File 348:EUROPEAN PATENTS 1978-2003/Nov W04

(c) 2003 European Patent Office

File 349:PCT FULLTEXT 1979-2002/UB=20031127,UT=20031120

(c) 2003 WIPO/Univentio

Set	Items 44862	Description (ERROR? ? OR PARITY)(3N)(CHECK??? OR EXAM? OR TEST??? OR D-						
S1	ETECT? OR ANALYZ? OR ANALYS?)							
S2	101604	(SECOND? OR 2ND OR TWO OR DUAL? OR SEPARAT? OR DIFFERENT OR						
ANOTHER OR OTHER) (5W) (MEMORY OR MEMORIES OR RAM OR STORE OR -								
STORES OR STORAGE)								
S3	77028	MULTIPLEX?						
S4	113	S1(S)S2(S)S3						
S5	111	S1(50N)S2(50N)S3						
S6	176	S4:S5						
S7	1690_	S2(15N)S3						
(\$`8`	45)	S1(S)S7 OR S1(50N)S7						

(Item 1 from file: 348) 8/3, K/1DIALOG(R) File 348: EUROPEAN PATENTS (c) 2003 European Patent Office. All rts. reserv. · 01324137 Apparatus and method for digital data transmission Vorrichtung und Verfahren zur digitalen Datenubertragung Dispositif et procede de transmission de donnees numeriques PATENT ASSIGNEE: Terayon Communication Systems, Inc., (2769080), 2952 Bunker Hill Lane, Santa Clara, CA 95054, (US), (Applicant designated States: all) INVENTOR: Rakib, Selim Shlomo, Dr., 10271 West Acres, Cupertino, California 95014, (US) Azenkot, Yehuda, 1128 Littleoak Circle, San Jose, California 95129, (US) LEGAL REPRESENTATIVE: Brax, Matti Juhani (85201), Berggren Oy Ab, P.O. Box 16, 00101 Helsinki, (FI) PATENT (CC, No, Kind, Date): EP 1130918 A2 010905 (Basic) EP 1130918 A3 020116 EP 2001104540 960725; APPLICATION (CC, No, Date): PRIORITY (CC, No, Date): US 519630 950825; US 588650 960119; US 684243 960719 DESIGNATED STATES: BE; DE; FR; GB; IE; NL RELATED PARENT NUMBER(S) - PN (AN): EP 858695 (EP 96927270) INTERNATIONAL PATENT CLASS: H04N-007/173; H04L-012/28; H04J-011/00; H04J-013/02; H04J-003/06; H04B-001/707; H04L-005/02 ABSTRACT WORD COUNT: 143 NOTE: Figure number on first page: 49 LANGUAGE (Publication, Procedural, Application): English; English; English FULLTEXT AVAILABILITY: Available Text Language Update Word Count CLAIMS A (English) 200136 11690 67576 SPEC A (English) 200136 Total word count - document A Total word count - document B Total word count - documents A + B ...SPECIFICATION are used to encode the digital characters being transmitted. Because of the large number of data points, the differences in phase and amplitude between the different points are not large. Therefore, the impairments described above can cause errors by causing misinterpretation by demodulators of what characters were actually sent. ... have been transmitted thereby increasing the error rate. Increased error rate requires more bandwidth to be consumed in retransmitting data and wastes processing power in detecting and correcting errors and retransmitting data with errors that are beyond the correction range of the ECC bits transmitted with the data. Also, because in TDMA schemes the...CDMA scheme is to "whiten" the noise sources such that no matter how complex the noise signals, the noise can be effectively managed using conventional error and correction bits. In other words, the digital data providing the interactive or bidirectional data communication is sent using a CDMA

Also, because in TDMA schemes the...CDMA scheme is to "whiten" the noise sources such that no matter how complex the noise signals, the noise can be effectively managed using conventional error detection and correction bits. In other words, the digital data providing the interactive or bidirectional data communication is sent using a CDMA scheme, but for purposes...a symbol will generally not cause errors in the interpretation of symbol 66 by the CU receiver. Each symbol encoded in the code domain includes error detection and correction bits (ECC bits) such that any errors that occur can usually be detected and corrected when the symbols are re-constituted by the...the RU performs chip clock synchronization and carrier recovery in the manner described below in the discussion of Figure 19. Carrier recovery is done by examining slicer error on a known BPSK pilot carrier or pilot channel signal transmitted during a predetermined timeslot using a predetermined code (CU local oscillator signal samples in...invention, and, therefore, the encoders 402 and 526 in Figures 19 and 28A, respectively, could be

eliminated or replaced with simple encoders using any known **error detection** or correction encoding scheme and a mapper to map the resulting encoded symbols into points in a constellation.

In the preferred embodiment, the encoders 402...forward error correction is not used, and the encoder 402 is an ARQ encoder which simply adds enough ECC bits to allow the receiver to **detect** an **error** and request a retransmission. The retransmission request is made on one of the command and control channels. In some block code embodiments, the forward error...

...a trellis code.

The preferred form of the encoder 402 is the 16 state trellis encoder shown in Figure 42. This encoder is characterized by **parity check** polynomials given in octal form as follows: h3=04, h2=10, h1=06, h0=23, d(circumflex)2(underscore) free=5.0, Nfree=1.68...

...memory 404, receives the stream of tribits for each symbol and calculates a 4th redundancy bit for each tribit. This 4th bit provides redundancy for error detection and correction and for use by a Viterbi Decoder 468 in the receiver in ascertaining with greater accuracy the data that was actually sent despite...point before the baseband signal enters the slicer so as to minimize interpretation errors caused by amplitude errors. Likewise, a rotational amplifier in the slicer detector corrects for phase errors caused by the differing propagation delays and channel impairments prior to the baseband signal entering the slicer to minimize this source of errors. For a...a Viterbi Decoder 468 which performs the prior art Viterbi algorithm. The Viterbi Decoder uses the 4th bit in each chip of each symbol to detect and correct errors . This is done by performing the Viterbi algorithm to derive the most probable tribit path defined by the points actually sent from the path in ...language in block 632 "Look for one pulse in each gap (one SF, Pulse Position Becomes No 1-7)" The steps following block 632 just check for errors in this process. Specifically, test 634 is performed after each frame to increment a pulse counter and determine if the pulse count has reached 4...errors between the actual received data and the 3-j point are output on bus 798 to the control loop 781. The control loop 781 examines these error values, and adjusts the 1/a and e-j(o slash)) amplitude and phase error correction factors in an appropriate direction to tend to minimize...

8/3,K/4 (Item 4 from file: 348)
DIALOG(R)File 348:EUROPEAN PATENTS

(c) 2003 European Patent Office. All rts. reserv.

01272330

COMMUNICATION SYSTEM, FIELD STRENGTH COMPENSATION METHOD IN COMMUNICATION SYSTEM, AND BASE STATION AND TERMINAL STATION FOR RADIO COMMUNICATION SYSTEM

KOMMUNIKATIONSSYSTEM, VERFAHREN ZUR FELDSTARKENKOMPENSATION IN EINEM KOMMUNIKATIONSSYSTEM UND BASISSTATION UND ENDGERAT FUR EIN FUNKKOMMUNIKATIONSSYSTEM

SYSTEME DE COMMUNICATIONS, PROCEDE DE COMPENSATION D'INTENSITE DE CHAMP DANS UN SYSTEME DE COMMUNICATIONS, ET STATION DE BASE ET STATION TERMINALE POUR SYSTEME DE COMMUNICATIONS RADIO

PATENT ASSIGNEE:

FUJITSU LIMITED, (211463), 1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, (JP), (Applicant designated States: all)

INVENTOR:

HIRAMA, Atsushi, Fujitsu Tohoku Dig. Tech. Ltd., 2-25, Ichibancho 1-chome, Aoba-ku, Sendai-Shi, Miyagi 980-0811, (JP)

LEGAL REPRESENTATIVE:

HOFFMANN - EITLE (101511), Patent- und Rechtsanwalte Arabellastrasse 4, 81925 Munchen, (DE)

PATENT (CC, No, Kind, Date): EP 1207638 A1 020522 (Basic)

WO 200115342 010301

APPLICATION (CC, No, Date): EP 99938574 990823; WO 99JP4514 990823

DESIGNATED STATES: AT; BE; CH; CY; DE; DK; ES; FI; FR; GB; GR; IE; IT; LI;

LU; MC; NL; PT; SE

control section.

INTERNATIONAL PATENT CLASS: H04B-007/26

ABSTRACT WORD COUNT: 123

· NOTE:

Figure number on first page: 2

LANGUAGE (Publication, Procedural, Application): English; English; Japanese FULLTEXT AVAILABILITY:

Available Text Language Update Word Count

CLAIMS A (English) 200221 2666

SPEC A (English) 200221 9459

Total word count - document A 12125
Total word count - document B 0

Total word count - documents A + B 12125

...SPECIFICATION for correcting the received signal strength indicator, detected by the received signal strength indicator detecting section, according to the correction quantity read out by the **second memory**

With this configuration, in this case, after the information on the number of **multiplexes** of a transmission multiplexed signal from the base station is broadcasted to the terminal station, the terminal station obtains a correction quantity on a received...

...corresponding to the information on the number of multiplexes to correct the received signal strength indicator according to the correction quantity for compensating for an **error** in **detection** of the received signal strength indicator. Accordingly, the detection accuracy on the received signal strength indicator is improvable in the terminal station in addition to...

8/3,K/5 (Item 5 from file: 348)

DIALOG(R) File 348: EUROPEAN PATENTS

(c) 2003 European Patent Office. All rts. reserv.

