Andrea Manna

Departamento de Computación - Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

> Base de Datos 1er. Cuatrimestre 2017

Esquema General

- Introducción
- Sin pérdida de información
- 3 Preservación de Dependencias Funcionales

Dos Características de una Buena Descomposición

- Sin Pérdida de Información
- Preservación de Dependencias Funcionales

Introducción

Definición

Si *R* es un esquema de relación descompuesto en los esquemas $R_1, R_2, ..., R_k$ y F es un conjunto de dependencias, decimos que la descomposición es sin pérdida de información (SPI) con respecto a F, si para toda relación r para R que satisfaga *F*:

$$r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \ldots \bowtie \pi_{R_k}(r)$$

Es decir, no debe perderse información en el proceso de descomposición, de manera tal que r es la junta natural de sus proyecciones sobre los R_i

Andrea Manna SPI v SPDF

Introducción

Estrategias para comprobar SPI

Descomposiciones de dos esquemas

Descomposición binaria

Descomposiciones en más de dos esquemas

Algoritmo del Tableau

Teorema de la Descomposición Binaria

La descomposición ρ de R, ρ = (R_1 , R_2) es SPI respecto a un conjunto de dependencias funcionales F sí y sólo sí:

$$F^+$$
 contiene la DF: $R_1 \cap R_2 \rightarrow (R_1 - R_2)$

0

$$F^+$$
 contiene la DF: $R_1 \cap R_2 \rightarrow (R_2 - R_1)$

Ejemplo

Sea R = (A, B, C) y $F = \{A \to B\}$.

Pregunta: La descomposición de R en $R_1 = (A, B)$ y

 $R_2 = (A, C)$ es SPI?

Resp: Sí. $AB \cap AC = A$, AB - AC = B, y $A \rightarrow B$ está en F^+ .

Para pensar:

La descomposición de R en $R_1 = (A, B)$ y $R_2 = (B, C)$ es SPI?

Descomposición binaria

Ejemplo

No todas las descomposiciones son sin pérdida, dado que existen proyecciones cuya reunión no dan exactamente la relación original. Ejemplo:

N_Empleado	Funcion	N_Proyecto		
Lopez	diseñador	Nueva España		
Lopez	programador	Emprendedor		
Lopez	diseñador	Emprendedor		
Perez	diseñador	Emprendedor		

Se puede descomponer en dos tablas:

N_Empleado	Funcion		
Lopez	diseñador		
Lopez	programador		
Perez	diseñador		

Funcion	N_Proyecto
diseñador	Nueva España
programador	Emprendedor
diseñador	Emprendedor

Descomposición binaria

Ejemplo

Sin embargo, cuando se reunen las dos tablas, se obtienen tuplas adicionales que no estaban en la original. Estas tuplas se llaman espúreas creadas por los procesos de proyección y reunión. Ya que sin la tabla original, no hay forma de identificar cuáles tuplas son genuinas y cuáles espúreas, se puede perder información (aún cuando se tienen más tuplas) si se sustituyen las proyecciones para la relación original:

N_Empleado	Funcion	N_Proyecto		
Lopez	diseñador	Nueva España		
Lopez	programador	Emprendedor		
Lopez	diseñador	Emprendedor		
Perez	diseñador	Nueva España		
Perez	diseñador	Emprendedor		

Ejemplo

¿La descomposición de R en R_1 =(A, D, E, F) y R_2 = (B, C, D) es SPI respecto de FD1?

Recordar...

$$R=(A,\,B,\,C,\,D,\,E,\,F)\;y\;FD1=\{\;A\rightarrow BD,\,B\rightarrow CD,\,AC\rightarrow E\}$$

$$R_1 \cap R_2 = \{D\}$$

$$R_1 - R_2 = \{A, E, F\}$$

$$R_2 - R_1 = \{B, C\}$$

Tenemos que hacer D^+ pero $D^+=D$ y por lo tanto no se cumple que $D \rightarrow \{A, E, F\}$ ni que $D \rightarrow \{B, C\}$

Es decir, ninguna de esas dos dependencias funcionales está en *FD*1+

Por lo tanto la descomposición no es SPI

Definición de Tableau

Dado $R = (A_1, \ldots, A_n)$, un tableau T para una descomposición $\rho = (R_1, \dots, R_k)$ de R se define de la siguiente forma:

- T tiene n columnas, una para cada atributo de R
- **2** T tiene k filas, una para cada esquema de ρ
- 3 Dadas la fila i y la columna j (esquema R_i y atributo A_i), el contenido del tableau será:

$$a_j \text{ si } A_j \in R_i$$

o
 $b_{ij} \text{ si } A_i \notin R_i$

Los a_i se denominan símbolos distinguidos, y los b_{ii} no distinguidos.

