FGV EMAp

João Pedro Jerônimo e Arthur Rabello Oliveira

Algebra Linear Numérica

Revisão para A2

Contents

1	Lecture 16 - Estabilidade da Triangularização de Householder	4
	1.1 O Experimento	5
	1.2 Teorema	5
	1.3 Algoritmo para resolver $Ax = b$	6
2	Lecture 17 - Estabilidade da Back Substitution	9
	2.1 Teorema da Estabilidade Retroativa (Backward Stability)	. 10
3	Lecture 18 - Condicionando Problemas de Mínimos Quadrados	. 13
	3.1 O Teorema	. 14
4	Lecture 19 - Estabilidade de Algoritmos de Mínimos Quadrados	. 19
	4.1 Primeira Etapa	
	4.2 Householder	
	4.3 Ortogonalização de Gram-Schmidt	
	4.4 Equações Normais	
	4.5 SVD	
	4.6 Problemas de Mínimos Quadrados com Posto-Incompleto	. 22
5	Lecture 24 - Problemas de Autovalores	. 23
	5.1 Definições	
	5.2 Decomposição em Autovalores	. 24
	5.3 Multiplicidades Algébrica e Geométrica	
	5.4 Transformações Similares	
	5.5 Autovalores e Matrizes Deficientes	. 26
	5.6 Diagonalizabilidade	. 26
	5.7 Determinante e Traço	. 26
	5.8 Diagonalização Unitária	. 26
	5.9 Forma de Schur	. 27
6	Lecture 25 - Algoritmos de Autovalores	. 28
	6.1 Ideia da Iteração de Potência	. 29
	6.2 A ideia dos Algoritmos de Autovalores	. 29
	6.3 Forma de Schur e Diagonalização	. 29
	6.4 As 2 fases do Cálculo de Autovalores, Forma de Hessenberg	. 29
7	Lecture 26 - Redução à forma de Hessenberg	. 30
	7.1 A Redução	. 31
	7.2 Redução à Hessenberg via Householder	. 31
	7.3 Custo Computacional	. 31
	7.4 O Caso Hermitiano	. 31
	7.5 Estabilidade do Algoritmo	. 31
8	Lecture 27 - Quociente de Rayleigh e Iteração Inversa	. 32
	8.1 Restrição à matrizes reais e simétricas	. 33
	8.2 Quociente de Rayleigh	. 33
	8.3 Iteração de Potência com o Quociente de Rayleigh	
	8.4 Iteração Inversa	. 33
9	Lecture 31 - Calculando a SVD	. 34
	9.1 SVD de A via autovalores de $A*A$. 35

Nota: Os **computadores ideais** que mencionaremos, são computadores nos quais o *axioma fundamental* da aritmética de ponto flutuante é satisfeito. Convidamos o leitor a ler sobre isso no resumo anterior (A1), especificamente na **lecture 13**

Esse é um resumo feito por João Pedro Jerônimo (Ciência de Dados) e Arthur Rabello (Matemática Aplicada) com objetivo de traduzir os hieróglifos contidos no livro de <u>Álgebra Linear Numérica do Trefthen e do Bau</u>

1 Lecture 16 - Estabilidade da Triangularização de Ho	nuseholder
1 Lecture 10 - Estabilidade da 111angularização de 110	vuscholuci

Nesse capítulo, a gente tem uma visão mais aprofundada da análise de **erro retroativo** (Backwards Stable). Dando uma breve recapitulada, para mostrar que um algoritmo $\tilde{f}: X \to Y$ é **backwards stable**, você tem que mostrar que, ao aplicar \tilde{f} em uma entrada x, o resultado retornado seria o mesmo que aplicar o problema original $f: X \to Y$ em uma entrada levemente perturbada $x + \Delta x$, de forma que $\Delta x = O(\varepsilon_{\text{machine}})$.

1.1 O Experimento

O livro nos mostra um experimento no matlab para demonstrar a estabilidade em ação e alguns conceitos importantes, irei fazer o mesmo experimento, porém, utilizarei código em python e mostrarei meus resultados aqui.

Primeiro de tudo, mostraremos na prática que o algoritmo de **Householder** é **backwards stable**. Vamos criar uma matriz A com a fatoração QR conhecida, então vamos gerar as matrizes Q e R. Aqui, temos que $\varepsilon_{\rm machine} = 2.220446049250313 \times 10^{-16}$:

```
import numpy as np
                                                                                        Python
     np.random.seed(0) # Ter sempre os mesmos resultados
2
3
     # Crio R triangular superior (50 \times 50)
     R_1 = np.triu(np.random.random_sample(size=(50, 50)))
5
     # Crio a matriz Q a partir de uma matriz aleatória
     Q_1, _ = np.linalg.qr(np.random.random_sample(size=(100, 50)), mode='reduced')
7
     # Crio a minha matriz com fatoração QR conhecida (A = Q_1 R_1)
     A = Q_1 @ R_1
8
9
     # Calculo a fatoração QR de A usando Householer
     Q_2, R_2 = householder_qr(A)
10
```

Sabemos que, por conta de erros de aproximação, a matriz A que temos no código não é **exatamente** igual a que obteríamos se tivéssemos fazendo Q_1R_1 na mão, mas é preciso o suficiente. Podemos ver aqui que elas são diferentes:

```
    CÓDIGO
    Python

    11 print(np.linalg.norm(Q_1 - Q_2))
    1 7.58392

    12 print(np.linalg.norm(R_1 - R_2))
    2 8.75766
```

```
SAÍDA

1 7.58392995752057e-8

2 8.75766271246312e-9
```

Perceba que é um erro muito grande, não é tão próximo de 0 quanto eu gostaria, se eu printasse as matrizes Q_2 e R_2 eu veria que, as entradas que deveriam ser 0, tem erro de magnitude $\approx 10^{17}$. Bem, se ambas tem um erro tão grande, então o resultado da multiplicação delas em comparação com A também vai ser grande, correto?

```
CÓDIGO  

Python

Python

Python

Response Python

Response Python
```

```
SAÍDA
1 3.8022328832723555e-14
```

Veja que, mesmo minhas matrizes Q_2 e R_2 tendo erros bem grandes com relação às matrizes Q_1 e R_2 , conseguimos uma aproximação de A bem precisa com ambas. Vamos agora dar um destaque nessa acurácia de Q_2R_2 :

```
SAÍDA
1 0.05197521348918455
```

Perceba o quão grande é esse erro, é **enorme**, então: Q_2 não é melhor que Q_3 , R_2 não é melhor que R_3 , mas Q_2R_2 é muito mais preciso do que Q_3R_3

1.2 Teorema

Vamos ver que, de fato, o algoritmo de **Householder** é **backwards stable** para toda e qualquer matriz A. Fazendo a análise de backwards stable, nosso resultado precisa ter esse formato aqui:

$$\tilde{Q}\tilde{R} = A + \delta A \tag{1}$$

 $\operatorname{com} \|\delta A\| \ / \ \|A\| = O(\varepsilon_{\operatorname{machine}}).$ Ou seja, calcular a QR de A pelo algoritmo é o mesmo que calcular a QR de $A+\delta A$ da forma matemática. Mas aqui temos uns adendos.

A matriz \tilde{R} é como imaginamos, a matriz triangular superior obtida pelo algoritmo, onde as entradas abaixo de 0 podem não ser exatamente 0, mas **muito próximas**.

Porém, \tilde{Q} não é aproximadamente ortogonal, ela é perfeitamente ortogonal, mas por quê? Pois no algoritmo de Householder, não calculamos essa matriz diretamente, ela fica "implícita" nos cálculos, logo, podemos assumir que ela é perfeitamente ortogonal, já que o computador não a calcula, ou seja, não há erros de arredondamento. Vale lembrar também que \tilde{Q} é definido por:

$$\tilde{Q} = \tilde{Q}_1 \tilde{Q}_2 ... \tilde{Q}_n \tag{2}$$

De forma que \tilde{Q} é perfeitamente unitária e cada matriz \tilde{Q}_j é definida como o refletor de householder no vetor de floating point $\tilde{v_k}$ (Olha a página 73 do livro pra você relembrar direitinho o que é esse vetor $\tilde{v_k}$ no algoritmo). Lembrando que \tilde{Q} é perfeitamente ortogonal, já que eu não calculo ela no computador diretamente, se eu o fizesse, então ela não seria perfeitamente ortogonal, teriam pequenos erros.

