Algoritmos y Estructuras de Datos I

Primer cuatrimestre de 2024

Departamento de Computación - FCEyN - UBA

Lógica proposicional

1

Definición (Especificación) de un problema

```
problema nombre(parámetros) : tipo de dato del resultado{
   requiere etiqueta { condiciones sobre los parámetros de entrada }
   asegura etiqueta { condiciones sobre los parámetros de salida }
}
```

- ▶ nombre: nombre que le damos al problema
 - será resuelto por una función con ese mismo nombre
- parámetros: lista de parámetros separada por comas, donde cada parámetro contiene:
 - Nombre del parámetro
 - Tipo de datos del parámetro
- ► tipo de dato del resultado: tipo de dato del resultado del problema (inicialmente especificaremos funciones)
 - En los asegura, podremos referenciar el valor devuelto con el nombre de res
- etiquetas: son nombres opcionales que nos servirán para nombrar declarativamente a las condiciones de los requiere o aseguras.

Habíamos visto...

Objetivo: Aprender a programar en lenguajes funcionales y en lenguajes imperativos.

- **Especificar** problemas.
 - Describirlos en un lenguaje semiformal.
- ► Pensar algoritmos para resolver los problemas.
 - En esta materia nos concentramos en programas para tratamiento de secuencias principalmente.
- ► Empezar a razonar acerca de estos algoritmos y programas.
 - Veremos conceptos de testing.

2

Definición (Especificación) de un problema

► Sobre los requiere

- Describen todas las condiciones y posibles valores o casuísticas de los parámetros de entrada.
- Puede haber más de un requiere (recomendamos una condición por renglón). Se asume que valen todos juntos (es una conjunción).
- Evitar contradicciones (un requiere no debería contradecir a otro).

► Sobre los asegura

- Describen todas las condiciones y posibles valores o casuísticas de los parámetros de salida y entrada/salida en función de los parámetros de entrada.
- Puede haber más de un asegura (recomendamos una condición por renglón). Se asume que valen todos juntos (es una conjunción).
- Evitar contradicciones (un asegura no debería contradecir a otro).

Antes de continuar... hablemos de lógica proposicional

- ► Si bien no utilizaremos un lenguaje formal para especificar... ¿Es lo mismo decir...?
 - Mañana llueve e iré a comprar un paragüas
 - ► Si mañana llueve iré a comprar un paragüas
 - O mañana no llueve o no iré a comprar un paragüas
 - Compraré un paragüas por si mañana llueve
 - ► Si compro un paragüas, mañana llueve

5

Lógica proposicional

- ► Es la lógica que habla sobre las proposiciones.
- ► Son oraciones que tienen un valor de verdad, Verdadero o Falso (aunque vamos a usar una variación).
- Sirve para poder deducir el valor de verdad de una proposición, a partir de conocer el valor de otras.

El abogado del diablo

- ► ¿Inocente o culpable?
 - ► Su torso está desnudo... pero... ¿y sus pies?
 - ▶ ¿Realmente estaba en el pasillo **y** en el ascensor al mismo tiempo?

6

Lógica proposicional - Sintaxis

► Símbolos:

True , False ,
$$\neg$$
 , \wedge , \vee , \rightarrow , \leftrightarrow , (,)

► Variables proposicionales (infinitas)

$$p, q, r, \dots$$

- ► Fórmulas
 - 1. True y False son fórmulas
 - 2. Cualquier variable proposicional es una fórmula
 - 3. Si A es una fórmula, $\neg A$ es una fórmula
 - 4. Si A_1, A_2, \ldots, A_n son fórmulas, $(A_1 \wedge A_2 \wedge \cdots \wedge A_n)$ es una fórmula
 - 5. Si A_1, A_2, \ldots, A_n son fórmulas, $(A_1 \vee A_2 \vee \cdots \vee A_n)$ es una fórmula
 - 6. Si A y B son fórmulas, $(A \rightarrow B)$ es una fórmula
 - 7. Si A y B son fórmulas, $(A \leftrightarrow B)$ es una fórmula

.

Ejemplos

¿Cuáles son fórmulas?

