TD n°8

Brzozowski-McCluskey, classes d'équivalence et résiduels

Exercice 1 (Brzozowski-McCluskey) Calculer une expression rationnelle de $\mathcal{L}(\mathcal{A})$ pour les automates ci-dessous, en appliquant la méthode de Brzozowski-McCluskey.

Exercice 2 (Équivalence) Trouvez les classes d'équivalence des langages suivants sur $\{a,b\}$:

- 1. a^*b^*
- 2. $\{w \mid |w|_a = 1\}$
- 3. $\{w \mid |w|_a \ge 2\}$
- 4. le langage des mots qui contiennent le facteur ab
- 5. le langage des mots contenant un nombre pair de a
- 6. a^+b^+
- 7. $\{a^nb^n \mid n \in \mathbb{N}\}$

Exercice 3 (Résiduels) Le résiduel $u^{-1} \cdot L$ d'un langage L par rapport à un mot u est le langage $\{v \mid uv \in L\}$. Les résiduels des langages vérifient de simples propriétés qu'on vous demande de calculer :

- $a^{-1} \cdot \emptyset = \dots$
- $-a^{-1}\cdot \varepsilon = \dots$
- $-a^{-1} \cdot b = \ldots$, $si \ b \neq a$
- $a^{-1} \cdot a = \dots$
- $(au)^{-1} \cdot L = \dots$
- $(ua)^{-1} \cdot L = \dots$
- $-a^{-1}\cdot (L_1+L_2)=\dots$
- $a^{-1} \cdot (L_1 \cdot L_2) = \dots$
- $a^{-1} \cdot (L^*) = \dots$

On considère le langage $L = ba^* + ab$:

- 1. Calculer les résiduels $a^{-1} \cdot L$ et $b^{-1} \cdot L$.
- 2. Calculer $(ab)^{-1} \cdot L$, $(aa)^{-1} \cdot L$, $(bb)^{-1} \cdot L$ et $(ba)^{-1} \cdot L$.
- 3. Calculer les résiduels de L par rapport aux mots sur {a,b} de longueur 3. Est-il nécessaire de calculer les résiduels par rapport aux mots de longueur 4?
- 4. Construire un automate A suivant les règles suivantes :
 - les états de \mathcal{A} sont les différents résiduels de L par rapport aux mots sur $\{a,b\}$ de longueur < 3.
 - l'état associé à $\varepsilon^{-1} \cdot L = L$ est l'état initial.
 - il y a une transition $u^{-1} \cdot L \rightarrow v^{-1} \cdot L$ étiquetée avec x si et seulement si v = ux.
 - un état de A est final si le résiduel associé contient ε .
- 5. Déduire une méthode générale pour construire un automate pour une expression rationnelle.