Lecture 8 Bayesian Network Learning

Machine Learning
Ivan Smetannikov

23.04.2021

Lecture plan

- Kindly reminder
- Template models brief
- Maximum Likelihood Estimation
- Likelihood, BIC, Bayesian scores
- Learning BN structure

Lecture plan

- Kindly reminder
- Template models brief
- Maximum Likelihood Estimation
- Likelihood, BIC, Bayesian scores
- Learning BN structure

Модели

CPD= Условное вероятностное распределение

Р факторизуется над G

- Пусть G граф на случайных величинах $X_1,...,X_n$.
- Р факторизуется над G если

$$P(X_1,...,X_n) = \prod_i P(X_i|Par_G(X_i))$$

Произведение факторов

Маргинализация факторов

Scope = {A,B,C}

a^1	b^1	c^1	0.25	Marginalize B				
a^1	b^1	c^2	0.35	SINalize P	Sco	ope =	{A.C}	
a^1	b^2	c^1	0.08			i	T	1 _
a^1	b^2	c^2	0.16		a^1	c^1	0.33	=
a^2	b^1	c^1	0.05		a^1	c^2	0.51	
					a^2	c^1	0.05	
a^2	b^1	c^2	0.07		a^2	c^2		
a^2	b^2	c^1	0			_	0.07	
a^2	b^2	c^2	0		a^3	c^1	0.24	
					a^3	c^2	0.39	
a^3	b^1	c^1	0.15					I
a^3	b^1	c^2	0.21					
a^3	b^2	c^1	0.09					
a^3	b^2	c^2	0.18					

=0.25+0.08

Редукция факторов

a^1	b^1	c^1	0.25
a^1	b^1	c^2	0.35
a^1	b^2	c^1	0.08
a^1	b^2	c^2	0.16
a^2	b^1	c^1	0.05
a^2	b^1	c^2	0.07
a^2	b^2	c^1	0
a^2	b^2	c^2	0
a^3	b^1	c^1	0.15
a^3	b^1	c^2	0.21
a^3	b^2	c^1	0.09
a^3	b^2	c^2	0.18

a^1	b^1	c^1	0.25
a^1	b^2	c^1	0.08
a^2	b^1	c^1	0.05
a^2	b^2	c^1	0
a^3	b^1	c^1	0.15
a^3	b^2	c^1	0.09

Scope = {A,B}

Цепное правило это Legal Distribution: $\sum P = 1$

Поток вероятностей: когда X влияет на Y при наличии наблюдения Z?

Активные пути

Путь $X_1 - \cdots - X_k$ называется активным для данного Z если:

- для любой v-structure $X_{i-1} \to X_i \leftarrow X_{i+1}$ получается что X_i или один из его потомков $\in Z$
- никакой другой X_i не находится в Z не формирует v-structure

Lecture plan

- Kindly reminder
- Template models brief
- Maximum Likelihood Estimation
- Likelihood, BIC, Bayesian scores
- Learning BN structure

Марковское предположение

цепное правило для вероятностей

$$P(X^{(0:T)}) = P(X^{(0)}) \prod_{t=0}^{T-1} P(X^{(t+1)}|X^{(0:t)})$$

время идет вперед

$$(X^{(t+1)} \bot X^{(0:t-1)} | (X^{(t)})$$
 следующий шаг прошлое настоящее

Скрытые марковские модели

Скрытые марковские модели

2ТВN переход уписатор об в тереход наблюдение

Повторение моделей

около t нет индекса = одинаковое для любого t

Nested Plates

Lecture plan

- Kindly reminder
- Template models brief
- Maximum Likelihood Estimation
- Likelihood, BIC, Bayesian scores
- Learning BN structure

Пример со смещенной монетой

G это распределение Бернулли:

$$P(X = 1) = \theta, P(X = 0) = 1 - \theta$$

 $D = \{x[1], ..., x[M]\}$ это IID (independent identically distributed) семплы из P:

- Броски независимы
- Броски из одного распределения

IID в виде PGM (Вероятностной графической модели)

Оценка максимального правдоподобия (MLE)