- $\triangleright p \lor q$ no
- \triangleright $(p \lor q)$ si
- $ightharpoonup p \lor q \to r$ no
- $(p \lor q) \to r no$
- $\blacktriangleright ((p \lor q) \to r) \qquad \mathsf{s}\mathsf{i}$
- ightharpoonup (p o q o r) no

9

Semántica clásica

- ► Dos valores de verdad: "verdadero" (V) y "falso" (F).
- ► Interpretación:
 - ► True siempre vale V.
 - False siempre vale F.
 - ▶ ¬ se interpreta como "no", se llama negación.
 - ► ∧ se interpreta como "y", se llama conjunción.
 - ▶ ∨ se interpreta como "o" (no exclusivo), se llama disyunción.
 - ightharpoonup se interpreta como "si... entonces", se llama implicación.
 - → se interpreta como "si y solo si", se llama doble implicación o equivalencia.

-

Semántica clásica: tablas de verdad

Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

р	$\neg p$
V	F
F	V

р	q	$(p \wedge q)$
V	V	V
V	F	F
F	V	F
F	F	F

р	а	$(p \lor q)$
V	V	V
1/	F	\/
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V
F	V	V
F	F	F

	p	q	(p o q)
	V	V	V
Γ	V	F	F
Γ	F	V	V
	F	F	V

р	q	$(p \leftrightarrow q)$
V	V	V
V	F	F
F	V	F
F	F	V

Ejemplo: tabla de verdad para $((p \land q) \to r)$

р	q	r	$(p \wedge q)$	$((p \land q) \to r)$
1	1	1	1	1
1	1	0	1	0
1	0	1	0	1
1	0	0	0	1
0	1	1	0	1
0	1	0	0	1
0	0	1	0	1
0	0	0	0	1

Tautologías, contradicciones y contingencias

► Una fórmula es una tautología si siempre toma el valor *V* para valores definidos de sus variables proposicionales.

Por ejemplo, $((p \land q) \rightarrow p)$ es tautología:

р	q	$(p \wedge q)$	$((p \land q) \to p)$
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	V

▶ Una fórmula es una contradicción si siempre toma el valor *F* para valores definidos de sus variables proposicionales.

Por ejemplo, $(p \land \neg p)$ es contradicción:

р	$\neg p$	$(p \land \neg p)$	
V	F	F	
F	V	F	

► Una fórmula es una contingencia cuando no es ni tautología ni contradicción.

12

Relación de fuerza

- ▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.
- ► También decimos que *A* fuerza a *B* o que *B* es más débil que *A*.
- ► Por ejemplo,
 - 1. $\iota(p \land q)$ es más fuerte que p? Sí
 - 2. $\iota(p \lor q)$ es más fuerte que p? No
 - 3. $\not p$ es más fuerte que $(q \to p)$? Sí Pero notemos que si q está indefinido y p es verdadero entonces $(q \to p)$ está indefinido.
 - 4. ip es más fuerte que q? No

 - 6. ¿hay una fórmula más fuerte que todas? Sí, False
 - 7. ¿hay una fórmula más débil que todas? Sí, True

Equivalencias entre fórmulas

- ▶ Dos fórmulas A y es B son equivalentes (y se escribe $A \equiv B$) si y sólo si, $A \leftrightarrow B$ es una tautologia.
- ► Teorema. Las siguientes fórmulas son tautologías.

1. Doble negación
$$(\neg \neg p \leftrightarrow p)$$

- 2. Idempotencia $((p \land p) \leftrightarrow p) \\ ((p \lor p) \leftrightarrow p)$
- 3. Asociatividad $(((p \land q) \land r) \leftrightarrow (p \land (q \land r))) \\ (((p \lor q) \lor r) \leftrightarrow (p \lor (q \lor r)))$
- 4. Conmutatividad

$$((p \land q) \leftrightarrow (q \land p)) \ ((p \lor q) \leftrightarrow (q \lor p))$$

- 5. Distributividad $((p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r))) \\ ((p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \lor r)))$
- 6. Reglas de De Morgan $(\neg(p \land q) \leftrightarrow (\neg p \lor \neg q))$ $(\neg(p \lor q) \leftrightarrow (\neg p \land \neg q))$

17

Expresión bien definida

- ► Toda expresión está bien definida si todas las proposiciones valen *T* o *F*.
- ► Sin embargo, existe la posibilidad de que haya expresiones que no estén bien definidas.
 - Por ejemplo, la expresión x/y = 5 no está bien definida si y = 0.
- ► Por esta razón, necesitamos una lógica que nos permita decir que está bien definida la siguiente expresión
 - $y = 0 \lor x/y = 5$
- ► Para esto, introducimos tres valores de verdad:
 - 1. verdadero (V)
 - 2. falso (F)
 - 3. indefinido (\perp)

Semántica trivaluada (secuencial)

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- ▶ la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

Introducimos los operadores lógicos \wedge_L (y-luego, o conditional and, o cand), \vee_L (o-luego o conditional or, o cor).

