Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Кафедра мікроелектроніки

3BIT

про виконання лабораторної роботи №1 з дисципліни: «Напівпровідникова електроніка» Тема роботи: «Дослідження випрямляючих напівпровідникових діодів»

Виконав студент 3-го курсу групи ДП-91		
Ремез Сергій Олександрович		
	(підпис)	(дата здачі)
Перевірив Королевич Любомир Миколайович		
	(підпис)	(дата здачі)

1. МЕТА РОБОТИ

Теоретичне вивчення і практичне дослідження випрямляючих діодів; визначення фізичних та основних технічних параметрів германійових та кремнійових діодів із їх вольт-амперних характеристик.

2. ЗАВДАННЯ

- 1. Вивчити структуру параметрів (паспортних даних) досліджуваного підкласу діодів. Ознайомитися із вимірювальним стендом та використовуваними приладами.
- 2. Зібрати схему для дослідження вольт-амперної характеристики випрямляючих діодів .
- 3. Виміряти вольт-амперні характеристики германієвого та кремнієвого діодів при кімнатній температурі. Результати вимірювань записати в таблиці.
- 4. *Провести температурні дослідження ВАХ германієвого та кремнієвого діодів при температурі +70 о С (для прямої та зворотної полярності напруги).
- 5. Побудувати графіки вольт-амперних характеристик діодів.
- 6. Графічно визначити дифузійний потенціал ϕ_0 , опір бази r_b та струм виродження І вир для кожного з діодів. Оцінити тепловий струм германієвого діода.
- 7. За побудованими графіками характеристик визначити основні параметри діодів.
- 8. **Побудувати графіки залежностей статичного та динамічного опорів діодів від прикладеної напруги (або вирахувати статичний та диференційний опори посередині прямої та зворотної гілок ВАХ кожного діоду і порівняти їх між собою).
- 9. Провести аналіз результатів досліджень, і зробити висновки з виконаної роботи.

3. СХЕМА ВИМІРЮВАННЯ

Рис. 1. Схема для вимірювання ВАХ діода. При знятті зворотної гілки ВАХ змінюється полярність джерела живлення та номінал резистора R (величина резистора для прямої гілки R_1 =5 кОм; для зворотної R_2 = 100 кОм).

4. РЕЗУЛЬТАТИ ДОСЛІДЖЕНЬ

4.1 Результати вимірювань

U[B]	$U_R[B]$	$U_d[B]$	$I_d[A]$	$I_d[MA]$
0,69	0,61	0,08	0,00012	0,122
3,52	3,37	0,15	0,00067	0,674
5,23	5,05	0,18	0,00101	1,01
6,45	6,35	0,1	0,00127	1,27
7,52	7,33	0,19	0,00147	1,466
9,48	9,27	0,21	0,00185	1,854
11,9	11,7	0,2	0,00234	2,34
13,5	13,1	0,4	0,00262	2,62
14,6	14,3	0,3	0,00286	2,86
16,7	16,5	0,2	0,0033	3,3
18,7	18,3	0,4	0,00366	3,66
21,6	21,4	0,2	0,00428	4,28
22,4	22	0,4	0,0044	4,4
23	22,6	0,4	0,00452	4,52
23,7	23,3	0,4	0,00466	4,66
25,4	25,1	0,3	0,00502	5,02
27	26,7	0,3	0,00534	5,34
29,3	29,1	0,2	0,00582	5,82
31	30,7	0,3	0,00614	6,14
32,5	32,3	0,2	0,00646	6,46
33,3	33	0,3	0,0066	6,6
34,5	34,2	0,3	0,00684	6,84
35	34,7	0,3	0,00694	6,94
36,2	35,3	0,9	0,00706	7,06
38	37,5	0,5	0,0075	7,5
38,3	38,2	0,1	0,00764	7,64
39,4	39,2	0,2	0,00784	7,84
40,6	39,8	0,8	0,00796	7,96
42,9	42,6	0,3	0,00852	8,52

44	43,6	0,4	0,00872	8,72
47	46,9	0,1	0,00938	9,38
48,9	48,6	0,3	0,00972	9,72
49,1	48,8	0,3	0,00976	9,76
50,27	49,9	0,37	0,00998	9,98

