76 Chapitre 10

Les arbres binaires

Motivation

- Les structures (Tableaux, listes) sont des structures linéaires:
 - Les données sont organisées de manière ordonnée les uns à la suite des autres
 - Pour chercher un élément, nous sommes obligés de parcourir toute la structure de donnée jusqu'à le trouver.
- → La recherche d'un élément dans un arbre binaire de recherche est beaucoup plus rapide que la recherche dans une structure de donnée linéaire.

Définition

- ☐ Un arbre est une structure de données composée d'un ensemble de nœuds.
- □ Chaque nœud contient les données spécifiques de l'application et des pointeurs vers d'autres nœuds (d'autres sous-arbres).
- ☐ Plusieurs traitements en informatique sont de nature arborescente tel que:
 - La représentation des expressions arithmétiques,.. Etc.
 - La hiérarchie des répertoires et des fichiers

Terminologie

• Le prédécesseur s'il existe s'appelle **père** (père de C = A, père de L = H)

Le successeur s'il existe s'appelle fils

(fils de $A = \{ B,C \}$, fils de $H = \{L,M \}$)

Le nœud qui n'a pas de prédécesseur s'appelle racine (A)

Terminologie

- Le nœud qui n'a pas de successeur s'appelle **feuille** (Exemples: E,F,L,M,I)
- Un nœud **descendant** n d'un autre nœud X est tout nœud se trouvant dans le chemin partant du nœud X jusqu'à une feuille (y compris le nœud feuille).

Exemple: Les descendants de $C=\{H,I,L,M\}$, de $B=\{E,F\}$

• Un nœud ascendant n d'un autre nœud X est tout nœud se trouvant dans le chemin partant du nœud X jusqu'à la racine(y compris la racine).

Exemple: Les ascendants de $L=\{H,C,A\}$, $E=\{B,A\}$

Terminologie

- Le nœud qui n'a pas de successeur s'appelle **feuille** (Exemples: E,F,L,M,I)
- Un nœud **descendant** n d'un autre nœud X est tout nœud se trouvant dans le chemin partant du nœud X jusqu'à une feuille (y compris le nœud feuille).

Exemple: Les descendants de $C=\{H,I,L,M\}$, de $B=\{E,F\}$

• Un nœud ascendant n d'un autre nœud X est tout nœud se trouvant dans le chemin partant du nœud X jusqu'à la racine(y compris la racine).

Exemple: Les ascendants de $L=\{H,C,A\}$, $E=\{B,A\}$

Mesures sur les arbres

> Taille d'un arbre

- On appelle taille d'un arbre le nombre total de nœuds de cet arbre.
- Taille de l'arbre suivant = 9
- Un arbre vide est de taille 0.

Niveau d'un nœud

- Le niveau de la racine = 0
- Le niveau de chaque nœud = niveau
 de son père + 1
- Niveau de $\{E,F,H,I\} = 2$

Mesures sur les arbres

> Profondeur (Hauteur) d'un arbre

• C'est le niveau maximum dans cet arbre.

Profondeur de l'arbre suivant = 3

Degré d'un nœud

- Le degré d'un nœud est égal au nombre de ses fils.
- Degré de (A = 2, B = 2, C = 2, E = 0, H = 2)

Degré d'un arbre

• C'est le degré maximum de ses nœuds.

Le degré d'un arbre binaire est égal à 2.

Si le degré d'un arbre est égal à N, l'arbre est dit

N-aire.

Un arbre **binaire** est un arbre où chaque nœud a un fils gauche, un fils droit ou les deux à la fois.

→ c'est un arbre ou le degré maximum d'un nœud est égal à 2.

Un arbre binaire A de racine **X** est dit **arbre binaire de recherche** (ABR) si et seulement si :

- ✓ Toute valeur associée à un nœud de son sous-arbre principal gauche est <= X
- ✓ Toute valeur associée à un nœud de son sous-arbre principal droit est > X
- ✓ Tout sous-arbre de A est lui-même un ABR.

exemples

Structure

- > 3 types de données sont stockées dans un nœud. :
 - La donnée data
 - Un pointeur de type Nœud vers le sous arbre gauche
 - Un pointeur de type Nœud vers le sous arbre droit
- > Relations entre types: Structure récursive
 - Un arbre binaire est caractérisé par une racine qui est un nœud
 - Les descendants d'un nœud sont des arbres binaires
 - ☐ définition récursive de l'arbre en fonction d'elle-même.

Solution: les descendants d'un nœud sont des pointeurs vers d'autres nœuds.

```
Struct Nœud
TYPE data;
                           // data peut avoir n'importe
                               quel type
                          // FG et FD sont deux pointeur vers d'autres noeuds */
Struct Nœud * FG;
Struct Nœud * FD;
};
Typedef Struct Nœud * Arbre;
```

Le parcours

Le parcours d'un arbre consiste à passer par tous ses nœuds pour en effectuer un traitement.

- ➤ On distingue deux types de parcours :
- ✓ Parcours en profondeur
- ✓ Parcours en largeur

parcours en profondeur

Dans un parcours en profondeur, Commençant par la racine:

- 1. On descend le plus profondément possible dans l'arbre puis
- 2. Une fois qu'une feuille est atteinte, on remonte pour explorer les autres branches en commençant par la branche "la plus basse" parmi celles non encore parcourues.

Parcours Préfixé

La racine est traitée en premier

☐ Parcours préfixé : A, B, E, H, L, D, F, G, M, N.

La racine est traitée entre les deux appels récursifs

1 Parcours Infixé du SAG

2 Traiter la racine

3 Parcours Infixé du SAD

☐ Parcours infixé : H, E, L, B, A, F, D, M, G, N.

La racine est traitée après les deux appels récursifs

☐ Parcours postfixé : H, L, E, B, F, M, N, G, D, A.

- Ajout d'un nœud
- □ Algo INSERT(v) // insère la clé v dans l'arbre itératif
 - \square x \leftarrow racine
 - si x = null alors initialiser avec une racine de clé v et retourner
 - tant que vrai faire
 - \blacksquare si v = cle(x) alors retourner
 - \blacksquare si v < cle(x)
 - alors si gauche(x) = null
 - alors attacher nouvel enfant gauche de x avec clé v et retourner
 - \blacksquare sinon $x \leftarrow gauche(x)$
 - \blacksquare sinon si droit(x) = null
 - alors attacher nouvel enfant droit de x avec clé v et retourner
 - $sinon x \leftarrow droit(x)$