

Engineering Mathematics III Discrete Mathematics Lecture 7

Maximal & Minimal Elements in Poset

This course is taught to Computer Science Engineering students in SMIT, India during Jun-Dec, 2019.

Totally Ordered Set

A partially ordered set is called **totally ordered set** is A is a chain. In this case, the binary relation \leq is called as a **total ordering relation**.

Maximal & Minimal Elements

Let (A, \leq) be a partially ordered set.

- An element $a \in A$ is called as a maximal element if for no $b \in A$, $a \le b$ unless a = b.
- An element $a \in A$ is called a minimal element if for no $b \in A$, $b \le a$ unless b = a.

Cover of an element

Let (A, \leq) be a poset.

• An element $a \in A$ is said to cover an element $b \in A$ if $b \le a$ and for no other element $c \in A$, $b \le c \le a$.

Upper Bound

• An element $c \in A$ is called as **upper bound** of two element a and b if $a \le c$ and $b \le c$. An element $c \in A$ is said to be a **least upper bound** of a and b if c is an upper bound of a and b and if there is no other upper bound d of a and b such that $d \le c$.

Lower Bound

Let (A, \leq) be a poset.

- An element $c \in A$ is called as **lower bound** of two element a and b if $c \le a$ and $c \le b$.
- An element $c \in A$ is said to be a **greatest lower** bound of a and b if c is an lower bound of a and b and if there is no other lower bound d of a and b such that $c \leq d$.

Questions?

Thank you

