

# 组合逻辑2 Combinational Logic II



Email: liupeng@zju.edu.cn



Digital Systems Design

### 复习

- □ 组合电路的基本概念
- □ 组合电路的设计方法
- □ 组合电路的模块设计
  - 优先编码器 (Priority Encoder)
  - 译码器 (Decoder)

### 本节内容

- □ 选择器(Multiplexer)
- □ 加法器(Adder)
- □ 比较器(Comparator)
- □ 采用模块组件实现组合电路

### 普通编码器

- □ 特点: 任何时刻 只允许输入一个 编码信号
- □ 例: 3位二进制 普通编码器



|   |                | 7                     | 输                     |                       | λ                     |                       |                       | 7              | 諭 占            | Н              |
|---|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|----------------|----------------|
|   | I <sub>1</sub> | <b>l</b> <sub>2</sub> | <b>I</b> <sub>3</sub> | <b>I</b> <sub>4</sub> | <b>I</b> <sub>5</sub> | <b>l</b> <sub>6</sub> | <b>I</b> <sub>7</sub> | Y <sub>2</sub> | Y <sub>1</sub> | Y <sub>0</sub> |
| 1 | 0              | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     | 0              | 0              | 0              |
| 0 | 1              | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     | 0              | 0              | 1              |
| 0 | 0              | 1                     | 0                     | 0                     | 0                     | 0                     | 0                     | 0              | 1              | 0              |
| 0 | 0              | 0                     | 1                     | 0                     | 0                     | 0                     | 0                     | 0              | 1              | 1              |
| 0 | 0              | 0                     | 0                     | 1                     | 0                     | 0                     | 0                     | 1              | 0              | 0              |
| 0 | 0              | 0                     | 0                     | 0                     | 1                     | 0                     | 0                     | 1              | 0              | 1              |
| 0 | 0              | 0                     | 0                     | 0                     | 0                     | 1                     | 0                     | 1              | 1              | 0              |
| 0 | 0              | 0                     | 0                     | 0                     | 0                     | 0                     | 1                     | 1              | 1              | 1              |

$$Y_{2} = I'_{7}I'_{6}I'_{5}I_{4}I'_{3}I'_{2}I'_{1}I'_{0} + I'_{7}I'_{6}I_{5}I'_{4}I'_{3}I'_{2}I'_{1}I'_{0}$$
$$+ I'_{7}I_{6}I'_{5}I'_{4}I'_{3}I'_{2}I'_{1}I'_{0} + I_{7}I'_{6}I'_{5}I'_{4}I'_{3}I'_{2}I'_{1}I'_{0}$$

### 利用无关项化简

$$Y_2 = I_4 + I_5 + I_6 + I_7$$
 $Y_1 = I_2 + I_3 + I_6 + I_7$ 
 $Y_0 = I_1 + I_3 + I_5 + I_7$ 



任何时候只有一个输入时激活的,或有两个输入同时激活,则输入就会产生一个没有定义的组合。对于这个不确定因素,编码器必须建立优先机制,使得只有一个输出被编码

### 优先编码器

□ 特点:允许同时输入两个以上的编码信号,但只对其中优先权最高的一个进行编码

□ 例:8线-3线优先编码器

|                |                | 1              | 输     |                | 入              |                |                | 1              | 输 L            | H     |
|----------------|----------------|----------------|-------|----------------|----------------|----------------|----------------|----------------|----------------|-------|
| I <sub>0</sub> | I <sub>1</sub> | l <sub>2</sub> | $I_3$ | l <sub>4</sub> | l <sub>5</sub> | I <sub>6</sub> | I <sub>7</sub> | Y <sub>2</sub> | Y <sub>1</sub> | $Y_0$ |
| X              | X              | X              |       |                | X              |                | 1              | 1              | 1              | 1     |
| X              | X              | X              | X     | X              | X              | 1              | 0              | 1              | 1              | 0     |
| X              | X              | X              | X     | X              | 1              | 0              | 0              | 1              | 0              | 1     |
| X              | X              | X              | X     | 1              | 0              | 0              | 0              | 1              | 0              | 0     |
| X              | X              | X              | 1     | 0              | 0              | 0              | 0              | 0              | 1              | 1     |
| X              | X              | 1              | 0     | 0              | 0              | 0              | 0              | 0              | 1              | 0     |
| X              | 1              | 0              | 0     | 0              | 0              | 0              | 0              | 0              | 0              | 1     |
| 1              | 0              | 0              | 0     | 0              | 0              | 0              | 0              | 0              | 0              | 0     |