р	q	$(p \wedge_L q)$
V	V	V
V	F	F
F	V	F
F	F	F
V	1	\perp
F	1	F
Т	V	\perp
Т	F	\perp
Т	1	\perp

р	q	(p ∨ L q)
V	V	V
V	F	V
F	V	V
F	F	F
V	T	V
F	Τ	
\perp	V	
T	F	
\perp	1	

Semántica trivaluada (secuencial)

¿Cuál es la tabla de verdad de \rightarrow_{l} ?

р	q	$(p \rightarrow_L q)$
V	V	V
V	F	F
F	V	V
F	F	V
V	T	
F	T	V
	V	
\perp	F	
1	1	

Entonces...

Lógica proposicional y lógica trivaluada

- ► Convención: Dado que nuestros tipos de datos siempre tendrán como valor posible el indefinido o \perp , en general, asumiremos que estamos utilizando la lógica trivaluada por default.
- Es decir, salvo en los casos dónde se indique lo contrario:
 - ► ∧ podrá ser interpretado como ∧_L directamente
 - y así con todos los operadores vistos.

Entonces... hablando de lógica proposicional

- ► ¿Es lo mismo decir...?
 - Mañana llueve e iré a comprar un paragüas
 - ► Si mañana llueve iré a comprar un paragüas
 - O mañana no llueve o no iré a comprar un paragüas
 - Compraré un paragüas por si mañana llueve
 - ► Si compro un paragüas, mañana llueve

Entonces... hablando de lógica proposicional

- ► Si llamamos:
 - ▶ a = Mañana Ilueve
 - ightharpoonup b = Iré a comprar un paragüas
- ► Mañana llueve e iré a comprar un paragüas Lo podriamos modelar como: *a* ∧ *b*
- ightharpoonup Si mañana llueve iré a comprar un paragüas Lo podriamos modelar como: a
 ightharpoonup b
- ▶ O mañana no llueve o no iré a comprar un paragüas Lo podriamos modelar como: $\neg a \lor \neg b$
- ► Compraré un paragüas por si mañana llueve
 - ► ¡A veces es difícil desambigüar!
 - Por si mañana llueve es una nueva proposición
- ► Si compro un paragüas, mañana llueve Lo podriamos modelar como: $b \rightarrow a$

Práctica 1: Ejercicio 4

Determinar el valor de verdad de las siguientes proposiciones:

- a) $(\neg a \lor b)$
- b) $(c \lor (y \land x) \lor b)$

cuando el valor de verdad de a, b y c es verdadero, mientras que el de x e y es falso.

2

Práctica 1: Ejercicio 5

Determinar, utilizando tablas de verdad, si las siguientes fórmulas son tautologías, contradicciones o contingencias.

- b) $(p \land \neg p)$
- d) $((p \lor q) \to p)$
- i) $((p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r)))$

Práctica 1: Ejercicio 6

Determinar la relación de fuerza de los siguientes pares de fórmulas:

1. True, False False

$$\alpha = (p \land q)$$
$$\beta = (p \lor q)$$

2. $(p \wedge q)$, $(p \vee q)$ $(p \wedge q)$

p	q	α	β	$\alpha \to \beta$	$\beta \to \alpha$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	1	0
1	1	1	1	1	1

3. True, True True

$$\alpha = (p \land q)$$

4. $p, (p \wedge q) (p \wedge q)$

7. p, q Ninguna es más fuerte

Práctica 1: Ejercicio 7

Usando reglas de equivalencia (conmutatividad, asociatividad, De Morgan, etc) determinar si los siguientes pares de fórmulas son equivalencias. Indicar en cada paso qué regla se utilizó.

