Contrastes de hipótesis. Enfoque de Neyman-Pearson

Ricardo Alberich, Juan Gabriel Gomila y Arnau Mir

Introducción

• En esta presentación vamos a introducir los contrastes de hipótesis desde una perspectiva más amplia.

Introducción

- En esta presentación vamos a introducir los contrastes de hipótesis desde una perspectiva más amplia.
- Esta nueva perspectiva nos permitirá introducir la clasificación en machine learning y detección en procesamiento de señales.

Introducción

- En esta presentación vamos a introducir los contrastes de hipótesis desde una perspectiva más amplia.
- Esta nueva perspectiva nos permitirá introducir la clasificación en machine learning y detección en procesamiento de señales.
- Este nuevo enfoque se llama enfoque de Neyman-Pearson.

 En los contrastes de hipótesis paramétricos introducidos durante el curso, nos concentramos en la hipótesis nula H₀.

- En los contrastes de hipótesis paramétricos introducidos durante el curso, nos concentramos en la hipótesis nula H₀.
- Tanto si usamos los z-test como los t-test, en el cálculo del p-valor, se usaba la distribución suponiendo que la hipótesis nula H₀ es cierta.

• Para fijar ideas, suponiendo que el contraste considerado era sobre la media μ , y el contraste era de la forma:

$$H_0: \mu = \mu_0, H_1: \mu \neq (<,>)\mu_0,$$

donde hemos considerados los tres casos de hipótesis alternativa H_1 , suponiendo que la desviación típica σ de la población es conocida, suponemos que la distribución del estadístico de contraste $Z=\frac{\overline{X}-\mu_0}{\frac{\sigma}{\sqrt{n}}}$ es una normal estándar o N(0,1) suponiendo que la hipótesis nula H_0 es cierta o que $\mu=\mu_0$

• La suposición anterior es equivalente a suponer que la distribución de la media muestral \overline{X} es normal de parámetros $\mu_{\overline{X}} = \mu_0$ y $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$: $\overline{X} = N\left(\mu_0, \frac{\sigma}{\sqrt{n}}\right)$.

- La suposición anterior es equivalente a suponer que la distribución de la media muestral \overline{X} es normal de parámetros $\mu_{\overline{X}} = \mu_0$ y $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$: $\overline{X} = N\left(\mu_0, \frac{\sigma}{\sqrt{n}}\right)$.
- Recordemos que para aceptar o rechazar la hipótesis nula H_0 , comparamos el valor crítico $z_{\alpha}(H_1:\mu<\mu_0)$, $z_{1-\alpha}(H_1:\mu>\mu_0)$, $z_{1-\frac{\alpha}{2}}(H_1:\mu\neq\mu_0)$ con el valor Z del estadístico de contraste y dependiendo de dicha comparación aceptamos o rechazamos la hipótesis nula H_0 , siendo α el nivel de significación.

• Concretamente,

- Concretamente,
 - Si $H_1: \mu < \mu_0$,

- Concretamente,
 - Si $H_1: \mu < \mu_0$,
 - si $Z < z_{\alpha}$, rechazamos H_0 y en caso contrario, aceptamos H_0 ,

- Concretamente,
 - Si $H_1: \mu < \mu_0$, • si $Z < z_{\alpha}$, rechazamos H_0 y en caso contrario, aceptamos H_0 ,
 - Si $H_1: \mu > \mu_0$,

- Concretamente,
 - Si $H_1: \mu < \mu_0$, • si $Z < z_{\alpha}$, rechazamos H_0 y en caso contrario, aceptamos H_0 ,
 - Si $H_1: \mu > \mu_0$,
 - si $Z > z_{1-\alpha}$, rechazamos H_0 y en caso contrario, aceptamos H_0 ,

- Concretamente,
 - Si $H_1: \mu < \mu_0$, • si $Z < z_{\alpha}$, rechazamos H_0 y en caso contrario, aceptamos H_0 ,
 - Si $H_1: \mu > \mu_0$, • si $Z > z_{1-\alpha}$, rechazamos H_0 y en caso contrario, aceptamos H_0 ,
 - Si $H_1: \mu \neq \mu_0$,

- Concretamente,
 - Si $H_1: \mu < \mu_0$, • si $Z < z_{\alpha}$, rechazamos H_0 y en caso contrario, aceptamos H_0 ,
 - Si $H_1: \mu > \mu_0$, • si $Z > z_{1-\alpha}$, rechazamos H_0 y en caso contrario, aceptamos H_0 ,
 - Si $H_1: \mu \neq \mu_0$,
 - si $|Z|>z_{1-\frac{\alpha}{2}}$, rechazamos H_0 y en caso contrario, aceptamos H_0 .

