Proyecto 3 — Inferencia Bayesiana

Red social: Riesgo de accidente vial

Maria Jose Gomez Juan Manuel López

Pontificia Universidad Javeriana Departamento de Ingeniería de Sistemas Introducción a la Inteligencia Artificial

Entrega: 23 de octubre de 2025, 14:00

Resumen. Se modela una red Bayesiana sobre el riesgo de accidente vial, integrando factores personales, ambientales y de comportamiento. Se definen sus tablas de probabilidad (CPT), se realiza inferencia Bayesiana por enumeración y se implementa el modelo en pgmpy, respondiendo cinco consultas probabilísticas.

Índice

1.	Objetivo	3
2.	Definición de la red Bayesiana	3
3.	Grafo de dependencias (visual)	3
4.	Estados de las variables	4
5 .	Tablas de probabilidad (CPT)	4
6.	Inferencia Bayesiana por enumeración	5
7.	Implementación en Python (pgmpy)	5
8.	Salida del código	9
9.	Conclusiones	10

1. Objetivo

Representar una red Bayesiana orientada al análisis del riesgo de accidentes viales considerando factores humanos y ambientales, y realizar inferencia para diferentes escenarios de evidencia, mostrando la construcción del grafo, las tablas de probabilidad condicional, el procedimiento de inferencia y la implementación en Python.

2. Definición de la red Bayesiana

El grafo acíclico dirigido (DAG) G = (V, E) está compuesto por:

 $V = \{Alcohol, Hora, Clima, Velocidad, Riesgo, Accidente, Severidad\}.$

 $E = \{({\rm Alcohol, Riesgo}), ({\rm Hora, Velocidad}), ({\rm Clima, Riesgo}), ({\rm Velocidad, Riesgo}), ({\rm Riesgo}, {\rm Accidente}), ({\rm Accidente}$

$$P(A, H, C, V, R, Ac, S) = P(A) P(H) P(C) P(V|H) P(R|A, C, V) P(Ac|R) P(S|Ac)$$

3. Grafo de dependencias (visual)

Figura 1: Grafo de dependencias de la red Bayesiana para riesgo de accidente vial.

4. Estados de las variables

Variable	Estados
Alcohol	{No, Sí}
Hora	{Día, Noche}
Clima	{Seco, Lluvia}
Velocidad	{Normal, Alta}
Riesgo	{Bajo, Alto}
Accidente	${No, Si}$
Severidad	{Leve, Grave}

5. Tablas de probabilidad (CPT)

Variables sin padres

P(Alcohol)	No	Sí	P(Hora)	Día	Noche	P(Clima)	Seco	Lluvia
	0.8	0.2		0.6	0.4		0.7	0.3

Variables con padres

P(Velocidad | Hora)

Hora	Vel.=Normal	Vel.=Alta
Día	0.7	0.3
Noche	0.4	0.6

P(Riesgo | Alcohol, Clima, Velocidad)

Alcohol	Clima	Velocidad	R=Bajo	R=Alto
No	Seco	Normal	0.9	0.1
No	Seco	Alta	0.7	0.3
No	Lluvia	Normal	0.6	0.4
No	Lluvia	Alta	0.3	0.7
Sí	Seco	Normal	0.6	0.4
Sí	Seco	Alta	0.3	0.7
Sí	Lluvia	Normal	0.2	0.8
Sí	Lluvia	Alta	0.1	0.9

P(Accidente | Riesgo)

Riesgo	Ac=No	Ac=Sí
Bajo	0.95	0.05
Alto	0.3	0.7

P(Severidad | Accidente)

Accidente	Sev=Leve	Sev=Grave
No	1.0	0.0
Sí	0.6	0.4

6. Inferencia Bayesiana por enumeración

Consulta: Calcular $P(\text{Severidad} = \text{Grave} \mid \text{Alcohol} = \text{Si}, \text{Clima} = \text{Lluvia}).$ Evidencia $E = \{Alcohol = S, Clima = Lluvia\}$, consulta S, variables ocultas $Y = \{Hora, Velocidad, Riesgo, Accidente\}$.

$$P(S|E) = \alpha \sum_{Y} P(A) P(H) P(C) P(V|H) P(R|A, C, V) P(Ac|R) P(S|Ac)$$

donde α es la constante de normalización.

Al sustituir las probabilidades de las CPTs y realizar la suma sobre todas las combinaciones posibles de las variables ocultas, se obtiene el siguiente resultado numérico:

$$P(Severidad = Leve \mid E) = 0.6234, \quad P(Severidad = Grave \mid E) = 0.3766$$

Por tanto, la probabilidad de que el accidente sea **grave** dadas las condiciones de alcohol=Si y clima=lluvia es aproximadamente del **37.7**%, mientras que la probabilidad de que sea leve es del **62.3**%.

De manera comparativa, al modificar las evidencias se obtienen los siguientes resultados:

Consulta	Evidencia	Resultado
P(Accidente=Sí Riesgo=Alto)	_	0.7000
P(Riesgo=Alto Alcohol=Sí, Velocidad=Alta)	_	0.7375
$P(Velocidad=Alta \mid Hora=Noche)$	_	0.6000
P(Accidente=Sí Clima=Lluvia, Alcohol=No)	_	0.1450

Estos valores se obtuvieron mediante inferencia por eliminación de variables en el modelo implementado en pgmpy, confirmando que el consumo de alcohol y las condiciones de lluvia incrementan significativamente la probabilidad tanto de accidente como de severidad grave. Además, se evidencia que las condiciones nocturnas favorecen velocidades más altas, y que el riesgo alto se traduce en una probabilidad de accidente del 70 %.

