STA437/2005 Methods for Multivariate Data

Gun Ho Jang

Lecture on September 15, 2014

Matrix Algebra

Definition. A $k \times k$ matrix A is non-negative definite if and only if $\mathbf{v}^{\top} A \mathbf{v} \geq 0$ for any $\mathbf{v} \in \mathbb{R}^k$. A $k \times k$ matrix A is positive definite if and only if $\mathbf{v}^{\top} A \mathbf{v} > 0$ for any $\mathbf{v} \in \mathbb{R}^k \setminus \{0\}$.

Definition. Eigen values are solution to $|A - \lambda I| = 0$. For any eigen value λ , there exists an eigen vector $\mathbf{v} \neq 0$ such that $A\mathbf{v} = \lambda \mathbf{v}$.

It is possible to be many eigen vectors for a eigen value.

Theorem (Spectral decomposition). Let A be a symmetric $k \times k$ matrix. Then there exist k orthonormal eigen vectors e_1, \ldots, e_k and corresponding eigen values $\lambda_1, \ldots, \lambda_k$ so that

$$A = \lambda_1 e_1 e_1^{\top} + \dots + \lambda_k e^k e_k^{\top}.$$

A sketch proof. Let $\mathbf{e} = (e_1 \dots e_k)$ and $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_k)$. From the orthonormality, $\mathbf{e}^{\top} \mathbf{e} = (e_i^{\top} e_j) = I_k$. The uniqueness of inverse implies $\mathbf{e} \mathbf{e}^{\top} = I_k$. Since e_i 's are eigen vectors, $A \mathbf{e} = (\lambda_1 e_1 \dots \lambda_k e_k) = \mathbf{e} \Lambda$. Then $A = (\mathbf{e}\Lambda)\mathbf{e}^{-1} = \mathbf{e}\Lambda\mathbf{e}^{\top} = \lambda_1 e_1 e_1^{\top} + \dots + \lambda_k e_k e_k^{\top}.$

Expectation of Random Matrix

For a $n \times p$ random matrix $\mathbf{X} = (X_{ij})$, the expectation is defined by

$$\mathbb{E}(\mathbf{X}) = (\mathbb{E}(X_{ij})) = \begin{pmatrix} \mathbb{E}(X_{11}) & \mathbb{E}(X_{12}) & \cdots & \mathbb{E}(X_{1p}) \\ \mathbb{E}(X_{21}) & \mathbb{E}(X_{22}) & \cdots & \mathbb{E}(X_{2p}) \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{E}(X_{n1}) & \mathbb{E}(X_{n2}) & \cdots & \mathbb{E}(X_{np}) \end{pmatrix}.$$

Proposition. Let X, Y be two $n \times p$ random matrices and A, B be two conformable matrices. Then,

(a)
$$\mathbb{E}(\mathbf{X} + \mathbf{Y}) = \mathbb{E}(\mathbf{X}) + \mathbb{E}(\mathbf{Y})$$

(b)
$$\mathbb{E}(A\mathbf{X}B) = A\mathbb{E}(\mathbf{X})B$$
.

Proof. (a) Let $\mathbf{Z} = \mathbf{X} + \mathbf{Y}$ so that $Z_{ij} = X_{ij} + Y_{ij}$. Then $\mathbb{E}(\mathbf{X} + \mathbf{Y}) = \mathbb{E}(\mathbf{Z}) = (\mathbb{E}(Z_{ij})) = (\mathbb{E}(X_{ij} + Y_{ij})) = (\mathbb{E}(X_{ij} + Y_{i$

$$(\mathbb{E}(X_{ij}) + \mathbb{E}(Y_{ij})) = (\mathbb{E}(X_{ij})) + (\mathbb{E}(Y_{ij})) = \mathbb{E}(\mathbf{X}) + \mathbb{E}(\mathbf{Y}).$$
(b) Let $\mathbf{W} = A\mathbf{X}B$. Then $W_{kl} = \sum_{i=1}^{n} \sum_{j=1}^{p} A_{ki}X_{ij}B_{jl}$ and $\mathbb{E}(\mathbf{W}) = (\mathbb{E}(W_{kl})) = (\sum_{i=1}^{n} \sum_{j=1}^{p} A_{ki}\mathbb{E}(X_{ij})B_{jl}) = ([A\mathbb{E}(\mathbf{X})B]_{kl}) = A\mathbb{E}(\mathbf{X})B.$

