

如何学习物理信道

1、物理信道的功能

学习物理信道主要掌握2个核心:

2、物理信道在整个帧结构里面 是如何分布的

PBCH的作用--传输MIB+附加消息

PBCH里面传输的内容(总共含有32bit内容) 23bit的 MIB+1bit的MessageClassExtension+8 bit 附加 PBCH 消息体(payload)

MessageClassExtension:指示当前是否为扩展MIB消息

("总bit数=6+1+4+1+8+1+1+1=23bit")

MIB: 主消息块,手机开机之后,需要通过MIB消息来获取一些必要的5G系统配置信息

```
MIB ::= SEQUENCE {
systemFrameNumber 6bit
                     系统帧号SFN高6位比特位,1024为周期,(0-1023)
subCarrierSpacingCommon 1bit
                          子载波宽度
                         Kssb: 频域间隔(低4位),单位: 子载波
ssb-SubcarrierOffset 4it
                       用于表示第一个PDSCH的DMRS符号的时域位置
dmrs-TypeA-Position 1bit
pdcch-ConfigSIB1 8bit PDCCH信道配置
cellBarred 1bit
                  小区驻留状态:禁止驻留情况下,手机可以切换到该小区,不能空闲占用或者重选占用
intraFreqReselection 1bit 小区是否允许同频重选
                    空闲(备用)
          1bit
spare
```

8 bit 附加 PBCH 消息体(payload)

Kssb

Kssb:表示SSB相对于CRB的频率间隔(单位是:子载波)

对于FR1: Kssb范围0~23, Kssb用5比特表示

对于FR2: Kssb范围0~11, Kssb用4比特表示

SSB同步信号块

PBCH和PSS/SSS作为一个整体出现,统称为SSB,主要用于同步信号的发送以及广播消息的发送

SSB在时域上,占用4个符号,频域上占连续20个RB,时域上的位置,可以配置。

PSS和SSS映射到12个PRB中间的连续127个子载波,占用144个子载波,两边分布空出,作为保护带宽

PBCH的位置如图所示,总共占用了48个RB。

PCI=3*SSS+PSS 其中,sss取值是0-355,PSS取值:0,1,2 根据此公式,5G的PCI就是0-1007,总共1008个

PBCH

DMRS:解调参考信号,解码PBCH,需要先

解码DMRS,再去解码PBCH

5G手机信号强度SS-RSRP的数值,就是UE测量 PBCH-DMRS的功率获得的。L3 SS-RSRP报告范 围定义为-156 dBm至-31 dBm,步长为1 dB

PBCH

RB

DMRS分布

为避免小区间PBCH DMRS干扰,3GPP中定义PBCH的DMRS在频域上根据PCI错开。 也就是DM-RS在PBCH的位置{0+v,4+v,8+v.......}v为PCI mod 4的值

PCI mod4:	=0 PCI me	od4=1	PCI mo	od4	=2 PCI	mod	d4=3
11	11		11		11		
10	10		10		10		
9	9		9		9		
8	8		8		8		
7	7		7		7		
6	6		6		6		
5	5		5		5		
4	4		4		4		
3	3		3		3		
2	2		2		2	Ш	
1	1		1		1	Щ	
0	0		0		0		

因此,5G存在模4干扰,主要就是PBCH里面的DMRS位置重叠干扰

终端通过解PBCH DMRS可以获得beam index信息

SSB Burst Set---SSB突发集

一个半帧中存在的一个或多个SSB称为SS Burst Set (SSB突发集) , 一个SS Burst Set中的SSB包含的信息相同

两个SS Burst Set出现的周期是可以配置的,可以配置为5、10、20、40、80、160ms ,这个周期会在SIB1中指示,但在初始小区搜索的时候,UE还没有收到SIB1,所以会按照默认20ms的周期搜索SSB。

SSB个数规定

按照不同的SSB子载波间隔,一个半帧内的SSB 个数和位置会有5种不同的情况

场景	子载波间隔	配置位置
Case A	15KHz	{2, 8} + 14*n n=0, 1 f<=3GHz n=0,1,2,3 3GHz <f<=6ghz< td=""></f<=6ghz<>
Case B	30KHz	{4, 8, 16, 20} + 28*n n = 0
		{2, 8} + 14*n n=0, 1 FDD : f<=3GHz TDD :
Case C	30KHz	f<=2.4GHz n=0.1.2.3 FDD: 3GHz <f<=6ghz< td=""></f<=6ghz<>
		TDD: 2.4GHz <f<=6ghz< td=""></f<=6ghz<>
Case D	120KHz	{4, 8, 16, 20} + 28*n n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18 6GHz <f< td=""></f<>
Case E	240KHz	{8, 12, 16, 20, 32, 36, 40, 44} + 56*n n=0, 1, 2, 3, 5, 6, 7, 8 6GHz <f< td=""></f<>

