FICHE DE COURS 2

CINÉTIQUE CHIMIQUE

Ce que je dois être capable de faire après avoir appris mon cours

Écrire et compléter un tableau d'avancement à partir d'une équation de réaction.
Exprimer les quantités de matière, concentrations ou pressions partielles en fonction de ξ ou x .
Définir la vitesse d'une réaction en fonction de ξ ou par rapport à n'importe quel constituant.
Lister les facteurs cinétiques usuels d'une cinétique.
Donner une deuxième expression de la vitesse de la réaction si celle-ci admet un ordre.
Donner les valeurs des ordres partiels dans le cas on l'on suppose que la réaction suit la loi de Van't Hoff.
Définir, justifier l'intérêt et mettre en oeuvre la méthode des mélanges stoechioémtriques.
Définir, justifier l'intérêt et mettre en oeuvre la méthode de dégénérescence de l'ordre.
Utiliser la méthode de séparation des variables pour intégrer une équation différentielle non linéaire du premier ordre.
Mettre en oeuvre la méthode intégrale pour déterminer un ordre partiel ou global.
Définir le temps de demi-réaction et mettre en oeuvre la méthode du temps de demi-réaction pour déterminer un ordre partiel ou global.
Utiliser la méthode différentielle et celle des vitesses initiales pour déterminer un ordre courant ou initial.
Donner l'équation d'Arrhenius et interpréter chacun de ces paramètres.
Extraire d'une série de mesures à différentes températures l'énergie d'activation d'une réaction.
Mettre en oeuvre une méthode conductimétrique ou spectrophotométrique pour réaliser expérimentalement le suivi cinétique d'une réaction.
Réaliser sur une calculatrice ou à l'aide d'un tableur une régression linéaire.
Valider un modèle de loi physique à partir d'une régression linéaire en analysant le coefficient de corrélation linéaire, les résidus compte tenu de l'incertitude expérimentale et la dispersion aléatoires des points autour de la courbe modèle.

Les relations sur lesquelles je m'appuie pour développer mes calculs

 $\hfill \square$ Relation des gaz parfaits et loi de Dalton :

$$PV = nRT \qquad \text{et} \qquad p_i = x_i P$$

 \Box Définition de la vitesse volumique globale d'une réaction en fonction de son avancement ξ :

$$v = \frac{1}{V} \frac{\mathrm{d}\xi}{\mathrm{d}t}$$

Dans le cas d'une réacteur isochore, cette relation devient :

$$v = \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{\nu_i} \frac{\mathrm{d}\left[\mathbf{B}_i\right]}{\mathrm{d}t}$$

 $\hfill \square$ Deuxième expression de la vitesse si la réaction admet un ordre :

$$v = k \prod_{i \text{ réactifs}} [A_i]^{p_i}$$

☐ Équation d'Arrhénius :

$$k = A \exp\left(-\frac{E_a}{RT}\right)$$

 $\label{eq:app_power} \ \square \ \ \text{Si la vitesse de la réaction peut s'écrire} \ v = \frac{1}{-\alpha_j} \frac{\mathrm{d} \left[\mathbf{A}_{\mathbf{j}} \right]}{\mathrm{d} t} = k_{\mathrm{app}} \left[\mathbf{A}_{\mathbf{j}} \right]^{p_j}, \ \text{on doit pouvoir retrouver} :$

	Ordre 0	Ordre 1	Ordre 2
	$(p_j = 0)$	$(p_j = 1)$	$(p_j = 2)$
Loi de vitesse dela réaction	$v = k \left[A_{\rm j} \right]^0 = k_{\rm app}$	$v = k_{\rm app} \left[A_{\rm j} \right]$	$v = k_{\rm app} \left[A_{\rm j} \right]^2$
Equation différentielle vérifiée par $\left[A_{j}\right]$	$\frac{\mathrm{d}\left[\mathbf{A}_{\mathbf{j}}\right]}{\mathrm{d}t} + \alpha_{j}k_{\mathrm{app}} = 0$	$\frac{\mathrm{d}\left[\mathbf{A}_{j}\right]}{\mathrm{d}t} + \alpha_{j}k_{\mathrm{app}}\left[\mathbf{A}_{j}\right] = 0$	$\frac{\mathrm{d}\left[\mathbf{A}_{j}\right]}{\mathrm{d}t} + \alpha_{j}k_{\mathrm{app}}\left[\mathbf{A}_{j}\right]^{2} = 0$
Expression de $[A_j]$ en fonction du temps	$\left[\mathbf{A}_{\mathbf{j}}\right] = \left[\mathbf{A}_{\mathbf{j}}\right]_{0} - \alpha_{j} k_{\mathrm{app}} t$	$\left[\mathbf{A}_{\mathbf{j}}\right] = \left[\mathbf{A}_{\mathbf{j}}\right]_{0} \exp\left(-\alpha_{j} k_{\mathrm{app}} t\right)$	$\frac{1}{\left[\mathbf{A}_{\mathbf{j}}\right]} = \frac{1}{\left[\mathbf{A}_{\mathbf{j}}\right]_{0}} + \alpha_{j} k_{\mathrm{app}} t$
Fonction de $[A_j]$ affine du temps	$[A_j]$	$\ln \left[{\rm A_j} \right]$	$rac{1}{[\mathrm{A_j}]}$
$ au_{1/2}$	$\frac{\left[\mathrm{A_{j}}\right]_{0}}{2\alpha_{j}k_{\mathrm{app}}}$	$\frac{\ln 2}{\alpha_j k_{\rm app}}$	$\frac{1}{\alpha_{j}k_{\mathrm{app}}\left[\mathrm{A_{j}}\right]_{0}}$