Evaluación del rendimiento y test estadísticos

1. Considere la siguiente tablas de contingencia para un problema de 6 clases

		Predicted						
		1	2	3	4	5	6	
	1	4	4	0	0	0	0	
	2	0	6	1	0	0	0	
Actual	3	1	0	0	0	0	0	
Actual	4	0	1	0	1	0	0	
	5	1	0	0	0	0	0	
	6	0	1	0	0	0	1	

Obtenga las medidas de acierto, y recall y precision usando la media macro y micro.

@C4.5 Accuracy: 0.571429

@C4.5 Average accuracy: 0.857143

@C4.5 Error rate (-): 0.142857

@C4.5 Precision_μ: 0.571429 @C4.5 Recall μ: 0.571429

 $@C4.5 \text{ F1-score } \mu: 0.571429$

@C4.5 Precision_M: 0.527778

@C4.5 Recall_M: 0.392857

@C4.5 Recall_M G-mean: 0.000000

@C4.5 F1-score_M: 0.450431

@C4.5 Kappa: 0.378289

@C4.5 MCC: 0.401490

@C4.5 CEN (-): 0.318125

2. Considere el resultado de acierto para un problema de clasificación de dos métodos diferentes:

C1	C2	Actual
1	1	1
0	0	0
1	0	1
1	0	0
1	1	1
1	0	0
0	1	1
0	0	0
1	1	1
0	0	0
0	0	1
0	1	0

1 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0			
0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1	1	1	1
0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 <td>1</td> <td>1</td> <td>0</td>	1	1	0
1 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1	0	1	1
0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1	0	0	0
0 0 1 1 1 0 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 1	1	0	1
1 1 0 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 1	0	0	0
1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 1	0	0	1
0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1	1	0
0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1	1	0	1
1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1	0	0	0
1 1 1 0 0 0 1 1 1 1 0 0 1 0 1	0	1	1
0 0 1 1 1 0 1 0 1 0	1	0	0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1
1 0 0 1 0 1	0	0	0
1 0 1	1	1	1
	1	0	0
1 1 0	1	0	1
	1	1	0

Realize el test de McNemar parea verificar si existen diferencias entre ambos métodos.

C1	C2	Actual	n00	n11	n10	n01
1	1	1		1		
0	0	0		1		
1	0	1			1	
1	0	0				1
1	1	1		1		
1	0	0				1
0	1	1				1
0	0	0		1		
1	1	1		1		
0	0	0		1		
0	0	1	1			
0	1	0			1	
1	1	1		1		
1	1	0	1			
0	1	1				1

1	1	0	1 5	13	5	7
1	0	1	_		1	
1	0	0			4	1
				1		1
1	1	1		1		
0	0	0		1		
1	1	1		1		
1	0	0				1
0	1	1				1
0	0	0		1		
1	0	1			1	
1	1	0	1			
0	0	1	1			
0	0	0		1		
1	0	1			1	
0	0	0		1		

$$\chi^2 = \frac{(|n_{01} - n_{10}| - 1)^2}{n_{01} + n_{10}} = 0.0833$$

p-value = 0.7729

3. Considere los resultados de dos clasificadores para un conjunto de 30 problemas:

	C1	C2
d1	0.24	0.10
d2	0.02	0.07
d3	0.21	0.23
d4	0.73	0.77
d5	0.19	0.35
d6	0.41	0.47
d7	0.45	0.50
d8	0.61	0.60
d9	0.98	0.97
d10	0.77	0.78

d11	0.21	0.33
d12	0.25	0.13
d13	0.06	0.14
d14	0.66	0.68
d15	0.15	0.19
d16	0.77	0.74
d17	0.77	0.72
d18	0.03	0.04
d19	0.13	0.11
d20	0.02	0.03
d21	0.05	0.10
d22	0.02	0.08
d23	0.45	0.50
d24	0.5	0.58
d25	0.06	0.05
d26	0.2	0.44
d27	0.11	0.13
d28	0.07	0.07
d29	0.13	0.17
d30	0.04	0.03

Obtenga el resultado del test de Wilcoxon para la comparación de los dos métodos.

	C1	C2	Diff	diff	Rank
d1	0.2444	0.0961	-0.1482	0.1482	28
d2	0.0241	0.0695	0.0454	0.0454	18
d3	0.2057	0.2321	0.0263	0.0263	11
d4	0.7282	0.7689	0.0407	0.0407	14
d5	0.1872	0.3461	0.1589	0.1589	29
d6	0.4100	0.4691	0.0591	0.0591	22
d7	0.4471	0.5015	0.0544	0.0544	21
d8	0.6126	0.5952	-0.0174	0.0174	8
d9	0.9751	0.9701	-0.0050	0.0050	2
d10	0.7717	0.7812	0.0095	0.0095	5

	N = z = P-value =	30 -2.4168 0.0157			
	R+ = T =	350.0 115	R- =	115.0	
d30	0.0352	0.0275	-0.0077	0.0077	4
d29	0.1318	0.1730	0.0411	0.0411	15
d28	0.0692	0.0669	-0.0023	0.0023	1
d27	0.1065	0.1272	0.0206	0.0206	9
d26	0.1996	0.4438	0.2442	0.2442	30
d25	0.0556	0.0496	-0.0060	0.0060	3
d24	0.5030	0.5751	0.0722	0.0722	24
d23	0.4545	0.5043	0.0498	0.0498	20
d22	0.0168	0.0769	0.0600	0.0600	23
d21	0.0542	0.0979	0.0436	0.0436	16
d20	0.0205	0.0302	0.0097	0.0097	6
d19	0.1311	0.1082	-0.0229	0.0229	10
d18	0.0323	0.0435	0.0112	0.0112	7
d17	0.7697	0.7221	-0.0476	0.0476	19
d16	0.7738	0.7442	-0.0296	0.0296	13
d15	0.1480	0.1933	0.0453	0.0453	17
d14	0.6558	0.6843	0.0285	0.0285	12
d13	0.0579	0.1440	0.0860	0.0860	25
d12	0.2500	0.1272	-0.1228	0.1228	27
d11	0.2091	0.3297	0.1206	0.1206	26

4. Considere el resultado de los siguientes métodos para 10 problemas

	C1	C2	C3	C4	R1	R2	R3	R4
D1	0.83	0.77	0.67	0.91	2	3	4	1
D2	0.45	0.51	0.23	0.80	3	2	4	1
D3	0.87	0.56	0.34	0.76	1	3	4	2
D4	0.66	0.76	0.78	0.56	3	2	1	4
D5	0.44	0.54	0.44	0.67	3.5	2	3.5	1
D6	0.45	0.45	0.67	0.45	3	3	1	3
D7	0.78	0.76	0.87	0.81	3	4	1	2

D8	0.67	0.87	0.73	0.81	4	1	3	2
D9	0.87	0.91	0.90	0.78	3	1	2	4
D10	0.58	0.61	0.55	0.46	2	1	3	4
				Average	2.75	2.2	2.65	2.4

Obtenga los *p*-valores de test de Bonferroni-Dunn para los posibles pares de métodos.

$$z_{12} = \frac{R_1 - R_2}{\sqrt{\frac{k(k+1)}{6N}}} = \frac{2.75 - 2.2}{\sqrt{\frac{20}{60}}} = 0.953$$

p-valor = 0.3406

NOTA: Buscar valor aproximado en tablas.