Assignment 3

Optimal Estimation and Kalman Filter Fall 2020

Due date: October 23, 2020 at 1:00 PM

Problem 1. Consider the system

$$x_{k+1} = \begin{bmatrix} 0 & \frac{1}{2} \\ -\frac{1}{2} & 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} w_k \quad P_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

where w_k is white noise.

- a. Find the steady-state values of the mean of x_k .
- b. Find the covariance matrix of x_k and its steady state values.

Problem 2. Find the steady-state covariance of the state vector for the following systems:

a.
$$\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} x + \begin{bmatrix} 5 \\ 1 \end{bmatrix} w(t), \quad w \sim \mathcal{N}(0, 1) \text{ and white,} \quad P(0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

b.
$$x_{k+1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix} x_k + w_k, \quad w_k \sim \mathcal{N}(0, Q), \quad Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Problem 3. Find the covariance of x_k as a function of k and its steady-state value for the system

$$x_k = -\frac{1}{2}x_{k-1} + w_{k-1}$$

where $\mathbf{E}(w_{k-1}) = 0$ and $\mathbf{E}(w_k w_j) = e^{-|k-j|}$. Assume the initial value of the covariance (P_0) is 1.

Problem 4. The measured output of a simple moving average process is $y_k = z_k + z_{k-1}$, where $\{z_j\}$ is zero mean white noise with a variance of one.

- a. Generate a state-space description for this system with the first element of x_k equal to z_{k-1} and second element equal to z_k .
- b. Suppose that the initial estimation-error covariance is equal to the identity matrix. Show that the *a posteriori* estimation-error covariance is given by

$$P_k^+ = \frac{1}{k+1} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

1

c. Find $\mathbb{E}[||x_k - \hat{x}_k^+||_2^2]$ as a function of k.

Problem 5. Suppose that a Kalman filter is designed for a discrete LTI system with an assumed measurement noise covariance of R, but the actual measurement noise covariance is $(R + \Delta R)$. The output of the Kalman filter will indicate that the *a priori* estimation-error covariance is P_k^- , but the actual *a priori* estimation-error covariance will be Σ_k^- . Find a difference equation for $\Delta_k = (\Sigma_k^- - P_k^-)$. Will Δ_k always be positive definite?

Problem 6. A vector of discrete-time random sequence x_k is given by

$$x_{k} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x_{k-1} + w_{k-1},$$

$$w_{k} \sim \mathcal{N}(0_{2\times 2}, I_{2\times 2}).$$

The observation equation is given by

$$y_k = \begin{bmatrix} 1 & 0 \end{bmatrix} x_k + v_k,$$

$$v_k \sim \mathcal{N}(0, 2 + (-1)^k),$$

with the process and measurement noise both white. Calculate the values of P_k^+ , P_k^- , and K_k for k = 1, 2, ..., 10. In addition, determine the steady-state error covariance matrix (P_{∞}^+) with

$$P_0 = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}.$$

Problem 7. Consider the dynamic process

$$x_k = x_{k-1} + w_{k-1}$$
.

Two measurements of this process are available:

Measurement (i):

$$y_k = 0.5x_k + v_k$$

Measurement (ii):

$$y_k = (\cos(1 + k/120))x_k + v_k$$

Perform error covariance analysis for each of these measurements with Q=4, R=1 and $P_0^+=100$, for $k=1,2,\ldots,200$. Plot the estimation error variance for the state against the time index k for each case. Explain the difference observed between the two plots.

Problem 8. Write code for the propagation of the mean and variance of the state of the following system

$$\dot{x} = -x(t) + w(t)$$
$$x(0) = 1$$
$$Q(\tau) = e^{-2}\delta(\tau)$$

Plot the mean and variance of x for 5 seconds assuming P(0) = 1. Repeat for $P_0 = 0$. Based on the plots, what does the steady-state value of the variance appear to be? What is the analytically determined steady-state value of the variance?