Табл. 4.1. ВАХ германієвого (Ge) діода (умови досліджень: пряме зміщення, $R_I = 5 \ \kappa O M$, $T_I = 20 \ ^{\circ}C$)

Розрахунок напруги U_D на германієвому діоді проводиться за формулою:

$$U_D = U - U_R;$$

$$U_{D1} = 0.69 - 0.61 = 0.08;$$
 $U_{Dmax} = U_{max} - U_{Rmax};$

Розрахунок струму I_D , що протікає через діод проводиться за формулою:

$$I_D = \frac{U_R}{R}$$
;

Знайдемо струм для прямого зміщення, R = 5 кОм (Ge):

$$I_{D1} = \frac{U_{R1}}{R} = \frac{0.69}{5 \cdot 10^3} = 0.122 \text{ MA}; \quad I_{Dmax} = \frac{U_{Rmax}}{R};$$

Занесемо отримані значення до таблиці 4.1.

U[B]	$U_R[B]$	$U_d[B]$	$I_d[A]$	$I_d[MA]$
0,6	0,54	0,06	0,0000054	0,0054
1,07	0,89	0,18	0,0000089	0,0089
1,21	0,95	0,26	0,0000095	0,0095
1,4	0,96	0,44	0,0000096	0,0096
1,54	1	0,54	0,00001	0,01
2,54	1,32	1,22	0,0000132	0,0132
3,1	1,4	1,7	0,000014	0,014
4,8	1,76	3,04	0,0000176	0,0176
5,38	1,82	3,56	0,0000182	0,0182
6,5	1,9	4,6	0,000019	0,019
7,3	1,93	5,37	0,0000193	0,0193
8,5	1,95	6,55	0,0000195	0,0195
10	2,03	7,97	0,0000203	0,0203
11,1	2,08	9,02	0,0000208	0,0208
12,03	2,12	9,91	0,0000212	0,0212

13,65	2,34	11,31	0,0000234	0,0234	
14,1	2,43	11,67	0,0000243	0,0243	
16,6	3,24	13,36	0,0000324	0,0324	
17,3	3,55	13,75	0,0000355	0,0355	
18,4	4,02	14,38	0,0000402	0,0402	
19,35	4,45	14,9	0,0000445	0,0445	
20,2	4,95	15,25	0,0000495	0,0495	
21,8	5,75	16,05	0,0000575	0,0575	
22,6	6,25	16,35	0,0000625	0,0625	
23,1	6,45	16,65	0,0000645	0,0645	
24,4	7,25	17,15	0,0000725	0,0725	
25,7	8	17,7	0,00008	0,08	
26,6	8,55	18,05	0,0000855	0,0855	
27	9,15	17,85	0,0000915	0,0915	
28,42	9,61	18,81	0,0000961	0,0961	
29,2	10,1	19,1	0,000101	0,101	
30,1	10,67	19,43	0,0001067	0,1067	
32,2	11,8	20,4	0,000118	0,118	
34,3	13,1	21,2	0,000131	0,131	
35,7	14	21,7	0,00014	0,14	
37	14,75	22,25	0,0001475	0,1475	
39,3	16,2	23,1	0,000162	0,162	
40,8	17,07	23,73	0,0001707	0,1707	
42,8	18,3	24,5	0,000183	0,183	
48,5	18,8	29,7	0,000188	0,188	
44,1	19,02	25,08	0,0001902	0,1902	
45,25	19,86	25,39	0,0001986	0,1986	
46,5	20,7	25,8	0,000207	0,207	
48,3	21,7	26,6	0,000217	0,217	
50,01	22,85	27,16	0,0002285	0,2285	
Tobe 42 DAV regressioners (Co) riogs					

Табл. 4.2. ВАХ германієвого (Ge) діода (умови досліджень: зворотне зміщення, $R_I=100~\kappa Om,~T_I=20^{\circ}C$)

Розрахунок напруги U_D на германієвому діоді проводиться за формулою:

$$U_D = U - U_R;$$

$$U_{D1} = 0.6 - 0.54 = 0.06;$$
 $U_{Dmax} = U_{max} - U_{Rmax};$

Розрахунок струму I_{D_i} що протікає через діод проводиться за формулою:

$$I_D = \frac{U_R}{R};$$

Знайдемо струм для зворотного зміщення, $R=100\ {\rm кOm}\ (Ge)$:

$$I_{D1} = \frac{U_{R1}}{R} = \frac{0.6}{100 \cdot 10^3} = 0.0054 \text{ mA}; \quad I_{Dmax} = \frac{U_{Rmax}}{R};$$

Занесемо отримані значення до таблиці 4.2.