Teorema 1.2.1 (Householder's Backwards Stability): Deixe que a fatoração QR de $A \in \mathbb{C}^{m \times n}$ seja dada por A = QR e seja computada pelo algoritmo de **Householder**, o resultado dessa computação são as matrizes \tilde{Q} e \tilde{R} definidas anterioremente. Então temos:

$$\tilde{Q}\tilde{R} = A + \delta A \tag{3}$$

Tal que:

$$\frac{\|\delta A\|}{\|A\|} = O(\varepsilon_{\text{machine}}) \tag{4}$$

para algum $\delta A \in \mathbb{C}^{m \times n}$

1.3 Algoritmo para resolver Ax = b

Vimos que o algoritmo de householder é backwards stable, show! Porém, sabemos que não costumamos fazer essas fatorações só por fazer né, a gente faz pra resolver um sistema Ax=b, ou outros tipos de problemas. Certo, mas, se fizermos um algoritmo que resolve Ax=b usando a fatoração QR obtida com householder, a gente precisa que Q0 e Q1 seja precisa? O bom é que precisamos apenas que Q2 seja precisa! Vamos mostrar isso para a resolução de sistemas Q3 mão singulares.

```
1 function ResolverSistema(A \in \mathbb{C}^{m \times n}, b \in \mathbb{C}^{m \times 1}) {
2 | QR = \text{Householder}(A)
3 | y = Q^*b
4 | x = R^{-1}y
5 | return x
6 }
```

Algoritmo 1: Algoritmo para calcular Ax = b

Esse algoritmo é **backwards stable**, e é bem passo-a-passo já que cada passo dentro do algoritmo é **backwards stable**.

Teorema 1.3.1: O Algoritmo 1 para solucionar Ax = b é backwards stable, satisfazendo

$$(A + \Delta A)\tilde{x} = b \tag{5}$$

com

$$\frac{\|\Delta A\|}{\|A\|} = O(\varepsilon_{\text{machine}}) \tag{6}$$

para algum $\Delta A \in \mathbb{C}^{m \times n}$

Demonstração: Quando computamos \tilde{Q}^*b , por conta de erros de aproximação, não obtemos um vetor y, e sim \tilde{y} . É possível mostrar (Não faremos) que esse vetor \tilde{y} satisfaz:

$$(\tilde{Q} + \delta Q)\tilde{y} = b \tag{7}$$

satisfazendo $\frac{\|\delta Q\|}{\|\tilde{Q}\|} = O(\varepsilon_{\mathrm{machine}})$

Ou seja, só pra esclarecer, aqui (nesse passo de y) a gente ta tratando o problema f de calcular Q^*b , ou seja $f(Q)=Q^*b$, então usamos um algoritmo comum $\tilde{f}(Q)=Q^*b$ (Não matematicamente, mas usando as operações de um computador), daí reescrevemos isso como $\tilde{f}(Q)=(Q+\delta Q)^*b$, por isso podemos reescrever como a equação que falamos anteriormente.

No último passo, a gente usa **back substitution** pra resolver o sistema $x = R^{-1}y$ e esse algoritmo é **backwards stable** (Isso vamos provar na próxima lecture). Então temos que:

$$(\tilde{R} + \delta R)\tilde{x} = \tilde{y} \tag{8}$$

satisfazendo $\frac{\|\delta R\|}{\|\tilde{R}\|} = O(\varepsilon_{\mathrm{machine}})$

Agora podemos ir pro algoritmo em si, temos um problema f(A): Resolver Ax=b, daí usamos $\tilde{f}(A)$: Usando householder, resolve Ax=b. Então, se o algoritmo nos dá as matrizes perturbadas que citei anteriormente $(Q+\delta Q$ e $R+\delta R)$, ao substituir isso por A, eu tenho que ter um resultado $A+\Delta A$ com $\frac{\|\Delta A\|}{\|A\|}=O(\varepsilon_{\mathrm{machine}})$, vamos ver:

$$b = (\tilde{Q} + \delta Q)(\tilde{R} + \delta R)\tilde{x}$$
(9)

$$b = (A + \delta A + \tilde{Q}(\delta R) + (\delta Q)\tilde{R} + (\delta Q)(\delta R))\tilde{x}$$
(10)

$$b = (A + \Delta A)\tilde{x} \Leftrightarrow \Delta A = \delta A + \tilde{Q}(\delta R) + (\delta Q)\tilde{R} + (\delta Q)(\delta R) \tag{11}$$

Como ΔA é a soma de 4 termos, temos que mostrar que cada um desses termos é pequeno com relação a A (Ou seja, mostrar que $\frac{\|X\|}{\|A\|} = O(\varepsilon_{\text{machine}})$ onde X é um dos 4 termos de ΔA).

- δA : Pela própria definição que o algoritmo de householder é backwards stable nós sabemos que δA satisfaz a condição de $O(\varepsilon_{\mathrm{machine}})$
- $(\delta Q)\tilde{R}$:

$$\frac{\|(\delta Q)\tilde{R}\|}{\|A\|} \le \|(\delta Q)\| \frac{\|\tilde{R}\|}{\|A\|} \tag{12}$$

Perceba que

$$\frac{\|\tilde{R}\|}{\|A\|} \le \frac{\|\tilde{Q}^*(A + \delta A)\|}{\|A\|} \le \|\tilde{Q}^*\| \frac{\|A + \delta A\|}{\|A\|} \tag{13}$$

Lembra que, quando trabalhamos com $O(\varepsilon_{\rm machine})$, a gente ta trabalhando com um limite implícito que, no caso, aqui é $\varepsilon_{\rm machine} \to 0$. Ou seja, se temos que $\varepsilon_{\rm machine} \to 0$, o erro de arredondamento diminui cada vez mais, certo? Então $\delta A \to 0$ ou seja:

$$\frac{\|\tilde{R}\|}{\|A\|} = O(1) \tag{14}$$

O que nos indica que

$$\|\delta Q\| \frac{\|\tilde{R}\|}{\|A\|} = O(\varepsilon_{\text{machine}}) \tag{15}$$

• $\tilde{Q}(\delta R)$: Provamos de uma forma similar

$$\frac{\|\tilde{Q}(\delta R)\|}{\|A\|} \le \|\tilde{Q}\| \frac{\|\delta R\|}{\|A\|} = \|\tilde{Q}\| \frac{\|\delta R\|}{\|\tilde{R}\|} \frac{\|\tilde{R}\|}{\|A\|} \le \|\tilde{Q}\| \frac{\|\delta R\|}{\|\tilde{R}\|} = O(\varepsilon_{\text{machine}}) \tag{16}$$

• $(\delta Q)(\delta R)$: Por último:

$$\frac{\|(\delta Q)(\delta R)\|}{\|A\|} \le \|\delta Q\| \frac{\|\delta R\|}{\|A\|} = O(\varepsilon_{\text{machine}}^2)$$
(17)

Ou seja, todos os termos de ΔA são da ordem $O(\varepsilon_{\text{machine}})$, ou seja, provamos que resolver Ax=b usando householder é um algoritmo **backwards stable**. Se a gente junta alguns teoremas e temos que:

Teorema 1.3.2: A solução \tilde{x} computada pelo algoritmo satisfaz:

$$\frac{\|\tilde{x} - x\|}{\|x\|} = O(\kappa(A)\varepsilon_{\text{machine}})$$
(18)

