

Probabilistic graphical models

Lecture 3 of "Mathematics and Al"

Outline

- 1. Definition
- 2. Markov random fields
- 3. Bayesian networks
- 4. Inference via message passing

Factorizations of functions

$$p(x,y) = p(x)p(y) p(x,y) \neq p(x)p(y)$$

$$p(x,y) \neq p(x)p(y)$$

$$e^{x+y} = e^x e^y$$

$$e^{(x+y)^2} = e^{x^2}e^{y^2}e^{2xy}$$

Definition

Definition

We want to describe complex relationships between an (ordered) set

$$S = \{X_1, X_2, \dots, X_n\}$$

of random variables $X_1, X_2, ... X_n$. We can do so via the multivariate probability distribution

$$p(S = s) = p(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

If S can be split into two independent subsets S_1 and S_2 , p(S=s) can be factorized:

$$p(S = s) = p(S_1 = s_1)p(S_2 = s_2)$$

Definition

A probabilistic graphical model (PGM) includes:

- A multivariate probability distribution
- A graphical representation of its factorization properties

 $p(X_1, X_2, X_3)$ X_1 X_2 X_3

Different variants of PGMs represent factorization properties differently

Markov random fields

Markov random field

- Undirected graph of statistical dependencies
- Edge = statistical dependence
- Missing edge = independence
- Probability distribution $p(S = s) = \frac{1}{7}$
- Extension: Factor graphs

Normalization factor

Example

Rain Spring	False	True
False	$\frac{3}{4} \cdot \frac{4}{5}$	$\frac{3}{4} \cdot \frac{1}{5}$
True	$\frac{1}{4} \cdot \frac{1}{2}$	$\frac{1}{4} \cdot \frac{1}{2}$

It rains {True, False}

Rain Outside	False	True
False	$\frac{5}{6} \cdot \frac{3}{4}$	$\frac{19}{20} \cdot \frac{1}{4}$
True	$\frac{1}{6} \cdot \frac{3}{4}$	$\frac{1}{20} \cdot \frac{1}{4}$

It is spring {True, False}

I am outside {True, False}