Optimisation non-linéaire du routage

Olivier Brun

8 février 2021

Formulation du problème

- 2 Caractérisation du Routage Optimal
- Méthodes de directions admissibles
 - Principe des méthodes de directions admissibles
 - Méthode de Frank-Wolfe (Flow Deviation)
 - Algorithme du gradient projeté

Notations

- Ensemble W de flots origine-destination (OD)
 - Le flot w = (s, t) pour origine s, pour destination t et pour demande r_w .
 - Il peut être partagé sur les chemins $p \in P_w$ et on note x_p la quantité de flot envoyée sur le chemin p

$$\sum_{p \in P_{w}} x_{p} = r_{w} \qquad \forall w \in W$$
$$x_{p} \ge 0 \quad \forall p \in P_{w}, \ \forall w \in W$$

• On note F_{ii} le flot total sur le lien (i, j).

$$F_{ij} = \sum_{p/(i,j)\in p} x_p \tag{1}$$

Exemple

- Demandes r_{15} et r_{23} : $W = \{(1,5), (2,3)\}$
 - Chemins de $r_{15}: P_{15} = \{p_1, p_2\}$ où $p_1 = \{1, 3, 5\}$ et $p_2 = \{1, 2, 4, 5\}$
 - Chemins de r_{23} : $P_{23} = \{p_3, p_4\}$ où $p_3 = \{2, 1, 3\}$ et $p_4 = \{2, 4, 3\}$
 - Contraintes : $x_{p_1} + x_{p_2} = r_{15}$ et $x_{p_3} + x_{p_4} = r_{23}$ avec $x_{p_i} \ge 0$

• $F_{13} = x_{p_1} + x_{p_3}$.

Formulation du problème

• Trouver l'ensemble des flots $\{x_p\}$ pour chaque demande r_w qui minimise la fonction coût,

$$D(\mathsf{x}) = \sum_{(i,j)} D_{ij} \left(F_{ij} \right) \tag{2}$$

sous les contraintes de conservation des demandes,

$$\sum_{p \in P_w} x_p = r_w \qquad \forall w \in W$$
$$x_p \ge 0 \quad \forall p \in P_w, \ \forall w \in W$$

• Exemple typique : $D_{i,j}(y) = y/(C_{i,j} - y)$.

Exemple

Minimiser

$$\frac{F_{13}}{C_{13} - F_{13}} + \frac{F_{12}}{C_{12} - F_{12}} + \frac{F_{24}}{C_{24} - F_{24}} + \frac{F_{34}}{C_{34} - F_{34}} + \frac{F_{35}}{C_{33} - F_{33}} + \frac{F_{45}}{C_{45} - F_{45}}$$
où

$$F_{13} = x_{p_1} + x_{p_3}$$
 $F_{12} = x_{p_2} + x_{p_3}$ $F_{24} = x_{p_2} + x_{p_4}$
 $F_{34} = x_{p_4}$ $F_{35} = x_{p_1}$ $F_{45} = x_{p_2}$

sous les contraintes : $x_{p_1}+x_{p_2}=r_{15}$ et $x_{p_3}+x_{p_4}=r_{23}$ avec $x_{p_i}\geq 0$

Caractérisation du Routage Optimal

- Le routage optimal ne propage les flots que sur des plus courts chemins au sens de certaines métriques,
- Ces métriques dépendent du trafic sur les liens.
- Cette caractéristique intéressante du routage optimal est à la base des algorithmes que nous verrons dans la suite.

Coûts marginaux

• Dérivons le coût D(x) par rapport à x_p ,

$$\frac{\partial D(x)}{\partial x_{p}} = \sum_{(i,j)} \frac{\partial D_{ij}}{\partial x_{p}} (F_{i,j})$$
$$= \sum_{(i,j)} D'_{i,j} (F_{i,j}) \frac{\partial F_{ij}}{\partial x_{p}}$$

• Or $\partial F_{ij}/\partial x_p = 1$ si $(i,j) \in p$ et 0 sinon. Par conséquent,

$$\frac{\partial D(x)}{\partial x_p} = \sum_{(i,j) \in p} D'_{ij}(F_{i,j})$$

où les dérivées D'_{ij} sont évaluées pour les flots F_{ij} obtenus avec la solution x.