Algoritmo del Tableau

INPUT: Un esquema de relación R, un conjunto de dependencias funcionales F, y una descomposición ρ . OUTPUT: Una decisión de si ρ es SPI.

Construir el Tableau T **mientras** haya cambios sobre T**para cada** df $X \rightarrow Y \in F$

buscar filas que coincidan en todos los símbolos de X
Si se encontrasen dos filas, igualar los simbolos
para los atributos de Y. Cuando se igualan 2
símbolos, si alguno de ellos es a_j , asignarle al otro a_j .
Si ellos son b_{ij} y b_{ij} , asignarle a ambos b_{ij} o b_{ij} .

Si hay una fila con todos símbolos distinguidos, retornar Sí

end (mientras)
Retornar No

Andrea Manna

DC-FCEN-UBA

Verificación SPI - Ejercicio 1

Introducción Sin pérdida de información

Sea R = (A,B,C,D,E) y F =
$$\{A \rightarrow B, D \rightarrow C\}$$
.
Decidir si la descomposición en R_1 = (A,B,C), R_2 = (C,D,E) y R_3 = (A,D,E) es SPI.

Verificación SPI - Ejercicio 1 - Tableau Inicial

R = (A,B,C,D,E), F = {
$$A \rightarrow B, D \rightarrow C$$
}, R_1 = (A,B,C), R_2 = (C,D,E) y R_3 = (A,D,E)

	Α	В	С	D	E
ABC	a ₁	a_2	a ₃	<i>b</i> ₁₄	<i>b</i> ₁₅
CDE	<i>b</i> ₂₁	b ₂₂	a ₃	a_4	a 5
ADE	a ₁	<i>b</i> ₃₂	<i>b</i> ₃₃	a_4	a ₅

R = (A,B,C,D,E), F = {
$$A \rightarrow B, D \rightarrow C$$
}, R_1 = (A,B,C), R_2 = (C,D,E) y R_3 = (A,D,E)

$$A \rightarrow B$$

	Α	В	С	D	E
ABC	a ₁	a_2	a ₃	b ₁₄	<i>b</i> ₁₅
CDE	<i>b</i> ₂₁	b ₂₂	a ₃	a_4	a ₅
ADE	a ₁	<i>b</i> ₃₂	b_{33}	a_4	a 5

R = (A,B,C,D,E), F = {
$$A \to B, D \to C$$
}, R_1 = (A,B,C), R_2 = (C,D,E) y R_3 = (A,D,E)

$$A \rightarrow B$$

	Α	В	С	D	Е
ABC	a ₁	a_2	a ₃	b ₁₄	<i>b</i> ₁₅
CDE	b ₂₁	b ₂₂	<i>a</i> ₃	<i>a</i> ₄	a 5
ADE	a ₁	a ₂	<i>b</i> ₃₃	<i>a</i> ₄	a 5

R = (A,B,C,D,E), F = {
$$A \to B, D \to C$$
}, R_1 = (A,B,C), R_2 = (C,D,E) y R_3 = (A,D,E)

$$D \rightarrow C$$

	Α	В	С	D	Е
ABC	a ₁	a_2	a ₃	b ₁₄	<i>b</i> ₁₅
CDE	<i>b</i> ₂₁	b ₂₂	a 3	a ₄	a 5
ADE	a ₁	a_2	b_{33}	a_4	a 5

Verificación SPI - Ejercicio 1 - Tableau Final

R = (A,B,C,D,E), F = {
$$A \rightarrow B, D \rightarrow C$$
}, R_1 = (A,B,C), R_2 = (C,D,E) y R_3 = (A,D,E)

$$D \rightarrow C$$

	Α	В	С	D	Е
ABC	a ₁	a ₂	a 3	b ₁₄	<i>b</i> ₁₅
CDE	<i>b</i> ₂₁	b ₂₂	a 3	a_4	a 5
ADE	a ₁	a ₂	a ₃	a_4	a 5

