לוגיקה מתמטית ־ סיכום אביב 2016

2016 בספטמבר 24

תחשיב הפסוקים

```
הגדרה: עומק של נוסחא מוגדר בצורה אינדוקטיבית
```

- depth(lpha)=0 אם lpha נוסחא שהיא פסוק אטומי אחד אז lpha
 - .k+1 או מעומק $\sim \alpha$ אז א מעומק מעומק .2
- $depth(lpha \ eta) = max(k,l) + 1$ אם lpha נוסחא מעומק k ו־etaנוסחא מעומק.

: אם $M \models lpha$ ונרשום lpha אם מקיימת מאר כי השמה $M \models lpha$

- M(p)=T אמ"מ $M\models lpha$ אז lpha=p אמ"מ ס, כלומר .1
 - . $M \nvDash \beta \iff M \models \alpha$ מגדירים $\alpha = \sim \beta$ אם .2
- $M \models \gamma$ וגם $M \models \beta \iff M \models \alpha$ מגדירים $\alpha = \beta \land \gamma$ אם 3. $M\models\gamma$ או $M\models\beta\iff M\models\alpha$ מגדירים $\alpha=\beta\lor\gamma$ אם $\alpha=\beta\lor\gamma$
- $M
 ot = \beta$ או או $M \models \gamma \iff M \models \alpha$ מגדירים $\alpha = \beta \to \gamma$ אם $\alpha = \beta \to \gamma$

 $M(\gamma)=M(\beta)\Longleftrightarrow M\models\gamma
ightarrow \beta$ וגם $M\models\beta
ightarrow\gamma\iff M\modelslpha$ מגדירים $lpha=\beta\leftrightarrow\gamma$ אם אם $lpha=\beta\leftrightarrow\gamma$

 $M(\alpha)=F$ אחרת $M(\alpha)=T$ נגדיר נגדיר $M\models \alpha$ אחרת

 $\models lpha$ הגדרה: נוסחא lpha נקראת **טאוטולוגיה** אם $M \models lpha$ לכל השמה. אם lpha נקראת מאוטולוגיה נסמן

 $M \models \beta \iff M \models \alpha$ מתקיים $M \models \alpha$ נקראות שקולות אם לכל α

משפט: lphaור שקולות $lpha \leftrightarrow eta \iff \beta$ היא טאוטולוגיה.

eta הגדרה: קבוצת קשרים K נקראת מספקת/שלמה אם לכל נוסחא lphaיש נוסחא שמשתמשת רק בקשרים מי

משפט: הקבוצות $\{\downarrow\}$, $\{\uparrow\}$, $\{\sim, \rightarrow\}$, $\{\sim, \land\}$, $\{\sim, \lor\}$, $\{\sim, \lor, \land\}$ הן מספקות. $\alpha \uparrow \beta \equiv \sim \alpha \lor \sim \beta$

 $\alpha \downarrow \beta \equiv \sim \alpha \land \sim \beta$

משפט: לכל נוסחא שקולה בצורת DNF (מכפלת סכומים) ונוסחא שקולה בצורת CNF (סכום מכפלות). :De-Morgn משפט:

- $\models [\sim (\alpha \land \beta) \leftrightarrow \sim \alpha \lor \sim \beta]$.1
- $\models [\sim (\alpha \lor \beta) \leftrightarrow \sim \alpha \land \sim \beta]$.2

נביעה לוגית

שר α שר לוגית מר \sum ו, אם לכל השמה M שר נוסחאות ו־ α נוסחא. נסמן α נוסחא. נסמן בוצת לוגית את α או α נובעת לוגית מר Δ ו, אם לכל השמה Δ $M \models \alpha$ מתקיים ($\sigma \in \sum$ לכל $M \models \sigma$) $M \models \sum$ טענה: $\alpha \rightarrow \beta \iff \alpha \models \beta$

קבוצות אינסופיות של נוסחאות

משפט הקומפקטיות של תחשיב הפסוקים: קבוצת נוסחאות אינסופית ַ היא ספיקה ⇔ כל תת קבוצה סופית של 🗋 היא ספיקה. הגדרה: במרחב טופולוגי יש קבוצות סגורות ופתוחות. מרחב X נקרא מרחב קומפקטי אם לכל משפחה A_i של קבוצות פתוחות ש $.\cap A_i^c=X^c=\emptyset$ יש $J\subseteq I$ לכן לפי דה מורגן $A_i^c=X$. אם נעבור ל־ יש $U_{i\in I}A_i=X$ סופית כך ש־ $U_{i\in I}A_i=X$ הגדרה שקולה: לכל משפחה B_i , $i \in I$ של קבוצות סגורות, אם $B_i = \emptyset$ אז יש $A \subseteq I$ סופית כך ש־ B_i (תכונת החיתוך הסופי). $L \in A$ מתקיים $L \leftarrow a_i \in A$ סגורה אם לכל משפט טיכונוף: מכפלה של מרחבים קומפקטים היא קומפקטית.

