Partial Differential Equation 2 MATH 541

Thanic Nur Samin

This is dedicated to <u>Sobolev Spaces</u>, which we apply to Elliptic (linear) PDE. Last part of the course is in a different direction. We talk about applying this to Parabolic/Hyperbolic PDE. Also Schauder Theory

Monday, 8/26/2024

There are very explicit formula for certain PDE. For example D'Alembert, Poisson etc.

Weak Solutions to PDE: There is some notion of solution that doesn't have the requisite number of derivatives in the classical calculus sense. So we lower our notion of what a solution is.

ex. Conservation law: Burger's Equation: $u_t + uu_x = 0, u(x,0) = u_0(x)$. If we try to solve this for $-\infty < x < \infty, t > 0$, we have method of characteristics that attempts to give us explicit formula (solution will be constant along lines of slope $\frac{1}{u_0}$), but there is trouble for general u_0 . These lines an bump into each other, so in that point our solution has to equal two different numbers.

Figure 1: Burger's Equation

Can also happen that a classical solution does exists, BUT it is easiest to find a weak solution.

- Find a weak solution
- Show it's classical (regularity theory)

For linear elliptic PDE's ex. Laplace's Equation,

$$\Delta u = u_{x_1 x_1} + \dots + u_{x_n x_n} = 0$$

in $\Omega \subset \mathbb{R}^n$

A weak solution satisfies the equation obtained through multiplication by a test function C_c^{∞} and integrate by parts

ie take any $\phi \in C_c^{\infty}(\Omega)$

$$\int_{\Omega} \phi \Delta u = 0$$

$$= -\int_{\Omega} \nabla \phi \cdot \nabla u + \int_{\partial \Omega} \phi \nabla u \cdot \nu$$

Note that the second term is integrated over the boundary. So it goes to 0 So, if:

$$\int_{\Omega} \nabla \phi \cdot \nabla u = 0 \forall \phi \in C_c^{\infty}$$

We say u weakly solves Laplace's equation because it requires only one derivative (not two).

Definition 1 (Weak Derivative). A locally integrable function u [notationally $u \in L^1_{loc}(\Omega)$] has a weak x_i derivative v if v is locally integrable and $\int_{\Omega} u \phi_{x_i} dx = -\int_{\Omega} v \phi dx$ for all $\phi \in C_c^{\infty}(\Omega)$

u and v can be terrible near the boundary but ϕ vanishes so we don't care! Recall: Multi-inde notation

If $u: \mathbb{R}^n \to \mathbb{R}$ and $\alpha = (\alpha_1, \dots, \alpha_n)$ where α_j is non-negative integer then,

$$D^{\alpha}u = \frac{\partial^{|\alpha|}}{\partial_{x_1}^{\alpha_1} \dots \partial_{x_n}^{\alpha_n}}$$

eg in \mathbb{R}^3 for $\alpha = (1,2,1)$ then $D^{\alpha}u = u_{x_1x_2x_2x_3}$

Definition 2. Given $u,v\in L^1_{loc}(\Omega),\Omega\subset\mathbb{R}^n$ and α a multi-index, we say v is the weak α th derivative of u if integration by parts works: if $\int_\Omega uD^\alpha\phi\,\mathrm{d}x=(-1)^{|\alpha|}\int_\Omega v\phi\,\mathrm{d}x, \forall\phi\in C_c^\infty(\Omega)$

If we are define weak anything, if our weak thing actually happened to be good, we want it to satisfy the strong definition as well! For example if differentiation is allowed, then integration by parts would actually work. So, if u were smooth, then our derivative would actually satisfy the solution, since

$$\int_{\Omega} (D^{\alpha} u - v) \phi \, \mathrm{d}x = 0$$

So $D^{\alpha}u = v$ almost everywhere.

Recall: $u \in L^p(\Omega), p > 0$ if $\int |u|^p dx < \infty$

 $u \in L^p_{loc}(\Omega)$ if $\forall \Omega_1 \subset\subset \Omega, \int_{\Omega_1} |u|^p dx < \infty$

Sobolev Spaces

Definition 3 (Sobolev Spaces). Fix $1 \le p \le \infty$ and a non-negative integer k. Let $\Omega \subset \mathbb{R}^n$ be open.

Then the Sobolev space $W^{k,p}(\Omega)$ consists of all functions $u \in L^1_{loc}(\Omega)$ such that for every multi-index α with $|\alpha| < k$, $D^{\alpha}u$ exists weakly and lies in $L^p(\Omega)$.

Example 1: Consider $\tilde{u}(x) = |x|$. Doesn't have a derivative. What about weak derivative?

Claim: u has weak 1st derivative $v(x) = \begin{cases} -1, & \text{if } x < 0; \\ 1, & \text{if } x > 0; \end{cases}$

We verify that using test function.

Let $\phi \in C_c^{\infty}(\mathbb{R})$

$$LHS = \int_{-\infty}^{\infty} v(x)\phi(x) dx = -\int_{-\infty}^{0} \phi(x) dx + \int_{0}^{\infty} \phi(x) dx$$

$$RHS = -\int_{-\infty}^{\infty} \tilde{u}(x)\phi'(x) dx = \int_{-\infty}^{0} x\phi'(x) dx - \int_{0}^{\infty} x\phi'(x) dx$$

By applying IBP

$$RHS = -\int_{-\infty}^{0} \phi(x) dx + \int_{0}^{\infty} \phi(x) dx$$

[boundary terms don't matter because either x or ϕ vanishes] Since |x| is locally integrable for any p, $\tilde{u} \in W^{1,p}_{loc}(\mathbb{R})$ for all pExample 2: Consider the Heaviside function

$$u(x) = \begin{cases} 1, & \text{if } x > 0; \\ 0, & \text{if } x < 0; \end{cases}$$

Is NOT going to be weakly differentiable!

Wednesday, 8/28/2024

Sobolev Space $W^{k,p}(\Omega)$

 $u \in W^{k,p}(\Omega)$ if

 $D^{\alpha}u \in L^p$ weakly for all α such that $|\alpha| \leq k$

This is a normed space.

$$||u||_{W^{k,p}(\Omega)} = \left[\sum_{|\alpha| \le k} \int_{\Omega} |D^{\alpha}u|^{p}\right]^{\frac{1}{p}}$$

If $p = \infty$ we just take the sup norm.

We have convergence: $\{u_j\} \subset W^{k,p}(\Omega)$ converges in $W^{k,p}$ to $u \in W^{k,p}(\Omega)$ if $|u_j - u|_{W^{k,p}(\Omega)} \to 0$ as $j \to \infty$

Definition 4. $W_0^{k,p}(\Omega) := \text{closure in } W^{k,p}(\Omega) \text{-norm of } C_o^{\infty}(\Omega)$

<u>Remark</u>: $W^{k,p}(\Omega)$ and $W_0^{k,p}(\Omega)$ are Banach spaces [normed, complete [since Lp is

For p=2 we don't usually use $W^{k,2}(\Omega)$. We use $H^k(\Omega)$. H is for Hilbert. This is a Hilbert space [there exists an inner product].

$$(u,v)_{H^k(\Omega)} := \sum_{|\alpha| \le k} \int_{\Omega} D^{\alpha} u D^{\alpha} v$$

Hölder's inequality implies:

$$\left| \int_{\Omega} D^{\alpha} u D^{\alpha} v \right| \le \|D^{\alpha} u\|_{L^{2}} \|D^{\alpha} v\|_{L^{2}}$$

Let's go back to the example.

Let u(x) be the heaviside function, 0 for negative, 1 for positive. Is it weakly differentiable? Is it in some sobolev space?

Is $u \in W^{k,p}(\mathbb{R})$ for some k and p? Does u have a weak solution?

Answer: <u>No</u>! We use contradiction.

Suppose there is such a $v \in L^1_{loc}(\mathbb{R})$ such that IBP holds:

$$\int_{\mathbb{R}} u\phi' \, \mathrm{d}x = -\int_{\mathbb{R}} v\phi \, \mathrm{d}x$$

for all $\phi \in C_c^{\infty}(\mathbb{R})$ Then, $\int_0^{\infty} \phi'(x) dx = -\int_{-\infty}^{\infty} v \phi dx$ Therefore, $\phi(0) = \int_{-\infty}^{\infty} v(x) \phi(x) dx$ We use this for contradiction. Consider a sequence $\{\phi_j\}$ of test functions so that $\phi_j(0) = 1$ for all j and $0 \le \phi_j(x) \le 1$ for all x.

Further suppose that the support for ϕ_i shrinks to the origin.

$$\phi_j(0) = 1 = -\int_{\mathbb{R}} v\phi_j \,\mathrm{d}x$$

Now, $v\phi_j \to 0$ pointwise a.e.

 $|v\phi_j| \le |v| \in L^1_{loc}$

This gives us the desired contradiction.

<u>Notice</u>: $\phi(0) = \int v(x)\phi(x)$ is true for the 'function' dirac delta. This is not really a function, this is a distribution.

Moral of the story: We can't have too big of a discontinuity [here we have a jump discontinuity] and still be in Sobolev spaces.

Example: $f(x) = \frac{1}{|x|^{\alpha}}$ for $x \in B(0,1) = \{x \in \mathbb{R}^n : |x| < 1\}$ and $\alpha > 0$

For which k, p, n, α is $f \in W^{k,p}(B(0,1))$?

Question 1: Is this in any Lp space? If no then game over.

Is $f \in L^p(B(0,1))$

$$\int_{B(0,1)} \frac{1}{|x|^{\alpha p}} dx = \int_0^1 \int_{\partial B(0,r)} \frac{1}{|x|^{\alpha p}} dS dr$$
$$= \int_0^1 \frac{1}{r^{\alpha p}} \mu(\partial B(0,r)) dr$$
$$= \omega_n \int_0^1 \frac{1}{r^{\alpha p}} r^{n-1} dr = \omega_n \int_0^1 r^{-\alpha p + n - 1} dr$$

So, $f \in L^p$ if $\alpha p \leq n$

Note that $|D^{\alpha}f| \leq L^p$ for $|\alpha| = 1$ provided $(\alpha + 1)p \leq n$

Is f weakly differentiable for $|\alpha| = 1$?

Consider $\epsilon < 1$

$$\int_{B(0,1)\backslash B(0,\epsilon)} f\phi_{x_i} \, \mathrm{d}x = \int_{B(0,1)\backslash B(0,\epsilon)} \nabla \cdot (0,0,f\phi,0,0) \, \mathrm{d}x - \int_{B(0,1)\backslash B(0,\epsilon)} \phi f_{x_i} \, \mathrm{d}x$$

$$\int_{B(0,1)\backslash B(0,\epsilon)} f\phi_{x_i} \, \mathrm{d}x = -\int_{B(0,1)\backslash B(0,\epsilon)} \phi f_{x_i} \, \mathrm{d}x + \int_{\partial (B(0,1)\backslash B(0,\epsilon))} f\phi \nu_i \, \mathrm{d}S$$

Note that the outer normal dissapears, we only have the inner normal.

$$\int_{\partial (B(0,1)\setminus B(0,\epsilon))} f\phi\nu_i \, \mathrm{d}S = \int_{\partial B(0,\epsilon)} f\phi\nu_i \, \mathrm{d}S$$

Setting $\epsilon \to 0$ we see that the integral converges. Also,

$$\left| \int_{\partial (B(0,1) \setminus B(0,\epsilon))} f \phi \nu_i \, \mathrm{d}S \right| \le \int_{\partial B(0,\epsilon)} |f \phi \nu_i| \le c \int_{\partial B(0,\epsilon)} |f| \, \mathrm{d}S \le \frac{c}{\epsilon^{\alpha}} \omega_n \epsilon^{n-1} \to 0$$

provided $n-1 \ge \alpha$ So,

$$\int_{B(0,1)} f \phi_{x_i} \, \mathrm{d}x = -\int_{B(0,1)} \phi f_{x_i} \, \mathrm{d}x$$

So f is weakly differentiable for $|\alpha| = 1$

(See Appendix 5 in Evans)

Mollification:

There are lot of situation in PDE where you have a function and you don't know how nice is it in terms of derivative. So you convolve it so that it is nice and take some limit.

Let η satisfy $\eta \in C_c^{\infty}(\mathbb{R}^n)$

Suppose $\eta \equiv 0$ for $|x| \ge 1$

 $\int_{\mathbb{R}^n} \eta(x) \, \mathrm{d}x = 1$

Suppose η is radial, $\eta = \eta(|x|)$ just a function of radial distance

Note that there is no such analytic function. But there are infinitely differentiable ones.

Define $\eta_{\epsilon} := \epsilon^{-n} \epsilon(\frac{x}{\epsilon})$

So we rescale the function.

Then given $u \in L^1_{loc}(?)$ we define the mollification

$$u_{\epsilon}(x) = u * \eta_{\epsilon} = \int u(x - y)\eta_{\epsilon}(y) dy = \int u(y)\eta_{\epsilon}(x - y) dy$$

Friday, 8/30/2024

Given $\Omega \subset \mathbb{R}^n$, open, bounded

 $\forall \epsilon \text{ define } \{x \in \Omega : \operatorname{dist}(x, \partial \Omega) > \epsilon\} = \Omega_{\epsilon}$

Let $\eta \in C_c^{\infty}(\mathbb{R}^n)$ such that

 $0 \leq \epsilon \leq 1$ and $\int_{B(0,1)} \eta(x) \, \mathrm{d}x = 1$ and $\mathrm{supp}(\eta) \subset \overline{B(0,1)}$

Define $\eta_{\epsilon}(x) := \epsilon^{-n} \eta(\frac{x}{\epsilon})$

Then, supp $(\eta_{\epsilon}) \subset \overline{B(0, \epsilon)}$

$$\int_{B(0,\epsilon)} \eta_{\epsilon}(x) \, \mathrm{d}x = \epsilon^{-n} \int_{B(0,\epsilon)} \eta(\frac{x}{\epsilon}) \, \mathrm{d}x = \int_{B(0,1)} \eta(x) \, \mathrm{d}x = 1$$

Theorem 1. Given $f \in L^1_{loc}(\Omega)$ define $f_{\epsilon} := \eta_{\epsilon} * f$ for $x \in \Omega_{\epsilon}$

$$f_{\epsilon}(x) = \int_{\Omega} \eta_{\epsilon}(x - y) f(y) \, \mathrm{d}y$$

Then, i: $f_{\epsilon}(x)$ is infinitely differentiable.

ii: $f_{\epsilon} \to f$ pointwise a.e.

iii: If f is continuous then $f_{\epsilon} \to f$ uniformly on compact subsets of Ω

iv: If for $1 \leq p < \infty, f \in L^p(\Omega)$ then $f_{\epsilon} \to f$ in $L^p(\Omega)$. Also true for $f \in L^p_{loc}$

Proof. (i): Convolution is a child, and it inherits the nicest properties of the parent. η_{ϵ} is nicer.

Idea: it is legal to bring derivatives inside the integral.

$$\frac{f_{\epsilon}(x + he_i) - f_{\epsilon}(x)}{h} = \int_{\Omega} \left[\frac{\eta_{\epsilon}(x + he_i - y) - \eta_{\epsilon}(x - y)}{h} \right] f(y) \, \mathrm{d}y$$

Stuff in brackets converges uniformly in y to $\eta_{\epsilon_{x_i}}(x-y)$ using Taylor remainder theorem.

Then Lebesgue Dominated Convergence finishes the job.

(iii) Fix $K \subset \Omega$ where K compact.

 $\forall x \in K \text{ we have } |f_{\epsilon}(x) - f(x)| = \left| \int_{\Omega} (\eta_{\epsilon}(y) f(x - y)) \, \mathrm{d}y - f(x) \right|$

$$= \left| \int_{\Omega} \eta_{\epsilon}(y) \left[f(x - y) - f(x) \right] dy \right|$$

$$\leq \int_{\Omega} \eta_{\epsilon}(y) |f(x-y) - f(x)| dy$$

Since K is compact, f is uniformly continuous on K.

So, $\forall \beta > 0$ we have ϵ_0 such that $\forall \epsilon < \epsilon_0$ such that $\forall x, y$ such that $|y| < \epsilon$ we have $|f(x-y) - f(x)| < \beta$ So,

$$\leq \int_{\Omega} \eta_{\epsilon}(y) \beta \, \mathrm{d}x = \beta$$

What is the relevance to Sobolev spaces?

Often we are going to try to prove some estimates. We want to prove some inequalities. Then, we mollify and prove it for the mollification. If we mollify a Sobolev function, we get an approximation.

Theorem 2 (Local Approximation Away from $\partial\Omega$). Assume $u\in W^{k,p}(\Omega)$ [aka function has k'th weak derivatives which are locally integrable in order p]. Define $u_{\epsilon}=\eta_{\epsilon}*u$ in $\Omega_{\epsilon}=\{x\in\Omega: \mathrm{dist}(x,\partial\Omega)>\epsilon\}$

THen, $u_{\epsilon} \in C^{\infty}(\Omega_{\epsilon})$

And $u_{\epsilon} \to u$ in $W_{loc}^{k,p}(\Omega)$

Proof. Note infinite derivative we already have by property of mollification.

Fix the multi-index α sub that $|\alpha| \leq k$.

Claim 1: $D^{\alpha}u_{\epsilon} = \eta_{\epsilon} * D^{\alpha}u$

In other words, mollification and derivatives commute.

To see this, consider $x \in \Omega_{\epsilon}$

$$D^{\alpha}u_{\epsilon} = D^{\alpha} \int_{\Omega} \eta_{\epsilon}(x - y)u(y) \,dy$$
$$= \int_{\Omega} D_{x}^{\alpha} \eta_{\epsilon}(x - y)u(y) \,dy$$
$$= (-1)^{|\alpha|} \int_{\Omega} D_{y}^{\alpha} \eta_{\epsilon}(x - y)u(y) \,dy$$
$$= (-1)^{|\alpha|} (-1)^{|\alpha|} \int_{\Omega} \eta_{\epsilon}(x - y)D^{\alpha}u(y) \,dy$$
$$= \eta_{\epsilon} * D^{\alpha}u$$

proving the claim.

Now, fix $V\subset \Omega$ with open $\overline{V}\subset \Omega$ ($V\subset\subset \Omega$)

Apply previous theorem, item iv and the claim

 $D^{\alpha}u_{\epsilon} \to D^{\alpha}u$ in $L^{p}(V)$ for all α such that $|\alpha| \leq k$

Theorem 3 (Global Approximation). Theme:

Sobolev can be approximated by smooth sobolev

Let $\Omega \subset \mathbb{R}^n$ be open, bounded. Assume $u \in W^{k,p}(\Omega)$ for $1 \leq p < \infty$

Then, $\exists \{u_m\} \subset C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ [infinitely smooth AND sobolev] such that $u_m \to u$ in $W^{k,p}(\Omega)$. Meaning:

$$\lim_{m \to \infty} \|u_m - u\|_{W^{k,p}(\Omega)} \to 0$$

Idea of Proof:

We have a bunch of Ω_i with $\bigcup_{i=1}^{\infty} \Omega_i = \Omega$ Use a partition of unity $\{\phi_i\}$ so that $\sum \phi_i(x) = 1$, mollify. Proof is on Evans.

Wednesday, 9/4/2024

Traces

We are going to solve PDEs using Sobolev spaces. We typically specify boundary conditions in PDEs. But in first glance, since Sobolev functions are defined upto a set of measure zero, it seems ill suited to dealing with boundary conditions [since boundary $\partial\Omega$ has measure 0].

How to define boundary values for a Sobolev functions?

We are going to establish an inequality for smooth function.

Theorem 4. Assume $\partial\Omega$ is C^1 surface¹. Then \exists a bounded linear operator $T:W^{1,p}(\Omega)\to L^p(\partial\Omega)$ for $1\leq p<\infty$ such that:

- i) $Tu = u|_{\partial\Omega}$ if $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$
- ii) $||Tu||_{L^p(\partial\Omega)} \le C ||u||_{W^{1,p}(\Omega)}$ for some $C = C(p,\Omega)$

Proof. Outline:

1) Fix $x_0 \in \partial \Omega$. Suppose $\partial \Omega$ is 'flat' near x_0 . In fact, define ball B centered at x_0 such that inside B, $\partial \Omega$ is flat.

[insert picture]

Then we can define $x' = (x_1, \dots, x_{n-1})$. If the last coordinate is positive, we are inside Ω .

Inside B, $\partial\Omega$ is flat. we can define $B' \subset B$ centered at x_0 .

Let $\zeta \in C_0^{\infty}(B)$ so that $\zeta \equiv 1$ on B' and $\zeta \geq 0$.

Define $\Gamma := \partial \Omega \cap B'$.

Assume $u \in C^1(\overline{\Omega})$.

$$\int_{\Gamma} |u|^p \, dx' \le \int_{\{x_n = 0\} \cap B} \zeta |u|^p \, dx'$$

$$= -\int_{\{x_n = 0\} \cap B} (0, \dots, 0, \zeta |u|^p) \cdot (0, \dots, 0, -1) \, dx'$$

We are almost set up for divergence theorem. Since $\zeta = 0$ on the boundary of B, we actually have the whole boundary! Applying the divergence theorem, we get:

$$= -\int_{B \cap \Omega} \frac{\partial}{\partial x_n} \left[\zeta(x) |u(x)|^p \right] dx$$

$$= -\int_{B \cap \Omega} \left[\zeta_{x_n} |u|^p + \zeta p |u|^{p-1} \frac{u}{|u|} u_{x_n} \right] dx$$

$$= -\int_{B \cap \Omega} \left[\zeta_{x_n} |u|^p + \zeta p |u|^{p-1} \operatorname{sgn}(u) u_{x_n} \right] dx$$

Now we use Young's Inequality.

¹meaning $\partial\Omega$ can be described as the graph of a C^1 function.

Theorem 5 (Young's Inequality). For any a,b>0 and p,q such that $\frac{1}{p}+\frac{1}{q}=1$, we have:

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

We are estimating abolute value, so we can take absolute value. Using Young's inequality on $a = |u_{x_n}|$ and $b = |u|^{p-1}$,

$$\int_{\Gamma} |u|^p \, \mathrm{d}x'$$

$$\leq \int_{B}^{\infty} \left[|\zeta_{x_n}| |u|^p + p|\zeta| \left[\frac{(|u|^{p-1})^{p/(p-1)}}{p/(p-1)} + \frac{|u_{x_n}|^p}{p} \right] \right] \, \mathrm{d}x$$

$$\leq C \int_{B \cap \Omega} \left[|u|^p + |\nabla u|^p \right] \, \mathrm{d}x \leq C \int_{\Omega} \left[|u|^p + |\nabla u|^p \right] \, \mathrm{d}x$$

Now, $\partial\Omega \in C^1$ means, centered at any point $x_0 \in \partial\Omega$ $\partial\Omega$ can be written as a graph $x_n = f(x')$ where $|f|_{C_1}$ is bounded.²

Therefore, Ball inside of which $\partial\Omega$ is a graph has radius R depending on C^1 norm.

2) For the next step, we flatten the boundary of Ω by a change of variables.

[insert picture]

[insert picture 2]

Change variables: $y = (y', y_n)$.

Set y' = x'

 $y_n \coloneqq x_n - f(x')$

y = G(x).

So, $y_n = 0$ means $x_n = f(x')$, which means we're on the graph.

