8. cvičení k předmětu NMAI058 Lineární Algebra 2 (LS 19/20)

(Řešená verze)

Úloha 1: Určete, zda jsou následující matice diagonalizovatelné.

a)
$$A_1 = \begin{pmatrix} 4 & -2 & 0 \\ 0 & 2 & 0 \\ 6 & -5 & 1 \end{pmatrix}$$

Řešení: Chceme ověřit, zda je matice A_1 podobná diagonální matici. Hledáme tedy regulární matici S a diagonální matici D takové, že $A_1 = SDS^{-1}$. Když tuto rovnost zprava vynásobíme S, dostaneme $A_1S = SD$. Pro i-tý sloupec dostaneme rovnost $A_1s^i = (D)_{i,i} \cdot s_i$, kde s_i je i-tý sloupec S. Pro rovnost, že i-tý sloupec SD se rovná $(D)_{i,i} \cdot s_i$, jsme využili, že matice D je diagonální. Z rovnosti $A_1s^i = (D)_{i,i} \cdot s_i$ ale dostáváme, že na diagonále D jsou vlastní čísla matice A_1 a sloupce matice S tvoří vlastní vektory. Aby vše fungovalo, musí být matice S regulární, tedy matice A_1 musí mít S lineárně nezávislých vlastních vektorů.

Spočtěme tedy vlastní čísla matice A_1 . Charakteristický polynom p_{A_1} se rovná

$$p_A(\lambda) = (4 - \lambda)(2 - \lambda)(1 - \lambda).$$

Vlastní čísla se tedy rovnají $\lambda_1=4, \lambda_2=2$ a $\lambda_3=1$. Příslušné vlastní vektory získáme vyřešením homogenní soustavy rovnic $(A_1-\lambda I)=0$, kde za λ dosadíme, konkrétní vlastní čísla. Vyjdou tedy vektory $x_1=c\cdot (1,0,2)^T, \ x_2=c\cdot (1,1,1)^T$ a $x_3=c\cdot (0,0,1)^T$. Tyto vektory jsou lineárně nezávislé. Matice A_1 je tedy diagonalizovatelná a můžeme ji napsat ve tvaru SDS^{-1} , kde

$$S = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix} \text{ a } D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

b)
$$A_2 = \begin{pmatrix} 0 & 1 \\ -2 & 2 \end{pmatrix}$$

Rešení: Postupujeme stejně jako u matice A_1 jen zde vyjdou komplexní vlastní čísla. Charakteristický polynom p_{A_2} se rovná $p_{A_2}(\lambda) = \lambda^2 - 2\lambda + 2$. Kořeny polynomu p_{A_2} jsou 1 + i a 1 - i a k nim příslušné vlastní vektory $(1, 1 + i)^T$ a $(1, 1 - i)^T$. Matici A_2 tedy můžeme naspat ve tvaru SDS^{-1} pro matice

$$S = \begin{pmatrix} 1 & 1 \\ 1+i & 1-i \end{pmatrix} \text{ a } D = \begin{pmatrix} 1+i & 0 \\ 0 & 1-i \end{pmatrix}.$$

Úloha 2: Ukažte, že matice B není diagonalizovatelná.

$$B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Řešení: Matice B má vlastní číslo 0 s algebraickou násobností 2. Pokud by tedy byla diagonalizovatelná, pak by musela být podobná nulové matici. Tedy pro nějako regulární matici S,

$$B = S0S^{-1} = 0.$$

Úloha 3: Pro diagonalizovatelnou matici C spočtěte třetí mocninu a druhou odmocninu. Odmocninou rozumějte takovou matici, jejíž druhá mocnina je daná matice.

$$C = \begin{pmatrix} -11 & 30 \\ -10 & 24 \end{pmatrix}$$

Řešení: Mějme $C = SDS^{-1}$ pro diagonální matici D. Všimněme si, že $C^k = \left(SDS^{-1}\right)^k = SD^kS^{-1}$. Obdobně $SD^{\frac{1}{2}}S^{-1} \cdot SD^{\frac{1}{2}}S^{-1} = SDS^{-1}$, kde $D^{\frac{1}{2}}$ je diagonální matice, kde jsou na diagonále odmocniny diagonálních prvků matice D, tedy $D_{i,i}^{\frac{1}{2}} = \sqrt{D_{i,i}}$.

