Hedging Cryptos with Bitcoin Futures

Francis Liu*

Meng-Jou Lu †

Natalie Packham[‡]

Wolfgang Karl Härdle[§]¶

This version: November 30, 2021

Abstract

The introduction of derivatives on Bitcion enables investors to hedge risk exposures in cryptocurrencies. We investigate different methods of determining the optimal hedge ratio when hedging various cryptocurrencies and crypto-portfolios with Bitcoin futures. Because of volatility swings and jumps in cryptocurrency prices, the traditional variance-based approach to obtain hedge ratios is infeasible. As a consequence, we consider two extensions of the traditional approach: first, different dependence structures are modelled by different copulae, such as the Gaussian, Student-t, Normal Inverse Gaussian and Archimedean copulae; second, different risk measures, such as value-at-risk, expected shortfall and spectral risk measures, are employed to find the optimal hedge ratio. Various measures of hedge effectiveness in out-of-sample tests give insights in the practice of hedging Bitcoin, Ethereum, Cardano, the CRIX index and a number of crypto-portfolios in the time period December 2017 until May 2021. We find that ... [needs to be amended.]

JEL classification: C38, C53, F34, G11, G17

Keywords: Cryptocurrencies, risk management, hedging, copulas (delete: Portfolio Selection, Spectral Risk Measurement, l Coherent Risk)

^{*}Department of Business and Economics, Berlin School of Economics and Law, Badensche Str. 52, 10825 Berlin, Germany. Blockchain Research Center, Humboldt-Universität zu Berlin, Germany. International Research Training Group 1792, Humboldt-Universität zu Berlin, Germany. E-mail: Francis.Liu@hwr-berlin.de.

[†]Department of Finance, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan Department of Finance, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan E-mail: mangrou@gmail.com.

[‡]Department of Business and Economics, Berlin School of Economics and Law, Badensche Str. 52, 10825 Berlin, Germany. International Research Training Group 1792, Humboldt-Universität zu Berlin, Germany. E-mail: packham@hwr-berlin.de.

[§]Blockchain Research Center, Humboldt-Universität zu Berlin, Germany. Wang Yanan Institute for Studies in Economics, Xiamen University, China. Sim Kee Boon Institute for Financial Economics, Singapore Management University, Singapore. Faculty of Mathematics and Physics, Charles University, Czech Republic. National Yang Ming Chiao Tung University, Taiwan. E-mail: haerdle@wiwi.hu-berlin.de.

[¶]Financial support of the European Union's Horizon 2020 research and innovation program "FIN-TECH: A Financial supervision and Technology compliance training programme" under the grant agreement No 825215 (Topic: ICT-35-2018, Type of action: CSA), the European Cooperation in Science & Technology COST Action grant CA19130 - Fintech and Artificial Intelligence in Finance - Towards a transparent financial industry, the Deutsche Forschungsgemeinschaft's IRTG 1792 grant, the Yushan Scholar Program of Taiwan the Czech Science Foundation's grant no. 19-28231X / CAS: XDA 23020303, as well as support by Ansar Aynetdinov (ansar.aynetdinov@hu-berlin.de) are greatly acknowledged.

Contents

1	Introduction								
2	Opt	Optimal hedge ratio							
3	Empirical procedure to determine optimal hedge ratio								
	3.1	Copulae	7						
		3.1.1 Gaussian and t Copulae	8						
		3.1.2 Archimedean copulae	9						
		3.1.3 Mixture Copula	11						
		3.1.4 NIG factor copula	12						
		3.1.5 Plackett copula	13						
	3.2	Calibration and selection of copulae	14						
		3.2.1 Method of moments	14						
		3.2.2 Comparison between method of moments and maximum likelihood	15						
		3.2.3 Copula selection	16						
	3.3	Risk measures	17						
4	Em	pirical Results	18						
	4.1	Data	18						
	4.2	Overview of the out-of-sample data	18						
	4.3	An overview of the hedged portfolios without the copula selection step	20						
	4.4	Copula Selection Results	23						
	4.5	Hedged portfolios with the copula selection step	24						
	4.6	Hedging Effectiveness Results	25						
A	Der	nsity of linear combination of random variables	30						
В	Sun	mmary Statistics of Assets	31						
\mathbf{C}	Sun	nmary Statistics of Hedged Portfolios	32						

1 Introduction

Cryptocurrencies (CCs) are a growing asset class. Many more CCs are now available on the market since the first cryptocurrency Bitcoin (BTC) surfaced (Nakamoto, 2009). In response to the rapid development of the CC market, the CME Group launched exchange-traded BTC futures contracts in December 2017. Trading volume in BTC futures surpassed \$ 2 trillion in 2020 (CryptoCompare, 2020). [CryptoCompare not in references; possibly add as footnote (if it's a website, not an academic reference).]

By April 2021, the market value of outstanding coins had risen to \$ 2.3 trillion, more than 6% of the world's narrow money supply and almost 3% of the world GDP. [Is this open interest in futures? Then a comparision with money supply and GDP is tricky. Or is 2.3 trillion the USD value of mined coins?] The price of BTC even surged to \$ 64,500 in mid-April 2021 up by 460% from from \$ 11,500 six months earlier in October 2020 and up by 850% from a year earlier. Just a month later, by mid-May 2021, the price had fallen to \$ 50,000, a one-month return of -22.5%. More individual and institutional investors are adding CCs and CC derivatives into their portfolios, creating the need to understand downside risks and find suitable ways to hedge against extreme risks. Fom a risk management perspective, the roller-coaster ride of crypto prices creates significant basis risk, even when using simple hedges involving crypto portfolios and BTC futures. This requires analysing the dependence structure of cryptos and futures beyond linear correlation.

In this paper, we analyse static hedges of crypto portfolios with Bitcoin futures. Owing to the asymmetry of crypto returns as well as the occurrence of extreme events, we consider different dependence structures via a variety of copula models and we optimise the hedge ratio using different risk measures. A similar study was conducted by (Barbi and Romagnoli, 2014) for equity and FX portfolios.

The hedge ratio is the appropriate amount of futures contracts to be held in order to eliminate risk exposure in the underlying security. The determination of the optimal hedge ratio relies primarily on the dependence between BTC and futures prices. Copulae provide the flexibility to model multivariate random variables separately by their margins and dependence structure. The concept of copulae was originally developed (but not under this name) by Wassily Hoeffding (Hoeffding, 1940a) and later popularised by the work of Abe Sklar (Sklar, 1959).

Different risk measures account for investors' risk attitudes. They serve as loss functions in the searching process of the optimal hedge ratio. Of the vast literature discussed the relationship between risk measures and investor's risk attitude, we refer readers to Artzner et al. (1999) for an axiomatic, economic reasoning approach of risk measure construction; Embrechts et al. (2002) for reasoning of using Expected Shortfall (ES) and Spectral Risk Measures (SRM) in addition to VaR; Acerbi (2002) for direct linkage between risk measures and investor's risk attitude using the concept of a "risk aversion function".

Financial asset returns have long known to be non-Gaussian, see e.g. (Fama, 1963; Cont, 2001). Specifically, Gaussian models cannot produce the heavy tails and the asymmetry observed in asset returns, which in turn implies a consistent underestimation of financial risks. Therefore, to minimize down risk, one cannot solely rely on second-order moment calculations. Moreover, variance as a risk measure does not account for the variety of investors' utility functions. In particular, it is known that investors are tail-risk averse, see ?, Bollerslev et al. (2015) find that the jump tail risk is more closely associated with changes in risk-aversion. [Unclear. Do investors constantly change their risk aversion?] It is important to link the investor utility's functions as hedging the tail risk. [Careful.

We do not do this in our paper, so maybe tone down.] As such, significant tail risks lead to the need to investigate even static hedges with more refined methods than minimising the variance assuming normally distributed asset returns (Ederington and Salas, 2008).

In order to capture a variety of risk preferences, in addition to variance, we include the risk measures value-at-risk (VaR), expected shortfall (ES), and spectral risk measures (SRM). VaR is widely used by the finance industry and easy to understand. ES and SRM are chosen because of their coherence property, in particular, they recognize diversification benefits. SRM can also be directly related to an individual's utility function. Examples are the exponential SRM and power SRM introduced by Dowd et al. (2008).

[The paragraph below largely repeats what has been said earlier. I suggest to take what is new and add it to the earlier paragraph. There is no need to introduce formal notation at this stage.] This paper considers hedging BTC using its future. i.e. to find an optimal hedge ratio h^* such that the risk of a hedged portfolio $r^h = r^S - h^*r^F$ has minimal risk. Here r^S as the log return of BTC spot price, r^F the log return of BTC future. The leptokurtic properties mentioned above leads us to deploy a comprehensive way of modelling dependency namely copulae together with various risk measures as loss function to find optimal hedge ratio. We first calibrate the log returns of BTC and CME futures by copulae, then find the optimal quantity of assets in the hedged portfolio according to a range of risk measures. Barbi and Romagnoli (2014) use the C-convolution operator introduced by Cherubini et al. (2011) to derive the distribution of linear combination of margins with copula as their dependence structure. [The terminology C-convolution operator does not appear again in the paper. Either remove or denote where this is defined.] We slightly amend their lemma and come up with a formula for the linear combination of random variables for our purpose.

This paper is organized as follows. Section 2 introduces the notion of optimal hedge ratio; section 3 decribes the method of estimation of copulae; section 4 provides the empirical result; section 5 concludes. All calculations in this work can be reproduced. The results are reproducible with data and codes available on www.quantlet.com \mathbf{Q} .

2 Optimal hedge ratio

We form a portfolio with two assets, a spot asset and a futures contract, for example Bitcoin spot and a CME Bitcoin futures contract. Our objective is to minimize the risk of the exposure in the spot. To keep a simple portfolio setting, we go long one unit of the spot and short h units of the future, $h \geq 0$. Letting R^S and R^F be the (discrete) returns of the spot and futures price. The (discrete) return of the portfolio is¹

$$R^h = R^S - hR^F.$$

If the portfolio reduces the risk of the spot position, then we call this a hedge portfolio. To measure risk, we define a risk measures ρ to be a mapping from a financial position, such as R^h , to a real number, which is often interpreted as the amount of money to make the position acceptable (e.g. to a regulator), see e.g. (Föllmer and Schied, 2002).

