FCC TEST REPORT

FCC ID : VPOFLYSKYGT3

Applicant: DONG GUAN CITY FLYSKY REMOTE MODEL CO., LTD

Address of Applicant: Unit 2504, 25/F, Nanyang Plaza, No. 57, Hung To Road

Kwun Tong, Kowloon Hongkong

Equipment Under Test (EUT):

Product description : 3 Channel Gun Radio

Modulation :GFSK Model No. : FS-GT3

Standards : FCC 15 Paragraph 15.247

Date of Test : July 29,2009

Test Engineer : zero zhou

Reviewed By: Thelo 2hous

PERPARED BY:

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105, China

Tel:+86-755-27553488

Fax:+86-755-27553868

2 Contents

			Page
1	C	OVER PAGE	1
2	C	CONTENTS	2
3	т	EST SUMMARY	4
J			
4	G	ENERAL INFORMATION	5
	4.1	CLIENT INFORMATION	
	4.2	GENERAL DESCRIPTION OF E.U.T.	
	4.3	DETAILS OF E.U.T.	
	4.4	DESCRIPTION OF SUPPORT UNITS	
	4.5	STANDARDS APPLICABLE FOR TESTING	
	4.6	TEST FACILITY	
	4.7	TEST LOCATION	
5	\mathbf{E}	QUIPMENT USED DURING TEST	7
6	C	CONDUCTED EMISSION TEST	9
7	R	ADIATION EMISSION TEST	10
	7.1	EUT OPERATING CONDITION	10
	7.2	MEASUREMENT UNCERTAINTY	10
	7.3	TEST PROCEDURE	11
	7.4	RADIATED TEST SETUP	11
	7.5	SPECTRUM ANALYZER SETUP	
	7.6	CORRECTED AMPLITUDE & MARGIN CALCULATION	
	7.7	RADIATED EMISSIONS LIMIT ON PARAGRAPH 15.209	
	7.8	RADIATED EMISSIONS TEST RESULT	
	7.9	RADIATED EMISSION DATA	14
8	M	IAXIMUM PEAK OUTPUT POWER	19
9	Н	OPPING CHANNEL NUMBER	20
1	0 F	REQUENCY SEPARATED	21
1	1 D	WELL TIME	24
1	2 20	0-DB BANDWIDTH	28
1	3 R	ADIATED SPURIOUS EMISSIONS INTO ADJACENT RESTRICTED BAND	30
1		F EXPOSURE TEST	
1		NTENNA REQUIREMENT	
-	- 11	~ 1 ~ ~ 1 ~ 1 ~ 1 ~ ~ ~ X	

16	PHOTOGRAPHS OF TESTING	34
17	PHOTOGRAPHS - CONSTRUCTIONAL DETAILS	35
17	7.1 EUT -Front View	
17	7.2 EUT - BACK VIEW	35
17	7.3 EUT - OPEN VIEW	
17		
17	The Berress Street Fig. ()	
17	7.6 EUT-PCB2 - Front View	
17	7.7 EUT-PCB2 - BACK VIEW	38
17		
17	7.9 EUT-PCB3 - BACK VIEW	39
18	FCC ID LAREL	40

FCC ID: VPOFLYSKYGT3

3 Test Summary

Test Items	Test Requirement	Test Method	Limit / Severity	Result
Maximum peak output power	FCC Part 15:2007	ANSI C63.4: 2003	30dBm	PASS
Restricted Band	FCC Part 15:2007	ANSI C63.4: 2003	Note	PASS
Dwell time	FCC Part 15:2007	ANSI C63.4: 2003	Maximum:0.4 s	PASS
Channel separation	FCC Part 15:2007	ANSI C63.4: 2003	Channel separation at least 1MHz	PASS
Hopping channel No.	FCC Part 15:2007	ANSI C63.4: 2003	At least 15 channels	PASS
20-dB Bandwidth	FCC Part 15:2007	ANSI C63.4: 2003	Note	PASS
RF Exposure Test	FCC Part 15:2007	ANSI C63.4: 2003	Note	PASS
Mains Terminal Disturbance Voltage, 150kHz to 30MHz	FCC Part 15:2007	ANSI C63.4: 2003	N/A	PASS
Radiation Emission, 30MHz to 25GHz	FCC Part 15:2007	ANSI C63.4: 2003	N/A	PASS

Note: Denote that for more details of the EUT, please refer to the relating test items as below.

