- 1. En quoi l'indicateur E_i s'oppose-t-il aux quatre autres indicateurs C_i , L_i , T_i et U_i ? que peut-on en conclure sur les ordonnancements optimaux pour un critère faisant intervenir E_i ?
- 2. Démontrer que le critère C_{max} est un cas particulier du critère L_{max} .
- 3. Un dentiste voit arriver n patients à l'ouverture de son cabinet, en supposant qu'il sait à l'avance combien de temps il restera avec chaque patient, quel critère doit-il considérer pour minimiser le temps d'attente moyen de ces n patients.
- 4. Que représente le problème $P|prec, p_i = 1, r_i, \tilde{d}_i|C_{max}$?
- 5. On considéré un problème d'ordonnancement à 3 machines parallèles et 7 tâches. Les durées opératoires des tâches sont définies par $p = (p_1, p_2, \dots, p_7) = (6, 3, 6, 2, 4, 3, 1)$ et ne dépendent pas des machines sur lesquelles elles seront exécutées. Les tâches sont reliées par les relations de précédence représentées par le graphes ci-dessous.

- (a) On souhaite terminer l'exécution de ces tâches le plus tôt possible. Définir le problème selon la classification précédente.
- (b) Identifier le ou (les) ordonnancement(s) réalisable(s) et le(s) représenter sur un diagramme de Gantt.
- 6. On considere les donnees suivantes :

On propose d'executer les tâches dans l'ordre ω_i/p_i . Justifier cette proposition et en

\overline{i}	commande	date échue	durée opératoire	pénalité par jour de retard
	J_{i}	d_{i}	p_{i}	ω_i
1	1 table	4	2	30
2	6 chaises	6	5	20
3	1 vaisselier	7	2	20
4	1 commode	5	4	20

donner les limites. Donner l'ordonnancement correspondant aux valeurs numeriques. On definira c_i , T_i et $\omega_i T_i$.

FS/USDB Page 1 de 1 Master MMS/ RO

1. En quoi l'indicateur E_i s'oppose-t-il aux quatre autres indicateurs C_i , L_i , T_i et U_i ? que peut-on en conclure sur les ordonnancements optimaux pour un critère faisant intervenir E_i ?

Solution: Les quatre indicateurs C_i , L_i , T_i et U_i sont croissants avec C_i alors que E_i est décroissant. Cela signifie que si l'objectif à minimiser contient E_i , il peut-être intéressant d'insérer dans l'ordonnancement une (voir plusieurs) périodes d'inactivité avant le début de J_i pour retarder l'exécution de cette tache.

2. Démontrer que le critère C_{max} est un cas particulier du critère L_{max} .

Solution: Lorsque $d_1 = d_2 = \cdots = d_n = 0$, $L_i = C_i$ pour tout i, ce qui prouve que le critère C_{max} est un cas particulier de critère L_{max} .

3. Un dentiste voit arriver n patients à l'ouverture de son cabinet, en supposant qu'il sait à l'avance combien de temps il restera avec chaque patient, quel critère doit-il considérer pour minimiser le temps d'attente moyen de ces n patients.

Solution: Soit J_i la tache correspondant à la consultation du ime client et p_i la durée de cette consultation. La durée d'attente pour ce client est donc $C_i - p_i$. La durée moyenne d'attente est alors donnée par $(\sum_i C_i - p_i) / n$. Minimiser ce terme revient donc à minimiser $(\sum_i C_i - p_i) = \sum_i C_i - \sum_i p_i$. Comme le second terme est une constante, cela revient simplement à minimiser le critère $\sum_i C_i$, couramment appelé somme des en-cours.

4. Que représente le problème $P|prec, p_i = 1, r_i, \tilde{d}_i|C_{max}$?

Solution: Ce problème correspond à l'ordonnancement de taches de durées unitaires sur m machines parallèles identiques avec fenêtres de temps et contraintes de précédence. L'objectif étant la minimisation de la date de fin de l'ordonnancement.

- 5. On considéré un problème d'ordonnancement à 3 machines parallèles et 7 tâches. Les durées opératoires des tâches sont définies par $p = (p_1, p_2, \dots, p_7) = (6, 3, 6, 2, 4, 3, 1)$ et ne dépendent pas des machines sur lesquelles elles seront exécutées. Les tâches sont reliées par les relations de précédence représentées par le graphes ci-dessous.
 - (a) On souhaite terminer l'exécution de ces tâches le plus tôt possible. Définir le problème selon la classification précédente.

Solution: C'est un problème à 3 machines parallèles identiques avec relations de précédence. Le critère à optimiser est le C_{max} . Selon la notion à trois champs, le problème correspond à la classe de problème $P_3|prec|C_{max}$.

FS/USDB Page 1 de 3 Master MMS/ RO

(b) Identifier le ou (les) ordonnancement(s) réalisable(s) et le(s) représenter sur un diagramme de Gantt.

Solution: L'ordonnancement $\{6, 3, 6, 5, 9, 9, 10\}$ pour les C_i avec J_1 pour M_1 , $\{J_2, J_4, J_5, J_7\}$ pour M_2 et finalement $\{J_3, J_6\}$ pour M_3 . Cette ordonnancement vérifie les contraintes de précédences. (diagramme de Gantt donnée en classe).

6. On considere les donnees suivantes :

On propose d'exécuter les tâches dans l'ordre ω_i/p_i . Justifier cette proposition et en

i	commande	date échue	durée opératoire	pénalité par jour de retard
	J_i	d_i	p_i	ω_i
1	1 table	4	2	30
2	6 chaises	6	5	20
3	1 vaisselier	7	2	20
4	1 commode	5	4	20

donner les limites. Donner l'ordonnancement correspondant aux valeurs numériques. On définira c_i , T_i et $\omega_i T_i$.

Solution: La politique d'ordonnancement proposée est un compromis qui privilégie les taches les plus couteuses en termes de pénalités de retard (ω_i) et les taches les plus rapides à exécuter. Toutefois, les dates échues sont ignorées, ce qui permet de mettre en doute l'efficacité de cette règle d'ordonnancement en toutes circonstances.

Les taches sont donc exécutes dans l'ordre suivant : J_1 , J_3 , J_4 , J_2 .

La solution à un cout de 260.