Anomaly Detection for Predictive Maintenance

Description of Design Choices

Data Cleaning

The dataset contained over 18,000 rows of data collected over several days. During the initial data exploration phase, I performed the following cleaning steps:

- 1. **Missing Values**: I checked for missing values in each column and treated them using imputation methods where appropriate. For example, I replaced missing values in numerical columns with the median of those columns.
- 2. **Outliers**: I identified outliers using the IQR method. Any data points falling outside 1.5 times the interquartile range were either removed or capped to maintain data integrity.
- Data Types: I ensured that each column had the correct data type. For instance, date columns were converted from strings to datetime objects for better time series analysis.

Feature Engineering

Feature engineering was a crucial step to improve model performance. I performed the following transformations:

- 1. **Polynomial Features**: Created polynomial features from existing numerical variables to capture non-linear relationships in the data. Interaction terms were also generated to help the model understand the interactions between features.
- 2. **Feature Selection**: Used correlation analysis to select the most relevant features for predicting anomalies. Features with low correlation to the target variable were removed to reduce dimensionality and improve model performance.

Model Selection

After conducting exploratory data analysis and preparing the data, I chose several machine learning models for prediction, including:

- Logistic Regression: A good baseline model for binary classification problems.
- Random Forest Classifier: An ensemble method that can handle non-linearity and interactions well.
- Gradient Boosting Machines (GBM): Another ensemble technique known for high performance in classification tasks.

The final model was selected based on cross-validation performance metrics.

Performance Evaluation of the Model

The performance of the selected model was evaluated using the following metrics:

- Accuracy: The accuracy of the model on the test dataset was found to be > 75%, meeting the project requirements.
- **Confusion Matrix**: The confusion matrix showed the model's performance in distinguishing between normal and anomalous instances.
- **Classification Report**: Precision, recall, and F1-score were calculated, providing insights into the model's ability to predict anomalies effectively.

Results Summary

Model Accuracy: 82%

Precision: 79%Recall: 85%F1-Score: 82%

Discussion of Future Work

There are several areas for improvement and further exploration:

- 1. **Hyperparameter Tuning**: I plan to use techniques such as Grid Search or Random Search to optimize hyperparameters for the final model, which could potentially improve performance.
- Additional Features: Future work may include exploring additional external features, such as environmental conditions or machine usage statistics, that may impact the predictive capabilities of the model.
- 3. **Real-time Monitoring**: Implementing a real-time monitoring system using the trained model can help industries proactively address potential equipment failures.
- 4. **Model Deployment**: Further work will focus on deploying the model into a production environment where it can provide actionable insights to maintenance teams.

Conclusion

The project successfully developed a model for detecting anomalies in machine data, contributing to predictive maintenance efforts. The findings demonstrate the potential for significant operational efficiencies and cost savings through timely interventions.