1 Odhady

Definice 1.1 *Faktoriál* n! = 1 * 2 * ... * n.

Definice 1.2 Kombinační číslo $\binom{n}{k} = \prod_{i=0}^{k-1} \frac{n-i}{k-i}$.

Tvrzení 1.1 $\forall n \in \mathbb{N} : n^{n/2} \leq n! \leq n^n$.

Tvrzení 1.2 $\forall n \in \mathbb{N} : e(\frac{n}{e})^n \le n! \le en(\frac{n}{e})^n$.

Tvrzení 1.3 Stirlingova formule. $\forall n \in \mathbb{N} : \sqrt{2\pi n} (\frac{n}{e})^n \sim n!$.

Tvrzení 1.4 $\forall n, k \in \mathbb{N} : (\frac{n}{k})^n \le {n \choose k} \le n^k$.

Tvrzení 1.5 $\forall n \in \mathbb{N} : \frac{2^n}{n+1} \le {2n \choose n} \le 2^n$.

Tvrzení 1.6 $\forall n \in \mathbb{N} : \frac{2^{2n}}{2\sqrt{n}} \leq {2n \choose n} \leq \frac{2^{2n}}{\sqrt{2n}}$.

2 Vytvořující funkce

Tvrzení 2.1 Binetův vzorec. $\forall n \in \mathbb{N} : F_n = \frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n).$

Věta 2.1 Zobecněná binomická věta. $\forall n \in \mathbb{R}, x \in (-1,1) : (1+x)^n = \sum_{i=0}^{\infty} \binom{n}{i} x^i$.

Důsledek **2.1** $\forall n \in \mathbb{N} : (1-x)^{-n} = \sum_{i=0}^{\infty} {n+i-1 \choose i} x^i$.

Definice 2.1 Catalanovo číslo $C_n = \frac{1}{n+1} \binom{2n}{n}$.

Věta 2.2 Počet binárních zakořeněných stromů na n vrcholech je roven C_n .

3 Konečné projektivní roviny

Definice 3.1 Konečná projektivní rovina (X, \mathcal{P}) .

Tvrzení 3.1 Každé dvě přímky v KPR mají stejný počet bodů.

Definice 3.2 $\check{R}\acute{a}d$ KPR $n = |P \in \mathcal{P}| - 1$.

Tvrzení 3.2 Vlastnosti KPR.

Definice 3.3 Duální množinový systém k(X, P) je $(P, \{\{P \in P : x \in P\} : x \in X\})$.

Tvrzení 3.3 Duálem ke KPR řádu n je KPR řádu n.

Věta 3.1 Pokud existuje algebraické těleso velikosti n, pak existuje KPR řádu n.

Definice 3.4 Latinský čtverec.

Definice 3.5 Latinské čtverce L_1, L_2 řádu n jsou ortogonální pokud $\forall l_1, l_2 \exists i, j \in \{1...n\}$: $L_{1_{ij}} = l_1, L_{2_{ij}} = l_2$.

Tvrzení 3.4 Existuje nejvýše n-1 ortogonálních latinských čtverců řádu n.

Věta 3.2 Existuje KPR řádu $n \ge 2$ právě když existuje n-1 navzájem ortogonálních latinských čtverců.

4 Toky v sítích

Definice 4.1 Síť. Zdroj. Stok.

Definice 4.2 Tok. Kirchhoffovy zákony. Velikost toku.

Definice 4.3 Řez, elementární řez. Kapacita řezu.

Věta 4.1 Maximální tok existuje.

Věta 4.2 Hlavní věta o tocích. Pro maximální tok f a minimální řez R platí w(f) = c(R).

Věta 4.3 Věta o celočíselnosti. Maximální tok v sítí s celočíselnými kapacitami je celočíselný.

Věta 4.4 Kőnigova–Egerváryho věta. V bipartitním grafu je velikost maximálního párování rovna velikosti minimálního vrcholového pokrytí.

Definice 4.4 Systém různých reprezentantů v (X, I, \mathcal{M}) je funkce $f: I \to X$, která je prostá a navíc $\forall i \in I: f(i) \in M_i$.

Věta 4.5 Hallova věta. Množinový systém má SRR právě když platí Hallova podmínka.

Důsledek 4.1 Pokud v bipartitním grafu $G = (A \cup B, E)$ platí $\forall a \in A, b \in B : deg(a) > deg(b)$, tak existuje párování velikost alespoň |A|.

Tvrzení 4.1 Každý latinský obdélník lze doplnit na latinský čtverec.

5 Míra souvislosti grafů

Definice 5.1 Hranový řez, vrcholový řez.