We can think of this in terms of the <u>Inverse Function Theorem</u>. What is the Jacobian of G?

$$\operatorname{Jac}(G) = \det \nabla G = \det \begin{pmatrix} I & 0 \\ \vdots \\ -f_{x_1} - f_{x_2} - \dots - f_{x_{n-1}} & 1 \end{pmatrix} = 1$$

So, G^{-1} is C^1 .

Then, $|\nabla G| \leq C(\partial \Omega)$ and $|\nabla (G^{-1}) \leq C(\partial \Omega)|$.

u is a given function. We can define a new function that has a flat boundary which we can use instead of u.

Define $\tilde{u}(y) := u(G^{-1}(y))$.

Then, $u(x) = \tilde{u}(G(x))$

Suppose $G(\Gamma) = \tilde{G}$.

Then, Step 1 implies,

$$\int_{\tilde{\Gamma}} |\tilde{u}^p| \, \mathrm{d}y' \le C \int_{\text{shaded region}} \left[|\tilde{u}|^p + |\nabla \tilde{u}|^p \right] \, \mathrm{d}y$$

Where the shaded region is $\{x \mid x_n > f(x'), x \in B_R\}$. Now,

 $^{^{2}|}f|_{C_{1}} = \sup|f| + \sup|\nabla f|$

$$|\nabla \tilde{u}(y)| \le |Du \cdot \nabla(G^{-1})| \le C |\nabla u|$$

Continuing,

$$\int_{\tilde{\Gamma}} |\tilde{u}^p| \, \mathrm{d}y' \le C \int_{\text{shaded region}} [|\tilde{u}|^p + |\nabla \tilde{u}|^p] \, \mathrm{d}y$$

$$\implies \int_{\Gamma} |u|^p \, \mathrm{d}x' \le C \int_{\Omega \cap B_R} [|u|^p + |\nabla u|^p] \, \mathrm{d}x \le C \int_{\Omega} [|u|^p + |\nabla u|^p] \, \mathrm{d}x$$

Which finishes Step 2.

3) Decompose $\partial\Omega$ into N_R pieces, and add them up using Step 2.

Since $\partial \Omega$ is compact, $N_R < N(\partial \Omega)$.

[insert picture]

We have: $\forall u \in C^1(\overline{\Omega}),$

$$\int_{\partial\Omega} |u|^p \, \mathrm{d}S \le C(p,\Omega) \int_{\Omega} \left[|u|^p + |\nabla u|^p \right] \, \mathrm{d}x$$

Now, suppose $u \in W^{1,p}(\Omega)$. Approximate u in $W^{1,p}$ norm by $\{u_m\} \subset W^{1,p}(\Omega) \cap$ $C^1(\overline{\Omega})$. Then,

$$\underbrace{\|u_m - u_l\|_{L^p(\partial\Omega)}}_{\text{cauchy sequence}} \le C \|u_m - u_L\|_{W^{1,p}}^p$$

 $RHS \to 0$, so $LHS \to 0$ for $m, l \gg 1$.

Therefoe, $\exists Tu \in L^p(\partial\Omega)$ which is the limit of this cauchy sequence.

Friday, 9/6/2024

A few comments about traces.

Last time: If $u \in W^{1,p}(\Omega)$ for $1 \le p < \infty$ and $\partial \Omega \in C^1$, we can define the trace of uon $\partial\Omega$, $Tu \in L^p(\partial\Omega)$ and $\exists C = C(p,\Omega)$ such that,

$$||Tu||_{L^p(\partial\Omega)} \le C ||u||_{W^{1,p}(\Omega)}$$

Recall: $W_0^{k,p}(\Omega) = \text{closure of } C_c^{\infty}(\Omega) \text{ in the } W^{k,p} \text{ norm.}$ Suppose $k=1, u \in W_0^{1,p}(\Omega)$. Then, Tu=0 on $\partial\Omega$ Also, if k>1 and $u \in w_0^{k,p}(\Omega)$, we have Tu=0.

In fact, $T(D^{\alpha}u) = 0 \forall \alpha \text{ such that } |\alpha| \leq k - 1.$

Calculus of Variations

Our objects of interest are <u>functionals</u>.

Consider an integral functional of the form:

$$E(u) = \int_{\Omega} L(x, u, \nabla u) \, \mathrm{d}x$$

We use E because this often denotes Energy. It comes from physics often.

In that case, we call L an energy density. It is also often called the energy density.

A fundamental problem is:

Determine the <u>infimum</u> of E among all functions u in an <u>admissible</u> set \mathscr{A} . We define:

$$m \coloneqq \inf_{u \in \mathscr{A}} E(u)$$

"First Variation of E"

This is the 'calculus of variations' version of a derivative.

If $\Omega \subset \mathbb{R}^n$ and $u: \Omega \to \mathbb{R}$,

$$L = L(x, z, p)$$

where: x is a point in $\Omega \subset \mathbb{R}^n$

 $z \in \mathbb{R}$ [we put u here]

 $p \in \mathbb{R}^n$ [we put ∇u here]

We put u in E, but we purtrube it a little bit.

Suppose $u \in \mathcal{A}$, and v such that $u + tv \in \mathcal{A}$ for |t| small.

E(u+tv)

Then, $t \mapsto E(u+tv)$ is a function $\mathbb{R} \to \mathbb{R}$. We take derivative and set t=0

$$\frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=0} E(u+tv) = \delta E(u;v)$$

Note: if u is a minimum of E, i.e. E(u) = m, then the first variation $\delta E(u; v) = 0$ for all v such that $u + tv \in \mathscr{A}$.

Definition 5. u is called a <u>critical point</u> of E in $\mathscr A$ if $\delta E(u;v)=0 \forall v$ such that $u+tv\in\mathscr A$.

Question: What is true about a critical point u of an integral functional of form (*)?

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} E(u+tv)$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \int_{\Omega} L(x, u+tv, \nabla u + t\nabla v) \, \mathrm{d}x$$

$$= \int_{\Omega} \left[\frac{\partial L}{\partial z}(x, u, \nabla u)v + \sum_{j=1}^{n} \frac{\partial L}{\partial p_{j}}(x, u, \nabla u)v_{x_{j}} \right] \, \mathrm{d}x$$

$$= \int_{\Omega} \left[\frac{\partial L}{\partial z}(x, u, \nabla u)v + \nabla_{p} L \cdot \nabla_{x} v \right] \, \mathrm{d}x$$

Applying IBP,

$$= \int_{\Omega} \left[\frac{\partial L}{\partial z}(x, u, Du) - \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} \left(\frac{\partial}{\partial p_{j}} L(x, u, \nabla u) \right) \right] v \, dx$$
$$+ \int_{\partial \Omega} v \nabla_{p} L(x, u, \nabla u) \cdot \nu \, dS$$

Now, suppose all allowable v's are included in $C_c^{\infty}(\Omega)$ functions. That would make the boundary term 0. Then, since we can choose v however we want, the big integral is 0.

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_{j}} \left[\frac{\partial}{\partial p_{j}} L(x, u, \nabla u) \right] = \frac{\partial L}{\partial z} (x, u, \nabla u)$$

This is a 2nd order PDE. This is called the Euler-Lagrange equation for E.

Example: Take
$$E(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 + W(x, u) dx$$

Here $L(x, z, p) = \frac{1}{2}|p|^2 + W(x, z)$

Then, we find the Euler-Lagrangian.

$$\frac{\partial L}{\partial p_j}(x, z, p) = \frac{\partial}{\partial p_j} \left[\frac{1}{2} |p|^2 + W(x, u) \right] = p_j$$

$$\frac{\partial L}{\partial p_j}(x, u, \nabla u) = u_{x_j}$$

Also,

$$\frac{\partial L}{\partial z}(x,z,p) = \frac{\partial W}{\partial z}(x,z)$$

So, the Euler-Lagrangian equation gives us:

$$\sum_{j=1}^{n} \frac{\partial}{\partial x_j} (u_{x_j}) = \frac{\partial W}{\partial z} (x, u)$$

$$\Delta u = \frac{\partial W}{\partial z}(x, u)$$

This is a Nonlinear Poisson Equation.

Question: What should we choose \mathscr{A} to be to make our life easiest?

We want integration by parts to be justified, but we want our topology to be weak enough so that finding minimizers is easy.

In the previous example, we have integral of $|\nabla u|^2$. So, ideally we want it to be L^2 . So, in the example, best choice is $H^1(\Omega)$.

How does one find a minimzer?

Direct Method: Our problem is, we want to find $u \in \mathcal{A}$ such that:

$$m := \inf_{u \in \mathscr{A}} E(u)$$

Idea: We find a sequence $\{u_j\}$ [called a minimizing sequence]: so that $\{u_j\} \subset \mathscr{A}$ and

Step 1: Try to get a convergent subsequence of $u_{j_k} \to u_* \in \mathcal{A}$. [Compactness]

 $\overline{\text{In this}}$ step, if we choose \mathscr{A} to be 'too strong', we lose. Ideally we want \mathscr{A} to be sequentally compact.

Step 2: E might not be continuous in this topology, then we don't have $E(u_*) = m$. So, we want lower semi-continuity.

$$\liminf_{k \to \infty} E(u_{j_k}) \ge E(u_*)$$

Then we have $E(u_*) \leq m$.

This tells us that u_* is a minimum.

Monday, 9/9/2024

Theorem 6 (Extension of Sobolev Functions). Assume $\Omega \subset \mathbb{R}^n$, open, bounded with $\partial\Omega\in C^1$. Then, $\exists C=C(p,\Omega)$ and an extension $E:W^{1,p}(\Omega)\to W^{1,p}(\mathbb{R}^n)$ such

- i) Eu = u in Ω
- ii) Eu has compact support
- iii) $||Eu||_{W^{1,p}(\mathbb{R}^n)} \le C ||u||_{W^{1,p}(\Omega)}$

Idea is, we can let a function down to zero 'gently' and extend that way.

Theorem 7 (Gagliardo - Nirenberg - Sobolev Inequality). Assume $1 \leq p < n$. Then, there exists C = C(p, n) such that for every $u \in C_0^1(\mathbb{R}^n)$ [compactly supported continuously differentiable function one has the following inequality:

$$||u||_{L^{p^*}(\mathbb{R}^n)} \le C ||\nabla u||_{L^p(\mathbb{R}^n)}$$

Where
$$p^* = \frac{np}{n-p}$$
 is the critical sobolev exponent.
Note that $\frac{np}{n-p} = \frac{np-p^2+p^2}{n-p} = p + \frac{p^2}{n-p} > p$.

Question: Where does p^* come from?

Given $u \in C_0^1(\mathbb{R}^n)$, define:

$$u_{\lambda}(x) \coloneqq u(\lambda x)$$

for $\lambda > 0$.

Suppose $|u|_{L^q(\mathbb{R}^n)} \leq C |\nabla u|_{L^p(\mathbb{R}^n)}$ For which q could this be true? Consider the norm of the scaled function:

$$\|u_{\lambda}\|_{L^{q}} = \left[\int_{\mathbb{R}^{n}} |u(\lambda x)|^{q} dx\right]^{\frac{1}{q}} = \frac{1}{\lambda^{n/q}} \left[\int_{\mathbb{R}^{n}} |u(y)|^{q} dy\right]^{\frac{1}{q}}$$
$$\|\nabla u_{\lambda}\|_{L^{p}} = \left[\int_{\mathbb{R}^{n}} |\nabla_{x} u(\lambda x)|^{p} dx\right]^{\frac{1}{p}} = \underbrace{\frac{1}{\lambda^{\frac{n}{p}}} (\lambda^{p})^{\frac{1}{p}}}_{-\lambda^{1-\frac{n}{p}}} \left[\int_{\mathbb{R}^{n}} |\nabla_{y} u(y)|^{p} dy\right]^{\frac{1}{p}}$$

Applying the same inequality,

$$\frac{1}{\lambda^{\frac{n}{q}}} \left[\int_{\mathbb{R}^n} |u(y)|^q \, \mathrm{d}y \right]^{\frac{1}{q}} \le C \lambda^{1 - \frac{n}{p}} \left[\int_{\mathbb{R}^n} |\nabla u(y)|^p \, \mathrm{d}y \right]^{\frac{1}{p}}$$
$$\|u\|_{L^q} \le C \lambda^{1 - \frac{n}{p} + \frac{n}{q}} \|\nabla u\|_{L^p} \quad \forall \lambda > 0$$

This means $1 - \frac{n}{p} + \frac{n}{q}$ must be 0. Therefore, $q = p^*$

So, if the theorem is true we must have the q.

Now we prove the theorem.

Proof. First take n=3.

Take p = 1.

$$u(x) = \int_{-\infty}^{x_1} u_{x_1}(y_1, x_2, x_3) \, dy_1$$
$$u(x) = \int_{-\infty}^{x_2} u_{x_2}(x_1, y_2, x_3) \, dy_2$$
$$u(x) = \int_{-\infty}^{x_3} u_{x_3}(x_1, x_2, y_3) \, dy_3$$

Therefore,

$$|u(x)| \le \int_{-\infty}^{x_1} |\nabla u(y_1, x_2, x_3)| \, \mathrm{d}y_1$$

$$|u(x)| \le \int_{-\infty}^{x_2} |\nabla u(x_1, y_2, x_3)| \, \mathrm{d}y_2$$

$$|u(x)| \le \int_{-\infty}^{x_3} |\nabla u(x_1, x_2, y_3)| \, \mathrm{d}y_3$$

Multiplying, $|u(x)|^3$

$$\leq \left[\int_{-\infty}^{x_1} |\nabla u(y_1, x_2, x_3)| \, \mathrm{d}y_1 \right] \left[\int_{-\infty}^{x_2} |\nabla u(x_1, y_2, x_3)| \, \mathrm{d}y_2 \right] \left[\int_{-\infty}^{x_3} |\nabla u(x_1, x_2, y_3)| \, \mathrm{d}y_3 \right]$$

Therefore, $|u(x)|^{\frac{3}{2}} \leq$

$$\underbrace{\left[\int_{-\infty}^{\infty} |\nabla u(y_1, x_2, x_3)| \, \mathrm{d}y_1\right]^{\frac{1}{2}}}_{=I_1(x_2, x_3)} \underbrace{\left[\int_{-\infty}^{\infty} |\nabla u(x_1, y_2, x_3)| \, \mathrm{d}y_2\right]^{\frac{1}{2}}}_{=I_2(x_1, x_3)} \underbrace{\left[\int_{-\infty}^{\infty} |\nabla u(x_1, x_2, y_3)| \, \mathrm{d}y_3\right]^{\frac{1}{2}}}_{=I_3(x_1, x_2)}$$

Integrating with respect to x_1 and applying Hölder,

$$\int_{-\infty}^{\infty} |u(x)|^{\frac{3}{2}} dx_1 \le (I_1(x_2, x_3))^{\frac{1}{2}} \left[\int_{-\infty}^{\infty} I_2(x_1, x_3) dx_1 \right]^{\frac{1}{2}} \left[\int_{-\infty}^{\infty} I_3(x_1, x_2) dx_1 \right]^{\frac{1}{2}}$$

repeat for x_2 and x_3 and use the fact:

$$\int |f||g| \le \left[\int f^2\right]^{\frac{1}{2}} \left[\int g^2\right]^{\frac{1}{2}}$$

We see that.

$$\iiint_{\mathbb{R}^3} |u(x)|^{\frac{3}{2}} dx \le \left[\iiint_{\mathbb{R}^3} |\nabla u(x)| dx \right]^{\frac{3}{2}}$$

Therefore, $\|u\|_{L^{\frac{3}{2}}} \leq \|\nabla u\|_{L^1}$ For $p=1, n\geq 3$, same proof, but use 'generalized Hölder inequality' given by:

$$\int |u_1 \cdots u_m| \le ||u_1||_{L^{p_1}} \cdots ||u_m||_{L^{p_m}}$$

provided $\frac{1}{p_1} + \cdots + \frac{1}{p_m} = 1$

Now, for any $1 , let <math>v(x) = |u(x)|^{\gamma}$ for some $\gamma > 1$ $v \in C_0^1$ since $u \in C_0^1$. Use previous case [p=1]. Note that, in that case, $p^* = \frac{n}{n-1}$. Also note that, $\nabla v = \gamma |u|^{\gamma - 1} \operatorname{sgn}(u) \nabla u$ Therefore $|\nabla v| \leq \gamma |u|^{\gamma-1} |\nabla u|$ Then,

$$\left| \int |v(x)|^{\frac{n}{n-1}} \right| \le \int |\nabla v(x)|$$

$$\left| \int |u|^{\frac{\gamma_n}{n-1}} \right|^{\frac{n-1}{n}} \le \gamma \int |u|^{\gamma-1} |\nabla u| \underset{\text{H\"{o}lder}}{\le} \gamma \left[\int |u|^{(\gamma-1)\frac{p}{p-1}} \right]^{\frac{p-1}{p}} \left[\int |\nabla u|^p \right]^{\frac{1}{p}}$$

We pick $\gamma = \frac{p(n-1)}{n-n} > 1$. This gives us,

$$\frac{\gamma n}{n-1} = \frac{(\gamma - 1)p}{p-1} \implies \frac{\gamma n}{n-1} = p^*$$

So we get:

$$\left[\int |u|^{p^*}\right]^{\frac{n-1}{n} - \frac{p-1}{p}} \le \gamma \|\nabla u\|_{L^p}$$

$$\left[\int |u|^{p^*}\right]^{\frac{n-p}{np}} \le \gamma \|\nabla u\|_{L^p}$$

$$\|u\|_{L^{p^*}} \le \gamma \|\nabla u\|_{L^p}$$

Wednesday, 9/11/2024

Theorem 8. Assume $u \in W_0^{1,p}(\Omega)$ for $\Omega \subset \mathbb{R}^n$ open, bounded, $\partial \Omega \in C^1$. Then, for $1 \le p < n$ there exists $C = C(p, n, \Omega)$ such that,

$$||u||_{L^{p^*}} \le C||\nabla u||_{L^p(\Omega)}$$

for $p^* = \frac{np}{n-p}$

[Note that before we had condition $u \in C_0^1(\mathbb{R}^n)$, so this is a stronger theorem]

Proof. Extend u to be $\tilde{u} \in W^{1,p}(\mathbb{R}^n)$ so that it is compactly supported [insert picture here]

Then we approximate \tilde{u} by smooth functions $\{u_m\} \subset C_0^{\infty}(\mathbb{R}^n)$.

Apply previous result to get:

$$||u_m - u_i||_{L^{p^*}} \le C||\nabla u_m - \nabla u_i||_{L^p} \to 0$$

Therefore, $\{u_m\}$ is cauchy in $L^{p^*}(\Omega)$.

So we have $u_m \stackrel{L^{p^*}(\Omega)}{\longrightarrow} u$

To prove the inequality, we let $m \to \infty$ in the previous result.

Corollary: For $1 \le q \le p^*$ and $1 \le p < n$, $\exists C = C(p, n, \Omega)$ such that,

$$||u||_{L^q(\Omega)} \le C||\nabla u||_{L^p(\Omega)}$$

Proof. By Hölder,

$$||v||_{L^q} \le C' ||v||_{L^{p^*}} \quad \forall q < p^*$$

This is only half the story since we have p < n. What if p > n? What about p = n?

p = n case

Here $u \in W_0^{1,n}(\Omega)$ Note that $p^* = \frac{np}{n-p}$ which is undefined. So we have problem. For that, we do: Suppose $\epsilon > 0$. Apply GNS inequality for $p_{\epsilon} = n - \epsilon$. Then $p_{\epsilon}^* = \frac{np_{\epsilon}}{n-p_{\epsilon}} = \frac{n(n-\epsilon)}{\epsilon}$. We have:

$$||u||_{L^{p_{\epsilon}^*}(\Omega)} < C_{\epsilon} ||\nabla u||_{L^n(\Omega)}$$

Such an inequality exists for every ϵ . So, u is in every $L_q(\Omega)$ space for $1 \leq q < \infty$.

Note that $q = \infty$ not necessary, there are counterexamples.

Corollary[Poincaré Inequality]: For $\Omega \subset \mathbb{R}^n$ open, bounded and for $1 \leq p < \infty$ there exists $C = C(p, n, \Omega)$ such that

$$||u||_{L^p(\Omega)} \le C(p, n, \Omega) ||\nabla u||_{L^p(\Omega)}$$

This is true for all $u \in W_0^{1,p}(\Omega)$.

This is weaker than previous inequalities, since $p < p^*$.

What if $u \in W^{1,p}$ or $u \in W_0^{1,p}$ and $\Omega \subset \mathbb{R}^n$ and p > n?

These functions are even better!

But first we need to talk about Hölder Continuous Functions.

Definition 6 (Hölder Quotient). Let $0 < \alpha < 1$. Define Hölder quotient:

$$[u]_{C^{0,\alpha}(\overline{\Omega})} = \sup_{x,y \in \overline{\Omega}, x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}$$

Definition 7 (Hölder Space). $u \in C^{0,\alpha}(\overline{\Omega})$ if

$$||u||_{C^{0,\alpha}(\overline{\Omega})} \coloneqq \sup_{x \in \overline{\Omega}} \left[|u(x)| + [u]_{C^{0,\alpha}(\overline{\Omega})} \right] < \infty$$

This is a Banach Space.

Note: if $u \in C^{0,\alpha}(\overline{\Omega})$ then u is uniformly continuous.

Example: Suppose $\Omega = [0,1]$ and $u(x) = x^{\beta}$ for any $\beta \in (0,\alpha]$.

It's derivative goes to ∞ but it is still Hölder continuous.

Theorem 9 (Morrey's Inequality). Assume $n . Then <math>\exists C = C(p, n)$ such

$$||u||_{C^{0,\gamma}}(\mathbb{R}^n) \le C||u||_{W^{1,p}}(\mathbb{R}^n)$$

for all $u \in C_0^1(\mathbb{R}^n)$ where $\gamma = 1 - \frac{n}{n}$.

We can approximate so this is also true for $u \in W_0^{1,p}(\Omega)$. Thus, when $u \in W_0^{1,p}(\Omega)$ we can say that u is in fact Hölder continuous.

Proof. We have to prove that both sup and the Hölder quotient are controlled by the Sobolev norm.

Step 1: Claim: There exists C = C(n) such that $\forall x \in \mathbb{R}^n$ such that r > 0,

$$\oint_{B(x,r)} |u(y) - u(x)| \, \mathrm{d}y \le C \int_{B(x,r)} \frac{|\nabla u(y)|}{|y - x|^{n-1}} \, \mathrm{d}y \quad \forall u \in C^1(\mathbb{R}^n)$$

Proof of Claim: Fix x. Fix r. Fix $w \in \partial B(0,1)$. Then

$$|u(x+sw) - u(x)| = \left| \int_0^s \frac{\mathrm{d}}{\mathrm{d}t} u(x+tw) \, \mathrm{d}t \right| \le \int_0^s |\nabla_x u(x+tw)| \cdot \underbrace{|w|}_{-1} \, \mathrm{d}t$$

Integrating over all $w \in \partial B(0,1)$ we get

$$\int_{w \in \partial B(0,1)} |u(x+sw) - u(x)| \, \mathrm{d}S_w \le \int_{w \in \partial B(0,1)} \int_0^s |\nabla_x u(x+tw)| \, \mathrm{d}t \, \mathrm{d}S_w$$

$$= \int_0^s \int_{w \in \partial B(0,1)} |\nabla_x u(x+tw)| \underbrace{t^{n-1} \, \mathrm{d}S_w}_{=\mathrm{d}S \text{ on } \partial B(0,t)} \, \mathrm{d}t$$

Let $y = x + tw \implies t = |y - x|$

$$= \int_{B(x,s)} \frac{|\nabla_y u(y)|}{|y - x|^{n-1}} \, \mathrm{d}y$$
$$\leq \int_{B(x,r)} \frac{|\nabla_y u(y)|}{|y - x|^{n-1}} \, \mathrm{d}y$$

TBC

Friday, 9/13/2024

Continuing Morrey's Inequality.

