Hochschule Bremerhaven University of Applied Sciences

Fakultät II – Management und Informationssysteme Informatik

Modul Theoretische Informatik

Prof. Dr.-Ing Henrik Lipskoch

Protokoll zu Aufgabenblatt 07: Team: ti2023_22

Von

Ekane Njoh Junior Lesage Matrikelnmr: 40128

Aguiwo II Steve Matrikelnmer: 40088

Inhaltsverzeichnis

Inhalt

١.		Aufgabe 1	2
		Erinnerung an der Grammatik in der Greibach-Normalform	
	b.	Mengenangabe	3
	c.	Zustandsübergänge erklärt	4
	d.	Prüfen wir Ableitungen für drei verschiedenen Wörter wie auf der Folie 7-17	6
	II.	Literaturverzeichnis	7

I. Aufgabe 1

Bei dieser Aufgabe geht es darum, einen Kellerautomaten M anzugeben, der Wörter der Sprache und nur der Sprache aus Aufgabe 1 des Übungsblattes 06 akzeptiert.

Hierzu sollen wir in einzelnen Schritten zeigen, wie wir aus der Grammatik in Greibach-Normalform die einzelnen Bestandteile des Automaten ableiten und auch die Ableitungen (wie in Folie 7-17 gezeigt) für drei verschiedene Wörter der Sprache zeigen.

a. Erinnerung an der Grammatik in der Greibach-Normalform

Unsere Grammatik in der Greibach-Normalform sieht folgendermaßen aus:

 $A1 \rightarrow A2 \ A3 \ A10 \ A13$ $A4 \rightarrow c$ $A7 \rightarrow A8A9$ $A2 \rightarrow a \ A12$ $A5 \rightarrow d$ $A8 \rightarrow A9$ $A3 \rightarrow b \ A6 \ de \ A1 \ f$ $A6 \rightarrow A7$ $A9 \rightarrow g$

$$A10 \rightarrow a A12 h A11$$

$$A12 \rightarrow s$$

 $A13 \rightarrow r A12 a A12$

 $A11 \rightarrow A12$

In unseren Regeln gibt es keine Linksrekursion $(A_n \to A_n..)$ Der zweite Algorithmus ist ein Rückwärtseinsetzen, damit alle anderen Ax Regeln auch mit einem Buchstaben beginnen: Wir starten dann von hinten(i=m-1)

Bei uns sind m =13;

Wir fangen dann mit (i=13-1) an

$$A_{12} \rightarrow s$$

Wir setzen dann A11 anstelle von A12

$A_{11} \to s (+)$	$A_7 \to A_8 A_9$	$B_2 \rightarrow de$
$A_{10} \to A_{12} h A_{11}$	$A_7 \to gA_9 \ (+)$	$B_3 \to f$
Wir setzen A11 in der Regel ein	$A_6 \rightarrow A_7$	$A_2 \rightarrow aA_{12}$
$A_{10} \to a A_{12} B_1 A_{11} (+)$	$A_6 \rightarrow gA_9 (+)$	$A_1 \rightarrow A_2 A_3 A_{10} A_{13}$
$B_1 \rightarrow h$	$A_5 \rightarrow d$	$A1 \to aA_{12}A_3A_{10}A_{13} (+)$
$F\ddot{\mathbf{u}}r A_9 \to g$	$A_4 \rightarrow c$	
$A_8 \rightarrow g$	$A_3 \rightarrow b A_6 B_2 A_1 B_3$	

b. Mengenangabe

Hier wollen wir nun Schritt für Schritt zeigen, wie wir aus der Grammatik in der Greibach-Normalform die einzelnen Bestandteile des Automaten ableiten.

