Week 7: Introduction to Probability

Data Analysis for Psychology in R 1

Marju Kaps

Department of Psychology
The University of Edinburgh

Brief Introduction

- Marju Kaps
- Delivering all lectures through the remainder of S1
- Contact Email: mkaps@ed.ac.uk
- Office Hours: TBD
- Office Location: 7 George Square, UG44

Learning objectives

- Understand the link between probability, models and data
- Be able to connect probability to statistical inference

Today

- Intro to Probability
- Sets & Set Notation
- Random Experiments

Part 1: Intro to Probability

- When conducting psychological research, we often ask a question and gather data in an attempt to identify the true answer, AKA the **ground truth**
- We want to use our data to build a model of the world
 - Model: a formal representation of a system
 - o Put another way, a model is an idea about the way the world is
- Two types of models you could use:
 - Deterministic
 - Probabilistic/Stochastic

- Imagine you live exactly 1/2 mile from the building and your walking speed is 3.3 miles per hour. You want to compute how long it takes to get to class.
- You can use a deterministic model to calculate this:
- $\frac{distance}{speed} = time$
- $\frac{0.5 \text{ miles}}{3.3 \text{ mph}} = 0.15 \text{ hours}$
- 0.15 * 60 = 9 *minutes*
- Using this model, you should always be right on time as long as you leave at 8:51

But what if...

- you text while walking?
- you stop to chat with someone?
- You get stuck at an intersection for longer than normal?
- you are so excited about learning statistics that you walk especially quickly?
- Suddenly, your deterministic solution isn't such a great model for the world.

- Deterministic models imply certainty and consistency, but real world data (especially human subjects data!) are complex
 - There are many factors that we can't anticipate or account for in our studies.
- With inferential statistics, we make sense of the world using probabilistic models, which take the element of randomness into account.
- Inferential tests tell you something about the probability of your data and this helps guide your decision about the ground truth.

- Imagine that you timed your walk to class over the course of a month.
- These data indicate that by leaving at 8:51, the likelihood you will arrive on time is only about 45%.

Questions

What is probability?

- Likelihood of event's occurrence
- There are two ways to conceptualise probability:
 - 1. Analytic Definition
 - 2. Relative Frequency

Probability: Analytic Definition

• The probability of an event is equal to the ratio of successful outcomes to all possible outcomes

$$P(x) = \frac{a}{a+b}$$

a = ways that event x can occur

b = ways that event x can fail to occur

x = Drawing a black card

a = # of black cards

b = # of red cards

$$P(x) = \frac{26}{26 + 26}$$

$$P(x) = \frac{1}{2} = 0.50$$

x = Drawing a spade

a = # of spades

b = # of diamonds + hearts + clubs

$$P(x) = \frac{13}{13+39}$$

$$P(x) = \frac{13}{52} = 0.25$$

Probability: Relative Frequency

- P(x), or probability of x, is the proportion of times you would observe x if you took an infinite number of samples.
 - If I roll a die an infinite number of times, the probability I would roll a 4 would be exactly 1/6.
- The law of large numbers
 - \circ Given an event x and a probability P(x), over n trials, the probability that the relative frequency of x' will differ from P(x) approaches 0 as n approaches infinity

x = A flipped coin landing on heads

What is probability?

- What does all that stuff get us?
- Basic idea: P(x) = the number of ways x can happen divided by the number of possible outcomes (including x)
- In its most essential sense, the business of probability is figuring out the values of those two numbers
- Generally, we base these calculations on structures called sets...

Questions

Part 2: Sets & Set Notation

Sets

- Set: Well-defined collection of objects; composed of elements or members
 - \circ A = {Element 1, Element 2, Element 3,...Element i}
 - $\circ A = \{x \mid x \text{ is a student at the University of Edinburgh}\}$
- Elements in a set are represented with the following notation:
 - $\circ x \in A$
 - \blacksquare x is an element of set A
 - $\circ x \notin A$
 - x is not an element of set A
 - $\circ A = \{x \mid x \text{ is an integer, } 1 \leq x \leq 10\}$
 - Set A includes elements such that x is an integer \geq to 1 and \leq to 10.

Sets

A = Set

U = Universal Set : All possible elements in a category of interest

B = Subset

- If B is a subset of A:
 - \circ All elements of B must also be in A
 - \circ However, all elements in A do not have to exist in B (although they can)
 - $\circ \;\; \mathsf{E.g.}, x \in B \, \mathsf{and} \, x \in A. \, y \in A, \mathsf{but} \, y
 otin B$

 A^c = Complement of A

• $A^c = \{x \mid x \in U, x \notin A\}$

Set Notation

 $B\subseteq A$

• B is a subset of A

 $B \subset A$

- B is a **proper** subset of A
- At least one element of A is **not** a member of B
- ullet B is not identical to A

