REMARKS/ARGUMENTS

Consideration of the captioned application in view of the foregoing amendments and following remarks is requested.

By this Amendment, claims 12, 13, 19 and 20 were canceled. Accordingly, the pending claims are 1-11, and 14-18.

The specification has been amended to refer to the priority applications.

Enclosed herewith is an Information Disclosure Statement with a copy of the International Search Report and documents cited therein.

Early favorable action on the merits is respectfully requested.

Attached hereto is a marked-up version of the changes made to the specification and claims by the current amendment. The attached page(s) is/are captioned "Version with markings to show changes made".

Applicant respectfully requests that a timely Notice of Allowance be issued in this case.

Respectfully submitted,

Ellen Ciambrone Coletti

Reg. No. 34,140

Johnson & Johnson One Johnson & Johnson Plaza New Brunswick, NJ 08933-7003 (732) 524-2359

Dated: February 14, 2002

VERSION WITH MARKINGS TO SHOW CHANGES MADE

In the Specification:

Page 1, between the Title and line 4, please insert the following:

-- Cross Reference to Related Applications

This application is a continuation-in-part application of the national stage application filed February 5, 2002, of Application No. PCT/EP00/07358, filed July 31, 2000 which application claims priority from EP 99870170.0, filed August 6, 1999, and EP 99126035.7, filed December 27, 1999. –

In the Claims:

3. (Amended) A compound according to claim[s] 1 [or 2] having the formula

a *N*-oxide, a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof, wherein:

p represents an integer being 0, 1, 2, 3 or 4;

X represents O, S, NR⁵ or a direct bond or-X-R² taken together may represent cyano;

Y represents O, S, NR⁵, or S(O)₂;

each R^1 independently represents $C(=0)\cdot Z-R^{14}$, C_{1-6} alkyl, halo, polyhalo C_{1-6} alkyl, hydroxy, mercapto, C_{1-6} alkyloxy, C_{1-6} alkylthio, C_{1-6} alkylcarbonyloxy, aryl, cyano, nitro, Het³, R^6 , NR^7R^8 or C_{1-4} alkyl substituted with $C(=0)-Z\cdot R^{14}$, Het³, R^6 or NR^7R^8 ;

R² represents Het¹, C₃₋₇cycloalkyl optionally substituted with C(=0)-Z-R¹⁴, C₁₋₆alkyl or C₁₋₆alkyl substituted with one or two substituents selected from C(=0)-Z-R¹⁴, hydroxy,

Serial No. 09/_____

cyano, amino, mono- or di(C_{1-4} alkyl)amino, C_{1-6} alkyloxy optionally substituted with C(=0)-Z- R^{14} , C_{1-6} alkylsulfonyloxy, C_{3-7} cycloalkyl optionally substituted with C(=0)-Z- R^{14} , aryl, aryloxy, arylthio, Het¹, Het¹oxy and Het¹thio; and if X is O, S or NR⁵, then R^2 may also represent aminothiocarbonyl, C_{1-4} alkylcarbonyl optionally substituted with C(=0)-Z- R^{14} , C_{1-4} alkylthiocarbonyl optionally substituted with C(=0)-Z- R^{14} , arylcarbonyl, arylthiocarbonyl, Het¹carbonyl or Het¹thiocarbonyl;

R³ represents hydrogen, C₁₋₆alkyl or C₃₋₇cycloalkyl;

R⁴ represents hydrogen, C₁₋₆alkyl or C₃₋₇cycloalkyl; or

R³ and R⁴ taken together form a C₂₋₆alkanediyl;

R⁵ represents hydrogen or C₁₋₄alkyl;

each R^6 independently represents C_{1-6} alkylsulfonyl, aminosulfonyl, piperidinylsulfonyl, mono- or di(C_{1-4} alkyl)aminosulfonyl, mono- or di(benzyl)aminosulfonyl, polyhalo C_{1-6} alkylsulfonyl, C_{1-6} alkylsulfinyl, phenyl C_{1-4} alkylsulfonyl, piperazinylsulfonyl, aminopiperidinylsulfonyl, piperidinylaminosulfonyl,