. $\sum' \models \alpha$ סופית כך ש־ קיימת הכללה למשפט הקומפקטיות: k הוא א צביע הארדש־דה ברוין: א ברע בביע ארדש־דה ברוין: א ברע בביע בביע ארדש־דה ברוין: א ביע

מערכת הוכחה לתחשיב הפסוקים

- .Modus Ponens MP כלל היסק
 - : אקסיומות 2

$$\begin{array}{ll} (1) & \alpha \rightarrow (\beta \rightarrow \alpha) \\ (2) & (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)) \\ (3) & (\sim \beta \rightarrow \sim \alpha) \rightarrow ((\sim \beta \rightarrow \alpha) \rightarrow \beta) \end{array}$$

היא או $lpha_i$ $i \leq n$ כשלכל $lpha_1, lpha_2, ..., lpha_n = lpha$ היא מיך הגדרה: תהא \sum הנחות). הוכחה של נוסחא מיך מיך היא מיך הארא או α_i כך ש־ j,k < i מסקנה או הנחה מתוך או מסקנה מ־ j,k < i כאשר מחקנה באמצעות שקיימים MP מסקנה באמצעות או הנחה מתוך או מסקנה מ־ $\sum \vdash \alpha$ אם כנ"ל נסמן . $\alpha_k = \alpha_j o lpha_i$

 $.\sum \models lpha$ אז איז אם רומותו: אם או באותות:

 $\vdash \alpha \rightarrow \alpha$ טענה:

 $.lpha
ightarrow eta, eta
ightarrow \gamma dash lpha
ightarrow \gamma \ \overline{\ }$

 $\vdash (\sim \alpha \rightarrow \alpha) \rightarrow \alpha$:טענה

 $\begin{array}{c} .\alpha \rightarrow (\beta \rightarrow \gamma) \vdash \beta \rightarrow (\alpha \rightarrow \gamma) \\ \hline \ \, \text{oven} \\ .\Sigma, \alpha \vdash \beta \\ \Longleftrightarrow \\ \ \, \sum \vdash \alpha \rightarrow \beta \\ \hline \ \, \frac{:Herbrand}{:Herbrand} \\ \ \, \text{oven} \\ \hline \ \, .\vdash (\sim \beta \rightarrow \sim \alpha) \rightarrow (\alpha \rightarrow \beta) \\ \hline \ \, \text{oven} \\ \hline \ \ \, \text{oven} \\ \hline \ \ \, \text{oven} \\ \hline \$

 $\alpha \rightarrow (\beta \rightarrow \gamma), \beta \vdash \alpha \rightarrow \gamma$ טענה:

 $.\vdash \sim \sim \alpha \to \alpha$ טענה:

 $\vdash \alpha \rightarrow \sim \sim \alpha$ טענה:

משפט השלמות

 $\frac{\alpha \text{ משפט השלמות:}}{\alpha \text{ שפט:}} \ \alpha \ \Rightarrow \sum \models \alpha \ \Rightarrow \sum \models \alpha \ \Rightarrow \triangle$ שוטולוגיה אז $\frac{\alpha \text{ $\Rightarrow \vdash \alpha$}}{\sum, \alpha \vdash \beta \Rightarrow \sum, \sim \beta \vdash \sim \alpha} \frac{\alpha \text{ $\Rightarrow \vdash \alpha$}}{\sum, \alpha \vdash \beta \Rightarrow \sum, \sim \beta \vdash \sim \alpha} \frac{\alpha \vdash \beta}{\triangle \alpha \cap \alpha}$ טענה: $\frac{\alpha \vdash \beta}{\triangle \alpha \cap \alpha} \ \text{ Is a } \frac{\alpha \vdash \beta}{\sum, \alpha \vdash \beta} \ \text{ Is a } \frac{\beta \vdash \beta}{\triangle \alpha \cap \alpha}$ is a substant of the proof of the proof

$$p_i' = \begin{cases} p_i & M(p_i) = T \\ \sim p_i & M(p_i) = F \end{cases}$$

ותהא:

$$\alpha' = \begin{cases} \alpha & M \models \alpha \\ \sim \alpha & M \nvDash \alpha \end{cases}$$

