

Lecture Notes on Quantum Mechanics Alpha Version

RongYu

This note is compiled based on the content of the Quantum Mechanics course taught by Professor Hong Guo from School of Electronics, Peking University.

Contents

1	Rev	riew of Preparatory Knowledge
	1.1	Classical Mechanics
	1.2	Newtonian Mechanics
	1.3	Lagrangian Mechanics - Analytical M
		1.3.1 Constraint
		1.3.2 Coordinates and Space
		1.3.3 Functional
		1.3.4 Difference & Differential & Variation
		1.3.5 Principle of Least Action (Hamilton's Principle)
		1.3.6 Euler-Lagrange Equations
	1.4	Hamiltonian Mechanics - Analytical M
		1.4.1 Legendre Transformations
		1.4.2 Hamilton's Canonical Equations of Motion
		1.4.3 Poisson Bracket (Classical Canonical Commutator)
		1.4.4 Fundamental Commutation Relations in CM
		1.4.5 Properties of Poisson Bracket
		1.4.6 Hamilton-Jacobi Equation
		1.4.7 Phase Space (Dynamics)
		1.4.8 Regular Lagrangian
2	Cla	ssical Electrodynamics 11
_	2.1	Vector Analysis
	2.1	2.1.1 Generalized Stokes' Theorem
		2.1.2 Helmholtz's theorem
	2.2	Experimental Laws and Maxwell's Equations
	2.2	2.2.1 Coulomb's Law
		2.2.2 Biot-Savart's Law
		2.2.2 Diot-pavart S Law
3	Fun	damental Postulates (Axioms) 12
4	SOI	ME IS
	4.1	State
	4.2	Observable
	4.3	Measurement
		4.3.1 Measurement + Outcomes
		4.3.2 Probability of Measurement Outcomes
		4.3.3 State Collapse
	4.4	Evolution (Dynamics)
	1.1	4.4.1 Schrödinger Picture
		4.4.2 Heisenberg Picture
	4.5	Identical Particles and Symmetrization
	1.0	4.5.1 Identical Particles
		4.5.2 Symmetrization

5	State Vector 5.1 Euclidean Space \mathbb{R}^3						14		
	5.1								
	5.2	State Vector Space	e \mathbb{H} (Hilbert Space)				• •		. 15
6	Operator 15								15
	6.1								. 16
		*	s of Linear Operators						
		orio Tropereres							. 10
7	Ove	rview of QM							16
8	Role	es: State Vector	Operator						17
									. 17
		-							
			rum						-
	8.1	0 1							
		-							
	8.2								-
			Problem						
			Problem						
	8.3								
		8.3.1 Schrödinge	r Picture						. 17
		8.3.2 Heisenberg	Picture						. 18
	8.4	Particles							. 18
	8.5	Perturbation The	ories						. 18
	8.6		m and Magnetic Moment						
	8.7								
	8.8								
	8.8 Theorem of Hermitian Operator								. 10
9	Wave Mechanics & Matrix Mechanics							19	
	9.1	Wave Mechanics:	wavefunction						. 19
	9.2	Matrix Mechanics	: State Vector						. 20
	9.3	Matrix Mechanics	: Hermitian Conjugate .						. 20
10	\boldsymbol{C}								01
10	Con	nmutation							21
									. 21
		10.0.3 Relation .							. 21
11	Proj	perties of Comm	utations						21
19	Fun	damental Comm	utation Relations						22
14	run		diation iterations						22
13	Con	mutation Relat	ions of Orbital Angular	Moment	um				23
14	Eige	nvalue Problem							24
15	15 Observables						24		

16	Eigenvalue & Eigenstates	25
17	Spin and Pauli Matrices 17.1 Stern-Gerlach Experiment 17.1.1 Meanings 17.1.2 Analysis 17.1.3 History 17.1.4 Cascaded S-G Experiment	26 26 26 26 26 26
18	Spin Angular Momentum 18.0.1 Significance	27 27
19	Algebraic Method to Eigenvalue Problem of Angular Momentum	28
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	28 28 28 28 28 28 29 29 29 30 30
	21.1.2 Effect of Ladder Operators on Common Eigenstates	30 30 30 31
22	Commutation Relations between Angular Momentum Operators and Hamiltonian	
23	Addition of Angular Momenta	33
24	Uncertainty Principle 24.1 Heisenberg Uncertainty Principle	33 33 34 34 34 34 35 35

	24.4	Minimum Uncertainty State	
		24.4.1 MUS of $\hat{x} \& \hat{p} \ldots \ldots \ldots \ldots \ldots \ldots$	35
25	Qua	ntum Dynamics	36
	25.1	Schrödinger Equation	36
		25.1.1 Remark	36
		25.1.2 Representation of Position	36
	25.2	Time Evolution Operator	36
		25.2.1 TEO for Conservative System	37
		25.2.2 Properties of $\hat{U}(t,t_0)$	
	25.3	Continuity Equation	
		Ehrenfest Theorem	
		25.4.1 Conserved Quantity (Constant of Motion)	38
26	title		39

1 Review of Preparatory Knowledge

1.1 Classical Mechanics

1. $\delta S \equiv 0$ Principle of Least Action

2.
$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{\alpha}} = \frac{\partial \mathcal{L}}{\partial q_{\alpha}} \quad (\alpha = 1, 2, \cdots, D)$$
 Euler-Lagrange eqs.

3.
$$\begin{cases} \dot{q}_{\alpha} = \frac{\partial H}{\partial p_{\alpha}} \\ \dot{p}_{\alpha} = -\frac{\partial H}{\partial q_{\alpha}} \end{cases}$$
 $(\alpha = 1, 2, \cdots, D)$ Hamilton's Canonical eqs.

4.
$$\boxed{\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + [f,H]_{\mathrm{PB}}[f,H]_{\mathrm{PB}}}$$
 Poisson Bracket

5.
$$\boxed{\frac{\partial S}{\partial t} + H(q, \frac{\partial S}{\partial q}, t) = 0}$$
 Hamilton-Jacobi eq.

1.2 Newtonian Mechanics

Euclidean Space (Physical Space) \longrightarrow Cartesian (Descartes) Coordinates

$$\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = \boldsymbol{F}, \ \boldsymbol{p} = m\boldsymbol{v} \text{ (Momentum & Force)}$$

$$\frac{\mathrm{d} \boldsymbol{L}}{\mathrm{d} t} = \boldsymbol{M}, \ \boldsymbol{L} = \boldsymbol{x} \times \boldsymbol{p}, \ \boldsymbol{M} = \boldsymbol{x} \times \boldsymbol{F}$$
 (Angular Momentum & Torque)

Mass point \longrightarrow Mass point system \longrightarrow Rigid Body \longrightarrow Inertia $\begin{cases} \text{Mass: } m \\ \text{Inertia of Rotation: } mr^2 \end{cases}$

1.3 Lagrangian Mechanics - Analytical M.

1.3.1 Constraint

$$x_1, x_2, \dots, x_{3N}$$
 are dependent $\Longrightarrow q_1, q_2, \dots, q_D$ are independent $\left(\frac{\partial q_i}{\partial q_j} = 0, i \neq j\right)$ constraint $\begin{cases} \text{holonomic: } f(x;t) \equiv 0 \\ \text{non-holonomic: } f(x,\dot{x};t) \equiv 0 \end{cases}$

6

1.3.2 Coordinates and Space

Generalized Coordinates $q_{\alpha}(t)$, $\alpha = 1, 2, \dots, D \leq 3N$ Configuration Space (Abstract Space): *D*-dim

1.3.3 Functional

Example of functionals (function of function):

1. Lagrangian:

$$\mathcal{L}(q(t), \dot{q}(t); t)$$

generalized velocity: $\dot{q} = \frac{\mathrm{d}q}{\mathrm{d}t}$

2. Hamiltonian:

canonical position: q(t); canonical momentum: $p_{\alpha} = \frac{\partial \mathcal{L}}{\partial \dot{q}_{\alpha}}$ (in Phase Space)

3. Action:

$$S[q(t)] = \int_{t_1}^{t_2} \mathcal{L}(q(t), \dot{q}(t); t) dt$$

Dimensions of these functionals:

$$[\mathcal{L}] = [H] = [\text{Energy}], \ [S] = [\text{Energy}] \cdot [\text{Time}] = [\text{Length}] \cdot [\text{Momentum}] = [\hbar]$$

Reduced Planck's Constant: $\hbar = \frac{h}{2\pi}$

1.3.4 Difference & Differential & Variation

$$f(x_2) - f(x_1) = \underbrace{\Delta f}_{\text{difference}} \xrightarrow{\Delta x \to 0} \underbrace{\Delta f}_{\text{differential}}, \text{ variation: } \delta q(t) = q_2(t) - q_1(t)$$

$$f(q, \dot{q}; t) : \begin{cases} \Delta f = \frac{\partial f}{\partial q} \Delta q + \frac{\partial f}{\partial \dot{q}} \Delta \dot{q} \\ \mathrm{d}f = \frac{\partial f}{\partial q} \mathrm{d}q + \frac{\partial f}{\partial \dot{q}} \mathrm{d}\dot{q} \\ \delta f = \frac{\partial f}{\partial q} \delta q + \frac{\partial f}{\partial \dot{q}} \delta \dot{q} \ (\delta q(t_1) = \delta q_2 = 0; \delta t = 0) \end{cases}$$

1.3.5 Principle of Least Action (Hamilton's Principle)

$$\delta S \equiv 0 \implies$$
 dynamical equations

1.3.6 Euler-Lagrange Equations

$$\frac{\partial \mathcal{L}}{\partial q_{\alpha}} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{\alpha}} \right), \ \alpha = 1, 2, \cdots, D$$

D 2nd-order ODE

$$0 \equiv \delta S = \delta \int_{t_1}^{t_2} \mathcal{L}(q, \dot{q}; t) dt = \int_{t_1}^{t_2} \left(\frac{\partial \mathcal{L}}{\partial q} \delta q + \frac{\partial \mathcal{L}}{\partial \dot{q}} \delta \dot{q} \right) dt$$

$$= \int_{t_1}^{t_2} \left[\frac{\partial \mathcal{L}}{\partial q} \delta q + \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \delta q \right) - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) \delta q \right] dt$$

$$= \int_{t_1}^{t_2} \left[\frac{\partial \mathcal{L}}{\partial q} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) \right] \delta q dt + \underbrace{\frac{\partial \mathcal{L}}{\partial \dot{q}} \delta q}_{=0}^{t_2} + \underbrace{\frac{\partial \mathcal{L}}{\partial q} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right)}_{=0} = 0$$

1.4 Hamiltonian Mechanics - Analytical M.

1.4.1 Legendre Transformations

$$\begin{cases} p_{\alpha} = \frac{\partial \mathcal{L}}{\partial \dot{q}_{\alpha}}, \ \alpha = 1, 2, \cdots, D \\ H(q, p; t) = \sum_{\alpha} p_{\alpha} \dot{q}_{\alpha} - \mathcal{L}(q, \dot{q}; t) \end{cases}$$

$$\Longrightarrow \frac{\partial H}{\partial \dot{q}_{\alpha}} = p_{\alpha} - \frac{\partial \mathcal{L}}{\partial \dot{q}_{\alpha}} \equiv 0 \Longrightarrow H \text{ is } \dot{q} \text{ - independent}, \mathcal{L} \text{ is } p \text{ - independent}$$

1.4.2 Hamilton's Canonical Equations of Motion

$$\begin{cases} \dot{q}_{\alpha} = \frac{\partial H}{\partial p_{\alpha}} \\ \dot{p}_{\alpha} = -\frac{\partial H}{\partial q_{\alpha}} \end{cases} \quad \alpha = 1, 2, \cdots, D$$

2D 1st-order ODE

$$0 \equiv \frac{\partial \mathcal{L}}{\partial p_{\alpha}} = \dot{q}_{\alpha} - \frac{\partial H}{\partial p_{\alpha}} \Longrightarrow \dot{q}_{\alpha} = \frac{\partial H}{\partial p_{\alpha}}; \ \dot{p}_{\alpha} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{\alpha}} \right) = \frac{\partial \mathcal{L}}{\partial q_{\alpha}}, \ \frac{\partial H}{\partial q_{\alpha}} = -\frac{\partial \mathcal{L}}{\partial q_{\alpha}} \Longrightarrow \dot{p}_{\alpha} = -\frac{\partial H}{\partial q_{\alpha}}$$
$$\mathrm{d}H = \frac{\partial H}{\partial t} \mathrm{d}t + \frac{\partial H}{\partial q} \mathrm{d}q + \frac{\partial H}{\partial p} \mathrm{d}p = \mathrm{d}\left(p\dot{q} - \mathcal{L}(q,q;t)\right)$$
$$= (\mathrm{d}p)\dot{q} + p\mathrm{d}\dot{q} - \frac{\partial \mathcal{L}}{\partial t} \mathrm{d}t - \frac{\partial \mathcal{L}}{\partial q} \mathrm{d}q - \frac{\partial \mathcal{L}}{\partial \dot{q}} \mathrm{d}\dot{q} = \dot{q}\mathrm{d}p - \dot{p}\mathrm{d}q - \frac{\partial \mathcal{L}}{\partial t} \mathrm{d}t$$
$$\Longrightarrow \dot{q} = \frac{\partial H}{\partial p}, \ \dot{p} = -\frac{\partial H}{\partial q}$$
$$0 \equiv \delta S = \delta \int (p\dot{q} - H(q,p;t)) \mathrm{d}t \Longrightarrow \dot{q} = \frac{\partial H}{\partial p}, \ \dot{p} = -\frac{\partial H}{\partial q}$$

1.4.3 Poisson Bracket (Classical Canonical Commutator)

$$AB_{\text{PB}} = \sum_{\alpha} \left(\frac{\partial A}{\partial q_{\alpha}} \frac{\partial B}{\partial p_{\alpha}} - \frac{\partial A}{\partial p_{\alpha}} \frac{\partial B}{\partial q_{\alpha}} \right)$$

 \Longrightarrow Quantum Canonical Commutator $\left[\hat{A},\hat{B}\right]=\hat{A}\hat{B}-\hat{B}\hat{A}$

$$\forall f(q, p; t), \frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \sum_{\alpha} \left(\frac{\partial f}{\partial q_{\alpha}} \dot{q}_{\alpha} + \frac{\partial f}{\partial p_{\alpha}} \dot{p}_{\alpha} \right) = \frac{\partial f}{\partial t} + \sum_{\alpha} \left(\frac{\partial f}{\partial q_{\alpha}} \frac{\partial H}{\partial p_{\alpha}} - \frac{\partial f}{\partial p_{\alpha}} \frac{\partial H}{\partial q_{\alpha}} \right) = \frac{\partial f}{\partial t} + [f, H]_{\mathrm{PB}}$$

$$\text{if } f(q, p; t) = q_{\alpha} \Longrightarrow \frac{\mathrm{d}q_{\alpha}}{\mathrm{d}t} = \frac{\partial H}{\partial p_{\alpha}}, \text{ if } f(q, p; t) = p_{\alpha} \Longrightarrow \frac{\mathrm{d}p_{\alpha}}{\mathrm{d}t} = -\frac{\partial H}{\partial q_{\alpha}}$$

