DOCUMENT RESUME

ED 241 581

TM 840 128

AUTHOR

McKinley, Robert L.; Reckase, Mark D.

TITLE

An Extension of the Two-Parameter Logistic Model to

the Multidimensional Latent Space.

INSTITUTION SPONS AGENCY American Coll. Testing Program, Iowa City, Iowa. Office of Naval Research, Arlington, Va. Personnel

and Training Research Programs Office. ONR83-2

REPORT NO PUB DATE

Aug 83

CONTRACT

N00014-81-K0817

NOTE

33p.

PUB TYPE

Reports - Research/Technical (143)

EDRS PRICE

MF01/PC02 Plus Postage.

DESCRIPTORS

IDENTIFIERS

*Estimation (Mathematics); *Latent Trait Theory;

*Mathematical Models; Maximum Likelihood Statistics;

Measurement Techniques; *Statistical Analysis

Information Function (Tests); *Multidimensional

Approach: *Two Parameter Model

ABSTRACT

Item response theory (IRT) has proven to be a very powerful and useful measurement tool. However, most of the IRT models that have been proposed, and all of the models commonly used, require the assumption of unidimensionality, which prevents their application to a wide range of tests. The few models that have been proposed for use with multidimensional data have not been developed to the point that they can be applied in actual testing situations. The purpose of this report is to present a model for use with multidimensional data and to discuss some of its characteristics. This discussion will include information on the interpretation of the model parameters, the sufficient statistics for the model parameters, and the information function for the model. In addition, the estimation of the parameters of the model using the maximum likelihood estimation technique is also discussed. (Author/PN)

Reproductions supplied by EDRS are the best that can be made from the original document. ***********

An Extension of the Two-Parameter Logistic Model to the Multidimensional Latent Space

Robert L. McKinley and Mark D. Reckase

Research Report ONR83-2 August 1983

The American College Testing Program Resident Programs Department Iowa City, Iowa 52243 U.S. DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION
EDUCATIONAL RESOURCES INFORMATION
CENTER IERIC!

- This document has been reproduced as received from the person or organization originating it.
- (3) Minor changes have been made to improve reproduction quakty.
- Points of view or opinions stated in this document do not necessarily represent official NIE position of policy

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

Naval Research

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

Prepared under Contract No. N00014-81-K0817 with the Personnel and Training Research Programs Psychological Sciences Division Office of Naval Research

Approved for public release, distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

	REPORT DOCUMENTATION PAGE			READ INSTRUCTIONS BEFORE COMPLETING FORM	
1	ONR83-2	Z. GOVT ACCESSION NO.	3.	RECIPIENT'S CATALOG NUMBER	
•	An Extension of the Two-Parameter Logistic Model to the Multidimensional Latent Space.			Technical Report PERFORMING ORG. REPORT NUMBER	
7	Robert L. McKinley and Mark D. Reckase		•	CONTRACT OR GRANT NUMBER(s) NOO014-81-K0817	
9	PERFORMING ORGANIZATION NAME AND ADDRESS The American College Testing Program P.O. Box 168 Iowa City, IA 52243		10	PROGRAM ELEMENT. PROJECT. TASK AREA B WORK UNIT NUMBERS P.E.: 61153N Proj.: RR042 T.A.: 042-04-01 W.V.: NR150-474	
11	CONTROLLING OFFICE NAME AND ADDRESS Personnel and Training Research Office of Naval Research Arlington, VA 22217	Programs		MEPORT DATE August 1983 NUMBER OF PAGES 18	
T	MONITORING AGENCY NAME & ADDRESSIII differen	t from Controllind Office)		unclassified Declassification/Downgrading SCHEDULE	

DISTRIBUTION STATEMENT (of this Repott)

Approved for public release, distribution unlimited. Reproduction in whole or part is permitted for any purpose of the United States government.

- 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20. If different from Report)
- IS. SUPPLEMENTARY NOTES
- 18. KEY WORDS (Continue on teveree side if necessary and identify by block number)

Latent trait models Multidimensional latent trait models Multidimensional two-parameter logistic model Estimation

20 ABSTRACT (Continue on reverse side if necessary and identify by block number)

A multidimensional extension of the two-parameter logistic latent trait model is presented and some of its characteristics are discussed. In addition, sufficient statistics for the parameters of the model are derived, as is the information function. Finally, the estimation of the parameters of the model using the maximum likelihood estimation technique is also discussed.

CONTENTS

	Page
ntroduction	1
he Model and Its Characteristics	1
The Model	1
Interpretation of the Model Parameters	2
Sufficient Statistics	
Definition	
Sufficient Statistic for the Ability Parameter	6
Sufficient Statistics for the Item Parameters	6
Information Function	
Definition	
Information Functions for the M2PL Model	8
aximum Likelihood Estimation	9
iscussion	13
Directional Derivatives	13
Interpretation of the Model Parameters	14
Sufficient Statistics	
Information Function	
Maximum Likelihood Estimation	
ummary	17
o forences	10

4

An Extension of the Two-Parameter Logistic Model to the Multidimensional Latent Space

Item response theory (IRT) has proven to be a very powerful and useful measurement tool. However, most of the IRT models that have been proposed, and all of the models commonly used, require the assumption of unidimensionality, which prevents their application to a wide range of tests. The few models that have been proposed for use with multidimensional data have not been developed to the point that they can be applied in actual testing situations. The purpose of this report is to present a model for use with multidimensional data and to discuss some of its characteristics. This discussion will include information on the interpretation of the model parameters, the sufficient statistics for the model parameters, and the information function for the model. In addition, a procedure for estimating the parameters of the model will be discussed.

The Model and Its Characteristics

The Model

The model proposed in this report is a multidimensional extension of the two-parameter logistic model. The two-parameter logistic (2PL) model, proposed by Birnbaum (1968), is given by

$$P_{i}(\theta_{j}) = \frac{\exp(Da_{i}(\theta_{j} - b_{i}))}{1 + \exp(Da_{i}(\theta_{j} - b_{i}))}, \qquad (1)$$

where a is the discrimination parameter for item i, b is the difficulty parameter for item i, θ_j is the ability parameter for examinee j, $P_i(\theta_j)$ is the probability of a correct response to item i by examinee j, and D=1.7. The multidimensional extension of the 2PL model (M2PL), as presented by McKinley and Reckase (1982), is given by

$$P_{\mathbf{i}}(\underline{\theta}_{\mathbf{j}}) = \frac{\exp(d_{\mathbf{i}} + \underline{a}_{\mathbf{i}}\underline{\theta}_{\mathbf{j}})}{1 + \exp(d_{\mathbf{i}} + \underline{a}_{\mathbf{i}}\underline{\theta}_{\mathbf{i}})}, \qquad (2)$$

where \underline{a}_i is a row vector of discrimination parameters for item i, $\underline{\theta}_j$ is a column vector of ability parameters for examinee j, $P_i(\underline{\theta}_j)$ is the probability of a correct response to item i by examinee j, and d_i is given by

$$d_{\mathbf{i}} = -\sum_{k=1}^{m} a_{ik} b_{ik} , \qquad (3)$$

where a_{ik} is the discrimination parameter for item i on dimension k, b_{ik} is the difficulty parameter for item i on dimension k, and m is the number of dimensions being modeled. The d_i term, then, is related to item difficulty,

but is not a difficulty parameter in the same sense as the b, parameter is in the unidimensional model.

