The Anatomy of the New Keynesian Phillips Curve

PRELIMINARY AND INCOMPLETE

Nino Buliskeria Ali Elminejad Zuzana Havránková Institute of Economic Studies, Charles University

November 8, 2022

1 Introduction

The price-setting equation for firms is a central component of dynamic stochastic general equilibrium (DSGE) models. This equation links current inflation to past inflation, expected inflation, and a measure of real aggregate demand by considering the costly adjustment of nominal prices. This equation is typically referred to as the New Keynesian Phillips curve (NKPC). The slope of the NKPC is important for the propagation of shocks and determines the output-inflation trade-off in an economy. The equation can also be used to forecast inflation. One can write the empirical NKPC as:

$$\pi_t = \alpha + \gamma_b \pi_{t-1} + \gamma_f \pi_t^e + \lambda x_t + \varepsilon_{\pi,t},$$

where π_t , π_{t-1} , and π_t^e are the actual inflation, the lagged inflation rate, and the expectation of inflation, respectively. The variable x_t is the *driving variable* capturing aggregate demand side pressures. This may be represented by real marginal costs (mc_t) or model-based output gap (\tilde{y}_t) . The hybrid specification of NKPC contains both past and future expected inflation (Galí and Gertler, 1999). Alternatively, it can take a pure forward-looking formulation if $\gamma_b = 0$ and $\gamma_f = 1$, or pure backward-looking formulation in the opposite case. In this study, we focus on the pure forward-looking formulation of the NKPC with in the following form:

$$\pi_t = \beta \pi_t^e + \lambda x_t + \varepsilon_{\pi,t}. \tag{1}$$

Even though the NKPC has been found to provide a reasonable micro-founded explanation for the output-inflation dynamics, there have been empirical challenges in estimating its relevant

Figure 1: Inflation Expectation Indicators

Notes: UMich=Survey of University of Michigan, median expected price change next 12 months; T10YIE= 10-Year Break-even Inflation Rate; CIE= Index of Common Inflation Expectations, constructed using 21 inflation expectation indicators. Shaded regions are recessions according to the NBER. Sources: Federal Reserve Board; Federal Reserve Bank of St. Louis (FRED).

coefficients. First, a critical challenge involved in the estimation of the NKPC is to measure the expectations of future inflation, which are not directly observable. Since the NKPC is an essential part of monetary policy models, measuring inflation expectation is highly important for central banks to achieve sustainable employment and price stability. A significant share of literature uses realized inflation or survey-based inflation forecast in conjunction with Generalized Method of Moments (GMM) estimation or other instrument variable methods. However, Lindé (2005) shows that GMM and other one-equation methods can lead to imprecise and biased estimates for the NKPC. Besides, several studies argue that the NKPC estimated by GMM is likely to be either misspecified or weakly identified (see, e.g., Nason and Smith 2008). Researchers thus propose other proxies to measure the expectations of future inflation, e.g., the inflation-indexed bonds market price (Marfatia, 2017). Figure 1 shows that how different measures of inflation expectation may differ from each other. For example, as a representative of survey-based indicators, the University of Michigan survey seems to overstate expected inflation compared to the 10-year break-even inflation rate, which is a market-based indicator.

Moreover, the price rigidity in the majority of studies is based either on the assumption that firms face quadratic nominal price adjustment costs (Rotemberg, 1982) or that firms are unable to reoptimize their prices with a certain probability in each period (Calvo, 1983). Considering structural interpretation, the latter is preferred since it can be measured by microeconometric data, while the

former does not have a true equivalent in data.

Finally, choosing the real driving variable among marginal cost and the output gap is another source of controversy in estimating NKPC. Galí and Gertler (1999) argue that a marginal cost-based Phillips curve outperforms an output gap-based Phillips curve. Estimating a Phillips curve with real marginal cost as the real driving variable result in most cases in positive point estimates of the impact of labor share, while using a measure of the output gap results in generally negative coefficients. For this reason, the real marginal cost is a better candidate to be used in estimating the NKPC.

As discussed above, the estimates of NKPC are affected by various characteristics regarding inflation and the driving variable. In addition to the context in which the NKPC is estimated, publication bias can be a salient factor affecting the variation of estimates. Applying modern meta-analysis tools, we study the impact of publication bias and study characteristics of the estimated NKPC in the literature.

2 Publication bias

Table 1: Studies used in the meta-analysis

Abbas (2018)	Gillitzer (2016)	Mehra (2004)
Abbas and Sgro (2011)	Hall et al. (2009)	Neiss and Nelson (2005)
Abbas et al. (2016a)	Hondroyiannis et al. (2009)	Nunes (2010)
Abbas et al. (2016b)	Hubert and Mirza (2019)	Pattanaik et al. (2020)
Adam and Padula (2011)	Hung and Kwan (2022)	Ravenna and Walsh (2006)
Ahiadorme (2021)	Kara and Nelson (2003)	Rudd and Whelan (2005)
Allsopp et al. (2006)	Özer Karagedikli and McDermott (2018)	Rudd and Whelan (2007)
Basistha and Nelson (2007)	Kim and Subramanian (2009)	Rumler et al. (2008)
Batini et al. (2005)	Kobbi and Gabsi (2017)	Sakurai (2016)
Brissimis and Magginas (2008)	Lawless and Whelan (2011)	Salunkhe and Patnaik (2019)
Castle et al. (2014)	Lee (2009)	Saygili (2020)
Chin (2019)	Madeira (2014)	Sheedy (2010)
Coibion et al. (2018)	Martins and Verona (2021)	Singh et al. (2011)
Egan and Leddin (2017)	Matheron and Maury (2004)	Sovbetov and Kaplan (2019)
Fedderke and Liu (2018)	Mazumder (2010)	Tillmann (2009)
Furuoka et al. (2020)	Mazumder (2011a)	Vašíček (2011)
Gabriel and Martins (2010)	Mazumder (2011b)	Vavra (2014)
Galí and Gertler (1999)	Mazumder (2012)	Wimanda et al. (2011)
Galí et al. (2001)	McAdam and Willman (2004)	Yazgan and Yilmazkuday (2005)
Genberg and Pauwels (2005)	McLeay and Tenreyro (2020)	Zobl and Ertl (2021)

As the first step, we search for empirical estimates of the NKPC using Google Scholar because it provides a powerful full-text search. From 60 primary studies (Table 1), we collect 836 and 755 estimates for the expected inflation coefficient (β) and the driving variable (λ), respectively. Summary statistics of collected data are shown in Table 2.

Table 2: Summary Statistics

	#	Mean	Median	SD
β	836	0.882	0.925	0.342
S.E.	836	0.102	0.054	0.141
λ	755	-0.016	-0.004	0.561
S.E.	755	0.184	0.045	1.334

2.1 Linear Tests

To study publication bias, we test the asymmetry of the so-called funnel plot by regressing estimates on their standard errors. Different specifications are used in the regression, e.g., weighted and unweighted. The results of the regressions denote publication bias and the mean estimate corrected for the bias. Following tables show the preliminary results.

Figure 2: $\beta \& \lambda$

Figure 3: Histogram β

Figure 4: Funnel plot β

Table 3: Linear funnel asymmetry tests β

Panel A: All estimat	es					
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	-0.233 (0.393) [-1.016, 0.770]	0.124 (0.214)	-0.575** (0.275)	-1.352 (1.018)	-0.829* (0.502) [-1.813, 0.438]	-0.285 (0.207) [-0.826, 0.153]
Constant (mean beyond bias)	0.897*** (0.024) [0.849, 0.954]	0.865*** (0.019)	0.952*** (0.026)	0.997*** (0.092)	0.950*** (0.026) [0.883, 1.008]	0.931*** (0.020) [0.899, 0970]
Observations Studies	836 60	836 60	836 60	836 60	836 60	836 60
Panel B: GDP deflat	or					
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	-1.672** (0.669) [-3.133, 0.220]	-1.223 [*] (0.700)	-1.677** (0.651)	-3.404** (1.627)	-1.831*** (0.643) [-3.333, -0.320]	-2.033*** (0.458) [-3.032, -0.561]
Constant (mean beyond bias)	0.956*** (0.036) [0.872, 1.039]	0.935*** (0.033)	0.993*** (0.036)	1.037*** (0.066)	0.964*** (0.034) [0.878, 1.034]	1.003*** (0.017) [0.968, 1.034]
Observations Studies	283 30	283 30	283 30	283 30	283 30	283 30
Panel C: CPI						
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	-0.127 (0.363) [-0.841, 0.838]	0.167 (0.221)	-0.376 (0.355)	-1.369 (1.384)	-0.669 (0.516) [-1.717, 0.603]	-0.127 (0.218) [-0.681, 0.338]
Constant (mean beyond bias)	0.892*** (0.044) [0.770, 0.989]	0.857*** (0.026)	0.939*** (0.045)	1.038*** (0.181)	0.955*** (0.039) [0.821, 1.030]	0.930*** (0.034) [0.850, 0.996]
Observations Studies	495 32	495 32	495 32	495 32	495 32	495 32

Table 4: Linear funnel asymmetry tests β - OLS and GMM

Panel A: OLS						
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	0.296 (0.300) [-0.927, 1.870]	0.293 (0.261)	-0.028 (0.495)	-0.197 (1.716)	-0.283 (0.360) [-2.182, 0.954]	-0.094 (0.301) [-1.040, 0.538]
Constant (mean beyond bias)	0.720*** (0.055) [0.492, 0.970]	0.720*** (0.041)	0.896*** (0.069)	0.798*** (0.284)	0.811*** (0.066) [0.714, 1.065]	0.906*** (0.051) [0.757, 1.019]
Observations Studies	211 17	211 17	211 17	211 17	211 17	211 17
Panel B: GMM						
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	-0.473 (0.363) [-1.819, 0.405]	-0.149 (0.429)	-0.926** (0.448)	-1.765 (2.316)	-1.474*** (0.456) [-2.660, -0.419]	-0.542* (0.289) [-1.849, 0.178]
Constant (mean beyond bias)	0.911*** (0.028) [0.851, 0.979]	0.893*** (0.024)	0.960*** (0.035)	0.983*** (0.123)	0.967*** (0.030) [0.886, 1.033]	0.931*** (0.027) [0.874, 0.989]
Observations Studies	486 37	486 37	486 37	486 37	486 37	486 37

Table 5: Linear funnel asymmetry tests β - survey and RE

Panel A: Rational ex	xpectations					
	OLS	FE	BE	IV	Precision	Study
Standard error	-0.582*	0.128	-0.551 [*]	-1.219	-1.350***	-0.236
(publication bias)	(0.322)	(0.263)	(0.286)	(1.337)	(0.320)	(0.205)
,	[-1.169, 0.638]	, ,	, ,	, ,	[-2.013, -0.112]	[-0.788, 0.201]
Constant	0.911***	0.851***	0.950***	0.964***	0.975***	0.926***
(mean beyond bias)	(0.032)	(0.022)	(0.027)	(0.114)	(0.022)	(0.022)
,	[0.846, 0.977]	, ,	, ,	, ,	[0.921, 1.021]	[0.884, 0.968]
Observations	601	601	601	601	601	601
Studies	51	51	51	51	51	51
Panel B: Survey exp	ectations					
	OLS	FE	BE	IV	Precision	Study
Standard error	0.569*	0.146	-0.978	-1.566	0.531	-0.659
(publication bias)	(0.341)	(0.314)	(0.850)	(1.819)	(0.574)	(0.812)
	[-1.880, 0.967]				[-4.131, 26.060]	[-3.150, 0.864]
Constant	0.854***	0.897***	0.984***	1.072***	0.858***	0.966***
(mean beyond bias)	(0.031)	(0.032)	(0.075)	(0.212)	(0.035)	(0.050)
(mem eegena eme)	[0.820, 1.031]	(0.002)	(0.070)	(0.212)	[0.160, 1.113]	[0.841, 1.090]
Observations	235	235	235	235	235	235
Studies	12	12	12	12	12	12

Table 6: Linear funnel asymmetry tests β - countries

Panel A: US						
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	0.513 [*] (0.269) [-1.443, 2.281]	-0.184 (0.136)	-0.448 (0.285)	1.186** (0.536)	0.117 (0.564) [-3.186, 5.419]	-0.141 (0.184) [-2.557, 0.532]
Constant (mean beyond bias)	0.889*** (0.033) [0.826, 0.982]	0.941*** (0.010)	0.961*** (0.026)	0.839*** (0.050)	0.919*** (0.035) [0.836, 1.010]	0.959*** (0.016) [0.926, 0.994]
Observations Studies	353 30	353 30	353 30	353 30	353 30	353 30
Panel B: Europe						
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	0.024 (0.520) [-0.963, 1.593]	0.419 (0.419)	-0.081 (0.776)	2.014 (2.024)	-0.875* (0.530) [-1.896, 0.889]	0.384 (0.370) [-0.703, 1.187]
Constant (mean beyond bias)	0.838*** (0.056) [0.691, 0.967]	0.795*** (0.046)	0.897*** (0.080)	0.618*** (0.199)	0.938*** (0.036) [0.795, 1.007]	0.872*** (0.048) [0.732, 0.962]
Observations Studies	200 16	200 16	200 16	200 16	200 16	200 16
Panel C: Asia						
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	-0.193 (0.481) [-1.900, 0.931]	0.619 [*] (0.301)	-0.885 (0.815)	-2.330 (7.074)	-0.578 (0.644) [-3.043, 1.251]	-0.163 (0.476) [-1.809, 1.116]
Constant (mean beyond bias)	0.727*** (0.106) [0.489, 1.122]	0.613*** (0.0422)	0.875*** (0.115)	1.026 (0.955)	0.781*** (0.124) [0.589, 1.228]	0.803*** (0.103) [0.499, 1.055]
Observations Studies	113 11	113 11	113 11	113 11	113 11	113 11
Panel D: Oceania						
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	-1.727*** (0.325) [-2.205, -0.074]	-1.435** (0.515)	-2.505*** (0.287)	-4.490 (14.200)	-1.976*** (0.586) [-4.080, -0.386]	-1.782*** (0.314) [-3.819, -0.140]
Constant (mean beyond bias)	1.035*** (0.008) [1.011, 1.047]	1.020*** (0.026)	1.061*** (0.026)	1.175 (0.724)	1.047*** (0.021) [0.971, 1.079]	1.024*** (0.014) [0.932, 1.048]
Observations Studies	108 6	108 6	108 6 n < 0.05 *** r	108 6	108 6	108 6