An optimal hedge ratio (OHR) h^* is a parameter that minimizes the risk of the aforementioned

¹This is equivalent to stating that if both the spot price S_{t-1} and the futures price F_{t-1} are normalised to 1, then h units of the future will hedge the value change $\Delta V = \Delta S - h\Delta F$, where $\Delta S = S_t - S_{t-1}$, etc.

portfolio

$$h^* = \operatorname*{argmin}_h \rho(R^h).$$

For example, Value-at-Risk (VaR) at the confidence level α is the absolute value of the $1-\alpha$ -quantile of R^h , i.e., $\text{VaR}_{1-\alpha} = -F_{R^h}^{(-1)}(1-\alpha) = -\inf\{x \in \mathbb{R} : 1-\alpha \leq F_{R^h}(x)\}$, where F_{R^h} is the distribution function of R^h .

Obviously the cdf of R^h and the risk measure depend on the joint distribution of R^S and $-hR^F$.

Optimising h according to $f_{R^S,-hR^F}$ is unfavorable in the sense that one would need to calibrate the joint pdf $f_{R^S,-hR^F}$ whenever updating h. Another problem of using the joint pdf is that one lacks the flexibility to model the margins separately from the dependence structure. To overcome both of these problems, we use copulae.

The benefit of using copulae is two fold. First, copulae are invariant under strictly monotone increasing function (Schweizer et al., 1981), see the Lemma below. Second, copulae allow us to model the margins and dependence structure separately, see Sklar's Theorem (Sklar, 1959). See also (Nelsen, 1999; Joe, 1997; McNeil et al., 2005) for Sklar's Theorem.

Theorem 1 (Hoeffding Sklar Theorem) Let F be a joint distribution function with margins F_X , F_Y . Then, there exists a copula $C: [0,1]^2 \mapsto [0,1]$ such that, for all $x,y \in \mathbb{R}$

$$F(x,y) = C\{F_X(x), F_Y(y)\}.$$
(1)

If the margins are continuous, then C is unique; otherwise C is unique on the range of the margins. Conversely, if C is a copula and F_X , F_Y are univariate distribution functions, then the function F defined by (17) is a joint distribution function with margins F_X , F_Y .

Indeed, many basic results about copulae can be traced back to early works of Wassily Hoeffding (Hoeffding, 1940b, 1941). The works aimed to derive a measure of relationship of variables, which is invariant under change of scale. See also Fisher and Sen (2012) for English translations of the original papers written in German. The following Lemma is not hard to prove.

Lemma 1

$$C_{X,hY}(F_X(s), F_{hY}(t)) = C_{X,Y}\{F_X(s), F_Y(t/h)\}.$$
(2)

Proof. Since copulae are invariant under strictly monotone increasing function (Schweizer et al., 1981, Theorem 3 (i)),

$$C_{X,hY}(F_X(s), F_{hY}(t)) = C_{X,Y}(F_X(s), F_{hY}(t)).$$

We rewrite second argument of the copula

$$F_{hY}(t) = \mathbb{P}(hY \le t)$$
$$= \mathbb{P}(Y \le t/h)$$
$$= F_Y(t/h),$$

and finish the proof.

Leveraging these two features of copulae, Barbi and Romagnoli (2014) introduce the distribution of linear combinations of random variables using copulae. We slightly edit the Corollary 2.1 of their work and yield the following expression of the distribution.

Proposition 2 Let X and Y be two real-valued continuous random variables on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ with absolutely continuous copula $C_{X,Y}$ and marginal distribution functions F_X and F_Y . Then, the distribution function of Z is given by

$$F_Z(z) = 1 - \int_0^1 D_1 C_{X,Y} \left[u, F_Y \left\{ \frac{F_X^{(-1)}(u) - z}{h} \right\} \right] du.$$
 (3)

Here, $F^{(-1)}$ denotes the inverse of F, i.e., the quantile function.

Here $D_1C(u,v) = \frac{\partial}{\partial u}C(u,v)$ and, see e.g. Equation (5.15) of (McNeil et al., 2005),

$$D_1 C_{X,Y} \{ F_X(x), F_Y(y) \} = \mathbf{P}(Y \le y | X = x). \tag{4}$$

Proof. Using the identity (4) gives

$$F_{Z}(z) = \mathbf{P}(X - hY \le z) = \mathbb{E}\left\{\mathbf{P}\left(Y \ge \frac{X - z}{h} \middle| X\right)\right\}$$
$$= 1 - \mathbb{E}\left\{\mathbf{P}\left(Y \le \frac{X - z}{h} \middle| X\right)\right\} = 1 - \int_{0}^{1} D_{1}C_{X,Y}\left[u, F_{Y}\left\{\frac{F_{X}^{(-1)}(u) - z}{h}\right\}\right] du.$$

Corollary 1 Given the formulation of random variables, the pdf of Z can be written as

$$f_Z(z) = \left| \frac{1}{h} \right| \int_0^1 c_{X,Y} \left[F_Y \left\{ \frac{F_X^{(-1)}(u) - z}{h} \right\}, u \right] \cdot f_Y \left\{ \frac{F_X^{(-1)}(u) - z}{h} \right\} du, \tag{5}$$

or

$$f_Z(z) = \int_0^1 c_{X,Y} \left[F_X \left\{ z + h F_Y^{(-1)}(u) \right\}, u \right] \cdot f_X \left\{ z + h F_Y^{(-1)}(u) \right\} du. \tag{6}$$

The two expressions are equivalent. Note that the pdf of Z in the above proposition can be assessed via numerical integration as long as we have the copula density and the marginal densities. A generic expression and proof can be found in the appendix.

3 Empirical procedure to determine optimal hedge ratio

We introduce the empirical procedure to obtain the optimal hedge ratio (OHR) being used in this work. First, we split the time series of spot and futures into sets of training and testing data. The training data makes up the first 300 observations and its corresponding testing data consists of the consecutive 5 observations. We then roll 5 observations forward (step size of 5) to obtain the next training and test data sets and repeat this until the end of the time series. Note that the testing data are non-overlapping since the step size and equal to test size.

Next, we obtain the OHR as follows:

- 1. Construct Univariate Kernel Density Function (KDE). From the training data we calibrate the spot and futures' univariate kernel density functions using the Gaussian kernel with bandwidth determined by the refined plug-in method (Härdle et al., 2004, section 3.3.3).
- 2. Calibrate Copulae. We then calibrate the copulae outlined in section 3.1 via the method of moments described in section 3.2.1.
- 3. **Select Copula**. We compute the Akaike Information Criterion. The copula with the best (i.e., lowest) AIC is used for the next step. A discussion of this step is found in 3.2.3.
- 4. **Determine OHR**. We determine the OHRs numerically using different risk measures as the loss function by drawing samples from the selected copula and KDEs. The risk measures used as risk reduction objectives are outlined in 3.3
- 5. Obtain testing log-return of hedged portfolio. Finally, we apply the OHRs to the test data $R_h = R_s h^*R_f$.

3.1 Copulae

To capture different aspects of the dependence structure, we therefore consider a number of different copulas, which are layed out in details below Gaussian-, t-, Frank-, Gumbel-, Clayton-, mixture, NIG factor, and Plackett-copula.

As this hedging exercise concerns only portfolios with two assets, we focus on the bivariate version of copulae and some important features of a copula, including Kendall's τ_K and Spearman's ρ_S .

Kendall's τ and Spearman's ρ are measures of association in terms of concordance, see Kruskal (1958) Let (x_i, y_i) and (x_j, y_j) denote two observations from a vector (X, Y) of continuous random variables. A pair of observations is concordant if $x_i < x_j$ and $y_i < y_j$, discordant if $x_i > x_j$ and $y_i < y_j$ or if $x_i < x_j$ and $y_i > y_j$. For a bivariate random variable of n observations, there are $\binom{n}{2}$ distinct pairs.

Let c denote the number of concordant pairs, and d the number of discordant pairs, Kendall's tau is defined as follows (Nelsen, 1999)

$$\tau = \frac{c - d}{c + d}$$
$$= \frac{c - d}{\binom{n}{2}};$$

Let F_X and F_Y be cdfs of X and Y respectively, Spearman's ρ is

$$\rho = 12\mathbb{E}(F_X(X)F_Y(Y)) - 3;$$

Upper tail dependence is defined as

$$\lambda_U \stackrel{\text{def}}{=} \lim_{q \to 1^-} \mathbf{P}\{X > F_X^{(-1)}(q) | Y > F_Y^{(-1)}(q) \};$$

Lower tail dependence is defined as

$$\lambda_L \stackrel{\text{def}}{=} \lim_{q \to 0^+} \mathbf{P} \{ X \le F_X^{(-1)}(q) | Y \le F_Y^{(-1)}(q) \}.$$

Figure 1: Scatter plot of samples drawn from copulae. All copulas are calibrated to Spearman's ρ of 0.75.

Furthermore, we denote the Fréchet-Hoeffding lower bound by W, the product copula by Π , and the Fréchet-Hoeffding upper bound by M. They represent cases of perfect negative dependence, independence, and perfect positive dependence, respectively. For further details, we refer readers to Joe (1997) and Nelsen (1999); see also Härdle and Okhrin (2010).

The symmetry property of copulae is also important for modelling financial data. In particular, we are interested in the radially symmetric among other symmetry definitions, see ??.

Definition 3 Let $(U_1, ..., U_d)$ be random variables. The random variables is radially symmetric if the joint cdf of $(U_1, ..., U_d)$ is same as the joint cdf of $(1 - U_1, ..., 1 - U_d)$

To illustrate the difference among copulae, we plot random samples drawn from copulae listed below in figure 1.

3.1.1 Gaussian and t Copulae

Gaussian and t copulae are dervived from Gaussian and t distributions Since Gaussian and t distributions are elliptical distributions, Gaussian and t copulae are called elliptical copulae.

Gaussian copula (bivariate) is defined as

$$C(u,v) = \Phi_{2,\rho} \{ \Phi^{(-1)}(u), \Phi^{(-1)}(v) \}$$

$$= \int_{-\infty}^{\Phi^{(-1)}(u)} \int_{-\infty}^{\Phi^{(-1)}(v)} \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left\{ \frac{s^2 - 2\rho st + t^2}{2(1-\rho^2)} \right\} ds dt,$$
(7)

where $\Phi_{2,\rho}$ is the cdf of bivariate Normal distribution with zero mean, unit variance, and correlation coefficient ρ , and $\Phi^{(-1)}$ is the quantile function univariate standard normal distribution.

Note that we use ρ to denote the correlation parameter as well as a $\rho(\cdot)$ to denote a risk measure.

The Gaussian copula is fully specified by the correlation parameter ρ . Like all elliptical copulas, it is symmetric. It has no tail dependence, which, in a finance context, implies that it often underestimates tail risk.

