A. Informacje o zespole realizującym ćwiczenie

Nazwa przedmiotu:	Automatyka pojazdowa
Nazwa ćwiczenia:	Model kinematyki samochodu
Data ćwiczenia:	2022-03-31
Czas ćwiczenia:	15:00– 16:30
Zespół realizujący ćwiczenie:	Błażej SzczurJakub SzczypekJulita Wójcik

B. Sformułowanie problemu

Celem zajęć jest budowa modelu kinematyki dla określonego typu pojazdu oraz jego symulacja komputerowa. Należy zaimplementować model kinematyki bicycle model na podstawie równań zawartych w instrukcji. Do numerycznego rozwiązywania równań różniczkowych należy wykorzystać stało krokowy algorytm Rungego-Kutty zaimplementowany funkcji rk45. Ostatnim etapem problemu jest symulacyjne badanie modelu kinematycznego dla czterech pojazdów o różnych długościach oraz dla trzech wariantów położenia punktu C, zmieniając przy tym parametry takie jak kąt skręcenia osi przedniej i tylnej, czas i prędkość. Wykresy powinny mieć odpowiedni tytuł, etykiety osi oraz legende.

C. Sposób rozwiązania problemu

Zaimplementowano model kinematyki bicycle model dany równaniami w postaci funkcji kinematicBicycleModel przyjmującej argumenty wejściowe: t – punkty czasowe dla rozwiązania, x – wyznaczone wartości rozwiązywanego układu, u – wektor sterowań oraz l_f i l_r - długości AC i BC. Wielkościami sterującymi są : kąt skręcenia osi przedniej, osi tylnej oraz wartość przyśpieszenia a. Funkcja zwraca wektor rozwiązań układu równań różniczkowych.

Zaimplementowane równania modelu rozwiązano numerycznie z wykorzystaniem funkcji rk45, pamiętając O prawidłowym wywołaniu funkcji, tj. [t,x]=rk45[x0,u,h,dxModel], gdzie dxModel do uchwyt do funkcji kinematicBicycleModel

Część symulacyjną podzielono na 6 sekcji - w każdej sekcji w pętli iterującej po zadanych długościach, definiowano odpowiednie parametry zadane w instrukcji, zamieniano stopnie na radiany. Dla przypadków czterech zmian kąta skręcenia wykorzystano funkcję sign(), dla funkcji okresowej, która co dany okres przyjmowała wartości przeciwnego znaku (np. sinus). Dla 3 zadanych położeń punktu C rozwiązywano układ równań, 3 zestawy rozwiązań przedstawiano na wspólnym wykresie, który opisano tytułem, legendą, etykietami oś.

```
function [result] = kinematicBicycleModel(t, x, u, lr, lf)
sigma_r = u(2); sigma_f = u(1); a = u(3); psi = x(3); v = x(4);
beta = atan((lf*tan(sigma_r) + lr*tan(sigma_f))/(lf + lr));

xdt = v * cos(psi + beta);
ydt = v * sin(psi + beta);
psidt = ((v * cos(beta))/(lf + lr))*(tan(sigma_f) - tan(sigma_r));
vdt = a;

result = [xdt, ydt, psidt, vdt];
end
```

Rys.1 Zaimplementowana funkcja kinematicBicycleModel

D. Wyniki

E. Wnioski

- Przy tym samym zestawie parametrów dłuższe auto zatacza okrąg o większym promieniu.
- Przy kącie skręcenia osi przedniej, zadanego funkcją od czasu t, dłuższe auto osiąga mniejsze położenie punktu C niż krótsze w tym samym czasie t.
- Przy czterokrotnej zmianie kąta skręcenie, najkrótszy pojazd zatacza okręgi, natomiast najdłuższy wykonuje powtarzalną trajektorię w postaci przypominającej łuk
- W ramach ćwiczenia zapoznano się z jednym z przykładowych modeli kinematyki pojazdu. Zmiana parametrów pozwoliła na obserwację ich wpływu na trajektorię poszczególnych osi.
- Utrwalono sposoby rozwiązywania układów równań różniczkowych w środowisku Matlab.