 $p_1',p_2',...,p_k'\vdash\alpha':$ אז מתקיים $p_1',p_2',...,p_k'\vdash\alpha':$ אז מתקיים $p_1',p_2',...,p_k'\vdash\alpha':$ איז מסקנה: $p_1',p_2',...,p_k'\vdash\alpha':$ יש תת קבוצה סופית $p_1',p_2':$ של $p_2':$ יש תת קבוצה סופית $p_2':$ על $p_2':$ איז $p_2':$ השמה ו־ $p_1',p_2':$ היא בעלת סתירה אם קיימת $p_2':$ שר $p_2':$ (אם $p_2':$ בעלת סתירה אז היא לא ספיקה).

הגדרה: תורה חסרת סתירה נקראת עיקבית.

למה: \sum עקבית \Longleftrightarrow כל $\sum' \subseteq \sum$ סופית היא עקבית.

מסקנה: כל תורה עקבית מוכלת בתורה עקבית מקסימלית.

תחשיב היחסים (תחשיב הכמתים)

תהא R(x,y) מתאימים סימן אישר M איבר M לכל סימן יחס והתאמה: לכל קבוע אישר לכל קבוע אישר מתאימים הוא M הוא קבוצה M הוא קבוצה שנה, מבנה M $f^M(x,y,z)$ מתאימה פונ' f(x,y,z) מראימה פונ' $R^M(x,y)$

הגדרה: שם עצם (זהו איבר בשפה) הוא תוצאה של הצבת משתנים וקבועים בסימני פונ'. ההגדרה היא אינדוקטיבית:

- 1. כל קבוע הוא שם עצם.
- 2. כל משתנה אישי הוא שם עצם.
- . הוא שם עצם $f(t_1,...,t_k)$ סימן פונ' אז $f(x_1,...,x_k)$ הוא שם עצם . $t_1,...,t_k$ הוא שם עצם.

(...'וכו'...) משתנה חופשי = משתנה אישי (x,y,z) וכו'...).

הגדרה: שם עצם סגור הוא שם עצם שאין בו משתנים חופשיים.

הגדרה אינדוקטיבית לנוסחאות:

- . בסיס: אטומית עצם או היא מקומי ו־ מקומי אטומית כש־ $R(t_1,...,t_k)$ בסיס: .1
 - ... הן נוסחאות... הlpha
 ightarrow eta , lpha
 ightarrow eta , lpha
 ightarrow lpha אז lpha
 ightarrow eta .2
 - . אם α נוסחא אז $\forall x \alpha$ ו־ $\exists x \alpha$ הם נוסחאות.

אם: $\phi:M o M$ נקראת איזומורפיזם אם: M,N נקראת שפה ויהיו תהא שנה הגדרה: תהא שפה ויהיו

- . חח"ע ועל. ϕ
- $.\phi(c^M)=c^N$ בשפה בשפה .2
- $(a,b)\in R^M\iff (\phi(a),\phi(b))\in R^N: a,b\in W^M$ ולכך R(x,y) ולכך סימן יחס 3.3
 - $f^M(x) = b \iff f^N(\phi(a)) = \phi(b) : f(x)$ 4.

הסמנטיקה של תחשיב היחסים

 $(c^M,d^M)\in R^M$ אם $M\models \alpha$ ומסמנים M שפה ו־ M מתקיימת ב־ M אומרים ש־ R(c,d) אומית: R(c,d) אומית: $M\models_S R(x,y)$ אם $M\models_S R(x,y)$ אומרים ש־ $M\models_S R(x,y)$ אומרים ש- $M\models_S R(x,y)$

: אז T(x,y,z) וסימן יחס c קבוע, g(z),f(x,y) אז פימני פונ'

$$(f^M(c^M, s(y)), g^M(s(z)), g^M(c^M)) \in T^M \iff M \models_S T(f(c, y), g(z), g(c))$$

 $:S^*:$ מרחיבים את ההשמה S לפוקנציה W^M

- $.S^*(c) = c^M \ c$ לקבוע.
- $S^*(x) = S(x) x$ נמשתנה אישי.
- $S^*(t)=f^M(S^*(t_1),...,S^*(t_m))$ אז (כשר $S^*(t_i)$ מוגדר כבר) אם $t=f(t_1,...,t_m)$.3

