A Guided Tour of Chapter 12: Policy Gradient Algorithms

Ashwin Rao

ICME, Stanford University

Why do we care about Policy Gradient (PG)?

- Let us review how we got here
- We started with Markov Decision Processes and Bellman Equations
- Next we studied several variants of DP and RL algorithms
- We noted that the idea of Generalized Policy Iteration (GPI) is key
- Policy Improvement step: $\pi(s, a)$ derived from $argmax_a Q(s, a)$
- How do we do argmax when action space is large or continuous?
- Idea: Do Policy Improvement step with a Gradient Ascent instead

"Policy Improvement with a Gradient Ascent??"

- We want to find the Policy that fetches the "Best Expected Returns"
- Gradient Ascent on "Expected Returns" w.r.t params of Policy func
- So we need a func approx for (stochastic) Policy Func: $\pi(s, a; \theta)$
- In addition to the usual func approx for Action Value Func: Q(s, a; w)
- $\pi(s, a; \theta)$ called *Actor* and $Q(s, a; \mathbf{w})$ called *Critic*
- Critic parameters w are optimized w.r.t Q(s, a; w) loss function min
- ullet Actor parameters eta are optimized w.r.t Expected Returns max
- We need to formally define "Expected Returns"
- But we already see that this idea is appealing for continuous actions
- GPI with Policy Improvement done as Policy Gradient (Ascent)

Value Function-based and Policy-based RL

- Value Function-based
 - Learn Value Function (with a function approximation)
 - Policy is implicit readily derived from Value Function (eg: ϵ -greedy)
- Policy-based
 - Learn Policy (with a function approximation)
 - No need to learn a Value Function
- Actor-Critic
 - Learn Policy (Actor)
 - Learn Value Function (Critic)

Advantages and Disadvantages of Policy Gradient approach

Advantages:

- Finds the best *Stochastic* Policy (Optimal Deterministic Policy, produced by other RL algorithms, can be unsuitable for POMDPs)
- Naturally explores due to Stochastic Policy representation
- Effective in high-dimensional or continuous action spaces
- ullet Small changes in $heta \Rightarrow$ small changes in π , and in state distribution
- This avoids the convergence issues seen in argmax-based algorithms

Disadvantages:

- Typically converge to a local optimum rather than a global optimum
- Policy Evaluation is typically inefficient and has high variance
- ullet Policy Improvement happens in small steps \Rightarrow slow convergence

Notation

- \bullet Assume episodic with 0 $\leq \gamma \leq 1$ or non-episodic with 0 $\leq \gamma < 1$
- Assume discrete-time, countable-spaces, time-homogeneous MDPs
- We lighten $\mathcal{P}(s,a,s')$ notation to $\mathcal{P}^a_{s,s'}$ and $\mathcal{R}(s,a)$ notation to \mathcal{R}^a_s
- ullet Initial State Probability Distribution denoted as $p_0: \mathcal{N} o [0,1]$
- Policy Function Approximation $\pi(s, a; \theta) = \mathbb{P}[A_t = a | S_t = s; \theta]$

PG coverage is quite similar for non-discounted non-episodic, by considering average-reward objective (we won't cover it)

"Expected Returns" Objective

Now we formalize the "Expected Returns" Objective $J(\theta)$

$$J(\boldsymbol{\theta}) = \mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} \cdot R_{t+1}]$$

Value Function $V^{\pi}(s)$ and Action Value function $Q^{\pi}(s, a)$ defined as:

$$V^{\pi}(s) = \mathbb{E}_{\pi}[\sum_{k=t}^{\infty} \gamma^{k-t} \cdot R_{k+1} | S_t = s]$$
 for all $t = 0, 1, 2, \dots$

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[\sum_{k=t}^{\infty} \gamma^{k-t} \cdot R_{k+1} | S_t = s, A_t = a] \text{ for all } t = 0, 1, 2, \dots$$

Advantage Function
$$A^{\pi}(s, a) = Q^{\pi}(s, a) - V^{\pi}(s)$$

Also, $p(s \to s', t, \pi)$ will be a key function for us - it denotes the probability of going from state s to s' in t steps by following policy π

Discounted-Aggregate State-Visitation Measure

$$J(\theta) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} \cdot R_{t+1} \right] = \sum_{t=0}^{\infty} \gamma^{t} \cdot \mathbb{E}_{\pi} [R_{t+1}]$$

$$= \sum_{t=0}^{\infty} \gamma^{t} \cdot \sum_{s \in \mathcal{N}} \left(\sum_{S_{0} \in \mathcal{N}} \rho_{0}(S_{0}) \cdot p(S_{0} \to s, t, \pi) \right) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot \mathcal{R}_{s}^{a}$$

$$= \sum_{s \in \mathcal{N}} \left(\sum_{S_{0} \in \mathcal{N}} \sum_{t=0}^{\infty} \gamma^{t} \cdot \rho_{0}(S_{0}) \cdot p(S_{0} \to s, t, \pi) \right) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot \mathcal{R}_{s}^{a}$$

Definition

$$J(\boldsymbol{\theta}) = \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \boldsymbol{\theta}) \cdot \mathcal{R}_{s}^{a}$$

where $\rho^{\pi}(s) = \sum_{S_0 \in \mathcal{N}} \sum_{t=0}^{\infty} \gamma^t \cdot p_0(S_0) \cdot p(S_0 \to s, t, \pi)$ is the key function (for PG) we'll refer to as *Discounted-Aggregate State-Visitation Measure*.

