UNI FREIBURG

Kapitel 5

Timing:

- 1. Physikalische Eigenschaften
- 2. Timing wichtiger Komponenten
- 3. Exaktes Timing von ReTI

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Christoph Scholl Institut für Informatik

Institut für Informati WS 2015/16

Wiederholung: Übergang beim RS-Flipflop

■ Zustand $Q = 0 \rightarrow Zustand Q = 1$:

- Senke /S zur Zeit t_0 ab und hebe zu $t_0 + x$ wieder an (einen solchen Signalverlauf nennt man Puls).
- Nach Zeit $t_{P/SQ}$ ist Q = 1. Nach Zeit $t_{P/S/Q}$ ist Q = 0.
- "Gatter brauchen Zeit zum Schalten!" Aber wie lange ist $t_{P/SQ}$, $t_{P/S/Q}$? Oder wie lange muss ein Puls mindestens dauern? (=Pulsweite).

Wiederholung: Timing-Diagramm D-LATCH

- Wie lange müssen die einzelnen Signale aktiv sein, damit der Schreibvorgang reibungslos abläuft?
- D.h. Wie lange ist Setup–Zeit t_{SDW} , Hold–Zeit t_{HDW} , Pulsweite y?

Physikalische Signale \leftrightarrow Logische Signale

- In jeder Technologie gibt es eine Versorgungsspannung VCC (z.B. 1.1 V bei NanGate).
- Eine Spannung $U \in [0, VCC]$ wird als logischer Wert $\mathcal{L}U$ interpretiert.

CS - Kapitel 5

- Am Eingang (Input) eines Gatters: V_{IL} , V_{IH} . U_{IL} with interpretate an electron due

 Am Ausgang (Output) eines Gatters: V_{OL} , V_{OH} . V_{OH} . V_{IL} with als 0 interpretate.
- $V_{IL}, V_{IH}, V_{OL}, V_{OH}$ eines Bausteins sind gegeben.

Zusammenschalten von Gattern

- Will man den Ausgang eines Gatters *u* mit dem Eingang eines Gatters v verbinden, dann sollte gelten:
 - $V_{OL}(u) \leq V_{IL}(v)$ und $V_{OH}(u) > V_{IH}(v)$.
- Sonst werden Signale falsch interpretiert.

Beispiel: NanGate

$$V_{IL} = 30\% \cdot VCC = 0.33 \ V \ V_{IH} = 70\% \cdot VCC = 0.77 \ V$$

Entsprechend Output-Pegel V_{OL} , V_{OH} .

Verzögerung

Beispiel-Spannungsverlauf x(t), y(t)

Allgemeine Bemerkung zu Verzögerungszeiten

- Im Allgemeinen gilt nicht $y(t) = x(t t_p)$, so dass man nicht einfach t_{D} als Verzögerungszeit definieren kann. v(t) wird verformt.
- Die Verzögerungszeit (Propagation Delay) wird definiert als $t_0 := (t_2 - t_1)$ bezüglich einer festen "Referenzspannung" M mit $V_{II} < M < V_{IH}$ (Bsp.: M = 0.5 VCC = 0.55 V bei NanGate).
- Bestimme t_1 , t_2 mit $x(t_1) = y(t_2) = M$.

Angaben zur Verzögerungszeit

In der Regel gibt es verschiedene Verzögerungszeiten für Übergänge am Ausgang:

Ubergange am Ausgang: t_{PLH} Verzögerungszeit bei $0 \rightarrow 1$. t_{PHL} Verzögerungszeit bei $1 \rightarrow 0$.

Modellierung der Verzögerungszeit

- **Problem** bei der Modellierung der Verzögerungszeit bezüglich fester Spannung *M*:
 - Keine Aussage darüber, wann logische Signale 0 oder 1 sind, d.h. physikalische Signale unterhalb V_{OL} oder oberhalb V_{OH} sind.

Illustration des Problems

Ähnliches Problem am Gattereingang.

