Model Question Paper Set - 1 with effect from 2022(CBCS Scheme)

USIN	

Fourth Semester B.E Degree Examination DISCRETE MATHEMATICAL STRUCTURES (BCS405A)

TIME: 03Hours Max.Marks:100

Note:

1. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**

2. M: Marks, L: RBT levels, C: Course outcomes.

2.	M	: Marks, L: RBT levels, C: Course outcomes.	1		
		Module – 1	M	L	C
Q.1	a	Show that the compound proposition	6	L2	CO1
		$\left[(p \leftrightarrow q) \land (q \leftrightarrow r) \land (r \leftrightarrow p) \right] \Leftrightarrow \left[(p \to q) \land (q \to r) \land (r \to p) \right] $ for			
		primitive statements p, q, r is logically equivalence.			12.
	b	Establish the validity of the following argument using the Rules of	7	L2	CO1
		Inference: $\{p \land (p \rightarrow q) \land (s \lor r) \land (r \rightarrow \sim q)\} \rightarrow (s \lor t)$.		7.1	001
	C	For the universe of all integers, let $p(x)$, $q(x)$, $r(x)$, $s(x)$ and $t(x)$ denote the following open statements: $p(x)$: $x > 0$, $q(x)$: x is even, $r(x)$: x is a perfect	7	L1	CO1
		square, $s(x)$: x is divisible by 3, $t(x)$: x is divisible by 7. Write the following			
		statements in symbolic form: i) At least one integer is even. ii) There exists a			
		positive integer that is even. iii) If x is even, then x is not divisible by 3. iv) No even integer is divisible by 7. v) There exists even integer divisible by 3.			
		OR			
Q.2	a	Define a tautology. Prove that, for any propositions p, q, r the compound	6	L2	CO1
	1	propositions, $\{(p \rightarrow q) \land (q \rightarrow r)\} \rightarrow \{(p \rightarrow r)\}\$ is tautology.	7	1.2	CO1
	b	Prove the following using laws of logic: $p \rightarrow (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r$.	7	L2	CO1
	C	Give i) direct proof ii) indirect proof iii) proof by contradiction for the following statement: "if n is an odd integer then n+9 is an even integer".	/	L3	CO1
	I				
	4	Module – 2			
Q.3	a	Prove that $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(2n+1)(2n-1)}{3}$ by	6	L2	CO ₂
		Mathematical Induction.			
	b	Let $a_0 = 1$, $a_1 = 2$, $a_2 = 3$ and $a_n = a_{n-1} + a_{n-2} + a_{n-3}$ for $n \ge 3$. Prove that $a_n \le 3^n \ \forall \ n \in z^+$.	7	L2	CO2
		Find the number of ways of arrangement of the letters of the word	7	1.2	CO2
	С	'TALLAHASSEE' which have no adjacent A's.	/	L2	CO2
		OR			
Q.4	a	Determine the coefficient of xyz^2 in the expansion of $(2x - y - z)^4$.	6	L2	CO2
	7	In how many ways one can distribute 8 identical marbles in 4 distinct	7	L2	CO2
	D	containers so that i) no container is empty ii) the fourth container has an odd number of marbles in it.	/		COZ
		How many positive integers n can we form using the digits 3,4,4,5,5,6,7 if we	7	1.2	CO2
	C	want n to exceed 5,000,000?	/	L2	CO ₂
	ı	Module – 3 Let f: R \rightarrow R be defined by, $f(x) = \begin{cases} 3x - 5 & \text{if } x > 0 \\ 1 - 3x & \text{if } x \le 0 \end{cases}$. Find		T	T
Q.5	a	Let f: R \rightarrow R be defined by, $f(x) = \begin{cases} 3x - 5 & \text{if } x > 0 \\ 1 - 3x & \text{if } x < 0 \end{cases}$. Find	6	L2	CO ₃
		$f^{-1}(0), f^{-1}(1), f^{-1}(-1), f^{-1}(3), f^{-1}(6), f^{-1}([-6, 5]) \text{ and } f^{-1}([-5, 5])$			
1	1	(-)		l	l

	b	State Pigeon hole principle. Prove that in any set of 29 persons; at least 5 persons have been born on the same day of the week.	7	L2	CO3
	c	Let A={1,2,3,4,6} and 'R' be a relation on 'A' defined by aRb if and only if "a is multiple of b" represent the relation 'R' as a matrix, draw the diagraph and relation R.	7	L2	CO3
		OR			
Q.6	a	If $f:A \rightarrow B$, $g:B \rightarrow C$, $h:C \rightarrow D$ are three functions, then Prove that $h \circ (g \circ f) = (h \circ g) \circ f$.	6	L2	CO3
	b	Show that if n+1 numbers are chosen from 1 to 2n then at least one pair add to 2n+1.	7	L2	CO3
	c	Draw the Hasse diagram representing the positive divisors of 72.	7	L2	CO3
		Module – 4	- 27 - 12	•	3,33
Q.7	a	In how many ways the 26 letters of English alphabet are permuted so that none of the pattern's CAR, DOG, PUN or BYTE occurs?	6	L2	CO4
	b	Define Derangement. In how many ways can each of 10 people select a left glove and a right glove out of a total of 10 pairs of gloves so that no person selects a matching pair of gloves?	7	L2	CO4
	c	Solve the recurrence relation: $C_n = 3C_{n-1} - 2C_{n-2}$, for $n \ge 2$, given $C_1 = 5$, $C_2 = 3$.	7	L3	CO4
		OR	ı	•	1
Q.8	a	In how many ways one can arrange the letters of the word CORRESPONDENTS so that there are i) exactly 2 pairs of consecutive identical letters? ii) at least 3 pairs of consecutive identical letters? iii) no pair of consecutive identical letters?	6	L2	CO4
	b	Find the rook polynomial for the chess board as shown in the figure	7	L2	CO4
	c	Solve the recurrence relation $a_{n+2} - 3a_{n+1} + 2a_n = 0$, $a_0 = 1$, $a_1 = 6$.	7	L3	CO4
		Module – 5			
Q.9	a	If H, K are subgroups of a group G , prove that $H \cap K$ is also a subgroup of G . Is $H \cup K$ a subgroup of G .	6	L2	CO5
	b	Define Klein 4 group. Verify $A = \{1, 3, 5, 7\}$ is a klein 4 group.	7	L2	CO5
	c	State and prove Lagrange's Theorem.	7	L2	CO5
		OR			
Q.10	a	Show that i) the identity of <i>G</i> is unique. ii) the inverse of each element of <i>G</i> is Unique.	6	L3	CO5
	b	Show that (A, \cdot) is an abelian group where $A = \{a \in Q a \neq -1\}$ and	7	L3	CO5
	c	for any $a, b \in A$, $a \cdot b = a + b + ab$. Let $G = S_4$, for $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$, find the subgroup $H = \langle \alpha \rangle$. Determine the left cosets of H in G .	7	L3	CO5
		(u). Determine the left cosets of H III U.			