MEME16203Linear Models

Assignment 3

UNIVERSITI TUNKU ABDUL RAHMAN

Faculty: FES Unit Code: MEME16203 Course: MAC Unit Title: Linear Models

Year: 1,2 Lecturer: Dr Yong Chin Khian

Session: May 2022 Due by: 22/07/2022

- Q1. Suppose that \mathbf{y} is $\text{MVN}_n(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$ and that \mathbf{P} , \mathbf{Q} , and \mathbf{R} are symmetric $n \times n$ matrices with $\mathbf{PQ} = \mathbf{0}$, $\mathbf{PR} = \mathbf{0}$, and $\mathbf{QR} = \mathbf{0}$. Argue carefully that the three random variables $\mathbf{y^TPy}$, $\mathbf{y^TQy}$ and $\mathbf{y^TRy}$ are jointly independent. (15 marks)
- Q2. Suppose $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \stackrel{iid}{\sim} N(\mathbf{0}, \sigma^2 \mathbf{I} \text{ for some unknown } \sigma^2 > 0$.
 - (a) Determine the distribution of $\begin{bmatrix} \widehat{\mathbf{Y}} \\ \mathbf{Y} \widehat{\mathbf{Y}} \end{bmatrix}$. (10 marks)
 - (b) Determine the distribution of $\hat{\mathbf{Y}}^{\mathbf{T}}\hat{\mathbf{Y}}$. (15 marks)
- Q3. Consider the model

$$Y_{ij} = \gamma_0 + \gamma_1 X_i + \gamma_2 X_i^2 + \alpha_i + \epsilon_{ij}, \quad i = 1, 2, \dots, 11; \quad j = 1, \dots, 5$$

where $\epsilon \sim NID(0, \tau^2)$. This model can be expresses in matrix notation as $\mathbf{Y} = \mathbf{W} \boldsymbol{\gamma} + \boldsymbol{\epsilon}$. Let the matrix \mathbf{Z} be the first 3 columns of the matrix \mathbf{W} , define $\mathbf{P}_{\mathbf{Z}} = \mathbf{Z}(\mathbf{Z}^{\mathbf{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathbf{T}}$ and $\mathbf{P}_{\mathbf{W}} = \mathbf{W}(\mathbf{W}^{\mathbf{T}}\mathbf{W})^{-1}\mathbf{W}^{\mathbf{T}}$.

- (a) Use Cochran's theorem to derive the distribution of $F = \frac{c\mathbf{Y^T}(\mathbf{P_W} \mathbf{P_Z})\mathbf{Y}}{\mathbf{Y^T}(\mathbf{I} \mathbf{P_W})\mathbf{Y}}$. Report c, degrees of freedom and a formula for the noncentrality parameter. (20 marks)
- (b) Show that the noncentrality parameter is zero if $\alpha_1 \mathbf{w_4} + \alpha_2 \mathbf{w_5} + \cdots + \alpha_{11} \mathbf{w_{11}} = \mathbf{Zc}$ for some vector \mathbf{c} , where $\mathbf{w_j}$ is the j^{th} column of \mathbf{W} . (10 marks)
- Q4. Consider the model $Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$, where i = 1, 2, 3, j = 1, 2, 3, and μ , α_1 , α_2 , α_3 , are unknown parameters. Let $\epsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$, where σ^2 is unknown.
 - (a) Determine the distribution of $\frac{\hat{\tau}^2}{35\sigma^2}$ when $\tau=0$, where $\hat{\tau}$ is the BLUE of $\tau=2\alpha_1-8\alpha_2+6\alpha_3$. (10 marks)
 - (b) Determine the distribution of $S^2 = \sum_{i=1}^3 \sum_{j=1}^3 (Y_{ij} \bar{Y}_{i.})^2$. (10 marks)
 - (c) Show that $F = \frac{c\hat{\tau}^2}{S^2}$, where c is a constant, has central F-distribution when $\tau = 0$. Report c. (10 marks)