KOSHA GUIDE

M - 70 - 2013

그로맷(Grommet) 및 케이블레이드 슬링 (Cable-laid Sling)에 관한 기술지침

2013. 7.

한국산업안전보건공단

안전보건기술지침의 개요

○ 작성자 : 한국산업안전보건공단 대구지역본부 남주현

○ 개정자 : 한국산업안전보건공단 산업안전보건연구원 채종민

○ 제·개정 경과

- 2011년 11월 기계안전분야 제정위원회 심의(제정)

- 2013년 6월 기계안전분야 기준제정위원회 심의(개정)

○ 관련규격 및 자료

- BS EN 13414-3-2003(Steel wire rope slings Safety -, Part 3 : Grommets and cable-laid slings)
- 스플라이스 단말고리 와이어로프 슬링에 관한 기술기준(S3-M-7-2010)
- 압착식 단말고리 와이어로프에 관한 기술기준(S2-M-6-2009)
- KS D 3514(와이어로프) 및 KS B 6242(와이어로프 슬링)
- 관련법규·규칙·고시 등
 - 산업안전보건기준에 관한 규칙 제163조(와이어로프 등 달기구의 안전계수)
- 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건 기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2013년 7월 11일

제 정 자 : 한국산업안전보건공단 이사장

그로맷(Grommet) 및 케이블레이드 슬링 (Cable-laid sling)에 관한 기술지침

1. 목 적

이 지침은 양중기 등의 보조 줄걸이 작업에 사용되는 그로맷(Grommet) 및 케이블 레이드 슬링(Cable-laid sling)에 대한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 지침은 중량물의 권상작업 등에 사용되는 공칭지름 60 mm 미만의 케이블레이드 그로맷 (Cable-laid grommet), 와이어로프 그로맷(Wire-rope grommet) 및 케이블레이드 슬링에 대하여 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "와이어로프 그로맷(Wire-rope grommet)"이라 함은 하나의 스트랜드(Strand)를 이용하여 중심코어를 형성하고 이를 중심으로 6가닥의 스트랜드를 꼬아 바디 부분을 형성시키면서 끝 부분을 코어에 말아 넣어 제작한 순환 고리형 와이어로프 슬링을 말한다.
 - (나) "케이블레이드 그로맷(Cable-laid grommet)"이라 함은 하나 또는 두 개의 와이어로프를 사용하여 중심코어를 형성하고 이를 중심으로 6가닥의 로프를 꼬아 몸체부분을 형성시키면서 끝 부분을 코어에 말아 넣어 제작한 순환 고리형 와이어로프 슬링을 말한다.

- (다) "케이블레이드 슬링(Cable-laid sling)"이라 함은 1가닥의 단위로프를 중심으로 외부에 6가닥의 단위로프를 꼬아 만든 로프의 양 끝단에 원형고리(Eye)를 형성 시켜 만든 슬링을 말한다. 이때 사용되는 끝부분 처리방법은 주로 스플라이스 방식을 이용한다.
- (라) "스트랜드(Strand)"란 이음이 없는 강선(소선)을 여러 가닥 꼬아 만든 새끼모양의 가 닥을 말하며, 여러 가닥의 스트랜드를 꼬아서 와이어로프를 만든다.
- (마) "고리(Eye)"란 와이어로프슬링을 인양화물에 체결시키기 위해 양 끝에 형성된 루 프형태의 부분을 말한다.
- (바) "사용한계하중(Working Load Limit, WLL)"이란 일반적인 권상작업 시 1<u>줄</u>의 슬링에 부하할 수 있는 최대하중을 말한다.
- (사) "공칭지름(Nominal diameter)"이란 스트랜드, 로프 등 임의의 단면에서의 외접원의 지름을 말한다.
- (아) "파단하중(Breaking load)"이란 인장시험에서 슬링이 파단 될 때까지의 최대하중을 말한다.
- (자) "꼬임길이(Grommet lay length)"란 중심코어를 중심으로 스트랜드 또는 로프를 꼬았을 때 코어 주변을 한바퀴 돌린 피치(Pitch)를 말한다.
- (차) "보통 꼬임"이란 로프의 꼬임방향과 스트랜드의 꼬임방향이 반대방향인 꼼 방법을 말한다.
- (카) "랭 꼬임"이란 로프의 꼬임방향과 스트랜드의 꼬임방향이 동일방향인 꼼 방법을 말한다.
- (2) 그 밖의 용어의 정의는 이 지침에서 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전보건기준에 관한 규칙에서 정하는 바에 따른다.

