```
In [1]: # Dependencies
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        # import locale
        # import requests
        # import os
        import csv
        import scipy.stats as stats
        import warnings
        warnings.filterwarnings('ignore')
In [2]: # Collecting base data...
        temp df = pd.read csv("Resources/election all.csv")
        pop df = pd.read csv("Resources/population2000-2016ALL.csv")
        v2000 = pd.read csv("Resources/FOR JINHO 2000.csv")
        v2004 = pd.read_csv("Resources/FOR_JINHO_2004.csv")
        v20081 = pd.read csv("Resources/FOR JINHO 2008.csv")
        v2012 = pd.read csv("Resources/FOR JINHO 2012.csv")
        v2016 = pd.read_csv("Resources/FOR_JINHO_2016.csv")
        year = '2000-2016'
In [3]: overall = pd.merge(v2000,v2004, on='Location').merge(v20081, on='Location')
        overall1 = overall.merge(v2012, on='Location').merge(v2016, on='Location')
```

```
overall1.columns = ['Location', 'total votes 2000', '2000 republican votes', '2000 de
```

In [4]: overall1['total votes'] = overall1['total votes 2000']+overall1['total votes 2004']+ overall1['rep'] = overall1['2000_republican_votes']+overall1['2004_republican_votes' overall1['dem'] = overall1['2000_democrat_votes']+overall1['2004_democrat_votes']+ov overall1.head()

Out[4]:

	Location	total_votes_2000	2000_republican_votes	2000_democrat_votes	total_votes_2004	2004_republican_vo
0	Alabama, Autauga	17208	11993	4942	20081	15 ⁻
1	Alabama, Baldwin	56480	40872	13997	69320	52!
2	Alabama, Barbour	10395	5096	5188	10777	51
3	Alabama, Bibb	7101	4273	2710	7600	5,
4	Alabama, Blount	17973	12667	4977	21504	17:

```
In [5]: overall2 = overall1[['Location','total_votes', 'rep', 'dem']]
    overall2.columns = ['Location','total_votes','2008_democrat_votes','2008_republican_
    overall2
    v2008 = overall2
    v2008.head()
```

Out[5]:

	Location	total_votes	2008_democrat_votes	2008_republican_votes
0	Alabama, Autauga	109835	80143.0	28092.0
1	Alabama, Baldwin	387766	294013.0	85864.0
2	Alabama, Barbour	54780	27865.0	26500.0
3	Alabama, Bibb	40584	28877.0	11174.0
4	Alabama, Blount	113338	94058.0	17563.0

```
In [6]: # Creating master State, County details...
    master_location_df = temp_df[['state','county','state_po']]
    master_location_df = master_location_df.drop_duplicates()
    master_location_df['Location'] = master_location_df.state+", "+master_location_df.cc
    master_location_df.columns = ['State', 'County', 'State_po', 'Location']
    master_location_df = master_location_df.dropna()
    master_location_df.to_csv(r'Resources/master_state_info.csv', index=False, header=Tr
    print(len(master_location_df))
    master_location_df.head()
```

3150

Out[6]:

	State	County	State_po	Location
0	Alabama	Autauga	AL	Alabama, Autauga
4	Alabama	Baldwin	AL	Alabama, Baldwin
8	Alabama	Barbour	AL	Alabama, Barbour
12	Alabama	Bibb	AL	Alabama, Bibb
16	Alabama	Blount	AL	Alabama, Blount

```
In [7]: # Collecting required fields...
# pop_df = pop_df[['Location','2000','2004','2008','2012','2016']]
pop_df = pop_df[['Location','2008']]
# print(len(pop_df))
# pop_df.head()
pop_final = pd.merge(pop_df, master_location_df, on='Location')
pop_final
# Creating summary data by state...
pop_state_summary = pop_final.groupby('State')
pop_state_summary = pop_state_summary.sum()

pop_county_summary = pop_final.groupby('Location')
pop_county_summary = pop_county_summary.sum()
pop_county_summary.head()
len(pop_county_summary)
```

```
In [8]: # Creating summary for State...
        v2008 final = pd.merge(v2008, master location df, on='Location')
        v2008_final['2008_other_votes'] = v2008_final["total_votes"]-v2008_final["2008_democ
        v2008 state summary = v2008 final.groupby('State')
        v2008 state summary = v2008 state summary.sum()
        # v2008 state summary.head()
        v2008_state_summary['year'] = '2008'
        year2 = v2008_state_summary['year'].iloc[0]
        # print(v2008 state summary['total votes'].min()/1000, v2008 state summary['total vo
        # merge population data to calcuate avg.
        v2008_state_summary = v2008_state_summary.merge(pop_state_summary, on='State')
        v2008 state summary['avg votes'] = round(v2008 state summary['total votes']*100/v200
        v2008_state_summary['2008_democrat_votes'] = round(v2008_state_summary['2008_democrat
        v2008 state summary['2008 republican votes'] = round(v2008 state summary['2008 repub
        v2008 state summary['2008 other votes'] = round(v2008 state summary['2008 other vote
        hv st = v2008 state summary['avg votes'].max()
        highst = v2008_state_summary.loc[v2008_state_summary['avg_votes'] == hv_st]
        hv st = highst.index.tolist()
        lv st = v2008 state summary['avg votes'].min()
        lowst = v2008 state summary.loc[v2008 state summary['avg votes'] == lv st]
        lv st = lowst.index.tolist()
        v2008 state summary.head()
```