2 Lecture 17 - Estabilidade da Back Substitution

Só para esclarecer, o termo **back substitution** se refere ao algoritmo de resolver um sistema triangular superior

$$\begin{pmatrix} r_{11} & r_{12} & \dots & r_{1m} \\ & r_{22} & \dots & r_{2m} \\ & & \ddots & \vdots \\ & & r_{mm} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

$$(19)$$

E é aquele esquema, a gente vai resolvendo de baixo para cima, o que resulta nesse algoritmo (A gente escreve como uma sequência de fórmulas por conveniência, mas é o mesmo que escrever um loop):

```
1 function BackSubstitution(R \in \mathbb{C}^{m \times m}, b \in \mathbb{C}^{m \times 1}) {
    | x_m = b_m/r_{mm}
        x_{m-1} = (b_{m-1} - x_m r_{m-1,m}) / r_{m-1,m-1}
       x_{m-2} = \left(b_{m-2} - x_{m-1}r_{m-2,m-1} - x_mr_{m-2,m}\right)/r_{m-2,m-2}
\begin{array}{c|c} 5 & \vdots \\ 6 & x_j = \Big(b_j - \sum_{k=j+1}^m x_k r_{jk}\Big)/r_{jj} \\ \hline \\ 7 & \end{array} Algoritmo 2: Algoritmo de Back Substitution
```

2.1 Teorema da Estabilidade Retroativa (Backward Stability)

A gente viu no último tópico (Estabilidade de Householder) que a back substitution era um dos passos para chegar no resultado final, porém, nós apenas assumimos que ela era backward stable, mas a gente não provou isso! Porém, antes de provarmos isso, vamos estabelecer que as subtrações serão feitas da esquerda para a direita (Sim, isso pode influenciar). Mas, como o livro não explica muito bem o porquê de isso influenciar, vou dar uma breve explicação e exemplificação:

Quando realizamos uma sequência de subtrações pela direita, caso os números sejam muito próximos, pode ocorrer o chamado cancelamento catastrófico, que é a perca de muitos dígitos significativos, veja um exemplo:

```
CÓDIGO
                                                                           SAÍDA
                                         Python
1
    a = 1e16
                                                       1 -1.0
2
    b = 1e16
3
    c = 1
    print((a-b)-c)
```

O que parece correto! Mas veja o que acontece se invertermos a ordem e executarmos a-(b-c)

```
CÓDIGO
                                         Python
                                                                           SAÍDA
1
    a = 1e16
                                                       1 0.0
2
    b = 1e16
3
    c = 1
    print(a-(b-c))
```

Veja que houve um problema no arredondamento! Então os sistemas, por convenção, utilizam o esquema de subtrações pela esquerda.

Voltando ao algoritmo de **back substitution**, temos o seguinte teorema:

Teorema 2.1.1: Deixe o Algoritmo 2 ser aplicado a um problema de Rx = b com R triangular superior em um **computador ideal**. Esse algoritmo é **backward stable**, ou seja, a solução \tilde{x} computada satisfaz:

$$(R + \Delta R)\tilde{x} = b \tag{20}$$

para alguma triangular superior $\Delta R \in \mathbb{C}^{m \times m}$ satisfazendo

$$\frac{\|\Delta R\|}{\|R\|} = O(\varepsilon_{\text{machine}}) \tag{21}$$

Demonstração: Essa prova não será muito rigorosa matematicamente, vamos montar a prova para matrizes $1 \times 1, 2 \times 2$ e 3×3 , de forma que o raciocínio que aplicarmos poderá ser aplicado para matrizes de tamanhos maiores.

- 1 \times 1: Nesse caso, R é um único número escalar e, pelo **Algoritmo 2**, temos que:

$$\widetilde{x_1} = b_1 \oplus r_{11} \tag{22}$$

E nós **já sabemos** que essa divisão é backward stable, mas vamos analisar melhor. Queremos manter b fixo, então temos que expressar $\widetilde{x_1}$ como o r_{11} original vezes uma leve perturbação. Expressamos então

$$\widetilde{x_1} = \frac{b_1}{r_{11}} (1 + \varepsilon_1) \tag{23}$$

Se definirmos $\varepsilon_1'=\frac{-\varepsilon_1}{1+\varepsilon_1}$, podemos reescrever a equação assim:

$$\widetilde{x_{1}} = \frac{b_{1}}{r_{11}(1+\varepsilon_{1}')} \Leftrightarrow \widetilde{x_{1}} = \frac{b_{1}}{r_{11}\left(1-\frac{\varepsilon_{1}}{1+\varepsilon_{1}}\right)} \Leftrightarrow \widetilde{x_{1}} = \frac{b_{1}}{r_{11}\frac{1+\varepsilon_{1}-\varepsilon_{1}}{1+\varepsilon_{1}}}$$

$$\Leftrightarrow \widetilde{x_{1}} = \frac{b_{1}}{r_{11}\frac{1}{1+\varepsilon_{1}}} \Leftrightarrow \widetilde{x_{1}} = \frac{b_{1}}{r_{11}}(1+\varepsilon_{1})$$
(24)

Se fizermos a expansão de taylor de ε_1' , conseguimos ver:

$$-\frac{\varepsilon_1}{1+\varepsilon_1} = -\varepsilon_1 + \varepsilon_1^2 - \varepsilon_1^3 + \varepsilon_1^4 - \dots \tag{25}$$

Ou seja, $-\varepsilon_1 + O(\varepsilon_1^2)$, o que mostra que $1 + \varepsilon_1'$ é uma perturbação válida para o teorema da estabilidade backwards, o que nos mostra também que

$$(r_{11} + \delta r_{11})\widetilde{x_1} = b_1 \tag{26}$$

Com

$$\frac{\|\delta r_{11}\|}{\|r_{11}\|} \le \varepsilon_{\text{machine}} + O(\varepsilon_{\text{machine}}^2) \tag{27}$$

 2 × 2: Beleza, no caso 2 × 2, o primeiro passo do algoritmo nós já vimos que é backwards stable, vamos para o segundo passo:

$$\widetilde{x_1} = (b_1 \ominus (\widetilde{x_2} \otimes r_{12})) \oplus r_{22} \tag{28}$$

Ai meu Deus, fórmula grande do djabo :(. Relaxa, vamo transformar em fórmulas normais com umas perturbações pra gente falar de matemática normal né

$$\widetilde{x_1} = \frac{(b_1 - \widetilde{x_2}r_{12}(1 + \varepsilon_2))(1 + \varepsilon_3)}{r_{22}}(1 + \varepsilon_4) \tag{29}$$

Aqui eu não iniciei os epsilons em ε_1 porque eu estou tomando intrínseco que esse ε_1 ta no $\widetilde{x_2}$ que a gente computa antes de computar o $\widetilde{x_1}$ (A gente computa igual o caso 1×1)

Podemos definir $\varepsilon_3'=-rac{\varepsilon_3}{1+\varepsilon_3}$ e $\varepsilon_4'=-rac{\varepsilon_4}{1+\varepsilon_4}$, assim, podemos reescrever:

$$\widetilde{x}_{1} = \frac{b_{1} - \widetilde{x}_{2} r_{12} (1 + \varepsilon_{2})}{r_{22} (1 + \varepsilon_{3}') (1 + \varepsilon_{4}')}$$
(30)

(Mesmo racicocínio que usamos no caso 1×1). A gente viu em alguns exercícios da lista que $(1+O(\varepsilon_{\mathrm{machine}}))(1+O(\varepsilon_{\mathrm{machine}}))=1+O(\varepsilon_{\mathrm{machine}})$, com isso em mente, podemos reescrever a equação como

$$\widetilde{x_1} = \frac{b_1 - \widetilde{x_2} r_{12} (1 + \varepsilon_2)}{r_{22} (1 + 2\varepsilon_5')} \tag{31}$$

