TD 10 – Intégrales dépendant d'un paramètre

1. À TRAVAILLER EN CLASSE

Exercice 1. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par $f(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin t) dt$

- 1. Montrer que la fonction f est de classe C^1 . Pour tout nombre réel x, exprimer f'(x) comme intégrale à paramètre.
- 2. Montrer que la fonction f est de classe C^2 .
- 3. Montrer que f est solution de l'équation différentielle xy'' + y' + xy = 0.

Exercice 2. Soit $f:]0, +\infty[\longrightarrow \mathbb{R}$ la fonction définie par

$$f(x) = \int_0^{\pi/2} \ln(x^2 \cos^2 t + \sin^2 t) dt.$$

- 1. Montrer que la fonction f est de classe C^1 .
- 2. Soit x > 0 tel que $x \neq 1$. Calculer f'(x) à l'aide du changement de variable $u = \tan t$.
- 3. En déduire une expression explicite de f(x) pour tout x > 0.

Exercice 3. Produit de convolution

Soient f et g deux fonctions définies sur \mathbb{R} , continues et T-périodiques (T réel strictement positif). Pour $x \in \mathbb{R}$, on pose

$$(f * g)(x) = \int_0^T f(x - t)g(t)dt.$$

- 1. Montrer que la fonction f * g est définie sur \mathbb{R} , continue et T-périodique.
- 2. Montrer que f * g = g * f.

Exercice 4.

- 1. Démontrer que $F: x \mapsto \int_0^x e^{-t} \sin(t+x) dt$ est continue sur \mathbb{R} .
- 2. Plus généralement, soient I un intervalle de \mathbb{R} , $f:I\times\mathbb{R}\to\mathbb{R}$, et $u,v:I\to\mathbb{R}$ trois fonctions continues. Démontrer que $F:x\mapsto \int_{u(x)}^{v(x)}f(x,t)dt$ est continue sur I.

Exercice 5. On pose, pour $x \in \mathbb{R}$,

$$F(x) = \int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt.$$

- 1. Justifier que F est bien définie sur \mathbb{R} .
- 2. Montrer que la fonction F est de classe C^1 . Pour tout nombre réel x, calculer F'(x).
- 3. En déduire une expression explicite de F(x).

Exercice 6. La fonction Gamma.

- 1. Montrer que pour tout réel x > 0, l'intégrale impropre $\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$ est convergente.
- 2. Montrer que pour tout x > 0, on a $\Gamma(x+1) = x\Gamma(x)$; en déduire la valeur $\Gamma(n)$ pour n entier strictement positif.
- 3. Montrer que la fonction Γ est de classe C^2 et convexe. En déduire que Γ atteint son minimum en un point de l'intervalle]1,2[.
- 4. Montrer que $\lim_{x\to 0}(x\Gamma(x))=1$ et dessiner l'allure du graphe de Γ .

- 5. On définit, pour x > 1 et $n \in \mathbb{N}^*$, les fonctions $u_n(x, \cdot) :]0, +\infty[\to \mathbb{R}$ par $u_n(x, t) = e^{-nt}t^{x-1}$.
 - (a) Montrer que la série de fonctions $\sum u_n(x,\cdot)$ converge normalement sur tout intervalle de la forme $[a,+\infty[$, où a>0.
 - (b) Montrer que $\int_0^{+\infty} u_n(x,t)dt$ est convergente et que l'on a $\int_0^{+\infty} u_n(x,t)dt = \frac{1}{n^x}\Gamma(x)$.
 - (c) En déduire l'égalité

$$\int_0^{+\infty} \frac{t^{x-1}}{e^t - 1} dt = \zeta(x) \Gamma(x),$$

où ζ désigne la fonction de Riemann, définie comme somme de la série de fonctions $\sum_{n=1}^{\infty} \frac{1}{n^x}$.

Exercice 7. Intégrale de Poisson

Pour $x \in \mathbb{R}$, on pose

$$F(x) = \int_{-\pi}^{\pi} \ln(1 - 2x\cos(t) + x^2)dt.$$

- 1. (a) Montrer que F est bien définie sur \mathbb{R} . Montrer que F est continue et paire.
 - (b) Déterminer une relation entre F(x) et F(1/x) pour x > 0.
 - (c) Montrer que F est dérivable sur]-1,1[puis sur $\mathbb{R}\setminus\{-1,1\}$. Préciser une expression de F'(x) sous forme intégrale.
 - (d) Calculer F'(x).

(Indication : Faire le changement de variable $u = \tan(t/2)$, puis remarquer que

$$\frac{(x+1)u^2 + (x-1)}{((x+1)^2u^2 + (x-1)^2)(1+u^2)} = \frac{4}{x} \left(\frac{x^2 - 1}{(x+1)^2u^2 + (x-1)^2} + \frac{1}{u^2 + 1} \right)$$

 $si x \neq 0$

- (e) Déterminer $\lim_{x \to +\infty} (F(x) 4\pi \ln x)$.
- (f) En déduire F(x) pour tout réel x. Tracer le graphe de F.
- 2. (a) Quand $x \in]-1,1[$, retrouver ce résultat en écrivant d'abord $\ln(1-2x\cos t+x^2)$ comme somme d'une série (commencer par dériver la fonction de t).
 - (b) En déduire F(x) pour tout réel x de]-1,1[puis pour tout réel x.

2. À TRAVAILLER CHEZ SOI : APPLICATIONS DIRECTES DES DÉFINITIONS

Exercice 8. Montrer que les fonctions suivantes définies sur $\mathbb R$ sont de classe C^1 , et déterminer leur dérivée.