01094561

DEVICE AND METHOD FOR DATA OUTPUT AND DEVICE AND METHOD FOR DATA INPUT/OUTPUT

VORRICHTNG UND VERFAHREN ZUR DATENAUSGABE UND VORRICHTUNG UND VERFRAHREN ZURDATENEINGABE/AUSGABE

DISPOSITIFS ET PROCEDES DE SORTIE DE DONNEES, ET D'ENTREE/SORTIE DE DONNEES PATENT ASSIGNEE:

Sony Corporation, (214028), 7-35, Kitashinagawa 6-chome, Shinagawa-ku, Tokyo 141-0001, (JP), (Applicant designated States: all)

MIYAWAKI, Hiroyuki Sony Corporation, 7-35, Kitashinagawa 6-chome Shinagawa-ku, Tokyo 141-0001, (JP)

KONDO, Takanobu Sony Corporation, 7-35, Kitashinagawa 6-chome Shinagawa-ku, Tokyo 141-0001, (JP)

IWASAKI, Yasuo Sony Corporation, 7-35, Kitashinagawa 6-chome Shinagawa-ku
, Tokyo 141-0001, (JP)

TANAKA, Hisao Sony Corporation, 7-35, Kitashinagawa 6-chome Shinagawa-ku, Tokyo 141-0001, (JP)

LEGAL REPRESENTATIVE:

DeVile, Jonathan Mark (91152), D. Young & Co., 21 New Fetter Lane, London EC4A 1DA, (GB)

PATENT (CC, No, Kind, Date): EP 992992 Al 000412 (Basic)

WO 9950849 991007

APPLICATION (CC, No, Date): EP 99910695 990325; WO 99JP1508 990325

PRIORITY (CC, No, Date): JP 9881270 980327

DESIGNATED STATES: DE; FR; GB

INTERNATIONAL PATENT CLASS: G11B-020/10; G06F-003/06

ABSTRACT WORD COUNT: 121

NOTE:

Figure number on first page: 1

```
LANGUAGE (Publication, Procedural, Application): English; English; Japanese
FULLTEXT AVAILABILITY:
                                     Word Count
Available Text Language
                           Update
      CLAIMS A (English) 200015
                                      1522
               (English) 200015
                                      5613
      SPEC A
Total word count - document A
                                      7135
Total word count - document B
Total word count - documents A + B
                                      7135
...SPECIFICATION so that they may correspond to each of the plurality of
  HDDs 13b1, 13b2, ---, 13bn and then, an arithmetic of error correction
  coding data (for example , parity data) in relation to respective bit
  data is performed so that the parity data may be written to the HDD 13bn.
  Further, when performing process...
...the HDDs 13b1, 13b2, ---, 13bn, the parity data recorded on the HDD 13bn
  are read and after error correction is performed thereon, the data are
  multiplexed and outputted.
    As data transfer rate of the data bus 20 is different from that from
  buffer memory 13e to the buffer memories 13c1, 13c2, ---, 13cn, the
  buffer memory 13e is memory used for reducing the difference of their
  data transfer rate.
    Bus...
 8/3, K/6
             (Item 6 from file: 348)
DIALOG(R) File 348: EUROPEAN PATENTS
(c) 2003 European Patent Office. All rts. reserv.
00996862
Start code detecting apparatus for video data stream
Vorrichtung zur Startkodedetektierung fur Videodatenstrom
Appareil de detection de code de depart pour un flux de donnees video
PATENT ASSIGNEE:
  Discovision Associates, (260275), 2355 Main Street, Suite 200, Irvine, CA
    92614, (US), (Applicant designated States: all)
  Wise, Adrian Philip, 10 Westbourne Cottages, Frenchay, Bristol BS16 1NA,
  Sotheran, Martin William, The Ridings, WickLane Stinchcombe, Dursley,
    Gloucestershire G11 6BD, (GB)
  Robbins, William Philip, 19 Springhill, Cam, Gloucestershire GL11 5PE,
  Finch, Helen Rosemary, Tyley, Coombe, Wotton-under-edge, Gloucester GL12
    7ND, (GB)
  Boyd, Kevin James, 21 Lancashire Road, Bristol BS7 9DL, (GB)
LEGAL REPRESENTATIVE:
  Cabinet Hirsch (101611), 34, Rue de Bassano, 75008 Paris, (FR)
PATENT (CC, No, Kind, Date): EP 901287 A2 990310 (Basic)
                              EP 901287 A3
                                            990922
                              EP 98202166 950228;
APPLICATION (CC, No, Date):
PRIORITY (CC, No, Date): GB 9405914 940324
DESIGNATED STATES: AT; BE; CH; DE; FR; GB; IE; IT; LI; NL
RELATED PARENT NUMBER(S) - PN (AN):
  EP 674443 (EP 95301301)
INTERNATIONAL PATENT CLASS: H04N-007/24; G06F-013/00; G06F-009/38
ABSTRACT WORD COUNT: 112
NOTE:
  Figure number on first page: 61
LANGUAGE (Publication, Procedural, Application): English; English
FULLTEXT AVAILABILITY:
Available Text Language
                           Update
                                     Word Count
      CLAIMS A (English) 9910
                                       191
      SPEC A (English) 9910
                                    126718
                                    126909
Total word count - document A
Total word count - document B
```

Total word count - documents A + B 126909

... SPECIFICATION stages in the pipeline are afforded enhanced flexibility in configuration and processing.

Each of the processing stages in the pipeline may include both primary and secondary storage, and the stages in the pipeline are reconfigurable in response to recognition of selected tokens. The tokens in the pipeline are dynamically adaptive and may...7:0).

Thus, the first time a given MID(underscore) DATA is loaded into LEOUT, the associated OUTEXTN will be forced high, whereas, on the second occasion, OUTEXTN will be the same as the signal QEIN. Now consider the situation during the very last word of a token in which QEIN...systems to indicate a channel or media error. For example, this start code may be inserted into the data by an ECC circuit if it detects an error that it was unable to correct.

A.11.4.4 Sequence of event generation

LU; MC; NL; PT; SE

ABSTRACT WORD COUNT: 174

FULLTEXT AVAILABILITY:

NOTE:

EXTENDED DESIGNATED STATES: AL; LT; LV; MK; RO; SI

INTERNATIONAL PATENT CLASS: G06T-001/20

Figure number on first page: 129

In the present invention, certain coded data patterns (probably indicating an...

8/3.K/8 (Item 8 from file: 348) DIALOG(R) File 348: EUROPEAN PATENTS (c) 2003 European Patent Office. All rts. reserv. 00964844 Reconfigurable image processing pipeline Rekonfigurierbares Pipeline-Bildverarbeitungssystem Systeme de traitement d'image pipeline reconfigurable PATENT ASSIGNEE: CANON KABUSHIKI KAISHA, (542361), 30-2, 3-chome, Shimomaruko, Ohta-ku, Tokyo, (JP), (Applicant designated States: all) INVENTOR: Yip, Dominic, c/o Canon Inf.Syst.Res.A.PTY LTD, 1 Thomas Holt Drive, North Ryde, New South Wales 2113, (AU) Pulver, Mark, c/o Canon Inf.Syst.Res.A.PTY LTD, 1 Thomas Holt Drive, North Ryde, New South Wales 2113, (AU) Webb, Michael J., c/o Canon Inf.Syst.Res.A.PTY LTD, 1 Thomas Holt Drive, North Ryde, New South Wales 2113, (AU) Chung, Wing Yan, c/o Canon Inf.Syst.Res.A.PTY LTD, 1 Thomas Holt Drive, North Ryde, New South Wales 2113, (AU) Gibson, Ian, c/o Canon Inf.Syst.Res.A.PTY LTD, 1 Thomas Holt Drive, North Ryde, New South Wales 2113, (AU) Wong, Kevin C., c/o Canon Inf.Syst.Res.A.PTY LTD, 1 Thomas Holt Drive, North Ryde, New South Wales 2113, (AU) Amies, Christopher, Canon Inf.Syst.Res.A.PTY LTD, 1 Thomas Holt Drive, North Ryde, New South Wales 2113, (AU) Higginbottom, R.P., Canon Inf.Syst.Res.A.PTY LTD, 1 Thomas Holt Drive, North Ryde, New South Wales 2113, (AU) LEGAL REPRESENTATIVE: Beresford, Keith Denis Lewis et al (28273), BERESFORD & Co. 2-5 Warwick Court, High Holborn, London WC1R 5DH, (GB) PATENT (CC, No, Kind, Date): EP 875854 A2 981104 (Basic) EP 875854 A3 030813 APPLICATION (CC, No, Date): EP 98303362 980429; PRIORITY (CC, No, Date): AU 97PO6479 970430; AU 97PO6480 970430; AU 97PO6481 970430; AU 97PO6482 970430; AU 97PO6483 970430; AU 97PO6484 970430; AU 97P06485 970430; AU 97P06486 970430; AU 97P06487 970430; AU 97PO6488 970430; AU 97PO6489 970430; AU 97PO6490 970430; AU 97PO6491 970430; AU 97PO6492 970430 DESIGNATED STATES: AT; BE; CH; CY; DE; DK; ES; FI; FR; GB; GR; IE; IT; LI;

LANGUAGE (Publication, Procedural, Application): English; English; English

```
Available Text Language Update Word Count
CLAIMS A (English) 9845 10768
SPEC A (English) 9845 65006
Total word count - document A 75774
Total word count - document B 0
Total word count - documents A + B 75774
```

...SPECIFICATION accessed from the cache by the processing unit at a time. In image processor systems where the processing unit requires several items of data from **separate** tables in **memory** to perform an operation, it would be advantageous if all the data is supplied to the processing unit in one data packet.

A further problem...Firstly, in printing pages it is necessary that there not be even small or transient artefacts. This is because whilst in video signal creation for **example** . such small **errors** if present may not be apparent to the human eye (and hence be unobservable). in printing any small artefact appears permanently on the printed page...signal "reg" output from the read/write controller 352.

The exception generators 356-359 generate an output error signal, eg. 347-349, 362 when an **error** is **detected** on their inputs. The formula for calculating each output error is as aforementioned.

The register components 360 can be defined to be of a number...for each module that can operate in a background mode in addition to any preset, error and interrupt lines, one for each module, for resetting, detecting errors and interrupts.

