Introductory Econometrics Tutorial 10

<u>PART A:</u> To be done before you attend the tutorial. The solutions will be made available at the end of the week.

1. b. If FDI increases by 1%, gdp increases by approximately 0.22%, the amount of bank credit remaining constant. [correct answer]

2.

Y4 is white noise Y1 is AR(1) Y2 is AR(2) Y3 is AR(3).

(a)

No there isn't. If anything, there seems to be a vague positive relationship.

(b)

Dependent Variable: INF Method: Least Squares Sample: 1948 2003 Included observations: 56

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C UNEM	1.053565 0.502378	1.547957 0.265562	0.680617 1.891752	0.4990 0.0639
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.062154 0.044786 2.971518 476.8157 -139.4304 3.578726 0.063892	Mean depend S.D. depend Akaike info c Schwarz crit Hannan-Quii Durbin-Wats	ent var riterion erion nn criter.	3.883929 3.040381 5.051084 5.123418 5.079128 0.801482

Sample: 1948 2003 Included observations: 56

$$\begin{array}{rcl} \inf_t & = & \beta_0 + \beta_1 unem_t + u_t \\ u_t & = & \rho u_{t-1} + e_t \\ H_0 & : & \rho = 0 \\ H_1 & : & \rho \neq 0 \\ & & \text{Estimate of the aux. regression} \\ \hat{u}_t & = & 2.046 - 0.381 unem_t + 0.643 \hat{u}_{t-1} + \hat{e}_t \\ R_{\hat{u}}^2 & = & 0.379, \quad n = 55 \\ BG & = & nR_{\hat{u}}^2 \sim \chi_1^2 \quad \text{under } H_0 \end{array}$$

 $BG_{calc} = 55 \times 0.379 = 20.845 > BG_{crit} = 3.84$

We reject the null and conclude the error are serially correlated

The partial correlogram of residuals shows a very significant AR(1), but borderline at lags

3 and 5 as well. We estimate the model with AR(1) errors.

$$inf_t = 7.287 - 0.664unem_t + \hat{u}_t$$

 $\hat{u}_t = 0.782\hat{u}_{t-1} + \hat{e}_t$
 (0.095)

(c)

The FGLS estimates in the model with AR(1) error support the Phillips curve hypothesis.

Do not forget to bring your answers to PART A and a copy of the tutorial questions to your tutorial.

<u>Part B:</u> This part will be covered in the tutorial. It is still a good idea to attempt these questions before the tutorial.

The purpose of this tutorial is to use dummy variables when using time series data.

- 1. (a) For this tutorial, I recommend that you ask assignment groups to sit together and do this together, and you just walk around and answer their questions. By now, in particular after the first assignment, they should be able to be pretty self-sufficient in transforming variables and running regressions in Eviews. If you feel that many are having similar issues, then interject and present a general explanation to the tutorial class. Just a suggestion, please feel free to ignore if you assess that baby-birds are not ready for unassisted flights yet.

 In Eviews, "series sat = (dow=7)" and "series sun = (dow=1)" will create dummy variables for Saturday and Sunday. Then "series wknd = sat + sun" creates a dummy for weekends. Of course there are several different ways to generate this.
 - (b) As the question recommends, students are free to use any software that they know to get the best look at their data. Here is what I have done: I used vlookup to change the dow to names for each day, and then used pivot chart and pivot table to get a bar chart for aveload in each day of the week in Excel. I generated the scatter plot in Eviews.

Figure 1:

(c)

Dependent Variable: AVELOAD

Method: Least Squares

Sample: 10/01/2005 3/31/2006 Included observations: 182

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AVETEMP WKND	4332.783 -43.58037 -143.6717	41.79892 0.940259 16.35973	103.6578 -46.34931 -8.782032	0.0000 0.0000 0.0000
PUBHOL	-121.5734	31.00930	-3.920546	0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.927222 0.925995 99.53527 1763494. -1093.518 755.9290 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		2386.005 365.8870 12.06063 12.13105 12.08918 0.942970

OLS will still be unbiased but no longer BLUE. Also, the OLS standard errors will not be correct and cannot be used for inference. So, the above model cannot be used

Figure 2:

(d)

Sample: 10/01/2005 3/31/2006 Included observations: 182

Autocorrelation	Partial Correlation		AC	PAC
		1 2 3 4 5 6 7		0.516 0.030 0.083 0.175 0.145 -0.018 -0.070
] 	[8 9 10 11 12	0.058 0.193 0.220 0.224 0.161	

