Deep Learning on Graph-Structured Data

Thomas Kipf, 1 December 2016

Recap: Deep learning on Euclidean data

Euclidean data: grids, sequences...

Recap: Deep learning on Euclidean data

We know how to deal with this:

Convolutional neural networks (CNNs)

(Source: Wikipedia)

or recurrent neural networks (RNNs)

(Source: Christopher Olah's blog)

Convolutional neural networks (on grids)

Single CNN layer with 3x3 filter:

Update for a single pixel:

- Transform neighbors individually $\mathbf{W}_i\mathbf{h}_i$
- Add everything up $\sum_i \mathbf{W}_i \mathbf{h}_i$

Full update:
$$\mathbf{h}_{4}^{(l+1)} = \sigma \left(\mathbf{W}_{0}^{(l)} \mathbf{h}_{0}^{(l)} + \mathbf{W}_{1}^{(l)} \mathbf{h}_{1}^{(l)} + \dots + \mathbf{W}_{8}^{(l)} \mathbf{h}_{8}^{(l)} \right)$$

Graph-structured data

What if our data looks like this?

Real-world examples:

- Social networks
- World-wide-web
- Protein-interaction networks
- Telecommunication networks
- Knowledge graphs
- ...

Graphs: Definitions

Graph: $G = (\mathcal{V}, \mathcal{E})$

 ${\mathcal V}$: Set of nodes $\{v_i\}$, $|{\mathcal V}|=N$

 \mathcal{E} : Set of edges $\{(v_i, v_j)\}$

We can define:

A (adjacency matrix):
$$A_{ij} = \begin{cases} 1 & \text{if } (v_i, v_j) \in \mathcal{E} \\ 0 & \text{otherwise} \end{cases}$$

(can also be weighted)

Model wish list:

- Set of trainable parameters $\{\mathbf{W}^{(l)}\}$
- Trainable in $\mathcal{O}(|\mathcal{E}|)$ time
- Applicable even if the input graph changes

Spectral graph convolutions

Main idea:

Use **convolution theorem** to generalize convolution to graphs.

Loosely speaking:

A convolution corresponds to a multiplication in the Fourier domain.

Graph Fourier transform: [Hammond, Vandergheynst, Gribonval, 2009]

$$\mathcal{F}_G[\mathbf{x}] = \mathbf{U}^T\mathbf{x} \quad \mathbf{U}$$
 : eigenvectors of $\emph{graph Laplacian } \mathbf{L}$

with
$$\mathbf{L} = \mathbf{I}_N - \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$$
 (normalized graph Laplacian)

and
$$\mathbf{L} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$$
 (its eigen-decomposition)

D: degree matrix $D_{ii} = \sum_{i} A_{ij}$

Spectral graph convolutional networks

Graph convolution: $\mathbf{g}, \mathbf{x} \in \mathbb{R}^N$

$$\mathbf{x} *_{G} \mathbf{g} = \mathcal{F}_{G}^{-1} \left[\mathcal{F}_{G}[\mathbf{g}] \odot \mathcal{F}_{G}[\mathbf{x}] \right] = \mathbf{U} \left(\mathbf{U}^{T} \mathbf{g} \odot \mathbf{U}^{T} \mathbf{x} \right)$$

or:
$$\mathbf{x} *_G \mathbf{g} = \mathbf{U} \operatorname{diag}(\hat{\mathbf{g}}) \mathbf{U}^T \mathbf{x}$$
 with $\hat{\mathbf{g}} = \mathbf{U}^T \mathbf{g}$

Spectral CNN on graphs:

$$\mathbf{h}_i^{(l+1)} = \sigma\left(\mathbf{U}\operatorname{diag}(\mathbf{w}^{(l)})\mathbf{U}^T\mathbf{h}_i^{(l)}\right)$$

[Bruna et al., ICLR 2014]

Limitations:

- Calculating ${f U}$ is expensive ${\cal O}(N^3)$
- Evaluating $\mathbf{U}^T\mathbf{x}$ is $\mathcal{O}(N^2)$
- Graph structure has to be fixed

Spatial graph convolutional networks (GCNs)

Consider this undirected graph: Calculate update for node in red:

$$\begin{array}{ll} \textbf{Update} \\ \textbf{rule:} & \mathbf{h}_i^{(l+1)} = \sigma \left(\mathbf{h}_i^{(l)} \mathbf{W}_0^{(l)} + \sum_{j \in \mathcal{N}_i} \frac{1}{c_{ij}} \mathbf{h}_j^{(l)} \mathbf{W}_1^{(l)} \right) & \mathcal{N}_i \text{ : neighbor indices} \\ c_{ij} \text{ : norm. constant} \\ \text{ (per edge)} \end{array}$$

How is this related to spectral CNNs on graphs?

→ Localized 1st-order approximation of spectral filters [Kipf & Welling, 2016]

Fully vectorized GCNs

$$\mathbf{H}^{(l+1)} = \sigma \left(\mathbf{H}^{(l)} \mathbf{W}_0^{(l)} + \tilde{\mathbf{A}} \mathbf{H}^{(l)} \mathbf{W}_1^{(l)} \right)$$

with
$$\tilde{\mathbf{A}} = \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$$
 or $\tilde{\mathbf{A}} = \mathbf{D}^{-1} \mathbf{A}$

Or treat self-connection in the same way:

$$\mathbf{H}^{(l+1)} = \sigma\left(\hat{\mathbf{A}}\mathbf{H}^{(l)}\mathbf{W}_{1}^{(l)}\right)$$

with
$$\hat{\mathbf{A}} = \tilde{\mathbf{D}}^{-\frac{1}{2}} (\mathbf{A} + \mathbf{I}_N) \tilde{\mathbf{D}}^{-\frac{1}{2}}$$
 or $\hat{\mathbf{A}} = \tilde{\mathbf{D}}^{-1} (\mathbf{A} + \mathbf{I}_N)$ $\tilde{D}_{ii} = \sum_i (A_{ij} + \delta_{ij})$

$$\mathbf{A} + \mathbf{I}_N$$
) $\tilde{D}_{ii} = \sum (A_{ij} + \delta_{ij})$

A is typically sparse

- → We can use sparse matrix multiplications!
- ightharpoonup Efficient $\mathcal{O}(|\mathcal{E}|)$ implementation in Theano or TensorFlow

GCN model architecture

Input: Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes E}$, preprocessed adjacency matrix $\hat{\mathbf{A}}$

What does it do? An example.

Forward pass through untrained 3-layer GCN model

Produces (useful?) random embeddings!

Add labels and train (semi-supervised)

Further reading

Blog post Graph Convolutional Networks:

http://tkipf.github.io/graph-convolutional-networks

Code on Github:

http://github.com/tkipf/gcn

Paper (Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, 2016): https://arxiv.org/abs/1609.02907

Questions? You can get in touch with me via:

E-Mail: T.N.Kipf@uva.nl

Twitter: @thomaskipf

Web: http://tkipf.github.io

Interested in thesis projects? Get in touch!