Interpretation of the Model Parameters

The interpretation of the parameters of unidimensional IRT models is closely tied to the item characteristic curve (the regression of item score on ability). The item difficulty parameter is defined as the point on the ability scale where the point of inflection of the item characteristic curve (ICC) occurs. This is equivalent to saying the item difficulty value is the point on the ability scale where the second derivative of the ICC function is equal to zero. For the 2PL model, the second derivative is given by

$$\frac{\delta^{2}P}{\delta\theta_{i}^{2}} = D^{2}a_{i}^{2}PQ(1-2P) , \qquad (4)$$

where P is the probability of a correct response to item i given ability j, Q = 1-P, and a, and D are as previously defined. Setting the right hand side of (4) equal to zero yields a solution of P = Q = 0.5. Of course, P = 1.0 and P = 0.0 are also solutions, but these represent degenerate cases where θ = + ∞ and θ = - ∞ , respectively. Thus, the point of inflection occurs at P = 0.5, which occurs where $b_i = 0$. The difficulty of an item for the 2PL model, then, is the point on the ability scale which yields a probability of a correct response equal to 0.5. Figure 1 shows a typical ICC for the 2PL model. The dotted line shows the relationship among the item difficulty value, ability, and the probability of a correct response.

Figure 1

A Typical ICC for the 2PL Model

The item discrimination parameter is related to the slope of the ICC at the point of inflection. The slope of the ICC at the point of inflection is found by taking the first derivative of the ICC and evaluating it at the point of inflection. For the 2PL model the first derivative is given by

$$\frac{\delta P}{\delta \theta_{j}} = Da_{j}PQ , \qquad (5)$$

where all the terms are as previously defined. It was previously found that the point of inflection for the 2PL model occurs where P=0.5. Substituting 0.5 into (5) yields a slope at the point of inflection of $Da_{\perp}/4$.

Difficulty and discrimination are defined somewhat differently for multidimensional models. To begin with, the response function (the model) defines a multidimensional item response surface (IRS) rather than a curve. This surface may have many points of inflection, and the points of inflection may vary depending on the direction relative to the 0-axes. Because of this, the item parameters for the M2PL model are defined in terms of directional derivatives (Kaplan, 1952).

For multidimensional models, difficulty is defined as the locus of points of inflection of the IRS for a particular direction. This is found by taking the second directional derivative of the response function, setting it equal to zero, and solving for the θ -vector. The second directional derivative for the M2PL model is given by

$$\nabla_{\underline{\phi}}^{2} P = \frac{\delta^{2} P}{\delta \theta_{1}^{2}} \cos^{2} \phi_{1} + \frac{\delta^{2} P}{\delta \theta_{1} \delta \theta_{2}} \cos \phi_{1} \cos \phi_{2} + \dots + \frac{\delta^{2} P}{\delta \theta_{1} \delta \theta_{m}} \cos \phi_{1} \cos \phi_{m}$$

$$+ \frac{\delta^{2} P}{\delta \theta_{2} \delta \theta_{1}} \cos \phi_{2} \cos \phi_{1} + \dots + \frac{\delta^{2} P}{\delta \theta_{2} \delta \theta_{m}} \cos \phi_{2} \cos \phi_{m}$$

$$\vdots$$

$$\vdots$$

$$+ \frac{\delta^{2} P}{\delta \theta^{2}_{m}} \cos^{2} \phi_{m} ,$$
(6)

where ϕ represents the vector of angles with respect to each of the m axes. Solving the derivatives in (6) and simplifying yields

$$\nabla_{\phi}^{2}P = PQ(1 - 2P) (a_{1}\cos\phi_{1} + a_{2}\cos\phi_{2} + ... + a_{m}\cos\phi_{m})^{2}$$
. (7)

Setting (7) equal to zero and solving yields three solutions--P = 0.0, P = 0.5, and P = 1.0. The solutions 0.0 and 1.0 represent degenerate cases where θ = $\pm\infty$. P = 0.5 occurs when the exponent of the M2PL model is zero. That is P = 0.5 when

$$d + a_1\theta_1 + a_2\theta_2 + \dots + a_m\theta_m = 0.$$
 (8)

In the two-dimensional case this is the equation for a line.

For the M2PL model, as can be seen from the above derivations, the direction, ϕ , falls out of the equations. Item difficulty for the M2PL model is the same for all directions of travel. This is not necessarily the case for all multidimensional models.

Figure 2 shows a typical response surface for the M2PL model in the two-dimensional case. The dotted line indicates the line of difficulty. In the m-dimensional case (8) is the equation for a hyperplane.

Figure 2
A Typical Response Surface for the M2PL Model

For multidimensional models, item discrimination is a function of the slope of the IRS at the locus of points of inflection in a particular direction. This is obtained by taking the first directional derivative of the response function and evaluating it at the locus of points of inflection. For the M2PL model the first directional derivative is given by

$$\nabla_{\underline{\phi}} P = \frac{\delta P}{\delta \theta_1} \cos \phi_1 + \frac{\delta P}{\delta \theta_2} \cos \phi_2 + \dots + \frac{\delta P}{\delta \theta_m} \cos \phi_m , \qquad (9)$$

where ϕ represents the vector of angles of the direction in the θ -space with respect to each of the m axes. For the two-dimensional case (9) is given by

$$\nabla_{\phi}^{P} = a_1 PQ \cos \phi + a_2 PQ \sin \phi . \tag{10}$$

where ϕ is the angle with the θ_1 axis. When $\phi=0^\circ$ (direction parallel to θ_1 axis) the slope is a_1PQ , and when $\phi=90^\circ$ (parallel to θ_2 axis) the slope is a_2PQ . In general, when the direction is parallel to the θ_m axis, the slope is a_mPQ . Since P=Q=0.5 at the line of inflection, the slope parallel to the θ_m axis at those points is $a_m/4$. In the unidimensional case $\phi=0^\circ$, and the slope of the ICC at the point of inflection is Da/4.

Sufficient Statistics

Definition Assume that there exists some distribution that is of known form except for some unknown parameter θ , and that \underline{x} represents a set of observations from that distribution. Also assume that $\underline{S}(\underline{x})$ is some statistic which is a function of \underline{x} . If $\underline{S}(\underline{x})$ is a sufficient statistic for θ , then it must be possible to factor the probability function of \underline{x} , $\underline{P}(\underline{x}|\theta)$ into the form:

$$P(\underline{x}|\theta) = f[S(\underline{x})|\theta]g(\underline{x}). \tag{11}$$

In this form it is easy to see that $g(\underline{x})$ is independent of θ , and so provides no information about θ . Selection of $\overline{\theta}$ to maximize the probability of \underline{x} is tantamount to selecting θ to maximize the probability of $S(\underline{x})$.

In item response theory \underline{x} is typically a response string, either by one examinee to a set of items or by a set of examinees to a single item. In this case, $P(\underline{x}|\theta)$ is the likelihood of the response string. For the M2PL model, the likelihood of an examinee's response string is given by

$$P(\underline{x}_{j}|\theta_{j}) = \prod_{i=1}^{n} P(x_{ij}|\underline{\theta}_{j})$$
 (12)

where x_{ij} is the response to item i by examinee j, $\underline{\theta}_j$ is the vector of abilities for examinee j, \underline{x}_j is the response string for examinee j, and n is the number of items. The likelihood of the set of responses to an item is given by:

$$P(\underline{\mathbf{x}}_{\mathbf{i}} | \mathbf{d}_{\mathbf{i}}, \underline{\mathbf{a}}_{\mathbf{i}}) = \prod_{j=1}^{N} P(\mathbf{x}_{\mathbf{i}j} | \mathbf{d}_{\mathbf{i}}, \underline{\mathbf{a}}_{\mathbf{i}}) , \qquad (13)$$

where $P(x_{ij}|d_i, a_i)$ is the probability of response x_{ij} for item i, d_i and a_i are the item parameters for item i, x_i is the vector of responses to item i, and N is the number of examinees. In order for any statistic to be a sufficient statistic for a parameter of the M2PL model, it must be possible to factor the appropriate likelihood function into the form given by (11).

