







#### **RNN & Attention Mechanisms**

2110572: Natural Language Processing Systems

Peerapon Vateekul & Ekapol Chuangsuwanich

Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University

Credit: Can Udomcharoenchaikit & Nattachai Tretasayuth



#### Outline

#### RNN & Attention Mechanism



- RNN
- Attention Mechanism



RNN Architectures



#### Different types of RNN architectures







#### Many-to-many

- You have seen and implemented this type of RNN architecture in your homework already.
- E.g. Tokenization, POS tagging

■ Sequence Input, Sequence Output







## Many-to-one

- E.g. Sentiment Analysis, Text classification
- Sequence input





#### One-to-many

- Sequence output
- E.g. Music Generation, Image caption generation
- **■** Music generation
  - Input: Initial seed
  - Output: Sequence of music notes
- Image caption **generation** 
  - Input: Image features extracted by CNN
  - Output: Sequence of text



### Many-to-many (encoder-decoder)



- Sequence Input, Sequence output
- These two sequences can be of different length
- E.g. Machine Translation
  - Input: English Sentence
  - Output: Thai Sentence
- Machine Translation is also a <u>text generation task</u>





Text generation model (training)

ning)
Training
Inference

■ One-to-Many RNN (autoregressive)

- The only real input is x<sup><1></sup>
- a<sup><0></sup> is the initial hidden state.
- $\blacksquare$   $\hat{y}$  is the predicted output.
- y is an actual output.
- During the training phase, instead of using the predicted output to feed into the next time-step, we use the actual output.





# Text generation model (inference; testing)

Training Inference

■ To generate a novel sequence, the inference model (testing phase) randomly samples an output from a softmax distribution.





#### In class demol: One-to-Many RNN Text generation

In-class demo: Generating a piece of text using RNN; Random Date Generation "2018-03-19"



+

**Attention Mechanism** 



#### Attention Mechanism (Many-to-Many)

**Attention** is commonly used in sequence-to-sequence model, it allows **the decoder part** of the network to focus/**attend** on a different part of **the encoder outputs** for every step of the decoder's own outputs.

#### Why attention?

This is what we want you to think about: How can information travel from one end to another in neural networks?



Machine Translation Problem: English to Thai



#### Attention Mechanism (cont.)

Why attention?

"You can't cram the meaning of a whole %&!\$# sentence into a single \$&!#\* vector!" - Raymond Mooney (2014)



Reference:http://yoavartzi.com/spl4/slides/mooney.spl4.pdf

Machine Translation Problem: English to Thai



#### Attention Mechanism (cont.)

Why attention?

Main idea: We can use multiple vectors based on the length of the sentence instead of one.

Attention mechanism = Instead of encoding all the information into a fixed-length vector, the decoder gets to decide parts of the input source to pay attention.



Machine Translation Problem: English to Thai

## +

## Graphical Example: English-to-Thai machine translation

16

■ This is a rough estimate of what might occur for English-to-Thai translation





#### Graphical Example: English-to-French machine translation



min max

Reference: Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." ICLR(2015).



# Attention Mechanism: Recap Basic Idea

- Encode each word in the sequence into a vector
- When DECODING, perform a linear combination of these encoded vectors from the encoding step with their corresponding "attention weights".
  - (scalar 1)(encoded vector1) + (scalar 2)(encoded vector 2) + (scalar 3)(encoded vector 3)

$$\mathbf{c}_i = \sum a_{ij} \mathbf{h}_j$$

i = each encoder's input i = each decoder's input

- A vector formed by this linear combination is called "context vector
- Use context vectors as inputs for the decoding step





Reference: Bahdanau, D., Cho, K., & Bengio, Y.. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015



#### RNN and attention mechanism





|             | Му | name | is | Sam |
|-------------|----|------|----|-----|
| ฉัน         |    |      |    |     |
| <b>6</b> 8. |    |      |    |     |
| แชม         |    |      |    |     |





### Attention Calculation Example (1): Attention Scores



## Attention Calculation Example (2): Context Vector





# Type of Attention mechanisms

My name is Sam encoder

to decoder

(Remember that there are many variants of attention function  $\mathbf{f}_{\mathsf{attn}}$  )

**Additive attention:** The original attention mechanism (Bahdanau et al., 2015) uses a one-hidden layer feed-forward network to calculate the attention alignment:

$$f_{attn}(\mathbf{s}_{i-1}, \mathbf{h}_j) = tanh(\mathbf{W}_a[\mathbf{s}_{i-1}; \mathbf{h}_j])$$