 $M \models_S \alpha$ מה פירוש א לכל אל לכל העומק לכל מגדיר באינדוקציה על העומק אל מבנה למבנה M

 $R^M(S*(t_1),...,S^*(t_m))\in R^M$ שפירושו $R^M(S*(t_1),...,S^*(t_m))$ אם $M\models_S \alpha$ מגדירים $\alpha=R(t_1,...,t_m)$ בסיס: $M\nvDash_S \beta$ אז נגדיר $\alpha=\kappa$ אז נגדיר $\alpha=\kappa$ אז נגדיר $\alpha=\kappa$

 $M\models_S\gamma$ וגם $M\models_S\beta$ אם $M\models_S\alpha$ אז נגדיר $\alpha=\beta\wedge\gamma$ נניח ש־

 $M
ot \models_S eta$ או $M \models_S \gamma$ אם $M \models_S lpha$ אז נגדיר $lpha = eta
ightarrow \gamma$ נניח ש־

S אם $M\models_S \alpha$ אם $M\models_\alpha$ לכל השמה

. הוא הוא $x \; \forall x R(x,y)$ הוא חופשי וב־ $x \; p(x)$ הוא משתנים. ב־ מופעים חופשיים וקשורים של משתנים. ב-

<u>הגדרה:</u> נוסחא שבה אין משתנים חופשיים נקראת **פסוק**.

 $.Fv(lpha)=\emptyset$ אוסף בסוק ב-lpha ב-מון: המשתנים המשתנים המשתנים אוסף -Fv(lpha

שר (α אם לכל מבנה $M \models \sigma$ אם לכל מבנה $M \models \sigma$ אם לכל מבנה $M \models \sigma$ אם לכל מבנה $M \models \alpha$ אם לכל מבנה $M \models \alpha$ מתקיים $M \models \alpha$. אם אם לכל מבנה) נאמר כי $M \models \alpha$ מתקיים $M \models \alpha$. אם $M \models \alpha$ (כלומר, מתקיים בכל מבנה) נאמר כי $M \models \alpha$

משפט: אם lpha פסוק אז לכל מבנה M ולכל 2 השמות S_1,S_2 מתקיים $lpha \iff M \models_{S_1} lpha$ (הנכונות של פסוק לא תלויה בהשמה). משפט: אם lpha פסוק אז לכל מבנה M מתקיים $lpha \nvDash M$ או $M \nvDash lpha$

 $S_1|_{Fv(lpha)}=S_2|_{Fv(lpha)}$ השמות ש־ הקיום של S_1,S_2 הקיום של $S_1|_{Fv(lpha)}=S_2|_{Fv(lpha)}$ על המשתנים החופשיים של $S_1|_{Fv(lpha)}=S_2|_{Fv(lpha)}$ השמות ש־ הקיום של $S_1|_{Fv(lpha)}=S_2|_{Fv(lpha)}$ השמות ש־ $S_1|_{Fv(lpha)}=S_1|_{Fv(lpha)}$ השמות ש־ $S_1|_{Fv(lpha)}=S_1|_{Fv(lpha)}$ אז אוז אוז הקיום של $S_1|_{Fv(lpha)}=S_1|_{Fv(lpha)}$ השמות ש־ $S_1|_{Fv(lpha)}=S_1|_{Fv(lpha)}=S_1|_{Fv(lpha)}$ השמות ש־ $S_1|_{Fv(lpha)}=S_1|_{$

מערכת הוכחה לתחשיב היחסים

. (נובע מדה־מורגן) $\exists x \alpha := \sim \forall x \sim \alpha$:אקסיומות

- 1. 3 אקסיומות מתחשיב הפסוקים.
- $x \notin Fv(\alpha)$ בתנאי ש־ $\forall x(\alpha \to \beta) \to (\alpha \to \forall x\beta)$.2
- .3 לכל שם עצם שהוא הצבה כשרה. $\forall x \alpha(x) \rightarrow \alpha(t)$

הגדרה: תהא (x) נוסחא ו־t שם עצם אז הצבת t ב־ α במקום x לא כשרה אם קיים ב־t משתנה t שופיע שמופיע חופשי תחת α $\exists y$ או $\forall y$

שני כללי היסק:

- .MP .1
- .lpha
 ightarrow orall xlpha : GRN .2

 $\forall x \alpha \vdash \alpha$ טענה:

