Identifying Ineffective Operators

Analytical research for CallMeMaybe 01.01.2021

General conclusions

We've defined **5** categories of ineffective operators based on **3** parameters:

Waiting time (identified 143 operators)

- Operators whose daily average waiting time does not drop below 97 seconds.
- Operators whose average waiting time more than 97 seconds.
- 3. Operators whose **monthly average waiting time** does not drop below **60 seconds**.

Missed calls share (identified 23 operators)

4. Operators whose **share of missed incoming calls** exceeds **12%**.

Outgoing calls share (identified 81 operators)

5. Operators supposed to make outgoing calls whose **share of outgoing calls** is below **50%**.

Totally identified 247 ineffective operators (23% of all operators).

Ineffective operators split into categories

Methods used

Cluster analysis:

- Dendrogram was used to identify the number of clusters
- KMeans algorithm was used for clustering

Distributions analysis:

- Median, mean and std values identified
- Operators having values out of typical range are identified as ineffective

Distributions analysis: waiting time

- 38s median
- 97s mean (and 3Q)
- **185s** std

Criteria:

Operator's mean waiting time/daily mean waiting time more than **97s** (for incoming calls)

Distributions analysis: waiting time per operator

- 31s median
- **58s** mean and 3Q
- **96s** std

Criteria:

Operator's monthly mean waiting time more than **60s** (for incoming calls)

Distributions analysis: missed calls share

Among operators who *missed* calls:

- ~9% mean
- ~8% std
- 11.8% 3Q

Criteria:

Operator's share of missed calls is more than 12% (for incoming calls)

Distributions analysis: outgoing calls share

Among operators who are supposed to make *outgoing* calls:

- ~77.3% mean
- ~24% std
- **62.5%** 1Q
- mean-std = ~**53**%

Criteria:

Operator's share of outgoing calls is less than 50%

Cluster analysis: features used

The following features were selected:

Per each operator

- ✓ mean values of:
 - waiting_time
 - waiting_time for incoming calls
 - direction
 - internal
 - calls_count
 - is_missed_call

✓ share of missed incoming calls

Cluster analysis: KMeans algorithm

Input:

From the dendrogram view we implied 5 clusters.

Output:

Cluster #4 (**67 operators**) seems to contain **ineffective** operators due to the following parameters:

- mean direction = 0.5
- mean share of missed incoming calls = 14%
- mean waiting time for incoming calls = 231s

Cluster analysis: relation to distribution analysis

	mean				
labels	0	1	2	3	4
waiting_time	1645.104771	25.308587	149.163057	36.539276	223.134643
direction	0.984781	0.839045	0.823528	0.095961	0.505421
internal	0.025846	0.695069	0.078910	0.040417	0.088852
calls_count	81.121295	2.240964	8.883201	2.414383	14.025200
is_missed_call	0.500106	0.380673	0.408893	0.048397	0.307303
missed_share	0.005718	0.000552	0.005289	0.009160	0.143185
waiting_time_inc	4.172324	19.788779	27.139269	38.617489	231.059204

All operators from the cluster #4 are already contained in the categories from the distribution analysis, namely 3 categories based on:

- average waiting time
- monthly average waiting time
- share of missed calls

Ineffective operators: waiting time for the 1st category

There're no any patterns in waiting times:

- the values bounce having peaks and troughs during the period but it does not drop below 97 seconds.
- operator **919794** is the most ineffective more often having the longest waiting times.

Ineffective operators: tariffs do not differ

We've tested the following null hypothesis:

proportions of ineffective operators for all tariffs are equal.

Results:

We failed to reject the null hypothesis so we conclude that the proportion of ineffective operators does not differ among all three tariffs.

Ineffective operators per client

Operator's mean waiting time distribution for client 167626

For client 167626 either:

- almost all operators are ineffective (which is a rare case).
- OR: long calls are normal for this client (for example if it's a psychological help service) and the long waiting time is due to lack of operators and it's not an operator's fault rather the client's one.

Recommendations

- It's recommended to consider the 1st group of 11 operators as the most ineffective as their daily mean waiting time does not ever drop below 97s.
- Other categories based on mean waiting time (84 operators) and monthly mean waiting time (48 operators) should be treated as moderately ineffective operators categories.
- If missed calls share or outgoing calls share are also crucial the corresponding categories should be also used for identification.
- Cluster analysis provided a universal category of 67 operators which combines all 3 criteria (long waiting times, high rate of missing calls and low rate of outgoing calls).
- We noticed that the long waiting time might be due to lack of operators and it's not an operator's fault rather the client's one.
- We applied universal thresholds to all clients to identify ineffective operators. An alternative approach for future research: try to elaborate individual criteria for each client.