Remark : the methods of measurement in all the test items were according to the FCC Public Notice DA 00-705.

4 General Information

4.1Client Information

Applicant: DONG GUAN CITY FLYSKY REMOTE MODEL CO., LTD

FCC ID: VPOFLYSKYGT3

Address of Applicant: No 41Road west, BanHu village Huangjiang Town, Dongguan

city, Guangdong province, China

Manufacturer: DONG GUAN CITY FLYSKY REMOTE MODEL CO., LTD

Address of Manufacturer: No 41Road west, BanHu village Huangjiang Town, Dongguan

city, Guangdong province, China

4.2General Description of E.U.T.

Product description: 3 Channel Gun Radio

Model No.: FS-GT3

4.3Details of E.U.T.

Power Supply: Batteries 1.5VDC*8(AA size)

4.4Description of Support Units

The EUT has been tested as an independent unit.

4.5Standards Applicable for Testing

The customer requested FCC tests for a 3 Channel Gun Radio. The standards used were FCC 15 Paragraph 15.247, Paragraph 15.205, Paragraph 15.207, Paragraph 15.209, Paragraph 15.31, Paragraph 15.33, Paragraph 15.35.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:880581,June 24, 2008.

FCC ID: VPOFLYSKYGT3

• IC – Registration No.: 7760A

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration No.:7760A,July 24, 2008.

4.7 Test Location

All Emission tests were performed at:-

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105, Guangdong, China.

Remark : All the test results of the peripherals were conformed to the FCC Verification requirements.

5 Equipment Used during Test

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
EMC Analyzer	Agilent/ E7405A	MY45114 943	W2008001	9k-26.5GHz	Aug-08	Aug-09	Wws200 81596	±1dB
Trilog Broadband Antenne 30-3000 MHz	SCHWARZ BECK MESS- ELEKTROM / VULB9163	336	W2008002	30-3000 MHz	Aug-08	Aug-09		±1dB
Broad- band Horn Antenna 1- 18 GHz	SCHWARZ BECK MESS- ELEKTROM / VULB9163	667	W2008003	1-18GHz	Aug-08	Aug-09		f<10 GHz: ±1dB 10GHz <f< 18 GHz: ±1.5dB</f<
Broadband Preamplifi er 0.5-18 GHz	SCHWARZ BECK MESS- ELEKTROM / BBV 9718	9718-148	W2008004	0.5-18GHz	Aug-08	Aug-09		±1.2dB
10m Coaxial Cable with N-male Connector s usable up to 18GHz,	SCHWARZ BECK MESS- ELEKTROM / AK 9515 H	-	-	-	Aug-08	Aug-09		-
10m 50 Ohm Coaxial Cable with N- plug,indivi dual length,usa ble up to 3(5)GHz, Connector	SCHWARZ BECK MESS- ELEKTROM / AK 9513				Aug-08	Aug-09		
Positionin g Controller	C&C LAB/ CC-C-IF				N/A	N/A		
Color Monitor	SUNSPO/ SP-14C				N/A	N/A		
Test Receiver	ROHDE&SC HWARZ/ ESPI	101155	W2005001	9k-3GHz	Aug-08	Aug-09	Wws200 80942	±1dB
EMI Receiver	Beijingkehua n	KH3931		9k-1GHz	Aug-08	Aug-09		
Two-Line V-	ROHDE&SC HWARZ/	100115	W2005002	50Ω/50μΗ	Aug-08	Aug-09	Wws200 80941	±10%

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
Network	ENV216							
V-LISN	SCHWARZ BECK	NSLK 8128	8128-259	9k-30MHz				
	MESS -				Aug-08	Aug-09		
	ELEKTRON							
	IK							
Absorbing Clamp	ROHDE&SC HWARZ/ MDS-21	100205	W2005003	impandance50 Ω loss : 17 dB	Aug-08	Aug-09	Wws200 80943	±1dB
Ohm Coaxial Cable with N- plug,indivi dual length,usa ble up to 3(5)GHz, Connector s	SCHWARZ BECK MESS- ELEKTROM / AK 9514				Aug-08	Aug-09		

