

IN1006 Systems Architecture (PRD1 A 2022/23)

↑ My Moodle | IN1006_PRD1_A_2022-23 | COURSEWORK 1: Weekly Assessed Quiz | Quiz 7 Weekly Assessed Quiz 2022

Started on	Thursday, 15 December 2022, 5:53 PM
State	Finished
Completed on	Thursday, 15 December 2022, 6:02 PM
Time taken	8 mins 29 secs
Grade	10.00 out of 10.00 (100%)
Question 1	
Correct	
Mark 1.00 out of 1.00	

How many superscalar execution units could be used for the MIPS pseudo-code below? Assume no register forwarding.

- 1. add a, b, c
- 2. add d, b,c
- 3. add g, e ,b
- 4. add h, g, k
- 5. add f, a, h

Select one:

- O a. Don't know/no answer
- b. 3
- O c. 2
- O d. 1
- O e. 4
- O f. 5

Your answer is correct.

The number of execution units that can be used is limited to the largest sized block of non-dependent instructions. In the above block:

- Instructions 1, 2 and 3 have no dependency.
- There is a dependency between 4 and 3 (due to g).
- There is a dependency between 4 and 5 (due to h).

Therefore the largest size block of non-dependent instructions is 3.

The correct answer is: 3

Mark 1.00 out of 1.00				
Which	of the following is the best description of a 'structural hazard'?			
Select	one:			
O a.	A gap in the pipeline where some or all of the stages are not processing an instruction.			
O b.	Waiting for the next instruction to be fetched after a branch is taken.			
O c.	Instruction depends upon the results of a previous instruction still in the pipeline, e.g. compound math expressions.			
d.	Hardware cannot support a combination of instructions in the same clock cycle, e.g. two simultaneous memory accesses.	~		

 $\begin{array}{c} \text{Question 2} \\ \text{Correct} \end{array}$

O e. Don't know/no answer

A structural hazard occurs when hardware cannot support a combination of instructions in the same clock cycle, e.g. two simultaneous memory accesses.

Of. Loading instructions into pipeline before the result of a decision is known, e.g. loading instructions after a branch

The correct answer is: Hardware cannot support a combination of instructions in the same clock cycle, e.g. two simultaneous memory accesses.

1ark 1.00 out of 1.00		
Consider the following MIPS code:		
1. add a, b, c		
2. add b, c ,d		
3. add f, e , b		
4. add h, k, g		
5. add m, k, w		
Which of the following compiler optimisations could avoid data hazards in this code assuming a 4 stage pipeline (i.e., 1. fetch instruction; 2. Decode and load data; 3. Execute instruction; 4. Write to memory) with no forwarding?		
O a. Move instruction 5 before instruction 1.		
O b. No compiler optimisation is possible.		
c. Move instructions 4 and 5 before instruction 3.		
O d. Move instruction 4 before instruction 3.		
O e. Do not know the answer.		
Your answer is correct.		
Instruction 3 depends on instruction 2 (due to b). Instructions 4 and 5 can be moved before it in the program without affecting the overall program outcome. This move would make instruction 3 to load b in the 7th cycle in a pipeline execution (assuming that instruction 1 starts in cycle 1). In the 7th cycle however instruction 2 will have written b to memory (this would happen in cycle 5 of the pipeline). So the data hazard would no longer be present.		

 $\begin{array}{c} \text{Question 3} \\ \text{Correct} \end{array}$

The correct answer is:

Move instructions 4 and 5 before instruction 3.

The number of execution units that can be used is limited to the largest sized block of non-dependent instructions. Instructions 1 and 2 can be executed at the same time (they can share inputs as they have not changed). There is a dependency between 2, 3 (i.e. d). However 3, 4, 5 have no dependences. Therefore the largest sized block of non-dependent instructions is 3. Mixing instruction types has no effect.

The correct answer is: 3

O f. 5

Question 4

Consider the following MIPS code:	
1. add a, b, c	
2. add c, b ,d	
3. add f, c ,a	
4. add k, l, m	
5. add h, e, g	
6. add f, h, b	
Which of the following compiler optimisations could avoid data hazards in this code assuming a 4 stage pipeline (i.e., 1. fetch instruction; 2. Decode and load data; 3. Execute instruction; 4. Write to memory) with no forwarding?	
a. Move instruction 4 before instruction 3.	
b. Move instruction 4 and 5 before instruction 3.	
o. No optimisations are possible.	
o d. Move instruction 4 and 5 before instruction 3 and swap the order of their execution.	~
O e. Do not know the answer.	

