Sapera LT[™] 8.30 Acquisition Parameters Reference Manual

sensors | cameras | frame grabbers | processors | software | vision solutions

P/N: OC-SAPM-APR00 www.teledynedalsa.com

NOTICE

© 2017 Teledyne DALSA, Inc. All rights reserved.

This document may not be reproduced nor transmitted in any form or by any means, either electronic or mechanical, without the express written permission of TELEDYNE DALSA. Every effort is made to ensure the information in this manual is accurate and reliable. Use of the products described herein is understood to be at the user's risk. TELEDYNE DALSA assumes no liability whatsoever for the use of the products detailed in this document and reserves the right to make changes in specifications at any time and without notice.

Microsoft® is a registered trademark; Windows®, Windows® XP, Windows® Vista, Windows® 7, Windows® 8 are trademarks of Microsoft Corporation.

All other trademarks or intellectual property mentioned herein belongs to their respective owners.

Printed on April 25, 2017

Document Number: OC-SAPM-APR00

Printed in Canada

About Teledyne DALSA

Teledyne DALSA is an international high performance semiconductor and electronics company that designs, develops, manufactures, and markets digital imaging products and solutions, in addition to providing wafer foundry services.

Teledyne DALSA Digital Imaging offers the widest range of machine vision components in the world. From industry-leading image sensors through powerful and sophisticated cameras, frame grabbers, vision processors and software to easy-to-use vision appliances and custom vision modules.

Contents

INTRODUCTION	4
OVERVIEW OF THE MANUAL	4
400UU0ITION DADAMETED DEFINITIONS	_
ACQUISITION PARAMETER DEFINITIONS INTRODUCTION	5
USING THE ACQUISITION PARAMETERS	
Acquisition Parameters	
Acquisition Management Related Parameters VIC Related Parameters	
DATA STRUCTURES	
Pin Connector Description	
STRUCTURE DEFINITIONS	
Camera Reset Method	
Camera Trigger Methods Frame Integrate Methods	
Line Integrate Methods	
Line Trigger Methods	
Time Integrate Methods	
Strobe Methods	
CAMERA VIDEO TIMING DEFINITIONS	
Analog Area Scan Video Timings	
Digital Area Scan Video Timings	
Linescan Video Timings	
CUSTOM CAMERA CONTROL I/O DESCRIPTION	
SHAFT ENCODER DESCRIPTION	
PLANAR INPUT SOURCES DESCRIPTION	
TEANAK INI OT SOURCES DESCRITTION	,
ADVANCED ACQUISITION CONTROL	100
Introduction	
CAMERA RELATED PARAMETERS	
Camera Related Parameters By Groups	
Camera Related Parameters By ID	
,	
CONFIGURATION FILE FORMATS	135
Overview	135
CAMERA DEFINITION FILE DESCRIPTION (CCA)	
VIC PARAMETER FILE DESCRIPTION (CVI)	
APPENDIX: TAP GEOMETRY SETTINGS	144
1 SINGLE TAP GEOMETRIES	144
One Tap with Two Channels	
DUAL TAP GEOMETRIES	147
3 TAP GEOMETRIES	151
4 TAP GEOMETRIES	152
8 TAP GEOMETRIES	157
CONTACT INFORMATION	158
SALES INFORMATION	158
TECHNICAL SUPPORT	158

Introduction

Overview of the Manual

The Sapera++ LT Programmer's manual, Sapera LT .NET Programmer's and the Sapera LT Basic Modules Reference manual are the reference documents for the C++, .NET and C APIs, respectively. The Sapera LT Acquisition Parameters Reference manual complements these manuals by describing the parameters, capabilities, and concepts related to the acquisition process. The functions using acquisition parameters are described in the appropriate API reference manual mentioned above.

The Sapera LT Acquisition Parameters Reference online manual contains additional references to acquisition parameters and capabilities that typically do not need to be used by the user application.

This manual covers the following topics:

Sapera LT Acquisition Parameters Definitions

Description of the Sapera Acquisition parameters plus the related data structures and definitions.

Teledyne DALSA Contact Information

Phone numbers, web site, and important email addresses.

Advanced Acquisition Controls

Description of acquisition controls including camera parameters and capabilities.

Acquisition Configuration File Formats

Description of the Sapera camera configuration files (.CCA, .CVI, .CCF) fields.

Acquisition Parameter Definitions

Introduction

This section describes the parameters and definitions required for control of the acquisition process.

Refer to the Advanced Acquisition Control section to add advanced controls (such as detection of frame grabber capabilities) to the imaging application.

Using the Acquisition Parameters

A Sapera acquisition configuration is defined through the Acquisition Parameters. These parameters are divided in two categories:

Camera parameters

Video Input Conditioning (VIC) parameters

The Camera parameters describe the signal specifications of the video source (digital or analog). These parameters define the video source capabilities and modes of operation. Consult the section Advanced Acquisition Control for a description of the Camera related parameters.

The VIC related parameters define how the acquisition front end is configured in regards to the video source.

The Camera and VIC parameters typically are stored in CAM & VIC files (files with the .CCA and .CVI extension, respectively) or combined in a unique camera configuration file (file with the .CCF extension) and reloaded at will. This provides a convenient and portable method to initialize the frame grabber with predefined configurations. Sapera LT ships with an extensive list of camera configuration files for supported cameras. In addition, .CVI/CCF files are provided with Teledyne DALSA application notes to support the described camera modes or are generated by the Sapera CamExpert program as required by the imaging application.

CamExpert, the Sapera camera configuration utility, allows configuring the frame grabber (camera configuration file) using existing camera definition files included with the Sapera LT package. The user can also create or modify camera configuration files for new or custom cameras. Multiple .CCF files with different VIC parameters can be created from an existing .CCA file to support various camera operating modes.

It is strongly recommended to start interfacing a camera with your frame grabber using CamExpert instead of experimenting directly with one of the supplied demo programs. CamExpert is designed to guide you through the camera interfacing process with minimum effort.

When dynamic control is required, such as brightness and contrast, the Sapera API provides functions for direct access to any Camera or VIC parameter.

The possible values of an acquisition parameter and its availability are generally indicated by Sapera Acquisition capabilities (CORACQ_CAP_*).

Note: Sapera Acquisition capabilities are INT32 values, unless specified otherwise.

Acquisition Parameters

This section describes the Acquisition Management and VIC related parameters. Unlike the VIC parameters, the Acquisition Management parameters are not stored in any acquisition configuration files.

Acquisition Management Related Parameters

ID	Parameter
0x700	CORACQ_PRM_LABEL
0x701	CORACQ_PRM_EVENT_TYPE
0x702	CORACQ_PRM_EVENT_COUNT
0x703	CORACQ_PRM_EVENT_SERVER
0x704	CORACQ_PRM_EVENT_CALLBACK
0x705	CORACQ_PRM_EVENT_CONTEXT
0x706	CORACQ_PRM_HSYNC_TIMEOUT
0x707	CORACQ_PRM_VSYNC_TIMEOUT
0x708	CORACQ_PRM_SIGNAL_STATUS
0x709	Reserved
0x70a	Reserved
0x70b	Reserved
0x70c	CORACQ_PRM_FLAT_FIELD_SELECT
0x70d	CORACQ_PRM_FLAT_FIELD_ENABLE
0x70e	CORACQ_PRM_EVENT_TYPE_EX
0x70f	CORACQ_PRM_TIME_STAMP
0x710	Reserved
0x711	Reserved
0x712	CORACQ_PRM_IMAGE_FILTER_ENABLE
0x713	CORACQ_PRM_IMAGE_FILTER_SELECT
0x714	CORACQ_PRM_IMAGE_FILTER_KERNEL_SIZE
0x715	CORACQ_PRM_FLAT_FIELD_PIXEL_REPLACEMENT_METHOD
0x716	CORACQ_PRM_FLAT_FIELD_SET_SELECT
0x717	CORACQ_PRM_SHAFT_ENCODER_REVERSE_COUNT
0x718	CORACQ_PRM_META_DATA

CORACQ_PRM_EVENT_CALLBACK

Description Pointer to the Callback function registered using the function CorAcqRegisterCallback

and CorAcqRegisterCallbackEx.

Type PCORCALLBACK (CorAcqRegisterCallback)

PCOREVENTINFOCALLABACK (CorAcqRegisterCallbackEx)

Note This parameter is read-only.

CORACQ_PRM_EVENT_CONTEXT

Description Context pointer registered using the function CorAcqRegisterCallback.

Type void *

Note This parameter is read-only.

CORACQ_PRM_EVENT_COUNT

Description Number of events that have occurred since a callback function was registered using the

CorAcqRegisterCallback function.

Type UINT32

Note This parameter is read-only.

CORACQ_PRM_EVENT_SERVER

Description Handle to a server to which an event notification is made via a callback function.

Type CORSERVER

Note This parameter is read-only.

CORACQ_PRM_EVENT_TYPE

Description Event to be signaled while a transfer is in progress, unless otherwise specified.

Type UINT32

Limits The CORACQ_CAP_EVENT_TYPE capability specifies the event type(s) supported by the

acquisition module. The capability returns the supported values ORed together.

Values The values may be ORed if more than one event is desired.

CORACQ_VAL_EVENT_TYPE_DATA_OVERFLOW (0x00004000)

Call the callback function when a data overflow occurs during live acquisition. This error can usually occur if the acquisition device cannot sustain the data rate of the incoming

images.

CORACQ_VAL_EVENT_TYPE_END_OF_EVEN (0x00400000)

Call the callback function at end of even field.

CORACQ_VAL_EVENT_TYPE_END_OF_FIELD (0x00100000)

Call the callback function at end of odd or even field.

CORACQ_VAL_EVENT_TYPE_END_OF_FRAME (0x00800000)

Call the callback function at end of frame.

CORACQ_VAL_EVENT_TYPE_END_OF_LINE (0x04000000)

Call the callback function at end of line n.

CORACQ_VAL_EVENT_TYPE_END_OF_NLINES (0x08000000)

Call the callback function at end of *n* lines.

CORACQ VAL EVENT TYPE END OF ODD (0x00200000)

Call the callback function at end of odd field.

CORACQ_VAL_EVENT_TYPE_END_OF_TRANSFER (0x00000002)

Call the callback function at end of transfer.

CORACQ_VAL_EVENT_TYPE_EXTERNAL_TRIGGER (0x01000000)

Call the callback function upon receiving an external trigger which will then acquire at least one image. Therefore, the maximum callback rate cannot be greater than the acquisition video frame rate. See also CORACQ_PRM_EXT_TRIGGER_ENABLE

CORACQ_VAL_EVENT_TYPE_EXTERNAL_TRIGGER_IGNORED (0x00002000)

Call the callback function when an external trigger event is dropped. This occurs when the external trigger rate is faster than the acquisition frame rate. See also

CORACQ_PRM_EXT_TRIGGER_ENABLE.

CORACQ_VAL_EVENT_TYPE_EXT_LINE_TRIGGER_TOO_SLOW (0x00000400)

Call the callback function if the detected line trigger rate is too slow for the hardware to process. This event can occur when using the shaft encoder multiplier.

CORACQ_VAL_EVENT_TYPE_FRAME_LOST (0x00008000)

Call the callback function for each frames lost during live acquisition. This error can usually occur if there is not enough bandwidth to transfer images to host memory.

CORACQ_VAL_EVENT_TYPE_HSYNC_LOCK (0x00000800)

Call the callback function if a horizontal sync unlock to lock condition is detected.

CORACQ_VAL_EVENT_TYPE_HSYNC_UNLOCK (0x00001000)

Call the callback function if an horizontal sync lock to unlock condition is detected.

CORACQ_VAL_EVENT_TYPE_LINE_TRIGGER_TOO_FAST (0x00000008)

Call the callback function if no line is received on the frame grabber following a line trigger to a camera. Usually this occurs when the line trigger rate is too fast for the camera.

CORACQ_VAL_EVENT_TYPE_LINK_ERROR (0x00000010)

Call the callback function when an error occurs on the link between the camera and the frame grabber (for HSLink cameras only). The exact error condition may be one of the following: 8-bit/10-bit encoding, packet header error, CRC error, bad revision, or lost idle lock.

CORACQ_VAL_EVENT_TYPE_LINK_LOCK (0x100000000LL)

Call the callback function when all required lanes are locked (for HSLink and CLHS cameras only).

CORACQ_VAL_EVENT_TYPE_LINK_UNLOCK (0x200000000LL)

Call the callback function if at least one of the required lanes loses the lock (for HSLink and CLHS cameras only)

CORACQ_VAL_EVENT_TYPE_NO_HSYNC (0x10000000)

Call the callback function if a timeout occurs due to a missing horizontal sync during live acquisition. The timeout value is specified by CORACQ_PRM_HSYNC_TIMEOUT. The event is only generated once, unless a new CorXferStart command is issued or a new horizontal sync is detected.

CORACQ VAL EVENT TYPE NO PIXEL CLK (0x40000000)

Call the callback function if no pixel clock is detected. The event is only generated once, unless a new CorXferStart command is issued or the pixel clock is detected again and then lost.

CORACQ_VAL_EVENT_TYPE_NO_VSYNC (0x20000000)

Call the callback function if a timeout occurs due to a missing vertical sync during live acquisition. The timeout value is specified by CORACQ_PRM_VSYNC_TIMEOUT. The event is only generated once, unless a new CorXferStart command is issued or a new vertical sync is detected.

CORACQ_VAL_EVENT_TYPE_PIXEL_CLK (0x80000000)

Call the callback function if a pixel clock is detected. The event is only generated once, unless a new CorXferStart command is issued or the pixel clock is lost again and then detected.

CORACQ_VAL_EVENT_TYPE_SHAFT_ENCODER_REVERSE_COUNT_OVERFLOW (0x00000004)

Call the callback function when an overflow of the shaft encoder reverse counter occurs.

CORACQ_VAL_EVENT_TYPE_START_OF_EVEN (0x00040000)

Call the callback function at start of even field.

CORACQ_VAL_EVENT_TYPE_START_OF_FIELD (0x00020000)

Call the callback function at start of odd or even field.

CORACQ_VAL_EVENT_TYPE_START_OF_FRAME (0x00080000

Call the callback function at start of frame.

CORACQ_VAL_EVENT_TYPE_START_OF_ODD (0x00020000)

Call the callback function at start of odd field.

CORACQ_VAL_EVENT_TYPE_USER_DEFINE (0x00000200)

Call the callback function when a "user defined" event occurs. Applicable when custom firmware which supports the user defined event, is loaded on to the acquisition board. This event does not have any other identification thus only the application can know the meaning of the user defined event.

CORACQ_VAL_EVENT_TYPE_VERTICAL_SYNC (0x02000000)

Call the callback function on every vertical sync, even if not acquiring.

CORACQ_VAL_EVENT_TYPE_VERTICAL_TIMEOUT (0x00000040)

Call the callback function if the end of the vertical sync (analog cameras) or beginning of frame valid (digital cameras) is not received within the specified delay. The timeout value is specified by CORACQ_PRM_VERTICAL_TIMEOUT_DELAY.

CORACQ_PRM_EVENT_TYPE_EX

Description Event to be signaled while a transfer is in progress, unless otherwise specified.

Type UINT64

Limits The CORACQ_CAP_EVENT_TYPE_EX capability specifies the event type(s) supported by

the acquisition module. The capability returns the supported values ORed together.

Values The list of values are the same as CORACQ_PRM_EVENT_TYPE. In addition, the

following events are supported:

CORACQ_VAL_EVENT_TYPE_LINK_LOCK (0x100000000)
Call the callback function when all required lanes are locked.
CORACQ_VAL_EVENT_TYPE_LINK_UNLOCK (0x200000000)

Call the callback function if at least one of the required lanes loses the lock. CORACQ_VAL_EVENT_TYPE_CAMERA_MISSED_TRIGGER (0x400000000)

Call the callback function if the camera could not respond to a trigger request as it was

busy servicing a previous trigger request.

CORACQ_VAL_EVENT_TYPE_CAMERA_BUFFER_OVERRUN (0x800000000)
Call the callback function if camera data and/or video has been corrupted due to

insufficient buffer space.

Notes This parameter allows for the future expansion beyond the current 32-bit limitation of

CORACQ_PRM_EVENT_TYPE.

CORACQ_PRM_FLAT_FIELD_ENABLE

Description Enable or disable the flat field resource.

Type UINT32

Availability Available only if CORACQ_CAP_FLAT_FIELD is TRUE

Values TRUE (0x00000001), Enable the flat field

FALSE (0x0000000), Disable the flat field

CVI entry None

Related

The flat field correction algorithm can be further characterized by the following

Capabilities capabilities.

Below are the relative minimum and maximum pixel gains:

CORACQ_CAP_FLAT_FIELD_GAIN_MIN and CORACQ_CAP_FLAT_FIELD_GAIN_MAX

Divide the relative pixel gain by CORACQ_CAP_FLAT_FIELD_GAIN_DIVISOR to get the

actual gain value.

Example:

for: CORACQ_CAP_FLAT_FIELD_GAIN_MIN = 0x01

CORACQ_CAP_FLAT_FIELD_GAIN_MAX = 0xFF CORACQ_CAP_FLAT_FIELD_GAIN_DISIVOR = 0x80

then: Minimum gain is 1 / 0x80 = 0.0078125

Maximum gain is 0xFF / 0x80 = 1.9921875

Below are the minimum and maximum gray level pixel offsets: CORACQ_CAP_FLAT_FIELD_OFFSET_MIN and CORACQ_CAP_FLAT_FIELD_OFFSET_MAX

CORACQ PRM FLAT FIELD PIXEL REPLACEMENT METHOD sets the pixel replacement

method (if supported). A gain of zero indicates a pixel replacement.

CORACQ_PRM_FLAT_FIELD_PIXEL_REPLACEMENT_METHOD

Description Selects the flat field pixel replacement method.

Type UINT32

Availability Available only if CORACQ_CAP_FLAT_FIELD is TRUE

Values This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_FLAT_FIELD_PIXEL_REPLACEMENT_METHOD. The capability returns

the ORed combination of all supported values.

Possible values are:

CORACQ_VAL_FLAT_FIELD_PIXEL_REPLACEMENT_METHOD_1 (0x00000001)

Next Pixel

CORACQ_VAL_FLAT_FIELD_PIXEL_REPLACEMENT_METHOD_2 (0x00000002)

Average of the two neighbour pixels

CORACQ_VAL_FLAT_FIELD_PIXEL_REPLACEMENT_METHOD_3 (0x00000004)

3x2 cluster

CVI entry None

CORACQ_PRM_FLAT_FIELD_SELECT

Description Selects the active flat field resource created using the function CorAcqNewFlatfield.

Type UINT32

Availability Available only if CORACQ_CAP_FLAT_FIELD is TRUE

Values 0 ... (n-1), where 'n' is the number of flat field resources created. The maximum number

that can be created is limited by the amount of memory available on the PC and/or on

the device.

CVI entry None

CORACQ_PRM_FLAT_FIELD_SET_SELECT

Description Selects the active flat field correction set.

Type UINT32

Availability Available only if CORACQ_CAP_FLAT_FIELD_SET is TRUE

Values Range is from 0 to CORACQ CAP FLAT FIELD SET COUNT MAX -1.

CVI entry None

CORACO PRM HSYNC TIMEOUT

Description Timeout value (in µsec) used to generate the event "horizontal loss of sync"

(CORACQ_VAL_EVENT_TYPE_NO_HSYNC).

Type UINT32

CORACQ_PRM_IMAGE_FILTER_ENABLE

Description Enable or disable the image filter.

Type UINT32

Availability Available only if CORACQ_CAP_IMAGE_FILTER is TRUE.

Values TRUE (0x00000001) Enable the image filter.

FALSE (0x0000000) Disable the image filter

CVI entry None

Related Capabilites The image filter is characterized by the following capabilities.

CORACQ_CAP_IMAGE_FILTER_KERNEL_SIZE

CORACQ_CAP_IMAGE_FILTER_KERNEL_VALUE_MIN CORACQ_CAP_IMAGE_FILTER_KERNEL_VALUE_MAX CORACQ_CAP_IMAGE_FILTER_KERNEL_DIVISOR

Note: The actual weight of a pixel is the value in the buffer divided by the divisor. For example, if the divisor is 16384, a value of 24576 in the kernel provides a weight of 1.5 (that is, 24576/16384). Thus for a 3x3 low pass filter to have all kernel filter elements with an effective weight of 1, each kernel entry in the buffer would have a value of (1/9)*CORACQ_CAP_IMAGE_FILTER_KERNEL_DIVISOR.

For CORACQ_CAP_IMAGE_FILTER_KERNEL_SIZE possible values are:

CORACQ_VAL_IMAGE_FILTER_KERNEL_SIZE_1x1 0x00000001
CORACQ_VAL_IMAGE_FILTER_KERNEL_SIZE_2x2 0x00000002
CORACQ_VAL_IMAGE_FILTER_KERNEL_SIZE_3x3 0x00000004
CORACQ_VAL_IMAGE_FILTER_KERNEL_SIZE_4x4 0x00000008
CORACQ_VAL_IMAGE_FILTER_KERNEL_SIZE_5x5 0x00000010
CORACQ_VAL_IMAGE_FILTER_KERNEL_SIZE_6x6 0x00000020
CORACQ_VAL_IMAGE_FILTER_KERNEL_SIZE_7x7 0x00000040

1st implementation for Xtium has:

KERNEL_VALUE_MIN = -32767 KERNEL_VALUE_MAX = +32767

DIVISOR = 16384.

CORACO PRM IMAGE FILTER KERNEL SIZE

Description Return the Image Filter Kernel Size of the selected image filter.

Type UINT32

Values Possible values are of the type CORACQ_VAL_IMAGE_FILTER_KERNEL_SIZE_XxX and

must match the possible values as defined by the

CORACQ_CAP_IMAGE_FILTER_KERNEL_SIZE capability that specifies the sizes

supported by the acquisition device.

Note Read-only parameter. This parameter depends on the image filter kernel size passed by

the function CorAcqSetImageFilter.

CORACO PRM IMAGE FILTER SELECT

Description Selects the image filter to access.

Type UINT32

Availability Available only if CORACQ_CAP_IMAGE_FILTER is TRUE.

Limits Range Limits: 0 to CORACQ_CAP_IMAGE_FILTER_MAX -1.

CORACQ_PRM_LABEL

Description Acquisition device ID: Zero-terminated array of characters with a fixed size of 128

bytes.

Type CHAR[128]

Note This parameter is read-only.

CORACQ_PRM_META_DATA

Description Specifies the location of metadata (if metadata is supported by the acquisition device).

Type UINT32

Limits The CORACQ_CAP_META_DATA capability returns the supported values ORed together.

CORACQ_VAL_META_DATA_DISABLE

CORACQ_VAL_META_DATA_PER_LINE_BOTTOM

CORACQ_VAL_META_DATA_PER_LINE_RIGHT

CORACQ_VAL_META_DATA_PER_LINE_LEFT

CORACQ_VAL_META_DATA_PER_LINE_TOP

CORACQ_VAL_META_DATA_PER_FRAME_BOTTOM

Note Available metadata is device specific; refer to the acquisition device documentation for

details.

CORACQ_PRM_SHAFT_ENCODER_REVERSE_COUNT

Description Returns the current shaft encoder reverse count.

Type UINT32

Limits The CORACQ_CAP_SHAFT_ENCODER_REVERSE_COUNT_MAX capability returns the

maximum supported shaft encoder reverse count value.

Note Writing any value to this parameter resets the counter to zero.

CORACQ_PRM_SIGNAL_STATUS

Description Status of input signals connected to the acquisition device.

The returned value is the ORed combination of all valid values.

Type UINT32

Limits The CORACQ_CAP_SIGNAL_STATUS capability returns the supported values ORed

together.

Values CORACQ_VAL_SIGNAL_HSYNC_PRESENT (0x00000001)

True if an horizontal sync signal (analog video source) or a line valid (digital video

source) has been detected by the acquisition device.

CORACQ_VAL_SIGNAL_VSYNC_PRESENT (0x00000002)

True if a vertical sync signal (analog video source) or a frame valid (digital video

source) has been detected by the acquisition device.

CORACQ_VAL_SIGNAL_PIXEL_CLK_PRESENT (0x00000004)

True if a pixel clock signal has been detected by the acquisition device.

CORACQ_VAL_SIGNAL_PIXEL_CLK_1_PRESENT (0x00000004)

For CameraLink devices, this status returns true if a clock signal is detected on the base

cable.

CORACQ_VAL_SIGNAL_PIXEL_CLK_2_PRESENT (0x00000200)

For CameraLink devices, this status returns true if a clock signal is detected on the

medium cable.

CORACQ_VAL_SIGNAL_PIXEL_CLK_3_PRESENT (0x00000400)

For CameraLink devices, this status returns true if a clock signal is detected on the full

cable.

CORACQ_VAL_SIGNAL_PIXEL_CLK_ALL_PRESENT (0x00000800)

For Camera Link devices, true if all required pixel clock signals have been detected by

the acquisition device based on the CameraLink configuration selected.

CORACQ_VAL_SIGNAL_CHROMA_PRESENT (0x00000008)

True if a color burst signal has been detected by the acquisition device. This is valid for NTSC and PAL video signals.

CORACQ_VAL_SIGNAL_HSYNC_LOCK (0x00000010)

True if the acquisition device has been able to lock to an horizontal sync signal (analog video source).

CORACQ_VAL_SIGNAL_VSYNC_LOCK (0x00000020)

True if the acquisition device has been able to lock to a vertical sync signal (analog video source).

CORACQ_VAL_SIGNAL_POWER_PRESENT (0x00000040)

True if power is available for a camera. When true, this indicates only that power is available at the camera connector, where it might be supplied from the board PCI bus or from the board PC power connector (whether this power is used by the camera is unknown). When false, the circuit fuse is blown and power cannot be supplied to any connected camera. (See board manual for information on any fused power supply for cameras).

CORACQ_VAL_SIGNAL_POCL_ACTIVE (0x00000080)

True if power is applied to the camera through the 1st CameraLink cable to the camera connector and the camera is PoCL compliant. When false and the parameter CORACQ_PRM_POCL_ENABLE is TRUE, means the Camera is not PoCL compliant, the wrong cable is used, or the camera is not connected.

CORACQ_VAL_SIGNAL_POCL_ACTIVE_2 (0x00000100)

True if power is applied to the camera through the 2nd CameraLink cable to the camera connector and the camera is PoCL compliant. When false and the parameter CORACQ_PRM_POCL_ENABLE is TRUE, means the Camera is not PoCL compliant, the wrong cable is used, or the camera is not connected.

CORACQ_VAL_SIGNAL_LINK_LOCK (0x00001000)

For HSLink and CLHS devices, true if all lane lock signals necessary have been detected by the acquisition device based on the configuration selected.

CORACQ_VAL_SIGNAL_LANE1_LOCK (0x00002000)

For HSLink and CLHS devices, true rue if the lane 1 lock signal has been detected by the acquisition device.

CORACQ_VAL_SIGNAL_LANE2_LOCK (0x00004000)

For HSLink and CLHS devices, true rue if the lane 2 lock signal has been detected by the acquisition device.

CORACQ_VAL_SIGNAL_LANE3_LOCK (0x00008000)

For HSLink and CLHS devices, true rue if the lane 3 lock signal has been detected by the acquisition device.

CORACQ VAL SIGNAL LANE4 LOCK (0x00010000)

For HSLink and CLHS devices, true rue if the lane 4 lock signal has been detected by the acquisition device.

CORACQ_VAL_SIGNAL_LANE5_LOCK (0x00020000)

For HSLink and CLHS devices, true rue if the lane 5 lock signal has been detected by the acquisition device.

CORACQ_VAL_SIGNAL_LANE6_LOCK (0x00040000)

For HSLink and CLHS devices, true rue if the lane 6 lock signal has been detected by the acquisition device.

CORACQ_VAL_SIGNAL_LANE7_LOCK (0x00080000)

For HSLink and CLHS devices, true rue if the lane 7 lock signal has been detected by the acquisition device.

CORACQ_VAL_SIGNAL_BIT_TRANSFER_RATE (0x03F00000)

Multiple of CORACQ_CAP_BIT_TRANSFER_RATE_MULT.

CORACQ_VAL_SIGNAL_POCL_ACTIVE_3 (0x04000000)

True if power is applied to the camera through the 3rd CameraLink cable to the camera

connector and the camera is PoCL compliant. When false and the parameter CORACQ_PRM_POCL_ENABLE is TRUE, means the Camera is not PoCL compliant, the wrong cable is used, or the camera is not connected.

CORACQ_VAL_SIGNAL_POCL_ACTIVE_4 (0x08000000)

True if power is applied to the camera through the 4th CameraLink cable to the camera connector and the camera is PoCL compliant. When false and the parameter CORACQ_PRM_POCL_ENABLE is TRUE, means the Camera is not PoCL compliant, the wrong cable is used, or the camera is not connected.

Note This parameter is read-only.

CORACQ_PRM_TIME_STAMP

Description Returns the current value of the acquisition device timestamp. This value is normally

expressed in microseconds. This timestamp is passed to events and can also be used to timestamp host buffers. Note that the timestamp base units can be selected using the

CORACO PRM_TIME_STAMP_BASE parameter.

Type UINT64
Values Timestamp

Note Writing to the parameter will reset the timestamp counter to 0.

CORACQ_PRM_VSYNC_TIMEOUT

Description Timeout value (in µsec) used to generate the event "vertical loss of sync"

(CORACQ_VAL_EVENT_TYPE_NO_VSYNC).

Type UINT32

VIC Related Parameters

The following table lists VIC parameters by functional groups. A table listing VIC parameters sorted by their ID is available in the section VIC Parameters by ID.

Typically the acquisition hardware is initialized with Camera and VIC parameters by loading a camera configuration file. These parameters (such as the ones controlling brightness and contrast) can then be modified individually at runtime by the user application.

VIC Parameters by Groups

General	
CORACQ_PRM_VIC_NAME	

Input	
CORACQ_PRM_BIT_ORDERING	CORACQ_PRM_CAMSEL
CORACQ_PRM_PLANAR_INPUT_SOURCES	

Signal Conditioning	
CORACQ_PRM_BRIGHTNESS	CORACQ_PRM_FIX_FILTER_ENABLE
CORACQ_PRM_BRIGHTNESS_RED	CORACQ_PRM_FIX_FILTER_SELECTOR
CORACQ_PRM_BRIGHTNESS_GREEN	CORACQ_PRM_FIX_FILTER_SELECTOR_STR
CORACQ_PRM_BRIGHTNESS_BLUE	CORACQ_PRM_HUE
CORACQ_PRM_CONTRAST	CORACQ_PRM_SCALE_VERT
CORACQ_PRM_CONTRAST_RED	CORACQ_PRM_PROG_FILTER_ENABLE
CORACQ_PRM_CONTRAST_GREEN	CORACQ_PRM_PROG_FILTER_FREQ
CORACQ_PRM_CONTRAST_BLUE	CORACQ_PRM_SATURATION
CORACQ_PRM_DC_REST_MODE	CORACQ_PRM_SHARPNESS
CORACQ_PRM_DC_REST_START	

Stream Conditioning	
CORACQ_PRM_CROP_ACTIVATION	CORACQ_PRM_LUT_FORMAT
CORACQ_PRM_CROP_LEFT	CORACQ_PRM_LUT_MAX
CORACQ_PRM_CROP_TOP	CORACQ_PRM_LUT_NENTRIES
CORACQ_PRM_CROP_HEIGHT	CORACQ_PRM_LUT_NUMBER
CORACQ_PRM_CROP_WIDTH	CORACQ_PRM_PIXEL_MASK
CORACQ_PRM_DECIMATE_COUNT	CORACQ_PRM_SCALE_HORZ
CORACQ_PRM_DECIMATE_METHOD	CORACQ_PRM_SCALE_HORZ_METHOD
CORACQ_PRM_EXT_TRIGGER_FRAME_COUNT	CORACQ_PRM_SCALE_VERT
CORACQ_PRM_FRAME_LENGTH	CORACQ_PRM_SCALE_VERT_METHOD
CORACQ_PRM_FLIP	CORACQ_PRM_SNAP_COUNT
CORACQ_PRM_HSYNC_REF	CORACQ_PRM_VSYNC_REF
CORACQ_PRM_LUT_ENABLE	

Control Signals	
CORACQ_PRM_CAM_CONTROL_PULSEO_HD_ALIGN	CORACQ_PRM_INT_FRAME_TRIGGER_FREQ
CORACQ_PRM_CAM_CONTROL_PULSE1_HD_ALIGN	CORACQ_PRM_INT_LINE_TRIGGER_ENABLE
CORACQ_PRM_CAM_RESET_DELAY	CORACQ_PRM_INT_LINE_TRIGGER_FREQ
CORACQ_PRM_CAM_RESET_ENABLE	CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MIN

Control Signals	
CORACQ_PRM_CAM_TRIGGER_DELAY	CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MAX
CORACQ_PRM_CAM_TRIGGER_ENABLE	CORACQ_PRM_LINE_INTEGRATE_DURATION
CORACQ_PRM_BOARD_SYNC_OUTPUT1	CORACQ_PRM_LINE_INTEGRATE_ENABLE
CORACQ_PRM_BOARD_SYNC_OUTPUT2	CORACQ_PRM_LINE_TRIGGER_ENABLE
CORACQ_PRM_EXT_FRAME_TRIGGER_DETECTION	CORACQ_PRM_LINE_TRIGGER_AUTO_DELAY
CORACQ_PRM_EXT_FRAME_TRIGGER_ENABLE	CORACQ_PRM_LINESCAN_DIRECTION_OUTPUT
CORACQ_PRM_EXT_FRAME_TRIGGER_LEVEL	CORACQ_PRM_MASTER_MODE
CORACQ_PRM_EXT_FRAME_TRIGGER_SOURCE	CORACQ_PRM_MASTER_MODE_HSYNC_POLARITY
CORACQ_PRM_EXT_LINE_TRIGGER_DETECTION	CORACQ_PRM_MASTER_MODE_VSYNC_POLARITY
CORACQ_PRM_EXT_LINE_TRIGGER_ENABLE	CORACQ_PRM_SHAFT_ENCODER_ENABLE
CORACQ_PRM_EXT_LINE_TRIGGER_LEVEL	CORACQ_PRM_SHAFT_ENCODER_LEVEL
CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE	CORACQ_PRM_SHAFT_ENCODER_DROP
CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE_STR	CORACQ_PRM_SHAFT_ENCODER_MULTIPLY
CORACQ_PRM_EXT_TRIGGER_DELAY	CORACQ_PRM_SHAFT_ENCODER_SOURCE
CORACQ_PRM_EXT_TRIGGER_DELAY_TIME_BASE	CORACQ_PRM_SHAFT_ENCODER_SOURCE_STR
CORACQ_PRM_EXT_TRIGGER_DETECTION	CORACQ_PRM_STROBE_DELAY
CORACQ_PRM_EXT_TRIGGER_DURATION	CORACQ_PRM_STROBE_DELAY_2
CORACQ_PRM_EXT_TRIGGER_ENABLE	CORACQ_PRM_STROBE_DURATION
CORACQ_PRM_EXT_TRIGGER_IGNORE_DELAY	CORACQ_PRM_STROBE_ENABLE
CORACQ_PRM_EXT_TRIGGER_LEVEL	CORACQ_PRM_STROBE_LEVE
CORACQ_PRM_EXT_TRIGGER_SOURCE	CORACQ_PRM_STROBE_METHOD
CORACQ_PRM_EXT_TRIGGER_SOURCE_STR	CORACQ_PRM_STROBE_POLARITY
CORACQ_PRM_FIX_FILTER_SELECTOR_STR	CORACQ_PRM_TIME_INTEGRATE_DELAY
CORACQ_PRM_FRAME_INTEGRATE_COUNT	CORACQ_PRM_TIME_INTEGRATE_DURATION
CORACQ_PRM_SHAFT_ENCODER_DIRECTION	CORACQ_PRM_TIME_INTEGRATE_ENABLE
CORACQ_PRM_FRAME_INTEGRATE_ENABLE	CORACQ_PRM_VERTICAL_TIMEOUT_DELAY
CORACQ_PRM_INT_FRAME_TRIGGER_ENABLE	