The Gaussian copula density is

$$c_{\rho}(u,v) = \frac{\varphi_{2,\rho}\{\Phi^{(-1)}(u),\Phi^{(-1)}(v)\}}{\varphi\{\Phi^{(-1)}(u)\}\cdot\varphi\{\Phi^{(-1)}(v)\}}$$

$$= \frac{1}{2\pi\sqrt{1-\rho^2}}\exp\left\{-\frac{u^2-2\rho uv+v^2}{2(1-\rho^2)}\right\},$$
(8)

where $\varphi_{2,\rho}(\cdot)$ is the pdf corresponding to $\Phi_{2,\rho}$, and $\varphi(\cdot)$ the standard normal distribution pdf.

Kendall's τ_K and Spearman's ρ_S of a bivariate Gaussian copula are

$$\tau_K(\rho) = \frac{2}{\pi} \arcsin \rho \tag{9}$$

$$\rho_S(\rho) = -\frac{6}{\pi} \arcsin \frac{\rho}{2}.\tag{10}$$

The t-copula has the form

$$C(u,v) = T_{2,\rho,\nu} \{ T_{\nu}^{(-1)}(u), T_{\nu}^{(-1)}(v) \}$$

$$= \int_{-\infty}^{T_{\nu}^{(-1)}(u)} \int_{-\infty}^{T_{\nu}^{(-1)}(v)} \frac{\Gamma\left(\frac{\nu+2}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\pi\nu\sqrt{1-\rho^2}}$$

$$\left(1 + \frac{s^2 - 2st\rho + t^2}{\nu}\right)^{-\frac{\nu+2}{2}} dsdt,$$

where $T_{2,\rho,\nu}$ denotes the cdf of bivariate t distribution with dependence parameter ρ and degrees of freedom parameter ν , and where $T_{\nu}^{(-1)}(\cdot)$ is the quantile function of a standard t distribution with degree of freedom ν .

Contrary to the Gaussian copula, the t-copula has a non-zero tail dependence coefficient, which makes it more appropriate for dependence modelling in finance. The Gaussian copula arises as $\nu \to \infty$.

The copula density is

$$\boldsymbol{c}(u,v) = \frac{\boldsymbol{t}_{2,\rho,\nu} \{ T_{\nu}^{(-1)}(u), T_{\nu}^{(-1)}(v) \}}{t_{\nu} \{ T_{\nu}^{(-1)}(u) \} \cdot t_{\nu} \{ T_{\nu}^{(-1)}(v) \}},$$

where $t_{2,\rho,\nu}$ is the pdf of $T_{2,\rho,\nu}$ and t_{ν} the density of standard t distribution.

Like all the other elliptical copulae, the t-copula's Kendall's τ is identical to that of the Gaussian copula (see Demarta and McNeil, 2005, and references therein).

3.1.2 Archimedean copulae

The family of Archimedean copulae forms a large class of copulae with many convenient features. Contrary to elliptical copulas, which are derived from elliptical distributions. Archimedean copulas are determined via a simple parametric form of the dependence structure. A prominent feature is the ability to model asymmetric dependence structures.

In general, they take a form

$$C(u, v) = \psi^{(-1)} \{ \psi(u), \psi(v) \},$$

where $\psi : [0,1] \to [0,\infty)$ is a continuous, strictly decreasing and convex function such that $\psi(1) = 0$ for any permissible dependence parameter θ . ψ is also called generator. $\psi^{(-1)}$ is the inverse of the generator.

The Frank copula (B3 in Joe (1997)) is a radial symmetric copula and cannot produce any tail dependence. It takes the form

$$C_{\theta}(u,v) = \frac{1}{\theta} \log \left\{ 1 + \frac{(e^{-\theta u} - 1)(e^{-\theta v} - 1)}{e^{-\theta} - 1} \right\}$$

where $\theta \in [0, \infty]$ is the dependency parameter. $C_{-\infty} = M$, $C_1 = \Pi$, and $C_{\infty} = W$.

The Copula density is

$$\boldsymbol{c}_{\theta}(u,v) = \frac{\theta e^{\theta(u+v)(e^{\theta}-1)}}{\left\{e^{\theta} - e^{\theta u} - e^{\theta v} + e^{\theta(u+v)}\right\}^{2}}$$
(11)

Frank copula has Kendall's τ and Spearman's ρ as follow:

$$\tau_K(\theta) = 1 - 4 \frac{D_1\{-\log(\theta)\}}{\log(\theta)},\tag{12}$$

and

$$\rho_S(\theta) = 1 - 12 \frac{D_2\{-\log(\theta)\} - D_1\{\log(\theta)\}}{\log(\theta)},\tag{13}$$

where D_1 and D_2 are the Debye function of order 1 and 2. Debye function is $D_n = \frac{n}{x^n} \int_0^x \frac{t^n}{e^t - 1} dt$.

The Gumbel copula (B6 in Joe (1997)) has upper tail dependence with the dependence parameter $\lambda^U = 2 - 2^{\frac{1}{\theta}}$ and displays no lower tail dependence.

$$C_{\theta}(u, v) = \exp -\{(-\log(u))^{\theta} + (-\log(v))^{\theta}\}^{\frac{1}{\theta}},$$

where $\theta \in [1, \infty)$ is the dependence parameter.

While the Gumbel copula cannot model perfect counter-dependence (Nelsen, 2002), $C_1 = \Pi$ models the independence, and $\lim_{\theta}^{\infty} C_{\theta} = W$ models the perfect dependence. The copula density takes the form

$$\tau_K(\theta) = \frac{\theta - 1}{\theta}.$$

The Clayton copula, by contrast to Gumbel copula, generates lower tail dependence of the form $\lambda^L=2^{-\frac{1}{\theta}}$, but cannot generate upper tail dependence. The Clayton copula takes the form

$$C_{\theta}(u,v) = \left\{ \max(u^{-\theta} + v^{-\theta} - 1, 0) \right\}^{-\frac{1}{\theta}},$$

where $\theta \in (-\infty, \infty)$ is the dependence parameter. Moreover, $\lim_{\theta}^{-\infty} C_{\theta} = M$, $C_0 = \Pi$, and $\lim_{\theta}^{\infty} C_{\theta} = M$. Kendall's τ of the Clayton copula is given by

$$\tau_K(\theta) = \frac{\theta}{\theta + 2}.\tag{14}$$

3.1.3 Mixture Copula

The mixture copula is a linear combination of copulae. For a 2-dimensional random variable $\mathbf{X} = (X_1, X_2)^{\mathsf{T}}$, its distribution can be written as linear combination of K copulae

$$C(u,v) = \sum_{k=1}^{K} p^{(k)} \cdot C^{(k)} \{ F_{X_1}^{(-1)}(u), F_{X_2}^{(-1)}(v); \boldsymbol{\theta^{(k)}} \}.$$

The copula density is again a linear combination of copula densities

$$\boldsymbol{c}(u,v) = \sum_{k=1}^{K} p^{(k)} \cdot \boldsymbol{c}^{(k)} \{ F_{X_1}^{(-1)}(u), F_{X_2}^{(-1)}(v); \boldsymbol{\theta^{(k)}} \}.$$

While Kendall's τ of mixture copula is not known in closed form, Spearman's ρ is specified by the following statement.

Proposition 4 Let $\rho_S^{(k)}$ be Spearman's ρ of the k-th component Spearman's ρ of the mixture copula is given by

$$\rho_S = \sum_{k=1}^{K} p^{(k)} \cdot \rho_S^{(k)} \tag{15}$$

Proof. Since Spearman's ρ is defined as (Nelsen, 1999)

$$\rho_S = 12 \int_{\mathbb{T}^2} \boldsymbol{C}(s,t) ds dt - 3,$$

Spearman's ρ of the mixture copula is given by summation of the components

$$\rho_S = 12 \int_{\mathbb{I}^2} \sum_{k=1}^K p^{(k)} \cdot \mathbf{C}^{(k)}(s, t) ds dt - 3.$$
(16)

An example of a mixture copula is the Fr'echet class of copulas, which are given by convex combinations of W, Π , and M (Nelsen, 1999).

We use a mixture of Gaussian and independent copulas in our analysis, i.e.,

$$C(u, v) = p \cdot C^{\text{Gaussian}}(u, v) + (1 - p)(uv),$$

with corresponding density is

$$c(u, v) = p \cdot c^{\text{Gaussian}}(u, v) + (1 - p).$$

This mixture models the amount of "random noise" that appears in the dependence structure. In the hedging exercise, the "random noise" adds an unhedgable component to the two-asset portfolio, whose weight (1-p) is calibrated from market data.

3.1.4 NIG factor copula

The normal inverse Gaussian (NIG) distribution, introduced by (Barndorff-Nielsen, 1997), has density function

$$g(x; \alpha, \beta, \mu, \delta) = \frac{\alpha}{\pi} e^{\delta \sqrt{\alpha^2 - \beta^2} - \beta \mu} \frac{1}{q((x - \mu)/\delta)} K_1 \left[\delta \alpha q \left(\frac{x - \mu}{\delta} \right) \right] e^{\beta x}, \quad x > 0,$$

where $q(x) = \sqrt{1+x^2}$ and where K_1 is the modified Bessel function of third order and index 1. The parameters satisfy $0 \le |\beta| \le \alpha$, $\mu \in \mathbb{R}$ and $\delta > 0$. The parameters have the following interpretation: μ and δ are location and scale parameters, respectively, α determines the heaviness of the tails and β determines the degree of asymmetry. If $\beta = 0$, then the distribution is symmetric around μ .

The moment-generating function of the NIG distribution is given by

$$M(u; \alpha, \beta, \mu, \delta) = \exp\left(\delta\left(\sqrt{\alpha^2 - \beta^2} - \sqrt{\alpha^2 - (\beta + u)^2}\right) + \mu u\right).$$

As a direct consequence, moments are easily calculated with the expectation and variance of the NIG distribution being

$$\mathbb{E}X = \mu + \frac{\delta\beta}{\sqrt{\alpha^2 - \beta^2}} \tag{17}$$

$$Var(X) = \frac{\alpha^2 \delta}{(\alpha^2 - \beta^2)^{3/2}}.$$
(18)

The NIG $(\alpha, \beta, \mu \delta)$ distribution belongs to the class of so-called *normal variance-mean mixture*, (see Section 3.2 of (McNeil et al., 2005)): X follows an NIG $(\alpha, \beta, \mu, \delta)$ distribution if X conditional on W follows a normal distribution with mean $\mu + \beta W$ and variance W, i.e.,

$$X|W \stackrel{\mathcal{L}}{\sim} N(\mu + \beta W, W),$$

where W follows an inverse Gaussian distribution, denoted by $IG(\delta, \sqrt{\alpha^2 - \beta^2})$.

