PyPSA-PL

Version 2.1. User guide

Patryk Kubiczek (patryk.kubiczek@instrat.pl)

2023-12-12

Table of Contents

1	Introduction	1
2	2.1 Run parameters	2 2
	2.2 Input data	9
3	Model outputs	15
	3.1 Raw PyPSA inputs and outputs	15
	3.2 Output statistics	15
4	Selected methodological details	16
	4.1 Dispatch optimisation	16
	4.2 Investment optimisation	16
	4.3 Rescaling of the wind power utilisation factors	17
5	Annex: flowchart representation of the optimisation pipeline	18
6	Changelog	20
7	References	20

1 Introduction

PyPSA-PL is an implementation of the PyPSA framework (Brown, Hörsch and Schlachtberger, 2018) shipped with a use-ready dataset tailored for the Polish energy system. PyPSA-PL can be used to plan optimal investments in the power, heating, hydrogen, and light vehicle sectors – given the final use demand together with capital and operation costs for assets – or just to optimise the hourly dispatch of the utility units – given the final use demand and operation costs only.

The components of the PyPSA-PL model attachable to electricity, heat, light vehicles, and hydrogen nodes are presented in Figure 1. The energy flows and energy conversions between the components are modelled with high temporal resolution under the cost-optimality assumption.

Figure 1: Energy flows and conversions between PyPSA-PL components

2 Model inputs

2.1 Run parameters

The parameters that specify each model run are listed in Table 1. All parameters are optional – in case the parameter is not specified, the default value is used.

Table 1: Parameters specifying a model run

Parameter	Meaning	Default value
mode	mode of PyPSA simulation (lopf	lopf
	 linear power flow optimisation) 	

Parameter	Meaning	Default value
solver	solver to be used internally by	highs
	PyPSA (e.g. highs, cplex,	
	gurobi)	
scenario	user-selected scenario name –	instrat_ambitious
	can be used to conveniently refer	
	to the whole set of parameter	
	selections	
years	years to be simulated	[2025]
sectors	sectors to be simulated	["electricity",
		"heat", "light
		vehicles", "hydrogen"]
extendable_technologies	list of technologies whose	None
	capacities should be optimally	
	extended or None for pure	
	dispatch optimisation	
decommission_only_technologies	list of technologies whose	None
	capacities should be optimally	
	retired prior to their end-of-life	
	or None for pure dispatch	
	optimisation	
extend_from_zero	for extendable technologies,	False
	ignore the capacities defined by	
	aggregate_units dataset?	
thermal_units	source of thermal power plant	None
	data at the unit level	
renewable_units	source of renewable power plant	None
	data at the unit level	
storage_units	source of electricity storage unit	pypsa_pl_v2.1
	data at the unit level	
decommission_year_inclusive	are the assets active in the	True
	decommissioning year?	
aggregate_units	source of data on existing and	instrat_ambitious_copper_plate
	planned capacity investments in	
	the power sector per technology	
	and area	

Parameter	Meaning	Default value
sectoral_units	source of data on existing and	instrat_ambitious_copper_pl
	planned capacity investments in	
	sectors other than power per	
	technology and area	
xclude_technologies	list of technologies that are	None
	excluded from the model, even if	
	they are listed in the input data	
irtual_dsr	add virtual DSR capacity to avoid	True
	potential solution infeasibilities?	
apacity_potentials	source of data on capacity	instrat_ambitious
	potentials per technology and	_
	area	
capacity_max_growth	source of data on maximum	instrat_ambitious
1 70	capacity growth assumptions	-
uel_potentials	source of data on fuel availability	instrat_2021
	potentials per fuel and area	
renewable_utilization_profiles	source of data on maximum	PECD3+EMHIRES
onowabio_doi:iDaoion_proffice	hourly utilisation of wind and	1 2020 - 2
	solar energy	
ydro_utilization	source of data on annual	entsoe_2020
yaro_aorrizacion	utilisation of hydropower	686266_2626
hp_utilization_profiles	source of data on hourly	regression
mp_utilization_proffices	utilisation of CHP plants (not	regression
	used if heat sector is explicitly	
	simulated)	
neat_pump_efficiency_profiles	source of data on hourly heat	instrat
leat_pump_efficiency_profifes	pump COP (coefficient of	Instrat
11	performance) source of annual demand data	
lemand		instrat_2023
lectricity_demand_correction	rescaling annual electricity	1
7	demand	
electricity_load_profile	source of hourly electricity	entsoe
	demand profile data	
neat_load_profile	source of hourly heat demand	degree_days+bdew
	profile data	
ight_vehicles_load_profile	source of hourly light vehicle	gddkia
	demand profile data	

