One-stage cluster sampling estimation

Week 5 (5.1, 5.2.1, 5.2.3)

Stat 260, St. Clair

Design: One-Stage Cluster Sample

elements

Definition: Divide all population **observation units** into N non-overlapping **clusters** of observation units.

https://spot.pcc.edu/~evega/section-4.html

Design: One-Stage Cluster Sample

Defined: We take a SRS of n clusters and survey every observation unit in selected clusters.

https://spot.pcc.edu/~evega/section-4.html

Design: Cluster vs. Stratified sampling

https://spot.pcc.edu/~evega/section-4.html

Design: One-Stage Cluster Sample

- Primary Sampling Units (PSU): clusters
- Secondary Sampling Units (SSU): observation units (2)
 - $\circ \;\; y_{ij}$ is the measurement for unit j in cluster i
- \star M_i is the number of observation units in cluster i
- $m{\&} \circ M_0 = \sum_{i=1}^N M_i$ is the total number of observation units in the population

Design: One-Stage Cluster Sample

Why?

- Can be **cheaper** than a SRS
- A sampling frame of clusters may exist but a sampling frame of observation units does not.

Example 1: GPA

A student wants to estimate the average GPA in his dormitory. The dorm consists of 100 suites, each with <u>four students</u>. He chooses a SRS of 5 of these suites and records the GPA of each student living in the suite.

Example 2 - residents

Suppose you are interested in surveying the 11,482 adults who reside permanently in Northfield. You divide the town into 400 blocks and take a SRS of 5 blocks. You then visit each adult resident who lives on a selected block and record their annual income (in thousands of dollars) and whether or not they identify their political affiliation as Democratic.

Inclusion probabilities: One-Stage Cluster

What is the probability that unit i from cluster i is selected?

Sampling weights: One-Stage Cluster

What is the sampling weight for unit j from cluster i under a one-stage cluster design?

$$W_{ij} = \frac{1}{\pi i j} = \frac{N}{N}$$

Estimation plan: One-Stage Cluster

• One option! Use an unbiased Horvitz-Thompson estimator to estimate the (overall) **population total**

$$\hat{t}_{HT} = \sum_{\text{sampled units}} w_{ij}y_{ij}$$

$$\hat{t} = \sum_{i=1}^{n} \sum_{j=1}^{m_i} \binom{N}{n} y_{ij} = \binom{N}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \binom{N}{n} y_{ij} = \binom{N}{n} \sum_{j=1}^{n} \sum_{j=$$

• Parameter:
$$t = \sum_{i=1}^N \sum_{j=1}^{M_i} y_{ij} = \sum_{i=1}^N t_i$$

- Parameter: $t = \sum_{i=1}^{N} \sum_{j=1}^{M_i} y_{ij} = \sum_{i=1}^{N} t_i$
- Unbiased Estimator:

$$\hat{t}_{\,unb} = rac{N}{n} \sum_{i=1}^n t_i = N ar{t}_i$$

where $ar{t}$ is the sample mean **total response** per cluster

• Parameter:
$$t = \sum_{i=1}^{N} \sum_{j=1}^{M_i} y_{ij} = \sum_{i=1}^{N} t_i$$

Unbiased Estimator:

$$\hat{t}_{\,unb} = rac{N}{n} \sum_{i=1}^n t_i = N ar{t}_i$$

where \bar{t} is the sample mean **total response** per cluster.

• Standard error:

$$SE(\hat{t}_{unb}) = N\sqrt{\left(1-rac{n}{N}
ight)rac{s_t^2}{n}}$$

where s_t is the sample standard deviation of cluster totals.

- Parameter: $\bar{y}_{\mathcal{U}} = \frac{t}{M_0}$ \Longrightarrow mean response per abs, unit
- Assume that M_0 is known
- Unbiased Estimator:

$$\hat{ar{y}}_{unb} = rac{\hat{t}_{\,unb}}{M_0}$$

where $ar{t}$ is the sample mean total response per cluster-

• Standard error:

$$SE(\hat{ar{y}}_{unb}) = rac{SE(\hat{t}_{unb})}{M_0}$$

Population Proportion: One-Stage Cluster

• Parameter:
$$p=rac{t}{M_0}$$

ullet Use formulas for mean where t_i counts the number of observation units in cluster i that are a "success"

Example 1 - GPA

$$N=100,\, n=5,\, M_i=4,\, M_0=400$$

		Suite 1	Suite 2	Suite 3	Suite 4	Suite 5
7	1	3.08	2.36	2.00	3.00	2.68
	2	2.60	3.04	2.56	2.88	1.92
	3	3.44	3.28	2.52	3.44	3.28
,	4	3.04	2.68	1.88	3.64	3.20
	total	⁷ 12.16	11.36	8.96	12.96	11.08

Estimate/SE for the mean GPA in the population.

