Lambda expressions

Victor Eijkhout, Susan Lindsey

Fall 2023

last formatted: September 20, 2023

1. Why lambda expressions?

Lambda expressions (sometimes incorrectly called 'closures') are 'anonymous functions'. Why are they needed?

- Small functions may be needed; defining them is tedious, would be nice to just write the function recipe in-place.
- C++ can not define a function dynamically, depending on context.

Example:

- 1. we read float c
- 2. now we want function float f(float) that multiplies by c:

```
float c; cin >> c;
float mult( float x ) { // DOES NOT WORK
    // multiply x by c
};
```


2. Introducing: lambda expressions

Traditional function usage: explicitly define a function and apply it:

```
double sum(float x,float y) { return x+y; }
cout << sum( 1.2, 3.4 );</pre>
```

New:

apply the function recipe directly:

```
Code:
1 // func/lambdaex.cpp
2 [] (float x,float y) -> float {
3    return x+y; } ( 1.5, 2.3 )
```

```
Output:
3.8
```


3. Lambda syntax

```
[capture] ( inputs ) -> outtype { definition };
[capture] ( inputs ) { definition };
```

- The square brackets are how you recognize a lambda; we will get to the 'capture' later. For now it will often be empty.
- Inputs: like function parameters
- Result type specification -> outtype:
 can be omitted if compiler can deduce it;
- Definition: function body.

4. Assign lambda expression to variable

```
Code:
1 // func/lambdaex.cpp
2 auto summing =
3   [] (float x,float y) -> float {
4    return x+y; };
5   cout << summing ( 1.5, 2.3 ) << '\n';
6   cout << summing ( 3.7, 5.2 ) << '\n';</pre>
```

```
Output:
3.8
8.9
```

- This is a variable declaration.
- Uses auto for technical reasons; see later.

Return type could have been omitted:

```
auto summing =
[] (float x,float y) { return x+y; };
```


Example of lambda usage: Newton's method

5. Newton's method

6. Newton for root finding

With

$$f(x) = x^2 - 2$$

zero finding is equivalent to

$$f(x) = 0$$
 for $x = \sqrt{2}$

so we can compute a square root if we have a zero-finding function.

Newton's method for this f:

$$x_{n+1} = x_n - f(x_n)/f(x_n) = x_n - \frac{(x_n^2 - 2)}{2x_n} = x_n/2 + 2/x_n$$

Square root computation only takes division!

Exercise 1

Rewrite your code to use lambda functions for f and fprime.

If you use variables for the lambda expressions, put them in the main program.

You can base this off the file newton.cxx in the repository

7. Function pointers

You can pass a function to another function. In C syntax:

```
void f(int i) { /* something with i */ };
void apply_to_5( (void)(*f)(int) ) {
    f(5);
}
int main() {
    apply_to_5(f);
}
```

(You don't have to understand this syntax. The point is that you can pass a function as argument.)

8. Lambdas as parameter: the problem

Lambdas have a type that is dynamically generated, so you can not write a function that takes a lambda as argument, because you can't write the type.

```
void apply_to_5( /* what? */ f ) {
    f(5);
}

int main() {
    apply_to_5
    ([] (double x) { cout << x; } );
}</pre>
```


9. Lambdas as parameter: the solution

```
#include <functional>
using std::function;
```

With this, you can declare function parameters by their signature (that is, types of parameters and output):

```
Output:
Int: 5
```


10. Lambdas expressions for Newton

We are going to write a Newton function which takes two parameters: an objective function, and its derivative; it has a double as result.

```
// newton/newton-lambda.cpp
double newton_root
  ( function< double(double) > f,
    function< double(double) > fprime ) {
```

This states that f, fprime are in the class of double(double) functions: double parameter in, double result out.

Exercise 2

Rewrite the Newton exercise by implementing a newton_root function:

```
double root = newton_root( f,fprime );
```

Call the function

- 1. first with the lambda variables you already created;
- 2. then directly with the lambda expressions as arguments, that is, without assigning them to variables.

Captures

11. Capture variable

Increment function:

- scalar in. scalar out:
- the increment amount has been fixed through the capture.

```
Code:

1 // func/lambdacapture.cpp
2 int one=1;
3 auto increment_by_n =
4   [one] ( int input ) -> int {
5    return input+one;
6  };
7   cout << increment_by_n (5) << '\n';
8   cout << increment_by_n (12) << '\n';
9   cout << increment_by_n (25) << '\n';</pre>
```

```
Output:
6
13
26
```


12. Capture more than one variable

Example: multiply by a fraction.

```
int d=2,n=3;
times_fraction = [d,n] (int i) ->int {
    return (i*d)/n;
}
```


Exercise 3

Set two variables

```
float low = .5, high = 1.5;
```

• Define a function of one variable that tests whether that variable is between <code>low,high</code>.