3.15 Co-processor Data Types and Data Manipulation Returning now to Fig. 2, in order to substantially simplify the operation of the...

```
8/3,K/9 (Item 9 from file: 348)
DIALOG(R)File 348:EUROPEAN PATENTS
(c) 2003 European Patent Office. All rts. reserv.
```

00938459

TRANSMITTER, RECEIVER, TRANSMISSION SYSTEM, SENDING METHOD, RECEIVING METHOD, AND TRANSMITTING METHOD

SENDER, EMPFANGER, UBERTRAGUNGSSYSTEM, SENDEVERFAHREN, EMPFANGSVERFAHREN UND UBERTRAGUNGSVERFAHREN

EMETTEUR, RECEPTEUR, SYSTEME DE TRANSMISSION, PROCEDE D'EMISSION, PROCEDE DE RECEPTION ET PROCEDE DE TRANSMISSION

PATENT ASSIGNEE:

MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., (216883), 1006, Oaza Kadoma, Kadoma-shi, Osaka-fu, 571, (JP), (Applicant designated States: all) INVENTOR:

YOSHIDA, Takayasu, 6-5-5, Kibougaoka Toyono-cho Toyono-gun, Osaka 563-02, (JP)

TANAKA, Masatoshi, 208 Rohreru-Higashiikoma 1-62, Higashiikoma, Ikoma-shi Nara 630-02, (JP)

NISHIOKA Minoru, 2-1-20-510, Uozaki-nishimachi Higashinada-ku, Kobe-shi Hyoqo 658, (JP)

BANNAI, Tatsushi, 389-12, Kitanoda Sakai-shi, Osaka 588, (JP)

NISHINO, Masakazu, 1-4-26, Kamiichi Kashiwara-shi, Osaka 582, (JP) LEGAL REPRESENTATIVE:

Ehlers, Jochen (87041), Eisenfuhr, Speiser & Partner, Martinistrasse 24, 28195 Bremen, (DE)

PATENT (CC, No, Kind, Date): EP 939513 A1 990901 (Basic)

WO 9810557 980312

APPLICATION (CC, No, Date): EP 97939204 970905; WO 97JP3142 970905 PRIORITY (CC, No, Date): JP 96234858 960905; JP 9745603 970228; JP 97189400 970715

DESIGNATED STATES: DE; GB; NL

RELATED DIVISIONAL NUMBER(S) - PN (AN):

(EP 2002014215)

INTERNATIONAL PATENT CLASS: H04L-007/08; H04L-001/00; H03M-007/40;

H04J-003/00; H04N-007/00

ABSTRACT WORD COUNT: 158

```
NOTE:
```

Figure number on first page: 1

LANGUAGE (Publication, Procedural, Application): English; English; Japanese FULLITEXT AVAILABILITY:

Available Text Language Update Word Count CLAIMS A (English) 9935 16117 SPEC A (English) 9935 68029 Total word count - document A 84146 Total word count - document B 0 Total word count - documents A + B 84146

...SPECIFICATION designate variable-length coding means in the same way; by these means, compressing means 4a to 4c are formed respectively. The numeral 16 designates a multiplexing means which temporarily stores each of the output signals of the variable- ...error correction code to each block of video signal, a constant information unit, from the output signal of the multiplexing means 16; the receiving apparatus detects or corrects code errors on the basis of the error correction code. The present embodiment uses the Reed-Solomon code as an error correction code.

The lower half portion...

8/3,K/10 (Item 10 from file: 348)

DIALOG(R) File 348: EUROPEAN PATENTS (c) 2003 European Patent Office. All rts. reserv.

00907399

Dynamic mapping of broadcast resources
Dynamische Zuteilung von Rundfunkubertragungen
Allocation dynamique de ressources de telediffusion
PATENT ASSIGNEE:

Hughes Electronics Corporation, (2464050), 200 N. Sepulveda Boulevard, El Segundo, California 90245-0956, (US), (Applicant designated States: all)

INVENTOR:

Arsenault, Robert G., 2815 May Avenue, Redondo Beach, CA 90278, (US) Leminh, Tam T., 4709 Montefino Drive, Cypress, CA 90630, (US) James, Thomas H., 1010 Fiske Street, Pacific Palisades, CA 90272, (US) LEGAL REPRESENTATIVE:

Grunecker, Kinkeldey, Stockmair & Schwanhausser Anwaltssozietat (100721), Maximilianstrasse 58, 80538 Munchen, (DE)

PATENT (CC, No, Kind, Date): EP 828390 A2 980311 (Basic)

EP 828390 A3 990908

APPLICATION (CC, No, Date): EP 97115360 970904;

PRIORITY (CC, No, Date): US 708524 960905

DESIGNATED STATES: AT; BE; CH; DE; DK; ES; FR; GB; GR; IT; LI; NL; SE

INTERNATIONAL PATENT CLASS: H04N-007/16

ABSTRACT WORD COUNT: 137

NOTE:

Figure number on first page: 4

LANGUAGE (Publication, Procedural, Application): English; English; English FULLTEXT AVAILABILITY:

Available Text Language Update Word Count CLAIMS A (English) 9811 1908 SPEC A (English) 9811 14867
Total word count - document A 16775
Total word count - document B 0
Total word count - documents A + B 16775

...SPECIFICATION with the present invention. Although the complete local map may preferably be transmitted occasionally (to permit activation of new equipment and provide a periodic integrity **check** to correct any **errors**), such full map transmissions are reduced.

To further minimize transmission requirements for map changes, a plurality of complete maps may be transmitted and stored locally. For

example, a first complete map can be transmitted and stored, followed by a second complete map stored in other memory. The receiving apparatus includes a map selector (e.g. selection vector, multiplexor, etc.) which selects the stored map that is to be active at a given time. To accomplish a change in local mapping, it is then...

8/3,K/11 (Item 11 from file: 348)
DIALOG(R)File 348:EUROPEAN PATENTS
(c) 2003 European Patent Office. All rts. reserv.

00887645

Management of overflowing data in a computer system
Datenuberlaufverwaltung in einem Rechnersystem
Gestion de debordement de donnees dans un systeme d'ordinateur
PATENT ASSIGNEE:

Compaq Computer Corporation, (687792), 20555 S.H. 249, Houston Texas 77070, (US), (applicant designated states:

AT; BE; CH; DE; DK; ES; FI; FR; GB; GR; IE; IT; LI; LU; MC; NL; PT; SE)

INVENTOR:

Pettey, Christopher J., 9327 Rodgers Road, Houston, Texas 77070, (US) Maclaren, John M., 15318 Redbud Leaf Lane, Cypress, Texas 77429, (US) LEGAL REPRESENTATIVE:

Brunner, Michael John et al (28871), GILL JENNINGS & EVERY Broadgate House 7 Eldon Street, London EC2M 7LH, (GB)

PATENT (CC, No, Kind, Date): EP 811934 A2 971210 (Basic) EP 811934 A3 990210

APPLICATION (CC, No, Date): EP 97303804 970604;

PRIORITY (CC, No, Date): US 658533 960605

DESIGNATED STATES: DE; FR; GB

INTERNATIONAL PATENT CLASS: G06F-013/40;

ABSTRACT WORD COUNT: 93

LANGUAGE (Publication, Procedural, Application): English; English; English FULLTEXT AVAILABILITY:

Available Text Language Update Word Count
CLAIMS A (English) 9712W1 593
SPEC A (English) 9712W1 59351
Total word count - document A 59944
Total word count - document B 0
Total word count - documents A + B 59944

... SPECIFICATION the first data storage buffer.

Embodiments of the invention may include one or more of the following features. The buffer management element may assign the **second storage** buffer only if the **second storage** buffer does not contain data associated with another data transaction stored in the bridge. The buffer storage element may assign a third storage buffer, if...address cycle or a posted memory write request, the slave state machine loads the dword counter (asserts load(underscore)write(underscore)counter) and, if no **parity error** has occurred, **analyzes** the delayed request transaction. If the transaction is a MRL or a MRM transaction and the QPIF lock logic is not in the unlocked-but...

...the PMW1 state 2724.

If the transaction is not a posted memory write request, the slave state machine loads the dword counter and, if no **parity error** has occurred, **analyzes** the delayed request transaction. If the transaction is a MRL or a MRM transaction and the QPIF lock logic is not in the unlocked-but...to-upstream data transfer format. The following is a description of the signals.

EDC(7:0): The signals are the eight syndrome bits used to **detect** and correct **errors** encountered in transmitting data over the cable 28. CAD(31:0): The signals are the 32 address or data bits.

CFRAME(underscore): The signal is...discharges from the signal pins when the connector is disconnected. A pair of thumb screws attached to the cable connector will secure the mated connectors.

An **error detection** and correction (EDC) method is implemented on each bridge chip to protect communication over the cable 28. Since the data is time-multiplexed into three...

...28 (which pass such information as the clock signals CABLE(underscore)CLK1 and CABLE(underscore)CLK2, reset signals, and the power good/PLL-lock signal), error detection and correction is not implemented.

The following are the underlying assumptions for the EDC algorithm. Most errors are single bit errors. The probability of having...

- ...provided to the input of a check bit generator 350, which produces check bits CHKBIT(7:0). The check bits are generated according to the **parity check** matrix shown in Figure 18, in which the first row corresponds to CHKBIT(0), the second row corresponds to CHKBIT(1), and so forth. The...
- ...generated by an exclusive-OR of all the data bits FIFOOUT(X) (X is equal to 0-59), which have a "1" value in the **parity check** matrix. Thus, the check bit CHKBIT(0) is an exclusive-OR of data bits FIFOOUT(7), FIFOOUT(8), FIFOOUT(9), FIFOOUT(12), FIFOOUT(13), FIFOUT...
- ...27, 35, 37, 38, 40, 43, 46, 47, 48, 50, and 53. Check bits CHKBIT(2:7) are generated in similar fashion according to the **parity check** matrix of Figure 18. The **parity check** matrix is based upon the 20 sub-channels or wires per time-multiplexed phase and a probability that multiple errors in the accumulated data are...
- ...same data position in each time-multiplexed phase.

In the master cable interface 192 or 194, the check bits CHKBIT(7:0) are provided as **error detection** and Correction bits EDC(7:0) along with other cable data to allow error correction logic in the slave cable interface 196 or 198 to **detect** and correct data **errors**.

The check bits CHKBIT(7:0) are provided to a fix bit generator 352, which generates fix bits FIXBIT(59:0) according to the syndrome table shown...one of each the lower 52 bits of the FIFO data FIFOOUT(51:0). The upper 8 FIFO bits FIFOOUT(59:52), allocated to the error detection and correction bits EDC(7:0), are used to generate the check bits and the syndrome bits, but are not subject to error correction. The...

