# **Lecture 01b - Introduction**

**ENVX2001 Applied Statistical Methods** 

Dr. Januar Harianto

The University of Sydney

Feb 2024



### **Outline**

- Download PDF
- Samples, populations and study design
- Designs: why do we care?
- Mean and standard deviation
- The sampling distribution
- Central limit theorem

# **Download PDF**

Click above to access a .pdf version of this presentation.

Otherwise, continue navigating through the slides.

# Samples, populations and study design

"To call in a statistician after the experiment has been done may be no more than asking him to perform a postmortem examination: he may be able to say what the experiment died of."

Sir Ronald Fisher



#### Revision

- **Population**: the entire group of individuals or instances about whom we want to draw conclusions.
- **Sample**: a *subset* of the population.

#### **Parameter**

- A numerical **measure** that describes an aspect of a population.
- Not known (unless we sample the entire population), therefore we estimate them using a sample statistic.
- What information does the *sample statistic* give about the *population parameter*, and how reliable is that information?



#### Confused?

Visit the ENVX Resources organisation on GitHub.

- Probability distributions (ENVX1002) 2024 version
- Sampling distributions (ENVX1002) 2024 version



Tip

You will explore more experimental design principles next week, and in Module 2.

# Designs: why do we care?

(On a failed experiment)

That is not an experiment you have there, that is an experience.

Sir Ronald Fisher



# **Measure everything?**

Why not measure every individual in a population, instead of designing a sampling strategy?

- **Impractical** to measure every individual in a population, and some populations are *infinite* practically impossible to measure all.
- Costly to measure every individual in a population time, money, resources.
- **Destructive** in many biological cases e.g. to measure the age of a plant, you may have to cut it down, so you want to respect the loss of life.

#### !mportant

Importantly, sampling from a population – when done correctly – can give a **good estimate of the population parameter**, give or take some *uncertainty*. Apart from a census study, there should be no reason to measure every individual in a population.



# Sampling designs

Can be done in two general ways:

- 1. Observational study
- 2. Controlled experiment

When designed correctly, both can give us a good estimate of the population parameter while saving time and resources.

#### Considerations

- Samples should be **representative** of the population and **randomly** selected.
- Bias can be introduced if the sampling design is not carefully considered.
- Confounding variables can also affect the results.

We will explore these concepts in more detail over the next few weeks.

# Observational study vs. controlled experiment

| Aspect      | Observational study                                                                | Controlled experiment                                                 |
|-------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Control     | No control over the variables of interest - <b>Mensurative</b> and <b>Absolute</b> | Control over the variables of interest - Comparative and Manipulative |
| Causation   | Cannot establish causation, but perhaps association                                | Can establish causation                                               |
| Feasibility | Can be done in many cases                                                          | May be destructive and cannot always be done                          |



### Other designs exist

- **Theoretical models** (e.g. mathematical models): useful for understanding the system, often used in ecology and epidemiology. No data collection.
- **Simulation studies**: useful for figuring out experimental design and understanding the system. Some data collection may be involved to inform the model.
- Case studies: Similar to observational studies, but often with a single case! Useful for understanding a unique situation, often used in medicine and psychology. No control over the variables of interest and sometimes no statistical inference is made.



# Soil carbon



#### Soil carbon



#### What is the best way to sample?

- Sequestering carbon in soil is a potential way to mitigate climate change, and provides nutrients and resilience to crops. Worth \$50/tonne if measured.
- Collecting soil samples is costly and time-consuming, about \$100/sample.
- We want a way to estimate the soil carbon content in a large area some kind of **summary statistic**.



# **Summary statistics**

#### **Central tendency**

- **Mean**: the average of the data.
- Median: the middle value of the data.
- **Mode**: the most frequent value in the data.

#### **Variability**

- Range: the difference between the largest and smallest value.
- Interquartile range: the difference between the 75th and 25th percentile.
- Variance: the average of the squared differences from the mean.
- Standard deviation: the square root of the variance.

# Mean and standard deviation

Statistics always remind me of the fellow who drowned in a river whose average depth was only three feet (~0.9 m).

- Woody Hayes, American football coach



### Mean and standard deviation

- The most *common* measures of central tendency and variability.
- Works well for **symmetric** and **unimodal** distributions, therefore the assumption is that the data is normally distributed.
- ► Code

#### **Arithmetric mean**

Sum of all the values, divided by the number of values.

