离散数学2

离散数学家族

- 集合论:集合代数、关系、函数、集合基数
- · 数理逻辑:命题、谓词、模态、时态逻辑、Lambda演算
- 图论: 欧拉图、哈密顿图、生成树、路径
- 代数结构: 代数系统、群、环、格
- 组合数学: 计数、递推关系、生成函数、组合定理

图论起源

地铁组成的图

社交关系组成的图

图论起源

图论已有二百多年历史

(以Euler研究歌尼斯堡七桥问题为发端)。

近四十年来发展十分迅速,成为一个新兴的数学分支。

- 1、计算机科学中许多概念、算法需要<mark>图论</mark>支持(如最短距离,二叉树)。
- 2、为计算机应用建模提供数学工具

Graph Theory - History

Leonhard Euler's paper on

"Seven Bridges of Königsberg", published in 1736.

- 欧拉(L.Euler,1707.4.15-1783.9.18)是瑞士数学家,生于瑞士的巴塞尔(Basel)。
- 与阿基米德、牛顿、高斯列为有史以来贡献最大的四位数学家。

主要内容

- 1. 图论的基本概念
- 2. 子图和图的运算
- 3. 图的矩阵表示
- 4. 欧拉图和哈密顿图
- 5. 二分图与图匹配
- 6. 树、有向树和有序树

主要内容

- 1. 图论的基本概念
- 2. 子图和图的运算
- 3. 路径、回路和连通图
- 4. 欧拉图和哈密顿图
- 5. 图的矩阵表示
- 6. 树、有向树和有序树

7.1 图的基本概念

目的:图论的基本概念;

重点:边的关系,节点度;

难点:图同构。

- > P, Q, T, S, R 称为顶点(Vertex/Node);
- ➤ PS, TQ的线称为边(Edges);
- ➤ 整个图称为图(Graph);
- **)** 度(degree): 以顶点为端的边数目,例如P的度是3; 注意: PS和QT的交叉(intersection)不属于顶点,例如电路印刷版

不考虑测量属性(metrical properties),则两个图是同一个图。

- ➤ 假设T点成为交通的汇集点?如何避免拥堵
 - 其中QS和ST称为平行边(multiple edges)
 - ➤ 如果P需要一个停车位
 - P称为自环(loop)
- ➤ 简单图(Simple Graph): no loops or multiple edges

- ➤ 有向图 (Directed Graph): 例如使得交通道路变成 单行线
- ➤ Directed Edge称为arc
- ▶ 图论干什么?
 - 通路 (walk)
 - 路径(Path)
 - 回路(Cycle)

定义7.1.1 设 V和 E 是 有限集合且 $V\neq\emptyset$

- i) 如果 Ψ : $E \to \{\{v_1, v_2\} | v_1 \in V \perp L v_2 \in V\}$, 则称 $G = < V, E, \Psi >$ 为 无向图。
- ii) 如果 Ψ : $E \to V \times V$, ,则称 $G = \langle V, E, \Psi \rangle$ 为 有向图。
- ◆ 无向图和有向图都称为图,其中
 - \checkmark V称为 G 的节点集,E 称为 G 的边集
 - ✓ 图 G 的结点数目称为它的阶
 - ✓ Ψ是从边集E到节点的偶对(无序或有序)集上的函数。

无向图、有向图

例1: 设 $V = \{v_1, v_2, v_3\}, E = \{e_1, e_2, e_3, e_4, e_5, e_6\},$

 $\Psi_1 = \{\langle e_1, \{v_1, v_2\} \rangle, \langle e_2, \{v_1, v_3\} \rangle, \langle e_3, \{v_1, v_3\} \rangle, \langle e_4, \{v_3, v_3\} \rangle, \langle e_5, \{v_2, v_3\} \rangle, \langle e_6, \{v_2, v_3\} \rangle$

 $G_1 = (V, E, \Psi_1)$ 是一个无向图.

 $\Psi_2 = \{ \langle e_1, \langle v_1, v_2 \rangle \rangle, \langle e_2, \langle v_1, v_3 \rangle \rangle, \langle e_3, \langle v_3, v_1 \rangle \rangle, \langle e_4, \langle v_3, v_3 \rangle \rangle, \langle e_5, \langle v_2, v_3 \rangle \rangle, \langle e_6, \langle v_2, v_3 \rangle \rangle \}$

 $G_2 = (V, E, \Psi_1)$ 是一个有向图.