Parameter	Meaning	Default value
load_profile_year	historical year used to create hourly demand and capacity utilisation profiles (2012, 2013, or 2015)	2012
temporal_resolution	length of a single timestep	1H
buses	source of power grid node data	voivodeships
grid_resolution	spatial resolution of the electricity grid	copper_plate
interconnectors	source of cross-border flow capacity data	pypsa_pl_v2.1
trade_factor	rescaling cross-border flow capacities	0.7
imports	allow electricity imports?	True
exports	allow electricity exports?	True
<pre>dynamic_trade_prices</pre>	simulate neighbours' energy systems dynamically?	True
neighbors_capacity_demand	source of installed capacity and demand data for neighbouring countries (only if dynamic_trade_prices is True)	TYNDP_2022
neighbors_load_profile	source of hourly power demand profile data for neighbouring countries (only if dynamic_trade_prices is True)	PECD3
trade_prices	<pre>source of static import/export price assumption data (only if dynamic_trade_prices is False)</pre>	pypsa_pl_v1
technology_data	source of technology data	instrat_2023
discount rate	discount rate used for annuitisation of capital costs	0.03
prices	source of price assumption data	instrat_2023
random_seed	random seed used for adding random noise from range [-1, 1] to marginal costs or None if no randomisation is desired	0

Parameter	Meaning	Default value
correction_factor_wind_old	rescaling the hourly wind power utilisation for turbines built until 2020	0.91
correction_factor_wind_new	rescaling the hourly wind power utilisation for turbines built after 2020	1.09
enforce_bio	minimum annual capacity utilisation factor for biomass and biogas power plants (expressed as a share of maximum technically available capacity factor)	0
biogas_substrate_price_factor	factor by which the price of agricultural biomass is multiplied to obtain the price of biogas substrate	1
industrial_utilization	fixed hourly utilisation of industrial power plants	0.5
electricity_distribution_loss	electricity transmission and distribution losses for sectoral electricity uses	0.05
srmc_wind	marginal cost of wind energy (PLN/MWh _e) – overrides value from technology_data dataset	8
srmc_pv	marginal cost of solar energy (PLN/MWh _e) – overrides value from technology_data dataset	1
srmc_dsr	marginal cost of electricity demand reduction (PLN/MWh _e)	1200
cold_reserve_need_per_demand	required cold reserve capacity per hourly electricity load	0
cold_reserve_need_per_demand	required cold reserve capacity per hourly electricity imports	0
cold_reserve_categories	list of assets' categories that can be used to provide cold reserve capacity	["JWCD"]
max_snsp	maximum allowed hourly SNSP (System Non-Synchronous Penetration)	1.0

Parameter	Meaning	Default value
ns_carriers	list of non-synchronous carriers	["Wind onshore", "Wind offshore", "PV roof", "PV ground", "DC", "Battery large", "Bettery small", "BEV V2G"]
unit_commitment_categories	assets' categories that are to be modelled as committable	None
linearized_unit_commitment	treat unit-commitment constraints in a linearised manner?	True
district_heating_loss	heat distribution losses in district heating systems	0.12
district_heating_distribution_cost	heat distribution cost in district heating systems (PLN/MW h_{th})	72
share_district_heating_min	minimum share of district heating in satisfying the total heat demand	0.32
share_district_heating_max	maximum share of district heating in satisfying the total heat demand	0.32
share_biomass_boiler_min	minimum share of individual biomass boilers in satisfying the total heat demand	0.2
share_biomass_boiler_max	maximum share of individual biomass boilers in satisfying the total heat demand	0.2
max_resistive_to_heat_pump_ratio	maximum ratio of annual heat production by individual resistive heaters to annual heat production by individual heat pumps	0.02
bev_availability_max	maximum availability of BEVs for charging or discharging to grid	0.95
bev_availability_mean	average availability of BEVs for charging or discharging to grid	0.8

