LP Theorems

Klejdi Sevdari

February 2022

Affine Spaces

Definition 1 (Affine Space). S is an affine space if S = L + b, where L is a linear space and b is an arbitrary vector (offset from the origin).

Definition 2 (Affine Combination of n vectors).

$$y = \sum_{i=1}^{n} \alpha_i x_i, \ \sum_{i} \alpha_i = 1.$$

Definition 3 (Affine dependence). x_1, \ldots, x_n are affinely dependent if one of them can be written as an affine combination of the others. Or equivalently:

$$\sum_{i=1}^{n} \alpha_i x_i = 0, \ \sum \alpha_i = 0, \ \exists j : \alpha_j \neq 0.$$

Definition 4 (Affine Hull). aff $hull(X) = \bigcap \{A | A \text{ is an affine space}, X \subseteq A\}$

Theorem 1 (Affine hull = Set of Affine Combinations). aff hull $(X) = \{y | y = \sum_i \alpha_i x_i, \sum_i \alpha_i = 1, x_i \in X \ \forall i\}.$

Definition 5 (Affine dimension). We define the affine dimension of every set X as the dimension of the affine hull of X. The dimension of an affine space S is the dimension of the largest linear space such that S = b + L.

Theorem 2. $dim(X) = \max k \text{ such that } X \text{ contains } k+1 \text{ affinely independent vectors.}$

Definition 6 (Halfspaces). $\{x \in \mathbb{R}^n | a^T x \leq b\}$ for $a \in \mathbb{R}^n \setminus \{0\}, b \in \mathbb{R}$.

Linear Programming

Definition 7. The standard form is given by:

$$\max_{s.t} c^T x$$
s.t $Ax < b$

Definition 8. The equational form is given by:

$$\max_{s.t} c^T x$$
s.t $Ax = b$

$$x \ge 0$$

1

An LP is standard form can be transformed to equational form by:

- Ax < b converts to Ax + z = b, z > 0.
- $x \in \mathbb{R}$ converts to $x^+ x^-, x^+ \ge 0, x^- \ge 0$.

Content involving Convex Sets and Affine Spaces

In this section by co(X), we denote the convex hull of X.

Theorem 3 (Lying on one halfspace). If $\forall x \in X : a^T x \leq b$, then any convex combination y of $x_i \in X$ satisfies $a^T y \leq b$.

Theorem 4. If X is finite then co(X) is compact. (This follows from continuity).

Theorem 5. If $a^Tx = b \ \forall x \in X$, then $a^Ty = b \ \forall y \in \text{aff hull}(X)$.

Theorem 6 (Caratheodory). Let $X \subseteq \mathbb{R}^n$, $\dim(X) = d$. Then $co(X) = \{\sum_{i=1}^{d+1} \alpha_i x_i | x_i \in X, \alpha_i \geq 0, \sum \alpha_i = 1\}$.

Theorem 7 (Separation theorem). Let $C, D \subseteq \mathbb{R}^n$ which are both nonempty, closed, convex, disjoint and C is bounded. Then there is a hyperplane $\{x | a^T x = b\}$ such that:

$$C \subseteq \{x | a^T x < b\}, D \subseteq \{x | a^T x > b\}.$$

Definition 9 (Polyhedron and Polytope). A polyhedron is the intersection of finitely many halfspaces. A polytope is a bounded polyhedron.

Definition 10 (Cross polytope). $\{x \in \mathbb{R}^n : ||x||_1 \leq 1\}.$

Definition 11 (Cone). $cone(X) = \left\{ \sum_{i=1}^k \alpha_i x_i : k \in \mathbb{N}_+, x_i \in X, \alpha_i \geq 0 \right\}.$

Theorem 8. Every finitely generated cone is closed.

Theorem 9 (Farkass Lemma). $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Exactly one of the following statements is true:

- $\exists x \in \mathbb{R}^n : Ax = b, \ x \ge 0,$
- $\bullet \ \exists y \in \mathbb{R}^m: y^TA \geq 0^T \ and \ y^Tb < 0.$

An equivalent formulation is the following:

 $a_1, \ldots, a_n, b \in \mathbb{R}^m$. Exactly one of the following holds:

- $b \in \operatorname{cone}(\{a_1, \dots, a_n\}) = C$,
- There is a hyperplane separating b from C: $h = \{x \in \mathbb{R}^m : y^Tx = 0\}, y^Tb < 0 \text{ and } y^Ta_i \ge 0 \ \forall i.$

Theorem 10 (Minkowski). $P \subseteq \mathbb{R}^n$ is a polytope \iff there is a finite set $V \subseteq \mathbb{R}^n$ such that P = co(V).

Structure of Polyhedra

Definition 12 (Supporting hyperplane). Let $P \subseteq \mathbb{R}$ be a polyhedron, $c \in \mathbb{R}^n$, $t \in \mathbb{R}$. Then $h = \{x \in \mathbb{R}^n : c^T x = t\}$ is called a supporting hyperplane if $h \cap P \neq \emptyset$ and $c^T x \leq t$, $\forall x \in P$.