(Hint: what is the signature of that function? What is/are input parameter(s) and what is the return result?)

Exercise 4

Extend the newton exercise to compute roots in a loop:

Without lambdas, you would define a function

```
double squared_minus_n( double x,int n ) {
  return x*x-n; }
```

However, the $newton_root$ function takes a function of only a real argument. Use a capture to make f dependent on the integer parameter.

13. Derivative by finite difference

The Newton method also works if the derivative is not exact.

For example, you can approximate it as

$$f'(x) = (f(x+h) - f(x))/h$$

where h is small.

This is called a 'finite difference' approximation.

Exercise 5

Write a version of the root finding function that only takes the objective function:

```
double newton_root( function< double(double)> f )
```

and approximates the derivative by a finite difference. You can use a fixed value h=1e-6.

Do not reimplement the whole newton method: instead create a lambda for the gradient and pass it to the function <code>newton_root</code> you coded earlier.

This is polymorphism: you now have two definition for the same function. They differ in the number of arguments.

14. Turn it in!

Write a program that

- 1. reads an integer from the commandline
- 2. prints a line:

The root of this number is 1.4142 which contains the word root and the value of the square root of the input in default output format.

Your program should

- have a subroutine newton_root as described above.
- (8/10 credit): call it with two lambda expressions: one for the function and one for the derivative, *or*
- (10/10 credit) call it with a single lambda expression for the function and approximate the derivative as described above.

15. Lambda in object

A set of integers, with a test on which ones can be admitted:

```
void add(int i) {
// func/lambdafun.cpp
                                       if (selector(i))
#include <functional>
                                         bag.push_back(i);
using std::function;
    /* ... */
                                     };
class SelectedInts {
                                     int size() {
                                       return bag.size(); };
private:
                                     std::string string() {
  vector<int> bag;
  function < bool(int) >
                                       std::string s;
    selector:
                                       for ( int i : bag )
                                         s += to string(i) + "";
public:
  SelectedInts
                                       return s;
      ( function< bool(int) >
                                     };
    f ) {
                                   };
    selector = f; };
```


16. Illustration

```
Code:
1 // func/lambdafun.cpp
2 cout << "Give a divisor: ";</pre>
3 cin >> divisor; cout << '\n';</pre>
   cout << ".. using " << divisor</pre>
          << '\n';
    auto is divisible =
       [divisor] (int i) -> bool {
        return i%divisor==0; };
    SelectedInts multiples(
       is divisible );
    for (int i=1; i<50; ++i)
10
11
      multiples.add(i);
```

```
Output:
Give a divisor:
.. using 7
Multiples of 7:
7 14 21 28 35 42 49
```


Advanced topics

17. Capture by value

Normal capture is by value:

```
Code:
1 // func/lambdacapture.cpp
   int one=1;
  auto increment by n =
      [one] ( int input ) -> int {
        return input+one;
   }:
  cout << increment_by_n (5) <<</pre>
       '\n':
  cout << increment by n (12)</pre>
      '\n':
 cout << increment_by_n (25) <<</pre>
      '\n';
```

```
Output:
6
13
26
```


18. Capture by reference

Capture a variable by reference so that you can update it:

```
int count=0;
auto count_if_f =
    [&count] (int i) {
    if (f(i)) count++; }
for ( int i : int_data )
    count_if_f(i);
cout << "We counted: " << count;</pre>
```

(See the algorithm header, section ??.)

19. Lambdas vs function pointers

Lambda expression with empty capture are compatible with C-style function pointers:

```
Code:
1 // func/lambdacptr.cpp
2 int cfun_add1( int i ) {
3 return i+1; };
4 int apply to 5( int(*f)(int) ) {
   return f(5): 1:
6 //codesnippet end
7 /* ... */
8 auto lambda add1 =
      [] (int i) { return i+1; };
  cout << "C ptr: "
10
         << apply to 5(&cfun add1)
11
       << '\n':
12
13 cout << "Lambda: "
         << apply to 5(lambda add1)
14
         << '\n':
15
```

```
Output:
C ptr: 6
Lambda: 6
```


20. Use in algorithms

```
for_each( myarray, [] (int i) { cout << i; } );
transform( myarray, [] (int i) { return i+1; } );</pre>
```

See later.