Interprétation des coûts marginaux

$$\frac{\partial D(x)}{\partial x_{p}} = \sum_{(i,j)\in p} D'_{ij}(F_{i,j})$$

- $\partial D(x)/\partial x_p$ apparaît comme la longueur du chemin p quand les métriques des liens du chemin sont prises égales aux dérivées premières $D'_{ii}(F_{i,j})$ évaluées en x.
- $\partial D(x)/\partial x_p$ est appelé la longueur du chemin p au sens des dérivées premières.

Condition d'optimalité

- Soit $x^* = \{x_n^*\}$ une solution optimale. Considérons une demande OD w et un chemin $p \in P_w$ tel que $x_p^* > 0$.
- En déviant une partie δ du flot du chemin p sur un autre chemin p', le coût ne peut diminuer car la solution est optimale. Au premier ordre. la variation du coût est

$$\delta \frac{\partial D(x^*)}{\partial x_{p'}} - \delta \frac{\partial D(x^*)}{\partial x_p} \ge 0$$

Condition d'optimalité :

$$x_p^* > 0 \quad \Rightarrow \quad \frac{\partial D(x^*)}{\partial x_{p'}} \geq \frac{\partial D(x^*)}{\partial x_p} \ \forall p' \in P_w$$
 (3)

Interprétation de la condition d'optimalité

$$x_p^* > 0 \quad \Rightarrow \quad \frac{\partial D(x^*)}{\partial x_{p'}} \geq \frac{\partial D(x^*)}{\partial x_p} \ \forall p' \in P_w$$

- La solution optimale ne propage du flot sur le chemin p que si c'est un chemin de longueur minimale au sens des dérivées premières.
- La solution optimale ne répartit une demande r_w sur plusieurs chemins que si ces chemins sont de longueurs égales (et minimales) au sens des dérivées premières.
- C'est une condition necéssaire. Elle est suffisante si les fonctions D_{ii} sont convexes.

Exemple

- Réseau à deux liens de capacités C_1 et C_2 , $C_1 \geq C_2$.
- Le trafic r entre 1 et 2 doit être réparti entre deux flots x_1 et x_2 pour minimiser la fonction coût.

$$D(x) = D_1(x) + D_2(x)$$
 où $D_i(x) = \frac{x_i}{C_i - x_i}$ $i = 1, 2$

Exemple (2)

 A l'optimum, la condition d'optimalité doit être vérifiée de même que les contraintes,

$$x_1^* + x_2^* = r, \ x_1^* \ge 0, \ x_2^* \ge 0$$

- Le flot x_1 ne peut être inférieur à x_2 ($C_1 \ge C_2$). On a donc 2 cas :
 - Cas où $x_1^* = r$ et $x_2^* = 0$,
 - Cas où $x_1^* > 0$ et $x_2^* > 0$

Exemple (3) - Cas où $x_1^* = r$ et $x_2^* = 0$

- D'après la condition d'optimalité, on a $dD_1(r)/dx_1 \leq dD_2(0)/dx_2$
- Sachant que $D'_i(x_i) = C_i/(C_i x_i)^2$, on a donc :

$$\frac{C_1}{(C_1-r)^2}\leq \frac{1}{C_2}$$

• Ce qui implique que $r \le C_1 - \sqrt{C_1 C_2}$.