Policy Gradient Theorem (PGT)

Theorem

$$abla_{m{ heta}} J(m{ heta}) = \sum_{m{s} \in \mathcal{N}}
ho^{\pi}(m{s}) \cdot \sum_{m{a} \in \mathcal{A}}
abla_{m{ heta}} \pi(m{s}, m{a}; m{ heta}) \cdot Q^{\pi}(m{s}, m{a})$$

- Note: $\rho^{\pi}(s)$ depends on θ , but there's no $\nabla_{\theta}\rho^{\pi}(s)$ term in $\nabla_{\theta}J(\theta)$
- Note: $\nabla_{\boldsymbol{\theta}} \pi(s, a; \boldsymbol{\theta}) = \pi(s, a; \boldsymbol{\theta}) \cdot \nabla_{\boldsymbol{\theta}} \log \pi(s, a; \boldsymbol{\theta})$
- So we can simply generate sampling traces, and at each time step, calculate $(\nabla_{\theta} \log \pi(s, a; \theta)) \cdot Q^{\pi}(s, a)$ (probabilities implicit in paths)
- Note: $\nabla_{\theta} \log \pi(s, a; \theta)$ is Score function (Gradient of log-likelihood)
- We will estimate $Q^{\pi}(s,a)$ with a function approximation $Q(s,a; \mathbf{w})$
- We will later show how to avoid the estimate bias of $Q(s, a; \mathbf{w})$
- ullet This numerical estimate of $abla_{m{ heta}} J(m{ heta})$ enables **Policy Gradient Ascent**
- Let us look at the score function of some canonical $\pi(s, a; \theta)$

Canonical $\pi(s, a; \theta)$ for finite action spaces

- For finite action spaces, we often use Softmax Policy
- θ is an m-vector $(\theta_1, \ldots, \theta_m)$
- Features vector $\phi(s,a) = (\phi_1(s,a), \ldots, \phi_m(s,a))$ for all $s \in \mathcal{N}, a \in \mathcal{A}$
- Weight actions using linear combinations of features: $\phi(s,a)^T \cdot \theta$
- Action probabilities proportional to exponentiated weights:

$$\pi(s, a; \theta) = \frac{e^{\phi(s, a)^T \cdot \theta}}{\sum_{b \in \mathcal{A}} e^{\phi(s, b)^T \cdot \theta}} \text{ for all } s \in \mathcal{N}, a \in \mathcal{A}$$

• The score function is:

$$abla_{m{ heta}} \log \pi(s, a; m{ heta}) = \phi(s, a) - \sum_{b \in A} \pi(s, b; m{ heta}) \cdot \phi(s, b) = \phi(s, a) - \mathbb{E}_{\pi}[\phi(s, \cdot)]$$

Canonical $\pi(s, a; \theta)$ for continuous action spaces

- For continuous action spaces, we often use Gaussian Policy
- θ is an *m*-vector $(\theta_1, \ldots, \theta_m)$
- State features vector $\phi(s) = (\phi_1(s), \dots, \phi_m(s))$ for all $s \in \mathcal{N}$
- Gaussian Mean is a linear combination of state features $\phi(s)^T \cdot \theta$
- Variance may be fixed σ^2 , or can also be parameterized
- Policy is Gaussian, $a \sim \mathcal{N}(\phi(s)^T \cdot \theta, \sigma^2)$ for all $s \in \mathcal{N}$
- The score function is:

$$\nabla_{\boldsymbol{\theta}} \log \pi(s, a; \boldsymbol{\theta}) = \frac{(a - \phi(s)^T \cdot \boldsymbol{\theta}) \cdot \phi(s)}{\sigma^2}$$

We begin the proof by noting that:

$$J(\theta) = \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot V^{\pi}(S_0) = \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \pi(S_0, A_0; \theta) \cdot Q^{\pi}(S_0, A_0)$$

Calculate $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$ by parts $\pi(S_0, A_0; \boldsymbol{\theta})$ and $Q^{\pi}(S_0, A_0)$

$$\begin{split} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) &= \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0) \\ &+ \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot \nabla_{\boldsymbol{\theta}} Q^{\pi}(S_0, A_0) \end{split}$$

Now expand $Q^{\pi}(S_0, A_0)$ as:

$$\mathcal{R}_{S_0}^{A_0} + \sum_{S_1 \in \mathcal{N}} \gamma \cdot \mathcal{P}_{S_0, S_1}^{A_0} \cdot V^{\pi}(S_1)$$
 (Bellman Policy Equation)

$$\begin{split} &= \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\theta} \pi(S_0, A_0; \theta) \cdot Q^{\pi}(S_0, A_0) + \\ &\sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \pi(S_0, A_0; \theta) \cdot \nabla_{\theta} (\mathcal{R}_{S_0}^{A_0} + \sum_{S_1 \in \mathcal{N}} \gamma \cdot \mathcal{P}_{S_0, S_1}^{A_0} \cdot V^{\pi}(S_1)) \end{split}$$

Note: $abla_{ heta} \mathcal{R}^{A_0}_{S_0} = 0$, so remove that term

$$\begin{split} &= \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0) + \\ &\sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot \nabla_{\boldsymbol{\theta}} (\sum_{S_1 \in \mathcal{N}} \gamma \cdot \mathcal{P}_{S_0, S_1}^{A_0} \cdot V^{\pi}(S_1)) \end{split}$$