2.
$$(p \lor q) \land (p \lor r)$$

$$(\neg p \to (q \land r))$$

$$(\neg p \to (q \land r))$$

$$(p \lor (q \land r))$$

$$\downarrow \text{ Distributiva}$$

$$((p \lor q) \land (p \lor r))$$

25

Práctica 1: Ejercicio 12

Sean las variables proposicionales f, e y m con los siguientes significados:

- $ightharpoonup f \equiv$ "es fin de semana"
- $ightharpoonup e \equiv$ "Juan estudia"
- $ightharpoonup m \equiv$ "Juan escucha música"

Escribir usando lógica proposicional las siguientes oraciones:

- 1. "Si es fin de semana, Juan estudia o escucha música, pero no ambas cosas" $f \to ((e \lor m) \land \neg (e \land m))$
- 2. "Si no es fin de semana entonces Juan no estudia" $\neg f \rightarrow \neg e$
- 3. "Cuando Juan estudia los fines de semana, lo hace escuchando música" $(f \land e) \rightarrow m$

Práctica 1: Ejercicio 7

Usando reglas de equivalencia (conmutatividad, asociatividad, De Morgan, etc) determinar si los siguientes pares de fórmulas son equivalencias. Indicar en cada paso qué regla se utilizó.

26

Práctica 1: Ejercicio 19

Determinar los valores de verdad de las siguientes proposiciones cuando el valor de verdad de b y c es verdadero, el de a es falso y el de x e y es indefinido:

- a) $(\neg x \lor_L b)$
- c) $\neg(c \lor y)$
- g) $(\neg c \land_L \neg y)$

Práctica 1: Ejercicio 20

Determinar los valores de las siguientes fórmulas de Lógica Ternaria cuando el valor de verdad de p es *verdadero*, el de q es *falso* y el de r es *indefinido*:

- a) $((9 \le 9) \land p)$
- d) $((3 > 9) \lor (r \land (q \land p)))$
- i) $(p \wedge ((5-7+3=0)) \leftrightarrow (2^2-1>3)))$

29

Presentemos nuestro lenguaje de especificación

Práctica 1: Ejercicio 21

Sean p, q y r tres variables de las que se sabe que:

- p y q nunca están indefinidas,
- r se indefine sii q es verdadera

Proponer, para cada ítem, una fórmula que nunca se indefina, utilizando siempre las tres variables. Cada fórmula debe ser verdadera si y solo sí se cumple que:

- b) Ninguna es verdadera.
- d) Sólo p y q son verdaderas.

3

Problemas y Especificaciones

Inicialmente los problemas resolveremos con una computadora serán planteados como funciones. Es decir:

- ▶ Dados ciertos datos de entrada, obtendremos un resultado
- ► Más adelante en la materia, extenderemos el tipo de problemas que podemos resolver...

Definición (Especificación) de un problema

```
problema nombre(parámetros) : tipo de dato del resultado {
   requiere etiqueta: { condiciones sobre los parámetros de entrada }
   asegura etiqueta: { condiciones sobre los parámetros de salida }
}
```

- ▶ nombre: nombre que le damos al problema
 - será resuelto por una función con ese mismo nombre
- parámetros: lista de parámetros separada por comas, donde cada parámetro contiene:
 - Nombre del parámetro
 - ► Tipo de datos del parámetro
- tipo de dato del resultado: tipo de dato del resultado del problema (inicialmente especificaremos funciones)
 - En los asegura, podremos referenciar el valor devuelto con el nombre de res
- etiquetas: son nombres opcionales que nos servirán para nombrar declarativamente a las condiciones de los requiere o aseguras.

33

¿Cómo contradicciones?

```
problema soyContradictorio(x:\mathbb{Z}): \mathbb{Z}{ requiere esMayor: \{x>0\} requiere esMenor: \{x<0\} asegura esElSiguiente: \{res+1=x\} asegura esElAnterior: \{res-1=x\}
```

Definición (Especificación) de un problema

► Sobre los requiere

- Describen todas las condiciones y posibles valores o casuísticas de los parámetros de entrada.
- Puede haber más de un requiere (recomendamos una condición por renglón). Se asume que valen todos juntos (es una conjunción).
- Evitar contradicciones (un requiere no debería contradecir a otro).

► Sobre los asegura

- Describen todas las condiciones y posibles valores o casuísticas de los parámetros de salida y entrada/salida en función de los parámetros de entrada.
- Puede haber más de un asegura (recomendamos una condición por renglón). Se asume que valen todos juntos (es una conjunción).
- Evitar contradicciones (un asegura no debería contradecir a otro).