Sufficient Statistic for the Ability Parameter For the M2PL model (12) can be factored into the form:

$$P(\underline{x}_{j} | \underline{\theta}_{j}) = \prod_{i=1}^{n} Q_{i}(\underline{\theta}_{j}) \exp(\underline{\theta}_{j} \sum_{i=1}^{n} \underline{a}_{i} x_{ij}) \exp(\sum_{i=1}^{n} \underline{d}_{i} x_{ij}).$$
(14)

From (14) it can be seen that

$$\underline{\mathbf{s}}(\underline{\mathbf{x}}_{\mathbf{j}}) = \sum_{\mathbf{i}=1}^{n} \underline{\mathbf{a}}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}\mathbf{j}}$$
 (15)

is a vector of sufficient statistics for θ . (For a discussion of the derivation of the sufficient statistic for ability in the unidimensional case, see Lord and Novick, 1968, chapter 18).

Sufficient Statistics for the Item Parameters For the item parameters of the M2PL model, (13) can be factored into the form:

$$P(\underline{x}_{i}|d_{i},\underline{a}_{i}) = \prod_{j=1}^{N} Q_{j}(d_{i},\underline{a}_{i}) exp(\underline{a}_{i},\underline{b}_{j=1}^{\Sigma} \underline{\theta}_{j} x_{ij}) exp(d_{i},\underline{b}_{j=1}^{\Sigma} x_{ij}). \quad (16)$$

From (16) it can be seen that

$$s_{\mathbf{d}}(\underline{\mathbf{x}}_{\mathbf{i}}) = \sum_{j=1}^{N} \mathbf{x}_{\mathbf{i}j}$$
 (17)

is a sufficient statistic for the d-parameter, and

$$\underline{s}_{a}(\underline{x}_{i}) = \sum_{j=1}^{N} \underline{\theta}_{j} x_{ij}$$
 (18)

is a vector of sufficient statistics for the a-parameter.

Information Function

Definition In item response theory the precision of estimates based on a given scoring formula are generally described in terms of the information function of the scoring formula. The information function of a particular

scoring formula, as given by Lord and Novick (1968), is given by

$$I\left[\theta,s(x)\right] = \frac{1}{\sigma^2\left[s(X),\theta\right]} \left\{\frac{\delta}{\delta\theta} E\left[s(X)|\theta\right]\right\}^2 , \qquad (19)$$

where s(x) represents a given scoring formula for the model of interest, $\sigma^2\{s(X),\theta\}$ is the variance of the scoring formula, and the derivative $\partial E\{s(X)|\theta\}/\partial \theta$ specifies how the mean of the scoring formula changes as θ changes.

If s(x) takes the form

$$s(x) = \sum_{i=1}^{n} w_i x_i, \qquad (20)$$

where w_i is a positive number, then the expected value $E[s(X)|\theta]$ is given by

$$\mathbb{E}\left[\mathbf{s}(\mathbf{X})\mid\boldsymbol{\theta}\right] = \sum_{i=1}^{n} \mathbf{w}_{i} \mathbf{P}_{i}(\boldsymbol{\theta}), \qquad (21)$$

and the variance of the scoring formula is given by

$$\sigma^{2}\left[s(X),\theta\right] = \sum_{i=1}^{n} w_{i}^{2} P_{i}(\theta) Q_{i}(\theta). \tag{22}$$

(For a discussion of these derivations, see Lord and Novick, 1968). Substituting (21) and (22) into (19) yields

$$I \left[\theta, s(x)\right] = \begin{bmatrix} n \\ \sum_{i=1}^{n} w_i^{2} P_i(\theta) Q_i(\theta) \end{bmatrix}^{-1} \begin{bmatrix} n \\ \sum_{i=1}^{n} w_i^{2} P_i(\theta) \end{bmatrix}^{2}, \qquad (23)$$

where $P_i(\theta) = \partial P_i(\theta)/\partial \theta$. For a single item (23) takes the form

$$I \left[\theta, s(x)\right] = P_{i}(\theta)^{2}/P_{i}(\theta)Q_{i}(\theta) , \qquad (24)$$

which is the item information function. If (24) is written in terms of the response x, rather than the scoring formula s(x), the same result is obtained. That is, $I(\theta,x_1)=I[\theta,s(x_1)]$. Lord and Novick (1968) have shown that, unless s(x) represents the locally best weights at θ , $I[\theta,s(x)]<\sum I(\theta,x_1)$. That is, the sum of the item information functions, which is independent of the the scoring formula, represents an upper bound on each and all information functions obtained using different scoring formulas. The sum of the item information functions is called the test information function, and is given by

$$I(\theta) = \sum_{i=1}^{n} I(\theta, \mathbf{x}_i) = \sum_{i=1}^{n} P'(\theta)^2 / P_i(\theta) Q_i(\theta). \tag{25}$$

Information Functions for the M2PL Model For the unidimensional 2PL model, given by (1), the item information function is given by

$$I(\theta,x_i) = D^2 a_i^2 P_i(\theta) Q_i(\theta) . \qquad (26)$$

Test information for the unidimensional 2PL model is given by

$$I(\theta) = \sum_{i=1}^{n} D^{2} a_{i}^{2} P_{i}(\theta) Q_{i}(\theta). \qquad (27)$$

As was the case for discrimination, information for the M2PL model varies depending on the direction relative to the θ -axes. Therefore, item and test information for the M2PL model are defined using the first directional derivative of the response function, which is given by (9). Item information for the M2PL model is given by

For the two dimensional case, this simplifies to

$$I(\underline{\theta}, \mathbf{x}_i) = PQ(\mathbf{a}_1 \cos \phi + \mathbf{a}_2 \sin \phi)^2. \tag{29}$$

Note that when the direction of travel is parallel to the θ -axis (ϕ = 0°), item information is given by $a_1{}^2PQ$. When only θ_2 is of interest (ϕ = 90°), item information is given by $a_2{}^2PQ$. If the two dimensions are weighted equally (ϕ = 45°), item information is given by 0.5($a_1{}^2PQ$ + 2 a_1 a_2PQ + $a_2{}^2PQ$). Figures 3, 4, and 5 show typical item information surfaces for ϕ = 0°, 45°, and 90° respectively. Note that these are not the same surface seen from different angles. They are different surfaces, all for the same item, obtained by varying the direction with respect to the θ -axes. As can be seen, they are quite different. Test information for the M2PL model is simply the sum of (29) over all of the items. Figures 6, 7, and 8 show typical test information surfaces for ϕ = 0°, 45°, and 90°, respectively. Again, the three surfaces are quite different, indicating that the test gives different amounts of information that are concentrated at different places in the θ -space when different weighted composites of ability are of interest.

