# Data Structures and Algorithms SS20 // Gian Hiltbrunner

# Algorithms

# **Order of Complexity**

$$\begin{split} &1,\ \log\log n,\ \sqrt{\log n},\ \log\sqrt{n},\ \log\sqrt{n},\ \log n,\ \sqrt{n},\ n,\ n\log n,\ n^2, {n\choose 3}\in n^3,\ n^c,\ 2^n,\ n! \\ &\lim_{n\to\infty}\frac{f(n)}{g(n)}=0\Rightarrow f\in\mathcal{O}(g), \mathcal{O}(f)\subsetneq\mathcal{O}(g); \lim_{n\to\infty}\frac{f(n)}{g(n)}=C>0(C\ \text{constant}) \\ &\Rightarrow f\in\Theta(g); \frac{f(n)}{g(n)}\underset{n\to\infty}{\longrightarrow}\infty \ \infty g\in\mathcal{O}(f), \mathcal{O}(g)\subsetneq\mathcal{O}(f); \sum_{k=1}^n k=\frac{n(n+1)}{2} \end{split}$$

# **Maximum Subarray Alogrithm**

### **Algorithm 1:** Inductive Maximum Subarray $\mathcal{O}(n)$

```
\begin{array}{c|c} \text{Input} & : (a_1, a_2, \ldots -, a_n) \\ \text{Output:} & \max 0, \max_{i,j} \sum_{k=i}^{j} a_k \\ \text{1} & \text{for } i = 1, \ldots, n \text{ do} \\ \text{2} & | R \leftarrow R + a_i \\ \text{3} & \text{if } R < 0 \text{ then} \\ \text{4} & | R \leftarrow 0 \\ \text{5} & \text{end} \\ \text{6} & \text{if } R > M \text{ then} \\ \text{7} & | M \leftarrow R \\ \text{8} & \text{end} \\ \text{9} & \text{end} \\ \text{10} & \text{return } M \end{array}
```

# **Searching**

### **Linear Search**

Best case: 1 comparison; Worst case: n comparisons Expected:  $\mathrm{E}(x) = \frac{1}{n} \sum_{i=1}^n i = \frac{n+1}{2} \in \Theta(n)$ 

# **Binary Search**

divide and conquer approach  $\to \Theta(\log n)$  Works with two pointers l and r. If l>r the search was without result.

# Algorithm 2: Breadth-first search

# Selecting

# Blum's Algorithm

A good pivot can be selected using the median-of-medians-algorithm.  $\mathcal{O}(n)$ 

1. Consider groups of 5 elements

- 2. Compute the median for each group (trivial)
- 3. Recursively compute medians

#### Pivot

# Algorithm 3: Selection via Pivot

```
Input: Array A of length n with pivot p Output: A partitioned around p with position of p 1 l\leftarrow 1 2 r\leftarrow n while l\leq r do 3 l\leftarrow 1 while A[l]< p do 4 l\leftarrow l+1 end 6 while A[r]> p do 7 l\leftarrow r-1 end 8 swap(A[l],A[r]) if A[l]=A[r] then 9 l\leftarrow l+1 end 11 end 12 end 13 return l-1
```

# **Algorithm 4:** Quickselect $\mathcal{O}(n^2)$

```
Input: Array A of length n; 1 \le k \le n

1 x \leftarrow \text{RandomPivot}(A)

2 m \leftarrow \text{Partition}(A,x)

3 if k < m then

4 | return Quickselect(A[o..m-1],k)

5 end

6 if k > m then

7 | return Quickselect(A[m+1..n],k) else

8 | return A[k]

9 | end

10 end
```

### **Sorting**

- **Bubblesort**: Always swap if A[i-1] > A[i]. In each round, the max in the unsorted part will move to the right (like a bubble).  $\Theta(n^2)$  stable
- Selection sort: swap the smallest element in the unsorted part with the most right element of the sorted part.  $\Theta(n^2)$  unstable

```
arr[] = 64 25 12 22 11
// Place min at beginning
11 25 12 22 64
// Place min at beginning
11 12 25 22 64 ...
```

• Insertion sort: Determine the insertion position of element i.  $\Theta(n^2)$  stable

```
1: Iterate over the array (curr).
2: Compare curr to predecessor (pre).
3: If curr < pre,
compare it to the elements before.
Larger elements are moved back 1 pos.
```

