DIFFEOMORPHISM GROUPS OF SURFACES

S= compact, connected surface Write Diff(S) for Diff(S, ∂S). C[∞] topology.

 $T\underline{hm}$. If $S \neq S^2$, RP^2 , T^2 , KB then the components of Diff(S) are contractible.

Note: $Diff(S^2) = Diff(\mathbb{R}P^2) = SO(3)$ $Diff(\mathbb{T}^2) = \mathbb{T}^2$, $Diff(\mathbb{K}B) = S^1$.

Proof has 3 steps. ① Reduction to case $\partial S \neq \emptyset$ open will show $\Re (\operatorname{Diff}(S)) \cong \Re (\operatorname{Diff}(S - D^2))$.
② Inductive step \mathcal{S} cut along \mathcal{S} will show $\Re (\operatorname{Diff}(S)) \cong \Re (\operatorname{Diff}(S_{\mathcal{K}}))$ ③ Base case $\Re (\operatorname{Diff}(D^2)) = 0$ $i \geqslant 1$.

Step 1. Reduction to case $\partial S \neq \emptyset$.

Fix $x_0 \in D \subseteq S$. Let $S_0 = S - int D$.

To show $\Re (Diff(S)) = \Re (Diff(S, x_0)) = \Re (Diff(S, D)) = \Re (Diff(S_0))$

Last equality easy. Remains to do other two.

First equality. There is a fiber bundle $Diff(S, x_0) \longrightarrow Diff(S) \longrightarrow S$. 1 diffeos fixing xo. ~> LES: $\pi_{i+1}(s) \longrightarrow \pi_i(\text{Diff}(s, x_0)) \longrightarrow \pi_i(\text{Diff}(s)) \longrightarrow \pi_i(s)$ (as Š≃*). But Mi(S) = 0 i>1 ~ n: (Diff(S,xo)) = n: (Diff(S)) i>1. i=1 case: $O \longrightarrow \mathcal{H}_1 \text{ Diff}(S, x_0) \longrightarrow \mathcal{H}_1 \left(\text{Diff}(S) \right) \longrightarrow \mathcal{H}_1 \left(S, x_0 \right)$ To Diff (S, xo) = MCG(S, xo) Suffices to Show 3 Ker d = 0. But the composition $\Upsilon_1(S, x_0) \longrightarrow MCG(S, x_0) \longrightarrow Aut \Upsilon_1(S, x_0)$ x -> inner automorphism conj. by x To show this is inj, suffices to show Z M, (S) = 1. For latter: S̃≅1H2 $\pi_1(S) \iff \operatorname{deck trans. in Isom}^{\dagger} \operatorname{IH}^2$ & independent hyperbolic isometries do

not commute.

Second equality. Another fiber bundle: $Diff(S, D) \rightarrow Diff(S, x_0) \rightarrow Emb((D, x_0), (S, x_0))$

Claim: Emb (D, Xo), (S, Xo)) = GL2(R) = O(2) t -> Dxof

As above, LES => M. Diff(S, xo) = M. Diff(S, D) i > 1.

i=1 case:
$$O \rightarrow M Diff(S,D) \rightarrow M Diff(S,X_0)$$
 $\rightarrow M Emb(D,X_0), (S,X_0) \xrightarrow{\partial} M Diff(S,D) = MCG(S_0).$

Again, need ker $\partial = C$.

But $Z \rightarrow MCG(S_0) \rightarrow Aut M (S_0,p)$

is $1 \mapsto conj.$ by ∂ -element.

Since $M(S_0)$ is free, we are done.

Step 3. Base step: Diff. (D2) contractible

 D_{+}^{2} = top half of D^{2} $Emb(D_{+}^{2}, D^{2})$ = space of embeddings $D_{+}^{2} \rightarrow D^{2}$ fixing $D_{+}^{2} \cap \partial D^{2}$ and taking rest of D_{+}^{2} to int D_{-}^{2} $\alpha = D_{-}^{2}$ = equator of D_{-}^{2} $A(D_{-}^{2}, \alpha)$ = embeddings of proper arcs in D_{-}^{2} with same endpts as α .

Claim 1. $Emb(D_+^2, D^2) \simeq *$. Uses: the space of tubular nbds of a submanifold is contractible. Claim 2. $A(D_+^2, \alpha) \simeq *$. More generally, $A(S, \alpha) \simeq *$. Proven below. LES $\implies Diff(D_+^2) \simeq *$ But $D_+^2 \cong D^2$.

Step 2. Induction step.

Induction on $-\mathcal{V}(S)$. K = proper arc in S. $A(S, \kappa) = \text{emb's of proper arcs in } S$, iso to κ , same endpts $\longrightarrow \text{fiber bundle } Diff_{o}(S, \kappa) \longrightarrow Diff_{o}(S) \longrightarrow A(S, \kappa)$. $\text{L diffeos fixing } \kappa \text{ ptwise}, \cong Diff_{o}(S \text{ cut along } \kappa)$.