Maximum Likelihood Estimation

Maximum likelihood estimation of the parameters of the M2PL model is relatively straightforward. The likelihood of a response matrix for the M2PL model (or for any latert trait model) is given by

$$L = \begin{cases} n & N \\ 1 & \prod P(x_{ij}) \\ i=1 & j=1 \end{cases}$$
 (30)

where all the terms have been previously defined. For an examinee's response string, the likelihood is given by (12), and the likelihood of a response string for an item is given by (13). The first derivative of the \log_e of the likelihood given in (12) is given by:

$$\frac{\delta \log_{e} L}{\delta \underline{\theta}_{i}} = \sum_{i=1}^{n} \underline{a}_{i} \times_{ij} - \sum_{i=1}^{n} \underline{a}_{i} P_{ij}, \qquad (31)$$

and the first derivative of the log of the likelihood given in (13) is given by

$$\frac{\delta \log_{e} L_{i}}{\delta d_{i}} = \sum_{j=1}^{N} x_{ij}$$
 (32)

for the difficulty parameter, and

$$\frac{\delta \log_{\underline{a}} L_{\underline{i}}}{\delta \underline{a}_{\underline{i}}} = \sum_{\underline{j}=1}^{N} \underline{e}_{\underline{j}} x_{\underline{i}\underline{j}} - \sum_{\underline{j}=1}^{N} \underline{e}_{\underline{j}} P_{\underline{i}\underline{j}}$$
(33)

for the discrimination parameter.

The estimation of ability using maximum likelihood techniques simply involves setting (31) equal to zero and solving for θ_j . Of course, since this involves solving simultaneous nonlinear equations, some type of iterative procedure is generally required. The estimation of item parameters involves setting (32) and (33) equal to zero and solving for d_i and \underline{a}_i ,

Figure 3

Figure 4

11 Figure 5

Figure 6

A Test Information Surface

Figure 7

A Test Information Surface

Figure 8

respectively. Again, the solution of simultaneous nonlinear equations requires an iterative procedure. McKinley and Reckase (1983) describe a procedure for the simultaneous estimation of the item and person parameters of the M2PL model using a Newton-Raphson procedure for solving the simultaneous nonlinear equations. A computer program is available.

Discussion

Although IRT has gained popularity over the last few years, applications of IRT models have been limited to tests for which the assumption of unidimensionality is at least defensible. There have been a few IRT models proposed for use with multidimensional data (see McKinley and Reckase, 1982, for a summary), but there have been few successful attempts at their application. Use of these models has been limited due to the absence of practical algorithms for parameter estimation, and, at least in part, because the models are not well understood.

McKinley and Reckase (1982) have proposed a model, the M2PL model, for use with multidimensional data, and they have developed a program for the estimation of the parameters of the model (McKinley and Reckase, 1983). The purpose of this report is to provide information necessary for the understanding and use of the M2PL model.

Many of the characteristics of the M2PL model are not straightforward extensions from the unidimensional case. Rather, the unidimensional case is a special case of the multidimensional model in which much of the richness and complexity of the model is not evident. Because of this, some of the characteristics of the model described in this report may be somewhat difficult to grasp. In order to aid in the understanding of these characteristics, they will now be discussed in some depth. An attempt will be made in each case to describe how the information provided relates to real-world applications. The discussion will begin with the interpretation of the model parameters, and will include the sufficient statistics, information functions, and parameter estimation. Before beginning the discussion of the characteristics of the M2PL model, however, a brief discussion of directional derivatives will be presented, since directional derivatives are so important to the understanding of multidimensional IRT models.

Directional Derivatives

One of the most interesting and complex aspects of the multidimensional IRT models which is lost when the unidimensional case is discussed is the notion of directional derivatives. In the unidimensional case the only direction ever discussed is parallel to the θ -axis (ϕ = 0°), in which case all the trigonometric terms so evident in the material presented above are absent—they always equal 1.0 or 0.0 and therefore drop out of the equations.

Directional derivatives are necessary in the multidimensional case because the derivatives of the response function vary depending on the direction taken relative to the θ -axes. The first derivative of a function gives the slope of the function at any given point. The second derivative gives the rate at which the slope is changing at a particular point. The point of maximum slope is where the slope stops increasing and starts decreasing. At the point where that change occurs, the change in slope

crosses from being positive (increasing) to negative (decreasing). Thus, at that point the change in slope is neither positive nor negative, but rather is zero. Since the second derivative gives the rate of change of slope, the point of maximum slope is where the second derivative is zero. In the unidimensional case, this has a straightforward application in determining item difficulty and discrimination, as illustrated in Figure 1. The point where the dotted line crosses the ICC is the point of maximum slope and minimum (zero) change in slope.

In Figure 2, it can easily be seen that there is no one point on the surface where the slope is at a maximum. Moreover, for any one point, the slope varies depending on the direction. Consider the point on the surface where θ_1 = 0.0 and θ_2 = ~2.5. This point is indicated on the surface by an x. Moving along the θ_2 = ~2.5 line parallel to the θ_1 axis, the surface is rising fairly rapidly at the point indicated. However, moving along the θ_1 = 0 line parallel to the θ_2 -axis, the surface is still relatively flat and is rising slowly. Clearly the slope of the surface is different depending on the direction of travel. The same is true of the change in slope. Because of this, when taking derivatives of a multidimensional response function, it is necessary to consider the direction. Directional derivatives are a way of doing this. The actual interpretation of the derivatives in different directions will be addressed in the next section, since it is closely related to the interpretation of the model parameters.

Interpretation of the Model

A straightforward extension of item difficulty from the unidimensional to the multidimensional case would seem to lead to the conclusion that difficulty in the multidimensional case ought to be a vector of b-parameters, with one b for each dimension. In Figure 1 the b-parameter is the point on the $\theta\text{-scale}$ below the point of inflection. It represents the point on the $\theta\text{-scale}$ where the item best discriminates between high and low ability. At the point represented by the b-parameter, a very small change in ability corresponds to a large change in the probability of a correct response. Nowhere on the $\theta\text{-scale}$ does an equal change in ability result in as large a change in the probability of a correct response. Thus, in the unidimensional case, the item difficulty parameter indicates the point on the ability scale at which the item does the best job of discriminating between different levels of ability.

On the surface, it seems logical to conclude that if there are two dimensions, there should be two b-parameters. One b-parameter should indicate the point of maximum discrimination on one dimension, while the other b-parameters indicate the point of maximum discrimination on the other dimension. Figure 2, however, clearly illustrates that this is inadequate.

As can be seen in Figure 2, the two ability dimensions do not act independently. It is the combination of ability on the two dimensions which determines the probability of a correct response. An examinee with θ_2 = 2.0 clearly has a higher ability on that dimension than an examinee with θ_2 = -2.0. However, if the second examinee has θ_1 = 3.0, while the first examinee has θ_1 = -3.0, the second examinee has a much higher probability of a correct response to the item described by the IRS. Clearly, then, considering the two dimensions separately does not contribute greatly

to discriminating between examinees who have different probabilities of a correct response. This is reflected in the fact that the item difficulty for Figure 2 is a line which is not parallel to either axis.

This has important implications for test construction and analysis using the M2PL model. It is common practice, for instance, to order items on a test by difficulty, or to construct a test having a specified distribution of item difficulty. In the unidimensional case this is done using the b-parameter. Clearly in the multidimensional case it is more complicated. An item having a smaller d-parameter than a second item is only uniformly more difficult than the second item if their difficulty functions are parallel. If the difficulty functions intersect, then item 1 is more difficult than item 2 in some regions of the θ -plane, while item 2 is more difficult in other regions.

This would seem to indicate that it is only reasonable, in the multidimensional case, to talk about ordering items on difficulty or obtaining a specified distribution of difficulty if all the items to be considered have parallel lines of difficulty. Of course, in the m-dimensional case the items would all have to have parallel (m-1)-dimensional hyperplanes.

