CLAIMS

1. A compound of the formula (I):

5

15

20

wherein A is -NR(C=O), -(C=O)NR, (C₂-C₆)alkynyl-, or a bond;

X is selected from -N=, -NR⁹-, -O-, -S-, -CR¹⁰-, >C(R¹¹)₂,

Y is selected from -N=, -NR⁹-, -O-, -S-, -CR¹⁰-, >C(R¹¹)₂;

with the proviso that when Y is O or S, X is not O or S;

dashed lines represent optional double bonds;

ring B is selected from the group consisting of:

$$R^2$$
 R^3
 R^4
 R^3
 R^4
 R^5
 R^6
 R^2
 R^2

wherein each R, R¹, R², R³, R⁵, R⁶, R⁹, R¹⁰, and R¹¹ are the same or different, where ever they appear, and each is independently selected from the group consisting of (C₁-C₆)alkyl-, (C₂-C₆)alkenyl-, (C₂-C₆)alkynyl-, (C₃-C₁₀)cycloalkyl-, (C₆-C₁₀)aryl-, (C₁-C₁₀)heterocyclyl-, (C₁-C₁₀)heteroaryl-, (C₃-C₁₀)cycloalkyl-, (C₁-C₆)alkyl-, (C₆-C₁₀)aryl-(C₁-C₆)alkyl-, (C₁-C₁₀)heterocyclyl-(C₁-C₆)alkyl-, (C₃-C₁₀)heteroaryl-(C₁-C₆)alkyl-, (C₃-C₁₀)heteroaryl-(C₁-C₁₀)heteroaryl-(C

C₁₀)cycloalkyl-(C₂-C₆)alkenyl-, (C_6-C_{10}) aryl- (C_2-C_6) alkenyl-, (C₁-C₁₀)heterocyclyl-(C₂- C_6)alkenyl-, (C_6-C_{10}) aryl- (C_2-C_6) alkenyl-, (C_1-C_{10}) heteroaryl- (C_2-C_6) alkenyl-, (C_3-C_{10}) cycloalkyl- (C_6-C_{10}) aryl- (C_2-C_6) alkynyl-, (C_1-C_{10}) heterocyclyl- (C_2-C_6) alkynyl-, C₁₀)heteroaryl-(C₂-C₆)alkynyl-; wherein each of the aforesaid group members, (C₁-C₆)alkyl-, (C_2-C_6) alkenyl-, (C_2-C_6) alkynyl-, (C_3-C_{10}) cycloalkyl-, (C_6-C_{10}) aryl-, (C_1-C_{10}) heterocyclyl-, (C_1-C_1) C₁₀)heteroaryl-, (C_3-C_{10}) cycloalkyl- (C_1-C_6) alkyl-, (C_6-C_{10}) aryl- (C_1-C_6) alkyl-, C₁₀)heterocyclyl-(C₁-C₆)alkyl-, (C₁-C₁₀)heteroaryl-(C₁-C₆)alkyl-, (C₃-C₁₀)cycloalkyl-(C₂- C_6) alkenyl-, (C_6-C_{10}) aryl- (C_2-C_6) alkenyl-, (C_1-C_{10}) heterocyclyl- (C_2-C_6) alkenyl-, (C_6-C_{10}) aryl- (C_2-C_6) C_6) alkenyl-, (C_1-C_{10}) heteroaryl- (C_2-C_6) alkenyl-, (C_3-C_{10}) cycloalkyl- (C_2-C_6) alkynyl-, (C_6-C_{10}) aryl- (C_2-C_6) alkynyl-, (C_1-C_{10}) heterocyclyl- (C_2-C_6) alkynyl-, and (C_1-C_{10}) heteroaryl- (C_2-C_6) alkynyl-, may be optionally independently substituted with one to three suitable substituents selected from the group consisting of hydrogen, halogen, hydroxy, -CN, (C₁-C₄)alkyl-, (C₁-C₄)alkoxy-, CF_3 -, CF_3O -, (C_6-C_{10}) aryl-, (C_1-C_{10}) heteroaryl-, (C_6-C_{10}) aryl- (C_1-C_4) alkyl-, (C_1-C_{10}) heteroaryl- (C_1-C_4) alkyl-, HO(C=O)-, (C_1-C_4) alkyl-(O)(C=O)-, (C_1-C_4) alkyl- $(O)(C=O)(C_1-C_4)$ alkyl-, (C_1-C_4) alkyl-, (C_4)alkyl-(C=O)-, (C_1 - C_4)alkyl-(C=O)(C_1 - C_4)alkyl-, -(S=O)R, -(SO₂)R, and NR⁷R⁸ wherein R⁷ and R⁸ are independently selected from hydrogen, (C₁-C₆)alkyl;