34

Ejemplos

```
problema raizCuadrada(x : \mathbb{R}) : \mathbb{R} \ \{ requiere: \{x \geq 0\} asegura: \{res * res = x \wedge res \geq 0\} \} problema sumar(x : \mathbb{Z}, y : \mathbb{Z}) : \mathbb{Z} \ \{ requiere: \{True\} asegura: \{res = x + y\} \} problema restar(x : \mathbb{Z}, y : \mathbb{Z}) : \mathbb{Z} \ \{ requiere: \{True\} asegura: \{res = x - y\} \} problema cualquieramayor(x : \mathbb{Z}) : \mathbb{Z} \ \{ requiere: \{True\} asegura: \{res > x\} \}
```

¿Por qué nuestro lenguaje será semiformal?: Ejemplos

```
problema raizCuadrada(x : \mathbb{R}) : \mathbb{R} {
    requiere: \{x \text{ debe ser mayor o igual que 0}\}
    asegura: \{res \text{ debe ser mayor o igual que 0}\}
    asegura: \{res \text{ elevado al cuadrado será }x\}
}

problema sumar(x : \mathbb{Z}, y : \mathbb{Z}) : \mathbb{Z} {
    requiere: \{-\}
    asegura: \{res \text{ es la suma de }x \text{ e }y\}
}

problema restar(x : \mathbb{Z}, y : \mathbb{Z}) : \mathbb{Z} {
    requiere: \{\text{Siempre cumplen}\}
    asegura: \{res \text{ es la resta de }x \text{ menos }y\}
}

problema cualquieramayor(x : \mathbb{Z}) : \mathbb{Z} {
    requiere: \{\text{Vale para cualquier valor posible de }x\}
    asegura: \{res \text{ debe tener cualquier valor mayor a }x\}
}
```

37

Interpretando una especificación

```
▶ problema raizCuadrada(x : ℝ) : ℝ {
 requiere: {x debe ser mayor o igual que 0}
 asegura: {res debe ser mayor o igual que 0}
 asegura: {res elevado al cuadrado será x}
}
```

- ► ¿Qué significa esta especificación?
- Se especifica que si el programa raizCuadrada se comienza a ejecutar en un estado que cumple x ≥ 0, entonces el programa termina y el estado final cumple res * res = x y res > 0.

El contrato

- ▶ Contrato: El programador escribe un programa P tal que si el usuario suministra datos que hacen verdadera la precondición, entonces P termina en una cantidad finita de pasos retornando un valor que hace verdadera la postcondición.
- ► El programa *P* es correcto para la especificación dada por la precondición y la postcondición exactamente cuando se cumple el contrato.
- ► Si el usuario no cumple la precondición y *P* se cuelga o no cumple la poscondición...
 - ► ¿El usuario tiene derecho a quejarse?
 - ¿Se cumple el contrato?
- Si el usuario cumple la precondición y P se cuelga o no cumple la poscondición...
 - ► ¿El usuario tiene derecho a quejarse?
 - ► ¿Se cumple el contrato?

38

Otro ejemplo

Dados dos enteros dividendo y divisor, obtener el cociente entero entre ellos.

```
 \begin{array}{l} \text{problema } cociente(\textit{dividendo}: \mathbb{Z}, \textit{divisor}: \mathbb{Z}): \mathbb{Z} \ \{ \\ \text{requiere: } \{\textit{divisor} > 0\} \\ \text{asegura: } \{\textit{res}*\textit{divisor} \leq \textit{dividendo}\} \\ \text{asegura: } \{(\textit{res}+1)*\textit{divisor} > \textit{dividendo}\} \\ \} \end{array}
```

Qué sucede si ejecutamos con ...

```
► dividendo = 1 y divisor = 0?
```

- ightharpoonup dividendo = -4 y divisor = -2, y obtenemos *res* = 2?
- ightharpoonup dividendo = -4 y divisor = -2, y obtenemos *res* = 0?
- \blacktriangleright dividendo = 4 y divisor = -2, y el programa no termina?