Definition 13 (Face). If P is a polyhedron, and h is a supporting hyperplane, then $F = P \cap h$ is called a face of P. We also call P, \emptyset faces of P. Faces that are not P, \emptyset are called proper faces. Other names include:

- vertex: face of dimension 0,
- edge: face of dimension 1,
- facet: face of dimension dim(P) 1.

Theorem 11 (Vertices and Extreme Points of a Polytope). Let $P \subseteq \mathbb{R}^n$ be a polytope. Let V denote the set of vertices of P. Let $V_{ext} = \{x \in P : x \notin conv(P \setminus \{x\})\}$ (set of extreme points). Then $V = V_{ext}$ and P = conv(V).

Theorem 12. If P is a polyhedron, $V = V_{ext}$.

Theorem 13. An intersection of faces is a face.

Remark: A face is a polyhedron.

Theorem 14. Let F be a face of P. Then $E \subseteq F$ is a face of P iff E is a face of F.

Facts about faces of polytopes:

- For any two faces F, G there is a face $M = F \cap G$.
- For any two faces F, G there is a face J such that J contains both F, G and is contained in all faces containing both F and G.
- Every face is the convex hull of its vertices, because each face is a polytope.
- Every face is an intersection of all faces containing it.
- Each face of dimension dim(P) 2 is an intersection of exactly 2 faces.

Definition 14 (Minimal face). A minimal face is a face that does not contain any proper face. All minimal faces are affine spaces.

Facts about faces of polyhydra:

- A polyhedron may not have vertices.
- All minimal faces have the same dimension.
- Every facet is a convex hull of its minimal faces.
- Every minimal face is the intersection of the facets containing it.

Definition 15 (Minimal description of faces). $P = \{x \in \mathbb{R}^n : A'x = b' \text{ and } A''x \leq b''\}$ is described minimally if the omission of any constraint results in changing P and no inequality can be converted to an equality without without changing P.

Theorem 15. If P is described minimally and $P \neq \emptyset$, $\exists z \in P$ such that A''z < b.

Theorem 16 (Dimension of polyhedra). If there is $z \in P$ such that A''z < b'', then:

- dim(P) = n rank(A'),
- z does not belong to a proper face of the polyhedron.

Theorem 17 (Facets and faces). Every face of P is a face of some of its facets. There is a one-to-one correspondence between facets of P and inequalities in a minimal description of P.

Corollary 17.1. Here we list corollaries of Theorem 17:

- Every proper face is an intersection of some of its facets.
- If dimP = n, then its min description is unique up to multiplication of the inequalities and there are no equalities in the minimal description. $(P \subseteq \mathbb{R}^n)$.

Theorem 18 (Description of minimal faces). F is a minimal face of $P \iff F = \{x : A'x = b', \tilde{A}x = \tilde{b}\}$, where $\tilde{A}x = \tilde{b}$ is a subsystem of A''x = b''.

Theorem 19 (Dimension of Minimal faces). All minimal faces of P have dimension $n - rank \begin{bmatrix} A' \\ A'' \end{bmatrix}$

Theorem 20. The set of optimal solutions (if it exists) is a face. There is always a minimal face E such that $\forall x \in E, x$ is an optimal solution.

Theorem 21. If P has a vertex, there is always an optimal solution that is a vertex.

Simplex

LP in equational form:

 $\max c^T x$

Ax = b

x > 0

We assume that Ax = b has a solution and that the rows of A are linearly independent.

Definition 16 (Basic feasible solution). x is a basic feasible solution if there exists an m-element set $B \subseteq \{1, \ldots, n\}$ such that:

- A_B is nonsingular.
- $x_j = 0, \ \forall j \notin B$.

Theorem 22. For each feasible basis, there is a unique basic feasible solution x and x is a vertex. Each vertex corresponds to some basis, sometimes several ones. If the optimum exists, there is also a basic optimal solution.

Theorem 23. For each feasible basis, there is exactly one simplex tableau:

$$Q = -A_B A_N, \ p = A_B^{-1} b, \ z_0 = c_B^T A_B^{-1} b, \ r = c_N - (c_B^T A_B^{-1} A_N)^T$$

Theorem 24. If $r \leq 0$, the corresponding basic feasible solution is optimal.

Theorem 25. The Simplex Method at each step goes from one feasible basis B to another feasible basis B'.

Duality

Primal LP: max $c^T x$, subject to $Ax \leq b$, $x \geq 0$.

Dual LP: $\min b^T y$, subject to $A^T y \ge c$, $y \ge 0$.

Theorem 26. The dual of the dual is the primal.

Theorem 27. For each feasible x, y to the primal and the dual, it holds: $c^Tx \leq b^Ty$.

Corollary 27.1. If (P) is unbounded, then (D) is infeasible.

Theorem 28 (Complementary Slackness). x, y are optimal if $y^T(Ax - b) = 0$ and $(A^Ty - c)^Tx = 0$.

Theorem 29. Let x_0 be such that $Ax_0 \leq b$. Then the following statements are equivalent:

- $\forall x \text{ such that } Ax \leq b, \text{ it holds } c^T x \leq \delta.$
- $\exists y > 0 : A^T y = c \text{ and } b^T y < \delta.$

Theorem 30 (Strong Duality). Exactly one of the following can occur:

- Both (P) and (D) are infeasible.
- (P) is unbounded and (D) is infeasible.
- (P) is infeasible and (D) is unbounded.
- (P) and (D) obtain optimal solutions and $c^T x^* = b^T y^*$.

