CLIPPEDIMAGE= JP409121064A

PAT-NO: JP409121064A

DOCUMENT-IDENTIFIER: JP 09121064 A

TITLE: HIGH TEMPERATURE SUPERCONDUCTING JOSEPHSON JUNCTION

DEVICE

PUBN-DATE: May 6, 1997

INVENTOR-INFORMATION:

NAME

ISHIMARU, YOSHIYASU

BUN, TAKEKUNI

HAYASHI, KUNIHIKO

ENOMOTO, YOICHI

KOSHIZUKA, NAOKI

TANAKA, SHOJI

ASSIGNEE-INFORMATION:

NAME COUNTRY

FUJITSU LTD N/A KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU N/A

CENTER

APPL-NO: JP07278560

APPL-DATE: October 26, 1995

INT-CL (IPC): H01L039/22;H01L039/24

ABSTRACT:

PROBLEM TO BE SOLVED: To make operation at high temperature possible by making

the interface, between an a-axis orientation crystal grain and a c-axis

orientation crystal grain of an oxide superconductor, a joining surface,

together with forming the joining surface of an a-axis orientation area from a

[001] surface, and the joining surface of a c-axis orientation area from a

[110] surface.

08/29/2002, EAST Version: 1.03.0002

SOLUTION: The a/c interface 3 between an a-axis orientation crystal grain 2 and a c-axis orientation crystal grain 1 of an oxide superconductor is made to be a joining surface, and further, the joining surface of an a-axis orientation area consists of a [001] surface, and the joining surface of a c-axis orientation area consists of a [110] surface. By this, when joining is formed from the [001] of the a-axis orientation crystal grain 2 and the [110] surface of the c-axis orientation crystal grain 1, the c-axis orientation area consists of [110] surface in the a/c interface, so that the joining interface shows a d-wave symmetry characteristic, and a layer acting like N on the joining surface is formed, for forming an SNS type Josephson junction. So that the operation at high temperature (liquid nitrogen temperature or over) is possible.

COPYRIGHT: (C) 1997, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公別番号

特開平9-121064

(43)公開日 平成9年(1997)5月6日

(51) Int.Cl.*		識別記号	庁内整理番号	FΙ			技術表示箇所
H01L	39/22	ZAA		H01L	39/22	ZAAA	
	39/24	ZAA			39/24	ZAAF	

審査請求 未請求 請求項の数3 OL (全 7 頁)

(71) 出願人 000005223
富上通株式会社
日 神奈川県川崎市中原区上小田中4丁目1番
1号
(71)出職人 391004481
財団法人国際超電導産業技術研究センター
東京都港区新橋5丁目34番3号 栄進開発
ビル6階
(72)発明者 石丸 喜康
東京都江東区東雲 1 -14- 3 財団法人国
際超電導産業技術研究センター 超電導工
学研究所内
(74)代理人 弁理士 柏谷 昭司 (外2名)
最終頁に続く
3

(54) 【発明の名称】 高温超電導ジョセフソン接合素子

(57)【要約】

【課題】 高温超電導ジョセフソン接合素子に関し、液体窒素温度以上の高温での動作が可能なs - d波接合のジョセフソン接合素子を実現する。

【解決手段】 酸化物超電導体のa軸配向結晶粒2とc軸配向結晶粒1との間のa/c界面3を接合面とすると共に、a軸配向領域の接合面が{001}面からなり、且つ、c軸配向領域の接合面が{110}面からなるa/c界面3によりジョセフソン接合を形成する。

本発明の原理的構成の説明図

1: c 軸配向結晶粒 2: a 軸配向結晶粒 3: a / c 界面 1

【特許請求の範囲】

【請求項1】 酸化物超電導体のa軸配向結晶粒とc軸配向結晶粒との間のa/c界面を接合面とすると共に、前記a軸配向領域の接合面が{001}面からなり、且つ、前記c軸配向領域の接合面が{110}面からなることを特徴とする高温超電導ジョセフソン接合素子。

