Approximating Optimal Bounds in Prompt-LTL Realizability in Doubly-exponential Time

Joint work with Leander Tentrup and Martin Zimmermann

Alexander Weinert

Saarland University

September, 16th 2016 GandALF '16

- Setting: an arbiter with 4 clients

- Setting: an arbiter with 4 clients
- \blacksquare Requests \mathbf{r}_i from client i (controlled by the environment)

- Setting: an arbiter with 4 clients
- Requests r_i from client i (controlled by the environment)
- Grants g_i for client i (controlled by the system)

- Setting: an arbiter with 4 clients
- \blacksquare Requests \mathbf{r}_i from client i (controlled by the environment)
- \blacksquare Grants g_i for client i (controlled by the system)

Goal: Formal specification of arbiter's behavior

Linear Temporal Logic

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi \mid \varphi \mathbf{R} \varphi \mid \mathbf{F} \varphi$$

where p ranges over a finite set P of atomic propositions.

Linear Temporal Logic

$$\varphi ::= p \mid \neg p \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \mathbf{X} \varphi \mid \varphi \, \mathbf{U} \varphi \mid \varphi \, \mathbf{R} \varphi \mid \mathbf{F} \varphi$$

+ typical shorthands

where p ranges over a finite set P of atomic propositions.

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Admissible execution:

Env:

Sys:

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Admissible execution:

Env: r_1

Sys:

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Admissible execution:

Env: r_1 Sys: g_1

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Admissible execution:

Env: r_1 r_1

Sys: g₁

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Admissible execution:

Env: r_1 r_1 Sys: g_1 -

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Admissible execution:

Env: r_1 r_1 -

Sys: g_1 -

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Admissible execution:

Env: \mathbf{r}_1 \mathbf{r}_1 - Sys: \mathbf{g}_1 - \mathbf{g}_1

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Admissible execution:

Env: r_1 r_1 - r_1

Sys: $g_1 - g_1$

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Admissible execution:

Env: r_1 r_1 - r_1 Sys: g_1 - g_1 -

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Admissible execution:

Env: \mathbf{r}_1 \mathbf{r}_1 - \mathbf{r}_1 - \mathbf{r}_1 - Sys: \mathbf{g}_1 - \mathbf{g}_1 - -

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Admissible execution:

Env: $r_1 r_1 - r_1 - g_1$ Sys: $g_1 - g_1 - g_2$

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Admissible execution:

Env: \mathbf{r}_1 \mathbf{r}_1 - \mathbf{r}_1 - \mathbf{r}_1

Sys: $g_1 - g_1 - g_1$

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Admissible execution:

Env:
$$r_1$$
 r_1 - r_1 - r_1 - r_1 - r_1 Sys: g_1 - g_1 - g_1 - g_1 -

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Admissible execution:

Env: $\mathbf{r}_1 \ \mathbf{r}_1 \ - \ \mathbf{r}_1 \ - \ - \ \mathbf{r}_1 \ - \ -$ Sys: $\mathbf{g}_1 \ - \ \mathbf{g}_1 \ - \ - \ \mathbf{g}_1 \ - \ -$

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Admissible execution:

Env:
$$r_1$$
 r_1 - r_1 - r_1 - - r_1 - - - - Sys: g_1 - g_1 - - g_1 - - - g_1

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Admissible execution:

Env:
$$r_1$$
 r_1 - r_1 - r_1 - r_1 - r_1

Sys: $g_1 - g_1 - g_1 - g_1$

Specification:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Admissible execution:

Env:
$$r_1$$
 r_1 - r_1 - - r_1 - - - r_1 Sys: g_1 - g_1 - - - g_1 ...

Problem: $\mathbf{F} \varphi$ does not guarantee when φ holds true.

Problem: $\mathbf{F} \varphi$ does not guarantee when φ holds true.

Solution: Add prompt-eventually operator F_P :

Problem: $\mathbf{F} \varphi$ does not guarantee when φ holds true.

Solution: Add prompt-eventually operator **F**_P:

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi \mid \varphi \mathbf{R} \varphi \mid \mathbf{F} \varphi$$

Problem: $\mathbf{F} \varphi$ does not guarantee when φ holds true.

Solution: Add prompt-eventually operator **F**_P:

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi \mid \varphi \mathbf{R} \varphi \mid \mathbf{F} \varphi \mid \mathbf{F}_{\mathbf{P}} \varphi$$

Problem: $\mathbf{F} \varphi$ does not guarantee when φ holds true.

