Math 5201 Homework 1 Noah Wong- 5057635 Due September 8th

1.) Prove: There is no smallest positive real number.

We can prove this conjecture by contradiction, let p be the smallest positive number. So for any $b \in \mathbb{R}^+$, p < b. This implies that for $t = \frac{p}{2}$, p < t thus $p < \frac{p}{2}$, which leads to $1 < \frac{1}{2}$ given that p is positive. This is a contradiction so our assumption must be false, therefore there is no smallest positive real number.

2.) Prove: For any two positive real numbers $x, y \in \mathbb{R}^+$, there is some natural number $n \in \mathbb{N}$ with nx > y.

There are three cases x > y, x = y and y < x case 1 (x > y): n = 1 because x(1) = x > y.

case 2 (x = y): Assume that x = y, then choose n = 2 since nx = 2y > y for any positive real x, y.

case 3 (x < y): we can find an n that will satisfy nx > y. Define the ceiling function as $\left\lceil x \right\rceil = \min\{m \in \mathbb{Z} | m \geq x\}$. If we let $n = \left\lceil \frac{2y}{x} \right\rceil$ so that $n \geq \frac{2y}{x}$. Then $nx \geq \frac{2yx}{x} = 2y$ thus $nx \geq 2y$ which implies that nx > y.

3.) Prove: If k is even, then k^2 is even, and if k is odd, then k^2 is odd.

We will separate this problem into two proofs.

Conjecture 1: If k is even, then k^2 is even. Assume that $k \in \mathbb{Z}$ and $k \pmod{2} = 0$. This implies $\exists l \in \mathbb{Z}$ such that k = 2l. Therefore $k^2 = (2l)^2 = 4l^2 = 2(2l^2)$. Since $2l^2 \in \mathbb{Z}$, it is implies that $2(2l^2) \pmod{2} = 0$ or that $4l^2$ is even. So k^2 is even when k is even.

Conjecture 2: If k is odd, then k^2 is odd. Assume that $k \in \mathbb{Z}$ and $k \pmod{2} = 1$. This implies $\exists l \in \mathbb{Z}$ such that k = 2l + 1. Therefore $k^2 = (2l + 1)^2 = 4l^2 + 4l + 1 = 2(2l^2 + 2l) + 1$. Since $(2l^2 + 2l) \in \mathbb{Z}$, we know that $2(2l^2 + 2l) + 1 \pmod{2} = 1$, or that $(2l + 1)^2$ is odd. Therefore k^2 is odd when k is odd.

4.) A real number is called *algebraic* if it is a root of some polynomial with integer coefficients. Prove: if $p \in \mathbb{R}$ is not algebraic, then it is not rational.

We will solve prove this conjecture by contrapositive. The contrapositive states that if $p \in \mathbb{R}$ is rational then it is algebraic. Begin by taking $u, t \in \mathbb{Z}, t \neq 0$ such that $p = \frac{u}{t}$. Then there exists a polynomial f(x) = tx - u, that has a root $\frac{u}{t}$,

since

$$t(\frac{u}{t}) - u,$$
$$u - u = 0.$$

Therefore p is algebraic since there exists a polynomial f(x) such that p is a root of f(x). Thus the contrapositive of the conjecture is proven which implies the conjecture is also true.

5.) Prove that $\lim_{x\to 3} x^2 - 1 = 8$. Use an ϵ - δ argument.

For all $\epsilon>0,$ let $\delta=\min(1,\frac{\epsilon}{7})$ when $|x-3|\leq \delta,$ we have |x-3|<1 implies,

$$|x+3| = |x-3+6| \le |x-3| + 6 < 1 + 6 = 7.$$

So we have a bound on |x+3| of 7. So given $f(x) = x^2 - 1$,

$$|x^2 - 1 - 8| = |x^2 - 9| = |x - 3||x + 3| < |x - 3| \cdot 7 < 7\delta.$$

Since $\delta = \min(1, \frac{\epsilon}{7})$ then $7\delta < \frac{\epsilon}{7} \cdot 7 = \epsilon$. Therefore $\lim_{x \to 3} x^2 - 1 = 8$.

