GR Light Deflection

Question

Using the small-angle approximation, compare the trajectory of a light ray passing near a massive body under Newtonian mechanics and General Relativity. Assume the closest approach distance is R and define the ratio R_8/R , where R_8 is the Schwarzschild radius of the body. Derive approximate expressions for the light path in both cases and sketch/plot the resulting trajectories for different values of R_8/R (e.g., 0, 0.01, 0.02, 0.03, 0.05). Explain how the deflection changes as R_8/R increases.

Solution

1. Core Formulas (with R = 1)

Known,

- $sp = \sin \varphi$
- $cp = \cos \varphi = \sqrt{1 sp^2}$

Newtonian (no deflection)

- $r_{new} = \frac{1}{sn}$
- $x_{new} = r_{new} \cdot cp = \frac{cp}{sp}$
- $y_{new} = r_{new} \cdot sp = 1 \rightarrow \text{Newtonian gives a horizontal line } y = 1.$

Approximate GR

- u = sp + MR
- $\bullet \ r_{GR} = \frac{1}{u} = \frac{1}{sp + MR}$
- $y_{GR} = r_{GR} \cdot sp = \frac{sp}{sp + MR}$
- $x_{GR} = r_{GR} \cdot cp = \frac{cp}{sp + MR}$

So, the GR point (x_{GR}, y_{GR}) is just the Newtonian (c_p, s_p) scaled by $1/(s_p + MR)$.

2. Full Step-by-Step Example

Take sp = 1 and MR = 0.01.

1. Compute cp

$$cp = \sqrt{1 - sp^2} = \sqrt{1 - 0.1^2} = \sqrt{0.99} \approx 0.994987$$

2. Newtonian

•
$$r_{new} = \frac{1}{0.1} = 10$$

•
$$x_{new} = r_{new} \cdot cp = 10 \times 0.994987 = 9.949874$$

•
$$y_{new} = 1$$
. (Because $r_{new} \cdot sp = \left(\frac{1}{sp}\right) \cdot sp = 1$)

3. GR (
$$MR = 0.01$$
)

•
$$u = sp + MR = 0.1 + 0.01 = 0.11$$

•
$$r_{GR} = \frac{1}{0.11} = \frac{100}{11} \approx 9.090909$$

•
$$y_{GR} = \frac{sp}{sp+MR} = \frac{0.1}{0.11} = \frac{10}{11} \approx 0.909091$$

•
$$x_{GR} = \frac{cp}{sp+MR} = \frac{0.994987}{0.11} \approx 9.045340$$

3. Quick Results (Rounded) for the Chosen Sample Points

$$sp = 0.1 (cp = 0.994987)$$

• Newtonian:
$$x = 9.949874$$
, $y = 1.000000$

•
$$MR = 0.01$$
: $x \approx 9.045340$, $y \approx 0.909091$

•
$$MR = 0.02$$
: $x \approx 8.291562$, $y \approx 0.833333$

•
$$MR = 0.05$$
: $x \approx 6.633250$, $y \approx 0.666667$

$$sp = 0.5 (cp = 0.866025)$$

• Newtonian:
$$x = 1.732051$$
, $y = 1.000000$

•
$$MR = 0.01$$
: $x \approx 1.698089$, $y \approx 0.980392$

•
$$MR = 0.02$$
: $x \approx 1.665433$, $y \approx 0.961538$

•
$$MR = 0.05$$
: $x \approx 1.574592$, $y \approx 0.909091$

$$sp = 0.9 (cp = 0.435890)$$

• Newtonian:
$$x = 0.484322$$
, $y = 1.000000$

•
$$MR = 0.01$$
: $x \approx 0.478999$, $y \approx 0.989011$

•
$$MR = 0.02$$
: $x \approx 0.473793$, $y \approx 0.978261$

•
$$MR = 0.05$$
: $x \approx 0.458831$, $y \approx 0.947368$

4. Short Interpretation

- Newtonian always sits at y = 1 (the horizontal top line in the plot).
- GR points have $y_{GR} = \frac{sp}{sp+MR} < 1$. So for fixed angle $sp: larger MR \rightarrow smaller y_{GR}$ (more downward deflection).
- For small sp (e.g. 0.1) the differences between Newtonian and GR are large → that's why the curve looks "sharper" at the peak. For sp near 1 the GR and Newtonian values are close → the curves meet near the top.

5. A Short Recipe

- Pick sp (e.g. 0.3). Compute $cp = \sqrt{1 sp^2}$.
- Newtonian: $x_{new} = cp/sp$, $y_{new} = 1$.
- For each: compute u = sp + MR. Then, $x_{GR} = cp/u$, $y_{GR} = sp/u$.
- Plot symmetric points $(\pm x, y)$.

Result

Figure 1. Schematic view of an orbital trajectory for light in GR.