

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree in Applied Sciences Third Year - Semester II Examination - April / May 2016

PHY 3309 – STRUCTURE AND PROPERTIES OF MATERIALS

Answer all questions

Time: Three (03) hours

Symbols have their usual meaning.

Some fundamental constants and physical data;

Electron mass $m_e = 9.1 \times 10^{-31} \text{ kg}$ Electron charge $e = -1.6 \times 10^{-19} \text{ C}$ Planck's constant $h = 6.626 \times 10^{-34} \text{ J s}$

$$\vec{\nabla} = \hat{i} \, \frac{\partial}{\partial x} + \hat{j} \, \frac{\partial}{\partial y} + \hat{k} \, \frac{\partial}{\partial z}$$

- (01) (a) Define the term "unit cell" and draw unit cells for simple cubic, body-centered cubic and face-centered cubic lattices. [07 marks]
 - (b) Calculate the "packing fraction" for each of the above cubic lattices. [07 marks]
 - (c) Distinguish between "unit cell" and "primitive cell". [07 marks]
 - (d) Draw a primitive cell for a simple cubic lattice. [04 marks]
- (02) (a) What are dislocations in metals?
 - (b) "Plastic deformation of metals takes place most commonly by the slip process, involving the movement of dislocations" Briefly explain the above statement. [08 marks]
 - (c) What are the TWO important factors that determine the most likely slip systems in metals? [07 marks]

Contd....

- (d) The metal Polonium (Po) crystallizes in Simple cubic structure. How many slip systems are possible in Polonium? Comment on the ductility of the metal Polonium. [10 marks]
- (03) (a) "An electron in a solid has an effective mass m*". Briefly explain the above statement.
 - (b) (i) Show that the curvature of the energy band in which the particle (electron or hole) moves is inversely proportional to the effective mass of the particle.

 [07 marks]
 - (ii) The energy near the valence band edge of a crystal is given by $E = Ak^2$, where $A = 10^{-39}$ J m². An electron with wave vector $\mathbf{k} = 10^{10}$ $\mathbf{k_x}$ m⁻¹ is removed from an orbital in the completely filled valence band. Determine the effective mass, velocity, momentum and energy of the hole.

Hint: Consider effective mass and a wave vector of hole to be opposite to those of an electron.

- (04) (a) State the assumptions made by Kronig and Penney in suggesting a simple model to obtain mathematical solution that confirms energy band formation in crystals.
 - (b) (i) Show that the permitted energies for the Delta-function potential with $P \to \infty$ in the Kronig-Penney model equal the energies of the electron in a box with impenetrable walls. Note: For the Delta-function potential, Kronig-Penney equation is $\frac{P \sin \alpha a}{\alpha a} + \cos \alpha a = \cos ka$, where $\alpha^2 = \frac{2m_e E}{\hbar^2}$. [10 marks]
 - (ii) What is "P" in the above Kronig-Penney equation? [05 marks]
 - (05) (a) Define the "reciprocal lattice" and briefly discuss the importance of the reciprocal lattice concept. [06 marks]
 - (b) Construct the reciprocal lattice of a Square lattice. [06 marks]
 - (c) Define the Wigner Seitz cell. [06 marks]
 - (d) Construct the First Brillouin zone of a Square lattice. [07 marks]

Contd....

(06) Write short notes on the following:

(a) Point defect formation in a monatomic solid.	[06 marks]
(b) Miller-Bravais indices in hexagonal crystal system.	[06 marks]
(c) Burgers circuit and Burgers vector in an edge dislocation.	[06 marks]
(d) Mohs hardness scale for minerals.	[07 marks]

END

