

ใบงานที่ 10	หน้าที่ 1
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

ชื่อเรื่อง การใช้งานโมดูล Timer/Counter

จุดประสงค์การเรียนการสอน

จุดประสงค์ทั่วไป

- 1. เพื่อให้มีทักษะในการออกแบบและต่อวงจรการใช้งานโมดูล Timer/Counter ของไมโครคอนโทรลเลอร์
- 2. เพื่อให้มีทักษะในเขียนโปรแกรมไมโครคอนโทรลเลอร์เพื่อควบคุมการทำงานโมดูล Timer/Counter
- 3. เพื่อให้มีทักษะในการใช้งานโปรแกรม Proteus ในการจำลองการทำงานของโมดูล Timer/Counter ภายใน ไมโครคอนโทรลเลอร์
 - 4. เพื่อให้มีเจตคติที่ดีต่อการเรียนรู้เรื่อง การใช้งานโมดูล Timer/Counter

จุดประสงค์เชิงพฤติกรรม

- 1. เตรียมเครื่องมือ วัสดุ และอุปกรณ์ได้ถูกต้อง
- 2. ต่อวงจรนับเพื่อใช้งานโมดูล Timer/Counter ภายในไมโครคอนโทรลเลอร์ในลักษณะ Counter ได้
- 3. ต่อวงจรนาฬิกาเพื่อใช้งานโมดูล Timer/Counter ภายในไมโครคอนโทรลเลอร์ในลักษณะ Timer ได้
- 4. เขียนโปรแกรมควบคุมวงจรนับเพื่อใช้งานโมดูล Timer/Counter ภายในไมโครคอนโทรลเลอร์ในลักษณะ Counter ได้
- 5. เขียนโปรแกรมควบคุมวงจรนาฬิกาเพื่อใช้งานโมดูล Timer/Counter ภายในไมโครคอนโทรลเลอร์ใน ลักษณะ Timer ได้
- 6. ใช้โปรแกรม Proteus เพื่อต่อวงจรทดสอบการทำงานของโมดูล Timer/Counter ภายใน ไมโครคอนโทรลเลอร์ได้
- 7. ปฏิบัติงานได้อย่างถูกต้อง ประณีต รอบคอบ ปลอดภัย และเสร็จภายในเวลาที่กำหนด อย่างมีคุณธรรม จริยธรรม

คุณธรรม จริยธรรม ค่านิยมและคุณลักษณะที่พึงประสงค์

- 1. มีความซื่อสัตย์สุจริต
- 2. มีความอดทนอดกลั้น
- 3. มีความรักสามัคคีในการปฏิบัติงาน
- 4. มีมนุษยสัมพันธ์ในการทำงาน
- 5. มีการคำนึงถึงความปลอดภัยในการปฏิบัติงาน

เครื่องมือ วัสดุ และอุปกรณ์การปฏิบัติงาน

1.	ใบความรู้เรื่องการใช้งานโมดูล Timer/Counter	1 ชุด
2.	ชุดทดลองวงจรดิจิทัลและไมโครคอนโทรลเลอร์	1 ชุด
3.	จอแสดงผล Character LCD ขนาด 16x2	1 ตัว
4.	มัลติมิเตอร์	1 ตัว

ใบงานที่ 10	หน้าที่ 2
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

ชื่อเรื่อง การใช้งานโมดูล Timer/Counter

5. สายต่อวงจร	40 เส้น
6. คอมพิวเตอร์ที่ติดตั้งโปรแกรม Proteus 7.8SP2	1 เครื่อง
7. สวิตช์ Button	2 ตัว
8. ตัวเก็บประจุค่า 0.1uF/50V แบบเซรามิค	2 ตัว
9. ตัวต้านทานค่า 10k $oldsymbol{\Omega}$	2 ตัว

ข้อควรระวัง

ขณะปฏิบัติการทดลองห้ามหยอกล้อเล่นกัน และห้ามนำสายต่อลัดวงจรระหว่างขั้วไฟ Vcc 5V กับ GND **ข้อเสนอแนะ**

ควรตรวจสอบความพร้อมของเครื่องมือและอุปกรณ์ทุกครั้งก่อนใช้งาน รวมถึงควรศึกษาและปฏิบัติตาม ขั้นตอนการปฏิบัติงานอย่างเคร่งครัด

ลำดับขั้นการปฏิบัติงาน (Step Operation)

