Machine Learning Applications in Finance

A presentation

by Edward Beck

What are you trying to do....Predict the future, obv

The DataSet

Loan Status	Current Loan Amount	Term	Credit Score	Annual Income	Years in current job	Home Ownership	Purpose	Monthly Debt	Years of Credit History	Months since last delinquent	Number of Open Accounts	Number of Credit Problems	Current Credit Balance	Maximum Open Credit	Bankruptcies
Fully Paid	445412.0	Short Term	709.0	1167493.0	8 years	Home Mortgage	Home Improvements	5214.74	17.2	NaN	6.0	1.0	228190.0	416746.0	1.0

8	Lo	oan	Current	Term	Cr_Sc	Annual	Job	Owner	Purpose	M_Debt	C_Yrs	Mon_Del	Accounts	Cred_Probs	Balance	MOC	BankRps	Tax_Liens	85
2		1	99999999.0	1	741.0	2231892.0	8	2	3	29200.53	14.9	29.0	18.0	1.0	297996.0	750090.0	0.0	0.0	<
6		1	217646.0	1	730.0	1184194.0	1	1	3	10855.08	19.6	10.0	13.0	1.0	122170.0	272052.0	1.0	0.0	

And some more info about the data

How we're going to do it.

Multicollinearity Check

Loan_Status Jurrent_Loan_Amoun Tem Years_of_Credit_History
bonths_since_last_delinquent
Number_of_Open_Accounts
Number_of_Credit_Problems
Current_Credit_Balance
Maximum_Open_Credit
Bankruptoies

The Models

```
LogisticRegression(C=1000000000000.0, class_weight=None, dual=False, fit_intercept=False, intercept_scaling=1, max_iter=100, multi_class='warn', n_jobs=None, penalty='12', random_state=None, solver='warn', tol=0.0001, verbose=0, warm_start=False)
```

Same models but more expensive

```
XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3, min_child_weight=1, missing=None, n_estimators=100, n_jobs=1, nthread=None, objective='binary:logistic', random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, silent=None, subsample=1, verbosity=1)
```

Results:

Further Exploration and Conclusion

More Machine Learning Models are Available

K-Nearest Neighbor, Principle Componet Analysis, Support Vector Machines

Additional Data Sets

Re-run Models on multiple data sets for accuracy and precision