U[B]	$U_R[B]$	$U_d[B]$	$I_d[A]$	I _d [мА]
0,64	0,19	0,45	0,000038	0,038
1,6	1,16	0,44	0,000232	0,232
2,8	2,2	0,6	0,00044	0,44
3,3	2,75	0,55	0,00055	0,55
4,25	3,68	0,57	0,000736	0,736
6,78	6,17	0,61	0,001234	1,234
7,05	6,42	0,63	0,001284	1,284
8,09	7,45	0,64	0,00149	1,49
10,3	9,7	0,6	0,00194	1,94
11,3	10,73	0,57	0,002146	2,146
12,8	12	0,8	0,0024	2,4
14,5	13,8	0,7	0,00276	2,76
15,3	14,4	0,9	0,00288	2,88
16,1	15,3	0,8	0,00306	3,06
17,08	16,42	0,66	0,003284	3,284
20,7	20,1	0,6	0,00402	4,02
22,9	21,9	1	0,00438	4,38
23,3	22,5	0,8	0,0045	4,5
26,2	25,5	0,7	0,0051	5,1
27,7	27	0,7	0,0054	5,4
29,1	28,4	0,7	0,00568	5,68
30,7	29,9	0,8	0,00598	5,98

1 21.06	20.26	0.7	0.006073	c 070
31,06	30,36	0,7	0,006072	6,072
33,6	32,9	0,7	0,00658	6,58
34,1	33,3	0,8	0,00666	6,66
35,2	34,5	0,7	0,0069	6,9
37,1	36,4	0,7	0,00728	7,28
38,9	38,2	0,7	0,00764	7,64
42,1	41,3	0,8	0,00826	8,26
44,6	43,9	0,7	0,00878	8,78
46,3	45,6	0,7	0,00912	9,12
47	46,2	0,8	0,00924	9,24
48,5	47,7	0,8	0,00954	9,54
49,3	48,5	0,8	0,0097	9,7
50,7	50	0,7	0,01	10

Табл. 4.3. ВАХ кремнієвого (Si) діода (умови досліджень: пряме зміщення, $R_I = 5 \ \kappa O M$, $T_I = 20 \ ^{\circ}C$)

Розрахунок напруги U_D на кремнієвому діоді проводиться за формулою:

$$U_D = U - U_R$$
;

$$U_{D1} = 0.64 - 0.19 = 0.45;$$
 $U_{Dmax} = U_{max} - U_{Rmax};$

Розрахунок струму I_D , що протікає через діод проводиться за формулою: $I_D = \frac{U_R}{R}$;

Знайдемо струм для прямого зміщення, R = 5 кОм (Si):

$$I_{D1} = \frac{U_{R1}}{R} = \frac{0.19}{5 \cdot 10^3} = 0.038 \text{ mA};$$

Занесемо отримані значення до таблиці 4.3.

U[B]	$U_R[B]$	$U_d[B]$	$I_d[A]$	I _d [мА]
0,6	0,01	0,59	1E-07	0,0001
1,5	0,02	1,48	2E-07	0,0002
3,12	0,02	3,1	2E-07	0,0002
4,42	0,01	4,41	1E-07	0,0001
5,4	0,02	5,38	2E-07	0,0002
6,3	0,02	6,28	2E-07	0,0002
7,72	0,02	7,7	2E-07	0,0002