- 1. การใช้งานโมดูล Timer/Counter ของไมโครคอนโทรลเลอร์ AT89C51ED2
- 1.1 ให้นักศึกษาใช้ชุดทดลองวงจรดิจิทัลและไมโครคอนโทรลเลอร์ ร่วมกับบอร์ดใช้งานไมโครคอนโทรลเลอร์ AT89C51ED2 เพื่อต่อวงจรในรูปที่ 1.1 เพื่อทดลองการสร้างวงจรนับที่ใช้งานโมดูล Timer/Counter ภายใน ไมโครคอนโทรลเลอร์ในลักษณะ Counter

รูปที่ 1.1 รูปวงจรนับที่ใช้งานโมคูล Timer/Counter ภายใน AT89C51ED2 ในลักษณะ Counter

sbit rs_lcd = P0^2; sbit en_lcd = P0^3;

ใบงานที่ 10

หน้าที่ 3

ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004

หน่วยที่ 6

ชื่อหน่วย การใช้งานโมดูล Timer/Counter

ชื่อเรื่อง การใช้งานโมดูล Timer/Counter

1.2 จากวงจรในข้อที่ 1.1 ให้นักศึกษาเขียนโปรแกรมตามตัวอย่างต่อไปนี้โดยใช้โปรแกรม Keil uVision3 ตามขั้นตอนในใบความรู้เรื่องภาษาซีกับไมโครคอนโทรลเลอร์ และทำการ Build โปรแกรมจนกว่าไม่เกิด Error เพื่อให้ ได้ไฟล์นามสกุล .hex เพื่อนำไปใช้งานต่อไป #include <at89c51xd2.h> #define lcd_port P0

```
const unsigned char ascii[16] = "0123456789ABCDEF";
```

```
void delay(int time){
          char i;
          for(;time>0;time--)
                for(i=100;i>0;i--);
}
void lcd_busy(int time){
```

 $en_lcd = 0;$

en lcd = 1;

}

for(;time>0;time--);

void lcd_command(unsigned char cmd){

```
rs_lcd = 0;
lcd_port = (lcd_port & 0x0f) | (cmd & 0xf0);
lcd_busy(200);
lcd_port = (lcd_port & 0x0f) | (cmd << 4);
lcd_busy(200);
rs_lcd = 1;
```


ใบงานที่ 10

หน้าที่ 4

ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004

หน่วยที่ 6

ชื่อหน่วย การใช้งานโมดูล Timer/Counter

```
void lcd_putc(unsigned char dat){
       rs lcd = 1;
       lcd port = (lcd port & 0x0f) | (dat & 0xf0);
       lcd busy(200);
       lcd port = (lcd port & 0x0f) | (dat << 4);</pre>
       lcd_busy(200);
       rs_lcd = 1;
void lcd_puts(char *str){
       while(*str != '\0') lcd putc(*str++);
}
void lcd init(){
       en lcd = 1;
       rs_lcd = 1;
       lcd command(0x33);
       lcd_command(0x32);
       lcd_command(0x28);
       lcd command(0x0c);
       lcd command(0x06);
       lcd command(0x01);
       delay(500);
void showNum(unsigned char dat){
       lcd_command(0xc0);
       lcd putc(ascii[dat/100]);
       lcd putc(ascii[(dat%100)/10]);
       lcd_putc(ascii[dat%10]);
```


ใบงานที่ 10	หน้าที่ 5
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

```
void init_timer0_counter8bit_mode3(){
  TMOD = (TMOD \& 0xf0) | 0x07;
  TF0 = 0;
  TL0 = 0;
  TR0 = 1:
void main(){
       unsigned char num=0;
       lcd_init();
       lcd command(0x80);
       lcd puts("Counter0 Mode3");
       init_timer0_counter8bit_mode3();
       showNum(num);
       while(1){
               if(num != TL0){
                      num = TL0:
                      showNum(num);
               if(TF0 == 1) TF0 = 0;
        1.3 จากข้อที่ 1.2 ให้นักศึกษาใช้โปรแกรม Proteus ISIS ทำการจำลองการทำงานของวงจรเปรียบเทียบกับ
การทำงานของวงจรจริง โดยการโหลดไฟล์นามสกุล .hex ลงบนตัวไมโครคอนโทรลเลอร์ AT89C51ED2 ด้วย
์ โปรแกรม Flip 3.4.7 และป้อนแหล่งจ่ายให้บอร์ดทดลอง พร้อมทั้งทดลองกดสวิตช์ที่ขา P3.4 เพื่อทดสอบการทำงาน
ของวงจร และบันทึกผลการทดลอง
       ์
บันทึกผลการทดลอง
```


