離散数学

佐藤謙成

April 13, 2025

写像

写像

2つの集合 A から B への関係のうち、集合 A の各要素に、それぞれ B の要素がただ一つだけ対応している関係を A から B への写像という。この時、集合 A を定義域と呼び、集合 B を値域、像と呼ぶ、B が A から B への写像ならば、

$$f:A\to B$$

と書く、ここで、a の対応先が b のとき b=f(a) と書く、また、関数 f の要素でもあるので順序対 (a,b) と書くことができる.

恒等写像

A を任意の集合とし, A の各要素 a に a を対応させれば, これも A から A への写像となる. この写像を恒等写像という.

単射

Aから B への写像を f とする. 定義域 A の異なる要素が異なる像を持つならば, 写像 f は単射という. $a_1,a_2\in A$ について

 $a_1 \neq a_2$ ならば $f(a_1) \neq f(a_2)$

全射

$$A$$
から B への写像を f とする. 値域 B の各要素が A のある要素の像となっている時, 写像 f は全射という.

 $\forall b \in B, \exists a \in A, b = f(a)$

(1)

全単射

f が単射かつ全射のとき、全単射という. 1 対 1 対応という.

逆写像

写像 $f:A\to B$ の逆関係 $f^{-1}:B\to A$ が写像となるための必要十分条件は, f が A から B への全単射であることである. またそのときの f^{-1} は B から A への全単射となる. これを f の逆写像 という.

写像の合成

A,B,C を 3 つの集合とし、A から B への写像を f, B から C への写像を g とする. ここで、A の 各元 a に対して、f による像として B の元 f(a) が定まり、さらに f(a) の g による像として C の元、g(f(a)) が定まるので、すなわち a に g(f(a)) を対応させる A から C への写像 $h:A\to C$ を考えることができる.この写像 h を f と g との合成写像といい、 $g\circ f$ または (gf) で表す.

合成写像の性質

A,B,C を 3 つの集合とし, $A\to B$ への写像を f , B to $\!C$ への写像を g とすると

- \bullet f と g が共に全射なら, $g \circ f$ は全射である.
- ② f と g が共に単射なら, $g \circ f$ は単射である.
- 3f と g が共に全単射なら, $g \circ f$ は全単射である.

合成写像の性質.2

複数の写像を合成する場合、合成した結果は順番に依存しない、つまり任意の写像 f,g,h について、

$$(h \circ g) \circ f = h \circ (g \circ f)$$

鳩の巣原理 (部屋割り論法)

U,V が有限集合で |U|>|V| のとき,U から V への単射 a は存在しない. 言い換えると,n+1 個以上のアイテムを n 個の箱に入れる場合、少なくとも 1 つの箱には 2 個以上のアイテムが入る

a始集合の任意の 2 つの要素が終集合の要素との関係で重複しないこと

鳩の巣箱の原理.2

問題例

6個の異なる正の整数をどのように選んでも、それらの中に、差が5で割り切れる2つの数が存在する.

鳩の巣箱の原理の証明例

 \mathbb{Z}^+ の部分集合で要素数が 6 となる集合 U を任意に取る。集合 $V=\{0,1,2,3,4\}$ とし、U から V への写像 f を $f(x)=x \mod 5$ と定める。

|U|>|V| なので、鳩の巣原理より、V の要素 y で $|f^{-1}[\{y\}]|\geq 2$ となる要素が存在する. そのような悪事な

な要素を y₀ とする.

 $f^{-1}[\{y_0\}]$ から異なる要素 x_1 と x_2 を任意に取る。逆像の定義と f の定義より、 $f(x_1)=f(x_2)$ 、即ち、 $x_1\mod 5=x_2\mod 5$ が成り立つ。 \mod の定義より、 $x_1-5\lfloor x_1/5\rfloor=x_2-5\lfloor x_2/5\rfloor$ が成り立つ。

 \mathbb{Z} の要素について、 $x_1-x_2=5(\lfloor x_1/5\rfloor-\lfloor x_2/5\rfloor)$ が成り立つ。即ち、 x_1 と x_2 の差は 5 で割り切れる。ここで、U は任意の集合であったので、任意の異なる 6 個の正の整数からなる集合に対して、差が 5 で割り切れる 2 つの数が存在する。