9,47	0,02	9,45	2E-07	0,0002
10,06	0,02	10,04	2E-07	0,0002
11,3	0,0002	11,2998	2,2E-09	2,2E-06
12,8	0,0004	12,7997	3,5E-09	3,5E-06
13,9	0,0004	13,8996	3,8E-09	3,8E-06
14,5	0,42	14,08	4,2E-06	0,0042
16,5	0,0004	16,4996	4,4E-09	4,4E-06
17,9	0,46	17,44	4,6E-06	0,0046
18,3	0,48	17,82	4,8E-06	0,0048
20,21	0,51	19,7	5,1E-06	0,0051
21,3	0,52	20,78	5,2E-06	0,0052
22,5	0,0006	22,4995	5,5E-09	5,5E-06
24,6	0,0006	24,5994	6E-09	6E-06
27,7	0,65	27,05	6,5E-06	0,0065
28,9	0,7	28,2	7E-06	0,007
30,02	0,75	29,27	7,5E-06	0,0075
31,5	0,8	30,7	8E-06	0,008
32,6	0,85	31,75	8,5E-06	0,0085
33,3	0,86	32,44	8,6E-06	0,0086
34,5	0,97	33,53	9,7E-06	0,0097
40,1	1	39,1	0,00001	0,01
41,35	1,02	40,33	1E-05	0,0102
42,3	0,0012	42,2989	1,2E-08	1,2E-05
43,5	0,0012	43,4988	1,2E-08	1,2E-05
45,6	0,0012	45,5988	1,2E-08	1,2E-05
47,7	0,0012	47,6988	1,2E-08	1,2E-05
48,9	0,0013	48,8988	1,3E-08	1,3E-05
49,3	0,0013	49,2987	1,3E-08	1,3E-05
50,03	0,0014	50,0287	1,4E-08	1,4E-05

Табл. 4.4. ВАХ кремнієвого (Si) діода (умови досліджень: зворотне зміщення, $R_I=100~\kappa O$ м, $T_I=20$ °C)

Розрахунок напруги U_D на кремнієвому діоді проводиться за формулою:

$$U_D = U - U_R$$
;

$$U_{D1} = 0.6 - 0.01 = 0.59; \quad U_{Dmax} = U_{max} - U_{Rmax};$$

Розрахунок струму I_{D_i} що протікає через діод проводиться за формулою:

Знайдемо струм для зворотного зміщення, R = 100 кОм (Si):

$$I_{D1} = \frac{U_{R1}}{R} = \frac{0.6}{100 \cdot 10^3} = 0.0001 \text{ MA}; \quad I_{Dmax} = \frac{U_{Rmax}}{R};$$

Занесемо отримані значення до таблиці 4.4.

4.2 Побудування графіків:

У наступному графічному зображенні вольт-амперної характеристики діодів були "викресленні" точки значення яких ϵ аномальним та не підходить для нашого аналізу, тому ми не врахували їх при проведенні лінії залежності.

Рис. 1. Гілка ВАХ для германієвого діода (Ge) при прямому зміщенні.

Опір бази r_b та струм виродження $I_{\text{вир}}$ для германієвого діода:

Використовуючи апроксимацію Шоклі знайдемо дифузійний потенціал та опір бази.

$$\varphi_T = \frac{k \cdot T}{q},$$

де $k=1,381\cdot 10^{-23} \left[\frac{\cancel{\!1/3} \text{ж}}{\cancel{\!K}}\right]$ - стала Больцмана, T=290 [K] – температура навколишнього середовища, $q=1,602\cdot 10^{-19}$ [Kn] - електричний заряд;

Підставимо отримані дані у формулу:

$$\varphi_T = \frac{1,381 \cdot 10^{-23} \cdot 290}{1,6 \cdot 10^{-19}} = 25 \text{ mB};$$

На графіку у точці O_1 отримаємо опір бази r_b . З точки O_1 опускається перпендикуляр на вісь струмів та напруг. Визначається струм $I_d=5\,$ мА і відповідна напруга $U_d=0.31\,$ В. Дотична проведена до т. O_1 пересікаючи вісь струмів визначає $\phi_0=0.27\,$ В. Отже, опір бази r_b буде рівний:

$$r_b pprox rac{U_{
m np} - arphi_{
m o}}{I_{
m np}} = rac{0.31 - 0.27}{5 \cdot 10^{-3}} = 8 \;
m Om;$$

Визначивши г_ь знайдемо струм виродження:

$$I_{\text{вир}} = \frac{\varphi_T}{r_h} = \frac{25 \cdot 10^{-3}}{8} = 3,12 \text{ MA},$$

де φ_T - температурний потенціал електрона, він рівний 25 *мВ*.