It is easily seen from the moment-generating function that the NIG distribution is preserved under linear combinations, provided the variables share the parameters α and β . For this and other reasons, the NIG distribution is popular in many areas of financial modelling; for example, it gives rise to the normal inverse Gaussian Lévy process, which may be represented as a Brownian motion with a time change.

In the setting here, we consider the NIG factor copula. This is not directly derived from the multivariate NIG distribution, but determined through a factor structure instead. The factor structure, which was applied e.g. in (Kalemanova et al., 2007) for calibrating CDO's, gives additionally flexibility as it does not force the components to have a mixing variable W. The following proposition introduces the NIG factor model and some of its properties.

Proposition 5 Let $Z \sim NIG(\alpha, \beta, \mu, \delta)$ and $Z_i \sim NIG(\alpha, \beta, \mu_i, \delta_i)$, i = 1, ..., n be independent NIG-distributed random variables. Then:

1.
$$X_i = Z + Z_i \sim NIG(\alpha, \beta, \mu + \mu_i, \delta + \delta_i)$$
,

2. and

$$Cov(X_i, X_j) = Var(Z),$$

$$Corr(X_i, X_j) = \frac{\delta}{\sqrt{(\delta + \delta_i)(\delta + \delta_j)}}.$$
(19)

Proof.

- 1. This follows directly from the moment-generating function.
- 2. For the covariance,

$$Cov(X_i, X_j) = \mathbb{E}[(Z + Z_i)(Z + Z_j)] - \mathbb{E}[Z + Z_i]\mathbb{E}[Z + Z_j]$$
$$= \mathbb{E}[Z^2] - (\mathbb{E}Z)^2.$$

The correlation is determined directly from (18).

The NIG factor copula is obtained by transforming the margins to uniforms (see Sklar's Theorem), giving (e.g. (Krupskii and Joe, 2013)):

$$C_{r^S,r^F}(F_{r^S}(r^S),F_{r^F}(r^F)) = \int_{\mathbb{D}} F_{Z_1}(F_{X_1}^{(-1)} \circ F_{r^S}(r^S) - z) \cdot F_{Z_2}(F_{X_2}^{(-1)} \circ F_{r^F}(r^F) - z) \cdot f_Z(z) dz$$

If the margins are continuous, then Spearman's rho of NIG factor copula is

$$\rho_S = 12 \int \int \int_{\mathbb{R}^3} F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdot f_{Z_1}(x_1 - z) \cdot f_{Z_2}(x_2 - z) \cdot f_{Z_2}(z) dx_1 dx_2 dz - \frac{1}{48}.$$

3.1.5 Plackett copula

The Plackett copula has an expression

$$C_{\theta}(u,v) = \frac{1 + (\theta - 1)(u + v)}{2(\theta - 1)} - \frac{\sqrt{\{1 + (\theta - 1)(u + v)\}^2 - 4uv\theta(\theta - 1)}}{2(\theta - 1)}$$
(20)

$$\rho_S(\theta) = \frac{\theta + 1}{\theta - 1} - \frac{2\theta \log \theta}{(\theta - 1)^2} \tag{21}$$

We include Placket copula in our analysis as it possesses a special property, the cross-product ratio is equal to the dependence parameter

$$\frac{\mathbf{P}(U \leq u, V \leq v) \cdot \mathbf{P}(U > u, V > v)}{\mathbf{P}(U \leq u, V > v) \cdot \mathbf{P}(U > u, V \leq v)}$$

$$= \frac{\mathbf{C}_{\theta}(u, v)\{1 - u - v + \mathbf{C}_{\theta}(u, v)\}}{\{u - \mathbf{C}_{\theta}(u, v)\}\{v - \mathbf{C}_{\theta}(u, v)}$$

$$= \theta. \tag{22}$$

That is, the dependence parameter is equal to the ratio between number of concordence pairs and number of discordence pairs of a bivariate random variable.

3.2 Calibration and selection of copulae

We introduce the method to calibrate copulae to our data in this section. In general, there are two types of calibration procedures to calibrate copulae: maximum likelihood (MLE) and method of moments (MM). We decide to deploy the latter since it calibrates according to the moments we desired.

In the following subsection, we present the configuration of the method of moments procedures we use. In the subsection after, we argue that MM is more suitable to this work by comparing MM with MLE.

3.2.1 Method of moments

We trace back the usage of MM to calibrate copulae to Genest (1987); Genest and Rivest (1993). The moments mainly refer to Kendall's τ or Spearman's ρ . We extend MM to quantile dependence measures denoted by λ_q for quantile level q.

Spearman's ρ , Kendall's τ , and quantile dependence of the copula C are defined as

$$\rho_S = 12 \int \int_{I^2} C_{\theta}(u, v) \, \mathrm{d}u \, \mathrm{d}v - 3 \tag{23}$$

$$\tau_K = 4\mathbb{E}[C_{\theta}\{F_X(x), F_Y(y)\}] - 1, \tag{24}$$

$$\lambda_{q} = \begin{cases} \mathbf{P}(F_{X}(X) \le q | F_{Y}(Y) \le q) = \frac{C_{\theta}(q, q)}{q}, & \text{if } q \in (0, 0.5], \\ \mathbf{P}(F_{X}(X) > q | F_{Y}(Y) > q) = \frac{1 - 2q + C_{\theta}(q, q)}{1 - q}, & \text{if } q \in (0.5, 1). \end{cases}$$
(25)

The empirical counterparts are

$$\hat{\rho}_S = \frac{12}{n} \sum_{k=1}^n \hat{F}_X(x_k) \hat{F}_Y(y_k) - 3,$$

$$\hat{\tau}_K = \frac{4}{n} \sum_{k=1}^n \hat{C} \{ \hat{F}_X(x_i), \hat{F}_X(y_i) \} - 1,$$

$$\hat{\lambda}_q = \begin{cases} \frac{1}{n} \sum_{k=1}^n \frac{\mathbf{1}_{\{\hat{F}_X(x_k) \le q, \hat{F}_Y(y_k) \le q\}}}{q}, & \text{if } q \in (0, 0.5], \\ \frac{1}{n} \sum_{k=1}^n \frac{\mathbf{1}_{\{\hat{F}_X(x_k) > q, \hat{F}_Y(y_k) > q\}}}{1 - q}, & \text{if } q \in (0.5, 1), \end{cases}$$

where
$$\hat{F}(x) = \frac{1}{n} \sum_{k=1}^{n} 1_{\{x_i \leq x\}}$$
 and $\hat{C}(u, v) = \frac{1}{n} \sum_{k=1}^{n} 1_{\{u_i \leq u, v_i \leq v\}}$.

Denote by $m(\theta)$ the *m*-dimensional vector of dependence measures according the dependence parameters θ , and let \hat{m} be the corresponding empirical counterpart. The difference between dependence measures and their counterpart is denoted by

$$q(\theta) = \hat{m} - m(\theta).$$

The MM estimator is

$$\hat{\boldsymbol{\theta}} = \operatorname*{argmin}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \boldsymbol{g}(\boldsymbol{\theta})^{\top} \hat{\boldsymbol{W}} \boldsymbol{g}(\boldsymbol{\theta}),$$

where \hat{W} is some positive definite weight matrix. In this work, we use $\boldsymbol{m}(\boldsymbol{\theta}) = (\rho_S, \lambda_{0.05}, \lambda_{0.1}, \lambda_{0.9}, \lambda_{0.95})^{\top}$ for calibration. \hat{W} is set to identity matrix.

3.2.2 Comparison between method of moments and maximum likelihood

By the Hoeffding-Sklar theorem, the joint density of a d-dimensional random variable X with sample size n can be written as

$$f_{\mathbf{X}}(x_1,...,x_d) = c\{F_{X_1}(x_1),...,F_{X_d}(x_d)\}\prod_{i=1}^d f_{X_i}(x_i).$$

We follow the treatment of MLE documented in section 10.1 of Joe (1997), namely the inference functions for margins (IFM) method. The log-likelihood $\sum_{i=1}^{n} f_{\mathbf{X}}(X_{i,1},...,X_{i,d})$ can be decomposed into a dependence part and a marginal part,

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} c\{F_{X_1}(x_{i,1}; \boldsymbol{\delta}_1), ..., F_{X_d}(x_{i,d}; \boldsymbol{\delta}_d); \boldsymbol{\gamma}\} + \sum_{i=1}^{n} \sum_{j=1}^{d} f_{X_j}(x_{i,j}; \boldsymbol{\delta}_j)$$
(26)

$$=L_C(\boldsymbol{\delta}_1,...,\boldsymbol{\delta}_d,\boldsymbol{\gamma}) + \sum_{j=1}^d L_j(\boldsymbol{\delta}_j)$$
(27)

where δ_j are the parameters of the *j*-th margin, γ is the parameter of the parametric copula, and $\boldsymbol{\theta} = (\delta_1, ..., \delta_d, \gamma)$. Instead of searching the $\boldsymbol{\theta}$ in a high dimensional space, Joe (1997) suggests to search for $\hat{\delta}_1, ..., \hat{\delta}_d$ that maximize $L_1(\delta_1), ..., L_d(\delta_d)$, then search for $\hat{\gamma}$ that maximize $L_C(\hat{\delta}_1, ..., \hat{\delta}_d, \gamma)$.

We follow Genest et al. (1995) who suggest to replace the estimation of marginals parameters estimation by non-parameteric estimation. Given non-parametric estimator \hat{F}_i of the margins F_i , the estimator of the dependence parameters γ is

$$\hat{\gamma} = \underset{\gamma}{\operatorname{argmax}} \sum_{i=1}^{n} c\{\hat{F}_{X_1}(x_{i,1}), ..., \hat{F}_{X_d}(x_{i,d}); \gamma\}.$$

Both the simulated method of moments and the maximum likelihood estimation are unbiased. The question though which procedure is more suitable for hedging.

Figure 2 shows the empirical quantile dependence of Bitcoin and CME future and the copula implied quantile dependence of the MLE and MM calibration procedures. Although the MLE is a better fit to a range of quantile dependence in the middle, it fails to address the situation in the tails. We find that our data empirically has low quantile dependence in the lower ends (q < 10%). We argue that MM is preferred as it produces a better fit to the dependence structure in the tail behaviour, contrary to MLE.

