1.1. Вопросы к экзамену «Введение в анализ» (1 семестр)

1. Аксиоматическое определение множества действительных чисел. Свойство полноты.

Определение 1. Множество \mathbb{R} называется множеством действительных (вещественных) чисел, а его элементы — действительными (вещественными) числами, если выполнен следующий комплекс условий, называемый аксиоматикой вещественных чисел:

(I) Аксиомы сложения. Определено отображение (операция сложения)

$$+: \mathbb{R} \times \mathbb{R} \to \mathbb{R},$$

сопоставляющее каждой упорядоченной паре (x,y) элементов x,y из $\mathbb R$ некоторый элемент $x+y\in\mathbb R$, называемый *суммой* x и y. При этом выполнены следующие условия:

 1_+ . Существует *нейтральный* элемент 0 (называемый в случае сложения *нулем*) такой, что для любого $x \in \mathbb{R}$

$$x+0=0+x=x$$
.

 2_+ . Для любого элемента $x \in \mathbb{R}$ имеется элемент $-x \in \mathbb{R}$, называемый *противоположным* к x, такой, что

$$x + (-x) = (-x) + x = 0.$$

 3_+ . Операция + ассоциативна, т. е. для любых элементов x, y, z из ℝ выполнено

$$x + (y + z) = (x + y) + z$$
.

 $4_{+}.$ Операция + коммутативна, т. е. для любых элементов $x,\,y$ из $\mathbb R$ выполнено

$$x + y = y + x$$
.

•

(II) Аксиомы умножения. Определено отображение (операция умножения)

•:
$$\mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
,

сопоставляющее каждой упорядоченной паре (x, y) элементов x, y из \mathbb{R} некоторый элемент $x \cdot y \in \mathbb{R}$, называемый *произведением* x и y, причем так, что выполнены следующие условия:

1. Существует нейтральный элемент $1 \in \mathbb{R} \setminus 0$ (называемый в случае умножения единицей) такой, что $∀x \in \mathbb{R}$

$$x \cdot 1 = 1 \cdot x = x$$
.

2. Для любого элемента $x \in \mathbb{R} \setminus 0$ имеется элемент $x^{-1} \in \mathbb{R}$, называемый обратным, такой, что

$$x \cdot x^{-1} = x^{-1} \cdot x = 1.$$

3. Операция • ассоциативна, т. е. для любых x, y, z из ℝ

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
.

4. Операция • коммутативна, т. е. для любых x, y из \mathbb{R}

$$x \cdot y = y \cdot x$$
.

Заметим, что по отношению к операции умножения множество $\mathbb{R} \setminus 0$, как можно проверить, является (*мультипликативной*) группой.

(I, II) Связь сложения и умножения. Умножение дистрибутивно по отношению к сложению, т. е. $\forall x, y, z \in \mathbb{R}$

$$(x+y)z = xz + yz.$$

- (III) Аксиомы порядка. Между элементами $\mathbb R$ имеется отношение \leq , т. е. для элементов x, y из $\mathbb R$ установлено, выполняется ли $x \leq y$ или нет. При этом должны удовлетворяться следующие условия:
 - $0 \le \forall x \in \mathbb{R} (x \le x).$
 - 1_{\leq} . $(x \leq y) \land (y \leq x) \Rightarrow (x = y)$.
 - $2 \le (x \le y) \land (y \le z) \Rightarrow (x \le z).$
 - $3 \le \forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ (x \le y) \lor (y \le x).$

Отношение ≤ в ℝ называется отношением неравенства.

(I, III) Связь сложения и порядка в \mathbb{R} . Если x, y, z — элементы \mathbb{R} , то

$$(x \le y) \Rightarrow (x+z \le y+z).$$

(II, III) Связь умножения и порядка в \mathbb{R} . Если x, y — элементы \mathbb{R} , то

$$(0 \le x) \land (0 \le y) \Rightarrow (0 \le x \cdot y).$$

(IV) Аксиома полноты (непрерывности). Если X и Y — непустые подмножества \mathbb{R} , обладающие тем свойством, что для любых элементов $x \in X$ и $y \in Y$ выполнено $x \leqslant y$, то существует такое $c \in \mathbb{R}$, что $x \leqslant c \leqslant y$ для любых элементов $x \in X$ и $y \in Y$.

2. Следствия из аксиом множества действительных чисел.

а. Следствия аксиом сложения

1° В множестве действительных чисел имеется только один нуль.

■ Если 0₁ и 0₂ — нули в ℝ, то по определению нуля

$$0_1 = 0_1 + 0_2 = 0_2 + 0_1 = 0_2$$
.

2° В множестве действительных чисел у каждого элемента имеется единственный противоположный элемент.

⋖ Если x_1 и x_2 — элементы, противоположные x ∈ \mathbb{R} , то

$$x_1 = x_1 + 0 = x_1 + (x + x_2) = (x_1 + x) + x_2 = 0 + x_2 = x_2$$
.

Здесь мы использовали последовательно определение нуля, определение противоположного элемента, ассоциативность сложения, снова определение противоположного элемента и, наконец, снова определение нуля.

3° Уравнение

$$a+x=b$$

в \mathbb{R} имеет и притом единственное решение

$$x = b + (-a)$$
.

 Это вытекает из существования и единственности у каждого элемента $a \in \mathbb{R}$ противоположного ему элемента:

$$(a+x=b) \iff ((x+a)+(-a)=b+(-a)) \iff \\ \Leftrightarrow (x+(a+(-a))=b+(-a)) \iff (x+0=b+(-a)) \iff \\ \Leftrightarrow (x=b+(-a)). \blacktriangleright$$

b. Следствия аксиом умножения

 1° В множестве действительных чисел имеется только одна единица.

 2° Для каждого числа $x \neq 0$ имеется только один обратный элемент x^{-1} . 3° Уравнение $a \cdot x = b$ при $a \in \mathbb{R} \setminus 0$ имеет и притом единственное решение $x = b \cdot a^{-1}$.

Доказательства этих утверждений, разумеется, повторяют доказательства соответствующих утверждений для сложения (с точностью до замены символа и названия операции), поэтому мы их опустим.

с. Следствия аксиомы связи сложения и умножения. Привлекая дополнительно аксиому (I, II), связывающую сложение и умножение, получаем дальнейшие следствия.

 1° Для любого $x \in \mathbb{R}$

$$x \cdot 0 = 0 \cdot x = 0$$
.

- \blacktriangleleft $(x \cdot 0 = x \cdot (0 + 0) = x \cdot 0 + x \cdot 0) \Rightarrow (x \cdot 0 = x \cdot 0 + (-(x \cdot 0)) = 0).$ Отсюда, между прочим, видно, что если $x \in \mathbb{R} \setminus 0$, то $x^{-1} \in \mathbb{R} \setminus 0$. $2^{\circ} (x \cdot y = 0) \Rightarrow (x = 0) \lor (y = 0).$
- \blacktriangleleft Если, например, $y \neq 0$, то из единственности решения уравнения $x \cdot y = 0$ относительно x находим $x = 0 \cdot y^{-1} = 0$.
 - 3° Для любого x ∈ \mathbb{R}

$$-x = (-1) \cdot x.$$

 \checkmark $x + (-1) \cdot x = (1 + (-1)) \cdot x = 0 \cdot x = x \cdot 0 = 0$, и утверждение следует из единственности противоположного элемента. >

 4° Для любого числа x ∈ \mathbb{R}

$$(-1)(-x) = x$$
.