Output	
CORACQ_PRM_OUTPUT_ENABLE (obsolete) use CORACQ_PRM_EXT_TRIGGER_ENABLE	CORACQ_PRM_OUTPUT_FORMAT

Shared Control Signals	
CORACQ_PRM_SHARED_CAM_RESET	CORACQ_PRM_SHARED_STROBE
CORACQ_PRM_SHARED_CAM_TRIGGER	CORACQ_PRM_SHARED_TIME_INTEGRATE
CORACQ_PRM_SHARED_EXT_TRIGGER	CORACQ_PRM_WEN_ENABLE
CORACQ_PRM_SHARED_FRAME_INTEGRATE	

Color Signals

CORACQ_PRM_COLOR_DECODER_ENABLE

CORACQ_PRM_COLOR_DECODER_METHOD

CORACQ_PRM_BAYER_DECODER_SATURATION_FACTOR

CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_BLUE

CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_GREEN

CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_RED

CORACQ_PRM_WB_GAIN_RED

CORACQ_PRM_WB_GAIN_GREEN

CORACQ_PRM_WB_GAIN_BLUE

CORACQ_PRM_WB_OFFSET_RED

CORACQ_PRM_WB_OFFSET_GREEN

CORACQ_PRM_WB_OFFSET_BLUE

VIC Parameters by ID

0x800	CORACQ_PRM_CAMSEL
0x801	CORACQ_PRM_PIXEL_MASK
0x802	CORACQ_PRM_DC_REST_MODE
0x803	CORACQ_PRM_BRIGHTNESS
0x804	CORACQ_PRM_BRIGHTNESS_RED
0x805	CORACQ_PRM_BRIGHTNESS_GREEN
0x806	CORACQ_PRM_BRIGHTNESS_BLUE
0x807	CORACQ_PRM_CONTRAST
808x0	CORACO_PRM_CONTRAST_RED
0x809	CORACQ_PRM_CONTRAST_GREEN
0x80a	CORACQ_PRM_CONTRAST_BLUE
0x80b	CORACQ_PRM_HUE
0x80c	CORACO_PRM_SATURATION
0x80d	CORACQ_PRM_FIX_FILTER_ENABLE
0x80e	CORACQ_PRM_FIX_FILTER_SELECTOR
0x80f	CORACQ_PRM_PROG_FILTER_ENABLE
0x810	CORACQ_PRM_PROG_FILTER_FREQ
0x811	CORACQ_PRM_CROP_LEFT
0x812	CORACQ_PRM_CROP_TOP
0x813	CORACQ_PRM_CROP_WIDTH
0x814	CORACQ_PRM_CROP_HEIGHT
0x815	CORACQ_PRM_SCALE_HORZ
0x816	CORACQ_PRM_SCALE_VERT
0x817	CORACQ_PRM_SCALE_HORZ_METHOD
0x818	CORACQ_PRM_SCALE_VERT_METHOD
0x819	CORACQ_PRM_DECIMATE_METHOD
0x81a	CORACQ_PRM_DECIMATE_COUNT
0x81b	CORACQ_PRM_LUT_ENABLE
0x81c	CORACQ_PRM_LUT_NUMBER
0x81d	CORACQ_PRM_STROBE_ENABLE
0x81e	CORACQ_PRM_STROBE_METHOD
0x81f	CORACQ_PRM_STROBE_POLARITY
0x820	CORACQ_PRM_STROBE_DURATION
0x821	CORACQ_PRM_STROBE_DELAY
0x822	CORACQ_PRM_FRAME_INTEGRATE_ENABLE
0x823	CORACQ_PRM_FRAME_INTEGRATE_COUNT
0x824	CORACQ_PRM_TIME_INTEGRATE_ENABLE
0x825	CORACQ_PRM_TIME_INTEGRATE_DURATION
0x826	CORACQ_PRM_CAM_TRIGGER_ENABLE

```
0x827
        CORACQ_PRM_CAM_RESET_ENABLE
0x828
        CORACQ_PRM_OUTPUT_FORMAT
0x829-
        Reserved
0x82b
0x82c
        CORACQ_PRM_OUTPUT_ENABLE (obsolete) use CORACQ_PRM_EXT_TRIGGER_ENABLE
0x82d
        CORACQ_PRM_VIC_NAME
0x82e
        CORACQ_PRM_LUT_MAX
0x82f
        CORACQ_PRM_EXT_TRIGGER_DETECTION
0x830
        CORACQ_PRM_DC_REST_START
0x831
        CORACQ_PRM_DC_REST_WIDTH
0x832
        CORACQ_PRM_LUT_FORMAT
0x833
        CORACQ_PRM_VSYNC_REF
0x834
        CORACQ_PRM_HSYNC_REF
0x835
        CORACQ_PRM_LINE_INTEGRATE_ENABLE
        CORACQ_PRM_LINE_INTEGRATE_DURATION
0x836
0x837
        CORACQ_PRM_LINE_TRIGGER_ENABLE
0x838
        CORACQ_PRM_EXT_FRAME_TRIGGER_ENABLE
0x839
        CORACQ_PRM_EXT_FRAME_TRIGGER_DETECTION
0x83a
        CORACQ_PRM_EXT_LINE_TRIGGER_ENABLE
0x83b
        CORACQ_PRM_EXT_LINE_TRIGGER_DETECTION
0x83c
        CORACQ_PRM_SNAP_COUNT
0x83d
        CORACQ PRM INT LINE TRIGGER ENABLE
        CORACQ_PRM_INT_LINE_TRIGGER_FREQ
0x83e
0x83f
        CORACQ_PRM_LINESCAN_DIRECTION_OUTPUT
0x840
        CORACQ PRM BIT ORDERING
        CORACQ_PRM_EXT_TRIGGER_LEVELCORACQ_PRM_EXT_TRIGGER_LEVEL
0x841
0x842
        CORACQ_PRM_STROBE_LEVE
        CORACQ_PRM_EXT_FRAME_TRIGGER_LEVEL
0x843
0x844
        CORACQ_PRM_EXT_LINE_TRIGGER_LEVEL
0x845
        CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MIN
0x846
        CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MAX
0x847
        CORACQ_PRM_MASTER_MODE
0x848
        CORACQ_PRM_MASTER_MODE_HSYNC_POLARITY
0x849
        CORACQ_PRM_MASTER_MODE_VSYNC_POLARITY
0x84a
        CORACQ_PRM_SHAFT_ENCODER_DROP
0x84b
        CORACQ_PRM_SHAFT_ENCODER_ENABLE
0x84c
        CORACQ_PRM_EXT_TRIGGER_FRAME_COUNT
0x84d
        CORACQ_PRM_INT_FRAME_TRIGGER_ENABLE
0x84e
        CORACQ_PRM_INT_FRAME_TRIGGER_FREQ
0x84f
        CORACQ_PRM_SHARED_EXT_TRIGGER
0x850
        CORACQ_PRM_SHARED_CAM_RESET
0x851
        CORACQ_PRM_SHARED_CAM_TRIGGER
0x852
        CORACQ_PRM_SHARED_TIME_INTEGRATE
0x853
        CORACQ_PRM_SHARED_FRAME_INTEGRATE
0x854
        CORACQ_PRM_SHARED_STROBE
0x855
        CORACQ_PRM_STROBE_DELAY_2
0x856
        CORACQ_PRM_FRAME_LENGTH
```

CORACQ_PRM_FLIP

0x857

- 0x858 CORACQ_PRM_SHARPNESS
- 0x859 CORACQ_PRM_EXT_TRIGGER_DURATION
- 0x85a CORACQ_PRM_TIME_INTEGRATE_DELAY
- 0x85b CORACQ_PRM_CAM_RESET_DELAY
- 0x85c CORACQ_PRM_CAM_TRIGGER_DELAY
- 0x85d CORACQ_PRM_SHAFT_ENCODER_LEVEL
- 0x85e CORACQ_PRM_WEN_ENABLE
- 0x85f CORACQ_PRM_LUT_NENTRIES
- 0x860 CORACQ_PRM_EXT_FRAME_TRIGGER_SOURCE
- 0x861 CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE
- 0x862 CORACQ_PRM_EXT_TRIGGER_SOURCE
- 0x863 CORACQ_PRM_SHAFT_ENCODER_MULTIPLY
- 0x864 CORACQ_PRM_PLANAR_INPUT_SOURCES
- 0x865 CORACQ_PRM_EXT_TRIGGER_DELAY
- 0x866 CORACQ_PRM_EXT_TRIGGER_DELAY_TIME_BASE
- 0x867 CORACQ_PRM_COLOR_DECODER_ENABLE
- 0x868 CORACQ_PRM_COLOR_DECODER_METHOD
- 0x869 CORACQ_PRM_WB_GAIN_RED
- 0x86a CORACQ_PRM_WB_GAIN_GREEN
- 0x86b CORACQ_PRM_WB_GAIN_BLUE
- 0x86c CORACQ_PRM_WB_OFFSET_RED
- 0x86d CORACQ_PRM_WB_OFFSET_GREEN
- 0x86e CORACQ_PRM_WB_OFFSET_BLUE
- 0x86f CORACQ_PRM_CAM_CONTROL_PULSEO_HD_ALIGN
- 0x870 CORACQ_PRM_CAM_CONTROL_PULSE1_HD_ALIGN
- 0x871 CORACQ_PRM_EXT_TRIGGER_IGNORE_DELAY
- 0x872 CORACQ_PRM_BOARD_SYNC_OUTPUT1_SOURCE
- 0x873 CORACQ_PRM_BOARD_SYNC_OUTPUT2_SOURCE
- 0x874 CORACQ_PRM_FIX_FILTER_SELECTOR_STR
- 0x875 CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE_STR
- 0x876 CORACQ_PRM_EXT_TRIGGER_SOURCE_STR
- 0x877 CORACQ_PRM_VERTICAL_TIMEOUT_DELAY
- 0x878 CORACQ_PRM_BAYER_DECODER_SATURATION_FACTOR
- 0x879 CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_RED
- 0x87a CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_GREEN
- 0x87b CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_BLUE
- 0x87c CORACQ_PRM_POCL_ENABLE
- 0x87d CORACQ_PRM_CROP_ACTIVATION
- 0x87e CORACQ_PRM_SHAFT_ENCODER_SOURCE
- 0x87f CORACQ_PRM_SHAFT_ENCODER_SOURCE_STR
- 0x880 CORACQ_PRM_SHAFT_ENCODER_DIRECTION
- 0x881 CORACQ_PRM_LINE_TRIGGER_AUTO_DELAY
- 0x882 CORACQ_PRM_TIME_STAMP_BASE
- 0x883 CORACQ_PRM_BOARD_SYNC_OUTPUT1_SOURCE_STR
- 0x884 CORACQ_PRM_BOARD_SYNC_OUTPUT2_SOURCE_STR
- 0x885 CORACQ_PRM_SHAFT_ENCODER_ORDER
- 0x886 CORACQ_PRM_CAM_FRAMES_PER_TRIGGER

CORACO PRM COLOR DECODER ENABLE

Description Enables or disables the hardware Bayer Decoder of the acquisition device. When

enabled, it instructs the acquisition device to use the Bayer Decoder to convert the

incoming Bayer video data into the specified output format specified by

CORACQ_PRM_OUTPUT_FORMAT.

Type UINT32

Availability Onboard hardware Bayer Decoder is supported if the CORACQ CAP COLOR DECODER

capability returns TRUE.

Values TRUE (0x00000001), Enable the Bayer Decoder

FALSE (0x0000000), Disable the Bayer Decoder

CVI Entry [Stream Conditioning]

Bayer Decoder Enable

CORACO PRM COLOR DECODER METHOD

Description Selects the Color Decoder method to apply to convert incoming color (for example

Bayer) images into the specified output format.

Type UINT32

Limits The parameter value must match one of the supported methods of the acquisition

device given by CORACQ_CAP_COLOR_DECODER_METHOD. The capability returns the

ORed combination of all supported values.

Values CORACQ_VAL_COLOR_DECODER_METHOD_1

Technique based on bilinear interpolation. Fast, but tends to smooth the edges of the

image.

CORACQ_VAL_COLOR_DECODER_METHOD_2

Advanced technique, better for preserving the edges of the image. However, it works well only when the image has a strong content in green. Otherwise, small amounts of

noise may be visible within objects.

CORACQ VAL COLOR DECODER METHOD 3

Advanced technique, almost as good as Method 2 for preserving the edges, but independent of the image content in green. Small color artifacts of 1 pixel may be

visible at the edges.

CORACQ_VAL_COLOR_DECODER_METHOD_4

Technique based on 2x2 interpolation. This is the simplest and fastest algorithm. Compared to a 3x3 kernel, it is better at preserving edge sharpness but introduces a slight jitter in pixel position. In practice it is a good choice for image display but less

recommended than 3x3 for accurate image processing.

CORACQ_VAL_COLOR_DECODER_METHOD_5

Technique based on a set of linear filters. This method assumes that edges have a much

stronger luminance than chrominance component.

CORACQ_VAL_COLOR_DECODER_METHOD_7

Support for the Teledyne DALSA Piranha 4 line scan camera color output. If the

appropriate camera firmware is loaded, the driver will return this value in the capability

CORACQ_CAP_COLOR_DECODER_METHOD.

CVI Entry [Stream Conditioning]

Bayer Decoder Method

CORACQ_PRM_BAYER_DECODER_SATURATION_FACTOR

Description Adjusts the image saturation after Bayer decoding.

Type UINT32

Limits Range limits: CORACQ_CAP_BAYER_DECODER_SATURATION_FACTOR_MIN to

CORACQ_CAP_BAYER_DECODER_SATURATION_FACTOR_MAX

Values saturationFactor = CORACQ_PRM_BAYER_DECODER_SATURATION_FACTOR /

CORACQ_CAP_BAYER_DECODER_SATURATION_FACTOR_DIVISOR

WeightRed = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_RED/ CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_RED_DIVISOR

WeightGreen = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_GREEN/ CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_GREEN_DIVISOR WeightBlue = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_BLUE/

CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_BLUE_DIVISOR

mono = red * WeightRed + blue * WeightBlue + green * WeightGreen

red = red +(red-mono)*saturationFactor;

green = green + (green-mono)*saturationFactor;

blue = blue +(blue-mono)*saturationFactor ;

Availability Onboard hardware Bayer Decoder is supported if the CORACQ_CAP_COLOR_DECODER

capability returns TRUE.

Onboard hardware Bayer Decoder Saturation is supported if the

CORACQ_CAP_BAYER_DECODER_SATURATION_FACTOR_MIN is not equal to

CORACQ_CAP_BAYER_DECODER_SATURATION_FACTOR_MAX

CVI Entry [Stream Conditioning]

Bayer Decoder Saturation Factor

CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_BLUE

Description Change the image saturation of the pixel blue component value after Bayer decoding.

Type UINT32

Limits Range limits: CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_BLUE_MIN

to CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_BLUE_MAX

Values saturationFactor = CORACQ_PRM_BAYER_DECODER_SATURATION_FACTOR /

CORACQ_CAP_BAYER_DECODER_SATURATION_FACTOR_DIVISOR

WeightRed = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_RED/ CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_RED_DIVISOR

WeightGreen = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_GREEN/ CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_GREEN_DIVISOR WeightBlue = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_BLUE/ CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_BLUE DIVISOR

mono = red * WeightRed + blue * WeightBlue + green * WeightGreen

blue = blue +(blue-mono)*saturationFactor;

Availability Onboard hardware Bayer Decoder is supported if the CORACQ_CAP_BAYER_DECODER

capability returns TRUE.

Onboard hardware Bayer Decoder Saturation Weight Blue is supported if the

CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_BLUE_MIN is not equal to

CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_BLUE_MAX

CVI Entry [Stream Conditioning]

Bayer Decoder Weight Blue

CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_GREEN

Description Change the image saturation of the pixel green component value after Bayer decoding.

Type UINT32

Limits Range limits: CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_GREEN_MIN

to CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_GREEN_MAX

Availability Onboard hardware Bayer Decoder is supported if the CORACQ_CAP_BAYER_DECODER

capability returns TRUE.

Onboard hardware Bayer Decoder Saturation Weight Green is supported if the

CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_GREEN_MIN is not equal to

CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_GREEN_MAX

Values saturationFactor = CORACQ_PRM_BAYER_DECODER_SATURATION_FACTOR /

CORACQ_CAP_BAYER_DECODER_SATURATION_FACTOR_DIVISOR

WeightRed = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_RED/ CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_RED_DIVISOR

WeightGreen = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_GREEN/

CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_GREEN_DIVISOR
WeightBlue = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_BLUE/
CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_BLUE_DIVISOR

mono = red * WeightRed + blue * WeightBlue + green * WeightGreen

green = green + (green-mono)*saturationFactor;

CVI Entry [Stream Conditioning]

Bayer Decoder Weight Green

CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_RED

Description Change the image saturation of the pixel red component value after Bayer decoding.

Type UINT32

Limits Range limits: CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_RED_MIN

to CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_RED_MAX

Availability Onboard hardware Bayer Decoder is supported if the CORACQ_CAP_BAYER_DECODER

capability returns TRUE.

Onboard hardware Bayer Decoder Saturation Weight Red is supported if the CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_RED_MIN is not equal to

CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_RED_MAX

Values saturationFactor = CORACQ_PRM_BAYER_DECODER_SATURATION_FACTOR /

CORACQ_CAP_BAYER_DECODER_SATURATION_FACTOR_DIVISOR

WeightRed = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_RED/CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_RED_DIVISOR

WeightGreen = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_GREEN/ CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_GREEN_DIVISOR WeightBlue = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_BLUE/ CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_BLUE_DIVISOR

mono = red * WeightRed + blue * WeightBlue + green * WeightGreen

red = red +(red-mono)*saturationFactor;

CVI Entry [Stream Conditioning]

Bayer Decoder Weight Red

Note Validated only if CORACQ_PRM_COLOR_DECODER_ENABLE is TRUE.

CORACQ_PRM_WB_GAIN_RED

Description Bayer Decoder White Balance Gain for the red channel.

Type UINT32

Limits Range limits: CORACQ_CAP_WB_GAIN_MIN .. CORACQ_CAP_WB_GAIN_MAX.

A gain of 1 = 100000

CVI Entry [Stream Conditioning]

Bayer Decoder White Balance Gain Red

Note Validated only if CORACQ_PRM_COLOR_DECODER_ENABLE is TRUE.

CORACQ_PRM_WB_GAIN_GREEN

Description Bayer Decoder White Balance Gain for the green channel.

Type UINT32

Limits Range limits: CORACQ_CAP_ WB_GAIN_MIN .. CORACQ_CAP _WB_GAIN_MAX

A gain of 1 = 100000

CVI Entry [Stream Conditioning]

Bayer Decoder White Balance Gain Green

CORACQ_PRM_WB_GAIN_BLUE

Description Bayer Decoder White Balance Gain for the blue channel.

Type UINT32

Limits Range limits: CORACQ_CAP_ WB_GAIN_MIN .. CORACQ_CAP_ WB_GAIN_MAX

A gain of 1 = 100000

CVI Entry [Stream Conditioning]

Bayer Decoder White Balance Gain Blue

Note Validated only if CORACQ_PRM_COLOR_DECODER_ENABLE is TRUE.

CORACQ_PRM_WB_OFFSET_RED

Description Bayer Decoder White Balance Offset for the red channel.

Type INT32

Limits Range limits: CORACQ_CAP_WB_OFFSET_MIN .. CORACQ_CAP_WB_OFFSET_MAX

Offset in gray level units.

CVI Entry [Stream Conditioning]Bayer Decoder White Balance Offset Red

Note Validated only if CORACQ_PRM_COLOR_DECODER_ENABLE is TRUE.

CORACQ_PRM_WB_OFFSET_GREEN

Description Bayer Decoder White Balance Offset for the green channel.

Type INT32

Limits Range limits: CORACQ_CAP_WB_OFFSET_MIN .. CORACQ_CAP_WB_OFFSET_MAX

Offset in gray level units.

CVI Entry [Stream Conditioning]

Bayer Decoder White Balance Offset Green

Note Validated only if CORACQ_PRM_COLOR_DECODER_ENABLE is TRUE.

CORACQ_PRM_WB_OFFSET_BLUE

Description Bayer Decoder White Balance Offset for the blue channel.

Type INT32

Limits Range limits: CORACQ_CAP_WB_OFFSET_MIN .. CORACQ_CAP_WB_OFFSET_MAX

Offset in gray level units.

CVI Entry [Stream Conditioning]

Bayer Decoder White Balance Offset Blue

CORACQ_PRM_BIT_ORDERING

Description The camera digital bit ordering.

Type UINT32

Limits Applies to digital video acquisition only. This value must match one of the supported

capabilities of the acquisition device given by CORACQ_CAP_BIT_ORDERING.

The capability returns the ORed combination of all supported values.

Values CORACQ_VAL_BIT_ORDERING_STD (0x00000001)

Standard digital bit ordering.

CORACQ_VAL_BIT_ORDERING_9_10 (0x00000002)

For some 10-bit digital cameras, video data bits 9 and 10 are swapped with bits 0 and

1, as required by some 10-bit Kodak camera models. CORACQ_VAL_BIT_ORDERING_MSB_10 (0x00000004)

For some 8-bit digital cameras, video data bits 0-7 connect to the acquisition device

input bits 2-9, as required by some Kodak camera models.

CORACQ_VAL_BIT_ORDERING_MSB_12 (0x00000008)

For use with 12-bit digital cameras, video data bits 4-11 are directed to the input bits

0-7 of the acquisition device.

CORACQ_VAL_BIT_ORDERING_INVERT (0x00000010)

For use with digital cameras, the video data bits are inverted (logical NOT) before

going to the acquisition device.

CVI Entry [Input]

Bit Ordering

CORACQ_PRM_BOARD_SYNC_OUTPUT1_SOURCE_STR

Description Returns a string representation of the currently selected

CORACQ_PRM_BOARD_SYNC_OUTPUT1_SOURCE.

Type CHAR[32]

Values Null terminated string (up to 32 characters including the Null character)

Limits None
CVI Entry [Input]

Bit Ordering

Note Read-only parameter. This parameter is device dependent.

CORACQ_PRM_BOARD_SYNC_OUTPUT2_SOURCE_STR

Description Returns a string representation of the currently selected

CORACQ_PRM_BOARD_SYNC_OUTPUT2_SOURCE.

Type CHAR[32]

Values Null terminated string (up to 32 characters including the Null character)

Limits None CVI Entry [Input]

Bit Ordering

Note Read-only parameter. This parameter is device dependent.

CORACQ_PRM_BRIGHTNESS

Description Percentage of brightness to be applied to the composite video signal. Applies to analog

video signals only.

Type INT32

Availability Available only if CORACQ_CAP_BRIGHTNESS is set to TRUE.

Limits Range limits: CORACQ_CAP_BRIGHTNESS_MIN to CORACQ_CAP_BRIGHTNESS_MAX.

Adjust the parameter by increments of at least CORACQ_CAP_BRIGHTNESS_ STEP percent (%) in order for a change to occur in the video signal (10000 = 100%).

CVI Entry [Signal Conditioning]

Brightness

CORACQ_PRM_BRIGHTNESS_BLUE

Description Percentage of brightness to be applied to the blue video signal. Applies to analog video

signals only.

Type INT32

Availability Available only if CORACQ_CAP_BRIGHTNESS_BLUE is set to TRUE.

Limits Range limits: CORACQ_CAP_BRIGHTNESS_BLUE_MIN to

CORACQ_CAP_BRIGHTNESS_BLUE_MAX.

Adjust the parameter by increments of at least CORACQ_CAP_BRIGHTNESS_BLUE_STEP

percent (%) in order for a change to occur in the video signal (10000 = 100%).

CVI Entry [Signal Conditioning]

Brightness Blue

CORACQ_PRM_BRIGHTNESS_GREEN

Description Percentage of brightness to be applied to the green video signal. Applies to analog video

signals only.

Type INT32

Availability Available only if CORACQ_CAP_BRIGHTNESS_GREEN is set to TRUE.

Limits Range limits: CORACQ_CAP_BRIGHTNESS_GREEN_MIN to

CORACQ_CAP_BRIGHTNESS_GREEN_MAX.

Adjust the parameter by increments of at least

CORACQ_CAP_BRIGHTNESS_GREEN_STEP percent (%) in order for a change to occur in

the video signal (10000 = 100%).

CVI Entry [Signal Conditioning]

Brightness Green

CORACQ_PRM_BRIGHTNESS_RED

Description Percentage of brightness to be applied to the red video signal. Applies to analog video

signals only.

Type INT32

Availability Available only if CORACQ_CAP_BRIGHTNESS_RED is set to TRUE.

Limits Range limits: CORACQ_CAP_BRIGHTNESS_RED_MIN to

CORACQ_CAP_BRIGHTNESS_RED_MAX.

Adjust the parameter by increments of at least

CORACQ_CAP_BRIGHTNESS_CONTRAST_RED_ STEP percent (%) in order for a change

to occur in the video signal (10000 = 100%).

CVI Entry [Signal Conditioning]

Brightness Red

CORACQ_PRM_CAM_CONTROL_PULSE0_HD_ALIGN

Description Specifies if the camera control pulse'0' will be aligned with the master HD.

Type UINT32

Values CORACQ_VAL_CAM_CONTROL_HD_ALIGN_AUTO Device Dependent.

(0x0000000)

CORACQ_VAL_CAM_CONTROL_HD_ALIGN_ON Pulse 0 aligned with HD

(0x0000001)

CORACQ_VAL_CAM_CONTROL_HD_ALIGN_OFF Pulse 0 not aligned with HD

(0x00000002)

Limits Supported only if CORACQ_CAP_CAM_CONTROL_PULSEO_HD_ALIGN is TRUE.

CVI Entry [Control Signals]

Camera Control Pulse 0 HD Align

CORACQ_PRM_CAM_CONTROL_PULSE1_HD_ALIGN

Description Specifies if the camera control pulse'1' will be aligned with the master HD.

Type UINT32

Values CORACQ_VAL_CAM_CONTROL_HD_ALIGN_AUTO Device Dependent.

(0x00000000)

CORACQ_VAL_CAM_CONTROL_HD_ALIGN_ON Pulse 1 aligned with HD

(0x0000001)

CORACQ_VAL_CAM_CONTROL_HD_ALIGN_OFF Pulse 1 not aligned with HD

(0x00000002)

Limits Supported only if CORACQ_CAP_CAM_CONTROL_PULSE1_HD_ALIGN is TRUE.

CVI Entry [Control Signals]

Camera Control Pulse 1 HD Align

CORACO PRM CAM RESET DELAY

Description Reset pulse delay (in μs). After receiving a trigger pulse (external, internal, or software),

the acquisition device will wait for this delay before generating the reset pulse.

Type UINT32

Limits Range limits: CORACQ_CAP_CAM_RESET_DELAY_MIN to

CORACQ_CAP_CAM_RESET_DELAY_MAX.

CVI Entry [Control Signals]

Camera Reset Delay

Note This value is only validated if CORACQ_PRM_CAM_RESET_ENABLE is TRUE.

CORACO PRM CAM RESET ENABLE

Description Enables or disables the rest pulse to the camera. Applies to area scan cameras only.

Type UINT32

Availability Available only if CORACQ_CAP_CAM_RESET is TRUE.

Values TRUE (0x0000001) Enable

FALSE (0x0000000) Disable

CVI Entry [Control Signals]

Camera Reset Enable

Note This parameter is mutually exclusive with CORACQ PRM FRAME INTEGRATE ENABLE.

CORACQ_PRM_CAM_TRIGGER_ENABLE and CORACQ_PRM_TIME_INTEGRATE_ENABLE.

CORACQ_PRM_CAM_TRIGGER_DELAY

Description Trigger pulse delay (in µs). After receiving a trigger pulse (external, internal or

software), the acquisition device will wait this delay before generating the trigger pulse.

Type UINT32

Limits The value must be in the range CORACQ_CAP_CAM_TRIGGER_DELAY_MIN ...

CORACQ_CAP_CAM_TRIGGER_DELAY_MAX.

CVI Entry [Control Signals]

Camera Trigger Delay

Note This value is only validated if CORACQ_PRM_CAM_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_CAM_TRIGGER_ENABLE

Description Enables or disables the frame trigger pulse to the camera. Applies to area scan cameras

only.

Type UINT32

Availability Available only if CORACQ_CAP_CAM_TRIGGER is TRUE.

Values TRUE (0x00000001) Enable

FALSE (0x0000000) Disable

CVI Entry [Control Signals]

Camera Trigger Enable

Note This parameter is mutually exclusive with CORACQ_PRM_FRAME_INTEGRATE_ENABLE,

CORACQ_PRM_CAM_RESET_ENABLE and CORACQ_PRM_TIME_INTEGRATE_ENABLE.

CORACQ_PRM_CAMSEL

Description Numerical value representing the camera selector to acquire from.

Type UINT32

Limits If CORACQ_PRM_VIDEO is equal to CORACQ_VAL_VIDEO_MONO:

0 ... CORACQ_CAP_CAMSEL_MONO – 1. Applies to composite cameras. If CORACQ_PRM_VIDEO is equal to CORACQ_VAL_VIDEO_COLOR: 0 ... CORACQ_CAP_CAMSEL_COLOR - 1. Applies to composite cameras.

If CORACQ_PRM_VIDEO is equal to CORACQ_VAL_VIDEO_YC:

0 ... CORACQ_CAP_CAMSEL_YC - 1. Applies to Y/C cameras.

If CORACQ_PRM_VIDEO is equal to CORACQ_VAL_VIDEO_RGB:

0 ... CORACQ_CAP_CAMSEL_RGB - 1. Applies to RGB cameras.

CVI Entry [Input]

Camera Selector

CORACO PRM CONTRAST

Description Percentage of contrast to be applied to the composite video signal. Applies to analog

video signals only.

Type UINT32

Availability Available only if CORACQ_CAP_CONTRAST is set to TRUE.

Limits Range limits: CORACQ_CAP_CONTRAST_MIN to CORACQ_CAP_CONTRAST_MAX.

Adjust the parameter by increments of at least CORACQ_CAP_CONTRAST_STEP percent

(%) in order for a change to occur in the video signal (100000 = 100%).

CVI Entry [Signal Conditioning]

Contrast

CORACQ_PRM_CONTRAST_BLUE

Description Percentage of contrast to be applied to the blue video signal. Applies to analog video

signals only.

Type UINT32

Availability Available only if CORACQ_CAP_CONTRAST_BLUE is set to TRUE.

Limits Range Limits: CORACQ_CAP_CONTRAST_BLUE_MIN to

CORACQ_CAP_CONTRAST_BLUE_MAX.

Adjust the parameter by increments of at least CORACQ_CAP_CONTRAST_BLUE_STEP percent (%) in order for a change to occur in the video signal (100000 = 100%).

CVI Entry [Signal Conditioning]

Contrast Blue

CORACQ_PRM_CONTRAST_GREEN

Description Percentage of contrast to be applied to the green video signal. Applies to analog video

signals only.

Type UINT32

Availability Available only if CORACQ_CAP_CONTRAST_GREEN is set to TRUE.

Limits Range Limits: CORACQ_CAP_CONTRAST_GREEN_MIN to

CORACQ_CAP_CONTRAST_GREEN_MAX.

Adjust the parameter by increments of at least CORACQ_CAP_CONTRAST_GREEN_STEP

percent (%) in order for a change to occur in the video signal (100000 = 100%).

CVI Entry [Signal Conditioning]

Contrast Green

$CORACQ_PRM_CONTRAST_RED$

Description Percentage of contrast to be applied to the red video signal. Applies to analog video

signals only.

Type UINT32

Availability Available only if CORACQ_CAP_CONTRAST_RED is set to TRUE.

Limits Range limits: CORACQ_CAP_CONTRAST_RED_MIN to

CORACQ_CAP_CONTRAST_RED_MAX.

Adjust the parameter by increments of at least CORACQ_CAP_CONTRAST_RED_STEP

percent (%) in order for a change to occur in the video signal.

CVI Entry [Signal Conditioning]

Contrast Red

CORACO PRM BOARD SYNC OUTPUT1 SOURCE

Description Specifies the signal that will be output on board sync output 1. This parameter permits

the synchronization of two acquisition devices using a signal from one acquisition

device, and synching the second acquisition device with it.

Type UINT32

Limits Range Limits: 0 .. CORACQ_CAP_BOARD_SYNC_OUTPUT1_SOURCE – 1. The capability

returns the ORed combination of all supported values.

Values Validated only if CORACQ_PRM_BOARD_SYNC_OUTPUT1_ENABLE is TRUE. A value of 0

disables the output to board sync 1.

CVI Entry [Control Signals]

Board Sync Output 1 Source

CORACQ_PRM_BOARD_SYNC_OUTPUT2_SOURCE

Description Specifies the signal that will be output on board sync output 2. This parameter permits

the synchronization of two acquisition devices using a signal from one acquisition

device, and synching the second acquisition device with it.

Type UINT32

Limits Range Limits: 0 .. CORACQ_CAP_BOARD_SYNC_OUTPUT2_SOURCE – 1.

Values Validated only if CORACQ_PRM_BOARD_SYNC_OUTPUT2_ENABLE is TRUE. A value of 0

disables the output to board sync 1.

CVI Entry [Control Signals]

Board Sync Output 2 Source

CORACQ_PRM_CAM_FRAMES_PER_TRIGGER

Description Specifies the number of frames output by the camera per camera trigger. Valid only for

area scan cameras.

Type UINT32

Limits The value must be in the range 1 .. CORACQ_CAP_CAM_FRAMES_PER_TRIGGER_MAX.

CVI Entry [Control Signals]

Camera Frames Per Trigger

Note Parameter is only available if CORACQ_CAP_CAM_FRAMES_PER_TRIGGER_MAX is

supported. Parameter is only validated if a camera trigger/integrate method is enabled.

CORACO PRM CROP ACTIVATION

Description Selects the activation method for the cropper

Type UINT32 **Values** 0x00000000

CORACQ VAL CROP ACTIVATION AUTO

Board specific behavior, either of LEVEL or EDGE as described below.

0x0000001

CORACQ_VAL_CROP_ACTIVATION_LEVEL

The cropper will only be active during the appropriate signal (HSync/LVAL polarity and VSync/FVAL polarity). In this mode, it is not possible to acquire pixels outside the active

region of the video.

0x0000002

CORACQ_VAL_CROP_ACTIVATION_EDGE

The cropper will be activated when the appropriate edge is detected. In this mode, it is

possible to acquire pixels outside the active region of the video.

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_ACTIVATION.

CVI Entry [Stream Conditioning]

Crop Activation

CORACQ_PRM_CROP_HEIGHT

Description Cropped height of the acquisition camera image (in lines per frame).

The acquisition device supports vertical cropping if the CORACQ_CAP_CROP_VERT capability returns TRUE.

Type

UINT32

Limits

The value must be in the range CORACQ_CAP_CROP_HEIGHT_MIN to CORACQ_CAP_CROP_HEIGHT_MAX, and must be a multiple of CORACQ_CAP_CROP_HEIGHT_MULT.

The value must also be in the range CORACQ_CAP_SYNC_CROP_HEIGHT_MIN to CORACQ_CAP_SYNC_CROP_HEIGHT_MAX and must be a multiple of CORACQ_CAP_SYNC_CROP_HEIGHT_MULT

The value (CORACQ_PRM_CROP_TOP + CORACQ_PRM_CROP_HEIGHT) must be smaller or equal to CORACQ_PRM_VACTIVE.

Scale Down limit:

The value CORACQ_PRM_CROP_HEIGHT /

(CORACQ_CAP_SCALE_VERT_MIN_FACTOR / CORACQ_VAL_SCALE_FACTOR) must be smaller or equal to CORACQ_PRM_SCALE_VERT.