$$Y_2 = I_7 + I_7 I_6 + I_7 I_6 I_5 + I_7 I_6 I_5 I_4$$

$$A + A'B = A + B$$

$$Y_2 = I_7 + I_6 + I_5 + I_4$$



# 实例: 74HC148

$$Y_{2}' = (I_{7} + I_{6} + I_{5} + I_{4})'$$
 造值

$$Y_2' = [(I_7 + I_6 + I_5 + I_4)S]'$$

$$Y_{2}' = [(I_{7} + I_{6} + I_{5} + I_{4})S]'$$

$$Y_{1}' = [(I_{7} + I_{6} + I_{5}I_{4}'I_{3}' + I_{2}I_{4}'I_{5}')S]'$$

$$Y_{0}' = [(I_{7} + I_{6}'I_{5} + I_{3}I_{4}'I_{6}' + I_{1}I_{2}I_{4}'I_{6}')S]'$$





 $Y_S' = (I_7'I_6'I_5'I_4'I_3'I_2'I_1'I_0'S)'$ 

 $Y'_{EX} = [(I'_7 I'_6 I'_5 I'_4 I'_3 I'_2 I'_1 I'_0 S)'S]'$ 

 $= [(I_7 + I_6 + I_5 + I_4 + I_3 + I_2 + I_1 + I_0) \square S]'$ 

为0时,电路工作有编码输入



|   |           |           | 输         |           | λ         |           |           |           |       | !                        | 输出                       | 出           |              |
|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------|--------------------------|--------------------------|-------------|--------------|
| S | $I_0^{'}$ | $I_1^{'}$ | $I_2^{'}$ | $I_3^{'}$ | $I_4^{'}$ | $I_5^{'}$ | $I_6^{'}$ | $I_7^{'}$ | $Y_2$ | $\boldsymbol{Y}_{1}^{'}$ | $\boldsymbol{Y}_{0}^{'}$ | $Y_{S}^{'}$ | $Y_{EX}^{'}$ |
| 1 | X         | X         | X         | X         | X         | X         | X         | X         | 1     | 1                        | 1                        | 1           | 1            |
| 0 | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1     | 1                        | 1                        | 0           | 1            |
| 0 | X         | X         | X         | X         | X         | X         | X         | 0         | 0     | 0                        | 0                        | 1           | 0            |
| 0 | X         | X         | X         | X         | X         | X         | 0         | 1         | 0     | 0                        | 1                        | 1           | 0            |
| 0 | X         | X         | X         | X         | X         | 0         | 1         | 1         | 0     | 1                        | 0                        | 1           | 0            |
| 0 | X         | X         | X         | X         | 0         | 1         | 1         | 1         | 0     | 1                        | 1                        | 1           | 0            |
| 0 | X         | X         | X         | 0         | 1         | 1         | 1         | 1         | 1     | 0                        | 0                        | 1           | 0            |
| 0 | X         | X         | 0         | 1         | 1         | 1         | 1         | 1         | 1     | 0                        | 1                        | 1           | 0            |
| 0 | X         | 0         | 1         | 1         | 1         | 1         | 1         | 1         | 1     | 1                        | 0                        | 1           | 0            |
| 0 | 0         | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1     | 1                        | 1                        | 1           | 0            |

### 74148 encoder 附加输出信号的状态及含义

| $Y_S'$ | $Y'_{EX}$ | 状态      |
|--------|-----------|---------|
| 1      | 1         | 不工作     |
| 0      | 1         | 工作,但无输入 |
| 1      | 0         | 工作,且有输入 |
| 0      | 0         | 不可能出现   |