Therefore, we deploy the method of moments throughout the analysis. We choose the 5th-, 10^{th} -, 90^{th} -, 95^{th} -quantile, and Spearman's ρ as the moments.

Figure 2: Quantile dependences of Gumbel, and Clayton Copula. The blue circle dots are the quantile dependence estimates of Bitcoin and CME future, blue dotted lines are the estimates' 90% confidence interval. Orange dotted line is the copula implied quantile dependence by MM estimation. Light blue dotted line is the copula implied quantile dependence by MLE estimation.

3.2.3 Copula selection

The dependence structure of price data changes across time, in which both the dependency parameters and the type of dependence. For this reason, we allow for a flexible choice of the best-fitting copula, by re-calibrating periodically and re-evaluating performance of the various copulas. We select the best-fitting copula, characterised by the lowest Akaike Information Criterion (AIC),

$$AIC = 2k - 2\log(L),$$

where k is the number of estimated parameteres and L is the likelihood (Akaike, 1973).

Other model selection criteria, such as the TIC(?) or likelihood ratio test could be used instead. For a survey of model selection and inference, see Anderson et al. (1998). Among various copula selection procedures, AIC is a popular choice for its applicability, see e.g. Breymann et al. (2003). In our case, the AICs are calculated only with dependency likelihood since the marginals are modelled via kernel density estimators. The selected copula will then be enter the calculation of the optimal hedge ratio.

3.3 Risk measures

The optimal hedge ratio is determined for the following variety of risk measures: variance, Value-at-Risk (VaR), Expected Shortfall (ES), and Exponential Risk Measure (ERM). A summary of risk measures being used in portfolio selection problem can be found in Härdle et al. (2008). The risk measures here serve as risk minimization objectives, i.e. loss functions for searching the optimal hedge ratio.

The risk measures are defined as follows. Let Z be a random variable with distribution function F_Z .

- 1. Variance: $Var(Z) = \mathbb{E}[(Z \mathbb{E}Z)^2]$.
- 2. VaR at confidence level α : VaR $_{\alpha}(Z) = -F_{Z}^{(-1)}(1-\alpha)$
- 3. ES at confidence level α : ES $(F_Z) = -\frac{1}{1-\alpha} \int_0^{1-\alpha} F_Z^{(-1)}(p) dp$
- 4. ERM with Arrow-Pratt coefficient of absolute risk aversion k:

$$ERM_k(F_Z) = \int_0^{1-\alpha} \phi(p) F_Z^{(-1)}(p) dp,$$

where ϕ is a weight function described in (28) below.

VaR, ES, and ERM fall into the class of spectral risk measures (SRM), which have the from (Acerbi, 2002)

$$\rho_{\phi}(r^h) = -\int_0^1 \phi(p) F_Z^{(-1)}(p) dp,$$

where p is the loss quantile and $\phi(p)$ is a user-defined weighting function defined on [0, 1]. We consider only so-called admissible risk spectra $\phi(p)$, i.e., fulfilling

- (i) ϕ is positive,
- (ii) ϕ is decreasing,
- (iii) and $\int \phi = 1$.

The VaR's $\phi(p)$ gives all its weight on the $1-\alpha$ quantile of Z and zero elsewhere, i.e. the weighting function is a Dirac delta function, and hence it violates the (ii) property of admissible risk spectra. The ES' $\phi(p)$ gives all tail quantiles the same weight of $\frac{1}{1-\alpha}$ and non-tail quantiles zero weight. The ERM assumes investors' risk preference are in the form of an exponential utility function $U(x) = 1 - e^{kx}$, so its corresponding risk spectrum is defined as

$$\phi(p) = \frac{ke^{-k(1-p)}}{1 - e^{-k}},\tag{28}$$

where k is the Arrow-Pratt coefficient of absolute risk aversion. The parameter k has an economic interpretation as being the ratio between the second derivative and first derivative of investor's utility function on an risky asset,

$$k = -\frac{U''(x)}{U'(x)},$$

for x in all possible outcomes. In case of the exponential utility, k is the the constant absolute risk aversion (CARA).

4 Empirical Results

4.1 Data

In the empirical analysis, we consider the risk reduction capability of CME Bitcoin Futures (BTCF) on five cryptos, namely Bitcoin (BTC), Ethereum (ETH), Cardano (ADA), Litecoin (LTC) and Ripple (XRP), as well as five crypto indexes, namely BITX, BITW100, CRIX, BITW20, and BITW70. ETH, ADA, LTC, and XRP are popular cryptos tradable in various exchanges and have large market capitalization. BITX, BITW100, and CRIX are market-cap weighted crypto indexes with BTC as constituent. BITX and BITW100 track the total return of the 10 and 100 cryptos with largest market-cap, respectively. CRIX decides the number of constituents by AIC and tracks that number of cryptos with largest market-cap. In our case, the number of constituents in CRIX is 5. BITW20 is also a market-cap weighted crypto index but with the 20 largest market-cap cryptos outside the constituents of BITX. BITW70 has the same construction as BITW20 but with the 70 largest market-cap cryptos outside BITX and BITW20. Therefore, BTC is excluded as a constituent in BITW20 and BITW70.

For each of the 10 hedging portfolios, a crypto or index is considered as the spot and held in a unit size long position, while the front BTCF is held in a short position with units corresponding to the OHR in order to reduce the risk of the spot. Except for the hedge of BTC, all hedging portfolios are considered to be cross-asset hedges.

We collect the spots' and BTCF's daily prices at 15:00 US Central Time (CT). The reason for choosing this particular time is that the CME group determines the daily settlements for BTCF's based on the trading activities on CME Globex between 14:59 and 15:00 CT. This is also the reporting time of the daily closing price by Bloomberg. The crypto spot data is collected from the data provider called Tiingo (https://www.tiingo.com/). [thanks somewhere.] Tiingo aggregates crypto OHLC (open, high, low, and close) prices fed by APIs from various exchanges. It covers major exchanges, such as Binance, Gemini, Poloniex etc., so Tiingo's aggregated OHLC price is a good representation a tradable market price. For each crypto, we match the opening price at 15:00 CT from Tiingo with the daily BTCF closing price from Bloomberg. Since CRIX is not available at 15:00 CT, we recalculated an hourly CRIX using the monthly constituents weights and the hourly OHLC price data collected from Tiingo. BITX, BITW20, BITW70, and BITW100 are collected from the official website of their publisher Bitwise.com. The daily reporting time of the Bitwise indexes is 15:00 CT.

At the time of writing, the CRIX is undergoing the listing process on the S&P Dow Jones Indices, the official CRIX data will then be calculated with Lukka Prime Data and available to the public via S&P.

4.2 Overview of the out-of-sample data

For every asset and hedge portfolio, we concatenate the out-of-sample data to form a time series for analysis. The date range of the out-of-sample time series is from 2019-10-21 to 2021-05-27, in total of 405 data points in each time series. We analyse these time series throughout the whole result section.

We introduce the out-of-sample data in this subsection before we proceed to analysing the hedged portfolio results. Figure 3 presents the BTC and BTCF price in USD in the first panel and the arithmetic difference between the daily return of BTC and BTCF, i.e. $R_s - R_f$, in the second panel. In the first panel, the black vertical lines with capital letter labels indicate the days of the five most

Figure 3: Out-of-sample BTC and BTCF price. The first panel presents the price of BTC in blue line and that of BTCF in orange line. The black vertical lines with capital letter labels indicate the five most negative daily return of BTC in the out-of-sample data. The second panel presents the difference between the % return of BTC and BTCF. The black vertical lines with lowercase letter label indicate the five most negative returns. The crosses locate the level the returns.

Label	Date	% Drop in Price	Summary
A	2020-03-09	13.83	Coronavirus outbreak that affect the
			global markets; BTC as potential safe-
			haven was questioned. ¹
В	2020-03-12	22.89	Continuation of the 2020-03-09 drop.
\mathbf{C}	2020-05-11	12.11	Price correction (from \$10,000 to
			\$8,100) after BTC price surge because
			of the third supply halving. ^{2,3}
D	2021-01-11	14.41	Short term correction of BTC hits the
			$$40,000 \text{ mark.}^4$
\mathbf{E}	2021-05-17	11.86	Tesla stopped taking BTC as payment
			due to environmental concerns about
			energy use to process transaction. ⁵

Table 1: Summary of events that associated with the five most negative daily price drops in out-of-sample BTC price data. The capital letter labels in the first column are the labels in the first panel of figure 3. ¹ is reported by the CNBC news https://cnb.cx/3HZ2x7K; ² is from Forbes https://bit.ly/3rdJPmP; ³ is from livemint.com https://bit.ly/3FRi6Na; ⁴ is from CNBC https://cnb.cx/3nU0pp0; ⁵ is from Reuters https://reut.rs/3leCiAv.

negative daily return of BTC during out-pf-sample period. Table 1 summarizes the relevant news headlines and events of those days.

Figures 4 and 5 are the cumulative returns of the indices and individual cryptos respectively. The black vertical lines labeled by assets name are the largest daily price drop of the assets in the out-of-sample data.

The out-of-sample data covers the pre-COVID19 period, 2019-10-21 to 2020-03-09, as well as the COVID19 period, 2019-03-19 onwards. We can observe an overall upward trend of crypto prices in both periods. Nonetheless, the volatilities of assets are high (annualized around 100%) regardless of COVID19.

Figure 4: Out-of-sample cumulative return of crypto indices. The black vertical lines indicate largest price drop of indices indicated by the labels.

Figure 5: Out-of-sample cumulative return of individual cyptos. The black vertical lines indicate largest price drop of cryptos indicated by the labels.

Label	Date	% Drop in Price	Summary
CRIX	2020-03-09	23.77	Coronavirus outbreak that affect
BITX		23.68	the global markets including the
BITW100		23.87	crpyto market.
BITW20		26.66	
ADA		23.55	
ETH		27.40	
BITW70	2021-05-19	27.64	The spillover of the BTC shock on
			2021-05-17 (label A in figure 3 and
			table 1)
XRP	2020-12-23	41.00	Top executives were sued by the
			SEC of misleading investors 1 .

Table 2: Summary of events that associated with largest price drops in out-of-sample data. The labels in the first column are the labels in figure 4 and figure 5. CRIX, BITX, BITW100, BITW20, ADA and ETH have the same date the reason of the largest drop. ¹ is reported by Bloomberg https://bloom.bg/3cWdita.

