Задача А. Художник

Имя входного файла: painter.in Имя выходного файла: painter.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Не успев дорисовать свой гениальный футуристический шедевр, М. Калевич увлёкся рисованием одномерных чёрно-белых картин. Он пытается найти оптимальные местоположение и количество чёрных участков картины. Для этого он проводит на прямой белые и чёрные отрезки и после каждой из таких операций хочет знать количество чёрных отрезков на получившейся картине и их суммарную длину.

Изначально прямая белая. Ваша задача — написать программу, которая после каждой такой операции выводит в выходной файл интересующие художника данные.

Формат входных данных

В первой строке входного файла содержится общее количество нарисованных отрезков ($1 \leq N \leq 100\,000$). В последующих N строках содержится описание операций. Каждая операция описывается строкой вида c x l, где c — цвет отрезка ('W' для белых отрезков и 'B' для чёрных), а сам отрезок имеет вид [x;x+l], причём координаты обоих концов — целые числа, по модулю не превосходящие $500\,000$. Длина задаётся положительным целым числом.

Формат выходных данных

После выполнения каждой из операций необходимо вывести в выходной файл на отдельной строке количество чёрных отрезков на картине и их суммарную длину, разделённые одним пробелом.

painter.in	painter.out
7	0 0
W 2 3	1 2
B 2 2	1 4
B 4 2	1 4
B 3 2	2 6
B 7 2	3 5
W 3 1	0 0
W O 10	

ЛКШ.2014.Август.А'.День 10 Россия, Берендеевы Поляны, 08.08.2014

Задача В. Мега-инверсии

Имя входного файла: mega.in
Имя выходного файла: mega.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

Инверсией в перестановке p_1, p_2, \ldots, p_N называется пара (i,j) такая, что i < j и $p_i > p_j$. Назовём мега-инверсией в перестановке p_1, p_2, \ldots, p_N тройку (i,j,k) такую, что i < j < k и $p_i > p_j > p_k$. Напишите алгоритм для быстрого подсчёта количества мега-инверсий в перестановке.

Формат входных данных

Первая строка входного файла содержит целое число N ($1 \le N \le 100\,000$). Следующие N чисел описывают перестановку: p_1, p_2, \ldots, p_N ($1 \le p_i \le N$), все p_i попарно различны. Числа разделяются переводами строк.

Формат выходных данных

Единственная строка выходного файла должна содержать одно число, равное количеству мегаинверсий в перестановке p_1, p_2, \dots, p_N .

mega.in	mega.out
4	4
4	
3	
2	
1	

ЛКШ.2014.Август.А'.День 10 Россия, Берендеевы Поляны, 08.08.2014

Задача С. Без сказок

Имя входного файла: minsumseg.in Имя выходного файла: minsumseg.out

Ограничение по времени: 5 секунд Ограничение по памяти: 64 мегабайта

 ${\mathbb V}$ этой задачи нет легенды. Вам дана последовательность из N целых чисел и M запросов одного из двух типов:

- $change\ ps, val$ заменить число стоящее на позиции ps числом val.
- $get \, l, r$ найти подотрезок отрезка [l, r] с максимальной суммой.

Обратите внимание на факт, что по определению, пустой отрезок является подотрезком любого отрезка.

Формат входных данных

Первая строка содержит два целых положительных числа N и M не превосходящих $300\,000$. Следующая строка содержит N целых чисел - изначальную последовательность. Следующие M строк содержат запросы в формате описанном в условии. Гарантируется, что все запросы корректны и все значения в последовательности в любой момент не превосходят по модулю 10^9 . Используется индексация от 1.

Формат выходных данных

Для каждого запроса get выведите одно число — сумму чисел на подотрезке являющемся ответом на данный запрос.

minsumseg.in	minsumseg.out
4 2	2
-5 2 -1 2	3
get 1 2	
get 1 2 get 1 4	

Задача D. Перестановки strike back

Имя входного файла: permutation2.in Имя выходного файла: permutation2.out

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Вася выписал на доске в каком-то порядке все числа от 1 по N, каждое число ровно по одному разу. Иногда он стирает какое-то число и записывает на его место другое. Количество чисел, выписанных Васей, оказалось довольно болшим, поэтому Вася не может окинуть взглядом все числа. Однако ему надо всё-таки представлять эту последовательность, поэтому он написал программу, которая в любой момент отвечает на вопрос — сколько среди чисел, стоящих на позициях с x по y, по величине лежат в интервале от k до l. Сделайте то же самое.

Формат входных данных

В первой строке лежит два натуральных числа — $1 \le N \le 100\,000$ — количество чисел, которые выписал Вася и $1 \le M \le 100\,000$ — суммарное количесто вопросов и изменений сделанных Васей. Во второй строке дано N чисел — последовательность чисел, выписанных Васей. Далее в M строках находятся описания вопросов. Каждый запрос на изменение числа в некоторой позиции начинается со слова SET и имеет вид SET а b $(1 \le a \le N, 1 \le b \le N)$. Это означает, что Вася изменил число, записанное в позиции a на число b. Каждый Васин вопрос начинается со слова GET и имеет вид GET х у k 1 $(1 \le x \le y \le N, 1 \le k \le l \le N)$.

