4. Insiemi numerici

4.1 Insiemi numerici

Insieme dei numeri **naturali** $\mathbb{N} = \{0,1,2,3,...,\}$

Insieme dei numeri **interi relativi** $\mathbb{Z} = \{..., -3, -2, -1, 0, +1, +2, +3, ...\}$

Insieme dei numeri razionali

$$\mathbb{Q} = \left\{ \frac{n}{m} : n \in \mathbb{Z}, m \in \mathbb{N} \setminus \{0\} \right\} = \left\{ 0, \frac{1}{1}, -\frac{1}{1}, \frac{1}{2}, -\frac{1}{2}, \dots, +\frac{2}{3}, -\frac{2}{3}, \dots \right\}$$

L'insieme dei numeri **reali** contiene propriamente quello dei razionali $\mathbb Q$ e degli irrazionali.

$$\mathbb{R} = \left\{0, +1, -1, \dots, +\frac{1}{2}, -\frac{1}{2}, \dots, \sqrt{2}, \sqrt{3}, \pi, e, \dots\right\}$$

 $\mathbb{R}(+,\cdot)$ è un campo

 \mathbb{R} rispetto alla relazione d'ordine usuale \leq è totalmente ordinato

L'ordinamento è completo, nel senso che ogni sottoinsieme non vuoto di $\mathbb R$, con un maggiorante in $\mathbb R$, ha un estremo superiore in $\mathbb R$ (assioma di Dedekind)

Insieme dei numeri complessi

$$\mathbb{C} = \left\{ a + ib : a, b \in \mathbb{R}; i^2 = -1 \right\}$$

Figura 1. Rappresentazione degli insiemi numerici

Figura 2. Classificazione dei numeri

i. Cimoni, L. Danetta, L. Lussarui

Numeri razionali sono quei numeri che possono essere espressi come rapporto tra due numeri interi. **Numeri irrazionali** sono quei numeri che non sono razionali, in particolare la loro scrittura come numeri decimali è illimitata e non è periodica.

Numeri algebrici sono quei numeri che sono soluzioni di un'equazione polinomiale algebrica, del tipo $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0$, dove $a_i \in \mathbb{Z}$.

Numeri trascendenti sono i numeri irrazionali che non sono algebrici.

4.2 Proprietà delle quattro operazioni

a+b=b+a	proprietà commutativa della somma
a + (b+c) = (a+b) + c	proprietà associativa della somma
a+0=0+a=0	0 è l'elemento neutro della somma
$a \cdot b = b \cdot a$	proprietà commutativa della moltiplicazione
$a \cdot (b \cdot c) = (a \cdot b) \cdot c$	proprietà associativa della moltiplicazione
$a \cdot (b+c) = a \cdot b + a \cdot c$	proprietà distributiva della moltiplcazione rispetto alla somma
$1 \cdot a = a \cdot 1 = a$	1è l'elemento neutro rispetto alla moltiplicazione
$a \cdot 0 = 0 \cdot a = 0$	0 è l'elemento assorbente rispetto alla moltiplicazione
$a-b=(a\pm c)-(b\pm c)$	proprietà invariantiva della sottrazione
a-0=a	0 è l'elemento neutro (a destra) della sottrazione
(a+b): c = (a:c)+(b:c)	proprietà distributiva della divisione rispetto alla somma
a:1=a	1 è l'elemento neutro (a destra) della divisione

4.3 Numeri primi e divisibilità

Numero primo. Un numero naturale >1 si dice primo se è divisibile soltanto per se stesso e per 1. **Numero composto.** Un numero naturale >1 che non è primo si dice composto.

Il numero 1 non è un numero primo.

Il numero 0 non è primo perché ne ha infiniti.

L'unico numero primo pari è 2.

Teorema fondamentale dell'aritmetica. Ogni numero composto ammette un'unica rappresentazione come prodotto di fattori primi, a meno dell'ordine di fattori.

Divisibilità per 2. Un numero è divisibile per 2 se e solo se la sua ultima cifra, cioè la cifra delle unità, è pari, cioè è 0, 2, 4, 6, 8.

Divisibilità per 3. Un numero è divisibile per 3 se e solo se la somma delle sue cifre vale 3, 6, 9 o un multiplo di 3. Per verificare se il numero ottenuto è multiplo di 3 si può reiterare il procedimento. *Esempio*: 123 è divisibile per 3 perché la somma delle cifre è 6, che è divisibile per 3. Il numero 122 non è divisibile per 3 perché la somma delle cifre è 5, che non è divisibile per 3. Il numero 869565 è divisibile per 3, infatti 8+6+9+5+6+5=39 la cui somma delle cifre è 3+9=12, che è multiplo di 3.