4.3 An overview of the hedged portfolios without the copula selection step

First, we analyse the results of hedged portfolios without the copula selection step in order to get a better understanding of how a copula affects the hedged portfolio with various risk minimization objectives. To do so, we inspect the hedge performance of copulas by the mean square error and lower semi-variance. The mean square error is the distance between a perfect hedge and the hedged portfolio returns $MSE = E(R^2)$. The lower semi-variance is defined as $LSV = E\{R - E(R)^2\}1(R \le E(R))$. All results presented here are out-of-sample results obtained without the copula selection step in order to compare the performances across copulae.

втс Variance 0.030 ES 95% 0.025 ES 99% 0.020 VaR 95% 0.015 0.010 VaR 99% 0.005 ERM k=10 Frank -Gaussian -Gauss Mix Indep Plackett rotGumbel t-Copula

Figure 6: Mean square errors of BTC-BTCF portfolios constructed with different copula and risk minimization objectives. The Frank copula is inferior in the BTC-involved portfolios.

Figure 7: Lower semivariance of BTC-BTCF portfolios constructed with different copula and risk minimization objectives. The Frank copula is obviously inferior.

Figure 8: Mean square errors of portfolios constructed with different copula and risk minimization objectives.

Figure 9: Lower semivariance of portfolios constructed with different copula and risk minimization objectives.

Spot/ Copula	t	Plackett	GMI	rotGumbel	NIG
Individual Crypto	OS				
BTC	73	4	2	1	31
ETH	3	6	8	94	1
ADA	0	0	0	0	112
LTC	13	0	3	32	64
XRP	0	31	3	78	0
Crypto Indices w	ith BTC Con	astituent			
BITX	39	0	14	16	12
CRIX	47	0	11	3	27
BITW100	42	0	8	29	2
Crypto Indices w	ithout BTC	Constituent			
BITW20	0	0	0	78	3
BITW70	0	0	0	80	1

Table 3: Copula selection results (shortened). The values are the counts of a copula chosen by the AIC procedure during the out-of-sample period. Each count represents five trading days since the each testing data consists of five trading days. The table shows only the frequently chosen copula, i.e. t, Plackett, Gaussian Mix Independent (GMI), rotated Gumbel (rotGumbel), and Normal Inverse Gaussian factor copula (NIG).

Figure 6 and 7 are the mean square error and lower semivariance of BTC-BTCF. We can see that the Frank copula is the worst performing copula: the resulting hedged portfolio returns is far away from a perfect hedge. [I think I did the plots on a log-scale to see some more detail. Can you try this? Or would you like me to do this?] In Figures 8 and 9, the phenomenom of Frank copula being inferior to its counterparts can be observed from the results of the CRIX, BITX, BITW100, and BITW20-BTCF portfolios. Interestingly, the spot in those portfolios usually have a strong dependence with the BTCF. In contrast, the inferiority of the Frank copula is less prominent in the BITW70, ADA, ETH, LTC and XRP-BTCF portfolios. We suspect that the Frank copula is not a choice to model assets with strong dependence.

We can also observe from Figures 8 and 9 that the Gumbel copula is not performing as well as other copulas in the ETH, LTC, and XRP-BTCF portfolios. The reason is the Gumbel copula has only upper tail dependence, while the ETH, LTC, and XRP exhibit lower tail dependence with BTCF. We will discuss this in the following section.

4.4 Copula Selection Results

Next, we inspect the copula selection result by the AIC procedure described in section 3.2.3. Although the copula selection is only an intermediate step to obtain the OHRs, the result of this step can help us better understand the dependence feature between BTCF and the assets we study in this work. This gives us valuable information to model the assets in the future. Decisions of the AIC procedure are summarised in Table ??.

Overall, the t-copula, rotated Gumbel (rotGumbel), and the NIG factor copula are the most frequently chosen copulae by the AIC procedure.

The t-copula is frequently chosen to model the dependence between the BTC and BTC-involving-indices, CRIX, BITX, BITW100, and the BTC future. BTC and BTC-involving-indices exhibit strong

(upper and lower) tail dependence with BTCF. We interpret tail dependence as a strong tendency for one asset to be extreme when another is extreme and vice versa (McNeil et al., 2015). In fact, the t copula has been suggested in various empirical studies to model financial data, such as Zeevi and Mashal (2002) and Breymann et al. (2003). Those studies suggest that the t-copula is a better model compared to the Gaussian copula as financial data typically exhibit heavy tails and tail dependence. (because the thick and left skew properties of financial data tail distribution are documented.)

On the other hand, the radial symmetry of the t-copula appears to be a poor choice to model the remaining hedging pairs. Demarta and McNeil (2005) describe the radial symmetry feature of the t-copula "strong" as it is a radially symmetric distribution. To be specific, if $(U_1, ..., U_d)$ is a vector distributed in t-copula, then $(U_1, ..., U_d) \stackrel{\mathcal{L}}{=} (1 - U_1, ..., 1 - U_d)$. This symmetry can be justified in the dependence structure between a futures and its underlying by the theory of futures pricing, which suggests the price of a futures is a function of the underlying price (Hull, 2003). However, there is no such relationship between a futures and an asset which is not the underlying. Besides, asset prices tend to crash simultaneously whereas positive development is more idiosyncratic.

Among the three popular copulae, rotGumbel copula shows its ability to model the dependence between ETH and BTCF. rotGumbel also performs well when modelling dependence between XRP, BITW20, BITW70, and the BTCF. In particular, the whole time series of the two indices, BITW20 and BITW70, are best fitted solely with the rotated Gumbel copula.

In fact, Clayton's AIC in many of the training sets is the second lowest, just higher than that of rotated Gumbel. This is because the Clayton copula has the same ability to model the lower quantile dependence. However, Clayton's radial like feature does not match the behaviour of the financial data.

It is worth to mention that although the NIG factor copula is penalised heavily due to its three parameters setup, it is frequently chosen to be the best copula to model the dependence between individual cryptos and the BTC future. An extreme case would be ADA, where only NIG factor is chosen in our dataset. Another dependence structure being best described by the NIG factor copula is the pair of LTC-BTCF, with 64 out of 112 training sets best fitted by the NIG factor copula. Indices like BITX and CRIX are sometimes best fitted with the NIG factor copula as well, accounting for modelling 12 and 27 training sets respectively. The popularity of the NIG factor reflects the ability of the copula to model very complex dependence structure: the NIG factor copula is able to model the tail, radial asymmetry, and off-diagonal (the region away from the diagonal line (0,0) to (1,1), see figure 1) behaviour.

The Frank copula is generally not a good choice to model financial data (as also reported by Barbi and Romagnoli (2014)). Plackett is characterised by its dependence parameter being equal to the cross-product ratio . [Provide reference to Equation (32).] However, apparently, this property does not capture the dependence structure of cryptos and BTCF.

[until here]

4.5 Hedged portfolios with the copula selection step

Table 4 presents the summary statistics, maximum drawdown (MD) and the date of MD of the BTC-BTCF hedge portfolios. The index column indicates the risk minimization objectives. We observe that the statistics of the portfolios with different objectives are similar to each other. The means of the returns are close to zero; Standard deviations ranges from 0.32% to 0.35%; Skewnesses

	Mean %	Std %	Skew	Kurt	MD %	Date of MD
Variance	0.0215	0.3221	-1.0119	3.1929	-0.0144	2020-11-30
VaR~95%	0.0253	0.3294	-0.9725	3.4373	-0.0153	2020-11-30
$\mathrm{VaR}~99\%$	0.0176	0.3270	-1.0405	3.3742	-0.0157	2020-11-30
$\mathrm{ES}\ 95\%$	0.0204	0.3234	-1.0150	3.4423	-0.0156	2020-11-30
ES 99%	0.0148	0.3476	-0.8354	3.3054	-0.0162	2020-11-30
ERM $k = 10$	0.0223	0.3221	-1.0008	3.4153	-0.0152	2020-11-30

Table 4: Summary statistics of BTC-BTCF hedge portfolios out-of-sample daily returns under different risk minimisation objectives.

are slightly negative (skew to the right); Kurtosises are slightly larger than 3; The MDs are close to zero and the date of MDs are 2020-11-30.

For the other spots, tables 6 to table 11 summarise the statistics of daily returns of hedged portfolios. The tables look repeating so we place them in the appendix. For each hedge portfolios, the first four moments as well as the maximum drawdown (MD) and the date of MD are very similar across different risk minimization objectives.

On the other hand, the statistics vary across spots. Unsurprisingly, the BTC-involved spots, i.e. BTC, CRIX, BITX, and BITW100, are well hedged by the BTCF regardless of risk minimization objective. Contrarily, BTC-not-involved spots' portfolios are less promising. The hedged portfolio returns are as volatile as the spots. We will further discuss the effectiveness of hedge in the next section.

4.6 Hedging Effectiveness Results

In this section, we analyse the out-of-sample hedging effectiveness (HE) of BTCF as hedging. HE is defined as

$$HE = 1 - \frac{\rho_h}{\rho_s},$$

a measure of the percentage reduction of portfolio risk attribute, in our case the spot ρ_s , to hedged portfolio risk attribute ρ_h . A higher HE indicates a higher hedging effectiveness and larger risk reduction.

The HE above is a generalisation of Ederington measure of hedging performance, where we, in addition to variance, include other risk measures: Expected Shortfall 5% and 1% (ES5 and ES1), Value-at-Risk 5% and 1% (VaR5 and VaR1), and ERM. In particular, ES5 is recommended by the Basel Committee on Banking Supervision (BCBS) to replace VaR as a quantitative risk metrics system. The proposed reform aimed at enhancing the risk metric system's ability to capture tail risk. We obtain a time series of out-of-sample r^h of each hedging pair and each risk reduction objective by concatenating the out-of-sample results. Then, we apply stationary block bootstrapping (SB) to the time series introduced by Politis and Romano (1994) in our analysis in order to preserve the temporal structure of the data while sampling. The SB procedure is as follow. Assume a time series with N observations $\{X_t\}_{t\in[1,N]}$ is a strong stationary, weakly dependence time series of interest, we form blocks of samples $B = \{X_i, ..., X_{i+j-1}\}$. Index i is a random variable uniformly distributed over [1,2,...,N] and j is geometric distributed random variable with parameter. The block index i and block length j are independent. For any index k which is greater than N, the sample X_k is defined

Figure 10: Hedging effectiveness (HE) of portfolios with different risk minimizatio objectives evaluated by the corresponding risk minimization objectives. The boxplots indicate the median, upper quartile, lower quartile, minimium and maximum of the bootstrapped HE. The HE of BTC-involved spots are significantly higher than that of BTC-not-involved spots.

to be $X_{k(\mod N)}$. For each block, we calculate the hedging effectiveness with different risk measures mentioned above. We choose p=0.005, implying the expected block length is 200. 100 blocks are drawn for each risk minimising objective and spot.