In order to determine whether two items have parallel lines of difficulty in the two-dimensional case, first determine the form of the difficulty line. The equation for the line of difficulty is given by (8). The two lines are parallel only if the slopes of the lines are equal. Putting (8) into a slope-intercept form yields

$$\theta_{j2} = -\frac{a_{11}}{a_{12}}\theta_{j1} + \frac{d_1}{a_{12}},$$
 (34)

where a_{il} is the item discrimination parameter for item i for dimension 1, a_{i2} is for dimension 2, θ_{j1} is the ability parameter for examinee j for dimension 1, and θ_{j2} is the ability parameter for dimension 2. If item 2 is denoted by a prime (´), then the lines of difficulty for items 1 and 2 are parallel only if

$$\frac{a_{11}}{a_{12}} = \frac{a_{11}}{a_{12}} . (35)$$

If all items meet the condition set out in (35), then they can be ordered by difficulty, by simply ordering them by their d-parameters.

The ordering of items on difficulty implies that there is some underlying variable being measured that has some correspondence to the criterion used for the ordering. In this case there is some composite of the θ s which corresponds to the difficulty continuum formed by the items having parallel lines of difficulty. The composite is determined by the orientation of the lines of difficulty.

The extension of item discrimination to the multidimensional case is even more complex than the extension of item difficulty. Unlike difficulty, the concept of item discrimination in the multidimensional case includes a consideration of direction—the angles indicating the direction do not fall

out of the equations. Although the slope of the IRS shown in Figure 2 is constant all along the the line of difficulty for a given direction, it varies with different urrections.

The need to consider direction has important implications for both test construction and test analysis. It is not enough in test construction, for instance, to merely select the item with the highest discrimination from among the available items. One item is uniformly more discriminating than a second item only if the slope of its IRS at the points of inflection is greater than the slope of the IRS for the second item for all directions. If item 1 has the higher a-value on one dimension, but a lower a-value on another dimension, there may be directions for which the slope of the IRS at the points of inflection will be greater for item 2. For example, consider the case where item 1 has discrimination parameters a = (1.0, 0.5) and item 2 has discrimination parameters a = (0.5, 1.0). When ϕ in (10) is 30 degrees, the slope of the IRS at the points of inflection is 0.279 for item 1 and 0.233 for item 2. When ϕ is 60 degrees, the slope for item 1 is 0.233, while the slope for item 2 is 0.279. At ϕ = 45 degrees, both items have a slope of 0.265 at the points of inflection.

It seems to follow from the above discussion and example that, in interpreting item discrimination in the multidimensional case, the particular composite of abilities of interest must be considered. The composite might be specified a priori, as in test construction, or discovered by post administration analyses.

Sufficient Statistics

The notion of a sufficient statistic is not a simple one to grasp. Essentially, a statistic t is a sufficient statistic for the parameter θ if it contains all the information in the sample data about θ . For example, the number-correct score for an item provides all the information in the response data about the d-parameter. For the a-parameter for a particular dimension, a sufficient statistic is provided by a weighted sum of the item responses. The response of each examinee to the item of interest is weighted by the examinee's ability on the dimension of interest. Thus, a correct response to an item by an examinee of high ability $(\theta > 0.0)$ adds to the value of the statistic, while a correct response by an examinee of low ability $(\theta < 0.0)$ decreases the value.

For ability, a sufficient statistic is provided by a weighted sum of an examinee's responses to all the items. The weighting factor is the discrimination parameter for the dimension of interest. Thus, a correct response to a highly discriminating item adds more to the statistic than a correct response to an item of low discriminating power.

Although the availability of sufficient statistics for the parameters of the M2PL model is important from an estimation standpoint, it should be pointed out that, with the exception of the d-parameter, the sufficient statistics described above are not observable. While the number-correct score of an item can be observed, the a-parameter of an item, and thus the sum of item responses weighted by discrimination parameters, is not observable. This complicates estimation somewhat by requiring that provisional estimates of some parameters be provided during the estimation of the remaining parameters. Solutions, then, are obtained by a series of approximations by

varying from one step to the next which parameters are estimated. In each step the provisional estimates for the parameters not being estimated are the most recent estimates of those parameters.

Information Function

Item information in the multidimensional case is like item discrimination in that the information yielded by an item for a particular θ varies with the direction of travel. This has important implications for such applications as adaptive testing, in which items may be selected for administration on the basis of item information. As was the case with item discrimination, the interpretation and use of item information requires the consideration of the particular composite of abilities which is of interest.

Maximum Likelihood Estimation

Estimation of the parameters of the M2PL model is surprisingly straightforward. Implementation of the procedure described earlier in this report is not particularly difficult. However, it is rather expensive.

One serious limitation of the procedure described is that there is no way to determine in advance how many dimensions should be included. The procedure is too expensive to allow successive runs for an increasing number of dimensions until a satisfactory solution is obtained. It is clear that, if the M2PL model is to be used, more work is needed in this area.

More work also needs to be done to determine sample size requirements for estimation. Some guidelines are needed for determining the maximum number of items and subjects required for good estimation.

Summary

Item response theory has become an increasingly popular area for research and application in recent years. Areas where item response theory has been applied include test scoring (Wcodcock, 1974), criterion-referenced measurement (Hambleton, Swaminathan, Cook, Eignor, and Gifford, 1978), test equating (Marco, 1977; Rentz and Bashaw, 1977), adaptive testing (McKinley and Reckase, 1980), and mastery testing (Patience and Reckase, 1978). While many of these applications have been successful, one unsolved problem is repeatedly encountered--most IRT models assume unidimensionality. As a result, applications of these models have been limited to areas in which the tests used measure predominantly one factor (or can be sorted into subtests which measure predominantly one factor). When the assumption of unidimensionality is not met, most IRT models are inappropriate.

The purpose of this report is to present an IRT model that does not require unidimensional tests. With such a model the great power of item response theory as a measurement tool can be applied for many of the purposes for which unidimensional models are employed, without the limitation on what kinds of tests are involved (i.e., the dimensionality of the tests). Of course, much more work is needed before the model can be employed in real testing situations. Procedures for the use of the model for different

applications must be worked out in greater detail, and limitations on the practicality of the estimation procedures must be overcome. The information provided in this report provides a firm foundation for future work in these areas.

REFERENCES

- Birnbaum, A. Some latent trait models and their use in inferring an examinee's ability. In F.M. Lord and M.R. Novick, <u>Statistical theories of mental test scores</u>. Reading, MA: Addison-Wesley, 1968.
- Hambleton, R.K., Swaminathan, H., Cook, L.L., Eignor, D.R., and Gifford, J.A. Developments i latent trait theory, models, technical issues, and applications. Review of Educational Research, 1978, 48, 467-510.
- Kaplan, W. Advanced calculus. Reading, MA: Addison-Wesley, 1952.
- Lord, F.M. and Novick, M.R. Statistical theories of mental test scores. Reading, MA: Addison-Wesley, 1968.
- Marco, G.L. Item characteristic curve solutions to three intractable testing problems. Journal of Educational Measurement, 1977, 14, 139-160.
- Metanley, R.L. and Reckase, M.D. MAXLOG: A computer program for the estimation of the parameters of a multidimensional logistic model. Behavior Research Methods and Instrumentation, 1983, 15, 389-390.
- *McKinley, R.L. and Reckase, M.D. The use of the general Rasch model with multidimensional item response data (Research Report ONR82-1). Iowa City, IA: The American College Testing Program, August 1982.
- McKinley, R.L. and Reckase, M.D. A successful application of latent trait theory to tailored achievement testing (Research Report 80-1). Columbia, MO: University of Missouri, Department of Educational Psychology, February 1980.
- Patience, W.M. and Reckase, M.D. Self-paced versus paced evaluation utilizing computerized tailored testing. Paper presented at the annual meeting of the National Council on Measurement in Education, Toronto, 1978.
- Rentz, R.R. and Bashaw, W.L. The National Reference Scale for Reading: An application of the Rasch model. Journal of Educational Measurement, 1977, 14, 161-180.
- Woodcock, R.W. Woodcock Reading Mastery Test. Circle Pines, MN: American Guidance Service, 1974.