#### **Population mean**

If we measure the entire population, the population mean  $\mu$  is:

$$\mu = rac{\sum_{i=1}^{N} y_i}{N}$$

where  $y_i$  is the ith observation and N is the number of individuals in the population.

#### Sample mean

Sample mean is based on the same principle, but we use n instead of N and  $ar{y}$  instead of  $\mu$ .

$$ar{y} = rac{\sum_{i=1}^n y_i}{n}$$

where  $y_i$  is the *i*th observation and n is the number of sample observations.

### **Variance**

The average of the squared differences from the mean.

#### **Population variance:**

$$\sigma^2 = rac{\sum_{i=1}^N (y_i - \mu)^2}{N}$$

#### Sample variance

$$s^2 = rac{\sum_{i=1}^n (y_i - ar{y})^2}{n-1}$$

### Standard deviation

The square root of the variance.

#### **Population standard deviation**

$$\sigma = \sqrt{\sigma^2} = \sqrt{rac{\sum_{i=1}^N (y_i - \mu)^2}{N}}$$

#### Sample standard deviation

$$s=\sqrt{s^2}=\sqrt{rac{\sum_{i=1}^n(y_i-ar{y})^2}{n-1}}$$

# Why n-1?

- The sample variance and standard deviation calculations use n-1 in the denominator, not n.
- This is called Bessel's correction.
- It is used to correct the bias in the estimation of the population variance from a sample, as n number of observations have n-1 independent residuals.
  - You will learn more about this and degrees of freedom in the next module.

#### Soil carbon

**Sampling design**: Soil carbon content was measured at 7 locations across the area. The amount at each location was 48, 56, 90, 78, 86, 71, 42 tonnes per hectare (t/ha).

```
1 soil <- c(48, 56, 90, 78, 86, 71, 42)
2 soil
```

#### Calculating mean and standard deviation

```
1 mean(soil)

[1] 67.28571

1 sd(soil)

[1] 18.8566
```



What do these numbers tell us? How confident are we that they represent the entire area?



# The sampling distribution



#### **Distributions**

- The **population distribution** is the distribution of all the individuals in the population.
- From the population distribution, we can sample it to get a **sample distribution**.
- If we summarise the sample distribution, we get a single value the sample statistic.
- The sample statistic is part of a **sampling distribution**, based on the idea that given unlimited resources, we could sample the population many times and calculate the sample statistic each time.

#### **Example**

- We want to measure the mean height of trees in a forest, which contains 1000 trees. **1000 possible height values** make up the population distribution.
- We can't measure all the trees, so we take a sample of 100 trees and calculate the average height. **100 height values** make up the sample distribution.
- The mean height of the 100 trees is calculated. This is the **sample statistic** a single value for the sample.
- To make up the **sampling distribution**, we could repeat the process of taking a sample of 100 trees and calculating the mean height many times...



### **Distributions - visualised**



Figure 1: Population, sample and sampling distributions. Source.



# How can distributions help us answer the question?

What information does the *sample statistic* give about the *population parameter*, and how reliable is that information?

We need to standardise the sample statistic to the *number of observations* in the sample.

#### Standard error

$$SE = rac{s}{\sqrt{n}}$$

where s is the sample standard deviation and n is the number of observations in the sample.

- The standard deviation value is *standardised* to the number of observations in the sample.
- Tells us how much the sample statistic varies from sample to sample, i.e. how well we know the mean.
- If standard error is "small", we are more confident in the sample statistic more on this next week.

# **Effect of sample size**

▶ Code



 Increased sample size leads to a more accurate estimate of the population mean, reflected by the narrower distribution of the sample mean, which is captured by the standard error.



# **Effect of variability**

► Code



• Increased variability leads to a wider distribution of the sample mean (i.e. less precision), which is *also* reflected by the **standard error**.



# **Central limit theorem**

I know of scarcely anything so apt to impress the imagination as the **wonderful form of cosmic order** expressed by the Central Limit Theorem. The law would have been personified by the Greeks and deified, if they had known of it "

Sir Francis Galton, 1889, Natural Inheritance\* (emphasis added)



#### **CLT**

- A fundamental theorem in statistics.
- Regardless of the shape of the population distribution, the sampling distribution of the **sample mean** will be approximately normally distributed **if the sample size is large enough**.
- Because of this, we can make predictions about the population by assuming that the sampling distribution is normally distributed a core assumption in many statistical tests.