From figure 10, we report, as expected, the BTC involving spots, the BTC, CRIX, BITX and BITW100, are well hedged by the BTCF. The performances are consistent across different risk reduction objectives and different HE evaluation. The median HE to BTC generated by various risk reduction objectives is ranging from 89.45% to 99.31%, median HE to CRIX is ranging from 81.13% to 95.22%, median HE to BITX is ranging from 79.06% to 94.84%, median HE to BITW100 Is ranging from 71.07% to 92.98%.

The HE of BTCF to other cryptos and indices are substantially lower than to the BTC involving spots, but the consistency the performances across different risk reduction objectives and HE evaluation remains. The median HE to BITW20 generated by various risk reduction objectives is ranging from 24.67% to 47.02%, median HE to BITW70 is ranging from 23.61% to 49.30%, median HE to ADA is ranging from 9.01% to 29.30%, median HE to ETH Is ranging from 30.07% to 36.18%, median HE to LTC Is ranging from 37.74% to 51.30%, median HE to XRP Is ranging from 0.46% to 30.89%.

References

- ACERBI, C. (2002): "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, 26, 1505–1518.
- AKAIKE, H. (1973): "Information theory and an extension of the maximum likelihood principle," in *Second International Symposium on Information Theory*, ed. by B. N. Petrov and F. Csaki, Budapest: Akadémiai Kiado, 267–281.
- Anderson, D., K. Burnham, and G. White (1998): "Comparison of Akaike information criterion and consistent Akaike information criterion for model selection and statistical inference from capture-recapture studies," *Journal of Applied Statistics*, 25, 263–282.
- ARTZNER, P., F. DELBAEN, J.-M. EBER, AND D. HEATH (1999): "Coherent measures of risk," *Mathematical Finance*, 9, 203–228.
- Barbi, M. and S. Romagnoli (2014): "A Copula-Based Quantile Risk Measure Approach to Estimate the Optimal Hedge Ratio," *Journal of Futures Markets*, 34, 658–675.
- Barndorff-Nielsen, O. E. (1997): "Normal inverse Gaussian distributions and stochastic volatility modelling," *Scandinavian Journal of statistics*, 24, 1–13.
- Bollerslev, T., V. Todorov, and L. Xu (2015): "Tail risk premia and return predictability," *Journal of Financial Economics*, 118, 113–134.
- Breymann, W., A. Dias, and P. Embrechts (2003): "Dependence structures for multivariate high-frequency data in finance,".
- Cherubini, U., S. Mulinacci, and S. Romagnoli (2011): "A copula-based model of speculative price dynamics in discrete time," *Journal of Multivariate Analysis*, 102, 1047–1063.
- Cont, R. (2001): "Empirical properties of asset returns: stylized facts and statistical issues," *Quantitative Finance*, 1, 223–236.
- Demarta, S. and A. J. McNeil (2005): "The t copula and related copulas," *International statistical review*, 73, 111–129.
- Dowd, K., J. Cotter, and G. Sorwar (2008): "Spectral risk measures: properties and limitations," *Journal of Financial Services Research*, 34, 61–75.
- EDERINGTON, L. H. AND J. M. SALAS (2008): "Minimum variance hedging when spot price changes are partially predictable," *Journal of Banking & Finance*, 32, 654–663.
- Embrechts, P., A. McNeil, and D. Straumann (2002): "Correlation and dependence in risk management: properties and pitfalls," *Risk management: value at risk and beyond*, 1, 176–223.
- FAMA, E. F. (1963): "Mandelbrot and the stable Paretian hypothesis," *The Journal of Business*, 36, 420–429.
- FISHER, N. I. AND P. K. SEN (2012): The collected works of Wassily Hoeffding, Springer Science & Business Media.

- FÖLLMER, H. AND A. SCHIED (2002): Stochastic Finance. An Introduction in Discrete Time, de Gruyter.
- Genest, C. (1987): "Frank's family of bivariate distributions," Biometrika, 74, 549–555.
- Genest, C., K. Ghoudi, and L.-P. Rivest (1995): "A semiparametric estimation procedure of dependence parameters in multivariate families of distributions," *Biometrika*, 82, 543–552.
- GENEST, C. AND L.-P. RIVEST (1993): "Statistical inference procedures for bivariate Archimedean copulas," *Journal of the American statistical Association*, 88, 1034–1043.
- HÄRDLE, W. K., N. HAUTSCH, AND L. OVERBECK (2008): Applied Quantitative Finance, Springer Science & Business Media.
- HÄRDLE, W. K., M. MÜLLER, S. SPERLICH, AND A. WERWATZ (2004): Nonparametric and Semi-parametric Models, Springer Science & Business Media.
- HÄRDLE, W. K. AND O. OKHRIN (2010): "De copulis non est disputandum," AStA Advances in Statistical Analysis, 94, 1–31.
- Hoeffding, W. (1940a): "Masstabinvariante Korrelationstheorie," Schriften des Mathematischen Instituts und Instituts für Angewandte Mathematik der Universität Berlin, 5, 181–233.
- ——— (1940b): "Scale-invariant correlation theory (English translation)," 5, 181–233.
- ——— (1941): "Scale-invariant correlations for discontinuous distributions (English translation)," 7, 49–70.
- Hull, J. C. (2003): Options futures and other derivatives, Pearson Education India.
- Joe, H. (1997): Multivariate models and multivariate dependence concepts, CRC Press.
- Kalemanova, A., B. Schmid, and R. Werner (2007): "The normal inverse Gaussian distribution for synthetic CDO pricing," *The Journal of Derivatives*, 14, 80–94.
- Krupskii, P. and H. Joe (2013): "Factor copula models for multivariate data," *Journal of Multivariate Analysis*, 120, 85–101.
- Kruskal, W. H. (1958): "Ordinal measures of association," *Journal of the American Statistical Association*, 53, 814–861.
- McNeil, A., R. Frey, and P. Embrechts (2005): *Quantitative Risk Management*, Princeton, NJ: Princeton University Press.
- ——— (2015): Quantitative Risk Management, Princeton, NJ: Princeton University Press, 2nd ed.
- NAKAMOTO, S. (2009): "Bitcoin: A Peer-to-Peer Electronic Cash System,".
- Nelsen, R. (2002): "Concordance and copulas: A survey," in *Distributions with Given Marginals and Statistical Modelling*, Kluwer Academic Publishers, 169–178.
- Nelsen, R. B. (1999): An Introduction to Copulas, Springer.

- Politis, D. N. and J. P. Romano (1994): "The Stationary Bootstrap," *Journal of the American Statistical Association*, 1303–1313.
- Schweizer, B., E. F. Wolff, et al. (1981): "On nonparametric measures of dependence for random variables," *Annals of Statistics*, 9, 879–885.
- SKLAR, A. (1959): "Fonctions de répartition a n dimensions et leurs marges," Publications de l'Institut de Statistique de l'Universite de Paris, 8, 229–231.
- ZEEVI, A. AND R. MASHAL (2002): "Beyond correlation: Extreme co-movements between financial assets," Available at SSRN 317122.

A Density of linear combination of random variables

Proposition 6 Let $X = (X_1, ..., X_d)^{\top}$ be real-valued random variables with corresponding copula density $\mathbf{c}_{X_1,...,X_d}$, and continuous marginals $F_{X_1},...,F_{X_d}$. Then, the pdf of the linear combination of marginals $Z = n_1 \cdot X_1 + ... + n_d \cdot X_d$ is

$$f_Z(z) = \left| n_1^{-1} \right| \int_{[0,1]^{d-1}} \mathbf{c}_{X_1,...,X_d} \left(F_{X_1}(S(z)), u_2, ..., u_d \right) \cdot f_{X_1}(S(z)) du_2 ... du_d$$
 (29)

$$S(z) = \frac{1}{n_1} \cdot z - \frac{n_2}{n_1} \cdot F_{X_2}^{(-1)}(u_2) - \dots - \frac{n_d}{n_1} \cdot F_{X_d}^{(-1)}(u_d).$$

Proof. Let $Z = n_1 \cdot X_1 + \dots + n_d \cdot X_d$ and let $\mathbf{A} = \begin{bmatrix} n_1 & n_2 & \cdots & n_d \\ 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & & 1 \end{bmatrix}$. Then,

$$egin{bmatrix} Z \ X_2 \ dots \ X_d \end{bmatrix} = oldsymbol{A} egin{bmatrix} X_1 \ X_2 \ dots \ X_d \end{bmatrix}.$$

By transformation of the variables

$$\begin{aligned} \boldsymbol{f}_{Z,X_2,...,X_d}(z,x_2,...,x_d) &= \boldsymbol{f}_{X_1,...,X_d} \begin{pmatrix} \boldsymbol{A}^{-1} \begin{bmatrix} z \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \end{pmatrix} \cdot |\det \boldsymbol{A}^{-1}| \\ &= \left| n_1^{-1} \right| \boldsymbol{f}_{X_1,...,X_d} \left(S(z),x_2,...,x_d \right). \end{aligned}$$

Let $u_i = F_{X_i}(x_i)$ and by chain rule we have

$$\begin{split} \boldsymbol{f}_{X_1,...,X_d}(x_1,...,x_d) &= \frac{\partial^d F_{X_1,...,X_d}(x_1,...,x_d)}{\partial x_1...\partial x_d} \\ &= \boldsymbol{c}_{X_1,...,X_d}(u_1,...,u_d) \cdot \prod_{i=1}^d f_{X_i}(x_i). \end{split}$$

Therefore,

$$\begin{aligned} \boldsymbol{f}_{Z,X_{2},...,X_{d}}(z,x_{2},...,x_{d}) &= \\ & \left| n_{1}^{-1} \right| \cdot \boldsymbol{c}_{X_{1},...,X_{d}} \left(F_{X_{1}}(S(z)), u_{2},...,u_{d} \right) \cdot f_{X_{1}} \{ S(z) \} \cdot \prod_{i=2}^{d} f_{X_{i}}(x_{i}). \end{aligned}$$

The claim (29) is obtained by integrating out $x_2, ... x_d$ by substituting $dx_i = \frac{1}{f_{X_i}(x_i)} du_i$.

