INF623

2024/1

Inteligência Artificial

A15: Raciocínio Probabilístico II

Plano de aula

- ▶ Teorema de Bayes
- Independência
- Independência condicional
- Redes Bayesianas

Na última aula

Problemas da inferência por enumeração:

- Complexidade de tempo $O(d^n)$
- lacktriangle Complexidade de espaço para armazenar a distribuição conjunta $O(d^n)$
- lacktriangle Obter $O(d^n)$ exemplos para estimar as entradas da distribuição conjunta

Teorema de Bayes

Regra do produto
$$P(a,b) = P(a \mid b)P(b) = P(b \mid a)P(a)$$

$$P(a \mid b) = \frac{P(b \mid a)P(a)}{P(b)}$$
Dividindo por $P(b)$

Qual a utilidade do Teorema de Bayes?

- Podemos calcular uma probabilidade condicional a partir da sua inversa
- Frequentemente, uma probabilidade condicional é complicada mas a outra é simples
- lacktriangle Descreve uma regra de atualização de P(a) anterior para o $P(a\,|\,b)$ posterior

Inferência com o Teorema de Bayes

O Teorema de Bayes é muito utilizado em situações de causa/efeito:

$$P(causa | efeito) = \frac{P(efeito | causa)P(causa)}{P(efeito)}$$

Exemplo: M: Meningite, S: torcicolo

$$P(m) = 0,0001$$
$$P(s \mid m) = 0,8$$

$$P(s \mid \neg m) = 0.01$$

$$P(m \mid s) = \frac{P(s \mid m)P(m)}{P(s)} = \frac{P(s \mid m)P(m)}{P(s \mid m)P(m) + P(s \mid \neg m)P(\neg m)} = 0,007944$$

Independência

Duas variáveis X e Y são independentes ($X \perp \!\!\! \perp Y$) se e somente se:

$$X \perp\!\!\!\perp Y \Leftrightarrow P(X,Y) = P(X)P(Y)$$
 \longrightarrow A distribuição conjunta é fatorada em distribuições mais simples

$$X \perp\!\!\!\perp Y \Leftrightarrow P(X \mid Y) = P(X)$$
 — \longrightarrow 0 resultado de X independente do resultado de Y

Exemplos:

- ▶ Independentes → lançar duas moedas
- Dependentes → se estiver nublado pela manhã, é mais provável que chova durante o dia
- ▶ Em geral, variáveis aleatórias não são independentes. No entanto, muitas vezes assumimos independência para simplificar o modelo de probabilidades.

Exemplo 1: dependência

Temperatura T e clima C

#

P(T, C)

T	С	Р
quente	ensolarado	0,4
quente	chuvoso	0,1
frio	ensolarado	0,2
frio	chuvoso	0,3

P(T)

T	Р
quente	0,5
Frio	0,5

P(C)

T	Р
ensolarado	0,6
chuvoso	0,4

P(T,C) = P(T)P(C)

Т	C	Р
quente	ensolarado	0,3
quente	chuvoso	0,2
frio	ensolarado	0,3
frio	chuvoso	0,2

Exemplo 2: independência

Lançamento de *n* moedas justas

 $P(X_1)$

X1	Р
cara	0,5
coroa	0,5

 $P(X_2)$

X2	Р
cara	0,5
coroa	0,5

 $P(X_3)$

Xn	Р
cara	0,5
coroa	0,5

$$P(X_1, X_2, \ldots, X_n)$$

Independência condicional

Duas variáveis X e Y são condicionalmente independentes dado Z ($X \perp \!\!\! \perp Y \mid Z$) se e somente se:

$$\forall x, y, z : P(x, y | z) = P(x | z)P(y | z)$$

Ou, de maneira equivalente:

$$\forall x, y, z : P(x \mid y, z) = P(x \mid z)$$

- Independência (absoluta) raramente acontece, por quê?
- Independência condicional é uma suposição mais fraca que independência (absoluta) e é a nossa forma mais básica e robusta de conhecimento sobre ambientes incertos.