N- C_{1-4} alkyl-N-piperidinylaminosulfonyl or mono-or di $(C_{1-4}$ alkyl)amino C_{1-4} alkylsulfonyl;

each R⁷ and each R⁸ are independently selected from hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, aryl, arylC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkylcarbonyl, arylcarbonyl, Het³carbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, arylaminocarbonyl, arylaminothiocarbonyl, Het³aminocarbonyl, Het³aminothiocarbonyl, C₃₋₇cycloalkyl, pyridinylC₁₋₄alkyl, C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, -C(=O)-Z-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, Het³, Het⁴ and R⁶; or R⁷ and R⁸ taken together with the nitrogen atom to which they are attached form a radical of formula

R⁹ and R¹⁰ are each independently selected from hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, phenyl, phenylC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkylcarbonyl,

phenylcarbonyl, Het³carbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, phenylaminocarbonyl, phenylaminothiocarbonyl, Het³aminocarbonyl, Het³aminothiocarbonyl, C₃₋₇cycloalkyl, pyridinylC₁₋₄alkyl, C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, -C(=O)-Z-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, Het³, Het⁴ and R⁶; or R⁹ and R¹⁰ taken together with the nitrogen atom to which they are attached form a radical of formula

each R^{11} independently being selected from hydroxy, mercapto, cyano, nitro, halo, trihalomethyl, C_{1-4} alkyloxy optionally substituted with C(=0)-Z- R^{14} , formyl, trihalo C_{1-4} alkylsulfonyloxy, R^6 , NR^7R^8 , $C(=0)NR^{15}R^{16}$, -C(=0)-Z- R^{14} , -Y- C_{1-4} alkanediyl-C(=0)-Z- R^{14} , aryl, aryloxy, arylcarbonyl, C_{3-7} cycloalkyl optionally substituted with C(=0)-Z- R^{14} , C_{3-7} cycloalkyloxy optionally substituted with C(=0)-Z- R^{14} , phthalimide-2-yl, Het 3 , Het 4 and C(=0)Het 3 ;

R¹² and R¹³ are each independently selected from hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, phenyl, phenylC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkylcarbonyl, phenylcarbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, phenylaminocarbonyl, phenylaminothiocarbonyl, C₃₋₇cycloalkyl, pyridinylC₁₋₄alkyl, C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, -C(=O)-Z-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-Z-R¹⁴ and R⁶; or R¹² and R¹³ taken together with the nitrogen atom to which they are attached form a radical of formula

each R^{14} independently represents hydrogen, C_{1-20} acyl (having a straight or branched, saturated or unsaturated hydrocarbon chain having 1 to 20 carbon atoms), C_{1-20} alkyl,

 $C_{3\text{-}20}$ alkenyl optionally substituted with phenyl, $C_{3\text{-}20}$ alkynyl, $C_{3\text{-}7}$ cycloalkyl, polyhalo $C_{1\text{-}20}$ alkyl, Het⁵, phenyl or $C_{1\text{-}20}$ alkyl substituted with one or more substituents selected from hydroxy, NR¹⁷R¹⁸, phenyl, mono- or di-($C_{1\text{-}4}$ alkyl)amino, cyano, Het⁵, $C_{1\text{-}4}$ alkyloxycarbonyl, phenyl $C_{1\text{-}4}$ alkyloxycarbonyl and $C_{3\text{-}7}$ cycloalkyl, or R¹⁴ represents a radical of formula

$$(R_{i})_{S} \qquad (R_{i})_{S} \qquad$$

$$(R_{i})_{s}$$

wherein m is 1 to 4, n is 0 to 5, q is 0 to 2, r is 0 to 2 and s is 0 to 4;

 R^a , R^b , R^c , R^d , R^e and R^f are each independently hydrogen, C_{1-6} alkyl, phenyl or C_{3-7} cycloalkyl; or

