《高等数学(下)》期末考试试题(A1)

考试注意事项: 学生必须将答题内容做在答题纸上, 做在试题纸上均无效

一. 填空题(本大题共10小题,每小题3分,共30分)

- 3. 已知 $f(x) = x^2 + x, x \in [0,1]$, S(x) 是 f(x) 的周期为 1 的三角级数的和函数,则 S(0), S(1/2) 分别是______,_____.

4. 极限
$$\lim_{\substack{x \to 0 \\ y \to 0}} (x^2 + 2y^2) \sin \frac{1}{xy} = _____.$$

5. 设函数
$$z = z(x, y)$$
 由方程 $F\left(x + \frac{z}{y}, y + \frac{z}{x}\right) = 0$ 确定,则 $\frac{\partial z}{\partial x} =$ ____.

6. 函数 $u = \ln(x + \sqrt{y^2 + z^2})$ 在点 A(1,0,1) 处沿点 A 指向点 B(3,-2,2) 方向的方向导数为______.

7. 曲线
$$x = \frac{t^3}{3}$$
, $y = \frac{t^2}{2}$, $z = 2t$ 上 $t = 1$ 对应点处的切线方程为______.

8. 设
$$f(r)$$
 可微, $r = \sqrt{x^2 + y^2 + z^2}$,则 $grad f(r) =$ ______.

9. 交换积分次序
$$\int_{0}^{1} dy \int_{\sqrt{y}}^{\sqrt{2-y^2}} f(x,y) dx = ______.$$

10. 设
$$C: \frac{x^2}{4} + \frac{y^2}{3} = 1$$
的周长为 a ,则 $\int_C (3x^2 + 4y^2 + y) ds = ____.$

二 (8 分). 已知 z = f(u,v), u = x + y, v = xy, 且 f(u,v) 具有二阶连续偏导数, 求 $\frac{\partial^2 z}{\partial x \partial y}, \frac{\partial^2 z}{\partial y^2}$.

 Ξ (10 分). 在椭球面 $x^2 + y^2 + \frac{z^2}{4} = 1$ 的第一卦限部分上求一点,使椭球面在该点处的切平面在三个坐标轴上的截距的平方和最小,并求出最小值.

四(12 分)求幂级数的 $\sum_{n=1}^{\infty} n^2 x^n$ 的收敛区域及和函数, 并求极限

$$\lim_{n\to\infty} \left(\frac{1^2}{2^1} + \frac{2^2}{2^2} + \frac{3^2}{2^3} + \dots + \frac{n^2}{2^n} \right)$$
indi.

五 (10 分). 设 Ω 由 $\sqrt{x^2 + y^2} \le z \le \sqrt{2 - x^2 - y^2}$, $0 \le x \le y \le \sqrt{3}x$ 所确定. f(x, y, z) 为连续函数. $I = \iiint f(x, y, z) dx dy dz$.

- (1) 分别把上述三重积分 / 表示成柱面坐标和球面坐标下的累次积分;
- (2) 设 $f(x, y, z) = z^3$, 求出 I 的值.

六 (10 分). 设
$$P(x,y) = \frac{axy^2}{(x^2+y^2)^2}$$
, $Q(x,y) = -\frac{4x^\lambda y}{(x^2+y^2)^2}$.

(1) 求常数 a, λ 的值,使 $\int_{C} Pdx + Qdy$ 在 $D = \{(x, y) | x^2 + y^2 > 1\}$ 内与路径无关; (2) 求 Pdx + Qdy 在 D 中的原函数.

七(10分). 求球面 $x^2 + y^2 + z^2 = 4$ 被平面 $z = \frac{1}{2}$ 与 z = 1 所夹部分 Σ 的面积.

八 (10 分). 设积分曲面是 $\Sigma: z=4-x^2-y^2$ 位于 xoy 平面上方部分的上侧, 求曲面积分 $I=\iint x^2yz^2dydz-xy^2z^2dzdx+x(1+xyz)dxdy$.