1.4.4 Fundamental Commutation Relations in CM

$$[q_{\alpha}, p_{\beta}]_{PB} = \delta_{\alpha\beta} \longleftrightarrow [\hat{q}_{\alpha}, \hat{p}_{\beta}] = i\hbar \delta_{\alpha\beta}$$

$$[q_{\alpha}, q_{\beta}]_{PB} = [p_{\alpha}, p_{\beta}]_{PB} \equiv 0 \longleftrightarrow [\hat{q}_{\alpha}, \hat{q}_{\beta}] = [\hat{p}_{\alpha}, \hat{p}_{\beta}] \equiv 0$$

$$[q_{\alpha}, p_{\beta}] = \sum_{\gamma} \left(\frac{\partial q_{\alpha}}{\partial q_{\gamma}} \frac{\partial p_{\beta}}{\partial p_{\gamma}} - \frac{\partial q_{\alpha}}{\partial p_{\gamma}} \frac{\partial p_{\beta}}{\partial q_{\gamma}} \right) = \delta_{\alpha\gamma} \delta_{\beta\gamma} - 0 = \delta_{\alpha\beta}$$

$$[q_{\alpha}, q_{\beta}] = \sum_{\gamma} \left(\frac{\partial q_{\alpha}}{\partial q_{\gamma}} \frac{\partial q_{\beta}}{\partial p_{\gamma}} - \frac{\partial q_{\alpha}}{\partial p_{\gamma}} \frac{\partial q_{\beta}}{\partial q_{\gamma}} \right) = \delta_{\alpha\gamma} \cdot 0 - 0 \cdot \delta_{\beta\gamma} = 0$$

1.4.5 Properties of Poisson Bracket

1.
$$[A, B]_{PB} = -[B, A]_{PB}$$

2.
$$[A+B,C]_{PB} = [A,C]_{PB} + [B,C]_{PB}, [A,B+C]_{PB} = [A,B]_{PB} + [A,C]_{PB}$$

3.
$$[A, BC]_{PB} = [A, B]_{PB}C + B[A, C]_{PB}, [AB, C]_{PB} = [A, C]_{PB}B + A[B, C]_{PB}$$

4.
$$[A, B^n]_{PB} = n[A, B]_{PB}B^{n-1}$$

5.
$$[A, f(B)]_{PB} = [A, B]_{PB} \frac{\partial f}{\partial B}$$

6.
$$[L_i, L_j]_{PB} = \epsilon_{ijk} L_k$$

7.
$$[L_i, \mathbf{L}^2]_{PB} = 0$$

8.
$$[L_i, x_j]_{PR} = \epsilon_{ijk} x_k$$

9.
$$[L_i, p_j]_{PB} = \epsilon_{ijk} p_k$$

$$[L_{i}, L_{j}]_{PB} = [\epsilon_{iab}x_{a}p_{b}, \epsilon_{jcd}x_{c}p_{d}]_{PB} = \epsilon_{iab}\epsilon_{jcd} \left(x_{a}\underbrace{[p_{b}, x_{c}]_{PB}}_{=-\delta_{bc}}p_{d} + x_{c}\underbrace{[x_{a}, p_{d}]_{PB}}_{=\delta_{ad}}p_{b}\right)$$

$$= \epsilon_{iab}\epsilon_{jca}x_{c}p_{b} - \epsilon_{iab}\epsilon_{jbd}x_{a}p_{d} = (\delta_{bj}\delta_{ic} - \delta_{bc}\delta_{ij})x_{c}p_{b} - (\delta_{ij}\delta_{ad} - \delta_{id}\delta_{aj})x_{a}p_{d}$$

$$= x_{i}p_{j} - \delta_{ij}(\mathbf{x} \cdot \mathbf{p}) + \delta_{ij}(\mathbf{x} \cdot \mathbf{p}) - x_{j}p_{i} = x_{i}p_{j} - x_{j}p_{i} = \epsilon_{ijk}L_{k}$$

1.4.6 Hamilton-Jacobi Equation

$$\frac{\partial S}{\partial t} + H(q, \frac{\partial H}{\partial q}; t) = 0$$

$$\delta S = \int_{t_0}^{t} \mathcal{L}(q, \dot{q}; t) dt = \int_{t_0}^{t} \left[\frac{\partial \mathcal{L}}{\partial q} \delta q + \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \delta q \right) - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) \delta q \right]$$

$$= \int_{t_0}^{t} \underbrace{\left(\frac{\partial \mathcal{L}}{\partial q} - \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}} \right)}_{=0 \text{ (physical path)}} \delta q dt + \underbrace{\frac{\partial \mathcal{L}}{\partial \dot{q}}}_{=0 \text{ (fixed)}} \delta q(t) - \underbrace{\frac{\partial \mathcal{L}}{\partial \dot{q}}}_{=0 \text{ (fixed)}} \delta q(t_0) = \underbrace{\frac{\partial \mathcal{L}}{\partial \dot{q}}}_{=0 \text{ (fixed)}} \delta q = p \delta q$$

$$\begin{cases} \delta S = p \delta q \\ \delta S[q(t), t] = \frac{\partial S}{\partial q} \delta q \end{cases} \implies p = \frac{\partial S}{\partial q}, \begin{cases} \frac{\mathrm{d}S}{\mathrm{d}t} = \frac{\partial S}{\partial t} + \frac{\partial S}{\partial q} \dot{q} \\ \frac{\mathrm{d}S}{\mathrm{d}t} = \mathcal{L} = p \dot{q} - H \end{cases} \implies \frac{\partial S}{\partial t} + H = 0$$

1.4.7 Phase Space (Dynamics)

phase point $(q, p) \longrightarrow \text{state}$

$$\int \rho(q, p; t) d^D q d^D p = 1$$

 ρ : probability

1.4.8 Regular Lagrangian

$$\left| \frac{\partial^2 \mathcal{L}}{\partial q_i \partial q_j} \right| \neq 0 \Longrightarrow \begin{cases} \mathcal{L} = T - V \\ H = T + V \end{cases}$$

2 Classical Electrodynamics

2.1 Vector Analysis

$$\boldsymbol{v} = v_1 \boldsymbol{e}_1 + v_2 \boldsymbol{e}_2 + v_3 \boldsymbol{e}_3 = \sum_i v_i \boldsymbol{e}_i = v_i \boldsymbol{e}_i$$
 (Einstein convention), $i = 1, 2, 3$

2.1.1 Generalized Stokes' Theorem

$$\int_{\Omega} d\omega = \int_{\partial \Omega} \omega$$

1. Newton-Leibniz formula

$$\int_{a}^{b} \mathrm{d}f = f(b) - f(a)$$

2. Green's theorem

$$\oint f \, dx + g \, dy = \iint \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) \, dx \, dy$$

3. Stokes' theorem

$$\oint \mathbf{F} \cdot d\mathbf{l} = \iint (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$$

$$\implies \oint \psi d\mathbf{l} = \iint d\mathbf{S} \times \nabla \psi$$

4. Gauss-Ostrogradsky's theorem

$$\iint \mathbf{F} \cdot d\mathbf{S} = \iiint (\nabla \cdot \mathbf{F}) \, dV$$

$$\Longrightarrow \begin{cases}
\oiint \psi \, d\mathbf{S} = \iiint (\nabla \psi) \, dV \\
\oiint d\mathbf{S} \nabla \mathbf{A} = \iiint (\nabla \times \mathbf{A}) \, dV
\end{cases}$$

2.1.2 Helmholtz's theorem

For all continuous differentiable F,

$$oldsymbol{F} = oldsymbol{F}_{oldsymbol{\perp}} + oldsymbol{F}_{\|}$$

1. transverse component

$$\nabla \cdot \boldsymbol{F}_{\perp} = 0$$
 & $\boldsymbol{F}_{\perp} = \nabla \times \boldsymbol{A}$

2. longitudinal component

$$\nabla \times \boldsymbol{F}_{\parallel} = 0$$
 & $\boldsymbol{F}_{\parallel} = -\nabla \phi$

For magnetic field ${m B}$

$$\nabla \cdot \boldsymbol{B} \equiv 0$$

For electric field ${m E}$

$$\begin{cases} \nabla \times \boldsymbol{E} = 0 & \text{for static electric field} \\ \nabla \times \boldsymbol{E} \neq 0 & \text{for AC electric field} \end{cases}$$

2.2 Experimental Laws and Maxwell's Equations

2.2.1 Coulomb's Law

$$E(\boldsymbol{x}) = \int \frac{\rho(\boldsymbol{x}')(\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3} dV' = -\nabla \phi, \quad \phi = \int \frac{\rho(\boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} dV'$$

$$\Longrightarrow \boxed{\nabla \cdot \boldsymbol{E} = 4\pi \rho(\boldsymbol{x})} \quad \text{Gauss' Law}$$

2.2.2 Biot-Savart's Law

$$\boldsymbol{B} = \int \frac{\boldsymbol{j}(\boldsymbol{x}') \times (\boldsymbol{x} - \boldsymbol{x}')}{\left| \boldsymbol{x} - \boldsymbol{x}' \right|^3} \, dV' = \nabla \times \boldsymbol{A}(\boldsymbol{x})$$

3 Fundamental Postulates (Axioms)

4 SOME IS

- 1. State
- 2. Observable (Operation)
- 3. Measurement
- 4. Evolution
- 5. Identical Particular and Symmetrization

4.1 State

system \longleftrightarrow state vector ket: $|\psi\rangle$ bra: $\langle\psi|$

$$(|\psi\rangle)^{\dagger} = \langle \psi |$$
$$[(|\psi\rangle)^{\dagger}]^{\dagger} = (\langle \psi |)^{\dagger} = |\psi\rangle$$

†: adjoint or Hermitian conjugate

4.2 Observable

physical quantity
$$\longleftrightarrow$$
 observable \longleftrightarrow operation $\hat{A} \begin{cases} \text{linear} \\ \text{Hermitian} \end{cases}$

4.3 Measurement

4.3.1 Measurement + Outcomes

$$\hat{A} |\psi\rangle = A_n |\psi_n\rangle$$
 (Eigenvalue equation)

 \hat{A} : operation (q-number); A_n : eigenvalue (c-number); ψ_n : eigenstate

4.3.2 Probability of Measurement Outcomes

$$|\psi\rangle = \sum_{n} c_{n} |\psi_{n}\rangle, \ c_{n} = \langle \psi_{n} | \psi \rangle$$

$$P(A_{n}) = |c_{n}|^{2} = |\langle \psi_{n} | \psi \rangle|^{2}$$

$$\left\langle \hat{A} \right\rangle = \langle \psi | \hat{A} | \psi \rangle = \sum_{n} P(A_{n}) A_{n} = \sum_{n} |\langle \psi_{n} | \psi \rangle|^{2} A_{n}$$

4.3.3 State Collapse

$$|\psi\rangle \xrightarrow{\hat{A}\text{-measurement}} |\psi_n\rangle$$

4.4 Evolution (Dynamics)

4.4.1 Schrödinger Picture

state: change; observable: no change

$$\begin{cases}
i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle \\
|\psi(t=0)\rangle = |\psi_0\rangle
\end{cases}$$
 Schrödinger Equation

where
$$\hat{H} = \hat{T} + \hat{V} = \frac{\hat{p}^2}{2m} + \hat{V}(\hat{x})$$

representation: coordinate system \hat{x} -representation (position):

$$\hat{x}\ket{x}=x\ket{x},\ \ket{\psi}\longrightarrow \langle x|\psi\rangle=\psi(x)$$
 wave-function

$$\Longrightarrow \left[i\hbar \frac{\partial}{\partial t} \psi(\boldsymbol{x},t) = -\frac{\hbar^2}{2m} \nabla^2 \psi(\boldsymbol{x},t) + \hat{V}(\boldsymbol{x},t) \psi(\boldsymbol{x},t) \right]$$

 $\hat{\boldsymbol{p}}$ -representation (momentum): $\hat{\boldsymbol{p}} \left| \boldsymbol{p} \right\rangle = \boldsymbol{p} \left| \boldsymbol{p} \right\rangle$

4.4.2 Heisenberg Picture

state: no change; observable: change

$$\boxed{\frac{\mathrm{d}\hat{F}}{\mathrm{d}t} = \frac{\partial\hat{F}}{\partial t} + \frac{1}{\mathrm{i}\hbar} \left[\hat{F}, \hat{H}\right]}$$
 Heisenberg Equation

4.5 Identical Particles and Symmetrization

4.5.1 Identical Particles

 $\begin{cases} \text{boson: } s = 0, 1, 2, \cdots \text{ Bose-Einstein Statistics} \\ \text{fermion: } s = \frac{1}{2}, \frac{3}{2}, \cdots \text{ Fermi-Dirac Statistics} \end{cases} \xrightarrow{\text{classical} \\ \text{reduce}} \text{Maxwell-Boltzmann Statistics} \end{cases}$

4.5.2 Symmetrization

Boson: symmetric Femion: anti-symmetric

5 State Vector

5.1 Euclidean Space \mathbb{R}^3

$$\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + v_3 \mathbf{e}_3$$

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ \mathbf{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \ \mathbf{v}^T = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$$

1. vector addition: $\mathbf{v}_1 + \mathbf{v}_2 = \mathbf{v}_2 + \mathbf{v}_1$

2. scalar multiplication:
$$\begin{cases} a(\mathbf{v}_1 + \mathbf{v}_2) = a\mathbf{v}_1 + a\mathbf{v}_2 \\ (a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v} \end{cases} \quad \forall a, b \in \mathbb{R}$$

3. inner product (dot product): $\boldsymbol{v}_1^T \boldsymbol{v}_2 = \boldsymbol{v}_1 \cdot \boldsymbol{v}_2 = \boldsymbol{v}_2 \cdot \boldsymbol{v}_1 = \boldsymbol{v}_2^T \boldsymbol{v}_1$

4. dyadic: $\mathbf{v}_1 \mathbf{v}_2 \neq \mathbf{v}_2 \mathbf{v}_1$

5. basis:
$$\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$
 \longrightarrow orthonormal $\mathbf{e}_i \mathbf{e}_i = \mathbf{I} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

14

6.
$$\mathbf{v}_1 \cdot \mathbf{v}_2 = r \in \mathbb{R}$$

 $\mathbf{v} \cdot \mathbf{v} = r \in \mathbb{R}, r \ge 0 \text{ (equality iff } \mathbf{v} = \mathbf{0})$

5.2 State Vector Space H (Hilbert Space)

$$|\psi\rangle = \begin{pmatrix} \vdots \\ \vdots \\ \vdots \end{pmatrix}, \ \langle\psi| = \begin{pmatrix} \cdots & \cdots \end{pmatrix}$$

