Modèles Linéaires Appliqués

Arthur Charpentier

Automne 2020

Rappels #3.3 (estimate F and f)

Cumulative Distribution Function

Given a random variable X, F(x), i.e. $x \mapsto \mathbb{P}[X \leq x]$ is an increasing function, taking values in [0,1]. Consider a sample $\mathbf{x} = \{x_1, x_2, \dots, x_n\}$, a

natural estimator is

$$\widehat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(x_i \le x)$$

```
1 > sample_x = sort(sample_x)
2 > n = length(sample_x)
3 > y = (1:n)/n
4 > plot(ecdf(sample_x))
5 > Fhat = function(x)
6 mean(sample_x <= x)</pre>
```


Density & Histogram

Given a random variable X, f is such that $F(x) = \int_{-\infty}^{\infty} f(t)dt$ or conversely, f(x) = F'(x).

But we cannot define $\widehat{f}(x) = \widehat{F}'(x)$

For an histogram, consider $a_0 \le a_1 \le \cdots \le a_{k-1} \le a_k$ so that $\forall i, x_i \in (a_0, a_k)$, and $\forall j, a_{j+1} - a_j = h$ (constant).

$$\text{if } x \in [a_j, a_{j+1}), \ \widehat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} \mathbf{1}_{[a_j, a_{j+1})}(x)$$

Problem: very sensitive to a_0 and h...

Density & Histogram

if
$$x \in [a_j, a_{j+1})$$
, $\widehat{f}(x) = \frac{1}{nh} \underbrace{\sum_{i=1}^{n} \mathbf{1}_{[a_j, a_{j+1})}(x)}_{\text{histogram}}$

Here,
$$\int_{a_0}^{a_k} \widehat{f}(x) dx = \int_{\mathbb{R}} \widehat{f}(x) dx = 1$$
.

Height (feet)

Height (feet)

Moving Histogram

$$\widehat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n \mathbf{1}(|x_i - x| \le h/2)$$

Moving Histogram

 \widehat{F} cannot be differentiated, but we can consider

$$f_h(x) = \frac{1}{h} \Big[\underbrace{F(x+h/2) - F(x-h/2)}_{\mathbb{P}(X \in [x \pm h/2])} \Big]$$

i.e.

$$\widehat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n \mathbf{1} (x_i \in [x - h/2, x + h/2])$$

$$\widehat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n \mathbf{1} (|x_i - x| \le h/2)$$

One can prove that $\mathbb{E}(\widehat{f}_h(x)) = f_h(x) \sim f(x) + \frac{h^2}{24}f''(x)$

i.e. bias $(\widehat{f_h}(x)) \sim \frac{h^2}{24} f''(x)$, while $Var(\widehat{f_h}(x)) \sim \frac{1}{nh} \cdot f_h(x)$

Moving Histogram

small h bias bias $(\widehat{f}_h(x))$ small variance $Var(\widehat{f}_h(x))$ large

large h bias bias $(\widehat{f}_h(x))$ large variance $Var(\widehat{f}_h(x))$ small

Kernel Density

$$\widehat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n k\left(\frac{x_i - x}{h}\right)$$

Kernel Density

bias bias $(\widehat{f_h}(x))$ small variance $Var(\widehat{f_h}(x))$ large

bias bias $(\widehat{f}_h(x))$ large variance $Var(\widehat{f}_h(x))$ small

Histogram & Density

- > hist(x, probability=TRUE)
- plot(density(x))
- 3 > plot(density(x), kernel="gaussian", bw=1)

Rectangle:
$$k(u) = \frac{1}{2} 1_{[-1,+1]}(u)$$

Triangle: $k(u) = (1 - |u|)_+$
Epanechnikov: $k(u) = \frac{3}{4} (1 - u^2)_+$

Triangle:
$$k(u) = (1 - |u|)_+$$

Epanechnikov:
$$k(u) = \frac{3}{4}(1 - u^2)$$

Gaussian:
$$k(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right)$$

Histogram & Density

via Reference-Dependent Preferences: Evidence from Marathon Runners