Cotas superiores para o número de dominação de grafos

Thiago Santiago de Matos Bacharelado em Matemática Bolsista PIBIC-CNPq Orientadora: Márcia Rosana Cerioli

25 Setembro 2025

Definições básicas

$$G = (V, E)$$
 é um **grafo**, se

V: Conjunto finito e não vazio

E: Conjunto de pares não ordenados de elementos distintos de V.

Dado $v \in V$, a vizinhança

Aberta de v: $N(v) = \{y \in V : vy \in E\}$

Fechada de v: $N[v] = \{v\} \cup N(v)$

Dominação

 $D \subseteq V$ é **conjunto dominante** de G se todo vértice de $V \setminus D$ tem um vizinho em D.

Número de dominação $\gamma(G)$: A cardinalidade mínima de um conjunto dominante de G.

Conjunto- γ **ou** γ **-set:** Conjunto dominante de cardinalidade $\gamma(G)$.

Dominação múltipla

 $D \subseteq V$ é **conjunto** k-**dominante** se $\forall v \in V$, $|N[v] \cap D| \ge k$. Harary e Haynes, 2000.

 $\gamma_{\times k}(G)$ é o número de k-dominação.

Grafos no geral

 W_n $\gamma = \lceil \frac{n}{3} \rceil$ $\gamma = 1$ $\gamma = 3$ $\gamma = 2$ $\gamma = 3$ γ

$$\gamma = 3$$
 $\gamma_{\times 2} = 6$

Grafos no geral

G com n vértices:

$$\gamma(G) \leq n - \Delta(G)$$

G sem vértices isolados:

$$\gamma(G) \leq \alpha'(G)$$

$$\gamma(G) \leq \frac{n}{2}$$

Determinar se um grafo possui um conjunto k-dominante de tamanho t ou menor é NP-completo. [2]

Classes estudadas

Árvores:

Grafo conexo sem ciclos.

Outerplanares Maximais (MOG):

Grafo plano e com todos os vértices na borda exterior da região desenhada, maximal em arestas.

Tokunaga, 2013. Seja *G MOG* de tamanho $n \ge 3$, com k vértices de grau 2. $\gamma(G) \le \lfloor \frac{n+k}{4} \rfloor$.

$$n = 7, k = 3$$

 $\gamma(G) \leq \lfloor \frac{7+3}{4} \rfloor = 2.$

Lema 1. Todo *MOG* pode ser 4-colorido de forma que todo 4-ciclo contenha todas as cores.

Prova. Todo MOG tem pelo menos um vértice v de grau 2, e G-v ainda é MOG. Seja C o único 4-ciclo que contém $v \in V(G)$ de grau 2. Por indução, podemos 4-colorir G-v e então atribuímos a v a cor não presente em C.

Lema 2. Seja G MOG 4-colorido tal qual lema 1, e seja $R \subset V(G)$ contendo todos os vértices de uma cor dada. R domina todos os vértices de G com grau maior que 2.

Prova. Sejam $v \in V$ com grau maior que 2, e r, s, t três vértices consecutivos em N(v), nesta ordem. vrst forma um 4-ciclo, um destes vértices está em R, i.e. $\{v\}$ é dominado por R.

Prova teorema.

Escolhendo uma cor adequada $|R| \leq \lfloor \frac{|V'|}{4} \rfloor = \lfloor \frac{n+k}{4} \rfloor$. Onde $\gamma(G) \leq |R|$.

Resultados em árvores

Cabrera-Martínez, 2024. $\gamma(T) \leq \frac{n(T) + |S(T)| - |SL(T)|}{3} - \frac{|L_s(T)| - |S_s(T)|}{3}$.

Resultados em árvores

Boyer, 2024. Se uma árvore T tem um único conjunto γ , então existe um emparelhamento M em T tal que $\gamma(T-M)>\frac{3}{2}\gamma(T)$.

Harary e Haynes, 2000. Se existem dois conjuntos γ disjuntos em G então $\gamma_{\times 2}(G) \leq 2\gamma(G)$.

Harary e Haynes, 2000. Se existem dois conjuntos γ disjuntos em G então $\gamma_{\times 2}(G) \leq 2\gamma(G)$.

Pergunta 1. Vale a volta?

 γ : O

 $\gamma_{ imes 2}$:

Pergunta 2. Em *MOGs*, sempre existe um conjunto $\gamma_{\times 2}$ que contenha um conjunto γ ?

Pergunta 3. Em *MOGs*, daados conjuntos $\gamma \subset \gamma_{\times 2}$. É possível usar $\gamma_{\times 2} \setminus \gamma$ para construir outro conjunto γ disjunto do primeiro?

Referências

- [1] F. Harary e T. W. Haynes. Double domination in graphs. *Ars Combinatoria*, **55** (2000), 201–213.
- [2] M. A. Henning. Bounds on domination parameters in graphs: a brief survey. *Discussiones Mathematicae Graph Theory*, **42**(3) (2022), 665–708.
- [3] M. R. Garey e D. S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W. H. Freeman and Company, 1979.
- [4] S. Tokunaga. Dominating sets of maximal outerplanar graphs. *Discrete Appl. Math.*, **161** (2013). 3097–3099.
- [5] A. Cabrera-Martínez. An improved upper bound on the domination number of a tree. *Discrete Appl. Math.*, **343** (2024), 44–48.
- [6] G. Boyer. Domination in graphs and the removal of a matching. Master's Thesis, Clemson University, 2024. TigerPrints Repository.