CORACQ_CAP_SCALE_VERT_MIN_FACTOR specifies the factor used in calculating the minimum vertical downscaling ratio supported by the acquisition device. The minimum vertical downscaling ratio is equal to 1/(CORACQ_CAP_SCALE_VERT_MIN_FACTOR/CORACQ_VAL_SCALE_FACTOR).

Scale Up limit:

The value CORACQ_PRM_CROP_HEIGHT *

(CORACQ_CAP_SCALE_VERT_MAX_FACTOR / CORACQ_VAL_SCALE_FACTOR) must be greater or equal to CORACQ_PRM_SCALE_VERT.

CORACQ_CAP_SCALE_VERT_MAX_FACTOR specifies the factor used in calculating the maximum vertical upscaling ratio supported by the acquisition device. The maximum vertical upscaling ratio is equal to CORACQ_CAP_SCALE_VERT_MAX_FACTOR/CORACQ_VAL_SCALE_FACTOR.

CVI Entry

[Stream Conditioning]

Crop Height

Note

You should not directly use the function CorAcqSetPrm to set the value of this parameter. This may yield an error condition when it is validated together with the other cropping parameters (CORACQ_PRM_CROP_LEFT, CORACQ_PRM_CROP_TOP, and CORACQ_PRM_CROP_WIDTH).

Instead, you should first retrieve the current VIC parameters using CorAcqGetPrms, then modify the cropping parameters using CorVicSetPrm, and finally apply the new values as a block using CorAcqSetPrms.

For digital acquisition SYNC related capabilities are not used and most drivers set these capabilities to the same value as the corresponding CROP capabilities.

CORACQ_PRM_CROP_LEFT

Description

Number of pixels to crop from the left side of the acquisition camera image.

Includes the number of pixels in the horizontal blanking. The horizontal blanking includes the horizontal back porch and the horizontal back invalid parameters. If the horizontal sync reference is set to CORACQ_VAL_SYNC_REF_BEGIN, then the horizontal sync is also included.

The acquisition device supports horizontal cropping if the CORACQ_CAP_CROP_HORZ capability returns TRUE.

Type

UINT32

Limits

The value must be in the range CORACQ_CAP_CROP_LEFT_MIN to CORACQ_CAP_CROP_LEFT_MAX, and must be a multiple of CORACQ_CAP_CROP_LEFT_MULT.

The value (CORACQ_PRM_CROP_LEFT + CORACQ_PRM_CROP_WIDTH) must be smaller or equal to CORACQ_PRM_HACTIVE.

The value (CORACQ_PRM_HBACK_PORCH + CORACQ_PRM_HBACK_INVALID + CORACQ_PRM_CROP_LEFT) must be in the range

CORACQ_CAP_SYNC_CROP_LEFT_MIN...CORACQ_CAP_SYNC_CROP_LEFT_MAX, and must be a multiple of CORACQ_CAP_SYNC_CROP_LEFT_MULT.

The value (CORACQ_PRM_HBACK_PORCH + CORACQ_PRM_HBACK_INVALID + CORACQ_PRM_CROP_LEFT + CORACQ_PRM_CROP_WIDTH) must be in the range CORACQ_CAP_SYNC_CROP_WIDTH_MIN...CORACQ_CAP_SYNC_CROP_WIDTH_MAX,

and must be a multiple of CORACQ_CAP_SYNC_CROP_WIDTH_MULT.

CVI Entry

[Stream Conditioning]

Crop Left

Note

You should not directly use the function CorAcqSetPrm to set the value of this parameter. This may yield an error condition when it is validated together with the other cropping parameters (CORACQ_PRM_CROP_HEIGHT, CORACQ_PRM_CROP_TOP, and CORACQ_PRM_CROP_WIDTH).

Instead, you should first retrieve the current VIC parameters using CorAcqGetPrms, then modify the cropping parameters using CorVicSetPrm, and finally apply the new values as a block using CorAcqSetPrms.

For digital acquisition SYNC related capabilities are not used and most drivers set these capabilities to the same value as the corresponding CROP capabilities.

CORACQ_PRM_CROP_TOP

Description

Number of lines per acquisition frame to crop from the top of the camera image.

It includes the number of lines in the vertical blanking. The vertical blank includes the vertical back porch and the vertical back invalid parameters. If the vertical sync reference is set to CORACQ_VAL_SYNC_REF_BEGIN, then the vertical sync is also included.

The acquisition device supports vertical cropping if the CORACQ_CAP_CROP_VERT capability returns TRUE.

Type

UINT32

Limits

The value must be in the range CORACQ_CAP_CROP_TOP_MIN to CORACQ_CAP_CROP_TOP_MAX, and must be a multiple of CORACQ_CAP_CROP_TOP_MULT.

The value (CORACQ_PRM_CROP_TOP + CORACQ_PRM_CROP_HEIGHT) must be smaller or equal to CORACQ_PRM_VACTIVE.

The value (CORACQ_PRM_VBACK_PORCH + CORACQ_PRM_VBACK_INVALID + CORACQ_PRM_CROP_TOP) must be in the range

CORACQ_CAP_SYNC_CROP_TOP_MIN...CORACQ_CAP_SYNC_CROP_TOP_MAX, and must be a multiple of CORACQ_CAP_SYNC_CROP_TOP_MULT.

The value (CORACQ_PRM_VBACK_PORCH + CORACQ_PRM_VBACK_INVALID + CORACQ_PRM_CROP_TOP + CORACQ_PRM_CROP_HEIGHT) must be in the range CORACQ_CAP_SYNC_CROP_HEIGHT_MIN...CORACQ_CAP_SYNC_CROP_HEIGHT_MAX, and must be a multiple of CORACQ_CAP_SYNC_CROP_HEIGHT_MULT. See CORACQ_PRM_CROP_HEIGHT for capability information.

CVI Entry

[Stream Conditioning]

Crop Top

Note

You should not directly use the CorAcqSetPrm function to set the value of this parameter. This may yield an error condition when it is validated together with the other cropping parameters (CORACQ_PRM_CROP_HEIGHT, CORACQ_PRM_CROP_LEFT, and CORACQ_PRM_CROP_WIDTH).

Instead, you should first retrieve the current VIC parameters using CorAcqGetPrms, then modify the cropping parameters using CorVicSetPrm, and finally apply the new values as a block using CorAcqSetPrms. See the *Sapera LT Basic Modules Reference Manual* for function descriptions referred to in this table.

For digital acquisition SYNC related capabilities are not used and most drivers set these capabilities to the same value as the corresponding CROP capabilities.

CORACQ_PRM_CROP_WIDTH

Description Cropped width of the acquisition camera image (in pixels).

> The acquisition device supports horizontal cropping if the CORACQ_CAP_CROP_HORZ capability returns TRUE.

UINT32 **Type**

Limits The value must be in the range CORACQ_CAP_CROP_WIDTH_MIN to

CORACQ_CAP_CROP_WIDTH_MAX, and must be a multiple of

CORACQ_CAP_CROP_WIDTH_MULT.

The value must also be in the range CORACQ_CAP_SYNC_CROP_WIDTH_MIN to

CORACQ_CAP_SYNC_CROP_WIDTH_MAX and must be a multiple of

CORACQ_CAP_SYNC_CROP_WIDTH_MULT. See CORACQ_PRM_CROP_LEFT for

capability information.

The value (CORACQ_PRM_CROP_LEFT + CORACQ_PRM_CROP_WIDTH) must be smaller or equal to CORACQ_PRM_HACTIVE.

Scale Down limit:

The value CORACQ_PRM_CROP_WIDTH / (CORACQ_CAP_SCALE_HORZ_MIN_FACTOR / CORACQ_VAL_SCALE_FACTOR) must be smaller or equal to

CORACQ_PRM_SCALE_HORZ. CORACQ_CAP_SCALE_HORZ_MIN_FACTOR specifies the factor used in calculating the minimum horizontal downscaling ratio supported by the acquisition device. The minimum horizontal downscaling ratio is equal to

1/(CORACQ_CAP_SCALE_HORZ_MIN_FACTOR/ CORACQ_VAL_SCALE_FACTOR).

Scale Up limit:

The value CORACQ PRM CROP WIDTH *

(CORACQ_CAP_SCALE_HORZ_MAX_FACTOR / CORACQ_VAL_SCALE_FACTOR) must be

greater or equal to CORACQ_PRM_SCALE_HORZ.

CORACQ_CAP_SCALE_HORZ_MAX_FACTOR specifies the factor used in calculating the maximum horizontal upscaling ratio supported by the acquisition device. The maximum horizontal upscaling ratio is equal to CORACQ_CAP_SCALE_HORZ_MAX_FACTOR/ CORACQ_VAL_SCALE_FACTOR.

CVI Entry [Stream Conditioning]

Crop Width

Note You should not directly use the function CorAcqSetPrm to set the value of this

parameter. This may yield an error condition when it is validated together with the other cropping parameters (CORACQ_PRM_CROP_HEIGHT, CORACQ_PRM_CROP_LEFT,

and CORACQ_PRM_CROP_TOP).

Instead, you should first retrieve the current VIC parameters using CorAcgGetPrms, then modify the cropping parameters using CorVicSetPrm, and finally apply the new

values as a block using CorAcqSetPrms.

For digital acquisition SYNC related capabilities are not used and most drivers set these capabilities to the same value as the corresponding CROP capabilities.

CORACQ_PRM_DC_REST_MODE

Description DC restoration mode control. Applies to analog video signals only.

The acquisition device supports DC restoration if the CORACQ_CAP_DC_REST capability

returns TRUE.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_DC_REST_MODE. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_DC_REST_MODE_AUTO (0x00000001)

The acquisition device automatically activates or deactivates DC restoration and selects

the proper values for the start and width of the sampling pulse.

The pulse starting location is set to CORACQ_PRM_HSYNC pixels and the pulse width is

set to 0.8 µs (expressed in pixels).

CORACQ_VAL_DC_REST_MODE_ON (0x00000002)

The acquisition device activates DC restoration using user-defined values.

CORACQ_VAL_DC_REST_MODE_OFF (0x00000004) The acquisition device deactivates DC restoration.

CVI Entry [Signal Conditioning]

DC Restoration Mode

CORACQ_PRM_DC_REST_START

Description DC restoration sampling pulse start location relative to the horizontal sync, in pixels.

Applies to analog video signals only.

The acquisition device supports DC restoration if the CORACQ_CAP_DC_REST capability

returns TRUE.

Type UINT32

Limits Range limits: CORACQ_CAP_DC_REST_START_MIN to

CORACQ_CAP_DC_REST_START_MAX.

CVI Entry [Signal Conditioning]

DC Restoration Start

Note Validated when CORACQ_PRM_DC_REST_MODE is equal to

CORACQ_VAL_DC_REST_MODE_ON.

CORACO PRM DC REST WIDTH

Description DC restoration sampling pulse width, in pixels. Applies to analog video signals only.

The acquisition device supports DC restoration if the CORACQ_CAP_DC_REST capability

returns TRUE.

Type UINT32

Limits Range limits: CORACQ_CAP_DC_REST_WIDTH_MIN to

CORACQ_CAP_DC_REST_WIDTH_MAX.

CVI Entry [Signal Conditioning]

DC Restoration Width

Note Validated only if CORACQ PRM DC REST MODE is equal to

CORACQ_VAL_DC_REST_MODE_ON.

CORACQ_PRM_DECIMATE_COUNT

Description The number of fields or frames to decimate per second.

Type UINT32

Limits The value must be smaller than the number of acquisition fields or frames per second,

depending on the decimation method requested.

CVI Entry [Stream Conditioning]

Decimate Count

CORACO PRM DECIMATE METHOD

Description Field and frame decimation method.

The acquisition device supports field/frame decimation if the CORACQ_CAP_DECIMATE

capability returns TRUE.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_DECIMATE_METHOD. The capability returns the ORed combination of

all supported values.

Values CORACQ_VAL_DECIMATE_DISABLE (0x00000001) No decimation

CORACQ_VAL_DECIMATE_FIELD (0x00000002) Decimate fields CORACQ_VAL_DECIMATE_FRAME (0x00000004) Decimate frames

CORACQ_VAL_DECIMATE_ODD (0x00000008) Decimate odd fields only CORACQ_VAL_DECIMATE_EVEN (0x00000010) Decimate even fields only

CVI Entry [Stream Conditioning]

Decimate Method

CORACQ_PRM_EXT_FRAME_TRIGGER_DETECTION

Description Defines the signal detected that generates an external frame trigger event to the

acquisition device. Applies to linescan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_EXT_FRAME_TRIGGER_DETECTION. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001), Active low signal. Acquisition starts on

falling edge of trigger 1 - ends on rising edge of trigger 1 or CORACQ_PRM_CROP_HEIGHT numbers of lines acquired.

CORACQ_VAL_ACTIVE_HIGH (0x00000002), Active high signal. Acquisition starts on

rising edge of trigger 1 - ends on falling edge of trigger 1 or CORACQ_PRM_CROP_HEIGHT numbers of lines acquired.

CORACQ_VAL_RISING_EDGE (0x00000004), Rising signal edge. Acquisition starts on rising signal edge and ends on when CORACQ_PRM_CROP_HEIGHT numbers of lines

acquired.

CORACQ_VAL_FALLING_EDGE (0x00000008), Falling signal edge. Acquisition starts on falling signal edge and ends on when CORACQ_PRM_CROP_HEIGHT numbers of lines

acquired.

CORACQ_VAL_BOTH_EDGE (0x00000010), Both signal edges. CORACQ_VAL_DOUBLE _PULSE_RISING_EDGE (0x00000020),

Acquisition starts on rising edge of trigger 1 – ends on rising edge of trigger 2.

CORACQ_VAL_DOUBLE _PULSE_FALLING_EDGE (0x00000040),

Acquisition starts on falling edge of trigger 1 – ends on falling edge of trigger 2.

CVI Entry [Control Signals]

External Frame Trigger Detection

Note Validated only if CORACQ_PRM_EXT_FRAME_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_EXT_FRAME_TRIGGER_ENABLE

Description Enable or disable external frame trigger on the acquisition device. Applies to linescan

For area scan cameras. See CORACQ_PRM_EXT_TRIGGER_ENABLE.

cameras only.

This feature is used for trigger acquisitions of virtual frames from a linescan camera.

The acquisition device may be able to simulate an external trigger. See CORACQ_PRM_EXT_TRIGGER_ENABLE for information concerning the

CORACQ_CAP_SOFTWARE_TRIGGER capability.

Type UINT32

Availability Available only if CORACQ_CAP_EXT_FRAME_TRIGGER is TRUE. This feature is used to

trigger the acquisition of a virtual frame from a linescan camera. For area scan

cameras, see

CORACQ PRM EXT TRIGGER ENABLE for information concerning the

CORACQ_CAP_EXT_TRIGGER capability.

Values TRUE (0x00000001)

Enable Disable

CVI Entry [Control Signals]

External Frame Trigger Enable

CORACO PRM EXT FRAME TRIGGER LEVEL

Description Defines the external frame trigger level connected to the acquisition device. Applies to

linescan cameras only.

FALSE (0x00000000)

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_EXT_FRAME_TRIGGER_LEVEL. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_LEVEL_TTL (0x00000001) TTL signal level.

CORACQ_VAL_LEVEL_422 (0x00000002) RS-422 signal level. CORACQ_VAL_LEVEL_LVDS (0x00000004) LVDS signal level. CORACQ_VAL_LEVEL_24VOLTS (0x00000008) 24V signal level.

CORACQ_VAL_LEVEL_OPTO (0x00000010) Opto-coupled signal level.

CORACQ_VAL_LEVEL_LVTTL (0x00000020) Low voltage TTL signal level.

CORACQ_VAL_LEVEL_12VOLTS (0x00000040) 12V signal level.

CVI Entry [Control Signals]

External Frame Trigger Level

Note Validated only if CORACQ_PRM_EXT_FRAME_TRIGGER_ENABLE is TRUE.

CORACO PRM EXT FRAME TRIGGER SOURCE

Description Specifies the physical input source the external frame trigger is connected to on the

acquisition device, in the case where the acquisition device has more than one input.

Type UINT32

Limits Range Limits: 0... CORACQ_CAP_EXT_FRAME_TRIGGER_SOURCE – 1 in the case where

CORACQ_CAP_EXT_FRAME_TRIGGER_SOURCE is not 0. This capability will have a non-zero value if there is more than one physical input in which to connect an external

frame trigger.

CVI Entry [Control Signals]

External Frame Trigger Source

Note Validated only if CORACQ_PRM_EXT_FRAME_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_EXT_LINE_TRIGGER_DETECTION

Description Defines the signal detected that generates an external line trigger event to the

acquisition device. Applies to linescan cameras only.

UINT32 **Type**

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_EXT_LINE_TRIGGER_DETECTION. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_RISING_EDGE (0x00000004) Rising signal edge.

CORACQ_VAL_FALLING_EDGE (0x00000008)

Falling signal edge.

CVI Entry [Control Signals]

External Line Trigger Detection

Validated only if CORACQ_PRM_EXT_LINE_TRIGGER_ENABLE is TRUE. Note

CORACO PRM EXT LINE TRIGGER ENABLE

Description Enable or disable external line trigger on the acquisition device. Applies to linescan

cameras only.

This controls the acquisition line rate of linescan cameras.

The acquisition device may be able to simulate an external trigger. See CORACQ_PRM_EXT_TRIGGER_ENABLE for information concerning the

CORACQ_CAP_SOFTWARE_TRIGGER capability.

Type UINT32

Availability Available only if CORACQ CAP EXT LINE TRIGGER is TRUE.

TRUE (0x00000001), Enable **Values**

FALSE (0x0000000), Disable

[Control Signals] **CVI Entry**

External Line Trigger Enable

Note This parameter is mutually exclusive with CORACQ_PRM_INT_LINE_TRIGGER_ENABLE

and CORACQ_PRM_SHAFT_ENCODER_ENABLE.

CORACQ_PRM_EXT_LINE_TRIGGER_LEVEL

Description Defines the external line trigger signal level connected to the acquisition device. Applies

to linescan cameras only.

UINT32 **Type**

This value must match one of the supported capabilities of the acquisition device given Limits

by CORACQ_CAP_EXT_LINE_TRIGGER_LEVEL. The capability returns the ORed

combination of all supported values.

CORACQ_VAL_LEVEL_TTL (0x00000001) TTL signal level **Values**

CORACQ_VAL_LEVEL_422 (0x00000002) RS-422 signal level CORACQ_VAL_LEVEL_LVDS (0x00000004) LVDS signal level CORACQ_VAL_LEVEL_24VOLTS (0x00000008) 24V signal level.

CORACQ_VAL_LEVEL_OPTO (0x00000010) Opto-coupled signal level. CORACQ_VAL_LEVEL_LVTTL (0x00000020) Low voltage TTL signal level.

CORACQ_VAL_LEVEL_12VOLTS (0x00000040) 12V signal level.

CVI Entry [Control Signals]

External Line Trigger Level

Validated only if CORACQ_PRM_EXT_LINE_TRIGGER_ENABLE is TRUE. Note

CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE

Description Specifies the physical input source the external line trigger is connected to on the

acquisition device, in the case where the acquisition device has more than one input.

Type UINT32

Limits Range Limits: 0... CORACQ_CAP_EXT_LINE_TRIGGER_SOURCE - 1 in the case where

CORACQ_CAP_EXT_LINE_TRIGGER_SOURCE is not 0. This capability will have a non-zero value if there is more than one physical input in which to connect an external line

trigger.

CVI Entry [Control Signals]

External Line Trigger Source

Note Validated only if CORACQ_PRM_EXT_LINE_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE_STR

Description Returns a string representation of the currently selected

CORAQ_PRM_EXT_LINE_TRIGGER_SOURCE.

Type CHAR[32]

Values Null terminated string (up to 32 characters including the Null character).

Note Read-only parameter. This parameter is device dependent.

CORACQ_PRM_EXT_TRIGGER_DELAY

Description External trigger delay in units specified by

CORACQ_PRM_EXT_TRIGGER_DELAY_TIME_BASE. This is the delay between the

reception of the trigger signal and the start of image acquisition.

Type UINT32

Limits Range limits: CORACQ_CAP_EXT_TRIGGER_DELAY_MIN to

CORACQ_CAP_EXT_TRIGGER_DELAY_MAX.

CVI Entry [Control Signals]

External Trigger Delay

CORACQ_PRM_EXT_TRIGGER_DELAY_TIME_BASE

Description External trigger delay time base

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_EXT_TRIGGER_DELAY_TIME_BASE. The capability returns the ORed

combination of all supported values.

Values

CORACQ_VAL_TIME_BASE_US (0x00000001): Time base is in microseconds. CORACQ_VAL_TIME_BASE_MS (0x00000002): Time base is in milliseconds.

CORACQ_VAL_TIME_BASE_LINE_VALID (0x00000004): Time base is in line counts.

CORACQ_VAL_TIME_BASE_LINE_TRIGGER (0x00000008): Time base is in external line

trigger or shaft encoder pulse counts (after drop or/and multiply factors).

 ${\tt CORACQ_VAL_TIME_BASE_FRAME_VALID~(0x00000010):~ Time~base~is~in~video~frame}$

counts.

CORACQ_VAL_TIME_BASE__FRAME_TRIGGER (0x00000020): the time base is the

external frame trigger.

CORACQ_VAL_TIME_BASE_SHAFT_ENCODER (0x00000040): the time base is the shaft

encoder input (before drop or/and multiply factors).

CORACQ_VAL_TIME_BASE_NS (0x00000080), the time base is in nanoseconds

CORACQ_VAL_TIME_BASE_PIXEL_CLK (0x00000100), the time base is in camera pixel

clock

CORACQ_VAL_TIME_BASE_100NS (0x00000200), the time base is in 100 nanosecond

CVI Entry [Control Signals]

External Trigger Delay Time Base

CORACO PRM EXT TRIGGER DETECTION

Description Defines the signal detected that generates an external trigger event to the acquisition

device.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_EXT_TRIGGER_DETECTION. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Active low signal

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Active high signal CORACQ_VAL_RISING_EDGE (0x00000004) Rising edge of signal CORACQ_VAL_FALLING_EDGE (0x00000008) Falling edge of signal

CVI Entry [Control Signals]

External Trigger Detection

Note Validated only if external trigger is enabled. See CORACQ_PRM_EXT_TRIGGER_ENABLE.

CORACQ_PRM_EXT_TRIGGER_DURATION

Description Minimum external trigger pulse duration (in µs), needed for the pulse to be

acknowledged by the acquisition device. If the duration of the pulse is shorter, the pulse will be discarded. This feature is useful for trigger pulse debouncing. If the value is 0',

no validation will be done.

Type UINT32

Limits This value must be in the range CORACQ_CAP_EXT_TRIGGER_DURATION_MIN ...

CORACQ_CAP_EXT_TRIGGER_DURATION_MAX. A value of 0 means that the device

cannot validate the pulse duration.

CVI Entry [Control Signals]

External Trigger Duration

CORACQ_PRM_EXT_TRIGGER_ENABLE

Description

Replaces CORACQ_PRM_OUTPUT_ENABLE (obsolete). Enables or disables the external trigger feature of the acquisition device. When enabled, the acquisition device acquires frames upon receiving an external trigger.

The CorAcqSoftwareTrigger function can be used to simulate a hardware trigger. The CORACQ_CAP_SOFTWARE_TRIGGER capability specifies the software trigger type(s) that can be simulated by the acquisition device. See the CorAcqSoftwareTrigger function in the *Sapera LT Basic Modules Reference Manual* for further information.

The capability returns the ORed combination of all values as defined below:

CORACQ_VAL_SOFTWARE_TRIGGER_EXT (0x00000001)Simulate an external

trigger

CORACQ_VAL_SOFTWARE_TRIGGER_EXT_FRAME (0x00000002) Simulate an

external frame trigger

CORACQ_VAL_SOFTWARE_TRIGGER_EXT_LINE (0x00000004) Simulate an

external line trigger

Type UINT32

Availability Available only if CORACQ_CAP_EXT_TRIGGER is TRUE. Note that

CORACQ_CAP_OUTPUT_ENABLE is obsolete.

Values CORACQ_VAL_EXT_TRIGGER_OFF (0x00000001) External Trigger is turned off

CORACQ_VAL_EXT_TRIGGER_ON (0x00000008) The acquisition device will

acquire images whenever an external trigger signal is

detected.

CVI Entry [Control Signals]

External Trigger Enable

Note If the CVI entry does not exist or the value is 0, then Output Enable will be used as the

default for backward compatibility.

See also other parameters in the CORACQ_PRM_EXT_TRIGGER_xxx series.

CORACQ_PRM_EXT_TRIGGER_FRAME_COUNT

Description Number of images to acquire upon receiving an external trigger.

The acquisition device can acquire more than one frame per trigger if the CORACQ_CAP_EXT_TRIGGER_FRAME_COUNT capability returns TRUE.

Type UINT32

Limits The value must be in the range: 1... CORACQ_CAP_EXT_TRIGGER_FRAME_COUNT_MAX

To grab an infinite number of frames set to

CORACQ_PRM_EXT_TRIGGER_FRAME_COUNT_INFIINITE

CVI Entry [Stream Conditioning]

External Trigger Frame Count

Note Validated only if external trigger is enabled. See CORACQ_PRM_EXT_TRIGGER_ENABLE.

CORACQ_CAP_EXT_TRIGGER_FRAME_COUNT_MAX returns the maximum number of images that can be acquired per trigger that is supported by the device when setting a

specific value (CORACQ_PRM_EXT_TRIGGER_FRAME_COUNT_INFINITE is also

supported even though it is greater than

CORACQ_CAP_EXT_TRIGGER_FRAME_COUNT_MAX).

When set to CORACQ_PRM_EXT_TRIGGER_FRAME_COUNT_INFINITE, you must

explicitly stop or abort the acquisition.

CORACQ_PRM_EXT_TRIGGER_IGNORE_DELAY

Description Following a valid external trigger, this parameter specifies the time delay, in usec,

where if another external trigger occurs, it will be ignored. The start of the delay (time '0') is the end of the next vertical sync for analog cameras, or the beginning of the next frame valid for digital cameras, following the valid external trigger. If the parameter CORACQ_PRM_CAM_CONTROL_DURING_READOUT is FALSE, time '0' will be the end of the last line acquired from a frame. All external triggers received between the valid external trigger and the Time '0' will also be ignored. Applies to area scan cameras only. For linescan cameras, the external trigger invalid region always extends to the end of the next virtual frame valid following a valid external trigger.

Type UINT32

Values Numerical value representing the delay in µsec.

Limits Range Limits: CORACQ_CAP_EXT_TRIGGER_IGNORE_DELAY_MIN ...

CORACQ_CAP_EXT_TRIGGER_IGNORE_DELAY_MAX.

CVI Entry [Control Signals]

External Trigger Ignore Delay

Note Validated only if external trigger is enabled. See CORACQ_PRM_EXT_TRIGGER_ENABLE

See also the related event CORACQ_PRM_EVENT_TYPE: CORACQ_VAL_EVENT_TYPE_EXTERNAL_TRIGGER_IGNORED

For analog cameras, if the WEN signal is used, time '0' will be the start of this WEN

signal.

For analog cameras, if synching to blanking signals, time '0' will be the end of the

blanking signal.

CORACQ_PRM_EXT_TRIGGER_LEVEL

Description Defines the external trigger level connected to the acquisition device.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_EXT_TRIGGER_LEVEL. The capability returns the ORed combination of

all supported values.

Values CORACQ_VAL_LEVEL_TTL (0x00000001) TTL signal level

CORACQ_VAL_LEVEL_422 (0x00000002)
CORACQ_VAL_LEVEL_LVDS (0x00000004)
CORACQ_VAL_LEVEL_24VOLTS (0x00000008)

RS-422 signal level
LVDS signal level
24V signal level.

CORACQ_VAL_LEVEL_OPTO (0x00000010) Opto-coupled signal level. CORACQ_VAL_LEVEL_LVTTL (0x00000020) Low voltage TTL signal level.

CORACQ_VAL_LEVEL_12VOLTS (0x00000040) 12V signal level.

CVI Entry [Control Signals]

External Trigger Level

Note Validated only if external trigger is enabled. See CORACQ_PRM_EXT_TRIGGER_ENABLE.

CORACQ_PRM_EXT_TRIGGER_SOURCE

Description Specifies the physical input source the external trigger is connected to on the

acquisition device, in the case where the acquisition device has more than one input.

Type UINT32

Limits Range Limits: 0... CORACQ_CAP_EXT_TRIGGER_SOURCE – 1 in the case where

CORACQ_CAP_EXT_TRIGGER_SOURCE is not 0. This capability will have a non-zero value if more than one physical input to connect an external trigger is present. Use CORACQ_PRM_EXT_TRIGGER_SOURCE_STR to get string descriptions for each possible

setting.

CVI Entry [Control Signals]

External Trigger Source

Note Validated only if CORACQ_PRM_EXT_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_EXT_TRIGGER_SOURCE_STR

Description Returns a string representation of the currently selected

CORAQ_PRM_EXT_TRIGGER_SOURCE for area scan cameras and CORACQ_PRM_EXT_FRAME_TRIGGER_SOURCE for linescan cameras.

Type CHAR[32]

Values Null terminated string (up to 32 characters including the Null character).

Note Read-only parameter. This parameter is device dependent.

CORACQ_PRM_FIX_FILTER_ENABLE

Description Enable or disable the fixe-frequency filter if available on the acquisition device. Applies

to analog video signals only.

Type UINT32

Availability Available only if CORACQ_CAP_FIX_FILTER is TRUE.

Values TRUE (0x0000001), Enable the filter.

FALSE 0x00000000), Disable the filter

CVI Entry [Signal Conditioning]

Fix Filter Enable

CORACQ_PRM_FIX_FILTER_SELECTOR

Description Selects one of the available fixed-frequency filters. Applies to analog video signals only.

Type UINT32

Limits Range Limits: 0... CORACQ_CAP_FIX_FILTER_MAX – 1.

CVI Entry [Signal Conditioning]

Fix Filter Selector

Note Validated only if CORACQ_PRM_FIX_FILTER_ENABLE is TRUE.

CORACQ_PRM_FIX_FILTER_SELECTOR_STR

Description Returns a string representation of the currently selected

CORAQ_PRM_FIX_FILTER_SELECTOR.

Type CHAR[32]

Values Null terminated string (up to 32 characters including the Null character).

Note Read-only parameter. This parameter is device dependent.

CORACQ_PRM_FLIP

Description Flipping mode control.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_FLIP. The capability returns the ORed combination of all supported

values.

Values CORACQ_VAL_FLIP_OFF (0x00000000) Incoming lines and frames are not flipped.

CORACQ_VAL_FLIP_HORZ (0x00000001) The acquisition device will flip incoming

lines. The right most pixels become the left

most pixels

CORACQ_VAL_FLIP_VERT (0x00000002) The acquisition device will flip incoming

frames. The bottom lines become the top

lines.

CVI Entry [Stream Conditioning]

Flip

CORACQ_PRM_FRAME_INTEGRATE_COUNT

Description Number of frames to integrate. Applies to area scan cameras only.

Type UINT32

Limits The value is limited to 1... CORACQ_CAP_FRAME_INTEGRATE_COUNT_MAX.

CVI Entry [Control Signals]

Frame Integrate Count

Note Validated only if CORACQ_PRM_FRAME_INTEGRATE_ENABLE is TRUE.

CORACQ_PRM_FRAME_INTEGRATE_ENABLE

Description Enables or disables frame integration control. Applies to area scan cameras only.

Type UINT32

Availability Available only if CORACQ_CAP_FRAME_INTEGRATE is TRUE.

Values TRUE (0x00000001) Enable frame integration control.

FALSE (0x0000000) Disable frame integration control.

CVI Entry [Control Signals]

Frame Integrate Enable

Note This parameter is mutually exclusive with CORACQ_PRM_CAM_RESET_ENABLE,

CORACQ_PRM_CAM_TRIGGER_ENABLE and CORACQ_PRM_TIME_INTEGRATE_ENABLE.

CORACQ_PRM_FRAME_LENGTH

Description Specifies if the image output by the acquisition device have a fixed or variable frame

length.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_FRAME_LENGTH. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_FRAME_LENGTH_FIX (0x00000001)

CORACQ_VAL_FRAME_LENGTH_VARIABLE Variable length images

(0x00000002)

CVI Entry [Stream Conditioning]

Frame Length

Fixed length images

CORACQ_PRM_HSYNC_REF

Description Defines the horizontal sync reference edge used for horizontal timing.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_HSYNC_REF. The horizontal sync reference is used as the starting point when counting the pixels in a line. Selecting the reference as the end of the sync is useful when dealing with a sync that might be variable. This is usually the case when time-integrating a video signal. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_SYNC_REF_BEGIN (0x00000001) Beginning of horizontal sync.

CORACQ_VAL_SYNC_REF_END (0x00000002)

CORACQ_VAL_SYNC_REF_HV_DEPENDENT

(0x00000004)

End of horizontal sync.

Horizontal and Vertical sync reference are dependent on if the acquisition device grabs analog or digital video.

CVI Entry [Stream Conditioning]

Horizontal Sync Reference

CORACQ_PRM_HUE

Description Hue control: Phase change in degrees applied to the hue control. Applies only to NTSC

analog color video signals (composite or Y/C).

Type INT32

Limits Range: CORACQ_CAP_HUE_MIN to CORACQ_CAP_HUE_MAX.

Adjust the parameter by increments of at least CORACQ_CAP_HUE_STEP percent (%) in

order for a change to occur in the video signal.

Availability Available only if CORACQ_CAP_HUE is set to TRUE.

CVI Entry [Signal Conditioning]

Hue

CORACO PRM INT FRAME TRIGGER ENABLE

Description Enable/disable the acquisition device's internal frame trigger feature. Applies to area

scan cameras only.

Type UINT32

Availability Available only if CORACQ_CAP_INT_FRAME_TRIGGER is TRUE.

Values TRUE (0x00000001) Enable

FALSE (0x0000000) Disable

CVI Entry [Control Signals]

Internal Frame Trigger Enable

Note Controls the rate that video frames are triggered and acquired.

CORACQ_PRM_INT_FRAME_TRIGGER_FREQ

Description Internal frame trigger frequency in milli-Hz, output by the acquisition device. Applies to

area scan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_INT_FRAME_TRIGGER_FREQ_MIN ...

CORACQ_CAP_INT_FRAME_TRIGGER_FREQ_MAX.

CVI Entry [Control Signals]

Internal Frame Trigger Freq

Note Validated only if CORACQ_PRM_INT_FRAME_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_INT_LINE_TRIGGER_ENABLE

Description Enable/disable the acquisition device's internal line trigger feature. Applies to linescan

cameras only.

Type UINT32

Availability Available only if CORACQ_CAP_INT_LINE_TRIGGER is TRUE. This feature is used when

the acquisition device itself triggers lines out of a camera.

Values TRUE (0x00000001) Enable

FALSE (0x0000000) Disable

CVI Entry [Control Signals]

Internal Line Trigger Enable

Note Controls the rate video lines are triggered and acquired.

This parameter is mutually exclusive with CORACQ_PRM_EXT_LINE_TRIGGER_ENABLE

and CORACQ_PRM_SHAFT_ENCODER_ENABLE.

CORACQ_PRM_INT_LINE_TRIGGER_FREQ

Description Frequency (in Hz) of the internal line trigger signal output by the acquisition device.

Applies to linescan cameras only.

Type UINT32

Limits Acquisition device range limits: CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MIN to

CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MAX.

Camera range limits: CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MIN to

CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MAX.

CVI Entry [Control Signals]

Internal Line Trigger Freq

Note Validated only if CORACQ_PRM_INT_LINE_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MAX

Description Maximum frequency (in Hz) of the internal line trigger signal output by the acquisition

device. Applies to linescan cameras only.

