Insieme quoziente

Def

• Insieme quoziente > - G gruppo > - \sim relazione di equivalenza in G > - $\forall x \in G$ [x] := $\{y \in G \mid x \sim y\}$ > - G/\sim := $\{[x] \mid x \in G\}$ è l'insieme quoziente, ovvero l'insieme delle classi di equivalenza determinate da \sim

Def

• Insieme quoziente $\mathbb{Z}_n > -(\mathbb{Z},+,\cdot)$ anello, in particolare $(\mathbb{Z},+)$ gruppo $> -n \in \mathbb{Z} > -\mathbb{Z}/\equiv$ è l'insieme delle classi di equivalenza definite dalla relazione di equivalenza $\equiv > -m \equiv r \pmod{n} \iff r \equiv m \pmod{n} \implies n \mid m-r \implies \exists q: nq = m-r \implies m = nq+r \quad 0 \le r < n > -0 \le r < n \implies$ è possibile definire $\mathbb{Z}_n := \{[0], [1], \ldots, [n-1]\}$, che coincide con \mathbb{Z}/\equiv

Oss

- \mathbf{Hp} $-n \in \mathbb{Z}$ $-I(n) := \{nk \mid k \in \mathbb{Z}\}$ \mathbf{Th} $-(\mathbb{Z}_n, +) \text{ è un gruppo}$
- Dim
 - per dimostrazione precedente, I(n) è un sottogruppo, quindi ha senso definire $\mathbb{Z}/I(n)$, che conterrà le classi laterali sinistre definite in \mathbb{Z} rispetto a I(n), che per dimostrazione precedente corrispondono alle classi di equivalenza definite da \equiv
 - di conseguenza, $\mathbb{Z}/I(n)=\mathbb{Z}/\equiv =\mathbb{Z}_n$ per definizione precedente
 - per dimostrazione precedente, la somma tra classi di equivalenza è ben definita, di conseguenza è possibile definire la struttura di gruppo $(\mathbb{Z}_n, +)$

Lem

• Hp $\begin{array}{ccc} & & & & \\ & - & p \in \mathbb{P} \\ & - & a, b \in \mathbb{Z} \\ & - & p \mid ab \end{array}$ • Th

 $-p \mid a \lor p \mid b$

- Dim
 - $-p \mid ab \implies p$ compare nella fattorizzazione in numeri primi di ab
 - -allora p è nella fattorizzazione di a,e quindi $p\mid a,$ oppure p è nella fattorizzazione di b,e quindi $p\mid b$

Oss

• Hp $-n\in\mathbb{Z}$ • Th $-\mathbb{Z}_n \text{ dominio di integrit}\grave{a} \iff n\in\mathbb{P}$

• Dim

```
- prima implicazione
```

- * ipotizzando che $n \notin \mathbb{P} \implies \exists a,b \in \mathbb{Z} \mid n=ab \quad 0 < a,b < n$ per definizione · in particolare $a,b \neq 0$
- * $n = ab \iff [n] = [ab] \text{ in } \mathbb{Z}_n$
- * [n] = [0] in \mathbb{Z}_n , dunque [ab] = [0]
- * \mathbb{Z}_n dominio di integrità \Longrightarrow in \mathbb{Z}_n vale la legge di annullamento del prodotto, e dunque $[ab] = [0] \iff [a] = 0 \lor [b] = [0] \perp$
- seconda implicazione
 - * ipotizzando che \mathbb{Z}_n non sia dominio di integrità, e dunque $\exists [a] \in \mathbb{Z}_n : [a] \neq [0], a \mid 0$
 - $* a \mid 0 \implies \exists b \in \mathbb{Z} \mid [a][b] = [0] \quad b \neq 0$
 - $* \ [0] = [a][b] \iff [0] = [ab] \iff 0 \equiv ab \pmod{n} \iff n \mid ab 0 \iff n \mid ab$
 - * $n \in \mathbb{P}$, allora $n \mid ab \implies n \mid a \vee n \mid b$ per dimostrazione precedente
 - $n \mid a \implies [a] = [n] = [0] \text{ in } \mathbb{Z}_n \perp$
 - · $n \mid b \implies [b] = [n] = [0]$ in \mathbb{Z}_n , ma $b \neq 0$ in ipotesi, dunque necessariamente $[a] = [0] \perp$