• Merge sort: At least two parts of the Array are already sorted. Iterative merging of the already sorted bits. -  $\Theta(n \log n)$ ,  $\Theta(n)$  storage, stable, needs intermediate storage for the merging step

#### Quicksort

### **Algorithm 5:** Quicksort $\mathcal{O}(n \cdot \log \cdot n)$

```
Input: Array A of length n Output: Array A sorted

if n > 1 then

Choose Pivot p \in A \ k \leftarrow \text{Partition}(A,p)

Quicksort(A[1,...,k-1])

Quicksort(A[k+1,...,n])

end
```

### Algorithm 6: Partition

```
Input: Array A, that contains the pivot p in A[l, . . . , r] at least once. Output: Array A partitioned in [l, . . . , r] around p. Returns position of p.  

while l < r do  

the contains the pivot p in A[l, . . . , r] at least once. 

while l < r do  

while l < r do  

the contains the pivot p in A[l, . . . , r] at least once. 

while l < r do  

the contains the pivot p in A[l, . . . , r] at least once. 

the contains the pivot p in A[l, . . . , r] at least once. 

while l < r do  

the contains the pivot p in A[l, . . . , r] at least once. 

the contains the pivot piu of A[l, . . . , r] at least once. 

the contains the pivot p in A[l, . . . , r] at least once. 

the contains the pivot p in A[l, . . . , r] at least once. 

the contains the pivot p in A[l, . . . , r] at least once. 

the contains the pivot p in A[l, . . . , r] at least once. 

the contains the pivot p in A[l, . . . , r] at least once. 

the contains the pivot p in A[l, . . . , r] at least once. 

the contains the contains the pivot p in A[l, . . . , r] at least once. 

the contains the contains the pivot p in A[l, . . . , r] at least once. 

the contains the contains the contains the pivot p in A[l, . . . , r] at least once. 

the contains the contains the contains the contains the pivot p in A[l, . . . , r] at least once. 

the contains the co
```

Runtime:  $\mathcal{O}(n \cdot \log \cdot n)$ , worst case  $\Theta(n^2)$  if worst pivots are selected each time.

#### **Radix Sort**

n-locks for n-keys  $\in \mathcal{O}(n)$ . We have m-adic binary numbers, so two categories to sort the numbers into. Used for numbers (and strings via UTF-8/ASCii)

#### **Bucket Sort**

Create a number of buckets. Sort e.g. after decimality into buckets and sort those buckets then. Can be implemented via linked list or a dynamic list(heap?).



# Hashing

#### **Basics**

```
Common: h(k) = k \mod m
Often: m = 2^k - 1
Linear Probing: S(k) = (h(k), h(k) + 1, ..., h(k) + m - 1)
\mod m Issue: Primary clustering, long contiguous areas of
```

used entries.
Quadratic Probing:

 $S(k)=(h(k),h(k)+1,h(k)-1,h(k)+4,\ldots)\mod m$  Issue: Secondary clustering, traversal of the same probing sequence.

**Double Hashing:** S(k) =

(h(k), h(k) + h'(k), h(k) + 2h'(k), ..., h(k) + (m-1)h'(k)) mod m

#### **Trees**

Trees are connected, directional and acyclic graphs.

# Removing a child

- No children Remove the node
- 1 child Replace by the only child
- 2 children Replace by the symmetric descendent

# Ways of traversal

### **Preorder**

v, then  $T_{left}(v)$ , next  $T_{right}(v)$ 

#### **Postorder**

 $T_{left}$ , then  $T_{right}$ , next v

#### Inorder

 $T_{left}$ , then v, next  $T_{left} \rightarrow$  ascending sequence.

### Heaps

Keys are strictly larger/smaller depending on Max- or Minheap.

### Insertion

Inserting a key into a heap can possibly violate the heap settings - Is reinstated by successive rising up.

# **Heap Sort**

Every subtree is a heap - inductive sorting from below.  $\to \mathcal{O}(n \cdot \log n)$ 

#### **Ouadtrees**

Partitioning a subsection into 4 equal parts. If there are too many objects stored in one node, we split the node into four children. Objects that are falling on a border are stored in the parent node.