Dualization Recipe		
	Primal linear program	Dual linear program
Variables	x_1, x_2, \ldots, x_n	y_1, y_2, \dots, y_m
Matrix	A	A^T
Right-hand side	b	c
Objective function	$\max \mathbf{c}^T \mathbf{x}$	$\min \mathbf{b}^T \mathbf{y}$
Constraints	i th constraint has \leq \geq $=$	$y_i \ge 0$ $y_i \le 0$ $y_i \in \mathbb{R}$
	$x_j \ge 0$ $x_j \le 0$ $x_j \in \mathbb{R}$	j th constraint has \geq \leq $=$

Figure 1: Dualization Recipe

ILP

 $\max c^T x = b$ $Ax \le b$ x is integer

Theorem 31. Week duality holds. $\delta = \sup\{c^T x \mid Ax \leq b, x \text{ is integer}\}, \gamma = \inf\{b^T y \mid y^T A = c, y \geq 0, y \text{ is integral}\}$

Definition 17. ILP of Knapsack:

 $\max c^T x$ s.t. $a^t x \le b$ $x \in \{0, 1\}$

Definition 18. LP relaxation:

 $\max c^T x$ s.t. $a^t x \le b$ $x \le 1$ $x \ge 0$

Theorem 32. Let x^* be an optimal solution of the relaxation, which is a vertex of the feasible region. Then, there is at most one coordinate $x_i^* \notin \{0,1\}$.

Theorem 33. Let x* be an optimal solution of the LP relaxation. Then define two integral solutions:

$$\overline{x_i} = \begin{cases} 1 & x_i^* = 1 \\ 0 & otherwise \end{cases} \quad \hat{x}_i = \begin{cases} 1 & x_i^* \text{ is fractional} \\ 0 & otherwise \end{cases}$$

Then \overline{x} and \hat{x} are feasible to ILP and of them achieves at least half of the optimal ILP objective.

Definition 19 (Total Unimodularity). A is TU if each square submatrix of A has determinant $\{0, 1, -1\}$.

Theorem 34. If A is totally unimodular, then so is A^T , $\begin{bmatrix} A \\ I \end{bmatrix}$, $\begin{bmatrix} A^T \\ -I \end{bmatrix}$.

Theorem 35. Let A be TU and b any vector in \mathbb{Z}^m . Then each vertex of $P = \{x : Ax \leq b\}$ is an integer vector.

Theorem 36 (Cramer's rule). If Ax = b, then $x_i = \det(A_{i \to e_i})/\det(A)$.

Definition 20 (Integer Polyhedron). P is an integer polyhedron if for each vector c, such that $\max\{c^T x | x \in P\}$ is finite, the maximum is attained by some integer vector.

Corollary 36.1. P is an integer polyhedron if all vertices are integer.

Corollary 36.2. Let A be TU and $b \in \mathbb{Z}^m$. Then $P = \{x | Ax \leq b\}$ is an integer polyhedron.

Corollary 36.3. Let A be TU and $b \in \mathbb{Z}^m$ and $c \in \mathbb{Z}^n$. If (P) and (D) have finite optima, then they have integer optimum solutions.

Definition 21 (Perfect Matching). A matching that covers all vertices of the graph.

Definition 22 (Neighborhood). $G = (V, E), A \subseteq V, N(A) = \{w \in V \setminus A : vw \in E \text{ for some } v \in A\}.$

Definition 23 (Hall's Theorem). Let G = (V, E) be a bipartite graph with bipartition $V = X \cup Y$. G has a matching which covers X iff $|N(T)| \ge |T|$, $\forall T \subseteq X$.

Definition 24. For $F \subseteq E : \chi_e^F = \begin{cases} 1 & e \in F \\ 0 & \text{otherwise} \end{cases}$

Definition 25 (Matching Polytope). $P_{\text{matching}}(G) = co\{\chi^M | M \text{ matching in } G\}$

Theorem 37. If G is bipartite and A its incidence matrix, then

$$P_{matching}(G) = \{ x \in \mathbb{R}^E | Ax \le 1, x \ge 0 \}$$

Definition 26 (Independent set polytope).

 $P_{\text{ind, set}}(G) = co\{\chi^I | I \subseteq V \text{ independent set in } G\} = \{y \in \mathbb{R}^V | A^T y \le 1, y \ge 0\} \text{ if G bipartite.}$

BP Matching

Theorem 38. Let G be a bipartite graph. Then the max cardinality of a matching in G is equal to the minimum cardinality of a vertex cover in G.

Note: Incidence Matrix of a Bipartite Graph is totally unimodular. Thus, problems like max independent set, maximum matching can be solved by their LP relaxation efficiently.

```
Definition 27 (Neighborhood). G = (V, E), A \subseteq V. N(A) = \{w \in V \setminus A : (v, w) \in E \text{ for some } v \in A\}.
```

Theorem 39 (Hull's Theorem). Let G = (V, E) be a bipartite graph with bipartition $V = X \cup Y$. G has a matching that covers X iff $|N(T)| \ge |T| \ \forall T \subseteq X$.

