(Relational Model) مدل رابطه ای

Example of a *Instructor* Relation

attributes (or columns)								
ID	name	dept_name	salary		ر (Set of Attribute or Heading) مجموعه عنوان	•		
10101	Srinivasan	Comp. Sci.	65000	tuples	{ID, name, dept_name, salary}			
12121	Wu	Finance	90000	(or rows)	مجموعه بدنه (Body Set)	•		
15151	Mozart	Music	40000		(Body sec) and assign			
22222	Einstein	Physics	95000					
32343	El Said	History	60000		درجه رابطه: تعداد خصیصه ها یا ستون های یک رابطه (۴)	•		
33456	Gold	Physics	87000					
45565	Katz	Comp. Sci.	75000	ِمان (۱۲)	کاردینالیتی رابطه: تعداد سطر های رابطه در یک لحظه از ز	•		
58583	Califieri	History	62000					
76543	Singh	Finance	80000		خواص رابطه ها:	•		
76766	Crick	Biology	72000		1. مجموعه عنوان (خصيصه ها) نظم ندارد.			
83821	Brandt	Comp. Sci.	92000		2. سطر تکراری در جدول وجود ندارد.			
98345	Kim	Elec. Eng.	80000		3. سطرهای جدول نظم ندارند.			
	Instruc	ntor.	<u> </u>	1	4. خصیصه ها تجزیه نشدنی هستند.			

Instructor

Relation Schema and Instance

- $A_1, A_2, ..., A_n$ are attributes
- $R = (A_1, A_2, ..., A_n)$ is a relation schema

Example:

```
instructor = (ID, name, dept_name, salary)
```

- A relation instance r defined over schema R is denoted by r(R).
- The current values a relation are specified by a table
- An element t of relation r is called a tuple and is represented by a row in a table

Database Schema

- Database schema -- is the logical structure of the database.
- Database instance -- is a snapshot of the data in the database at a given instant in time.
- Example:
 - schema: instructor (ID, name, dept_name, salary)
 - Instance:

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Attributes & Domain

- The set of allowed values for each attribute is called the **domain** of the attribute
- Attribute values are (normally) required to be **atomic**; that is, indivisible
- The special value *null* is a member of every domain. Indicated that the value is "unknown"
- The null value causes complications in the definition of many operations

S#	Sname	City
S1	ايران قطعه	تهران
S2	فناوران	اصفهان
S2	فناوران	تبريز
S3	پو لادين	شيراز
S4	آلومين	تهران

D(Sname)={ایران قطعه، فناوران، پولادین، آلومین}=D(City)={تهران، تبریز، اصفهان، شیراز}

مزایای تعریف میدان برای خصیصه ها:

- امکان کنترل مقداری پرس و جوها
- امکان کنترل سمانتیک (معنایی) پرس و جوها
 - تسهیل در پاسخگویی به بعضی پرس و جوها

کلیدها (Keys)

- 1. سوپر کلید (S.K. یا Super Key): هر ترکیبی از صفات رابطه که یکتایی مقدار(S.K.) داشته باشد.
- 2. کلید کاندید (C.K. یا Candidate Key) یا داشته باشد. (C.K. یا Candidate Key): هر ترکیبی از صفات رابطه که یکتایی مقدار و خاصیت کاهش نایذیری (Minimality) داشته باشد.
- 3. کلید اصلی (P.K. یا یکی از کلید های کاندید که توسط طراح پایگاه داده جهت ایجاد ارتباط و تمایز انتخاب می شود.
 - 4. کلید بدیل (Alternate Key) یا .A.K): هر کلید کاندید غیر از کلید اصلی را گویند.
- 5. کلید خارجی (F.K. یا .Foreign Key): با در نظر گرفتن دو رابطه R1 و R1 هر زیر مجموعه از خصیصه ها که در R1 کلید کاندید است، در R2 کلید خارجی می باشد.

