Bundeswettbewerb Mathematik 2019 Runde 2

Josua Kugler

9. August 2019

Der Pirat, dessen Goldmünzen bei der n-ten Kontrolle umverteilt werden, sei der n-Pirat. Angenommen, der Vorgang endet nicht nach endlich vielen Kontrollen. Dann muss es für alle $n \in \mathbb{N}$ einen n-Piraten geben. Der 1-Pirat muss vor der ersten Kontrolle mindestens 15 Goldmünzen haben. Da jeder Pirat bei jeder Umverteilung nur eine Goldmünze erhalten kann, muss i.A. der k-Pirat vor der ersten Kontrolle mindestens $\max(0,16-k)$ Goldmünzen besitzen. In Summe benötigt man also mindestens $\sum_{k=1}^{\infty} \max(0,16-k) = 120$ Münzen. Es gibt allerdings nur 119 Münzen. Damit ist die Annahme ad absurdum geführt und der Vorgang endet nach endlich vielen Kontrollen.

Es gilt: a, b, c > 0, sodass alle folgenden Operationen zulässig sind.

$$(a^{2}b^{2} - b^{2}c^{2})^{2} + (b^{2}c^{2} - c^{2}a^{2})^{2} + (a^{2}c^{2} - a^{2}b^{2})^{2} \ge 0$$

$$(a^{2}b^{2})^{2} + (b^{2}c^{2})^{2} + (c^{2}a^{2})^{2} \ge a^{2}b^{4}c^{2} + a^{2}b^{2}c^{4} + a^{4}b^{2}c^{2}$$

$$\frac{(a^{2}b^{2})^{2} + (b^{2}c^{2})^{2} + (c^{2}a^{2})^{2}}{a^{2}b^{2}c^{2}} \ge c^{2} + b^{2} + a^{2}$$

$$\frac{(a^{2}b^{2})^{2} + (b^{2}c^{2})^{2} + (c^{2}a^{2})^{2}}{a^{2}b^{2}c^{2}} \ge 1$$

$$\frac{(a^{2}b^{2})^{2} + (b^{2}c^{2})^{2} + (c^{2}a^{2})^{2} + 2(a^{2}b^{4}c^{2} + a^{2}b^{2}c^{4} + a^{4}b^{2}c^{2})}{a^{2}b^{2}c^{2}} \ge 3$$

$$\frac{(a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2})^{2}}{a^{2}b^{2}c^{2}} \ge 3$$

$$\frac{a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2}}{abc} \ge \sqrt{3}$$

$$\frac{ab}{c} + \frac{ac}{b} + \frac{bc}{a} \ge \sqrt{3}$$

Für
$$a = b = c = \frac{1}{\sqrt{3}}$$
 ist $\frac{ab}{c} + \frac{ac}{b} + \frac{bc}{a} = \sqrt{3}$.

Definition 1. O.B.d.A. legen wir die Eckpunkte des Dreiecks auf folgende Koordinaten fest: A(0|0), B(1|0) und $C(x_c|y_c)$.

Daraus folgen unmittelbar $L(x_c|0)$ und M(0,5|0). Die Koordinaten von M und L kennen wir bereits. Daher müssen wir nur noch die Koordinaten von $W(x_w|0)$ und $F(x_f|0)$ bestimmen. Aus dem Winkelhalbierendensatz folgt, dass W die Strecke c im Verhältnis $\frac{x_w}{1-x_w}=\frac{a}{b}$ teilt. Es ist also $W=\frac{a}{a+b}A+\frac{b}{a+b}B=(0|0)+\frac{a}{a+b}*(1|0)$ und damit $x_w=\frac{a}{a+b}$. Für F benötigen wir noch

die Koordinaten von Punkt D. Punkt $D(x_d|y_d)$ ist der Inkreismittelpunkt.