Parameter	Meaning	Default value
v2g_factor	share of BEV chargers enabling	0.25
	V2G service	
minimum_bev_charge_hour	hour of the day when the	6
	minimum BEV charging level is	
	required	
minimum_bev_charge_level	minimum charging level of BEV	0.75
	batteries at the hour specified by	
	minimum_bev_charge_hour	
srmc_v2g	marginal cost of V2G service	50
	(excluding electricity cost)	
	(PLN/MWh _e)	
oil_to_petroleum_product_price_rat	aratio of crude oil price to the	2
	price of oil-based fuels	

Only copper plate spatial resolution is supported now

A voivodeship-level spatial resolution of the electricity grid might be implemented in the future.

⚠ Spinning reserve constraints are not supported in v2.1

Support for this feature, including different kind of reserves (primary, secondary, tertiary) might be added in the future.

Total installed capacity

The total installed capacity in a simulation is an aggregation of data defined by thermal_units, renewable_units, storage_units, aggregate_units, and sectoral_units together with optimal investments and retirements for technologies listed in extendable_technologies and decommission_only_technologies, excluding any technologies listed in exclude_technologies.

Weather years

It is important to preserve all the realistic correlations between load and weather time series in each simulation. For that purpose, we select a single historical year as a basis to create all the hourly profiles that are used to drive the model. In the context of the utilization of variable renewable energy sources, we identify 2012 as typical, 2013 as bad, and 2015 as a good weather year. The choice of the weather year is done by setting the load_profile_year parameter.

Marginal costs determine curtailment order

From the perspective of system cost optimisation, marginal costs for PV and wind are negligible. However, the parameters srmc_pv and srmc_wind can be used to determine the preferred curtailment order - higher marginal cost for wind turbines means their output will be curtailed first.

2.2 Input data

Input data are stored in the data/input directory and are organised in several *.xlsx spreadsheets and *.csv files. Users can substitute any of the default inputs with their own data by setting the corresponding run parameter (shown in the following in curly braces) to the source keyword of their custom input filename.

Ignored sheets, columns, and rows

In *.xlsx spreadsheets, all sheets, columns, and rows that start with # are ignored by the model.

2.2.1 Existing and planned utility units

Files:

- thermal_units; source={thermal_units}.xlsx
- renewable_units; source={renewable_units}.xlsx
- storage_units; source={storage_units}.xlsx

Those spreadsheets contain the data on individual utility units, specifying their properties including commissioning and decommissioning years.

Spreadsheet structure:

· rows: individual units

• columns: unit properties

• sheets: unit groups

2.2.2 Existing and planned aggregate capacity investments

Files:

- aggregate_units; source={aggregate_units}.xlsx
- sectoral_units; source={sectoral_units}.xlsx

The remaining utility units are aggregated at the area level (voivodeship or country) and their additions are attributed to an investment year (more precisely, an investment period; investment year Y encompasses a 5-year period [Y-4, Y]). Only capacities defined in those files can be subject to investment optimisations.

It is also possible to specify the total installed capacity at a given year rather than derive the capacity from cumulative investments, which is useful for capacities that are never subject to investment optimisation (e.g. run-of-river plants) or that are subject to early retirement optimisation (e.g. coal power plants).

For sectoral units, the capacities have to be attributed to a specific technology bundle. A technology bundle delivers a fixed hourly share of the total sectoral demand – this share is subject to optimisation.

Technology bundles

Technology bundles are a way to go beyond the copper-plate assumptions in sectors other than power. For example, we assume that some buildings are equipped with heat pumps supported by resistive heaters and heat storage, while others are equipped with individual gas boilers only. No heat flows between those two kinds of buildings should be possible.

Spreadsheet structure:

- rows: areas, categories, technologies, carriers, sectors (only sectoral units), technology bundles (only sectoral units), value types (addition or total)
- columns: capacities per year (in MW)
- sheets: unique unit groups

2.2.3 Capacities in neighbouring countries

File: neighbors_capacities; source={neighbors_capacity_demand}.xlsx

This spreadsheet contains the installed capacities of neighbouring countries.

