Codes for each problem are available at https://github.com/kjoyce/inverse_problems/tree/master/homework04/codes

1. Bardsley 3.14. Modify Tomography.m so that it implements Kaczmarz's Method. How many sweeps through all of the indicies, i.e. implementations of the method, does it take to obtain a good reconstruction?

Solution:

Adding the following lines of code implements the method. We use the DP stopping criterion to determine the amount of iterations.

2. Bardsley 4.3. Sampling from Gaussian probability densities.

(a) Let \boldsymbol{B} be an $m \times n$ matrix, $\boldsymbol{v} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{C})$, and $\boldsymbol{w} = \boldsymbol{B}\boldsymbol{v}$, then $\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{B}\boldsymbol{\mu}, \boldsymbol{B}\boldsymbol{C}\boldsymbol{B}^T)$. Use this to show that if \boldsymbol{R} is a square root matrix for \boldsymbol{C} , i.e. $\boldsymbol{C} = \boldsymbol{R}^T\boldsymbol{R}$, and if $\boldsymbol{v} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$ then $\boldsymbol{w} = \boldsymbol{\mu} + \boldsymbol{R}^T\boldsymbol{v}$ has distribution $\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{C})$.

By linearity, $E[\boldsymbol{w}] = \boldsymbol{\mu} + \boldsymbol{R}^T \boldsymbol{0} = \boldsymbol{\mu}$, and by \dagger , $Var[\boldsymbol{w}] = \boldsymbol{R}^T \boldsymbol{I} \boldsymbol{R} = \boldsymbol{C}$.

(b) Use MATLAB and part (a) to compute and plot 1000 samples from the random vector $\mathbf{w} \sim \mathcal{N}\left(\begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2 & -1\\-1 & 2 \end{bmatrix}\right)$.

(c) If $\mathbf{v} = (v_1, \dots, v_k)$ is a random vector such that $v_i \sim \mathcal{N}(0, 1)$ for $i = 1, \dots, k$, then $Q = \sum_{i=1}^k w_i^2$ is a $\chi^2(k)$ random variable. Verify that, approximately, a correct amount of the sampled points from part (b) are located inside the confidence regions given by 95% and 99% limits of the $\chi^2(2)$ distribution, computed using the chi2inv function. Note that you need to normalize the samples, i.e. look at $\mathbf{C}^{-1/2}(\boldsymbol{\mu} - \boldsymbol{w}_i)$.

3. Bardsley 4.4. GMRF with periodic boundary conditions.

Modify GMRFDirichlet.m so that it computes samples from (4.16) where L_{1D} is given by (4.17) in one dimension and (4.14) in two dimensions. Note that these precision matrices have a zero eigenvalue, so you cannot use the Cholesky factorization. Instead, Compute the square root of L and L^{\dagger} using an eigenvalue decomposition. To compute the eigen values decomposition in two dimensions, note that multiplication by L_{2D} is equivalent to discrete convolution with the $n \times n$ kernel

$$\boldsymbol{l} = \begin{bmatrix} l_{-n/2, n/2-1} & \cdots & l_{0, n/2-1} & \cdots & l_{n/2-1, n/2-1} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ l_{-n/2, 0} & \cdots & l_{0, 0} & \cdots & l_{n/2-1, 0} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ l_{-n/2, -n/2} & \cdots & l_{0, -n/2} & \cdots & l_{n/2-1, -n/2} \end{bmatrix},$$

where $l_{0,0} = 4$, $l_{-1,0} = l_{1,0} = l_{0,-1} = l_{0,1} = -1$ and $l_{ij} = 0$ otherwise. The periodic boundary condition makes \boldsymbol{L}_{2D} a BCCB matrix with eigenvalues $\hat{\boldsymbol{l}}_s = n\mathrm{DFT}(\boldsymbol{l}_s)$, where $\boldsymbol{l}_s = \mathrm{fftshift}(\boldsymbol{l})$, and that $\boldsymbol{L}\boldsymbol{x} = \mathrm{vec}\Big(\mathrm{IDFT}(\hat{\boldsymbol{l}}_s \odot \mathrm{DFT}(\boldsymbol{X})\Big)$.

Use this factorization, and the corresponding factorization for L^{\dagger} , to compute samples in the two dimensional case.

