

PROPIEDADES GLOBALES DE CURVAS PLANAS

ALAN REYES-FIGUEROA GEOMETRÍA DIFERENCIAL

(AULA 09) 06.FEBRERO.2024

Recordemos que si $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^2$ es una curva regular plana, parametrizada por longitud de arco, el vector tangente se representa por $\mathbf{t}(s) = (\cos \varphi(s), \sin \varphi(s))$. La función angular $\varphi(s)$ es una función diferenciable y satisface

$$\varphi(\mathsf{s}) = \int_{\mathsf{o}}^{\mathsf{s}} \kappa(\mathsf{s}) \, d\mathsf{s}.$$

En el caso general en que α no está parametrizada por longitud de arco, tenemos

$$\kappa(t) = \frac{d\varphi(t)}{ds} = \frac{d\varphi(t)}{dt} \cdot \frac{dt}{ds} = \frac{\varphi'(t)}{|\alpha'(t)|},$$

y en consecuencia

$$\int_a^b \kappa(t) |\alpha'(t)| dt = \int_a^b \varphi'(t) dt = \varphi(b) - \varphi(a).$$

 $\varphi(t)$ así definida, mide la rotación total de la curva α . En el caso de curvas cerradas, este ángulo debe ser un múltiplo entero de 2π :

$$\varphi(b) - \varphi(a) = 2\pi I_{\alpha}, \text{ con } I_{\alpha} \in \mathbb{Z}.$$

Definición

El número $I_{\alpha} = \frac{1}{2\pi}(\varphi(b) - \varphi(a))$ se llama el **índice de rotación** (rotation index o Winding number) de α .

Índices de rotación para diferentes curvas planas.

Obs.

- El índice de rotación de una curva cerrada simple siempre es ± 1 (el signo depende de la orientación).
- El índice de rotación es un invariante homológico (por eso el grupo de homología de $\mathbb{R}^2 \{o\}$ es \mathbb{Z}).

Teorema (Relación local-global para curvas planas)

Si $\alpha:[a,b]\to\mathbb{R}^2$ es una curva regular plana cerrada, parametrizada por longitud de arco, entonces

 $\int_a^b \kappa(\mathsf{s})\,d\mathsf{s}=\mathsf{2}\pi\mathsf{I}_\alpha.$

<u>Comentario</u>: Este resultado relaciona la información local de α (curvatura κ) con su información global o topológica (índice I_{α} , o su clase de homología). Se puede entender como un análogo al Teorema de Gauss-Bonet.

Curvas convexas

Definición

Una curva plana regular $\alpha:[a,b]\to\mathbb{R}^2$ es **convexa** si para todo $\mathbf{s}\in[a,b]$, el trazo de la curva α está contenido en un mismo lado del semiplano determinado por la recta tangente $\langle \mathbf{t}(\mathbf{s}) \rangle$ a α en \mathbf{s} .

Curvas convexas

Curvas convexas

Teorema (Caracterización de curvas convexas planas)

Para una curva cerrada simple, regular, $\alpha: [a,b] \to \mathbb{R}^2$, cuya imagen es la frontera de un conjunto cerrado compacto $R \subset \mathbb{R}^2$, las siguientes son equivalentes:

- **1.** La curva α es convexa (i.e. R es convexo).
- **2.** Toda recta que intersecta a la curva α , si es el caso, la intersecta o en un punto, o en dos puntos, o en un segmento de recta.
- 3. Para toda tangente a la curva α , la imagen o trazo de α está contenida en un mismo semiplano determinado por esa tangente.
- 4. La curvatura de α nunca cambia de signo.

<u>Prueba</u>: Ver Kühnel, Teorema 2.31 (pp. 43–45).

Definición

Un **vértice** de una curva plana regular $\alpha:[a,b]\to\mathbb{R}^2$ es un punto $\mathbf{s}\in[a,b]$ donde $\kappa'(\mathbf{s})=\mathbf{0}.$

(Son aquellos puntos de α donde la curvatura alcanza sus extremos locales).

Teorema (Teorema de los 4 vértices)

Toda curva plana diferenciable (al menos de clase C^3), regular, cerrada simple, y convexa, posee al menos cuatro vértices.

Prueba:

Si κ es constante, no hay nada que probar. Podemos suponer entonces que κ no es constante.

Parametrizamos α por longitud de arco, esto es $\alpha:[0,L]\to\mathbb{R}^2$, con $\alpha(0)=\alpha(L)$. Como α es clase C^3 , entonces $\kappa(s)$ es una función continua definida en un compacto $\Rightarrow \kappa$ posee un máximo y un mínimo absolutos en ese intervalo. En esos puntos, $\kappa'(s)=0$, y α posee al menos dos vértices.

Sin restricción de generalidad, podemos suponer que $\kappa(o)$ es el mínimo y $\kappa(s_o)$ es el máximo. Denotemos $P = \alpha(o)$ y $Q = \alpha(s_o)$.

Sea ℓ la recta que pasa por P y Q, y sean β , γ los dos arcos de la curva α que están determinados por P y Q.

