8. Übungsblatt zu "Analysis I" Wintersemester 2022/23

Abgabetermin: Sonntag, 11.12.2022, 24.00 Uhr

Aufgabe 1 (4 Punkte)

Zeigen Sie, dass die Menge $F:=\{f:\mathbb{N}\to\{0,1\}\}$, also die Menge aller Funktionen von \mathbb{N} nach $\{0,1\}$, überabzählbar ist.

Hinweis: Versuchen Sie einen Widerspruchsbeweis, d.h. nehmen Sie an, dass F abzählbar ist.

Aufgabe 2 (6 Punkte)

Seien $(a_k)_{k\in\mathbb{N}}$ und $(b_k)_{k\in\mathbb{N}}$ reelle Folgen. Beweisen oder widerlegen Sie folgende Aussagen

- a) $\sum_{k=1}^{\infty} a_k$ konvergent $\Rightarrow \sum_{k=1}^{\infty} a_k^2$ konvergent;
- b) $\sum_{k=1}^{\infty} a_k$ absolut konvergent $\Rightarrow \sum_{k=1}^{\infty} a_k^2$ konvergent;
- c) $\sum_{k=1}^{\infty} a_k^2$ und $\sum_{k=1}^{\infty} b_k^2$ konvergent $\Rightarrow \sum_{k=1}^{\infty} (a_k b_k)$ konvergent. **Hinweis:** Benutzen Sie den Fakt $0 \le (a-b)^2$ für alle $a, b \in \mathbb{R}$.

Aufgabe 3 (4 + 2 = 6 Punkte)

a) Sei $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende Folge mit $a_n\geq 0$ für alle $n\in\mathbb{N}$. Zeigen Sie,

$$\sum_{k=1}^{\infty} a_k \text{ konvergent} \quad \Leftrightarrow \quad \sum_{k=0}^{\infty} 3^k a_{3^k} \text{ konvergent}$$

b) Verwenden Sie a) für einen weiteren Beweis für $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ konvergiert für $\alpha > 1$.

Aufgabe 4 (4 Punkte)

Sei $(a_k)_k$ eine Folge mit $a_k \neq 0$ für alle $k \in \mathbb{N}$ und $\lim_{k \to \infty} a_k = 0$. Zeigen Sie,

$$\lim_{k \to \infty} \frac{\exp(a_k) - 1}{a_k} = 1$$