Random Vector

Random vector $X = (x_1, \dots, x_n)^{\top}$ is a $n \times 1$ random matrix. Hence the mean of X is defined by

$$\mathbb{E}(X) = (\mathbb{E}(x_i)) = \begin{pmatrix} \mathbb{E}(x_1) \\ \mathbb{E}(x_2) \\ \vdots \\ \mathbb{E}(x_n) \end{pmatrix}.$$

The variance of X is defined by the variance-covariance matrix, that is,

$$\mathbb{V}ar(X) = (\operatorname{Cov}(x_i, x_j)) = (\mathbb{E}((x_i - \mathbb{E}(x_i))(x_j - \mathbb{E}(x_j)))) = \mathbb{E}[(X - \mathbb{E}(X))(X - \mathbb{E}(X))^{\top}].$$

In general the *covariance* of two random vectors X and Y is defined by

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))^{\top}].$$

Proposition. Let X, Y be two $n \times 1$ random vectors. Then,

- (a) for $a, b \in \mathbb{R}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, $Cov(aX + \mathbf{v}, bY + \mathbf{w}) = abCov(X, Y)$,
- (b) The mean and variance of Z = AX for a matrix $A \in \mathbb{R}^{k \times n}$ are $\mathbb{E}(Z) = A\mathbb{E}(X)$ and $\mathbb{V}ar(Z) = A\mathbb{V}ar(X)A^{\top}$.

Proof. (a) $Cov(aX + \mathbf{v}, bY + \mathbf{w}) = \mathbb{E}((aX + \mathbf{v} - \mathbb{E}(aX + \mathbf{v}))(bY + \mathbf{w} - \mathbb{E}(bY + \mathbf{w}))) = ab\mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))^{\top}) = abCov(X, Y).$

(b)
$$\mathbb{E}(Z) = \mathbb{E}(AX) = A\mathbb{E}(X)$$
 and $\mathbb{V}ar(Z) = \mathbb{E}(ZZ^{\top}) - \mathbb{E}(Z)\mathbb{E}(Z)^{\top} = \mathbb{E}(AXX^{\top}A^{\top}) - A\mathbb{E}(X)\mathbb{E}(X)^{\top}A^{\top} = A\mathbb{V}ar(X)A^{\top}$.

Partition

Let X be a $n \times 1$ random vector. Consider a partition $X = (X^{(1)^\top}, X^{(2)^\top})^\top$, that is, for some k, l > 0 with $k + l = n, X^{(1)} = (X_1, \dots, X_k)^\top$ and $X^{(2)} = (X_{k+1}, \dots, X_{k+l})^\top$.

Proposition. The mean and variance of the partition becomes

$$\begin{split} \mathbb{E}(X) &= \mathbb{E}\left(\frac{X^{(1)}}{X^{(2)}}\right) = \begin{pmatrix} \mathbb{E}(X^{(1)}) \\ \mathbb{E}(X^{(2)}) \end{pmatrix} \\ \mathbb{V}ar(X) &= \begin{pmatrix} \operatorname{Cov}(X^{(1)}, X^{(1)}) & \operatorname{Cov}(X^{(1)}, X^{(2)}) \\ \operatorname{Cov}(X^{(2)}, X^{(1)}) & \operatorname{Cov}(X^{(2)}, X^{(2)}) \end{pmatrix} \end{split}$$

Proof. Definitions and partition gives

$$\mathbb{E}(X) = \begin{pmatrix} \mathbb{E}(x_1) \\ \vdots \\ \mathbb{E}(x_k) \\ \mathbb{E}(x_{k+1}) \\ \vdots \\ \mathbb{E}(x_{k+l}) \end{pmatrix} = \begin{pmatrix} \mathbb{E}(X^{(1)}) \\ \mathbb{E}(X^{(2)}) \end{pmatrix}$$

Similarly

$$\mathbb{V}ar(X) = (\mathrm{Cov}(x_i, x_j)) = \begin{pmatrix} \mathrm{Cov}(x_1, x_1) & \mathrm{Cov}(x_1, x_2) & \cdots & \mathrm{Cov}(x_1, x_n) \\ \mathrm{Cov}(x_2, x_1) & \mathrm{Cov}(x_2, x_2) & \cdots & \mathrm{Cov}(x_2, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ \mathrm{Cov}(x_n, x_1) & \mathrm{Cov}(x_n, x_2) & \cdots & \mathrm{Cov}(x_n, x_n) \end{pmatrix} = \begin{pmatrix} \mathrm{Cov}(X^{(1)}, X^{(1)}) & \mathrm{Cov}(X^{(1)}, X^{(2)}) \\ \mathrm{Cov}(X^{(2)}, X^{(1)}) & \mathrm{Cov}(X^{(2)}, X^{(2)}) \end{pmatrix}$$

Hence the mean and variance can be computed blockwise

Exercise. Let Σ be a symmetric positive definite matrix with partition $\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$. Express Σ^{-1} using Σ_{ij} 's.