ใบงานที่ 10	หน้าที่ 6
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

ชื่อเรื่อง การใช้งานโมดูล Timer/Counter

1.4 ให้นักศึกษาใช้ชุดทดลองวงจรดิจิทัลและไมโครคอนโทรลเลอร์ ร่วมกับบอร์ดใช้งานไมโครคอนโทรลเลอร์ AT89C51ED2 เพื่อต่อวงจรในรูปที่ 1.2 เพื่อทดลองการสร้างวงจรนาฬิกาที่ใช้งานโมดูล Timer/Counter ภายใน ไมโครคอนโทรลเลอร์ในลักษณะ Timer

รูปที่ 1.2 รูปวงจรนาหิกาที่ใช้งานโมดูล Timer/Counter ภายใน AT89C51ED2 ในลักษณะ Timer

1.5 จากวงจรในข้อที่ 1.2 ให้นักศึกษาเขียนโปรแกรมตามตัวอย่างต่อไปนี้โดยใช้โปรแกรม Keil uVision3
ตามขั้นตอนในใบความรู้เรื่องภาษาซีกับไมโครคอนโทรลเลอร์ และทำการ Build โปรแกรมจนกว่าไม่เกิด Error เพื่อให้
ได้ไฟล์นามสกุล .hex เพื่อนำไปใช้งานต่อไป

#include <at89c51xd2.h>

#define lcd port P0

sbit rs $lcd = P0^2$;

sbit en $lcd = P0^3$;

const unsigned char ascii[16] = "0123456789ABCDEF";

ใบงานที่ 10	หน้าที่ 7
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

```
void delay(int time){
       char i;
       for(;time>0;time--)
               for(i=100;i>0;i--);
}
void lcd_busy(int time){
       en_lcd = 0;
       for(;time>0;time--);
       en_lcd = 1;
void lcd command(unsigned char cmd){
       rs lcd = 0;
       lcd port = (lcd port & 0x0f) | (cmd & 0xf0);
       lcd busy(200);
       lcd_port = (lcd_port & 0x0f) | (cmd << 4);</pre>
       lcd busy(200);
       rs_lcd = 1;
}
void lcd putc(unsigned char dat){
       rs lcd = 1;
       lcd port = (lcd port & 0x0f) | (dat & 0xf0);
       lcd busy(200);
       lcd_port = (lcd_port & 0x0f) | (dat << 4);</pre>
       lcd_busy(200);
       rs_lcd = 1;
void lcd puts(char *str){
       while(*str != '\0') lcd_putc(*str++);
}
```


ใบงานที่ 10 หน้าที่ 8 ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 หน่วยที่ 6

ชื่อหน่วย การใช้งานโมดูล Timer/Counter

```
void lcd init(){
        en lcd = 1;
        rs lcd = 1;
        lcd command(0x33);
        lcd command(0x32);
        lcd command(0x28);
        lcd command(0x0c);
        lcd_command(0x06);
        lcd command(0x01);
        delay(500);
void showNum(unsigned int dat){
        lcd command(0xc0);
        lcd putc(ascii[dat/10000]);
        lcd putc(ascii[(dat%10000)/1000]);
        lcd putc(ascii[(dat%1000)/100]);
        lcd_putc(ascii[(dat%100)/10]);
        lcd_putc(ascii[dat%10]);
void init_timer1_timer16bit_mode1(){
  TMOD = (TMOD \& 0x0f) | 0x10;
  TR1 = 0;
}
void delay1S(){ //XTAL = 12MHz, T = 1/(12MHz/12) = 1uS
  char count;
  for(count=20;count>0;count--){ // T = 50mS \times 20 = 1S}
     TH1 = 0x3c; //Timer1 Count = 65536 - 15536 = 50000uS
     TL1 = 0xb0;
     TF1 = 0;
     TR1 = 1;
     while(TF1 == 0);
     TR1 = 0;
  }
```


