	Nome:		Matricola:	
Un	IIVERSITÀ DEGLI ST Corso di Laurea in li			
	Prova scritta di <i>Algo</i> (durata della p TRAC			
Esercizio 1				
			<i>binari</i> in cui la parte informa no implementati i seguenti n	
ublic interface AlberoB /* restituisce il sotto public AlberoBina	albero destro dell'albero corr	ente, la compl	essità temporale è θ(1)*/	
/* restituisce il sotto public AlberoBina	albero sinistro dell'albero con ario sinistro();	rrente, la comp	lessità temporale è θ(1)*/	
/* restituisce il valor public int val();	e memorizzato nella radice d	ell'albero, la c	omplessità temporale è θ(1)*/	
	lean verifica(AlberoBina solo se tutti i nodi foglia		<i>}</i> ono un valore che appare in	almeno t
	un livello minore di <i>l</i> .			
odo di <i>a</i> che si trova ad caratterizzi la complecificando anche quali	lessità temporale e spa	iziale del n ed il caso p	netodo nel caso migliore e eggiore per la complessità t	e peggior emporale
odo di <i>a</i> che si trova ad caratterizzi la complecificando anche quali aziale.	lessità temporale e spa	ed il caso p	netodo nel caso migliore e eggiore per la complessità t eggiore:	e peggior emporale
caratterizzi la complecificando anche quali aziale. so Migliore: Complessità tempora	lessità temporale e spa i siano il caso migliore le: θ()	ed il caso p Caso P 1.	eggiore per la complessità t	emporale
caratterizzi la complecificando anche quali aziale. so Migliore: Complessità tempora Complessità spaziale	lessità temporale e spa i siano il caso migliore le: θ() : θ()	ed il caso p Caso P 1.	eggiore per la complessità t eggiore: Complessità temporale: θ(emporale
caratterizzi la complecificando anche quali aziale. so Migliore: Complessità tempora Complessità spaziale	lessità temporale e spa i siano il caso migliore le: θ() : θ()	ed il caso p Caso P 1.	eggiore per la complessità t eggiore: Complessità temporale: θ(emporale
caratterizzi la complecificando anche quali aziale. so Migliore: Complessità tempora Complessità spaziale	lessità temporale e spa i siano il caso migliore le: θ() : θ()	ed il caso p Caso P 1.	eggiore per la complessità t eggiore: Complessità temporale: θ(emporale
caratterizzi la complecificando anche quali aziale. so Migliore: Complessità tempora Complessità spaziale	lessità temporale e spa i siano il caso migliore le: θ() : θ()	ed il caso p Caso P 1.	eggiore per la complessità t eggiore: Complessità temporale: θ(emporale
caratterizzi la complecificando anche quali aziale. so Migliore: Complessità tempora Complessità spaziale	lessità temporale e spa i siano il caso migliore le: θ() : θ()	ed il caso p Caso P 1.	eggiore per la complessità t eggiore: Complessità temporale: θ(emporale
caratterizzi la complecificando anche quali aziale. so Migliore: Complessità tempora Complessità spaziale	lessità temporale e spa i siano il caso migliore le: θ() : θ()	ed il caso p Caso P 1.	eggiore per la complessità t eggiore: Complessità temporale: θ(emporale
caratterizzi la complecificando anche quali aziale. so Migliore: Complessità tempora Complessità spaziale	lessità temporale e spa i siano il caso migliore le: θ() : θ()	ed il caso p Caso P 1.	eggiore per la complessità t eggiore: Complessità temporale: θ(emporale
odo di <i>a</i> che si trova ad caratterizzi la compl	lessità temporale e spa i siano il caso migliore lle: θ() : θ()	ed il caso p Caso P 1.	eggiore per la complessità t eggiore: Complessità temporale: θ(Complessità spaziale: θ(emporale

Esercizio 2

Dire quali delle seguenti affermazioni sono vere e quali false.

Nº	Vero	Falso	Affermazione
1		X	L'inserimento di un valore in un heap contenente n valori ha complessità temporale pari a $\theta(\lg n^2)$
2	X	100	La funzione $f(n) = n^2 \in \Omega$ (n lg (n^2))
3	AL.	X	L'algoritmo quickSort ha complessità temporale $O(n^2 \lg(n))$ nel caso peggiore.
4	X		L'algoritmo di Prim calcola, dati un grafo orientato e pesato e un nodo x di tale grafo, le distanze minime fra x e i nodi da esso raggiungibili.
5	X		Sia G un grafo non orientato che contiene cicli. Il numero di archi di G e maggiore o uguale al numero di nodi di G
6	X		In un grafo orientato non contenente cicli, esiste almeno un nodo con grado di entrata maggiore di 0.
7	X		L'inserimento di un valore in un insieme rappresentato tramite array di boolean ha complessità $\theta(1)$
3		X	Nel caso peggiore, inserire un elemento in un albero AVL con n nodi ha complessità $O(n \log n)$
)	X		Un albero binario a è completo, se e solo se per tutti i nodi x di a, la differenza fra l'altezza del sottoalbero sinistro di x e l'altezza del sottoalbero destro di x è uguale ad 0.
0		X	Un grafo non orientato connesso, ciclico e pesato (sugli archi) ammette sempre almeno due albero ricoprenti.

C 1	116 16 1 11 11 11 11 11
Dando per noto il concetto di albero binario ricerca bilanciato.	o, si definisca formalmente il concetto di albero binario di