Table 7: Linear funnel asymmetry tests β - CB and non CB

Panel A: Central ban	k					
	OLS	FE	BE	IV	Precision	Study
Standard error	0.582**	1.077**	0.042	0.124	0.034	0.125
(publication bias)	(0.297)	(0.520)	(0.333)	(1.186)	(0.335)	(0.216
	[-0.900, 1.071]				[-1.461, 0.605]	[-0.666, 0.843]
Constant	0.908***	0.873***	0.949***	0.939***	0.946***	0.937***
(mean beyond bias)	(0.033)	(0.036)	(0.032)	(0.092)	(0.025)	(0.027)
,	[0.831, 0.989]	, ,	` ,	` ,	[0.887, 1.001]	[0.880, 0.993]
Observations	189	189	189	189	189	189
Studies	26	26	26	26	26	26
Panel B: Academia						
	OLS	FE	BE	IV	Precision	Study
Standard error	-0.344	-0.060	-1.060**	-1.469	-0.961	-0.615**
(publication bias)	(0.432)	(0.158)	(0.398)	(1.143)	(0.592)	(0.265)
	[-1.197, 0.881]				[-2.392, 0.614]	[-1.464, -0.0371]
Constant	0.888***	0.861***	0.962***	0.994***	0.946***	0.929***
(mean beyond bias)	(0.030)	(0.015)	(0.038)	(0.112)	(0.033)	(0.028)
(mem eegem eme)	[0.825, 0.967]	(0.010)	(0.000)	(0.112)	[0.864, 1.030]	[0.871, 0.986]
Observations	647	647	647	647	647	647
Studies	34	34	34	34	34	34

Figure 5: Histogram λ

Figure 6: Funnel plot λ

Table 8: Linear funnel asymmetry tests λ

Panel A: All estimates						
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	0.519 (0.339) [-0.436, 1.243]	0.714 (0.462)	0.609*** (0.215)	1.597** (0.752)	0.093 (0.421) [-1.012, 1.110]	0.612 [*] (0.335) [-0.428, 1.253]
Constant (mean beyond bias)	-0.041* (0.022) [-0.085, 0.021]	-0.059 (0.042)	0.014 (0.029)	-0.138** (0.067)	-0.003 (0.010) [-0.027, 0.023]	0.013 (0.021) [-0.030, 0.059]
Observations Studies	755 56	755 56	755 56	755 56	755 56	755 56
Panel B: Labor share						
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	0.966** (0.433) [-0.597, 1.544]	1.379*** (0.0419)	0.377 [*] (0.214)	0.435 (1.574)	1.143*** (0.358) [-0.096, 1.642]	0.418 (0.570) [-0.860, 1.459]
Constant (mean beyond bias)	0.023 (0.016) [-0.008, 0.067]	-0.009*** (0.003)	0.045 (0.032)	0.064 (0.147)	0.009 (0.009) [-0.008, 0.034]	0.040 [*] (0.022) [-0.019, 0.101]
Observations Studies	237 29	237 29	237 29	237 29	237 29	237 29
Panel C: Unemployme	ent gap					
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	-0.304 (0.365) [-2.428, 3.066]	-0.0254 (0.142)	0.730 (2.072)	4.355 (3.919)	-0.821* (0.429) [-2.055, 4.354]	0.370 (0.985) [-2.128, 2.595]
Constant (mean beyond bias)	-0.098*** (0.023) [-0.190, 0.023]	-0.128*** (0.015)	-0.166 (0.234)	-0.597 (0.435)	-0.042*** (0.014) [-0.169, 0.185]	-0.127*** (0.041) [212, -0.004]
Observations Studies	235 7	235 7	235 7	235 7	235 7	235 7
Panel D: Output gap						
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	0.569 [*] (0.325) [-0.650, 1.188]	-0.105 (0.258)	1.027*** (0.215)	1.697** (0.661)	0.747** (0.340) [-0.246, 1.706]	0.854*** (0.219) [-0.310, 1.387
Constant (mean beyond bias)	0.028 (0.020) [-0.014, .070]	0.102*** (0.028)	0.015 (0.027)	-0.096 (0.098)	0.008 (0.01) [-0.012, 0.031]	0.040 (0.0243) [-0.012, 0.089
Observations Studies	186 31	186 31	186 31	186 31	186 31	186 31

Table 9: Linear funnel asymmetry tests λ - OLS and GMM

Panel A: OLS						
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	0.542 (0.363) [-0.988, 1.370]	0.180 (0.113)	0.613 (0.471)	1.268** (0.505)	-0.019 (0.488) [-1.439, 1.290]	0.788 [*] (0.406) [-0.520, 1.570]
Constant (mean beyond bias)	-0.127*** (0.037) [-0.347, -0.049]	-0.080*** (0.015)	-0.023 (0.099)	-0.221*** (0.078)	-0.055*** (0.016) [-0.186, 0.061]	-0.008 (0.068) [-0.170, 0.159]
Observations Studies	211 17	211 17	211 17	211 17	211 17	211 17
Panel B: GMM						
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	0.968** (0.480) [-1.438, 1.662]	1.554*** (0.158)	-0.477 (0.282)	3.318** (1.623)	0.803* (0.435) [-1.023, 1.661]	0.142 (0.529) [-1.143, 1.863]
Constant (mean beyond bias)	-0.015 (0.023) [-0.067, 0.048]	-0.052*** (0.010)	0.062 [*] (0.031)	-0.162 (0.099)	-0.005 (0.012) [-0.031, 0.026]	0.037 (0.023) [-0.015, 0.091]
Observations Studies	413 34	413 34	413 34	413 34	413 34	413 34

Table 10: Linear funnel asymmetry tests λ - countries

Panel A: US						
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	0.748 (0.842) [-1.442, 1.766]	1.192** (0.570)	0.092 (0.609)	-3.092*** (1.188)	-0.115 (0.988) [-1.778, 1.410]	0.444 (0.595) [-1.407, 2.224]
Constant (mean beyond bias)	-0.068** (0.032) [-0.137, 0.030]	-0.102** (0.044)	0.016 (0.031)	0.229 (0.145)	-0.001 (0.021) [-0.049, 0.057]	0.006 (0.022) [-0.040, 0.052]
Observations Studies	316 36	316 36	316 36	316 36	316 36	316 36
Panel B: Europe						
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	0.140 (0.541) [-2.381, 1.247]	0.259 (0.535)	0.948** (0.369)	-0.476 (0.883)	-0.198 (0.626) [-1.716, 1.535]	1.010*** (0.263) [-0.702, 1.538]
Constant (mean beyond bias)	-0.025 (0.028) [-0.108, 0.050]	-0.036 (0.048)	-0.012 (0.061)	0.030 (0.056)	0.005 (0.018) [-0.032, 0.057]	-0.023 (0.041) [-0.112, 0.065]
Observations Studies	200 16	200 16	200 16	200 16	200 16	200 16
Panel C: Asia						
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	1.048*** (0.181) [0.507, 1.561]	0.305 [*] (0.143)	1.296** (0.437)	2.959** (1.239)	1.021*** (0.275) [-0.313, 2.473]	1.004*** (0.198) [0.501, 1.883]
Constant (mean beyond bias)	-0.016 (0.070) [-0.168, 0.257]	0.083*** (0.019)	0.029 (0.071)	-0.269** (0.112)	-0.0120 (0.030) [-0.087, 0.120]	0.080 (0.053) [-0.041, 0.230]
Observations Studies	113 11	113 11	113 11	113 11	113 11	113 11
Panel D: Oceania						
	OLS	FE	BE	IV	Precision	Study
Standard error (publication bias)	-0.789 (0.566) [-3.827, 49.260]	-0.452 (0.704)	-2.052 (1.541)	-1.807** (0.706)	-0.526 (0.431) [-3.865, 1.591]	-1.445* (0.857) [-3.62, 3.903]
Constant (mean beyond bias)	0.017 (0.012) [-0.303, 0.160]	0.008 (0.019)	0.046 (0.050)	0.0433*** (0.016)	0.010 (0.007) [-0.715, 0.094]	0.040 (0.028) [-0.009, 0.235]
Observations Studies	64 5	64 5	64 5	64 5	64 5	64 5

2.2 Nonlinear Tests

In addition to linear regressions, we use a new technique developed in psychology by van Aert and van Assen (2020). Their technique, *p-uniform**, uses the statistical principle that the distribution of p-values should be uniform at the true mean effect size. This method is robust to heterogeneity and the endogeneity of the standard error in the funnel asymmetry test. W also employ methods considering the nonlinear relationship between estimates and their variances (e.g., Ioannidis et al. 2017; Andrews and Kasy 2019; Furukawa 2020). The Weighted Average of Adequately Powered (WAAP) technique, proposed by Ioannidis et al. (2017), takes into account the estimate when its statistical power is above an 80% threshold in order to compute a weighted mean corrected for bias. Furthermore, the method suggested by Andrews and Kasy (2019) re-weights estimates in each interval based on how they are present in the literature by assuming that publication probability changes noticeably after crossing conventional t-statistic's thresholds. Furukawa (2020) develops a stem-based method that concentrates only on the most precise estimates. Taking into account both efficiency and bias, this method calculates the optimal number of the most precise studies to include by minimizing the mean squared error:

$$\min_{n} MSE(n) = Bias^{2}(n) + Var(n).$$

The bias term can be estimated non-parametrically using two algorithms. The inner algorithm computes the bias-corrected mean given an assumed value of squared precision, and the outer algorithm computes the implied variance ensuring it is consistent with its assumed value. The inner algorithm ranks studies in an ascending order according to their standard error, SE, and for each $n = \{2, ..., N\}$ calculates the relevant bias squared and variance, given the assumed value of SE_0 :

$$Bias^{2}(n) = \frac{\sum_{i=2}^{n} \sum_{j\neq i}^{n} w_{i} w_{j} \beta_{i} \beta_{j}}{\sum_{i=2}^{n} \sum_{j\neq i}^{n} w_{i} w_{j}} - 2\beta_{1} \frac{\sum_{i=2}^{n} w_{i} \beta_{i}}{\sum_{i=2}^{n} w_{i}},$$

$$Var(n) = \sum_{i=1}^{n} w_{i},$$

where $w_i = \frac{1}{SE_i^2 + SE_0^2}$. The outer algorithm then searches over SE_0^2 to validate the consistency of implied variance. The stem-based corrected estimate can be written as:

$$\hat{b}_{\text{stem}} = \frac{\sum_{i=1}^{n_{\text{stem}}} w_i \beta_i}{\sum_{i=1}^{n_{\text{stem}}} w_i}.$$

Following tables presents the relevant preliminary results.

Table 11: Nonlinear funnel asymmetry tests β

Panel A: All studie	es —			
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	0.942***	0.920***	0.942***	0.983***
	(0.022)	(0.013)	(0.005)	(0.017)
Observations	836	836	836	836
Studies	60	60	60	60
Panel B: GDP defla	ntor			
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	0.922***	0.929***	0.922***	0.980***
•	(0.027)	(0.016)	(0.008)	(0.024)
Observations	283	283	283	283
Studies	30	30	30	30
Panel C: CPI				
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	0.956***	0.877***	0.956***	0.975***
-	(0.035)	(0.011)	(0.007)	(0.047)
Observations	495	495	495	495
Studies	32	32	32	32
·		** ***		

Table 12: Nonlinear funnel asymmetry tests β - OLS and GMM

Panel A: OLS				
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	0.825***	0.737***	0.825***	0.940***
	(0.066)	(0.020)	(0.015)	(0.059)
Observations	211	211	211	211
Studies	17	17	17	17
Panel B: GMM				
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	0.943***	0.925***	0.943***	0.981***
	(0.026)	(0.031)	(0.006)	(0.017)
Observations	486	486	486	486
Studies	37	37	37	37

Table 13: Nonlinear funnel asymmetry tests β - survey and RE

Panel A: Rational e	expectations			
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	0.957***	0.878***	0.957***	0.984***
	(0.018)	(0.008)	(0.005)	(0.017)
Observations	601	601	601	601
Studies	51	51	51	51
Panel B: Survey ex	pectations			
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	0.868***	0.901***	0.868***	0.960***
	(0.032)	(0.019)	(0.014)	(0.046)
Observations	235	235	235	235
Studies	12	12	12	12

Table 14: Nonlinear funnel asymmetry tests β - countries

Panel A: US				
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	0.934***	0.925***	0.943***	0.973***
	(0.031)	(0.013)	(0.007)	(0.022)
Observations	353	353	353	353
Studies	30	30	30	30
Panel B: Europe				
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	0.937*** (0.026)	0.839*** (0.015)	0.839*** 0.937***	
Observations	200	200	200	200
Studies	16	16	16	16
Panel C: Asia				
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	0.754***	0.688***	0.755***	0.887***
	(0.098)	(0.028)	(0.023)	(0.119)
Observations	113	113	113	113
Studies	11	11	11	11
Panel D: Oceania				
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	1.007***	0.964***	1.008***	0.958***
	(0.015)	(0.015)	(0.006)	(0.033)
Observations	108	108	108	108
Studies	6	6	6	6

Table 15: Nonlinear funnel asymmetry tests β - CB and non CB

D 1 A. C (11.	1.			
Panel A: Central ba	ink 			
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	0.954***	0.945***	0.954***	0.963***
·	(0.017)	(0.008)	(0.007)	(0.041)
Observations	189	189	189	189
Studies	26	26	26	26
Panel B: Academia				
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	0.938***	0.862***	0.938***	0.979***
J	(0.030)	(0.009)	(0.006)	(0.024)
Observations	647	647	647	647
Studies	34	34	34	34

Table 16: Nonlinear funnel asymmetry tests λ

Panel A: All estima	tes			
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	-0.006	-0.000	0.007**	0.018
	(0.006)	(0.001)	(0.003)	(0.008)
Observations	755	755	755	755
Studies	56	56	56	56
Panel B: Labor shar	re			
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	0.001	0.021**	0.004	0.029 [*]
	(0.007)	(0.005)	(0.004)	(0.013)
Observations	237	237	237	237
Studies	29	29	29	29
Panel C: Unemploy	ment gap			
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	-0.042	-0.046***	-0.028***	-0.154 **
	(0.020)	(0.008)	(0.007)	(0.058)
Observations	235	235	235	235
Studies	7	7	7	7
Panel D: Output ga	ıp			
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	0.000	0.003	-0.004	-0.005
	(0.007)	(0.002)	(0.006)	(0.015)
Observations	186	186	186	186
Studies	31	31	31	31