Type UINT32 CVI Entry None

Note Read-only parameter. This parameter may be dependent on the pixel clock setting.

Always read the parameter after setting the required pixel clock.

CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MIN

Description Minimum frequency (in Hz) of the internal line trigger signal output by the acquisition

device. Applies to linescan cameras only.

Type UINT32 CVI Entry None

Note Read-only parameter. This parameter may be dependent on the pixel clock setting.

Always read the parameter after setting the required pixel clock.

CORACQ_PRM_LINE_INTEGRATE_DURATION

Description Line integrate pulse width in units specified by

CORACQ_PRM_LINE_INTEGRATE_TIME_BASE. In the case where the units are in CORACQ_VAL_TIME_BASE_NS, the CORACQ_CAP_LINE_INTEGRATE_TIME_BASE_MULT returns the resolution of the time base, in nsec. Applies to linescan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_LINE_INTEGRATE_DURATION_MIN...

CORACQ_CAP_LINE_INTEGRATE_DURATION_MAX.

CVI Entry [Control Signals]

Line Integrate Duration

Note Validated only if CORACQ_PRM_LINE_INTEGRATE_ENABLE is TRUE.

CORACO PRM LINE INTEGRATE ENABLE

Description Enable or disable the line integration control signal to the camera. Applies to linescan

cameras only.

Type UINT32

AvailabilityAvailable only if CORACQ_CAP_LINE_INTEGRATE is TRUE.ValuesTRUE (0x00000001)Enable line integration pulse.FALSE (0x00000000)Disable line integration pulse.

CVI Entry [Control Signals]

Line Integrate Enable

Note This parameter is mutually exclusive with CORACQ_PRM_LINE_TRIGGER_ENABLE.

CORACO PRM LINE INTEGRATE TIME BASE

Description Time based used by all Line Integrate and Line Trigger delay/duration parameters.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_LINE_INTEGRATE_TIME_BASE. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_TIME_BASE_NS (0x00000080), the time base is in nano-seconds

CORACQ_VAL_TIME_BASE_PIXEL_CLK (0x00000100), the time base is in pixel clock

ticks

CVI Entry [Control Signals]

Line Integrate Time Base

Note For drivers that do not support the CORACQ_CAP_LINE_INTEGRATE_TIME_BASE

capability, all Line Integrate and Line Trigger delay/duration parameters are expressed

in pixels.

CORACQ_PRM_LINE_TRIGGER_ENABLE

Description Enable or disable the line trigger signal pulse to the camera. Applies to linescan

cameras only.

Type UINT32

Availability Available only if CORACQ_CAP_LINE_TRIGGER is TRUE.

Values TRUE (0x00000001) Enable

FALSE (0x0000000) Disable

CVI Entry [Control Signals]

Line Trigger Enable

Note This parameter is mutually exclusive with CORACQ_PRM_LINE_INTEGRATE_ENABLE.

CORACQ_PRM_LINE_TRIGGER_AUTO_DELAY

Description Enables delaying line triggers to a camera based on the selected method. Delaying a

line trigger is used to avoid over-triggering a camera.

UINT32 **Type**

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_LINE_TRIGGER_AUTO_DELAY. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_LINE_TRIGGER_AUTO_DELAY_DISABLE (0x00000000)

No delays will be added before triggering a line from a camera.

CORACQ_VAL_LINE_TRIGGER_AUTO_DELAY_END_OF_LVAL (0x00000001) If the end of the LVAL from a previous line trigger has not yet been received, the acquisition device will delay the line trigger to the camera until it receives this LVAL.

CORACQ_VAL_LINE_TRIGGER_AUTO_DELAY_FREQ_MAX (0x00000002).

If the time between 2 consecutive line triggers is shorter than the maximum frequency specified by CORACQ PRM CAM LINE TRIGGER FREQ MAX, the acquisition device will

delay the line trigger to match the maximum frequency line trigger specified.

CVI Entry [Control Signals]

Line Trigger Auto Delay

Note While waiting on one of the conditions, if another line trigger is requested, the

CORACQ_VAL_EVENT_TYPE_LINE_TRIGGER_TOO_FAST event will be received if

enabled. Validated only if CORACQ_PRM_LINE_TRIGGER_ENABLE or

CORACQ_PRM_LINE_INTEGRATE_ENABLE is TRUE.

CORACO PRM LINESCAN DIRECTION OUTPUT

Linescan direction control. Applies to linescan cameras only. Description

Type UINT32

Limits Value can only be set to CORACQ_VAL_LINESCAN_DIRECTION_REVERSE if

CORACQ_CAP_LINESCAN_DIRECTION is TRUE and

CORACQ_PRM_LINESCAN_DIRECTION is TRUE. For Teledyne DALSA cameras, this

control is called the TDI scan direction.

CORACQ_VAL_LINESCAN_DIRECTION_FORWARD **Values**

(0x0000001)

CORACQ_VAL_LINESCAN_DIRECTION_REVERSE

Reverse direction.

(0x00000002)

CVI Entry [Control Signals]

LineScan Direction Output

CORACO PRM LUT ENABLE

Description Enable or disable the input LUT.

UINT32 **Type**

Availability At least one LUT is available if CORACQ_CAP_LUT is TRUE.

CORACQ_CAP_LUT_ENABLE will then return TRUE if it can be enabled/disabled.

TRUE (0x00000001) **Values** Enable the input LUT.

FALSE (0x00000000) Disable the input LUT.

[Stream Conditioning] **CVI Entry**

Lut Enable

Note The LUT cannot be disabled on some acquisition devices. Forward direction.

Description Input LUT format based on the current pixel depth and output format.

Type UINT32 CVI Entry None

Values Possible values are of the type CORLUT_VAL_FORMAT_ and must match the possible

values as defined by the CORACQ_CAP_PIXEL_DEPTH capability that specifies the

number of bits per pixel per tap supported by the acquisition device.

Note Read-only parameter. This parameter may depend on CORACQ_PRM_PIXEL_DEPTH and

CORACQ_PRM_OUTPUT_FORMAT.

CORACQ_PRM_LUT_FORMAT

Description Input LUT format based on the current pixel depth and output format.

Type UINT32 CVI Entry None

Values Possible values are of the type CORLUT_VAL_FORMAT_ and must match the possible

values as defined by the CORACQ_CAP_PIXEL_DEPTH capability that specifies the

number of bits per pixel per tap supported by the acquisition device.

Note Read-only parameter. This parameter may depend on CORACQ_PRM_PIXEL_DEPTH and

CORACQ_PRM_OUTPUT_FORMAT.

CORACQ_PRM_LUT_MAX

Description Maximum number of LUTs available based on the current pixel depth and output format.

Type UINT32 CVI Entry None

Note Read-only parameter. This parameter may depend on CORACQ_PRM_PIXEL_DEPTH and

CORACQ_PRM_OUTPUT_FORMAT.

CORACQ_PRM_LUT_NENTRIES

Description The number of elements in the input lookup table.

Type UINT32

Values Usually ranges from 256 to 65536.

CVI Entry None

Note Read only parameter. This parameter may depend on CORACQ_PRM_PIXEL_DEPTH and

CORACQ_PRM_OUTPUT_FORMAT.

CORACO PRM LUT NUMBER

Description Selects which Lut to use.

Type UINT32

Limits The value must be in the range 0...CORACQ_PRM_LUT_MAX - 1.

CVI Entry [Stream Conditioning]

Lut Number

Note Validated only if CORACQ_PRM_LUT_ENABLE is TRUE.

CORACQ_PRM_MASTER_MODE

Description Specifies if the acquisition device drives the horizontal and/or the vertical sync of the

camera

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_MASTER_MODE.

Values CORACQ_VAL_MASTER_MODE_DISABLE (0x00000000), Master mode disabled.

CORACQ_VAL_MASTER_MODE_HSYNC_VSYNC (0x00000001),

The acquisition device drives the horizontal and vertical sync of the camera.

CORACQ_VAL_MASTER_MODE_HSYNC (0x00000002),

The acquisition device drives the horizontal sync of the camera.

CORACQ_VAL_MASTER_MODE_VSYNC (0x00000004),

The acquisition device drives the vertical sync of the camera.

CVI Entry [Control Signals]

Master Mode

CORACQ_PRM_MASTER_MODE_HSYNC_POLARITY

Description Specifies the horizontal sync polarity that the acquisition device outputs in master

mode.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_MASTER_MODE_HSYNC_POLARITY. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Horizontal sync is active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Horizontal sync is active high.

CVI Entry [Control Signals]

Master Mode Horizontal Sync Polarity

Note Validated only if CORACQ_PRM_MASTER_MODE is not equal to

CORACQ_VAL_MASTER_MODE_DISABLE.

CORACQ_PRM_MASTER_MODE_VSYNC_POLARITY

Description Specifies the vertical sync polarity that the acquisition device outputs in master mode.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_MASTER_MODE_VSYNC_POLARITY. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Vertical sync is active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Vertical sync is active high.

CVI Entry [Control Signals]

Master Mode Vertical Sync Polarity

Note Validated only if CORACQ_PRM_MASTER_MODE is not equal to

CORACQ_VAL_MASTER_MODE_DISABLE.

CORACQ_PRM_OUTPUT_ENABLE (obsolete)

Description Video data output mode. Obsolete, use CORACQ_PRM_EXT_TRIGGER_ENABLE.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_OUTPUT_ENABLE. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_OUTPUT_ENABLE_AUTO (0x00000001),

The video data is output whenever a frame has been requested and there is a valid

frame.

CORACQ_VAL_OUTPUT_ENABLE_ON (0x00000002), Video data output enabled always.

CORACQ_VAL_OUTPUT_ENABLE_OFF (0x00000004), Video data is not output.

CORACQ_VAL_OUTPUT_ENABLE_ON_EXTRIG(0x00000008),

The video data is output on the next valid frame when a frame has been requested and

upon receiving an external trigger signal.

CVI Entry [Output]

Output Enable

Note When using CORACQ_VAL_OUTPUT_ENABLE_ON_EXTRIG, see also

CORACQ_PRM_EXT_TRIGGER_DETECTION,

CORACQ_PRM_EXT_TRIGGER_FRAME_COUNT and

CORACQ_PRM_EXT_TRIGGER_LEVEL.

CORACQ_PRM_OUTPUT_FORMAT

Description Data format output by the acquisition device.

Type UINT32 [64]

Limits This value must match one of the supported output formats given by

CORACQ_CAP_OUTPUT_FORMAT.

This capability returns the different output formats supported by the acquisition device as a UINT32 list. The list terminates upon reaching an output format with a value of 0. An array of at least 64 elements must be allocated to obtain the full list of supported

formats.

Values CORACQ_VAL_OUTPUT_FORMAT_MONO1

CORACQ_VAL_OUTPUT_FORMAT_MONO8 CORACQ_VAL_OUTPUT_FORMAT_MONO16 CORACQ_VAL_OUTPUT_FORMAT_MONO32 CORACQ_VAL_OUTPUT_FORMAT_RGB5551 CORACQ_VAL_OUTPUT_FORMAT_RGB565 CORACQ_VAL_OUTPUT_FORMAT_RGB888

CORACQ_VAL_OUTPUT_FORMAT_RGB888_MONO8

CORACQ_VAL_OUTPUT_FORMAT_RGB8888
CORACQ_VAL_OUTPUT_FORMAT_RGB101010
CORACQ_VAL_OUTPUT_FORMAT_RGB161616

CORACQ_VAL_OUTPUT_FORMAT_RGB161616_MONO16

CORACQ_VAL_OUTPUT_FORMAT_RGB16161616

CORACQ_VAL_OUTPUT_FORMAT_RGBP8
CORACQ_VAL_OUTPUT_FORMAT_RGBP16
CORACQ_VAL_OUTPUT_FORMAT_RGBR888
CORACQ_VAL_OUTPUT_FORMAT_UYVY
CORACQ_VAL_OUTPUT_FORMAT_YUY2
CORACQ_VAL_OUTPUT_FORMAT_YVYU
CORACQ_VAL_OUTPUT_FORMAT_YUYV
CORACQ_VAL_OUTPUT_FORMAT_Y411
CORACQ_VAL_OUTPUT_FORMAT_Y211
CORACQ_VAL_OUTPUT_FORMAT_HSV
CORACQ_VAL_OUTPUT_FORMAT_HSI
CORACQ_VAL_OUTPUT_FORMAT_HSIP8
CORACQ_VAL_OUTPUT_FORMAT_BICOLOR88
CORACQ_VAL_OUTPUT_FORMAT_BICOLOR1616

CVI Entry [Output]

Output Format

CORACQ_PRM_PIXEL_MASK

Description Defines the pixel mask values. If any mask bits are set to 0, then the corresponding

pixel bits are also set to 0.

Type UINT32

Availability Available only if CORACQ_CAP_PIXEL_MASK is TRUE.

CVI Entry [Stream Conditioning]

Pixel Mask

CORACQ_PRM_PLANAR_INPUT_SOURCES

Description Specifies which video input sources will be acquired synchronously and transferred to a

vertical planar buffer.

Type UINT32

Availability Available only if CORACQ_CAP_PLANAR_INPUT_SOURCES is TRUE.

Values Bit field representing the video input sources that are to be enabled for synchronized

acquisition into a vertical planar buffer. The board video input is enabled if the corresponding bit is 1. For example, a value of 0x00000005 indicates that bit 0 and 2

are active, and camera #1 and #3 will acquired from.

CVI Entry [Input]

Planar Input Sources

Note The acquisition module might have limitations on which inputs can be acquired

synchronously. See the board's User's Manual for more details.

CORACO PRM POCL ENABLE

Description Enable or disable ending power through the camera link cable...

Type BOOL32

Availability Available only if CORACQ_CAP_POCL is TRUE.

Values TRUE (0x00000001) Enable camera link power.

FALSE (0x00000000) Disable camera link power.

CVI Entry [Control Signal]

PoCL Enable

Note The camera must be PoCL compliant and use a PoCL cable. To validate if PoCL is active

when PoCL is enabled, check the CORACQ_PRM_SIGNAL_STATUS for the

CORACQ_VAL_SIGNAL_POCL_ACTIVE flag.

CORACO PRM PROG FILTER ENABLE

Description Enable or disable the programmable frequency filter. Applies to analog video signals

only.

Type UINT32

Availability Available only if CORACQ_CAP_PROG_FILTER is TRUE.

Values TRUE (0x00000001) Enable the programmable filter.

FALSE (0x00000000) Disable the programmable filter.

CVI Entry [Signal Conditioning]

Programmable Filter Enable

CORACO PRM PROG FILTER FREO

Description Programmable filter frequency in Hz. Applies to analog video signals only.

Type UINT32

Limits The value must be in the range CORACQ_CAP_PROG_FILTER_FREQ_MIN ...

CORACQ_CAP_PROG_FILTER_FREQ_MAX.

CVI Entry [Signal Conditioning]

Programmable Filter Frequency

Note Validated only if CORACQ_PRM_PROG_FILTER_ENABLE is TRUE.

CORACQ_PRM_SATURATION

Description Color saturation percentage control applied to analog composite color video signals.

Type UINT32

Availability Available only if CORACQ_CAP_SATURATION is set to TRUE

Limits Range limits: CORACQ_CAP_SATURATION_MIN to CORACQ_CAP_SATURATION_MAX.

Adjust the parameter by increments of at least CORACQ_CAP_SATURATION_STEP

percent (%) in order for a change to occur in the video signal.

CVI Entry [Signal Conditioning]

Saturation

CORACQ_PRM_SCALE_HORZ

Description Number of pixels per line output by the scalar.

Type UINT32

Limits The value must be in the range CORACQ_CAP_SCALE_HORZ_MIN to

CORACQ_CAP_SCALE_HORZ_MAX, and must be a multiple of

CORACQ_CAP_SCALE_HORZ_MULT.

Scale Down limit: The value CORACQ_PRM_CROP_WIDTH /

(CORACQ_CAP_SCALE_HORZ_MIN_FACTOR / CORACQ_VAL_SCALE_FACTOR) must be

smaller or equal to CORACQ_PRM_SCALE_HORZ.

Scale Up limit: The value CORACQ_PRM_CROP_WIDTH *

(CORACQ_CAP_SCALE_HORZ_MAX_FACTOR / CORACQ_VAL_SCALE_FACTOR) must be

greater or equal to CORACQ_PRM_SCALE_HORZ.

See CORACQ_PRM_CROP_WIDTH for information on both

CORACQ_CAP_SCALE_HORZ_MIN_FACTOR and CORACQ_CAP_SCALE_HORZ_MAX_FACTOR.

CVI Entry [Stream Conditioning]

Scale Horizontal

Note Available only if CORACQ_PRM_SCALE_HORZ_METHOD is not equal to

CORACQ_VAL_SCALE_METHOD_DISABLE.

CORACQ_PRM_SCALE_HORZ_METHOD

Description Horizontal scaling method.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_SCALE_HORZ_METHOD. The capability returns the ORed combination

of all supported values.

Values CORACQ_VAL_SCALE_METHOD_DISABLE (0x00000001),

Disable horizontal scaling.

CORACQ_VAL_SCALE_METHOD_SIMPLE (0x00000002),

Horizontal scaling drops pixels.

CORACQ_VAL_SCALE_METHOD_INTERPOLATION (0x00000004),

Horizontal scaling interpolates pixels.

CORACQ_VAL_SCALE_METHOD_POW2 (0x00000008),

Horizontal scaling must be a power of 2.

CVI Entry [Stream Conditioning]

Scale Horizontal Method

CORACQ_PRM_SCALE_VERT

Description Number of lines per frame output by the scalar.

Type UINT32

Limits The value must be in the range CORACQ_CAP_SCALE_VERT_MIN ...

CORACQ_CAP_SCALE_VERT_MAX, and must be a multiple of

CORACQ_CAP_SCALE_VERT_MULT.

Scale Down limit: The value CORACQ_PRM_CROP_HEIGHT /

(CORACQ_CAP_SCALE_VERT_MIN_FACTOR / CORACQ_VAL_SCALE_FACTOR) must be

smaller or equal to CORACQ_PRM_SCALE_VERT.

Scale Up limit: The value CORACQ_PRM_CROP_HEIGHT *

(CORACQ_CAP_SCALE_VERT_MAX_FACTOR / CORACQ_VAL_SCALE_FACTOR) must be

greater or equal to CORACQ_PRM_SCALE_VERT.

See CORACQ_PRM_CROP_HEIGHT for information on both

CORACQ_CAP_SCALE_VERT_MIN_FACTOR and CORACQ_CAP_SCALE_VERT_MAX_FACTOR.

CVI Entry [Stream Conditioning]

Scale Vertical

Note Available only if CORACQ_PRM_SCALE_VERT_METHOD is not equal to

CORACQ_VAL_SCALE_METHOD_DISABLE.

CORACQ_PRM_SCALE_VERT_METHOD

Description Vertical scaling method.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_SCALE_VERT_METHOD. The capability returns the ORed combination

of all supported values.

Values CORACQ_VAL_SCALE_METHOD_DISABLE (0x00000001), Disable vertical scaling.

CORACQ_VAL_SCALE_METHOD_SIMPLE (0x00000002), Vertical scaling drops lines.

CORACQ_VAL_SCALE_METHOD_INTERPOLATION (0x00000004),

Vertical scaling interpolates lines.

CORACQ_VAL_SCALE_METHOD_POW2 (0x00000008),

Vertical scaling must be a power of 2.

CVI Entry [Stream Conditioning]

Scale Vertical Method

CORACQ_PRM_SHAFT_ENCODER_DIRECTION

Description Selects the direction of the shaft encoder that increments/decrements the acquisition

device encoder counter. Support of dual phase encoders might require that the direction of motion be considered. This is the case where system vibrations and/or conveyor backlash can cause the encoder to momentarily travel backwards. The acquisition device must in those cases count the reverse steps and subtract the forward steps such

that only pulses after the reverse count reaches zero are considered valid.

Type UINT32

Values CORACQ_VAL_SHAFT_ENCODER_DIRECTION_IGNORED (0x00000000)

Do not take into account the shaft encoder direction. All shaft encoder pulses are

considered valid.

CORACQ_VAL_SHAFT_ENCODER_DIRECTION_FORWARD (0x00000001)

Increment the shaft encoder counter when a forward motion is detected. A forward

motion is detected when the order of the pulses are A/B.

CORACQ_VAL_SHAFT_ENCODER_DIRECTION_REVERSE (0x00000002)

Increment the shaft encoder counter when a reverse motion is detected. A reverse

motion is detected when the order of the pulses are B/A.

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_SHAFT_ENCODER_DIRECTION

CVI Entry [Control Signals]

Shaft Encoder Direction

Note Validated only if CORACQ_PRM_SHAFT_ENCODER_ENABLE is TRUE.

CORACQ_PRM_SHAFT_ENCODER_DROP

Description Number of signal edges dropped when video acquisitions are controlled by a shaft

encoder. Applies to linescan cameras only.

Type UINT32

Limits Range limits CORACQ_CAP_SHAFT_ENCODER_DROP_MIN to

CORACQ_CAP_SHAFT_ENCODER_DROP_MAX.

CVI Entry [Control Signals]

Shaft Encoder Pulse Drop

Note Validated only if CORACQ_PRM_SHAFT_ENCODER_ENABLE is TRUE.

For more details about the shaft encoder, see "Shaft Encoder Description".

CORACQ_PRM_SHAFT_ENCODER_ENABLE

Description Enable or disable the shaft encoder support of the acquisition device.

Type UINT32

Availability Available only if CORACQ_CAP_SHAFT_ENCODER is TRUE.

Values TRUE (0x0000001) Enable

FALSE (0x0000000) Disable

CVI Entry [Control Signals]

Shaft Encoder Enable

Note This parameter is mutually exclusive with CORACQ_PRM_INT_LINE_TRIGGER_ENABLE

and CORACQ_PRM_EXT_LINE_TRIGGER_ENABLE.

For more details about the shaft encoder, see "Shaft Encoder Description".

CORACQ_PRM_SHAFT_ENCODER_LEVEL

Description Shaft encoder level fed to the acquisition device. Applies to linescan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_SHAFT_ENCODER_LEVEL. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_LEVEL_TTL (0x00000001) TTL signal.

CORACQ_VAL_LEVEL_422 (0x00000002) RS-422 signal.

CORACQ_VAL_LEVEL_LVDS (0x00000004) LVDS signal.

CORACQ_VAL_LEVEL_24VOLTS (0x00000008) 24V signal level.

CORACQ_VAL_LEVEL_OPTO (0x00000010) Opto-coupled signal level.

CORACQ_VAL_LEVEL_LVTTL (0x00000020) Low voltage TTL signal level.

CORACQ_VAL_LEVEL_12VOLTS (0x00000040) 12V signal level.

CVI Entry [Control Signals]

Shaft Encoder Level

Note Validated only if CORACQ_PRM_SHAFT_ENCODER_ENABLE is TRUE.

CORACQ_PRM_SHAFT_ENCODER_MULTIPLY

Description Number of signal edges generated for each shaft encoder signal edge, when video

acquisitions are controlled by an external shaft encoder trigger. Applies to linescan

cameras only.

Type UINT32

Limits Range limits CORACQ_CAP_SHAFT_ENCODER_MULTIPLY_MIN to

CORACQ_CAP_SHAFT_ENCODER_MULTIPLY_MAX by increments specified by

CORACQ_CAP_SHAFT_ENCODER_MULTIPLY_STEP.

Adjust the parameter by minimum increments as specified by

CORACQ_CAP_SHAFT_ENCODER_MULTIPLY_STEP. This capability is a 32-bit bitfield containing the minimum step (bit0 to bit15) and the step type (linear or exponential,

bit16 to bit31).

Bits 31 - 16	Bits 15 - 0	
Step Type	Step Value	

The parameter varies as described below:

	Step Type	CORACQ_PRM_SHAFT_ENCODER_MULTIPLY
	CORSTEP_INCREMENT_LINEAR (0x10000000)	SHAFT_ENCODER_MULTIPLY_MIN + N * step
		SHAFT_ENCODER_MULTIPLY_MIN * step N
((0x20000000)	Where $N >= 0$.

For example, if the CORACQ_CAP_SHAFT_ENCORDER_STEP value is 0x20000002, the

step type is CORSTEP_INCREMENT_EXPONENTIAL, with a step of 2 .If

CORACQ_CAP_SHAFT_ENCODER_MULTIPLY_MIN = 1,

CORACQ_PRM_SHAFT_ENCODER_MULTIPLY would be 1, 2, 4, 8...

CVI Entry [Control Signals]

Shaft Encoder Pulse Multiply

Note Validated only if CORACQ_PRM_SHAFT_ENCODER_ENABLE is TRUE.

For more details about the shaft encoder, see "Shaft Encoder Description".

See your board User's manual for any hardware limitations of this feature.

CORACQ_PRM_SHAFT_ENCODER_ORDER

Description Selects the order of the drop/multiply operation of the shaft encoder.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_SHAFT_ENCODER_ORDER. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_SHAFT_ENCODER_ORDER_AUTO: Device Specific

CORACQ_VAL_SHAFT_ENCODER_ORDER_DROP_MULTIPLY: Drop-Multiply CORACQ_VAL_SHAFT_ENCODER_ORDER_MULTIPLY_DROP: Multiply-Drop

CVI Entry [Control Signals]

Shaft Encoder Order

CORACO PRM SHAFT ENCODER SOURCE

Description Specifies the physical input source the shaft encoder is connected to on the acquisition

device, in the case where the acquisition device has more than one input.

Type UINT32

Limits Range Limits: 0 ... CORACQ CAP SHAFT ENCODER SOURCE – 1 in the case where

CORACQ_CAP_SHAFT_ENCODER_SOURCE is not 0. This capability will have a non-zero

value if more than one physical input to connect a shaft encoder is present.

CVI Entry [Control Signals]

Shaft Encoder Source

Note Validated only if

CORACQ_PRM_SHAFT_ENCODER_ENABLE is

TRUE.

CORACO PRM SHAFT ENCODER SOURCE STR

Description Returns a string representation of the currently selected

CORAQ_PRM_SHAFT_ENCODER_SOURCE

Type CHAR[32]

Values Null terminated string (up to 32 characters including the Null character).

Note Read-only parameter. This parameter is device dependent.

CORACQ_PRM_SHARED_CAM_RESET

Description Synchronize the reset output signal of the current acquisition module with another

acquisition module of the board.

Type UINT32

Limits This value can only be set to a value different than

CORACQ_VAL_SHARED_CONTROL_DISABLE if CORACQ_CAP_SHARED_CAM_RESET is

TRUE.

CORACQ_CAP_SHARED_CAM_RESET is required to synchronize resetting more than 1 camera simultaneously. The master acquisition device must be acquiring in order for the

slaved acquisition device to acquire.

Values The acquisition module's index (master device) that the reset output signal will

synchronize with, or CORACQ_VAL_SHARED_CONTROL_DISABLE (= -1) if not used.

CVI Entry [Shared Control Signals]

Camera Reset

CORACQ_PRM_SHARED_CAM_TRIGGER

Description Synchronize the trigger output signal of the current acquisition module with another

acquisition module of the board.

Type UINT32

Limits This value can only be set to a value different than

CORACQ_VAL_SHARED_CONTROL_DISABLE if CORACQ_CAP_SHARED_CAM_TRIGGER

is TRUE.

CORACQ_CAP_SHARED_CAM_TRIGGER is required to synchronize triggering more than 1 camera simultaneously. The master acquisition device must be acquiring in order for

the slaved acquisition device to acquire.

Values The acquisition module's index (master device) that the trigger output signal will

synchronize with, or CORACQ_VAL_SHARED_CONTROL_DISABLE (= -1) if not used.

CVI Entry [Shared Control Signals]

Camera Trigger

CORACQ_PRM_SHARED_EXT_TRIGGER

Description Share the external trigger signal from another acquisition module.

Type UINT32

Limits This value can only be set to a value different than

CORACQ_VAL_SHARED_CONTROL_DISABLE if CORACQ_CAP_SHARED_EXT_TRIGGER is

TRUE.

CORACQ_CAP_SHARED_EXT_TRIGGER is required to trigger more than 1 acquisition module simultaneously using a single external trigger input signal. The master

acquisition device must be acquiring in order for the slaved acquisition device to acquire

properly.

Values The acquisition module's index (master device) from which the external trigger signal

will originate, or CORACQ_VAL_SHARED_CONTROL_DISABLE (= -1) if not used.

CVI Entry [Shared Control Signals]

External Trigger

CORACQ_PRM_SHARED_FRAME_INTEGRATE

Description Synchronize the frame integration output signal of the current acquisition module with

another acquisition module of the board.

Type UINT32

Limits This value can only be set to a value different than

CORACQ_VAL_SHARED_CONTROL_DISABLE if CORACQ_CAP_SHARED_FRAME_INTEGRATE is TRUE.

CORACQ_CAP_SHARED_FRAME_INTEGRATE is required to synchronize frame

integration using multiple cameras simultaneously. The master acquisition device must

be acquiring in order for the slaved device to acquire.

Values The acquisition module's index (master device) that the frame integration output signal

will synchronize with, or CORACQ_VAL_SHARED_CONTROL_DISABLE (= -1) if not used.

CVI Entry [Shared Control Signals]

Frame Integrate

CORACQ_PRM_SHARED_STROBE

Description Share the strobe output signal from another acquisition module.

Type UINT32

Limits This value can only be set to a value different than

CORACQ_VAL_SHARED_CONTROL_DISABLE if CORACQ_CAP_SHARED_STROBE is

TRUE.

CORACQ_CAP_SHARED_STROBE is required when using a single strobe while acquiring with more than one camera simultaneously. The master acquisition device must be

acquiring in order for the slaved acquisition device to acquire.

Values The acquisition module's index (master device) from which the strobe output signal will

originate, or CORACQ_VAL_SHARED_CONTROL_DISABLE (= -1) if not used.

CVI Entry [Shared Control Signals]

Strobe

CORACQ_PRM_SHARED_TIME_INTEGRATE

Description Synchronize the time integration output signal of the current acquisition module with

another acquisition module of the board.

Type UINT32

Limits This value can only be set to a value different than

CORACQ_VAL_SHARED_CONTROL_DISABLE if CORACQ_CAP_SHARED_TIME_INTEGRATE is TRUE.

CORACQ_CAP_SHARED_TIME_INTEGRATE is required when synchronizing time integration with multiple cameras simultaneously. The master acquisition device must

be acquiring in order for the slaved device to acquire.

Values The acquisition module's index (master device time integration output signal) which will

be synchronized with, or CORACQ_VAL_SHARED_CONTROL_DISABLE (= -1) if not used.

CVI Entry [Shared Control Signals]

Time Integrate

CORACO PRM SHARPNESS

Description Analog composite video sharpness control applied to the video signal. Applies to analog

composite video signals only.

Type UINT32

Limits Range limits: CORACQ_CAP_SHARPNESS_MIN ... CORACQ_CAP_SHARPNESS_MAX.

CVI Entry [Signal Conditioning]

Sharpness

Note This parameter has no units. Sharpness values are dependent on the board hardware

used.

CORACQ_PRM_SNAP_COUNT

Description Number of images to acquire per transfer count.

Type UINT32

Limits The value must be in the range: 1...(2**32) – 1.

Availability Available only if CORACQ_CAP_SNAP_COUNT is TRUE.

CVI Entry [Stream Conditioning]

Snap Count

Notes CORACQ_CAP_SNAP_COUNT_MAX returns the maximum number of images per transfer

count that is supported by the device.

CORACQ_PRM_STROBE_DELAY

Description Strobe pulse delay #1 (in μ s).

Type UINT32

Limits Range limits: CORACQ_CAP_STROBE_DELAY_MIN to

CORACQ_CAP_STROBE_DELAY_MAX.

CVI Entry [Control Signals]

Strobe Delay

Note Validated only if CORACQ_PRM_STROBE_ENABLE is TRUE.

See "Strobe Methods" for details on using the pulse delay #1 parameter.

CORACQ_PRM_STROBE_DELAY_2

Description Strobe pulse delay #2 (in μ s).

Type UINT32

Limits Range limits: CORACQ_CAP_STROBE_DELAY_2_MIN to

CORACQ_CAP_STROBE_DELAY_2_MAX.

Note Validated only if CORACQ_PRM_STROBE_ENABLE is TRUE.

See "Strobe Methods" for details on using the pulse delay #2 parameter.

CORACQ_PRM_STROBE_DURATION

Description Strobe pulse width (in μ s).

Type UINT32

Limits Range limits: CORACQ_CAP_STROBE_DURATION_MIN to

CORACQ_CAP_STROBE_DURATION_MAX.

CVI Entry [Control Signals]

Strobe Duration

Note Validated only if CORACQ_PRM_STROBE_ENABLE is TRUE.

CORACO PRM STROBE ENABLE

Description Enable or disable the strobe pulse.

Type UINT32

Availability Available only if CORACQ_CAP_STROBE is TRUE.

Values TRUE (0x00000001) Enable the strobe pulse.

FALSE (0x00000000) Disable the strobe pulse.

CVI Entry [Control Signals]

Strobe Enable

CORACQ_PRM_STROBE_LEVEL

Description Strobe signal level output by the acquisition device.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_STROBE_LEVEL. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_LEVEL_TTL (0x00000001) TTL signal level.

CORACQ_VAL_LEVEL_422 (0x00000002) RS-422 signal level. CORACQ_VAL_LEVEL_LVDS (0x00000004) LVDS signal level. CORACQ_VAL_LEVEL_24VOLTS (0x00000008) 24V signal level.

CORACQ_VAL_LEVEL_OPTO (0x00000010) Opto-coupled signal level.

CORACQ_VAL_LEVEL_LVTTL (0x00000020) Low voltage TTL signal level.

CORACQ_VAL_LEVEL_12VOLTS (0x00000040) 12V signal level.

CVI Entry [Control Signals]

Strobe Level

Note Validated only if CORACQ_PRM_STROBE_ENABLE is TRUE.

CORACQ_PRM_STROBE_METHOD

Description Select the strobe pulse output method.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_STROBE_METHOD. The capability returns the ORed combination of all

supported values.

Values See "Strobe Methods".

CVI Entry [Control Signals] Strobe Method

Note Validated only if CORACQ_PRM_STROBE_ENABLE is TRUE.

CORACO PRM STROBE POLARITY

Description Strobe pulse polarity.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_STROBE_POLARITY. The capability returns the ORed combination of

all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Strobe pulse will be active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Strobe pulse will be active high.

CVI Entry [Control Signals]

Strobe Polarity

Note Validated only if CORACQ_PRM_STROBE_ENABLE is TRUE.

CORACO PRM TIME INTEGRATE DELAY

Description Time integration delay (in μs). After receiving a trigger pulse (external, internal or

software), the acquisition device will wait this delay before generating the time

integration pulse(s).

Type UINT32

Limits Range limits: CORACQ_CAP_TIME_INTEGRATE_DELAY_MIN ...

CORACQ_CAP_TIME_INTEGRATE_DELAY_MAX.

CVI Entry [Control Signals]

Time Integrate Delay

Note Validated only if CORACQ_PRM_TIME_INTEGRATE_ENABLE is TRUE.

CORACQ_PRM_TIME_INTEGRATE_DURATION

Description Time integration pulse width (in μs). Applies to area scan cameras only.

Type UINT32

Limits Acquisition device range limits: CORACQ_CAP_TIME_INTEGRATE_DURATION_MIN to

CORACQ_CAP_TIME_INTEGRATE_DURATION_MAX.

Camera range limits: CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MIN to

CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MAX.

CVI Entry [Control Signals]

Time Integrate Duration

Note Validated only if CORACQ_PRM_TIME_INTEGRATE_ENABLE is TRUE.

CORACQ_PRM_TIME_INTEGRATE_ENABLE

Description Enable or disable the time integration signal pulse to the camera. Applies to area scan

cameras only.

Type UINT32

Availability Available only if CORACQ_CAP_TIME_INTEGRATE is TRUE.