Verificación SPI - Ejercicio 1 - Tableau Final

R = (A,B,C,D,E), F = {
$$A \rightarrow B, D \rightarrow C$$
}, R_1 = (A,B,C), R_2 = (C,D,E) y R_3 = (A,D,E)

	Α	В	С	D	Е
ABC	a ₁	a_2	a ₃	b ₁₄	<i>b</i> ₁₅
CDE	b ₂₁	<i>b</i> ₂₂	a 3	a ₄	a 5
ADE	a ₁	a_2	<i>a</i> ₃	a ₄	a 5

Como hay una fila con todos símbolos distinguidos, ρ es SPI.

Verificación SPI - Ejercicio 2

```
Sea R = (A,B,C,D,E,F,G,H,I),
\mathsf{F} = \{ \mathsf{A} \to \mathsf{B}, \mathsf{CD} \to \mathsf{F}, \mathsf{H} \to \mathsf{AD}, \mathsf{I} \to \mathsf{C}, \mathsf{D} \to \mathsf{H} \}.
Decidir si la descomposición \rho = \{ABD, DEF, FGC, CHI\} es
SPI.
```

000000000000000000

Algoritmo del Tableau

Verificación SPI - Ejercicio 2 - Tableau Inicial

$$R = (A,B,C,D,E,F,G,H,I),$$

$$F = \{A \rightarrow B,CD \rightarrow F,H \rightarrow AD,I \rightarrow C,D \rightarrow H\},$$

$$\rho = \{ABD,DEF,FGC,CHI\}$$

	Α	В	С	D	Е	F	G	Н	ı
ABD	a ₁	a ₂	<i>b</i> ₁₃	<i>a</i> ₄	<i>b</i> ₁₅	<i>b</i> ₁₆	<i>b</i> ₁₇	<i>b</i> ₁₈	<i>b</i> ₁₉
DEF	<i>b</i> ₂₁	b ₂₂	<i>b</i> ₂₃	a_4	a ₅	a ₆	b ₂₇	<i>b</i> ₂₈	<i>b</i> ₂₉
FGC	<i>b</i> ₃₁	<i>b</i> ₃₂	a ₃	<i>b</i> ₃₄	<i>b</i> ₃₅	a ₆	a ₇	<i>b</i> ₃₈	<i>b</i> ₃₉
CHI	b ₄₁	b ₄₂	a ₃	b ₄₄	b ₄₅	b ₄₆	b ₄₇	<i>a</i> ₈	a 9

R = (A,B,C,D,E,F,G,H,I),
F = {
$$A \rightarrow B, CD \rightarrow F, H \rightarrow AD, I \rightarrow C, D \rightarrow H$$
},
 $\rho = {ABD, DEF, FGC, CHI}$

$$D \rightarrow H$$

	Α	В	С	D	E	F	G	Н	ı
ABD	a ₁	a_2	<i>b</i> ₁₃	a ₄	<i>b</i> ₁₅	<i>b</i> ₁₆	b ₁₇	<i>b</i> ₁₈	<i>b</i> ₁₉
DEF	<i>b</i> ₂₁	b ₂₂	<i>b</i> ₂₃	a ₄	a 5	a_6	b ₂₇	<i>b</i> ₂₈	<i>b</i> ₂₉
FGC	<i>b</i> ₃₁	<i>b</i> ₃₂	a 3	<i>b</i> ₃₄	<i>b</i> ₃₅	a ₆	a ₇	<i>b</i> ₃₈	<i>b</i> ₃₉
CHI	b ₄₁	b ₄₂	a ₃	b ₄₄	<i>b</i> ₄₅	b ₄₆	b ₄₇	<i>a</i> ₈	a 9