# 控制端扩展功能举例

□ 例:用两片8线-3线优先编码器74148



16线-4线优先编码器

其中  $A'_{15}$  的优先权最高…







# 译码器

□ 译码:将每个输入的二进制代码译成对应的输出高、低电平信号

□ 常用的有: 二进制译码器, 二-十进制译码器, 显示译码器等

一、二进制译码器

例:3线—8线译码器



| 输入    |                |       |                | 辑                     | Î              | ŀ              | 出              |                |                |       |
|-------|----------------|-------|----------------|-----------------------|----------------|----------------|----------------|----------------|----------------|-------|
| $A_2$ | A <sub>1</sub> | $A_0$ | Y <sub>7</sub> | <b>Y</b> <sub>6</sub> | Y <sub>5</sub> | Y <sub>4</sub> | Y <sub>3</sub> | Y <sub>2</sub> | Y <sub>1</sub> | $Y_0$ |
| 0     | 0              | 0     | 0              | 0                     | 0              | 0              | 0              | 0              | 0              | 1     |
| 0     | 0              | 1     | 0              | 0                     | 0              | 0              | 0              | 0              | 1              | 0     |
| 0     | 1              | 0     | 0              | 0                     | 0              | 0              | 0              | 1              | 0              | 0     |
| 0     | 1              | 1     | 0              | 0                     | 0              | 0              | 1              | 0              | 0              | 0     |
| 1     | 0              | 0     | 0              | 0                     | 0              | 1              | 0              | 0              | 0              | 0     |
| 1     | 0              | 1     | 0              | 0                     | 1              | 0              | 0              | 0              | 0              | 0     |
| 1     | 1              | 0     | 0              | 1                     | 0              | 0              | 0              | 0              | 0              | 0     |
| 1     | 1              | 1     | 1              | 0                     | 0              | 0              | 0              | 0              | 0              | 0     |

### 真值表 —— 逻辑表达式

| 辅     | 输入             |       |                |                |                | 输              | 8                     | 4              |                |                |
|-------|----------------|-------|----------------|----------------|----------------|----------------|-----------------------|----------------|----------------|----------------|
| $A_2$ | A <sub>1</sub> | $A_0$ | Y <sub>7</sub> | Y <sub>6</sub> | Y <sub>5</sub> | Y <sub>4</sub> | <b>Y</b> <sub>3</sub> | Y <sub>2</sub> | Y <sub>1</sub> | Y <sub>0</sub> |
| 0     | 0              | 0     | 0              | 0              | 0              | 0              | 0                     | 0              | 0              | 1              |
| 0     | 0              | 1     | 0              | 0              | 0              | 0              | 0                     | 0              | 1              | 0              |
| 0     | 1              | 0     | 0              | 0              | 0              | 0              | 0                     | 1              | 0              | 0              |
| 0     | 1              | 1     | 0              | 0              | 0              | 0              | 1                     | 0              | 0              | 0              |
| 1     | 0              | 0     | 0              | 0              | 0              | 1              | 0                     | 0              | 0              | 0              |
| 1     | 0              | 1     | 0              | 0              | 1              | 0              | 0                     | 0              | 0              | 0              |
| 1     | 1              | 0     | 0              | 1              | 0              | 0              | 0                     | 0              | 0              | 0              |
| 1     | 1              | 1     | 1              | 0              | 0              | 0              | 0                     | 0              | 0              | 0              |

$$Y_{0} = A_{2}' A_{1}' A_{0}' = m_{0}$$
 $Y_{1} = A_{2}' A_{1}' A_{0} = m_{1}$ 
 $Y_{2} = A_{2}' A_{1} A_{0}' = m_{2}$ 
...
 $Y_{3} = A_{2} A_{1} A_{0} = m_{3}$ 

