$\Pi\Lambda H30$

ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ

Μάθημα 3.2: Ντετερμινιστικά Πεπερασμένα Αυτόματα

Δημήτρης Ψούνης

Α. Σκοπός του Μαθήματος

Β. Θεωρία

- 1. Πεπερασμένα Αυτόματα
 - 1. Λειτουργία και Παραδείγματα
 - 2. Τρόπος Εκτέλεσης
- 2. Ντετερμινιστικά Πεπερασμένα Αυτόματα
 - 1. Επεξήγηση Όρων
 - 2. Ορισμός Κανονικής Γλώσσας
 - 3. Τυπικός Ορισμός ΝΠΑ

Γ.Μεθοδολογία

Δ.Ασκήσεις

Α. Σκοπός του Μαθήματος

Οι στόχοι του μαθήματος είναι:

Επίπεδο Α

- > Πεπερασμένα Αυτόματα και ορισμοί
- > Μεθοδολογία Κατασκευής ΝΠΑ

Επίπεδο Β

> Τυπικός Ορισμός Ντετερμινιστικού Πεπερασμένου Αυτομάτου (ΝΠΑ)

Επίπεδο Γ

> (-)

1.Πεπερασμένο Αυτόματο

1. Λειτουργία και Παραδείγματα

Ορισμός:

Πεπερασμένο Αυτόματο Μ $_{
m L}$ της γλώσσας L είναι μία μηχανή που με είσοδο μία συμβολοσειρά x \in Σ *

- Av $x \in L$ τότε «απαντά» NAI.
 - Ή πιο τυπικά... Αναγνωρίζει ή κάνει δεκτές τις συμβολοσειρές που ανήκουν στην L
- Av $x \notin L$ τότε «απαντά» OXI.
 - Ή πιο τυπικά... Απορρίπτει τις συμβολοσειρές που δεν ανήκουν στην L

<u>Β. Θεωρία</u>

1.Πεπερασμένο Αυτόματο

1.Λειτουργία και Παραδείγματα

Παράδειγμα 1: Το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας L={w | w περιέχει το 00} είναι το ακόλουθο:

Και για παράδειγμα:

<u>Αναγνωρίζει</u> την συμβολοσειρά 010010

Απορρίπτει την συμβολοσειρά 101011

Τα δομικά στοιχεία με τα οποία κατασκευάζουμε το αυτόματο είναι τα:

→ Δ Αρχική Μετάβαση όταν Μη τελική Τελική Κατάσταση διαβάζω το χ Κατάσταση Κατάσταση

www.psounis.gr

Β. Θεωρία

1.Πεπερασμένο Αυτόματο

1.Λειτουργία και Παραδείγματα

Παράδειγμα 2: Το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας L={w | w τελειώνει με 00} είναι το ακόλουθο:

Παράδειγμα 3: Το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας L={w | w αρχίζει με 00} είναι το ακόλουθο:

1.Πεπερασμένο Αυτόματο

2.Τρόπος Εκτέλεσης

Ενα Πεπερασμένο Αυτόματο λειτουργεί ως εξής:

- Ξεκινά από την αρχική κατάσταση (που πάντα σε ένα αυτόματο είναι μοναδική)
- Διαβάζει το επόμενο σύμβολο από την είσοδο και ακολουθεί το βέλος που αντιστοιχεί στο σύμβολο που διάβασε. Επαναλαμβάνει το διάβασμα του επόμενου συμβόλου μέχρι να διαβαστεί όλη η είσοδος.
- ► Αν με το τέλος της εισόδου:
 - Βρεθεί σε μία τελική κατάσταση, αναγνωρίζει την είσοδο, δηλαδή απαντά ΝΑΙ (οτί η συμβολοσειρά ανήκει στην γλώσσα)
 - ▶ Βρεθεί σε μία μη τελική κατάσταση, απορρίπτει την είσοδο, δηλαδή απαντά ΟΧΙ (ότι η συμβολοσειρά δεν ανήκει στην γλώσσα)