 $\begin{aligned} \textbf{Satz 1.} & \textit{F\"{u}r den Inkreismittelpunkt } I(x_I|y_I) \textit{ eines Dreiecks mit den Eckpunkten } A(x_A|y_A), \, B(x_B|y_B), \\ C(x_C|y_C) \textit{ und den Seitenlängen a, b, c gilt } x_I &= \frac{ax_A + bx_B + cx_C}{a + b + c} \textit{ und } y_I &= \frac{ay_A + by_B + cy_C}{a + b + c}. \end{aligned}$

Beweis. siehe Anhang

Es ist also $D\left(\frac{b+x_c}{a+b+1} \middle| \frac{y_c}{a+b+1}\right)$ mit $a=\sqrt{y_c^2+(1-x_c)^2}$ und $b=\sqrt{y_c^2+x_c^2}$. Damit erhält $\max F\left(\frac{b+x_c}{a+b+1}\right) 0.$

Lemma 1.

$$\frac{\left|\overline{MW}\right|}{\left|\overline{MF}\right|} = \frac{\left|\overline{MF}\right|}{\left|\overline{ML}\right|}$$

Beweis.

$$\begin{aligned} |\overline{MW}| &= \frac{|\overline{MF}|^2}{|\overline{ML}|} \\ x_w - x_m &= \frac{(x_f - x_m)^2}{x_l - x_m} \\ \frac{b}{a+b} - \frac{1}{2} &= \frac{\left(\frac{b + x_c}{a+b+1} - \frac{1}{2}\right)^2}{x_c - \frac{1}{2}} \\ \frac{\sqrt{y_c^2 + x_c^2}}{\sqrt{y_c^2 + (1 - x_c)^2} + \sqrt{y_c^2 + x_c^2}} - \frac{1}{2} &= \frac{\left(\frac{\sqrt{y_c^2 + x_c^2} + x_c}}{\sqrt{y_c^2 + (1 - x_c)^2} + \sqrt{y_c^2 + x_c^2} + 1} - \frac{1}{2}\right)^2}{x_c - \frac{1}{2}} \end{aligned}$$

Bringt man $-\frac{1}{2}$ auf denselben Nenner wie die Brüche, so kann man auf im Zähler direkt $\frac{1}{2}\sqrt{y_c^2+x_c^2}$ abziehen und dann $\frac{1}{2}$ ausklammern.

$$\frac{\frac{1}{2}\left(\sqrt{y_c^2+x_c^2}-\sqrt{y_c^2+(1-x_c)^2}\right)}{\sqrt{y_c^2+(1-x_c)^2}+\sqrt{y_c^2+x_c^2}} = \frac{\left(\frac{\frac{1}{2}\left(2x_c+\sqrt{y_c^2+x_c^2}-\sqrt{y_c^2+(1-x_c)^2}-1\right)\right)^2}{\sqrt{y_c^2+(1-x_c)^2}+\sqrt{y_c^2+x_c^2}-1}\right)^2}{\frac{1}{2}(2x_c-1)}$$

$$\frac{\frac{\sqrt{y_c^2+x_c^2}-\sqrt{y_c^2+(1-x_c)^2}}{\sqrt{y_c^2+(1-x_c)^2}+\sqrt{y_c^2+x_c^2}}}{\sqrt{y_c^2+(1-x_c)^2}+\sqrt{y_c^2+x_c^2}-\sqrt{y_c^2+(1-x_c)^2}-1}\right)^2}{2x_c-1}$$

$$\frac{-\left(\sqrt{y_c^2+x_c^2}-\sqrt{y_c^2+(1-x_c)^2}\right)^2}{y_c^2+(1-x_c)^2-y_c^2-x_c^2}(2x_c-1) = \left(\frac{2x_c+\sqrt{y_c^2+x_c^2}-\sqrt{y_c^2+(1-x_c)^2}-1}{\sqrt{y_c^2+(1-x_c)^2}+\sqrt{y_c^2+x_c^2}-1}}\right)^2}{\frac{\left(\sqrt{y_c^2+x_c^2}-\sqrt{y_c^2+(1-x_c)^2}\right)^2}{1-2x_c}(1-2x_c)} = \frac{\left(\frac{2x_c+\sqrt{y_c^2+x_c^2}-\sqrt{y_c^2+(1-x_c)^2}-1}{\sqrt{y_c^2+(1-x_c)^2}+\sqrt{y_c^2+x_c^2}-1}}\right)^2}{\sqrt{y_c^2+(1-x_c)^2}+\sqrt{y_c^2+x_c^2}-1}$$

$$\frac{\sqrt{y_c^2+x_c^2}-\sqrt{y_c^2+(1-x_c)^2}}{1-2x_c} = \frac{\left(\frac{2x_c+\sqrt{y_c^2+x_c^2}-\sqrt{y_c^2+(1-x_c)^2}-1}{\sqrt{y_c^2+(1-x_c)^2}+\sqrt{y_c^2+x_c^2}-1}\right)^2}{\sqrt{y_c^2+(1-x_c)^2}+\sqrt{y_c^2+x_c^2}-1}}$$

