Design and Analysis of Algorithms Part IV: Graph Algorithms

Lecture 31: All-Pairs Shortest Paths

童咏昕

北京航空航天大学 计算机学院

图算法篇概述

- 在算法课程第四部分"图算法"主题中,我们将主要聚焦于如下经典问题:
 - Basic Concepts in Graph Algorithms(图算法的基本概念)
 - Breadth-First Search (BFS, 广度优先搜索)
 - Depth-First Search (DFS, 深度优先搜索)
 - Cycle Detection (环路检测)
 - Topological Sort (拓扑排序)
 - Strongly Connected Components(强连通分量)
 - Minimum Spanning Trees (最小生成树)
 - Single Source Shortest Path (单源最短路径)
 - All-Pairs Shortest Paths (所有点对最短路径)
 - Bipartite Graph Matching (二分图匹配)
 - Maximum/Network Flows (最大流/网络流)

问题定义

算法思想

算法设计

算法实例

算法分析

问题背景

• 航班价格

如何求出所有城市之间的最低航班价格?

问题定义

所有点对最短路径问题

All Pairs Shortest Paths

输入

• 带权无向图 $G = \langle V, E, W \rangle$,W为边权

输出

• $\forall u, v \in V$, 从u到v的最短路径

问题定义

算法思想

算法设计

算法实例

算法分析

v u	1	2	3	4	5
1	0	200	100	300	400
2					
3					
4					
5					

v	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3					
4					
5					

v u	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4					
5					

v u	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5					

$\begin{array}{c} v \\ u \end{array}$	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	0

- 使用Dijkstra算法依次求解所有点
- 存在重叠子问题

从1到5的最短路径: $1\rightarrow 3\rightarrow 4\rightarrow 5$

从3到5的最短路径: 3→4→5

- 从1到4的路径更新
 - 可从前1个点中选择点经过: 500

• 从1到4的路径更新

• 可从前1个点中选择点经过: 500

• 可从前2个点中选择点经过: 500

• 从1到4的路径更新

• 可从前1个点中选择点经过: 500

• 可从前2个点中选择点经过: 500

• 可从前3个点中选择点经过: 300

• 从1到4的路径更新

• 可从前1个点中选择点经过: 500

• 可从前2个点中选择点经过: 500

• 可从前3个点中选择点经过: 300

可从前k个点中选择点经过: ...

• 从1到4的路径更新

• 可从前1个点中选择点经过: 500

• 可从前2个点中选择点经过: 500

• 可从前3个点中选择点经过: 300

• 可从前k个点中选择点经过: ...

可经过的中间点越多 距离逐渐变短

• 从1到4的路径更新

• 可从前1个点中选择点经过: 500

• 可从前2个点中选择点经过: 500

• 可从前3个点中选择点经过: 300

● 可从前k个点中选择点经过: ...

可经过的中间点越多 距离逐渐变短

重叠子问题、最优子结构启发使用动态规划求解

问题定义

算法思想

算法设计

算法实例

算法分析

动态规划: 问题结构分析

• 给出问题表示

• D[k,i,j]: 可从前k个点选点经过时,i到j的最短距离

• 从1到4的路径更新

• 可从前1个点中选择点经过: D[1,1,4] = 500

• 可从前2个点中选择点经过: D[2,1,4] = 500

• 可从前3个点中选择点经过: D[3,1,4] = 300

问题结构分析

递推关系建立

自底向上计算

- 如果不选第 k 个点经过
 - D[k, i, j] = D[k-1, i, j]

本例中

$$k = 2, i = 1, j = 4$$

 $D[2, 1, 4] = D[1, 1, 4] = 500$

问题结构分析

自底向上计算

- 如果不选第k个点经过
 - D[k, i, j] = D[k-1, i, j]
- 如果选择第k个点经过
 - D[k, i, j] = D[k-1, i, k] + D[k-1, k, j]

表示松弛成功

= 100 + 200 = 300

问题结构分析

递推关系建立

自底向上计算

- 如果不选第k个点经过
 - D[k, i, j] = D[k-1, i, j]
- 如果选择第k个点经过
 - D[k, i, j] = D[k-1, i, k] + D[k-1, k, j]