2. Ντετερμινιστικό Πεπερασμένο Αυτόματο

1. Επεξήγηση Όρων

Κάθε αυτόματο που μελετήσαμε στα παραδείγματα χαρακτηρίζεται

- Ντετερμινιστικό: (ή αιτιοκρατικό):
 - Διότι σε κάθε κατάσταση καθορίζεται μονοσήμαντα (ντετερμινιστικά) η μετάβαση του αυτομάτου με κάθε σύμβολο που μπορεί να διαβαστεί. Με απλά λόγια, φεύγει ακριβώς ένα βελάκι με 0 και ακριβώς ένα βελάκι με 1.
 - > Θα μελετήσουμε και μη ντετερμινιστικά αυτόματα σε επόμενο μαθημα
- Πεπερασμένο:
 - Διότι οι κατάστασεις τους είναι πεπερασμένες (όχι άπειρες)
 - > Δεν θα μελετήσουμε άπειρα αυτόματα (εκτός ύλης)
- Αυτόματο:
 - Διότι με μία μηχανική διαδικασία εκτελεί την ενέργεια αναγνώρισης μιας συμβολοσειράς

Συνεπώς μία γλώσσα μπορεί να έχει ένα Ντετερμινιστικό Πεπερασμένο Αυτόματο (Ν.Π.Α.) που αναγνωρίζει τις συμβολοσειρές της.

2. Ντετερμινιστικό Πεπερασμένο Αυτόματο

2. Ορισμός Κανονικής Γλώσσας (ξανά)

Ορισμός Κανονικής Γλώσσας:

- Μία γλώσσα θα λέγεται Κανονική Γλώσσα αν και μόνο αν
 - Υπάρχει Κανονική Εκφραση (Κ.Ε.)που την περιγράφει.
 - Υπάρχει Ντετερμινιστικό Πεπερασμένο Αυτόματο (Ν.Π.Α.) που αναγνωρίζει τις συμβολοσειρές της.
- Άρα για να δείξουμε ότι μία γλώσσα είναι κανονική αρκεί:
 - Να δώσουμε μια Κ.Ε. που παράγει τις συμβ/ρες της γλώσσας
 - Να δώσουμε ένα Ν.Π.Α. που αναγνωρίζει τις συμβολοσειρές της γλώσσας
- Άρα, διαισθητικά, οι έννοιες της Κ.Ε. Και του Ν.Π.Α είναι ισοδύναμες (κάνουν την ίδια δουλειά, αποδεικνύουν ότι μία γλώσσα είναι κανονική)

2. Ντετερμινιστικό Πεπερασμένο Αυτόματο

3. Τυπικός (μαθηματικός) Ορισμός ΝΠΑ

Ορισμός:

Ένα Ντετερμινιστικό Πεπερασμένο Αυτόματο είναι μία 5-άδα

$$M=(Q,\Sigma,q_0,\delta,F)$$

Όπου:

- Q είναι το σύνολο των καταστάσεων
- Σ είναι το αλφάβητο των συμβόλων εισόδου
- $ightharpoonup q_0 \in Q$ είναι η αρχική κατάσταση
- $\delta: Q \times \Sigma \to Q$ είναι <u>η συνάρτηση μετάβασης</u> (π.χ. δ(q₁,σ)=q₂ αν όταν είμαστε στην κατάσταση q₁ και διαβάσουμε σ, μεταβαίνουμε στην κατάσταση q₂)
- $ightharpoonup F \subseteq Q$ είναι το σύνολο των τελικών καταστάσεων

1.Πεπερασμένο Αυτόματο

3. Τυπικός (μαθηματικός) Ορισμός ΝΠΑ

Παράδειγμα: Το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας L={w | w περιέχει το 00} είναι το ακόλουθο:

Και τυπικά περιγράφεται από την πεντάδα: $M=(Q, \Sigma, q_0, \delta, F)$ όπου:

- ightharpoonup Q={A,B, Γ }
- \triangleright $\Sigma = \{0,1\}$
- \rightarrow q₀=A
- Η δ μπορεί να περιγραφεί από τον ακόλουθο <u>πίνακα μετάβασης</u>:

	0	1
A	В	A
В	Γ	A
Γ	Γ	Γ

2. Ντετερμινιστικό Πεπερασμένο Αυτόματο

4. Απόφαση μέσω της αναδρομικής συνάρτησης δ*

Για να μπορούμε να κατασκευάσουμε μια υπολογιστική διαδικασία υπολογισμού της λειτουργίας του αυτομάτου, ορίζουμε την συνάρτηση δ* ως εξής:

Ορισμός:

Έστω ένα αυτόματο M=(Q,Σ,q0,δ,F). Ορίζουμε την συνάρτηση δ* ως:

- \rightarrow $\delta^*(q,\epsilon)=q$
- \triangleright $\delta^*(q,w\sigma)=\delta(\delta^*(q,w),\sigma)$
 - q: κατάσταση,
 - wσ: είναι μία συμβολοσειρά με τελευταίο σύμβολο το σ

Η συνάρτηση δ*:

Με όρισμα μία κατάσταση q και μία συμβολοσειρά w επιστρέφει σε ποια κατάσταση οδηγείται το αυτόματο αφού διαβάσει την συμβολοσειρά w

1.Πεπερασμένο Αυτόματο

4. Απόφαση μέσω της αναδρομικής συνάρτησης δ*

Παράδειγμα: Το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας L={w | w περιέχει το 00} είναι το ακόλουθο:

	0	1
A	В	A
В	Γ	A
Γ	Γ	Γ

Να υπολογιστεί το δ*(Α,100):

$$\delta$$
*(A,100) =

$$\delta(\delta * (A,10),0) =$$

$$\delta(\delta(\delta^*(A,1),0),0) =$$

$$\delta(\delta(\delta(\delta(\delta(\delta(A,\varepsilon),1),0),0)) =$$

$$\delta(\delta(\delta(A,1),0),0) =$$

$$\delta(\delta(A,0),0) =$$

$$\delta$$
(B,0) =

άρα από το Α με είσοδο την 100 καταλήγουμε στο Γ.

1.Κατασκευή ΝΠΑ

1. «αρχίζει»

$$L = \{ w \in \{0,1\}^* \mid w \text{ apxize me 011} \}$$

1.Κατασκευή ΝΠΑ

2. «περιέχει»

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

 $L = \{w \in \{0,1\}^* \mid w \text{ περιέχει το 011}\}$

1.Κατασκευή ΝΠΑ

3. «τελειώνει»

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

 $L = \{w \in \{0,1\}^* \mid w \text{ τελειώνει με 011}\}$

1.Κατασκευή ΝΠΑ

4. «μήκος»

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

$$L = \{w \in \{0,1\}^* \mid w \text{ έχει μήκος 2}\}$$

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

$$L = \{w \in \{0,1\}^* \mid w \text{ έχει μήκος τουλάχιστον 2}\}$$

$$L = \{w \in \{0,1\}^* \mid w \text{ έχει μήκος το πολύ 2}\}$$

1.Κατασκευή ΝΠΑ

5. «άρτια» και «περιττά»

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

$$L = \{w \in \{0,1\}^* \mid w \text{ έχει άρτιο πλήθος 1}\}$$

$$L = \{w \in \{0,1\}^* \mid w \text{ έχει περιττό πλήθος 1}\}$$

1.Κατασκευή ΝΠΑ

6. «δεν έχει» μία ιδιότητα (συμπλήρωμα)

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

$$L = \{w \in \{0,1\}^* \mid w \text{ δεν περιέχει το 11}\}$$

$$L = \{w \in \{0,1\}^* \mid w \text{ δεν αρχίζει με 11}\}$$

1.Κατασκευή ΝΠΑ

7. περίπλοκες κατασκευές

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

 $L = \{w \in \{0,1\}^* \mid w \text{ έχει άρτια 0 και τουλάχιστον έναν άσσο}\}$

1.Κατασκευή ΝΠΑ

7. περίπλοκες κατασκευές

Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας:

 $L = \{w \in \{0,1\}^* \mid w \text{ έχει άρτια 0 και περιττά 1}\}$

Δ. Ασκήσεις Εφαρμογή 1

Κατασκευάστε Ν.Π.Α. για τις γλώσσες:

 $ightharpoonup L_1 = \{w \in \{0,1\}^* | η w δεν περιέχει το 1100\}$

 $> L_2 = {w∈ {0,1}*| η w δεν αρχίζει με 0011}$

> L₃={w∈ {a,b}*| η w δεν τελειώνει με 0101}

Δ. Ασκήσεις Εφαρμογή 2

Δώστε Ν.Π.Α για τις γλώσσες που παράγονται από τις κανονικές εκφράσεις:

$$L_1=0*1*$$

$$ightharpoonup L_2 = (1+01)^*$$