6.) Prove that $\lim_{n\to\infty} \frac{1}{n^3-1} = 0$. Use and ϵ -N argument.

Let $N = \max\{1, \sqrt[3]{\frac{1}{\epsilon} + 1}\}$ then for all $\epsilon > 0$ we can show that our series $a_n = \frac{1}{n^3 - 1}$ converges to 0. We need to show that

$$\left|\frac{1}{n^3 - 1} - 0\right| < \epsilon,$$

holds for all $\epsilon > 0$. Since for n > 1, $\frac{1}{n^3 - 1}$ is positive, we can remove the absolute value term resulting in,

$$\frac{1}{n^3 - 1} < \epsilon,$$

$$n^3 - 1 > \frac{1}{\epsilon}$$

$$n > \sqrt[3]{\frac{1}{\epsilon} + 1},$$

$$n > N.$$

So for any ϵ choose $N = \max\{1, \sqrt[3]{\frac{1}{\epsilon} + 1}\}$, then $\left|\frac{1}{n^3 - 1} - 0\right| < \epsilon$, therefore a_n converges to 0.

8.) An example of a set X and subset S such that the least upper bound for S is not in X is:

$$X = \mathbb{Q} S = \{ (1 + 1/n)^n | n \in \mathbb{N} \},$$

with l.u.b. $e \notin \mathbb{Q}$. Given two other examples of a set of real numbers $X \subseteq \mathbb{R}$ and a subset $S \subseteq X$ such that sup $S \notin X$.

If X is the set of rational numbers, and S is the set defined by

$$S = \left\{ 4 \sum_{i=1}^{n} \frac{(-1)^{i+1}}{2i-1} | n \in \mathbb{N} \right\}$$

This sum converges to π so the l.u.b on S is π which is not a rational number number. All elements in S however are rational numbers. So this set works.

For our second example, set X equal to \mathbb{Q} and the set S is defined by

$$S = \{ q \in \mathbb{Q} | q < \sqrt{2} \}.$$

Then the least upper bound on S is $\sqrt{2}$, which $\not\in X$. Therefore our choice of X and S satisfies the properties listed above.

9.) Recast the following English sentence in mathematics, using correct mathematical grammar. Preserve the meaning.

2 is the smallest prime number

Let \mathbb{P} denote the set of prime numbers.

$$\forall p \in \mathbb{P} : 2 < p, 2 \in \mathbb{P}$$

10.) Let x = A|B, x' = A'|B' be cuts in \mathbb{Q} . We defined

$$x + x' = (A + A')|rest of \mathbb{Q}.$$

(a) Show that although B+B' is disjoint from A+A', it may happen in degenerate cases that \mathbb{Q} is not the union of A+A' and B+B'.

We will look at the case in which $p_1 = \sqrt{2} = A|B$ and $p_2 = -\sqrt{2} = A'|B'$. So the addition of two cuts results in 0 = A + A'|B + B. It is known that $\sqrt{2} \notin \mathbb{Q}$, $p_1 \notin A$, likewise $-\sqrt{2} \notin \mathbb{Q}$, $p_2 \notin A'$, therefore $p_1 + p_2 = 0 \notin A + A'$. The same logic implies that $0 \notin B + B$. This implies $0 \notin (A + A') \cup (B + B')$, so \mathbb{Q} is not the union of A + A' and B + B'.

(b) Infer that the definition of x+x' as (A+A')|(B+B') would be incorrect.

From the definition of a cut part (a) specifies that $A \cup B = \mathbb{Q}$. In the problem above we showed a case in which this has been shown to not be true so addition with cuts would not always result in a cut therefore that definition of a cut is incorrect.

(c) Why did we not define $x \cdot x' = (A \cdot A')$ rest of \mathbb{Q} ?

We will show a contradiction of this definition, let x < 0 and x' < 0. Since every $a \in A$, $a \le x < 0$ and $a' \in A'$, $a' \le x' < 0$ so $a \cdot a' > 0$. Therefore $A \cdot A'$ includes only positive numbers. Thus the set of the rest of $\mathbb Q$ includes negative numbers. This contradicts the definition of a cut part (b) that says "If $a \in A$ and $b \in B$ then a < b.". So it would be unwise to use this definition for multiplication.