

## 八木天线介绍

电子科技大学(深圳)高等研究院 电子产品工业软件研究中心 2022-05



## 对称振子天线

对称振子天线是由两根粗细和长度都相同的导线构成,中 间为两个馈电端,这是一种应用广泛且结构简单的基本线天线。 假如天线上的电流分布是已知的,则由电基本振子的辐射场沿 整个导线积分,便得对称振子天线的辐射场。然而,即使振子 是由理想导体构成,要精确求解这种几何结构简单、直径为有 限值的天线上的电流分布仍然是很困难的。实际上,细振子天 线可看成是开路传输线逐渐张开而成。当导线无限细时 $(1/a \rightarrow \infty)$ a为导线半径),其电流分布与无耗开路传输线上的完全一致, 即按正弦驻波分布。









图2开路传输线与对称振子

(a) 开路传输线; (b) 开路传输线终端张开; (c) 对称振子天线

## 令振子沿z轴放置(图8-1),其上的电流分布为

$$I(z) = I_{\text{m}} \sin\beta(h - |z|) \tag{8-1-1}$$

式中,
$$\beta$$
为相移常数, $\beta=k=$   $\frac{2\pi}{\lambda_0}=\frac{\omega}{c}$ 

在距中心点为z处取电流元段dz,则它对远区场的贡献为

$$dE_{\theta} = j \frac{60\pi}{\lambda} \sin \theta \ I_m \sin \beta (h - |z|) \frac{e^{-j\beta r'}}{r'} dz \qquad (8-1-2)$$

在远区,由于r>>h,参照图 8-1,则r'与r的关系为

$$r' = (r^2 + z^2 - 2rz \cos\theta)^{1/2} \approx r - z\cos\theta$$
 (8-1-3)



#### 则细振子天线的辐射场为

$$E_{\theta} = j \frac{I_{m} 60\pi}{\lambda} \frac{e^{-j\beta r}}{r} \sin \theta \int_{-h}^{h} \sin \beta (h - |z|) e^{-j\beta z \cos \theta} dz$$

$$= j \frac{I_{m} 60\pi}{\lambda} \frac{e^{-j\beta r}}{r} 2 \sin \theta \int_{0}^{h} \sin \beta (h - z) \cos(\beta z \cos \theta) dz$$

$$= j \frac{60I_{m}}{r} e^{-j\beta r} F(\theta)$$
(8-1-4)

式中,

$$F(\theta) = \frac{\cos(\beta h \cos \theta) - \cos \beta h}{\sin \theta}$$
 (8-1-5)



 $|F(\theta)|$ 是对称振子的E面方向函数,它描述了归一化远区场 $|E_{\theta}|$ 随 $\theta$ 角的变化情况。图8-3分别画出了四种不同电长度(相对于 工作波长的长度):  $\frac{2h}{\lambda} = \frac{1}{2}$ , 1,  $\frac{3}{2}$  和2的对称振子天线的归一化E面 方向图, 其中  $\frac{2h}{\lambda} = \frac{1}{2}$  和  $\frac{2h}{\lambda} = 1$  的对称振子分别为半波对称振子 和全波对称振子,最常用的是半波对称振子。由方向图可见,当电 长度趋近于3/2时,天线的最大辐射方向将偏离90°,而当电长度 趋近于2时,在 $\theta$ =90°平面内就没有辐射了。

由于 $|F(\theta)|$ 不依赖于 $\varphi$ ,所以H面的方向图为圆。





图3 对称振子天线的归一化E面方向图



#### 对称振子的辐射功率为

$$P_{\Sigma} = \frac{r^2 |E_{\text{max}}|^2}{240\pi} \int_0^{2\pi} \int_0^{\pi} |F(\theta)|^2 \sin\theta \, d\theta \, d\phi$$

$$= \frac{r^2}{240\pi} \frac{60^2 I_{\rm m}^2}{r^2} \int_0^{2\pi} \int_0^{\pi} |F(\theta)|^2 \sin\theta \ d\theta \ d\phi$$

化简后得

$$P_{\Sigma} = \frac{15}{\pi} I_{\rm m}^2 \int_0^{2\pi} \int_0^{\pi} |F(\theta)|^2 \sin\theta \ d\theta \ d\varphi$$