ใบงานที่ 10

หน้าที่ 9

ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004

หน่วยที่ 6

ชื่อหน่วย การใช้งานโมดูล Timer/Counter

```
void main(){
       unsigned int num=0;
       lcd init();
       lcd command(0x80);
       lcd puts("Test Timer1");
       init timer1 timer16bit mode1();
       showNum(num);
       while(1)
              delay1S();
              num++;
              if(num > 100) num = 0;
              showNum(num);
       }
        1.6 จากข้อที่ 1.5 ให้นักศึกษาใช้โปรแกรม Proteus ISIS ทำการจำลองการทำงานของวงจรเปรียบเทียบกับ
การทำงานของวงจรจริง โดยการโหลดไฟล์นามสกุล .hex ลงบนตัวไมโครคอนโทรลเลอร์ AT89C51ED2 ด้วย
โปรแกรม Flip 3.4.7 และป้อนแหล่งจ่ายให้บอร์ดทดลอง เพื่อทดสอบการทำงานของวงจร และบันทึกผลการทดลอง
       บันทึกผลการทดลอง
```


ใบงานที่ 10	หน้าที่ 10
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

ชื่อเรื่อง การใช้งานโมดูล Timer/Counter

- 2. การใช้งานโมดูล Timer/Counter ของไมโครคอนโทรลเลอร์ PIC16F887
- 2.1 ให้นักศึกษาใช้ชุดทดลองวงจรดิจิทัลและไมโครคอนโทรลเลอร์ ร่วมกับบอร์ดใช้งานไมโครคอนโทรลเลอร์ PIC16F887 เพื่อต่อวงจรในรูปที่ 2.1 เพื่อทดลองการสร้างวงจรนับที่ใช้งานโมดูล Timer/Counter ภายในไมโครคอนโทรลเลอร์ในลักษณะ Counter

รูปที่ 2.1 รูปวงจรนับที่ใช้งานโมดูล Timer/Counter ภายใน PIC16F887 ในลักษณะ Counter

2.2 จากวงจรในข้อที่ 2.1 ให้นักศึกษาเขียนโปรแกรมตามตัวอย่างต่อไปนี้โดยใช้โปรแกรม MPLAB X ตาม ขั้นตอนในใบความรู้เรื่องภาษาซีกับไมโครคอนโทรลเลอร์ และทำการ Build โปรแกรมจนกว่าไม่เกิด Error เพื่อให้ได้ ไฟล์นามสกุล .hex เพื่อนำไปใช้งานต่อไป

#define XTAL FREQ 20000000

#include <xc.h>

#define lcd port PORTD

#define lcd tris TRISD

#define rs lcd RD2

#define en_lcd RD3

const unsigned char ascii[16] = "0123456789ABCDEF";

ใบงานที่ 10	หน้าที่ 11	
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6	

```
void lcd_busy(int time){
       en lcd = 0;
       for(;time>0;time--) delay us(500);
       en lcd = 1;
}
void lcd_command(unsigned char cmd){
       rs_lcd = 0;
       lcd_port = (lcd_port & 0x0f) | (cmd & 0xf0);
       lcd_busy(2);
       lcd_port = (lcd_port & 0x0f) | (cmd << 4);</pre>
       lcd busy(2);
       rs lcd = 1;
void lcd putc(unsigned char dat){
       rs_lcd = 1;
       lcd_port = (lcd_port & 0x0f) | (dat & 0xf0);
       lcd_busy(2);
       lcd_port = (lcd_port & 0x0f) | (dat << 4);</pre>
       lcd busy(2);
       rs_lcd = 1;
void lcd puts(char *str){
       while(*str != '\0') lcd_putc(*str++);
}
void showNum(unsigned char dat){
       lcd command(0xc0);
       lcd putc(ascii[(dat%1000)/100]);
       lcd_putc(ascii[(dat%100)/10]);
       lcd putc(ascii[dat%10]);
```


ใบงานที่ 10	หน้าที่ 12
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

```
void lcd_init(){
       lcd tris &= 0x03;
        en_lcd = 1;
        rs lcd = 1;
        lcd_command(0x33);
        lcd_command(0x32);
        lcd_command(0x28);
        lcd_command(0x0c);
        lcd_command(0x06);
        lcd_command(0x01);
        __delay_ms(500);
void init_timer0_counter8bit(){
  TRISAbits.TRISA4 = 1;
  OPTION_REGbits.TOCS = 1;
  OPTION REGbits.TOSE = 1;
  INTCONbits.T0IF = 0;
  TMR0 = 0;
void main(){
        unsigned char num;
        lcd init();
        lcd command(0x80);
        lcd_puts("Counter 0");
        init timer0 counter8bit();
        showNum(num);
        while(1){
          if(num != TMR0){
              num = TMR0;
               showNum(num);
           if(INTCONbits.T0IF == 1) INTCONbits.T0IF = 0;
        }
}
```