【請求項2】 上記a軸配向結晶粒が、{100}面のMgO基板上に形成された〔011〕方向と平行な方向に長軸を有する結晶粒であることを特徴とする請求項1記載の高温超電導ジョセフソン接合素子。

【請求項3】 上記酸化物超電導体が、YBa2 Cu3 O7-x またはNdBa2 Cu3 O7-x のいずれかであることを特徴とする請求項1または2に記載の高温超電導ジョセフソン接合素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は高温超電導ジョセフソン接合素子に関するものであり、特に、酸化物超電導体のみを使用したs-d波接合からなる高温超電導ジョセフソン接合素子に関するものである。

[0002]

【従来の技術】従来、金属系超電導体を用いて各種の超電導デバイスが開発されており、特に、その中心的デバイスとしてジョセフソン接合素子の研究が成されてきたが、近年、液体窒素温度で動作可能な高温超電導体を用いて各種の電子デバイスを形成することも試みられており、医療用の超電導量子干渉素子(SQUID)、デジタルデバイス、或いは、高周波デバイスにおいて、従来の半導体デバイスを凌駕する性能が期待されている。

【0003】従来の金属系超電導体は、BCS理論で記 30 述可能であり、このようなBCS超電導体では超電導状態を記述する基本的パラメータである超電導ギャップが等方的であり、s波対称性を有していることが知られている。

【0004】一方、層状構造を有する酸化物超電導体では、超電導ギャプが等方的でなく異方性を有する可能性、即ち、d波対称性を有する可能性が指摘されているが、酸化物超電導体の超電導ギャップの対称性に関する結論が得られていないのが現状である。

【0005】しかし、最近、井口等、或いは、Woll 40 man等によって、層状構造の酸化物超電導体の超電導ギャップがd波対称性を有することを前提として、従来のs波対称性を有する金属系超電導体との間でs-d波接合を形成したことが報告されている(例えば、I. I guchi and Z. Wen, PhysicalReview, Vol. B. 49, 1994, p. 12388、及び、D. A. Wollman, D. J. Van Harlingen, J. Giapintzakis, and D. M. Ginsberg, Physical Review Letters. Vol. 74. 50

1995, p. 797参照)。

【0006】即ち、s波対称性を有するPbと、層状構造の酸化物超電導体であるYBa2Cu3 O7-x (YBCO)薄膜、或いは、YBCO単結晶との間で接合を形成し、各種の試験を行うことによってこの接合がs-d波接合からなるジョセフソン接合であるとの結論に至ったものである。

2

【0007】この場合、形成された接合がジョセフソン接合であるか否かを確認するためには、

10 の電流-電圧特性 (I-V特性) がSIS (超電導体/ 絶縁体/超電導体)接合に特有なヒステリシスを示す か、或いは、SNS (超電導体/常電導体/超電導体) 接合に特有なRSJ (Resistivity Shu nt Junction)モデルで示される形を有して いるか、また、

②μ波照射時にシャピロステップが観測されるか、また、

③磁場印加時に、接合を流れる超電導電流の最大値が変化し、変化の様子がフラウンホーファーパターンと呼ばれるパターンを示すか、の3点を確認する必要がある。

【0008】上記のWollman等の場合にはYBC O薄膜を用いたYBCO/Au Pbからなる接合において、OI-V特性がSNS接合に特有なRSJモデルで示される形を有しており、また、O破場印加時に接合を流れる超電導電流の最大値が変化するフラウンホーファーパターンが観測されたので、接合がSNS型のジョセフソン接合であると判定し、一方、井口等の場合にはYBCO/MgO(又は、自然酸化膜)/Pbからなる接合において、OSIS接合に特有なヒステリシスを示し、また、O破場印加時に接合を流れる超電導電流の最大値が変化するフラウンホーファーパターンが観測されたので、接合がSIS型のジョセフソン接合であると判定したが、両者ともOのフラウンホーファーパターンが金属系超電導体によるs。s波接合のジョセフソン接合のパターンと異なっていた。