Re and Rf taken together may form -CH2-CH2-, -CH2-CH2-CH2-CH2-or--CH2-CH2-CH2-CH2-;

R_g, R_h and R_k are each independently hydrogen or C₁₋₄ alkyl;

 R_i is C_{1-4} alkyl;

 $R_{j}\, is \, \hbox{-O-R}_{b,}\, C_{1\hbox{--}6} alkyl, \, phenyl \, or \, C_{3\hbox{--}7} cycloalkyl \, optionally \, substituted \, with \, C_{1\hbox{--}4} \, alkyloxy;$

where R_m is hydrogen or C₁₋₄ alkyloxy and R_n is hydrogen, C₁₋₄alkyl,

 C_{3-7} cycloalkyl, phenyl or phenyl C_{1-4} alkyl

each Z independently represents O, S, NH, -CH₂-O- or -CH₂-S- whereby -CH₂- is attached to the carbonyl group; or

-Z-R¹⁴ taken together form a radical of formula

$$CH_2$$
 CN
 CH_2
 CH

 R^{15} and R^{16} are each independently selected from hydrogen, C_{1-4} alkyl, hydroxy C_{1-4} alkyl, dihydroxy C_{1-4} alkyl, aryl, aryl C_{1-4} alkyl, C_{1-4} alkyloxy C_{1-4} alkyl, -C(=O)-Z- R^{14} , arylcarbonyl, mono- or di(C_{1-4} alkyl)amino C_{1-4} alkyl, arylaminocarbonyl, arylaminothiocarbonyl, aminocarbonylmethylene, mono- or di(C_{1-4} alkyl) aminocarbonylmethylene, Het³aminocarbonyl, Het³aminothiocarbonyl, pyridinyl C_{1-4} alkyl, Het³ or R^6 ; or R^{15} and R^{16} taken together with the nitrogen atom to which they are attached form a radical of formula

R¹⁷ and R¹⁸ are each independently selected from hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, phenyl, phenylC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkylcarbonyl, phenylcarbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, phenylaminocarbonyl, phenylaminothiocarbonyl, C₃₋₇cycloalkyl, pyridinylC₁₋₄alkyl, C₁₋₄alkanediyl-C(=O)-Z-C₁₋₆alkyl, -C(=O)-Z-C₁₋₆alkyl, -Y-C₁₋₄alkanediyl-C(=O)-Z-C₁₋₆alkyl and R⁶; aryl represents phenyl optionally substituted with one, two or three substituents each independently selected from nitro, azido, cyano, halo, hydroxy, C₁₋₄alkyl, C₃₋₇cycloalkyl,

 C_{1-4} alkyloxy, formyl, polyhalo C_{1-4} alkyl, NR^9R^{10} , $C(=O)NR^9R^{10}$, $C(=O)-Z-R^{14}$, R^6 , -O- R^6 , phenyl, Het^3 , $C(=O)Het^3$ and C_{1-4} alkyl substituted with one or more substituents each independently selected from halo, hydroxy, C_{1-4} alkyloxy, $C(=O)-Z-R^{14}$, -Y- C_{1-4} alkanediyl- $C(=O)-Z-R^{14}$, Het^3 or NR^9R^{10} ;

Het¹ represents a heterocycle selected from pyrrolyl, pyrrolinyl, imidazolyl, imidazolinyl, pyrazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, tetrahydrofuranyl, thienyl, thiolanyl, dioxolanyl, oxazolyl, oxazolinyl, isoxazolyl, thiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl,

pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, dioxanyl, dithianyl, trithianyl, triazinyl, benzothienyl, isobenzothienyl, benzofuranyl, isobenzofuranyl, benzothiazolyl, benzoxazolyl, benzodioxanyl, indolyl, isoindolyl, indolinyl, purinyl, 1*H*-pyrazolo[3,4-d]pyrimidinyl, benzimidazolyl, quinolyl, isoquinolyl, cinnolinyl, phtalazinyl, quinazolinyl, quinoxalinyl, thiazolopyridinyl, oxazolopyridinyl and imidazo[2,1-b]thiazolyl; wherein said heterocycles each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het², R¹¹ and C₁₋₄alkyl optionally substituted with one or two substituents independently selected from Het² and R¹¹;