Цель: найти $\theta \in [0,1]$ которая хорошо предсказывает D

Качество предсказания: правдоподобие D при известном θ

$$L(\theta;D) = P(D|\theta) = \prod_{m=1}^{M} P(x[m]|\theta)$$

 $L(\theta:\langle H,T,T,H,H\rangle)$

Maximum Likelihood Estimator

- Наблюдения: M_H орлов и M_T решек
- Ищем θ максимизируя правдоподобие $L(\theta; M_H, M_T) = \theta^{M_H} (1 \theta)^{M_T}$
- Сводим к максимизации log-likelihood $l(\theta: M_H, M_T) = M_H \log \theta + M_T \log (1 \theta)$
- Дифференцируем log-likelihood и решаем для заданного θ :

$$\widehat{\theta} = \frac{M_H}{M_H + M_T}$$

Sufficient Statistics

- В примере с монетой для вычислений нужны только M_H и M_T
- Функция s(D) называется sufficient statistic из экземпляров в вектор R^k если для любых двух наборов данных D и D` и любой $\theta \in \Theta$ выполняется условие:

Если
$$\sum_{x[i] \in D} s(x[i]) = \sum_{x[i] \in D} s(x[i])$$
 то $L(\theta:D) = L(\theta:D)$

Sufficient Statistic для Мультинома

- Для набора данных D на переменной X c k возможными значениями, sufficient statistics это просто счетчики $\langle M_1, \dots, M_k \rangle$, где M_i число раз, когда $X[m] = x^i$
- Sufficient statistic s(x) это k-мерный tuple где

$$s(x^{i}) = (0, ..., 0, 1, 0, ..., 0), \sum_{i} s(x[m]) = \langle M_{1}, ..., M_{k} \rangle$$

$$L(\theta; D) = \prod_{i=1}^{k} \theta_{i}^{M_{i}}$$

Maximum Likelihood Estimation

Принцип MLE в общем случае: выбираем heta для максимизации $L(D\colon \Theta)$

MLE для байесовских сетей

• Параметры: $\{\theta_x : x \in val(X)\}, \{\theta_{y|x} : x \in val(X), y \in val(Y)\}$

$$L(\Theta:D) = \prod_{m=1}^{M} P(x[m], y[m]: \theta)$$

$$= \prod_{m=1}^{M} P(x[m]: \theta) P(y[m]|x[m]: \theta)$$

$$= \left(\prod_{m=1}^{M} P(x[m]: \theta)\right) \left(\prod_{m=1}^{M} P(y[m]|x[m]: \theta)\right)$$

$$= \left(\prod_{m=1}^{M} P(x[m]: \theta_X)\right) \left(\prod_{m=1}^{M} P(y[m]|x[m]: \theta_{Y|X})\right)$$
Local like/hood

MLE для байесовских сетей

• Likelihood для Байесовской сети более общего вида

$$L(\Theta:D) = \prod_{m=1}^{M} P(x[m]:\Theta)$$

$$= \prod_{m} \prod_{i} P(x_{i}[m]|U_{i}[m]:\Theta_{i})$$

$$= \prod_{m} \prod_{i} P(x_{i}[m]|U_{i}[m]:\Theta_{i}) = \prod_{i} L_{i}(D:\Theta_{i})$$
Local likelihood

MLE для табличных CPDs

$$\prod_{m=1}^{M} P(x[m]|u[m]:\theta) = \prod_{m=1}^{M} P(x[m]|u[m]:\theta_{X|U})$$

$$= \prod_{x,u} \left(\prod_{m:x[m]=x, u[m]=u} P(x[m]|u[m]:\theta_{X|U}) \right)$$

$$= \prod_{x,u} \left(\prod_{m:x[m]=x, u|m|=u} \theta_{x|u} \right)$$

$$= \prod_{x,u} \theta_{x|u}$$

$$\theta_{x|u} = \frac{M[x,u]}{\sum_{x} M[x,u]} = \frac{M[x,u]}{M[u]}$$

Итого

- Для Байесовской Сети с disjoint параметрами в CPD, правдоподобие декомпозируется как произведение локальных функций правдоподобия, по одной на каждую переменную
- Для табличных СРD, локальные правдоподобия можно дальше декомпозировать как произведение правдоподобий для мультиномов, одно для каждой комбинации родителей

Lecture plan

- Kindly reminder
- Template models brief
- Maximum Likelihood Estimation
- Likelihood, BIC, Bayesian scores
- Learning BN structure

Важность точного построения

Оригинальный граф

Пропустили ребро

Лишнее ребро

- Некорректные независимости
- Нельзя выучить правильное распределение Р*
- Лучше обобщающая способность

- Ложные зависимости
- Можем выучить правильное распределение Р*
- Увеличенное число параметров
- Хуже обобщающая способность

Что нужно для построения?