小结:图的最本质特征

图的最本质内容:结点和边的对应关系。

用几何图形表示图:

小圆圈表示结点

无向图: 若 Ψ (e) = {v₁, v₂}, 就用一条连接结点v₁和v₂的 无向线段表示边 e

有向图: 若Ψ(e) = $\langle v_1, v_2 \rangle$,就用一条由 v_1 指向 v_2 的

有向线段 表示边e

图的基本结构

图的基本结构:

是指图的顶点之间,弧(或边)之间及弧(或边)与顶点之间的连接关系。

主要内容有:

顶点之间的邻接,顶点与边(弧)的关联,边(弧)的相邻,顶点的次数,孤立点,零图、平凡图、正则图、完全图。

关联、邻接 —— 结点和边的关系

设无向图 G = $\langle V, E, \Psi \rangle$, $e, e_1, e_2 \in E \perp v_1, v_2 \in V$ 。

- ◆ 如果Ψ(e) = { v_1 , v_2 }, 则称 v_1 v_2
 - ✓ e 与 v₁(或v₂) 互相关联, e 连接 v₁和 v₂,
- v_1 和 v_2 既是 e 的起点,也是 e 的终点,也称 v_1 和 v_2 邻接。
- ◆ 如果两条不同边 e_1 和 e_2 与同一个结点关联,则称 e_1 和 e_2 邻接。

关联、邻接 —— 结点和边的关系

设有向图 $G = \langle V, E, \Psi \rangle$, $e \in E \perp L v_1, v_2 \in V$ 。

若 Ψ (e) = $\langle v_1, v_2 \rangle$,则称

- ◆ e 连接 v₁和v₂, e 与 v₁(或v₂)互相关联,
- ◆ v₁和 v₂分别是 e 的起点和终点,也称 v₁和 v₂邻接。

边的定义: 自圈、平行边

设图 $G = \langle V, E, \Psi \rangle$, $e_1 \approx 2$ 是 G 的两条不同边。

- ◆ 如果与 e_1 关联的两个结点相同,则称 e_1 为自圈(self loop);
- 如果Ψ(e₁) = Ψ(e₂),则称 e₁与 e₂平行;
- ◆ 如果图 G 没有自圈,也没有平行边,则称 G为简单图 (simple graph)。

我们一般只讨论有限图。

度 有多少条边与某一个结点相关联? —— 结点的 度

设v是图G的结点。

- ◆ 如果 G 是无向图,G中与 v 关联的边和与 v 关联的自圈的数目之和称为 v 的度,记为 $d_G(v)$ 。
- ◆ 如果 G 是有向图,
 - \checkmark G中以 v 为起点的边的数目称为 v 的出度,记为 $d_G^+(v)$;
 - \checkmark G中以 v 为终点的边的数目称为v的入度, 记为 $d_G^-(v)$;
 - \checkmark v 的出度与入度之和称为 v 的度,记为 $d_G(v)$ 。

注意:

- 在计算无向图中结点的度时,自圈要考虑两遍,因为 自圈也是边。
- ●每增加一条边,都使图中所有结点的度数之和增加 2。

定理7.1.1、定理7.1.2

定理7.1.1 设无向图 $G = \langle V, E, \Psi \rangle$ 有 m 条边,

则 $\Sigma_{v \in V} d_G(v) = 2m$

证: 因为每条边为图中提供次数均为2

定理7.1.2 设有向图 $G = \langle V, E, \Psi \rangle$ 有 m 条边,

则 $\Sigma_{v \in V} d_G^+(v) = \Sigma_{v \in V} d_G^-(v) = m$,且 $\Sigma_{v \in V} d_G^-(v) = 2m$ 。

证: 因为每条边既是一个节点的出边也是另一个节点的入边。

奇结点、偶结点、孤立点、端点

- ◆ 度为奇数的结点称为奇结点;
- ◆ 度为偶数的结点称为偶结点。
- ◆ 度为 0 的结点 称为 孤立点;
- ◆ 度为 1 的结点 称为 端点。

定理 7.1.3 任何无向图中都有偶数个奇结点。

证明: 给定无向图 $G=\langle V,E,\Psi\rangle$ 且G中有m条边。 假设 V_1 是 G 中奇节点集合, V_2 是 G 中偶节点 集合。 则有

