

SPI communication between a Nucleo-STM32L476 board and a BME280 sensor

Jean-Christophe Toussaint Grenoble INP - Phelma

Nucleo64-STM32L476: SPI communication with a sensor

The Serial Peripheral Interface (SPI) is a specification of serial, synchronous and full duplex communication between a master (or multiple masters) and a single or multiple slave devices.

This presentation is aimed at helping users to realize such a communication between a Nucleo board STM32L476RG and an SPI pressure-temperature-humidity Sensor BME280.

This example was developed using the Keil programing environment.

BME280 Wiring

Nucleo64-STM32L476RG: CubeMx configurator

Nucleo64-STM32L476RG: SPI and USART

Choose SPI2 as the SPI bus.
PB10 and (PC2, PC3) are then
automatically selected as circled beside.
PB15 is used as a software Chip Select
pin. Change its name to SPI2_CS1.

Choose USART2 as the serial bus PA2 and PA3 are then automatically selected as circled beside

Nucleo-L476RG and BME280 Wiring

/** SPI2 GPIO Configuration

PC2 -----> SPI2_MISO

PC3 -----> SPI2 MOSI

PB10 -----> SPI2 SCK

DO NOT PLUG THE NUCLEO TO USB PORT Before Double-Checking your wiring

User manual UM1724 page 61

Nucleo64-STM32L476RG: clock configuration

The clocks configuration used for this project are:

Nucleo64-STM32L476RG: SPI2 and USART2 configuration

Baud Rate should be less 10 Mbits/s for BME280 sensor

Nucleo64-STM32L476RG: USART2 configuration

SPI BME280 Library for STM32

The BME280 Library for STM32F446 developed by Bosch was adapted for STM32L4

Download http://communication.minatec.inpg.fr/toussaint/STM32/stm32-bme280-master.tar.gz

Uncompress it with winzip or equivalent

To be copied into the Drivers subdirectory of the project

Adding paths to the « include » files driving the BME280 components

Part I: measuring temperature and pressure in polling mode

Includes to be added in file main.c

```
/* USER CODE BEGIN Includes */
#include <stdio.h>
#include "bme280.h"
/* USER CODE END Includes */
/* USER CODE BEGIN PV */
struct bme280 t mybme280;
/* USER CODE END PV */
/* USER CODE BEGIN PFP */
/* Private function prototypes ----*/
s32 bme280 data readout template (void);
/* USER CODE END PFP */
```


Lines to be added in file main.c

```
/* Infinite loop */
  /* USER CODE BEGIN WHILE */
 while (1) {
 /* USER CODE END WHILE */
 /* USER CODE BEGIN 3 */
       int status=bme280 data readout template();
        printf("status %d\n", status);
        HAL Delay(1000);
/* USER CODE END 3 */
/* USER CODE BEGIN 4 */
int fputc(int ch, FILE *f) {
 uint8 t c=(uint8 t) (ch & 0x00FF);
  HAL UART Transmit (&huart2, &c, 1, 10);
  return ch;
/* USER CODE END 4 */
```

The measurements are done in polling mode and therefore waste a lot of CPU time and power consumption.

Running the NucleoL4_BME280 project

Compile the project sources within

the keil environment

Download the binary into the MCU

Install a serial terminal like Termite

https://www.compuphase.com/software_termite.htm

Reset the MCU for running and enjoy

Serial Terminal Configuration

 ΣS Termite 3.3 (by CompuPhase) Run Termite COM1 115200 bps, 8N1, no handshake Settings Close Clear About Termite is initialized and ready. Type a string in the edit line (helow) and nress <Fnte (or wait for t | Serial port settings Port configuration Transmitted text Options Append nothing Stay on top Port COM4 Append CR ✓ Ouit on Escape Baud rate 115200 Append LF Autocomplete edit line ✓ Keep history Append CR-LF Data bits Close port when inactive ✓ Local echo Stop bits Received text Plug-ins Pollina 100 Auto Reply Parity none Function Keys Ε Max. lines Hex View Termite 3.3 (by CompuPhase) Font monospaced Highlight Word wrap I on File COM4 115200 bps, 8N1, no handshake Settings Clear About Close dev addr 0 English (en) OK Cancel ID 60 v chip id read count = 5 0 v data u8 = 96 com rslt 0 Temperature : 22.03 DegC : 989.68 mmHg Temp: 72 DegF, Press: 29.23 inHg, Humi: 46% rH, status 0 hspi2 state 1

Part II - Interrupt managed by a timer

The goal is to reduce the power consumption. One measures temperature and pressure at regular intervals and puts the MCU in a sleep mode between two successive measurements.

A timer with a counter is used. An update Event is generated when counter reaches a given value.

The calculations of "Prescaler" (PSC) and "Counter Period" (ARR) parameters are carried out using the MikroElektronika application "timer calculator"

An interrupt is generated each T=10s, using SysClock =32 MHz ARR et PSC are such as T = (ARR+1)*(PSC+1)/32e6

To be reported in timer configuration

NVIC Settings

HAL Library TIM with IT flow

Details of the Infinite loop in main

```
/* Infinite loop */
    /* USER CODE BEGIN WHILE */
while (1)
    {
        /* USER CODE BEGIN 3 */
        HAL_SuspendTick();
        HAL_PWR_EnterSLEEPMode(PWR_LOWPOWERREGULATOR_ON, PWR_SLEEPENTRY_WFI);

        HAL_ResumeTick();
        int status=bme280_data_readout_template();
        printf("status %d\n", status);
        }
    /* USER CODE END WHILE */
```


Running the NucleoL4_BME280 project

Compile the project sources within

the keil environment

- Download the binary into the MCU
- Install a serial terminal for windows like

Termite

Reset the MCU for running and enjoy