Exemple (4) - Cas où $x_1^* > 0$ et $x_2^* > 0$

• Condition d'optimalité : $dD_1(x_1^*)/dx_1 = dD_2(x_2^*)/dx_2$

$$\frac{C_1}{(C_1 - x_1^*)^2} \le \frac{C_2}{(C_2 - x_2^*)^2}$$

• Cette équation et la contrainte $x_1^* + x_2^* = r$ donnent :

$$x_1^* = \frac{\sqrt{C_1} \left[r - \left(C_2 - \sqrt{C_1 C_2} \right) \right]}{\sqrt{C_1} + \sqrt{C_2}} \quad \text{et} \quad x_2^* = \frac{\sqrt{C_2} \left[r - \left(C_1 - \sqrt{C_1 C_2} \right) \right]}{\sqrt{C_1} + \sqrt{C_2}}$$

Faible capacité C_2

Méthodes de directions admissibles

- Que nous dit la condition d'optimalité?
 - Une solution ne peut pas être optimale si une partie de la demande est routée sur un chemin de longueur non minimale.
 - Cela suggère qu'une solution non optimale peut être améliorée en déviant une partie du flot des chemins de longueurs non minimales vers les chemins de longueur minimale.
- Les méthodes de directions admissibles se basent sur cette idée
 - Elles calculent la solution optimale de routage itérativement.
 - A chaque itération, elles font décroître le coût de la solution courante en déviant du flot des chemins de longueurs non minimales vers les chemins de longueur minimale.

Principe des méthodes de directions admissibles

- Considérons un vecteur solution $x = \{x_p\}$ admissible, c'est-à-dire vérifiant les contraintes.
- Soit la solution $x' = x + \beta \Delta x$ où $\Delta x = \{\Delta x_p\}$ est une direction et β le pas que l'on fait dans cette direction pour modifier x.
- Cette solution x' nous intéresse si elle remplit deux conditions :
 - La solution x' est admissible.
 - Cette solution fait décroître le coût, i.e. $D(x') \leq D(x)$.

Condition d'admissibilité

• Δx est une direction admissible si x' est admissible.

$$\sum_{p \in P_w} x_p' = \sum_{p \in P_w} x_p + \beta \Delta x_p$$

$$= \sum_{p \in P_w} x_p + \beta \sum_{p \in P_w} \Delta x_p$$

$$= r_w$$

• Puisque $\sum_{p \in P_w} x_p = r_w$, la condition pour que la direction Δx soit admissible est que :

$$\sum_{p \in P_w} \Delta x_p = 0 \quad \forall w \in W \tag{4}$$

 Toute augmentation du flot sur certains chemins doit être compensée par des diminutions du flot sur d'autres chemins.

Illustration des directions admissibles

Condition de descente

- Δx est une direction de descente si $D(x') \leq D(x)$
- Considérons le gradient $\nabla D(x)$ de D(x) au point x

$$\nabla D(x) = \left[\frac{\partial D}{\partial x_1}(x), \dots, \frac{\partial D}{\partial x_n}(x)\right]^T$$

- Le gradient $\nabla D(x)$ est normal aux surfaces isocoût D(x) = cte,
- Le gradient $\nabla D(\mathbf{x})$ représente la direction de plus forte augmentation du coût
- Les directions de descente sont "en sens inverse" du gradient
- La condition de descente s'exprime par le fait que le produit scalaire de ∇D(x) et de Δx doit être négatif, i.e.

$$\sum_{w \in W} \sum_{p \in P_w} \frac{\partial D}{\partial x_p}(x) \Delta x_p < 0$$

Illustration du processus d'optimisation

21 / 33

Génération de directions de descente admissibles

- Si Δx est une direction admissible, i.e. $\sum_{p \in P_w} \Delta x_p = 0$, il suffit de prendre
 - (a) $\Delta x_p \leq 0$ si p n'est pas un plus court chemin (PCC) au sens des dérivées premières,
 - **(b)** $\Delta x_p < 0$ pour au moins un chemin non optimal p.