Now bring the ∇_{θ} inside the $\sum_{S_1 \in \mathcal{N}}$ to apply only on $V^{\pi}(S_1)$

$$\begin{split} &= \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0) + \\ &\sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot \sum_{S_1 \in \mathcal{N}} \gamma \cdot \mathcal{P}_{S_0, S_1}^{A_0} \cdot \nabla_{\boldsymbol{\theta}} V^{\pi}(S_1) \end{split}$$

Now bring $\sum_{\mathcal{S}_0 \in \mathcal{N}}$ and $\sum_{A_0 \in \mathcal{A}}$ inside the $\sum_{\mathcal{S}_1 \in \mathcal{N}}$

$$\begin{split} &= \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0) + \\ &= \sum_{S_1 \in \mathcal{N}} \sum_{S_0 \in \mathcal{N}} \gamma \cdot p_0(S_0) \cdot (\sum_{A_0 \in \mathcal{A}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot \mathcal{P}_{S_0, S_1}^{A_0}) \cdot \nabla_{\boldsymbol{\theta}} V^{\pi}(S_1) \end{split}$$

Policy Gradient Theorem

Note that
$$\sum_{A_0 \in \mathcal{A}} \pi(S_0, A_0; \theta) \cdot \mathcal{P}_{S_0, S_1}^{A_0} = p(S_0 \to S_1, 1, \pi)$$

$$= \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\theta} \pi(S_0, A_0; \theta) \cdot Q^{\pi}(S_0, A_0) + \sum_{S_1 \in \mathcal{N}} \sum_{S_0 \in \mathcal{N}} \gamma \cdot p_0(S_0) \cdot p(S_0 \to S_1, 1, \pi) \cdot \nabla_{\theta} V^{\pi}(S_1)$$
Now expand $V^{\pi}(S_1)$ to $\sum_{A_1 \in \mathcal{A}} \pi(S_1, A_1; \theta) \cdot Q^{\pi}(S_1, A_1)$

$$= \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\theta} \pi(S_0, A_0; \theta) \cdot Q^{\pi}(S_0, A_0) +$$

 $S_1 \in \mathcal{N} S_0 \in \mathcal{N}$

 $\sum \sum \gamma \cdot p_0(S_0) \cdot p(S_0 \to S_1, 1, \pi) \cdot \nabla_{\boldsymbol{\theta}} (\sum \pi(S_1, A_1; \boldsymbol{\theta}) \cdot Q^{\pi}(S_1, A_1))$

We are now back to when we started calculating gradient of $\sum_a \pi \cdot Q^{\pi}$. Follow the same process of splitting $\pi \cdot Q^{\pi}$, then Bellman-expanding Q^{π} (to calculate its gradient), and iterate.

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0) +$$

$$\sum_{S_1 \in \mathcal{N}} \sum_{S_0 \in \mathcal{N}} \gamma \cdot p_0(S_0) \cdot p(S_0 \to S_1, 1, \pi) \cdot (\sum_{A_1 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_1, A_1; \boldsymbol{\theta}) \cdot Q^{\pi}(S_1, A_1) + \ldots)$$

This iterative process leads us to:

$$=\sum_{t=0}^{\infty}\sum_{S_t\in\mathcal{N}}\sum_{S_0\in\mathcal{N}}\gamma^t\cdot p_0(S_0)\cdot p(S_0\to S_t,t,\pi)\cdot \sum_{A_t\in\mathcal{A}}\nabla_{\boldsymbol{\theta}}\pi(S_t,A_t;\boldsymbol{\theta})\cdot Q^{\pi}(S_t,A_t)$$

Bring
$$\sum_{t=0}^{\infty}$$
 inside $\sum_{S_t \in \mathcal{N}} \sum_{S_0 \in \mathcal{N}}$ and note that
$$\sum_{A_t \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_t, A_t; \boldsymbol{\theta}) \cdot Q^{\pi}(S_t, A_t) \text{ is independent of } t$$

$$= \sum_{s \in \mathcal{N}} \sum_{S_0 \in \mathcal{N}} \sum_{t=0}^{S_0} \gamma^t \cdot p_0(S_0) \cdot p(S_0 \to s, t, \pi) \cdot \sum_{a \in \mathcal{A}} \nabla_{\theta} \pi(s, a; \theta) \cdot Q^{\pi}(s, a)$$

Reminder that
$$\sum_{S_0 \in \mathcal{N}} \sum_{t=0}^{\infty} \gamma^t \cdot p_0(S_0) \cdot p(S_0 \to s, t, \pi) \stackrel{\text{def}}{=} \rho^{\pi}(s)$$
. So,

$$abla_{m{ heta}} J(m{ heta}) = \sum_{m{s} \in \mathcal{N}}
ho^{\pi}(m{s}) \cdot \sum_{m{a} \in \mathcal{A}}
abla_{m{ heta}} \pi(m{s}, m{a}; m{ heta}) \cdot Q^{\pi}(m{s}, m{a})$$
 $abla_{m{s}} \mathbb{D}_{m{s}} \mathbb{D}_{m{s}}$

Monte-Carlo Policy Gradient (REINFORCE Algorithm)

- ullet Update $oldsymbol{ heta}$ by stochastic gradient ascent using PGT
- Using $G_t = \sum_{k=t}^{T} \gamma^{k-t} \cdot R_{k+1}$ as an unbiased sample of $Q^{\pi}(S_t, A_t)$

$$\Delta \boldsymbol{\theta} = \alpha \cdot \gamma^t \cdot \nabla_{\boldsymbol{\theta}} \log \pi(S_t, A_t; \boldsymbol{\theta}) \cdot G_t$$