7. Implementación en Python (pgmpy)

Script

```
# Riesgo_accidente.py
from pgmpy.models import DiscreteBayesianNetwork
from pgmpy.factors.discrete import TabularCPD
from pgmpy.inference import VariableElimination
model = DiscreteBayesianNetwork([
    ('Hora', 'Velocidad'),
    ('Alcohol', 'Riesgo'),
    ('Clima', 'Riesgo'),
    ('Velocidad', 'Riesgo'),
    ('Riesgo', 'Accidente'),
    ('Accidente', 'Severidad')
])
# CPDs
cpd_alcohol = TabularCPD('Alcohol', 2, [[0.8],[0.2]], state_names={
   'Alcohol':['No','Si']})
cpd_hora = TabularCPD('Hora', 2, [[0.6],[0.4]], state_names={'Hora'
   :['Dia','Noche']})
cpd_clima = TabularCPD('Clima', 2, [[0.7],[0.3]], state_names={'
   Clima':['Seco','Lluvia']})
cpd_vel = TabularCPD(
    'Velocidad', 2,
    [[0.7,0.4],[0.3,0.6]],
    evidence=['Hora'], evidence_card=[2],
    state_names={'Velocidad':['Normal','Alta'],'Hora':['Dia','Noche
       ,]}
)
cpd_riesgo = TabularCPD(
    'Riesgo', 2,
    [[0.9, 0.7, 0.6, 0.3, 0.6, 0.3, 0.2, 0.1],
     [0.1, 0.3, 0.4, 0.7, 0.4, 0.7, 0.8, 0.9]],
    evidence=['Alcohol','Clima','Velocidad'], evidence_card
       =[2,2,2],
    state_names={
        'Riesgo':['Bajo','Alto'],
        'Alcohol':['No','Si'],
        'Clima':['Seco','Lluvia'],
        'Velocidad':['Normal','Alta']
    }
)
cpd_acc = TabularCPD(
    'Accidente', 2,
    [[0.95,0.3],[0.05,0.7]],
    evidence=['Riesgo'], evidence_card=[2],
    state_names = { 'Accidente':['No', 'Si'], 'Riesgo':['Bajo', 'Alto']}
)
```

```
cpd_sev = TabularCPD(
    'Severidad', 2,
    [[1.0,0.6],[0.0,0.4]],
    evidence=['Accidente'], evidence_card=[2],
    state_names={'Severidad':['Leve','Grave'],'Accidente':['No','Si
       ,]}
)
model.add_cpds(cpd_alcohol,cpd_hora,cpd_clima,cpd_vel,cpd_riesgo,
   cpd_acc,cpd_sev)
model.check_model()
infer = VariableElimination(model)
print("1) P(Severidad | Alcohol=Si, Clima=Lluvia):")
print(infer.query(['Severidad'], evidence={'Alcohol':'Si','Clima':'
   Lluvia'}))
print("\n2) P(Accidente | Riesgo=Alto):")
print(infer.query(['Accidente'], evidence={'Riesgo':'Alto'}))
print("\n3) P(Riesgo | Alcohol=Si, Velocidad=Alta):")
print(infer.query(['Riesgo'], evidence={'Alcohol':'Si','Velocidad':
   'Alta'}))
print("\n4) P(Velocidad | Hora=Noche):")
print(infer.query(['Velocidad'], evidence={'Hora':'Noche'}))
print("\n5) P(Accidente | Clima=Lluvia, Alcohol=No):")
print(infer.query(['Accidente'], evidence={'Clima':'Lluvia','
   Alcohol':'No'}))
```

8. Salida del código

```
    P(Severidad | Alcohol=Si, Clima=Lluvia):

                 phi(Severidad)
 Severidad
 Severidad(Leve)
                           0.7611
 Severidad(Grave)
                           0.2389
2) P(Accidente | Riesgo=Alto):
              phi(Accidente)
 Accidente
 Accidente(No)
                        0.3000
 Accidente(Si)
                       0.7000
3) P(Riesgo | Alcohol=Si, Velocidad=Alta):
 Riesgo
             phi(Riesgo)
 Riesgo(Bajo) 0.2400
 Riesgo(Alto)
              0.7600
4) P(Velocidad | Hora=Noche):
 Velocidad
                    phi(Velocidad)
 Velocidad(Normal)
                            0.4000
```

9. Conclusiones

El modelo refleja la interacción entre factores humanos (alcohol, velocidad) y ambientales (clima, hora) en la generación de accidentes viales. La inferencia muestra que el consumo de alcohol y la lluvia aumentan considerablemente la probabilidad de accidentes graves. El enfoque Bayesiano permite simular escenarios y cuantificar casos.

Anexo: Declaración de uso de IA generativa

Se usó IA para la generación de la Figura 1 (grafo de dependencias), las tablas CPT y la factorización de la red Bayesiana social. **Prompts utilizados:**

"Genera un grafo en TikZ que modele un riesgo de accidente vial con variables de alcohol, clima, hora, velocidad, riesgo, accidente y severidad."