...by a configuration signal CFG2C(underscore)ENABLE(underscore)ECC. The output of the multiplexer 360 produces signals MUXMSGI(51:0). If the system software enables **error detection** and correction by setting the signal CFG2C(underscore)ENABLE(underscore)ECC high, then the multiplexer 360 selects the corrected data CORRMSG(51:0) for output. Otherwise, if **error detection** and correction is disabled, the data bits FIFOOUT(51:0) are used.

The non-correctable and correctable error indicators NCERR and CRERR are provided to...

...358 produce signals C(underscore)NLERR and C(underscore)CRERR, respectively. The signals C(underscore)NLERR and C(underscore)CRERR can be asserted only if error detection and correction is enabled. When an error is detected, the fix bits are latched and used for diagnostic purposes.

If a correctable error is indicated (the signal C(underscore)CRERR is high), then an...

...to be negated so that the upstream bridge chip 26 does not send cycles downstream.

To prevent spurious interrupts during and just after power-up, error detection and correction on both the upstream and downstream bridge chips is disabled during power-up until the upstream PLL 186 and downstream PLL 182 have...

8/3,K/13 (Item 13 from file: 348)
DIALOG(R)File 348:EUROPEAN PATENTS
(c) 2003 European Patent Office. All rts. reserv.

00854676

DATA ERROR DETECTION AND CORRECTION FOR A SHARED SRAM
DATENFEHLER-DETEKTION UND -KORREKTUR FUR GEMEINSAMEN SPEICHER
DETECTION ET CORRECTION D'ERREURS POUR UNE MEMOIRE RAM STATIQUE PARTAGEE
PATENT ASSIGNEE:

Honeywell Inc., (246054), Honeywell Plaza MN12-8251 P.O. Box 524, Minneapolis Minnesota 55440-0524, (US), (Proprietor designated states: all)

INVENTOR:

LORDI, Angela, L., 2043 Fort Bevon Road, Harleysville, PA 19438, (US) LEGAL REPRESENTATIVE:

Fox-Male, Nicholas Vincent Humbert (57744), Eric Potter Clarkson Park View House 58 The Ropewalk, Nottingham NG1 5DD, (GB)

PATENT (CC, No, Kind, Date): EP 862761 A2 980909 (Basic)

EP 862761 B1 991222 WO 9714109 970417

APPLICATION (CC, No, Date): EP 96937661 961007; WO 96US16037 961007

PRIORITY (CC, No, Date): US 541989 951010

DESIGNATED STATES: DE; FR; GB

INTERNATIONAL PATENT CLASS: G06F-011/16

NOTE:

No A-document published by EPO

LANGUAGE (Publication, Procedural, Application): English; English; English FULLTEXT AVAILABILITY:

Available Text Language Update Word Count CLAIMS B (English) 199951 1010 CLAIMS B (German) 199951 1017 CLAIMS B (French) 199951 1189 SPEC B (English) 199951 2539 Total word count - document A Total word count - document B 5755 Total word count - documents A + B 5755

... SPECIFICATION any extra time.

SUMMARY OF INVENTION

Thus, there is provided by the present invention, which is defined in the appended independent claims, a scheme for **error detection** and correction which does not require any extra time to perform the correction. An apparatus for correcting errors in information read from a memory unit...

- ...primary information and the backup information are coupled to the two sets of input ports of the multiplexer. Select logic is operatively connected to the multiplexer, and further is operatively connected to the first memory and to the second memory. The first and second memory each equipped with parity detection logics indicate via a respective first and second error signal if an error is detected on the information just read from the first and second memory, respectively. The select logic determines whether the data in the first and second memory...
- ...CLAIMS from the lower memory of the first and second memories (10, 11) and the backup information read from the upper memory of the first and second memories (10, 11) are coupled to the first and second input ports of the multiplexer (40); and
 - e) select logic (50), operatively connected to said multiplexer (40), and further operatively connected to said first memory (10) and to said second memory (11), the first (10) and second memory (11) indicating via the respective first (P1) and second error signal (P2) if an error is detected on the information just read from the first (10) and second memory (11), respectively, the select logic (50) determines whether the data in the first...

(c) 2003 European Patent Office. All rts. reserv.

00804145

Circuit and method for biasing bit lines

Schaltung und Verfahren um Bitleitungen vorzuspannen
Circuit et methode pour la polarisation de lignes de bit
PATENT ASSIGNEE:

STMicroelectronics, Inc., (723066), 1310 Electronics Drive, Carrollton Texas 75006-5039, (US), (Proprietor designated states: all)
INVENTOR:

McClure, David C., 3701 Elizabeth Drive, Carrollton, Texas 75007, (US) LEGAL REPRESENTATIVE:

Palmer, Roger et al (34631), PAGE, WHITE & FARRER 54 Doughty Street, London WC1N 2LS, (GB)

PATENT (CC, No, Kind, Date): EP 747824 A1 961211 (Basic) EP 747824 B1 030205

APPLICATION (CC, No, Date): EP 96303448 960515;

PRIORITY (CC, No, Date): US 484491 950607

DESIGNATED STATES: DE; FR; GB; IT

INTERNATIONAL PATENT CLASS: G06F-011/20

ABSTRACT WORD COUNT: 65

NOTE:

Figure number on first page: 4

LANGUAGE (Publication, Procedural, Application): English; English; FULLTEXT AVAILABILITY:

Available Text Language Update Word Count CLAIMS A (English) EPAB96 1068 CLAIMS B (English) 200306 1343 CLAIMS B (German) 200306 1392 CLAIMS B (French) 200306 1524 SPEC A (English) EPAB96 2251 SPEC B (English) 200306 2761 Total word count - document A 3320 Total word count - document B 7020 Total word count - documents A + B 10340

...SPECIFICATION substitute redundant column may simultaneously try to load data onto the data bus during a read operation. Such simultaneous data loading may cause a read **error**. An **example** of the first type of memory device is disclosed in U.S. Patent No. 5,355,340, which issued to Coker et al. on 11 October 1994 and is incorporated by reference herein.

In the **second** type of existing **memory** device, because the data from the matrix and redundant columns is **multiplexed** onto the data bus, the defective column need not be disconnected to prevent data errors. The defective column, however, is often disconnected from the read...

...SPECIFICATION substitute redundant column may simultaneously try to load data onto the data bus during a read operation. Such simultaneous data loading may cause a read **error**. An **example** of the first type of memory device is disclosed in U.S. Patent No. 5,355,340, which issued to Coker et al. on 11 October 1994.

In the **second** type of existing **memory** device, because the data from the matrix and redundant columns is **multiplexed** onto the data bus, the defective column need not be disconnected to prevent data errors. The defective column, however, is often disconnected from the read...

8/3,K/16 (Item 16 from file: 348) DIALOG(R)File 348:EUROPEAN PATENTS

(c) 2003 European Patent Office. All rts. reserv.

00779023

Continuous data server apparatus and data transfer scheme enabling multiple simultaneous data accesses

Server fur kontinuierliche Daten und Datentransferschema fur mehrfache gleichzeitige Datenzugriffe

Serveur donnees continues et methode de transfert de donnees permettant de multiples acces simultanes de donnees PATENT ASSIGNEE: KABUSHIKI KAISHA TOSHIBA, (213130), 72, Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa-ken 210, (JP), (applicant designated states: DE; FR; GB; SE) INVENTOR: Kanai, Tatsunori, 1351-B203, Yabe-cho, Totsuka-ku, Yokohama-shi, Kanagawa-ken, (JP) Asano, Shigehiro, 3-1-1-105, Nobi, Yokosuka-shi, Kanagawa-ken, (JP) Aikawa, Takeshi, 2-44-2, Kamiishihara, Choufu-shi, Tokyo, (JP) Amano, Shinya, 2-311, 2-22, Serigaya, Kounan-ku, Yokohama-shi, Kanagawa-ken, (JP) LEGAL REPRESENTATIVE: Zangs, Rainer E., Dipl.-Ing. et al (72561), Hoffmann, Eitle & Partner Arabellastrasse 4/VIII, 81925 Munchen, (DE) PATENT (CC, No, Kind, Date): EP 727750 A2 960821 (Basic) EP 727750 A3 970723 APPLICATION (CC, No, Date): EP 96102361 960216; PRIORITY (CC, No, Date): JP 9529749 950217; JP 95236999 950914; JP 95253293 950929; JP 95315578 951204 DESIGNATED STATES: DE; FR; GB; SE INTERNATIONAL PATENT CLASS: G06F-017/30; G06F-003/06; G06F-011/10; ABSTRACT WORD COUNT: 215 LANGUAGE (Publication, Procedural, Application): English; English; English FULLTEXT AVAILABILITY: Available Text Language Update Word Count CLAIMS A (English) EPAB96 3141 SPEC A (English) EPAB96 28993 Total word count - document A 32134 Total word count - document B

...SPECIFICATION is a case in which the data are to be read out from another buffer memory 108 not corresponding to it, and no malfunction or error is detected in the disk device 102 corresponding to itself as well as in the disk device 102 corresponding to that another buffer memory 108, in which case the output of the multiplexer 132 is switched to the A input.

32134

A case (3) of Fig. 34 is a case in which the data are to be read out from another buffer memory 108 not corresponding to it, and no malfunction or error is detected in the disk device 102 corresponding to itself but a malfunction or error is detected in the disk device 102 corresponding to that another buffer memory 108, in which case the output of the multiplexer 132 is switched to the B input.

A case (4) of Fig. 34 is a case in which the data should be read out from the corresponding buffer memory 108, and no malfunction or **error** is **detected** in the corresponding disk device 102, in which case the output of the multiplexer 132 is switched to the B input.

A case (5) of...

...is a case in which the data are to be read out from another buffer memory 108 not corresponding to it, and a malfunction or error is detected in the disk device 102 corresponding to itself but no malfunction or error is detected in the disk device 102 corresponding to that another buffer memory 108, in which case the output of the multiplexer 132 is switched to the A input.

As shown in Fig. 30, the first stage calculation unit 103 in the series connection has an input...