 $2m = \Sigma_{v \in V} \operatorname{deg}(v) = \Sigma_{v \in V1} \operatorname{deg}(v) + \Sigma_{v \in V2} \operatorname{deg}(v)$ 显然, $\Sigma_{v \in V2} \operatorname{deg}(v)$ 是偶数,得 $\Sigma_{v \in V1} \operatorname{deg}(v)$ 是偶数。因此 V_1 中必有偶数个奇结点。

特殊图:零图、平凡图、d度正则图、完全图

◆ 结点都是孤立点的图称为零图

- ◆ 一阶零图称为平凡图
- ◆ 所有结点的度均为自然数 d 的无向图称为 d 度正则图 (Regular)
- ◆ 设 n ∈ I₊, 如果 n 阶简单无向图 G 是 n-1 度正则图, 则称 G 为 完全无向图 (Complete Graph), 记为K_n。
- ◆ 设 $n ∈ I_+$,每个结点的出度和入度均为 n-1 的 n 阶简 单有向图称为 完全有向图。

特殊图:零图、平凡图、d度正则图、完全图

注意:

- 1. 完全图必是正则图,但正则图不一定是完全图。
- 2. 零图也是正则图

同构(isomorphism):

◆ 两个表面上看起来不同的图可能表达相同的结点和边的 关联关系

同构(isomorphism)

设图 $G = \langle V, E, \Psi \rangle$ 和 $G' = \langle V', E', \Psi' \rangle$ 。 如果存在 双射 $f : V \rightarrow V'$ 和 双射 $g : E \rightarrow E'$,使得对于任意 $e \in E$ 及 $v_1, v_2 \in V$ 都有:

$$\Psi'(g(e)) = \begin{cases} \{ f(v_1), f(v_2) \}, 若 \Psi(e) = \{ v_1, v_2 \} \\ \langle f(v_1), f(v_2) \rangle, 若 \Psi(e) = \langle v_1, v_2 \rangle \end{cases}$$

则称 G 与 G' 同构,记做 $G \cong G'$,并称 f 和 g 为 G 与 G'

之间的 同构映射,简称同构。

同构(isomorphism):实例

Graph G

Graph H

$$f(a) = 1$$

 $f(b) = 6$
 $f(c) = 8$
 $f(d) = 3$
 $f(g) = 5$
 $f(h) = 2$
 $f(i) = 4$
 $f(j) = 7$

同构(isomorphism)

难题: 判断两个图同构的简单而充分的条件? 可以给出一些两个图同构的必要条件!

- ◆ 两个同构的图必有:
 - ✓ 相同的结点个数、边数、结点度数,
 - ✓ 双射 f 保持结点之间的邻接关系,
 - ✓ 双射 g 保持边之间的邻接关系。

问题: 以下图是否同构?

•三个无向图

问题: 以下图是否同构?

• 两个有向图

判断下图是否同构?

扩展: 图同态(homomorphism)

设图 $G = \langle V, E, \Psi \rangle$ 和 $G' = \langle V', E', \Psi' \rangle$ 。 如果存在 $f : V \rightarrow V'$ 和 $g : E \rightarrow E'$,使得 对于任意 $e \in E$ 及 $v_1, v_2 \in V$ 都有:

$$\Psi'(g(e)) = \begin{cases} \{f(v_1), f(v_2)\}, 若\Psi(e) = \{v_1, v_2\} \\ \langle f(v_1), f(v_2)\rangle, 若\Psi(e) = \langle v_1, v_2\rangle \end{cases}$$

则称 $G \to G'$ 同态,记做 $G \to G'$ 。

总结: 图的类型

Type	Edges	Multiple Edges Allowed?	Loops Allowed?
Simple Graph	undirected	No	No
Multigraph	undirected	Yes	No
Pseudograph	undirected	Yes	Yes
Directed Graph	directed	No	Yes
Directed Multigraph	directed	Yes	Yes

小结

◆ 图的基本概念:

√有向图,无向图,有限图,自环,平行弧,(边),多重图,简单图,带权图,图的同构

◆ 图的基本结构

√顶点之间的邻接,顶点与边(弧)的关联,边(弧)的相邻,顶点的次数,孤立点,平凡图,零图,(n,m)图的性质定理,正则图,完全图