	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan and A. A. Sonzogni	NDS 115, 135 (2014)	1-Nov-2013

 $Q(\beta^-)$ =-7.45×10³ 6; S(n)=12353 7; S(p)=7899 6; $Q(\alpha)$ =-5404 6 2012Wa38 S(2n)=21802 7; S(2p)=13683 6 (2012Wa38).

 α : Additional information 1.

⁸⁸Zr Levels

Cross Reference (XREF) Flags

E(level) [†]	J^π	$T_{1/2}^{\ddagger}$	XREF	Comments
0.0	0+	83.4 d 3	ABCDEFGHIJ	%ε=100
1057.03 4	2+	2.50 ps 28	ABCDEFGHIJ	T _{1/2} : from 1973St29. Others: 82.6 d 2 (private communication quoted by 1984Pr01), 85 d (1953Hy52). $\delta < r^2 > ^{90.88} = 0.061 \text{ fm}^2$ 5 (2013An02, 2003Th03). $\mu = +0.60$ 22 J^{π} : E2 1057 γ to 0 ⁺ , L(p,t)=2. $T_{1/2}$: from DSAM in 12 C(84 Sr, 88 Zr γ). Other: 0.83 ps +4-2 from DSAM in 89 Y(p,2n γ).
				μ : from transient field technique in 12 C(84 Sr, 88 Zr γ).
1521.4 7	0+		HIJ	J^{π} : $L(p,t)=0$.
1817.86 <i>6</i>	2+	0.59 ps 5	B D FGHIJ	J^{π} : L(d, ⁶ Li)=2; L(p,t)=(2), $\gamma\gamma(\theta)$ in ⁸⁹ Y(p,2n γ). $T_{1/2}$: from DSAM in ¹² C(⁸⁴ Sr, ⁸⁸ Zr γ). Other: 0.21 ps 9 from DSAM in ⁸⁹ Y(p,2n γ).
2139.59 5	4+	1.52 ps <i>14</i>	ABCDEFGHIJ	μ =+2.6 7 J^{π} : L(p,t)=4. $T_{1/2}$: from DSAM in 12 C(84 Sr, 88 Zr γ).
				μ : from transient field technique in 12 C(84 Sr, 88 Zr γ).
2231.0 [@] 5	0_{+}		HIJ	J^{π} : L(p,t)=0.
2455.88 7	3-	1.94 ps 21	B D FGHIJ	J^{π} : L(p,t)=3.
				$T_{1/2}$: from DSAM in $^{12}C(^{84}Sr,^{88}Zr\gamma)$.
2539.00 <i>6</i>	5-		ABC EFGHI	J^{π} : $L(p,t)=5$.
2568.3 <i>3</i>	2+		HIJ	J^{π} : L(p,t)=2.
2605.20 <i>14</i>	4+		B F I	J^{π} : L(p,t)=4.
2673.7 5	~-		В	
2801.13 8	5-		AB EFGHIJ	J^{π} : L(p,t)=5.
2810.80 6	6 ⁺ 8 ⁺	1 220 25	A C EFGHI	J ^π : L(p,t)=6. %IT=100
2887.79 6	0	$1.320 \ \mu s \ 25$	A C EFGHI	$Q=+0.51 \ 3; \ \mu=-1.811 \ 16$
				J^{π} : E2 77 γ to 6 ⁺ , L(p,t)=(8,6).
				$T_{1/2}$: from $\gamma(t)$ (1978Ha52). Others: 1.41 μ s +12-9 (2004Ch35) using $\gamma(t)$;
				1.28 μ s 10, 1.75 μ s 20 from γ (t) in 89 Y(p,2n γ).
				μ : from g=-0.2264 20 measured by $\gamma(H,\theta,t)$ in heavy-ion reactions
				(1978Ha52). Other: $g=-0.20 2$ from $^{89}Y(p,2n\gamma)$.
				Q: from time-differential perturbed γ -ray angular distribution of ions
•000	(= 1)			implanted in non-cubic crystals (1985Ra09). Sign determined by 1986Be06.
2888 3	(2^{+})		Ī	J^{π} : L(p,t)=(2).
2928 <i>3</i>	3-		I	J^{π} : L(p,t)=3.

E(level) [†]	${ m J}^{\pi}$	$T_{1/2}^{\ddagger}$		XREF	Comments
2989.67 <i>7</i> 2998.4 <i>3</i>	5-		B B	HI	$J^{\pi} \colon L(p,t)=5.$
3027 3	2+		Ь	I	J^{π} : L(p,t)=2.
3032.77 8	3-		В	Ī	J^{π} : L(p,t)=3.
3074.9 [@] 3	(4 ⁺)			HI	$J^{\pi}: L(p,t)=(4).$
3093.6 [@] 3	5-			HI	
3093.0 - 3 3213.70 <i>11</i>	(6 ⁺)		A	nı	J^{π} : L(p,t)=5. J^{π} : log ft =7.5 from (8 ⁺), 1074 γ to 4 ⁺ .
3223.8 4	(0)		В		$J : \log \mu - 7.5 \text{ from (6)}, 1074 \text{ to 4}$
3277.01 8	$(3^-,4,5^-)$		В		J^{π} : 287 γ to 5 ⁻ , 821 γ to 3 ⁻ .
3.30×10^3	(= , -,-)			I	
3374.37 9	$(3^-,4,5^-)$		В		J^{π} : 573 γ to 5 ⁻ , 918.5 γ to 3 ⁻ .
3390.70 6	8+	21 ps <i>1</i>	Α	EFGH	J^{π} : from $\gamma(\theta)$ and linear polarization in 74 Ge(18 O,4n γ).
3426.47 17		•	В		•
3.43×10^3	(0^+)			I	J^{π} : L(p,t)=(0).
3483.63 <i>13</i>	(7-)		A	EFG	J^{π} : 7,9,11 from $\gamma(\theta)$ and linear polarization of populating 1003 γ in 74 Ge(18 O,4n γ), 944.5 γ to 5 $^-$.
3568.18 <i>15</i>	$(3,4^+)$		В		J^{π} : log ft =6.8 from (4 ⁻), 2511 γ to 2 ⁺ .
3617.44 <i>24</i>	(7^{-})		Α	FG	J^{π} : J=7 from $\gamma(\theta)$ in $^{89}Y(\alpha,p4n\gamma)$, 817γ to 5 ⁻ .
3637.76 <i>15</i>	$(3,4^+)$		В		J^{π} : log ft=6.7 from (4 ⁻), 2581 γ to 2 ⁺ .
3875.04 <i>14</i>	$(3^-,4,5^-)$		В		J^{π} : 1336 γ to 5 ⁻ , 1419 γ to 3 ⁻ .
3938.28 14	(3,4,5)		В		J^{π} : log $\phi t = 6.3$ from (4 ⁻).
3947.58 <i>13</i>	(3,4,5)		В		J^{π} : log ft =6.2 from (4 ⁻).
3968.2 3	$(3^-,4,5)$		В	-	J^{π} : log ft =6.8 from (4 ⁻), 1429 γ to 5 ⁻ .
3.99×10 ³ ? 4024.9 <i>3</i>	(2- 4.5)		D	I	Possibly identical to one of the neighboring levels. J^{π} : log ft =6.9 from (4 ⁻), 1224 γ to 5 ⁻ .
4024.9 3 4059.22 <i>14</i>	$(3^-,4,5)$ $(3^-,4,5^-)$		B B		J^{π} : 1520 γ to 5 ⁻ , 1604 γ to 3 ⁻ .
4084.22 13	$(3^-,4,5)$		В		J^{π} : log ft =6.1 from (4 ⁻), 1095 γ to 5 ⁻ .
4112.38 <i>13</i>	(3,4,5)		В		J^{π} : log ft =6.5 from (4 ⁻).
4155.5 <i>4</i>	(3,4,5)		В		J^{π} : log $ft=7.1$ from (4^{-}) .
4.17×10^3 ?				I	Possibly identical to one of the neighboring levels.
4206.1 3	$(3,4,5^{-})$		В		J^{π} : log ft=6.6 from (4 ⁻), 1750 γ to 3 ⁻ .
4208.17 <i>10</i>	$(3^-,4,5^-)$		В		J^{π} : 1407 γ to 5 ⁻ , 1752 γ to 3 ⁻ .
4237.0 4	$(7,8^+)$		A		J^{π} : log ft =7.1 from (8 ⁺), 1426 γ to 6 ⁺ .
4307.9 3	$(3^-,4,5^-)$		В		J^{π} : 1319 γ to 5 ⁻ , 1852 γ to 3 ⁻ .
4335.6 <i>4</i> 4348.3 <i>3</i>	$(3,4^+)$		В		J^{π} : log ft =7.0 from (4 ⁻), 3278.5 γ to 2 ⁺ .
4.37×10^3 ?			A	I	Possibly identical to one of the neighboring levels.
4388.34 25	$(7,8^+)$		A	1	J ^{π} : log ft =6.9 from (8 ⁺), 1175 γ to (6 ⁺).
4413.07 11	10+	<1.4 ps		EF	J^{π} : E2 1022 γ to 8^{+} , $\gamma(\theta)$ and linear polarization in 74 Ge(18 O,4n γ).
4461.88 22	$(7,8^+)$		A		J^{π} : log ft =6.4 from (8 ⁺), 1652 γ to 6 ⁺ .
	(9-)			EFG	J^{π} : (E2) 1003 γ to (7 ⁻), (E1) 1096 γ to 8 ⁺ .
4612.29 <i>11</i>	9+	<0.17 ns	A	EFG	J ^π : $7^+,9^+$ from $\gamma(\theta)$ and linear polarization in 74 Ge(18 O,4n γ). Probable 199 γ to 10^+ .
4672.7 3	$(3^-,4,5)$		В		J^{π} : log ft =6.8 from (4 ⁻), 1871.5 γ to 5 ⁻ .
4713.08 <i>11</i>	10-#	2.25 ns 17		EFG	,
4797.63 11	11-#	50 ps 4		EFG	
4934.5 3	$(7,8^+)$	30 ps 4	Α	LIG	J^{π} : log ft =6.2 from (8 ⁺), 1721 γ to (6 ⁺).
5087.9 3	$(7,8^+)$		A		J^{π} : log ft =6.5 from (8 ⁺), 2277 γ to 6 ⁺ .
5166.2? 4	$(10,11,12)^{\#}$	0.66 ps <i>14</i>		EF	
5229.47 <i>13</i>	12+	10 ps <i>I</i>		EFG	J^{π} : E2 816 γ to 10 ⁺ .
5583.85 12	12 ^{-#}	<0.7 ps		EFG	•
5665.91 <i>15</i>	12+#	0.28 ps 10		EFG	
5005.91 15	12	0.20 ps 10		11.0	

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments
5787.2 5	(7,8,9)		A	J^{π} : log ft =6.2 from (8 ⁺).
5950.75 16	$(13)^{+}$	<0.10 ps	EFG	J^{π} : (11,13) ⁺ from $\gamma(\theta)$ and transition strength in ⁷⁴ Ge(¹⁸ O,4n γ). High spin favored in heavy ion fusion reactions.
6000.8? <i>3</i>	$(13)^{-#}$	<0.7 ps	E	
6032.52? 13	$(12^{-})^{\#}$		E	
6192.94 <i>12</i>	13-	1.70 ps <i>14</i>	E	J^{π} : E2 1395 γ to 11 ⁻ .
6238.79 <i>16</i>	$(14)^{+}$	1.0 ps 3	E	
6501.32 24	$(14)^{+}$	0.16 ps <i>3</i>	E	
6578.2 5			E	
6765.33 23	$(14)^{-#}$	≤0.49 ps	E	
6826.66 <i>23</i>	$(15)^{+}$	0.10 ps 2	E	
7228.2 <i>3</i>	$(15)^{-#}$	≤0.8 ps	E	
7431.9 <i>4</i>		0.10 ps <i>3</i>	E	
7536.5 4	$(15^{-})^{\#}$	≤0.33 ps	E	
7878.9 <i>4</i>	$(16^{-})^{#}$	≤0.50 ps	E	
8200.2 5	$(17^{-})^{#}$	0.3 ps +4-1	E	
8925.2 5	$(18^{-})^{\#}$	<0.3 ps	E	
9912.6? 5	(19 ⁻)#	>0.7 ps	E	
10557.3? 9	(20) [#]	≤0.1 ps	E	
11199.7? <i>11</i>	(21) [#]	0.22 ps 14	E	

 $^{^{\}dagger}$ Level energies with ΔE≤1 keV are from a least-squares fit to the Adopted Gammas, except where noted. Those with ΔE>1 keV are from (p,t).

[‡] From Doppler-shift attenuation and Recoil-distance Doppler-shift in 74 Ge(18 O,4n γ), except where noted. # From $\gamma(\theta)$, linear polarization and γ decay pattern in 74 Ge(18 O,4n γ).

[®] From ⁸⁹Y(p,2n γ). 2009Br05 quote precise level energies but do not provide the γ -ray energies of the depopulating transitions.

(88**7.**.

								γ ⁽⁸⁸ Zr)		
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	$I_{(\gamma+ce)}^{\#}$	Comments
1057.03	2+	1057.01 4	100	0.0	0+	E2		5.91×10 ⁻⁴		$\alpha(K)=0.000522 \ 8; \ \alpha(L)=5.79\times10^{-5} \ 9;$ $\alpha(M)=1.003\times10^{-5} \ 14; \ \alpha(N)=1.422\times10^{-6} \ 20;$ $\alpha(O)=9.95\times10^{-8} \ 14$ $\alpha(O)=0.9600000000000000000000000000000000000$
1521.4	0+	464.5		1057.03	2+	[E2]		0.00524	100	ce(K)/(γ +ce)=0.00457 7; ce(L)/(γ +ce)=0.000536 8; ce(M)/(γ +ce)=9.31×10 ⁻⁵ 13; ce(N)/(γ +ce)=1.304×10 ⁻⁵ 19 ce(O)/(γ +ce)=8.51×10 ⁻⁷ 12 α (K)=0.00459 7; α (L)=0.000539 8; α (M)=9.36×10 ⁻⁵ 14; α (N)=1.311×10 ⁻⁵ 19; α (O)=8.56×10 ⁻⁷ 12
		1521.2		0.0	0+	(E0)			0.05 1	
1817.86	2+	760.76 9	100.0 27	1057.03	2+	M1+E2	+0.26 4	1.23×10 ⁻³		$\alpha(K)$ =0.001083 16; $\alpha(L)$ =0.0001195 17; $\alpha(M)$ =2.07×10 ⁻⁵ 3; $\alpha(N)$ =2.95×10 ⁻⁶ 5; $\alpha(O)$ =2.10×10 ⁻⁷ 3 B(E2)(W.u.)=6.5 20; B(M1)(W.u.)=0.051 5 Mult.: D+Q from $\gamma\gamma(\theta)$ in ⁸⁹ Y(p,2n γ), $\Delta\pi$ =no from level scheme. δ: from $\gamma\gamma(\theta)$ in ⁸⁹ Y(p,2n γ). Other: -0.10 13 from
		1817.89 9	56.7 12	0.0	0+	[E2]		4.14×10 ⁻⁴		$\gamma(\theta)$ in ${}^{86}\text{Sr}(\alpha,2n\gamma)$. $\alpha(\text{K})=0.0001716\ 24;\ \alpha(\text{L})=1.87\times10^{-5}\ 3;$ $\alpha(\text{M})=3.23\times10^{-6}\ 5;\ \alpha(\text{N})=4.60\times10^{-7}\ 7;$ $\alpha(\text{O})=3.28\times10^{-8}\ 5$ B(E2)(W.u.)=0.75 7 I_{γ} : from ${}^{88}\text{Nb}\ \varepsilon$ decay (7.78 min). Others: 21 21 from ${}^{89}\text{Y}(\alpha,p4n\gamma)$ and 72 from ${}^{89}\text{Y}(p,2n\gamma)$.
2139.59	4+	1082.53 4	100	1057.03	2+	E2		5.61×10 ⁻⁴		$\alpha(K)$ =0.000495 7; $\alpha(L)$ =5.48×10 ⁻⁵ 8; $\alpha(M)$ =9.50×10 ⁻⁶ 14; $\alpha(N)$ =1.347×10 ⁻⁶ 19; $\alpha(O)$ =9.44×10 ⁻⁸ 14 B(E2)(W.u.)=10.8 10
2455.88	3-	316.3 2	3.74 15	2139.59	4+	[E1]		0.00421		$\alpha(K)$ =0.00371 6; $\alpha(L)$ =0.000411 6; $\alpha(M)$ =7.10×10 ⁻⁵ 10; $\alpha(N)$ =1.003×10 ⁻⁵ 15; $\alpha(O)$ =6.87×10 ⁻⁷ 10
		638.00 9	100 3	1817.86	2+	[E1]		7.33×10 ⁻⁴		B(E1)(W.u.)=0.000184 22 α (K)=0.000648 9; α (L)=7.10×10 ⁻⁵ 10; α (M)=1.228×10 ⁻⁵ 18; α (N)=1.742×10 ⁻⁶ 25 α (O)=1.223×10 ⁻⁷ 18
		1399.40 20	9.5 11	1057.03	2+	[E1]		3.28×10^{-4}		B(E1)(W.u.)=0.00060 7 α (K)=0.0001391 20; α (L)=1.502×10 ⁻⁵ 21; α (M)=2.60×10 ⁻⁶ 4; α (N)=3.70×10 ⁻⁷ 6;

γ (88Zr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \mathrm{J}_f^\pi$	Mult.‡	δ^{\ddagger}	α	Comments
	_							$\alpha(O)=2.64\times10^{-8} \ 4$ B(E1)(W.u.)=5.4×10 ⁻⁶ 9 I _{\gamma} : from ⁸⁸ Nb \varepsilon decay (7.78 min). Other: 11.8 from ⁸⁹ Y(p,2n\gamma).
2539.00	5-	399.41 <i>3</i>	100	2139.59 4+	E1		0.00227	$\alpha(K)=0.00201 \ 3; \ \alpha(L)=0.000221 \ 3; \ \alpha(M)=3.83\times10^{-5} \ 6;$ $\alpha(N)=5.41\times10^{-6} \ 8; \ \alpha(O)=3.75\times10^{-7} \ 6$
2568.3	2+	1511.3 <i>3</i>	100	1057.03 2+	M1+E2	-0.54 22	3.61×10 ⁻⁴ 6	$\alpha(K)$ =0.000252 4; $\alpha(L)$ =2.74×10 ⁻⁵ 4; $\alpha(M)$ =4.75×10 ⁻⁶ 7; $\alpha(N)$ =6.76×10 ⁻⁷ 10; $\alpha(O)$ =4.84×10 ⁻⁸ 8 Mult.: D+Q from $\gamma\gamma(\theta)$ in ⁸⁹ Y(p,2n γ), $\Delta\pi$ =no from level
								scheme. δ : from $\gamma \gamma(\theta)$ in 89 Y(p,2n γ).
2605.20	4+	465. 2	100.0 9	2139.59 4+				δ : from $\gamma\gamma(\theta)$ in γ $\gamma(p,2n\gamma)$.
		1548.2 2	68 5	1057.03 2+	[E2]		3.67×10^{-4}	$\alpha(K)=0.000234 \ 4; \ \alpha(L)=2.55\times10^{-5} \ 4; \ \alpha(M)=4.43\times10^{-6} \ 7; \ \alpha(N)=6.29\times10^{-7} \ 9; \ \alpha(O)=4.47\times10^{-8} \ 7$
2673.7		134.6 5	100	2539.00 5				
2801.13	5-	262.04 13	100 3	2539.00 5	M1(+E2)	+0.3 6	0.017 7	$\alpha(K)$ =0.015 6; $\alpha(L)$ =0.0017 9; $\alpha(M)$ =0.00030 15; $\alpha(N)$ =4.3×10 ⁻⁵ 20; $\alpha(O)$ =2.9×10 ⁻⁶ 10
								Mult.: D(+Q) from $\gamma(\theta)$ in ${}^{86}\mathrm{Sr}(\alpha,2\mathrm{n}\gamma)$, $\Delta\pi=\mathrm{no}$ from level scheme.
		661.60 <i>10</i>	19.6 <i>10</i>	2139.59 4+	[E1]		6.76×10^{-4}	δ: from $\gamma \gamma(\theta)$ in ⁸⁹ Y(p,2n γ). α (K)=0.000598 9; α (L)=6.54×10 ⁻⁵ 10; α (M)=1.132×10 ⁻⁵
								16; α (N)=1.606×10 ⁻⁶ 23 α (O)=1.128×10 ⁻⁷ 16
2810.80	6+	271.81 2	49.9 18	2539.00 5	E1		0.00637	$\alpha(K) \exp = 0.0046 \ 12$
								$\alpha(K)$ =0.00562 8; $\alpha(L)$ =0.000623 9; $\alpha(M)$ =0.0001077 15; $\alpha(N)$ =1.518×10 ⁻⁵ 22
								$\alpha(O)=1.034\times10^{-6} 15$
		(71.20.4	100 0 12	2120.50 4+	F2		0.00101	$\alpha(K)$ exp: from ⁸⁸ Nb ε decay (14.55 min).
		671.20 <i>4</i>	100.0 13	2139.59 4+	E2		0.00181	$\alpha(K)$ =0.001595 23; $\alpha(L)$ =0.000182 3; $\alpha(M)$ =3.15×10 ⁻⁵ 5; $\alpha(N)$ =4.44×10 ⁻⁶ 7; $\alpha(O)$ =3.02×10 ⁻⁷ 5
2887.79	8+	76.99 <i>1</i>	100	2810.80 6 ⁺	E2		2.87	$\alpha(K)$ =2.29 4; $\alpha(L)$ =0.487 7; $\alpha(M)$ =0.0856 12; $\alpha(N)$ =0.01103 16; $\alpha(O)$ =0.000355 5
								B(E2)(W.u.)=1.75 4
2989.67	5-	189.1 <i>3</i>	1.20 15	2801.13 5-				Mult.: from K/L/M measured in 88 Nb ε decay (14.55 min).
2707.07	5	384.6 <i>3</i>	<1.3	2605.20 4 ⁺				
		450.52 <i>16</i>	100.0 30	2539.00 5				_
		533.82 9	46.3 15	2455.88 3	[E2]		0.00345	$\alpha(K)=0.00303 \ 5; \ \alpha(L)=0.000351 \ 5; \ \alpha(M)=6.10\times10^{-5} \ 9; $ $\alpha(N)=8.56\times10^{-6} \ 12; \ \alpha(O)=5.68\times10^{-7} \ 8$
2000 4		850.0 <i>1</i>	7.5 3	2139.59 4+				
2998.4		542.9 <i>5</i>	100 50	2455.88 3				
		1180.4 ^b 4	370 <i>60</i>	1817.86 2+				

S

γ (88Zr) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J	$\frac{\pi}{f}$ Mult. \ddagger	δ^{\ddagger}	α	Comments
3032.77	3-	576.7 2	18.5 8	2455.88 3-				
		892.8 5	9.9 10	2139.59 4+				
		1975.7 1	100 3	1057.03 2 ⁺				
3213.70	(6^{+})	402.9 [@]	34 11	2810.80 6+				
		1074.1 <i>1</i>	100 15	2139.59 4+				
3223.8	(2- 4 7-)	684.8 <i>4</i>	100	2539.00 5-				
3277.01	$(3^-,4,5^-)$	244.2 2	12.1 11	3032.77 3-				
		287.3 2 476.0 <i>3</i>	25.3 <i>16</i> 15.3 <i>21</i>	2989.67 5 ⁻ 2801.13 5 ⁻				
		671.9 [@]						
		738.0^a 1	100 <i>16</i> <59 ^a	2605.20 4 ⁺ 2539.00 5 ⁻				
		821.2 <i>I</i>	<39 ⁴⁴ 57.4 26	2339.00 3 2455.88 3 ⁻				
2274.27	(2= 4.5=)	97.4 [@] 10	2.5 9		4 5-1			
3374.37	$(3^-,4,5^-)$	384.6 ^a 3	<4.9 ^a	3277.01 (3 ⁻ ,4 2989.67 5 ⁻	4,5)			
		573.20 ^a 10	<52 ^a	2801.13 5 ⁻				
		835.5 ^a 5	<3.3 ^a	2539.00 5 ⁻				
		918.50 <i>10</i>	100 6	2455.88 3				
3390.70	8+	177.0 [@]	0.10 10	3213.70 (6 ⁺)				
3390.10	o	502.91 3	100.0 10	2887.79 8 ⁺	M1+E2	-0.15 7	0.00317	$\alpha(K)=0.00280\ 5;\ \alpha(L)=0.000312\ 6;\ \alpha(M)=5.41\times10^{-1}$
		302.71 3	100.0 10	2007.77	WITTE	0.15 /	0.00317	9; $\alpha(N)=7.69\times10^{-6}$ 13; $\alpha(O)=5.44\times10^{-7}$ 9
								B(E2)(W.u.)=0.8 8; B(M1)(W.u.)=0.0080 5
								δ : Other: -0.06 9 from $\gamma(\theta)$ in 86 Sr(α ,2n γ).
3426.47		625.3 2	100 4	2801.13 5-				0. other 0.00 > 1.011 / (0) 111 51(0,211/).
		1286.9 <i>3</i>	43 4	2139.59 4+				
3483.63	(7^{-})	672.8 [@]	70 <i>30</i>	2810.80 6+				
	()	944.51 24	100 8	2539.00 5				
3568.18	$(3,4^+)$	1112.30 20	85 <i>6</i>	2455.88 3-				
		2511.10 20	100 6	1057.03 2+				
3617.44	(7^{-})	806.6 <i>3</i>	86 17	2810.80 6+	(E1)		4.42×10^{-4}	$\alpha(K)=0.000391 \ 6; \ \alpha(L)=4.26\times10^{-5} \ 6;$
								$\alpha(M)=7.38\times10^{-6}\ 11;\ \alpha(N)=1.048\times10^{-6}\ 15;$
								$\alpha(O) = 7.40 \times 10^{-8} II$
								Mult.: D from $\gamma(\theta)$ in 89 Y(α ,p4n γ), $\Delta\pi$ =yes from
								level scheme.
2625 56	(2.44)	816.7 7	100 14	2801.13 5				
3637.76	$(3,4^+)$	604.8 2	33 4	3032.77 3				
		1497.8 <i>10</i> 2580.9 2	12 4	2139.59 4 ⁺ 1057.03 2 ⁺				
3875.04	$(3^-,4,5^-)$	598.1 <i>3</i>	100 <i>4</i> 61 <i>4</i>	3277.01 (3 ⁻ ,4	4.5-)			
JU1J.U4	(3,+,3)	885.0 ^b 5	16 5	2989.67 5 ⁻	τ,√)			
		885.0° 5 1336.0 2	16 3 96 8	2989.67 5 2539.00 5 ⁻				
		1419.2 2	96 8 100 5	2339.00 3 2455.88 3 ⁻				
		1T1/.4 4	100 2	∠ TJJ,UU J				

γ (88Zr) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\rm I_{\gamma}}^{\dagger}$	\mathbb{E}_f	\mathtt{J}_f^π
3938.28	(3,4,5)	564.1 <i>4</i>	7.1 13	3374.37	$(3^-,4,5^-)$
		1137.3 ^b 10	9 4	2801.13	5-
		1399.4 2	100 13	2539.00	5-
		1482.2 ^b 2	17.1 <i>17</i>	2455.88	3-
3947.58	(3,4,5)	573.20 ^a 10	a	3374.37	$(3^-,4,5^-)$
		949.4 <mark>b</mark> 5		2998.4	
		1342.4 <mark>b</mark> 20		2605.20	4+
3968.2	$(3^-,4,5)$	1167.0 5	39 6	2801.13	5-
		1429.2 3	100 11	2539.00	5-
4024.9	$(3^-,4,5)$	1223.8 <i>3</i>	100	2801.13	5-
4059.22	$(3^-,4,5^-)$	1026.3 2	44 4	3032.77	3-
		1069.7 5	58 <i>23</i> 100 <i>5</i>	2989.67	5 ⁻
		1520.2 2 1603.6 <i>3</i>	41 <i>4</i>	2539.00 2455.88	5 ⁻ 3 ⁻
4084.22	$(3^-,4,5)$	657.6 5	43 4	3426.47	3
1001.22	(3,1,3)	709.6 3	20.0 29	3374.37	$(3^-,4,5^-)$
		1094.6 2	100 6	2989.67	5-
		1283.3 <i>3</i>	26 <i>4</i>	2801.13	5-
		1479.0 2	95 6	2605.20	4+
		1545.2 [@]	36 5	2539.00	5-
		1944.5 <i>10</i>	14 5	2139.59	4+
4112.38	(3,4,5)	738.00 ^{&} 10		3374.37	$(3^-,4,5^-)$
		835.5 <mark>&</mark> 5		3277.01	$(3^-,4,5^-)$
4155.5	(3,4,5)	781.1 <i>4</i>	100	3374.37	$(3^-,4,5^-)$
4206.1	$(3,4,5^{-})$	1173.5 ^b 5	32 8	3032.77	3-
		1532.2 ^b 10	20 8	2673.7	
		1750.2 3	100 9	2455.88	3-
4208.17	$(3^-,4,5^-)$	781.7 [@] b		3426.47	
		931.2 <i>I</i>	73 4	3277.01	$(3^-,4,5^-)$
		1209.0 ^b 10	5 3	2998.4	
		1218.2 <i>4</i>	23 4	2989.67	5-
		1406.8 2	72 3	2801.13	5-
4227.0	(7.9±)	1752.4 2	100 5	2455.88	3 ⁻
4237.0	$(7,8^+)$	1349.1 <i>5</i> 1426.3 <i>6</i>	100 <i>18</i> 85 27	2887.79 2810.80	8 ⁺ 6 ⁺
4207.0	(2- 45-)	1318.6^{b} 5	03 27	2989.67	5-
4307.9	$(3^-,4,5^-)$				
		1506.8		2801.13	5-
1007 ((2.4+)	1851.9 ^b 3	100	2455.88	3-
4335.6	$(3,4^+)$	3278.5 4	100	1057.03	2 ⁺ 8 ⁺
4348.3		957.6 <i>4</i>	100	3390.70	0

γ (88Zr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	${\mathbb E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments
4348.3 4388.34	(7,8+)	1134.6 [@] 997.6 <i>3</i> 1174.7 <i>5</i>	93 <i>14</i> 100 <i>11</i>	3213.70 3390.70 3213.70	8+				
4413.07	10+	1022.3 2	100 77	3390.70		E2		6.38×10 ⁻⁴	$\alpha(K)$ =0.000563 8; $\alpha(L)$ =6.25×10 ⁻⁵ 9; $\alpha(M)$ =1.083×10 ⁻⁵ 16; $\alpha(N)$ =1.536×10 ⁻⁶ 22 $\alpha(O)$ =1.073×10 ⁻⁷ 15 B(E2)(W.u.)>15
		1525.14 ^b 20	1.80 25	2887.79	8+	(E2)		3.66×10 ⁻⁴	$\alpha(K)=0.000241 \ 4; \ \alpha(L)=2.63\times10^{-5} \ 4; \ \alpha(M)=4.56\times10^{-6}$ $7; \ \alpha(N)=6.48\times10^{-7} \ 9; \ \alpha(O)=4.60\times10^{-8} \ 7$ $B(E2)(W.u.)>0.037$
4461.88	(7,8+)	1071.2 [@] 1247.8 5 1573.9 3 1651.6 4	87 33 44 13 100 13 91 13	3390.70 3213.70 2887.79 2810.80	(6 ⁺) 8 ⁺				2(22)(
4486.31	(9-)	1002.67 7	100 4	3483.63		(E2)		6.67×10 ⁻⁴	$\alpha(K)$ =0.000588 9; $\alpha(L)$ =6.54×10 ⁻⁵ 10; $\alpha(M)$ =1.134×10 ⁻⁵ 16; $\alpha(N)$ =1.607×10 ⁻⁶ 23 $\alpha(O)$ =1.121×10 ⁻⁷ 16
		1095.61 12	67 3	3390.70	8+	(E1)		2.43×10 ⁻⁴	$\alpha(K)$ =0.000215 3; $\alpha(L)$ =2.33×10 ⁻⁵ 4; $\alpha(M)$ =4.03×10 ⁻⁶ 6; $\alpha(N)$ =5.73×10 ⁻⁷ 8; $\alpha(O)$ =4.07×10 ⁻⁸ 6 I_{γ} : from 74 Ge(18 O,4n $_{\gamma}$).
4612.29	9+	199.19 ^b 10	1.9 5	4413.07	10+	M1(+E2)	-0.2 +3-9	0.03 3	α(K)=0.03 3; α(L)=0.003 4; α(M)=0.0006 7; α(N)=8.Ε-5 9; α(O)=6.Ε-6 5 B(M1)(W.u.)>0.00025
		1221.70 14	100 3	3390.70	8+	(M1+E2)	-0.25 7	4.50×10 ⁻⁴	$\alpha(K)=0.000390 \ 6; \ \alpha(L)=4.26\times10^{-5} \ 6; \ \alpha(M)=7.38\times10^{-6} \ 11; \ \alpha(N)=1.050\times10^{-6} \ 15; \ \alpha(O)=7.52\times10^{-8} \ 11 \ B(E2)(W.u.)>0.0014; \ B(M1)(W.u.)>6.1\times10^{-5} \ \delta: \ \text{from} \ \gamma(\theta) \ ^{86}Sr(\alpha,2n\gamma). \ \text{Others:} \ -0.7 \ 3 \ \text{from} \ ^{74}Ge(^{18}O,4n\gamma), \ -0.3 \ 2 \ \text{from} \ ^{89}Y(\alpha,p4n\gamma).$
		1724.49 ^b 20	4.1 9	2887.79	8+	M1(+E2)	+0.05 8	3.73×10 ⁻⁴	$\alpha(K)$ =0.000195 3; $\alpha(L)$ =2.12×10 ⁻⁵ 3; $\alpha(M)$ =3.68×10 ⁻⁶ 6; $\alpha(N)$ =5.24×10 ⁻⁷ 8; $\alpha(O)$ =3.76×10 ⁻⁸ 6 B(M1)(W.u.)>9.7×10 ⁻⁷
4672.7 4713.08	(3 ⁻ ,4,5) 10 ⁻	1871.5 <i>3</i> 100.79 <i>2</i>	100 100.0 24	2801.13 4612.29		E1		0.1110	$\alpha(K)$ =0.0978 14; $\alpha(L)$ =0.01106 16; $\alpha(M)$ =0.00191 3; $\alpha(N)$ =0.000265 4; $\alpha(O)$ =1.682×10 ⁻⁵ 24 B(E1)(W.u.)=0.000102 9 δ : $\delta(M2/E1)$ =-0.02 4.
		226.62 28	24.6 23	4486.31	(9-)	(M1+E2)	-0.05 3	0.0226	$\alpha(\text{K})=0.0199 \ 3; \ \alpha(\text{L})=0.00227 \ 4; \ \alpha(\text{M})=0.000395 \ 7;$ $\alpha(\text{N})=5.59\times10^{-5} \ 9; \ \alpha(\text{O})=3.90\times10^{-6} \ 6$ B(E2)(W.u.)=0.008 +10-8; B(M1)(W.u.)=0.000142 18 δ: weighted average of -0.09 5 from ⁷⁴ Ge(¹⁸ O,4nγ) and -0.03 3 from ⁸⁹ Y(α,p4nγ).

 ∞

γ (88Zr) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	\mathbf{E}_f J	f_f^{π} Mult. \ddagger	δ^{\ddagger}	α	Comments
4713.08	10-	299.90 13	9.4 8	4413.07 10	+ E1		0.00486	$\alpha(K)=0.00429 \ 6; \ \alpha(L)=0.000475 \ 7;$ $\alpha(M)=8.21\times10^{-5} \ 12; \ \alpha(N)=1.159\times10^{-5} \ 17;$ $\alpha(O)=7.92\times10^{-7} \ 12$ $B(E1)(W.u.)=3.6\times10^{-7} \ 5$ δ : $\delta(M2/E1)=+0.2 \ 5.$
4797.63	11-	84.55 2	100.0 23	4713.08 10	- M1(+E2)	-0.02 6	0.325 12	$\alpha(K)$ =0.285 9; $\alpha(L)$ =0.0333 19; $\alpha(M)$ =0.0058 4; $\alpha(N)$ =0.00082 5; $\alpha(O)$ =5.62×10 ⁻⁵ 15 B(M1)(W.u.)=0.48 5
		384.56 10	18.1 <i>10</i>	4413.07 10	+ E1		0.00251	Mult.: Other: (E1) proposed in 89 Y(α ,p4n γ). α (K)=0.00221 4; α (L)=0.000244 4; α (M)=4.22×10 ⁻⁵ 6; α (N)=5.97×10 ⁻⁶ 9; α (O)=4.13×10 ⁻⁷ 6 B(E1)(W.u.)=1.44×10 ⁻⁵ 15 δ : δ (M2/E1)=-0.03 4.
4934.5	(7,8+)	546.1 5	29 7	4388.34 (7,	8 ⁺) (E2)		0.00323	$\alpha(K)=0.00284 \ 4; \ \alpha(L)=0.000328 \ 5;$ $\alpha(M)=5.70\times10^{-5} \ 9; \ \alpha(N)=8.00\times10^{-6} \ 12;$ $\alpha(O)=5.33\times10^{-7} \ 8$
		586.1 5		4348.3				
5087.9	(7,8+)	1543.8 [@] 1720.8 <i>4</i> 2277.1 <i>3</i>	100 <i>12</i> 84 <i>10</i> 100	3390.70 8 ⁺ 3213.70 (6 ⁺ 2810.80 6 ⁺	+)			
5166.2?	(10,11,12)	368.6 ^b 4	100	4797.63 11	_			
5229.47	12+	816.40 7	100.0 25	4413.07 10	+ E2		1.09×10^{-3}	$\alpha(K)=0.000962 \ 14; \ \alpha(L)=0.0001081 \ 16;$ $\alpha(M)=1.87\times10^{-5} \ 3; \ \alpha(N)=2.65\times10^{-6} \ 4;$ $\alpha(O)=1.83\times10^{-7} \ 3$ B(E2)(W.u.)=6.7 7
5583.85	12-	786.11 7	100.0 9	4797.63 11	- M1(+E2)	0.00 4	1.14×10 ⁻³	$\alpha(K)=0.001003 \ 14; \ \alpha(L)=0.0001104 \ 16; \ \alpha(M)=1.92\times10^{-5} \ 3; \ \alpha(N)=2.73\times10^{-6} \ 4; \ \alpha(O)=1.94\times10^{-7} \ 3$ B(M1)(W.u.)>0.065 δ : Other: $-0.3 \ 1$ from $\gamma(\theta)$ in $^{89}Y(\alpha, p4n\gamma)$.
5665.91	12+	436.49 7	100	5229.47 12	+ M1(+E2)	<0.16	0.00443	$\alpha(K) = 0.0391 \ 6; \ \alpha(L) = 0.000437 \ 7;$ $\alpha(M) = 7.59 \times 10^{-5} \ 12; \ \alpha(N) = 1.078 \times 10^{-5} \ 17;$ $\alpha(O) = 7.61 \times 10^{-7} \ 12$ $\alpha(E_2)(W.u.) < 1.9 \times 10^2; \ B(M_1)(W.u.) > 0.59$
5787.2	(7,8,9)	2396.5 5	100	3390.70 8+				
5950.75	(13)+	285.19 20	3.8 4	5665.91 12	+ M1(+E2)	<0.14	0.01267 22	$\alpha(K)$ =0.01116 20; $\alpha(L)$ =0.001264 24; $\alpha(M)$ =0.000220 4; $\alpha(N)$ =3.12×10 ⁻⁵ 6; $\alpha(O)$ =2.18×10 ⁻⁶ 4 B(M1)(W.u.)>0.29
		366.5 ^b 4	18 <i>10</i>	5583.85 12	_			Z. William L. L.

γ (88Zr) (continued)

						<u>γ</u>	(**Zr) (conti	nuea)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments
5950.75	(13)+	721.21 14	100.0 29	5229.47	12+	(M1+E2)	-0.10 6	1.38×10 ⁻³	$\alpha(K)$ =0.001216 18; $\alpha(L)$ =0.0001342 19; $\alpha(M)$ =2.33×10 ⁻⁵ 4; $\alpha(N)$ =3.31×10 ⁻⁶ 5; $\alpha(O)$ =2.36×10 ⁻⁷ 4 B(M1)(W.u.)>0.47 δ : weighted average of -0.07 4 from ⁷⁴ Ge(¹⁸ O,4n γ) and -0.20 7 from ⁸⁹ Y(α ,p4n γ).
6000.8?	(13)	417.0 ^b 3	100	5583.85	12-	M1(+E2)	-0.07 12	0.00493 10	$\alpha(K)=0.00435 \ 9; \ \alpha(L)=0.000487 \ 11;$ $\alpha(M)=8.45\times10^{-5} \ 19; \ \alpha(N)=1.20\times10^{-5} \ 3;$ $\alpha(O)=8.47\times10^{-7} \ 16$ $\beta(M1)(W.u.)>0.42$
6032.52?	(12 ⁻)	1234.92 ^b 15	100	4797.63	11-	M1(+E2)	< 0.09	4.42×10 ⁻⁴	$\alpha(K)$ =0.000382 6; $\alpha(L)$ =4.17×10 ⁻⁵ 6; $\alpha(M)$ =7.22×10 ⁻⁶ 11; $\alpha(N)$ =1.028×10 ⁻⁶ 15; $\alpha(O)$ =7.37×10 ⁻⁸ 11
6192.94	13-	160.42 3	15.5 15	6032.52?	(12 ⁻)	M1(+E2)	-0.08 8	0.057 3	$\alpha(K) = 0.0499 \ 24; \ \alpha(L) = 0.0058 \ 4; \ \alpha(M) = 0.00100 \ 7;$ $\alpha(N) = 0.000142 \ 9; \ \alpha(O) = 9.8 \times 10^{-6} \ 4$ $\alpha(E_2)(W.u.) = 8.E + 1 + 16 - 8; \ B(M_1)(W.u.) = 0.28 \ 4$
		608.90 <i>10</i>	54.5 30	5583.85	12-	M1(+E2)	-0.05 14	0.00202	$\alpha(K)$ =0.00178 3; $\alpha(L)$ =0.000198 3; $\alpha(M)$ =3.43×10 ⁻¹ 6; $\alpha(N)$ =4.88×10 ⁻⁶ 8; $\alpha(O)$ =3.46×10 ⁻⁷ 5 B(E2)(W.u.)=0.14 +76-14; B(M1)(W.u.)=0.0182 20
		1395.39 7	100 5	4797.63	11-	E2		3.76×10 ⁻⁴	$\alpha(K)=0.000288 \ 4; \ \alpha(L)=3.16\times10^{-5} \ 5;$ $\alpha(M)=5.47\times10^{-6} \ 8; \ \alpha(N)=7.77\times10^{-7} \ 11;$ $\alpha(O)=5.50\times10^{-8} \ 8$ $\alpha(E)=0.000288 \ 4; \ \alpha(N)=7.77\times10^{-7} \ 11;$
6238.79	(14) ⁺	288.05 4	100.0 9	5950.75	(13)+	(M1+E2)	-0.10 5	0.01236 24	$\alpha(K)$ =0.01088 2 I ; $\alpha(L)$ =0.001233 25; $\alpha(M)$ =0.000214 5; $\alpha(N)$ =3.04×10 ⁻⁵ 6; $\alpha(O)$ =2.13×10 ⁻⁶ 4 B(E2)(W.u.)=1.0×10 ² + II - $I0$; B(M1)(W.u.)=0.74 25 δ : from $\gamma(\theta)$ in 89 Y(α ,p4n γ). Other: <0.11 in 74 Ge(18 O,4n γ).
		1009.25 15	21.7 11	5229.47	12+	(E2)		6.57×10 ⁻⁴	$\alpha(K)=0.000580 \ 9; \ \alpha(L)=6.44\times10^{-5} \ 9;$ $\alpha(M)=1.116\times10^{-5} \ 16; \ \alpha(N)=1.582\times10^{-6} \ 23$ $\alpha(O)=1.105\times10^{-7} \ 16$ $B(E2)(W.u.)=4.1 \ 13$
6501.32	(14)+	550.6 3	100	5950.75	, ,	M1(+E2)	0.00 5	0.00255	$\alpha(K)$ =0.00225 4; $\alpha(L)$ =0.000250 4; $\alpha(M)$ =4.33×10 ⁻¹ 7; $\alpha(N)$ =6.16×10 ⁻⁶ 9; $\alpha(O)$ =4.37×10 ⁻⁷ 7 B(M1)(W.u.)=0.82 16
6578.2 6765.33	(14)-	627.5 <i>5</i> 572.39 <i>20</i>	100 100	5950.75 6192.94	(13) ⁺ 13 ⁻	(M1+E2)	-0.16 7	0.00234	$\alpha(K)=0.00207 \ 3; \ \alpha(L)=0.000229 \ 4; \ \alpha(M)=3.98\times10^{-6} \ 7; \ \alpha(N)=5.66\times10^{-6} \ 9; \ \alpha(O)=4.01\times10^{-7} \ 6$
6826.66	$(15)^{+}$	325.34 10	33.4 14	6501.32	(14) ⁺	M1(+E2)	< 0.09	0.00906	B(E2)(W.u.)>3.0; B(M1)(W.u.)>0.23 α (K)=0.00798 <i>12</i> ; α (L)=0.000899 <i>13</i> ;

γ (88Zr) (continued)

		_ +	_ +	_		+	-4-		_
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments
6826.66	(15)+	587.85 20	100 6	6238.79	(14)+	M1(+E2)	<0.22	0.00220 4	$\alpha(M)=0.0001562\ 23;\ \alpha(N)=2.22\times10^{-5}\ 4$ $\alpha(O)=1.558\times10^{-6}\ 23$ $B(E2)(W.u.)<1.6\times10^{2};\ B(M1)(W.u.)>1.3$ $\alpha(K)=0.00194\ 3;\ \alpha(L)=0.000215\ 4;$ $\alpha(M)=3.74\times10^{-5}\ 6;\ \alpha(N)=5.31\times10^{-6}\ 8;$ $\alpha(O)=3.77\times10^{-7}\ 6$
7228.2	(15)-	462.87 20	100	6765.33	(14)-	M1(+E2)	+0.01 5	0.00383	B(E2)(W.u.)<1.5×10 ² ; B(M1)(W.u.)>0.61 α (K)=0.00338 5; α (L)=0.000377 6; α (M)=6.55×10 ⁻⁵ 10; α (N)=9.30×10 ⁻⁶ 14; α (O)=6.58×10 ⁻⁷ 10
7431.9		605.2 3	100	6826.66	(15)+	D(+Q)	< 0.21		B(M1)(W.u.)>0.28
7536.5	(15 ⁻)	771.1 3	100 12	6765.33		M1(+E2)	0.00 12	1.19×10 ⁻³	$\alpha(K)$ =0.001047 15; $\alpha(L)$ =0.0001153 17; $\alpha(M)$ =2.00×10 ⁻⁵ 3; $\alpha(N)$ =2.85×10 ⁻⁶ 4; $\alpha(O)$ =2.03×10 ⁻⁷ 3
7878.9	(16 ⁻)	342.2 4	100 19	7536.5	(15 ⁻)	M1(+E2)	-0.05 9	0.00798 16	B(M1)(W.u.)>0.15 α (K)=0.00703 14; α (L)=0.000791 17; α (M)=0.000137 3; α (N)=1.95×10 ⁻⁵ 4; α (O)=1.373×10 ⁻⁶ 25
		650.9 4	86 19	7228.2	(15)-	M1(+E2)	-0.14 +20-40	0.00174 6	B(M1)(W.u.)>0.58 α (K)=0.00154 5; α (L)=0.000170 7; α (M)=2.95×10 ⁻⁵ 11; α (N)=4.19×10 ⁻⁶ 15; α (O)=2.98×10 ⁻⁷ 8
8200.2	(17 ⁻)	321.30 20	100	7878.9	(16 ⁻)	M1(+E2)	0.00 3	0.00931 14	B(M1)(W.u.)>0.068 α (K)=0.00820 12; α (L)=0.000924 13; α (M)=0.0001606 23; α (N)=2.28×10 ⁻⁵ 4 α (O)=1.603×10 ⁻⁶ 23
8925.2	(18 ⁻)	724.85 20	100	8200.2	(17-)	M1(+E2)	-0.09 14	1.36×10 ⁻³ 2	B(M1)(W.u.)=2.2 +8-22 α (K)=0.001202 18; α (L)=0.0001326 20; α (M)=2.30×10 ⁻⁵ 4; α (N)=3.27×10 ⁻⁶ 5; α (O)=2.33×10 ⁻⁷ 4
9912.6?	(19 ⁻)	987.35 ^b 20	93 17	8925.2	(18-)	M1(+E2)	-0.11 16	6.91×10^{-4}	B(M1)(W.u.)>0.19 α (K)=0.000611 9; α (L)=6.70×10 ⁻⁵ 10; α (M)=1.161×10 ⁻⁵ 17; α (N)=1.653×10 ⁻⁶ 24 α (O)=1.181×10 ⁻⁷ 17
		1712.50 ^b 20	100 7	8200.2	(17 ⁻)	E2		3.90×10 ⁻⁴	B(E2)(W.u.)>0.83; B(M1)(W.u.)>0.016 α (K)=0.000192 3; α (L)=2.09×10 ⁻⁵ 3; α (M)=3.63×10 ⁻⁶ 5; α (N)=5.16×10 ⁻⁷ 8; α (O)=3.67×10 ⁻⁸ 6 B(E2)(W.u.)<1.2
10557.3?	(20)	644.7 <mark>b</mark> 7	100		(19^{-})		< 0.25		_ (/(/) -1.2

γ (88Zr) (continued)

Comments 11199.7? (21) 642.4^b 7 100 10557.3? (20) D(+Q) -0.3 +4-9 0.00184 6 $\alpha(K)=0.00160 \ 11; \ \alpha(L)=0.00018 \ 1$

- † Weighted averages of all decay and reaction data. ‡ From $\gamma(\theta)$ and linear polarization in $^{74}Ge(^{18}O,4n\gamma),$ except where noted. $^{\sharp}$ Total I($\gamma+ce)$ branching ratio from $^{89}Y(p,2n\gamma).$
- [®] From level-energy difference.
- & Multiply placed.
- ^a Multiply placed with undivided intensity.
- ^b Placement of transition in the level scheme is uncertain.