Random Sample

The p measurements from each sample are supposed to be independent. In other words, $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})^{\top}$ is independent and identically distributed.

The sample mean $\bar{\mathbf{x}} = (\mathbf{x}_1 + \dots + \mathbf{x}_n)/n$ is unbiased estimator of $\mu = \mathbb{E}(\mathbf{x}_i)$ and its covariance matrix is Σ/n where $\Sigma = \mathbb{V}ar(\mathbf{x}_i)$. The sample covariance matrix $S_n = \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}})(\mathbf{x}_i - \bar{\mathbf{x}})^\top/n$ is a consistent estimator of Σ with bias $-\Sigma/n$. Let $S = \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}})(\mathbf{x}_i - \bar{\mathbf{x}})/(n-1)$ so that S is an unbiased estimator for Σ .

$$\mathbb{E}(\bar{\mathbf{x}}) = \mathbb{E}(\sum_{i=1}^{n} \mathbf{x}_{i}/n) = \sum_{i=1}^{n} \mathbb{E}(\mathbf{x}_{i})/n = n\mathbb{E}(\mathbf{x}_{1})/n = \mathbb{E}(\mathbf{x}_{1}) = \mu.$$

$$\mathbb{V}ar(\bar{x}) = \mathbb{V}ar(\sum_{i=1}^{n} x_{i}/n) = n^{-2} \sum_{i=1}^{n} \mathbb{V}ar(\mathbf{x}_{i}) = \mathbb{V}ar(\mathbf{x}_{1})/n = \Sigma/n.$$

$$\mathbb{E}(S_{n}) = \frac{1}{n} \mathbb{E}(\sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}})(\mathbf{x}_{i} - \bar{\mathbf{x}})^{\top}) = \mathbb{E}((\mathbf{x}_{1} - \bar{\mathbf{x}})(\mathbf{x}_{1} - \bar{\mathbf{x}})^{\top}) = \operatorname{Cov}(\mathbf{x}_{1} - \bar{\mathbf{x}}, \mathbf{x}_{1} - \bar{\mathbf{x}})$$

$$= \mathbb{V}ar(\mathbf{x}_{1}) - \operatorname{Cov}(\mathbf{x}_{1}, \bar{\mathbf{x}}) - \operatorname{Cov}(\bar{\mathbf{x}}, \mathbf{x}_{1}) + \mathbb{V}ar(\bar{\mathbf{x}}) = \Sigma - \Sigma/n - \Sigma/n + \Sigma/n = \Sigma(1 - 1/n).$$

$$\mathbb{E}(S) = \mathbb{E}[\frac{n}{n-1}S_{n}] = \frac{n}{n-1}\Sigma\frac{n-1}{n} = \Sigma.$$

Generalized Variance: Variance-covariance matrix contains $p \times p$ elements which is big to consider simultaneously. Simplified variance might be useful in interpretation.

Suggestion: |S|, the determinant of unbiased variance-covariance matrix.

Note: $|S| = (n-1)^{-p} (\text{volume})^2$

Note: If |S| = 0, then there exists a linear relationship between variables.

Matrix form:

$$\bar{\mathbf{x}} = \mathbf{X}^{\top}(\frac{1}{n}\mathbf{1}), \quad S = \frac{1}{n-1}\mathbf{X}^{\top}(I - \frac{1}{n}\mathbf{1}\mathbf{1}^{\top})\mathbf{X}.$$

Multivariate Normal Distribution

Normal density: $\varphi(x) = (2\pi)^{-1/2} \exp(-x^2/2)$

Let $z_1, \ldots, z_k \sim i.i.d.$ N(0,1). then the joint density of $Z = (z_1, \ldots, z_k)$ is

$$\mathrm{pdf}_Z(\mathbf{z}) = \prod_{i=1}^k (2\pi)^{-1/2} \exp(-z_i^2/2) = |2\pi I_k|^{-1/2} \exp(-\frac{1}{2}\mathbf{z}^\top \mathbf{z}).$$

