

Группа: <u>Р3131</u>	К работе допущен <u>:</u>
Студент: Зубахин Д.С.	_Работа выполнена <u>:</u>
Преподаватель: Нурыев Р К	Отчет принят:

Рабочий протокол и отчет по лабораторной работе № 3.10 *«Изучение свободных затухающих*

колебаний»

1. Цель работы.

Изучение основных характеристик свободных затухающих колебаний

2. Задачи, решаемые при выполнении работы.

Сбор схемы. Снятие и обработка измерений.

3. Объект исследования.

Колебательный контур

4. Метод экспериментального исследования.

Многократные измерения физических величин

5. Рабочие формулы и исходные данные.

Логарифмический декремент колебаний (1)

$$\lambda = \frac{1}{n} \ln \frac{U_i}{U_{i+n}}.$$

Индуктивность катушки (2)

$$L = \frac{\pi^2 R^2 C}{\lambda^2}$$

Период колебаний (3)

$$T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}.$$

Полное сопротивление контура (4)

$$R = R_{\rm M} + R_{\rm 0}$$
.

Собственное сопротивление контура (5)

$$R_0 = -R_{\rm M}\big|_{\lambda=0}$$
.

Добротность колебательного контура (6)

$$Q = \frac{2\pi}{1 - e^{-2\lambda}}$$

Добротность колебательного контура для малых сопротивлений (7)

$$Q = \frac{1}{R} \cdot \sqrt{\frac{L}{C}} .$$

Критическое сопротивление (8)

$$R_{\rm kp} = 2 \cdot \sqrt{\frac{L}{C}}$$
,

Формула Томсона (9)

$$T = 2\pi\sqrt{LC}$$

6. Измерительные приборы.

Nº	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	оцл	Электрический	-	-

7. Схема установки (перечень схем, которые составляют Приложение 1).

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Rm , Ом	Т, мс	2U(i) дел	2U(i+3),дел	n	λ	Q	R, Ом	L, мГн
0	0,09	5,4	1,8	3	0,37	12,12	56	4,99
10	0,09	4,8	1,5	3	0,39	11,66	66	6,20
20	0,09	4,7	1,4	3	0,40	11,36	76	7,59
30	0,09	4,5	1,2	3	0,44	10,74	86	8,18
40	0,09	3,8	0,9	3	0,48	10,19	96	8,59
50	0,09	3,6	1,3	2	0,51	9,85	106	9,31
60	0,09	3,7	1,1	2	0,61	8,95	116	7,87
70	0,09	3,5	0,9	2	0,68	8,47	126	7,41
80	0,09	3,3	0,7	2	0,78	7,98	136	6,63
90	0,09	3,1	0,6	2	0,82	7,80	146	6,81
100	0,09	2,9	0,5	2	0,88	7,60	156	6,79
200	0,09	1,6	0,4	1	1,39	6,70	256	7,37
300	0,09	0,6	0,2	1	1,10	7,07	356	22,72
400	0,09	0,5	0,1	1	1,61	6,54	456	17,38

С, мкФ	Тэксп, мс	Ттеор, мс	$\delta T = \frac{T_{\text{\tiny SKCII}} - T_{\text{\tiny Teop}}}{T_{\text{\tiny Teop}}}, \%$	Ттомс,мс
0,022	0,09	0,089	•	0,089
0,033	0,11	0,109	1%	0,109
0,047	0,13	0,130	0%	0,130
0,47	0,41	0,403	2%	0,411

9. Расчет результатов косвенных измерений.

