_1 l'ensemble des fonctions de C_0 de classe C^1 .

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que pour tout $\varphi \in C_0$, $\int_{\mathbb{R}} f\varphi = 0$. Montrer que f = 0.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que pour tout $\varphi \in C_1$, $\int_{\mathbb{R}} f\varphi' = 0$. Montrer que f est constante.
- 3. Soit $f \in C_0$ telle qu'il existe $g: \mathbb{R} \to \mathbb{R}$ de classe C^1 telle que pour tout $\varphi \in C_1$, $\int_{\mathbb{R}} f\varphi' = \int_{\mathbb{R}} g\varphi$. Montrer que f est de classe C^1 et f' = -g.

Exercice 1.33. Existence et calcul de

$$I = \int_0^{+\infty} \frac{e^{-t} - e^{-2t}}{t} dt,$$
 (23)

et de

$$J = \int_0^{+\infty} \frac{\cos(t) - \cos(2t)}{t} dt. \tag{24}$$

Exercice 1.34. On note

$$f: \]0,1] \rightarrow \mathbb{R}$$

$$t \mapsto \frac{1}{t} - \left\lfloor \frac{1}{t} \right\rfloor$$

$$(25)$$

Calculer

$$I = \int_0^1 f(t) dt. \tag{26}$$

Exercice 1.35. Existence de

$$f: \mathbb{R}_{+}^{*} \to \mathbb{R}$$

$$x \mapsto \int_{x}^{+\infty} \frac{\mathrm{d}t}{\mathrm{e}^{t} - 1}$$

$$(27)$$

Montrer que

$$I = \int_0^{+\infty} f(x) dx,$$
 (28)

est définie et donner sa valeur.

Exercice 1.36.

1. Soit $n \ge 1$, calculer

$$I_n = \int_n^{+\infty} \left(1 + \frac{t}{n}\right)^n e^{-t} dt.$$
 (29)

2. DOnner un équivalent en $+\infty$ de

$$J_n = \int_{-n}^{n} \left(1 + \frac{t}{n}\right)^n e^{-t} dt.$$
 (30)

On rappelle que $\int_{\mathbb{R}} e^{-u^2} du = \sqrt{\pi}$.

3. En déduire la formule de Stirling.

Exercice 1.37.

1. Montrer que pour tout $x \in \mathbb{R}$,

$$I(x) = \int_0^{+\infty} \frac{1 - \cos(tx)}{t^2} e^{-t} dt = \int_0^{+\infty} f_x(t) dt,$$
 (31)

est définie.

- 2. Montrer que I est de classe C^2 sur \mathbb{R} .
- 3. Calculer I(x).

Exercice 1.38. Montrer que pour tout $x \ge 0$, on peut définir $f(x) = \int_x^{+\infty} \frac{\sin(t)}{t} dt$. Prouver l'existence et calculer $I = \int_0^{+\infty} f(x) dx$.

Exercice 1.39. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue telle que $f(x) = \bigcup_{x \to +\infty} \left(\frac{1}{x^2}\right)$. On pose, pour h > 0,

$$\phi(h) = \sum_{n=0}^{+\infty} h f(nh). \tag{32}$$

Calculer $\lim_{h\to 0^+} \phi(h)$.

Exercice 1.40. Déterminer le domaine de définition et calculer

$$f(x) = \int_0^{+\infty} \frac{\sinh(xt)}{t} e^{-t} dt.$$
 (33)

Exercice 1.41. Déterminer le domaine de définition et calculer

$$F(x) = \int_0^{+\infty} f(x, t) dt = \int_0^{+\infty} \frac{e^{t(ix-1)}}{\sqrt{t}} dt.$$
 (34)

Exercice 1.42 (Transformée de Fourier). Soit f continue, bornée de \mathbb{R} dans \mathbb{C} intégrable sur \mathbb{R} . On peut définir

$$\widehat{f}: \mathbb{R} \to \mathbb{C}$$

$$\nu \mapsto \int_{-\infty}^{+\infty} f(t) e^{-i\nu t} dt$$
(35)

On suppose que \hat{f} est intégrable sur \mathbb{R} et on veut montrer que pour tout $x \in \mathbb{R}$,

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widehat{f}(\nu) e^{i\nu x} d\nu.$$
 (36)

1. On définit, pour tout $\lambda \geqslant 0$ et $x \in \mathbb{R}$,

$$g_x(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widehat{f}(\nu) e^{i\nu x} e^{-\lambda|\nu|} d\nu.$$
 (37)

Montrer que pour $\lambda > 0$, on a

$$g_x(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{2\lambda}{\lambda^2 + t^2} f(x+t) dt.$$
 (38)

- 2. Montrer que $\lim_{\lambda \to 0} g_x(\lambda) = f(x)$.
- 3. Conclure.

Exercice 1.43 (Intégrale de Dirichlet).

1. On forme, pour $n \in \mathbb{N}$,

$$D_n: \mathbb{R} \to \mathbb{C}$$

$$t \mapsto \sum_{k=-n}^n e^{ikt}$$
(39)

Montrer que D_n est paire, C^{∞} , 2π -périodique, et calcule $\frac{1}{2\pi} \int_0^{2\pi} D_n(t) dt$. Montrer que pour tout $t \in \mathbb{R} \setminus 2\pi\mathbb{Z}$, on a

$$D_n(t) = \frac{\sin\left((2n+1)\frac{t}{2}\right)}{\sin\left(\frac{t}{2}\right)}. (40)$$

2. On pose $u_n = \int_0^{(2n+1)\frac{\pi}{2}} \frac{\sin(t)}{t} dt$. Montrer que

$$u_n = \int_0^\pi \frac{\sin\left((2n+1)\frac{u}{2}\right)}{u} du. \tag{41}$$

- 3. Montrer que l'on peut prolonger $u \mapsto \frac{1}{\sin(\frac{u}{2})} \frac{1}{(\frac{u}{2})}$ en une fonction C^1 , notée φ , sur [0,1].
- 4. Calcular $\lim_{n\to+\infty} \int_0^{\pi} \varphi(u) \sin\left((2n+1)\frac{u}{2}\right) du$. Conclure.

Exercice 1.44 (Transformée de Laplace). Soit f continue de $\mathbb{R}_+ \to \mathbb{R}$ ou \mathbb{C} . On suppose qu'il existe $a \in \mathbb{R}$ tel que $\int_0^t f(t) e^{-at} dt$ converge.

- 1. Montrer que pour tout x > 0, on peut définir $Lf(a+x) = \int_0^{+\infty} f(t)e^{-(a+x)t}dt$ et que $Lf(a+x) = x \int_0^{+\infty} g(t)e^{-xt}dt$, où $g(t) = \int_0^t f(v)e^{-av}dv$.
- 2. On suppose que pour tout $x \ge 0$, Lf(a+x) = 0, montrer que f = 0. On pourra montrer que $Lf(a+x) = x \int_0^1 h(u)u^{x-1} du$, où $h: [0,1] \to \mathbb{R}$ ou \mathbb{C} est continue.

Exercice 1.45. Soit $(a_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}$ croissante telle que $\lim_{n\to+\infty}a_n=+\infty$. Montrer que

$$\int_0^{+\infty} \sum_{n=0}^{+\infty} (-1)^n e^{-a_n x} dx = \int_0^{+\infty} \sum_{n=0}^{+\infty} g_n(x) dx = \int_0^{+\infty} g(x) dx = \sum_{n=0}^{+\infty} \frac{(-1)^n}{a_n}.$$
 (42)