

Exercise Sheet 1 - Probabilities Prof. Dr. Paul Swoboda

NOTE: For this exercise sheet, you only need to submit a PDF.

Exercise 1: Conditional independence (0.5 Points)

Let $H \in \{1, ..., K\}$ be a discrete random variable, and let e_1 and e_2 be the observed values of two other random variables E_1 and E_2 . Suppose we wish to calculate the conditional distribution $p(H \mid E_1 = e_1, E_2 = e_2)$, i.e., the numbers

$$p(H = 1 \mid e_1, e_2), \dots, p(H = K \mid e_1, e_2).$$

- a) Which of the following sets of numbers are sufficient for the calculation?
 - i) $p(e_1, e_2), p(H), p(e_1 \mid H), p(e_2 \mid H)$
 - ii) $p(e_1, e_2), p(H), p(e_1, e_2 \mid H)$
 - iii) $p(e_1 | H), p(e_2 | H), p(H)$
 - iv) $p(H, e_1, e_2)$
- b) Now suppose that we assume $E_1 \perp E_2 \mid H$, i.e., E_1 and E_2 are conditionally independent given H. Which of the above sets are sufficient now?

Give reasons for your acceptance or rejection of each option. Hint: use the sum rule, product rule, and/or Bayes rule.

Exercise 2: Pairwise and mutual independence (0.5 Points)

We say that two random variables are pairwise independent if

$$p(X_1, X_2) = p(X_1)p(X_2).$$

We say that n random variables are mutually independent if

$$p(X_{1:n}) = \prod_{i=1}^{n} p(X_i).$$

a) Show that pairwise independence between all pairs of variables does not necessarily imply mutual independence. It suffices to give a counterexample.

- b) Show that mutual independence implies pairwise independence.
- c) Show that independence is equivalent to $p(X_1|X_2) = p(X_1)$.

Exercise 3: Bias-Variance Decomposition (1 Points)

Assume you are given an estimator $\hat{\theta}$ for a model's true parameters θ^* . Define its

- bias as bias[$\hat{\theta}$] = $E[\hat{\theta} \theta^*]$,
- variance as $var[\hat{\theta}] = E[(\hat{\theta} E[\hat{\theta}])^2],$
- mean squared error (MSE) as $mse[\hat{\theta}] = E[(\hat{\theta} \theta^*)^2].$

Prove that the bias-variance decomposition

$$mse[\hat{\theta}] = bias[\hat{\theta}]^2 + var[\hat{\theta}]$$

holds.

Exercise 4: MLE for Gaussian Distribution (σ^2 known) (1.5 Points)

Assume you are given N independent samples $\mathcal{D} = \{x_1, x_2, \dots, x_N\}$ drawn from data distribution $p^* = \mathcal{N}(\mu^*, \sigma^2)$, where μ^* is unknown and $\sigma^2 > 0$ is known. The likelihood of this sequence of data points is given by

$$\mathcal{L}(\mu|x_1,\ldots,x_N) = \prod_{i=1}^N \mathcal{N}(x_i|\mu,\sigma^2).$$

In this exercise, we derive the maximum likelihood estimate

$$\hat{\mu}_{\text{MLE}} = \frac{1}{N} \sum_{i} x_i$$

for μ^* and analyze it.

- a) We often work with the log-likelihood $\ell = \ln \mathcal{L}$ instead of the likelihood (both functions agree on their maxima). Simplify ℓ .
- b) Compute the derivative $\frac{\partial}{\partial \mu} \ell$. Discuss why we prefer to work with the log-likelihood instead of the likelihood.
- c) Set the derivative to zero and solve for μ . You should obtain $\hat{\mu}_{\text{MLE}}$ as above.
- d) Compute the bias of $\hat{\mu}_{\text{MLE}}$.

e) Compute the variance of $\hat{\mu}_{\text{MLE}}$.

Hint. Recall and use basic properties of variance, i.e., do not compute var $[\hat{\mu}_{\text{MLE}}]$ via a lengthy computation.

f) Compute the mean squared error of $\hat{\mu}_{\text{MLE}}$.

Exercise 5: MLE for Binomial Distribution (1.5 Points)

Assume we are given a Binomial distribution

$$Bin(n_H|n,\theta) = \binom{n}{n_H} \theta^{n_H} (1-\theta)^{n-n_H}$$

for a coin toss, where n_H is the number of heads up events, n is the total number of coin flips where we want to estimate its underlying parameter θ . Show that the MLE estimator for θ is n_H/n , where n_H is the number of heads up.