8/3,K/17 (Item 17 from file: 348)
DIALOG(R)File 348:EUROPEAN PATENTS
(c) 2003 European Patent Office. All rts. reserv.

Total word count - documents A + B

```
communications system, test method, and intra-station
Connectionless
  control system
Verbindungsloses Kommunikationssystem, Testmethode und Intra-Station-Steuer
    ungssystem
Systeme de communication sans connection, methode de test et systeme de
    gestion intra-station
PATENT ASSIGNEE:
  FUJITSU LIMITED, (211460), 1015, Kamikodanaka, Nakahara-ku, Kawasaki-shi,
    Kanagawa 211, (JP), (applicant designated states: DE;FR;GB)
INVENTOR:
  Kobayasi, Yasusi, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku,
    Kawasaki-shi, Kanagawa, 211, (JP)
  Watanabe, Yoshihiro, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku,
    Kawasaki-shi, Kanagawa, 211, (JP)
  Nishida, Hiroshi, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku,
    Kawasaki-shi, Kanagawa, 211, (JP)
  Izawa, Naoyuki, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku,
    Kawasaki-shi, Kanagawa, 211, (JP)
  Murayama, Masami, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku,
    Kawasaki-shi, Kanagawa, 211, (JP)
  Abe, Jin, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku, Kawasaki-shi,
    Kanagawa, 211, (JP)
  Uchida, Yoshihiro, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku,
    Kawasaki-shi, Kanagawa, 211, (JP)
  Yamanaka, Hiromi, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku,
    Kawasaki-shi, Kanagawa, 211, (JP)
  Aso, Yasuhiro, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku,
    Kawasaki-shi, Kanagawa, 211, (JP)
  Tsuruta, Yoshihisa, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku,
    Kawasaki-shi, Kanagawa, 211, (JP)
  Kato, Yoshiharu, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku,
    Kawasaki-shi, Kanagawa, 211, (JP)
  Kakuma, Satoshi, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku,
    Kawasaki-shi, Kanagawa, 211, (JP)
  Uriu, Shiro, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku,
    Kawasaki-shi, Kanagawa, 211, (JP)
  Samejima, Noriko, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku,
    Kawasaki-shi, Kanagawa, 211, (JP)
  Ishioka, Eiji, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku,
    Kawasaki-shi, Kanagawa, 211, (JP)
  Sekine, Shigeru, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku,
    Kawasaki-shi, Kanagawa, 211, (JP)
  Karakawa, Yoshiyuki, Fujitsu Kyushu Communication, Systems Ltd.,
    Yasudaseimeihakata Blg., 1-4-4,, Hakataekimae, Hakata-ku, Fukuoka, 812,
  Kagawa, Atsushi, c/o Fujitsu Communication, Systems Ltd., 3-9-18,
    Shinyokohama, Kouhoku-ku, Yokohama-shi, Kanagawa, 222, (JP)
  Nakayama, Mikio, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku,
    Kawasaki-shi, Kanagawa, 211, (JP)
  Kawataka, Miyuki, Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku,
    Kawasaki-shi, Kanagawa, 211, (JP)
LEGAL REPRESENTATIVE:
  Ritter und Edler von Fischern, Bernhard, Dipl.-Ing. et al (9672),
    Hoffmann, Eitle & Partner, Patentanwalte, Arabellastrasse 4, D-81925
    Munchen, (DE)
PATENT (CC, No, Kind, Date): EP 700229 A2
                                             960306 (Basic)
                              EP 700229 A3
                                             990203
                              EP 95113111 950821;
APPLICATION (CC, No, Date):
PRIORITY (CC, No, Date): JP 94255120 940822
DESIGNATED STATES: DE; FR; GB
INTERNATIONAL PATENT CLASS: H04Q-011/04
ABSTRACT WORD COUNT: 170
LANGUAGE (Publication, Procedural, Application): English; English; English
FULLTEXT AVAILABILITY:
Available Text Language
                           Update
                                     Word Count
      CLAIMS A (English)
                           EPAB96
                                      8491
      SPEC A
                (English)
                           EPAB96
                                    164543
```

Total word count - document A 173034
Total word count - document B 0
Total word count - documents A + B 173034

...SPECIFICATION in the BSGC.

(Figure 717) shows the configuration of the hardware relating to the INF.

(Figure 718) shows the bit configuration between the MM (main $\tt memory$) and BSGC of the data DMA-transferred.

(Figure 719) shows the congestion control of the receiving system.

(Figure 720) shows a model of the number...1 Loopback Function of Cell provided with "0" bit

7.14.2 Loopback Function of Cell provided with specific

VCI/VCI

- 7.15 MSCN Data Multiplexing Function
- 7.16 MSD Data Dropper Function
- 8. Maintenance Signal Driver (MSD) Interface
 - 8.1. MSD Information
 - 8.1.1. E-MSD Hardware Interface

8.1.3.3. Power Package Missing Fault

This fault is **detected** by monitoring the state of the loop signal line in the SIFCOM of the mate system to the SIFCOM of the fault monitor object system...

... Fuse Disconnection Fault

This fault is described in 14.1.5. in part 2.

8.1.4.2. SIFCOM Fuse Disconnection Fault

This fault is **detected** by monitoring the state of the signal line connected to the SIFCOM fuse in the SIFCOM of the mate system to the SIFCOM of the...signal indicating the existence of cable connection has an interface having a circuit configuration of a transistor logic (TTL) through a non-balanced transmission.

A parity refers to an odd parity for 8-bit parallel data excluding an enable signal. Parity bits of valid cells only are checked in the input unit of the ATM switch, and parity bits are assigned to valid cells only in...collect the fault information in the ASSWSH-A and to notify a higher order device (CC) of the fault information.

Figure 200 shows the fault **detection** procedure followed when a notification is made by the MSCN. Figure 201 shows the fault detection procedure followed when a status is autonomously notified of...

8/3,K/18 (Item 18 from file: 348)

DIALOG(R) File 348: EUROPEAN PATENTS

(c) 2003 European Patent Office. All rts. reserv.

00545839

Write overlap with overwrite prevention

Schreibuberlappung mit Verhinderung des Uberschreibens

Ecriture a chevauchement avec prevention de superposition d'ecriture PATENT ASSIGNEE:

SUN MICROSYSTEMS, INC., (1392730), 2550 Garcia Avenue, Mountain View, CA 94043, (US), (Proprietor designated states: all) INVENTOR:

Chesley, Gilman, 1010 Pelton Avenue, Santa Cruz, California 95060, (US) LEGAL REPRESENTATIVE:

Wombwell, Francis (46021), Potts, Kerr & Co. 15, Hamilton Square,

Birkenhead Merseyside L41 6BR, (GB)

PATENT (CC, No, Kind, Date): EP 547769 A1 930623 (Basic)

EP 547769 B1 991013

APPLICATION (CC, No, Date): EP 92310524 921118;

PRIORITY (CC, No, Date): US 809667 911218

DESIGNATED STATES: DE; FR; GB; IT; NL

INTERNATIONAL PATENT CLASS: G06F-009/38

ABSTRACT WORD COUNT: 143 NOTE:

Figure number on first page: 1

LANGUAGE (Publication, Procedural, Application): English; English; FULLTEXT AVAILABILITY:

Available Text Language Update Word Count CLAIMS B (English) 9941 780 CLAIMS B (German) 9941 717 (French) 9941 CLAIMS B 974 (English) 9941 SPEC B 3212 Total word count - document A 0 Total word count - document B 5683 Total word count - documents A + B 5683

...SPECIFICATION through two pipelines in the memory controller 16. Data which is to be read from the memory flows from the memory bus 24, through the error detection and correction module 70, through the data out queue 52, to the system bus 12. Data which is to be written to the memory, flows from the system bus 12, to the data-in queue 50, through multiplexor 72 to the memory bus 24. By providing two distinct data pipelines, the memory controller 16 allows for a degree of overlap in memory operations. In particular, a write operation can be overlapped over a preceding read operation. For...

8/3,K/20 (Item 20 from file: 348)
DIALOG(R)File 348:EUROPEAN PATENTS
(c) 2003 European Patent Office. All rts. reserv.

10480869

Integrated data link controller with synchronous link interface and asynchronous host processor interface

Integrierte Datenubertragungsstreckensteuerung mit synchroner Leitungsschnittstelle und asynchroner Host-Prozessor-Schnittstelle Dispositif integre de commande d'une voie de donnees avec interface synchrone de liaison et interface asynchrone avec le processeur hote PATENT ASSIGNEE:

International Business Machines Corporation, (200120), Old Orchard Road, Armonk, N.Y. 10504, (US), (applicant designated states: BE;CH;DE;ES;FR;GB;IT;LI;NL;SE)

INVENTOR:

Farrell, Joseph Kevin, 4713 Tortoise Shell Drive, Boca Raton, Florida 33487, (US)

Gordon, Jeffrey Scott, 5107 Woodmere Drive, No. 203 Centreville, Virginia 22020, (US)

Jenness, Robert V., 1499 West Royal Palm Road, Boca Raton, Florida 33486, (US)

Kuhl, Daniel C., 16416 Cherry Way, Delray Beach, Florida 33484, (US) Lee, Timothy Vincent, 1798 S.W. 11th Street, Boca Raton, Florida 33486, (US)

Parker, Tony Edwin, 1745 N.W. 4th Avenue. Unit No. 5, Boca Raton, Florida 33432-1545, (US)

LEGAL REPRESENTATIVE:

Burt, Roger James, Dr. (52152), IBM United Kingdom Limited Intellectual Property Department Hursley Park, Winchester Hampshire SO21 2JN, (GB) PATENT (CC, No, Kind, Date): EP 447054 A2 910918 (Basic)

EP 447054 A3 951025 EP 447054 B1 990107

APPLICATION (CC, No, Date): EP 91301499 910225;

PRIORITY (CC, No, Date): US 495810 900315

DESIGNATED STATES: BE; CH; DE; ES; FR; GB; IT; LI; NL; SE

INTERNATIONAL PATENT CLASS: H04L-029/06;

ABSTRACT WORD COUNT: 233

LANGUAGE (Publication, Procedural, Application): English; English; FULLTEXT AVAILABILITY:

Available Text Language Update Word Count

```
9901
                                       4873
       CLAIMS B (English)
       CLAIMS B
                           9901
                                       4464
                 (German)
       CLAIMS B
                           9901
                                       6004
                  (French)
                 (English) 9901
       SPEC B
                                      66251
Total word count - document A
                                          0
 Total word count - document B
                                      81592
 Total word count - documents A + B
                                      81592
  8/3,K/21
               (Item 21 from file: 348)
 DIALOG(R) File 348: EUROPEAN PATENTS
 (c) 2003 European Patent Office. All rts. reserv.
 00424595
 Apparatus and method for accessing a cyclic redundancy error check code
     generated in parallel.
 Gerat und Verfahren zur Realisierung eines zyklischen redundanten
     Parallel-Fehlerprufungskodes.
 Appareil et methode pour la realisation d'un code de verification d'erreur
     cyclique en parallele.
 PATENT ASSIGNEE:
   NATIONAL SEMICONDUCTOR CORPORATION, (262383), 2990 Semiconductor Drive,
     Santa Clara, CA. 95051-8090, (US), (applicant designated states:
     DE; FR; GB; IT)
 INVENTOR:
   Perloff, Ronald S., 14065 Willow Ranch Road, Poway, CA 92064, (CA)
 LEGAL REPRESENTATIVE:
   Sparing Rohl Henseler Patentanwalte European Patent Attorneys (100362),
     Rethelstrasse 123, W-4000 Dusseldorf 1, (DE)
 PATENT (CC, No, Kind, Date): EP 431416 A2 910612 (Basic)
                               EP 431416 A3 920429
 APPLICATION (CC, No, Date): EP 90122381 901123;
 PRIORITY (CC, No, Date): US 445964 891204
 DESIGNATED STATES: DE; FR; GB; IT
 INTERNATIONAL PATENT CLASS: H03M-013/00;
 ABSTRACT WORD COUNT: 213
 LANGUAGE (Publication, Procedural, Application): English; English; English
 FULLTEXT AVAILABILITY:
 Available Text Language
                            Update
                                      Word Count
       CLAIMS A (English) EPABF1
                                      1761
                                       7843
                (English) EPABF1
       SPEC A
                                       9604
 Total word count - document A
 Total word count - document B
                                         Ω
 Total word count - documents A + B
                                       9604
 ...CLAIMS the second storage elements as the system output signal; and
      J) means for iteratively utilizing Element I to transfer out the
       plurality of groups of error check code terms comprising the
              check code signal.
       error
      The system of Claim 5, wherein the means for selecting between the
       received data byte and the error check code terms in the last of
       the second storage elements is a multiplexor .
   7. The system of Claim 5, wherein the
  8/3,K/22
               (Item 22 from file: 348)
 DIALOG(R) File 348: EUROPEAN PATENTS
 (c) 2003 European Patent Office. All rts. reserv.
 00413007
```

Pipelined error checking and correction for cache memories Pipelinefehlerprufung und Korrektur fur Cache-Speicher Verification et correction d'erreur pipeline pour ante-memoires PATENT ASSIGNEE:

International Business Machines Corporation, (200120), Old Orchard Road, Armonk, N.Y. 10504, (US), (applicant designated states: DE;FR;GB) INVENTOR: Chao, Hu Herbert, 4 Stella Lane, Pleasantville, New York 10570, (US) Chang, Jung-Herng, 13275 Glasgow Court, Saratoga, California 95070, (US) LEGAL REPRESENTATIVE: Rach, Werner, Dr. et al (76871), IBM Deutschland Informationssysteme

GmbH, Patentwesen und Urheberrecht, 70548 Stuttgart, (DE) PATENT (CC, No, Kind, Date): EP 418457 A2 910327 (Basic)

EP 418457 A3 920318 EP 418457 B1 971001

APPLICATION (CC, No, Date): EP 90105210 900320;

TRIORITY (CC, No, Date): US 409362 890919

DESIGNATED STATES: DE; FR; GB

INTERNATIONAL PATENT CLASS: G06F-011/10;

ABSTRACT WORD COUNT: 170

LANGUAGE (Publication, Procedural, Application): English; English; FULLTEXT AVAILABILITY:

Word Count Available Text Language Update CLAIMS B (English) 9709W4 447 CLAIMS B (German) 9709W4 436 CLAIMS B (French) 9709W4 504 SPEC B (English) 9709W4 3161 Total word count - document A Total word count - document B 4548 Total word count - documents A + B 4548

- ...CLAIMS output with the check bits in the cache array (12) at an address corresponding to a content of said fourth register (34).
 - 2. The pipelined **error checking** and correcting cache memory as recited in claim 1 further comprising a first multiplexer (45) responsive to outputs from the cache array and the seventh...
- ...the same as said third register (33) following a store cycle, in which case the output of said seventh register (42) is selected by said multiplexer.
 - 3. A cache memory array as defined in claim 1 providing an effective two port memory array with the density of a single port array comprising:
 - an array of single port static random access memory cells (50, 51, 52, 53) connected...

8/3,K/23 (Item 23 from file: 348)

DIALOG(R) File 348: EUROPEAN PATENTS

(c) 2003 European Patent Office. All rts. reserv.

00410147

MEMORY CONTROL UNIT.

STEUEREINHEIT FUR DEN SPEICHER.

UNITE DE COMMANDE DE MEMOIRE.

PATENT ASSIGNEE:

WANG LABORATORIES, INC., (333561), One Industrial Avenue, M/S 014-B7D, Lowell, MA 01851, (US), (applicant designated states: BE;DE;FR;GB;NL) INVENTOR:

BECKER, Robert, D., 522 E. Groton Road, Shirley, MA 01464, (US) SCHWARTZ, Martin, J., 16 Rittenhouse Road, Worcester, MA 01602, (US) CURCUR, Kevin, H., 128 Lowell Road, Pepperell, MA 01463, (US) ENG, Kenneth, J., 28 Mile Brook Road, West Bridgewater, MA 02379, (US) LEGAL REPRESENTATIVE:

Behrens, Dieter, Dr.-Ing. et al (1701), Wuesthoff & Wuesthoff Patent- und Rechtsanwalte Schweigerstrasse 2, W-8000 Munchen 90, (DE)

PATENT (CC, No, Kind, Date): EP 425550 A1 910508 (Basic)

EP 425550 A1 920325

WO 9000284 900111

APPLICATION (CC, No, Date): EP 89908327 890622; WO 89US2721 890622 PRIORITY (CC, No, Date): US 213395 880630

DESIGNATED STATES: BE; DE; FR; GB; NL

INTERNATIONAL PATENT CLASS: G06F-013/00;

NOTE:

```
No A-document published by EPO
LANGUAGE (Publication, Procedural, Application): English; English; English
FULLTEXT AVAILABILITY:
Available Text Language
                          Update
                                    Word Count
     CLAIMS B (English) EPBBF2
                                    1389
               (German) EPBBF2
     CLAIMS B
                                    1064
               (French) EPBBF2
     CLAIMS B
                                    1677
               (English) EPBBF2
      SPEC B
                                     8478
Total word count - document A
Total word count - document B
                                    12608
Total word count - documents A + B
                                   12608
... SPECIFICATION when an address is stored and is reset when the
  corresponding write operation is accomplished. One of the write addresses
  is selected by 8 input multiplexer 134 which supplies the write address
  to the memory address multiplexer 96. Other inputs to the memory
  address multiplexer 96 include the refresh address from the refresh
  address counter 98 and a read address from a four input read address
 multiplexer 134. Address parity logic 136 detects parity
 which may occur on the input read and write addresses. The output of
 memory address multiplexer 96 is latched by a memory address output latch
             (Item 25 from file: 348)
 8/3,K/25
DIALOG(R) File 348: EUROPEAN PATENTS
(c) 2003 European Patent Office. All rts. reserv.
00367283
Data error detection and correction
Datenfehler-Detektion und -Korrektur
Detection et correction d'erreurs dans les donnees
PATENT ASSIGNEE:
  International Business Machines Corporation, (200120), Old Orchard Road,
    Armonk, N.Y. 10504, (US), (applicant designated states: DE; FR; GB)
INVENTOR:
  Grimmes, Dwight W., 4502 N.W. 5th Avenue, Boca Raton Florida 33431, (US)
LEGAL REPRESENTATIVE:
  Burt, Roger James, Dr. (52152), IBM United Kingdom Limited Intellectual
    Property Department Hursley Park, Winchester Hampshire SO21 2JN, (GB)
PATENT (CC, No, Kind, Date): EP 352937 A2 900131 (Basic)
                             EP 352937 A3
                                           911204
                             EP 352937 B1
                                            960508
APPLICATION (CC, No, Date):
                             EP 89307076 890712;
PRIORITY (CC, No, Date): US 225976 880729
DESIGNATED STATES: DE; FR; GB
INTERNATIONAL PATENT CLASS: H03M-013/00; H03M-005/16; H03M-005/20;
  H03K-019/00;
ABSTRACT WORD COUNT: 129
LANGUAGE (Publication, Procedural, Application): English; English
FULLTEXT AVAILABILITY:
                          Update
                                    Word Count
Available Text Language
      CLAIMS A (English) EPABF1
                                     3605
      CLAIMS B (English) EPAB96
                                     3729
     CLAIMS B (German) EPAB96
                                     3084
      CLAIMS B (French) EPAB.96
                                     4061
                                    17168
      SPEC A (English) EPABF1
      SPEC B
              (English) EPAB96
                                    16881
Total word count - document A
                                    20774
Total word count - document B
                                    27755
Total word count - documents A + B
                                    48529
...CLAIMS device.
     15. A system as claimed in any of claims 9 to 14, wherein the data
```

corrector includes:

a multiplexor unit connected to the single error detector and to an incrementor unit and to a decrementor unit and to the second

trinary storage device;

a decrementor unit connected to the **multiplexor** unit and to the **second** trinary **storage** device;

an incrementor unit connected to the multiplexor unit and to the second trinary storage device;

the decrementor unit receiving the data tryte from the second trinary storage device and decrementing each trit of the data tryte one trinary level;

the incrementor unit receiving the data tryte from the **second** trinary **storage** device and incrementing each trit of the data tryte one trinary level;

the **multiplexor** unit receiving: each incremented trit from the incrementor unit, each decremented trit from the decrementor unit, each data tryte from the **second** trinary **storage** device, and each of the output signals from the single **error detector**;

wherein the multiplexor unit under control of the output signals from the single error detector selects either the incremented trit, or the decremented trit, or the data trit for each trit position of the tryte for gating the selected trits...

