MEASURE THEORY AND INTEGRATION

MATH 320, YALE UNIVERSITY, FALL 2022

These are lecture notes for MATH 320, "Measure Theory and Integration" taught by Charlie Smart at Yale University during the fall of 2022. These notes are not official, and have not been proofread by the instructor for the course. These notes live in my lecture notes respository at

https://github.com/Eph97/Eph97/Math320.

If you find any errors, please open a bug report describing the error, and label it with the course identifier, or open a pull request so I can correct it.

Contents

Sy	llabus	
1	2022-08-31	
	1.1 Course Plan	:

SYLLABUS

Syllabus

Instructor Prof. Charlie Smart, charlie.smart@yale.edu

Lecture MW 11:35 AM-12:50 PM, Hum 207

Recitation TBA

Textbook Real & Complex Analysis

Midterms TBD Final TBD

1 2022-08-31

Following the universal rule for first class, we covered the syllabus and logistics. We then dove into review on the Riemann integral to motivate measure theory. Prof. Smart seemed much more comfortable talking about math than logistics.

1.1 Course Plan

- · Review Riemann Int
- Abstract Measure Theory (Majority of class)
- Applications in Probability
- · Apps in Dynamics
- Some brief apps in geometry

Problem 1.1. The Riemann Integral

Works for most functions of interest but notably

- 1. Is not closed under important limits
- 2. It is hard to eneralize to new geometries.

Definition (Riemann Integral). We can define the riemann integral as $\int_{\mathbf{Q}} f$ of a bounded $f: \mathbf{Q} \to \mathbf{R}$ defined in closed rectangles $\mathbf{Q} = [a_1,b_1] \times [a_2,b_2] \dots [a_d,b_d] \subseteq \mathbf{R}$. We use Darboux sums

Riemann Integral

Definition (partition). A <u>partition</u> of \mathbf{Q} is a finite set of *closed* rectangles whose |underlineinteriors are disjoint and whose union is \mathbf{Q} .

partition

The upper and lower Darboux sums are $U(p,f)=\sum_{R\in P}\sup f\cdot |R|$ and $L(p,f)=\inf f\cdot |R|$

Lemma 1.1. For any 2 partitions p_1 and p_2 of \mathbf{Q} , $L(p_1, f) \leq U(p_2, f)$ Solution. We have

$$L(p_1, f) = \sum_{i=1}^{n} f(p_i, f) = \sum_{i=1}^{n} f(p_i, f) = \sum_{i=1}^{n} f(p_i, f)$$