

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

НАУЧНО-ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

Классификация методов повышения разрешения изображения по нескольким кадрам

Студент: Сироткина Полина Юрьевна

Группа: ИУ7-13М

Научный руководитель: Филиппов Михаил Владимирович, к.т.н., доцент кафедры ИУ7

Цель и задачи работы

<u>Цель</u> - изучение и классификация известных методов повышения разрешения изображения по нескольким кадрам.

Задачи:

- провести обзор существующих методов повышения разрешения по нескольким кадрам;
- сформулировать критерии классификации и сравнения методов;
- классифицировать рассмотренные методы;
- провести сравнительный анализ рассмотренных методов;
- на основе полученных теоретических сведений сделать выводы об области применимости рассмотренных методов.

Постановка задачи

Для получения изображения высокого разрешения рассматривается система уравнений следующего вида:

$$A_k x = DB_k M_k x + n_k = y_k,$$

где у_к –k-ый кадр,

x — желаемое изображение высокого качества,

D – матрица движения фотосистемы,

 B_k — матрица размытия,

 M_k — матрица понижения размерности,

 n_k — вектор шума.

Частотные методы

Подход основывается на 3 принципах:

- 1. Свойство сдвига преобразования Фурье.
- 2. Взаимосвязь между непрерывным преобразованием Фурье \mathbf{X} исходного изображения и дискретным преобразованием Фурье \mathbf{Y} для кадров.
- 3. Частотный диапазон изображения ограничен.

Взаимосвязь X и Y:

$$Y(\Omega_1, \Omega_2) = \frac{1}{T_1 T_2} \sum_{n_1=0}^{L_1-1} \sum_{n_2=0}^{L_2-1} X_k \left[\frac{2\pi}{T_1} \left(\frac{\Omega_1}{N_1} + n_1 \right), \frac{2\pi}{T_2} \left(\frac{\Omega_2}{N_2} + n_2 \right) \right],$$

Где N_1N_2 — размер желаемого изображения, L_1L_2 — коэффициенты понижения дискретизации, T_1T_2 — периоды дискретизации.

Матрично-векторная форма записи решения:

$$Y = \Phi X$$
.

Регистрация – интерполяция - восстановление

Недостатки: возникновение алиасинга, размытия и эффекта Гиббса.

Регуляризационные методы

Детерминированный подход:

$$\sum_{k=1}^{p} ||y_k - W_k x||^2 + \alpha ||Cx||^2.$$

Здесь p — количество кадров, α — параметр регуляризации, C — фильтр высоких частот, $||\cdot||$ — L2-норма.

Рекуррентная формула для вычисления х:

$$\hat{x}^{n+1} = \hat{x}^n + \beta \left[\sum_{k=1}^p W_k^T (y_k - W_k \hat{x}^n) - \alpha C^T C \hat{x}^n \right],$$

где β – параметр сходимости.

Стохастический подход:

$$x = argmax P(x | y_1, y_2, \dots, y_p).$$

$$x = argmax\{\ln P(y_1, y_2, \dots, y_p | x) + \ln P(x)\}.$$

$$x = argmin \left[\sum_{k=1}^{p} ||y_k - W_k \hat{x}||^2 + \alpha \sum_{S} \varphi_S(x) \right],$$

где ϕ_s — функция производной изображения.

Методы на основе теории множеств

Решение должно быть членом замкнутого выпуклого множества, которое определяется как набор векторов, удовлетворяющих определенному свойству изображения.

Решение задачи минимизации расстояния между изображением и его проекцией на выпуклые множества

Выделение патчей (примеро-ориентированные методы)

- 0. Предварительная интерполяция кадра с целью выравнивания размерности изображений.
- 1. Разбиение каждого изображения из пары на патчи.
- 2. Устранение вариативности среди патчей.
- 3. Обучение модели на полученных взаимосвязях.

Входной патч

Ближайшие патчи изображения из базы данных патчей

Соответствующие патчи высокого разрешения из базы данных патчей

Сверточные нейронные сети

Специальная архитектура ИНС, нацеленная на эффективное распознавание образов:

Одна из ключевых задач – оптимизация параметров.

Сверточные нейронные сети: проекция – аппроксимация - восстановление

- 1. Проекция нескольких точек из оригинального пространства в пространство меньшей размерности.
- 2. Построение квадратичного полинома, аппроксимирующего полученные проекции точек и соответствующие им значения целевой функции.
- 3. *Восстановление*: аппроксимация параметров целевой функции в оригинальном пространстве на основе полученного полинома в пространство меньшей размерности.

Вариативность заключается в различной реализации каждого из этапов.

Классификация методов суперрезолюции

Сравнительный анализ методов суперрезолюции

	Критерий		
Метод	Вычислительная сложность	Качество обработки	Необходимость пост- или предобработки
Частотные методы	Низкая	Низкое	Нет
Методы на основе интерполяции	Низкая	Низкое	Нет
Методы теории множеств	Средняя	Низкое	Да
Методы решения обратной задачи с применением регуляризации	Средняя	Среднее	Нет
Примеро-ориентированные методы (выделение патчей)	Очень высокая	Высокое	Да
Оптимизация СНС	Высокая	Очень высокое	Да

Заключение

Цель работы была достигнута: были рассмотрены и классифицированы известные методы повышения разрешения по нескольким кадрам.

Были выполнены следующие задачи:

- проведен обзор существующих методов повышения разрешения по нескольким кадрам;
- сформулированы критерии классификации и сравнения методов;
- классифицированы рассмотренные методы;
- проведен сравнительный анализ рассмотренных методов;
- на основе полученных теоретических сведений сделаны выводы об области применимости рассмотренных методов.

На основе проведенной классификации и сравнительного анализа для дальнейшей разработки было выбрано направление оптимизации сверточных нейронных сетей для повышения разрешения изображения по нескольким кадрам.