Multipliziert man den rechten Nenner auf die linke Seite, so kann man direkt die 1 ausmultiplizieren und $\sqrt{y_c^2 + x_c^2} - \sqrt{y_c^2 + (1-x_c)^2}$ abziehen.

$$\left(\sqrt{y_c^2 + x_c^2} - \sqrt{y_c^2 + (1 - x_c)^2}\right) \left(\sqrt{y_c^2 + (1 - x_c)^2} + \sqrt{y_c^2 + x_c^2}\right) = 2x_c - 1$$

$$y_c^2 + x_c^2 - \left(y_c^2 + (1 - x_c)^2\right) = 2x_c - 1$$

$$x_c^2 - \left(1 - 2x_c + x_c^2\right)^2 = 2x_c - 1$$

$$2x_c - 1 = 2x_c - 1$$

Es gilt $\angle MTD = \angle DFM = 90^\circ$ und $|\overline{TD}| = |\overline{DF}|$. Die Dreiecke MDT und MFD stimmen also in zwei Seitenlängen und dem Winkel, welcher der längeren von beiden Seitenlängen gegenüberliegt, überein. Daher sind sie kongruent und somit sind auch $|\overline{TM}| = |\overline{MF}|$. Mit Lemma 1 erhält man folgende Gleichung.

$$\frac{\left|\overline{MW}\right|}{\left|\overline{MF}\right|} = \frac{\left|\overline{MF}\right|}{\left|\overline{ML}\right|}$$

Aus Ähnlichkeitsgründen gilt

$$\angle MTW = \angle TLM$$

```
i
        durch 3 oder 7, aber nicht durch 2 oder 5 teilbar
                                                                                 \mathbf{n}
0
    0
        3, 7, 9, 21, 27, 33, 39, 49, 51, 57, 63, 69, 77, 81, 87, 91, 93, 99
                                                                                 78
0
        3, 9, 13, 21, 27, 33, 39, 41, 51, 57, 63, 69, 81, 83, 87, 93, 97, 99
                                                                                 78
0
        3, 9, 19, 21, 27, 33, 39, 47, 51, 57, 61, 63, 69, 81, 87, 89, 93, 99
                                                                                 78
    3
        3, 9, 11, 21, 27, 33, 39, 51, 53, 57, 63, 67, 69, 81, 87, 93, 99
0
                                                                                 77
0
        3, 9, 17, 21, 27, 31, 33, 39, 51, 57, 59, 63, 69, 73, 81, 87, 93, 99
                                                                                 78
0
        3, 9, 21, 23, 27, 33, 37, 39, 51, 57, 63, 69, 79, 81, 87, 93, 99
                                                                                 77
0
        1, 3, 9, 21, 27, 29, 33, 39, 43, 51, 57, 63, 69, 71, 81, 87, 93, 99
                                                                                 78
1
    0
        7, 11, 17, 21, 23, 29, 41, 47, 49, 53, 59, 63, 71, 77, 83, 89, 91
                                                                                 77
        11, 13, 17, 23, 27, 29, 41, 47, 53, 59, 69, 71, 77, 83, 89, 97
1
                                                                                 76
        11, 17, 19, 23, 29, 33, 41, 47, 53, 59, 61, 71, 77, 83, 89
1
                                                                                 75
1
        11, 17, 23, 29, 39, 41, 47, 53, 59, 67, 71, 77, 81, 83, 89
                                                                                 75
1
    4
        3, 11, 17, 23, 29, 31, 41, 47, 53, 59, 71, 73, 77, 83, 87, 89
                                                                                 76
1
        9, 11, 17, 23, 29, 37, 41, 47, 51, 53, 59, 71, 77, 79, 83, 89, 93
                                                                                 77
1
        1, 11, 17, 23, 29, 41, 43, 47, 53, 57, 59, 71, 77, 83, 89, 99
                                                                                 76
    6
2
    0
        1, 7, 13, 19, 21, 31, 37, 43, 49, 61, 63, 67, 73, 77, 79, 91, 97
                                                                                 77
2
        1, 7, 13, 19, 27, 31, 37, 41, 43, 49, 61, 67, 69, 73, 79, 83, 91, 97
    1
                                                                                 78
        1, 7, 13, 19, 31, 33, 37, 43, 47, 49, 61, 67, 73, 79, 89, 91, 97
                                                                                 77
2
        1, 7, 11, 13, 19, 31, 37, 39, 43, 49, 53, 61, 67, 73, 79, 81, 91, 97
                                                                                 78
2
        1, 3, 7, 13, 17, 19, 31, 37, 43, 49, 59, 61, 67, 73, 79, 87, 91, 97
                                                                                 78
2
    5
        1, 7, 9, 13, 19, 23, 31, 37, 43, 49, 51, 61, 67, 73, 79, 91, 93, 97
                                                                                 78
        1, 7, 13, 19, 29, 31, 37, 43, 49, 57, 61, 67, 71, 73, 79, 91, 97, 99
                                                                                 78
```