⋖ Следует из 3° и единственности элемента x, противоположного -x. ▶ 5° Для любого числа $x \in \mathbb{R}$

$$(-x)(-x) = x \cdot x.$$

 \blacktriangleleft $(-x)(-x) = ((-1) \cdot x)(-x) = (x \cdot (-1))(-x) = x((-1)(-x)) = x \cdot x$. Мы последовательно воспользовались двумя предыдущими утверждениями, а также коммутативностью и ассоциативностью умножения. >

- **d.** Следствия аксиом порядка. Отметим сначала, что отношение $x \le y$ (читается «x меньше или равно y») записывают также в виде $y \ge x$ («y больше или равно x»); отношение $x \le y$ при $x \ne y$ записывают в виде x < y (читается «x меньше y») или в виде y > x («y больше x») и называют x0 строгим неравенством.
- 1° Для любых $x, y \in \mathbb{R}$ всегда имеет место в точности одно из соотношений:

$$x < y$$
, $x = y$, $x > y$.

- ◆ Это следует из приведенного определения строгого неравенства и аксиом 1_{\leq} и 3_{\leq} . ▶
 - 2° Для любых чисел x, y, z из \mathbb{R}

$$(x < y) \land (y \le z) \Rightarrow (x < z),$$

 $(x \le y) \land (y < z) \Rightarrow (x < z).$

$$(x \le y) \land (y < z) \iff (x \le y) \land (y \le z) \land (y \ne z) \Rightarrow (x \le z).$$

Осталось проверить, что $x \neq z$. Но в противном случае

$$(x \le y) \land (y < z) \iff (z \le y) \land (y < z) \iff (z \le y) \land (y \le z) \land (y \ne z).$$

$$(y=z) \land (y \neq z)$$

— противоречие. ▶

е. Следствия аксиом связи порядка со сложением и умножением. Если в дополнение к аксиомам сложения, умножения и порядка использовать аксиомы (I, III), (II, III), связывающие порядок с арифметическими операциями, то можно получить, например, следующие утверждения:

 1° Для любых чисел x, y, z, w из ℝ

$$(x < y) \Rightarrow (x+z) < (y+z),$$

$$(0 < x) \Rightarrow (-x < 0),$$

$$(x \le y) \land (z \le w) \Rightarrow (x+z \le y+w),$$

$$(x \le y) \land (z < w) \Rightarrow (x+z < y+w).$$

◆ Проверим первое из этих утверждений.

По определению строгого неравенства и аксиоме (I, III) имеем

$$(x < y) \Rightarrow (x \le y) \Rightarrow (x+z) \le (y+z).$$

Остается проверить, что $x + z \neq y + z$. В самом деле,

$$((x+z) = (y+z)) \Rightarrow (x = (y+z)-z = y+(z-z) = y),$$

что несовместимо с условием x < y. \blacktriangleright

 2° Если x, y, z — числа из \mathbb{R} , то

$$(0 < x) \land (0 < y) \Rightarrow (0 < xy),$$

$$(x < 0) \land (y < 0) \Rightarrow (0 < xy),$$

$$(x < 0) \land (0 < y) \Rightarrow (xy < 0),$$

$$(x < y) \land (0 < z) \Rightarrow (xz < yz),$$

$$(x < y) \land (z < 0) \Rightarrow (yz < xz).$$

◆ Проверим первое из этих утверждений. По определению строгого неравенства и аксиоме (II, III)

$$(0 < x) \land (0 < y) \Rightarrow (0 \le x) \land (0 \le y) \Rightarrow (0 \le xy).$$

Кроме того, $0 \neq xy$, поскольку, как уже было показано,

$$(x \cdot y = 0) \Rightarrow (x = 0) \lor (y = 0).$$

Проверим еще, например, и третье утверждение:

$$(x < 0) \land (0 < y) \Rightarrow (0 < -x) \land (0 < y) \Rightarrow (0 < (-x) \cdot y) \Rightarrow$$
$$\Rightarrow (0 < ((-1) \cdot x)y) \Rightarrow (0 < (-1) \cdot (xy)) \Rightarrow (0 < -(xy)) \Rightarrow (xy < 0). \blacktriangleright$$

Читателю предоставляется возможность доказать самостоятельно остальные соотношения, а также проверить, что если в одной из скобок левой части наших утверждений стоит нестрогое неравенство, то следствием его также будет нестрогое неравенство в правой части.

 \blacktriangleleft 1 \in $\mathbb{R} \setminus 0$, τ . e. $0 \neq 1$.

Если предположить, что 1 < 0, то по только что доказанному

$$(1 < 0) \land (1 < 0) \Rightarrow (0 < 1 \cdot 1) \Rightarrow (0 < 1).$$

Но мы знаем, что для любой пары чисел $x, y \in \mathbb{R}$ реализуется и притом только одна из возможностей: x < y, x = y, x > y. Поскольку $0 \neq 1$, а предположение 1 < 0 ведет к несовместимому с ним соотношению 0 < 1, то остается единственная возможность, указанная в утверждении.

$$4^{\circ}$$
 $(0 < x) \Rightarrow (0 < x^{-1})$ и $(0 < x) \land (x < y) \Rightarrow (0 < y^{-1}) \land (y^{-1} < x^{-1})$.

■ Проверим первое из этих утверждений.

Прежде всего, $x^{-1} \neq 0$. Предположив, что $x^{-1} < 0$, получим

$$(x^{-1} < 0) \land (0 < x) \Rightarrow (x \cdot x^{-1} < 0) \Rightarrow (1 < 0).$$

Это противоречие завершает доказательство. >

Напомним, что числа, которые больше нуля, называются положительными, а числа меньшие нуля — *отрицательными*.

Таким образом, мы доказали, например, что единица — положительное число, что произведение положительного и отрицательного чисел есть число отрицательное, а величина, обратная положительному числу, также положительна.

Глянь супренумы и инфинумы стр.40 мне впадлу их сюда писать

3. Определение окрестности.

Определение 7. Интервал, содержащий точку $x \in \mathbb{R}$, будем называть окрестностью этой точки.

В частности, при $\delta > 0$ интервал $]x - \delta, x + \delta[$ называется δ -окрестностью точки x. Его длина 2δ .

To Veas E-ornerman Exiat (xxa4)	All a are x
Loc 2) Voteo & Objectment 8x10-6xx01 con 3) Voteo & Objectment 8x1x>66	
e. 4) VEC-ON E DISPLEMENTE. EXIX T-63	######################################
E S) VELOOD & OUR COMMENTER & XIXC-EV SELECTION OF THE SELECTION OF THE S	e guman
6 VE Ca) E suprecryany { X/ax x Ca+E} works a	
7 To Ca, E appelment of x 1a-E 5xxoly marker a	a e a

Теоремы о состоянии вложенных отрезков и последовательности стягивающихся отрезков http://trushinbv.ru/studentam/1-kurs/157-printsip-vlozhennykh-otrezkov

1. Лемма о вложенных отрезках (принцип Коши-Кантора)

Определение 1. Функцию $f: \mathbb{N} \to X$ натурального аргумента называют последовательностью или, полнее, последовательностью элементов множества X.

Значение f(n) функции f, соответствующее числу $n \in \mathbb{N}$, часто обозначают через x_n и называют n-м членом последовательности.

Определение 2. Пусть $X_1, X_2, ..., X_n, ... -$ последовательность каких-то множеств. Если $X_1 \supset X_2 \supset ... \supset X_n \supset ...,$ т. е. $\forall n \in \mathbb{N} \ (X_n \supset X_{n+1})$, то говорят, что имеется последовательность *вложенных* множеств.

