Analízis1-ABC, 1. zárthelyi dolgozat, gyakorló feladatsor

- 1. Adott az $A := \left\{ \frac{x^2+1}{x^2} \in \mathbb{R} \mid x \in [1;2) \right\}$ halmaz. Határozza meg supA, infA, minA, maxA—t ha léteznek és állításait bizonyítsa is be.
- 2. Adott az $f(x) := \frac{\sqrt{x^2-1}}{x}$ $(x \in [1;+\infty))$ függvény. Igazolja, hogy f invertáható és adja meg a $D_{f^{-1}}; R_{f^{-1}}$ halmazokat és $x \in D_{f^{-1}}$ esetén $f^{-1}(x)$ et.
- 3. Határozza meg az $\frac{f}{g}$ hányados függvényt, az $\frac{f}{g} \circ h$ összetett függvényt és az $\left(\frac{f}{g} \circ h\right)^{-1}$ inverz függvényt (ha léteznek) :

$$f(x) := \sqrt{1-x} \quad (x \in (-\infty;1]) \quad \wedge \quad g(x) := \sqrt{x}-1 \quad (x \in [0;+\infty) \quad \wedge \quad h(x) := x^2 \quad (x \in \mathbb{R}).$$

- 4. Határozza meg a $\lim_{n\to+\infty} \frac{n^2-n+1}{5n^2+2n+1}$ határértéket és állítását igazolja a definíció segítségével.
- 5. Számítsa ki a következő határértékeket :

$$a)\lim_{n\to +\infty}\frac{(n+2^n)^2+2^{2n-1}}{\sqrt{3\cdot 16^n+n^2}}; \qquad b)\lim_{n\to +\infty}\left(\sqrt{4n+\sqrt{n}}-a\cdot \sqrt{n}\right) \quad (a\in \mathbb{R}).$$