Interactions between land use, climate and hydropower in Scotland

James Sample

Scottish hydropower: development

Scottish hydropower: the present

- Scottish Government (2005):
 - "the work done in the 1940s, 1950s and 1960s [...] was almost totally successful in fulfilling the potential for hydroelectricity in Scotland"

- In recent years, small scale "run-of-river" hydropower has been incentivised (e.g. by the Feed-in Tariff)
- Recent studies estimate <500 MW of commercially viable new run-ofriver hydropower in Scotland

Study	New hydro potential (MW)
Salford Civil Engineering Ltd. (1989)	286
Garrad Hassan (2001)	270 ²
Nick Forrest (2008)	217 ²
Nick Forrest (2009)	397 ²
Nick Forrest (2012a)	233 ²
Nick Forrest (2012b)	384 ²
Duncan (2012)	440 ¹ or 898 ³

¹10% discount rate; ²8% discount rate; ³5% discount rate

Scottish hydropower: the future

 Scottish Government hopes to generate equivalent of all gross annual electricity consumption from renewables by 2020

Requires significant development over next 5 years

- Run-of-river hydropower is sensitive to changes in flow
- What are the potential effects of land use and climate change on Scotland's future hydropower potential?
- Initial idea:
 - Take the sites identified by Duncan (2012)
 - 440 MW in total (assuming 10% discount rate)

Duncan, N. 2012. *Mapping Scotland's hydropower resource*. PhD thesis, University of Edinburgh.

Future Flows data

- CEH project led by ChristelPrudhomme
- 276 catchments across the UK (~100 in Scotland)
- 11 climate simulations from the medium (A1B) emissions scenario
- Up to 3 hydrological models
- Gives up to 33 realisations of future flow per catchment
- Daily time step, from 1961 to 2098

Simple hydropower model

Based on Flow Duration Curves (FDCs)

Hydropower assessment: attempt 1

 136 out of 339 of Duncan's identified sites lie within Future Flows catchments

- Take site specifications (net head, rated capacity etc.) from Duncan (2012)
- Estimate future flow regime by area-scaling Future Flows data
- Test the model output against Duncan's more sophisticated methodology for the baseline period
- Area-scaling slightly underestimates headwater flows (and therefore energy output)

Hydropower assessment: attempt 1

- Plots show the total run-of-river generation potential across 136 sites
- The James Hutton Institute
- Baseline (1961 to 1990) compared to future (2041 to 2070)
- Overall, the model predicts little change in annual generation potential

- But the output becomes significantly more seasonal:
 - Increases in autumn and winter
 - Decreases in spring and summer

Attempt 1: limitations

- Not considering all potential sites
- Area-scaling flows is prone to error
- Can't account for influence of land use change
- Attempt 2:
 - Develop spatially distributed water balance model to estimates flow duration curves for any point on the river network
 - Can incorporate scenarios of land use and climate change

Attempt 2: water balance modelling

Model calibration at national scale within a Bayesian MCMC framework

Allows assessment of parameter-related model uncertainty

uniform

MCMC details: http://dan.iel.fm/emcee/current/

Attempt 2: water balance modelling

Example for a single site at Loch Garbhaig, near Kinlochewe

Attempt 2: water balance modelling

- Land use change effect negligible in this example
- Climate change produces a significant increase in annual potential, but with exaggerated seasonality

Summary

Preliminary work suggests that:

- The James
 Hutton
 Institute
- Annually, run-of-river hydropower potential may increase slightly by the 2050s
- But with significant increases in variability
 - Lower output in summer; higher in winter
- Design changes may increase resilience
 - Several small turbines instead of one large one?
 - Consider oversizing turbines to make the most of high autumn and winter flows?
- Uncertainties are large, but key messages seem fairly robust
- More detailed modelling work is being undertaken to better characterise the resource

Thank you!