We had:

$$\int_{\partial B(0,1)} |u(x+sw) - u(x)| \, dS_w \le \int_{B(x,r)} \frac{|\nabla u(y)|}{|y-x|^{n-1}} \, dy$$

Multiplying by s^{n-1} ,

$$\int_{\partial B(0,1)} |u(x+sw) - u(x)| s^{n-1} \, dS_w \le \int_{B(x,r)} \frac{|\nabla u(y)| s^{n-1}}{|y-x|^{n-1}} \, dy$$

Integrating over s from 0 to r,

$$\int_0^r \int_{\partial B(0,1)} |u(x+sw) - u(x)| s^{n-1} \, dS_w \, ds \le \int_0^r \int_{B(x,r)} \frac{|\nabla u(y)| s^{n-1}}{|y-x|^{n-1}} \, dy \, ds$$

$$\int_{0}^{r} \int_{\partial B(x,s)} |u(y) - u(x)| \, dS_{y} \, ds \le \int_{0}^{r} \int_{B(x,r)} \frac{|\nabla u(y)| s^{n-1}}{|y - x|^{n-1}} \, dy \, ds$$

$$\int_{B(x,r)} |u(y) - y(x)| \, dy \le \frac{r^{n}}{n} \int_{B(x,r)} \frac{|\nabla u(y)|}{|y - x|^{n-1}} \, dy$$

$$\frac{1}{\alpha(n)r^{n}} \int_{B(x,r)} |u(y) - y(x)| \, dy \le \frac{1}{n\alpha(n)} \int_{B(x,r)} \frac{|\nabla u(y)|}{|y - x|^{n-1}} \, dy$$

which is the claim.

Step 2: (Bounding $\sup |u|$)

 $\overline{\text{Fix } x} \in \mathbb{R}^n$.

$$\begin{aligned} |u(x)| &= \int_{B(x,1)} |u(x)| \, \mathrm{d}y \\ &\leq \int_{B(x,1)} |u(x) - u(y)| \, \mathrm{d}y + \int_{B(x,1)} |u(y)| \, \mathrm{d}y \end{aligned}$$

First term: apply step 1. Second term: apply Young's inequality

$$|u(x)| \le C \int_{B(x,1)} \frac{|\nabla u(y)|}{|y-x|^{n-1}} \, \mathrm{d}y + C \left(\int 1^{\frac{p}{p-1}} \, \mathrm{d}y \right)^{\frac{p-1}{p}} \left(\int_{B(x,1)} |u(y)|^p \right)^{\frac{1}{p}} (*)$$

Now apply Hölder's inequality on the first part:

$$\int_{B(x,1)} \frac{1}{|x-y|^{n-1}} |\nabla u(y)| \, \mathrm{d}y \le \left[\int_{B(x,1)} \left[\frac{1}{|x-y|^{n-1}} \right]^{\frac{p}{p-1}} \, \mathrm{d}y \right]^{\frac{p-1}{p}}$$

We simplify:

$$\left[\int_{B(x,R)} \left[\frac{1}{|y-x|^{n-1}} \right]^{\frac{p}{p-1}} dy \right]^{\frac{p-1}{p}} = \left[\int_{0}^{R} \int_{\partial B(0,s)} s^{(n-1)\frac{p}{p-1}} dS ds \right]^{\frac{p-1}{p}} \\
= \left[\int_{0}^{R} s^{(n-1)\frac{p}{p-1}} \omega(n) s^{n-1} ds \right]^{\frac{p-1}{p}} = C \left[\int_{0}^{R} s^{n-1-(n-1)\frac{p}{p-1}} ds \right]^{\frac{p-1}{p}} \\
= C \left[R^{n-(n-1)\frac{p}{p-1}} \right]^{\frac{p-1}{p}} = C R^{n\frac{p-1}{p}-(n-1)} = C R^{1-\frac{n}{p}} \quad (**)$$

Applying R = 1 on (**) and substituting to ()*),

 $|u(x)| \le C \|\nabla u\|_{L^p(\mathbb{R}^n)}$

Step 3: Bounding the Hölder quotient $[u]_{C^{0,\gamma}}$:

 $\overline{\text{Fix } x}, y \text{ in } \mathbb{R}^n \text{ and let } r = |x - y|.$

Define $W = B(x, r) \cap B(y, r)$.

[insert picture]

$$|u(x) - u(y)| = \int_{z \in W} |u(x) - u(y)| dz$$

$$\leq \int_{W} |u(x) - u(z)| dz + \int_{W} |u(y) - u(z)| dz$$

Now,

$$\int |u(x) - u(z)| \, \mathrm{d}z \le \frac{1}{|W|} \int_{B(x,r)} |u(x) - u(z)| \, \mathrm{d}z$$

$$\le C(n) \int_{B(x,r)} |u(x) - u(z)| \, \mathrm{d}z$$

Applying the claim,

$$\leq C \int_{B(x,r)} \frac{|\nabla u(z)|}{|x-z|^{n-1}} \,\mathrm{d}z$$

Applying Hölder and (*),

$$\leq C \|\nabla u\|_{L^p(\mathbb{R}^n)} r^{1-\frac{n}{p}}$$

So we're done.

Theorem 10. Let $\Omega \subset \mathbb{R}^n$ be bounded, open with $\partial \Omega \in C^1$. Assume n .Then, $\exists C(n,p,\Omega)$ such that: for every $u \in W^{1,p}(\Omega)$ one has $u \in C^{0,\gamma}(\Omega)$ where $\gamma = 1 - \frac{n}{n}$ and:

$$||u||_{C^{0,\gamma}(\overline{\Omega})} \le C ||u||_{W^{1,p}(\Omega)}$$

So, if our Sobolev L^p space is better than our dimension, our function must be continuous, or even better, Hölder Continuous!

Actually, Sobolev Functions are defined upto a set of measure 0. So, we actually have a continuous representative.

If we have $W^{k,p}$ we can have better statements.

Morrey and G-N-S inequalities can be concatenated.

[See Evans]

Example: Suppose $u \in W^{2,2}(\Omega)$. Suppose $\Omega \subset \mathbb{R}^3$ and bounded.

 $\overline{u \in H^2(\Omega)}$ therefore $u_{x_i} \in W^{1,2}(\Omega)$.

$$p = 2, n = 3$$
. Use GNS. $2^* = \frac{3 \times 2}{3 - 2} = 6$.

Thus, $u_{x_j} \in L^{2^*} = L^6$. Since also $u \in W^{1,2}$, $u \in L^6$. Therefore, $u \in W^{1,6}$. We have jumped above the dimension, since p = 6, n = 3.

n < p so we can use Morrey.

$$\implies u \in C^{0,\gamma}(\Omega) \text{ where } \gamma = 1 - \frac{n}{p} = 1 - \frac{3}{6} = \frac{1}{2}.$$

So, $u \in W^{2,2} \implies u \in C^{0,\frac{1}{2}}(\Omega)$.

Monday, 9/16/2024

Definition 8 (continuously / compactly embedded). Given two Banach spaces X, Ywith $X \subseteq Y$ we say X is continuously embedded in Y if $\exists C > 0$ such that:

$$||x||_Y \le C||x||_X \forall x \in X$$

X is compactly embedded in Y if it is continuously embedded and every bounded sequence in X is pre-compact in Y.

In other words, if every bounded sequence in X has a Y-convergent subsequence. Typically people use $X \subset\subset Y$ to denote this.

Theorem 11 (Rellich-Kondrachov Compactness). Let $\Omega \subset \mathbb{R}^n$ open, bounded with $\partial\Omega\subset C^1$. If $1\leq p< n$ then $W^{1,p}(\Omega)\subset\subset L^q(\Omega)$ for all $q\in[1,p^*)$ [here $p^*=\frac{np}{n-p}$]

Remark: We already have continuous embedding for $q \in [1, p^*]$ by GNS inequality.

Theorem 12 (Hölder Generalization). Assume $1 \le s < r < t \le \infty$ and $1 = \frac{r\theta}{s} +$ $\frac{r(1-\theta)}{t}$ for some $\theta\in(0,1).$ Then, if $u\in L^s(\Omega)\cap L^t(\Omega)$ then $u\in L^r(\Omega)$ and:

$$||u||_{L^r} \le ||u||_{L^s}^{\theta} ||u||_{L^t}^{1-\theta}$$

Proof.

$$\int_{\Omega} |u|^r = \int_{\Omega} |u|^{r\theta} |u|^{(1-\theta)r} \le \left[\int_{\Omega} |u|^{r\theta} \frac{s}{r\theta} \right]^{\frac{r\theta}{s}} \left[\int_{\Omega} |u|^{(1-\theta)r} \frac{t}{r(1-\theta)} \right]^{\frac{r(1-\theta)}{t}}$$
$$= \left[\int_{\Omega} |u|^s \right]^{\frac{r\theta}{s}} \left[\int_{\Omega} |u|^t \right]^{\frac{r(1-\theta)}{t}}$$

Proof of Rellich-Kondrachov. Assume $||u_m||_{W^{1,p}(\Omega)} < C_0$

Step 1: Mollify $u_m \rightsquigarrow u_m^{\epsilon}$ and argue that u_m^{ϵ} approximates u_m [uniformly in m] in L^q .

Step 2: Apply Arzela-Ascoli to $\{u_m^{\epsilon}\}$ for each ϵ fixed.

Step 3: Use diagonalization argument. We control things when m is fixed, we control things when ϵ is fixed so we can vary both.

First extend u_m to be compactly supported in $V' \supset \Omega$. Still have $||u_m||_{W^{1,p}(V')} < \tilde{C}_0$. Now Mollify: $u_m^{\epsilon} := \eta_{\epsilon} * u_m$. $\eta_{\epsilon}(x) = \epsilon^{-n} \eta\left(\frac{x}{\epsilon}\right)$ with $\eta \in C_0^{\infty}$ and $\operatorname{supp}(\eta) \subset B(0,1)$ with $\int \eta = 1$

Note u_m^{ϵ} is compactly supported. Say $\operatorname{supp}(u_m^{\epsilon}) \subset V$. $V' \subset V$.

<u>Claim</u>: $\{u_m^{\epsilon}\}$ converges as $\epsilon \to 0$ to u_m in $L^q(\Omega)$ uniformly in m. That is, we claim: $\forall \delta > 0$ there exists $\epsilon_0 > 0$ such that $\forall \epsilon < \epsilon_0$

$$\|u_m^{\epsilon} - u_m\|_{L^q(V)} < \delta$$

 $\forall m$.

To see this, first assume u_m is smooth.

$$u_m^{\epsilon}(x) - u_m(x) = \int_{B(0,\epsilon)} \eta_{\epsilon}(y) \left(u_m(x-y) - u_m(x) \right) dy$$

Let $z = \frac{y}{\epsilon}$

$$= \int_{B(0,1)} \eta(z) \left[u_m(x - \epsilon z) - u_m(x) \right] dz$$

$$= \int_{B(0,1)} \eta(z) \int_0^1 \frac{d}{dt} u_m(x - \epsilon t z) dt dz$$

$$= -\epsilon \int_{B(0,1)} \eta(z) \int_0^1 \nabla u_m(x - \epsilon t z) \cdot z dt dz$$

$$\leq \epsilon \int_V \int_{B(0,1)} \int_0^1 \eta(z) |\nabla u_m(x - \epsilon t z)| dt dz dx$$

Let $y' = x - \epsilon tz$

$$= \epsilon \int_{\tilde{V}} \int_{B(0,1)} \int_{0}^{1} \eta(z) |u_{m}(y')| dt dz dy'$$
$$= \epsilon \int_{\tilde{V}} |\nabla u_{m}(y')| dy'$$

Apply Hölder:

 $\leq \epsilon C \|\nabla u_m\|_{L^p} \leq \epsilon \tilde{\tilde{C}}_0$

If u_m is not smooth then approximate u_m by \tilde{u}_m smooth such that $\|\tilde{u}_m - u_m\|_{W^{1,p}} < \delta$ for all m. Then,

$$\int_{V} |u_{m}^{\epsilon}(x) - u_{m}(x)| \, \mathrm{d}x \le$$

$$\int_{V} |u_{m}^{\epsilon}(x) - \tilde{u}_{m}(x)| \, \mathrm{d}x + \int_{V} |\tilde{u}_{m}(x) - u_{m}(x)| \, \mathrm{d}x < \delta + \delta$$

Now apply interpolation:

$$||u_m^{\epsilon} - u_m||_{L^q(V)} \le ||u_m^{\epsilon} - \tilde{u}_m||_{L^1}^{\theta} ||\tilde{u}_m - u_m||_{L^{p^*}}^{1-\theta}$$

Here
$$s=1, t=p^*$$

$$\frac{1}{q} = \frac{\theta}{1} + \frac{1-\theta}{p^*}$$

Recall GNS gave us $||u_m^{\epsilon} - u_m||_{L^q(V)} \leq \tilde{C}_0$

Wednesday, 9/18/2024

$$|u_m^{\epsilon}| \le \int_V \epsilon^{-n} \eta \left(\frac{x-y}{\epsilon}\right) |u_m(y)| \, \mathrm{d}y$$
$$\le \epsilon^{-n} \int_V |u_m(y)| \, \mathrm{d}y$$

$$\leq \epsilon^{-n} \|u_m\|_{W^{1,p}(V)} < \text{constant}$$

Note that

$$\nabla u_m^{\epsilon}(x) = \int_V \epsilon^{-n} \nabla \eta \left(\frac{x - y}{\epsilon} \right) \frac{1}{\epsilon} u_m(y) \, \mathrm{d}y$$
$$|\nabla u_m^{\epsilon}(x)| \le \int_V \epsilon^{-n} \left| \nabla \eta \left(\frac{x - y}{\epsilon} \right) \right| \frac{1}{\epsilon} |u_m(y)| \, \mathrm{d}y$$
$$\le \epsilon^{-(n+1)} \sup |\nabla \eta| \int |u_m(y)| \, \mathrm{d}y$$

$$\leq \epsilon^{n+1} \sup |\nabla \eta| ||u_m||_{W^{1,p}(V)} \leq \text{constant}$$

Therefore, u_m^{ϵ} is equi-Lipschitz and thus equicontinuous.

Step 3:

 $\overline{\text{Claim}}$: We can find a subsequence $\{u_{m_i}\}$ of the u_m so that:

$$\limsup_{j,k\to\infty} ||u_{m_j} - u_{m_k}||_{L^q(V)} < \delta$$

Use step 1 to find ϵ such that $\|u_m^\epsilon - u_m\|_{L^q(V)} < \frac{\delta}{2}$ for all m. Apply Arzela-Ascoli for that ϵ to get subsequence u_{m_j} such that:

$$\limsup_{j,k\to\infty} \|u_{m_j}^{\epsilon} - u_{m_k}^{\epsilon}\| \to 0$$

$$\implies \|u_{m_j}^{\epsilon} - u_{m_k}^{\epsilon}\|_{L^q(V)} = 0$$

Therefore,

$$\|u_{m_j} - u_{m_k}\|_{L^q(V)} \le \|u_{m_j} - u_{m_j}^{\epsilon}\|_{L^q} + \|u_{m_j}^{\epsilon} - u_{m_k}^{\epsilon}\|_{L^q} + \|u_{m_k}^{\epsilon} - u_{m_k}\|_{L^q}$$

Take $\limsup_{j,k\to\infty}$ to see $<\frac{\delta}{2}+0+\frac{\delta}{2}=\delta$

Then take $\delta=1,\frac{1}{2},\frac{1}{4}\cdots$ [subsequences of subsequences] to get $u_{m_{l_k}}\overset{L^q}{\to}\overline{u}$.

<u>Remark</u>: What if $||u_m||_{W^{1,p}(\Omega)} < C_0$ with n < p? Morrey's inequality gives us:

$$||u_m||_{C^{0,\alpha}} \leq \text{constant}$$

$$|u_m(x) - u_m(y)| \le C|x - y|^{\alpha}$$

Thus we also have equicontiunity.

Elliptic PDE Definition

Suppose u = density, amount/volume, $u = u(x, t), x \in \mathbb{R}^3$. Let $\Omega \subset \mathbb{R}^3$ be any domain where the whole process is taking place. Suppose we want to know the amount of stuff in Ω in time t. It is:

$$\int_{\Omega} u(x,t) \, \mathrm{d}x$$

Now we ask: how does it change w.r.t. time?

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} u(x,t) \,\mathrm{d}x$$

This depends on the stuff enterring or exiting [= flux accross $\partial\Omega$] + sources/sinks. What is flux? It must be a vector $\vec{Q}(x,t)$. So, total contribution of flux is:

$$-\int_{\partial\Omega} \vec{Q}(x,t) \cdot \nu \, \mathrm{d}S$$

Plus sources/sinks density.

$$+\int_{\Omega} F(x,t) \,\mathrm{d}x$$

Thus we have,

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{\Omega} u(x,t) \, \mathrm{d}x = - \int_{\partial \Omega} \vec{Q}(x,t) \cdot \nu \, \mathrm{d}S + \int_{\Omega} F(x,t) \, \mathrm{d}t$$

The choice of flux \vec{Q} distinguishes different physical settings. Let's rewite our equation as 1 volume integral.

$$\int_{\Omega} \left[u_t(x,t) + \operatorname{div} \vec{Q}(x,t) - F(x,t) \right] dx = 0$$

This is true for arbitrary Ω so we have:

$$u_t = -\operatorname{div}(\vec{Q}) + F$$

Naturally, we pick Q to model a diffusion process.

If there's a lot of stuff 'inside' then stuff will go outside and vice versa. So, we can take,

$$\vec{Q} = -k\nabla u$$

Or more generally,

$$\vec{Q} = -A(x)\nabla u$$

where A is positive definite 3×3 matrix.

For $Q = -k\nabla u$ we have:

$$u_t = \operatorname{div}(k\nabla u) + F = k\Delta u + F$$

which is the heat equation.

For $Q = -A(x)\nabla u$,

$$u_t = \operatorname{div}(A(x)\nabla u) + F$$

This is a model where stuff 'smooths out / settles down'.

As $t \to \infty$ we expect $u(x,t) \to \tilde{u}(x)$.

In that case, $-\operatorname{div}(A(x)\nabla u) = F$.

If A has entries $a_{ij}(x)$, then,

$$\operatorname{div}(A(x)\nabla u) = \sum_{i,j} \frac{\partial}{\partial x_i} (a_{ij}(x)u_{x_j})$$

This is an elliptic operator [if $a_{ij} = a_{ji}$, A positive definite]. This is the divergence form.

Friday, 9/20/2024

Assume A is symmetric. We define the linear elliptic operator L by:

- i) $Lu = -\frac{\partial}{\partial x_i} (a_{ij}u_{x_i}) + b_i(x)u_{x_i} + c(x)u$ [divergence form elliptic operator]
- ii) $Lu = -a_{ij}(x)u_{x_ix_j} + b_i(x)u_{x_i} + c(x)u$ [non divergence form] where $b_i: \Omega \to \mathbb{R}, i = 1, \dots, n, c: \Omega \to \mathbb{R}, \Omega \subset \mathbb{R}^n$. If a_{ij} are C^1 then $a_{ij}(x)u_{x_ix_j} = \frac{\partial}{\partial x_j}(a_{ij}(x)u_{x_i}) \frac{\partial}{\partial x_j}(a_{ij}(x)u_{x_i})$ $\left(\frac{\partial}{\partial x_i}a_{ij}(x)\right)u_{x_i}$

Why elliptic? $A = (a_{ij})$ and $a_{ij}(x)\xi_i\xi_j \ge \theta|\xi|^2 \quad \forall \xi \in \mathbb{R}^n$ for some $\theta > 0$.

Definition 9. We say $u \in H_0^1(\Omega)$ [same as $W_0^{1,2}$] is a weak solution to the equation Lu = f for some $f \in L^2(\Omega)$ and u = 0 on $\partial\Omega$ [homogeneous Dirichlet condition] if:

$$\int_{\Omega} A \nabla u \cdot \nabla v \, dx + \int_{\Omega} b_i(x) u_{x_i} v \, dx + \int_{\Omega} c(x) u v \, dx = \int_{\Omega} v f \, dx \quad (*)$$

for all $v \in H_0^1(\Omega)$.

Definition 10. We say $u \in H^1(\Omega)$ is a weak solution to

$$\begin{cases} Lu = f, & \text{in } \Omega; \\ A\nabla u \cdot \nu_{\partial\Omega} = 0, & \text{on } \partial\Omega \end{cases}$$

[Neumann boundary condition] if (*) holds for all $v \in H^1(\Omega)$.

Suppose

$$\int_{\Omega} a_{ij}(x)u_{x_i}v_j + b_i(x)u_{x_i}v + cuv\,dx + \int_{\partial\Omega} vA\nabla u \cdot \nu\,dx = \int_{\Omega} fv\,dx \quad (**)$$

why? Suppose u was a classical solution. Then integrating by part yields the second equation.

Functional Analysis

Background on Hilbert Spaces

Recall: a Hilbert Space H is a Banach space [normed and complete] that posses an inner product $(\cdot,\cdot)_H$ such that $\|\cdot\|$ is inherited from the inner product.

Basically: complete space with inner product.

Example: \mathbb{R}^n with dot product, $L^2(\Omega)$ with $(u, v)_{L^2} = \int_{\Omega} uv \, dx$ Or, $H^1(\Omega)$ with $(u, v)_H = \int_{\Omega} uv \, dx + \int_{\Omega} \nabla u \cdot \nabla v \, dx$ Or, most importantly, in $H^1_0(\Omega)$ we have $(u, v)_{H^1_0} = \int_{\Omega} \nabla u \cdot \nabla v \, dx$ By Poincare, then $C_1 ||u||_{H^1}^2 \leq ||u||_{H^1_0}^2 = \int_{\Omega} |\nabla u|^2 \, dx \leq C_2 ||u||^2$ Given $u, v \in H$ we'll say u is orthogonal to v if (u, v) = 0.

Given a subspace $M \subset H$, we'll write $M^{\perp} := \{v \in H : (u,v) = 0 \forall u \in M\}$

Proposition 1. Let $M \subset H$ be a closed subspace of H. Then $\forall x \in H, \exists y \in M, z \in H$ M^{\perp} such that x = y + z.

Proof. Idea: y is the point closest to x in M. Consider $x \notin M$. Define

$$d = \inf_{x' \in M} \|x - x'\|$$

Then there must be a sequence $\{y_n\} \subset M$ such that $||x - y_n|| \to d$. Recall:

$$||X - Y||^2 + ||X + Y||^2 = 2||X||^2 + 2||Y||^2$$

Pick $X = x - y_n, Y = x - y_m$. Then,

$$||y_m - y_n||^2 + 4 ||x - \frac{1}{2}(y_n + y_m)||^2 = 2||x - y_n||^2 + 2||x - y_m||^2$$

Therefore,

$$4d^{2} + ||y_{n} - y_{m}||^{2} \le 2||x - y_{n}||^{2} + 2||x - y_{m}||^{2}$$

$$||y_n - y_m||^2 \le 2||x - y_n||^2 + 2||x - y_m||^2 - 4d^2$$

Taking limsup we see that $\{y_n\}$ is cauchy.

