Fizyka Fazy Skondensowanej

Spis treści

1	Zes	aw:	3
	1.1	Pierwszy	3
		1.1.1	3
		1.1.2	3
		1.1.3	3
		1.1.4	3
	1.2	Drugi	4
		1.2.1	4
		1.2.2	4
		1.2.3	4
		1.2.4	4
	1.3	Trzeci	6
		1.3.1	6
		1.3.2	6
		1.3.3	6
		1.3.4	6
		1.3.5	7
	1.4	Czwarty	7
		1.4.1	7
		1.4.2	8
		1.4.3	8
		1.4.4	8
		1.4.5	8
		1.4.6	8
		1.4.7	8

1 Zestaw:

1.1 Pierwszy

1.1.1

- 1. Sieć krystaliczna, węzły sieci, proste sieciowe, płaszczyzny sieciowe, wskaźniki Millera (hkl), Komórka elementarna i typy układów krystalograficznych
- 2. Operacje symetrii, grupy punktowe.
- 3. Sieć prosta a sieć odwrotna. Objętości komórki elementarnej w sieci odwrotnej. Odległości międzypłaszczyznowe. Strefy Brillouina.

Rozwiązanie:

1.1.2

Obliczyć objętość komórki elementarnej dla układu regularnego, romboedrycznego, heksagonalnego, jednoskośnego.

Rozwiązanie:

1.1.3

Wykaż, że:

1. dla prostej sieci regularnej o stałej sieciowej a, odległość międzypłaszczyznowa

$$d_{hkl}^2 = \frac{a^2}{h^2 + k^2 + l^2}$$

2. obliczyć $\frac{1}{d_{hkl}^2}$ dla układu heksagonalnego oraz rombowego

Rozwiązanie:

1.1.4

Struktura diamentu zawiera dwa identyczne atomy w położeniach 000 i $\frac{1}{4}\frac{1}{4}\frac{1}{4}$ związane z każdym węzłem sieci powierzchniowo centrowanej (fcc). Obliczyć czynnik strukturalny dla tej struktury. Pokaż, że dozwolone odbicia spełniają warunek h+k+l=4n, gdzie wszystkie wskaźniki są parzyste, a n jest dowolna liczbą całkowitą, albo wszystkie składniki są nieparzyste.

Rozwiązanie:

1.2 Drugi

1.2.1

Energia oddziaływania między dwoma atomami w cząsteczce opisywana jest wzorem:

$$U(r) = -\frac{\alpha}{r^n} + \frac{\beta}{r^m}$$

Pokazać, że m > n.

Rozwiązanie:

1.2.2

Rozważ liniowy układ 2N jonów o ładunku równym na przemian $\pm q$. Załóż, że energia potencjalna odpychania między najbliższymi sąsiadami ma postać $\frac{A}{R^n}$.

1. Pokaż, że dla odległości między jonami odpowiadającej stanowi równowagi

$$U(R_0) = -\frac{2Nq^2 \ln(2)}{R_0} \left(1 - \frac{1}{n}\right)$$

2. Załóżmy, że kryształ został ściśnięty tak, że $R_0 \to R_0(1-\delta)$. Pokaż, że w wyrażeniu na pracę związaną ze ściśnięciem kryształu największy wkład opisuje człon $\frac{C\delta^2}{2}$ gdzie:

$$C = \frac{(n-1)q^2\ln(2)}{R_0}$$

Rozwiązanie:

1.2.3

Obliczyć stałą Madelunga dla kryształu NaCl:

1. przypadek jednowymiarowy (nić krystaliczna NaCl)

2. przypadek dwuwymiarowy (siatka płaska NaCl)

Rozwiązanie:

1.2.4

Obliczyć jakie ciśnienie należy przyłożyć do kryształu jonowego, aby odległość między jonami zmniejszyła się o 1 procent.