Tabelle 1: n ist die Anzahl der durch 2, 3, 5 oder 7 teilbaren Zahlen. Rot markiert sind alle Fälle, für die es mehr als 23 Zahlen gibt, die durch keine dieser 4 Zahlen teilbar sind

Wir werden im folgenden die Menge der Zahlen von 10k bis 10k + 100 betrachten. Wir wissen, dass alle geraden oder durch 5 teilbaren Zahlen keine Primzahlen sind. Da $10k \equiv 0 \mod 2$, 5 wissen wir, dass es exakt 60 Zahlen gibt, die wir demzufolge stets als nicht prim identifizieren können (nämlich 50 gerade Zahlen und 10 Zahlen, die auf eine 5 enden). Sei $i \coloneqq 10k \mod 3$ und $j \coloneqq 10k \mod 7$. In der folgenden Tabelle betrachten wir für alle möglichen Kombinationen von i, j, welche der Zahlen wir zusätzlich als nicht prim identifizieren können. Der Einfachkeit halber schreiben wir in den folgenden 3 Tabellen einfach $1, 2, \ldots, 100$ anstatt $10k + 1, 10k + 2, \ldots, 10k + 100$. Zusätzlich sei für Aufgabe 4 durchweg n die Anzahl der Zahlen, von denen wir wissen, dass sie keine Primzahlen sind.