Table 17: Nonlinear funnel asymmetry tests λ - OLS and GMM

Panel A: OLS				
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	-0.042***	-0.038***	-0.028***	0.037
	(0.010)	(0.006)	(0.006)	(0.037)
Observations	211	211	211	211
Studies	17	17	17	17
Panel B: GMM				
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	-0.003	0.002	0.003	0.001
	(0.004)	(0.001)	(0.004)	(0.001)
Observations	413	413	413	413
Studies	34	34	34	34

Table 18: Nonlinear funnel asymmetry tests λ - countries

Panel A: US				
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	-0.009	-0.002	0.014***	0.005
	(0.003)	(0.003)	(0.004)	(0.011)
Observations	316	316	316	316
Studies	56	56	56	56
Panel B: Europe				
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	NA 0.000 (0.004)	-0.001 (0.002)		
Observations	200	200	200	200
Studies	16	16	16	16
Panel C: Asia				
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	NA 0.017	0.075	0.004	0.032
	(0.011)	(0.026)	(0.014)	(0.052)
Observations	113	113	113	113
Studies	11	11	11	11
Panel D: Oceania				
	Ioannidis et al.	Andrews and	Bom and	Furukawa
	(2017)	Kasy (2019)	Rachinger (2019)	(2020)
Effect beyond bias	NA 0.002	0.001	0.007	-0.007
	(0.002)	(0.001)	(0.005)	(0.014)
Observations	64	64	64	64
Studies	5	5	5	5

3 Heterogeneity

Standard error Time span Midpoint Quarterly Inflation targeting Contraction US Europe Asia Oceania Africa Model Open economy Augmented Extra lead Survey expectations CPI GDP deflator Labor share 0.28 0.22 -0.37 0.12 -0.03 0.2 0.21 -0.11-0.23 0.12 -0.09 0.05 -0.01-0.03-0.13-0 Unemployment Output gap -0.15 0.11 -0.09 -0.02 0.41 -0.11 -0.17 -0.09 -0.01 0.41 -0.09 0.2 0.36 -0.02 -0.1 -0.27 -0.02 0 0.23 -0.2 0.0 Structural OLS **GMM** Inflation lags included -0.33 0.14 -0.4 -0.25 0.17 -0.04 -0.15 0.03 0 0.33 -0.18 0.12 0.36 0.35 -0.2 -0.53 -0.33 0.33 Labor share included -0.2 0.21 -0.3 -0.05 0.06 0.15 0.2 -0.08-0.14-0.02-0.09 0.2 0.05 0.15 -0.14-0.31-0.36 0.29 0.43 -0.23-0.29 0.38 -0.32 0.37 0.53 Otput gap included -0.48 0.29 <mark>-0.41</mark> -0.01 0.03 0.08 0.23 <mark>-0.27 -0.08</mark> 0.26 <mark>-0.2</mark> 0.03 0.14 0.09 <mark>-0.23 -0.01 -0.36</mark> 0.37 0.39 <mark>-0.63</mark> 0.11 0.25 <mark>-0.58 0</mark>. Interest rate included -0.39 0.25 -0.22 -0.07 -0.07 0.14 0.29 -0.16 -0.11 0.04 -0.15 0.1 0.07 0.17 -0.2 0.08 -0.32 0.31 0.19 -0.49 0.04 0.14 Wage inflation included -0.35 0.37 -0.38 0.05 -0.28 0.39 0.44 -0.11 -0.27 -0.06 -0.16 0.12 -0.34 -0.22 -0.15 0.16 -0.57 0.59 0.36 -0.47 -0.31 -0.03 -0.43 0.5 Publication year 0.34 -0.2 0.53 -0.08 0.27 -0.31 -0.28 -0.05 0.22 0.07 0.2 -0.44 0.09 -0.05 0.08 0.12 0.51 -0.51 -0.38 0.48 -0.12-0.07-0.22-0.06 0.03 0.14 0.01 0.28 -0.14-0.12-0.12 0.23 0.18 0.41 -0.01-0.18-0.12 0.17 0.12 -0.12 Central bank affiliation -0.8-0.6 -0.4-0.20.2 0.4 0.6 0.8

Figure 7: Correlation matrix

Notes: The figure shows Pearson correlation coefficients for the explanatory variables described in Table 19.

In addition to the reported estimates and their standard errors, we collect 31 extra explanatory variables on the context in which the estimates are obtained to study heterogeneity beyond publication bias. Table 19 presents more details on the collected variables. The collected information help identify the study design characteristics that systematically influence the reported estimates. Besides, we aim to obtain the mean estimates conditional on various characteristics and potential biases in the literature. Suppose a linear regression with a dependent variable y (the NKPC estimates in our case) and a set of explanatory variables capturing the estimation context of each estimate, denoted by X_n :

$$y = \alpha + \beta_n X_n + e,$$

where α is a constant, β_n are coefficients, and e is a normal IID error term.

Table 19: Definition and summary statistics of explanatory variables

Variable	Description	Mean	SD
β	The estimated coefficient of inflation expectations in the NKPC equation.	0.88	0.34
Standard error	The standard error of the estimated coefficient of inflation expectations.	0.10	0.1
Data characteristics			
Time span	The logarithm of the data time span used to estimate β .	3.46	0.42
Midpoint	The logarithm of the median year of the data used minus the earliest median year	3.10	0.55
0 1	in primary studies.	0.02	0.0
Quarterly	= 1 if the data frequency is annual (reference category: monthly/annual).	0.93	0.2
Inflation targeting	=1 if the central bank employs inflation targeting regime during at least half of the estimation period.	0.19	0.4
Contraction	the ratio of contraction phase to the time span.	0.11	0.0
US	= 1 if the estimate is for the U.S. (reference category: other countries).	0.42	0.4
Europe	= 1 if the estimate is for European countries (reference category: other countries).	0.24	0.4
Asia	= 1 if the estimate is for Asian countries (reference category: other countries).	0.14	0.3
Oceania	= 1 if the estimate is for Australia and New Zealand countries (reference category:	0.13	0.3
Africa	other countries). = 1 if the estimate is for African countries (reference category: other countries).	0.04	0.2
	- In the commute is for inflictan countries (reference energy), other countries).	0.01	0.2
Specifications Model	= 1 if β is estimated within a model.	0.06	0.2
Open economy	= 1 if the estimate is from an open economy specification (reference category: closed	0.18	0.3
open economy	economy).	0.10	0.0
Augmented	= 1 if the NKPC includes other terms in addition to expected inflation and the	0.28	0.4
Enter land	economic activity.	0.07	0.2
Extra lead	= 1 if there are more than one inflation lead.	0.07	0.2
Survey expectations	= 1 if inflation expectations term is based on survey expectations (reference category: rational expectations).	0.28	0.4
CPI	= 1 if CPI is the measure of inflation (reference category: other inflation measures).	0.59	0.4
GDP deflator	= 1 if inflation is measured as GDP deflator (reference category: other inflation	0.34	0.4
	measures).		
Labor share	= 1 if the labor income share (unit labor costs) are proxies for marginal costs	0.31	0.4
Unampleyment can	(reference category: other proxies). = 1 if unemployment is a proxy for marginal costs (reference category: other	0.28	0.4
Unemployment gap	proxies).	0.28	0.4
Output gap	= 1 if output gap is a proxy for marginal costs (reference category: other proxies).	0.27	0.4
Estimation techniques			
Structural	= 1 if the estimate is based on an structural equation (reference category: reduced	0.16	0.3
	equation).		
OLS	= 1 if ordinary least square (OLS) method is used for the estimation (reference category: other methods).	0.25	0.4
GMM	= 1 if the generalized method of moments (GMM) is used for the estimation (refer-	0.58	0.4
GIVIIVI	ence category: other methods).	0.36	0.4
Inflation lags included	= 1 if inflation lags are among instruments (reference category: inflation lags not	0.52	0.5
	among instruments).	0.00	0.4
Labor share included	= 1 if labor income share is among instruments (reference category: labor share	0.23	0.4
Output can included	not among instruments).	0.50	0.5
Output gap included	= 1 if output gap is among instruments (reference category: interest rate not among instruments).	0.50	0.0
Interest rate included	= 1 if the interest rate is among instruments (reference category: interest rate not	0.38	0.4
	among instruments).		
Wage inflation included	= 1 if wage inflation is among instruments (reference category: interest rate not among instruments).	0.35	0.4
Dublication characteristics	0 (
Publication characteristics Publication year	The logarithm of the publication year of the study minus the publication year of	2.70	0.4
- acircultori year	the first primary study.	2.70	J.1
Central bank affiliation	= 1 if at least one of the authors is affiliated with a central bank.	0.23	0.4
Citations	The logarithm of the number of per-year citations of the study, according to Google	1.42	1.1
	The logaritation of the number of per year chanons of the study, according to dougle	1.14	1.1

Notes: SD = standard deviation. The table excludes the definition and summary statistics of the reference categories, which are omitted from the regressions.

Since a simple regression ignores model uncertainty and consequently affects the precision of results, we employ Bayesian model averaging (BMA) method, which is a natural solution to model uncertainty in the Bayesian setting. Using all the possible subsets of explanatory variables, BMA runs numerous regression models and forms a weighted average over all of them. If the set of explanatory

variables contains k variables, there will be 2^k variable combinations and 2^k models. Using Bayes' theorem, one can obtain model weights from posterior model probabilities (PMP):

$$\pi(M_n \mid y, X) = \frac{\pi(y \mid M_n, X) \pi(M_n)}{\pi(y \mid X_n)} \equiv \frac{\pi(y \mid M_n, X) \pi(M_n)}{\sum_{s=1}^{2K} \pi(y \mid M_s, X_s) \pi(M_s)},$$

where $\pi(M_n)$ is the model prior, $\pi(y \mid M_n, X_n)$ is the marginal likelihood, and $\pi(y \mid X_n)$ is the integrated likelihood. The model weighted posterior distribution for the coefficient β can be written as:

$$\pi(\beta \mid y, X) = \sum_{n=1}^{2^k} \pi(\beta \mid M_n, y, X) \pi(M_n \mid y, X).$$

The model prior is a key factor in conducting BMA since it reflects the prior beliefs about the model. We employ Unit Information Prior (UIP) for Zellner's g-prior in which the prior that all regression parameters are zero has the same weight as one observation in the data (Eicher et al., 2011). We also use dilution prior suggested by George (2010). The dilution prior considers the collinearity of variables in each model by assigning higher weights to models that exhibit lower collinearity. Moreover, We conduct several robustness checks using different types of priors to confirm the results of the baseline BMA specification. We use the programming language R and the BMS package developed by Zeugner and Feldkircher (2015) to apply BMA method. Preliminary results are presented in the following tables and figures.

3.1 Coefficient of inflation expectations

Table 20: Explaining heterogeneity β

	Bayesian N	Iodel Avera	iging	Frequentist Check (OLS)		
Variable	Post. Mean	Post. SD	PIP	Coeff.	S.E.	P-val.
Intercept	1.029	N.A.	1.000	1.005	0.102	0.000
Standard error	0.003	0.024	0.023			
Data characteristics						
Time span	-0.014	0.026	0.251			
Midpoint	0.000	0.002	0.015			
Quarterly	-0.068	0.063	0.605	-0.100	0.106	0.352
Inflation targeting	0.000	0.003	0.015			
Contraction	-0.026	0.100	0.085			
US	0.130	0.048	0.917	0.132	0.043	0.003
Europe	-0.012	0.036	0.132			
Asia	-0.164	0.046	0.996	-0.168	0.046	0.001
Oceania	0.103	0.049	0.867	0.123	0.035	0.001
Africa	0.015	0.041	0.140			
Specifications						
Model	0.002	0.012	0.043			
Open economy	0.000	0.005	0.020			
Augmented	-0.004	0.014	0.092			
Extra lead	-0.004	0.019	0.067			
Survey expectations	-0.001	0.006	0.028			
CPI	0.025	0.032	0.404			
GDP deflator	-0.023	0.031	0.400			
Labor share	0.000	0.004	0.021			
Unemployment	0.001	0.007	0.023			
Output gap	0.060	0.038	0.773	0.094	0.025	0.000
Estimation techniques						
Structural	0.030	0.043	0.366			
OLS	-0.177	0.027	1.000	-0.151	0.045	0.001
GMM	-0.024	0.043	0.267			
Inflation lags included	0.001	0.008	0.030			
Labor share included	-0.035	0.045	0.436			
Output gap included	-0.073	0.038	0.841	-0.100	0.031	0.002
Interest rate included	-0.073	0.029	0.928	-0.091	0.028	0.002
Wage inflation included	0.000	0.003	0.016			
Publication characteristics						
Publication year	0.000	0.004	0.019			
Central bank affiliation	0.077	0.034	0.923	0.056	0.036	0.126
Citations	0.002	0.006	0.091			
Observations	836			836		
Studies	60			60		

Notes: The response variable is the coefficient of the inflation expectations in the NKPC. SD = standard deviation, PIP = Posterior inclusion probability, S.E. = standard error. The left-hand panel applies BMA based on the UIP g-prior and the dilution prior (Eicher et al. 2011; George 2010). The right-hand panel reports a frequentist check using OLS, which includes variables with PIPs higher than 0.50 in BMA. Standard errors in the frequentist check are clustered at the study level. Table 19 presents a detailed description of all the variables.

Figure 8: Model inclusion in Bayesian model averaging β

0 0.07 0.13 0.19 0.25 0.3 0.34 0.4 0.44 0.5 0.54 0.6 0.64 0.7 0.74 0.8 0.84

Notes: The response variable is the coefficient of the inflation expectations in the NKPC. The columns denote individual models; variables are sorted by posterior inclusion probability in descending order. The horizontal axis denotes the cumulative posterior model probabilities. The estimation is based on the unit information prior (UIP) recommended by Eicher et al. (2011) and the dilution prior suggested by George (2010), which takes collinearity into account. Black color (darker in grayscale) = the variable has a positive estimated sign. Red color (lighter in grayscale) = the variable has a negative estimated sign. No color = the variable is excluded from the given model. Table 3 presents a detailed description of all variables. The numerical results are reported in Table 20.

