Exercise 3.2: Matrices and Determinants MCQs for Entry Test

Multiple Choice Questions

1. What is the result of multiplying a 2×3 matrix A by the 2×2 identity matrix I_2 ?

- (a) I_2
- (b) A
- (c) I_3
- (d) Zero matrix

2. For $A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$, what is the determinant |A|?

- (a) 5
- (b) 8
- (c) 2
- (d) 6

3. Solve the system x + y = 3, 2x - y = 0 using matrix inverses. What is $\begin{bmatrix} x \\ y \end{bmatrix}$?

- (a) $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
- (b) $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$
- (c) $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$
- (d) $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$

4. For $A = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$, what is A - B?

- (a) $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$
- (b) $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
- (c) $\begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$
- $(d) \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$

5. Which property holds for matrices A, B, C of compatible orders?

- (a) (AB)C = A(BC)
- (b) AB = BA
- (c) $(A+B)^2 = A^2 + 2AB + B^2$
- (d) $(A B)^2 = A^2 2AB + B^2$
- **6.** For $A = \begin{bmatrix} 1 & i \\ 0 & -i \end{bmatrix}$, what is A^{-1} if it exists?
 - (a) $\begin{bmatrix} 1 & i \\ 0 & i \end{bmatrix}$
 - (b) $\begin{bmatrix} -1 & -i \\ 0 & -i \end{bmatrix}$
 - (c) $\begin{bmatrix} 1 & -i \\ 0 & i \end{bmatrix}$
 - (d) Does not exist
- 7. If (A+B)C = AC + BC holds for matrices A, B, C, which property is this?
 - (a) Associative
 - (b) Commutative
 - (c) Distributive
 - (d) Identity
- **8.** For $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, what is $A^t A$?
 - (a) $\begin{bmatrix} 5 & 11 \\ 11 & 25 \end{bmatrix}$
 - (b) $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$
 - $(c) \begin{bmatrix} 10 & 14 \\ 14 & 20 \end{bmatrix}$
 - (d) $\begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$
- **9.** Solve 2X A = B for X, where $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$.
 - (a) $\begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$
 - (b) $\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$
 - (c) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
 - (d) $\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$
- **10.** Why does $(A+B)^2 \neq A^2 + 2AB + B^2$ in general for square matrices A, B?
 - (a) Matrix addition is not commutative
 - (b) Matrix multiplication is not commutative
 - (c) Matrices cannot be squared

- (d) Distributive property does not hold
- **11.** For $A = \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$, what is (A B)?
 - (a) $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$
 - (b) $\begin{bmatrix} 3 & -1 \\ -1 & 5 \end{bmatrix}$
 - (c) $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$
 - $(d) \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix}$
- **12.** Solve the system 3x y = 4, x + 2y = 5 using matrix inverses. What is $\begin{vmatrix} x \\ y \end{vmatrix}$?
 - (a) $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$
 - (b) $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$
 - (c) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- **13.** For $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, what is (AB)C?
 - (a) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
 - (b) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
 - (c) $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$
 - (d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- **14.** For $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, what is the adjoint of A?
 - (a) $\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$
 - (b) $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$
 - (c) $\begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$
 - (d) $\begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix}$
- **15.** Why does $(A B)^2 \neq A^2 2AB + B^2$ in general for square matrices A, B?
 - (a) Matrix subtraction is not associative

- (b) Matrix multiplication is not commutative
- (c) Matrix subtraction is not commutative
- (d) Distributive property fails
- **16.** For $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$, what is AA^t ?
 - (a) $\begin{bmatrix} 5 & 6 \\ 6 & 9 \end{bmatrix}$
 - (b) $\begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$
 - (c) $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$
 - $(d) \begin{bmatrix} 5 & 2 \\ 2 & 9 \end{bmatrix}$
- **17.** Solve 3X 2A = B for X, where $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$.
 - (a) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
- (d) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ 18. Solve $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ for X.

 (a) $\begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 1 \end{bmatrix}$

 - (c) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - (d) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 - **19.** Solve the system 2x + y = 3, x y = 1 using matrix inverses. What is $\begin{vmatrix} x \\ y \end{vmatrix}$?
 - (a) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
 - (b) $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$
 - (c) $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
 - (d) $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$

20. For $A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$, what is A^{-1} ?

(a)
$$\begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix}$$

(b) Does not exist

(c)
$$\begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix}$$

$$(d) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Answers and Explanations

1. Answer: (b) *A*

Explanation: For a 2×3 matrix A, multiplying by I_2 (left) gives $I_2A = A$, as the identity matrix preserves A. Option (a) is I_2 , not A. Option (c) is incorrect as I_3 is 3×3 . Option (d) implies a zero result, which is false.

2. Answer: (a) 5

Explanation: For $A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$, $|A| = 2 \cdot 4 - 1 \cdot 3 = 8 - 3 = 5$. Option (b) is 8, ignoring subtraction. Option (c) is unrelated. Option (d) miscalculates.

3. Answer: (b) $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$

Answer: (b) $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ Explanation: Write as $\begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$. Compute $|A| = 1 \cdot (-1) - 1 \cdot 2 = -3$, adj $A = \begin{bmatrix} -1 & -1 \\ -2 & 1 \end{bmatrix}, A^{-1} = \frac{1}{-3} \begin{bmatrix} -1 & -1 \\ -2 & 1 \end{bmatrix}. \text{ Then, } \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{-3} \begin{bmatrix} -1 & -1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}. \text{ Option (a)}$ reverses values. Option (c) fails equations. Option (d) is incorrect

4. Answer: (a) $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$

Explanation: Compute $A - B = \begin{bmatrix} 1 - 0 & 0 - 1 \\ 2 - 1 & 3 - 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$. Option (b) misplaces signs. Option (c) is incorrect. Option (d) is A.

