Computer Vision

Dr. Syed Faisal Bukhari
Associate Professor
Department of Data Science
Faculty of Computing and Information Technology
University of the Punjab

Textbook

Multiple View Geometry in Computer Vision, Hartley, R., and Zisserman

Richard Szeliski, Computer Vision: Algorithms and Applications, 2nd edition, 2022

Reference books

Readings for these lecture notes:

- Hartley, R., and Zisserman, A. Multiple View Geometry in Computer Vision, Cambridge University Press, 2004, Chapters 1-3.
- Forsyth, D., and Ponce, J. Computer Vision: A Modern Approach, Prentice-Hall, 2003, Chapter 2.
- Linear Algebra and its application by David C Lay

These notes contain material c Hartley and Zisserman (2004), Forsyth and Ponce (2003), an Linear Algebra and its application by David C Lay

References

These notes are based

☐ Dr. Matthew N. Dailey's course: AT70.20: Machine Vision for Robotics and HCI

☐ Dr. Sohaib Ahmad Khan CS436 / CS5310 Computer Vision Fundamentals at LUMS

2D projective geometry

A model for the projective plane

Fig 2.1 A model of the projective plane. Points and lines of \mathbb{P}^2 are represented by rays and planes, respectively, through the origin in \mathbb{R}^3 . Lines lying in the $x_1 x_2$ -plane represent ideal points, and the $x_1 x_2$ -plane represents \vec{l}_{∞} or l_{∞} .

2D projective geometry A model for the projective plane

As illustrated in Fig 2.1 the rays representing ideal points and the plane representing \vec{l}_{∞} or \vec{l}_{∞} are parallel to the plane plane $x_3 = 1$

Review \mathbb{P}^2

- OA point is represented as a homogeneous 3 vector $(x_1, x_2, x_3)^T$ where $(\frac{x_1}{x_3}, \frac{x_2}{x_3})^T$ gives the corresponding point in the plane $x_3 = 1$
- **A line** in the plane $x_3 = 1$ is represented by a homogeneous vector $(\mathbf{a}, \mathbf{b}, \mathbf{c})^T$ where $\mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y} + \mathbf{c} = \mathbf{0}$
- oThe vector $(\mathbf{a}, \mathbf{b}, \mathbf{c})^{\mathbf{T}}$ can be interpreted as the normal to a plane in \mathbb{R}^3 a x_1 + b x_2 + c x_3 = 0
- The intersection of the plane $ax_1 + bx_2 + cx_3 = 0$ with the plane $x_3 = 1$ is the line ax + by + c = 0

Review \mathbb{P}^2

olf $x^T l = 0$ implies point $x^T = (x_1, x_2, x_3)^T$ lies on the line $l = (a, b, c)^T$

OSince *l* is a line but it is also interpreted as a normal vector to the plane that forms that line.

OR

Points on a line must be orthogonal to the vector that is orthogonal to the plane containing that line. The vector $(\mathbf{a}, \mathbf{b}, \mathbf{c})^{\mathrm{T}}$ representing a line in the Euclidean plane (i.e., $x_3 = 1$), when interpreted as a vector in \mathbb{R}^3 is orthogonal to the \mathbb{R}^3 plane representing the line in \mathbb{P}^2 .

The line representation $(a, b, c)^T$ in \mathbb{R}^3 is a vector orthogonal to the plane formed by the points on line l and the origin.

Proof:

Lines in \mathbb{P}^2 is described by $(a, b, c)^T$. The vector, $(a, b, c)^T$ in \mathbb{R}^3 is interpreted as being a **normal** vector to some plane in \mathbb{R}^3 through the **origin**.