Het² represents a heterocycle selected from pyrrolyl, pyrrolinyl, imidazolyl, imidazolyl, pyrazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, tetrahydrofuranyl, thienyl, thiolanyl, dioxolanyl, oxazolyl, oxazolinyl, isoxazolyl, thiazolyl, thiazolinyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl, dioxanyl, dithianyl, trithianyl, triazinyl, benzothienyl, isobenzothienyl, benzofuranyl, isobenzofuranyl, benzothiazolyl, benzoxazolyl, indolyl, isoindolyl, indolinyl, purinyl, 1*H*-pyrazolo[3,4-d]pyrimidinyl, benzimidazolyl, quinolyl, isoquinolyl, cinnolinyl, phtalazinyl, quinazolinyl, quinoxalinyl, thiazolopyridinyl, oxazolopyridinyl and imidazo[2,1-b]thiazolyl; wherein said heterocycles each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het⁴, R¹¹ and C₁₋₄alkyl optionally substituted with one or two substituents independently selected from Het⁴ and R¹¹;

Het³ represents a monocyclic heterocycle selected from pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl and tetrahydropyranyl; wherein said monocyclic heterocycles each independently may optionally be substituted with, where possible, one, two, three or four substituents each independently selected from hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, piperidinyl, NR¹²R¹³, C(=O)-Z-R¹⁴, R⁶ and C₁₋₄alkyl substituted with one or two substituents independently selected from hydroxy, C₁₋₄alkyloxy, phenyl, C(=O)-Z-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, R⁶ and NR¹²R¹³;

Het⁴ represents a monocyclic heterocycle selected from pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl and triazinyl;

Serial	No.	09/	

Het⁵ represents a heterocycle selected from pyrrolyl, pyrrolinyl, imidazolyl, imidazolinyl, pyrazolyl, pyrazolinyl, triazolyl, tetrazolyl, furanyl, tetrahydrofuranyl, thienyl, thiolanyl, dioxolanyl, oxazolyl, oxazolinyl, isoxazolyl, thiazolyl, thiazolinyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, tetrahydropyranyl, dioxanyl, dithianyl, trithianyl, triazinyl, benzothienyl, isobenzothienyl, benzofuranyl, isobenzofuranyl, benzothiazolyl, benzoxazolyl, benzodioxanyl, indolyl, isoindolyl, indolinyl, purinyl, 1H-pyrazolo[3,4-d]pyrimidinyl, benzimidazolyl, quinolyl, isoquinolyl, cinnolinyl, phtalazinyl, quinazolinyl, quinoxalinyl, thiazolopyridinyl, oxazolopyridinyl and imidazo[2,1-b]thiazolyl; wherein said heterocycles each independently may be substituted with, where possible, one, two, three or four substituents each independently selected from hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, piperidinyl, NR¹⁷R¹⁸, C(=O)-Z-C₁₋₆alkyl, R⁶, sulfonamido and C₁₋₄alkyl substituted with one or two substituents independently selected from hydroxy, C₁₋₄alkyloxy, phenyl, C(=O)-Z-C₁₋₆alkyl, $-Y-C_{1-4}$ alkanediyl-C(=O)-Z-C₁₋₆alkyl, R^6 and $NR^{17}R^{18}$; provided however that