6 Conducted Emission Test

Test Requirement: FCC Part15 Paragraph 15.207

Test Method: Based on FCC Part15 Paragraph 15.207

Test Date: N/A

Frequency Range: 150kHz to 30MHz

Class B

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

Quasi-Peak & Average if maximised peak within 6dB of

FCC ID: VPOFLYSKYGT3

Average Limit

Remark:Due to the EUT operating power from batteries,this test was not performed.

FCC ID: VPOFLYSKYGT3

7 Radiation Emission Test

Test Requirement: FCC Part15 Paragraph 15.247
Test Method: Based on ANSI 63.4:2003

Frequency Range: 30MHz to 25GHz

Measurement Distance: 3m

Detector: Peak for pre-scan (120kHz resolution bandwidth)

Quasi-Peak if maximised peak within 6dB of limit

7.1 EUT Operating Condition

Operating condition is according to ANSI C63.4:2003.

- A. Setup the EUT and simulators as shown on follow.
- B. Enable RF signal and confirm EUT active.
- C. Modulate output capacity of EUT up to specification.

7.2Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at WALTEK SERVICES EMC Lab is ± 5.03 dB.

7.3Test Procedure

- 1. New battery were installed in the equipment under test for radiated emissions test.
- 2. This is a handhold device, The radiation emission should be tested under 3-axes position(lying, side and stand), After pre-test, It was found that the worse radiation emission was get at the lying position.

FCC ID: VPOFLYSKYGT3

- 3. Maximizing procedure was performed on the six (6) highest emissions to ensure EUT is compliant with all installation combinations.
- 4. All data was recorded in the peak and average detection mode.
- 5. The EUT was under normal mode during the final qualification test and the configuration was used to represent the worst case results.
- 6. For below 30MHz, a loop antenna with its vertical plane is placed 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1m above the ground.
- 7. The device was rotated through three orthogonal axes to determine which attitude and configuration produce the highest essission during measurement.

7.4Radiated Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part15 Paragraph 15.209 limits and Paragraph 15.247 limits.

7.5Spectrum Analyzer Setup

According to FCC Part15 Paragraph 15.247 Rules, the system was tested to 25000 MHz. Below 1GHz

Start Frequency	30 MHz
Stop Frequency	1000 MHz
Sweep Speed Auto	
IF Bandwidth	120 KHz
Video Bandwidth	100KHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	100KHz

Above 1GHz

Start Frequency	1000 MHz
Stop Frequency	25000MHz
Sweep Speed Auto	
IF Bandwidth	120 KHz

Video Bandwidth	1MHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

7.6Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Class B Limit

7.7 Radiated Emissions Limit on Paragraph 15.209

Frequency(MHZ)	Distance(m)	Field strength(dBuV/m)
30-88	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

Note:

- (1) RF Voltage(dBuV)=20 log RF Voltage(uV)
- (2) In the Above Table, the tighter limit applies at the band edges.
- (3) Distance refers to the distance in meters between the measuring instrument antenna.
- (4)The emission limit in this paragraph is based on measurement instrumentation employing an average detector. Measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- (5)Above 1GHz, mark a Peak and average measurements for all emissions, Limit for peak is 74dBuv/m, According to Part15.35(b) and average is 54Buv/m.

7.8Radiated Emissions Test Result

Formula of conversion factors:the field strength at 3m was egtablished by adding The meter reading of the spectrum analyzer (which is set to read in units of dBuV/m) To the antenna correction factor supplied by the antenna manufacturer. The antenna Correction factors are stared in terms of dB. The gain of the pressletor was accounted For in the spectrum analyser meter reading.

FCC ID: VPOFLYSKYGT3

Example:

Freq(MHz) Meter Reading +ACF=FS

33 20dBuV+10.36dB=30.36dBuV/m @3m

7.9Radiated Emission Data

A. Test Item: Radiated Emission Data

Test Voltage: Adapter input 5.0V

Test Mode: TX On
Temperature: 25 °C
Humidity: 52%RH
Test Result: PASS

Remarks: 30-1000MHz radiation test no significant emissions above the equipment noise floor were detected. And the below is the Fundamental and Harmonic.

