FF_DISC_RAND_VAR_MASS2OUTCOMES Examples

back to Fan's Intro Math for Econ, Matlab Examples, or Dynamic Asset Repositories

This is the example vignette for function: **ff_disc_rand_var_mass2outcomes** from the **MEconTools Package.**This function generates sorted discrete random variable from state-space joint distribution.

Test FF_DISC_RAND_VAR_MASS2OUTCOMES Defaults

Call the function with defaults.

0.1113

ff_disc_r	and_var_n	nass2outc	omes();				
INPUT f(a,z) · mt dist	hystates					
			0 0026	0 0001			
0.0289	0.0465	0.0228	0.0036	0.0001			
0.0241	0.0930	0.0857		0.0015			
0.0080	0.0744	0.1285	0.0643	0.0074			
0.0013	0.0297		0.0857	0.0186			
0.0001	0.0059	0.0361	0.0571	0.0232			
0.0000	0.0005	0.0054	0.0152	0.0116			
INPUT y(a,z): mt choic	ce hystates					
	4 -5	-4 -4	,				
		-2 -3					
	1 -1	0 0					
	1 2	3 1					
	3 3	4 3					
5	6 5	6 6					
OUTPUT f(y) 0.0518 0.0502	: ar_choice	e_prob_byY					
0.1113							
0.1171							
0.2109							
0.0717							
0.0497							
0.0964							
0.1510							
0.0572							
0.0054							
0.0273							
0.02/3							
	z): mt_choi		γYZ				
0.0289	0	0.0228	0	0			
0	0.0465	0	0.0036	0.0001			
0.0241	0	0.0857	0	0.0015			
0	0.0930	0	0.0241	0			
0.0080	0.0744	0.1285	0	0			
0	0	0	0.0643	0.0074			
0.0013	0.0297	0	0	0.0186			
0.0013	0.0237	0.0964	0	0.0100			
0	0.0059	0.0361		0.0232			
	0.0059						
0.0001		0 0054	0.0571	0			
0.0000	0	0.0054	0	0			
0	0.0005	0	0.0152	0.0116			
OUTPUT f(y,	a): mt choi	ice prob by	·YΑ				
0.0518	0	0	0	0	0		
0.0502	0	0	0	0	0		
0.0302	A 1112	0	0	0	9		

```
    0.1171
    0
    0
    0

    0
    0.2109
    0
    0

    0
    0.0717
    0
    0

    0
    0
    0.0497
    0

    0
    0
    0.0964
    0

0
                                                                                                                                             0
0
                                                                                                                                             0
0
                                                                                                                                             0
0
                                                                                                                                            0

      0
      0
      0.0964
      0

      0
      0
      0.0857
      0.0653

      0
      0
      0
      0.0572

      0
      0
      0
      0

0
                                                                                                                                         0
0
                                                                                                                                            0
0
0
                                                                                                   0 0.0054
                                                                                                            0 0.0273
```

OUTPUT f(y) and y in table: tb_choice_drv_cur_byY binomtestOutcomes probMassFunction

-5	0.051764
-4	0.050217
-3	0.11126
-2	0.11706
-1	0.21092
0	0.071696
1	0.049682
2	0.096388
3	0.15102
4	0.057231
5	0.0054256
6	0.027329

Test FF_DISC_RAND_VAR_MASS2OUTCOMES Four States-Points

Over some (a,z) states that is 2 by 2, matrix or vectorized inputs identical results.

```
% Set Parameters
st_y_name = 'consumption';
% consumption matrix: c(a,z)
mt_c_of_s = [1,2;3,1];
% stationary mass over assets adn shocks: f(a,z)
mt_f_of_s = rand(size(mt_c_of_s));
mt_f_of_s = mt_f_of_s/sum(mt_f_of_s, 'all');
% Call Function
[ar_f_of_y, ar_y_unique_sorted] = ...
    ff_disc_rand_var_mass2outcomes(st_y_name, mt_c_of_s, mt_f_of_s);
% print
disp([ar_f_of_y ar_y_unique_sorted]);
```

0.4039 1.0000 0.2971 2.0000 0.2990 3.0000

Same as before, but now inputs are single column:

```
% Call Function
[ar_f_of_y, ar_y_unique_sorted] = ...
    ff_disc_rand_var_mass2outcomes(st_y_name, mt_c_of_s(:), mt_f_of_s);
disp([ar_f_of_y ar_y_unique_sorted]);
```

0.4039 1.0000 0.2971 2.0000 0.2990 3.0000

Test FF_DISC_RAND_VAR_MASS2OUTCOMES Conditional Mass Outputs

Same inputs as before, but now, also output additional conditional statistis, f(y, a), where a is the row state variable for f(a,z). For conditional statistics, must provide matrix based inputs.

```
% Set Parameters
st_y_name = 'consumption';
% consumption matrix: c(a,z)
mt c of s = [1,2,0.5]
             3,1,2.0];
% stationary mass over assets adn shocks: f(a,z)
mt_f_of_s = rand(size(mt_c_of_s));
mt_f_of_s = mt_f_of_s/sum(mt_f_of_s, 'all');
% Call Function
[ar_f_of_y, ar_y_unique_sorted, mt_f_of_y_srow, mt_f_of_y_scol] = ...
    ff_disc_rand_var_mass2outcomes(st_y_name, mt_c_of_s, mt_f_of_s);
% print
disp([ar_f_of_y ar_y_unique_sorted]);
   0.2695
            0.5000
   0.3765
           1.0000
   0.2649
            2.0000
   0.0891
          3.0000
disp(mt_f_of_y_srow);
   0.2695
           0.2550
   0.1215
   0.1217
           0.1432
       0
           0.0891
disp(mt_f_of_y_scol);
       0
                0
                    0.2695
   0.1215
           0.2550
                        0
       0
           0.1217
                    0.1432
   0.0891
```