Define z = x - y. It is easy to see that $z \in M^{\perp}$.

Monday, 9/23/2024

Divergence from Linear Elliptic Operator

$$L(u) = -\frac{\partial}{\partial x_j} (a_{ij}(x)u_{x_i}) + b_i(x)u_{x_i} + c(x)u$$

Uniform ellipticity:

 $a_{ij} = a_{ji}$ symmetric

 $a_{ij}(x)\xi_i\xi_j \ge \theta|\xi|^2\forall\xi\in\mathbb{R}^n\forall x\in\Omega \text{ for some }\theta>0.$

Meaning minimum eigenvalue is uniformly bigger than some θ

Review: $u \in H_0^1(\Omega)$ is a weak solution to Lu = f in Ω for $f \in L^2(\Omega)$ and u = 0 on $\partial\Omega$ if:

$$B(u,v) := \int_{\Omega} \left[a_{ij}(x) u_{x_i} v_{x_j} + b_i(x) u_{x_i} v + c(x) uv \right] dx = \int_{\Omega} f v dx \, \forall v \in H_0^1(\Omega)$$

u is a weak solution to Lu = f in Ω and $A\nabla u \cdot \nu_{\partial\Omega} = 0$ on $\partial\Omega$ if

$$B(u,v) = \int_{\Omega} fv \, \mathrm{d}x \, \forall v \in H^1(\Omega)$$

Note that B is a bilinear form.

Definition 11. A bounded linear operator $L: X \to Y$ that is <u>linear</u> that satisfies:

$$||L|| := \sup_{||x||_X \le 1} ||L(x)||_Y < \infty$$

For linear operators, boundedness is the same as continuity.

Definition 12. A bounded linear functional on X is a bounded linear operator $L: X \to \mathbb{R}$

<u>Notation</u>: If u^* is a bounded linear functional we'll often write $\langle u^*, x \rangle$ for the evaluation of u^* at x.

$$||u^*|| = \sup_{||x|| \le 1} \langle u^*, x \rangle$$

Definition 13. The dual of a Banach Space X is the set of bounded linear functionals on X. Notation: X^*

Theorem 13 (Riesz Representation Theorem). Assume H is a Hilbert space with inner product (\cdot, \cdot) .

For every bounded linear functional $u^*: H \to \mathbb{R}$ there exists a unique $u \in H$ such that $(u^*, v) = (u, v) \forall v \in H \text{ and } ||u^*|| = ||u||$

Proof. Suppose $u^* \in H^*$.

Let N be the nullspace of u^* :

$$N = \{ v \in H : \langle u^*, v \rangle = 0 \}$$

If N = H then $\langle u^*, - \rangle = 0$ so u must be 0. Assume N is a proper subspace. N must be closed since u^* is continuous.

Fix $z \in N^{\perp}$, $\langle u^*, z \rangle \neq 0$. Then $\forall x \in H$ we have:

$$\left\langle u^*, x - \frac{\langle u^*, x \rangle}{\langle u^*, z \rangle} z \right\rangle = \langle u^*, x \rangle - \langle u^*, x \rangle = 0$$

Thus, $x - \frac{\langle u^*, x \rangle}{\langle u^*, z \rangle} \in N$.

$$\left(x - \frac{\langle u^*, x \rangle}{\langle u^*, z \rangle} z, z\right) = 0$$

$$\implies (x, z) = \frac{\langle u^*, x \rangle}{\langle u^*, z \rangle} ||z||^2$$

$$\implies \langle u^*, x \rangle = \left(\frac{\langle u^*, z \rangle}{||z||^2} z, x\right)$$

We just take $u := \frac{\langle u^*, z \rangle}{\|z\|^2} z$ Uniqueness: if $\langle u^*, x \rangle = (u_1, x) = (u_2, x)$ then $(u_1 - u_2, x) = 0$, choose $x = u_1 - u_2$ to deduce that $u_1 = u_2$.

$$||u^*|| = \sup_{||x|| \le 1} \langle u^*, x \rangle = \sup_{||x|| \le 1} (u, x) \le \sup_{||x|| \le 1} ||u||_H ||x||_H \le ||u||_H$$

On the other hand,

$$||u|| = \frac{(u,u)}{||u||} = \left\langle u^*, \frac{u}{||u||} \right\rangle \le ||u^*||$$

Thus $||u|| = ||u^*||$

Solving a PDE [finally]

Poisson: Find a weak solution to $-\Delta u = f$ where $f \in L^2(\Omega)$ in Ω and u = 0 on $\partial\Omega$ We seek $u \in H_0^1(\Omega)$ satisfying

$$B(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} fv \, dx \, \forall v \in H_0^1(\Omega)$$

Recall: By Poincaré's inequality, an inner product for H_0^1 can be taken as:

$$(u,v)_{H_0^1} = \int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x$$

We seek u such that:

$$(u,v)_{H_0^1} = \int_{\Omega} fv \, \mathrm{d}x \, \forall v \in H_0^1(\Omega)$$

Existence of unique u follows from Riesz Representation. We just need to show that $v \mapsto \int_{\Omega} f v \, dx$ is a bounded linear functional on $H_0^1(\Omega)$. It is obviously linear.

$$\sup_{\|v\|_{H_0^1} \le 1} \int_{\Omega} f v \, \mathrm{d}x \le \sup_{\|v\|_{H_0^1} \le 1} \|f\|_{L^2} \|v\|_{L^2} \le c_p \cdot 1 \|f\|_{L^2}$$

Where c_p is the Poincaré constant: $\int u^2 \le c_p \int |\nabla u|^2 \, \forall u \in H_0^1$

Wednesday, 9/25/2024

Last time, we used Riesz Representation Theorem to get existene of a weak solution to Lu=f in Ω and u=0 on $\partial\Omega$

for
$$Lu = -\frac{\partial}{\partial x_j}(a_{ij}(x)u_{x_i}) = f$$

 a_{ij} elliptic.

Weak formulation: seek $u \in H_0^1(\Omega)$ such that:

$$B[u,v] \coloneqq \int_{\Omega} a_{ij} u_{x_i} v_{x_j} \, \mathrm{d}x = \int_{\Omega} f v \, \mathrm{d}x \quad \forall v \in H^1_0(\Omega)$$

For $-\Delta u = f$ we seek u such that $B[u,v] = \int_{\Omega} \nabla u \cdot \nabla v$ where $B[u,v] = (u,v)_{H_0^1(\Omega)}$ How do we obtain a weak solution for

$$Lu := -\frac{\partial}{\partial x_j} \left(a_{ij}(x)u_{x_i} \right) + b_i(x)u_{x_i} + c(x)u = f$$

Consider:

$$B[u, v] = \int_{\Omega} a_{ij} u_{x_i} v_{x_j} + b_i(x) u_{x_i} v + c(x) u v \, \mathrm{d}x$$

Not symmetric so not an inner product but that's not the only problem. Consider 1-dim.

$$-u'' - u = 1 \quad \Omega = (0, \pi)$$

 $u(0) = u(\pi) = 0.$

Suppose u solves this.

Multiply the ODE by $\sin x$ and integrate.

$$\int_0^{\pi} -\sin x \cdot u'' - \sin x \cdot u \, \mathrm{d}x = \int_0^{\pi} \sin x \, \mathrm{d}x = 2$$

Note

$$\int_0^{\pi} -\sin x \cdot u'' \, dx = \left[-\sin x \cdot u' \right]_0^{\pi} - \int_0^{\pi} \cos x \cdot u' \, dx = \left[-\cos x \cdot u \right]_0^{\pi} + \int_0^{\pi} \sin x \cdot u \, dx$$

Therefore, by plugging it into the original argument,

$$0 = 2$$

Thus we don't have solutions! Today: Lax-Milgram Lemma

Theorem 14 (Lax-Milgram Lemma). Assume $B: H \times H \to \mathbb{R}$ is a bilinear form on a hilbert space H. Suppose,

- i) $\exists \alpha > 0$ such that $B(u, v) \leq \alpha ||u|| \cdot ||v|| \forall u, v \in H$
- ii) $\exists \beta > 0$ such that $B[u, u] > \beta ||u||^2$

Then we have the same conclusion as Riesz: $\forall f \in H^* \exists ! u \in H$ such that $B[u,v] = \langle f,v \rangle \forall v \in H$

Proof. For any fixed $u \in H$ consider the map $v \mapsto B[u, v]$.

It is a bounded linear functional in H.

Apply Riesz Representation: for each fixed u there exists unique $w \in H$ such that $B[u,v]=(w,v)\forall v.$

We write Au = w

Then B[u, v] = (Au, v)

<u>Claim</u>: $A: H \to H$ is linear, bounded, 1-1

Linearity: $B[c_1u_1 + c_2u_2, v] = (A(c_1u_1 + c_2u_2), v)$

 $= c_1 B[u_1, v] + c_2 B[u_2, v] = c_1 A(u_1, v) + c_2 A(u_2, v).$

A is bounded since $||Au||^2 = (Au, Au) = B[u, Au] \le \alpha ||u|| ||Au||$

A is 1-1 since $\beta ||u||^2 \le B[u, u] = (Au, u) \le ||Au|| ||u||$

So $\beta ||u|| \le ||Au||$

So, if $u \neq 0$ we have $Au \neq 0$ so 0 is the only element in the kernel, so it is 1-1.

Claim: range of A, R(A) is closed.

Consider $\{w_i\} \subset R(A)$. Suppose $w_i \to w$. $\exists \{u_i\} \subset H$ so that $Au_i = w_i$

Since w_j are cauchy, u_j are cauchy:

 $||w_j - w_k|| = ||Au_j - Au_k|| \ge \beta ||u_j - u_k||$

 $\implies u_j$ are cauchy. So $u_j \to u \in H$ and by continuity $Au_j \to Au = w$ and thus R(A) is closed.

Claim: R(A) = H.

If not, apply projection lemma. $\exists w \in R(A) \perp \text{ so that } w \neq 0$.

$$\beta ||u||^2 \le B[w, w] = (Aw, w)$$

Since $Aw \in R(A)$ we have the inner product is 0 and thus w = 0.

Now, let $f \in H^*$ be any bounded linear functional. Apply Riesz to show that there exists unique $w \in H$ such that $\langle f, v \rangle = (w, v) = (Au, v) = B[u, v]$ for unique u.

Theorem 15. For $Lu = -\frac{\partial}{\partial x_j}(a_{ij}(x)u_{x_i}) + b_i(x)u_{x_i} + c(x)u$ with a_{ij} elliptic and with $a_{ij}, b_i, c \in L^{\infty}(\Omega)$.

Then there exists a number $\gamma > 0$ such that $\forall \mu \geq \gamma$: a weak $H_0^1(\Omega)$ solution exists to:

$$Lu + \mu u = f \text{ in } \Omega$$

$$u = 0$$
 on $\partial \Omega$

 $\forall f \in L^2(\Omega)$

Proof. We just apply Lax-Milgrim We will prove:

- i) $|B[u,v]| \le \alpha ||u||_{H_0^1} ||v||_{H_0^1}$
- ii) $B[u, u] + \gamma ||u||_{L^2}^2 \ge \beta ||u||_{H^1}^2$

First Condition: Need to check $B[u,v] \leq \alpha ||u||_{H_0^1} ||v||_{H_0^1}$ for some α

$$B[u,v] = \int_{\Omega} a_{ij}(x)u_{x_i}v_{x_j}b_i(x)u_{x_i}v + c(x)uv \,dx$$

$$\leq B[u,v] \leq \int_{\Omega} n^2 M|\nabla u||\nabla v| + nM|\nabla u||v| + M|u||v| \,dx$$

$$\leq n^2 M||u||_{H_0^1}||v||_{H_0^1} + nM||u||_{H_0^1}||v||_{L^2} + M||u||_{L^2}||v||_{L^2}$$

Apply Poincaré

$$\leq \alpha \|u\|_{H_0^1} \|v\|_{H_0^1}$$

So we have the first condition.

Friday, 9/27/2024

Now we check the second condition.

$$B[u, u] = \int_{\Omega} a_{ij}(x)u_{x_i}u_{x_j} + b_i(x)u_{x_i}u + c(x)u^2 dx$$

Use the fact that a_{ij} is elliptic, meaning $a_{ij}(x)\zeta_i\zeta_j \ge \theta|\zeta|^2$

$$\geq \theta \int_{\Omega} |\nabla u|^2 - nM|\nabla u||u| - M|u|^2 dx$$

We don't have to worry about the $-M|u|^2$ because we can choose γ . We need to deal with $-nM|\nabla u||u|$.

Recall that AM-GM implies:

$$\varepsilon^{2}a^{2} + \frac{1}{4\varepsilon^{2}}b^{2} \ge ab$$

$$\ge \theta \int_{\Omega} |\nabla u|^{2} - nM \left(\varepsilon |\nabla u|^{2} + \frac{1}{4\varepsilon^{2}}|u|^{2}\right) - M|u^{2}| \, \mathrm{d}x$$

$$\ge \theta \int_{\Omega} (1 - nM\varepsilon) |\nabla u|^{2} - \left(M + \frac{nM}{4\varepsilon^{2}}\right) |u|^{2} \, \mathrm{d}x$$

We can choose ε so that $nM\varepsilon = \frac{\theta}{2}$ and then choose appropriate γ . So we're done.

Theorem 16. For L as defined, $\forall \mu \geq \gamma \, \forall f \in L^2(\Omega)$ there exists a unique weak solution to $L_{\mu}u = f, u = 0$ on $\partial\Omega$ where $L_{\mu} := L + \mu$

Proof. Lax-Milgrim: $B_{\mu}[u,v] := B[u,v] + \mu \int uv$ so L_{μ} has inverse.

Functional Analysis

Definition 14 (Adjoint). Given a bounded linear operator on Hilbert spaces

$$A: H \to H$$
 H is a Hilbert space

The adjoint of A is the bounded linear operator $A^*: H \to H$ defined by:

$$(x, A^*y) = (Ax, y) \quad \forall x, y \in H$$

If $A = A^*$ we say A is self-adjoint.

Example: If $H = \mathbb{R}^n$ then A is a matrix and A^* is the transpose.

Definition 15 (Compact bounded linear operator). Let X, Y be Banach spaces. A bounded linear operator $K: X \to Y$ is <u>compact</u> if for every sequence $\{x_j\} \subset X$ such that $\|x_j\|_X$ is uniformly bounded then there exists a subsequence and $y \in Y$ such that:

$$Kx_{i_l} \to y$$

Example: Suppose X = C([0,1]) and $Y = C^1([0,1])$. $\forall f \in X$ define Kf = u provided u solves u'' = f on (0,1) and u(0) = 0, u'(0) = 0. We have a formula:

$$u(x) = \int_0^x \int_0^y f(s) \, \mathrm{d}s \, \mathrm{d}y$$

Suppose $||f_j||_{C([0,1])} \leq M$. Then,

$$u_j(x) = \int_0^x \int_0^y f_j(s) \, ds \, dy$$
$$|u_j| \le M$$

$$|u_j'| \le \left| \int_0^x f_j(s) \, \mathrm{d}s \right| \le M$$

$$||u_j''|| = ||f_j|| \le M$$

Apply Arzela Ascoli to find:

$$u_{j_k} \stackrel{C^1}{\to} u_0$$

Thus K must be compact.

Theorem 17 (Fredhome Alternative). Assume $K: H \to H$ is a compact operator on a Hilbert space. Then either:

- i) The homogeneous equation x Kx = 0 has a non-trivial solution. OR
- ii) $\forall y \in H, \exists ! x \in H \text{ such that } x Kx = y$

Proof. There are 4 steps.

Step 1: Instead of x - Kx we write S := I - K. N(S) denotes the nullspace of S. $\overline{\text{Claim}}$: $\exists C \text{ such that:}$

$$dist(x, N(S)) < C||Sx|| \forall x \in H$$

<u>Proof</u>: Suppose we cannot find such a C. Then we can find a sequence $\{\tilde{x}_k\}\subset H$ such that:

$$\operatorname{dist}(\tilde{x}_k, N(S)) > k || S\tilde{x}_k ||$$

Replace with $x_k = \frac{\tilde{x}_k}{\|S\tilde{x}_k\|}$. Then $\|Sx_k\| = 1$ and

$$d_k := \operatorname{dist}(x_k, N(S)) \to \infty$$

Thus, we can find $\{y_k\} \subset N(S)$ such that:

$$d_k \le ||x_k - y_k|| \le 2d_k$$

define
$$z_k \coloneqq \frac{x_k - y_k}{\|x_k - y_k\|}$$
 and so $\|z_k\| = 1$.
But $\|Sz_k\| = \frac{1}{d_k} \|Sx_k - Sy_k\| = \frac{1}{d_k} \|Sx_k\| = \frac{1}{d_k} \to 0$
Therefore $Sz_k \to 0$

K is compact, so we have subsequence $Kz_{k_i} \to y_0 \in H$.

 $S_{z_{k_j}} \to 0 \implies z_{k_j} - K z_{k_j} \to 0$ and since $K_{z_{k_j}} \to y_0$ we have $z_{k_j} \to y_0$. Since $Sz_{k_j} = 0$ we have $Sy_0 = 0$ by continuity. Thus $y_0 \in N(S)$

However,
$$\operatorname{dist}(z_{k_j}, N(S)) = \inf_{y \in N(S)} ||z_{k_j} - y|| = \inf_{y \in N(S)} \left\| \frac{x_{k_j} - y_{k_j}}{||x_{k_j} - y_{k_j}||} - y \right\|$$

$$= \frac{1}{||x_{k_j} - y_{k_j}||} \inf_{y \in N(S)} ||x_{k_j} - (\underbrace{y ||x_{k_j} - y_{k_j}|| + y_k}_{\in N(S)})||$$

$$\geq \frac{1}{\|x_{k_j} - y_{k_j}\|} d(x_{k_j}, N(S)) \geq \frac{d_{k_j}}{2d_{k_j}} = \frac{1}{2}$$

 z_{k_i} converges to something in N(S) but is a set distance away from N(S), which is impossible. Thus we have proved the claim.

Monday, 9/30/2024

Step 2: Claim: Let R(S) = range of S. Then, R(S) is a closed subspace of H.

<u>Proof</u>: Consider a sequence $\{x_k\} \subset H$ so that $Sx_k \to y$ for some y. We must show that $y \in R(S)$.

From step 1, define $d_k := \operatorname{dist}(x_k, N(S)) \le C ||Sx_k|| \to ||y||$.

 d_k is uniformly bounded.

By projection theorem, we can find:

$$d_k = \|\underbrace{x_k - y_k}\|$$
 $y_k = \text{closest point to } x_k \text{ in } N(S).$

Then $||w_k|| \leq \text{const.}$

Since K is compact, $Kw_{k_i} \to w_0 \in H$

Thus, $Sx_{k_j} = x_{k_j} - Kx_{k_j} \to y$

Thus, $x_{k_i} \to y + w_0$

Since S is continuous, $S(y + w_0) = y$

So, $y \in R(S)$.

Step 3: If $N(S) = \{0\}$ then R(S) = H.

Let $R_i = \text{range of } S^j [= S(S(\cdots S(H)))].$

By Step 2, $\{R_i\}$ is a sequence of closed subspaces. Furthermore, it is non-increasing. We claim that it eventually stabilizes.

Suppose, for contradiction, the sequence keeps decreasing.

By projection theorem, $\forall j \exists y_i \in R_i$ such that $||y_i|| = 1$ and $\operatorname{dist}(y_i, R_{i+1}) \geq \frac{1}{2}$.

Let n > m. We look at $Ky_m - Ky_n$.

$$Ky_m - Ky_n = (I - S)y_m - (I - S)y_n = y_m - (Sy_m - Sy_m + y_n) + (Sy_m - Sy_m + Sy_m) + (Sy_m - Ky_m) + ($$

Thus, $||Ky_m - Ky_n|| \ge \frac{1}{2}$.

This contradicts the compactness of K.

Therefore, $\exists k \text{ such that } R_j = R_k \forall j > k.$

So, assume $N(S) = \{0\}$. Let $y \in H$.

We have $S^k y \in R_k = R_{k+1}$. Therefore, $S^k y = S^{k+1} x$ for some x.

Therefore, $S^k(y - Sx) = 0$.

Since $N(S) = \{0\}$ we have y = Sx.

Step 4. If R(S) = H then $N(S) = \{0\}$.

Let $N_j := \text{nullspace of } S^j$. Now, N_j is a non-decreasing sequence of closed subspaces.

<u>Claim</u>: $\exists k$ such that $N_j - N_k \forall j > k$. Argue by contradiction as before.

Assume R(S) = H.

 $\forall y \in N_k, S^k y = 0$ and furthermore $\exists x_1$ such that $y = Sx_1$. Repeating, $y = S^k x$.

So, $S^{2k}x = 0$. Since null space stabilzes after k we have $S^kx = 0$. Therefore y = 0.

Thus $N_k = \{0\} \implies N(S) = \{0\}.$

In case ii why is $(I - K)^{-1}$ bounded?

Use Step 1: $dist(x, N(S)) \le C||Sx|| = C||(I - K)x||$

For ii we have $N(S) = \{0\}$ so:

$$||x|| \le C||Sx||$$

Writing Sx = y,

$$||(I - K)^{-1}y|| \le C||y||$$

Given a bounded linear operator $T: H \to H$ [could be a normed linear space as well],

Definition 16. The resolvent set of T is:

$$\rho(T) = \{ \lambda \in \mathbb{R} : T - \lambda I \text{ is bijective} \}$$

The spectrum of T is:

$$\sigma(T) = \mathbb{R} \setminus \rho(T)$$

We can substitute real for complex.

Definition 17. $\lambda \in \sigma(T)$ is called an eigenvalue of T if $\exists x \in H$ such that $Tx = \lambda x$.

<u>Note</u>: $(\sigma(T) \setminus \{\text{eigenvalues}\})$ is called the continuous spectrum.

