Discrete Structures for Computer Science

William Garrison

bill@cs.pitt.edu 6311 Sennott Square

Lecture #27: Relations and Representations

Binary relations establish a relationship between elements of two sets

Definition: Let A and B be two sets. A binary relation from A to B is a subset of $A \times B$.

In other words, a binary relation R is a set of ordered pairs (a_i, b_i) where $a_i \in A$ and $b_i \in B$.

Notation: We say that

- a R b if $(a,b) \in R$
- a **R** b if (a,b) ∉ R

Example: Course Enrollments

Let's say that Alice and Bob are taking CS 441. Alice is also taking Math 336. Furthermore, Charlie is taking Art 212 and Business 444. Define a relation R that represents the relationship between people and classes.

Solution:

- Let the set P denote people, so P = {Alice, Bob, Charlie}
- Let the set C denote classes, so C = {CS 441, Math 336, Art 212, Business 444}
- By definition R ⊆ P × C
- From the above statement, we know that
 - \rightarrow (Alice, CS 441) \in R
 - \rightarrow (Bob, CS 441) \in R
 - \gg (Alice, Math 336) \in R
 - \rightarrow (Charlie, Art 212) \in R
 - > (Charlie, Business 444) ∈ R
- So, R = {(Alice, CS 441), (Bob, CS 441), (Alice, Math 336), (Charlie, Art 212), (Charlie, Business 444)}

A relation can also be represented as a graph

Let's say that Alice and Bob are taking CS 441. Alice is also taking Math 336. Furthermore, Charlie is taking Art 212 and Business 444. Define a relation R that represents the relationship between people and classes.

A relation can also be represented as a table

Let's say that Alice and Bob are taking CS 441. Alice is also taking Math 336. Furthermore, Charlie is taking Art 212 and Business 444. Define a relation R that represents the relationship between people and classes.

Wait, doesn't this mean that relations are the same as functions?

Not quite... Recall the following definition from Lecture #9.

Definition: Let A and B be nonempty sets. A function, f, is an assignment of exactly one element of set B to each element of set A.

This would mean that, e.g., a person only be enrolled in one course!

Reconciling this with our definition of a relation, we see that

- 1. Every function is also a relation
- 2. Not every relation is a function

Let's see some quick examples...

PART OF THE PART O

Short and sweet...

- 1. Consider $f: S \rightarrow G$
 - Clearly a function
 - Can also be represented as the relationR = {(Anna, C), (Brian, A), (Christine A)}

- 1. Consider the set $R = \{(A, 1), (A, 2)\}$
 - Clearly a relation
 - Cannot be represented as a function!

We can also define binary relations on a single set

Definition: A relation on the set A is a relation from A to A. That is, a relation on the set A is a subset of $A \times A$.

Example: Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) \mid a \text{ divides b}\}$?

Solution:

- 1 divides everything
- 2 divides itself and 4
- 3 divides itself
- 4 divides itself
- So, $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

STORY OF THE STORY

Representing the last example as a graph...

Example: Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation R = $\{(a, b) \mid a \text{ divides b}\}$?

Tell me what you know...

Question: Which of the following relations contain each of the pairs (1,1), (1,2), (2,1), (1,-1), and (2,2)?

- $R_1 = \{(a,b) \mid a \le b\}$
- $R_2 = \{(a,b) \mid a > b\}$
- $R_3 = \{(a,b) \mid a = b \text{ or } a = -b\}$
- $R_4 = \{(a,b) \mid a = b\}$
- $R_5 = \{(a,b) \mid a = b + 1\}$
- $R_6 = \{(a,b) \mid a+b \le 3\}$

These are all relations on an infinite set!

Answer:

	(1,1)	(1,2)	(2,1)	(1,-1)	(2,2)
R ₁					
R ₂					
R ₃					
R ₄					
R ₅					
R ₆					

THE TOTAL PROPERTY OF THE PARTY OF THE PARTY

Properties of Relations

Definition: A relation R on a set A is reflexive if $(a,a) \in R$ for every $a \in A$.

Note: Our "divides" relation on the set $A = \{1,2,3,4\}$ is reflexive.

	1	2	3	4
1	Χ	X	Χ	Х
2		Χ		Χ
3			Χ	
4				X

SET TO SE

Properties of Relations

Definition: A relation R on a set A is symmetric if $(b,a) \in R$ whenever $(a,b) \in R$ for every $a,b \in A$. If R is a relation in which $(a,b) \in R$ and $(b,a) \in R$ implies that a=b, we say that R is antisymmetric.

