ALCPack References Release 1.01

David Amaro, Markus Müller, and Amit Kumar Pal

June, 2019

Contents

1	Background	2
	Background 1.1 Graphs	2
	1.2 Simple paths	2
	1.3 Local complementation	2
2	ALCPack: Description	3
		3
	3.1 Example 1	4
	3.2 Example 2	-

1 Background

We first define and discuss the terminology corresponding to different aspects of graph which will help putting the purpose of the developed package into perspective.

1.1 Graphs

A graph G(V, E) is a set of nodes, denoted by V, which are connected to each other by a set of edges, represented by E. Let us assume the cardinality of V to be N, and the nodes are labelled as $1, 2, \dots, N-1, N$. An edge connecting the nodes i and j is denoted by (i, j) ($i \neq j, i, j \in V$). We consider simple, undirected, and connected graphs only. A simple graph is one where self-connection, i.e., a node connecting to itself by an edge, and the existence of multiple edges connecting a pair of nodes are prohibited. A simple graph is connected if for each pair of sites $\{i, j\} \in \mathcal{V}$, there exists at least a path P_{ij} between i and j, constituted of a set of links $\{(k, l)\} \in E$ with $k, l \in V$. Also, in an undirected graph, the links (i, j) and (j, i) are equivalent. The neighbourhood of a node i in G is denoted by $\mathcal{N}_i \subset V$, which is the set of nodes $\{j\}$ that are directly connected to i by links, i.e., $(i, j) \in E \ \forall j \in \mathcal{N}_i$.

1.2 Simple paths

A simple path P_{ab} connecting the source node a to the target node b is a sequence of nodes in the graph, given by

$$P_{ab} = [a \equiv 1, 2, \cdots, n \equiv b], \tag{1}$$

with the link $(i, i+1) \in E$, $i=1, \dots, n-1$, and $i \neq j \ \forall i, j \in P_{ab}$. The length of the path P_{ab} is the number of links l=n-1 traversed while going from a to b along the path (see Fig. 1(a) for an example). We denote a simple path between a and b having length l as $P_{ab}^{(l)}$. There can be more than one simple paths of different or same lengths between two nodes a and b in a graph. The shortest path is the simple path between a and b having the minimal length $l=l_{min}$, where the minimization is taken over all possible simple paths between a and b. There can be more than one shortest paths between a specific pair of nodes (see Fig. 1(b)).

Distance. The distance between two nodes i and j is specific to a chosen path P_{ab} of the form in Eq. (1), and is measured by the number of links between i and j along P_{ab} . It can be represented by $d_{(i,j)} = j - i$, j > i can be assumed without any loss of generality. It is easy to see that for any path P_{ab} , $d_{(a,b)} = l = n - 1$.

Classification. The set of all possible simple paths between any two given nodes a and b in a graph G can be divided into two categories, C_1 and C_2 . A simple path P_{ab} belongs to the category C_1 iff for any two qubits i and j on P_{ab} , $(i,j) \notin E \ \forall i,j \in P_{ab}$, with $i+1 < j \le n$. Any simple path for which a link $(i,j) \in E$, with $i,j \in P_{ab}$ and $i+1 < j \le n$, belongs to C_2 . By definition, $C_1 \cap C_2 = \emptyset$, while $C_1 \cup C_2$ constitutes the complete set of simple paths between a and b. All shortest paths between two given nodes a and b in a simple, connected, and undirected graph belongs to C_1 . However, note that not all paths in C_1 are shortest paths. See Fig. 1(c) for examples.