【0009】即ち、s-s波接合のジョセフソン接合のフラウンホーファーパターンが磁束密度が0(ゼロ)において超電導電流値が極大値をとるのに対して、Pbと、YBCO薄膜、或いは、YBCO単結晶との間の接合の場合には、磁束密度が0(ゼロ)においては超電導電流値が極小値になるので、理論的にこの接合はs-d波接合であると結論されたものである。

【0010】この様なs-d波接合のジョセフソン接合は、従来のs-s波接合のジョセフソン接合とフラウンホーファーパターンが異なるため、この違いを利用することによって、従来のジョセフソン接合素子とは異なった新しい機能を有する超電導デバイスの出現が期待されている。

[0011]

al Review Letters, Vol. 74, 50 【発明が解決しようとする課題】しかし、このような金

属系超電導体と層状構造酸化物超電導体とによるs d 波接合のジョセフソン接合素子の場合には、その動作温 度は金属系超電導体の転移温度で決定されるため、極低 温での動作しか期待できないものであり、液体窒素温度 (77°K)での動作が可能な高温超電導体を用いた他 の超電導デバイスとの集積化ができない等の問題があ る。

【0012】したがって、本発明は、酸化物超電導体の みを用いることによって、高温(液体窒素温度以上)で の動作が可能な8-d波接合のジョセフソン接合素子を 10 実現することを目的とする。

[0013]

【課題を解決するための手段】図1は本発明の原理的構 成の説明図であり、この図1を参照して本発明における 課題を解決するための手段を説明する。

(1)本発明は、高温超電導ジョセフソン接合素子にお いて、酸化物超電導体のa軸配向結晶粒2とc軸配向結 晶粒1との間のa/c界面3を接合面とすると共に、a 軸配向領域の接合面が{001}面からなり、且つ、c とする。

【0014】この様に、a軸配向結晶粒2の{001} 面と c 軸配向結晶粒1の {110} 面とで接合を形成し た場合、そのa/c界面3においてc軸配向領域が {1 10) 面からなることによって、接合界面がは波対称性 の特性を示し、また、接合界面にN(常電導体)的に振 る舞う層が形成されて、SNS型のジョセフソン接合が 形成される。

【0015】(2)また、本発明は、上記(1)におい て、a軸配向結晶粒2が{100}面のMg0基板上に 30‐ 形成された〔011〕方向と平行な方向の長軸を有する 結晶粒であることを特徴とする。

【0016】この様に、{100}面のMgO基板上に 酸化物超電導体を堆積させた場合に、c軸配向結晶粒1 が主体の酸化物超電導体薄膜中に、矩形状のa軸配向結 晶粒2も混在して形成され、このa軸配向結晶粒は、長 軸がMgO基板の〔001〕方向、〔011〕方向、及 び、〔010〕方向を有する結晶粒が混在することにな り、〔011〕方向の長軸を有するa軸配向結晶粒2と c軸配向結晶粒1とのa/c界面3におけるa軸配向領 40 域の接合面が{001}面となり、且つ、c軸配向領域 の接合面が {110} 面となる。

【0017】(3)また、本発明は、上記(1)または (2) において、酸化物超電導体がYBa2 Cu3 O 7-x 或いはNdBa2 Cu3 O7-x のいずれかであるこ とを特徴とする。

【0018】この様な、YBa2 Cu3 O7-x 或いはN d B a 2 C u 3 O 7-x 等の層状構造の酸化物超電導体を 用いることにより、堆積時に a軸配向結晶粒2と c軸配 向結晶粒1とが基板上に自然に混在して形成されること 50 図3は、この様にして形成したジョセフソン接合素子の

になる。

[0019]

