Université de Carthage

ESSAI

Année Universitaire 2023 - 2024

DS, Plans d'Expériences

2ème Année, 05 Mars 2024

(Documents Non Autorisés)

Epreuve contient 02 pages

Durée, 01h30.

Exercice 1:

I. Soient deux groupes de plantes, $n_1 = 10$ et $n_2 = 10$, prélevées au hasard sur n plantes homogènes. Le premier groupe est soumis à un fertilisant A et le second à un fertilisant B. Après une période de croissance, le poids p y de toutes plantes est mesuré :

	1	
j	Fertilisant	Fertilisant
	A	В
1	4 ~	15 /
2	3-	4
3	3- 5- 6-	6/
4	6 -	エノ
5	7-	8/
6	6-	7
1 2 3 4 5 6 7 8 9	4 4	5
8	7 _	8
9	6	8 / 7 5 8 5
10	2	5
Σ	50	60

- 1. Définir le modèle statistique des valeurs réponses.
- 2. Peut-on caractériser les deux sous populations par des distributions² identiques qui diffèrent seulement en localisation, emplacement ? Justifier votre réponse.
- II. On considère que ces fertilisants alternatifs, A et B, réduisent l'attaque des poux sur la plante. Chaque plante est traitée initialement par le fertilisant A et la concentration en poux est mesurée. Après un certain temps, chaque plante est soumise au fertilisant B et encore la concentration est mesurée³.
 - 1. Définir le modèle statistique du plan de l'expérience.

En termes de contrôle des <u>différences individuelles</u> de concentrations de poux sur plantes, mener une comparaison⁴ possible de traitements. $\nabla_{i} \neq \overline{b_{1}} \quad \text{un consum} \quad \mathcal{P}_{2}$

¹ Soit la variable réponse dans la population est normale distribuée, $y \sim N(\mu, \sigma^2)$.

 2 $\alpha = 5\%$ et valeur critique de la statistique du test est de l'ordre de 2,10.

³ Même données de la table ci-dessus.

4 Valeur critique de la statistique du test est de l'ordre de 2,26.

Chargée de cours & TP : Mme Selma JELASSI.

III. Mener une analyse comparative des deux plans expérimentaux en termes d'intervalles de confiances, de variances et de degrés de libertés respectifs.

Exercice 2:

Deux méthodes de dosage d'azote ont été répétées, à partir d'un même échantillon, 25 fois avec la méthode A et 30 fois avec la méthode B. Résultats sont rassemblés comme suit,

Méthode A:

Méthode B:

x_i (en g)	n_i	x_i (en g)	n
37	1	39	2
39	2	40	1
40	2	41	6
41	4	42	9
42	7	43	8
43	4	44	3
44	2	45	1
46	2	TOTAL	30
47	1		
Total	25		

- 1. Les méthodes⁵, A et B, sont-elles exactes⁶ ? Justifier votre réponse.
- 2. Les méthodes, A et B, ont-elles la même précision ? Justifier votre réponse.

On donne:

léthode B
1.89
1.96
+

⁵ Seuil de signification $\alpha = 5\%$;

⁶ Valeur critique est de l'ordre approximatif 1.671 (pour $VC_{\alpha/2} = 2$);

⁷ Valeur critique est de l'ordre de 1.90;