Statistical Machine Learning

Distributions

Lecture Notes 7: Exponential Family

Professor: Zhihua Zhang

Definition 7.1 (Statistic). Given random variables(vectors) X_1, \dots, X_n with respect to sets of possible values $\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_n$, respectively. A random vector $\mathbf{t}_n : \mathcal{X}_1 \times \mathcal{X}_2 \times \dots \times \mathcal{X}_n \to \mathbb{R}^{k(n)}$ is called a k(n) dimensional statistic.

Example 7.1.
$$t_n(X_1, \dots, X_n) = (X_1, \dots, X_n)$$
.

Example 7.1 is the simplest statistic, usually we want to achieve data reduction by statistic, i.e., k(n) < n. Sometimes k(n) are independent with n.

Example 7.2.

 $t_n = \frac{1}{n}(X_1 + \dots + X_n), k(n) = 1$

 $t_n = [n, (X_1 + \dots + X_n), (X_1^2 + \dots + X_n^2)], k(n) = 3$, the zero order, first and second moment.

 $t_n = [n, \text{median}(X_1, \dots, X_n)], \text{ the median.}$

 $t_n = \max\{X_1, \dots, X_n\} - \min\{X_1, \dots, X_n\}, \text{ the range.}$

Definition 7.2 (Sufficient Statistic). The sequence t_1, t_2, \dots, t_n is a sufficient statistic for X_1, X_2, \dots, X_n if for $n \geq 1$, the joint density for X_1, X_2, \dots, X_n given θ has the form

$$p(x_1, x_2, \cdots, x_n | \theta) = h_n(\mathbf{t}_n, \theta) g(x_1, x_2, \cdots, x_n)$$

for some function $h_n \ge 0$, g > 0.

Theorem 7.1. The sequence t_1, t_2, \dots, t_n is sufficient for infinitely exchangeable X_1, X_2, \dots if and only if for any $n \geq 1$, the density $p(x_1, x_2, \dots, x_n | \theta, t_n)$ is independent of θ .

Proof. For any $\boldsymbol{t}_n = t_n(X_1, X_2, \cdots, X_n)$,

$$p(x_1, x_2, \cdots, x_n | \theta) = p(x_1, x_2, \cdots, x_n | \theta, \mathbf{t}_n) p(\mathbf{t}_n, \theta)$$

If $p(x_1, x_2, \dots, x_n | \theta, \mathbf{t}_n)$ is independent of θ , then $p(x_1, x_2, \dots, x_n | \theta, \mathbf{t}_n)$ is $g, p(\mathbf{t}_n, \theta)$ is h_n . So \mathbf{t}_n is a sufficient statistic.

If t_n is sufficient, then $p(x_1, x_2, \dots, x_n | \theta) = h_n(t_n, \theta) g(x_1, x_2, \dots, x_n), h_n \geq 0, g > 0$. Taking integral on both sides, we have

$$\int_{\{t_n(x_1,\dots,x_n)=t_n\}} p(x_1,\dots,x_n|\theta) dx_1 \dots dx_n = \int_{\{t_n(x_1,\dots,x_n)=t_n\}} h_n(t_n,\theta) g(x_1,\dots,x_n) dx_1 \dots dx_n$$

Note that $h_n(t_n, \theta)$ in the right side is unrelated to the integral, $\int g(x)dx$ can be seemed as a function of t_n , denoted by $G(t_n)$ and $\int p(x|\theta)dx$ can be seemed as $p(t_n|\theta)$. Hence, we have

$$p(\mathbf{t}_n|\theta) = h_n(\mathbf{t}_n, \theta)G(\mathbf{t}_n)$$

$$\implies h_n(\mathbf{t}_n, \theta) = \frac{p(\mathbf{t}_n|\theta)}{G(\mathbf{t}_n)}$$

So,

$$p(x_1, x_2, \dots, x_n | \theta) = \frac{p(\mathbf{t}_n | \theta)}{G(\mathbf{t}_n)} g(x_1, x_2, \dots, x_n)$$

$$\implies p(x_1, x_2, \dots, x_n | \theta, \mathbf{t}_n) = \frac{p(x_1, x_2, \dots, x_n | \theta)}{p(\mathbf{t}_n | \theta)} = \frac{g(x_1, x_2, \dots, x_n)}{G(\mathbf{t}_n)}$$

Thus we can see $p(x_1, x_2, \dots, x_n | \theta, t_n)$ is independent with θ .

