Math6450_Assignment1_copy_for_pdf_render

September 5, 2025

Part 1: Data Exploration and Preparation

BOSTON HOUSING DATASET ANALYSIS

1.1 DATASET DIMENSIONS

Number of observations (rows): 506 Number of variables (columns): 14 Dataset shape: (506, 14)

Column names: ['crim', 'zn', 'indus', 'chas', 'nox', 'rm', u \(\text{-'age'}, 'dis', 'rad', 'tax', 'ptratio', 'b', 'lstat', u \(\text{-'medv'}\)

1.2 DESCRIPTIVE STATISTICS

Descriptive statistics for TARGET VARIABLE (medv): 506,000 count

22.533 mean 9.197 std 5.000 min 17.025 25% 50% 21,200 75% 25,000 max 50.000

Name: medv, dtype: float64

Descriptive statistics for PRIMARY FEATURE (1stat):

count 506.000 mean 12.653 std 7.141 1.730 min 25% 6.950 50% 11.360 75% 16.955 37.970

Name: 1stat, dtype: float64

Additional statistics for medv:

Variance: 84.5867

Standard deviation: 9.1971

Skewness: 1.1081 Kurtosis: 1.4952

Additional statistics for 1stat:

Variance: 50.9948

Standard deviation: 7.1411

Skewness: 0.9065 Kurtosis: 0.4932

1.3 CORRELATION ANALYSIS

Correlation coefficient between medv and 1stat: -0.7377

INTERPRETAITION:

- The correlation coefficient of -0.7377 indicates a strong
- →negative relationship
- This means that as 1stat (% lower status population) →increases, medv (median home value) tends to decrease
- \hookrightarrow variance (R² = 0.5441)
- Statistical significance: p-value = 5.08e-88
- The correlation is statistically significant at α = 0.05

1.4 SCATTER PLOT ANALYSIS

PATTERN OBSERVED IN SCATTER PLOT:

- The scatter plot reveals a clear negative relationship ⇒between 1stat and medv
- As the percentage of lower status population increases, $_{\mbox{\tiny L}}$ $\mathrel{\hookrightarrow} \mathtt{median} \ \mathtt{home} \ \mathtt{values} \ \mathtt{tend} \ \mathtt{to} \ \mathtt{decrease}$
- The relationship appears to be non-linear, showing \textbf{a}_{\sqcup}
- ⇒curved pattern rather than a straight line
- There's more variability in home values at lower lstatu ⇔percentages
- \hookrightarrow lstat values and levels off at higher lstat values
- There are some potential outliers, particularly homes with →high values despite higher 1stat percentages
- \hookrightarrow or power-law pattern

SUMMARY:

- Dataset contains 506 observations and 14 variables
- Strong negative correlation (-0.7377) between 1stat and_
- Non-linear relationship visible in scatter plot
- Both variables show reasonable distributions for
- \hookrightarrow regression analysis

Part 2: Linear Regression Model Fitting

$$\mathrm{medv} = \hat{\beta}_0 + \hat{\beta}_1 \times \mathrm{lstat}$$

COEFFICIENTS:

Intercept (β_0): 34.5538 Slope (β_1) : -0.9500

2.1 ESTIMATED REGRESSION EQUATION $medv = 34.5538 + (-0.9500) \times 1stat$ $medv = 34.5538 - 0.9500 \times 1stat$

Alternative notation: $\hat{y} = 34.5538 + (-0.9500)x$ where \hat{y} = predicted median home value and x = 1stat

2.2 INTERPRETATION OF INTERCEPT (β_0)

Intercept value: 34.5538

INTERPRETATION:

- The intercept represents the predicted median home \mathtt{value}_{\sqcup} ⇒when 1stat = 0
- ⇒predicted median home value is \$34.55k
- In practical terms: \$34554

PRACTICAL MEANING:

- Observed 1stat range: 1.73% to 37.97%
- Since the minimum observed 1stat is 1.73%, 1stat = 0 is_ →outside our data range
- Therefore, the intercept represents extrapolation beyond ⇒observed data
- →MEANING because:
 - * No area in the dataset has 0% lower status population
- * Real-world interpretation: represents the 'theoretical →maximum' home value
- $\boldsymbol{\ast}$ Should be interpreted cautiously due to extrapolation

2.3 INTERPRETATION OF SLOPE (β_1) Slope value: -0.9500

INTERPRETATION:

For each 1% increase in 1stat (lower status population), the →median home value decreases by \$0.9500k on average, u \hookrightarrow holding all other factors constant.