 $\begin{array}{rcl} aveload_t & = & \beta_0 + \beta_1 avetemp_t + \beta_2 wknd_t + \beta_3 pubhol_t + u_t \\ & u_t & = & \rho_1 u_{t-1} + \rho_2 u_{t-2} + \rho_3 u_{t-3} + \rho_4 u_{t-4} + \rho_5 u_{t-5} + \rho_6 u_{t-6} + \rho_7 u_{t-7} + e_t \\ & H_0 & : & \rho_1 = \rho_2 = \rho_3 = \rho_4 = \rho_5 = \rho_6 = \rho_7 = 0 \\ & H_1 & : & \text{at least one of the AR parameters is not zero} \\ & & & \text{Estimate of the aux. regression} \\ & & & \text{uhat c avetemp wknd pubhol uhat(-1 to -7)} \\ & R_{\hat{u}}^2 & = & 0.340, \quad n_{\hat{u}} = n - 7 = 182 - 7 = 175 \\ & BG & = & n_{\hat{u}} \times R_{\hat{u}}^2 \sim \chi_7^2 & \text{under } H_0 \\ & BG_{calc} & = & 175 \times 0.340 = 59.5 > BG_{crit} = 14.07 \\ \end{array}$

We reject the null and conclude the error are serially correlated

The BG auxiliary regression only the first AR term is significant. The correlogram also shows a significant first order autocorrelation, with the 4th partial autocorrelation also close to being significant. We start with adding AR(1) errors and check the residual correlogram again to see if there is a need to consider a longer AR model for the errors. Note that unlike OLS which has an exact analytical formula $((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y})$, feasible GLS does not have a fixed formula and relies on minimising sum of squared residuals numerically, and there are numerous algorithms for minimising a function numerically, each of which works best in some situations and fails in others. Therefore, although you get the same answer for OLS estimates no matter which software you choose, you may get different answers from different software when using FGLS. Even different versions of the same software may give you different answers if the default estimation method is different in different versions. The following two tables give the results of the same estimation command in EViews 8 and

EViews 10:

Dependent Variable: AVELOAD Method: Least Squares Date: 09/23/18 Time: 00:18

Sample (adjusted): 10/02/2005 3/31/2006 Included observations: 181 after adjustments Convergence achieved after 13 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3582.163	85.98445	41.66059	0.0000
AVETEMP	-26.34896	1.466071	-17.97250	0.0000
WKND	-146.2891	10.02355	-14.59454	0.0000
PUBHOL	-48.19952	19.12181	-2.520656	0.0126
AR(1)	0.914579	0.030275	30.20876	0.0000
R-squared	0.965152	Mean dependent var		2390.249
Adjusted R-squared	0.964360	S.D. dependent var		362.3839
S.E. of regression	68.41268	Akaike info c	riterion	11.31623
Sum squared resid	823732.0	Schwarz cri	terion	11.40459
Log likelihood	-1019.119	Hannan-Qui	nn criter.	11.35205
F-statistic	1218.633	Durbin-Watson stat		2.183140
Prob(F-statistic)	0.000000			
Inverted AR Roots	.91			

Dependent Variable: AVELOAD

Method: ARMA Maximum Likelihood (OPG - BHHH)

Sample: 10/01/2005 3/31/2006 Included observations: 182

Convergence achieved after 17 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AVETEMP WKND PUBHOL AR(1) SIGMASQ	3576.414 -26.59983 -146.6367 -48.23138 0.912171 4545.861	71.92891 1.099957 11.46094 15.66494 0.029491 520.2919	49.72151 -24.18261 -12.79447 -3.078938 30.93090 8.737135	0.0000 0.0000 0.0000 0.0024 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.965856 0.964886 68.56262 827346.7 -1025.538 995.7266 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		2386.005 365.8870 11.33559 11.44121 11.37841 2.186760
Inverted AR Roots	.91			

Note that the results are close, but are not the same. In fact version 10 does not use FGLS as its default, but it uses the maximum likelihood estimation method (you will be introduced to maximum likelihood in ETC3400 and ETC3410). Note that maximum likelihood uses all 182 observations. Since inference with time series is all based on large samples, whether

a method uses all observations or all observations minus 1 does not matter at all.

Sample: 10/02/2005 3/31/2006 Included observations: 181

Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation	AC PAC
		1 -0.117 -0.117 2 -0.006 -0.020 3 -0.025 -0.028 4 -0.018 -0.025 5 0.086 0.082 6 -0.013 0.006 7 -0.056 -0.057 8 -0.082 -0.093
] 		9 0.060 0.042 10 -0.000 0.000 11 0.105 0.105 12 0.061 0.100

Residuals are now white noise. So the regression with AR(1) errors has taken care of serial correlation in errors. Compare these results with OLS results that we started with.

(e)

We add $wknd \times avetemp$ to the model and test if it is significant

Dependent Variable: AVELOAD

Method: ARMA Maximum Likelihood (OPG - BHHH)