5. Answer: (a) (AB)C = A(BC)

Explanation: Matrix multiplication is associative, so (AB)C = A(BC) holds for compatible matrices. Option (b) is false as $AB \neq BA$ generally. Options (c, d) fail due to noncommutativity $(BA \neq AB)$.

6. Answer: (c) $\begin{bmatrix} 1 & -i \\ 0 & i \end{bmatrix}$

Explanation: For $A = \begin{bmatrix} 1 & i \\ 0 & -i \end{bmatrix}$, $|A| = 1 \cdot (-i) - i \cdot 0 = -i$, adj $A = \begin{bmatrix} -i & -i \\ 0 & 1 \end{bmatrix}$, so $A^{-1} = -i$ $\frac{1}{-i}\begin{bmatrix} -i & -i \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -i \\ 0 & i \end{bmatrix}$ (since $\frac{1}{-i} = i$). Option (a) is unrelated. Option (b) negates incorrectly. Option (d) is false as $|A| \neq 0$.

7. Answer: (c) Distributive

Explanation: (A + B)C = AC + BC is the distributive property for matrices. Option (a) is (AB)C = A(BC). Option (b) is AB = BA, which is false generally. Option (d) involves identity matrices.

5

8. Answer: (a) $\begin{bmatrix} 5 & 11 \\ 11 & 25 \end{bmatrix}$

Explanation: Compute $A^t = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$, then $A^t A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1+9 & 2+12 \\ 2+12 & 4+16 \end{bmatrix} = \begin{bmatrix} 1+9 & 2+12 \\ 2+12 & 4+16 \end{bmatrix}$ $\begin{bmatrix} 5 & 11 \\ 11 & 25 \end{bmatrix}$. Option (b) is A^t . Option (c) is unrelated. Option (d) is A.

9. Answer: (a) $\begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$

Explanation: Solve $2X = A + B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$. Then, $X = \frac{1}{2} \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$ $\begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$. Option (b) is incorrect. Option (c) is A. Option (d) is B.

10. Answer: (b) Matrix multiplication is not commutative

Explanation: $(A+B)^2 = A^2 + AB + BA + B^2$, but $AB \neq BA$ generally, so it does not equal $A^2 + 2AB + B^2$. Option (a) is false as addition is commutative. Option (c) is false as matrices can be squared. Option (d) is false as distributive property holds.

11. Answer: (c) $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$

Explanation: Compute $A - B = \begin{bmatrix} 2-1 & -1-0 \\ 0-(-1) & 3-2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$. Option (a) misplaces signs. Option (b) is unrelated. Option (d) is A.

12. Answer: (c) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Explanation: Write as $\begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$. Compute $|A| = 3 \cdot 2 - (-1) \cdot 1 = 7$, adj $A = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$, $A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$. Then, $\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Options (a, b, d) fail equations.

Explanation: Compute $AB = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then $(AB)C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$. Option (a) is C. Option (b) is AB. Option (d) is I_2 .

14. Answer: (a) $\begin{vmatrix} 4 & -2 \\ -3 & 1 \end{vmatrix}$

Explanation: For $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, adj $A = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$. Option (b) is A^t . Option (c) is unrelated. Option (d) swaps signs.

15. Answer: (b) Matrix multiplication is not commutative

Explanation: $(A - B)^2 = A^2 - AB - BA + B^2$, but $AB \neq BA$ generally, so it does not equal $A^2 - 2AB + B^2$. Option (a) is false as subtraction is associative. Option (c) is false as subtraction is commutative. Option (d) is false as distributive property holds.

16. Answer: (a) $\begin{bmatrix} 5 & 6 \\ 6 & 9 \end{bmatrix}$

Explanation: Compute $A^t = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$, then $AA^t = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 6 & 9 \end{bmatrix}$. Option (b) is A. Option (c) is A. Option (d) is incorrect.

17. Answer: (a) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

Explanation: Solve $3X = 2A + B = 2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$. Then, $X = \frac{1}{3}\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Option (b) is unrelated. Option (c) is B. Option (d) is zero.

18. Answer: (a) $\begin{vmatrix} 1 & -1 \\ -1 & 2 \end{vmatrix}$

Explanation: For $A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$, $|A| = 2 \cdot 1 - 1 \cdot 1 = 1$, adj $A = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$, so $A^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$. Then, $X = A^{-1} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$. Option (b) is A. Option (c) is I_2 . Option (d) is zero.

19. Answer: (a) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Explanation: Write as $\begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. Compute $|A| = 2 \cdot (-1) - 1 \cdot 1 = -3$, adj $A = \begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix}, A^{-1} = \frac{1}{-3} \begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix}. \text{ Then, } \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{-3} \begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \text{ Options (b, c, d)}$ fail equations.

20. Answer: (b) Does not exist **Explanation**: For $A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$, $|A| = 2 \cdot 2 - 1 \cdot 4 = 0$, so A^{-1} does not exist. Option (a) assumes non-zero determinant. Option (c) is unrelated. Option (d) is I_2 .