ใบงานที่ 10	หน้าที่ 13
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

ชื่อเรื่อง การใช้งานโมดูล Timer/Counter

2.3 จากข้อที่ 2.2 ให้นักศึกษาใช้โปรแกรม Proteus ISIS ทำการจำลองการทำงานของวงจรเปรียบเทียบกับ การทำงานของวงจรจริง โดยการโหลดไฟล์นามสกุล .hex ลงบนตัวไมโครคอนโทรลเลอร์ PIC16F887 ด้วยโปรแกรม MPLAB X ร่วมกับเครื่องโปรแกรม Pickit3 และป้อนแหล่งจ่ายให้บอร์ดทดลอง พร้อมทั้งทดลองกดสวิตช์ที่ขา RA4 เพื่อทดสอบการทำงานของวงจร และบันทึกผลการทดลอง

บันทึกผลการทดลอง

2.4 ให้นักศึกษาใช้ชุดทดลองวงจรดิจิทัลและไมโครคอนโทรลเลอร์ ร่วมกับบอร์ดใช้งานไมโครคอนโทรลเลอร์ PIC16F887 เพื่อต่อวงจรในรูปที่ 2.2 เพื่อทดลองการสร้างวงจรนาฬิกาที่ใช้งานโมดูล Timer/Counter ภายใน ไมโครคอนโทรลเลอร์ในลักษณะ Timer

LCD1

รูปที่ 2.2 รูปวงจรนาฬิกาที่ใช้งานโมดูล Timer/Counter ภายใน PIC16F887 ในลักษณะ Timer

ใบงานที่ 10	หน้าที่ 14
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

```
2.5 จากวงจรในข้อที่ 2.2 ให้นักศึกษาเขียนโปรแกรมตามตัวอย่างต่อไปนี้โดยใช้โปรแกรม MPLAB X ตาม
ขั้นตอนในใบความร้เรื่องภาษาซีกับไมโครคอนโทรลเลอร์ และทำการ Build โปรแกรมจนกว่าไม่เกิด Error เพื่อให้ได้
ไฟล์นามสกุล .hex เพื่อนำไปใช้งานต่อไป
#pragma config FOSC = EXTRC_CLKOUT
#pragma config WDTE = OFF
#pragma config PWRTE = OFF
#pragma config MCLRE = ON
#pragma config CP = OFF
#pragma config CPD = OFF
#pragma config BOREN = OFF
#pragma config IESO = OFF
#pragma config FCMEN = OFF
#pragma config LVP = OFF
// CONFIG2
#pragma config BOR4V = BOR40V
#pragma config WRT = OFF
#define XTAL FREQ 20000000
#include <xc.h>
#define lcd port PORTD
#define lcd tris TRISD
#define rs lcd RD2
#define en lcd RD3
const unsigned char ascii[16] = "0123456789ABCDEF";
void lcd busy(int time){
       en_lcd = 0;
       for(;time>0;time--) delay us(500);
       en lcd = 1;
}
```


ใบงานที่ 10	หน้าที่ 15
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

```
void lcd_command(unsigned char cmd){
        rs lcd = 0;
        lcd_port = (lcd_port & 0x0f) | (cmd & 0xf0);
        lcd busy(2);
        lcd port = (lcd port & 0x0f) | (cmd << 4);</pre>
        lcd busy(2);
        rs lcd = 1;
}
void lcd putc(unsigned char dat){
        rs lcd = 1;
        lcd port = (lcd port & 0x0f) | (dat & 0xf0);
        lcd busy(2);
        lcd port = (lcd port & 0x0f) | (dat << 4);</pre>
        lcd busy(2);
        rs lcd = 1;
void lcd_puts(char *str){
        while(*str != '\0') lcd putc(*str++);
void lcd_init(){
       lcd_tris &= 0x03;
        en lcd = 1;
        rs_lcd = 1;
        lcd command(0x33);
        lcd command(0x32);
        lcd command(0x28);
        lcd command(0x0c);
        lcd_command(0x06);
        lcd_command(0x01);
        delay ms(500);
```


