

Regularized Low-Rank Adaptation for Few-Shot Organ Segmentation

Delta Silva Badriguezal Loca Dalata Handa Bahira and Locality Research Ghassen Baklouti^{1, 2}, Julio Silva-Rodríguez¹, Jose Dolz^{1,2}, Houda Bahig² and Ismail Ben Ayed^{1,2}

• Idea. Freeze W_0 and approximates the incremental updates ΔW as the product of two

$$W = W_0 + \Delta W = W_0 + BA$$
, $A \in \mathbb{R}^{r \times n}$; $B \in \mathbb{R}^{m \times r}$; $r \ll \min(m, n)$. (1)

• Limitation. Standard LoRA operates with a fixed rank throughout optimization; The optimal rank selection often vary across different downstream tasks, limiting its flexibility.

- We highlight standard LoRA limitations regarding rank selection in few-shot regimes; The optimal rank varies substantially across tasks.
- We propose ARENA (Adaptive Rank Segmentation), which models low-rank updates via SVD and integrates an l_1 sparsity regularizer; Proximal updates shrink small singular values, enabling automatic, task-specific rank discovery; Our frame-
- We provide comprehensive experiments in realistic clinical settings, covering 14 organs (9 base across two datasets and 5 novel), and demonstrate consistent gains.

Methods

1. SVD-like factorization. We express LoRA updates in singular-value form.

$$W = W_0 + \Delta W = W_0 + B \operatorname{Diag}(v) A \tag{2}$$

2. Rank Control. We impose an l₁ regularization on the gating vector v to promote sparsity; The effective rank is given by the number of non-zero entries in v.

- 3. Dynamic Adaptation block coordinate descent. Step 1-Update (A, B). With v fixed, we optimize A and B via gradient descent.

-Update
$$(A, B)$$
. While $A(t+1) = A(t) - \eta \nabla_A \mathcal{L}(A, B, v)$, $B^{(t+1)} = B^{(t)} - \eta \nabla_B \mathcal{L}(A, B, v)$ (4)
$$A^{(t+1)} = A^{(t)} - \eta \nabla_A \mathcal{L}(A, B, v), \quad B^{(t+1)} = B^{(t)} - \eta \nabla_B \mathcal{L}(A, B, v)$$
 (4)

• Step 2-Update
$$v$$
. With (A, B) fixed, we update v via proximal steps for the l_1 penalty.

(t+1) $= \epsilon(v(t) - \rho \nabla_v \mathcal{L}(A, B, v), \eta_t \lambda)$ (5)

where $\xi(., \tau)$ is the soft thresholding operator

$$\xi(x,\tau) := \begin{cases} x - \tau, & x > \tau \\ 0, & -\tau \le x \le \tau \\ x + \tau, & x < -\tau \end{cases}$$
 (6)

Experimental Results

• Transferability to new tasks in TotalSegmentator. Each method is continued

	Method					Large	
		MYO	LA	RA	-		
	Linear probe BitFit [3]	51.98	38.99	40.35	LV	RV	Avg.
iot	Affine-LN [1]	51.53	39.01	40.19	5327	31.08	4311
5-8	FFT	51.68 52.03	38.82	40.08	53.34	31.83	43.01
	Lora [2]		4398		51.22	31.06	40.41
	AdaloRAIA	41.83 50.28	36.53	45.67	43.42		新 四
_	ARENA (Ours)		43.59	37.35	48.53	37.05 38.73	40.90
	Linear probe	64.50	RIVER TO STATE OF THE PARTY OF	54.38	類腦	43.69	49.80
10-sho	BitFit [3] Affine-LN [1]	64.18	63.47 64.15	66.86	09.12	62.60	65.31
	FFT FFT	64.39	63.62	67.95	69.79 69.93	62.61	61.42
		59.07	54.05		64.38	63.66	65.91
	LoRA [2] Adal oRA (a)	60.31	65.2	78.44			
	AdaLoRA [4] ARENA (Ours)	01.57		60.81	59.76	55.92	1
			2 - 10 ZA		74.2	74.82	77.81
DIL	ty to base tas	ks in 5	T- 1-				DO GOLD

• Transferability to base tasks in TotalSegmentator. Average is reported over 1

	Method	Gall	E80	Liv	Page	Ace	-
-	Zero-shot	77.18	36.73	93.04	78.15		Avg.
	Linear probe	78.15	45.98	92.69	ACUAL SERVICE	63.35	72.68
t		71.11	50.00	92.38	78.31	69.06 73.43	福田
shot		74.95	50.65	93.04	78.81	76.71	75.02
10	LoRA [2]	73.52	45.74	93.87	80.34	86.18	76.90
	AdaLoRA [4]	77.93 78.11	48.02	92.81	75.80	79.43	75.91
	ARENA (Ours)	79.14	43.70	92.98	78.35		74.96
	Linear probe	78.49	47.01	92.16		78.17	76.80
	BitFit [3]	75.92	47.92	91.85	78.14	69.91 77.58	76.40
	Affine-LN [1]	73.48	51.11	91.29	80.05		75.83 75.98
10.	FFT	76.07	56.82	90.89	74.87	91.81	1744
	LoRA [2]	80.65	46.11	92.94	81.18		76.68
	AdaLoRA [4]	80.01	45.72	92.90	78.44		75.99
	ARENA (Ours)	04.43	ON 202	93.01	对 和	弘胜	78.25

• Generalization across datasets(FLARE'22). Average is reported over 9 organs (Spl. IKid, Gall, Eso, Liv, Pan, Sto, Duo, Aor).

	Method	Gall	Eso	Liv	Pas	Ave	Avg.
5-shot	Lora [2] ARENA (Ours)	54.59 55.71	73.59 75.04	93.98 94.91	82.72 83.61	91.15 91.52	74.88 76.01
	LoRA [2] ARENA (Ours)						

References

[1] Basu, S., et al.: Strong baselines for parameter efficient few-shot fine-tuning in AAAL vol. 38, pp. 11024-11031 (2024)

[2] Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W., et al. Lora: Low-rank adaptation of large language models. International Conference on Lourning Representations (ICLR) 1(2), 3 (2022)

[3] Zaken, E., et al.: Bitfit: Simple parameter-efficient fine-tuning for transformer-based masked language models. In: ACL (2022)

[4] Zhang, Q., et al.: Adalora: Adaptive budget allocation for parameter-efficient free-tuning In: International Conference on Learning Representations (ICLR) (2023)