ЛЕММА (Коши—Кантор). Для любой последовательности $I_1\supset I_2\supset\ldots\supset I_n\supset\ldots$ вложенных отрезков найдется точка $c\in\mathbb{R}$, принадлежащая всем этим отрезкам.

Если, кроме того, известно, что для любого $\varepsilon>0$ в последовательности можно найти отрезок I_k , длина которого $|I_k|<\varepsilon$, то с — единственная общая точка всех отрезков.

■ Заметим прежде всего, что для любых двух отрезков $I_m = [a_m, b_m]$, $I_n = [a_n, b_n]$ нашей последовательности имеет место $a_m \le b_n$. Действительно, в противном случае мы получили бы $a_n \le b_n < a_m \le b_m$, т. е. отрезки I_m , I_n не имели бы общих точек, в то время как один из них (имеющий больший номер) должен содержаться в другом.

Таким образом, для числовых множеств $A = \{a_m \mid m \in \mathbb{N}\}$, $B = \{b_n \mid n \in \mathbb{N}\}$ выполнены условия аксиомы полноты, в силу которой найдется число $c \in \mathbb{R}$ такое, что $\forall a_m \in A$, $\forall b_n \in B$ выполнено $a_m \leqslant c \leqslant b_n$. В частности, $a_n \leqslant c \leqslant b_n$ для любого $n \in \mathbb{N}$. Но это и означает, что точка c принадлежит всем отрезкам I_n .

Пусть теперь c_1 и c_2 —две точки, обладающие этим свойством. Если они различны и, например, $c_1 < c_2$, то при любом $n \in \mathbb{N}$ имеем $a_n \leqslant c_1 < c_2 \leqslant b_n$, поэтому $0 < c_2 - c_1 < b_n - a_n$ и длина каждого отрезка нашей последовательности не может быть меньше положительной величины $c_2 - c_1$. Значит, если в последовательности есть отрезки сколь угодно малой длины, то общая точка у них единственная. \blacktriangleright

СИСТЕМА ВЛОЖЕННЫХ ОТРЕЗКОВ

Определение. Множество отрезков

$${[a_n,b_n]}_{n=1}^{\infty} = {[a_1,b_1], [a_2,b_2], \ldots},$$

$$\forall n \in \mathbb{N} \rightarrow -\infty < a_n < b_n < +\infty$$

называется системой вложенных отрезков, если

$$\forall n \in \mathbb{N} \rightarrow [a_n, b_n] \supset [a_{n+1}, b_{n+1}],$$

то есть каждый отрезок содержит следующий за ним.

Теорема (Непрерывность множества действительных чисел по Кантору). Для всякой системы вложенных отрезков существует точка, принадлежащая всем отрезкам данной системы.

Доказательство. Для системы вложенных отрезков $\{[a_n,b_n]\}_{n=1}^\infty$ рассмотрим два непустых множества

$$A = \{a_n\}_{n=1}^{\infty} = \{a_1, a_2, \ldots\}, \qquad B = \{b_n\}_{n=1}^{\infty} = \{b_1, b_2, \ldots\}.$$

Так как

$$\forall n, m \in \mathbb{N} \rightarrow [a_{n+m}; b_{n+m}] \subset [a_n; b_n] \Rightarrow a_n \leq a_{n+m};$$

$$\forall n, m \in \mathbb{N} \rightarrow [a_{n+m}; b_{n+m}] \subset [a_m; b_m] \Rightarrow b_{n+m} \leq b_m.$$

Следовательно,

$$\forall n, m \in \mathbb{N} \rightarrow a_n \leq a_{n+m} < b_{n+m} \leq b_m.$$

То есть

$$\forall a \in A, b \in B \rightarrow a \leq b.$$

В силу аксиомы непрерывности существует число c такое, что

$$\forall a \in A, b \in B \rightarrow a \leq c \leq b.$$

В частности,

$$\forall n \in \mathbb{N} \rightarrow c \in [a_n, b_n],$$

что и требовалось доказать.

Определение. Система вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$ называется *стягивающейся системой вложенных отрезков*, если

$$\forall \varepsilon > 0 \rightarrow \exists n \in \mathbb{N} : b_n - a_n < \varepsilon.$$

Теорема. Стягивающаяся система вложенных отрезков имеет ровно одну точку, принадлежащую всем отрезкам.

Доказательство. По крайней мере, одна общая точка для отрезков рассматриваемой системы имеется в силу предыдущей теоремы. Покажем, что общих точек не больше одной.

Допуская противное, предположим, что каждая из двух различных точек c и c' является общей для всех отрезков системы. Пусть, для определенности, c' < c, то есть $\varepsilon = c - c' > 0$. По определению стягивающейся системы,

$$\exists n \in \mathbb{N} : b_n - a_n < \varepsilon.$$

Тогда $a_n \leq c' < c \leq b_n$.

Отсюда

$$a_n \le c' \Rightarrow -c' \le -a_n \Rightarrow c - c' \le c - a_n;$$

 $c \le b_n \Rightarrow c - a_n \le b_n - a_n.$

Поэтому $\varepsilon = c - c' \le c - a_n \le b_n - a_n < \varepsilon$.

Получили противоречие. Теорема доказана.

4. Определение предела последовательности. Единственность предела сходящейся последовательности.

Число $A \in \mathbb{R}$ называется пределом последовательности $\{x_n\}$, если для любого $\varepsilon > 0$ существует номер N такой, что при всех n > N имеем $|x_n - A| < \varepsilon$.

Эквивалентность этих формулировок легко проверить (проверьте!), если заметить, что в любой окрестности V(A) точки A содержится некоторая ε -окрестность этой же точки.

Последняя формулировка определения предела означает, что, какую бы точность $\varepsilon > 0$ мы ни задали, найдется номер N такой, что абсолютная погрешность приближения числа A членами последовательности $\{x_n\}$ меньше чем ε , как только n > N.

Запишем теперь приведенные формулировки определения предела в логической символике, договорившись, что запись « $\lim_{n\to\infty} x_n = A$ » означает, что A — предел последовательности $\{x_n\}$. Итак,

$$\left(\lim_{n\to\infty}x_n=A\right):=\forall V(A)\ \exists N\in\mathbb{N}\ \forall n>N\ (x_n\in V(A))$$

с) Это важнейший пункт теоремы. Пусть $\lim_{n\to\infty}x_n=A_1$ и $\lim_{n\to\infty}x_n=A_2$. Если $A_1\neq A_2$, то фиксируем непересекающиеся окрестности $V(A_1)$, $V(A_2)$ точек A_1,A_2 .

В качестве таковых можно взять, например, δ -окрестности этих точек при $\delta < \frac{1}{2}|A_1 - A_2|$. По определению предела найдем числа N_1 и N_2 так, что $\forall n > N_1$ ($x_n \in V(A_1)$) и $\forall n > N_2$ ($x_n \in V(A_2)$). Тогда при $n > \max\{N_1, N_2\}$ получим $x_n \in V(A_1) \cap V(A_2)$. Но это невозможно, поскольку $V(A_1) \cap V(A_2) = \emptyset$.

- d) Пусть $\lim_{n\to\infty} x_n = A$. Полагая в определении предела $\varepsilon=1$, найдем номер N такой, что $\forall n>N$ ($|x_n-A|<1$). Значит, при n>N имеем $|x_n|<|A|+1$. Если теперь взять $M>\max\{|x_1|,\ldots,|x_n|,|A|+1\}$, то получим, что $\forall n>N$ ($|x_n|< M$).
- 5. Критерии существования предела числовой последовательности. Доказательство критерия о существовании предела ограниченной и монотонной последовательности.