问题结构分析

递推关系建立

自底向上计算

- 如果不选第 k 个点经过
 - D[k,i,j] = D[k-1,i,j]
- 如果选择第 k 个点经过
 - D[k, i, j] = D[k-1, i, k] + D[k-1, k, j]

从i到j可经过前k个点的最短路

可经过前k-1个点的最短路

可经过前k-1个点的最短路

• $D[k, i, j] = \min\{D[k-1, i, j], D[k-1, i, k] + D[k-1, k, j]\}$

问题结构分析

递推关系建立

自底向上计算

- 如果不选第k个点经过
 - D[k,i,j] = D[k-1,i,j]
- 如果选择第 k 个点经过
 - D[k, i, j] = D[k-1, i, k] + D[k-1, k, j]

遊推关系建立

 自底向上计算

问题结构分析

最优方案追踪

 $D[k,i,j] = \min\{D[k-1,i,j],$ $D[k-1,i,k] + D[k-1,k,j]\}$ 最优子结构

• 初始化

• D[0,i,i] = 0: 起终点重合,路径长度为0

问题结构分析

递推关系建立

自底向上计算

• 初始化

- D[0, i, i] = 0: 起终点重合,路径长度为0
- D[0,i,j] = e[i,j]: 任意两点直达距离为边权

问题结构分析

递推关系建立

自底向上计算

• 递推公式

• $D[k, i, j] = \min\{D[k-1, i, j],$ $D[k-1, i, k] + D[k-1, k, j]\}$

最终的表格: k = |V|

初始化的表格: k=0

i	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

问题结构分析

递推关系建立

自底向上计算

• 递推公式

•
$$D[k, i, j] = \min\{D[k-1, i, j],$$

 $D[k-1, i, k] + D[k-1, k, j]\}$

最终的表格: k = |V|

i j	1	 	 •••
1			
•••		2	
		•	
•••			
•••			

初始化的表格: k=0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

问题结构分析

递推关系建立

自底向上计算

• 递推公式

•
$$D[k, i, j] = \min\{D[k-1, i, j],$$

 $D[k-1, i, k] + D[k-1, k, j]\}$

最终的表格: k = |V|

i j	1	 	 •••
1			
•••		2	
		•	
•••			
•••			

初始化的表格: k=0

i	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

问题结构分析

递推关系建立

自底向上计算

• 递推公式

•
$$D[k, i, j] = \min\{D[k-1, i, j],$$

 $D[k-1, i, k] + D[k-1, k, j]\}$

最终的表格: k = |V|

i j	1	 	
1			
•••		?	
		•	
•••			
•••			

初始化的表格: k=0

i	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

问题结构分析

递推关系建立

自底向上计算

• 递推公式

•
$$D[k, i, j] = \min\{D[k-1, i, j],$$

 $D[k-1, i, k] + D[k-1, k, j]\}$

最终的表格: k = |V|

i j	1	 	 •••
1			
•••		2	
		•	
•••			
•••			

初始化的表格: k=0

i	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

问题结构分析

递推关系建立

自底向上计算

- 递推公式
 - $D[k, i, j] = \min\{D[k-1, i, j],$ $D[k-1, i, k] + D[k-1, k, j]\}$

最终的表格: k = |V|

i j	1	 	
1			
•••		2	
		•	
•••			
•••			

初始化的表格: k=0

i	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

问题结构分析

递推关系建立

自底向上计算

- 递推公式
 - $D[k, i, j] = \min\{D[k-1, i, j],$ D[k-1,i,k] + D[k-1,k,j]

问题结构分析

递推关系建立

自底向上计算

100

200

500

200 1200 1000

100

200 600

100

• 递推公式

•
$$D[k, i, j] = \min\{D[k-1, i, j],$$

 $D[k-1, i, k] + D[k-1, k, j]\}$

问题结构分析

递推关系建立

自底向上计算

问题结构分析

• 递推公式

 \boldsymbol{k}

待计算

上一次结果

只需要两层表格

•
$$D[k, i, j] = \min\{D[k-1, i, j],$$

 $D[k-1, i, k] + D[k-1, k, j]\}$

• • •

• 递推公式

•
$$D[k, i, j] = \min\{D[k-1, i, j], 0 + D[k-1, i, j] = D[k-1, i, j]\}$$
• $D[k-1, i, k] + D[k-1, k, j]\}$