#### **AVL trees**

AVL trees guarantee a runtime of  $\mathcal{O}(\log n)$ 

 $bal(v) := h(T_r(v)) - h(T_l(v))$ 

AVL condition:  $\forall v \in V : bal(v) \in \{-1, 0, 1\}$ 

# **Rebalancing AVL trees**



# **Dynamic Programming**

### **Samples**

### **One-dimensional**

*Problem*: Finding the longest possible combination of downwards ski slopes with lengths  $l_i$ . The slopes connect the stations with heights  $h_i$ .

- 1. Table:  $n \times 1$
- 2. **Entry**: [i]: longest descent that ends in i.
- 3. Calculation:  $D[i] = 0, \forall i = 1, ..., n$  and  $D[i] = \max_{Slope(j,i)} \{D[j] + l(j,i)\}$
- 4. **Order**: for i in (1, n); D[i]
- 5. **Result**: max(D)
- 6. **Reconstruction**: Recursively walk back from result and check D[i] = D[j] + l(j, i) for all slopes (j, i)

# Two-dimensional

**Problem:** Finding the smallest possible value of an expression (n values  $a_i$  and n-1 operators  $s_i$ ) using optimal bracket placement.

- 1. **Table**:  $n \times n$ : Only upper right triangular matrix is used.
- 2. **Entry**: [i, j]: smallest possible value of sub-expression from value  $a_i$  to  $a_j$ .
- 3. Calculation:  $A_{i,i}=a_i; 1\leq i\leq n$  and  $A_{i,j}=\min_{1\leq k\leq j}\{A_{i,k-1}\langle s_{k-1}\rangle A_{k,j}\}; 1\leq i\leq j\leq n$
- 4. Order: for s in (0, n-1); for i in (1, n-s);
   A[i,i+s]
- 5. **Result**: A[1,n]
- 6. **Reconstruction**: Recursively walk back and check  $A_{i,j} = A_{i,k-1} \langle s_{k-1} \rangle A_{k,j}$

# Graphs

### **Basics**

**Connected**: Graph where there is a connecting path (not edge) between each pair of nodes.

**Complete**: Graph where there is an edge between each pair of nodes.

### Algorithm 7: Depth First Search

```
Input: A graph G and a vertex v of G
Output: All vertices reachable from v labeled as discovered

1 label v as discovered

2 for E = G.adjacentEdges(v) (lexicographic) do

3 | if vertex w is not labeled as discovered then

4 | DFS(G, w)

5 | end

6 end
```

### **Topological Sorting**

A directed graph has a topological sorting if it is acyclic. **Idea** We successively prune our graph by removing elements that have o entry edges (and then update the entry edges of the successors to find the next one.

### **Algorithm 8:** Topological Sorting

```
1 A[v] contains number of entry edges of vertex v (calculate by setting
     A[w] = 0 and then loop through (v, w) \in E and set A[w] + = 1
 2 for v \in V where A[v] == 0 do
        Push(S, v)
 4 end
 5 i=0;
 6 while S! = \{\} do
         v \leftarrow \mathsf{pop}(S); \mathsf{ord}[v] \leftarrow i
         for (v. w) in E do
               A[w] \leftarrow A[w] - 1; //decrease incoming for all successors
10
              if A[w] == 0 then
                    \operatorname{push}(S,w)
              end
13
         end
14
15 end
16 if i = |V| then
17 | return SUCCESS
18 end
19 else
        return "Cycle detected"
21 end
```

#### **Shortest Path**

On either directed or non-directed, weighted graph, find the shortest distance between a point A and all the other points in the graph.

# Dijkstra

# **Algorithm 9:** Dijkstra $\mathcal{O}(|E|log|V|)$

```
Input : G = (V, E, source)
1 create vertex set Q //as a gueue / min heap;
2 for u \in V do
       dist[u] \leftarrow \mathsf{INFINITY};
       prev[u] \leftarrow \mathsf{UNDEFINED}:
       Q.insert(u);
7 \ dist[source] = 0;
8 while Q not empty do
       u = Q.ExtractMin();
       for v in Neighbors of u still in Q do
            alt = dist[u] + length(u, v);
            if alt < dist[v] then
                  dist[v] = alt;
13
                 prev[v] = u;
14
                  Q.DecreasePriority(v, alt);
            end
       end
```