Exemplo 3: independencia condicional

P(DorDente, Cavidade, EstileteAgarrar)

Se eu tenho uma cavidade no dente, a probabilidade do estilete agarrar não depende de eu estar com dor de dente:

 $ightharpoonup P(\text{EstileteAgarrar} \mid \text{DorDente, Cavidade}) = P(\text{EstileteAgarrar} \mid \text{Cavidade})$

A mesma independência vale se eu não tenho uma cavidade:

 $ightharpoonup P(\text{EstileteAgarrar} | \text{DorDente}, \neg \text{Cavidade}) = P(\text{EstileteAgarrar} | \neg \text{Cavidade})$

EstileteAgarrar é condicionalmente independente de DorDente dado Cavidade

- ightharpoonup P(DorDente | Estilete Agarrar, Cavidade) = P(DorDente | Cavidade)
- ightharpoonup P(DorDente, EstileteAgarrar | Cavidade) = P(DorDente | Cavidade) P(EstileteAgarrar | Cavidade)

Exercício 1

- Trânsito
- ► Guarda-chuvas
- Chuva

Exercício 2

- Fogo
- Fumaça
- Alarme

Independência condicional e a regra da cadeia

- Regra da cadeia: $P(X_1, X_2, ..., X_n) = P(X_1)P(X_2 | X_1)P(X_3 | X_1, X_2)...$
- Aplicação no Exercício 1 (slide 11):

$$P(\text{Trânsito, Chuva, GuardaChuva}) = P(\text{Chuva})P(\text{Trânsito}|\text{Chuva})P(\text{GuardaChuva}|\text{Chuva, Trânsito})$$

Supondo independência condicional

$$P(\text{Trânsito, Chuva, GuardaChuva}) = P(\text{Chuva})P(\text{Trânsito}|\text{Chuva})P(\text{GuardaChuva}|\text{Chuva})$$

Redes Bayesianas nos ajudam a expressar suposições de independência condicional!

Redes bayesianas

- Problemas em usar distribuições conjuntas $P(X_1, X_2, \ldots, X_n)$ como modelo de probabilidades:
 - A não ser que o problema tenha poucas variáveis, a distribuição conjunta é muito grande para representar explicitamente
 - Quanto maior o número de variáveis, mais difícil é estimar os valores das variáveis empiricamente
- Redes bayesianas são uma técnica para descrever distribuições conjuntas (modelos probabilísticos) complexa(o)s em termos de distribuições locais mais simples:
 - Também chamadas de modelos gráficos
 - Descreve como variáveis interagem localmente
 - Interações locais são combinadas para descrever interações globais

Exemplo 4: solicitações de seguro de carro

Redes bayesianas: sintaxe

- Vértices representam variáveis (com seus domínios)
 - Podem estar atribuídas (observadas) ou não
- ► **Arestas** representam interações entre variáveis
 - Similar às restrições dos PSRs
 - Indicam "influência direta" entre variáveis
 - Formalmente codificam independencia condicional

Exemplo 5: redes bayesianas

Lançamento de *n* moedas justas

Nenhuma interação entre variáveis: independência absoluta!

Exemplo 6: redes bayesianas

Ocorrência de trânsito veicular em cidades

Variáveis:

ightharpoonup R: está chovendo

ightharpoonup T: ocorrência de trânsito

Modelo 1: assumindo independência

Modelo 2: chuva causa trânsito

Porquê um agente que usa o **modelo 2** é melhor?

Exemplo 7: redes bayesianas

Construir uma rede bayesiana para modelar a ocorrência de trânsito considerando as seguintes variáveis aleatórias:

ightharpoonup T: ocorrência de trânsito

ightharpoonup R: está chovendo

lacktriangle L: baixa pressão atmosférica

 $lackbox{}{D}$: vazamento no teto

 $lackbox{\textbf{\textit{B}}}$: jogo de futebol

• C: cavidade

Não existe um único modelo correto. O modelo depende de como acreditamos que as variáveis influenciam umas as outras!

Exemplo 8: redes bayesianas

Alarme para detecção contra assaltos:

ightharpoonup A: alarme

 \blacktriangleright S: assalto

▶ *M*: ligação de Maria

lacksquare J: ligação de João

 \blacktriangleright E: terremotos

Não existe um único modelo correto. O modelo depende de como acreditamos que as variáveis influenciam umas as outras!

