Data Structures and Algorithms

P. Healy

CS1-08 Computer Science Bldg. tel: 202727

patrick.healy@ul.ie

Spring 2009-2010

- Administrive Details
 - Meeting Times
 - General Issues
 - Assessment
- 2 Syllabus
- Mathematics Review

- Administrive Details
 - Meeting Times
 - General Issues
 - Assessment
- 2 Syllabus
- Mathematics Review

Lectures, Labs and Tutes

Lecture Hours: Tue. 11h00 SG19
Fri. 09h00 SG19
Tutorials **3A** Thu. 09h00 KB119

3B Thu. 13h00 *KB118*

Labs **2A** Thu. 16h00 *CS244*

2B Thu. 17h00 *CS244*

- Administrive Details
 - Meeting Times
 - General Issues
 - Assessment
- 2 Syllabus
- Mathematics Review

Attendance

- Attendance at all lectures and labs / tutes is mandatory
- Handing up assigned lab exercises is mandatory

Class Home Page

• All lectures, homeworks, past exams, etc. can be found on the class home page:

```
garryowen.csisdmz.ul.ie/~cs4115/
```

Class lists and attendance records will also be available here

Class Home Page

All lectures, homeworks, past exams, etc. can be found on the class home page:

```
garryowen.csisdmz.ul.ie/~cs4115/
```

Class lists and attendance records will also be available here

- Administrive Details
 - Meeting Times
 - General Issues
 - Assessment
- Syllabus
- Mathematics Review

Assessment Instruments

```
Final: 60% Week15
```

In-Term Projects 20% Week{03,06,09,12} + others

"Mid-Term" Exam 20% Week07

September repeat exam will count for same as final

Grade Bands

F	0 - 29
D2	30 - 34
D1	35 - 39
C3	40 - 47
C2	48 – 51
C1	52 - 55
B3	56 – 59
B2	60 - 63
B1	64 - 71
A2	72 - 79
A 1	80 – 100

Reading List

- → Data Structures and Algorithm Analysis in C++ by Weiss; On SL in Library
- Introduction to Algorithms by Cormen, Leiserson and Rivest

Module Outline

- Mathematics Review
- Algorithm Analysis
- Recursion
- Lists, Stacks and Queues
- Graphs and Graph Algorithms
- Trees
- Sorting

Learning Outcomes

	Learning Outcome	Ass.
		Meth.
	Given a function or functions in pseudo-code, anal-	Written
	yse their asymptotic running time	exam
	Given an executable program in black-box form,	Project
-	analyse its asymptotic running-time behaviour	work
	Given a customer's requirements for data storage	Written
	and their data retrieval patterns, propose appropri-	exam
	ate data structures	
	Identify appropriate sorting and searching algo-	Written
	rithms for contrasting scenarios	exam
	Understand the trade-offs of various graph repre-	Written
	sentation schemes	exam
	Formulate data access and optimisation problems	Written
	an everyle algorithms	= 7 1 = 7 =

Exponents

$$x^{a}x^{b} = x^{a+b}$$

$$\frac{x^{a}}{x^{b}} = x^{a-b}$$

$$(x^{a})^{b} = x^{ab}$$

$$x^{n} + x^{n} = 2x^{n} \neq x^{2n}$$

Logarithms

By definition:

$$x^{a} = b \Leftrightarrow \log_{x} b = a$$

$$\bullet \quad \log_{c} c = 1$$

$$\bullet \quad c^{\log_{c} a} = a$$

$$\log_{a} b = \frac{\log_{c} b}{\log_{c} a}, c > 0$$

$$\log ab = \log a + \log b$$

$$\log \frac{a}{b} = \log a - \log b$$

$$\log(a^{b}) = b \log a$$

$$\log x < x, \forall x > 0$$

logarithm most frequently used in Computer Science is base