Solution: Add prompt-eventually operator **F**_P:

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi \mid \varphi \mathbf{R} \varphi \mid \mathbf{F} \varphi \mid \mathbf{F}_{\mathbf{P}} \varphi$$

Semantics: Given some word α

Problem: $\mathbf{F} \varphi$ does not guarantee when φ holds true.

Solution: Add prompt-eventually operator F_P :

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi \mid \varphi \mathbf{R} \varphi \mid \mathbf{F} \varphi \mid \mathbf{F}_{\mathbf{P}} \varphi$$

Semantics: Given some word α , $k \in \mathbb{N}$

Problem: $\mathbf{F} \varphi$ does not guarantee when φ holds true.

Solution: Add prompt-eventually operator F_P :

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \, \mathbf{U} \varphi \mid \varphi \, \mathbf{R} \varphi \mid \mathbf{F} \varphi \mid \mathbf{F}_{\mathbf{P}} \varphi$$

Semantics: Given some word α , $k \in \mathbb{N}$

$$(\alpha, k) \models \mathbf{F_P} \varphi$$
 if, and only if, φ holds true within at most k steps

Prompt-LTL Example

Before:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} g_i)$$

Execution α :

Prompt-LTL Example

Before:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Execution α :

Env:
$$r_1$$
 r_1 - r_1 - - r_1 - - - r_1 Sys: g_1 - g_1 - - g_1 - - - g_1 ···

Prompt-LTL Example

Before:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Execution α :

Env:
$$r_1$$
 r_1 - r_1 - - r_1 - - - r_1 Sys: g_1 - g_1 - - g_1 - - - g_1 ···

$$\alpha \models \bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Prompt-LTL Example

Before:

Now:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

$$igwedge_{i=1}^4 \mathbf{G}\left(\mathtt{r}_i
ightarrow \mathbf{F_P}\, \mathtt{g}_i
ight)$$

Execution α :

Env:
$$r_1$$
 r_1 - r_1 - - r_1 - - - r_1 Sys: g_1 - g_1 - - g_1 - - - g_1 ···

$$\alpha \models \bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

Prompt-LTL Example

Now:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i o \mathbf{F}_{\mathbf{P}}\,\mathbf{g}_i)$$

Execution α :

Env:
$$r_1$$
 r_1 - r_1 - - r_1 - - - r_1 Sys: g_1 - g_1 - - g_1 - - - g_1 ...

$$\alpha \models \bigwedge_{i=1}^{4} \mathbf{G}(\mathbf{r}_{i} \to \mathbf{F} \mathbf{g}_{i})$$

Prompt-LTL Example

Before:

Now:

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$$

$$\bigwedge_{i=1}^4 \mathbf{G}(\mathbf{r}_i o \mathbf{F}_{\mathbf{P}}\,\mathbf{g}_i)$$

Execution α :

Env:
$$r_1$$
 r_1 - r_1 - - r_1 - - - r_1 Sys: g_1 - g_1 - - g_1 - - - g_1 ...

There exists no k such that

$$\alpha \models \bigwedge_{i=1}^{4} \mathbf{G}(\mathbf{r}_{i} \to \mathbf{F} \mathbf{g}_{i})$$

$$(\alpha, k) \models \bigwedge_{i=1}^{4} \mathbf{G}(\mathbf{r}_{i} \to \mathbf{F}_{\mathbf{P}} \mathbf{g}_{i})$$

Theorem (Kupferman, Piterman, Vardi '07)

The following problem is 2Exptime-complete:

Input: Prompt-LTL formula φ over $I \cup O$

Question: Does there exist a strategy $\sigma: (2^I)^+ \to 2^O$

and a bound k, such that

every word consistent with σ models φ w.r.t. k?

Theorem (Kupferman, Piterman, Vardi '07)

The following problem is 2Exptime-complete:

Input: Prompt-LTL formula φ over $I \cup O$

Question: Does there exist a strategy $\sigma: (2^I)^+ \to 2^O$

and a bound k, such that

every word consistent with σ models φ w.r.t. k?

Now: Prompt-LTL realizability as optimization problem

Theorem (Kupferman, Piterman, Vardi '07)

The following problem is 2Exptime-complete:

Input: Prompt-LTL formula φ over $I \cup O$

Question: Does there exist a strategy $\sigma: (2^l)^+ \to 2^O$

and a bound k, such that

every word consistent with σ models φ w.r.t. k?