Directed Graphs and Flows

Definition 28 (Incidence Matrix of a directed graph). $M \in \mathbb{R}^{V \times E}$. $M_{v,e} = 1$ if e enters v. $M_{v,e} = -1$ if e leaves v and it is 0 otherwise. M is TU.

Definition 29 (Circulation and Flow). $f \in \mathbb{R}^E$ is called a circulation if Mf = 0. f is a flow if M'f = 0 where M' is M with rows of vertices s and t removed.

Definition 30 (Max Flow in a directed Graph). $\max w^T x$ subject to $M'x = 0, x \le c, x \ge 0$.

Note: I stress again that M is TU. Thus the solutions will be integral vectors, if c is integral. We can also add lower bounds $(x \ge d)$ to the Max flow primal with d integral, and the solutions remain integral.

Theorem 40. If $\alpha = \max\{w^T x | x \in P\}$ for any w and integer polyhderon P, then $P' = \{x | x \in P, w^T x = \alpha\}$ is a face of P and thus also an integer polyhedron.

Definition 31 (Min Cost Flow). Given directed graph G = (V, E), $s, t \in V$, $c, \kappa \in \mathbb{R}_+^E$ a maximum s - t flow is called min cost flow if it minimizes $\kappa^T x$ over all s - t flows of maximum size.

Definition 32 (Integrality Gap). Let x^I be the optimal solution of the ILP and x^* the optimal solution of its relaxation. We call integrality gap (for LP maximization problems) the ratio $\frac{c^T x^*}{c^T x^I}$.

Theorem 41. If G is not bipartite, the integrality gap of a vertex cover is at most 2.

Max Cardinality Bipartite Matching

Definition 33 (Augmenting Path). Let M be a matching. Path = (v_0, v_1, \ldots, v_t) is M-augmenting if:

- t is odd,
- $(v_1, v_2), (v_3, v_4), \dots, (v_{t-2}, v_{t-1}) \in M$,
- v_0, v_t not matched in M.

Theorem 42. Let G be a graph (not necessarily bipartite) and M a matching in G. Then either M is a max-cardinality matching or there is an M-augmenting path.

Algorithm: Finding Augmenting Path in Bipartite Graphs.

```
# input: G=(V, E) with bipartition L, R. matching M
for e in E:
    u,v = e # u in L, v in R
    if e in M:
        orient edge from v to u # all matched edges go from R to L
    else: orient edge from u to v
L' = vertices of L unmatched, R' = ...
if there is oriented path from L' to R':
    return path
```

Theorem 43. Max Cardinality Matching can be found in O(n) executions of finding augmenting path.

Min Cost Perfect Bipartite Matching

Definition 34.

$$\delta(S) = \{ e \in E : |e \cap S| = 1 \}, \ \forall S \subseteq V$$

Definition 35. (Min Cost Perfect BP Matching LP)

$$\min \sum_{e \in E} x_e$$
 such that $\forall v : \sum_{e \in \delta(v)} x_e = 1$ and $x_e \geq 0$

Remark: We can safely assume that $c \geq 0$.

Definition 36.

$$E_{=}(y) = \{(uv) \in E : y_u + y_v = c_{uv}\}\$$

Definition 37 (Alternating tree). T = (V(T), E(T), r) is a tree with root r and T is a subgraph of G. A(T) are the odd levels and B(T) are the even levels.

Definition 38 (M-Alternating Tree). T is M-alternating if each $u \in A(T)$ has exactly one son v and $(uv) \in M$.

In Appendix A you find the min cost perfect bipartite matching Algorithm.

Theorem 44. Throughout the aforementioned algorithm the two invariants are maintained:

- y is dual feasible.
- M and y satisfy Complementary Slackness conditions.

This guarantees the correctness of the algorithm.

Perfect Non-Bipartite Matching

Definition 39 (Shrinking). Let X, Y be sets. We define the shrinking operator in the following way:

$$X/Y = \begin{cases} X & X \cap Y = \emptyset \\ (X \setminus Y) \cup \{\mathcal{Y}\} & \text{otherwise, where } \mathcal{Y} \text{ is a representative single element} \end{cases}$$

In the context of graphs, we define V/C by deleting the vertices in C and creating a new representative vertex C. The edges that had both their endpoints in C are deleted, and the edges with one endpoint to some element in C have now an endpoint in C (and the other endpoint is not modified).

Theorem 45. If $C \subseteq V$ is an odd cycle and M' a perfect matching in G/C. Then there exists $M \supseteq M'$ perfect matching in G.

Blossom Algorithm:

```
# M = Empty, G' = G
find r unmatched, initialize Tree with root r
find uv in E, u in B(T), v not in T:
    either increase M or T
if there exists uv in R with u in B(T) and v in B(T):
    P_u, P_v = paths to common ancestor
    C = Union(P_u, P_v)
    G' = G/C, T = T/C, M=M/C
```

Matroids, Submodular Functions and Greedy Algorithms

Definition 40 (Matroid). Let X be a finite set, $\mathcal{I} \subseteq 2^X$. (X, \mathcal{I}) is a matroid if:

- $\emptyset \in \mathcal{I}$
- $Y \in \mathcal{I}, Z \subseteq Y$ implies $Z \in \mathcal{I}$.
- $Y, Z \in \mathcal{I}, |Y| < |Z| \text{ implies } \exists z \in Z \text{ such that } Y \cup \{z\} \in \mathcal{I}.$

Definition 41 (Basis). B is a basis of \mathcal{I} if $\forall B' \in \mathcal{I}$, $B \subseteq B'$ implies B = B'. Any two bases have the same cardinality.