Формат выходных данных

Для каждого Васиного вопроса выведите единственное число — ответ на Васин вопрос.

permutation2.in	permutation2.out
4 4	1
1 2 3 4	3
GET 1 2 2 3	2
GET 1 3 1 3	
SET 1 4	
GET 1 3 1 3	

Задача Е. Фенечка

Имя входного файла: bracelet.in Имя выходного файла: bracelet.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Саша находится в процессе творческого поиска. Она хочет сплести ещё одну фенечку, но испытывает сложности при выборе цветов. Сейчас все n ниток, которые она планирует использовать для плетения, выложены в ряд. В процессе размышления Саша время от времени заменяет нитку одного цвета ниткой другого, а также для проверки того, что узор получается тем, который подразумевается, проверяет, что некоторые последовательности цветов ниток равны.

Напишите программу, которая автоматизирует эти проверки.

Формат входных данных

В первой строке входного файла записаны два целых числа n и k — количество ниток в фенечке и запросов к программе, соответственно. $1 \le n, k \le 100\,000$. Во второй строке записана строка из n символов — цвета ниток в начальном состоянии. Каждый цвет обозначается строчной или прописной буквой латинского алфавита или цифрой.

В следующих k строках заданы запросы двух видов:

- \bullet «* i c» заменить нитку с номером i на нитку цвета c,
- «? $i \ j \ len$ » проверить, равны ли последовательности цветов ниток, начинающиеся в позициях $i \ u \ j \ u$ имеющие длину len.

Формат выходных данных

Для каждого запроса второго вида выведите «+», если последовательности равны, или «-» в противном случае.

bracelet.in	bracelet.out
7 4	+-+
abacaba	
? 1 5 3	
* 6 c	
? 2 6 2	
? 3 5 3	
10 5	
vznwsempqf	
* 8 c	
* 2 z	
? 5 4 5	
* 6 p	
? 5 4 1	

Задача F. Ферма

Имя входного файла: segtree2d.in Имя выходного файла: segtree2d.out Ограничение по времени: 10 секунды Ограничение по памяти: 256 мегабайт

Настала весна и фермер решил заняться удобрением своего земельного участка размерами $x \times y$ метров. Для этого он закупил удобрения. До начала посевов остаётся n дней, и фермер хочет успеть сделать как можно больше.

За день фермер может одну из следующих вещей:

- увеличить продуктивность прямоугольного участка земли со сторонами, параллельными осям координат с углами (x_1, y_1) и (x_2, y_2) на значение w
- ullet посчитать суммарную продуктивность участка $(x_1,y_1)-(x_2,y_2)$

Удобрять фермер любит сам, а вот заниматься скучными расчетами ему не интересно. Помогите ему в этом.

Формат входных данных

В первой строке входного файла записаны числа x и y ($1 \leqslant x, y \leqslant 1000$). В следующей строке написано количество оставшихся до начала посевов дней n ($1 \leqslant n \leqslant 100000$). Следующие n строк описывают действия фермера в соответственный день в следующем формате:

- 1 x_1 y_1 x_2 y_2 w фермер удобряет участок. (1 \leqslant x_1 \leqslant x_2 \leqslant x, $1 \leqslant y_1 \leqslant y_2 \leqslant y, -10000 \leqslant w \leqslant 10000)$
- 2 x_1 y_1 x_2 y_2 фермер просит посчитать плодородность участка. (1 \leqslant $x_1 \leqslant$ $x_2 \leqslant$ x, $1 \leqslant y_1 \leqslant y_2 \leqslant y$)

Формат выходных данных

Для каждого запроса плодородности участка в отдельной строке выведите плодородность этого участка.

segtree2d.in	segtree2d.out
8 8	3
3	
1 2 2 8 8 2	
1 1 1 2 2 1	
2 2 2 2 2	

Задача G. К-ый максимум

Имя входного файла: kthmax.in Имя выходного файла: kthmax.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Напишите программу, реализующую структуру данных, позволяющую добавлять и удалять элементы, а также находить k-й максимум.

Формат входных данных

Первая строка входного файла содержит натуральное число n — количество команд $(n \leq 100\,000)$. Последующие n строк содержат по одной команде каждая. Команда записывается в виде двух чисел c_i и k_i — тип и аргумент команды соответственно $(|k_i| \leq 10^9)$. Поддерживаемые команды:

- +1 (или просто 1): Добавить элемент с ключом k_i .
- 0: Найти и вывести k_i -й максимум.
- -1: Удалить элемент с ключом k_i .

Гарантируется, что в процессе работы в структуре не требуется хранить элементы с равными ключами или удалять несуществующие элементы. Также гарантируется, что при запросе k_i -го максимума, он существует.

Формат выходных данных

Для каждой команды нулевого типа в выходной файл должна быть выведена строка, содержащая единственное число — k_i -й максимум.

kthmax.in	kthmax.out
11	7
+1 5	5
+1 3	3
+1 7	10
0 1	7
0 2	3
0 3	
-1 5	
+1 10	
0 1	
0 2	
0 3	