- l Dr. Ed Alkan Navy Personnel RSD Center San Diago, CA 92152
- l Dr. Arthur Bachmich Environmental Strass Program Center Naval Medical Research Institute Bethesda, MD 20014
- 1 Or. Maryt S. Biker Nivy Personnel RSD Genter Sin Diego, CA 92152
- 1 Unitson Scientist
 Office of Navit Research
 Seinch Office, London
 30x 19
 FPO May York, MY 1951)
- 1 At. Alexander dony Applied Psychology Mensurement Division NATRU NAS Pensicola, PL 32508
- 1 Dr. Robert Breaux MAVIRAEOULPCEN Cole N=035R Octindo, Ft. 128ti
- 1 Dr. Robert Cieroll MAYOP 115 Viahlngton . DC 20370
- I Chief of Nival Election in Fritaing this on Office Ale Force Maria Resource Liberitory Operations Fritaing Division VILLIAMS AFR, AS 35224
- t Dr. Spinley Collyer Office of Mivil Technology 190 M. Quincy Street Actington, VN 23217
- I GDR Alka Carria Office of Mivil Resourch VD A. Oalasy St. Code 270 Arthagton, VA 22217
- Une. Oraș Divis ONEC Pensicoli, FL

- 1 Dr. Ton Daffy Navy Parsonnel RAD Center San Diego, CA 92152
- l Mike Durmeyer
 Instructional Program Davelopment
 Building 90
 NET-POCD
 Great Lakes NTC, IL 60089
- 1 Dr. Richied Elster Department of Administrative Sciences Navai Postgraduate School Monteray, CA 93950
- 1 DR. PAT FEDERICO Gode P13 (1939) Sin D1 Spo. GA 12132
- t or. Cithy Permindes Nivy Personnet RSD Center Sin Diego, CA 92152
- 1 Dr. Jim Moltan
 Cole 14
 Newy Parsonnel R & D Contor
 San Diego, CA 92152
- 1 Dr. Ed Mutchins
 Yivy Personn it RSD Center
 Sin Dingo, CA 92152
- 1 Dr. Normin J. Kerr Chief of Mayal Technical Critains Mayal Mr. Station Hamphia (75) Millington, CN 38054
- Unc. Lonnicd Crooker Mivy Piesonnet RSD Center Sin Diego, CN 32152
- 1 Dr. William, Miloy (93)

 Chief of Mivil Education and Prilating
 Mivil Air Station
 Pension, Ff. 12509
- Une, Jimes MeBelde Nivy Personnal RSD Canter Sin Diego, GA 92152
- 1 Or William Montague NPROG Gode 13 Sin Diego, CA 92152

- 1 Bill Nordbrock 1032 Falrlaws Ave. Libartyvilla, IL 60048
- 1 Library, Code P201L Navy Personnel RSD Center San Diegn, CA 92152
- 1 Technical Director Navy Personnel RSD Center Sun Diego, CA 92152
- 6 Personnel & Training Reserreb Group Code 44227 Office of Aival Reserreb Arlington, VV 22217
- l Sovelil Asst. for Education and Fraining (OP-OLE) Rm. 2705 Artington Annox Visington, DC 20370
- 1 LT Frink C. Petho, MSG, USN (Ph.D) CNEC (N-432) NAS Pensagnia, FL 32509
- 1 Dr. Bernard Rimlant (Otc) Navy Personnel RSD Genter San Diegn, CA 92152
- 1 Dr. Carl Ross CNET-PDCD Building 90 Great Lakes NEC, IL 50038
- 1 Dr. Robert G. Smith Office of Chief of Nival Operations OP-937H Wishington, DC 20350
- 1 Dr. Alfred F. Smode, Director Training Analysis & Evaluation Group Dept. of the Navy Orlando, FL 32813
- 1 Pr. Richard Shrengen Navy Personnel RSD Center San Diego, CA 92152
- 1 Dr. Frederick Steinheiser CNO - OP115 Navy Annax Arlington, VA 20370

Navy

- 1 Mr. Brad Sympson Navy Personnel RAD Genter San Diego. CA 92152
- 1 9r. Frank Vicino Navy Parsonnel RSD Center San Diego, CA 92152
- 1 Dr. Eiwird Wigmin Office of Nival Research (Code 41185P) 8)) Worth Oxincy Street Arlington, VA 22217
- 1 Dr. Remaid Writzman

 Your Pestgraduate School

 Department of Administrative

 Sciences

 Hanterey, CN 93940
- 1 Dr. Donglis Witzel
 Chie 17
 Navy Personnal RSD Center
 Sho Diagn, CA 92152
- 1 DR. MARCIN F. WISKOFF NAVY PERSONNEL RA D CENTER SAN DIEGO, CA 92152
- 1 Mr John H. Walfe Nivy Personnel RSD Center San Didge, CA 92152
- 1 Dr. Willace Walfeck, III Navy Personand R&D Center San Diego, CA 92152

- 1 H. William Greenup Education Advisor (E031) Education Center, MODEC Ouantion, VA 22134
- 1 Director, Office of Manpour Utilization 110, Marine Corps (MPU)
 808, 814g. 2000
 Quantico, VA 22134
- 1 Healquirters, U. S. Hirius Corps Code MP1-20 Wishington, DC 21140
- l Spicial Assistant for Miring Corps Mitters Cole 1009 Office of Nival Research 89) N. Quincy St. Artington, VA 22217
- 1 DR. A.L. STAFKOSKY
 STERRIFIC ADVISOR (CODE RD-1)
 HQ. U.S. MARINE CORPS
 WASHINGTON, DC 20380
- I Mijor Frink Yahinain, USMC Healquarters, Mirios Corps (Cole MPI-20) Wishington, DC 20180

- 1 Technical Director

 U. S. Army Pescarch Institute for the
 Behavioral and Social Sciences
 5001 Eisenhower Avenue
 Alexandria, VA 22003
- I Mr. Jimes Biker Army Riseitch Institute 5001 Eisenhower Aconto Alexandria, VA 20333
- 1 Dr. Kent Eiton Army Roseir, a Institute 50H Elsenhower Blyd. Alexindria . VA 22333
- I Dr. Britelen J. Fire
 U. S. Army Resourch institute
 5001 Elsenhawer Avenue
 Alexandria, VA 22333
- 1 Dr. Myrnn Flechl
 U.S. Army Research Institute for the
 Social and Behavioral Schemes
 5001 Elsenhower Avenue
 Alexandria, VA 22333
- 1 Dr. Milton S. Kitz Training Technical Area U.S. Army Research Institute 5011 Eisenhower Avenue Alexandria, VA 22333
- t Dr. Harold F. O'Neil, Jr.
 Director, Training Research Lab
 Army Research Institute
 5701 Eisenhower Avenue
 Alexindria, VA 22313
- 1 Commander, U.S. Army Regenroli Institute for the Behavioral & Social Sciences ATTN: PERI-BR (Dr. Judith Orasanu) 5001 Elsenhower Avenue Alexandria, VA 20333
- I Joseph Psotka, (h.D. ATTN: PERI-IC Army Research Institute 5001 Eisenhower Ave. Alexandria, VA 22333