Legend

γ Decay (Uncertain)

Level Scheme

Intensities: Relative photon branching from each level

(21) 0.22 ps 14 (20) _ <u>10557.3</u> $\leq\!\!0.1\;ps$ (19^{-}) _ _9912.6 >0.7 ps (18^{-}) 8925.2 <0.3 ps (17^{-}) 8200.2 0.3 ps +4-1 (16^{-}) 7878.9 ≤0.50 ps (15^{-}) ≤0.33 ps 7536.5 7431.9 0.10 ps 3 (15) 7228.2 ${\leq}0.8~ps$ $(15)^{+}$ 0.10 ps 2 6826.66 (14) 6765.33 ≤0.49 ps 6578.2 (14) 0.16 ps 3 6501.32 $(14)^{-}$ 6238.79 1.0 ps 3 13⁻ (12⁻) (13)⁻ (13)⁺ 6192.94 6032.52 1.70 ps 14 <0.7 ps <0.10 ps 6000.8 5950.75 (7,8,9) 5787.2 12+ 0.28 ps 10 <0.7 ps 5665.91 5583.85 5229.47 10 ps 1 12⁺ (10,11,12) 5166.2 0.66 ps 14 4797.63 50 ps 4 11-10+ 4413.07 <1.4 ps 3390.70 21 ps 1 0.0 83.4 d *3*

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. K. Basu, E. A. Mccutchan	NDS 165,1 (2020)	1-Mar-2020

 $\begin{array}{lll} Q(\beta^-) = -6111 \ 3; \ S(n) = 11968 \ 3; \ S(p) = 8353.2 \ 16; \ Q(\alpha) = -6674.3 \ 612 & 2017Wa10 \\ S(2n) = 21286 \ 5; \ S(2p) = 15428.86 \ 12 \ (2017Wa10). & \end{array}$

 α : Additional information 1.

90Zr Levels

Cross Reference (XREF) Flags

Α	90 Y β^{-} decay (64.00 h)	N	90 Zr(α,α')	Other	rs:
В	90 Y β^{-} decay (3.19 h)	0	$^{91}\mathrm{Zr}(^{3}\mathrm{He},\alpha)$	AA	90 Zr(e,e')
C	90 Nb ε decay	P	89 Y(p, γ)	AB	92 Zr(p,t)
D	⁹⁰ Zr IT decay (809.2 ms)	Q	90 Zr(e,e'p),(γ ,p)	AC	91 Zr(d,t)
E	76 Ge(18 O,4n γ)	R	90 Zr(γ ,n)	AD	88 Sr(3 He,n)
F	87 Sr(α ,n γ)	S	89 Y(p,n),(p,n γ)	AE	88 Sr(16 O, 14 C),(12 C, 10 Be)
G	89 Y(3 He,d)	T	89 Y(p,p),(pol p,p)	AF	90 Zr(n,n')
H	90 Zr(t,t')	U	89 Y(p,p'),(p,p' γ)	AG	92 Zr(α , ⁶ He)
I	91 Zr(p,d)	٧	90 Zr(p,p')	AH	94 Mo(d, 6 Li)
J	90 Zr(3 He,dp)	W	90 Zr(p,p' γ)	ΑI	92 Mo(14 C, 16 O)
K	89 Y(d,n)	X	90 Zr(n,n' γ)	AJ	Coulomb excitation
L	90 Zr(d,d')	Y	93 Nb(p, α)	AK	90 Zr(17 O, 17 O'),(17 O, 17 O' γ)
M	90 Zr(3 He, 3 He')	Z	90 Zr (γ, γ')	AL	208 Pb(90 Zr, 90 Zr' γ)
	$T_{1/2}^{\ddagger}$ XI	REF			Comments

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$	XREF		Comments
0	0+	stable	ABCDEFGHIJKLMNOP	VWXYZ	XREF: Others: AA, AB, AC, AD, AE, AF, AG, AH, AI, AJ, AK
1760.74 <i>14</i>	0+	61.3 ns 25	A CDE GH KL P	VWXY	XREF: Others: AB, AC, AD, AF, AH, AI, AK, AL T _{1/2} : from delayed coincidence in ⁹⁰ Zr(p,p'e). Other: 62 ns <i>4</i> (1959K146).
2186.273 14	2+	87.9 fs 2 <i>1</i>	A CDEF HIJ LMNOP	VWXYZ	J ^π : E0 1760.7 transition to 0 ⁺ . XREF: Others: AA, AB, AE, AF, AG, AH, AI, AJ, AK, AL μ =2.5 4 $T_{1/2}$: from DSA measurements following projectile Coulomb excitation using 90 Zr (2000Ja11). Others: 87.0 fs 28 from (e,e') Coulomb excitation (1984He02), 93 fs 5 from nuclear resonance fluorescence (1972Me04), 82 fs +16-12 from Doppler-Shift Attenuation in 89 Y(p,γ) (1993Sa38) and 86.6 fs +49-42 from 90 Zr(n,n'γ)
2319.000 9	5-	809.2 ms <i>20</i>	BCDEFGH KL N P	VWXY	(2013Pe16). μ: from Transient Field Integral Perturbed Angular Correlation (2000Ja11,2014StZZ). J ^π : E2 2186γ to 0 ⁺ . XREF: Others: AB, AE, AG, AH, AK, AL %IT=100 μ=6.25 13 T _{1/2} : from (n,n'γ). μ: From Nuclear Magnetic Resonance on Oriented Nuclei (1987Ed02,1987Ra17,2014StZZ).
2739.29 5	(4)-		C EFG I K M O		J ^π : E5 2319.0γ to 0 ⁺ . XREF: Others: AK, AL J ^π : 2252.9γ from 2 ⁻ , 420.3γ to 5 ⁻ .
2747.875 16	3-	15.2 ps 28	C EF H J L N P	VWX	XREF: Others: AB, AE, AG, AH, AI, AK, AL

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	XREF		Comments
					μ =3.0 2
					μ: From Nuclear Magnetic Resonance on Oriented Nuclei (2000Ja11,2014StZZ).
3076.925 <i>15</i>	4+		C EF HI L NOP	VWXY	J^{π} : E3 2747.5 γ to 0 ⁺ . XREF: Others: AA, AE, AF, AH, AK, AL J^{π} : E2 890.6 γ to 2 ⁺ .
3308.10 8	2+	67.9 fs +42-35	F HI L NOP	VWXYZ	XREF: Others: AA, AE, AF, AG, AH, AK, AL $T_{1/2}$: from measurement with metallic sample in $(n,n'\gamma)$ (2013Pe16). Others: 69 fs 13 from Coul. ex. in (e,e') (1984He02), 72 fs 21 from nuclear resonance fluorescence (1974Me13), 96 fs $+6-5$ from Doppler-Shift Attenuation in 89 Y(p, γ) (1993Sa38), and 97 fs 14 from Doppler-Shift Attenuation in 90 Zr(n,n' γ) (1993BeZL).
3448.230 <i>14</i>	6+	>1.46 ps	C EF H L N	V XY	J ^π : E2 3308.1γ to 0 ⁺ . XREF: Others: AA, AH, AK, AL
3557 5			т		J^{π} : E2 371.3 γ to 4 ⁺ . E(level): From ⁹¹ Zr(p,d).
3589.418 <i>15</i>	8+	131 ns 4	I C EF H	V XY	XREF: Others: AA, AH, AL
3842.34 <i>11</i> 3932.4 <i>6</i>	2+	15.1 fs <i>12</i>	HI LMNOP	VWXYZ	Q=-0.51 3; μ =+10.84 6 $T_{1/2}$: weighted average of 125 ns 6 from delayed coincidence in 90 Nb ε decay (1964Lo02) and 134 ns 4 from γ (t) (1977Ha49). Q: from time-differential Perturbed Angular Distribution (1977Ha49,1989Ra17,2014StZZ). μ : from time-differential Perturbed Angular Distribution, corrected for diamagnetic shift and Knight shift (1985Ra09,1989Ra17,2014StZZ). J^{π} : E2 141.2 γ to 6 ⁺ . XREF: Others: AA, AG, AH, AL $T_{1/2}$: weighted average of 15.1 fs 9 from Coul. ex. in (e,e') (1984He02), 19.0 fs 27 from nuclear resonance fluorescence, $\Gamma_{\gamma 0}/\Gamma_{\gamma}$ =1 was assumed, 14 fs +6-4 from Doppler-Shift Attenuation in 89 Y(p, γ) (1993Sa38), 10 fs 3 from Doppler-Shift Attenuation in 90Zr(n,n' γ) (1993BeZL) and 24 fs 5 from DSA measurements in (n,n' γ) (2003Ga23). J^{π} : E2 3842 γ to 0 ⁺ .
3958.59 10	5-	33 fs 6	H L N	V XY	XREF: Others: AA, AH J^{π} : from DWBA analysis of $\sigma(\theta)$ in (e,e'), $L(p,p')=5$.
4058.07 <i>9</i> 4124.49 <i>14</i>	4 ⁺ 0 ⁺	0.12 ps +6-4	H N P	V X V XY	XREF: Others: AA, AL XREF: Others: AB, AG, AH J^{π} : from $L(p,p')=0$, $L(p,t)=0$.
4223 ^{&} 2	$(2)^{+}$		HI L	Y	XREF: Others: AA, AK J^{π} : from L(d,d')=2.
4225.35 12	(4-)	20 fs 5	K N	X	XREF: Others: AA J^{π} : (M1+E2) 1905.5 γ to 5 ⁻ , 1478.0 γ to 3 ⁻ .
4229.05 9	2+	27 fs 3	G	X	XREF: Others: AA, AG J^{π} : E2 4229.3 γ to 0^{+} .
4232.220 24	(6-)	45 fs +37–19	C P	V X	XREF: Others: AB J^{π} : (M1+E2) 1913.19 γ to 5 ⁻ , feeding from 8 ⁺ parent in ⁹⁰ Nb ε decay.

90Zr Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡		2	XREF		Comments
4236.96 <i>10</i> 4262.37 <i>8</i>	(1,2 ⁺) (3 ⁺)	104 fs 21 0.28 ps +13-7				WX X	J^{π} : 2476.2 γ to 0 ⁺ . J^{π} : (M1+E2) 1185.6 γ to 4 ⁺ , (M1+E2) 2076.2 γ to 2 ⁺ .
4299.12 <i>11</i>	(5 ⁻)	31 fs 6				X	J^{π} : (M1+E2) 1908.1γ to 5 ⁻ , (M1+E2) 1559.9γ to (4) ⁻ .
4305 [@] 6 4319.2? <i>3</i>	4+		С	HI	N	V Y	J ^{π} : from L(α , α')=4. XREF: Others: AH
4331.93 9	4+	37 fs 6			NO	V X	XREF: Others: AA, AB, AG J^{π} : from L(p,t)=4. Suggested to be the 4 ⁺ member of the configuration= $((v \ 1g_{9/2})^{-1}(v \ d_{5/2}))$ multiplet.
4348.10 <i>13</i>	(4 ⁺)	29 fs 7			LM	X	J^{π} : shape of excitation function consistent with J=4 in $(n,n'\gamma)$, 2161.9 γ to 2 ⁺ .
4375.07 6	7-		С	Н	N	V XY	XREF: Others: AL J^{π} : from $L(\alpha, \alpha')=7$.
4426.43 <i>13</i>	0+	0.20 ps +24-8		K	P	V XY	XREF: Others: AB, AH J^{π} : from L(p,t)=0.
4454.71 10	(5+)			HI	0	XY	XREF: Others: AA J^{π} : shape of excitation function in $(n,n'\gamma)$ consistent with J=4 or 5; $L(^{3}He,\alpha)=(4)$ and suggested to be the 5^{+} member of the configuration= $((v \ 1g_{9/2})^{-1}(v \ d_{5/2}))$ multiplet.
4455.58 <i>10</i> 4474.31 <i>14</i>	(2) 4 ⁺	0.14 ps +5-3 0.15 ps +18-6			N	V XY V XY	J ^{π} : D+Q 1707.9 γ to 3 $^{-}$. XREF: Others: AA J ^{π} : from comparison of DWBA calculations to $\sigma(\theta)$ in (e,e').
4494.79 12	(3 ⁻)	42 fs 8				v x	J^{π} : D+Q 1755.5 γ to (4) ⁻ , 1747.2 γ to 3 ⁻ , L(p,p')=(3).
4500 ^f 15 4507.0 8	0+,1+,2+			G		Z	J^{π} : from L(³ He,d)=1.
4533.52 <i>10</i> 4537.70 <i>11</i>	(3 ⁻) (4 ⁻)	69 fs +35-28 0.13 ps +7-5		HI K		X XY	J^{π} : (M1+E2) 1794.2 γ to (4) ⁻ , 2347.3 γ to 2 ⁺ . XREF: Others: AG, AH J^{π} : (M1+E2) 2218.7 γ to 5 ⁻ .
4541.37 <i>3</i>	6+	59 fs +17-12	С		NO	v x	XREF: Others: AA, AB J ^{π} : from L(p,t)=6; suggested to be the 6 ⁺ member of the configuration= $((v \ 1g_{9/2})^{-1}(v \ d_{5/2}))$ multiplet.
4562.02 <i>14</i>	5	0.14 ps +10-4		GΙ		X	XREF: Others: AA J^{π} : shape of excitation function in $(n,n'\gamma)$ consistent with J=5.
4578.93 <i>13</i>	(1)	5.1 fs 20			P	X Z	$T_{1/2}$: other=8.7 fs +13-9 from DSA in ⁸⁹ Y(p, γ). J^{π} : population in (γ , γ ').
4591.37 10	(3+)	0.14 ps +4-3		Н	0	v x	J^{π} : shape of excitation function in $(n,n'\gamma)$ consistent with J=5;ssuggested to be the 3 ⁺ member of the configuration= $((v \ 1g_{9/2})^{-1}(v \ d_{5/2}))$ multiplet in $(^{3}He,\alpha)$.
4614.42 <i>13</i>	(6 ⁺)					X	J^{π} : shape of excitation function in $(n,n'\gamma)$ consistent with J=6, 1537.6 γ to 4 ⁺ .
4640.94 <i>4</i>	7,8		С			X	J^{π} : feeding from 8 ⁺ parent in ⁹⁰ Nb beta decay, 1192.7 γ to 6 ⁺ .
4646.7 <i>3</i>	1,2+	5 fs 4		GHI	P	V X	XREF: Others: AG, AH J^{π} : 4646.6 γ to 0^{+} .
4681.26 <i>12</i>	2+	31 fs 7			NOP	V X	XREF: Others: AA, AB, AK

90Zr Levels (continued)

E(level) [†]	${ m J}^{\pi}$	T _{1/2} ‡	XREF		Comments
4701.10 <i>10</i>	2+	46 fs 7		x	J ^π : E2 4680.8 γ to 0 ⁺ ; suggested to be the 2 ⁺ member of the configuration=((ν 1g _{9/2}) ⁻¹ (ν d _{5/2})) multiplet in (³ He,d). J ^π : E2 2940.6 γ to 0 ⁺ .
4710 [@] 6	L	10 13 /		٧	E(level): possibly the same as the 4701 level. $L(p,p')=2$ would be consistent with J^{π} of 4701 level.
4774.29 <i>13</i> 4781.81 <i>20</i>	4,(3 ⁻)	14 fs +22-13	G	V X	J^{π} : shape of excitation function in $(n,n'\gamma)$
4795.6 <i>3</i>	2+	7 fs +6-3	HI	X	consistent with J=3 or 4; 2462.8 γ to 5 ⁻ . XREF: Others: AH J ^{\pi} : E2 4795.5 γ to 0 ⁺ .
4814.44 <i>11</i>	(3-)			X	XREF: Others: AB J^{π} : from L(p,t)=3, assuming the 4814 level corresponds to that observed in (p,t).
4818.02 <i>12</i>	(3,4+)	0.14 ps +19-7	N	X	XREF: Others: AB, AG J^{π} : shape of excitation function in $(n,n'\gamma)$ consistent with J=3 or 4, 975.8 γ to 2 ⁺ .
4824.21 <i>13</i> 4840.27 <i>14</i>	2 ⁺ 5 ⁻	40 fs +10-8 83 fs +28-14		V X X	J^{π} : L(p,t)=2; 1747.2 γ to 4 ⁺ , 4823.9 γ to 0 ⁺ . J^{π} : shape of excitation function in (n,n' γ) consistent with J=5, 2092.7 γ to 3 ⁻ .
4849 [@] 6 4867.47 <i>12</i>	5 ⁺	0.14 ps +5-4		V X	J^{π} : shape of excitation function in $(n,n'\gamma)$ consistent with J=5, M1+E2 1790.7 γ to 4 ⁺ .
4875 [@] 6 4932.6 4 4941.89 13 4992.36 12	1,2 ⁺ (4 ⁺)	0.18 ps +35-11 49 fs 10 0.21 ps +13-6	N GI P	V X V X V X	J^{π} : 4932.5 γ to 0 ⁺ . J^{π} : from $L(\alpha, \alpha')=4$.
5059.975 21	7+	0.21 ps +13=0	C I NO	VX	XREF: Others: AA, AB J^{π} : E3 2741 γ to 5 ⁻ , E1 827.7 γ to 6 ⁻ ; suggested to be the 7 ⁺ member of the configuration=((ν 1g _{9/2}) ⁻¹ (ν d _{5/2})) multiplet in (³ He, α).
5068.6 <i>6</i>	1,2+	7 fs +13-6		X	J^{π} : 5068.4 γ to 0 ⁺ .
5084.03 14	2,3	46 fs +12-10	G K	V X	XREF: Others: AA J^{π} : shape of excitation function in $(n,n'\gamma)$ consistent with J=2 or 3.
5090.30 23	(3-)		G I P	XY	J^{π} : shape of excitation function in $(n,n'\gamma)$ consistent with J=3.
5107.92 21	(3),4+	0.07 ps +4-3	Н Р	X	XREF: Others: AB, AG J^{π} : 2368.6 γ to (4) ⁻ , 2921.7 γ to 2 ⁺ .
5112.6 14	3-		N	V X	J^{π} : from $L(\alpha, \alpha') = 3$.
5164.484 <i>23</i> 5171.90 <i>16</i>	(8) ⁺ (4)	23 fs +8-6	C E	X	J^{π} : (E2) 1717.3 γ to 6 ⁺ , M1,E2 1575.0 γ to 8 ⁺ . J^{π} : shape of excitation function in $(n,n'\gamma)$ consistent with J=4.
5175.8 <i>3</i>	3,4+	22 fs +2 <i>I</i> -8	G	V X Z	J ^{π} : shape of excitation function in (n,n' γ) consistent with J=3 or 4, 2989.5 γ to 2 ⁺ .
5183.61 <i>18</i> 5222.97 <i>23</i>	1,2 ⁺ (4 ⁺)	6.9 fs <i>35</i>	P H N	$\begin{array}{ccc} & X & Z \\ V & X \end{array}$	J^{π} : 5183.2 γ to 0 ⁺ . J^{π} : from L(p,p')=4.
5232.3 3		34.0 fs 28		X	
5247.52 <i>4</i> 5270.74 <i>20</i>	9+	<28 ^g ps 17 fs +53-16	C E	X	J^{π} : E2(+M1) 1658.1 γ to 8 ⁺ .
5275.4 <i>10</i> 5305.97 <i>20</i>	(2 ⁺) 2 ⁺	0.80 ^h ps +20-11 17 fs 5	P	ΧZ	J^{π} : 5275 γ (E2) to 0 ⁺ . J^{π} : E2 5305.8 γ to 0 ⁺ .

E(level) [†]	J^π	T _{1/2} ‡	X	REF		Comments
5307.75 15	$(3^-,4^+)$	0.07 ps +8-2	G	P	X	J^{π} : 2988.9 γ to 5 ⁻ , 3121.3 γ to 2 ⁺ .
5312.77 20	1,2+	59 fs <i>10</i>		N	V X	XREF: Others: AB
						J^{π} : 5312.6 γ to 0 ⁺ .
5317.7 3	3-	0.19 ps +11-6		0	X	XREF: Others: AB, AH
5359.22 19	3,4	22.9 fs 28			X	J^{π} : from L(p,t)=3. J^{π} : shape of excitation function in (n,n' γ)
5379.8 <i>3</i>	(4 ⁺)	20 fs 4	Н	N	v x	consistent with J=3 or 4. J^{π} : from L(p,p')=L(α,α')=4.
5426.01 <i>13</i>	3-	52 fs +19-14	C G I	IV	X	XREF: Others: AH
0.20.01 10		0210 .17 1.				J^{π} : E2 3106.8 γ to 5 ⁻ , 2118.1 γ to 2 ⁺ .
5432.790 22	7+,8+		С			J^{π} : feeding from 8 ⁺ parent in ⁹⁰ Nb ε decay, M1,E2 1843.3 γ to 8 ⁺ , 1984.5 γ to 6 ⁺ .
5437.33 <i>13</i>	2+	24.3 fs 35			V X	XREF: Others: AG
						XREF: V(5433).
u.						J^{π} : from L(p,p')=2, E2 5436.9 γ to 0 ⁺ .
5441 [#] 5	0_{+}					XREF: Others: AB
5457.70.10	(4+)	115 O f- 20		N.	W W	J^{π} : from L(p,t)=0.
5457.70 18	(4^{+})	115.9 fs 28	Н	N	V X	XREF: $N(5464)V(5462)$. J^{π} : from $L(t,t')=4$.
5504.75 19		7.7 fs 7	I	N	VWX Z	J . HOIII L(t,t)-4.
5513.41 <i>16</i>	(3,4)	0.16 ps +8-6	-		X	XREF: Others: AB
		•				XREF: AB(5507).
						J^{π} : from L(p,t)=3,4.
5564.2 4		7.6 fs 28	I		X	XREF: Others: AH
5582 [@] 6	(3-)	4.500.00		N	V	J^{π} : from $L(\alpha, \alpha') = (3)$.
5590.58 <i>14</i>	2+	15.9 fs 2 <i>1</i>			X	XREF: Others: AB
5601.8 <i>4</i>		24 fs <i>4</i>			X	J^{π} : from $L(p,t)=2$.
5607.6 4		14 fs +9-7	G	MN	X	XREF: Others: AA
5631 [@] 7	3-		ΙK		V	B(E3)↑=0.0068 10 (1975Si21)
,					•	J^{π} : from (e,e').
5644.02 <i>4</i>	10 ⁺	<28 ^g ps	E H			XREF: Others: AH, AL
						J^{π} : E2 2054.6 γ to 8 ⁺ .
5651.1 3		45 fs 5	G		X	
5666 [@] 7	3-			NO	V	J^{π} : from $L(\alpha, \alpha')=3$.
5703 [@] 7					V	
5724.3 4		22 fs 4			X	
5753 [@] 7		24.5 . 21.6	G K		٧	XREF: Others: AA
5775.1 <i>5</i>	-	24 fs +21-6	Н	N	X	
5781 [@] 7	3-				V	XREF: Others: AA
						B(E3) \uparrow =0.00145 22 (1975Si21) J ^{π} : from (e,e'), L(p,p')=3.
5785.0 <i>4</i>					Z	3. Hom (e,c), L(p,p)=3.
5792.05 <i>3</i>	(9^+)		E		_	J^{π} : (M1+E2) 2202.6 γ to 8 ⁺ .
5808 <i>4</i>				0	Z	,
5821.8 6					X	
5829 [@] 7					V	
5846.4 5		14 fs +44-13	G K		Х	
5884.4 <i>4</i>				N	VW Z	
5938 [#] 5			HI	N	V	XREF: Others: AB, AH \sqrt{x} , \sqrt{x} , \sqrt{x} , and \sqrt{x} , \sqrt{x} , \sqrt{x} , and \sqrt{x} , \sqrt{x} , and x
5977 [@] 7					17	J^{π} : L(p,p')=3 and L(p,t)=(1) are in conflict.
					V	
6006 [@] 7					V	

 $^{90}_{40}\mathrm{Zr}_{50}$ -6

$E(level)^{\dagger}$ J^{π} $T_{1/2}^{\ddagger}$ XREF Comments	
6020^f 15 1-,2-,3- G K J ^{π} : L(³ He,d)=L(d,n)=2.	_
6058 [@] 7	
6070^{f} 15 1 ⁻ ,2 ⁻ ,3 ⁻ GH V J ^{π} : L(³ He,d)=2.	
6106 [@] 7	
6128 [@] 7	
6167 [@] 7	
6200^{f} 15 1 ⁻ ,2 ⁻ ,3 ⁻ G K V J ^{π} : L(³ He,d)=2.	
6229 [@] 7	
6250^{f} 15 1 ⁻ ,2 ⁻ ,3 ⁻ G K V J ^{π} : L(³ He,d)=L(d,n)=2.	
6279.70 8 11 ⁺ E J^{π} : E2 1032.2 γ to 9 ⁺ .	
6290 W 6296 3 1 H O Z	
6308 [@] 7	
6320^f 15 1 ⁻ ,2 ⁻ ,3 ⁻ G J ^{π} : L(³ He,d)=2.	
6370^{f} 15 G	
6376.10 5 (10 ⁻) <28 ^g ps E J^{π} : E1(+M2) 818.2 γ from (11 ⁺).	
6389.8 3 1 $Z J^{\pi}$: D 6389.6 γ to 0^{+} .	
6397 [@] 7 G VW	
$6424.3 \ 3 1^{-i}$ H V Z XREF: Others: AK	
6479 [@] V	
6496 [@] 7	
6517 [@] V	
6547 [@] 7 6565.7 3 1 $\mathbf{Z} \mathbf{J}^{\pi}$: D 6565.4 γ to 0 ⁺ .	
6574 $^{\text{W}}$ 7 $^{\text{V}}$ E(level): Unresolved doublet. 6640.1 10 (2 ⁺) 21 ^h fs +7-6 $^{\text{G}}$ P $^{\text{V}}$ J ^{π} : (E2) 6640 γ to 0 ⁺ .	
6669.2 7 1 G K Z J^{π} : D 6668.9 γ to 0 ⁺ .	
6694 [@] V	
6710^{f} 15	
6721.11 5 (10 ⁻) E J^{π} : 1473.7 γ to 9 ⁺ .	
6742 [@] V XREF: Others: AH	
6761.4 2 1^{-i} Z	
6769.51 $I4$ (12 ⁺) E J^{π} : (M1+E2) 489.8 γ to (11 ⁺). 6794 $\frac{\omega}{7}$ V	
6810^f 15 1 ⁻ ,2 ⁻ ,3 ⁻ G K V J ^{π} : L(³ He,d)=2.	
6867 [@] V	
$6876 \ 3 \ 1^{-i} \ G \ Z$	
6895 [@] V	
6924 [@] 8	
5052.4 6 $5053.94 6$ 5	
6960.4 7 1 $Z J^{\pi}$: D 6960.1 γ to 0 ⁺ .	
6974 [@] V	
7000^{f} 15 0-,1- G K V J ^{π} : L(³ He,d)=0.	
7008.63 6 (11 ⁻) E J^{π} : (E1(+(M2)) 1364.7 γ to 10 ⁺ . 7025.59 4 (10 ⁺) E J^{π} : (E2) 1861.4 γ to (8) ⁺ .	
7022.39 4 (10) E J. (E2) 1801.4 γ to (8). 7042.0 7 1 Z J ^{π} : D 7041.7 γ to 0 ⁺ .	

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡		XR	EF			Comments
7047 [@]						V		
7060 [@]						٧		
7085.6 10	(1)						Z	J^{π} : (D) 7085.3 γ to 0 ⁺ .
7089 [@]						٧		
7110 ^f 15	$0^{-},1^{-}$		G	K				J^{π} : from L(³ He,d)=0.
7120 [@]						٧		
7136 [@] 8						٧		
7151 [@]						٧		
7160 ^f 15	1-,2-,3-		G			٧		J^{π} : from L(³ He,d)=2.
7194.35 <i>4</i>	(11^{+})	<28 ps	E					J^{π} : M1+E2 168.8 γ to (10 ⁺).
7198.2 6	1						Z	J^{π} : D 7197.9 γ to 0 ⁺ .
7200 [@]	(4.5)±	7 0 7 0	_			V		77 74 250 260 2
7223.89 6	$(12)^{+}$	59 ps <i>10</i>	E					J^{π} : E1(+M2) 269.9 γ to (11) ⁻ .
7235 [@]						V		
7250 3	1^{-i}		G	K			Z	
7263 [@]						V		
7275 [@]						V	-	
7280.9 <i>7</i> 7350 <i>f</i> 15	1- 2- 2-					77	Z	IT. f I (311- 1) 2
7361.0 6	1 ⁻ ,2 ⁻ ,3 ⁻		G			V	Z	J^{π} : from L(3 He,d)=2. J^{π} : D 7360.8γ to 0 ⁺ .
7378 [@] 8	1					V	2	J. D 7300.87 to 0.
7387.6 4	1					V	Z	J^{π} : D 7387.3 γ to 0 ⁺ .
7402 [@]						V		,
7420^{f} 15			G			V		
7424.5 10							Z	
7433.8 8	1						Z	J^{π} : D 7433.5 γ to 0 ⁺ .
7437.82 7	$(13)^{+}$	2.9^{8} ps 5	E					J^{π} : M1+E2 213.9 γ to (12) ⁺ .
7461 [@] 7468 2						V	7	
7408 <i>2</i> 7474.9 <i>3</i>	(1)						Z Z	J^{π} : (D) 7474.6 γ to 0^{+} .
7480^{f} 15	(1)		G	K			-	3. (D) 1111.07 to 0.
7530^{f} 15			G	K		V		
7580^{f} 15			G			•		
7614 [@]			•			V		
7633 [@]						V		
7649.9 <i>10</i>	(2^{+})	0.55^{h} ps +9-7			P	•		J^{π} : (E2) 7650 γ to 0 ⁺ .
7650^{f} 15	1-,2-,3-	0.55 ps 17 7	G		•			J^{π} : from L(3 He,d)=2.
7685.8 4	1 ,2 ,3		•				Z	J^{π} : D 7685.4 γ to 0 ⁺ .
7702.9 3	1^{-i}						Z	,
7723.1 9						٧	Z	
7750 [@]						٧		
7759.7 6	(1)						Z	J^{π} : (D) 7759.3 γ to 0 ⁺ .
7767 [@]			G			V		
7774 <mark>&</mark> 10				K				XREF: Others: AA
7779.0 6	1						Z	J^{π} : D 7778.6 γ to 0 ⁺ .
7796 [@]	(0 -)					V		
7806 <mark>&</mark> 10	(2^{-})							XREF: Others: AA

90Zr Levels (continued)

78.79 7 1 7.75 8.79 1 7.71 8.72 1 7.71 8.7	E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$		XREF			Comments
### 1877	7840 ^f 15 7857.8 7	1 ⁻ ,2 ⁻ ,3 ⁻ (1)		G	K			J^{π} : D 7807.5 γ to 0 ⁺ . J^{π} : from L(³ He,d)=2.
79076 10		$(1^+,2^-)$				V		
7935.6 3	7907 <mark>&</mark> 10			G		٧		XREF: Others: AA
7996	7935.6 <i>3</i> 7976.6 <i>4</i>					17		
8032	7996 <mark>&</mark> 10	(3-)		G	K	V		J^{π} : from (e,e').
8058.41 8 (14) ⁺ 0.28 ^g ps 14 E 8067.4 5 (1) 8110 3 1-i 8120 f 15 8131 3 (1-) 8144 2 8144 2 8166.7 5 (1) 8221.2 8 1 8235.6 3 1 8250.7 5 1 8291.8 10 2- 8291.8 10 2- 8292.3 10 (1) 8313.0 7 1 8316.8 10 (2-) 8334.1 5 1 8334.1 5 1 8366.8 10 (1+) 8366.8 10 (1+) 837.5 18 1 8382.1 10 (1) 8400.8 10 (2-) 8403.7 11 8413.5 4 1 8440.6 4 1 8440.6 4 1 8447.7 15 880.2 4 1-i 8467.7 15 8810 8 7 XREF: Others: AA 1F: from (e,e'). 2 JF: D 8240.2y to 0 ⁺ . 2 JF: D 8340.0y to 0 ⁺ . 2 JF: D 8340.7y to 0 ⁺ . 2 JF: D 8311.y to 0 ⁺ . 2 JF: D 8381.7y to 0 ⁺ . 2 JF: D 8381.7y to 0 ⁺ . 2 JF: D 8440.2y to 0 ⁺ . 3 JF: from (e,e'). 3 JF: from (e,e'). 3 JF: D 8440.2y to 0 ⁺ . 3 JF: from (e,e'). 3 JF: D 8440.2y to 0 ⁺ . 3 JF: from (e,e'). 3 JF: D 8440.2y to 0 ⁺ . 3 JF: from (e,e'). 3 JF: D 8440.2y to 0 ⁺ . 3 JF: from (e,e'). 3 JF: D 8440.2y to 0 ⁺ . 3 JF: from (e,e'). 3 JF: D 8440.2y to 0 ⁺ . 3 JF: from (e,e'). 3 JF: D 8440.2y to 0 ⁺ . 3 JF: from (e,e'). 3 JF: D 8440.2y to 0 ⁺ . 3 JF: from (e,e'). 3 JF: D 8440.2y to 0 ⁺ . 3 JF: from (e,e'). 3 JF: from (e,e'). 3 JF: D 8440.2y to 0 ⁺ . 3 JF: from (e,e'). 3 JF: from (e,e'). 3 JF: from (e,e'). 3 JF: D 8440.2y to 0 ⁺ . 3 JF: from (e,e'). 3 JF: from (e,e'). 4 JF: from (e,e'). 5 JF: D 8440.2y to 0 ⁺ .				G			Z	XREF: Others: AA
8120	8067.4 5	(1)	0.28 ^g ps <i>14</i>	E				J^{π} : M1+E2 620.6 γ to (13) ⁺ . J^{π} : (D) 8067.0 γ to 0 ⁺ .
8144 2 8166.7 5 (1) 8212.8 1 8235.6 3 1 8250.7 5 1 8276 8 8291 8 8291 10 2- 8292 8 8313.0 7 1 8313.0 7 1 8316 10 (2-) 8334.1 5 1 8368 10 (1+) 8368 10 (1+) 8368 10 (1-) 8382.1 10 (1) 8400 10 (2-) 8382.1 10 (1) 8400 10 (2-) 8413.5 4 1 8413.5 4 1 8440.6 4 1 8442 10 2- 8467.7 15 8501.2 4 1-i 82	8120 ^f 15			G		٧		XREF: Others: AA
8221.2 8 1		(1)				V		
8291	8235.6 <i>3</i>	1 1					Z Z	J^{π} : D 8220.8 γ to 0 ⁺ . J^{π} : D 8235.2 γ to 0 ⁺ .
8295.3 IO (1) Z J^{π} : (D) 8294.9γ to 0^{+} . 8313.0 7 1 Z J^{π} : D 8312.6 γ to 0^{+} . 8316& IO (2-) XREF: Others: AA 8334.1 5 1 Z J^{π} : D 833.7 γ to 0^{+} . 8366& IO (1+) XREF: Others: AA 8382.1 IO (1) Z J^{π} : (D) 8381.7 γ to 0^{+} . 8400& IO (2-) XREF: Others: AA 8403.7 II Z 8413.5 4 1 Y Z 8440.6 4 1 Z J^{π} : D 8413.1 γ to 0^{+} . 8442& IO 2- XREF: Others: AA 8467.7 IS Z 8501.2 4 I^{-i} Z XREF: Others: AA	8276 [@]					٧	-	
8316 $^{\&}$ 10 (2-) XREF: Others: AA 8334.1 5 1 Z J $^{\pi}$: from (e,e'). 8357.5 18 1 Z J $^{\pi}$: D 8357.1y to 0+. 8366 $^{\&}$ 10 (1+) XREF: Others: AA 8382.1 10 (1) Z J $^{\pi}$: (D) 8381.7y to 0+. 8400 $^{\&}$ 10 (2-) XREF: Others: AA 8403.7 11 Z 8413.5 4 1 V Z J $^{\pi}$: D 8413.1y to 0+. 8430 $^{@}$ V 8440.6 4 1 Z J $^{\pi}$: D 8440.2y to 0+. 8442 $^{\&}$ 10 2- XREF: Others: AA 8467.7 15 Z 8501.2 4 1-i XREF: Others: AA XREF: Others: AA XREF: Others: AA XREF: Others: AA XREF: Others: AA								J^{π} : (D) 8294.9 γ to 0 ⁺ .
8357.5 18 1 8366 $\frac{8}{4}$ 10 (1+) 8382.1 10 (1) 8400 $\frac{8}{4}$ 10 (2-) 8403.7 11 8413.5 $\frac{4}{4}$ 1 8440.6 $\frac{4}{4}$ 1 8442 $\frac{8}{4}$ 10 2- 8467.7 15 8501.2 $\frac{4}{4}$ 1 1- $\frac{i}{4}$ 2 J $\frac{\pi}{1}$: D 8357.1 γ to 0+. 2 J $\frac{\pi}{1}$: D 8381.7 γ to 0+. 2 J $\frac{\pi}{1}$: D 8440.2 γ to 0+. 2 J $\frac{\pi}{1}$: D 8440.2 γ to 0+. 2 J $\frac{\pi}{1}$: D 8440.2 γ to 0+. 2 XREF: Others: AA 3 J $\frac{\pi}{1}$: from (e,e').	8316 ^{&} 10						7	XREF: Others: AA J^{π} : from (e,e').
8382.1 10 (1) Z J^{π} : (D) 8381.7γ to 0^{+} . 8400 $^{\&}$ 10 (2 $^{-}$) XREF: Others: AA J^{π} : from (e,e'). 8403.7 11 Z J^{π} : D 8413.1γ to 0^{+} . 8430 $^{@}$ V J^{π} : D 8440.2γ to 0^{+} . 8440.6 J^{π} : D J^{π} : D J^{π} : Others: AA J^{π} : from (e,e'). 8467.7 J^{π} :	8357.5 18	1						J^{π} : D 8357.1 γ to 0 ⁺ . XREF: Others: AA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8382.1 <i>10</i>						Z	J^{π} : (D) 8381.7 γ to 0 ⁺ .
$8430^{\textcircled{\textcircled{@}}}$ V $8440.6\ 4$ 1 Z J^{π} : D 8440.2γ to 0^{+} . $8442^{\textcircled{\textcircled{\&}}}\ 10$ 2^- XREF: Others: AA J^{π} : from (e,e'). Z $8467.7\ 15$ Z $8501.2\ 4$ 1^{-i} Z XREF: Others: AA	8403.7 11					V		J^{π} : from (e,e').
J^{π} : from (e,e'). 8467.7 15 Z XREF: Others: AA	8430 [@]							·
8501.2 4 1^{-i} Z XREF: Others: AA		2-					7	
	8501.2 4	1- <i>i</i>				٧		XREF: Others: AA

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$	XREF		Comments
8518 <i>3</i>				Z	
8542 ^{&} 10	2-			V	XREF: Others: AA J^{π} : from (e,e').
8544 <i>4</i>				Z	(4,0)
8553.5 12	1			Z	J^{π} : D 8553.1 γ to 0 ⁺ .
8588.3 7	1			Z	J^{π} : D 8587.9 γ to 0 ⁺ .
8598.2 10	1			Z	
8625.6 10	1			Z	,
8627 <mark>&</mark> 10	2^{-}				XREF: Others: AA
0664.1.5	1			_	J^{π} : from (e,e').
8664.1 5	1			Z	,
8701 <mark>&</mark> <i>10</i>	(2^{-})				XREF: Others: AA
					J^{π} : from (e,e').
8716.6 5	1^{-i}			Z	T D 0750 5 o+
8751.0 8	1			Z	J^{π} : D 8750.5 γ to 0 ⁺ .
8760.4 5	1			Z	J^{π} : D 8759.9 γ to 0 ⁺ .
8809& <i>10</i>	(2^{-})				XREF: Others: AA
0012 0 12				_	J^{π} : from (e,e').
8812.0 <i>13</i>	1^{j}			Z	
8833.2 8	1 <i>j</i>			Z	
8853 ^{&} 10	2^{-}				XREF: Others: AA
					J^{π} : from (e,e').
8874.9 9	1 ^j			Z	
8882 <mark>&</mark> 10	2-				XREF: Others: AA
				_	J^{π} : from (e,e').
8903.0 8				Z	
8911 <mark>&</mark> <i>10</i>	2-				XREF: Others: AA
0007.4.4				7	J^{π} : from (e,e').
8927.4 4	2-			Z	
8934 <mark>&</mark> <i>10</i>	2-				XREF: Others: AA
8958.13 <i>15</i>	(15)	0.5 ⁸ ps 3	E		J^{π} : from (e,e'). J^{π} : E1 899.7 γ to (14) ⁺ .
8938.13 <i>13</i>	2-	0.5° ps 5	E		
89/100 10	2				XREF: Others: AA J^{π} : from (e,e').
8978.4 9	(1)			Z	J^{π} : (D) 8977.9 γ to 0 ⁺ .
8985 2	(1)			Z	
9004.7 5	1 <i>j</i>			Z	
9014.0 8	-			Z	
9034.0 8				Z	
9043.6 4	1 <i>j</i>			Z	
9053.5 7				Z	
9061 <mark>&</mark> <i>10</i>	2-				XREF: Others: AA
					J^{π} : from (e,e').
9085.1 <i>3</i>	1^{j}			Z	
9101 <mark>&</mark> <i>10</i>	2-				XREF: Others: AA
					J^{π} : from (e,e').
9111.1 6	1 <i>j</i>			Z	
9123.6 7				Z	
9127 <mark>&</mark> <i>10</i>	2-				XREF: Others: AA
					J^{π} : from (e,e').
9137.5 7				Z	