Génération de directions de descente admissibles

• **Preuve**: Posons $\ell_w = \min_{p \in P_w} \frac{\partial D}{\partial x_p}(x)$ la longueur d'un PCC pour le flot w au point x et notons $Q_w = \operatorname{argmin}_{p \in P_w} \frac{\partial D}{\partial x_p}(x)$. On a

$$\sum_{w \in W} \sum_{p \in P_{w}} \frac{\partial D}{\partial x_{p}}(x) \Delta x_{p} = \sum_{w \in W} \left(\sum_{p \in Q_{w}} \frac{\partial D}{\partial x_{p}}(x) \Delta x_{p} + \sum_{p \in P_{w} \setminus Q_{w}} \frac{\partial D}{\partial x_{p}}(x) \Delta x_{p} \right) \\
= \sum_{w \in W} \left(\ell_{w} \sum_{p \in Q_{w}} \Delta x_{p} + \sum_{p \in P_{w} \setminus Q_{w}} \frac{\partial D}{\partial x_{p}}(x) \Delta x_{p} \right) \\
= \sum_{w \in W} \left(-\ell_{w} \sum_{p \in P_{w} \setminus Q_{w}} \Delta x_{p} + \sum_{p \in P_{w} \setminus Q_{w}} \frac{\partial D}{\partial x_{p}}(x) \Delta x_{p} \right) \\
= \sum_{w \in W} \sum_{p \in P_{w} \setminus Q_{w}} \left[\frac{\partial D}{\partial x_{p}}(x) - \ell_{w} \right] \Delta x_{p} \\
< 0$$

Algorithme des méthodes de directions admissibles

• L'itération de base est de la forme :

$$x^{(k+1)} = x^{(k)} + \beta^{(k)} \Delta x^{(k)}$$

où $\Delta x^{(k)}$ est une direction de descente admissible et $\beta^{(k)}$ est un pas positif dans cette direction tel que,

$$D(x^{(k)} + \beta^{(k)} \Delta x^{(k)}) < D(x^{(k)})$$

et que la solution $x^{(k)} + \beta^{(k)} \Delta x^{(k)}$ est admissible.

• Le pas $\beta^{(k)}$ peut être différent à chaque itération.

Méthode de Frank-Wolfe (Flow Deviation)

- Soit $x = \{x_p\}$ une solution admissible.
- Trouver pour chaque couple OD w un chemin de longueur minimale au sens des dérivées premières
- Soit $\bar{\mathbf{x}} = \{\bar{\mathbf{x}}_p\}$ la solution obtenue en routant toutes les demandes r_w sur ces plus courts chemins
- Mettre à jour la solution x avec

$$x_p := x_p + \beta (\overline{x}_p - x_p)$$

- Le pas β peut être choisi de manière à minimiser le coût de la nouvelle solution,
- On peut utiliser un pas adaptatif (e.g. $\beta := 0.8 \times \beta$ si le coût augmente et $\beta := 1.2 \times \beta$ s'il diminue) ou un pas fixe (à éviter)

Justification de Flow Deviation

• La direction $\Delta x = \bar{x} - x$ est définie par

$$\Delta x_p = \begin{cases} r_w - x_q & \text{si } p = q, \\ -x_p & \text{sinon.} \end{cases}$$

où $q \in P_w$ est le PCC choisi pour la demande w.

- La direction Δx est une direction de descente car on a bien $\Delta x_p \leq 0$ pour tout chemin $p \neq q$,
- La direction $\Delta x = \bar{x} x$ est une direction admissible puisque

$$\sum_{p \in P_w} \Delta x_p = \Delta x_q + \sum_{p \neq q} \Delta x_p = r_w - x_q - \sum_{p \neq q} x_p = 0.$$

Caractéristiques de Flow Deviation

- Convergence de plus en plus lente au fur et à mesure qu'on se rapproche de l'optimum (progression en zig-zag)
- Les flots sont déviés dans des proportions égales (contrairement au gradient projeté)