Divisibilità per 4. Un numero è divisibile per 4 se e solo se le sue due ultime cifre sono 00 o un multiplo di 4.

Divisibilità per 5. Un numero è divisibile per 5 se e solo se la sua ultima cifra, cioè la cifra delle unità, è 0 o 5.

Divisibilità per 6. Un numero è divisibile per 6 se rispetta contemporaneamente i criteri di divisibilità per 2 e per 3.

Divisibilità per 7. Un numero (maggiore di 10) è divisibile per 7 se e solo se la differenza (in valore assoluto) fra il numero ottenuto togliendo la cifra delle unità e il doppio della cifra delle unità è 0, 7 o un multiplo di 7. Per verificare se il numero ottenuto è multiplo di 7 si può reiterare il procedimento. *Esempio*: 1078 è divisibile per 7, infatti $107 - 2 \cdot 8 = 107 - 16 = 91$. Per capire se 91 è divisivile per 7

basta reiterare il procedimento: $9-2\cdot 1=9-2=7$, quindi 91 è divisibile per 7, ovvero è un suo multiplo, di conseguenza anche 1078 è divisibile per 7.

Divisibilità per 8. Un numero è divisibile per 8 se termina con tre zeri o se è divisibile per 8 il numero ottenuto dalle sue ultime tre cifre. Oppure si può considerare la somma fra la penultima cifra e il doppio della terzultima, raddoppiare il risultato ottenuto e sommarlo all'ultima cifra, se il numero così ottenuto è multiplo di 8 allora lo è anche il numero di partenza. Per verificare se il numero ottenuto è multiplo di 8 si può reiterare il procedimento.

Esempio: 7720 è disivibile per 8, infatti $2+7\cdot 2=16$ (somma fra la penultima cifra e il doppio della terzultima), $16\cdot 2+0=32$ (somma fra il doppio del risultato dell'operazione precedente e l'ultima cifra), e banalmente 32 è multiplo di 8.

Divisibilità per 9. Un numero è divisibile per 9 se e solo se la somma delle sue cifre vale 9 o un multiplo di 9. Per verificare se il numero ottenuto è multiplo di 9 si può reiterare il procedimento.

Divisibilità per 10. Un numero è divisibile per 10 se e solo se la sua ultima cifra è 0.

Divisibilità per 11. Un numero è divisibile per 11 se e solo se la differenza, in valore assoluto, fra la somma delle cifre di posto pari e la somma delle cifre di posto dispari è 0, 11 o un multiplo di 11. Per verificare se il numero ottenuto è multiplo di 11 si può reiterare il procedimento.

Esempio: 1703669 è divisibile per 11, infatti |(1+0+6+9)-(7+3+6)|=|16-16|=0, da cui la tesi.

Divisibilità per 12. Un numero è divisibile per 12 se e solo se rispetta contemporaneamente i criteri di divisibilità per 3 e per 4.

Divisibilità per 13. Un numero è divisibile per 13 se e solo se la somma fra il quadruplo dell'ultima cifra e il numero ottenuto dalle cifre rimanenti è 0, 13 o un multiplo di 13. Per verificare se il numero ottenuto è multiplo di 13 si può reiterare il procedimento.

Esempio: 25792 è divisibile per 13, infatti $4 \cdot 2 + 2579 = 2587$. Per mostrare che 2587 è divisibile per 13 reiteriamo il procedimento, $7 \cdot 4 + 258 = 28 + 258 = 286$. Reiterando le operazioni si ottiene $6 \cdot 4 + 28 = 24 + 28 = 52 = 13 \cdot 4$, dunque 286, è divisibile per 13, di conseguenza 2587 è divisibile per 13, così come 25792, che conclude la verifica.

Divisibilità per 14. Un numero è divisibile per 14 se e solo se rispetta contemporaneamente i criteri di divisibilità per 2 e per 7.

Divisibilità per 15. Un numero è divisibile per 15 se e solo se rispetta contemporaneamente i criteri di divisibilità per 3 e per 5.

Divisibilità per 17. Un numero è disivibile per 17 se e solo se la differenza, in valore assoluto, fra il quintuplo della cifra delle unità e il numero ottenuto con le restanti cifre è 0, 17 o un multiplo di 17. Per verificare se il numero ottenuto è multiplo di 17 si può reiterare il procedimento.