сти

Определение 8. Последовательность $\{x_n\}$ называется возрастающей, если $\forall n \in \mathbb{N} \ (x_n < x_{n+1})$; неубывающей, если $\forall n \in \mathbb{N} \ (x_n \leq x_{n+1})$; невозрастающей, если $\forall n \in \mathbb{N} \ (x_n > x_{n+1})$; убывающей, если $\forall n \in \mathbb{N} \ (x_n > x_{n+1})$. Последовательности этих четырех типов называют монотонными последовательностиями.

Определение 9. Последовательность $\{x_n\}$ называется ограниченной сверху, если существует число M такое, что $\forall n \in \mathbb{N} \ (x_n < M)$.

Аналогично определяется последовательность, ограниченная снизу.

Теорема 5 (Вейерштрасс). Для того чтобы неубывающая последовательность имела предел, необходимо и достаточно, чтобы она была ограниченной сверху.

■ То, что любая сходящаяся последовательность ограничена, было доказано при рассмотрении общих свойств предела последовательности, поэтому интерес представляет только второе утверждение теоремы.

По условию множество значений последовательности $\{x_n\}$ ограничено сверху, значит, оно имеет верхнюю грань $s=\sup x_n$.

По определению верхней грани, для любого $\varepsilon > 0$ найдется элемент $x_N \in \{x_n\}$ такой, что $s - \varepsilon < x_N \le s$. Поскольку последовательность $\{x_n\}$ неубывающая, при любом n > N теперь получаем $s - \varepsilon < x_N \le x_n \le s$, т. е. $|s - x_n| = s - x_n < \varepsilon$. Таким образом, доказано, что $\lim_{n \to \infty} x_n = s$.

Разумеется, аналогичную теорему можно сформулировать и доказать для невозрастающей последовательности, ограниченной снизу. В этом случае $\lim_{n\to\infty} x_n = \inf_{n\in\mathbb{N}} x_n$.

Замечание. Ограниченность сверху (снизу) неубывающей (невозрастающей) последовательности на самом деле, очевидно, равносильна ограниченности этой последовательности.

6. Критерии существования предела числовой последовательности. Доказательство критерия Коши.

Определение 7. Последовательность $\{x_n\}$ называется фундаментальной (или последовательностью Коши¹), если для любого числа $\varepsilon > 0$ найдется такой номер $N \in \mathbb{N}$, что из n > N и m > N следует $|x_m - x_n| < \varepsilon$.

Теорема 4 (критерий Коши сходимости последовательности). Числовая последовательность сходится тогда и только тогда, когда она фундаментальна.

 \blacktriangleleft Пусть $\lim_{n \to \infty} x_n = A$. По числу $\varepsilon > 0$ найдем номер N так, чтобы при n > N иметь $|x_n - A| < \frac{\varepsilon}{2}$. Если теперь m > N и n > N, то $|x_m - x_n| < |x_m - A| + |x_n - A| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ и, таким образом, проверено, что сходящаяся последовательность фундаментальна.

Пусть теперь $\{x_k\}$ — фундаментальная последовательность. По заданному $\varepsilon>0$ найдем номер N такой, что из $m\geqslant N$ и $k\geqslant N$ следует $|x_m-x_k|<\frac{\varepsilon}{3}$. Фиксировав m=N, получаем, что при любом k>N

$$x_N - \frac{\varepsilon}{3} < x_k < x_N + \frac{\varepsilon}{3},\tag{1}$$

но поскольку имеется всего конечное число членов последовательности $\{x_n\}$ с номерами, не превосходящими N, то мы доказали, что фундаментальная последовательность ограничена.

Для $n \in \mathbb{N}$ положим теперь $a_n := \inf_{k \geqslant n} x_k$, $b_n := \sup_{k \geqslant n} x_k$.

Из этих определений видно, что $a_n \le a_{n+1} \le b_{n+1} \le b_n$ (поскольку при переходе к меньшему множеству нижняя грань не уменьшается, а верхняя не

увеличивается). Последовательность вложенных отрезков $[a_n, b_n]$ имеет, по лемме о вложенных отрезках, общую точку A.

Поскольку при любом $n \in \mathbb{N}$

$$a_n \leq A \leq b_n$$

а при $k \ge n$

$$a_n = \inf_{k \geqslant n} x_k \leqslant x_k \leqslant \sup_{k \geqslant n} x_k = b_n,$$

то при $k \ge n$ имеем

$$|A - x_k| \le b_n - a_n. \tag{2}$$

Но из (1) следует, что при n > N

$$x_N - \frac{\varepsilon}{3} \le \inf_{k \ge n} x_k = a_n \le b_n = \sup_{k \ge n} x_k \le x_N + \frac{\varepsilon}{3}$$

поэтому при n > m

$$b_n - a_n \le \frac{2\varepsilon}{3} < \varepsilon. \tag{3}$$

Сравнивая (2) и (3), находим, что при любом k > N

$$|A-x_k|<\varepsilon$$
,

и мы показали, что $\lim_{k\to\infty} x_k = A$. \blacktriangleright

7. Определение предела функции по Коши и по Гейне. Их эквивалентность.

Определение 1. Будем (следуя Коши) говорить, что функция $f: E \to \mathbb{R}$ стремится κ A при x, стремящемся κ a, или что A является пределом функции f при x, стремящемся κ a, если для любого числа $\varepsilon > 0$ существует число $\delta > 0$ такое, что для любой точки $x \in E$ такой, что $0 < |x - a| < \delta$, выполнено соотношение $|f(x) - A| < \varepsilon$.

В логической символике сформулированные условия запишутся в виде

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in E \ (0 < |x - a| < \delta \Rightarrow |f(x) - A| < \varepsilon).$$

8. Определение $7(\Gamma e \ddot{u} h e)$. Величина b (число или бесконечность со знаком или без) есть предел функции f при $x \to a$ ($\lim_{x\to a} f(x) = b$), если для любой последовательности $(x_n)_{n=1}^{+\infty} \subset E$, $x_n \to a$ $(n \to +\infty)$: $f(x_n) \to b$.

Последовательности (x_n) , т.ч. $x_n \in E \ \forall n \in \mathbb{N}$ и $\lim_{n \to +\infty} x_n = a$ будем называть последовательностями Гейне.

Теорема 1. Определения пределов функции по Коши и по Гейне эквивалентны.

Д о к а з а т е л ь с т в о. Пусть у функции $f \exists \lim_{x\to a} f(x) = b$ в смысле Коши. Зафиксируем $\varepsilon > 0$. По условию $\exists U(a,\delta)$, т.ч. $\forall x \in U(a,\delta) \cap E$: $f(x) \in V(b,\varepsilon)$. Пусть (x_n) — произвольная последовательность Гейне. Так как $x_n \to a$ при $n \to +\infty$, то для указанной δ -окрестности $U(a,\delta) \exists n_0 \in \mathbb{N}$, т.ч. $\forall n > n_0$: $x_n \in U(a,\delta)$. Следовательно, $\forall n > n_0$: $f(x_n) \in V(b,\varepsilon)$. В силу произвольности ε заключаем, что $\exists \lim_{n\to\infty} f(x_n) = b$. Это означает, что в точке a у функции f существует предел в смысле Гейне и его значение равно значению предела в смысле Коши.