Dr. Faisal Bukhari, DDS, PU

- The vector $(\mathbf{a}, \mathbf{b}, \mathbf{c})^{\mathrm{T}}$ is orthogonal to the plane $\mathbf{a}\mathbf{x}_1 + \mathbf{b}\mathbf{x}_2 + \mathbf{c}\mathbf{x}_3 = \mathbf{0}$. Because $(\mathbf{a}, \mathbf{b}, \mathbf{c})^{\mathrm{T}}$ is describing a normal vector of the plane $\mathbf{a}\mathbf{x}_1 + \mathbf{b}\mathbf{x}_2 + \mathbf{c}\mathbf{x}_3 = \mathbf{0}$ to the origin.
- olt means $(a, b, c)^T$ describes some plane. We would like to establish $(a, b, c)^T$ is also a line describing the points.
- O Suppose we take some arbitrary point $(x, y, 1)^T$. If the point $(x, y, 1)^T$ lies on $(a, b, c)^T$ then their **dot product** must be zero i.e., $(x, y, 1)(a, b, c)^T = 0$

olf we think geometrically in \mathbb{R}^3 we must ask: what is the relationship between these vectors $(\mathbf{x}, \mathbf{y}, \mathbf{1})^T$ and $(\mathbf{a}, \mathbf{b}, \mathbf{c})^T$ in three-dimensional space?

OLet us consider the vector $(x, y, 1)^T$. If this vector is **orthogonal** to the vector $(a, b, c)^T$ it implies that:

$$(x, y, 1)^T$$
. $(a, b, c)^T = 0$,

which leads to the equation:

$$ax + by + 1.c = 0.$$

This is precisely the equation of a plane through the origin in \mathbb{R}^3 :

$$ax_1 + bx_2 + cx_3 = 0$$
.

- o It also means the point $(x, y, 1)^T$ must lies on the plane $ax_1 + bx_2 + cx_3 = 0$.
- We already know $(\mathbf{a}, \mathbf{b}, \mathbf{c})^{\mathrm{T}}$ is orthogonal to the plane $\mathbf{a}x_1 + \mathbf{b}x_2 + \mathbf{c}x_3 = \mathbf{0}$.
- OSince $(a, b, c)^T$ represents the normal vector, it defines a plane that passes through the origin.
- **Note:** If a plane can be described by its **normal vector**, then the vector $(\mathbf{a}, \mathbf{b}, \mathbf{c})^{\mathrm{T}}$ uniquely defines a **plane passing** through the origin, with $(\mathbf{a}, \mathbf{b}, \mathbf{c})^{\mathrm{T}}$ being **orthogonal to every point on that plane**.

- o If we take any point $(x_1, x_2, x_3)^T$ on the plane $ax_1 + bx_2 + cx_3 = 0$ and we normalize it then what we will get?
- \circ We get a point that is **orthogonal** to the vector(\mathbf{a} , \mathbf{b} , \mathbf{c})^{\mathbf{T}}. It means the **point** satisfy the equation. That means the **point** is on the **line** in the **Euclidean plane**.

- Take any two points on the line described by $(a, b, c)^T$. These two points (i.e., P_1 and P_2) that lie on the line $(a, b, c)^T$ described by the plane $x_3=1$.
- olf a point lies on the line $(a, b, c)^T$ then it must lie on the plane through the origin that is described by the $(a, b, c)^T$. $(a, b, c)^T$ is orthogonal to every point on the plane.
- OConversely every point on the plane ($ax_1 + bx_2 + cx_3 = 0$). is describing a homogeneous representation of a point that is on the line in the Euclidean plane (plane $x_3=1$).

If [x y 1]
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
 = 0 is true then it tells us two things

- \circ [x y 1] lies on the line [a b c]^Tin the Euclidean plane.
- o The vector that represents this point in \mathbb{R}^3 is necessarily orthogonal the vector $(\mathbf{a}, \mathbf{b}, \mathbf{c})^T$ in \mathbb{R}^3 .
- oTherefore, it is lying on the plane through the origin and through the line in the Euclidean plane. These are some interesting facts about lines and points in p²

olf the equation

$$[x y 1] \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

holds true, it reveals two key insights:

- The point [x y 1] lies on the line defined by the vector [a b c]^Tin the Euclidean plane.
- 2. The vector representing this point in \mathbb{R}^3 is orthogonal to the vector $(\mathbf{a}, \mathbf{b}, \mathbf{c})^T$ in \mathbb{R}^3 .

This implies that the point lies on the plane through the origin in \mathbb{R}^3 , which contains the entire line in the Euclidean plane.

Now we start seeing these relationship:

Vector describing points

Vectors describing lines

Vectors describing planes

They are closely related to each other.

What is conic section?