将式(8-1-6)代入式(6-3-10)得对称振子的辐射电阻为

$$R_{\Sigma} = \frac{30}{\pi} \int_0^{2\pi} \int_0^{\pi} \left| F(\theta) \right|^2 \sin \theta \, d\theta \, d\varphi \tag{8-1-7}$$

将式 (8-1-5) 代入上式得

$$R_{\Sigma} = 60 \int_0^{\pi} \frac{\left[\cos(\beta h \cos\theta - \cos\beta h)\right]^2}{\sin\theta} d\theta$$
 (8-1-8)

图 4 给出了对称振子的辐射电阻 $R_{\Sigma}$ 随其臂的电长度 $h/\lambda$ 的变化曲线。





图 4 对称振子的辐射电阻与h/l的关系曲线



## 1. 半波振子的辐射电阻及方向性

将 $\beta h=2\pi h/\lambda=\pi/2$ 代入式(8-1-5)即得半波振子的E面方向图函数为

$$F(\theta) = \frac{\cos\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta} \tag{8-1-9}$$

该函数在 $\theta$ =90°处具有最大值(为1),而在 $\theta$ =0°与 $\theta$ =180°处为零,相应的方向图如图 3 所示。将上式代入式(8 -1 -7)得半波振子的辐射电阻为

$$R_{\Sigma}=73.1 (\Omega) \tag{8-1-10}$$

# 八木-宇田天线简介

八木-宇田天线又称为引向天线,由一个有源振子(称为馈电元)和平行的若干无源振子(成为寄生源)组成,其中有源振子后端的一个无源振子作为反射器,有源振子前端的若干无源振子作为引向器。



八木-宇田天线

# 1)工作原理

由天线阵理论可知,排阵可以增强天线的方向性,而改变各 单元天线的电流分配比可以改变方向图的形状,以获得所要的方 向性。引向天线实际上也是一个天线阵,与前述的天线阵相比, 不同的是: 它只对其中的一个振子馈电, 其余振子则是靠与馈电 振子之间的近场耦合所产生的感应电流来激励的,而感应电流的 大小取决于各振子的长度及其间距,因此调整各振子的长度及间 距可以改变各振子之间的电流分配比,从而达到控制天线方向性 的目的。如前所述,分析天线的方向性,必须首先求出各振子的 电流分配比, 即振子上的电流分布, 但对于多元引向天线, 要计 算各振子上的电流分布是相当繁琐的。我们仅以二元阵(见图 10) 为例来说明引向天线的工作原理。





图 10 二元引向天线



设振子"1"为有源振子,"2"为无源振子,两振子沿y向放置,沿z轴排列,间距为d,并假设振子电流按正弦分布,其波腹电流表达式分别为

$$\begin{array}{c}
I_1 = I_0 \\
I_2 = mI_0 e^{j\zeta}
\end{array}$$
(8-4-1)

式中,m为两振子电流的振幅比; $\zeta$ 为两振子电流的相位差。它们均取决于振子的长度及其间距。

根据天线阵理论,此二元引向天线的辐射场为

$$E = E_1 + E_2 \approx E_1 [1 + m e^{j(kd\cos\theta + \xi)}] = \frac{60I_1}{r} F_1(\theta) \cdot F_2(\theta)$$
 (8-4-2)



式中,  $F_1(\theta)$ 为有源对称振子的方向函数;  $F_2(\theta)$ 为二元阵阵因子方向函数。

显然有

$$F_2(\theta) = 1 + m e^{j(kd \cos \theta + \zeta)}$$
(8-4-3)



