Prova scritta di Elettrotecnica

Corso di Laurea in Ingegneria Informatica

Pisa, 11/02/11 Allievo:

0) Determinare l'espressione temporale del flusso nel tronco centrale del circuito magnetico nell'ipotesi di circuito in condizioni di regime periodico sinusoidale.

$$j(t) = 50\cos(500t + \pi/8)V$$

 $R = 10 \Omega$;
 $N_1 = 100$;
 $N_2 = 150$;
 $l = 10cm$
 $S = 10cm^2$
 $\mu_r = 1500$;

1) Con riferimento al circuito di figura, determinare l'andamento temporale della tensione $v_L(t)$.

2) Per il circuito in figura scrivere un sistema di equazioni di equilibrio supponendo il circuito stesso in condizioni di regime sinusoidale.

3) Determinare i parametri della rappresentazione ibrida del doppio bipolo di figura.

$$R = 35\Omega$$

$$L_1 = 20 mH$$

$$L_2 = 30 mH$$

$$M = 24 mH$$

$$C = 20 \,\mu F$$

$$\omega = 250 \, rad \, / \, s$$

4) Nel sistema trifase di figura determinare la potenza meccanica all'asse e le perdite nel ferro del motore asincrono trifase.

Asincrono	
Pr ova	a vuoto
$V_{10}=3$	80 V;
$I_{10} = 5$	A;
$P_{10} = 5$	515 W;
Pr ova	in cc
$V_{1cc} = 3$	80 V;
$I_{1cc} = 8$	A;
$P_{1cc} = 2$	270 W ;
k = 0.2	25, s = 0.9
$R_{1S}=0$	$0.7\overline{\Omega}$,
$X_{1S} = 0$	0.8Ω

$$egin{aligned} \overline{Z}_1 &= [3 + j2] \; \Omega; \\ \overline{Z}_2 &= 10 e^{j\pi/6} \cdot \overline{Z}_1 \; \Omega; \\ \overline{Z}_3 &= 20 + j40 \; \Omega; \\ \dot{E}_1 &= 220 \; \; V; \\ f &= 50 \; \; Hz; \end{aligned}$$