

TÉRINFORMATIKA

2. forduló

A kategória támogatója: Ulyssys Kft.

RENDELKEZÉSRE ÁLLÓ IDŐ:

60:00

Ismertető a feladathoz

Fontos információk

Ha kifutsz az adott feladatlap kitöltésére rendelkezésre álló időből, a felület **automatikusan megpróbálja beküldeni** az addig megadott válaszokat

A kérdésekre **mindig van helyes válasz**! Ha csak egy helyes válasz van az adott kérdésre, radio button-os választási lehetőségeket fogsz látni.

Olyan kérdés viszont nincs, amelyre az összes válasz helyes!

Egyéb információkat a <u>versenyszabályzatban</u> találsz!

Második forduló

Megoldásokhoz ajánlott a következő **PostgreSQL** Docker image használata (OSM adatokkal fel van töltve): https://hub.docker.com/r/fegyi001/oitm-postgis-osm

```
docker pull fegyi001/oitm-postgis-osm
docker run -d -p 5432:5432 -e POSTGRES_PASSWORD='postgres' --name oitm fegyi001/oitm-postgis-osm
```

Python docker (rengeteg package-el): https://hub.docker.com/r/szokimoki/oitm-python

```
docker pull szokimoki/oitm-python
docker run -it szokimoki/oitm-python bash
```

Ajánlott asztali térinformatikai szoftver QGIS: https://qgis.org/hu/site/forusers/download.html

Alapértelmezett beállításokkal a fenti docker DB elérése:

```
Host: localhost
Port: 5432
Database: postgres
Username: postgres
Password: postgres
```

Felhasznált idő: 01:13/60:00 Elért pontszám: 0/10

1. feladat 0/1 pont

GeoServer megjelenítés

Adott egy GeoTiff formátumú, multispektrális műholdfelvétel, amelyet weben szeretnénk megjeleníteni, de egyéb célunk nincs vele. A megjelenítést GeoServer segítségével oldjuk meg az alább található stílussal. Milyen tömörítést javasolnál a raszter számára?

```
<?xml version="1.0" encoding="UTF-8"?>
<StyledLayerDescriptor version="1.0.0"</pre>
xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd"
xmlns="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <!-- a Named Layer is the basic building block of an SLD document -->
 <NamedLayer>
   <Name>default_raster</Name>
   <UserStyle>
   <!-- Styles can have names, titles and abstracts -->
     <Title>Default Raster</Title>
     <Abstract>A sample style that draws a raster, good for displaying imagery</Abstract>
      <!-- FeatureTypeStyles describe how to render different features -->
      <!-- A FeatureTypeStyle for rendering rasters -->
     <FeatureTypeStyle>
       <Rule>
          <Name>rule1</Name>
         <Title>Opaque Raster</Title>
          <Abstract>A raster with 100% opacity</Abstract>
         <RasterSymbolizer>
            <Opacity>1.0</Opacity>
         </RasterSymbolizer>
        </Rule>
      </FeatureTypeStyle>
    </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>
```

Válasz		
LZW, mert veszteségmentes.		
Tilos tömöríteni, mert romlik a minőség.		
JPG, mert így kisebb a tárhelyigénye.		
Maavarázat		

Magyarázat

A döntéshez a kulcsszó a kérdés feltételekor: "...weben szeretnénk megjeleníteni, de egyéb célunk nincs vele...". LZW akkor javasolt, ha nem szeretnénk, hogy a spektrális sávok értékei torzuljanak, mert elemzési feladatokat szeretnénk végrehajtani rajta. A JPG ugyan veszteséges, de megjelenítéshez igen célszerű, hiszen tárhelyet tudunk spórolni vele. Tömörítés elhagyása egy egyszerű megjelenítési feladatnál nem indokolt.

2. feladat 0/2 pont

Legnagyobb biomasszával rendelkező parcella

(Melléklet: biomassza.zip --> sentinel_felvetel.tif, parcellak.shp)

Válaszd ki a Sentinel-2 ARD felvételen a fajlagosan legnagyobb biomasszával rendelkező parcella azonosítóját (PID) - (parcella területe nem számít)!

A sávok a következőképp alakulnak a mellékelt TIF-ben:

Sáv száma	Sáv megnevezése
1	Kék
2	Zöld
3	Vörös
4	Infravörös peremtartomány 1
5	Infravörös peremtartomány 2
6	Infravörös peremtartomány 3
7	Közeli infravörös
8	Keskeny közeli infravörös
9	Rövidhullámú infravörös 1
10	Rövidhullámú infravörös 2

Válasz			
	399		
	192		
	239		
	57		
	12		

195

Magyarázat

Raster Calculator/NDVI raszter elkészítése

```
# (NIR - RED) / (NIR + RED) --> (B7 - B3) / (B7 + B3)
("sentinel_felvetel@7" - "sentinel_felvetel@3") / ("sentinel_felvetel@7" + "sentinel_felvetel@3")
```

Zonal statistic/átlag számítása poligonokra

Elég az átlagot nézni (mean), majd az attribútum táblát rendezni a legmagasabb NDVI átlagértékre.

pid ndvi_mean		ndvi_mean
1	195	0,8354552626609802
2	192	0,8206304629643758
3	57	0,7904789644682003
4	354	0,7756073423373846

3. feladat 0/1 pont

Koherencia kép értelmezése

Az alábbi képen Zala megye egy részének Sentinel-1 koherenciája látható 2021. 06. 04. és 2021. 06. 16-án készült felvételek alapján.

