449 Exam 1 Spring 2018

Each problem is worth the same. The usual take-home rules apply, in particular no discussing this with any other humans. Due 8 am Friday April 6. Hand in electronically, maximum of one .nb and one pdf file. I reserve the right to deduct points for answers that are difficult to read.

- 1) Sr has 2 valence electrons. Some of its important low-lying excited states are denoted $5s5p^3P_i$.
- a) What are the possible values of j?
- b) Let your largest answer to a) be j_{max} . Assuming the radial wavefunctions are $P_{5s}(r)$ and $P_{5p}(r)$, write down the total wavefunction for the state with $j=m=j_{\text{max}}$.
- c) Simplify: $\left\langle 5s5p^{3}P_{j_{\max}}\right|\frac{1}{r_{12}}\left|5s5p^{3}P_{j_{\max}}\right\rangle$ =
- 2) A spin-0 particle with charge q=|e| and mass M moves in the spherically symmetric potential $V(r)=\left\{egin{array}{ll} 0 & r < a \\ \infty & r > a \end{array}\right.$ The energy levels can be parameterized by the equation $E_{nl}=\frac{\pi^2\,\hbar^2}{2\,M\,a^2}\,(n+s_l)^2,$

where n is the number of radial zero crossings and s_l depends, to a good approximation, mostly on l but only slightly on n.

- a) For s-states, the equation is exact. What is the value of δ for s-states?
- b) Put δ_0 , δ_1 , and δ_2 in numerical order. Briefly explain your reasoning.
- c) A magnetic field is applied, of strength B. Find the first-order correction to the energy levels.
- d) Two more identical particles are added. What is the energy and degeneracy of the first excited state for B = 0?
- 3) A Rb atom in its ground (5s) state is place in an electric field, adding a term $V = e x \mathcal{E}$ to the Rb Hamiltonian. Ignore spin.
- a) With the field on, the $|5s\rangle$ state is changed to $|5s\rangle + \sum_{m} \epsilon_{lm} |5lm\rangle$. What are the values of l and m and why?
- b) Use perturbation theory to give a formula for ϵ_{lm} in terms of relevant matrix elements of V and unperturbed Rb energy levels.
- c) Calculate the induced dipole moment $-e\langle x\rangle$.
- 4) What is $\langle \|2sd; 1su; 2su\| | \hat{S}^2 \| \|2sd; 1su; 2su\| \rangle$, where $\overline{S} = \overline{S}_1 + \overline{S}_2 + \overline{S}_3$ is the total spin operator of the 3 electrons in the Li atom? You can probably figure out the answer from the NIST tables, but use your knowledge of Li wavefunctions and spin operators to prove it.