

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Boolean Algebra, Identities - 1

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Boolean Algebra, Identities - 1

Reetinder Sidhu

Department of Computer Science and Engineering

Course Outline

- Digital Design
 - Combinational logic design
 - ★ Boolean Algebras, Identities
 - Sequential logic design
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

- Truth table from Logic Circuit
- Boolean Formulas
- Combinational Logic Circuits

What is a Logic Circuit?

Logic Circuit

Multiple logic gates combined together, with the output of one gate being connected to the input of another, form a *logic circuit*

What is a Logic Circuit?

Logic Circuit

Multiple logic gates combined together, with the output of one gate being connected to the input of another, form a *logic circuit*

What is a Logic Circuit?

Logic Circuit

Multiple logic gates combined together, with the output of one gate being connected to the input of another, form a *logic circuit*

What is a Logic Circuit?

Logic Circuit

Multiple logic gates combined together, with the output of one gate being connected to the input of another, form a *logic circuit*

What is a Logic Circuit?

Logic Circuit

Multiple logic gates combined together, with the output of one gate being connected to the input of another, form a *logic circuit*

What is a Logic Circuit?

Logic Circuit

Multiple logic gates combined together, with the output of one gate being connected to the input of another, form a *logic circuit*

What is a Logic Circuit?

Logic Circuit

Multiple logic gates combined together, with the output of one gate being connected to the input of another, form a *logic circuit*

What is a Logic Circuit?

Logic Circuit

Multiple logic gates combined together, with the output of one gate being connected to the input of another, form a *logic circuit*

What is a Logic Circuit?

Logic Circuit

Multiple logic gates combined together, with the output of one gate being connected to the input of another, form a *logic circuit*

BOOLEAN ALGEBRA, IDENTITIES - 1 Boolean Formula Syntax

BOOLEAN ALGEBRA, IDENTITIES - 1 Boolean Formula Syntax

Syntax Rules for Boolean Formulas

- A Boolean constant (0 or 1) is a Boolean Formula
- A Boolean variable (say x) is a Boolean formula
- If *P* and *Q* are Boolean formulas then so are:
 - $(P \cdot Q)$
 - (P+Q)
 - O F

Boolean Formula Syntax

Syntax Rules for Boolean Formulas

- A Boolean constant (0 or 1) is a Boolean Formula
- A Boolean variable (say x) is a Boolean formula
- If *P* and *Q* are Boolean formulas then so are:
 - \bigcirc $(P \cdot Q)$
 - (P+Q)
 - F

Example of Boolean Formula: $((a \cdot \overline{c}) + (b \cdot c))$

Boolean Formula Syntax

Syntax Rules for Boolean Formulas

- A Boolean constant (0 or 1) is a Boolean Formula
- A Boolean variable (say x) is a Boolean formula
- If *P* and *Q* are Boolean formulas then so are:
 - \bigcirc $(P \cdot Q)$
 - (P+Q)
 - \bigcirc \overline{P}

Example of Boolean Formula: $((a \cdot \overline{c}) + (b \cdot c))$

- (i) From rule 2, Boolean variable a is a Boolean formula
- (ii) From rule 2, Boolean variable b is a Boolean formula
- (iii) From rule 2, Boolean variable c is a Boolean formula
- (iv) From rule 3c and step (iii) above, \overline{c} is a Boolean formula
- (v) From rule 3a, and steps (i) and (iv) above, $(a \cdot \overline{c})$ is a Boolean formula
- (vi) From rule 3a, and steps (ii) and (iii) above, $(b \cdot c)$ is a Boolean formula
- (vii) From rule 3b, and steps (v) and (vi) above, $((a \cdot \overline{c}) + (b \cdot c))$ is a Boolean formula

BOOLEAN ALGEBRA, IDENTITIES - 1 Meaning of Boolean Formulas

Each Boolean formula "means" a Boolean function as well as a logic circuit

Meaning of Boolean Formulas

Each Boolean formula "means" a Boolean function as well as a logic circuit

Meaning of Boolean Formulas

- The Boolean constants and variables form the inputs of the Boolean functions (or logic circuit)
- means AND Boolean function (or logic gate)
- means NOT function (or logic gate)

Meaning of Boolean Formulas

Each Boolean formula "means" a Boolean function as well as a logic circuit

Meaning of Boolean Formulas

- The Boolean constants and variables form the inputs of the Boolean functions (or logic circuit)
- means AND Boolean function (or logic gate)
- means NOT function (or logic gate)

Example

Consider the Boolean formula $((a\cdot \overline{c})+(b\cdot c))$. Using the rules on the left, it is converted to:

BOOLEAN ALGEBRA, IDENTITIES - 1 Simplifying Notation in Boolean Formulas

- Boolean formulas can be difficult to read because of many brackets
- Number of brackets can be reduced as follows:
 - \blacktriangleright has higher precedence than + (like in arithmetic, \times has higher precedence than +)
 - ★ So $((a \cdot \overline{c}) + (b \cdot c))$ can be written as $(a \cdot \overline{c} + b \cdot c)$
 - Outermost brackets can be dropped
 - ★ So $(a \cdot \overline{c} + b \cdot c)$ can be written as $a \cdot \overline{c} + b \cdot c$
 - can be dropped (like in arithmetic, $a \times b$ can be written as ab)
 - ★ So $a \cdot \overline{c} + b \cdot c$ can be written as $a\overline{c} + bc$

BOOLEAN ALGEBRA, IDENTITIES - 1 What is a Combinational Logic Circuit?

Logic circuits can be constructed by wiring various gates together in arbitrary ways

BOOLEAN ALGEBRA, IDENTITIES - 1 What is a Combinational Logic Circuit?

Logic circuits can be constructed by wiring various gates together in arbitrary ways

Combinational Logic Circuits

But only those logic circuits that can be represented by Boolean formulas are called **combinational logic circuits** (or just combinational logic)

BOOLEAN ALGEBRA, IDENTITIES - 1 What is a Combinational Logic Circuit?

Logic circuits can be constructed by wiring various gates together in arbitrary ways

Combinational Logic Circuits

But only those logic circuits that can be represented by Boolean formulas are called **combinational logic circuits** (or just combinational logic)

- In other words, combinational logic circuits are those that can be specified as Boolean functions
- Logic circuits that cannot be represented by a Boolean formula or function:
 - Logic circuits where the output of a gate is fed back as an input
 - Logic circuits where the outputs of two gates are connected together

- Consider the following two Boolean formulas:
 - $((a-b)+(\overline{a}\cdot b))$ $((a+b)\cdot(\overline{a}+\overline{b}))$

- Consider the following two Boolean formulas:
 - $((a \overline{\cdot} b) + (\overline{a} \cdot b))$
 - $((a+b)\cdot (\overline{a}+\overline{b}))$
- Are they really Boolean formulas? How will you check
- What do their simplified notations look like
- Write the truth table for each formula
 - Is there any relation between the two truth tables
 - Also compare with truth tables for basic gates

- Consider the following two Boolean formulas:
 - $((a \overline{\cdot} b) + (\overline{a} \cdot b))$
 - $((a+b)\cdot(\overline{a}+\overline{b}))$
- Are they really Boolean formulas? How will you check
- What do their simplified notations look like
- Write the truth table for each formula
 - Is there any relation between the two truth tables
 - Also compare with truth tables for basic gates
- Draw the combinational logic circuit for each formula