# 译码器Decoder实例: 74HC138



$$\boldsymbol{S} = \boldsymbol{S}_3 \boldsymbol{S}_2 \boldsymbol{S}_1$$



$$Y_i' = (S m_i)'$$

Digital Systems Design





# 74HC138的功能表

|                | 输             | )     | \                     |       |       |       | 输     |       |       | 出     |       |       |
|----------------|---------------|-------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| S <sub>1</sub> | $S_2' + S_3'$ | $A_2$ | <b>A</b> <sub>1</sub> | $A_0$ | $Y_7$ | $Y_6$ | $Y_5$ | $Y_4$ | $Y_3$ | $Y_2$ | $Y_1$ | $Y_0$ |
| 0              | Х             | X     | X                     | X     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| X              | 1             | X     | X                     | X     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| 1              | 0             | 0     | 0                     | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 0     |
| 1              | 0             | 0     | 0                     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 0     | 1     |
| 1              | 0             | 0     | 1                     | 0     | 1     | 1     | 1     | 1     | 1     | 0     | 1     | 1     |
| 1              | 0             | 0     | 1                     | 1     | 1     | 1     | 1     | 1     | 0     | 1     | 1     | 1     |
| 1              | 0             | 1     | 0                     | 0     | 1     | 1     | 1     | 0     | 1     | 1     | 1     | 1     |
| 1              | 0             | 1     | 0                     | 1     | 1     | 1     | 0     | 1     | 1     | 1     | 1     | 1     |
| 1              | 0             | 1     | 1                     | 0     | 1     | 0     | 1     | 1     | 1     | 1     | 1     | 1     |
| 1              | 0             | 1     | 1                     | 1     | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |

### 用译码器设计组合逻辑电路

### □基本原理

■ 一个译码器提供n个输入变量的**2**<sup>n</sup>个最小项,译码器的输出 由每一组输入唯一确定

■ 任何布尔函数可以表示成最小项之和

■ 任何组合电路由n个输入,m个输出可用n-to- 2<sup>n</sup> 译码器和m个或门实现

### 译码器设计组合电路例子

例:利用74HC138设计一个多输出的组合逻辑电路,输出逻辑函数式为:

$$Z_1 = AC' + A'BC + AB'C$$

$$Z_{\gamma} = BC + A'B'C$$

$$Z_3 = A'B + AB'C$$

$$Z_{A} = A'BC' + B'C' + ABC$$



$$Z_1 = AC' + A'BC + AB'C = \sum m(3,4,5,6)$$

$$Z_2 = BC + A'B'C = \sum m(1,3,7)$$

$$Z_3 = A'B + AB'C = \sum m(2,3,5)$$

$$Z_4 = A'BC' + B'C' + ABC = \sum m(0,2,4,7)$$

$$Z_1 = \sum m(3,4,5,6) = (m_3 m_4 m_5 m_6)'$$

$$Z_2 = \sum m(1,3,7) = (m_1 m_3 m_7)'$$

$$Z_3 = \sum m(2,3,5) = (m_2 m_3 m_5)$$

$$Z_4 = \sum m(0,2,4,7) = (m_0 m_2 m_4 m_7)$$

# 数据选择器 (Multiplexers)

- □ 数据选择器是从多路输入线中选 择其中的一路到输出线的一种组 合电路
- □ 二选一数据选择器:
  - 数据输入线D<sub>0</sub>-D<sub>1</sub>
  - 选择线A<sub>0</sub>
  - 输出线Y
- □电路图
- □ 表达式:  $Y = A'_0 D_0 + A_0 D_1$



# 4选1选择器 (mux4to1)

□四选一数据选择器逻辑图

□功能表



### 采用数据选择器设计组合电路

### □基本原理

- $\blacksquare$  Y= D<sub>0</sub>A<sub>1</sub>'A<sub>0</sub>' +D<sub>1</sub>A<sub>1</sub>'A<sub>0</sub>+D<sub>2</sub>A<sub>1</sub>A<sub>0</sub>' + D<sub>3</sub>A<sub>1</sub>A<sub>0</sub>
- 具有n-1位地址输入的数据选择器,可实现n个变量布尔函数
- 数据选择器就是一个带或 (OR) 门的译码器