ใบงานที่ 10	หน้าที่ 16
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

```
void showNum(unsigned int dat){
  lcd command(0xc0);
  lcd putc(ascii[dat/10000]);
  lcd putc(ascii[(dat%10000)/1000]);
  lcd putc(ascii[(dat%1000)/100]);
  lcd putc(ascii[(dat%100)/10]);
  lcd_putc(ascii[dat%10]);
void init_timer1_timer16bit(){
  T1CONbits.T1CKPS1 = 1; //Prescaler 1:8
  T1CONbits. T1CKPS0 = 1;
  T1CONbits.TMR1CS = 0;
  T1CONbits.TMR1ON = 0;
  PIR1bits.TMR1IF = 0;
  TMR1 = 0;
}
void delay1S(){ //XTAL = 20MHz, T = 1/((20MHz/4)/8) = 1.6uS
  char count;
  for(count=25;count>0;count--)\{ // T = (1.6uS \times 25000) \times 25 = 1S \}
     TMR1 = 40536;
     PIR1bits.TMR1IF = 0;
     T1CONbits.TMR1ON = 1;
     while(PIR1bits.TMR1IF == 0);
     T1CONbits.TMR1ON = 0;
}
```


ใบงานที่ 10	หน้าที่ 17
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

```
void main(){
       unsigned int num=0;
       lcd init();
       lcd command(0x80);
       lcd puts("Timer 1");
       init timer1 timer16bit();
       showNum(num);
       while(1)
              delay1S();
              num++;
              if(num > 100) num = 0;
              showNum(num);
       }
       2.6 จากข้อที่ 2.5 ให้นักศึกษาใช้โปรแกรม Proteus ISIS ทำการจำลองการทำงานของวงจรเปรียบเทียบกับ
การทำงานของวงจรจริง โดยการโหลดไฟล์นามสกุล .hex ลงบนตัวไมโครคอนโทรลเลอร์ PIC16F887 ด้วยโปรแกรม
MPLAB X ร่วมกับเครื่องโปรแกรม Pickit3 และป้อนแหล่งจ่ายให้บอร์ดทดลอง เพื่อทดสอบการทำงานของวงจร และ
บันทึกผลการทดลอง
       บันทึกผลการทดลอง
```


ใบงานที่ 10	หน้าที่ 18
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

ชื่อเรื่อง การใช้งานโมดูล Timer/Counter

- 3. การใช้งานโมดูล Timer/Counter ของไมโครคอนโทรลเลอร์ ATMEGA32
- 3.1 ให้นักศึกษาใช้ชุดทดลองวงจรดิจิทัลและไมโครคอนโทรลเลอร์ ร่วมกับบอร์ดใช้งานไมโครคอนโทรลเลอร์ ATMEGA32 เพื่อต่อวงจรในรูปที่ 3.1 เพื่อทดลองการสร้างวงจรนับที่ใช้งานโมดูล Timer/Counter ภายในไมโครคอนโทรลเลอร์ในลักษณะ Counter

รูปที่ 3.1 รูปวงจรนับที่ใช้งานโมดูล Timer/Counter ภายใน ATMEGA32 ในลักษณะ Counter

3.2 จากวงจรในข้อที่ 3.1 ให้นักศึกษาเขียนโปรแกรมตามตัวอย่างต่อไปนี้โดยใช้โปรแกรม AVR Studio 6.2 ตามขั้นตอนในใบความรู้เรื่องภาษาซีกับไมโครคอนโทรลเลอร์ และทำการ Build โปรแกรมจนกว่าไม่เกิด Error เพื่อให้ ได้ไฟล์นามสกุล .hex เพื่อนำไปใช้งานต่อไป

#include <avr/io.h>

#define F CPU 1600000UL

#include <util/delay.h>

#define lcd port PORTC

#define lcd ddr DDRC

#define rs lcd PC2

#define en lcd PC3

const unsigned char ascii[16] = "0123456789ABCDEF";

ใบงานที่ 10	หน้าที่ 19
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

```
void lcd_busy(int time){
          lcd_port &= ~(1<<en_lcd);</pre>
          for(;time>0;time--) _delay_us(500);
          lcd port |= (1<<en lcd);</pre>
void lcd command(unsigned char cmd){
          lcd_port &= ~(1<<rs_lcd);</pre>
          lcd port = (lcd port & 0x0f) | (cmd & 0xf0);
          lcd port = (lcd port & 0x0f) | (cmd << 4);</pre>
          lcd_busy(2);
          lcd_port |= (1<<rs_lcd);
void lcd_putc(unsigned char dat){
          lcd_port |= (1<<rs lcd);</pre>
          lcd port = (lcd port & 0x0f) | (dat & 0xf0);
          lcd busy(2);
          lcd_port = (lcd_port & 0x0f) | (dat << 4);</pre>
          lcd_busy(2);
          lcd port |= (1<<rs lcd);</pre>
void lcd puts(char *str){
          while(*str != '\0') lcd_putc(*str++);
void showNum(int dat){
          lcd command(0xc0);
          lcd putc(ascii[(dat%1000)/100]);
          lcd_putc(ascii[(dat%100)/10]);
          lcd putc(ascii[dat%10]);
void lcd_init(){
          lcd ddr |= 0xfc;
          lcd port |= (1<<en lcd);</pre>
          lcd port |= (1<<rs lcd);</pre>
          lcd_command(0x33);
          lcd_command(0x32);
          lcd command(0x28);
          lcd command(0x0c);
          lcd command(0x06);
          lcd command(0x01);
          delay ms(500);
```