Out[8]:

	total_votes	2008_democrat_votes	2008_republican_votes	2008_other_votes	year	2008	avg_vote
State							
Alabama	9849505	126.0	79.0	3.0	2008	4718206	209.
Arizona	10768183	89.0	76.0	6.0	2008	6280362	171.
Arkansas	5261456	105.0	73.0	5.0	2008	2874554	183.
California	64131576	67.0	102.0	6.0	2008	36604337	175.
Colorado	11498639	110.0	115.0	10.0	2008	4889730	235.

```
In [9]: # Creating summary for Counties..
        v2008 county summary = v2008 final.groupby('Location', as index=False)
        v2008 county summary = v2008 county summary.sum()
        # print(v2008 county summary['total votes'].min(), v2008 county summary['total votes
        v2008 county summary = v2008 county summary.merge(pop county summary, on='Location')
        v2008 county summary['avg votes'] = round(v2008 county summary['total votes']*100/v2
        v2008_county_summary['2008_democrat_votes'] = round(v2008_county_summary['2008_democ
        v2008_county_summary['2008_republican_votes'] = round(v2008_county_summary['2008_rep
        v2008 county summary['2008 other votes'] = round(v2008 county summary['2008 other votes']
        hv cy = v2008 county summary['avg votes'].max()
        highcy = v2008 county summary.loc[v2008 county summary['avg votes'] == hv cy]
        hv cy = highcy.Location.tolist()
        lv_cy = v2008_county_summary['avg_votes'].min()
        lowcy = v2008 county summary.loc[v2008 county summary['avg votes'] == lv cy]
        lv cy = lowcy.Location.tolist()
        v2008 county summary.head()
```

Out[9]:

