Finite Elements: examples 2

Colin Cotter

March 10, 2017

1. Suppose that Ω is any bounded domain, k, m > 0 integers with $k \leq m$. Show that $H^m(\Omega) \subset H^k(\Omega)$. Solution: If $f \in H^m(\Omega)$ then

$$||f||_{H^m(\Omega)}^2 = \sum_{|\alpha| \le m} ||D_w^{\alpha} f||_{L^2}^2 \le \infty.$$

Since, $m \geq k$, we have

$$||f||_{H^{k}(\Omega)}^{2} = \sum_{|\alpha| \le k} ||D_{w}^{\alpha} f||_{L^{2}}^{2} \le \sum_{|\alpha| \le m} ||D_{w}^{\alpha} f||_{L^{2}}^{2} \le \infty,$$

so $f \in H^k(\Omega)$.

2. Let α be an arbitrary multi-index, $\psi \in C^{|\alpha|}(\Omega)$. Show that $D_w^{\alpha}\psi = D^{\alpha}\psi$. Solution: Taking $\phi \in C_0^{\infty}(\Omega)$, we have

$$\int_{\Omega} \phi D^{\alpha} \psi \, \mathrm{d} x = (-1)^{|\alpha|} \int_{\Omega} D^{\alpha} \phi \psi \, \mathrm{d} x,$$
$$= (-1)^{|\alpha|} \int_{\Omega} D_{w}^{\alpha} \phi \psi \, \mathrm{d} x,$$

for all test functions ϕ . Further, since $D_w^{\alpha}\phi$ is continuous, it is bounded in all closed domains K contained in the interior of Ω , i.e. $D_w^{\alpha}\phi \in L^1_{loc}(\Omega)$ as required.

3. Let V be a discontinuous Lagrange finite element space of degree k defined on a triangulation \mathcal{T} of a domain Ω . Show that functions in V do not have weak derivatives in general.

Solution: Choose a triangle $K_0 \in \mathcal{T}$, and define $u \in V$ as

$$u(x) = \begin{cases} 1 & if \ x \in K_0, \\ 0 & otherwise. \end{cases}$$

Then if $D_w^x u$ exists,

$$\begin{split} \int_{\Omega} D_w^x u \phi \, \mathrm{d} \, x &= - \int_{\Omega} \phi_x u \, \mathrm{d} \, x, \\ &= - \int_{K_0} \phi_x \, \mathrm{d} \, x, \\ &= - \int_{\partial K_0} \phi n_1 \, \mathrm{d} \, S, \end{split}$$

where n_1 is the x-component of the outward pointing normal n to ∂K_0

4. Let Δ be the triangle with vertices (x_i, y_j) , (x_{i+1}, y_j) , (x_i, y_{j+1}) , with $x_i = hi$, $y_j = hj$. Define a transformation g from the reference element K with vertices (0,0), (1,0) and (0,1) to K, and show that

$$\int_{\Delta} \left| \frac{\partial}{\partial x} (u - \mathcal{I}_{\Delta} u) \right|^2 \mathrm{d}\, x \, \mathrm{d}\, y = \int_{K} \left| \frac{\partial \bar{u}}{\partial \xi} - \bar{u}(0,0) + \bar{u}(1,0) \right|^2 \mathrm{d}\, \xi \, \mathrm{d}\, \eta,$$

where $\bar{u} = u \circ g$, ξ and η are the coordinates on K, and \mathcal{I}_{Δ} is the interpolation operator from $H^2(\Delta)$ onto linear polynomials defined on Δ .