90Zr Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ‡	XREF		Comments
9148.5 <i>3</i>	1^{-i}			Z	XREF: Others: AA
9164.9 7				Z	
9177.5 5				Z	
9187 <i>3</i> 9196.5 <i>3</i>	(1-)			Z Z	J^{π} : (E1) 9196.0 γ to 0 ⁺ .
9260.5 6	1^{j}			Z	J . (E1) 9190.07 to 0 .
9265 & 10	2-			2	XREF: Others: AA
9203 10	2				J^{π} : from (e,e') .
9292.8 <i>5</i>	$1^{\dot{J}}$			Z	
9294 <mark>&</mark> <i>10</i>	2-				XREF: Others: AA
					J^{π} : from (e,e').
9309.4 7	$1^{\dot{J}}$			Z	
9327 <mark>&</mark> <i>10</i>	2-				XREF: Others: AA
					J^{π} : from (e,e').
9333.4 6	1^{-i}			Z	VDEE. Others. At
9373.2 7	1 <i>j</i>			Z	XREF: Others: AA
9392.4 <i>8</i> 9409.4 <i>11</i>	13			Z Z	
9424.3 10				Z	
9444.7 <i>4</i>	$1^{\dot{J}}$			Z	XREF: Others: AA
9465.1 5	$1^{\dot{J}}$			Z	
9486.8 <i>4</i>	$1^{\dot{J}}$			Z	
9489 <mark>&</mark> <i>10</i>	2-				XREF: Others: AA
9510.5 <i>13</i>	(1)			Z	XREF: Others: AA
					J^{π} : (D) 9510.0 γ to 0 ⁺ .
9524.1 <i>13</i>	1^{j}			Z	
9539.2 5	$1^{\hat{J}}$			Z	
9541 <mark>&</mark> <i>10</i>	2-				XREF: Others: AA
9551.4 6	1^{j}			Z	
9563.0 6	1 ^j			Z	
9601 ^{&} 10	$(1^-,2^-)$			7	XREF: Others: AA
9609.2 <i>7</i> 9625.1 8				Z Z	
9640.4 8	1 <i>j</i>			Z	
9666.0 8	(1)			Z	J^{π} : (D) 9665.4 γ to 0 ⁺ .
9678.3 7	(1^{-})			Z	J^{π} : (E1) 9677.7 γ to 0 ⁺ .
9686.9 <i>6</i>	1^{j}			Z	
9694 <mark>&</mark> <i>10</i>	2-				XREF: Others: AA
9707.00? 25	(16 ⁻)	0.49^{8} ps 14	E		J^{π} : (M1+E2) 748.9 γ to (15 ⁻).
9733.2 <i>5</i> 9741.7 <i>7</i>	1 ^j			Z Z	
9754.0 <i>6</i>	1^{j}			Z	
9784.6 5				Z	
9805.4 <i>10</i> 9836.01 <i>18</i>	$(15)^{+}$		E	Z	J^{π} : 1777.6 γ to (14) ⁺ .
9843.4 6	1^{j}		-	Z	υ . Ι///.ο/ το (11) .
9855.5 8	1^{j}			Z	
9863 ^{&} 10	$(1^-,2^-)$				XREF: Others: AA
9872.4 <i>4</i>	1^{j}			Z	The state of the s
70,2.17					

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡		XREF		Comments
9890.7 13	(1)				Z	J^{π} : (D) 9890.1 γ to 0 ⁺ .
9901.9 13	1 i				Z	
9932.1 <i>12</i> 9962.8 <i>5</i>	$\frac{1^{j}}{1^{j}}$				Z	
9962.8 3 9984.1 <i>11</i>	13				Z Z	
10004.2 10	1 <i>j</i>				Z	
10019.6 <i>11</i>	1 <i>j</i>				Z	
10031 2					Z	77 774 400 40 0
10042.9 4	$\binom{1^-}{1^{\boldsymbol{j}}}$				Z	J^{π} : (E1) 10042.3 γ to 0 ⁺ .
10083.8 <i>6</i> 10094.2 <i>7</i>	1^{j}				Z Z	
10104.2 /	(1)				Z	J^{π} : (D) 10104.3 γ to 0 ⁺ .
10123.7 18	1j				Z	· · ·
10125.84 <i>18</i>	$(16)^{+}$	0.6 ^g ps 2	E			J^{π} : M1(+E2) 289.8 γ to (15) ⁺ .
10146.8 9	1^{j} :				Z	
10163.4 8	1^{j}				Z	
10193.0 5	1^{j}				Z	
10216.8 <i>10</i> 10233 <i>4</i>	1 <i>j</i>				Z 7	
10241 2	(1)				Z Z	J^{π} : (D) 10240 γ to 0 ⁺ .
10260.9 11					Z	
10270.0 7	1 <i>j</i>				Z	
10286.2 <i>6</i> 10298.3 <i>10</i>	(1)				Z Z	J^{π} : (D) 10297.7 γ to 0 ⁺ .
10306.6 9	1^{j}				Z	. () ,
10315.1 4	1 <i>j</i>				Z	
10334.9 6	1 <i>j</i>				Z	
10361 2	(1)				Z	J^{π} : (D) 10360 γ to 0 ⁺ .
10376.8 4	1^{j}				Z	
10402.5 <i>9</i> 10494.5 <i>11</i>	1 ^j (1)				Z Z	J^{π} : (D) 10493.8 γ to 0 ⁺ .
10507.9 8	1^{j}				Z	3 . (b) 10193.67 to 0 .
10524.6 <i>4</i>	1 <i>j</i>				Z	
10595.0 7	1 <i>j</i>				Z	
10618.7 8	1^{j}				Z	
10638.5 9	1 <i>j</i>				Z	
10682.2 6	1 ^j				Z	W (D) 10712.5
10713.2 <i>12</i> 10728.2 <i>11</i>	(1) 1 <i>j</i>				Z	J^{π} : (D) 10712.5 γ to 0 ⁺ .
10728.2 11 10764.9 4	(17^+)	0.14^{g} ps 14	E		Z	J^{π} : (M1+E2) 639.0 γ to (16) ⁺ .
10827.1 5	1^{j}	011. ps 1.	_		Z	0 1 (1.11 : 22) 665167 to (10) 1
10914 2	(1)				Z	J^{π} : (D) 10913 γ to 0 ⁺ .
10957 2	1 ^j				Z	
10987.0 <i>10</i> 11044 <i>2</i>	1 ^j				Z	
11044 <i>2</i> 11094.2 <i>15</i>					Z Z	
11108.0 16					Z	
11120.4 9	1 ^j				Z	

90Zr Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ‡		XR	EF		Comments
11129.2 <i>17</i> 11140 2						Z Z	
11232.4 7	1^{j}					Z	
11243.2 6	1^{j} .					Z	
11337.7 6	1 <i>j</i>	0.219	_			Z	77 (A.C. FO) (CO.O (15 [†])
11403.9 <i>6</i> 11417.5 <i>7</i>	(18 ⁺) (1)	$0.21^{g} \text{ ps } 11$	E			Z	J^{π} : (M1+E2) 639.0 γ to (17 ⁺). J^{π} : (D) 11416.7 γ to 0 ⁺ .
11417.3 7	1^{j}					Z	J. (D) 11410.77 to 0.
11479.7 8	1 j					Z	
11501 <i>3</i>						Z	
11510 7						Z	
11531 2 11627.9 9	1 <i>j</i>					Z	
11627.9 9	(1)					Z Z	J^{π} : (D) 11650.7 γ to 0 ⁺ .
11777.4 10	1^{j}					Z	(() ====== () == = =
11788 <i>3</i>	$_1j$					Z	
11963.3 <i>18</i>	(1)					Z	J^{π} : (D) 11962.4 γ to 0 ⁺ .
11984 2	1^{j}					Z	
12020.6 8	1^{j}					Z	
12067.8 <i>9</i> 12110.7 <i>6</i>	1 ^j (19 ⁺)	0.14 ^g ps 5	E			Z	
12110.7 0	(19) 1 ^j	0.148 ps 3	E			Z	
12219.6 25	10				P	L	
12243.6 <i>14</i>	$_1j$					Z	
12496.3 18						Z	
12880.3 <i>10</i> 12964.7 <i>7</i>	(20^{+})	<0.35 ^g ps	E			Z	J^{π} : 1560.8 γ to (18 ⁺), 854.0 γ to (19 ⁺).
13110.2 ^a 4	$(20^{-})^{-}$	10.22 рз	_	K	P ST		$E(\text{level}), J^{\pi}$: Probable analog of ^{90}Y g.s.
							Additional information 2.
13310 ^a 4	(3)			K	P STU	J	E(level), J^{π} : Probable analog of 90 Y, 203 keV.
13940 ^a 14090 ^a					S S		E(level): Possible analog of ⁹⁰ Y, 777 keV. E(level): Possible analog of ⁹⁰ Y, 954 keV.
14220 ^a					S		E(level): Possible analog of ⁹⁰ Y, 1048 keV.
14270 ^d 30	$(0^-,1^-)$				Q ST		E(level), J ^{\pi} : Probable analog of ⁹⁰ Y, 1212 keV.
14310 ^a					S		
14410 ^a					ST		00
14430 ^b 14748 ^e	(1-)				P S	т	E(level), J^{π} : Probable analog of 90 Y, 1371 keV.
14748° 14878 <mark>¢</mark>	(3^{-}) (0^{-})				Ţ Ţ		
14928 ^e	(1^{-})				τ		
15500 <mark>b</mark> 30	$2^{-},(1^{-})$				P S		E(level), J^{π} : Probable analog of 90 Y, 2474 keV.
15700 ^b 30	$1^-,(2^-)$				P ST		E(level), J^{π} : Probable analog of 90 Y, 2624 keV.
15900 ^b	(2-)				P	_	
16148 ^e 16258 ^e	(2-)				Ţ Ţ		E(level), J^{π} : Possible analog of 90 Y, 3145 keV.
16258 ^b	(1-)					J	E(ievel),J": Possible alialog of "1, 3143 kev.
10290 ^b					P P		
17300 19400 ^b					PQR		
17100					1 Q10		

90Zr Levels (continued)

```
E(level)
                                           XREF
20800<mark>b</mark>
                                                   P
21800<sup>C</sup>
23700<sup>c</sup>
                                                       R
```

- † From least-squares fit to E γ , by evaluators, except where noted. ‡ From DSAM measurements in $^{90}Zr(n,n'\gamma)$ reaction, except where noted.

- # From DSAM measurer # From ⁹²Zr(p,t). @ From ⁹⁰Zr(p,p'). & From ⁹⁰Zr(e,e'). ^a From ⁸⁹Y(p,n),(p,ny). ^b From ⁸⁹Y(p,y).

- ^c From ⁹⁰Zr(γ,n).
 ^d From ⁸⁹Y(p,p).
 ^e From ⁸⁹Y(p,p'),(p,p'γ).
 ^f From ⁸⁹Y(³He,d).
- ^g From Doppler-Shift Attenuation and Recoil-Distance measurements in ⁷⁶Ge(¹⁸O,4ny).
- ^h Doppler-shift attenuation in 89 Y(p, γ) (1993Sa38).
- ⁱ From E1 transition to 0⁺ ground state.
- ^j From D transition to 0⁺ ground state.

γ (90Zr)	
-----------------	--

$E_i(level)$	\mathbf{J}_i^{π}	Ε _γ †@	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments
1760.74	0+	1760.70 [#] 20	#	0	0+	E0#			E_{γ} : from 90 Nb ε decay. Probability of two-photon decay is 0.040% 5, see 90 Y β^- decay. Other: 0.018% 2 with a ratio <2E1>/<2M1>of 1.9 7 (1984Sc37). Probability of one-photon E0 transition for 1760.7 relative to internal conversion is 5×10 ⁻⁷ 2 (1990Zh20), see 90 Y β^- decay.
2186.273	2+	425.5 2	0.027 5	1760.74	0+	[E2] [#]		0.00688	$\alpha(K)$ =0.00602 9; $\alpha(L)$ =0.000713 10; $\alpha(M)$ =0.0001239 18; $\alpha(N)$ =1.732×10 ⁻⁵ 25 $\alpha(O)$ =1.117×10 ⁻⁶ 16 B(E2)(W.u.)=5.2 10
		2186.242# 25	100.0# 9	0	0+	E2 [#]		5.36×10 ⁻⁴	$\alpha(K)=0.0001223\ 18;\ \alpha(L)=1.325\times10^{-5}\ 19;$ $\alpha(M)=2.29\times10^{-6}\ 4;\ \alpha(N)=3.27\times10^{-7}\ 5;$ $\alpha(O)=2.34\times10^{-8}\ 4$ B(E2)(W.u.)=5.38 13
2319.000	5-	132.716 [#] 18	5.04# 5	2186.273	2+	E3(+M4)#	<0.07	3.0 9	$\alpha(K)$ =2.2 7; $\alpha(L)$ =0.65 19; $\alpha(M)$ =0.12 4; $\alpha(N)$ =0.015 5; $\alpha(O)$ =0.00037 21 B(E3)(W.u.)=0.180 10 δ : from 90 Nb ε decay.
		2318.959 [#] 25	100.0# 2	0	0+	E5 [#]		4.64×10 ⁻⁴	$\alpha(K)$ =0.000408 6; $\alpha(L)$ =4.63×10 ⁻⁵ 7; $\alpha(M)$ =8.04×10 ⁻⁶ 12; $\alpha(N)$ =1.141×10 ⁻⁶ 16; $\alpha(O)$ =7.97×10 ⁻⁸ 12 B(E5)(W.u.)=8.74 33
2739.29	$(4)^{-}$	420.28 [#] 5	100 [#]	2319.000		#			
2747.875	3-	429.0 ^e 3	0.53 11	2319.000		[E2]			B(E2)(W.u.)=0.53 +18-13
		561.604 <i>11</i>	100.0 3	2186.273	2+	E1			B(E1)(W.u.)= $1.17 \times 10^{-4} + 27 - 18$ E _{γ} : from ⁹⁰ Nb ε decay. Mult.: D from $\gamma(\theta)$ in $(n,n'\gamma)$; E1 from $\Delta \pi$ =yes.
		2747.47 5	6.1 3	0	0+	E3			Mult.: D from $\gamma(\theta)$ in $(n,n'\gamma)$; E1 from $\Delta n = yes$. B(E3)(W.u.)=8.0 +18-13 Mult.: O from $\gamma(\theta)$ in $(n,n'\gamma)$; M3 excluded by
3076.925	4+	329.09 <i>3</i>	6.74 18	2747.875	3-	E1			comparison to RUL. E_{γ} : weighted average of 329.058 <i>16</i> (90 Nb ε decay) and 329.125 <i>15</i> (90 Zr(n,n' γ)).
		337.61 <i>14</i>	0.90 11	2739.29	(4)-				I _γ : weighted average of 6.82 23 (90 Nb ε decay) and 6.6 3 (90 Zr(n,n' γ)). Mult.: D from $\gamma(\theta)$ in (n,n' γ); $\Delta \pi$ =yes from level scheme. E _γ : weighted average of 337.50 <i>15</i> (90 Nb ε decay) and 337.8 2 (90 Zr(n,n' γ)). I _γ : weighted average of 1.4 5 (90 Nb ε decay) and 0.88 <i>11</i> (90 Zr(n,n' γ)).

γ (90Zr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	Ε _γ †@	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments
3076.925	4+	757.86 7	2.66 21	2319.000	5-				E _γ : weighted average of 757.95 5 (90 Nb ε decay) and 757.80 4 (90 Zr(n,n' γ)). I _γ : weighted average of 2.23 23 (90 Nb ε decay) and 2.76 11
		890.629 <i>14</i>	100.0 3	2186.273	2+	E2 ^b		8.82×10 ⁻⁴	$^{(90}$ Zr(n,n' γ)). α (K)=0.000777 11; α (L)=8.69×10 ⁻⁵ 13; α (M)=1.507×10 ⁻⁵ 22; α (N)=2.13×10 ⁻⁶ 3
3308.10	2+	1121.990 22	45 <i>4</i>	2186.273	2+	M1+E2	+0.25		$\alpha(O)=1.479\times10^{-7}\ 21$ B(E2)(W.u.)=3.5 +15-13; B(M1)(W.u.)=0.065 6 Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta\pi=$ no from level scheme.
		1547.5 3308.1 2	3.9 <i>10</i> 100 <i>4</i>	1760.74 0	0 ⁺	[E2] E2			B(E2)(W.u.)=1.03 26 B(E2)(W.u.)=0.589 38 Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$; M2 excluded by comparison
3448.230	6+	371.307# 8	1.95# 7	3076.925	4+	E2#		0.01064	to RUL. $\alpha(K)=0.00929\ 13;\ \alpha(L)=0.001119\ 16;\ \alpha(M)=0.000194\ 3;$ $\alpha(N)=2.71\times10^{-5}\ 4;\ \alpha(O)=1.712\times10^{-6}\ 24$ B(E2)(W.u.)<46
		1129.224 [#] <i>15</i>	100.0# 4	2319.000	5-	E1#		2.42×10 ⁻⁴ 8	$\alpha(K)=0.000203 \ 7; \ \alpha(L)=2.20\times10^{-5} \ 8; \ \alpha(M)=3.82\times10^{-6} \ 14;$ $\alpha(N)=5.42\times10^{-7} \ 20; \ \alpha(O)=3.86\times10^{-8} \ 14$ $\alpha(N)=5.42\times10^{-4} \ 16\times10^{-4}$
3589.418	8+	141.178 [#] <i>15</i>	100.0# 10	3448.230	6+	E2#			$\alpha(K)=0.27$ 3; $\alpha(L)=0.040$ 5; $\alpha(M)=0.0071$ 9; $\alpha(N)=0.00095$ 13; $\alpha(O)=4.6\times10^{-5}$ 7 B(E2)(W.u.)=2.41 7
		1270.396 [#] 18	1.94 [#] 4	2319.000	5-	(E3)#		7.63×10^{-4}	$\alpha(K)=0.000667 \ 10; \ \alpha(L)=7.56\times10^{-5} \ 11; \ \alpha(M)=1.313\times10^{-5}$ $19; \ \alpha(N)=1.86\times10^{-6} \ 3$ $\alpha(O)=1.285\times10^{-7} \ 18$
3842.34	2+	1656.05 11	17.0 <i>15</i>	2186.273	2+	M1+E2	+1.1	3.72×10 ⁻⁴ 10	$\alpha(O)$ =1.285×10 · 18 B(E3)(W.u.)=0.0523 20 $\alpha(K)$ =0.000208 5; $\alpha(L)$ =2.27×10 ⁻⁵ 5; $\alpha(M)$ =3.93×10 ⁻⁶ 8; $\alpha(N)$ =5.59×10 ⁻⁷ 12; $\alpha(O)$ =4.00×10 ⁻⁸ 10 B(E2)(W.u.)=10.0 +20-23; B(M1)(W.u.)=0.022 5 Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta\pi$ =no from level
		3842.2 10	100.0 15	0	0+	E2			scheme. B(E2)(W.u.)=1.60 +14-12 Mult.: Q from $\gamma(\theta)$ in (n,n' γ); M2 excluded by comparison to RUL.
3932.4 3958.59	5-	3932.3 ^a 6 1219.33 3	100 ^a 53.8 12	0 2739.29	0 ⁺ (4) ⁻	<i>a</i> (M1+E2)	+0.08		B(E2)(W.u.)=0.59 +32-22; B(M1)(W.u.)=0.128 +29-20 Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta\pi=$ no from level scheme.

γ (90Zr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger} @	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments
3958.59	5-	1639.60 4	100.0 12	2319.000	5-	(M1+E2)	+0.06		B(E2)(W.u.)=0.14 +7-5; B(M1)(W.u.)=0.098 +22-15 Mult.: D+Q from $\gamma(\theta)$ in (n,n' γ); $\Delta\pi$ =no from level
4058.07	4+	981.31 7	7.8 15	3076.925	1 +	(M1+E2)	-0.11		scheme. B(E2)(W.u.)=0.18 +13-9; B(M1)(W.u.)=0.013 +7-5
4030.07	-	701.51 7	7.0 15	3070.923	7	(WII+L2)	-0.11		Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta \pi$ =no from level scheme.
		1310.00 18	4.3 14	2747.875	3-	[E1]			$B(E1)(W.u.)=4.7\times10^{-5}+27-21$
		1318.92 <i>19</i>	2.4 13	2739.29	$(4)^{-}$	[E1]			$B(E1)(W.u.)=2.6\times10^{-5}+20-14$
		1871.90 <i>3</i>	100 3	2186.273	2+	E2			B(E2)(W.u.)=7.5 +38-25 Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$; M2 excluded by comparison to RUL.
4124.49	0^{+}	1938.26 <i>6</i>	100	2186.273	2+				to Roll.
4225.35	(4^{-})	1478.02 16	22 4	2747.875					
	,	1485.75 14	100 4	2739.29		(M1+E2)	+0.31		B(E2)(W.u.)=10.7 45; B(M1)(W.u.)=0.21 +7-5 Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, non zero value of δ suggests $\Delta \pi$ =no.
		1906.50 <i>17</i>	27 6	2319.000	5-	(M1+E2)	-0.57		B(E2)(W.u.)=2.1 +11-8; B(M1)(W.u.)=0.022 +9-6 Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, non zero value of δ suggests $\Delta \pi$ =no.
4229.05	2+	1481.40 6	65 15	2747.875	3-				
		2042.73 4	100 12	2186.273		M1+E2	+0.04		B(E2)(W.u.)=0.020 +10-8; B(M1)(W.u.)=0.050 8
		4229.3 2	28 5	0	0+	E2			B(E2)(W.u.)=0.094 +22-19 Mult.: Q from $\gamma(\theta)$ in (n,n' γ), M2 excluded by comparison to RUL.
4232.220	(6-)	643 [#] e	<1.5 [#]	3589.418	8+				
7232.220	(0)	784 [#] e	<0.5 [#]	3448.230					
		1155 [#] e	<0.3** <0.4**						
				3076.925					
		1493 ^{#e}	<0.7 [#]	2739.29					
		1913.194 [#] 25	100.0 [#] <i>13</i>	2319.000	5-	(M1+E2)	+0.5	4.27×10 ⁻⁴ 16	$\alpha(K)$ =0.000158 3; $\alpha(L)$ =1.71×10 ⁻⁵ 4; $\alpha(M)$ =2.97×10 ⁻⁶ 6; $\alpha(N)$ =4.23×10 ⁻⁷ 8; $\alpha(O)$ =3.03×10 ⁻⁸ 7
									B(E2)(W.u.)=4.0 +34-21; B(M1)(W.u.)=0.055 +40-25 Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, non zero value of δ suggests $\Delta \pi$ =no.
4236.96	$(1,2^+)$	929.01 18	7.7 3	3308.10	2+				54556515 ZA 110.
	. , ,	2050.81 9	27 5	2186.273	2+				
		2476.22 4	100 5		0_{+}				
		4237.0 ^e 15		0	0_{+}				E_{γ} : observed only in $(p,p'\gamma)$ (1974Ce03).
4262.37	(3 ⁺)	954.2 <i>I</i>	19.9 <i>17</i>	3308.10	2+	(M1+E2)	+0.06		B(E2)(W.u.)=0.026 +15-13; B(M1)(W.u.)=0.0063 21 Mult.: D+Q from $\gamma(\theta)$ in (n,n' γ); $\Delta \pi$ =no from level scheme.

γ (90Zr) (continued)

	$E_i(level)$	\mathbf{J}_i^{π}	Ε _γ †@	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
	4262.37	(3 ⁺)	1185.56 5	41 4	3076.925 4+	(M1+E2)	-3.1	B(E2)(W.u.)=4.6 16; B(M1)(W.u.)= 6.3×10^{-4} +39–26 Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, non zero value of δ suggests $\Delta\pi$ =no.
			1514.8 <i>1</i>	43 7	2747.875 3-			Mult $D+Q$ from $y(0)$ in (ii,ii y), non-zero value of θ suggests Δh -iio.
			1523.07 4	84.7 20	2739.29 (4)			
			2076.20 4	100 5	2186.273 2+	(M1+E2)	+0.6	B(E2)(W.u.)=0.20 9; B(M1)(W.u.)=0.0022 8
								Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, non zero value of δ suggests $\Delta \pi$ =no.
	4299.12	(5^{-})	1559.91 7	50.4 17	2739.29 (4)-	(M1+E2)	+0.34	B(E2)(W.u.)=2.9 +13-10; $B(M1)(W.u.)=0.056 +14-10$
								Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, non zero value of δ suggests $\Delta \pi$ =no.
			1980.06 8	100.0 17	2319.000 5-	(M1+E2)	+0.85	B(E2)(W.u.)=7.0 +24-19; $B(M1)(W.u.)=0.035 +11-8$
						· · · · · · · · ·		Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, non zero value of δ suggests $\Delta \pi = no$.
	4319.2?		2000.2 ^{d#e} 3	100 ^{d#}	2319.000 5-			
	4331.93	4+	1255.18 3	74.5 21	3076.925 4 ⁺	M1+E2		B(E2)(W.u.)<99; B(M1)(W.u.)<0.15
	1331.73		1233.10 3	7 1.5 21	5070.725 T	111111111111111111111111111111111111111		Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta \pi$ =no from level scheme.
			1584.25 <i>4</i>	100 <i>3</i>	2747.875 3-	[E1]		B(E1)(W.u.)=0.00118 +22-17
			2012.9 2	20 4	2319.000 5	[E1]		$B(E1)(W.u.)=1.15\times10^{-4} +30-26$
	4348.10	(4^{+})	1608.8	20 4	2739.29 (4) ⁻	[E1]		D(E1)(W.u.)=1.13×10 +30=20
	4340.10	(+)	2161.87 3		2186.273 2 ⁺			
	4375.07	7-	2055.77 7	100	2319.000 5	E2		Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta \pi$ =no from level scheme.
i	4426.43	0+	2240.20 5	100	2186.273 2 ⁺	[E2]		B(E2)(W.u.)= $2.1 + 15 - 11$
	4454.71	(5^+)	1377.74 12	16 3	3076.925 4 ⁺	[152]		D(E2)(W.u.)-2.1 +13-11
	4434.71	(5)	1715.73 14	19 7	2739.29 (4)			
			2135.70 5	100 7	2319.000 5			
	4455.58	(2)	1707.90 5	75 4	2747.875 3 ⁻	D+Q	+0.024	
	4433.36	(2)	2269.40 <i>4</i>	100 4	2186.273 2 ⁺	D+Q	+0.024	
	4474.31	4+		100 4	2747.875 3 ⁻	0711		$B(E1)(W.u.)=3.1\times10^{-4}+21-16$
	44/4.31	4	1726.68 7			[E1]		
J	4404.50	(2-)	1735.0	40 5	2739.29 (4)	[E1]		$B(E1)(W.u.)=1.2\times10^{-4} +8-6$
- [4494.79	(3^{-})	1747.2 2	5 3	2747.875 3	D . O	0.02	
	4505.0		1755.49 4	100 3	2739.29 (4)	D+Q	-0.02	
	4507.0	(a-)	4506.9 ^a 8	100 ^a	0 0+			
	4533.52	(3^{-})	1225.3 ^e 2	17.7 22	3308.10 2+			
			1456.78 <i>4</i>	100 11	3076.925 4+		• •	D. (72) (71)
			1794.15 6	39 4	2739.29 (4)	(M1+E2)	+2.0	B(E2)(W.u.)=3.4 +23-13; $B(M1)(W.u.)=0.0025 +23-10$
								Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, non zero value of δ suggests $\Delta \pi$ =no.
			2347.3	14 4	2186.273 2+			
	4537.70	(4^{-})	1460.95 6	63 6	3076.925 4+			
			2218.65 7	100 6	2319.000 5	(M1+E2)	-0.36	B(E2)(W.u.)=0.24 + 18-11; $B(M1)(W.u.)=0.008 + 5-3$
J								Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, non zero value of δ suggests $\Delta \pi$ =no.
	4541.37	6+	222 <mark>#</mark>	<1.0 [#]	4319.2?			
			309 [#] e	<1.4 [#]	4232.220 (6-)	[E1]		B(E1)(W.u.)<0.0033
			952 [#] e	<1.4 [#]	3589.418 8 ⁺	[E2]		B(E2)(W.u.)<8.6
			934	\1.4	3307.410 0	[22]		D(E2)(W.u.)>0.0
- 1								

γ (90Zr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger} @	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
4541.37	6 ⁺	1092.97 9	8.1 22	3448.230	6+			I_{γ} : other: 15.8 13 in 90 Nb ε decay.
		1464 [#] e	<3.7 [#]	3076.925		[E2]		B(E2)(W.u.)<2.6
		2222.43 3	100.0 22	2319.000		[E1]		B(E1)(W.u.)= 4.7×10^{-4} 11
4562.02	5	1822.74 5	100	2739.29	$(4)^{-}$	[21]		2(21)(((((()))))
4578.93	(1)	2818.33 10	100 8	1760.74	0+			
	. ,	4578.7 2	83 8	0	0^{+}			
4591.37	(3^{+})	1843.70 <i>5</i>	100.0 12	2747.875	3-			
		2405.18 7	36.6 12	2186.273	2+	(M1+E2)	-0.07	B(E2)(W.u.)=0.0027 +15-11; B(M1)(W.u.)=0.0031 8
								Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta \pi$ =no from level scheme.
4614.42	(6^{+})	1166.24 <i>12</i>	100 10	3448.230				
		1537.64 <i>12</i>	75 10	3076.925				
		2295.5	75 8	2319.000				
4640.94	7,8	409 [#] e	<4.2#	4232.220				
		1051.53 [#] 4	100 [#] 4	3589.418	8+			
		1192.7 [#] <i>1</i>	7.7 [#] 8	3448.230	6+			
		2322 [#] e	<3.8 [#]	2319.000				
4646.7	1,2+	2884.8 <i>13</i>	100 3		0+			
1010.7	1,2	4646.6 3	18 3	0	0+			
4681.26	2+	1933.77 8	100 10	2747.875		[E1]		$B(E1)(W.u.)=7.5\times10^{-4}+23-15$
.001.20	_	2495.1	42 6	2186.273		[21]		2(21)((((111))) ((20))
		4680.8 2	58 8	0	0^{+}	E2		B(E2)(W.u.)=0.098 +32-21
								Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$, M2 excluded by comparison to RUL.
4701.10	2+	1953.26 <i>17</i>	100 5	2747.875	3-	[E1]		$B(E1)(W.u.)=4.0\times10^{-4}$ 6
		2514.76 <i>13</i>	39 <i>3</i>	2186.273	2+			
		2940.60 12	95 <i>4</i>	1760.74	0_{+}	E2		B(E2)(W.u.)=0.88 +15-12
								Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$, M2 excluded by comparison to RUL.
		4701.2 <i>3</i>	19 <i>4</i>	0	0_{+}	E2		B(E2)(W.u.)=0.0168 +46-40
4774.00		527.24.5	24.2	1006.05	(1.0±)			Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$, M2 excluded by comparison to RUL.
4774.29		537.34 5	34 3		$(1,2^+)$			
4781.81	4 (2=)	2587.96 <i>25</i> 2462.81 <i>19</i>	100 <i>3</i> 100	2186.273 2319.000				
4781.81	4,(3 ⁻) 2 ⁺	4795.5 <i>3</i>	100	0	0 ⁺	E2		B(E2)(W.u.)=1.3 +10-6
7/22.0	4	7193.3 3	100	U	U	LL		Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$, M2 excluded by comparison to RUL.
4814.44	(3^{-})	2066.95 8	100 7	2747.875	3-	D+Q	+0.34	Tion (1) in (ii,ii /), in 2 excluded by comparison to ROL.
.51	(5)	2495.5	16 3	2319.000		214	10.51	
		2628.01 10	16 3	2186.273				
4818.02	$(3,4^+)$	975.75 15	16 3		2+			
		2070.39 7	100 3	2747.875	3-			
4824.21	2+	1747.2 2	8 5	3076.925		[E2]		B(E2)(W.u.)=2.3 +15-12
		2638.07 11	100 5	2186.273	2+	M1+E2		B(E2)(W.u.)<5.0; B(M1)(W.u.)<0.032
								Mult.: D+Q from $\gamma(q)$ in $(n,n'\gamma)$, $\Delta \pi$ =no from level scheme.

γ (90Zr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger} @	$\mathrm{I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	α	Comments
4824.21	2+	4823.9 5	17 3	$0 0^{+}$	[E2]			B(E2)(W.u.)=0.031 9
4840.27	5-	1763.46 <i>6</i>	100 6	3076.925 4 ⁺				
		2092.7	43 6	2747.875 3-				
4867.47	5+	1419.23 10	53 5	3448.230 6+	M1+E2	-1.0		B(E2)(W.u.)=4.6 +21-16; B(M1)(W.u.)=0.0086 +41-27 Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, E1+M2 excluded by comparison to RUL.
		1790.73 8	100 8	3076.925 4+	M1+E2	+0.8		B(E2)(W.u.)=2.1 +10-8; B(M1)(W.u.)=0.0098 +45-29 Mult.: D+Q from $\gamma(\theta)$ in (n,n' γ), E1+M2 excluded by comparison to RUL.
		2128.2	17 7	2739.29 (4)				•
4932.6	$1,2^{+}$	4932.5 <i>4</i>	100	$0 0^{+}$				
4941.89	(4^{+})	1865.03 8	100 <i>3</i>	3076.925 4+				
	, ,	2623.0 2	32 <i>3</i>	2319.000 5-	[E1]			$B(E1)(W.u.)=9.2\times10^{-5}+25-17$
4992.36		1150.3	30 <i>3</i>	3842.34 2 ⁺				
		1684.35 8	100 5	3308.10 2+				
		2244.5 3	31 <i>3</i>	2747.875 3				
		2252.9 2	20 3	2739.29 (4)-				
5059.975	7+	518.60 [#] 6	29.0 [#] 21	4541.37 6 ⁺				
3037.713	,	827.74 [#] 4	46.6 [#] 7	4232.220 (6 ⁻)	E1#			$\alpha(K)=0.000371 \ 6; \ \alpha(L)=4.04\times10^{-5} \ 6; \ \alpha(M)=6.99\times10^{-6} \ 10; \ \alpha(N)=9.93\times10^{-7} \ 14; \ \alpha(O)=7.02\times10^{-8} \ 10$
		1470.528 [#] 24	19.3 # 7	3589.418 8+				a(1) 7,55,110 11, a(0) 110 2 ,110 10
		1611.76 [#] 3	100# 3	3448.230 6 ⁺	M1,E2#			$\alpha(K)=0.000220 \ 5; \ \alpha(L)=2.39\times10^{-5} \ 5; \ \alpha(M)=4.14\times10^{-6} \ 9;$ $\alpha(N)=5.90\times10^{-7} \ 13; \ \alpha(O)=4.21\times10^{-8} \ 11$
		2741.0 [#] 3	0.31# 10	2319.000 5	E3			$\alpha(K)=0.0001277 \ 18; \ \alpha(L)=1.391\times10^{-5} \ 20; \ \alpha(M)=2.41\times10^{-6}$ 4; $\alpha(N)=3.43\times10^{-7} \ 5; \ \alpha(O)=2.46\times10^{-8} \ 4$
5068.6	$1,2^{+}$	5068.4 <i>6</i>	100	$0 0^{+}$				7, a(17) 5.15/17 5, a(5) 2.15/17 7
5084.03	2,3	2336.18 10	100 7	2747.875 3-				
	,	2345.7 3	37 7	2739.29 (4)				
5090.30	(3^{-})	2904.03 23	100	2186.273 2+				
5107.92	$(3),4^{+}$	2368.6		2739.29 (4)				
		2921.7 2		$2186.273 2^{+}$				
5112.6	3-	2365.0 10	100	2747.875 3-	(M1+E2)	-0.1		Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta \pi$ =no from level scheme.
5164.484	$(8)^{+}$	524 [#] e	<3.7 [#]	4640.94 7,8				
		623 [#] e	<3.7 [#]	4541.37 6 ⁺				
		932 [#] e	<22 [#]	4232.220 (6 ⁻)				
		1575.035 [#] 23	100# 4	3589.418 8 ⁺	M1,E2#		3.64×10 ⁻⁴ 8	$\alpha(K)=0.000230 \ 5; \ \alpha(L)=2.50\times10^{-5} \ 5; \ \alpha(M)=4.34\times10^{-6} \ 9;$ $\alpha(N)=6.17\times10^{-7} \ 13; \ \alpha(O)=4.41\times10^{-8} \ 11$
		1716.27 [#] 3	97 [#] 4	3448.230 6 ⁺	(E2)#		3.91×10^{-4}	$\alpha(K)$ =0.000191 3; $\alpha(L)$ =2.08×10 ⁻⁵ 3; $\alpha(M)$ =3.61×10 ⁻⁶ 5; $\alpha(N)$ =5.14×10 ⁻⁷ 8; $\alpha(O)$ =3.66×10 ⁻⁸ 6

	y(Zi) (continued)									
$E_i(level)$	\mathbf{J}_i^{π}	Ε _γ †@	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments	
									$\alpha(K)$ =0.000191 3; $\alpha(L)$ =2.08×10 ⁻⁵ 3; $\alpha(M)$ =3.61×10 ⁻⁶ 5; $\alpha(N)$ =5.14×10 ⁻⁷ 8; $\alpha(O)$ =3.66×10 ⁻⁸ 6	
5164.484	$(8)^{+}$	2845 [#] e	<0.3 [#]	2319.000	5-				.,(.)	
5171.90	(4)	2432.0 3	56 5	2739.29						
5175 0	2.4+	2853.06 14	100 5	2319.000						
5175.8 5183.61	3,4 ⁺ 1,2 ⁺	2989.5 <i>3</i> 2997.5 <i>2</i>	100 85 <i>13</i>	2186.273 2186.273						
3103.01	1,2	5183.2 3	100 13	0	0^{+}					
5222.97	(4^{+})	2483.67 19	100 13	2739.29	(4)-					
5232.3	()	3046.0 <i>3</i>	100	2186.273						
5247.52	9+	1658.10 ^b 4	100 ^b	3589.418	8+	E2(+M1) ^b	+14 14	3.80×10 ⁻⁴ 17	$\alpha(K)=0.000205 \ 8; \ \alpha(L)=2.23\times10^{-5} \ 7; \ \alpha(M)=3.86\times10^{-6}$ 13; $\alpha(N)=5.49\times10^{-7} \ 19; \ \alpha(O)=3.91\times10^{-8} \ 17$	
									$B(M1)(W.u.)>2.2\times10^{-7}$	
5270.74		2531.44 <i>16</i>	100	2739.29	$(4)^{-}$					
5275.4	(2+)	5275.2	100 [@]	0	0+	(E2)		1.59×10^{-3}	$\alpha(K)=2.94\times10^{-5}$ 5; $\alpha(L)=3.14\times10^{-6}$ 5; $\alpha(M)=5.44\times10^{-8}$ 8; $\alpha(N)=7.75\times10^{-8}$ 11; $\alpha(O)=5.59\times10^{-9}$ 8 B(E2)(W.u.)=0.0072 +12-15 Mult.: from ⁸⁹ Y(p, γ).	
5305.97	2+	5305.8 2	100	0	0+	E2			Mult.: If off $I(p, \gamma)$. B(E2)(W.u.)=0.33 + 14-7 Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$, M2 excluded by comparison to RUL.	
5307.75	$(3^-,4^+)$	2560.2 4	13 5	2747.875	3-				comparison to RUL.	
0007170	(5 ,.)	2988.9 2	20 4	2319.000						
		3121.3 2	100 7	2186.273	2+					
5312.77	$1,2^{+}$	3551.4 ^e 6		1760.74						
	-	5312.6 2	100.75	0	0^{+}					
5317.7	3-	2570.2 4	100 12	2747.875		EE 13			D(E1)(IV.) 2.5.10=5.11	
5250.22	2.4	3131.2 4	72 12	2186.273		[E1]			$B(E1)(W.u.)=2.5\times10^{-5} 11$	
5359.22 5379.8	3,4 (4 ⁺)	2282.4 2 3193.6 <i>3</i>	100 100	3076.925 2186.273		[E2]			B(E2)(W.u.)=3.6 +9-6	
5426.01	3-	2118.1 2	100 18	3308.10		[E2] [E1]			B(E1)(W.u.)= $3.3 \times 10^{-4} + 13 - 10$	
2 120.01	5	3106.8 2	80 14	2319.000		E2			$B(E1)(W.u.)=0.53 \times 10^{-113} - 10^{-113}$ B(E2)(W.u.)=0.60 + 24 - 18	
									Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$, M2 excluded by comparison to RUL.	
		3239.7 2	28 6	2186.273	2+	[E1]			$B(E1)(W.u.)=2.6\times10^{-5}+11-9$	
5432.790	7+,8+	268 [#] e	<0.6 [#]	5164.484	$(8)^{+}$					
	•	792.05 [#] <i>19</i>	1.5 [#] 5	4640.94	7,8					
		891 [#] e	<8.3 [#]	4541.37	6 ⁺					
		1057.8 [#] 1	2.5# 8	4375.07	7-					
		1037.0 1	2.5	1313.01	,					

γ (90Zr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	Ε _γ †@	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments
5432.790	7+,8+	1201 [#] e	<2.7 [#]	4232.220	(6-)				
		1843.342 [#] 22	100.0 [#] 24	3589.418		M1,E2#		4.08×10^{-4} 14	$\alpha(K)$ =0.000170 4; $\alpha(L)$ =1.84×10 ⁻⁵ 4; $\alpha(M)$ =3.19×10 ⁻⁶ 6; $\alpha(N)$ =4.54×10 ⁻⁷ 9; $\alpha(O)$ =3.25×10 ⁻⁸ 8
		1984.54 [#] <i>3</i>	99 [#] 4	3448.230	6+				
		3114 [#] e	<0.24 [#]	2319.000	5-				
5437.33	2+	2690.08 <i>23</i>	100 3	2747.875		[E1]			$B(E1)(W.u.)=4.5\times10^{-4}$ 7
		3676.6 2	34 3	1760.74	0_{+}	E2			B(E2)(W.u.)=0.30 +6-4
									Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$, M2 excluded by comparison to RUL.
		5436.9 2	29.1 <i>18</i>	0	0^{+}	E2			B(E2)(W.u.)=0.037 +7-5
		3 130.5 2	27.1 10	Ü	Ü	22			Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$, M2 excluded by
									comparison to RUL.
5457.70	(4^{+})	2380.6 <i>3</i>	52 17	3076.925					5
5504.75		2710.2 2	100 17	2747.875		[E1]			$B(E1)(W.u.)=9.6\times10^{-5} 12$
5504.75		3744.5 <i>5</i> 5504.5 2	100 <i>5</i> 75 <i>5</i>	1760.74 0	0_{+}				
5513.41	(3,4)	2436.5 3	53 13	3076.925					
0010	(2,.)	2765.8 2	100 13	2747.875					
5564.2		3377.9 4	100	2186.273					
5590.58	2+	2842.9 2	35 6	2747.875		[E1]			$B(E1)(W.u.)=1.68\times10^{-4} +36-31$
		3404.1 2 5590.9 <i>3</i>	100 <i>5</i> 57 <i>3</i>	2186.273	2 ⁺ 0 ⁺	E2			B(E2)(W.u.)=0.081 +13-11
		3390.9 3	37 3	U	U	E2			Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta \pi$ =no from level scheme.
5601.8		3415.5 <i>4</i>	100	2186.273	2+				scheme.
5607.6		2299.5 3	100	3308.10					
5644.02	10+	2054.55 ^b 5	100 ^b	3589.418	8+	E2 ^b		4.88×10^{-4}	$\alpha(K)$ =0.0001368 20; $\alpha(L)$ =1.484×10 ⁻⁵ 21; $\alpha(M)$ =2.57×10 ⁻⁶ 4; $\alpha(N)$ =3.66×10 ⁻⁷ 6;
									$\alpha(O)=2.62\times10^{-8} \ 4$
									B(E2)(W.u.)>0.023
5651.1		2911.8 3	100	2739.29	$(4)^{-}$				
5724.3 5775.1		3538.0 <i>4</i> 3588.8 <i>5</i>	100 100	2186.273 2186.273					
5785.0		5784.8 ^a 4	100 100 ^a	0	0^{+}				
5792.05	(9^+)	2202.603^{b} 30	100 b	3589.418	-	(M1+E2) 	-0.07 4	5.03×10^{-4}	$\alpha(K)=0.0001227 \ 18; \ \alpha(L)=1.327\times10^{-5} \ 19;$
2.02	()	2202.003	100	2207.110	Ü	(1111 1 112)	0.01 F	5.05/110	$\alpha(N)=0.0001227 \text{ fo}, \ \alpha(E)=1.327\times10^{-17}, \ \alpha(M)=2.30\times10^{-6} \text{ 4}; \ \alpha(N)=3.28\times10^{-7} \text{ 5}; \ \alpha(O)=2.36\times10^{-8} \text{ 4}$
									δ : from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in (¹⁸ O,4n γ).
5808		5807.7 ^a 3	100 ^a	0	0_{+}				• • • • • • • • • • • • • • • • • • •