4. 위험요소

- (1) 인양 화물의 우발적 풀림에 의한 낙하
- (2) 부속 금구의 파손으로 인한 화물의 풀림 또는 낙하

5. 안전요건

5.1 그로맷

5.1.1 그로맷 제조

그로맷과 케이블레이드 로프는 제조 시 스트랜드의 장력을 동일하게 유지함으로써 완성품에 현격하게 불균일(Waviness)한 부분이 발생되지 않는 방식을 사용하여야 한다.

5.1.2 와이어로프 그로맷

- (1) 와이어로프 그로맷 제조에 사용되는 스트랜드는 KS D 3514(와이어 로프)에 따라 와이어로프 제조에 사용되는 것 중 하나여야 한다.
- (2) 와이어로프 그로맷의 원주길이는 그로맷 꼬임길이의 최소 5배 이상이어야 하며 중심 스트 랜드가 서로 맞닿아 있는 부분의 표면에는 범용의 도료를 사용하여 명확하게 표시하고, 해당 부분에서는 그로맷이 구부러지지 않도록 해야 한다.
- (3) 와이어로프 그로맷의 꼬임길이는 그로맷 제조에 사용된 스트랜드 공칭지름의 최소 6배에서 최대 7.5배 이내의 범위를 유지해야 한다.

5.1.3 케이블레이드 그로맷

(1) 단위로프는 KS D 3514(와이어로프)에서 명기된 것으로서 6가닥 내지 8가닥의 스트랜드로 구성된 것이어야 한다.

- (2) 지름이 60 mm를 초과하는 단위 로프의 코어재질은 강철이어야 한다.
- (3) 원주길이는 그로맷 꼬임길이의 최소 5배 이상이어야 하며 코어의 끝 부분 표면에는 범용의 도료를 사용하여 명확하게 표시하고, 이 부분에서는 그로맷이 구부러지지 않도록 해야한다.
- (4) 케이블레이드 그로맷의 꼬임길이는 그로맷 제조에 사용된 로프 공칭지름의 최소 6배에서 최대 7.5배 이내의 범위를 유지해야 한다.

5.1.4 그로맷의 길이

(1) 그로맷 길이는 그 중심선을 따라 측정된 원주길이를 기준으로 한다 (그림 1. 참조)

<그림 1> 와이어로프 그로맷

(2) 와이어로프 그로맷 길이에 대한 허용오차는 ± 1d 또는 공칭길이의 1 % 중 큰 것을 적용한다. 여기에서 d는 그로맷 지름을 말한다.

(3) 지름 24 mm 이상 60 mm 이하로서 코어의 재질이 섬유 또는 강철이 와이어로프로 제작된 케이블레이드 그로맷에 대한 허용오차는 ± 1d 또는 공칭길이의 1 % 중 큰 것을 적용한다.

<삭제>

- (4) 지름 66 mm 이상 696 mm 이하로서 코어의 재질이 강철인 와이어로프로 제작된 케이블 레이드 그로맷에 대한 허용오차는 ± 0.5d 또는 공칭길이의 0.5 % 중 큰 것을 적용한다.
- (5) 지지점간의 거리측정 또는 보다 정확하게 원주측정을 통해 그로맷 길이를 결정하는 2가지 방법은 다음과 같다.
 - (가) 그로맷의 길이 측정방법: 해당 그로맷을 아래 그림 2(a)에 나와 있는 바와 같이 가지런하게 배열한 다음, 중심선 상의 4개 지점을 p, q, r 및 s로 표시한다. 이 중 A 및 C 부분을 측정한 후, 그림 2(b)에 나와 있는 바와 같이 B 및 D 부분을 측정할 수 있도록 재배열한다. 여기에서 A, B, C 및 D를합한 값이 이 그로맷의 길이가 된다.

<그림 2> 그로맷의 길이 측정방법

(나) 소요길이 산출방법

① 그로맷의 길이(그림 3 참조)는 굴곡부 반지름을 알고 있는 경우에는 다음 산출 공식을 적용할 수 있으며, 굴곡부 반지름 주변의 중심선 길이는 다음과 같다.