	Location	total_votes	2008_democrat_votes	2008_republican_votes	2008_other_votes	2008	avg_votes
0	Alabama, Autauga	109835	150.0	53.0	3.0	53277	206.0
1	Alabama, Baldwin	387766	167.0	49.0	4.0	175827	221.0
2	Alabama, Barbour	54780	100.0	95.0	1.0	27808	197.0
3	Alabama, Bibb	40584	127.0	49.0	2.0	22705	179.0
4	Alabama, Blount	113338	165.0	31.0	3.0	57055	199.0

```
In [10]:
         # Voter turnout by state...
         title = year+' Avg. Voter Turnout By State'
         pfile = title.replace(" ",'_')+'.png'
         pfile = f"Resources/Images/{pfile}"
         plt.figure(figsize=(30,15))
         plt.rc('axes', titlesize=32)
         plt.rc('axes', labelsize=28)
         plt.rc('xtick', labelsize=22)
         plt.rc('ytick', labelsize=22)
         plt.bar(v2008 state summary.index, v2008 state summary.avg votes)
         plt.xticks(rotation=90)
         plt.yticks(rotation=360)
         plt.xlabel('States')
         plt.ylabel("Avg. Voter Turnout")
         plt.title(title)
         plt.xlim(-0.75, len(v2008 state summary.index)-.25)
         plt.ylim(0, v2008_state_summary.avg_votes.max()+10)
         plt.tight_layout()
         plt.savefig(pfile)
         plt.show()
```



```
In [11]:
         # Avg. Party votes by state...
         plt.figure(figsize=(30,15))
         plt.rc('axes', titlesize=32)
         plt.rc('axes', labelsize=28)
         plt.rc('xtick', labelsize=22)
         plt.rc('ytick', labelsize=22)
         plt.rc('legend', fontsize=22)
         title = year+' Party Votes By State'
         pfile = title.replace(" ",' ')+'.png'
         pfile = f"Resources/Images/{pfile}"
         maxy = v2008 state summary['2008 democrat votes'].max()
         if maxy < v2008_state_summary['2008_republican_votes'].max():</pre>
             maxy = v2008 state summary['2008 republican votes'].max()
         Democrat = plt.plot(v2008 state summary.index, v2008 state summary["2008 democrat vo
         Republican = plt.plot(v2008_state_summary.index, v2008_state_summary["2008_republica
         Others = plt.plot(v2008 state summary.index, v2008 state summary["2008 other votes"]
         plt.xticks(rotation=90)
         plt.yticks(rotation=360)
         plt.xlabel('States')
         plt.ylabel("Avg. Voter Turnout")
         plt.title(title)
         plt.xlim(-0.75, len(v2008_state_summary.index)-.25)
         plt.ylim(0, maxy+5)
         plt.legend(loc="best")
         plt.tight_layout()
         plt.savefig(pfile)
         plt.show()
```



```
In [12]: # Generating Random 50 counties...
    random_sample_county = pd.DataFrame(v2008_county_summary.Location.sample(n=50, random_sample_county.head()
    v2008_filtered_county_summary = pd.merge(v2008_county_summary,random_sample_county,
    # v2008_filtered_county_summary.head()
```

```
In [13]:
         # Avg. Voter turnout by random counties...
         title = year+' Avg. Voter Turnout By Random Counties'
         pfile = title.replace(" ",' ')+'.png'
         pfile = f"Resources/Images/{pfile}"
         plt.figure(figsize=(30,15))
         plt.rc('axes', titlesize=32)
         plt.rc('axes', labelsize=28)
         plt.rc('xtick', labelsize=22)
         plt.rc('ytick', labelsize=22)
         plt.bar(v2008_filtered_county_summary.Location, v2008_filtered_county_summary.avg_vd
         plt.xticks(rotation=90)
         plt.yticks(rotation=360)
         plt.xlabel('Counties')
         plt.ylabel("Avg. Voter Turnout")
         plt.title(title)
         plt.xlim(-0.75, len(v2008_filtered_county_summary.Location)-.25)
         plt.ylim(0, v2008_filtered_county_summary.avg_votes.max()+10)
         plt.tight layout()
         plt.savefig(pfile)
         plt.show()
```



```
# Party votes by random counties...
In [14]:
         plt.figure(figsize=(30,15))
         title = year+' Party Votes By Random Counties'
         pfile = title.replace(" ",' ')+'.png'
         pfile = f"Resources/Images/{pfile}"
         plt.rc('axes', titlesize=32)
         plt.rc('axes', labelsize=28)
         plt.rc('xtick', labelsize=22)
         plt.rc('ytick', labelsize=22)
         plt.rc('legend', fontsize=22)
         maxy = v2008 state summary['2008 democrat votes'].max()
         if maxy < v2008_state_summary['2008_republican_votes'].max():</pre>
             maxy = v2008 state summary['2008 republican votes'].max()
         Democrat = plt.plot(v2008 filtered county summary.Location, v2008 filtered county su
         Republican = plt.plot(v2008 filtered county summary.Location, v2008 filtered county
         Others = plt.plot(v2008 filtered county summary.Location, v2008 filtered county summ
         plt.xticks(rotation=90)
         plt.yticks(rotation=360)
         plt.xlabel('Counties')
         plt.ylabel("Avg. Voter Turnout")
         plt.title(title)
         plt.xlim(-0.75, len(v2008_filtered_county_summary.Location)-.25)
         plt.ylim(0, maxy+5)
         plt.legend(loc="best")
         plt.tight_layout()
         plt.savefig(pfile)
         plt.show()
```



```
In [15]: # Highest/Lowest voter turnout...
#

print(year + " Highest Voter Turnout for the State : " + ','.join(hv_st))
print(year + " Lowest Voter Turnout for the State : " + ','.join(lv_st))
print("")
print(year + " Highest Voter Turnout for the County : " + ','.join(hv_cy))
print(year + " Lowest Voter Turnout for the County : " + ','.join(lv_cy))
```