Wednesday, 10/2/2024

$$Lu := -(a^{ij}u_{x_i})_{x_i} + b^i(x)u_{x_i} + c(x)u$$

$$a^{ij} = a^{ji}, a^{ij}(x)\zeta_i\zeta_j \ge \theta|\zeta|^2, \theta > 0$$

$$a^{ij}, b^i, c \in L^{\infty}$$

Recall that adjoint is defined by

$$(Ax, y) = (x, A^*, y)$$

Can we find the adjoint of L? Formal Adjoint of $L: L^*$

$$(Lu, v)_{L^2} = (u, L^*v)_{L^2}$$

$$(Lu, v)_L^2 = \int_{\Omega} -(a^{ij}u_{u_{x_i}})_{x_j}v + b^i u_{x_i}v + cuv \,dx$$
$$= \int_{\Omega} a^{ij}u_{x_i}u_{x_j} - \operatorname{div}(v\vec{b})u + cuv \,dx$$

$$= \int_{\Omega} -(a^{ij}v_{x_i})_{v_{x_j}} u - b^i v_{x_i} cx \, \mathrm{d}x = \int_{\Omega} -b^i v_{x_i} - b^i_{x_i} - b^i_{x_i} v + cv \, \mathrm{d}x$$

Define that to be L^*v

Lemma: $R(I+K) = N(I+K^*)$

Proof.
$$w \in N(I + K^*)o_p$$

$$\iff$$
 $(x, (I + K^*)w = 0) \ \forall x \in H$

$$\iff ((I+K)x,w) = 0 \ \forall x \in H$$

$$\iff \widetilde{w} \in R(I + K) \perp.$$

Theorem 18. For L as defined, for $\Omega \subset \mathbb{R}^n$ bounded, $\partial \Omega \in C^1$, then either:

- i) \exists weak $H_0^1(\Omega)$ solution to Lu = 0, u = 0 on $\partial\Omega$.
- ii) $\forall f \in L^2(\Omega) \exists !$ weak $H_0^1(\Omega)$ solution to Lu = f, u = 0 on $\partial \Omega$

Furthermore if i holds thereen Lu = f, u = 0 on $\partial\Omega$ has a weak solution \iff $(f,v)_{L^2} = 0 \forall v$ such that $L^*v = 0, v = 0$ in $\partial\Omega$.

Example: $-u'' - u = \sin x$ and $u(0) = u(\pi) = 0$.

 $\overline{\text{Here } Lu} = -u'' - u.$ We found $\not\exists$ solution.

Note that L has non-trivial nullspace. $\sin x$ is in the nullspace.

$$\int \sin x \cdot \sin x \neq 0$$

Theorem not applicable.

Proof. Recall $\exists \gamma > 0$ such that

$$B_{\gamma}[u,v] = B[u,v] + \gamma \int_{\Omega} uv$$

where:

$$B(u,v) := \int_{\Omega} (a^{ij}u_{x_i}v_{x_j} + b^iu_{x_i}v + cuv) \,\mathrm{d}x$$

We can apply Lax-Milgrim to obtain a unique weak solution to $L_{\gamma}u=f$ where $L_{\gamma}u=Lu+\gamma u$. ch that: So $B_{\gamma}[u,v]=(f,v)\forall v\in H^1_0(\Omega)$ We say $L_{\gamma}^{-1}=u$ if this holds.

We seek a function $u \in H_0^1(\Omega)$ such that:

$$B_{\gamma}[u,v] = (f,v)_{L^2} + \gamma(u,v)_{L^2}$$

We want u such that:

$$u = L_{\gamma}^{-1}(f + \gamma u) = \underbrace{L_{\gamma}^{-1}(f)}_{=h} + \gamma L_{\gamma}^{-1}(u)$$

Note: $L_{\gamma}^{-1}: L^2 \to H_0^1 \text{ or } L_{\gamma}^{-1}: L^2 \to L^2$ Let $h:=L_{\gamma}^{-1}(f)$.

So we're trying to solve $u - \gamma L_{\gamma}^{-1}(u) = h$.

Define $K := \gamma L_{\gamma}^{-1}$ So we want to solve (I - K)u = h $K : L^2 \to L^2$.

We want to use Lax Milgrim. Why must K be bounded?

Let $g \in L^2(\Omega), \frac{1}{\gamma}K(g) = L_{\gamma}^{-1}(g) =: u$

 $||K(g)||_{H_0^1} = ||\gamma u|| H_0^1. B_{\gamma}[u, v] = (g, v) \forall v.$

Pick v = u then,

$$B_{\gamma}[u,u] \ge \beta \|u\|_{H_0^1}^2$$

$$\beta \|u\|^2 \le B_{\gamma}[u, u] = (g, u) \le \|g\|_{L^2} \|u\|_{L^2} \le C_p \|g\|_{L^2} \|u\|_{H_0^1}$$

$$\gamma \beta \|u\|_{H_0^1} \le \gamma C_p \|g\|_{L^2}$$

$$\|K(g)\|_{L^2} \leq C \|K(g)\|_{H^1_0} \leq \frac{\gamma C_p}{p} \|g\|_{L^2}$$

Claim: $K: L^2 \to L^2$ is compact.

 $\overline{\text{Let }\{g_k\}} \subset L^2 \|g_k\| \le C.$

$$||K(g_k)||_{H_0^1} \le \tilde{C} ||g_k||_{L^2} \le \text{const}$$

By Rellich-Kondrachov,

$$K(g_{k_j}) \stackrel{L^2}{\rightarrow} W$$

Now, apply Fredholme alternative. Then, $\forall h \in L^2 \exists !$ solution u to (I - K)u = h or else the nullspace of $(I - K^*)$ is non-trivial.

$$(I - K)u = h \iff u$$
 weakly solution to $Lu = f$

Then apply the Lemma.

Friday, 10/4/2024

Recall: Given a bounded linear operator $T: H \to H$, the <u>reso</u>lvent set:

$$\rho(T) := \{ \lambda \in \mathbb{R} : T - \lambda I \text{ is bijective} \}$$

Then the spectrum of T is:

$$\sigma(T) = \mathbb{R} \setminus \rho(T)$$

 $\lambda \in \sigma(T)$ is an eigenvalue if $\exists x \in H$ such that $(T - \lambda I)x = 0$.

 $\{\lambda \in \sigma(T) : \lambda \text{ is not an eigenvalue}\}\$ is called the continuous spectrum.

Now, what if T = K compact, linear operator?

We have seen that I-K has a nontrivial nullspace or else it is invertible, and $(I-K)^{-1}$

Further, we have seen that for $\lambda \neq 0$ either $I - \frac{1}{\lambda}K$ has a nontrivial nullspace or it is invertible.

Then, $(I - \frac{1}{\lambda}K)^{-1}$ is bounded.

Nontrivial nullspace implies λ is an eigenvalue of K.

Thus, K compat \implies no continuous spectrum [except perhaps 0].

Theorem 19. A compact operator $K: H \to H$ possesses at most a countable set of eigenvalues having no limit points except possibly 0.

Furthermore, Each eigenvalue has a finite multiplicity $[\dim N(K - \lambda I)]$ is finite.

Proof. Suppose not. Then we have an accumulation point $\exists \{\lambda_n\}$ of eigenvalues such that $\lambda_n \to \lambda \in (\mathbb{R} \cup \{\pm \infty\}) \setminus \{0\}$ and a sequence of linearly independent eigenvectors

Let $M_n = \operatorname{span}\{x_1, \cdots, x_n\}.$

 M_n is a closed subspace.

Projection Lemma $\implies \exists \{y_n\} \subset M_n \setminus M_{n-1} \text{ so that } ||y_n|| = 1, \operatorname{dist}(y_n, M_{n-1}) \geq \frac{1}{2}.$ Let $S_{\lambda} := \lambda I - K$.

For n > m: we have:

$$\lambda_n^{-1} K y_n - \lambda_m^{-1} K y_m = y_n - \lambda_n^{-1} S_{\lambda_n} y_n - y_m + \lambda_m^{-1} S_{\lambda_m} y_m = y_n + z$$

Claim: $z \in M_{n-1}$. To prove this, note that z is sum of elements of M_{n-1} .

 $y_m \in M_m \subseteq M_{n-1}$. Write $y_n = \sum_{j=1}^n c_j x_j$

$$S_{\lambda_n} y_n = (\lambda_n I - K) \left(\sum_{j=1}^n c_j x_j \right) = \sum_{j=1}^n (\lambda_n c_j x_j - c_j \lambda_j x_j) = \sum_{j=1}^{n-1} (\lambda_n c_j x_j - c_j \lambda_j x_j)$$

Thus $S_{\lambda_n} y_n \in M_{n-1}$

Also $S_{\lambda_m} y_m \in M_{m-1} \subseteq M_{n-1}$.

Now, $y_n = \lambda_n^{-1} K y_n$. Therefore, $\|\lambda_n^{-1} K y_n - \lambda_m^{-1} K y_m\| \ge \frac{1}{2}$.

$$\lambda_n^{-1} \| Ky_n - \frac{\lambda_n}{\lambda_m} Ky_m \| \ge \frac{1}{2}.$$

If λ_m approaches finite value, by taking m, n large enough we get $||Ky_n - Ky_m|| \geq \frac{\lambda}{4}$. Contradiction.

If we have an infinite limit then LHS approaches 0 which is also not possible.

i) \exists an at most countable set $\Sigma \subset \mathbb{R}$ such that $Lu = \lambda u + f$ in Ω Theorem 20. and u = 0 on $\partial \Omega$ has a solutio $\forall f \in L^2$ provided $\lambda \neq \Sigma$.

- ii) If Σ is infinite then writing $\Sigma = \{\lambda_n\}, \lambda_1 \leq \lambda_2 \leq \cdots$ then $\lambda_n \to \infty$.
- iii) If $\lambda \in \Sigma$ then $Lu = \lambda u + f$ for $f \in L^2$ with u = 0 on $\partial \Omega$ is solvable \iff $(f, v)_{L^2} = 0 \forall v \in N(L^* - \lambda I).$

Recall: u is a weak solution to $Lu = \lambda u$ in $\Omega, u = 0$ on $\partial\Omega \iff B[u,v] = \lambda(u,v) \forall v \in$ $H_0^1(\Omega)$.

Where $B[u,v] = \int_{\Omega} a_{ij}(x)u_{x_i}v_{x_j} + b_i(x)u_{x_i}v + c(x)uv \,dx$. Now, $B[u,v] = \lambda(u,v) \iff B_{\gamma}[u,v] \coloneqq B[u,v] + \gamma \int uv = (\gamma + \lambda)(u,v)$.

Where γ is sufficiently large to make $B_{\gamma}[u,v] \geq \beta ||u||_{H_{\alpha}^{1}}^{2}$

So u solves $(P) \iff$

$$u=L_{\gamma}^{-1}\left((\lambda+\gamma)u\right)$$

$$\iff u = \gamma L_{\gamma}^{-1} \left(\frac{\lambda + \gamma}{\gamma} u \right) = \frac{\lambda + \gamma}{\gamma} K u \text{ where } K = \gamma L_{\gamma}^{-1}$$

Thus, u solves $P \iff \left(K - \frac{\gamma}{\gamma + \lambda}I\right)u = 0$.

Then the only possible limit point of eigenvalues of K is $0 \iff$ only possible limit point of eigenvalues of $L = \infty$.

Monday, 10/7/2024

Weak Convergence

Given a banach space X let X^* be the space of bounded linear functionals. Given $x^* \in X^*$:

$$||x^*||_{X^*} \coloneqq \sup_{||x||_X < 1} \langle x^*, x \rangle$$

Definition 18. We say $\{x_n\} \subset X$ converges weakly to $x \in X$ if:

$$\forall x^* \in X^*, \langle x^*, x_n \rangle \to \langle x^*, x \rangle$$

Notation: $x_n \stackrel{X}{\rightharpoonup} x$

Example: for $1 If <math>X = L^p(\Omega)$ then when $\frac{1}{p} + \frac{1}{q} = 1$ we have $X^* \cong L^q(x)$. $u_n \stackrel{L^p}{\rightharpoonup} u$ means:

$$\forall v \in L^q, \int_{\Omega} u_n v \, \mathrm{d}x \to \int_{\Omega} u v \, \mathrm{d}x$$

Facts:

- $\bullet \ x_n \to x \implies x_n \rightharpoonup x$
- $x_n \rightharpoonup x$ and $||x_n|| \rightarrow ||x|| \implies x_n \rightarrow x$
- $x_n \rightharpoonup x \implies ||x_n|| \le M$ for some M.

Definition 19. A reflexive Banach space X is one such that:

$$(X^*)^* = X$$

Example: $L^p(\Omega)$ for 1

If X is reflexive and $||x_n|| \leq M$ then $\exists \{x_{n_j}\}, x \in X$ such that $x_{n_j} \rightharpoonup x$. If $x_n \rightharpoonup x$ then $\liminf_{n \to \infty} ||x_n|| \geq ||x||$.

Proof. If $x^* \in X^*, ||x^*|| \le 1$ then,

$$\liminf_{n \to \infty} ||x_n|| \ge \liminf_{n \to \infty} \langle x^*, x_n \rangle = \langle x^*, x \rangle$$

We see our aswer by taking sup over all $||x^*|| \le 1$.

Basic Question:

Suppose $u \in H^1(\Omega)$ is a weak solution to Lu = f in Ω where L is an elliptic operator and $f \in L^2$ [eg $-\Delta u = f$]. Can one argue that u is better than $H^1(\Omega)$?

A (formal) calculation suggesting that this isn't a ridiculous question:

Suppose $u: \mathbb{R}^n \to \mathbb{R}$ is smooth and compactly supported and solving $-\Delta u = f$ for $f \in L^2$.

$$\infty > \int_{\mathbb{R}^{n}} f^{2} dx = \int_{\mathbb{R}^{n}} (\Delta u)^{2} dx = \int_{\mathbb{R}^{n}} \nabla \cdot (\nabla u) \Delta u dx$$
$$= -\int_{\mathbb{R}^{n}} \nabla u \cdot \nabla (\Delta u) dx = -\int_{\mathbb{R}^{n}} u_{x_{j}} \frac{\partial}{\partial x_{j}} (u_{x_{i}x_{i}}) dx$$
$$= \int_{\mathbb{R}^{n}} u_{x_{i}x_{j}} u_{x_{i}x_{j}} dx = \int_{\mathbb{R}^{n}} |D^{2}u|^{2} dx$$

So we have control over all second derivatives of u.

Difference Quotients

Definition 20. Given $u: \Omega_{\mathbb{C}\mathbb{R}^n} \to \mathbb{R}$ given $h \in \mathbb{R}$ given $k \in 1, \dots, n$, define:

$$D_k^h \coloneqq \frac{u(x + he_k) - u(x)}{h}$$

We want to bound the difference quotient of the derivative to control the second derivative.

<u>Lemma 1</u>: For $1 , let <math>u \in W^{1,p}(\Omega)$ for $\Omega \subset \mathbb{R}^n$. Then $\forall \Omega' \subset\subset \Omega$ and for h such that $0 < |h| < \operatorname{dist}(\Omega', \partial\Omega)$ we have:

$$||D_k^h u||_{L^p(\Omega')} \le ||u_{x_k}||_{L^p(\Omega)}$$

Proof. First assume $u \in C^1(\Omega) \cap W^{1,p}(\Omega)$.

$$D_k^h u(x) = \frac{1}{h} \int_0^h u_{x_k} u(x_1, \dots, x_k + s, \dots, x_n) \, \mathrm{d}s$$

$$|D_k^h(x)|^p \leq_{\text{H\"{o}lder}} \frac{1}{h^p} \left(\int_0^h 1^{\frac{p}{p-1}} \, \mathrm{d}x \right)^{p-1} \left(\int_0^h |u_{x_k}(\dots, x_k + s, \dots)|^p \, \mathrm{d}x \right)$$

$$\int_{\Omega'} |D_k^h u(x)|^p \, \mathrm{d}x \leq \frac{1}{h} \int_{\{\text{dist}(x, \partial\Omega) > h\}} \int_0^h |u_{x_k}(\dots x_k + s, \dots)|^p \, \mathrm{d}s \, \mathrm{d}x$$

$$\leq_{\text{Fu} \text{bini}} \frac{1}{h} \int_0^h \int_{\Omega} |u_{x_k}(x)|^p \, \mathrm{d}x \, \mathrm{d}s = \|u_{x_k}\|_{L^p(\Omega)}^p$$

Now we approximable by C^1 functions.

<u>Lemma 2</u>: Let $u \in L^p(\Omega)$ for $1 and suppose for some <math>k \in \{1, \dots, n\}$, $\exists M$ such that

$$||D_k^h u||_{L^p(\Omega')} \le M$$

 $\forall \Omega' \subset\subset \Omega, \forall h \text{ such that } \operatorname{dist}(\Omega', \partial\Omega) > h.$ Then,

$$||u_{x_k}||_{L^p(\Omega)} \leq M$$

Proof. $\exists \{h_i\} \to 0, \exists v \in L^p(\Omega) \text{ such that:}$

$$D_k^{h_j}u \stackrel{L^p(\Omega)}{\rightharpoonup} v$$

[We are using diagonalization. We cannot directly go near $\partial\Omega$ but by making $h_j \to 0$ and taking subsequences, we get the convergence for whole Ω].

Furthermore, by lower semicontinuity of $\|\cdot\|_{L^p}$ under weak convergence: $\|v\|_{L^p(\Omega)} \leq M$

Must still sho v is the weak k'th derivative of u.

Fix $\phi \in C_0^1(\Omega)$.

We have:

$$\lim_{h_j \to 0} \int_{\Omega} \phi D_k^{h_j} u \, \mathrm{d}x = \int_{\Omega} \phi v \, \mathrm{d}x$$

Now we do integration by parts on difference quotient. We also have:

$$\int_{\Omega} \phi D_k^{h_j} u \, dx = \int_{\Omega} \phi(x) \left(\frac{u(x + h_j e_k) - u(x)}{h_j} \right) \, dx$$

For first term, let $y = x + h_j e_k$.

$$= \int_{\operatorname{supp}(\phi + h_j e_k)} \frac{\phi(y - h_j e_k) u(y)}{h_j} \, \mathrm{d}y - \int_{\operatorname{supp}(\phi)} \frac{\phi(x) u(x)}{h_j} \, \mathrm{d}x$$

$$= -\int_{\Omega} \frac{\phi(y - h_j e_k) - \phi(y)}{-h_j} u(y) dy = -\int_{\Omega} D_k^{-h_j} \phi(y) u(y) dy$$

Now let $h_i \to 0$

$$\implies \lim_{h_j \to 0} \int_{\Omega} \phi D_k^{h_j} u \, \mathrm{d} x = - \int_{\Omega} \phi_{x_k} u \, \mathrm{d} x$$

Thus v is the weak x_k derivative of u.

Wednesday, 10/9/2024

Recall:

$$D_k^h u(x) := \frac{u(x + he_k) - u(x)}{h}$$
$$\int D_k^h u_1(x) u_2(x) dx = -\int D_k^{-h} u_2(x) u_1(x) dx$$

Lemma 1: Suppose $1 . Let <math>u \in W^{1,p}(\Omega)$. Then, $\forall \Omega' \subset \Omega$ such that $\operatorname{dist}(\Omega', \partial\Omega) > |h|$ we have:

$$||D_k^h u||_{L^p(\Omega)} \le ||u_{x_k}||_{L^p(\Omega)}$$

<u>Lemma 2</u>: Let $u \in L^p(\Omega), 1 . Assume <math>\exists M > 0$ such that $D_k^h u \in L^p(\Omega')$ and $||D_k^h u||_{L^p(\Omega')} \leq M \ \forall k, \forall \Omega' \subset\subset \Omega \ \text{such that } \operatorname{dist}(\Omega', \partial\Omega) \geq |h|.$

Then u_{x_k} exists $\forall k$ and $\|u_{x_k}\|_{L^p(\Omega')} \leq M$. Suppose $Lu := -\frac{\partial}{\partial x_j} (a_{ij}(x)u_{x_i}) + b_i(x)u_{x_i} + c(x)u$

Assume $a_{ij}(x)\zeta_i\zeta_j \geq \theta|\zeta|^2$, $a_{ij} = a_{ji}$ Assume $a_{ij} \in C^1(\Omega)$, $b_i, c \in L^{\infty}(\Omega)$

Theorem 21 (Interior Regularity). Assume $u \in H^1(\Omega)$ weak solution to Lu = f in Ω for $f \in L^2(\Omega)$. Then $u \in H^2_{loc}(\Omega)$ with:

$$||u||_{H^2(\Omega')} \le C(\Omega', \Omega, \theta, \cdots) \left(||f||_{L^2(\Omega)} + ||u||_{L^2(\Omega)} \right)$$

 $\forall \Omega' \subset\subset \Omega.$

Proof. Consider $\Omega' \subset\subset \Omega'' \subset\subset \Omega$

Let ζ be a smooth cutoff function:

 $\zeta \equiv 1 \text{ in } \Omega'$

 $\zeta \equiv 0 \text{ on } \Omega \setminus \Omega''$

 $0 \le \zeta \le 1$

We have:

$$\int_{\Omega} a_{ij}(x)u_{x_i}v_{x_j} + b_i(x)u_{x_i}v + c(x)uv \,dx = \int_{\Omega} fv \,dx$$

 $\forall v \in H_0^1(\Omega)$

Note that,

$$\int_{\Omega} a_{ij}(x)u_{x_i}v_{x_j} + \boxed{b_i u_{x_i}}v + \boxed{cu}v \, dx = \int_{\Omega} fv \, dx$$

Choose $v = -D_k^{-h}(\zeta^2 D_k^h u)$

in Ω' where $\zeta \equiv 1$ we have:

$$v = -\left(D_k^{-h} \left(\frac{u(x + he_k) - u(x)}{h}\right)\right)$$

$$= -\left(\frac{u(x - he_k + he_k) - u(x - he_k) - u(x + he_k) + u(x)}{-h^2}\right)$$

$$= -\left(\frac{u(x + he_k) + u(x - he_k) - 2u(x)}{h^2}\right)$$

Using this v, we get:

$$I = \int_{\Omega} -a_{ij} u_{x_i} D_k^{-h} (\zeta^2 D_k^h u)_{x_i} - b_i u_{x_i} D_k^{-h} (\zeta^2) - cu D_k^{-h} (\zeta^2 D_k^h u) \, \mathrm{d}x$$

$$= -\int_{\Omega} f D_k^{-h} (\zeta^2 D_k^h u) \, \mathrm{d}x$$

$$I = \int_{\Omega} D_k^h (a_{ij} u_{x_i}) \left(\zeta^2 D_k^h u_{x_i} + 2\zeta \varphi_{x_j} D_k^h u \right) \, \mathrm{d}x$$

$$= \int_{\Omega} \left(a_{ij} (x + he_k) D_k^h (u_{x_i}) + D_k^h (a_{ij}) u_{x_i} \right) \left(\zeta^2 D_k^h u_{x_j} + 2\zeta \varphi_{x_j} D_k^h u \right) \, \mathrm{d}x$$

$$= \int_{\Omega} \zeta^2 a_{ij} (x + he_k) D_k^h (u_{x_i}) D_k^h (u_{x_j}) + \text{others } \mathrm{d}x$$

$$\geq \theta \int_{\Omega} \zeta^2 |D_k^h (\nabla u)|^2 + \text{ others } \mathrm{d}x$$

Write $\tilde{f} := f - b_i u_{x_i} - cu \in L^2$.

Weak form becomes:

$$\int_{\Omega} a_{ij}(x) u_{x_i} v_{x_j} \, \mathrm{d}x = \int_{\Omega} \tilde{f} v \, \mathrm{d}x$$

We have:

$$\theta \int_{\Omega} \zeta^{2} |D_{k}^{h}(\nabla u)|^{2} dx \leq \int_{\Omega} \tilde{f} D_{k}^{-h}(\zeta^{2} D_{k}^{h} u) - a_{ij}(x + he_{k}) 2\zeta \zeta_{x_{j}} D_{k}^{h}(u_{x_{i}}) D_{k}^{h} u$$
$$-D_{k}^{h}(a_{ij}) u_{x_{i}} \zeta^{2} D_{k}^{h} u_{x_{j}} - D_{k}^{h}(a_{ij}) u_{x_{i}} 2\zeta \zeta_{x_{j}} D_{k}^{h} u dx$$

Use $ab \le \varepsilon^2 a^2 + \frac{1}{4\varepsilon^2} b^2$ to estimate terms 2,3,4.

$$\leq C \int_{\Omega''} \left(|D_k^h(\nabla u)| |D_k^h u| + |D_k^h(\nabla u)| |\nabla u| + |\nabla u| |D_k^h u| \right) \zeta \, \mathrm{d}x$$

Note: $C \to \infty$ as $\Omega'' \to \Omega$ since it involves the derivative of the cutoff function.