 $.\forall x \forall y \alpha \vdash \forall y \forall x \alpha$ טענה:

lpha משפט הדדוקציה: אם $x\in Fv(lpha)$ אז א בהוכחה שבהוכחה בתנאי שבהוכחה בתנאים בתנאי שבהוכחה בתנאי שבהוכחה בתנאי שבהוכחה בתנאי שבהוכחה בתנאי שבהוכחה בתנאי שבהוכחה בתנאים בת

 $.\sum \vdash \alpha$ אז $\sum, \sim \alpha \vdash \beta, \sim \beta$ ור בסוק מענה: אם α אז $\sum, \alpha \vdash \beta, \sim \beta \Rightarrow \sum \vdash \sim \alpha$ טענה: טענה:

 $\vdash \forall x P(x) \rightarrow \exists x P(x)$ טענה:

 $\bot \exists x (P(x) \to \forall x P(x))$:טענה

סימן השוויון: ${}^{M}=$ הוא תמיד הזהות.

אקסיומות השוויון:

- $\forall x \; x = x \; .1$
- מתקבל מ(x,x) ע"י הצבת (x,x) מתקבל מ(x,x) מתקבל נוסחא או הצבה כשרה (x,y) כאשר מ(x,x) מתקבל מ(x,x) לכל נוסחא . בחלק מין ה־xים

 $.\sum \vdash \sim \alpha$ או $\sum \vdash \alpha$ מתקיים מתקיים לכל פסוק שלמה נקראת נקראת תורה תורה הגדרה:

 $Th(M) = \{ \alpha :$ פסוק $\alpha, \overline{M} \models \alpha \}$ הגדרה:

. שלמה Th(M) שלמה

 $\frac{1}{n}$ או ש־ $\frac{1}{n}$ או ש" $\frac{1}{n}$ או

משפט השלמות של גדל

משפט: אם חסרת סתירה אז יש לה מודל. אם בר נכון אפשר להוכיח). אם היא חסרת סתירה אז יש לה מודל. $\sum \vdash \alpha$ אז היא חסרת סתירה אז יש לה מודל. $k \leq k$ אם אי יש לה מודל מעוצמה אי יש לה חסרת חזק יותר למשפט השלמות: תהא תורה בשפה עם k סימנים וורה בשפה עם א $M \models \Pi$ כך ש־ M כך הוא מבנה Π הגדרה: מודל ל־

טענה: לכל תורה עקבית יש מודל \Rightarrow משפט השלמות.

משפט: לתורה חסרת סתירה יש מודל.

רעיון להוכחת המשפט:

 $M \models \sum$ נרצה לבנות מבנה

 $\sim orall x lpha_k(x) o \sim lpha_k(b_{i_k})$ שלב א' : מוסיפים ∞ קבועים b_i כים, עדים לנוסחאות ישלב א' : מוסיפים

שלב ב' : תהא \sum' התורה שמתקבלת, מראים שהיא חסרת סתירה.

שלב ג' : מגדירים את המבנה MוM שמות העצם הסגורים, $f^M(g(c,d))=f(g(c,d))$ שלב המבנה M^M ועבור M שלב ב' : לוקחים M חסרת סתירה מקסימלית (הקיום מובטח מהלמה של צורן).

 $\Pi \vdash R(t_1,...,t_m)$ שלב ה' : לכל סימן יחס $R(x_1,...,x_m)$ ושמות עצם סגורים סגורים $t_1,t_2,...,t_m$ שלב ה' : לכל סימן אם $R(x_1,...,x_m)$

 $.\alpha$ פסוק לכל $M\models\alpha\iff\alpha\in\Pi$ של של העומק אל העוקציה באינדוקציה ו' מראים מינדוקציה אינדוקציה ו

משפט השלמות לתורות עם שוויון: y=t הרישה היהות. הזהות. להוכחה הנ"ל של חנקין נוסיף הגדרה ar t ביחס השקילות של t ביחס היהות. ביחס השלמות לתורות עם שוויון: t=tהוא מבנה בו $\overline{M}=$ הוא הזהות ו־ $W^{ar{M}}$ הוא מבנה בו $\overline{M}=$

משפט: אם ל־ \sum יש מודלים סופיים לא חסומים בגודלם, אז ל־ \sum יש מודל אינסופי.