E_i (level)	J_i^{π}	E_{γ}^{\dagger} @	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments
5821.8		3635.5 6	100	2186.273					
5846.4		3660.1 5	100	2186.273	2+				
5884.4		5884.2 ^a 4	100 ^a	0	0_{+}				
5279.70	11+	1032.19 ^b 10	100 ^b 4	5247.52	9+	E2 ^b		6.24×10^{-4}	$\alpha(K)=0.000551 \ 8; \ \alpha(L)=6.11\times10^{-5} \ 9; \ \alpha(M)=1.060\times10^{-5} \ 15; \ \alpha(N)=1.502\times10^{-6} \ 21 \ \alpha(O)=1.050\times10^{-7} \ 15$
5296	1-	6295.6 ^a 2	100 <mark>a</mark>	0	0_{+}	E1 ^a			
5376.10	(10^{-})	584.04 ^b 8	b	5792.05	(9^+)				
	, ,	1128.2 <mark>b</mark> 7	\boldsymbol{b}	5247.52	9+				
5389.8	1	6389.6 ^a 3	100 <i>a</i>	0	0+	D^a			
5424.3	1-	6424.1 ^a 3	100 <mark>a</mark>	0	0^{+}	E1 ^a			
5565.7	1	6565.4 ^a 3	100 ^a	0	0_{+}	D^a			
5640.1	(2^{+})	6640.1	100 [@]	0	0_{+}	(E2)			B(E2)(W.u.)=0.087 +34-22
									Mult.: From 89 Y(p, γ).
5669.2	1	6668.9 ^a 7	100 ^a	0	0_{+}	D^a			
5721.11	(10^{-})	345.24 ^b 20	100 ^b 8	6376.10	(10^{-})				
		441.42 ^{be} 13	≤11.6 ^b	6279.70	11+				
		929.03 <mark>be</mark> 9	≤23.3 ^b	5792.05	(9^+)				
		1077.06 <mark>be</mark> 8	≤23.3 ^b	5644.02	10 ⁺				
		1473.65 ^b 20	45 ^b 5	5247.52	9+				
		1556.63 ^{be} 9	≤17.4 <mark>b</mark>	5164.484	$(8)^{+}$				
6761.4	1-	6761.1 ^a 2	100 <mark>a</mark>	0	0+	E1 ^a			
5769.51	(12 ⁺)	489.81 ^b 15	100 ^b	6279.70	11+	(M1+E2) ^b	-0.26 6	0.00342 6	$\alpha(K)$ =0.00302 5; $\alpha(L)$ =0.000337 6; $\alpha(M)$ =5.86×10 ⁻⁵ 11; $\alpha(N)$ =8.31×10 ⁻⁶ 15; $\alpha(O)$ =5.85×10 ⁻⁷ 10
5876	1-	6876 ^a 3	100 <i>a</i>	0	0_{+}	E1 ^a			
5953.94	(11)-	1309.83 ^b 7	100 ^b	5644.02	10+	E1(+M2) ^b	+0.02 2	2.90×10 ⁻⁴ 5	$\alpha(K)$ =0.0001560 23; $\alpha(L)$ =1.687×10 ⁻⁵ 25; $\alpha(M)$ =2.92×10 ⁻⁶ 5; $\alpha(N)$ =4.15×10 ⁻⁷ 7; $\alpha(O)$ =2.96×10 ⁻⁸ 5 B(E1)(W.u.)>5.3×10 ⁻⁶
					- 1	- a			δ : from $\gamma(\theta)$ in $\gamma(\text{lin pol})$ in (18 O,4n γ).
5960.4	1	6960.1 ^a 7	100 ^a	0	0_{+}	D^a			
7008.63	(11^{-})	54.66 ^b 5	11.9 ^b 17	6953.94	$(11)^{-}$	1			
		287.55 ^b 7	100 ^b 3	6721.11	(10-)	M1+E2 ^b	-0.07 5	0.01235 <i>21</i>	$\alpha(K)$ =0.01087 19; $\alpha(L)$ =0.001231 23; $\alpha(M)$ =0.000214 4; $\alpha(N)$ =3.03×10 ⁻⁵ 6;

						<u>y(z</u>	a) (continu	eu)	
E_i (level)	\mathbf{J}_i^{π}	E _γ †@	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	${\rm J}_f^\pi$	Mult. [‡]	δ^{\ddagger}	α	Comments
7008.63	(11 ⁻)	1364.73 ^b 20	73 ^b 3	5644.02	10 ⁺	(E1(+M2)) ^b	-0.01 2	3.12×10 ⁻⁴	$\alpha(O)=2.13\times10^{-6} \ 4$ δ : from $\gamma(\theta)$ in $\gamma(\text{lin pol})$ in $(^{18}O,4n\gamma)$. $\alpha(K)=0.0001452 \ 2I$; $\alpha(L)=1.569\times10^{-5} \ 23$; $\alpha(M)=2.72\times10^{-6} \ 4$; $\alpha(N)=3.86\times10^{-7} \ 6$; $\alpha(O)=2.75\times10^{-8} \ 4$ δ : from $\gamma(\theta)$ in $\gamma(\text{lin pol})$ in $(^{18}O,4n\gamma)$.
7025.59	(10+)	1233.54 ^b 10 1381.78 ^b 30 1778.10 ^b 7	28 ^b 4 9.6 ^b 10 100 ^b 10	5792.05 5644.02 5247.52	(9 ⁺) 10 ⁺ 9 ⁺				δ : from $\gamma(\theta)$ in $\gamma(\sin poi)$ in (** 0 ,4n γ).
		1861.37 ^b 30	26.8 ^b 13	5164.484	(8)+	(E2) ^b		4.26×10^{-4}	$\alpha(K)$ =0.0001642 23; $\alpha(L)$ =1.785×10 ⁻⁵ 25; $\alpha(M)$ =3.09×10 ⁻⁶ 5; $\alpha(N)$ =4.40×10 ⁻⁷ 7; $\alpha(O)$ =3.14×10 ⁻⁸ 5
7042.0	1	7041.7 ^a 7	100 <mark>a</mark>	0	0_{+}	D^a			
7085.6	(1)	7085.3 ^a 10	100 ^a	0	0^{+}	(D) ^a			
7194.35	(11^{+})	168.760 ^b 4	44.5 ^b 15	7025.59	(10^+)	M1+E2 ^b		0.11 6	$\alpha(K)$ =0.09 5; $\alpha(L)$ =0.012 8; $\alpha(M)$ =0.0022 13; $\alpha(N)$ =0.00030 18; $\alpha(O)$ =1.6×10 ⁻⁵ 8 B(E2)(W.u.)>0.0017; B(M1)(W.u.)>4.5×10 ⁻⁸
		818.23 ^b 5	100.0 ^b 29	6376.10	(10 ⁻)	E1(+M2) ^b	-0.02 4	4.30×10 ⁻⁴ 10	$\alpha(K)=0.000380 \ 9; \ \alpha(L)=4.15\times10^{-5} \ 10;$ $\alpha(M)=7.18\times10^{-6} \ 16; \ \alpha(N)=1.019\times10^{-6} \ 23;$ $\alpha(O)=7.20\times10^{-8} \ 16$ $B(E1)(W.u.)>1.3\times10^{-5}$ δ : from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(^{18}O),4n\gamma)$.
		1402.27 ^b 7	<1.5 b	5792.05	(9^+)				or nom /(o) and /(m pos) in (o), m/).
		1550.27 ^b 30	5.1 ^b 5	5644.02	10+	D			
7198.2	1	7197.9 ^a 6	100 ^a	0	0+	D^a			
7223.89	(12)+	29.57 8	18 <i>3</i>	7194.35	(11+)	(M1)		6.74 11	$\alpha(K)$ =5.90 10; $\alpha(L)$ =0.702 12; $\alpha(M)$ =0.1222 20; $\alpha(N)$ =0.0172 3; $\alpha(O)$ =0.001165 19 B(M1)(W.u.)=0.90 +19-16
		215.27 4	47 4	7008.63	(11^{-})	[E1]			$B(E1)(W.u.)=9.3\times10^{-5}+24-16$
		269.93 5	100 3	6953.94	(11)	E1(+M2)	-0.02 3	0.00651 16	$\alpha(K)$ =0.00575 14; $\alpha(L)$ =0.000638 17; $\alpha(M)$ =0.000110 3; $\alpha(N)$ =1.55×10 ⁻⁵ 5; $\alpha(O)$ =1.06×10 ⁻⁶ 3
		1580.00 <i>30</i>	2.5 3	5644.02	10 ⁺	(E2)		3.70×10^{-4}	B(E1)(W.u.)= $1.00 \times 10^{-4} + 22 - 16$ δ : from $\gamma(\theta)$ and γ (lin pol) in (18 O),4n γ). α (K)= $0.000225 \ 4$; α (L)= $2.45 \times 10^{-5} \ 4$; α (M)= $4.25 \times 10^{-6} \ 6$; α (N)= $6.04 \times 10^{-7} \ 9$;

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger} @	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments
									$\alpha(K)$ =0.000225 4; $\alpha(L)$ =2.45×10 ⁻⁵ 4; $\alpha(M)$ =4.25×10 ⁻⁶ 6; $\alpha(N)$ =6.04×10 ⁻⁷ 9; $\alpha(O)$ =4.29×10 ⁻⁸ 6 B(E2)(W.u.)=3.5×10 ⁻⁴ +9-7
7250	1-	7248.9 ^a 3	100 <mark>a</mark>	0	0^{+}	E1 ^a			$B(DZ)(W.d.) = 3.3 \times 10^{-17}$
7280.9		7280.6 ^a 7	100 <mark>a</mark>	0	0^{+}				
7361.0	1	7360.8 ^a 6	100 <mark>a</mark>	0	0^{+}	D^a			
7387.6	1	7387.3 ^a 4	100 <mark>a</mark>	0	0^{+}	D^a			
7424.5		7424.2 ^a 10	100 <mark>a</mark>	0	0^{+}				
7433.8	1	7433.5 ^a 8	100 ^a	0	0+	D^a			
7437.82	(13)+	213.93 ^b 4	100 ^b	7223.89	(12)+	M1+E2 b	-0.07 3	0.0264 5	$\alpha(K)=0.0232 \ 4; \ \alpha(L)=0.00265 \ 5; \ \alpha(M)=0.000461 \ 8;$ $\alpha(N)=6.53\times10^{-5} \ 12; \ \alpha(O)=4.55\times10^{-6} \ 7$ $B(E2)(W.u.)=9\times10^{1} \ +9-6; \ B(M1)(W.u.)=0.75 \ +16-11$
									δ : from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in (^{18}O),4ηγ).
7468		7468 ^a 2	100 <mark>a</mark>	0	0+				o: Ironi $\gamma(\theta)$ and $\gamma(\sin poi)$ in (**O),4n γ).
7468 7474.9	(1)	7468 ^a 2 7474.6 ^a 3	100 ^a		0+	(D) ^a			
	(1) (2^+)			0	0+				D(E2)/W \ 0.001/4.24
7649.9	(2')	7649.6	100	0	0.	(E2)			B(E2)(W.u.)=0.00164 24
7605.0	1	7605 40 4	1000	0	0+	D^a			E_{γ} , I_{γ} , Mult.: from ⁸⁹ $Y(p,\gamma)$.
7685.8	1	7685.4 ^a 4	100°a	0	-				
7702.9	1-	7702.5 ^a 3	100 ^a	0	0+	E1 ^a			
7723.1	(4)	7722.7 ^a 9	100 ^a	0	0+	m) d			
7759.7	(1)	7759.3 ^a 6	100 ^a	0	0+	$(D)^a$			
7779.0	1	7778.6 ^a 6	100°a	0	0+	D ^a D ^a			
7807.9	1	7807.5 ^a 3	100 ^a	0	0+				
7857.8	(1)	7857.4 ^a 7	100 ^a	0	0+	$(D)^a$			
7935.6	1	7935.2 ^a 3	100 ^a	0	0^{+}	D ^a D ^a			
7976.6	1	7976.2 ^a 4	100 ^a	0	0^{+}	D^a			
8006.9	1	8006.5 ^a 8	100°	0	0+	_			_
8058.41	(14)+	620.58 ^b 8	100 ^b 3	7437.82	$(13)^{+}$	M1+E2	-0.14 5	0.00209 16	$\alpha(K)$ =0.00184 14; $\alpha(L)$ =0.000208 19; $\alpha(M)$ =3.6×10 ⁻⁵ 4; $\alpha(N)$ =5.1×10 ⁻⁶ 5; $\alpha(O)$ =3.52×10 ⁻⁷ 22
									B(E2)(W.u.)=17 +24-11; B(M1)(W.u.)=0.32 +27-11
		001.710.	4.0-		44.00				δ : from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in (¹⁸ O),4n γ).
		834.51 ^e 8	<1.35	7223.89					
		1288.90 ^e 21	<1.35	6769.51		a			
8067.4	(1)	8067.0 ^a 5	100 ^a	0	0+	(D) ^a			
8110	1-	8109.6 ^a 8	100 ^a	0	0+	E1 ^a			
8131	(1^{-})	8131.5 <i>a</i> 4	100 ^a	0	0+	$(E1)^a$			
8144		8144 ^a 2	100 ^a	0	0+	a			
8166.7	(1)	8166.3 ^a 5	100 <mark>a</mark>	0	0^{+}	(D) ^a			

$E_i(level)$	\mathbf{J}_i^{π}	Ε _γ †@	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	α	Comments
8221.2	1	8220.8 ^a 8	100 <mark>a</mark>	0	0+	$\overline{\mathrm{D}^{a}}$		
8235.6	1	8235.2 ^a 3	100 <mark>a</mark>	0	0^{+}	D^a		
8250.7	1	8250.3 ^a 5	100 <mark>a</mark>	0	0^{+}	D^a		
8295.3	(1)	8294.9 <mark>a</mark> 10	100 <mark>a</mark>	0	0^{+}	(D) ^{<i>a</i>}		
8313.0	1	8312.6 ^a 7	100 <mark>a</mark>	0	0^{+}	D^a		
8334.1	1	8333.7 ^a 5	100 <mark>a</mark>	0	0^{+}	D^a		
8357.5	1	8357.1 ^a 18	100 <mark>a</mark>	0	0_{+}	D^a		
8382.1	(1)	8381.7 ^a 10	100 <mark>a</mark>	0	0_{+}	(D) ^a		
8403.7		8403.3 ^a 11	100 <mark>a</mark>	0	0_{+}			
8413.5	1	8413.1 ^a 4	100 <mark>a</mark>	0	0_{+}	D^a		
8440.6	1	8440.2 ^a 4	100 ^a	0	0_{+}	D^a		
8467.7		8467.3 ^a 15	100 <mark>a</mark>	0	0_{+}			
8501.2	1-	8500.8 ^a 4	100°	0	0_{+}	E1 ^a		
8518		8518 ^a 3	100 ^a	0	0_{+}			
8544		8544 ^a 4	100 <mark>a</mark>	0	0_{+}			
8553.5	1	8553.1 ^a 12	100 <mark>a</mark>	0	0_{+}	D^a		
8588.3	1	8587.9 ^a 7	100 ^a	0	0_{+}	D^a		
8598.2	1	8597.8 ^a 10	100°	0	0_{+}	D^a		
8625.6	1	8625.2 ^a 10	100 ^a	0	0_{+}	D^a		
8664.1	1	8663.7 ^a 5	100 ^a	0	0_{+}	D^a		
8716.6	1-	8716.1 ^a 5	100°	0	0_{+}	E1 a		
8751.0	1	8750.5 ^a 8	100 ^a	0	0_{+}	D^a		
8760.4	1	8759.9 ^a 5	100°	0	0+	D_a^a		
8812.0	1	8811.5 <i>a</i> 13	100 ^a	0	0+	D^a		
8833.2	1	8832.7 ^a 8	100°	0	0+	D_{α}^{a}		
8874.9	1	8874.4 <i>a</i> 9	100 ^a	0	0+	D^a		
8903.0		8902.5 ^a 8	100 ^a	0	0+			
8927.4		8926.9 ^a 4	100 ^a	0	0_{+}			
8958.13	(15)	899.71 ^b 20	100 ^b	8058.41	(14)+	E1 ^b	$3.71 \times 10^{-4} 18$	$\alpha(K)$ =0.000328 16; $\alpha(L)$ =3.58×10 ⁻⁵ 18; $\alpha(M)$ =6.2×10 ⁻⁶ 4; $\alpha(N)$ =8.8×10 ⁻⁷ 5; $\alpha(O)$ =6.2×10 ⁻⁸ 4 B(E1)(W.u.)=9×10 ⁻⁴ +9-4
		1520 20h 22	1 <i>b</i>	7407.00	(12)±			D(E1)(w.u.)-7\land 10 +7-4
0070 4	(1)	1520.29^{b} 22	<1 ^b	7437.82	(13) ⁺	σ		
8978.4	(1)	8977.9 ^a 9	100°	0	0^{+}	(D) ^{<i>a</i>}		
8985		8985 ^a 2	100 ^a	0	0+	D.a		
9004.7	1	9004.2 ^a 5	100 ^a	0	0+	D^a		
9014.0		9013.5 ^a 8	100 ^a	0	0+			
9034.0		9033.5 ^a 8	100 ^a	0	0+	D.0		
9043.6	1	9043.1 ^a 4	100 ^a	0	0_{+}	D^a		

$E_i(level)$	\mathbf{J}_i^{π}	Ε _γ †@	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments
9053.5		9053.0 ^a 7	100 ^a	0	0+				
9085.1	1	9084.6 ^a 3	100 <mark>a</mark>	0	0^{+}	D^a			
9111.1	1	9110.6 ^a 6	100 <mark>a</mark>	0	0^{+}	D^a			
9123.6		9123.1 ^a 7	100 <mark>a</mark>	0	0^{+}				
9137.5		9137.0 ^a 7	100 <mark>a</mark>	0	0_{+}				
9148.5	1-	9148.0 ^a 3	100 <mark>a</mark>	0	0_{+}	E1 ^a			
9164.9		9164.4 <mark>a</mark> 7	100 <mark>a</mark>	0	0_{+}				
9177.5		9177.0 ^a 5	100 <mark>a</mark>	0	0_{+}				
9187		9186 ^a 3	100 <mark>a</mark>	0	0_{+}				
9196.5	(1^{-})	9196.0 ^a 3	100 <mark>a</mark>	0	0_{+}	(E1) ^a			
9260.5	1	9260.0 ^a 6	100 <mark>a</mark>	0	0_{+}	D^a			
9292.8	1	9292.3 ^a 5	100 <mark>a</mark>	0	0_{+}	D^a			
9309.4	1	9308.9 ^a 7	100 <mark>a</mark>	0	0_{+}	D^a			
9333.4	1-	9332.9 ^a 6	100 <mark>a</mark>	0	0_{+}	E1 ^a			
9373.2		9372.8 ^a 7	100 <mark>a</mark>	0	0_{+}				
9392.4	1	9391.9 ^a 8	100 <mark>a</mark>	0	0_{+}	D^a			
9409.4		9408.9 ^a 11	100 <mark>a</mark>	0	0_{+}				
9424.3		9423.8 ^a 10	100 <mark>a</mark>	0	0_{+}				
9444.7	1	9444.2 ^a 4	100 <mark>a</mark>	0	0_{+}	D^a			
9465.1	1	9464.6 ^a 5	100 <mark>a</mark>	0	0_{+}	D^a			
9486.8	1	9486.3 ^a 4	100 <mark>a</mark>	0	0_{+}	D^a			
9510.5	(1)	9510.0 ^a 13	100 <mark>a</mark>	0	0_{+}	(D) ^{<i>a</i>}			
9524.1	1	9523.6 ^a 13	100 <mark>a</mark>	0	0_{+}	$\mathbf{\hat{D}}^{a}$			
9539.2	1	9538.7 ^a 5	100 ^a	0	0_{+}	D^a			
9551.4	1	9550.9 ^a 6	100 <mark>a</mark>	0	0_{+}	D^a			
9563.0	1	9562.5 <i>a</i> 6	100 <mark>a</mark>	0	0_{+}	D^a			
9609.2		9608.6 ^a 7	100 <mark>a</mark>	0	0_{+}				
9625.1		9624.5 ^a 8	100 ^a	0	0_{+}				
9640.4	1	9639.8 ^a 8	100°	0	0_{+}	D^a			
9666.0	(1)	9665.4 ^a 8	100°	0	0_{+}	(D) ^a			
9678.3	(1^{-})	9677.7 ^a 7	100°	0	0_{+}	$(E1)^a$			
9686.9	1	9686.3 ^a 6	100 ^a	0	0_{+}	D^a			
9707.00?	(16 ⁻)	748.87 ^{be} 20	100 ^b	8958.13	3 (15)	$(M1(+E2))^{b}$	-0.15 <i>15</i>	$1.27 \times 10^{-3} 2$	$\alpha(K)$ =0.001119 17; $\alpha(L)$ =0.0001234 19; $\alpha(M)$ =2.14×10 ⁻⁵ 4; $\alpha(N)$ =3.04×10 ⁻⁶ 5; $\alpha(O)$ =2.17×10 ⁻⁷ 4 B(E2)(W.u.)=5 +16-4; B(M1)(W.u.)=0.105 +39-26
9733.2	1	9732.6 ^a 5	100 <mark>a</mark>	0	0^{+}	D^a			D(DD)(11.001) D(1111)(11.00.) = 0.100 100 100 20
9741.7	1	9741.1 ^a 7	100 ^a	0	0+	D			
9754.0	1	9753.4 ^a 6	100 ^a	0	0+	D^a			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger} @	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments
9784.6		9784.0 ^a 5	100 ^a	0	0+				
9805.4		9804.8 ^a 10	100 <mark>a</mark>	0	0+				
9836.01	$(15)^{+}$	1777.6 <mark>b</mark> 3	100 <mark>b</mark>	8058.41					
9843.4	1	9842.8 ^a 6	100 <mark>a</mark>	0	0+	D^a			
9855.5	1	9854.9 ^a 8	100 <mark>a</mark>	0	0+	D^a			
9872.4	1	9871.8 ^a 4	100 <mark>a</mark>	0	0+	D^a			
9890.7	(1)	9890.1 ^a 13	100 <mark>a</mark>	0	0+	$(D)^a$			
9901.9	(1)	9901.3 <i>a</i> 13	100 <mark>a</mark>	0	0+	(2)			
9932.1	1	9931.5 <i>a</i> 12	100 <mark>a</mark>	0	0+	D^a			
9962.8	1	9962.2 ^a 5	100 <mark>a</mark>	0	0+	D^a			
9984.1	_	9983.5 ^a 11	100 <mark>a</mark>	0	0+	_			
10004.2	1	10003.6 ^a 10	100 <mark>a</mark>	0	0+	D^a			
10019.6	1	10019.0 ^a 11	100 <mark>a</mark>	0	0^{+}	D^a			
10031		10030 ^a 2	100 <mark>a</mark>	0	0_{+}				
10042.9	(1^{-})	10042.3 ^a 4	100 <mark>a</mark>	0	0^{+}	(E1) ^a			
10083.8	ì	10083.2 ^a 6	100 <mark>a</mark>	0	0^{+}	\mathbf{D}^{a}			
10094.2	1	10093.6 ^a 7	100 <mark>a</mark>	0	0^{+}	D^a			
10104.9	(1)	10104.3 ^a 12	100 <mark>a</mark>	0	0_{+}	(D) ^a			
10123.7	1	10123.1 ^a 18	100 <mark>a</mark>	0	0_{+}	D^{a}			
10125.84	(16)+	289.83 ^b 6	57.2 ^b 23	9836.01	(15)+	M1(+E2) ^b	-0.01 6	0.01205 18	$\alpha(K)=0.01061 \ 16; \ \alpha(L)=0.001199 \ 19;$ $\alpha(M)=0.000208 \ 4; \ \alpha(N)=2.96\times10^{-5} \ 5;$ $\alpha(O)=2.07\times10^{-6} \ 3$ B(M1)(W.u.)=0.54 +25-14 δ : from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in ($^{18}\text{O},4\text{n}\gamma$).
		1167.70 ^b 20	100 ^b 4	8958.13	(15)-	E1(+M2) ^b	-0.02 5	2.42×10 ⁻⁴ 5	$\alpha(K)=0.000191 \ 5; \ \alpha(L)=2.07\times10^{-5} \ 5;$ $\alpha(M)=3.59\times10^{-6} \ 9; \ \alpha(N)=5.10\times10^{-7} \ 12;$ $\alpha(O)=3.63\times10^{-8} \ 9$ B(E1)(W.u.)=2.2×10 ⁻⁴ +11-6 δ : from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in ($^{18}\text{O},4\text{n}\gamma$).
		2067.4 ^b 3	<5.1 ^b	8058.41	$(14)^{+}$				
10146.8	1	10146.2 <mark>a</mark> 9	100 <mark>a</mark>	0	0+	D^a			
10163.4	1	10162.9 ^a 8	100 <mark>a</mark>	0	0^{+}	D^a			
10193.0	1	10192.4 ^a 5	100 <mark>a</mark>	0	0^{+}	D^a			
10216.8	1	10216.2 ^a 10	100 <mark>a</mark>	0	0_{+}	D^a			
10233		10232 ^a 4	100 ^a	0	0_{+}				
10241	(1)	10240 <mark>a</mark> 2	100 <mark>a</mark>	0	0_{+}	(D) ^a			
10260.9		10260.3 ^a 11	100 <mark>a</mark>	0	0_{+}				
10270.0		10269.4 ^a 7	100 ^a	0	0_{+}				

E_i (level)	${\rm J}_i^\pi$	Ε _γ †@	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	${\rm J}^\pi_f$	Mult.‡	Comments
10286.2	1	10285.6 ^a 6	100 ^a	0	0+	$\overline{\mathrm{D}^{a}}$	
10298.3	(1)	10297.7 ^a 10	100 ^a	0	0+	D^a	
10306.6	1	10306.0 ^a 9	100 ^a	0	0^{+}	D^a	
10315.1	1	10314.5 ^a 4	100 <mark>a</mark>	0	0^{+}	D^a	
10334.9	1	10334.3 ^a 6	100 <mark>a</mark>	0	0_{+}	D^a	
10361	(1)	10360 <mark>a</mark> 2	100 <mark>a</mark>	0	0_{+}	(D) ^a	
10376.8	1	10376.2 ^a 4	100 <mark>a</mark>	0	0_{+}	\mathbf{D}^{a}	
10402.5	1	10401.9 ^a 9	100 <mark>a</mark>	0	0_{+}	D^a	
10494.5	(1)	10493.8 ^a 11	100 <mark>a</mark>	0	0_{+}	(D) ^a	
10507.9	1	10507.2 ^a 8	100 ^a	0	0_{+}	D^a	
10524.6	1	10523.9 ^a 4	100 ^a	0	0_{+}	D^a	
10595.0	1	10594.3 ^a 7	100 ^a	0	0_{+}	D^a	
10618.7	1	10618.0 ^a 8	100 ^a	0	0_{+}	D^a	
10638.5	1	10637.8 ^a 9	100 ^a	0	0_{+}	D^a	
10682.2	1	10681.5 ^a 6	100 ^a	0	0_{+}	D^a	
10713.2	(1)	10712.5 <i>a</i> 12	100 <i>a</i>	0	0_{+}	(D) <i>a</i>	
10728.2	1	10727.5 ^a 11	100 ^a	0	0_{+}	D^a	
10764.9	(17+)	639.0 ^{cb} 8	100 ^b 23	10125.84	(16)+	$(M1+E2)^{b}$	$\alpha(K)$ =0.00171 12; $\alpha(L)$ =0.000192 16; $\alpha(M)$ =3.3×10 ⁻⁵ 3; $\alpha(N)$ =4.7×10 ⁻⁶ 4; $\alpha(O)$ =3.27×10 ⁻⁷ 18
							$B(E2)(W.u.)>6.7\times10^{-4}$; $B(M1)(W.u.)>2.7\times10^{-7}$
		928.9 <mark>b</mark> 7	<5.7 ^b	9836.01	$(15)^{+}$		
		1806.7 <mark>b</mark> 8	<4.5 ^b	8958.13	$(15)^{-}$		
10827.1	1	10826.4 ^a 5	100 <mark>a</mark>	0	0+	D^a	
10914	(1)	10913 <mark>a</mark> 2	100 <mark>a</mark>	0	0_{+}	(D) ^a	
10957	1	10956 ^a 2	100 <mark>a</mark>	0	0_{+}	D^{a}	
10987.0	1	10986.3 ^a 10	100 ^a	0	0_{+}	D^a	
11044		11043 ^a 2	100 ^a	0	0_{+}		
11094.2		11093.5 <i>a</i> 15	100 ^a	0	0_{+}		
11108.0		11107.3 <i>a</i> 16	100 ^a	0	0+		
11120.4	1	11119.7 <mark>a</mark> 9	100 ^a	0	0_{+}	D^a	
11129.2		11128.5 <i>a</i> 17	100°	0	0+		
11140		11139 ^a 2	100 ^a	0	0+	<i>a</i>	
11232.4	1	11231.6 ^a 7	100 ^a	0	0+	D_a^a	
11243.2	1	11242.4 ^a 6	100 ^a	0	0+	D_a^a	
11337.7	1	11336.9 ^a 6	100 ^a	0	0_{+}	D^a	
11403.9	(18+)	639.0 ^b 8	$1.0 \times 10^{2b} \ 3$	10764.9	(17+)	(M1+E2) ^b	$\alpha(K)$ =0.00171 12; $\alpha(L)$ =0.000192 16; $\alpha(M)$ =3.3×10 ⁻⁵ 3; $\alpha(N)$ =4.7×10 ⁻⁶ 4; $\alpha(O)$ =3.27×10 ⁻⁷ 18

	Adopted Levels, Gammas (continued)									
					γ ⁽⁹⁰ Zr) (co	ontinued)				
\mathtt{J}_i^{π}	Ε _γ †@	${\rm I}_{\gamma}{}^{\dagger}$	E_f	${\rm J}_f^\pi$	Mult.‡	δ^{\ddagger}	α	Comments		
								$\alpha(K)$ =0.00171 12; $\alpha(L)$ =0.000192 16; $\alpha(M)$ =3.3×10 ⁻⁵ 3; $\alpha(N)$ =4.7×10 ⁻⁶ 4; $\alpha(O)$ =3.27×10 ⁻⁷ 18		
(18^{+})	1278.1 <i>cb</i> 10	<3.9 ^b	10125.84	$(16)^{+}$						
(1)	11416.7 ^a 7	100 ^a	0	0+	(D) <i>a</i>					
1	11451.4 ^a 10	100 <mark>a</mark>	0	0_{+}	D^a					
1	11478.9 ^a 8	100 ^a	0	0_{+}	D^a					
	11500 ^a 3	100 <i>a</i>	0	0_{+}						
	11509 ^a 7	100 <i>a</i>	0	0_{+}						
1	11530 ^a 2	100 <mark>a</mark>	0	0+	D^a					
	11627.1 ^a 9	100 <mark>a</mark>	0	0+	<i>a</i>					
(1)	11650.7 ^a 8	100 <mark>a</mark>	0	0+	(D) ^a					
1	11776.6 ^a 10	100 ^a	0	0+	\mathbf{D}^{a}					
1	11787 ^a 3	100 ^a	0	0+	D^a					
(1)	11962.4 ^a 18	100 ^a	0	0^{+}	(D) ^a D ^a					
1	11983 ^a 2 12019.7 ^a 8	100 ^a 100 ^a	0	0^{+}	D^a					
1	$12019.7^{a} 8$ $12066.9^{a} 9$	100 ^a	0	0+	D^a					
1			-	-	_	0.2.5	0.00151.0	(H) 0.00122.7 (I) 0.000140.0 (AD 0.70.10-5		
(19+)	706.8 ^b 3	100 ^b 10	11403.9	(18+)	$(M1(+E2))^b$	-0.3 5	0.00151 8	$\alpha(K)=0.00133\ 7;\ \alpha(L)=0.000149\ 9;\ \alpha(M)=2.59\times10^{-5}\ 16;\ \alpha(N)=3.66\times10^{-6}\ 21;\ \alpha(O)=2.55\times10^{-7}\ 9\ B(M1)(W.u.)=0.39\ +14-18$ δ : from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(^{18}\text{O},4\text{n}\gamma)$.		
	1345.9 ^b 8	<9.8 b	10764.9	(17±)				υ. ποιπ _{γ(υ)} απα γ(ππ μοι) πι (υ,τπγ).		
1	1345.9° 8 12207.4 ^a 12	<9.8° 100°a	0	(17^+) 0^+	D^a					
1	8383 & 6			-	D					
		18	3842.34	2+						
	8919 <mark>&</mark> 6	26	3308.10	2+						

12208.3	1	12207.4 ^a 12	100 <mark>a</mark>	0	0_{+}	D^a
12219.6		8383 <mark>&</mark> 6	18	3842.34	2+	
		8919 <mark>&</mark> 6	26	3308.10	2+	
		9467 <mark>&</mark> 6	16	2747.875	3-	
		10033 <mark>&</mark> 6	47	2186.273	2+	
		10453 <mark>&</mark> 6	40	1760.74	0_{+}	
		12212 <mark>&</mark> 6	100	0	0^{+}	
12243.6	1	12242.7 <mark>a</mark> 14	100 <mark>a</mark>	0	0_{+}	D^a
12496.3		12495.4 <mark>a</mark> 18	100 <mark>a</mark>	0	0_{+}	
12880.3		12879.3 ^a 10	100 ^a	0	0^{+}	
12964.7	(20^+)	854.00 ^b 30	1.0×10^{2} 3	12110.7	(19^+)	
		1560.8 ^b 5	<10.7 ^b	11403.9	(18^{+})	
13110.2	$(2)^{-}$	9270 <mark>&</mark>		3842.34	2+	

3308.10 2+

9800<mark>&</mark>

 $E_i(level)$

11403.9 11417.5 11452.2 11479.7 11501 11510 11531 11627.9 11651.5 11777.4 11788 11963.3 11984 12020.6

12067.8 12110.7

- [†] From $(n,n'\gamma)$, except where noted.
- ‡ From $\gamma(\theta)$ in $(n,n'\gamma)$ except where noted.

- # From 90 Nb ε decay.

 @ From 89 Y(p, γ) reaction.

 & From 89 Y(p, γ). From level energy difference for level 13110; not included in level energy fit.
- ^a From 90 Zr(γ,γ').
- ^b From 76 Ge(18 O,4n γ).
- ^c Multiply placed.
- ^d Multiply placed with undivided intensity.
- ^e Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Type not specified

Legend

Level Scheme (continued) Intensities: Type not specified

 $\begin{array}{c|c} & & \mathbf{I}_{\gamma} < 2\% \times \mathbf{I}_{\gamma}^{max} \\ & & & \mathbf{I}_{\gamma} < 10\% \times \mathbf{I}_{\gamma}^{max} \\ & & & & \mathbf{I}_{\gamma} > 10\% \times \mathbf{I}_{\gamma}^{max} \end{array}$

Legend

Adopted Levels, Gammas Legend $ightharpoonup I_{\gamma} < 2\% \times I_{\gamma}^{max}$ Level Scheme (continued) $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ Intensities: Type not specified γ Decay (Uncertain) <u>(14)</u>⁺ 8058.41 0.28 ps 14 8006.9 7976.6 7935.6 <u>1</u> (1) 7857.8 7807.9 7779.0 (1) 7759.7 7723.1 7702.9 7685.8 (2^{+}) 7649.9 0.55 ps +9-7 (1) 7474.9 7468 $(13)^{+}$ 7437.82 2.9 ps 5 7433.8 1 7424.5 7387.6 7361.0 1 7280.9 7250 $(12)^{+}$ 7223.89 59 ps 10 7198.2 $\frac{1}{(11^+)}$ -\$\langle \langle \lan 7194.35 ${<}28~ps$ (1) 7085.6 7042.0 (10^{+}) 7025.59 (11^{-}) 7008.63 (11) 6960.4 6953.94 <28 ps 6876 (12^{+}) 6769.51 (10^{-}) 6721.11 (10^{-}) 6376.10 <28 ps (9^{+}) 5792.05 10^{+} 5644.02 <28 ps <28 ps 5247.52 $(8)^{+}$ 5164.484 stable $^{90}_{40}\mathrm{Zr}_{50}$

 $^{90}_{40}\mathrm{Zr}_{50}\text{--}37$

Intensities: Type not specified & Multiply placed: undivided intensity given

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113,2187 (2012)	15-Sep-2012

 $Q(\beta^-) = -2005.9 \ 18$; $S(n) = 8634.79 \ 11$; $S(p) = 9396.7 \ 19$; $Q(\alpha) = -2963.2 \ 21$ 2012Wa38 Note: Current evaluation has used the following Q record $-2005.9 \ 18 \ 8634.7911 \ 9396.8 \ 19 - 2964.3 \ 23$ 2011AuZZ. $Q(\beta^-)$,S(n),S(p), $Q(\alpha)$: from 2011AuZZ; $-2005.5 \ 18$, 8634.80 11, 9397.8 18, $-2957.1 \ 25$, respectively, from 2003Au03. See $^{91}Zr(n,\gamma)$ E=res for neutron resonance information; it has not been included in the present dataset. Other Reactions:

For relativistic mean field calculation of g.s. properties of ⁹²Zr, see 2004He24.

For shell-model calculation of g factors and electromagnetic decay rates for lowest-energy 2⁺ (934) and 3⁻ (2340) levels, see 2004St11.

⁹²Zr Levels

Above 3 MeV, the correspondence between levels from different reactions is sometimes ambiguous. This is due, in part, to particle reaction energy resolution being inadequate for the existing level density, but also results from particle reaction data for which the authors do not state ΔE (viz., $(\alpha,^3 \text{He})$, (p,t), $(^3 \text{He},^3 \text{He}')$, (t,t'), $(d,^3 \text{He})$) and/or data for which the energy scale appears to include an unstated systematic uncertainty (viz.: $(\alpha,^3 \text{He})$, 10-30 keV low; (p,t), 5-10 keV low; (p,p') from 1966St15, 10-20 keV low). For theoretical work see, e.g., 1972Wa09, 1975Gl07, 1976Te02, 1976Pr07, 1993Ha37, 2000Ho15.

Cross Reference (XREF) Flags

	A B C D E F G H I J K L	⁹² Υ $β$ ⁻ decay ⁹² Nb $ε$ decay (10.15 d) ⁴⁸ Ca(⁴⁸ Ca,4n $γ$) ⁸⁸ Sr(⁷ Li,2np $γ$) ⁹⁰ Zr(t,p) ⁹¹ Zr(n, $γ$) E=thermal ⁹¹ Zr(d,p), (pol d,p) ⁹¹ Zr($α$, ³ He) ⁹² Zr(n,n' $γ$) ⁹² Zr(p,p'), (pol p,p') ⁹² Zr($α$, $α$ ') ⁹² Zr(d,d'), (pol d,d) ⁹² Zr(t,t')	N O P Q R S T U V W X Y Z	94 Zr(p,t) 92 Zr(p,p'γ) 92 Zr(3 He, 3 He') 93 Nb(4 Je), (pol d, 3 He) 94 Mo(6 Li, 8 B) 92 Zr(16 O, 16 O'), (18 O, 18 O') 92 Nb ε decay (3.47×10 ⁷ y) 90 Zr(2 He) Coulomb excitation 92 Zr(n,n') 95 Mo(n,α) 92 Zr(e,e')	Other AA AB AC AD AE AF AG AH AI AJ AK AL	rs: $^{89}Y(\alpha,p)$ $^{92}Zr(\gamma,xn), (\gamma,pn)$ $^{94}Mo(^{14}C,^{16}O)$ $^{96}Mo(d,^{6}Li)$ $^{91}Zr(^{16}O,^{15}O)$ $^{91}Zr(n,\gamma),(n,n)$ E=res $^{173}Yb(^{24}Mg,F\gamma),^{176}Yb(^{28}Si,X\gamma),$ $^{92}Zr(pol \gamma,\gamma'), (\gamma,\gamma')$ $^{208}Pb(^{90}Zr,X\gamma)$ $^{82}Se(^{13}C,3n\gamma)$ $^{92}Zr(\alpha,\alpha'\gamma)$ $^{91}Zr(n,\gamma)$ E=292 eV
$\frac{\text{E(level)}^{\ddagger}}{0.0^{b}}$ 934.51 ^b 4	$\frac{J^{\pi}}{0^{+}}$ 2^{+}	ш		QRSTUVWXYZ XREF: Others $\Delta < r^2 > (92,90)$: $\Delta < r^2 > (92,9)$: $< r^2 > 1/2 \text{ (charge)}$: AA, AG =0.224 4)=0.17 e)=4.30	Comments C, AD, AF, AG, AH, AI, AJ, AK, AL 26 (1999GaZX), 0.224 25 (1988GaZS); 70 19 (1988GaZS). 57 fm 9 (2004An14). C, AD, AF, AG, AI, AJ, AK, AL

Continued on next page (footnotes at end of table)

 $^{^9}$ Be(86 Kr,3n γ): 2007SuZN: E(86 Kr)=280 MeV; GEMINI-II γ detector array; measured $T_{1/2}$ using DSAM for high-spin states; data analysis not yet complete.

 $^{^{91}}$ Zr(7 Li, 6 Li): 1993Yo01: E(7 Li)=210 MeV, magnetic spectrograph, FWHM≈500 keV, 88.5% 91 Zr target; observed resonances at E=0.0 MeV (Γ=0.6 MeV), 1.3 MeV (Γ=0.9 MeV), 3.6 MeV (Γ=1.2 MeV), 4.7 MeV (Γ=0.9 MeV), 5.5 MeV (Γ=1.0 MeV), 6.8 MeV (Γ=1.6 MeV) and 15.8 MeV (Γ=6.0 MeV); interpreted these resonances as single-particle states.

 $^{^{92}}$ Zr(6 Li, 6 Li'): 1993Ho02: E(6 Li)=70 MeV, magnetic spectrometer, particle identification, 94.57% 92 Zr target, FWHM≈225 keV, θ (lab)≈4°-45°; measured σ (θ) for 934 and 2340 levels (J^{π} =2+ and 3-, respectively); deduced isospin character of transitions to the above two states (deformed optical model analysis). See also 1992Ho12.

E(level) [‡]	\mathbf{J}^{π}	T _{1/2} #	XREF	Comments
				μ =-0.360 20 (1999Ja13) J ^π : L=2 in (t,p), (p,t) and p,d,t, 3 He, α scattering. μ implies dominant role of d _{5/2} neutrons in wavefunction of this state (1999Ja13). T _{1/2} : from B(E2)=0.080 6 (Coulomb excitation). μ : from measured g-factor=-0.180 10 from $\gamma(\theta,H,t)$ in Coulomb excitation. Other μ : -0.06 10 from transient field integral PAC (1989Ra17, from 1980Ha31), assuming T _{1/2} =4.85 ps; -0.36 4 (2008We07; transient field).
1382.77 7	0+	88 ps <i>3</i>	A EFG IJ L NO QRS WX	XREF: Others: AA, AC, AD, AH J^{π} : 448 γ -934 $\gamma(\theta)$ in ^{92}Y β^{-} decay indicates a 0-2-0 cascade; L=0 in (t,p) and (p,t). $T_{1/2}$: from ^{92}Y β^{-} decay. Other: 85 ps <i>15</i> from (p,p' γ).
1495.46 ^b 5	4+	102 ps <i>3</i>	A CDEFGHIJKLMN PQ STUVWX	XREF: Others: AA, AC, AD, AF, AG, AH, AI, AJ, AK, AL μ =-2.0 4 (1999Ja13) μ : from measured g-factor=-0.50 11 from $\gamma(\theta,H,t)$ in Coulomb excitation. J ^{π} : L=4 in (t,p), (p,t), (p,p'), (t,t'), (α,α'). μ implies dominant role of d _{5/2} neutrons in wavefunction of this state (1999Ja13). $T_{1/2}$: from $\gamma\gamma(t)$, ${}^{92}Y$ β^{-} decay.
1847.27 <i>4</i>	2+	96 ^{&} fs <i>10</i>	AB EFGHIJKLMN P R T WX Z	XREF: Others: AA, AC, AD, AF, AH μ =+1.5 10 (2008We07) J ^{π} : L=2 in (p,t), (p,p'), (t,t'), (α , α '), (3 He, 3 He'), (t,p). μ : From measured g-factor in Coulomb excitation (transient field). Level exhibits structure expected for a mixed symmetry one-phonon Q excitation (2002We15).
2066.65 <i>5</i> 2182 <i>10</i>	2 ⁺ (2 ⁺)	>0.76 ^{&} ps	AB EFGHIJKLM WX	XREF: Others: AC, AD, AF, AL J^{π} : L=2 in (t,p), (p,p'), (α , α'). J^{π} : L(α , α')=(2).
2102 10	(2)		K	Probably same level as in (p,p') at $E=2180$? 22.
2339.66 4	3-	0.28 ^{&} ps <i>3</i>	A EFGHIJKLMN PRTVWX	XREF: Others: AD, AL J ^π : L=3 in (t,p), (p,t), (p,p'), (d,d'), (t,t'), (³ He, ³ He'), (α,α'). For summary of B(E3)↑ data, see 1989Sp01; recommended value is 0.067 22 based on b ₃ from angular distribution in (p,p'). This corresponds to 4.4% 15 of energy-weighted E3 sum rule.
2398.36 6	4+	149 ^{&} fs <i>16</i>	EFGHIK N WX	XREF: Others: AB, AD, AF, AG XREF: X(2360). J ^{π} : L=4 in (t,p) and (α , α'). Note: evaluator assumes J=1,3 from (n,n') for 2360 <i>20</i> level to be in error; alternatively, an additional level may exist at that energy.
2473.4? <i>5</i> 2486.01 <i>9</i>	(≤2) 5 ⁻	≤3.5 ns	A DEF IJKL N R WX	J^{π} : γ ray to 0^+ state. XREF: Others: AB, AC, AD, AE, AG XREF: R(2450). J^{π} : L=5 in (t,p), (p,p'), (α,α') and analyzing power in (pol p,p') (1979De11). See comment on J(2486 level) in (n,γ) .