R = (A,B,C,D,E,F,G,H,I),
F = {
$$A \rightarrow B$$
, $CD \rightarrow F$, $H \rightarrow AD$, $I \rightarrow C$, $D \rightarrow H$ },
 $\rho = {ABD, DEF, FGC, CHI}$

$$D \rightarrow H$$

	Α	В	С	D	E	F	G	Н	ı
ABD	a ₁	a_2	<i>b</i> ₁₃	a_4	<i>b</i> ₁₅	<i>b</i> ₁₆	b ₁₇	<i>b</i> ₁₈	<i>b</i> ₁₉
DEF	<i>b</i> ₂₁	b ₂₂	<i>b</i> ₂₃	a_4	a 5	a ₆	b ₂₇	<i>b</i> ₁₈	<i>b</i> ₂₉
FGC	<i>b</i> ₃₁	<i>b</i> ₃₂	a 3	<i>b</i> ₃₄	<i>b</i> ₃₅	a ₆	a ₇	<i>b</i> ₃₈	<i>b</i> ₃₉
CHI	b ₄₁	b ₄₂	<i>a</i> ₃	b ₄₄	<i>b</i> ₄₅	b ₄₆	b ₄₇	<i>a</i> ₈	a 9

R = (A,B,C,D,E,F,G,H,I),
F = {
$$A \rightarrow B, CD \rightarrow F, H \rightarrow AD, I \rightarrow C, D \rightarrow H$$
},
 $\rho = {ABD, DEF, FGC, CHI}$

$$H \rightarrow AD$$

	Α	В	С	D	E	F	G	Н	
ABD	a ₁	a_2	<i>b</i> ₁₃	a_4	<i>b</i> ₁₅	<i>b</i> ₁₆	b ₁₇	<i>b</i> ₁₈	<i>b</i> ₁₉
DEF	<i>b</i> ₂₁	b ₂₂	<i>b</i> ₂₃	a_4	a 5	a ₆	b ₂₇	<i>b</i> ₁₈	<i>b</i> ₂₉
FGC	<i>b</i> ₃₁	<i>b</i> ₃₂	a ₃	<i>b</i> ₃₄	<i>b</i> ₃₅	a ₆	a_7	<i>b</i> ₃₈	<i>b</i> ₃₉
CHI	b ₄₁	b ₄₂	a ₃	b ₄₄	b ₄₅	b ₄₆	b ₄₇	<i>a</i> ₈	a 9

Algoritmo del Tableau

R = (A,B,C,D,E,F,G,H,I),
F = {
$$A \rightarrow B$$
, $CD \rightarrow F$, $H \rightarrow AD$, $I \rightarrow C$, $D \rightarrow H$ },
 $\rho = {ABD, DEF, FGC, CHI}$

$$H \rightarrow AD$$

	Α	В	С	D	E	F	G	Н	I
ABD	a ₁	a_2	<i>b</i> ₁₃	a_4	<i>b</i> ₁₅	<i>b</i> ₁₆	b ₁₇	<i>b</i> ₁₈	<i>b</i> ₁₉
DEF	a ₁	b ₂₂	<i>b</i> ₂₃	a_4	a 5	a ₆	b ₂₇	<i>b</i> ₁₈	<i>b</i> ₂₉
FGC	<i>b</i> ₃₁	<i>b</i> ₃₂	a ₃	<i>b</i> ₃₄	<i>b</i> ₃₅	a ₆	a ₇	<i>b</i> ₃₈	<i>b</i> ₃₉
CHI	b ₄₁	b ₄₂	a ₃	b ₄₄	b ₄₅	b ₄₆	b ₄₇	a_8	a 9

R = (A,B,C,D,E,F,G,H,I),
F = {
$$A \rightarrow B, CD \rightarrow F, H \rightarrow AD, I \rightarrow C, D \rightarrow H$$
},
 $\rho = {ABD, DEF, FGC, CHI}$

$$A \rightarrow B$$

	Α	В	С	D	E	F	G	Н	ı
ABD	a ₁	a_2	<i>b</i> ₁₃	a_4	<i>b</i> ₁₅	<i>b</i> ₁₆	b ₁₇	<i>b</i> ₁₈	<i>b</i> ₁₉
DEF	a ₁	b ₂₂	<i>b</i> ₂₃	<i>a</i> ₄	a 5	a_6	b ₂₇	<i>b</i> ₁₈	<i>b</i> ₂₉
FGC	<i>b</i> ₃₁	<i>b</i> ₃₂	a ₃	<i>b</i> ₃₄	<i>b</i> ₃₅	a ₆	a ₇	<i>b</i> ₃₈	<i>b</i> ₃₉
CHI	<i>b</i> ₄₁	b ₄₂	a ₃	b ₄₄	b ₄₅	<i>b</i> ₄₆	b ₄₇	<i>a</i> ₈	a 9