Algorithm 0.1: REINFORCE(\cdot)

Initialize heta arbitrarily

for each episode
$$\{S_0, A_0, R_1, S_1, \dots, S_{T-1}, A_{T-1}, R_T, S_T\} \sim \pi(\cdot, \cdot; \boldsymbol{\theta})$$

$$\label{eq:do_do} \begin{aligned} \text{do} \ & \begin{cases} \text{for} \ t \leftarrow 0 \ \text{to} \ T \\ \text{do} \ & \begin{cases} G \leftarrow \sum_{k=t}^{T} \gamma^{k-t} \cdot R_{k+1} \\ \theta \leftarrow \theta + \alpha \cdot \gamma^{t} \cdot \nabla_{\theta} \log \pi(S_{t}, A_{t}; \theta) \cdot G \end{cases} \end{aligned}$$

Reducing Variance using a Critic

- Monte Carlo Policy Gradient has high variance
- We use a Critic $Q(s, a; \mathbf{w})$ to estimate $Q^{\pi}(s, a)$
- Actor-Critic algorithms maintain two sets of parameters:
 - ullet Critic updates parameters $oldsymbol{w}$ to approximate Q-function for policy π
 - Critic could use any of the algorithms we learnt earlier:
 - Monte Carlo policy evaluation
 - Temporal-Difference Learning
 - $TD(\lambda)$ based on Eligibility Traces
 - Could even use LSTD (if critic function approximation is linear)
 - ullet Actor updates policy parameters eta in direction suggested by Critic
 - This is Approximate Policy Gradient due to Bias of Critic

$$abla_{m{ heta}} J(m{ heta}) pprox \sum_{m{s} \in \mathcal{N}}
ho^{\pi}(m{s}) \cdot \sum_{m{a} \in \mathcal{A}}
abla_{m{ heta}} \pi(m{s}, m{a}; m{ heta}) \cdot Q(m{s}, m{a}; m{w})$$

So what does the algorithm look like?

- Generate a sufficient set of sampling traces $S_0, A_0, R_1, S_1, A_1, R_2, S_2 \dots$
- S_0 is sampled from the distribution $p_0(\cdot)$
- A_t is sampled from $\pi(S_t, \cdot; \theta)$
- Receive atomic experience (R_{t+1}, S_{t+1}) from the environment
- At each time step t, update \boldsymbol{w} proportional to gradient of appropriate (MC or TD-based) loss function of $Q(s, a; \boldsymbol{w})$
- Sum $\gamma^t \cdot (\nabla_{\theta} \log \pi(S_t, A_t; \theta)) \cdot Q(S_t, A_t; \mathbf{w})$ over t and over paths
- Update θ using this (biased) estimate of $\nabla_{\theta} J(\theta)$
- Iterate with a new set of sampling traces ...

Reducing Variance with a Baseline

- We can reduce variance by subtracting a baseline function B(s) from $Q(s, a; \mathbf{w})$ in the Policy Gradient estimate
- This means at each time step, we replace $\gamma^t \cdot \nabla_{\theta} \log \pi(S_t, A_t; \theta) \cdot Q(S_t, A_t; \mathbf{w})$ with $\gamma^t \cdot \nabla_{\theta} \log \pi(S_t, A_t; \theta) \cdot (Q(S_t, A_t; \mathbf{w}) B(S_t))$
- Note that Baseline function B(s) is only a function of s (and not a)
- This ensures that subtracting Baseline B(s) does not add bias

$$\sum_{s \in \mathcal{N}} \rho^{\pi}(s) \sum_{a \in \mathcal{A}} \nabla_{\theta} \pi(s, a; \theta) \cdot B(s)$$

$$= \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot B(s) \cdot \nabla_{\theta} (\sum_{a \in \mathcal{A}} \pi(s, a; \theta))$$

$$= \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot B(s) \cdot \nabla_{\theta} 1$$

$$= 0$$

Using State Value function as Baseline

- A good baseline B(s) is state value function $V(s; \mathbf{v})$
- Rewrite Policy Gradient algorithm using advantage function estimate

$$A(s, a; \boldsymbol{w}, \boldsymbol{v}) = Q(s, a; \boldsymbol{w}) - V(s; \boldsymbol{v})$$

• Now the estimate of $\nabla_{\theta} J(\theta)$ is given by:

$$\sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \nabla_{\theta} \pi(s, a; \theta) \cdot A(s, a; \boldsymbol{w}, \boldsymbol{v})$$

ullet At each time step, we update both sets of parameters $oldsymbol{w}$ and $oldsymbol{v}$

TD Error as estimate of Advantage Function

• Consider TD error δ^{π} for the *true* Value Function $V^{\pi}(s)$

$$\delta^{\pi} = r + \gamma \cdot V^{\pi}(s') - V^{\pi}(s)$$

• δ^{π} is an unbiased estimate of Advantage function $A^{\pi}(s,a)$

$$\mathbb{E}_{\pi}[\delta^{\pi}|s,a] = \mathbb{E}_{\pi}[r + \gamma \cdot V^{\pi}(s')|s,a] - V^{\pi}(s) = Q^{\pi}(s,a) - V^{\pi}(s) = A^{\pi}(s,a)$$

ullet So we can write Policy Gradient in terms of $\mathbb{E}_{\pi}[\delta^{\pi}|s,a]$

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{\boldsymbol{a} \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(s, \boldsymbol{a}; \boldsymbol{\theta}) \cdot \mathbb{E}_{\pi}[\delta^{\pi} | s, \boldsymbol{a}]$$