- 1. vector addition: $|\psi_1\rangle + |\psi_2\rangle = |\psi_2\rangle + |\psi_1\rangle$
- 2. scalar multiplication: $\begin{cases} c(|\psi_1\rangle + |\psi_2\rangle) = c |\psi_1\rangle + c |\psi_2\rangle \\ (c+c') |\psi\rangle = c |\psi\rangle + c' |\psi\rangle \end{cases} \quad \forall c \in \mathbb{C}$
- 3. inner product: $\langle \psi_1 | \psi_2 \rangle = (\langle \psi_2 | \psi_1 \rangle)^*$
- 4. outer product: $|\psi\rangle\langle\phi|\neq|\phi\rangle\langle\psi|$

$$(|\psi\rangle\langle\phi|)^{\dagger} = (\langle\phi|)^{\dagger}(|\psi\rangle)^{\dagger} = |\phi\rangle\langle\psi|$$

5. basis: for Hermitian operation $\begin{cases} \hat{A} | \psi_n \rangle = A_n | \psi_n \rangle \text{ discrete} \\ \hat{A} | a \rangle = a | a \rangle \text{ continuous} \end{cases}$

discrete:
$$\begin{cases} \langle \psi_n | \psi_m \rangle = \delta_{nm} = \begin{cases} 1, & n = m \\ 0, & n \neq m \end{cases} \\ \sum_n |\psi_n\rangle \langle \psi_n| = \hat{I} \end{cases}$$

continuous:
$$\begin{cases} \langle a|a'\rangle = \delta(a-a') = \begin{cases} \infty, \ a=a'\\ 0, \ a \neq a' \end{cases} \\ \int |a\rangle \langle a| \ \mathrm{d}a = \hat{I} \end{cases}$$

6.
$$\langle \psi_1 | \psi_2 \rangle = c \in \mathbb{C}$$

 $(\langle \psi_1 | \psi_2 \rangle)^* = \langle \psi_2 | \psi_1 \rangle$
 $\langle \psi | \psi \rangle = ||\psi \rangle||^2 = r \in \mathbb{R}, r \ge 0 \text{ (equality iff } |\psi \rangle = \mathbf{0})$

6 Operator

$$\hat{A} |\phi\rangle = |\psi\rangle, \ \hat{A}^{-1} |\psi\rangle = |\phi\rangle$$

6.1 Linear Operator

$$\forall |\psi_1\rangle, |\psi_2\rangle \in \mathbb{H}, a, b \in \mathbb{C}, \hat{A}(a|\psi_1\rangle + b|\psi_2\rangle) = a\hat{A}|\psi_1\rangle + b\hat{A}|\psi_2\rangle$$

then, \hat{A} is a linear operator

$$\hat{A}(a|\psi_1\rangle + b|\psi_2\rangle) = a^*\hat{A}|\psi_1\rangle + b^*\hat{A}|\psi_2\rangle$$

then, \hat{A} is an anti-linear operation

6.1.1 Two Kinds of Linear Operators

 $\begin{cases} \text{Hermitian operator: } \hat{A}^{\dagger} = \hat{A} \\ \text{Unitary operator: } \hat{U}^{\dagger} = \hat{U}^{-1} \end{cases}$

6.1.2 Rules

$$\forall |\psi\rangle$$
, if $\hat{A}|\psi\rangle = \hat{B}|\psi\rangle \iff \hat{A} = \hat{B}$

- 1. $\hat{A} + \hat{B} = \hat{B} + \hat{A}$ def: $\forall |\psi\rangle$, $\hat{A} |\psi\rangle + \hat{B} |\psi\rangle = (\hat{A} + \hat{B}) |\psi\rangle$
- 2. $(\hat{A} + \hat{B}) + \hat{C} = \hat{A} + (\hat{B} + \hat{C})$
- 3. $\hat{A}\hat{B} \neq \hat{B}\hat{A}$ def commutator: $\left[\hat{A}, \hat{B}\right] = \hat{A}\hat{B} - \hat{B}\hat{A} \longleftrightarrow [A, B]_{PB} \longleftrightarrow \frac{1}{i\hbar} \left[\hat{A}, \hat{B}\right]$
- 4. adjoint (Hermitian conjugate): $(\hat{A} | \phi \rangle)^{\dagger} = \langle \phi | \hat{A}^{\dagger} \iff \langle \phi | \hat{A}^{\dagger} | \psi \rangle = (\langle \psi | \hat{A} | \phi \rangle)^{*}$ \Longrightarrow Hermitian operation: $\hat{A}^{\dagger} = \hat{A}$ (Hermitian matrix) $\Longrightarrow A_{ij} = A_{ji}^{*}$

6.1.3 Properties

- 1. Identity: $\forall |\psi\rangle, \exists \hat{I}, \hat{I} |\psi\rangle = |\psi\rangle$
- 2. Inverse: $\hat{A} | \psi \rangle = | \phi \rangle \Longrightarrow | \psi \rangle = \hat{A}^{-1} | \phi \rangle$, $\hat{A} \hat{A}^{-1} = \hat{A}^{-1} \hat{A} = \hat{I}$ $(\hat{A}_1 \hat{A}_2 \cdots \hat{A}_n)^{-1} = \hat{A}_n^{-1} \cdots \hat{A}_2^{-1} \hat{A}_1^{-1}$
- 3. $(\hat{A}_1\hat{A}_2\cdots\hat{A}_n)^{\dagger}=\hat{A}_n^{\dagger}\cdots\hat{A}_2^{\dagger}\hat{A}_1^{\dagger}$

7 Overview of QM

ROSE P... M

8 Roles: State Vector, Operator

8.0.1 Operator

$$\begin{cases} \text{Observable} & \begin{cases} \text{Hermitian: } \hat{A}^{\dagger} = \hat{A} \\ \text{Unitary: } \hat{A}^{\dagger} = \hat{A}^{-1} \end{cases}$$

8.0.2 State

$$\begin{cases} \text{ket } |\psi\rangle \text{ (vector): } (|\psi\rangle)^{\dagger} = \langle\psi| \\ \text{bra } \langle\psi| \text{ (dual vector): } (\langle\psi|)^{\dagger} = |\psi\rangle \end{cases}$$

8.0.3 Eigenspectrum

8.1 Properties

Wave Particle Duality

8.2 Problems

8.2.1 Eigenvalue Problem

$$\hat{A} |\psi\rangle = \lambda |\psi\rangle \begin{cases} \hat{A} |u_n\rangle = A_n |u_n\rangle \begin{cases} \langle u_n | u_m\rangle = \delta_{nm} \\ \sum_n |u_n\rangle \langle u_n| = \hat{I} \end{cases} \\ \hat{A} |a\rangle = a |a\rangle \begin{cases} \langle a | a'\rangle = \delta(a - a') \\ \int da |a\rangle \langle a| = \hat{I} \end{cases} \end{cases}$$

8.2.2 Evolution Problem

$$\begin{cases} \mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t} \left| \psi(t) \right\rangle = \hat{H} \left| \psi(t) \right\rangle & \mathrm{Schrödinger eq.} \\ \frac{\mathrm{d}\hat{F}}{\mathrm{d}t} = \frac{\partial\hat{F}}{\partial t} + \frac{1}{\mathrm{i}\hbar} \Big[\hat{F}, \hat{H}\Big] & \mathrm{Heisenberg eq.} \end{cases}$$

8.3 Picture

8.3.1 Schrödinger Picture

$$\frac{\mathrm{d}\hat{F}}{\mathrm{d}t} = \frac{\partial\hat{F}}{\partial t} \equiv 0$$

17

8.3.2 Heisenberg Picture

$$\frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle \equiv 0$$

8.4 Particles

 $\begin{cases} \text{Boson: s=integer} \longrightarrow \text{Bose-Einstein Statistics} \\ \text{Femion: s=half-integer} \longrightarrow \text{Fermi-Dirac Statistics} \end{cases} \xrightarrow{\hbar \to 0} \text{Maxwell-Boltzmann Statistics}$

8.5 Perturbation Theories

 $\begin{cases} \text{Non-degenerate} \\ \text{Degenerate} \end{cases}$

8.6 Angular Momentum and Magnetic Moment

 $\begin{cases} \text{Orbital Angular Momentum} \\ \text{Spin Angular Momentum} \end{cases} \iff \begin{cases} \text{Orbital Magnetic Moment} \\ \text{Intrinsic Magnetic Moment} \end{cases}$

8.7 Mechanics

 $\begin{cases} \text{Wave Mechanics: wavefunction} \longleftrightarrow \text{state vector} \\ \text{Matrix Mechanics: matrix forms of} \end{cases} \begin{cases} \text{state vector} \\ \text{operator: } n \times n \text{ matrix} \end{cases}$

8.8 Theorem of Hermitian Operator

$$\hat{A}^{\dagger}=\hat{A},\quad \hat{A}\left|\psi_{n}\right\rangle =A_{n}\left|\psi_{n}\right\rangle \text{ (non-degenerate, discrete)}$$

- 1. eigenvalue $A_n \in \mathbb{R}$
- 2. eigenstate \longrightarrow orthonarmal and complete basis

$$\langle \psi_{n} | \hat{A}^{\dagger} | \psi_{n} \rangle = (\langle \psi_{n} | \hat{A} | \psi_{n} \rangle)^{*} = A_{n}^{*} \langle \psi_{n} | \psi_{n} \rangle = \langle \psi_{n} | \hat{A} | \psi_{n} \rangle = A_{n} \langle \psi_{n} | \psi_{n} \rangle$$

$$\Longrightarrow A_{n}^{*} = A_{n} \Longrightarrow A_{n} \in \mathbb{R}$$

$$\begin{cases} \hat{A} | \psi_{n} \rangle = A_{n} | \psi_{n} \rangle \\ \hat{A} | \psi_{m} \rangle = A_{m} | \psi_{m} \rangle \end{cases} \Longrightarrow \langle \psi_{n} | \hat{A}^{\dagger} | \psi_{m} \rangle = (\langle \psi_{m} | \hat{A} | \psi_{n} \rangle)^{*} = A_{n}^{*} (\langle \psi_{m} | \psi_{n} \rangle)^{*} = A_{n}^{*} \langle \psi_{n} | \psi_{m} \rangle$$

$$\langle \psi_{n} | \hat{A} | \psi_{m} \rangle = A_{m} \langle \psi_{n} | \psi_{m} \rangle \Longrightarrow (A_{n} - A_{m}) \langle \psi_{n} | \psi_{m} \rangle = 0$$

$$n \neq m \Longrightarrow A_{n} \neq A_{m} \Longrightarrow \langle \psi_{n} | \psi_{m} \rangle = 0 \Longrightarrow |\psi_{n} \rangle \perp |\psi_{m} \rangle$$

Remark: Degenerate,

$$\hat{A} \left| \psi_n^i \right\rangle = A_n \left| \psi_n^i \right\rangle \quad (i = 1, 2, \cdots, g_n) \Longrightarrow \left| \psi_n^i \right\rangle \neq c \left| \psi_n^j \right\rangle \text{ (linear independent)}$$

$$\left| \psi_n^i \right\rangle \xrightarrow{\text{Gram-Schmidt Orthogonalization}} \left| \phi_n^i \right\rangle \begin{cases} \left\langle \phi_n^i \middle| \phi_m^j \right\rangle = \delta_{nm} \delta_{ij} \\ \sum_{n,i} \left| \phi_n^i \right\rangle \left\langle \phi_n^i \middle| = \hat{1} \end{cases}$$

9 Wave Mechanics & Matrix Mechanics

9.1 Wave Mechanics: wavefunction

wavefunction
$$\begin{cases} \text{matter wave (Schrödinger)} \\ \text{probabilistic wave (Born): } |\Psi(\boldsymbol{x},t)|^2 \sim \text{probability density} \end{cases}$$

wavefunction is the projection of state vector in representation

$$|\psi\rangle = \hat{1} |\psi\rangle = \begin{cases} \left(\sum_{n} |u_{n}\rangle \langle u_{n}|\right) |\psi\rangle = \sum_{n} c_{n} |u_{n}\rangle, & c_{n} = \langle u_{n}|\psi\rangle & \text{discrete} \\ \left(\int da |a\rangle \langle a|\right) |\psi\rangle = \int da \, \psi(a) |a\rangle, & \psi(a) = \langle a|\psi\rangle & \text{continuous} \end{cases}$$

 c_n is the wavefunction in $\{|u_n\rangle\}$ -representation, $\psi(a)$ is the wavefunction in $\{|a\rangle\}$ -representation.

$$|\psi\rangle = \sum_{n} c_n |\psi_n\rangle, \quad c_n = \langle \psi_n |\psi\rangle, \hat{A} |\psi\rangle = A_n |\psi_n\rangle$$

$$\begin{cases} \boldsymbol{x}\text{-representation: } \hat{\boldsymbol{x}} \, | \boldsymbol{x} \rangle = \boldsymbol{x} \, | \boldsymbol{x} \rangle \begin{cases} \langle \boldsymbol{x} | \boldsymbol{x}' \rangle = \delta(\boldsymbol{x} - \boldsymbol{x}') \\ \int \mathrm{d}^3 x \, | \boldsymbol{x} \rangle \, \langle \boldsymbol{x} | = \hat{1} \end{cases} \\ \boldsymbol{p}\text{-representation: } \hat{\boldsymbol{p}} \, | \boldsymbol{p} \rangle = \boldsymbol{p} \, | \boldsymbol{p} \rangle \begin{cases} \langle \boldsymbol{p} | \boldsymbol{p}' \rangle = \delta(\boldsymbol{p} - \boldsymbol{p}') \\ \int \mathrm{d}^3 x \, | \boldsymbol{p} \rangle \, \langle \boldsymbol{p} | = \hat{1} \end{cases}$$

