Conceitos de Algoritmos, Daniel Barbosa de Oliveira (2017)

respostas aos exercícios sobre expressões

Abrantes Araújo Silva Filho 2018-03

Sumário

1	O q	ue é este documento?	1
2	Exercícios		2
	2.1	Exercício 1: escreva as expressões na forma computacional	2
	2.2	Exercício 2: escreva as expressões em formato tradicional	2
	2.3	Exercício 3: resolva as expressões lógicas	2

1 O que é este documento?

Este documento contém as minhas respostas aos exercícios e problemas da seção "Expressões" (página 31) da apostila *Conceitos de Algoritmos*, de Daniel Barbosa de OLiveira (2017), utilizada na disciplina de Algoritmos-I (gradução em Ciência da Computação, Faesa).

ATENÇÃO: não garanto que tudo aqui está correto, pelo contrário, algumas respostas expressam minha visão particular e podem estar em desacordo com a "resposta padrão" dos autores do livro ou do professor da disciplina de Algoritmos. Também não garanto que todos os exercícios e problemas do capítulo ou livro estarão resolvidos aqui. De qualquer modo, caso pretenda utilizar este documento como base para seu próprio estudo, tenha em mente o seguinte:

Este documento é fornecido "no estado em que se encontra", sem garantias de qualquer natureza, expressas ou implícitas. Em nenhuma hipótese o autor poderá ser responsabilizado por qualquer problema, dano, prejuízo material ou imaterial decorrente do uso deste conteúdo.

Este documento (em formato PDF), o original em LATEX e outros materiais adicionais (se necessário) estão disponíveis no seguinte repositório GitHub: https://github.com/abrantesasf/algoritmos

2 EXERCÍCIOS 2

2 Exercícios

2.1 Exercício 1: escreva as expressões na forma computacional

a)
$$ae + \frac{b^{(3x)}}{c^2} = \texttt{a*e} \, + \, (\texttt{b}^{(3*x)}/\texttt{c}^{(2)})$$

b)
$$\frac{2x^2 - (3x)^{(x+1)}}{2} + \frac{sqrtx + 1}{x^2} = ((2*x^2 - (3*x)^(x + 1))/2) + ((sqrt(x + 1))/x^2)$$

c)
$$2h - \left(\frac{45}{3x} - 4h(3-h)\right)^{22k} = 2*h - ((45/(3*x)) - 4*h*(3-h))^{(22*k)}$$

d)
$$\frac{\sqrt{2b-4a^2+2f^{-3}}}{3-2a} = (\operatorname{sqrt}(2*b-4*a^2) + 2*f^{-3}))/(3-2*a)$$

e)
$$\frac{\sqrt{-6^x + (2y)^{\frac{1}{3}}}}{3^9} = (\text{sqrt}(-6^x + (2*y)^{(1/3)}))/3^9$$

f)
$$\sqrt{\frac{2x+u^{\frac{2}{3}}}{a+bc}} = \text{sqrt}((2*x + u^{2}))/(a+b*c))$$

2.2 Exercício 2: escreva as expressões em formato tradicional

a)
$$a+b+(34+\exp(e,9))/u-89^{-}(1/2) = a+b+\frac{34+e^9}{u}-89^{\frac{1}{2}}$$

b)
$$23+5/((7*a)/47)^{2}(2/x) = 23 + \frac{5}{\left(\frac{7a}{47}\right)^{\frac{2}{x}}}$$

c)
$$(12*x)/(36-9^x)^2 = \frac{12x}{(36-9^x)^2}$$

2.3 Exercício 3: resolva as expressões lógicas

Atenção: nos exercícios a seguir a apostila é ambígua em relação aos operadores "\"e "%". Considerei portanto o seguinte:

- \ corresponde ao operador divisão inteira, definido como $a \setminus b \equiv \lfloor a/b \rfloor$ (sendo $\lfloor x \rfloor$ a função floor).
- % corresponde ao resto da divisão.

2 EXERCÍCIOS 3

a)

Não
$$(2^3 < \sqrt{16} \text{ ou } \lfloor 15/2 \rfloor < 10)$$

Não $(8 < 4 \text{ ou } 7 < 10)$
Não $(F \text{ ou } V)$
Não $(V) = F$

b)

$$(6 < 8)$$
 ou $(3 > 7)$
 (V) ou $(F) = V$

c)

Não
$$(2 < 3)$$

Não $(V) = F$

d) Sabendo-se que A = 5:

$$(5 >= 6)$$
 ou $(6 < 7)$ ou não $(a + 5 - 6 = 8)$
 (F) ou (V) ou não $(4 = 8)$
 (V) ou não (F)
 (V) ou $(V) = V$

e) Sabendo-se que U = 29:

$$(34 > 9 e 5 + u = 34)$$
 ou $(5 = 15/3 e 8 > 12)$
 $(34 > 9 e 34 = 34)$ ou $(V e F)$
 $(V e V)$ ou (F)
 (V) ou $(F) = V$

f)

$$10\%4 < 16\%3$$

 $2 < 1 = F$

g)

$$2 + 8\%7 >= 6 - \left(8^{(2/3)}\right)^{(1/2)}$$

$$2 + 1 >= 6 - \left(\sqrt[3]{8^2}\right)^{(1/2)}$$

$$3 >= 6 - \sqrt{\sqrt[3]{64}}$$

$$3 >= 6 - \sqrt{4}$$

$$3 >= 6 - 2$$

$$(3 >= 4) = F$$

h)

$$\lfloor 15/7 \rfloor >= 27\%5$$
$$(2 >= 2) = V$$