• 若k = i或k = j

D[k, i, j] = D[k - 1, i, j]值相同,可以直接覆盖

问题结构分析

递推关系建立

自底向上计算

递推公式

•
$$D[k, i, j] = \min\{D[k-1, i, j], 0 + D[k-1, i, j] = D[k-1, i, j]\}$$

$$D[k-1, i, k] + D[k-1, k, j]\}$$

• 若k = i或k = j

$$D[k, i, j] = D[k - 1, i, j]$$

值相同,可以直接覆盖

若k ≠ i且k ≠ j

D[k-1,i,j]和D[k-1,i,k], D[k-1,k,j]不是相同子问题 求出D[k,i,j]后,D[k-1,i,j]不再被使用 可直接覆盖

i j	1	•••	k	•••	
1					
•••					
k					
•••					
•••					
i j	1		k		
1					
•••					
k					
•••					

问题结构分析

递推关系建立

自底向上计算

• 递推公式

•
$$D[k, i, j] = \min\{D[k-1, i, j], 0 + D[k-1, i, j] = D[k-1, i, j]\}$$

$$D[k-1, i, k] + D[k-1, k, j]\}$$

• 若k = i或k = j

$$D[k, i, j] = D[k - 1, i, j]$$

值相同,可以直接覆盖

若k ≠ i且k ≠ j

D[k-1,i,j]和D[k-1,i,k], D[k-1,k,j]不是相同子问题 求出D[k,i,j]后,D[k-1,i,j]不再被使用 可直接覆盖

求出新值可直接在原位置覆盖 只需存储一层表格

i j	1	 k	
1			
•••			
k			
•••			
•••			
i j	1	 k	
1			
•••			
k			
•••			

问题结构分析

自底向上计算

- 递推公式
 - $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

问题结构分析

递推关系建立

自底向上计算

最优方案追踪

求出新值可直接在原位置覆盖 只需存储一层表格

- 递推公式
 - $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$
- 追踪数组Rec,记录经过的中间点
 - $D_k[i,j] = D_{k-1}[i,j]$: 0 表示没有中间点

Rec

i	1	 j	 V
1			
•••			
i		0	
•••			
V			

问题结构分析

递推关系建立

自底向上计算

• 递推公式

•
$$D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$$

- 追踪数组Rec,记录经过的中间点
 - $D_k[i,j] = D_{k-1}[i,j]$: 0 表示没有中间点
 - $D_k[i,j] = D_{k-1}[i,k] + D_{k-1}[k,j]$: k 表示经过中间点k

问题结构分析

递推关系建立

松弛时使用的点

Rec

i j	1	 j	 V
1			
•••			
i		k	
•••			
V			

自底向上计算

• 根据数组Rec,输出最短路径

Rec

i j	1	2	3	4	5
1			0		3
2					
3				0	4
4					0
5					

问题结构分析

递推关系建立

自底向上计算

• 根据数组Rec,输出最短路径

Rec

i j	1	2	$\begin{bmatrix} 3 \end{bmatrix}$	4	5
1			0		3
2					
$\begin{bmatrix} 3 \end{bmatrix}$				0	4
4					0
5					

问题结构分析

递推关系建立

自底向上计算

• 根据数组Rec,输出最短路径

Rec

i j	1	2	3	4	5
1			0		3
2					
3				0	4
4					0
5					

问题结构分析

递推关系建立

自底向上计算

• 根据数组Rec,输出最短路径

Rec

i j	1	2	3	[4]	5
1			0		3
2					
3				0-	$\left\{\begin{array}{c} 4 \end{array}\right\}$
$\left\{\begin{array}{c} 4 \end{array}\right\}$					1 0
5					

