

Required Files

Available on Canvas

e341-p1.pdf

• p1DSPlot.p

p1Submit.p

• e341-APE.pdf

Project description (this document)

Data-Sheet curve generator

Grading script (LATEST version)

Instructions for submitting graded work (for reference)

Topics

Black Box System ID

• 2nd order approximation

White Box System ID

• circuit analysis & state-space

System Verification

• DC gains

Tab	le 1:	Plant

Parameter	Value	Physical Units
J _s	#A / 5	g-cm ²
M _s	#B / 4	g
B _s	#C/3	Ns/m
n _s	#D / (2 x #E)	turn/cm
J _f	#F/3	g-cm ²
B_f	#G	mNms
n_{f}	#H	deg/cm
B _t	#A	mNms
K _t	#B x #C	mNm
n _t	from geometry	n/a
B _I	#D / 5	Ns/m
K _I	#E x #F	N/m
L ₆	(#G + #H) x 4	mm

Table 2: Sensor

Parameter	Value	Physical Units
P ₁	#A x 7	n/a
P ₂	#B x 800	rad/s
P ₃	#C x 8	n/a
P_4	#D x 700	rad/s
P ₅	#E x 600	rad/s
P_6	#F x 50	n/a
P ₇	#G x 500	rad/s
P ₈	#H x 5	rad/s

Table 3: Motor

Parameter	Value	Physical Units
R _w	#A / 2	Ω
L _w	#B x 30	μН
K _m	#C	mNm/A
J _r	#D / 15	g-cm ²
B _r	#E / 30	μNms
M _m	#F + #G	Kg

Table 5: RCGs

Parameter	Value	Physical Units
WnRes	0.1	rad/s
ZetaRes	10-2	pure
TargPM	40	deg
OS _u	≤ 60 (WRT ref OS _u)	%
T _s	≤ 75 (WRT ref T _s)	%
T _r	< final T _s	sec
E _{ss}	0	%

Table 4: Control System

Parameter	Value	Physical Units
CF	#A x #B x 5	Hz
DC	#C + #D + #E + #F	%

DESCRIPTION

A gripper is shown in Fig 1.

- The gripper has a motor connected to the screw of a lead-screw.
- The nut of the lead-screw is fixed.
- Rotating the screw causes the motor & screw to move back and forth.
- The gripper has 3 symmetrical fingers, designed to grasp a spherical load.
- Each finger consists of a link, a base and a flexible tine.
- The tines bend as the load is grasped to minimize damage to a fragile load.

The gripper is not LTI.

- The load impedance disappears when the load is released.
- The geometry causes a time-varying relationship between motor and finger angle speed.

Instead, an LTI model is approximated, as shown in Fig 1b.

- · Geometric non-linearities are avoided by considering a meaningful, fixed operating point.
- The operating point is when the tines first contact the load.
- Each tine is assumed to remain in contact with the load at all times (even when the gripper opens).
- Link inertia is small and is neglected.
- Load mass is small and is neglected. This is not the total load mass, but only the small element of mass that moves as the load is grasped and is slightly compressed.

The System Model shown in Fig 5 has 3 transmissions and 4 coordinate frames.

Rotor coordinates
 Actuator coordinates
 Finger coordinates
 Tine coordinates
 (angular motion)
 (inear motion)

Gripper parameters are shown in Table 1. and Motor parameters are shown in Table 3.

- The motor applies torque τ_r to the screw of the lead-screw.
- The rotor and screw rotate to an angle q_r.
- Friction between the motor rotor and stator is represented by rotor damping B.
- The motor rotor has inertia J_r and the screw has inertia J_s .
- For each unit of screw rotation, the screw translates a distance of n_s.
- The actuator (motor & screw) move to a distance d_a.
- The motor has mass M_m and the screw has mass M_s.
- Friction between the screw and nut is represented by linear damping B_e.
- For each unit of screw translation, the linkage rotates the fingers by n_f.
- Each finger rotates to an angle q.
- Each finger has inertia J_f, which includes the inertia of the tine.
- The combined friction at joints "a", "b", and "c" is represented by B_f.
- Each tine has angular stiffness of K, and material damping B,.
- As each finger rotates, the tip of the unloaded tine translates a circumferential distance n.
- Each tine tip translates at an effective circumferential distance d_t.
- The load at each contact point has linear stiffness K₁ and damping B₁.

The motor voltage is supplied by an off-the-shelf (OTS) voltage amplifier.

Its unit step response $G_a = x_2/x_2$ (see Fig 4) is shown by p1DSPlot.p.

The experimental data was recorded using a DAQ with a fixed resolution.

