

SCHUBERT VARIETIES AND THE FUSION PRODUCTS. THE GENERAL CASE.

E.FEIGIN

ABSTRACT. This paper generalizes the results of the paper [FF3] to the case of the general \mathfrak{sl}_2 Schubert varieties. We study the homomorphisms between different Schubert varieties, describe their geometry and the group of the line bundles. We also derive some consequences concerning the infinite-dimensional generalized affine grassmannians.

INTRODUCTION

Let $A = (a_1, \dots, a_n) \in \mathbb{N}^n$, $1 < a_1 \leq \dots \leq a_n$. Let M^A be the fusion product of \mathfrak{sl}_2 modules $\mathbb{C}^{a_1}, \dots, \mathbb{C}^{a_n}$ (see [FL1, FF1]) (recall that M^A is $\mathfrak{sl}_2 \otimes (\mathbb{C}[t]/t^n)$ module). Let v_A be the lowest weight vector in M^A with respect to the h_0 -grading (for $x \in \mathfrak{sl}_2$ denote $x_i = x \otimes t^i$). Denote by $[v_A]$ the line $\mathbb{C} \cdot [v_A] \in \mathbb{P}(M^A)$. In [FF3] the closure $\text{sh}_A = \overline{\text{SL}_2(\mathbb{C}[t]/t^n) \cdot [v_A]} \hookrightarrow \mathbb{P}(M^A)$ was studied in the case when $a_i \neq a_j$ for $i \neq j$. It was proved that in this case the Schubert variety sh_A is smooth n -dimensional algebraic variety, independent on the choice of A (the only demand is $a_i \neq a_j$). This variety was denoted by $\text{sh}^{(n)}$. In the present paper we study the case of the general Schubert variety.

We start with the generalization of the independence of sh_A ($a_i \neq a_j$) on A . We say that A is of the type $\{i_1, \dots, i_s\}$ if $i_1 + \dots + i_s = n$ and

$$a_1 = \dots = a_{i_1} \neq a_{i_1+1} = \dots = a_{i_1+i_2} \neq \dots \neq a_{i_1+\dots+i_{s-1}+1} = \dots = a_n.$$

Then $\text{sh}_A \simeq \text{sh}_B$ if and only if A and B are of the same type. We denote the corresponding variety by $\text{sh}_{\{i_1, \dots, i_s\}}$ and the point $[v_A]$ by $[v_{\{i_1, \dots, i_s\}}]$. For example, $\text{sh}^{(n)} = \text{sh}_{\{1, \dots, 1\}}$.

In [FF3] for any $n > k$ the bundle $\text{sh}^{(n)} \rightarrow \text{sh}^{(k)}$ with a fiber $\text{sh}^{(n-k)}$ was constructed. The generalization of this construction is the following fact: let $1 \leq t < s$. Then there exists $\text{SL}_2(\mathbb{C}[t]/t^n)$ -equivariant bundle $\text{sh}_{\{i_1, \dots, i_s\}} \rightarrow \text{sh}_{\{i_{t+1}, \dots, i_s\}}$ with a fiber $\text{sh}_{\{i_1, \dots, i_t\}}$, sending $[v_{\{i_1, \dots, i_s\}}]$ to $[v_{\{i_{t+1}, \dots, i_s\}}]$. For the proof we study some special subvarieties of $\text{sh}_{\{i_1, \dots, i_s\}}$. Namely, we prove that

$$\text{sh}_{\{i_1, \dots, i_s\}} = \text{SL}_2(\mathbb{C}[t]/t^n) \cdot [v_{\{i_1, \dots, i_s\}}] \cup \bigcup_{j=1}^{s-1} N_{i_1+\dots+i_j}(\{i_1, \dots, i_s\}),$$

where $N_\alpha(\{i_1, \dots, i_s\})$ are some subvarieties of $\text{sh}_{\{i_1, \dots, i_s\}}$. The latter are closely connected with $\mathfrak{sl}_2 \otimes (\mathbb{C}[t]/t^n)$ submodules $S_{i,i+1}(A) \hookrightarrow M^A$, studied in [FF2, FF3]. Recall that these submodules were defined via the following exact sequence of $\mathfrak{sl}_2 \otimes (\mathbb{C}[t]/t^n)$ modules (see [SW1, SW2] for the similar relations on the q -characters):

$$0 \rightarrow S_{i,i+1}(A) \rightarrow M^A \rightarrow M^{(a_1, \dots, a_i-1, a_{i+1}+1, \dots, a_n)} \rightarrow 0.$$

Now let

$$A_{\{i_1, \dots, i_s\}} = (2^{i_1} \dots (s+1)^{i_s}) = (\underbrace{2, \dots, 2}_{i_1}, \dots, \underbrace{(s+1), \dots, (s+1)}_{i_s}).$$

Fix an isomorphism $\text{sh}_{A_{\{i_1, \dots, i_s\}}} \simeq \text{sh}_{\{i_1, \dots, i_s\}}$. Then

$$N_\alpha(\{i_1, \dots, i_s\}) \hookrightarrow \mathbb{P}(S_{\alpha, \alpha+1}(A_{\{i_1, \dots, i_s\}})).$$

An important property is the existence of the surjective homomorphisms between the different Schubert varieties. Namely, we say that $\{i_1, \dots, i_s\} \geq \{j_1, \dots, j_{s_1}\}$ if there exists such numbers $1 \leq k_1 < \dots < k_{s_1-1} < s$ that

$$i_1 + \dots + i_{k_1} = j_1, \dots, i_{k_{s_1-1}+1} + \dots + i_s = j_{s_1}.$$

For example, $\{1, \dots, 1\}$ is the largest type, while $\{n\}$ is the smallest one. We will prove that if $\{i_1, \dots, i_s\} \geq \{j_1, \dots, j_{s_1}\}$ then there exists a surjective $\text{SL}_2(\mathbb{C}[t]/t^n)$ -equivariant homomorphism $\text{sh}_{\{i_1, \dots, i_s\}} \rightarrow \text{sh}_{\{j_1, \dots, j_{s_1}\}}$.

Schubert varieties have a description in terms of some partial flags in $W_0 = \mathbb{C}^2 \otimes \mathbb{C}[t]$ (for the analogous construction in the case of $\text{sh}^{(n)}$ see [FF3]; see also [SP]). W_0 is naturally $\mathfrak{sl}_2 \otimes \mathbb{C}[t]$ module and we also have an action of the operator t by multiplication. Consider the variety $\text{Fl}_{\{i_1, \dots, i_s\}}$ of the sequences of the subspaces of W_0 :

$$\begin{aligned} \text{Fl}_{\{i_1, \dots, i_s\}} = \{W_0 \hookleftarrow W_1 \hookleftarrow \dots \hookleftarrow W_s : \\ 1). tW_\alpha \hookleftarrow W_\alpha; \quad 2). \dim W_\alpha / W_{\alpha+1} = i_{s-\alpha}; \quad 3). W_{\alpha+1} \hookleftarrow t^{i_{s-\alpha}} W_\alpha\}. \end{aligned}$$

We prove that $\text{Fl}_{\{i_1, \dots, i_s\}} \simeq \text{sh}_{\{i_1, \dots, i_s\}}$.

We study the Picard group of the Schubert varieties. Let \mathcal{E} be the line bundle on $\text{sh}_{\{i_1, \dots, i_s\}}$. Following [FF3] denote by C_i the projective lines:

$$C_i = \overline{\{\exp(ze_i) \cdot [v_{\{i_1, \dots, i_s\}}], z \in \mathbb{C}\}} \hookrightarrow \text{sh}_{\{i_1, \dots, i_s\}}, i = 0, \dots, n-1.$$

One can show that \mathcal{E} is completely determined by its restriction to these lines. Let $B = (b_1, \dots, b_n) \in \mathbb{Z}^n$. Introduce a notation $\mathcal{E} = \mathcal{O}(B)$ if $\mathcal{E}|_{C_i} \simeq \mathcal{O}(b_1 + \dots + b_{n-i})$. We prove that the bundle $\mathcal{O}(B)$ really exists on $\text{sh}_{\{i_1, \dots, i_s\}}$ if and only if the type of B is less or equal to $\{i_1, \dots, i_s\}$. It is possible to describe the space of sections of $\mathcal{O}(B)$ in terms of the fusion products. Namely if $b_i \geq 0$ then

$$H^0(\mathcal{O}(B), \text{sh}_{\{i_1, \dots, i_s\}}) \simeq \left(M^{(b_1+1, \dots, b_n+1)}\right)^*.$$

As a consequence we obtain the proof of the theorem about the sections of the line bundles on the generalized affine grassmannians (see [FF3, FS, FL2]). Recall the main definitions. An embedding $\text{sh}_{\{i_1, \dots, i_s\}} \hookrightarrow \text{sh}_{\{i_1, \dots, i_s+2\}}$ allows us to organize an inductive limit

$$Gr_{\{i_1, \dots, i_s\}} = \lim_{k \rightarrow \infty} \text{sh}_{(i_1, \dots, i_s+2k)}.$$

There exists a bundle $\mathcal{O}(B^{(\infty)})$ on $Gr_{\{i_1, \dots, i_s\}}$ such that

$$\mathcal{O}(B^{(\infty)})|_{\text{sh}_{\{i_1, \dots, i_s+2k\}}} = \mathcal{O}(b_1, \dots, b_n, \underbrace{b_n, \dots, b_n}_{2k}).$$

We decompose the space of sections of the above bundle as $\widehat{\mathfrak{sl}_2}$ module in the case $0 \leq b_1 \leq \dots \leq b_n$:

$$H^0(\mathcal{O}(B^{(\infty)}), Gr_{\{i_1, \dots, i_s\}}) \simeq \bigoplus_{j=0}^{b_n} c_{j; b_1, \dots, b_n} L_{j, b_n}^*.$$

Here L_{j, b_n} are irreducible $\widehat{\mathfrak{sl}_2}$ modules and $c_{j; b_1, \dots, b_n}$ – the structure constants of the level $b_n + 1$ Verlinde algebra, associated with the Lie algebra \mathfrak{sl}_2 .

We finish the paper with the discussion of the singularities of the Schubert varieties. Namely we prove that the only smooth Schubert variety is $sh^{(n)}$ and study the singularities of the "smallest" variety $sh_{\{n\}}$.

The paper is organized in the following way:

Section 1 contains the preliminary statements from the papers [FF1, FF2, FF3] and some generalizations (lemma (1.1)).

In the section 2 we identify the isomorphic Schubert varieties (theorem (2.1)).

