Chapter 10, Solution 44.

Use superposition principle to obtain v_x in the circuit of Fig. 10.89. Let $v_s = 50 \sin 2t \, V$ and $i_s = 12 \cos(6t + 10^\circ) \, A$.

Figure 10.89 For Prob. 10.44.

Solution

Let $V_x = V_1 + V_2$, where v_1 and v_2 are due to the current source and voltage source respectively.

For
$$v_1$$
, $\omega = 6$, $5 \text{ H} \longrightarrow j\omega L = j30$

The frequency-domain circuit is shown below.

$$Z = 16/(20 + j30) = \frac{16(20 + j30)}{36 + j30} = 11.8 + j3.497 = 12.31 \angle 16.5^{\circ}$$
 Let

$$V_1 = I_s Z = (12 \angle 10^{\circ})(12.31 \angle 16.5^{\circ}) = 147.7 \angle 26.5^{\circ} \longrightarrow v_1 = 147.7 \cos(6t + 26.5^{\circ}) V$$

For
$$v_2$$
, $\omega = 2$, $5 \text{ H} \longrightarrow j\omega L = j10$

The frequency-domain circuit is shown below.

Using voltage division,

$$V_2 = \frac{16}{16 + 20 + j10} V_s = \frac{16(50 \angle 0^{\circ})}{36 + j10} = 21.41 \angle -15.52^{\circ} \longrightarrow v_2 = 21.41 \sin(2t - 15.52^{\circ}) V$$

Thus,

$$v_x = [147.7\cos(6t+26.5^{\circ})+21.41\sin(2t-15.52^{\circ})] \text{ V}$$