Rock Paper Scissors and Evolutionary Game Theory

Christian Cordova, Rudolf Jovero, Evan Thomas

MATH 365 UNLV Spring 2018

Introduction

In Rock Paper Scissors (RPS), three different "species" compete, but no single species has a dominating strategy. In evolutionary game theory, replicator equations model population densities over time. When a mutation is introduced, they are called "replicator-mutator" equations. Using the replicator-mutator equation in [1] we have shown how population density of three species change.

Rock Paper Scissors and the Payoff Matrix

In game theory, a payoff matrix represents all interactions between two agents. Table 1 represents a simple zero sum RPS game. Zero sum means that the matrix follows the zero-sum property where all rows and columns sum to zero.

	X ₁ (ROCK)	X ₂ (PAPER)	X ₃ (SCISSOR)
X ₁ (R)	0	-1	1
X ₂ (P)	1	0	-1
X ₃ (S)	-1	1	0

Table 1

In order to generalize this model to non zero-sum games, -1 is replaced with parameter ϵ . This is shown in Table 2. Table 2 has the zero-sum property if $\epsilon = 0$.

	X ₁	x_2	X_3
X ₁	0	$-(\epsilon+1)$	1
\mathbf{X}_2	1	0	$-(\epsilon+1)$
X_3	$-(\epsilon+1)$	1	0

Table 2

Payoff (continued)

When we multiply the Payoff Matrix P given by the right table entries by the vector \mathbf{x} we get the following fitness functions. We substitute $\mathbf{x}_3 = \mathbf{1} - \mathbf{x}_1 - \mathbf{x}_2$ in order to describe the system in 2 variables:

$$f_{x_1} = 1 - x_1 - (\epsilon + 2)x_2$$

$$f_{x_2} = (\epsilon + 2)x_1 + (\epsilon + 1)(x_2 - 1)$$

$$f_{x_3} = -(\epsilon + 1)x_1 + x_2$$

The Replicator-Mutator Equation for Global Mutations:

$$\frac{dx_1}{dt} = x_1(f_{x_1} - \varphi) + \mu(-2x_1 + x_2 + x_3)$$

$$\frac{dx_2}{dt} = x_2(f_{x_2} - \varphi) + \mu(-2x_2 + x_1 + x_3)$$

- The vector **x** refers to population densities of each individual element.
- $(f_{x_1} \varphi)$ refers the relative fitness of an element's population aka the Replicator part of the equation.

$$\phi = x_1(f_{x_1}) + x_2(f_{x_2}) + x_3(f_{x_3})$$

this refers to the weighted average of all fitness functions.

- $(-2x_{1or2} + x_{2or1} + x_3)$ refers to the change in the population aka the Mutator part of the equation.
 - \circ μ refers to the rate which the population changes.

Converting to Phase Diagram

Eliminating x_3 removes the graphical intuition. The following matrix multiplication using a transformation matrix. preserves this graphical intuition. The closer a point on the phase portrait is to each of the triangle's vertices, the higher the population density of that element.

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Figure 1: Phase Portrait with stable limit cycle. Conditions where $\epsilon = 4$, and $\mu = .2$. All initial conditions eventually end in a stable limit cycle.

Figure 2: Phase Portrait with stable interior point. Conditions where $\epsilon = 8$, and $\mu = .6$. All initial conditions converge to x(1) = 1/3, x(2) = 1/3, x(3) = 1/3

Applications in Biology

• In nature, the common side blotched lizard demonstrates RPS mating strategies. The realistic scenario has only the yellow mutating into blue. Solving a simplified form (for only one mutation) of the system of differential equations in MATLAB and then applying the transformation to the resulting points, we have shown in Figure 3 how the population densities of the lizards change.

Figure 3: Phase Portrait with stable interior point when $\epsilon = 0.5$ and $\mu = 0.4$ and initial conditions $x_1 = 0.5$, and $x_3 = 0.5$.

Conclusion

As seen, the replicator-mutator equation derived from RPS can serve as a useful tool in obtaining a grasp of how competing species interact. Additionally, this equation has relevance to many areas of science including genetics, theoretical biochemistry, language evolution and population biology. Like any universal equation, replicator-mutator equation is an approximation to reality, but it also grasps many important features of the dynamics, common to a wide variety of systems.

References

[1] Toupo, Danielle F. P., and Steven H. Strogatz. "Nonlinear Dynamics of the Rock-Paper-Scissors Game with Mutations." 12 Feb. 2015, pp. 1–6., Rock-Paper-Scissors Game with Mutations.

[3] Stephens, Tim. "Cooperation between Unrelated Male Lizards Adds a New Wrinkle to Evolutionary Theory." *Blue-Throated Lizards*, UC Santa Cruz Currents Online, 23 June 2003, www1.ucsc.edu/currents/02-03/06-23/lizards.html.