איד להוכיח שלמות בעזרת משפט השלמות

lpha ניזכר כי תורה חסרת סתירה \sum נקראת שלמה אם לכל פסוק lpha מתקיים lpha או γ או ריכר כי נקראת שלמה אם לכל פסוק γ נקראת שלמה אם לכל פסוק γ מתקיים γ או γ בי נקראת מושלמת אם לכל פסוק γ בי נקראת γ

 $\alpha\in\sum$ או $\alpha\in\sum$ או התנאים . $\alpha\in\sum$ חסרת חסרת חסרת התנאים הבאים שקולים

- 1. ∑מקסימלית חסרת סתירה.
 - מושלמת. \sum .2
- $.\sum = Th(M)$ ש־ M מבנה M קיים מבנה 3

: אז אם רת חסרת בשפה מעוצמה אז אז רוסרת המעוצמה אז אז רוסרת חסרת אם משפט: אם רוסרת חסרת חסרת העוצמה אז אז או

- $.k \leq$ יש מודל מעוצמה $.k \leq$ 1.
- λ מודל מעוצמה בי יש ל־ לכל אינסופי, אז לכל אינסופי, אז לכל יש בי בי $\lambda \geq k$ יש מודל אינסופי, אז מודל אינסופי

: שני יחסים בין מבנים

- Th(M)=Th(N) אלמנטרית אלמנטרית ויך N ויM נקראים אלמנטרית מבנים אלמנטרית 1.
 - : אם יש איזומורפים עועל אח"ע הם $\phi:W^M o W^N$ אם יש אם יש איזומורפים N ו־ M .2
 - $\phi(c^M) = c^N : c$ (א) לכל קבוע
 - $g^{M}(\phi(a)) = \phi(g^{N}(a)) : g(x)$ נב) לכל סימן פונקציה
 - $(\phi(a),\phi(b))\in R^N\iff (a,b)\in R^M$ מתקיים מתקיים אוכל סימן אוס לכל סימן מתקיים לכל מתקיים

מתקיים כי $M,N \Leftarrow M \cong N$ שקולים אלמנטרית.

לכל (כלומר, לכל Th(M)=Th(N) מתקיים M,N מתקיים אלכל 2 מבנים M,N מוהי תורה שלמה, לוהי תורה שלמה, מראים שלכל 2 מבנים M,N מוסחא שפה באינדוקציה על העומק של α (בדרך מוכיחים כי $M\models_{s_1}\alpha\iff M\models_{s_2}\alpha$ לכל 2 השמות $M\models\alpha\iff N\models\alpha$

קטגוריות

. מורה \sum נקראת **קטגורית** אם כל המודלים שלה איזומורפים.

טענה: אם \sum קטגורית אז לכל המודלים יש אותה עוצמה, והיא סופית.

 $M \cong N$ אז Th(M) = Th(N) סופיים ו־ N,M סופיים ניסוח מתמטי במקרה הסופי אפשר לבטא כל דבר בעזרת נוסחאות. ניסוח מתמטי לכומר, אם N,M שלמה ויש לה מודל סופי אז היא קטגורית.

. (שקולות אלמנטרית) שקולות M,N) Th(M)=Th(N) M,N שקולות אלמנטרית) שקולות אלמנטרית) היא שלמה לכל שני מודלים שלה

 \sum אינסופי אז אינסופי אז אלמה. עענה: אם אינסופי אז א קטגורית וכל מודל של

משפט: תורת הסדר המלא הצפוף בלי קצוות היא \aleph_0 קטגורית.

מסקנה: תורת הסדר המלא הצפוף היא שלמה.

 $\mathbb{R}\setminus\{0\}\ncong\mathbb{R}$ מסקנה: תורת הסדר המלא הצפוף לא א קטגורית (כי

תורת המספרים ותורת גדל

תורת המספרים

```
שפה : S_i, S_i,
```

תורת דגל

 α או לא. $\alpha\in\sum$ נקראת **רקורסיבית** אם יש אלגוריתם שיודע להחליט לכל נוסחא α שנותנים לו אם $\alpha\in\sum$ או לא. הגדרה: **כריעות** - תורה α נקראת כריעה אם a רקורסיבית. כלומר, יש אלגוריתם שבהינתן נוסחא α מחליט אם a או לא. a ששפט גדל: אם a מערכת אקסיומות רקורסיבית לתורת המספרים אז a לא שלמה. a לא רקורסיבית. a לא רקורסיבית.

