

5G New Radio Design

Expanding the human possibilities of technology to make our lives better

Fall VTC-2017, Panel

September 25th, 2017

Dr. Amitabha Ghosh

Head of Small Cell Research, Nokia Fellow, IEEE Fellow

Nokia Bell Labs

© Nokia Networks 2017

3GPP 5G NR agreed timeline: No changes since last time

- 5G NR timeline was kept unchanged
- RAN#77 (Sept.2017) agreed further feature prioritization for RAN1, RAN2 and RAN4 specfication work to keep the very challenging 5G NR time line

Release 16 study items on hold until Dec. 2017 to prioritize Release 15 5G NR work item → technical work to start 1Q2018

3GPP Release 15 work and study items: What else from January onwards?

Rel-15 Work item

New Radio Access
Technology

Studies on-going

Separation of CP and UP for split option 2

CU-DU lower layer split for New Radio

Test methods for New Radio

Self-evaluation towards IMT-2020 submission

Studies toward Rel-16 on hold until Dec. 2017

Non-orthogonal multiple access

Non-terrestrial networks*

EV2V evaluation methodology

Integrated Access Backhaul

Unlicensed spectrum

Additional New Work Items and Studies targeting for Rel-16 are still expected to be approved in December 2017 3GPP RAN plenary

Physical Channels & Physical Signals

PDSCH

DL shared channel

PBCH

Broadcast channel

PDCCH

DL control channel

DL Physical Signals

Demodulation Ref (DMRS)
Phase-tracking Ref (PT-RS)
Ch State Inf Ref (CSI-RS)
Primary Sync (PSS)
Secondary Sync (SSS)

User Equipment

GNodeB

PUSCH

UL shared channel

PUCCH

UL control channel

PRACH

Random access channel

UL Physical Signals

Demodulation Ref (DMRS)
Phase-tracking Ref (PTRS)
Sounding Ref (SRS)

5G NR Numerology : Overview

Numerologies with normal CP (subframe = 1msec)

		S	Slot Configuration 0	guration	10	
Subcarrier spacing [kHz]	15	30	60	120	240*	480**
Symbol duration [us]	66.7	33.3	16.6	8.33	4.17	2.08
Nominal CP [us]	4.7	2.41	1.205	0.60	0.30	0.15
Nominal max BW [MHz]	49.5	99	198	396	397.4	397.4
Max FFT size	4096	4096	4096	4096	2048	1024
Min scheduling interval (symbols)	14	14	14	14	14	14
Min scheduling interval (slots)	_	_	_	_	_	<u></u>
Min scheduling interval (ms)	1.0	0.5	0.25	0.125	0.0625 0.0312	0.0312

*SS Block only

**Not supported

Numerologies with extended CP (subframe = 1msec)

60	Subcarrier spacing [kHz]
16.6	Symbol Duration[us]
4.2	Ext CP[us]
198	Nom max BW
4096	FFT Size
12	Sched Interval (sym)
_	Sched Interval (slot)
0.25	Sched Interval (ms)

Frame Structure (120 KHz SC) & Modulation

- 80 slots/10 ms frame
- 14 OFDM symbols/slot
- 24-275 PRBs/slot
- 12 subcarriers/PRB
- Occupied BW
- Minm = $24 \times 12 \times 120 = 34.56$ MHz
- Maxm = 275x12x120 = 396 MHz

256QAM	64QAM	16QAM	QPSK		π/2-BPSK	Modulation scheme
UL/DL	UL/DL	UL/DL	UL/DL	precoding only	UL only, In combination with transform	NL/DL

