

Lecture 25

Yao Li

Department of Statistics and Operations Research
UNC Chapel Hill

Example

- Modeling Real Experimental Data
 - Question: What Factors Improve Hourly Wage?
 - Hypothesis 1: Experience

Hypothesis 2: Education

Example

- Modeling Real Experimental Data
 - Data From 10,000 Individuals
 - X₁= Experience (# of Years)
 - *X*₂= Education (# of Years)
 - Y = Salary (dollars/hour)
 - Preview of Data:

```
## # A tibble: 6 x 3
    salary experience education
   <dbl>
               <int>
                        <int>
## 1 47.9
                  27
## 2 37.8
                  24
## 3 35.6
                  19
## 4 34.0
          17
## 5 39.7
                  25
## 6 37.4
                  23
```

MODEL 2

MODEL 2

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Visualization of Relationship

MODEL 2

Function to Get Fitted Values

```
MODEL2 = function(DATA,COEF){
  FIT=COEF[1]+COEF[2]*DATA$experience+COEF[3]*DATA$education
}
```

Functions to Evaluate Model

```
MSE2=function(DATA,COEF) {
    ERROR=DATA$salary-MODEL2(DATA,COEF)
    LOSS=mean(ERROR^2)
    return(LOSS)
}
MAE2=function(DATA,COEF) {
    ERROR=DATA$salary-MODEL2(DATA,COEF)
    LOSS=mean(abs(ERROR))
    return(LOSS)
}
```

Multiple Regression

- Use Im() with summary()
- Final MODEL 2

```
Y = 9 + 1.08X_1 + 0.9X_2 + \varepsilonE(Y) = 9 + 1.08X_1 + 0.9X_2
```

```
LM2=lm(salary~experience+education,data=TRAIN)
summary(LM2)
## Call:
## lm(formula = salary ~ experience + education, data = TRAIN)
## Residuals:
      Min
               10 Median
                                      Max
## -3.6426 -0.6776 -0.0138 0.6838 3.7675
## Coefficients:
              Estimate Std. Error t value
                                                    Pr(>|t|)
## (Intercept) 8.996672 0.058760 153.1 <0.0000000000000000 ***
## experience 1.079243 0.002474 436.3 <0.0000000000000000 ***
## education 0.902851 0.006635 136.1 < 0.000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.025 on 8522 degrees of freedom
## Multiple R-squared: 0.9605, Adjusted R-squared: 0.9604
## F-statistic: 1.035e+05 on 2 and 8522 DF, p-value: < 0.000000000000000022
```

Model Summary

```
LM2=lm(salary~experience+education,data=TRAIN)
summary(LM2)
##
## Call:
## lm(formula = salary ~ experience + education, data = TRAIN)
##
## Residuals:
          10 Median
##
      Min
                          30
                                    Max
## -3.6426 -0.6776 -0.0138 0.6838 3.7675
##
## Coefficients:
                                                  Pr(>|t|)
            Estimate Std. Error t value
## (Intercept) 8.996672 0.058760 153.1 < 0.000000000000000 ***
## experience 1.079243 0.002474 436.3 <0.000000000000000 ***
## education 0.902851 0.006635 136.1 < 0.000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.025 on 8522 degrees of freedom
## Multiple R-squared: 0.9605, Adjusted R-squared: 0.9604
## F-statistic: 1.035e+05 on 2 and 8522 DF, p-value: < 0.0000000000000022
```

Visualization

Comparing Predicted Values to Actual Values for MODEL 2

Model Evaluation

Out-of-Sample Evaluation

```
MODELS=c("MODEL 0", "MODEL 1A", "MODEL 1B", "MODEL 2")
MSE=c (MSE0 (TEST, c (34.53)),
      MSE1A(TEST, c(9.4, 1.24)),
      MSE1B(TEST, c(31, 0.85)),
      MSE2(TEST, c(9, 1.07, 0.9)))
MAE=c (MAE0 (TEST, c (34.53)),
      MAE1A(TEST, c(9.4, 1.24)),
      MAE1B (TEST, c (31, 0.85)),
      MAE2(TEST, c(9, 1.07, 0.9)))
COMPARE=tibble (MODELS=MODELS, MSE=MSE, MAE=MAE)
print (COMPARE)
## # A tibble: 4 x 3
     MODELS
              MSE
                        MAE
     <chr> <dbl> <dbl>
## 1 MODEL 0 42.0 5.17
## 2 MODEL 1A 21.5 4.31
## 3 MODEL 1B 24.5 3.94
               0.965 0.786
    MODEL 2
```

Tutorial 11

- Instructions
 - Download Tutorial Zip
 - Unzip Folder
 - Required Packages
 - library(tidyverse)
 - library(modelr)
 - Open .Rmd File and Knit
- Daily Spanish River Data
 - W = Max Water Temperature
 - A = Max Air Temperature
 - L = River Identifier (31 Rivers)

Introduction

- Questions About RMarkdown
 - What Does the Following Code Do When Knitted?