Durch diese Tabelle ist für alle außer 5 Fälle gezeigt, dass es höchstens 23 Primzahlen im Intervall von 10k bis 10k+100 geben kann. Wir betrachten jeden dieser 5 Fälle modulo 11, sodass wir insgesamt 55 Fälle erhalten. $l := 10k \mod 11$ Aus der Tabelle ist ersichtlich, dass für alle diese Fälle i=1 gilt. Daher müssen wir die Kongruenz modulo 3 nicht weiter betrachten und in den folgenden Tabellen ist i=1.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	j	1	durch 11 teilbar ^a	n	j	1	durch 11 teilbar a	$_{\rm n}$ \parallel
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0		l		6		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\parallel_1	1	· · · · · · · · · · · · · · · · · · ·	l	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2		78	3	8	3, 69, 91	78
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	3		78	3	9		78
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	4	7, 51, 73	79	3	10	1	76
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	5		78	4	0	33, 99	78
1 8 3, 91 78 1 9 57, 79 78 1 10 1, 67 78 2 0 99 76 2 1 21, 43, 87 78 2 2 9, 31, 97 78 2 3 63 76 2 4 7, 51, 73 78 2 5 39 76 2 6 27, 49, 93 78 2 7 37, 81 77 2 6 27, 49, 93 78 2 7 37, 81 77 2 8 3, 69, 91 78 2 9 13, 57, 79 79 2 8 3, 69, 91 78 2 9 13, 57, 79 78 3 0 33, 99 77 3 1 21, 43, 87 78 3 2 9, 31, 97 78 3 4 7, 51, 73 78 3 4 <td< td=""><td>1</td><td>6</td><td>49, 93</td><td>78</td><td>4</td><td>1</td><td>21, 43</td><td>78</td></td<>	1	6	49, 93	78	4	1	21, 43	78
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	7	37, 81	78	4	2	9, 97	78
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	8	3, 91	78	4	3	19, 63	78
2 0 99 76 2 1 21, 43, 87 78 2 2 9, 31, 97 78 2 3 63 76 2 4 7, 51, 73 78 2 5 39 76 2 6 27, 49, 93 78 2 7 37, 81 77 2 8 3, 69, 91 78 2 9 13, 57, 79 78 2 9 13, 57, 79 78 2 9 13, 57, 79 78 2 9 13, 57, 79 78 2 9 13, 57, 79 78 3 0 33, 99 77 3 1 21, 43, 87 78 3 2 9, 31, 97 78 3 3 19, 63 77 3 3 19, 63 77 3 4 7, 51, 73 78 3 4 7, 51, 73 78 4 10	1	9	57, 79	78	4	4	7, 51	78
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	10	1, 67	78	4	5	39, 61	78
2 2 9, 31, 97 78 2 3 63 76 2 4 7, 51, 73 78 2 5 39 76 2 6 27, 49, 93 78 2 7 37, 81 77 2 8 3, 69, 91 78 2 9 13, 57, 79 78 2 9 13, 57, 79 78 2 9 13, 57, 79 78 2 9 13, 57, 79 78 3 0 33, 99 77 3 1 21, 43, 87 78 3 2 9, 31, 97 78 3 2 9, 31, 97 78 3 3 19, 63 77 3 3 19, 63 77 3 4 7, 51, 73 78 3 4 7, 51, 73 78 3 4 7, 51, 73 78 3 5 61 6	$\parallel 2$	0	99	76	4	6	27, 49, 93	79
$ \begin{bmatrix} 2 & 3 & 63 & & & 76 \\ 2 & 4 & 7, 51, 73 & & 78 \\ 2 & 5 & 39 & & 76 \\ 2 & 6 & 27, 49, 93 & & 78 \\ 2 & 7 & 37, 81 & & 77 \\ 2 & 8 & 3, 69, 91 & & 78 \\ 2 & 9 & 13, 57, 79 & & 78 \\ 2 & 10 & 1, 67 & & 77 \\ 3 & 0 & 33, 99 & & 77 \\ 3 & 1 & 21, 43, 87 & & 78 \\ 3 & 2 & 9, 31, 97 & & 78 \\ 3 & 2 & 9, 31, 97 & & 78 \\ 3 & 2 & 9, 31, 97 & & 78 \\ 3 & 3 & 19, 63 & & 77 \\ 3 & 3 & 19, 63 & & 77 \\ 3 & 4 & 7, 51, 73 & & 78 \\ 3 & 4 & 7, 51, 73 & & 78 \\ 3 & 5 & 61 & & 76 \\ \end{bmatrix} $	2	1	21, 43, 87	78	4	7	37, 81	78