Figure 9: Model size and convergence for the benchmark BMA model β

Notes: The figure illustrates the posterior model size distribution and the posterior model probabilities of the BMA exercise reported in Table 20.

Table 21: Alternative BMA priors β

	BRI	C g-prior		HQ g-prior		
Variable	Post. Mean	Post. SD	PIP	Post. Mean	Post. SD	PIP
Intercept	1.023	N.A.	1.000	1.090	N.A.	1.000
Standard error	0.004	0.029	0.031	0.007	0.039	0.065
Data characteristics						
Time span	-0.013	0.026	0.241	-0.022	0.030	0.417
Midpoint	0.000	0.003	0.022	0.000	0.004	0.047
Quarterly	-0.064	0.063	0.574	-0.095	0.058	0.817
Inflation targeting	0.000	0.004	0.020	0.000	0.006	0.048
Contraction	-0.028	0.102	0.089	-0.044	0.122	0.155
US	0.126	0.051	0.898	0.144	0.045	0.959
Europe	-0.014	0.039	0.157	-0.008	0.032	0.144
Asia	-0.165	0.048	0.994	-0.165	0.045	0.992
Oceania	0.100	0.052	0.844	0.106	0.048	0.899
Africa	0.013	0.039	0.127	0.034	0.057	0.318
Specifications						
Model	0.002	0.013	0.051	0.003	0.015	0.085
Open economy	0.001	0.006	0.029	0.001	0.007	0.052
Augmented	-0.004	0.015	0.105	-0.005	0.015	0.138
Extra lead	-0.004	0.018	0.065	-0.011	0.029	0.162
Survey expectations	-0.001	0.007	0.033	-0.003	0.012	0.092
CPI	0.026	0.033	0.425	0.015	0.028	0.301
GDP deflator	-0.022	0.031	0.379	-0.027	0.031	0.498
Labor share	0.000	0.005	0.026	-0.001	0.007	0.065
Unemployment	0.001	0.008	0.032	0.001	0.010	0.062
Output gap	0.061	0.038	0.776	0.046	0.038	0.675
Estimation techniques						
Structural	0.026	0.042	0.328	0.052	0.045	0.635
OLS	-0.176	0.027	1.000	-0.179	0.030	1.000
GMM	-0.023	0.043	0.257	-0.039	0.048	0.471
Inflation lags included	0.001	0.009	0.037	0.004	0.017	0.102
Labor share included	-0.032	0.044	0.403	-0.059	0.045	0.709
Output gap included	-0.074	0.038	0.841	-0.063	0.040	0.788
Interest rate included	-0.071	0.031	0.906	-0.073	0.028	0.939
Wage inflation included	0.000	0.004	0.021	0.000	0.006	0.048
Publication characteristics						
Publication year	0.000	0.005	0.024	0.000	0.006	0.051
Central bank affiliation	0.075	0.035	0.905	0.085	0.031	0.964
Citations	0.002	0.006	0.107	0.002	0.005	0.116
Observations	836			836		
Studies	60			60		

Notes: The response variable is the coefficient of the inflation expectations in the NKPC. SD = standard deviation, PIP = Posterior inclusion probability. The left-hand panel applies BMA based on BRIC g-prior (the benchmark g-prior for parameters with the beta-binomial model prior). The right-hand panel reports the results of BMA based on HQ g-prior, which asymptotically mimics the Hannan-Quinn criterion. Table 19 presents a detailed description of all the variables.

Figure 10: Posterior inclusion probabilities across different prior settings β

Notes: UIP and Dilution = priors according to Eicher et al. (2011) and George (2010); BRIC and Random = the benchmark g-prior for parameters with the beta-binomial model prior. The HQ prior asymptotically mimics the Hannan-Quinn criterion.

Table 22: Alternative weighted specifications of the baseline BMA model β

	Weighted			S.E. excluded		
Variable	Post. Mean	Post. SD	PIP	Post. Mean	Post. SD	PIP
Intercept	1.029	N.A.	1.000	1.035	N.A.	1.000
Standard error	0.003	0.024	0.023	N.A.	N.A.	N.A.
Data characteristics						
Time span	-0.014	0.026	0.251	-0.014	0.026	0.267
Midpoint	0.000	0.002	0.015	0.000	0.002	0.016
Quarterly	-0.068	0.063	0.605	-0.071	0.063	0.625
Inflation targeting	0.000	0.003	0.015	0.000	0.003	0.016
Contraction	-0.026	0.100	0.085	-0.028	0.102	0.090
US	0.130	0.048	0.917	0.132	0.047	0.924
Europe	-0.012	0.036	0.132	-0.011	0.035	0.129
Asia	-0.164	0.046	0.996	-0.163	0.045	0.996
Oceania	0.103	0.050	0.867	0.104	0.049	0.873
Africa	0.015	0.041	0.140	0.016	0.043	0.153
Specifications						
Model	0.002	0.012	0.043	0.002	0.013	0.045
Open economy	0.000	0.005	0.019	0.000	0.005	0.021
Augmented	-0.004	0.014	0.092	-0.004	0.014	0.093
Extra lead	-0.004	0.019	0.067	-0.005	0.020	0.072
Survey expectations	-0.001	0.006	0.028	-0.001	0.007	0.031
CPI	0.025	0.032	0.404	0.024	0.032	0.396
GDP deflator	-0.023	0.031	0.400	-0.024	0.031	0.407
Labor share	0.000	0.004	0.021	0.000	0.004	0.023
Unemployment	0.001	0.007	0.023	0.001	0.007	0.025
Output gap	0.060	0.038	0.773	0.059	0.038	0.763
Estimation techniques						
Structural	0.030	0.043	0.366	0.032	0.044	0.389
OLS	-0.177	0.027	1.000	-0.177	0.028	1.000
GMM	-0.024	0.043	0.267	-0.025	0.044	0.282
Inflation lags included	0.001	0.008	0.030	0.001	0.009	0.034
Labor share included	-0.035	0.045	0.436	-0.037	0.045	0.459
Output gap included	-0.073	0.038	0.841	-0.073	0.039	0.837
Interest rate included	-0.073	0.029	0.928	-0.073	0.029	0.932
Wage inflation included	0.000	0.003	0.016	0.000	0.003	0.017
Publication characteristics						
Publication year	0.000	0.004	0.019	0.000	0.004	0.020
Central bank affiliation	0.077	0.034	0.923	0.077	0.033	0.927
Citations	0.002	0.006	0.091	0.002	0.006	0.091
Observations	836			836		
Studies	60			60		

Notes: The response variable is the coefficient of the inflation expectations in the NKPC. SD = standard deviation, PIP = Posterior inclusion probability. The left-hand panel reports the results when variables are weighted by the inverse of the number of estimates per study. The right-hand panel reports the results of BMA when standard errors are excluded. In both panels we employ BMA based on the UIP g-prior and the dilution prior (Eicher et al. 2011; George 2010). Table 19 presents a detailed description of all the variables.

Figure 11: Model inclusion in BMA (GDP deflator)

Notes: The response variable is the coefficient of the inflation expectations in the NKPC when inflation is defined by the GDP deflator. The columns denote individual models; variables are sorted by posterior inclusion probability in descending order. The horizontal axis denotes the cumulative posterior model probabilities. The estimation is based on the unit information prior (UIP) recommended by Eicher et al.

probabilities. The estimation is based on the unit information prior (UIP) recommended by Eicher et al. (2011) and the dilution prior suggested by George (2010), which takes collinearity into account. Black color (darker in grayscale) = the variable has a positive estimated sign. Red color (lighter in grayscale) = the variable has a negative estimated sign. No color = the variable is excluded from the given model. Table 3 presents a detailed description of all variables. The left-hand panel of Table 23 represents the corresponding

numerical results.

Central bank affiliation Citations Quarterly Asia Africa Oceania US Structural Europe Wage inflation included Model Output gap Time span Augmented Otput gap included OLS Labor share Interest rate included Standard error Open economy Unemployment Inflation lags included Survey expectations GMM Contraction Inflation targeting Labor share included Extra lead Publication year Midpoint

Figure 12: Model inclusion in BMA (CPI)

 $0 \qquad 0.06 \quad 0.11 \quad 0.17 \quad 0.22 \quad 0.27 \quad 0.32 \quad 0.37 \quad 0.42 \quad 0.47 \quad 0.52 \quad 0.57 \quad 0.62 \quad 0.67 \quad 0.72 \quad 0.77 \quad 0.82$

Notes: The response variable is the coefficient of the inflation expectations in the NKPC when inflation is defined by the CPI. The columns denote individual models; variables are sorted by posterior inclusion probability in descending order. The horizontal axis denotes the cumulative posterior model probabilities. The estimation is based on the unit information prior (UIP) recommended by Eicher et al. (2011) and the dilution prior suggested by George (2010), which takes collinearity into account. Black color (darker in grayscale) = the variable has a positive estimated sign. Red color (lighter in grayscale) = the variable has a negative estimated sign. No color = the variable is excluded from the given model. Table 3 presents a detailed description of all variables. The right-hand panel of Table 23 represents the corresponding numerical results.

Table 23: Heterogeneity within different inflation measures β

	GD:	P deflator			CPI	
Variable	Post. Mean	Post. SD	PIP	Post. Mean	Post. SD	PIP
Intercept	0.927	N.A.	1.000	0.957	N.A.	1.000
Standard error	-1.964	0.287	1.000	0.029	0.091	0.114
Data characteristics						
Time span	0.000	0.003	0.011	-0.017	0.032	0.253
Midpoint	0.000	0.004	0.021	0.000	0.005	0.014
Quarterly	0.013	0.043	0.102	-0.198	0.052	0.987
Inflation targeting	0.000	0.007	0.011	0.001	0.007	0.023
Contraction	-0.078	0.213	0.141	-0.007	0.054	0.029
US	0.000	0.007	0.018	0.060	0.075	0.437
Europe	-0.002	0.013	0.044	-0.038	0.060	0.344
Asia	0.000	0.009	0.013	-0.155	0.076	0.935
Oceania	0.041	0.051	0.434	0.100	0.096	0.568
Africa	N.A.	N.A.	N.A.	0.218	0.109	0.865
Specifications						
Model	0.000	0.004	0.012	-0.127	0.233	0.267
Open economy	-0.001	0.010	0.019	-0.009	0.029	0.114
Augmented	-0.014	0.030	0.212	-0.018	0.035	0.248
Extra lead	0.000	0.008	0.013	0.000	0.010	0.020
Survey expectations	0.000	0.009	0.026	0.003	0.018	0.046
Labor share	0.000	0.002	0.011	-0.011	0.033	0.134
Unemployment	0.063	0.151	0.172	0.000	0.021	0.056
Output gap	0.001	0.008	0.028	0.028	0.054	0.266
Estimation techniques						
Structural	0.001	0.007	0.025	0.057	0.079	0.392
OLS	0.000	0.009	0.015	-0.014	0.035	0.171
GMM	-0.008	0.024	0.133	0.002	0.013	0.034
Inflation lags included	0.084	0.048	0.844	-0.005	0.025	0.055
Labor share included	-0.021	0.034	0.320	0.000	0.009	0.021
Output gap included	0.000	0.004	0.015	-0.022	0.046	0.218
Interest rate included	-0.010	0.024	0.180	0.013	0.038	0.126
Wage inflation included	-0.004	0.015	0.075	0.045	0.075	0.309
Publication characteristics						
Publication year	0.000	0.002	0.011	0.000	0.007	0.016
Central bank affiliation	0.000	0.005	0.018	0.257	0.046	1.000
Citations	0.000	0.001	0.012	0.069	0.020	0.999
Observations	283			495		
Studies	30			32		

Notes: The response variable in the left-hand panel is the coefficient of the inflation expectations in the NKPC when inflation is defined by the GDP deflator. The right-hand panel reports the results regarding the estimate of the same coefficient when inflation is defined by the CPI. SD = standard deviation, PIP = Posterior inclusion probability. In both panels we employ BMA based on the UIP g-prior and the dilution prior (Eicher et al. 2011; George 2010). Table 19 presents a detailed description of all the variables.

3.2 Slope of the NKPC (driving variable)

Table 24: Explaining heterogeneity λ

	Bayesian M	Iodel Avera	ging	Freque	ntist Che	eck (OLS)
Variable	Post. Mean	Post. SD	PIP	Coeff.	S.E.	P-val.
Intercept	0.286	N.A.	1.000	0.298	0.103	0.005
Standard error	0.692	0.067	1.000	0.707	0.223	0.003
Data characteristics						
Time span	-0.004	0.014	0.124			
Midpoint	0.000	0.002	0.024			
Quarterly	-0.043	0.048	0.511	-0.072	0.063	0.260
Inflation targeting	0.000	0.003	0.021			
Contraction	0.002	0.026	0.026			
US	-0.001	0.008	0.049			
Europe	0.001	0.008	0.050			
Asia	0.086	0.039	0.899	0.091	0.056	0.110
Oceania	-0.001	0.006	0.029			
Africa	-0.235	0.043	1.000	-0.253	0.071	0.001
Specifications						
Model	-0.001	0.007	0.026			
Open economy	-0.144	0.022	1.000	-0.148	0.066	0.029
Augmented	0.002	0.010	0.068			
Extra lead	0.004	0.016	0.073			
Survey expectations	0.020	0.029	0.360			
CPI	0.001	0.005	0.039			
GDP deflator	0.000	0.003	0.024			
Labor share	0.170	0.020	1.000	0.176	0.041	0.000
Unemployment	-0.002	0.013	0.057			
Output gap	0.174	0.022	1.000	0.176	0.040	0.000
Estimation techniques						
Structural	0.112	0.025	0.998	0.116	0.048	0.019
OLS	-0.055	0.041	0.710	-0.077	0.034	0.027
GMM	-0.002	0.011	0.065			
Inflation lags included	-0.037	0.037	0.556	-0.073	0.025	0.004
Labor share included	0.001	0.008	0.046			
Output gap included	-0.001	0.007	0.048			
Interest rate included	0.000	0.005	0.032			
Wage inflation included	-0.004	0.013	0.099			
Publication characteristics						
Publication year	-0.097	0.022	0.999	-0.091	0.030	0.003
Central bank affiliation	-0.015	0.026	0.299	2.071	2.200	2.300
Citations	-0.056	0.008	1.000	-0.054	0.007	0.000
Observations	755			755		
Studies	56			56		

Notes: The response variable is the slope of the NKPC. SD = standard deviation, PIP = Posterior inclusion probability, S.E. = standard error. The left-hand panel applies BMA based on the UIP g-prior and the dilution prior (Eicher et al. 2011; George 2010). The right-hand panel reports a frequentist check using OLS, which includes variables with PIPs higher than 0.50 in BMA. Standard errors in the frequentist check are clustered at the study level. Table 19 presents a detailed description of all the variables.