∞

© Nokia 2017

Downlink Channels & Signals PDSCH and PDCCH

	PDSCH (5G)	PDSCH (LTE)	PDCCH (5G)	PDCCH (LTE)
Purpose	Transmit DL Data	Transmit DL Data	Transmit DL Control	Transmit DL Control
Waveform	OFDM	OFDM	OFDM	OFDM
Bandwidth	Numerology Dependent	Max: 1.4 / 3 / 5 / 10 / 15 / 20 MHz	Flexible, Numerology Dependent	Fixed: 1.4 / 3 / 5 / 10 / 15 / 20 MHz
Reference signals	UE-specific	Cell specific or UE-specific (Release 10)		
Phase noise compensation	Yes	No		
Modulation	Up to 256QAM	Up to 256QAM	QPSK	QPSK
Coding scheme	LDPC	Turbo	Polar	TBCC

(

Uplink Channels & Signals PUSCH — Uplink shared channel

	PUSCH (5G)	PUSCH (LTE)
Purpose	Used to transmit uplink data and control information	Used to transmit uplink data and control information
Waveform	OFDM/SC-FDMA (Optional)	SC-FDMA
Bandwidth	See numerology	Max: 1.4 / 3 / 5 / 10 / 15 / 20 MHz
Phase noise compensation	Yes	No
Modulation	Up to 256 QAM & π/2-BPSK	Up to 64QAM
Coding scheme	LDPC	Turbo

MIMO in 3GPP

Release 8	Release 9	Release 10	Release 11
4x4MIMO4x2MIMO8RX uplinkUplink CRAN	• 8TX TM8	• 8TX TM9	 Downlink CoMP (TM10)
Release 12	Release 13	Release 14	Release 15+
Downlink eCoMPNew 4TX codebook	 Massive MIMO 16TX 	 Massive MIMO 32TX 	 5G massive MIMO 64TX+

Massive MIMO in 3GPP New Radio – Beam Based Air Interface

Beamformed Control Channels

Beam Management

- Acquisition and maintenance of a set of beams for TX and RX at base and UE
- CoMP is built in

12

© Nokia 2017

Beam Management and CSI

Downlink Codebook Overview

Type I Codebooks:

- Standard resolution CSI feedback
- Single panel and multi-panel

Type II Codebooks:

- High resolution CSI feedback targeting MU-MIMO
- Non-precoded and precoded CSI-RS

Designed for cross-polar antennas

Supported Antenna Ports

					O)		
	Ports	2	4	00	12	16	32
Тур	Single Panel	<	<	<	<	<	<
Type I	Multi- Panel			<		<	<
Тур	Non- precoded CSI-RS		<	<	<	<	<
Type II	Precoded CSI-RS		<	<	<	<	<

CSI Feedback

DL Codebook Overhead Example

L=4: 7/3 Mode 2: 10/3	L=2: 9/1 Mode 1: 10/1	Single Panel Multi-Panel	Type I
/3 L=4:	/1 L=2:	N _O	
59/28-48	31/12-24	n-precoded	Type II
L=4:	L=2:	Pre	=
51/28-48	25/12-24	Precoded	

M/N indicates M wideband bits and N bits per subband (Type II entries indicate the range of possible bits per SB)

- L Number of beams configured in the codebook
- 16 ports, 2 layers assumed
- Single panel and non-precoded: N₁=4, N₂=2
- Multi-panel: 2 panels, N₁=2, N₂=2
- Precoded: Selection sampling factor (d) = 1

5G vs. 4G Capacity per Cell at 2GHz - 16x4 MIMO

LTE 2GHz 750m ISD 16x4 eNB=(1,8,2)

2GHz
20MHz
5.12 bps/Hz
102 Mbps cell
throughput

- significant gains over LTE Codebooks In Full Buffer, NR Codebooks show
- Mean UE throughput: 26%
- Cell edge: 25%

2GHz 750m ISD 16x4 gNB = (1,8,2)

* Includes 20% improvement due to lean carrier in NR

Early 5G use case: Extreme broadband to the home (mmWave)

Tasks Ahead?

Prioritization of essential functionalities for NSA completion

Self Evaluation for IMT-2020 Submission

NR numerologies for sub 6GHz & mmWave

Channel bandwidths for various NR bands?

Massive MIMO: Type of Codebooks supported?

UE capabilities

mmWave: IAB/Deployments, ESA

