## CS 5/7350 – Test 3 May 11, 2022

Name:

| • Th             | nis exam is closed book and closed notes.                                                                    |
|------------------|--------------------------------------------------------------------------------------------------------------|
| • No             | o cell phones, or other electronics except for non-graphing calculator.                                      |
|                  | encil and/or pen and non-graphing calculator only are permitted. No aring of calculators                     |
| • It             | is 3 hours in duration plus time for scanning and uploading, etc.                                            |
|                  | ou should have 14 problems. Pay attention to the point value of each oblem and dedicate time as appropriate. |
|                  |                                                                                                              |
|                  |                                                                                                              |
|                  |                                                                                                              |
|                  |                                                                                                              |
|                  |                                                                                                              |
|                  |                                                                                                              |
|                  |                                                                                                              |
|                  |                                                                                                              |
|                  |                                                                                                              |
| On my honor, I h | have neither given nor received unauthorized aid on this exam.                                               |
|                  |                                                                                                              |
|                  | SIGNED:                                                                                                      |
|                  |                                                                                                              |
|                  | DATE:                                                                                                        |
|                  |                                                                                                              |

#### CS 5/7350 – Test 3 May 11, 2022

| Name: |  |  |  |
|-------|--|--|--|
| ID:   |  |  |  |
|       |  |  |  |

[+7 pts extra credit due to max quiz score for CS5350 Students]

- 1. [11 pts] Consider the following NP completeness questions. Answer them with the best answer of "some" "all" "none" or "unknown"
  - (i) Which Problems in NP are also in P? ("some" "all" "none" or "unknown")
  - (ii) Which Problems in P are also in NP? ("some" all") "none" or "unknown")
  - (iii) Which Problems in NP-Hard are also in NP? ("some" "all" "none")
  - (iv) Which Problems in NP-Complete are in NP-Hard ( "some" "all" "none" or "unknown")
  - (v) If someone can solve an NP-Complete problem in Polynomial Time, then all NP and all NP-Hard problems can be solved in polynomial time. (true or false)
  - (vi) If someone can solve an NP-Complete problem in Polynomial Time, then all NP and all NP-Complete problems can be solved in polynomial time. (true or false)
  - (vii) At least 1 NP problem has a known solution to solve it in polynomial time? (True or False)
  - (viii) All NP-Complete problems are in P ("true" "false" or "unknown"
  - (ix) Which NP-Hard Problems are also NP-Complete? "some" all" "none" or "unknown")
  - (x) To show a problem, Q, is NP-Complete, you must show Problem Q is NP and that a solver for another NP-Hard problem can solve problem Q as well. (True or False)
  - (xi) To show a problem, Q, is NP-Complete, you must show Problem Q is NP and that a solver for problem Q can solve another NP-Hard problem (True or False)

- 2. [6 pts] Consider an LZW compression scenario with a dictionary that contained 1024 entries. In this dictionary, entries 0-255 were the standard ASCII values and entries 256-1023 were the dynamic part of the dictionary. This compression was able to compress a file of 1000kB to 750kB:
  - (i) What is one reason that a larger dictionary of size 2048 with dynamic entries from 256-2047 might cause the file to compress SMALLER than 750kB?

A larger dictionary can allow more patterns to be remembered and used without having to build them up again.

(ii) What is one reason that a larger dictionary of size 2048 with dynamic entries from 256-2047 might cause the file to compress LARGER than 750kB

A larger dictionary means that more bits are needed for each symbol in the compressed message.

3. [6 pts] You have a tree with the following in-order and pre-order traversals. Draw the tree:

IN ORDER: LVYTXZWPQRM PRE ORDER: LPXYVTWZMQR



- 4. [6 pts] You have 3 dice. Each one is different.
  - Die #1 has sides { 0, 1, 2 } with a
  - Die #2 has sides { 1, 2, 3 } with a
  - Die #3 has sides {0, 1} with a
    - (i) Fill in the table for the dynamic programming algorithm to solve the problem.
    - (ii) What is the probability of rolling a 0?
    - (iii) What is the probability of rolling a 3? 5/18
    - (iv) What is the probability of rolling a 6?

| Vw | D <sub>1</sub> | 11,12 | D1.2.3   |  |
|----|----------------|-------|----------|--|
| O  | 1              | 6     | <u>o</u> |  |
| (  | )              | 1     | l        |  |
| 2  | 1              | 2     | 3        |  |
| 3  | 6              | 3     | 5        |  |
| Ч  | 0              | 2     | 5        |  |
| 5  | 0              |       | 3        |  |
| 6  | 0              | 0     | 1        |  |
|    |                |       |          |  |
|    |                |       |          |  |
|    |                |       |          |  |
|    |                |       |          |  |

- 5. [6 pts] Answer the following questions.:
  - (i) A program requires 5s to attack an encryption key of 128 bits. If the running time is Θ (2<sup>n</sup>) about how many <u>vears</u> would it take to brute force attack an encryption key of 256 bits? (note there are about 32 million seconds in a year)

(ii) A program requires 5s to attack an encryption key of 128 bits. If you have access to a quantum computer where the running time is Θ (n²) about how many seconds would it take to brute force attack an encryption key of 256 bits?

6. [6 pts] Use the DGT algorithm discussed in class to determine how to represent the value 1023 using the number system  $\beta=5$ ,  $D=\{-2,-1,0,1,7\}$ . Show your work.