- Concretamente,
 - Si $H_1: \mu < \mu_0$, • si $Z < z_\alpha$, rechazamos H_0 y en caso contrario, aceptamos H_0 ,
 - Si $H_1: \mu > \mu_0$, • si $Z > z_{1-\alpha}$, rechazamos H_0 y en caso contrario, aceptamos H_0 ,
 - Si $H_1: \mu \neq \mu_0$, • si $|Z| > z_{1-\frac{\alpha}{2}}$, rechazamos H_0 y en caso contrario, aceptamos H_0 .
- Un aspecto importante del contrate de hipótesis es la hipótesis alternativa H_1 , donde si suponemos que es cierta, la distribución del estadístico de contraste Z o \overline{X} (dependiendo de cuál usemos) sería diferente.

- Concretamente,
 - Si $H_1: \mu < \mu_0$, • si $Z < z_\alpha$, rechazamos H_0 y en caso contrario, aceptamos H_0 ,
 - Si $H_1: \mu > \mu_0$, • si $Z > z_{1-\alpha}$, rechazamos H_0 y en caso contrario, aceptamos H_0 ,
 - Si $H_1: \mu \neq \mu_0$, • si $|Z| > z_{1-\frac{\alpha}{2}}$, rechazamos H_0 y en caso contrario, aceptamos H_0 .
- Un aspecto importante del contrate de hipótesis es la hipótesis alternativa H₁, donde si suponemos que es cierta, la distribución del estadístico de contraste Z o X (dependiendo de cuál usemos) sería diferente.
- Concretamente, si la hipótesis alternativa H_1 es cierta, la distribución del estadístico de contraste \overline{X} sería $\overline{X} = N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ o $Z = \frac{\overline{X} \mu_0}{\frac{\sigma}{\sqrt{n}}} = N\left(\frac{\mu \mu_0}{\frac{\sigma}{\sqrt{n}}}, 1\right)$

Para usar ambas distribuciones, definimos:

$$f_0(z) = f_Z(z|H_0), \quad f_1(z) = f_Z(z|H_1),$$

las funciones de densidad del estadístico de contraste suponiendo que H_0 es cierta $(f_0(z))$ o suponiendo que H_1 es cierta $(f_1(z))$.

Para usar ambas distribuciones, definimos:

$$f_0(z) = f_Z(z|H_0), \quad f_1(z) = f_Z(z|H_1),$$

las funciones de densidad del estadístico de contraste suponiendo que H_0 es cierta $(f_0(z))$ o suponiendo que H_1 es cierta $(f_1(z))$.

• En el primer caso o suponiendo que H_0 es cierta, $f_0(z)$ sería la función de densidad de una N(0,1) y en el segundo caso o suponiendo que H_1 es cierta, $f_1(z)$ sería la función de densidad de una $N\left(\frac{\mu-\mu_0}{\frac{\sigma}{\sqrt{n}}},1\right)$.

 Suponemos que nos planteamos el contraste de hipótesis siguiente:

$$H_0: \mu = 2, H_1: \mu > 2,$$

 Suponemos que nos planteamos el contraste de hipótesis siguiente:

$$H_0: \mu = 2, H_1: \mu > 2,$$

• En el gráfico siguiente hemos dibujado las funciones de densidad f_0 y f_1 . La curva azul es f_0 y la roja f_1 , donde hemos supuesto que $\mu=2.5$ y $\sigma=2$.

 Suponemos que nos planteamos el contraste de hipótesis siguiente:

$$H_0: \mu = 2, H_1: \mu > 2,$$

- En el gráfico siguiente hemos dibujado las funciones de densidad f_0 y f_1 . La curva azul es f_0 y la roja f_1 , donde hemos supuesto que $\mu=2.5$ y $\sigma=2$.
- Rechazaremos la hipótesis nula H_0 si el valor del estadístico de contraste Z se encuentra en la zona verde, o $Z>z_{1-\alpha}$, donde hemos considerado un nivel de significación $\alpha=0,05$, de donde $z_{0.95}=1,645$.