O In mathematics, a conic section (or simply conic) is the curve formed by the intersection of a plane with the surface of a cone. There are three fundamental types of conic sections: the hyperbola, the parabola, and the ellipse. The circle is a special case of the ellipse, and due to its unique properties and historical importance, it is sometimes considered a fourth distinct type of conic section.

OR

OA conic section is the intersection of a plane and a cone.

OR

OA conic is a two-dimensional shape formed by slicing a cone in a particular way. In Euclidean geometry, the resulting curves—known as conic sections that include circles, parabolas, hyperbolas, and ellipses.

conic sections can be written in matrix form as:

$$\vec{x}^T C \vec{x} = 0$$

Where C =
$$\begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix}$$

We can represent any conic section by the 3×3 matrix

- OMatrix C is a symmetric matrix, meaning that it contains nine elements in total, but only six of them are unique due to symmetry. As a result, the matrix has six degrees of freedom (DoF).
- OSince C is a homogeneous matrix, we could scale it by any factor, and we still satisfy the equation, i.e., $\mathbf{x}^T \mathbf{C} \mathbf{x} = \mathbf{0}$. Intuitively, it means we lose one dof.

- •For example, if we fix the scale of the conic say, by normalizing the matrix C such that all its elements are divided by a nonzero scalar f, then the conic effectively has five degrees of freedom instead of six.
- Understanding and managing degrees of freedom (DoF) is central to computer vision, as it governs the number of independent parameters we must estimate for various objects of interest.

- olt means, if we want to estimate the parameters of a conic, then we have to constraint five parameters.
- •We have five parameters based linear object, and we like to estimate the parameters of this object.

- oFor a conic, we **need six equations** to fully constraint the **five dof of this conic**.
- o If we have three points on a parabola, then that's all we need to define it. In the case of a circle, three points fully define it. We need 3 points to fit an ellipse and so on.

OAll conic sections can be defined by finding three points on that particular conic. We need five equations to define a conic section up to scale uniquely.

Inhomogeneous representation of conic section:

Any conic section in **inhomogeneous coordinates** can be represented as

 $ax^2 + bxy + cy^2 + dx + ey + f = 0$ -----(1) (any quadratic equation in xy-plane)

Trick: Homogenizing, we write the point

$$(x_1, x_2, x_3)^T$$
 as $(\frac{x_1}{x_3}, \frac{x_2}{x_3})^T$.

We have a homogeneous point $(x_1, x_2, x_3)^T$. This point is mapped to the plane $x_3 = 1$.

Replace x by x_1/x_3 and y by x_2/x_3 in equation (1) $a(x_1/x_3)^2 + b(x_1/x_3)(x_2/x_3) + c(x_2/x_3)^2 + d(x_1/x_3) + e(x_2/x_3) + f = 0$

$$\Rightarrow ax_1^2 + bx_1x_2 + cx_2^2 + dx_1x_3 + ex_2x_3 + fx_3^2 = 0$$

This is the equation of conic section in homogenous coordinates.

Example 1

Let the equation of parabola is

$$y = (x - 2)^2 + 1$$

 $x^2 - y - 4x + 5 = 0$ -----(1)

We know equation of conic section in **homogeneous** coordinates

$$ax_1^2 + bx_1x_2 + cx_2^2 + dx_1x_3 + ex_2x_3 + fx_3^2 = 0$$
 -----(2)

Replace x by x_1/x_3 and y by x_2/x_3 in equation (1)

$$(x_1/x_3)^2 - x_2/x_3 - 4(x_1/x_3) + 5 = 0$$

 $\Rightarrow x_1^2 - x_2x_3 - 4x_1x_3 + 5x_3^2 = 0$ -----(3)

Comparing equations (2) and (3), we get

$$\Rightarrow$$
a = 1, b = 0, c = 0, d = -4, e = -1, f = 5

Given

a = 1, b = 0, c = 0, d = -4, e = -1, f = 5
$$\vec{x}^T C \vec{x} = 0$$

where

$$C = \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix}$$

$$\Rightarrow C = \begin{bmatrix} 1 & 0/2 & -4/2 \\ 0/2 & 0 & -1/2 \\ -4/2 & -1/2 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -4/2 \\ 0 & 0 & -1/2 \\ -4/2 & -1/2 & 5 \end{bmatrix}$$