In practice, we can use func approx for TD error (and sample):

$$\delta(s, r, s'; \mathbf{v}) = r + \gamma \cdot V(s'; \mathbf{v}) - V(s; \mathbf{v})$$

• This approach requires only one set of critic parameters **v**

TD Error can be used by both Actor and Critic

Algorithm 0.2: ACTOR-CRITIC-TD-ERROR(\cdot)

Initialize Policy params ${\pmb{\theta}}$ and State VF params ${\pmb{v}}$ arbitrarily for each episode

$$\mathbf{do} \begin{cases} \text{Initialize } s \text{ (first state of episode)} \\ P \leftarrow 1 \\ \mathbf{while } s \text{ is not terminal} \\ \begin{cases} a \sim \pi(s,\cdot;\boldsymbol{\theta}) \\ \text{Take action } a, \text{ receive } r,s' \text{ from the environment} \\ \delta \leftarrow r + \gamma \cdot V(s';\boldsymbol{v}) - V(s;\boldsymbol{v}) \\ \boldsymbol{v} \leftarrow \boldsymbol{v} + \alpha_{\boldsymbol{v}} \cdot \delta \cdot \nabla_{\boldsymbol{v}} V(s;\boldsymbol{v}) \\ \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha_{\boldsymbol{\theta}} \cdot P \cdot \delta \cdot \nabla_{\boldsymbol{\theta}} \log \pi(s,a;\boldsymbol{\theta}) \\ P \leftarrow \gamma \cdot P \\ s \leftarrow s' \end{cases}$$

Using Eligibility Traces for both Actor and Critic

Algorithm 0.3: ACTOR-CRITIC-ELIGIBILITY-TRACES(⋅)

Initialize Policy params ${\pmb{\theta}}$ and State VF params ${\pmb{v}}$ arbitrarily ${\pmb{\mathsf{for}}}$ each episode

$$\begin{aligned} & \text{do} \\ & \begin{cases} & \text{Initialize } s \text{ (first state of episode)} \\ & \textbf{z}_{\theta}, \textbf{z}_{\textbf{v}} \leftarrow 0 \text{ (eligibility traces for } \theta \text{ and } \textbf{v}) \\ & P \leftarrow 1 \\ & \text{while } s \text{ is not terminal} \end{cases} \\ & \begin{cases} & a \sim \pi(s,\cdot;\theta) \\ & \text{Take action } a, \text{ observe } r,s' \\ & \delta \leftarrow r + \gamma \cdot V(s';\textbf{v}) - V(s;\textbf{v}) \\ & \textbf{z}_{\textbf{v}} \leftarrow \gamma \cdot \lambda_{\textbf{v}} \cdot \textbf{z}_{\textbf{v}} + \nabla_{\textbf{v}} V(s;\textbf{v}) \\ & \textbf{z}_{\theta} \leftarrow \gamma \cdot \lambda_{\theta} \cdot \textbf{z}_{\theta} + P \cdot \nabla_{\theta} \log \pi(s,a;\theta) \\ & \textbf{v} \leftarrow \textbf{v} + \alpha_{\textbf{v}} \cdot \delta \cdot \textbf{z}_{\textbf{v}} \\ & \theta \leftarrow \theta + \alpha_{\theta} \cdot \delta \cdot \textbf{z}_{\theta} \\ & P \leftarrow \gamma \cdot P, s \leftarrow s' \end{cases} \end{aligned}$$

Ashwin Rao (Stanford)

Overcoming Bias

- We've learnt a few ways of how to reduce variance
- But we haven't discussed how to overcome bias
- All of the following substitutes for $Q^{\pi}(s, a)$ in PG have bias:
 - $Q(s, a; \mathbf{w})$
 - $A(s, a; \mathbf{w}, \mathbf{v})$
 - $\delta(s, s', r; \mathbf{v})$
- Turns out there is indeed a way to overcome bias
- It is called the Compatible Function Approximation Theorem

Compatible Function Approximation Theorem

Theorem

Let \mathbf{w}_{θ}^{*} denote the Critic parameters \mathbf{w} that minimize the following mean-squared-error for given policy parameters θ :

$$\sum_{\boldsymbol{s} \in \mathcal{N}} \rho^{\pi}(\boldsymbol{s}) \cdot \sum_{\boldsymbol{a} \in \mathcal{A}} \pi(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{\theta}) \cdot (Q^{\pi}(\boldsymbol{s}, \boldsymbol{a}) - Q(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{w}))^2$$

Assume that the data type of $\boldsymbol{\theta}$ is the same as the data type of \boldsymbol{w} and furthermore, assume that for any policy parameters $\boldsymbol{\theta}$, the Critic gradient at $\boldsymbol{w}_{\boldsymbol{\theta}}^*$ is compatible with the Actor score function, i.e.,

$$abla_{m{w}} Q(s,a;m{w}^*_{m{ heta}}) =
abla_{m{ heta}} \log \pi(s,a;m{ heta}) ext{ for all } s \in \mathcal{N}, ext{ for all } a \in \mathcal{A}$$

Then the Policy Gradient using critic $Q(s, a; \mathbf{w}_{\theta}^*)$ is exact:

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{\boldsymbol{s} \in \mathcal{N}} \rho^{\pi}(\boldsymbol{s}) \cdot \sum_{\boldsymbol{a} \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{\theta}) \cdot Q(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{w}_{\boldsymbol{\theta}}^*)$$