12 / 41

Anstiegs- und Abfallzeiten

- Für jedes Signal braucht man also zusätzliche Informationen über:
 - Anstiegszeit (Rise Time) = Zeit, in der Signal von V_L nach V_H steigt.
 - Abfallzeit (Fall Time) = Zeit, in der Signal von V_H nach V_L fällt.
 - Bzw. noch genauer würde man eigentlich benötigen:
 - Anstiegszeit von M nach V_H
 - Abfallzeit von M nach V_L

Beschränkung dieser Zeiten

- Die in unseren Analysen verwendeten Gatter haben die folgende angenehme Eigenschaft:
- ∃δ mit folgender Eigenschaft:
 Falls rise/fall time

Falls rise/fall time $\leq \delta$ am Gattereinang, dann rise/fall time $\leq \delta$ am Gatterausgang.

Beispiel: NanGate

- $V_{IL} = 30\% \cdot VCC = 0.33 \ V_{IH} = 70\% \cdot VCC = 0.77 \ V_{IH} = 70\% \cdot VCC = 0.77 \ V_{IH} = 70\% \cdot V_{IH} = 7$
- NanGate für *M* = 0.55 *V* spezifiziert. Bausteine *NAND*, *NOT*, *AND*, *OR*, *EXOR*.
- \blacksquare t_p zwischen 0.00 ns und 0.21 ns.
- $\delta = 0.13 \text{ ns} (1 \text{ ns} = 10^{-9} \text{ s})$
- Die Zeiten, an denen die entsprechenden Signale wohldefinierte logische Werte 0, 1 annehmen, unterscheiden sich von denen für M um höchstens δ .

Bemerkung

■ Eine rise/fall time $\leq \delta$ an den primären Eingängen einer Schaltung kann man garantieren, wenn man den Schaltvorgang zur Zeit t_0 beginnt und spätestens zur Zeit $t_0 + \delta$ abschließt.

Analyse der Verzögerungszeit einer Kette von *n* Gattern (1/3)

- Durchläuft X(t) nach Zeit m(0) die Spannung M, dann durchläuft $Y_n(t)$ die Spannung M nach $m(0) + n \cdot t_{PLH}$.
- Falls X(t) mit Anstiegszeit $\leq \delta$, dann auch $Y_1(t), \ldots, Y_n(t)$.
- Also ist Y_n auf jeden Fall zur Zeit $\underline{m(0) + n \cdot t_{PLH} + \delta}$ logisch 1.
- Beginnt man im Beispiel den Schaltvorgang bei $\underline{t_0}$ und beendet ihn bei $\underline{t_0} + \delta$, dann gilt $\underline{m(0)} \leq \underline{t_0} + \delta$ und Y_n ist spätestens nach $\underline{t_0} + n \cdot \underline{t_{PLH}} + \underline{2\delta}$ logisch 1.

Vereinbarungen

Im Folgenden soll

Signal X wird zum Zeitpunkt t_1 abgesenkt/angehoben bedeuten

X wird abgesenkt/angehoben mit $X(t_1) = M$.

- Desweiteren sind alle Zeitangaben in *ns*.
- Wir nehmen außerdem in Zukunft immer an: rise / fall times $\leq \delta$.

Einfluss auf Verzögerungszeiten

- Verzögerungszeiten von Gattern sind nicht konstant, sondern werden beeinflusst durch:
 - Betriebstemperatur
 - Fertigungsprozess des Chips
 - kapazitive Last am Gatterausgang (Fanout) (Gattereingänge, die mit einem Gatterausgang verbunden sind, verhalten sich wie Kondensatoren, d.h. sie werden beim Schalten ge- bzw. entladen.)

Worst-case Timing-Analyse

Wegen Abhängigkeit der Verzögerungszeit von Temperatur, Fertigungsprozess und kapazitiver Last werden vom Hersteller keine festen Zeiten t_{PLH}/t_{PHL} angegeben, sondern 3 Werte:

```
■ t^{min} = untere Schranke

■ t^{max} = obere Schranke

■ t^{typ} = typischer Wert (???)
```

min, max und typ (1/2)

 \blacksquare Für die tatsächliche Verzögerungszeit t_p gilt:

$$t^{min} \leq t_p \leq t^{max}$$

- Wir nehmen in den folgenden Analysen an, dass t_p im Intervall [t^{min} , t^{max}] liegt, falls
 - die Temperatur im Bereich *T* liegt ("<u>kommerzieller</u> Temperaturbereich" 0° 70° *C*, militärischer Temperaturbereich −55° 125° *C*)
 - und eine bestimmte kapazitive Last C₀ nicht überschritten wird.
- C₀ wird so gewählt, dass mit Einhalten einer Fanoutbeschränkung von 10 C₀ auf keinen Fall überschritten wird.

min, max und typ (2/2)

- Für t^{typ} gilt ebenfalls $t^{min} \le t^{typ} \le t^{max}$.
- Beim Rechnen mit t^{typ} macht man aber einen Fehler mit unbekannter Größe.
- \rightarrow Kein Rechnen mit t^{typ} , sondern mit Intervallen $[t^{min}, t^{max}]$.