Знайдемо максимальну похибку прямого зміщення германієвого діода для отриманих значень напруги та струму відповідно:

$$\delta_{U_d} = \frac{8,52 - 7,96}{8,52} \cdot 100\% = 1,6\%;$$

$$\delta_{I_d} = \frac{0,674 - 0,122}{0,674} \cdot 100\% = 0,8189\%;$$

Зворотня ВАХ для германієвого діода (Ge)

Рис. 2. Гілка ВАХ для германієвого діода (Ge) при зворотньому зміщенні.

Знайдемо максимальну похибку зворотнього зміщення германієвого діода для отриманих значень напруги та струму відповідно:

$$\delta_{U_d} = \frac{0.18 - 0.06}{0.18} \cdot 100\% = 0.666\%;$$

$$\delta_{I_d} = \frac{0.0089 - 0.0054}{0.0089} \cdot 100\% = 0.3932\%$$

Рис. 3. Гілка ВАХ для кремнієвого діода (Si) при прямому зміщенні.

Опір бази r_b та струм виродження $I_{\rm вир}$ для кремнієвого діода: Використовуючи апроксимацію Шоклі знайдемо дифузійний потенціал та опір бази.

$$\varphi_T = \frac{k \cdot T}{q},$$

де $k=1,381\cdot 10^{-23} [\frac{\mathcal{I}\mathcal{M}}{K}]$ - стала Больцмана, T=290~[K] - температура навколишнього середовища, $q=1,602\cdot 10^{-19}~[K\pi]$ - електричний заряд;

На графіку у точці O_1 отримаємо опір бази r_b . З точки O опускається перпендикуляр на вісь струмів та напруг. Визначається струм I_d = 6 мА і відповідна напруга U_d = 0,79 В. Дотична проведена до т. O_1 пересікаючи вісь струмів визначає ϕ_0 = 0,683 В. Отже, опір бази r_b буде рівний:

$$r_b pprox rac{U_{
m np} - arphi_{
m o}}{I_{
m np}} = rac{0.79 - 0.683}{6 \cdot 10^{-3}} = 17.83 \; {
m Om}.$$

Визначивши r_b знайдемо струм виродження:

$$I_{ ext{вир}} = rac{arphi_T}{r_b} = rac{25 \cdot 10^{-3}}{17,83} = 1,4 \text{ мA},$$

де φ_T - температурний потенціал електрона, він рівний 25 *мВ*.

Знайдемо максимальну похибку прямого зміщення кремнієвого діода для отриманих значень напруги та струму відповідно:

$$\delta_{U_d} = \frac{0.8 - 0.57}{0.8} \cdot 100\% = 0.2875\%;$$

$$\delta_{I_d} = \frac{9.98 - 9.76}{9.98} \cdot 100\% = 0.8362\%;$$

Зворотня ВАХ для кремнієвого діода (Si)

Рис. 4. Гілка ВАХ для кремнієвого діода (Si) при зворотному зміщенні.

Знайдемо максимальну похибку зворотного зміщення кремнієвого діода для отриманих значень напруги та струму відповідно:

$$\delta_{U_d} = \frac{1,48 - 0,59}{1,48} \cdot 100\% = 0,6013\%;$$

$$\delta_{I_d} = \frac{0,0046 - 4 * 10^{-6}}{0,0046} \cdot 100\% = 0,999\%;$$

5. РОЗРАХУНКИ.

5.1. Із вольт-амперної характеристики, використовуючи апроксимацію Шоклі для високого рівня інжекції, визначаємо (див. побудову на графіках ВАХ): Табл. №5: Отримані дані.

Основні	φ_0 , [B]	r _b ,[Ом]	$I_{\text{вир}},[MA]$	Напівпровідниковий
параметри	[¹ вир,[³ // ² 1]	матеріал діода
для діода D1:	0,27	8	3,12	Германій (Ge)
для діода D2:	0,683	17,83	1,4	Кремній (Si)

6. ВИСНОВОК.

У ході виконання даної лабораторної роботи, було проведено попереднє теоретичне вивчення та практичне дослідження випрямних діодів: їх фізичні властивості та основні технічні параметри германієвих і кремнієвих діодів виходячи з їх ВАХ.