

WHEN IS IT AN ATTACK? DISTINGUISHING FAULT INJECTION PERTURBATION FROM ENVIRONMENTAL EFFECTS IN FPGABASED DIGITAL SENSOR

JAIF 2025

Authors: Idris Raïs-Ali, Khaled Karray, and

Sylvain Guilley

Presenter: Idris Raïs-Ali

Date: 01/10/2025

- 1. FIA countermeasures context and Digital Sensors introduction
- 2. Calibration

3. Outlooks & Conlusion

1. FIA COUNTERMEASURES CONTEXT AND DIGITAL SENSORS INTRODUCTION

FAULT INJECTION SAFETY CONTEXT

Goals:

- No unwanted FSM state
- Principle: Detect, Decide and Act
- Metrics: diagnostic coverage, compliance with a target level
 - SIL in IEC 62443
 - ASIL in ISO 26262

Temperature Electromagnetic waves Clock X-ray Electromagnetic Temperature Voltage Voltage Software Software

Requirements:

- Fast detection
- Output control
- Bounded response
- Robust design and safe FSM default states

▲ Safety is not Security

CYBERSECURITY: FIPS 140-3 LEVELS

Level	Main Objective	Physical Protection	Key Management	Typical Use Cases
1	Basic security	No special physical requirements	Mandatory cryptographic self-tests	Software libraries, simple crypto modules
2	Tamper-evidence	Tamper-evident coatings, seals, visible protections	Role-based authentication (user/admin)	Smart cards, networking equipment
3	Tamper-resistance	Tamper-resistant enclosure, separation of critical interfaces	Automatic zeroization of keys upon intrusion	Banking HSMs, PKI modules
4	Hostile environment resistance	Active monitoring (voltage, temperature, frequency, radiation, glitching)	Automatic zeroization, protection against fault injection	Military devices, high-security government systems

CYBERSECURITY: FIPS 140-3 LEVELS

Level	Main Objective	Physical Protection	Key Management	Typical Use Cases
1	Basic security	No special physical requirements	Mandatory cryptographic self-tests	Software libraries, simple crypto modules
2	Tamper-evidence	Tamper-evident coatings, seals, visible protections	Role-based authentication (user/admin)	Smart cards, networking equipment
3	Tamper-resistance	Tamper-resistant enclosure, separation of critical interfaces	Automatic zeroization of keys upon intrusion	Banking HSMs, PKI modules
4	Hostile environment resistance	Active monitoring (voltage, temperature, frequency, radiation, glitching)	Automatic zeroization, protection against fault injection	Military devices, high-security government systems

DIGITAL SENSOR CONCEPT

- Initial delay chain (length n_0)
- Delay chain with n registers
- Output status $s = (O_1, ..., O_n)$

It is a "Time to Digital Converter" (TDC)

2. CALIBRATION

PRE-SILICON CALIBRATION

- Sensitivity s: number of buffers between two following registers
- Sampling Window W: « distance » between the first and the last register
- Depth: Number of registers n
- $\mathbf{W} = \mathbf{S} \cdot \mathbf{n}$

POST-SILICON CALIBRATION 1/4: DEFINITION

Trimming procedure:

- Objective:
 - Compensate calibration uncertainty
 - Process design kit characterization not fully performed (by the foundry)
 - Gap between simulation and reality (models vs reality, simulation accuracy, RC parasitics)
- Measure propagation delay in delay chains for PVT corner
- Get extremal delay chain status
- Apply mask as alarm threshold

Normal Operation:

- If delay chain status passes over the threshold, the chain trigs an alarm
- This alarm is sent to the Anti Tamper Unit (an IP that interprets and executes security policy)
- Countermeasures are applied based on the security policy

POST-SILICON CALIBRATION 2/4: PVT CONDITION

Propagation delay is strongly influenced by the environmental PVT conditions.

... and noise is less of an issue

POST-SILICON CALIBRATION 3/4: DYNAMIC FREQUENCY SCALING

(NEW) objectives:

- Change of operational conditions (in the middle of project, in the middle of operations)
- Innacuracy of models/simulations/etc..
- Process design kit not fully characterized (updates requiring recalibration)
- New Initial delay chain with dynamic configuration.

Goals:

- Resize the initial delay chain
- Precisely control where the signal stops
- Correct any errors in simulations, noise, or processes

POST-SILICON CALIBRATION 4/4: DOUBLE THRESHOLD

- Objectives:
 - Calibrate based on a reference conditions, not based on worst (worst corner)
 - Adapt sensitivity of sensor, dynamically adapt the security policy.
- Delay chain status varies with PVT conditions
- We now set 2 thresholds:
 - First one under the minimal status value
 - Second one over the maximal status value
- This allows to detect any PVT variations which bypass the nominal functional interval

3. OUTLOOKS & CONCLUSION

OBJECTIVES FOR DEPLOYMENT

Confusion matrix

	Attack	No Attack
Alarm	True Positive (TP)	False Positive (FP)
No Alarm	False Negative (FN)	True Negative (TN)

- Goals: Maximise TP and TN (depending on the policy)
- Compliancy to FIPS 140-3 level 4: maximal protection against "environmental attacks"

EVALUATION PLATFORM: FLEXEVALTM

- Based on NewAE CW305 (photo)
- AMD Xilinx Artix 7 series
- MCU Atmel SAM series
- Designed for fault injection, side channel and PVT experimentations.
 - Compatible with specific Peltier (thermoelectric) module
 - Monitoring of FPGA operating figures (T, V)

NEW FPGA PLATFORM PROPOSAL

FIA EXPERIMENTATIONS

- Fault injections campaigns (power glitch, clock glitch and EM fault injections)
- Compare delay chain measurements obtained under varying PVT conditions with the measurements during fault injections

THANK YOU FOR YOUR **ATTENTION**

CONTACTS

EMEA sales-EMEA@secure-IC.com APAC sales-APAC@secure-IC.com **CHINA** sales-CHINA@secure-IC.com **JAPAN** sales-JAPAN@secure-IC.com sales-TAIWAN@secure-IC.com **TAIWAN**

sales-US@secure-IC.com **AMERICAS**

FOLLOW US ON SOCIAL MEDIA