Monday, 10/14/2024

Recall: weak formulation:

$$\int_{\Omega} a_{ij} u_{x_i} v_{x_i} \, dx = \int_{\Omega} f v - b_i u_{x_i} - cuv \, dx$$
$$=: \int_{\Omega} \tilde{f} v \, dx, \, \tilde{f} \in L^2(\Omega)$$

Choose: $v = -D_k^{-h}(\zeta^2 D_k^h u)$ Start with LHS.

We arrived at:

$$LHS = \int_{\Omega} a_{ij}(x + he_k) D_k^h D_k^h (u_{x_j}) \zeta^2 dx$$

$$+ \int_{\Omega} \left[a_{ij}(x + he_k) 2\zeta \zeta_{x_i} D_k^h u D_k^h (u_{x_i}) + D_k^h (a_{ij}) 2\zeta \zeta_{x_j} D_k^h (u) u_{x_i} \right.$$

$$+ D_k^h (a_{ij}) u_{x_i} D_k^h (u_{x_j}) \zeta^2 \right] dx$$

$$\implies LHS \ge \theta \int_{\Omega} |D^h (\nabla u)|^2 \zeta^2 dx$$

$$- C \left\{ \int_{\Omega} |D_k^u| |D_k^h (\nabla u)| + |D_k^h u| |\nabla u| + |D_k^h (\nabla u)| |\nabla u| dx \right\}$$

Now use $\left(\varepsilon a - \frac{1}{2\varepsilon}b\right)^2 \ge 0 \implies ab \le \varepsilon^2 a^2 + \frac{1}{4\varepsilon^2}b^2$ Now use our lemmas.

$$LHS \ge \theta \int |D^h(\nabla u)|^2 - \varepsilon^2 |D_k^h(\nabla u)|^2 - C_{\varepsilon} |\nabla u|^2$$

Pick $\varepsilon^2 = \frac{\theta}{2}$

$$LHS \ge \frac{\theta}{2} \int_{\Omega} |D_k^h(\nabla u)|^2 \zeta^2 \, \mathrm{d}x - C_{\varepsilon} \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x$$

Now we estimate RHS with a little of L^2 norm v + a lot of L^2 norm \tilde{f} By lemma 1:

$$\int v^2 \le \int |\nabla(\zeta^2 D_k^h u)|^2$$

$$\le C \int |D_k^h|^2 + |D_k^h (\nabla u)|^2 dx$$

$$v\tilde{f} dx \le \varepsilon^2 \int v^2 + C_{\varepsilon} \int \tilde{f}^2$$

Pick $\varepsilon^2 = \frac{\theta}{4}$

$$\implies \frac{\theta}{4} \int_{\Omega'} \left| D_k^{(\nabla u)} \right|^2 dx \le C \int_{\Omega} (f^2 + |\nabla u|^2 + u^2) dx$$
$$\le C \int_{\Omega} f^2 + ||u||_{H^1(\Omega)}^2 dx$$

Apply Lemma 2 $u \in H^2_{loc}(\Omega) \text{ and } \forall \Omega' \subset \subset \Omega$

$$\int_{\Omega'} |D^2 u|^2 \, \mathrm{d}x \le C \left(\|f\|_{L^2(\Omega)}^2 + \|u\|_{H^1(\Omega)}^2 \right)$$

Finally, we need to replace $||u||_{H^1}^2$ with $||u||_{L^2}^2$ on RHS. Using a new cut-off function ζ such that $\zeta \equiv 0$ on $\Omega \setminus \Omega''$, we have:

$$||u||_{H^2(\Omega')} \le C \left(||f||_{L^2(\Omega'')}^2 + ||u||_{H^1(\Omega'')}^2 \right)$$

Now go back to (*) weak formulation: Choose $v = \zeta^2 u$

$$\int_{\Omega} a_{ij} u_{x_i} u_{x_j} \zeta^2 + a_{ij} u_{x_i} 2\zeta \zeta_{x_i} \, \mathrm{d}x = \int \tilde{f} \zeta^2 u$$

Again, by ellipticity and $ab \leq \varepsilon a^2 + C_{\varepsilon}b^2$, Choosing ε small in terms of θ ,

$$\int_{\Omega'} |\nabla u|^2 \, \mathrm{d}x \le C \int_{\Omega''} f^2 + u^2 \, \mathrm{d}x$$

so we're done!

Wednesday, 10/16/2024

Higher Interior Regularity

Suppose $Lu := -(a_{ij}u_{x_i})_{x_j} + b_i(x)u_{x_i} + c(x)u$

So far: Assume a_{ij} elliptic, $a_{ij} \in C^1$, $b_i, c \in C^{\infty}$ $f \in L^2(\Omega)$.

Then if $u \in H^1(\Omega)$ is a weak solution to Lu = f then $u \in H^2_{loc}(\Omega)$ and $\forall \Omega' \subset \subset$ $\Omega \exists C(\Omega')$ such that:

$$||u||_{H^2(\Omega')} \le C(\Omega')(||f||_{L^2} + ||u||_{L^2})$$

What if a_{ij}, b_i, c are <u>nicer</u>, as is f? Then u should be <u>nicer</u>.

Idea: Consider the PDE satisfied (weakly) by u_{x_k} for some $k \in \{1, \dots, n\}$.

$$\frac{\partial}{\partial x_k} L(u) = \frac{\partial}{\partial x_k} f$$

$$-(a_{ij}(x)(u_{x_k})_{x_i})_{x_j} - (a_{ij}(x))_{x_k}(u_{x_k})_{x_i} + (b_i(x))_{x_k}u_{x_i} + b_i(x)(u_{x_k})_{x_i} + (c(x))_{x_k}u + c(x)u_{x_k} = f_{x_k}$$

This is not exactly allowed. So we express it weakly.

Then u_{x_k} weakly solves a <u>new</u> elliptic PDE.

Theorem 22. Let m = non-neg integer. Assume $a_{ij}, b_i, c \in C^{m+1}(\Omega)$. Assume $f \in H^m(\Omega)$

Ten if $u \in H^1(\Omega)$ is a weak solution to Lu = f we have:

$$u \in H^{m+2}_{\mathrm{loc}}(\Omega)$$

and $\forall \Omega' \subset\subset \Omega$

$$||u||_{H^{m+2}(\Omega')} \le C(||f||_{H^m} + ||u||_{L^2})$$

Proof. By induction.

Boundary Regularity

Theorem 23. Take $\Omega \subset \mathbb{R}^n$, open, bounded, $\partial \Omega \in C^2$. Take a_{ij} elliptic, $a_{ij} \in$ $C^1, b_i, c \in L^{\infty}$.

Take $f \in L^2$.

Then if $u \in H_0^1(\Omega)$ is a weak solution to Lu = f in Ω and u = 0 on $\partial\Omega$ then,

$$u \in H^2(\Omega)$$

$$||u||_{H^2(\Omega)} \le C(||f||_{L^2} + ||u||_{L^2})$$

Proof. First we assume the boundary is flat. If not we flatten the boundary Suppose first that $B(0,1) \cap \Omega = B(0,1) \cap \mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_n > 0\}.$

Let ζ be a cutoff function.

$$\zeta \in C^{\infty}, \zeta \equiv 1 \text{ in } B(0, \frac{1}{2})$$

$$\zeta \equiv 0 \text{ in } \mathbb{R}^n \setminus B(0,1)$$

$$B[u,v] = \int fv \,\forall v \in H_0^1(\Omega)$$

Rewrite:

$$\int_{\Omega} a_{ij} u_{x_i} v_{x_j} \, \mathrm{d}x = \int_{\Omega} \widetilde{f} v \, \mathrm{d}x$$

For |h| small take:

$$v = -D_k^{-h}(\zeta^2 D_k^h u)$$

for any $k \in \{1, \dots, n-1\}$

To be a legal v for this, we need $v \in H^1_0(\Omega)$ in light of the cut-off function and $\operatorname{Tr} \big|_{\partial B(0,1)^+} u = 0$

So we can use this v in *.

The rest of the proof is the same for interior regularity. We obtain:

$$||D_k^h(\nabla u)||_{L^2(B(0,1)^+)} \le C(||f||_{L^2} + ||u||_{L^2})$$

Since difference quotients are uniformly bounded we must have weak derivatives. \implies by lemma 2,

$$||u_{x_ix_j}|| \le C(||f||_{L^2} + ||u||_{L^2})$$

for all i, j except i = j = n.

How to control $u_{x_n x_n}$?

By interior regularity, Lu = f at a.e. $x \in \Omega$.

We rewrite the PDE:

$$-a_{nn}u_{x_nx_n} = \underbrace{\sum_{(i,j)\neq(n,n)} (a_{ij}(x)u_{x_i})_{x_j} - b_i(x)u_{x_i} - c(x)u + f}_{:=\tilde{\tilde{f}}}$$

We have $\|\tilde{\tilde{f}}\| < \text{const}(\|f\|_{L^2} + \|u\|_{L^2})$

$$\implies \|u_{x_n x_n}\| \le \frac{\text{const}}{\theta} (\|f\|_{L^2} + \|u\|_{L^2})$$

Friday, 10/18/2024

We have proved the theorem for flat portion of $\partial\Omega$. For proving the general case, we flatten the boundary.

Locally write $\partial\Omega$ as a graph:

$$x_n = f(x_1, \cdots, x_{n-1}) f \in C^2$$

We change variables.

$$y_j = x_j j = 1, \cdots, n-1$$

$$y_n = x_n - f(x_1, \cdots, x_{n-1})$$

$$y = \Phi(x)$$

[insert picture figure] Then,

$$D\Phi(x) = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -f_{x_1} & -f_{x_2} & \cdots & 1 \end{bmatrix}$$

 $\det D\Phi = J\Phi = 1.$

By inverse function theorem, Φ is invertible. Let $\Psi = \Phi^{-1}$. Define:

$$\widetilde{u}(y) \coloneqq u(\Psi(y))$$

$$u(x) = \widetilde{u}(\Phi(x))$$

By chain rule,

$$u_{x_i} = \widetilde{u}_{y_k} \Phi_{x_i}^{(k)}$$

Weak form:

$$\begin{split} \int_{\Phi(B(x_0,R)\cap\Omega)} \left(\underbrace{a_{ij}(\Psi(y))\widetilde{u}_{u_k}\Phi_{x_k}^{(k)}\widetilde{v}_{y_l}\Phi_{x_j}^{(l)}}_{\widetilde{a}_{kl}\widetilde{u}_{y_k}\widetilde{v}_{y_l}} + b_i(\Psi(y))\widetilde{u}_{x_k}\Phi_{x_i}^{(k)} + c(\Psi(y))\widetilde{u} \right) \cdot 1 \,\mathrm{d}y \\ = \int_{\Phi(B(x_0,R)\cap\Omega)} f(\psi(y))\widetilde{v}(y) \,\mathrm{d}y \end{split}$$

<u>Claim</u>: \widetilde{u} solves an elliptic PDE weakly on a <u>flat</u> domain.

Define $\widetilde{a}_{kl}(y) := a_{ij} \Phi_{x_i}^{(k)} \Phi_{x_j}^{(l)}$.

We're done one we check that:

$$\widetilde{a}_{kl} = \widetilde{a}_{lk}, \widetilde{a}_{kl}\eta_k\eta_l \ge \widetilde{\theta}|\eta|^2 \, \forall \eta \in \mathbb{R}^n$$

Firstly,

$$\widetilde{a}_{lk} = a_{ij} \Phi_{x_i}^{(l)} \Phi_{x_j}^{(k)} = a_{ji} \Phi_{x_i}^{(l)} \Phi_{x_j}^{(k)} = \widetilde{a}_{kl}$$

Then let $\eta \in \mathbb{R}^n$.

$$\widetilde{a}_{kl}\eta_k\eta_l = a_{ij}\Phi_{x_i}^{(k)}\Phi_{x_j}^{(l)}\eta_k\eta_l = a_{ij}\underbrace{\Phi_{x_i}^{(k)}\eta_k}_{=\xi_i}\underbrace{\Phi_{x_j}^{(l)}\eta_l}_{=\xi_j} \ge \theta|\xi|^2$$

Let
$$\xi_i = \Phi_{x_i}^{(k)} \eta_k$$
 and $\xi_j = \Phi_{x_j}^{(l)} \eta_l$.
Then, $\xi = D\Phi \eta \implies (D\Phi)^{-1} \xi = \eta \implies D\Psi \xi = \eta$.

$$|\eta| \leq |D\Psi||\xi| \leq C_{d\Omega}|\xi|$$

Therefore,

$$\widetilde{a}_{kl}\eta_k\eta_l \ge \theta |\xi|^2 \ge \frac{\theta}{C_{\partial\Omega}} |\eta|^2$$

So, this reduces to the case of flat boundary, which we have already proven.

Maximum Principles

Consider L in non-divergence form:

$$Lu := -a_{ij}(x)u_{x_ix_j} + b_i(x)u_{x_i} + c(x)u$$

Theorem 24 (Weak Maximum Principle). Assume u is a 'nice classical solution', meaning $u \in C^2(\Omega) \cap C(\overline{\Omega})$ for some bounded open $\Omega \subset \mathbb{R}^n$. Further assume $c(x) \equiv 0$ in the definition of L.

i) If $Lu \leq 0$ in Ω then,

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u$$

ii) If $Lu \geq 0$ in Ω then,

$$\min_{\overline{\Omega}} u = \min_{\partial \Omega} u$$

Remarks:

- 1) If $Lu \leq 0$ we call u a subsolution. If $Lu \geq 0$ we call u a supersolution.
- 2) If Lu = 0 then both maximum and minimum are achieved on the boundary.
- 3) A weak maximum principle does not preclude the max also being achieved inside Ω .
- 4) If $c \not\equiv 0$, the maximum principle may <u>fail</u>.

Example: If $\Omega = (0, \pi)$ and Lu = -u'' - u = 0 then $a_{11} = 1, b_1 = 0, c(x) = -1$. For Dirichlet boundary condition $u(0) = u(\pi) = 0$. Our answer can be $\sin x$. Then the maximum happens at $\frac{\pi}{2}$ not in boundary for A > 0.

Monday, 10/21/2024

Recap:

$$Lu := -a_{ij}(x)u_{x_ix_j} + b_i()u_{x_i} + c(x)u_i$$

 \underline{a}_{ij} uniformly elliptic $a_{ij}(x)\xi_i\xi_j \geq \theta|\xi|^2, \theta > 0, a_{ij} = a_{ji}.a_{ij}, b_i, c$ are continuous on $\overline{\Omega}, \Omega \subset \mathbb{R}^n$ is open bounded.

Then we have the weak maximum principle as shown above.

Proof. Case 1: Suppose Lu < 0 [strictly less than 0]. We proceed by contradiction to show a strong maximum principle.

Suppose $\exists x_0 \in \Omega \text{ such that } u(x_0) = \max_{\overline{\Omega}} u(x)$.

Consider $Lu(x_0)$. Note that $u_{x_i}|_{x_0} = 0$ since $\nabla u(x_0) = 0$. Thus,

$$Lu(x_0) = -a_{ij}(x_0)u_{x_ix_j}(x_0)$$

<u>Linear Algebra Fact</u>: If a matrix A is symmetric positive definite then A can be diagonalizable by an orthogonal matrix \mathcal{O} so that $\mathcal{O}\mathcal{O}^T = I$. Then,

$$\mathcal{O}A\mathcal{O}^T = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

$$\lambda_1, \cdots, \lambda_n > 0$$

Assume $u \in C^2$ and has a min at x_0 .

Change variables: $y = x_0 + \mathcal{O}(x - x_0)$. Then,

$$u_{x_i} = u_{y_k} \mathcal{O}_{ki}$$

$$u_{x_i x_j} = u_{y_k y_l} \mathcal{O}_{ki} \mathcal{O}_{lj}$$

$$a_{ij}(x_0)u_{x_ix_j}(x_0) = \sum_{i,j} \left[\sum_{k,l} a_{ij}(x_0)u_{y_ky_l} \mathcal{O}_{ki} \mathcal{O}_{lj} \right]$$

$$= \sum_{k,l} u_{y_ky_l} \left[\sum_{i,j} a_{ij}(x_0) \mathcal{O}_{ki} \mathcal{O}_{lj} \right]$$

$$= \sum_{k,l} u_{y_ky_l}(\mathcal{O}A) \mathcal{O}_{jl}^T u_{y_ky_l}(x_0) = \lambda_1 u_{y_1y_1} + \dots + \lambda_n u_{y_ny_n}$$

At a max, $u_{y_iy_i} \leq 0$ for all j. Then $Lu(x_0) \geq 0$ which gives us the contradiction. <u>Case 2</u>: Suppose $Lu \leq 0$. We pertrub L to get back to the first case. For example:

$$u^{\epsilon}(x) \coloneqq u(x) + \epsilon e^{\lambda x_1}$$

$$Lu^{\epsilon} = \underbrace{Lu}_{\leq 0} + L(\epsilon e^{\lambda x_1}) \leq -\epsilon \lambda^2 a_{11}(x) e^{\lambda x_1} + \epsilon b_1(x) \lambda e^{\lambda x_1}$$

$$= \epsilon \lambda e^{\lambda x_1} (-\lambda a_{11}(x) + b_1(x)) \le \epsilon e^{\lambda x_1} (-\theta \lambda + ||b||_{L^{\infty}})$$

Pick λ big enough so that $Lu^{\epsilon} < 0$. By case 1,

$$\max_{\overline{\Omega}} u \leq \max_{\overline{\Omega}} u^{\epsilon}(x) = \max_{\partial \Omega} u^{\epsilon}(x) \leq \max_{\partial \Omega} u + \epsilon \max_{\partial \Omega} e^{\lambda x_1} \leq \max_{\partial \Omega} u + \epsilon e^{\lambda R}$$

where $\Omega \subset B(0,R)$. Let $\epsilon \to 0$ to finish the proof.

Now we try to make sense of the case $c(x) \geq 0$.

Theorem 25 (Weak max princ. for $c(x) \geq 0$). Assume $u \in C^2(\Omega) \cap C(\overline{\Omega})$. Assume $c(x) \ge 0 \forall x \in \Omega$.

- i) If $Lu \leq 0$ in Ω then $\max_{\overline{\Omega}} u \leq \max_{\partial \Omega} u^+$
- ii) If $Lu \geq 0$ in Ω then $\min_{\overline{\Omega}} u \geq -\max_{\partial \Omega} u^-$

Where $u^{+}(x) := \max(u(x), 0), u^{-}(x) = -\min(u(x), 0).$

Note: If Lu = 0 had a solution, then $\max_{\overline{\Omega}} |u| = \max_{\partial \Omega} |u|$

Example: Let $Lu = -u'' + (4x^2 + 1)u$.

$$\overline{b_i \equiv 0, c(x)} = 4x^2 + 1 > 0$$

$$\Omega = (-1, 1).$$

Consider $u(x) = e^{-x^2} - 4$ $u' = -2xe^{-x^2}$

$$u' = -2xe^{-x^2}$$

$$u'' = -2e^{-x^2} + 4x^2e^{-x^2}$$

$$Lu = (2 - 4x^2)e^{-x^2} + (4x^2 + 1)(e^{-x^2} - 4) = 3e^{-x^2} - 16x^2 - 4 < 0 \text{ on } (-1, 1)$$

Max of u comes in the origin, which is -3. But it is not at the boundary! We need to be careful about the sign and positive part and negative parts.

Proof. Let $\Omega' = \{x \in \Omega : u(x) > 0\}.$

 $\Omega' = \emptyset \implies u(x) \le 0 \text{ in } \overline{\Omega} \text{ so we're done.}$

If $\Omega' \neq \emptyset$ then we have:

[picture figure]

Let Ku := Lu - c(x)u, and K doesn't have the c term. So we can apply theorem 1 to Ω' .

$$Ku \le -c(x)u \le 0 \text{ in } \Omega'$$

$$\max_{\overline{\Omega}} u \le \max_{\overline{\Omega'}} u \le \max_{\partial \Omega'} u = \max_{\partial \Omega} u^+$$

In $\partial\Omega$ for the negative part $u^+\equiv 0$ so we can ignore that boundary, we're done!

Wednesday, 10/23/2024

Lemma 1 (Hopf Lemma). Assume $u \in C^2(\Omega) \cap C^1(\Omega)$ and assume $c(x) \equiv 0$ Suppose Lu < 0 in Ω and $\exists x_0 \in \partial \Omega$ such that:

 $u(x_0) > u(x) \forall x \in \Omega$ and

 Ω satisfies an interior ball condition at x_0 , namely $\exists y_0 \in \Omega, \exists r > 0$ such that $B(y_0, r) \subset \Omega$ with $x_0 \in \partial B(y_0, r)$. Then $\frac{\partial u}{\partial \nu}(x_0) > 0$ where $\nu = \frac{x_0 - y_0}{|x_0 - y_0|}$ [outer normal].

If $c(x) \ge 0$ then the same conclusion holds provided $u(x_0) \ge 0$.

[pictures / fig bad example]

A <u>sufficient</u> condition for this to hold: if the boundary is given by a C^2 function [so the curvature never gets too extreme] it is enough for the boundary to be C_2 .

<u>Note</u>: $\frac{\partial u}{\partial \nu}(x_0) \geq 0$ is immediate since $u(x_0) > u(x) \forall x \in \Omega$. So the significance is the strict inequality.

Proof. Define $v(x) = e^{-\lambda |x|^2} - e^{-\lambda r^2}$, $\lambda > 0$ to be specified later.

$$v_{x_i} = -2\lambda x_i e^{-\lambda|x|^2}$$

$$v_{x_i x_j} = (4\lambda^2 x_i x_j - 2\lambda \delta_{ij}) e^{-\lambda |x|^2}$$

$$Lv = -a_{ij}(x)(4\lambda^2 x_i x_j - 2\lambda \delta_{ij})e^{-\lambda|x|^2} - 2\lambda b_i(x)x_i e^{-\lambda|x|^2} + c(x)e^{-\lambda|x|^2} - c(x)e^{-\lambda r^2}$$

$$\implies Lv \le \left(-4\lambda^2\theta|x|^2 + 2\lambda\operatorname{Tr} A + 2\lambda|b|_{L^{\infty}}|x| + |c|_{L^{\infty}}\right)e^{-\lambda|x^2|} - \underline{c(x)}e^{-\lambda r^2}$$

This is < 0 for some choice of $\lambda = \lambda(\theta, \Omega, \operatorname{Tr} A, |b|_{L^{\infty}}, |c|_{L^{\infty}})$

WLOG $y_0 = 0$. Consider the annulus:

$$\left\{ x : \frac{r}{2} < |x| < r \right\} = \mathcal{A}$$

[insert picture figure]

 $\exists \varepsilon > 0 \text{ such that:}$

$$u(x_0) \ge u(x) + \varepsilon v(x) \, \forall x \in \partial B\left(0, \frac{r}{2}\right)$$

since $u(x_0) > \max_{\partial B(0, \frac{r}{2})} u$ On $\partial B(0,r)$:

$$u(x_0) \ge u(x) + \varepsilon v(x) = u(x)$$

Note $L(u + \varepsilon v - u(x_0))$:

$$= Lu + \varepsilon Lv - c(x)u(x_0) < 0$$

And we've shown that $u(x) + \varepsilon v(x) - u(x_0) \leq 0$ on ∂A . By weak maximum principle,

$$u(x) + \varepsilon v(x) - u(x_0) < 0 \text{ in } \mathcal{A}$$

Also note:

$$u(x_0) + \varepsilon v(x_0) - u(x_0) = 0$$

Therefore,

$$\frac{\partial}{\partial \nu}(u(x) + \varepsilon v(x) - u(x_0)) \ge 0$$

$$\implies \frac{\partial}{\partial \nu} u(x_0) \ge -\varepsilon \frac{\partial}{\partial \nu} v(x_0)$$

Note that v is a radial function so $(-\varepsilon)\frac{\partial}{\partial \nu}v(x_0) = 2\varepsilon\lambda(x_0)e^{-\lambda r^2} > 0$.