Esse $2\varepsilon_5$ se dá pois, como vimos no caso 1×1 :

$$\begin{aligned} 1 + \varepsilon_3' &= 1 - \varepsilon_3 + O(\varepsilon_3^2) \\ 1 + \varepsilon_4' &= 1 - \varepsilon_4 + O(\varepsilon_4^2) \\ \Rightarrow (1 + \varepsilon_3')(1 + \varepsilon_4') &= (1 - \varepsilon_3 + O(\varepsilon_3^2))(1 - \varepsilon_4 + O(\varepsilon_4^2)) \\ \Rightarrow 1 - \varepsilon_4 + O(\varepsilon_4^2) - \varepsilon_3 + \varepsilon_3 \varepsilon_4 - \varepsilon_3 O(\varepsilon_4^2) + O(\varepsilon_3^2) - \varepsilon_4 O(\varepsilon_3^2) + O(\varepsilon_4^2) O(\varepsilon_3^2) \end{aligned}$$

$$(32)$$

Os termos diferentes de 1, ε_3 e ε_4 são irrelevantes, pois são **MUITO** pequenos, o que nos dá

$$1 - \varepsilon_4 - \varepsilon_3 = 1 - 2\varepsilon_5 \tag{33}$$

Voltando ao foco, acabamos de mostrar que, se r_{11} , r_{12} e r_{22} fossem perturbados por fatores $2\varepsilon_5$, ε_2 e ε_1 respectivamente, a conta feita para calcular b_1 , no computador, seria exata. Podemos expressar isso na forma

$$(R + \delta R)\widetilde{x_1} = b_1 \tag{34}$$

De forma que

$$\delta R = \begin{pmatrix} 2|\varepsilon_5| & |\varepsilon_2| \\ & |\varepsilon_1| \end{pmatrix} \tag{35}$$

• A Indução: Suponha que, no (j-1)-ésimo passo do algoritmo, eu sei que o \tilde{x}_{j-1} é gerado com um algoritmo backward stable. Nós já mostramos, pelos casos bases, que os primeiros dois passos são backward stable. Vamos relembrar o Algoritmo 2 para m colunas:

$$\tilde{x}_j = \left(b_j \ominus \sum_{k=j+1}^m x_k \otimes r_{jk}\right) \oplus r_{jj} \tag{36}$$

Usando o Axioma Fundamental do Ponto Flutuante:

$$\tilde{x}_{j} = \frac{\left(b_{j} - \sum_{k=j+1}^{m} x_{k} r_{jk} (1 + \varepsilon_{k})\right) (1 + \varepsilon_{m+1})}{r_{jj}} (1 + \varepsilon_{m+2})$$

$$(37)$$

Definindo ε_{m+1}' e ε_{m+2}' de forma análoga a que fizemos anteriormente:

$$\tilde{x}_{j} = \frac{b_{j} - \sum_{k=j+1}^{m} x_{k} r_{jk} (1 + \varepsilon_{k})}{r_{jj} (1 + \varepsilon'_{m+1}) (1 + \varepsilon'_{m+2})}$$
(38)

Novamente, estamos expressando \tilde{x}_j como operações em x_k e b_j e com entradas **perturbadas** de R, mostrando que o algoritmo do **back substitution** é sim **backward stable**

3 Lecture 18 - Condicionando Problemas de Mínimos Q	uadrados

Nota: Nessa lecture, quando escrevemos $\|\cdot\|$, estamos nos referindo a norma 2, **não a qualquer norma**, logo, $\|\cdot\| = \|\cdot\|_2$

Vamos relembrar o problema dos mínimos quadrados?

Dada
$$A \in \mathbb{C}^{m \times n}$$
 de posto completo, $m \ge neb \in \mathbb{C}^m$,
ache $x \in \mathbb{C}^n$ tal que $||b - Ax||_2$ seja a menor possível (39)

No resumo passado, vimos que o x que satisfaz esse problema é

$$x = (A^*A)^{-1}A^*b \Rightarrow y = A(A^*A)^{-1}A^*b \Leftrightarrow y = Pb$$
 (40)

Ou seja, a projeção ortogonal de b em A resulta no vetor y. Queremos então saber o condicionamento de (39) de acordo com perturbações em b, A, y e x. Tenha em mente que o problema recebe dois parâmetros, A e b e retorna as soluções x e y

3.1 O Teorema

Antes de estabelecer de fato o teorema, vamos relembrar alguns fatores-chave aqui. Vamos rever a imagem que representa o problema de mínimos quadrados visualmente (Mesma imagem do resumo anterior)

Vamos relembrar algumas coisas que já vimos antes e algumas novas. Primeiro é lembrar que, como A não é quadrada, definimos seu número de condicionamento como

$$\kappa(A) = ||A|| \, ||A^+|| = ||A|| \, ||(A^*A)^{-1}A^*|| \tag{41}$$

Não está explicito na imagem, mas podemos, também, definir o ângulo θ entre be y

$$\theta = \arccos\left(\frac{\|y\|}{\|b\|}\right) \tag{42}$$

(A gente define assim pois y é a hipotenusa do triangulo retângulo formado por b e y-b)

E a segunda medida é η , que representa por quanto y não atinge seu valor máximo

$$\eta = \frac{\|A\| \|x\|}{\|y\|} = \frac{\|A\| \|x\|}{\|Ax\|} \tag{43}$$

Show! E esses parâmetros tem esses domínios:

$$\kappa(A) \in [1, \infty] \qquad \quad \theta \in \left[0, \frac{\pi}{2}\right] \qquad \eta \in [1, \kappa(A)] \tag{44}$$

Teorema 3.1.1 (Condicionamento de Mínimos Quadrados): Deixe $b \in \mathbb{C}^m$ e $A \in \mathbb{C}^{m \times n}$ de posto completo serem **fixos**. O problema de mínimos quadrados (39) possui a seguinte tabela de condicionamentos em norma-2:

	y	x
b	$\frac{1}{\cos(\theta)}$	$\frac{\kappa(A)}{\eta\cos(\theta)}$
A	$\frac{\kappa(A)}{\cos(\theta)}$	$\kappa(A) + rac{\kappa(A)^2 \tan(heta)}{\eta}$

Figura 1: Sesibilidade de x e y com relação a perturbações em A e b

Vale dizer também que a primeira linha são igualdades exatas, enquanto a linha de baixo são arredondamentos para cima

Demonstração: Antes de provar para cada tipo de perturbação, temos em mente que estamos trabalhando com a norma-2, correto? Então nós vamos reescrever A para ter uma análise mais fácil. Seja $A=U\Sigma V^*$ a decomposição S.V.D de A, sabemos que $\|A\|_2=\|\Sigma\|_2$ (As matrizes unitárias não afetam a norma), então podemos, sem perca da generalidade, lidar diretamente com Σ , então podemos assumir que $A=\Sigma$ (Não literalmente, mas como vamos ficar analisando as normas, isso vai nos facilitar bastante)

$$A = \begin{pmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \ddots & \\ & & & \sigma_n \end{pmatrix} = \begin{pmatrix} A_1 \\ 0 \end{pmatrix} \tag{45}$$

Reescrevendo os outros termos, temos:

$$b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \qquad y = \begin{pmatrix} b_1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} A_1 \\ 0 \end{pmatrix} x = \begin{pmatrix} b_1 \\ 0 \end{pmatrix} \Leftrightarrow x = A_1^{-1}b_1 \tag{46}$$

• Sensibilidade de y com perturbações em b: Vimos anteriormente na equação (40) que y = Pb, e podemos tirar o condicionamento disso se associarmos com a equação **genérica** Ax = b. Lembra que em estabilidade vimos que o condicionamento desse sistema genérico quando perturbamos x é:

$$\frac{\|A\|}{\|x\|/\|b\|}\tag{47}$$

Então, fazendo simples substituições:

$$\frac{\|P\|}{\|y\|/\|b\|} = \frac{1}{\cos \theta} \tag{48}$$

O que até que faz sentido na intuição. Se fazemos com que b fique muito próximo a um ângulo de 90° com C(A), na hora que formos projetar, a projeção será minúscula, o que pode acarretar erros numéricos dependendo da precisão usada pelo computador

• Sensibilidade de x com perturbações em b: Também tem uma relação bem direta pela equação (40): $x = A^+b$. Assim, temos o mesmo de antes:

$$\frac{\|A^+\|}{\|x\|/\|b\|} = \|A^+\| \frac{\|b\|}{\|y\|} \frac{\|y\|}{\|x\|} = \|A^+\| \frac{1}{\cos \theta} \frac{\|A\|}{\eta} = \frac{\kappa(A)}{\eta \cos \theta}$$

$$\tag{49}$$

Antes de continuar o resto da demonstração, temos que entender um pouco como as perturbações em A podem afetar C(A), porém, isso é um problema não-linear. Até daria pra fazer um monte de jacobiano algébrico, mas é melhor se manter numa pegada não muito formal e ter uma visão geométrica.

