本节内容

文件的逻辑 结构

王道考研/CSKAOYAN.COM

1

无结构文件

按文件是否有结构分类,可以分为无结构文件、有结构文件两种。 无结构文件:文件内部的数据就是一系列二进制流或字符流组成。又称"流式文件"。如:Windows 操作系统中的.txt 文件。

列字符流,没有明显的结构特性。因此也不用探讨无结构文件的"逻辑结构"问题。

王道考研/CSKAOYAN.COM

有结构文件

按文件是否有结构分类,可以分为无结构文件、有结构文件两种。 无结构文件:文件内部的数据就是一系列二进制流或字符流组成。又称"流式文件"。如: Windows 操作系统中的 .txt 文件。

有结构文件:由一组相似的记录组成,又称"记录式文件"。每条记录又若干个数据项组成。如:数据库表文件。一般来说,每条记录有一个数据项可作为关键字(作为识别不同记录的ID)

5/2	在平例中, 作为各个记录的	4 写 - 即 円 	
学号	姓名	性别	专业
1120112100	张三	男	挖掘机
1120112101	李四	女	挖掘机
1120112102	王五	男	数据挖掘
1120112103	赵六	男	挖掘机
1120112104	钱七	女	挖掘机
1120112105	狗剩	男	数据挖掘
1120112106	铁柱	女	数据挖掘
1120112107	如花	女	数据挖掘
1120112108	二狗	男	数据挖掘
1120112109	傻根儿	男	数据挖掘
1120112110	旺财	女	数据挖掘

王道考研/CSKAOYAN.COM

王道考岍/cskaoyan.com

有结构文件

按文件是否有结构分类,可以分为无结构文件、有结构文件两种。

无结构文件: 文件内部的数据就是一系列二进制流或字符流组成。又称"流式文件"。如: Windows 操作系统中的 .txt 文件。

有结构文件:由一组相似的记录组成,又称"记录式文件"。每条记录又若干个数据项组成。如:数据库表文件。一般来说,每条记录有一个数据项可作为关键字。根据各条记录的长度(占用的存储空间)是否相等,又可分为定长记录和可变长记录两种。

学号	姓名	性别	专业
1120112100	张三	男	挖掘机
1120112101	李四	女	挖掘机
1120112102	王五	男	数据挖掘
1120112103	赵六	男	挖掘机
1120112104	钱七	女	挖掘机
1120112105	狗剩	男	数据挖掘
1120112106	铁柱	女	数据挖掘
1120112107	如花	女	数据挖掘
1120112108	二狗	男	数据挖掘
1120112109	傻根儿	男	数据挖掘
1120112110	旺财	女	数据挖掘

32 B	32 B	4 B	专 业
学号	姓名	性别	60 B

这个有结构文件由定长记录组成,每条记录的长度都相同(共 128 B)。各数据项都处在记录中相同的位置,具有相同的顺序和长度(前32B一定是学号,之后32B一定是姓名......

王道考研/CSKAOYAN.COM

5

有结构文件

按文件是否有结构分类,可以分为无结构文件、有结构文件两种。

无结构文件:文件内部的数据就是一系列二进制流或字符流组成。又称"流式文件"。如:Windows 操作系统中的.txt 文件。

有结构文件:由一组相似的记录组成,又称"记录式文件"。每条记录又若干个数据项组成。如:数据库表文件。一般来说,每条记录有一个数据项可作为关键字。根据各条记录的长度(占用的存储空间)是否相等,又可分为定长记录和可变长记录两种。

学号	姓名	性别	特长
1120112100	张三	男	腿特长
1120112101	李四	女	腿毛特长
1120112102	王五	男	
1120112103	赵六	男	
1120112104	钱七	女	
1120112105	狗剩	男	
1120112106	铁柱	女	
1120112107	如花	女	
			熟读唐诗三百首,琴棋书画样样精通,上得了厅堂下得了厨房,精通
1120112108	二狗	男	Java、C++、Python和任意一种脚本语言···(后面还有1万字········)
1120112109	傻根儿	男	
1120112110	旺财	女	

 32 B
 32 B
 4 B

 学号
 姓名
 性别

(长度不确定) 特长

这个有结构文件由可变长记录组成,由于各个学生的特长存在很大区别,因此"特长"这个数据项的长度不确定,这就导致了各条记录的长度也不确定。当然,没有特长的学生甚至可以去掉"特长"数据项。

