458. Poor Pigs

One round, n pigs

Obviously, $\sum (buckets) = 2^n$

R rounds, n pigs

$$\sum (buckets) = (r+1)^n$$

Prove(mathmetical induction): If it's true for r rounds,

for r + 1 rounds situation, after 1st round, we'll have:

x pigs remain	buckets can be checked by n rounds	num of situations
n	$(r+1)^n$	$\binom{n}{n}$
n-1	$(r+1)^{n-1}$	$\binom{n}{n-1}$
n-2	$(r+1)^{n-2}$	$\binom{n}{n-2}$
0	$(r+1)^0$	$\binom{n}{0}$

$$\sum_{i=0}^{n} (r^i \times \binom{n}{i}) = (r+1+1)^n$$

```
public class Solution {
   public int poorPigs(int buckets, int minutesToDie, int minutesToTest) {
      if(buckets < 2){
        return 0;
      }
      int r = minutesToTest / minutesToDie;
      if(r == 0) {
            return -1;
      }
      int i = 1;
      long tmp = r + 1;
      while(tmp < buckets) {
            i++;
            tmp = tmp * (r + 1);
      }
      return i;
   }
}</pre>
```