Summarising and Plotting Data in R

Summarising Data

Glenn Williams

University of Sunderland

2021-10-27 (updated: 2021-10-27)

Summarising Data

Individual data points are some **abstraction away from reality**, essentially removing some detail.

- Even with trial-level data, we will **summarise responses** in terms of reaction times or correct responses.
- This removes a lot of the details of the real experience, but allows us to see patterns.
- Similarly, we can summarise data from many participants in a number of ways to help communicate a pattern or idea.

We can present summaries of data as a **plot**, as a **table of descriptive statistics**, and make inferences and decisions based on summaries of the data by **modelling our data**.

Descriptive Statistics

We often summarise data in terms of measures of **central tendency** and **dispersion**.

- **Central tendency**: What is the average score? This can be determined in a few ways.
 - **Mean**: used to describe data that are normally distributed. Can be misleading when outliers are present.
 - **Median**: used to describe data that are skewed in some way away from a normal distribution. Suppresses the impact of outliers.

```
noskew <- c(10, 20, 15, 20, 22)
mean(noskew)

## [1] 17.4

skew <- c(10, 20, 15, 20, 2000)
mean(skew)
```

```
median(noskew)

## [1] 20

median(skew)

## [1] 20
```

Descriptive Statistics

- **Dispersion**: The spread of scores (e.g. for individuals) around an average.
 - **Standard Deviation**: the spread of the data from the sample mean. With a normal distribution approximately 1, 2, and 3 *SD*s capture approximately 68, 95, and 99.7% of the data.
 - **Interquartile Range**: Rank orders data into four equal parts; the first region or quartile (i.e. 25%), the median (i.e. 50%), and the middle part of the third quartile (i.e. 75%). Used for non-normal data.

```
# low variability in scores = low SD
low_dispersion <- c(10, 12, 8, 9, 11, 10, 10.5, 9, 11.5)
sd(low_dispersion)</pre>
```

[1] 1.293681

```
# lots of variability in scores = high SD
high_dispersion <- c(10, 1000, 89, -400, 90, 880, 0)
sd(high_dispersion)</pre>
```

Why Make these in R?

- Scales up easily to new data: If you write this code to analyse data from 10 participants, you can instantly rerun it for millions.
- **Easier to spot mistakes** when you're writing the recipe.
- Easier to fix mistakes with a minor modification instead of repeating every step of the analysis by hand.
- **Repeatability**: If you do a task once in R, you can copy and paste code for a new study. This saves a lot of time in the long run.
- **Reproducibility**: Allows others (and future you) to check work and inspect methods at every step. You'll make science more reliable!

Summarise

Let's take a look at the inbuilt starwars data set in the tidyverse pacakage.

```
data(starwars) # load the data from within the package
glimpse(starwars) # view it
```

```
## Rows: 87
## Columns: 14
                                             <chr> "Luke Skywalker", "C-3PO", "R2-D2", "Darth Vader", "Lei
## $ name
## $ height
                                             <int> 172, 167, 96, 202, 150, 178, 165, 97, 183, 182, 188, 18
## $ mass
                                             <dbl> 77.0, 75.0, 32.0, 136.0, 49.0, 120.0, 75.0, 32.0, 84.0,
## $ hair_color <chr> "blond", NA, NA, "none", "brown", "brown, grey", "brown
## $ skin_color <chr> "fair", "gold", "white, blue", "white", "light", "light
## $ eye_color <chr> "blue", "yellow", "red", "yellow", "brown", "blue", "bl
## $ birth_year <dbl> 19.0, 112.0, 33.0, 41.9, 19.0, 52.0, 47.0, NA, 24.0, 57
## $ sex
                                             <chr> "male", "none", "none", "male", "female", "male", "female", "female", "male", "female", "male", "female", "male", "female", "male", "female", "male", "female", "male", "female", "female", "male", "female", "male", "female", "female", "male", "female", "male", "female", "male", "female", "male", "female", "female", "male", "female", "male", "female", "male", "female", "fema
## $ gender
                                             <chr> "masculine", "masculine", "masculine", "masculine", "fe
## $ homeworld <chr> "Tatooine", "Tatooine", "Naboo", "Tatooine", "Alderaan'
## $ species
                                             <chr> "Human", "Droid", "Droid", "Human", "Human", "Human", '
                                             <list> <"The Empire Strikes Back", "Revenge of the Sith", "Re</pre>
## $ films
## $ vehicles
                                           <list> <"Snowspeeder", "Imperial Speeder Bike">, <>, <>,
## $ starships <list> <"X-wing", "Imperial shuttle">, <>, <>, "TIE Advanced
```

Summarise

summarise() collapses across all observations in your data set to produce a single row of data.

