Topic of the project:

Project name: "ASIC design with open source tools"

Developing of an low resolution ADC. As example an 4-Bit ADC with conversion of the thermometer code into binary code.

Steps:

A small CMOS inverter with xschem and the sky130a technology (PDK) and simulate the circuit with ngspice:

Binary Logic level assumption

https://en.wikipedia.org/wiki/Logic level

Technology	L Voltage	H Voltage	note
CMOS	0 to 30% of Vdd	70% of Vdd to Vdd	Vdd = Supply voltage
	≈0.5 Volt	≈1.25 Volts	Vdd = 1.8 Volts

The above figure is the schematic for 15th threshold point of the analogue part of the ADC. The plot is as follows:

The inverter will switch from logic-high or undefined to logic-zero when input voltage exceeds 1.68 volts. So, for this inverter the threshold is 1.68 volts.

For a 4-bit ADC we need 16 voltage level including zero (0 \sim 1.68 volts). The quantization should be 1.68/16=0.112 volts.

Vdd = 1.8 V

Th. 15: 1.680

For calculation the schematic and the plot already mentioned earlier. Remove all source to make symbol from schematic. As the symbol will have to be connected to Vdd and GND, those pins are replaced with Vp and Vn accordingly.

Magic=>before importing netlist to ngspice check LVS net

The simplified schematic is as follows:

The plot is similar to the previous figure.

Th. 14: 1.568

Rest of the figures are similar to the previous figures.

Th. 13: 1.456:

Th. 12: 1.344

Th. 11: 1.232

Th. 10: 1.12

Th. 9: 1.008

Th. 8: 0.896

Th. 7: 0.784

Th. 6: 0.672

Th. 5: 0.56

Th. 4: 0.448

Th. 3: 0.336

Th. 2: 0.224

Th. 1: 0.112

Combined Analog sch.

http://web02.gonzaga.edu/faculty/talarico/vlsi/xschemTut.html
https://ngspice.sourceforge.io/ngspice-control-language-tutorial.html

Alter subckt tutorial—

https://sourceforge.net/p/ngspice/discussion/133842/thread/5ad086c79f
https://sourceforge.net/p/ngspice/discussion/133842/thread/9a75acf2/#bf90/45b3/ea48

Pyspice ngspice interpreter

https://pyspice.fabrice-salvaire.fr/releases/v1.3/examples/ngspice-shared/ngspice-interpreter.html

https://github.com/ashwith/ngspicepy

Read spice raw output data

 $\frac{https://gist.githubusercontent.com/snmishra/27dcc624b639c2626137/raw/742fe0dd59c7b2}{c41b71a1c8c1c2506d13affc53/rawread.py}$

ngspice wrapper for python

https://github.com/eps82/lyngspice/wiki

- write some verilog code to convert the thermometer code (from the inverter stages) into the binary code

http://www.asic-world.com/verilog/veritut.html

https://www.youtube.com/playlist?list=PLfGJEQLQIDBN0VsXQ68_FEYyqcym8CTDN

https://github.com/Swagatika-Meher/msvsd2bitcomp

https://www.youtube.com/playlist?list=PLvXKBnlvcSm30Y0zu1765oG_x-ECU8tVG

https://learning.edx.org/course/course-v1:HarveyMuddX+ENGR85A+3T2021/home

https://www.vlsiuniverse.com/digital-thermometer-code-in-verilog-vhdl-flash-adc-binary-encoder/

https://www.classcentral.com/subject/vlsi?free=true

https://www.eng.biu.ac.il/temanad/digital-vlsi-design/

https://www.youtube.com/playlist?list=PLZU5hLL_713x0_AV_rVbay0pWmED7992G

https://youtu.be/BlqLk23hE90?list=PLZU5hLL_713x0_AV_rVbay0pWmED7992G

- get familiar with the yosis syntesis tool to convert the verilog code into a CMOS circuit
- simulate the complete (ultra small) ADC

References:

https://github.com/bluecmd/learn-sky130/blob/main/schematic/xschem/getting-started.md

- What is Schematic Capture and why do we need it?
- What is a process?

Run iverilo/icarus
iverilog file.v

vvp a.out

Vdd = 5 Volt

 $Vsat_max = 4.616$

Vsat_min = 481.3mV

Voltage range = 4.616 - 0.4813 = 4.1347 V

Step voltage = 4.1347/15 = 0.275647

Set. 1: 0.4813

Set. 2: 0.756947

Set. 3: 1.032594

Set. 4: 1.308241

Set. 5: 1.583888

Set. 6: 1.859535

Set. 7: 2.135182

Set. 8: 2.410829

Set. 9: 2.686476

Set. 10: 2.96212

Set. 11: 3.23777

Set. 12: 3.513417

Set. 13: 3.789064

Set. 14: 4.064711

Set. 15: 4.340358

Set. 16: 4.616005