问题结构分析

递推关系建立

自底向上计算

• 根据数组Rec,输出最短路径

Rec

i j	1	2	3	4	5
1			0		3
2					
3				$(\bar{0})$	4
4				·	
5					

问题结构分析

递推关系建立

自底向上计算

问题定义

算法思想

算法设计

算法实例

算法分析

i	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

所有点对都没有经过其他点

Rec

k = 0

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

D

i j	1	2	3	_4_	5_
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

Rec

k = 1

i	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5	
1	0	200	100	500	500	
2	200	0	200	700	700	
3	100	200	0	200	600)
4	500	1200	200	0	100	
5	500	1000	600	100	0	

$$k = 1$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5	
1	0	200	100	500	500	
2	200	0	200	700	700	
3	100	200	0	200	600	
4	500	700	200	0	100	1
5	500	1000	600	100	0	

$$k = 1$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k = 1$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k = 2$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k = 2$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k = 2$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k = 2$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200_	_0_	100
5	500	700	600	100	_0_

$$k = 2$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k = 3$$

i j	1	2	3	4	5
1	0	0	0	3	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	500
2	200	0	200	400	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k = 3$$

i j	1	2	3	4	5
1	0	0	0	3	0
2	0	0	0	3	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	500
2	200	0	200	400	700
3	100	200	$\begin{bmatrix} 0 \end{bmatrix}$	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k = 3$$

i j	1	2	3	4	5
1	0	0	0	3	0
2	0	0	0	3	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	500
2	200	0	200	400	700
3	100	200	0	200	600
4	300	400	200	0	100
5	500	700	600	100	0

$$k = 3$$

i j	1	2	3	4	5
1	0	0	0	3	0
2	0	0	0	3	1
3	0	0	0	0	0
4	3	3	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	500
2	200	0	200	400	700
3	100	200	0	200	600
4	300	400	200	0	100
5	500	700	600	100	0

$$k = 3$$

i j	1	2	3	4	5
1	0	0	0	3	0
2	0	0	0	3	1
3	0	0	0	0	0
4	3	3	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	700
3	100	200	0	200	600
4	300	400	200	0	100
5	500	700	600	100	0

$$k = 4$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	1
3	0	0	0	0	0
4	3	3	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	600
4	300	400	200	0	100
5	500	700	600	100	0

$$k = 4$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	0
4	3	3	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	_0_	200	400	500
3	100	200	0_	200	300
4	300	400	200	0	100
5	500	700	600	100	0

$$k = 4$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	$\overline{0}$	100
5	500	700	600	100	0

$$k = 4$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	

$$k = 4$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300_	400	200	_ 0 _	100
5	400	500	300	100_	0

$$k = 5$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	_ 0 _	100
5	400	500	300	100_	0

$$k = 5$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100_	0

$$k = 5$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0_	200	300
4	300	400	200	0	100
5	400	500	300	100	0

$$k = 5$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	_ 0 _	100
5	400	500	300	100	$\begin{bmatrix} 0 \end{bmatrix}$

$$k = 5$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

● 查询从1到5的最短路

 \boldsymbol{D}

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	0

$$k = 5$$

Rec

		_	L	J O -	
i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

D

100

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

● 查询从1到5的最短路

(

i	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	0

$$k = 5$$

ec	•		1	Jua	
i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

1200 000

100

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

● 查询从1到5的最短路

			Rec	2

i	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	0

$$k = 5$$

				JU	
i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

1200 000

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

● 查询从1到5的最短路

D

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	0

$$k = 5$$

R	ec		1000				
	i j	1	2	3	4	5	
	1	0	0	$\begin{bmatrix} 0 \end{bmatrix}$	3	4	
	2	0	0	0	3	4	
	3	0	0	0	0	4	
	4	3	3	0	0	0	
	5	4	4	4	0	0	

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

● 查询从1到5的最短路

 \boldsymbol{D}

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	0

$$k = 5$$

Rec

	Joo				
i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

问题定义

算法思想

算法设计

算法实例

算法分析

伪代码

All-Pairs-Shortest-Paths(G)

```
输入: 图G = \langle V, E, W \rangle
输出: 任意两点最短路径
新建二维数组D[1..V, 1..V], Rec[1..V, 1..V]
for i \leftarrow 1 to V do
                                                   初始化
   for j \leftarrow 1 to V do
       Rec[i,j] \leftarrow 0
       if i = j then
           D[i,j] \leftarrow 0
       end
       else
           D[i,j] \leftarrow W[i,j]
       end
   end
end
```