## **Runtime of Dijkstra**

- any data structure:  $\mathcal{O}(|V| \cdot T_{em} + |E| \cdot T_{dp})$
- with an array or linked list  $\mathcal{O}(|V|^2 + |E|) = \mathcal{O}(|V|^2)$
- dense graph in adjacency list  $\mathcal{O}(|V|^2log|V|)$  since  $|E|=|V|^2$  and DecreaseKey log(|V|)
- sparse connected graph in adjacency list/ stored in binary tree  $\mathcal{O}(|E|log|V|)$

### **A-Star**

 $A^st$  is an extension of Dijkstra's algorithm using a additional heuristic to guide the direction of the search. Like Dijkstra, A' works by making a lowest-cost path tree from the start node to the target node but it uses a function f(n) as an estimate of the total cost using this path.

$$f(n) = g(n) + h(n)$$

f(n) :total estimated cost of path through node n, g(n): cost so far to reach node n, h(n): estimated cost from n to goal.

A good heuristic h(n) is the Manhattan distance.

#### **Bellman-Ford**

Instead of optimizing the order in which vertices are processed, Bellman-Ford simply relaxes all the edges |V|-1 times and hence runs in  $\mathcal{O}(|V||E|)$  time. If we want to limit the number of edges that we pass trough for our solution we can limit the outer loop to only run k times.

# **Algorithm 10:** Bellman-Ford $\mathcal{O}(|E|\cdot|V|)$

```
Input : G = (V, E, source)
 1 \text{ for } u \in V \text{ do}
        dist[u] \leftarrow \mathsf{INFINITY};
        prev[u] \leftarrow \mathsf{UNDEFINED};
4 end
 5 \ dist[source] = 0:
 6 for u in |V| do
        for v in Neighbors of u do
              alt = dist[u] + length(u, v);
             if alt < dist[v] then
                   dist[v] = alt;
                   prev[v] = u;
 11
13
        end
14 end
15 for each edge (u, v) with weight w in |E| do
        if dist[u] + w < dist[v] then
             error "Graph contains a negative-weight cycle"
        end
19 end
```

# Floyd-Warshall

Goal is to find the shortest path between all pairwise edges in a Graph G.

# **Algorithm 11:** Floyd-Warshall $\mathcal{O}(|V|^3)$

```
Input : G = (V, E)
 1 let G dist be a |V| \times |V| array of minimum distances initialized to \infty
<sup>2</sup> for each edge (u, v) do
         \operatorname{dist}[u][v] \leftarrow w(u,v) // The weight of the edge (u, v)
4 end
5 for each vertex v do
         dist[v][v] \leftarrow o
7 end
8 for k from 1 to |V| do
         for i from 1 to |V| do
               for i from 1 to |V| do
10
                    if dist[i][j] > dist[i][k] + dist[k][j] then
11
                         dist[i][j] \leftarrow dist[i][k] + dist[k][j];
12
                    end
13
               end
14
15
         end
16 end
```

# Johnson's Algorithm

Find the shortest paths between all pairs of vertices in an edge-weighted (negative), directed graph. Negative cycles are not allowed. It uses Bellman-Ford to remove all negative weights and then applies Dijkstra on the graph. The runtime is given by  $\mathcal{O}(|V|^2\log|V|+|V||E|)$ . Thus when the graph is sparse the algorithm is faster than Floyd-Warshall which solves the same problem in  $\mathcal{O}(|V|^3)$ .

- 1. New node q is added to the graph connected by zero-weight edges to each of the other nodes.
- 2. Bellman-Ford is used starting from the new vertex q to find the minimum weight from q to each vertex v. If a negative cycle is detected the algorithm terminates.
- 3. The original edges are reweighted using the values computed in the Bellman-Ford step. w'(u,v) = w(u,v) + h(u) h(v)

4. q is removed and Dijkstra is used to find the shortest paths from each node s to every other vertex in the reweighted graph. The original distance is computed by adding h(v) - h(u).

