

2025/01/22 (个)

Session 2 – 운영체제

김광수

오프닝

강의 듣는데 다들 어떠셨나요?

Ex.

다 들었는지,,

이해는 어느 정도 됐는지,,

시간이 부족하거나 남지는 않았는지 등

컴퓨터 시스템의 구조

GUI & CUI

ChatGPT는 키보드만 사용하는데 CUI인가?

ChatGPT의 인터페이스 성격

특징	CUI (CLI)	ChatGPT
입력 방식	텍스트 기반 명령어 입력	자연어 대화 입력
사용자 경험	명령어 학습 필요	학습 필요 없이 자연어로 상호작용 가능
출력 형식	텍스트 출력	텍스트 출력, 상황에 따라 그래픽 요 소 포함
목적	시스템 명령 수행	정보 제공, 대화, 작업 지원
확장성	제한된 기능 (명령어 중심)	다양한 작업 처리 (예: 코드 생성, 번 역 등)

CPU

ALU

ALU - 내보내는 정보

플래그 종류	의미	사용 예시
부호 플래그	연산한 결과의 부호를 나타낸다.	부호 플래그가 1일 경우 계산 결과는 음수. 0일 경우 계산 결과는 양수를 의미한다.
제로 플래그	연산 결과가 0인지 여부를 나타낸다.	제로 플래그가 1일 경우 연산 결과는 0,0일 경우 연산 결과는 0이 아님을 의미한다.
캐리 플래그	연산 결과 올림수나 빌림수가 발생했는 지를 나타낸다.	캐리 플래그가 1일 경우 올림수나 빌림수가 발생했음을 의미하고, 0일 경우 발생하지 않았음을 의미한다.
오버플로우 플래그	오버플로우가 발생했는지를 나타낸다.	오버플로우 플래그가 1일 경우 오버플로우가 발생했음을 의미하고, 0일 경우 발생하지 않았음을 의미한다.
인터럽트 플래그	인터럽트가 가능한지를 나타낸다. 인터럽 트는 04-3절에서 설명한다.	인터럽트 플래그가 1일 경우 인터럽트가 가능함을 의미하고, 0일 경우 인터럽트가 불가능함을 의미한다.
슈퍼바이저 플래그	커널 모드로 실행 중인지, 사용자 모드로 실행 중인자를 나타낸다. 커널 모드와 사 용자 모드는 09장에서 설명한다.	슈퍼바이저 플래그가 1일 경우 커널 모드로 실행 중임을 의미하고, 0일 경우 사용자 모드로 실행 중임을 의미한다.

시스템 콜

▼ 시스템 콜의 주요 목적

목적	설명	예시
안전성 확보	프로그램이 하드웨어와 운영 체제 에 직접 접근하지 못하도록 제한하 여 보안과 안정성 보장.	프로그램이 메모리에 무단 접근하 지 못하도록 보호
자원 관리	CPU, 메모리, 디스크 등 하드웨어 자 원을 운영 체제가 효율적으로 관리.	여러 프로세스가 디스크 파일을 동 시에 열 때 조율
추상화 제공	하드웨어의 복잡한 동작을 감추고, 프로그램이 단순한 인터페이스로 강력한 기능을 사용 가능.	read() 호출로 파일 읽기 처리
하드웨어 독립성	운영 체제가 다양한 하드웨어를 추 상화하여, 프로그램이 특정 하드웨 어에 종속되지 않게 함.	동일한 코드가 다른 플랫폼에서 작 동 가능
효율적 자원 공유	여러 프로그램이 동시에 자원을 공 유하면서도 충돌 없이 사용할 수 있 도록 조율.	네트워크 소켓을 여러 프로그램이 공유

감사합니다