In practical terms:

- A 1% increase in lower status population is associated \hookrightarrow with a \$950 decrease in median home value
- A 5% increase in lower status population would decrease ⊖median home value by \$4750
- A 10% increase in lower status population would decrease ⇒median home value by \$9500

2.4 CONFIDENCE INTERVALS AND SIGNIFICANCE TESTING 95% CONFIDENCE INTERVALS:

Intercept 33.448 35.659 lstat -1.026 -0.874

DETAILED CONFIDENCE INTERVALS: Intercept (β_0) : [33.4485, 35.6592] Slope (β_1) : [-1.0261, -0.8740]

SIGNIFICANCE TESTING:

 $H_0: \beta = 0$ (coefficient equals zero)

 H_1 : $\beta \neq 0$ (coefficient is significantly different from zero)

INTERCEPT (β_0) ANALYSIS:

- 95% CI: [33.4485, 35.6592]
- Contains zero? No
- Conclusion: The intercept IS significantly different from
- \hookrightarrow between 33.4485 and

35.6592

SLOPE (β_1) ANALYSIS:

- 95% CI: [-1.0261, -0.8740]
- Contains zero? No
- Conclusion: The slope IS significantly different from zero
- This means we can be 95% confident the true slope is ⇒between -1.0261 and
- -0.8740

P-VALUES (for additional confirmation): Intercept p-value: 3.74e-236

Slope p-value: 5.08e-88 Both p-values < 0.05: True

MODEL SUMMARY STATISTICS:

R-squared: 0.5441

Adjusted R-squared: 0.5432 F-statistic: 601.62

F-statistic p-value: 5.08e-88 Standard Error: 6.2158

FINAL SUMMARY:

- Regression equation: medv = 34.5538 + (-0.9500) imes 1stat
- Both coefficients are statistically significant at lpha = 0.05
- The model explains 54.4% of the variance in median home. ⇔values
- For every 1% increase in lower status population, median_ →home value decreases by \$950 on average

2.5 R-SQUARED ANALYSIS

R-squared value: 0.5441

R-squared as percentage: 54.41%

- →population (lstat)
- ⇔not included in this model
- This indicates a moderate relationship
- In practical terms: knowing the 1stat value allows us to⊔
 →predict about 54.4% of the variation in home values

2.6 ROOT MEAN SQUARE ERROR (RMSE) Mean Squared Error (MSE): 38.6357 Root Mean Square Error (RMSE): 6.2158

INTERPRETATION:

- RMSE = 6.2158 thousands of dollars
- In actual dollars: \$6216
- This means the typical prediction error is approximately_
- **⇔**\$6216
- On average, our predictions are off by about $\pm \$6216$ from \Box →the actual median home value

- Mean home value: \$22.53k (\$22533)
- Standard deviation of home values: \$9.20k
- Range of home values: \$45.00k
- RMSE as % of mean: 27.6%
- RMSE as % of standard deviation: 67.6%

2.7 F-STATISTIC AND OVERALL MODEL SIGNIFICANCE

F-statistic: 601.6179

F-statistic p-value: 5.08e-88

Degrees of freedom: Model = 1.0, Residual = 504.0

HYPOTHESIS TEST:

 ${\rm H}_0\colon$ The model has no explanatory power (β_1 = 0) ${
m H}_1\colon$ The model has explanatory power ($eta_1
eq {
m 0}$)

INTERPRETATION:

- F-statistic = 601.6179 with p-value = 5.08e-88
- Since p-value < 0.05, we REJECT the null hypothesis
- Conclusion: The model IS statistically significant
- \hookrightarrow for predicting medv

PRACTICAL MEANING:

- The F-test confirms that our regression model performs_□

 →significantly better than a model with no predictors (just_□

 →the mean)
- The relationship between 1stat and medv is statistically ω meaningful

2.8 ADJUSTED R-SQUARED COMPARISON R-squared: 0.544146 Adjusted R-squared: 0.543242 Difference: 0.000904

WHY THERE MIGHT BE A DIFFERENCE:

- Regular R²: 0.544146
- Adjusted R2: 0.543242
- The difference of 0.000904 is very small

WHAT ADJUSTED R-SQUARED ACCOUNTS FOR:

- Number of predictors in the model: 1.0
- Sample size: 506 observations
- Degrees of freedom penalty for adding predictors

FORMULA EXPLANATION:

Adjusted R^2 = 1 - [(1 - R^2) × (n - 1) / (n - k - 1)] where n = sample size (506) and k = number of predictors (1.

Manual calculation: 0.543242

INTERPRETATION:

- The very small difference suggests our model is $\mathtt{not}_{\ensuremath{\square}}$ -overfitting
- With only one predictor, the adjustment is minimal
- Both ${\bf R}^2$ and adjusted ${\bf R}^2$ tell essentially the same story

PRACTICAL IMPLICATIONS:

- For interpretation: Both values are nearly identical,⊔
 ⇔indicating a robust single-predictor model

FINAL SUMMARY:

- R^2 = 0.5441 (54.41% of variance explained)
- Adjusted R^2 = 0.5432 (54.32% of variance explained)
- RMSE = \$6216 (typical prediction error)
- F-statistic = 601.6179, p < 0.05 (highly significant model)
- Model explains 54.4% of home value variation using just $_{\square}$ $_{\hookrightarrow} lstat$
- Typical prediction accuracy: $\pm\$6216$ (27.6% of mean home $_{\mbox{\scriptsize ω}}$ \rightarrow value)

Part 3: Statistical Inference and Hypothesis Testing

3.1 HYPOTHESIS TESTING SETUP

TESTING THE SLOPE COEFFICIENT:

 $\mathbf{H}_0\colon\,\beta_1$ = 0 (The slope coefficient is zero)

- → lstat has no linear relationship with medv
- $\mathrm{H}_1\colon\,\beta_1\,\neq\,\mathbf{0}$ (The slope coefficient is not zero)
 - → 1stat has a significant linear relationship with medv
- → There is a significant linear association between % Upon the status population and median home value

Type of test: Two-tailed test

Significance level: α = 0.05

3.2 T-STATISTIC AND P-VALUE ANALYSIS

TEST STATISTICS:

t-statistic: -24.527900

p-value: 5.08e-88 Degrees of freedom: 504.0

Critical t-value (α = 0.05, two-tailed): ±1.9647

DECISION MAKING:

Decision rule: Reject H_0 if |t| > 1.9647 OR if p-value < 0.05 Observed: |t| = 24.5279, p-value = 5.08e-88

CONCLUSION AT 5% SIGNIFICANCE LEVEL:

REJECT $\mathbf{H}_0\colon \mathbf{The\ slope\ coefficient\ IS\ significantly\ different} \sqcup \hookrightarrow \mathbf{from\ zero}$

- |t| = 24.5279 > 1.9647
- p-value = 5.08e-88 < 0.05
- Statistical evidence: There IS a significant linear crelationship between 1stat and medv

•

PRACTICAL INTERPRETATION:

- We can be 95% confident that changes in % lower status_\u00e4 ⇒population have a real, measurable effect on median home_\u00e4 values
- The effect size: each 1% increase in 1stat is associated →with a \$950 decrease in median home value

3.3 CONFIDENCE INTERVAL ANALYSIS

CONFIDENCE INTERVALS FOR SLOPE COEFFICIENT:

95% Confidence Interval: [-1.026148, -0.873951]

99% Confidence Interval: [-1.050199, -0.849899]