Расчёт логарифмического декремента (формула 1)

$$\lambda = \frac{1}{3} ln \frac{5.4}{2.6} \approx 0.37$$

Рассчитаем коэффициенты $\lambda = kR_M + b$

$$k = \frac{n * \sum_{i=1}^{n} (R_{M_i} * \lambda_i) - \sum_{i=1}^{n} R_{M_i} \sum_{i=1}^{n} \lambda_i}{n * \sum_{i=1}^{n} R_{M_i}^2 - (\sum_{i=1}^{n} R_{M_i})^2} = \frac{11 * 377,6 - 550 * 6,35}{11 * 38500 - 302500} \approx 0,0055 \text{ Om}^{-1}$$

$$b = \frac{\sum_{i=1}^{n} \lambda_i - k \sum_{i=1}^{n} R_{M_i}}{n} = \frac{6,35 - 0,0055 * 550}{11} \approx 0,3037$$

Собственное сопротивление контура при $\lambda = 0$ (формулы 4 и 5)

$$R_0 = \frac{0,3037}{0.0055} \approx 55,54 \text{ Om}$$

Индуктивность катушки (формула 2)

$$L = \frac{3,14^2 * 55,54 * 0,022 * 10^{-6}}{0,3037} * 10^3 \approx 7,25 \,\mathrm{m}\Gamma\mathrm{h}$$

Для
$$L \le 100 \text{ Ом}$$
 $\langle L \rangle \approx 9.13 \text{ мГн}$

Период колебаний для $R_M = 0$ Ом (формула 3)

$$T = \frac{2*3,14}{\sqrt{\frac{1}{9,13*10^{-3}*0,022*10^{-6}} - \frac{55,54^2}{4*(9,13*10^{-3})}}} \approx 0,089 \text{ MC}$$

Отклонение

$$\delta T = \frac{0,09 - 0,089}{0.09} \approx 1\%$$

Добротность для R = 106 (формула 6)

$$Q = \frac{2 * 3,14}{1 - e^{-2*0,51}} \approx 9,85$$

Критическое сопротивление по вычислениям (формула 8)

$$R_{\rm kp} = 2\sqrt{\frac{9,13 * 10^{-3}}{0,22 * 10^{-6}}} \approx 1288,6$$

Критическое сопротивление по данным стенда

$$R_{\rm KD} = 1348,4$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Погрешность логарифмического декремента:

$$\Delta \lambda = \lambda \sqrt{\left(\frac{2}{3} * \frac{0.5}{3 * 5.14}\right)^2 + \left(\frac{2}{3} * \frac{0.5}{3 * 1.8}\right)^2} \approx 0.024$$

Погрешность индуктивности катушки:

$$\Delta L = 4,99 \sqrt{\left(\frac{3,1416 - 3,14}{3,14}\right)^2 + (0,1)^2 + \left(\frac{0,024}{0,37}\right)^2} \approx 0,595 \text{ M}\text{TH}$$

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1

График 3

12. Окончательный результаты

График 1 График 2

График 3

 $\langle L \rangle = (9,13 \pm 0,595) \,\mathrm{M}$ Гн

13. Выводы и анализ результатов работы.

Мы собрали схему, провели многократные измерения и обработали их.

Определили коэффициент линейной зависимости $\lambda = kR_M + b$ b и собственное сопротивление контура. И, собственно, построили график зависимости λ от R_M

Рассчитали индуктивность катушки и её погрешность. Индуктивность, указанная на стенде, лежит в пределах погрешности.

Нашли добротность колебательного контура и построили график зависимости добротности от сопротивления колебательного контура.

Определили теоретический период и сравнили его с экспериментальным. Получили малое различие между ними. Построили график зависимости $T_{\text{теор}}$ от $T_{\text{экс}}$.

Вопросы:

- 1. Где применяется контур с аналогичными затухающими колебаниями.
- 2. Как на колебания будет влиять кол-во витков катушки.
- 3. Какой физический смысл добротности контура и от чего она будет зависеть.

Ответы:

1. Используется в катушке индуктивности и конденсаторе.

$$T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}.$$

2.

Из формулы выше следует, что при уменьшении кол-ва витков, знаменатель уменьшается, следовательно период увеличивается. При увеличении кол-ва витков, соответственно период уменьшается.

3. Добротность — параметр колебательной системы, определяющий ширину резонанса и характеризующий, во сколько раз запасы энергии в системе больше, чем потери энергии за время изменения фазы на 1 радиан.

Добротность контура пропорциональна отношению энергии, запасённой в контуре, к её потерям за период колебаний (т.е. энергии, выделяющейся в контуре за период в виде тепла).