Section 3 is devoted to the proof of the existence of the bundle $sh_{\{i_1, \dots, i_s\}} \rightarrow sh_{\{i_{t+1}, \dots, i_s\}}$ with a fiber $sh_{\{i_1, \dots, i_t\}}$ (theorem (3.1)).

In the section 4 we give the description of $sh_{\{i_1, \dots, i_s\}}$ in terms of the generalized partial flag manifolds (proposition (4.1)).

Section 5 is devoted to the study of the line bundles on $sh_{\{i_1, \dots, i_s\}}$ (proposition (5.1)) and the spaces of their sections (corollary (5.1)).

In the section 6 we decompose the spaces of sections of some line bundles on the infinite-dimensional generalized affine grassmannians into the sum of the dual irreducible $\widehat{\mathfrak{sl}_2}$ modules (proposition (6.1)).

Section 7 contains the discussion of the singularities of the Schubert varieties.

Acknowledgment. I want to thank B.Feigin for useful discussions. This work was partially supported by the grants RFBR 03-01-00167 and SS 1910.2003.1.

1. PRELIMINARIES

Here we briefly recall the main notions and statements about the Schubert varieties sh_A from [FF3].

Let $A = (a_1, \dots, a_n) \in \mathbb{N}^n$, $1 < a_1 \leq \dots \leq a_n$, M^A the corresponding fusion product (see [FL1, FF1]), v_A and u_A its lowest and highest weight vectors with respect to the h_0 -grading (for $x \in \mathfrak{sl}_2$ $x_i = x \otimes t^i$). M^A is cyclic $\mathfrak{sl}_2 \otimes (\mathbb{C}[t]/t^n)$ module, $M^A = \mathbb{C}[e_0, \dots, e_{n-1}] \cdot v_A$. The group $G = \text{SL}_2(\mathbb{C}[t]/t^n)$ acts on M^A and thus on its projectivization $\mathbb{P}(M^A)$. Schubert variety $sh_A \hookrightarrow \mathbb{P}(M^A)$ is the closure of the orbit of the point $[v_A]$ (for $v \in M^A$ $[v] = \mathbb{C} \cdot v \in \mathbb{P}(M^A)$):

$$sh_A = \overline{G \cdot [v_A]}.$$

It was proved in [FF3] that sh_A is projective complex algebraic variety. Its coordinate ring can be described in the following way. Recall that for $A, B, C \in \mathbb{N}^n$ with $c_i = a_i + b_i - 1$ the multiplication $(M^A)^* \otimes (M^B)^* \rightarrow (M^C)^*$ was constructed. Thus, for any A we have an algebra

$$CR_A = \bigoplus_{i=0}^{\infty} (M^{A_i})^*,$$

where $A_i = (ia_1 - i + 1, \dots, ia_n - i + 1)$, $i \geq 0$. It was proved in [FF3] that CR_A is a coordinate ring of sh_A .

We will need the realization of the fusion products in the tensor powers of the space of the semi-infinite forms (fermionic realization), constructed in [FF2]. Recall that the space of the semi-infinite forms F (the fermionic space) is the level 1 $\widehat{\mathfrak{sl}_2}$ module. F contains the set of vectors $v(i), i \in \mathbb{Z}$ with the following properties:

1. $e_{i-1}v(i) = v(i-2)$,
2. $e_k v(i) = 0$ if $k \geq i$,
3. $U(\widehat{\mathfrak{sl}_2}) \cdot v(0) \simeq L_{0,1}$,
4. $U(\widehat{\mathfrak{sl}_2}) \cdot v(1) \simeq L_{1,1}$.

It was proved in [FF2] that M^A can be embedded into $F^{\otimes(a_n-1)}$. Namely,

$$(1) \quad M^A \simeq U(\mathfrak{sl}_2 \otimes \mathbb{C}[t]) \cdot (v(n) \otimes v(n-d_2) \otimes \dots \otimes v(n-d_2 - \dots - d_{a_n-1})) ,$$

where $d_i = \#\{\alpha : a_\alpha = i\}$.

Recall the special submodules of M^A , studied in [FF3]. For any $i, 1 \leq i < n$ where exists an $\mathfrak{sl}_2 \otimes \mathbb{C}[t]$ submodule $S_{i,i+1}(A) \hookrightarrow M^A$ with a property

$$M^A / S_{i,i+1}(A) \simeq M^{(a_1, \dots, a_{i-1}, a_i-1, a_{i+1}+1, a_{i+2}, \dots, a_n)}.$$

There are three cases when the modules $S_{i,i+1}(A)$ can be easily described:

1. $S_{1,2}(A) \simeq M^{(a_2-a_1+1, a_3, \dots, a_n)}$;
2. if $a_i = a_{i+1}$, then $S_{i,i+1}(A) \simeq M^{(a_1, \dots, a_{i-1}, a_{i+2}, \dots, a_n)}$;
3. $S_{n-1,n}(A) \simeq M^{(a_1, \dots, a_{n-2})} \otimes \mathbb{C}^{a_n-a_{n-1}+1}$.

In the general case we have the following lemma, which follows from the fermionic realization of the fusion product (for the analogous proofs see [FF3]).

Lemma 1.1. *Let $a_i < a_{i+1}$. Denote*

$$A' = (a_1, \dots, a_{i-1}, a_{i+2}, \dots, a_n), \quad A'' = (a_{i+1} - a_i + 1, \dots, a_n - a_i + 1).$$

Then there is an embedding of $\mathfrak{sl}_2 \otimes \mathbb{C}[t]$ modules

$$S_{i,i+1}(A) \hookrightarrow M^{A'} \otimes M^{A''}.$$

The image of this embedding coincides with

$$(2) \quad \mathbb{C}[e_0, \dots, e_{n-1}, e_{n-i-1}^{(2)}] \cdot (v_{A'} \otimes v_{A''}),$$

where $e_j^{(i)}$ stands for the operator e_j acting on the i -th factor of the tensor product. From now on we identify $S_{i,i+1}(A)$ with its image (2). The vector $v_{A'} \otimes v_{A''}$ (as well as its preimage in $S_{i,i+1}(A)$) is denoted by $v_{i,i+1}(A)$.

2. THE MAIN DEFINITION

Let $A = (a_1 \leq \dots \leq a_n) \in \mathbb{Z}^n$. We say that A is of the type $\{i_1, \dots, i_s\}$ with $i_1 + \dots + i_s = n, i_\alpha \geq 1$ if

$$a_1 = \dots = a_{i_1} \neq a_{i_1+1} = a_{i_1+2} = \dots = a_{i_1+i_2} \neq \dots \neq a_{n-i_s+1} = \dots = a_n.$$

Now let $A, B \in (\mathbb{N} \setminus \{1\})^n$. We will prove that if A and B are of the same type, then $\text{sh}_A \simeq \text{sh}_B$. Introduce a notation: if A is of the type $\{i_1, \dots, i_s\}$, then we denote

$$A = (a_1^{i_1} a_{i_1+1}^{i_2} \dots a_{i_1+\dots+i_{s-1}+1}^{i_s}).$$

Lemma 2.1. $\text{sh}_{(2^n)} \simeq \text{sh}_{(k^n)}$ for any $k \geq 2$.

Proof. Recall that the coordinate ring of $\text{sh}_{(2^n)}$ is $\bigoplus_{i=0}^{\infty} (M^{(i^n)})^*$. The coordinate ring of $\text{sh}_{(k^n)}$ is $\bigoplus_{j=0}^{\infty} (M^{((jk-j+1)^n)})^*$. Thus $\text{sh}_{(2^n)} \simeq \text{sh}_{(k^n)}$ (see [H]). \square

Theorem 2.1. Let $A, B \in (\mathbb{N} \setminus 1)^n$ be of the same type. Then $\text{sh}_A \simeq \text{sh}_B$.

Proof. It is enough to show that if A is of the type $\{i_1, \dots, i_s\}$, then

$$\text{sh}_A \simeq \text{sh}_{(2^{i_1} 3^{i_2} \dots (s+1)^{i_s})}.$$

Note that there is a natural surjective G -equivariant homomorphism

$$\text{sh}_A \rightarrow \text{sh}_{(2^{i_1} 3^{i_2} \dots (s+1)^{i_s})}, \quad [v_A] \mapsto [v_{(2^{i_1} 3^{i_2} \dots (s+1)^{i_s})}].$$

For the proof we use the fermionic realization of the fusion product. Let ϕ_A be the embedding $M^A \hookrightarrow F^{\otimes(a_{n-1})}$ (sometimes we write simply ϕ instead of ϕ_A). Then, because of (1)

$$(3) \quad \begin{aligned} \phi_A(v_A) = v(n)^{\otimes(a_1-1)} \otimes \\ \otimes v(n-i_1)^{\otimes(a_{i_1+1}-a_{i_1})} \otimes \dots \otimes v(n-i_1-\dots-i_{s-1})^{\otimes(a_{n-i_s+1}-a_{i_s})}. \end{aligned}$$

Picking one factor from each tensor power

$$v(n-i_1-\dots-i_\alpha)^{\otimes(a_{i_1+\dots+i_\alpha+1}-a_{i_1+\dots+i_\alpha})}$$

we obtain a vector

$$\phi_{(2^{i_1} 3^{i_2} \dots (s+1)^{i_s})}(v_{(2^{i_1} 3^{i_2} \dots (s+1)^{i_s})}) \in F^{\otimes s}.$$

Thus for some permutation $\sigma \in S_{a_{n-1}}$ of the factors of $F^{\otimes(a_{n-1})}$ and a vector $w \in F^{\otimes(a_{n-s-1})}$ we have

$$\sigma \phi_A(v_A) = \phi_{(2^{i_1} 3^{i_2} \dots (s+1)^{i_s})}(v_{(2^{i_1} 3^{i_2} \dots (s+1)^{i_s})}) \otimes w.$$

Hence because of $\text{sh}_A = \overline{G \cdot [v_A]}$ we obtain a surjective map

$$\text{sh}_A \rightarrow \text{sh}_{(2^{i_1} 3^{i_2} \dots (s+1)^{i_s})}, \quad [v_A] \mapsto [v_{(2^{i_1} 3^{i_2} \dots (s+1)^{i_s})}].$$

We need to prove that this map is an isomorphism.