INTERVAL WIDTH COMPARISON:

95% CI width: 0.152198 99% CI width: 0.200300

Width increase: 0.048102

Percent increase in width: 31.6%

INTERPRETATION:

95% CONFIDENCE INTERVAL:

- \hookrightarrow between -1.026148 and -0.873951
- In practical terms: each 1% increase in 1stat decreases⊔ ⊶median home value by between \$874 and \$1026

99% CONFIDENCE INTERVAL:

- $\hookrightarrow\!$ between -1.050199 and -0.849899

COMPARISON ANALYSIS:

- The 99% CI is wider than the 95% CI by 0.048102
- This represents a 31.6% increase in width
- ⇔capture the true parameter
- TRADE-OFF: More confidence (99% vs 95%) comes at the cost⊔ →of precision (wider interval)

SIGNIFICANCE IMPLICATIONS:

95% CI contains zero: No

99% CI contains zero: No

- This provides strong evidence for a real relationship⊔⇔between lstat and medv

3.4 TESTING SPECIFIC CLAIM

CLAIM TO TEST:

HYPOTHESES:

 $\rm H_0\colon \ \beta_1$ = -1.0 (the claim is correct) $\rm H_1\colon \ \beta_1\ \neq\ -1.0$ (the claim is incorrect)

TEST USING CONFIDENCE INTERVALS:
Observed slope coefficient: -0.950049
Claimed slope coefficient: -1.0

95% Confidence Interval Test:

- 95% CI: [-1.026148, -0.873951]
- Does the CI contain -1.0? Yes

99% Confidence Interval Test:

- 99% CI: [-1.050199, -0.849899]
- Does the CI contain -1.0? Yes

FORMAL T-TEST:

t-statistic = (observed - claimed) / SE = $(-0.950049 - -1.0)_{\cup}$ →/ 0.038733

t-statistic = 1.2896 p-value (two-tailed): 0.1978

FAIL TO REJECT the claim at 95% confidence level

- The claimed value (-1.0) IS within the 95% confidence ⇔interval
- Our regression results SUPPORT the claim

FAIL TO REJECT the claim at 99% confidence level

- The claimed value (-1.0) IS within the 99% confidence

STATISTICAL EVIDENCE:

- Our estimate: Each 1% increase in 1stat decreases home ⇔value by \$950
- Claimed effect: Each 1% increase in 1stat decreases home ⇔value by \$1000
- Difference: \$50
- The difference is not statistically significant (p = 0. \hookrightarrow 1978 \geq 0.05)
- Insufficient evidence to reject the claim

Claim: -1.0

FINAL SUMMARY:

Hypotheses: H_0 : β_1 = 0 vs H_1 : $\beta_1 \neq$ 0 Test results: t = -24.5279, p = 5.08e-88

Conclusion: Reject \mathbf{H}_0 - slope is significant Confidence intervals:

95% CI: [-1.026148, -0.873951] (width: 0.152198) 99% CI: [-1.050199, -0.849899] (width: 0.200300)

99% CI is 31.6% wider than 95% CI

Claim test: The claim of exactly \$1000 decrease is SUPPORTED Our estimate: \$950 decrease per 1% 1stat increase Statistical significance of difference: p = 0.1978

Part 4: Assumption Testing and Model Diagnostics

BOSTON HOUSING ASSUMPTION TESTING AND MODEL DIAGNOSTICS MODEL SUMMARY:

Sample size: 506

Number of residuals: 506

Mean of residuals: 0.000000 (should be \approx 0)

Standard deviation of residuals: 6.2096

4.1 SHAPIRO-WILK TEST FOR NORMALITY OF RESIDUALS HYPOTHESIS TESTING:

 \mathbf{H}_0 : Residuals follow a normal distribution $\mathrm{H}_{\mathrm{1}}\colon \mathrm{Residuals}$ do not follow a normal distribution Significance level: α = 0.05

TEST RESULTS:

Shapiro-Wilk test statistic (W): 0.878572 p-value: 0.000000

DECISION MAKING:

Decision rule: Reject ${\rm H}_0$ if p-value < 0.05

Observed p-value: 0.000000

CONCLUSION AT 5% SIGNIFICANCE LEVEL:

REJECT H_0 : Residuals do not follow a normal distribution

- Statistical evidence suggests departure from normality
- The normality assumption may be violated

INTERPRETation OF TEST STATISTIC:

- -W = 0.878572
- W ranges from 0 to 1, with values closer to 1 indicating
- ⊖more normal-like data
- ⇔test statistic alone

ADDITIONAL NORMALITY TESTS (for comparison):

D'Agostino's test: statistic = 137.0434, p-value = 0.000000 Jarque-Bera test: statistic = 291.3734, p-value = 0.000000

CONSENSUS: Tests show mixed results regarding normality

4.2 Q-Q PLOT ANALYSIS

Q-Q PLOT INTERPRETATION:

→to theoretical

normal quantiles

Q-Q plot correlation: 0.9373

(Values closer to 1 indicate better fit to normal ⇔distribution)

VISUAL ASSESSMENT:

- Good fit with minor deviations
- Look for points following the red diagonal line
- Systematic deviations suggest non-normality
- Graphed Q-Q plot backs up the previously observed weak \hookrightarrow evidence of normality based on the test statistic

4.3 HISTOGRAM WITH NORMAL DISTRIBUTION OVERLAY

SHAPE ANALYSIS:

Skewness: 1.4527

Kurtosis: 2.3191 (excess kurtosis)

SKEWNESS INTERPRETATION:

- Skewness = 1.4527 indicates highly skewed
- Distribution is skewed to the right

KURTOSIS INTERPRETATION:

- Excess kurtosis = 2.3191 indicates heavy-tailed
- ⇔(leptokurtic)
- Normal distribution has excess kurtosis = 0

DEPARTURES FROM NORMALITY:

Identified departures from normality:

- 1. Skewness (1.453)
- 2. Kurtosis (2.319)
- 3. Shapiro-Wilk test rejection
- 4. Q-Q plot deviations

4.2 VISUAL EVIDENCE VS STATISTICAL TEST COMPARISON: Statistical test result (Shapiro-Wilk): Rejects normality Visual evidence assessment: Shows deviations from normality AGREEMENT: Visual evidence and statistical test both $_{\sqcup}$ ⇒suggest departure from normality

DETAILED VISUAL OBSERVATIONS:

Q-Q Plot:

- Systematic deviations from diagonal line (r = 0.9373)
- Visual evidence against perfect normality

Histogram:

- Notable departures from bell-shaped normal distribution
- Skewness and/or kurtosis concerns visible

PRACTICAL IMPLICATIONS FOR REGRESSION:

NORMALITY ASSUMPTION VIOLATED:

- Confidence intervals may be less reliable
- Consider robust standard errors
- Prediction intervals may be inaccurate
- Consider variable transformation

SAMPLE SIZE CONSIDERATIONS:

- Sample size: 506 observations
- Large sample: Central Limit Theorem helps with normality
- Minor deviations from normality are less problematic

FINAL SUMMARY:

Shapiro-Wilk test: W = 0.878572, p = 0.000000 Conclusion: Residuals deviate from normality

Q-Q plot assessment: r = 0.9373

Visual evidence: Shows deviations from normality

Histogram analysis:

Skewness: 1.4527, Kurtosis: 2.3191

Shape: highly skewed, heavy-tailed (leptokurtic)

Overall normality assessment: VIOLATED

4.4: BREUSCH-PAGAN TEST RESULTS

Test Statistic: 4.1871 P-value: 0.0407 Degrees of Freedom: 1

Conclusion: Reject HO at α = 0.05. Evidence of →heteroscedasticity.