Proof of Compatible Function Approximation Theorem

For a given θ , since \mathbf{w}_{θ}^* minimizes the mean-squared-error as defined above, we have:

$$\sum_{\boldsymbol{s} \in \mathcal{N}} \rho^{\pi}(\boldsymbol{s}) \cdot \sum_{\boldsymbol{a} \in \mathcal{A}} \pi(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{\theta}) \cdot (Q^{\pi}(\boldsymbol{s}, \boldsymbol{a}) - Q(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{w}_{\boldsymbol{\theta}}^{*})) \cdot \nabla_{\boldsymbol{w}} Q(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{w}_{\boldsymbol{\theta}}^{*}) = 0$$

But since $\nabla_{\mathbf{w}} Q(s, a; \mathbf{w}_{\theta}^*) = \nabla_{\theta} \log \pi(s, a; \theta)$, we have:

$$\sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \boldsymbol{\theta}) \cdot (Q^{\pi}(s, a) - Q(s, a; \boldsymbol{w}_{\boldsymbol{\theta}}^{*})) \cdot \nabla_{\boldsymbol{\theta}} \log \pi(s, a; \boldsymbol{\theta}) = 0$$

Therefore,

$$\begin{split} & \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot Q^{\pi}(s, a) \cdot \nabla_{\theta} \log \pi(s, a; \theta) \\ &= \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot Q(s, a; \mathbf{w}_{\theta}^{*}) \cdot \nabla_{\theta} \log \pi(s, a; \theta) \end{split}$$

Proof of Compatible Function Approximation Theorem

But
$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \boldsymbol{\theta}) \cdot Q^{\pi}(s, a) \cdot \nabla_{\boldsymbol{\theta}} \log \pi(s, a; \boldsymbol{\theta})$$

So,
$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \boldsymbol{\theta}) \cdot Q(s, a; \boldsymbol{w}_{\boldsymbol{\theta}}^{*}) \cdot \nabla_{\boldsymbol{\theta}} \log \pi(s, a; \boldsymbol{\theta})$$
$$= \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(s, a; \boldsymbol{\theta}) \cdot Q(s, a; \boldsymbol{w}_{\boldsymbol{\theta}}^{*})$$

This means with conditions of Compatible Function Approximation Theorem, we can use the critic func approx $Q(s,a;w_{\theta}^*)$ and still have the exact Policy Gradient.

How to enable Compatible Function Approximation

A simple way to enable Compatible Function Approximation $\frac{\partial Q(s,a; \boldsymbol{w}_{\theta}^*)}{\partial w_i} = \frac{\partial \log \pi(s,a;\theta)}{\partial \theta_i}, \forall i \text{ is to set } Q(s,a;\boldsymbol{w}) \text{ to be linear in its features.}$

$$Q(s, a; \mathbf{w}) = \sum_{i=1}^{m} \phi_i(s, a) \cdot w_i = \sum_{i=1}^{m} \frac{\partial \log \pi(s, a; \theta)}{\partial \theta_i} \cdot w_i$$

We note below that a compatible Q(s, a; w) serves as an approximation of the advantage function.

$$\sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot Q(s, a; \mathbf{w}) = \sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot \left(\sum_{i=1}^{m} \frac{\partial \log \pi(s, a; \theta)}{\partial \theta_{i}} \cdot w_{i}\right)$$

$$= \sum_{a \in \mathcal{A}} \left(\sum_{i=1}^{m} \frac{\partial \pi(s, a; \theta)}{\partial \theta_{i}} \cdot w_{i}\right) = \sum_{i=1}^{m} \left(\sum_{a \in \mathcal{A}} \frac{\partial \pi(s, a; \theta)}{\partial \theta_{i}}\right) \cdot w_{i}$$

$$= \sum_{i=1}^{m} \frac{\partial}{\partial \theta_{i}} \left(\sum_{a \in \mathcal{A}} \pi(s, a; \theta)\right) \cdot w_{i} = \sum_{i=1}^{m} \frac{\partial 1}{\partial \theta_{i}} \cdot w_{i} = 0$$

Fisher Information Matrix

Denoting $\left[\frac{\partial \log \pi(s,a;\theta)}{\partial \theta_i}\right]$, $i=1,\ldots,m$ as the score column vector $SC(s,a;\theta)$ and assuming compatible linear-approximation critic:

$$\nabla_{\theta} J(\theta) = \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot SC(s, a; \theta) \cdot (SC(s, a; \theta)^{T} \cdot \mathbf{w}_{\theta}^{*})$$

$$= \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot (SC(s, a; \theta) \cdot SC(s, a; \theta)^{T}) \cdot \mathbf{w}_{\theta}^{*}$$

$$= \mathbb{E}_{s \sim \rho^{\pi}, a \sim \pi} [SC(s, a; \theta) \cdot SC(s, a; \theta)^{T}] \cdot \mathbf{w}_{\theta}^{*}$$

$$= FIM_{\rho^{\pi}, \pi}(\theta) \cdot \mathbf{w}_{\theta}^{*}$$

where $\mathit{FIM}_{\rho_\pi,\pi}(\theta)$ is the Fisher Information Matrix w.r.t. $s \sim \rho^\pi, a \sim \pi$. Hence, updates after each atomic experience are as follows:

$$\Delta \boldsymbol{\theta} = \alpha_{\boldsymbol{\theta}} \cdot \gamma^{t} \cdot \boldsymbol{SC}(S_{t}, A_{t}; \boldsymbol{w}) \cdot \boldsymbol{SC}(S_{t}, A_{t}; \boldsymbol{w})^{T} \cdot \boldsymbol{w}$$

$$\Delta \mathbf{w} = \alpha_{\mathbf{w}} \cdot (R_{t+1} + \gamma \cdot \mathbf{SC}(S_{t+1}, A_{t+1}; \theta)^{T} \cdot \mathbf{w} - \mathbf{SC}(S_{t}, A_{t}; \theta)^{T} \cdot \mathbf{w}) \cdot \mathbf{SC}(S_{t}, A_{t}; \theta)^{T}$$

