Big Data Engineering In details From Beginner to Professional

Mostafa Alaa Mohamed Senior Big Data Engineer

♠ MoustafaAlaa in Moustafa Alaa ♥ @Moustafa_alaa22

mustafa.alaa.mohamed@gmail.com

¹Big Data & Analytics Department, Epam Systems

The Definitive Guide to Big Data Engineering Tasks

Table of Contents I

- Course Introduction
 - Learning Objectives
 - Getting max benefit from this course
 - Assignments and Labs
 - Course Textbook
 - Introduction To Distributed Systems (Hadoop as example)
 - Data Management
 - From DWH to Big Data
 - Distributed Systems Concepts
 - Hadoop Architecture
 - Storage
 - YARN
 - Hadoop I/O
 - Processing
 - Map-Reduce
 - Map-Reduce Components
 - Word-Count Example

Table of Contents II

- Hive
- Section Programming
 - Why FN commonly use distributed systems?
 - Introduction to Scala
- Spark Framework
 - Spark Basics
 - Spark Programming using RDDs
 - Spark RDD
 - Spark Working With Key/Value Pairs
 - Spark Datasets/Dataframe
 - Spark SQL
 - Dataframes/Datasets vs. RDDs
 - Spark on Production
 - Spark For Batch Processing
 - Spark Streaming
 - Spark using other Programming Languages

Table of Contents III

- PySpsark for Python Geeks
- RSpark for R Geeks
- Spark For Data Scientist
- Spark Graph Dataframe/Graphx
- Tuning your Spark Jobs
- Seal World Applications
 - Big Data Development Life Cycle
 - Template for ETL Application
 - Template for QA
 - Template for Streaming Applications
 - Template for Machine Learning Applications
- Massaging Systems
 - Motivation
 - Massaging Systems Architecture
 - JMS queue as an example
 - Introduction to Kafka

Table of Contents IV

- Kafka Architecture
- Kafka Topics
- Partitions
- Kafka Producers
- Kafka Consumers
- Kafka Connector
- Kafka Custom Connectors
- Kafka Configuration
- Kafka Configuration Optimizations
- Kafka Operations
- Kafka Integration with Enterprise tools
- Elastic
- NOSQL
 - Introduction to NoSQL Databases.
 - Cassandra
 - Why Cassandra?
 - Introducing Cassandra
 - The Cassandra Data Model

Table of Contents V

- Architecture
- Reading and Writing Data
- Integrating Hadoop
- Data Orchestration
 - Motivation
 - Enterprise vs Open source tools
 - Open source tools
 - Enterprise source tools
 - How to choose the right tool?
- Appendix
 - Appendix A- Shell Programming
 - Appendix B- Java Programming
 - Appendix C- Scala Programming
 - Appendix D- SQL Programming
 - Appendix E- Oozie Orchestration
 - Appendix F- DWH Concepts and Data Modeling Design

Table of Contents VI

- Appendix G- Machine Learning Concepts Data Engineers
- Appendix H- Docker for Data Engineers

• Understand the data management life-cycle.

- Understand the data management life-cycle.
- Illustrate the basics of distributed systems concepts

- Understand the data management life-cycle.
- Illustrate the basics of distributed systems concepts
- Be familiar with ETL for (Batch/Steaming) data over distributed systems ex: Hadoop & Spark.

- Understand the data management life-cycle.
- Illustrate the basics of distributed systems concepts
- Be familiar with ETL for (Batch/Steaming) data over distributed systems ex: Hadoop & Spark.
- Apply QA and testing for the data pipeline cycle.

- Understand the data management life-cycle.
- Illustrate the basics of distributed systems concepts
- Be familiar with ETL for (Batch/Steaming) data over distributed systems ex: Hadoop & Spark.
- Apply QA and testing for the data pipeline cycle.
- Automate the Data life-cycle process End-to-End.

- Understand the data management life-cycle.
- Illustrate the basics of distributed systems concepts
- Be familiar with ETL for (Batch/Steaming) data over distributed systems ex: Hadoop & Spark.
- Apply QA and testing for the data pipeline cycle.
- Automate the Data life-cycle process End-to-End.
- Building real-life examples.

- Understand the data management life-cycle.
- Illustrate the basics of distributed systems concepts
- Be familiar with ETL for (Batch/Steaming) data over distributed systems ex: Hadoop & Spark.
- Apply QA and testing for the data pipeline cycle.
- Automate the Data life-cycle process End-to-End.
- Building real-life examples.
- Applying machine learning over Big Data.

- Understand the data management life-cycle.
- Illustrate the basics of distributed systems concepts
- Be familiar with ETL for (Batch/Steaming) data over distributed systems ex: Hadoop & Spark.
- Apply QA and testing for the data pipeline cycle.
- Automate the Data life-cycle process End-to-End.
- Building real-life examples.
- Applying machine learning over Big Data.
- Understanding of the DevOps tools and functions in data life-cycle.

Take the course advantage

• Follow the videos order as described.

- Follow the videos order as described.
- Read the references for each section (including the implementation of the examples if exists).

- Follow the videos order as described.
- Read the references for each section (including the implementation of the examples if exists).
- Repeat the lecture code with your own.

- Follow the videos order as described.
- Read the references for each section (including the implementation of the examples if exists).
- Repeat the lecture code with your own.
- Do the assignments.

- Follow the videos order as described.
- Read the references for each section (including the implementation of the examples if exists).
- Repeat the lecture code with your own.
- Do the assignments.
- Ask your questions.