ใบงานที่ 10	หน้าที่ 20
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

```
void init_timer0_counter8bit(){
       DDRB &= ~(PB0<<1);
       TCCR0 |= (1<<CS02) | (1<<CS01);
       TCNT0 = 0;
int main(){
       int num=0;
       lcd init();
       lcd_command(0x80);
       lcd_puts("Counter0 8 bit");
       init timer0 counter8bit();
       showNum(num);
       while(1){
               if(num != TCNT0){
                      num = TCNT0;
                       showNum(num);
               if(TIFR & (1<<TOV0)) TIFR |= (1<<TOV0);
       return 0;
        3.3 จากข้อที่ 3.2 ให้นักศึกษาใช้โปรแกรม Proteus ISIS ทำการจำลองการทำงานของวงจรเปรียบเทียบกับ
การทำงานของวงจรจริง โดยการโหลดไฟล์นามสกุล .hex ลงบนตัวไมโครคอนโทรลเลอร์ ATMEGA32 ด้วยโปรแกรม
AVR Studio 6.2 ร่วมกับเครื่องโปรแกรม AVR STK500V2 และป้อนแหล่งจ่ายให้บอร์ดทดลอง พร้อมทั้งทดลองกด
สวิตช์ที่ขา PBO เพื่อทดสอบการทำงานของวงจร และบันทึกผลการทดลอง
       บันทึกผลการทดลอง
```


ใบงานที่ 10	หน้าที่ 21
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

ชื่อเรื่อง การใช้งานโมดูล Timer/Counter

3.4 ให้นักศึกษาใช้ชุดทดลองวงจรดิจิทัลและไมโครคอนโทรลเลอร์ ร่วมกับบอร์ดใช้งานไมโครคอนโทรลเลอร์ ATMEGA32 เพื่อต่อวงจรในรูปที่ 3.2 เพื่อทดลองการสร้างวงจรนาฬิกาที่ใช้งานโมดูล Timer/Counter ภายใน ไมโครคอนโทรลเลอร์ในลักษณะ Timer

รูปที่ 3.2 รูปวงจรนาฬิกาที่ใช้งานโมดูล Timer/Counter ภายใน ATMEGA32 ในลักษณะ Timer
3.5 จากวงจรในข้อที่ 3.4 ให้นักศึกษาเขียนโปรแกรมตามตัวอย่างต่อไปนี้โดยใช้โปรแกรม AVR Studio 6.2 ตามขั้นตอนในใบความรู้เรื่องภาษาซีกับไมโครคอนโทรลเลอร์ และทำการ Build โปรแกรมจนกว่าไม่เกิด Error เพื่อให้ ได้ไฟล์นามสกุล .hex เพื่อนำไปใช้งานต่อไป

#include <avr/io.h>

#define F CPU 1600000UL

#include <util/delay.h>

#define lcd port PORTC

#define lcd ddr DDRC

#define rs lcd PC2

#define en lcd PC3

const unsigned char ascii[16] = "0123456789ABCDEF";

ใบงานที่ 10	หน้าที่ 22
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

```
void lcd_busy(int time){
        lcd port &= ~(1<<en lcd);
        for(;time>0;time--) _delay_us(500);
        lcd port |= (1<<en lcd);</pre>
void lcd command(unsigned char cmd){
        lcd_port &= ~(1<<rs_lcd);</pre>
        lcd_port = (lcd_port & 0x0f) | (cmd & 0xf0);
        lcd_busy(2);
        lcd_port = (lcd_port & 0x0f) | (cmd << 4);</pre>
        lcd busy(2);
        lcd port |= (1<<rs lcd);</pre>
void lcd putc(unsigned char dat){
        lcd_port |= (1<<rs_lcd);</pre>
        lcd_port = (lcd_port & 0x0f) | (dat & 0xf0);
        lcd_busy(2);
        lcd_port = (lcd_port & 0x0f) | (dat << 4);</pre>
        lcd_busy(2);
        lcd_port |= (1<<rs_lcd);</pre>
void lcd puts(char *str){
        while(*str != '\0') lcd_putc(*str++);
void lcd init(){
        lcd_ddr |= 0xfc;
        lcd_port |= (1<<en_lcd);</pre>
        lcd_port |= (1<<rs_lcd);</pre>
        lcd_command(0x33);
        lcd command(0x32);
        lcd_command(0x28);
        lcd command(0x0c);
        lcd command(0x06);
        lcd command(0x01);
         _delay_ms(500);
```


