Mathématiques 2A S3, TD1

2020/2021

Exercice 0 - Rappels sur les différentielles, et quelques courbes paramétrées

1. Pour chacune des fonctions définies sur \mathbb{R}^2 suivantes, donner la différentielle (justifier que celle-ci existe).

$$f_1(x,y) = \arctan(xy), \quad f_2(x,y) = x^2 \cos(y) + \sin(x), \quad f_3(x,y) = \sqrt{1 + x^2}.$$

2. Pour chacune des courbes paramétrées suivantes, représenter graphiquement et donner la différentielle (justifier que celle-ci existe).

$$\gamma_1: [-1,1] \longrightarrow \mathbb{R}^2 \qquad \gamma_2: [0,4\pi] \longrightarrow \mathbb{R}^2 \qquad \gamma_3: [0,2] \longrightarrow \mathbb{R}^3$$

$$t \longmapsto \begin{pmatrix} t \\ t^3 \end{pmatrix}, \qquad t \longmapsto \begin{pmatrix} \cos(t) \\ t \end{pmatrix}, \qquad t \longmapsto \begin{pmatrix} t \\ t \\ e^t \end{pmatrix}$$

Exercice 1. Dans chacun des cas suivants, déterminer si la forme différentielle ω est fermée et/ou exacte sur son domaine de définition U, puis trouver une primitive quand ω est exacte.

- 1. $\omega = ydx + xdy$, définie sur $U = \mathbb{R}^2$
- 2. $\omega = ydx xdy$, définie sur $U = \mathbb{R}^2$
- 3. $\omega = xdx + ydy$, définie sur $U = \mathbb{R}^2$
- 4. $\omega = xy(dx + dy)$, définie sur $U = \mathbb{R}^2$
- 5. $\omega = dx + dy$, définie sur $U = \mathbb{R}^2$
- 6. $\omega = y \cos(xy) dx + x \cos(xy) dy$, définie sur $U = \mathbb{R}^2$
- 7. $\omega = \cos(xy)dx + \ln(xy)dy$ définie sur $U = (0, +\infty)^2$
- 8. $\omega = \frac{-y}{x^2+y^2}dx + \frac{x}{x^2+y^2}dy$ définie sur $\mathbb{R}^2 \setminus \{(0,0)\}$
- 9. $\omega = \frac{1-y^2}{x^2+y^2}dx + \frac{x}{x^2+y^2}dy$ définie sur $(0,+\infty) \times \mathbb{R}$
- 10. $\omega = dx + dy + dz$, définie sur $U = \mathbb{R}^3$
- 11. $\omega = yze^{xyz}dx + xze^{xyz}dy + xye^{xyz}dz$, définie sur $U = \mathbb{R}^3$
- 12. $\omega = yze^{xyz}dx + xz\cos(xyz)dy + xy\ln(xyz)dz$, définie sur $U = (0, +\infty)^3$
- 13. $\omega = 2xy^3z^4dx + 3x^2y^2z^4 + 4x^2y^3z^3dz$ définie sur $U = \mathbb{R}^3$.

Exercice 2. Dans chacun des cas suivants, déterminer si la forme différentielle est exacte et calculer son intégrale sur le chemin paramétré donné. Toutes les formes suivantes sont définies sur \mathbb{R}^2

1.
$$\omega_1 = 2xy^3 dx + 3x^2 y^2 dy$$
, $\gamma_1 : \begin{cases} x(t) = e^t \\ y(t) = t, \end{cases}$ avec $t \in [0, 1]$.

2.
$$\omega_{2} = x^{5}ydx + x^{2}y^{2}dy$$
, $\gamma_{2} : \begin{cases} x(t) = t \\ y(t) = t^{2}, \end{cases}$ avec $t \in [0, 1]$.
3. $\omega_{3} = \cos(x)dx + \cos(y)dy$, $\gamma_{3} : \begin{cases} x(t) = t \\ y(t) = \frac{\pi}{2} - t, \end{cases}$ avec $t \in [0, \frac{\pi}{2}]$.
4. $\omega_{4} = ydx - dy$, $\gamma_{4} : \begin{cases} x(t) = t \\ y(t) = \cos(t), \end{cases}$ avec $t \in [0, \pi]$.

3.
$$\omega_3 = \cos(x)dx + \cos(y)dy$$
, $\gamma_3 : \begin{cases} x(t) = t \\ y(t) = \frac{\pi}{2} - t, \end{cases}$ avec $t \in [0, \frac{\pi}{2}]$.

4.
$$\omega_4 = ydx - dy$$
, $\gamma_4 : \begin{cases} x(t) = t \\ y(t) = \cos(t) \end{cases}$ avec $t \in [0, \pi]$.

Exercice 3. On considère la forme différentielle, donnée par $\omega = \frac{-y}{x^2+y^2}dx + \frac{x}{x^2+y^2}dy$, définie sur $\mathbb{R}^2 \setminus \{(0,0)\}.$

- 1. Soit γ une paramétrisation du cercle unité, parcouru dans le sens trigonométrique. Calculer
- 2. La forme différentielle ω est-elle exacte?
- 3. Comparer avec l'exercice 1.