Spreadsheet structure:

- rows: categories, technologies, carriers
- columns: capacities per year (in GW)
- · sheets: countries

2.2.4 Capacity potentials

File: capacity_potentials; source={capacity_potentials}.xlsx

This spreadsheet contains maximum capacity potentials for each technology, taking into account physical, technical, and legal constraints.

Spreadsheet structure:

· rows: areas

• columns: potentials per year (in MW or MWh)

• sheets: carriers

2.2.5 Maximum capacity investments per year

File: capacity_max_growth; source={capacity_max_growth}.xlsx

This spreadsheet contains the upper bound on new capacity investments per year for each technology, taking into account technical, material, and labour constraints.

Spreadsheet structure:

· rows: technologies

• column: maximum annual investment (in MW or MWh)

2.2.6 Fuel potentials

File: fuel_potentials; source={fuel_potentials}.xlsx

This spreadsheet contains maximum annual fuel availabilities for each fuel, taking into account environmental or technical constraints.

Spreadsheet structure:

· rows: areas

• columns: fuel availability per year (in TWh)

· sheets: fuels

2.2.7 Utilisation profiles of wind and solar power plants

Files: timeseries/{technology}_utilization_profile; source={renewable_utilization_profiles};
year={load_profile_year}.csv

Those files contain the utilisation profiles for wind and solar power plants. The profiles are hourly time series of available-to-installed power ratios, taking into account the effects of weather, season, and time of day. The utilisation profiles determine the upper bound on the utilisation of variable renewable energy sources.

CSV file structure:

• rows: hours

• columns: utilisation factor per area

2.2.8 Efficiency profiles of heat pumps

Files: timeseries/{technology}_efficiency_profile; source={heat_pump_efficiency_profiles};
year={load_profile_year}.csv

Those files contain the efficiency profiles for heat pumps. The profiles are hourly time series of COP (coefficient of performance) values, taking into account the effects of ambient temperature. Different COP profiles are used for individual and systemic heat pumps.

CSV file structure:

· rows: hours

• columns: COP per area

2.2.9 CHP utilisation profiles

File: timeseries/chp_{fuel}_profile; source={chp_utilization_profiles}; year={load_profile_year}.csv

Those files contain the utilisation profiles for CHP plants. The utilisation of CHP plants is enforced by the input utilisation profiles if heating sector is not explicitly modelled.

CSV file structure:

· rows: hours

• columns: utilisation factor per area

2.2.10 Annual utilisation of run-of-river hydro power plants

File: hydro_utilization; source={hydro_utilization}.xlsx

This spreadsheet contains the annual utilisation of run-of-river hydropower plants.

Spreadsheet structure:

· rows: countries

• column: annual utilisation factor

2.2.11 Annual energy demand

File: exogenous_demand; source={demand}.xlsx

This spreadsheet contains the annual final use demand for each energy type.

Spreadsheet structure:

• rows: areas

• columns: demand per year (in TWh)

• sheets: energy types

2.2.12 Annual electricity demand in neighbouring countries

File: neighbors_demand; source={neighbors_capacity_demand}.xlsx

This spreadsheet contains the annual electricity demand in neighbouring countries.

Spreadsheet structure:

· rows: countries

• columns: electricity demand per year (in TWh)

2.2.13 Load profiles

Files:

- electricity_load_profile; source={electricity_load_profile}; year={load_profile_year}.csv
- heat_space_load_profile;source={heat_load_profile};year={load_profile_year}.csv
- light_vehicles_load_profile; source={light_vehicles_load_profile}; year={load_profile_year}.csv
- neighbors_load_profile;source={neighbors_load_profile};year={load_profile_year}.csv

Those files contain the load profiles in different sectors for each area (including electricity load profiles for neighbouring countries). The load profiles are hourly time series of the fraction of the annual sectoral demand and they are based on historical load data (electricity) or are generated synthetically (space heating, mobility of light vehicles). Water heating and hydrogen demand profiles are assumed constant, hence no input is needed. The load year has to match the weather year used to derive the utilisation profiles of vRES and CHP plants.