- R² is other than C₁₋₆ alkyloxycarbonylC₁₋₆alkyl or aminocarbonyl; and
- R⁷, R⁸, R⁹ and R¹⁰ are other than aminocarbonyl, C₁₋₄alkylcarbonyloxy-C₁₋₄alkylcarbonyl, hydroxy C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonylcarbonyl, C(=O)-O-R¹⁹, C₁₋₄alkanediylC(=O)-O-R¹⁹ or -Y-C₁₋₄alkanediylC(=O)-O-R¹⁹; and
- R¹² and R¹³ are other than C₁₋₄alkylcarbonyloxy-C₁₋₄alkylcarbonyl, hydroxy
 C₁₋₄alkylcarbonyl or C₁₋₄alkylcarbonylcarbonyl; and
- R¹¹ is other than C(=O)-O-R¹⁹, Y-C₁₋₄alkanediyl C(=O)-OR¹⁹, C(=O)NH₂, C(=O)NHC₁.

 4alkyl or C(=O)NHC₃₋₇cycloalkyl; and
- R^{15} and R^{16} are other than aminocarbonyl, C_{1-4} alkylcarbonyloxy- C_{1-4} alkylcarbonyl or C_{1-4} alkylcarbonyl or C_{1-4} alkyloxycarbonylcarbonyl; and
- aryl is other than phenyl substituted with C(=O)-O-R¹⁹, C(=O)NH₂, C(=O)NHC₁₋₄alkyl, C(=O)NHC₃₋₇cycloalkyl and/or with C₁₋₄alkyl substituted with C(=O)-O-R¹⁹ or Y-C₁₋₄alkanediyl – C(=O)-O-R¹⁴; and
- Het³ is other than a monocyclic heterocycle substituted with $C(=O)\cdot O-R^{19}$ and/or with C_1 .

 4alkyl substituted with $C(=O)-O-R^{19}$ and/or $Y-C_{1-4}$ alkanediyl (=O)-O-R¹⁹; and

- in each of the above proviso's R¹⁹ is defined as hydrogen, C₁₋₄alkyl, C₃₋₇cycloalkyl, aminocarbonylmethylene or mono- or di(C₁₋₄alkyl)aminocarbonylmethylene; and
- the said compound of formula (I) contains at least one $-C(=O)-Z-R^{14}$ moiety.
- 4. (Amended) A compound according to [any of] claim[s] 1 [to 3] wherein the 6-azauracil moiety is in the para position relative to the carbon atom bearing the -X-R², R³ and R⁴ substituents.
- 5. (Amended) A compound according to [any of] claim[s] 1 [to 4] wherein R² is a monocyclic heterocycle selected from pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl and triazinyl, wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het², R¹¹ and C₁₋₄alkyl optionally substituted with Het² or R¹¹.
- 6. (Amended) A compound according to [any of] claim[s] 1 [to 5] wherein R³ and R⁴ are both methyl and -X-R² is Het¹.
- 7. (Amended) A compound according to [any of] claim[s]1 [to 6] wherein p is 1 or 2 and each R¹ is chloro.
- 8. (Amended) A compound according to [any of] claim[s] 1 [to 7] wherein R³ and R⁴ are both methyl, -X-R² is optionally substituted 2-thiazolyl or 3-oxadiazolyl, the 6-azauracil moiety is in the para position relative to the carbon atom bearing the -X-R², R³ and R⁴ substituents, and p is 2 whereby both R¹ substituents are chloro positioned ortho relative to the carbon atom bearing the -X-R², R³ and R⁴ substituents.
- 11. (Amended) A composition comprising a pharmaceutically acceptable carrier and, as active ingredient, a therapeutically effective amount of a compound according to [any of] claim[s] 1 [to 10].

Please cancel claims 12 and 13.

- 14. (Amended) [Use of a compound according to any of claims 1 to 10 in the manufacture of a medicament] A method for treating eosinophil-dependent inflammatory diseases comprising administering to a subject in need thereof an effective amount of a compound of claim 1.
- 17. (Amended) A process of imaging an organ, [characterized by] comprising, administering a sufficient amount of a radiolabelled compound of formula (I) as claimed in claim 1 in an appropriate composition, and detecting the emissions from the radioactive compound.

Please cancel claims 19 and 20.