- ...CLAIMS 15. A system as claimed in any of claims 9 to 14, wherein the data corrector comprises:
 - a multiplexor unit (570) connected to the single **error detector** and to an incrementor unit and to a decrementor unit and to the second trinary storage device;
 - a decrementor unit (540) connected to the **multiplexor** unit and to the **second** trinary **storage** device;
 - an incrementor unit (520) connected to the **multiplexor** unit and to the **second** trinary **storage** device;
 - the decrementor unit receiving the data tryte from the second trinary storage device and decrementing each trit of the data tryte one trinary level;
 - the incrementor unit receiving the data tryte from the **second** trinary **storage** device and incrementing each trit of the data tryte one trinary level;
 - the multiplexor unit receiving: each incremented trit from the incrementor unit, each decremented trit from the decrementor unit, each data tryte from the second trinary storage device, and each of the output signals from the single error detector;
 - wherein the multiplexor unit under control of the output signals from the single error detector selects either the incremented trit, or the decremented trit, or the data trit for each trit position of the tryte for gating the selected trits...

8/3,K/27 (Item 27 from file: 348)

DIALOG(R) File 348: EUROPEAN PATENTS

(c) 2003 European Patent Office. All rts. reserv.

00341188

Storage subsystem including an error correcting cache.

Speichersubsystem mit Fehlerkorrekturcache-Speicher.

Sous-système de memoire a antememoire de correction d'erreur.

PATENT ASSIGNEE:

International Business Machines Corporation, (200120), Old Orchard Road, Armonk, N.Y. 10504, (US), (applicant designated states: DE;FR;GB) INVENTOR:

Dutton, Patrick Francis, 20 Azalea Drive, Apalachin New York 13732, (US) Gregor, Steven Lee, 628 Church Street, Endicott New York 13760, (US) Li, Hehching Harry, 39 Cooventry Road, Endicott New York 13760, (US) LEGAL REPRESENTATIVE:

Schafer, Wolfgang, Dipl.-Ing. (62021), IBM Deutschland Informationssysteme GmbH Patentwesen und Urheberrecht, D-70548 Stuttgart, (DE)

PATENT (CC, No, Kind, Date): EP 348616 A2 900103 (Basic)

EP 348616 A3 910313 EP 348616 B1 951011

APPLICATION (CC, No, Date): EP 89106935 890418;

PRIORITY (CC, No, Date): US 212432 880628 DESIGNATED STATES: DE; FR; GB INTERNATIONAL PATENT CLASS: G06F-012/08; G06F-011/10; ABSTRACT WORD COUNT: 108 LANGUAGE (Publication, Procedural, Application): English; English; English FULLTEXT AVAILABILITY: Update Word Count Available Text Language CLAIMS A (English) EPABF1 638 CLAIMS B (English) EPAB95 558 (German) EPAB95 CLAIMS B 516 (French) EPAB95 CLAIMS B 654 (English) EPABF1 SPEC A 77953 (English) EPAB95 SPEC B 77946 Total word count - document A

Total word count - document B

Total word count - documents A + B 158274

...SPECIFICATION command and address to processor storage and selecting the memory cards in the desired port. Data are transferred 16 bytes at a time across a multiplexed command/address and data interface with the L3 memory port. Eight transfers from L3 memory are required to obtain the 128-byte L2 cache line. The sequence of quadword transfers starts with the quadword containing the double-word requested by...

...appropriate processor inpage complete to L2 control. During the data transfers to L2 cache, address/key monitors the L3 uncorrectable error lines. Should an uncorrectable **error** be **detected** during the inpage process several functions are performed. With each double-word transfer to the L1 cache, an L3 uncorrectable error signal is transferred simultaneously...

...storage uncorrectable error indication for a given inpage request, the first one detected by address/key. The double-word address of the first storage uncorrectable **error detected** by address/key is recorded for the requesting

8/3,K/28 (Item 28 from file: 348)
DIALOG(R)File 348:EUROPEAN PATENTS
(c) 2003 European Patent Office. All rts. reserv.

00312324

Self-testing memory arrangement and method. Selbstprufendes Speichersystem und Methode. Dispositif et methode de memoire auto-testante. PATENT ASSIGNEE:

DIGITAL EQUIPMENT CORPORATION, (313080), 146 Main Street, Maynard, MA 01754, (US), (applicant designated states: DE;FR;GB)
NVENTOR:

Lipcon, Jesse B., 23 Deerfoot Trail, Harvard Massachusetts 01451, (US)
Maskas, Barry A., 40-10 Royal Crest Drive, Marlboro Massachusetts 01752,
 (US)

Morgan, David K., 45 Teresa Road, Hopkington Massachusetts 01748, (US) LEGAL REPRESENTATIVE:

Goodman, Christopher et al (31122), Eric Potter & Clarkson St. Mary's Court St. Mary's Gate, Nottingham NG1 1LE, (GB)

PATENT (CC, No, Kind, Date): EP 292206 A1 881123 (Basic)

EP 292206 B1 930929

APPLICATION (CC, No, Date): EP 88304331 880513;

PRIORITY (CC, No, Date): US 49812 870514

DESIGNATED STATES: DE; FR; GB

INTERNATIONAL PATENT CLASS: G11C-029/00;

ABSTRACT WORD COUNT: 56

LANGUAGE (Publication, Procedural, Application): English; English; English FULLTEXT AVAILABILITY:

Available Text Language Update Word Count CLAIMS B (English) EPBBF1 2232

```
CLAIMS B
                (German) EPBBF1
       CLAIMS B
                 (French) EPBBF1
                                      1215
       SPEC B
                (English) EPBBF1
                                      9124
 Total word count - document A
Total word count - document B
                                     13469
 Total word count - documents A + B
```

...SPECIFICATION of the bank latches 510, 515, 520 or 525, and therefore, the contents of the corresponding memory locations stored in those latches, differ from the contents of memory latch 500, which contains the contents at the corresponding location of bank 0 of board 1. In the preferred embodiment, counter 560 is only a seven-bit counter. If there are more than 2 (sup 7) errors , then an overflow (OV) bit is

In the preferred embodiment of this invention, memory board 70 is implemented as a ten-bit slice, and...

...the highest order ten lines of memory data bus 65, are stored in register 227 and read from that register by CPU 20 in a separate memory read instruction.

The output of counter 560 is an input into the test/sig multiplexer 175 and can be output onto memory data bus 65 for input into CPU 10 at the end of the testing procedure. Preferably, this occurs during the first read operation after the diagnostic testing operation. Specifically, when CPU 20 finishes a test, it changes the contents of register 228 which deasserts lines 0, 10, 20, and 30 of memory data bus 65. In response, test control logic 190 deasserts the TEST...

8/3,K/34 (Item 34 from file: 348) DIALOG(R) File 348: EUROPEAN PATENTS (c) 2003 European Patent Office. All rts. reserv.

00264212

Method for diagnosing and testing an interface unit. Verfahren zur Diagnose und Prufung eines Schnittstellenbausteins. Methode pour diagnostiquer et tester un ensemble d'interface. PATENT ASSIGNEE:

Siemens Aktiengesellschaft, (200520), Wittelsbacherplatz 2, W-8000 Munchen 2, (DE), (applicant designated states: AT; BE; CH; DE; FR; GB; IT; LI; NL; SE)

INVENTOR:

Steis, Bruno, Dipl.-Ing., Grosshadernerstrasse 25, W-8000 Munchen 70, (DE)

Jugel, Alfred, Priessnitzweg 13, W-8192 Geretsried, (DE)

Martin, Horst, Dipl.-Phys., Simmerlein-Platz 11, W-8000 Munchen 50, (DE) PATENT (CC, No, Kind, Date): EP 274653 A2 880720 (Basic)

EP 274653 A3 EP 274653

APPLICATION (CC, No, Date): EP 87117979 871204;

PRIORITY (CC, No, Date): DE 3643099 861217

DESIGNATED STATES: AT; BE; CH; DE; FR; GB; IT; LI; NL; SE

INTERNATIONAL PATENT CLASS: H04M-003/24; H04Q-011/04;

TRANSLATED ABSTRACT WORD COUNT:

ABSTRACT WORD COUNT: 70

LANGUAGE (Publication, Procedural, Application): German; German; German FULLTEXT AVAILABILITY:

Availa	able T	'ext	Language	Update	Word Count			
	CLAIM	IS B	(English)	EPBBF1	443			
	CLAIM	1S B	(German)	EPBBF1	334			
	CLAIM	IS B	(French)	EPBBF1	507			
	SPEC	В	(German)	EPBBF1	1815			
Total	word	0						
Total	word	3099						
Total word count - documents A + B					3099			

...CLAIMS B1

^{1.} Method for diagnosing and testing an interface unit for connecting a

PCM transmission link of a digital time-division multiplex telecommunication system to an exchange in a telecommunication system, which, in addition to other components, exhibits a speech memory for adapting the timing of the pulse frame formed on the transmission link to the pulse frame on which the operation of the exchange is...

...with a parity bit field related either in each case to a channel-individual memory cell and after a reading-out is subjected to a parity check (U-SM), or, under control by a higher-priority control system of the exchange, after a switching-related blocking of the relevant channel, a bit...

...of the interface unit is nondestructively read out and is in each case compared with a nominal information, and in that, for the purpose of error locating and for checking the interface unit, optional test loops comprising different components of the interface unit are formed under initiation by the higher-priority control system before operation is started in the case of proper operation of the interface unit which was interrupted or had not yet been started, a parity check covering the content of two pulse frames being performed in the case of the test loop used for checking the speech memory. ...

8/3,K/35 (Item 35 from file: 348)
DIALOG(R)File 348:EUROPEAN PATENTS
(c) 2003 European Patent Office. All rts. reserv.