# **Choice of algorithm**

- No weights or all equal weights  $\rightarrow$  BFS ( $\Theta(|V| + |E|)$ )
- Only positive weights  $\to$  Dijkstra with Fibonacci Heap  $(\mathcal{O}(|V| \cdot \log(|V|) + |E|))$
- Some negative weights  $\rightarrow$  Bellman Ford  $(\mathcal{O}(|E|\cdot|V|^2))$
- · All pairs of shortest paths.
  - V times Dijkstra. If negative edges, recreate graph with Johnson first  $\mathcal{O}(|E|\cdot|V|log|V|)$
  - Floyd-Warshall.  $\mathcal{O}(|V|^3)$
  - Johnsons in a sparse graph.  $\mathcal{O}(|V|^2 \log |V| + |V||E|)$

# **Minimum Spanning Tree**

Given is a undirected weighted connected graph G(V, E). Searched is a minimum spanning tree:

- Tree: connected and acyclic
- Spanning tree: All vertices  $v \in V$  are connected.
- minimal:  $c(T) = \min \sum_{e \in E} c(e)$

# Kruskal algorithm

# **Algorithm 12:** Kruskal $\mathcal{O}(E \log E)$

```
1 Sort edges increasingly after their weight: c(e_1) \leq c(e_2) \leq ...c(e_m) 2 A \leftarrow \emptyset for k = 1 to m do 3 | if A \cup e_k then 4 A \leftarrow A \cup e_k 5 | end 6 end
```

Starts with the smallest edge! Edges that would create a cycle are subsequently discarded in the process  $\rightarrow$  exam question.

# Jarnik (Prims) Algorithm

# **Algorithm 13:** Jarnik Algorithm $\mathcal{O}(E + V \log V)$

```
 \begin{array}{lll} \textbf{1} & \text{start with } v \in V \ A \leftarrow \emptyset \\ \textbf{2} & S \leftarrow v_0 \ \textbf{for } i = 1 \ \text{to } |V| \ \textbf{do} \\ \textbf{3} & | & \text{choose cheapest } (u,v) \ \text{with } u \in S \ \text{and } v \notin S \\ \textbf{4} & | & A \leftarrow A \cup (u,v) \\ \textbf{5} & | & S \leftarrow S \cup v \\ \textbf{6} & \textbf{end} \end{array}
```

Main difference to Kruskal is, that it starts at  $v \in V$  and chooses the cheapest edge from there.

Runtime:  $\mathcal{O}(E + V \log V)$  with fibonacci heaps.

#### UnionFind

Find(x): Find the node x, go to the root of this subtree and return it. Union: Add the smaller subtree as a child to the larger subtree.

### **Max Flow / Min Cut**

Given a flow network, determine the maximal flow allowed. The cut of the Graph G(S,T) into a source graph S and a sink graph T with the smallest capacity (min cut) will have the same capicity as the maximal flow.

#### Ford-Fulkerson

### Algorithm 14: Ford-Fulkerson

```
 \begin{array}{lll} \textbf{1} & \textbf{for } (u,v) \in E \ \textbf{do} \\ \textbf{2} & | f(u,v) = 0; \\ \textbf{3} & \textbf{end} \\ \textbf{4} & |/G_f \ \textbf{describes network capacities minus the existing flows} \\ \textbf{5} & \textbf{while} \ \ Path \ p \ exists from \ s \ to \ tin \ residual \ network \ G_f \ \textbf{do} \\ \textbf{6} & | c_f(p) \leftarrow min(c_f(u,v) \in p); \\ \textbf{7} & | /| \text{increase the flow along this path} \\ \textbf{8} & | \textbf{for } edge \ e(u,v) \in p \ \textbf{do} \\ \textbf{9} & | f(e) \leftarrow f(e) + c_f(p); \\ \textbf{10} & | c_f(e) \leftarrow c_f(e) - c_f(p); \\ \textbf{11} & | \textbf{end} \\ \textbf{12} & \textbf{end} \\ \end{array}
```

# **Edmonds-Karp**

Edmonds-Karp implements the Ford-Fulkerson algorithm by using a BFS search on the residual network.

**Runtime of Ford-Fulkerson with Integers** If f\* is the maximum flow in the graph then,  $\mathcal{O}(|E| \cdot f*)$ , because the flow needs to increase by at least 1 in each iteration and each can be done in  $\mathcal{O}(|E|)$  time.

