Friedrich-Alexander-Universität Erlangen-Nürnberg

Decision theory

Exercise 2

Michael Hartisch, Lundra Resyli

Friedrich-Alexander Universität Erlangen-Nürnberg, Department Mathematik May 6, 2024

Exercise 1

Write the following decision tree as a decision matrix:

p	0.3	0.2	0.3	0.2
$\overline{a_1}$	2	2	4	4
a_2	1	1	8	1
a_3	1	1	9	1

Draw events and probabilities in the following decision tree so that both models are equivalent:

Exercise 2: Dominance criteria

We want to maximize. Check absolute dominance, state dominance, and probability dominance:

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	S_4
p	0.3	0.3	0.2	0.2
a_1	5	5	5	5
a_2	30	10	20	20
a_3	10	20	30	30
a_4	15	5	15	20

- absolute dominance: a_1 (by a_2 , a_3 , a_4)
- State dominance: a_4 (by a_2)
- Probability dominance: a_2 (by a_3)

Exercise 3: Lexicographic optimization

given 4 alternatives, and 4 scenarios:

- We want to maximize
- Consider
 - ∘ y¹: worst-case
 - \circ y^2 : average
 - ∘ *y*³: best-case
- find a lexicographically optimal solution with respect to (y^1, y^2, y^3)

	e^1	e^2	e^3	e^4	y^1	y^2	y^3
a ₁	2	5	2	4			
a_2			2	1			
a_3	3	3	2	3			
a_4	4	2	4	3			

					y^1	y^2	<i>y</i> ³
a_1	2	5	2	4	2		
a_2	4	3	2	1	1		
a_3	3	5 3 3	2	3	2		
a_4	4	2	4	3	2		

	e^1	e^2	e^3	e^4	y^1	y^2	<i>y</i> ³
a_1	2	5	2	4	2		
a_2	4	3	2	1	1		
a_3	3	3	2	3	2		
a_4	4	5 3 3 2	4	3	2		

		e^2			•	•	y^3
a_1	2	5	2	4	2	3.25 2.50	
a_2	4	3	2	1	1	2.50	
a_3	3	3	2	3	2	2.753.25	
a_4	4	2	4	3	2	3.25	

	e^1	e^2	e^3	e^4	y^1	y^2	y^3
a_1						3.25	
_			2		1	2.50	
a_3	3	3	2	3	2	2.75	
a_4	4	2	4	3	2	3.25	

	e^1	e^2	e^3	e^4	y^1	y^2	y^3
a_1	2	5	2	4	2	3.25	5
a_2	4	3	2	1	1	2.50	4
a_3	3	3	2	3	2	2.75	3
a_4		2	4	3	2	3.25	4

Solution 3

	e^1	e^2	e^3	e^4	y^1	y^2	<i>y</i> ³
a_1	2	5	2	4	2	3.25	5
a_2	4	3	2	1	1	2.50	4
a_3	3	3	2	3	2	2.75 3.25	3
a_4	4	2	4	3	2	3.25	4

Alternative a_1 is the only lexicographically optimal solution with respect to (y^1, y^2, y^3)

Exercise 4

Write the following decision tree as a decision matrix:

Solution 4				
		0.3	0.35	0.35
	a ₁	2	2	2
	<i>a</i> _{2,1}	3	4 2	4
	$a_{2,2}$	3	2	5

Exercise 5: Pareto Efficiency

• given 7 alternatives, 2 criteria:

Alternative	1	2	3	4	5	6	7
Criterion 1	15	14	20	15	10	10	18
Criterion 2	17	26	18	23	29	21	22

- sketch alternatives in a coordinate system
- identify efficient solutions
- which are supported, which are not?
- what is a non-graphical method to distinguish between supported and unsupported?

Solution 5

• Pareto efficient: {2, 3, 4, 5, 7}, among them

- Pareto efficient: {2, 3, 4, 5, 7}, among them
 - supported: {2, 3, 5, 7}
 - o unsupported: {4}