Primeiro, quando perturbamos A, isso afeta o problema de mínimos quadrados de dois modos: 1 - As perturbações afetam como vetores em \mathbb{C}^n ($A \in \mathbb{C}^{m \times n}$) são mapeados em C(A). 2 - Elas alteram C(A) em si. A gente pode imaginar as perturbações em C(A) como pequenas inclinações que a gente faz, coisa bem pouquinha mesmo. Então fazemos a pergunta: Qual é o maior ângulo de inclinação $\delta \alpha$ (O quão inclinado eu deixei em comparação a como tava antes) que pode ser causado por uma pequena perturbação δA ? Aí a gente pode seguir do seguinte modo:

Figura 1: Perturbação em C(A). v_1 é o vetor que está na divisão entre o plano azul e o vermelho, v_2 é o vetor mais destacado no plano azul e v_3 é o vetor pontilhado

Na Figura 1, a gente consegue ver isso um pouco melhor. Nosso plano original é o **azul**, formado por v_1 e v_2 , enquanto o plano **vermelho** é formado por v_1 e v_3 , onde v_3 é o $v_2 + \delta v_2$. Percebam que os planos tem uma abertura entre si, medimos aquela abertura por meio de $\delta \alpha$ que mostra a diferença de inclinação entre os dois planos. A segunda mostra mais explicitamente esse ângulo aplicado a outros dois planos diferentes, eu aumentei a diferença entre um e outro apenas para ilustrar melhor a visualização do ângulo, mas normalmente queremos trabalhar com ângulos minúsculos.

Quando a gente projeta uma n-esfera unitária em C(A), temos uma hiperelipse. Pra mudar C(A) da forma mais eficiente possível, pegamos um ponto p=Av que está na hiperelipse ($\|v\|=1$) e cutucamos ela em uma direção δp ortogonal a C(A). A perturbação que melhor faz isso é $\delta A=(\delta p)v^*$, que resulta em $(\delta A)v=\delta p \Rightarrow \|\delta A\|=\|\delta p\|$. Essa perturbação é a melhor por conta da norma 2 de um produto externo:

$$A = uv^* \Rightarrow ||Ax|| = ||uv^*x|| < ||u|| ||v||| x||$$
(50)

Daí **para ter a igualdade**, basta pegar x=v. Agora a gente pode perceber que, se a gente quer a maior inclinação possível dado uma perturbação $\|\delta p\|$ a gente tem q fazer com que p fique perto da origem o máximo possível. Ou seja, queremos o menor p possível com base na definição, que seria $p=\sigma_n u_n$ onde σ_n é o menor valor valor singular de A e u_n a n-ésima coluna de U. Se tomarmos $A=\Sigma$, p é a última coluna de A, $v^*=e_n^*=(0,0,...,1)$ e δA são perturbações na entrada de A. Essa perturbação inclina C(A) pelo ângulo δA dado por $\tan(\delta\alpha)=\|\delta p\|/\|\sigma_n\|$, temos então:

$$\delta \alpha \le \frac{\|\delta A\|}{\sigma_n} = \frac{\|\delta A\|}{\|A\|} \kappa(A) \tag{51}$$

Agora sim podemos continuar a demonstração

• Sensibilidade de y com perturbações em A: Podemos ver uma propriedades geométricas interessantes quando fixamos b e mexemos A. Lembra que y é a projeção **ortogonal** de b em C(A), ou seja, y sempre é **ortogonal** a y-b.

Figura 2: Círculo de projeção de y. O círculo maior representa a inclinação de C(A) no plano 0yb e o círculo menor é quando inclinamos C(A) em uma direção ortogonal a ele

Como eu posso rotacionar C(A) em 360°, eu posso visualizar todos os possíveis locais de y estando nessa esfera. Quando eu inclino C(A) por um ângulo $\delta\alpha$ no círculo maior, o meu ângulo 2θ vai ser alterado. Mais especificamente, vai ser alterado em $2\delta\alpha$. Ou seja, a perturbação δy que eu vou obter ao inclinar C(A) será a base de um triângulo isóceles.

Figura 3: C(A) após rotação de $\delta \alpha$

Podemos ver que o raio da esfera é ||b||/2, ou seja, podemos chegar que:

$$\|\delta y\| \le \|b\| \sin(\delta \alpha) \le \|b\| (\delta \alpha) \le \|b\| \frac{\|\delta A\|}{\|A\|} \kappa(A)$$

$$\cos(\theta) = \frac{\|y\|}{\|b\|} \Leftrightarrow \|b\| = \frac{\|y\|}{\cos(\theta)}$$

$$\Rightarrow \|\delta y\| \le \frac{\|y\|}{\cos(\theta)} \frac{\|\delta A\|}{\|A\|} \kappa(A) \Leftrightarrow \frac{\|\delta y\|}{\|\delta A\|} = \frac{\kappa(A)}{\cos(\theta)}$$
(52)

Concluímos assim, o 3º condicionamento

• Sensibilidade de x com perturbações em A: Quando a gente faz uma perturbação δA em A, podemos separar essa perturbação em duas outras: δA_1 que ocorre nas primeiras n linhas de A e δA_2 que ocorre nas m-n linhas restantes.

$$A = \begin{pmatrix} \delta A_1 \\ \delta A_2 \end{pmatrix} \tag{53}$$

Vamos ver δA_1 primeiro. Quando vemos essa perturbação específica, pelo que vimos em (46), temos que b não é alterado, então estamos mantendo b fixo e tentando calcular x com perturbação δA_1 em A. Esse condicionamento já vimos no último resumo:

$$\left(\frac{\|\delta x\|}{\|x\|}\right) / \left(\frac{\|\delta A_1\|}{\|A\|}\right) \le \kappa(A_1) = \kappa(A) \tag{54}$$

Já quando perturbamos por δA_2 (Estamos perturbando C(A) por inteiro, não somente A_2), acaba que o vetor y e, consequentemente, o vetor b_1 são perturbados, porém, sem perturbação em A_1 . Isso é a mesma coisa que a gente perturbar b_1 sem perturbar A_1 . O condicionamento disso é:

$$\left(\frac{\|\delta x\|}{\|x\|}\right)/\left(\frac{\|\delta b_1\|}{\|b_1\|}\right) \leq \frac{\kappa(A_1)}{\eta(A_1;x)} = \frac{\kappa(A)}{\eta} \tag{55}$$

Agora precisamos relacionar δb_1 com δA_2 . Sabemos que b_1 é y expresso nas coordenadas de C(A). Ou seja, as únicas mudanças em y que podem ser vistas como mudanças em b_1 são aquelas paralelas a C(A). Se C(A) é inclinado por um ângulo $\delta \alpha$ no plano 0by, δy não está em C(A), mas tem um ângulo de $\frac{\pi}{2}-\theta$. Ou seja, as mudanças em b_1 satisfazem:

$$\|\delta b_1\| = \sin(\theta) \|\delta y\| \le (\|b\|\delta\alpha) \sin(\theta) \tag{56}$$

Curiosamente se a gente inclina C(A) na direção ortogonal ao plano 0by (Círculo menor na Figura 2) obtemos o mesmo resultado por motivos diferentes.