 $:\!PA$ אקסיומות פיאנו

$$\begin{aligned} \forall x &\sim (x < x) \\ \forall x \forall y \ (x = y) \lor (x < y) \lor (y < x) \\ \forall x \forall y \forall z \ ((x < y) \land (y < z)) \rightarrow (x < z) \\ s(a + b) &= a + s(b) = s(a) + b \\ \forall x \ (\bar{0} + x = x) \\ \forall a \forall b \ a \cdot s(b) &= a \cdot b + a \\ \phi(\bar{0}) \land (\forall x \ (\forall y (y < x) \rightarrow \phi(y)) \rightarrow \phi(x)) \end{aligned}$$

כאשר האחרון הוא אקסיומות פיאנו היא רקורסיבית. $\phi(x)$ (עם משתנה חופשי אחד). מערכת אקסיומות פיאנו היא רקורסיבית. משפט אי השלמות: PA לא שלמה. או באופן כללי יותר : כל מערכת אקסיומות רקורסיבית לתורת המספרים אינה שלמה. וברעיון להוכחה הוא למצוא פסוק γ ש־PA
eq PA וגם $\gamma PA
eq PA$ בלי הגבלת הכלליות $\gamma \Rightarrow RA$, כלומר $\gamma \Rightarrow RA$ וגם $\gamma \Rightarrow RA$ וגם ספור גדל: תרגום של נוסחאות למספרים.

1. ממספרים את סימני השפה, לדוג'

: מספר גדל יהיה lpha=orall x(x=x) אז אם

$$g(\alpha) = 2^0 \cdot 3^{11} \cdot 5^1 \cdot 7^{11} \cdot 11^9 \cdot 13^{11} \cdot 17^3$$

2. מתאימים גם מספר גדל להוכחות.

הגדרה: קבוצת מספרים A נקראת **רקורסיבית** אם יש אלגוריתם שבודק לכל מספר אם הוא ב־ A. דוגמאות: \mathbb{N} , זוגיים, ראשוניים. דוגמא קלאסית לקבוצה לא רקורסיבית: $\{g(\alpha): \alpha \in Th(\mathbb{N})\}$.

. היא רקורסיבית היא $\{g(\sigma):\sigma\in\sum\}$ אם הגדרה: נקראת נוסחאות לקראת נוסחאות האדרה: הגדרה:

. $n\in A\iff \mathbb{N}\models \alpha(\bar{n})\ n\in \mathbb{N}$ שלכל שלכל מספרים היא היא אדירה אם קיימת נוסחא מספרים היא הגדרה:

היא גדירה. $\{g(\sigma):\sigma\in\sum\}$ היא אם היא גדירה היא גדירה. הגדרה:

משפט טרסקי: $Th(\mathbb{N})$ לא גדירה.

:טענות

- . ביחות מ־ כלומר, אם בודק יכיחות אז אי אלגוריתם שבודק יכיחות מ־ כלומר, אם בודק יכיחות מ־ כחות \pm
 - .2 לא כריעה, ולכן לא שלמה. PA
 - 3. רקורסיביות \Rightarrow גדירות (אפשר להגדיר בנוסחא את תוכנת המחשב שבודקת שייכות ל־
 - .4 כריעות \Rightarrow רקורסיביות
 - .5 גדירות \Rightarrow רקורסיביות
 - .(PA'רקורסיבית. (לדוג' $cons(\sum)
 otin cons(\sum)$.6
- .גפיר שר שר אטר איז של הוכחה מספר גדל מגדירה $g(\alpha)=x$ מגדירה. (יש נוסחא $\Pi(x,y)$ מגדירה מספר גדל איז Σ מגדירה Σ מגדירה Σ גדירה. (יש נוסחא מאר מגדירה. (יש נוסחא מגדירה) איז מגדירה איז מגדירה מאר מגדירה מאר מגדירה.
- $\mathbb{N}\models\gamma$ ואז $PA\vdash\gamma$ אז $\gamma\not\vdash N$ אז $\gamma\not\vdash N$ אם γ אם γ אם γ אם γ אם אז γ אז $\gamma\vdash N$ ואז γ אפשר לכתוב נוסחא γ שמבטאת "אני לא יכיחה" כלומר, $\gamma\vdash N$ אוואז $\gamma\iff\gamma$ אם γ לא נכונה $\gamma\vdash N$ ואז $\gamma\vdash N$ ואז γ אוואז γ אוואז γ אפשר לכתוב נוסחא γ שמבטאת "אני לא יכיחה" כלומר, γ

משפטי גדל:

.1 לא רקורסיבית. $Th(\mathbb{N})$

- .2 אלא שלמה. כל קבוצת אקסיומות רקורסיבית היא לא שלמה. PA
 - לא כריעה (Cons(PA) לא כריעה (לא כריעה). כל תורה רקורסיבית אינה כריעה, לדוג' \emptyset לא כריעה.
 - . עקבית PA אומר $TA
 ot \vdash T$ עקבית.