R, R³, R⁵, R⁶, R⁹, R¹⁰, and R¹¹ may further be hydrogen;

 R^4 is selected from the group consisting of hydrogen and (C_1 - C_6)alkyl-, and R^4 may be optionally substituted with one to three suitable substituents selected from the group consisting of halogen, hydroxy, -CN, CF_{3^-} , and CF_{3} -;

m is an integer from 0-3; or a pharmaceutically acceptable salt thereof.

10

15

20

25

2. A compound according to claim 1 selected from the group consisting of:

 R^1 A R^5 R^4 R^6

$$R^1$$
 A
 R^2
 R^5
 R^6

$$R^{1} - A - \begin{pmatrix} N & N & R^{2} \\ S & R^{5} & R^{6} \end{pmatrix}$$

$$R^1$$
 A R^2 R^4 , and

5

$$R^1$$
 A
 R^2
 R^4
 R^4
 R^4
 R^4

a pharmaceutically acceptable salt thereof.

- The compound of Claim 1, wherein R^1 is independently selected from (C_3-C_{10}) cycloalkyl- (C_1-C_6) alkyl-, (C_6-C_{10}) aryl- (C_1-C_6) alkyl-, (C_1-C_{10}) heterocyclyl- (C_1-C_6) alkyl-, (C_1-C_{10}) heteroaryl- (C_1-C_6) alkyl-, (C_3-C_{10}) cycloalkyl- (C_2-C_6) alkenyl-, (C_6-C_{10}) aryl- (C_2-C_6) alkenyl-, (C_1-C_{10}) heterocyclyl- (C_2-C_6) alkenyl-, (C_3-C_{10}) cycloalkyl- (C_2-C_6) alkynyl-, (C_6-C_{10}) aryl- (C_2-C_6) alkynyl-, (C_1-C_{10}) heterocyclyl- (C_2-C_6) alkynyl-, and (C_1-C_{10}) heteroaryl- (C_2-C_6) alkynyl-.
- 4. The compound of Claim 1, wherein R^2 is independently selected from (C_3-C_{10}) cycloalkyl- (C_1-C_6) alkyl-, (C_6-C_{10}) aryl- (C_1-C_6) alkyl-, (C_1-C_{10}) heteroaryl- (C_1-C_6) alkyl-, (C_3-C_{10}) cycloalkyl- (C_2-C_6) alkenyl-, (C_6-C_{10}) aryl- (C_2-C_6) alkenyl-, (C_1-C_{10}) heterocyclyl- (C_2-C_6) alkenyl-, (C_1-C_{10}) heteroaryl- (C_2-C_6) alkenyl-, (C_3-C_{10}) cycloalkyl- (C_2-C_6) alkynyl-, (C_6-C_{10}) aryl- (C_2-C_6) alkynyl-, (C_1-C_{10}) heterocyclyl- (C_2-C_6) alkynyl-, and (C_1-C_{10}) heteroaryl- (C_2-C_6) alkynyl-.
 - 5. The compound according to any one of Claims 1 to 4, wherein R¹ and R² are each independently selected from (C_3-C_{10}) cycloalkyl- (C_1-C_6) alkyl-, (C_6-C_{10}) aryl- (C_1-C_6) alkyl-, (C_1-C_{10}) heterocyclyl- (C_1-C_6) alkyl-, (C_1-C_1) heteroaryl- (C_1-C_6) alkyl-, (C_3-C_1) cycloalkyl- (C_2-C_6) alkenyl-, (C_1-C_1) heterocyclyl- (C_2-C_6) alkenyl-, (C_1-C_1) heteroaryl- (C_2-C_6) alkenyl-, (C_3-C_1) cycloalkyl- (C_2-C_6) alkynyl-, (C_3-C_1) aryl- (C_2-C_6) alkynyl-, (C_1-C_1) heterocyclyl- (C_2-C_6) alkynyl-, and (C_1-C_1) heteroaryl- (C_2-C_6) alkynyl-.
 - 6. The compound according to Claim 5, wherein R^1 and R^2 are each independently selected from (C_6-C_{10}) aryl- (C_1-C_6) alkyl- and (C_1-C_{10}) heteroaryl- (C_1-C_6) alkyl-.
 - 7. The compound of Claim 6, wherein R^3 , R^4 , R^5 , and R^6 are each independently selected from the group consisting of hydrogen and (C_1-C_6) alkyl-.
 - 8. The compound according to Claim 1 selected from the group consisting of:
 - 4-[2-(4-Methoxy-benzylcarbamoyl)-7-methyl-4,6,6-trioxo-6H-1,6 λ^6 -dithia-3a,5-diaza-inden-5-ylmethyl]-benzoic acid