Example 7.3 (Bernoulli Distribution). For a Bernoulli sequence X_1, \dots, X_n ,

$$p(x_1, \dots, x_n) = \int_0^1 p(x_1, \dots, x_n | \theta) dF(\theta)$$
$$= \int_0^1 \prod_{i=1}^n B(x|\theta) dF(\theta)$$
$$= \int_0^1 \theta^{S_n} (1 - \theta)^{n - S_n} dF(\theta)$$

where $S_n = x_1 + \cdots + x_n$. So,

$$p(x_1, \cdots, x_n | \theta) = \theta^{S_n} (1 - \theta)^{n - S_n}$$

Let $\mathbf{t}_n = [n, S_n]$, $p(x_1, \dots, x_n | \theta)$ can be factorized into $h_n = \theta^{S_n} (1 - \theta)^{n - S_n}$ and g = 1. So \mathbf{t}_n is the sufficient statistic of Bernoulli distribution.

Example 7.4 (Normal Distribution).

$$p(x_1, \dots, x_n | \mu, \lambda) = \prod_{i=1}^n (\frac{\lambda}{2\pi})^{\frac{1}{2}} \exp(-\frac{\lambda}{2} (x_i - \mu)^2)$$
$$= (\frac{\lambda}{2\pi})^{\frac{n}{2}} \exp(-\frac{\lambda}{2} \sum_{i=1}^n (x_i - \mu)^2)$$
$$= (\frac{\lambda}{2\pi})^{\frac{n}{2}} \exp(-\frac{\lambda}{2} [n(\bar{x} - \mu) + nS_n^2)$$

where $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i, S_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x}_n)^2$. So the sufficient statistic of normal distribution can be $[n, \bar{X}_n, S_n^2]$. Note that the sufficient statistic is not unique, for example, $[n, \bar{X}_n, \frac{1}{n} \sum_{i=1}^n X_i^2]$ is also sufficient statistic of normal distribution.

7.1 Exponential Family

Definition 7.3 (one-parameter exponential family). A p.d.f or p.m.f $p(x|\theta)$, labelled by $\theta \in \Theta \subseteq \mathbb{R}$ is said to belong to one-parameter exponential family if it is of the form

$$p(x|\theta) = f(x)g(\theta) \exp(c \cdot \phi(\theta)h(x))$$

where $g^{-1}(\theta) = \int f(x) \exp(c \cdot \phi(\theta) h(x)) dx < \infty$ is a regularization factor. Denoted by $E_f(f, g, h, \phi, c, \theta)$.

Definition 7.4. The family is called regular if $\mathcal{X}, (X \in \mathcal{X})$ does not dependent on θ , otherwise is called non-regular.

Proposition 7.1 (Sufficient statistic for E_f). If $X_1, \dots, X_n \in \mathcal{X}$ is an exchangeable sequence such that given regular $E_f(X|f, g, h, \phi, c, \theta)$,

$$p(x_1, \dots, x_n) = \int_{\theta} \prod_{i=1}^{n} E_f(x_i|f, g, h, \phi, c) dF(\theta)$$

for some $dF(\theta)$. Then $\mathbf{t}_n = t_n(X_1, \dots, X_n) = [n, h(X_1) + \dots + h(X_n)]$ is sufficient statistic.

Example 7.5 (Bernoulli Distribution).

$$p(x|\theta) = \theta^x (1-\theta)^{1-x}, \quad x \in \{0,1\}, \theta \in [0,1]$$
$$= (1-\theta) \left(\frac{\theta}{1-\theta}\right)^x$$
$$= (1-\theta) \exp(x \ln \frac{\theta}{1-\theta})$$

So,
$$f(x) = 1, g(\theta) = 1 - \theta, c = 1, h(x) = x, \phi(\theta) = \ln \frac{\theta}{1 - \theta}$$
.