CSV file structure:

• rows: hours

• columns: load factor per area

2.2.14 Nodes of the electricity grid

Files:

- buses; source={nodes}.xlsx
- neighbors.xlsx

Those spreadsheets contain the nodes of the electricity grid. As the model supports the copper plate runs only, these input files do not influence the results at the moment.

Spreadsheet structure:

· rows: nodes

• columns: node coordinates

2.2.15 Cross-border flow capacities

File: interconnectors; source={interconnectors}.xlsx

This spreadsheet contains the cross-border flow capacities between Poland and neighbouring countries. It lists all individual interconnectors. It is possible to specify direction-dependent capacities.

Spreadsheet structure:

• rows: interconnectors

· columns: individual interconnector properties

2.2.16 Price assumptions

File: prices; source={prices}.xlsx

This spreadsheet contains the assumptions on fuel prices and CO_2 emission costs. The prices should be given in real values for a selected base year. Only rows with prices expressed in PLN are used by the model.

Spreadsheet structure:

• rows: prices

· columns: years

2.2.17 Technology data

File: technology_data; source={technology_data}.xlsx

This spreadsheet contains the capital costs, lifetimes, and other relevant technical parameters for each technology dependent on the investment period. Investment periods are defined by their last years.

Spreadsheet structure:

· rows: parameters

• columns: technology years

· sheets: technologies

2.2.18 Import/export prices

File: trade_prices; source={trade_prices}.xlsx

This spreadsheet is used only if dynamic_trade_prices parameter is set to False. It defines the prices at which electricity can be imported and exported.

Spreadsheet structure:

• rows: price type (import/export)

• columns: years

3 Model outputs

3.1 Raw PyPSA inputs and outputs

The internal representation of the PyPSA network (i.e. Python object storing information on the grid, generators, loads, power time series etc.) for each model run is stored in data/runs directory as a collection of *.csv files. Both input and output networks are stored.

3.2 Output statistics

Postprocessed output statistics (based on raw output networks) are stored in data/output directory, both as figures and *.csv files. So far the following statistics are available:

- total installed capacity per technology,
- annual energy production and consumption per technology,
- annual capacity utilisation per technology,
- annual CO₂ emissions per fuel,

- annual fuel consumption per fuel,
- · annual curtailment of wind and PV energy,
- · capacity additions per technology,
- total investment costs per technology,
- · annuitised investment costs per technology,
- · annual fixed costs per technology,
- · total annual operating costs per technology,
- annual CO₂ emission costs per technology,
- production and consumption structure in selected peak hours of the year (top exogenous demand, top vRES production, top residual load, top total load).

4 Selected methodological details

4.1 Dispatch optimisation

The principle of dispatch optimisation is to minimise the total short-run marginal cost of the energy system while satisfying all energy demands at each timestep. Dispatch optimisation can be performed jointly with investment optimization or under the assumption of fixed capacities. The marginal cost M_s of a utility unit s is composed of fuel, CO_2 emission, and operating cost

$$M_{s} = \frac{P_{s}}{\eta_{s}} + \frac{P_{\text{CO}_{2}} \varepsilon_{s}}{\eta_{s}} + V_{s},$$

where P_s is the fuel cost per MWh_t of the primary energy (lower heating value), η_s is the net efficiency of the unit s, P_{CO_2} is emission cost of 1 tonne of CO_2 , ε_s is CO_2 emission coefficient (tCO₂ per MWh_t of the primary energy), and V_s is the variable operating cost per MWh of useful energy produced.

4.2 Investment optimisation

In the PyPSA family of models, the total investment cost (including the cost of credit) is distributed over all the lifetime years of the asset (Brown, 2020). Since our model simulates only the last year within the given multi-year investment period, the yearly capital cost C_s of creating an asset s is identified with an annuitised total investment cost I_s plus the fixed annual cost of operation F_s .

$$C_{s} = \frac{I_{s}}{\sum_{y=1}^{L_{s}} \left(\frac{1}{1+r}\right)^{-y}} + F_{s},\tag{1}$$

where L_s is the lifetime of the asset in years and r is the annual discount rate. At the moment a uniform discount rate is used for all assets.