现网主要用caseC

协议规定按照频段来选择相应的场景(case)

移动

联通电信

n257	120 kHz	Case D	22388 - <1> - 22558
	240 kHz	Case E	22390 - <2> - 22556
n258	120 kHz	Case D	22257 - <1> - 22443
	240 kHz	Case E	22258 - <2> - 22442
n260	120 kHz	Case D	22995 - <1> - 23166
	240 kHz	Case E	22996 - <2> - 23164
n261	120 kHz	Case D	22446 - <1> - 22492
	240 kHz	Case E	22446 - <2> - 22490

	Table 5.4.3.3-1:	: Applicable :	SS	raster	entries	per	operating	band	
--	------------------	----------------	----	--------	---------	-----	-----------	------	--

Table 5.4.	2.2-1: Applical	ole 55 raster	entries per operating band			
NR Operating	SS Block SCS	SS Block	Range of GSCN			
Band	33 Block SC3	pattern1	(First - <step size=""> - Last)</step>			
n1	15kHz	Case A	5279 - <1> - 5419			
n2	15kHz	Case A	4829 - <1> - 4969			
n3	15kHz	Case A	4517 - <1> - 4693			
	15kHz	Case A	2177 - <1> - 2230			
n5	30kHz	Case B	2183 - <1> - 2224			
n7	15kHz	Case A	6554 - <1> - 6718			
n8	15kHz	Case A	2318 - <1> - 2395			
n12	15kHz	Case A	1828 - <1> - 1858			
n20	15kHz	Case A	1982 - <1> - 2047			
n25	15 kHz	Case A	4829 - <1> - 4981			
n28	15kHz	Case A	1901 - <1> - 2002			
n34	15kHz	Case A	5030 - <1> - 5056			
n38	15kHz	Case A	6431 - <1> - 6544			
n39	15kHz	Case A	4706 - <1> - 4795			
n40	15kHz	Case A	5756 - <1> - 5995			
- 43	15kHz	Case A	6246 - <3> - 6717			
n41	30 kHz	Case C	6252 - <3> - 6714			
n50	15kHz	Case A	3584 - <1> - 3787			
n51	15kHz	Case A	3572 - <1> - 3574			
-66	15kHz	Case A	5279 - <1> - 5494			
n66	30kHz	Case B	5285 - <1> - 5488			
n70	15kHz	Case A	4993 - <1> - 5044			
n71	15kHz	Case A	1547 - <1> - 1624			
n74	15kHz	Case A	[3692 - <1> - 3790]			
n75	15kHz	Case A	3584 - <1> - 3787			
n76	15kHz	Case A	3572 - <1> - 3574			
n77	30kHz	Case C	7711 - <1> - 8329			
n78	30kHz	Case C	7711 - <1> - 8051			
n79	30kHz	Case C	8480 - <16> - 8880			

Case C的SSB符号起始位置

s = 2,8,16,22

30 Khz

s = 2,8,16,22,30,36,44,50

不同帧结构下的SSB个数

电信联通使用(2.5ms双周期)

不同帧结构下的SSB个数

中国移动使用(5ms单周期)

Beam sweeping波束扫描

- 每一个SSB由一个单独的波束发射
- 每一个波束按照时间轮循发送
- UE在搜索小区时,通过策略各个波束的信号强度,选择最强的子波束作为自己的驻留波束。
- 每一个波束都有编号, UE可以通过解码DMRS来获取SSB的编号

当波束为4或者8的时候:直接解码DMRS就可以获取编号, 当波束为64的时候:PBCH的附加消息体当中获取前3bit, DMRS获取后3bit。

SSB频域上面的位置

SSB在频率轴上的位置,取决于SSB频点的设置,SSB频点设置到哪里,在频率轴的位置就在哪里

以中移动为例子

MIB的变更周期

虽然SSB目前的周期是20ms,也就是里面包含的PBCH周期是20ms,但是,PBCH里面 承载的MIB,却有另外的周期

协议中规定,MIB以80ms为变更周期

这个包含3点解读:

- 1. MIB消息内容有变更的时候,只有过了80ms之后,才可以变化,在80ms之内,不能变的。
- 2. 在这80ms内,MIB会重复发送4次(PBCH周期20ms),这4次的MIB是一样的
- 3. 即使其他消息不变,每160ms,帧号的高6位可会发生变化,80ms为周期变更是合适的。

PBCH总结