R = (A,B,C,D,E,F,G,H,I),
F = {
$$A \rightarrow B, CD \rightarrow F, H \rightarrow AD, I \rightarrow C, D \rightarrow H$$
},
 $\rho = {ABD, DEF, FGC, CHI}$

$$A \rightarrow B$$

	Α	В	С	D	E	F	G	Н	ı
ABD	a ₁	a_2	<i>b</i> ₁₃	a_4	<i>b</i> ₁₅	<i>b</i> ₁₆	b ₁₇	<i>b</i> ₁₈	<i>b</i> ₁₉
DEF	a ₁	a ₂	<i>b</i> ₂₃	a_4	a 5	a ₆	b ₂₇	<i>b</i> ₁₈	<i>b</i> ₂₉
FGC	<i>b</i> ₃₁	<i>b</i> ₃₂	a ₃	<i>b</i> ₃₄	<i>b</i> ₃₅	a ₆	a ₇	<i>b</i> ₃₈	<i>b</i> ₃₉
CHI	<i>b</i> ₄₁	b ₄₂	a ₃	b ₄₄	b ₄₅	b ₄₆	b ₄₇	<i>a</i> ₈	a 9

0000000000000000000

Algoritmo del Tableau

Verificación SPI - Ejercicio 2 - Tableau Final

R = (A,B,C,D,E,F,G,H,I),
F = {
$$A \rightarrow B, CD \rightarrow F, H \rightarrow AD, I \rightarrow C, D \rightarrow H$$
},
 $\rho = {ABD, DEF, FGC, CHI}$

	Α	В	С	D	E	F	G	Н	I
ABD	a ₁	a_2	<i>b</i> ₁₃	<i>a</i> ₄	<i>b</i> ₁₅	<i>b</i> ₁₆	<i>b</i> ₁₇	<i>b</i> ₁₈	<i>b</i> ₁₉
DEF	a ₁	a ₂	<i>b</i> ₂₃	a ₄	a ₅	a ₆	b ₂₇	<i>b</i> ₁₈	<i>b</i> ₂₉
FGC	<i>b</i> ₃₁	<i>b</i> ₃₂	a ₃	<i>b</i> ₃₄	<i>b</i> ₃₅	a_6	a ₇	<i>b</i> ₃₈	<i>b</i> ₃₉
CHI	b ₄₁	b ₄₂	a ₃	b ₄₄	b ₄₅	b ₄₆	b ₄₇	<i>a</i> ₈	a 9

Como no hay ninguna fila con todos símbolos distinguidos, y aunque sigamos iterando nuevamente por todas las dependencias, ninguna alterará el tableau, ρ NO es SPI.

Introducción

Preservación de Dependencias Funcionales

Dados un esquema de relación R, una descomposición ρ = (R_1, \ldots, R_k) , y un conjunto F de dependencias funcionales.

 $\pi_z(F)$: proyección de F sobre un conjunto de atributos Z

Conjunto de dependencias $X \to Y$ en F^+ tal que $XY \subseteq Z$

Testeo (orden exponencial)

La descomposición ρ preserva F si $F^+ = (\bigcup_{i=1}^k \pi_{B_i}(F))^+$

Es decir, la descomposición ρ preserva el conjunto de dependencias F si la unión de todas las dependencias en $\pi_{R_i}(F)$ implica lógicamente a todas las dependencias en F

Testeo Polinomial de Preservación de Dependencias Funcionales

```
Dados un esquema de relación R, una descomposición \rho =
(R_1, \ldots, R_k), y un conjunto F de dependencias funcionales.
Para toda dependencia funcional X \to Y \in F:
      Verificar que se preserva X \rightarrow Y:
           Z = X
           while Z cambia
                for i = 1 to k do
                     /* clausura con respecto a F */
                     Z = Z \cup ((Z \cap R_i)^+ \cap R_i)
           Si Y \nsubseteq Z retornar No
Retornar Sí
```

Ejercitación

Preservación de Dependencias Funcionales: Ejercicio

Sean
$$R = (A, B, C, D, E)$$
 y $F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, E \rightarrow C\}.$

Decidir si la descomposición $\rho = \{AD, DE, ECB\}$ es sin pérdida de dependencias funcionales (SPDF).

