Université d'Évry Val d'Essonne 2011-2012

M54 algèbre et arithmétique 2

Devoir surveillé

Cours autorisé; durée: 1h30

Exercice 1. On considère les systèmes de congruences suivants.

$$(S) \begin{cases} 5x = 3 \mod 6 \\ 3x = 3 \mod 7 \\ 4x = 4 \mod 32 \end{cases}$$

$$(S_1) \begin{cases} x = 3 \mod 6 \\ x = 1 \mod 7 \\ x = 1 \mod 8 \end{cases}$$

$$(S_2) \begin{cases} x = 15 \mod 42 \\ x = 1 \mod 8 \end{cases}$$

- 1. Montrer que (S) est équivalent à (S_1) .
- 2. Montrer que (S_1) est équivalent à (S_2) .
- 3. En déduire l'ensemble des solutions de (S) dans \mathbb{Z} .

Exercice 2. On note $\mathbf{F}_2 = \mathbf{Z}/2\mathbf{Z}$ et $A = \mathbf{F}_2[X]/(X^2+1)$.

- 1. Écrire la liste complète des polynômes de degré 0 ou 1 dans $\mathbf{F}_2[X]$.
- 2. En déduire que $A = \{0, 1, i, i+1\}$ où l'on a noté i l'image de X dans A.
- 3. Dresser les tables d'addition et de multiplication de A.
- 4. Dire si A est un anneau intègre et si c'est un corps.
- 5. Résoudre l'équation $x^2 = 1$ dans A.
- 6. Résoudre l'équation $x^2 = 1$ dans \mathbf{F}_2^2 .
- 7. En déduire que A n'est pas isomorphe à \mathbf{F}_2^2 .

Exercice 3. Soient E un ensemble ayant au moins 2 éléments, A un anneau non nul, et \mathcal{F} l'ensemble des fonctions de E dans A.

- 1. Expliquer brièvement pourquoi \mathcal{F} est un anneau. Est-il intègre? Est-ce un corps?
- 2. Pour toute partie X de E, on note I_X l'ensemble des fonctions qui s'annulent identiquement sur E, autrement dit

$$I_X = \{ f \in \mathcal{F} \text{ tel que } f(x) = 0 \quad \forall x \in X \} .$$

Montrer que I_X est un idéal de \mathcal{F} .

3. Calculer I_{\emptyset} et I_E .

Désormais X et Y désignent deux parties de E.

- 4. Monter que $I_X \cap I_Y = I_{X \cup Y}$.
- 5. Monter que $I_X \subset I_Y \Leftrightarrow X \supset Y$.
- 6. En déduire que $I_X + I_Y \subset I_{X \cap Y}$.
- 7. Soit $f \in I_{X \cap Y}$. On définit une fonction g par : g(x) = f(x) si $x \in X \setminus Y$ et g(x) = 0 sinon. Montrer que $g \in I_Y$ et $f g \in I_X$.
- 8. En déduire que $I_X + I_Y = I_{X \cap Y}$.