王道考研/CSKAOYAN.COM

6

王道考岍/cskaoyan.com

有结构文件的逻辑结构

按文件是否有结构分类,可以分为无结构文件、有结构文件两种。

无结构文件:文件内部的数据就是一系列二进制流或字符流组成。又称"流式文件"。如: Windows 操作系统中的 .txt 文件。

有结构文件:由一组相似的记录组成,又称"记录式文件"。每条记录又若干个数据项组成。如: 数据库表文件。一般来说,每条记录有一个数据项可作为关键字。根据各条记录的长度(占用的 存储空间)是否相等,又可分为定长记录和可变长记录两种。

顺序文件

有结构文件的逻辑结构

索引文件

索引顺序文件

王道考研/CSKAOYAN.COM

顺序文件

顺序文件:文件中的记录一个接一个地顺序排列(逻辑上),记录可以是定长的或可变长的。各个记 录在物理上可以顺序存储或链式存储。

记录1 记录2 记录3

顺序存储——逻辑上相邻的记录 物理上也相邻(类似于顺序表)

串结构

0

(

记录之间的顺序与关键字无关

顺序文件

顺序结构

记录之间的顺序按关键字顺序排列

能否快速找到某个关键字对应的记录存放的位置?

王道考研/CSKAOYAN.COM

王道考妍/cskaoyan.com

索引顺序文件

思考索引文件的缺点:每个记录对应一个索引表项,因此索引表可能会很大。 比如:文件的每个记录平均只占8B,而每个索引表项占32个字节,那么索引 表都要比文件内容本身大4倍,这样对存储空间的利用率就太低了。

键	地址	_	姓名	其他属性	
An Qi			An Qi		
Bao Rong	\		An Kang		
Ding Ding					
Cao Cao		0	姓名	其他属性	
			Bao Rong		1
索引顺序文件的索引			Bao Zi		
项也不需要按关键字					
顺序排列,这样可以 极大地方便新表项的			逻辑文件		

索引顺序文件是索引文件和顺序文件思想的结合。索引顺序文件中,同样会为文件建立一张索引表,但不同的是:并不是每个记录对应一个索引表项,而是一组记录对应一个索引表项。

在本例中,学生记录按照学生姓名的开头字母进行分组。每个分组就是一个顺序文件,分组内的记录不需要按关键字排序

用这种策略确实可以让索引表"瘦身",但是是否会出现不定长记录的顺序文件检索速度慢的问题呢?

王道考研/CSKAOYAN.COM

11

索引顺序文件(检索效率分析)

用这种策略确实可以让索引表"瘦身",但是能否解决不定长记录的顺序文件检索速度慢的问题呢?

若一个<mark>顺序文件</mark>有10000个记录,则根据关键字检索文件,只能从头开始顺序查找(这里指的并不是定长记录、顺序结构的顺序文件),平均须查找 5000 个记录。

若采用<mark>索引顺序文件</mark>结构,可把 10000 个记录分为 $\sqrt{10000}$ = 100 组,每组 100 个记录。则需要先顺序查找索引表找到分组(共100个分组,因此索引表长度为 100,平均需要查 50 次),找到分组后,再在分组中顺序查找记录(每个分组100 个记录,因此平均需要查 50 次)。可见,采用索引顺序文件结构后,平均查找次数减少为 50+50 = 100 次。

同理,若文件共有 10⁶个记录,则可分为 1000 个分组,每个分组 1000 个记录。根据关键字检索一个记录 平均需要查找 500+500 = 1000 次。这个<mark>查找次数依然很多</mark>,如何解决呢?

王道考研/CSKAOYAN.COM

多级索引顺序文件

为了进一步提高检索效率,可以为顺序文件<mark>建立多级索引表</mark>。例如,对于一个含 10⁶ 个记录的文件,可先为该文件建立一张低级索引表,每 100 个记录为一组,故低级索引表中共有 10000 个表项(即10000个定长记录),再把这 10000 个定长记录分组,每组100个,为其建立项级索引表,故项级索引表中共有 100 个表面

Tips: 要为 N 个记录的文件 建立 K 级索引,则最优的 分组是每组 N^{1/(K+1)} 个记录。

检索一个记录的平均查找 次数是 ((N^{1/(K+1)})/2)* (K+1)

如: 本例中,建立2级索引,则最优分组为每组100000^{1/3}=100个记录,平均查找次数是(100/2)*3=150次

王道考研/CSKAOYAN.COM

13

15

王道考研/cskaoyan.com