【発明の実施の形態】図2乃至図6を参照して本発明の 実施の形態であるs-d波接合のジョセフソン接合素子 を説明することにする。まず、図2を参照してs-d波 接合のジョセフソン接合素子の製造工程を説明するが、 各図における下側の図は、上側の図のA-Bに沿った断 面図である。

【0020】図2(a)及び(b)参照

まず、主面が (100) 面のMg O単結晶基板11上 に、波長が248nmのKrFレーザを用いたパルスレ ーザデポジッション法 (レーザアブレーション法) によ って、厚さ100~300nm、好適には220nmの YBa₂ Cu₃ O_{7-x} (YBCO)薄膜を堆積させる。 【0021】なお、この場合の堆積条件は、ターゲット としてYBa2 Cu3 O7-x 多結晶体を用い、基板温度 が750~800℃、好適には780℃であり、酸素ガ ス圧力が100~300mTorr、好適には200m Torrの酸化性雰囲気であり、さらに、レーザパワー 軸配向領域の接合面が{ $1\,1\,0$ }面からなることを特徴 20 が1、 $5\sim2$ 、 $5\,\mathrm{J/c\,m^2}$ 、好適には2 、 $0\,\mathrm{J/c\,m}$ 2 である。

> 【0022】この堆積されたYBCO薄膜は、c軸配向 YBCO結晶粒からなるc軸配向YBCO膜12が主体 であり、このc軸配向YBCO膜12中に、その長軸が MgO単結晶基板11の〈010〉方向のa軸配向YB CO結晶粒13、〈011〉方向のa軸配向YBCO結 晶粒14、及び、〈001〉方向のa軸配向YBCO結 晶粒15が混在している。

【0023】なお、このa軸配向YBCO結晶粒13~ 15の大きさは、長軸方向の大きさが5~20μmであ り、また、短軸方向の大きさが0.05~0.2μmで あるが、この様なa軸配向YBCO結晶粒13~15が 形成される理由は、堆積温度とMgO単結晶基板11表 面に存在する10Åオーダーの微細な段差構造によると 考えられる。

【0024】図2(c)参照

次いで、フォトレジストマスク(図示せず)を用いて、 引き出し電圧を350~500V、好適には450V、 Ar圧力を0.01~0.1Pa、好適には0.02P aとした条件のArイオンを用いたイオンミーリング法 によって、MgO単結晶基板11の〈011〉方向と平 行なa軸配向YBCO結晶粒14を横切るようにYBC 〇薄膜を工字状のパターンにパターニングしてジョセフ ソン接合を形成する。

【0025】次いで、図示しないものの、メタルマスク を用いたスパッタリング法でAu膜を選択的に堆積させ ることによって、Au電極を形成してジョセフソン接合 素子が完成する。

【0026】図3参照

光学顕微鏡写真を模写したものであり、工字状のパター ンの電流通路に沿った幅細部の間隔は約5µmになって いる。なお、このジョセフソン接合素子の場合には、工 字状のパターンの幅細部の位置と、MgO単結晶基板1 1の〈011〉方向と平行なa軸配向YBCO結晶粒1 4との位置がズレたため、FIB (収束イオンビーム) 法を用いてGaイオンビームによって、a軸配向YBC 〇結晶粒14を横切る…対の溝17を形成して、ジョセ フソン接合素子を形成している。

【0027】図4参照

図4はc軸配向YBCO膜12とa軸配向YBCO結晶 粒14との間のa/c界面16の様子を模式的に示す上 面図であり、c軸配向YBCO膜12の(110)面と a軸配向YBCO結晶粒14の(001)面とによって 接合が形成されている。

【0028】次に、図5及び図6を参照して、本発明の ジョセフソン接合素子の特性を説明する。

図5 (a)参照

図5(a)は、本発明のジョセフソン接合素子のI-V 特性を示すもので、図から明らかなように、SNS構 造、即ち、弱結合型に特有なRSJモデルで示される特 性が見られるので、a/c界面16の接合領域の特性が N (常電導体)的に振る舞うものと考えられる。