Example 7.6 (Poisson Distribution).

$$p(x|\theta) = \frac{\theta^x \cdot e^{-\theta}}{x!}$$
$$= \frac{1}{x!} \exp(-\theta) \exp(x \ln x)$$

So,
$$f(x) = \frac{1}{x!}, g(\theta) = e^{-\theta}, c = 1, h(x) = x, \phi(\theta) = \ln x$$
.

Example 7.7 (Normal Distribution with Unknown Variance).

$$\begin{split} p(x|\theta) &= N(x|0,\sigma^2) \\ &= \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{1}{2}} \exp(-\frac{x^2}{2\sigma^2}) \\ &= \left(\frac{1}{2\pi}\right)^{\frac{1}{2}} \theta^{-\frac{1}{2}} \exp(-\frac{x^2}{2\theta}) \end{split}$$

So,
$$f(x) = \left(\frac{1}{2\pi}\right)^{\frac{1}{2}}, g(\theta) = \theta^{-\frac{1}{2}}, c = -\frac{1}{2}, h(x) = x^2, \phi(\theta) = \theta^{-1}.$$

Example 7.8 (Uniform Distribution, non-regular).

$$p(x|\theta) = U(x|[0,\theta]) = \frac{1}{\theta}$$

So, f(x) = 1, $g(\theta) = \theta^{-1}$, c = 1, h(x) = 0, $\phi(\theta) = 0$. Since \mathcal{X} is $[0, \theta]$, related to θ , so it is non regular.

$$f_X(x_1, \dots, x_n) = \frac{1}{\theta} \mathbf{1}_{\{0 \le x_1 \le \theta\}} \cdots \frac{1}{\theta} \mathbf{1}_{\{0 \le x_n \le \theta\}}$$
$$= \frac{1}{\theta^n} \mathbf{1}_{\{0 \le \min\{x_i\}\}} \mathbf{1}_{\{\max\{x_i\} \le \theta\}}$$

where $\mathbf{1}\{...\}$ is the indicator function. So the sufficient statistic $\mathbf{t}_n = [n, \max\{x_i\}]$.

Definition 7.5 (k-parameters exponential family). A p.d.f or p.m.f $p(x|\theta)$, $x \in \mathcal{X}$, which is labelled by $\theta \in \Theta \subseteq \mathbb{R}$ is said to belong to k-parameters exponential family if it is of the form

$$p(x|\theta) = f(x)g(\theta) \exp\left(\sum_{j=1}^{k} c_j \cdot \phi_j(\theta) h_j(x)\right)$$

Denoted by $E_{f_k}(x|f,g,h,\phi,c,\theta)$.

Proposition 7.2 (Sufficient statistic for E_{f_k}). If $X_1, \dots, X_n \in \mathcal{X}$ is an exchangeable sequence such that given regular $E_{f_k}(X|f,g,h,\phi,c,\theta)$,

$$p(x_1, \dots, x_n | \theta) = \prod_{i=1}^n E_{f_k}(x_i | f, g, h, \phi, c, \theta)$$

Then $\mathbf{t}_n = t_n(X_1, \dots, X_n) = [n, \sum_{i=1}^n h_1(X_i), \dots, \sum_{i=1}^n h_k(X_i)]$ is sufficient statistic of X_1, \dots, X_n .

Example 7.9 (Normal Distribution with Unknown Mean and Variance). Let $\theta = [\mu, \lambda]$,

$$p(x|\theta) = N(x|\mu, \lambda)$$

$$= \left(\frac{\lambda}{2\pi}\right)^{\frac{1}{2}} \exp\left(-\frac{\lambda}{2}(x-\mu)^2\right)$$

$$= \left(\frac{1}{2\pi}\right)^{\frac{1}{2}} \lambda^{\frac{1}{2}} \exp\left(-\frac{\lambda}{2}\mu^2\right) \exp(\lambda \mu x - \frac{1}{2}\lambda x^2)$$

So,
$$g(\theta) = \lambda^{\frac{1}{2}} \exp(-\frac{\lambda}{2}\mu^2)$$
, $c_1 = 1$, $c_2 = -\frac{1}{2}$, $\phi_1(\theta) = \lambda \mu$, $\phi_2(\theta) = \lambda$, $h_1(x) = x$, $h_2(x) = x^2$.