- Follow the videos order as described.
- Read the references for each section (including the implementation of the examples if exists).
- Repeat the lecture code with your own.
- Do the assignments.
- Ask your questions.
- Join the online meeting or discussions.

- Follow the videos order as described.
- Read the references for each section (including the implementation of the examples if exists).
- Repeat the lecture code with your own.
- Do the assignments.
- Ask your questions.
- Join the online meeting or discussions.

Assignments and Labs

Remark

• Full project code.

Assignments and Labs

Remark

- Full project code.
- Notebooks (Jupyter or Zeppelin).

Assignments and Labs

Remark

- Full project code.
- Notebooks (Jupyter or Zeppelin).
- Read the reference.

• Hadoop: The Definitive Guide: Storage and Analysis at Internet Scale 4th Edition by Tom White.

- Hadoop: The Definitive Guide: Storage and Analysis at Internet Scale 4th Edition by Tom White.
- Learning Spark by Matei Zaharia, Patrick Wendell, Andy Konwinski, Holden Karau

- Hadoop: The Definitive Guide: Storage and Analysis at Internet Scale 4th Edition by Tom White.
- Learning Spark by Matei Zaharia, Patrick Wendell, Andy Konwinski, Holden Karau
- High Performance Spark Best Practices for Scaling and Optimizing Apache Spark By Holden Karau, Rachel Warren.

- Hadoop: The Definitive Guide: Storage and Analysis at Internet Scale 4th Edition by Tom White.
- Learning Spark by Matei Zaharia, Patrick Wendell, Andy Konwinski, Holden Karau
- High Performance Spark Best Practices for Scaling and Optimizing Apache Spark By Holden Karau, Rachel Warren.
- Kafka: The Definitive Guide by Todd Palino, Gwen Shapira, Neha Narkhede.

- Hadoop: The Definitive Guide: Storage and Analysis at Internet Scale 4th Edition by Tom White.
- Learning Spark by Matei Zaharia, Patrick Wendell, Andy Konwinski, Holden Karau
- High Performance Spark Best Practices for Scaling and Optimizing Apache Spark By Holden Karau, Rachel Warren.
- Kafka: The Definitive Guide by Todd Palino, Gwen Shapira, Neha Narkhede.
- Guide to High Performance Distributed Computing: Case Studies with Hadoop, Scalding and Spark (Computer Communications and Networks) 2015th Edition

Tom White

Holden Karau, Andy Konwinski, Patrick Wendell & Matei Zaharia

Neha Narkhede, Gwen Shapira & Todd Palino Introduction To Distributed Systems (Hadoop as example)

Chapter Objectives

• What is data management?

Chapter Objectives

- What is data management?
- Introduction to distributed systems concepts

- What is data management?
- Introduction to distributed systems concepts
- Why we need Hadoop?

- What is data management?
- Introduction to distributed systems concepts
- Why we need Hadoop?
- Understand the concept of HDFS and Map-Reduce.

- What is data management?
- Introduction to distributed systems concepts
- Why we need Hadoop?
- Understand the concept of HDFS and Map-Reduce.
- Developing Map-Reduce applications.
- Using Hive QL over Map-Reduce.

- What is data management?
- Introduction to distributed systems concepts
- Why we need Hadoop?
- Understand the concept of HDFS and Map-Reduce.
- Developing Map-Reduce applications.
- Using Hive QL over Map-Reduce.

- What is data management?
- Introduction to distributed systems concepts
- Why we need Hadoop?
- Understand the concept of HDFS and Map-Reduce.
- Developing Map-Reduce applications.
- Using Hive QL over Map-Reduce.
- Hadoop advantages and disadvantages with use cases?

Data Management

- Data are a product.
- Data product has a life-cycle as following (simplified):
 - Question, Idea, or service.
 - **Identifying** the source of information and the data type ex: (text, images, videos, audio, or sensors).
 - Document all details regarding the data including quality, security, efficiency, and access (consideration during the cycle).
 - Extraction Process (collection).
 - Transformation ex: (cleansing, Apply business logic, Organize).
 - Loading or store the transformed data based on our usage or use case.
 - Business Intelligence (BI) or data discovery (continues process).
 - Integration and publishing.
 - Data retention or archiving process ex: (Hot or Cold storage).

Data Management Life-Cycle

From DWH to Big Data

From DWH to Big Data

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Distributed Systems Concepts

Distributed Systems Concepts

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Hive

Hive

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Spark Framework: Spark Basics

Spark Framework: Spark Basics

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Spark Basics

Spark Basics

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Spark Programming using RDDs

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Spark For Batch Processing

Spark For Batch Processing

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Spark For Data Scientist

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Real World Applications

Elastic

Appendix A- Shell Programming

Appendix A- Shell Programming

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Appendix B- Java Programming

Appendix B- Java Programming

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Appendix C- Scala Programming

Appendix C- Scala Programming

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Appendix D- SQL Programming

Appendix D- SQL Programming

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Appendix E- Oozie Orchestration

Appendix E- Oozie Orchestration

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Appendix F- DWH Concepts and Data Modeling Design

Appendix F- DWH Concepts and Data Modeling Design

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Appendix G- Machine Learning Concepts Data Engineers

Appendix G- Machine Learning Concepts Data Engineers

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Appendix H- Docker for Data Engineers

Appendix H- Docker for Data Engineers

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?