Statistical Distributions

Statistical Distributions?

- Distributions are to statistics as data structures are to programming
- Reflect assumptions about the underlying processes
- Allow us to make generalizations about data that we have not yet seen

Lesson Goals

- Name and Describe Distributions
- Explain Difference between Continuous and Discrete Distributions
- Know PMF, PDF, CDF
- Describe Normal Distribution + (Standard Normal)
- Give examples of distributions

Distributions → **Known Shapes**

Discrete vs Continuous

- Discrete distributions have finite sample space (ex: dice, categories of drawing balls out of an urn, species of animals)
 - Bernoulli
 - Poisson
 - Uniform
- Continuous distributions have infinite event space (ex: heights, time, financial data)
- Normal (Standard Normal)

Probability Mass Functions (PMF) (~A Normalized Barchart~)

Probability Density Functions (PDF) (A Normalized Histogram)

Probability Density Functions (PDF) (A Normalized Histogram)

Probability Density Functions (PDF) (A Normalized Histogram)

Probability Density Functions (PDF) (A Normalized Histogram)

Problems with PMF and PDF?

- Interpreting PMF, not to so bad?
- But what about if you wanted to say what is the probability of getting an exact value from a PDF? (a point probability)

CDF!

Normal Distributions

- One of most common distributions found in natural world
- Normal is not a value judgment
- Defined by a mean (mu) and standard deviation (sigma) and general symmetry
- Understanding the properties of the normal distribution will allow us to generalize about data we have not yet seen!
- Reflect on relationship between population, sample, and sampling distribution.

Central Limit Theorem

 When you add a large number of independent random variables, irrespective of the original distribution of these variables, their sum tends towards a normal distribution.

Skew and Kurtosis

Uniform Distribution

Practice

- In the last portion of class, want to do a class activity
 - Collect heights of all people in class in CM
 - Create small analysis script that is going to import the data
 - First create a plot that plots the raw data
 - Check if that data is normal (visual inspection)
 - Convert all scores to z scores

$$z=rac{x-\mu}{\sigma}$$
 $\mu=$ Mean $\sigma=$ Standard Deviation

Checking For Understanding

- Explain discrete vs continuous distributions
- Explain difference between PDF, PMF, CDF
- Explain normal distributions
- Standard Normal Distributions
- Z Scores