$ \begin{bmatrix} 2 & 4 & 7, 51, 73 & 78 \\ 2 & 5 & 39 & 76 \\ 2 & 6 & 27, 49, 93 & 78 \\ 2 & 7 & 37, 81 & 77 \\ 2 & 8 & 3, 69, 91 & 78 \\ 2 & 9 & 13, 57, 79 & 78 \\ 2 & 10 & 1, 67 & 77 \\ 3 & 0 & 33, 99 & 77 \\ 3 & 1 & 21, 43, 87 & 78 \\ 3 & 2 & 9, 31, 97 & 78 \\ 3 & 2 & 9, 31, 97 & 78 \\ 3 & 3 & 19, 63 & 77 \\ 3 & 3 & 19, 63 & 77 \\ 3 & 4 & 7, 51, 73 & 78 \\ 3 & 4 & 7, 51, 73 & 78 \\ 3 & 5 & 61 & 76 \end{bmatrix} $	2	2	9, 31, 97	78	4	8	69, 91	78
2 5 39 76 2 6 27, 49, 93 78 2 7 37, 81 77 2 8 3, 69, 91 78 2 9 13, 57, 79 78 2 10 1, 67 77 3 0 33, 99 77 3 1 21, 43, 87 78 3 2 9, 31, 97 78 3 2 9, 31, 97 78 3 3 19, 63 77 3 4 7, 51, 73 78 3 4 7, 51, 73 78 3 5 61 76		3			4	-	13, 57, 79	
$ \begin{bmatrix} 2 & 6 & 27, 49, 93 & 78 \\ 2 & 7 & 37, 81 & 77 \\ 2 & 8 & 3, 69, 91 & 78 \\ 2 & 9 & 13, 57, 79 & 78 \\ 2 & 10 & 1, 67 & 77 \\ 3 & 0 & 33, 99 & 77 \\ 3 & 1 & 21, 43, 87 & 78 \\ 3 & 2 & 9, 31, 97 & 78 \\ 3 & 2 & 9, 31, 97 & 78 \\ 3 & 3 & 19, 63 & 77 \\ 3 & 3 & 19, 63 & 77 \\ 3 & 4 & 7, 51, 73 & 78 \\ 3 & 5 & 61 & 76 $	II	1	7, 51, 73	l		10		
$ \begin{vmatrix} 2 & 7 & 37, 81 & 77 \\ 2 & 8 & 3, 69, 91 & 78 \\ 2 & 9 & 13, 57, 79 & 78 \\ 2 & 10 & 1, 67 & 77 \\ 3 & 0 & 33, 99 & 77 \\ 3 & 1 & 21, 43, 87 & 78 \\ 3 & 2 & 9, 31, 97 & 78 \\ 3 & 3 & 19, 63 & 77 \\ 3 & 3 & 4 & 7, 51, 73 & 78 \\ 3 & 5 & 61 & 76 \end{vmatrix} $	II.	5	39	l	6	0		
2 8 3, 69, 91 78 2 9 13, 57, 79 78 2 10 1, 67 77 3 0 33, 99 77 3 1 21, 43, 87 78 3 2 9, 31, 97 78 3 3 19, 63 77 3 4 7, 51, 73 78 3 5 61		6	, ,	l	1			
$ \begin{vmatrix} 2 & 9 & 13, 57, 79 & 78 \\ 2 & 10 & 1, 67 & 77 \\ 3 & 0 & 33, 99 & 77 \\ 3 & 1 & 21, 43, 87 & 78 \\ 3 & 2 & 9, 31, 97 & 78 \\ 3 & 3 & 19, 63 & 77 \\ 3 & 4 & 7, 51, 73 & 78 \\ 3 & 5 & 61 & 76 \end{vmatrix} $	II.		· · · · · · · · · · · · · · · · · · ·	l	6	l		
$ \begin{vmatrix} 2 & 10 & 1,67 & & 77 \\ 3 & 0 & 33,99 & & 77 \\ 3 & 1 & 21,43,87 & & 78 \\ 3 & 2 & 9,31,97 & & 78 \\ 3 & 3 & 19,63 & & 77 \\ 3 & 4 & 7,51,73 & & 78 \\ 3 & 5 & 61 & & 76 \end{vmatrix} $	1			l	1	3		
$ \begin{vmatrix} 3 & 0 & 33,99 & & 77 \\ 3 & 1 & 21,43,87 & & 78 \\ 3 & 2 & 9,31,97 & & 78 \\ 3 & 3 & 19,63 & & 77 \\ 3 & 4 & 7,51,73 & & 78 \\ 3 & 5 & 61 & & 76 \end{vmatrix} $	1	9	13, 57, 79	l	6		7, 51, 73	
$ \begin{vmatrix} 3 & 1 & 21, 43, 87 & 78 \\ 3 & 2 & 9, 31, 97 & 78 \\ 3 & 3 & 19, 63 & 77 \\ 3 & 4 & 7, 51, 73 & 78 \\ 3 & 5 & 61 & 76 \end{vmatrix} $		10		l	6	5		78
$ \begin{vmatrix} 3 & 2 & 9, 31, 97 & 78 \\ 3 & 3 & 19, 63 & 77 \\ 3 & 4 & 7, 51, 73 & 78 \\ 3 & 5 & 61 & 76 \end{vmatrix} $		0		l	1			
$ \begin{vmatrix} 3 & 3 & 19, 63 & & & 77 \\ 3 & 4 & 7, 51, 73 & & 78 \\ 3 & 5 & 61 & & 76 \end{vmatrix} $	II.	1	, ,	l	1			
$\left \begin{array}{c cccccccccccccccccccccccccccccccccc$	II.			l	1			
3 5 61 76	II.	3	1	l	1	-		
$\parallel 3 \parallel 5 \parallel 61 \qquad \parallel 76 \parallel \qquad $					6	10	67	77
	$\parallel 3$	5	61	76	a	hor n	cht durch 235 oder 7	toilber

