Discrete Mathematics, Spring & Summer 2024

Midterm Exam (100 pts)

Class ID.	Name:	Score:	
1. (33 points) Determin otherwise a × in the blank		ents are true or false. If it is tru	e write a
	1+1=3 if and only if 2+2=3" is		
	$(p \to q) \land \neg p) \to \neg q$ is a tauto		
Whenever the syste If users can access	tem specifications are consisted em software is being upgraded the file system, then they can be new files, then the system so	, users cannot access the file syst save new files.	tem.
() (4) If $P(A) \in P(B)$, the	en $A \in B$. $(P(S))$ is the power set	of S.)	
() (5) Suppose $A=\{a,b,c\}$, then $\{\{a\}\}\subset P(A)$. $(P(S))$ is the	e power set of S.)	
$()(6) A \oplus A = A (\oplus i$	s the symmetric difference of	two sets.)	
()(7) Let f be a function	from the set A to the set B , let	S and T be subsets of A , then	
	$f(S \cup T) \subseteq f(S) \cup$	f(T)	
()(8) Let R be the set of	real numbers. Then $ R = R \times R $	/	
(') (9) The set of all finite	subsets of the set of positive	integers is an uncountable set.	
$(10)\sum_{j=1}^{n}(j^3+j)$ is $O(n^3)$	i.		
() (11) In a group of five	people (where any two people	e are either friends or enemies), t	there are
either three mutu	al friends or three mutual ener	nies.	
2. (27 points) Fill in the	blanks.		
(1) (2pts) The full disjunction	ve normal form of(p∧q)V(r∧	q) $\bigvee \neg p$ is:	
(2) (2pts) The power set of	{∅, {∅}} is		
	3 and $f: B \to C$ where $A = \{1, 2, 2, a\}, (3, a), (4, b)\}$ and $f = \{(a, 10, 2, a), (4, b)\}$	$\{a,3,4\}, B = \{a,b,c\}, C = \{2,6,10\}, \{a,b,c\}, \{c,2\}\}, f \circ g = \{a,b,c\}, \{c,c\}\}$	and f and
	ent truth tables of compound pa	ropositions are there that involve	the

(5) (2pts) Arrange the functions 2.5^n , n^{100} , $(logn)^3$, \sqrt{nlogn} , $(n!)^2$, and $n^{99} + n^{98}$ in a list so that each function is big-O of the next function.
(6) (2pts) Suppose $ A = 20$ and $ B = 24$. The number of 1-1 functions $f: A \rightarrow B$ is
If $ A = 24$ and $ B = 20$, then the number of 1-1 functions $f: A \rightarrow B$ is
(7) (3pts) You have 10 books and 4 labeled boxes (labeled 1 2, 3, 4). In how many ways can you put the 10 books into the boxes if
(a) the books are distinct.
(b) the books are identical.
(c) the books are identical and no box can be left empty.
(8) (2pts) The number of ways to put 7 of the 8 letters in CHEMISTS in a row is
(9) (2pts) The next larger permutation in lexicographic order after 3254761 is
(10) (2pts) The next larger 4-combinations of the set {1, 2, 3, 4, 5, 6, 7, 8} after {1, 2, 3, 5} is
(11) (2pts) The number of bit strings of length n, where $n \ge 6$, containing exactly three occurrences of 01 is
(12) (2pts) Let $V(n)$ be the number of strings of n letters of the ordinary alphabet that do not have adjacent vowels. Find a recurrence for $V(n)$ along with a sufficient number of initial cases.
(13) (2pts) A particular solution of the linear nonhomogeneous recurrence relation $a_n = 2a_{n-1} + n-2^n$
has the form of

3. (5 points) Determine whether there exist an onto function f from S to P(S), where S is a set and P(S) is the power set of S. You need to justify your answer.

4. (5 points)

Consider the following argument:

She is a Math Major or a Computer Science Major.

If she does not know discrete math, she is not a Math Major.

If she knows discrete math, she is smart.

She is not a Computer Science Major.

Therefore, she is smart.

Let p: "She is a Math Major;" q: "She is a Computer Science Major;" r: "She knows discrete math;" s: "She is smart."

- 1) Write the formal form of the above argument.
- 2) Determine whether this argument is valid and justify your answer.

5. (10 points) Show that in any set of n+1 positive integers not exceeding 2n there must be two that are relatively prime

6. (10 points) Prove the following identity using a combinatorial argument.

$$\sum_{k=0}^{r} {n+k \choose k} = {n+r+1 \choose r}$$
 (*n* and *r* are positive integers)

7. (10 points) Suppose a vending machine accepts \$1 coins, \$1 bills, \$2 bills, \$5 bills and \$5 coins. Write a recurrence relation for the number of ways to put n dollars into the machine, assuming that the order that the coins and bills are entered matters. Include the initial conditions.