Energy-representation, Fork-state representation (occupation number representation)

$$|\psi\rangle = \left(\int d^3x \, |\boldsymbol{x}\rangle \, \langle \boldsymbol{x}| \right) |\psi\rangle = \int d^3x \, \psi(\boldsymbol{x}) \, |\boldsymbol{x}\rangle$$
$$= \left(\int d^3p \, |\boldsymbol{p}\rangle \, \langle \boldsymbol{p}| \right) |\psi\rangle = \int d^3p \, \tilde{\psi}(\boldsymbol{p}) \, |\boldsymbol{p}\rangle$$

$$\psi(\boldsymbol{x}) = \langle \boldsymbol{x} | \psi \rangle \quad \tilde{\psi}(\boldsymbol{p}) = \langle \boldsymbol{p} | \psi \rangle$$

$$\tilde{\psi}(\boldsymbol{p}) = \langle \boldsymbol{p} | \psi \rangle = \langle \boldsymbol{p} | \hat{1} | \psi \rangle = \langle \boldsymbol{p} | \left(\int d^3 x | \boldsymbol{x} \rangle \langle \boldsymbol{x} | \right) | \psi \rangle = \int d^3 x \langle \boldsymbol{p} | \boldsymbol{x} \rangle \psi(\boldsymbol{x})$$

$$= \int d^3 x \psi(\boldsymbol{x}) \psi_{\boldsymbol{p}}^*(\boldsymbol{x}) \quad \text{where } \psi_{\boldsymbol{p}}(\boldsymbol{x}) = \langle \boldsymbol{x} | \boldsymbol{p} \rangle = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} e^{-i\boldsymbol{p}\cdot\boldsymbol{x}/\hbar}$$

$$\implies \text{in } \boldsymbol{x}\text{-representation, } \hat{\boldsymbol{x}} = \boldsymbol{x}, \ \hat{\boldsymbol{p}} = -i\hbar \frac{\partial}{\partial \boldsymbol{x}}$$

$$\implies \begin{cases} i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle \\ \hat{H} = \frac{\hat{\boldsymbol{p}}^2}{2m} + V(\hat{\boldsymbol{x}}) \end{cases} \xrightarrow{\int \mathrm{d}^3x \, |\boldsymbol{x}\rangle\langle \boldsymbol{x}| = \hat{I}} i\hbar \frac{\partial}{\partial t} \Psi(\boldsymbol{x}, t) = -\frac{\hbar^2}{2m} \nabla^2 \Psi(\boldsymbol{x}, t) + V(\boldsymbol{x})\Psi(\boldsymbol{x}, t)$$

$$\text{where } \begin{cases} \Psi(\boldsymbol{x}, t) = \langle \boldsymbol{x}|\psi(t)\rangle \\ \hat{\boldsymbol{x}} = \boldsymbol{x}, \quad \hat{\boldsymbol{p}} = -i\hbar \nabla \end{cases}$$

$$\text{in } \boldsymbol{p}\text{-representation, } \hat{\boldsymbol{x}} = +\mathrm{i}\hbar\frac{\partial}{\partial\boldsymbol{p}}, \ \hat{\boldsymbol{p}} = \boldsymbol{p}$$
 Schrödinger eq.
$$\frac{\int \mathrm{d}^{3}\boldsymbol{p}\,|\boldsymbol{p}\rangle\langle\boldsymbol{p}| = \hat{\boldsymbol{I}}}{\partial} \,\mathrm{i}\hbar\frac{\partial}{\partial t}\tilde{\psi}(\boldsymbol{p},t) = \frac{\boldsymbol{p}^{2}}{2m}\tilde{\psi}(\boldsymbol{p},t) + V\left(\mathrm{i}\hbar\frac{\partial}{\partial\boldsymbol{p}}\right)\tilde{\psi}(\boldsymbol{p},t)$$
 where
$$\begin{cases} \tilde{\psi}(\boldsymbol{p}) = \langle\boldsymbol{p}|\psi(t)\rangle \\ \hat{\boldsymbol{p}} = \boldsymbol{p}, \quad \hat{\boldsymbol{x}} = +\mathrm{i}\hbar\frac{\partial}{\partial\boldsymbol{p}} \end{cases}$$

9.2 Matrix Mechanics: State Vector

$$|\psi\rangle = \hat{1} |\psi\rangle = \sum_{n} c_{n} |u_{n}\rangle = \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \\ \vdots \end{pmatrix} = \begin{pmatrix} c_{1} & c_{2} & \cdots & c_{n} & \cdots \end{pmatrix}^{T}$$

$$\hat{A} = \mathbf{I}\hat{A}\mathbf{I} = \left(\sum_{n} |u_{n}\rangle \langle u_{n}|\right) \hat{A} \left(\sum_{m} |u_{m}\rangle \langle u_{m}|\right) = \sum_{n,m} \underbrace{\langle u_{n}|\hat{A}|u_{m}\rangle}_{=A_{nm}} (|u_{n}\rangle \langle u_{m}|) = \begin{pmatrix} A_{nm} \\ \end{pmatrix}$$

9.3 Matrix Mechanics: Hermitian Conjugate

if the operator \hat{A} can be written as a matrix,

$$\langle \psi | \hat{A}^{\dagger} | \phi \rangle = \left(\langle \phi | \hat{A} | \psi \rangle \right)^* \Longrightarrow \hat{A}^{\dagger} = \left(\hat{A}^{\mathrm{T}} \right)^*$$

$$\mathbf{Pf.} \text{ Let } \begin{cases} |\psi\rangle = \sum_{n} c_{n} |u_{n}\rangle \\ |\phi\rangle = \sum_{n} d_{n} |u_{n}\rangle \end{cases},$$

$$\langle \psi | \hat{A}^{\dagger} | \phi \rangle = \left(\sum_{n} c_{n}^{*} \langle u_{n} | \right) \hat{A}^{\dagger} \left(\sum_{m} d_{m} |u_{m}\rangle \right) = \sum_{n,m} c_{n}^{*} d_{m} \langle u_{n} | \hat{A}^{\dagger} |u_{m}\rangle = \sum_{n,m} c_{n}^{*} d_{m} \left(\hat{A}^{\dagger} \right)_{nm}$$

$$\left(\langle \phi | \hat{A} | \psi \rangle \right)^{*} = \left[\left(\sum_{n} d_{n}^{*} \langle u_{n} | \right) \hat{A} \left(\sum_{m} c_{m} |u_{m}\rangle \right) \right]^{*} = \left(\sum_{n,m} d_{n}^{*} c_{m} \langle u_{n} | \hat{A} |u_{m}\rangle \right)^{*}$$

$$= \sum_{n} d_{n} c_{n}^{*} A_{nm}^{*} = \sum_{n} d_{m} c_{n}^{*} A_{mn}^{*} = \sum_{n} c_{n}^{*} d_{m} A_{mn}^{*} \Longrightarrow \left(\hat{A}^{\dagger} \right)_{nm} = \left(\hat{A} \right)_{nm}^{*} = \left(\hat{A}^{T} \right)_{nm}^{*}$$

10 Commutation

10.0.1 Definition

$$\left[\hat{A},\hat{B}\right] = \hat{A}\hat{B} - \hat{B}\hat{A} \tag{1}$$

10.0.2 Compare

$$\begin{cases}
q\text{-number}: \hat{A}\hat{B} \neq \hat{B}\hat{A} & (QM) \\
\text{c-number}: AB = BA & (CM)
\end{cases}$$

$$[A, B]_{PB} = \sum_{\alpha} \left(\frac{\partial A}{\partial q_{\alpha}} \frac{\partial B}{\partial p_{\alpha}} - \frac{\partial A}{\partial p_{\alpha}} \frac{\partial B}{\partial q_{\alpha}} \right)$$
Classical Canonical Commutator
$$(2)$$

10.0.3 Relation

$$[A, B]_{PB} \longleftrightarrow \frac{1}{i\hbar} [\hat{A}, \hat{B}]$$
(3)

11 Properties of Commutations

 $\left[\hat{A},\hat{B}\right] \neq0\Longrightarrow$ Uncertainty Relation

$$\Delta \hat{A} \cdot \Delta \hat{B} \ge \frac{\left| \left\langle \left[\hat{A}, \hat{B} \right] \right\rangle \right|}{2} \tag{4}$$

$$\left[\hat{A}, \hat{B}\right] = 0 \Longrightarrow \underset{\text{Simultaneous}}{\text{Common}} \text{ Eigenstates}$$

1. Linearity

$$\left[a\hat{A}, b\hat{B} + c\hat{C}\right] = ab\left[\hat{A}, \hat{B}\right] + ac\left[\hat{A}, \hat{C}\right]$$
(5)

2. Leibniz rule

$$\begin{cases}
 \left[\hat{A}, \hat{B}\hat{C}\right] = \left[\hat{A}, \hat{B}\right]\hat{C} + \hat{B}\left[\hat{A}, \hat{C}\right] \\
 \left[\hat{A}\hat{B}, \hat{C}\right] = \left[\hat{A}, \hat{C}\right]\hat{B} + \hat{A}\left[\hat{B}, \hat{C}\right]
\end{cases} (6)$$

3. Power related

$$\left[\hat{A}, \hat{B}^n\right] = n\left[\hat{A}, \hat{B}\right] \hat{B}^{n-1} \tag{7}$$

provided that $\left[\hat{B}, \left[\hat{A}, \hat{B}\right]\right] = 0$

Pf.
$$\left[\hat{A}, \hat{B}\right] = 1 \left[\hat{A}, \hat{B}\right] \hat{B}^{1-1} \ (n=1)$$
. Suppose $\left[\hat{A}, \hat{B}^k\right] = k \left[\hat{A}, \hat{B}\right] \hat{B}^{k-1}$, then when $n = k+1$, one has $\left[\hat{A}, \hat{B}^{k+1}\right] = \left[\hat{A}, \hat{B}^k\right] \hat{B} + \hat{B}^k \left[\hat{A}, \hat{B}\right] = (k+1) \left[\hat{A}, \hat{B}\right] \hat{B}^k$ $\Longrightarrow \left[\hat{A}, \hat{B}^n\right] = n \left[\hat{A}, \hat{B}\right] \hat{B}^{n-1}$

4.

$$\left[\hat{A}, f(\hat{B})\right] = \left[\hat{A}, \hat{B}\right] \frac{\partial f}{\partial \hat{B}} \tag{8}$$

provided that $\left[\hat{B}, \left[\hat{A}, \hat{B}\right]\right] = 0$

Pf.
$$[\hat{A}, f(\hat{B})] = [\hat{A}, \sum_{n} \frac{f^{(n)}(0)}{n!} \hat{B}^{n}] = \sum_{n} \frac{f^{(n)}(0)}{n!} [\hat{A}, \hat{B}^{n}] = \sum_{n} \frac{f^{(n)}(0)}{(n-1)!} \hat{B}^{n-1} [\hat{A}, \hat{B}]$$

$$= \sum_{n} \frac{f^{(n)}(0)}{n!} [\hat{A}, \hat{B}] \hat{B}^{n} = [\hat{A}, \hat{B}] \frac{\partial f}{\partial \hat{B}}$$

5. **Jacobi identity** \longrightarrow Lie Algebra

$$[A, [B, C]_{PB}]_{PB} + [B, [C, A]_{PB}]_{PB} + [C, [A, B]_{PB}]_{PB}$$
 (CM) (9)

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) + \mathbf{B} \times (\mathbf{C} \times \mathbf{A}) + \mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = 0$$
 (VA) (10)

$$\mathbf{F}_{\mu\nu,\lambda} + \mathbf{F}_{\nu\lambda,\mu} + \mathbf{F}_{\lambda\mu,\nu} = 0 \quad \text{(CED)}$$

$$\left[\hat{A}, \left[\hat{B}, \hat{C}\right]\right] + \left[\hat{B}, \left[\hat{C}, \hat{A}\right]\right] + \left[\hat{C}, \left[\hat{A}, \hat{B}\right]\right] = 0 \quad (QM) \tag{12}$$

12 Fundamental Commutation Relations

$$\operatorname{CM} \left\{ \begin{bmatrix} x_i, p_j \end{bmatrix}_{\operatorname{PB}} = \delta_{ij} \\ \left[x_i, x_j \right]_{\operatorname{PB}} = \left[p_i, p_j \right]_{\operatorname{PB}} = 0 \right\} \longleftrightarrow \left[\operatorname{QM} \left\{ \begin{bmatrix} \hat{x}_i, \hat{p}_j \end{bmatrix} = i\hbar \delta_{ij} \\ \left[\hat{x}_i, \hat{x}_j \right] = \left[\hat{p}_i, \hat{p}_j \right] = 0 \right] \right\}$$

$$(13)$$

Pf. in
$$\boldsymbol{x}$$
-representation, $\hat{\boldsymbol{x}} = \boldsymbol{x}$, $\hat{\boldsymbol{p}} = -\mathrm{i}\hbar\nabla \Longrightarrow \hat{\boldsymbol{x}} = \boldsymbol{x}$, $\hat{p}_x = -\mathrm{i}\hbar\frac{\partial}{\partial x}$. $\forall \psi(x)$,

$$[\hat{x}, \hat{p}_x]\psi(x) = (\hat{x}\hat{p}_x - \hat{p}_x\hat{x})\,\psi(x) = -\mathrm{i}\hbar\left(x\frac{\partial}{\partial x} - \frac{\partial}{\partial x}x\right)\psi(x) = -\mathrm{i}\hbar\left[x\frac{\partial\psi}{\partial x} - \frac{\partial}{\partial x}(x\psi)\right]$$
$$= \mathrm{i}\hbar\psi(x) \Longrightarrow [\hat{x}, \hat{p}_x] = \mathrm{i}\hbar.$$

Similarly, $[\hat{y}, \hat{p}_y] = [\hat{z}, \hat{p}_z] = i\hbar$. $[\hat{x}_i, \hat{p}_j] = 0, (i \neq j)$.