Now: Prompt-LTL realizability as optimization problem

Theorem (Z. '11)

The minimal k such that there exists a strategy $\sigma: (2^I)^+ \to 2^O$ such that every word consistent with σ models φ w.r.t. k can be determined in triply-exponential time.

Theorem

The minimal k as defined previously can be approximated within a factor of 2 in doubly-exponential time.

Theorem (Kupferman, Piterman, Vardi '07)

For every Prompt-LTL formula φ and each bound $k \in \mathbb{N}$, there exists an LTL formula φ_k , such that

- \blacksquare if φ_k is realizable, then $(\varphi, 2k)$ is realizable, and
- if (φ, k) is realizable, then φ_k is realizable

Theorem (Kupferman, Piterman, Vardi '07)

For every Prompt-LTL formula φ and each bound $k \in \mathbb{N}$, there exists an LTL formula φ_k , such that

- \blacksquare if φ_k is realizable, then $(\varphi, 2k)$ is realizable, and
- if (φ, k) is realizable, then φ_k is realizable

$$k = 1, \dots$$

$$\varphi$$

$$Prompt-LTL \to LTL$$

$$\varphi_k$$

$$LTL \text{ synthesis}$$

$$k$$

$$(Kupferman, Piterman, Vardi '07)$$

Theorem (Kupferman, Piterman, Vardi '07)

For every Prompt-LTL formula φ and each bound $k \in \mathbb{N}$, there exists an LTL formula φ_k , such that

- \blacksquare if φ_k is realizable, then $(\varphi, 2k)$ is realizable, and
- if (φ, k) is realizable, then φ_k is realizable

$$k = 1, \dots$$

$$\varphi$$

$$Prompt-LTL \to LTL$$

$$\varphi_k$$

$$LTL \text{ synthesis}$$

$$k$$

$$(Kupferman, Piterman, Vardi '07)$$

Theorem (Kupferman, Piterman, Vardi '07)

For every Prompt-LTL formula φ and each bound $k \in \mathbb{N}$, there exists an LTL formula φ_k , such that

- \blacksquare if φ_k is realizable, then $(\varphi, 2k)$ is realizable, and
- if (φ, k) is realizable, then φ_k is realizable

Theorem (Kupferman, Piterman, Vardi '07)

If (φ, k) is realizable for some $k \in \mathbb{N}$, then (φ, k') is realizable for some k' doubly exponential in $|\varphi|$.

$$k = 1, \dots, k_{max}$$

$$\varphi$$
Prompt-LTL \rightarrow LTL
$$\psi$$
(Kupferman, Piterman, Vardi '07)

Theorem (Kupferman, Piterman, Vardi '07)

For every Prompt-LTL formula φ and each bound $k \in \mathbb{N}$, there exists an LTL formula φ_k , such that

- \blacksquare if φ_k is realizable, then $(\varphi, 2k)$ is realizable, and
- if (φ, k) is realizable, then φ_k is realizable

Theorem (Kupferman, Piterman, Vardi '07)

If (φ, k) is realizable for some $k \in \mathbb{N}$, then (φ, k') is realizable for some k' doubly exponential in $|\varphi|$.

Given: Prompt-LTL formula φ , bound $k \in \mathbb{N}$.

Wanted: LTL formula φ_k .

Given: Prompt-LTL formula φ , bound $k \in \mathbb{N}$.

Wanted: LTL formula φ_k .

Given: Prompt-LTL formula φ , bound $k \in \mathbb{N}$.

Wanted: LTL formula φ_k .

Idea: Use fresh proposition $r \notin P$, "color" α .

 $\alpha = \alpha_0 \quad \alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4 \quad \alpha_5 \quad \alpha_6 \quad \alpha_7 \quad \alpha_8 \quad \alpha_9$

Given: Prompt-LTL formula φ , bound $k \in \mathbb{N}$.

Wanted: LTL formula φ_k .

$$\alpha = \alpha_0 \quad \alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4 \quad \alpha_5 \quad \alpha_6 \quad \alpha_7 \quad \alpha_8 \quad \alpha_9$$

$$\begin{matrix} r & r & \neg r & \neg r & r & \neg r & \neg r & r \end{matrix}$$

Given: Prompt-LTL formula φ , bound $k \in \mathbb{N}$.

Wanted: LTL formula φ_k .

