考试日期: 2019.06 考试时间: 120分钟 2018~ 2019 学年 春季学期 课程名称 A 卷■ B 卷□ 线性代数

				,								
题号	1	1 1	111	四	五	六	七	八	九	+	成绩	复核
得分												
阅卷												

注意事项: 答卷前,考生务必把答题纸上密封线内各项内容填写清楚(学号应与教务在线 中学号相同), 否则可能得不到成绩, 必须填写在密封线与装订线之间。答案必须写在边框内。

得分

年级

本

一、 填空题(每小题 4 分, 共 20 分)

- 1. 设 α_1 , α_2 , α_3 为 3 维列向量,记矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$, $B = (4\alpha_1, \alpha_1 + 3\alpha_2, \alpha_3)$, 若|*A*|=1,则|*B*|=_____.
- 2. $A = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$, E 为 2 阶单位矩阵,矩阵 <math>B 满足 BA = B + 2E, 则 B =_____.
- 3. 向量组 $\alpha_1 = (1,2,1)^T$, $\alpha_2 = (1,1,2)^T$, $\alpha_2 = (2,3,t)^T$ 线性相关,则t =_______.
- 4. 3 阶矩阵 A 的特征值为1, 2, 3, A* 为 A 的伴随矩阵, E 为 B 3 阶单位矩阵,

则 $|A^*-4E|=$.

5. 设
$$A = \begin{pmatrix} -2 & -2 & 1 \\ a & 3 & -2 \\ 0 & 0 & -2 \end{pmatrix}$$
与 $B = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & b \end{pmatrix}$ 相似,则 $a = \underline{\qquad}$, $b = \underline{\qquad}$.

得分

- 选择题(每小题4分,共20分)
- 1. 设A是n阶矩阵,O是n阶零矩阵,E是n阶单位矩阵,且 $A^2 E = O$,则必 有()
 - A. A = E
- B. A = -E C. |A| = 1 D. $A = A^{-1}$

- 2. n 阶矩阵 A 的第一行的 3 倍加到第二行上后得到矩阵 B ,则不正确的是

 - A. A 与 B 等价 B. A 与 B 相似 C. |A|=|B| D. R(A)=R(B)

- 3. 设A为n阶矩阵,R(A) = n,下列说法不正确的是(
 - A. A的列向量组一定线性无关
 - B. A 的特征值一定都不等于零
 - C. 非齐次线性方程组 Ax = b 一定有惟一解
 - D. $A \varepsilon = n \wedge \xi + \varepsilon + \varepsilon = n \wedge \xi + \varepsilon + \varepsilon = 0$
- 4. 设 A 为 n 阶矩阵, R(A) = n 1, α , β 为齐次线性方程组 Ax = 0 的两个不同 的解向量,则对于任意常数k,方程组Ax=0的通解可以表示为(
 - A. $k\alpha$
- B. $k\beta$
- C. $k(\alpha \beta)$
 - D. $k(\alpha + \beta)$
- 5. 设向量组 α_1,α_2,β 线性相关, α_2,α_3,β 线性无关,则一定成立的是(
 - A. $\alpha_1, \alpha_2, \alpha_3$ 线性无关
- B. $\alpha_1, \alpha_2, \alpha_3$ 线性相关
 - C. α_1 可由 $\alpha_2, \alpha_3, \beta$ 线性表示 D. β 可由 α_1, α_2 线性表示

得分

三、(本题共10分)

设
$$A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, $B = P^{-1}AP$, 其中 P 为 3 阶可逆矩阵

 \cancel{R} (1) A^2 (2) A^{2020} (3) $B^{2020} - 3A^2$.

得分

学院:

年级:

亚

姓名:

四、(本题共10分)

求向量组 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 3 \\ -6 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 3 \\ -1 \\ 10 \end{pmatrix}$ 的秩以及一个最大无关组,并

把不属于最大无关组的向量用最大无关组线性表示.

得分

六、(本题共10分)

设
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 0 & t \\ 0 & 0 & 3 \end{pmatrix}$$
, 问 t 为何值时,矩阵 A 能对角化.

得分

五、(本题共10分)

求非齐次线性方程组的通解,并指出所对应的齐次线性方程组的基础解系:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_2 + 2x_3 + 2x_4 = 1 \\ x_1 + 2x_2 + 3x_3 + 3x_4 = 1 \end{cases}$$

第3页,共6页

第4页,共6页

得分

七、(本题共15分)

已知二次型 $f(x_1,x_2,x_3) = x_1^2 + 5x_2^2 + 5x_3^2 + 2x_1x_2 - 4x_1x_3$

- (1) 写出二次型f 的矩阵表达式;
- (2) 求一个正交变换 x = Py,将二次型 f 化为标准形;
- (3) 判断二次型 f 是否正定,请说明理由.

得分

八、(本题共5分)

设A是正交矩阵,-1,1为A的特征值, α , β 为分别属于特征值-1,1的特征向量,证明: α , β 正交.

第5页,共6页

第6页,共6页

₹<u>1</u>1 **7**7.7

年级:

姓名:

中途

学院: 年级: 平全 姓名: 操。

第7页,共6页