Uvod v funkcionalno analizo

Jan Pantner (jan.pantner@gmail.com)

3. oktober 2024

Kazalo

1	Normirani in Banachovi prostori	
	1.1 Definicije in primeri	į

1 Normirani in Banachovi prostori

1.1 Definicije in primeri

Definicija 1.1.1. Naj bo X vektorski prostor nad poljem $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Preslikava $||\cdot||: X \to \mathbb{R}$ je *norma*, če velja

- (a) $\forall x \in X$. $||x|| \ge 0$,
- (b) $||x|| = 0 \Rightarrow x = 0$,
- (c) $\forall \lambda \in \mathbb{F}. \ \forall x \in X. \ ||\lambda x|| = |\lambda| ||x||,$
- (d) $\forall x, y \in X$. $||x + y|| \le ||x|| + ||y||$ (trikotniška neenakost).

Definicija 1.1.2. Če $p: X \to \mathbb{R}$ zadošča lasnostim (a), (c) in (d) iz zgornje definicije, je p **polnorma** na X.

Definicija 1.1.3. Prostor X skupaj z normo $||\cdot||$ je **normiran prostor**.

Lema 1.1.4. V normiranem prostoru velja

$$|||x|| - ||y||| \le ||x - y||$$
.

Dokaz. Iz

$$||x|| = ||x - y + y|| \le ||x - y|| + ||y||$$

sledi

$$||x|| - ||y|| \le ||x - y||$$
.

Podobno dobimo $||y|| - ||x|| \le ||x - y||$.

Če pišemo f(x) = ||x||, sledi, da je f zvezna in Lipshitzeva s konstanto 1.

Naj bo X normiran prostor. Vpeljemo metriko

$$d \colon X \to \mathbb{R},$$
$$d(x,y) = ||x - y||.$$

Omenimo še dve lastnosti metrike d:

• *d* je translacijsko invariantna:

$$d(x+y,y+a) = ||(x+a) - (y+a)|| = ||x-y|| = d(x,y),$$

• *d* je pozitivno homogena:

$$d(\lambda x, \lambda y) = ||\lambda x - \lambda y|| = |\lambda| ||x - y|| = |\lambda| d(x, y).$$

Definicija 1.1.5. Normiran prostor X je **Banachov**, če je (X, d) poln.

Trditev 1.1.6. Seštevanje vektorjev in množenje vektorjev s skalarjem sta zvezni operaciji v normiranem prostoru.

Domeni seštevanja in množenja sta zaporedoma $X \times X$ in $\mathbb{F} \times X$. Tu mislimo zveznost v smislu produktne metrike/topologije.

Dokaz. Naj bo $\varepsilon > 0$. Če velja $||x - x'|| < \varepsilon/2$ in $||y - y'|| < \varepsilon/2$, potem

$$||(x'+y')-(x+y)|| = ||(x'-x)-(y'+y)|| \le ||x'-x|| + ||y'-y|| < \varepsilon.$$

Naj bodo $\varepsilon > 0, x \in X$ in $\lambda \in \mathbb{F}$. Velja

$$||\lambda'x' - \lambda x|| = ||\lambda'x' - \lambda x' + \lambda x' - \lambda x||$$

$$\leq |\lambda' - \lambda| ||x'|| + |\lambda| ||x' - x||.$$

Naj bo
1 $||x'-x|| \leq \frac{\epsilon}{2} \cdot \frac{1}{|\lambda|+1}.$ Tedaj velja

$$||x'|| = ||x' - x + x|| \le ||x' - x|| + ||x|| \le \frac{\epsilon}{2} \cdot \frac{1}{|\lambda| + 1} + ||x||.$$

Če velja še

$$||\lambda' - \lambda|| < \frac{\epsilon}{2} \left(\frac{\epsilon}{2} \cdot \frac{1}{|\lambda| + 1} + ||x||\right)^{-1},$$

dobimo $||(x' + y') - (x + y)|| < \epsilon$.

 $^{^{1}\}mathrm{V}$ imenovalcu dodamo +1 zato, da ne potrebujemo ločeno obravnavati primera $\lambda=0.$

Stvarno kazalo

```
Banachov prostor, 3
norma, 3
normiran prostor, 3
polnorma, 3
```