Інтерполяція алгебраїчними поліномами

Метод Лагранжа

Найпростіша форма функції-інтерполянта є поліном. Завжди можна побудувати єдиний поліном ступеня n, що проходить через n+1 різних точок даних. Одним із способів отримання цього полінома є формула Лагранжа

$$P_n(x) = \sum_{i=0}^n y_i \ell_i(x)$$

де індекс п означає ступінь полінома і

$$\ell_i(x) = \frac{x - x_0}{x_i - x_0} \cdot \frac{x - x_1}{x_i - x_1} \cdots \frac{x - x_{i-1}}{x_i - x_{i-1}} \cdot \frac{x - x_{i+1}}{x_i - x_{i+1}} \cdots \frac{x - x_n}{x_i - x_n}$$

$$= \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j}, \quad i = 0, 1, \dots, n$$

При n = 2, інтерполяція є параболічною: $P_2(x) = y_0 \ell_0(x) + y_1 \ell_1(x) + y_2 \ell_2(x)$, де

$$\ell_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

$$\ell_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$

$$\ell_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

Метод Ньютона

Хоча метод Лагранжа концептуально простий, ефективніша обчислювальна процедура виходить за допомогою методу Ньютона, в якому інтерполяційний поліном записується у виді

$$P_n(x) = a_0 + (x - x_0)a_1 + (x - x_0)(x - x_1)a_2 + \dots + (x - x_0)(x - x_1) \dots (x - x_{n-1})a_n$$

Такий поліном піддається ефективній процедурі оцінки. Розглянемо, наприклад, чотири точки даних (n = 3). Тут інтерполяційний поліном є такий

$$P_3(x) = a_0 + (x - x_0)a_1 + (x - x_0)(x - x_1)a_2 + (x - x_0)(x - x_1)(x - x_2)a_3$$

= $a_0 + (x - x_0)\{a_1 + (x - x_1)[a_2 + (x - x_2)a_3]\}$

що може бути оцінений в зворотному напрямку за наступними рекурентними співвідношеннями:

$$P_0(x) = a_3$$

$$P_1(x) = a_2 + (x - x_2)P_0(x)$$

$$P_2(x) = a_1 + (x - x_1)P_1(x)$$

$$P_3(x) = a_0 + (x - x_0)P_2(x)$$

Коефіцієнти поліномів Pn визначаються змушуючи поліном пройти через кожну вказану точку даних: $y_i = P_n(x_i), \quad i = 0, 1, \dots, n$ Це дає систему рівнянь

$$y_0 = a_0$$

$$y_1 = a_0 + (x_1 - x_0)a_1$$

$$y_2 = a_0 + (x_2 - x_0)a_1 + (x_2 - x_0)(x_2 - x_1)a_2$$

$$\vdots$$

$$y_n = a_0 + (x_n - x_0)a_1 + \dots + (x_n - x_0)(x_n - x_1) \dots (x_n - x_{n-1})a_n$$

Розв'язок такої системи рівнянь можна отримати за допомогою так званих поділених різниць

$$a_0 = y_0$$
 $a_1 = \nabla y_1$ $a_2 = \nabla^2 y_2$ \cdots $a_n = \nabla^n y_n$ де
$$\nabla y_i = \frac{y_i - y_0}{x_i - x_0}, \quad i = 1, 2, \dots, n$$

$$\nabla^2 y_i = \frac{\nabla y_i - \nabla y_1}{x_i - x_1}, \quad i = 2, 3, \dots, n$$

$$\nabla^3 y_i = \frac{\nabla^2 y_i - \nabla^2 y_2}{x_i - x_2}, \quad i = 3, 4, \dots n$$

$$\vdots$$

$$\nabla^n y_n = \frac{\nabla^{n-1} y_n - \nabla^{n-1} y_{n-1}}{x_n - x_{n-1}}$$

Метод Невіла

Якщо тільки одна точка має бути інтерпольована, метод, який обчислює функцію-інтерполянт в одну стадію, наприклад, алгоритм Невіла, є найкращим вибором.