Es bleiben immer noch 6 Fälle übrig, für die nocht nicht gezeigt ist, dass es höchstens 23 Primzahlen im Intervall von 10k bis 10k + 100 geben kann. Nun betrachten wir jeden dieser 6 Fälle modulo 13, sodass wir insgesamt 78 Fälle erhalten. Dabei sei $m \coloneqq 10k \mod 13$.

j	1	m	durch 13 teilbar ^a	$\mid n \mid \mid$
j 2	0	0	13, 39, 91	79
$\parallel 2$	0	1	51	77
$\parallel 2$	0	2	37, 63	78
$\parallel 2$	0	3	49	77
$\parallel 2$	0	4	9, 87	78
$\parallel 2$	0	5	21, 73	78
$\parallel 2$	0	6	7	77
$\parallel 2$	0	7	97	77
$\parallel 2$	0	8	31, 57	78
$\parallel 2$	0	9	43, 69	78
$\parallel 2$	0	10	3, 81	78
$\parallel 2$	0	11	67, 93	78
$\parallel 2$	0	12	1, 27, 79	79
$\parallel 2$	3	0	13, 39, 91	79
$\parallel 2$	3	1	51	77
$\parallel 2$	3	2	37	77
$\parallel 2$	3	3	49	77
$\parallel 2$	3	4	9, 87	78
$\parallel 2$	3	5	21, 73, 99	79
$\parallel 2$	3	6	7	77
$\parallel 2$	3	7	97	77
$\begin{vmatrix} 2\\2 \end{vmatrix}$	3	8	31, 57	78
2	3	9	43, 69	78
$\parallel 2$	3	10	3, 81	78
$\parallel 2$	3	11	67, 93	78
$\parallel 2$	3	12	1, 27, 79	79
2	5	0	13, 91	78
$\parallel 2$	5	1	51	77
$\parallel 2$	5	2	37, 63	78
$\parallel 2$	5	3	49	77
$\parallel 2$	5	4	9, 87	78
$\parallel 2$	5	5	21, 73, 99	79
2	5	6	7	77
$\begin{vmatrix} 2\\2 \end{vmatrix}$	5	7	97	77
$\parallel 2$	5	8	31, 57	78
$\parallel 2$	5	9	43, 69	78
$\parallel 2$	5	10	3, 81	78
$\parallel 2$	5	11	67, 93	78
2	5	12	1, 27, 79	79