Verification (statsmodels function): Stat = 65.1218, P-value

4.5: RESIDUALS VS. FITTED VALUES ANALYSIS Pattern interpretation:

- HOMOSCEDASTICITY: Points should be randomly scattered_
- \hookrightarrow around the horizontal line at y=0
- HETEROSCEDASTICITY indicators:
- * Funnel shape (variance increases or decreases with ⇔fitted values)
- ${f *}$ Curved patterns in the smoothing line
- * Clear clustering or systematic patterns

Variance in lowest third of fitted values: 17.2703 Variance in highest third of fitted values: 31.7984

Variance ratio (high/low): 1.8412

Interpretation: Ratio > 2 or < 0.5 suggests⊔

→heteroscedasticity

4.6: SCALE-LOCATION PLOT ANALYSIS

Evidence of changing variance:

- CONSTANT VARIANCE: Smoothing line should be roughly
- ⇔horizontal
- CHANGING VARIANCE indicators:
 - * Upward or downward trend in smoothing line
 - * Clear patterns or curves in the line

Correlation between fitted values and |residuals|: 0.1507 Interpretation:

* Moderate correlation suggests possible heteroscedasticity

Scale-Location Plot LOWESS smoothing /|Residuals| 3 2 0 20 40 Fitted Values

COMPREHENSIVE HOMOSCEDASTICITY ASSESSMENT

TEST RESULTS SUMMARY:

- 1. Breusch-Pagan Test: Statistic = 4.1871, P-value = 0.0407 \rightarrow Reject HO at lpha = 0.05. Evidence of heteroscedasticity.
- 2. Variance Ratio Analysis: 1.8412

- → Suggests homoscedasticity
- 3. Scale-Location Correlation: 0.1507
 - → Moderate evidence of heteroscedasticity

RECOMMENDATIONS:

- Evidence suggests heteroscedasticity
- Consider transformations (log, Box-Cox)
- Use robust standard errors (White's correction)
- Consider weighted least squares regression
- Explore different model specifications

combined with graphical analysis for complete assessment.

4.7: DURBIN-WATSON TEST RESULTS
Durbin-Watson Statistic: 1.0784

First-order autocorrelation (ρ): 0.4608

INTERPRETATION:

→ Evidence of positive autocorrelation. Independence →assumption may be violated.

Durbin-Watson Guidelines:

- DW \approx 2.0: No autocorrelation (ideal)
- DW < 1.5: Strong positive autocorrelation
- DW > 2.5: Strong negative autocorrelation
- 1.5 \leq DW \leq 2.5: Acceptable range

4.8: COOK'S DISTANCE ANALYSIS
Maximum Cook's Distance: 0.1657
Mean Cook's Distance: 0.0030
Standard Deviation: 0.0112

INFLUENTIAL OBSERVATIONS CRITERIA:

- Threshold 4/n = 4/506 = 0.0079
- Conservative threshold = 1.0

RESULTS:

- Observations with Cook's D > 4/n: 30 (5.9%)
- Observations with Cook's D > 1.0: 0 (0.0%)

influential but not necessarily problematic.

TOP 5 MOST INFLUENTIAL OBSERVATIONS:

- 1. Observation 368: Cook's D = 0.1657
- 2. Observation 372: Cook's D = 0.0941
- 3. Observation 364: Cook's D = 0.0694
- 4. Observation 365: Cook's D = 0.0672
- 5. Observation 369: Cook's D = 0.0553

4.9: HIGH LEVERAGE ANALYSIS

Number of parameters (p): 14

Sample size (n): 506

High leverage threshold (2p/n): 2 \times 14 / 506 = 0.0553

HIGH LEVERAGE RESULTS:

- Observations with high leverage: 36
- Percentage of total sample: 7.1%
- Maximum leverage value: 0.3060
- Mean leverage value: 0.0277

TOP 5 HIGHEST LEVERAGE OBSERVATIONS:

- 1. Observation 380: Leverage = 0.3060
- 2. Observation 418: Leverage = 0.1901
- 3. Observation 405: Leverage = 0.1564
- 4. Observation 410: Leverage = 0.1247
- 5. Observation 365: Leverage = 0.0985
 - 4.10 Based on all assumption tests, is your linear regression model valid for statistical inference? Summarize which assumptions are satisfied and which (if any) are violated.