Note that from (3) we obtain an embedding

$$\text{sh}_A \hookrightarrow \text{sh}_{((a_1)^n)} \times \text{sh}_{((a_{i_1+1}-a_{i_1}+1)^{n-i_1})} \times \dots \times \text{sh}_{((a_n-a_{n-i_s}+1)^{n-i_1-\dots-i_{s-1}})}.$$

Also we have an embedding

$$\text{sh}_{(2^{i_1} 3^{i_2} \dots (s+1)^{i_s})} \hookrightarrow \text{sh}_{(2^n)} \times \text{sh}_{(2^{n-i_1})} \times \dots \times \text{sh}_{(2^{n-i_1-\dots-i_{s-1}})}$$

and the following diagram is commutative:

$$\begin{array}{ccc} \text{sh}_A & \xrightarrow{\hspace{2cm}} & \text{sh}_{((a_1)^n)} \times \dots \times \text{sh}_{((a_n-a_{n-i_s}+1)^{n-i_1-\dots-i_{s-1}})} \\ \downarrow & & \psi \downarrow \\ \text{sh}_{(2^{i_1} 3^{i_2} \dots (s+1)^{i_s})} & \xrightarrow{\hspace{2cm}} & \text{sh}_{(2^n)} \times \text{sh}_{(2^{n-i_1})} \times \dots \times \text{sh}_{(2^{n-i_1-\dots-i_{s-1}})}. \end{array}$$

Note that because of the lemma (2.1), the map ψ is an isomorphism as the product of the isomorphisms

$$\text{sh}_{((a_{i_1+\dots+i_\alpha+1}-a_{i_1+\dots+i_\alpha}+1)^{n-i_1-\dots-i_\alpha})} \simeq \text{sh}_{(2^{n-i_1-\dots-i_\alpha})}.$$

Thus the left vertical map from the diagram is an isomorphism. \square

Definition 2.1. Let $A \in (\mathbb{N} \setminus 1)^n$ be of the type $\{i_1, \dots, i_s\}$. Define $\text{sh}_{\{i_1, \dots, i_s\}} = \text{sh}_A$. Denote $[v_A] = [v_{\{i_1, \dots, i_s\}}]$, $[u_A] = [u_{\{i_1, \dots, i_s\}}]$.

Example. Recall that in [FF3] the case of the sh_A with pairwise distinct a_i was considered. It was proved that all the Schubert varieties of this type are isomorphic. This variety was denoted as $\text{sh}^{(n)}$. In our notations $\text{sh}^{(n)} = \text{sh}_{\underbrace{\{1, \dots, 1\}}_n}$.

3. THE EXISTENCE OF THE BUNDLE $\text{sh}_{\{i_1, \dots, i_s\}} \rightarrow \text{sh}_{\{i_{t+1}, \dots, i_s\}}$

Recall that in [FF3] for any $n > k$ a bundle $\pi_{n,k} : \text{sh}^{(n)} \rightarrow \text{sh}^{(k)}$ with a fiber $\text{sh}^{(n-k)}$ was constructed. In this section we prove that for any $t < s$ there exists G -equivariant bundle

$$\text{sh}_{\{i_1, \dots, i_s\}} \rightarrow \text{sh}_{\{i_{t+1}, \dots, i_s\}} \quad \text{with a fiber} \quad \text{sh}_{\{i_1, \dots, i_t\}}.$$

In order to do that, we study the structure of some special subvarieties of $\text{sh}_{\{i_1, \dots, i_s\}}$.

Lemma 3.1. *Let $1 \leq \alpha < s$. Then there is a G -equivariant surjective homomorphism*

$$\text{sh}_{\{i_1, \dots, i_s\}} \rightarrow \text{sh}_{\{i_1, \dots, i_{\alpha-1}, i_\alpha + i_{\alpha+1}, i_{\alpha+2}, \dots, i_s\}}, \quad [v_{\{i_1, \dots, i_s\}}] \mapsto [v_{\{i_1, \dots, i_\alpha + i_{\alpha+1}, \dots, i_s\}}],$$

and the restriction $G \cdot [v_{\{i_1, \dots, i_s\}}] \rightarrow G \cdot [v_{\{i_1, \dots, i_\alpha + i_{\alpha+1}, \dots, i_s\}}]$ is an isomorphism.

Proof. Fix the realizations

$$\text{sh}_{\{i_1, \dots, i_s\}} = \text{sh}_{(2^{i_1} \dots (s+1)^{i_s})}, \quad \text{sh}_{\{i_1, \dots, i_\alpha + i_{\alpha+1}, \dots, i_s\}} = \text{sh}_{(2^{i_1} \dots (\alpha+1)^{i_\alpha + i_{\alpha+1}} \dots s^{i_s})}.$$

Note that

$$(4) \quad \begin{aligned} \phi(v_{(2^{i_1} \dots (s+1)^{i_s})}) &= v(n) \otimes v(n - i_1) \otimes \dots \otimes v(n - i_1 - \dots - i_{s-1}); \\ \phi(v_{(2^{i_1} \dots (\alpha+1)^{i_\alpha + i_{\alpha+1}} \dots s^{i_s})}) &= v(n) \otimes \dots \otimes v(n - i_1 - \dots - i_{\alpha-1}) \otimes \\ &\quad \otimes v(n - i_1 - \dots - i_\alpha - i_{\alpha+1}) \otimes \dots \otimes v(n - i_1 - \dots - i_{s-1}). \end{aligned}$$

For the sequence $0 < n_1 < \dots < n_j \leq n$ define a homomorphism of $\widehat{\mathfrak{sl}}_2$ modules $P(n_1, \dots, n_j) : F^{\otimes n} \rightarrow F^{\otimes j}$:

$$P(n_1, \dots, n_j)(w_1 \otimes \dots \otimes w_n) = w_{n_1} \otimes \dots \otimes w_{n_j}.$$

From the formula (4) we obtain

$$(5) \quad P(1, 2, \dots, \alpha, \alpha+2, \dots, s)\phi(v_{(2^{i_1} \dots (s+1)^{i_s})}) = \phi(v_{(2^{i_1} \dots (\alpha+1)^{i_\alpha + i_{\alpha+1}} \dots s^{i_s})}).$$

The formula (5) gives us the needed homomorphism. \square

Introduce a notation: let $i_1 + \dots + i_s = j_1 + \dots + j_{s_1} = n$. We write $\{i_1, \dots, i_s\} \geq \{j_1, \dots, j_{s_1}\}$ if for any A, B of the types $\{i_1, \dots, i_s\}$, $\{j_1, \dots, j_{s_1}\}$ correspondingly the following condition holds: $(a_i = a_{i+1} \Rightarrow b_i = b_{i+1})$. For example, $\{1, \dots, 1\}$ is a maximal type, while $\{n\}$ is a minimal one.

Corollary 3.1. *Let $\{i_1, \dots, i_s\} \geq \{j_1, \dots, j_{s_1}\}$. Then there exists a G -equivariant surjective homomorphism $\text{sh}_{\{i_1, \dots, i_s\}} \rightarrow \text{sh}_{\{j_1, \dots, j_{s_1}\}}$. In particular, for any type $\{i_1, \dots, i_s\}$ there exists a homomorphism $h_{\{i_1, \dots, i_s\}} : \text{sh}^{(n)} \rightarrow \text{sh}_{\{i_1, \dots, i_s\}}$.*

For the proof of the existence of the bundle $\text{sh}_{\{i_1, \dots, i_s\}} \rightarrow \text{sh}_{\{i_{t+1}, \dots, i_s\}}$ we need to study the structure of the complement $\text{sh}_{\{i_1, \dots, i_s\}} \setminus G \cdot [v_{\{i_1, \dots, i_s\}}]$. First recall some results from [FF3]. Denote $B_n = (2, \dots, n+1)$. Thus B_n is of the type $\{1, \dots, 1\}$ and $\text{sh}_{B_n} = \text{sh}^{(n)}$.

Statement 3.1. *There exist $(n - 1)$ -dimensional subvarieties $N_j(\{1, \dots, 1\}) \hookrightarrow \text{sh}^{(n)}$, $j = 1, \dots, n - 1$ with the following properties:*

1. $\text{sh}^{(n)} \setminus G \cdot [v_{B_n}] = \bigcup_{j=1}^{n-1} N_j(\{1, \dots, 1\})$;
2. $N_j(\{1, \dots, 1\}) \simeq \{(x, y) \in \text{sh}^{(n-2)} \times \text{sh}^{(n-j)} : \pi_{n-2, n-j-1}(x) = \pi_{n-j, n-j-1}(y)\}$;
3. $N_j(\{1, \dots, 1\}) \hookrightarrow \overline{\mathbb{P}(S_{j,j+1}(B_n))}$;
4. $N_j(\{1, \dots, 1\}) = \{\exp\left(\sum_{i=0}^{n-1} e_i z_i + e_{n-j-1}^{(2)} z\right) \cdot [v_{j,j+1}(B_n)], z_i, z \in \mathbb{C}\}$ (the closure is taken in the projective space $\mathbb{P}(S_{j,j+1}(B_n))$; about the notation $e_{n-j-1}^{(2)}$ see lemma (1.1)).

We will need the following lemma.

Lemma 3.2. *Denote $A_{\{i_1, \dots, i_s\}} = (2^{i_1} \dots (s+1)^{i_s})$. Then*

$$h_{\{i_1, \dots, i_s\}}[v_{j,j+1}(B_n)] = [v_{i_1+\dots+i_\alpha, i_1+\dots+i_\alpha+1}(A_{\{i_1, \dots, i_s\}})]$$

for all j with $i_1 + \dots + i_{\alpha-1} < j \leq i_1 + \dots + i_\alpha$ (we put $i_0 = 0$).