Theorem 26 (Strong Maximum Principle). Assume $\Omega \subset \mathbb{R}^n$ is open, bounded and connected. Assume $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$. Suppose $c \equiv 0$.

- i) If $Lu \leq 0$ in Ω and if u attains its maximum over $\overline{\Omega}$ at an interior point, then $u \equiv \mathrm{const.}$
- ii) If $Lu \geq 0$ in Ω and if u attains its minimum over $\overline{\Omega}$ at an interior point then $u \equiv \mathrm{const.}$

Proof. Let $M := \max_{\overline{\Omega}} u$. Let $S := \{x \in \Omega : u(x) = M\}$.

If $S = \Omega$ we're done.

If $S = \emptyset$ then we're done.

So suppose, by contradiction, $S \neq \Omega, \varnothing$.

[insert picture]

Choose $y \in \Omega \setminus S$ so that:

$$dist(y, S) < dist(y, \partial\Omega)$$

Draw the largest open ball B centered at y that doesn't intersect S.

Necessarily, $\exists x_0 \in \partial B \cap S$.

Thus $\Omega \setminus S$ satisfies an interior ball condition at x_0 .

 $u(x_0) > u(x) \forall x \in \Omega \setminus S.$

We apply Hopf lemma.

The outer normal derivative $\frac{\partial u}{\partial \nu}(x_0) > 0$.

This cannot be true, since $\frac{\partial u}{\partial \nu}(x_0) = \nabla u(x_0) \cdot \nu = 0$ since $\nabla u(x_0) = 0$ at an internal max.

Friday, 10/25/2024

Theorem 27 (Strong Maximum Principle with $c(x) \geq 0$). Assume $\Omega \subset \mathbb{R}^n$, bounded open with $\partial \Omega \subset C^2$. Assume $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$.

- i) If $Lu \leq 0$ in Ω, u achieves a non-negative max inside Ω then $u \equiv \text{const.}$
- ii) If $Lu \geq 0$ in Ω, u achieves a non-positive min inside Ω then $u \equiv \text{const.}$

Proof. Identical to $c \equiv 0$ case.

Uniqueness

For $Lu = f, c(x) \ge 0, u = 0$ on $\partial \Omega$ we have seen a uniqueness result.

Theorem 28. $\Omega \subset \mathbb{R}^n$ open bounded an $\partial \Omega \in C^2$. Suppose u_1 and u_2 both solve Lu = f in Ω with $c(x) \equiv 0$ and $\nabla u \cdot \nu = g$ on $\partial \Omega$ where $\nu =$ outer unit normal. Then $u_1 - u_2 \equiv \text{const.}$

Proof. Let $v := u_1 - u_2$.

Then $Lv = Lu_1 - Lu_2 = f - f = 0$ in Ω .

$$\nabla v \cdot \nu = \nabla u_1 \cdot \nu - \nabla u_2 \cdot \nu = g - g = 0 \text{ on } \partial \Omega$$

By the max principle either $v \equiv \text{const}$ or v attains its max at a point $x_0 \in \partial \Omega$. Then, $v(x_0) > v(x) \forall x \in \Omega$.

We can use Hopf Lemma:

$$\nabla v(x_0) \cdot \nu > 0$$

this is a contradiction, so we're done.

Theorem 29. Assume $Lu \leq f$ in a open connected bounded domain $\Omega \subset \mathbb{R}^n$ and assume $c(x) \ge 0$.

Assume $u \in C^2(\Omega) \cap C(\overline{\Omega})$. Then,

$$\max_{\overline{\Omega}} u \le \max_{\partial \Omega} u^+ + C_1 \max_{\overline{\Omega}} f^+$$

where C_1 depends on the coefficients of L and Ω . If Lu = f then we can say

$$\max_{\overline{\Omega}} |u| \leq \max_{\partial \Omega} |u| + C_1 \max_{\overline{\Omega}} |f|$$

Proof. We use a Barrier construction. Without loss of generality let's assume

$$\Omega \subset \{x \in \mathbb{R}^n : 0 < x_1 < d\}$$

for some d.

Let $Ku := Lu - cu = -a_{ij}(x)u_{x_ix_j} + b_i(x)u_{x_i}$.

For $\lambda > 0$ to be chosen let's compute

$$K(e^{\lambda x_1}) = (-a_{11}(x)\lambda^2 + b_1\lambda)e^{\lambda x_1}$$

$$\leq (-\theta\lambda^2 + |b|_{L^{\infty}}\lambda)e^{\lambda x_1}$$

$$= -\theta\left(\lambda^2 - \frac{\lambda|b|_{L^{\infty}}}{\theta}\right)e^{\lambda x_1}$$

 $\leq -\theta$ for λ large enough

Goal: Pick a v such that $L(u-v) \leq 0, u-v \leq 0$ on $\partial\Omega$. Pick $v(x) = \max_{\partial\Omega} u^+ + \left(\frac{e^{\lambda d} - e^{\lambda x_1}}{\theta}\right) \max_{\overline{\Omega}} f^+$

 $Lv = Kv + cv \ge Kv$

$$= \frac{\max_{\overline{\Omega}} f^+}{\theta} K(e^{\lambda x_1}) \ge \max f^+$$

Note: $cv \ge 0$ since $c \ge 0, v \ge 0$.

Then, $L(u-v) \le f - \max f^+ \le 0$.

On $\partial\Omega$,

$$u - v = u - \max_{\partial \Omega} u^+ - \text{positive} \le 0$$

By maximum principle,

$$\max_{\overline{\Omega}}(u-v) \le \max_{\partial\Omega}(u-v)^+ \le 0$$

Thus, $u - v \le 0 \implies u \le v \le \max_{\partial\Omega} u^+ + \frac{e^{\lambda d}}{\theta} \max_{\overline{\Omega}} f^+$. Choosing $C_1 = \frac{e^{\lambda d}}{\theta}$ solves our problem.

Recall that we had

$$||u||_{H^2(\Omega')} \le C \left(||f||_{L^2(\Omega)} + ||u||_{L^2(\Omega)} \right)$$

 $\forall \Omega' \subset \subset' \Omega, C = C(\Omega', \Omega).$

If, for example Lu = f in Ω and u = h on $\partial\Omega$ then,

$$|u| \leq \operatorname{const}(f, h)$$

Wednesday, 10/28/2024

[to be entered]

Wednesday, 10/30/2024

Last time:

We found first eigenfunction u_1 solving

$$\inf_{\substack{u \in H_0^1(\Omega) \\ u \neq 0}} \mathcal{R}(u) = \lambda_1$$

Where $\mathcal{R}(u) = \frac{\int |\nabla u|^2}{\int u^2}$ is the Rayleigh Quotient. $-\Delta u_1 = \lambda_1 u_1$ in Ω

 $u_1 = 0 \text{ on } \partial\Omega$

Today: Higher eigenvalues and eigenfunctions.

$$\lambda_2 \coloneqq \inf_{\substack{u \in H_0^1(\Omega) \\ \int u^2 = 1 \\ \int_{\Omega} u u_1 = 0}} \mathcal{R}(u)$$

In general, let $\mathscr{A}_m := \left\{ u \in H^1_0(\Omega) : \int_{\Omega} u^2 = 1, \int_{\Omega} u u_j = 0 \text{ for } j = 1, \cdots, n-1 \right\}$ Where u_j minimizes $\inf_{u \in \mathscr{A}_j} R(u) =: \lambda_j$. \mathscr{A}_j are also sobolev spaces. We can use the exact same proof via the Direct Method to produce a minimizer.

Let $\{v_i\}$ be a minizing sequence, meaning $R(v_i) \to \lambda_2, \{v_i\} \subset \mathscr{A}_2, \|v_i\|_{H^1_a} < \lambda_2 + 1$.

Take $v_{j_k} \stackrel{H^1}{\rightharpoonup} u_2$ Then $v_{j_k} \stackrel{L_2}{\rightarrow} u_2$

By lower semicontinuity, since $\liminf_{k\to\infty} ||v_{j_k}||_{H^1_\alpha} \geq ||u_2||_{H^1_\alpha}$

Thus $\mathcal{R}(u_2) = \lambda_2$

 u_2 minimizes $\mathcal{R}(u)$ in \mathscr{A}_2

Take first variation:

$$0 = \frac{\mathrm{d}}{\mathrm{d}t}(u_2 + tv) \bigg|_{t=0} \implies \int_{\Omega} \nabla u_2 \cdot \nabla v \, \mathrm{d}x = \lambda_2 \int_{\Omega} u_2 v \, \mathrm{d}x$$

 $\forall v \in \mathscr{A}_2$.

Let \widetilde{v} be any element of $H_0^1(\Omega)$ not necessarily \mathscr{A}_2 . Consider:

$$\int_{\Omega} \nabla u_2 \cdot \nabla \widetilde{v} \, \mathrm{d}x$$

Write $\widetilde{v} = c_1 u_1 + \hat{v}$ where $c_1 = \int \widetilde{v} u_1 \, dx, \hat{v} \in \mathscr{A}_2$.

$$\int_{\Omega} \nabla u_2 \cdot \nabla \widetilde{v} \, dx = c_1 \int_{\Omega} \nabla u_2 \cdot \nabla u_1 \, dx + \int_{\Omega} \nabla u_2 \cdot \nabla \widehat{v} \, dx$$

$$= -c_1 \int_{\Omega} u_2 \Delta u_1 \, dx + \int_{\Omega} \nabla u_2 \cdot \nabla \widehat{v} \, dx$$

$$= c_1 \lambda_1 \int_{\Omega} u_2 u_1 \, dx + \int_{\Omega} \nabla u_2 \cdot \nabla \widehat{v} \, dx$$

$$= \lambda_2 \int_{\Omega} u_2 \widehat{v} \, dx + \lambda_2 \int_{\Omega} u_2 (e_1 u_1) \, dx$$

$$= \lambda_2 \int_{\Omega} u_2 \widetilde{v} \, dx \, \forall \widetilde{v} \in H_0^1$$

So the identity holds outside the subspace. Not only for \mathscr{A}_2 , but for \mathscr{A}_j by induction. So we can find λ_j for $j = 1, 2, 3, \cdots$.

By compact operator approach we know either finitely many λ_j s or else $\lambda_j \to \infty$.

We claim that eigenvalues cannot have infinite multiplicity.

Note: we can have multiplicity > 1. But it must be always finite. Why?

Theorem 30. Multiplicity is finite.

Proof. Suppose false. Then we have $\{u_i\}$ so that $\mathcal{R}(u_i) = \overline{\lambda}$, $\int u_i^2 = 1$, $\int u_i u_k = 1$ $0, \int |\nabla u_i|^2 = \overline{\lambda}.$

By Kondrachov-Rellich,

$$u_{j_l} \stackrel{L^2}{\to} \overline{u}$$

for some \overline{u} .

It cannot happen, since:

$$\int |u_{j_l} - u_{j_{l'}}|^2 = \int u_{j_l}^2 + u_{j_{l'}}^2 - 2u_{j_l}u_{j_{l'}} = 2$$

so we have 2 = 0. Contradiction.

Theorem 31. $\{u_i\}$ form an orthonormal basis for $L^2(\Omega)$.

That is, $\forall v \in L^2$, we have:

$$v - \sum_{j=1}^{m} c_j u_j \stackrel{L^2}{\to} 0$$

as $m \to \infty$ where $c_j := \int u_j v$

In 1D,
$$L(u) = -u'', u(0) = u(b) = 0.$$

We are looking at $u'' + \lambda u = 0$. So our functions are:

$$u(x) = c_1 \cos\left(\sqrt{\lambda}x\right) + c_2 \sin\left(\sqrt{\lambda}x\right) = 0.$$

$$u(0) = 0 \implies c_1 = 0.$$

$$u(0) = 0 \implies c_1 = 0$$

$$u(b) = 0 \implies \sin(\sqrt{\lambda}b) = 0$$

So
$$\sqrt{\lambda_j}b = \pi j \implies \lambda_j = \frac{\pi^2 j^2}{b^2}$$

Friday, 11/1/2024

Proof. First assume $v \in H_0^1(\Omega)$ [this is dense in $L^2(\Omega)$ so proving in here is enough]. Define for $m \in \mathbb{Z}^+$,

$$v_m = \sum_{j=1}^m c_j u_j$$

Where $c_j = \int_{\Omega} v u_j \, \mathrm{d}x$.

Let $w_m := v - v_m$.

We want to show $w_m \to 0$ in L^2 as $m \to \infty$.

For any $k \leq m$:

$$\langle w_m, u_k \rangle_{L^2} = \int_{\Omega} w_m u_k \, \mathrm{d}x = \underbrace{\int_{\Omega} v u_k \, \mathrm{d}x}_{=c_k} - \underbrace{\int_{\Omega} v_m u_k \, \mathrm{d}x}_{=c_k} = 0$$

Thus, w_m is admissible for

$$\lambda_{m+1} = \inf_{\substack{\int uu_j = 0 \\ j = 1, \dots, m \\ u \neq 0}} \frac{\int |\nabla u|^2}{\int u^2}$$

Thus,

$$\lambda_{m+1} \le \frac{\int_{\Omega} |\nabla w_m|^2 \, \mathrm{d}x}{\int_{\Omega} w_m^2 \, \mathrm{d}x}$$

Also for $k \in \{1, \dots, m\}$

$$\int_{\Omega} \nabla w_m \cdot \nabla u_k \, dx \stackrel{IBP}{=} - \int_{\Omega} w_m \Delta u_k \, dx = \lambda_k \int_{\Omega} w_m u_k \, dx = 0$$

$$\implies \int_{\Omega} \nabla w_m \cdot \nabla u_k \, dx = 0$$

$$\implies \int_{\Omega} \nabla w_m \cdot \nabla v_m \, dx = 0$$

Since $\nabla v_m = \sum_{j=1}^m c_j \nabla u_j$

$$\int_{\Omega} |\nabla v|^2 \, \mathrm{d}x = \int_{\Omega} |\nabla v_m + \nabla w_m|^2 \, \mathrm{d}x =$$

$$\int_{\Omega} |\nabla v_m|^2 \, \mathrm{d}x + 2 \int_{\Omega} \nabla v_m \cdot \nabla w_m \, \mathrm{d}x + \int_{\Omega} |\nabla w_m|^2 \, \mathrm{d}x$$

$$\Longrightarrow \int_{\Omega} |\nabla w_m|^2 \, \mathrm{d}x \le \int_{\Omega} |\nabla v|^2 \, \mathrm{d}x$$

$$\int_{\Omega} w_m^2 \, \mathrm{d}x \le \frac{1}{\lambda_{m+1}} \int_{\Omega} |\nabla w_m|^2 \, \mathrm{d}x \le \frac{1}{\lambda_{m+1}} \int_{\Omega} |\nabla v|^2 \, \mathrm{d}x$$

$$m_2 \to \infty \implies \|w_m\|_{L^2} \to 0.$$

Remark. Can do the same procedure to the Neumann eigenvalues and eigenfunctions. Only difference:

$$\lambda_1 = \inf_{u \in H^1(\Omega)} \frac{\int_{\Omega} |\nabla u|^2 \, \mathrm{d}x}{\int_{\Omega} u^2 \, \mathrm{d}x}$$

 $\lambda_1 = 0, u_1 = 1.$ $-\Delta u = \lambda_1 u \text{ in } \Omega.$ $\nabla u \cdot \nu = 0 \text{ on } \partial \Omega.$

$$\lambda_2 = \inf_{\substack{u \in H^1(\Omega) \\ \int_{\Omega} u \cdot 1 \, \mathrm{d}x = 0}} \mathcal{R}(u)$$

Proposition 2. Let $\lambda_1(\Omega) := \inf_{u \in H_0^1(\Omega)} \mathcal{R}(u)$.

Then if $\Omega_1 \subset \Omega_2$ both open one has $\lambda_1(\Omega_2) \leq \lambda_2(\Omega_1)$.

Proof. Let u be any admissible function for $\lambda_1(\Omega_1)$. $u \in H_0^1(\Omega)$ $u \not\equiv 0$ Define completion for $\lambda_1(\Omega_2)$ via:

$$\widetilde{u}(x) = \begin{cases} u, & \text{if } x \in \Omega_1; \\ 0, & \text{if } x \in \Omega_2 \setminus \Omega_1. \end{cases}$$

Then $\widetilde{u} \in H_0^1$. But $\mathcal{R}_{\Omega_2}(\widetilde{u}) = \mathcal{R}_{\Omega_1}(u)$. $\implies \lambda_1(\Omega_1) \ge \lambda_1(\Omega_2)$.

Example of 2D eigenfunction

Take $\Omega = (0, 1) \times (0, 1)$.

 $-\Delta u = \lambda u$ in Ω .

u = 0 on $\partial \Omega$

We use separation of variables.

Seek u(x,y) = F(x)G(y). Substitute into the PDE.

$$-F''(x)G(y) - F(x)G''(y) = \lambda F(x)G(y)$$
$$-\frac{F''(x)}{F(x)} = \frac{G''(y)}{G(y)} + \lambda \equiv \mu$$
$$F''(x) + \mu F(x) = 0$$

$$G''(y) + (\lambda - \mu)G(y) = 0$$

Then F(0) = 0 = F(1) so $F(x) = \sin(\sqrt{\mu}x)$.

 $F(1) = 0 \implies \sqrt{\mu} = k\pi \implies \mu = k^2\pi^2$

For the second case, if $\lambda - \mu$ is negative we have exponential but we also need G(0) = G(1) = 0 which is not possible. So it is not negative.

$$G(y) = \sin(\sqrt{\lambda - \mu}y)$$

$$G(1) = 0 \implies \sqrt{\lambda - \mu} = l\pi$$
$$\implies \lambda = \mu + l^2\pi^2.$$

$$\implies \lambda_{k,l} = (k^2 + l^2)\pi^2$$

where $k, l = 1, 2, 3, \cdots$.

Smallest eigenvalue is $\lambda_{1,1} = 2\pi^2$. Multiplicity is 1.

But for higher ones, we can have multiplicity > 1. $\lambda_{1,2} = \lambda_{2,1}$ with different eigenfunctions.

Monday, 11/4/2024

Recall that $\lambda_1 \coloneqq \inf_{u \in H_0^1(\Omega), u \not\equiv 0} \mathcal{R}(u)$ for Dirichlet Boundary Condition.

For Neumann, we minimize just over H^1 .

Recall from example of $\Omega = (0,1) \times (0,1)$:

$$\lambda_{k,l} = \pi^2 (k^2 + l^2)$$

eigenfunctions were $u_{k,l}(x,y) = \sin(\pi kx)\sin(\pi ly)$

Then $\lambda_{1,2} = \lambda_{2,1}$ multiplicity 2 eigenvalue.

Proposition 3. Any first Dirichlet eigenfunction does not vanish in Ω .

Proof. Let u_1 be any first eigenfunction. Then, $\lambda_1 = \mathcal{R}(u_1)$. $|u_1| \in H_0^1$.

 $R(|u_1|) = \frac{\int_{\Omega} |\nabla |u_1|^2 \, \mathrm{d}x}{\int_{\Omega} |u_1|^2 \, \mathrm{d}x} = \mathcal{R}(u_1) = \lambda_1.$

Thus, $|u_1|$ is also a first eigenfunction.

Apply sobolev elliptic regularity: $|u_1|$ is smooth.

Then, $-\Delta(|u_1|) = \lambda_1 |u_1|, |u_1| = 0$ on $\partial\Omega$.

Then $\Delta(|u_1|) \leq 0$.

This is a superharmonic function.

Strong Minimum Principle $\implies |u_1|$ cannot achieve minimum inside Ω .

Thus, u_1 has no interior zeroes.

Corollary 1. Every eigenfunction for λ_k with k > 1 must vanish somewhere

Proposition 4. λ_1 is always simple (multiplicity 1).

Proof. Suppose u_1 and \widetilde{u}_1 are linearly independent first eigenfunctions. WLOG, $u_1 > 0$, $\widetilde{u}_1 > 0$ in Ω and normalized so that $\int_{\Omega} u_1 dx = \int_{\Omega} \widetilde{u}_1 dx = 1$.

Let $w = u_1 - \widetilde{u}_1$. Then $\int_{\Omega} w \, dx = 0$.

 $-\Delta w = \lambda_1 w$ in Ω and w = 0 in $\partial \Omega$.

But $\not\equiv$ non-zero first eigenfunction that vanishes inside Ω . Contradiction.

Schauder Theory

Ref: Gilberg-Trudinger, J.Jost Hölder spaces:

Definition 21 (Hölder Quotient). for $\alpha \in (0, 1)$:

$$[u]_{C^{\alpha}(\Omega)} := \sup_{\substack{x,y \in \Omega \\ x \neq y}} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}$$

This is not a norm. We define a norm by:

$$|u|_{C^{0,\alpha}} \coloneqq \sup_{\Omega} |u(x)| + [u]_{C^{\alpha}(x)}$$

$$|u|_{C^{k,\alpha}(\Omega)}\coloneqq \sum_{|\beta|\leq k}\sup_{\Omega}|D^{\beta}u(x)|+\sum_{|\beta|=k}[D^{\beta}u]_{C^{\alpha}}$$

There are 2 sets of estimates in Schauder theory:

- 1) Very precise Hölder estimates for $\Delta u = f$ when $f \in C^{\alpha}$.
- 2) Use these to obtain similar estimates for Lu=f where L= general elliptic operator.

Recall:

Fundamental solution to Laplace's equation in n dim:

$$K(x) := \begin{cases} \frac{1}{n(2-n)\alpha_n} |x|^{2-n}, & \text{if } n > 2; \\ \frac{1}{2\pi} \ln|x|, & \text{if } n = 2. \end{cases}$$

 α_n = volume of unit ball in \mathbb{R}^n .

[Evans had negative]

K(x) is just a radial solution to $\Delta u = 0$.

K is singular at x = 0.

