Lista 3

Problema 1 Seja $f: X \to Y$ un difeomorfismo entre duas variedades orientadas conexas. Prove que df_x preserva orientação para um ponto $x \in X$ se, e somente se, df_x preserva orientação para todo ponto $x \in X$.

Demostração. Pelo teorema da função inversa orientado, existe uma vizinhança U de x na qual det $d_z f$ é positivo para todo $z \in U$.

Como X é conexa, podemos ligar x com qualquer outro ponto $y \in X$ mediante uma curva γ . Pegue em cada ponto $\gamma(t)$ uma vizinhança na qual det $d_z f$ é positivo em qualquer ponto z da vizinhança. Como Im γ é compacto, temos uma quantidade finita de abertos onde det df é positivo.