Workshop session 1 (September 2024)

SURFACES AND LEVELS SETS

Exercice 2. Without a calculator, indicate which function corresponds to which figure below.

(a)
$$z = 2 + x^2 + y^2$$

(c)
$$z = 2$$

(e)
$$z = 2 + 2x - y$$

(b)
$$z = 2(x^2 + y^2)$$

(d)
$$z = 2 - x^2 - y^2$$

Exercice 5. We consider the functions

$$f_1(x_1, x_2) = x_1^2 - x_2^2$$
 et $f_2(x_1, x_2) = 2x_1x_2$

$$_{
m et}$$

$$f_2(x_1, x_2) = 2x_1x_2$$

Sketch the level sets associated with $f_1(x_1, x_2) = 12$ and $f_2(x_1, x_2) = 16$ on the same diagram. Indicate on the diagram the values of $\mathbf{x} = [x_1, x_2]^{\mathsf{T}}$ for which $\mathbf{f}(\mathbf{x}) = [f_1(x_1, x_2), f_2(x_1, x_2)]^{\mathsf{T}} =$ [12, 16] where the exponent indicate a column vector.

LIMITS AND CONTINUITY

Exercice 6. In the following cases, use algebraic techniques to evaluate the limit.

(1)
$$\lim_{(x,y)\to(0,0)} \frac{x^4-4y^4}{x^2+2y^2}$$

(2)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}$$

(1)
$$\lim_{(x,y)\to(0,0)} \frac{x^4 - 4y^4}{x^2 + 2y^2}$$
 (2) $\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}$ (3) $\lim_{(x,y,z)\to(0,0,0)} \frac{x^2 - y^2 - z^2}{x^2 + y^2 - z^2}$

Exercice 11. We consider the function $\langle \cdot | \cdot \rangle_2 : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, defined by

$$\langle \boldsymbol{x} | \boldsymbol{y} \rangle_2 = 2x_1y_1 + 3x_2y_1 + 3x_1y_2 + 5x_2y_2$$

where $\mathbf{x} = (x_1, x_2)^{\mathsf{T}}$ et $\mathbf{y} = (y_1, y_2)^{\mathsf{T}}$ are column vectors. After determining the matrix \mathbf{Q} such that $\langle {m x}|{m y}
angle_2={m x}^\intercal{m Q}^2{m y},$ show the following results $({m x},{m y},{m z}\in\mathbb{R}^2$ and $\lambda\in\mathbb{R})$:

(1)
$$\langle \boldsymbol{x} | \boldsymbol{x} \rangle_2 \geq 0$$

(3)
$$\langle x+y|z\rangle_2 = \langle x|z\rangle_2 + \langle y|z\rangle_2$$

(2)
$$\langle \boldsymbol{x} | \boldsymbol{y} \rangle_2 = \langle \boldsymbol{y} | \boldsymbol{x} \rangle_2$$

(4)
$$\langle \boldsymbol{x} | \lambda \boldsymbol{y} \rangle_2 = \lambda \langle \boldsymbol{x} | \boldsymbol{y} \rangle_2$$

THE PARTIAL DERIVATIVE

Exercice 13.

- (1) The figure below on the left is a contour diagram for a function z = f(x, y). f_x is positive or negative? Same question for f_y . Estimate f(2,1), $f_x(2,1)$ and $f_y(2,1)$.
- (2) Give an approximated value of $f_x(3,5)$ using the contour diagram of f(x,y) below on the right.

Exercice 14. Compute $f_{xx}, f_{xy} = f_{yx}$ and f_{yy} for the following functions.

(1)
$$x^2 + 3xy + 2y^2$$

(3)
$$(x+iy)^3$$

(5)
$$1/\sqrt{x^2+y^2}$$

(7)
$$\cos ax \sin by$$

(2)
$$(x+3y)^2$$

(4)
$$e^{ax+by}$$

(6)
$$(x+y)^n$$

(8)
$$1/(x+iy)$$

TANGENT PLANES AND LINEAR APPROXIMATION

Exercice 17. Find the tangent plane and the normal vector at P.

(1)
$$z = \sqrt{x^2 + y^2}$$
, $P(0, 1, 1)$

(5)
$$x^2 + y^2 + z^2 = 6$$
, $P(1, 2, 1)$

(2)
$$x + y + z = 17, P(3, 4, 10)$$

(6)
$$x^2 + y^2 + 2z^2 = 7$$
, $P(1, 2, 1)$

(3)
$$z = x/y, P(6,3,2)$$

(7)
$$z = x^y$$
, $P(1, 1, 1)$

(4)
$$z = e^{x+2y}$$
, $P(0,0,1)$

(8)
$$V = \pi r^2 h, P(2, 2, 8\pi)$$