13 Commutation Relations of Orbital Angular Momentum

$$\hat{\boldsymbol{L}} = \hat{\boldsymbol{x}} \times \hat{\boldsymbol{p}} \iff \hat{L}_i = \varepsilon_{ijk} \hat{x}_j \hat{p}_k \tag{14}$$

$$\Longrightarrow \left[\hat{L}_i, \hat{L}_j \right] = i\hbar \varepsilon_{ijk} \hat{L}_k \iff \hat{L} \times \hat{L} = i\hbar \hat{L}$$
(15)

$$\Longrightarrow \left[\hat{L}_i, \hat{\boldsymbol{L}}^2\right] = 0 \Longrightarrow \left[\hat{L}_z, \hat{\boldsymbol{L}}^2\right] = 0, z: \text{ quantum axis}$$
 (16)

$$\begin{cases}
\left[\hat{L}_{i},\hat{x}_{j}\right] = i\hbar\varepsilon_{ijk}\hat{x}_{k} \iff \hat{\boldsymbol{L}} \times \hat{\boldsymbol{x}} + \hat{\boldsymbol{x}} \times \hat{\boldsymbol{L}} = 2i\hbar\hat{\boldsymbol{x}} \\
\left[\hat{L}_{i},\hat{p}_{j}\right] = i\hbar\varepsilon_{ijk}\hat{p}_{k} \iff \hat{\boldsymbol{L}} \times \hat{\boldsymbol{p}} + \hat{\boldsymbol{p}} \times \hat{\boldsymbol{L}} = 2i\hbar\hat{\boldsymbol{p}}
\end{cases} \tag{17}$$

$$\forall \text{ vector } \hat{\boldsymbol{v}}, \ \left[\hat{L}_i, \hat{v}_j\right] = i\hbar \varepsilon_{ijk} \hat{v}_k \iff \hat{\boldsymbol{L}} \times \hat{\boldsymbol{v}} + \hat{\boldsymbol{v}} \times \hat{\boldsymbol{L}} = 2i\hbar \hat{\boldsymbol{v}}$$
(18)

for
$$V(\boldsymbol{x}) = V(r), \ \left[\hat{L}_i, V(r)\right] = 0$$
 (19)

for
$$\hat{T} = \frac{\hat{\boldsymbol{p}}^2}{2m}$$
, $\left[\hat{L}_i, \hat{T}\right] = 0$ (20)

for
$$\hat{H} = \hat{T} + V(r)$$
, $\left[\hat{L}_i, \hat{H}\right] = \left[\hat{\boldsymbol{L}}^2, \hat{H}\right] = 0$ (21)

Pf.
$$(\hat{\boldsymbol{L}} \times \hat{\boldsymbol{L}})_i = \varepsilon_{ijk} \hat{L}_j \hat{L}_k = \frac{1}{2} \varepsilon_{ijk} \hat{L}_j \hat{L}_k - \frac{1}{2} \varepsilon_{ijk} \hat{L}_k \hat{L}_j = \frac{1}{2} \varepsilon_{ijk} \left[\hat{L}_j, \hat{L}_k \right]$$

$$= \frac{1}{2} \varepsilon_{ijk} (i\hbar) \varepsilon_{jkl} \hat{L}_l = i\hbar \delta_{il} \hat{L}_l = i\hbar \hat{L}_i \Longrightarrow \hat{\boldsymbol{L}} \times \hat{\boldsymbol{L}} = i\hbar \hat{\boldsymbol{L}}$$

$$\left[\hat{L}_i, \hat{L}_j \right] = i\hbar \varepsilon_{ijk} \hat{L}_k \Longrightarrow \left[\hat{L}_i, \hat{\boldsymbol{L}}^2 \right] = \left[\hat{L}_i, \hat{L}_j \hat{L}_j \right] = \left[\hat{L}_i, \hat{L}_j \right] \hat{L}_j + \hat{L}_j \left[\hat{L}_i, \hat{L}_j \right]$$

$$= i\hbar \varepsilon_{ijk} (\hat{L}_k \hat{L}_j + \hat{L}_j \hat{L}_k) = 0$$

$$\left[\hat{L}_i, \hat{x}_j\right] = \left[\varepsilon_{iab}\hat{x}_a\hat{p}_b, \hat{x}_j\right]$$

$$\begin{bmatrix} \hat{L}_i, V(r) \end{bmatrix} = \begin{bmatrix} \hat{L}_i, \hat{x}_j \end{bmatrix} \frac{\partial V}{\partial x_j} = i\hbar \varepsilon_{ijk} \hat{x}_k \frac{dV}{dr} \frac{\hat{x}_j}{r} = \left(\frac{i\hbar}{r} \frac{dV}{dr} \right) \varepsilon_{ijk} \hat{x}_k \hat{x}_j = 0$$

$$\begin{bmatrix} \hat{L}_i, \hat{\boldsymbol{p}}^2 \end{bmatrix} = \begin{bmatrix} \hat{L}_i, \hat{p}_j \hat{p}_j \end{bmatrix} = \begin{bmatrix} \hat{L}_i, \hat{p}_j \end{bmatrix} \hat{p}_j + \hat{p}_j \begin{bmatrix} \hat{L}_i, \hat{p}_j \end{bmatrix} = i\hbar \varepsilon_{ijk} (\hat{p}_k \hat{p}_j + \hat{p}_j \hat{p}_k) = 0$$

14 Eigenvalue Problem

15 Observables

1. Position (canonical)

$$\hat{\boldsymbol{x}} = \begin{cases} \boldsymbol{x} & \boldsymbol{x}\text{-representation} \\ +i\hbar \frac{\partial}{\partial \boldsymbol{p}} & \boldsymbol{p}\text{-representation} \end{cases}$$
(22)

2. Momentum (canonical)

$$\hat{\boldsymbol{p}} = \begin{cases} -i\hbar \frac{\partial}{\partial \boldsymbol{x}} & \boldsymbol{x}\text{-representation} \\ \boldsymbol{p} & \boldsymbol{p}\text{-representation} \end{cases}$$
(23)

Fundamental Commutation Relation $\begin{cases} [\hat{x}_i, \hat{p}_j] = i\hbar \delta_{ij} \\ [\hat{x}_i, \hat{x}_j] = [\hat{p}_i, \hat{p}_j] = 0 \end{cases}$

3. Orbital Angular Momentum

$$\hat{\boldsymbol{L}} = \hat{\boldsymbol{x}} \times \hat{\boldsymbol{p}} \text{ or } \hat{L}_i = \varepsilon_{ijk} \hat{x}_j \hat{p}_k$$

Commutation Relations $\left[\hat{L}_i, \hat{L}_j\right] = i\hbar \varepsilon_{ijk} \hat{L}_k \Longrightarrow \left[\hat{L}_i, \hat{L}^2\right]$

Remark $\hat{\boldsymbol{L}} \times \hat{\boldsymbol{L}} \neq 0$, but $\hat{\boldsymbol{x}} \times \hat{\boldsymbol{p}} = -\hat{\boldsymbol{p}} \times \hat{\boldsymbol{x}}$

4. Intrinsic Angular Momentum (No classical correspondence) - SPIN

$$\begin{bmatrix} \hat{S}_i, \hat{S}_j \end{bmatrix} = i\hbar \varepsilon_{ijk} \hat{S}_k \iff \hat{S} \times \hat{S} = i\hbar \hat{S}$$
$$\begin{bmatrix} \hat{L}_i, \hat{S}_j \end{bmatrix} = 0$$

5. Hamiltonian

$$\hat{H} = \hat{T} + \hat{V} = \frac{\hat{p}^2}{2m} + \hat{V}(x)$$

$$\begin{cases} \hat{T} : & \hat{p}\text{-dependent only} \\ \hat{V} : & \hat{x}\text{-dependent only} \end{cases}$$

6. Energy

$$\begin{cases} \hat{E} = i\hbar \frac{\partial}{\partial t} & \text{wavefuncitons} \\ \hat{E} = i\hbar \frac{d}{dt} & \text{state vector} \end{cases}$$

Remark In non-relativistic QM, time t is NOT observable.

16 Eigenvalue & Eigenstates

1. Position

$$\hat{m{x}} | m{x'}
angle = m{x'} | m{x'}
angle$$
 eigenvalue eq. $\left\{ \langle m{x'} | m{x''}
angle = \delta(m{x'} - m{x''}) \quad (ON) \right\}$ $\left\{ \int \mathrm{d}^3 x | m{x}
angle \langle m{x} | = \hat{1} \quad (RI) \right\}$ $\left\langle m{x} | \hat{m{x}} | m{x'}
angle = m{x'} \delta(m{x} - m{x'}) \right\}$

In \hat{x} -representation, wavefunction of $|x\rangle$ is $\langle x'|x\rangle = \delta(x-x')$, and eigenvalue eq. is

$$\hat{\boldsymbol{x}} \delta(\boldsymbol{x} - \boldsymbol{x}') = \boldsymbol{x}' \delta(\boldsymbol{x} - \boldsymbol{x}')$$

2. Momentum

$$\hat{p} | p'
angle = p' | p'
angle$$

$$\begin{cases} \langle p' | p''
angle = \delta(p' - p'') & (ON) \\ \int | p
angle \langle p | dp = I & (RI) \end{cases}$$

In \hat{p} -representation, wavefunction of $|p\rangle$ is $\langle p'|p\rangle = \delta(p-p')$, and eigenvalue eq. is

$$\hat{\boldsymbol{p}}\,\delta(\boldsymbol{p}-\boldsymbol{p}')=\boldsymbol{p}'\delta(\boldsymbol{p}-\boldsymbol{p}')$$

Remark eigenspectrum: set of eigenvalues of observable

3. Relation

$$\psi(\boldsymbol{x}) = \psi_{\boldsymbol{p}}(\boldsymbol{x})\tilde{\psi}(\boldsymbol{p}), \quad \psi_{\boldsymbol{p}}(\boldsymbol{x}) = \langle \boldsymbol{x}|\boldsymbol{p}\rangle$$

$$|\psi\rangle = \hat{I} |\psi\rangle = \begin{cases} \int d\mathbf{x} |\mathbf{x}\rangle \langle \mathbf{x}|\psi\rangle = \int d\mathbf{x} |\mathbf{x}\rangle \psi(\mathbf{x}) \\ \int d\mathbf{p} |\mathbf{p}\rangle \langle \mathbf{p}|\psi\rangle = \int d\mathbf{p} |\mathbf{p}\rangle \tilde{\psi}(\mathbf{p}) \end{cases} = \begin{cases} \psi(\mathbf{x}) & \hat{\mathbf{x}}\text{-representation} \\ \tilde{\psi}(\mathbf{p}) & \hat{\mathbf{p}}\text{-representation} \end{cases}$$
$$|\psi\rangle = \int d\mathbf{p} |\mathbf{p}\rangle \tilde{\psi}(\mathbf{p}) = \int d\mathbf{x} |\mathbf{x}\rangle \left(\langle \mathbf{x}|\mathbf{p}\rangle \tilde{\psi}(\mathbf{p})\right) = \int d\mathbf{x} |\mathbf{x}\rangle \psi(\mathbf{x})$$
$$\implies \psi(\mathbf{x}) = \langle \mathbf{x}|\mathbf{p}\rangle \tilde{\psi}(\mathbf{p}) = \psi_{\mathbf{p}}(\mathbf{x})\tilde{\psi}(\mathbf{p})$$

$$\hat{\boldsymbol{p}} | \boldsymbol{p} \rangle = \boldsymbol{p} | \boldsymbol{p} \rangle \Longrightarrow \int \mathrm{d}\boldsymbol{x} | \boldsymbol{x} \rangle \langle \boldsymbol{x} | \hat{\boldsymbol{p}} | \boldsymbol{p} \rangle = \boldsymbol{p} \int \mathrm{d}\boldsymbol{x} | \boldsymbol{x} \rangle \langle \boldsymbol{x} | \boldsymbol{p} \rangle \quad (\hat{\boldsymbol{p}} = -\mathrm{i}\hbar \frac{\partial}{\partial \boldsymbol{x}})$$

$$\Longrightarrow -\mathrm{i}\hbar \frac{\partial}{\partial \boldsymbol{x}} \psi_{\boldsymbol{p}}(\boldsymbol{x}) = \boldsymbol{p}\psi_{\boldsymbol{p}}(\boldsymbol{x})$$

$$-\mathrm{i}\hbar \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{x}} \psi_{\boldsymbol{p}}(\boldsymbol{x}) = p\psi_{\boldsymbol{p}}(\boldsymbol{x}) \Longrightarrow \psi_{\boldsymbol{p}}(\boldsymbol{x}) = N \exp\left(\frac{\mathrm{i}}{\hbar} \boldsymbol{p} \boldsymbol{x}\right) \Longrightarrow \psi_{\boldsymbol{p}}(\boldsymbol{x}) = N \exp\left(\frac{\mathrm{i}}{\hbar} \boldsymbol{p} \cdot \boldsymbol{x}\right)$$

17 Spin and Pauli Matrices

17.1 Stern-Gerlach Experiment

17.1.1 Meanings

- 1. Quantization of Spatial Orientation of Angular Momentum
- 2. Intrinsic Angular Momentum (Spin)
- 3. S-G experiment \longrightarrow Rabi oscillation \longrightarrow Ramsey (atom clock, Hydrogen maser) \longrightarrow Quantum measurement

17.1.2 Analysis

- 1. (Silver) neutral atom beam \Longrightarrow no Lorentz force
- 2. Magnetic field is inhomogeneous

$$\mathbf{F} = -\nabla W_{\rm m} = \boldsymbol{\mu} \cdot \nabla \mathbf{B} \tag{24}$$

$$W_{\rm m} = -\boldsymbol{\mu} \cdot \boldsymbol{B} \tag{25}$$

 μ : magnetic dipole moment

- 3. Deflection: two values $\begin{cases} up & 50\% \\ dowm & 50\% \end{cases}$
- 4. furnace: low-temperature $\longrightarrow v$ is small $\longrightarrow p$ is small $\longrightarrow L$ is small $\xrightarrow{\mu_L \propto L} \mu_L$ is small \Longrightarrow Intrinsic freedom?

17.1.3 History

1921-1922 Stern, Gerlach - S-G experiment

1924 Pauli - Two-valuedness not described classically \longrightarrow Pauli exclusion principle

1925 Kronig - Self-rotation of electron (unpublished)

1925 Uhlenbeck, Gordsmit - Self-rotation

1927 Pauli - Pauli matrices, Pauli equation (wavefunction is a spinor with 2-component)

1928 Dirac - Relativistic QM, Dirac equation (4-component spinor)

17.1.4 Cascaded S-G Experiment

$$\operatorname{Ag} \xrightarrow{\uparrow B} \mu_z \to \begin{cases} +\mu_{\mathrm{B}} \text{ up } 50\% \\ -\mu_{\mathrm{B}} \text{ down } 50\% \end{cases} \quad \mu_{\mathrm{B}} = \frac{e\hbar}{2mc} \quad \text{(Bohr magneton)}$$

$$\operatorname{Ag} \longrightarrow \mu_x \to \begin{cases} |\mu_{x,+}\rangle \to \mu_z \to \begin{cases} +\mu_{\mathrm{B}} 50\% \\ -\mu_{\mathrm{B}} 50\% \end{cases}$$

$$|\mu_{x,-}\rangle \to |$$

18 Spin Angular Momentum

18.0.1 Significance

- 1. Spin is an Intrinsic Angular Momentum
- 2. Spin is a signiture to distinguish two families

(a)
$$\begin{cases} s = 0, 1, 2, \cdots \text{ (integer)} & \text{Bosons} \\ s = \frac{1}{2}, \frac{3}{2}, \cdots \text{ (half-integer)} & \text{Fermion} \end{cases}$$

(b) Boson
$$\begin{cases} \text{Statistics: Bose-Einstein statistics} \\ \text{Permutation: } \psi_{\text{S}}(\cdots, x_{i}, \cdots, x_{j}, \cdots) = \psi_{\text{S}}(\cdots, x_{j}, \cdots, x_{i}, \cdots) \\ \text{unchanged} \end{cases}$$

(c) Fermion
$$\begin{cases} \text{Statistics: Fermi-Dirac statistics} \\ \text{Permutation: } \psi_{\mathbf{A}}(\cdots, x_{i}, \cdots, x_{j}, \cdots) = -\psi_{\mathbf{A}}(\cdots, x_{j}, \cdots, x_{i}, \cdots) \\ \text{opposite sign} \end{cases}$$

(d) Quantum Statistics
$$\begin{cases} \text{Bose-Einstein} \\ \text{Fermi-Dirac} \end{cases} \xrightarrow{\hbar \to 0} \text{Maxwell-Boltzmann statistics}$$

$$\left[\hat{S}_{i}, \hat{S}_{j}\right] = i\hbar \varepsilon_{ijk} \hat{S}_{k} \iff \hat{\boldsymbol{S}} \times \hat{\boldsymbol{S}} = i\hbar \hat{\boldsymbol{S}}$$
(26)

$$\Longrightarrow \left[\hat{\boldsymbol{S}}^{2}, \hat{S}_{i}\right] = 0 \Longrightarrow \begin{cases} \hat{\boldsymbol{S}}^{2} \left|s, m_{s}\right\rangle = \hbar^{2} s(s+1) \left|s, m_{s}\right\rangle \\ \hat{S}_{z} \left|s, m_{s}\right\rangle = \hbar m_{s} \left|s, m_{s}\right\rangle \end{cases} \quad \text{common eigenstates: } \left|s, m_{s}\right\rangle$$

