I LINGUAGGI DI PROGRAMMAZIONE

ISTRUZIONI MACCHINA

- Linguaggio macchina
 - può essere eseguito dalla CPU
 - dipende dal tipo di CPU
 - insieme di istruzioni macchina di una CPU: instruction set
- Istruzioni codificate in configurazioni di bit
 - es: 21 40 16 100 163 240
 - 21: carica in un registro un valore 40
 - 16: carica su un altro registro valore 100
 - 163: se il primo valore è minore del secondo, procedi con istruzione ad indirizzo 240

TIPOLOGIE DI ISTRUZIONI MACCHINA

- Trasferimento dati
 - LOAD
 - STORE
- Operazioni aritmetiche e logiche (eseguite da ALU)
 - ADD, SUB, MUL, DIV
 - AND, OR, NOT
- Salti
 - salto incondizionato
 - ∘ JUMP
 - salto condizionato
 - JZ (salto se valore è zero)
 - JGZ (salta se maggiore di zero)

LINGUAGGIO ASSEMBLY

- Permette di scrivere il programma mediante dei nomi abbreviati
 - codici mnemonici
- Assembler: traduce linguaggio assembly in linguaggio macchina
- · Permette di usare variabili
- Vantaggi
 - molto + comodo da usare del linguaggio macchina

- Svantaggi
 - richiede molte istruzioni per eseguire operazioni semplici
 - dipende dal set di istruzioni di ogni CPU

iload rate
bipush maxRate
if_icmpgt tooMuch

LINGUAGGIO DI ALTO LIVELLO

- Facile da usare per il programmare
- Non comprensibili direttamente dalla CPU
- Storia dei linguaggi di programmazione
 - FORTRAN (primo linguaggio di programmazione)
 - BASIC, COBOT
 - Pascal, C (nasce programmazione strutturata)
 - C++ (nasce programmazione ad oggetti)
 - Java
 - Python

COMPILATORE

- Traduce linguaggio ad alto livello in istruzioni macchina
 - codice sorgente -> codice eseguibile
- Scrivi un programma una volta -> puoi compilarlo per ogni architettura

ERRORI DI SINTASSI

- I linguaggi formali hanno una sintassi rigida
 - se fai un errore -> non esegue il programma

IL LINGUAGGIO JAVA

- Nasce nel 1991
- "Compile once, execute everywhere"
 - compili il codice una volta e lo puoi eseguire su tutte le architetture
 - codice compilato per JVM (installato in tutti i dispositivi)
 - JVM esegue il codice compilato
- Presenta una ricca libreria standard
 - messa a disposizione dal Java

- JVM
 - Java Virtual Machine
 - comprende uno specifico set di istruzioni
- HotJava
 - browser che poteva eseguire programmi Java -> indipendentemente dalla piattaforma

COME COMPILARE IL CODICE

javac NomeFile.java

ESECUZIONE PROGRAMMA

- Compilatore Java
 - compila Java in bytecode
 - NomeFile.java -> NomeFile.class
- Interprete Java
 - traduce "al volo" bytecode in istruzioni macchina
 - NomeFile.class -> codice binario
 - può utilizzare le librerie Java grazie al JDK

LINGUAGGI COMPILATI VS LINGUAGGI INTERPRETATI

- Linguaggi compilati
 - C++
 - massima efficienza
 - devono essere compilati per ogni processore
 - generano file eseguibile
- Linguaggi interpretati
 - Python
 - massima portabilità
 - il codice sorgente viene interpretato direttamente

Java

- codice sorgente -> bytecode (codice macchina per JVM) -> codice macchina per CPU
 - il codice sorgente viene compilato
 - il bytecode viene interpretato (ma velocemente)
- linguaggio misto

Omande

• Quali sono i due principali vantaggi del linguaggio Java?