## CST天线设计

## 八木天线设计

电子科技大学(深圳)高等研究院 电子产品工业软件研究中心 2022-05



## 设计目标:

(1)天线谐振在 $f_0$ =315MHz

(2)天线增益>8.5dBi



# CST八木-宇田天线仿真方法



### -创建工程



| CST Studio Suite                                   |                            |           | ×                       |
|----------------------------------------------------|----------------------------|-----------|-------------------------|
| Create Project Templa                              | ate                        |           |                         |
| MW & RF & OPTICAL   Antennas                       |                            |           |                         |
| Please select a workflow:                          |                            |           | _                       |
| Waveguide (Horn, Cone, etc.)                       | Planar (Patch, Slot, etc.) | Wire      | Phased Array, Unit Cell |
| Mobile Device Sub-6 GHz<br>(Phone, Wearable, etc.) | 5G mmWave                  | Reflector | Dielectric Resonator    |
| RFID                                               |                            |           |                         |
|                                                    |                            |           |                         |
|                                                    |                            | < Bac     | ck Next > Cancel        |

| ST Studio Suite                                                                   |                      | × |
|-----------------------------------------------------------------------------------|----------------------|---|
| Create Project Template                                                           |                      |   |
| MW & RF & OPTICAL   Antennas   Wire   <u>Solvers</u>   Units   Settings   Summary |                      |   |
| The recommended solvers for the selected workflow are:                            |                      |   |
| Integral Equation for large or thin wire antennas                                 |                      |   |
| Time Domain for thick wire antennas                                               |                      |   |
| Frequency Domain                                                                  |                      |   |
| 5.                                                                                |                      |   |
| 8 K                                                                               |                      |   |
| is<br>A                                                                           |                      |   |
|                                                                                   | < Back Next > Cancel |   |
|                                                                                   |                      |   |

| MW & RF & OPTICAL | Antennas   Wire   So | lvers   <u>Units</u>   S | ettings   Summary |  |  |
|-------------------|----------------------|--------------------------|-------------------|--|--|
| Please select the | units:               |                          | ,                 |  |  |
| Dimensions:       | mm                   | Ψ.                       |                   |  |  |
| Frequency:        | GHz                  | Ψ.                       |                   |  |  |
| Time:             | ns                   | Ψ.                       | •                 |  |  |
| Temperature:      | Kelvin               | Ψ                        |                   |  |  |
| Voltage:          | V                    | ¥                        |                   |  |  |
| Current:          | A                    | ¥                        |                   |  |  |
| Resistance:       | Ohm                  | ¥                        |                   |  |  |
| Conductance:      | S                    | Ψ.                       |                   |  |  |
| Inductance:       | н                    | Ψ.                       |                   |  |  |
| Capacitance:      | F                    | w                        |                   |  |  |



## -创建工程





## 一设定模型参数







## ——建模

#### ▶创建有源振子

|               | ОК                          |
|---------------|-----------------------------|
|               |                             |
| Ov 07         | Cancel                      |
| OY 02         | Preview                     |
| Inner radius: |                             |
| 0.0           | Help                        |
| Ycenter:      |                             |
| 0             |                             |
| Zmax:         |                             |
| 0+2+L0        |                             |
|               |                             |
|               |                             |
|               |                             |
| ~             |                             |
|               |                             |
| ~             |                             |
|               | 0.0 Ycenter: 0 Zmax: 0+2+L0 |



创建圆柱

以xoy平面镜像



## ——建模

▶创建反射器



创建圆柱



## ——建模

#### ▶创建定向器



创建圆柱



## 一激励设置





先选中上下振子底面的中心点

设置离散端口



# 八木-宇田天线仿真方法 ——边界设置



所有方向设置 open add space



# 八木-宇田天线仿真方法——背景材料设置

| Background Properties               |                   | ×      |
|-------------------------------------|-------------------|--------|
| Material properties  Material type: |                   | ОК     |
| Normal                              | Properties        | Cancel |
| ☐ Multiple layers                   |                   | Apply  |
| Surrounding space                   |                   | Help   |
| Apply in all directions             |                   |        |
| Lower X distance:                   | Upper X distance: |        |
| 0.0                                 | 0.0               |        |
| Lower Y distance:                   | Upper Y distance: |        |
| 0.0                                 | 0.0               |        |
| Lower Z distance:                   | Upper Z distance: |        |
| 0.0                                 | 0.0               |        |
|                                     |                   | /      |

