5 הרצאה

אלגוריתמים חמדניים

הקדמה

לעיתים קרובות אפשר לייצג בעיות אופטימזציה כקבוצה של אלמנטים כאשר פתרון חוקי הוא תת קבוצה של אלמנטים שמקיימת תכונות מסויימות. למשל, עץ פורש מינימלי. בדרך כלל יש פונקציית מחיר / רווח לכל תת קבוצה והמטרה שלנו היא למזער / למקסם את הערך הזה.

אלגוריתם חמדן, באופן לא פורמלי, הוא כזה שבונה פתרון (תת קבוצה של אלמנטים) באופן איטרטיבי ובכל שלב מוסיף / מסיר מהקבוצה

שיבוץ אינטרוולים

נתונים $a_i \leq b_i$ רוצים למצוא תת קבוצה בגודל מקסימלי $a_i, b_i \in \mathbb{R}_+$, $A = \{(a_1, b_1), \dots, (a_n, b_n)\}$ נתונים $a_i \leq a_j$ אחד התנאים מתקיים: $a_i \leq a_j$ כך שהאינטרוולים ב- $a_i \leq a_j$ ארים באוגות, כלומר לכל $a_i \leq a_j$ כך שראינטרוולים ב- $a_i \leq a_j$ אוש ש- $a_i > a_j$ אוש ש- $a_i > a_j$

אלגוריתם חמדן:

$$b \leftarrow 0$$
 , $I \leftarrow \emptyset$.1

 b_i בסדר לא יורד של ערכי (a_i,b_i) בסדר כל אינטרוול .2

$$a_i \geq b$$
 אם (א)

$$I \leftarrow I \cup \{(a_i, b_i)\}$$
 i.

$$b \leftarrow b_i$$
 ii.

I את שמכיל שופטימלי שיבוץ אינטרוול אז קיים שיבוץ אופטימלי שמכיל את הוכחת נכונות: נוכיח את הטענה בכל פעם שהאלגוריתם הוכחת