Methods of optimization

Roman Nichiporuk

Lab number 1 Task number 1

1 Task

N 5.18 ((17 + 6) mod 20) + 1 = 4 Prove that the set X = $\{2x_1^2 - 5x_1x_2 - 3x_2^2 \le 0, x_2 \ge 0\}$ is convex cone.

Solution:

We can notice, that: $2x_1^2 - 5x_1x_2 - 3x_2^2$ equals $(x_1 - 3x_2)(2x_1 + x_2)$ From here we have:

$$\begin{cases} 2x_1^2 - 5x_1x_2 - 3x_2^2 \le 0, \\ x_2 \ge 0; \end{cases}$$
 (1)

equals:

$$\begin{cases} x_1 - 3x_2 \le 0, \\ 2x_1 + x_2 \ge 0; \end{cases} \tag{2}$$

Now let's substitute $x=(x_1,x_2)$ with (y_1+z_1,y_2+z_2) where $(y_1,y_2),(z_1,z_2)\in X$ and after that we have:

$$\begin{cases} y_1 + z_1 - 3(y_2 + z_2) \le 0, \\ 2(y_1 + z_1) + y_2 + z_2 \ge 0; \end{cases}$$
 (3)

equals:

$$\begin{cases} (y_1 - 3y_2) + (z_1 - 3z_2) \le 0, \\ (2y_1 + y_2) + (2z_1 + z_2) \ge 0; \end{cases}$$
(4)

From here we can see that: $(y_1 - 3y_2), (z_1 - 3z_2) \le 0, (2y_1 + y_2), (2z_1 + z_2) \ge 0$ this means that $(y_1 + z_1, y_2 + z_2) \in X$. and that means that X is convex cone.

Task 2

 $N 5.23 ((17 + 7) \mod 30) + 1 = 25$

Write down the equation of the hyperplane separating the sets: $X_1 = \{x: x_1x_2 \geq 1, x_1 \geq 0\},\ X_2 = \{x: x_2 \leq \frac{10}{x_1-5}+2, x_1 < 5\}.$

$$X_1 = \{x : x_1 x_2 \ge 1, x_1 \ge 0\}$$

$$X_2 = \{x : x_2 \le \frac{10}{x_1 - 5} + 2, x_1 < 5\}.$$

Solution:

We need to find a hyperplane that separates the sets:

$$\begin{cases}
X_1 = \{x : x_1 x_2 \ge 1, x_1 \ge 0\}, \\
X_2 = \{x : x_2 \le \frac{10}{x_1 - 5} + 2, x_1 < 5\};
\end{cases}$$
(5)

Let's assume that this is a plane with the formula: $x_2 = 1 - x_1$

Now let's check whether this hyperplane not intersects two sets: 1) X_1 : $x_1x_2 = 1$ from this we have $x_2 = \frac{1}{x_1}$ that means $x_1 = 0$ is not a solution.

$$\begin{cases} x_2 = \frac{1}{x_1}, \\ x_2 = 1 - x_1; \end{cases}$$
 (6)

$$1 - x_1 = \frac{1}{x_1}$$
$$\frac{x_1^2 - x_1 + 1}{x_1} = 0$$

 $\begin{array}{l} 1-x_1=\frac{1}{x_1}\\ \frac{x_1^2-x_1+1}{x_1}=0\\ \text{Discriminant is negative, there are no non-complex solutions.} \end{array}$

2) X_2 : $x_2 = \frac{10}{x_1 - 5} + 2$ that means $x_1 = 5$ is not a solution.

$$\begin{cases} x_2 = \frac{1}{x_1}, \\ x_2 = \frac{10}{x_1 - 5} + 2; \end{cases}$$
 (7)

$$x_2 = \frac{10}{x_1 - 5} + 2 = \frac{1}{x_1}$$
$$\frac{2x_1^2 - x_1 + 5}{x_1(x_1 - 5)} = 0$$

 $\begin{array}{l} x_2=\frac{10}{x_1-5}+2=\frac{1}{x_1}\\ \frac{2x_1^2-x_1+5}{x_1(x_1-5)}=0\\ \text{Discriminant is negative, there are no non-complex solutions.}\\ \text{ANSWER: } x_2=1-x_1. \end{array}$