Mit ábrázolnak a kép világos részei?

Válasz

Lefolyástalan	területek
Leroryastaran	cerarecen.

Települések.

Épített környezet.

Sűrű erdők és fasorok.

Magyarázat

Koherencia számítás során a terület 2 időpont közötti változását vizsgáljuk. Ha a változás mértéke nagy, akkor a pixelek alacsony értéket vesznek fel, ellenkező estben pedig magasakat. Mivel az épített könyezet nem változékony felszínforma, a pixelértékek ezeken a területeken magasak.

4. feladat 0/2 pont

Vármegyék ispánjai

(Melléklet: varmegyek.zip -- > MO_Megye.shp)

Királyi kinevezés előtt állsz, de a jelöltként többedmagaddal érkeztetek. Megkapod a vármegyei ispán rangot, ha helyesen felelsz a király kérdésére, ami így szól:

"Egyedül az szolgálhatja megfelelően a koronát és állhat a vármegye élére, aki úgy ismeri a hazáját, mint a saját tenyerét. Nevezetes hegyek, s dombok csúcsaiból melyik vármegyében található a legtöbb? Ki erre felel, méltó a megnevezett vármegye Ispánjává előlépni!"

Az 1910-es vármegyék határvonalaival határozzuk meg, de a mai Magyarország területén található csúcsok szerepeljenek az elemzésben.

"A vármegye SHP fájl (MO_Megye.shp) a **GISta Hungarorum (OTKA K 111766)** fejlesztés felhasználásával készült. Az itt közreadott anyagokat a közreadókon kívül más nem hozhatja kereskedelmi forgalomba."

Válasz

D = = + D:1	:- C-I+	1/:-
Pest-Pil	15-5011-	-KISKIIN

Nógrád

Veszprém

Borsod

Magyarázat

A mai megyékre elkészítjük a kimutatást:

```
select count(n.id), v.megye_1910 from varmegye v
  join "natural" n on ST_Within(ST_Transform(n.geom, 23700), ST_transform(v.geom, 23700))
  where n.fclass = 'peak'
  group by v.megye_1910
  order by 1 desc;
```

5. feladat 0/4 pont

Geokódolás

(Melléklet: cim.txt)

Együttműködő partnerünktől az alábbi, szedett-vedett adatbázisból exportált címlistát kaptuk meg feladatunk elvégzéséhez. A megrendelő kérésére elő kell állítanunk a felismerhető címek közül az összes köré rajzolható téglalapot (befoglalót).

Mekkora ezen téglalap területe négyzetméterben az EPSG:7030-as vetületen?

A választ négyzetméterre kerekítve kérjük megadni!

Válaszok

A helyes válasz: 101770862766

Magyarázat

Kétféleképp:

0. Érdemes egy oszlopot hozzáadni a címekhez, amely az országot tartalmazza, a biztos találatok érdekében.

1a: https://support.awesome-table.com/hc/en-us/articles/360000112449--Part-2-Geocode-addresses

Ezen leírás alapján egyszerűen a Google Sheets-ben meg lehet csinálni, nem kell hozzá API key sem. Arra kell figyelni, hogy a próbálkozásnál 2-3 címen érdemes játszani, hogy amikor az összesre futtatod, nehogy elfogyjon a kvóta, mert akkor lehet regisztrálni újabb Google accountot.

1b: Kell egy Google API key, 90 napig és 300 dollár erejéig ingyenesen lehet igényelni, ez a trial.

Ezzel már futtatható a következő kód:

```
import pandas as pd
import googlemaps
import json

gmaps = googlemaps.Client(key='google api key')

addressDF = pd.read_csv('/opt/data/random_forest/cim-ok-country.csv', sep=',', encoding='utf-8')

addressDF['result'] = addressDF.apply(lambda row : gmaps.geocode(str(row['ir']) + ' ' + row['city'] +

for i, row in addressDF.iterrows():
    try:
        data=json.loads(json.dumps(row['result'][0]))
    except:
    print('Hiba')
    continue
    coord = data["geometry"]["location"]
    addressDF.loc[i, 'lat'] = str(coord['lat'])
    addressDF.loc[i, 'lng'] = str(coord['lng'])
```


Legfontosabb tudnivalók

Kapcsolat

Versenyszabályzat

Adatvédelem

© 2022 Human Priority Kft.

KÉSZÍTETTE

Megjelenés