Greedy Algorithm in full Generality

```
Set up: (X, \mathcal{I}), w : X \to \mathbb{R}, W(Y) = \sum_{y} w(y).
```

Greedy ALG:

```
Select y not in {y_1, ..., y_r} such that:
    {y_1, ..., y_r, y} in I
    w(y) is as large as possible
Repeat until no y is available anymore # Reach a basis
```

Theorem 46 (Optimality of Greedy Algorithms). If (X, \mathcal{I}) is a matroid, then the described Greedy Algorithm finds basis of max weight.

Definition 42 (Submodular Functions). Let X be a finite set and $f: 2^X \to \mathbb{R}$. Then f is submodular if any of the following 2 equivalent conditions hold:

- $\forall A, B \subseteq X, f(A) + f(B) \ge f(A \cup B) + f(A \cap B),$
- $\forall A \subseteq B \subseteq X, f(A \cup \{x\}) f(A) \ge f(B \cup \{x\}) f(B), \ \forall x \notin B.$

Remarks:

- Linear functions of the form $f(A) = \sum_{a \in A} f(a)$ are submodular. Its negation -f is also submodular.
- If f, g are submodular, then so is $\alpha f + \beta g$ for $\alpha, \beta \geq 0$.

Lemma 47. If B_1, B_2 are two bases of a matroid, then there exists a bijection $\alpha : B_1 \to B_2$ such that $(B \setminus b) \cup \{\alpha(b)\}$ is a basis $\forall b \in B_1$.

Monotone Submodular Maximization

Greedy ALG for Monotone Submodular functions:

```
S = empty, A = {a: Union(S, a) in I}
while A != empty:
    e = argmax{f_s(a): a in A}
    S = Union(S, e)
    A = {e: Union(S, e) in I}
return S
```

Note: $f_S(a) = f(S \cup \{a\}) - f(S)$.

Theorem 48 (Approximation Algorithm for monotone submodular functions). The previous algorithm gives a $\frac{1}{2}$ -approximation for maximizing a monotone submodular function under Matroid constraints.

Total Dual Integrality

Definition 43 (TDI). A system $Ax \leq b$ is TDI if $\min\{b^Ty : A^Ty = c, y \geq 0\}$ for all integral c such that this optimum exists and is finite.

Theorem 49 (TDI and the Primal). If $Ax \leq b$ is TDI and b integral, then $\{x : Ax \leq b\}$ is an integral polyhedron.

Theorem 50. Any rational polyhedron P can be written as $P = \{x : Ax \leq b\}$ where:

- ullet A is integral
- $Ax \leq b$ is TDI.

Moreover, b is integral \iff P is integral.

Warning: Being TDI is a property of the system of inequalities, not of the polyhedron.

Convex Optimization Basics

Theorem 51 (Cauchy Schwarz). $|u^Tv| \leq ||u|| ||v||$. From this we get $\cos(\alpha) = \frac{u^Tv}{||u|| ||v||}$.

Definition 44 (Spectral Norm).

$$||A|| = \max_{||v||=1} ||Av||$$

Theorem 52 (Lipshitz and Differntiable Functions). If $X \neq \emptyset$, X is open, f differentiable over X. Then TFAE:

- f is B-Lipschitz: $||f(x) f(y)|| \le B||x y||, \forall x, y \in X$.
- $\|\nabla f(x)\| \le B, \ \forall x \in X.$

Theorem 53 (Convexity is almost Continuity). If f is convex over an open domain, then f is continuous.

Theorem 54 (1st order characterization of convexity). If f is differentiable and convex, then:

- $f(y) \ge f(x) + \nabla f(x)^T (y x), \ \forall x, y \in domf$
- $(\nabla f(y) \nabla f(x))^T (y x) \ge 0, \ \forall x, y \in domf.$

Theorem 55 (2nd order characterization of convexity). If f is twice differentiable, then f is convex iff $\nabla^2 f(x) \succeq 0$ (The Hessian is semi positive definite).

Theorem 56 (Unconstrained Minimization of Convex Function). If x is such that $\nabla f(x) = 0$, then x is a global minimizer.

Theorem 57 (Constrained Minimization). x^* is a minimum of f over the convex set X iff $\nabla f(x^*)^T(x-x^*) \geq 0$.

Gradient Descent

Definition 45 (Gradient Descent Step). $x_{t+1} = x_t - \gamma \nabla f(x_t)$.

Definition 46 (Convenient Definition). $g_t = \nabla f(x_t) = \frac{1}{\gamma}(x_t - x_{t+1})$.

