

Desarrollo de sistemas domóticos basados en la red MySensor

Alumno: Francisco Moreno Tejeda

Tutor: Manuel Jesús Bellido Díaz

Índice

- → Introducción
- → Planificación
- → Recursos
- → P0 Shield para Raspberry Pi
- → P1 P2 Gestión eléctrica
- → P3 Control lumínico de tiras LEDs
- → P4 Estación Meteorológica
- → Conclusión y futuro del proyecto
- → Preguntas

Introducción

- ¿Qué es la domótica?
 - Automatización del hogar
 - o Llevar el control al mundo digital
 - Gestión desde un mismo dispositivo
 - Aumentar la seguridad
 - Ahorro energético

Introducción

Motivación del TFG

- Ahorro de costes
- Gestión autónoma
- Personalización a medida
- Posibilidades educativas
- Gusto por el tema

Planificación

Objetivos

- Gestionar la energía del hogar
- Gestionar el brillo de una tira led
- Adquisición de datos ambientales

Requisitos

- Se debe controlar un enchufe
- Se debe controlar un lámpara
- Se debe gestionar una tira led
- Se debe adquirir datos medioambientales, para, si procede, gestionar los requisitos anteriores.

Planificación

Distribución de tareas

Planificación

Costes

Recursos

MySensors

- Código abierto
- Simplicidad de programación
- Comunidad muy extensa
- Compatibilidad con bastantes controladores

Domoticz

- Código abierto
- Multiplataforma
- Gestión de usuarios
- Posibilidad de programación
- Altamente Personalizable
- Aplicación en Android

Recursos

EasyEDA

- Editor gratuito
- Gran comunidad
- Miles de librerías
- Proyectos públicos
- Multiplataforma

Arduino IDE

- Código abierto
- Simplicidad de programación
- Multiplataforma
- Compatibilidad total con las placas

GitHub

- Plataforma gratuita
- Control de versiones
- Gran comunidad

P0 Shield para Raspberry Pi

- Componentes principales
 - o nRF24L01+
 - o 3 LEDs
- Funcionalidad Principal
 - Comunicaciones entre el GW y los nodos
 - Indicar el estado del GW
 - Mitigar posible errores de comunicación

P1 - P2 Gestión Eléctrica

- Componentes principales
 - o nRF24L01+
 - Fuente de alimentación 230V-5V
 - o LED
 - Arduino Pro Mini 5V
 - Relé
 - Mecánico 15A
 - SSR 2A
- Funcionalidad Principal
 - Control de la tensión hasta 3450W (15A)
 - Gestión de un enchufe
 - Control de la tensión hasta 460W (15A)
 - Gestión de una lámpara

P3 Control Lumínico USB

- Componentes principales
 - o nRF24L01+
 - Potenciómetro & botón
 - o 4 LEDs
 - Arduino Pro Mini 5V
 - 2 Baterías 18650
- Funcionalidad Principal
 - Control del brillo de una tira led de 5V
 - Control tanto manual como online

P4 Estación Meteorológica

- Componentes principales
 - o nRF24L01+
 - o 3 LEDs
 - Arduino Pro Mini 3.3V
 - 1 Baterías 18650
 - Sensor BME 280
 - Panel solar 5v 30mA
 - Gestor de carga TP4056
- Funcionalidad Principal
 - Envío cada 10 m de:
 - Temperatura
 - Humedad
 - Presión Atmosférica

Conclusión y futuro del proyecto

- Conclusión
 - Gestión de las funciones básicas de un hogar
 - Control por usuario
 - Entorno altamente escalable
 - Personalización a medida
- Proyecto de futuro
 - Continuar en el Master
 - Eliminación total de componentes comerciales
 - Comunicación entre nodos
 - Mando a distancia
 - NFC

Preguntas