- 1. $F(x) = \int_0^1 \cos(x + t^2) dt$.
- 2. $F(x) = \int_0^1 \sinh(x^2 + t) dt$.
- 3. $F(x) = \int_0^\infty e^{-tx} \sin(t) dt.$

Exercice 9. Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^{∞} .

- 1. On suppose que f(0) = 0 et on pose, pour $x \neq 0$, $g(x) = \frac{f(x)}{x}$. Justifier que, pour $x \neq 0$, $g(x) = \int_0^1 f'(tx)dt$ et en déduire que g se prolonge en une fonction de classe C^{∞} sur \mathbb{R} .
- 2. On suppose désormais que $f(0) = f'(0) = \cdots = f^{(n-1)}(0) = 0$, et on pose, pour $x \neq 0$, $g(x) = \frac{f(x)}{x^n}$. Justifier que g se prolonge en une fonction de classe C^{∞} sur \mathbb{R} .

3. À TRAVAILLER CHEZ SOI : EXERCICES D'ENTRAÎNEMENT

Exercice 10.

- 1. Existence et calcul de $F(x) = \int_0^{+\infty} e^{-t^2} \cosh(tx) dt$, $x \in \mathbb{R}$. (cosh est la fonction cosinus hyperbolique)
- 2. Existence et calcul de $F(x) = \int_0^1 \frac{t-1}{\ln t} t^x dt, x \in]-1, +\infty[.$

Exercice 11. Pour $n \in \mathbb{N}^*$ et $x \in]0, +\infty[$, on pose

$$I_n(x) = \int_0^\infty \frac{dt}{(t^2 + x^2)^n}.$$

- 1. Démontrer que I_n est de classe C^1 sur $]0, +\infty[$.
- 2. Calculer la dérivée de la fonction I_n sur $]0, +\infty[$.
- 3. En déduire qu'il existe une suite λ_n telle que, pour tout x > 0, on a

$$I_n(x) = \frac{\lambda_n}{x^{n-1}}.$$

Que vaut λ_n ?

Exercice 12. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par $f(x) = \int_0^{+\infty} e^{-t^2} \cos(tx) dt$.

- 1. Montrer que la fonction f est de classe C^1 .
- 2. Montrer que f est solution de l'équation différentielle $y' = -\frac{x}{2}y$.
- 3. En déduire une expression explicite de f(x) pour tout $x \in \mathbb{R}$.

Exercice 13. Un calcul du cours de l'intégrale de Gauss

Soit
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 la fonction définie par $f(x) = \int_0^1 \frac{e^{-(t^2+1)x^2}}{1+t^2} dt$.

- 1. Montrer que la fonction f est de classe C^1 .
- 2. Montrer qu'il existe $a \in \mathbb{R}$ tel que $f(x) = a \left(\int_0^x e^{-u^2} du\right)^2$ pour tout $x \in \mathbb{R}$.
- 3. Montrer que l'on a $\lim_{x\to +\infty} f(x) = 0$. En déduire l'égalité $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.
 - 4. À TRAVAILLER CHEZ SOI : EXERCICES D'APPROFONDISSEMENT

Exercice 14.

- 1. Montrer que pour tout réel x on a $\lim_{t\to 0} \frac{\arctan(tx)}{t(1+t^2)} = x$. En déduire que l'application $\varphi: \mathbb{R} \times [0, +\infty[\longrightarrow \mathbb{R}, \text{ définie par } \varphi(x,t) = \frac{\arctan(tx)}{t(1+t^2)} \text{ pour } t > 0 \text{ et } \varphi(x,0) = x \text{ est continue.}$
- 2. Montrer que l'intégrale $\int_0^{+\infty} \frac{\arctan(tx)}{t(1+t^2)} dt$ est convergente pour tout x réel. On note F(x) cette intégrale.
- 3. Montrer que la fonction F ainsi définie est impaire et continue.
- 4. Montrer que la fonction F est de classe C^1 .

5. Calculer F'(x) pour $x \neq 1$. On pourra utiliser la décomposition suivante :

$$\frac{1}{(1+T)(1+aT)} = \frac{1}{1-a} \left(\frac{1}{1+T} - \frac{a}{1+aT} \right).$$

6. Calculer F(0) et déduire de ce qui précéde une expression explicite de la fonction F (on pourra faire le calcul d'abord pour x > 0).

Exercice 15. Calcul de $\int_0^{+\infty} \frac{\sin t}{t} dt$.

Soit $f:]0, +\infty[\to \mathbb{R}$ la fonction définie par $f(x) = \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt$.

- 1. Montrer que f est continue.
- 2. Montrer que f est de classe C^2 sur $]0,+\infty[$ et qu'elle est solution sur cet intervalle de l'équation $y+y''=\frac{1}{x}$.
- 3. Montrer que f(x) tend vers 0 quand x tend vers $+\infty$.
- 4. Montrer que f est la seule solution de l'équation différentielle $y + y'' = \frac{1}{x}$ sur $]0, +\infty[$ ayant une limite finie en $+\infty$.
- 5. A l'aide d'une intégration par parties, montrer que pour tout nombre réel x > 0, les intégrales impropres $\int_{x}^{+\infty} \frac{\sin t}{t} dt \text{ et } \int_{x}^{+\infty} \frac{\cos t}{t} dt \text{ sont convergentes.}$
- 6. Montrer que pour tout x > 0, on a

$$f(x) = \int_{x}^{+\infty} \frac{\sin(t-x)}{t} dt = \int_{0}^{+\infty} \frac{\sin(t)}{t+x} dt.$$

7. En déduire l'égalité $\int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$.