 $A \not\subset B$

• A is not a subset of B

Set Example

U = All DapR1 students

A = DapR1 students who have a dog

B = DapR1 students who have a bulldog

 A^c = DapR1 students who do not have a dog

 $B\subseteq A$ because all bulldogs are dogs

 $A \not\subset B$ because not all dogs are bulldogs

Set Operations

- There are also ways we can describe two distinct sets in terms of how they interact with each other.
 - \circ **Union:** when an element is a member of either set A or set B (or both)
 - \circ Interaction: when an element is a member of set A and set B
 - \circ **Difference:** when an element is a member of set A but not set B, or vice versa
 - \circ **Empty Set:** sets A and B are *mutually exclusive*; when A occurs, B cannot occur

Set Operations - Example Data

Imagine we have collected pet name data from 50 dog owners (Set A) and 50 cat owners (Set B):

```
head(dogs, n = 10)
##
           Name
## 1
          Sooie
## 2
        Charlie
## 3
       Charlie
## 4
          Moose
## 5
            Jwl
## 6
       Chiquita
## 7
        Grommet
         Metabo
## 8
## 9
      Coco Rose
## 10
         Caliie
```

```
head(cats, n = 10)
##
                    Name
## 1
                   Mocha
## 2
                  Grumpy
## 3
                    Luna
## 4
      Sassafras (Sassy)
## 5
                    Rasa
                    Cleo
## 6
## 7
                  Keaton
                Moonbeam
## 8
## 9
                   Binks
## 10
                   Egypt
```

Set Operations - Union

• A name is a member of either dogs **or** cats (or both)

$$A \bigcup B = \{ x | x \in A \text{ or } x \in B \text{ or } x \in A \text{ and } B \}$$

Set Operations - Intersection

- A name is a member of both dogs **and** cats
- You can check the intersection of two sets in R using the intersect function

$$A \cap B = \{ x | x \in A \text{ and } x \in B \}$$

```
intersect(dogs, cats)
```

```
## Name
## 1 Charlie
## 2 Milo
```

Set Operations - Difference

- A name used for a dog **but not** a cat, or vice versa
- You can check the difference between two sets in R using the setdiff function


```
head(setdiff(dogs, cats), 5)
         Name
##
        Sooie
## 1
        Moose
## 3
          Jwl
## 4 Chiquita
     Grommet
head(setdiff(cats, dogs), 5)
##
                  Name
                 Mocha
## 2
                Grumpy
## 3
                  Luna
```

Rasa

4 Sassafras (Sassy)

5

Set Operations - Empty Sets

• People who have a dog and people who don't own a pet are **mutually exclusive** groups; when one occurs, the other cannot

Questions

Part 3: Random Experiments

Random Experiments

- A procedure that meets certain criteria:
 - Can be repeated infinitely under identical conditions
 - Outcome depends on chance and can't be predicted in advance
- Are the following examples of random experiments?
 - Picking a card from a fair deck
 - Multiplying 8 and 6 on a calculator
 - Determining bus arrival times
- By conducting a random experiment, we can make inferences about the likelihood of each of its outcomes

Describing the Sample Space

- ullet All possible outcomes of a random experiment are referred to as the **sample space** (S)
- Imagine a random experiment where you roll two six-sided dice, where the outcome is the sum of the roll.
- ullet In this example, the total sample space, S , contains 36 elements

Describing the Sample Space

- All possible outcomes of a random experiment are referred to as the sample space (S)
- Imagine a random experiment where you roll two six-sided dice, where the outcome is the sum of the roll.
- ullet An **event**, A , is a subset of the outcomes from S
 - $\circ A \subset S$
- A = At least one die landing on 4

Describing the Sample Space

- All possible outcomes of a random experiment are referred to as the sample space (S)
- Imagine a random experiment where you roll two six-sided dice, where the outcome is the sum of the roll.
- A **simple event**, *a* , refers to a single element in a sample space

$$\circ \ a \in S$$

• a =The dice summing to 12

Visualising Probability

- A **probability distribution** is a mathematical function that describes the probability of each event within the sample space
- Plotting a probability distribution allows you to visualise the likelihood of all possible outcomes

Event	2	3	4	5	6	7	8	9	10	11	12
Frequency	1	2	3	4	5	6	5	4	3	2	1
Probability	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Questions

Some of today's key takeaways

- 1. In statistics, we use probabilistic models to make inferences about our data
- 2. P(x) is the proportion of times you would observe x if you took an infinite number of samples.
- 3. Random experiments refer to procedures that could be repeated infinitely and whose outcomes can't be predicted with certainty
- 4. We can use the results of random experiments to make inferences about the likelihood of each outcome

Next tasks

- Tomorrow, I'll present a live R session focused on sets and logical operators.
- Next week, we will discuss rules of probability
- This week:
 - Attend the live R session
 - o Complete your lab
 - Check the reading list for recommended reading
 - Come to office hours
 - Weekly quiz
 - Opens Monday 09:00
 - Closes Sunday 17:00