【0029】図5(b)参照

また、図5(b)は、本発明のジョセフソン接合素子。 に、周波数9.29GHzで、0.1μWのμ波を照射 した場合の特性を示すもので、この場合にも、ジョセフ ソン接合に特有なシャピロステップが観測された。

【0030】図6参照

また、図6は、18°Kにおいて、本発明のジョセフソ 30 -ン接合に磁場を印加した場合の超電導電流の変化、即 ち、フラウンホーファパターンを示すもので、図の下側 に示す本発明のジョセフソン接合の特性(低電流 J J) は、磁束密度が0(ガウス)の位置で極小になってお り、磁束密度の増大に伴って、略左右対称的に周期的に 超電導電流が変化している。

【0031】この本発明のジョセフソン接合のフラウン ホーファパターンは、図の上側に示す通常のs-s波接 合のフラウンホーファパターン (高電流 J J)とは磁束 密度依存性が反対になっている。

【0032】即ち、通常のs-s波接合のフラウンホー ファパターンは、磁束密度が()の位置で極大値をとるも のであるが、本発明のショセフソン接合のフラウンホー ファパターンは、磁束密度が 0 (ガウス) の位置で極小 になっており、これをこれまでの理論を参照して考察す るならば、本発明のジョセフソン接合はs-d波接合で あると結論される。

【0033】したがって、図5及び図6に示す測定結果 により、本発明のジョセフソン接合素子は上述のOD円至 ❷の要件を満たしていることになるので、実際にジョセ 50 示した結晶方位或いは結晶面指数に限られるものではな

フソン接合が形成されており、且つ、それはSNS構造 のs d波接合であることがわかった。

【0034】即ち、c軸配向YBCO膜12及びa軸配 向YBCO結晶粒14のa/c界面16においてc軸配 向YBCO膜12の(110)面が接合面になることに よって、a/c界面16のc軸配向YBCO膜12側が d波対称性を示し、それによってs-d波接合が形成さ れたものと考えられる。

【0035】なお、図6は、測定結果からバックグラウ 10 ンドの磁場強度の除いたものであり、且つ、上側のss波接合のフラウンホーファパターンは図3に示す実際 に作製したs-d波接合の近傍に形成されているs-s 波接合のジョセフソン接合の特性を測定したものであ る。

【0036】このように、本発明の実施の形態によれ ば、(100)面のMgO単結晶基板11上にYBCO 薄膜を堆積した場合、自然に混在して形成されるMgO 単結晶基板 1 1 の〈0 1 1〉方向と平行に延在する a 軸 配向結晶粒14を利用してジョセフソン接合を形成する ことによって s - d 波接合のジョセフソン接合が形成さ れるので、従来の金属系超電導体と酸化物超電導体との 間のs-d波接合より高温で動作を行うことができ、ま た、フラウンホーファパターンの違いを利用してsss 波接合のジョセフソン接合とは異なった特性を有する高 温超電導デバイスの実現が期待できる。

【0037】なお、MgO単結晶基板11の〈010〉 方向と平行に延在するa軸配向結晶粒13及び〈00 1〉方向と平行に延在するa軸配向結晶粒15を利用し てジョセフソン接合を形成した場合には、通常のs-s 波接合のジョセフソン接合しか得られないので、s-d 波接合の形成は、接合面を形成す結晶面の面指数に依存 するものである。

【0038】また、上記の実施の形態の説明において は、酸化物超電導体としてYBCO (YBa2 Cu3 O 7-x)を用いているが、NBCO (NdBa2 Cu3 O 7-x)を用いてもYBCOと同様の結果が得られてお り、このYBCO及びNBCO以外にも、このYBCO 及びNBCOと同様の層状構造の高温酸化物超電導体で ある、SmBa2 Cu3 O7 x 、EuBa2 Cu3 O 40 7-x DyBa2 Cu3 O7 x GdBa2 Cu3 O