- 1. Replace each $\mathbf{F}_{\mathbf{P}} \psi$ by LTL formula $\mathrm{rel}(\mathbf{F}_{\mathbf{P}} \psi)$ stating
 - " φ holds within one color change"

Given: Prompt-LTL formula φ , bound $k \in \mathbb{N}$.

Wanted: LTL formula φ_k .

- 1. Replace each $\mathbf{F}_{\mathbf{P}} \psi$ by LTL formula $\operatorname{rel}(\mathbf{F}_{\mathbf{P}} \psi)$ stating
 - lacksquare " φ holds within one color change"
- **2.** Add ψ_k stating
 - "The coloring changes after at most *k* steps"

Given: Prompt-LTL formula φ , bound $k \in \mathbb{N}$.

Wanted: LTL formula φ_k .

- 1. Replace each $\mathbf{F}_{\mathbf{P}} \psi$ by LTL formula $\operatorname{rel}(\mathbf{F}_{\mathbf{P}} \psi)$ stating
 - " φ holds within one color change"
- **2.** Add ψ_k stating
 - "The coloring changes after at most k steps"

$$\varphi \rightsquigarrow \operatorname{rel}(\varphi) \wedge \psi_k$$

Given: Prompt-LTL formula φ , bound $k \in \mathbb{N}$.

Wanted: LTL formula φ_k .

$$\alpha = \alpha_0 \quad \alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4 \quad \alpha_5 \quad \alpha_6 \quad \alpha_7 \quad \alpha_8 \quad \alpha_9$$

- 1. Replace each $\mathbf{F}_{\mathbf{P}} \psi$ by LTL formula $\operatorname{rel}(\mathbf{F}_{\mathbf{P}} \psi)$ stating
 - " φ holds within one color change"
- **2.** Add ψ_k stating
 - "The coloring changes after at most k steps"

$$(\mathsf{Prompt-LTL}) \qquad \qquad \varphi \quad \leadsto \quad \mathrm{rel}(\varphi) \land \psi_k \qquad \longleftarrow (\mathsf{LTL})$$

Given: Prompt-LTL formula φ , bound $k \in \mathbb{N}$.

Wanted: LTL formula φ_k .

Idea: Use fresh proposition $r \notin P$, "color" α .

$$\alpha = \alpha_0 \quad \alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4 \quad \alpha_5 \quad \alpha_6 \quad \alpha_7 \quad \alpha_8 \quad \alpha_9$$

- 1. Replace each $\mathbf{F}_{\mathbf{P}} \psi$ by LTL formula $\operatorname{rel}(\mathbf{F}_{\mathbf{P}} \psi)$ stating
 - lacksquare " φ holds within one color change"
- **2.** Add ψ_k stating
 - "The coloring changes after at most *k* steps"

$$(\mathsf{Prompt-LTL}) \qquad \qquad \varphi \quad \leadsto \quad \mathrm{rel}(\varphi) \land \psi_k \qquad \longleftarrow (\mathsf{LTL})$$

Correctness due to (Kupferman, Piterman, Vardi '07)

- 1: **if** φ unrealizable **then**
- 2: **return** " φ unrealizable"
- 3: **for** $k = 0, 1, 2, \dots, 2^{2^{|\varphi|}}$ **do**
- 4: **if** $\operatorname{rel}(\varphi) \wedge \psi_k$ realizable **then**
- 5: return 2k

$$k = 1, \dots, k_{max}$$

$$Prompt-LTL \rightarrow LTL$$

$$\varphi k$$

$$LTL \text{ synthesis}$$

$$k$$
(Kupferman, Piterman, Vardi '07)

- 1: **if** φ unrealizable **then**
- 2: **return** " φ unrealizable"
- 3: **for** $k = 0, 1, 2, \dots, 2^{2^{|\varphi|}}$ **do**
- 4: **if** $\operatorname{rel}(\varphi) \wedge \psi_k$ realizable **then**
- 5: return 2k

Run-time: doubly-exponential in $|\varphi|$:

- Lines 1 and 4: doubly-exponential time.
- At most doubly-exponentially many iterations.