Пусть теперь функция f имеет в точке a предел по Гейне, равный b. Предположим, что b не является пределом функции f по Коши, т.е. $\exists \varepsilon_0 > 0$, т.ч. $\forall U(a,\delta) \ \exists x_\delta \in U(a,\delta) \cap E \colon f(x_\delta) \notin V(b,\varepsilon_0)$. Возьмем $\delta = 1/n, \ n = 1,2,\ldots \Rightarrow \exists x_n \in U(a,1/n) \cap E \colon f(x_n) \notin V(b,\varepsilon_0)$. Полученная последовательность (x_n) сходится κ a при $n \to +\infty$ (действительно, $\forall \eta > 0 \ \exists n_\eta \in \mathbb{N}$, т.ч. $1/n_\eta < \eta \Rightarrow \forall n > n_\eta$: $x_n \in U(a,1/n) \subset U(a,1/n_\eta) \subset U(a,\eta)$), но $\forall n \in \mathbb{N} \colon f(x_n) \notin V(b,\varepsilon_0)$, т.е. последовательность $(f(x_n))$ не сходится κ b. Это противоречит тому, что у функции f существует предел по Гейне. Следовательно, наше предположение неверно и теорема доказана.

Критерии существования пределов функции.

 а. Критерий Коши. Прежде чем формулировать критерий Коши, дадим следующее полезное

Определение 16. Колебанием функции $f:X\to\mathbb{R}$ на множестве $E\subset X$ называется величина

$$\omega(f; E) := \sup_{x_1, x_2 \in E} |f(x_1) - f(x_2)|,$$

т. е. верхняя грань модуля разности значений функции на всевозможных парах точек $x_1, x_2 \in E$.

Теорема 4 (критерий Коши существования предела функции). Пусть X- множество и $\mathcal{B}-$ база в X.

Функция $f: X \to \mathbb{R}$ имеет предел по базе \mathscr{B} в том и только в том случае, когда для любого числа $\varepsilon > 0$ найдется элемент $B \in \mathscr{B}$ базы, на котором колебание функции меньше ε .

Итак,

$$\exists \lim_{\mathscr{B}} f(x) \iff \forall \varepsilon > 0 \ \exists B \in \mathscr{B} \ (\omega(f; B) < \varepsilon).$$

◄ *Необходимость*. Если $\lim_{\mathscr{B}} f(x) = A$, то для любого $\varepsilon > 0$ найдется элемент B базы \mathscr{B} , в любой точке x которого $|f(x) - A| < \varepsilon/3$. Но тогда для любых x_1, x_2 из B

$$|f(x_1) - f(x_2)| \le |f(x_1) - A| + |f(x_2) - A| < \frac{2}{3}\varepsilon$$

и, значит, $\omega(f; B) < \varepsilon$.

Достаточность. Докажем теперь основную часть критерия, утверждающую, что если для любого $\varepsilon > 0$ найдется элемент B базы \mathcal{B} , на котором $\omega(f;B) < \varepsilon$, то функция f имеет предел по базе \mathcal{B} .

Придавая ε последовательно значения 1, 1/2, ..., 1/n, ..., получим последовательность $B_1, B_2, ..., B_n$, ... элементов базы таких, что $\omega(f; B_n) < 1/n$, $n \in \mathbb{N}$. Поскольку $B_n \neq \emptyset$, в каждом B_n можно взять по точке x_n . Последовательность $f(x_1), f(x_2), ..., f(x_n), ...$ фундаментальная. Действительно, $B_n \cap$

Теорема 6 (критерий существования предела монотонной функции). Для того чтобы неубывающая на множестве E функция $f: E \to \mathbb{R}$ имела предел при $x \to s$, $x \in E$, необходимо и достаточно, чтобы она была ограничена сверху, а для того чтобы она имела предел при $x \to i$, $x \in E$, необходимо и достаточно, чтобы она была ограничена снизу.

 \blacktriangleleft Докажем теорему для предела $\lim_{E\ni x\to s} f(x)$.

Если этот предел существует, то, как и всякая функция, имеющая предел, функция f оказывается финально ограниченной при базе $E \ni x \to s$.

Поскольку f — неубывающая на E функция, отсюда следует, что f ограничена сверху. На самом деле можно утверждать даже, что $f(x) \leq \lim_{E \ni x \to s} f(x)$ для любого $x \in E$. Это будет видно из дальнейшего.

Перейдем к доказательству существования предела $\lim_{E\ni x\to s} f(x)$ при условии ограниченности f сверху.

Если f ограничена сверху, то существует верхняя грань значений, которые функция принимает на множестве $E \setminus s$. Пусть $A = \sup_{x \in E \setminus s} f(x)$; покажем, что $\lim_{E \ni x \to s} f(x) = A$. По $\varepsilon > 0$, на основании определения верхней грани множества, найдем точку $x_0 \in E \setminus s$, для которой $A - \varepsilon < f(x_0) \le A$. Тогда ввиду неубывания f на E получаем, что при $x_0 < x \in E \setminus s$ будет $A - \varepsilon < f(x) \le A$. Но

множество $\{x \in E \setminus s \mid x_0 < x\}$, очевидно, есть элемент базы $x \to s$, $x \in E$ (ибо $s = \sup E$). Таким образом, доказано, что $\lim_{E \ni x \to s} f(x) = A$.)

Для предела $\lim_{E\ni x\to i}f(x)$ все рассуждения аналогичны. В этом случае имеем $\lim_{E\ni x\to i}f(x)=\inf_{x\in E\setminus i}f(x)$. \blacktriangleright

9. Свойства функций, имеющих предел.

4.3. Свойства функций, имеющих предел

Теорема 4.2. Если функция в данной точке x_0 имеет предел, то она ограничена в некоторой окрестности точки x_0 , то есть

 $\exists \delta > 0$, $\exists M > 0$, $\forall x \in X : |x - x_0| < \delta \Rightarrow |f(x)| < M$.

Доказательство. Обозначим $A = \lim_{x \to x_0} f(x)$ и рассмотрим $\varepsilon = 1$. Из определения 4.3. следует существование такого $\delta > 0$, что для всякого $\chi \in X$ из неравенство $|x - x_0| < \delta$ вытекает неравенство $|x - x_0| < \delta$ вытекает

Использование определения предела функции по Гейне позволяет перенести утверждения, доказанные ранее для последовательностей, на случай произвольных функций.

Теорема 4.3. Пусть функции ϕ , f и ψ определены на множестве X , на котором выполняются неравенства $\phi(x) < f(x) < \psi(x)$. Пусть существуют $\lim_{x \to x_0} \phi(x) = \lim_{x \to x_0} \psi(x) = A$, тогда $\lim_{x \to x_0} f(x) = A$.

Доказательство непосредственно вытекает из определения предела функции по Гейне и леммы о двух милиционерах.

Теорема 4.4. Пусть функции f и g определены на множестве X. Пусть $\lim_{x\to x_0} f(x) = A_{\mathbf{H}} \lim_{x\to x_0} g(x) = B$. Тогда

$$\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x) = A \pm B ;$$

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = A \cdot B ;$$

и, если при любом $\chi \in X$ $g(x) \neq 0$ и $B \neq 0$, то

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{A}{B}.$$

Доказательство. Ограничимся рассмотрением случая отношения двух функций. Выберем произвольно последовательность x_n , $n \in N$, для которой $x_n \in X$, $x_n \neq x_0$ при любом $n \in N$ и $x_n \to x_0$. Тогда $f(x_n) \to A$, $g(x_n) \to B$ и по теореме 3.12.

$$\frac{f(x_n)}{g(x_n)} \to \frac{A}{B} .$$

Теорема доказана.

10. Бесконечно малые и бесконечно большие величины. Эквивалентные бесконечно малые величины. Примеры выполнения пределов с эквивалентными бесконечно малыми величинами.