Newtonian Potential of a function $f: \Omega \to \mathbb{R}$ given by:

$$w(x) := \int_{\Omega} K(x - y) f(y) \, \mathrm{d}y$$

For nice enough f we can 'differentiate under the integral sign'. Ignoring constants, $|K(x)| \leq |x|^{2-n}$ or $|K(x)| \leq \ln |x|$

$$\left| \frac{\partial K}{\partial x_i} \right| = \left| |x|^{1-n} \frac{x_i}{|x|} \right| \le |x|^{1-n}$$

$$\left| \frac{\partial^2 K}{\partial x_i \partial x_j} \right| = \left| |x|^{-n} \delta_{ij} + x_i (-n) |x|^{-n-1} \frac{x_i}{|x|} \right| = \left| \frac{\delta_{ij}}{|x|^n} - \frac{n x_i x_j}{|x|^{n+2}} \right| \le |x|^{-n}$$

For all n K(x) is locally integrable.

$$\int_{B(0,1)} |x|^{2-n} dx = \int_0^1 \int_{\partial B(0,r)} r^{2-n} dS dr = \int_0^1 r^{2-n} \int_{\partial B(0,r)} 1 dS dr$$
$$= \int_0^1 r^{2-n} n\alpha_n r^{n-1} dr = \int_0^1 n\alpha_n r dr < \infty$$

Also, $\frac{\partial K}{\partial x_i}$ is locally integrable.

$$\int_{B(0,1)} \left| \frac{\partial K}{\partial x_i} \right| dx \sim n\alpha_n \int_0^1 r^{1-n} r^{n-1} dr < \infty$$

However,

$$\int_{B(0,1)} \left| \frac{\partial^2 K}{\partial x_i \partial x_j} \right| \, \mathrm{d}x \sim \int_0^1 r^{-n} r^{n-1} \, \mathrm{d}r \sim \text{ logarithmic singularity}$$

Wednesday, 11/6/2024

We have the following basic estimates:

$$|K(x)| \le C|x|^{2-n} (n > 2)$$

$$|K_{x_i}(x)| \le C|x|^{1-n}$$

$$|K_{x_i x_i}| \le C|x|^{-n}$$

Newtonioan Potential of function $f: \Omega \to \mathbb{R}$ is given by:

$$w(x) := \int_{\Omega} K(x - y) f(y) dx$$

Theorem 32 (A). Assume f integrable and bounded.

Then w is C^1 on Ω and:

$$w_{x_i}(x) = \int_{\Omega} K_{x_i}(x - y) f(y) \, \mathrm{d}y$$

Proof. Let η be C^1 so that $\eta(x) = 0$ for $0 \le x \le 1$, $\eta(x) = 1$ for $x \ge 2$ and $0 \le \eta' \le 2$ for all x.

for all x. For $\epsilon > 0$ let $\eta_{\epsilon}(x) \coloneqq \eta\left(\frac{|x|}{\epsilon}\right)$.

Define

$$w_{\epsilon}(x) := \int_{\Omega} K(x-y)\eta_{\epsilon}(x-y)f(y) \,\mathrm{d}y$$

Easy to justify:

$$w_{\epsilon_{x_i}}(x) = \int_{\Omega} \frac{\partial}{\partial x_i} \left(K(x - y) \eta_{\epsilon}(x - y) \right) f(y) \, \mathrm{d}y$$

Also easiy: $w_{\epsilon} \to w$ uniformly in Ω .

$$w - w_{\epsilon} = \int_{\Omega} K(x - y)(1 - \eta_{\epsilon}(x - y))f(y) dy$$

$$= \int_{\{y:|x-y|<2\epsilon\}} K(x-y)(1 - \eta_{\epsilon}(x-y))f(y) \,dy$$

Now consider:

$$w_{\epsilon_{x_i}} - \int_{\Omega} K_{x_i}(x-y) f(y) \,\mathrm{d}y$$

$$= \int_{\Omega} \left(\frac{\partial}{\partial x_{i}} \left(K(x - y) \eta_{\epsilon}(x - y) \right) - K_{x_{i}} \right) f(y) \, \mathrm{d}y$$

$$= \int_{\Omega} K_{x_{i}}(x - y) (\eta_{\epsilon}(x - y) - 1) f(y) \, \mathrm{d}y$$

$$= I$$

$$+ \int_{\Omega} K(x - y) \eta_{\epsilon_{x_{i}}}(x - y) f(y) \, \mathrm{d}y$$

$$= II$$

$$I \le C \int_{\{y:|y - x| < 2\epsilon\}} \frac{1}{|x - y|^{n-1}} |f(y)| \, \mathrm{d}y \sim c \int_{0}^{2\epsilon} \frac{1}{r^{n-1}} r^{n-1} \, \mathrm{d}r = \mathcal{O}(\epsilon)$$

$$II \le \frac{2}{\epsilon} C \int_{\{y:\epsilon < |x - y| < 2\epsilon\}} \frac{1}{|x - y|^{n-2}} |f(y)| \, \mathrm{d}y = \mathcal{O}(\epsilon)$$

$$w(x + he_{i}) - w(x) = \lim_{\epsilon \to 0} w_{\epsilon}(x + he_{i}) - w_{\epsilon}(x) = \lim_{\epsilon \to 0} \int_{0}^{h} w_{\epsilon_{x_{i}}}(x + te_{i}) \, \mathrm{d}t$$

$$= \int_{0}^{h} \int_{\Omega} K_{x_{i}}(x + te_{i} - y) f(y) \, \mathrm{d}y$$

Divide by h:

$$\frac{w(x+he_i)-w(x)}{h} = \frac{1}{h} \int_0^h \int_{\Omega} K_{x_i}(x+te_i-y)f(y) \,dy$$

Let $h \to 0$ to see $w_{x_i}(x) = \int_{\Omega} K_{x_i}(x-y) f(y) dy$.

Theorem 33 (B). Let $\Omega \subset \mathbb{R}^n$ be open bounded. Let $f \in C^{0,\alpha}(\Omega)$. Then $w \in C^2(\Omega), \Delta w = f$ and $\forall x \in \Omega$ one has:

$$w_{x_i x_j} = \int_{\Omega_0} K_{x_i x_j}(x - y)(f(y) - f(x)) dy - f(x) \int_{\partial \Omega_0} K_{x_i}(x - y) \nu_j(y) dS(*)$$

where Ω_0 is any smooth bounded open set such that $\Omega \subset\subset \Omega_0$ and ν is the outer unit normal to Ω_0 and $f \equiv 0$ outside Ω .

Proof. Let u(x) be RHS of (*).

Claim: u(x) is well defined.

True since:

$$\int_{\Omega_0} |K_{x_i x_j}(x-y)| |f(y) - f(x)| \,\mathrm{d}y$$

for $y \in \Omega$,

$$\leq [f]_{C^{\alpha}} \int \frac{C}{|x-y|^n} |x-y|^{\alpha} \, \mathrm{d}y$$
$$\sim \int_0^{\delta} \frac{1}{r^n} r^{n-1} r^{\alpha} \, \mathrm{d}r \sim \delta^{\alpha}$$

For $y \notin \Omega$ we have |x - y| > 0.

This proves the claim.

Fix i. Let $v_{\epsilon}(x) := \int_{\Omega} K_{x_i}(x-y) \eta_{\epsilon}(x-y) f(y) \, \mathrm{d}y$. Theorem A $\implies v_{\epsilon} \to w_{x_i}$ uniformly as $\epsilon \to 0$.

For any j:

$$v_{\epsilon_{x_j}}(x) = \int_{\Omega} \frac{\partial}{\partial x_j} \left(K_{x_i}(x - y) \eta_{\epsilon}(x - y) \right) f(y) \, \mathrm{d}y$$

$$= \int_{\Omega_0} \frac{\partial}{\partial x_j} \left(K_{x_i}(x - y) \eta_{\epsilon}(x - y) \right) f(y) \, \mathrm{d}y$$

$$= \int_{\Omega_0} \frac{\partial}{\partial x_j} \left(K_{x_i}(x - y) \eta_{\epsilon}(x - y) \right) \left(f(y) - f(x) \right) \, \mathrm{d}y$$

$$+ f(x) \int_{\Omega_0} \frac{\partial}{\partial x_j} \left(K_{x_i}(x - y) \eta_{\epsilon}(x - y) \right) \, \mathrm{d}y$$

$$= \int_{\Omega_0} \frac{\partial}{\partial x_j} \left(K_{x_i}(x - y) \eta_{\epsilon}(x - y) \right) \left(f(y) - f(x) \right) \, \mathrm{d}y$$

$$- f(x) \int_{\Omega_0} \frac{\partial}{\partial y_j} \left(K_{x_i}(x - y) \eta_{\epsilon}(x - y) \right) \left(f(y) - f(x) \right) \, \mathrm{d}y$$

$$= \int_{\Omega_0} \frac{\partial}{\partial x_j} \left(K_{x_i}(x - y) \eta_{\epsilon}(x - y) \right) \left(f(y) - f(x) \right) \, \mathrm{d}y$$

$$- f(x) \int_{\partial\Omega_0} \left(K_{x_i}(x - y) \eta_{\epsilon}(x - y) \right) \left(f(y) - f(x) \right) \, \mathrm{d}y$$

$$- f(x) \int_{\partial\Omega_0} K_{x_i}(x - y) \eta_{\epsilon}(x -$$

Then,

$$\left| u(x) - v_{\epsilon_{x_j}}(x) \right| = \int_{\{|y-x| < 2\epsilon\}} \left| K_{x_i x_j}(x-y) \right| |f(y) - f(x)| \, \mathrm{d}y$$

$$+ \int_{\{\epsilon < |y-x| < 2\epsilon\}} \underbrace{\left| \eta'_{\epsilon} \right|}_{\leq \frac{2}{\epsilon}} |K_{x_i}(x-y)| |f(y) - f(x)| \, \mathrm{d}y$$

$$\sim [f]_{C^{\alpha}} \int_{0}^{2\epsilon} \frac{1}{r^n} r^{\alpha} r^{n-1} \, \mathrm{d}r + \frac{2}{\epsilon} \int_{0}^{2\epsilon} \frac{1}{r^{n-1}} r^{\alpha} r^{n-1} \, \mathrm{d}r = \mathcal{O}(\epsilon^{\alpha})$$

Thus $v_{\epsilon_{x_i}} \to u(x)$ uniformly as $\epsilon \to 0$.

As in theorem A, $w_{x_i}(x + he_j) - w_{x_i}(x) = \cdots$ and we're done.

Now we prove $\Delta w = f$.

Fixing x, take $\Omega_0 = B(x, R)$ for large R [so that $\Omega \subset B(x, R)$]. Use (*) with i = j, summing on i. This gives us the laplacian.

$$\Delta w = \sum_{i} w_{x_{i}x_{i}} = \underbrace{\int_{B(x,R)} \Delta K(x-y)(f(y) - f(x)) \, \mathrm{d}y}_{0 \text{ since } K \text{ is harmonic}}$$
$$+ f(x) \int_{\partial B(x,R)} \nabla K(x-y) \cdot \nu \, \mathrm{d}S$$

Also,

$$\int_{\partial B(x,R)} \nabla K \cdot \nu \, dS = \int_{\partial B(x,R)} \frac{\partial K}{\partial r} \, dS = \int_{\partial B(x,R)} \frac{1}{n\alpha(n)R^{n-1}} \, dS = 1$$

So we're done.

Friday, 11/8/2024

Recap:

$$K(x) = \begin{cases} \frac{1}{\alpha_n n(2-n)} |x|^{2-n}, & \text{if } n > 2; \\ \frac{1}{2\pi} \log |x|, & \text{if } n = 2. \end{cases}$$

Newtonian potential of f in Ω :

$$w(x) = \int_{\Omega} K(x - y) f(y) \, \mathrm{d}y$$

So far: if $f \in C^{0,\alpha}(\Omega)$, $0 < \alpha < 1$ then $w \in C^2$, $\Delta w = f$ in Ω . We have estimate of derivative:

$$w_{x_i x_j}(x) = \int_{\Omega_0} K_{x_i x_j}(x - y)(f(y) - f(x)) \, dy - f(x) \int_{\partial \Omega_0} K_{x_i}(x - y) \nu_j(y) \, dS$$

Where $\Omega_0 \supset \Omega$, $\partial \Omega_0$ smooth, f is extended to be 0 on $\Omega_0 \setminus \Omega$

Note that if f is just continuous then $w \in C^2$.

This result, among other things, shows existence to $\Delta u = f$ in $\Omega, u = g$ on $\partial\Omega$ for $f \in C^{0,\alpha}, g \in C^0$. To show existence, it suffices to be able to solve $\Delta v = 0$ on Ω and v = h on $\partial\Omega$ for all h continuous (*).

Why?

Let $w = \int_{\Omega} K(x - y) f(y) dy$

We seek u of the form:

$$u = w + \widetilde{u}$$

$$\Delta \widetilde{u} = 0 \text{ in } \Omega$$

$$\widetilde{u} = q - w$$
 on $\partial \Omega$

How to solve (*)?

When $\Omega = B$ [a ball],

$$v = \frac{1}{\omega_{n-1}} \int_{\partial B_R} \frac{R - |x|^2}{|x - y|^n} h(y) \, \mathrm{d}S$$

So we have explicit Poisson Integral formula.

What if Ω is not a ball? Many methods:

Calculus of variations: minimize $\int_{\Omega} |\nabla v|^2 dx$

Perron's method.

Theorem 34. Let $B_R = B(x_0, R), B_{2R} = B(x_0, 2R)$ be 2 concentric balls in \mathbb{R}^n . Fix R > 0. Then for $f \in C^{0,\alpha}(B_{2R})$ we have

$$|w|_{C^{2,\alpha}(B_{2R})} \le C(\alpha, R)|f|_{C^{0,\alpha}(B_{2R})}$$

Proof. To control sup $|w_{x_ix_j}|$ in B_R :

$$|w_{x_{i}x_{j}}(x)| \leq \int_{B_{2R}} |K_{x_{i}x_{j}}| \frac{|f(y) - f(x)|}{|y - x|^{\alpha}} |y - x|^{\alpha} \, \mathrm{d}y + \left| f(x) \int_{\partial B_{2R}} K_{x_{i}}(x - y) \nu_{j}(y) \, \mathrm{d}S \right|$$

$$\leq \int_{B_{2R}} |K_{x_{i}x_{j}}| \frac{|f(y) - f(x)|}{|y - x|^{\alpha}} |y - x|^{\alpha} \, \mathrm{d}y + \sup_{B_{2R}} |f| \frac{C}{R^{n-1}} n\alpha(n) R^{n-1}$$

$$\leq C[f]_{C^{\alpha}} \int_{0}^{2R} \frac{1}{r^{n}} r^{\alpha} r^{n-1} \, \mathrm{d}r < C(R)[f]_{C^{\alpha}} + C \sup |f|$$

Then we bound $[w_{x_ix_j}]_{C^{\alpha}(B_R)}$. Fix x and \overline{x} in B_R .

$$w_{x_{i}x_{j}}(\overline{x}) - w_{x_{i}x_{j}}(x)$$

$$= \int_{B_{2R}} \left(K_{x_{i}x_{j}}(\overline{x} - y)(f(y) - f(\overline{x})) - K_{x_{i}x_{j}}(x - y)(f(y) - f(x)) \right) dy$$

$$\underbrace{-f(\overline{x}) \int_{\partial B_{2R}} K_{x_{i}}(\overline{x} - y)\nu_{j} dS_{y} + f(x) \int_{\partial B_{2R}} K_{x_{i}}(x - y)\nu_{j} dS_{y}}_{=I_{1}+I_{2}+I_{3}+I_{4}}$$

$$I_{1} = f(x) \int_{\partial B_{2R}} \left(K_{x_{i}}(x - y) - K_{x_{i}}(\overline{x} - y) \right) \nu_{j} dS_{y}$$

$$+(f(x) - f(\overline{x})) \int_{\partial B_{2R}} K_{x_{i}}(\overline{x} - y)\nu_{j} dS$$

$$\implies |I_{1}| \leq \sup_{B_{2R}} |f| \int_{\partial B_{2R}} |D_{\tau}K_{x_{i}}(\widetilde{x} - y)| |x - \overline{x}| dS_{y}$$

$$+[f]_{C^{\alpha}}|x - \overline{x}|^{\alpha} \cdot C(R)$$

for some \widetilde{x} between x and \overline{x} . D_{τ} is the <u>directional derivative</u>, we have used Mean Value Theorem.

$$\leq c \sup |f| \cdot \frac{1}{R^n} n\alpha(n) (2R)^{n-1} |x - \overline{x}| + C(R) [f]_{C^{\alpha}} |x - \overline{x}|^{\alpha}$$

$$\leq C(R) |f|_{C^0, \alpha} |x - \overline{x}|^{\alpha}$$
Let $\delta = |x - \overline{x}|$ and $\xi = \frac{1}{2} (x + \overline{x})$.

$$I_2 = \int_{B(\xi,\delta)\cap B_{2R}} K_{x_i x_j}(x-y)(f(x)-f(y)) \,\mathrm{d}y$$
$$+ \int_{B(\xi,\delta)\cap B_{2R}} K_{x_i x_j}(\overline{x}-y)(f(y)-f(x)) \,\mathrm{d}y$$

Estimate first integral:

$$\leq C[f]_{C^{\alpha}} \int_{B(\xi,\delta) \cap B_{2R}} \frac{1}{|x-y|^n} |x-y|^{\alpha} dy$$

Notice that $B(x, \frac{3}{2}\delta) \supset B(\xi, \delta)$.

$$\leq C[f]_{C^{\alpha}} \int_{B(x,\frac{3}{2}\delta)} \frac{1}{|x-y|^n} |x-y|^{\alpha} dy$$

$$\leq C[f]_{C^{\alpha}} \int_0^{\frac{3}{2}\delta} \frac{1}{r^n} r^{\alpha} r^{n-1} dr \leq C[f]_{C^{\alpha}} \left(\frac{3}{2}\right)^{\alpha} \left(\underbrace{\delta}_{|x-\overline{x}|}\right)^{\alpha}$$

$$I_3 = (f(x) - f(\overline{x})) \int_{B_{2R} \setminus B(\xi,\delta)} K_{x_i x_j}(x-y) dy$$

$$I_4 = \int_{B_{2R} \setminus B(\xi,\delta)} \left(K_{x_i x_j}(x-y) - K_{x_i x_j}(\overline{x}-y)\right) (f(\overline{x}) - f(y)) dy$$

In I_3 , we are 'outside' of the ball $B(\zeta, \delta)$ so x - y doesn't get very small $|x - y| \ge \frac{\delta}{2}$. So, when we integrate we have enough control to win.

In I_4 we apply mean value theorem with the third derivative: $|D^3K| \leq C|x|^{-n-1}$. Dividing by $|x - \overline{x}^{\alpha}|$ we finish the proof.

Monday, 11/11/2024

Last estimates on $\Delta u = f$:

Last time:

If $f \in C^{0,\alpha}(B_{2R})$ and $\omega =$ Newtonian potential

$$\omega(x) = \int_{B_{2R}} K(x - y) f(y) \, \mathrm{d}y$$

then

$$|w|_{C^{2,\alpha}} \le C(\alpha, R)|f|_{C^{0,\alpha}(B_{2R})}$$

Then suppose u is a $C^{2,\alpha}$ solution to $\Delta u = f$ in B_{2R} . Then u = w + v

$$\Delta v = 0$$
 in B_{2R}

$$|u|_{C^{2,\alpha}(B_R)} \le |w|_{C^{2,\alpha}(B_R)} + |v|_{C^{2,\alpha}(B_R)}$$

$$\implies |u|_{C^{2,\alpha}(B_R)} \le C|f|_{C^{0,\alpha}(B_{2R})} + |v|_{C^{2,\alpha}(B_{2R})}$$

Recall derivtive estimates of harmonic functions:

$$|D^{\beta}v|_{B_R} \le C(\beta, R) \sup_{B_{2R}} |v|$$

 $\beta = \text{any multi-index.}$

$$\implies |u|_{C^{2,\alpha}(B_R)} \le C|f|_{C^{0,\alpha}(B_{2R})} + \sup_{B_{2R}} |u|$$

Interim Schauder estimate $\forall \Omega_0 \subset\subset \Omega$ bounded, open

$$\implies |u|_{C^{2,\alpha}(\Omega_0)} \le C(\Omega_0, \alpha) \left(|f|_{C^{0,\alpha}(\Omega)} + \sup_{\Omega} |u| \right)$$

Cover Ω_0 with balls.

Theorem 35. [Boundary Hölder Estimates] Assume $u \in C^{2,\alpha}$ solution to $\Delta u = f$ in $\Omega, u = g$ on $\partial\Omega$ where $f \in C^{0,\alpha}(\overline{\Omega}), g \in C^{2,\alpha}(\overline{\Omega})$ and $\partial\Omega \in C^{2,\alpha}$. Then,

$$|u|_{C^{2,\alpha}(\overline{\Omega})} \le C \left(|f|_{C^{0,\alpha}(\overline{\Omega})} + |g|_{C^{2,\alpha}(\overline{\Omega})} + \sup_{\overline{\Omega}} |u| \right)$$

Philosophy: Flatten the boundary [we can do this since $\partial\Omega$ is $C^{2,\alpha}$].

Subtract off g to get zero dirichlet condition.

Then we work on $\frac{1}{2}$ balls.

General Schauder Estimates

Theorem 36. Let $Lu := a_{ij}u_{x_ix_j} + b_i(x)u_{x_i} + c(x)u, a_{ij} = a_{ji}, a_{ij}(x)\zeta_i\zeta_j \ge \lambda|\zeta|^2\forall\zeta\in\mathbb{R}^n(\lambda>0).$

$$\sum_{i,j} |a_{ij}|_{C^{0,\alpha}} + \sum_{i} |b_{i}|_{C^{0,\alpha}} + |c|_{C^{0,\alpha}} \le \Lambda$$

Proof. First step: Suppose a_{ij} is constant.

Idea: Change variables to convert $a_{ij}u_{x_ix_j}$ to Δu .

 $Lu = a_{ij}u_{x_ix_j}$. a_{ij} is positive definite symmetric so there exists S orthogonal $[S^T =$

$$S^{-1}$$
] so that $S^{-1}AS = \widetilde{D} = \begin{bmatrix} \lambda_1 \\ & \ddots \\ & & \lambda_n \end{bmatrix}$ where $(A_{ij}) = a_{ij}$.

Let y=xs where $x=(x_1,\cdots,x_n)$. Let $v(y)=u(yS^{-1})$. $u(x)=v(xS) \implies u_{x_i}=v_{y_k}S_{ik} \implies u_{x_ix_j}=v_{y_ky_l}S_{ik}S_{jl} \implies a_{ij}u_{x_ix_j}=v_{y_ky_l}S_{ik}a_{ij}S_{jl}=v_{y_ky_l}S_{ki}^Ta_{ij}S_{jl} \implies a_{ij}u_{x_ix_j}=\widetilde{D}klv_{y_ky_l}=\widetilde{D}D^2v=\lambda_1v_{y_1y_1}+\cdots \lambda_nv_{y_ny_n}$ Change variables again: let $z_i = \sqrt{\lambda_i} y_i$ then $\frac{\partial^2}{\partial z_i^2} = \frac{1}{\lambda_i} \frac{\partial^2}{\partial y_i^2} \implies w(z) = v(y) \implies$

If u solves $a_{ij}u_{x_ix_j}=f$ then w solves $\Delta_z=\widetilde{f}$. Then we use old estimates for Poisson.