Como vimos antes: $\cos(\theta) = \|y\|/\|b\| \Leftrightarrow \|b_1\| = \cos(\theta)\|b\|$, então podemos reescrever (56) como:

$$\frac{\|\delta b_1\|}{\|b_1\|} \le \frac{\|b\|\delta\alpha\sin(\theta)}{\|b\|\cos(\theta)} \Leftrightarrow \frac{\|\delta b_1\|}{\|b_1\|} \le \delta\alpha\tan(\theta) \tag{57}$$

Assim, podemos relacionar $\delta \alpha$ com $\|\delta A_2\|$ da equação (51)

$$\delta\alpha \leq \frac{\|\delta A_{2}\|}{\|A\|} \kappa(A) \Leftrightarrow \frac{\|\delta b_{1}\|}{\|b_{1}\|} \leq \frac{\|\delta A_{2}\|}{\|A\|} \kappa(A) \tan(\theta)$$

$$\left(\frac{\|\delta x\|}{\|x\|}\right) / \left(\frac{\|\delta b_{1}\|}{\|b_{1}\|}\right) \leq \frac{\kappa(A)}{\eta} \Leftrightarrow \frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa(A)}{\eta} \frac{\|\delta b_{1}\|}{\|b_{1}\|} \Leftrightarrow \frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa(A)}{\eta} \frac{\|\delta A_{2}\|}{\|A\|} \kappa(A) \tan(\theta)$$

$$\Leftrightarrow \left(\frac{\|\delta x\|}{\|x\|}\right) / \left(\frac{\|\delta A_{2}\|}{\|A\|}\right) \leq \frac{\kappa(A)^{2} \tan(\theta)}{\eta}$$
(58)

Combinando os condicionamentos de A_1 e A_2 temos $\kappa(A) + \frac{\kappa(A)^2 \tan(\theta)}{\eta}$

4 Lecture 19 - Estabilidade de Algo	oritmos de Mínimos Quadrados

A gente viu quem tem um monte de jeito de se resolver os problemas de mínimos quadrados (Resumo 1). Com isso, a gente pode calcular e estimar a estabilidade dos algoritmos que já vimos.

4.1 Primeira Etapa

Vamos fazer isso na prática. Vamos montar um cenário para a aplicação de cada um dos algoritmos. Vamos pegar m pontos igualmente espaçados entre 0 e 1, montamos a <u>matriz de vandermonde</u> desses pontos e aplicamos uma função que tentaremos prever com polinômios:

```
CÓDIGO

1 import numpy as np

2 m = 100

3 n = 15

4 t = np.linspace(0, 1, m)

5 A = np.vander(t, n, True)

6 b = np.exp(np.sin(4*t))/2.00678728e+03
```

Oxe, por que que tem essa divisão esquisita no final? Quando a gente não faz essa divisão, ao fazer a previsão dos coeficientes que aproximam a função, temos que o último coeficiente previsto (x_{15}) é igual a 1.42775025e+07, então, nós dividimos b por esse valor para que o último coeficiente seja igual a 1 no caso matematicamente correto (Sem erros numéricos), assim poderemos fazer comparações apenas visualizando o último número dos coeficientes calculados.

4.2 Householder

O algoritmo padrão para problemas de mínimos quadrados. Vejamos:

```
CÓDIGO

7 Q, R = householder_qr(A)

8 x = np.linalg.solve(R, Q.T @ b)

9 print(1-x[-1]) # Erro relativo
```

```
SAÍDA
1 1.9845992627054443e-09
```

Temos um erro de grandeza 10^9 , porém, no Python, trabalhamos com precisão IEEE 754 ($\varepsilon=2.220446049250313e-16$), o que nos mostra um erro de precisão MUITO grande (Ordem de 10^7 de diferença). Porém, aqui nós calculamos Q explicitamente e, no resumo 1, foi comentado que isso normalmente não acontece, então vamos ver se o erro muda ao trocarmos Q por uma versão implícita

```
CÓDIGO

Python

Q, R = householder_qr(np.c_[A, b])

print(R.shape)

Qb = R[0:n, n]

R = R[0:n, 0:n]

x = np.linalg.solve(R, Qb)

print(1-x[-1])
```

```
SAÍDA
1 1.989168163518684e-09
```

Deu pra ver que da quase a mesma coisa do resultado anterior, ou seja, os erros da fatoração de A são maiores que os de Q. Pode ser provado que essas duas variações são **backward stable**. O mesmo vale para uma terceira variação que utiliza do **pivotamento** de colunas (Não é discutido nem no livro, tampouco nesse resumo)

Teorema 4.2.1: Deixe um problema de mínimos quadrados em uma matriz de posto completo *A* ser resolvida por fatoração **Householder** em um computador ideal. O algoritmo é **backward stable** tal que:

$$\|(A + \delta A)\tilde{x} - b\| = \min, \quad \frac{\|\delta A\|}{\|A\|} = O(\varepsilon_{\text{machine}})$$
 (59)

para algum $\delta A \in \mathbb{C}^{m \times n}$.

4.3 Ortogonalização de Gram-Schmidt

A gente também pode tentar resolver pelo método de Gram-Schmidt modificado, vamos ver o que a gente consegue:

```
CÓDIGO

7  Q, R = modified_gram_schmidt(A)
8  x = np.linalg.solve(R, Q.T @ b)
9  print(1-x[-1])
```

```
SAÍDA
1 -0.01726542
```

Meu amigo, esse erro é **terrível**. O resultado obtido é tenebroso de ruim. O livro comenta também de outro método que involve fazer umas manipulações em Q, mas como o próprio diz que involve trabalho extra, desnecessário e não deveria ser usado na prática, nem vou comentar sobre aqui.

Mas a gente pode usar um método parecido com o que fizemos antes em unir A e b numa única matriz:

```
CÓDIGO

7     Q, R = modified_gram_schmidt(np.c_[A, b])
8     Qb = R[0:n, n]
9     R = R[0:n, 0:n]
10     x = np.linalg.solve(R, Qb)
11     print(1-x[-1])
```

```
SAÍDA
1 -1.3274502852489434e-07
```

Olha só! Já deu uma melhorada no algoritmo!

Teorema 4.3.1: Solucionar o problema de mínimos quadrados de uma matriz A com posto completo utilizando o algoritmo de Gram-Schmidt (Fazendo de acordo como o código anterior mostra em que Q^*b é implícito) é **backward stable**

4.4 Equações Normais

A gente pode resolver por equações normais, que é o passo inicial para todos os outros métodos né? Vamos ver o que obtemos:

```
SAÍDA
1 1.35207472
```

Meu amigo, esse erro é **TENEBROSO**, não chegou nem **PERTO** do resultado. Claramente as equações normais são um método **instável** de calcular mínimos quadrados. Vamos dar uma visualizada no porquê isso ocorre:

Suponha que nós temos um algoritmo **backward stable** para o problema de mínimos quadrados com uma matriz A de posto-completo que retorna uma solução \tilde{x} satisfazendo $\|(A+\delta A)\tilde{x}-b\|=\min$ para algum δA com $\|\delta A\|/\|A\|=O(\varepsilon_{\mathrm{machine}})$. Pelo teorema da acurácia de algoritmos backward stable (Resumo 1) e o Teorema 3.1.1 temos:

$$\frac{\|\tilde{x} - x\|}{\|x\|} = O\left(\left(\kappa + \frac{\kappa^2 \tan(\theta)}{\eta}\right) \varepsilon_{\text{machine}}\right)$$
(60)

Suponha que A é mal-condicionada. Dependendo dos valores dos híperparâmetros, podem acontecer duas situações diferentes. Se $\tan(\theta)$ for de ordem 1, então o lado direito da equação (60) troca e fica $O(\kappa^2 \varepsilon_{\mathrm{machine}})$. Porém, se $\tan(\theta)$ é próximo de 0, ou η é próximo de κ , então então a equação muda para $O(\kappa \varepsilon_{\mathrm{machine}})$ (Usa um teorema mais la pra frente, mas é engraçado ver como tudo tá muito interconectado). Porém, a matriz A^*A tem número de condicionamento $\kappa(A)^2$, então o máximo que podemos esperar do problema é $O(\kappa^2 \varepsilon_{\mathrm{machine}})$

Teorema 4.4.1: A solução de um problema de mínimos quadrados com uma matriz A de posto-completo utilizando de equações normais é **instável**. Porém a estabilidade pode ser alcançada ao restringir para uma classe de problemas onde $\kappa(A)$ é pequeno ou $\frac{\tan(\theta)}{\eta}$ é pequeno.