Figure 13: Model inclusion in Bayesian model averaging λ

0 0.13 0.21 0.27 0.33 0.39 0.45 0.51 0.57 0.63 0.69 0.74 0.8 0.85 0.9 0.95

Notes: The response variable is the slope of the NKPC. The columns denote individual models; variables are sorted by posterior inclusion probability in descending order. The horizontal axis denotes the cumulative posterior model probabilities. The estimation is based on the unit information prior (UIP) recommended by Eicher et al. (2011) and the dilution prior suggested by George (2010), which takes collinearity into account. Black color (darker in grayscale) = the variable has a positive estimated sign. Red color (lighter in grayscale) = the variable has a negative estimated sign. No color = the variable is excluded from the given model. Table 3 presents a detailed description of all variables. The numerical results are reported in Table 24.

Figure 14: Model size and convergence for the benchmark BMA model λ

Notes: The figure illustrates the posterior model size distribution and the posterior model probabilities of the BMA exercise reported in Table 24.

Table 25: Alternative BMA priors λ

	BRIC g-prior			HQ g-prior			
Variable	Post. Mean	Post. SD	PIP	Post. Mean	Post. SD	PIP	
Intercept	0.277	N.A.	1.000	0.333	N.A.	1.000	
Standard error	0.692	0.067	1.000	0.684	0.068	1.000	
Data characteristics							
Time span	-0.004	0.013	0.111	-0.008	0.018	0.231	
Midpoint	0.000	0.002	0.023	0.000	0.004	0.050	
Quarterly	-0.040	0.047	0.474	-0.056	0.047	0.666	
Inflation targeting	0.000	0.004	0.024	0.000	0.005	0.050	
Contraction	0.002	0.027	0.027	0.004	0.039	0.059	
US	-0.001	0.008	0.046	-0.004	0.014	0.113	
Europe	0.001	0.007	0.047	0.003	0.011	0.103	
Asia	0.087	0.039	0.897	0.080	0.040	0.879	
Oceania	-0.001	0.006	0.029	-0.002	0.010	0.068	
Africa	-0.234	0.043	1.000	-0.235	0.044	1.000	
Specifications							
Model	-0.001	0.007	0.026	-0.001	0.011	0.058	
Open economy	-0.144	0.022	1.000	-0.146	0.023	1.000	
Augmented	0.002	0.009	0.059	0.005	0.015	0.149	
Extra lead	0.004	0.016	0.068	0.007	0.022	0.137	
Survey expectations	0.019	0.029	0.353	0.025	0.032	0.446	
CPI	0.001	0.005	0.037	0.001	0.007	0.073	
GDP deflator	0.000	0.003	0.024	0.000	0.005	0.053	
Labor share	0.170	0.020	1.000	0.171	0.021	1.000	
Unemployment	-0.002	0.013	0.056	-0.005	0.018	0.110	
Output gap	0.174	0.022	1.000	0.172	0.024	1.000	
Estimation techniques							
Structural	0.112	0.025	0.997	0.110	0.026	0.995	
OLS	-0.054	0.041	0.693	-0.057	0.040	0.743	
GMM	-0.002	0.011	0.061	-0.005	0.016	0.132	
Inflation lags included	-0.036	0.036	0.540	-0.036	0.037	0.553	
Labor share included	0.001	0.008	0.042	0.004	0.014	0.118	
Output gap included	-0.001	0.006	0.045	-0.002	0.008	0.086	
Interest rate included	0.000	0.005	0.033	0.000	0.007	0.062	
Wage inflation included	-0.003	0.012	0.086	-0.008	0.019	0.196	
Publication characteristics							
Publication year	-0.096	0.022	0.998	-0.102	0.024	1.000	
Central bank affiliation	-0.014	0.025	0.279	-0.024	0.030	0.456	
Citations	-0.056	0.008	1.000	-0.058	0.008	1.000	
Observations	755			755			
Studies	56			56			

Notes: The response variable is the slope of the NKPC. SD = standard deviation, PIP = Posterior inclusion probability. The left-hand panel applies BMA based on BRIC g-prior (the benchmark g-prior for parameters with the beta-binomial model prior). The right-hand panel reports the results of BMA based on HQ g-prior, which asymptotically mimics the Hannan-Quinn criterion. Table 19 presents a detailed description of all the variables.

Figure 15: Posterior inclusion probabilities across different prior settings λ

Notes: UIP and Dilution = priors according to Eicher et al. (2011) and George (2010); BRIC and Random = the benchmark g-prior for parameters with the beta-binomial model prior. The HQ prior asymptotically mimics the Hannan-Quinn criterion.