Определение 21. Функцию, стремящуюся к бесконечности при данной базе, называют бесконечно большой функцией или просто бесконечно большой при данной базе.

$\sin x \sim x$	$1-\cos x \sim rac{x^2}{2}$
$rcsin x \sim x$	$e^x-1\sim x$
$ an x \sim x$	$a^x-1\sim x\ln a$
$\arctan x \sim x$	$(1+x)^k-1\sim kx$
$\ln(1+x) \sim x$	$\log_a{(1+x)} \sim rac{x}{\ln{a}}$

а. База; определение и основные примеры

Определение 11. Совокупность \mathscr{B} подмножеств $B \subset X$ множества X будем называть базой в множестве X, если выполнены два условия:

$$B_1$$
) $\forall B \in \mathcal{B} \ (B \neq \emptyset)$;

$$B_2$$
) $\forall B_1 \in \mathcal{B} \ \forall B_2 \in \mathcal{B} \ \exists B \in \mathcal{B} \ (B \subset B_1 \cap B_2)$.

Иными словами, элементы совокупности \mathcal{B} суть непустые множества и в пересечении любых двух из них содержится некоторый элемент из той же совокупности.

Укажем некоторые наиболее употребительные в анализе базы.

118 гл. ііі. предел

Обозначение базы	Чтение обозначения	Из каких множеств (элементов) состоит база	Определение и обозначение элементов базы
$x \rightarrow a$	х стремится к а	База проколотых окрестностей точки $a \in \mathbb{R}$	$ \begin{tabular}{l} \mathring{U}(a) := & \{x \in \mathbb{R} \mid a - \delta_1 < \\ & < x < a + \delta_2 \land x \neq a \}, \\ \text{где } \delta_1 > 0, \ \delta_2 > 0 \end{tabular} $
$x \rightarrow \infty$	х стремится к бесконечности	База окрестностей бесконечности	$U(\infty) := \{x \in \mathbb{R} \mid \delta < x \},$ где $\delta \in \mathbb{R}$
$x \rightarrow a, x \in E$ или $E \ni x \rightarrow a$ или $x \xrightarrow{\in E} a$	х стремится к а по множеству Е	База* проколотых окрестностей точки <i>а</i> в множестве <i>E</i>	$\mathring{U}_E(a) := E \cap \mathring{U}(a)$
$x \to \infty, x \in E$ или $E \ni x \to \infty$ или $x \xrightarrow{\in E} \infty$	х стремится к бесконечности по множеству Е	База** окрестностей бесконечности в множестве <i>E</i>	$U_E(\infty) := E \cap U(\infty)$

^{*} Предполагается, что a — предельная точка множества E.

Основные виды неопределенностей: $\left\lceil\frac{0}{0}\right\rceil$, $\left\lceil\frac{\infty}{\infty}\right\rceil$, $\left[0\cdot\infty\right]$, $\left[\infty-\infty\right]$, $\left[1^\infty\right]$, $\left[0^0\right]$, $\left[\infty^0\right]$

^{**} Предполагается, что множество E не ограничено.

105

Утверждение 2. а) Если $\alpha: E \to \mathbb{R}$ и $\beta: E \to \mathbb{R}$ — бесконечно малые функции при $E \ni x \to a$, то их сумма $\alpha + \beta: E \to \mathbb{R}$ — также бесконечно малая функция при $E \ni x \to a$.

- b) Если $\alpha: E \to \mathbb{R}$ и $\beta: E \to \mathbb{R}$ бесконечно малые функции при $E \ni x \to a$, то их произведение $\alpha \cdot \beta: E \to \mathbb{R}$ также бесконечно малая функция при $E \ni x \to a$.
- c) Если $\alpha: E \to \mathbb{R}$ бесконечно малая функция при $E \ni x \to a$, а $\beta: E \to \mathbb{R}$ финально ограниченная функция при $E \ni x \to a$, то произведение $\alpha \cdot \beta: E \to \mathbb{R}$ есть бесконечно малая функция при $E \ni x \to a$.

11. Правила нахождения пределов.

Правила вычисления пределов

Пусть существуют пределы

$$\lim_{x \to x_0} f(x) = a \quad \text{if } \lim_{x \to x_0} g(x) = b$$

Тогда:

1. Предел константы равен самой константе:

$$\lim_{x \to x_0} C = C$$

2. Предел суммы двух функций равен сумме пределов этих функций:

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = a + b$$

3. Предел произведения двух функций равен произведению пределов этих функций:

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = a \cdot b$$

4. Постоянный множитель выносится за знак предела:

$$\lim_{x \to x_0} (k \cdot f(x)) = k \cdot \lim_{x \to x_0} f(x) = k \cdot a$$

5. Предел частного двух функций равен частному пределов этих функций:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{a}{b} \quad \text{если } g(x) \neq 0$$

6. Показатель степени можно выносить за знак предела:

$$\lim_{x \to x_0} (f(x))^n = \left(\lim_{x \to x_0} f(x)\right)^n = a^n$$

Универсальный метод, устраняющий неопределенности $\binom{0}{\overline{0}}$ и $\binom{\infty}{\infty}$ носит название <u>правила</u>
<u>Лопиталя</u> и рассматривается на соседней странице.

- 12. Первый замечательный предел.
- 13. Второй замечательный предел. Следствия второго замечательного предела.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e\lim_{\text{или }\lim_{x\to0}\left(1+x\right)^{1/x}=e$$

Следствия

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1$$

$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\arctan x}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{\frac{x^2}{2}} = 1$$

Следствия

$$\lim_{u \to 0} (1+u)^{\frac{1}{u}} = e$$

$$\lim_{x \to \infty} \left(1 + \frac{k}{x} \right)^x = e^k$$

$$\lim_{3. \ x \to 0} \frac{\ln(1+x)}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} rac{a^x - 1}{x \ln a} = 1$$
 для $a > 0$, $a
eq 1$

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{\alpha x} = 1$$

14. Определение непрерывности функции в точке. Свойства непрерывных функций.

1. Непрерывность функции в точке. Пусть f — вещественнозначная функция, определенная в некоторой окрестности точки $a \in \mathbb{R}$.

Описательно говоря, функция f непрерывна в точке a, если ее значения f(x) по мере приближения аргумента x к точке a приближаются к значению f(a) функции в самой точке a.

Уточним теперь это описание понятия непрерывности функции в точке.

Определение 0. Функция f называется непрерывной в точке a, если для любой окрестности V(f(a)) значения f(a) функции в точке a найдется такая окрестность U(a) точки a, образ которой при отображении f содержится в V(f(a)).

Приведем формально-логическую запись этого определения вместе с двумя его вариациями, часто используемыми в анализе:

$$(f$$
 непрерывна в точке $a):=ig(orall V(f(a))\ \exists U(a)\ (f(U(a))\subset V(f(a)))ig),$ $\forall \varepsilon>0\ \exists U(a)\ \forall x\in U(a)\ (|f(x)-f(a)|<\varepsilon),$ $\forall \varepsilon>0\ \exists \delta>0\ \forall x\in\mathbb{R}\ (|x-a|<\delta\Rightarrow|f(x)-f(a)|<\varepsilon).$

 Локальные свойства. Локальными называют такие свойства функций, которые определяются поведением функции в сколь угодно малой окрестности точки области определения.

Таким образом, сами локальные свойства характеризуют поведение функции в каком-то предельном отношении, когда аргумент функции стремится к исследуемой точке. Например, непрерывность функции в некоторой точке области определения, очевидно, есть локальное свойство функции.

