上級ミクロ経済学 最適化問題 図解補足ノート

石原章史

財務省 財政経済理論研修 2020

1.2 局所最適と大域最適

n=1 の例

▶ x₁: 極大だけど最大ではない (x₃ の方が大きい)

▶ x₂:極小だけど最小ではない (x₀ や x₄ の方が小さい)

► x₃: 極大かつ最大

1.2 局所最適と大域最適

内点と端点

- ト 内点 x: 十分小さい ε にすれば必ず B_{ε} (x) は D に含まれる
- ▶ 端点 y: どんなに小さい ε にしても必ず $B_{\varepsilon}(x)$ の一部は D に含まれない

142階条件

凹関数: n=1 の例

$$f(tx_1 + (1-t)x_2) \ge tf(x_1) + (1-t)f(x_2)$$

1.4 2 階条件

凸関数: n=1 の例

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

1.4 2 階条件

微分可能な凹関数: n = 1 の例

▶ 凹関数 \iff $f''(x) \le 0 \iff$ 傾き (f') が減少する

1.4 2 階条件

微分可能な凸関数: n=1 の例

▶ 凸関数 \iff $f''(x) \ge 0$ \iff 傾き (f') が増加する

142階条件

準凹関数: n = 1 の例

- ► $f(tx_0 + (1-t)x_1) \le tf(x_0) + (1-t)f(x_1)$: 凹関数ではない
- ▶ (どのような x_0, x_1 でも) $f(tx_0 + (1-t)x_1) \ge \min\{f(x_0), f(x_1)\}$)

2 変数問題: $f(x_1,x_2) = y^i$ を満たす (x_1,x_2) の曲線

▶ ここでは $f(x_1, x_2)$ は厳密な増加関数と想定: $y^1 < y^2 < y^3$

2 変数問題: 制約式 $g^1(x_1, x_2) \ge 0$

- ▶ 斜線部: $g^1(x_1, x_2) \ge 0$
- ▶ 境界上: $g^1(x_1,x_2)=0$

2 変数問題: 実行可能集合

- ▶ 制約は $g^1(x_1,x_2) \ge 0$ かつ $g^2(x_1,x_2) \ge 0$
- ▶ 斜線部: 実行可能集合

2 変数問題

$$ightharpoonup f(x_1, x_2) = y^0 \iff x_2 = v(x_1)$$
を表す曲線

2 変数問題

 \blacktriangleright $(x_1, \nu(x_1))$ で接するベクトルは ν の傾き: $[1, \nu'(x_1)]$

2 変数問題

▶ 勾配ベクトル [f₁, f₂] は傾きのベクトル [1, v'(x₁)] と直交

2 変数問題

▶ $g^{j}(x_{1},x_{2})=0$ に関しても同様に $[g_{1}^{j},g_{2}^{j}]$ が得られる

2 変数問題

▶
$$g^1(x^*) = 0$$
 かつ $\lambda_2^* = 0$ の時

2 変数問題

$$ightharpoonup g^1(x^*) = g^2(x^*) = 0$$
の時: 交点が解

2 変数問題

▶ 各勾配ベクトルは平行にはならない

2 変数問題

▶ $[g_1^j, g_2^j]$ の一次結合は $[f_1, f_2]$ と平行