Dirac eq.
$$\longleftrightarrow s = \frac{1}{2}$$
 (electron & positron, proton, neutron, \cdots) (27)

$$\left| s = \frac{1}{2}, m_s = +\frac{1}{2} \right\rangle = \left| + \right\rangle = \left| \uparrow \right\rangle = \left| 0 \right\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 (28)

$$\left| s = \frac{1}{2}, m_s = -\frac{1}{2} \right\rangle = \left| - \right\rangle = \left| \downarrow \right\rangle = \left| 1 \right\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{29}$$

$$\begin{cases} |0\rangle \langle 0| + |1\rangle \langle 1| = \mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ \langle 0|0\rangle = \langle 1|1\rangle = 1; \ \langle 1|0\rangle = \langle 0|1\rangle = 0 \end{cases}$$

$$\implies \text{In } \hat{S}_z\text{-representation } \begin{cases} \hat{S}_z |0\rangle = +\frac{\hbar}{2} |0\rangle \\ \hat{S}_z |1\rangle = -\frac{\hbar}{2} |0\rangle \end{cases} \implies \hat{\mathbf{S}} = \frac{\hbar}{2} \hat{\boldsymbol{\sigma}} \implies \begin{cases} \hat{\boldsymbol{\sigma}}_z |0\rangle = |0\rangle \\ \hat{\boldsymbol{\sigma}}_z |1\rangle = -|1\rangle \end{cases}$$

$$\implies \hat{\sigma}_z = \ket{0}\bra{0} - \ket{1}\bra{1} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\hat{\boldsymbol{S}}^2 = \frac{3}{4}\hbar^2 \boldsymbol{I} \Longrightarrow \hat{\boldsymbol{\sigma}}^2 = 3\boldsymbol{I} \Longrightarrow [\hat{\boldsymbol{\sigma}}_i, \hat{\boldsymbol{\sigma}}_j] = 2\mathrm{i}\varepsilon_{ijk}\hat{\boldsymbol{\sigma}}_k$$

19 Algebraic Method to Eigenvalue Problem of Angular Momentum

20 Review

Fundamental Commutations

$$[\hat{x}_i, \hat{p}_j] = i\hbar \delta_{ij} \quad [\hat{x}_i, \hat{x}_j] = [\hat{p}_i, \hat{p}_j] = 0$$
 (30)

20.1 Orbital Angular Momentum

20.1.1 Definition of Orbital AM

$$\hat{\boldsymbol{L}} = \hat{\boldsymbol{x}} \times \hat{\boldsymbol{p}} \quad \text{or} \quad \hat{L}_i = \varepsilon_{ijk} \hat{x}_i \hat{p}_k$$
 (31)

20.1.2 Commutation Relations of Orbital AM

$$\left[\hat{L}_{i},\hat{L}_{j}\right] = i\hbar\varepsilon_{ijk}\hat{L}_{k} \iff \hat{\boldsymbol{L}} \times \hat{\boldsymbol{L}} = i\hbar\hat{\boldsymbol{L}}$$
(32)

$$\left[\hat{L}^2, \hat{L}_i\right] = 0 \Longrightarrow \text{Common Eigenstates}$$
 (33)

20.1.3 Eigenvalue Equation

$$\begin{cases} \hat{\mathbf{L}}^2 | l, m_l \rangle = \hbar^2 l(l+1) | l, m_l \rangle \\ \hat{L}_z | l, m_l \rangle = \hbar m_l | l, m_l \rangle \end{cases} \qquad m_l = \underbrace{-l, -l+1, \cdots, l-1, l}_{2l+1}$$
 (34)

20.2 Intrinsic Angular Momentum (Spin)

Generalize to Intrinsic AM (Spin):

$$\left[\hat{S}_{i}, \hat{S}_{j}\right] = i\hbar \varepsilon_{ijk} \hat{S}_{k} \iff \hat{\boldsymbol{S}} \times \hat{\boldsymbol{S}} = i\hbar \hat{\boldsymbol{S}}$$
(35)

$$\left[\hat{S}^2, \hat{S}_i\right] = 0 \Longrightarrow \text{Common Eigenstates}$$
 (36)

20.2.1 Eigenvalue Equation

$$\begin{cases} \hat{\mathbf{S}}^2 | s, m_s \rangle = \hbar^2 s(s+1) | s, m_s \rangle \\ \hat{S}_z | s, m_s \rangle = \hbar m_s | s, m_s \rangle \end{cases} \qquad m_s = \underbrace{-s, -s+1, \cdots, s-1, s}_{2s+1}$$

$$(37)$$

$$s = \frac{1}{2} \Longrightarrow |s, m_s\rangle = \begin{cases} |+\rangle = |0\rangle = \begin{pmatrix} 1 & 0 \end{pmatrix}^{\mathrm{T}} \\ |-\rangle = |1\rangle = \begin{pmatrix} 0 & 1 \end{pmatrix}^{\mathrm{T}} \end{cases}$$
(38)

20.3 Pauli Matrix

$$\hat{\mathbf{S}} = \frac{\hbar}{2}\hat{\boldsymbol{\sigma}} \tag{39}$$

$$\begin{cases} \hat{\mathbf{S}}^2 = \frac{3}{4}\hbar\hat{1}_2 \Longrightarrow \hat{\boldsymbol{\sigma}}^2 = 3\hat{1}_2 \\ \hat{S}_z^2 = \frac{1}{4}\hbar\hat{1}_2 \Longrightarrow \hat{\sigma}_z^2 = \hat{1}_2 \end{cases}$$

$$(40)$$

Cascaded SGE
$$\Longrightarrow$$

$$\begin{cases} |\mu_x, +\rangle = c_1 |0\rangle + c_2 |1\rangle \\ |c_1|^2 = |c_2|^2 = \frac{1}{2} \end{cases} \Longrightarrow \hat{\sigma_x}^2 = \hat{\sigma_y}^2 = \hat{1}_2$$

$$\hat{\sigma}_i = \hat{1}_2 \tag{41}$$

$$\{\hat{\sigma}_1, \hat{\sigma}_i\} = 2\delta_{ij}\hat{1}_2 \tag{42}$$

$$[\hat{\sigma}_i, \hat{\sigma}_j] = 2i\varepsilon_{ijk}\hat{\sigma}_k \tag{43}$$

$$\hat{\sigma}_i \hat{\sigma}_j = \delta_{ij} \hat{1}_2 + i \varepsilon_{ijk} \hat{\sigma}_k \tag{44}$$

$$\operatorname{tr}(\hat{\sigma}_i) = 0 \quad \operatorname{tr}(\hat{\sigma}_i \hat{\sigma}_j) = 2\delta_{ij}$$
 (45)

$$\hat{S}_{\pm} = \hat{S}_x \pm i\hat{S}_y = \frac{\hbar}{2} \left(\hat{\sigma}_x \pm i\hat{\sigma}_y \right) = \hbar \hat{\sigma}_{\pm}$$
 (46)

$$\begin{cases} \hat{\sigma}_x = \hat{\sigma}_+ + \hat{\sigma}_- \\ \hat{\sigma}_y = -i(\hat{\sigma}_+ - \hat{\sigma}_-) \end{cases}$$

$$(47)$$

20.3.1 Ladder / Raising & Lowering / Transition Operator

$$\hat{\sigma}_{+} = |0\rangle \langle 1| \quad \& \quad \hat{\sigma}_{-} = |1\rangle \langle 0|$$
 (48)

20.3.2 Pauli Matrices ($S_z(\sigma_z)$ -representation)

$$\hat{\sigma}_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \hat{\sigma}_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \hat{\sigma}_x = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \tag{49}$$

21 Arbitrary Angular Momentum

$$\hat{\boldsymbol{J}} = \hat{\boldsymbol{L}} + \hat{\boldsymbol{S}} \tag{50}$$

$$\left[\hat{J}_i, \hat{J}_j\right] = i\hbar \varepsilon_{ijk} \hat{J}_k \tag{51}$$

OAM & Spin are in DIFFERENT State Vector Spaces:

$$\left[\hat{L}_i, \hat{S}_j\right] \equiv 0 \tag{52}$$

$$\left[\hat{J}_{i},\hat{J}_{j}\right] = \left[\hat{L}_{i} + \hat{S}_{i},\hat{L}_{j} + \hat{S}_{j}\right] = \left[\hat{L}_{i},\hat{L}_{j}\right] + \left[\hat{S}_{i},\hat{S}_{j}\right] = i\hbar\varepsilon_{ijk}(\hat{L}_{k} + \hat{S}_{k}) = i\hbar\varepsilon_{ijk}\hat{J}_{k}$$

21.1 Ladder Operator

21.1.1 Definition of Ladder Operators

$$\hat{J}_{\pm} = \hat{J}_x \pm i\hat{J}_y \tag{53}$$

$$\begin{bmatrix} \hat{J}_i, \hat{\boldsymbol{J}}^2 \end{bmatrix} = 0 \Longrightarrow \begin{cases} \hat{\boldsymbol{J}}^2 |j, m_j\rangle = \hbar j(j+1) |j, m_j\rangle \\ \hat{J}_z |j, m_j\rangle = \hbar m_j |j, m_j\rangle \end{cases} \quad j \ge 0, \ m_j = \underbrace{-j, -j+1, \cdots, j-1, j}_{(2j+1)\text{-fold (degeneracy)}} \tag{54}$$

 $\begin{cases} j: \text{ azimuthal quantum number} \\ m_j: \text{ magnetic quantum number} \end{cases}$

21.1.2 Effect of Ladder Operators on Common Eigenstates

$$\hat{J}_{\pm} |j, m_j\rangle = \hbar \sqrt{j(j+1) - m_j(m_j \pm 1)} |j, m_j \pm 1\rangle$$
 (55)

21.1.3 Restriction

$$\hat{J}_{+}|j,j\rangle = \hat{J}_{-}|j,-j\rangle = 0$$
 (56)

21.1.4 Commutations

1.
$$\left[\hat{J}_i, \hat{J}_j\right] = i\hbar \varepsilon_{ijk} \hat{J}_k$$

$$2. \left[\hat{\boldsymbol{J}}^2, \hat{J}_i \right] = 0$$

$$3. \left[\hat{\boldsymbol{J}}^2, \hat{J}_{\pm} \right] = 0$$

4.
$$\left[\hat{J}_z, \hat{J}_\pm\right] = \pm \hbar \hat{J}_\pm$$

$$\left[\hat{J}_z, \hat{J}_{\pm}\right] = \left[\hat{J}_z, \hat{J}_x \pm i\hat{J}_y\right] = \left[\hat{J}_z, \hat{J}_x\right] \pm i\left[\hat{J}_z, \hat{J}_y\right] = i\hbar\hat{J}_y \pm i(-i\hbar)\hat{J}_x = \pm\hbar\hat{J}_{\pm}$$

5.
$$\hat{J}_{+}\hat{J}_{-} = \hat{J}^{2} - \hat{J}_{z}^{2} + \hbar \hat{J}_{z}$$

$$\hat{J}_{+}\hat{J}_{-} = (\hat{J}_{x} + i\hat{J}_{y})(\hat{J}_{x} - i\hat{J}_{y}) = \hat{J}_{x}^{2} + \hat{J}_{y}^{2} - i\left[\hat{J}_{x}, \hat{J}_{y}\right] = \hat{\boldsymbol{J}}^{2} - \hat{J}_{z}^{2} + \hbar\hat{J}_{z}$$

6.
$$(\hat{J}_{\pm})^{\dagger} = \hat{J}_{\mp}$$

 \hat{J}_{\pm} are NOT Hermitian Operators, but \hat{J}_{+} & \hat{J}_{-} are mutually Hermitian Conjugates.

21.2 Eigenvalue Equation of Angular Momentum Operator

$$\begin{cases} \hat{J}^2 | \lambda, m \rangle = \hbar^2 \lambda | \lambda, m \rangle \\ \hat{J}_z | \lambda, m \rangle = \hbar m | \lambda, m \rangle \end{cases}$$
 (57)

$$\left[\hat{\boldsymbol{J}}^{2}, \hat{J}_{\pm}\right] = 0 \Longrightarrow \hat{J}_{\pm}\hat{\boldsymbol{J}}^{2} |\lambda, m\rangle = \hat{\boldsymbol{J}}^{2} \hat{J}_{\pm} |\lambda, m\rangle \Longrightarrow \lambda \hbar^{2} (\hat{J}_{\pm} |\lambda, m\rangle) = \hat{\boldsymbol{J}}^{2} (\hat{J}_{\pm} |\lambda, m\rangle) \quad (58)$$

$$\left[\hat{J}_{\pm}, \hat{J}_{z}\right] = \pm \hbar \hat{J}_{\pm} \Longrightarrow \hat{J}_{z} \hat{J}_{\pm} = \hat{J}_{\pm} \hat{J}_{z} \pm \hbar \hat{J}_{\pm}$$

$$\implies \hat{J}_z \left(\hat{J}_{\pm} | \lambda, m \rangle \right) = (\hat{J}_{\pm} \hat{J}_z \pm \hbar \hat{J}_{\pm}) | \lambda, m \rangle = m \hbar \hat{J}_{\pm} | \lambda, m \rangle \pm \hbar \hat{J}_{\pm} | \lambda, m \rangle$$

$$= (m \pm 1) \hbar \left(\hat{J}_{\pm} | \lambda, m \rangle \right)$$
(59)

 $\implies \hat{J}_{\pm} | \lambda, m \rangle$ is an eigenstate of \hat{J}_z , with eigenvalue of $(m \pm 1)\hbar$.

$$\implies \hat{J}_{\pm} |\lambda, m\rangle = C_{\pm} |\lambda, m \pm 1\rangle \tag{60}$$

$$\Longrightarrow \hat{J}_{\pm}^{n} |\lambda, m\rangle = D_{\pm} |\lambda, m \pm n\rangle \tag{61}$$

$$\begin{cases} \left\langle \hat{J}^{2} \right\rangle = \left\langle \lambda, m \right| \hat{J}^{2} \left| \lambda, m \right\rangle = \lambda \hbar^{2} \\ \left\langle \hat{J}_{z}^{2} \right\rangle = \left\langle \lambda, m \right| \hat{J}_{z}^{2} \left| \lambda, m \right\rangle = m^{2} \hbar^{2} \end{cases}$$

$$(62)$$

$$\left\langle \hat{J}^{2}\right\rangle \geq \left\langle \hat{J}_{z}\right\rangle \Longrightarrow \lambda \geq m^{2} \geq 0$$
 (63)