E(level) [‡]	J^{π}	T _{1/2} #	XREF		Comments
2666 30			J	X	XREF: Others: AA, AB, AE, AF XREF: J(2651). Excitation of level in (p,p') is not certain.
2743.55 7	4-	>2.63 ^{&} ps	F I R		J^{π} : D(+Q) 404 γ and 258 γ to 3 ⁻ 2340 and 5 ⁻ 2486, respectively; L(d, ³ He)=1. If the 2486 and 2744 states are treated as members of the (p _{1/2} ,g _{9/2}) doublet, they exhaust the p _{1/2} pickup strength in (d, ³ He).
2752? [†] 11	3-		KLM	x	XREF: Others: AB, AG, AH XREF: $x(2778)$. J^{π} : $L(\alpha,\alpha')=3$.
2819.54 7	2+	64 ^{&} fs 7	A EFG IJK	x	XREF: Others: AB, AG, AH XREF: $x(2778)$. J^{π} : L=2 in (t,p), (α,α') .
2864.66 9	4+	0.24 ^{&} ps 3	E G IJKLM	Х	XREF: Others: AB, AD, AE, AF XREF: J(2650). J^{π} : L=4 in (t,p), (α,α') ; however, if reported $L(p,p')=(2)$ is correct, a (2^+) level also must exist at approximately this energy.
2904.08 18	0+	0.83 sps +57-24	EF I		J^{π} : L=0 in (t,p).
2909.43 7	3+	216 ^{&} fs 24	FG I	X	J^{π} : L=0 in (d,p) on 5/2 ⁺ target; D+Q 1414 γ to 4 ⁺ 1495.
2957.4 ^b 3	6+	≤3.5 ns	CDE GH JK		XREF: Others: AB, AC, AG, AI, AJ XREF: H(2944). J^{π} : L(t,p)=6; supported by L(α , α')=(6) and (Q) 1462 γ to 4 ⁺ 1495.
3039.70 6	3	91 ^{&} fs <i>10</i>	A EF I lm	х	XREF: Others: AC, AD, AF, AL XREF: $1(3040)$ m(3040)x(3063). J^{π} : D(+Q) 2105γ to 2^{+} 934; D(+Q) 700γ to 3^{-} 2340 ; 296γ to 4^{-} 2744; J=3 from $700\gamma(\theta)$ in $(n,n'\gamma)$.
3057.40 <i>13</i>	2+	98 ^{&} fs <i>10</i>	E G IJKlm	x	XREF: Others: AC, AD, AF XREF: J(3040)l(3040)m(3040)x(3063). J^{π} : L=2 in (t,p), (α,α') .
3124.61 11	1 ⁽⁺⁾	58 ^{&} fs 6	G I		XREF: Others: AA, AB, AD, AF XREF: G(3126). J^{π} : D 3125 γ to 0 ⁺ g.s.; L(d,p)=2 for 5/2 ⁺ target and uncertain state.
3178.31 11	4+	54 ^{&} fs 6	F IjK M	х	XREF: Others: AA, AC, AD, AG, AH XREF: $j(3180)K(3187)M(3140)x(3187)$. J^{π} : L=4 in (t,t'), (α,α') . E(level): if (α,α') , (t,t') and $(n,n'\gamma)$ excite same level.
3190.99 <i>21</i>	(4-)	153 ^{&} fs <i>18</i>	GhIj	x	XREF: Others: AA, AB, AD, AE, AG, AH XREF: h(3215)j(3180)x(3187). J ^π : L(d,p)=(3+5) for 5/2 ⁺ target; D(+Q) 1696 γ to 4 ⁺ 1496, but J=5 requires δ (D,Q)=+0.36 5 and J=3 requires δ =-0.41 to -1.92 to 4 ⁺ level, violating RUL if π = E(level),J ^π : if (d,p), (α , ³ He) and (n,n' γ) excite same state.
3236.9 6	4+		E Gh JK1		XREF: Others: AA, AB, AD, AE

E(level) [‡]	\mathbf{J}^{π}	#	XREF		Comments
3262.62 4	2+	12.5 ^{&} fs <i>14</i>	A FGHI klM	х	XREF: h(3215)l(3250). J ^{π} : L=4 in (p,p'), (α , α '). XREF: Others: AB, AC, AD, AE, AG, AH XREF: k(3273)l(3250)M(3240)x(3275). J ^{π} : L=0+2 in (d,p); E2 3263 γ to 0 ⁺ g.s.
3275.76 8	2+,3+	53 & fs 6	F I k	x	XREF: Others: AB, AD, AE, AG XREF: k(3273)x(3275). J ^π : M1+E2 2341γ to 2 ⁺ 934; D,Q 878γ to 4 ⁺ 2398.
3289.13 7	3+	174 ^{&} fs 19	FG I k	x	XREF: Others: AB, AD, AE, AG XREF: k(3273)x(3275). J ^π : L=0 in (d,p); M1+E2 2355γ to 2 ⁺ 934; M1+E2 1794γ to 4 ⁺ 1496.
3304 10	6+		E m		XREF: Others: AB, AD XREF: m(3320). J^{π} : L=6 in (t,p).
3308.7 ^b 4	(8+)	1.18 ns 7	CD m	r	XREF: Others: AA, AB, AD, AG, AI, AJ XREF: m(3320)r(3310). J^{π} : stretched Q transition to 6^+ 2958 in (7 Li,2np γ). $T_{1/2}$: from recoil-distance measurements in 48 Ca(48 Ca, 49 C).
3325? 8	(+)		Ghj m	r	XREF: Others: AA, AB, AD, AG XREF: h(3327)j(3320)m(3320)r(3310). J ^π : L=(4) in (d,p). E(level): existence of level based on uncertain level in (d,p).
3345 20	5-		h jK m		XREF: Others: AB, AD, AG XREF: h(3327)j(3320)m(3320). J^{π} : L=5 in (α, α') .
3371.48 8	1 ⁽⁻⁾	27 & fs 3	A EFg I		XREF: Others: AC, AD, AG, AH XREF: $g(3374)$. J^{π} : L=(1) in (t,p); D 3371 γ to 0 ⁺ g.s.
3379.8 10	(7^{-})	≤3.5 ns	D		XREF: Others: AG
3382 20	3-		g K n		J^{π} : γ to 5 ⁻ in (⁷ Li,2np γ) and ¹⁷³ Yb(²⁴ Mg,F γ). XREF: Others: AA, AC, AD, AG XREF: g(3374)n(3410). J^{π} : L=3 in (α , α').
3407.83 17	2-,3-	0.30 ^{&} ps 4	I n		XREF: Others: AA, AC, AD XREF: n(3410). J^{π} : M1+E2 1068 γ to 3 ⁻ 2340; D(+Q) 2473 γ to 2 ⁺ 934; δ to 3 ⁻ is \geq 0.3 if J=2.
3446 14	3-		jKLm		XREF: Others: AC, AD XREF: $j(3440)m(3440)$. J^{π} : L=3 in (α, α') .
3452.17 7	(2)+	58 ^{&} fs 6	F Ij		XREF: Others: AC, AD XREF: j(3440). J^{π} : M1+E2 2518 γ to 2 ⁺ 934; 1113 γ to 3 ⁻ 2340; 2070 γ to 0 ⁺ 1383.
3463.04 <i>15</i>	(4) ⁺	137 ^{&} fs +21–17	E Ij m		XREF: Others: AA, AC, AD, AE XREF: E(3451)j(3440)m(3440). E(level): values from (p,p') (1966St15) and E(t,p) are, respectively, 10-20 keV and 5-10 keV low. J ^π : E2(+M3) 2529γ to 2 ⁺ 934; L(t,p)=(4); 1968γ to 4 ⁺ 1495.

E(level) [‡]	J^{π}	T _{1/2} #	XREF		Comments
3471.88 <i>16</i>	1+	5.3 ^{&} fs 6	FGhI		XREF: Others: AC, AD, AF, AG, AH, AI XREF: G(3469)h(3479). J^{π} : L(d,p)=2 for 5/2 ⁺ target; M1 3471 γ to 0 ⁺ g.s.
3491 20	(3-)		K	v	XREF: Others: AC, AD, AE XREF: $v(3540)$. J^{π} : L=(3) in (α,α') .
3499.88 <i>10</i>	2+	53 ^{&} fs 5	EF h	v	XREF: Others: AC, AD, AE, AG, AH, AI XREF: h(3479)v(3540).
3589 10	0+		E k	v	L=2 in (t,p). XREF: Others: AC, AD, AE, AG, AH XREF: k(3587)v(3540).
3602 9	(5-)		E Gh k M		J ^{π} : L(t, p)=0+(5) for 3589+3602 doublet. XREF: Others: AB , AD , AE , AF , AG , AH , AI XREF: h(3597)k(3587)M(3620). J ^{π} : L(t, p)=0+(5) for 3589+3602 doublet; L(d, p)=(3+5) for 5/2 ⁺ target; L=(5) in (t, t ').
3609.5 4	(0^+)	151 ^{&} fs +26-23	I		2675 γ to 2 ⁺ 934; J=(0) from excit in (n,n' γ).
3628.33 7	(4 ⁺)	26 ^{&} fs 3	EF hIjk		XREF: Others: AC, AD, AE, AF, AG, AI XREF: h(3597)j(3640). 2694γ to 2+ 934; 885γ to 4- 2744; 2133γ to 4+ 1495; L(t,p)=2+(4) for 3628+3640 doublet so this is presumed to be the L=(4) component.
3638.2 <i>3</i>	1-	8.4 ^{&} fs <i>11</i>	Ijk		XREF: Others: AB, AC, AD, AF, AH XREF: $j(3620)k(3634)$. J^{π} : E1 3638 γ to 0 ⁺ g.s.
3640.28 11	(2)+	128 ^{&} fs <i>15</i>	EF hIjk		XREF: Others: AB, AC, AD, AE, AF, AG, AI XREF: $h(3597)j(3620)k(3634)$. J^{π} : M1+E2 2706 γ to 2 ⁺ 934; 1301 γ to 3 ⁻ 2340; $L(t,p)=2+(4)$ for 3628+3640 doublet, with L=(4) component associated with 3628 level on basis of that level's γ decay.
3649.22 12	3+	56 ^{&} fs 7	FGhI L	X	XREF: Others: AD, AE, AG, AI XREF: h(3597). J^{π} : M1+E2 2714 γ to 2 ⁺ 934; M1+E2 2154 γ to 4 ⁺ 1495. and 5 ⁻ levels; L(d,p)=2+4 for 5/2 ⁺ target.
3667.1 <i>10</i>	1				XREF: Others: AH J^{π} ,E(level): from (γ, γ') .
3675.8 <i>4</i>	$3^+,4^+,5^+$	116 ^{&} fs +24-20	I		J^{π} : M1+E2 2180 γ to 4 ⁺ 1495.
3696.8 4	1 ⁽⁺⁾	17.3 ^{&} fs 28	I		XREF: Others: AH J ^{π} : D 3697 γ to 0 ⁺ g.s.; D+Q, $\Delta \pi$ =(no) 2762 γ to 2 ⁺ 934.
3704 7	$(4)^{+}$		E Gh k		XREF: Others: AA, AD, AF, AG, AH XREF: h(3683)k(3711).
3725 9	+		Gh k		J^{π} : L(t,p)=(4); L(d,p)=2 for $5/2^+$ target. XREF: Others: AA, AD, AF, AG, AH XREF: h(3683)k(3711). J^{π} : L(d,p)=2 for $5/2^+$ target.
3760 10	2+		E h		XREF: Others: AD, AF, AH XREF: h(3683). J^{π} : L(t,p)=2.
3767 20	5-		K		J^{π} : $L(\alpha, \alpha') = 5$.
3774.6 <i>3</i> 3783 <i>7</i>	$(1,2^+)$ $(4)^+$	17 ^{&} fs 5	I E Gh		J^{π} : 3775 γ not M2 to 0 ⁺ g.s.; 2840 γ to 2 ⁺ 934. XREF: Others: AD, AF, AH

E(level) [‡]	J^{π}	$T_{1/2}^{\#}$	XREF	Comments
				XREF: h(3683).
				J^{π} : L(d,p)=2 for 5/2 ⁺ target; L(t,p)=(4).
3804.7 <i>5</i>	(≤4)	$9^{\&}$ fs +6-5	I	E(level), J^{π} : may be the same level as 3814 in (d,p)
3004.73	(24)	9 15 +0-5	-	with J^{π} =(1,2,3,4) ⁽⁺⁾ . 2870 γ to 2 ⁺ 934.
2014 10	(4)+		Ch. N	
3814 <i>10</i>	$(4)^{+}$		Gh N	XREF: Others: AB, AD, AH
				XREF: h(3802).
2010 4 12	(0=)	.0.5		J^{π} : L(d,p)=2 for 5/2 ⁺ target; L(p,t)=(4).
3819.4 <i>12</i>	(8-)	≤3.5 ns	D	XREF: Others: AG
				J^{π} : D $\Delta J=1$ 440 γ to (7 ⁻) 3380 in (⁷ Li,2np γ).
3830.31 9	$(1^-,2^+)$		F hI K	XREF: Others: AB, AD, AH
				XREF: h(3802).
				J^{π} : 2447 γ to 0 ⁺ 1383; 1490 γ to 3 ⁻ 2340.
3891 <i>10</i>			Gh Jkl	XREF: Others: AB, AD, AG, AH, AI
				XREF: h(3802)J(3870)k(3877)l(3900).
				J^{π} : L(α,α')=4 for one or both of 3891 and 3902 levels.
3902 <i>10</i>			E G kl	XREF: Others: AD, AG, AH, AI
				XREF: k(3877)l(3900).
				J^{π} : L(α,α')=4 for one or both of 3891 and 3902 levels.
3915 <i>1</i>	1			XREF: Others: AH
				J^{π} ,E(level): from (γ, γ') ; D 3915 γ to 0^+ g.s.
3944 20	5-		H jK r	XREF: Others: AC, AD, AI
				XREF: H(3909)j(3940)r(3940).
				J^{π} : $L(\alpha,\alpha')=5$.
3971 <i>10</i>			Gjnr	XREF: Others: AC, AD, AI
				XREF: j(3940)n(3990)r(3940).
				J^{π} : L(d,p)=2 on 5/2+ target for 3971+3983 doublet.
3983 10			G jk n	XREF: Others: AC, AD, AI
				XREF: j(3990)k(4003)n(3990).
				J^{π} : L(d,p)=2 on 5/2+ target for 3971+3983 doublet.
				E(level): doublet reported in (d,p).
3992 10	0^{+}		E jk	XREF: Others: AC, AD
			3	XREF: k(4003).
				J^{π} : L(t,p)=0+(2).
3998.7? 12	(9^{-})	≤3.5 ns	D	XREF: Others: AG
	(-)			J^{π} : crossover 619 γ to (7 ⁻) 3380 in (²⁴ Mg,F γ); D
				$\Delta J=1 179 \gamma$ to (8 ⁻) 3819 in ⁸⁸ Sr(⁷ Li,2np γ).
4012 <i>10</i>	+		E Gh k	XREF: Others: AC, AD, AH, AI
4012 10			E GII K	XREF: h(3998)k(4003).
				J^{π} : L(d,p)=2 for $5/2^+$ target.
4040 7	4+		E Gh JKL	XREF: Others: AA, AB, AC, AD, AH, AI
4040 /	7		E GII JKL	XREF: E(4031)h(3998)J(4020).
				E(level): (p,p') datum excluded from weighted average.
				J^{π} : L=4 in (α, α') and (t,p) .
4082 7	4+		E G K	XREF: Others: AA, AC, AD, AG, AI
4002 /	4		EGK	XREF: E(4071)G(4093).
4142 10	2+,3+		Gh	J^{π} : L=4 in (t,p), (α , α'). XREF: Others: AA, AC, AE, AI
4142 10	2 ,3		GII	XREF: h(4159).
4161 10	4+		r h i	J^{π} : L(d,p)=0+2 for $5/2^+$ target.
4161 <i>10</i>	4		E h J	XREF: Others: AA, AC, AE, AI
				XREF: h(4159)J(4150).
				E(level): from (t,p) .
4101 20	2-		77	J^{π} : L(t,p)=4.
4181 20	3-		K	J^{π} : $L(\alpha, \alpha') = 3$.
4183 10	(+)		Gh	XREF: Others: AA, AC, AE, AI

E(level) [‡]	${ m J}^{\pi}$	$T_{1/2}^{\#}$		XREF		Comments
					-	XREF: h(4159).
4212 11	2+ 2+		Cl-			J^{π} : L(d,p)=(2+4) for 5/2 ⁺ target.
4213 <i>11</i>	$2^+,3^+$		Gh			XREF: Others: AA, AC, AE, AI
						XREF: h(4159).
	. 1					J^{π} : L(d,p)=0+(2) for 5/2 ⁺ target.
4256 10	4+		G	K		J^{π} : $L(\alpha,\alpha')=4$.
4270	(5^{-})			N	r	XREF: Others: AB, AC, AH
						XREF: r(4280).
						J^{π} : L(p,t)=(5).
4283 10	0_{+}		E		r	XREF: Others: AB, AC, AH
						XREF: r(4280).
						J^{π} : L(t,p)=0.
1200 ch 1	(10+)	-2.5	CD.			
4296.6 ^b 4	(10^{+})	≤3.5 ns	CD			XREF: Others: AG, AI, AJ
						J^{π} : stretched (Q) 988 γ to (8 ⁺) 3309 in (⁷ Li,2np γ).
4332 10	2+		E J	K		XREF: Others: AA, AB, AC, AD, AF
						XREF: E(4332)J(4300)K(4316).
						E(level): from (t,p); may be 5-10 keV low.
						J^{π} : L(t,p)=2.
4380	(4^{+})			N		J^{π} : $L(p,t)=(4)$.
4397 20	2+			K		J^{π} : L=2 in (α, α') .
4453 11	$(2)^{+}$		Gh j			XREF: Others: AC, AD, AF
4433 11	(2)		GII J	KI		
						XREF: h(4430)j(4430)l(4460).
						E(level): from (d,p) .
						J^{π} : L=(2) for (p,p') doublet; L(d,p)=2 for doublet for $5/2^+$
						target.
4465 11	4 ⁺		Gh j	kl		XREF: Others: AC, AD, AF
						XREF: h(4430)j(4430)l(4460).
						E(level): from (d,p).
						J^{π} : L(α,α')=4; L(d,p)=2 for doublet.
4494 11			G			J^{π} : L(d,p)=2 for 4494+4504 doublet.
4504 11			G			J^{π} : L(d,p)=2 for 4494+4504 doublet.
4539 20	3-			K		J^{π} : L=3 in (α, α') .
4604 12	3-		GH	-		J^{π} : L(d,p)=2 for 5/2 ⁺ target.
4606 20	(5^{-})			K		J^{π} : L=(5) in (α, α') .
4640 12	-		G	K		J^{π} : L=3 in (d,p) for $5/2^+$ target.
	+					
4670 12			G	77		J^{π} : L(d,p)=2 for 5/2+ target.
4720 10	$(2^+,3^+)$			K		J^{π} : L(d,p)=(0+4) for 5/2 ⁺ target.
4785 10	$(2^+,3^+)$		Gh	K		XREF: Others: AC, AG, AH
						XREF: h(4788).
						J^{π} : L(d,p)=(0+2+4) for 5/2 ⁺ target.
4807 20	(3^{-})		h	K1		XREF: Others: AA, AC, AG, AH
						XREF: h(4788)l(4810).
						J^{π} : L=(3) in (α, α') .
4813 12			Gh	1		XREF: Others: AA, AC, AG, AH
						XREF: h(4788)l(4810).
						J^{π} : L(d,p)=(2+4) for 4813+4821 doublet.
4821 <i>12</i>			Gh	kl		XREF: Others: AA, AC, AD, AG, AH
.021.12						XREF: h(4788)k(4837)l(4810).
						J^{π} : L(d,p)=(2+4) for 4813+4821 doublet.
1917 12	(-)		C	le.		XREF: Others: AC, AD, AG, AH
4847 12	(-)		G	k		
						XREF: k(4837).
4004.33	(±)		_			J^{π} : L(d,p)=(3) for 5/2 ⁺ target.
4894 12	(+)		G			J^{π} : L(d,p)=(2+4) for 5/2 ⁺ target.
4928 10	5-		G	K		J^{π} : L=5 in (α, α') .
4947.2 ^b 7	(12^{+})	≤3.5 ns	CD			XREF: Others: AG, AI, AJ
	` /	_				

E(level) [‡]	\mathbf{J}^{π}	T _{1/2} #	XREF	Comments
4977 12 4982 12 5012 11 5040 13 5056 20 5067 13 5091 13 5115 11 5197 13 5215 13 5278 13	- (⁻) 4 ⁺ 2 ⁺ ,3 ⁺ + (4) ⁺	-1/2	G G K G K G G K G G G G G K N G G G G G	J ^{π} : stretched (Q) γ to (10 ⁺). J ^{π} : L(d,p)=2 for 4977+4982 doublet. J ^{π} : L(d,p)=2 for 4977+4982 doublet. J ^{π} : L(d,p)=3 for 5/2 ⁺ target. J ^{π} : L(d,p)=(3) for 5/2 ⁺ target. J ^{π} : L=4 in (α , α '). J ^{π} : L(d,p)=0+2 for 5/2 ⁺ target. J ^{π} : L(d,p)=2 for 5/2 ⁺ target. J ^{π} : L(p,t)=(4); L(d,p)=2 for 5/2 ⁺ target. XREF: Others: AB, AE, AF, AI
5310 <i>13</i>	(2+,3+)		Gh	XREF: h(5269). J^{π} : L(d,p)=(2,3) for 5/2 ⁺ target. XREF: Others: AB, AE, AF, AI XREF: h(5269). J^{π} : L(d,p)=(0+2+4) for 5/2 ⁺ target.
5358 <i>13</i> 5455 <i>20</i>	_		G K	J^{π} : L(d,p)=3 for 5/2 ⁺ target.
5490	(0 ⁺)		1 N	XREF: Others: AA, AE XREF: $1(5510)$. J^{π} : $L(p,t)=(0)$.
5537 20			K1	XREF: Others: AA, AE XREF: 1(5510).
5581 20 5680 5685 20	(2 ⁺) (4 ⁺) 3 ⁻		K N K	J^{π} : L=(2) in (α, α') . J^{π} : L(p,t)=(4). J^{π} : L=3 in (α, α') .
5885 20 6045.5 [@] b 12	3 ⁻ (14 ⁺)		K C	V J^{π} : $L(\alpha, \alpha')=3$. XREF: Others: AG, AI, AJ J^{π} : γ to (12 ⁺); suggested value from (⁴⁸ Ca,4n γ).
6056 6125 <i>20</i>	3-		K K	J^{π} : $L(\alpha,\alpha')=3$.
6187 6240 6334 6436	3 ⁻ (4 ⁺) 3 ⁻ 3 ⁻		K N K K	J^{π} : $L(\alpha, \alpha') = 3$. J^{π} : $L(p,t) = (4)$. J^{π} : $L(\alpha, \alpha') = 3$. J^{π} : $L(\alpha, \alpha') = 3$.
6990 90 7.0×10 ³ 4			P	Possible low energy octupole resonance (1981Ya02). Note: E(res) \approx 6.3 MeV from (α , α') (1980ToZS).
7.4×10 ³ <i>I</i> 7445.8 [@] <i>b</i> 16	(16 ⁺)		С	V XREF: Others: AG , AI , AJ J ^π : 1400γ to (14 ⁺) 6046 in (⁴⁸ Ca,4nγ); band assignment.
8039.1? [@] 19	(17,18+)	42 ps <i>14</i>	С	XREF: Others: AJ J^{π} : D,E2 593 γ feeds (16 ⁺) 7446. (17 ⁻) suggested in (⁴⁸ Ca,4n γ), but (18 ⁺) suggested in (¹³ C,3n γ). $T_{1/2}$: from recoil-distance data, ⁴⁸ Ca(⁴⁸ Ca,4n γ).
(8634.82 8)	2 ⁺ <i>a</i>		F	E(level): thermal neutron capture state(s); not a
8.8×10 ³ 2	1+	1.4 MeV 2	J	discrete level. M1 giant resonance.

E(level) [‡]	J^π	T _{1/2} #	XREF		Comments
9127.5 ^b 19	(18+)				XREF: Others: AG J^{π} : 1681 γ to (16 ⁺) 7446.
9722.2 22	(≤20)				XREF: Others: AJ J^{π} : 1683 γ feeds (17,18 ⁺) 8039 level. (20 ⁺)
13.2×10 ³ <i>I</i>	2+	3.8 MeV 2		Z	suggested in (13 C,3n γ); J $^{\pi}$: E2 excitation in (e,e').
13.7×10 ³ 5	2+ & 4+		J		GQR. T=0. J^{π} : L(p,p')=2+4. GMR including 13200, 2 ⁺ resonance seen in
15.7×10 ³ I	0+	4.0 MeV 2		Z	(e,e'). J^{π} : E0 excitation in (e,e'). Isoscalar giant monopole resonance.
16.20×10 ³ 5	1-	4.68 MeV		Z	XREF: Others: AB Γ : from $(\gamma, xn) + (\gamma, np)$. J^{π} : E1 excitation in $(\gamma, xn) + (\gamma, np)$. GDR. T=1.
$17.5 \times 10^3 \ 3$	0+ & 4+	3.3 MeV	J		Γ : from (p,p'). J^{π} : $L(p,p')=0+4$ giant multipole resonances.
25.1×10 ³ 3	3-	6.3 MeV <i>3</i>	P	Z	 J^π: E3 excitation in (e,e'). T=0. High energy isoscalar octupole giant resonance.
$28.1 \times 10^3 \ 3$	2+	5.9 MeV 2		Z	J^{π} : E2 excitation in (e,e'). Isovector GQR.

[†] State reported also in numerous 92 Zr inelastic scattering spectra. Evaluator believes these observations can be attributed largely, if not entirely, to a known 3[−] 90 Zr state contributing in these experiments via the typical $\approx 3\%$ 90 Zr target impurity. It is unclear whether excitation of the 4[−] 2744 level via inelastic scattering is masked by the impurity or absent altogether.

 $^{^{\}ddagger}$ From least-squares fit to adopted E γ for levels deexcited by gammas, ignoring tentatively-placed lines and allowing 1 keV uncertainty in E γ whenever no transition from a given level has an author-assigned uncertainty; from weighted average of data from cross-referenced reactions otherwise.

[#] Half-life from ⁸⁸Sr(⁷Li,2npγ) for E(level)<8500, width from (e,e') for E(level)≥8500, except as noted.

[@] ΔE =3 keV if 1 keV is assumed for unknown $\Delta E(\gamma)$.

[&]amp; From DSAM in $(n,n'\gamma)$.

 $[^]a$ J^{π} =2+,3+ for thermal n capture on 5/2+ target. J^{π} =2+ is adopted because $\gamma\gamma(\theta)$ data indicate very little, if any, mixing for 6295 γ to 3⁻ state if J=2 but considerable mixing if J=3. Also, γ decay to both 0⁺ and 4⁺ levels is observed from the capture state.

^b Band(A): π =+ Δ J=2 sequence. Yrast sequence built on 0⁺ g.s. (2002Fo03).

E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	$I_{(\gamma+ce)}$	Comments
934.51	2+	934.47 4	100	0.0 0+	E2			B(E2)(W.u.)=6.4 <i>6</i> E _γ : weighted average of 934.47 7 from $β$ ⁻ decay, 934.44 10 from $ε$ decay (10.15 d), 934.46 5 from (n,γ) E=thermal and 934.5 1 from (n,n'γ).
1382.77	0+	448.26 7	100	934.51 2+	E2			Mult.: Q to 0^+ , from $\gamma(\theta)$ in $(^7\text{Li},2\text{np}\gamma)$; $\Delta\pi=\text{no}$ from RUL. E2 confirmed by $\alpha(\text{exp})$ in ^{92}Nb ε decay (10.15 d). B(E2)(W.u.)=14.4 5 E $_\gamma$: weighted average of 448.5 I (from β^- decay), 448.13 7, 448.22 $I0$, 448.3 2 (all from (n, γ) E=thermal) and 448.3 I (from (n,n' γ)). (the unweighted average is 448.29 δ .). Mult.: mult=Q to 2^+ , from $\gamma\gamma(\theta)$ in ^{92}Y β^- decay; not M2,
		1383		0.0 0+	E0		0.196 19	from RUL. $I_{(\gamma+ce)}$: from $(p,p'\gamma)$.
		1303		0.0 0	EU		0.190 19	E0 transition strength ρ^2 (E0)=0.0081 8 calculated by 1999Wo07.
1495.46	4+	560.92 15	100	934.51 2+	E2			B(E2)(W.u.)=4.05 12 E _{γ} : weighted average of 561.1 1 from β^- decay and (n,n' γ), 561.0 2 from (7 Li,2np γ) and 560.93 5 from (n, γ) E=thermal.
								Mult.: mult=Q from $\gamma(\theta)$ in (${}^{7}\text{Li},2\text{npy}$); not M2 from RUL. $\delta(Q,O)=+0.04$ 2 from $(n,n'\gamma)$, $+0.01$ + $11-9$ or $+1.6$ + $4-3$ from $\gamma\gamma(\theta)$ in ${}^{92}\text{Y}$ β^- decay. B(M3)(W.u.) exceeds RUL, unless $\delta<0.00033$.
1847.27	2+	912.72 6	100.0 23	934.51 2+	(M1(+E2))	-0.002 25		B(M1)(W.u.)=0.201 22; B(E2)(W.u.)=0.001 +25-1 I _γ : from (n,n'γ). Mult.: mult=D(+Q) from ⁹² Nb(10.15 d) ε decay; $\Delta \pi$ =no from
								level scheme. δ : unweighted average of $-0.04\ 2$ in $(n,n'\gamma)$, and $-0.01\ 3$ and $+0.044\ 17$ from ε decay (10.15 d).
		1847.27 5	51 <i>3</i>	0.0 0+	E2			B(E2)(W.u.)=3.7 5 E _{γ} : weighted average of 1847.3 1, 1847.5 3, 1847.27 9 and 1847.2 1 from β^- decay, ε decay (10.15 d), (n, γ) E=thermal
								and $(n,n'\gamma)$, respectively. I_{γ} : unweighted average of 58 4, 47.8 22, 52 8 and 44.6 23 from β^- decay, ε decay (10.15 d), (n,γ) E=thermal and $(n,n'\gamma)$, respectively (weighted average is 47.9 25).
2066.65	2+	219.07 ^b 15	0.64 10	1847.27 2+				I_{γ} : weighted average of 0.61 12 from $(n,n'\gamma)$, 0.71 20 from (n,γ) E=thermal.
		571.28 <i>15</i> 1132.12 <i>5</i>	0.60 <i>20</i> 100 <i>3</i>	1495.46 4 ⁺ 934.51 2 ⁺	(M1+E2)	-3.2 +5-4		B(M1)(W.u.)<0.0022; B(E2)(W.u.)<15 E $_{\gamma}$: weighted average of 1132.17 <i>14</i> , 1132.11 <i>6</i> and 1132.1 <i>1</i>

١							$\gamma(Z_1)$	(continued)	
	E_i (level)	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ^{\ddagger}	α^a	Comments
		_							from ε decay, (n,γ) E=thermal and $(n,n'\gamma)$, respectively. Other E γ : 1132.4 I from β^- decay. Mult.: D+Q from $\gamma\gamma(\theta)$ in (n,γ) and $(n,n'\gamma)$; adopted $\Delta\pi$ =no. δ : from δ =-3.2 +5-4 or +0.85 7 from 2005Fr17 in $(n,n'\gamma)$ and -2.7 +8- I 5 from (n,γ) E=thermal. Other δ : -2.4 +3-4 or -1.04 II (1978Gl04) in $(n,n'\gamma)$.
	2066.65	2+	2066.7 [@] 4	0.53 [@] 7	$0.0 0^{+}$	E2			B(E2)(W.u.)<0.0042 Mult., δ : Q (δ =0) from $\gamma(\theta)$ in (n,n' γ); not M2 from RUL.
	2339.66	3-	272.85 ^b 24		2066.65 2+				E_{γ},I_{γ} : E_{γ} from (n,γ) E=thermal. Branch absent in β^- decay and $(n,n'\gamma)$ and one (n,γ) E=thermal study, and I_{γ} data from the two (n,γ) E=thermal studies that report it are discrepant.
			492.37 10	10.8 5	1847.27 2+	(E1(+M2))	≤0.009		(n, γ) E-thermal studies that report it are discrepant. B(E1)(W.u.)=0.00067; B(M2)(W.u.) \leq 1.3 I_{γ} : unweighted average of 11.7 7 from $(n, n'\gamma)$, 10.6 9 from (n, γ) E=thermal and 10.1 6 from β^- decay. Weighted average is 10.7 5. Mult.: D(+Q) from $\gamma(\theta)$ in $(n, n'\gamma)$, $\Delta \pi$ =yes from level scheme. δ : +0.01 3 from $(n, n'\gamma)$; however, B(M2)(W.u.) exceeds RUL, unless δ <0.009.
			844.12 6	29.9 19	1495.46 4+	(E1+M2)	≤0.02		B(E1)(W.u.) \geq 0.00036; B(M2)(W.u.) \leq 1.2 Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta \pi$ =yes from level scheme. δ : +0.13 4 (1978Gl04) from $(n,n'\gamma)$; however, B(M2)(W.u.) exceeds RUL, unless δ <0.02. I $_{\gamma}$: unweighted average of 32.3 18 from $(n,n'\gamma)$, 31.1 22 from (n,γ) E=thermal and 26.2 17 from β ⁻ decay. Weighted average is 29.6 20.
			1405.06 5	100 4	934.51 2+	(E1)			B(E1)(W.u.)=0.00030 4 I_{γ} : weighted average from $(n,n'\gamma)$, (n,γ) E=thermal and β^- decay. Mult.: mult=D(+Q) from $\gamma\gamma(\theta)$ in (n,γ) , ^{92}Y β^- decay, and from $\gamma(\theta)$ in $(n,n'\gamma)$; adopted $\Delta\pi$ =yes. δ : $-0.019 + 2I - 20$ from $\gamma\gamma(\theta)$ in ^{92}Y β^- decay. Others: $+0.03$ 2 from $\gamma(\theta)$ in $(n,n'\gamma)$; evaluator rejects value of $+0.18 + 20 - 15$ from $\gamma\gamma(\theta)$ in (n,γ) . B(M2)(W.u.) exceeds RUL, unless δ <0.04.
			2339.9 1	≈0.11	0.0 0+	E3		0.00049	B(E3)(W.u.)=18.3 $IIE_{\gamma}I_{\gamma}: from \beta^- decay. Other E_{\gamma} (I_{\gamma}): 2339.4 22 (0.4 7) in (n,\gamma) E=thermal.Mult.: from form factor in (e,e').B(E3)(W.u.): from (e,e'). However, B(E3)(W.u.)=48 I3 from adopted T_{1/2} and branching=0.30 7 from \beta^- decay; a branch of 0.11 would Be required to reduce this B(E3)(W.u.) to the value obtained in (e,e'), suggesting branching may be overestimated in \beta^- decay.$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f = \mathrm{J}_f^\pi$	Mult.‡	δ^{\ddagger}	α^{a}	Comments
2398.36	4+	902.92 7	100.0 21	1495.46 4+	M1+E2	-0.11 +3-2		B(M1)(W.u.)=0.147 17; B(E2)(W.u.)=2.3 13 I_{γ} : weighted average from (n,n'γ) and (n,γ) E=thermal. Other δ: +1.30 +13-30 or -0.13 9 from (n,n'γ).
		1463.81 <i>10</i>	35 3	934.51 2+	E2(+M3)			B(E2)(W.u.)=5.9 7 B(E2)(W.u.): if δ =0; see comment on δ . I _{γ} : weighted average of 35.9 23 from (n,n' γ) and 27 7 from (n, γ) E=thermal. δ : -0.13 +5-6 (2005Fr17) in (n,n' γ). However, B(M3)(W.u.) violates RUL, unless δ <0.0007. Other δ : -0.13 +9-5 (1978Gl04) from (n,n' γ).
2473.4?	(≤2)	2473.6 ^b 2	100	$0.0 0^{+}$				
2486.01	5-	990.52 9	100	1495.46 4+	(E1)			$B(E1)(W.u.) \ge 9.8 \times 10^{-8}$
					,			May also deexcite the 3057 level.
								Mult.: mult=D or D(+Q) to 4^+ , from $\gamma(\theta)$ in (7 Li,2np γ) and
								$(n,n'\gamma)$, respectively; $\Delta\pi$ =yes from level scheme. δ : +0.04 (1978Gl04) in $(n,n'\gamma)$.
2743.55	4-	257.57 10	90 5	2486.01 5	(M1(+E2))	-0.01 + 2 - 3	0.01624	B(M1)(W.u.) < 0.30
								B(M1)(W.u.): if δ =0.
								I_{γ} : from $(n, n'\gamma)$. 72 7 from (n, γ) E=thermal if $I(404\gamma)=57$.
								Mult.: D(+Q) from $(n,n'\gamma)$; $\Delta \pi$ =no from level scheme. Other $\delta(D,Q)$ =+0.09 +8-5 or \geq 11.4 or \leq -22.9 from $(n,n'\gamma)$.
		344.8 <i>3</i>	4.0 16	2398.36 4+	-			I_{γ} : from (n,γ) E=thermal branching renormalized so $I(404\gamma)=57$.
		403.83 9	57 3	2339.66 3		+0.04 2		B(M1)(W.u.)<0.028; B(E2)(W.u.)<0.57
								I_{γ} : from $(n,n'\gamma)$.
								Mult.: D(+Q) from $(n,n'\gamma)$; $\Delta \pi$ =no from level scheme.
								Other δ : 0.00 4 or $-7 + 2 - 16$ from 1978Gl04 in $(n,n'\gamma)$.
		1248.00 <i>11</i>	100 5	1495.46 4+	(E1(+M2))	+0.02 +6-4		$B(E1)(W.u.) < 2.5 \times 10^{-5}$; $B(M2)(W.u.) < 0.20$
								Iy: from $(n, n'\gamma)$.
								Mult.: D(+Q) from $(n,n'\gamma)$; $\Delta \pi$ =yes from level scheme. Other δ : -0.13 4 from 1978GI04 in $(n,n'\gamma)$.
2819.54	2+	972.30 9	100 4	1847.27 2+	(M1(+E2))	+0.01 2		B(M1)(W.u.)=0.196 24; B(E2)(W.u.)=0.022 +87-22
	_	,,_,,			((/)			I_{γ} : weighted average from β^- decay, $(n,n'\gamma)$ and (n,γ) E=thermal.
								Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$, assuming $\Delta \pi$ from level scheme.
								δ: +2.3 +2-1 also possible, but less likely (2005Fr17 in (n,n'γ)). Other $δ$: -0.18 4 or +4.5 +12-8 from 1978Gl04 in (n,n'γ).
		1436.2 ^b 6	4.7 21	1382.77 0+				
		1885.00 <i>12</i>	38.7 23	934.51 2+	(M1+E2)			I _y : unweighted average of 34.2 19 from (n,n' γ), 41 4 from from (n, γ) E=thermal and 41 5 from β^- decay. Weighted average is
								36.0 21. Mult: D + O from $\alpha(0)$ in $(n, n'\alpha)$. Az=no from level scheme
								Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta \pi$ =no from level scheme.