 $5-(3,4-Difluoro-benzyl)-7-methyl-4,6,6-trioxo-5,6-dihydro-4H-1,6\lambda^6-dithia-3a,5-diaza-indene-2-carboxylic acid 4-methoxy-benzylamide$

 $\label{eq:4-2-4} 4-[2-(3-Methoxy-benzylcarbamoyl)-7-methyl-4,6,6-trioxo-6H-1,6\lambda^6-dithia-3a,5-diaza-inden-5-ylmethyl]-benzoic acid$

 $5-(3,4-Difluoro-benzyl)-7-methyl-4,6,6-trioxo-5,6-dihydro-4H-1,6\lambda^6-dithia-3a,5-diaza-indene-2-carboxylic acid 3-methoxy-benzylamide$

15

25

30

35

20

- $\label{eq:condition} 4-\{2-[3-(4-Methoxy-phenyl)-prop-1-ynyl]-7-methyl-4,6,6-trioxo-6H-1,6\lambda^6-dithia-3a,5-diaza-inden-5-ylmethyl\}-benzoic acid$
- $5-(3,4-Difluoro-benzyl)-2-[3-(4-methoxy-phenyl)-prop-1-ynyl]-7-methyl-6,6-dioxo-5,6-dihydro-1,6<math>\lambda^6$ -dithia-3a,5-diaza-inden-4-one
- $\label{eq:4-4-4} 4-\{2-[3-(3-Methoxy-phenyl)-prop-1-ynyl]-7-methyl-4,6,6-trioxo-6H-1,6\lambda^6-dithia-3a,5-diaza-inden-5-ylmethyl\}-benzoic acid$
- $5-(3,4-Difluoro-benzyl)-2-[3-(3-methoxy-phenyl)-prop-1-ynyl]-7-methyl-6,6-dioxo-5,6-dihydro-1,6<math>\lambda^6$ -dithia-3a,5-diaza-inden-4-one; or
 - a pharmaceutically acceptable salt thereof.

10

15

5

- 9. A pharmaceutical composition for the treatment of a condition selected from the group consisting of connective tissue disorders, inflammatory disorders, immunology/allergy disorders, infectious diseases, respiratory diseases, cardiovascular diseases, eye diseases, metabolic diseases, central nervous system (CNS) disorders, liver/kidney diseases, reproductive health disorders, gastric disorders, skin disorders and cancers in a mammal, including a human, comprising an amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof, effective in such treatment and a pharmaceutically acceptable carrier.
- 10. The pharmaceutical composition according to Claim 9, wherein the compound of Claim 1 is a compound of Claim 8, or a pharmaceutically acceptable salt thereof.
 - 11. A method for treating arthritis, comprising administering to a patient suffering from an arthritis disease a nontoxic antiarthritic effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof.

25

- 12. The method according to Claim 11, wherein the arthritis is osteoarthritis or rheumatoid arthritis.
- 13. The method according to Claim 12, wherein the compound administered is a compound according to Claim 8, or a pharmaceutically acceptable salt thereof.