Proof. Recall (see [FF3]) that

$$\begin{aligned} \phi_{B_n}(v_{j,j+1}(B_n)) &= \\ &= v(n-2) \otimes v(n-3) \otimes \dots \otimes v(n-j-1) \otimes v(n-j) \otimes v(n-j-1) \otimes \dots \otimes v(0). \end{aligned}$$

At the same time

$$\begin{aligned} \phi_{A_{\{i_1, \dots, i_s\}}}(v_{i_1+\dots+i_\alpha, i_1+\dots+i_\alpha+1}(A_{\{i_1, \dots, i_s\}})) &= v(n-2) \otimes v(n-i_1-2) \otimes \dots \\ &\dots \otimes v(n-i_1-\dots-i_{\alpha-1}-2) \otimes v(n-i_1-\dots-i_\alpha) \otimes \dots \otimes v(n-i_1-\dots-i_{s-1}). \end{aligned}$$

Thus for $i_1 + \dots + i_{\alpha-1} < j \leq i_1 + \dots + i_\alpha$

$$\begin{aligned} P(1, i_1+1, i_1+i_2+1, \dots, i_1+\dots+i_{s-1}+1)(\phi_{B_n}(v_{j,j+1}(B_n))) &= \\ &= \phi_{A_{\{i_1, \dots, i_s\}}}(v_{i_1+\dots+i_\alpha, i_1+\dots+i_\alpha+1}(A_{\{i_1, \dots, i_s\}})). \end{aligned}$$

This gives us $h_{\{i_1, \dots, i_s\}}[v_{j,j+1}(B_n)] = [v_{i_1+\dots+i_\alpha, i_1+\dots+i_\alpha+1}(A_{\{i_1, \dots, i_s\}})]$. \square

Now let $\{i_1, \dots, i_s\}$ be some type. Fix a realization $\text{sh}_{\{i_1, \dots, i_s\}} = \text{sh}_{A_{\{i_1, \dots, i_s\}}}$. Define subvarieties of $\text{sh}_{\{i_1, \dots, i_s\}}$:

$$N_j(\{i_1, \dots, i_s\}) = \overline{\left\{ \exp\left(\sum_{l=0}^{n-1} z_l e_l + e_{n-j-1}^{(2)} z\right) \cdot [v_{j,j+1}(A_{\{i_1, \dots, i_s\}})], z_l, z \in \mathbb{C} \right\}},$$

$$j = i_1, i_1+i_2, \dots, i_1+\dots+i_{s-1}.$$

From the lemma (3.2) we obtain the following corollary:

Corollary 3.2. *Let $s > 1$. Then*

$$\text{sh}_{\{i_1, \dots, i_s\}} \setminus G \cdot [v_{\{i_1, \dots, i_s\}}] = \bigcup_{\alpha=1}^{s-1} N_{i_1+\dots+i_\alpha}(\{i_1, \dots, i_s\}).$$

Proof. Recall the surjective homomorphism $h_{\{i_1, \dots, i_s\}} : \text{sh}^{(n)} \rightarrow \text{sh}_{\{i_1, \dots, i_s\}}$. Note that the restriction

$$h_{\{i_1, \dots, i_s\}} : G \cdot [v_{B_n}] \rightarrow G \cdot [v_{\{i_1, \dots, i_s\}}]$$

is an isomorphism. In addition, lemma (3.2) gives us that

$$h_{\{i_1, \dots, i_s\}} N_j(\{1, \dots, 1\}) = N_{i_1 + \dots + i_\alpha}(\{i_1, \dots, i_s\}),$$

$$i_1 + \dots + i_{\alpha-1} < j \leq i_1 + \dots + i_\alpha.$$

Corollary is proved. \square

For the description of the varieties $N_j(\{i_1, \dots, i_s\})$ we need the following notation: let $\alpha_1, \dots, \alpha_{s_1}, \beta_1, \dots, \beta_{s_2}$ be the natural numbers with

$$\alpha_1 + \dots + \alpha_{s_1} = n - 2, \quad \beta_1 + \dots + \beta_{s_2} = n - j.$$

Consider the map

$$h_{\{\alpha_1, \dots, \alpha_{s_1}\}} \times h_{\{\beta_1, \dots, \beta_{s_2}\}} : \text{sh}^{(n-2)} \times \text{sh}^{(n-j)} \rightarrow \text{sh}_{\{\alpha_1, \dots, \alpha_{s_1}\}} \times \text{sh}_{\{\beta_1, \dots, \beta_{s_2}\}}.$$

Recall that $N_j(\{1, \dots, 1\}) \hookrightarrow \text{sh}^{(n-2)} \times \text{sh}^{(n-j)}$. Define the variety

$$\text{sh}_{\{\alpha_1, \dots, \alpha_{s_1}\}} \xrightarrow{\sim} \text{sh}_{\{\beta_1, \dots, \beta_{s_2}\}} = h_{\{\alpha_1, \dots, \alpha_{s_1}\}} \times h_{\{\beta_1, \dots, \beta_{s_2}\}}(N_j(\{1, \dots, 1\})).$$

The following proposition gives the description of the varieties $N_j(\{i_1, \dots, i_s\})$.

Proposition 3.1. *Let $A = A_{\{i_1, \dots, i_s\}}$.*

- (1) *$s = 1$. Then $\text{sh}_{\{n\}} = G \cdot [v_A] \sqcup \text{sh}_{\{n-2\}}$.*
- (2) *$s > 1$. Then $\text{sh}_{\{i_1, \dots, i_s\}} = G \cdot [v_A] \sqcup \bigcup_{\alpha=1}^{s-1} N_{i_1 + \dots + i_\alpha}(\{i_1, \dots, i_s\})$ and*
 - (a) *$i_\alpha \geq 2$. Then*

$$N_{i_1 + \dots + i_\alpha}(\{i_1, \dots, i_s\}) \simeq \text{sh}_{\{i_1, \dots, i_{\alpha-2}, \dots, i_s\}} \xrightarrow{\sim} \text{sh}_{\{i_{\alpha+1}, \dots, i_s\}}$$

(if $i_\alpha = 2$ then $\{i_1, \dots, i_{\alpha-2}, \dots, i_s\} = \{i_1, \dots, i_{\alpha-1}, i_{\alpha+1}, \dots, i_s\}$).

- (b) *$i_\alpha = 1$. Then*

$$N_{i_1 + \dots + i_\alpha}(\{i_1, \dots, i_s\}) \simeq \text{sh}_{\{i_1, \dots, i_{\alpha-1}, i_{\alpha+1}-1, \dots, i_s\}} \xrightarrow{\sim} \text{sh}_{\{i_{\alpha+1}, \dots, i_s\}}.$$

Proof. Let $s = 1$. Then $A = (2^n)$. Consider the map $h_{\{n\}} : \text{sh}^{(n)} \rightarrow \text{sh}_{\{n\}}$ and the vector $v'_A = e_{n-1} v_A \in M^A$. Then for any $j = 1, \dots, n-1$ $h_{\{n\}}(v_{j,j+1}(B_n)) = v'_A$. The proof is similar to the one from the lemma (3.2). Thus

$$h_{\{n\}} N_j(\{1, \dots, 1\}) = \overline{G \cdot [v'_A]}.$$

But $\phi_A(v'_A) = v(n-2)$. Hence $\overline{G \cdot [v'_A]} \simeq \text{sh}_{\{n-2\}}$ and

$$\text{sh}_{\{n\}} = G \cdot [v_A] \sqcup \overline{G \cdot [v'_A]} \simeq G \cdot [v_A] \sqcup \text{sh}_{\{n-2\}}.$$

Now let $s > 1$ and $i_\alpha \geq 2$. Because of the lemma (1.1) and the definition of the varieties $N_j(A)$ we obtain the embedding

$$N_{i_1 + \dots + i_\alpha}(\{i_1, \dots, i_s\}) \hookrightarrow \text{sh}_{\{i_1, \dots, i_{\alpha-2}, \dots, i_s\}} \times \text{sh}_{\{i_{\alpha+1}, \dots, i_s\}}.$$

At the same time the following diagram is commutative

$$\begin{array}{ccc} N_{i_1 + \dots + i_\alpha}(\{1, \dots, 1\}) & \longrightarrow & \text{sh}^{(n-2)} \times \text{sh}^{(n-i_1 - \dots - i_\alpha)} \\ h_{\{i_1, \dots, i_s\}} \downarrow & & \downarrow h_{\{i_1, \dots, i_{\alpha-2}, \dots, i_s\}} \times h_{\{i_{\alpha+1}, \dots, i_s\}} \\ N_{i_1 + \dots + i_\alpha}(A) & \longrightarrow & \text{sh}_{\{i_1, \dots, i_{\alpha-2}, \dots, i_s\}} \times \text{sh}_{\{i_{\alpha+1}, \dots, i_s\}}. \end{array}$$

This finishes the proof of the case (2a). The proof of the case (2b) is quite similar. \square

As a corollary, we prove the theorem about the existence of the bundles:

Theorem 3.1. Fix a type $\{i_1, \dots, i_s\}$, $i_1 + \dots + i_s = n$. For any $t = 1, \dots, s-1$ there is a G -equivariant bundle $\text{sh}_{\{i_1, \dots, i_s\}} \rightarrow \text{sh}_{\{i_{t+1}, \dots, i_s\}}$ with a fiber $\text{sh}_{\{i_1, \dots, i_t\}}$, sending $[v_{\{i_1, \dots, i_s\}}]$ to $[v_{\{i_{t+1}, \dots, i_s\}}]$.

Proof. Note that there is a natural G -equivariant surjective homomorphism

$$\Psi_t : \text{sh}_{\{i_1, \dots, i_s\}} \rightarrow \text{sh}_{\{i_{t+1}, \dots, i_s\}}, \quad \Psi_t([v_{\{i_1, \dots, i_s\}}]) = [v_{\{i_{t+1}, \dots, i_s\}}],$$

because

$$\begin{aligned} \phi_{A_{\{i_1, \dots, i_s\}}} (v_{A_{\{i_1, \dots, i_s\}}}) &= \\ &= v(n) \otimes v(n - i_1) \otimes \dots \otimes v(n - i_1 - \dots - i_t) \otimes \phi_{A_{\{i_{t+1}, \dots, i_s\}}} (v_{A_{\{i_{t+1}, \dots, i_s\}}}). \end{aligned}$$

We want to prove that for any $x \in \text{sh}_{\{i_{t+1}, \dots, i_s\}}$ the preimage $\Psi_t^{-1}(x)$ is isomorphic to $\text{sh}_{\{i_1, \dots, i_t\}}$.

First prove that $\Psi_t^{-1}([v_{\{i_{t+1}, \dots, i_s\}}]) \simeq \text{sh}_{\{i_1, \dots, i_t\}}$. Recall (see [FF1]) that

$$\mathbb{C}[e_{i_{t+1}+\dots+i_s}, \dots, e_{n-1}] \cdot v_{\{i_1, \dots, i_s\}} \simeq M^{(2^{i_1} \dots (t+1)^{i_t})}.$$

Thus we obtain

$$\begin{aligned} \Psi_t^{-1}([v_{\{i_{t+1}, \dots, i_s\}}]) &= \overline{\left\{ \exp \left(\sum_{j=i_{t+1}+\dots+i_s}^{n-1} e_j z_j \right) \cdot [v_{\{i_1, \dots, i_s\}}], z_j \in \mathbb{C} \right\}} \simeq \\ &\simeq \overline{\left\{ \exp \left(\sum_{j=0}^{i_1+\dots+i_t-1} e_j z_j \right) \cdot [v_{\{i_1, \dots, i_t\}}], z_j \in \mathbb{C} \right\}} \simeq \text{sh}_{\{i_1, \dots, i_t\}}. \end{aligned}$$

In the same way one can prove that the preimage $\Psi_t^{-1}(x)$ is isomorphic to $\text{sh}_{\{i_1, \dots, i_t\}}$ for any x from the orbit $G \cdot [v_{\{i_{t+1}, \dots, i_s\}}]$.

