AC297r Fall 2019 Milestone 3

Optimal Real-time Scheduling for Black Hole Imaging

EHT Group: Queena, Shu, Yiming

Advisor: Cecilia

Previously...

Problem Statement

We are going to build a model that can:

- 1. In total, choose 5 days from a 10-day window
- 2. On each day, determine the optimal strategy for future remaining days
- 3. If possible, provide a confidence level on its suggestion
- 4. Also provide the second optimal strategy

Previously... Data

- Every 6 hours, we get 16-day atmosphere forecast from GFS.
- Tau_225(absorption directly above head, the smaller the better)

Previously...

Model Design & Baseline Model

Reward Function

2. Uncertainty Measurements

3. Optimization

4. Model Evaluation

 f_i reward of a single telescope i.

$$F(f_1,\ldots,f_n)$$

Total reward for
all telescopes

1. Reward Function

$$f_i(\tau 225) = -\tau 225$$

$$F = \sum_{i}^{N_{telescope}} w_i f_i$$

where w_i is the weight for each telescope (total GBytes data sent from the telescope used by EHT).

2. Uncertainty Measurement:

None

Reward Function

• f_i : reward of a single telescope i

$$f_i(au_{225}) = - au_{225}, -\log(au_{225}), \exp(- au_{225}), \dots$$

• $F(f_1,\ldots,f_n)$: total reward of all telescopes on a given date

$$F = \sum r_i^2 f_i$$
 where r is the radius of each telescope

$$F = [f_1, \ldots, f_n] D[f_1, \ldots, f_n]^T$$
 where D is the distance matrix

Model Design

Reward Function

2. Uncertainty Measurements

3. Optimization

4. Model Evaluation

 f_i reward of a single telescope i.

 $F(f_i,\ldots,f_n)$ Total rewards for all telescopes Uncertainty of atmosphere forecast (how far in the future)

Uncertainty associated with a specific date

Measure performance based on real weather afterwards.

Compare with:

- 1. Baseline Model
- 2. Random path
- 3. Best path afterwards

Uncertainty of atmosphere forecast: only depends on how far in the future the weather forecast model is predicting

Method 1: discount factor

Day1	Day2	Day3	Day4	Day5	Day6	Day7	Day8	Day9	Day10
19.03	13.93	16.24	16.38	18.80	12.99	17.02	19.03	18.81	14.06
×	(1-r)	$(1-r)^2$	$(1 - r)^3$	$(1-r)^4$	$(1-r)^5$	$(1-r)^6$	$(1-r)^7$	$(1-r)^8$	$(1-r)^9$

• Method 2: constant penalty term

$$F_{2}$$
 F_{3} F_{4}
 $-c_{2}$ $-c_{3}$
 F_{1} F_{2} F_{3}

$$F_1 - c_2 + F_3$$

$$-c_1 + F_2 + F_3$$

Method 3: RMSE forecast penalty

For a single telescope i on day d:

$$f_{i,\mathbf{d}} * e^{ ext{penalty_level*RMSE}_{[i][t]}}$$

t: how far is day d from the current

Design Choice of Exponential:

- penalty_level = 0 -> penalty term = 1
- exaggerate the difference between small and large RMSE when penalty_level is large

Incorporating uncertainty associated with a specific date

Incorporating uncertainty associated with a specific date

For a single telescope i on day d:

$$latest(f_{i,d}) \times e^{penalty_term*RMSE_{i,d}}$$

• Method 2: Sampling from Distribution

For a single telescope i on day d:

reward $\sim \mathbb{N}(latest(f_{i,d}), RMSE_{i,d})$

Method 2: Sampling from Distribution

For a single telescope i on day d:

True Reward_{i,d} ~ $N(mean(f_{i,d}), std^2(f_{i,d}))$

Algorithm:

- 1. Sample **N** samples for True Reward_{i,d}
- 2. Perform optimization for the **N** trails and generated path w.r.t each trail
- 3. Provide the most frequent path as the final suggested path, and use its frequency as our level of confidence.

Model Evaluation

Choose 5 days From Oct.25 - Nov.03, 2019

Model	Oct 25	Oct 26	Oct 27	Oct 28	Oct 29	Oct 30	Oct 31	Nov 1	Nov 2	Nov 3	Final Score
Ground-Truth Best											0.59
Random Pick											0.42
Baseline											0.57
Discount Factor											0.59
RMSE forecast penalty											0.59
STD of Date											0.57
Sampling Distribution	0.93	0.82	0.72	0.88	0.96	0.99					0.57

Model Next Steps

ı. data, Data, DATA!

2. Detailed setting & Possible Combinations

Choose 5 days From Oct.25 - Nov.03, 2019

Model	Oct 25	Oct 26	Oct 27	Oct 28	Oct 29	Oct 30	Oct 31	Nov 1	Nov 2	Nov 3	Total Reward
Ground-Truth Best											0.59
Random Pick											0.42
Baseline											0.57
Discount Factor											0.59
RMSE forecast penalty											0.59
STD of Date											0.57
Sampling Distribution	0.93	0.82	0.72	0.88	0.96	0.99					0.57

Challenges & Next Steps

What tells:

- Uncertainty can help us adjust to a better path
- Different models have different behaviors

Doesn't tell:

(can't compare between models)

- The case is too special...
- Overfit

Next Steps for Modeling:

- data, Data, DATA!
- 2. Detailed setting & Possible Combinations

Final Deliverable

Input

Must Enter

- 1. Atmosphere Prediction
- Window Info: Start/end date, # days to trigger

Could Change

- 1. Telescope Info: schedule, availability, weight
- 2. Reward Function Formula
- 3. Penalty Term
- 4. Baseline length matrix

••••

Output

- 1. Suggested Optimal Path (with level of confidence)
- 2. Second Optimal Path* (with level of confidence)
- 3. Explanation of our suggestion: The reward for each telescope; Visualization of the path;

....

Software Organization

```
scheduling_tool\
     scheduling_tool\
          test\
                __init__.py
                test_schedule.py
          user_interface.py
          read_data.py
           processing_data.py
           make_suggestions.py
           Run.py
           setup.py
           requirements.txt
          LICENSE
           README.md
```

GUI Showcase

Challenges & Next Steps

What tells:

- Uncertainty can help us adjust to a better path
- Different models have different behaviors

Doesn't tell:

(can't compare between models)

- The case is too special...
- Overfit

• Method 3: RMSE forecast penalty

For a single telescope i on day d:

$$f_{i,\mathbf{d}} * e^{ ext{penalty_level*RMSE}_{[i][t]}}$$

t: how far is day d from the current