Esempio: 3383 è divisibile per 17, infatti |3.5-338|=|15-338|=323. Reiterando il procedimento |3.5-32|=|15-32|=17.

Divisibilità per 25. Un numero è divisibile per 25 se e solo se le sue due ultime cifre sono 00, 25, 50 o 75.

Divisibilità per 100. Un numero è divisibile per 100 se e solo se le sue due ultime cifre sono 00.

Divisibilità per 10^k $(k \ge 1)$. Un numero è divisibile per 10^k $(k \ge 1)$ se e solo se le sue ultime k cifre sono tutte 0.

Divisibilità per $a \cdot b$ (con a e b primi fra di loro)

Un numero è divisibile per $a \cdot b$ (con $a \in b$ primi fra di loro) se e solo se rispetta contemporaneamente i criteri di divisibilità per $a \in b$ e per b.

www.matematicamente.it	

4.4 Numeri primi da 1 a 10000

4.5 Massimo comune divisore e minimo comune multiplo

Massimo comune divisore. Il massimo comune divisore (M.C.D.) di due o più numeri interi è il più grande numero naturale tra i divisori comuni a tutti i numeri dati.

Esempi: MCD(12,16)=4. Infatti i divisori di 12 sono 1, 2, 3, 4, 6, 12. I divisori di 16 sono 1, 2, 4, 8, 16. I divisori in comune sono 1, 2, 4. Il più grande dei divisori comuni è 4. MCD(3,4)=1. MCD(7,0)=7.

Algoritmo per il calcolo del MCD. Per calcolare il massimo comune divisore tra due o più numeri, non eccessivamente grandi, si scompongono in fattori primi i numeri e si moltiplicano i fattori comuni, una sola volta, con il minimo esponente.

Esempio: MCD(150,120)=30. Infatti, $150 = 2 \cdot 3 \cdot 5^2$; $120 = 2^3 \cdot 3 \cdot 5$. I fattori comuni con il minimo esponente sono 2, 3, 5.

Algoritmo di Euclide per il calcolo del MCD. Per il calcolare il massimo comune divisore tra due numeri naturali a e b, si controlla se b è zero. Se lo è, il MCD è a. Se non lo è, si divide a : b. Indicato con r il resto della divisione si ha: se r = 0, il MCD è b, altrimenti si ripete il procedimento con i numeri b ed r.

Esempio: Per calcolare MCD(150,120) si divide 150:120, si ha quoziente 1, resto 30. Si divide 120:30 si ha quoziente 4 resto 0. Il MCD è 30.

Minimo comune multiplo. Il minimo comune multiplo (mcm) tra due o più numeri interi è il più piccolo tra i multipli comuni a tutti i numeri dati.

Esempio: mcm(12,15)=60. Infatti, i multipli di 12 sono 12, 24, 36, 48, 60, ... i multipli di 15 sono 15, 30, 45, 60, ... Il più piccolo dei multipli in comune è 60.

Algoritmo per il calcolo del mcm. Per calcolare il minimo comune multiplo tra due o più numeri non eccessivamente grandi, si scompongono in fattori primi i numeri e si moltiplicano i fattori comuni e non comuni, presi una sola volta e con il massimo esponente.

Esempio: mcm(18,20)=180 Infatti, $18=2\cdot3^2$ e $20=2^2\cdot5$. Il mcm è dato da $2^2\cdot3^3\cdot5=180$

Proprietà di mcm e MCD.
$$mcm(a,b) = \frac{a \cdot b}{MCD(a,b)}$$

Numeri coprimi. Due numeri si dicono primi tra di loro o coprimi se non hanno nessun divisore comune eccetto 1 o equivalentemente se il loro MCD=1.

Congruenza modulo n. Due numeri $a,b \in \mathbb{Z}$ sono congrui modulo n, si scrive $a \equiv b \mod n$ se e solo se $a-b=kn, k \in \mathbb{Z}$, cioè se la loro differenza è un multiplo di n, o equivalentemente se a e b hanno lo stesso resto nella divisione per n.

Esempio: $28 \equiv 7 \mod 3$, infatti 28-7=21 che è multiplo di 3. Inoltre 28:3=9 resto 1, 7:3=2 resto 1, quindi i due numeri hanno lo stesso resto nella divisione per 3.

4.6 Frazioni e numeri razionali

Una **frazione** è il quoziente tra due numeri interi $\frac{a}{b}$, con $a \in \mathbb{Z}, b \in \mathbb{Z} - \{0\}$. Il **numeratore** è a, il **denominatore** è b.