π{R₂ + (d / 2)} 및 **π**{R₃ + (2 / d)}, d는 슬링의 공칭지름

② 그로맷의 중심선 전체길이(L₄)는 다음과 같다.

$$\pi(R_2 + R_3 + d) + 2L$$
, 여기에서 $L_2 = L_1 + R_2 + R_3$

③ 여기에서 L_2 는 지지길이를 나타내며, 중심선 원주길이(L_4)는 다음 과 같이 정의될 수 있다.

$$\pi(R_2 + R_3 + d) + 2(L_2 - R_2 - R_3),$$

여기에서 $L_3 = L_2 + d$, $L_1 = L_2 - (R_2 + R_3)$

<그림 3> 그로맷의 길이

(6) 길이측정을 위한 핀의 크기는 다음 <표>에 따른다.

길이측정 시 사용되는 핀의 지름은 다음 <표> 또는 공급업체와 구매자 사이의

상호 합의된 내용에 따라야 한다.

<표> 길이측정을 위한 핀의 지름

로프 지름 (mm)	핀 지름 (mm)
60 ~ 150	300
151 ~ 250	500
251 ~ 375	750
376 ~ 500	1000

5.2 케이블레이드 슬링

5.2.1 케이블레이드 슬링의 제조

(1) 케이블레이드 로프의 제조시 사용되는 단위로프와 케이블레이드 로프의 꼬임방향과 꼬임길이는 다음과 같아야 한다.

(가) 꼬임방향 및 형식

- ① 코어로프는 "S" 또는 "Z" 꼬임의 보통 꼬임 또는 랭 꼬임 이어야 한다.
- ② 코어로프의 지름은 단위로프 지름보다 10 % ~ 15 % 더 커야한다.
- ③ 바깥쪽 단위로프는 보통 S꼬임 또는 랭 S꼬임이어야 하며, 이 경우 케이블 레이드 슬링은 Z꼬임 이어야 한다. 하지만 바깥쪽 단위로프가 보통 Z꼬임 또는 랭 Z꼬임인 경우 케이블레이드 슬링은 S꼬임이어야 한다.
- ④ 코어로프 및 바깥쪽 단위로프는 모두 동일한 방향의 꼬임이어야 한다.

(나) 꼬임길이

- ① 코어 및 바깥쪽 단위로프는 단위로프 공칭지름의 최소 6배 이상 최대 7.5배 이내의 꼬임길이를 유지하고 있어야 한다.
- ② 케이블레이드 로프는 케이블레이드 로프 공칭지름의 최소 6배 이상 최대

7.5배 이내의 꼬임길이를 유지하고 있어야 한다.

- (2) 단위로프는 KS D 3514(와이어 로프)에서 명기된 것으로서 6가닥 내지 8가닥 의 스트랜드로 구성된 것이어야 한다.
- (3) 로프의 지름이 60 mm를 초과하는 경우 코어의 재질이 강철인 와이이로프를 사용해야 한다.
- (4) 단부를 턴 백 루프형(Turn- back loop)으로 하는 경우 제조는 "압착식 단말고리 와이어로프에 관한 기술기준(S2-M- 6-2009)" 또는 제조사의 제조방법에 따르며 단위 와이어로프의 코어재질은 강철인 것만을 사용해야 한다.
- (5) 단부를 스플라이스 방식으로 하는 경우 제조는 "스플라이스 단말고리 와이어로프슬 링에 관한 기술기준(S3-M-7- 2010)" 또는 제조사의 제조방법에 따르며, 마지막 편입 후 케이블레이드 로프 지름의 최소 3배 이상 길이의 여분(tail)을 남겨두고 로프 본체에 동여매야 한다.
- (6) 스플라이스의 마지막 편입부 사이의 가공부 최소길이는 케이블레이드 로프의 공칭지름보다 최소 15배 이상이어야 하며, 슬링을 겹쳐서 제작하는 경우 스플라이스 가공부 사이의 최소길이는 케이블레이드 로프의 공칭지름보다 최소 20배 이상이어야 한다.

5.2.2 케이블레이드 슬링의 길이

(1) 슬링의 길이 L은 끝부분 처리방식이 소프트 아이(Soft Eye), 씸블(Thimble) 삽입형, 훅(Hook) 또는 고리(Link)형에 관계없이 하중을 지지하는 양 끝 지점 사이의 내부길이를 기준으로 한다 (그림 4 참조).