Recall that

$$\text{sh}_{\{i_{t+1}, \dots, i_s\}} = G \cdot [v_{\{i_{t+1}, \dots, i_s\}}] \bigsqcup \bigcup_{\alpha=1}^{s-t-1} N_{i_{t+1}+\dots+i_{t+\alpha}}(\{i_{t+1}, \dots, i_s\}).$$

Pick α with $1 \leq \alpha \leq s-t-1$. Let $i_{t+\alpha} \geq 2$. Note that

$$\Psi_t^{-1} : \text{sh}_{\{i_{t+1}, \dots, i_{\alpha-2}, \dots, i_s\}} \xrightarrow{\sim} \text{sh}_{\{i_{\alpha+1}, \dots, i_s\}} = \text{sh}_{\{i_1, \dots, i_{\alpha-2}, \dots, i_s\}} \xrightarrow{\sim} \text{sh}_{\{i_{\alpha+1}, \dots, i_s\}}$$

and for any

$$x \in \text{sh}_{\{i_1, \dots, i_{\alpha-2}, \dots, i_s\}}, \quad y \in \text{sh}_{\{i_{\alpha+1}, \dots, i_s\}}$$

we have $\Psi_t(x \times y) = \Psi_t(x) \times y$. The assumption that

$$\Psi_t : \text{sh}_{\{i_1, \dots, i_{\alpha-2}, \dots, i_s\}} \rightarrow \text{sh}_{\{i_{t+1}, \dots, i_{\alpha-2}, \dots, i_s\}}$$

is a bundle with a fiber $\text{sh}_{\{i_1, \dots, i_t\}}$ gives us that for any

$$x \in N_{i_{t+1}+\dots+i_{t+\alpha}}(\{i_{t+1}, \dots, i_s\}) \text{ with } i_{t+\alpha} \geq 2$$

the preimage $\Psi_t^{-1}(x)$ is isomorphic to $\text{sh}_{\{i_1, \dots, i_t\}}$. The case of $i_{t+\alpha} = 1$ can be considered in the same way. Theorem is proved. \square

Corollary 3.3. Let $P_{\{i_1, \dots, i_s\}}(q) = \sum_{j=0}^{2n} q^j \dim H_j(\text{sh}_{\{i_1, \dots, i_s\}}, \mathbb{Z})$. Then

$$P_{\{i_1, \dots, i_s\}}(q) = \prod_{\alpha=1}^s \frac{(1 - q^{2(i_\alpha+1)})}{(1 - q^2)}.$$

Proof. Our corollary follows from the previous theorem and the statement that

$$(6) \quad P_{\{n\}}(q) = \frac{1 - q^{2(n+1)}}{1 - q^2},$$

i.e. the odd homologies vanish and $\dim H_{2j}(\text{sh}_{\{n\}}, \mathbb{Z}) = 1$, $j = 0, \dots, n$. Because of the proposition (3.1)

$$(7) \quad \text{sh}_{\{n\}} = G \cdot [v_{\{n\}}] \sqcup \text{sh}_{\{n-2\}}.$$

But in [FF3] was proved that for any $A \in (\mathbb{N} \setminus \{0\})^n$ the orbit $G \cdot [v_A] \hookrightarrow \text{sh}_A$ is fibered over \mathbb{P}^1 with a fiber \mathbb{C}^{n-1} . Thus $G \cdot [v_{\{n\}}]$ is the union of the two cells: \mathbb{C}^n and \mathbb{C}^{n-1} . Using (7) we obtain (6). \square

Remark 3.1. Consider the bundle $G \cdot [v_A] \rightarrow \mathbb{P}^1$. It was proved in [FF3] that the transition functions of this bundle can be written in the following form. Let $p \in \mathbb{P}^1 \setminus \{0, \infty\}$, x_0 the coordinate of p in $\mathbb{P}^1 \setminus \{\infty\}$, $y_0 = x_0^{-1}$ the coordinate of p in $\mathbb{P}^1 \setminus \{0\}$. Denote by $\{x_i\}, \{y_j\}$, $i, j = 1, \dots, n-1$ the coordinates in the fiber \mathbb{C}^{n-1} over the point p with respect to the trivializations on $\mathbb{P}^1 \setminus \{\infty\}$ and $\mathbb{P}^1 \setminus \{0\}$. Then we have an equality in the ring $(\mathbb{C}[t]/t^n)$:

$$(x_0 + x_1 t + \dots + x_{n-1} t^{n-1})(y_0 + y_1 t + \dots + y_{n-1} t^{n-1}) = 1.$$

The Schubert varieties $\text{sh}_{\{i_1, \dots, i_s\}}$ can be considered as the 2^{n-1} ways of the compactification of the bundle over \mathbb{P}^1 with the fiber \mathbb{C}^{n-1} and above transition functions.

4. SCHUBERT VARIETIES AS A GENERALIZED PARTIAL FLAG MANIFOLDS

Here we give a description of the varieties $\text{sh}_{\{i_1, \dots, i_s\}}$ in terms of the special sequences of the subspaces of $\mathbb{C}[t] \oplus \mathbb{C}[t]$. We start with the case of $\text{sh}_{\{n\}}$.

Lemma 4.1. Let $W_0 = \mathbb{C}^2 \otimes \mathbb{C}[t]$ with a natural action of the operator t by multiplication. Define $\text{Fl}_{\{n\}}$ as a variety of the subspaces $W_1 \hookrightarrow W_0$ with the following properties:

$$(8) \quad 1). \dim W_0/W_1 = n \quad 2). tW_1 \hookrightarrow W_1 \quad 3). W_1 \hookrightarrow t^n W_0.$$

Then $\text{Fl}_{\{n\}} \simeq \text{sh}_{\{n\}}$.

Proof. First note that because of the conditions 1) and 3) we can consider W_1 as a subspace of $\mathbb{C}^2 \otimes (\mathbb{C}[t]/t^n)$ of codimension n . Thus the group $G = \text{SL}_2(\mathbb{C}[t]/t^n)$ naturally acts on $\text{Fl}_{\{n\}}$. Let v, u be the standard basis of the 2-dimensional \mathfrak{sl}_2 module, $hv = -v$, $hu = u$, $ev = u$. Denote $v_i = v \otimes t^i$, $u_i = u \otimes t^i$, $u_i, v_i \in W_0$. Let $V_{\{n\}} \in \text{Fl}_{\{n\}}$ be the subspace with a basis $v_i, i = 0, \dots, n-1$. One can show that

$$(9) \quad \text{Fl}_{\{n\}} = \overline{G \cdot V_{\{n\}}}.$$

Consider a map

$$(10) \quad \text{Fl}_{\{n\}} \rightarrow \bigwedge^n (\mathbb{C}^2 \otimes (\mathbb{C}[t]/t^n)), \quad W_1 \mapsto r_1 \wedge \dots \wedge r_n,$$

where r_i is a basis of W_1 . Surely (10) is a G -equivariant homomorphism. Thus, because of the formula (9) for the proof of the lemma it is enough to show that we have an isomorphism of $\mathfrak{sl}_2 \otimes (\mathbb{C}[t]/t^n)$ modules

$$(11) \quad \mathfrak{sl}_2 \otimes (\mathbb{C}[t]/t^n) \cdot (v_0 \wedge \dots \wedge v_{n-1}) \simeq M^{(2^n)}.$$

First we check that the defining relations from the right hand side of (11) are true in the left hand side. Recall (see [FF1]) that

$$M^{(2^n)} \simeq \mathbb{C}[e_0, \dots, e_{n-1}]/I,$$

where I is the ideal, generated by the following conditions

$$(12) \quad e^{(n)}(z)^i = (e_{n-1} + ze_{n-2} + \dots + z^{n-1}e_0)^i \div z^{n(i-1)}.$$

(The latter means that the first $n(i-1) - 1$ coefficients of the series $e^{(n)}(z)^i$ vanish.) We will prove that $e^{(n)}(z)^i \cdot (v_0 \wedge \dots \wedge v_{n-1}) \div z^{n(i-1)}$. (One can easily check that the left hand side of (11) will not change after the replacement of $\mathfrak{sl}_2 \otimes (\mathbb{C}[t]/t^n)$ by $\mathbb{C}[e_0, \dots, e_{n-1}]$.)

By definition

$$(13) \quad \begin{aligned} e^{(n)}(z)^i(v_0 \wedge \dots \wedge v_{n-1}) &= \\ &= n! \sum_{0 \leq \alpha_1 < \dots < \alpha_i \leq n-1} v_0 \wedge \dots \wedge e^{(n)}(z)v_{\alpha_1} \wedge \dots \wedge e^{(n)}(z)v_{\alpha_i} \wedge \dots \wedge v_{n-1}. \end{aligned}$$

Let us show that $e^{(n)}(z)v_{\alpha_1} \wedge \dots \wedge e^{(n)}(z)v_{\alpha_i} \div z^{n(i-1)}$. In fact

$$(14) \quad \begin{aligned} e^{(n)}(z)v_{\alpha_1} \wedge \dots \wedge e^{(n)}(z)v_{\alpha_i} &= \\ &= \sum_{j_1=\alpha_1}^{n-1} u_{j_1} z^{n+\alpha_1-j_1-1} \wedge \sum_{j_2=\alpha_2}^{n-1} u_{j_2} z^{n+\alpha_2-j_2-1} \wedge \dots \wedge \sum_{j_i=\alpha_i}^{n-1} u_{j_i} z^{n+\alpha_i-j_i-1}. \end{aligned}$$

Note that

$$\begin{aligned} \sum_{j_k=\alpha_k}^{n-1} u_{j_k} z^{n+\alpha_k-j_k-1} \wedge \sum_{j_{k+1}=\alpha_{k+1}}^{n-1} u_{j_{k+1}} z^{n+\alpha_{k+1}-j_{k+1}-1} &= \\ &= \sum_{j_k=\alpha_k}^{\alpha_{k+1}-1} u_{j_k} z^{n+\alpha_k-j_k-1} \wedge \sum_{j_{k+1}=\alpha_{k+1}}^{n-1} u_{j_{k+1}} z^{n+\alpha_{k+1}-j_{k+1}-1}. \end{aligned}$$