Natural Policy Gradient (NPG)

- ullet Natural gradient $abla^{nat}_{m{ heta}}J(m{ heta})$ is the direction of optimal $m{ heta}$ movement
- In terms of the KL-divergence metric (versus plain Euclidean norm)
- Formally defined as:

$$abla_{m{ heta}} extsf{J}(m{ heta}) = extsf{FIM}_{
ho_{\pi},\pi}(m{ heta}) \cdot
abla_{m{ heta}}^{ extit{nat}} extsf{J}(m{ heta})$$

• Enabling Compatible Function Approximation implies:

$$abla_{m{ heta}}^{ extit{nat}} J(m{ heta}) = m{w}_{m{ heta}}^*$$

- This compact result is great for our algorithm:
 - Update Critic params \mathbf{w} with the critic loss gradient (at step t) as:

$$(R_{t+1} + \gamma \cdot SC(S_{t+1}, A_{t+1}; \theta)^T \cdot w - SC(S_t, A_t; \theta)^T \cdot w) \cdot SC(S_t, A_t; \theta)$$

ullet Update Actor params $oldsymbol{ heta}$ in the direction of $oldsymbol{w}$

Deterministic Policy Gradient (DPG)

- Function approximation for deterministic policy for continuous actions
- DPG expressed as Expected Gradient of Q-Value Function
- Integrates only over state space, so efficient for high-dim action spaces
- Usual machinery of PG is applicable to DPG
- ullet Is Off-Policy: Target policy π_D learnt, behavior policy μ is exploratory
- Core Idea: Instead of greedy policy improvement for continuous action spaces, move policy in the direction of gradient of Q-Value Function
- Policy parameters θ are updated in proportion to $\nabla_{\theta} Q(s, \pi_D(s; \theta))$
- Average direction of policy improvements is given by:

$$\mathbb{E}_{s \sim \rho^{\pi_D}}[\nabla_{\boldsymbol{\theta}} Q(s, \pi_D(s; \boldsymbol{\theta}))] = \mathbb{E}_{s \sim \rho^{\pi_D}}[\nabla_{\boldsymbol{\theta}} \pi_D(s; \boldsymbol{\theta}) \cdot \nabla_{\boldsymbol{a}} Q^{\pi_D}(s, \boldsymbol{a}) \Big|_{\boldsymbol{a} = \pi_D(s; \boldsymbol{\theta})}]$$

$$\rho^{\pi_D}(s) = \sum_{S_0 \in \mathcal{N}} \sum_{t=0}^{\infty} \gamma^t \cdot p_0(S_0) \cdot p(S_0 \to s, t, \pi_D)$$

• For multi-dimensional $a, \nabla_{\theta}\pi(s; \theta)$ is a Jacobian matrix

DPG Theorem

$$J(\boldsymbol{\theta}) = \mathbb{E}_{\pi_D}[\sum_{t=0}^{\infty} \gamma^t \cdot R_{t+1}] = \sum_{s \in \mathcal{N}} \rho^{\pi_D}(s) \cdot \mathcal{R}_s^{\pi_D(s;\boldsymbol{\theta})} = \mathbb{E}_{s \sim \rho^{\pi_D}}[\mathcal{R}_s^{\pi_D(s;\boldsymbol{\theta})}]$$

Theorem

For action space \mathbb{R}^k ,

$$\nabla_{\theta} J(\theta) = \sum_{s \in \mathcal{N}} \rho^{\pi_D}(s) \cdot \nabla_{\theta} \pi_D(s; \theta) \cdot \nabla_{a} Q^{\pi_D}(s, a) \Big|_{a = \pi_D(s; \theta)}$$
$$= \mathbb{E}_{s \sim \rho^{\pi_D}} [\nabla_{\theta} \pi_D(s; \theta) \cdot \nabla_{a} Q^{\pi_D}(s, a) \Big|_{a = \pi_D(s; \theta)}]$$

In practice, we use critic Q(s, a; w) and keep updating both w and θ :

$$\Delta \mathbf{w} = \alpha_{\mathbf{w}} \cdot (R_{t+1} + \gamma \cdot Q(S_{t+1}, \pi_D(S_{t+1}; \boldsymbol{\theta}); \mathbf{w}) - Q(S_t, A_t; \mathbf{w})) \cdot \nabla_{\mathbf{w}} Q(S_t, A_t; \mathbf{w})$$
$$\Delta \boldsymbol{\theta} = \alpha_{\boldsymbol{\theta}} \cdot \gamma^t \cdot \nabla_{\boldsymbol{\theta}} \pi_D(S_t; \boldsymbol{\theta}) \cdot \nabla_{\mathbf{a}} Q(S_t, A_t; \mathbf{w}) \Big|_{\mathbf{a} = \pi_D(S_t; \boldsymbol{\theta})}$$

NES applied to solving Markov Decision Processes (MDPs)