2000-2016 Highest Voter Turnout for the State : Minnesota 2000-2016 Lowest Voter Turnout for the State : Hawaii

2000-2016 Highest Voter Turnout for the County: Texas, Loving

2000-2016 Lowest Voter Turnout for the County : Georgia, Chattahoochee

In [16]: population_votes = v2008_state_summary[['2008_democrat_votes','2008_republican_votes
 population_votes.columns = ['2008_democrat_votes', '2008_republican_votes','2008_oth
 population_votes['pop_notvoted'] = (100-(population_votes['2008_democrat_votes']+pop
 population_votes.head()

Out[16]:

$2008_democrat_votes \quad 2008_republican_votes \quad 2008_other_votes \quad pop_notvoted$

State				
Alabama	126.0	79.0	3.0	-108.0
Arizona	89.0	76.0	6.0	-71.0
Arkansas	105.0	73.0	5.0	-83.0
California	67.0	102.0	6.0	-75.0
Colorado	110.0	115.0	10.0	-135.0

```
# Poplulation vs. Voter turnout by state for the year 2008...
In [17]:
         title = year+' Population Vs. Voter Turnout By State'
         pfile = title.replace(" ",' ')+'.png'
         pfile = f"Resources/Images/{pfile}"
         plt.figure(figsize=(30,15))
         bottom = 0
         plt.rc('axes', titlesize=32)
         plt.rc('axes', labelsize=28)
         plt.rc('xtick', labelsize=22)
         plt.rc('ytick', labelsize=22)
         label = ['Democrat', 'Republican', 'Other Parties', 'Population Not Voted']
         for i in population votes.columns:
             plt.bar(population votes.index, population votes[i], width=0.7, bottom=bottom)
             bottom += population_votes[i]
         #
         plt.xticks(rotation=90)
         plt.yticks(rotation=360)
         plt.legend(label)
         plt.xlabel('States')
         plt.ylabel("Population (%)")
         plt.title(title)
         plt.xlim(-0.75, len(population votes.index)-.25)
         plt.tight_layout()
         plt.savefig(pfile)
         plt.show()
```



```
In [18]: # Outliers
#
    quartiles = v2008_county_summary['avg_votes'].quantile([.25,.5,.75])
    lowerq = quartiles[0.25]
    upperq = quartiles[0.75]
    iqr = upperq-lowerq
    lower_bound = lowerq - (1.5*iqr)
    upper_bound = upperq + (1.5*iqr)

    print(f"The lower quartile of county outliers is :{lowerq}")
    print(f"The upper quartile of county outliers is :{upperq}")
    print(f"The interquartile range of county outliers is :{iqr}")
    print(f"The median of county volume is :{quartiles[0.5]}")
    print(f"Values below {round(lower_bound,6)} could be outliers. ")
    print(f"Values above {round(upper_bound,6)} could be outliers. ")
    print(" ")
```

The lower quartile of county outliers is :191.0
The upper quartile of county outliers is :242.0
The interquartile range of county outliers is :51.0
The median of county volume is :214.0
Values below 114.5 could be outliers.
Values above 318.5 could be outliers.

```
In [19]: title = year+' Avg. Voter Turnout By County'
         pfile = title.replace(" ",'_')+'.png'
         pfile = f"Resources/Images/{pfile}"
         boxplot data = v2008 county summary['avg votes']
         fig = plt.figure()
         plt.rc('axes', titlesize=12)
         plt.rc('axes', labelsize=12)
         plt.rc('xtick', labelsize=12)
         plt.rc('ytick', labelsize=12)
         plt.rc('legend', fontsize=12)
         c = "red"
         plt.boxplot(boxplot data, notch=True, patch artist=True,
                     boxprops=dict(facecolor=c, color=c), flierprops=dict(color=c, markeredge
         plt.title(title)
         plt.savefig(pfile)
         plt.show()
```


In [20]:	<pre>pop_county = v2008_county_summary['avg_votes'] sample_county = pd.DataFrame(v2008_county_summary.avg_votes.sample(n=1000, random_st</pre>
	stats.ttest_1samp(sample_county, pop_county.mean())
Out[20]:	<pre>Ttest_1sampResult(statistic=array([1.45453249]), pvalue=array([0.14611284]))</pre>
In []:	
In []:	