Definition 47 (Useful bound). $f(x_t) - f(x^*) \leq \nabla f(x_t)^T (x_t - x^*) = g_t^T (x_t - x^*)$. (follows by convexity)

Theorem 58 (Cosine Theorem and Vanilla Analysis). $2v^Tw = ||v||^2 + ||w||^2 - ||v - w||^2$. This gives:

$$g_t^T(x_t - x^*) = \frac{\gamma}{2} \|g_t\|^2 + \frac{1}{2\gamma} (\|x_t - x^*\|^2 - \|x_{t+1} - x^*\|^2)$$

Summing up, we get:

$$\sum_{t=0}^{T-1} g_t^T(x_t - x^*) \le \frac{\gamma}{2} \sum_{t=0}^{T-1} \|g_t\|^2 + \frac{1}{2\gamma} (\|x_0 - x^*\|^2 + \|x_T - x^*\|^2)$$

Dropping the negative term above and using the "useful bound", we get the following bound for the average error:

Average error =
$$\frac{1}{T} \sum_{t=0}^{T-1} (f(x_t) - f(x^*)) \le \frac{\gamma}{2T} \sum_{t=0}^{T-1} ||g_t||^2 + \frac{1}{2T\gamma} ||x_0 - x^*||^2$$

Theorem 59 (Lipschitz GD). Suppose f is convex, differentiable, B-Lipschitz ($\nabla f(x) \leq B$). Choosing:

$$\gamma = \frac{R}{B\sqrt{T}}$$
 gives: Average Error $\leq \frac{RB}{\sqrt{T}}$

Definition 48 (Smooth Convex Functions). Let f be differentiable and convex. f is L-smooth over X if:

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||x - y||^2$$

The next 3 theorems are not very important for the course material.

Theorem 60 (Function L-smooth implies Gradient L-Lipschitz). f is L-smooth iff $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$.

Theorem 61. f_1, \ldots, f_m . f_i is L_i -smooth. Then $f = \sum_i \lambda_i f_i$ is $(\sum_i \lambda_i L_i)$ -smooth, where all $\lambda_i \geq 0$.

Theorem 62. Let f(x) be L-smooth. Then f(Ax + b) is $L||A||^2$ -smooth.

Lemma 63 (GD steps always improve on L-smooth functions). Let f be L-smooth and $\gamma = \frac{1}{L}$. Then GD satisfies:

$$f(x_{t+1}) \le f(x_t) - \frac{1}{2L} \|\nabla f(x_t)\|^2$$

Theorem 64. $f: \mathbb{R}^d \to \mathbb{R}$ convex, differentiable with global minimum x^* . Moreover f is L-smooth with stepsize $\gamma = \frac{1}{L}$, GD achieves

$$f(x_T) - f(x^*) \le \frac{L}{2T} ||x_0 - x^*||^2$$

Definition 49 (Strong Convexity). f convex, differentiable. $\eta > 0$. f is called η -strongly convex over X if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\eta}{2} ||x - y||^2$$

Theorem 65. Let f be convex, differentiable, L-smooth, η -strongly convex and let x^* be its unique global minimizer. Choosing $\gamma = \frac{1}{L}$, GD satisfies:

- $||x_{t+1} x^*||^2 \le (1 \frac{\eta}{L}) ||x_t x^*||^2$,
- $f(x_T) f(x^*) \leq \frac{L}{2}(1 \frac{\eta}{L})^T ||x_0 x^*||^2$. Note that the T in the left hand side is a power, not a transpose.

Projected Gradient Descent

Definition 50 (Projected GD step). $y_{t+1} = x_t - \gamma g_t \to x_{t+1} = \prod_X (y_{t+1}) = \text{Convex Projection of } y_{t+1}.$

Theorem 66. $d_y(x) = ||x - y||^2$ is strongly convex and achieves a unique maximum over closed, convex set X. (The Convex projection is well defined.)

Lemma 67. Let X closed, convex. $x \in X, y \in \mathbb{R}^d$ Let $y^* = \prod_X (y)$. TFAE:

- $(x y^*)^T (y y^*) \le 0$,
- $||x y^*||^2 + ||y y^*||^2 \le ||x y||^2$.

Theorem 68 (Lipschitz Projected GD). Let f be convex, differentiable. Let X be closed and convex. x^* a minimizer of f over X. Suppose $||x_0 - x^*|| \le R$ and $||\nabla f(x)|| \le B$, $\forall x \in X$. Choosing stepsize $\gamma = \frac{R}{B\sqrt{T}}$ projected GD gets:

$$\frac{1}{T} \sum_{t=0}^{T-1} (f(x_t) - f(x^*)) \le \frac{RB}{\sqrt{T}}$$

Lemma 69 (Smooth Functions). f differentiable and smooth with parameter L over a closed and convex set X. With $\gamma = \frac{1}{L}$, projected GD with arbitrary $x_0 \in X$ satisfies:

$$f(x_{t+1}) \le f(x_t) - \frac{1}{2L} ||f(x_t)||^2 + \frac{L}{2} ||y_{t+1} - x_{t+1}||^2$$

Theorem 70. f convex, differentiable, X closed, convex. Assume there is a minimizer x^* of f over X and that f is L-smooth. With $\gamma=\frac{1}{L}$, projected GD satisfies:

Average Error =
$$f(x_T) - f(x^*) \le \frac{L}{2T} ||x_0 - x^*||^2$$

Subgradient Descent

Definition 51 (Subgradient). $g \in \mathbb{R}^d$ is called subgradient of f at x if

$$f(y) \ge f(x) + g^T(y - x), \ \forall y \in \text{dom} f$$

Theorem 71. f convex, domf open. Then $||g|| \le B$, $\forall x \in domf \ iff f \ is B-Lipschitz$.