Preservación de Dependencias Funcionales: Resolución Ejercicio

$$R = (A, B, C, D, E)$$

 $F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, E \rightarrow C\}$
 $\rho = \{AD, DE, ECB\}$

Estrategia de Resolución:

Las dependencias $A \rightarrow D, D \rightarrow E, E \rightarrow C$ se preservan trivialmente (por qué?), y no es necesario aplicarles el algoritmo.

Le aplicaremos el algoritmo a la dependencia $AB \rightarrow C$ para ver si se preserva.

Ejercitación

Preservación de Dependencias Funcionales: Resolución Ejercicio

$$R = (A, B, C, D, E)$$

 $F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, E \rightarrow C\}$
 $\rho = \{AD, DE, ECB\}$
Queremos verificar que se preserva $AB \rightarrow C$
Verificar que se preserva $X \rightarrow Y$:
 $Z = X$
while Z cambia
for $i = 1$ to k do
 $Z = Z \cup ((Z \cap R_i)^+ \cap R_i)$
Si $Y \nsubseteq Z$ retornar No

$$Z = AB$$

Ejercitación

Preservación de Dependencias Funcionales: Resolución Ejercicio

$$\begin{split} R &= (A,B,C,D,E) \\ F &= \{AB \to C,A \to D,D \to E,E \to C\} \\ \rho &= \{AD,DE,ECB\} \\ \textbf{Queremos verificar que se preserva } AB \to C \\ \textbf{Verificar que se preserva } X \to Y \text{:} \\ Z &= X \\ \text{while Z cambia} \\ \text{for i = 1 to k do} \\ Z &= Z \cup ((Z \cap R_i)^+ \cap R_i) \\ \textbf{Si } Y \not\subseteq Z \text{ retornar No} \end{split}$$

$$Z = Z \cup ((Z \cap R_1)^+ \cap R_1) = \{A, B\} \cup ((\{A, B\} \cap \{A, D\})^+ \cap \{A, D\})$$

$$= \{A, B\} \cup ((A)^+ \cap \{A, D\})$$

$$= \{A, B\} \cup (\{A, D, E, C\} \cap \{A, D\})$$

$$= \{A, B, D\}$$

C no está incluido en Z; seguimos...

R = (A, B, C, D, E)

Ejercitación

Preservación de Dependencias Funcionales: Resolución Ejercicio

$$F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, E \rightarrow C\}$$

$$\rho = \{AD, DE, ECB\}$$
Queremos verificar que se preserva $AB \rightarrow C$

Verificar que se preserva $X \rightarrow Y$:
$$Z = X$$

$$\text{while Z cambia}$$

$$\text{for } i = 1 \text{ to k do}$$

$$Z = Z \cup ((Z \cap R_i)^+ \cap R_i)$$

$$\text{Si } Y \not\subseteq Z \text{ retornar No}$$

$$Z = Z \cup ((Z \cap R_2)^+ \cap R_2) = \{A, B, D\} \cup ((\{A, B, D\} \cap \{D, E\})^+ \cap \{D, E\})$$

$$= \{A, B, D\} \cup (\{D, E, C\} \cap \{D, E\})$$

$$= \{A, B, D\} \cup (\{D, E, C\} \cap \{D, E\})$$

C no está incluido en Z; seguimos...