 $\exists m_0 \text{ (minimal)}, \exists N \text{ (integer)}, m_0 + N \text{ is the maximal}$

$$\hat{J}_{-}|\lambda, m_0\rangle = 0 \quad \hat{J}_{+}|\lambda, m_0 + N\rangle = 0 \tag{64}$$

$$0 = \hat{J}_{+}\hat{J}_{-}|\lambda, m_{0}\rangle = (\hat{J}^{2} - \hat{J}_{z}^{2} + \hbar\hat{J}_{z})|\lambda, m_{0}\rangle = \hbar^{2}(\lambda - m_{0}^{2} + m_{0})$$
(65)

$$0 = \hat{J}_{-}\hat{J}_{+} |\lambda, m_{0} + N\rangle = (\hat{\boldsymbol{J}}^{2} - \hat{J}_{z}^{2} - \hbar \hat{J}_{z}) |\lambda, m_{0} + N\rangle = \hbar^{2} [\lambda - (m_{0} + N)^{2} - (m_{0} + N)]$$
(66)

$$\begin{cases} \lambda - m_0^2 + m_0 = 0 \\ \lambda - (m_0 + N)^2 - (m_0 + N) = 0 \end{cases} \implies \begin{cases} m_0 = -\frac{N}{2} \\ m_0 + N = \frac{N}{2} \\ \lambda = -\frac{N}{2} \left(\frac{N}{2} + 1\right) \end{cases}$$
 (67)

let
$$j = \frac{N}{2}$$
, $\lambda = j(j+1)$, $m_j = \underbrace{-j, -j+1, \cdots, j-1, j}_{2j+1}$

$$\Longrightarrow \begin{cases} \hat{J}^2 |j, m_j\rangle = j(j+1)\hbar^2 |j, m_j\rangle \\ \hat{J}_z |j, m_j\rangle = m_j \hbar |j, m_j\rangle \end{cases}$$
(68)

$$\hat{J}_{\pm} |j, m_j\rangle = C_{\pm} |j, m_j \pm 1\rangle \tag{69}$$

$$\langle j, m_j | j', m_{j'} \rangle = \delta_{jj'} \delta_{m_j m_{j'}} \quad (\hat{J}_{\pm})^{\dagger} = \hat{J}_{\mp}$$
 (70)

$$\Longrightarrow 1 = \langle j, m_j \pm 1 | j, m_j \pm 1 \rangle = \langle j, m_j | \hat{J}_{\mp} \hat{J}_{\pm} | j, m_j \rangle = |C_{\pm}|^2 \langle j, m_j | j, m_j \rangle \tag{71}$$

$$\hat{J}_{\mp}\hat{J}_{\pm} = (\hat{J}_x \mp i\hat{J}_y)(\hat{J}_x \pm i\hat{J}_y) = \hat{J}_x^2 + \hat{J}_y^2 \pm i\left[\hat{J}_x, \hat{J}_y\right] = \hat{J}^2 - \hat{J}_z^2 \mp \hbar\hat{J}_z$$
 (72)

$$\implies \langle j, m_j | \hat{J}_{\mp} \hat{J}_{\pm} | j, m_j \rangle = \langle j, m_j | (\hat{J}^2 - \hat{J}_z^2 \mp \hbar \hat{J}_z) | j, m_j \rangle$$

$$= \hbar^2 [j(j+1) - m_j^2 \mp m_j] \langle j, m_j | j, m_j \rangle = |C_{\pm}|^2 \langle j, m_j | j, m_j \rangle$$

$$\implies |C_{\pm}|^2 = [j(j+1) - m_j(m_j \pm 1)] \hbar^2$$
(73)

for simplicity, let $C_{\pm} \in \mathbb{R}$

$$\Longrightarrow C_{\pm} = \hbar \sqrt{j(j+1) - m_j(m_j \pm 1)} \tag{74}$$

$$\Longrightarrow \left| \hat{J}_{\pm} \left| j, m_j \right\rangle = \hbar \sqrt{j(j+1) - m_j(m_j \pm 1)} \left| j, m_j \pm 1 \right\rangle \right| \tag{75}$$

22 Commutation Relations between Angular Momentum Operators and Hamiltonian

$$\hat{H} = \frac{\hat{\boldsymbol{p}}^2}{2m} + V(r) + \xi(r)\hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}$$
 (76)

V(r): central potential, $\xi(r)\hat{\boldsymbol{L}}\cdot\hat{\boldsymbol{S}}$: $\hat{\boldsymbol{L}}$ - $\hat{\boldsymbol{S}}$ coupling \longleftrightarrow fine structure

$$\left[\hat{L}_{i},\hat{p}_{j}\right] = i\hbar\varepsilon_{ijk}\hat{p}_{k} \Longrightarrow \left[\hat{L}_{i},\hat{\boldsymbol{p}}^{2}\right] = \left[\hat{L}_{i},\hat{p}_{j}\right]\hat{p}_{j} + \hat{p}_{j}\left[\hat{L}_{i},\hat{p}_{j}\right] = i\hbar\varepsilon_{ijk}(\hat{p}_{k}\hat{p}_{j} + \hat{p}_{j}\hat{p}_{k}) = 0 \quad (77)$$

$$\left[\hat{S}_{i}, \hat{\boldsymbol{p}}^{2}\right] = 0 \Longrightarrow \left[\hat{J}_{i}, \hat{\boldsymbol{p}}^{2}\right] = 0 \tag{78}$$

$$\left[\hat{L}_{i}, V(r)\right] = 0 \quad \& \quad \left[\hat{S}_{i}, V(r)\right] = 0 \Longrightarrow \quad \left[\hat{J}_{i}, V(r)\right] = 0 \tag{79}$$

$$\left[\hat{L}_{i}, \hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}\right] = \left[\hat{L}_{i}, \hat{L}_{j} \hat{S}_{j}\right] = i\hbar \varepsilon_{ijk} \hat{L}_{k} \hat{S}_{j} \neq 0$$
(80)

$$\left[\hat{\boldsymbol{L}}^{2}, \hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}\right] = \left[\hat{L}_{i} \hat{L}_{i}, \hat{L}_{j} \hat{S}_{j}\right] = \left[\hat{L}_{i}, \hat{L}_{j}\right] \hat{L}_{i} \hat{S}_{j} + \hat{L}_{i} \left[\hat{L}_{i}, \hat{L}_{j}\right] \hat{S}_{j} = i\hbar \varepsilon_{ijk} (\hat{L}_{k} \hat{L}_{i} + \hat{L}_{i} \hat{L}_{k}) = 0 \quad (81)$$

similarly,
$$\left[\hat{S}_i, \hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}\right] \neq 0$$
, but $\left[\hat{\boldsymbol{S}}^2, \hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}\right] = 0$. futher, $\left[\hat{J}_i, \hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}\right] = 0$, $\left[\hat{\boldsymbol{J}}^2, \hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}\right] = 0$.

$$\hat{\boldsymbol{L}}^2, \hat{\boldsymbol{S}}^2, \hat{\boldsymbol{J}}^2, \hat{J}_i$$
 commutes with $\hat{H} = \frac{\hat{\boldsymbol{p}}^2}{2m} + V(r) + \xi(r)\hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}$

23 Addition of Angular Momenta

assume $\hat{\pmb{J}}_1,\,\hat{\pmb{J}}_2,\,\hat{\pmb{J}}=\hat{\pmb{J}}_1+\hat{\pmb{J}}_2,$ and Commutation Relations:

$$\left[\hat{J}_{\alpha i}, \hat{J}_{\beta j}\right] = i\hbar \delta_{\alpha \beta} \varepsilon_{ijk} \hat{J}_{\alpha k} \quad (\alpha, \beta = 1, 2)$$
(82)

$$\left[\hat{\boldsymbol{J}}_{\alpha}^{2}, \hat{J}_{\alpha i}\right] \quad (\alpha = 1, 2) \tag{83}$$

Eigenvalue Equations:

$$\begin{cases} \hat{J}_{1}^{2} | j_{1}, m_{1} \rangle = j_{1}(j_{1} + 1)\hbar^{2} | j_{1}, m_{1} \rangle \\ \hat{J}_{1z} | j_{1}, m_{1} \rangle = m_{1}\hbar | j_{1}, m_{1} \rangle \end{cases}$$
(84)

$$\begin{cases} \hat{J}_{2}^{2} | j_{2}, m_{2} \rangle = j_{2}(j_{2} + 1)\hbar^{2} | j_{2}, m_{2} \rangle \\ \hat{J}_{2z} | j_{2}, m_{2} \rangle = m_{2}\hbar | j_{2}, m_{2} \rangle \end{cases}$$
(85)

$$\left[\hat{J}_i, \hat{J}_j\right] = i\hbar \varepsilon_{ijk} \hat{J}_k \tag{86}$$

24 Uncertainty Principle

24.1 Heisenberg Uncertainty Principle

 $\forall |\psi\rangle$,

$$\Delta \hat{x}^2 \cdot \Delta \hat{p}^2 \ge \frac{\hbar^2}{4}$$
 or $\Delta \hat{x} \cdot \Delta \hat{p} \ge \frac{\hbar}{2}$ root-mean-square (87)

24.2 Generalized Uncertainty Principle

 $\forall |\psi\rangle$, if $[\hat{A}, \hat{B}] \neq 0$, then

$$\Delta \hat{A}^2 \cdot \Delta \hat{B}^2 \ge \frac{\left|\left\langle \left[\hat{A}, \hat{B}\right] \right\rangle \right|^2}{4} \quad \text{or} \quad \Delta \hat{A} \cdot \Delta \hat{B} \ge \frac{\left|\left\langle \left[\hat{A}, \hat{B}\right] \right\rangle \right|}{2}$$
(88)

Variance:

$$\Delta \hat{A}^2 = \left\langle (\hat{A} - \left\langle \hat{A} \right\rangle)^2 \right\rangle = \left\langle \hat{A}^2 \right\rangle - \left\langle \hat{A} \right\rangle^2 \tag{89}$$

root-mean-square:

$$\Delta \hat{A} = \sqrt{\Delta \hat{A}^2} = \sqrt{\left\langle \hat{A}^2 \right\rangle - \left\langle \hat{A} \right\rangle^2} \tag{90}$$

24.2.1 Essential Mathematical Tools

- 1. If $\hat{F}^{\dagger} = \hat{F}$ (Hermitian), then eigenvalue of \hat{F} is REAL
- 2. If $\hat{F}^{\dagger} = -\hat{F}$ (skew-Hermitian), then \hat{F} is IMAGINARY
- 3. Cauchy-Schwarz Inequality

(a)
$$\left(\sum_{n} a_n^2\right) \left(\sum_{n} b_n^2\right) \ge \left(\sum_{n} a_n b_n\right)^2$$
, equality iff $a_n = k b_n$

- (b) $|\boldsymbol{u}|^2 |\boldsymbol{v}|^2 \ge |\boldsymbol{u} \cdot \boldsymbol{v}|^2$, equality iff $\boldsymbol{u} = k\boldsymbol{v}$
- (c) $\left| \langle \psi | \psi \rangle \langle \phi | \phi \rangle \geq \left| \langle \psi | \phi \rangle \right|^2$, equality iff $\left| \psi \right\rangle = \lambda \left| \phi \right\rangle$

24.2.2 Define Deviation Operator

$$\hat{\sigma}_A = \hat{A} - \left\langle \hat{A} \right\rangle \quad \& \quad \hat{\sigma}_B = \hat{B} - \left\langle \hat{B} \right\rangle$$
 (91)

$$\Longrightarrow \begin{cases} \Delta \hat{A}^2 = \langle \hat{\sigma}_A^2 \rangle \\ \Delta \hat{B}^2 = \langle \hat{\sigma}_B^2 \rangle \end{cases} \tag{92}$$

24.2.3 Properties of $\hat{\sigma}_A$, $\hat{\sigma}_B$

1.
$$\hat{\sigma}_A^{\dagger} = \hat{\sigma}_A$$
, $\hat{\sigma}_B^{\dagger} = \hat{\sigma}_B$ (Hermitian)

2.
$$\hat{\sigma}_A^{\dagger} \hat{\sigma}_A = \hat{\sigma}_A^2$$
, $\hat{\sigma}_B^{\dagger} \hat{\sigma}_B = \hat{\sigma}_B^2$

3.
$$\left[\hat{\sigma}_A, \hat{\sigma}_B\right] = \left[\hat{A}, \hat{B}\right]$$

4.
$$\hat{\sigma}_A \hat{\sigma}_B = \frac{1}{2} [\hat{\sigma}_A, \hat{\sigma}_B] + \frac{1}{2} {\{\hat{\sigma}_A, \hat{\sigma}_B\}}$$

5.
$$\left[\hat{\sigma}_A, \hat{\sigma}_B\right]^{\dagger} = -\left[\hat{\sigma}_A, \hat{\sigma}_B\right]$$
 (skew-Hermitian)

6.
$$\{\hat{\sigma}_A, \hat{\sigma}_B\}^{\dagger} = \{\hat{\sigma}_A, \hat{\sigma}_B\}$$
 (Hermitian)

7.
$$\Delta \hat{A}^2 = \langle \hat{\sigma}_A^2 \rangle, \ \Delta \hat{B}^2 = \langle \hat{\sigma}_B^2 \rangle$$

24.2.4 Proof of GUP

$$\begin{aligned} \operatorname{def:} \ \hat{\sigma}_{A} \left| \psi \right\rangle &= \left| \psi_{A} \right\rangle \quad \& \quad \hat{\sigma}_{B} \left| \psi \right\rangle = \left| \psi_{B} \right\rangle \\ \left\langle \hat{\sigma}_{A}^{2} \right\rangle &= \left\langle \psi \right| \hat{\sigma}_{A} \hat{\sigma}_{A} \left| \psi \right\rangle = \left\langle \psi \right| \hat{\sigma}_{A}^{\dagger} \hat{\sigma}_{A} \left| \psi \right\rangle = \left\langle \psi_{A} \middle| \psi_{A} \right\rangle \quad \& \quad \left\langle \hat{\sigma}_{B}^{2} \right\rangle = \left\langle \psi_{B} \middle| \psi_{B} \right\rangle \\ \Longrightarrow \left\langle \hat{\sigma}_{A}^{2} \right\rangle \left\langle \hat{\sigma}_{B}^{2} \right\rangle &= \left\langle \psi_{A} \middle| \psi_{A} \right\rangle \left\langle \psi_{B} \middle| \psi_{B} \right\rangle \geq \left| \left\langle \psi_{A} \middle| \psi_{B} \right\rangle \right|^{2} = \left| \left\langle \psi \middle| \hat{\sigma}_{A} \hat{\sigma}_{B} \middle| \psi \right\rangle \right|^{2} = \left| \left\langle \hat{\sigma}_{A} \hat{\sigma}_{B} \right\rangle \right|^{2} \\ \left\langle \hat{\sigma}_{A} \hat{\sigma}_{B} \right\rangle &= \frac{1}{2} \left\langle \left[\hat{\sigma}_{A}, \hat{\sigma}_{B} \right] \right\rangle + \frac{1}{2} \left\langle \left\{ \hat{\sigma}_{A}, \hat{\sigma}_{B} \right\} \right\rangle \\ \Longrightarrow \left| \left\langle \hat{\sigma}_{A} \hat{\sigma}_{B} \right\rangle \right|^{2} \geq \frac{1}{4} \left| \left\langle \left[\hat{\sigma}_{A}, \hat{\sigma}_{B} \right] \right\rangle \right|^{2} \quad \Longrightarrow \text{GUP} \end{aligned}$$