Una frazione $\frac{a}{b}$ è detta frazione propria se a < b, frazione impropria se $a \ge b$, frazione apparente se a è un multiplo di b.

Proprietà invariantiva delle frazioni. Moltiplicando, o dividendo, numeratore e denominatore di una frazione per uno stesso numero diverso da 0 si ha una frazione equivalente:

$$\frac{a}{b} = \frac{a \cdot x}{b \cdot x} e \frac{a}{b} = \frac{a \cdot x}{b \cdot x}, \text{ con } x \neq 0.$$

Semplificazione e riduzione ai minimi termini. Per semplificare una frazione si divide numeratore e denominatore per uno stesso numero, fino a ottenere una frazione con numeratore e denominatore primi fra loro. Una frazione in cui numeratore e denominatore sono primi tra loro si dice ridotta ai minimi termini.

Confronto di frazioni. Tra due frazioni che hanno lo stesso denominatore è maggiore quella che ha il numeratore maggiore. Tra due frazioni che hanno lo stesso numeratore è magiore quella che ha il denominatore minore. Tra due frazioni con denominatori diversi si trasformano le frazioni in frazioni equivalenti che abbiamo lo stesso denominatore, quindi si confrontano i numeratori.

Esempi:
$$\frac{2}{3} < \frac{5}{3}$$
; $\frac{2}{3} > \frac{2}{5}$; per confrontare $\frac{3}{4}$ e $\frac{2}{7}$ si trasformano le frazioni in $\frac{3}{4} = \frac{3 \cdot 7}{4 \cdot 7} = \frac{21}{28}$ e $\frac{2}{7} = \frac{2 \cdot 4}{7 \cdot 4} = \frac{8}{28}$, si ha $\frac{21}{28} > \frac{8}{28}$, quindi $\frac{3}{4} > \frac{2}{7}$.

Operazioni con le frazioni

$$a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$$

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

$$\frac{a}{b} : c = \frac{a}{b} \cdot \frac{1}{c} = \frac{a}{b \cdot c}$$

$$\frac{a}{b} : \frac{c}{d} = \frac{a \cdot d}{b \cdot c} = \frac{a \cdot d}{b \cdot c}$$

$$\frac{a}{b} + c = \frac{a + c \cdot b}{b}$$

$$\frac{a}{b} + \frac{c}{b} = \frac{a + c}{b}$$

$$\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + c \cdot b}{b \cdot d}$$
Per ottenere una frazione semplificata si può addizionare in questo modo:

posto
$$m = mcm(b,d)$$
 si ha $\frac{a}{b} + \frac{c}{d} = \frac{(m:b) \cdot a + (m:d) \cdot c}{m}$, esempio $\frac{3}{10} + \frac{4}{15} = \frac{3 \cdot 3 + 2 \cdot 4}{30} = \frac{17}{30}$

Trasformazione in numero decimale. Ogni frazione può essere trasformata in un numero decimale limita o illimitato periodico, dividendo il numeratore per il denominatore della frazione:

Esempi:
$$\frac{7}{4} = 7:4 = 1,75$$
. $\frac{3}{7} = 3:7 = 0,\overline{428571}$.

Un numero decimale limitato si trasforma in frazione riportando al numeratore il numero senza la virgola e al denominatore un 1 seguito da tanti zeri quante sono le cifre decimali.

Esempio:
$$3,75 = \frac{375}{100}$$

Un numero decimale periodico si trasforma in una frazione che ha al numeratore la differenza tra il numero stesso senza la virgola e il numero cosituito dalle cifre prima del periodo, al denominatore tanti 9 quante sono le cifre del periodo e tanti zeri quante sono le cifre dell'antiperiodo.

Esempio:
$$12,34\overline{976} = \frac{1234976 - 1234}{99900}$$

4.7 Assiomatizzazione degli insiemi numerici

Assiomi di Peano. Una definizione assiomatica dei numeri naturali è data dai seguenti 5 assiomi di Peano:

- 1. Esiste un numero naturale, 0.
- 2. Ogni numero naturale ha un successore.
- 3. Numeri diversi hanno successori diversi.
- 4. 0 non è il successore di nessun numero naturale.
- 5. Ogni insieme di numeri naturali che soddisfa gli assiomi 1 e 2 coincide con l'intero insieme dei numeri naturali.