Позначимо $P_k[x_i, x_{i+1}, \dots, x_{i+k}]$ поліном ступеня k, яка проходить через до k+ 1 точок даних $(x_i, y_i), (x_{i+1}, y_{i+1}), \dots, (x_{i+k}, y_{i+k})$ Для однієї точки даних, маємо $P_0[x_i] = y_i$

Інтерполяція на основі двох точок даних

$$P_1[x_i, x_{i+1}] = \frac{(x - x_{i+1}) P_0[x_i] + (x_i - x) P_0[x_{i+1}]}{x_i - x_{i+1}}$$

Загальна формула:

$$P_{k}[x_{i}, x_{i+1}, \dots, x_{i+k}] = \frac{(x - x_{i+k}) P_{k-1}[x_{i}, x_{i+1}, \dots, x_{i+k-1}] + (x_{i} - x) P_{k-1}[x_{i+1}, x_{i+2}, \dots, x_{i+k}]}{x_{i} - x_{i+k}}$$

3 огляду на задані значення x, обчислення можуть бути виконані в наступному табличному форматі (як показано для чотирьох точок даних):

	k = 0	k = 1	k = 2	k = 3
<i>x</i> ₀	$P_0[x_0] = y_0$	$P_1[x_0, x_1]$	$P_2[x_0, x_1, x_2]$	$P_3[x_0, x_1, x_2, x_3]$
x_1	$P_0[x_1] = y_1$	$P_1[x_1, x_2]$	$P_2[x_1, x_2, x_3]$	
x_2	$P_0[x_2] = y_2$	$P_1[x_2, x_3]$		
<i>x</i> ₃	$P_0[x_3] = y_3$			

Завдання

Варіант 1

3 урахуванням пар значень змінних

x	0	2	3
y	7	11	28

застосуйте метод Лагранжа побудови інтерполяційного поліному для визначення у в точці х = 1.

Варіант 2

3 урахуванням пар значень змінних

x	4.0	3.9	3.8	3.7
y	-0.06604	-0.02724	0.01282	0.05383

визначити y(x) = 0 за методом Невіла.

Варіант 3

Точки даних в таблиці належать графіку функції $y = 4.8 \cos \frac{\pi x}{20}$

x	0.15	2.30	3.15	4.85	6.25	7.95
y	4.79867	4.49013	4.2243	3.47313	2.66674	1.51909

Інтерполюйте дані за методом Ньютона при x = 0, 0.5, 1.0, ..., 8,0 і порівняйте результати з «точними» значеннями, що визначені вищенаведеною функцією.

Варіант 4

3 урахуванням пар значень змінних

x	-1.2	0.3	1.1
y	-5.76	-5.61	-3.69

визначити у при х = 0 за допомогою (а) методу Невіла; (б) методу Лагранжа

Варіант 5

Знайти X при якому y(x) = 0 з наступних даних:

x	0	0.5	1	1.5	2	2.5	3
y	1.8421	2.4694	2.4921	1.9047	0.8509	-0.4112	-1.5727

Застосуйте інтерполяції Лагранжа над (а) трьома; (б) чотирма найближчими сусідніми точками даних.

Варіант 6

Використайте метод Невіла щоб обчислити у при $x=\frac{\pi}{4}$ за наступними точками даних

x	0	0.5	1	1.5	2
y	-1.00	1.75	4.00	5.75	7.00

Варіант 7

На основі заданих даних

x	0	0.5	1	1.5	2
y	-0.7854	0.6529	1.7390	2.2071	1.9425

знайти у при $x=\frac{\pi}{4}$ і при $x=\frac{\pi}{2}$ за допомогою методу, який ви вважаєте найбільш доцільним.

Варіант 8

Застосуйте метод Ньютона, щоб знайти поліном, який відповідає наступним парам значень

x	-3	2	-1	3	1
y	0	5	-4	12	0

Варіант 9

Використовуйте метод Невіла, щоб визначити квадратичний поліном, який проходить через точки

x	-1	1	3
y	17	-7	-15

Варіант 10

Щільність повітря р змінюється з висотою h наступним чином:

h (km)	0	3	6
ρ (kg/m ³)	1.225	0.905	0.652

Представте p(h) як квадратичну функцію за допомогою методу Лагранжа.