Table 26: Alternative weighted specifications of the baseline BMA model λ

Name		Weighted			S.E. excluded			
Standard error 0.659 0.063 1.000 N.A. N.A. N.A. N.A.	Variable	Post. Mean	Post. SD	PIP	Post. Mean	Post. SD	PIP	
Data characteristics	Intercept	-0.009	N.A.	1.000	2.494	N.A.	1.000	
Time span 0.000 0.004 0.039 -1.213 0.271 0.999 Midpoint 0.014 0.023 0.330 0.000 0.024 0.015 Quarterly -0.001 0.006 0.037 0.000 0.055 0.016 Inflation targeting -0.014 0.027 0.247 0.007 0.068 0.024 Contraction -0.430 0.234 0.846 0.005 0.230 0.015 US 0.075 0.084 0.512 -0.011 0.150 0.064 Europe 0.131 0.085 0.917 0.376 0.439 0.484 Asia 0.102 0.090 0.662 0.425 0.545 0.428 Oceania 0.075 0.087 0.477 -0.148 0.369 0.169 Africa -0.302 0.090 1.000 -1.346 0.344 0.996 Augmented 0.000 0.006 0.033 0.064 0.266 0.074	Standard error	0.659	0.063	1.000	N.A.	N.A.	N.A.	
Midpoint 0.014 0.023 0.330 0.000 0.024 0.015 Quarterly -0.001 0.006 0.037 0.000 0.055 0.016 Inflation targeting -0.014 0.027 0.247 0.007 0.068 0.024 Contraction -0.430 0.234 0.846 0.005 0.230 0.015 US 0.075 0.084 0.512 -0.011 0.150 0.064 Europe 0.131 0.085 0.917 0.376 0.439 0.484 Asia 0.102 0.090 0.662 0.425 0.545 0.428 Oceania 0.075 0.087 0.477 -0.148 0.369 0.169 Africa -0.302 0.090 1.000 -0.145 0.417 0.135 Specifications Model 0.000 0.006 0.033 0.064 0.266 0.074 Open economy -0.125 0.020 1.000 -1.346 0.	Data characteristics							
Quarterly -0.001 0.006 0.037 0.000 0.055 0.016 Inflation targeting -0.014 0.027 0.247 0.007 0.068 0.024 Contraction -0.430 0.234 0.846 0.005 0.230 0.015 US 0.075 0.084 0.512 -0.011 0.150 0.064 Europe 0.131 0.085 0.917 0.376 0.439 0.484 Asia 0.102 0.090 0.662 0.425 0.545 0.428 Oceania 0.075 0.087 0.477 -0.148 0.369 0.169 Africa -0.302 0.090 1.000 -0.145 0.417 0.135 Specifications Model 0.000 0.006 0.033 0.064 0.266 0.074 Open economy -0.125 0.020 1.000 -1.346 0.344 0.996 Augmented 0.000 0.004 0.029 0.011 0	Time span	0.000	0.004	0.039	-1.213	0.271	0.999	
Inflation targeting	Midpoint	0.014	0.023	0.330	0.000	0.024	0.015	
Contraction -0.430 0.234 0.846 0.005 0.230 0.015 US 0.075 0.084 0.512 -0.011 0.150 0.064 Europe 0.131 0.085 0.917 0.376 0.439 0.484 Asia 0.102 0.090 0.662 0.425 0.545 0.428 Oceania 0.075 0.087 0.477 -0.148 0.369 0.169 Africa -0.302 0.090 1.000 -0.145 0.417 0.135 Specifications Model 0.000 0.006 0.033 0.064 0.266 0.074 Open economy -0.125 0.020 1.000 -1.346 0.344 0.996 Augmented 0.000 0.004 0.029 0.011 0.076 0.032 Extra lead 0.009 0.023 0.180 0.038 0.185 0.058 Survey expectations 0.008 0.018 0.193 0.060 0.	Quarterly	-0.001	0.006	0.037	0.000	0.055	0.016	
US 0.075 0.084 0.512 -0.011 0.150 0.064 Europe 0.131 0.085 0.917 0.376 0.439 0.484 Asia 0.102 0.090 0.662 0.425 0.545 0.428 Oceania 0.075 0.087 0.477 -0.148 0.369 0.169 Africa -0.302 0.090 1.000 -0.145 0.417 0.135 Specifications Model 0.000 0.006 0.033 0.064 0.266 0.074 Open economy -0.125 0.020 1.000 -1.346 0.344 0.996 Augmented 0.000 0.004 0.029 0.011 0.076 0.032 Extra lead 0.009 0.023 0.180 0.038 0.185 0.058 Survey expectations 0.008 0.018 0.193 0.060 0.194 0.112 CPI 0.082 0.018 1.093 0.060 0.194	Inflation targeting	-0.014	0.027	0.247	0.007		0.024	
Europe 0.131 0.085 0.917 0.376 0.439 0.484 Asia 0.102 0.090 0.662 0.425 0.545 0.428 Oceania 0.075 0.087 0.477 -0.148 0.369 0.169 Africa -0.302 0.090 1.000 -0.145 0.417 0.135 Specifications Model 0.000 0.006 0.033 0.064 0.266 0.074 Open economy -0.125 0.020 1.000 -1.346 0.344 0.996 Augmented 0.000 0.004 0.029 0.011 0.076 0.032 Extra lead 0.009 0.023 0.180 0.038 0.185 0.058 Survey expectations 0.008 0.018 0.193 0.060 0.194 0.112 CPI 0.082 0.018 1.090 0.006 0.066 0.023 GDP deflator 0.002 0.011 0.079 0.006 0.	Contraction	-0.430	0.234	0.846	0.005	0.230	0.015	
Asia 0.102 0.090 0.662 0.425 0.545 0.428 Oceania 0.075 0.087 0.477 -0.148 0.369 0.169 Africa -0.302 0.090 1.000 -0.145 0.417 0.135 Specifications Model 0.000 0.006 0.033 0.064 0.266 0.074 Open economy -0.125 0.020 1.000 -1.346 0.344 0.996 Augmented 0.000 0.004 0.029 0.011 0.076 0.032 Extra lead 0.009 0.023 0.180 0.038 0.185 0.058 Survey expectations 0.008 0.018 0.193 0.060 0.194 0.112 CPI 0.082 0.018 1.093 0.060 0.194 0.112 CPI 0.082 0.018 1.000 0.006 0.066 0.023 GDP deflator 0.002 0.010 0.071 0.008 0.071	US	0.075	0.084	0.512	-0.011	0.150	0.064	
Oceania 0.075 0.087 0.477 -0.148 0.369 0.169 Africa -0.302 0.090 1.000 -0.145 0.417 0.135 Specifications Model 0.000 0.006 0.033 0.064 0.266 0.074 Open economy -0.125 0.020 1.000 -1.346 0.344 0.996 Augmented 0.000 0.004 0.029 0.011 0.076 0.032 Extra lead 0.009 0.023 0.180 0.038 0.185 0.058 Survey expectations 0.008 0.018 0.193 0.060 0.194 0.112 CPI 0.082 0.018 1.000 0.006 0.066 0.023 GDP deflator 0.002 0.010 0.071 0.008 0.071 0.026 Labor share 0.114 0.048 0.920 3.444 0.276 1.000 Unemployment -0.066 0.071 0.549 0.073	Europe	0.131	0.085	0.917	0.376	0.439	0.484	
Africa -0.302 0.090 1.000 -0.145 0.417 0.135 Specifications Model 0.000 0.006 0.033 0.064 0.266 0.074 Open economy -0.125 0.020 1.000 -1.346 0.344 0.996 Augmented 0.000 0.004 0.029 0.011 0.076 0.032 Extra lead 0.009 0.023 0.180 0.038 0.185 0.058 Survey expectations 0.008 0.018 0.193 0.060 0.194 0.112 CPI 0.082 0.018 1.000 0.006 0.066 0.023 GDP deflator 0.002 0.010 0.071 0.008 0.071 0.026 Labor share 0.114 0.048 0.920 3.444 0.276 1.000 Unemployment -0.066 0.071 0.549 0.073 0.270 0.088 OtLS 0.000 0.017 0.053 0.924 2.654	Asia	0.102	0.090	0.662	0.425	0.545	0.428	
Specifications Model 0.000 0.006 0.033 0.064 0.266 0.074 Open economy -0.125 0.020 1.000 -1.346 0.344 0.996 Augmented 0.000 0.004 0.029 0.011 0.076 0.032 Extra lead 0.009 0.023 0.180 0.038 0.185 0.058 Survey expectations 0.008 0.018 0.193 0.060 0.194 0.112 CPI 0.082 0.018 1.000 0.006 0.066 0.023 GDP deflator 0.002 0.010 0.071 0.008 0.071 0.008 Labor share 0.114 0.048 0.920 3.444 0.276 1.000 Unemployment -0.066 0.071 0.549 0.073 0.270 0.088 Output gap 0.127 0.053 0.924 2.654 0.338 1.000 Estimation techniques Structural 0.047 0.030 0.790 <td< td=""><td>Oceania</td><td>0.075</td><td>0.087</td><td>0.477</td><td>-0.148</td><td>0.369</td><td>0.169</td></td<>	Oceania	0.075	0.087	0.477	-0.148	0.369	0.169	
Model 0.000 0.006 0.033 0.064 0.266 0.074 Open economy -0.125 0.020 1.000 -1.346 0.344 0.996 Augmented 0.000 0.004 0.029 0.011 0.076 0.032 Extra lead 0.009 0.023 0.180 0.038 0.185 0.058 Survey expectations 0.008 0.018 0.193 0.060 0.194 0.112 CPI 0.082 0.018 1.000 0.006 0.066 0.023 GDP deflator 0.002 0.010 0.071 0.008 0.071 0.026 Labor share 0.114 0.048 0.920 3.444 0.276 1.000 Unemployment -0.066 0.071 0.549 0.073 0.270 0.088 Output gap 0.127 0.053 0.924 2.654 0.338 1.000 Estimation techniques 0.000 0.010 0.065 -0.169 0.335 0.237	Africa	-0.302	0.090	1.000	-0.145	0.417	0.135	
Open economy -0.125 0.020 1.000 -1.346 0.344 0.996 Augmented 0.000 0.004 0.029 0.011 0.076 0.032 Extra lead 0.009 0.023 0.180 0.038 0.185 0.058 Survey expectations 0.008 0.018 0.193 0.060 0.194 0.112 CPI 0.082 0.018 1.000 0.006 0.066 0.023 GDP deflator 0.002 0.010 0.071 0.008 0.071 0.026 Labor share 0.114 0.048 0.920 3.444 0.276 1.000 Unemployment -0.066 0.071 0.549 0.073 0.270 0.088 Output gap 0.127 0.053 0.924 2.654 0.338 1.000 Estimation techniques Structural 0.047 0.030 0.790 1.262 0.345 0.985 OLS 0.000 0.010 0.065 -0.169 0.335 <td>Specifications</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Specifications							
Augmented 0.000 0.004 0.029 0.011 0.076 0.032 Extra lead 0.009 0.023 0.180 0.038 0.185 0.058 Survey expectations 0.008 0.018 0.193 0.060 0.194 0.112 CPI 0.082 0.018 1.000 0.006 0.066 0.023 GDP deflator 0.002 0.010 0.071 0.008 0.071 0.026 Labor share 0.114 0.048 0.920 3.444 0.276 1.000 Unemployment -0.066 0.071 0.549 0.073 0.270 0.088 Output gap 0.127 0.053 0.924 2.654 0.338 1.000 Estimation techniques Structural 0.047 0.030 0.790 1.262 0.345 0.985 OLS 0.000 0.010 0.065 -0.169 0.335 0.237 GMM 0.001 0.007 0.060 0.023 0.126 <	Model	0.000	0.006	0.033	0.064	0.266	0.074	
Extra lead 0.009 0.023 0.180 0.038 0.185 0.058 Survey expectations 0.008 0.018 0.193 0.060 0.194 0.112 CPI 0.082 0.018 1.000 0.006 0.066 0.023 GDP deflator 0.002 0.010 0.071 0.008 0.071 0.026 Labor share 0.114 0.048 0.920 3.444 0.276 1.000 Unemployment -0.066 0.071 0.549 0.073 0.270 0.088 Output gap 0.127 0.053 0.924 2.654 0.338 1.000 Estimation techniques Structural 0.047 0.030 0.790 1.262 0.345 0.985 OLS 0.000 0.010 0.065 -0.169 0.335 0.237 GMM 0.001 0.007 0.060 0.023 0.126 0.049 Inflation lags included 0.043 0.033 0.707 0.027 0.132<	Open economy	-0.125	0.020	1.000	-1.346	0.344	0.996	
Survey expectations 0.008 0.018 0.193 0.060 0.194 0.112 CPI 0.082 0.018 1.000 0.006 0.066 0.023 GDP deflator 0.002 0.010 0.071 0.008 0.071 0.026 Labor share 0.114 0.048 0.920 3.444 0.276 1.000 Unemployment -0.066 0.071 0.549 0.073 0.270 0.088 Output gap 0.127 0.053 0.924 2.654 0.338 1.000 Estimation techniques Structural 0.047 0.030 0.790 1.262 0.345 0.985 OLS 0.000 0.010 0.065 -0.169 0.335 0.237 GMM 0.001 0.007 0.060 0.023 0.126 0.049 Inflation lags included 0.043 0.033 0.707 0.027 0.132 0.060 Labor share included 0.002 0.009 0.092 -0.017	Augmented	0.000	0.004	0.029	0.011	0.076	0.032	
CPI 0.082 0.018 1.000 0.006 0.066 0.023 GDP deflator 0.002 0.010 0.071 0.008 0.071 0.026 Labor share 0.114 0.048 0.920 3.444 0.276 1.000 Unemployment -0.066 0.071 0.549 0.073 0.270 0.088 Output gap 0.127 0.053 0.924 2.654 0.338 1.000 Estimation techniques Structural 0.047 0.030 0.790 1.262 0.345 0.985 OLS 0.000 0.010 0.065 -0.169 0.335 0.237 GMM 0.001 0.007 0.060 0.023 0.126 0.049 Inflation lags included 0.043 0.033 0.707 0.027 0.132 0.060 Labor share included 0.002 0.009 0.092 -0.017 0.106 0.040 Output gap included 0.000 0.003 0.027 -0.004	Extra lead	0.009	0.023	0.180	0.038	0.185	0.058	
GDP deflator 0.002 0.010 0.071 0.008 0.071 0.026 Labor share 0.114 0.048 0.920 3.444 0.276 1.000 Unemployment -0.066 0.071 0.549 0.073 0.270 0.088 Output gap 0.127 0.053 0.924 2.654 0.338 1.000 Estimation techniques Structural 0.047 0.030 0.790 1.262 0.345 0.985 OLS 0.000 0.010 0.065 -0.169 0.335 0.237 GMM 0.001 0.007 0.060 0.023 0.126 0.049 Inflation lags included 0.043 0.033 0.707 0.027 0.132 0.060 Labor share included 0.002 0.009 0.092 -0.017 0.106 0.040 Output gap included 0.000 0.003 0.027 -0.004 0.047 0.020 Interest rate included 0.001 0.005 0.048 <t< td=""><td>Survey expectations</td><td>0.008</td><td>0.018</td><td>0.193</td><td>0.060</td><td>0.194</td><td>0.112</td></t<>	Survey expectations	0.008	0.018	0.193	0.060	0.194	0.112	
Labor share 0.114 0.048 0.920 3.444 0.276 1.000 Unemployment -0.066 0.071 0.549 0.073 0.270 0.088 Output gap 0.127 0.053 0.924 2.654 0.338 1.000 Estimation techniques Structural 0.047 0.030 0.790 1.262 0.345 0.985 OLS 0.000 0.010 0.065 -0.169 0.335 0.237 GMM 0.001 0.007 0.060 0.023 0.126 0.049 Inflation lags included 0.043 0.033 0.707 0.027 0.132 0.060 Labor share included 0.002 0.009 0.092 -0.017 0.106 0.040 Output gap included 0.002 0.009 0.027 -0.004 0.047 0.020 Interest rate included 0.001 0.005 0.048 0.861 0.329 0.933 Wage inflation included -0.034 0	CPI	0.082	0.018	1.000	0.006	0.066	0.023	
Unemployment -0.066 0.071 0.549 0.073 0.270 0.088 Output gap 0.127 0.053 0.924 2.654 0.338 1.000 Estimation techniques Structural 0.047 0.030 0.790 1.262 0.345 0.985 OLS 0.000 0.010 0.065 -0.169 0.335 0.237 GMM 0.001 0.007 0.060 0.023 0.126 0.049 Inflation lags included 0.043 0.033 0.707 0.027 0.132 0.060 Labor share included 0.002 0.009 0.092 -0.017 0.106 0.040 Output gap included 0.000 0.003 0.027 -0.004 0.047 0.020 Interest rate included 0.001 0.005 0.048 0.861 0.329 0.933 Wage inflation included -0.034 0.032 0.607 -0.702 0.413 0.812 Publication year -0.051	GDP deflator	0.002	0.010	0.071	0.008	0.071	0.026	
Output gap 0.127 0.053 0.924 2.654 0.338 1.000 Estimation techniques Structural 0.047 0.030 0.790 1.262 0.345 0.985 OLS 0.000 0.010 0.065 -0.169 0.335 0.237 GMM 0.001 0.007 0.060 0.023 0.126 0.049 Inflation lags included 0.043 0.033 0.707 0.027 0.132 0.060 Labor share included 0.002 0.009 0.092 -0.017 0.106 0.040 Output gap included 0.000 0.003 0.027 -0.004 0.047 0.020 Interest rate included 0.001 0.005 0.048 0.861 0.329 0.933 Wage inflation included -0.034 0.032 0.607 -0.702 0.413 0.812 Publication characteristics Publication year -0.051 0.027 0.884 -0.119 0.272 0.196 Central bank affiliation	Labor share	0.114	0.048	0.920	3.444	0.276	1.000	
Output gap 0.127 0.053 0.924 2.654 0.338 1.000 Estimation techniques Structural 0.047 0.030 0.790 1.262 0.345 0.985 OLS 0.000 0.010 0.065 -0.169 0.335 0.237 GMM 0.001 0.007 0.060 0.023 0.126 0.049 Inflation lags included 0.043 0.033 0.707 0.027 0.132 0.060 Labor share included 0.002 0.009 0.092 -0.017 0.106 0.040 Output gap included 0.000 0.003 0.027 -0.004 0.047 0.020 Interest rate included 0.001 0.005 0.048 0.861 0.329 0.933 Wage inflation included -0.034 0.032 0.607 -0.702 0.413 0.812 Publication characteristics Publication year -0.051 0.027 0.884 -0.119 0.272 0.196 Central bank affiliation	Unemployment	-0.066	0.071	0.549	0.073	0.270	0.088	
Structural 0.047 0.030 0.790 1.262 0.345 0.985 OLS 0.000 0.010 0.065 -0.169 0.335 0.237 GMM 0.001 0.007 0.060 0.023 0.126 0.049 Inflation lags included 0.043 0.033 0.707 0.027 0.132 0.060 Labor share included 0.002 0.009 0.092 -0.017 0.106 0.040 Output gap included 0.000 0.003 0.027 -0.004 0.047 0.020 Interest rate included 0.001 0.005 0.048 0.861 0.329 0.933 Wage inflation included -0.034 0.032 0.607 -0.702 0.413 0.812 Publication characteristics Publication year -0.051 0.027 0.884 -0.119 0.272 0.196 Central bank affiliation -0.088 0.021 0.999 0.010 0.073 0.034 Citations -0.001 0.004<		0.127	0.053	0.924	2.654	0.338	1.000	
OLS 0.000 0.010 0.065 -0.169 0.335 0.237 GMM 0.001 0.007 0.060 0.023 0.126 0.049 Inflation lags included 0.043 0.033 0.707 0.027 0.132 0.060 Labor share included 0.002 0.009 0.092 -0.017 0.106 0.040 Output gap included 0.000 0.003 0.027 -0.004 0.047 0.020 Interest rate included 0.001 0.005 0.048 0.861 0.329 0.933 Wage inflation included -0.034 0.032 0.607 -0.702 0.413 0.812 Publication characteristics Publication year -0.051 0.027 0.884 -0.119 0.272 0.196 Central bank affiliation -0.088 0.021 0.999 0.010 0.073 0.034 Citations -0.001 0.004 0.074 -0.020 0.075 0.087	Estimation techniques							
GMM 0.001 0.007 0.060 0.023 0.126 0.049 Inflation lags included 0.043 0.033 0.707 0.027 0.132 0.060 Labor share included 0.002 0.009 0.092 -0.017 0.106 0.040 Output gap included 0.000 0.003 0.027 -0.004 0.047 0.020 Interest rate included 0.001 0.005 0.048 0.861 0.329 0.933 Wage inflation included -0.034 0.032 0.607 -0.702 0.413 0.812 Publication characteristics Publication year -0.051 0.027 0.884 -0.119 0.272 0.196 Central bank affiliation -0.088 0.021 0.999 0.010 0.073 0.034 Citations -0.001 0.004 0.074 -0.020 0.075 0.087	Structural	0.047	0.030	0.790	1.262	0.345	0.985	
Inflation lags included 0.043 0.033 0.707 0.027 0.132 0.060 Labor share included 0.002 0.009 0.092 -0.017 0.106 0.040 Output gap included 0.000 0.003 0.027 -0.004 0.047 0.020 Interest rate included 0.001 0.005 0.048 0.861 0.329 0.933 Wage inflation included -0.034 0.032 0.607 -0.702 0.413 0.812 Publication characteristics Publication year -0.051 0.027 0.884 -0.119 0.272 0.196 Central bank affiliation -0.088 0.021 0.999 0.010 0.073 0.034 Citations -0.001 0.004 0.074 -0.020 0.075 0.087	OLS	0.000	0.010	0.065	-0.169	0.335	0.237	
Labor share included 0.002 0.009 0.092 -0.017 0.106 0.040 Output gap included 0.000 0.003 0.027 -0.004 0.047 0.020 Interest rate included 0.001 0.005 0.048 0.861 0.329 0.933 Wage inflation included -0.034 0.032 0.607 -0.702 0.413 0.812 Publication characteristics Publication year -0.051 0.027 0.884 -0.119 0.272 0.196 Central bank affiliation -0.088 0.021 0.999 0.010 0.073 0.034 Citations -0.001 0.004 0.074 -0.020 0.075 0.087	GMM	0.001	0.007	0.060	0.023	0.126	0.049	
Output gap included 0.000 0.003 0.027 -0.004 0.047 0.020 Interest rate included 0.001 0.005 0.048 0.861 0.329 0.933 Wage inflation included -0.034 0.032 0.607 -0.702 0.413 0.812 Publication characteristics Publication year -0.051 0.027 0.884 -0.119 0.272 0.196 Central bank affiliation -0.088 0.021 0.999 0.010 0.073 0.034 Citations -0.001 0.004 0.074 -0.020 0.075 0.087	Inflation lags included	0.043	0.033	0.707	0.027	0.132	0.060	
Interest rate included 0.001 0.005 0.048 0.861 0.329 0.933 Wage inflation included -0.034 0.032 0.607 -0.702 0.413 0.812 Publication characteristics Publication year -0.051 0.027 0.884 -0.119 0.272 0.196 Central bank affiliation -0.088 0.021 0.999 0.010 0.073 0.034 Citations -0.001 0.004 0.074 -0.020 0.075 0.087	Labor share included	0.002	0.009	0.092	-0.017	0.106	0.040	
Interest rate included 0.001 0.005 0.048 0.861 0.329 0.933 Wage inflation included -0.034 0.032 0.607 -0.702 0.413 0.812 Publication characteristics Publication year -0.051 0.027 0.884 -0.119 0.272 0.196 Central bank affiliation -0.088 0.021 0.999 0.010 0.073 0.034 Citations -0.001 0.004 0.074 -0.020 0.075 0.087	Output gap included	0.000	0.003	0.027	-0.004	0.047	0.020	
Publication characteristics Publication year -0.051 0.027 0.884 -0.119 0.272 0.196 Central bank affiliation -0.088 0.021 0.999 0.010 0.073 0.034 Citations -0.001 0.004 0.074 -0.020 0.075 0.087		0.001	0.005	0.048	0.861	0.329		
Publication year -0.051 0.027 0.884 -0.119 0.272 0.196 Central bank affiliation -0.088 0.021 0.999 0.010 0.073 0.034 Citations -0.001 0.004 0.074 -0.020 0.075 0.087	Wage inflation included	-0.034	0.032	0.607	-0.702	0.413	0.812	
Central bank affiliation -0.088 0.021 0.999 0.010 0.073 0.034 Citations -0.001 0.004 0.074 -0.020 0.075 0.087	Publication characteristics							
Central bank affiliation -0.088 0.021 0.999 0.010 0.073 0.034 Citations -0.001 0.004 0.074 -0.020 0.075 0.087	Publication year	-0.051	0.027	0.884	-0.119	0.272	0.196	
Citations -0.001 0.004 0.074 -0.020 0.075 0.087								
Observations 755 755								
	Observations	755			755			
Studies 56 56	Studies	56			56			