Třetí mocninu matice C tedy spočteme jako SD^3S^{-1} a odmocninu jako $SD^{\frac{1}{2}}S^{-1}$. Nejprve tedy převedeme matici do tvaru SDS^{-1} .

$$C = \begin{pmatrix} -11 & 30 \\ -10 & 24 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 9 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 2 & -3 \end{pmatrix} = SDS^{-1}$$

Nyní již můžeme spočítat třetí mocninu a druhou odmocninu

$$SD^3S^{-1} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 729 & 0 \\ 0 & 64 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} -1931 & 3990 \\ -1330 & 2724 \end{pmatrix} = C^3$$

$$SD^{\frac{1}{2}}S^{-1} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} -1 & 6 \\ -2 & 6 \end{pmatrix} = C^{\frac{1}{2}}$$

Další příklady k procvičení

Úloha 4: Rozložte následující matici na součin SDS^{-1} , kde matice S je regulární a matice D je diagonální.

a)
$$\begin{pmatrix} 2 & 0 & 0 \\ -4 & 1 & 3 \\ -4 & 0 & 4 \end{pmatrix}$$

Výsledek:
$$S = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 2 & 0 \end{pmatrix}, D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, S^{-1} = \begin{pmatrix} -2 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

b)
$$\begin{pmatrix} 4 & -2 & 0 \\ 0 & 2 & 0 \\ 6 & -5 & 1 \end{pmatrix}$$

Výsledek:
$$S = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}, D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, S^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ -2 & 1 & 1 \end{pmatrix}$$

c)
$$\begin{pmatrix} 0 & 2 & -2 \\ 1 & -1 & 5 \\ 2 & -4 & 8 \end{pmatrix}$$

Hint: Všechna vlastní čísla jsou přirozená.

Výsledek:
$$S = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}, D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, S^{-1} = \begin{pmatrix} 1 & -2 & 3 \\ -1 & 2 & -2 \\ 1 & -1 & 1 \end{pmatrix}$$

$$d) \begin{pmatrix} 1 & \frac{1}{2} \\ -1 & 0 \end{pmatrix}$$

$$\textbf{Výsledek:} \ \ S = \begin{pmatrix} \frac{-1-i}{2} & \frac{-1+i}{2} \\ 1 & 1 \end{pmatrix}, D = \begin{pmatrix} \frac{1+i}{2} & 0 \\ 0 & \frac{1-i}{2} \end{pmatrix} S^{-1} = \begin{pmatrix} i & \frac{1+i}{2} \\ -i & \frac{1-i}{2} \end{pmatrix}$$

Úloha 5: $Bud'A \in \mathbb{R}^{n \times n} \ a \ B \in \mathbb{R}^{m \times m}$. $Dokažte, \ \check{z}e \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} je \ podobná \ s \begin{pmatrix} B & 0 \\ 0 & A \end{pmatrix}$.

Nápověda: Zkuste si nejdříve rozmyslet případ kdy A i B mají rozměr 1×1 .

Úloha 6: Definujme relaci \sim na prostoru matic $\mathbb{R}^{n \times n}$ jako $A \sim B$ když existuje S regulární, že $A = SBS^{-1}$ (tedy matice A a B jsou si podobné). Ukažte, že relace \sim je ekvivalence.

Nápověda: Čistě mechanicky ověřte, že \sim je reflexivní, symetrická a tranzitivní.

Úloha 7: $Bud'A \in \mathbb{R}^{n \times n}$ hodnosti k. Jaká je geometrická násobnost vlastního čísla <math>0? **Výsledek:** n - k dle vlastnosti hodnosti, kernelu a definice geometrické násobnosti.

Úloha 8: Nechť $A = SDS^{-1}$ je diagonalizační rozklad matice A. Určete vlastní vektory A^T .

Výsledek: Řádky matice S^{-1} .