Definition 52 (Subgradient Step). Choose $g_t \in \partial f(x_t)$. $x_{t+1} = x_t - \gamma_t g_t$. (Gamma is usually constant)

Theorem 72 (Lipschitz Subgradient Descent). f convex and B-Lipschitz with global minimum x^* . Assume $||x_0 - x^*|| \le R$. With $\gamma = \frac{R}{B\sqrt{T}}$, subGD achieves:

$$Average\ Error \leq \frac{RB}{\sqrt{T}}$$

Warning: Smoothness does not make sense for non differentiable functions.

Definition 53 (Strong Convexity: Non differentiable case). f convex, $\eta > 0$. f is called η -strongly convex if

$$f(y) \ge f(x) + g^T(y - x) + \frac{\eta}{2} ||y - x||^2, \ \forall x, y \in \text{dom} f, \ \forall g \in \partial f(x)$$

Theorem 73 (SubGD with Strong Convexity). $f \eta$ -strongly convex, x^* unique minimum of f. With $\gamma_t = \frac{2}{\eta(t+1)}$, SubGD achieves

$$f\left(\frac{2}{T(T+1)}\sum_{t=1}^{T}tx_{t}\right) - f(x^{*}) \leq \frac{2B^{2}}{\eta(T+1)} \quad \text{where } B = \max_{t} \|g_{t}\|$$

Stochastic Descent

The function to optimize is $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$.

Definition 54 (Stochastic Gradient Descent Step). Sample $i \in \{1, ..., n\}$ at random. $x_{t+1} = x_t - \alpha_t \nabla f_i(x_t)$.

Definition 55 (Convenient Definition). $g_t = \nabla f_i(x_t)$ (Notice the *i* subindex).

Theorem 74. g_t is an unbiased estimator of $\nabla f(x_t) = \nabla \sum_i f_i(x_t)$.

Note: In the proof of this theorem it is shows that $f(x_t) - f(x^*) \leq g_t^T(x_t - x^*)$ holds in expectation.

Theorem 75. f convex, differentiable, x^* global minimizer, $||x_0 - x^*|| \le R$, $\mathbb{E}[||g_t||^2] \le B^2 \ \forall t$. With $\gamma = \frac{RB}{\sqrt{T}}$, SGD achieves:

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\left[f(x_t)\right] - f(x^*) \le \frac{RB}{\sqrt{T}}$$

Theorem 76. f differentiable, η -stongly convex. With $\gamma_t = \frac{2}{\eta(t+1)}$, Stochastic GD satisfies:

$$\mathbb{E}\left[f\left(\frac{2}{T(T+1)}\sum tx_t\right)\right] - f(x^*) \le \frac{2B^2}{\eta(T+1)}$$

Online Optimization

The setting: $f(x) = \sum_{t=1}^{T} f_t(x)$, f_t convex, X convex. At time t, choose x_t incur loss $f_t(x_t)$. Goal: Minimize Regret $R_T = \sum_{t=1}^{T} f_t(x_t) - f(x^*)$ where x^* is a static optimum.

Reducing Online Convex Optimization to Online Linear Optimization:

At each step, we receive loss vector $l_t = \nabla f_t(x_t)$ and incur loss $l_t^T x_t$.

Definition 56 (Online GD step). $y_{t+1} = x_t - \gamma l_t, x_{t+1} = \prod_X (y_{t+1}).$

Theorem 77. Let $R = \max \|x - x^*\|$ and assume that $\|l_t\| \leq B$, $\forall t$. With $\gamma = \frac{R}{B\sqrt{T}}$, OGD achieves regret $R_T \leq RB\sqrt{T}$.

Learning from Expert Advice

The setting: n experts, In timestep $t \in \{1, ..., T\}$:

- choose $i \in \{1, ..., n\}$ and follow advice of expert i,
- Observe loss vector $l_t \in [-1,1]^n$, incur loss $l_{t,i}$.

Modelling the Problem:

Our choices are $X = \{e_1, \dots, e_n\} \subseteq \mathbb{R}^n$. X is not convex, so we have to consider a probability simplex Δ defined as:

$$\Delta = \{x : x \ge 0, ||x||_1 = 1\}$$

Then define the expected regret as:

$$\mathbb{E}[R_T] = \sum_{t=1}^T l_t^T x_t - \sum_{t=1}^T l_t(i^*) \le \sum l_t^T x_t - \sum l_t^T x^* \le RB\sqrt{T}$$

where $x^* = \arg\min_{x \in \Delta} \sum_{t=0}^{\infty} l_t^T x$, $R = \max_{i,j} \|e_i - e_j\|^2 = \sqrt{2}$, $B = \max_{t \in \Delta} \|l_t\|^2 \le \sqrt{n}$.