여기에서 소프트 아이형 슬링의 길이 측정 시, 아이의 길이(h)가 지름의 약 15배라고 하면, 아이의 높이(w)는 길이(h)의 약 1/2 수준을 유지하도록 한다.

(2) 지름 24 mm 이상 696 mm 이하인 페룰 보강형 또는 스플라이스 형태의 케이블레이드 슬링의 길이 허용오차는 공칭길이의 ± 1 % 또는 ± 2d 중 큰 것을 적용한다.

(3) 화물 부하상태에서 길이를 측정하는 경우에는(예를 들어, 정확한 길이로 맞춰진 2개이상의 슬링이 필요한 경우) <표(길이측정을 위한 핀의 지름)>에 해당되는 핀 사이에 슬링을 설치한 후 산출된 슬링 파단하중의 3 %를 부가하여 실시한다. 이 경우, 아이 (Eye)의 길이(h)는 지름(d)의 약 15배 수준이 되도록 선정한다.

<그림 4> 케이블레이드 슬링

5.2.3 다족 슬링의 길이

한 줄로 된 케이블레이드 슬링을 다족 슬링의 용도로 사용하고자 하는 경우에는 그 길이 차이가 슬링 지름의 2배 이내여야 한다.

5.3 사용한계하중(WLL) 계산

5.3.1 그로맷

(1) 와이어로프 그로맷의 사용한계하중은 다음과 같이 산출한다.

$$WLL(kN) = \frac{2 \text{ Fmin}_1}{Z_p}$$
 또는 $WLL(Ton) = \frac{2 \text{ Fmin}_1}{9.8 \text{ x } Z_p}$

(2) 케이블레이드 그로맷의 사용한계하중은 다음과 같이 산출한다.

여기에서

Fmin₁ : 와이어로프 그로맷 제작에 사용된 스트랜드로서 섬유 코어로프의 최소 파단하중(단위 : kN)

Fmin₂: KS D 3514(와이어 로프)에 명기되어 있는 바와 같이, 케이블레이드 그로맷 제작에 사용된 단위로프의 최소파단하중(단위: kN)

CL: 로프를 케이블화하는 과정에서의 회전손실 허용계수로서 이 값은 0.9로 설정

Zp: 안전계수

- (3) Zp 값은 5 이상이어야 한다.
- (4) <삭제>

5.3.2 케이블레이드 슬링

(1) 케이블레이드 슬링의 사용한계하중은 다음과 같이 산출한다.

$$WLL(kN) = \frac{\sum F min \ x \ C_L \ x \ k}{Z_D} \quad \text{Et} \quad WLL(Ton) = \frac{\sum F min \ x \ C_L \ x \ k}{9.8 \ x \ Z_D}$$

여기에서

∑Fmin : KS D 3514(와이어 로프)에 따른 바깥쪽 개별 로프의 최소 파단하중 (단위 : kN)의 합

CL: 케이블화 하는 과정에서의 회전손실 허용계수로서 현재 이 값은 0.9로 설정되어 있으며, k는 스플라이스 효율을 의미(로프의 경우 0.8)

Zp: 안전계수

- (2) Zp 값은 5이상이어야 한다.
- (3) <삭제>
- (4) 단부를 턴 백 루프형으로 제작한 케이블레이드 슬링에 대한 마무리 효율 (k)은 0.9로 한다.

6. 그로맷 및 케이블레이드슬링의 안전요건 확인 및 측정

6.1 구 조

상기의 5.1 및 5.2의 요건은 육안검사, 측정 및 로프 공급자의 자료를 검토함으로써 확인 해야 한다.

6.2 길 이

상기의 5.1.4 (1)~(5), 5.2.2 및 5.2.3에서 규정하고 있는 길이는 1 mm 단위로 눈금이 새겨진 강철 테이프(자)로 측정해야 한다. 그로맷 길이는 5.1.4 (5), (6)의 기준에 따라 확인해야 한다.

6.3 사용한계하중의 계산

상기 5.3의 계산결과는 로프 공급자의 자료검토 및 재확인을 통해 검증해야 한다.

7 사용자 정보(표시)

각 슬링 또는 그로맷에는 최소한 다음정보를 식별가능하고 내구성 있는 방식으로 표시해야 한다.

- (1) 제조자 명 또는 그 약호
- (2) 형식 및 모델번호

- (3) 사용한계하중
- (4) 공칭지름
- (5) 공칭길이
- (6) 기 타