Укажем основные локальные свойства непрерывных функций.

Теорема 1. Пусть $f: E \to \mathbb{R} - \phi$ ункция, непрерывная в точке $a \in E$. Тогда справедливы следующие утверждения:

- 1° функция f ограничена в некоторой окрестности $U_E(a)$ точки a;
- 2° если $f(a) \neq 0$, то в некоторой окрестности $U_E(a)$ точки а все значения функции положительны или отрицательны вместе c f(a);
- 3° если функция $g:U_E(a)\to\mathbb{R}$ определена в некоторой окрестности точки a и, как и $f:E\to\mathbb{R}$, непрерывна в самой точке a, то функции:

- a) (f+g)(x) := f(x) + g(x),
- b) $(f \cdot g)(x) := f(x) \cdot g(x)$,

c)
$$\left(\frac{f}{g}\right)(x) := \frac{f(x)}{g(x)}$$
 (при условии, что $g(x) \neq 0$)

определены в некоторой окрестности точки а и непрерывны в точке а;

- 4° если функция $g: Y \to \mathbb{R}$ непрерывна в точке $b \in Y$, а функция f такова, что $f: E \to Y$, f(a) = b и f непрерывна в точке a, то композиция $(g \circ f)$ определена на E и также непрерывна в точке a.
- ◀ Для доказательства теоремы достаточно вспомнить (см. § 1), что непрерывность функции f или g в некоторой точке a области определения равносильна тому, что предел этой функции по базе \mathcal{B}_a окрестностей точки a существует и равен значению функции в самой точке a: $\lim_{\mathcal{B}_a} f(x) = f(a)$, $\lim_{\mathcal{B}_a} g(x) = g(a)$.

Таким образом, утверждения 1°, 2°, 3° теоремы 1 непосредственно вытекают из определения непрерывности функции в точке и соответствующих свойств предела функции.

В пояснении нуждается только то, что отношение $\frac{f(x)}{g(x)}$ в самом деле определено в некоторой окрестности $\widetilde{U}_E(a)$ точки a. Но, по условию, $g(a) \neq 0$ и в силу утверждения 2° теоремы найдется окрестность $\widetilde{U}_E(a)$, в любой точке которой $g(x) \neq 0$, т. е. $\frac{f(x)}{g(x)}$ определено в $\widetilde{U}_E(a)$.

Утверждение 4° теоремы 1 является следствием теоремы о пределе композиции, в силу которой

$$\lim_{\mathscr{B}_a} (g \circ f)(x) = \lim_{\mathscr{B}_b} g(y) = g(b) = g(f(a)) = (g \circ f)(a),$$

что равносильно непрерывности $(g \circ f)$ в точке a.

Однако для применения теоремы о пределе композиции нужно проверить, что для любого элемента $U_Y(b)$ базы \mathscr{B}_b найдется элемент $U_E(a)$ базы \mathscr{B}_a такой, что $f(U_E(a)) \subset U_Y(b)$. Но в самом деле, если $U_Y(b) = Y \cap U(b)$, то по определению непрерывности функции $f \colon E \to Y$ в точке a для окрестности U(b) = U(f(a)) найдется окрестность $U_E(a)$ точки a в множестве E такая, что $f(U_E(a)) \subset U(f(a))$. Поскольку f действует из E в Y, то $f(U_E(a)) \subset V \cap U(f(a)) = U_Y(b)$ и мы проверили законность применения теоремы о пределе композиции.

15. Классификация точек разрыва. Примеры. Первый род: скачок и устранимый разрыв

Определение 4. Если функция $f: E \to \mathbb{R}$ не является непрерывной в некоторой точке множества E, то эта точка называется *точкой разрыва* функции f.

Определение 6. Точка $a \in E$ называется точкой разрыва *первого рода* для функции $f: E \to \mathbb{R}$, если существуют пределы¹

$$\lim_{E\ni x\to a-0} f(x) =: f(a-0), \quad \lim_{E\ni x\to a+0} f(x) =: f(a+0),$$

но по крайней мере один из этих пределов не совпадает со значением f(a) функции в точке a.

Определение 7. Если $a \in E$ — точка разрыва функции $f: E \to \mathbb{R}$ и в этой точке не существует по меньшей мере один из пределов, указанных в определении 6, то a называется точкой разрыва e второго рода.

Таким образом, имеется в виду, что всякая точка разрыва, не являющаяся точкой разрыва первого рода, является точкой разрыва второго рода.

Природом ощо дра идаесиноских примора

16. Непрерывность функции на множестве.

Определение непрерывности функции на множестве. Говорят. что функция *непрерывна на множестве*, если ее сужение на это множество непрерывно в каждой точке данного множества.

17. Общие свойства функций непрерывных на отрезке. Теоремы Больцано-Коши. Теорема 2 (теорема Больцано—Коши о промежуточном значении). Если функция, непрерывная на отрезке, принимает на его концах значения разных знаков, то на отрезке есть точка, в которой функция обращается в нуль.

В логической символике эта теорема имеет следующую запись1:

$$(f \in C[a, b]) \land (f(a) \cdot f(b) < 0) \Rightarrow \exists c \in [a, b] (f(c) = 0).$$

◀ Делим отрезок [a, b] пополам. Если в точке деления функция не равна нулю, то на концах одного из двух полученных в результате деления отрезков функция снова принимает значения разных знаков. С этим отрезком поступаем теперь так же, как и с исходным отрезком [a, b], т. е. делим его пополам, и продолжаем процесс дальше.

Тогда мы либо на каком-то шаге попадем в точку $c \in [a,b]$, где f(c)=0, либо получим последовательность $\{I_n\}$ вложенных отрезков, длины которых стремятся к нулю и на концах которых f принимает значения разных знаков. В последнем случае на основании леммы о вложенных отрезках найдется единственная точка $c \in [a,b]$, общая для всех этих отрезков. По построению существуют две последовательности $\{x_n'\}$ и $\{x_n''\}$ концов отрезков I_n такие, что $f(x_n') < 0$, $f(x_n'') > 0$, $\lim_{n \to \infty} x_n' = \lim_{n \to \infty} x_n'' = c$. По свойствам предела и определению непрерывности получаем $\lim_{n \to \infty} f(x_n') = f(c) \le 0$, $\lim_{n \to \infty} f(x_n'') = f(c) \ge 0$. Таким образом, f(c) = 0.

18. Общие свойства функций непрерывных на отрезке. Теоремы Вейерштрасса. Теорема 3 (теорема Вейерштрасса о максимальном значении). Функция, непрерывная на отрезке, ограничена на нем. При этом на отрезке есть точка, где функция принимает максимальное значение, и есть точка, где она принимает минимальное значение.

◀ Пусть $f: E \to \mathbb{R}$ — непрерывная функция на отрезке E = [a,b]. В силу локальных свойств непрерывной функции (см. теорему 1) для любой точки $x \in E$ найдется окрестность U(x) такая, что на множестве $U_E(x) = E \cap U(x)$ функция ограничена. Совокупность таких окрестностей U(x), построенных для всех точек $x \in E$, образует покрытие отрезка [a,b] интервалами, из которого по лемме о конечном покрытии можно извлечь конечную систему $U(x_1), ..., U(x_n)$ интервалов, покрывающих в совокупности отрезок [a,b]. Поскольку на множестве $E \cap U(x_k) = U_E(x_k)$ функция ограничена, т. е. $m_k \leq f(x) \leq M_k$, где $m_k, M_k \in \mathbb{R}$ и $x \in U_E(x_k)$, то в любой точке $x \in E = [a,b]$ имеем

$$\min\{m_1, ..., m_n\} \le f(x) \le \max\{M_1, ..., M_n\}.$$

Ограниченность функции на отрезке [a, b] установлена.

