Université Abdelmalek Éssaadi Ecole Nationale des Sciences Appliquées Al Hoceima

AP1: Analyse 2

TD: Séries numériques

séries $N^{\circ}2$

Professeur A. MOUSSAID

Année: 2019/2020

Pour la sèance de la semaine prochaine (23-24 /03/2020)

EXERCICE 1

Etudier la nature de la sèrie de terme gènèral U_n

- $U_n = \frac{n+1}{n^3-7}$
- $U_n = \frac{n+1}{n^2-7}$
- $U_n = \sin(\frac{1}{n^2})$
- $U_n \frac{1}{\ln(n^2+2)}$
- $U_n = \frac{n}{2^n}$
- $U_n = (1 + \frac{1}{n})^{n^2}$
- $U_n = \frac{1}{n \cdot 3^n}$
- $U_n = \frac{2}{\sqrt{n}}$
- $U_n = \frac{n^{2+1}}{n^2}$

Solution

1) Soit $U_n = \frac{n+1}{n^3-7}$ On pose $V_n = \frac{1}{n^2}$ comme $\sum_{n>0} U_n$ et $\sum_{n>0} V_n$ sont deux sèries à termes positifs, et si $(U_n)_{n>0}$ et $(V_n)_{n>0}$ sont des suites èquivalentes

 $\lim_{n\to +\infty} \frac{U_n}{V_n} = 1$ donc les deux sèries sont de même nature.

 V_n C'est le terme gènèral d'une sèrie de Riemann convergente avec $\alpha=2>1$ donc $\sum_{n>0}U_n$ est convergente.

2) Soit $U_n = \frac{n+1}{n^2-7}$

On pose $V_n = \frac{1}{n}$ comme $\sum_{n>0} U_n$ et $\sum_{n>0} V_n$ sont deux sèries à termes positifs, et si $(U_n)_{n>0}$ et $(V_n)_{n>0}$ sont des suites èquivalentes tel que

$$\lim_{n \to +\infty} \frac{U_n}{V_n} = 1$$

donc les deux sèries sont de même nature.

 V_n C'est le terme gènèral d'une sèrie de Riemann divergente avec $\alpha=1$ donc $\sum_{n>0}U_n$ est divergente.

3) Soit $U_n = \sin(\frac{1}{n^2})$ On pose $V_n = \frac{1}{n^2}$

comme $\sum_{n>0}^n U_n$ et $\sum_{n>0} V_n$ sont deux sèries à termes positifs, et si $(U_n)_{n>0}$ et $(V_n)_{n>0}$ sont des suites èquivalentes tel que

$$\lim_{n \to +\infty} \frac{U_n}{V_n} = 1$$

donc les deux sèries sont de même nature.

 V_n C'est le terme gènèral d'une sèrie de Riemann convergente avec $\alpha=2>1$ donc $\sum_{n>0}U_n$ est convergente.

4)
$$U_n \frac{1}{\ln(n^2+2)}$$

4) $U_n \frac{1}{\ln(n^2+2)}$ U_n est de signe constant

Pour tout n > 0

On a

$$\ln(n^2 + 2) = \ln(n^2(1 + \frac{2}{n^2})) = 2\ln(n) + \ln((1 + \frac{2}{n^2})) = 2\ln(n) + \frac{2}{n^2} + o(\frac{1}{n^2})$$

donc
$$n^{\frac{1}{2}}U_n = n^{\frac{1}{2}} \frac{1}{2\ln(n) + \frac{2}{n^2} + o(\frac{1}{n^2})} \to +\infty$$

D'après les règles de Riemann $n^{\frac{1}{2}}U_n \to +\infty$ avec $\alpha < 1$ entraine que la sèrie de terme gènèral U_n diverge.

5) soit $U_n = \frac{n}{2^n}$

On U_n est de signe constant

Alors

$$\frac{U_{n+1}}{U_n} = \frac{\frac{n+1}{2^{n+1}}}{\frac{n}{2^n}} = \frac{1}{2} \times \frac{n+1}{n} \to \frac{1}{2} < 1$$

D'aprés la règle de D'Alembert la série de terme général U_n converge.

