Experiment2

PID Gain 값

- Ki=0.5
- Kp=15
- Kd=0.5

가속 시간

 $- Ta_2 = 0.25s$

import pandas as pdimport matplotlib.pyplot as plt

data2 = pd.read_csv("Experiment2.csv")

data2

	TIME	Target Y	Actual Y	Following Error
0	0.0000	0.0	0.0	0.0
1	0.0001	0.0	0.0	0.0
2	0.0002	0.0	0.0	0.0
3	0.0003	0.0	0.0	0.0
4	0.0004	0.0	0.0	0.0
221056	NaN	NaN	NaN	NaN
221057	NaN	NaN	NaN	NaN
221058	NaN	NaN	NaN	NaN
221059	NaN	NaN	NaN	NaN
221060	NaN	NaN	NaN	NaN

221061 rows × 4 columns

```
x = data2["TIME"]
y1 = data2["Target Y"]

plt.plot(x, y1, 'b', label = "Target Y")
plt.xlabel("TIME(s)")
plt.ylabel("Target Y(mm)")
plt.legend(loc="best")
plt.show()
```



```
y2 = data2["Actual Y"]
plt.plot(x, y2, 'g', label = "Actual Y")
plt.xlabel("TIME(s)")
plt.ylabel("Actual Y(mm)")
plt.legend(loc="best")
plt.show()
```



```
plt.plot(x, y1, 'b', label = "Target Y")
plt.plot(x, y2, 'g', label = "Actual Y")
plt.xlabel("TIME(s)")
plt.ylabel("Target & Actual Y(mm)")
plt.legend(loc="best")
plt.show()
```



```
y3 = data2["Following Error"]
plt.plot(x, y3, 'r', label = "Following Error")
plt.xlabel("TIME(s)")
plt.ylabel("Fol err(mm)")
plt.legend(loc="best")
plt.show()
```


분석

```
print("목표 변위의 최댓값: ", max(y1),"mm")
print("실제 변위의 최댓값: ", max(y2), "mm")
```

목표 변위의 최댓값: 95.833334 mm

실제 변위의 최댓값: 95.9881 mm

목표 변위가 0이고 시간이 15초 보다 작을 때

```
data2[(data2["Target Y"]==0) & (data2["TIME"]<15)]
```

	TIME	Target Y	Actual Y	Following Error
0	0.000000	0.0	0.0	0.0

1	0.000100	0.0	0.0	0.0
2	0.000200	0.0	0.0	0.0
3	0.000300	0.0	0.0	0.0
4	0.000400	0.0	0.0	0.0
125879	12.588128	0.0	0.0	0.0
125880	12.588228	0.0	0.0	0.0
125881	12.588328	0.0	0.0	0.0
125882	12.588428	0.0	0.0	0.0
125883	12.588529	0.0	0.0	0.0

125884 rows × 4 columns

=> 12.5885초 이후에 이송 시작

목표 변위가 대략 0이고 시간이 15초 보다 클 때

 $\label{lambda} $$ \data2[(data2["Target Y"]>=0) & (data2["TIME"]>15)] $$$

	TIME	Target Y	Actual Y	Following Error
149998	15.000032	71.345000	71.5144	-0.169400
149999	15.000132	71.335000	71.5044	-0.169400
150000	15.000232	71.325000	71.4942	-0.169200
150001	15.000332	71.315000	71.4839	-0.168900
150002	15.000432	71.305000	71.4735	-0.168500
158377	15.837988	0.000060	0.0382	-0.038140
158378	15.838088	0.000040	0.0377	-0.037660
158379	15.838188	0.000024	0.0372	-0.037176
158380	15.838289	0.000012	0.0367	-0.036688
158381	15.838388	0.000004	0.0362	-0.036196

8384 rows × 4 columns

=> 약 15.8384s 에 목표변위가 0이라고 할 수 있다.

15.8384초 이후에, 그러니까 모터가 원위치에 도착한 후에도 모터가 진동한다.

그래서 추종오차가 지속적으로 변화하다가 수렴한다.

수렴한 추종 오차 값(Steady state error)는 대략 -0.01mm이다.