Estimate the continuous curve that was the input to the DAQ.

Estimate rise-time T_p , peak time T_p , settle time T_s , and percent overshoot OS_v .

1. 5 mark(s) Amplifier Metrics

 Q1.Tr 	(s)	Scalar
 Q1.Tp 	(s)	Scalar
 Q1.Ts 	(s)	Scalar
 Q1.OSy 	(%)	Scalar

Find an approximation of the **estimated** continuous curve.

If **G**_a is **under-damped**, use **PEAK TIME** to find a 2nd order approximation.

If G_a is **over-damped**, find a $\mathbf{1}^{\text{st}}$ or $\mathbf{2}^{\text{nd}}$ order approximation, whichever is preferred

2. 5 mark(s) 2nd Order Approx

Q2.Ga (V/V) LTI Object

Motor angle is measured by a position sensor with an internal electronics.

The data-sheet provides the equivalent Block Diagram shown in Fig 2.

Find sensor gain: $H_s = x_5/x_4$ (see Figs 2&3)

Find DC gain of H_s : K_s Find dynamics of H_s : D_s

3. 5 mark(s) Analog Position Sensor

Q3.Ks (V/deg) ScalarQ3.Ds (pure) LTI Object

COW: Check your results.

A pole-zero plot pzmap() can be used to check if your transfer function is reasonable.

You could also check the time constant of the step response.

You could also draw it using Simulink and compare the response.

Use circuit analysis to find electrical admittance Y_e in Fig 3.

Find electrical admittance: $Y_e = i_w/v_w$

4. 5 mark(s) Elec Admittance

• Q4.Ye (A/V) LTI Object

Use circuit analysis to find mechanical admittance Y_m in Fig 3.

You can transform the mechanical circuit to an electrical circuit, or solve the mechanical circuit directly. It's your choice.

Find mechanical admittance: $Y_m = \omega_r / \tau_r$

5. 5 mark(s) Mech Admittance

• Q5.Ym (rad/Nms) LTI Object

To account for gravity, add a constant gravitational torque τ_{g} to winding torque τ_{w} , as shown in Fig 3. The sign depends on orientation (fingers pointing up or down).

Find the **magnitude** of gravitational torque τ_g .

6. 5 mark(s) Gravitational Torque

• Q6.taug (Nm) Scalar

COW: Only parts that move parallel to gravity, are affected by gravity.

In Fig 4, Joint Angle is an angle that exists in something called Joint Coordinates.

From Figs 3 & 4, determine which coordinate system in Fig 5 is Joint Coordinates.

Transform all impedances (in Fig 5) to Joint Coordinates.

Find the state-space matrices (A & B) for the plant G_n.

For each desired output, add a row to the output matrices (C & D) and solve for y/u.

Neglect **gravity**. To account for gravity, a second set of transfer functions is needed and super-position is applied. That can be done later.

(see Figs 1b & 4-5)

Find torque gain: $G_{tau} = \tau_r/x_3$ (see Figs 3-5)

7. 5 mark(s) Torque Gain

• Q7.Gtau (Nm/V) LTI Object

Find motor angle gain: $G_q = q_r/x_3$ (see Figs 4-5)

8. 5 mark(s) Motor Angle Gain
• Q8.Gq (deg/V) LTI Object

• Q8.Gq (deg/V) LTI Object

9. 5 mark(s) Tine Force Gain

• Q9.Gf (N/V) LTI Object

Find tine force gain (per tine): $G_f = f_t/x_3$

Check your DC gains with a series of simple calculations, done in the following order.

If you apply 1 volt to the motor and wait a long time:

Find the winding current i_w .

Find the motor torque tau,.

Find the lead-screw force \mathbf{f}_{s} .

Find the finger torque (per finger) tauf.

Find the tine force (per finger) $\mathbf{f_t}$.

Find the effective stiffness of the tine & load combined (per finger, in finger coordinates) K_{tl}.

Find the associated finger angle q_f.

Find the associated lead-screw distance d_s.

Find the associated rotor angle \mathbf{q}_r .

Find the associated sensor voltage \mathbf{v}_{s} .

10. 5 mark(s) DC Gains

 Q10.iw 	(A)	Scalar
 Q10.taur 	(Nm)	Scalar
 Q10.fs 	(N)	Scalar
 Q10.tauf 	(Nm)	Scalar
 Q10.ft 	(N)	Scalar
 Q10.Ktl 	(Nm)	Scalar
 Q10.qf 	(deg)	Scalar
 Q10.ds 	(m)	Scalar
 Q10.qr 	(deg)	Scalar
 Q10.vs 	(V)	Scalar