- 1. Use three point Gauss formula to evaluate $\int_{1}^{2} \frac{dx}{x}$.
- **2.** Apply Gauss two point formula to evaluate $\int_{-1}^{1} \frac{dx}{1+x^2}$.
- 3. Using three point Gauss formula, evaluate $\int_0^1 \frac{dx}{1+x^2}$.
- **4.** Evaluate $\int_0^2 \frac{(x^2 + 2x + 1)}{1 + (x + 1)^4} dx$ by Gauss three point formula.
- **5.** Using the three point Gauss quadrature, evaluate $\int_0^1 \frac{dx}{\sqrt{1+x^4}}$.
- **6.** Evaluate $\int_{0.2}^{1.5} e^{-x^2} dx$ using the three point Gauss quadrature.
- 7. Use two point and three point Gauss formula to evaluate $I = \int_0^2 \frac{dx}{3+4x}$. Compare with the exact solution.
- **8.** Use two point and three point Gauss formula to evaluate $\int_0^2 \frac{dx}{x^2 + 2x + 10}$.
- **9.** Find the value of the integral $I = \int_2^3 \frac{\cos 2x}{1 + \sin x} dx$, using two point and three point Gauss formulas.
- **10.** In problem 7, write $I = I_1 + I_2 = \int_0^1 f(x) dx + \int_1^2 f(x) dx$. Then, evaluate each of the integrals by two point and three point Gauss formulas. Compare with the exact solution.