The density of $X = \mu + \Sigma^{1/2}Z$ can be obtained using the change of variable formula, that is,

$$pdf_{X}(\mathbf{x}) = pdf_{Z}(\Sigma^{-1/2}(\mathbf{x} - \mu)) \cdot \left| \frac{\partial \mathbf{x}}{\partial \mathbf{z}} \right| = |2\pi I_{k}|^{-1/2} \exp(-\frac{1}{2}(\Sigma^{-1/2}(\mathbf{x} - \mu))^{\top}(\Sigma^{-1/2}(\mathbf{x} - \mu))) \times |\Sigma^{-1/2}|$$
$$= |2\pi I_{k}|^{-1/2} |\Sigma|^{-1/2} \exp(-\frac{1}{2}(\mathbf{x} - \mu)^{\top}\Sigma^{-1}(\mathbf{x} - \mu)).$$

Proposition. If $X \sim N(\mu, \Sigma)$, then for a conformable matrix $A, AX \sim N(A\mu, A\Sigma A^{\perp})$.

Proof. Note that $X = \mu + \Sigma^{1/2}Z$ implies $AX = A(\mu + \Sigma^{1/2}Z) = A\mu + A\Sigma^{1/2}Z$. Hence AX is a normal distribution with mean $A\mu$ and variance $A\Sigma^{1/2}(A\Sigma^{1/2})^{\top} = A\Sigma A^{\top}$.

Proposition. If $X \sim N(\mu, \Sigma)$ with $|\Sigma| > 0$ and $k = \text{rank}(\Sigma)$, then $(X - \mu)^{\top} \Sigma^{-1} (X - \mu) \sim \chi^2(k)$.

Proof. Note
$$X = \mu + \Sigma^{1/2}Z$$
 for $Z \sim N(O, I_k)$. Then $(X - \mu)^{\top}\Sigma^{-1}(X - \mu) = (\mu + \Sigma^{1/2}Z - \mu)^{\top}\Sigma^{-1/2}\Sigma^{-1/2}(\mu + \Sigma^{1/2}Z - \mu) = Z^{\top}Z = Z_1^2 + \dots + Z_p^2 \sim \chi^2(p)$.

Using this result, the ellipsoid $C_{\gamma} = \{\mathbf{x} : (\mathbf{x} - \mu)^{\top} \Sigma^{-1} (\mathbf{x} - \mu) \leq \chi_{\gamma}^{2}(p)\}$ has probability γ from $N(\mu, \Sigma)$ for $0 < \gamma < 1$

Exercise. If $x_j \sim N(\mu_j, \Sigma_j)$ are independent, then $x_1 + \cdots + x_k \sim N(\mu_1 + \cdots + \mu_k, \Sigma_1 + \cdots + \Sigma_k)$.

Proposition. The moment generating function of $X \sim N(\mu, \Sigma)$ is $\operatorname{mgf}_X(\mathbf{t}) = \exp(\mathbf{t}^\top \mu + \mathbf{t}^\top \Sigma \mathbf{t}/2)$.

Proof.

$$\operatorname{mgf}_X(\mathbf{t}) = \mathbb{E}[\exp(\mathbf{t}^\top X)] = \mathbb{E}[\exp(\mathbf{t}^\top (\mu + \Sigma^{1/2} Z))] = \exp(\mathbf{t}^\top \mu) \operatorname{mgf}_Z((\mathbf{t}^\top \Sigma^{1/2})^\top).$$

Since z_1, \ldots, z_k are independent, for $\mathbf{u} = (\mathbf{t}^{\top} \Sigma^{1/2})^{\top} = \Sigma^{1/2} \mathbf{t}$,

$$\operatorname{mgf}_{Z}(\mathbf{u}) = \prod_{i=1}^{k} \exp(u_{i}^{2}/2) = \exp(\mathbf{u}^{\top}\mathbf{u}/2) = \exp((\Sigma^{1/2}\mathbf{t})^{\top}(\sigma^{1/2}\mathbf{t})/2) = \exp(\mathbf{t}^{\top}\Sigma\mathbf{t}/2).$$

Finally the moment generating function of X is

$$\operatorname{mgf}_X(\mathbf{t}) = \exp(\mathbf{t}^{\top} \mu + \mathbf{t}^{\top} \Sigma \mathbf{t}/2).$$

Proposition. Suppose that $X = \begin{pmatrix} X^{(1)} \\ X^{(2)} \end{pmatrix} \sim N(0, \Sigma)$ with $\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ and $\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$. Then,

- (a) $X^{(i)} \sim N(\mu_i, \Sigma_{ii})$.
- (b) If $\Sigma_{12} = O$, then $X^{(1)}$ and $X^{(2)}$ are independent. (c) $X^{(1)} \Sigma_{12} \Sigma_{22}^{-1} X^{(2)}$ and $X^{(2)}$ are independent.
- (d) $X^{(1)} | X^{(2)} = x_2 \sim N(\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 \mu_2), \Sigma_{11 \cdot 2})$ where $\Sigma_{11 \cdot 2} = \Sigma_{11} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$.

