

Discrete Mathematics 2024

Student: Jeferson Morales Mariciano <jmorale@ethz.ch>

Assignment 1

Due date: Thursday, 26 September 2024, 23:59

1. Exercise 1.5, Two New Logical Operators

We define two binary logical operators \heartsuit and \diamondsuit as follows:

A	$\mid B \mid$	$A \heartsuit B$
0	0	1
0	1	0
1	0	1
1	1	1

A	$\mid B \mid$	$A \diamondsuit B$
0	0	1
0	1	0
1	0	0
1	1	1

1. a) (*)

Are \heartsuit and \diamondsuit commutative, i.e., does it hold

$$A \heartsuit B \equiv B \heartsuit A$$
 and $A \diamondsuit B \equiv B \diamondsuit A$?

Argue by comparing function tables.

2. b) (*)

Prove or disprove that

$$(\neg A \heartsuit B) \diamondsuit (B \diamondsuit C) \equiv \neg (A \diamondsuit B) \heartsuit \neg (A \diamondsuit C)$$

by computing and comparing the function tables of the left-hand-side and the right-hand-side formulas.

3. c) (**)

Let F be a formula with the following function table:

A	B	$\mid C \mid$	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Find a formula G containing only the logical operators \heartsuit and \diamondsuit , in which the propositional symbols A, B, and C all appear exactly once, and such that $G \equiv F$. No justification is required.