- Метрика
- Оптимизатор

Пример

• Найти (G, θ) которая максимизирует правдоподобие

$$score_L(G:D) = l((\widehat{\theta},G):D)$$

Пример

$$G_{0} \bigotimes_{score_{L}(G_{0}:D)} G_{1} \bigotimes_{score$$

Избегаем переобучения

- Ограничиваем пространство
 - Число родителей или число параметров
- Дополнительные штрафы на сложность
 - Явные
 - Bayesian score усредняется по всем возможным значениям параметров

BIC score

• Штрафуем сложность

$$score_{BIC}(G:D) = score_{L}(G:D) - \frac{\log M}{2}Dim[G]$$

Dim[G] = 2 в степени числа ребер

Bayesian score

Marginal likelihood

Prior over structures

$$P(G:D) = \frac{P(D|G)P(G)}{P(D)}$$

Marginal probability of Data

$$score_B(G:D) = \log P(D|G) + \log P(G)$$

Marginal Likelihood

$$P(\mathcal{D} \mid \mathcal{G}) = \prod_{i} \prod_{\boldsymbol{u}_{i} \in Val(\mathbf{Pa}_{X_{i}}^{\mathcal{G}})} \frac{\Gamma(\alpha_{X_{i}|\boldsymbol{u}_{i}})}{\Gamma(\alpha_{X_{i}|\boldsymbol{u}_{i}} + M[\boldsymbol{u}_{i}])} \prod_{x_{i}^{j} \in Val(X_{i})} \left[\frac{\Gamma(\alpha_{x_{i}^{j}|\boldsymbol{u}_{i}} + M[x_{i}^{j}, \boldsymbol{u}_{i}])}{\Gamma(\alpha_{x_{i}^{j}|\boldsymbol{u}_{i}})} \right]$$

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt \qquad \Gamma(x) = x \cdot \Gamma(x-1)$$

Lecture plan

- Kindly reminder
- Template models brief
- Maximum Likelihood Estimation
- Likelihood, BIC, Bayesian scores
- Learning BN structure

Строим деревья/леса

- Леса
 - Максимум один родитель для каждой переменной
- Почему деревья?
 - Математика
 - Эффективная оптимизация
 - Разреженная параметризация

Обучение

• p(i)=родитель X_i или 0 если у X_i нет родителей

$$\operatorname{score}(\mathcal{G} : \mathcal{D}) = \sum_{i} \operatorname{score}(X_{i} \mid \mathbf{Pa}_{X_{i}}^{\mathcal{G}} : \mathcal{D})$$

$$= \sum_{i:p(i)>0} \operatorname{score}(X_{i} \mid X_{p(i)} : \mathcal{D}) + \sum_{i:p(i)=0} \operatorname{score}(X_{i} : \mathcal{D})$$

$$= \sum_{i:p(i)>0} \left(\operatorname{score}(X_{i} \mid X_{p(i)} : \mathcal{D}) - \operatorname{score}(X_{i} : \mathcal{D})\right) + \sum_{i=1}^{n} \operatorname{score}(X_{i} : \mathcal{D})$$

Улучшение по сравнению с пустой сетью Score of empty network

Обучение

- Определить неориентированный граф с вершинами {1,...,n}
- Назначаем w = max(score, 0)
- Строим остовное дерево Крускалом или еще чемто
- Удаляем нулевые ребра

Что-то кроме деревьев?

- В общем случае всё не так очевидно
 - Пример: Если позволить наличие двух родителей, то жадный алгоритм уже не гарантирует оптимальное множество
- Теорема
 - Поиск сети со структурой имеющий
 максимальный score для ситуации когда для каждой переменной разрешено не более k родителей является NP-трудной для k>1

Эвристический поиск

- Операторы:
 - Пошаговые: добавление, удаление, инверсия ребер
 - Глобальные шаги
- Техники:
 - Greedy hill-climbing
 - Best first search
 - Simulated Annealing

— ...