Notes: The response variable is the slope of the NKPC. SD = standard deviation, PIP = Posterior inclusion probability. The left-hand panel reports the results when variables are weighted by the inverse of the number of estimates per study. The right-hand panel reports the results of BMA when standard errors are excluded. In both panels we employ BMA based on the UIP g-prior and the dilution prior (Eicher et al. 2011; George 2010). Table 19 presents a detailed description of all the variables.

Figure 16: Model inclusion in BMA (Labor share)

0 0.1 0.16 0.22 0.27 0.33 0.38 0.44 0.49 0.55 0.6 0.64 0.7 0.74 0.8 0.84 0.9

Notes: The response variable is the slope of the NKPC when the forcing variable is represented by labor income share. The columns denote individual models; variables are sorted by posterior inclusion probability in descending order. The horizontal axis denotes the cumulative posterior model probabilities. The estimation is based on the unit information prior (UIP) recommended by Eicher et al. (2011) and the dilution prior suggested by George (2010), which takes collinearity into account. Black color (darker in grayscale) = the variable has a positive estimated sign. Red color (lighter in grayscale) = the variable has a negative estimated sign. No color = the variable is excluded from the given model. Table 3 presents a detailed description of all variables. The left-hand panel of Table 27 represents the corresponding numerical results.

Quarterly Citations Publication year CPI Open economy Augmented US Midpoint Time span GMM OLS Central bank affiliation Oceania Labor share included Inflation targeting Survey expectations Africa Extra lead GDP deflator Standard error Contraction Europe 0.22 0.31 0.38

Figure 17: Model inclusion in BMA (Unemployment)

Notes: The response variable is the slope of the NKPC when the forcing variable is measured by unemployment gap/rate. The columns denote individual models; variables are sorted by posterior inclusion probability in descending order. The horizontal axis denotes the cumulative posterior model probabilities. The estimation is based on the unit information prior (UIP) recommended by Eicher et al. (2011) and the dilution prior suggested by George (2010), which takes collinearity into account. Black color (darker in grayscale) = the variable has a positive estimated sign. Red color (lighter in grayscale) = the variable has a negative estimated sign. No color = the variable is excluded from the given model. Table 3 presents a detailed description of all variables. The right-hand panel of Table 27 represents the corresponding numerical results.

Figure 18: Model inclusion in BMA (Output gap)

Notes: The response variable is the slope of the NKPC when marginal costs are proxied by the output gap. The columns denote individual models; variables are sorted by posterior inclusion probability in descending order. The horizontal axis denotes the cumulative posterior model probabilities. The estimation is based on the unit information prior (UIP) recommended by Eicher et al. (2011) and the dilution prior suggested by George (2010), which takes collinearity into account. Black color (darker in grayscale) = the variable has a positive estimated sign. Red color (lighter in grayscale) = the variable has a negative estimated sign. No color = the variable is excluded from the given model. Table 3 presents a detailed description of all variables. The right-hand panel of Table 27 represents the corresponding numerical results.

Table 27: Heterogeneity among different forcing variables λ

	Labor share			Uner	Unemployment			Output gap		
Variable	Post. Mean	Post. SD	PIP	Post. Mean	Post. SD	PIP	Post. Mean	Post. SD	PIP	
Intercept	0.056	N.A.	1.000	5.415	N.A.	1.000	0.633	N.A.	1.000	
Standard error	1.183	0.059	1.000	-0.001	0.020	0.024	0.022	0.092	0.067	
Data characteristics										
Time span	0.000	0.003	0.026	0.004	0.016	0.092	-0.174	0.046	0.981	
Midpoint	-0.001	0.005	0.075	0.012	0.039	0.113	0.000	0.005	0.013	
Quarterly	-0.001	0.008	0.030	-0.606	0.077	1.000	0.026	0.064	0.173	
Inflation targeting	-0.023	0.035	0.369	0.001	0.007	0.035	0.001	0.009	0.014	
Contraction	0.002	0.028	0.030	0.002	0.025	0.024	-0.026	0.144	0.045	
US	0.000	0.004	0.035	-0.015	0.048	0.131	0.003	0.017	0.034	
Europe	0.000	0.003	0.026	0.000	0.004	0.023	0.001	0.013	0.020	
Asia	0.007	0.029	0.077	-0.001	0.006	0.029	0.000	0.009	0.015	
Oceania	0.000	0.005	0.032	0.004	0.029	0.058	0.000	0.007	0.012	
Africa	-0.801	0.065	1.000	0.003	0.020	0.034	-0.077	0.091	0.470	
Specifications										
Model	-0.057	0.069	0.463	N.A.	N.A.	N.A.	0.000	0.011	0.017	
Open economy	0.073	0.059	0.677	-0.123	0.098	0.720	0.000	0.009	0.016	
Augmented	0.000	0.004	0.031	-0.014	0.042	0.139	0.017	0.045	0.154	
Extra lead	0.000	0.007	0.024	0.000	0.009	0.032	0.009	0.035	0.076	
Survey expectations	0.085	0.034	0.900	-0.001	0.016	0.035	0.001	0.009	0.019	
CPI	-0.042	0.037	0.623	-0.183	0.113	0.792	0.001	0.012	0.024	
GDP deflator	0.004	0.013	0.125	0.001	0.031	0.027	-0.001	0.015	0.021	
Estimation techniques										
Structural	0.006	0.018	0.139	N.A.	N.A.	N.A.	0.001	0.010	0.013	
OLS	0.079	0.062	0.671	-0.004	0.017	0.083	0.055	0.071	0.414	
GMM	-0.001	0.006	0.035	0.008	0.032	0.083	-0.026	0.049	0.242	
Inflation lags included	-0.011	0.032	0.149	N.A.	N.A.	N.A.	-0.002	0.016	0.037	
Labor share included	-0.001	0.006	0.055	-0.003	0.025	0.051	0.000	0.008	0.010	
Output gap included	-0.002	0.009	0.067	N.A.	N.A.	N.A.	-0.002	0.014	0.033	
Interest rate included	0.048	0.028	0.814	N.A.	N.A.	N.A.	0.001	0.008	0.021	
Wage inflation included	-0.013	0.024	0.269	N.A.	N.A.	N.A.	0.000	0.007	0.012	
Publication characteristics										
Publication year	-0.026	0.027	0.547	-1.547	0.851	0.843	0.000	0.006	0.015	
Central bank affiliation	-0.002	0.010	0.076	-0.004	0.036	0.059	-0.004	0.020	0.050	
Citations	0.002	0.007	0.123	-0.065	0.026	0.898	0.000	0.003	0.015	
Observations	237			235			186			
Studies	29			7			31			

Notes: The response variable in the left-hand panel is the slope of the NKPC when marginal costs are measured by labor costs. The middle panel is the results when unemployment is used as the forcing variable. The right-hand panel reports the results regarding the estimate of the NKPC's slope when the slack variable is measured by the output gap. SD = standard deviation, PIP = Posterior inclusion probability. In both panels we employ BMA based on the UIP g-prior and the dilution prior (Eicher et al. 2011; George 2010). Table 19 presents a detailed description of all the variables.

3.3 Frequentist model averaging

Table 28: Results of frequentist model averaging β

	β			$0 < \beta < 1$			
Variable	Coeff.	S.E.	P-val.	Coeff.	S.E.	P-val.	
Intercept	1.009	0.126	0.000	0.619	0.140	0.000	
Standard error	1.045	0.113	0.000	0.607	0.070	0.000	
Standard error * Theory	-1.959	0.110	0.000	N.A.	N.A.	N.A.	
Data characteristics							
Time span	-0.020	0.020	0.303	-0.035	0.020	0.077	
Midpoint	0.005	0.015	0.755	0.002	0.016	0.908	
Quarterly	-0.020	0.031	0.523	-0.097	0.032	0.002	
Inflation targeting	-0.005	0.025	0.835	0.005	0.025	0.845	
Contraction	-0.165	0.145	0.256	0.117	0.147	0.429	
US	0.190	0.042	0.000	-0.050	0.043	0.240	
Europe	0.035	0.038	0.349	0.003	0.038	0.941	
Asia	-0.024	0.043	0.576	0.061	0.043	0.153	
Oceania	0.160	0.040	0.000	-0.029	0.044	0.509	
Africa	0.083	0.053	0.115	-0.264	0.054	0.000	
Specifications							
Model	0.033	0.030	0.268	-0.035	0.040	0.373	
Open economy	-0.016	0.025	0.503	-0.173	0.027	0.000	
Augmented	-0.047	0.020	0.019	0.042	0.024	0.080	
Extra lead	-0.057	0.035	0.102	0.022	0.035	0.542	
Survey expectations	-0.027	0.026	0.288	0.066	0.027	0.015	
CPI	0.057	0.029	0.053	0.034	0.031	0.268	
GDP deflator	-0.010	0.028	0.712	0.045	0.029	0.127	
Labor share	0.023	0.021	0.278	0.166	0.024	0.000	
Unemployment	0.018	0.034	0.591	-0.044	0.035	0.208	
Output gap	0.061	0.029	0.036	0.151	0.030	0.000	
Estimation techniques							
Structural	0.046	0.025	0.060	0.094	0.029	0.001	
OLS	-0.118	0.030	0.000	-0.098	0.031	0.001	
GMM	-0.066	0.027	0.013	-0.035	0.029	0.233	
Inflation lags included	0.037	0.030	0.213	-0.060	0.031	0.054	
Labor share included	-0.054	0.023	0.021	0.057	0.025	0.025	
Otput gap included	-0.061	0.021	0.004	-0.009	0.023	0.684	
Interest rate included	-0.036	0.020	0.076	-0.024	0.024	0.329	
Wage inflation included	0.019	0.023	0.408	-0.036	0.024	0.138	
Publication characteristics							
Publication year	-0.029	0.024	0.212	-0.140	0.026	0.000	
Central bank affiliation	0.089	0.023	0.000	-0.080	0.024	0.001	
Citations	-0.007	0.009	0.428	-0.066	0.010	0.000	
Observations	836			600			
					_		

Notes: We use Mallow's weights by Hansen (2007) and the orthogonalization of the covariate space suggested by Amini and Parmeter (2012) to conduct the frequentist model averaging (FMA) exercise.

Table 29: Results of frequentist model averaging λ

	λ			$\lambda (0 < \beta < 1)$			
Variable	Coeff.	S.E.	P-val.	Coeff.	S.E.	P-val.	
Intercept	0.619	0.140	0.000	0.768	0.148	0.000	
Standard error	0.607	0.070	0.000	0.516	0.078	0.000	
Data characteristics							
Time span	-0.035	0.020	0.077	-0.076	0.023	0.001	
Midpoint	0.002	0.016	0.908	0.006	0.016	0.703	
Quarterly	-0.097	0.032	0.002	-0.137	0.036	0.000	
Inflation targeting	0.005	0.025	0.845	-0.012	0.026	0.662	
Contraction	0.117	0.147	0.429	0.156	0.165	0.344	
US	-0.050	0.043	0.240	-0.046	0.045	0.311	
Europe	0.003	0.038	0.941	0.005	0.039	0.892	
Asia	0.061	0.043	0.153	0.049	0.044	0.257	
Oceania	-0.029	0.044	0.509	-0.008	0.047	0.870	
Africa	-0.264	0.054	0.000	-0.193	0.060	0.001	
Specifications							
Model	-0.035	0.040	0.373	0.000	0.040	0.992	
Open economy	-0.173	0.027	0.000	-0.136	0.029	0.000	
Augmented	0.042	0.024	0.080	0.057	0.026	0.031	
Extra lead	0.022	0.035	0.542	0.117	0.045	0.009	
Survey expectations	0.066	0.027	0.015	0.077	0.030	0.011	
CPI	0.034	0.031	0.268	0.066	0.037	0.070	
GDP deflator	0.045	0.029	0.127	0.073	0.036	0.043	
Labor share	0.166	0.024	0.000	0.155	0.026	0.000	
Unemployment	-0.044	0.035	0.208	-0.025	0.040	0.540	
Output gap	0.151	0.030	0.000	0.140	0.033	0.000	
Estimation techniques							
Structural	0.094	0.029	0.001	0.076	0.032	0.017	
OLS	-0.098	0.031	0.001	-0.047	0.037	0.205	
GMM	-0.035	0.029	0.233	-0.068	0.031	0.029	
Inflation lags included	-0.060	0.031	0.054	-0.033	0.035	0.342	
Labor share included	0.057	0.025	0.025	0.077	0.028	0.006	
Otput gap included	-0.009	0.023	0.684	0.028	0.025	0.261	
Interest rate included	-0.024	0.024	0.329	-0.017	0.029	0.548	
Wage inflation included	-0.036	0.024	0.138	-0.018	0.026	0.483	
Publication characteristics							
Publication year	-0.140	0.026	0.000	-0.160	0.027	0.000	
Central bank affiliation	-0.080	0.024	0.001	-0.104	0.027	0.000	
Citations	-0.066	0.010	0.000	-0.077	0.012	0.000	
Observations	755			548			

Notes: We use Mallow's weights by Hansen (2007) and the orthogonalization of the covariate space suggested by Amini and Parmeter (2012) to conduct the frequentist model averaging (FMA) exercise.