• Un contraste de hipótesis, se basa en una regla de decisión $\delta(\cdot)$ a partir de un espacio de valores $\mathcal Z$ del estadístico de contraste $\mathcal Z$.

- Un contraste de hipótesis, se basa en una regla de decisión $\delta(\cdot)$ a partir de un espacio de valores $\mathcal Z$ del estadístico de contraste $\mathcal Z$.
- Concretamente, en un contraste de la media μ del tipo:

$$H_0: \mu = \mu_0, H_1: \mu > \mu_0,$$

- Un contraste de hipótesis, se basa en una regla de decisión $\delta(\cdot)$ a partir de un espacio de valores $\mathcal Z$ del estadístico de contraste $\mathcal Z$.
- Concretamente, en un contraste de la media μ del tipo:

$$H_0: \mu = \mu_0, H_1: \mu > \mu_0,$$

como la del ejemplo anterior,

• el espacio de valores \mathcal{Z} sería el conjunto de números reales \mathbb{R} ,

- Un contraste de hipótesis, se basa en una regla de decisión $\delta(\cdot)$ a partir de un espacio de valores $\mathcal Z$ del estadístico de contraste $\mathcal Z$.
- Concretamente, en un contraste de la media μ del tipo:

$$H_0: \mu = \mu_0, H_1: \mu > \mu_0,$$

- ullet el espacio de valores $\mathcal Z$ sería el conjunto de números reales $\mathbb R$,
- el estadístico de contraste Z sería $Z=\frac{\overline{X}-\mu_0}{\frac{\sigma}{\sqrt{n}}}$ (suponemos σ conocida) y

- Un contraste de hipótesis, se basa en una regla de decisión $\delta(\cdot)$ a partir de un espacio de valores $\mathcal Z$ del estadístico de contraste $\mathcal Z$.
- Concretamente, en un contraste de la media μ del tipo:

$$H_0: \mu = \mu_0, H_1: \mu > \mu_0,$$

- el espacio de valores \mathcal{Z} sería el conjunto de números reales \mathbb{R} ,
- el estadístico de contraste Z sería $Z=\frac{\overline{X}-\mu_0}{\frac{\sigma}{\sqrt{n}}}$ (suponemos σ conocida) y
- la regla de decisión $\delta(z,\alpha)$ que depende del valor del estadístico de contraste y del nivel de significación α sería:

- Un contraste de hipótesis, se basa en una regla de decisión $\delta(\cdot)$ a partir de un espacio de valores $\mathcal Z$ del estadístico de contraste $\mathcal Z$.
- Concretamente, en un contraste de la media μ del tipo:

$$H_0: \mu = \mu_0, H_1: \mu > \mu_0,$$

- el espacio de valores \mathcal{Z} sería el conjunto de números reales \mathbb{R} ,
- el estadístico de contraste Z sería $Z=\frac{\overline{X}-\mu_0}{\frac{\sigma}{\sqrt{n}}}$ (suponemos σ conocida) y
- la regla de decisión $\delta(z,\alpha)$ que depende del valor del estadístico de contraste y del nivel de significación α sería:
 - si $Z \ge z_{1-\alpha}$, rechazamos la hipótesis nula H_0 ,

- Un contraste de hipótesis, se basa en una regla de decisión $\delta(\cdot)$ a partir de un espacio de valores $\mathcal Z$ del estadístico de contraste $\mathcal Z$.
- Concretamente, en un contraste de la media μ del tipo:

$$H_0: \mu = \mu_0, H_1: \mu > \mu_0,$$

- el espacio de valores \mathcal{Z} sería el conjunto de números reales \mathbb{R} ,
- el estadístico de contraste Z sería $Z=\frac{\overline{X}-\mu_0}{\frac{\sigma}{\sqrt{n}}}$ (suponemos σ conocida) y
- la regla de decisión $\delta(z,\alpha)$ que depende del valor del estadístico de contraste y del nivel de significación α sería:
 - si $Z \ge z_{1-\alpha}$, rechazamos la hipótesis nula H_0 ,
 - si $Z < z_{1-\alpha}$, aceptamos la hipótesis nula H_0 .