S (Supplier)

S_ID	SName	Status	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

P (Part)

P_ID	PName	Colour	Weight	City
P1	Nut	Red	12	London
P2	Bolt	Green	17	Paris
P3	Screw	Blue	17	Rome
P4	Screw	Red	14	London
P5	Cam	Blue	12	Paris
P6	Cog	Red	19	London

J (Project)

J_ID	JName	City
J1	Sorter	Paris
J2	Punch	Rome
J3	Reader	Athens
J4	Console	Athens
J5	Collator	London
J6	Terminal	Oslo
J7	Tape	London

SPL

S_ID	P_ID	J_ID	Quantity
S1	P1	J1	200
S1	P1	J4	700
S2	Р3	J1	400
S2	Р3	J2	200
S2	Р3	J3	200
S2	Р3	J4	500
S2	Р3	J5	600
S2	P3	J6	400
S2	Р3	J7	800
S2	P5	J2	100
S3	Р3	J1	200
S3	P4	J2	500
S4	P6	J3	300
S4	P6	J7	300
S5	P2	J2	200
S5	P2	J4	100
S5	P5	J5	500
S5	P5	J7	100
S5	P6	J2	200
S5	P1	J4	100
S5	Р3	J4	200
S5	P4	J4	800
S5	P5	J4	400
S5	P6	J4	500

Notes:

1. 'S' means Supplier;
'P' – Part;
'J' – Project;
'SPJ' – Supplies (cross table of the three)

- **2.** Attribute with name as 'X_ID' is primary key
- **3.** Equally named attributes, with names as "X_ID", define referential integrity constraints (foreign key).

کلید کاندید

- کلید کاندید می تواند ساده یا مرکب باشد.
- هر رابطه ای می تواند بیش از یک کلید کاندید داشته باشد (هر رابطه حداقل یک کلید کاندید دارد).
 - کلید های کاندید یک رابطه کاهش ناپذیر (Minimal) هستند.
 - کلید های کاندید یک رابطه می توانند خصیصه مشترک داشته باشند.
 - رابطه ای که تنها کلید کاندید آن مجموعه عنوان رابطه باشد، رابطه تمام کلید (All Key) نامیده می شود.

کلید خارجی

- نقش کلید خارجی جهت ایجاد و نمایش ارتباط بین موجودیت هاست.
 - كليد خارجي مي تواند مقادير Null داشته باشد.
 - کلید خارجی می تواند مقادیر تکراری داشته باشد.
- کلید خارجی یک رابطه ممکن است با نامی دیگر در رابطه ای دیگر کلید کاندید باشد.
 - ممكن است رابطه اى فاقد كليد خارجى باشد.
 - کلید کاندید می تواند موجب افزونگی شود.

سوپر کلید (اَبر کلید)

هر ترکیبی از صفات رابطه که یکتایی مقدار داشته باشد.

- سوپر کلید خاصیت یکتایی مقدار دارد.
 - سوپر کلید کاهش پذیر است.
 - هر کلید کاندید یک سوپر کلید است.
- هر سوپر کلید حداقل شامل یک کلید کاندید است.
- سوپر کلید می تواند مقادیر هیچ مقدار (Null) داشته باشد.

• مثال: سوپر کلید های رابطه R(A,B,C,D,E) که کلید های کاندید رابطه P(A,B,C,D,E) هستند، عبارتند از:

DE AD BDE ACDE

AB AE CDE BCDE

Schema Diagram for University Database

قواعد جامعیت

جامعیت پایگاه داده: تضمین صحت، دقت و سازگاری داده های ذخیره شده در پایگاه داده در طول زمان.

- 1. قاعده جامعیت موجودیتی: هیچ جزء تشکیل دهنده کلید اصلی (P.K) نمی تواند تهی باشد.
 - 2. قاعده جامعیت ارجاعی: مقدار کلید خارجی یک رابطه در رابطه مرجع حتما موجود است.
 - راه کارهای کنترل قواعد جامعیت:

√تعيين كليد اصلي

√تعیین کلید خارجی

√تبیین میدان و مقادیر مجاز

✓تبیین وابستگی های تابعی

√ممنوعیت هیچ مقدار پذیری خصیصه ها

✓ تببین محدودیت ها در شمای پایگاه داده