γ (92Zr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	Comments
2819.54	2+	2819.8 3	4.6 4	$0.0 0^{+}$	E2		B(E2)(W.u.)=0.048 7 E_{γ} : from β^- decay. Other: 2819.3 7 from $(n,n'\gamma)$.
2864.66	4+	465.94 <i>21</i>	10.6 <i>17</i>	2398.36 4+	(M1(+E2))	-0.01 +15-13	I_{γ} : weighted average of 4.5 4 from $(n,n'\gamma)$ and 6.1 18 from β^- decay. B(M1)(W.u.)=0.068 15; B(E2)(W.u.)=0.03 +99-3 I_{γ} : weighted average of 11.1 10 from $(n,n'\gamma)$ and 8.0 22 from (n,γ)
							E=thermal. Mult.: D(+Q) from $(n,n'\gamma)$; $\Delta\pi$ =no from level scheme.
		1369.25 10	100 4	1495.46 4 ⁺	M1+E2	-0.49 5	B(M1)(W.u.)=0.021 3; B(E2)(W.u.)=2.7 6
							I_{γ} : weighted average of 100 5 from $(n,n'\gamma)$ and 100 5 from (n,γ) E=thermal.
		1930.13 <i>18</i>	30 4	934.51 2+	E2(+M3)	-0.02 4	B(E2)(W.u.)=0.76 15 I_{γ} : unweighted average of 26.7 17 from $(n,n'\gamma)$ and 34 3 from (n,γ)
							E=thermal.
							Other $\delta(Q,O) = +0.32 +19-28$ or $\geq +3.73$ (1978Gl04) for 1928.7 γ in $(n,n'\gamma)$.
2904.08	0^{+}	837.4 [@] 2	100 [@] 5	2066.65 2+			Other Ey: 836.8 2 from (n,y) E=thermal.
		1969.6 [@] 3	44 [@] 5	934.51 2+	E2		B(E2)(W.u.)=0.28 +9-20
2909.43	3+	569.47 <i>17</i>	3.9 11	2339.66 3-			$E_{\gamma}I_{\gamma}$: From (n,γ) ; alternative placement in $(n,n'\gamma)$ not adopted.
						-0.25 + 7 - 9	B(M1)(W.u.)=0.026 5; B(E2)(W.u.)=2.4 14
						. 0 12 . 0 . 4	δ : $-0.50 + 6 - 7$ or $-1.49 + 16 - 14$ from $(n, n'\gamma)$.
2057.4	~ +		100 17		M1+E2	+0.13 +0-4	B(M1)(W.u.)=0.0066 15; B(E2)(W.u.)=0.030 7
2957.4	6,						
			100		(F2)		D/E0/(H/), 0.0000
		1461.93 26	100	1495.46 4	(E2)		B(E2)(W.u.)≥0.00098 E. projekted granges of 1461 % 2 in (n x) E—thornel and 1462 2.5 from
							E_{γ} : weighted average of 1461.8 3 in (n, γ) E=thermal and 1462.3 5 from (7 Li,2np γ).
							Mult.: mult=(Q) from $\gamma(\theta)$ in (⁷ Li,2np γ); (6) ⁺ to 4 ⁺ transition.
3039 70	3	295 77 19	428	2743 55 4-			while. Then $\gamma(\theta)$ in ($\text{El},2$ ipy); (6) to 4 transition.
3037.10	5				D(+O)	+0.08 10	
		1192.49 27		1847.27 2 ⁺	D(+Q)	+0.02 +3-2	
		2105.18 8	100 7	934.51 2+	D(+Q)	-0.04 + 4 - 9	δ : if J=3. Other δ : -1.6 +5-8 if J(3039 level)=2 from (n,n' γ).
3057.40	2+	717.9 [@] 2	31.5 [@] 19	2339.66 3-	D(+O)	-0.03 7	Other Ey: 717.7 3 from (n,y) E=thermal.
							Mult.: $D(+Q)$ from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta \pi = no$ from level scheme. δ : from 2005Fr17; other δ : $+0.41 + 17 - 14$ or $+4.5 + 31 - 18$ (1978Gl04); all δ from $(n,n'\gamma)$.
		990.5 [@] 2	≈100 [@]	2066,65 2+			Doubly placed in $(n,n'\gamma)$; also deexcites 2486 level.
		1674.9 [@] 5	6.7 [@] 5		E2		B(E2)(W.u.)=0.64 20
		2123.0 [@] 3			M1+E2	+0.69 16	B(M1)(W.u.)=0.0034 11; B(E2)(W.u.)=0.37 16
							B(E2)(W.u.)=0.039 12
		3031.2 3	0.2 /	0.0			5(22)(1141) 51557 12
	2819.54 2864.66 2904.08	2819.54 2 ⁺ 2864.66 4 ⁺ 2904.08 0 ⁺ 2909.43 3 ⁺ 2957.4 6 ⁺ 3039.70 3	2819.54	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2819.54 $\frac{1}{2^{+}}$ 2819.8 $\frac{1}{2^{+}}$ 3819.8 $\frac{1}{4.6}$ 4 $\frac{1}{4}$ 0.0 $\frac{1}{6^{+}}$ E2 2864.66 $\frac{1}{4^{+}}$ 465.94 $\frac{2}{1}$ 10.6 $\frac{1}{7}$ 2398.36 $\frac{1}{4^{+}}$ (M1(+E2)) -0.01 + $\frac{1}{5}$ - $\frac{1}{3}$ 1369.25 $\frac{1}{10}$ 100 $\frac{1}{4}$ 1495.46 $\frac{1}{4^{+}}$ M1+E2 -0.49 $\frac{1}{5}$ 1930.13 $\frac{1}{8}$ 30 $\frac{1}{4}$ 934.51 $\frac{1}{2^{+}}$ E2(+M3) -0.02 $\frac{1}{4}$ 2904.08 $\frac{1}{6^{+}}$ 837.4 $\frac{1}{6^{+}}$ 2 100 $\frac{1}{6^{+}}$ 5 2066.65 $\frac{1}{2^{+}}$ E2 2909.43 $\frac{1}{6^{+}}$ 569.47 $\frac{1}{7}$ 3.9 $\frac{1}{1}$ 2339.66 $\frac{1}{3^{-}}$ 842.69 $\frac{1}{5}$ 32 $\frac{1}{4}$ 2066.65 $\frac{1}{2^{+}}$ M1+E2 -0.25 + $\frac{1}{7}$ -9 1414.01 $\frac{1}{1}$ 60 $\frac{1}{4}$ 1495.46 $\frac{1}{4^{+}}$ M1+E2 +0.13 +0-4 2957.4 $\frac{1}{6^{+}}$ 471.3 $\frac{1}{6^{+}}$ 248.01 $\frac{1}{5^{-}}$ 2398.36 $\frac{1}{4^{+}}$ (E2) 3039.70 $\frac{1}{3}$ 295.77 $\frac{1}{9}$ 4.2 $\frac{1}{2^{+}}$ 2339.66 $\frac{1}{3^{-}}$ D(+Q) +0.08 $\frac{1}{10^{+}}$ 100 17 934.51 $\frac{1}{2^{+}}$ D(+Q) +0.02 +3-2 2105.18 $\frac{1}{8}$ 100 7 934.51 $\frac{1}{2^{+}}$ D(+Q) -0.04 +4-9 3057.40 $\frac{1}{2^{+}}$ 770.10 9 23.8 $\frac{1}{2^{+}}$ 2339.66 $\frac{3^{-}}{3^{-}}$ D(+Q) -0.04 +4-9 3057.40 $\frac{1}{2^{+}}$ 717.9 $\frac{1}{6^{+}}$ 2 31.5 $\frac{1}{6^{+}}$ 19 2339.66 $\frac{3^{-}}{3^{-}}$ D(+Q) -0.03 7

γ (92Zr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	Comments
3124.61	1 ⁽⁺⁾	1057.97 10	49 3	2066.65 2+	D(+Q)		E _{γ} : from (n, γ) E=thermal. Other E γ : 1058.0 3 from (n,n' γ). I _{γ} : from (n,n' γ). δ : -3.1 +15-59 or -0.02 20 from (n,n' γ).
		1741.6 [@] 3	100 [@] 5	1382.77 0+	D		Ey matches that for γ placed from possible 3237 level in (n,γ) E=thermal. Additional information 1.
		2190.3 [@] 5	27.3 [@] 17	934.51 2+			
		3124.5 [@] 5	31.4 [@] 18	0.0 0+	D		
3178.31	4+	779.94 10	100.0 15	2398.36 4+	M1(+E2)	-0.04 4	$B(M1)(W.u.)=0.68 \ 8; \ B(E2)(W.u.)=1.9 +38-19$ I_{γ} : from $(n,n'\gamma)$.
		2243.80 26	25.8 15	934.51 2+	E2(+M3)	+0.06 +10-9	Mult.: D+Q from $(n,n'\gamma)$; $\Delta \pi$ =no from level scheme. B(E2)(W.u.)=1.53 20
		22.3.00 20	20.0 10	75 1.51 2	22(1113)	. 3.00 110 9	I_{γ} : from $(n,n'\gamma)$; 27 4 from (n,γ) E=thermal.
3190.99	(4^{-})	1695.5 2	100	1495.46 4+	D(+Q)	-0.02 + 4 - 3	Other δ : $-0.09\ 13\ (1978Gl04)$, also from $(n,n'\gamma)$.
3236.9	4+	1741.8 <mark>b</mark> 2	100	1495.46 4+	D+Q	-1.09 + 9 - 10	Placement may Be questionable; see comment on 1742γ from 3125 level.
3262.62	2+	2328.17 <i>13</i>	100.0 17	934.51 2+	(M1+E2)	-0.06 3	B(M1)(W.u.)=0.108 <i>13</i> ; B(E2)(W.u.)=0.07 +8-7 I _γ : from (n,n'γ). Mult.: D+Q from $\gamma(\theta)$ in (n,n'γ); $\Delta \pi$ =no from level scheme.
		3262.54 4	29.3 17	0.0 0+	E2		δ: from (2005Fr17); other δ: $-0.27 + 9 - 5$ (1978Gl04); both from (n,n'γ). B(E2)(W.u.)=1.13 15 I _γ : from (n,n'γ). Mult.: Q from (γ,γ'); not M2 from RUL.
3275.76	$2^{+},3^{+}$	366.62 ^b 19	8.3 17	2909.43 3+			Uncertain γ in (n,γ) , absent in $(n,n'\gamma)$ so may be misplaced.
		877.45 10	23.1 15	2398.36 4+	D,Q		I _{γ} : from (n,n' γ). Other: 29 δ from (n, γ) E=thermal. δ : >+10 or +0.08 +4-5 from (n,n' γ).
		1209.22 10	100 6	$2066.65 \ 2^{+}$	Q(+D)		δ : +0.13 +0−4 if J=3, ∞ or −0.52 +11−∞ if J=2 from (n,n'γ).
		1428.7 [@] 5	4.2 [@] 5	1847.27 2+			Branch is absent in (n,γ) E=thermal.
2200 12	2+	2340.90 16	45 <i>4</i>	934.51 2+	M1+E2	+4.4 +8-5	B(M1)(W.u.)=0.00040 <i>15</i> ; B(E2)(W.u.)=1.46 <i>22</i>
3289.13	3 ⁺	379.60 10	78 <i>4</i>	2909.43 3+	D(+Q)		I _{γ} : from (n,n' γ). Other I γ : 55 12 in (n, γ) E=thermal. δ : +0.02 δ or +1.5 2 from (n,n' γ).
		891.0 <i>4</i>	5 <i>3</i>	2398.36 4+			υ. τυ.υ2 υ οι τ1.3 2 Holli (II,II γ).
		1222.47 9	93 5	2066.65 2+	M1+E2		I_{γ} : from $(n,n'\gamma)$. Data from (n,γ) E=thermal are discrepant.
							δ : +0.68 +9-7 or +2.3 4 from (n,n' γ).
		1441.2 3	26.4 18	1847.27 2+	M1+E2	+0.24 5	B(M1)(W.u.)=0.0031 5; B(E2)(W.u.)=0.09 4 E_{γ} : weighted average of 1441.6 5 from $(n,n'\gamma)$ and 1441.0 4 from (n,γ) E=thermal.
		1793.87 23	33.8 26	1495.46 4+	M1+E2	+0.22 5	I _y : from $(n,n'\gamma)$. Other: 12 3 from (n,γ) E=thermal. B(M1)(W.u.)=0.0021 3; B(E2)(W.u.)=0.033 15 I _y : weighted average of 35.2 22 from $(n,n'\gamma)$ and 29 4 from (n,γ) E=thermal.

γ (92Zr) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \underline{J_f^{\pi}}$	Mult.‡	δ^{\ddagger}	α^a	Comments
3289.13	3+	2354.80 13	100 9	934.51 2+	M1+E2	+0.29 3		B(M1)(W.u.)=0.0027 4; B(E2)(W.u.)=0.042 10
308.7	(8^{+})	351.3 2	100	2957.4 6+	E2		0.01276	B(E2)(W.u.)=3.59 22
								Mult.: Q from $\gamma(\theta)$ in (${}^{7}\text{Li},2\text{np}\gamma$); not M2, from RUL.
3371.48 1 ⁽⁻⁾	1(-)	1032.0 <i>3</i>	2.8 7	2339.66 3				
		1988.71 <i>10</i>	100 13	$1382.77 0^{+}$	(E1)			B(E1)(W.u.)=0.00079 15
		2426.02.10	45 1 20	02451 2+	(E1(+M2))			Mult.: D from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta \pi$ from level scheme.
		2436.92 10	45.1 20	934.51 2+	(E1(+M2))			I_{γ} : average of 43.1 26 from $(n,n'\gamma)$ and 47.0 26 from (n,γ) E=thermal.
								Mult.: $D(+Q)$ from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta \pi$ =yes from level
								scheme.
								δ: +0.11 18 or -5 +3-27 from (n,n' $γ$).
		3371.2 3	51 <i>5</i>	$0.0 0^{+}$	(E1)			$B(E1)(W.u.)=8.2\times10^{-5}$ 14
					, ,			I_{γ} : unweighted average of 43 3 from $(n,n'\gamma)$, 60 7 from (n,γ)
								E=thermal, 50 7 from β^- decay. (weighted average is 46 4.)
								Mult.: D from (γ, γ') ; $\Delta \pi$ from level scheme.
3379.8	(7^{-})	893.8	100	2486.01 5				E_{γ} : from 173 Yb $(^{24}$ Mg, $F_{\gamma})^{92}$ Zr.
	2-,3-	1068.2 [@] 2	100 [@] 4	2339.66 3	M1+E2			δ : +5.8 21 or +0.36 +6-5 if J=2 from (n,n'γ). Other δ : +1.2 +7-5 if J=2, -1.7 +7-28 if J=3, -0.13 4 if J=4 from $\gamma(\theta)$ in
								$(n,n'\gamma).$
		2473.2 [@] 3	73 [@] 4	934.51 2+	(E1(+M2))	+0.08 6		$B(E1)(W.u.)=3.1\times10^{-5} 5$; $B(M2)(W.u.)=0.15 +22-15$
								Other E γ (I γ): 2473.6 2 (159 19) from (n, γ) E=thermal.
		•						Mult.: D(+Q) from $(n,n'\gamma)$; $\Delta\pi$ =yes from level scheme.
3452.17	$(2)^{+}$	632.12 ^b 24	7.7 19	$2819.54 \ 2^{+}$				
		1112.65 22	21.7	2339.66 3-				I_{γ} : from $(n,n'\gamma)$. Other I_{γ} : 23 8 from (n,γ) E=thermal.
		1604.86 <i>10</i>	90 4	1847.27 2 ⁺	M1+E2#	-1.5 + 5 - 8		B(M1)(W.u.)=0.008 4; B(E2)(W.u.)=7.4 18
								I_{γ} : weighted average of 86 6 from (n,γ) E=thermal and 92 5 from $(n,n'\gamma)$.
		1956.60 <i>12</i>	67 <i>6</i>	1495.46 4+				Other Iy: 36 3 from $(n,n'\gamma)$.
		2069.5 4	16 5	$1382.77 0^{+}$				
2462.04		2517.73 11	100 4	934.51 2+	M1+E2	+2.0 12		B(M1)(W.u.)=0.0016 16; B(E2)(W.u.)=1.0 3
3463.04 (4	$(4)^{+}$	1967.53 15	100.0 23	1495.46 4+				I_{γ} : from $(n,n'\gamma)$.
		2528.7 [@] 5	33.8 [@] 23	934.51 2+	E2(+M3)	≤+0.005		B(E2)(W.u.)=0.41 +6-7
								B(E2)(W.u.): if pure E2.
								δ: +0.11 10 from (n,n' $γ$); B(M3)(W.u.) exceeds RUL, unless $δ$ ≤0.005.
		@						Other Iy: 24 5 from (n,y) E=thermal.
3471.88	1+	2089.6 [@] 5	17.9 [@] <i>14</i>	1382.77 0+	(M1)			B(M1)(W.u.)=0.052 8
		2537.1 2	39.2 23	934.51 2+	M1			Mult.: D from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta\pi$ =no from level scheme. B(M1)(W.u.)=0.063 9
								I_{γ} : from $(n,n'\gamma)$; 37 3 from (n,γ) E=thermal. δ : 0.0 3 or -3.4 +17-280 from $(n,n'\gamma)$; M1 from (pol γ,γ').

γ (92Zr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	Comments
3471.88	1+	3471.9 [@] 5	100 [@] 5	0.0 0+	M1		B(M1)(W.u.)=0.063 9 Other E γ (I γ): 3472.6 3 (100 16) from (n, γ) E=thermal. Mult.: from (pol γ , γ'); confirmed by γ (θ) in (n,n' γ).
3499.88	2+	224.7 3	3.6 12	3275.76 2+,3+			reality from (por 7,7), commined by 7(0) in (iii,ii 7).
		590.67 22	10.8 24	2909.43 3 ⁺			
		680.65 <i>21</i>	9.6 24	2819.54 2+			
		1159.54 <i>16</i>	22.4 18	2339.66 3	(E1(+M2))	-0.04 <i>15</i>	B(E1)(W.u.)=0.00038 5; B(M2)(W.u.)=2.1 +155-21 I_{γ} : from (n,n' γ). Other: 30 4 from (n, γ) E=thermal. Mult.: D(+Q) from $\gamma(\theta)$ in (n,n' γ); $\Delta\pi$ =yes from level scheme.
		1433.6 [@] 4	19.3 [@] <i>14</i>	2066.65 2+			Other Ey (Iy): 1433.9 3 (51 12) from (n,y) E=thermal.
		1652.8 [@] 3	56 [@] 3	1847.27 2+	M1+E2		Other E γ (I γ): 1652.79 <i>13</i> (69 <i>6</i>) from (n, γ) E=thermal. δ : $-0.11 + 3 - 5$ or $+3.3 + 6 - 4$.
		2565.6 [@] 5	15.8 [@] 13	934.51 2+	M1+E2		Branch is absent in (n,γ) E=thermal. δ : $-0.62 + 16 - 27$ or $-7 + 3 - 57$.
		3499.8 [@] 5	100 [@] 5	0.0 0+	E2		B(E2)(W.u.)=0.35 4 Other E γ (I γ): 3500.8 6 (100 25) from (n, γ) E=thermal.
3609.5	(0^+)	1762.3 [@] 5	29 [@] 4	1847.27 2 ⁺			
		2674.8 [@] 5	100 [@] 4	934.51 2+			
3628.33	(4^{+})	588.32 24	1.6 4	3039.70 3			
0020.00	(.,	808.67 22	2.9 4	2819.54 2 ⁺			
		884.74 11	17.5 17	2743.55 4			
		1229.81 22	3.6 7	2398.36 4+			
		2132.90 11	25.8 25	1495.46 4+			
		2693.86 12	100 11	934.51 2+			
3638.2	1-	2255.4 [@] 3	14.1 [@] 16	1382.77 0 ⁺	(E1)		B(E1)(W.u.)=0.00043 8 Mult.: D from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta \pi$ =yes from level scheme.
		3638.0 [@] 5	100.0 [@] 16	0.0 0+	E1		B(E1)(W.u.)=0.00072 10 Mult.: from (pol γ , γ').
3640.28	$(2)^{+}$	601.1 ^b 3	3.3 13	3039.70 3			
		821.0 <i>3</i>	4.0 13	2819.54 2 ⁺			
		1301.0 5	9 3	2339.66 3-			I_{γ} : from $(n,n'\gamma)$.
	- 1	2705.76 12	100 15	934.51 2+	M1+E2		I_{γ} : 100.0 26 from $(n,n'\gamma)$. δ : +3.5 4 or -0.12 +3-4 from $(n,n'\gamma)$.
3649.22	3+	1162.7 <i>3</i>	35 8	2486.01 5			
		1251.16 <i>18</i>	52 4	2398.36 4+	M1+E2		I _{γ} : weighted average of 56 6 from (n,γ) E=thermal and 50 5 from $(n,n'\gamma)$ $\delta(D,Q)=+12$ +52-6 or +0.22 +7-8 from $(n,n'\gamma)$.
		1800.74 ^b 27	26 4	1847.27 2+	D(+Q)		I_{γ} : from $(n,n'\gamma)$; 43 11 from (n,γ) E=thermal. $\delta(D,Q)=-3.8 +9-14$ or -0.08 8 from $(n,n'\gamma)$.
		2153.68 <i>18</i>	100 7	1495.46 4+	M1+E2		I_{γ} : from $(n,n'\gamma)$; 100 <i>11</i> from (n,γ) E=thermal. $\delta(D,Q)=-3.9 + 7-9$ or -0.12 4 from $(n,n'\gamma)$.

16

γ (92Zr) (continued)

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
3649.22	3+	2714.1 <i>4</i>	73 5	934.51 2+	N	M1+E2	-0.73 + 12 - 18	B(M1)(W.u.)=0.0038 10; B(E2)(W.u.)=0.28 9 I _{γ} : from (n,n' γ); 97 16 from (n, γ) E=thermal.
3667.1	1	3667	100	0.0 0+	D)		E _{γ} : from level-energy difference. Mult.: from (γ, γ') ; if M1, B(M1)(W.u.)=0.0037 6 (2002We15 in (γ, γ')).
3675.8	3+,4+,5+	2180.3 [@] 4	100 [@]	1495.46 4+	N	M1+E2	+3.6 +6-5	B(M1)(W.u.)=0.0013 5; B(E2)(W.u.)=3.7 +7-8 Mult.: D+Q from $\gamma(\theta)$ in (n,n' γ); $\Delta \pi$ =no from RUL.
3696.8	1 ⁽⁺⁾	2762.3 [@] 4	99 [@] 7	934.51 2+	(1	M1+E2)	+1.3 +28-8	B(M1)(W.u.)=0.011 +31-11; B(E2)(W.u.)=3 +5-3 Mult.: D+Q from $\gamma(\theta)$ in (n,n' γ); $\Delta \pi$ =(no) from RUL.
		3696.5 [@] 7	100 [@] 7	0.0 0+	(1	M1)		B(M1)(W.u.)=0.0127 24 Mult.: D from (γ, γ') ; $\Delta \pi$ =no from level scheme.
3774.6	$(1,2^+)$	1708.1 [@] 5	49 <mark>@</mark> 10	2066.65 2+				
		1927.1 [@] 5	35 [@] 7	1847.27 2+				
		2839.9 [@] 5	100 [@] 20	934.51 2+				
		3774.6 [@] 8	46 [@] 9	$0.0 0^{+}$				Mult.: not M2 from RUL.
3804.7	(≤4)	2870.1 [@] 5	100 [@]	934.51 2+				
3819.4	(8-)	439.6 5	100	3379.8 (7)		Mult.: from $\gamma(\theta)$ in (7 Li,2np γ).
3830.31	$(1^-,2^+)$	378.21 <i>16</i>	38 6	3452.17 (2))+			
		790.70 <i>11</i> 1490.7 <i>3</i>	75 <i>15</i> 92 <i>18</i>	3039.70 3 2339.66 3 ⁻				I_{γ} : from $(n,n'\gamma)$.
		1763.39 <i>18</i>	58 6	2066.65 2 ⁺				i_{γ} . Hom (ii,ii γ).
		2447.3 3	34 6	1382.77 0 ⁺				
		2895.1 [@] 10	100 [@] 18	934.51 2+				
3915	1	3915	100	0.0 0+)		E_{γ} : from level-energy difference. Mult.: from (γ, γ') ; if M1, B(M1)(W.u.)=0.022 3 (2002We15 in (γ, γ')).
3998.7?	(9-)	179.4 <mark>b</mark> 5	57 6	3819.4 (8	-) D)		Mult.: from $\gamma(\theta)$ in (⁷ Li,2np γ).
		618.8 <mark>b</mark>	≈100	3379.8 (7	-)			E_{γ} : from 173 Yb(24 Mg,F γ) 92 Zr.
4296.6	(10^+)	987.9 2	100	3308.7 (84		Q)		Mult.: from $\gamma(\theta)$ in $({}^{7}\text{Li},2\text{np}\gamma)$.
4947.2	(12^{+})	650.6 <i>5</i>	100	4296.6 (10	$(1)^{+}$	E2)		B(E2)(W.u.)≥0.056
								Mult.: (Q) from $\gamma(\theta)$ in (${}^{7}\text{Li},2\text{np}\gamma$); not M2, from RUL.
6045.5	(14^{+})	1098.3	100	4947.2 (12	/			E_{γ} : from ${}^{173}\text{Yb}({}^{24}\text{Mg},F_{\gamma})^{92}\text{Zr}$.
7445.8	(16+)	1400.3	100	6045.5 (14				E_{γ} : from 173 Yb(24 Mg,F γ) 92 Zr.
8039.1?	$(17,18^+)$	593 ^b	100	7445.8 (16),E2		Mult.: from RUL.
(8634.82)	2+	4804.7 4985.1 <i>7</i>	2.8 8	3830.31 (1 ⁻³ 3649.22 3 ⁺				
		4995.0 3	6.7 8	3640.28 (2)				
		5006.1 3	11.8 8	3628.33 (4 ⁴				

17

$\gamma(^{92}\text{Zr})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
(8634.82)	2+	5134.6 3	3.6 4	3499.88	2+	
(,		5162.5 <i>3</i>	3.6 4	3471.88		
		5183.0 <i>5</i>	7.0 14	3452.17		
		5263.2 5	21.6 24	3371.48	1(-)	
		5347.1		3289.13		
		5359.5		3275.76	$2^{+},3^{+}$	
		5371.2 5	6.1 <i>14</i>	3262.62	2+	
		5594.7 <i>4</i>	1.6 4	3039.70		
		5815.0 <i>3</i>	1.2 4	2819.54		
		6237.2 6	1.2 4	2398.36		
		6294.88 <i>12</i>	100 <i>3</i>	2339.66		
		6568.2		2066.65		
		7139.5		1495.46		
		7251.8 9	0.4 4	1382.77		
		7701.2		934.51		
		8634.4 2	5.1 4	0.0	0_{+}	
9127.5	(18^{+})	1681.3 ^{&} <i>b</i>	100	7445.8	(16^+)	
9722.2	(≤20)	1683 ^b		8039.1?	$(17,18^+)$	E_{γ} : from (^{13}C , $^{3}n\gamma$) only.

[†] From (n,γ) E=thermal, except as noted. Uncertainty in E γ from this source may include 100 eV systematic uncertainty combined in quadrature with experimental statistical uncertainty.

[‡] From $\gamma(\theta)$ in $(n,n'\gamma)$, except as noted, assigning $\Delta \pi$ =no from RUL whenever relevant.

[#] For additional mult and δ information, see $\gamma(\theta)$ from $(n,n'\gamma)$.

[@] From $(n,n'\gamma)$.

[&]amp; from 173 Yb(24 Mg,F γ) 92 Zr; unconfirmed in 176 Yb(28 Si,X γ) or 176 Yb(31 P,X γ) so placement shown as tentative here.

^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

____ γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level γ Decay (Uncertain) 151 fs +26-23 53 fs 5 3609.5 $\begin{array}{c}
2^{+} \\
1^{+} \\
(4)^{+} \\
\hline
(2)^{+} \\
\hline
(7^{-}) \\
\hline
(8^{+})
\end{array}$ 3499.88 3471.88 $5.3~\mathrm{fs}~6$ 3463.04 137 fs +21-17 3452.17 58 fs 6 3407.83 0.30 ps 4 ≤3.5 ns 3379.8 3371.48 27 fs 3 3308.7 1.18 ns 7 3289.13 174 fs 19 3275.76 53 fs 6 2957.4 \leq 3.5 ns 2909.43 216 fs 24 2819.54 64 fs 7 2486.01 $\leq\!3.5\;ns$ 2398.36 149 fs *16* 0.28 ps *3* 2339.66 2066.65 >0.76 ps 1847.27 96 fs 10 4^{+} 1495.46 102 ps 3 1382.77 88 ps *3* 934.51 5.0 ps 4 0.0 stable

 $^{92}_{40}{
m Zr}_{52}$

Legend

Level Scheme (continued)

3262.54 E2 29.3 (M/4E2) 100.0 Intensities: Relative photon branching from each level ٧ γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

History

Type	Author	Citation	Literature Cutoff Date
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 107,2423 (2006)	1-Jan-2006

 $Q(\beta^-)=-901.7\ 22;\ S(n)=8219.5\ 19;\ S(p)=10332\ 11;\ Q(\alpha)=-3747\ 3$ 2012Wa38 Note: Current evaluation has used the following Q record -902.3 228221.1 2010333 11-3750 3 2003Au03. $Q(2\beta^-)=1142.9\ keV\ 19\ (2003Au03).$

⁹⁴Zr Levels

Cross Reference (XREF) Flags

A	$^{94}\mathrm{Y}~\beta^{-}~\mathrm{decay}$	G	94 Zr(t,t')	M	96 Zr(p,t)
В	92 Zr(t,p)	H	94 Zr(3 He, 3 He')	N	⁹⁸ Mo(d, ⁶ Li)
C	94 Zr(n,n' γ)	I	$^{94}\mathrm{Zr}(\alpha,\alpha')$	0	173 Yb(24 Mg,F γ)
D	94 Zr(p,p')	J	Coulomb excitation	P	176 Yb(28 Si,F γ)
E	94 Zr(p,p' γ)	K	94 Mo(6 Li, 8 B)		
F	94 Zr(d,d')	L	94 Mo(14 C, 16 O)		

E(level) [†]	J^π	$T_{1/2}$	XREF	Comments
0.0	0+	stable	ABCDEFGHIJKLMNOP	$T_{1/2}$: >1.9×10 ¹⁹ y for ⁹⁴ Zr(g.s.) to ⁹⁴ Mo(g.s.) 2ν 2β ⁻ decay, $T_{1/2}$ > 0.23×10 ¹⁹ y for ⁹⁴ Zr(g.s.) to ⁹⁴ Mo(g.s.) neutrinoless 2β ⁻ decay. Other: $T_{1/2}$ >1.3×10 ¹⁹ y for ⁹⁴ Zr(g.s.) to ⁹⁴ Mo(2 ⁺) 2β ⁻ decay (1987No03). Δ <r<sup>2>(fm²): (⁹²Zr,⁹⁴Zr)=0.176 20 (1987Bo56), (⁹⁴Zr,⁹⁶Zr)=0.126 23 (1987Bo56), 0.117 14 (1988Ga26) all from measured isotopic shifts. <r<sup>2>^{1/2}=4.3312 fm 9 (2004An14).</r<sup></r<sup>
918.75 <i>5</i>	2+	6.9 ps <i>15</i>	ABCDEFGHIJKLMNOP	μ =-0.66 3 μ : From 1999Ja13 from γ -ray angular distribution of recoil ions slowing down in polarized Gadolinium following Coulomb excitation. Other: μ =-0.52 12 (1989Ra17) μ =-0.14 14 (1978Ge19). Both values are from γ -ray angular distribution of recoil ions slowing down in polarized iron following Coulomb excitation. J^{π} : L(p,t)=2. $T_{1/2}$: from B(E2) in Coulomb Excitation. $\Delta < r^2 > (^{94}Zr, ^{96}Zr)$ (fm ²)=0.117 14 (1988Ga26) optical isotopic shift.
1300.19 12	0+	0.291 ns <i>11</i>	ABCDEFG KLMN	J^{π} : L(p,t)=0. T _{1/2} : from $\beta\gamma\gamma$ (t) (1990Ma40). Other: 0.28 ns 4 from (p,p' γ).
1469.62 <i>10</i>	4+	0.500 ns 13	ABCD FG I MNOP	J^{π} : L(p,t)=4. $T_{1/2}$: from $\beta\gamma\gamma$ (t) (1990Ma40).
1671.41 <i>7</i>	2+		ABCD FGHI KLMN	J^{π} : L(p,t)=2.
2057.63 10	3-		ABCD FGHIJ MN	J^{π} : L(p,t)=3.
2151.31 20	2+		A CD F M	J^{π} : L(p,t)=2.
2329.9 4	_ 4 ⁺		A CD F I OP	J^{π} : L(α,α')=4.
2366.12 14	2+		ABCD FG I MN	J^{π} : L(p,t)=2.
2401? 6			F	479
2507.7 5	$(3)^{+}$		C F	J^{π} : M1+E2 γ' s to 2 ⁺ , γ from 4 ⁺ , supported by Wolfenstein-Hauser-Feshbach calculations for $(n,n'\gamma)$.
2605.0 5	5-		BCD FG I MNOP	J^{π} : L(p,t)=5.
2698.5 10	(1,2,3)		C F	J^{π} : from $(n,n'\gamma)$:measured $\gamma(\theta)$ compared to to Wolfenstein-Hauser-Feshbach calculations.
2719?			F	
2769?			F	

⁹⁴Zr Levels (continued)

E(level) [†]	J^{π}		XREF	7	Comments
2826.0 6	(2,3)	С	F		J^{π} : from $(n,n'\gamma)$:measured $\gamma(\theta)$ compared to to Wolfenstein-Hauser-Feshbach calculations.
2846.3 <i>3</i>	(1-)	A CD	F		J^{π} : L(d,d')=1,4; γ to 0 ⁺ .
2860.6 11	4+	C	FG		J^{π} : L(d,d')=4.
2888.2 17	4+	BCD	F I		J^{π} : $L(\alpha,\alpha')=4$.
2908.05? 20	(2^{+})	Α	F		J^{π} : L(d,d')=2,3,4; γ to 0 ⁺ .
2925 5	$(1^-, 3^-, 4^+)$		F		J^{π} : L(d,d')=1,3,4.
2945.0 <i>4</i>	5-	ABCD	I		J^{π} : $L(\alpha,\alpha')=5$.
3014 [‡] 8		В			
3030 6	(1.0.0)+		F		E(level): probably a doublet.
3059.31 <i>17</i>	$(1,2,3)^+$	A C	F I	OD	J^{π} : log $ft=7.4$ in β^- decay from 2 ⁻ .
3142.4 <i>4</i> 3156.4 <i>9</i>	(6 ⁺) (4 ⁺)	BCD	F I	OP	J^{π} : $L(\alpha,\alpha')=4$.
3219.42 <i>13</i>	(1,2,3)	ABCD			J^{π} : log $ft=7.2$ in β^- decay from 2 ⁻ , possibly L(d,d')=3.
3281 6	(2^+)	ADCD	F		J^{π} : L(d,d')=2.
3316 6	(=)		F		E(level): possible doublet.
3331 6	(5^{-})	D	F I		J^{π} : L(α,α')=5. Due to poor back angle statistics this assignment is not certain.
3361.16 <i>18</i>	(1,2,3)	ABCD	FG I		J^{π} : log $ft=7.3$ in β^- decay from 2^- , possibly $L(\alpha,\alpha')=3$.
3407 6	$(3^-,4^+)$		F I		J^{π} : L(d,d')=1,3,4; L(α,α')=(3,4).
3442.5 5	(7^{-})			OP	
3482 [‡] 8		B D			
3560 [‡] 7	(4^{+})	В	F I	OD	J^{π} : $L(\alpha, \alpha')=4$.
3594.8 <i>6</i> 3598 <i>7</i>	(5 ⁻)	D	F I	OP	E(level): probable triplet in (d,d').
3370 7	(3)	D			J^{π} : $L(\alpha,\alpha')=5$.
3631.6 4	(8^{+})			OP	
3686 7			F I		E(level): probable doublet in (d,d') .
3724.9 6	$(2,3,4)^+$	Α	F I		J^{π} : log $ft=7.8$ in β^- decay from 2^- , γ' s to 2^+ and 4^+ , possibly $L(\alpha, \alpha')=(4)$.
3776 7	(0^{+})	D			J^{π} : L(d,d')=0.
3840 <i>7</i> 3884 <i>7</i>		В	FG F		E(level): probable doublet in (d,d') .
3897 <i>7</i>	(4^+)	B D			J^{π} : $L(\alpha,\alpha')=4$.
3961.8? <i>3</i>	(2)+	A			J^{π} : log ft =6.8 in β^- decay from 2^- , γ' s to 0^+ and 4^+ .
4002.2 15	$(1,2)^+$	AB D	F		J^{π} : log $ft=8.1$ in β^- decay from 2^- , γ to 0^+ .
4052.4 15	$(1,2)^+$	Α			J^{π} : log $ft=8.3$ in β^- decay from 2^- , γ to 0^+ .
4081 8	(3-)		F I		J^{π} : $L(\alpha,\alpha')=(3)$.
4000 - 4-	(4 a) ±				E(level): probable doublet in (α, α') .
4098.5 15	$(1,2)^+$	A	г т		J^{π} : log $ft=7.7$ in β^- decay from 2^- , γ to 0^+ .
4149 <i>8</i> 4198.8? <i>3</i>	(7^{-}) $(1,2)^{+}$	A D	F I		J^{π} : L(α,α')=7. J^{π} : log ft =6.3 in β^- decay from 2 ⁻ , γ to 0 ⁺ .
4224.2 7	(1,2)	A D	F	OP	E(level): probably a doublet in (d,d') .
4237.6? 4	$(1,2,3)^+$	Α		0.	J^{π} : log ft =6.7 in β^- decay from 2 ⁻ .
4340 8	(4+)		F I		J^{π} : $L(p,p')=4$.
4369.8 8				OP	
4479.3 5	(10^{+})			OP	
4637.9? 8	$(1,2,3)^+$	A			J^{π} : log $ft=6.1$ in β^- decay from 2^- .
4669.8? <i>8</i> 4812.4 <i>6</i>	$(1^-,2^-,3^-)$ (12^+)	A		OP	J^{π} : log $ft=5.8$ in β^- decay from 2 ⁻ .
5490.9 6	(12^{-}) (11^{+})			OP OP	
5804.5 7	(12^{+})			OP	
6006.8 7	(13^{+})			OP	
6371.7 8	(14)			OP	
7055.0 9	(15)			OP	
7791.8 10	(16)			OP	
8980.6 12				0	

⁹⁴Zr Levels (continued)

 † Deduced from the adopted $\gamma's$ if not indicated otherwise. ‡ From (t,p).

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.&	δ&	α^a	$I_{(\gamma+ce)}$	Comments
918.75	2+	918.74 5	100	0.0	0_{+}	E2 [@]		0.00083		α(K)=0.00072 2 B(E2)(W.u.)=4.9 3
1300.19	0+	381.57 <i>19</i>	100	918.75	2+	[E2]		0.0099		$\alpha(K)$ =0.0085 3; $\alpha(L)$ =0.00102 3 B(E2)(W.u.)=9.4 4
		1300.18 [#] <i>18</i>		0.0	0^{+}	E0 [@]			0.40 4	
1469.62	4+	550.88 10	100	918.75		[E2]		0.00319		$\alpha(K)$ =0.00276 9; $\alpha(L)$ =0.00032 1 B(E2)(W.u.)=0.879 23
1671.41	2+	752.60 10	100 4	918.75						
		1671.41 <i>10</i>	71 10	0.0						
2057.63	3-	588.0 <i>10</i>	2.8 9	1469.62						
		1138.88 <i>10</i>	100 7	918.75						
2151.31	2+	1232.55 19	100	918.75		M1+E2	-1.7 + 8 - 14	0.00038		$\alpha(K) = 0.00038$
2329.9	4 ⁺	860	< 3.0	1469.62						
		1411.4 6	100 15	918.75		E2(+M3)	-0.13 + 13 - 9	0.00029 4		$\alpha(K) = 0.00029 \ 3$
2366.12	2+	308.22 28	18.3 18	2057.63		E1(+M2)	+0.04 +22-27	0.005 3		$\alpha(K)=0.0040$ 22; $\alpha(L)=0.0004$ 3
		694.66 29	100 3	1671.41		M1(+E2)		0.00160 8		$\alpha(K)=0.00139\ 7;\ \alpha(L)=0.00015\ I$
		1066.3 4	12 3	1300.19		E2		0.00051		$\alpha(K) = 0.00051 \ 2$
		1447.41 <i>19</i>	64 4	918.75		M1+E2	+0.64 +14-12	0.00027		$\alpha(K) = 0.00027$
2507.7	$(3)^{+}$	836.0 7	14.9 11	1671.41		M1+E2	-0.84 4	0.00102		$\alpha(K)=0.00089; \ \alpha(L)=9.8\times10^{-5}$
		1589.5 9	100.0 11	918.75		M1+E2				
2605.0	5-	1134.9 8	100	1469.62						
2698.5	(1,2,3)	1779.7 <i>10</i>	100	918.75						
2826.0	(2,3)	1154.6 6	100	1671.41						
2846.3	(1^{-})	1927.5 6	11 3	918.75						
20/0/	4+	2846.3 3	100 11	0.0						
2860.6 2888.2	4+ 4+	1391.0 <i>11</i> 1969.4 <i>17</i>	100 100	1469.62 918.75						
2908.05?	(2^{+})	1236.60 ^b 20	$1.0 \times 10^2 \ 3$	1671.41						
		1989.3 ^b 7	30 9	918.75	2+					
		2908.4 ^b 8	35 <i>13</i>	0.0	0^{+}					
2945.0	5-	887.4 <i>4</i>	100	2057.63						
3059.31	$(1,2,3)^+$	1001.8 <i>3</i>	6.5 18	2057.63						
		1384.9 <mark>b</mark> 10		1671.41	2+					
		2140.60 20	100 12	918.75						
3142.4	(6^+)	537.2 4	17.9	2605.0	5 ⁻					
	\- <i>/</i>	812.5 2	100	2329.9						
		1672.9 7	3.8	1469.62						
3156.4	(4^{+})	648.7 8		2507.7	$(3)^{+}$					
	` /	2237.3 25		918.75						
3219.42	(1,2,3)	1161.79 <i>10</i>	100 12	2057.63						

γ (94Zr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}^{ \ddagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
3219.42	(1,2,3)	1751.1 <i>13</i>		1469.62		
02171.2	(1,2,0)	2300.5 3	26 4	918.75		
3361.16	(1,2,3)	1303.8 6	12 3	2057.63		
	(, , , ,	1891.60 20	100 12	1469.62		
		2442.1 3	36 7	918.75		
3442.5	(7^{-})	837.4 2	100	2605.0	5-	
3594.8		152.3 4	100	3442.5	(7^{-})	
3631.6	(8+)	489.2_2	100	3142.4	(6^{+})	
3724.9	$(2,3,4)^+$	2255.3 ^b 7	$1.0 \times 10^2 \ 3$	1469.62	4+	
		2805.9 ^b 10	$1.0 \times 10^2 \ 3$	918.75	2+	
3961.8?	$(2)^{+}$	1904.6 <mark>b</mark> 8	16 5	2057.63	3-	
		2492.0 <mark>b</mark> 3	100 <i>16</i>	1469.62		
		2662.4 ^b 10	13 5	1300.19		
4002.2	$(1,2)^+$	4002.1 15	100	0.0	0+	
4052.4	$(1,2)^{+}$	4052.3 15	100	0.0	0^{+}	
4098.5	$(1,2)^{+}$	4098.4 15	100	0.0	0_{+}	
4198.8?	$(1,2)^+$	2527.3 ^b 4	100 17	1671.41	2+	
		2898.7 <mark>b</mark> 6	50 11	1300.19	0^{+}	
4224.2		629.3 7		3594.8		
		782.0 7		3442.5	(7^{-})	
4237.6?	$(1,2,3)^+$	2566.2 ^b 5	$1.0 \times 10^2 \ 3$	1671.41	2+	
		3318.7 ^b 7	$8.\times10^{1} \ 3$	918.75		
4369.8		145.7 7	32 3	4224.2		
		927.2	100 8	3442.5	(7^{-})	E_{γ} : seen only in ${}^{176}\mathrm{Yb}({}^{28}\mathrm{Si},\mathrm{F}\gamma)$.
4479.3	(10^+)	847.7 2	100	3631.6	(8^{+})	
4637.9?	$(1,2,3)^+$	2966.6 ^b 10	$1.0 \times 10^2 \ 5$	1671.41	2+	
		3718.8 <mark>b</mark> <i>15</i>	$8.\times10^{1}\ 5$	918.75		
4669.8?	$(1^-, 2^-, 3^-)$	2998.4 ^b 10	$1.0 \times 10^2 \ 5$	1671.41		
.00,.01	(- ,- ,-)	3750.9^{b} 15	$7.\times10^{1} \ 3$	918.75		
4812.4	(12^{+})	333.1 4	100	4479.3	(10^{+})	
5490.9	(12^{-}) (11^{+})	1011.6 4	100	4479.3	(10^{+})	
5804.5	(12^{+})	313.6 4	100	5490.9	(11^{+})	
6006.8	(13+)	202.3 4	100 24	5804.5	(12^{+})	
		1194.4 <i>4</i>	94 <i>24</i>	4812.4	(12^{+})	
6371.7	(14)	364.9 <i>4</i>	100	6006.8	(13^{+})	
7055.0	(15)	683.3 4	100	6371.7	(14)	
7791.8	(16)	736.8 4	100	7055.0	(15)	
8980.6		1188.8 <mark>b</mark> 7	100	7791.8	(16)	

S

γ (94Zr) (continued)

- [†] Weighted averages from β^- decay and $(n,n'\gamma)$.
- [‡] Branching ratios from each level deduced from β^- decay and $(n,n'\gamma)$.

6

- # Deduced from level energy difference. © From 94 Zr(p,p' γ). & From 94 Zr(n,n' γ), unless noted otherwise.
- ^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^b Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{94}_{40}\mathrm{Zr}_{54}$

$^{94}_{40}\mathrm{Zr}_{54}\text{--}8$

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{94}_{40}\mathrm{Zr}_{54}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

		Hist	ory			
	Type	Author	Citation	Literature Cutoff Date		
	Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 109,2501 (2008)	1-Apr-2008		
- , , , , , , , , , , , , , , , , , , ,	ation has used the f 22 (2003Au03). viations: 1)/ β (E2; $0_i^+ \rightarrow 2_k^+$). Unit for E0 Transi		7a38 256.3 2211525 7 -5000	4 2003Au03.		

⁹⁶Zr Levels

With a ground state $Q(2\beta^-)=3347.7$ keV 22 (2003Au03), there have been many experimental programs to determine the 2β - decay half life of 96 Zr. The adopted value comes from the latest results of the NEMO collaboration. A list of all experimental efforts can be found at www.nndc.bnl.gov/bbdecay.

Cross Reference (XREF) Flags

		A 96 Y β $^{-}$ decay 96 Y β $^{-}$ decay 96 Y β $^{-}$ decay 96 Zr(n,n'γ) D 94 Zr(t,pγ) E 94 Zr(t,pγ) 96 Zr(p,p')	y (9.6 s) H 96Zr(d I 96Zr(t, J 96Zr(a K 96Zr(1	(,d'), (pol d,d') N 98Mo(6Li,8B), 96Zr(6Li,6Li') (,t') 0 100Mo(d,6Li)
E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0	0+	2.0×10 ¹⁹ y 4	ABCDEFGHIJKLMNOPQ	$T_{1/2}$: from $T_{1/2}(2\nu2\beta)$ =2.0x10 ¹⁹ y 3(stat.) 2(syst.), NEMO-3 Collaboration (2006Sh31,2005Sa07,2005Si06). Values from geochemical methods: $T_{1/2}$ =9.4x10 ¹⁹ y 32 (2001Wi17), $T_{1/2}$ =3.9x10 ¹⁹ y 9 (1993Ka12). Neutrino-less values from 1999Ar25, NEMO-2 Collaboration, 90% CL, $T_{1/2}$ (0ν2β, g.s. to g.s.)>1.0x10 ²¹ y, $T_{1/2}$ (0ν2β, g.s. to 2 ⁺)>3.9x10 ²⁰ y. < r^2 > ^{1/2} (charge)=4.3498 11 (2004An14).
1581.64 [@] 6	0+	38.0 ns 7	ABCDEFGH NO	J ^π : E0 to 0 ⁺ . T _{1/2} : weighted average of 38.0 ns <i>15</i> (1972Bu18), 37.8 ns <i>12</i> (1972AnZZ), and 38.2 ns <i>12</i> (1971AnZF). 1971AnZF list their data as mean life; by comparing this group's later measurement in 1972AnZZ, the evaluator has assumed that their result was T _{1/2} .
1750.497 <i>15</i>	2+	0.57 ps 7	ABCDEFGHIJklMNOPQ	μ =+0.06 14; g=+0.03 7 (2003Ku11) J ^{π} : stretched E2 to 0 ⁺ . T _{1/2} : from DSAM following Coulomb excitation of ⁹⁶ Zr beams
				(2003Ku11), other: 0.31 ps <i>13</i> from B(E2)=0.055 <i>22</i> (1965Ga05, Coulomb excitation).
1897.158 ^{&} 16	3-	68 ps 4	ABCDEFGHIJk1 NOPQ	μ =+2.9 5 (2003Ku11); g=+0.98 15 J ^π : L(α , α')=3. T _{1/2} : from recoil distance measurement ⁹⁶ Zr(³² S, ³² S' γ) (1993Ho19). Other: 50 ps 7 from β decay of 5.34-s ⁹⁶ Y (1990Ma45); 46 ps 15 from β decay of 9.6-s ⁹⁶ Y (1990Oh02) both by the centroid-shift method.
2225.846 [@] 17	2+	<10 ps	ABC EFGH 0	$T_{1/2}$: from β decay of 5.34-s 96 Y (1990Ma45).