Values TRUE (0x00000001) Enable time integration pulse.

FALSE (0x00000000) Disable time integration pulse.

CVI Entry [Control Signals]

Time Integrate Enable

Note This parameter is mutually exclusive with CORACQ_PRM_CAM_TRIGGER_ENABLE and

CORACQ_PRM_FRAME_INTEGRATE_ENABLE.

CORACQ_PRM_TIME_STAMP_BASE

Description Sets the acquisition device timestamp basic units.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TIME_STAMP_BASE. The capability returns the ORed combination of

all supported values.

Values CORACQ_VAL_TIME_BASE_US (0x00000001), the time base is in microseconds

CORACQ_VAL_TIME_BASE_MS (0x00000002), the time base is in milliseconds

CORACQ_VAL_TIME_BASE_LINE_VALID (0x00000004), the time base is in line valid

received

NOTE: This macro replaces obsolete one: CORACQ_VAL_TIME_BASE_LINE

CORACQ_VAL_TIME_BASE_LINE_TRIGGER (0x00000008), the time base is in external

line trigger or shaft encoder pulse (after drop/multiply operation)

CORACQ_VAL_TIME_BASE_FRAME_VALID (0x00000010), the time base is in frame

valid received.

NOTE: This macro replaces obsolete one: CORACQ_VAL_TIME_BASE_FRAME

 ${\tt CORACQ_VAL_TIME_BASE_FRAME_TRIGGER~(0x00000020),~the~time~base~is~in~valid}$

external frame trigger received (does not count the ones that are ignored).

CORACQ_VAL_TIME_BASE_SHAFT_ENCODER(0x00000040), the time base is in external

line trigger or shaft encoder pulse (before drop/multiply operation)

 ${\tt CORACQ_VAL_TIME_BASE_NS~(0x00000080),~the~time~base~is~in~nanoseconds}$

CORACQ_VAL_TIME_BASE_PIXEL_CLK (0x00000100), the time base is in camera pixel

clock

CORACQ_VAL_TIME_BASE_100NS (0x00000200), the time base is in 100 nanoseconds

CVI Entry [General]

Time Stamp Base

Note If the acquisition device does not support this feature, the

CORACQ_CAP_TIME_STAMP_BASE capability returns 0 or CORSTATUS_CAP_INVALID.

CORACQ_PRM_VERTICAL_TIMEOUT_DELAY

Description Following a valid external/internal/software trigger, this parameter specifies the time

delay before which the end of a vertical sync (analog cameras) or beginning of a frame valid (digital cameras) must be detected. If none are detected after this delay, a vertical timeout delay event will be generated if the event is activated. Once a vertical timeout

is detected, the acquisition device resets itself and waits for the next valid external/internal/software trigger. Applies to area scan cameras only.

Type UINT32

Values Numerical value representing the delay in µsec.

Limits Range Limits: CORACQ_CAP_VERTICAL_TIMEOUT_DELAY_MIN ...

CORACQ_CAP_VERTICAL_TIMEOUT_DELAY_MAX.

CVI Entry [Control Signals]

Vertical Timeout Delay

Note See also the related event

CORACQ_PRM_EVENT_TYPE:CORACQ_VAL_EVENT_TYPE_VERTICAL_TIMEOUT

For analog cameras, if the WEN signal is used, the beginning of the WEN must be

detected before the programmed delay expires.

For analog cameras, if synching to blanking signals, the end of the blanking signal must

be detected before the programming delay expires.

CORACQ_PRM_VIC_NAME

Description VIC parameter file description field (up to 63 characters long).

Type BYTE [64] CVI Entry [General]

Vic Name

CORACQ_PRM_VSYNC_REF

Description Vertical sync reference.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_PRM_VSYNC_REF. The vertical sync reference is used as the starting point for counting video frame lines. Selecting the end of sync as the reference is useful when dealing with a variable width sync. This is often the case when time-integrating a video

signal.

The capability returns the ORed combination of all supported values.

Values CORACQ_VAL_SYNC_REF_BEGIN (0x00000001), Beginning of vertical sync.

CORACQ_VAL_SYNC_REF_END (0x00000002), End of vertical sync.

CORACQ_VAL_SYNC_REF_HV_DEPENDENT (0x00000004), Horizontal and Vertical sync reference are locked together.

CVI Entry [Stream Conditioning]

Vertical Sync Reference

CORACO PRM WEN ENABLE

Description Enable or disable use of the WEN (Write Enable) signal from the camera.

Type UINT32

Availability Available only if CORACQ_CAP_WEN is TRUE.

Values TRUE (0x00000001) Enable the use of the WEN signal.

FALSE (0x00000000) Disable the use of the WEN signal

CVI Entry [Control Signals]

WEN Enable

Data Structures

Defines Data Structures

Pin Connector Description

Certain frame grabbers provide connectors that are configurable; that is, it is possible to assign a control signal—such as pixel clock, HSync, or VSync—to specific pins on a given connector. Sapera LT provides a list of camera parameters to describe the pin assignment for a given camera (see the "Connector Description" parameters list within the Camera Related Parameters section in Advanced Acquisition Control). This allows the frame grabber to automatically configure its pins to meet the camera specifications. Refer to your frame grabber user's manual for a description of the board's capabilities.

Teledyne DALSA's CamExpert allows for the creation of a camera file (CCA file) with the desired connector descriptions. The bit field description below is provided for users who want to interpret or edit the camera files manually. It represents the value assigned to each of the connector description parameters.

Bits	31-24	23-16	15-0
Description	Connector #	Connector Type	Pin #

Bit Field	Description
Pin #	Pin number on connector (1 n).
	Note : The macro CORACQ_VAL_CONNECTOR_PIN(<i>value</i>) is provided to extract the pin #, where the <i>value</i> is a valid pin connector description.
Connector Type	Type of connector: CORACQ_VAL_CONNECTOR_TYPE_HIROSE12 12-pin Hirose connector
	CORACQ_VAL_CONNECTOR_TYPE_CAMLINK Camera Link connector. The pin number represents the camera control line #: CC1, CC2, CC3 & CC4.
	CORACQ_VAL_CONNECTOR_TYPE_CAM_CONTROL
	Generic camera control connector. The pin numbers (up to 8) are device dependent.
	CORACQ_VAL_CONNECTOR_TYPE_CX4
	CX4 camera connector.
	CORACQ_VAL_CONNECTOR_TYPE_CLHS
	CLHS camera connector.
	Note : The macro CORACQ_VAL_CONNECTOR_TYPE(value) is provided to extract the connector type, where the <i>value</i> is a valid connector type.
Connector #	Number of the connector (in the event the camera has more than 1 connector, 1 . n).
	Note : The macro CORACQ_VAL_CONNECTOR_NUMBER(value) is provided to extract the connector number, where the <i>value</i> is a valid connector number.

The following are the related capabilities that give the valid values that can be applied to the connector number, connector type, and pin number.

CORACQ_CAP_CONNECTOR_TYPE

Description Specifies the different connector types available on the device.

Type UINT32

Values CORACQ_VAL_CONNECTOR_TYPE_HIROSE12 12-pin Hirose connector

(0x0000001)

CORACQ_VAL_CONNECTOR_TYPE_CAMLINK Camera Link connector

(0x00000002)

CORACQ_VAL_CONNECTOR_TYPE_CAM_CONTROL Generic camera control connector

(0x0000004)

CORACQ_VAL_CONNECTOR_TYPE_CX4 CX4 camera connector

(0x00000008)

CORACQ_VAL_CONNECTOR_TYPE_CLHS CLHS camera connector

(0x0000010)

CORACQ_CAP_CONNECTOR_CAMLINK

Description Specifies the different signals that the acquisition device can route to the Cam Link CC1,

CC2, CC3, and CC4 connector pins.

Type UINT32[4]

Values Each entry in the table represents a bit field representing the valid signals that can be

routed to the respective CameraLink pins. See "Signal Name Definitions" for

CORACQ_VAL_SIGNAL_NAME_xxx definitions.

CORACQ_CAP_CONNECTOR_HIROSE12

Description Specifies the different signals that the acquisition device can route to the Hirose-12

connector pins.

Type UINT32[12]

Values Each entry in the table represents a bit field representing the valid signals that can be

routed to the respective Hirose-12 pins. See "Signal Name Definitions" for

CORACQ_VAL_SIGNAL_NAME_xxx definitions.

CORACQ_CAP_CONNECTOR_CAM_CONTROL

Description Specifies the different signals that the acquisition device can route to the generic

camera control connector pins.

Type UINT32[8]

Values Each entry in the table represents a bit field representing the valid signals that can be

routed to the respective generic camera control pins. See "Signal Name Definitions" or

CORACQ_VAL_SIGNAL_NAME_xxx definitions.

Signal Name Definitions

Define	Value	Definition
CORACQ_VAL_SIGNAL_NAME_NO_CONNECT	0x00000001	No Connection
CORACQ_VAL_SIGNAL_NAME_HD	0x00000002	Horizontal Drive
CORACQ_VAL_SIGNAL_NAME_VD	0x00000004	Vertical Drive
CORACQ_VAL_SIGNAL_NAME_PULSE0	80000000x0	Camera Control Pulse 0
CORACQ_VAL_SIGNAL_NAME_PULSE1	0x00000010	Camera Control Pulse 1
CORACQ_VAL_SIGNAL_NAME_PIXEL_CLOCK_IN	0x00000020	Pixel Clock In
CORACQ_VAL_SIGNAL_NAME_PIXEL_CLOCK_OUT	0x00000040	Pixel Clock Out
CORACQ_VAL_SIGNAL_NAME_LINESCAN_DIRECTION	0x00000080	Linescan Direction
CORACQ_VAL_SIGNAL_NAME_WEN	0x00000100	WEN (Write ENable)
CORACQ_VAL_SIGNAL_NAME_EXT_TRIGGER	0x00000200	External Trigger
CORACQ_VAL_SIGNAL_NAME_EXT_LINE_TRIGGER	0x00000400	External Line Trigger
CORACQ_VAL_SIGNAL_NAME_EXT_LINE_TRIGGER_1		
CORACQ_VAL_SIGNAL_NAME_INT_FRAME_TRIGGER	0x00000800	Internal Frame Trigger
CORACQ_VAL_SIGNAL_NAME_INT_LINE_TRIGGER	0x00001000	Internal Line Trigger
CORACQ_VAL_SIGNAL_NAME_SOFTWARE_TRIGGER	0x00002000	Software Trigger
CORACQ_VAL_SIGNAL_NAME_GND	0x00004000	Ground
CORACQ_VAL_SIGNAL_NAME_POWER_12V	0x00008000	Power 12V
CORACQ_VAL_SIGNAL_NAME_VIDEO	0x00010000	Video
CORACQ_VAL_SIGNAL_NAME_VIDEO_GND	0x00020000	Video Ground
CORACQ_VAL_SIGNAL_NAME_SHAFT_ENCODER_PHASE_A	0x00040000	Shaft Encoder Phase A
CORACQ_VAL_SIGNAL_NAME_SHAFT_ENCODER_PHASE_B	0x00080000	Shaft Encoder Phase B
CORACQ_VAL_SIGNAL_NAME_EXT_LINE_TRIGGER_2	0x00100000	External Line Trigger 2
CORACQ_VAL_SIGNAL_NAME_EXT_TRIGGER_2	0x00200000	External Trigger 2
CORACQ_VAL_SIGNAL_NAME_EXT_TRIGGER_1	0x00400000	External Trigger 1

Structure Definitions

Defines CORACQ_CAM_IO_CONTROL

CORACQ_CAM_IO_CONTROL

```
typedef struct
           label[12];
                           //User defined descriptive label of the camera control
   char
                           //(for example, BIN, GAIN...)
   UINT32 connectorInput; // Pin Connector Description
                           //Number of bits needed for this control
   UINT32 nbBits;
   IIINT32 level;
                           //{\tt CORACQ\_VAL\_LEVEL\_TTL~(0x00000001)}
                            //CORACQ_VAL_LEVEL_422 (0x00000002)
                           //CORACQ_VAL_LEVEL_LVDS (0x00000004)
                           //\texttt{CORACQ\_VAL\_LEVEL\_24VOLTS} \hspace{0.2cm} \texttt{(0x00000008)} \\
                           //CORACQ_VAL_LEVEL_OPTO (0x00000010)
                           //CORACQ_VAL\_LEVEL\_LVTTL (0x00000020)
                            //CORACQ_VAL_LEVEL_12VOLTS (0x00000040)
   UINT32 direction;
                           //CORACQ_VAL_DIR_INPUT (0x0000001)
                           //CORACQ_VAL_DIR_OUTPUT (0x00000002)
   UINT32 polarity;
                           //Used only for information purposes by an application.
                           //The driver does not make any use of this member.
                           //(0x0000000): value is of type CORACQ_VAL_SIGNAL_NAME_xxx
                           //CORACQ_VAL\_ACTIVE\_LOW (0x0000001)
                            //CORACQ_VAL_ACTIVE_HIGH (0x00000002)
   UINT32 value;
                           //{\mbox{The control's default value when used as an output.}}
                           //If a bit is set to '1', the corresponding output
                           //will be set to on or high;
                            //otherwise, the output will be set to off or low.
                           //If polarity is 0, then value is a CORACQ_VAL_SIGNAL_NAME_xxx
 CORACQ_CAM_IO_CONTROL, *PCORACQ_CAM_IO_CONTROL;
```

Camera Control Method Definitions

This section provides definitions and timing diagrams for the camera control methods supported by Sapera LT. Topics covered are:

- Camera Reset Method
- Camera Trigger Methods
- Frame Integrate Methods
- Line Integrate Methods
- Line Trigger Methods
- Time Integrate Methods
- Strobe Methods

Camera Reset Method

The following camera reset method is available:

CORACQ_VAL_CAM_RESET_METHOD_1

CORACO VAL CAM RESET METHOD 1

Value 0x00000001 (Camera Reset Method #1)

Description Method selection is via the parameter CORACQ_PRM_CAM_RESET_METHOD.

This method generates an asynchronous reset pulse to a camera. The next generated

frame then acquired. The reset pulse is defined by the following parameters:

Delay CORACQ_PRM_CAM_RESET_DELAY

Duration CORACQ_PRM_CAM_RESET_DURATION

Polarity CORACQ_PRM_CAM_RESET_POLARITY

Example:

Camera Trigger Methods

The following camera trigger methods are available (area scan only):

- CORACQ_VAL_CAM_TRIGGER_METHOD_1
- CORACQ_VAL_CAM_TRIGGER_METHOD_2
- CORACQ_VAL_CAM_TRIGGER_METHOD_3

CORACQ_VAL_CAM_TRIGGER_METHOD_1

Numerical

0x0000001 (Camera Trigger Method 1)

Value Description

Method selection is via the parameter CORACQ_PRM_CAM_TRIGGER_METHOD. This method generates an asynchronous trigger pulse to a camera (area scan only). The next generated frame is then acquired. The trigger pulse is defined by the following

parameters:.

Delay CORACQ_PRM_CAM_TRIGGER_DELAY

Duration CORACQ_PRM_CAM_TRIGGER_DURATION

Polarity CORACQ_PRM_CAM_TRIGGER_POLARITY

Example:

CORACQ_VAL_CAM_TRIGGER_METHOD_2

Numerical Value 0x00000002 (Camera Trigger Method #2)

Description

Method selection is via the parameter CORACQ_PRM_CAM_TRIGGER_METHOD. This method generates an asynchronous trigger pulse to a camera (area scan only). The next generated frame is then acquired. This method's trigger pulse controls the number of lines output by the camera and is usually used to control the length of the frame output by the camera (partial scanning). The trigger pulse is defined by the parameter CORACQ_PRM_CAM_TRIGGER_POLARITY. Its length is dependent on the number of lines to acquire.

The parameters CORACQ_PRM_VSYNC + CORACQ_PRM_VBACK_PORCH + CORACQ_PRM_CROP_TOP + CORACQ_PRM_CROP_HEIGHT represent (in this case) the minimum time between triggers to the camera. Required for cameras where the CCD has a minimum reset time before it can be triggered again.

The trigger pulse is defined by the following parameters:

Delay CORACQ_PRM_CAM_TRIGGER_DELAY

Duration CORACQ_PRM_VSYNC + CORACQ_PRM_VBACK_PORCH +

CORACQ_PRM_CROP_TOP + CORACQ_PRM_CROP_HEIGHT

Polarity CORACQ_PRM_CAM_TRIGGER_POLARITY

Example:

CORACQ_VAL_CAM_TRIGGER_METHOD_3

Numerical Value 0x0000004 (Camera Trigger Method #3)

Description

Method selection is via the parameter CORACQ_PRM_CAM_TRIGGER_METHOD. This method generates a camera trigger message to a camera (area scan only). The next generated frame is then acquired.

The trigger pulse is defined by the following parameters:

Delay CORACQ_PRM_CAM_TRIGGER_DELAY

Duration N/A Polarity N/A

Frame Integrate Methods

The following frame integrate methods are available: CORACQ_VAL_FRAME_INTEGRATE_METHOD_1 CORACQ_VAL_FRAME_INTEGRATE_METHOD_2

CORACQ_VAL_FRAME_INTEGRATE_METHOD_1

Numerical

0x0000001 (Frame Integration Method #1)

Value

Description The frame integration signal is sent prior to the first field to be integrated. The signal is

then held until the last field to be integrated is reached. The next frame is then acquired. Method selection is via the parameter CORACQ_PRM_FRAME_INTEGRATE_METHOD.

The polarity of this signal is specified by the parameter

CORACQ_PRM_FRAME_INTEGRATE_POLARITY.

The number of frames to integrate is specified with the parameter

CORACQ_PRM_FRAME_INTEGRATE_COUNT.

Numerical

0x00000002 (Frame Integration Method #2)

Value Description

The frame integration signal is sent during the vertical sync of the first field to be integrated. The signal is then held until the first field to be acquired is reached. The

current frame is then acquired. Method selection is via the parameter

CORACQ_PRM_FRAME_INTEGRATE_METHOD.

The polarity of this signal is specified by the parameter

CORACQ_PRM_FRAME_INTEGRATE_POLARITY.

The number of frames to integrate is specified with the parameter

CORACQ_PRM_FRAME_INTEGRATE_COUNT.

Line Integrate Methods

The following line integrate methods are available for line scan cameras:

- CORACQ_VAL_LINE_INTEGRATE_METHOD_1
- CORACQ_VAL_LINE_INTEGRATE_METHOD_2
- CORACQ_VAL_LINE_INTEGRATE_METHOD_3
- CORACQ_VAL_LINE_INTEGRATE_METHOD_4
- CORACQ_VAL_LINE_INTEGRATE_METHOD_7
- CORACQ_VAL_LINE_INTEGRATE_METHOD_8
- CORACQ VAL LINE INTEGRATE METHOD 9
- CORACQ_VAL_LINE_INTEGRATE_METHOD_10

CORACQ_VAL_LINE_INTEGRATE_METHOD_1

Numerical Value 0x0000001 (Line Integration Method #1)

Description

Method selection is via the parameter CORACQ_PRM_LINE_INTEGRATE_METHOD. This method generates two pulses on two different outputs. The distance between the end of the first pulse and the start of the second pulse is the integration time (as specified by the parameter CORACQ_PRM_LINE_INTEGRATE_DURATION). The second pulse is also the Line Trigger input to the camera. For example, on a Teledyne DALSA camera, the first pulse is the 'PRIN' signal while the second pulse is the 'EXSYNC' signal.

The pulses are defined by the following parameters:

1st Pulse

Delay CORACQ_PRM_LINE_INTEGRATE_PULSEO_DELAY

Duration CORACQ_PRM_LINE_INTEGRATE_PULSEO_DURATION

Polarity CORACQ_PRM_LINE_INTEGRATE_PULSEO_POLARITY

2nd Pulse

Delay CORACQ_PRM_LINE_INTEGRATE_PULSEO_DELAY +

CORACQ_PRM_LINE_INTEGRATE_PULSEO_DURATION +

CORACQ_PRM_LINE_INTEGRATE_DURATION

Duration CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION Polarity CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY

Numerical Value

0x00000002 (Line Integration Method #2)

Description Method selection is via the parameter CORACQ_PRM_LINE_INTEGRATE_METHOD. This method generates two consecutive trigger pulses on the camera's Line Trigger input. The time interval between the end of the two trigger pulses represents the integration time (as specified by the parameter CORACQ PRM LINE INTEGRATE DURATION). An optional signal with a fixed level might be present. For example, on a Teledyne DALSA camera, the Line Trigger input would be the 'EXSYNC' signal and the optional signal would be the 'PRIN' signal. Both pulses are described by the parameters

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION and

CORACQ PRM LINE INTEGRATE PULSE1 POLARITY. The optional signal with a fixed level is described by the parameter CORACQ_PRM_LINE_INTEGRATE_PULSEO_POLARITY.

1st Pulse

N/A Delay Duration N/A

CORACQ_PRM_LINE_INTEGRATE_PULSEO_POLARITY Polarity

2nd Pulse

Delay N/A

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION Duration Polarity CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY

Numerical Value

0x0000004 (Line Integration Method #3)

Description Method selection via the parameter CORACQ_PRM_LINE_INTEGRATE_METHOD. This method generates an asynchronous line integration pulse to a camera. The width of this pulse represents the integration time (as specified by the parameter CORACQ PRM LINE INTEGRATE DURATION). An optional signal with a fixed level might be present. For example, on a Teledyne DALSA camera, the integration pulse would be the 'EXSYNC' signal and the optional signal would be the 'PRIN' signal. The integration pulse is described by the parameter CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY and CORACO_PRM_LINE_INTEGRATE_PULSE1_DELAY. The optional signal with a fixed level is described by the parameter CORACQ_PRM_LINE_INTEGRATE_PULSEO_POLARITY.

1st Pulse

Delay N/A Duration N/A

CORACQ_PRM_LINE_INTEGRATE_PULSEO_POLARITY Polarity

2nd Pulse

Delay CORACQ_PRM_LINE_INTEGRATE_PULSE1_DELAY Duration CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION Polarity CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY

Numerical Value

0x0000008 (Line Integration Method #4)

Description Method selection is via the parameter CORACQ_PRM_LINE_INTEGRATE_METHOD. This method generates an integration pulse followed by a trigger pulse on the camera's line trigger. The width of the integration pulse represents the integration time (as specified by the parameter CORACQ PRM LINE INTEGRATE DURATION). The first pulse is described by the parameter CORACQ_PRM_LINE_INTEGRATE_PULSEO_POLARITY. The second pulse is described by the parameters

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DELAY,

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION and CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY.

1st Pulse

Delay CORACQ_PRM_LINE_INTEGRATE_PULSEO_DELAY Duration CORACQ_PRM_LINE_INTEGRATE_PULSEO_DURATION CORACQ_PRM_LINE_INTEGRATE_PULSEO_POLARITY Polarity

2nd Pulse

Delay CORACQ_PRM_LINE_INTEGRATE_PULSEO_DELAY +

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DELAY +

CORACQ_PRM_LINE_INTEGRATE_DURATION

Duration CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION Polarity CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY

Numerical Value 0x00000040 (Line Integration Method #7)

Description

Method selection is via the parameter CORACQ_PRM_LINE_INTEGRATE_METHOD. This method generates two type of pulses on the same output. The distance between the start of the first pulse and the start of the second pulse is the exposure time (as specified by the parameter CORCAM_PRM_LINE_INTEGRATE_PULSEO_DURATION). The second pulse is also the Line Trigger input to the camera. The first pulse is defined by the parameters CORACQ_PRM_LINE_INTEGRATE_PULSEO_DURATION and

CORACQ_PRM_LINE_INTEGRATE_PULSEO_POLARITY. The second pulse is defined by the parameters CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION and

CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY.

1st Pulse

Delay CORACQ_PRM_LINE_INTEGRATE_PULSEO_DELAY

Duration CORACQ_PRM_LINE_INTEGRATE_PULSEO_DURATION

Polarity CORACQ_PRM_LINE_INTEGRATE_PULSEO_POLARITY

2nd Pulse

Delay CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION

Duration CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION

Polarity CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY

Note

This camera is always integrating lines so the first few frames will have a saturated

image after a grab.

Numerical

0x00000080 (Line Integration Method #8)

Value

Description This method generates a line integration message to a camera. The next generated line

will be acquired. The integration message is described by the parameter

CORACQ_PRM_LINE_INTEGRATE_DURATION and

CORACQ_PRM_LINE_INTEGRATE_DELAY.

Delay CORACQ_PRM_LINE_INTEGRATE_DELAY

Duration CORACQ_PRM_LINE_INTEGRATE_DURATION

Polarity N/A

Note Method 8 is similar to Method 3 except the physical trigger signal pulse is a message.

Example:

Start message
(includes delay and
integration time duration)

START

Message

— delay—— exposure time

Line Valid

CORACQ_VAL_LINE_INTEGRATE_METHOD_9

Numerical

Description

0x00000100 (Line Integration Method #9)

Value

This method generates start/stop line integration messages to a camera. The next generated line will be acquired. The time difference between the start/stop messages represent the integration time and are controlled by a physical external line trigger

signal.

Numerical

0x00000200 (Line Integration Method #10)

Value

Description This method generates start/stop line integration messages to a camera. The next

generated line will be acquired. The time difference between the start/stop messages

represent the integration time and is controlled by the parameters

CORACQ_PRM_LINE_INTEGRATE_DURATION and

CORACQ_PRM_LINE_INTEGRATE_DELAY.

Delay CORACQ_PRM_LINE_INTEGRATE_DELAY

Duration CORACQ_PRM_LINE_INTEGRATE_DURATION

Polarity N/A

Line Trigger Methods

The following line trigger methods are available for line scan cameras:

- CORACQ_VAL_LINE_TRIGGER_METHOD_1
- CORACQ_VAL_LINE_TRIGGER_METHOD_2

CORACQ_VAL_LINE_TRIGGER_METHOD_1

Numerical

0x0000001 (Line Trigger Method #1)

Value

Description Method selection is via the parameter CORACQ_PRM_LINE_TRIGGER_METHOD. This method generates an asynchronous line trigger pulse to a camera. The next generated

frame will be acquired. The trigger pulse is described by the parameters

CORACQ_PRM_LINE_TRIGGER_DURATION and

CORACQ_PRM_LINE_TRIGGER_POLARITY. The delay is set using

CORACQ_PRM_LINE_TRIGGER_DELAY.

Example:

CORACQ_VAL_LINE_TRIGGER_METHOD_2

Numerical Value

0x00000002 (Line Trigger Method #2)

Description Method selection is via the parameter CORACQ_PRM_LINE_TRIGGER_METHOD. This method generates a line trigger message to a camera. The next generated frame will be

acquired. The delay is set using CORACQ_PRM_LINE_TRIGGER_DELAY.

Note

This method is similar to Method #1 except the physical trigger signal is a message.

Time Integrate Methods

The following time integrate methods are available for area scan cameras:

- CORACQ_VAL_TIME_INTEGRATE_METHOD_1
- CORACQ_VAL_TIME_INTEGRATE_METHOD_2
- CORACQ_VAL_TIME_INTEGRATE_METHOD_3
- CORACQ_VAL_TIME_INTEGRATE_METHOD_4
- CORACQ_VAL_TIME_INTEGRATE_METHOD_5
- CORACQ_VAL_TIME_INTEGRATE_METHOD_6
- CORACQ_VAL_TIME_INTEGRATE_METHOD_7
- CORACQ_VAL_TIME_INTEGRATE_METHOD_8CORACQ_VAL_TIME_INTEGRATE_METHOD_10
- CORACQ_VAL_TIME_INTEGRATE_METHOD_11
- CORACQ_VAL_TIME_INTEGRATE_METHOD_12

CORACQ_VAL_TIME_INTEGRATE_METHOD_1

Numerical Value 0x0000001 (Time Integration Method #1)

Description

Method selection is via the parameter CORACQ_PRM_TIME_INTEGRATE_METHOD. This method generates an asynchronous time integration pulse to a camera (area scan only).

The width of the pulse (as specified by the parameter

CORACQ_PRM_TIME_INTEGRATE_DURATION), represents the integration time. The delay between the trigger and start of exposure is specified using the parameter

CORACQ_PRM_TIME_INTEGRATE_DELAY.

The integration pulse is defined by the following parameters:

Delay CORACQ_PRM_TIME_INTEGRATE_DELAY

Duration CORACQ_PRM_TIME_INTEGRATE_DURATION

Polarity CORACQ_PRM_TIME_INTEGRATE_PULSEO_POLARITY

Numerical Value

0x00000002 (Time Integration Method #2)

Description Method selection is via the parameter CORACQ_PRM_TIME_INTEGRATE_METHOD. This method generates two consecutive trigger pulses on the VD (Vertical Drive) input of the camera (area scan only). The time interval between the end of the two trigger pulses (as specified by the parameter CORACQ PRM TIME INTEGRATE DURATION) represents the integration time. The VD trigger pulses are described by the parameters

> CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION and CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY.

The VD triggers are defined by the following parameters:

1st VD Pulse

Delay CORACQ_PRM_TIME_INTEGRATE_DELAY

Duration CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION Polarity CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY

2nd VD Pulse

CORACQ PRM TIME INTEGRATE DELAY + Delay

CORACQ_PRM_TIME_INTEGRATE_DURATION

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION Duration CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY Polarity

Numerical Value 0x00000004 (Time Integration Method #3)

Description

Also known as the E-Donpisha mode (area scan only). Method selection is via the parameter CORACQ_PRM_TIME_INTEGRATE_METHOD. This method generates an integration pulse on the camera trigger input, followed by a trigger pulse on the camera VD input. The width of the integration pulse (as specified by the parameter CORACQ_PRM_TIME_INTEGRATE_DURATION) represents the integration time. The polarity of the integration pulse is specified with the CORACQ_PRM_TIME_INTEGRATE_PULSEO_POLARITY parameter. The delay before the

integration pulse is set using CORACQ_PRM_TIME_INTEGRATE_PULSE1_DELAY. The VD trigger pulse is described by the parameters CORACQ_PRM_TIME_INTEGRATE_PULSE1_DELAY, CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION and

CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY, where the delay is the interval between the end of the integration pulse and the start of the VD trigger pulse.

1st Integration Pulse

Delay CORACQ_PRM_TIME_INTEGRATE_DELAY
Duration CORACQ_PRM_TIME_INTEGRATE_DURATION

Polarity CORACQ_PRM_TIME_INTEGRATE_PULSEO_POLARITY

2nd VD Pulse

Delay CORACQ_PRM_TIME_INTEGRATE_DELAY +

CORACQ_PRM_TIME_INTEGRATE_DURATION + CORACQ_PRM_TIME_INTEGRATE_PULSE1_DELAY

Duration CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION Polarity CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY

Numerical Value 0x00000008 (Time Integration Method #4)

Description

Method selection is via the parameter CORACQ_PRM_TIME_INTEGRATE_METHOD. This method generates two consecutive trigger pulses on the camera trigger input. The time interval between the start of the two trigger pulses (as specified by the parameter CORACQ_PRM_TIME_INTEGRATE_DURATION) represents the integration time.

The trigger pulses are described by the parameters

CORACQ_PRM_TIME_INTEGRATE_PULSEO_DURATION and CORACQ_PRM_TIME_INTEGRATE_PULSEO_POLARITY.

1st Pulse

Delay CORACQ_PRM_TIME_INTEGRATE_DELAY

Duration CORACQ_PRM_TIME_INTEGRATE_PULSEO_DURATION
Polarity CORACQ_PRM_TIME_INTEGRATE_PULSEO_POLARITY

2nd Pulse

Delay CORACQ_PRM_TIME_INTEGRATE_DELAY +

CORACQ_PRM_TIME_INTEGRATE_DURATION

Duration CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION
Polarity CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY

Numerical Value

0x00000010 (Time Integration Method #5)

Description

Method selection is via the parameter CORACQ_PRM_TIME_INTEGRATE_METHOD. This method generates a trigger pulse (#0) on the camera trigger input, followed by a trigger pulse (#1) on the camera VD input. The interval between the start of the two pulses (as specified by the parameter CORACQ_PRM_TIME_INTEGRATE_DURATION) represents the integration time. The trigger pulse (#0) on the camera trigger input is defined by the parameters CORACQ_PRM_TIME_INTEGRATE_PULSEO_DURATION and CORACQ_PRM_TIME_INTEGRATE_PULSEO_POLARITY. The VD trigger pulse is defined by the parameters CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION and CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY.

1st Pulse

Delay CORACQ_PRM_TIME_INTEGRATE_DELAY

Duration CORACQ_PRM_TIME_INTEGRATE_PULSEO_DURATION Polarity CORACQ_PRM_TIME_INTEGRATE_PULSEO_POLARITY

2nd Pulse

Delay CORACQ_PRM_TIME_INTEGRATE_DELAY +

CORACQ_PRM_TIME_INTEGRATE_DURATION

Duration CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION
Polarity CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY

Numerical Value 0x00000020 (Time Integration Method #6)

Description

Method selection is via the parameter CORACQ_PRM_TIME_INTEGRATE_METHOD. This method generates a trigger pulse (#0) on the camera trigger input, followed by a trigger pulse (#1) on the camera VD input. The interval between the start of pulse #0 and end of pulse #1 (as specified by the parameter CORACQ_PRM_TIME_INTEGRATE_DURATION) is the integration time. The trigger pulse (#0) on the camera trigger input is defined by the parameters CORACQ_PRM_TIME_INTEGRATE_PULSEO_DURATION and CORACQ_PRM_TIME_INTEGRATE_PULSEO_POLARITY. The VD trigger pulse is defined by the parameters CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION and CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY.

1st Integration Pulse

Delay CORACQ_PRM_TIME_INTEGRATE_DELAY

Duration CORACQ_PRM_TIME_INTEGRATE_PULSEO_DURATION Polarity CORACQ_PRM_TIME_INTEGRATE_PULSEO_POLARITY

2nd VD Pulse

Delay CORACQ_PRM_TIME_INTEGRATE_DELAY +

CORACQ_PRM_TIME_INTEGRATE_DURATION +

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION

Duration CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION Polarity CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY

Numerical Value 0x00000040 (Time Integration Method #7)

Description

Method selection is via the parameter CORACQ_PRM_TIME_INTEGRATE_METHOD. This method generates two consecutive trigger pulses (#1) on the camera VD (Vertical Drive) input. The time interval between the end of the two trigger pulses (as specified by the parameter CORACQ_PRM_TIME_INTEGRATE_DURATION) is the integration time. This method differs from method #2, since a valid frame is available during the integration time. The VD trigger pulses are described by the parameters CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION and CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY.

1st Pulse

Delay CORACQ_PRM_TIME_INTEGRATE_DELAY

Duration CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION Polarity CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY

2nd Pulse

Delay CORACQ_PRM_TIME_INTEGRATE_DELAY +

CORACQ_PRM_TIME_INTEGRATE_DURATION

Duration CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION Polarity CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY

Example:

CORACQ_VAL_TIME_INTEGRATE_METHOD_8

Numerical Value 0x00000080 (Time Integration Method #8)

Description

Method selection is via the parameter CORACQ_PRM_TIME_INTERGRATE_METHOD. This method generates an asynchronous time integration pulse (#0) to a camera. The width of the pulse represents the integration time and is controlled by an external signal.

Numerical Value 0x00000200 (Time Integration Method #10)

Description

This method generates a time integration message to a camera. The next generated frame will be acquired. The integration message is described by the parameters

CORACQ_PRM_TIME_INTEGRATE_DURATION and

CORACQ_PRM_TIME_INTEGRATE_DELAY.

Delay CORACQ_PRM_TIME_INTEGRATE_DELAY
Duration CORACQ_PRM_TIME_INTEGRATE_DURATION

Polarity N/A

CORACQ_VAL_TIME_INTEGRATE_METHOD_11

Numerical

Description

0x00000400 (Time Integration Method #11)

Value

This method generates start/stop frame integration messages to a camera. The next generated frame will be acquired. The time difference between the start/stop messages represent the integration time and are controlled by a physical external frame trigger signal.