Wir wissen aus Folie 7-9, ein Kellerautomat wir definiert durch $M=(Z,\Sigma,\Gamma,\delta,z0,\#)$ mit

Z endliche Zustandsmenge

$$Z = \{Z_0, Z_1, Z_2, Z_3, Z_4, Z_5, Z_6, Z_7\}$$

Σ Das Eingabealphabelt

$$\Sigma = \{a, b, d, f, g, h, r, s, \epsilon\}$$

Γ Das Kelleralphabet

$$\Gamma = \{\#, A12, A13, A6, B1, B2, B3, B4, e\}$$

• δ, Überführungsrelation

 $\delta: Z \times (\Sigma \cup \{\epsilon\}) \times \Gamma \rightarrow Pe(Z \times \Gamma^*)$

$$\begin{array}{lll} \delta \; (Z_{0}a\#) \to Z_{1}\# & \delta \; (Z_{3},g,A_{9}) \to Z_{3} \\ \delta \; (Z_{1}s\#) \to Z_{1}\# & \delta \; (Z_{3},a,A_{10}) \to Z_{4}A_{12}B_{1}A_{11} \\ \delta \; (Z_{1}b\#) \to Z_{2}A_{6}B_{2}A_{1}B_{3} & \delta \; (Z4,s,A12B1A11) \to Z_{5} \\ \delta \; (Z_{2}gA_{6}B_{2}A_{1}B_{3}) \to Z_{3}A_{9} & \delta \; (Z4,h,B1) \to Z_{4} \end{array}$$

$$\begin{split} \delta\left(Z_{2}dB_{2}\right) &\to Z_{2}e \\ \delta\left(Z_{5},r,A13\right) &\to Z_{6}A_{12}B_{4} \\ \delta\left(Z_{2}fB_{3}\right) &\to Z_{2} \\ \delta\left(Z_{6},a,B4\right) &\to Z_{6}A_{12} \end{split}$$

$$\delta (Z_2 f B_3) \rightarrow Z_2$$
 $\delta (Z_3 f B_3) \rightarrow Z_7$

$$\delta\left(Z_{3}gA_{9}\right) \rightarrow Z_{3}$$
 $\delta\left(Z7,\epsilon,\#\right) \rightarrow Z_{7}$

- $z_0 \in Z$ Startzustand
- # ∈ Γ Das unterste Kellerzeichen

c. Zustandsübergänge erklärt

Wir beginnen mit dem ersten Übergang gemäß der Regel $A_1 \rightarrow aA_{12}A_3A_{10}A_{13}$ (+)

Unser Kellerautomat hat die Zustände Z_0 und Z_1 sowie das Kellersymbol #. Bei Lesen vom Eingabesymbole a, bewegt sich der Automat in den Zustand Z_1 und ändern den Keller nicht (#).

Zustandsübergang: (Z₀, a, #, Z₁)

Jetzt bieten sich an, die ableitenden Schritte für A_{12} , A_3 , A_{10} und A_{13} zu betrachten, um den Kellerautomaten weiterzuentwickeln.

Nach der Regel $A_{12} \to s$ lässt dich der Zustandsübergang für das Lesen des Terminalsymbols s konstruieren, ohne dabei den Keller zu ändern.

• Zustandsübergang: (Z₁, s, #, Z₁)

Gemäß der Regel $A_3 \rightarrow bA_6B_2A_1B_3$ sind die Übergänge entsprechend zu gestalten, damit A_3 abgeleitet werden kann. Also, von Zustand Z_1 aus und beim Lesen vom Terminal b, gelangt der Automat zu einem neuen Zustand Z_2 und $A_6B_2A_1B_3$ werden zum Keller hinzugefügt.

• Zustandsübergang: $(Z_1, b, \#, Z_2A_6B_2A_1B_3)$

Bei der Anwendung der Regel $A_6 \to gA_9$ vom Zustand Z_2 aus, wenn das Terminalsymbol g gelesen wird, springt der Automat zu einem neuen Zustand Z_4 und der Keller wird nach der Ableitung für A6 geändert.

• Zustandsübergang: $(Z_2, g, A_6B_2A_1B_3, Z_3A_9)$

Und von Z_2 aus beim Lesen von d, bleiben wir im Zustand Z_2 und im Stack wird e geschrieben.

• Zustandsübergang: (Z₂, d, B₂, Z₂e)

Und noch im gleichen Zustand, wenn f gelesen wird, wird im gleichen Zustand geblieben und der Keller wir gemäß der Ableitung B_3

• Zustandsübergang: (Z₂, f, B₃, Z₂)

Nun sind wir bei der Regel $A_9 \to g$ und wenn dort das Terminal g gelesen wird, bleiben wir im selben Zustand und ändern den Keller gemäß der Ableitung für A_9 .