 $\begin{aligned} & \textit{Proof.} \ \ (\mathbf{a}) \ \mathrm{Let} \ \mathbf{t} = (\mathbf{t}_1^\top, O_{1 \times l})^\top. \ \mathrm{Then} \ \mathrm{mgf}_{X^{(1)}}(\mathbf{t}_1) = \mathbb{E}[\exp(\mathbf{t}_1^\top X^{(1)})] = \mathbb{E}[\exp(\mathbf{t}^\top X)] = \mathrm{mgf}_X(\mathbf{t}) = \exp(\mathbf{t}^\top \mu + \mathbf{t}^\top \Sigma \mathbf{t}/2) = \exp(\mathbf{t}_1^\top \mu_1 + \mathbf{t}_1^\top \Sigma_{11} \mathbf{t}_1/2). \ \ \mathrm{Thus} \ X^{(1)} \sim N(\mu_1, \Sigma_{11}). \ \ \mathrm{Similarly}, \ X^{(2)} \sim N(\mu_2, \Sigma_{22}). \end{aligned}$

(b) Let $\mathbf{t} = (\mathbf{t}_1^\top, \mathbf{t}_2^\top)^\top$. Then

$$\begin{split} \mathrm{mgf}_{X^{(1)},X^{(2)}}(\mathbf{t}_1,\mathbf{t}_2) &= \mathrm{mgf}_X(\mathbf{t}) = \mathrm{exp}(\mathbf{t}^\top \mu + \mathbf{t}^\top \Sigma \mathbf{t}/2) \\ &= \mathrm{exp}(\mathbf{t}_1^\top \mu_1 + \mathbf{t}_2^\top \mu_2 + \mathbf{t}_1^\top \Sigma_{11} \mathbf{t}_1/2 + \mathbf{t}_1^\top \Sigma_{12} \mathbf{t}_2/2 + \mathbf{t}_2^\top \Sigma_{21} \mathbf{t}_1/2 + \mathbf{t}_2^\top \Sigma_{22} \mathbf{t}_2/2) \\ &= \mathrm{exp}(\mathbf{t}_1^\top \mu_1 + \mathbf{t}_1^\top \Sigma_{11} \mathbf{t}_1/2) \times \mathrm{exp}(\mathbf{t}_2^\top \mu_2 + \mathbf{t}_2^\top \Sigma_{22} \mathbf{t}_2/2) = \mathrm{mgf}_{X^{(1)}}(\mathbf{t}_1) \times \mathrm{mgf}_{X^{(2)}}(\mathbf{t}_2). \end{split}$$

Hence $X^{(1)}$ and $X^{(2)}$ are independent if and only if $\Sigma_{12} = O$.

(c) The covariance between $X^{(1)} - \Sigma_{12}\Sigma_{22}^{-1}X^{(2)}$ and $X^{(2)}$ is

$$\mathrm{Cov}(X^{(1)} - \Sigma_{12}\Sigma_{22}^{-1}X^{(2)}, X^{(2)}) = \mathrm{Cov}(X^{(1)}, X^{(2)}) - \Sigma_{12}\Sigma_{22}^{-1}\mathrm{Cov}(X^{(2)}, X^{(2)}) = \Sigma_{12} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{22} = \Sigma_{12} - \Sigma_{12} = O.$$

Hence $X^{(1)} - \Sigma_{12}\Sigma_{22}^{-1}X^{(2)}$ and $X^{(2)}$ are independent. (d) From (c), $X^{(1)} - \Sigma_{12}\Sigma_{22}^{-1}X^{(2)}$ is independent from $X^{(2)}$ and normally distributed with mean $\mu_1 - \Sigma_{12}\Sigma_{22}^{-1}\mu_2$ and variance $\Sigma_{11 \cdot 2} = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$. If $X^{(2)} = \mathbf{x}_2$ is given, $X^{(1)} \mid X^{(2)} = \mathbf{x}_2 \equiv^d X^{(1)} - \Sigma_{12}\Sigma_{22}^{-1}X^{(2)} + \Sigma_{12}\Sigma_{22}^{-1}\mathbf{x}_2 \sim N(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x}_2 - \mu_2), \Sigma_{11 \cdot 2})$.