Frequency (MHz)	Dete ctor	Antenna Polarizat ion	Emission Level (dBuV/m)	FCC 15 Subpart C Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Turntab le Angle (°)
			Low freq	uency			
2400.00	AV	Vertical	76.52		(Fund.)	1.1	120
4800.00	AV	Vertical	41.02	54.00	13.98	1.2	0
7200.00	AV	Vertical	35.23	54.00	19.73	1.8	60
9600.00	AV	Vertical	32.52	54.00	21.48	1.5	110
12000.00	AV	Vertical	31.25	54.00	22.75	1.2	120
14400.00	AV	Vertical	31.01	54.00	22.99	1.2	90
16800.00	AV	Vertical	30.02	54.00	23.98	1.8	0
19200.00	AV	Vertical	30.67	54.00	23.33	1.2	120
21600.00	AV	Vertical	29.63	54.00	24.34	1.5	100
24000.00	AV	Vertical	29.01	54.00	24.99	1.2	130
2400.00	AV	Horizontal	72.23		(Fund.)	1.4	0

4800.00	AV	Horizontal	41.12	54.00	12.88	1.6	0
7200.00	AV	Horizontal	36.21	54.00	17.79	1.8	60
9600.00	AV	Horizontal	34.25	54.00	19.75	1.0	40
12000.00	AV	Horizontal	33.21	54.00	20.79	1.8	45
14400.00	AV	Horizonta	31.25	54.00	22.75	1.0	60
16800.00	AV	Horizontal	30.74	54.00	23.26	1.8	20
19200.00	AV	Horizontal	32.01	54.00	21.99	1.1	90
21600.00	AV	Horizontal	31.53	54.00	22.47	1.5	60
24000.00	AV	Horizontal	30.01	54.00	23.99	1.0	20
2400.00	PK	Vertical	92.09		(Fund.)	1.2	0
4800.00	PK	Vertical	45.21	74.00	29.64	1.1	10
7200.00	PK	Vertical	40.01	74.00	33.99	1.4	120
9600.00	PK	Vertical	37.42	74.00	36.58	1.7	120
12000.00	PK	Vertical	36.21	74.00	37.79	1.0	180
14400.00	PK	Vertical	32.01	74.00	41.99	1.5	0
16800.00	PK	Vertical	33.21	74.00	40.79	1.0	120
19200.00	PK	Vertical	30.10	74.00	43.90	1.8	0
21600.00	PK	Vertical	29.01	74.00	44.99	1.5	0
24000.00	PK	Vertical	29.01	74.00	44.99	1.2	50
2400.00	PK	Horizontal	107.32		(Fund.)	1.3	0
4800.00	PK	Horizontal	41.24	74.00	32.76	1.2	40
7200.00	PK	Horizontal	38.25	74.00	35.75	1.5	100
9600.00	PK	Horizontal	36.98	74.00	37.02	1.0	90
12000.00	PK	Horizontal	35.69	74.00	38.31	1.0	60
14400.00	PK	Horizontal	35.62	74.00	38.38	1.5	60
16800.00	PK	Horizontal	33.35	74.00	40.65	1.8	110
19200.00	PK	Horizontal	33.01	74.00	40.99	1.8	180
21600.00	PK	Horizontal	30.21	74.00	43.79	1.8	0
24000.00	PK	Horizontal	30.01	74.00	43.99	1.0	20
			Middle fre	quency			
2441.00	AV	Vertical	72.21		(Fund.)	1.5	0
4882.00	AV	Vertical	39.02	54.00	14.98	1.2	90
7323.00	AV	Vertical	35.21	54.00	18.71	1.0	45
9764.00	AV	Vertical	33.33	54.00	20.67	1.0	100