- I Mr. Robert Ross
 U.S. Army Research Institute for the Social and Behavioral Sciences
 SOOL Elsenhower Avenue
 Alexandria, VA 22333
- 1 Dr. Robert Sasmor
 U. S. Army Research Institute for the Behavioral and Social Sciences 5001 Eiseahower Avenue Alexanirla, VA 22133
- 1 Or. Toyon Shiells
 Army Research Institute for the Behavioral and Spatial Sefences
 5001 Eisenhower Avenue
 Alexandria, VV 22113
- L Br. Hilda Wing Army Research Institute 510L Elsenbower Ave. Alexandria, VA 22111
- I Dr. Robert Wisher Army Research Institute 5901 Eisenhower Avenue Mexanistis, VA 22313

Air Force

- 1 Air Force Human Resources Lab AFURL/MPD Brooks AFB, TX 78235
- 1 Technical Documents Center Air Force Human Resources Laboratory WPAFR, ON 45433
- 1 U.S. Air Force Office of Scientific Research Life Sciences Directorite, NL Bolling Air Force Base Wishington, DC 20132
- 1 Air University Library AUL/LSE 76/443 Mixwell AFB, AL 36112
- 1 Dr. Eirl A. Allufal II). AFIRL (AFSC) Brooks AFB, TX 78235
- 1 dr. Raymond E. Christal AFIRL/MAE Brooks AFB, TX 78235
- 1 Dr. Alfred R. Fregly AGOSRAN, Bolling AFS. DG 20332
- 1 Dr. Genevieve Hidded Program tinnger Life Sciences Directorate AFOSK Bolilog NFB, DC 20332
- 1 Dr. T. M. Longridge AFBRL/OTE Williams AFB, AZ 85224
- 1 Mr. Raniniph Park
 AFHRL/MONN
 Brooks AFB, TX 78235
- 1 Dr. Roger Propoli Air Force Wimin Risources Liberatory Lowry AFB, CO BO230
- I Dr. Malcolm Red AFRRL/MP Brooks AFB, TX 78235

Air Force

- 1 3700 TCHTW/TTGHR 21st Tallarigo Shoppird AFB, TX 76311
- I Lt. Col Jimes E. Watson IIO USAF/MPXOA The Pentasgon Washington, BC 20330
- 1 Tigor John Wilsh AF(PC) Raudolph AF8, TX
- t Dr. Joseph Yustruk. AMBRL/LRC Gowry AFB, CO 80230

Department of Dafensa

- 12 Defense Technical Information Center Cameron Station, Bldg 5 Alexanista, VA 32314 Attn: TC
 - 1 Dr. Craig I. Flelds
 Advisced Research Conjects Agency
 1400 Wilson 8121.
 Actington, VA 22209
 - 1 Jerry Lehnus
 Ho Agroot
 Arth: MSPOF-P
 Fort Shortdin, IL 63037
 - 1 Military Assistint for Training ini Personnel Tachanlogy Office of the Under Secretary of Defens for Research & Engineering Room 10129, The Pentigon Washington, DC 20101
 - 3 Or. Wiyan Sollman Office of the Assistant Secretary of Definer (MRA & L) 20269 The Pentignn Washington, DC 20301
 - 1 Hijnr Jack Tunrpa DARPA 1400 Wilson Blvd. Arlington, VA 22209

Civilian Agencies

- 1 Dr. Susha Chipmia Learning and Development Nitlanil Institute of Education 1200 19th Street NV Wishington, DC 20203
- 1 Dr. Vero W. Orry
 Pursonall RSD Centur
 Office of Personal Management
 1900 E Street NV
 Vishlagton, DC 20415
- 1 Mr. Thomas A. Warm
 U. S. Coast Guard Institute
 P. O. Substition 18
 Octobric City, OX 73169
- I Dr. Joseph L. Young, Director Benoty & Cognitive Protess's National Science Foundation Washington, DC 20557

- 1 Dr. James Algian
 University of Florida
 Gainesville, FL 326
- I Dr. Erling B. Anderson
 Department of Statistics
 Studiestrande 6
 1455 Copanhagea
 DENMARK
- l I Esvebblogical Risearch Unit NBB-3-44 Atto: Libraria Northbouros House Turoir ACE 2601 AUSERALIA
- i Dr. Isine Brite Educational Testing Service Princeton, NI 09450
- 1 Dr. Magadii Blreabium Saliml of Education fol Aviv University Tol Aviv, Rimit Aviv 49979 ternel
- 1 Dr. R. Dirrell Bock Depirtment of Education University of Calcago Chinago, 11, 60537
- 1 Dr. Robert Breadin American College Testing Programs P. O. Box 168 Town City, TA 52243
- 1 Dr. Erosst R. Chiotte 307 Stokely University of Teomessee Knoxville, TN 17916
- 1 Dr. Joho B. Carroll 499 Elllott Rd. Chapel Hill, NO 27514
- 1 Dr. Normin Cliff
 Dipt. of Psychology
 Univ. of So. Gillfornia
 University Pirk
 Los Angeles, CA 9/1777

- i Dr. Hos Crowbig Education Research Center University of Layden Borthlaveland 2 2334 ES Leyion The METUERLANDS
- 1 Dr. Dittpradid Divgt Syracuse University Department of Psychology Syracuse, NS 33210
- 1 Dr. Fritz Drasgow Depirtment of Psychology University of Illinois 603 E. Diolot St. Chimpoign, JL 61820
- 1 Dr. Sasia Embartada PSYCHOLOGY DEPARTMENT UNIVERSITY OF KARSAS Liwrence, KS 66055
- 1 ERIC Ficility-Adquisitions 4333 Roghy Avenue Bethesdi, MD 20014
- 1 Dr. Binjamin A. Fairhink, Jr. Mifinn-Gray S. Associates, loc. 5925 Callaghin Sulte 225 Sin Antonio, TX 78228
- 1 Dr. Lionied Faldt Lindquist Center for Messurment University of lowi Town City, 14 52242
- 1 Dr. Richard L. Forguson
 The American College Testing Program
 P.O. Box 168
 Town City, 14 52340
- 1 Univ. Prof. Dr. Gerhard Fischer Liebiggasse 5/3 A 1010 Vienna AUSTRIA
- 1 Professor Donald Fitzgerild University of New England Armidale, New South Wiles 2351 AUSTRALIA

- I Br. Dexter Fletcher WICAT Research Institute 1875 S. State St. Orem. UT 22333
- i Dr. Janice Gifford University of Missochasetts School of Education Ambers, MA 01002
- 1 Dr. Robert Gliser
 Leurolog Reserrch & Divelopment Center
 University of Pittsburgh
 3939 O'Unia Street
 PITTSBUKGY, PA 15360
- 1 Dr. Bort Greeo
 Johns Hapkins University
 Depirtment of Psychology
 Cuirles 5 34th Stroot
 Baltimore, 48 21218
- 1 Dr. Ros Himbleton School of Education University of Fissichusits Amberst, MA 01002
- 1 Dr. Delwyn Uhrnisch University of 111innia 242h Education Urbana, 31 41801
- I Dr. Puil Horst 677 G Street, #194 Chula Vista, CA 90010
- 1 Dr. Lloyd Bumphreys
 Department of Psychology
 University of Illinois
 603 East Daniel Street
 Champaign, 1L 64820
 - 1 Dr. Jack Binter 2122 Cholidge St. Lansing, Mt 48906
 - 1 Dr. Huynh Guynh College of Education University of South Carolina Columbia, SC 29209

