Master's degree in Computer Science - A.A. 21/22

OPTIMIZATION FOR MACHINE LEARNING - 6 CFU

Project N. 8

Given the dataset **dataset8.mat**, where X is the matrix whose rows contain the points to be classified and y is the array of the corresponding class labels, perform a **Support Vector Machine (SVM) separation**, aimed at separating the sets \mathcal{A} and \mathcal{B} , on the basis of the following guidelines:

- 1. Use the linear kernel.
- 2. Each time, solve the primal optimization problem.
- 3. Choose the sets \mathcal{A} and \mathcal{B} at your convenience, between the two sets of points (positive with label +1 and negative with label -1).
- 4. Perform a bilevel 10-fold cross validation, using, for the model selection, a 5-fold cross validation.
- 5. For each first-level fold, draw a picture containing the following objects:
 - the first-level training set (A and B);
 - the separating hyperplane $H(v, \gamma)$;
 - the hyperplane

$$H^+(v,\gamma) \stackrel{\triangle}{=} \{x \in R^n \mid v^T x = \gamma + 1\};$$

• the hyperplane

$$H^-(v,\gamma) \stackrel{\triangle}{=} \{x \in R^n \mid v^T x = \gamma - 1\}.$$

- 6. Compute the following performance indexes:
 - the average training correctness;
 - the average training sensitivity;
 - the average training specificity;

- $\bullet\,$ the average training F-score;
- \bullet the average testing correctness (accuracy);
- $\bullet\,$ the average testing sensitivity;
- the average testing specificity;
- the average testing F-score.