1.3 Local complementation

The local complementation (LC) operation with respect to a node i, denoted by $\tau_i(.)$, on a graph G deletes all the links $\{(j,k)\}$ if $j,k \in \mathcal{N}_i$, and $(j,k) \notin E$, and creates all the links $\{(j,k)\}$ if $j,k \in \mathcal{N}_i$, and $(j,k) \notin E$. A

Figure 1: (Color online). (a) A square graph G_S of size N=16, composed of a set of nodes $V=\{1,2,\cdots,16\}$, as an example of a simple, connected, and undirected graph. We focus on the node-pair $\{a,b\} \equiv \{1,6\}$, where $(a,b) \notin E$. The neighborhoods of the nodes a and b are given by $\mathcal{N}_a=\{2,8\}$ and $\mathcal{N}_b=\{3,5,7,11\}$. Examples of simple paths connecting the node-pair $\{1,6\}$ are $P_{ab}^{(l=5)}=[a\equiv 1,8,9,10,11,6\equiv b]$ and $P_{ab}^{(l=5)}=[a\equiv 1,2,3,4,5,6\equiv b]$, where both paths have length l=5. (b) The set of shortest paths between the nodes $\{1,6\}$ in G_S have cardinality 3, and is given by $\{P_{ab}^{(l=3)}\}=\{[1,2,3,6],[1,8,7,6],[1,2,7,6]\}$. (c) In this graph G, the simple path $P_{ab}^{l=5}\equiv[a\equiv 1,8,9,10,11,6\equiv b]$ belongs to \mathcal{C}_1 due to the existence of the link (8,10), while the path $P_{ab}^{l=2}\equiv[a\equiv 1,2,6\equiv b]$ is a category 1 path.

sequence of LC operations on n nodes denoted by $\mathbf{m} \equiv \{1, 2, \dots, n\}$ of a graph results in a graph transformation, and the corresponding operation is denoted by

$$\tau_{\mathbf{m}} = \tau_{n/n-1/\dots/1}(.) = \tau_n \circ \tau_{n-1} \circ \dots \circ \tau_1(.), \tag{2}$$

where the LC operation is performed on the node 1 first, and then according to the sequence $\{1, 2, \dots, n\}$. See Fig. 2 for examples.

For a given simple, connected, and undirected graph G(V, E), and two specific qubits a and b such that the link $(a, b) \notin E$, using the LC operations w.r.t. the members in a set of selected nodes in G, a link between two chosen qubits a and b can be created. However, these sets of nodes have to be chosen carefully, ensuring that the the sequence of local complementation operations must stop once a link between a and b is created, since extra local complementation operation may either delete the created link, or may turn out to e redundant, thereby increasing the runtime (see Fig. 3 for examples). The sets of nodes can be chosen as the nodes on simple paths that connect a and b, and belong to C_1 , as stated in the following theorem (see [1] for a proof).

Theorem. For a simple path $P_{ab} \in C_1$ of the form given in Eq. (1) between a pair of nodes $a \equiv 1$ and $b \equiv n$ in a graph G, a sequence of local complementation operations on the nodes $\{2, \dots, n-1\}$ always creates a link between the nodes $a \equiv 1$ and $b \equiv n$, when the local complementation operations are performed on the nodes in the same order as they are in the sequence P_{ab} .

2 ALCPack: Description

The Adaptive Local Complementation Package, or ALCPack, provides a sets of functions based on the discussion in Sec. 1 (see also [1]). The package is created using NetworkX – a Python package for analysing complex networks. Therefore, the NetworkX package is to be imported while using the ALCPack.

>>> import networkx as nx

3 Examples

We now consider two specific examples.

Figure 2: (Color online). Local complementation operation τ_2 with respect to node '2' (a) on the square graph G_S , and then τ_8 with respect to node '8' on the graph $\tau_2(G_S)$ (b). The operation τ_2 on G_S creates the links (1,7), (3,7), and (1,3), and the operation τ_8 on $\tau_2(G_S)$ creates the links (1,9) and (7,9) while deleting the link (1,7).