Rozwiązanie:

1.3 Trzeci

1.3.1

Poniższy rysunek przedstawia temperaturową zależność oporu elektrycznego. Określ, czy jest to zależność dla metali czy izolatorów. Opisz proces fizyczny, który opisuje tą zależność w zakresie temperatur: a) blisko 0 K, b) około 25 K, c) około 300 K. Oszacuj średnią drogę swobodną i czas w T=0K i T=300K. Przydatne stałe: $n=10^{23}cm^{-3}$, $m=10^{27}{\rm kg},\ v_f=108\frac{cm}{\rm s},\ e=4.8\cdot 10^{10}{\rm esu}\ (e=1,6^{19}C),\ 1(\Omega cm)^2=9\cdot 10^{11}{\rm esu}.$

Rozwiązanie:

1.3.2

Rozwiązanie:

1.3.3

Rozpatrzyć falę podłużną $u_s = u(0)\cos(\omega t - sKa)$, która rozchodzi się w jednoatomowej sieci liniowej składającej się z atomów o masach M odległych od siebie o a; stała siłowa oddziaływania między najbliższymi sąsiadami wynosi C.

• Wykazać, że całkowita energia fali wynosi:

$$E = \frac{1}{2}M\sum_{s} \left(\frac{du_{s}}{dt}\right)^{2} + \frac{1}{2}C\sum_{s} (u_{s} - u_{s+1})^{2}$$

 \bullet Podstawiając wyrażenie na u_s do powyższego wzoru wykaż, że uśredniona w czasie energia całkowita przypadająca na jeden atom wynosi:

$$\frac{1}{4}M\omega^2 u^2(0) + \frac{1}{2}C(1 - \cos(Ka))u^2(0) = \frac{1}{2}M\omega^2 u^2(0)$$

Rozwiązanie:

1.3.4

Wyznaczyć podłużny fonon akustyczny oraz widmo optyczne dla sieci liniowej o stałej a zawierającej w komórce dwa jednakowe atomy o masach M, których odległość w położeniu równowagi wynosi $\delta < \frac{1}{a}$.

Rozwiązanie:

Rozwiązanie:

1.3.5

Dana jest sieć:

• Wykazać. że

$$M\frac{d^2u_{lm}}{dt^2} = C((u_{l+1,m} - ul - 1, m - 2u_{lm}) + (u_{l,m+1} - u_{l,m-1} - 2u_{lm}))$$

- Przyjąć: $u_{lm} = u(0) \exp \left(i(lK_x a + mK_y a - \omega t)\right)$ i wykazać, że:

$$\omega^2 M = 2C(2 - \cos(K_x a) - \cos(K_y a))$$

- Wykazać, że przedział wartości wektora K, dla których istnieją niezależne rozwiązania można przyjąć kwadrat o baku $\frac{2\pi}{a}$
- Dla Ka << 1 wykazać, że:

$$\omega = \left(\frac{Ca^2}{M}\right)^{\frac{1}{2}} \left(K_x^2 + K_y^2\right) = \left(\frac{Ca^2}{M}\right) K$$

Rozwiązanie:

1.4 Czwarty

1.4.1

Wyprowadzić wzory na funkcję gęstości stanów dla łańcucha jednoatomowego zakładając, że $\omega=v\cdot k$. Określić częstotliwość Debye'a.

Rozwiązanie:

1.4.2

Wyprowadzić wzory na funkcję gęstości stanów dla sieci kwadratowej zakładając, że $\omega = v \cdot k$. Określić częstotliwość Debye'a.

Rozwiązanie:

1.4.3

Korzystając z wyników zadań 1.4.1 i 1.4.2 wyprowadzić wzory na molowe ciepło właściwe.

Rozwiązanie:

1.4.4

Znaleźć zależność poziomu Fermiego w temperaturze zera bezwzględnego od gęstości elektronowej n:

$$E_F(T=0) = \frac{\hbar^2}{2m} (3n\pi)^{\frac{2}{3}}$$

oraz zależność średniej energii na elektron od energii Fermiego.

$$\overline{E}(T=0) = \frac{3}{5}E_F$$

Rozwiązanie:

1.4.5

Wyprowadzić wzór na funkcję gęstości stanów elektronów swobodnych w przypadku jednowymiarowym.

Rozwiązanie:

1.4.6

Wyprowadzić wzór na funkcję gęstości stanów g(E) gazu elektronowego dla sieci kwadratowej.

Rozwiązanie:

1.4.7

Korzystając z wyników zadania ?? wyprowadzić wzór na molowe ciepło właściwe gazu Fermiego w przypadku jednowymiarowym.

Rozwiązanie:

Spis rysunków

Kod źródłowy