### 半加器(Half Adder, HA)

半加器,不考虑来自低位的进位,将两个1位的二进制数相加我们指定符号S(sum) and CO(carry)作为输出输入为A和B

#### 真值表Truth Table



# 全加器(Full Adder, FA)

将两个1位二进制数A,B及来自低位的进位CI相加

|     | 4 | • | 入  | 输 | 出  | S = (A'B'CI' + A'BCI + AB'CI + ABCI')'           |
|-----|---|---|----|---|----|--------------------------------------------------|
|     | Α | В | CI | S | СО | CO = (A'B' + B'CI' + A'CI')'                     |
|     | 0 | 0 | 0  | 0 | 0  |                                                  |
|     | 0 | 0 | 1  | 1 | 0  |                                                  |
|     | 0 | 1 | 0  | 1 | 0  |                                                  |
|     | 0 | 1 | 1  | 0 | 1  | $c_{I}$                                          |
|     | 1 | 0 | 0  | 1 | 0  |                                                  |
|     | 1 | 0 | 1  | 0 | 1  | $A \longrightarrow \Sigma$ $B \longrightarrow S$ |
|     | 1 | 1 | 0  | 0 | 1  | CI $CI$ $CO$ $CO$                                |
|     | 1 | 1 | 1  | 1 | 1  |                                                  |
|     |   |   |    | • |    | (b)                                              |
|     |   |   |    |   |    | 74HC183                                          |
| ion |   |   |    |   |    | (a)                                              |

# 两个半加器和1个或门实现全加器



# 两个半加器和1个"或"门实现全加器



 $P_i$ 进位传播  $G_i$ 进位产生

# 多位加法器:串行进位加法器



$$(CI)_i = (CO)_{i-1}$$
  
 $S_i = A_i \oplus B_i \oplus (CI)_i$   
 $(CO)_i = A_i B_i + (A_i + B_i)(CI)_i$ 

### 用加法器设计组合电路

#### □ 基本原理:

若能生成函数可变换成输入变量与输入变量相加若能生成函数可变换成输入变量与常量相加

例:将BCD的8421码转换为余3码

$$Y_3Y_2Y_1Y_0 = DCBA + 0011$$



| 1 | 输 | ) |   | 1                     | 输                     | H                     | 1          |
|---|---|---|---|-----------------------|-----------------------|-----------------------|------------|
| D | С | В | Α | <b>Y</b> <sub>3</sub> | <b>Y</b> <sub>2</sub> | <b>Y</b> <sub>1</sub> | <b>Y</b> 0 |
| 0 | 0 | 0 | 0 | 0                     | 0                     | 1                     | 1          |
| 0 | 0 | 0 | 1 | 0                     | 1                     | 0                     | 0          |
| 0 | 0 | 1 | 0 | 0                     | 1                     | 0                     | 1          |
| 0 | 0 | 1 | 1 | 0                     | 1                     | 1                     | 0          |
| 0 | 1 | 0 | 0 | 0                     | 1                     | 1                     | 1          |
| 0 | 1 | 0 | 1 | 1                     | 0                     | 0                     | 0          |
| 0 | 1 | 1 | 0 | 1                     | 0                     | 0                     | 1          |
| 0 | 1 | 1 | 1 | 1                     | 0                     | 1                     | 0          |
| 1 | 0 | 0 | 0 | 1                     | 0                     | 1                     | 1          |
| 1 | 0 | 0 | 1 | 1                     | 1                     | 0                     | 0          |

# 数值比较器 (Magnitude Comparator)

□ 用来比较两个二进制数的数值大小 1位数值比较器 A,B比较有三种可能结果

\* 
$$A > B(A = 1, B = 0)$$
  $\mathbb{N} AB' = 1, : Y_{(A > B)} = AB'$ 

\* 
$$A < B(A = 0, B = 1) \text{Me} A'B = 1, : Y_{(A < B)} = A'B$$



# 多位数值比较器

原理:从高位比起,只有高位相等,才比较下一位

例如:

比較
$$A_3A_2A_1A_0$$
和 $B_3B_2B_1B_0$ 

$$Y_{(A < B)} = A_3'B_3 + (A_3 \oplus B_3)'A_2'B_2 + (A_3 \oplus B_3)'(A_2 \oplus B_2)'A_1'B_1$$

$$+ (A_3 \oplus B_3)'(A_2 \oplus B_2)'(A_1 \oplus B_1)'A_0'B_0$$

$$Y_{(A = B)} = (A_3 \oplus B_3)'(A_2 \oplus B_2)'(A_1 \oplus B_1)'(A_0 \oplus B_0)'$$