Your answer is correct.

Question 5
Correct

Mark 1.00 out of 1.00

The data hazards in this code arise due to instruction 3 (it depends on instructions 1 and 2) and instruction 6 (it depends on instruction 5).

Moving instruction 4 and 5 before instruction 3 and swapping the order of their execution would remove these hazards. This is because following these changes:

Instruction 3 would try to fetch data in the 6th cycle of the pipeline. In this cycle, instruction 2 will have completed the write to memory stage. Also instruction 6 which depends on instruction 5, would try to read data in cycle 7 by which instruction 5 will have written its output.

The correct answer is:

Move instruction 4 and 5 before instruction 3 and swap the order of their execution.

Mark 1.00 out of 1.00				
Which of the following describes best the concept of "out-of-order" execution?				
a. Instructions are loaded first to cache before brought to the CPU for execution.				
 b. An instruction and a data queue are used to regulate the execution of instructions by the CPU. 				
 c. Instructions are executed in two separate CPUs operating in parallel. 				
O d. Instructions are executed in pipelines.				
O e. Do not know the answer				
Your answer is correct.				
Instructions are not given to the CPU for execution immediately when they are due. They are placed in a queue and are moved				
from it to the CPU only when all the data that they need are available. Also the data D produced by an instruction I are placed in a queue and only when the data of all the instructions that were earlier than I are also written in the queue data, D are written to				
memory.				
The correct answer is:				
An instruction and a data queue are used to regulate the execution of instructions by the CPU.				
_				
Question 7 Correct				
Mark 1.00 out of 1.00				
Which of the following is the best description of a 'stall'?				
Select one:				
a. A gap in the pipeline where some or all of the stages are not processing an instruction.				
O b. Don't know/no answer				
 c. Waiting for the next instruction to be fetched after a branch is taken. 				
Od. Hardware cannot support a combination of instructions in the same clock cycle, e.g. two simultaneous memory accesses.				
O e. Instruction depends upon the results of a previous instruction still in the pipeline, e.g. compound math expressions.				
Of. Loading instructions into pipeline before the result of a decision is known, e.g. loading instructions after a branch				
A stall occurs in response to a control hazard. It involves waiting for the next instruction to be fetched after a branch is taken.				
The correct answer is: Waiting for the next instruction to be fetched after a branch is taken.				

 $\begin{array}{c} \text{Question 6} \\ \text{Correct} \end{array}$

Mark 1.00 out of 1.00		
Consider the following MIPS code:		
1. add d1, b1, c1 2. add d2, b2 ,c2		
4. add d4, b4, c4 5. add d5, c5, b5		
Which of the four architectures in the Flynn taxonomy would be best suited for executing the above code?		
Which of the four drefilectures in the Flythi taxonomy would be best suited for executing the above code.		
ect one:		
O a. SISD		
O b. MISD		
O c. Do not know the answer		
O d. MIMD and MISD		
O e. MIMD		
	•	
Your answer is correct.		
Instructions 1-5 above are the same (add) and are executed upon different data. Thus, SIMD is the most suitable architecture.		
The correct answer is: SIMD		
THE COTTECT ATISWET IS. STIVID		
Ouestion 9		
Correct		
Mark 1.00 out of 1.00		
Which of the following is the best description of a 'data hazard'?		
Select one:		
O a. Loading instructions into pipeline before the result of a decision is known, e.g. loading instructions after a branch		
O b. Don't know/no answer		
Oc. A gap in the pipeline where some or all of the stages are not processing an instruction.		
d. Instruction depends upon the results of a previous instruction still in the pipeline, e.g. compound math expressions.	~	
e. Waiting for the next instruction to be fetched after a branch is taken.		
Of. Hardware cannot support a combination of instructions in the same clock cycle, e.g. two simultaneous memory accesses	s.	
A data hazard occurs when an instruction depends upon the results of a provious instruction still in the singline and a second		
A data hazard occurs when an instruction depends upon the results of a previous instruction still in the pipeline, e.g. compound math expressions.	l	
The correct answer is: Instruction depends upon the results of a previous instruction still in the pipeline, e.g. compound math		

 $\begin{array}{c} \text{Question 8} \\ \text{Correct} \end{array}$

expressions.

Question 10 Correct

Quiz navigation

3

Show one page at a time

5

6

8

10

2

Finish review