Maxwell's Stress Tensor

- ❖ Stress Tensor
- ❖ Stress ... ii
- ❖ Stress ... iii
- ❖ Stress ... iv
- ❖ Stress ... v

Momentum Conservation

Maxwell's Stress Tensor

Maxwell's Stress Tensor

Maxwell's Stress Tensor

- ❖ Stress Tensor
- ❖ Stress ... ii
- ❖ Stress ... iii
- ❖ Stress ... iv
- ❖ Stress ... v

Momentum Conservation

The total electromagnetic force on the charges in volume V:

$$\mathbf{F} = \int_{V} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \rho \, d\tau = \int_{V} (\rho \mathbf{E} + \mathbf{J} \times \mathbf{B}) \, d\tau. \tag{1}$$

The force per unit volume is

$$f = \rho E + J \times B \tag{2}$$

Writing this in terms of fields alone, we eliminate ρ and J by using Maxwell's equations (i) and (iv):

$$f = \epsilon_0 (\nabla \cdot \mathbf{E}) \mathbf{E} + \left(\frac{1}{\mu_0} \nabla \times \mathbf{B} - \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) \times \mathbf{B}.$$

Now

$$\frac{\partial}{\partial t}(\boldsymbol{E} \times \boldsymbol{B}) = \left(\frac{\partial \boldsymbol{E}}{\partial t} \times \boldsymbol{B}\right) + \left(\boldsymbol{E} \times \frac{\partial \boldsymbol{B}}{\partial t}\right)$$

Maxwell's Stress Tensor

- ❖ Stress Tensor
- ❖ Stress ... ii
- ❖ Stress ... iii
- ❖ Stress ... iv
- ❖ Stress ... v

Momentum Conservation

SO

$$\frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B} = \frac{\partial}{\partial t} (\mathbf{E} \times \mathbf{B}) + \mathbf{E} \times (\nabla \times \mathbf{E})$$

Thus

$$f = \epsilon_0[(\nabla \cdot \mathbf{E})\mathbf{E} - \mathbf{E} \times (\nabla \times \mathbf{E})] - \frac{1}{\mu_0}[\mathbf{B} \times (\nabla \times \mathbf{B})] - \epsilon_0 \frac{\partial}{\partial t}(\mathbf{E} \times \mathbf{B})$$

To make things look more symmetrical, we include a term $(\nabla \cdot \mathbf{B})\mathbf{B}$, which is zero $\nabla \cdot \mathbf{B} = 0$.

Now, product rule 4 gives

$$\nabla(E^2) = 2(\boldsymbol{E} \cdot \nabla)\boldsymbol{E} + 2\boldsymbol{E} \times (\nabla \times \boldsymbol{E}),$$

SO

$$\mathbf{E} \times (\nabla \times \mathbf{E}) = \frac{1}{2} \nabla (E^2) - (\mathbf{E} \cdot \nabla) \mathbf{E}$$

and the same goes for B.

Maxwell's Stress Tensor

- ❖ Stress Tensor
- ❖ Stress ... ii
- ❖ Stress ... iii
- ❖ Stress ... iv
- ❖ Stress ... v

Momentum Conservation

Therefore,

$$f = \epsilon_0 [(\nabla \cdot \boldsymbol{E})\boldsymbol{E} + (\boldsymbol{E} \cdot \nabla)\boldsymbol{E}] + \frac{1}{\mu_0} [(\nabla \cdot \boldsymbol{B})\boldsymbol{B} + (\boldsymbol{B} \cdot \nabla)\boldsymbol{B}]$$
$$-\frac{1}{2}\nabla \left(\epsilon_0 E^2 + \frac{1}{\mu_0} B^2\right) - \epsilon_0 \frac{\partial}{\partial t} (\boldsymbol{E} \times \boldsymbol{B})$$
(3)

It can be simplified by introducing the Maxwell stress tensor,

$$T_{ij} \equiv \epsilon_0 (E_i E_j - \frac{1}{2} \delta_{ij} E^2) + \frac{1}{\mu_0} (B_i B_j - \frac{1}{2} \delta_{ij} B^2)$$
 (4)

The indices i and j refer to the coordinates x, y, and z, so the stress tensor has a total of nine components (T_{xx} , T_{yy} , T_{xz} , T_{yx} , etc).

