第 13~17 教学周实验教学计划

因原定 13 周返校计划延后, 所以将后面的实验进行相应调整, 具体如下:

周次	内容	实验模式	学时	教材		
13	仪器使用(Multisim)	远程授课	3	第 4、7 章		
14	时序逻辑电路(广告流水灯)	远程授课	3	<i>5</i> 4、/ 早		
15	时序逻辑电路 (序列发生器)	远程授课	3			
16	时序逻辑电路(曼切斯特码)	远程授课	3	第6、7章		
17	时序逻辑电路(简易数字钟)	远程授课	3			

说明

- 1. 原计划中的仪器使用改为 Multisim 虚拟仿真完成,请参看后面的具体实验内容
- 2. 增加简易数字钟实验

仪器使用

学习目标

- 1. 认识正弦信号及脉冲信号及其主要参数;
- 2. 学习阅读仪器说明书;
- 3. 掌握信号源和示波器的使用方法;
- 4. 掌握示波器测量波形参数的基本方法。
- 5. 掌握用示波器测量脉冲信号的基本方法;
- 6. 掌握万用表的使用方法;

时间要求:

1. 实验时间: 第 13 周

2. 报告提交:第14周课内

实验预习

1. 了解正弦波信号、交直流叠加信号的参数定义:

图 1 正弦波信号的参数定义

图 2 交直流叠加信号的参数定义

2. 了解脉冲信号的参数定义:

图 3 脉冲信号的参数定义

- 3. 学习《数字逻辑电路设计实践》第一章相关内容和仪器说明书,学习示波器的使用方法
 - 1) 了解面板上各按钮及旋钮的作用,各菜单的设置方法;
 - 2) 了解探头的作用及使用方法;
 - 3) 了解探头补偿,探头上衰减开关的作用及使用注意事项:
 - 4) 了解示波器垂直通道 DC 和 AC 耦合方式的区别, 及如何选择正确的耦合方式;
 - 5) 了解示波器触发,触发边沿、触发源、触发电平的基本概念
 - 6) 了解示波器测量脉冲信号的基本方法和测量注意事项;

- 4. 了解函数/任意波形发生器的作用,查阅说明书,了解基本功能和使用方法。
 - 1) 了解面板上各按钮及旋钮的作用,各菜单的设置方法:
 - 2) 了解信号发生器与正弦波相关的参数和设置方法
 - 3) 学习教材第 1.2 章相关内容,了解脉冲信号的主要参数;
- 5. 阅读稳压电源和万用表说明书,了解其基本功能和使用方法;

必做实验

1. 观察你 Multisim 软件中 Tektronix 示波器面板,并填写下表

表 1 示波器参数

示波器厂家	示波器型号	示波器带宽	最大实时采样率

2. 检查示波器

- 1) 认识 Multisim 软件中 Tektronix 示波器前面板各按钮及名称。
- 2) 将机内的补偿信号输入到 CH1 通道,在示波器屏幕上观察该信号。

3. 测量示波器校准信号(必做)

测量 Tektronix 示波器机内校准信号,将测量值记录到表 2 (老师验收),三种方法测的波形图,作为波形数据包含在实验报告中。

测量 峰峰值 高电平电压 低电平电压 周期 频率 方法 档 格 计算 档 格 计算 档 格 计算 档 格 计算 数 数 位 数 值 位 值 位 值 位 数 值 1 2 3

表 2 机内补偿信号的测量

用数字示波器测量电压峰峰值、高电平、低电平的三种方法:

- 1) 在屏幕上先读出波形垂直所占格数或水平所占格数,然后用"格数×档位(V/DIV,S/DIV)"方式计算相应电压或时间
- 2) 按下 "Measure" 按钮,调出菜单,在显示屏上读数
- 3) *用光标 "Cursor" 来测量*

用"格数×档位(V/DIV)"方式测量信号高、低电平时的步骤:

- 1) 将信号从某个通道输入
- 2) 将耦合方式调节到 DC 耦合

- 3) 调节电压档位开关使得波形上下展开
- 4) 调节上下位移旋钮使通道标记固定于某个标尺上,参考标尺读出高、低电平等电压值。

实验结果分析:

- 1. 在这个实验中我们为什么不能选择 AC 输入耦合方式,如果选择了 AC 输入耦合方式,测得的峰峰值、低电平电压、高电平电压各会有什么变化。
- 2. 若示波器提供的标准信号是 f=1kHz, Upp=3V 的方波, 假设示波器的读数误差为±0.1 格, 试计算示波器扫描速率取 2ms、1ms、0.5ms、0.2ms 时测量的相对误差是多少?并分析自己在测试中选择的扫描速率是否合适。
- 3. 总结一下示波器测量机内补偿信号的基本步骤和注意要点。

4. TTL 脉冲信号测量(必做)

从 Multisim 中 Agilent 函数发生器的 "OUTPUT"口,输出一个峰峰值 5V,Offset 为 2.5V 的方波信号 以模拟 TTL 脉冲信号。信号接到示波器的输入端,根据表 3 的要求完成实验,将测量结果记录在表中,每个实验的波形保存并加入实验报告中;

信号源		示波器									
频 率 (Hz)	占 空 比 (%)	峰 峰 值 (V)	高 电 平 (V)	低 电 平 (V)	周 期 (us)	频 率 (Hz)	正 脉 宽 (us)	负 脉 宽 (us)	占 空 比 (%)	上升 时间 (ns)	下降 时间 (ns)
10×10 ⁵	50										
10×10	20										