References

- Abbas, S. K. (2018). Global slack hypothesis: evidence from China, India and Pakistan. *Empirical Economics*, 54(2):593–627. 3
- Abbas, S. K., Bhattacharya, P. S., Mallick, D., and Sgro, P. (2016a). The new Keynesian Phillips curve in a small open economy: Empirical evidence from Australia. *Economic record*, 92(298):409–434. 3
- Abbas, S. K., Bhattacharya, P. S., and Sgro, P. (2016b). The new Keynesian Phillips curve: An update on recent empirical advances. *International Review of Economics & Finance*, 43:378–403. 3
- Abbas, S. K. and Sgro, P. M. (2011). New Keynesian Phillips curve and inflation dynamics in Australia. *Economic Modelling*, 28(4):2022–2033. 3
- Adam, K. and Padula, M. (2011). Inflation dynamics and subjective expectations in the United States. *Economic Inquiry*, 49(1):13–25. 3
- Ahiadorme, J. W. (2021). Inflation, output and unemployment trade-offs in sub-saharan Africa countries. *Macroe-conomics and Finance in Emerging Market Economies*, pages 1–20. 3
- Allsopp, C., Kara, A., and Nelson, E. (2006). United Kingdom inflation targeting and the exchange rate. *The Economic Journal*, 116(512):F232–F244. 3
- Amini, S. M. and Parmeter, C. F. (2012). Comparison of model averaging techniques: Assessing growth determinants. *Journal of Applied Econometrics*, 27(5):870–876. 44, 45
- Andrews, I. and Kasy, M. (2019). Identification of and correction for publication bias. *American Economic Review*, 109(8):2766–94. 14, 15, 16, 17, 18, 19, 20, 21
- Basistha, A. and Nelson, C. R. (2007). New measures of the output gap based on the forward-looking new Keynesian Phillips curve. *Journal of Monetary Economics*, 54:498–511.
- Batini, N., Jackson, B., and Nickell, S. (2005). An openeconomy new Keynesian Phillips curve for the U.K. *Journal of Monetary Economics*, 52:1061–1071. 3
- Bom, P. R. and Rachinger, H. (2019). A kinked metaregression model for publication bias correction. *Research Synthesis Methods*, 10(4):497–514. 15, 16, 17, 18, 19, 20, 21
- Brissimis, S. N. and Magginas, N. S. (2008). Inflation forecasts and the new keynesian phillips curve. *International Journal of Central Banking*. 3
- Calvo, G. A. (1983). Staggered prices in a utility-maximizing framework. *Journal of Monetary Economics*, 12(3):383–398.

2

- Castle, J. L., Doornik, J. A., Hendry, D. F., and Nymoen, R. (2014). Misspecification testing: Non-invariance of expectations models of inflation. *Econometric Reviews*, 33:553–574. 3
- Chin, K. H. (2019). New Keynesian Phillips curve with timevarying parameters. *Empirical Economics*, 57:1869–1889.
- Coibion, O., Gorodnichenko, Y., and Kamdar, R. (2018). The formation of expectations, inflation, and the Phillips curve. *Journal of Economic Literature*, 56:1447–1491. 3
- Egan, P. G. and Leddin, A. J. (2017). The Chinese Phillips curve–inflation dynamics in the presence of structural change. *Journal of Chinese Economic and Business Studies*, 15:165–184. 3
- Eicher, T. S., Papageorgiou, C., and Raftery, A. E. (2011). Default priors and predictive performance in bayesian model averaging, with application to growth determinants. *Journal of Applied Econometrics*, 26(1):30–55. 24, 25, 26, 29, 30, 31, 32, 33, 34, 35, 38, 39, 40, 41, 42, 43
- Fedderke, J. and Liu, Y. (2018). Inflation in South Africa: An assessment of alternative inflation models. *South African Journal of Economics*, 86:197–230. 3
- Furukawa, C. (2020). Publication bias under aggregation frictions: from communication model to new correction method. Working paper, MIT, mimeo. 14, 15, 16, 17, 18, 19, 20, 21
- Furuoka, F., Ling, P. U., Chomar, M. A., and Nikitina, L. (2020). Trade openness and the Phillips curve: Evidence from ASEAN countries. *Singapore Economic Review*. 3
- Gabriel, V. J. and Martins, L. F. (2010). The cost channel reconsidered: A comment using an identification-robust approach. *Journal of Money, Credit and Banking*, 42. 3
- Galí, J. and Gertler, M. (1999). Inflation dynamics: A structural econometric analysis. *Journal of Monetary Economics*, 44(2):195–222. 1, 3
- Galí, J., Gertler, M., and López-Salido, J. D. (2001). European inflation dynamics. European Economic Review, 45:1237– 1270. 3
- Genberg, H. and Pauwels, L. L. (2005). Wage-price dynamics and deflation in Hong Kong. *Pacific Economic Review*, 10(2):191–216. 3
- George, E. I. (2010). Dilution priors: Compensating for model space redundancy. In *Borrowing Strength: Theory Powering Applications—A Festschrift for Lawrence D. Brown*, pages 158–165. Institute of Mathematical Statistics. 24, 25, 26, 29, 30, 31, 32, 33, 34, 35, 38, 39, 40, 41, 42, 43

- Gillitzer, C. (2016). The sticky information Phillips curve: Evidence for Australia. *Economic Record*, 92:548–567. 3
- Hall, S. G., Hondroyiannis, G., Swamy, P., and Tavlas, G. S. (2009). The new Keynesian Phillips curve and lagged inflation: a case of spurious correlation? *Southern Economic Journal*, 76(2):467–481. 3
- Hansen, B. E. (2007). Least squares model averaging. *Econometrica*, 75(4):1175–1189. 44, 45
- Hondroyiannis, G., Swamy, P. A., and Tavlas, G. S. (2009). The new Keynesian Phillips curve in a time-varying coefficient environment: Some European evidence. *Macroeconomic Dynamics*, 13:149–166. 3
- Hubert, P. and Mirza, H. (2019). The role of forward- and backward-looking information for inflation expectations formation. *Journal of Forecasting*, 38:733–748. 3
- Hung, T. H. and Kwan, Y. K. (2022). Hong Kong's new Keynesian Phillips curve: Sticky information or sticky price? *Pacific Economic Review*, 27:42–55. 3
- Ioannidis, J. P., Stanley, T. D., and Doucouliagos, H. (2017).
 The power of bias in economics research. *The Economic Journal*, 127(605):F236–F265. 14, 15, 16, 17, 18, 19, 20, 21
- Kara, A. and Nelson, E. (2003). The exchange rate and inflation in the UK. *Scottish Journal of Political Economy*, 50(5):585–608. 3
- Kim, H. and Subramanian, C. (2009). Velocity of money and inflation dynamics. *Applied Economics Letters*, 16:1777– 1781. 3
- Kobbi, I. and Gabsi, F. B. (2017). The nonlinearity of the new Keynesian Phillips curve: The case of Tunisia. *Economies*, 5, 3
- Lawless, M. and Whelan, K. T. (2011). Understanding the dynamics of labor shares and inflation. *Journal of Macroe-conomics*, 33:121–136. 3
- Lee, J. (2009). Evaluating monetary policy of the euro area with cross-country heterogeneity: Evidence from a new Keynesian model. *Economic Systems*, 33:325–343. 3
- Lindé, J. (2005). Estimating New-Keynesian Phillips curves: A full information maximum likelihood approach. *Journal of Monetary Economics*, 52(6):1135–1149.
- Madeira, J. (2014). Overtime labor, employment frictions, and the new Keynesian Phillips curve. *Review of Economics and Statistics*, 96:767–778. 3
- Marfatia, H. A. (2017). Estimating the New Keynesian Phillips curve for the UK: evidence from the inflationindexed bonds market. *The BE Journal of Macroeconomics*, 18(1). 2
- Martins, M. M. and Verona, F. (2021). Inflation dynamics and forecast: frequency matters. *Bank of Finland Research Discussion Paper*, 1(8). 3

- Matheron, J. and Maury, T. P. (2004). Supply-side refinements and the new Keynesian Phillips curve. *Economics Letters*, 82:391–396. 3
- Mazumder, S. (2010). The new Keynesian Phillips curve and the cyclicality of marginal cost. *Journal of Macroeconomics*, 32:747–765. 3
- Mazumder, S. (2011a). The empirical validity of the new Keynesian Phillips curve using survey forecasts of inflation. *Economic Modelling*, 28:2439–2450. 3
- Mazumder, S. (2011b). Inflation and marginal cost: On the importance of their covariance. *Applied Economics Letters*, 18:1083–1089. 3
- Mazumder, S. (2012). European inflation and the new Keynesian Phillips curve. *Southern Economic Journal*, 79:322–349.
- McAdam, P. and Willman, A. (2004). Supply, factor shares and inflation persistence: Reexamining Euro-area new Keynesian Phillips curves. *Oxford Bulletin of Economics and Statistics*, 66:637–670. 3
- McLeay, M. and Tenreyro, S. (2020). Optimal inflation and the identification of the Phillips curve. *NBER Macroeconomics Annual*, 34(1):199–255. 3
- Mehra, Y. P. (2004). The output gap, expected future inflation and inflation dynamics: Another look the output gap, expected future inflation and inflation dynamics: Another look *. *Topics in Macroeconomics*, 4. 3
- Nason, J. M. and Smith, G. W. (2008). Identifying the New Keynesian Phillips curve. *Journal of Applied Econometrics*, 23(5):525–551. 2
- Neiss, K. S. and Nelson, E. (2005). Inflation dynamics, marginal cost, and the output gap: Evidence from three countries. Source: Journal of Money, Credit and Banking, 37:1019–1045. 3
- Nunes, R. (2010). Inflation dynamics: the role of expectations. *Journal of Money, Credit and Banking*, 42(6):1161–1172. 3
- Pattanaik, S., Muduli, S., and Ray, S. (2020). Inflation expectations of households: do they influence wage-price dynamics in India? *Macroeconomics and Finance in Emerging Market Economies*, 13:244–263. 3
- Ravenna, F. and Walsh, C. E. (2006). Optimal monetary policy with the cost channel. *Journal of Monetary Economics*, 53:199–216. 3
- Rotemberg, J. J. (1982). Monopolistic price adjustment and aggregate output. *The Review of Economic Studies*, 49(4):517–531. 2
- Rudd, J. and Whelan, K. (2005). New tests of the new-Keynesian Phillips curve. *Journal of Monetary Economics*, 52:1167–1181. 3

- Rudd, J. and Whelan, K. (2007). Modeling inflation dynamics: A critical review of recent research. *Journal of Money, Credit and Banking*, 39:155–170. 3
- Rumler, F., Valderrama, M. T., et al. (2008). Do aggregate demand factors influence current inflation developments. *Monetary Policy & The Economy Q*, 2:70–82. 3
- Sakurai, H. (2016). The new Keynesian Phillips curve in Thailand through two financial crises. *Asian Economic and Financial Review*, 6:190–195. 3
- Salunkhe, B. and Patnaik, A. (2019). Inflation dynamics and monetary policy in india: A new Keynesian Phillips curve perspective. *South Asian Journal of Macroeconomics and Public Finance*, 8:144–179. 3
- Saygili, H. (2020). The nature of trade, global production fragmentation and inflationary dynamics: Cross-country evidence. *World Economy*, 43:2007–2031. 3
- Sheedy, K. D. (2010). Intrinsic inflation persistence. *Journal of Monetary Economics*, 57:1049–1061. 3
- Singh, B. K., Kanakaraj, A., and Sridevi, T. O. (2011). Revisiting the empirical existence of the Phillips curve for India. *Journal of Asian Economics*, 22:247–258. 3
- Sovbetov, Y. and Kaplan, M. (2019). Empirical examination of the stability of expectations-augmented Phillips curve for developing and developed countries. *Theoretical & Applied Economics*, 2(2). 3
- Tillmann, P. (2009). The time-varying cost channel of monetary transmission. *Journal of International Money and Fi*

- nance, 28:941-953. 3
- van Aert, R. C. and van Assen, M. (2020). Correcting for publication bias in a meta-analysis with the p-uniform* method. Working paper, Tilburg University & Utrecht University. 14
- Vavra, J. S. (2014). Time-varying Phillips curves. Technical report, National Bureau of Economic Research. 3
- Vašíček, B. (2011). Inflation dynamics and the new Keynesian Phillips curve in four central European countries. *Emerging Markets Finance and Trade*, 47:71–100. 3
- Wimanda, R. E., Turner, P. M., and Hall, M. J. (2011). Expectations and the inertia of inflation: The case of Indonesia. *Journal of Policy Modeling*, 33:426–438. 3
- Yazgan, M. E. and Yilmazkuday, H. (2005). Inflation dynamics of Turkey: a structural estimation. Studies in nonlinear dynamics & econometrics, 9(1). 3
- Zeugner, S. and Feldkircher, M. (2015). Bayesian model averaging employing fixed and flexible priors: The bms package for r. *Journal of Statistical Software*, 68(4):1–37. 24
- Zobl, F. X. and Ertl, M. (2021). The condemned live longer new evidence of the new Keynesian Phillips curve in central and eastern Europe. *Open Economies Review*, 32:671– 699. 3
- Özer Karagedikli and McDermott, C. J. (2018). Inflation expectations and low inflation in New Zealand*. *New Zealand Economic Papers*, 52:277–288. 3