Relazione di laboratorio - Pendolo semplice

Misura del periodo di un pendolo semplice

Federico Cesari

Indice

1	Scopo dell'esperienza
2	Premesse teoriche
3	Scelta strumento di misura
4	Dipendenza dall'angolo 4.1 Confronto parametri parabola 4.2 g
5	Dipendenza dalla lunghezza 5.1 Confronto parametri retta
6	Dipendenza dalla massa
7	Conclusioni

1 Scopo dell'esperienza

2 Premesse teoriche

3 Scelta strumento di misura

Al fine di stabilire il migliore strumento di misura per le succesive analisi dati, prendo 8 misure del periodo del pendolo prima con un angolo di partenza θ = 5° e poi con θ = 30°.

Tabella 1: Confronto strumenti di misura

	Cronometro analogico	Cronometro digitale	Fotocellula
$\vartheta \pm 1^{\circ}$	$T(s) \pm 0.2s$	$T(s) \pm 0.01s$	$T(s) \pm 0.001s$
	1.7	1.63	1.706
5°	1.6	1.59	1.706
3	1.7	1.50	1.706
	1.7	1.60	1.706
	1.8	1.65	1.715
30°	1.7	1.71	1.715
30	1.6	1.70	1.716
	1.7	1.66	1.715

Tabella 2: Periodi medi

	Cronometro analogico	Cronometro digitale	Fotocellula
$\vartheta \pm 1^{\circ}$	$\bar{T}(s) \pm 0.05s$	$\bar{T}(s) \pm 0.005 s$	$\bar{T}(s) \pm 0.0005 s$
5°	1.65	1.700	1.7060
30°	1.70	1.680	1.7150

4 Dipendenza dall'angolo

Figure 1: $T(\sin(\theta/2)^2)$

Figure 2: Rappresentazione grafica dei dati sperimentali con errori ridotti.

4.1 Confronto parametri parabola

4.2 g

Calcolo il valore di g:

$$T_0 = 2\pi \sqrt{\frac{l}{g}} \qquad \rightarrow \qquad T_0^2 = 4\pi^2 \frac{l}{g}$$

$$g = \frac{4l\pi^2}{T_0^2}$$

poiché sappiamo che

$$T = T_0 + \frac{T_0}{4}y \qquad \rightarrow \qquad y = 4\frac{T - T_0}{T_0} \qquad \rightarrow \qquad y = 4\frac{T}{T_0} - 4$$

$$b = \frac{4}{T_0} \qquad \rightarrow \qquad T_0 = \frac{4}{b}$$

Quindi

$$g = \frac{l\pi^2}{4}b^2$$

Calcolo l'errore associato a g:

$$\begin{split} \sigma_g &= \sqrt{\left(\frac{\partial g}{\partial l}\right)^2 \sigma_l^2 + \left(\frac{\partial g}{\partial b}\right)^2 \sigma_b^2} \\ \sigma_g &= \sqrt{\left(\frac{b^2 \pi^2}{4}\right)^2 \sigma_l^2 + \left(\frac{l b \pi^2}{2}\right)^2 \sigma_b^2} \end{split}$$

Test Z per g

Ottengo $g = \dots$ Scelgo livello di significatività = 0.05.

5 Dipendenza dalla lunghezza

Figure 3: Rappresentazione grafica dei dati sperimentali con errori.

5.1 Confronto parametri retta

6 Dipendenza dalla massa

7 Conclusioni