Escribiremos la regla de decisión de la forma siguiente:

$$\delta(z,\alpha) = \begin{cases} 1, & \text{si } z \in R_{\alpha}(\text{ rechazamos } H_0), \\ 0, & \text{si } z \not \in R_{\alpha}(\text{ aceptamos } H_0), \end{cases}$$

donde R_{α} es la llamada zona de rechazo que valdría en el ejemplo que vamos desarrollando:

$$R_{\alpha} = \{ z \ge z_{1-\alpha} = \phi^{-1}(1-\alpha) \},$$

donde $\phi(z)$ representa la función de distribución de la N(0,1): $\phi(z) = P(Z \le z)$.

Ejemplo anterior

• En el ejemplo anterior, la regla de decisión para $\alpha = 0.05$ sería:

$$\delta(z,0,05) = \begin{cases} 1, & \text{si } z \in R_{0,05}(\text{ rechazamos } H_0), \\ 0, & \text{si } z \notin R_{0,05}(\text{ aceptamos } H_0), \end{cases}$$

donde
$$R_{0,05} = \{z \ge z_{0,95} = \phi^{-1}(0,95) = 1,645\}.$$

Errores tipo I y tipo II

 Recordemos que en un contraste de hipótesis, el error tipo I se definía como:

Error tipo I =
$$P(\text{Rechazar } H_0|H0 \text{ cierta }),$$

o como la probabilidad de rechazar la hipótesis nula suponiendo ésta cierta.

Errores tipo I y tipo II

 Recordemos que en un contraste de hipótesis, el error tipo I se definía como:

Error tipo
$$I = P(Rechazar H_0|H0 cierta)$$
,

o como la probabilidad de rechazar la hipótesis nula suponiendo ésta cierta.

• De la misma manera, el error tipo II se definía como:

Error tipo II =
$$P(Aceptar H_0|H0 falsa)$$
,

o como la probabilidad de aceptar la hipótesis nula suponiendo ésta falsa.

Errores tipo I y tipo II

 Si interpretamos un contraste de hipótesis como un proceso de decisión,

- Si interpretamos un contraste de hipótesis como un proceso de decisión,
 - aceptar la hipótesis nula sería tener un valor negativo y

- Si interpretamos un contraste de hipótesis como un proceso de decisión,
 - aceptar la hipótesis nula sería tener un valor negativo y
 - rechazarla sería tener un valor positivo.

- Si interpretamos un contraste de hipótesis como un proceso de decisión.
 - aceptar la hipótesis nula sería tener un valor negativo y
 - rechazarla sería tener un valor positivo.
- Entonces, podemos interpretar

- Si interpretamos un contraste de hipótesis como un proceso de decisión,
 - aceptar la hipótesis nula sería tener un valor negativo y
 - rechazarla sería tener un valor positivo.
- Entonces, podemos interpretar
 - el error tipo I como un falso positivo ya que declaramos positiva una decisión que debería ser negativa y

- Si interpretamos un contraste de hipótesis como un proceso de decisión.
 - aceptar la hipótesis nula sería tener un valor negativo y
 - rechazarla sería tener un valor positivo.
- Entonces, podemos interpretar
 - el error tipo I como un falso positivo ya que declaramos positiva una decisión que debería ser negativa y
 - y el error tipo II como un falso negativo ya que declaramos positiva una decisión que debería ser positiva.

• En un contexto del proceso de decisión,

- En un contexto del proceso de decisión,
 - el error tipo I se podría interpreta como la tasa de falsos positivos y

- En un contexto del proceso de decisión,
 - el error tipo I se podría interpreta como la tasa de falsos positivos y
 - el error tipo II se podría interpreta como la tasa de falsos negativos.

- En un contexto del proceso de decisión,
 - el error tipo I se podría interpreta como la tasa de falsos positivos y
 - el error tipo II se podría interpreta como la tasa de falsos negativos.
- Otro concepto que se introdujo en los contrastes de hipótesis es la potencia de un contraste que se definía como:

```
Potencia de un contraste = 1 - \text{Error tipo II}

= 1 - P(\text{Aceptar } H_0 | H0 \text{ falsa})

= P(\text{rechazar } H_0 | H_0 \text{ falsa}),
```

es decir, como la probabilidad de rechazar la hipótesis nula suponiendo ésta falsa.

 En un contexto del proceso de decisión, la potencia del contraste se puede interpretar como la probabilidad de detectar un negativo.

