质量和密度的测量数据处理

PB22000197 李心玥

2023年6月13日

1 卡尺法测量金属圆柱体的密度

质量 (g)	直径 (mm)	高 (mm)	
10.44	11.98	12.52	

表 1: 卡尺法测量数据

$$\rho = \frac{m}{V} = \frac{m}{\pi (D/2)^2 h} = \frac{10.44 \times 10^{-3}}{(11.98/2)^2 \times 12.52 \times 10^{-9} \pi} = 7.40 \times 10^3 kg \cdot m^{-3}$$

2 流体静力法测量金属圆柱体的密度

圆柱体质量 (g)	容器与水总质量(g)	容器、水与浸没的圆柱体总质量(g)	水温 (°C)
162.66	572.23	591.55	30.0

表 2: 流体静力法测量数据

浸没的圆柱体排水质量:

$$\Delta m = 591.55 - 572.23 = 19.32g$$

查表得 30.0°C 时的水的密度 $\rho_0=0.995672\times 10^3 kg\cdot m^{-3}$,则计算得圆柱体密度:

$$\rho = \frac{m}{\Delta m} \rho_0 = \frac{162.66}{19.32} \times 0.995672 \times 10^3 = 8.38 \times 10^3 kg \cdot m^{-3}$$

3 转动定律测量金属棒质量

r(cm)	t(s)	$r^{2}(m^{2})$	T(s)	$rT^2(ms^2)$
20.0	84.42	0.0400	2.814	1.584
25.0	77.88	0.0625	2.596	1.685
30.0	73.64	0.0900	2.455	1.808
35.0	70.38	0.1225	2.346	1.926
40.0	68.53	0.1600	2.284	2.087

表 3: 小铜块转动的数据记录表

由公式 $r^2 = \frac{gr}{4\pi^2} T^2 - \frac{I_C}{2m}$ 拟合得 $r^2 - rT^2$ 关系曲线如下:

图 1: 线性拟合结果

由图 1 得截距 $b = -\frac{I_C}{2m} = -0.3422m^2$,已知 m = 10.44g,故:

$$I_C = -2mb = -2 \times 10.44 \times 10^{-3} \times (-0.3422) = 7.145 \times 10^{-3} kg \cdot m^2$$

r(cm)	L(cm)	t(s)	T(s)	
30.0	6.20	53.18	1.772	

表 4: 金属棒转动的数据记录表

将表 4 数据代入公式得金属棒的质量:

$$M = \frac{I_C}{\frac{gr}{4\pi^2}T^2 - \frac{1}{12}L^2 - r^2} = \frac{7.145 \times 10^{-3}}{\frac{9.8 \times 0.3}{4\pi^2} \times 1.772^2 - \frac{1}{12} \times 0.062^2 - 0.3^2} = 49.87g$$

4 模拟失重环境利用弹簧测量物体质量

4.1 实验方案设计

设砝码托质量为 m₀, 空砝码托的振动周期为:

$$T_0 = 2\pi \sqrt{\frac{m_0}{k}} \tag{1}$$

砝码托上放置一个质量为 m_1 (已知)的砝码,振动周期变为:

$$T_1 = 2\pi \sqrt{\frac{m_0 + m_1}{k}} \tag{2}$$

砝码托上放置质量为 m (未知)的待测物体,振动周期变为:

$$T = 2\pi \sqrt{\frac{m_0 + m}{k}} \tag{3}$$

分别测出 T_0 , T_1 , T, 联立式(1)和式(2)可以解出 k, m_0 , 再代入式(3)即可求得待测物体的质量 m

4.2 数据处理

$t_0(s)$	$t_1(s)$	t(s)	$T_0(s)$	$T_1(s)$	T(s)
36.13	52.21	45.35	1.204	1.740	1.512

表 5: 三次振动的周期测量(测 30 个周期)

已知砝码的质量 $m_1 = 99.77g$,代人式 (1) 和式 (2) 联立的方程组得:

$$\begin{cases} 1.204 = 2\pi\sqrt{\frac{m_0}{k}} \\ 1.740 = 2\pi\sqrt{\frac{m_0 + 0.09977}{k}} \end{cases}$$

解得: $k = 2.496N \cdot m^{-1}$, $m_0 = 91.65g$, 代入式 (3) 得待测物体质量:

$$m = \frac{T^2}{4\pi^2}k - m_0 = \frac{1.512^2}{4\pi^2} \times 2.496 - 0.09165 = 52.89g$$