Redes bayesianas: semântica

- Uma rede bayesiana é um grafo acíclico dirigido com:
 - Um vértice para cada variável aleatória
 - Uma aresta entre cada par de variáveis dependentes
 - Uma distribuição condicional (tabela) para cada vértice:

$$P(X | a_1, \ldots, a_n)$$

Uma rede bayesiana representa uma distribuição conjunta implicitamente:

$$P(x_1, x_2, ..., x_n) = \prod_{i=1}^{n} P(x_i | pais(X_i))$$

Exemplo 5: redes bayesianas

Lançamento de *n* moedas justas

$$P(X_1)$$

1/2

Cara

Coroa

X2	Р
Cara	1/9

D	/ \	/ `
	(A)	12

X2	Р
Cara	1/2
Coroa	1/2

$$P(X_n)$$

Xn	Р
Cara	1/2
Coroa	1/2

$$P(h, h, t, h) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = 0,0625$$

Exemplo 6: redes bayesianas

Ocorrência de trânsito veicular em cidades

Variáveis:

ightharpoonup R: está chovendo

ightharpoonup T: ocorrência de trânsito

P(T	R)
1 (1	

R	Р
+chuva	1/2
-chuva	1/2

R	Т	Р
+chuva	+trânsito	3/4
+chuva	-trânsito	1/4
-chuva	+trânsito	1/2
-chuva	-trânsito	1/2

$$P(+chuva, -transito) = P(+chuva)P(-transito \mid +chuva) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$$

ightharpoonup A: alarme

 \blacktriangleright S: assalto

ightharpoonup M: maria

lacksquare J: joão

 \blacktriangleright E: terremotos

Exemplo 8: redes bayesianas

		E	P(E)
aSsalto)	(tErremoto)	+e	0,002
		-e	0,998
			_

S	P(S)	
+S	0,001	
-S	0,999	

Alarme

P(+s, -	<i>- e</i> , +	a, + m	,+j)=
---------	----------------	--------	-------

$$P(+s) P(-e)P(+a | -e, +s)P(+a | +m)P(+a | +j)$$

(Maria)

A	M	P(M A)
+a	+m	0,7
+a	-m	0,3
-a	+m	0,01
-a	-m	0,99

Α	J	P(J A)
+a	+j	0,9
+a	- j	0,1
-a	+j	0,05
-a	-j	0,95

Joao

S	Ε	Α	P(A B,E)
+S	+e	+ a	0,95
+S	+e	-a	0,05
+S	-е	+ a	0,94
+S	-е	-a	0,06
- S	+e	+ a	0,29
-S	+e	-a	0,71
-S	-е	+ a	0,001
-S	-е	-a	0,999

Inferência por enumeração

A: alarme

S: assalto

M: maria

J: joão

Dada uma rede bayesiana, queremos calcular a probabilidade condicional $P(Q \,|\, e_1, \ldots, e_k)$, onde:

E: terremotos

- lacksquare Q é uma variável aleatória definindo uma consulta
- $lackbox{ } E_1,\ldots,E_k=e_1,\ldots,e_k$ é um conjunto de variáveis aleatórias definindo a evidência
- lacktriangle Além disso, H_1,\ldots,H_r é o conjunto de variáveis "escondidas" do modelo, não inclusas na consulta nem na evidência

Inferência por enumeração:

Exemplo (alarme):

- **Selecionar** as entradas consistentes com a evidência $P(S \mid +j,+m)$
- 2) Somar as variáveis em H para obter $P(Q, e_1, \ldots, e_k)$

$$P(Q, e_1, \dots, e_k) = \sum_{h_1, \dots, h_r} P(Q, h_1, \dots, h_r, e_1, \dots, e_k)$$

3) Normalizar $P(Q, e_1, \dots, e_k)$ para obter $P(Q | e_1, \dots, e_k)$

Normalizar
$$P(Q, e_1, \ldots, e_k)$$
 para obter $P(Q | e_1, \ldots, e_k)$

$$P(Q | e_1, \dots, e_k) = \frac{P(Q, e_1, \dots, e_k)}{\sum_{q} P(Q, e_1, \dots, e_k)}$$

$$P(S, +j, +m) = \sum_{e,a} P(S, e, a, +j, +m)$$

$$P(S, +j, +m) = \sum_{e,a} P(S)P(e)P(a | S, e)P(+j | s)P(+m | s)$$

$$P(S | +j, +m) = \frac{P(S, +j, +m)}{\sum_{S} P(S, +j, +m)}$$

Próxima aula

A16: Raciocínio Probabilístico III

Processos (cadeias) de Markov, modelos de transição, inferência, amostragem, distribuição estacionária