- summarise() takes two main arguments:
 - 1: what is the **data** set you want to summarise?
 - 2: additional information specifying **how you want to summarise it**.

Let's summarise the mean height of the Star Wars characters:

```
summarise(starwars, mean_height = mean(height))

## # A tibble: 1 x 1

## mean_height

## <dbl>
## 1 NA
```

Oops, we got NA! Why? R by default produces NA for any summary of data containing NA values. (You can't average something that isn't there.)

Summarise

What should we do? We can make a new data set without NAs, or tell mean() to ignore them.

```
summarise(starwars, mean_height = mean(height, na.rm = TRUE))

## # A tibble: 1 x 1

## mean_height

## <dbl>
## 1 174.
```

We set the argument **na.rm** in mean() to **TRUE**, meaning "Should R remove NAs? TRUE (yes)".

Many Summaries

- What if we want to get **different types of summaries**? Imagine we want the count, mean, and standard deviation of height?
- We also can tell R to generate these summaries on the data by first dropping any observations with missing values (NA) in height.

```
summarise(
  drop_na(starwars, height),
  n = n(),
  sd = sd(height),
  mean_height = mean(height)
)
```

• How might we interpret this? We have 81 measured heights of characters. The mean height is 174.36cm, while the standard deviation is 34.77.

Grouping

- As we can see, the data set contains **very many species** of creates from the Star Wars universe. What if we want summaries of all of them?
- We can add an argument to our data in summarise() called group_by().
- Within group_by(), we specify our data but also give a column by which to **group the summaries**.

```
summarise(
  group_by(starwars, species),
  mean_height = mean(height, na.rm = TRUE)
)

## # A tibble: 38 x 2
```


Ceci n'est pas une pipe.

The Pipe!

- So far, I've avoided showing you some R magic so you get the principles of functions. But R has a way to make code a lot more readable: the pipe!
- The pipe in R (%>%) passes data from one function to another.

You can now read left to right: 1. take my data and then 2. group by species and then 3. summarise, creating the column mean height from the mean of the height column (removing NAs of course).

Adding Complexity

We can **add as many groups as we like** to group by, and as many summaries as we like to summary. For example:

```
starwars %>%
  drop_na(height) %>%
  group_by(sex, gender) %>%
  summarise(
    n = n(),
    sd = sd(height),
    mean_height = mean(height)
)
```

```
## # A tibble: 6 x 5
## # Groups: sex [5]
##
                 gender
                                  sd mean_height
    sex
                             n
## <chr>
                <chr> <int> <dbl>
                                          <dbl>
## 1 female
                 feminine
                            15 15.3
                                          169.
## 2 hermaphroditic masculine 1 NA
                                          175
## 3 male
                 masculine 57 36.0
                                          179.
                feminine 1 NA
                                           96
## 4 none
                 masculine 4 52.0
## 5 none
                                          140
                                          181.
## 6 <NA>
                 <NA>
                             3 2.89
```

All Tidyverse Functions Work with the Pipe!

Let's keep only humans over 70kg in mass, and calculate their height and weight.

```
starwars %>%
  filter(species == "Human" & mass > 70) %>%
  drop_na(height) %>%
  summarise(
    n = n(),
    mean_height = mean(height),
    sd_height = sd(height)
)
```

We could even add select() and mutate() in here if we wanted.

Recap

We've learned...

- Why we summarise data and recapped on basic **descriptive statistics**.
- Why we might use R to summarise our data.
- How to pass **optional arguments** to functions (e.g. na.rm in mean() and sd()).
- How to make **separate summaries per group** using group_by().
- How to **pipe** data from one function to the next.
- How to **combine tidy functions** like filter() and summarise() in one pipeline.