Illustration de Flow Deviation

- $C_1 = 20$ et $C_2 = 10$, r = 8.
- Solution initiale $x^0 = (4,4)$ de coût

$$D(x) = \frac{x_1}{C_1 - x_1} + \frac{x_2}{C_2 - x_2} = \frac{4}{20 - 4} + \frac{4}{10 - 4} = 0.916$$

Illustration de Flow Deviation : itération 1

• Calcul du point extrêmal \overline{x}^0 .

$$\frac{\partial D(x^0)}{\partial x_1} = 0.0781 \text{ et } \frac{\partial D(x^0)}{\partial x_2} = 0.2777 \quad \Rightarrow \quad \overline{x}^0 = (8,0)$$

• Avec un pas $\beta = 0.5$, la nouvelle solution est

$$x^{1} = x^{0} + \beta (\overline{x}^{0} - x^{0}) = (4,4) + 0.5 \times (4,-4) = (6,2)$$

• Coût : $D(x^1) = 0.679$

Illustration de Flow Deviation : itération 2

• Calcul du point extrêmal \overline{x}^1

$$\frac{\partial D(x^1)}{\partial x_1} = 0.102 \text{ et } \frac{\partial D(x^1)}{\partial x_2} = 0.156 \quad \Rightarrow \quad \overline{x}^1 = (8,0)$$

• Avec un pas $\beta = 0.6$, la nouvelle solution est

$$x^2 = x^1 + \beta (\overline{x}^1 - x^1) = (6,2) + 0.6 \times (2,-2) = (7.2,0.8)$$

• Coût : $D(x^2) = 0.649$

Faible capacité C_2

Illustration de Flow Deviation : itération 3

• Calcul du point extrêmal \overline{x}^2

$$\frac{\partial D(x^2)}{\partial x_1} = 0.122 \text{ et } \frac{\partial D(x^2)}{\partial x_2} = 0.118 \quad \Rightarrow \quad \overline{x}^2 = (0,8)$$

• Avec un pas $\beta = 0.01$, la nouvelle solution est

$$x^3 = x^2 + \beta \ (\overline{x}^2 - x^2) = (7.2, 0.8) + 0.01 \times (-7.2, 7.2) = (7.128, 0.872)$$

• La solution optimale est $x^* = (7.112, 0.888)$

Faible capacité C_2

Algorithme du gradient projeté

- Soit $x = \{x_p\}$ une solution admissible.
- Faire

$$x := x + \beta \Delta x$$
 où $\Delta x_p = -\frac{\partial D(x)}{\partial x_p} + \frac{1}{|P_w|} \sum_q \frac{\partial D(x)}{\partial x_q}$

- Le pas β peut être choisi de manière à minimiser le coût de la nouvelle solution.
- On peut aussi utiliser un pas adaptatif (e.g. $\beta := 0.8 \times \beta$ si le coût augmente et $\beta := 1.2 \times \beta$ s'il diminue) ou un pas fixe (à éviter)

Justification de l'algorithme du gradient projeté

• La direction Δx est une direction admissible.

$$\sum_{p \in P_{w}} \Delta x_{p} = -\sum_{p \in P_{w}} \left(\frac{\partial D}{\partial x_{p}}(x) - \frac{1}{|P_{w}|} \sum_{q} \frac{\partial D(x)}{\partial x_{q}} \right)$$

$$= -\sum_{p \in P_{w}} \frac{\partial D}{\partial x_{p}}(x) + \frac{1}{|P_{w}|} \sum_{q} \frac{\partial D}{\partial x_{q}}(x) \sum_{p \in P_{w}} 1$$

$$= -\sum_{p \in P_{w}} \frac{\partial D}{\partial x_{p}}(x) + \frac{1}{|P_{w}|} \sum_{q} \frac{\partial D}{\partial x_{q}}(x) |P_{w}|$$

$$= 0.$$

• On peut aussi vérifier que c'est une direction de descente, c'est-à-dire que

$$\sum_{w \in W} \sum_{p \in P_w} \frac{\partial D}{\partial x_p}(x) \, \Delta x_p < 0$$