7.2 Canonical(Natural) Exponential Family

The p.d.f of exponential family can be rewritten into another form:

$$p(\boldsymbol{y}|\varphi) = cef(\boldsymbol{y}|a, b, \varphi) = a(\boldsymbol{y}) \exp(\boldsymbol{y}^T \varphi - b(\varphi))$$

where $y=(y_1,\cdots,y_k), \phi=(\varphi_1,\cdots,\varphi_k)$. Comparing to the previous form, we can see $y_i=h_i(x), \varphi_i=c_i\phi(\theta)$.

Proposition 7.3 (moments of cef). For y in definition of cef, we have

$$E[\boldsymbol{y}|\varphi] = \int \boldsymbol{y}a(\boldsymbol{y}) \exp(\boldsymbol{y}^T \varphi - b(\varphi)) d\boldsymbol{y}$$

Since $\int a(\mathbf{y}) \exp(\mathbf{y}^T \varphi - b(\varphi)) d\mathbf{y} = 1$, taking derivation on both sides.

$$\int a(\boldsymbol{y}) \exp(\boldsymbol{y}^T \varphi - b(\varphi))(\boldsymbol{y} - \nabla_{\varphi} b(\varphi)) d\boldsymbol{y} = 0$$

$$\implies \int a(\boldsymbol{y}) \exp(\boldsymbol{y}^T \varphi - b(\varphi)) \boldsymbol{y} d\boldsymbol{y} = \int a(\boldsymbol{y}) \exp(\boldsymbol{y}^T \varphi - b(\varphi)) \nabla_{\varphi} b(\varphi) d\boldsymbol{y}$$

$$\implies E[\boldsymbol{y}] = \nabla_{\varphi} b(\varphi)$$

Example 7.10 (Possion Distribution).

$$e^{-\lambda} \frac{\lambda^x}{x!} = \frac{1}{x!} \exp(x \log \lambda - \lambda) = \frac{1}{x!} \exp(x\theta - e^{\theta}), \lambda = e^{\theta}$$

So,
$$E[y] = \nabla_{\varphi} b(\varphi) = \lambda$$

Theorem 7.2. If $X = (X_1, \dots, X_n)$ is random variable from a regular exponential family distribution such that

$$p(\boldsymbol{x}|\theta) = \prod_{i=1}^{n} f(x_i)[g(\theta)]^n \exp\left(\sum_{j=1}^{k} c_j \phi_j(\theta) \sum_{i=1}^{n} h_j(x_i)\right).$$

Then the conjugate family for θ has the form

$$p(\boldsymbol{x}|\tau) = [K(\tau)]^{-1} [g(\theta)]^{\tau_0} \exp\left(\sum_{j=1}^k c_j \phi_j(\theta) \tau_j\right)$$

where
$$k(\tau) = \int_{\theta} [g(\theta)]^{\tau} \exp\left(\sum_{j=1}^{k} c_j \phi_j(\theta) \tau_j\right) d\theta < \infty$$

Example 7.11 (Bernoulli Likelihood).

$$p(\boldsymbol{x}|\theta) = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-\boldsymbol{x}_i)}$$
$$= (1-\theta)^n \exp\left((\log \frac{\theta}{1-\theta}) \sum_{i=1}^{n} x_i\right)$$

So,

$$p(\theta|\tau) \propto (1-\theta)^{\tau_0} \exp\left(\log\frac{\theta}{1-\theta}\tau_1\right)$$
$$\propto (1-\theta)^{\tau_0} \left(\frac{\theta}{1-\theta}\right)^{\tau_1}$$
$$\propto \theta^{\tau_1} (1-\theta)^{\tau_0-\tau_1}$$

Hence, the conjugate prior of Bernoulli distribution is beta distribution.