Thus we can rewrite the formula (14) in the following way:

$$\begin{aligned} e^{(n)}(z)v_{\alpha_1} \wedge \dots \wedge e^{(n)}(z)v_{\alpha_i} &= \\ &= \sum_{j_1=\alpha_1}^{\alpha_2-1} u_{j_1} z^{n+\alpha_1-j_1-1} \wedge \sum_{j_2=\alpha_2}^{\alpha_3-1} u_{j_2} z^{n+\alpha_2-j_2-1} \wedge \dots \wedge \sum_{j_i=\alpha_i}^{n-1} u_{j_i} z^{n+\alpha_i-j_i-1} \div \\ &\quad \div z^{n+\alpha_1-\alpha_2} z^{n+\alpha_2-\alpha_3} \dots z^{\alpha_i} = z^{n(i-1)+\alpha_1} \div z^{n(i-1)}. \end{aligned}$$

To finish the proof of the formula (11) we show that the following vectors are linearly independent ($k = 0, \dots, n$):

$$e_{i_1} \dots e_{i_k}(v_0 \wedge \dots \wedge v_{n-1}), \quad i_\alpha \leq n-k \quad (1 \leq \alpha \leq k).$$

(That will be enough, because $\dim M^{(2^n)} = 2^n$.) Let

$$(15) \quad \sum_{0 \leq i_1 \leq \dots \leq i_k \leq n-k} \beta_{i_1, \dots, i_k} e_{i_1} \dots e_{i_k}(v_0 \wedge \dots \wedge v_{n-1}) = 0.$$

Pick such n -tuple (i_1^0, \dots, i_k^0) that $\beta_{i_1^0, \dots, i_k^0} \neq 0$ and for any (i_1, \dots, i_k) with a non-vanishing β_{i_1, \dots, i_k} the following is true: there exists such $l \leq k$ that $i_l > i_l^0$ and for

any $m < l$ $i_m = i_m^0$. Then the monomial

$$e_{i_1^0} v_0 \wedge \dots \wedge e_{i_k^0} v_{k-1} \wedge v_k \wedge \dots \wedge v_{n-1} = u_{i_1^0} \wedge u_{i_2^0+1} \wedge \dots \wedge u_{i_k^0+k-1} \wedge v_k \wedge \dots \wedge v_{n-1}$$

comes from $e_{i_1^0} \dots e_{i_k^0} (v_0 \wedge \dots \wedge v_{n-1})$ but not from any other monomial from the linear combination (15). Thus (11) is proved. \square

We will need the following lemma:

Lemma 4.2. *Let $i_1 + \dots + i_s = n$. Then there is G-equivariant embedding*

$$(16) \quad \begin{aligned} \text{sh}_{\{i_1, \dots, i_s\}} &\hookrightarrow \text{sh}_{\{n\}} \times \text{sh}_{\{n-i_1\}} \times \dots \times \text{sh}_{\{n-i_1-\dots-i_{s-1}\}}, \\ [v_{\{i_1, \dots, i_s\}}] &\mapsto [v_{\{n\}}] \times [v_{\{n-i_1\}}] \times \dots \times [v_{\{n-i_1-\dots-i_{s-1}\}}]. \end{aligned}$$

Proof. Recall the embedding $M^{(2^{i_1} \dots (s+1)^{i_s})} \hookrightarrow F^{\otimes s}$

$$v_{(2^{i_1} \dots (s+1)^{i_s})} \mapsto v(n) \otimes v(n-i_1) \otimes \dots \otimes v(n-i_1-\dots-i_{s-1}).$$

Thus we obtain an embeddings

$$\begin{aligned} M^{(2^{i_1} \dots (s+1)^{i_s})} &\hookrightarrow M^{(2^n)} \otimes M^{(2^{n-i_1})} \otimes \dots \otimes M^{(2^{n-i_1-\dots-i_{s-1}})}, \\ \text{sh}_{\{i_1, \dots, i_s\}} &\hookrightarrow \text{sh}_{\{n\}} \times \text{sh}_{\{n-i_1\}} \times \dots \times \text{sh}_{\{n-i_1-\dots-i_{s-1}\}}. \end{aligned}$$

(Surely, the first embedding is a homomorphism of $\mathfrak{sl}_2 \otimes (\mathbb{C}[t]/t^n)$ modules and the second one is a G-equivariant homomorphism.) \square

Proposition 4.1. *Let $W_0 = \mathbb{C}^2 \otimes \mathbb{C}[t]$. Define the generalized partial flag manifold $\text{Fl}_{\{i_1, \dots, i_s\}}$ as the variety of the special sequences of the subspaces. Namely*

$$\begin{aligned} \text{Fl}_{\{i_1, \dots, i_s\}} = \{W_0 &\hookleftarrow W_1 \hookleftarrow \dots \hookleftarrow W_s : \\ 1). \ tW_\alpha &\hookrightarrow W_\alpha; \quad 2). \ \dim W_\alpha / W_{\alpha+1} = i_{s-\alpha}; \quad 3). \ W_{\alpha+1} \hookleftarrow t^{i_{s-\alpha}} W_\alpha\}. \end{aligned}$$

Then $\text{Fl}_{\{i_1, \dots, i_s\}} \cong \text{sh}_{\{i_1, \dots, i_s\}}$.

Proof. Because of the condition 2) we know that $W_\alpha \hookleftarrow t^n W_0$. Thus we can consider W_α as a subspaces of $\mathbb{C}^2 \otimes (\mathbb{C}[t]/t^n)$. Define $V_{\{i_1, \dots, i_s\}} \in \text{Fl}_{\{i_1, \dots, i_s\}}$ as follows:

$$\begin{aligned} V_{\{i_1, \dots, i_s\}} &= \{W_0 \hookleftarrow W_1 \hookleftarrow \dots \hookleftarrow W_s\}, \\ W_\alpha &= \langle v_i, i = 0, \dots, n-1; \ u_j, j = i_s + \dots + i_{s-\alpha+1}, \dots, n-1 \rangle, \quad 1 \leq \alpha \leq s-1, \\ W_s &= \langle v_i, i = 0, \dots, n-1 \rangle. \end{aligned}$$

Note that $\text{Fl}_{\{i_1, \dots, i_s\}} = \overline{G \cdot V_{\{i_1, \dots, i_s\}}}$. Define a map

$$(17) \quad \begin{aligned} \text{Fl}_{\{i_1, \dots, i_s\}} &\rightarrow \bigwedge^{n+i_1+\dots+i_{s-1}} (\mathbb{C}^2 \otimes (\mathbb{C}[t]/t^n)) \oplus \\ &\oplus \bigwedge^{n+i_1+\dots+i_{s-2}} (\mathbb{C}^2 \otimes (\mathbb{C}[t]/t^n)) \oplus \dots \oplus \bigwedge^n (\mathbb{C}^2 \otimes (\mathbb{C}[t]/t^n)), \\ \{W_0 \hookleftarrow W_1 \hookleftarrow \dots \hookleftarrow W_s\} &\mapsto \bigoplus_{\alpha=1}^s r_1^\alpha \wedge \dots \wedge r_{n+i_1+\dots+i_{s-\alpha}}^\alpha, \end{aligned}$$

where r_j^α form a basis of W_α . Consider an embedding $\chi_\alpha, \alpha = 1, \dots, s$:

$$\begin{aligned} \chi_\alpha : \bigwedge^{i_s+\dots+i_{s-\alpha+1}} (\mathbb{C}^2 \otimes (\mathbb{C}[t]/t^{i_s+\dots+i_{s-\alpha+1}})) &\hookrightarrow \bigwedge^{n+i_1+\dots+i_{s-\alpha}} (\mathbb{C}[t]/t^n), \\ \chi_\alpha(w) &= w \wedge v_{i_s+\dots+i_{s-\alpha+1}} \wedge \dots \wedge v_{n-1} \wedge u_{i_s+\dots+i_{s-\alpha+1}} \wedge \dots \wedge u_{n-1}. \end{aligned}$$

One can show that the image of the map (17) belongs to the direct sum of the images $\bigoplus_{\alpha=1}^s \text{im}(\chi_\alpha)$. In addition, $V_{\{i_1, \dots, i_s\}} \mapsto V_{\{i_s\}} \times V_{\{i_s+i_{s-1}\}} \times \dots \times V_{\{n\}}$. Thus we obtain a map

$$\text{Fl}_{\{i_1, \dots, i_s\}} \hookrightarrow \text{Fl}_{\{i_s\}} \times \text{Fl}_{\{i_s+i_{s-1}\}} \times \dots \times \text{Fl}_{\{n\}}.$$

Because of the lemmas (4.1) and (4.2) we obtain the G -equivariant isomorphism $\text{Fl}_{\{i_1, \dots, i_s\}} \simeq \text{sh}_{\{i_1, \dots, i_s\}}$. \square

5. LINE BUNDLES ON $\text{sh}_{\{i_1, \dots, i_s\}}$

Fix the set of the curves $C_j \hookrightarrow \text{sh}_{\{i_1, \dots, i_s\}}, j = 0, \dots, n-1$,

$$C_j = \overline{\{\exp(ze_j) \cdot [v_{\{i_1, \dots, i_s\}}], z \in \mathbb{C}\}} \simeq \mathbb{P}^1.$$

Let \mathcal{E} be the line bundle on $\text{sh}_{\{i_1, \dots, i_s\}}$. We write $\mathcal{E} = \mathcal{O}(a_1, \dots, a_n) = \mathcal{O}(A)$ ($a_i \in \mathbb{Z}$) if

$$\mathcal{E}|_{C_j} = \mathcal{O}(a_1 + \dots + a_{n-j}).$$

In [FF3] was shown that the bundle on $\text{sh}^{(n)}$ is uniquely determined by the numbers a_i . The same statement is true for the general $\text{sh}_{\{i_1, \dots, i_s\}}$. In the case of $\text{sh}^{(n)}$ for any $\{a_i\}$ there exists a bundle $\mathcal{O}(a_1, \dots, a_n)$. The general case is considered in the proposition (5.1).

Lemma 5.1. *Consider the homomorphism $h_{\{i_1, \dots, i_s\}} : \text{sh}^{(n)} \rightarrow \text{sh}_{\{i_1, \dots, i_s\}}$. Recall the subvariety $N_{n-1}(\{1, \dots, 1\}) \simeq \text{sh}^{(n-2)} \times \mathbb{P}^1$ of $\text{sh}^{(n)}$. Denote by L the following projective line:*

$$(18) \quad L = [\underbrace{v_{\{1, \dots, 1\}}}_{n-2}] \times \mathbb{P}^1 \hookrightarrow N_{n-1}(\underbrace{1, \dots, 1}_n) \hookrightarrow \text{sh}^{(n)}.$$

If $i_s > 1$ then $h_{\{i_1, \dots, i_s\}}$ maps L to the point.