3.1 Example 1

Here we consider the graph shown in Fig. 4(a). The ALCPack distils the C_1 path [1, 9, 5] from the C_2 path [1, 2, 9, 4, 5], and performs LC operation on node 9 to create a link between the nodes 1 and 5 (see Fig. 4(b)).

```
>>> # import networkx
>>> import networkx as nx
>>> # import adaptive local complementation package
>>> import alcpack as alc
>>> # lists of nodes and edges
>>>  nodelist=list([1,2,3,4,5,6,7,8,9])
>>  edgelist=list([(1,2),(1,8),(1,9),(2,3),(2,9),(3,4),(3,9),(4,5),(4,9),(5,6),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)])
>>> # build the graph
>>> G=nx.Graph()
>>> G.add_nodes_from(nodelist)
>>> G.add_edges_from(edgelist)
>>> # chosen path belonging to C_1
>>> path=list([1,2,9,4,5])
>>> # determine category of the path and distil a category 1 path from a category 2 path
>>> pc=alc.path_category(G,path)
>>> print(pc)
>>> (2,[1,9,5])
>>> # category of the path
>>> print(pc[0])
>>> 2
>>> # distilled path of category 1
>>> print(pc[1])
>>> [1,9,5]
>>> # do local complementations w.r.t nodes on the new path
>>> newpath=pc[1]
>>> H=alc.alc_function(G,newpath)
>>> print(H.edges())
>>>[(1,3),(1,4),(1,5),(1,6),(1,7),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),
      (3, 8), (3, 9), (4, 6), (4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 8), (6, 9), (7, 9), (8, 9)
```

The list of edges of the graph H is shown pictorially in Fig. 4(b).

Figure 3: (Color online) (a) Four simple paths, each of length 5, connecting the nodes $\{a,b\} \equiv \{1,11\}$ in the square graph G_S . The paths are given by (1) $P_1 = [1,2,3,4,5,12,11]$, (2) $P_2 = [1,2,3,4,5,6,11]$, (3) $P_3 = [1,2,3,6,7,10,11]$, and (4) $P_4 = [1,2,3,6,5,12,11]$. (b) Outcomes of different sequences of local complementation operations according to the four different paths connecting the nodes $\{1,11\}$ in G_S shown in (a). Here, for each path P_i , $i=1,\cdots,4$, we perform local complementations on the nodes $\{j\}$ in P_i such that $j\neq a,b$, and the order in which the local complementation operations are performed is the same order in which the nodes appear in the path P_i while going from the source to the target. The path P_1 results in a creation of the link (1,11) in $\tau_{12/5/4/3/2}(G_S)$. On the other hand, the path P_2 and the corresponding local complementation operations $\tau_{6/5/4/3/2}$ does not create the desired link. Next, consider the example of the path P_3 , where the link (1,11) exists in all three of the graphs $\tau_{6/3/2}(G_S)$, $\tau_{7/6/3/2}(G_S)$, and $\tau_{10/7/6/3/2}(G_S)$, thereby making the operation τ_7 and τ_{10} redundant after $\tau_{6/3/2}$. On the other hand, in case of the path P_4 , the operation τ_5 deletes the link (1,11) when operated on $\tau_{6/3/2}(G_S)$, and further operation τ_{12} fails to re-create it. Therefore, the operations τ_5 and τ_{12} are disadvantageous in this situation. Notice here that the path [1,2,3,6,11] is one of the shortest paths between the nodes 1 and 11.

Figure 4: (Color online). (a) A square graph G_S of size N=16, composed of a set of nodes $V=\{1,2,\cdots,16\}$, as an example of a simple, connected, and undirected graph. We focus on the node-pair $\{a,b\} \equiv \{1,6\}$, where $(a,b) \notin E$. The neighborhoods of the nodes a and b are given by $\mathcal{N}_a=\{2,8\}$ and $\mathcal{N}_b=\{3,5,7,11\}$. Examples of simple paths connecting the node-pair $\{1,6\}$ are $\mathcal{L}_{ab}^{(5)}=[a\equiv 1,8,9,10,11,6\equiv b]$ and $\mathcal{L}_{ab}^{(5)}=[a\equiv 1,2,3,4,5,6\equiv b]$, where both paths have length l=5. (b) The set of shortest paths between the nodes $\{1,6\}$ have cardinality 3, and is give by $\{\mathcal{L}_{ab}^{(3)}\}=\{[1,2,3,6],[1,8,7,6],[1,2,7,6]\}$. (c)-(d) Local complementation operation τ_2 with respect to node '2' on the graph G_S (c), and then τ_8 with respect to node '8' on the graph $\tau_2(\mathcal{G}_S)$ (d). The operation τ_2 on G_S creates the links (1,7), (3,7), and (1,3), and the operation τ_8 on $\tau_2(G_S)$ creates the links (1,9) and (7,9) while deleting the link (1,7).