⁹⁶Zr Levels (continued)

E(level) [†]	J^π	$T_{1/2}$	XREF		Comments
2438.746 18	3+	0.38 ps +19-10	C EFGHI		J ^{π} : stretched E2 2226 γ to 0 ⁺ . J=3 from $\gamma(\theta)$ in $(n,n'\gamma)$; π =+ from M1 to 2 ⁺ . T _{1/2} : from $(n,n'\gamma)$; value may be about 20% lower
2668.82 4	(2+)	0.24 ps +32-10	A C EFGHI		than indicated because cascade feeding was not considered. J^{π} : L(p,p')=(2). $T_{1/2}$: from (n,n' γ); value may be about 20% lower than indicated because cascade feeding was not
2695.18 <i>3</i>	0^+	28 ps 7	A C EFGH		considered. J^{π} : E0 to 0^+ .
2750 <i>15</i> 2781.2? <i>10</i>	4+		В	0	$T_{1/2}$: from β decay of 5.34-s 96 Y (1990Ma45). J^{π} : $L(d, ^{6}Li)=4$.
2857.373 [@] 23	4+	$0.60^{\#}$ ps $+46-18$	BCDEFGHIJ	OP	J^{π} : stretched E2 632 γ to 2 ⁺ , L(d,d')=4.
2925.55 3	0+	20 ps 14	A CDEFGH J		$T_{1/2}$: from β decay of 5.34-s 96 Y (1990Ma45); other: >1.4 ps (n,n' γ).
					J ^{π} : E0 to 0 ⁺ ; however, L=5 in (α,α') and (p,p') ; 1990MoZY in (d,d') did not observe L=5 at this energy. They suggest that $L(\alpha,\alpha')$ and $(L(p,p')$ results may be due to an impurity.
3039 5	3-		F		J^{π} : L(p,p')=3.
3082.36 <i>3</i>	4+	>1.4 [#] ps	BCDEFGHIJ	P	J^{π} : $L(\alpha,\alpha')=4$.
3119.87 & <i>3</i>	5-	$0.58^{\#}$ ps $+68-21$	BC EFGHIJ	P	J^{π} : stretched E2 1223 γ to 3 ⁻ , E1 γ from 6 ⁺ .
3150.28 3	3-	>0.54 [#] ps	C EFGH		J=3 or 5 from $\gamma(\theta)$ in $(n,n'\gamma)$; $\sigma(n,n')$ excludes J=5; π =- from M1 to 3 ⁻ .
3176.43 <i>3</i>	4+	$0.39^{\#}$ ps $+59-28$	BCDEFGH J		J^{π} : $L(\alpha,\alpha')=4$.
3211.84 <i>4</i>	2+	$0.090^{\text{#}} \text{ ps } +21-14$	A C EFGHIJ		J^{π} : L(p,p')=2.
3243.61 7		>0.097 [#] ps	С		
3248.63 <i>5</i>	2+	$0.19^{\#} \text{ ps } +5-4$	CFHJ		J^{π} : $L(\alpha,\alpha')=2$.
3309.19 9	(4+,5+,6+)		BC EFGH	P	J ^{π} : E2 to 4 ⁺ and γ to 5 ⁻ . L(p,p')=4; however, this result is suspect because of 90Zr contaminant peak at 3308 keV. J ^{π} (3309)=(5,6) ⁻ (1987StZX), 5 ⁻ (1988StZS) in the β decay of 9.6-s isomer of ⁹⁶ Y;
					no experimental details available.
3363.30 4			C FGH		
3399 11	(4 ⁺)		Н		J^{π} : L(d,d')=(4).
3427 5	4 ⁺	>0.66 [#] ps	FHJ		J^{π} : L(p,p')=4.
3448.72 <i>8</i> 3450.16 <i>17</i>	(2^{+})	>0.66" ps	C F H A F		J^{π} : L(p,p')=(2).
3457 2	(6^+)		FH		J^{π} : L(p,p')=(6).
3472.14 7	2+	$0.15^{\#}$ ps +4-2	C F H j		J^{π} : L(p,p')=2; 3482 15 level in (α,α') has a L=(2) component.
3483.44 [@] 9	6+	25 ps 9	BCDEFGHIj	P	$T_{1/2}$: from 9.6-s isomeric 96 Y β decay (1991OhZZ). J^{π} : E1 364 γ to 5 ⁻ , L(p,p')=6.
3509.16 7	2+	0.104 [#] ps 21	A C FGH		J^{π} : L(p,p')=2.
3556.18 8	2+	$0.16^{\#}$ ps 4	C F HIJ		J^{π} : L(α,α')=2; L=5 in (t,t') is probably wrong.
3577.62 5			C FGH		
3586 2	(4-)		F H		J^{π} : from coupled-channels calculations in (p,p') .
3602.17 20	$(1,2^+)^{\ddagger}$	0.19 [#] ps +19-7	C F H		
3608 <i>15</i>	$(5^-,6^+)$		J		J^{π} : $L(\alpha, \alpha') = (5,6)$.
3611 5	(1.0±) ±	0.005# 3	F		J^{π} : $L(p,p')=(2,3,4)$.
3620.73 7	$(1,2^+)^{\ddagger}$	0.005 [#] ps 3	С Н		

⁹⁶Zr Levels (continued)

E(level) [†]	${ m J}^{\pi}$	T _{1/2}	XREF		Comments
3630 <i>20</i> 3676 <i>5</i>	(6+)		I F HI		J^{π} : $L(t,t')=(6)$. J^{π} : $L(p,p')=5$; $L(d,d')=(3,4,5)$; $L(t,t')=(2,3)$; could be a
3695 5			F J		doublet. J^{π} : $L(p,p')=2$; $L(\alpha,\alpha')=3$.
3700.68 <i>10</i> 3732	$(1,2^+)^{\ddagger}$	0.006 [#] ps 3	A C H F H		7 · E(p,p) 2, E(u,u) 3.
3749.38 <i>10</i> 3761 8	4 ⁺ 2 ⁺	>0.26 [#] ps	BC EF HIJ D I		J^{π} : L(p,p')=L(t,t')=4; note L(d,d')=(4),5. J^{π} : L(t,t')=2.
3772.2 <i>4</i> 3833	6 ⁺ 4 ⁺		B EF H F H	P	J^{π} : stretched E2 617 γ from 8 ⁺ , γ to 4 ⁺ . J^{π} : L(p,p')=4.
3857.48 <i>20</i> 3865.16 <i>10</i>	2+	$0.055^{\#}$ ps $+21-14$	C F H		J^{π} : $L(p,p')=2$.
3895 <i>5</i> 3924.6 <i>10</i>	4+	ш	F B F HIJ		J^{π} : L(p,p')=4. J^{π} : L(t,t')=5 and L(α,α')=4.
3947.19 <i>10</i> 3997	$(1,2^+)^{\ddagger}$ (2^+)	$0.010^{\#} \text{ ps } +6-4$	C F H F H		J^{π} : L(p,p')=(2).
4014.07 20 4024.5? 8 4034 8	5 ⁻ 3 ⁻		C EFGH J A D F H		J^{π} : L(p,p')=5. J^{π} : L(p,p')=3.
4037.89 20	$(1,2^+)^{\ddagger}$	$0.007^{\#}$ ps $+6-5$	C		$\mathbf{J} \cdot \mathbf{L}(\mathbf{p}, \mathbf{p}) = \mathbf{J}$.
4038 5		Part 1	F HI		J^{π} : L(p,p')=5 (1984FuZY); however, L(p,p')=2 (1993Ho01).
4055 5	2+		F		J^{π} : L(p,p')=2.
4068 <i>2</i> 4126.3 <i>10</i>	(1^{-}) (4^{+})		F H B F HI		J^{π} : L(p,p')=(1). J^{π} : L(t,t')=(4).
4132.4 3	$(1,2^+)^{\ddagger}$	<0.017 [#] ps	С Н		
4139 <i>5</i> 4160	3 ⁻ 5 ⁻		F J I		J^{π} : L(α , α')=3; however, L(p,p')=(0,1,2). J^{π} : L(t,t')=5.
4205 5	4 ⁺		FΗ		J^{π} : L(p,p')=4.
4234.7 ^{&} 5	7-		B EF H J	P	J^{π} : L(d,d')=7.
4258.0 4	3^{-} $(5^{+},6^{+})$		A D H		J^{π} : L(d,d')=3.
4261.3 <i>5</i> 4323 <i>8</i>	$(3^{-},0^{-})$		B HI		γ 's to 4 ⁺ and 6 ⁺ , γ from (7 ⁺ ,8 ⁺), E=5066.2. J^{π} : L(d,d')=(3),(2). L(t,t')=(3).
4341 7	2+		D F H J		J^{π} : L(p,p')=2.
4389.5 5	8+	127 ps 10	ВЕ	P	J^{π} : stretched E2 906y to 6 ⁺ , γ to 7 ⁻ .
4390	(4 ⁺)		I		$T_{1/2}$: from 9.6-s 96 Y β decay (1990OhZZ,1991OhZZ). J^{π} : L(t,t')=4.
4430 5	6+		FНJ		J^{π} : $L(\alpha, \alpha') = 6$.
4470	5-		I		$J^{\pi}: L(t,t')=5.$
4479 5	4 ⁺		F		$J^{\pi}: L(p,p')=4.$
4512.5 <i>7</i> 4520	$(1,2^+)^{\ddagger}$ (4^+)		A H I		J^{π} : L(t,t')=(4).
4531 6	3-		нј		J^{π} : $L(\alpha,\alpha')=3$.
4570.1 8	$(5^-,6^+)$		В	P	J^{π} : gammas to $4^+,7^-$.
4580 4640 <i>8</i>	4 ⁺		I H J		$J^{\pi}: L(t,t')=4.$
4689.7 11			В	P	
4698 5	2+		F		$J^{\pi}: L(p,p')=2.$
4737.5 8	$(1,2^+)^{\ddagger}$		A		17. 1 du, 7.6 f 0- d 5 (0+)
4751.5 <i>7</i> 4757.2 8	$(7,8^+)$		B I B		J^{π} : log $f^{1u}t=7.6$ for β^- decay from (8 ⁺) parent; γ to 6 ⁺ .
4807 5	3- (1- 2+)		F IJ		J^{π} : $L(\alpha, \alpha')=3$.
4837.75 20	$(1^-,2^+)$		A F		J^{π} : γ to 0^+ and 3^- levels; $\log ft = 6.4$ for β^- decay from

⁹⁶Zr Levels (continued)

E(level) [†]	J^π		X	REF		Comments
4845.4 14		В		IJ		0^- parent. J^{π} : $L(\alpha,\alpha')=3$; $L(t,t')=4$.
4881.9? <i>10</i> 4895.2 <i>7</i> 4906.9 <i>8</i>	$(1,2^+)^{\ddagger}$ (10^+)	A A B	F		P	
4914.1? 10	$(1,2^+)^{\ddagger}$	A			•	
4929.1 9	$(1,2^+)^{\ddagger}$	Α	F	J		
4979 <i>5</i> 5014 <i>5</i>			F F			
5065 <i>5</i>			F			
5066.2 <i>6</i>	$(7^+, 8^+)$	В		_		J^{π} : log $ft=5.7$ for β^- decay from (8 ⁺) parent; γ to 6 ⁺ .
5103 <i>15</i> 5117.8 <i>11</i>		В	F	J		
5196.9? 10		A	-			
5228.5 6	$(1,2^+)^{\ddagger}$	A				
5235.3 8 5245 <i>5</i>	$(7,8^+)$	В	F			J^{π} : log $f^{1u}t=7.5$ for β^- decay from (8 ⁺); γ to 6 ⁺ .
5272.0 6	$(1,2^+)^{\ddagger}$	A				
5312.5 7	4+	A	T.			J^{π} : $L(\alpha,\alpha')=4$.
5329 <i>5</i> 5371 <i>15</i>	4 4 ⁺		F	J J		J^{π} : $L(\alpha, \alpha') = 4$. J^{π} : $L(\alpha, \alpha') = 4$.
5384 5			F			
5408.3 7	(1.0±\†	A	_			
5443.1 <i>5</i> 5483.8 <i>11</i>	$(1,2^+)^{\ddagger}$ (10^+)	A	F		P	J^{π} : γ to 8^+ .
5502.2? 8	$(1,2^+)^{\ddagger}$	Α				
5507.6 5	$(7^+,8^+)$	В				J^{π} : log $ft=5.2$ for β^- decay from (8^+) ; γ to 6^+ .
5538.9 <i>6</i> 5551.6 <i>6</i>	$(1,2^+)^{\ddagger}$ $(1,2^+)^{\ddagger}$	A A				
5573.9 6	$(1,2^+)^{\ddagger}$	A				
5601.5 6	$(1,2^+)^{\ddagger}$	A				
5625.9 10	() /	A				
5628.9 <i>11</i> 5652.9? <i>10</i>		В				
5701.3 6		A A				
5719.1 8	$(1,2^+)^{\ddagger}$	A				
5737.7 <i>13</i>	(11^{+})	^			P	
5741.5? <i>10</i> 5783.1 8	$(1,2^+)^{\ddagger}$	A A				
5804.5 7	$(1,2^+)^{\ddagger}$	A				
5838.3 10	$(1,2^+)^{\ddagger}$	A				
5847.5 6	$(1,2^+)^{\ddagger}$	A				
5899.8 <i>11</i>		В				
5914.7 6	$(1,2^+)^{\ddagger}$	A				
5934.6 6	$(1,2^+)^{\ddagger}$	A				
6143.6? 8	$(1,2^+)^{\ddagger}$ $(1,2^+)^{\ddagger}$	A				
6231.6 <i>11</i> 6245.7 <i>16</i>	$(1,2^+)^+$ (12^+)	A			P	
6460.5 19	(13^{+})				P	
6821.3 22	(14^{+})				P	

⁹⁶Zr Levels (continued)

 † From a least-squares fit to the Ey assuming $\Delta E \gamma {=} 1$ keV when unknown. ‡ γ to $0^{+}.$

[#] From (n,n'γ).

[@] Band(A): 4p-4h intruder band.

& Band(B): Negative parity sequence.

γ (96Z	Zr)
---------------	-----

$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α	Comments
1581.64	0+	1581.6 <i>4</i>		0.0	0+	E0#			E _Y : from 96 Y β^- decay (5.34 s). ρ^2 =7.53×10 ⁻³ 14=0.32 I(SPU); from t, K,L _I ,L _{II} shell conversion factors from 1970Be87, and the K-shell conversion/pair production ratio from 1986PaZM.
1750.497	2+	1750.42 2	100	0.0	0+	E2		0.000398 6	$\alpha(K)$ =0.000184 3; $\alpha(L)$ =2.01×10 ⁻⁵ 3; $\alpha(M)$ =3.48×10 ⁻⁶ 5; $\alpha(N)$ =4.94×10 ⁻⁷ 7 $\alpha(O)$ =3.52×10 ⁻⁸ 5; $\alpha(N+)$ =0.000190 3 B(E2)(W.u.)=2.3 3 Mult.: stretched Q from $\gamma\gamma(\theta)$ in β -decay; E2 from RUL.
1897.158	3-	146.653 ^f 10	100 ^f 4	1750.497	2+	(E1)		0.0371	$\alpha(K)=0.0327\ 5;\ \alpha(L)=0.00366\ 6;\ \alpha(M)=0.000632\ 9;$ $\alpha(N)=8.84\times10^{-5}\ 13;\ \alpha(O)=5.80\times10^{-6}\ 9$ $\alpha(N+)=9.42\times10^{-5}\ 14$ B(E1)(W.u.)=0.00123\ 10 Mult.: stretched D from $\gamma\gamma(\theta)$ in β^- decay and ΔJ^π .
		1897.21 ^g 3	19.0 ^g 4	0.0	0+	[E3]		0.000440 7	$\alpha(K)=0.000268 \ 4; \ \alpha(L)=2.97\times10^{-5} \ 5; \ \alpha(M)=5.14\times10^{-6} \ 8; \ \alpha(N)=7.31\times10^{-7} \ 11$ $\alpha(O)=5.17\times10^{-8} \ 8; \ \alpha(N+)=0.0001367 \ 20$ B(E3)(W.u.)=57 \ 4 I\gamma(147) \ \text{and } \Iq(1897): \text{ weighted average of } (p,p'\gamma), \ (n,n'\gamma) \ \text{ and } \beta-\text{decay}(5.34 \ s) \ \text{ data sets.}
2225.846	2+	328.75 3	14 ^b I	1897.158	3-	(E1(+M2))	-0.02 [@] 5	0.00380 16	$\alpha(K)$ =0.00336 14; $\alpha(L)$ =0.000371 17; $\alpha(M)$ =6.4×10 ⁻⁵ 3; $\alpha(N)$ =9.1×10 ⁻⁶ 5; $\alpha(O)$ =6.2×10 ⁻⁷ 3 $\alpha(N+)$ =9.7×10 ⁻⁶ 5 B(E1)(W.u.)>6.4×10 ⁻⁵ Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$ and ΔJ^{π} .
		475.33 1	57 ^b 1	1750.497	2+	M1+E2	-0.09 [@] +1-2	0.00361 5	$\alpha(K)=0.00318\ 5;\ \alpha(L)=0.000355\ 5;\ \alpha(M)=6.16\times 10^{-5}\ 9;$ $\alpha(N)=8.76\times 10^{-6}\ 13;\ \alpha(O)=6.19\times 10^{-7}\ 9$ $\alpha(N+)=9.38\times 10^{-6}\ 14$ B(E2)(W.u.)>0.16; B(M1)(W.u.)>0.0058 Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$ and ce data in $(t,p\gamma)$.
		644.18 <i>6</i>	28 ^b 2	1581.64	0+	E2		0.00203 3	$\alpha(K)$ =0.001783 25; $\alpha(L)$ =0.000204 3; $\alpha(M)$ =3.53×10 ⁻⁵ 5; $\alpha(N)$ =4.98×10 ⁻⁶ 7; $\alpha(O)$ =3.37×10 ⁻⁷ 5 $\alpha(N+)$ =5.31×10 ⁻⁶ 8 B(E2)(W.u.)>2.7 Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$; E2 from RUL.
		2225.93 4	100 ^b 5	0.0	0+	E2		0.000550 8	$\alpha(K)=0.0001185\ 17;\ \alpha(L)=1.283\times10^{-5}\ 18;$ $\alpha(M)=2.22\times10^{-6}\ 4$ $\alpha(O)=2.26\times10^{-8}\ 4;\ \alpha(N+)=0.000417\ 6$

γ (96Zr) (continued)

$E_i(level)$	$\mathbf{J}^\pi_{:}$	$\mathrm{E}_{\gamma}^{\dagger}$	${ m I}_{\gamma}$	$\mathrm{E}_f \qquad \mathrm{J}_{\scriptscriptstyle f}^\pi$	Mult.	δ	α	$I_{(\gamma+ce)}$	Comments
	<u> </u>	,						(7 100)	B(E2)(W.u.)>0.020 Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$; E2 from RUL.
2438.746	3+	688.25 1	100	1750.497 2+	M1+E2	+0.02 [@] +2-1	0.001529 22		$\alpha(K)=0.001350 \ 19; \ \alpha(L)=0.0001491 \ 21;$ $\alpha(M)=2.59\times10^{-5} \ 4$ $\alpha(O)=2.62\times10^{-7} \ 4; \ \alpha(N+)=3.94\times10^{-6} \ 6$ $B(E2)(W.u.)=0.1 \ +3-1; \ B(M1)(W.u.)=0.18$ +5-9
2668.82	(2^{+})	442.9 <i>3</i>	6.4 ^c 16	2225.846 2+					Mult.: from $(n,n'\gamma)$.
2008.82	(2)	771.60 4	35° 5	1897.158 3	(E1+M2)	+0.08 [@] +6-7	0.00050 4		$\alpha(K)=0.00044 \ 3; \ \alpha(L)=4.8\times10^{-5} \ 4;$ $\alpha(M)=8.4\times10^{-6} \ 6; \ \alpha(N)=1.19\times10^{-6} \ 9;$ $\alpha(O)=8.4\times10^{-8} \ 6$ $\alpha(N+)=1.28\times10^{-6} \ 10$
									$\alpha(N+)=1.28\times10^{-6} 10^{-6}$ B(E1)(W.u.)=(0.0007 + 4-7); B(M2)(W.u.)=(4.E+1 +6-4) Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$ and ΔJ^{π} .
		918.6 <i>1</i>	100° 5	1750.497 2+	M1,E2&		0.000813 13		$\alpha(K)=0.000718 \ 11; \ \alpha(L)=7.95\times10^{-5} \ 16; \ \alpha(M)=1.38\times10^{-5} \ 3; \ \alpha(N)=1.96\times10^{-6} \ 4 \ \alpha(O)=1.377\times10^{-7} \ 20; \ \alpha(N+)=2.09\times10^{-6} \ 4 \ B(E2)(W.u.)=5.E+1 \ 7; \ B(M1)(W.u.)=0.04 \ 6$
2695.18	0+	469.33 3	100	2225.846 2+	[E2]		0.00507 8		$\alpha(K)=0.00445 \ 7; \ \alpha(L)=0.000522 \ 8;$ $\alpha(M)=9.06\times10^{-5} \ 13; \ \alpha(N)=1.269\times10^{-5} \ 18;$ $\alpha(O)=8.30\times10^{-7} \ 12$ $\alpha(N+)=1.352\times10^{-5} \ 19$ $\alpha(D)=0.000522 \ 8;$ $\alpha(D)=0$
		1113.53‡		1581.64 0+	E0#			0.018	$I_{(\gamma+ce)}$: ce(K)(1114)/I(469 γ)=0.00015 to 0.00018 in (t,p γ). X_{322} =0.037 δ (if 1114.6 γ is M1 or E2), =0.043 δ 7 (if 1114.6 γ is E1) (1988HeZM).
2791.22		2695.17 [‡]	100	0.0 0+	E0#			0.0030	$I_{(\gamma+ce)}$: from ce(K)(2695)/I(469 γ)=0.000030 in (t,p γ). X_{312} =0.0039 9 (1988HeZM); statistical uncertainty only, a calibration uncertainty of 50% for E _e >1600 keV is not included. ρ_{32}^2/ρ_{31}^2 =9.4 26 (1988HeZM).
2781.2? 2857.373	4+	884.0 ⁱ 631.45 ^e 4	100 21 ^{de} 4	1897.158 3 ⁻ 2225.846 2 ⁺	E2(+M3) ^a	-0.02 [@] 8	0.00215 12		$\alpha(K)$ =0.00189 11; $\alpha(L)$ =0.000216 13; $\alpha(M)$ =3.75×10 ⁻⁵ 22; $\alpha(N)$ =5.3×10 ⁻⁶ 4; $\alpha(O)$ =3.56×10 ⁻⁷ 21

γ (96Zr) (continued)

						, , , ,		
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	α	Comments
								$\alpha(K)$ =0.00189 11; $\alpha(L)$ =0.000216 13; $\alpha(M)$ =3.75×10 ⁻⁵ 22; $\alpha(N)$ =5.3×10 ⁻⁶ 4; $\alpha(O)$ =3.56×10 ⁻⁷ 21 $\alpha(N+)$ =5.6×10 ⁻⁶ 4 B(E2)(W.u.)=(56 +20-44)
2857.373	4+	960.9 ^e 2	15 ^{de} 4	1897.158 3	(E1)		0.000311 5	$\alpha(K)=0.000275 \ 4; \ \alpha(L)=2.99\times10^{-5} \ 5; \ \alpha(M)=5.18\times10^{-6} \ 8; \ \alpha(N)=7.36\times10^{-7} \ 11 \ \alpha(O)=5.22\times10^{-8} \ 8; \ \alpha(N+)=7.88\times10^{-7} \ 11 \ B(E1)(W.u.)=7.E-5 \ +3-6 \ Mult.: stretched D from \gamma\gamma(\theta) in \beta^- decay and \Delta J^{\pi}.$
		1106.88 ^e 2	100 ^{de} 6	1750.497 2+	E2(+M3) ^a	-0.03 [@] 3	0.000536 10	$\alpha(K)=0.000472 \ 8; \ \alpha(L)=5.23\times10^{-5} \ 9; \ \alpha(M)=9.06\times10^{-6} \ 16; \ \alpha(O)=9.01\times10^{-8} \ 16 \ \alpha(N+)=2.18\times10^{-6} \ 4 \ B(E2)(W.u.)=(16 +5 -13); \ B(M3)(W.u.)=(8.E+4 +17-8)$
2925.55	0^{+}	230.38 [‡]		2695.18 0 ⁺	E0 [#]			X_{432} <2.8 (2 σ) (1988HeZM).
2,2000		699.9 ^f 3	40 ^f 3	2225.846 2+	(E2)		0.001621 23	$\alpha(K)$ =0.001427 20; $\alpha(L)$ =0.0001620 23; $\alpha(M)$ =2.81×10 ⁻⁵ 4 $\alpha(O)$ =2.70×10 ⁻⁷ 4; $\alpha(N+)$ =4.24×10 ⁻⁶ 6 B(E2)(W.u.)=1.8 14
		1175.04 3	100 15	1750.497 2+	(E2)		0.000473 7	Mult.: ce data in $(t,p\gamma)$ give M1,E2; ΔJ rules out M1. $\alpha(K)=0.000413$ 6; $\alpha(L)=4.56\times10^{-5}$ 7; $\alpha(M)=7.90\times10^{-6}$ 11; $\alpha(N)=1.121\times10^{-6}$ 16 $\alpha(O)=7.88\times10^{-8}$ 11; $\alpha(N+)=6.07\times10^{-6}$ 9 B(E2)(W.u.)=0.3 3 Mult.: ce data in $(t,p\gamma)$ give M1/E2; ΔJ rules out M1.
		1343.89 [‡]		1581.64 0 ⁺	E0#			X_{422} <0.119 (2 σ) (1988HeZM).
		2925.50 [‡]		0.0 0+	E0 [#]			X_{412} =0.067 27 (1988HeZM); statistical uncertainty only; a calibration uncertainty of 50% for E _e >1600 keV is not included. ρ_{42}^2/ρ_{41}^2 <3.0 (1988HeZM).
3082.36	4+	224.8	10.3	2857.373 4+				$P_{42}/P_{41} < 3.0 \text{ (1366HeZM)}.$ E _{y:} observed only in ⁹⁶ Y β^- Decay (9.6 s).
3002.30	7	643.9 ^h 2	7.1 ^h 8	2438.746 3 ⁺				Ly. observed only in P Decay (5.0 s).
		856.6 ^h 2	6.3^{h} 13	2225.846 2 ⁺	[E2]		0.000969 14	$\alpha(K)$ =0.000854 <i>12</i> ; $\alpha(L)$ =9.57×10 ⁻⁵ <i>14</i> ; $\alpha(M)$ =1.660×10 ⁻⁵ <i>24</i>
								α (O)=1.624×10 ⁻⁷ 23; α (N+)=2.51×10 ⁻⁶ 4 B(E2)(W.u.)<1.6
		1185.19 ^g 3	100.0 ^g 13	1897.158 3	E1(+M2)&	+0.02 [@] 3	0.000244 4	$\alpha(\mathrm{K}) = 0.000186 \ 3; \ \alpha(\mathrm{L}) = 2.02 \times 10^{-5} \ 4; \ \alpha(\mathrm{M}) = 3.49 \times 10^{-6} \ 6; \\ \alpha(\mathrm{N}) = 4.96 \times 10^{-7} \ 9 \\ \alpha(\mathrm{O}) = 3.53 \times 10^{-8} \ 6; \ \alpha(\mathrm{N}+) = 3.44 \times 10^{-5} \ 5 \\ \mathrm{B}(\mathrm{E1})(\mathrm{W.u.}) < 0.00010; \ \mathrm{B}(\mathrm{M2})(\mathrm{W.u.}) < 0.54$

 ∞

γ (96Zr) (continued)

E_i (level)	$J^\pi_:$	E_{γ}^{\dagger}	I_{γ}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.	δ	α	Comments
3082.36	$\frac{\iota}{4^{+}}$	1331.8 ^h 2	10.1 ^h 13	1750.497 2+				
3119.87	5-	1222.70 3	100	1897.158 3	E2+M3&	-0.05 [@] 3	0.000444 9	$\alpha(K)$ =0.000383 8; $\alpha(L)$ =4.22×10 ⁻⁵ 9; $\alpha(M)$ =7.31×10 ⁻⁶ 15; $\alpha(N)$ =1.037×10 ⁻⁶ 21 $\alpha(O)$ =7.31×10 ⁻⁸ 15; $\alpha(N+)$ =1.245×10 ⁻⁵ 18
3150.28	3-	711.56 3	100 4	2438.746 3+	(E1+M2)	-0.07 [@] 4	0.000593 25	B(E2)(W.u.)=14 +5-14; B(M3)(W.u.)=1.6×10 ⁵ +20-16 α(K)=0.000524 22; α(L)=5.7×10 ⁻⁵ 3; α(M)=9.9×10 ⁻⁶ 5; α(N)=1.41×10 ⁻⁶ 7 α(O)=9.9×10 ⁻⁸ 5; α(N+)=1.51×10 ⁻⁶ 7 B(E1)(W.u.)<0.00100; B(M2)(W.u.)<94 Mult.: from $\gamma(\theta)$ in (n,n' γ) and ΔJ^{π} .
								E_{γ} : from $(n,n'\gamma)$. I_{γ} : from $(p,p'\gamma)$.
		1252.98 7	66 7	1897.158 3	M1+E2	+1.7 [@] 3	0.000427 6	$\alpha(K)=0.000363\ 6;\ \alpha(L)=3.98\times10^{-5}\ 6;\ \alpha(M)=6.90\times10^{-6}\ 10;$ $\alpha(N)=9.81\times10^{-7}\ 14$ $\alpha(O)=6.95\times10^{-8}\ 10;\ \alpha(N+)=1.70\times10^{-5}\ 4$ $B(E2)(W.u.)<4.2;\ B(M1)(W.u.)<0.0027$ Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$; M1+E2 from RUL. E_{γ} : from $(n,n'\gamma)$. I_{γ} : from $(p,p'\gamma)$.
3176.43	4+	1279.27 ^h 2	100.0 ^h 19	1897.158 3-	E1(+M2)&	-0.03 [@] 3	0.000277 5	$\alpha(K)=0.000163 \ 3; \ \alpha(L)=1.76\times10^{-5} \ 3; \ \alpha(M)=3.05\times10^{-6} \ 6; \ \alpha(N)=4.34\times10^{-7} \ 8$ $\alpha(O)=3.09\times10^{-8} \ 6; \ \alpha(N+)=9.37\times10^{-5} \ 14$ $\alpha(O)=3.09\times10^{-8} \ 6; \ \alpha(N+)=9.37\times10^{-5} \ 14$ $\alpha(O)=3.09\times10^{-8} \ 6; \ \alpha(O)=3.09\times10^{-8} \ 6; \ \alpha(O)=3.09\times10^{-$
		1425.6 ^h 2	4.7 ^h 9	1750.497 2+	[E2]		0.000371 6	$\alpha(K)=0.000276 \ 4; \ \alpha(L)=3.02\times10^{-5} \ 5; \ \alpha(M)=5.23\times10^{-6} \ 8; \ \alpha(N)=7.43\times10^{-7} \ 11$ $\alpha(O)=5.27\times10^{-8} \ 8; \ \alpha(N+)=5.96\times10^{-5} \ 9$ $B(E2)(W.u.)=0.4 \ +4-4$
3211.84	2+	1314.64 <i>4</i> 1461.5 <i>1</i> 3211.8 <i>1</i>	100 <i>11</i> 54 <i>11</i> 64 <i>18</i>	1897.158 3 ⁻ 1750.497 2 ⁺ 0.0 0 ⁺				D(D2)(11.0.)=0.7 17 7
3243.61		574.74 <i>6</i> 1018.3 <i>2</i>	100 25 100 25	2668.82 (2 ⁺) 2225.846 2 ⁺				
3248.63	2+	1022.8 <i>I</i> 3248.56 <i>6</i>	22 5 100 <i>11</i>	2225.846 2 ⁺ 0.0 0 ⁺	[E2]		0.000950 14	$\alpha(K) = 6.22 \times 10^{-5} \ 9; \ \alpha(L) = 6.70 \times 10^{-6} \ 10; \ \alpha(M) = 1.159 \times 10^{-6} \ 17$ $\alpha(O) = 1.188 \times 10^{-8} \ 17; \ \alpha(N+) = 0.000880 \ 13$ $B(E2)(W.u.) = 0.26 \ +7-8$

9

γ (96Zr) (continued)

		I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	α	Comments
$(4^+,5^+,6^+)$	132.9	62.5	3176.43	4+			
					Q _r		
	226.82 8	100	3082.36	4 ⁺	E2 ^{&}	0.0573	$\alpha(K)$ =0.0496 7; $\alpha(L)$ =0.00646 9; $\alpha(M)$ =0.001124 16; $\alpha(N)$ =0.0001541 22; $\alpha(O)$ =8.79×10 ⁻⁶ 13 $\alpha(N+)$ =0.0001629 23
	924.55 <i>4</i>	100	2438.746	3 ⁺			
(2^{+})	780.2 2	100 19					
	1551.50 8	75 19	1897.158	3-			
	781.2 ^f 2	100 ^f 15	2668.82	(2^+)			
		12^{f} 5					
2+					[E2]	0.001022 15	$\alpha(K)=5.59\times10^{-5} 8$; $\alpha(L)=6.01\times10^{-6} 9$; $\alpha(M)=1.040\times10^{-6} 15$
Σ'	3472.07 /	100	0.0	0.	[E2]	0.001033 13	$\alpha(K)=5.59\times10^{-8}$ 8; $\alpha(L)=0.01\times10^{-9}$ 9; $\alpha(M)=1.040\times10^{-1}$ 13 $\alpha(O)=1.066\times10^{-8}$ 15; $\alpha(N+)=0.000971$ 14 B(E2)(W.u.)=0.29 +4-8
6+	173.7 <mark>e</mark>	9.4 <mark>e</mark>	3309.19	$(4^+,5^+,6^+)$	(M1)	0.0452	$\alpha(K)=0.0397 \ 6; \ \alpha(L)=0.00456 \ 7; \ \alpha(M)=0.000793 \ 12;$
				()-)-)	,		$\alpha(N)=0.0001124 \ 16; \ \alpha(O)=7.81\times10^{-6} \ 11$
							$\alpha(N+)=0.0001202 \ 17$
							B(M1)(W.u.)=0.014 5
							Mult.: this γ is designated as E1 (1987StZX,1988StZS) without giving experimental details for this assignment. If this γ is a dipole, it should be M1.
	363.58 ^e 8	100 ^e	3119.87	5-	E1&	0.00290 4	$\alpha(K)$ =0.00256 4; $\alpha(L)$ =0.000283 4; $\alpha(M)$ =4.89×10 ⁻⁵ 7; $\alpha(N)$ =6.92×10 ⁻⁶ 10; $\alpha(O)$ =4.77×10 ⁻⁷ 7
							$\alpha(N+)=7.39\times10^{-6} 11$
							B(E1)(W.u.)=0.00023 9
							I_{γ} : from 1987St12 Iin ⁹⁶ Y β^- decay (9.6 s); 626 γ is not shown in 1987StZX.
2+							
2+	3556.11 8	100	0.0	0+	[E2]	0.001064 15	$\alpha(K)=5.38\times10^{-5} 8$; $\alpha(L)=5.78\times10^{-6} 8$; $\alpha(M)=1.000\times10^{-6} 14$ $\alpha(O)=1.026\times10^{-8} 15$; $\alpha(N+)=0.001004 14$ B(E2)(W.u.)=0.24 6
	1138.87 5	100	2438.746	3+			2(22)() 01210
(1.2^+)		100		0+			
		100	0.0	0+			
$(1,2^+)$	3700.6^{f} 1	100^{f}	0.0	0+			
	(2 ⁺) 2 ⁺ 6 ⁺ 2 ⁺ (1,2 ⁺) (1,2 ⁺)	189.4 226.82 8 (2+) 924.55 4 780.2 2 1551.50 8 781.2 f 2 1225.2 f 5 1699.6 f 4 2+ 3472.07 7 6+ 173.7 e 401.0 e 626 e 2+ 1283.1 I 1612.1 I 1759.0 2 2+ 3556.11 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

10

γ (96Zr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${ m I}_{\gamma}$	E_f	\mathbf{J}_f^{π}	Mult.	δ	α	Comments
3772.2	6+	289.0 ^e	1.49 ^e	3483.44	6+	(M1(+E2))	-0.4 5	0.014 4	$\alpha(K)=0.012 \ 4; \ \alpha(L)=0.0014 \ 5; \ \alpha(M)=0.00024 \ 8;$ $\alpha(N)=3.5\times10^{-5} \ 1I; \ \alpha(O)=2.3\times10^{-6} \ 6$ $\alpha(N+)=3.7\times10^{-5} \ 12$ Mult.: from $\gamma(\theta)$ and ΔJ^{π} . δ : from $\gamma(\theta)$ in 96 y β^{-} decay (9.6 s).
		462.7 <mark>e</mark>	0.75 <mark>e</mark>	3309.19	$(4^+,5^+,6^+)$				θ . Hom $\gamma(\theta)$ in $\gamma(\theta)$ decay (9.0 s).
		652.1 ^e	2.5 ^e	3119.87	5-	(E1)		0.000698 10	$\alpha(K)=0.000617\ 9;\ \alpha(L)=6.75\times10^{-5}\ 10;$ $\alpha(M)=1.169\times10^{-5}\ 17$ $\alpha(O)=1.165\times10^{-7}\ 17;\ \alpha(N+)=1.775\times10^{-6}\ 25$ Mult.: stretched D from $\gamma\gamma(\theta)$ in β^- decay and ΔJ^π .
		690.0 <mark>°</mark>	1.94 <mark>e</mark>	3082.36	4+				
		914.8 ^e	100 ^e	2857.373	4+	(E2)		0.000827 12	$\alpha(K)=0.000729 \ II; \ \alpha(L)=8.14\times10^{-5} \ I2;$ $\alpha(M)=1.412\times10^{-5} \ 20$ $\alpha(O)=1.388\times10^{-7} \ 20; \ \alpha(N+)=2.14\times10^{-6} \ 3$ Mult.: stretched Q from $\gamma\gamma(\theta)$ in β -decay and ΔJ^{π} .
3857.48	2+	3857.4 2	100	0.0	0+	[E2]		0.001166 17	$\alpha(K)=4.73\times10^{-5}$ 7; $\alpha(L)=5.08\times10^{-6}$ 8; $\alpha(M)=8.78\times10^{-7}$ 13; $\alpha(N)=1.252\times10^{-7}$ 18 $\alpha(O)=9.02\times10^{-9}$ 13; $\alpha(N+)=0.001113$ 16 B(E2)(W.u.)=0.46 +12-18
3865.16		1426.4 <i>I</i>	100	2438.746	3+				B(B2)(W.d.) 0.10 112 10
3924.6		804.7 <mark>e</mark>	100 <mark>e</mark>	3119.87	5-				
3947.19	$(1,2^+)$	3947.1 <i>1</i>	100	0.0	0_{+}				
4014.07	5-	894.2.2	100	3119.87	5-				
4024.5?		2274.0 ⁱ 8	100	1750.497					
4037.89	$(1,2^+)$	4037.8 2	100	0.0	0+				
4126.3	(4^+)	1006.4 ^e	100 ^e	3119.87	5 ⁻ 0 ⁺				
4132.4 4234.7	(1,2 ⁺) 7 ⁻	4132.3 <i>3</i> 751.5 ^e	100 40 ^e	0.0 3483.44	6 ⁺				
4234.7	/	1114.6 ^e	100 ^e	3119.87	5-				
4258.0	3-	1332.4 ^f 4	100 100 f	2925.55	0 ⁺				
4238.0	$(5^+,6^+)$	489.0	85	2923.33 3772.2	6 ⁺				
1201.3	(5,0)	778.0	100	3483.44	6 ⁺				
		1179.0	23	3082.36	4+				
4389.5	8+	154.7 ^e	0.8 ^e	4234.7	7-	[E1]		0.0317	$\alpha(K)$ =0.0280 4; $\alpha(L)$ =0.00313 5; $\alpha(M)$ =0.000540 8; $\alpha(N)$ =7.57×10 ⁻⁵ 11; $\alpha(O)$ =4.99×10 ⁻⁶ 7 $\alpha(N+)$ =8.07×10 ⁻⁵ 12 B(E1)(W.u.)=4.0×10 ⁻⁶ 4
		617.2 <mark>e</mark>	100 <mark>e</mark>	3772.2	6+	E2		0.00228 4	$\alpha(K)=0.00201 \ 3; \ \alpha(L)=0.000230 \ 4; \ \alpha(M)=3.99\times10^{-5} \ 6$

γ (96Zr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	α	Comments
								$\alpha(N)=5.61\times10^{-6} 8$; $\alpha(O)=3.78\times10^{-7} 6$ $\alpha(N+)=5.99\times10^{-6} 9$ B(E2)(W.u.)=1.38 11
4389.5	8+	906.2 ^e	36.8 ^e	3483.44	6+	E2	0.000846 12	Mult.: stretched Q from $\gamma\gamma(\theta)$ in β^- decay; E2 from RUL. $\alpha(K)=0.000746$ 11; $\alpha(L)=8.33\times10^{-5}$ 12; $\alpha(M)=1.445\times10^{-5}$ 21 $\alpha(O)=1.419\times10^{-7}$ 20; $\alpha(N+)=2.19\times10^{-6}$ 3 B(E2)(W.u.)=0.075 6 Mult.: stretched Q from $\gamma\gamma(\theta)$ in β^- decay; E2 from RUL.
4512.5	$(1,2^+)$	4512.4 7	100	0.0	0^{+}			water successed & from 77(0) in p deedy, 12 from Roll.
4570.1	$(5^-,6^+)$	335.4 <mark>e</mark>	60 ^e	4234.7	7-			
	, , ,	1712.7 ⁱ	100	2857.373				
4689.7		455.0	100	4234.7	7-			
4737.5	$(1,2^+)$	4737.4 8	100	0.0	0^{+}			
4751.5	$(7,8^+)$	979.2	100	3772.2	6+			
4757.2		522.6	100	4234.7	7-			
4837.75	$(1^-,2^+)$	1625.8^{f} 4	99 <i>f</i> 30	3211.84	2+			
		1912.1^{f}_{c} 4	$35^{f} 8$		0_{+}			
		2940.0 ^f 4	59 ^f 15	1897.158				
		3086.9 ^f 7	45^{f} 7	1750.497	2+			
		3257.4 ^f 7	36 ^f 8	1581.64	0_{+}			
		4839.2 ^f 8	100 ^f 19	0.0	0^{+}			
4845.4		719.1 <mark>°</mark>	100 ^e	4126.3	(4^{+})			
4881.9?		1956.3 ⁱ 10	100	2925.55	0^{+}			
4895.2	$(1,2^+)$	4895.1 ^{<i>f</i>} 7	100^{f}	0.0	0_{+}			
4906.9	(10^{+})	517.4	100	4389.5	8+			
4914.1?	$(1,2^+)$	4914.0 ⁱ 10	100	0.0	0_{+}			
4929.1	$(1,2^+)$	4929.0 ^f 9	100 ^f	0.0	0+			
5066.2	$(7^+,8^+)$	314.7	38.9	4751.5	$(7,8^+)$			
		676.7 804.9	22.2 77.8	4389.5 4261.3	8^+ $(5^+,6^+)$			
		1582.9	100	3483.44	(3°,0°) 6 ⁺			
5117.8		728.3	100	4389.5	8 ⁺			
5196.9?		3615.2 ⁱ 10	100	1581.64	0+			
5228.5	$(1,2^+)$	5228.3 6	100	0.0	0^{+}			
5235.3	$(7,8^+)$	845.8	100	4389.5	8+			
		1463.0	71	3772.2	6+			
5272.0	$(1,2^+)$	5271.8 6	100	0.0	0+			
5312.5		3730.8 7	100	1581.64	0+			

[†] From the following data sets: 96 Y β^- decay (5.43 s),(9.6 s), (n,n' γ), (p,p' γ).

[‡] From difference in energies of initial and final levels.

 $^{^{\#}}$ ce data and no γ observed (1988Ma01,1990Ma03,1986HeZP,1988HeZM).

[@] From $\gamma(\theta)$ in $(n,n'\gamma)$.

[&]amp; From ce data in $(t,p\gamma)$.

^a From $\gamma(\theta)$ in $(n,n'\gamma)$ and RUL.

^b From $(n,n'\gamma)$; $I_{\gamma}(329:475:644:2226)=16.1$ 6:58.4 22:21.9 7:100 6 (β^- decay 5.34 s) 9.5:56:27:100 (β^- decay 9.6 s), and 7.6 6:44.4 12:22.8 8:100 4 ($p,p'\gamma$).

^c From $(n,n'\gamma)$; $I_{\gamma}(443:772:919) = -:20 \ 3:100 \ 6 \ (\beta^- \text{ decay } 5.34 \ \text{s})$, $-:23.0 \ 16:100 \ 3 \ (p,p'\gamma)$.

^d From $(n,n'\gamma)$; $I_{\gamma}(632:962:1107)=16:8:100$ (β^- decay 9.6 s), 16:-100 (t,p γ), 11.5 22:-:100 4 (p,p $'\gamma$).

^e From 96 Y β^- decay (9.6 s).

^f From 96 Y β^- decay (5.34 s).

^g From 96 Zr(n,n' γ).

^h From 96 Zr(p,p' γ).

i Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

3211.8 64 1461.5 54 1314.64 100 - | 25 E1(+M2) 1000 1252.98 M1+E2 66 (E1+M2) 100 12270 E24M3 100 | 331 8 101 | E 1 1 100 856 0 1 1 1 1 100 643 0 7 1 6 3 100 224 8 7 1 1 1 100 2925,50 Eq. (175,04 Eq. (25) 100 230,38 Eq. (25) 100 230,38 Eq. (40) - - - 884.0 | - - - 884.0 | 9/8,6 Mi 62 100 4230 (E) 400 64 4403 35 + 688.25 M1, 1 100 146.653 (E3) 100 (E1) 100 (-+ ¹⁷⁵0.42 | E²100 + 1581.6 EO 2225.846 2438.746 2857.373 1750.497 1897.158 3211.84 3176.43 3150.28 2668.82 3119.87 2695.18 . _2781.2 3082.36 1581.64 2925.55 2.0×10^{19} y 4 0.090 ps +2*I*-*I*4 0.39 ps +59-28 >0.54 ps 38.0 ns 728 ps 7 20 ps *14* $0.57~\mathrm{ps}~7$ 68 ps 4 <10 ps 0.38 ps + I9 - I0>1.4 ps 0.24 ps +32-10 0.60 ps + 46 - 180.58 ps +68-21

$$^{96}_{40}\mathrm{Zr}_{56}$$

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020

 $Q(\beta^-) = 2238 \ 10; \ S(n) = 6415 \ 8; \ S(p) = 12454 \ 11; \ Q(\alpha) = -4866 \ 9 \qquad {\color{red} \bf 2017Wa10}$

S(2n)=11990 8, S(2p)=22940 12 (2017Wa10).

Mass measurements: 2006Ha03 (also 2006Jo14), 2004Ri12 (also 2005Jo22,2004Jo18).

Additional information 1.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 79 primary references, 75 dealing with nuclear structure calculations and 4 with decay modes and half-lives.