**Multiplicative attention**: Multiplicative attention (Luong et al., 2015) simplifies the attention operation by calculating the following function:

$$f_{attn}(\mathbf{s}_{i-1}, \mathbf{h}_j) = \mathbf{s}_{i-1}^{\top} \mathbf{W}_a \mathbf{h}_j$$

**Self-attention:** Without any additional information, however, we can still extract relevant aspects from the sentence by allowing it to attend to itself using self-attention (Lin et al., 2017)

$$\mathbf{a} = softmax(\mathbf{w}_{s_2}tanh(\mathbf{W}_{s_1}\mathbf{H}^T))$$

**Key-value attention:** key-value attention (Daniluk et al., 2017) is a recent attention variant that separates form from function by keeping separate vectors for the attention calculation.



## 1) Additive Attention





■ The original attention mechanism (Bahdanau et al., 2015) uses a one-hidden layer feed-forward network to calculate the attention alignment:

concatenation

$$f_{attn}(\mathbf{s}_{i-1}, \mathbf{h}_j) = tanh(\mathbf{W}_a[\mathbf{s}_{i-1}; \mathbf{h}_j])$$

One-hidden layer

Where  $\mathbf{W}_{a}$  are learned attention parameters. Analogously, we can also use matrices  $\mathbf{W}_{1}$  and  $\mathbf{W}_{2}$  to learn separate transformations for  $\mathbf{s}_{1}$  and  $\mathbf{h}_{1}$  respectively, which are then summed (hence the name <u>additive</u>):

$$f_{attn}(\mathbf{s}_{i-1}, \mathbf{h}_i) = tanh(\mathbf{W}_1\mathbf{s}_{i-1} + \mathbf{W}_2\mathbf{h}_i)$$

 $a_{ij} = softmax(f_{att}(\mathbf{s}_{i-1}, \mathbf{h}_j))$ 2) Multiplicative Attention



Multiplicative attention (Luong et al., 2015) [16] simplifies the attention operation by calculating the following function:

$$f_{attn}(\mathbf{s}_{i-1}, \mathbf{h}_j) = \mathbf{s}_{i-1}^{\top} \mathbf{W}_a \mathbf{h}_j$$

- Faster, more efficient than additive attention BUT additive attention performs better for larger dimensions
- One way to mitigate this is to scale  $f_{attn}$  by  $\frac{1}{\sqrt{d_s}}$   $d_s = \#dimensions of hidden states in LSTM (context vector; latent factors)$

Dot product of high dimensional vectors has high variance -> softmax is peaky -> small gradient -> harder to train

$$a_{ij} = softmax(f_{att}(\mathbf{s}_{i-1}, \mathbf{h}_j))$$

3) Self Attention (1)



 Without any additional information, we can still extract relevant aspects from the sentence by allowing it to attend to itself using self-attention (Lin et al., 2017)

$$H = (\mathbf{h_1}, \mathbf{h_2}, \cdots \mathbf{h_n})$$
Fully connected layer
 $\mathbf{a} = softmax(\mathbf{w}_{s_2} tanh(\mathbf{W}_{s_1} \mathbf{H}^T))$ 
One-hidden layer
(Dense)

- $w_{s1}$  is a weight matrix,  $w_{s2}$  is a vector of parameters. Note that these parameters are tuned by the neural networks.
- The objective is to improve a quality of embedding vector by adding context information.





#### +

### Self-attention (2)

- if I can give this restaurant a 0 I will we be just ask our waitress leave because someone with a reservation be wait for our table my father and father-in-law be still finish up their coffee and we have not yet finish our dessert I have never be so humiliated do not go to this restaurant their food be mediocre at best if you want excellent Italian in a small intimate restaurant go to dish on the South Side I will not be go back
- this place suck the food be gross and taste like grease I will never go here again ever sure the entrance look cool
  and the waiter can be very nice but the food simply be gross taste like cheap 99cent food do not go here the food
  shot out of me quick then it go in
- everything be pre cook and dry its crazy most Filipino people be used to very cheap ingredient and they do not
  know quality the food be disgusting. I have eat at least 20 different Filipino family home this not even mediocre
- seriously f \*\*\* this place disgust food and shirty service ambience be great if you like dine in a hot cellar engulf in stagnate air truly it be over rate over price and they just under deliver forget try order a drink here it will take forever get and when it finally do arrive you will be ready pass out from heat exhaustion and lack of oxygen how be that a head change you do not even have pay for it I will not disgust you with the detailed review of everything I have try here but make it simple it all suck and after you get the bill you will be walk out with a sore ass save your money and spare your self the disappointmen!
- ibe so angry about my horrible experience at Medusa today my previous visit be amaze 5/5 however my go to out of town and I land an appointment with Stephanie I go in with a picture of roughly what I want and come out look absolutely nothing like it my hair be a horrible ashy blonde not anywhere close to the platinum blonde I request she will not do any of the pop of colour I want and even after specifically tell her I do not like blunt cut my hair have lot of straight edge she do not listen to a single thing I want and when I tell her I be unhappy with the colour she basically tell me I be wrong and I have do it this way no no I do not if I can go from Little Mermaid red to golden blonde in 1 sitting that leave my hair fine I shall be able go from golden blonde to a shade of platinum blonde in 1 sitting thanks for ruin my New Year's with 1 the bad hair job I have ever have