Solution: The mapping is defined by

$$x = x_i + \xi h, \quad y = y_i + \eta h.$$

Defining $\bar{u}(\xi, \eta) = u(x, y)$, we have

$$\frac{\partial \bar{u}}{\partial \xi} = \frac{1}{h} \frac{\partial u}{\partial x}, \quad \frac{\partial \bar{u}}{\partial \eta} = \frac{1}{h} \frac{\partial u}{\partial y},$$

and the Jacobian of the mapping is

$$|J| = \left| \frac{\partial(x,y)}{\partial(\xi,\eta)} \right| = h^2.$$

We have

$$\mathcal{I}_{\Delta}u \circ g = (1 - \xi - \eta)\bar{u}(0, 0) + \xi\bar{u}(1, 0) + \eta\bar{u}(0, 1).$$

Hence

$$\left(\frac{\partial}{\partial x}\mathcal{I}_{\Delta}u\right)\circ g=\frac{-\bar{u}(0,0)+\bar{u}(1,0)}{h}.$$

Substitution gives the result.

5. From the previous question, apply integration by parts repeatedly and use the Schwarz inequality to obtain

$$\int_{\Delta} \left| \frac{\partial}{\partial x} (u - \mathcal{I}_{\Delta} u) \right|^2 \mathrm{d}\, x \, \mathrm{d}\, y \leq C \int_{K} \left| \frac{\partial^2 \bar{u}}{\partial \xi^2} \right|^2 + \left| \frac{\partial^2 \bar{u}}{\partial \xi \partial \eta} \right|^2 \mathrm{d}\, \xi \, \mathrm{d}\, \eta.$$

Solution:

$$\begin{split} \int_{K} \left| \frac{\partial \bar{u}}{\partial \xi} - \bar{u}(0,0) + \bar{u}(1,0) \right|^{2} \mathrm{d}\xi \, \mathrm{d}\eta & \leq \int_{K} \left| \frac{\partial \bar{u}}{\partial \xi}(\xi,\eta) - \int_{0}^{1} \frac{\partial \bar{u}}{\partial \xi}(\sigma,0) \, \mathrm{d}\sigma \right|^{2} \mathrm{d}\xi \, \mathrm{d}\eta \\ & = \int_{\xi=0}^{1} \int_{\eta=0}^{\xi} \left| \int_{0}^{1} \left(\frac{\partial \bar{u}}{\partial \xi}(\xi,\eta) - \frac{\partial \bar{u}}{\partial \xi}(\sigma,\eta) \right) \, \mathrm{d}\sigma \right|^{2} \mathrm{d}\eta \, \mathrm{d}\xi \\ & + \int_{0}^{1} \left(\frac{\partial \bar{u}}{\partial \xi}(\sigma,\eta) - \frac{\partial \bar{u}}{\partial \xi}(\sigma,0) \right) \, \mathrm{d}\sigma \right|^{2} \mathrm{d}\eta \, \mathrm{d}\xi \\ & = \int_{\xi=0}^{1} \int_{\eta=0}^{\xi} \left| \int_{0}^{1} \int_{\sigma}^{\xi} \frac{\partial^{2} \bar{u}}{\partial \xi^{2}}(\gamma,\eta) \, \mathrm{d}\gamma \, \mathrm{d}\sigma \right|^{2} \mathrm{d}\eta \, \mathrm{d}\xi \\ & \leq \int_{\xi=0}^{1} \int_{\eta=0}^{\xi} \left(\int_{0}^{1} \left| \int_{\sigma}^{\xi} \frac{\partial^{2} \bar{u}}{\partial \xi^{2}}(\gamma,\eta) \, \mathrm{d}\gamma \right|^{2} \mathrm{d}\sigma \\ & + \int_{0}^{1} \left| \int_{0}^{\eta} \frac{\partial^{2} \bar{u}}{\partial \xi \partial \eta}(\sigma,\alpha) \, \mathrm{d}\alpha \right|^{2} \mathrm{d}\sigma \right) \mathrm{d}\eta \, \mathrm{d}\xi \\ & \leq \int_{\xi=0}^{1} \int_{\eta=0}^{\xi} \left(\int_{0}^{1} \left| \xi - \sigma \right| \int_{\sigma}^{\xi} \left| \frac{\partial^{2} \bar{u}}{\partial \xi^{2}}(\gamma,\eta) \right|^{2} \mathrm{d}\gamma \, \mathrm{d}\sigma \\ & + \int_{0}^{1} \left| \eta \right| \int_{0}^{\eta} \left| \frac{\partial^{2} \bar{u}}{\partial \xi \partial \eta}(\sigma,\alpha) \right|^{2} \mathrm{d}\alpha \, \mathrm{d}\sigma \right) \mathrm{d}\eta \, \mathrm{d}\xi \end{split}$$