⁹⁸Zr Levels

Cross Reference (XREF) Flags

		B 98 Y C 98 Z ₁	β^- decay (0.548 s) β^- decay (2.32 s) r IT decay (1.9 μ s) β^- n decay (1.478	F 252 Cf SF decay J 235 U(n,F γ), 241 Pu(n,F γ) G 9 Be(238 U,F γ) K 238 U(α ,F γ)
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
0.0#	0+	30.7 s 4	ABCDEFGHIJKL	$%β^-=100$ Evaluated rms charge radius=4.401 fm <i>16</i> (2013An02). Evaluated $δ(^{90}Zr,^{98}Zr)=+1.002$ fm ² 5 (2013An02). T _{1/2} : from 1976He10. Others: 1968DeZZ, 1967Hu08, 1960Or02. $^{1/2}(^{90}Zr,^{98}Zr)=+0.981$ fm ² 5 (2003Th03,2002Ca37); systematic uncertainty=0.043 fm ² . Also 2005Bi25 from the same group.
854.06 [@] 6	0+	64 ns 7	ABC EFGHIJKL	J^{π} : E0 transition to 0^+ . $T_{1/2}$: weighted average of 64 ns 7 from ^{98}Y β^- decay (0.548 s) and 65 ns 10 from (n,F γ).
1222.91# 5	2+	2.63 ps 55	ABC EFGHIJKL	J ^π : E2 368.8 γ to 0 ⁺ . T _{1/2} : from RDDS in ${}^{9}\text{Be}({}^{238}\text{U},\text{F}\gamma)$ (2018Si26). Others: ≥0.68 ps from B(E2)(W.u.)=8.9 20 or <11 (2018Wi09) deduced from γ -ray yields in Coulomb excitation; <4 ps from fast-timing $\gamma\gamma$ -coin in ${}^{235}\text{U}(\text{n},\text{F}\gamma)$, ${}^{241}\text{Pu}(\text{n},\text{F}\gamma)$, and analysis by generalized centroid difference method (2017An15); <11 ps (2010Be30), <21 ps (1989Ma38), <0.2 ns (1982Ka03), all from $\beta\gamma$ (t) in ${}^{98}\text{Y}$ decay (0.548 s); <0.20 ns (2001AhZY, $\gamma\gamma$ (t) in ${}^{252}\text{Cf}$ SF decay). μ: >+0.38 17 (integral PAC method, preliminary result from 2001AhZY).
1436.17 ^{&} 7	0+	0.72 ns 8	A EFGH J	J^{π} : E0 to 0 ⁺ . T _{1/2} : from βγγ(t) or βγ(t) in ⁹⁸ Y β ⁻ decay (0.548 s). Unweighted average of 0.611 ns 33 (2010Be30), 0.865 ns 42 (1989Ma38), 0.69 ns 10 (1982Ka03). Weighted average is 0.71 ns 9, but reduced χ^2 =11 is too high.
1590.78 [@] 6	2+		AB EFGH JK	J^{π} : $L(t,p)=2$.
1744.61 <mark>&</mark> 6	2+		A EF H J	J^{π} : L(t,p)=2.
1806.18 ^a 6	3-		ABC EFGH JK	J^{π} : L(t,p)=3.
1843.41 [@] 6	4+	5.2 ps <i>10</i>	BC EFGH JK	J ^π : 620.5γ E2 to 2 ⁺ ; 204.3γ from 4 ⁺ ;probable band assignment (1995HaZT). However, $\gamma\gamma(\theta)$ in ⁹⁸ Y β ⁻ decay (2.32 s) suggests J=3. T _{1/2} : from RDDS in ⁹ Be(²³⁸ U,Fγ) (2018Si26). Others: 20 ps 6 from $\beta\gamma$ (t) in ⁹⁸ Y β ⁻ decay (2.32 s) (2010Be30); ≤10 ps (2017An15, $\gamma\gamma$ (t) fast-timing technique, ≤14 ps in ²⁴¹ Pu(n,Fγ), and ≤10 ps in ²³⁵ U(n,Fγ)); 28 ps <i>12</i> (from ⁹⁸ Y decay (2.32 s), quoted by 1994St31 from thesis by M.

⁹⁸Zr Levels (continued)

E(level) [†]	J ^{π‡}	T _{1/2}	XREF	Comments
1859.37 7	0+	0.290 ns <i>13</i>	A H J	Liang, University of Koln (1992)). Note that in 2017An15, lifetime of this state could not be determined precisely due to imprecise lifetime of the first 2^+ state. J^{π} : 636.5 γ E2 to 2^+ ; E0 to 0^+ . $T_{1/2}$: from $\beta\gamma(t)$ in ^{98}Y β^- decay (0.548 s). Weighted average of
2047.71 [#] 8	4+		BC EFGH JK	0.318 ns 27 (2010Be30), 0.283 ns 15 (1989Ma38), and 0.24 ns 10 (1982Ka03). J ^{\pi} : L(t,p)=4.
2104 <i>I</i>			Н	J^{π} : 1986Me11 quote 2 ⁺ from decay characteristics; however, no details of γ rays from this level are available.
2225.15 8	(2^{+})		Α	J^{π} : 2225.2 γ and 789.0 γ to 0^+ ; no β feeding from 0^- parent.
2276.93 ^{&} 8	(4^{+})		B EFG JK	J^{π} : $\gamma \gamma(\theta)$ in ²³⁵ U(n,F γ) (2017Ur03); 686.2 γ and 1053.9 γ to 2 ⁺ ; possible band member.
2487 1			Н	J ^{π} : 1986Me11 quote 3 ⁺ from decay characteristics; however, no details of γ transitions from this level are available.
2490.98 [@] 6	6+	1.80 ps 62	BC EFGH JK	J^{π} : 647.6 γ $\Delta J=2$, E2 to 4 ⁺ ; band member.
2568 <i>1</i>			н	$T_{1/2}$: from RDDS in ${}^9\text{Be}({}^{238}\text{U},\text{F}\gamma)$ (2018Si26). Other: <10 ps from $\beta\gamma$ (t) in ${}^{98}\text{Y}$ β^- decay (2.32 s) (2010Be30). J $^{\pi}$: 1986Me11 quote 4 ⁺ from decay characteristics; however, no details
				of γ transitions from this level are available.
2613 <i>I</i>	(24)		Н	J^{π} : 1986Me11 quote 2 ⁺ from decay characteristics; however, no details of γ transitions from this level are available.
2778.71 <i>7</i> 2800.22 ^{<i>a</i>} 9 3035 <i>8</i>	(2 ⁺) 5 ⁻		A BC EF H K H	J^{π} : 2779γ to 0 ⁺ , 972.2γ to 3 ⁻ , no β feeding from 0 ⁻ parent. J^{π} : L(t,p)=5.
3064.37 ^b 13	5 ⁽⁻⁾		BC EFGh J	J ^{π} : ΔJ=2, Q 1258.2 γ to 3 ^{$-$} , 1221.0 γ and 1016.7 γ to 4 ^{$+$} .
3065.61 15	(1)		A h	J^{π} : 3065.5 γ to 0 ⁺ ; possible β feeding from 0 ⁻ parent.
3117.10 ^{&} 11 3160 8	(6 ⁺)		B EFG K H	J^{π} : 1273.7 γ ΔJ =2, Q to 4 ⁺ ; member of a sequence.
3216.35 [@] 12	8+	1.95 ps <i>47</i>	BC EFGH JK	XREF: H(3205). J ^{π} : 725.4 γ Δ J=2, E2 to 6 ⁺ ; spin=8 from $\gamma\gamma(\theta)$ in ²⁵² Cf SF decay; band member.
3249.02 22 3271 8	(5,6,7 ⁻) 4 ⁺		B E H	$T_{1/2}$: from DSAM in ²⁴⁸ Cm SF decay (2012Sm02). J^{π} : 448.8 γ to 5 ⁻ ; possible β feeding from (7 ⁺ ,6 ⁺) parent. J^{π} : L(t,p)=4.
3336.4 <i>5</i> 3354 <i>8</i> 3435 <i>8</i> 3506 <i>8</i>	5 ⁻ 2 ⁺		EF H H	J^{π} : $L(t,p)=5$. J^{π} : $L(t,p)=2$.
3539 8			H H	
3576.26 ^b 12 3592.2 ^a 5 3739 8	(7 ⁻) (7 ⁻)		C EF EF H	J^{π} : 776 γ to $5^{(-)}$; member of a sequence built on $5^{(-)}$. J^{π} : 792 γ to 5^{-} ; member of a sequence.
3763 8 3812.1& 4 3825 8	(8+)		H EFG K H	J^{π} : 1321.6 γ to 6 ⁺ ; member of a sequence.
3855 8 3894.1 <i>4</i>	(7-)		H EFGH K	XREF: H(3886).
				J^{π} : $L(t,p)=(7)$.
3984.73 [@] 14	(10^+)	1.42 ps <i>34</i>	C EFG JK	J^{π} : 768.4 γ to 8 ⁺ ; possible band member. $T_{1/2}$: from DSAM in ²⁴⁸ Cm SF decay (2012Sm02).
4005 8 4061 8	(5 ⁻ ,6 ⁺) (6 ⁺)		H H	J^{π} : L(t,p)=(5,6). J^{π} : L(t,p)=(6).

⁹⁸Zr Levels (continued)

409.8 (5°,6°) 4108.67 13 (1) 4	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XRE	EF	Comments
4108.67 13 (1) A F J F; 2672.7γ, 3254.4γ and 4108.5γ to 0*; possible β feeding from 0* parent. 4108.18 δ I* (9°) C EF J*; 622.6γ to (7°); member of a sequence built on 5(°). 4198.88 b 14 (9°) C EF J*; 622.6γ to (7°); member of a sequence built on 5(°). 4225.8 δ* H J*; 10g f=5.2 (allowed transition) from 0°; 2728.9γ to 0*; spin=1 from γγ(θ) in (25°C FS decay. 4271.11 δ I* A J J*; 10g f=5.2 (allowed transition) from 0°; 2411.9γ to 0*; also supported by γγ(θ) in (1,Fγ). 4278.79 12 B EF J J*; (5,6.7,8*) from 1787.8γ to 6*; log f=6.0 from (7*,6*). 4365.8 H J** H H 3499.07 12 I** A J**; log f=4.9 from (7*,6*); spin=6 from γγ(θ) in (n,Fγ) and 98 Υ β** decay (2.32 s). 4367.8 H J**; log f=5.3 (allowed transition) from 0°; 2174.4γ to 0*. 4450.8 (7°) H J**; log f=5.3 (allowed transition) from 0°; 2174.4γ to 0*. 4451.8 I A (7*) B EF J**; log f=5.3 from 0°; 2593γ to 0*; spin=1 from γγ(θ) in (n,Fγ). 4454.8 I A (7*) B EF J**; log f=5.3 from 0°; 2593γ to 0*; spin=1 from γγ(θ) in (n,Fγ). 4545.8 I A (7*) B EF J**; log f=6.0 from (7*,6*) parent. 4608 B H J**; log f=6.3 from 0°; 2174.4γ to 0*. 4754.7 I** 16 (12*) C EF K J**; ry 10 (10*); band member. 4766.6 I B (11*) C F J**; ry 10 (10*); band member. 4770.9 A 17 (13*) C F J**; ry 10 (10*); band member. 4781.7 I (15°) C F K J**; 834.6γ to (12*); band member. 4791.8 35γ-8 20γ-8 40γ-9 γροροsed by 2004 Wu08, as no 820γ was reported in 2004 Wu08. 4792.9 I B (14*) C 14*) and member. 4791.1 I H I H I I I I I I I I I I I I I I I	4097 8	$(5^-,6^+)$			H	J^{π} : L(t,p)=(5.6).
A F J J ^π : log fr=4.3 (allowed transition) from 0 ⁻ ; 2728.9y to 0 ⁺ ; spin=1 from γγ(θ) in ²⁵² Cf SF decay. 4198.88 ^b 14 (9 ⁻)						
198.88 14 (9°) 1425.8 6 6		. ,				, , , , , , , , , , , , , , , , , , , ,
4225.8 6 6 6 4 4271.11 6 1 Γ	4165.18 <i>6</i>	1-		A F	J	
4225.8 6 6 6 4 4271.11 6 1 Γ	4198.88 <mark>b</mark> 14	(9^{-})		C EF		· · · · · · · · · · · · · · · · · · ·
4271.11 6 1					Н	
4278.79 12 4292.41 10 6+ B EF J J ^π : $(5,6,7,8^+)$ from $1787.8y$ to 6^+ ; $\log ft=6.0$ from $(7^+,6^+)$. 4292.41 10 6+ B EF J J ^π : $\log ft=4.9$ from $(7^+,6^+)$; spin=6 from $\gamma\gamma(\theta)$ in $(n,F\gamma)$ and $9^8 Y \beta^-$ decay (2.32 s) . 4365 8 4387 8 4399.07 12 1 ⁻ 4450.8 (7^-) 4450.8 (7^-) 4452.59 9 1 ⁻ 4492.35 15 1 ⁻ A J ^π : $\log ft=5.3$ (allowed transition) from 0^- ; 2174.4γ to 0^+ . 4492.35 15 1 ⁻ 4545.81 14 (7^+) B EF J ^π : 253.4γ to 6^+ ; possible (weak) β feeding ($\log ft=6.3$) from $(7^+,6^+)$ parent. 4608 8 4754.71 6 16 (12^+) 40 C EF K J ^π : 770γ to (10^+) ; band member. 4916.61 16 (11^-) 5780.99 17 (14^+) 5790.99 17 (13^-) 679 C F J ^π : 804.3γ to (11^-) ; member of a sequence. 6538.9 11 (16^+) 6538.9 11 (16^+) 6541.37 17 (15^-) 6601.9 11 (17^-) 1.9 μs 2 C 6601.9 11 (17^-) 1.9 μs 2 C 6601.9 11 (17^-) 1.9 μs 2 C 671 (18^+) 671 (18^+) 672 (18^+) 673 (18^+) 674 (18^+) 675 (18^+) 675 (18^+) 675 (18^+) 675 (18^+) 675 (18^+) 675 (18^+) 675 (18^+) 677 (16^+) 775 (16^+) ; band member.	4271.11 6	1-		A	J	J^{π} : log ft =5.2 (allowed transition) from 0^{-} ; 2411.9 γ to 0^{+} ; also supported
4292.41 10 6+ B EF J J ^π : log ft=4.9 from (7+,6+); spin=6 from γγ(θ) in (n,Fγ) and 98 Y β ⁻ decay (2.32 s). 4365 8	4278.79 12			В		
4387 8 4387 8 4389 07 12 1		6+		B EF	J	J ^π : log ft=4.9 from (7 ⁺ ,6 ⁺); spin=6 from $\gamma\gamma(\theta)$ in (n,F γ) and ⁹⁸ Y β ⁻
4387 8 4399.07 12 1 A J ^π : log ft =5.3 (allowed transition) from 0 ⁻ ; 2174.4 γ to 0 ⁺ . 4450.8 (7 ⁻) 4452.59 9 1 ⁻ A J ^π : L(t,p)=(7). 4492.35 15 1 ⁻ A J ^π : log ft =4.5 from 0 ⁻ ; 2593 γ to 0 ⁺ ; spin=1 from $\gamma\gamma(\theta)$ in (n,F γ). 4608 8 4754.71 16 (12 ⁺) 4916.61 16 (11 ⁻) 588.29 17 (14 ⁺) 5720.94 17 (13 ⁻) 6541.37 17 (15 ⁻) 6541.37 17 (15 ⁻) 6601.9 11 (17 ⁻) 1.9 μ s 2 C 6601.9 11 (17 ⁻) 1.9 μ s 2 C 6601.9 11 (17 ⁻) 7595.9 15 (18 ⁺) K J ^π : log ft =5.3 (allowed transition) from 0 ⁻ ; 2174.4 γ to 0 ⁺ . J ^π : log ft =5.3 from 0 ⁻ ; 2593 γ to 0 ⁺ ; spin=1 from $\gamma\gamma(\theta)$ in (n,F γ). J ^π : log ft =6.3 from 0 ⁻ ; 4492 γ , 3638.6 γ to 0 ⁺ . J ^π : 253.4 γ to 6 ⁺ ; possible (weak) β feeding (log ft =6.3) from (7 ⁺ ,6 ⁺) parent. H 4754.71 16 (12 ⁺) 4608 8 H 4754.71 16 (12 ⁺) 4754.71 17 (13 ⁻) 4754.71 17 (13 ⁻) 4754.71 18 19 19 19 19 19 19 19 19 19 19 19 19 19	4365 8				Н	350ay (2102 5).
4450 8 (7 ⁻)	4387 8					
4452.59 9 1 ⁻	4399.07 12	1-		A		
4492.35 15 1 ⁻		(7^{-})			H	
4545.81 14 (7 ⁺) B FF J^{π} : 253.4γ to 6 ⁺ ; possible (weak) β feeding (log ft=6.3) from (7 ⁺ ,6 ⁺) parent. 4608 8 4754.71 6 (12 ⁺) C FF K J^{π} : 770γ to (10 ⁺); band member. 4916.61 16 (11 ⁻) C F J^{π} : 717.7γ to (9 ⁻), member of a sequence. 5589.29 17 (14 ⁺) C F K J^{π} : 834.6γ to (12 ⁺); band member. 5720.94 17 (13 ⁻) C F J^{π} : 804.3γ to (11 ⁻); member of a sequence. 6538.9 11 (16 ⁺) J^{π} : γ to (14 ⁺), band member. 6541.37 17 (15 ⁻) C F E(level): see comment for 6541 level for the two levels being separate. J^{π} : γ to (14 ⁺), band member. 6541.37 17 (15 ⁻) C F E(level): 2006Si36 suggest that 6541 level is most likely different from a (16 ⁺) level at 6539 decaying by a 949.6γ proposed by 2004Wu08, as no 820γ was reported in 2004Wu08. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. 6601.9 11 (17 ⁻) 1.9 μs 2 C J^{π} : γr proposed configuration= J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence.					J	
parent. 4608 8 4754.71 6						
4754.71 6 16 (12+)		(7+)		B EF		
4916.61 ^b 16 (11 ⁻) C F J^{π} : 717.7γ to (9 ⁻), member of a sequence. 5589.29 [@] 17 (14 ⁺) C F K J^{π} : 834.6γ to (12 ⁺); band member. 5720.94 ^b 17 (13 ⁻) C F J^{π} : 804.3γ to (11 ⁻); member of a sequence. 6538.9 [@] 11 (16 ⁺) C F J^{π} : 804.3γ to (11 ⁻); member of a sequence. 6541.37 ^b 17 (15 ⁻) C F $E(\text{level})$: see comment for 6541 level for the two levels being separate. J^{π} : γ to (14 ⁺), band member. 6541.37 ^b 17 (15 ⁻) C F $E(\text{level})$: 2006Si36 suggest that 6541 level is most likely different from a (16 ⁺) level at 6539 decaying by a 949.6γ proposed by 2004Wu08, as no 820γ was reported in 2004Wu08. J^{π} : γ to (14 ⁺) and (13 ⁻); member of a sequence. %IT=100 J^{π} : proposed configuration= $\pi g_{9/2}^2 \otimes \nu(g_{7/2}h_{11/2})$. $T_{1/2}$: from sum of time spectra gated on 952γ+835γ+820γ+804γ+770γ+768γ+725γ+718γ (2006Si36). Other: 1.4 μs 5 (2013RuZX, from 1223γ(t)).					H	
5589.29 17 (14+) C F K J ^π : 834.6 γ to (12+); band member. 5720.94 17 (13-) C F J ^π : 804.3 γ to (11-); member of a sequence. 6538.9 11 (16+) K E(level): see comment for 6541 level for the two levels being separate. 5720.94 17 (15-) C F E(level): 2006Si36 suggest that 6541 level is most likely different from a (16+) level at 6539 decaying by a 949.6 γ proposed by 2004Wu08, as no 820 γ was reported in 2004Wu08. 5720.94 17 (15-) 1.9 μ s 2 C π	4754.71 [@] <i>16</i>	(12^{+})		C EF	K	J^{π} : 770 γ to (10 ⁺); band member.
5720.94 ^b 17 (13 ⁻) C F J^{π} : 804.3γ to (11 ⁻); member of a sequence. 6538.9 [@] 11 (16 ⁺) K E(level): see comment for 6541 level for the two levels being separate. 6541.37 ^b 17 (15 ⁻) C F E(level): 2006Si36 suggest that 6541 level is most likely different from a (16 ⁺) level at 6539 decaying by a 949.6γ proposed by 2004Wu08, as no 820γ was reported in 2004Wu08. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. 6601.9 11 (17 ⁻) 1.9 μs 2 C %IT=100 J^{π} : proposed configuration= $\pi g_{9/2}^2 \otimes \nu(g_{7/2}h_{11/2})$. $T_{1/2}$: from sum of time spectra gated on 952γ+835γ+820γ+804γ+770γ+768γ+725γ+718γ (2006Si36). Other: 1.4 μs 5 (2013RuZX, from 1223γ(t)). 7595.9 [@] 15 (18 ⁺) K J^{π} : 1057γ to (16 ⁺); band member.	4916.61 <mark>b</mark> <i>16</i>	(11^{-})		C F		J^{π} : 717.7 γ to (9 ⁻), member of a sequence.
6538.9 11 (16 ⁺)	5589.29 [@] 17	(14^{+})		C F	K	J^{π} : 834.6 γ to (12 ⁺); band member.
541.37 ^b 17 (15 ⁻) C F E(level): 2006Si36 suggest that 6541 level is most likely different from a (16 ⁺) level at 6539 decaying by a 949.6γ proposed by 2004Wu08, as no 820γ was reported in 2004Wu08. J ^π : γs to (14 ⁺) and (13 ⁻); member of a sequence. $\%$ IT=100 J ^π : proposed configuration= $\pi g_{9/2}^2 \otimes \nu(g_{7/2}h_{11/2})$. $T_{1/2}$: from sum of time spectra gated on 952γ+835γ+820γ+804γ+770γ+768γ+725γ+718γ (2006Si36). Other: 1.4 μs 5 (2013RuZX, from 1223γ(t)). $T_{1/2}$: $T_{1/2}$	5720.94 <mark>b</mark> 17	(13^{-})		C F		J^{π} : 804.3 γ to (11 ⁻); member of a sequence.
6541.37 ^b 17 (15 ⁻) C F E(level): 2006Si36 suggest that 6541 level is most likely different from a (16 ⁺) level at 6539 decaying by a 949.6 γ proposed by 2004Wu08, as no 820 γ was reported in 2004Wu08. J ^{π} : γ s to (14 ⁺) and (13 ⁻); member of a sequence. %IT=100 J ^{π} : proposed configuration= $\pi g_{9/2}^2 \otimes \nu(g_{7/2}h_{11/2})$. $T_{1/2}$: from sum of time spectra gated on 952 γ +835 γ +820 γ +804 γ +770 γ +768 γ +725 γ +718 γ (2006Si36). Other: 1.4 μ s 5 (2013RuZX, from 1223 γ (t)).	6538.9 [@] 11	(16^+)			K	
6601.9 11 (17 ⁻) 1.9 μ s 2 C %IT=100 $J^{\pi}: \text{ proposed configuration} = \pi g_{9/2}^2 \otimes \nu(g_{7/2}h_{11/2}).$ $T_{1/2}: \text{ from sum of time spectra gated on}$ $952\gamma + 835\gamma + 820\gamma + 804\gamma + 770\gamma + 768\gamma + 725\gamma + 718\gamma \text{ (2006Si36)}. \text{ Other:}$ $1.4 \ \mu\text{s } 5 \text{ (2013RuZX, from 1223}\gamma(t)).$ $7595.9^{\text{@}} 15 \text{ (18+)}$ K $J^{\pi}: 1057\gamma \text{ to (16+); band member.}$	6541.37 ^b 17	(15 ⁻)		C F		E(level): 2006Si36 suggest that 6541 level is most likely different from a (16 ⁺) level at 6539 decaying by a 949.6γ proposed by 2004Wu08, as no 820γ was reported in 2004Wu08.
$J^{\pi}: \text{ proposed configuration} = \pi g_{9/2}^2 \otimes \nu(g_{7/2}h_{11/2}).$ $T_{1/2}: \text{ from sum of time spectra gated on}$ $952\gamma + 835\gamma + 820\gamma + 804\gamma + 770\gamma + 768\gamma + 725\gamma + 718\gamma \text{ (2006Si36)}. \text{ Other:}$ $1.4 \ \mu\text{s } 5 \text{ (2013RuZX, from 1223}\gamma(t)).$ $7595.9^{\text{@}} \ 15 \text{ (18+)}$ $\text{K} J^{\pi}: 1057\gamma \text{ to (16+); band member.}$	6601.9 <i>11</i>	(17^{-})	1.9 us 2	С		
$T_{1/2}$: from sum of time spectra gated on $952\gamma + 835\gamma + 820\gamma + 804\gamma + 770\gamma + 768\gamma + 725\gamma + 718\gamma$ (2006Si36). Other: $1.4~\mu s~5$ (2013RuZX, from 1223 γ (t)). 7595.9 $^{\textcircled{@}}$ 15 (18 $^{+}$) K J $^{\pi}$: 1057 γ to (16 $^{+}$); band member.		,	·· /·· –	-		
7595.9 [@] 15 (18 ⁺) K J ^{π} : 1057 γ to (16 ⁺); band member.						$T_{1/2}$: from sum of time spectra gated on $952\gamma+835\gamma+820\gamma+804\gamma+770\gamma+768\gamma+725\gamma+718\gamma$ (2006Si36). Other:
	7595.9 [@] 15	(18^{+})			K	
	8725.4 [@] 18	(20^{+})			K	J^{π} : 1229.5 γ to (18 ⁺); band member.

 $[\]dagger$ From least-squares fit to Ey data, assuming 0.5 keV uncertainty when not stated.

[‡] Ascending spins are assumed for levels populated in SF decays due to yrast pattern of excitation of levels in such studies.

^{*} Seq.(B): γ cascade based on g.s.

[@] Band(A): Band based on 854, 0⁺. The 2⁺ member of this band is either at 1590.8 keV as in 2001Ur01 or at 1222.9 keV as in 2006Si36. Q(intrinsic)=2.00 *10* (2001Ur01) from lifetime data for 12⁺, 10⁺ and 8⁺ states.

[&]amp; Seq.(C): γ cascade based on 1436, 0^+ .

^a Seq.(D): γ cascade based on 3⁻. Possible octupole structure.

^b Seq.(E): γ cascade based on (5⁻), 3064.

|--|

γ (98Zr	.)
----------------	----

								γ ⁽⁹⁸ Zr)		
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f .	J_f^{π}	Mult.	δ	α#	$I_{(\gamma+ce)}$	Comments
854.06	0+	854.06 <i>6</i>		0.0	0+	E0			100	Monopole strength $\rho^2(E0)=0.0112$ 12 (2005Ki02 evaluation), based on data in 1994Lh01. Energy of E0 transition from level energy difference. Mult.: from ce data in (t,py) and $^{98}Y \beta^-$ decay (0.548 s).
1222.91	2+	368.8 1	2.5 2	854.06 (0+	[E2]		0.0109		B(E2)(W.u.)=29 +8-6 E _{γ} : other: 370.0 10 in (α ,F γ). I $_{\gamma}$: from 98 Y β^- decay (0.548 s). Others: 2.1 2 in (α ,F γ), 0.9 3 in 248 Cm SF decay.
		1222.9 <i>I</i>	100.0 2	0.0	0+	E2		0.00044		B(E2)(W.u.)=2.9 +8-5 E _{γ} : others: 1222.7 2 in ⁹⁸ Zr IT decay, 1222.7 10 in $(\alpha, F\gamma)$. I _{γ} : deduced from ⁹⁸ Y β ⁻ decay (0.548 s). Uncertainty of 0.2 is from deduced absolute γ -branching ratios to the 854 level and the ground state. Mult.: $\gamma\gamma(\theta)$ in β ⁻ decay (0.548 s) and ²³⁵ U(n,F γ), and
1436.17	0+	213.2 <i>I</i>	100 4	1222.91	2+	E2		0.0716		RUL. B(E2)(W.u.)=58 8 Mult.: $\gamma\gamma(\theta)$ in β^- decay (0.548 s) and ²³⁵ U(n,F γ), and RUL.
		582.0 [‡] 2		854.06 (0+	E0 [‡]			6.6 6	Mult.: ce data in (t,p γ) and ⁹⁸ Y β^- decay (0.548 s). Evaluated q_K^2 (E0/E2)=1.05 7, X(E0/E2)=0.054 3, ρ^2 =0.076 6 (2005Ki02), based on data in 1994Lh01 and 1982Ka03. Monopole strength ρ =0.274 15 (1994Lh01), 0.29 8 (1982Ka03). I(E0)/I(E2)=0.065 4 (1994Lh01).
1590.78	2+	154.5 367.8 <i>1</i> 736.8 <i>1</i>	1.9 11.7 8 14.6 8	1436.17 (1222.91 2854.06 (1222.91 2	2+ 0+	[E2] [M1+E2] [E2]		0.228 0.0088 22		
		1590.9 <i>I</i>	100 <i>3</i>	0.0	0+	E2				Mult.: from $\gamma \gamma(\theta)$ in ${}^{98}\text{Zr }\beta^-$ decay (0.548 s), and (n,F γ), and ΔJ^{π} , where J^{π} of each level is known independently.
1744.61	2+	152.7 [@] 521.6 <i>I</i> 890.6 <i>I</i>	3 79 <i>3</i> 43 <i>3</i>	1590.78 2 1222.91 2 854.06 (2 ⁺ 0 ⁺	[M1+E2] M1+E2	+0.44 4	0.15 <i>9</i> 0.00302		Mult., δ : $\gamma\gamma(\theta)$ in ²³⁵ U(n,F γ), D+Q from $\gamma\gamma(\theta)$, M1+E2 from ΔJ^{π} , where each J^{π} is determined uniquely in different experiments. Other δ : +0.2 I from $\gamma\gamma(\theta)$ in ⁹⁸ Y β^- decay (0.548 s).
1806.18	3-	1744.5 <i>1</i> 215.5 2	100 <i>4</i> 6.7 <i>17</i>	0.0 (1590.78 2		[E1]		0.0122		
1843.41	4+	583.258 <i>30</i> 252.7 <i>2</i>	100 3	1222.91 2 1590.78 2	2+	E1 [E2]		0.0392		Mult.: $\gamma(\theta)$ and $\gamma(\text{pol})$ in ²⁴⁸ Cm SF decay. B(E2)(W.u.)=54 +18-16

4

γ (98Zr) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α [#]	$\mathrm{I}_{(\gamma+ce)}$	Comments
									I _γ : others: 1.4 2 in $(\alpha, F_γ)$, 5.2 17 in ²⁴⁸ Cm SF decay, 4.8 in ²⁵² Cf SF decay. Values in SF decay seem too high by a factor of ≈ 3 .
1843.41	4+	620.505 19	100 <i>3</i>	1222.91	2+	E2	0.00225		B(E2)(W.u.)= $42 + 10 - 7$
									I_{γ} : other: 100 in (α, F_{γ}) , 100 5 in ²⁴⁸ Cm SF decay.
									Mult.: $\gamma(\theta)$ and $\gamma(\text{pol})$ in ²⁴⁸ Cm SF decay.
1859.37	0_{+}	268.7 1	100 3	1590.78	2+	E2	0.0316		B(E2)(W.u.)=42 3
		.1.				4			Mult.: $\gamma \gamma(\theta)$ and RUL.
		423.0 [‡] 2		1436.17	0_{+}	E0‡		1.5 2	Mult.: ce data in $(t,p\gamma)$ and $^{98}Y \beta^-$ decay $(0.548 s)$.
									Evaluated q_K^2 (E0/E2)=5.4 14, X(E0/E2)=26 7, ρ^2 =0.061 8 (2005Ki02), based on data in 1994Lh01 and 1982Ka03.
									Monopole strength ρ =0.237 25 (1994Lh01), 0.29 15 (1982Ka03).
		(2)(5.1	10.1.0	1222.01	2+	F2	0.00202		I(E0)/I(E2(269γ))=0.0130 <i>16</i> (1994Lh01).
		636.5 1	18.1 9	1222.91	21	E2	0.00209		B(E2)(W.u.)=0.103 8
2047.71	4+	204.3 1	14 3	1843.41	4±	[M1+E2]	0.06 3		Mult.: Q from $\gamma\gamma(\theta)$ in 98 Y β^- decay (0.548 s); M2 ruled out by RUL. I _{γ} : other: 21 7 in 248 Cm SF decay. I γ =67 in 252 Cf SF decay is
2047.71	4	204.5 1	14 3	1043.41	4	[MIT+E2]	0.00 3		discrepant.
		241.5 <i>I</i>	100 8	1806.18	3-	[E1]	0.00885		E_{γ} : other: 240.1 <i>I</i> from ⁹⁸ Zr IT decay.
									I_{γ} : others: 100 14 in ²⁴⁸ Cm SF decay, 100 in ²⁵² Cf SF decay.
		456.8 2	11 3	1590.78	2+	[E2]			I_{γ} : other: 21 7 in ²⁴⁸ Cm SF decay. I_{γ} =67 in ²⁵² CF SF decay is
									discrepant.
		824.8 2	28 3	1222.91	2+	E2			I_{γ} : other: 36 7 in ²⁴⁸ Cm SF decay. I_{γ} =133 in ²⁵² Cf SF decay is
									discrepant.
2225.15	(2^{+})	789.0 2	45 9	1436.17	0+				Mult.: $\gamma(\theta)$ in ²⁴⁸ Cm SF decay, and ΔJ^{π} .
2223.13	(2)	1002.3 <i>I</i>	100 18	1222.91					
		2225.2 2	45 18	0.0					
2276.93	(4^{+})	433.5 1	36 7	1843.41					I_{γ} : from ⁹⁸ Y β^- decay (2.32 s).
	(.)	686.2 <i>1</i>	100 7	1590.78					I_{γ} : 24 in ²⁵² Cf SF decay is discrepant.
		1053.9 <i>I</i>	100 7	1222.91					I_{γ} : from 98 Y β^{-} decay (2.32 s), 414 from 252 Cf SF decay.
2490.98	6+	647.580 <i>30</i>	100 /	1843.41		E2	0.0020		B(E2)(W.u.)=106 + 56 - 27
									Mult.: $\gamma(\theta)$ and $\gamma(\text{pol})$ in ²⁴⁸ Cm SF decay, also supported by $\gamma\gamma(\theta)$ in ⁹⁸ Y β^- decay (2.32 s).
2778.71	(2^{+})	972.2 2	25 4	1806.18	3-				ii 1 ρ docay (2.52 δ).
	` /	1033.9 3	18 4	1744.61					
		1187.8 2	14 4	1590.78					
		1555.7 <i>1</i>	100 11	1222.91					
		2779.0 2	14 4		0^{+}				
2800.22	5-	752.5 1	100 8	2047.71	4+				I_{γ} : others: 100 <i>19</i> in ⁹⁸ Zr IT decay, 100 <i>17</i> in ²⁴⁸ Cm SF decay, 100 in ²⁵² Cf SF decay.
		956.6 2	13 4	1843.41	4+				I_{γ} : others: 50 17 in ²⁴⁸ Cm SF decay, 12.5 in ²⁵² Cf SF decay.
		994.0 <i>1</i>	38 8	1806.18					I_{γ} : others: 50 19 in 98 Zr IT decay, 50 17 in 248 Cm SF decay, 63 in
									²⁵² Cf SF decay.

S

γ (98Zr) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α#	Comments
3064.37	5 ⁽⁻⁾	1016.7	50 25	2047.71	4+			E_{γ} , I_{γ} : from ²⁴⁸ Cm SF.
		1221.0 5	75 25	1843.41	4+			Ey from IT decay. Iy from 248 Cm SF.
		1258.6 <i>4</i>	100 25	1806.18	3-	Q		E_{γ} : unweighted average of 1258.9 <i>I</i> from ⁹⁸ Y β ⁻ decay (2.32 s) and 1258.2 2
								from 98 Zr IT decay (1.9 μ s).
								I_{χ} : from ²⁴⁸ Cm SF.
								Mult.: $\gamma \gamma(\theta)$ in IT decay.
3065.61	(1)	3065.5 2	100	0.0				•
3117.10	(6^{+})	840.1 <i>I</i>	100 11	2276.93	(4^{+})			
		1273.7 2	28 11	1843.41	4+	Q		Mult.: γ (DCO) in ²⁴⁸ Cm SF decay.
3216.35	8+	725.4 <i>1</i>	100	2490.98	6+	E2	0.00148	B(E2)(W.u.)=54 13
								E_{γ} : from IT decay. Other: 725.3 2 in ^{98}Y β^- decay (2.32 s).
								Mult.: $\gamma \gamma(\theta)$ and $\gamma(\text{pol})$ in ²⁴⁸ Cm SF decay ,also supported by $\gamma \gamma(\theta)$ in
								²⁵² Cf SF decay and RUL.
3249.02	$(5,6,7^{-})$	448.8 2	100	2800.22	5-			·
3336.4		846 [@]	$20 \times 10^{1} 10$	2490.98	6+			E_{γ} , I_{γ} : from ²⁴⁸ Cm SF.
		1493.0	100 50	1843.41				E_{γ} , I_{γ} : from ²⁴⁸ Cm SF.
3576.26	(7^{-})	511.9 <i>1</i>	70 25	3064.37				E_{γ} : from IT decay.
00.00	(,)	0111,7 1	, 0 20	200				I_{γ} : unweighted average of 111 25 in IT decay, 50 25 in ²⁴⁸ Cm SF decay and 47
								in ²⁵² Cf SF decay.
		776.0 <i>1</i>	100 <i>21</i>	2800.22	5-			$E_{\gamma}I_{\gamma}$: from IT decay. Others: $I_{\gamma}=100~50$ in 248 Cm SF and 100 in 252 Cf SF.
3592.2	(7^{-})	792.0	100	2800.22				Ey, iy. Hom II deed J. Odlors. If 100 30 m. Om SI did 100 m. Of SI.
3812.1	(8 ⁺)	694.6 10	25	3117.10				E_{γ} : from (α, F_{γ}) . Others: 694.3 from ²⁴⁸ Cm SF, 694.8 from ²⁵² Cf SF.
3012.1	(0)	071.010	20	5117.10	(0)			I_{γ} : from 252 Cf SF.
		1321.6	100	2490.98	6+			E _{γ} : average of 1321.0 from ²⁴⁸ Cm SF and 1322.2 from ²⁵² Cf SF.
3894.1	(7^{-})	677.7 3	100	3216.35				by, worded of 1321.0 from the of the 1322.2 from the off.
3984.73	(10^{+})	768.4 <i>1</i>	100	3216.35		[E2]	0.00127	B(E2)(W.u.)=55 14
	(-)					. ,		E_{γ} : from IT decay. Other: 770.0 10 from (α, F_{γ}) .
4108.67	(1)	2672.7 2	60 10	1436.17	0_{+}			
		3254.4 2	100 20	854.06				
		4108.5 2	40 10	0.0				
4165.18	1-	1099.5 2	2.8 4	3065.61				
		1386.3 <i>I</i>	11.1 7	2778.71				
		2305.9 1	16.7 7	1859.37				
		2420.6 <i>1</i>	26.4 7	1744.61				
		2574.4 <i>1</i>	22.9 7	1590.78		(E1)		Mult.: $\gamma \gamma(\theta)$ in ²³⁵ U(n,F γ).
		2728.9 <i>1</i>	7.6 4	1436.17				252 225
		2942.3 1	100 3	1222.91		(E1)		Mult.: $\gamma \gamma(\theta)$ in ⁹⁸ Y β^- (0.548 s), ²⁵² Cf SF, and ²³⁵ U(n,F γ).
		3311.1 <i>I</i>	52.4 17	854.06				
4100.00	(0=)	4164.9 2	3.8 4	0.0				
4198.88	(9 ⁻)	622.6 1	100	3576.26				E_{γ} : from IT decay.
4271.11	1-	1492.4 <i>1</i>	94 <i>6</i>	2778.71				
		2045.9 2	19 6	2225.15	(21)			

6

γ (98Zr) (continued)

E_i (level)	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	δ	α#	Comments
4271.11	1-	2411.9 2	25 6	1859.37 0+				
		2526.3 <i>1</i>	69 6	1744.61 2 ⁺				225
		2680.3 <i>1</i>	100 6	1590.78 2+	(E1)			Mult.: $\gamma \gamma(\theta)$ in ²³⁵ U(n,F γ).
		2834.4 3	25 6	1436.17 0+				
		3048.3 <i>1</i>	56 6	1222.91 2+				
		3416.9 <i>I</i>	63 6	854.06 0+				
4278.79		4271.3 2	31 6	$0.0 0^{+}$				
	-1	1787.8 <i>1</i>	100	2490.98 6+				_ 252
4292.41	6+	698.6 [@]	4.4	3592.2 (7-)				E_{γ} : from ²⁵² Cf SF decay only.
		1174.9 3	9.2 15	3117.10 (6+)				
		1492.0 2	11.5 15	2800.22 5	141 50	0.15.0		252 GC GE 1 235 LV E
		1801.6 <i>I</i>	100 3	2490.98 6+	M1+E2	+0.17 8		Mult.: $\gamma \gamma(\theta)$ in 98 Y β^{-} (2.32 s), 252 Cf SF, and 235 U(n,F γ). δ : from $\gamma \gamma(\theta)$ in 98 Y β^{-} (2.32 s). Other: -0.77 12 from $\gamma \gamma(\theta)$ in (n,F γ).
1		2015.4 2	5.4 8	$2276.93 (4^{+})$				
		2244.0 <i>4</i>	1.5 8	$2047.71 4^{+}$				
		2448.8 2	3.1 8	1843.41 4 ⁺				
4399.07	1-	2174.4 2	54 18	$2225.15 (2^{+})$				
		2539.5 2	25 4	1859.37 0 ⁺				
		2962.1 5	7 4	1436.17 0+				
		3176.0 3	11 4	1222.91 2+				
1450 50	1 –	4398.8 2	100 4	$0.0 0^{+}$				
4452.59	1-	2227.3 2 2593.0 <i>3</i>	5.9 12	2225.15 (2 ⁺)				
		2593.0 3 2707.8 <i>3</i>	2.9 <i>6</i> 3.5 <i>12</i>	1859.37 0 ⁺ 1744.61 2 ⁺				
		2861.7 3	2.9 6	1590.78 2 ⁺				
		3016.6 2	4.7 6	1436.17 0 ⁺				
		3229.8 2	35.9 12	1222.91 2 ⁺	E1			Mult.: $\gamma \gamma(\theta)$ in ²³⁵ U(n,F γ).
		3598.4 2	4.7 6	854.06 0 ⁺	EI			with $y y(0)$ in $O(11,1^{\gamma}y)$.
		4452.4 2	100 4	$0.0 0^{+}$				
4492.35	1-	3056.3 <i>3</i>	11 3	1436.17 0 ⁺				
11,2.33	•	3638.6 <i>3</i>	11 2	854.06 0 ⁺				
		4492.0 2	100 3	$0.0 0^{+}$				
4545.81	(7^{+})	253.4 1	100	4292.41 6+	[M1+E2]		0.028 11	
4754.71	(12^{+})	770.0 <i>1</i>	100	3984.73 (10 ⁺)				E_{γ} : from IT decay.
4916.61	(11^{-})	717.7 <i>1</i>	100	4198.88 (9-)				E_{γ} : from IT decay.
5589.29	(14^{+})	834.6 <i>1</i>	100	4754.71 (12 ⁺)				E_{γ} : from IT decay.
5720.94	(13^{-})	804.3 1	100	4916.61 (11 ⁻)				E_{γ} : from IT decay.
6538.9	(16^{+})	949.6 <i>10</i>		5589.29 (14 ⁺)				E_{γ} : from (α, F_{γ}) .
6541.37	(15^{-})	820.4 <i>I</i>	100 19	5720.94 (13 ⁻)				E_{γ} , I_{γ} : from IT decay.
6601.6	(1.77-)	952.1 <i>I</i>	59 12	5589.29 (14 ⁺)	(FA)		7.01.0	E_{γ},I_{γ} : from IT decay.
6601.9	(17 ⁻)	63.0 <i>1</i>	100	6541.37 (15 ⁻)	(E2)		5.91 9	$\alpha(K)$ =4.52 7; $\alpha(L)$ =1.157 19; $\alpha(M)$ =0.204 4; $\alpha(N)$ =0.0260 4; $\alpha(O)$ =0.000682 11

Comments $\alpha(\exp)=5.5 \ 16 \ (2006Si36)$ B(E2)(W.u.)=1.62 18 E_{ν} : from IT decay. Mult.: from α (expt)=5.5 16 (2006Si36), deduced from intensity balance. Value is consistent with E2(+M1), δ >1.25 or E2(+M3), δ <0.09. E_ν: 2006Si36 discussed another scenario for the placement of 63.0γ: two closely-spaced 63.0-keV gamma rays, an E1 to 6540, (16⁺) level (from 2004Wu08) and E2 to 6541, (15⁻) level, however, based on intensity-balance arguments, this scenario was considered unlikely.

7595.9 E_{γ} : from (α, F_{γ}) . 1057.0 *10* $6538.9 (16^{+})$ 8725.4 E_{γ} : from (α, F_{γ}) . 1129.5 *10* 7595.9 (18⁺)

 ∞

[†] Most γ-ray data for low-spin (J≤2) levels are from 98 Y β^- decay (0.548 s), and for high-spin (J>2) are from 98 Y β^- decay (2.32 s), based on detailed studies by 2017Ur03, when a level is populated in these decays. Exceptions are noted.

 $^{^{\}ddagger}$ E0 transitions are from ce data in (t,py) (1986Me11) and from 98 Y β^{-} decay (0.548 s) (1994Lh01,1982Ka03).

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