**Runtime of Edmonds-Karp**  $\mathcal{O}(|V||E|)$  iterations, each of which can be done in  $\mathcal{O}(|E|)$  times, so  $\mathcal{O}(|V||E|^2)$ 

#### **Classes of Problems**

### **Shortest-Path Problem**

- Representation of simple graph with nodes representing the actual states (e.g. city).
- Representation of state space with nodes representing the current state of the system. (e.g. city and money left)  $\rightarrow$  City is connected to neighbouring cities with the states that the system can take from here.  $(A_{5\$} \xrightarrow{-2\$} B_{3\$})$
- Cycle detection problem e.g. figuring out if we can generate  $\infty$  revenue. The Bellman–Ford algorithm will converge after iterating through the edges at most |V|-1 times (as there cannot be more edges in a shortest path) if and only if there is no such negative cycle.

# **Bipartite Matching Problem**

 Two classes of nodes that need to be matched in an optimal fashion. Use either Ford-Fulkerson or Edmonds-Karp depending on the runtime.

# **Minimum Spanning Tree Problem**

 Finding the minimal tree to connect all nodes of a tree/subtree. Use Kruskal or Prim for a dense graph.

#### Failure Resilience Problem

- Edge failure resilience Maximal flow -1 between A and B gives the number of edges that can be removed before the connection fails.
- Node failure resilience Replace each node with an edge - Model failure state by this edge weight.

### **Parallel Programming**

Amdahl assumes a fixed relative sequential portion ( $\lambda$ ), Gustafson assumes a fixed absolute sequential part.

Amdahl: 
$$S_A = \frac{1}{\lambda + \frac{1-\lambda}{p}}$$
 Gustafson:  $S_G = p - \lambda(p-1)$ 

# **Speedup calculation**

$$\begin{split} T_p &\leq \frac{T_1}{p} + T_\infty \mid S_p \geq \frac{T_1}{T_p} \\ T_\infty &= \text{longest single path} \mid S_\infty = \frac{T_1}{T_\infty} \end{split}$$

### **Performance Model**

We have p processors and the corresponding execution time  $T_p$ .  $T_\infty$ : The span of the execution network or longest path. Thus the time needed if we have an infinite number of processors.

Parallelism = 
$$T_1/T_{\infty}$$

#### **Lower Bound Laws**

$$T_p \geq T_1/p$$
 Work law  $T_p \geq T_\infty$  Span law

# Parallel Programming in C++

std::mutex

- Owned when lock was called until unlock is called.
- When owned all other threads block (halt) when lock is called.

std::unique\_lock

```
std::unique_lock<std::mutex> lck (mtx);//Locked
lck.unlock();
```

- In locked state upon construction unless deferred using std::defer lock.
- Will handle unlocking upon destruction like std::lock\_guard but additionally provided locking and unlocking capabilities.

std::condition variable

```
std::condition_variable cv;
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, []{return x == 1;});
lk.unlock();
cv.notify_one();
cv.notify_all();
```

std::condition\_variable takes a

- std::unique\_lock<std::mutex> which protects the
  shared variable.
- Releases the std::mutex and executes a wait operation on the current thread if the condition does not hold.
- Upon notify\_all or notify\_one wakeup it will reacquire the mutex atomically and check the condition.

### **Race Conditions**

#### **Data Race**

Bad synchronisation of a shared resource, e.g. two writing processes at the same time.

### **Bad Interleaving**

Unlucky order of execution of e.g. two threads even though the shared resource is otherwise well synchronised.

### **Complexities**

| Algorithm      |                          | Space Complexity           |                                 |                       |
|----------------|--------------------------|----------------------------|---------------------------------|-----------------------|
|                | Best                     | Average                    | Worst                           | Worst                 |
| Quicksort      | $\Omega(n \cdot log(n))$ | $\Theta(n \cdot log(n))$   | $\mathcal{O}(n^2)$              | $\mathcal{O}(log(n))$ |
| Mergesort      | $\Omega(n \cdot log(n))$ | $\Theta(n \cdot log(n))$   | $\mathcal{O}(n \cdot log(n))$   | $\mathcal{O}(n)$      |
| Heapsort       | $\Omega(n \cdot log(n))$ | $\Theta(n \cdot log(n))$   | $\mathcal{O}(n \cdot log(n))$   | $\mathcal{O}(1)$      |
| Bubble Sort    | $\Omega(n)$              | $\Theta(n^2)$              | $\mathcal{O}(n^2)$              | $\mathcal{O}(1)$      |
| Insertion Sort | $\Omega(n)$              | $\Theta(n^2)$              | $\mathcal{O}(n^2)$              | $\mathcal{O}(1)$      |
| Selection Sort | $\Omega(n^2)$            | $\Theta(n^2)$              | $\mathcal{O}(n^2)$              | $\mathcal{O}(1)$      |
| Shell Sort     | $\Omega(n \cdot log(n))$ | $\Theta(n \cdot log(n)^2)$ | $\mathcal{O}(n \cdot log(n)^2)$ | $\mathcal{O}(1)$      |
| Bucket Sort    | $\Omega(n+k)$            | $\Theta(n+k)$              | $\mathcal{O}(n^2)$              | $\mathcal{O}(n)$      |
| Radix Sort     | $\Omega(n \cdot k)$      | $\Theta(n \cdot k)$        | $\mathcal{O}(n\cdot k)$         | $\mathcal{O}(n+k)$    |