טענה: אם קבוצת נוסחאות \subseteq היא גדירה, כלומר $g(\alpha):\alpha\in\sum \}=R$ גדירה, כלומר יש נוסחא $\mathbb{N}\models\Pi(g(\bar{\alpha}))\iff \bar{\alpha}$ אז $\{g(\alpha):\alpha\in\sum \}=R$ גדירה. כלומר, יש נוסחא $\mathbb{N}\models\Pi(g(\bar{\alpha}))\iff \bar{\alpha}$ יכיחה מ־ $\mathbb{N}\models\Pi(g(\bar{\alpha}))\iff \bar{\alpha}$ גדירה. כלומר, יש נוסחא $\mathbb{N}\models\Pi(g(\bar{\alpha}))\iff \bar{\alpha}$ שניתנת לחישוב עפ"י גדל. נגדיר משפחה של פונקציות שנקראות "רקורסיביות" כאשר ההגדרה היא רקורסיבית. תהא R משפחת הפונקציות המינימלית שמקיימת את התנאים הבאים:

- $0 \equiv f(x_1, x_2, ..., x_n) \in R$.1
 - $f(x) = x + 1 \in R$.2
- i היטל על קורדינטה $x_i \equiv f(x_1, x_2, ..., x_n) \in R$.3
- $f(h_1(x_1,x_2,...,x_m),...,h_n(x_1,x_2,...,x_m))\in \mathcal{R}$ אז $f(y_1,...,y_n)\in R$ ר $h_1(x_1,x_2,...,x_m),...,h_n(x_1,x_2,...,x_m)\in R$... $h_1(x_1,x_2,...,x_m),...,h_n(x_1,x_2,...,x_m)\in R$
 - אז הפונקציה היחידה המוגדרת ע"י $h(z_1,...,z_{n+2}),g(x_1,...,x_n)\in R$ אז הפונקציה היחידה המוגדרת ע"י.

$$f(x_1, ..., x_n, y + 1) = h(x_1, ..., x_n, y, f(x_1, ..., x_n, y))$$
$$f(x_1, ..., x_n, 0) = g(x_1, ..., x_n)$$

 $g(x_1,...,x_n)=f(x_1,...,x_n,y)=0$ שי $f(x_1,...,x_n,y)=f(x_1,...,x_n,y)$ אז הפונקציה הפונקציה $f(x_1,...,x_n,y)=0$ מינימום של קבוצה : אם $f(x_1,...,x_n,y)=0$ רקורסיבית. $f(x_1,...,x_n,y)=0$

 $a_1,...,a_n\in\mathbb{N}$ שלכל $ho(x_1,...,x_n)$ שלכל $ho(x_1,...,x_n)$ שלכל $ho(x_1,...,x_n)$ שלכל $ho(x_1,...,x_n)$ ב־ $ho(\bar{a_1},...,\bar{a_n})$ ב־ $ho(\bar{a_1},...,\bar{a_n})$ ב- $ho(\bar{a_1},...,\bar{a_n})$ $ho(\bar{a_1},...,\bar{a_n})$

 $f(a_1,...,a_n) = \sum_{\substack{c \in P(a_1,...,a_n) \notin A \\ only\ one}} f(a_1,...,a_n) \notin A} \underbrace{\exists!}_{only\ one} y\phi(\bar{a_1},...,\bar{a_n},y)\ a_1,...,a_n) \ \psi(x_1,...,x_n,y) \ \psi(x_1,...,x_n,y) \ \psi(x_1,...,x_n,y)$ והיחס

 ϕ יציג ע"י y

.PA משפט (גדל): f רקורסיבית \iff היא יציגה ב־

משפט (גדל): PA או כל קבוצת אקסיומות רקורסיבית אינה כריעה.

 $:A_E$ בנה מערכת אקסיומות Enderton הערה:

1.
$$\forall x \ S(x) \neq \bar{0}$$

$$2. \qquad (S(x) = S(y)) \to x = y$$

$$3. x < S(y) \to x \le y$$

$$4. \quad \forall x \forall y \ x = y \lor x < y \lor y < x$$

5.
$$x + 0 = x$$

$$6. x + S(y) = S(x+y)$$

7.
$$x \cdot 0 = 0$$

8.
$$x \cdot S(y) = x \cdot y + x$$

9.
$$xE0 = \bar{1} = S(\bar{0})$$

10.
$$xEs(y) = (xEy) \cdot x$$