Numerical Value 0x00000400 (Time Integration Method #12)

Description

This method generates start/stop frame integration messages to a camera. The next generated frame will be acquired. The time difference between the start/stop messages

represent the integration time and are controlled by the parameters

CORACQ_PRM_TIME_INTEGRATE_DURATION and

CORACQ_PRM_TIME_INTEGRATE_DELAY.

Delay CORACQ_PRM_TIME_INTEGRATE_DELAY
Duration CORACQ_PRM_TIME_INTEGRATE_DURATION

Polarity N/A

Strobe Methods

The following strobe methods are available:

- CORACQ_VAL_STROBE_METHOD_1
- CORACQ_VAL_STROBE_METHOD_2
- CORACQ_VAL_STROBE_METHOD_3
- CORACQ_VAL_STROBE_METHOD_4
- CORACQ_VAL_STROBE_METHOD_5

CORACO VAL STROBE METHOD 1

Numerical Value

0x0000001 (Strobe Method #1)

Description Method selection is via the parameter CORACQ_PRM_STROBE_METHOD. This method generates a synchronous strobe pulse relative to a trigger signal (external, internal, software) depending on the mode of operation. The strobe pulse is described by the parameters CORACQ_PRM_STROBE_DELAY, CORACQ_PRM_STROBE_DURATION, and CORACQ_PRM_STROBE_POLARITY.

Example:

CORACQ_VAL_STROBE_METHOD_2

Numerical Value

0x00000002 (Strobe Method #2)

Description

Method selection is via the parameter CORACQ_PRM_STROBE_METHOD. This method generates an asynchronous strobe pulse. The pulse is generated outside the region comprising the start of a vertical sync up to the specified strobe delay, but not later than the second strobe delay.

If interlaced video is acquired, then the strobe will be generated on the field previous to the acquired frame: even if the field ordering is odd-even (typical), odd if the field ordering even-odd, or any if the field ordering is next two fields. The strobe pulse is described by the parameters CORACQ_PRM_STROBE_DELAY,

CORACQ_PRM_STROBE_DELAY_2, CORACQ_PRM_STROBE_DURATION, and

CORACQ_PRM_STROBE_POLARITY.

Example: Interlaced, Odd-Even acquisition

CORACQ_VAL_STROBE_METHOD_3

Numerical Value 0x00000004 (Strobe Method #3)

Description

Method selection is performed via the parameter CORACQ_PRM_STROBE_METHOD. This method generates a synchronous strobe pulse relative to a line trigger signal (external, internal, software) depending on the mode of operation. The strobe pulse is described by the parameters CORACQ_PRM_STROBE_DELAY, CORACQ_PRM_STROBE_DURATION and CORACQ_PRM_STROBE_POLARITY.

External: External Line Trigger

CORACO VAL STROBE METHOD 4

Numerical Value 0x0000008 (Strobe Method #4)

Description

Method selection is via the parameter CORACQ_PRM_STROBE_METHOD. This method generates a synchronous strobe pulse relative to a vertical sync signal.. The strobe pulse is described by the parameters CORACQ_PRM_STROBE_DELAY, CORACQ_PRM_STROBE_DURATION, and CORACQ_PRM_STROBE_POLARITY.

Both area scan and line scan cameras support this method. Note that in linescan, there will be one strobe pulse output per virtual frame.

CORACQ_VAL_STROBE_METHOD_5

Numerical Value 0x00000010 (Strobe Method #5)

Description

This method generates a synchronous strobe pulse relative to a trigger message received from a camera. The strobe pulse is described by the parameters CORACQ_PRM_STROBE_DELAY, CORACQ_PRM_STROBE_DURATION and

CORACQ_PRM_STROBE_POLARITY.

Camera Video Timing Definitions

Generic camera timing diagrams describe the terminology and relationships used in Sapera LT applications. Topics covered are:

- Area Scan Analog Video Timings
- Area Scan Digital Video Timings
- Linescan Video Timings

Analog Area Scan Video Timings

Digital Area Scan Video Timings

Linescan Video Timings

Custom Camera Control I/O Description

The acquisition module currently has specific parameters to control the following standard inputs/outputs: integration, camera trigger, camera reset, and strobe.

Custom camera I/Os are useful to control non-standard inputs/outputs from a camera, such as Gain and Binning. These custom controls are defined in the CCA file. The description of a custom I/O includes a label, the number of I/O bits used, the signal level of the I/Os (TTL/RS-422/LVDS), the direction of the I/Os (Inputs or Outputs), the polarity of the control for an active signal, and a default value in the case of an Output. The custom camera I/O information in the CCA file is passed to the acquisition module through the parameter CORACQ_PRM_CAM_IO_CONTROL. This is a complex parameter that can accommodate up to 32 different controls. The size of the parameter is therefore 32 * size of(CORACQ_CAM_IO_CONTROL).

When applied, the driver scans the entries until a control specifies that 0 I/O bits is needed. It is therefore recommended to first initialize the CORACQ_CAM_IO_CONTROL to 0 before filling in control definitions. The driver assigns the necessary I/Os in an orderly fashion, following the order in which they are defined in the CCA/CCF file. At the function level, the I/O assignment can be setup by using the standard method of loading a CCA/CCF file (CorCamLoad + CorAcqSetPrms), or the CorAcqSetPrmEx function can be simply called with an CORACQ_PRM_CAM_IO_CONTROL parameter. To get/set the value of an I/O, use the Sapera functions (CorAcqDetectSync and CorAcqSetCamIOControl) where the label argument is the string representation of the I/O control as specified in the CCA/CCF file.

Shaft Encoder Description

The shaft encoder feature is used to control the rate at which an acquisition device acquires lines from a linescan camera. Two (2) square waves, usually out of phase by 90 degrees, are fed to the acquisition device. Every time an edge is detected, the acquisition device outputs the necessary signal(s) to trigger 1 line out from the linescan camera. The rate at which the lines are triggered can be controlled by dropping detected edges.

Example: LineScan Shaft Encoder

The shaft encoder is used to trigger the board every time a line needs to be acquired. The shaft encoder consists of two inputs, offset by 90 degrees. Each transition corresponds to one trigger. The drop parameter can be used to skip transitions.

Planar Input Sources Description

The planar input sources parameter, CORACQ_PRM_PLANAR_INPUT_SOURCES, is used to acquire from multiple synchronized video sources. It enables selecting which input sources will be acquired into a vertical planar buffer. The parameter value is a bit field. Each bit represents an acquisition input. If the bit is 1, then the source connected to that input are acquired into a vertical planar buffer. All video sources must be synchronized together. The vertical planar buffer format is simply a buffer which has been created with a height that is 'n' times longer than the size of one video source vertical resolution, 'n' being the number of inputs that are to be acquired synchronously. The acquisition function will automatically divide the buffer into sub-buffers which are assigned to each input. Important: the parameter CORACQ_PRM_CAMSEL is used to select the sync signal source.

Example:

If CORACQ_PRM_PLANAR_INPUT_SOURCES = 0x00000005, then bit 0 and 2 are active, and camera #1 and #3 will be acquired from.

Advanced Acquisition Control

Introduction

The Acquisition Module controls the acquisition device and its functions. It is used in conjunction with the VIC and Camera modules.

Camera Related Parameters

The camera related parameters, as their name implies, modelize the video source irrelevant of the actual source itself (camera, etc.). These parameters define the video capabilities and modes of operation.

Camera Related Parameters By Groups

G	61	n	61	۳,	al
u	v.	,	•	т	ш

CORACQ_PRM_CAM_NAME CORACQ_PRM_CAM_COMPANY_NAME

CORACQ_PRM_CAM_MODEL_NAME

Signal Description

CORACQ_PRM_CHANNEL	CORACQ_PRM_CHANNELS_ORDER
CORACQ_PRM_COUPLING	CORACQ_PRM_FIELD_ORDER
CORACQ_PRM_FRAME	CORACQ_PRM_INTERFACE
CORACQ_PRM_PIXEL_DEPTH	CORACQ_PRM_SCAN
CORACQ_PRM_SIGNAL	CORACQ_PRM_TAP_OUTPUT
CORACQ_PRM_TAP_1_DIRECTION	CORACQ_PRM_TAP_2_DIRECTION
CORACQ_PRM_TAP_3_DIRECTION	CORACQ_PRM_TAP_4_DIRECTION
CORACQ_PRM_TAP_5_DIRECTION	CORACQ_PRM_TAP_6_DIRECTION
CORACQ_PRM_TAP_7_DIRECTION	CORACQ_PRM_TAP_8_DIRECTION

CORACQ_PRM_TAPS CORACQ_PRM_VIDEO

CORACQ_PRM_VIDEO_LEVEL_MIN CORACQ_PRM_VIDEO_LEVEL_MIN

CORACQ_PRM_VIDEO_STD

Signal Timings

CORACQ_PRM_HACTIVE	CORACQ_PRM_HBACK_INVALID
CORACQ_PRM_HBACK_PORCH	CORACQ_PRM_HFRONT_INVALID

CORACQ_PRM_HFRONT_PORCH CORACQ_PRM_HSYNC

CORACQ_PRM_VACTIVE CORACQ_PRM_VBACK_INVALID CORACQ_PRM_VBACK_PORCH CORACQ_PRM_VFRONT_INVALID

CORACQ_PRM_VFRONT_PORCH CORACQ_PRM_VSYNC

CORACQ_PRM_TIMESLOT

Pixel Clock

CORACQ_PRM_PIXEL_CLK_DETECTION	CORACQ_PRM_PIXEL_CLK_EXT
CORACQ_PRM_PIXEL_CLK_INT	CORACQ_PRM_PIXEL_CLK_11

CORACQ_PRM_PIXEL_CLK_SRC

Synchronization Signals

CORACQ_PRM_HSYNC_POLARITY CORACQ_PRM_VSYNC_POLARITY

CORACQ_PRM_SYNC

Control Signals

CORACQ_PRM_CAM_CONTROL_DURING_READOUT

CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MAX

CORACQ PRM CAM LINE TRIGGER FREQ MIN

CORACQ_PRM_CAM_RESET_DURATION

CORACQ_PRM_CAM_RESET_POLARITY

CORACQ_PRM_CAM_RESET_METHOD

CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MAX

CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MIN

CORACQ_PRM_CAM_TRIGGER_DURATION

CORACQ_PRM_CAM_TRIGGER_METHOD

CORACQ_PRM_CAM_TRIGGER_POLARITY

CORACQ_PRM_DATA_VALID_ENABLE

CORACQ_PRM_DATA_VALID_POLARITY

CORACQ_PRM_FRAME_INTEGRATE_METHOD

CORACQ_PRM_FRAME_INTEGRATE_POLARITY

CORACQ_PRM_LINE_INTEGRATE_METHOD

CORACQ_PRM_LINE_INTEGRATE_PULSEO_DELAY

CORACQ_PRM_LINE_INTEGRATE_PULSEO_DURATION

CORACQ_PRM_LINE_INTEGRATE_PULSEO_POLARITY

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DELAY

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION

CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY

CORACQ_PRM_LINE_TRIGGER_DELAY

CORACQ_PRM_LINE_TRIGGER_DURATION

CORACQ_PRM_LINE_TRIGGER_METHOD

CORACQ_PRM_LINE_TRIGGER_POLARITY

CORACQ_PRM_LINESCAN_DIRECTION

CORACQ_PRM_LINESCAN_DIRECTION_POLARITY

CORACQ_PRM_TIME_INTEGRATE_METHOD

CORACQ_PRM_TIME_INTEGRATE_PULSEO_DELAY

CORACQ_PRM_TIME_INTEGRATE_PULSEO_DURATION

CORACQ_PRM_TIME_INTEGRATE_PULSEO_POLARITY

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DELAY

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION

CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY

CORACQ_PRM_WEN_POLARITY

Connector Description

CORACQ_PRM_CAMLINK_CONFIGURATION

CORACQ_PRM_CONNECTOR_EXPOSURE_INPUT

CORACQ_PRM_CONNECTOR_HD_INPUT

CORACQ_PRM_CONNECTOR_LINE_INTEGRATE_INPUT

CORACQ_PRM_CONNECTOR_LINE_TRIGGER_INPUT

CORACQ_PRM_CONNECTOR_LINESCAN_DIRECTION_INPUT

CORACQ_PRM_CONNECTOR_PIXEL_CLK_OUTPUT

CORACQ_PRM_CONNECTOR_RESET_TRIGGER_INPUT

Custom Camera I/O Control Signals

CORACQ_PRM_CAM_IO_CONTROL

Camera Related Parameters By ID

ID	Parameter
0x00	CORACQ_PRM_CHANNEL
0x01	CORACQ_PRM_FRAME
0x02	CORACQ_PRM_INTERFACE
0x03	CORACQ_PRM_SCAN
0x04	CORACQ_PRM_SIGNAL
0x05	CORACQ_PRM_VIDEO
0x06	CORACQ_PRM_PIXEL_DEPTH
0x07	CORACQ_PRM_VIDEO_STD
80x0	Reserved
0x09	CORACQ_PRM_FIELD_ORDER
0x0a	CORACQ_PRM_HACTIVE
0x0b	CORACQ_PRM_HSYNC
0x0c	CORACQ_PRM_VACTIVE
0x0d	CORACQ_PRM_VSYNC
0x0e	CORACQ_PRM_HFRONT_PORCH
OxOf	CORACQ_PRM_HBACK_PORCH
0x10	CORACQ_PRM_COUPLING
0x11	Reserved
0x12	CORACQ_PRM_VFRONT_PORCH
0x13	CORACQ_PRM_VBACK_PORCH
0x14	CORACQ_PRM_HFRONT_INVALID
0x15	CORACQ_PRM_HBACK_INVALID
0x16	CORACQ_PRM_VFRONT_INVALID
0x17	CORACQ_PRM_VBACK_INVALID
0x18	CORACQ_PRM_PIXEL_CLK_SRC
0x19	CORACQ_PRM_PIXEL_CLK_INT
0x1a	CORACQ_PRM_PIXEL_CLK_11
0x1b	CORACQ_PRM_PIXEL_CLK_EXT
0x1c	CORACQ_PRM_SYNC
0x1d	CORACQ_PRM_HSYNC_POLARITY
0x1e	CORACQ_PRM_VSYNC_POLARITY
0x1f	CORACQ_PRM_FRAME_INTEGRATE_METHOD
0x20	CORACQ_PRM_FRAME_INTEGRATE_POLARITY
0x21	CORACQ_PRM_TIME_INTEGRATE_METHOD
0x22	CORACQ_PRM_TIME_INTEGRATE_PULSEO_POLARITY
0x23	CORACQ_PRM_CAM_TRIGGER_METHOD
0x24	CORACQ_PRM_CAM_TRIGGER_POLARITY
0x25	CORACQ_PRM_CAM_TRIGGER_DURATION
0x26	CORACQ_PRM_CAM_RESET_METHOD

- 0x27 CORACQ_PRM_CAM_RESET_POLARITY
- 0x28 CORACQ_PRM_CAM_RESET_DURATION
- 0x29 CORACQ_PRM_CAM_NAME
- 0x2a CORACQ_PRM_LINE_INTEGRATE_METHOD
- 0x2b CORACQ_PRM_LINE_INTEGRATE_PULSEO_POLARITY
- 0x2c CORACQ_PRM_LINE_INTEGRATE_PULSEO_DELAY
- 0x2d CORACQ_PRM_LINE_TRIGGER_METHOD
- 0x2e CORACQ_PRM_LINE_TRIGGER_POLARITY
- 0x2f CORACQ_PRM_LINE_TRIGGER_DELAY
- 0x30 CORACQ_PRM_LINE_TRIGGER_DURATION
- 0x31 CORACQ_PRM_TAPS
- 0x32 CORACQ_PRM_TAP_OUTPUT
- 0x33 CORACQ_PRM_TAP_1_DIRECTION
- 0x34 CORACQ_PRM_TAP_2_DIRECTION
- 0x35 CORACQ_PRM_TAP_3_DIRECTION
- 0x36 CORACQ_PRM_TAP_4_DIRECTION
- 0x37 CORACQ_PRM_TAP_5_DIRECTION
- 0x38 CORACQ_PRM_TAP_6_DIRECTION
- 0x39 CORACQ_PRM_TAP_7_DIRECTION
- 0x3a CORACQ_PRM_TAP_8_DIRECTION
- 0x3b CORACQ_PRM_PIXEL_CLK_DETECTION
- 0x3c CORACQ_PRM_CHANNELS_ORDER
- 0x3d CORACQ_PRM_LINESCAN_DIRECTION
- 0x3e CORACQ_PRM_LINESCAN_DIRECTION_POLARITY
- 0x3f CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MIN
- 0x40 CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MAX
- 0x41 CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MIN
- 0x42 CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MAX
- 0x43 CORACQ_PRM_CONNECTOR_HD_INPUT
- 0x44 CORACQ_PRM_CONNECTOR_VD_INPUT
- 0x45 CORACQ_PRM_CONNECTOR_RESET_TRIGGER_INPUT
- 0x46 CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY
- 0x47 CORACQ_PRM_TIME_INTEGRATE_PULSE1_DELAY
- 0x48 CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION
- 0x49 CORACQ_PRM_CAM_IO_CONTROL
- 0x4a CORACQ_PRM_CONNECTOR_EXPOSURE_INPUT
- 0x4b CORACQ_PRM_TIME_INTEGRATE_PULSEO_DELAY
- 0x4c CORACQ_PRM_TIME_INTEGRATE_PULSEO_DURATION
- 0x4d CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY
- 0x4e CORACQ_PRM_LINE_INTEGRATE_PULSE1_DELAY
- Ox4f CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION
- 0x50 CORACQ PRM LINE INTEGRATE PULSEO DURATION
- 0x51 CORACQ_PRM_CAM_COMPANY_NAME
- 0x52 CORACQ_PRM_CAM_MODEL_NAME
- 0x53 CORACQ_PRM_VIDEO_LEVEL_MIN
- 0x54 CORACQ_PRM_VIDEO_LEVEL_MAX
- 0x55 CORACQ_PRM_CONNECTOR_LINE_TRIGGER_INPUT

0x56 CORACQ_PRM_CONNECTOR_LINE_INTEGRATE_INPUT 0x57 CORACQ_PRM_CONNECTOR_LINESCAN_DIRECTION_INPUT CORACQ PRM CAMLINK CONFIGURATION 0x58 0x59-0x5e Reserved 0x5f CORACQ_PRM_DATA_VALID_ENABLE 0x60 CORACQ_PRM_DATA_VALID_POLARITY 0x61 CORACQ_PRM_CONNECTOR_PIXEL_CLK_OUTPUT 0x62 CORACQ_PRM_CONNECTOR_WEN_OUTPUT 0x63 CORACQ_PRM_WEN_POLARITY 0x64-0x6b Reserved CORACQ_PRM_TIMESLOT 0x6c 0x6d CORACQ_PRM_COLOR_ALIGNMENT 0x6e CORACQ_PRM_CAM_CONTROL_DURING_READOUT 0x6f-0x70 Reserved 0x71 CORACQ_PRM_CX4_CONFIGURATION 0x72-0x73 Reserved CORACQ_PRM_DATA_LANES 0x74 0x75 Reserved 0x76 CORACQ_PRM_CLHS_BIT_TRANSFER_RATE 0x78 CORACQ_PRM_CLHS_CONFIGURATION

CORACQ_PRM_CLHS_BIT_TRANSFER_RATE

Description Bit transfer rate between camera and acquisition device.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_BIT_TRANSFER_RATE_MULT and

CORACQ_CAP_BIT_TRANSFER_RATE. The capability returns the ORed combination of all

supported values.

CORACQ_CAP_BIT_TRANSFER_RATE_MULT returns the basic bit rate in Mbps. The CORACQ_CAP_BIT_TRANSFER_RATE is a bitfield where if bit 'x' is 1, then the (x + 1) *

Mbps transfer rate is supported.

Example: CORACQ_CAP_BIT_TRANSFER_RATE_MULT = 1250,

CORACQ_CAP_BIT_TRANSFER_RATE = 0x00000010 Then acquisition device supports

only (Bit 4 + 1) * 125 = 6250 Mbps or 6.25 Gbps.

CCA Entry [Signal Description]

Bit Transfer Rate

Note Validated only for CLHS connector type.

CORACQ_PRM_CLHS_CONFIGURATION

Description Defines CameraLink HS configuration features.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_CLHS_CONFIGURATION. The capability returns the ORed combination

of all supported values.

Values CORACQ_VAL_CLHS_CONFIGURATION_CAM_PORT_SLAVE (0x000000004)

When set, the device will act as a slave when connecting to a 2 cable camera. Only the master device can write features to the camera. All other devices, when slave, can only read features from the camera. This configuration bit is only required when a camera is

setup in a 2 cable configuration.

CORACQ_VAL_CLHS_CONFIGURATION_MANUAL_ACQ_START_STOP (0x00000008)

When set, the device will not automatically call the acquisition start/stop feature of the

camera when connecting/disconnecting the Xfer. In this case, user will need to

manually start/stop the camera using the camera feature.

CCA Entry [Connector Description]

CLHS Configuration

Note Validated only for CLHS connector type.

CORACQ_PRM_CAM_COMPANY_NAME

Description The camera company name for which the camera file is intended for.

Type BYTE [32]

Values String up to 31 characters long.

CCA Entry [General]

Camera Name

CORACQ_PRM_CAM_CONTROL_DURING_READOUT

Description Specifies if the camera control signals can be sent during the readout of a frame.

Type UINT32

Values CORACQ_VAL_CAM_CONTROL_DURING_READOUT_INVALID (0x00000000)

Camera controls will not be sent during the readout of a frame. Once a camera is

triggered, the next trigger will not occur until the end of FVAL is reached. CORACQ_VAL_CAM_CONTROL_DURING_READOUT_VALID (0x00000001)

Camera controls can be sent during the readout of a frame. Once a camera is triggered, the next trigger can be sent when the frame grabber receives the corresponding FVAL.

CORACQ_VAL_CAM_CONTROL_DURING_READOUT_IGNORE (0x00000002)

Camera controls are sent whenever an external/internal frame trigger is received. It is

the responsibility of the user to not over trigger the camera.

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_CAM_CONTROL_DURING_READOUT. The capability returns the ORed

combination of all supported values. Note that

CORACQ_VAL_CAM_CONTROL_DURING_READOUT_INVALID is always supported.

CCA Entry [Control Signals]

Camera Control During Readout

Note Valid only for Area Scan cameras.

CORACQ_PRM_CAM_IO_CONTROL

Description Description of the non-standard camera I/O controls.

Type CORACQ_CAM_IO_CONTROL[32]

Values List of the non-standard camera I/O controls.

CCA Entry [Custom Camera IO Control Signals]

Max Control

Control_x (x takes a value from 0 to 31)

Note See Custom Camera Control I/O Description for more information.

CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MAX

Description Maximum line trigger frequency supported by the camera (in Hz).

Type UINT32

Limits This value must be greater or equal to CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MIN

CCA Entry [Control Signals]

Camera Line Trigger Frequency Maximum

Note Applies to linescan cameras only.

CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MIN

Description Minimum line trigger frequency supported by the camera (in Hz).

Type UINT32

Limits This value must be smaller or equal to CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MAX

CCA Entry [Control Signals]

Camera Line Trigger Frequency Minimum

Note Applies to linescan cameras only.

CORACO PRM CAM MODEL NAME

Description The camera model name or which the camera file is intended for.

Type BYTE [32]

Values String up to 31 characters long.

CCA Entry [General]

Model Name

CORACQ_PRM_CAM_NAME

Description The name or description of the camera related parameters.

Type BYTE [64]

Values String, up to 63 characters long.

CCA Entry [General]

Camera Name

CORACQ_PRM_CAM_RESET_DURATION

Description Reset pulse width (in µs). Applies to area scan cameras only.

Type UINT32

Limits The value must be in the range CORACQ_CAP_CAM_RESET_DURATION_MIN ...

CORACQ_CAP_CAM_RESET_DURATION_MAX.

CCA Entry [Control Signals]

Camera Reset Duration

Note Validated only when CORACQ_PRM_CAM_RESET_ENABLE is TRUE.

CORACQ_PRM_CAM_RESET_METHOD

Description Method used to generate the reset pulse. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_CAM_RESET_METHOD. The capability returns the ORed combination

of all supported values.

Values See Camera Reset Method

CCA Entry [Control Signals]

Camera Reset Method

Note Available only if CORACQ_CAP_CAM_RESET is TRUE.

Validated only when CORACQ_PRM_CAM_RESET_ENABLE is TRUE.

CORACO PRM CAM RESET POLARITY

Description Reset pulse polarity. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_CAM_RESET_POLARITY. The capability returns the ORed combination

of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Reset pulse will be active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Reset pulse will be active high.

CCA Entry [Control Signals]

Camera Reset Polarity

Note Available only if CORACQ_CAP_CAM_RESET is TRUE.

Validated only when CORACQ_PRM_CAM_RESET_ENABLE is TRUE.

CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MAX

Description Maximum time integration supported by the camera (in μs). Applies to area scan

cameras only.

Type UINT32

Limits This value must be greater or equal to

CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MIN.

CCA Entry [Control Signals]

Camera Time Integrate Duration Maximum

CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MIN

Description Minimum time integration supported by the camera (in µs). Applies to area scan

cameras only.

Type UINT32

Limits This value must be smaller or equal to

CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MAX.

CCA Entry [Control Signals]

Camera Time Integrate Duration Minimum

CORACO PRM CAM TRIGGER DURATION

Description Frame trigger pulse width (in µs). Applies to area scan cameras only.

Type UINT32

Limits The value must be in the range CORACQ_CAP_CAM_TRIGGER_DURATION_MIN ...

CORACQ_CAP_CAM_TRIGGER_DURATION_MAX.

CCA Entry [Control Signals]

Camera Trigger Duration

Note Available only if CORACQ_CAP_CAM_TRIGGER is TRUE.

Validated only when CORACQ_PRM_CAM_TRIGGER_ENABLE is TRUE.

CORACO PRM CAM TRIGGER METHOD

Description Frame trigger pulse output method. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_CAM_TRIGGER_METHOD. The capability returns the ORed

combination of all supported values.

Values See Camera Trigger Methods

CCA Entry [Control Signals]

Camera Trigger Method

Note Available only if CORACQ_CAP_CAM_TRIGGER is TRUE.

Validated only when CORACQ_PRM_CAM_TRIGGER_ENABLE is TRUE.

CORACO PRM CAM TRIGGER POLARITY

Description Frame trigger pulse polarity. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_CAM_TRIGGER_POLARITY. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Frame trigger pulse will be active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Frame trigger pulse will be active

high.

CCA Entry [Control Signals]

Camera Trigger Polarity

Note Available only if CORACQ_CAP_CAM_TRIGGER is TRUE.

Validated only when CORACQ_PRM_CAM_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_CAMLINK_CONFIGURATION

Description Defines the CameraLink connector configuration

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_CAMLINK_CONFIGURATION. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_CAMLINK_CONFIGURATION_BASE (0x00000001)

Base configuration (1 connector)

CORACQ_VAL_CAMLINK_CONFIGURATION_MEDIUM (0x00000002)

Medium configuration (2 connectors)

CORACQ_VAL_CAMLINK_CONFIGURATION_FULL (0x00000004)

Full configuration (2 connectors)

CORACQ_VAL_CAMLINK_CONFIGURATION_2BASE (0x00000008)

Dual base configuration (2 connectors)

CORACQ_VAL_CAMLINK_CONFIGURATION_10TAPS_FORMAT1 (0x00000010)

10 Taps (2 connectors) for example, CMC-1000

CORACQ_VAL_CAMLINK_CONFIGURATION_16TAPS (0x000000020)

16 Taps (4 connectors)

CORACQ_VAL_CAMLINK_CONFIGURATION_10TAPS_FORMAT2 (0x00000040)

10 Taps (2 connectors) for example, Basler A504

CORACQ_VAL_CAMLINK_CONFIGURATION_8TAPS_10BITS (0x00000080)

8 taps @ 10 bits (2 connectors) for example, Basler A403

CORACQ_VAL_CAMLINK_CONFIGURATION_FULL_PACKED (0x00000100)

The video data is packed on the 8 ports of the Camera Link cable

CORACQ_VAL_CAMLINK_CONFIGURATION_80BITS_PACKED (0x00000200

The video data is packed on the 10 ports of the Camera Link cable. CORACQ VAL CAMLINK CONFIGURATION FLAG BGR (0x80000000)

By default, RGB formats are received in the RGB order on the CameraLink ports. By

using this value, the order will be considered as BGR

CCA Entry [Connector Description]

Camlink Configuration

CORACQ_PRM_CHANNEL

Description Number of channels output by the video source. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_CHANNEL.

Values CORACQ_VAL_CHANNEL_SINGLE (0x00000001) One video channel is fed to the

acquisition device.

CORACQ_VAL_CHANNEL_DUAL (0x00000002) Two synchronous video channels

are fed to the acquisition device.

CCA Entry [Signal Description]

Channel

Note For a description of tap geometries and corresponding parameter settings see

CORACQ_PRM_CHANNELS_ORDER

Description Order of the channels. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACO_CAP_CHANNELS_ORDER. The capability returns the ORed combination of

all supported values.

Values CORACQ_VAL_CHANNELS_ORDER_NORMAL (0x00000001)

The camera outputs the first line of the video on channel 1 (or A),

the second line on channel 2 (or B), ...

CORACQ_VAL_CHANNELS_ORDER_REVERSE (0x00000002)

The camera outputs the first line of the video on channel 2 (or B),

the second line on channel 1 (or A), ...

CORACQ_VAL_CHANNELS_ORDER_DETECT (0x00000004)

Auto detects the channel order by means of an external signal usually called FI (field

index)

If the signal is high, then the channel order is considered normal; otherwise it is

reversed.

CORACQ_VAL_CHANNELS_ORDER_SEGMENTED (0x00000008)

Use when the number of channels is greater than 2.

The camera outputs:

the video lines 0 to n-1 on the first channel the video lines n to 2n-1 on the second channel the video lines 2n to 3n-1 on the third channel

...

the video lines 7n to 7n-1 on the 8th channel

CCA Entry [Signal Description]

Channels Order

Note For a description of tap geometries and corresponding parameter settings see

Appendix: Tap Geometry Settings.

CORACO PRM COLOR ALIGNMENT

Description Specifies the Bayer or Bicolor alignment of the image output by the video source.

Type UINT32

Limits The parameter value must match one of the supported alignments of the acquisition

device given by CORACQ_CAP_COLOR_ALIGNMENT. The capability returns the ORed

combination of all supported values as defined below.

Values CORACQ_VAL_COLOR_ALIGNMENT_GB_RG (0x00000001)

CORACQ_VAL_COLOR_ALIGNMENT_BG_GR (0x00000002)
CORACQ_VAL_COLOR_ALIGNMENT_RG_GB (0x00000004)
CORACQ_VAL_COLOR_ALIGNMENT_GR_BG (0x00000008)
CORACQ_VAL_COLOR_ALIGNMENT_RG_BG (0x00000010)
CORACQ_VAL_COLOR_ALIGNMENT_BG_RG (0x00000020)

CCA Entry [Signal Description]

Bayer Alignment

Note Validated only if CORACQ_PRM_COLOR_DECODER_ENABLE is TRUE.

CORACQ_PRM_CONNECTOR_EXPOSURE_INPUT

Description Camera exposure input pin description.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

Exposure Input

CORACO PRM CONNECTOR HD INPUT

Description Camera horizontal drive input/output pin description.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

HD Input

CORACQ_PRM_CONNECTOR_LINE_INTEGRATE_INPUT

Description Camera line integrate pin description. Applies to linescan cameras only.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

Line Integrate Input

Note Some cameras define this input as PRIN.

CORACQ_PRM_CONNECTOR_LINE_TRIGGER_INPUT

Description Camera line trigger/exposure pin description. Applies to linescan cameras only.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

Line Trigger Input

Note Some cameras define this input as EXSYNC.

CORACQ_PRM_CONNECTOR_LINESCAN_DIRECTION_INPUT

Description Camera linescan direction pin description. Applies to linescan cameras only.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

Linescan Direction Input

CORACQ_PRM_CONNECTOR_PIXEL_CLK_OUTPUT

Description Camera pixel clock output pin description.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

Pixel Clock Output

CORACQ_PRM_CONNECTOR_WEN_OUTPUT

Description Camera WEN (Write ENable) output pin description.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

WEN Output

CORACQ_PRM_CONNECTOR_RESET_TRIGGER_INPUT

Description Camera Reset/Trigger input pin description.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

Reset/Trigger Input

CORACQ_PRM_CONNECTOR_VD_INPUT

Description Camera vertical drive input/output pin description.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

VD Input

CORACO PRM CX4 CONFIGURATION

Description Defines the number of lanes the video will be transferred on and if the communication

lane is dedicated or overlaps a data lane. Applies to HS-Link devices only.

Type UINT32

Limits Bits 0..7: Number of lanes used by the video data. Must be in the range

1..(CORACQ_CAP_CX4_CONFIGURATION & 0xff).

Macro CORACQ_VAL_CX4_CONFIGURATION_LANES_MASK can be used to get the

number of lanes out of this parameter.

Bit 31: 1 indicates that the communication lane overlaps the 1st video lane. Can only be

set to 1 if CORACQ_CAP_CX4_CONFIGURATION & 0x80000000 is true.

Macro CORACQ_VAL_CX4_CONFIGURATION_COMM_OVERLAP can be used to get/set

the communication lane overlap state of this parameter.

CCA Entry [Signal Description]

CX4 Configuration

CORACO PRM COUPLING

Description Video source coupling type. Applies to analog video signals only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_COUPLING. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_COUPLING_AC (0x00000001) AC coupled.

CORACQ_VAL_COUPLING_DC (0x00000002) DC coupled.

CCA Entry [Signal Description]

Coupling

CORACQ_PRM_DATA_LANES

Description Number of Data Lanes output by the Camera.

Limits Range Limits: 1..CORACQ_CAP_CLHS_LANES_MAX.

CCA Entry [Signal Description]

Data Lanes

Note Valid only for CLHS connector type.

CORACQ_PRM_DATA_VALID_ENABLE

Description Specifies if the acquisition device uses the camera data valid signal.

Type UINT32

Limits This value must match the capability of the acquisition device given by

 $CORACQ_CAP_DATA_VALID_ENABLE = TRUE.$

Values FALSE (0x00000000) Data valid signal is ignored.

TRUE (0x00000001) Data valid signal is used.

CCA Entry [Control Signals]

Data Valid Enable

Note For CLHS cameras, the data valid is initiated by the frame grabber through the camera

trigger message. Camera will then pass the data valid control in the video packets. Only the video packets that have the data valid control enabled will be acquired. This permits synchronizing the acquistion of a 2 output camera into 2 separate frame grabbers.

CORACQ_PRM_DATA_VALID_POLARITY

Description Specifies the camera data valid polarity received from the acquisition device.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_DATA_VALID_POLARITY. The capability returns the ORed combination

of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Data valid signal active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Data valid signal active high.

CCA Entry [Control Signals]

Data Valid Polarity

Note Validated only if CORACQ_DATA_VALID_ENABLE is TRUE

CORACQ_PRM_FIELD_ORDER

Description Field order output by the video source. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ CAP FIELD ORDER. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_FIELD_ORDER_ODD_EVEN (0x00000001)

For an interlaced signal, the odd field is acquired first, followed by the even field.

For a non-interlaced signal, this value is invalid.

CORACQ_VAL_FIELD_ORDER_EVEN_ODD (0x00000002)

For an interlaced signal, the even field is acquired first, followed by the odd field.

For a non-interlaced signal, this value is invalid.

CORACQ_VAL_FIELD_ORDER_NEXT_FIELD (0x00000004)

For an interlaced signal, the next field is acquired whether it is odd or even.

