

MLA Medium Preparation V.1

Katie Hunsberger¹, Kristel Sanchez¹

¹University of Michigan - Ann Arbor

Feb 25, 2022

document.

Duffy Lab, EEB, University of Michigan

kmonell

This recipe is used to grow algae in the genus Anabaena, Dolichospermum, and Aphanizomenon in the Duffy lab. It can be used to grow other freshwater cyanobacteria cultures.

Katie Hunsberger, Kristel Sanchez 2022. MLA Medium Preparation. **protocols.io**

https://protocols.io/view/mla-medium-preparation-b5mrq456

_____ document ,

Feb 25, 2022

Feb 25, 2022

58769

This recipe is used to grow algae in the genus Anabaena, Dolichospermum, and Aphanizomenon in the Duffy lab. It can be used to grow other freshwater cyanobacteria cultures.

Written by: K. Hunsberger, February 2016 Updated by: K. Sánchez, March 2021

Based on methods from Australian National Algae Culture Collection

MLA Medium Preparation

Summary

This recipe is used to grow algae in the genus *Anabaena, Dolichospermum, and Aphanizomenon* in the Duffy lab. It can be used to grow other freshwater cyanobacteria cultures.

Materials

1

Α	В	С
Apparatus &	Labware	Reagents
Equipment		
Autoclave	1L polyethylene	Sodium nitrate, NaNO3
	bottles	
Aluminum foil	Graduated	Calcium
	cylinder	chloride, CaCl2•2H2O
Autoclave tape	500 mL beakers	Magnesium Sulfate,
		MgSO4•7H2O
Analytical balance	stirring	Potassium
	magnet	phosphate dibasic, K2HPO4
Weight boats or paper	5L glass aspirator	Boric acid, H3BO3
	bottle	
	Rubber cap	Selenious
	for 5L	acid, H2SeO3
	Rubber hose	Copper (II) sulfate, CuSO4 · 5H2O
	spatula	Iron (III)
		chloride, FeCl3
		Zinc sulfate, ZnSO4 ·
		7H2O
		Cobalt (II)
		chloride, CoCl2 · 6H2O
		Sodium molybdate, Na2MoO4
		· 2H2O
		EDTA, Na2EDTA
		Sodium bicarbonate, NaHCO3
		Manganese
		(II) chloride, MnCl2 · 4H2O

- 1. Stock Solutions Set #1: Using the analytical balance, weight the prescribed amounts of each of chemicals in the table below. Dissolve the prescribed amount of each chemical into 1 L (final volume) of MilliQ water. There will be 5 separate solutions. Store in polyethylene bottles.
- **2. Vitamin Solution:** Use the solution in the fridge labeled *VIM.* (This VIM solution is from the Standard COMBO Medium Protocol and contains Vitamin B₁₂, Biotin, and Thiamine-HCl. See protocol for specific concentrations.)
- **3. Micronutrient Primary Stocks:** First prepare these 4 primary stocks by adding the prescribed amount to MilliQ water for a final volume of 1L. There will be 4 separate solutions.

Α	В	С
Compound	Symbol	g/L MilliQ
Copper (II) sulfate	CuS04 · 5H2O	1.0
Zinc sulfate	ZnS04 · 7H20	2.2
Cobalt (II) chloride	CoCl2 · 6H2O	1.0
Sodium molybdate	Na2MoO4 · 2H2O	0.6

4. Micronutrient Stock Solutions: Dissolve the prescribed amount of the following constituents in ~800 mL of MilliQ water. Allow each to mix and dissolve completely before adding the next ingredient.

Α	В	С
Compound	Symbol	g
EDTA*	Na2EDTA	4.36
Iron (III) chloride	FeCl3 · 6H2O	1.58
Sodium bicarbonate	NaHCO3	0.60
Manganese (II) chloride	MnCl2 · 4H2O	0.36

^{*}Add the EDTA first and stir on low heat to fully dissolve.

Then, add 10 of each of the 4 primary stock solutions. Bring the final volume up to 1L. If a precipitate forms, increase the pH up to 7. This solution is the micronutrient stock solution.

<u>5. Stock Solution Set #2:</u> Dissolve the prescribed amount of each chemical into 1 L (final volume) of MilliQ water in 1L flasks. There will be 2 separate solutions.

6.

Α	В	С	
Compound	Symbol	g/L MilliQ	
Sodium bicarbonate	NaHCO3	16.9	
Calcium chloride	CaCl2 · 2H2O	29.4	

(

Autoclave each of the compounds using the setting number 2 of the BSB autoclaves in floors 4^{th} & 5^{th} (or 121 °C for 15 minutes) and then store in 1L glass bottles.

7. MLA x40 Concentrated Nutrient Solution: Prepare this 1L solution by adding the following volumes of the stock ingredients to 540 mL MilliQ water.

Α	В
Solution	Volume to add
MgS04 · 7H20	40 mL
NaNO3	80 mL
K2HPO4	200 mL
H3BO3	40 mL
H2SeO3	40 mL
VIM Solution	20 mL
Micronutrient	40 mL
stock solution	

Filter sterilize using a 0.22 mm filter into a sterile 1L glass bottle.

STORE ALL OF THE ABOVE STOCK SOLUTIONS AND PRIMARY STOCK SOLUTIONS IN THE FRIDGE.

Final MLA Medium Preparation: is prepared by adding ~750 mL MilliQ water for each liter. Then, add the correct amount of each solution according to the following table. After adding all of the solutions, the volume should be increased to the specified final amount and adjusted to a pH of 7.5-8 with HCl (if necessary). Prepare final solution in a 1L or 5L aspirator bottle. Place the rubber stopper laterally (so it does not completely plug the top opening of the aspirator bottle) and completely cover the top with aluminum foil. Cover the end of the rubber hose with aluminum foil (or connect it to the second aspirator bottle if setting up a new culture). Autoclave the mixture by selecting program number 2 in the autoclaves found in the 4 or 5th floor of the BSB building (or at 121 °C for 15 min). Allow to cool in autoclave overnight, if possible. This helps to minimize amount of precipitate.

Α	В	С
Solution	Vol. per 1L	Vol. per 5L
Sterile MLA x40 concentrated nutrients	25 mL	125 mL
Sterile NaHCO3	1 mL	5 mL
Sterile CaCl2 · 2H2O	1 mL	5 mL