 $= \{A, B, D, E\}$

Ejercitación

Preservación de Dependencias Funcionales: Resolución Ejercicio

$$R = (A, B, C, D, E)$$

$$F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, E \rightarrow C\}$$

$$\rho = \{AD, DE, ECB\}$$
Queremos verificar que se preserva $AB \rightarrow C$

$$Verificar que se preserva $X \rightarrow Y$:
$$Z = X$$

$$\text{while Z cambia}$$

$$\text{for } i = 1 \text{ to k do}$$

$$Z = Z \cup ((Z \cap R_i)^+ \cap R_i)$$

$$\text{Si } Y \nsubseteq Z \text{ retornar No}$$

$$Z = Z \cup ((X \cap R_i)^+ \cap R_i)$$

$$= \{A, B, D, E\} \cup ((X \cap R_i)^+ \cap \{E, C, B\})^+ \cap \{E, C, B\}$$

$$= \{A, B, D, E\} \cup ((EB)^+ \cap \{E, C, B\})$$

$$= \{A, B, D, E\} \cup (\{E, B, C\} \cap \{E, C, B\})$$

$$= \{A, B, D, E, C\}$$$$

Ahora sí C está incluido en Z: la dependencia $AB \rightarrow C$ se preserva

Claves

Algoritmo para encontrar todas las claves

Encontrar todas las claves

- 1 Obtener el conjunto S de atributos que no figuran en un lado derecho de una DE
- 2 Verificar si ese conjunto es superclave. Si lo es, es clave UNICAL
- 3 Si no lo era, agregar paulatinamente a S todas las combinaciones posibles de subconjuntos de R-S (todos los de cardinalidad 1, luego de los de 2, etc) (llamémoslo S') y verificar si cada uno de esos conjuntos es superclave. En este paso se deben obviar todos aquellos S' que contienen una superclave ya calculada, ya que no van a ser minimales.

Todos los conjuntos de atributos obtenidos que determinan a todo R son las claves.

Ejercicio 1

Recordar...

R=(A, B, C, D, E, F) y $FD1=\{A \rightarrow BD, B \rightarrow CD, AC \rightarrow E\}$

Tomamos S=AF y calculamos AF_{ED1}^+

 $AF_{ED1}^{+} = AFBDCE$

Como es igual a todo R, es clave UNICA! y el algoritmo termina

Ejercicio 2

Recordar...

R=(A, B, C, D, E, F) y $FD2=\{A \rightarrow BD, B \rightarrow CD, AC \rightarrow E, C \rightarrow A\}$

Tomamos S=F y calculamos F_{ED2}^+

 F_{ED2}^{+} = F. Como no es todo R, no es clave

Verificamos con un atributo adicional:

 FA_{ED2}^+ = FABDCE. Es igual a R, es clave, pero seguimos con otro atributo

 FB_{ED2}^+ = FBCDAE. Es igual a R, es clave, pero seguimos con otro atributo

 FC_{ED2}^+ = FCABDE. Es igual a R, es clave, pero seguimos con otro atributo

 FD_{FD2}^{+} = FD. No es igual a R, entonces no es clave

 FE_{ED2}^+ = FE. No es igual a R, entonces no es clave

No tiene sentido agregarle A, B ó C a FD y FE. Por qué?

Falta FDE_{FD2}^+ = FDE. No es igual a R, entonces no es clave. Idem con FED

Ejercicio 3

IMPORTANTE: Es un error pensar que la clave minimal es la que tiene menos atributos

Recordar... Una clave es minimal si ningún subconjunto de ella es clave. No está relacionado con el tamaño de las otras claves

Supongamos lo siguiente: R=(A, B, C, D) y $FD=\{AB \rightarrow CD, C \rightarrow AB\}$

Tomamos S=vacío (todos los atributos están en la parte derecha de alguna FD)

 $A_{FD}^{+} = A$. A no es clave

 $B_{ED}^{+} = B$. B no es clave

 C_{ED}^{+} = CABD. Es igual a R, es clave, pero seguimos...

 D_{FD}^{+} = D. D no es clave. Hay que seguir buscando

 AB_{FD}^{+} = ABCD. AB es clave

 AD_{FD}^{+} = AD. AD no es clave. Idem con BD y ahora sí no se puede seguir más (Por que?)

Bibliografía

Referencia

- Elmasri/Navathe Fundamentals of Database Systems, 7th Ed., Pearson, 2016 (Parte 6)
- Ullman Principles of Database and Knowledge Base Systems, Computer Science Press, 1988 (Capítulo 7)

Bibliografía

No se vayan que ahora viene la segunda parte de la clase!!!