- En un contexto del proceso de decisión, la potencia del contraste se puede interpretar como la probabilidad de detectar un negativo.
- Por tanto, la potencia de un contraste puede interpretarse como la tasa de verdaderos positivos o la probabilidad de detección.

- En un contexto del proceso de decisión, la potencia del contraste se puede interpretar como la probabilidad de detectar un negativo.
- Por tanto, la potencia de un contraste puede interpretarse como la tasa de verdaderos positivos o la probabilidad de detección.
- En el gráfico siguiente mostramos en amarillo el error tipo II o la tasa de falsos negativos para el ejemplo anterior. Recordemos que en verde está el error tipo I o la tasa de falsos positivos.

 Matemáticamente, podemos escribir las tasas anteriores de la forma siguiente:

- Matemáticamente, podemos escribir las tasas anteriores de la forma siguiente:
 - Tasa de falsos positivos o error tipo I:

$$P_{FP} = \int_{R_{\alpha}} f_0(z) dz = \int_{z_{1-\alpha}}^{\infty} f_0(z) dz.$$

- Matemáticamente, podemos escribir las tasas anteriores de la forma siguiente:
 - Tasa de falsos positivos o error tipo I:

$$P_{FP} = \int_{R_{\alpha}} f_0(z) dz = \int_{z_{1-\alpha}}^{\infty} f_0(z) dz.$$

• Tasa de falsos negativos o error tipo II:

$$P_{FN} = \int_{R_{\infty}^c} f_1(z) dz = \int_{-\infty}^{z_{1-\alpha}} f_1(z) dz.$$

- Matemáticamente, podemos escribir las tasas anteriores de la forma siguiente:
 - Tasa de falsos positivos o error tipo I:

$$P_{FP} = \int_{R_{\alpha}} f_0(z) dz = \int_{z_{1-\alpha}}^{\infty} f_0(z) dz.$$

• Tasa de falsos negativos o error tipo II:

$$P_{FN} = \int_{R_{\alpha}^c} f_1(z) dz = \int_{-\infty}^{z_{1-\alpha}} f_1(z) dz.$$

• Tasa de verdaderos positivos o potencia del contraste:

$$P_{VP} = \int_{R_{c}} f_{1}(z) dz = \int_{z_{1-c}}^{\infty} f_{1}(z) dz = 1 - PFN.$$

• Podemos escribir las probabilidades anteriores en función de la regla de decisión $\delta(z,\alpha)$ de la forma siguiente:

$$\begin{split} P_{FP} &= \int_{\mathbb{R}} \delta(z,\alpha) f_0(z) \, dz = \int_{z_{1-\alpha}}^{\infty} f_0(z) \, dz, \\ P_{FN} &= \int_{\mathbb{R}} (1 - \delta(z,\alpha)) f_1(z) \, dz = \int_{-\infty}^{z_{1-\alpha}} f_1(z) \, dz, \\ P_{VP} &= \int_{\mathbb{R}} \delta(z,\alpha) f_1(z) \, dz = \int_{z_{1-\alpha}}^{\infty} f_1(z) \, dz. \end{split}$$

Ejemplo anterior

• En el ejemplo anterior, las tasas de falsos positivos, falsos negativos y verdaderos positivos son las siguientes:

$$P_{FP} = \int_{1,645}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz = 1 - \phi(1,645) = 0,05,$$

$$P_{FN} = \int_{-\infty}^{1,645} \frac{1}{\sqrt{2\pi}} e^{-\frac{\left(z - \frac{2,5-2}{2}\right)^2}{\sqrt{50}}} dz = \int_{-\infty}^{1,645} \frac{1}{\sqrt{2\pi}} e^{-\frac{(z-1,768)}{2}} dz$$

$$= P(N(1,768,1) \le 1,645) = \phi(1,645 - 1,768) = \phi(-0,123)$$

$$= 0,451,$$

$$P_{VP} = 1 - P_{FN} = 1 - 0,451 = 0,549.$$

$$P_{VP} = 1 - P_{FN} = 1 - 0,451 = 0,549$$

 Una vez establecidos los conceptos necesarios, el objetivo es hallar la mejor regla de decisión para un contraste de hipótesis.