ใบงานที่ 10	หน้าที่ 23
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6

```
void showNum(int dat){
        lcd command(0xc0);
        lcd_putc(ascii[dat/10000]);
        lcd putc(ascii[(dat%10000)/1000]);
        lcd_putc(ascii[(dat%1000)/100]);
        lcd_putc(ascii[(dat%100)/10]);
        lcd_putc(ascii[dat%10]);
void init_timer1_timer16bit(){
        TCCR1B |= (1<<CS12) | (1<<CS10); // Prescaler 1:1024
void delay1S(){ //XTAL = 16MHz, T = 1/(16MHz/1024) = 64uS
        if((TIFR \& (1 << TOV1)) != 0) TIFR |= (1 << TOV1);
        TCNT1 = 49911; // T = 64uS \times 15625 = 1S
        while((TIFR & (1 << TOV1)) == 0);
int main(){
        int num = 0;
        lcd init();
        lcd_command(0x80);
        lcd puts("Timer 1");
        init_timer1_timer16bit();
        showNum(num);
        while(1)
                 delay1S();
                 num++;
                 if(num > 100) num = 0;
                 showNum(num);
        return 0;
}
```


ใบงานที่ 10 หน้าที่ 24 ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 หน่วยที่ 6

ชื่อหน่วย การใช้งานโมดูล Timer/Counter

0
ชื่อเรื่อง การใช้งานโมดูล Timer/Counter
3.6 จากข้อที่ 3.5 ให้นักศึกษาใช้โปรแกรม Proteus ISIS ทำการจำลองการทำงานของวงจรเปรียบเทียบกับ การทำงานของวงจรจริง โดยการโหลดไฟล์นามสกุล .hex ลงบนตัวไมโครคอนโทรลเลอร์ ATMEGA32 ด้วยโปรแกรม AVR Studio 6.2 ร่วมกับเครื่องโปรแกรม AVR STK500V2 และป้อนแหล่งจ่ายให้บอร์ดทดลอง เพื่อทดสอบการ ทำงานของวงจร และบันทึกผลการทดลอง
บันทึกผลการทดลอง

ใบงานที่ 10	หน้าที่ 25
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6
d	

ชื่อเรื่อง การใช้งานโมดูล Timer/Counter

แบบฝึกหัดท้ายการทดลอง

- 1. ให้ออกแบบวงจรนาฬิกาที่แสดงผลในรูปแบบ hh:mm:ss บนอุปกรณ์ Character LCD พร้อมทั้งเขียน โปรแกรมโดยใช้โมดูล Timer/Counter เพื่อสร้างฟังก์ชันหน่วงเวลา 1 วินาที ด้วยไมโครคอนโทรลเลอร์ AT89C51ED2
- 2. ให้ออกแบบวงจรนาฬิกาที่แสดงผลในรูปแบบ hh:mm:ss บนอุปกรณ์ Character LCD พร้อมทั้งเขียน โปรแกรมโดยใช้โมดูล Timer/Counter เพื่อสร้างฟังก์ชันหน่วงเวลา 1 วินาที ด้วยไมโครคอนโทรลเลอร์ PIC16F887
- 3. ให้ออกแบบวงจรนาฬิกาที่แสดงผลในรูปแบบ hh:mm:ss บนอุปกรณ์ Character LCD พร้อมทั้งเขียน โปรแกรมโดยใช้โมดูล Timer/Counter เพื่อสร้างฟังก์ชันหน่วงเวลา 1 วินาที ด้วยไมโครคอนโทรลเลอร์ ATMEGA32

ใบงานที่ 10 หน้าที่ 26

No.	ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 6
THOMAL EDUCATION CONST	ชื่อหน่วย การใช้งานโมดูล Timer/Counter	
ชื่อเรื่อง การใช้งานโมดูล 🤈	Timer/Counter	
สรุปผลการทดลอง		