El sistema de coordenadas (x, y) en el plano se puede elegir de tal manera que el eje x contiene los dos puntos P y Q.

Podemos escribir

$$\alpha(s) = (x(s), y(s)), \text{ con } y(o) = y(s_o) = o.$$

Afirmamos que la curva α no interseca al eje x en ningún otro punto. Al contrario, si R es otro punto donde α interseca ℓ , distinto de P y Q.

Como P, Q y R son distintos, entonces, por convexidad de α , la tangente en el punto intermedio debe coincidir con ℓ . Pero de nuevo, por convexidad, esto implica que ℓ es tangente con α en P, Q, $R \Rightarrow$ la tangente a α cerca de P tendría a los puntos Q y R en distintos semiplanos. En consecuencia, todo el segmento $\alpha([0,s_0])$ está sobre el eje x.

Esto implicaría que $\kappa(o) = \kappa(s_o) = o$. Como P y Q son puntos de mínimo y máximo $\kappa \equiv o$ es constante (un absurdo). Esto muestra la afirmación.

Entonces, y(s) sólo cambia de signo en los puntos s = o y $s = s_o$.

Ahora argumentamos por contradicción: Suponga que $P=\alpha(o)$ y $Q=\alpha(s_o)$ son los únicos vértices de α . Entonces $\kappa'(s)$ sólo cambia de signo en s=o y en $s=s_o$, de modo que la función $\kappa'(s)y(s)$ nunca cambia de signo.

Las ecuaciones de Frenet para x nos dicen que

$$\mathbf{e}_1 = (x', y'), \quad \mathbf{e}_2 = (-y', x'), \quad (x'', y'') = \mathbf{e}_1' = \kappa \mathbf{e}_2 = \kappa (-y', x').$$

En particular, se cumple $x'' = -\kappa y'$. Aplicando integración por partes

$$\int_0^L \kappa'(s) y(s) ds = \underbrace{\kappa(s)y(s)\Big|_0^L}_{=o} - \int_0^L \kappa(s) y'(s) ds = \int_0^L x''(s) dx$$
$$= x'(L) - x'(o) = o.$$

Ahora, observe que el integrando $\kappa' y$ en el lado izquierdo de la ecuación anterior nunca cambia de signo.

Luego, si la integral se anula, entonces debe anularse de manera idéntica, $\Rightarrow \kappa'(s)y(s) \equiv 0$, $\forall s \in [0, L]$, lo que implica que $\kappa \equiv 0$, que contradice el hecho que κ sea no constante.

Por tanto, el supuesto que no existen más vértices nos lleva a una contradicción y debe ser falsa. De esa cuenta, hay un tercer cero de κ , en donde ocurre un cambio de signo.

Por la periodicidad de κ , el número de cambios de signo en conjunto no puede ser impar, por lo tanto, debe haber un cuarto punto vértice. \Box

El teorema de la curvatura total

Teorema (Teorema de la curvatura total, W. Fenchel, 1928–29)

Para toda curva cerrada regular $\alpha:[a,b]\to\mathbb{R}^3$, la longitud de arco total L satisface la desigualdad

$$\int_0^L \kappa(\mathsf{s}) \, d\mathsf{s} = \int_a^b \kappa(\mathsf{t}) \, |\alpha'(\mathsf{t})| \, d\mathsf{t} \geq 2\pi.$$

Además, la igualdad se cumple si, y sólo si, la curva es plana, convexa y simple.

Prueba: Ver Kühnel, Teorema 2.34 (pp. 47-49).

El teorema de Fabricius-Bjerre

Otro resultado curioso relaciona varios números característicos de curvas cerradas planas.

Sea $\alpha: [a,b] \to \mathbb{R}^2$ una curva plana, cerrada. Definimos:

- D = el número de puntos dobles (auto-intersecciones).
- $W = \text{el número de puntos de inflexión } (\kappa(s) = 0).$
- N⁺ = el número de tangentes dobles que en las cercanías de los puntos de contacto, la curva queda en el mismo semiplano definido por la tangente doble.
- N⁻ = el número de tangentes dobles que en las cercanías de los puntos de contacto, la curva queda en lados opuestos del semiplano definido por la tangente doble.

El teorema de Fabricius-Bjerre

Teorema (Fabricius-Bjerre, 1962)

En toda curva plana, cerrada, genérica, vale $N^+ = N^- + D + \frac{1}{2}W$.

$$+$$
 # $+$ $+$ $\frac{1}{2}$ #

external internal crossings inflection bitangencies bitangencies points

<u>Referencia</u>: On the double tangents of plane closed curves, Mathematica Scandinavica **11**: 113–116 (1962).

El teorema de Fabricius-Bjerre

Ejemplos:

Curva	N +	N-	D	W	$N^+ - N^ D - \frac{1}{2}W$
círculo	0	0	0	0	0
ocho	2	0	1	2	0
doble bucle	1	0	1	0	0
"comb"	4	2	0	4	0