

TECNICATURA SUPERIOR EN TELECOMUNICACIONES

SENSORES Y ACTUADORES

<u>Trabaio Práctico Nº 6:</u> Sensores Generadores y Digitales – Sensores Inteligentes.

Alumna: Huk Romina Vanesa

Ejercicio N°1 c:

¿Qué Protocolos de Comunicaciones utilizaría para conectar este tipo de sensores (Smart)?

Para conectar sensores "smart" (inteligentes) y permitir su comunicación en diversas aplicaciones, se pueden utilizar varios protocolos de comunicación. Aquí te presento algunos de los más relevantes:

1. Bluetooth de Baja Energía (BLE)

- Uso: Ideal para dispositivos portátiles y sensores de baja energía.
- Ventajas: Bajo consumo de energía, conexiones rápidas y buena distancia de comunicación (hasta 100 metros en condiciones óptimas).

2. Wi-Fi

- Uso: Conexión a Internet y redes locales.
- Ventajas: Alta velocidad de transmisión de datos y capacidad para conectar múltiples dispositivos. Ideal para aplicaciones que requieren grandes volúmenes de datos.

3. **Zigbee**

- Uso: Redes de área personal (PAN) para dispositivos de automatización del hogar.
- Ventajas: Bajo consumo de energía y capacidad para crear redes en malla, lo que mejora la cobertura.

4. LoRaWAN

- Uso: Comunicaciones de larga distancia para IoT.
- Ventajas: Muy bajo consumo de energía y puede transmitir datos a largas distancias (hasta varios kilómetros), ideal para aplicaciones rurales o en entornos difíciles.

5. NB-IoT (Narrowband IoT)

- Uso: Conexiones de IoT sobre redes móviles.
- Ventajas: Alta cobertura, bajo consumo y capacidad para manejar una gran cantidad de dispositivos en áreas densamente pobladas.

6. MQTT (Message Queuing Telemetry Transport)

- Uso: Protocolo de mensajería para IoT.
- Ventajas: Ligero y eficiente en el uso del ancho de banda, ideal para enviar pequeños paquetes de datos desde dispositivos a servidores.

7. HTTP/HTTPS

- Uso: Protocolo estándar para la comunicación en la web.
- Ventajas: Amplio uso y compatibilidad con servicios web, aunque no es el más eficiente para dispositivos de baja energía.

8. CoAP (Constrained Application Protocol)

- Uso: Protocolo diseñado para dispositivos con recursos limitados.
- Ventajas: Basado en REST, eficiente en el uso de recursos, ideal para aplicaciones de IoT.

Conclusión

La elección del protocolo de comunicación depende de varios factores, como el tipo de sensor, el consumo de energía, la distancia de transmisión, la cantidad de datos a enviar y el entorno en el que se utilizará. En muchos casos, una combinación de estos protocolos puede ser la mejor solución para crear un sistema de sensores inteligente y eficiente.