24.3 Energy-Time Uncertainty Relation

$$\Delta E \cdot \Delta T \ge \frac{\hbar}{2} \tag{93}$$

24.3.1 Ehrenfest Theorem

$$\left[\hat{A}, \hat{H}\right] \neq 0, \frac{\partial \hat{A}}{\partial t} = 0,$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{A} \right\rangle = \frac{1}{\mathrm{i}\hbar} \left\langle \left[\hat{A}, \hat{H}\right] \right\rangle \tag{94}$$

24.3.2 Proof

$$\Longrightarrow \Delta \hat{A} \cdot \Delta \hat{H} \geq \frac{1}{2} \left| \left\langle \left[\hat{A}, \hat{H} \right] \right\rangle \right| = \frac{\hbar}{2} \left| \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{A} \right\rangle \right| \quad \Longrightarrow \Delta \hat{H} \frac{\Delta \hat{A}}{\left| \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{A} \right\rangle \right|} = \frac{\hbar}{2}$$

define
$$\Delta \hat{H} = \Delta E$$
, $\Delta T = \frac{\Delta \hat{A}}{\left|\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{A} \right\rangle\right|}$

$$\implies \Delta E \cdot \Delta T \ge \frac{\hbar}{2}$$

24.4 Minimum Uncertainty State

 $\frac{\hbar}{2}$: quantum limit (Heisenberg limit) \Longrightarrow Minimum Uncertainty State

$$\exists |\psi\rangle_{\min}, \ \Delta \hat{A} \cdot \Delta \hat{B} = \frac{1}{2} |\langle \left[\hat{A}, \hat{B} \right] \rangle|$$

 $|\psi\rangle_{\rm min}$: Minimum Uncertainty State

24.4.1 MUS of $\hat{x} \& \hat{p}$

$$\begin{cases}
\hat{\sigma}_{x} = \hat{x} - \langle \hat{x} \rangle \\
\hat{\sigma}_{p} = \hat{p} - \langle \hat{p} \rangle
\end{cases}, \text{ let } |\phi\rangle = (\hat{\sigma}_{x} - i\lambda\hat{\sigma}_{p}) |\psi\rangle \text{ (testing state)}$$

$$\langle \phi | \phi \rangle = \langle \psi | (\hat{\sigma}_{x} + i\lambda\hat{\sigma}_{p})(\hat{\sigma}_{x} - i\lambda\hat{\sigma}_{p}) |\psi\rangle = \langle \psi | (\hat{\sigma}_{x}^{2} - i\lambda\hat{\sigma}_{x}\hat{\sigma}_{p} + i\lambda\hat{\sigma}_{p}\hat{\sigma}_{x} + \lambda^{2}\hat{\sigma}_{p}^{2}) |\psi\rangle$$

$$= \langle \psi | \hat{\sigma}_{x}^{2} |\psi\rangle - i\lambda \langle \psi | [\hat{\sigma}_{x}, \hat{\sigma}_{p}] |\psi\rangle + \lambda^{2} \langle \psi | \hat{\sigma}_{p}^{2} |\psi\rangle = \langle \hat{\sigma}_{x}^{2} \rangle + \lambda\hbar + \lambda^{2} \langle \hat{\sigma}_{p}^{2} \rangle$$

$$|\psi\rangle = 0 \Longrightarrow \langle \phi | \phi \rangle = 0 \Longrightarrow \langle \hat{\sigma}_{p}^{2} \rangle \lambda^{2} + \hbar\lambda + \langle \hat{\sigma}_{x}^{2} \rangle = 0$$

$$\Delta = \hbar^{2} - 4 \langle \hat{\sigma}_{x}^{2} \rangle \langle \hat{\sigma}_{p}^{2} \rangle \lambda^{2} \leq 0 \Longrightarrow \langle \hat{\sigma}_{x}^{2} \rangle \langle \hat{\sigma}_{p}^{2} \rangle \lambda^{2} \geq \frac{\hbar^{2}}{4}$$

$$\Longrightarrow \Delta\hat{x}^{2} \cdot \Delta\hat{p}^{2} \geq \frac{\hbar^{2}}{4} \quad \text{or} \quad \Delta\hat{x} \cdot \Delta\hat{p} \geq \frac{\hbar}{2}$$
(95)

$$\Delta = 0 \Longrightarrow \begin{cases} \lambda = -\frac{2}{\hbar} \Delta \hat{x}^{2} \\ |\phi\rangle = \left(\hat{\sigma}_{x} + \frac{2i}{\hbar} \Delta \hat{x}^{2} \hat{\sigma}_{p}\right) |\psi\rangle = 0 \end{cases}$$

$$\langle x | (\hat{x} - \langle \hat{x} \rangle) - i\lambda \left(-i\hbar \frac{d}{dx} - \langle \hat{p} \rangle\right) |\psi\rangle = (x - \langle \hat{x} \rangle)\psi(x) - \lambda\hbar \frac{d}{dx}\psi(x) + i\lambda \langle \hat{p} \rangle \psi(x)$$

$$(96)$$

25 Quantum Dynamics

25.1 Schrödinger Equation

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$
 (97)

where $\hat{H} = \frac{\hat{\boldsymbol{p}}^2}{2m} + V(\hat{\boldsymbol{x}})$

25.1.1 Remark

- 1. Pure State
- 2. Closed System $\Longrightarrow \langle \psi(t)|\psi(t)\rangle = 1$
- 3. Non-Relativistic QM
- 4. Initial Value Problem (IVP): $|\psi(t=t_0)\rangle = |\psi(t_0)\rangle$
- 5. Schrödinger Picture: $\frac{\mathrm{d}\hat{A}}{\mathrm{d}t} \equiv 0$

25.1.2 Representation of Position

In \boldsymbol{x} -representation: $\hat{\boldsymbol{p}} = -\mathrm{i}\hbar\nabla$, $\langle \boldsymbol{x}|\psi(t)\rangle = \psi(\boldsymbol{x})$

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle \Longrightarrow i\hbar \frac{\partial}{\partial t} \psi(\boldsymbol{x}, t) = \left(-\frac{\hat{p}}{2m} + V(\hat{x})\right) \psi(\boldsymbol{x}, t)$$
 (98)

- 1. In general, $\frac{\partial \hat{A}}{\partial t} \equiv 0 \& \frac{\partial \hat{H}}{\partial t} \equiv 0$. Unless there is external influence.
- 2. $\langle \psi(t)|\psi(t)\rangle = 1 \longleftrightarrow \int d^3x |\psi(\boldsymbol{x},t)|^2 = 1$
- 3. $\psi(\boldsymbol{x}, t = t_0) = \psi(\boldsymbol{x}, t_0)$

25.2 Time Evolution Operator

$$|\psi(t)\rangle = \hat{U}(t, t_0) |\psi(t_0)\rangle \tag{99}$$

Schrödinger eq.
$$\Longrightarrow i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \left[\hat{U}(t, t_0) | \psi(t_0) \rangle \right] = \hat{H} \left[\hat{U}(t, t_0) | \psi(t_0) \rangle \right]$$
 (100)

$$\Longrightarrow i\hbar \frac{\mathrm{d}}{\mathrm{d}t}\hat{U}(t,t_0) = \hat{H}\hat{U}(t,t_0) \tag{101}$$

25.2.1 TEO for Conservative System

If the system is conservative, that is $\frac{\partial \hat{H}}{\partial t} \equiv 0$.

$$\Longrightarrow \frac{\mathrm{d}\hat{U}}{\hat{U}} = -\frac{\mathrm{i}}{\hbar}\hat{H}\,\mathrm{d}t \Longrightarrow \hat{U}(t,t_0) = \mathrm{e}^{-\mathrm{i}\hat{H}(t-t_0)/\hbar}$$

If $\frac{\partial \hat{H}}{\partial t} \neq 0$, then

$$\hat{U}(t, t_0) = \hat{1} - \frac{i}{\hbar} \int dt' \, \hat{U}(t', t_0)$$

$$= \hat{1} - \frac{i}{\hbar} \cdots \text{(Dyson Series)}$$
(102)

25.2.2 Properties of $\hat{U}(t,t_0)$

1.
$$\hat{U}^{\dagger}(t, t_0) = \hat{U}^{-1}(t, t_0 = \hat{U}(t_0, t))$$
 or $\hat{U}^{\dagger}(t, t_0)\hat{U}(t, t_0) = \hat{1}$

2.
$$\hat{U}(t,t_1)\hat{U}(t_1,t_0) = \hat{U}(t,t_0) \xrightarrow{\text{expand}} \hat{U}(t,t_n)\hat{U}(t_n,t_{n-1})\cdots\hat{U}(t_2,t_1)\hat{U}(t_1,t_0) = \hat{U}(t,t_0)$$

3.
$$\hat{U}(t,t_0) = \hat{U}(t-t_0) = \hat{U}(\tau) \ (\tau \stackrel{\text{def}}{===} t - t_0)$$

25.3 Continuity Equation

$$\begin{cases} i\hbar \frac{\partial}{\partial t} \psi(\boldsymbol{x},t) = -\frac{\hbar^2}{2m} \nabla^2 \psi(\boldsymbol{x},t) + V(\boldsymbol{x}) \psi(\boldsymbol{x},t) \\ -i\hbar \frac{\partial}{\partial t} \psi^*(\boldsymbol{x},t) = -\frac{\hbar^2}{2m} \nabla^2 \psi^*(\boldsymbol{x},t) + V(\boldsymbol{x}) \psi^*(\boldsymbol{x},t) \end{cases}$$

$$\Rightarrow \begin{cases} \psi^*(\boldsymbol{x},t) \frac{\partial}{\partial t} \psi(\boldsymbol{x},t) = -\frac{\hbar}{2mi} \psi^*(\boldsymbol{x},t) \nabla^2 \psi(\boldsymbol{x},t) + \frac{1}{i\hbar} \psi^*(\boldsymbol{x},t) V(\boldsymbol{x}) \psi(\boldsymbol{x},t) \\ \psi(\boldsymbol{x},t) \frac{\partial}{\partial t} \psi^*(\boldsymbol{x},t) = \frac{\hbar}{2mi} \psi(\boldsymbol{x},t) \nabla^2 \psi^*(\boldsymbol{x},t) - \frac{1}{i\hbar} \psi(\boldsymbol{x},t) V(\boldsymbol{x}) \psi(\boldsymbol{x},t) \end{cases}$$

$$\Rightarrow \psi^* \frac{\partial}{\partial t} \psi + \psi \frac{\partial}{\partial t} \psi^* = \frac{\partial}{\partial t} (\psi^* \psi) = -\frac{\hbar}{2mi} \left(\psi^* \nabla^2 \psi - \psi \nabla^2 \psi^* \right) = -\frac{\hbar}{2mi} \nabla \cdot (\psi^* \nabla \psi - \psi \nabla \psi^*)$$

$$\Rightarrow \frac{\partial}{\partial t} (\psi^* \psi) + \nabla \cdot \left[\frac{\hbar}{2mi} \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right) \right] = 0$$

Let:

1. Probability Density

$$\rho(\boldsymbol{x},t) = \psi^*(\boldsymbol{x},t)\psi(\boldsymbol{x},t) = |\psi(\boldsymbol{x},t)|^2$$
(103)

2. Probability Current Density

$$\mathbf{j} = \frac{\hbar}{2m\mathrm{i}} \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right) \tag{104}$$

$$\Longrightarrow \boxed{\frac{\partial \rho}{\partial t} + \nabla \cdot \boldsymbol{j} = 0} \tag{105}$$

25.4 Ehrenfest Theorem

$$\begin{cases} i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle & \Longrightarrow \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = \frac{\hat{H}}{\mathrm{i}\hbar} |\psi(t)\rangle \\ -i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \langle \psi(t)| = \langle \psi(t)| \, \hat{H} & \Longrightarrow \frac{\mathrm{d}}{\mathrm{d}t} \langle \psi(t)| = -\frac{1}{\mathrm{i}\hbar} \langle \psi(t)| \, \hat{H} \end{cases}$$

Consider an observable \hat{O} , with its expectation value $\left\langle \hat{O} \right\rangle = \left\langle \psi(t) \right| \hat{O} \left| \psi(t) \right\rangle$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{O} \right\rangle (t) = \left(\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \psi(t) \right| \right) \hat{O} \left| \psi(t) \right\rangle + \left\langle \psi(t) \right| \frac{\mathrm{d}}{\mathrm{d}t} \hat{O} \left| \psi(t) \right\rangle + \left\langle \psi(t) \right| \hat{O} \left(\frac{\mathrm{d}}{\mathrm{d}t} \left| \psi(t) \right\rangle \right)
= -\frac{1}{\mathrm{i}\hbar} \left\langle \psi(t) \right| \hat{H} \hat{O} \left| \psi(t) \right\rangle + \left\langle \psi(t) \right| \frac{\mathrm{d}}{\mathrm{d}t} \hat{O} \left| \psi(t) \right\rangle + \frac{1}{\mathrm{i}\hbar} \left\langle \psi(t) \right| \hat{O} \hat{H} \left| \psi(t) \right\rangle
\Longrightarrow \left| \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{O} \right\rangle (t) = \left\langle \frac{\partial \hat{O}}{\partial t} \right\rangle + \frac{1}{\mathrm{i}\hbar} \left\langle \left[\hat{O}, \hat{H} \right] \right\rangle \right| \tag{106}$$

25.4.1 Conserved Quantity (Constant of Motion)

If $\frac{\partial \hat{Q}}{\partial t} \equiv 0 \& \left[\hat{O}, \hat{H}\right]$, \hat{O} is a conserved quantity. $\hat{O} \& \hat{H}$ have common eigenstates.

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t}O = \frac{\partial O}{\partial t} + [O, H]_{\mathrm{PB}} & \mathrm{CM} \\ \\ \frac{\mathrm{d}}{\mathrm{d}t}\hat{O}_{\mathrm{H}} = \left(\frac{\partial \hat{O}_{\mathrm{S}}}{\partial t}\right)_{\mathrm{H}} + \frac{1}{\mathrm{i}\hbar} \left[\hat{O}_{\mathrm{H}}, \hat{H}\right] & \mathrm{QM} \end{cases}$$

26 title