| Data<br>Structure     |                           |                       |                       |                       |                                               |
|-----------------------|---------------------------|-----------------------|-----------------------|-----------------------|-----------------------------------------------|
| Average               |                           |                       |                       |                       |                                               |
|                       | Access                    | Search                | Insertion             | Deletion              |                                               |
| Array                 | $\Theta(1)$               | $\Theta(n)$           | $\Theta(n)$           | $\Theta(n)$           |                                               |
| Stack                 | $\Theta(n)$               | $\Theta(n)$           | $\Theta(1)$           | $\Theta(1)$           |                                               |
| Queue                 | $\Theta(n)$               | $\Theta(n)$           | $\Theta(1)$           | $\Theta(1)$           |                                               |
| Linked-List           | $\Theta(n)$               | $\Theta(n)$           | $\Theta(1)$           | $\Theta(1)$           |                                               |
| Skip-List             | $\Theta(log(n))$          | $\Theta(log(n))$      | $\Theta(log(n))$      | $\Theta(log(n))$      |                                               |
| Hash-Table            | N/A                       | $\Theta(1)$           | $\Theta(1)$           | $\Theta(1)$           |                                               |
| Binary<br>Search Tree | $\Theta(log(n))$          | $\Theta(log(n))$      | $\Theta(log(n))$      | $\Theta(log(n))$      |                                               |
| AVL Tree              | $\Theta(log(n))$          | $\Theta(log(n))$      | $\Theta(log(n))$      | $\Theta(log(n))$      |                                               |
|                       |                           | Space<br>Complexity   |                       |                       |                                               |
|                       | Access                    | Search                | Insertion             | Deletion              | Worst                                         |
| Array                 | $\mathcal{O}(1)$          | $\mathcal{O}(n)$      | $\mathcal{O}(n)$      | $\mathcal{O}(n)$      | $\mathcal{O}(n)$                              |
| Stack                 | $\mathcal{O}(n)$          | $\mathcal{O}(n)$      | $\mathcal{O}(1)$      | $\mathcal{O}(1)$      | $\mathcal{O}(n)$                              |
| Queue                 | $\mathcal{O}(n)$          | $\mathcal{O}(n)$      | $\mathcal{O}(1)$      | $\mathcal{O}(1)$      | $\mathcal{O}(n)$                              |
| Linked-List           | $\mathcal{O}(n)$          | $\mathcal{O}(n)$      | $\mathcal{O}(1)$      | $\mathcal{O}(1)$      | $\mathcal{O}(n)$                              |
| Skip-List             | $\mathcal{O}(n)$          | $\mathcal{O}(n)$      | $\mathcal{O}(n)$      | $\mathcal{O}(n)$      | $rac{\mathcal{O}(n \cdot \log(n))}{\log(n)}$ |
| Hash-Table            | N/A                       | $\mathcal{O}(n)$      | $\mathcal{O}(n)$      | $\mathcal{O}(n)$      | $\mathcal{O}(n)$                              |
| Binary<br>Search Tree | $\mathcal{O}(n)$          | $\mathcal{O}(n)$      | $\mathcal{O}(n)$      | $\mathcal{O}(n)$      | $\mathcal{O}(n)$                              |
| AVL Tree              | $  \mathcal{O}(log(n))  $ | $\mathcal{O}(log(n))$ | $\mathcal{O}(log(n))$ | $\mathcal{O}(log(n))$ | $\mathcal{O}(n)$                              |