Follow the Regularized Leader

We first choose a convex function Φ which is independent on the input. Then we choose $x_0 = \arg\min_{x \in X} \Phi(x)$. Then at time t:

$$x_t = \arg\min_{x \in X} \sum_{i=1}^{t-1} l_j^T x + \gamma \Phi(x)$$

Definition 57 (Dual Norm). Let $\| \circ \|$ be a norm. Its dual norm is defined as $\|x\|_* = \max\{z^T x : \|z\| \le 1\}$.

Remark: The dual of $\|\circ\|_2$ is $\|\circ\|_2$. The dual of $\|\circ\|_1$ is $\|\circ\|_{\infty}$.

Theorem 78. If Φ is 1-strongly convex with respect to $\|\circ\|$ on X (meaning $\Phi(y) \ge \Phi(x) + \nabla \Phi(x)^T (y-x) + \frac{1}{2} \|x-y\|^2$), then FTRL achieves regret

$$R_T \le 2\gamma \sum ||l_t||_*^2 + \frac{1}{\gamma} (\Phi(x^*) - \Phi(x_0))$$

Corollary 78.1 (l_2 Regularization). $\Phi(x) = \frac{1}{2} \|x\|_2^2$ is 1-strongly convex with respect to $\|\cdot\|_2$. In the expert setting with $X = \Delta$, $x_0 = (\frac{1}{n}, \dots, \frac{1}{n})$, we have that $\|x\|_2^2 \le 1 \forall x \in \Delta$ which gives $\Phi(x^*) - \Phi(x_0) \le 1$. We also have $l_t \in [-1, 1]^n$ which gives $\|l_t\| \le \sqrt{n}$. With $\gamma = \frac{1}{\sqrt{nT}}$, we achieve

$$R_t \le 2\sqrt{2Tn}$$

Entropy Regularization of FTRL

Definition 58 (Negative Entropy). $\Phi(x) = \sum x_i \log(x_i)$. Φ is 1-strongly convex with respect to the $\| \circ \|_1$ norm over the probability simplex in \mathbb{R}^n . Some properties:

$$\nabla \Phi(x) = \mathbb{1} + \begin{pmatrix} \log x_1 \\ \vdots \\ \log x_n \end{pmatrix} \qquad \arg \min_{x \in \Delta_n} \Phi(x) = \left(\frac{1}{n}, \dots, \frac{1}{n}\right)$$

Theorem 79. FTRL over X with entropy regularization achieves regret $R_T \leq 2RB\sqrt{2T}$ where $R^2 = \max_{x \in X} \Phi(x) - \Phi(x_0)$ and $B = \max_t ||l_t||_{\infty}$.

Corollary 79.1. $X = \Delta \subseteq \mathbb{R}^n$, B = 1 because $l_t \in [-1,1]^n$, $R^2 = \log n$. We get regret $2\sqrt{2T \log n}$.

Definition 59 (Convenient Definition). $H(x) = \gamma \left(\sum_{t=1}^t l_i\right)^T x + \Phi(x)$. We want $x_{t+1} = \arg\min_{x \in \Delta} H(x)$. One condition that is sufficient for this to hold is for $\nabla H(x)$ to be perpendicular. dicular to Δ .

Hedge ALG:

$$w_1 = 1,$$

$$w_{t+1}(j) = w_t(j) \exp(-\gamma l_t(j)), \ \forall j = 1, \dots, n$$

$$x_{t+1} = \frac{w_{t+1}}{\|w_{t+1}\|_1}.$$

Theorem 80. Hedge ALG achieves regret

$$R_T = \sum_{t} l_t^T x_t - \sum_{t} l_t e_{i^*} \le \gamma \sum_{t} ||l_t||_{\infty}^2 + \frac{1}{\gamma} \log n$$

if $||l_t||_{\infty} \leq B$ we can choose:

$$\gamma = \frac{\sqrt{\log n}}{B\sqrt{T}} \ achieving \ R_T \le 2B\sqrt{T\log n}.$$

Appendix A

```
ALG(Min-cost pert. biportite motohing).

Y=0, M=0

(IT) Initialize tree:

if M is perfect: return M

else r be un motched vertex, T=(1r), Ø, r)

(B) Build a tree:

choose arbitrary vwf E=, VfB(T), W$\psi V(T)

or go to (Y) if no such edge exists

if wz fM, add wz to T and go to (B)

else w is unmatched and there is aug. path

from r to w: augment M and go to (IT)

(Y) change y:

E:= min \( \frac{C_{VW}}{V_V - Y_W} - Y_W - Y_W \) Vw \( \frac{E}{V_V} - \frac{V_V - B(T)}{V_V - E_V} \) if \( \frac{E}{V_V} - \frac{V_V - B(T)}{V_V - E_V} \) if \( \frac{V_V - V_V - V_W}{V_V - E_V} - \frac{V_V - V_V - V_W}{V_V - E_V} \) if \( \frac{V_V - V_V - V_W}{V_V - E_V} - \frac{V_V - V_V - V_V}{V_V - E_V} - \frac{V_V - V_V - V_V}{V_V - E_V} - \frac{V_V - V_V}{V_V - V_V} - \frac{V_V - V_V}{V_V - E_V} - \frac{V_V - V_V}{V_V - V_V} - \frac{V_V - V_V - V_V}{V_V - V_V} - \frac{V_V - V_V}
```

Figure 2: Min Cost Perfect Bipartite Matching Algorithm