Исследование структуры типа квазизамороженного спина для поиска ЭДМ

<u>А.А. Мельников</u>^{1,2}, Ю.В. Сеничев¹, А.Е. Аксентьев^{1,3}, С.Д. Колокольчиков¹

¹Институт Ядерных Исследований РАН, Москва, Россия, ²Институт теоретической физики им. Л.Д. Ландау, Черноголовка, Россия, ³Национальный исследовательский ядерный университет «МИФИ», Москва, Россия

Актуальность

Results

Объект исследования

Поведение поляризации пучка частиц в системе с электрическими и магнитными полями.

Измерение ЭДМ

ур-е Т-БМТ:
$$\frac{d\vec{S}}{dt} = \vec{S} \times (\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM})$$

$$\vec{\Omega}_{MDM} = \frac{q}{m} \left[G\vec{B} - \left(\frac{1}{\gamma^2 - 1} - G \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

$$\vec{\Omega}_{EDM} = \frac{q \, \eta}{2m} \left[\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right]$$

Метод "замороженного спина" для поиска ЭДМ

$$ec{ec{\Omega}}_{MDM} \, = 0 \,\,$$
 в системе пучка или $ec{S} \parallel ec{P}$

- 1) Электростатическое кольцо для частиц с G>0 при $\gamma=\gamma_{mag.}$ (протоны при 232.8 МэВ).
- 2) Для частиц с G < 0 только комбинированное E + B кольцо (дейтроны).

Квази-замороженный спин

Замороженный спин — специализированное кольцо.

Квази-замороженный спин — магнитный синхротрон
(коллайдер NICA/Nuclotron) + фильтры Вина на прямой секции.

Юрий В. Сеничев: идея структуры с квази-замороженным спином.

Спин вращается в Фильтре Вина противоположно арке и восстанавливает своё направление за один оборот.

Квази-замороженный спин на NICA

Измерение ЭДМ

Вопросы, требующие изучения:

- Куда направлен \vec{n} и какова частота спин-прецессии Ω в случае квази-замороженной структуры ?
- Как систематические ошибки влияют на измерение ЭДМ?

Решение приведено для референсной частицы.

Матричный формализм

Каждый элемент ускорителя характеризуется матрицей поворота спинвектора M на угол $\phi = \Omega dt$ вокруг локального направления \vec{n} :

$$M = exp\left[-\vec{i(\sigma \cdot \vec{n})}\frac{\phi}{2}\right] = cos\left(\frac{\phi}{2}\right) - \vec{i(\sigma \cdot \vec{n})}sin\left(\frac{\phi}{2}\right).$$

Для кольца из N элементов: $M = M_N M_{N-1} \dots M_2 M_1$.

В точке наблюдения с азимутом θ спин-тьюн v_s и направление \vec{n} :

$$cos(\pi \nu_s) = \frac{1}{2} Tr(M(\theta)).$$

$$\vec{n}(\theta) = \frac{i/2}{sin(\pi \nu_s)} Tr(\vec{\sigma} M(\theta)).$$

Квази-замороженный спин

$$\frac{d\vec{S}}{dt} = \vec{S} \times (\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM}) \qquad \xi = \frac{\eta \beta}{2G}$$

$$M_{ring} = \cos(\varphi_M/2) + i\sigma_1 \sin \xi \sin(\varphi_M/2) - i\sigma_3 \cos \xi \sin(\varphi_M/2)$$

$$M_{WF} = \cos(\varphi_E/2) - i\sigma_3 \sin(\varphi_E/2)$$

$$M_{tot.} = M_{ring} \cdot M_{WF}, \qquad \varphi_M + \varphi_E = 0$$

Квази-замороженный спин

$$v_S = \frac{1}{\pi} \sin(\varphi_M/2) \cdot (\xi)$$

 \vec{n} в плоскости кольца:

$$n_{\chi} = \cos(\varphi_M/2)$$

$$n_{\chi} = -\sin(\varphi_M/2)$$

$$\frac{v_{s_QFS}}{v_{s_FS}} = \frac{\sin(\phi_M/2)}{\phi_M/2}$$

Уменьшаем ϕ_M ,

N секций Bend+WF для частиц с большим G, Целые обороты в арке не накапливают ЭДМ

Наклонённые магниты

$$\begin{aligned} M_{Bend} &= \cos(\varphi_M/2) + \\ &+ i\sigma_1 \left(\sin \alpha + \xi \cdot \cos \alpha \right) \sin(\varphi_M/2) - i\sigma_3 (\cos \alpha - \xi \cdot \sin \alpha) \sin(\varphi_M/2) \end{aligned}$$

Для сегмента из N элементов, пренебрегая членами $\xi \cdot \alpha$ и выше:

$$M_{ring}(\vec{n}, \varphi) = M_{ring}(c_y \vec{e}_y + [c_x + \xi]\vec{e}_x + c_z \vec{e}_z, \varphi_{\Sigma})$$

Учёт несовершенств

$$M_{ring}(\vec{n}, \varphi) = M_{ring}(c_y \vec{e}_y + [c_x + \xi]\vec{e}_x + c_z \vec{e}_z, \varphi_M)$$

$$M_{WF} = \cos(\varphi_E/2) - i\sigma_3 \sin(\varphi_E/2)$$

$$M_{tot.} = M_{ring} \cdot M_{WF}, \qquad \varphi_M + \varphi_E = 0$$

$$v_S = \frac{1}{\pi} \sin(\phi_M/2) \cdot \sqrt{(c_\chi + \xi)^2 + c_Z^2},$$
 \vec{n} в плоскости кольца

Исключение систематики путём CW/CCW инжекции при $c_x\gg c_z$.