Figure 5: (Color online). (a) A square graph G_S of size N=16, composed of a set of nodes $V=\{1,2,\cdots,16\}$, as an example of a simple, connected, and undirected graph. We focus on the node-pair $\{a,b\} \equiv \{1,6\}$, where $(a,b) \notin E$. The neighborhoods of the nodes a and b are given by $\mathcal{N}_a=\{2,8\}$ and $\mathcal{N}_b=\{3,5,7,11\}$. Examples of simple paths connecting the node-pair $\{1,6\}$ are $\mathcal{L}_{ab}^{(5)}=[a\equiv 1,8,9,10,11,6\equiv b]$ and $\mathcal{L}_{ab}^{(5)}=[a\equiv 1,2,3,4,5,6\equiv b]$, where both paths have length l=5. (b) The set of shortest paths between the nodes $\{1,6\}$ have cardinality 3, and is give by $\{\mathcal{L}_{ab}^{(3)}\}=\{[1,2,3,6],[1,8,7,6],[1,2,7,6]\}$. (c)-(d) Local complementation operation τ_2 with respect to node '2' on the graph G_S (c), and then τ_8 with respect to node '8' on the graph $\tau_2(\mathcal{G}_S)$ (d). The operation τ_2 on G_S creates the links (1,7), (3,7), and (1,3), and the operation τ_8 on $\tau_2(G_S)$ creates the links (1,9) and (7,9) while deleting the link (1,7).

3.2 Example 2

Next we consider the graph shown in Fig. 5(a). The ALCPack distils the C_1 path [1, 5, 6, 7] from the C_2 path [1, 2, 3, 4, 5, 6, 7], and performs LC operations on node 5 (the intermediate graph $\tau_2(G)$ is shown in Fig. 5(b)) and 6 to create a link between the nodes 1 and 5 (see graph $\tau_{6/5}(G)$ in Fig. 5(c)).

```
>>> # import networkx
>>> import networkx as nx
>>> # import adaptive local complementation package
>>> import alcpack as alc
>>> # lists of nodes and edges
>>>  nodelist=list([1,2,3,4,5,6,7,8])
>>>  edgelist=list([(1,2),(1,3),(1,5),(1,8),(2,3),(2,4),(2,8),(3,4),(3,7),(4,5),(4,6),(5,6),(6,7),(6,8),(7,8)])
>>> # build the graph
>>> G=nx.Graph()
>>> G.add_nodes_from(nodelist)
>>> G.add_edges_from(edgelist)
>>> # chosen path belonging to C_1
>>> path=list([1,2,3,4,5,6,7])
>>> # Adaptive local complementation on the chosen path
>>> H=alc.alc_function(G,path)
>>> print(H.edges())
>>>[(1, 2), (1, 3), (1, 4), (1, 6), (1, 7), (2, 3), (2, 4), (2, 8), (3, 4), (3, 7), (4, 5), (5, 6), (5, 7), (5, 8), (6, 7), (5, 8), (6, 7), (6, 8), (6, 7), (6, 8), (6, 7), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8), (6, 8),
```

References

[1] D. Amaro, M. Müller, and A. K. Pal, arXiv:xxxx.xxxxx [quant-ph] (2019).