Oss

- Hp
 - $-n \in \mathbb{Z}$
- Th

$$- \ \forall [a] \in \mathbb{Z}_n \quad \mathrm{MCD}(a, n) = 1 \iff [a] \in \mathbb{Z}_n^*$$

• Dim

$$-[a] \in \mathbb{Z}_n^* \implies \mathrm{MCD}(a,n) = 1$$

*
$$[a] \in \mathbb{Z}_n^* \implies \exists b \in \mathbb{Z} \mid [a][b] = [1] \quad 0 < b < n \iff ab \equiv 1 \pmod{n} \iff n \mid 1 - ab \iff \exists k \in \mathbb{Z} \mid nk = 1 - ab$$

- * allora $\exists b, k \in \mathbb{Z} \mid nk = 1 ab \iff 1 = nk + ab$
- * d := MCD(a, n)
- * per definizione, $d \mid a \wedge d \mid n$
 - $\cdot d \mid a \implies \exists x \in \mathbb{Z} \mid dx = a$
 - $d \mid n \implies \exists y \in \mathbb{Z} \mid dy = n$

*
$$1 = nk + ab \iff 1 = dyk + dxb = d(yk + xb) \implies \exists yk + xb \in \mathbb{Z} \mid 1 = d(yk + xb) \implies d \mid 1$$

- * $d \mid 1 \iff d = \pm 1$, ma $d := MCD(a, n) \implies d \ge 0 \implies d = 1$
- $\operatorname{MCD}(a, n) = 1 \implies [a] \in \mathbb{Z}_n^*$
 - * d := MCD(a, n) = 1
 - * per dimostrazione precedente, $I(d) = I(a, n) \implies d \in I(a, n) \implies \exists b, k \in \mathbb{Z} \mid d = ab + nk$ per definizione di I(a, n), allora $d = 1 = ab + nk \iff nk = 1 ab \iff n \mid 1 ab \iff ab \equiv 1 \pmod{n} \implies [a][b] = [1]$ in \mathbb{Z}_n , dunque sono uno l'inverso dell'altro, e in particolare $[a] = [b]^{-1} \implies \exists [b] \in \mathbb{Z}_n \mid [a] \in \mathbb{Z}_n^*$

Oss

- Hp
 - $-p \in \mathbb{P}$
- Th
 - $-\mathbb{Z}_p$ campo
- Dim

- $\begin{array}{l} \ \mathbb{Z}_p^* := \{[x] \in \mathbb{Z}_p \mid \exists [x]^{-1} \in \mathbb{Z}_p\} \\ \ p \in \mathbb{P} \implies \text{ogni numero è coprimo con } p \end{array}$
- per dimostrazione precedente, allora tutti gli elementi di \mathbb{Z}_p sono invertibili, tranne [0] in quanto [0] non ha inversi
- allora $\mathbb{Z}_p^* = \mathbb{Z}_p \{[0]\}$, che per definizione implica che \mathbb{Z}_p campo

Oss

- $-p \in \mathbb{P}$
- ${f Th}$ - (\mathbb{Z}_p^*,\cdot) è ciclico
- Dim
 - !!! MANCA QUALSIASI TEOREMA

Funzione totiente di Eulero

Def

• Funzione totiente di Eulero > - $n \in \mathbb{N} > - \varphi(n) := |\mathbb{Z}_n^*|$

Lem

- Hp
 - $-n, m \in \mathbb{N}$

$$- [a] \in \mathbb{Z}_{mn}^* \iff [a] \in \mathbb{Z}_m^* \land [a] \in \mathbb{Z}_n^*$$

- Dim

Dim

- prima implicazione

*
$$a \pmod{n} \in \mathbb{Z}_{mn}^* \implies \exists x \in \mathbb{Z} \mid ax \equiv 1 \pmod{mn}$$