表 3 TTL 脉冲信号测量

5. 叠加在直流上的正弦波的测试 (必做)

图 4 叠加在直流上的正弦波

- 1) 调节 Multisim 中的 Agilent 函数发生器,产生如图 4 所示叠加在直流上的正弦波信号,其中直流分量为 1V,交流分量峰峰值为 4V,信号频率为 500Hz;
- 2) 用 Tektronix 示波器和 Agilent 万用表测出信号的相关参数,其中用示波器测量交流分量的有效值时,通道耦合方式选择 AC。测量数据填入表 3 中。(老师验收)

表 4 叠加在直流上的正弦波测量数据

使用仪器	直流分量	交流分量					
(文/7) (人格)		峰峰值	有效值	周期	频率		
函数发生器	1V	4V			500Hz		
示波器							
万用表							

时序逻辑电路

学习目标

- 1. 掌握时序逻辑电路的一般设计过程;
- 2. 掌握时序逻辑电路的时延分析方法,了解时序电路对时钟信号相关参数的基本要求;
- 3. 掌握时序逻辑电路的基本调试方法;
- 4. 熟练使用示波器或逻辑分析仪观察波形图

时间要求:

- 1. 实验时间: 第14、15、16、17周
- 2. 报告提交: 第18周

预备知识

1. 实验教材: 第4章

预习要求

- 1. 广告流水灯的设计方案、原理图、电路连接(第14周)
- 2. 序列发生器设计方案、原理图、电路连接(第15周)
- 3. 4位并行输入-串行输出曼切斯特编码设计方案、原理图和电路连接(第16周)
- 4. 简易数字钟设计方案、原理图和电路连接(第17周)

必做实验

1、广告流水灯(第14周课内验收)

用触发器、组合函数器件和门电路设计一个广告流水灯,该流水灯由8个LED组成,工作时始终为1暗7亮,且这一个暗灯循环右移。

- 1) 写出设计过程,画出设计的逻辑电路图,按图搭接电路
- 2) 将单脉冲加到系统时钟端,静态验证实验电路
- 3) 用 Multisim 中 Agilent 函数发生器产生 TTL 连续脉冲信号加到系统时钟端,用 Tektronix 示波器观察 并记录时钟脉冲 CP、触发器的输出端 Q2、Q1、Q0 和 8 个 LED 上的波形。
- 4) 用 Multisim 中的逻辑分析仪观察并记录时钟脉冲 CP、触发器的输出端 Q2、Q1、Q0 和 8 个 LED 上的波形(选做)

2、序列发生器 (第15周课内实物验收)

分别用 MSI 计数器和移位寄存器各设计一个具有自启动功能的 01011 序列信号发生器

- 1) 写出设计过程, 画出电路逻辑图
- 2) 搭接电路,并用单脉冲静态验证实验结果
- 3) 用 Multisim 中 Agilent 函数发生器产生 TTL 连续脉冲,用 Tektronix 示波器观察观察并记录时钟脉冲 CLK、序列输出端的波形。

3、4位并行输入-串行输出曼切斯特编码电路(第16周课内验收,基础要求占70%,扩展要求占30%)

在电信与数据存储中,曼彻斯特编码(Manchester coding),又称自同步码、相位编码(phase encoding, PE),它能够用信号的变化来保持发送设备和接收设备之间的同步,在以太网中,被物理层使用来编码一个同步位流的时钟和数据。曼彻斯特编码用电压的变化来分辨 0 和 1,从高电平到低电平的跳变代表 0,而从低电平到高电平的跳变代表 1。信号的保持不会超过一个比特位的时间间隔。即使是 0 或 1 的序列,信号也将在每个时间间隔的中间发生跳变。这种跳变将允许接收设备的时钟与发送设备的时钟保持一致,图 1 为曼切斯特编码的例子。

设计一个电路,它能自动加载 4 位并行数据,并将这 4 位数据逐个串行输出(高位在前),每个串行输出位都被编码成曼切斯特码,当 4 位数据全部传输完成后,重新加载新数据,继续传输,如图 3.2 所示。

- 1) 写出设计过程,画出电路逻辑图,设计不允许手动加载数据。
- 2) 用 Multisim 中 Agilent 函数发生器产生 TTL 连续脉冲,用 Tektronix 示波器观察并记录时钟脉冲 CLK、 串行数据输出端的波形。
- 3) 给串行数据增加起始位和结束位,其中起始位为"0",结束位为"1",起始和结束位同样要编码成 曼切斯特码,波形图参看图 3 (扩展部分,选作)

4、 简易数字钟(第 17 周课内验收,基础要求占 70%,扩展要求占 30%) 基础:

设计一个只有小时和分钟功能的简易数字钟,4 位数码管用于显示,高 2 位显示小时($0\sim23$),低 2 位显示"分钟"($0\sim59$)。

- 1) 设计电路,电路要求采用同步计数器设计
- 2) 搭试电路,验证电路结果。
- 3) 用 Multisim 中 Agilent 函数发生器产生 TTL 连续脉冲,用 Tektronix 示波器观察并记录"分钟"计数电路中的时钟脉冲及计数器的各输出波形
- 4) 用 Multisim 中 Agilent 函数发生器产生 TTL 连续脉冲,用 Tektronix 示波器观察并记录"小时"计数电路中的时钟脉冲及计数器的各输出波形

扩展:

增加手动校时和校分功能,通过按动按键,实现校时和校分