Sample: 10/01/2005 3/31/2006 Included observations: 182

Convergence achieved after 17 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3569.919	71.31876	50.05582	0.0000
AVETEMP	-26.43281	1.099069	-24.05019	0.0000
WKND	-113.9042	54.95640	-2.072629	0.0397
WKND*AVETEMP	-0.750741	1.300690	-0.577187	0.5646
PUBHOL	-48.87897	16.01936	-3.051244	0.0026
AR(1)	0.911599	0.029970	30.41691	0.0000
SIGMASQ	4536.934	518.6744	8.747172	0.0000
R-squared	0.965923	Mean dependent var		2386.005
Adjusted R-squared	0.964755	S.D. depend	lent var	365.8870
S.E. of regression	68.69070	Akaike info o	riterion	11.34458
Sum squared resid	825722.0	Schwarz cri	terion	11.46781
Log likelihood	-1025.356	Hannan-Quinn criter.		11.39453
F-statistic	826.7383	Durbin-Watson stat		2.191117
Prob(F-statistic)	0.000000			
Inverted AR Roots	.91			

$$H_0 : \beta_{wknd*avetemp} = 0$$

$$H_1 : \beta_{wknd*avetemp} \neq 0$$

$$t_{\hat{\beta}_{wknd*avetemp}} = \frac{\hat{\beta}_{wknd*avetemp}}{se\left(\hat{\beta}_{wknd*avetemp}\right)} \sim t_{176} \text{ whether you use } n = 182 \text{ or } n = 181 \text{ does not matter}$$

$$t_{calc} = -0.577 \text{ based on EViews } 10 \text{ results, } t_{crit} = 1.98$$

$$-t_{crit} < t_{calc} < t_{crit} \Longrightarrow \text{ cannot reject the null}$$
There is no evidence that sensitivity to temperature is different in weekends

(f)

Dependent Variable: AVELOAD
Method: ARMA Maximum Likelihood (OPG - BHHH)
Included observations: 182
Convergence achieved after 18 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AVETEMP SAT	3565.053 -26.38951 -131.2799	74.47101 1.059103 13.34733	47.87169 -24.91685 -9.835670	0.0000 0.0000 0.0000
SUN PUBHOL AR(1) SIGMASQ	-131.2799 -161.1398 -43.81095 0.917351 4371.970	12.32969 15.85584 0.029483 487.5982	-9.835670 -13.06925 -2.763080 31.11492 8.966338	0.0000 0.0000 0.0063 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.967162 0.966036 67.43033 795698.6 -1022.018 859.0334 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		2386.005 365.8870 11.30789 11.43112 11.35785 2.113989
Inverted AR Roots	.92			

$$\begin{array}{lll} H_0 & : & \beta_{SAT} = \beta_{SUN} \\ H_1 & : & \beta_{SAT} \neq \beta_{SUN} \\ F & = & \frac{(SSR_r - SSR_{ur})/1}{SSR_{ur}/(182-6)} \sim F_{1,176} & \text{under } H_0 \\ F_{calc} & = & \frac{823732.0 - 795698.6}{795698.6/176} = 6.2 \\ F_{calc} & > & F_{crit} \approx 3.92 \Longrightarrow \text{ we reject the null} \end{array}$$

There is significant evidence that the intercept of the relationship between average load and average temperature for Saturday is different from the intercept for Sunday.

EViews 8 output for the last two parts is includes here just in case. Results are qualitatively similar, although numerically slightly different.

Dependent Variable: AVELOAD

Method: Least Squares

Sample (adjusted): 10/02/2005 3/31/2006 Included observations: 181 after adjustments Convergence achieved after 13 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	3575.797	87.10410	41.05199	0.0000
AVETEMP	-26.21442	1.494041	-17.54598	
WKND	-118.7534	56.30834	-2.108984	0.0364
WKND*AVETEMP	-0.632062	1.271754	-0.497000	0.6198
PUBHOL	-48.73931	19.19382	-2.539324	0.0120
AR(1)	0.914560	0.030416	30.06789	0.0000
R-squared	0.965201	Mean dependent var		2390.249
Adjusted R-squared S.E. of regression	0.964207	S.D. dependent var		362.3839
	68.55950	Akaike info criterion		11.32587
Sum squared resid	822570.9	Schwarz criterion		11.43190
Log likelihood	-1018.991	Hannan-Quinn criter.		11.36885
F-statistic Prob(F-statistic)	970.7848 0.000000	Durbin-Wats	son stat	2.186015
Inverted AR Roots	.91			

Dependent Variable: AVELOAD

Method: Least Squares

Sample (adjusted): 10/02/2005 3/31/2006 Included observations: 181 after adjustments Convergence achieved after 12 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3574.143	86.52460	41.30783	0.0000
AVETEMP	-26.13974	1.441347	-18.13563	0.0000
SAT	-130.6782	11.43111	-11.43180	0.0000
SUN	-160.9822	11.25601	-14.30188	0.0000
PUBHOL	-43.72755	18.83197	-2.321984	0.0214
AR(1)	0.918624	0.029536	31.10218	0.0000
R-squared	0.966522	Mean dependent var		2390.249
Adjusted R-squared	0.965565	S.D. depend	lent var	362.3839
S.E. of regression	67.24636	Akaike info o	riterion	11.28719
Sum squared resid	791362.9	Schwarz cri	terion	11.39322
Log likelihood	-1015.491	Hannan-Quinn criter.		11.33018
F-statistic	1010.449	Durbin-Watson stat		2.114395
Prob(F-statistic)	0.000000			
Inverted AR Roots	.92			