7-x , HoBa2 Cu3 O7-x , ErBa2 Cu3 O7 x 、TmBa2 Cu3 O7-x 、或いは、YbBa2 Cu 3 O7-x 等を用いても良いものである。

【0039】また、上記の実施の形態においては、基板 として(100)面のMg〇単結晶基板11を用いてい るが、(100)面に限られるのでものではなく、(1 00) 面と等価な {100} 面であれば良い。

【0040】また、a軸配向YBCO結晶粒14の方位 や、a/c界面14の接合面の面指数も、実施の形態に

く、結晶学的にそれと等価な結晶方位或いは結晶面指数 であれば良い。

【0041】また、上記の実施の形態においては、c軸 配向結晶膜中に混在する矩形状の結晶粒をa軸配向結晶 粒として説明しているが、YBCO等の層状構造の酸化 物超電導体においては、a軸とb軸の区別が実質的にで きないものであるので、本明細書におけるa軸とは、b 軸も含むものである。

[0042]

【発明の効果】本発明によれば、層状構造の酸化物超電 10 1 c軸配向結晶粒 導体を用いてs-d波結合のジョセフソン接合素子を形 成したので、金属系超電導体より高温での動作が可能に なり、且つ、フラウンホーファパターンの違いに基づく 新たな機能を有する超電導デバイスの基礎構造を提案す るものであるので、将来の超電導デバイスの多様化・新 機能化に大いに寄与するものである。

【図面の簡単な説明】

【図1】本発明の原理的構成の説明図である。

【図2】本発明の実施の形態の製造工程の説明図であ

【図1】

本発明の原理的構成の説明図

1:c轉配向結晶粒 2:a轉配向結晶粒

る。

【図3】本発明の実施の形態の素子構造の説明図であ

8

【図4】a/c界面の模式的説明図である。

【図5】本発明のジョセフソン接合素子の1-V特性及 びシャピロステップの説明図である。

【図6】本発明のジョセフソン接合素子のフラウンホー ファーパターンの説明図である。

【符号の説明】

- - 2 a軸配向結晶粒
 - 3 a/c界面
 - 11 MgO単結晶基板
 - 12 c軸配向YBCO膜
 - 13 a軸配向YBCO結晶粒
 - 14 a軸配向YBCO結晶粒
 - 15 a軸配向YBCO結晶粒
 - 16 a/c界面
 - 17 溝

【図2】

本発明の実施の影響の製造工程の製明図

1]: MgO単結晶基板 14:a 軸配向YBCO結晶粒 12:c軸配向YBCO膜 15:a 軸配向YBCO結晶粒 13:a 軸配向YBCO結晶粒 16:a/c界面

【図3】

本発明の実施の影像の素子構造の説明関

[001] [011]

11:MgO単結晶基板 14:a 軸配向YBCO結晶校 12:c 軸配向YBCO膜 15:a 軸配向YBCO結晶校 13:a 軸配向YBCO結晶校 17:搾

【図4】

a / c 界面の模式的説明図

12:c軸配向YBCO膜 14:a軸配向YBCO結晶粒 16:a/c界面

【図5】

本発明のジョセフソン接合素子の I ーV 特性及び シャピロステップの説明図

【図6】

フロントページの続き

(72) 発明者 文 建国

東京都江東区東雲1-14-3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内

(72)発明者 林 邦彦

東京都江東区東雲 1 - 14 - 3 財団法人国際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 榎本 陽一

東京都江東区東雲1-14-3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内

(72)発明者 腰塚 直己

東京都江東区東雲1-14-3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内

(72) 発明者 田中 昭二

東京都江東区東雲1-14 3 財団法人国際超電薄産業技術研究センター 超電薄工 学研究所内