$$Y_{(A > B)} = (Y_{(A < B)} + Y_{(A = B)})'$$

# 4位比较器 (Four-bit Magnitude Comparator)



32

# 4位比较器的真值表

TRUTH TABLE

|                                                                                                                                                                                                                                                                                                   | COMPARI                                                                                                                                                                                                                                                                     | NG INPUTS                                                                                                                                                                                  |                                                                                                                                                                 | CAS                                       | CADING II                                 | NPUTS                                     |                            | OUTPUT                     | S                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------|----------------------------|----------------------------|
| A <sub>3,</sub> B <sub>3</sub>                                                                                                                                                                                                                                                                    | A <sub>2</sub> , B <sub>2</sub>                                                                                                                                                                                                                                             | A <sub>1</sub> , B <sub>1</sub>                                                                                                                                                            | A <sub>0</sub> , B <sub>0</sub>                                                                                                                                 | I <sub>A&gt;B</sub>                       | I <sub>A<b< sub=""></b<></sub>            | I <sub>A-B</sub>                          | O <sub>A&gt;B</sub>        | $O_{A < B}$                | O <sub>A-B</sub>           |
| A <sub>3</sub> >B <sub>3</sub><br>A <sub>3</sub> <b<sub>3<br/>A<sub>3</sub>=B<sub>3</sub><br/>A<sub>3</sub>=B<sub>3</sub><br/>A<sub>3</sub>=B<sub>3</sub><br/>A<sub>3</sub>=B<sub>3</sub><br/>A<sub>3</sub>=B<sub>3</sub><br/>A<sub>3</sub>=B<sub>3</sub><br/>A<sub>3</sub>=B<sub>3</sub></b<sub> | X<br>X<br>A <sub>2</sub> >B <sub>2</sub><br>A <sub>2</sub> <b<sub>2<br/>A<sub>2</sub>=B<sub>2</sub><br/>A<sub>2</sub>=B<sub>2</sub><br/>A<sub>2</sub>=B<sub>2</sub><br/>A<sub>2</sub>=B<sub>2</sub><br/>A<sub>2</sub>=B<sub>2</sub><br/>A<sub>2</sub>=B<sub>2</sub></b<sub> | X<br>X<br>X<br>X<br>A <sub>1</sub> >B <sub>1</sub><br>A <sub>1</sub> =B <sub>1</sub><br>A <sub>1</sub> =B <sub>1</sub><br>A <sub>1</sub> =B <sub>1</sub><br>A <sub>1</sub> =B <sub>1</sub> | X<br>X<br>X<br>X<br>X<br>X<br>A <sub>0</sub> >B <sub>0</sub><br>A <sub>0</sub> <b<sub>0<br/>A<sub>0</sub>=B<sub>0</sub><br/>A<sub>0</sub>=B<sub>0</sub></b<sub> | X<br>X<br>X<br>X<br>X<br>X<br>X<br>H<br>L | X<br>X<br>X<br>X<br>X<br>X<br>X<br>L<br>H | X<br>X<br>X<br>X<br>X<br>X<br>X<br>L<br>L | H<br>L<br>H<br>L<br>H<br>L | L<br>H<br>L<br>H<br>L<br>H | L<br>L<br>L<br>L<br>L<br>L |
| A <sub>3</sub> =B <sub>3</sub><br>A <sub>3</sub> =B <sub>3</sub><br>A <sub>3</sub> =B <sub>3</sub>                                                                                                                                                                                                | $A_2 = B_2$ $A_2 = B_2$ $A_2 = B_2$                                                                                                                                                                                                                                         | A <sub>1</sub> =B <sub>1</sub><br>A <sub>1</sub> =B <sub>1</sub><br>A <sub>1</sub> =B <sub>1</sub>                                                                                         | $A_0 = B_0$<br>$A_0 = B_0$<br>$A_0 = B_0$                                                                                                                       | Ĺ<br>H                                    | Ĺ<br>H                                    | L<br>L                                    | H                          | H                          | L<br>L                     |

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

### 4位比较器



Digital Systems Design

# 8位比较器



Digital Systems Design

### 比较两个8位二进制数的大小



### 课后作业

- □回顾
  - 选择器、加法器、比较器
  - 采用模块设计组合电路
- □ 作业
  - 学在浙大