Proof. From the results of [FF3] follows that

$$(19) \quad L = \text{SL}_2^{(n)} \cdot [v(n-2) \otimes v(n-3) \otimes \dots \otimes v(0) \otimes v(1)],$$

where $\text{SL}_2^{(n)}$ stands for the SL_2 acting on the n -th (last) factor of the tensor power $F^{\otimes n}$.

Recall (see lemma (3.1), corollary (3.1)) that the map $h_{\{i_1, \dots, i_s\}}$ can be regarded as a part of the following commutative diagram (the horizontal arrows come from the lemma (4.2)):

$$\begin{array}{ccc} \text{sh}^{(n)} & \longrightarrow & \text{sh}_{\{n\}} \times \text{sh}_{\{n-1\}} \times \dots \times \text{sh}_{\{1\}} \\ h_{\{i_1, \dots, i_s\}} \downarrow & & \downarrow P \\ \text{sh}_{\{i_1, \dots, i_s\}} & \longrightarrow & \text{sh}_{\{n\}} \times \text{sh}_{\{n-i_1\}} \times \dots \times \text{sh}_{\{i_s\}} \end{array}$$

where P is a map of "forgetting" of some factors. In the case $i_s > 1$ the last, n -th factor is one to "forget". Thus because of the formula (19) $h_{\{i_1, \dots, i_s\}}$ maps L to the point. \square

Proposition 5.1. *Let $A = (a_1, \dots, a_n) \in \mathbb{Z}^n$ be of the type $\{j_1, \dots, j_{s_1}\}$. Then the bundle $\mathcal{O}(A)$ on $\text{sh}_{\{i_1, \dots, i_s\}}$ really exists if and only if $\{j_1, \dots, j_{s_1}\} \leq \{i_1, \dots, i_s\}$.*

Proof. First note that for any $A = (a_1, \dots, a_n), a_i > 0$ of the type less or equal to $\{i_1, \dots, i_s\}$ there exists homomorphism $\iota_A : \text{sh}_{\{i_1, \dots, i_s\}} \rightarrow \mathbb{P}(M^A)$. In fact, if $a_{i_1+\dots+i_\alpha} \neq a_{i_1+\dots+i_\alpha+1}$ for all α , then ι_A is an embedding coming from the realization $\text{sh}_{\{i_1, \dots, i_s\}} = \text{sh}_A$. If there exists α with $a_{i_1+\dots+i_\alpha} = a_{i_1+\dots+i_\alpha+1}$, then ι_A is a composition of the above embedding and a homomorphisms from the lemma (3.1). It was shown in [FF3] that

$$\iota_A^* \mathcal{O}(1) = \mathcal{O}(a_1 - 1, \dots, a_n - 1).$$

Thus for any A with $\{j_1, \dots, j_{s_1}\} \leq \{i_1, \dots, i_s\}$ and $a_i \geq 0$ the line bundle $\mathcal{O}(A)$ really exists on $\text{sh}_{\{i_1, \dots, i_s\}}$. The case of an arbitrary A is an immediate consequence, because any A of the type $\{j_1, \dots, j_{s_1}\}$ can be represented as $A = B - C$ ($a_i = b_i - c_i$), where $B, C \in \mathbb{N}^n$.

Now we need to prove that the bundle $\mathcal{O}(A)$ really exists on $\text{sh}_{\{i_1, \dots, i_s\}}$ only if the type of A is less or equal to $\{i_1, \dots, i_s\}$. Recall that

$$\overline{\left\{ \exp \left(\sum_{j=1}^{n-1} z_j e_j \right) \cdot [v_{\{i_1, \dots, i_s\}}], z_j \in \mathbb{C} \right\}} \simeq \text{sh}_{\{i_1, \dots, i_{s-1}, i_s - 1\}}.$$

The restriction of $\mathcal{E} = \mathcal{O}(a_1, \dots, a_n)$ to this subvariety equals to $\mathcal{O}(a_1, \dots, a_{n-1})$. Using the induction assumption we know that $\{j_1, \dots, j_{s_1} - 1\} \leq \{i_1, \dots, i_s - 1\}$. Note that in the case $i_s = 1$ we obtain that the type of A is less or equal to $\{i_1, \dots, i_s\}$.

Let $i_s > 1$. We want to prove that $j_{s_1} > 1$. Consider the variety $\text{sh}^{(n)}$ and the line $L \hookrightarrow \text{sh}^{(n)}$ (see lemma (5.1)). It was shown in [FF3] that the restriction of the bundle $\mathcal{O}(A)$ on $\text{sh}^{(n)}$ to this line equals to $\mathcal{O}(a_n - a_{n-1})$. Using the lemma (5.1) we obtain that if $\mathcal{O}(A)$ really exists on $\text{sh}_{\{i_1, \dots, i_s\}}$ then $a_n - a_{n-1} = 0$. Thus $j_{s_1} > 1$. Theorem is completely proved. \square

Corollary 5.1. *Let $A \in \mathbb{N}^n$ be of the type less or equal to $\{i_1, \dots, i_s\}$. Then*

$$H^0(\mathcal{O}(a_1 - 1, \dots, a_n - 1), \text{sh}_{\{i_1, \dots, i_s\}}) \simeq (M^A)^*.$$

Proof. It was proved in [FF3] that

$$H^0(\mathcal{O}(a_1 - 1, \dots, a_n - 1), \text{sh}^{(n)}) \simeq (M^A)^*.$$

The statement of the corollary follows from the fact that

$$h_{\{i_1, \dots, i_s\}}^* \mathcal{O}(a_1 - 1, \dots, a_n - 1) = \mathcal{O}(a_1 - 1, \dots, a_n - 1)$$

and the induced map of the sections is an isomorphism. \square

6. INFINITE-DIMENSIONAL CONSEQUENCES

Recall that in [FF3] for any $A = (a_1 \leq \dots \leq a_n) \in \mathbb{N}^n$ the infinite-dimensional variety Gr_A was defined as an inductive limit of the Schubert varieties. Namely, let

$$A^{(i)} = (a_1, \dots, a_n, \underbrace{a_n, \dots, a_n}_{2i}).$$

Then we have an embedding $\text{sh}_{(A^{(i)})} \hookrightarrow \text{sh}_{(A^{(i+1)})}$ and $Gr_A = \lim_{i \rightarrow \infty} \text{sh}_{(A^{(i)})}$. Because of the theorem (2.1) we have a collection of varieties $Gr_{\{i_1, \dots, i_s\}}$:

$$Gr_{\{i_1, \dots, i_s\}} = \lim_{i \rightarrow \infty} \text{sh}_{\{i_1, \dots, i_s + 2i\}}.$$

By definition we have an action of the group $\mathrm{SL}_2(\mathbb{C}[t])$ on $\widehat{\mathrm{Gr}}_{\{i_1, \dots, i_s\}}$. It was shown in [FF2, FF3] that in fact we have an action of the group $\widehat{\mathrm{SL}}_2$ (the reason is that the space $\lim_{i \rightarrow \infty} M^{A^{(i)}}$ is not only $\widehat{\mathfrak{sl}}_2 \otimes \mathbb{C}[t]$ module, but also has a structure of a representation of the Lie algebra $\widehat{\mathfrak{sl}}_2$).

Lemma 6.1. *Let $\jmath : \mathrm{sh}_{\{i_1, \dots, i_s\}} \hookrightarrow \mathrm{sh}_{\{i_1, \dots, i_s + 2\}}$, $B = (b_1, \dots, b_n) \in \mathbb{Z}^n$ the element of the type $\{i_1, \dots, i_s\}$. Then $\jmath^* \mathcal{O}(B^{(1)}) = \mathcal{O}(B)$.*

Proof. It is enough to prove our lemma for $B \in (\mathbb{N} \setminus \{1\})^n$. In this case the embedding \jmath is the restriction of the embedding of the projective spaces $\widehat{\jmath} : \mathbb{P}(M^B) \hookrightarrow \mathbb{P}(M^{B^{(1)}})$, constructed in [FF3] (we use the embeddings $\iota_B : \mathrm{sh}_{\{i_1, \dots, i_s\}} \hookrightarrow \mathbb{P}(M^B)$ and $\iota_{B^{(1)}} : \mathrm{sh}_{\{i_1, \dots, i_s + 2\}} \hookrightarrow \mathbb{P}(M^{B^{(1)}})$). Thus $\iota_{B^{(1)}} \jmath = \widehat{\jmath} \iota_B$. We obtain

$$\jmath^* \mathcal{O}(B^{(1)}) = \jmath^* \iota_{B^{(1)}}^* \mathcal{O}_{\mathbb{P}(M^{B^{(1)}})}(1) = \iota_B^* \widehat{\jmath}^* \mathcal{O}_{\mathbb{P}(M^{B^{(1)}})}(1) = \iota_B^* \mathcal{O}_{\mathbb{P}(M^B)}(1) = \mathcal{O}(B).$$

Lemma is proved. \square

Now let \mathbf{E} be a line bundle on $\mathrm{Gr}_{\{i_1, \dots, i_s\}}$. We write

$$\mathbf{E} = \mathcal{O}(B^{(\infty)}) \text{ if } \mathbf{E}|_{\mathrm{sh}_{\{i_1, \dots, i_s + 2i\}}} = \mathcal{O}(B^{(i)}).$$

Let $B \in \mathbb{N}^n$. Consider the projective limit of the spaces of sections

$$\begin{aligned} H^0(\mathcal{O}(B^{(\infty)}), \mathrm{Gr}_{\{i_1, \dots, i_s\}}) &= \varprojlim_i H^0(\mathcal{O}(B^{(i)}), \mathrm{sh}_{\{i_1, \dots, i_s + 2i\}}) = \\ &= \varprojlim_i \left(M^{(b_1+1, \dots, b_n+1, (b_n+1)^{2i})} \right)^*. \end{aligned}$$

It was proved in [FF2] that we have an isomorphism of $\widehat{\mathfrak{sl}}_2$ modules:

$$\varinjlim_i M^{(b_1+1, \dots, b_n+1, (b_n+1)^{2i})} \simeq \bigoplus_{j=0}^{b_n} c_{j; b_1, \dots, b_n} L_{j, b_n},$$

where L_{j, b_n} are level b_n irreducible $\widehat{\mathfrak{sl}}_2$ modules and the numbers $c_{j; b_1, \dots, b_n}$ are defined by the following equation in the Verlinde algebra of the level $b_n + 1$, associated with the Lie algebra \mathfrak{sl}_2 :

$$[b_1] \cdot \dots \cdot [b_n] = \sum_{j=0}^{b_n} c_{j; b_1, \dots, b_n} [j]$$

(here the notation $[j]$ stands for the element of the Verlinde algebra, corresponding to the $[j+1]$ -dimensional irreducible representation of \mathfrak{sl}_2). Thus we obtain the following proposition:

Proposition 6.1. *Let $B \in \mathbb{N}^n$. Then we have an isomorphism of $\widehat{\mathfrak{sl}}_2$ modules*

$$H^0(\mathcal{O}(B^{(\infty)}), \mathrm{Gr}_{\{i_1, \dots, i_s\}}) \simeq \bigoplus_{j=0}^{b_n} c_{j; b_1, \dots, b_n} L_{j, b_n}^*.$$

7. DISCUSSION OF THE SINGULARITIES OF THE SCHUBERT VARIETIES

Recall that in [FF3] was shown that $\mathrm{sh}^{(n)}$ is a smooth variety.