Normal代表真空



## ——场监视器设置

| Field<br>Monitor<br>Monitor | ○ Farfield/RCSI ○ Current ○ Power ○ Farfield/RCSI ○ Current ○ Power ○ Field source ○ Power ○ Electro | te current (TLM only) r flow nt density r loss density/SAR ic energy density | OK Cancel Apply Preview Help |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|--|--|
|                             | Name:farfield (f=0.3)   ✓ Automatic                                                                  |                                                                              |                              |  |  |
|                             | Specification  Frequency  Transic                                                                    | ent Broadband                                                                |                              |  |  |
|                             | Frequency V 0.3                                                                                      |                                                                              |                              |  |  |
|                             | Frequency minimum: 0.2                                                                               |                                                                              |                              |  |  |
|                             | Frequency maximum: 0.4                                                                               |                                                                              |                              |  |  |
|                             | Use Subvolume Coordinates: Offset tyl Structure bounding box Fraction                                |                                                                              |                              |  |  |
|                             | X Min: -247.36 + 10 X Max:                                                                           |                                                                              |                              |  |  |
|                             | Y Min: 4.36 + 10 Y Max:                                                                              |                                                                              |                              |  |  |
|                             | Z Min: -260 + 10 Z Max: 2                                                                            |                                                                              |                              |  |  |
|                             | Use same offset in all directions At                                                                 |                                                                              |                              |  |  |
| Expression                  | ☐ Export farfield source ☐ Enable                                                                    | nearfield calculation                                                        |                              |  |  |

创建工程时已经设置,这里不用重复设置



## ——求解设置

| Units Simulation Project Solver       |                        | Optimize Par. Swee                      | ep Mesh (       |
|---------------------------------------|------------------------|-----------------------------------------|-----------------|
| Time Domain Solver Parameters         |                        |                                         | X               |
| Solver settings Mesh type: Hexahedral | Accuracy:              | √ dB                                    | Start Close     |
| Store result data in cache            |                        |                                         | Apply           |
| Stimulation settings                  |                        |                                         | Optimizer       |
| Source type: All Ports                |                        | Inhomogeneous port accuracy enhancement |                 |
| Mode: All                             | ☐ Calculate port       | t modes only                            |                 |
|                                       | Superimpose excitation | plane wave                              | Acceleration    |
| S-parameter settings                  |                        |                                         | Simplify Model  |
| Normalize to fixed impedance          | S-parameter            | symmetries                              | Simplify Plodei |
| 50 <b>Ohm</b>                         | S-Paramete             | S-Parameter List                        |                 |
| Adaptive mesh refinement              |                        |                                         |                 |
| Adaptive mesh refinement              | Adaptive Pro           | perties                                 |                 |
| Sensitivity analysis                  |                        |                                         |                 |
| Use sensitivity analysis              | Properti               | es                                      |                 |
|                                       |                        |                                         |                 |

选择时域求解器,保持默认设置,开始计算



### ——后处理查看

➤ S参数



在1D results中查找 S11



## ——后处理查看

#### ➤ S参数



右键查看谐振点——S11最低点



## ——后处理查看

▶天线方向图 (3D)



在farfields中查找远场结果——默认是三维方向图



## 一后处理查看

▶天线方向图(1D)



支持不同形式的远场方向图切换



设置观察切面及相关分量



查看增益



## 上述方案中:

增益为: 7.55dBi

谐振点: 310MHz

不满足设计要求,需要优化。



## CST八木-宇田天线优化方法



#### ——开启优化



or



可以通过求解器设置界面调出 优化器,也可以直接界面打开



#### ——优化变量设置

| orit                                                                | hm: Trust Regio | n Framework | ~ [F       | Properties | Ge      | neral Proper | ties |
|---------------------------------------------------------------------|-----------------|-------------|------------|------------|---------|--------------|------|
| lgor                                                                | ithm settings   |             |            |            |         |              |      |
| Resi                                                                | et min/max 10   | % of init   | tial value |            |         |              |      |
| 103                                                                 | ec minymax      | 70 01 1111  | ciai vaide |            |         |              |      |
| ✓ Use current as initial value  ☐ Use data of previous calculations |                 |             |            |            |         |              |      |
|                                                                     | Parameter       | / Min       | Max        | Initial    | Current | Best         | Δ.   |
|                                                                     | D1              | 218.7       | 267.3      | 243        | 243     | 243          |      |
|                                                                     | D2              | 213.3       | 260.7      | 237        | 237     | 237          |      |
| ×                                                                   | LO              | 184.95      | 226.05     | 205.5      | 205.5   | 205.5        |      |
|                                                                     | L1              | 468         | 572        | 520        | 520     | 520          |      |
|                                                                     | L2              | 369         | 451        | 410        | 410     | 410          |      |
|                                                                     | r               | 3.924       | 4.796      | 4.36       | 4.36    | 4.36         |      |
|                                                                     |                 |             |            |            |         |              |      |