12205.00	AV	Vertical	32.02	54.00	21.98	1.8	180
14646.00	AV	Vertical	32.01	54.00	21.99	1.0	0
17087.00	AV	Vertical	30.26	54.00	23.74	1.6	100
19528.00	AV	Vertical	30.01	54.00	23.99	1.2	0
21969.00	AV	Vertical	29.02	54.00	24.98	1.5	90
24410.00	AV	Vertical	28.23	54.00	25.77	1.5	20
2441.00	AV	Horizontal	72.96		(Fund.)	1.1	0
4882.00	AV	Horizontal	35.69	54.00	18.31	1.3	80
7323.00	AV	Horizontal	34.25	54.00	19.75	1.8	90
9764.00	AV	Horizontal	33.52	54.00	20.48	1.0	100
12205.00	AV	Horizontal	31.21	54.00	22.79	1.8	120
14646.00	AV	Horizontal	30.25	54.00	23.75	1.6	90
17087.00	AV	Horizontal	29.25	54.00	24.75	1.5	45
19528.00	AV	Horizontal	28.36	54.00	25.64	1.8	180
21969.00	AV	Horizontal	28.02	54.00	25.98	1.6	120
24410.00	AV	Horizontal	28.02	54.00	25.98	1.2	150
2441.00	PK	Vertical	89.53		(Fund.)	1.0	0
4882.00	PK	Vertical	44.21	74.00	29.79	1.3	10
7323.00	PK	Vertical	38.25	74.00	35.75	1.2	180
9764.00	PK	Vertical	37.94	74.00	36.06	1.6	100
12205.00	PK	Vertical	37.87	74.00	36.13	1.5	120
14646.00	PK	Vertical	36.10	74.00	38.90	1.8	90
17087.00	PK	Vertical	32.03	74.00	41.97	1.0	180
19528.00	PK	Vertical	30.21	74.00	43.79	1.0	150
21969.00	PK	Vertical	28.30	74.00	45.70	1.6	45
24410.00	PK	Vertical	28.30	74.00	45.70	1.2	45
2441.00	PK	Horizontal	106.45		(Fund.)	1.0	120
4882.00	PK	Horizontal	43.56	74.00	30.44	1.1	25
7323.00	PK	Horizontal	41.51	74.00	32.49	1.5	60
9764.00	PK	Horizontal	40.14	74.00	33.86	1.5	90
12205.00	PK	Horizontal	39.36	74.00	34.64	1.6	100
14646.00	PK	Horizontal	37.44	74.00	36.56	1.0	120
17087.00	PK	Horizontal	34.21	74.00	39.79	1.4	10
19528.00	PK	Horizontal	38.86	74.00	35.14	1.5	120

							1	
21969.00	PK	Horizontal	34.21	74.00	39.79	1.5	100	
24410.00	PK	Horizontal	33.33	74.00	40.67	1.8	60	
High frequency								
2480.00	AV	Vertical	73.42		(Fund.)	1.0	0	
4960.00	AV	Vertical	36.25	54.00	17.75	1.2	100	
7440.00	AV	Vertical	32.25	54.00	21.75	1.5	100	
9920.00	AV	Vertical	30.26	54.00	23.74	1.6	90	
12400.00	AV	Vertical	30.55	54.00	23.45	1.8	45	
14880.00	AV	Vertical	30.34	54.00	23.66	1.5	100	
17360.00	AV	Vertical	30.62	54.00	23.38	1.6	120	
19840.00	AV	Vertical	30.13	54.00	23.87	1.8	90	
22320.00	AV	Vertical	30.27	54.00	23.73	1.5	90	
24800.00	AV	Vertical	28.25	54.00	25.75	1.5	90	
2480.00	AV	Horizontal	72.51		(Fund.)	1.0	0	
4960.00	AV	Horizontal	34.56	54.00	19.44	1.2	20	
7440.00	AV	Horizontal	30.35	54.00	23.65	1.5	90	
9920.00	AV	Horizontal	31.47	54.00	22.53	1.0	60	
12400.00	AV	Horizontal	31.89	54.00	22.11	1.6	90	
14880.00	AV	Horizontal	32.42	54.00	21.58	1.0	100	
17360.00	AV	Horizontal	31.17	54.00	22.83	1.8	120	
19840.00	AV	Horizontal	32.55	54.00	21.45	1.5	120	
22320.00	AV	Horizontal	32.86	54.00	21.14	1.0	100	
24800.00	AV	Horizontal	30.25	54.00	22.75	1.6	60	
2480.00	PK	Vertical	91.53		(Fund.)	1.0	0	
4960.00	PK	Vertical	44.21	74.00	29.79	1.2	0	
7440.00	PK	Vertical	35.62	74.00	38.38	1.5	10	
9920.00	PK	Vertical	35.35	74.00	38.65	1.8	20	
12400.00	PK	Vertical	35.56	74.00	38.44	1.0	58	
14880.00	PK	Vertical	34.21	74.00	39.79	1.5	90	
17360.00	PK	Vertical	33.54	74.00	40.46	1.8	45	
19840.00	PK	Vertical	36.26	74.00	37.74	1.5	100	
22320.00	PK	Vertical	36.73	74.00	37.27	1.5	0	
24800.00	PK	Vertical	30.21	74.00	43.99	15	50	
2480.00	PK	Horizontal	107.62		(Fund.)	1.0	90	

