アルゴリズムとデータ構造⑦

~探索問題(ハッシュ)~

鹿島久嗣

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

探索問題:

データ集合から所望の要素を見つける

- ■探索問題は、データの集合から所望のデータを見つけてくる
 - ―データは「キー」と「(データの)内容」からなる
 - ―与えられたキーに一致するキーをもったデータを見つける
- ■2分探索木やハッシュ等によって実現可能

ハッシュ表:

- 0(1)で探索するためのデータ構造
- ■データ集合から、あるキーをもつデータを0(1)で発見する
- ■単純な実現:
 - キーに対して自然数を割り当てる(1~N)
 - キーがアルファベット6文字なら $N = 26^6 \simeq 3 \times 10^8$
 - サイズの配列Nを準備する
 - -キーを自然数に変換して、配列のその位置に格納する
- ■問題点:
 - -長さNの配列を使うと大きすぎる
 - -M個のデータを格納するのに、M << Nなのでムダが多い

ハッシュ関数: ハッシュ表を省スペースで実現する

- ■ハッシュ関数 *h*(*x*): {1,2,...,*N*} → {1,2,...,*B*}
- キー x を持つデータをh(x)の位置に格納する
 - -異なるxが同じ位置に格納されうるので、衝突したら (例えば) 次の場所に格納
- h(x)のデザインは色々考えられるが、なるべく均等に格納されるものがよい
 - ー例: $x=a_1a_2...a_6$ (アルファベット6文字)に対する ハッシュ関数 $h(x)=\Sigma_{i=1,2,...,6}$ $c(a_i)$ mod B:cは文字 コード

ハッシュの衝突: 内部ハッシュと外部ハッシュによって衝突を回避

- ■異なるキーxとyに対してh(x) = h(y)となることがある
- ■衝突の回避法:内部ハッシュと外部ハッシュ
 - -外部ハッシュ:衝突回避のためにリストを格納
 - -内部ハッシュ:衝突時に別のハッシュ関数を用いる

外部ハッシュ: 衝突回避のためにリストを格納する

- ■配列にデータを直接格納せず、h(x)の位置にリスト(へのポインタ)を格納
 - -M>B でもよい
- 計算量:ハッシュが一様ならば平均的に 0(1)
 - -ハッシュ関数を用いて配列にアクセスするところまでO(1)
 - -そこから先の計算量はリストの長さℓに依存
 - •ハッシュが一様ならば $\ell \approx \frac{M}{B}$,これを定数とみなせば平均的にO(1)

内部ハッシュ: 衝突したときのために複数のハッシュ関数を用意

- ■配列にデータを直接格納する
 - M ≤ B である必要がある
- ■ハッシュ関数の列 $h_0, h_1, h_2, ...$ を用意して、 h_i が衝突したら、次の h_{i+1} を調べる
 - -例: $h_i = h(x) + i \mod B$

内部ハッシュの計算手間:挿入は平均的に0(1)

■新しい要素を挿入する手間:空きがみつかるまでの期待ステップ数は、現在M個のデータがランダムに入っていて、かつハッシュもランダムだとすると、 $\frac{B}{B-M} = \frac{1}{1-\alpha}$

•
$$\alpha = \frac{M}{B}$$
 (占有率)

■ハッシュ表を最初からつくる(M個の要素を登録する)と

$$-\sum_{m=0}^{M-1} \frac{B}{B-m} \approx \int_0^{M-1} \frac{B}{B-m} dm = B \log \frac{B}{B-M+1}$$

$$-$$
 要素あたり平均 $\frac{B}{M}\log\frac{B}{B-M+1}\approx-\frac{1}{\alpha}\log(1-\alpha)$

内部ハッシュの計算手間: 探索と削除

- ■探索・削除の手間
 - -xが表にないならば挿入と同じ
 - -xが表にあるならば作成の一要素あたり手間と同じ
 - xを含むM個の要素をもつハッシュ表をつくることを考える
 - xがm番目に挿入された場合、それは $\frac{B}{B-m}$ ステップで見つかる位置に置かれる
- 占有率 $\alpha = \frac{1}{2}$ にしておけば $-\frac{1}{\alpha}\log(1-\alpha) \approx 1.39$