п.	ı	ı		
j 3	m	m	durch 13 teilbar^a	n
	5	0	13, 91	78
3	5	1	51	77
3	5	2	37, 63	78
3	5	3	49	77
3	5	4	9, 87	78
3	5	5	21, 73, 99	79
3	5	6	7, 33	78
3	5	7	19, 97	78
3	5	8	31, 57	78
3	5	9	43, 69	78
3	5	10	3	77
3	5	11	93	77
3	5	12	1, 27, 79	79
3	7	0	13, 91	78
3	7	1	51	77
3	7	2	63	77
3	7	3	49	77
3	7	4	9, 61, 87	79
3	7	5	21, 73, 99	79
3	7	6	7, 33	78
$\parallel _3$	7	7	19, 97	78
3	7	8	31, 57	78
3	7	9	43, 69	78
3	7	10	3	77
3	7	11	93	77
3	7	12	1, 27, 79	79
3	10	0	13, 91	78
$\parallel 3$	10	1	51	77
3	10	2	37, 63	78
3	10	3	49	77
$\begin{vmatrix} 3 \end{vmatrix}$	10	$\frac{3}{4}$	9, 61, 87	79
$\begin{vmatrix} 3 \end{vmatrix}$	10	5	21, 73, 99	79
$\begin{vmatrix} 3 \end{vmatrix}$	10	6	7, 33	78
$\begin{vmatrix} 3 \end{vmatrix}$	10	7	19, 97	78
$\begin{vmatrix} 3 \end{vmatrix}$	10	8	31, 57	78
$\begin{vmatrix} 3 \end{vmatrix}$	10	9	43, 69	78
$\begin{vmatrix} 3 \end{vmatrix}$	10	10	3	$\left \begin{array}{c} 77 \\ 77 \end{array}\right $
$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	10	11	$\begin{vmatrix} 9 \\ 93 \end{vmatrix}$	77
$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	10	12	27, 79	78
0	10	12	21, 10	10

aaber nicht durch 2,3,5,7, oder 11 teilbar

Aus der Tabelle ist ersichtlich, dass es für jeden der verbleibenden 78 Fälle höchstens 23 Primzahlen im Intervall von 10k bis 10k+100 geben kann.

5 Anhang

Wir beweisen Satz 1 (siehe Aufgabe 3).

Beweis. A' sei der Schnittpunkt der Winkelhalbierenden von $\angle BAC$ mit der Seite a. Analog sei B' der Schnittpunkt der Winkelhalbierenden von $\angle CBA$ mit der Seite a. Der Winkelhalbierendensatz besagt, dass A' die Seite a im Verhältnis $\frac{A'B}{A'C} = \frac{c}{b}$. Daraus folgt $A' = \frac{b}{b+c}B + \frac{c}{b+c}C$. Analog erhält man $B' = \frac{a}{a+c}A + \frac{c}{a+c}C$. Der Inkreismittelpunkt I liegt auf der Strecke AA' und lässt sich daher folgendermaßen darstellen:

$$I = (1 - p)A + tA' |p \in [0, 1]$$

$$= (1 - p)A + \frac{pb}{b + c}B + \frac{pc}{b + c}C$$

I liegt aber auch auf der Strecke BB'.

$$I = (1 - q)B + tB'$$

$$= (1 - q)B + \frac{qa}{a+c}A + \frac{qc}{a+c}C$$

$$|q \in [0, 1]|$$

Wir suchen also ein Tupel (p,q), sodass beide Darstellungen von I übereinstimmen. Dafür können wir einfach die Gewichte der einzelnen Punkte vergleichen. Für A erhält man $(1-p)=\frac{qa}{c+a}$, für

 $B(1-q) = \frac{pb}{b+c}$ und für $C(\frac{pc}{b+c}) = \frac{qc}{a+c}$. Für $p = \frac{b+c}{a+b+c}$ und $q = \frac{a+c}{a+b+c}$ sind alle drei Gleichungen erfüllt:

$$\bullet \left(1 - \frac{b+c}{a+b+c}\right) = \frac{a}{a+b+c} = \frac{\frac{a+c}{a+b+c}a}{c+a}$$

$$\bullet \left(1 - \frac{a+c}{a+b+c}\right) = \frac{b}{a+b+c} = \frac{\frac{b+c}{a+b+c}b}{b+c}$$

$$\bullet \ \frac{\frac{b+c}{a+b+c}c}{b+c} = \frac{c}{a+b+c} = \frac{\frac{a+c}{a+b+c}c}{a+c}$$

Daher erhalten wir

$$I = \left(1 - \frac{b+c}{a+b+c}\right)A + \frac{\frac{b+c}{a+b+c}b}{b+c}B + \frac{\frac{b+c}{a+b+c}c}{b+c}C = \frac{a}{a+b+c}A + \frac{b}{a+b+c}B + \frac{c}{a+b+c}C$$

Daraus folgt sofort
$$x_I = \frac{ax_A + bx_B + cx_C}{a + b + c}$$
 und $y_I = \frac{ay_A + by_B + cy_C}{a + b + c}$.