$$\vec{x}^T C \vec{x} = 0$$

$$\Rightarrow \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}_{1 \times 3} \begin{bmatrix} 1 & 0 & -4/2 \\ 0 & 0 & -1/2 \\ -4/2 & -1/2 & 5 \end{bmatrix}_{3 \times 3} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}_{3 \times 1} = 0$$

$$\begin{bmatrix} x_1 - 2x_3 & -\frac{1}{2}x_3 & -2x_1 - \frac{1}{2}x_2 + 2x_3 \end{bmatrix}_{1 \times 3} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}_{3 \times 1} = 0$$

$$x_1^2 - 2x_1x_3 - \frac{1}{2}x_2x_3 - 2x_1x_3 - \frac{1}{2}x_2x_3 + 5x_3^2 = 0$$

$$x_1^2 - 4x_1x_3 - x_2x_3 + 5x_3^2 = 0.$$

Which is the same equation.

Note: We need 5 equations to define a conic section upto scale.

Show that the point
$$\vec{x} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
 satisfy the $\vec{x}^T C \vec{x} = 0$
 $\vec{x}^T C \vec{x} = 0$

$$\Rightarrow \begin{bmatrix} 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -4/2 \\ 0 & 0 & -1/2 \\ -4/2 & -1/2 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -4/2 \\ 0 & 0 & -1/2 \\ -4/2 & -1/2 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = 0$$

$$-\frac{1}{2}+\frac{1}{2}=0$$

$$0 = 0$$

The point, $\vec{x} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ satisfies the equation.

Note: Any point satisfies the equation $\vec{x}^T C \vec{x} = 0$ lies on the conic

Example. Write the equation of circle about the origin with

radius r in conic matrix form and verify the point $\begin{bmatrix} \frac{5\sqrt{2}}{2} \\ \frac{5\sqrt{2}}{2} \\ \frac{1}{2} \end{bmatrix}$ lies

on the circle $x^2 + y^2 = r^2$. Let r = 5.

$$x^2 + y^2 = r^2$$
 ----(1)

Replace x by $\frac{x_1}{x_3}$ and y by $\frac{x_2}{x_3}$ in (1), we get

$$\Rightarrow \left(\frac{x_1}{x_3}\right)^2 + \left(\frac{x_2}{x_3}\right)^2 = r^2$$

$$\Rightarrow x_1^2 + x_2^2 = r^2 x_3^2$$

$$\Rightarrow x_1^2 + x_2^2 - r^2 x_3^2 = 0$$
 -----(2)

We know equation of conic section in homogeneous coordinates

$$ax_1^2 + bx_1x_2 + cx_2^2 + dx_1x_3 + ex_2x_3 + fx_3^2 = 0$$
-----(3)
Comparing (2) and (3), we get

$$\Rightarrow$$
 a = 1, b = 0, c = 1, d = 0, f = - r^2

$$\vec{x}^T C \vec{x} = 0$$

$$\mathbf{C} = \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} X_1 & X_2 & X_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -r^2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = 0$$

Suppose
$$x^2 + y^2 - 5^2 = 0$$

$$\Rightarrow \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -25 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} x_1 & x_2 & -25x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

$$x_1^2 + x_2^2 - 25x_3^2 = 0$$
Dr. Faisal Bukhari, DDS, PU

$$\vec{x}^{T}C\vec{x} = 0$$

$$\Rightarrow \begin{bmatrix} \frac{5\sqrt{2}}{2} & \frac{5\sqrt{2}}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -25 \end{bmatrix} \begin{bmatrix} \frac{5\sqrt{2}}{2} \\ \frac{5\sqrt{2}}{2} \\ \frac{1}{2} \end{bmatrix} = 0$$

$$\vec{\mathbf{x}}^{\mathrm{T}} \mathbf{C} \, \vec{\mathbf{x}} = \begin{bmatrix} \frac{5\sqrt{2}}{2} & \frac{5\sqrt{2}}{2} \\ \frac{5\sqrt{2}}{2} & -25 \end{bmatrix} \begin{bmatrix} \frac{5\sqrt{2}}{2} \\ \frac{5\sqrt{2}}{2} \\ \frac{2}{1} \end{bmatrix}$$

$$= \frac{50}{4} + \frac{50}{4} - 25$$

$$= 0$$