Пусть теперь $M = \sup_{x \in E} f(x)$. Предположим, что в любой точке $x \in E$ (f(x) < < M). Тогда непрерывная на E функция M - f(x) нигде на E не обращается в нуль, хотя (в силу определения M) может принимать значения, сколь угодно близкие к нулю. Тогда функция $\frac{1}{M - f(x)}$, с одной стороны, в силу локальных свойств непрерывных функций, непрерывна на E, а с другой — не ограничена на E, что противоречит уже доказанной ограниченности функции, непрерывной на отрезке.

Итак, существует точка $x_M \in [a, b]$, в которой $f(x_M) = M$.

Аналогичным образом, рассмотрев $m = \inf_{x \in E} f(x)$ и вспомогательную функцию $\frac{1}{f(x) - m}$, докажем, что существует точка $x_m \in [a, b]$, в которой $f(x_m) = m$.

19. Задачи, приводящие к понятию производной функции. Определение производной.

Производной функции y=f(x) β точке x_0 называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.

Итак, по определению

$$y' = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
 или $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$.

б) об угле наклона касательной к графику функции

А.Пусть некоторая материальная точка совершает прямолинейное движение. В момент времени t1 точка находится в положении M1. В момент времени t2 в положении M2. Обозначим промежуток M1, M2 через S; t2-t1= t. Величина S/ t называется средней скоростью движения. Чтобы найти мгновенную скорость точки в положении M1 необходимо t устремить к нулю. Математически это значит , что

$$V(t) = \lim_{\Delta t \to 0} V_{cp} = \lim_{\Delta t \to 0} \frac{S(t + \Delta t) - S(t)}{\Delta t}$$

Таким образом , для нахождения мгновенной скорости материальной точки необходимо вычислить предел отношения [™]приращения функции S к приращению аргумента t при условии ,что t →0

Б. Пусть #(t) есть количество вещества прореагировавшего за время t. Спустя время Δt количество прореагировавшего вещества будет $\mathcal{M}^{t+\Delta t}$, т.е. за время Δt количество прореагировавшего вещества $\Delta y = \mathcal{M}^{t+\Delta t}$. Поэтому средняя

скорость химической реакции за интервал времени Δt будет равна $\overline{\Delta t}$. Чтобы найти мгновенную скорость химической реакции в момент времени t надо устремить Δt к нулю, то есть

$$V(t) = \lim_{\Delta \to 0} \frac{\gamma(t + \Delta t) - \gamma(t)}{\Delta t} = \gamma'(t)$$

Таким образом, производная от количества прореагировавшего вещества определяет мгновенную скорость химической реакции.

Пусть функция y=f(x) определена на промежутке X, точка $x_0 \boxplus X$, дадим ей приращение $x_0 + \Delta x \in X$, величина Δx называется приращением аргумента. В каждой из этих точек посчитаем значение функции $f(x_0)_{\mathsf{H}} f(x_0 + \Delta x)$. Тогда можно говорить о приращении функции $\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0)$.

20. Дифференцируемость. Правила дифференцируемости.

$$f(x) - f(a) = A \cdot (x - a) + o(x - a) \quad \text{при } x \to a, x \in E.$$
 (9)

Иными словами, функция дифференцируема в точке a, если изменение ее значений в окрестности исследуемой точки линейно с точностью до поправки, бесконечно малой по сравнению с величиной x-a смещения от точки a.

1. Дифференцирование и арифметические операции

Теорема 1. Если функции $f: X \to \mathbb{R}, g: X \to \mathbb{R}$ дифференцируемы в точке $x \in X$, то

а) их сумма дифференцируема в х, причем

$$(f+g)'(x) = (f'+g')(x);$$

b) их произведение дифференцируемо в x, причем

$$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x);$$

c) их отношение дифференцируемо в x, если $g(x) \neq 0$, причем

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}.$$

a)
$$(f+g)(x+h)-(f+g)(x) = (f(x+h)+g(x+h))-$$

 $-(f(x)+g(x)) = (f(x+h)-f(x))+(g(x+h)-g(x)) =$
 $= (f'(x)h+o(h))+(g'(x)h+o(h)) = (f'(x)+g'(x))h+o(h) =$
 $= (f'+g')(x)h+o(h).$

b)
$$(f \cdot g)(x+h) - (f \cdot g)(x) = f(x+h)g(x+h) - f(x)g(x) =$$

= $(f(x) + f'(x)h + o(h))(g(x) + g'(x)h + o(h)) - f(x)g(x) =$
= $(f'(x)g(x) + f(x)g'(x))h + o(h).$

с) Поскольку функция, дифференцируемая в некоторой точке $x \in X$, непрерывна в этой точке, то, учитывая, что $g(x) \neq 0$, на основании свойств непрерывных функций можем гарантировать, что при достаточно малых значениях h также $g(x+h) \neq 0$. В следующих выкладках предполагается, что h мало:

$$\left(\frac{f}{g}\right)(x+h) - \left(\frac{f}{g}\right)(x) = \frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)} =$$

$$= \frac{1}{g(x)g(x+h)}(f(x+h)g(x) - f(x)g(x+h)) =$$

$$= \left(\frac{1}{g^2(x)} + o(1)\right)\left((f(x) + f'(x)h + o(h))g(x) - f(x)(g(x) + g'(x)h + o(h))\right) =$$

$$= \left(\frac{1}{g^2(x)} + o(1)\right)\left((f'(x)g(x) - f(x)g'(x))h + o(h)\right) =$$

$$= \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}h + o(h).$$

Мы воспользовались тем, что в силу непрерывности функции g в точке x и того, что $g(x) \neq 0$,

$$\lim_{h \to 0} \frac{1}{g(x)g(x+h)} = \frac{1}{g^2(x)},$$

т. е.

$$\frac{1}{g(x)g(x+h)} = \frac{1}{g^2(x)} + o(1),$$

где o(1) есть бесконечно малая при $h \to 0$, $x + h \in X$.

Уравнения касательной и нормали к графику функции. Примеры.

◄ *Необходимость*. Пусть x_0 ∈]a, b[. Уравнение касательной к графику в точке $(x_0, f(x_0))$ имеет вид

$$y = f(x_0) + f'(x_0)(x - x_0),$$

$$y = f(x_0) - \frac{1}{f'(x_0)}(x - x_0).$$

22. Производные элементарных функций.

$$y = c$$

$$y = x$$

$$y = x$$

$$y = x^{\mu}$$

$$y = \frac{1}{x}$$

$$y = \sqrt{x}$$

$$y = \frac{1}{x^{2}}$$

$$y = -\frac{1}{x^{2}}$$

$$y = a^{x}$$

$$y = a^{x}$$

$$y = e^{x}$$

$$y = \log_{a} x$$

$$y = \frac{1}{x}$$

$$y = \sin x$$

$$y = \cos x$$

$$y = \tan x$$

$$y = \tan x$$

$$y = \cot x$$

$$y = \arctan x$$

$$y = -\frac{1}{\sqrt{1 - x^{2}}}$$

$$y = \arctan x$$

$$y = \arctan x$$

$$y = -\frac{1}{1 + x^{2}}$$

$$y = \arctan x$$

$$y = -\frac{1}{1 + x^{2}}$$

$$y = \arctan x$$

$$y = -\frac{1}{1 + x^{2}}$$