4960.00	PK	Horizontal	42.58	74.00	31.42	1.1	0
7440.00	PK	Horizontal	38.64	74.00	35.36	1.5	90
9920.00	PK	Horizontal	35.37	74.00	38.63	1.6	50
12400.00	PK	Horizontal	35.52	74.00	38.48	1.6	45
14880.00	PK	Horizontal	35.26	74.00	38.74	1.5	60
17360.00	PK	Horizontal	36.41	74.00	37.59	1.8	10
19840.00	PK	Horizontal	32.41	74.00	41.59	1.8	150
22320.00	PK	Horizontal	31.11	74.00	42.89	1.0	0
24800.00	PK	Horizontal	28.21	74.00	45.79	1.0	0

8 Maximum Peak Output Power

Test Requirement: FCC Part15 Paragraph 15.247

Test Method: Based on ANSI 63.4:2003

Test mode: Compliance test in the worse case: Tx Lower/Tx Middle/Tx

Upper

Requirements: Regulation 15.247(b) The limit of Maximum Peak Output

Power Measurement is 1W(30dBm)

FCC ID: VPOFLYSKYGT3

Test procedure:

The following test procedure as below:

The transmitter output (antenna port) was connected to the spectrum analyzer.EUT and its simulators are placed on a table, let EUT working in test mode, then test it.

The bandwidth of the fundamental frequency was measured with the spectrum analyser using 1MHz RBW and 1MHz VBW.

Test Result: The unit does meet the FCC requirements.

Test Channel	Fundamental Frequency(MHz)	Output Power (mW)	Limit (W)	Power output level
Lower	2400	0.93	1	conducted
Middle	2441	0.88	1	conducted
Upper	2480	0.87	1	conducted

FCC ID: VPOFLYSKYGT3

9 Hopping Channel Number

Test Requirement: FCC Part15 C

Test Method: Based on FCC Part15 Paragraph 15.247
Test mode: The EUT work in test mode(Tx) and test it

Requirements: Regulation 15.247(b) For frequency hopping systems operating

In the 2400-2483.5MHz band employing at least 15 hopping

channels.

Test result: The total number of channels would be 41 channels.

The unit does meet the FCC requirements.

Please refer the graph as below:

Date: 22.JUL.2009 13:08:53

10 Frequency Separated

The requirements in this clause are only applicable to equipment using frequency hopping spread spectrum (FHSS) modulation.

FCC ID: VPOFLYSKYGT3

Channel Separated

Definition: A hopping channel is any of the centre frequencies defined within the hopping sequence of a FHSS system.

Limit: Non-adaptive frequency hopping system shall make use of non-overlapping channels separated by the channel bandwidth as measured at 20dB below peak power.

The hopping channels defined within a hopping sequence shall be at least 1MHz apart(channel separation)

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Barometric Pressure: 1012 mbar

EUT Operation Condition:

The EUT was programmed to be in continuously transmitting mode.

Test Result: PASS

Please refer to the below photos for more details

Test Channel	Channel Separation	PASS/FAIL	
Lower Channels	2MHz	Pass	
Middle Channels	2MHz	Pass	
Upper Channels	2MHz	Pass	

Lower Channel

Date: 22.JUL.2009 13:47:53

Middle Channel

Date: 22.JUL.2009 13:33:28

Upper Channel

Date: 22.JUL.2009 13:49:53

11 Dwell time

Definition:

The dwell time is the time spent at a particular frequency during any single hop.