伪代码

• All-Pairs-Shortest-Paths(*G*)

```
输入: 图G = \langle V, E, W \rangle
输出: 任意两点最短路径
新建二维数组D[1..V, 1..V], Rec[1..V, 1..V]
for i \leftarrow 1 to V do
    for j \leftarrow 1 to V do
        Rec[i,j] \leftarrow 0
       \overline{\mathbf{if}} \ \overline{i} = \overline{j} \ \overline{\mathbf{then}}
                                         起终点相同,距离为0
            D[i,j] \leftarrow 0
        end
        else
             D[i,j] \leftarrow W[i,j]
                                      起终点不同,距离为边权
        end
    end
end
```


• All-Pairs-Shortest-Paths(*G*)

• All-Pairs-Shortest-Paths(*G*)

```
for k \leftarrow 1 to V do
      for i \leftarrow 1 to V do
            for j \leftarrow 1 to V do
                \begin{vmatrix} \textbf{if} \ D[i,j] > \overline{D[i,k]} + \overline{D[k,j]} \ \textbf{then} \\ | \ D[i,j] \leftarrow D[i,k] + D[k,j] \end{vmatrix} 
                                                                                       松弛操作
                 Rec[i,j] \leftarrow k
                   end
            end
      end
end
return D, Rec
```

伪代码

• Find-Path(Rec, u, v)

伪代码

• Find-Path(Rec, u, v)

```
输入: 备忘数组Rec,起点u,终点v
输出: 最短路径(逆序)
if Rec[u,v]=0 then
print v
return
end
k \leftarrow Rec[u,v]
Find-Path(Rec,u,k)
Find-Path(Rec,k,v)
```

时间复杂度

All-Pairs-Shortest-Paths(G)

- 该算法由Floyd和Warshall于1962年分别提出
- 也被称为Floyd-Warshall算法

Robert Floyd 1936-2001

Stephen Warshall 1935-2006

• 直观思路: 使用Dijkstra算法依次求解所有点

```
输入: 图G
输出: 任意两点最短路径
for i \leftarrow 1 to V do
 Paths[i] \leftarrow Dijkstra - PriQueue(G, i) - - O(|E|log|V|) - O(|V||E|log|V|)
end
return Paths
                    回顾
                                  //执行单源最短路径算法
                                  while 优先队列Q非空 do
                                     v \leftarrow Q.ExtractMin()
                                     for u \in G.adj[v] do
                                         if dist[v] + w(v, u) < dist[u] then
                                            dist[u] \leftarrow dist[v] + w(v, u)
                                           pred[u] \leftarrow v
                                            Q.DecreaseKey((u, dist[u]))
                                         end
                                     end
                                     color[v] \leftarrow BLACK
                                                                     时间复杂度O(|E| \cdot \log |V|)
                                  end
```


• 直观思路: 使用Dijkstra算法依次求解所有点

```
输入: 图G
输出: 任意两点最短路径
for i \leftarrow 1 to V do
|Paths[i] \leftarrow Dijkstra - PriQueue(G, i)
end
return Paths
```

• Floyd-Warshall算法时间复杂度: $O(|V|^3)$

• 直观思路: 使用Dijkstra算法依次求解所有点

```
输入: 图G
 输出: 任意两点最短路径
for i \leftarrow 1 to V do
             |\begin{array}{c} Faths[i] \leftarrow Dijkstra - PriQueue(G,i) \\ | Paths[i] \leftarrow Dijkstra - PriQueue(G,i) \\ 
\mathbf{end}
return Paths
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         图中边较多时
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |E| = O(|V|^2)
```

• Floyd-Warshall算法时间复杂度: $O(|V|^3)$

 $O(|V|^3\log|V|)$

• 直观思路: 使用Dijkstra算法依次求解所有点

```
输入: 图G 输出: 任意两点最短路径 for i\leftarrow 1 to V do |Paths[i]\leftarrow Dijkstra-PriQueue(G,i) end return Paths 图中边较多时 |E|=O(|V|^2)
```

• Floyd-Warshall算法时间复杂度: $O(|V|^3)$ 优于 $O(|V|^3\log|V|)$

最短路径算法小结