Exkurs: Rechnen mit <u>Intervallarithmetik</u> (1/2)

Definition

Ein Intervall $[a,b] := \{x \in \mathbb{R} \mid a \le x \le b\} \subset \mathbb{R}$ auf \mathbb{R} ist eine zusammenhängende und abgeschlossene Teilmenge von \mathbb{R} . Man bezeichnet es auch als das abgeschlossene Intervall von a bis b.

- Wir betrachten hier nur die Menge der abgeschlossenen Intervalle IR auf \mathbb{R} .
- Es gilt:
 - min[a,b] = a
 - $max[a,b] = \underline{b}$
 - $a \in \mathbb{R} \simeq [a, a] \in IR$ (eine reelle Zahl a kann aufgefasst werden als das Punktintervall von a bis a)

Exkurs: Rechnen mit Intervallarithmetik (2/2)

Definition

Gegeben ein Operator $op \in \{\pm, \pm, \pm\}$ in \mathbb{R} . Der dazugehörige Operator @ auf IR ist definiert als:

Für $a, b, c, d \in \mathbb{R}$:

$$\underbrace{[a,b]} \circledcirc \underbrace{[c,d]} := \{\underbrace{x \circ_p y} \mid x \in [a,b], y \in [c,d]\} \in \mathbb{R}$$

Beispiele:

$$\blacksquare (a,b) \oplus (c,d) = \underline{[a+c,b+d]}$$

Bop.: $[-1,1] \odot [-1,1] = [-1,1]$ She $x \in [-1,1]$. The welden Theterall Let $x \cdot x \cdot 2$

 $\times \times \in [-1, 1]$ much intervallanthametil, totallich wich wir abor voger | dass $\times \times \in [0, 1]$!

→ Falls die Operander nicht unaklingig voneinarder gewählt sind, dann "interapprociniet" die Intervallwithmeter die Ergebnisintervalle.

Bemerkungen

- Wir schreiben vereinfachend nur ℘ statt ⑳.
- Wir verwenden hier hautsächlich den +-Operator und Multiplikation mit natürlichen Zahlen.
- Ein Intervall bezeichnen wir mit $\tau = [t^{min}, t^{max}].$

Beispiel: AND-Gatter

AND

 $\frac{\tau_{PLH}}{\tau_{PHL}} =$ $\frac{[0.02, 0.12]}{[0.02, 0.12]}$

Bzw.:

AND	t ^{min}	t ^{max}	
$ au_{PLH}$	0.02	0.12	
$ au_{PHL}$	0.02	0.12	

Fall 1

AND	t ^{min}	t ^{max}	
$ au_{PLH}$	0.02	0.12)
$ au_{PHL}$	0.02	0.12	

- A, E fest auf 1.
- B von <u>O auf 1</u> zum Zeitpunkt <u>to</u>. (genau: B apt von O auf 1 and Anderung von C zur Zeit dwollnist M vun virtunt to)
- → Änderung von C zur Zeit

$$\tau_1 = \underline{t_0} + \underline{\tau_{PLH}(AND)} = \overline{t_0} + \overline{[0.02, 0.12]} = [t_0 + 0.02, t_0 + 0.42]$$

→ Änderung von D zur Zeit

$$\tau_2 = \tau_1 + \tau_{PLH}(AND)
= t_0 + 2 \cdot \tau_{PLH}(AND)
= t_0 + 2 \cdot [0.02, 0.12]
= t_0 + [0.04, 0.24] = 1$$

I d.l. C got von O suf 1 und durchauft M im Intervell [to+0.02, to+0.12]

 $=\overline{t_0+[0.04,0.24]}=[t_0+0.04, t_0+0.24]$

Fall 1 - Timing-Diagramm

- *A*, *B*, *E* können sich zum Zeitpunkt *t*₀ ändern, sind vorher und nachher stabil.
- Es ist unbekannt, wieviele Signale sich ändern und wie sie sich ändern.
- → Gröbere Abschätzungen