Example 7.12 (Possion Likelihood).

$$p(\boldsymbol{x}|\theta) = \prod_{i=1}^{n} \frac{\theta^{x_i} \exp(-\theta)}{x_i!}$$
$$= \prod_{i=1}^{n} (x_i!)^{-1} \exp(-n\theta) \exp(\log \theta \sum_{i=1}^{n} x_i)$$

So,

$$p(\theta|\tau) \propto \exp(-\tau_0 \theta) \exp(\tau_1 \log \theta)$$

 $\propto \theta^{\tau_1} \exp(-\tau_0 \theta)$

Hence, the conjugate prior of Possion distribution is gamma distribution.

Example 7.13 (Normal Likelihood). Let $\theta = (\mu, \lambda)$

$$p(\boldsymbol{x}|\theta) = \prod_{i=1}^{n} \left(\frac{\lambda}{2\pi}\right)^{\frac{1}{2}} \exp\left(-\frac{\lambda}{2}(x_{i} - \mu)^{2}\right)$$
$$= (2\pi)^{-\frac{n}{2}} \left[\lambda^{\frac{1}{2}} \exp(-\frac{\lambda}{2}\mu^{2})\right]^{n} \exp(\mu\lambda \sum_{i=1}^{n} x_{i} - \frac{\lambda}{2} \sum_{i=1}^{n} x_{i}^{2})$$

So,

$$p(\theta|\tau) \propto \left[\lambda^{\frac{1}{2}} \exp(-\frac{\lambda}{2}\mu^{2})\right]^{\tau_{0}} \exp(\mu\lambda\tau_{1} - \frac{\lambda}{2}\tau_{2})$$

$$\propto \lambda^{\frac{\tau_{0}}{2}} \exp(-\frac{\tau_{0}\lambda}{2}\mu^{2}) \exp(\mu\lambda\tau_{1} - \frac{\lambda}{2}\tau_{2})$$

$$\propto \lambda^{\frac{\tau_{0}}{2}} \exp\left(-\frac{\tau_{0}\lambda}{2}(\mu - \frac{\tau_{1}}{\tau_{0}})^{2}\right) \exp(\frac{\lambda\tau_{1}^{2}}{2\tau_{0}}) \exp(-\frac{\lambda\tau_{2}}{2})$$

$$\propto (\tau_{0}\lambda)^{\frac{1}{2}} \exp\left(-\frac{\tau_{0}\lambda}{2}(\mu - \frac{\tau_{1}}{\tau_{0}})^{2}\right) \exp(\frac{\lambda\tau_{1}^{2}}{2\tau_{0}}) \exp(-\frac{\lambda\tau_{2}}{2})\lambda^{\frac{\tau_{0}}{2}}(\tau_{0}\lambda)^{-\frac{1}{2}}$$

$$\propto (\tau_{0}\lambda)^{\frac{1}{2}} \exp\left(-\frac{\tau_{0}\lambda}{2}(\mu - \frac{\tau_{1}}{\tau_{0}})^{2}\right) \exp(-\frac{\lambda}{2}(\tau_{2} - \frac{\tau_{1}^{2}}{\tau_{0}}))\tau_{0}^{-\frac{1}{2}}\lambda^{\frac{\tau_{0}+1}{2}-1}$$

Note that $(\tau_0\lambda)^{\frac{1}{2}} \exp\left(-\frac{\tau_0\lambda}{2}(\mu-\frac{\tau_1}{\tau_0})^2\right)$ can be seemed as a normal prior, $p(\mu|\lambda,\tau)$ and $\exp(-\frac{\lambda}{2}(\tau_2-\frac{\tau_1^2}{\tau_0}))\tau_0^{-\frac{1}{2}}\lambda^{\frac{\tau_0+1}{2}-1}$ can be seemed as a gamma prior, $p(\lambda|\tau)$.

Theorem 7.3 (posterior). $p(\theta|x,\tau) = p(\theta|\tau + t_n(x))$, where $\tau + t_n(x) = (\tau_0 + n, \tau_1 + \sum_{i=1}^{n} h_1(x_i), \dots, \tau_k + \sum_{i=1}^{n} h_k(x_i))$.