todo

4.10: COMPREHENSIVE MODEL VALIDATION SUMMARY

LINEAR REGRESSION ASSUMPTIONS ASSESSMENT:

1. LINEARITY:

Test method: Residuals vs. fitted plots, added variable

Result: [Add your previous linearity test results]

Status: [SATISFIED / VIOLATED / MARGINAL]

2. INDEPENDENCE OF RESIDUALS:

Test method: Durbin-Watson test

Result: DW = 1.0784 Status: VIOLATED

3. HOMOSCEDASTICITY (Constant Variance):

Test method: Breusch-Pagan test, residuals plots

Result: [Add your previous homoscedasticity test results]

Status: [SATISFIED / VIOLATED / MARGINAL]

4. NORMALITY OF RESIDUALS:

Test method: Shapiro-Wilk, Q-Q plots, histograms Result: [Add your previous normality test results] Status: [SATISFIED / VIOLATED / MARGINAL]

5. NO MULTICOLLINEARITY:

Test method: VIF analysis, correlation matrix
Result: [Add your multicollinearity test results if

→available]

Status: [SATISFIED / VIOLATED / MARGINAL]

6. NO EXCESSIVE INFLUENTIAL OBSERVATIONS:

Test method: Cook's distance, leverage analysis

Cook's D max: 0.1657

High leverage obs: 36 (7.1%)

Status: MARGINAL - Some influential observations present

OVERALL MODEL VALIDITY FOR STATISTICAL INFERENCE:

CURRENT ASSESSMENT (based on available tests):

- Assumptions checked: 2
- Assumptions satisfied: 0

RECOMMENDATIONS:

Some concerns with independence or influential observations

NEXT STEPS:

- \hookrightarrow homoscedasticity, normality)
- Consider remedial measures if assumptions are violated:
- Data transformations (log, Box-Cox)
- Robust regression methods
- Remove or downweight influential observations
- ⇔severely violated

Note: A complete assessment requires results from all $_{\mbox{$\sqcup$}}$ $\hookrightarrow_{\mbox{assumption}}$ tests.

5: Predictions and Intervals

PREDICTIONS AND INTERVALS ANALYSIS

DATASET OVERVIEW

Dataset shape: (506, 14)

```
Column names: ['crim', 'zn', 'indus', 'chas', 'nox', 'rm', u
 'tax', 'ptratio', 'b', 'lstat', 'medv']
```

Using 'medv' as target variable

Using 'lstat' as predictor variable (lstat)

SIMPLE LINEAR REGRESSION MODEL

Model: medv ~ lstat R-squared: 0.5441

Regression equation: medv = 34.5538 + -0.9500×1 stat

5.1: PREDICTION FOR LSTAT = 10% CALCULATION:

 $\hat{y} = \beta_0 + \beta_1 \times X$

 $\hat{y} = 34.5538 + -0.9500 \times 10.0$

 $\hat{y} = 25.0533$

Predicted median home value for lstat = 10%: \$25.05k

5.2: 95% CONFIDENCE INTERVAL FOR MEAN RESPONSE CALCULATION DETAILS:

• Predicted value: 25.0533

- Standard error of mean: 0.2948
- t-critical (α =0.05, df=504.0): 1.9647
- Margin of error: 0.5792

95% CONFIDENCE INTERVAL: [24.4741, 25.6326] In dollars: [\$24.47k, \$25.63k]

INTERPRETATION:

⇔neighborhoods

with 1stat = 10% is between \$24.47k and \$25.63k.