This is the standard value for a non-interlaced signal. CORACQ_VAL_FIELD_ORDER_FVAL_LINE1 (0x00000008)

For a linescan camera, the FVAL is active to indicate a grouping of lines. In the case of a Bayer video source, the FVAL will group 2 lines together. When converting to RGB data,

the 1st line will be considered as the 1st one, and the 2nd one as the 2nd.

CORACQ_VAL_FIELD_ORDER_FVAL_LINE2 (0x00000010)

For a linescan camera, the FVAL is active to indicate a grouping of lines. In the case of a Bayer video source, the FVAL will group 2 lines together. When converting to RGB data,

the 2nd line will be considered as the 1st one, and the 2nd one as the 1st.

CCA Entry [Signal Description]

Field Order

CORACQ_PRM_FRAME

Description Video source frame type. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_FRAME. The capability returns the ORed combination of all supported

values.

Values CORACQ_VAL_FRAME_INTERLACED (0x00000001) Interlaced video.

CORACQ_VAL_FRAME_PROGRESSIVE (0x00000002) Progressive/non-interlaced

video.

CCA Entry [Signal Description]

Frame

CORACQ_PRM_FRAME_INTEGRATE_METHOD

Description Method to be used to control the camera's frame integration. Applies to area scan

cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_FRAME_INTEGRATE_METHOD. The capability returns the ORed

combination of all supported values.

Values See Frame Integrate Methods

CCA Entry [Control Signals]

Frame Integrate Method

Note Available only if CORACQ_CAP_FRAME_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_FRAME_INTEGRATE_ENABLE is TRUE.

CORACQ_PRM_FRAME_INTEGRATE_POLARITY

Description Frame integration pulse polarity. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_FRAME_INTEGRATE_POLARITY. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Frame integration pulse will be active

low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Frame integration pulse will be active

high.

CCA Entry [Control Signals]

Frame Integrate Polarity

Note Available only if CORACQ_CAP_FRAME_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_FRAME_INTEGRATE_ENABLE is TRUE.

CORACQ_PRM_HACTIVE

Description Horizontal active portion of the video (in pixels/tap).

Type UINT32

Limits Range limits: CORACQ_CAP_HACTIVE_MIN...CORACQ_CAP_HACTIVE_MAX, and also

must be a multiple of CORACQ_CAP_HACTIVE_MULT.

CCA Entry [Signal Timings]

Horizontal Active

CORACO PRM HBACK INVALID

Description Invalid horizontal portion of the video following the horizontal blanking (in pixels/tap).

Type UINT32

Limits Range limits: CORACQ_CAP_HBACK_INVALID_MIN ...

CORACQ CAP HBACK INVALID MAX, and also must be a multiple of

CORACQ_CAP_HBACK_INVALID_MULT.

CCA Entry [Signal Timings]

Horizontal Back Invalid

CORACQ_PRM_HBACK_PORCH

Description The video's horizontal back porch (in pixels/tap). Applies to analog video signals only.

Type UINT32

Limits Range limits: CORACQ_CAP_HBACK_PORCH_MIN ...

CORACQ_CAP_HBACK_PORCH_MAX, and must be a multiple of

CORACQ_CAP_HBACK_PORCH_MULT.

CCA Entry [Signal Timings]

Horizontal Back Porch

CORACO PRM HFRONT INVALID

Description Invalid horizontal portion of the video preceding the horizontal blanking (in pixels/tap).

Type UINT32

Limits This value must be in the range

CORACQ_CAP_HFRONT_INVALID_MIN...CORACQ_CAP_HFRONT_INVALID_MAX, and

must be a multiple of CORACQ_CAP_HFRONT_INVALID_MULT.

CCA Entry [Signal Timings]

Horizontal Front Invalid

CORACQ_PRM_HFRONT_PORCH

Description The video's horizontal front porch (in pixels/tap). Applies to analog video signals only.

Type UINT32

Limits This value must be in the range

CORACQ_CAP_HFRONT_PORCH_MIN...CORACQ_CAP_HFRONT_PORCH_MAX, and must

be a multiple of CORACQ_CAP_HFRONT_PORCH_MULT.

CCA Entry [Signal Timings]

Horizontal Front Porch

CORACO PRM HSYNC

Description The videos horizontal sync (in pixels/tap).

Type UINT32

Limits Range limits: CORACQ_CAP_HSYNC_MIN...CORACQ_CAP_HSYNC_MAX, and also must

be a multiple of CORACQ_CAP_HSYNC_MULT.

CCA Entry [Signal Timings]

Horizontal Sync

CORACQ_PRM_HSYNC_POLARITY

Description Horizontal sync polarity of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_HSYNC_POLARITY. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Horizontal sync pulse is active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Horizontal sync pulse is active high.

CCA Entry [Synchronization Signals]

Horizontal Sync Polarity

CORACQ_PRM_INTERFACE

Description Video source interface type.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_INTERFACE since only one interface type is supported per acquisition

device.

Values CORACQ_VAL_INTERFACE_ANALOG (0x00000001)

Analog video source.

CORACQ_VAL_INTERFACE_DIGITAL (0x00000002)

Digital video source.

CCA Entry [Signal Description]

Interface

CORACQ_PRM_LINE_INTEGRATE_DELAY

Description Obsolete. Use instead the equivalent parameter

CORACO_PRM_LINE_INTEGRATE_PULSEO_DELAY

CORACQ_PRM_LINE_INTEGRATE_METHOD

Description Method to use for controlling the camera's line integration. Applies to linescan cameras

only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_LINE_INTEGRATE_METHOD. The capability returns the ORed

combination of all supported values.

Values See Line Integrate Methods

CCA Entry [Control Signals]

Line Integrate Method

Note Available only if CORACQ_CAP_LINE_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_LINE_INTEGRATE_ENABLE is TRUE.

CORACQ_PRM_LINE_INTEGRATE_POLARITY

Description Obsolete. Use instead the equivalent parameter

CORACQ_PRM_LINE_INTEGRATE_PULSEO_POLARITY

CORACO PRM LINE INTEGRATE PULSEO DELAY

Description Line integration pulse #0 delay in units specified by

CORACQ_PRM_LINE_INTEGRATE_TIME_BASE. In the case where the units are in CORACQ_VAL_TIME_BASE_NS, the CORACQ_CAP_LINE_INTEGRATE_TIME_BASE_MULT returns the recolution of the time base in page. Applies to lineagen general only.

returns the resolution of the time base in nsec. Applies to linescan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_LINE_INTEGRATE_PULSEO_DELAY_MIN ...

CORACQ_CAP_LINE_INTEGRATE_PULSEO_DELAY_MAX.

CCA Entry [Control Signals]

Line Integrate Pulse 0 Delay

Note Available only if CORACQ_CAP_LINE_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_LINE_INTEGRATE_ENABLE is TRUE.

See Line Integrate Methods for the different usages of the pulse #0 delay parameter.

CORACQ_PRM_LINE_INTEGRATE_PULSEO_DURATION

Description Line integration pulse #0 width in units specified by

CORACQ_PRM_LINE_INTEGRATE_TIME_BASE. In the case where the units are in CORACQ_VAL_TIME_BASE_NS, the CORACQ_CAP_LINE_INTEGRATE_TIME_BASE_MULT returns the resolution of the time base in nsec. Applies to linescan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_LINE_INTEGRATE_PULSEO_DURATION_MIN ...

CORACQ_CAP_LINE_INTEGRATE_PULSEO_DURATION_MAX.

CCA Entry [Control Signals]

Line Integrate Pulse 0 Duration

Note Available only if CORACQ_CAP_LINE_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_LINE_INTEGRATE_ENABLE is TRUE.

See Line Integrate Methods for the different usages of the pulse #0 duration parameter.

CORACO PRM LINE INTEGRATE PULSEO POLARITY

Description Line integration pulse #0 polarity. Applies to linescan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_LINE_INTEGRATE_PULSEO_POLARITY. The capability returns the

ORed combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Time integration trigger pulse is active low.

CORACQ_VAL_ACTIVE_HIGH Time integration trigger pulse is active

(0x00000002) high.

CCA Entry [Control Signals]

Line Integrate Pulse 0 Polarity

Note Available only if CORACQ_CAP_LINE_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_LINE_INTEGRATE_ENABLE is TRUE.

See Line Integrate Methods for the different usages of the pulse #0. Note, if a constant signal is required, set this parameter to have an active signal polarity opposite to that of the constant signal. For example, to have a constant high signal the polarity would be

set to CORACQ_VAL_ACTIVE_LOW.

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DELAY

Description Line integration pulse #1 delay in units specified by

CORACQ_PRM_LINE_INTEGRATE_TIME_BASE. In the case where the units are in CORACQ_VAL_TIME_BASE_NS, the CORACQ_CAP_LINE_INTEGRATE_TIME_BASE_MULT

returns the resolution of the time base in nsec. Applies to linescan cameras only.

Type UINT32

Limits Range limits: CORACQ CAP LINE INTEGRATE PULSE1 DELAY MIN ...

CORACQ_CAP_LINE_INTEGRATE_PULSE1_DELAY_MAX.

CCA Entry [Control Signals]

Line Integrate Pulse 1 Delay

Note Available only if CORACQ_CAP_LINE_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_LINE_INTEGRATE_ENABLE is TRUE.

See Line Integrate Methods for the different usages of the pulse #1 delay parameter.

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION

Description Line integration pulse #1 width in units specified by

CORACQ_PRM_LINE_INTEGRATE_TIME_BASE. In the case where the units are in CORACQ_VAL_TIME_BASE_NS, the CORACQ_CAP_LINE_INTEGRATE_TIME_BASE_MULT returns the resolution of the time base in nsec. Applies to linescan cameras only.

Type UINT32

Limits Range limits: CORACQ CAP LINE INTEGRATE PULSE1 DURATION MIN ...

CORACQ_CAP_LINE_INTEGRATE_PULSE1_DURATION_MAX.

CCA Entry [Control Signals]

Line Integrate Pulse 1 Duration

Note Available only if CORACQ_CAP_LINE_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_LINE_INTEGRATE_ENABLE is TRUE.

See Line Integrate Methods for the different usages of the pulse #1 duration parameter.

CORACO PRM LINE INTEGRATE PULSE1 POLARITY

Description Line integration pulse #1 polarity. Applies to linescan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_LINE_INTEGRATE_PULSE1_POLARITY. The capability returns the

ORed combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Line integration trigger pulse is active

low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Line integration trigger pulse is active

high.

CCA Entry [Control Signals]

Line Integrate Pulse 1 Polarity

Note Available only if CORACQ_CAP_LINE_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_LINE_INTEGRATE_ENABLE is TRUE.

See Line Integrate Methods for the different usages of the pulse #1. Note, if a constant signal is required, set this parameter to have an active signal polarity opposite to that of the constant signal. For example, to have a constant high signal the polarity would be

set to CORACQ_VAL_ACTIVE_LOW.

CORACQ_PRM_LINE_TRIGGER_DELAY

Description Line trigger pulse delay in units specified by

CORACQ_PRM_LINE_INTEGRATE_TIME_BASE. In the case where the units are in CORACQ_VAL_TIME_BASE_NS, the CORACQ_CAP_LINE_INTEGRATE_TIME_BASE_MULT returns the resolution of the time base in nsec. Applies to linescan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_LINE_TRIGGER_DELAY_MIN ...

CORACQ_CAP_LINE_TRIGGER_DELAY_MAX.

CCA Entry [Control Signals]

Line Trigger Delay

Note Available only if CORACQ_CAP_LINE_TRIGGER is TRUE.

Validated only when CORACQ_PRM_LINE_TRIGGER_ENABLE is TRUE.

See Line Trigger Methods for the different usages of the trigger delay parameter.

CORACQ_PRM_LINE_TRIGGER_DURATION

Description Line Trigger pulse width in units specified by

CORACQ_PRM_LINE_INTEGRATE_TIME_BASE. In the case where the units are in CORACQ_VAL_TIME_BASE_NS, the CORACQ_CAP_LINE_INTEGRATE_TIME_BASE_MULT returns the resolution of the time base in nsec. Applies to linescan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_LINE_TRIGGER_DURATION_MIN ...

CORACQ_CAP_LINE_TRIGGER_DURATION_MAX.

CCA Entry [Control Signals]

Line Trigger Duration

Note Available only if CORACQ_CAP_LINE_TRIGGER is TRUE.

Validated only when CORACQ_PRM_LINE_TRIGGER_ENABLE is TRUE.

See Line Trigger Methods for the different usages of the trigger duration parameter.

CORACQ_PRM_LINE_TRIGGER_METHOD

Description Line trigger pulse output method. Applies to linescan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_LINE_TRIGGER_METHOD. The capability returns the ORed

combination of all supported values.

Values See Line Trigger Methods

CCA Entry [Control Signals]

Line Trigger Method

Note Available only if CORACQ_CAP_LINE_TRIGGER is TRUE.

Validated only when CORACO_PRM_LINE_TRIGGER_ENABLE is TRUE.

CORACO PRM LINE TRIGGER POLARITY

Description Line trigger pulse polarity. Applies to linescan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_LINE_TRIGGER_POLARITY. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Line trigger pulse is active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Line trigger pulse is active high.

CCA Entry [Control Signals]

Line Trigger Polarity

Note Available only if CORACQ_CAP_LINE_TRIGGER is TRUE.

Validated only when CORACQ_PRM_LINE_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_LINESCAN_DIRECTION

Description Specifies if the camera has a direction scan input control.

Type UINT32

Values TRUE (0x00000001), Camera has a direction scan input control.

FALSE (0x0000000), Camera does not have a direction scan input control.

CCA Entry [Control Signals]

LineScan Direction

Note Applies to linescan cameras only.

On Teledyne DALSA cameras, this control is called the TDI scan direction.

CORACQ_PRM_LINESCAN_DIRECTION_POLARITY

Description Camera direction scan signal polarity. Applies to linescan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_LINESCAN_DIRECTION_POLARITY. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Forward direction scan signal is active

low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Forward direction scan signal is active

high.

CCA Entry [Control Signals]

LineScan Direction Polarity

Note This value is only available if CORACQ_CAP_LINESCAN_DIRECTION is TRUE.

CORACQ_PRM_PIXEL_CLK_11

Description Pixel clock frequency (in Hz) so that the camera image has a 1:1 aspect ratio.

Type UINT32

Limits 1.. (2**32) – 1

CCA Entry [Pixel Clock]

Pixel Clock Frequency 1:1

Note This value is only given as information.

Useful to accurately calculate distances between objects from an acquired image.

CORACQ_PRM_PIXEL_CLK_DETECTION

Description Specifies the type of pixel clock detection of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_PIXEL_CLK_DETECTION. The capability returns the ORed combination

of all supported values.

Values CORACQ_VAL_RISING_EDGE (0x00000004) Sampling of a pixel is done on the

rising edge of the pixel clock.

CORACQ_VAL_FALLING_EDGE (0x00000008) Sampling of a pixel is done on the

falling edge of the pixel clock.

CCA Entry [Pixel Clock]

Pixel Clock Detection

CORACQ_PRM_PIXEL_CLK_EXT

Description External pixel clock frequency (in Hz).

Type UINT32

Limits The value must be in the range

CORACQ_CAP_PIXEL_CLK_EXT_MIN...CORACQ_CAP_PIXEL_CLK_EXT_MAX.

CCA Entry [Pixel Clock]

Pixel Clock Frequency External

Note Validated only if CORACQ_PRM_PIXEL_CLK_SRC specifies that an external pixel clock is

needed.

CORACQ_PRM_PIXEL_CLK_INT

Description Internal pixel clock frequency (in Hz).

Type UINT32

Limits The value must be in the range

CORACQ_CAP_PIXEL_CLK_INT_MIN...CORACQ_CAP_PIXEL_CLK_INT_MAX.

CCA Entry [Pixel Clock]

Pixel Clock Frequency Internal

Note This value is validated only if CORACQ_PRM_PIXEL_CLK_SRC specifies that an internal

pixel clock is needed.

CORACQ_PRM_PIXEL_CLK_SRC

Description Specifies the source of the acquisition device pixel clock.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_PIXEL_CLK_SRC. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_PIXEL_CLK_SRC_INT (0x00000001) Internal pixel clock.

CORACQ_VAL_PIXEL_CLK_SRC_EXT (0x00000002) External pixel clock.

CORACQ_VAL_PIXEL_CLK_SRC_EXT_INT

(0x0000004)

The external pixel clock is used while the acquisition device simultaneously outputs its own internal pixel clock for other

use.

CCA Entry [Pixel Clock]

Pixel Clock Source

CORACO PRM PIXEL DEPTH

Description Pixel depth of the digitized video.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_PIXEL_DEPTH.

This capability returns a structure of the following type:

typedef struct

{

UINT32 pixelDepth; UINT32 numberOfLuts; UINT32 lutFormat; CAP_PIXEL_DEPTH;

CAP_PIXEL_DEPTH capPixelDepth[43];

The amount of memory required for the capability is 512 bytes. Since there are 12 bytes per structure element, this means that you must allocate at least 512/12=43 (after rounding) such elements. The end of the list is reached when the pixelDepth

value is 0.

pixelDepth: pixel depth in bits.

numberOfLuts: number of LUTs available

lutFormat: LUT format.

CCA Entry [Signal Description]

Pixel Depth

Note For analog cameras, this parameter is read-only and represents the number of bits

digitized by the acquisition device's A/D.

CORACQ_PRM_SCAN

Description Video source scan type.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_SCAN. The capability returns the ORed combination of all supported

values.

Values CORACQ_VAL_SCAN_AREA (0x00000001)

Area scan video source.

CORACQ_VAL_SCAN_LINE (0x00000002)

Linescan video source.

CCA Entry [Signal Description]

Scan

CORACQ_PRM_SIGNAL

Description Video sauce signal type.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACO_CAP_SIGNAL. The capability returns the ORed combination of all supported

values.

Values CORACQ_VAL_SIGNAL_SINGLE_ENDED (0x00000001) Single ended signal.

CORACQ_VAL_SIGNAL_DIFFERENTIAL (0x00000002) Differential signal.

CCA Entry [Signal Description]

Signal

CORACQ_PRM_SYNC

Description Synchronization source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_SYNC. The capability returns the ORed combination of all supported

values.

Values CORACQ_VAL_SYNC_COMP_VIDEO (0x00000001), Composite video source.

CORACQ_VAL_SYNC_COMP_SYNC (0x00000002), Composite sync source.

CORACQ_VAL_SYNC_SEP_SYNC (0x00000004), Separate horizontal and vertical sync source.

CORACQ_VAL_SYNC_INT_SYNC (0x00000008)

Internal horizontal and vertical syncs generated by the acquisition device.

See also CORACQ_PRM_MASTER_MODE.

CORACQ_VAL_SYNC_RED (0x00000010),

Composite video source from the red channel.

CORACQ_VAL_SYNC_GREEN (0x00000020),

Composite video source from the green channel.

CORACQ_VAL_SYNC_BLUE (0x00000040) Composite video source from the blue channel.

CCA Entry [Synchronization Signals]

Synchronization Source

CORACQ_PRM_TAP_1_DIRECTION

Description Specifies the direction of tap #1 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_TAP_DIRECTION_LR (0x00000001)

Pixels from the tap have a left to right order.

CORACQ_VAL_TAP_DIRECTION_RL (0x00000002)
Pixels from the tap have a right to left order.

CORACQ_VAL_TAP_DIRECTION_UD (0x00000004)

Lines from the tap have a top-bottom direction (up-down).

CORACQ_VAL_TAP_DIRECTION_DU (0x00000008)

Lines from the tap have a bottom-up direction (down-up). CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x00000010) Lines from the tap start at the top of the camera image. CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x00000020) Lines from the tap start in the middle of the camera image. CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x00000040) Lines from the tap start at the bottom of the camera image.

CCA Entry [Signal Description]

Tap 1 Direction

Note For a description of tap geometries and corresponding parameter settings see

Appendix: Tap Geometry Settings.

CORACQ_PRM_TAP_2_DIRECTION

Description Specifies the direction of tap #2 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION.

CCA Entry [Signal Description]

Tap 2 Direction

Note For a description of tap geometries and corresponding parameter settings see

Appendix: Tap Geometry Settings.

CORACQ_PRM_TAP_3_DIRECTION

Description Specifies the direction of tap #3 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 3 Direction

Note For a description of tap geometries and corresponding parameter settings see

CORACQ_PRM_TAP_4_DIRECTION

Description Specifies the direction of tap #4 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION.

CCA Entry [Signal Description]

Tap 4 Direction

Note For a description of tap geometries and corresponding parameter settings see

Appendix: Tap Geometry Settings.

CORACQ_PRM_TAP_5_DIRECTION

Description Specifies the direction of tap #5 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION.

CCA Entry [Signal Description]

Tap 5 Direction

Note For a description of tap geometries and corresponding parameter settings see

Appendix: Tap Geometry Settings.

CORACQ_PRM_TAP_6_DIRECTION

Description Specifies the direction of tap #6 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 6 Direction

Note For a description of tap geometries and corresponding parameter settings see

Appendix: Tap Geometry Settings.

CORACQ_PRM_TAP_7_DIRECTION

Description Specifies the direction of tap #7 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 7 Direction

Note For a description of tap geometries and corresponding parameter settings see

CORACQ_PRM_TAP_8_DIRECTION

Description Specifies the direction of tap #8 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION.

CCA Entry [Signal Description]

Tap 8 Direction

Note For a description of tap geometries and corresponding parameter settings see

Appendix: Tap Geometry Settings.

CORACQ_PRM_TAP_9_DIRECTION

Description Specifies the direction of tap #9 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 9 Direction

Note For a description of tap geometries and corresponding parameter settings see

Appendix: Tap Geometry Settings.

CORACQ_PRM_TAP_10_DIRECTION

Description Specifies the direction of tap #10 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 10 Direction

Note For a description of tap geometries and corresponding parameter settings see

Appendix: Tap Geometry Settings.

CORACQ_PRM_TAP_11_DIRECTION

Description Specifies the direction of tap #11 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]
Tap 11 Direction

Note For a description of tap geometries and corresponding parameter settings see

CORACQ_PRM_TAP_12_DIRECTION

Description Specifies the direction of tap #12 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 12 Direction

Note For a description of tap geometries and corresponding parameter settings see

Appendix: Tap Geometry Settings.

CORACQ_PRM_TAP_13_DIRECTION

Description Specifies the direction of tap #13 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 13 Direction

Note For a description of tap geometries and corresponding parameter settings see

Appendix: Tap Geometry Settings.

CORACQ_PRM_TAP_14_DIRECTION

Description Specifies the direction of tap #14 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]
Tap 14 Direction

Note For a description of tap geometries and corresponding parameter settings see

Appendix: Tap Geometry Settings.

CORACQ_PRM_TAP_15_DIRECTION

Description Specifies the direction of tap #15 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 15 Direction

Note For a description of tap geometries and corresponding parameter settings see

CORACQ_PRM_TAP_16_DIRECTION

Description Specifies the direction of tap #16 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 16 Direction

Note For a description of tap geometries and corresponding parameter settings see

Appendix: Tap Geometry Settings.

CORACQ_PRM_TAP_OUTPUT

Description Specifies the tap output type of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TAP_OUTPUT. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_TAP_OUTPUT_ALTERNATE (0x00000001)

Construction of a line is done by concatenating the taps 2 by 2, with a pixel in turn from each tap. So the first two taps makes up the first segment of the line, the next two taps

make up the second segment... Must be an even number of taps.

CORACQ_VAL_TAP_OUTPUT_SEGMENTED (0x00000002)

Construction of a line is done by concatenating the output of each tap.

CORACQ_VAL_TAP_OUTPUT_PARALLEL (0x00000004)

Construction of a line is done by concatenating a pixel in turn from each tap.

CCA Entry [Signal Description]

Tap Output

Note For a description of tap geometries and corresponding parameter settings see

Appendix: Tap Geometry Settings.

CORACO PRM TAPS

Description Number of taps output by the video source.

Type UINT32

Limits This value must be in the range 1..CORACQ_CAP_TAPS.

CCA Entry [Signal Description]

Taps

Note For a description of tap geometries and corresponding parameter settings see

CORACQ_PRM_TIMESLOT

Description Number of pixel clocks needed to output 1 pixel on every tap

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TIMESLOT

Values CORACQ_VAL_TIMESLOT_1 (0x01):

for each pixel clock, a pixel from each tap is output (default)

CORACQ_VAL_TIMESLOT_2 (0x02):

2 pixel clock cycles are needed to output 1 pixel from each tap

CORACQ_VAL_TIMESLOT_3 (0x04):

3 pixel clock cycles are needed to output 1 pixel from each tap

CORACQ_VAL_TIMESLOT_4 (0x08):

4 pixel clock cycles are needed to output 1 pixel from each tap

CCA Entry [Signal Description]

Timeslot

CORACQ_PRM_TIME_INTEGRATE_METHOD

Description Method to use to control a camera's time integration. Applies to area scan cameras

only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TIME_INTEGRATE_METHOD. The capability returns the ORed

combination of all supported values.

Values See Time Integrate Methods

CCA Entry [Control Signals]

Time Integrate Method

Note Available only if CORACQ_CAP_TIME_INTEGRATE is TRUE.

CORACQ_CAP_TIME_INTEGRATE is obsolete. Use the equivalent parameter

CORACQ CAP TIME INTEGRATE PULSEO POLARITY.

CORACQ_CAP_TIME_INTEGRATE_PULSEO_POLARITY Values:

CORACQ_VAL_ACTIVE_LOW

Time integration trigger pulse can be active low.

CORACQ_VAL_ACTIVE_HIGH

Time integration trigger pulse can be active high.

Validated only when CORACQ_PRM_TIME_INTEGRATE_ENABLE is TRUE.

CORACQ_PRM_TIME_INTEGRATE_POLARITY

Description Obsolete. Use instead the equivalent parameter

CORACQ_PRM_TIME_INTEGRATE_PULSEO_POLARITY

CORACQ_PRM_TIME_INTEGRATE_PULSE_DELAY

Description Obsolete. Use instead the equivalent parameter

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DELAY

CORACQ_PRM_TIME_INTEGRATE_PULSE_DURATION

Description Obsolete. Use instead the equivalent parameter

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION

CORACQ_PRM_TIME_INTEGRATE_PULSE_POLARITY

Description Obsolete. Use instead the equivalent parameter

CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY

CORACQ_PRM_TIME_INTEGRATE_PULSE0_DELAY

Description Time integration pulse #0 delay (in µs). Applies to area scan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_TIME_INTEGRATE_PULSEO_DELAY_MIN ...

CORACQ_CAP_TIME_INTEGRATE_PULSEO_DELAY_MAX.

CCA Entry [Control Signals]

Time Integrate Pulse 0 Delay

Note Available only if CORACQ_CAP_TIME_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_TIME_INTEGRATE_ENABLE is TRUE.

See Time Integrate Methods for the different usages of the pulse #0 delay parameter.

CORACQ_PRM_TIME_INTEGRATE_PULSEO_DURATION

Description Time integration pulse #0 width (in µs). Applies to area scan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_TIME_INTEGRATE_PULSEO_DURATION_MIN ...

CORACQ_CAP_TIME_INTEGRATE_PULSEO_DURATION_MAX.

CCA Entry [Control Signals]

Time Integrate Pulse 0 Duration

Note Available only if CORACQ_CAP_TIME_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_TIME_INTEGRATE_ENABLE is TRUE. See Time Integrate Methods for the different usages of the pulse #0 duration

parameter.

CORACQ_PRM_TIME_INTEGRATE_PULSE0_POLARITY

Description Time integration pulse #0 polarity. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TIME_INTEGRATE_PULSEO_POLARITY. The capability returns the

ORed combination of all supported values. See

CORACQ_PRM_TIME_INTEGRATE_METHOD for further information on

CORACQ_CAP_TIME_INTEGRATE_PULSEO_POLARITY.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001), Time integration pulse is active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002), Time integration pulse is active high.

CCA Entry [Control Signals]

Time Integrate Pulse 0 Polarity

Note Available only if CORACQ_CAP_TIME_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_TIME_INTEGRATE_ENABLE is TRUE. See Time Integrate Methods for the different usages of the pulse #0.

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DELAY

Description Time integration pulse #1 delay (in µs). Applies to area scan cameras only.

Type UINT32

Limits Range limits CORACQ_CAP_TIME_INTEGRATE_PULSE1_DELAY_MIN ...

CORACQ_CAP_TIME_INTEGRATE_PULSE1_DELAY_MAX.

CCA Entry [Control Signals]

Time Integrate Pulse 1 Delay

Note Available only if CORACQ_CAP_TIME_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_TIME_INTEGRATE_ENABLE is TRUE.

See Time Integrate Methods for the different usages of the pulse #1 delay parameter.

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION

Description Time integration pulse #1 width (in µs). Applies to area scan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_TIME_INTEGRATE_PULSE1_DURATION_MIN ...

CORACQ_CAP_TIME_INTEGRATE_PULSE1_DURATION_MAX.

CCA Entry [Control Signals]

Time Integrate Pulse 1 Duration

Note Available only if CORACQ_CAP_TIME_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_TIME_INTEGRATE_ENABLE is TRUE. See Time Integrate Methods for the different usages of the pulse #1 duration

parameter.

CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY

Description Time integration pulse #1 polarity. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_TIME_INTEGRATE_PULSE1_POLARITY. The capability returns the

ORed combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Time integration trigger pulse is active

low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Time integration trigger pulse is active

high.

CCA Entry [Control Signals]

Time Integrate Pulse 1 Polarity

Note Available only if CORACQ_CAP_TIME_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_TIME_INTEGRATE_ENABLE is TRUE. See Time Integrate Methods for the different usages of the pulse #1.

CORACQ_PRM_TRIGGER_EXP_SIGNAL

Description Obsolete. Use CORACQ_PRM_CONNECTOR_xxx parameters to describe the pinout of

the camera.

CORACQ_PRM_VACTIVE

Description Vertical active portion of the video (in lines per field). Applies to area scan cameras

only.

Type UINT32

Limits Range limits: CORACQ_CAP_VACTIVE_MIN ... CORACQ_CAP_VACTIVE_MAX, and also

must be a multiple of CORACQ_CAP_VACTIVE_MULT.

CCA Entry [Signal Timings]

Vertical Active

CORACO PRM VBACK INVALID

Description Invalid vertical portion of the video following the vertical blanking (in lines per field).

Applies to area scan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_VBACK_INVALID_MIN ...

CORACQ_CAP_VBACK_INVALID_MAX, and must be a multiple of

CORACQ_CAP_VBACK_INVALID_MULT.

CCA Entry [Signal Timings]

Vertical Back Invalid

CORACQ_PRM_VBACK_PORCH

Description Vertical back porch portion of the video (in lines per field). Applies to analog video

signals only.

Type UINT32

Limits Range limits: CORACQ_CAP_VBACK_PORCH_MIN ...

CORACQ CAP VBACK PORCH MAX, and must be a multiple of

CORACQ_CAP_VBACK_PORCH_MULT.

CCA Entry [Signal Timings]

Vertical Back Porch

CORACO PRM VFRONT INVALID

Description Invalid vertical portion of the video preceding the vertical blanking (in lines per field).

Applies to area scan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_VFRONT_INVALID_MIN ...

CORACQ_CAP_VFRONT_INVALID_MAX, and must be a multiple of

CORACQ_CAP_VFRONT_INVALID_MULT.

CCA Entry [Signal Timings]

Vertical Front Invalid

CORACQ_PRM_VFRONT_PORCH

Description The video's vertical font porch (in lines per field). Applies to analog video signals only.

Type UINT32

Limits Range limits: CORACQ_CAP_VFRONT_PORCH_MIN ...

CORACQ_CAP_VFRONT_PORCH_MAX, and must be a multiple of

CORACQ_CAP_VFRONT_PORCH_MULT.

CCA Entry [Signal Timings]

Vertical Front Porch

CORACQ_PRM_VIDEO

Description Video type source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_VIDEO.

Values CORACQ_VAL_VIDEO_MONO (0x0000001) Monochrome composite video source.

> CORACQ VAL VIDEO COLOR (0x00000002) Color composite video source.

CORACQ_VAL_VIDEO_YC (0x00000004) Y/C video source. CORACQ_VAL_VIDEO_RGB (0x00000008) RGB video source. CORACQ_VAL_VIDEO_BAYER (0x00000010) Bayer video source. CORACQ_VAL_VIDEO_BICOLOR (0x00000020) Bi-Color video source. CORACQ_VAL_VIDEO_RGBY (0x00000040) Multispectral video source.

CCA Entry [Signal Description]

Video

CORACQ_PRM_VIDEO_LEVEL_MAX

Maximum value (in μ V) o the video signal. Applies to analog video signal only. Description

Type UINT32

Limits This value must be greater or equal to CORACQ_PRM_VIDEO_LEVEL_MIN and must be

in the range: [-(2**31)...(2**31)-1].

[Signal Description] **CCA Entry**

Video Level Maximum

Note For NTSC/RS-170 video standard signal, this value is usually equal to 714000 µV.

For PAL/CCIR video standard signal, this value is usually equal to 700000 µV.

If CORACQ_PRM_VIDEO_LEVEL_MIN and CORACQ_PRM_VIDEO_LEVEL_MAX are both

set to 0, then the following default values will be used:

if PAL/CCIR video standard is selected: min = 0, max = 700000

else min = 53550, max = 714000.

CORACQ_PRM_VIDEO_LEVEL_MIN

Description Minimum value (in µV) o the video signal. Applies to analog video signals only.

Type

Limits This value must be smaller or equal to CORACQ_PRM_VIDEO_LEVEL_MAX and must be

in the range: [-(2**31)...(2**31)-1].

CCA Entry [Signal Description]

Video Level Minimum

Note For NTSC/RS-170 video standard signal, this value is usually equal to 53550 µV.

For PAL/CCIR video standard signal, this value is usually equal to 0 µV.

If CORACQ_PRM_VIDEO_LEVEL_MIN and CORACQ_PRM_VIDEO_LEVEL_MAX are both

set to 0, then the following default values will be used:

if PAL/CCIR video standard is selected: min = 0, max = 700000

else min = 53550, max = 714000.

CORACQ_PRM_VIDEO_STD

Description Video source video standard.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_VIDEO_STD. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_VIDEO_STD_NON_STD Non-standard video source.

(0x0000001)

CORACQ_VAL_VIDEO_STD_RS170_NTSC RS-170 and/or NTSC video source.

(0x00000002)

CORACQ_VAL_VIDEO_STD_CCIR_PAL

(0x00000004)

CORACQ_VAL_VIDEO_STD_SECAM

(8000000x0)

CCA Entry [Signal Description]

Video Standard

CORACQ_PRM_VSYNC

Description The video's vertical sync (in lines per field). Applies to area scan cameras only.

Type UINT32

Limits This value must be in the range

CORACQ_CAP_VSYNC_MIN...CORACQ_CAP_VSYNC_MAX, and must be a multiple of

CORACQ_CAP_VSYNC_MULT.

CCA Entry [Signal Timings]

Vertical Sync

CORACQ_PRM_VSYNC_POLARITY

Description Vertical sync polarity. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_VSYNC_POLARITY. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Vertical sync pulse is active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Vertical sync pulse is active high.

CCA Entry [Synchronization Signals]

Vertical Sync Polarity

CORACQ_PRM_WEN_POLARITY

Description Specifies the WEN (rite ENable) signal polarity that the acquisition device will consider

as valid.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given

by CORACQ_CAP_WEN_POLARITY. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) WEN is active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) WEN is active high.

CCA Entry [Control Signals]

WEN Polarity

Note Validated only if CORACQ_PRM_WEN_ENABLE is TRUE.

CCIR and/or PAL video source.

SECAM video source.

Configuration File Formats

Overview

This section covers the format descriptions for the information files describing camera definition parameters (.CCA) and acquisition parameters (.CVI). The camera configuration file (.CCF) is the combination of the .CCA and .CVI files into one file.