Principio di induzione. Se una proprietà P(n) sui numeri naturali verifica le condizioni

- 1. P(0) è vera
- 2. $P(n) \Rightarrow P(n+1), \forall n \ge 1$

Allora P(n) è vera per ogni n.

Sezioni di Dedekind. La costruzione dei numeri reali si può effettuare a partire dai numeri razionali tramite le sezioni di Dedekind. Due sottoinsiemi *A* e *B* di numeri razionali costituiscono una sezione di Dedekind se:

- 1. $A \cap B = \emptyset$;
- 2. $A \cup B = \mathbb{Q}$:
- 3. $\forall a \in A, \forall b \in B : a < b$

L'insieme dei numeri reali è definito come l'insieme delle sezioni di Dedekind.

Esempio. Il numero irrazione $\sqrt{2}$ è definito da $A = \{a \in Q \mid a < 0 \lor a^2 < 2\}$, $B = \{b \in \mathbb{Q} \mid a^2 > 2\}$.

Sistema assiomatico dei numeri reali.

- 1. $\mathbb{R}(+,\cdot)$ è un campo: le due operazioni godono delle proprietà commutativa, associativa, distributiva, hanno l'elemento neutro, ciascun elementi ha l'inverso rispetto a ciascuna operazione, tranno 0 che non ha l'inverso rispetto alla moltiplicazione.
- 2. $\mathbb{R}(\leq)$ è totalmente ordinato: $\forall x : x \leq x$ (riflessiva); $x \leq y \land y \leq x \Rightarrow x = y$ (antisimmetrica); $x \leq y \land y \leq z \Rightarrow x \leq z$ (transitiva); $\forall x, y \in \mathbb{R} : x \leq y \lor y \leq x$ (totalità).

4.8 Valore assoluto

Definizione. Il valore assoluto è una funzione reale di variabile reale, $|\cdot|: \mathbb{R} \to \mathbb{R}$, che associa al numero x il numero stesso se x è non negativa, il suo opposto, -x, se invece x è negativo. Il valore assoluto di x si indica con |x|, e risulta

Figura 1. Grafico della funzione valore assoluto

Esempi: |+3| = +3; |-3| = +3.

Proprietà del valore assoluto. Il valore assoluto è una funzione positiva, in quanto gode delle due seguenti proprietà

. Ontolin, L. Burtetta, E. Lassardi

$$|x| \ge 0 \quad \forall x \in \mathbb{R}$$
 $|x| = 0 \Leftrightarrow x = 0$

Il valore assoluto è anche una funzione positivamente omogenea, infatti

$$|x \cdot y| = |x| \cdot |y| \quad \forall x, y \in \mathbb{R}$$
 $\left| \frac{x}{y} \right| = \frac{|x|}{|y|} \quad \forall x \in \mathbb{R}, \quad \forall y \in \mathbb{R} \setminus \{0\}$

Vale anche la disuguaglianza triangolare, ovvero: $|x + y| \le |x| + |y| \quad \forall x, y \in \mathbb{R}$.

Grazie a queste tre condizioni il valore assoluto è una norma.

Come conseguenza diretta della disuguaglianza triangolare $||x| - |y|| \le |x - y| \quad \forall x, y \in \mathbb{R}$.

Inoltre, $\forall n \in \mathbb{N}$ pari, risulta $\sqrt[n]{x^n} = |x| \quad \forall x \in \mathbb{R}$.

Le seguenti proprietà del valore assoluto sono utili per la risoluzione di equazioni e disequazioni:

$$1. |x| = |c| \rightarrow x = \pm c$$

$$2. |x| = c \rightarrow x = \pm c, \text{ con } c \ge 0$$

$$3. |x| \le c \begin{cases} \nexists x \in \mathbb{R} & \text{se } c < 0 \\ x = 0 & \text{se } c = 0 \\ -c \le x \le c & \text{se } c > 0 \end{cases}$$

$$4. |x| < c \begin{cases} \nexists x \in \mathbb{R} & \text{se } c \le 0 \\ -c < x < c & \text{se } c > 0 \end{cases}$$

$$5. |x| \ge c \begin{cases} x \in \mathbb{R} & \text{se } c \le 0 \\ x \le -c \lor x \ge c & \text{se } c > 0 \end{cases}$$

$$6. |x| > c \begin{cases} x \in \mathbb{R} & \text{se } c \le 0 \\ x \ne 0 & \text{se } c = 0 \\ x < -c \lor x > c & \text{se } c > 0 \end{cases}$$