B Summary Statistics of Assets

	Mean %	Std %	Skew	Kurt	MD %	MD date	ρ	au
Hedging Insti	rument							
BTCF	0.3906	4.6312	-0.5060	4.4204	-26.9920	2020-03-12	1.0000	1.0000
Individual Cr	ryptos							
BTC	0.3915	4.4023	-0.5857	4.6565	-25.9965	2020-03-12	0.9975	0.9507
ETH	0.6819	6.0103	-0.2557	5.2646	-32.0144	2020-03-12	0.7712	0.5988
ADA	0.9467	6.6990	0.1661	2.3086	-26.8528	2020-03-12	0.6296	0.4825
LTC	0.3227	6.4781	-0.9935	5.3011	-37.5913	2021-05-19	0.8080	0.6113
XRP	0.2987	7.9843	0.5542	12.4882	-52.7652	2020-12-23	0.4510	0.4939
Crypto Indice	es with BT	C Consti	tuent					
BITX	0.4308	4.5676	-0.8842	4.7222	-27.0220	2020-03-12	0.9769	0.8738
CRIX	0.4602	4.5420	-0.7952	4.7549	-27.1385	2020-03-12	0.9799	0.8769
BITW100	0.4683	4.6174	-0.9864	4.9381	-27.2694	2020-03-12	0.9674	0.8537
Crypto Indices without BTC Constituent								
BITW20	0.6249	5.5021	-1.1518	5.2203	-31.0092	2020-03-12	0.7674	0.5883
BITW70	0.6353	5.8155	-1.1171	5.1926	-32.3453	2021-05-19	0.7525	0.5459

Table 5: Summary statistics of assets' daily returns during the out-of-sample period, from 2019-10-21 to 2021-05-27. The first four columns are the first four moments of assets' daily returns. The fifth and sixth columns are the maximum drawdown (MD) and the date of the MD. The last two columns are Pearson's ρ s and Kendall's τ s between the assets and BTCF.

C Summary Statistics of Hedged Portfolios

	Mean %	Std %	Skew	Kurt	MD %	MD date	Variance		
Individual Cryptos									
BTC	0.0215	0.3221	-1.0119	3.1929	-1.4393	2020-11-30	0.0000		
ETH	0.2823	3.8741	0.9469	7.1064	-17.7421	2021-05-19	0.0015		
ADA	0.5617	5.2722	1.3634	4.4818	-13.8687	2021-01-08	0.0028		
LTC	-0.0871	3.9052	-0.3617	7.6239	-28.3029	2021-05-19	0.0018		
XRP	-0.0123	7.1537	1.1451	20.0236	-52.5236	2020-12-23	0.0043		
Crypto Indice	es with BT	C Consti	tuent						
BITX	0.0561	0.9954	-0.4204	13.2487	-7.7567	2021-05-19	0.0001		
CRIX	0.0812	0.9183	-0.0027	14.3136	-7.1025	2021-05-19	0.0001		
BITW100	0.0855	1.1986	-1.7440	22.2644	-11.3866	2021-05-19	0.0001		
Crypto Indice	es without	BTC Co	nstituent						
BITW20	0.2429	3.5846	-0.3063	4.1622	-21.4680	2021-05-19	0.0013		
BITW70	0.2706	3.8838	-0.6490	4.6312	-23.9984	2021-05-19	0.0015		

Table 6: Summary statistics of out-of-sample daily returns of hedged portfolios that minimize variance.

	Mean $\%$	Std $\%$	Skew	Kurt	MD $\%$	MD date	$\mathrm{VaR}~5\%$			
Individual Cryptos										
BTC	0.0253	0.3294	-0.9725	3.4373	-1.5347	2020-11-30	0.0063			
ETH	0.3084	3.8944	1.0243	7.4297	-19.1750	2021-05-19	0.0514			
ADA	0.5726	5.2204	1.2981	4.2544	-14.6974	2021-05-19	0.0769			
LTC	-0.0742	3.9145	-0.3836	7.5384	-28.3672	2021-05-19	0.0622			
XRP	0.0208	7.1520	1.1269	19.8930	-52.5667	2020-12-23	0.0683			
Crypto Indice	es with BT	C Consti	tuent							
BITX	0.0562	0.9930	-0.3117	12.4780	-7.5639	2021-05-19	0.0128			
CRIX	0.0863	0.9151	0.0718	13.7915	-6.9744	2021-05-19	0.0092			
BITW100	0.0846	1.1980	-1.6592	21.3725	-11.2582	2021-05-19	0.0164			
Crypto Indice	Crypto Indices without BTC Constituent									
BITW20	0.2728	3.5940	-0.3721	4.4896	-22.0733	2021-05-19	0.0546			
BITW70	0.2847	3.9133	-0.6580	4.7874	-24.6513	2021-05-19	0.0626			

 $\textbf{Table 7:} \ \ \text{Summary statistics of out-of-sample daily returns of hedged portfolios that minimize VaR 5\%.}$

	Mean %	Std %	Skew	Kurt	MD %	MD date	VaR 1%		
Individual Cryptos									
BTC	0.0176	0.3270	-1.0405	3.3742	-1.5689	2020-11-30	0.0134		
ETH	0.2977	3.9132	0.9547	7.2414	-18.6061	2021-05-19	0.1026		
ADA	0.5562	5.3466	1.1362	3.9334	-15.4795	2021-05-19	0.1106		
LTC	-0.0852	4.1503	-0.7234	7.3208	-29.0915	2021-05-19	0.1030		
XRP	0.0352	7.1658	1.1582	19.8506	-52.5727	2020-12-23	0.1387		
Crypto Indice	es with BT	C Consti	tuent						
BITX	0.0593	1.0178	-0.5331	13.3100	-8.0299	2021-05-19	0.0247		
CRIX	0.0738	0.9695	-0.4729	13.6500	-7.0185	2021-05-19	0.0245		
BITW100	0.0823	1.2338	-1.9365	23.1938	-11.8752	2021-05-19	0.0347		
Crypto Indice	Crypto Indices without BTC Constituent								
BITW20	0.2499	3.6210	-0.3866	4.3396	-21.6634	2021-05-19	0.0988		
BITW70	0.2788	3.9257	-0.7635	5.1288	-24.5294	2021-05-19	0.1147		

Table 8: Summary statistics of out-of-sample daily returns of hedged portfolios that minimize VaR 1%.

	Mean $\%$	Std $\%$	Skew	Kurt	$\mathrm{MD}~\%$	MD date	ES 5%		
Individual Cryptos									
BTC	0.0204	0.3234	-1.0150	3.4423	-1.5629	2020-11-30	0.0101		
ETH	0.3082	3.8890	1.0119	7.4077	-18.7819	2021-05-19	0.0782		
ADA	0.5525	5.2673	1.2557	4.2423	-14.9647	2021-05-19	0.0984		
LTC	-0.0808	3.9829	-0.4957	7.2302	-28.4608	2021-05-19	0.0962		
XRP	0.0176	7.1533	1.1411	19.9176	-52.5698	2020-12-23	0.1354		
Crypto Indice	es with BT	C Consti	tuent						
BITX	0.0591	1.0065	-0.3453	12.1335	-7.6211	2021-05-19	0.0215		
CRIX	0.0777	0.9207	0.0164	13.5608	-6.9894	2021-05-19	0.0173		
BITW100	0.0848	1.2125	-1.6397	19.7472	-11.1357	2021-05-19	0.0274		
Crypto Indices without BTC Constituent									
BITW20	0.2608	3.6115	-0.3555	4.2016	-21.5430	2021-05-19	0.0804		
BITW70	0.2785	3.9157	-0.6949	4.8047	-24.3474	2021-05-19	0.0908		

 $\textbf{Table 9:} \ \ \text{Summary statistics of out-of-sample daily returns of hedged portfolios that minimize ES 5\%.}$

	Mean %	Std %	Skew	Kurt	MD %	MD date	ES 1%
Individual Cr	ryptos						
BTC	0.0148	0.3476	-0.8354	3.3054	-1.6225	2020-11-30	0.0234
ETH	0.3080	3.8954	0.9840	7.4947	-18.7625	2021-05-19	0.1299
ADA	0.5016	5.4040	1.1008	3.9607	-15.4481	2021-05-19	0.1463
LTC	-0.1029	4.1581	-0.7757	7.4375	-29.1727	2021-05-19	0.1647
XRP	-0.0200	7.2887	1.1121	18.8732	-52.5700	2020-12-23	0.2516
Crypto Indice	es with BT	C Consti	tuent				
BITX	0.0598	1.0312	-0.4410	11.5863	-7.7424	2021-05-19	0.0411
CRIX	0.0835	0.9461	-0.0361	12.4047	-7.0203	2021-05-19	0.0350
BITW100	0.0781	1.2640	-1.9645	21.8836	-11.9263	2021-05-19	0.0593
Crypto Indice	es without	BTC Co	nstituent				
BITW20	0.2538	3.6323	-0.4086	4.4462	-21.9866	2021-05-19	0.1282
BITW70	0.2660	3.9320	-0.7598	5.0050	-24.4764	2021-05-19	0.1535

Table 10: Summary statistics of out-of-sample daily returns of hedged portfolios that minimize ES 1%.

	Mean %	Std %	Skew	Kurt	MD %	MD date	ERM k=10		
Individual Cryptos									
BTC	0.0223	0.3221	-1.0008	3.4153	-1.5242	2020-11-30	0.0057		
ETH	0.3117	3.8679	1.0345	7.5751	-18.8729	2021-05-19	0.0491		
ADA	0.5722	5.3590	1.4203	4.6970	-14.3885	2021-01-08	0.0700		
LTC	-0.0512	3.8812	-0.2929	7.7022	-28.0879	2021-05-19	0.0616		
XRP	0.0155	7.1579	1.1244	19.8583	-52.5689	2020-12-23	0.0787		
Crypto Indice	es with BT	C Consti	tuent						
BITX	0.0590	1.0078	-0.4427	13.0839	-7.8581	2021-05-19	0.0127		
CRIX	0.0840	0.9087	0.0488	14.5501	-7.0530	2021-05-19	0.0100		
BITW100	0.0853	1.2032	-1.6522	20.5562	-11.1846	2021-05-19	0.0153		
Crypto Indices without BTC Constituent									
BITW20	0.2564	3.6009	-0.3446	4.2152	-21.5920	2021-05-19	0.0503		
BITW70	0.2818	3.9074	-0.6952	4.8745	-24.5250	2021-05-19	0.0557		

Table 11: Summary statistics of out-of-sample daily returns of hedged portfolios that minimize ERM k = 10.