1 Dr. Douglas II. Jones
Advinced Statistical Technologies
Corporation
10 Trafulgar Court

Lawrenceville, N1 09149

- 1 Professor John A. Keits
 Depictment of Psychology
 The University of Newsistic
 4.5.W. 2374
 AUSTRALIA
- 1 Dr. Willia Knob University of Tixas=Austin Missurement and Evaluation Center Austin, TX 79703
- 1 Dr. Alia Lesgold Lairning R&D Center University of Pittsburgh 1939 O'Unii Street Pittsborgh, PA 15250
- 1 Dr. Alched Lovine Department of Educational Psychology 210 Education Bldg. University of Illinois Campaign, IL 61301
- I Dr. Charles Lawls (
 Faculteit Sociale Witeoschappin
 Rijksuniversiteit Groning o
 Oude Beteringestraat 23
 971260 Groningen
 Notherlands
- 1 Dr. Robert Line College of Education University of Illinois Urbans, 11 61801
- i Mr. Phillip Llvingston Systems and Apolied Sciences Corporatio 6811 Kenilworth Avenue Riverdala, MD 20840
- 1 Dr. Robert Lockman Center for Naval Adalysis 200 North Brintegari St. Alexandria, VA 22311

- 1 Dr. Frederic M. Lord Educational Testing Service Princeton, N1 09541
- 1 Dr. James Lunsdon
 Department of Psychology
 University of Western Australia
 Nediads W.A. 6009
 AUSTRALIA
- 1 Dr. Gary Marco
 Stop 31-E
 Educational Testing Service
 Princeton, N.1 93451
- 1 Dr. Shott '(ixw-1) Department of Payrhology University of Natre Dame Notre Dame, IN 46556
- 1 Dr. Simeel T. Mayo Loyali University of Chiraga 920 North Michigan Avenue Chicago, 11 60511
- 1 Mr. Robert McKinley
 American College Testing Programs
 P.O. Box 168
 Lowe City, 14 52243
- 1 Dr. Barbara Mains
 Junio Resources Research Organization
 300 North Wighington
 Alexandria, VA 22314
- 1 Dr. Robert Mislavy 711 Hillinois Street Geneva, 11 60134
- 1 Dr. Allen Muuro Behavloral Technology Laboratories 1845 Elena Ave., Fourth Floor Radoado Beach, CN 90277
- 1 Dr. W. Alan Nicowander University of Oklahoma Department of Psychology Oklahoma City, OK 73059
- 1 Dr. Malvin R. Novick 356 Lindquist Choter for Measuraeot University of Towa Towa City. IA 52242

- 1 Dr. James Olson WICAT, Inc. 1875 South State Street Drem, UE 84057
- I Wiyne M. Patience
 American Conocil on Education
 GED Testing Service, Salte 20
 One Dupont Cirle, NV
 Wishington, DC 20035
- 1 Dr. Jimis A. Piulson Portlani Stite University P.O. Box 751 Portlani, DR 97337
- 1 Dr. Mirk D. Rockish ACT P. O. Box 165 Town City, IA 54211
- 1 Dr. Thomas Reynolds
 University of Texas-billas
 Marketing Department
 P. O. Box 598
 Richardson, TX 75090
- 1 Dr. Liwrence Reiner
 403 Elm Avenus
 Takoma Pick, 4D 20012
- l Dr. J. Ryan
 Department of Education
 University of South Carolina
 Columbia, SC 29208
- 1 PROF. FUNIKO SAMEJIMA DEPT. OF PSYCHOLOGY UNIVERSITY OF TENNESSEE KNOXVILLE. TN 3/916
- i Frank L. Schwidt
 Department of Psychology
 Sidg. GG
 George Wishington University
 Wishington. DG 20052
- 1 Dr. Witter Schneider Psychology Depirtment 603 E. Diniel Champiign, IL 61820

- I Lowell Schoor

 Psychological & Quantitative
 Foundations
 College of Education
 University of lows
 Town City, IA 52242
- 1 DR. ROBERT J. SELDEL
 INSTRUCTIONAL TECHNOLOGY GROUP
 HUTERO
 3 IO N. WASHINGTON ST.
 ALEXANDRIA. VA 22314
- l Dr. Kizus Shigmish University of Toboka Dipirtmiot of Eincition it Psychology Kawanchi, Sandii 980 JAPAN
- i Dr. Edwin Shirkly Department of Psychology University of Central Florida Orlando, Fi. 32816
- 1 Dr. William Sims Center for Naval Applysis 200 North Beauregard Street Alexandria, VA 22111
- I Dr. H. Wallice Statiko
 Program Director
 Mannower Research and Advisory Services
 Smithsonian Institution
 801 North Pitt Street
 Alexaniria, VV 22314
- 1 Dr. Robert Sternberg Dept. of Psychology Yale University Box 114, Yale Station New Haven, CT 05520
- 1 Dr. Piter Stoloff

 Center for Nival Addysis
 200 North Semregard Street
 Alexaniria, VA 22311
- 1 Dr. William Stout
 University of lilinois
 Department of Mithematics
 Urbina, 11 61801

- 1 Dr. Burthirm Swiminathan Laboratory of Psychometric and Evaluation Research School of Education University of Missachusitts Amberst, MA 01003
- 1 Dr. Kikumi Tatsuoka Computer Based Education Research Lab 252 Engineering Research Laboratory Orbana, II. 61801
- 1 Dr. Miurica Titsuoki 224 Education Sidg 1310 S. Sixth St. Champiign, IL 61820
- 1 Dr. Divid Thisses
 Dipirtment of Psychology
 University of Kins is
 thereace, KS, 56:144
- l Dr. Robert Tsuchkiwi Department of Statistics University of Missouri Columbia, MO 65201
- 1 Dr. J. Uhlimer Bhlimer Consultants 4258 Bonivita Drive Encine, CA 91436
- I Dr. V. R. R. Uppulari Union Carbide Corporation Nuclear Division P. O. Box Y Oak Ridge, TN 37830
- I Dr. David Vale
 Assessment Systems Corporation
 2233 University Avenue
 Softe 310
 St. Paul, 48 55114
- 1 Dr. Haward Witner
 Division of Psychological Studies
 Educational Testing Service
 Princeton, NJ 09540
- 1 Dr. Michael T. Waller
 Depirtment of Educational Psychology
 University of Wisconsin--Milwaukee
 Milwaukee, WI 53201

Private Sector

- 1 Dr. Sring Witers
 HumRRO
 300 North Wishington
 Alexaniria, VA 22314
- I Dr. David J. Wriss N660 Elliott Hall University of Manasota 75 E. River Roal Mingrapolis, MN 55455
- I Dr. Rami R. Wilcox
 University of Southern California
 Dipirtment of Psychology
 Los Angeles, CA 9000/

. . .

- 1 Wolfging Wildgrube Streitkranfteint Box 20 50 03 D+510 L Boad 2 WEST GERMANY
- 1 Br. Bruce Williams
 Department of Elucational Psychology
 University of illinois
 Orbini, IL 61871
- 1 Dr. Wendy Yen CEB/McGraw Hill Del Honte Research Park Honterey, CA 91940