Infine, il valore assoluto di un numero può anche essere espresso per mezzo del massimo fra $x \in -x$ $|x| = \max\{x, -x\} \quad \forall x \in \mathbb{R}$

4.9 Funzione segno

Definizione

La funzione segno è una funzione reale di variabile reale, $sgn: \mathbb{R} \to \mathbb{R}$, che vale 1 quando il suo argomento è positivo, -1 quando il suo argomento è negativo, 0 quando x=0. In formula

Figura 2. Grafico della funzione segno

Legame tra la funzione segno e il valore assoluto

$$sgn(x) = \frac{|x|}{x} = \frac{x}{|x|} \quad \forall x \in \mathbb{R} \setminus \{0\} \qquad |x| = x \cdot sgn(x) \quad \forall x \in \mathbb{R}$$

. o...o..., 2. 20.10tta/ 2. 2000d a.

4.10 Parte intera

Definizione. Dato un numero reale x, si definisce **parte intera superiore** di x, e si indica con $\lceil x \rceil$, il più piccolo intero non minore di x. La **parte intera inferiore** di x è il più grande intero minore o uguale di x, e si indica con $\lfloor x \rfloor$. Spesso si usa il simbolo $\lceil x \rceil$ per indicare la parte intera inferiore.

Esempi:
$$\lceil 5,1 \rceil = 6$$
; $\lfloor 5,9 \rfloor = 5$; $\lceil 3,8 \rceil = 3$

Proprietà della parte intera

1.
$$\lfloor x \rfloor = x = \lceil x \rceil \Leftrightarrow x \in \mathbb{Z}$$
 2. $\lfloor x \rfloor = \lfloor x \rfloor \quad \forall x \in \mathbb{R}$ 3. $\lceil x \rceil = \lceil x \rceil \quad \forall x \in \mathbb{R}$ 4. $\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1 \quad \forall x \in \mathbb{R}$ 5. $x \leq \lceil x \rceil < x + 1 \quad \forall x \in \mathbb{R}$ 6. $\lceil x \rceil = -\lfloor -x \rfloor \quad \forall x \in \mathbb{R}$

$$7. x = \left\lfloor \frac{x}{2} \right\rfloor + \left\lceil \frac{x}{2} \right\rceil \quad \forall x \in \mathbb{Z}$$

4.11 Approssimazione

Per approssimare un numero x alla cifra di posto n si procede in più modi.

Approssimazione per troncamento. Si tronca il numero alla cifra significativa stabilità. In altre parole si sostituiscono con 0 tutte le cifre che seguono quella significativa.

Esempio: π troncato alla terza cifra significativa è 3,14.

Approssimazione per arrotondamento quando si sostituisce un numero x con quello troncato che è più vicino a x.

Arrotondamento per difetto se si taglia il numero alla cifra significata stabilita lasciando invariata l'ultima cifra se dopo di essa c'è una cifra da 0 a 4.

Esempio: 3,14 si approssima a 3,1

Arrotondamento per eccesso se si taglia il numero alla cifra significata stabilita aumentando di uno l'ultima cifra se dopo di essa c'è una cifra da 5 a 9.

Esempio: 3,14159 si approssima a 3,1416.

Se la cifra 5 è sta arrotondata per eccesso, nell'arrotondamento successivo si arrotonda per difetto.

Esempio: 3,245 si approssima a 3,25; al passo successivo si approssima a 3,2.

4.12 Fattoriale

Definizione. Per ogni $n \in \mathbb{N}$, si definisce il fattoriale come il prodotto dei numeri naturali da 1 a n

$$n!=n\cdot(n-1)\cdot\ldots\cdot3\cdot2\cdot1=\prod_{k=1}^n k$$

Oppure ricorsivamente:

$$n! = \begin{cases} 1 \text{ se } n = 0\\ n \cdot (n-1)! \text{ se } n > 0 \end{cases}$$

Esempio: $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$

Proprietà del fattoriale. Direttamente dalla definizione discendono le seguenti proprietà

$$\frac{n!}{(n-1)!} = n \quad \forall n \in \mathbb{N} \setminus \{0\}$$

$$\frac{n!}{n} = (n-1)! \quad \forall n \in \mathbb{N} \setminus \{0\}$$

$$\frac{n!}{m!} = n \cdot (n-1) \cdot \dots \cdot (n-m+2) \cdot (n-m+1) \quad n, m \in \mathbb{N}, \quad n > m$$

Per numeri elevati si può utilizzare l'**approssimazione di Stirling** $n! \approx n^n \cdot e^{-n} \sqrt{2\pi n}$.