Maxwell's Stress Tensor

- ❖ Stress Tensor
- ❖ Stress ... ii
- ❖ Stress ... iii
- ❖ Stress ... iv
- ❖ Stress ... v
- Momentum Conservation

Thus, for instance,

$$T_{xx} = \frac{1}{2}\epsilon_0(E_x^2 - E_y^2 - E_z^2) + \frac{1}{2\mu_0}(B_x^2 - B_y^2 - B_z^2)$$
$$T_{xy} = \epsilon_0(E_x E_y) + \frac{1}{\mu_0}(B_x B_y)$$

Because it carries two indices, where a vector has only one, T_{ij} is sometimes written with a double arrow: $\overset{\leftrightarrow}{T}$. One can form the dot product of $\overset{\leftrightarrow}{T}$ with a vector a:

$$(\boldsymbol{a} \cdot \overset{\leftrightarrow}{\boldsymbol{T}})_j = \sum_{i=x,y,z} a_i T_{ij}, \quad (\overset{\leftrightarrow}{\boldsymbol{T}} \cdot \boldsymbol{a})_j = \sum_{i=x,y,z} T_{ji} a_i$$
 (5)

The resulting object, which has one remaining index, is itself a vector.

Maxwell's Stress Tensor

- ❖ Stress Tensor
- ❖ Stress ... ii
- ❖ Stress ... iii
- ❖ Stress ... iv
- ❖ Stress ... v

Momentum Conservation

In particular, the divergence of \overrightarrow{T} has as its j th component

$$(\nabla \cdot \overset{\leftrightarrow}{T})_{j} = \epsilon_{0} \left[(\nabla \cdot \boldsymbol{E}) E_{j} + (\boldsymbol{E} \cdot \nabla) E_{j} - \frac{1}{2} \nabla_{j} E^{2} \right] + \frac{1}{\mu_{0}} \left[(\nabla \cdot \boldsymbol{B}) B_{j} + (\boldsymbol{B} \cdot \nabla) B_{j} - \frac{1}{2} \nabla_{j} B^{2} \right]$$

Thus the force per unit volume (Eq. (3)) can be written in a simpler form

$$f = \nabla \cdot \overset{\leftrightarrow}{T} - \epsilon_0 \mu_0 \frac{\partial S}{\partial t} \tag{6}$$

where *S* is the Poynting vector.

The total force on the charges in V (Eq. (1)) is

$$F = \oint_{S} \overset{\leftrightarrow}{T} \cdot d\mathbf{a} - \epsilon_{0} \mu_{0} \frac{d}{dt} \int_{V} S d\tau$$
 (7)

Maxwell's Stress Tensor

Momentum Conservation

- ❖ Momentum
- ❖ Momentum ... ii

Conservation of Momentum

Conservation of Momentum

Maxwell's Stress Tensor

Momentum Conservation

- Momentum
- ❖ Momentum ... ii

From Newton's second law,

$$F = \frac{\mathrm{d} \boldsymbol{p}_{\mathrm{mech}}}{\mathrm{d}t}$$

Therefore, Eq. (7) can be written as

$$\frac{\mathrm{d}\boldsymbol{p}_{\mathrm{mech}}}{\mathrm{d}t} = -\epsilon_0 \mu_0 \frac{\mathrm{d}}{\mathrm{d}t} \int_V \boldsymbol{S} \, \mathrm{d}\tau + \oint_S \stackrel{\leftrightarrow}{\boldsymbol{T}} \cdot \mathrm{d}\boldsymbol{a} \tag{8}$$

where p_{mech} is the (mechanical) momentum of the particles contained in the volume V.

The first integral represents momentum stored in the fields:

$$p = \mu_0 \epsilon_0 \int_V \mathbf{S} \, \mathrm{d}\tau \tag{9}$$

while the second integral is the momentum per unit time flowing in through the surface.

Conservation of Momentum (cont'd)

Eq. (8) states the conservation of momentum in electrodynamics.

The field momentum density is

$$\mathbf{g} = \mu_0 \epsilon_0 \mathbf{S} = \epsilon_0 (\mathbf{E} \times \mathbf{B}) \tag{10}$$

and the momentum flux transported by the fields is $-\overrightarrow{T}$. If the mechanical momentum in V is not changing, then

$$\int \frac{\partial \mathbf{g}}{\partial t} \, d\tau = \oint \stackrel{\leftrightarrow}{\mathbf{T}} \cdot d\mathbf{a} = \int \nabla \cdot \stackrel{\leftrightarrow}{\mathbf{T}} \, d\tau$$

and hence

$$\frac{\partial \mathbf{g}}{\partial t} = \nabla \cdot \overset{\leftrightarrow}{\mathbf{T}} \tag{11}$$

"Continuity equation" for electromagnetic momentum, with g in the role of ρ and -T playing the part of J.