Definition (Definición)

La regla de decisión de Neyman-Pearson se define como el siguiente problema de optimización:

$$\hat{\delta} = \max_{\delta \text{ tal que } P_{FP}(\delta) \leq \alpha} P_{VP}(\delta)$$

- Una vez establecidos los conceptos necesarios, el objetivo es hallar la mejor regla de decisión para un contraste de hipótesis.
- Definimos la regla de decisión de Neyman-Pearson precisamente como la mejor regla de decisión donde formalmente se define como el siguiente problema de optimización:

Definition (Definición)

La regla de decisión de Neyman-Pearson se define como el siguiente problema de optimización:

$$\hat{\delta} = \max_{\delta \text{ tal que } P_{FP}(\delta) \leq \alpha} P_{VP}(\delta)$$

• Es decir, de entre todas las reglas de decisión δ tal que la tasa de falsos positivos es menor que un cierto nivel de significación α , hallar la que maximiza la tasa de verdaderos positivos o la tasa de detección.

- Es decir, de entre todas las reglas de decisión δ tal que la tasa de falsos positivos es menor que un cierto nivel de significación α , hallar la que maximiza la tasa de verdaderos positivos o la tasa de detección.
- Para resolver el problema de optimización anterior, necesitamos introducir el índice de verosimilitud entre dos distribuciones de funciones de densidad $f_0(z)$ y $f_1(z)$ como:

$$L(z) = \frac{f_1(z)}{f_0(z)}.$$

• El siguiente resultado resuelve el problema de optimización:

• El siguiente resultado resuelve el problema de optimización:

Theorem

La solución al problema de optimización de la regla de decisión de Neyman-Pearson es el siguiente:

$$\hat{\delta}(z) = \begin{cases} 1, & \text{si } L(z) \ge \eta, \\ 0, & \text{si } L(z) < \eta, \end{cases}$$

donde η depende del nivel de significación α .

• El siguiente resultado resuelve el problema de optimización:

Theorem

La solución al problema de optimización de la regla de decisión de Neyman-Pearson es el siguiente:

$$\hat{\delta}(z) = \begin{cases} 1, & \text{si } L(z) \ge \eta, \\ 0, & \text{si } L(z) < \eta, \end{cases}$$

donde η depende del nivel de significación α .

• El teorema anterior dice que si el objetivo es maximizar la tasa de detección o la tasa de verdaderos positivos manteniendo la tasa de falsos positivos, no podemos hacerlo mejor que la regla de decisión dada por el Teorema.

Demostración del Teorema

• La relación entre η y α es la siguiente:

$$\alpha = P_{FP}(\hat{\delta}) = \int_{\mathbb{R}} \hat{\delta}(z) f_0(z) dz = \int_{L(z) \ge \eta} f_0(z) dz$$

Demostración del Teorema

• La relación entre η y α es la siguiente:

$$\alpha = P_{FP}(\hat{\delta}) = \int_{\mathbb{R}} \hat{\delta}(z) f_0(z) dz = \int_{L(z) \ge \eta} f_0(z) dz$$

• Sea δ otra regla de decisión. Nuestro objetivo es demostrar que $P_{VP}(\hat{\delta}) \geq P_{VP}(\delta)$.

Demostración del Teorema

• La relación entre η y α es la siguiente:

$$\alpha = P_{FP}(\hat{\delta}) = \int_{\mathbb{R}} \hat{\delta}(z) f_0(z) dz = \int_{L(z) \ge \eta} f_0(z) dz$$

- Sea δ otra regla de decisión. Nuestro objetivo es demostrar que $P_{VP}(\hat{\delta}) \geq P_{VP}(\delta)$.
- Como la regla δ debe cumplir que la tasa de falsos positivos debe ser menor que α , tenemos que:

$$\alpha \geq P_{FP}(\delta) = \int_{\mathbb{R}} \delta(z) f_0(z) dz$$
$$= \int_{L(z) > \eta} \delta(z) f_0(z) dz + \int_{L(z) < \eta} \delta(z) f_0(z) dz.$$

• Entonces:

$$\int_{L(z) \ge \eta} f_0(z) \, dz \ge \int_{L(z) \ge \eta} \delta(z) f_0(z) \, dz + \int_{L(z) < \eta} \delta(z) f_0(z) \, dz, \implies$$

$$\int_{L(z) \ge \eta} (1 - \delta(z)) f_0(z) \, dz - \int_{L(z) < \eta} \delta(z) f_0(z) \, dz \ge 0.$$