#### (a) 1 star reviews

- teally enjoy Ashley and Ami salon she do a great job be friendly and professional I usually get my hair do when I
  go to MI because of the quality of the highlight and the price the price be very affordable the highlight fantastic
  thank Ashley i highly recommend you and ill be back
- we this place it really be my favorite restaurant in Charlotte they use charcoal for their grill and you can taste it steak with chimichurri be always perfect Fried yucca cilantro rice pork sandwich and the good tres lech I have had. The desert be all incredible if you do not like it you be a mutant if you will like diabeetus try the lona Cola
- this place be so much fur! have never go at night because it seem a little too busy for my taste but that just prove how great this restaurant be they have amazing food and the staff definitely remember us every time we be in town I love when a waitress or waiter come over and ask if you want the cab or the Pinot even when there be a rush and the staff be run around like crazy whenever I grab someone they instantly smile acknowlegde us the food be also killer I love when everyone know the special and can tell you they have try them all and what they pair well with this be a first last stop whenever we be in Charlotte and I highly recommend them
- great food and good service .... what else can you ask for everything that I have ever try here have be great
- first off I hardly remember waiter name because its rare you have an unforgettable experience the day I go I be celebrate my birthday and let me say I leave feel extra special our waiter be the best ever Carlos and the staff as well I be with a party of 4 and we order the potato salad shrimp cocktail lobster amongst other thing and boy be the food great the lobster be the good lobster I have ever eat if you eat a dessert I will recommend the cheese cake that be also the good I have ever have it be expensive but so worth every penny I will definitely be back there go again for the second time in a week and it be even good ..... this place be amazing

#### (b) 5 star reviews

Figure 2: Heatmap of Yelp reviews with the two extreme score.

29

30

$$a_{ij} = softmax(f_{att}(\mathbf{s}_{i-1}, \mathbf{h}_j))$$

(a) Neural language model with attention.

4) Key-value attention (1)

$$\mathbf{c}_i = \sum_j a_{ij} \mathbf{h}_j$$

(b) Key-value separation.

Value=encoded vector h<sub>5</sub> Key=used for attention score calculation  $x_1$ 

Reference: Daniluk, M., Rockt, T., Welbl, J., & Riedel, S. (2017). Frustratingly Short Attention Spans in Neural Language Modeling. In ICLR 2017.



#### Pictorial view of KV attention







# Scaled Dot-Product Attention (1)

- Introduced in Attention is all you need (Viswani et al., 2017)
- **NO** recurrence nor convolution
- Widely used today in all Transformer-based model
- "Relating different positions of a single sequence in order to compute a representation of the sequence"

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

where the query, keys, values, and output are all vectors and  $d_{i}$  is a number.







# Scaled Dot-Product Attention (2)



#### What are the "query", "key", and "value" vectors?

As an analogy, think of Google Search.

Query - what we want to know

Key - how to index information

Value - what kind of info is in each website









 $W^Q$ ,  $W^K$ , and  $W^V$  are linear layers



Multiplying x1 by the WQ weight matrix produces q1, the "query" vector associated with that word. We end up creating a "query", a "key", and a "value" projection of each word in the input sentence.



http://jalammar.github.io/illustrated-transformer/

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$



#### Scaled Dot-Product Attention





# Demo2: Neural Machine Translation with Attention (Additive Attention)



■ Translate: various date formats to ISO date format

27 January 2018

2018-01-27

**27 JAN 2018** 

2018-01-27



# Homework 3.1: Neural Machine Translation with Attention (Key-Value Attention)

■ Translate: Thai name to English name

ไกรสีท์ kraisi
พัชรี phatri
ธีระ thira
วุฒิกร wutthikon
ไสว sawai
สัมภาษณ์ samphat
วศิน wasin
ทีนวัฒน์ thinwat
ศักดินัย sakdinai
สุรศักดิ์ surasak