· per dimostrazione precedente
$$\begin{cases}
 a \mid b \\
 x \equiv y \pmod{b}
\end{cases} x \equiv y \pmod{a} \implies \begin{cases}
 m, n \mid mn \\
 ax \equiv 1 \pmod{mn}
\end{cases} \implies \begin{cases}
 ax \equiv 1 \pmod{m} \\
 ax \equiv 1 \pmod{n}
\end{cases} \implies \begin{cases}
 [a] \in \mathbb{Z}_m^* \\
 [a] \in \mathbb{Z}_n^*
\end{cases}$$

- seconda implicazione

* $[a] \in \mathbb{Z}^* \land [a] \in \mathbb{Z}^* \implies \exists x \in \mathbb{Z} \mid ax \equiv 1 \pmod{m}$

a per il teorema

Oss

• Hp

$$-m, n \in \mathbb{N} \mid MCD(m, n) = 1$$

• Th

$$- \varphi(m \cdot n) = \varphi(m) \cdot \varphi(n)$$

• Dim

– per dimostrazione precedente, esiste una biezione definita come $\mathbb{Z}_{mn}^* \to \mathbb{Z}_m^* \times \mathbb{Z}_n^*$

$$-\varphi(m\cdot n):=|\mathbb{Z}_{mn}^*|=|\mathbb{Z}_m^*\times\mathbb{Z}_n^*|$$
 perché è una biezione, e dunque è pari a $|\mathbb{Z}_m^*|\cdot|\mathbb{Z}_n^*|=\varphi(m)\cdot\varphi(n)$ per definizione

\mathbf{Oss}

• Hp
$$-p \in \mathbb{P}$$

$$-k \in \mathbb{N} \mid k \ge 1$$
• Th
$$-(c(n^k) - n^{k-1})$$

• Th
$$-\varphi(p^k)=p^{k-1}(p-1)$$
• Dim

$$-\ 0 \leq a < p^k \in \mathbb{Z}_{p^k}^* \iff \mathrm{MCD}(a,p^k) = 1,$$
che è vero quando $p \nmid a$ poiché $p \in \mathbb{P}$

- simmetricamente,
$$0 \le a < p^k \notin \mathbb{Z}_{nk}^* \iff \exists n \in \mathbb{Z} \mid a = np$$

* i multipli di p sono tutti
$$0 \le np < p^k \implies 0 \le n < p^{k-1}$$
!!! INCOMPLETA

- simmetricamente,
$$0 \le a < p^k \notin \mathbb{Z}_{p^k}^* \iff \exists n \in \mathbb{Z} \mid a = np$$

* i multipli di p sono tutti $0 \le np < p^k \implies 0 \le n < p^{k-1}$!!! INCOMPLETA
- $\varphi(p^k) := \left| \mathbb{Z}_{p^k}^* \right| = \left| \mathbb{Z}_{p^k} - \left\{ [a] \in \mathbb{Z}_{p^k} \mid \nexists [a]^{-1} \in \mathbb{Z}_{p^k} \right\} \right| = p^k - p^{k-1} = p^{k-1}(p-1)$

Oss

• Hp

$$-k \in \mathbb{N} \mid k \ge 1$$

- $p_1, \dots, p_k \in \mathbb{P}$

$$-p_1,\ldots,p_k\in\mathbb{I}$$

$$-i_1,\ldots,i_k\geq 1$$

$$-i_1, \dots, i_k \ge 1$$

- $n \in \mathbb{N} \mid n = p_1^{i_1} \cdot \dots \cdot p_k^{i_k}$

• Th
$$-\varphi(n) = n \cdot \prod_{p|n} \left(1 - \frac{1}{p}\right)$$
• Dim

- per dimostrazione precedente
$$\varphi(n) = \varphi\left(p_1^{i_1}\right) \cdot \ldots \cdot \varphi\left(p_k^{i_k}\right) = p_1^{i_1-1}(p_1-1) \cdot \ldots \cdot p_k^{i_k-1}(p_k-1) = p_1^{i_1} \cdot \ldots \cdot p_k^{i_k} \cdot \frac{p_1-1}{p_1} \cdot \ldots \cdot \frac{p_k-1}{p_k} = n \cdot \frac{p_1-1}{p_1} \cdot \ldots \cdot \frac{p_k-1}{p_k} \implies \varphi(n) = n \cdot \prod_{p|n} \left(1 - \frac{1}{p}\right)$$