Estimate/SE for the mean GPA in the population.

$$\frac{N}{2} = \frac{N}{5} = \frac{100}{5} \left(\frac{12.16 + 11.36 + -.. + 11.88}{1.36 + ... + 11.88} \right) = 1130.4$$

$$\frac{130.4}{400} = \frac{130.4}{400} = \frac{130.$$

$$5E(\hat{y}_{unb}) - \frac{SE(\hat{t}_{unb})}{M_0}$$

$$= \frac{100 \sqrt{(1-\frac{5}{100})} \frac{S_c^2}{S}}{100} = \frac{164}{100}$$

$$S_t^2 = \frac{1}{N-1} \sum_{n=1}^{\infty} (t_n - \bar{t})^2 = \frac{12.16+11.36+...}{S} = \frac{10.304}{10.36+...} = \frac{10.304}$$

- Parameter: $ar{y}_{\mathcal{U}} = rac{t}{M_{\cap}}$

• What if
$$M_0$$
 is unknown!
 eSt . From our sample $\rightarrow M_i$
 $M_0 = \sum_{i=1}^{N} M_i$ $M_{13-7} M_0 \rightarrow SRS$
 $M_0 = N M = \sum_{i=1}^{N} \sum_{i=1}^{N} M_i$
 $M_0 = N M = \sum_{i=1}^{N} \sum_{i=1}^{N} M_i$
 $M_0 = N M = \sum_{i=1}^{N} \sum_{i=1}^{N} M_i$
 $M_0 = N M = \sum_{i=1}^{N} \sum_{i=1}^{N} M_i$

• Parameter: $ar{y}_{\mathcal{U}} = rac{t}{M_0}$

TE ZETI Mo ZEMi

- Assume that M_0 is unknown
- Biased Ratio Estimator:

- Parameter: $ar{y}_{\mathcal{U}} = rac{t}{M_0}$
- Assume that M_0 is unknown
- Biased Ratio Estimator:

$$\hat{ar{y}}_r = rac{\sum_{i=1}^n t_i}{\sum_{i=1}^n M_i}$$

• **Standard error:** for large *n*:

$$SE(\hat{y}_r) \approx \sqrt{\left(1 - \frac{n}{N}\right) \frac{1}{n\bar{M}^2} \frac{\sum_{i=1}^n (t_i - \hat{y}_r M_i)^2}{n-1}}$$

$$\text{Rodio SE}$$

$$\text{SE}$$

- Parameter: $t=M_0 ar{y}_{\mathcal{U}}$ \mathcal{Z} \mathcal{Z} \mathcal{Z} \mathcal{Z} \mathcal{Z} Assume that M_0 is known!!
- Biased Ratio Estimator:

$$\hat{t}_{\,r}=M_0\hat{ar{y}}_{\,r}$$

• Standard error: for large n

$$SE(\hat{t}_{\,r})pprox M_0SE(\hat{ar{y}}_{\,r})$$

One-Stage Cluster estimation options:

- Unbiased vs. Biased:
 - \circ Biased (ratio) options could be more precise than unbiased options when t_i and M_i are positively correlated
- Bias of ratio options:
 - \circ need large n for bias to be small

Example 2 - residents

N=400, n=5								4	
		Block 1	Block 2	Block 3	Block 4	Block 5	total	s_t^2	
	# of Adults	10	15	18	22	17	82	19.3	
	Total Income	1100	1020	972	704	714	4510	33144	
<i>ا</i> لہ	# Dems	8=t1	5=t2	7	15	3	38	20.8	<u></u>

Assume that $M_0=11,482$. Estimate/SE the proportion of adults who are

Assume that
$$M_0=11,482$$
. Estimate/SE the proportion of adults who are Democrats. Unbased est- of proportion:

unbased est- of $\sqrt{38}=400(7.6)=3040$

total: $\sqrt{11,482}$
 $\sqrt{11,482}$

$$SE(\hat{p}_{unb}) = \frac{SE(\hat{t}_{unb})}{Mo}$$

$$= \frac{400 \sqrt{1 - \frac{5}{400}} \frac{20.8}{8}}{1.482}$$

$$= \frac{1.071}{1.482}$$

$$= \frac{26.5\%}{20.5\%}, SE \approx 7\%$$

$$= \frac{7\%}{1.482}$$

$$= \frac{1.071}{1.482}$$

Example 2 - residents

$$N=400, n=5$$

•		Block 1	Block 2	Block 3	Block 4	Block 5	total	s_t^2
Mi	# of Adults	10=M,	15 M2	18	22	17	82	19.3
	Total Income	1100	1020	972	704	714	4510	33144
	# Dems	8	5	7	15	3	38	20.8
								

Assume you don't know M_0 . Estimate/SE the proportion of adults who are Democrats.

SE(
$$\hat{p}_r$$
)= $\left(1-\frac{5}{400}\right)\frac{1}{5(M)^2} \times S_e^2$ = .108
 $M = \frac{2Mi}{5} = \frac{82}{5} = .16.4$
 $S_e^2 = \frac{1}{5-1} \sum_{s=1}^{2} \left(\frac{1}{5} - \hat{p}_r M_i\right)^2$
 $= \frac{1}{4} \left(\left(8 - \left(\frac{38}{82}\right)(0)\right)^2 + ...$
 $= 15.955$
Ratio Biased 46%, SE ~ 11%

27 / 27