Each investment period in PyPSA-PL has by default $N_p = 5$ years and its last year is identified as a reference year for which simulation is done (i.e., the investment period of the year 2030 encompasses the years 2026-2030). This is where PyPSA-PL differs from core PyPSA models (like PyPSA-Eur) where the first year of the investment period is used as a reference year. Our motivation for this change is that by taking the last year of the investment period as a reference year, we can interpret the investments more easily as those that are needed for the "target" demand at the end of the investment period.

Investment optimisation is always performed jointly with dispatch optimisation.

Λ

Only myopic optimisation is supported now

At the moment only myopic optimisation has been fully implemented and tested, i.e. future investment periods are not considered in the investment optimisation for a given investment period. This should not be viewed as a major limitation of the model, as it can be argued that the perfect-foresight assumption could lead to overly optimized investment pathways – the real-world investors can only behave in a myopic way, as the future is uncertain.

4.3 Rescaling of the wind power utilisation factors

To enable distinguishing between the old and new onshore wind turbines, we allow the user to specify correction factors for wind power utilisation profiles. The starting point for the corrected utilisation profiles is provided by the profiles specified by the relevant input file, which are assumed valid for an "average" wind turbine. The annual correction factor is defined as the ratio of the assumed annual utilisation for the specific turbine type to the annual utilisation of an average wind turbine.

It would be physically incorrect to rescale the utilisation profiles just by multiplying all the hourly values by the annual correction factor, as this would lead to utilisation factors exceeding 1. For that reason, we transform the utilisation profiles in a non-linear way, which ensures that the values remain always below 1 and that the annual utilisation is modified according to the assumed annual correction factor. Specifically,

$$u'_t = [a + (1 - a)(2u_t - 1)] u_t,$$

where u_t is the original utilisation factor at hour t, u_t' is the corrected utilisation factor, and a is related to the annual correction factor A as follows:

$$a = \frac{A \langle u_t \rangle_t - \langle u_t(2u_t - 1) \rangle_t}{\langle u_t \rangle_t - \langle u_t(2u_t - 1) \rangle_t}.$$

The brackets $\langle \cdot \rangle_t$ denote the time average over the whole year:

$$\left\langle u_{t}\right\rangle _{t}=\frac{1}{8760}\sum_{t=1}^{8760}u_{t}.$$

5 Annex: flowchart representation of the optimisation pipeline

The processing steps presented in Figure 2 correspond to the logic of the run_pypsa_pl function defined in src/pypsa_pl/run_pypsa_pl.py.

Figure 2: Flowchart representing the preparation and optimisation of the PyPSA network in the PyPSA-PL model

6 Changelog

- 2023-12-12: v2.1
 - major extension of the model by the heating, hydrogen, and light vehicle sectors
 - general updates:
 - * change the format of the demand data
 - * change the extension of the input files with timeseries from *.xlsx to *.csv
 - * distinguish between category, technology, and carrier for assets in the input data
 - * implement optimisation of technology bundles' shares
 - * allow optimisation of early retirements of existing assets based on their fixed costs
 - * add new statistics of output data
 - updates in the electricity sector:
 - * base the interconnector capacities on historical cross-border flow data and change the format of interconnector input data
 - * add constraint on the maximum allowed hourly SNSP (System Non-Synchronous Penetration)
 - * allow simulating thermal power plants in an aggregate manner or as committable units
 - * model biogas production, storage, and consumption (for electricity and heat generation) in a separate manner
 - * constrain the biomass and biogas power plants by the fuel availability rather than by the maximum installed capacity
- 2023-03-28: v2.0
 - new implementation of PyPSA-PL code, preserving PyPSA-PL v1 functionalities
 - most important new features:
 - * investment optimisation
 - * reserve requirement
 - * explicit modelling of energy systems in neighbour countries and bidirectional trade flows
 - thorough update of default input data

7 References

Brown, T., 2020. Multi-Horizon Planning with Perfect Foresight. URL: https://nworbmot.org/energy/multihorizon.pdf.

Brown, T., Hörsch, J., Schlachtberger, D., 2018. PyPSA: Python for Power System Analysis. Journal of Open Research Software 6, 4. DOI: 10.5334/jors.188. (Visited on 30/08/2022).