

Tecnologie e Servizi di Rete

Computer Engineering

Marco Lampis

25 novembre 2022

Indice

1	IPv4	l Summary	1
	1.1	Indirizzi speciali	1
	1.2	Indirizzamento IP con classi	1
	1.3	Indirizzamento senza classi (CIDR)	1
	1.4	IP routing	2

1 IPv4 Summary

In ogni sottorete tutti i dispositivi che ne fanno parte avranno lo stesso indirizzo ip.

1.1 Indirizzi speciali

- tutti i bit a 1: indirizzo di broadcast, non può essere assegnato
- 127.x.x.x: indirizzo di loopback, è una classe di indirizzi e servono a identificare l'host stesso e per tale motivo vengono solitamente utilizzate a scopo di debug.

Spesso oggi giorno non è consentito l'invio di messaggi in broadcast per motivi di sicurezza.

1.2 Indirizzamento IP con classi

Le rappresentazioni possono essere classes (a classe) o classness (senza l'utilizzo di classi). In particolare esistono di tre tipologie:

- **A**: prevede i primi 8 bit per l'indirizzo di rete, i rimanenti sono per identificare i dispositivi. Il totale degli indirizzi è 2^7 per la rete e 2^24 per i dispositivi. Si possono avere 128 networks.
- **B**: i primi due bit vengono utilizzate per il riconoscimento della classe di tipo B, mentre i rimanenti 14 per la parte network e gli ultimi 16 per gli host.
- C:

Nota: I bit di riconoscimento servono per sapere quali bit individuano la rete e quali gli host.

1.3 Indirizzamento senza classi (CIDR)

Il sistema **C**lassless **I**nter**D**omain **R**outing permette di indirizzare la porzione più precisa di indirizzi tra rete e e dispositivi. La porzione di rete è dunque di lunghezza arbitraria. Il formato con cui può essere rappresentato un indirizzo è il seguente: networkID + prefix length oppure netmask.

Il prefix length, specificato con /x, è il numero di bit di network.

La netmask è identificata da una serie di bit posti a 1 che determinano quali bit identificano la rete, attraverso un and bit a bit.

Esempio:

```
1 200.23.16.0/23 # prefix length
2 200.23.16.0 255.255.254.0 # netmask
```

L'indirizzo viene espresso attraverso gruppi di 8 bit, rappresentanti in modo decimale puntato (4 gruppi in quanto 32 bit totali). Ogni raggruppamento avrà un valore da 0 a 255.

Non tutti i valori sono permessi possibili, il più piccolo è 252. Questo è dovuto al fatto che abbiamo l'indirizzo dell'intera sottorete e l'indirizzo del inter broadcast che non possono essere adoperati.

Un modo per sapere se un indirizzo è scritto in modo corretto è prendere il prefix length / x e controllare che ci l'ultimo numero puntato sia multiplo di $2^(32-x)$.

Esempi:

```
1 130.192.1.4/30 => 4%(2^32-30) = 4%4 = 0 si!
2 130.192.1.16/30 => 16%(2^32-30) = 16%4 = 0 si!
3 130.192.1.16/29 => 16%(2^32-29) ![](../images/chapter1/routing.png) = 16%8 = 0 si!
4
5 130.192.1.1/30 => 1%(2^32-30) = 1%4 != 0 no!
6 130.192.1.1/29 => 1%(2^32-29) = 1%8 != 0 no!
7 130.192.1.1/28 => 1%(2^32-28) = 1%16 != 0 no!
```

Per il ragionamento di sopra appare evidente che un indirizzo che termina con .1 non sarà mai un indirizzo corretto, in quanto ritornerà sempre un resto.

1.4 IP routing

La routing table è caratterizzata da due colonne che identificano:

- destinazione (indirizzi ip)
- interfaccia (eth0...)

Viene cercato un match all'interno della tabella per identificare dove inviare un pacchetto IP. Se è presente più di un match, viene considerato quello con il prefisso più lungo.

nota: i router sono identificati solitamente con un cerchio con dentro una x.

Di seguito è mostrato un esempio di routing:

2 Marco Lampis

Figura 1.1: routing

Sono presenti in totale 7 sottoreti, di cui 3 reti locali e 4 reti punto punto. Tutta la sottorete ha come indirizzo quello raffigurato in alto a sinistra. Gli indirizzi di ciascuna di queste sono come segue:

Figura 1.2: routing2

Marco Lampis 3

Scriviamo la routing table del router, scrivendo quelle direttamente connesse e raggiungibili. Prendiamo come riferimento R1:

Destination	Interface		
130.192.3.0/30	130.192.3.1		
130.192.3.4/30	130.192.3.5		
130.192.2.0/24	130.192.2.1		
80.105.10.0/30	80.105.10.1		

4 Marco Lampis