- We set $F(\cdot)$ to be the (stochastic) Return of a MDP
- ullet ψ refers to the parameters of a policy $\pi_{\psi}:\mathcal{S}
 ightarrow\mathcal{A}$
- ullet ψ will be drawn from an isotropic multivariate Gaussian distribution
- Gaussian with mean vector θ and fixed diagonal covariance matrix $\sigma^2 I$
- The average objective (Expected Return) can then be written as:

$$\mathbb{E}_{\psi \sim p_{\theta}}[F(\psi)] = \mathbb{E}_{\epsilon \sim \mathcal{N}(0,I)}[F(\theta + \sigma \cdot \epsilon)]$$

• The gradient (∇_{θ}) of *Expected Return* can be written as:

$$\begin{split} \mathbb{E}_{\psi \sim p_{\theta}} [\nabla_{\theta} (\log p_{\theta}(\psi)) \cdot F(\psi)] \\ = \mathbb{E}_{\psi \sim \mathcal{N}(\theta, \sigma^{2}I)} [\nabla_{\theta} (\frac{-(\psi - \theta)^{T} \cdot (\psi - \theta)}{2\sigma^{2}}) \cdot F(\psi)] \\ = \frac{1}{\sigma} \cdot \mathbb{E}_{\epsilon \sim \mathcal{N}(0, I)} [\epsilon \cdot F(\theta + \sigma \cdot \epsilon)] \end{split}$$

A sampling-based algorithm to solve the MDP

- The above formula helps estimate gradient of Expected Return
- By sampling several ϵ (each ϵ represents a Policy $\pi_{\theta+\sigma\cdot\epsilon}$)
- And averaging $\epsilon \cdot F(\theta + \sigma \cdot \epsilon)$ across a large set (n) of ϵ samples
- Note $F(\theta + \sigma \cdot \epsilon)$ involves playing an episode for a given sampled ϵ , and obtaining that episode's $Return\ F(\theta + \sigma \cdot \epsilon)$
- Hence, *n* values of ϵ , *n* Policies $\pi_{\theta+\sigma\cdot\epsilon}$, and *n* Returns $F(\theta+\sigma\cdot\epsilon)$
- ullet Given gradient estimate, we update heta in this gradient direction
- Which in turn leads to new samples of ϵ (new set of *Policies* $\pi_{\theta+\sigma\cdot\epsilon}$)
- And the process repeats until $\mathbb{E}_{\epsilon \sim \mathcal{N}(0,l)}[F(\theta + \sigma \cdot \epsilon)]$ is maximized
- The key inputs to the algorithm will be:
 - ullet Learning rate (SGD Step Size) lpha
 - ullet Standard Deviation σ
 - ullet Initial value of parameter vector $heta_0$

The Algorithm

Algorithm 0.4: Natural Evolution Strategies(α, σ, θ_0)

$$\begin{aligned} & \textbf{for} \ \ t \leftarrow 0, 1, 2, \dots \\ & \textbf{do} \ \begin{cases} & \mathsf{Sample} \ \epsilon_1, \epsilon_2, \dots \epsilon_n \sim \mathcal{N}(0, I) \\ & \mathsf{Compute} \ \mathsf{Returns} \ F_i \leftarrow F(\theta_t + \sigma \cdot \epsilon_i) \ \mathsf{for} \ i = 1, 2, \dots, n \\ & \theta_{t+1} \leftarrow \theta_t + \frac{\alpha}{n\sigma} \sum_{i=1}^n \epsilon_i \cdot F_i \end{cases} \end{aligned}$$

Resemblance to Policy Gradient?

- On the surface, this NES algorithm looks like Policy Gradient (PG)
- Because it's not Value Function-based (it's Policy-based, like PG)
- Also, similar to PG, it uses a gradient to move towards optimality
- But, ES does not interact with the environment (like PG/RL does)
- ES operates at a high-level, ignoring (state,action,reward) interplay
- Specifically, does not aim to assign credit to actions in specific states
- Hence, ES doesn't have the core essence of RL: Estimating the Q-Value Function of a Policy and using it to Improve the Policy
- Therefore, we don't classify ES as Reinforcement Learning
- We consider ES to be an alternative approach to RL Algorithms

ES versus RL

- Traditional view has been that ES won't work on high-dim problems
- Specifically, ES has been shown to be data-inefficient relative to RL
- Because ES resembles simple hill-climbing based only on finite differences along a few random directions at each step
- However, ES is very simple to implement (no Value Function approx. or back-propagation needed), and is highly parallelizable
- ES has the benefits of being indifferent to distribution of rewards and to action frequency, and is tolerant of long horizons
- This paper from OpenAl Researchers shows techniques to make NES more robust and more data-efficient, and they demonstrate that NES has more exploratory behavior than advanced PG algorithms
- I'd always recommend trying NES before attempting to solve with RL

Key Takeaways from this Chapter

- PG Algorithms are based on GPI with Policy Improvement as a Stochastic Gradient Ascent for "Expected Returns" Objective $J(\theta)$ where θ are parameters of the function approximation for the Policy
- Policy Gradient Theorem gives us a simple formula for $\nabla_{\theta} J(\theta)$ in terms of the score of the policy function approximation
- We can reduce variance in PG algorithms by using a critic and by using an estimate of the advantage function for the Q-Value Function
- Compatible Function Approximation Theorem enables us to overcome bias in PG Algorithms
- Natural Policy Gradient and Deterministic Policy Gradient are specialized PG algorithms that have worked well in practice
- Evolutionary Strategies are technically not RL, but they resemble PG Algorithms and can sometimes be quite effective for MDP Control