- Number of clients: *r*
- Number of prioritized clients: r_p

- Number of clients: *r*
- Number of prioritized clients: r_p
- 1. Answer every request of clients 1 through r_p promptly:

$$\bigwedge_{1 \leq i \leq r_p} \mathbf{G} \left(\mathbf{r}_i \to \mathbf{F}_{\mathbf{P}} \, \mathbf{g}_i \right)$$

- Number of clients: *r*
- Number of prioritized clients: r_p
- 1. Answer every request of clients 1 through r_p promptly: $\bigwedge_{1 \le i \le r_p} \mathbf{G} \left(\mathbf{r}_i \to \mathbf{F_P} \, \mathbf{g}_i \right)$
- **2.** Answer every other request eventually: $\bigwedge_{r_0 < i} \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$

- Number of clients: *r*
- Number of prioritized clients: r_p
- 1. Answer every request of clients 1 through r_p promptly: $\bigwedge_{1 \le i \le r_p} \mathbf{G} \left(\mathbf{r}_i \to \mathbf{F_P} \, \mathbf{g}_i \right)$
- **2.** Answer every other request eventually: $\bigwedge_{r_0 < i} \mathbf{G}(\mathbf{r}_i \to \mathbf{F} \mathbf{g}_i)$
- **3.** At most one grant at a time: $\mathbf{G} \bigwedge_{i \neq j} \neg (g_i \land g_j)$

LTL synthesis vs. Prompt-LTL synthesis

Resources	Prioritized Resources	LTL [s]	Prompt-LTL [s]
3	0		
	1		
	2		
	3		
4	0		
	1		
	2		
	3		
	4		

LTL synthesis vs. Prompt-LTL synthesis

Resources	Prioritized Resources	ITI [c]	Prompt-LTL [s]
	T Horitized Nesources	LIL [S]	i ionipt-Li L [s]
3	0	0.26	
	1		
	2		
	3		
4	0	0.32	
	1		
	2		
	3		
	4		

LTL synthesis vs. Prompt-LTL synthesis

Resources	Prioritized Resources	LTL [s]	Prompt-LTL [s]
3	0	0.26	0.37
	1		0.47
	2		0.64
	3		0.72
4	0	0.32	0.47
	1		1.32
	2		1.52
	3		1.72
	4		1.72

Bounded Prompt-LTL Approximation

$$k = 1, \dots, k_{max}$$

$$\varphi \mapsto \text{Prompt-LTL} \to \text{LTL} \xrightarrow{\varphi_k} \text{LTL synthesis} \xrightarrow{k}$$
(Kupferman, Piterman, Vardi '07)

Bounded Prompt-LTL Approximation

$$k = 1, \dots, k_{max}$$

$$Prompt-LTL \rightarrow LTL$$

$$\varphi_k$$

$$\text{Bounded LTL synthesis}$$

$$(Kupferman, Piterman, Vardi '07) (Finkbeiner, Schewe '13)$$

Always assume the worst: All requests in each step

→ 4 states, maximal delay 3

Strategies: Fast, but Large

Strategies: Fast, but Large

Strategies: Fast, but Large

→ 6 states, maximal delay 2

Theorem

- \blacksquare a positional strategy realizing φ_b w.r.t. $k=2^b$, and
- **a** a strategy of size $n = 2^{2^b}$ realizing φ_b w.r.t. k = 0.

Theorem

- lacksquare a positional strategy realizing φ_b w.r.t. $k=2^b$, and
- **a** a strategy of size $n = 2^{2^b}$ realizing φ_b w.r.t. k = 0.

Theorem

- lacksquare a positional strategy realizing φ_b w.r.t. $k=2^b$, and
- **a** a strategy of size $n = 2^{2^b}$ realizing φ_b w.r.t. k = 0.

Theorem

- lacksquare a positional strategy realizing φ_b w.r.t. $k=2^b$, and
- **a** a strategy of size $n = 2^{2^b}$ realizing φ_b w.r.t. k = 0.

Theorem

- \blacksquare a positional strategy realizing φ_b w.r.t. $k=2^b$, and
- **a** a strategy of size $n = 2^{2^b}$ realizing φ_b w.r.t. k = 0.

Conclusion

Our contribution:

- The first approximation algorithm for Prompt-LTL realizability with doubly-exponential running time
- Computes a realizing strategy
- Applicable to stronger logics as well
- Prototypical implementation
- Upper and lower bounds on tradeoff time vs. memory

Conclusion

Our contribution:

- The first approximation algorithm for Prompt-LTL realizability with doubly-exponential running time
- Computes a realizing strategy
- Applicable to stronger logics as well
- Prototypical implementation
- Upper and lower bounds on tradeoff time vs. memory

Take-away:

- Relaxing the optimality requirement for Prompt-LTL yields exponentially better runtime
- In general, memory can be traded for response time and vice versa.