NCTU-EE IC Design LAB - Spring 2018

Lab12 Power Rail Analysis

Before starting this lab, you should finish the APR flow in Lab12 and save the final result as iclabXX.inn (or any name you want).

1. Flow overview

2. Set environment

- **1.** Set up the environment. These commands must be keyed in in exactly the terminal you're going to open innovus later.
 - unix% tar –xvf ~iclabta01/Lab12.tar
 - Put the following files into 05_APR/
 - CHIP_iclabXX.io
 - CHIP_iclabXX.sdc
 - iclabXX.inn
 - iclabXX.inn.dat.tar
 - Go to 05_APR

- unix% ./set.sh (key in your iclab number)
- unix% setenv LD_LIBRARY_PATH
 /home/RAID2/COURSE/iclab/iclabXX/Lab12/EXERCISE/05_APR/lib:
 \$LD_LIBRARY_PATH

% setenv LD_LIBRARY_PATH /home/RAID2/COURSE/iclab/iclabXX/Lab12/EXERCISE/05_APR/lib/:\$LD_LIBRARY_PATH

- unix% echo \$LD_LIBRARY_PATH
 Check the library is linked to the lib directory in 05_APR/
- 2. mkdir power_log/, you will save all the things here.
- **3.** Start Innovus and restore the design iclabXX.inn.

3. Static Power Analysis

1. In the innovus menu, open Power -> Power Analysis -> Setup

i. Click OK.

- 2. In the innovus menu, open Power -> Power Analysis -> Run
 - i. ◆Activity FILE ◆VCD
 - ii. Fill the information:
 - Select CHIP.vcd (linked from 06_POSTSIM)
 - Scope: TESTBED/U_CHIP
 - Start: 0; Stop: 1000
 - iii. Results Directory: power_log

iv. Press Add, and click OK.

v. Results appear at terminal

```
Total Power

Total Internal Power: 6.08674367 91.3719%

Total Switching Power: 0.57095948 8.5710%

Total Leakage Power: 0.00379808 0.0570%

Total Power: 6.66150126
```

4. Create Power Grid Library

 In the innovus menu, open Power -> Rail Analysis -> Set PG Library Mode

- i. Cell type: ◆Tech Only
- ii. Filler Cell Names: FILL1 FILL16 FILL2 FILL32 FILL4 FILL64 FILL8

iii. Extraction

Extraction tech file: RCGen.tch

LEF Layermap: lefdef.layermap

iv. Supply Pins

Voltages: 1.8

• Power pin: **VDD**

Ground pin: VSS GND

v. Click OK

- In the innovus menu, open Power -> Rail Analysis -> Generate PG
 Library
 - i. Choose power_log
 - ii. Click OK

iii. Check if the directory **techonly.cl** exists (under power_log/)

- In the innovus menu, open Power -> Rail Analysis -> Set PG Library Mode
 - i. Cell type: ◆Std Cells
 - ii. Filler Cell Names: FILL1 FILL16 FILL2 FILL32 FILL4 FILL64 FILL8
 - iii. Capacitance: ◆Simulation
 - Spice subckt netlist: umc18_lvs.spi
 - Spice model: umc018.I
 - Corners: L18U18V_SS
 - Click Add button
 - iv. Extraction
 - Extraction tech file: RCGen.tch
 - LEF Layermap: lefdef.layermap
 - v. Supply Pins
 - Voltage: **1.8**
 - vi. Change to the Advanced page
 - Cell List File: cell018.list

vii. Click **OK**

- 4. In the innovus menu, open Power -> Rail Analysis -> Generate PG Library
 - i. Click OK
 - ii. Check if the directory **stdcells.cl** exists (under power_log/)
 - iii. Results

```
** INFO: (VOLTUS_LGEN-3265):

Power Grid View Generation Statistics:

# Total number of cells: 493

# EARLY view created: 488 (98%)

# IR view created: 488 (98%)

# EM view created: 488 (98%)
```

5. Rail Analysis

- In the innovus menu, open Power -> Rail Analysis -> Setup Rail Analysis
 - i. Analysis Method: ◆ Static
 - ii. PowerGrid Libraries: technoly.cl (should be added first) stdcells.cl
 - iii. Click OK

2. In the innovus menu, open Power -> Rail Analysis -> Run Rail Analysis

- i. Power/Current Files(s): static_VDD.ptiavg,static_GND.ptiavg(under power_log/)
- ii. Power Pads: ◆ XY File
- iii. Click Create
 - Net Name: VDD
 - Click Fetch
 - Save as CHIP_VDD.pp
- iv. Click Create again
 - Net Name: GND
 - Click Fetch
 - Save as CHIP_GND.pp
- v. Click **Cancel** and click **Cancel** again
- vi. Change to terminal
- vii. % innovus > source run_rail_analysis_VDD.cmd
- viii. % innovus > source run_rail_analysis_GND.cmd

6. IR Drop Results

- 1. Go back to innovus window
- 2. In the innovus menu, open Power -> Report -> Power & Rail Result
 - i. ◆Auto Apply for Color Scale
 - ii. Click DB Setup
 - Rail Database: power_log/VDD_25C_av g_1
 - Click OK
 - iii. Type: ♦Rail
 - iv. Choose ir IR Drop

7. Files you have to hand in

1. From Lab11

- i. CHIP_iclabXX.io
- ii. CHIP_iclabXX.sdc
- iii. iclabXX.inn
- iv. iclabXX.inn.dat.tar

2. In this lab

- i. iclabXX.cmd
- ii. Note: There may be innovus.cmd1, innovus.cmd2..., and the bigger number corresponds to the latter process. Therefore, be careful to choose the newest cmd file and rename it to iclabXX.cmd.)