4.5 SVD

O último algoritmo a ser mencionado foi utilizando a SVD de A, que nós vimos (no resumo 1) que parecia ser um algoritmo interessante:

```
CÓDIGO

7 U, S, Vh = np.linalg.svd(A, full_matrices=False)

8 S = np.diag(S)

9 x = (Vh.T * 1/S) @ (U.T @ b)

10 print(1-x[-1])
```

Olha só! Temos uma precisão ótima! (O algoritmo da SVD é o mais confiável e estável, mesmo que o erro mostrado seja maior do que alguns que obtivemos anteriormente)

Teorema 4.5.1: A solução do problema de mínimos quadrados com uma matriz A de posto-completo utilizando o algoritmo de SVD é **backward stable**.

4.6 Problemas de Mínimos Quadrados com Posto-Incompleto

A gente viu a aplicação de algoritmos em problemas de mínimos quadrados utilizando matrizes de posto-completo, mas pode ter outros casos de matrizes com posto < n, ou até m < n. Para essa classe de problemas, é necessário definirmos outro tipo de solução, já que nem todos tem o mesmo comportamento. As vezes precisamos restringir a solução com uma condição. Por conta disso, nem todo algoritmo que vimos ser estável até agora vai ser estável nesse tipo de problema, na verdade, apenas o de SVD será e o de Gram-Schmidt com pivotamento nas colunas.

Esse capítulo nada mais é do que uma revisão de resultados da A2 de álgebra linear.

5.1 Definições

Dada uma matriz $A \in \mathbb{C}^{m \times n}$, pela decomposição SVD $A = U\Sigma V^*$ sabemos que A é uma transformação que **estica** e **rotaciona** vetores. Por isso, estamos interessados em subespaços de \mathbb{C}^m nos quais a matriz age como uma multiplicação escalar, ou seja, estamos interessados nos $x \in \mathbb{C}^n$ que são somente esticados pela matriz. Como $Ax \in \mathbb{C}^m$ e $\lambda x \in \mathbb{C}^n$, concluimos que m = n: A matriz **deve ser quadrada**. Afinal, não faz sentido se λx e Ax estiverem em conjuntos distintos. Com isso, prosseguimos com a definição:

Definição 5.1.1 (Autovalores e Autovetores): Dada $A \in \mathbb{C}^{m \times m}$, um **autovetor** de A é $x \in \mathbb{C}^m \setminus \{0\}$ que satisfaz:

$$Ax = \lambda x \tag{61}$$

 $\lambda \in \mathbb{C}$ é dito **autovalor** associado a x.

5.2 Decomposição em Autovalores

Uma decomposição em autovalores de uma matriz $A \in \mathbb{C}^{m \times n}$ é uma fatoração:

$$A = X\Lambda X^{-1} \tag{62}$$

Onde Λ é diagonal e $\det(X) \neq 0$.

Isso é equivalente a:

$$\underbrace{\begin{pmatrix} A \\ A \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} | & | & | & | & | \\ x_{1} & x_{2} & \dots & x_{n} \\ | & | & | & | \end{pmatrix}}_{X} = \underbrace{\begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ 0 & 0 & \dots & 0 \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} | & | & | & | & | \\ x_{1} & x_{2} & \dots & x_{n} \\ | & | & | & | & | \end{pmatrix}}_{X} \tag{63}$$

Da (63) e da Definição 5.1.1, decorre que $Ax_i=\lambda_ix_i$, então a i-ésima coluna de X é um autovetor de A e λ_i é o autovalor associado a x_i .

A decomposição apresentada pode representar uma mudança de base: Considere Ax = b e $A = X\Lambda X^{-1}$, então:

$$Ax = b \Leftrightarrow X\Lambda X^{-1}x = b \Leftrightarrow \Lambda(X^{-1}x) = X^{-1}b \tag{64}$$

Então para calcular Ax, podemos expandir x como combinação das colunas de X e aplicar Λ . Como Λ é diagonal, o resultado ainda vai ser uma combinação das colunas de X.

5.3 Multiplicidades Algébrica e Geométrica

Como mencionado anteriormente, definimos os conjuntos nos quais a matriz atua como multiplicação escalar:

Definição 5.3.1 (Autoespaço): Dada $A \in \mathbb{C}^{m \times n}$, $\lambda \in \mathbb{C}$, definimos $S_{\lambda} \in \mathbb{C}^m$ como sendo o **autoespaço** gerado por todos os $v \in \mathbb{C}^m$ tais que $Av = \lambda v$

Interpretaremos $\dim(S_{\lambda})$ como a maior quantidade de autovetores L.I associados a um único λ , e chamaremos isso de multiplicidade geométrica de λ . Então temos:

Definição 5.3.2: (Multiplicidade Geométrica) A multiplicidade geométrica de λ é dim (S_{λ})

Note que da equação (61):

$$Ax = \lambda x \Leftrightarrow Ax - \lambda x = 0 \Leftrightarrow (A - \lambda I)x = 0 \tag{65}$$

Mas como $x \neq 0$ e $x \in N(A - \lambda I)$, $(A - \lambda I)$ não é injetiva. Logo não é inversível:

$$\det(A - \lambda I) = 0 \tag{66}$$

Definição 5.3.3 (Polinômio Característico): A equação (66) se chama **polinômio característico** de A e é um polinômio de grau m em λ . Pelo teorema fundamental da Álgebra, se $\lambda_1,...,\lambda_n$ são raízes de (66), então podemos escrever isso como:

$$p(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)...(\lambda - \lambda_n) \tag{67}$$

(Nota: λ é uma variável, enquanto λ_i é uma raíz do polinômio, fique atento)

Com isso, prosseguimos com:

Definição 5.3.4 (Multiplicidade Algébrica): A multiplicidade algébrica de λ é a multiplicidade de λ como raiz do polinômio característico de A

A definição de polinômio característico e de multiplicidade algébrica faz a gente ter um jeito muito fácil de contar a quantidade de autovalores de uma matriz

Teorema 5.3.1: Se $A \in \mathbb{C}^{m \times m}$, então A tem m autovalores, contando com a multiplicidade algébrica.

Isso mostra que toda matriz possui pelo menos 1 autovalor

5.4 Transformações Similares

Definição 5.4.1 (Transformação Similar): Se $X \in \mathbb{C}^{m \times m}$ é inversível, então o mapeamento $A \mapsto X^{-1}AX$ é chamado de **transformação similar** de A.

Dizemos que duas matrizes A e B são **similares** se existe uma matriz inversível X que relacione as transformações similares entre A e B, i.e:

$$X^{-1}AX = X^{-1}BX (68)$$

Teorema 5.4.1: Se $A \in \mathbb{C}^{m \times m}$ é inversível, então A e $X^{-1}AX$ o mesmo polinômio característico, os mesmos autovalores e multiplicidades geométrica e algébrica.