772102

| 7. | [8 pts] You have two strings, A and B.                        |
|----|---------------------------------------------------------------|
|    | • String A has a length of 11.                                |
|    | • String B has a length of 8.                                 |
|    | • String C has an unknown length.                             |
|    | • The Longest Common Subsequence between String A and C is 5. |



5

(ii) What is the maximum length of String C?

in finith

- (iii) What is the minimum length of the Levensthein Edit Distance of String A and String C?
- (iv) What is the maximum length of the Levensthein Edit Distance of String A and String B?
- 8. [6 pts] A program takes 10 seconds to process a data set of 1000 items using an algorithm that is  $\Theta$  (n<sup>3</sup>). You want to process a data set of 10,000 items.
  - (i) How long would it take to process these 100,000 items on a computer that is 5 times faster using the algorithm that is  $\Theta$  (n<sup>3</sup>)?

2,000,000 Sec

(ii) How long would it take to process these 100,000 items if the computer is the same speed, but the algorithm is  $\Theta$  (n<sup>2</sup>) instead?



10.[5 pts] Argue that the problem, S, of sorting an unsorted array of integers of length greater than 100 elements is at least as hard - and maybe even harder - than the problem, L, of finding the median of the same array.

I can use a solver for S to solve L by sorting the array and returning the element it the middle index. since a solver for S can also solve L, s must be at least as hard or possibly harder than L.

### 11. [9 pts] A message contains the following number of each symbol:

30 A's, 14 B's, 6 C's, 4 D's, 3 E's, 3 F's, 2 G's, 1 H and 1 K.

Create a Huffman coding for each symbol:



How many bits are in the entire Huffman coded message?

150

How much entropy does each "C" have?

3.45

12. [6 pts] Consider the following graph. When necessary for the algorithm, use vertex C as the starting vertex:



(i) Give a smallest last vertex ordering for the graph. Circle in your ordering the first vertex you wrote down for that ordering.

IHF6CDEBA

(ii) What is the edge you would choose 3<sup>rd</sup> when finding a minimum spanning tree with Kruskal's algorithm?

AnB

(iii) What is the edge you would choose 3<sup>rd</sup> when finding a minimum spanning tree with Prim's algorithm?

AOB

- 13. [4 pts] Two people need to establish a secret key for encrypting communications. They agree to use a Diffie-Hellman key exchange with a modulus of 11 and decide on 2 as the base. Person A chooses a random value performs the appropriate computations and sends the value 5 to person B. Person B chooses a random value of 3 and performs the appropriate computations:
  - a. What is the value Person B sends to Person A



b. What is the shared secret key between Person A and Person B

4

- 14. [8 pts] Consider an RSA encryption system that has a public key of 339251 for the value e and 748081 for the value of the modulus N. You also saw a message that had been encrypted by the public key. The value of this encrypted message is 2.
  - You are able to factor N=748081 into the product of two prime numbers 853 \* (i) 877. What is the value of the private key? Show your work including the table for computing the Extended Euclidean Algorithm.
  - (ii) What was the original message before encryption? (Give an integer)

D=11 M=2048

15. [4 pts] Using  $n_0$  equal to 10, show that  $f(n) = 6n^3 + 2n^2 + 4n + 1$  is  $\Theta(n^3)$ .

b L Cir<sup>3</sup> = 6n<sup>3</sup> + 2n<sup>2</sup> + 4n + 1 & C<sub>2</sub>n<sup>3</sup> 0 C C C 6 2 + 4/2 + 1/2 = C<sub>2</sub> + 4/2 + 1/2 = C<sub>2</sub> Cr = 6.241

## CS 5/7350 – Final Exam May 12, 2021

Name: \_\_\_\_\_

| •         | This exam is <b>closed book</b> and <b>closed notes</b> .                                                       |
|-----------|-----------------------------------------------------------------------------------------------------------------|
| •         | You MAY have a calculator and 1 page of notes that is 8.5 x 11 inches                                           |
| •         | No cell phones, or other electronics except as required for zoom and only used for zoom or other proctoring.    |
| •         | Pencil and/or pen are permitted.                                                                                |
| •         | It is <b>3 hours</b> in duration plus time for scanning and uploading, etc.                                     |
| •         | You should have 10 problems. Pay attention to the point value of each problem and dedicate time as appropriate. |
|           |                                                                                                                 |
|           |                                                                                                                 |
|           |                                                                                                                 |
|           |                                                                                                                 |
|           |                                                                                                                 |
|           |                                                                                                                 |
|           |                                                                                                                 |
| 0         |                                                                                                                 |
| On my non | or, I have neither given nor received unauthorized aid on this exam.                                            |
|           |                                                                                                                 |
|           | SIGNED:                                                                                                         |
|           | DATE:                                                                                                           |
|           |                                                                                                                 |

```
LZW ENCODE:

set w = NIL
loop
  read a character k
  if wk exists in the dictionary
      w = wk
  else
      output the code for w
      add wk to the dictionary
      w = k
endloop
```

#### LZW DECODE:

```
read a character k
entry = dictionary entry for k
output entry
w = entry
loop
   read a character k
   entry = dictionary entry for k
   output entry
   add w + first char of entry to the dictionary
w = entry
endloop
```

# **Scratch Paper**