• Entonces:

$$\begin{split} & \int_{L(z) \geq \eta} f_0(z) \, dz \geq \int_{L(z) \geq \eta} \delta(z) f_0(z) \, dz + \int_{L(z) < \eta} \delta(z) f_0(z) \, dz, \ \Rightarrow \\ & \int_{L(z) \geq \eta} (1 - \delta(z)) f_0(z) \, dz - \int_{L(z) < \eta} \delta(z) f_0(z) \, dz \geq 0. \end{split}$$

• A continuación, veamos que $P_{VP}(\hat{\delta}) \geq P_{VP}(\delta)$:

$$\begin{aligned} P_{VP}(\hat{\delta}) &= \int_{\mathbb{R}} \hat{\delta}(z) f_1(z) \, dz = \int_{L(z) \geq \eta} f_1(z) \, dz, \\ P_{VP}(\delta) &= \int_{\mathbb{R}} \delta(z) f_1(z) \, dz = \int_{L(z) \geq \eta} \delta(z) f_1(z) \, dz \\ &+ \int_{L(z) \leq \eta} \delta(z) f_1(z) \, dz, \end{aligned}$$

Restando las dos expresiones anteriores,

$$P_{VP}(\hat{\delta}) - P_{VP}(\delta) = \int_{L(z) \ge \eta} (1 - \delta(z)) f_1(z) dz - \int_{L(z) < \eta} \delta(z) f_1(z) dz$$

Restando las dos expresiones anteriores,

$$P_{VP}(\hat{\delta}) - P_{VP}(\delta) = \int_{L(z) \ge \eta} (1 - \delta(z)) f_1(z) dz - \int_{L(z) < \eta} \delta(z) f_1(z) dz$$

Ahora bien,

Restando las dos expresiones anteriores,

$$P_{VP}(\hat{\delta}) - P_{VP}(\delta) = \int_{L(z) \ge \eta} (1 - \delta(z)) f_1(z) dz - \int_{L(z) < \eta} \delta(z) f_1(z) dz$$

- Ahora bien,
 - si $L(z) = \frac{f_1(z)}{f_0(z)} \ge \eta$, $f_1(z) \ge \eta f_0(z)$,

Restando las dos expresiones anteriores,

$$P_{VP}(\hat{\delta}) - P_{VP}(\delta) = \int_{L(z) \ge \eta} (1 - \delta(z)) f_1(z) dz - \int_{L(z) < \eta} \delta(z) f_1(z) dz$$

- Ahora bien,
 - si $L(z) = \frac{f_1(z)}{f_0(z)} \ge \eta$, $f_1(z) \ge \eta f_0(z)$,
 - si $L(z) = \frac{f_1(z)}{f_0(z)} < \eta$, $f_1(z) < \eta f_0(z)$ y por tanto, $-f_1(z) > -\eta f_0(z)$.

• Entonces:

$$P_{VP}(\hat{\delta}) - P_{VP}(\delta) \ge \int_{L(z) \ge \eta} (1 - \delta(z)) \eta f_0(z) dz$$
$$- \int_{L(z) < \eta} \eta \delta(z) f_0(z) dz$$
$$= \eta \left(\int_{L(z) \ge \eta} (1 - \delta(z)) f_0(z) dz - \int_{L(z) < \eta} \delta(z) f_0(z) dz \right)$$

Demostración del Teorema (continuación)

• Entonces:

$$P_{VP}(\hat{\delta}) - P_{VP}(\delta) \ge \int_{L(z) \ge \eta} (1 - \delta(z)) \eta f_0(z) dz$$
$$- \int_{L(z) < \eta} \eta \delta(z) f_0(z) dz$$
$$= \eta \left(\int_{L(z) \ge \eta} (1 - \delta(z)) f_0(z) dz - \int_{L(z) < \eta} \delta(z) f_0(z) dz \right)$$

Anteriormente vimos que

$$\int_{L(z)\geq \eta} (1-\delta(z))f_0(z)\,dz - \int_{L(z)<\eta} \delta(z)f_0(z)\,dz \geq 0,$$

por tanto,

$$P_{VP}(\hat{\delta}) - P_{VP}(\delta) \ge 0$$

tal como queríamos demostrar.

 Ahora ya sabemos cómo hallar reglas de decisión óptimas dado un contraste de hipótesis.