Demonstração:

$$\begin{split} p_{X^{-1}AX}(z) &= \det \left(zI - X^{-1}AX\right) = \det \left(X^{-1}(zI - A)X\right) \\ &= \det \left(X^{-1}\right) \det (zI - A) \det (X) = \det (zI - A) = p_{A(z)}) \end{split} \tag{69}$$

Suponha que E_{λ} é o autoespaço de A, então $X^{-1}E_{\lambda}$ é autoespaço de $X^{-1}AX$, ou seja, ambos tem mesma multiplicidade geométrica

Agora podemos correlacionar a multiplicidade geométrica e a algébrica

Teorema 5.4.2: A multiplicidade algébrica de um autovalor λ é sempre maior ou igual a sua multiplicidade geométrica

Demonstração: Deixe n ser a multiplicidade gemétrica de λ para a matriz A. Forme uma matriz $\hat{V} \in \mathbb{C}^{m \times n}$ de tal forma que as suas n colunas formam uma base ortonormal do autoespaço $\{x: Ax = \lambda x\}$. Se extendermos \hat{V} para uma matriz ortogonal quadrada, temos:

$$B = V^*AV = \begin{pmatrix} \lambda I & C \\ 0 & D \end{pmatrix} \tag{70}$$

Pela definição e propriedades do determinante (Não cabe mostrá-las aqui), temos que:

$$\det(\mu I - B) = \det(\mu I - \lambda I) \det(\mu I - D) = (\mu - \lambda)^n \det(\mu I - D) \tag{71}$$

Ou seja, a multiplicidade algébrica de λ como um autovalor de B é, no mínimo, B. Como transformações similares mantém a multiplicidade, o mesmo vale para A

5.5 Autovalores e Matrizes Deficientes

Um autovalor é deficiente quando sua MA é maior que sua MG. Se uma matriz A tem autovalor deficiente, ela é uma matriz deficiente. Matrizes deficientes não podem ser diagonalizáveis (Próximo tópico)

5.6 Diagonalizabilidade

Teorema 5.6.1 (Diagonalizabilidade): Uma matriz $A \in \mathbb{C}^{m \times m}$ é não-deficiente \Leftrightarrow ela tem uma decomposição $A = X\Lambda X^{-1}$

Demonstração: \Leftarrow) Dada uma decomposição $A=X\Lambda X^{-1}$, sabemos, pelo Teorema 5.4.1, que Λ sendo similar a A, logo, A tem os mesmos autovalores, MA e MG de Λ . Como Λ é diagonal, eu tenho que Λ é não-deficiente, logo, o mesmo vale para A

 \Rightarrow) Uma matriz não-deficiente deve ter m autovetores linearmente independentes, pois autovetores com diferentes autovalores precisam ser L.I, e cada autovalor pode se associar com autovetores a quantidade de vezes que sua MA permitir. Se esses m autovetores independentes formam as colunas de uma matriz X, então X é inversível e $A = X\Lambda X^{-1}$

5.7 Determinante e Traço

Teorema 5.7.1: Seja λ_i um autovalor de $A \in \mathbb{C}^{m \times m}$:

$$\det(A) = \prod_{j=1}^{m} \lambda_{j}$$

$$\operatorname{tr}(A) = \sum_{j=1}^{m} \lambda_{j}$$
(72)

Demonstração:

$$\det(A) = (-1)^m \det(-A) = (-1)^m p_{A(0)} = \prod_{j=1}^m \lambda_j$$
 (73)

Olhando a equação (67), podemos observar que o coeficiente do termo λ^{m-1} é igual a $-\sum_{j=1}^m \lambda_j$ e na equação (66) o termo é o negativo da soma dos termos da diagonal, ou seja, $-\operatorname{tr}(A)$, ou seja, $\operatorname{tr}(A) = \sum_{i=1}^m \lambda_i$

5.8 Diagonalização Unitária

Acontece as vezes que, ao fazer a diagonalização de uma matriz, nós podemos cair com um conjunto de autovetores ortogonais entre si.

Definição 5.8.1: A é diagonalizável unitariamente quando $A = Q\Lambda Q^*$ com Q ortogonal e Λ diagonal (Pode ter entradas complexas)

Teorema 5.8.1 (Teorema Espectral): Uma matriz hermitiana é diagonalizável unitariamente e seus autovalores são reais.

Não cabe aqui a prova desse teorema, porém um resumo de Álebra Linear do 2º período será feito e essa demonstração estará lá.

Definição 5.8.2 (Matrizes Normais): Uma matriz A é normal se $A^*A = AA^*$

Teorema 5.8.2: Uma matriz é diagonalizável unitariamente ⇔ ela é normal

5.9 Forma de Schur

Essa forma é muito útil em análise numérica tendo em vista que toda matriz pode ser fatorada assim

Definição 5.9.1 (Fatoração de Schur): Dada uma matriz $A \in \mathbb{C}^{m \times m}$, sua fatoração de schur é tal que:

$$A = QTQ^* \tag{74}$$

onde Q é ortogonal e T é triangular superior

Teorema 5.9.1: Toda matriz quadrada A tem uma fatoração de Schur

Demonstração: Vamos fazer indução em m.

- Casos base: m=1 é trivial, então suponha que $m\geq 2$.
- Passo Indutivo: Deixe x ser um autovetor de A com autovalor λ . Normalize x e faça com que seja a primeira coluna de uma matriz ortogonal U. Então podemos fazer as contas e conferir que o produto U^*AU é tal que:

$$U^*AU = \begin{pmatrix} \lambda & B \\ 0 & C \end{pmatrix} \tag{75}$$

Pela hipótese indutiva, existe uma fatoração VTV^* de C, agora escrevemos:

$$Q = U \begin{pmatrix} 1 & 0 \\ 0 & V \end{pmatrix} \tag{76}$$

Q é uma matriz unitária e temos que

$$Q^*AQ = \begin{pmatrix} \lambda & BV \\ 0 & T \end{pmatrix} \tag{77}$$

Essa era a fatoração de Schur que procurávamos

6 Lecture 25 - Algoritmos de Autovalores

6.1 Ideia da Iteração de Potência

6.2 A ideia dos Algoritmos de Autovalores

Escrever pqq tem q ser iterativo. (pag 192 trefethen)

6.3 Forma de Schur e Diagonalização

6.4 As 2 fases do Cálculo de Autovalores, Forma de Hessenberg

- 7.1 A Redução
- 7.2 Redução à Hessenberg via Householder
- 7.3 Custo Computacional
- 7.4 O Caso Hermitiano
- 7.5 Estabilidade do Algoritmo

8 Lecture	e 27 - Quociente de	Rayleigh e Iter	ação Inversa

- 8.1 Restrição à matrizes reais e simétricas
- 8.2 Quociente de Rayleigh
- 8.3 Iteração de Potência com o Quociente de Rayleigh
- 8.4 Iteração Inversa

9.1 SVD de A via autovalores de A^*A

Calcular a SVD de A usando que $A^*A = V\Sigma^*\Sigma V$ igual a um sagui disléxico não é a melhor ideia, pois reduzimos o problema de SVD a um problema de autovalores, que é sensível à perturbações.

Um algoritmo estável para calcular a SVD de A, usa a matriz

$$H = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix} \tag{78}$$

Se $A=U\Sigma V^*$ é uma SVD de A, então $AV=\Sigma U$ e $A^*U=\Sigma^*V=\Sigma V$, portant

$$\begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix} \cdot \begin{pmatrix} V & V \\ U & -U \end{pmatrix} = \begin{pmatrix} V & V \\ U & -U \end{pmatrix} \cdot \begin{pmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{pmatrix}$$
 (79)

Ou:

$$H = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix} = \begin{pmatrix} V & V \\ U & -U \end{pmatrix} \cdot \begin{pmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{pmatrix} \cdot \begin{pmatrix} V & V \\ U & -U \end{pmatrix}^{-1}$$
(80)

É uma decomposição em autovalores de H, e fica claro que os autovalores de H são os valores singulares de A, em módulo.

Agora note que ao calcular os autovalores de H, pagamos $\kappa(A)$, e não $\kappa^2(A)$, Pois

$$\kappa(H) = \|H\|_2 \cdot \|H^{-1}\|_2 = \frac{\sigma_1(H)}{\sigma_m(H)} = \frac{\sigma_1(A)}{\sigma_m(A)} = \kappa(A). \tag{81}$$