6) Soit $U_n = (1 + \frac{1}{n})^{n^2}$

On $\forall n \geq 1$ $U_n = (1 + \frac{1}{n})^{n^2} > 1$ Donc U_n ne peut pas tendre vers . Alors la série de terme général U_n diverge

7) Soit $U_n = \frac{1}{n \cdot 3^n}$ On a $\forall n \ge 1$ $\frac{1}{n \cdot 3^n} < (\frac{1}{3})$

Alors comme la série de terme général $V_n=(\frac{1}{3})$ converge donc d'aprés Crit \tilde{A} "res de comparaison la série de terme général U_n diverge

8) Soit $U_n = \frac{2}{\sqrt{n}}$

On a

$$\forall n \ge 1 \qquad U_n = \frac{2}{\sqrt{n}} = \frac{2}{n^{\frac{1}{2}}}$$

il s'agit du terme général d'une série de Riemann divergente avec $\alpha = \frac{1}{2} < 1$

9) $U_n=\frac{n^{2+1}}{n^2}$ On a

$$\lim_{n \to +\infty} U_n = 1 \neq 0$$

donc la série de terme général U_n diverge

EXERCICE 2

Etudier la convergence de la série dont le terme général est défini par:

$$U_{2n} = (\frac{2}{3})^n$$
 et $U_{2n+1} = 2(\frac{2}{3})^n$

par la régle de Cauchy et par la régle de l'Alembert.

Solution

Soit $U_{2n}=(\frac{2}{3})^n$ et $U_{2n+1}=2(\frac{2}{3})^n$ *) par la régle de Cauchy

$$\sqrt[2n]{U_{2n}} = \sqrt{\frac{2}{3}}$$

 $_{
m et}$

$$\sqrt[2n+1]{U_{2n+1}} = \left(\frac{2}{3}\right)^{\frac{n}{2n+1}} \times 2^{\frac{1}{2n+1}} = \exp\left[\frac{n}{2n+1}\ln(\frac{2}{3}) + \frac{\ln(2)}{2n+1}\right]$$

Les suites $\sqrt[2n]{U_{2n}}$ et $\sqrt[2n+1]{U_{2n+1}}$ des termes de rang pair et de rang impair extraites de la suite $(\sqrt[n]{U_n})$ convergent donc toutes les deux vers $\sqrt{\frac{2}{3}}$. Alors la suite $(\sqrt[n]{U_n})$ converge aussi vers $\sqrt{\frac{2}{3}} < 1$. Il résulte de la règle de Cauchy que la série de terme général u_n converge.

*)Par contre la règle de d'Alembert

$$\frac{U_{2n+1}}{U_{2n}} = 2$$
 et $\frac{U_{2n}}{U_{2n-1}} = \frac{1}{3}$

Les suites des termes de rang pair et de rang impair extraites de la suite (u_{n+1}/u_n) ont des limites différentes. Elle n'a donc pas de limite, et on ne peut utiliser la règle de d'Alembert.

EXERCICE 3

Soit $U_n > 0$ On pose

$$V_n = \frac{U_n}{1 + U_n} \qquad et \qquad W_n = \frac{U_n}{1 + U_n^2}$$

- a) Montrer que les séries de terme généraux u_n et v_n sont de même nature.
- b) Comparer la convergence des séries de termes généraux u_n et W_n

Solution

Soit $U_n > 0$ On pose

$$V_n = \frac{U_n}{1 + U_n} \qquad et \qquad W_n = \frac{U_n}{1 + U_n^2}$$

- a) Les séries sont positives. On peut donc appliquer le thÃ@orème sur les équivalents.
- Si la série de terme général u_n converge, alors la suite (u_n) converge vers zéro, et $(1+u_n)$ vers 1, donc

$$\lim_{n \to +\infty} \frac{V_n}{U_n} = 1$$

Les séries sont de même nature, donc la série de terme général v_n converge.

Inversement si la série de terme général v_n converge, la suite (v_n) converge vers zéro. Mais on obtient:

$$U_n = \frac{V_n}{1 - V_n}$$

et il en résulte que $U_n \sim V_n$. Les séries sont de même nature, donc la série de terme général u_n converge.

b) On a $0 \le W_n \le U_n$, donc si la série de terme général un converge, il en est de même de la série de terme général w_n . Mais la réciproque est fausse. Remarquons que si u_n tend vers l'infini, on a

$$W_n \sim \frac{1}{U_n}$$

Il suffit de prendre $u_n = n^2$, pour que la série de terme général wn converge mais pas celle de terme général u_n .

EXERCICE 4

On considére la suite numérique définie par la récurrence:

$$U_n = \frac{1}{2}(U_{n-1} + U_{n-2}) \qquad n \ge 2$$

 U_0 et U_1 sont deux réels donnés

En étudiant la série de terme général $V_n = U_{n+1} + U_n$, montre que la suite $(U_n)_n$ est convergente et calculer sa limite.