`r length(unique(DATA\$L))`

 What Does the following Code Chunk Option Do When Knitted?

echo=F

Introduction

- Goal: Build a Model to Predict Max Water Temp Given Max Air Temp
 - What Do You Know About the Relationship of These Variables?
 - Who Would Care About this Relationship?
 - Why Would Someone Want to Predict the Max Water Temp?
 - Why Would this Model Be Useful?

- Run Chunk 1
 - What Do You Notice About the Overall Relationship?

- Do You Think This Relationship is the Same for All Locations?
- Why? message=F

- Run Chunk 2
 - Location is a Numeric Variable
 - What Do You Notice About the Relationship for L==103?

What do You Notice Now?

- Chunk 2 Modified
 - Modify Chunk 2 to Create a Function Called WAPlot.func With 1 Argument Location
 - Function Usage: You Specify the Location as an Integer and the Function Outputs a Figure of the Relationship
 - Use Your Function For Three Different Locations
 - Knit the Document to Observe and Compare

- Chunk 2 Discussion
 - What are the Differences in the Relationship Between W and A for the Various Locations?
 - Why do You Think These Differences Exist?
 - How do You Suggest We Handle the Differences?

- Chunk 3
 - Randomly Samples 3 Locations
 - Plant Your Seed and Run Code
 - Usage:
 - anti_join()
 - semi_join()
 - Why Don't We Handpick the Three Locations?

Run Chunk 4

Train Plot

Test Plot

Part 2: Linear Model

Linear Model

- Simplest Relationship that is Easily Explained
- For every 1 Degree Change in A, W changes by b
 Degrees
- When A=0 Degrees, the Expected Water Temperature is a Degrees

Part 2: Linear Model

- Run Chunk 1
 - Fits Linear Model to Train Data
 - What is Your Intercept?
 - What is Your Slope?
- Run Chunk 2
 - Saves Predictions to Train/Test

add_predictions(MODEL,var="NAME")

- Run Chunk 3
 - Saves Residuals to Train/Test

add_residuals(MODEL,var="NAME")

- Polynomial Model
 - "Feature Engineering"
 - Generalized Additive Model
 - Geom_smooth() Fits a GAM when Fitting a Curve
 - Useful for Approximating Nonlinear Relationships
 - Dependent on Degree "k"
 - Goal: Choose Best "k"

- Formula Object in R
 - Special Notation
 - Helpful Table:

Symbol	Example	Meaning
+	+X	include this variable
_	-X	delete this variable
:	X:Z	include the interaction between these variables
*	X*Y	include these variables and the interactions between them
1	X Z	conditioning: include x given z
^	$(X + Z + W)^3$	include these variables and all interactions up to three way
I	I(X*Z)	as is: include a new variable consisting of these variables multiplied
1	X - 1	intercept: delete the intercept (regress through the origin)

 We will Use the I() Function to Create New Variables Based Off Variables We Have

- Run Chunk 1
 - Fits 2nd Degree Polynomial
 - Fits 3rd Degree Polynomial
 - Fits 4th Degree Polynomial
- Run Chunk 2
 - Obtains Predictions Under the Different Polynomial Models

- Chunk 3
 - Code Needs Modification
 - Highlight Code

```
TRAIN4 =TRAIN3 %>%
  add_predictions(poly2mod,var="poly2pred") %>%
  add_predictions(poly3mod,var="poly3pred") %>%
  add_predictions(poly4mod,var="poly4pred")

TEST4 =TEST3 %>%
  add_predictions(poly2mod,var="poly2pred") %>%
  add_predictions(poly3mod,var="poly3pred") %>%
  add_predictions(poly4mod,var="poly4pred")
```

- TRAIN3 -> TRAIN4 and etc.
- Use Ctrl+F (Find and Replace)
 - 'predictions' -> 'residuals'
 - 'pred' -> 'res'

Run Chunk 3 After Modifying

Intermission

- Run Code Chunk
 - save.image() = Used to Save Workspace into .Rdata File
 - load() = Used to Load Workspace from .Rdata File
 - .Rdata = File Extension of R Workspace File (All Objects in Global Environment)