Definice 5.2 Hranová souvislost, vrcholová souvislost.

Definice 5.3 Hranově t-souvislý graf. Vrcholově t-souvislý graf.

Lemma 5.1 Pro graf G platí $K_e(G) - 1 \le K_e(G - e) \le K_e(G)$.

Lemma 5.2 Pro graf G platí $K_v(G) - 1 \le K_v(G - e) \le K_v(G)$.

Věta 5.1 Pro graf G platí $K_v(G) \leq K_e(G)$.

Věta 5.2 Fordova–Fulkersonova věta. V každém hranově t-souvislém grafu mezi každými dvěma vrcholy existuje t hranově disjunktních cest.

Věta 5.3 Mengerova věta. V každém vrcholově t-souvislém grafu mezi každými dvěma vrcholy existuje t vrcholově disjunktních cest.

Věta 5.4 *Ušaté lemma. Graf je vrcholově 2-souvislý právě když jej lze vytvořit z* K_3 operacemi podrozdělení a přidávání hrany.

6 Počítání dvěma způsoby

Věta 6.1 Počet stromů na n vrcholech $K(K_n) = n^{n-2}$. Odpovídá počtu koster úplného grafu.

Věta 6.2 Počet koster grafu úplného grafu bez jedné hrany $K(K_n - e) = (n-2)n^{n-3}$.

Věta 6.3 Spernerova věta. Maximální velikost nezávislého množinového systému $\mathcal{M} \subset 2^{\{1...n\}}$ je $\binom{n}{n/2}$.

7 Úvod do Ramseyovy teorie

Věta 7.1 Dirichletův princip.

Definice 7.1 Ramseyovo číslo R(k, l).

Věta 7.2 Ramseyova věta pro grafy. $\forall k, l \in \mathbb{N} : R(k, l) \leq {k+l-2 \choose k-1}$.

Tvrzení 7.1 $\forall k \in \mathbb{N} : R(k,k) \geq 2^{k/2}$.

Věta 7.3 Ramseyova věta pro p-tice. $\forall p, r, n_1, ..., n_r$ je $R_p(n_1, ..., n_r)$ konečné.

Věta 7.4 Erdősova–Szekeresova věta. $\forall K \in \mathbb{N}$ existuje ES(k), že každá konečná množina $s \geq ES(k)$ bodů v \mathbb{R}^2 v obecné poloze obsahuje ES(k) bodů v konvexní poloze.

Věta 7.5 Nekonečná Ramseyova věta. $\forall p, r \in \mathbb{N}$ existuje r-obarvení množiny $\binom{\mathbb{N}}{p}$, že existuje nekonečná $A \subset \mathbb{N}$ taková, že všechny p-tice z A jsou stejné barvy.

Lemma 7.1 Kőnigovo lemma. Každý nekonečný, konečně větvící se strom, obsahuje nekonečnou větev.

Věta 7.6 Nekonečná verze Ramseyovy věty implikuje konečnou verzi.

8 Samoopravné kódy

Definice 8.1 Abeceda, slovo, kód.

Definice 8.2 Parametry kódu.

Definice 8.3 Kombinatorická koule. Objem kombinatorické koule $V(t) = |B(x,t)| = \sum_{i=0}^{t} {n \choose i} (q-1)^i$

Tvrzení 8.1 Hammingův odhad. Pro každý kód s parametry $(n, k, 2t + 1)_q$ platí $|C| \leq \frac{q^n}{V(t)}$.

Tvrzení 8.2 Gilbertův-Varshamův odhad. $\forall n, d, q \in \mathbb{N}$ existuje kód C s parametry $(n, k, d)_q$, že $|C| \ge \frac{q^n}{V(d-1)}$.

Definice 8.4 Lineární kód je podprostor vektorového prostoru \mathbb{K}^n , kde \mathbb{K} je konečné těleso, které tvoří abecedu kódu. Značím $[n,k,d]_q$

Definice 8.5 Generující matice kódu $M \in \mathbb{K}^{k \times n}$, jejími řádky jsou bazické vektory kódu C.

Definice 8.6 Duální kód $C^{\perp} = \{x \in \mathbb{K} : \forall y \in C < x, y >= 0\}.$

Definice 8.7 Kódování pomocí lineárních kódů. Informační a kontrolní symboly.

Definice 8.8 Kontrolní matice kódu M^{\perp} . Její podoba vzhledem ke generující matici.

Definice 8.9 Syndrom slova $y \in \mathbb{K}_n^q$ je $M^{\perp}y$.

Lemma 8.1 Syndrom je prostý na B(0,t), kde $t = \frac{d-1}{2}$.