Gröbere Abschätzung

Bestimmung von Zeitintervallen, zu denen Gatter überhaupt schalten können:

Annahmen:

- \blacksquare *u* schaltet im Intervall (a_1, b_1)
- v schaltet im Intervall [2], [3]
- Die Verzögerungszeiten von w sind gegeben durch

$$au_{PLH} = \begin{bmatrix} t_{min} & t_{PLH} & t_{PLH} & t_{PHL} &$$

Dann gilt mit $t_p^{min} := min(t_{PLH}^{min}, t_{PHL}^{min})$ und $t_p^{max} := max(t_{PLH}^{max}, t_{PHL}^{max})$ w kann schalten im Intervall $[min(a_1, a_2), max(b_1, b_2)] + [t_p^{min}, t_p^{max}]$

Anwendung auf Beispiel, Fall 2

Wenn die Gatter schalten, dann in folgenden Intervallen:

A, B, E:
$$t_0 + [0.0, 0.0]$$

$$\blacksquare$$
 C: $t_0 + [0.02, 0.12]$

D:
$$t_0 + [0.0, 0.12] + [0.02, 0.12] = t_0 + [0.02, 0.24]$$

WS 2015/16 CS – Kapitel 5 33 / 41

Fall 2 - Timing-Diagramm

Interpretation des Timing-Diagramms

Was kann im schraffierten Bereich passieren?

Beispiel:

 t_0 : A, B, E 110 \rightarrow 101

Annahme:

AND-Gatter haben folgende Verzögerungszeiten.

Timing-Diagramm zum Beispiel

In manchen Anwendungen will man Spikes verhindern (siehe z.B. FlipFlops).

Spikefreies Umschalten von Gattern

■ Ziel:

Übergang von A = 1, B = 0 zu A = 0, B = 1, ohne Spike am Ausgang.

Bemerkung:

Der Übergang $(0,1) \rightarrow (1,0)$ bzw. umgekehrt ist der einzige, bei dem an AND/NAND-Gattern ein Spike auftreten kann.

AND-Gatter

38 / 41

Sicherer Abstand für Senken von A und Anheben von B

Lemma

Man kann zeigen, dass Übergänge für A und B mit

$$0.12 + 2\delta = 0.38$$

sicher sind.

Biopiel: CMOS-gotter

Rein Ubogang der beider n- Kanal-Transistoren (die untern) Zann Ruse = Deitig eine Obbindung des Ausgangs der Konstanten O Lorgestellt assoln.

Zum Beweis - Timing im Gatter

- Senke A bei $t_0 = 0$.
 - $\rightarrow C = 0$ wegen A = 0 spätestens bei $t_1 = t_0 + 0.12 + \delta$
 - Grund:
 - Bei tatsächlichem Schalten von C = 0 wegen A = 0 würde das Signal spätestens nach $t_{PHI}^{max} = 0.12$ ns den Wert M durchlaufen und wäre 0 spätestens nach $0.12 + \delta$ ns.
 - Interner Umschaltvorgang "C = 0 wegen A = 0" muss also spätestens nach $0.12 + \delta$ ns beendet sein.
- Hebe B (bzgl. M!) zum Zeitpunkt $t_2 = t_1 + \delta$. = $(t_2 + 0.0)$
 - \rightarrow Zum Zeitpunkt t_1 gilt auf jeden Fall noch B=0
- Also:

Vor
$$t_1$$
: $B = 0 \Rightarrow C = 0$
Nach t_1 : $A = 0 \Rightarrow C = 0$

 \rightarrow Übergänge für A und B mit Abstand $t_2 - t_0 = 0.12 + 2\delta = 0.38$ ($\delta = 0.13$).

AND
$$t^{min}$$
 t^{max}
 τ_{PLH} 0.02 0.12
 τ_{PHL} 0.02 0.12

CS - Kapitel 5

Analog: Spikefreies Umschalten bei NAND

■ Beispiel: NAND

NAND	t ^{min}	t ^{max}		
$ au_{PLH}$	0.02	0.15		
$ au_{PHL}$	0.02	0.12		

- Kritischer Übergang: Zuerst $A: 1 \rightarrow 0$, dann $B: 0 \rightarrow 1$.
- Daraus ergibt sich der Abstand $t_{PLH}^{max} + 2\delta = 0.41$ = 0.45 + 20