FCC ID: VPOFLYSKYGT3

Limit: the maximum dwell time shall be less than 0.4s.

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Barometric Pressure: 1012 mbar

EUT Operation Condition:

The EUT was programmed to be in continuously transmitting mode.

Test Procedure

The EUT output antenna port was connected to the spectrum analyzer. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz, and the frequency span to zero span, measure the maximum time duration of one single pulse. So, the Dwell Time can be calculated as follows:

T=Ton-time*Ntimes/1S*0.4*41≤0.4S.

Ton-time: one pulse of the hopping time.

Ntimes: the number of hopping in one second

Test Result: PASS

Please refer to the below photos for more details.

Lower Channel

Dwell time of each occupation in this channel as follows: 0.00059*20/1S*0.4*41=0.194<0.4S

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Date: 22.JUL.2009 15:36:08

Middle Channel

Dwell time of each occupation in this channel as follows: 0.00062*20/1S*0.4*41=0.203<0.4S

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Date: 22.JUL.2009 15:38:54

Upper Channel

Dwell time of each occupation in this channel as follows: 0.00062*20/1S*0.4*41=0.203<0.4S

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Date: 22.JUL.2009 15:25:55

12 20-dB Bandwidth

Test Requirement: FCC Part15 C

Test Method: Based on FCC Part15 Paragraph 15.247
Test mode: The EUT work in test mode(Tx) and test it

Test Procedure

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. The bandwidth of the fundamental frequency was measure by spectrum analyser with 100KHz RBW and 100KHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power 20dB.

Test Result

Please refer the graph as below:

Lower Channel

Middle Channel

Upper Channel

13 Radiated spurious emissions into adjacent restricted band

Test Requirement: FCC Part15 Paragraph 15.205

Test Method: Based on FCC Part 15 Paragraph 15.247
Requirements: The EUT work in test mode(Tx) and test it

Requiments:

emissions that fall in the restricted bands(15.205). Above 1000MHz, compliance with the emissions limits in section 15.209 shall be demonstrated based on the average value of the measured emissions, The provisions in section 15.35 apply to these measurements.

Test procedure:

An in band field strength measurement of the fundamental emission using the RBW and detector function required by C63.4-2003 and FCC Rules. The procedure was repeated with an average detector and a plot made. The calculated field strength in the adjacent restricted band is presented below.

Lower bandedge/ restricted band (AV value)

Upper bandedge/ restricted band (AV value)

14 RF Exposure Test

Test Requirement: FCC Part 2 Subpart J

Test Method: Based on FCC Part 15 Paragraph 15.247
Requirements: The EUT work in test mode(Tx) and test it

Requiments:

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

FCC ID: VPOFLYSKYGT3

The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm2)	Limit of Power Density (S) (mW/cm2)	Test Result
-2.31	0.587	-0.32	0.93	0.00336	1	Complies
-2.31	0.587	-0.56	0.88	0.00343	1	Complies
-2.31	0.587	-0.60	0.87	0.00356	1	Complies

15 Antenna Requirement.

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna to the intentional radiator shall be considered sufficient to comply with the provisions of this section. This product has a permanent antenna, fulfill the requirement of this section.

16 Photographs of Testing

Radiation Emission Test View For Below 1GHz

Radiation Emission Test View For Above 1GHz

17 Photographs - Constructional Details

17.1 EUT -Front View

17.2 EUT - Back View

17.3 EUT - Open View

17.4 EUT-PCB1 - Front View

17.5 EUT-PCB1 - Back View

17.6 EUT-PCB2 - Front View

17.7 EUT-PCB2 - Back View

17.8 EUT-PCB3 - Front View

17.9 EUT-PCB3 - Back View

18 FCC ID Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1)this device may not cause harmful interference,and (2) this device must accept any interference received, including interference that may cause undesired operation.

The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Proposed Label Location on EUT
EUT Bottom View/proposed FCC Mark Location