勾选优化变量,设置变量变化范围



#### ——优化目标设置



添加优化目标

| esult Name:             |                      |         | ОК               |
|-------------------------|----------------------|---------|------------------|
| LDC: .\S-Parameter      | s\S1,1               | \\      | Cancel           |
| Type<br>○ Mag. (linear) | ○ Mag. (dB)          | ○ Phase | Result Template. |
| O Real Part             | O Imaginary Part     |         | Help             |
| Conditions              |                      |         |                  |
| Operator:               | Target:              | Weight: |                  |
| min ~                   | 0.0                  | 1.0     |                  |
| Use slope               | Target (max);<br>0.0 |         |                  |
| Range                   |                      |         |                  |
| ○ Total                 |                      |         |                  |
| O Single a              | : 0.315              |         |                  |
| ○ Range mir             | : 0 n                | nax: 1  |                  |
| Goal Norm:              |                      |         |                  |

优化目标:谐振点在315MHz



## ——优化计算

| Optimizer        |                                                                                                                                                                    | _     |      | ×   |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-----|
| Simulation type: | Time Domain Solver   Acceleration                                                                                                                                  |       |      |     |
| Settings Goals   | Info                                                                                                                                                               |       |      | _ 1 |
| Number of eval   | (solver: 0, reloaded: 1)  function value = 0.231237792097 (reloaded)  ction value = 0.231237792097 (reloaded)  ction value = 0.231237792097 (reloaded)  rs so far: |       |      | / " |
|                  |                                                                                                                                                                    |       | ₩    |     |
|                  | Start OK Apply                                                                                                                                                     | Close | Help |     |

点击start, 开始优化计算, info栏中查看优化信息



#### -查看优化结果



S11达到优化目标,此时参数栏相关变量也已更新



## 上述优化结果中:

增益为: 7.5dBi

谐振点: 315MHz

增益不满足设计要求,继续优化。



ΟK

237

All Settings...

## 八木-宇田天线优化方法

#### 一将增益添加到1D结果



Cancel Store Setup

Help



#### -勾选更多的优化变量





### -将1D增益添加到优化目标中





# 八木-宇田天线优化方法——优化计算

| Optimizer                                                                                      |                                                                                                                                                                                  |                | _     | _ X  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|------|
| Simulation type:  Settings Goals                                                               | Time Domain Solver Info                                                                                                                                                          | V Acceleration |       |      |
| Number of eval<br>Initial goal f<br>Best goal fund<br>Last goal fund                           | ust Region Framework Luations: 33 (solver: 32, reloaded: 1) function value = 1.13700558934 ption value = 0.127559626022 ption value = 0.129878914013 valuation time = 00:00:43 h |                |       | ^    |
| Best parameter<br>D1 = 261.061<br>D2 = 244.195<br>L0 = 203.104<br>L1 = 468.125<br>L2 = 392.866 | 's so far:                                                                                                                                                                       |                |       |      |
|                                                                                                |                                                                                                                                                                                  |                |       | v    |
|                                                                                                | Start OK                                                                                                                                                                         | Apply          | Close | Help |



#### 一查看优化结果





谐振点和增益都满足设计要求 (灰色为初始方案结果)



### ——查看优化结果

| Name  | Expression        | Value           |
|-------|-------------------|-----------------|
| m r   | = 4.36            | 4.36            |
| a L1  | = 468             | 468             |
| n D1  | = 261.78941537738 | 261.78941537738 |
| as LO | = 202.61035243522 | 202.61035243522 |
| 10 D2 | = 245.07206970095 | 245.07206970095 |
| ⊭ L2  | = 393.80659398124 | 393.80659398124 |

优化计算完成, 最终的参数变量



## 感谢倾听