5.3: 95% PREDICTION INTERVAL FOR INDIVIDUAL RESPONSE CALCULATION DETAILS:

- Predicted value: 25.0533
- ullet Standard error of prediction: 6.4803
- t-critical (α =0.05, df=504.0): 1.9647 Margin of error: 12.7316

95% PREDICTION INTERVAL: [12.3217, 37.7850] In dollars: [\$12.32k, \$37.78k]

INTERVAL COMPARTSON:

- Confidence interval width: 1.1584
- Prediction interval width: 25.4633
- Prediction interval is 21.98x wider than confidence⊔ ⇔interval

5.4: CONFIDENCE VS PREDICTION INTERVALS CONCEPTUAL DIFFERENCES:

CONFIDENCE INTERVAL:

- ⇔X value
- →this X?'
- \bullet Accounts for uncertainty in estimating the population mean
- Gets narrower as sample size increases
- Narrower interval (less uncertainty)

PREDICTION INTERVAL:

- Estimates uncertainty about an INDIVIDUAL response for au ⇔given X value
- ⇔with this X?'
- Accounts for both estimation uncertainty AND individual ⇔variation
- Includes natural scatter around the regression line
- Wider interval (more uncertainty)

WHEN TO USE EACH:

USE CONFIDENCE INTERVAL when:

- Estimating average outcomes for policy/planning
- Comparing mean responses between groups
- Making statements about population parameters
- Example: 'What's the average home value in 10% lstat⊔ ⇔neighborhoods?'

USE PREDICTION INTERVAL when:

- Predicting outcomes for specific individuals/cases
- Setting bounds for individual forecasts
- Risk assessment for single observations
- Example: 'What might this specific house be worth?'

5.5: PREDICTIONS AT MULTIPLE LSTAT VALUES POINT PREDICTIONS:

1stat = 5%:

- → Predicted value: \$29.80k
- → 95% CI: [\$29.01k, \$30.60k] → 95% PI: [\$16.63k, \$42.98k]

lstat = 10%:

- → Predicted value: \$25.05k → 95% CI: [\$24.47k, \$25.63k]
- → 95% PI: [\$12.32k, \$37.78k]

lstat = 15%:

- → Predicted value: \$20.30k → 95% CI: [\$19.73k, \$20.87k]
- → 95% PI: [\$7.58k, \$33.02k]

1stat = 25%:

- → Predicted value: \$10.80k
- → 95% CI: [\$9.72k, \$11.89k]
- → 95% PI: [\$-3.15k, \$24.75k]

RELATIONSHIP ANALYSIS:

Model slope (β_1): -0.9500

Interpretation: For each 1% increase in 1stat, median home ⇔value

decreases by \$0.95k on average

CHANGES BETWEEN LSTAT LEVELS:

- $5.0\% \rightarrow 10.0\%$: Change = \$-4.75k
- Rate: \$-0.95k per 1% 1stat increase
- 10.0% → 15.0%: Change = \$-4.75k
- Rate: \$-0.95k per 1% lstat increase • 15.0% → 25.0%: Change = \$-9.50k
- Rate: \$-0.95k per 1% 1stat increase

COMMENTS ON RELATIONSHIP:

- \bullet The relationship shows moderate negative association
- Linear relationship assumed constant across all lstatu ⇔levels
- Higher 1stat (more lower status population) associated ⇒with lower home values

PREDICTIONS SUMMARY TABLE

DETAILED PREDICTIONS TABLE:

lstat prediction ci_lower ci_upper pi_lower pi_upper u width_ratio

5 → 1.592	29.804 26.353	29.007	30.600	16.627	42.980 u
16.550 10 → 1.158 21.981	25.053 25.463	24.474	25.633	12.322	37.785 _⊔
15 → 1.143 22.254	20.303 25.436	19.732	20.875	7.585	33.021 👊
25 ⇒ 2.170 12.856	10.803 27.902	9.717	11.888	-3.148	24.754 ⊔

KEY INSIGHTS:

- As 1stat increases, predicted home values decrease
 Prediction intervals are consistently 18.4x wider than
- \hookrightarrow confidence intervals
- \bullet The linear relationship appears moderate (R 2 = 0.544)

MODEL ASSUMPTIONS REMINDER

- MODEL ASSUMPTIONS REMINDER
 For these intervals to be valid, ensure:
 Linear relationship between variables
 Independence of residuals
 Homoscedasticity (constant variance)
 Normality of residuals
 No influential outliers