-

Tipos de datos

- ► Un tipo de datos es un conjunto de valores (el conjunto base del tipo) provisto de una serie de operaciones que involucran a esos valores.
- \triangleright Para hablar de un elemento de un tipo T en nuestro lenguaje, escribimos un término o expresión
 - ► Variable de tipo *T* (ejemplos: *x*, *y*, *z*, etc)

 - Constante de tipo T (ejemplos: 1, −1, ½, 'a', etc)
 Función (operación) aplicada a otros términos (del tipo T o de otro tipo)
- ► Todos los tipos tienen un elemento distinguido: ⊥ o Indef

Tipo \mathbb{Z} (números enteros)

- ► Su conjunto base son los números enteros.
- ightharpoonup Constantes: 0 ; 1 ; -1 ; 2 ; -2 ; ...
- ► Operaciones aritméticas:
 - ightharpoonup a + b (suma); a b (resta); abs(a) (valor absoluto)
 - ► a * b (multiplicación); a div b (división entera);
 - ightharpoonup a mod b (resto de dividir a a por b), a^b o pot(a,b) (potencia)
 - ► a / b (división, da un valor de R)
- ► Fórmulas que comparan términos de tipo Z:
 - ▶ a < b (menor)</p>
 - $ightharpoonup a \le b$ o $a \le b$ (menor o igual)
 - \triangleright a > b (mayor)
 - \triangleright a > b o a >= b (mayor o igual)
 - $ightharpoonup a = b ext{ (iguales)}$
 - \triangleright $a \neq b$ (distintos)

Tipos de datos de nuestro lenguaje de especificación

- ▶ Básicos
 - ► Enteros (ℤ)
 - ightharpoonup Reales (\mathbb{R})
 - ► Booleanos (Bool)
 - Caracteres (Char)
- ► Enumerados
- ► Uplas
- ▶ Secuencias

Tipo \mathbb{R} (números reales)

- ► Su conjunto base son los números reales.
- ightharpoonup Constantes: 0 ; 1 ; -7 ; 81 ; 7,4552 ; π ...
- ► Operaciones aritméticas:
 - ► Suma, resta y producto (pero no div y mod)
 - ► a/b (división)
 - $\triangleright \log_b(a)$ (logaritmo)
 - Funciones trigonométricas
- ightharpoonup Fórmulas que comparan términos de tipo \mathbb{R} :
 - $ightharpoonup a < b ext{ (menor)}$
 - $ightharpoonup a \le b$ o $a \le b$ (menor o igual)
 - ightharpoonup a > b (mayor)
 - \triangleright a > b o a >= b (mayor o igual)
 - $ightharpoonup a = b ext{ (iguales)}$
 - $ightharpoonup a \neq b$ (distintos)

Tipo Bool (valor de verdad)

- ▶ Su conjunto base es $\mathbb{B} = \{ \text{true}, \text{false} \}.$
- ► Conectivos lógicos: !, &&, ||, con la semántica bi-valuada estándar.
- ► Fórmulas que comparan términos de tipo Bool:
 - ► a = b
 - ightharpoonup a
 eq b (se puese escribir a ! = b)

45

Tipos enumerados

► Cantidad finita de elementos. Cada uno, denotado por una constante.

```
enum Nombre { constantes }
```

- ► Nombre (del tipo): tiene que ser nuevo.
- ► Constantes: nombres nuevos separados por comas.
- ► Convención: todos en mayúsculas.
- ▶ ord(a) da la posición del elemento en la definición (empezando de 0).
- ▶ Inversa: se usa el nombre del tipo funciona como inversa de ord.

Tipo Char (caracteres)

- ► Sus elementos son las letras, dígitos y símbolos.
- ► Constantes: 'a', 'b', 'c', ..., 'z', ..., 'A', 'B', 'C', ..., 'Z', ..., '0', '1', '2', ..., '9' (en el orden dado por el estándar ASCII).
- ► Función ord, que numera los caracteres, con las siguientes propiedades:

```
    ord('a') + 1 = ord('b')
    ord('A') + 1 = ord('B')
    ord('1') + 1 = ord('2')
```

- Función char, de modo tal que si c es cualquier char entonces char(ord(c)) = c.
- ▶ Las comparaciones entre caracteres son comparaciones entre sus órdenes, de modo tal que a < b es equivalente a ord(a) < ord(b).

4

Ejemplo de tipo enumerado

Definimos el tipo Día así:

```
enum Día {
   LUN, MAR, MIER, JUE, VIE, SAB, DOM
}
```

Valen:

- ightharpoonup ord(LUN) = 0
- ► Día(2) = MIE
- ► JUE < VIE