• Zustandsübergang: (Z₃, g, A₉, Z₃)

Die nächste Ableitung bezieht sich auf der Regel $A_{10} \to aA_{12}B_1A_{11}$. Aus dem Zustand Z_3 , wenn das Terminal a eingegeben und gelesen wird, wird zum neuen Zustand Z_4 gesprungen und der Keller auch der Ableitung für A_{10} angepasst.

• Zustandsübergang: $(Z_3, a, A_{10}, Z_4A_{12}B_1A_{11})$

 $A12 \rightarrow s$. Von Zustand Z4 aus, wenn das Terminalsymbol s eingegeben und gelesen wird, wechselt zu Z5 und modifiziert den Keller für die Ableitung A_{12}

• Zustandsübergang: $(Z_4, s, A_{12}B_1A_{11}, Z_5)$

 $A_{11} \rightarrow s$: Dies wurde bereits durch die Ableitung für A12 abgedeckt.

 $B_1 \to h$: Von Z_4 aus, wenn das Terminal h gelesen wird, bleiben wir im Zustand Z_4 und ändern den Keller gemäß der Ableitung für B_1 .

• Zustandsübergang: (Z₄, h, B₁, Z₄)

Mit der Regel $A_{13} \rightarrow rA_{12}B_4$ geht der Automat von Z_5 zu Z_6 über die Eingabe r und der Keller wird auch gemäß der neuen Ableitung geändert.

• Zustandsübergang: $(Z_5, r, A_{13}, Z_6A_{12}B_4)$

Aus der Regel $B_4 \to aA_{12}$ wird schlussfolgert, dass von Zustand Z_6 in Z_6 durch das Lesen von a geblieben wird und A_{12} auf dem Stack gemäß der Ableitung von B_4 gespeichert wird,

weil die Eingabe noch nicht vollständig abgeleitet wurde und wir B_4 noch nicht durch A_{12} ersetzt haben.

• Zustandsübergang: (Z_6, a, B_4, Z_6A_{12})

Laut der Regel $A_{12} \rightarrow s$ von Zustand Z_6 wird zu Zustand Z_7 gesprungen.

• Zustandsübergang: (Z_6, s, A_{12}, Z_7)

Von Z7 aus, wenn das leere Wort eingegeben wird, wird das Keller geleert und wir bleiben im Zustand \mathbb{Z}_7

- Zustandsübergang: $(Z_7, \epsilon, \#, Z_7)$
- d. Prüfen wir Ableitungen für drei verschiedenen Wörter wie auf der Folie 7-17

Beginnen wir mit dem Wort "read - p etwas echo etwas"

```
Z_0 read -p etwas echo etwas # +Z_6 read -p etwas echo etwas A_1B_4# +Z_6 etwas echo etwas A_1B_4# +Z_2 echo etwas A_{12}# +Z_1 etwas eA_{12}# +Z_1 etwas A_{12}# +Z_1 etwas A_{12}# +Z_1 etwas A_{12}# +Z_1 etwas A_{12}# +Z_1 # +Z_1 \in \in +Z_1
```

Nun mit "echo etwas"

 Z_0 echo etwas # $+ Z_1$ echo etwas e# $+ Z_1$ etwas A_{12} e# $+ Z_1$ #

$$\vdash Z_1 \in \epsilon$$

 $\vdash Z_1$

Und gut zuletzt mit "echo etwas > etwas"

$$Z_0$$
 echo etwas $>$ etwas $\#$
 $+Z_1$ echo etwas $>$ etwas e $\#$
 $+Z_1$ etwas $>$ etwas $A_{12}e$ $\#$
 $+Z_1$ $>$ etwas $A_{12}A_{12}e$ $\#$
 $+Z_1$ etwas e $\#$
 $+Z_1$ $\#$
 $+Z_1$ \in \in
 $+Z_1$

II. Literaturverzeichnis

https://elli.hs-bremerhaven.de/goto.php?target=file 337759 download&client id=elli Letzter Zugriff am 08.12.2023 um 23 Uhr 45