Neural Architecture Search Basics

Shusen Wang

Parameters

• Hyper-parameters

CNN Architectures

Architectural hyper-parameters of a CNN include

number of filters, size of filters, and stride in each conv layer,

• width of each dense layer.

CNN Architectures

- Architectural hyper-parameters of a CNN include
 - numbers of conv and dense layers,
 - number of filters, size of filters, and stride in each conv layer,
 - width of each dense layer.

- Popular CNN architectures are manually designed.
 - E.g., ResNet, MobileNet, etc.
 - Manually tuning the architectural hyper-parameters.

CNN Architectures

Neural Architecture Search (NAS)

Definition: Neural Architecture Search (NAS).

Find the architecture that leads to the best validation accuracy (or other metrics such as efficiency.)

- Example: ResNet has better accuracy than VGG.
- Example: MobileNet is more efficient than ResNet, although MobileNet has lower accuracy.

Hyper-parameter Types	Candidates		
# of filters	{24, 36, 48, 64}		
size of filters	$\{3\times3, 5\times5, 7\times7\}$		
stride	{1, 2}		

```
# of filters ∈ { 10, 11, 12, 13, ..., 98, 99, 100 }
```

Hyper-parameter Types	Candidates		
# of filters	{24, 36, 48, 64}		
size of filters	$\{3\times3, 5\times5, 7\times7\}$		
stride	{1, 2}		

Hyper-parameter Types	Candidates		
# of filters	{24, 36, 48, 64}		
size of filters	$\{3\times3, 5\times5, 7\times7\}$		
stride	{1, 2}		

Search space: The set containing all the possible architectures.

- We want to build a CNN with 20 Conv layers.
- Search space:

$${24, 36, 48, 64}^{20} \times {3\times 3, 5\times 5, 7\times 7}^{20} \times {1, 2}^{20}$$

Hyper-parameter Types	Candidates		
# of filters	{24, 36, 48, 64}		
size of filters	$\{3\times3, 5\times5, 7\times7\}$		
stride	{1, 2}		

Search space: The set containing all the possible architectures.

- We want to build a CNN with 20 Conv layers.
- Search space:

$${24,36,48,64}^{20} \times {3\times3,5\times5,7\times7}^{20} \times {1,2}^{20}$$

• Size of search space (i.e., number of possible architectures):

Hyper-parameter Types	Candidates		
# of filters	{24, 36, 48, 64}		
size of filters	$\{3\times3, 5\times5, 7\times7\}$		
stride	{1, 2}		

Search space: The set containing all the possible architectures.

- We want to build a CNN with 20 Conv layers.
- Search space:

$${24,36,48,64}^{20} \times {3\times3,5\times5,7\times7}^{20} \times {1,2}^{20}$$

• Size of search space (i.e., number of possible architectures):

$$(4\times3\times2)^{20} = 4\times10^{27}$$
.

Outcome of NAS?

• For example, this is an outcome of NAS:

	Layer 1	Layer 2	•••	Layer 20
# of filters	24	48	•••	64
Size of filters	5×5	3×3	•••	3×3
Stride	1	1	•••	2

Baseline: Random Search

Baseline: Random Search

Challenges in NAS

Challenge 1: Each trial is expensive.

 Training a CNN from scratch takes hours or days, if a single GPU is used.

Challenge 2: The search space is too big.

• Number of possible architectures:

$$(4\times3\times2)^{20} = 4\times10^{27}$$
.

Thank You!