These parameters are stored in Sapera camera configuration files which an application loads to initialize the acquisition hardware. Note that all camera related parameters can be individually loaded by the application if a single acquisition source (hard-coded) program is desired.

Sapera LT supplies a number of camera definition files for popular cameras available on the market. The Sapera CamExpert tool simplifies making or modifying Sapera camera files and is described in the *Sapera LT User's* manual. Refer also to the CamExpert online help file and descriptive popup help for the various parameter fields.

Note that, in addition to the key names defined in the .CCA and .CVI files, the .CCF file may contain additional keys. This happens, for example, when saving a .CCF file for Teledyne DALSA cameras explicitly supported by CamExpert through the Camera Link serial port, for example, the Piranha Color. In some cases, the .CCA and .CVI keys are completely absent, and only the additional keys are present. This is the case for Genie cameras, which do not make use of the acquisition module with its capabilities and parameters.

Camera Definition File Description (CCA)

Sapera camera files (*.cca) contain the parameters of specific cameras. Most of the information found in these files is the default settings that should never change for a given camera. Values can be written in decimal (for example, 16) or in hexadecimal (for example, 0x10).

The following tables contain each key name used by camera files. Under normal circumstances each *.cca file only the information required for a given camera. Note that the *.cca file contains all Sapera camera related parameters whether they are used or needed by the camera.

Key Name [General]	Related Parameter
Camera Name	CORACQ_PRM_CAM_NAME
Company Name	CORACQ_PRM_CAM_COMPANY_NAME
Model Name	CORACQ_PRM_CAM_MODEL_NAME
Version	Version of this file. This entry does not correspond to any parameter.
	100: Initial Version 200: Formats are now indexes into a fix table independent of the Sapera values 300: Parameter CORACQ_PRM_TIME_INTEGRATE_POLARITY is now called CORACQ_PRM_TIME_INTEGRATE_PULSEO_POLARITY 301: New parameters CORACQ_PRM_LINE_INTEGRATE_PULSE_xxx, CORACQ_PRM_VIDEO_LEVEL_MIN/MAX

Key Name	Related Parameter
[Signal Description]	

Bayer Alignment	CORACQ_PRM_COLOR_ALIGNMENT
Channel	CORACQ_PRM_CHANNEL
Channels Order	CORACO PRM CHANNELS ORDER

CLHS Bit Transfer Rate CORACQ_PRM_CLHS_BIT_TRANSFER_RATE

Coupling CORACQ_PRM_COUPLING

CX4 Configuration CORACQ_PRM_CX4_CONFIGURATION

Data Lanes CORACQ_PRM_DATA_LANES Field Order CORACQ_PRM_FIELD_ORDER

Frame CORACQ_PRM_FRAME Interface CORACQ_PRM_INTERFACE Pixel Depth CORACQ_PRM_PIXEL_DEPTH

CORACQ_PRM_SCAN Signal CORACQ_PRM_SIGNAL Tap Output CORACQ_PRM_TAP_OUTPUT

Tap 1 Direction CORACQ_PRM_TAP_1_DIRECTION CORACQ_PRM_TAP_2_DIRECTION Tap 2 Direction Tap 3 Direction CORACQ_PRM_TAP_3_DIRECTION Tap 4 Direction CORACQ_PRM_TAP_4_DIRECTION Tap 5 Direction CORACQ_PRM_TAP_5_DIRECTION Tap 6 Direction CORACQ_PRM_TAP_6_DIRECTION Tap 7 Direction CORACQ_PRM_TAP_7_DIRECTION Tap 8 Direction CORACQ_PRM_TAP_8_DIRECTION

Taps CORACQ_PRM_TAPS Video CORACQ PRM VIDEO

Scan

Key Name [Signal Description]

Related Parameter

Video Level Maximum CORACQ_PRM_VIDEO_LEVEL_MAX
Video Level Minimum CORACQ_PRM_VIDEO_LEVEL_MIN
Video Standard CORACQ_PRM_VIDEO_STD

Key Name [Signal Timings]

Related Parameter

Horizontal Active CORACQ_PRM_HACTIVE

Horizontal Back Invalid CORACQ_PRM_HBACK_INVALID
Horizontal Back Porch CORACQ_PRM_HBACK_PORCH
Horizontal Front Invalid CORACQ_PRM_HFRONT_INVALID
Horizontal Front Porch CORACQ_PRM_HFRONT_PORCH

Horizontal Sync CORACQ_PRM_HSYNC

Vertical Active CORACQ_PRM_VACTIVE

Vertical Back Invalid CORACQ_PRM_VBACK_INVALID

Vertical Back Porch CORACQ_PRM_VBACK_PORCH

Vertical Front Invalid CORACQ_PRM_VFRONT_INVALID

Vertical Front Porch CORACQ_PRM_VFRONT_PORCH

Vertical Sync CORACQ_PRM_VSYNC

Key Name [Pixel Clock]

Related Parameter

Pixel Clock Detection CORACQ_PRM_PIXEL_CLK_DETECTION
Pixel Clock Frequency External CORACQ_PRM_PIXEL_CLK_EXT
Pixel Clock Frequency Internal CORACQ_PRM_PIXEL_CLK_INT
Pixel Clock Frequency 1:1 CORACQ_PRM_PIXEL_CLK_11

Key Name Rela

Related Parameter

CORACQ_PRM_PIXEL_CLK_SRC

Horizontal Sync Polarity CORACQ_PRM_HSYNC_POLARITY

Synchronization Source CORACQ_PRM_SYNC

Vertical Sync Polarity CORACQ_PRM_VSYNC_POLARITY

Key Name [Control Signals]

Pixel Clock Source

[Synchronization Signals]

Related Parameter

Camera Control During Readout CORACQ_PRM_CAM_CONTROL_DURING_READOUT Camera Line Trigger Frequency CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MAX

Maximum

Camera Line Trigger Frequency

Minimum

CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MIN

Camera Reset Duration CORACQ_PRM_CAM_RESET_DURATION
Camera Reset Method CORACQ_PRM_CAM_RESET_METHOD
Camera Reset Polarity CORACQ_PRM_CAM_RESET_POLARITY

Camera Time Integrate CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MAX Duration Maximum

Camera Time Integrate CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MIN Duration Minimum

Key Name [Control Signals]

Related Parameter

CORACQ_PRM_CAM_TRIGGER_DURATION
CORACQ_PRM_CAM_TRIGGER_METHOD
CORACQ_PRM_CAM_TRIGGER_POLARITY
CORACQ_PRM_DATA_VALID_ENABLE
CORACQ_PRM_DATA_VALID_POLARITY
CORACQ_PRM_FRAME_INTEGRATE_METHOD
CORACQ_PRM_FRAME_INTEGRATE_POLARITY
CORACQ_PRM_LINE_INTEGRATE_METHOD
CORACQ_PRM_LINE_INTEGRATE_PULSEO_DELAY
CORACQ_PRM_LINE_INTEGRATE_PULSEO_DURATION
CORACQ_PRM_LINE_INTEGRATE_PULSEO_POLARITY
CORACQ_PRM_LINE_INTEGRATE_PULSE1_DELAY
CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION
CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY
CORACQ_PRM_LINE_TRIGGER_DELAY
CORACQ_PRM_LINE_TRIGGER_DURATION
CORACQ_PRM_LINE_TRIGGER_METHOD
CORACQ_PRM_LINE_TRIGGER_POLARITY
CORACQ_PRM_LINESCAN_DIRECTION
CORACQ_PRM_LINESCAN_DIRECTION_POLARITY
CORACQ_PRM_TIME_INTEGRATE_METHOD
CORACQ_PRM_TIME_INTEGRATE_PULSEO_DELAY
CORACQ_PRM_TIME_INTEGRATE_PULSEO_DURATION
CORACQ_PRM_TIME_INTEGRATE_PULSEO_POLARITY
CORACQ_PRM_TIME_INTEGRATE_PULSE1_DELAY
CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION
CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY
CORACQ_PRM_WEN_POLARITY

Key Name [Connector Description]

Related Parameter

Camera Link Configuration	CORACQ_PRM_CAMLINK_CONFIGURATION
Exposure Input	CORACQ_PRM_CONNECTOR_EXPOSURE_INPUT
HD Input	CORACQ_PRM_CONNECTOR_HD_INPUT
Line Integrate Input	CORACQ_PRM_CONNECTOR_LINE_INTEGRATE_INPUT
Line Trigger Input	CORACQ_PRM_CONNECTOR_LINE_TRIGGER_INPUT
Linescan Direction Input	CORACQ_PRM_CONNECTOR_LINESCAN_DIRECTION_INPUT
Pixel Clock Output	CORACQ_PRM_CONNECTOR_PIXEL_CLK_OUTPUT
Reset/Trigger Input	CORACQ_PRM_CONNECTOR_RESET_TRIGGER_INPUT
VD Input	CORACQ_PRM_CONNECTOR_VD_INPUT
WEN Output	CORACQ_PRM_CONNECTOR_WEN_OUTPUT
CLHS Configuration	CORACQ_PRM_CLHS_CONFIGURATION

Key Name [Custom Camera IO Control Signals]

Related Parameter

Max Control This entry does not correspond to any parameter.

The entry represents the number of custom I/O control defined in

this section of the CCA file.

ex. Max Control = 4

Control_0 CORACQ_PRM_CAM_IO_CONTROL

This entry has the following format:

label, bits, level, input/output, polarity, default

label: user defined descriptive label of the camera control (for

example, BIN)

bits: number of bits used by this control

level: TTL/RS-422/24VOLTS/OPTO/LVTTL/12VOLTS

input/output: direction of the control

polarity: active high/low default: default value

pin(optional): pin connector description

ex. Control_1=CC1, 1, 2, 2, 2, 1

Control_0=CC1, 1, 2, 2, 2, 1,0x01020001 Control_1=CC2, 1, 2, 2, 2, 1,0x01020002 Control_2=CC3, 1, 2, 2, 2, 1,0x01020003 Control_3=CC4, 1, 2, 2, 2, 1,0x01020004

see also CORACQ_CAM_IO_CONTROL see also Pin Connector Description

Control_31 Control_31, 1, 2, 2, 2, 0 or Control_31,1,2,2,2,0,0x01020001

VIC Parameter File Description (CVI)

VIC parameter files (*.cvi) contain the VIC settings for a specific acquisition module. Values can be written in decimal (for example, 16) or in hexadecimal (for example, 0x10). The following tables contain the key names used by the VIC parameter files.

Key Name	Related Parameter
[General]	

Vic Name CORACQ_PRM_VIC_NAME

Version Version of this file. This entry does not correspond to any parameter.

100: Initial Version

200: Formats are now indexes into a fix table independent of the

Sapera values

300: New Parameters CORACQ_PRM_SHARED_xxx,

CORACQ_PRM_FRAME_LENGTH,

CORACQ_PRM_INT_FRAME_TRIGGER_xxx, CORACQ_PRM_EXT_TRIGGER_FRAME_COUNT

Key Name Related Parameter [Input]

Bit Ordering CORACQ_PRM_BIT_ORDERING

Camera selector CORACQ_PRM_CAMSEL

Planar Input Sources CORACQ_PRM_PLANAR_INPUT_SOURCES

Key Name Related Parameter [Signal Conditioning]

Brightness CORACQ_PRM_BRIGHTNESS

Brightness Red CORACQ_PRM_BRIGHTNESS_RED
Brightness Green CORACQ_PRM_BRIGHTNESS_GREEN
Brightness Blue CORACQ_PRM_BRIGHTNESS_BLUE

Contrast CORACQ_PRM_CONTRAST

Contrast Red CORACQ_PRM_CONTRAST_RED Contrast Green CORACQ_PRM_CONTRAST_GREEN Contrast Blue CORACQ_PRM_CONTRAST_BLUE DC Restoration Mode CORACQ_PRM_DC_REST_MODE DC Restoration Start CORACQ_PRM_DC_REST_START DC Restoration Width CORACQ_PRM_DC_REST_WIDTH Fix Filter Enable CORACQ_PRM_FIX_FILTER_ENABLE Fix Filter Selector CORACQ_PRM_FIX_FILTER_SELECTOR

Hue CORACQ_PRM_HUE

Programmable Filter Enable CORACQ_PRM_PROG_FILTER_ENABLE
Programmable Filter Frequency CORACQ_PRM_PROG_FILTER_FREQ

Saturation CORACQ_PRM_SATURATION Sharpness CORACQ_PRM_SHARPNESS

Key Name Related Parameter [Stream Conditioning]

Bayer Decoder Enable CORACQ_PRM_COLOR_DECODER_ENABLE CORACQ_PRM_COLOR_DECODER_METHOD

Key Name [Stream Conditioning]

Related Parameter

Bayer Decoder White Balance

Gain Red

CORACQ_PRM_WB_GAIN_RED

Bayer Decoder White Balance

Gain Green

CORACQ_PRM_WB_GAIN_GREEN

Bayer Decoder White Balance

Gain Blue

CORACQ_PRM_WB_GAIN_BLUE

Bayer Decoder White Balance

Offset Red

CORACQ_PRM_WB_OFFSET_RED

Bayer Decoder White Balance

Offset Green

CORACQ_PRM_WB_OFFSET_GREEN

Bayer Decoder White Balance

Offset Blue

CORACQ_PRM_WB_OFFSET_BLUE

Crop Left CORACQ_PRM_CROP_LEFT Crop Top CORACQ_PRM_CROP_TOP Crop Height CORACQ_PRM_CROP_HEIGHT Crop Width CORACQ_PRM_CROP_WIDTH **Decimate Count** CORACQ_PRM_DECIMATE_COUNT

Decimate Method CORACQ_PRM_DECIMATE_METHOD

External Trigger Frame Count CORACQ_PRM_EXT_TRIGGER_FRAME_COUNT

CORACQ_PRM_FRAME_LENGTH Frame Length Horizontal Sync Reference CORACQ_PRM_HSYNC_REF Lut Enable CORACQ_PRM_LUT_ENABLE Lut Number CORACQ_PRM_LUT_NUMBER Pixel Mask CORACQ_PRM_PIXEL_MASK

Scale Horizontal CORACQ_PRM_SCALE_HORZ

Scale Vertical CORACQ_PRM_SCALE_VERT

CORACQ_PRM_SCALE_VERT_METHOD Scale Vertical Method

Snap Count CORACQ_PRM_SNAP_COUNT Vertical Sync Reference CORACQ_PRM_VSYNC_REF

Key Name [Control Signals]

Related Parameter

Camera Control Pulse 0 HD

Scale Horizontal Method

Align

CORACQ_PRM_CAM_CONTROL_PULSEO_HD_ALIGN

CORACQ_PRM_SCALE_HORZ_METHOD

Camera Control Pulse 1 HD

Align

Detection

CORACQ_PRM_CAM_CONTROL_PULSE1_HD_ALIGN

Camera Reset Delay CORACQ_PRM_CAM_RESET_DELAY Camera Reset Enable CORACQ_PRM_CAM_RESET_ENABLE Camera Trigger Delay CORACQ_PRM_CAM_TRIGGER_DELAY Camera Trigger Enable CORACQ_PRM_CAM_TRIGGER_ENABLE Control Signal Output 1 CORACQ_PRM_BOARD_SYNC_OUTPUT1 Control Signal Output 2 CORACQ_PRM_BOARD_SYNC_OUTPUT2

External Frame Trigger

External Frame Trigger Enable CORACQ_PRM_EXT_FRAME_TRIGGER_ENABLE External Frame Trigger Level CORACQ_PRM_EXT_FRAME_TRIGGER_LEVEL

CORACQ_PRM_EXT_FRAME_TRIGGER_DETECTION

Configuration File Formats • 141

Key Name [Control Signals]

Related Parameter

External Frame Trigger Source	CORACQ_PRM_EXT_FRAME_TRIGGER_SOURCE
External Line Trigger Detection	CORACQ_PRM_EXT_LINE_TRIGGER_DETECTION
External Line Trigger Enable	CORACQ_PRM_EXT_LINE_TRIGGER_ENABLE
External Line Trigger Level	CORACQ_PRM_EXT_LINE_TRIGGER_LEVEL
External Line Trigger Source	CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE
External Trigger Detection	CORACQ_PRM_EXT_TRIGGER_DETECTION
External Trigger Duration	CORACQ_PRM_EXT_TRIGGER_DURATION
External Trigger Enable	CORACQ_PRM_EXT_TRIGGER_ENABLE
External Trigger Ignore Delay	CORACQ_PRM_EXT_TRIGGER_IGNORE_DELAY

External Trigger Level CORACQ PRM EXT TRIGGER LEVEL External Trigger Source CORACQ_PRM_EXT_TRIGGER_SOURCE Frame Integrate Count CORACQ_PRM_FRAME_INTEGRATE_COUNT Frame Integrate Enable CORACQ_PRM_FRAME_INTEGRATE_ENABLE Internal Frame Trigger Enable CORACQ_PRM_INT_FRAME_TRIGGER_ENABLE Internal Frame Trigger Freq CORACQ_PRM_INT_FRAME_TRIGGER_FREQ CORACQ_PRM_INT_LINE_TRIGGER_ENABLE Internal Line Trigger Enable Internal Line Trigger Freq CORACQ_PRM_INT_LINE_TRIGGER_FREQ Line Integrate Duration CORACQ_PRM_LINE_INTEGRATE_DURATION Line Integrate Enable CORACQ_PRM_LINE_INTEGRATE_ENABLE

Line Trigger Enable CORACQ_PRM_LINE_TRIGGER_ENABLE
LineScan Direction Output CORACQ_PRM_LINESCAN_DIRECTION_OUTPUT

Master Mode CORACQ_PRM_MASTER_MODE

Master Mode Horizontal Sync CORACQ_PRM_MASTER_MODE_HSYNC_POLARITY

Polarity

Master Mode Vertical Sync CORACQ_PRM_MASTER_MODE_VSYNC_POLARITY

Polarity

Shaft Encoder Enable CORACQ_PRM_SHAFT_ENCODER_ENABLE
Shaft Encoder Level CORACQ_PRM_SHAFT_ENCODER_LEVEL
Shaft Encoder Pulse Drop CORACQ_PRM_SHAFT_ENCODER_DROP

Strobe Delay CORACQ_PRM_STROBE_DELAY
Strobe Delay 2 CORACQ_PRM_STROBE_DELAY_2
Strobe Duration CORACQ_PRM_STROBE_DURATION
Strobe Enable CORACQ_PRM_STROBE_ENABLE
Strobe Level CORACQ_PRM_STROBE_LEVE
Strobe Method CORACQ_PRM_STROBE_METHOD
Strobe Polarity CORACQ_PRM_STROBE_POLARITY

Time Integrate Delay CORACQ_PRM_TIME_INTEGRATE_DELAY
Time Integrate Duration CORACQ_PRM_TIME_INTEGRATE_DURATION
Time Integrate Enable CORACQ_PRM_TIME_INTEGRATE_ENABLE
Vertical Timeout Delay CORACQ_PRM_VERTICAL_TIMEOUT_DELAY

WEN Enable CORACQ_PRM_WEN_ENABLE

Key Name [Output]

Related Parameter

Output Enable CORACQ_PRM_OUTPUT_ENABLE

Output Format 1: Mono 8 15: RGB161616

14: RGB101010 38: RGB16161616

See also CORACQ_PRM_OUTPUT_FORMAT

Key Name [Shared Control Signals]

Related Parameter

Camera Reset CORACQ_PRM_SHARED_CAM_RESET
Camera Trigger CORACQ_PRM_SHARED_CAM_TRIGGER
External Trigger CORACQ_PRM_SHARED_EXT_TRIGGER
Frame Integrate CORACQ_PRM_SHARED_FRAME_INTEGRATE

Strobe CORACQ_PRM_SHARED_STROBE

Time Integrate CORACQ_PRM_SHARED_TIME_INTEGRATE

Appendix: Tap Geometry Settings

The following sections describe widely used tap geometries and the required parameter settings. Currently, only are scan geometries are described, but line scan geometries can be inferred from these settings. The GeniCam standard naming convention is used, including corresponding descriptions.

1 Single Tap Geometries

1X-1Y (area-scan): 1 zone in X, 1 Zone in Y = One tap left to right.

Parameter	Value
CORACQ_PRM_TAPS	1
CORACQ_PRM_TAP_OUTPUT	CORACQ_VAL_TAP_OUTPUT_SEGMENTED (0x00000002)
CORACQ_PRM_TAP_1_DIRECTION	The following values ORed (decimal = 21, hex = 0x15) CORACQ_VAL_TAP_DIRECTION_LR (0x00000001) CORACQ_VAL_TAP_DIRECTION_UD (0x00000004) CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x00000010)
CORACQ_PRM_CHANNEL	1
CORACQ_PRM_CHANNELS_ORDER	CORACQ_VAL_CHANNELS_ORDER_NORMAL

One Tap with Two Channels

1X-1Y2 (area-scan): 1 zones in X, 2 zones in Y: 2 interline channel, even A

Parameter	Value
CORACQ_PRM_TAPS	1
CORACQ_PRM_TAP_OUTPUT	CORACQ_VAL_TAP_OUTPUT_SEGMENTED
	(0x00000002)
CORACQ_PRM_TAP_1_DIRECTION	The following values ORed (decimal = 21, hex = 0x15)
	CORACQ_VAL_TAP_DIRECTION_LR (0x00000001)
	CORACQ_VAL_TAP_DIRECTION_UD (0x00000004)
	CORACQ_VAL_TAP_DIRECTION_FROM_TOP
	(0x0000010)
CORACQ_PRM_CHANNEL	2
CORACQ_PRM_CHANNELS_ORDER	CORACQ_VAL_CHANNELS_ORDER_NORMAL
	(0x0000001)

1X-1Y2 (area-scan): 1 zones in X, 1 zone in Y: 2 interline channel, even B

Parameter	Value
CORACQ_PRM_TAPS	1
CORACQ_PRM_TAP_OUTPUT	CORACQ_VAL_TAP_OUTPUT_SEGMENTED (0x00000002)
CORACQ_PRM_TAP_1_DIRECTION	The following values ORed (decimal = 21, hex = 0x15) CORACQ_VAL_TAP_DIRECTION_LR (0x00000001) CORACQ_VAL_TAP_DIRECTION_UD (0x00000004) CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x00000010)
CORACQ_PRM_CHANNEL	2
CORACQ_PRM_CHANNELS_ORDER	CORACQ_VAL_CHANNELS_ORDER_REVERSE (0x00000002)

Dual Tap Geometries

1X2-1Y (area-scan): 1 zone in X with 2 taps, 1 Zone in Y = 2 Taps Interleaved

Parameter	Value
CORACQ_PRM_TAPS	2
CORACQ_PRM_TAP_OUTPUT	CORACQ_VAL_TAP_OUTPUT_PARALLEL (0x00000004)
CORACQ_PRM_TAP_1_DIRECTION	The following values ORed (decimal = 21, hex = 0x15) CORACQ_VAL_TAP_DIRECTION_LR (0x00000001) CORACQ_VAL_TAP_DIRECTION_UD (0x00000004) CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x00000010)
CORACQ_PRM_TAP_2_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION
CORACQ_PRM_CHANNEL	1
CORACQ_PRM_CHANNELS_ORDER	CORACQ_VAL_CHANNELS_ORDER_NORMAL

2X-1Y (area-scan): 2 zones in X, 1 zone in Y: 2 taps separate left to right

Parameter	Value
CORACQ_PRM_TAPS	2
CORACQ_PRM_TAP_OUTPUT	CORACQ_VAL_TAP_OUTPUT_SEGMENTED
	(0x0000002)
CORACQ_PRM_TAP_1_DIRECTION	The following values ORed (decimal = 21, hex = 0x15)
	CORACQ_VAL_TAP_DIRECTION_LR (0x00000001)
	CORACQ_VAL_TAP_DIRECTION_UD (0x00000004)
	CORACQ_VAL_TAP_DIRECTION_FROM_TOP
	(0x0000010)
CORACQ_PRM_TAP_2_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION
CORACQ_PRM_CHANNEL	1
CORACQ_PRM_CHANNELS_ORDER	CORACQ_VAL_CHANNELS_ORDER_NORMAL

2X-1Y (area-scan): 2 zones in X, 1 zone in Y: 2 taps separate right to left

Parameter	Value
CORACQ_PRM_TAPS	2
CORACQ_PRM_TAP_OUTPUT	CORACQ_VAL_TAP_OUTPUT_SEGMENTED (0x00000002)
CORACQ_PRM_TAP_1_DIRECTION	The following values ORed (decimal = 22, hex = 0x16) CORACQ_VAL_TAP_DIRECTION_RL (0x00000002) CORACQ_VAL_TAP_DIRECTION_UD (0x00000004) CORACQ_VAL_TAP_DIRECTION_FROM_TOP (0x00000010)
CORACQ_PRM_TAP_2_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION
CORACQ_PRM_CHANNEL	1
CORACQ_PRM_CHANNELS_ORDER	CORACQ_VAL_CHANNELS_ORDER_NORMAL

2XE-1Y (area-scan): 2 zones in X, 1 zone in Y: 2 taps separate converge

Parameter	Value
CORACQ_PRM_TAPS	2
CORACQ_PRM_TAP_OUTPUT	CORACQ_VAL_TAP_OUTPUT_SEGMENTED
	(0x00000002)
CORACQ_PRM_TAP_1_DIRECTION	The following values ORed (decimal = 21, hex = 0x15)
	CORACQ_VAL_TAP_DIRECTION_LR (0x00000001)
	CORACQ_VAL_TAP_DIRECTION_UD (0x00000004)
	CORACQ_VAL_TAP_DIRECTION_FROM_TOP
	(0x0000010)
CORACQ_PRM_TAP_2_DIRECTION	The following values ORed (decimal = 22, hex = 0x16)
	CORACQ_VAL_TAP_DIRECTION_RL (0x00000002)
	CORACQ_VAL_TAP_DIRECTION_UD (0x00000004)
	CORACQ_VAL_TAP_DIRECTION_FROM_TOP
	(0x0000010)
CORACQ_PRM_CHANNEL	1
CORACQ_PRM_CHANNELS_ORDER	CORACQ_VAL_CHANNELS_ORDER_NORMAL

3 Tap Geometries

3X-1Y (area-scan): 2 zones in X, 1 zone in Y: 3 taps separate left to right

Parameter	Value
CORACQ_PRM_TAPS	3
CORACQ_PRM_TAP_OUTPUT	CORACQ_VAL_TAP_OUTPUT_SEGMENTED
	(0x00000002)
CORACQ_PRM_TAP_1_DIRECTION	The following values ORed (decimal = 21, hex = 0x15)
	CORACQ_VAL_TAP_DIRECTION_LR (0x00000001)
	CORACQ_VAL_TAP_DIRECTION_UD (0x00000004)
	CORACQ_VAL_TAP_DIRECTION_FROM_TOP
	(0x0000010)
CORACO_PRM_TAP_2_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION
CORACQ_PRM_TAP_3_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION
CORACQ_PRM_CHANNEL	1
CORACQ_PRM_CHANNELS_ORDER	CORACQ_VAL_CHANNELS_ORDER_NORMAL
	(0x0000001)

4 Tap Geometries

4X-1Y (area-scan): 4 zones in X, 1 zone in Y: 4 taps separate left to right

Parameter	Value
CORACQ_PRM_TAPS	4
CORACQ_PRM_TAP_OUTPUT	CORACQ_VAL_TAP_OUTPUT_SEGMENTED
	(0x00000002)
CORACQ_PRM_TAP_1_DIRECTION	The following values ORed (decimal = 21, hex = 0x15)
	CORACQ_VAL_TAP_DIRECTION_LR (0x00000001)
	CORACQ_VAL_TAP_DIRECTION_UD (0x00000004)
	CORACQ_VAL_TAP_DIRECTION_FROM_TOP
	(0x0000010)
CORACQ_PRM_TAP_2_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION
CORACQ_PRM_TAP_3_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION
CORACQ_PRM_TAP_4_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION
CORACQ_PRM_CHANNEL	1
CORACQ_PRM_CHANNELS_ORDER	CORACQ_VAL_CHANNELS_ORDER_NORMAL
	(0x0000001)

4X-1Y (area-scan): 4 zones in X, 1 zone in Y: 4 taps separate right to left

Parameter	Value
CORACQ_PRM_TAPS	4
CORACQ_PRM_TAP_OUTPUT	CORACQ_VAL_TAP_OUTPUT_SEGMENTED
	(0x00000002)
CORACQ_PRM_TAP_1_DIRECTION	The following values ORed (decimal = 22, hex = 0x16)
	CORACQ_VAL_TAP_DIRECTION_RL (0x00000002)
	CORACQ_VAL_TAP_DIRECTION_UD (0x00000004)
	CORACQ_VAL_TAP_DIRECTION_FROM_TOP
	(0x0000010)
CORACQ_PRM_TAP_2_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION
CORACQ_PRM_TAP_3_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION
CORACQ_PRM_TAP_4_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION
CORACQ_PRM_CHANNEL	1
CORACQ_PRM_CHANNELS_ORDER	CORACQ_VAL_CHANNELS_ORDER_NORMAL
	(0x00000001)

2X2-1Y (area-scan): 2 zones in X with 2 taps, 1 zone in Y: 4 taps 2 segments interleaved

Parameter	Value
CORACQ_PRM_TAPS	4
CORACQ_PRM_TAP_OUTPUT	CORACQ_VAL_TAP_OUTPUT_ALTERNATE
	(0x0000001)
CORACQ_PRM_TAP_1_DIRECTION	The following values ORed (decimal = 21, hex = 0x15)
	CORACQ_VAL_TAP_DIRECTION_LR (0x00000001)
	CORACQ_VAL_TAP_DIRECTION_UD (0x00000004)
	CORACQ_VAL_TAP_DIRECTION_FROM_TOP
	(0x00000010)
CORACQ_PRM_TAP_2_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION
CORACQ_PRM_TAP_3_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION
CORACQ_PRM_TAP_4_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION
CORACQ_PRM_CHANNEL	1
CORACQ_PRM_CHANNELS_ORDER	CORACQ_VAL_CHANNELS_ORDER_NORMAL
	(0x0000001)

2X2E-1Y (area-scan): 2 zones in X with 2 taps and end extraction, 1 zone in Y: 4 taps interleaved converge

Parameter	Value
CORACQ_PRM_TAPS	4
CORACQ_PRM_TAP_OUTPUT	CORACQ_VAL_TAP_OUTPUT_ALTERNATE
	(0x0000001)
CORACQ_PRM_TAP_1_DIRECTION	The following values ORed (decimal = 21, hex = 0x15)
	CORACQ_VAL_TAP_DIRECTION_LR (0x00000001)
	CORACQ_VAL_TAP_DIRECTION_UD (0x00000004)
	CORACQ_VAL_TAP_DIRECTION_FROM_TOP
	(0x00000010)
CORACQ_PRM_TAP_2_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION
CORACQ_PRM_TAP_3_DIRECTION	The following values ORed (decimal = 22, hex = 0x16)
	CORACQ_VAL_TAP_DIRECTION_RL (0x00000002)
	CORACQ_VAL_TAP_DIRECTION_UD (0x00000004)
	CORACQ_VAL_TAP_DIRECTION_FROM_TOP
	(0x0000010)
CORACQ_PRM_TAP_4_DIRECTION	Same as CORACQ_PRM_TAP_3_DIRECTION
CORACQ_PRM_CHANNEL	1
CORACQ_PRM_CHANNELS_ORDER	CORACQ_VAL_CHANNELS_ORDER_NORMAL
	(0x00000001)

2X2E-2YE (area-scan): 2 zones in X with 2 taps, 2 zones in Y with 2 taps and end extraction, 1 zone in Y: 4 quadrant converge

	T., .
Parameter	Value
CORACQ_PRM_TAPS	4
CORACQ_PRM_TAP_OUTPUT	CORACQ_VAL_TAP_OUTPUT_SEGMENTED
	(0x00000002)
CORACQ_PRM_TAP_1_DIRECTION	The following values ORed (decimal = 21, hex = 0x15)
	CORACQ_VAL_TAP_DIRECTION_LR (0x00000001)
	CORACQ_VAL_TAP_DIRECTION_UD (0x00000004)
	CORACQ_VAL_TAP_DIRECTION_FROM_TOP
	(0x0000010)
CORACQ_PRM_TAP_2_DIRECTION	The following values ORed (decimal = 22 , hex = $0x16$)
	CORACQ_VAL_TAP_DIRECTION_RL (0x00000002)
	CORACQ_VAL_TAP_DIRECTION_UD (0x00000004)
	CORACQ_VAL_TAP_DIRECTION_FROM_TOP
	(0x0000010)
CORACQ_PRM_TAP_3_DIRECTION	The following values ORed (decimal = 73, hex = 0x49)
	CORACQ_VAL_TAP_DIRECTION_LR (0x00000001)
	CORACQ_VAL_TAP_DIRECTION_UD (0x00000004)
	CORACQ_VAL_TAP_DIRECTION_FROM_BOT
	(0x0000040)
CORACQ_PRM_TAP_4_DIRECTION	The following values ORed (decimal = 74, hex = 0x4A)
	CORACQ_VAL_TAP_DIRECTION_RL (0x00000002)
	CORACQ_VAL_TAP_DIRECTION_UD (0x00000004)
	CORACQ_VAL_TAP_DIRECTION_FROM_BOT
	(0x0000040)
CORACQ_PRM_CHANNEL	2
CORACQ_PRM_CHANNELS_ORDER	CORACQ_VAL_CHANNELS_ORDER_NORMAL
	(0x0000001)

8 Tap Geometries

1X8-1Y (area-scan): 1 zones in X with 8 taps, 1 zone in Y: 8 taps interleaved

Parameter	Value	
CORACQ_PRM_TAPS	8	
CORACQ_PRM_TAP_OUTPUT	CORACQ_VAL_TAP_OUTPUT_ALTERNATE	
	(0x0000001)	
CORACQ_PRM_TAP_1_DIRECTION	The following values ORed (decimal = 21, hex = 0x15)	
	CORACQ_VAL_TAP_DIRECTION_LR (0x00000001)	
	CORACQ_VAL_TAP_DIRECTION_UD (0x00000004)	
	CORACQ_VAL_TAP_DIRECTION_FROM_TOP	
	(0x0000010)	
CORACQ_PRM_TAP_2_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION	
CORACQ_PRM_TAP_3_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION	
CORACQ_PRM_TAP_4_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION	
CORACQ_PRM_TAP_5_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION	
CORACQ_PRM_TAP_6_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION	
CORACQ_PRM_TAP_7_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION	
CORACQ_PRM_TAP_8_DIRECTION	Same as CORACQ_PRM_TAP_1_DIRECTION	
CORACQ_PRM_CHANNEL	1	
CORACQ_PRM_CHANNELS_ORDER	CORACQ_VAL_CHANNELS_ORDER_NORMAL	
	(0x0000001)	

Contact Information

The following sections provide sales and technical support contact information.

Sales Information

Visit our web site: www.teledynedalsa.com/corp/contact/
Email: mailto:info@teledynedalsa.com

Technical Support

Submit any support question or request via our web site:

Technical support form via our web page:		
Support requests for imaging product installations		
Support requests for imaging applications	http://www.teledynedalsa.com/imaging/support	
Camera support information		
Product literature and driver updates		

When encountering hardware or software problems, please have the following documents included in your support request:

- The Sapera Log Viewer .txt file
- The PCI Diagnostic PciDiag.txt file (for frame grabbers)
- The Device Manager BoardInfo.txt file (for frame grabbers)

Note, the Sapera Log Viewer and PCI Diagnostic tools are available from the Windows start menu shortcut **Start•All Programs•Teledyne DALSA•Sapera LT**. The Device Manager utility is available as part of the driver installation for your Teledyne DALSA device and is available from the Windows start menu shortcut **Start•All Programs•Teledyne DALSA•<Device Name>•Device Manager**.