# **Example**

```
1 set.seed(239)
 2 library(ggplot2)
 3 library(dplyr)
 4 # Generate a skewed distribution
 5 skewed <- tibble(</pre>
       x = rgamma(1000, shape = 2, scale)
   # plot in ggplot2
  ggplot(data = skewed, aes(x = x)) +
       geom histogram(
11
           fill = "orangered",
12
           alpha = 0.5, bins = 50
13
14
       ) +
       xlab("Height (m)") +
15
16
       theme bw()
```



- Skewed population distribution for tree heights.
- We want to estimate the mean height of the trees in the forest.

# 1 sample (no summary statistic)

```
1 skewed >
       infer::rep sample n(
           size = 1,
           reps = 1000
 5
       group by(replicate) |>
       summarise(xbar = mean(x)) |>
       ggplot(aes(x = xbar)) +
       geom density(
           fill = "orangered",
10
11
           alpha = 0.5, bins = 50
12
       ) +
13
       xlim(0, 10) +
       xlab("Mean height (m)") +
14
15
       theme bw()
```



• A single random sample per calculated mean, repeated 1000 times, gives us a distribution of sample means that will likely mirrors the population distribution.



```
1 skewed >
       infer::rep sample n(
           size = 2,
           reps = 1000
 5
 6
       group by(replicate) |>
       summarise(xbar = mean(x)) |>
       ggplot(aes(x = xbar)) +
       geom density(
           fill = "orangered",
10
11
           alpha = 0.5, bins = 50
12
       ) +
       xlim(0, 10) +
13
       xlab("Mean height (m)") +
14
15
       theme bw()
```



- Two random samples per calculated mean, repeated 1000 times.
- The distribution of sample means is starting to look more like a normal distribution.

```
1 skewed >
       infer::rep sample n(
           size = 5,
           reps = 1000
 5
       group by(replicate) |>
       summarise(xbar = mean(x)) |>
       ggplot(aes(x = xbar)) +
       geom density(
           fill = "orangered",
10
11
           alpha = 0.5, bins = 50
12
       ) +
       xlim(0, 10) +
13
14
       xlab("Mean height (m)") +
15
       theme bw()
```



- Five random samples per calculated mean, repeated 1000 times.
- Not only is the distribution of sample means starting to look more like a normal distribution, but the standard error is also getting smaller.

```
1 skewed >
       infer::rep sample n(
           size = 30,
           reps = 1000
       ) |>
 5
       group by(replicate) |>
       summarise(xbar = mean(x)) |>
       ggplot(aes(x = xbar)) +
       geom density(
           fill = "orangered",
10
11
           alpha = 0.5, bins = 50
12
       ) +
       xlim(0, 10) +
13
       xlab("Mean height (m)") +
14
15
       theme bw()
```



- Thirty random samples per calculated mean, repeated 1000 times.
- The distribution of sample means is very close to a normal distribution.

```
1 skewed |>
       infer::rep sample n(
           size = 50,
           reps = 1000
       ) |>
       group by(replicate) >
       summarise(xbar = mean(x)) |>
       ggplot(aes(x = xbar)) +
       geom density(
           fill = "orangered",
10
11
           alpha = 0.5, bins = 50
12
       ) +
13
       xlim(0, 10) +
       xlab("Mean height (m)") +
14
15
       theme bw()
```



- Fifty random samples per calculated mean, repeated 1000 times.
- How many samples is enough?

# How many samples is enough?

- If n is large enough, the sampling distribution of the sample mean will be approximately normally distributed allowing us to use the normal distribution to make inferences about the population!
- How large is large enough?
  - Rule of thumb:  $n \geq 30$  is often used, but this is not a hard and fast rule.
  - **Depends on the population distribution**: if the population distribution is normal, the sampling distribution will be normal for any n.
  - **Depends on the variability**: if the population distribution is highly variable, a larger n is needed to get a normal sampling distribution.



# **Thanks**

#### **Questions?**

This presentation is based on the SOLES Quarto reveal.js template and is licensed under a Creative Commons Attribution 4.0 International License