Accelerator Physics Homework #6

- 1. A proton beam of 1 GeV kinetic energy is injected into a synchrotron storage ring. It's found that all protons with a normalized emittance (total) greater than 10 microns are lost. This is interpreted as being due to a resonance caused by a sextupole imperfection, and correctors are installed to compensate for it. Just worrying about the horizontal plane for now, the phase advance in each FODO cell is 95°, the tune is 7.7, and the maximum beta is 25m.
 - a. (5 points) I install one sextupole corrector in the high beta region of one cell. How many cells away (minimum) would I install a second corrector to most effectively cancel an arbitrary sextupole imperfection in the lattice?
 - b. (15 points) If the sextupole correctors are 20 cm long, what is the lowest maximum sextupole field B" each must be capable of to be sure of canceling the effect of the imperfection?
- 2. (15 points) Calculate the power lost to synchrotron radiation and the vertical synchrotron damping times for the following machines. Show the equations you use, but definitely use a spreadsheet to simplify the calculations. (You can just show the calculation once and then use a spreadsheet to calculate the other cases)

Machine	Particle type	Circumference	Bend radius of	Beam Current	Energy (per
			magnets		beam)
LEP	Electrons	27 km	3.5 km	5 mA	45 GeV
					104 GeV ¹
LHC	Protons	27 km	3 km	600 mA	7 TeV
HE-LHC ²	Protons	27 km	3 km	600 mA	16.5 TeV

¹ Highest energy reached during LEP II run.

² This would be an accelerator base on Nb3Sn dipoles, being considered for 2030 or later.