00259475

Fault tolerant computer achitecture.

Fehlertolerante Rechnerarchitektur.

Architecture de calculateur tolerant les fautes.

PATENT ASSIGNEE:

BULL HN INFORMATION SYSTEMS ITALIA S.p.A., (284245), Via Martiri d'Italia 3, I-10014 Caluso (Torino), (IT), (applicant designated states: DE;FR;GB)

INVENTOR:

Tiziano, Maccianti, Via Pascoli 5, I-20010 Pregnana Milanese, (IT) Luciano, Raimondi, Via Marghera 3, I-20149 Milano, (IT) LEGAL REPRESENTATIVE:

Falcetti, Carlo et al (42244), Jacobacci, Casetta & Perani S.p.A, Via Visconti di Modrone, 7, I-20122 Milano, (IT)

PATENT (CC, No, Kind, Date): EP 260584 A2 880323 (Basic)

EP 260584 A3 900509 EP 260584 B1 930804

APPLICATION (CC, No, Date): EP 87113151 870909;

PRIORITY (CC, No, Date): IT 8621727 860917

DESIGNATED STATES: DE; FR; GB

INTERNATIONAL PATENT CLASS: G06F-011/16; G06F-011/26;

ABSTRACT WORD COUNT: 160

LANGUAGE (Publication, Procedural, Application): English; English; English FULLTEXT AVAILABILITY:

Available Text Language Update Word Count CLAIMS B (English) EPBBF1 596 CLAIMS B (German) EPBBF1 578 CLAIMS B (French) EPBBF1 646 SPEC B (English) EPBBF1 7244 Total word count - document A 0 Total word count - document B 9064 Total word count - documents A + B

... SPECIFICATION data" leads of system bus BUS B.

The four "parity bit" leads of BUS B (channel 16) are connected to an input set of a multiplexer 25.

A second input set of multiplexer 25 receives the parity bits in output from local memory 13.

Multiplexer 25 selectively transfers to output channel CK the signals received at one of the input sets.

Channel PM2B0:31 is connected to 32 inputs of a parity bit generator/checker CK GEN 26 .

Other four inputs of CK GEN 16 are connected to channel CK. When generator 26 works as a parity generator, it provides in output for each...

8/3,K/40 (Item 4 from file: 349)
DIALOG(R)File 349:PCT FULLTEXT
(c) 2003 WIPO/Univentio. All rts. reserv.

00827955 **Image available**

PROCESSOR HAVING REPLAY ARCHITECTURE WITH FAST AND SLOW REPLAY PATHS
PROCESSEUR A ARCHITECTURE DE REEXECUTION COMPORTANT DES CHEMINS DE
REEXECUTION RAPIDES ET LENTS

Patent Applicant/Assignee:

INTEL CORPORATION, 2200 Mission College Blvd., Santa Clara, CA 95052, US,
 US (Residence), US (Nationality), (For all designated states except:
 US)

Patent Applicant/Inventor:

UPTON Michael D, 1410 NW 24th Avenue, Portland, OR 97210, US, US (Residence), US (Nationality), (Designated only for: US)

SAGER David A, 9540 N.W. Skyview Drive, Portland, OR 97231, US, US (Residence), US (Nationality), (Designated only for: US)

BOGGS Darrell D, 2200 S.W. 195th Avenue, Aloha, OR 97006, US, US

(Residence), US (Nationality), (Designated only for: US)

HINTON Glenn J, 6130 N.W. 185th Avenue, Portland, OR 97229, US, US (Residence), US (Nationality), (Designated only for: US)

Legal Representative:

MALLIE Michael J (et al) (agent), Blakely, Sokoloff, Taylor & Zafman LLP, 12400 Wilshire Boulevard, 7th Floor, Los Angeles, CA 90025, US,

Patent and Priority Information (Country, Number, Date):

Patent: WO 200161480 A1 20010823 (WO 0161480)

Application: WO 2000US35590 20001229 (PCT/WO US0035590)

Priority Application: US 2000503853 20000214

Designated States: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

(EP) AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

(OA) BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

(AP) GH GM KE LS MW MZ SD SL SZ TZ UG ZW

(EA) AM AZ BY KG KZ MD RU TJ TM

Publication Language: English Filing Language: English

Fulltext Word Count: 6151

Fulltext Availability: Detailed Description

Detailed Description

... to be replayed from the first checker 545, another input instruction to be replayed ftorn the second checker 555, and also a manufactured instruction from another unit (e.g., the memory control or execution unit). In one embodiment, the multiplexor 521 gives a low priority to instructions coming from the instruction cache, a medium priority to replay instructions coming ...a high priority to replay instructions coming from the second checker, and a highest priority to manufactured instructions.

As mentioned above, in one embodiment, the **error** conditions **detected** by the first checker 545 can be a subset of the error conditions detected by the second checker 555. In this case, the second checker...

8/3,K/41 (Item 5 from file: 349)
DIALOG(R)File 349:PCT FULLTEXT
(c) 2003 WIPO/Univentio. All rts. reserv.

Image available PROCESS CONTROL SYSTEM WITH INTEGRATED SAFETY CONTROL SYSTEM SYSTEME DE COMMANDE DE PROCESSUS, A UNITE DE COMMANDE DE SECURITE INTEGREE Patent Applicant/Assignee: THE DOW CHEMICAL COMPANY, 2030 Dow Center, Midland, MI 48674, US, US (Residence), US (Nationality) Inventor(s): SEDERLUND Edward R, 4710 Ashland, Saginaw, MI 48603, US QUELLE Ernst W, Schoelischer Hochfeld 43, D-21682 Stade, DE BEZECNY Helmut A, Zum Horn 7, D-21709 Duedenbuettel, DE KANSE Johannes C, Tuinstraat 4, NL-4521 BR Biervliet, NL LINDESMITH Robert J, 870 South Patterson Road, Midland, MI 48640-8971, US LINDESMITH Robert J, 870 South Patterson Road, Midland, MI 48640-8971, US CLEMENT John L, 1506 Whitehall, Midland, MI 48642, US GRINWIS Donald, 2201 Burlington, Midland, MI 48642, US BACA Eloy Jr, 306 Newport Avenue, Attleboro, MA 02703, US DUNLAP Dennis J, 32 Draper Way, Attleboro, MA 02703, US FRANK Brent M, 27 Russet Hill Road, Franklin, MA 02038, US TIBAZARWA Augustine K, Unit #119, 166 Quincy Shore Drive, Quincy, MA 02171, US Legal Representative: SCHULTZ Dale H (agent), Intellectual Property, P.O. Box 1967, Midland, MI 48641-1967, US, Patent and Priority Information (Country, Number, Date): WO 200065415 A2-A3 20001102 (WO 0065415) Patent: WO 2000US10433 20000418 (PCT/WO US0010433) Application: Priority Application: US 99130627 19990422; US 2000482386 20000112 Designated States: AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ YU ZA ZW (EP) AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE (OA) BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG (AP) GH GM KE LS MW SD SL SZ TZ UG ZW (EA) AM AZ BY KG KZ MD RU TJ TM Publication Language: English Filing Language: English Fulltext Word Count: 65721

Fulltext Availability: Detailed Description

Detailed Description

... Several requirements in the certification process for a safety shutdown system under SIL3 require the detection of stuck buffered outputs, decoder failure, selection of unintended multiplexing circuits and other like failures that cause the memory access errors. CPU 12 can not perform these tasks alone; however, with the benefit of Data And Data Shadow 1 5 Memory 14, CPU 12...

...and affiliated determinism to assure a system appropriately predictable in its operation. Safety certification requires that any Data And Data Shadow Memory 14 memory access error is detected. Such an error is generated due to failure in memory components, buffers, or PLD decoding. If an error occurs, the onboard error detection alerts Watchdog 20 603 to take appropriate action via error line 1072. The error detection is to insure that each control computer 1 0 memory read is correct and that wrong data is not sent to the control computer 1...

8/3,K/44 (Item 8 from file: 349)
DIALOG(R)File 349:PCT FULLTEXT
(c) 2003 WIPO/Univentio. All rts. reserv.

00190375

SYSTEM FOR MEMORY DATA INTEGRITY
SYSTEME DE CONSERVATION DE L'INTEGRITE DE DONNEES EN MEMOIRE

```
Patent Applicant/Assignee:
 UNISYS CORPORATION,
Inventor(s):
  JEPPESEN James Henry III,
 WHITTAKER Bruce Ernest,
Patent and Priority Information (Country, Number, Date):
                        WO 9107722 A1 19910530
  Patent:
  Application:
                        WO 90US6855 19901121 (PCT/WO US9006855)
  Priority Application: US 89821 19891122
Designated States: AT BE CH DE DK ES FR GB GR IT JP LU NL SE
Publication Language: English
Fulltext Word Count: 5890
Fulltext Availability:
  Claims
Claim
... structure of claim I which includes:
  (a) selection means for selecting odd or even
  parity operation.
  3 A memory structure storing data words and having
           check functionalit ; comprising:
  (a) a first plurality of uniform-sized memory
  modules connected in lateral parallel
  configuration wherein each module is
  connected to a first...
...of claim 4 wherein said auxiliary
  memory module includes:
  (a) an output parity line for each one of said
  memory modules in said first and second
  plurality of memory modules.
  The structure of claim 5 wherein said accessing
  means includes:
  (a) multiplexer means for selecting which one
  of said output pariry lines will be
  connected to provide the parity bit output
  signal.
  - 23
  7* The structure of...
...said final
  output word is composed of twice the number of bits
  residing in each accessed data word.
  The structure of claim 3which includes:
                checking logic means for comparing
  (a) parity
  the final output data word parity with the
  appropriately related parity bits to sense
  whether a parity error has occurred.
                 checking system for checking the
  1 0 A parity
  integrity of data accessed from a ROM/PROM memory
  structure, comprising:
  (a) a memory structure having a plurality of
  uniformly sized memory chips where...PROM parity chip
  where each parity bit selected is related
  to the data word on each one of said common
  output group data buses;
  (d) parity logic means for checking each one of
  said k parity bits against the calculated
  parity of each related data word.
  ill The structure of claim 10 where IN" is...
```