$$\leq C \int_K \left| \frac{\partial^2 \bar{u}}{\partial \xi^2} \right|^2 + \left| \frac{\partial^2 \bar{u}}{\partial \xi \partial \eta} \right|^2 \mathrm{d} \, \xi \, \mathrm{d} \, \eta.$$

Hence show that

$$\int_{\Delta} \left| \frac{\partial}{\partial x} (u - \mathcal{I}_{\Delta} u) \right|^2 dx dy \le Ch^2 \int_{\Delta} \left| \frac{\partial^2 u}{\partial \xi^2} \right|^2 + \left| \frac{\partial^2 u}{\partial \xi \partial \eta} \right|^2 d\xi d\eta.$$

Solution: We take the previous result and change variables back, so that e.g. $\frac{\partial^2 \bar{u}}{\partial \xi^2}$ becomes $\frac{\partial^2 u}{\partial x^2}$. Hence, the second derivatives produce factors of h^2 that get squared, and we divide by h^2 from the Jacobian factor, leaving a factor of h^2 .

6. Consider a triangulation \mathcal{T} of points x_i and y_j arranged in squares as above, with each square subdivided into two right-angled triangles. Explain how to use this result to obtain

$$||u - \mathcal{I}_{\mathcal{T}}||_E \le ch|u|_{H^2(\Omega)},$$

where

$$||f||_E = \int_{\Omega} \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 dx dy, \quad |u|_{H^2(\Omega)}^2 = \int_{\Omega} \left(\frac{\partial^2 u}{\partial x^2}\right)^2 + \left(\frac{\partial^2 u}{\partial xy}\right)^2 + \left(\frac{\partial^2 u}{\partial y^2}\right)^2 dx dy.$$

Solution: All right-angled triangles can be transformed to the reference element by the transformation given above, plus a rotation. Hence, the estimate of the previous section applies to any triangle in the mesh. Summing over elements and taking square roots gives the result with $c = \sqrt{C}$.

7. Let \mathcal{T} be a triangulation of a polygonal domain $\Omega \in \mathbb{R}^2$. Let f be a P_k Lagrange finite element function on \mathcal{T} . Show that the weak first derivatives of f exist.

Solution: We claim that the weak first derivative of f is given by $g \in L^1_{loc}(\Omega)$ with

$$q|_{e}(x) = D^{\alpha} f|_{e}(x),$$

for each element e, where $\alpha = (0,1)$ or (1,0), and $|_e$ indicates the restriction of functions to e. To check this, we take $\phi \in C_0^{\infty}(\Omega)$, and calculate,

$$\begin{split} \int_{\Omega} \phi g \, \mathrm{d} \, x &= \sum_{e} \int_{e} \phi D^{\alpha} f|_{e}(x), \\ &= \sum_{e} \left(- \int_{e} \left(D^{\alpha} \phi \right) f \, \mathrm{d} \, x + \int_{\partial e} \phi (n \cdot \alpha) f \, \mathrm{d} \, S \right), \\ &= - \int_{\Omega} \left(D^{\alpha} \phi \right) f \, \mathrm{d} \, x, \end{split}$$

where n is the unit outward normal to ∂e . The surface integrals cancel since $(n \cdot \alpha)$ takes the same value with opposite sign on each side of ∂e , whilst ϕf is continuous.