

6-8 像平面的光照度

一. 轴上点的光照度

已知:成像物体光亮度L,像方孔径角为u³

求:像面光照度E^{*}

$$d\Phi' = \pi L' ds' \sin^2 u_{\text{max}}'$$

$$E' = \frac{d\Phi'}{ds'} = \pi L' \sin^2 u'_{\text{max}} = \tau \pi L \left(\frac{n'}{n}\right)^2 \sin^2 u'_{\text{max}}$$

$$n=n'$$
,

$$E' = \tau \pi L \sin^2 u'_{\text{max}}$$

二. 轴外像点的光照度公式

$$E' = \frac{I \cos \alpha}{l^2}$$

像平面上轴外点的光照度一定小于轴上点的光照度。

1. 由于轴外光束倾斜后,出瞳在光束垂直方向上的投影面 积减小。轴外点的发光强度比轴上点的发光强度Ⅰ₀小。

$$I = I_0 \cos \alpha = I_0 \cos \omega'$$

2. 照明距离比轴上点的照明距离增加,

$$l = l_0 / \cos \omega'$$

代回
$$E' = \frac{I \cos \alpha}{l^2}$$

得
$$E' = \frac{I_0 \cos \omega' \cos \omega'}{\left(\frac{l_0}{\cos \omega'}\right)^2} = \frac{I_0}{l_0^2} \cos^4 \omega'$$

$$E_0' = \frac{I_0}{{l_0}^2}$$

由于轴上点光照度
$$E_0' = \frac{I_0}{l_0^2}$$
 所以 $\frac{E'}{E_0'} = \cos^4 \omega'$ $E' = E_0' \cos^4 \omega'$

$$E' = E_0 \cos^4 \omega'$$

$$\frac{E'}{E_0'} = \cos^4 \omega'$$

ω'	E'/E' ₀	ω'	E'/E' ₀
10	0. 941	40	0. 344
20	0. 780	50 °	0. 171
30	0. 563	60 °	0. 063

系统中存在斜光束渐晕时

$$\frac{E'}{E_0'} = K \cos^4 \omega' \qquad E' = K \cdot E_0' \cos^4 \omega'$$

$$E' = K \cdot E_0 \cos^4 \omega'$$

6-9 照相物镜像平面的光照度和光圈数

一、像平面光照度

$$\sin U'_{\max} \approx \frac{D}{2f'}$$

代入 $E_0' = \tau \pi L \sin^2 U'_{\text{max}}$

 $E_0' = \frac{\pi}{4} \tau L \left(\frac{D}{f'}\right)^2$

 $A = \frac{D}{f'}$ 物镜的相对孔径

二. 光圈、光圈数

$$E_0' = \tau \pi L \sin^2 U'_{\text{max}}$$

光圈:相对孔径

分度的方法是按每一刻度值对应的像面照度减小一半。

相对孔径按 $1:\sqrt{2}$ 等比级数变化。

1:1 1:1.4 1:2 1:2.8 1:11 1:16 1:22

光圈数:相对孔径的倒数,用F表示 ——F制光圈

镜头的结构

对焦环

旋转对焦环时, 内部的镜片将移动, 可实现对焦, 手动对焦也如此进行。对焦环的位置因镜头种 类不同而异, 可能位于镜头的前部或者后部。

距离刻度

在表示镜头伸出壁的同时,显示与被摄体 之间距离的刻度标记。在风光摄影时当需 要对远处的物体进行拍摄,并希望使用手 动对焦时很有用。有部分自动对焦镜头无 此刻度标记。

变焦环

变焦镜头具有用于改变焦距的 变焦环。调整变焦环可改变视 角。定焦镜头由于焦距固定, 无法进行变焦。

透鏡

镇头的内部包括组合结构复杂的多枚透镜。根据玻璃材质、加工方法等不同,有各种不同种类的透镜。根据组合形式不同,最终画质也有所差异。但镇头性能并不简单与透镜枚数的多少成正比。

弗0早

ZUUJ.3

F11

假定某个透镜透过率为 τ ,相对孔径为 $\frac{D}{f}$

$$\left(\frac{D}{f'}\right)_{T}^{2} = \tau \left(\frac{D}{f'}\right)^{2} - T 制光圈$$

这样,像平面光照度公式可以写为 $E_0' = \frac{\pi}{4} L \left(\frac{D}{f'} \right)_T^2$

三、曝光量

假定像面照度为E, 曝光时间为t,底片上单位面积接受的曝光量H为

$$H = E \cdot t(lx \cdot s)$$

假定像面照度为E, 曝光时间为t,底片上单位面积接受的曝光量H为

$$H = E \cdot t(lx \cdot s)$$

$$H = E \cdot t(lx \cdot s)$$