LES+ induction + Claim 2 -> Diffo(S) = *.

SMALE'S Proof. (Original version of Step 3)

Thm The space of C^{∞} diffeos of I^2 that are id in nbd of ∂I^2 is contractible.

Some ideas.

Given $f: I^2 \rightarrow I^2 \rightarrow \text{vector field } V:$ $V(x,y) = df_{f^{-1}(x,y)}(1,0).$

Note: Rⁿ-{0} not contractible n+2. There is a homotopy V_t s.t. $V_0 = V$, $V_1 = const.$ Vector field (1,0), $V_t = nonvan$. Vector field since $V_0, V_1 : I^2 \longrightarrow \mathbb{R}^2 - \{0\}$. id in nbd of ∂I^2 .

Then define $f_t: I^2 \to \mathbb{R} \times [0,1]$

 $f_{\pm}(x,y) = flow along V_{\pm}$, start at (0,y), for time x. Clearly $f_1 = id$, $f_0 = f$. (n.b. no spiralling, for then there would be a singularity).

Problem: Imft maybe not = # I?

Solution: Precompose each ff with a reparameterization in the X-dir. Result is a considered homotopy of f to id through diffeos.

By fixing once and for all a retraction of $\mathbb{R}^2 - \{0\}$ to a point, get a consistent way of deforming an arbitrary differ to id, at all times = id in abol of ∂I^2 .

(See Lurie's notes for an Earle-Eells-style approach.)

CERFS STRAIGHTENING TRICK. (Toy case for Claim 2).

We'll need to know that some basic spaces of embeddings are contractible. We start with a warmup.

Prop. The space of embeddings of arcs in $\mathbb{R} \times [0,\infty)$ based at 0 is contractible.

Pf. The space of linear arcs is clearly contractible - it is homeo to $\mathbb{R} \times [0, \infty)$.

Here is a canonical isotopy from an arbitrary arc to f to a linear one: $F_{t}(x) = \begin{cases} f((1-t)x) & t < 1 \\ \hline 1-t & f'(0)x & t = 1 \end{cases}$

Can soup this up:

Prop. The space of smooth embeddings of arcs in S based at p 6 dS is contractible.

Pf. By previous prop, need a canonical isotopy of an arbitrary arc into a fixed tubular nbd of p. for any compact set of arcs, can use $F_t(x) = f(xx)$ $x = max \{\epsilon, (1-tx)\}.$

i.e. Ft(x) traces out shorter & shorter subarcs. This implies weak contractibility.

Claim 2: Contractibility of arc spaces

x = proper arc in SA(S, x) = space of proper arcs = x, same endpts as x.

Case 1. & connects distinct components of 25.

T = surface obtained from S by capping with disk at one end of X

OS Claim. $Emb(IUD^2, S) \simeq *$. $p \in \partial D^2, x \in int S$ Pf of claim. Another fiber burdle $Emb((D_ip), (SX)) \to Emb(IUD^2, S)$

one endot $\rightarrow Emb(I, S)$

Base, fiber contractible by variations on Cerf's straightening.

Claim. $\pi_i Emb(\mathcal{D}^2, \mathcal{T}-\partial \mathcal{T})$ i > 0 Pf. Yet another fiber bundle:

 $Emb(D^2, T-\partial T)$ $\int eval@0$ $T-\partial T$

By two claims, plus LES for main fiber burdle, Emb(I, S) has contractible components, one of which is $A(S, \alpha)$.

or. pres

Case 2. & joins a component of DS to itself

Idea: add a handle T=SUR s.t. α joins distinct comp's of ∂T Suffices to show $\pi_i A(T-\beta_i) \to \pi_i A(T_i)$ injective.

Key: there is a cov. Space of T hom. eq. to S. because $\pi_1(T) = \pi_1(S) * \mathbb{Z}$ so $\widehat{T} = \text{cover corr to } \pi_1(S)$

Toy case XX

7 < 7 * 7

T looks like Tout along B

contractible B

pièce

pièce

Identify $A(T-\beta, \alpha)$ with space of arcs in this region of \widetilde{T} . $A(T, \alpha)$ with space of arcs in \widetilde{T} :

lifts of arcs in $T \to \widetilde{A}(T, \alpha) \subseteq A(\widetilde{T}, \alpha) \leftarrow \text{arcs in } \widetilde{T}$ Suffices to show composition $A(T-\beta, \alpha) \overset{L}{\hookrightarrow} A(\widetilde{T}, \alpha)$ is inj on Ω_{A} .

Need a retraction $T : A(\widetilde{T}, \alpha) \to A(T-\beta, \alpha)$

s.t. roinid.

The r is induced by shrinking the two contractible pieces.