Mathematically:

- Symmetric: $\forall a \forall b((a,b) \in R \rightarrow (b,a) \in R)$
- Antisymmetric: $\forall a \forall b (((a,b) \in R \land (b,a) \in R) \rightarrow (a = b))$

Examples:

- Symmetric: $R = \{(1,1), (1,2), (2,1), (2,3), (3,2), (1,4), (4,1), (4,4)\}$
- Antisymmetric: $R = \{(1,1), (1,2), (1,3), (1,4), (2,4), (3,3), (4,4)\}$

Symmetric and Antisymmetric Relations

$$R = \{(1,1), (1,2), (2,1), (2,3), (3,2), (1,4), (4,1), (4,4)\}$$

	1	2	3	4
1	X	X	X	X
2	Χ		Χ	
3	Χ	Χ		
4	Χ			X

Symmetric relation

- Diagonal axis of symmetry
- Not all elements on the axis of symmetry need to be included in the relation

$R = \{(1,1),$	(1,2),	(1,3),	(1,4),
(2,4),	(3,3)	(4,4)	

	1	2	3	4
1	X	X	X	X
2				Χ
3			X	
4				X

Antisymmetric relation

- No axis of symmetry
- Only symmetry occurs on diagonal
- Not all elements on the diagonal need to be included in the relation

Properties of Relations

Definition: A relation R on a set A is transitive if, whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$ for every $a,b,c \in A$.

Note: Our "divides" relation on the set $A = \{1,2,3,4\}$ is transitive.

Recall that: $a|b \wedge b|c \rightarrow a|c$

More common transitive relations include equality and comparison operators like <, >, \leq , and \geq .

Examples, redux

Question: Which of the following relations are reflexive, symmetric, antisymmetric, and/or transitive?

- $R_1 = \{(a,b) \mid a \le b\}$
- $R_2 = \{(a,b) \mid a > b\}$
- $R_3 = \{(a,b) \mid a = b \text{ or } a = -b\}$
- $R_4 = \{(a,b) \mid a = b\}$
- $R_5 = \{(a,b) \mid a = b + 1\}$
- $R_6 = \{(a,b) \mid a+b \le 3\}$

Answer:

	Reflexive	Symmetric	Antisymmetric	Transitive
R ₁				
R ₂				
R ₃				
R ₄				
R ₅				
R ₆				

Relations can be combined using set operations

Example: Let R be the relation that pairs students with courses that they have taken. Let S be the relation that pairs students with courses that they need to graduate. What do the relations $R \cup S$, $R \cap S$, and S - R represent?

Solution:

- $R \cup S = All pairs (a,b)$ where
 - student a has taken course b OR
 - >> student a needs to take course b to graduate
- $R \cap S = All pairs (a,b)$ where
 - Student a has taken course b AND
 - >> Student a needs course b to graduate
- S R = All pairs (a,b) where
 - Student a needs to take course b to graduate BUT
 - Student a has not yet taken course b

Relations can be combined using functional composition

Definition: Let R be a relation from the set A to the set B, and S be a relation from the set B to the set C. The composite of R and S is the relation of ordered pairs (a, c), where $a \in A$ and $c \in C$ for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by R $^{\circ}$ S.

Example: What is the composite relation of R and S?

```
R: \{1,2,3\} \rightarrow \{1,2,3,4\}

• R = \{(1,1),(1,4),(2,3),(3,1),(3,4)\}

S: \{1,2,3,4\} \rightarrow \{0,1,2\}

• S = \{(1,0),(2,0),(3,1),(3,2),(4,1)\}
```

So: $R \circ S = \{(1,0), (3,0), (1,1), (3,1), (2,1), (2,2)\}$

SET THE CANADA TO THE CANADA T

In-class exercises

Problem 1: List the ordered pairs of the relation R from $A = \{0,1,2,3,4\}$ to $B = \{0,1,2,3\}$ where $(a,b) \in R$ iff a + b = 4.

Problem 2: Draw the graph and table representations of the above relation.

Problem 3: Is the above relation reflexive, symmetric, antisymmetric, and/or transitive?

Final Thoughts

Relations allow us to represent and reason about the relationships between sets

Relations are more general than functions

Relations are use all over...

- Mathematical operators
- Bindings between sets of objects
- Etc.

Next time: n-ary relations