- Ahora ya sabemos cómo hallar reglas de decisión óptimas dado un contraste de hipótesis.
- Apliquemos el Teorema anterior al ejemplo desarrollado pero lo haremos con cualquier valor de σ .

- Ahora ya sabemos cómo hallar reglas de decisión óptimas dado un contraste de hipótesis.
- Apliquemos el Teorema anterior al ejemplo desarrollado pero lo haremos con cualquier valor de σ .
- En el ejemplo,

$$f_0(z) = rac{1}{\sqrt{2\pi}} \mathrm{e}^{-rac{z^2}{2}}, \quad f_1(z) = rac{1}{\sqrt{2\pi}} \mathrm{e}^{-rac{\left(z - rac{\mu - 2}{\sigma}
ight)^2}{2}}$$

- Ahora ya sabemos cómo hallar reglas de decisión óptimas dado un contraste de hipótesis.
- Apliquemos el Teorema anterior al ejemplo desarrollado pero lo haremos con cualquier valor de σ .
- En el ejemplo,

$$f_0(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, \quad f_1(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{\left(z - \frac{\mu - 2}{\sigma}\right)^2}{2}}$$

• Sea $\mu_1 = \frac{\mu-2}{\frac{\sigma}{\sqrt{\rho}}}$. El valor de L(z) será:

$$L(z) = \frac{f_1(z)}{f_0(z)} = e^{-\frac{(z-\mu_1)^2}{2} + \frac{z^2}{2}} = e^{\frac{1}{2}(2z\mu_1 - \mu_1^2)}.$$

• La condición $L(z) \ge \eta$ será en nuestro caso,

$$e^{\frac{1}{2}(2z\mu_1-\mu_1^2)} \geq \eta, \Leftrightarrow 2z\mu_1 \geq 2\ln(\eta)+\mu_1^2, \Leftrightarrow z \geq \frac{2\ln(\eta)+\mu_1^2}{2\mu_1} := \tau.$$

• La condición $L(z) \ge \eta$ será en nuestro caso,

$$\mathrm{e}^{\frac{1}{2}(2z\mu_1-\mu_1^2)}\geq \eta, \Leftrightarrow 2z\mu_1\geq 2\ln(\eta)+\mu_1^2, \Leftrightarrow z\geq \frac{2\ln(\eta)+\mu_1^2}{2\mu_1}:=\tau.$$

• Para hallar τ en función de α , hay que tener en cuenta que:

$$\alpha = P_{FP}(\hat{\delta}) = \int_{L(z) > \eta} f_0(z) \, dz = \int_{\tau}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz = 1 - \phi(\tau).$$

• La condición $L(z) \ge \eta$ será en nuestro caso,

$$\mathrm{e}^{\frac{1}{2}(2z\mu_1-\mu_1^2)}\geq \eta, \Leftrightarrow 2z\mu_1\geq 2\ln(\eta)+\mu_1^2, \Leftrightarrow z\geq \frac{2\ln(\eta)+\mu_1^2}{2\mu_1}:=\tau.$$

• Para hallar τ en función de α , hay que tener en cuenta que:

$$\alpha = P_{FP}(\hat{\delta}) = \int_{L(z) \ge \eta} f_0(z) dz = \int_{\tau}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz = 1 - \phi(\tau).$$

Entonces,

$$\phi(\tau) = 1 - \alpha, \Leftrightarrow \tau = \phi^{-1}(1 - \alpha).$$

• En pocas palabras la regla de decisión óptima sería

- En pocas palabras la regla de decisión óptima sería
 - si $z \ge \phi^{-1}(1-\alpha) = z_{1-\alpha}$, rechazamos la hipótesis nula y,

- En pocas palabras la regla de decisión óptima sería
 - si $z \ge \phi^{-1}(1-\alpha) = z_{1-\alpha}$, rechazamos la hipótesis nula y,
 - si $z < \phi^{-1}(1-\alpha) = z_{1-\alpha}$, aceptamos la hipótesis nula.

- En pocas palabras la regla de decisión óptima sería
 - si $z \ge \phi^{-1}(1-\alpha) = z_{1-\alpha}$, rechazamos la hipótesis nula y,
 - si $z < \phi^{-1}(1-\alpha) = z_{1-\alpha}$, aceptamos la hipótesis nula.
- La regla anterior es la regla que aprendimos. En este nuevo enfoque, hemos demostrado cuál es la razón que sea la regla de decisión óptima.