Plus Difficile

- 4. Montrer que la forme differentielle ω est exacte sur tout les U_i , avec $U_1 = \mathbb{R} \times (-\infty, 0)$,
- $U_2 = (0, +\infty) \times \mathbb{R}$, $U_3 = \mathbb{R} \times (0, +\infty)$, $U_4 = (-\infty, 0) \times \mathbb{R}$, et donner dans chaque cas une primitive.
- 5. Soit Γ un chemin fermé, de classe C^1 , orienté dans le sens trigonométrique faisant le tour de l'origine une et une seule fois, et ne s'intersectant pas avec lui-même. Donner la valeur de $\int_{\Gamma} \omega$ de deux manières différentes.

Exercice 4. On considère la forme différentielle $\omega = (2xe^{x^2} + y)dx + xdy + 3z^2dz$ définie sur

$$U=\mathbb{R}^3,$$
 et le chemin orienté paramétré par $\gamma: \left\{ egin{array}{ll} x(t)=t \\ y(t)=t^3 \\ z(t)=t^2 \end{array} \right. \quad t\in[0,2].$

- 1. Montrer que ω est exacte
- 2. Donner une primitive de ω
- 3. Calculer $\int_{\gamma} \omega$.

Exercice 5. Soient la forme différentielle $\omega = x^2y^2dx + 2xy^3dy + x^4dz$ définie sur $U = \mathbb{R}^3$ et γ

la paramétrisation donnée par
$$\gamma$$
:
$$\begin{cases} x(t) = \cos(t) \\ y(t) = \sin(t) \\ z(t) = t \end{cases}$$

- 1. La forme différentielle ω est-elle exacte 2. Calculer l'intégrale $\int_0^1 (u^2-u^4)du$.
- 3. Calculer l'intégrale $\int_0^{\pi/2} \cos^2(t) \sin^3(t) dt$. 4. Linéariser $\cos^4(t)$ (on rappelle la formule d'Euler : $\cos(t) = \frac{1}{2}(e^{ix} + e^{-ix})$)
- 5. En déduire $\int_0^{\pi/2} \cos^4(t) dt$. 6. En déduire $\int_{\gamma} \omega$.

Exercice 6. Soit la forme différentielle définie par $\omega = 2xydx + x^2dy$ définie sur \mathbb{R}^2 .

- 1. La forme différentielle ω est elle exacte? Si oui, donner les primitives f.
- 2. Soit

$$y: \mathbb{R}^+ \longrightarrow \mathbb{R}$$
$$x \longmapsto y(x)$$

une solution de l'équation différentielle $x^2y'(x) + 2xy(x) = 0$. Montrer que

$$x^2dy + 2xydx = 0$$

3. En déduire la forme de la solution y. Représenter y.

Exercice 7. Résoudre à l'aide d'une forme différentielle exacte les équations différentielles suivantes :

$$\begin{cases} y'(x) = -\frac{1+2xy(x)^3}{3x^2y^2(x)} \\ y(1) = 1 \end{cases}, \begin{cases} y'(x) = -\frac{y(x)\cos(xy(x))}{x\cos(xy(x))} \\ y(\pi) = 1 \end{cases},$$

Exercice 8. Soit la forme différentielle définie par $\omega = (x^2 + y^2 + 2x)dx + 2ydy$ définie sur \mathbb{R}^2 .

- 1. La forme différentielle ω est elle exacte?
- 2. Trouver $\psi(x)$, une fonction ne dépendant que de la variable x telle que la forme différentielle $\tilde{\omega} = \psi \omega$ soit exacte. On dit que ψ est un facteur intégrant.
- 3. Soit y une solution de l'équation différentielle suivante :

$$2y(x)y'(x) + x^2 + y^2(x) + 2x = 0.$$

Déduire la forme de y.

Exercice 8. Résoudre les équations différentielles suivantes :

$$y(x) + xy'(x) = 0$$
, $2\sin(y^2(x)) + xy(x)\cos(y^2(x)) = 0$.

Exercice 9. 1. Dans chacun des cas suivants, est-ce que le champ de vecteurs défini sur \mathbb{R}^3 dérive d'un potentiel? Si oui, donner un potentiel.

$$V_1(x,y,z) = \begin{pmatrix} 4x^3y^3z + ye^{xy} \\ 3x^4zy^2 + xe^{xy} \\ x^4y^3 \end{pmatrix}, \quad V_2(x,y,z) = \begin{pmatrix} e^x \\ \sin(y) \\ 2z^2 \end{pmatrix}, \quad V_3(x,y,z) = \begin{pmatrix} 3x^2y^2z^3 \\ 2x^2yz^4 \\ 3x^3y^2z^2 \end{pmatrix}$$

2. Pour tout $k \in \{1, 2, 3\}$, calculer la circulation du champ de vecteurs V_k le long du chemin orienté paramatré par γ_k , donné par

•
$$\gamma_1$$
:
$$\begin{cases} x(t) = t \\ y(t) = e^t \\ z(t) = t^2 \end{cases} \quad t \in [-1, 1]$$

•
$$\gamma_2$$
:
$$\begin{cases} x(t) = \cos(t) \\ y(t) = \sin(t) \end{cases} \quad t \in [0, \frac{\pi}{2}]$$
$$z(t) = t$$

•
$$\gamma_3$$
:
$$\begin{cases} x(t) = t \\ y(t) = t^2 \\ z(t) = t^3 \end{cases} \quad t \in [0, 2]$$