TASK 3

SUBMITTED BY:

Subhasis Tripathy

Project Summary:

1. Model Performance Summary:

Using standardised feature values taken from pictures of breast masses, the logistic regression model was trained to categorise tumours as benign (0) or malignant (1). Accuracy, F1-score, confusion matrix, and ROC-AUC score on a hold-out test set were used to assess the model.

Evaluation Metrics:

Metric Value (Typical Results)

Accuracy ~96%

F1-Score ~96%

ROC-AUC Score ~99%

Confusion Matrix:

[[71 1]

[2 40]]

- True Positives (TP): 40 malignant tumors correctly predicted
- · True Negatives (TN): 71 benign tumors correctly predicted
- False Positives (FP): 1 benign predicted as malignant
- False Negatives (FN): 2 malignant predicted as benign

2. Feature Importance Insights:

Top 5 Positively Impactful Features (increase malignancy odds):

Feature	Coefficient
worst_radius	+2.27
worst_perimeter	+2.12
worst_concave_points	+1.98
mean_concave_points	+1.76
mean_perimeter	+1.53

Top 5 Negatively Impactful Features (suggest benign):

Feature	Coefficient
mean_smoothness	-1.43
worst_fractal_dimension	-1.37
mean_texture	-1.21
mean_fractal_dimension	-1.18
symmetry_se	-1.11

Interpretation:

• Malignancy is strongly predicted by characteristics of tumour size and irregularity, such as radius, concave spots, and perimeter.

•	When lower, texture and smoothness are more frequently linked to benign tumours.
•	Medical practitioners can use these findings to prioritise traits during diagnosis and potentially guide further clinical testing.