Lemma 7.1. *Let $i_1 + \dots + i_s = n$ and $s \neq n$. Then $\mathrm{sh}_{\{i_1, \dots, i_s\}}$ is a singular variety.*

Proof. Recall (see [FF3]) that there is a bundle

$$\tilde{\pi} : G \cdot [v_{\{i_1, \dots, i_s\}}] \rightarrow \mathrm{SL}_2 \cdot [v_{\{i_1, \dots, i_s\}}] \simeq \mathbb{P}^1$$

with a fiber \mathbb{C}^{n-1} . It is easy to show that the closure of the fiber $\overline{\tilde{\pi}(x)^{-1}}$ is isomorphic to $\mathrm{sh}_{\{i_1, \dots, i_{s-1}, i_s - 1\}}$ for any $x \in \mathbb{P}^1$. Note that because $\tilde{\pi}$ is SL_2 -equivariant homomorphism, $\mathrm{sh}_{\{i_1, \dots, i_s\}}$ is smooth if and only if

- (1) $\overline{\tilde{\pi}(x)^{-1}}$ is smooth for any $x \in \mathbb{P}^1$,
- (2) $\overline{\tilde{\pi}(x)^{-1}} \cap \overline{\tilde{\pi}(y)^{-1}} = \emptyset$ if $x \neq y$.

Suppose that we have already proved our lemma for $\sum i_\alpha < n$. Then the first condition means that $i_1 = \dots = i_{s-1} = 1, i_s \leq 2$. In [FF3] was proved that the condition (2) holds for $i_s = 1$. In the same way one can prove that otherwise the closures of the fibers of $\tilde{\pi}$ intersect. Thus $i_s = 1$ and lemma is proved. \square

It is interesting to describe the variety of the singular points of $\mathrm{sh}_{\{i_1, \dots, i_s\}}$ in the general case. In the next proposition we consider the case of $\mathrm{sh}_{\{n\}}$.

Proposition 7.1. *Recall (see proposition (3.1)) that $\mathrm{sh}_{\{n\}} = G \cdot [v_{\{n\}}] \sqcup N$ and $N \simeq \mathrm{sh}_{\{n-2\}}$.*

- (1) *N is a variety of the singular points of $\mathrm{sh}_{\{n\}}$.*
- (2) *There exists a line bundle \mathcal{E} on $\mathrm{sh}_{\{n\}}$ and $s_1, s_2 \in H^0(\mathcal{E}, \mathrm{sh}_{\{n\}})$ such that $N = \{s_1 = 0\} \cap \{s_2 = 0\}$.*

Proof. For the proof of the first part of the proposition it is enough to show that for any $x \in \mathbb{P}^1$ variety N is contained in the closure $\overline{\tilde{\pi}^{-1}(x)}$. First let us show the latter for the point $x = [v_{\{n\}}]$ (recall that we have a realization $\mathbb{P}^1 = \mathrm{SL}_2 \cdot [v_{\{n\}}]$). Note that the case of an arbitrary x is an immediate consequence, because $\tilde{\pi}$ is an SL_2 -equivariant map.

Recall that $\mathrm{sh}_{\{n\}} = \mathrm{sh}_{(2^n)}$. From the proof of the proposition (3.1) in the case of $\mathrm{sh}_{\{n\}}$ follows that

$$\lim_{z \rightarrow \infty} \exp(e_{n-1}z)[v_{\{n\}}] = [e_{n-1}v_{(2^n)}] = [v_{\{n-2\}}] \in \mathrm{sh}_{\{n-2\}} \simeq N$$

(recall that $e_{n-1}^2 v_{(2^n)} = 0$). Thus because of

$$N = \overline{\mathrm{SL}_2(\mathbb{C}[t]/t^{n-2}) \cdot [e_{n-1}v_{(2^n)}]}$$

we obtain $N \hookrightarrow \overline{\tilde{\pi}^{-1}([v_{\{n\}}])}$. The first part of the proposition is proved.

Recall that $\mathrm{Pic}(\mathrm{sh}_{\{n\}}) \simeq \mathbb{Z}$. Let $\mathcal{E} = \mathcal{O}(1, \dots, 1)$ be the generator of this group. We have an isomorphism (see corollary (5.1)):

$$(20) \quad H^0(\mathcal{E}, \mathrm{sh}_{\{n\}}) \simeq \left(M^{(2^n)}\right)^*.$$

Fix some basis $\{b_i\}_{i=1}^{2^n}$ of $M^{(2^n)}$ which is homogeneous with respect to the h_0 -grading and $b_1 = v_{(2^n)}, b_{2^n} = u_{(2^n)}$. Let $s_1, s_2 \in H^0(\mathcal{E}, \mathrm{sh}_{\{n\}})$, $s_1 = v_{\{n\}}^*, s_2 = u_{\{n\}}^*$ (thus s_1, s_2 are the elements of the dual basis b_i^*). Then

$$(21) \quad \{s_1 = 0\} = \overline{\tilde{\pi}^{-1}([u_{\{n\}}])}, \quad \{s_2 = 0\} = \overline{\tilde{\pi}^{-1}([v_{\{n\}}])}.$$

Let us prove that the first equality really holds (the proof for the second one is quite similar). In fact,

(22)

$$\text{sh}_{\{n\}} = \left\{ \exp \left(\sum_{j=0}^{n-1} e_j z_j \right) \cdot [v_{\{n\}}], z_j \in \mathbb{C} \right\} \sqcup \overline{\left\{ \exp \left(\sum_{j=1}^{n-1} z_j f_j \right) \cdot [u_{\{n\}}], z_j \in \mathbb{C} \right\}}.$$

Rewrite (22) as $\text{sh}_{\{n\}} = R_1 \sqcup R_2$. Recall the embedding $\iota_{(2^n)} : \text{sh}_{\{n\}} \hookrightarrow \mathbb{P}(M^{(2^n)})$ and the equality $\iota_{(2^n)}^* \mathcal{O}(1) = \mathcal{E}$. Note that (20) means that the restriction map $H^0(\mathcal{O}(1), \mathbb{P}(M^{(2^n)})) \rightarrow H^0(\mathcal{E}, \text{sh}_{\{n\}})$ is an isomorphism. Thus $\{s_1 = 0\} \cap R_1 = \emptyset$. In addition $R_2 \hookrightarrow \mathbb{P}(\langle b_i, i > 1 \rangle)$ and so $s_1|_{R_2} = 0$. But $R_2 = \overline{\tilde{\pi}^{-1}([u_{\{n\}}])}$. We have proved (21) and hence our proposition is completely proved. \square

REFERENCES

- [FF1] B.Feigin, E.Feigin, *Q-characters of the tensor products in \mathfrak{sl}_2 case*, Mosc. Math. J. **2**, no. 3, 567-588.
- [FF2] B.Feigin, E.Feigin, *Integrable $\widehat{\mathfrak{sl}_2}$ modules as an infinite tensor products*. In: S.Lando and O.Scheinman (eds.), Fundamental mathematics today (in honor of the 10th anniversary of the Independent University of Moscow), IUM, MCCME 2003 (Russian). Preprint version available at <http://xxx.lanl.gov/abs/math.QA/0205281>.
- [FF3] B.Feigin, E.Feigin, *Schubert varieties and the fusion products*. Preprint version available at <http://xxx.lanl.gov/abs/math.QA/0305437>.
- [H] R.Hartshorne, *Algebraic geometry*, Springer-Verlag, 1977.
- [FS] B.Feigin, A.Stoyanovski, *Quasi-particles models for the representations of Lie algebras and geometry of flag manifold*, available at <http://xxx.lanl.gov/abs/hep-th/9308079>, RIMS 942; *Functional models of the representations of current algebras, and the semi-infinite Schubert cells*, Funktsional. Anal. i Prilozhen. **28** (1994), no.1, 68-90, 96 (Russian). English translation in Funct. Anal. Appl. **28** (1994), no.1, 55-72.
- [FL1] B.Feigin, S.Loktev, *On generalized Kostka polynomials and the quantum Verlinde rule*, Differential Topolgy, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2, 194, Amer. Math. Soc., Providence, RI, 1999, pp. 61-79. Preprint version available at <http://xxx.lanl.gov/abs/math.QA/9812093>.
- [FL2] B.Feigin, S.Loktev, *On the finitization of Gordon identities*, Funktsional. Anal. i Prilozhen. **35** (2001), no. 1, 53-61, 96 (Russian). English translation in Funct. Anal. Appl. **35**, (2001), no.1, 44-51.
- [SP] Pressley A., Segal G. *Loop groups*. Claredon Press, Oxford, 1988.
- [SW1] A. Schilling, S. O. Warnaar, *Supernomial coefficients, polynomial identities and q-series*, Ramanujan J. **2** (1998), no. 4, 459-494. Preprint version available at <http://xxx.lanl.gov/abs/math.QA/9701007>.
- [SW2] A. Schilling, S. O. Warnaar, *Inhomogeneous lattice paths, generalized Kostka polynomials and A_{n-1} supernomials*, Comm. Math. Phys. **202** (1999), 359-401. Preprint version available at <http://xxx.lanl.gov/abs/math.QA/9802111>.

INDEPENDENT UNIVERSITY OF MOSCOW, RUSSIA, MOSCOW, BOL'SHOI VLAS'EVSKII PER., 7. AND, MOSCOW STATE UNIVERSITY, RUSSIA, MOSCOW, LENINSKIE GORY, 1, FACULTY OF MATHEMATICS AND MECHANICS, DEPARTMENT OF THE HIGHER ALGEBRA

E-mail address: evgfeig@mccme.ru