Spring School 2024 @Izukawana

Moduli stabilization on (for/at/in?) supersymmetric magnetized D9-brane model

Abe Lab. M1 Itsuki Miyane

Sunday, April 7th, 2024

*I will speak in Japanese though this slide is written in English.

Topics

- Reviewing the senior thesis
- Reporting progress and difficulties I met

Introduction

Motivation

To solve the problems in the Standard Model, higher dimensional models were proposed.

Motivation

To solve the problems in the Standard Model, higher dimensional models were proposed.

In general, these theories contain extra fields related to

- the size and shape of the compactified extra dimension,
- hence the metric and the gravity

in its 4d effective field theory.

Motivation

te 17(5) 17.

To solve the problems in the Standard Model, higher dimensional models were proposed.

In general, these theories contain extra fields related to

- the size and shape of the compactified extra dimension,
- hence the metric and the gravity

in its 4d effective field theory.

Such a field is called **moduli fields**.

Moduli stabilization

The metrics in 10-dimensional spacetime are dynamical fields:

$$\begin{split} \mathrm{d}s^{10} &= G_{MN}(X) \mathrm{d}X^M \mathrm{d}X^N \\ &= g_{\mu\nu}(x,y) \mathrm{d}x^\mu \mathrm{d}x^\nu + g_{mn}(x,y) \mathrm{d}y^m \mathrm{d}y^n \end{split}$$

Thus, its vacuum expectation value (VEV) should be determined by its dynamics.

Moduli stabilization

The metrics in 10-dimensional spacetime are dynamical fields:

$$\begin{split} \mathrm{d}s^{10} &= G_{MN}(X) \mathrm{d}X^M \mathrm{d}X^N \\ &= g_{\mu\nu}(x,y) \mathrm{d}x^\mu \mathrm{d}x^\nu + g_{mn}(x,y) \mathrm{d}y^m \mathrm{d}y^n \end{split}$$

Thus, its vacuum expectation value (VEV) should be determined by its dynamics.

How?

What we have to do is just

- Write down the potential for moduli (e.g. g_{mn})
- Compute the minimum and identify the value $\langle q_{mn} \rangle$

These procedures are called **moduli stabilization**.

Purpose of our study

On the other hand, it is known that **magnetized torus model**.

• This model realize the generation structure of the Standard Model [1, 2].

Purpose of our study

On the other hand, it is known that **magnetized torus model**.

- This model realize the generation structure of the Standard Model [1, 2].
- But the VEVs of the moduli are not determined dynamically.

Purpose of our study

On the other hand, it is known that magnetized torus model.

- This model realize the generation structure of the Standard Model [1, 2].
- But the VEVs of the moduli are not determined dynamically.

We will discuss the moduli stabilization on magnetized torus model.

Magnetized torus model

Torus compactification and Magnetic flux

Torus compactification

• Compactifying 6d extra dimensions for three tori $(T^2)^3$.

• $\mathcal{A}^{(i)}(x)$ are also moduli since it is related to the metric.

Torus compactification and Magnetic flux

Torus compactification

• Compactifying 6d extra dimensions for three tori $(T^2)^3$.

• $\mathcal{A}^{(i)}(x)$ are also moduli since it is related to the metric.

Magnetic flux

Assigning the magnetic flux

$$M_a^{(i)} \ (a=1,2)$$

for two gauge fields on each tori.

By magnetic fluxes in an extra dimension, moduli $\mathcal{A}^{(i)}(x)$ obtain its potential $V^{(D)}$.

Finding minima and determining the VEVs of $\langle \mathcal{A}^i \rangle$.

By magnetic fluxes in an extra dimension, moduli $\mathcal{A}^{(i)}(x)$ obtain its potential $V^{(D)}$.

Finding minima and determining the VEVs of $\langle A^i \rangle$.

Potential by magnetic fluxes

$$F^{MN}F_{MN} = F^{\mu
u}F_{\mu
u} + F^{mn}F_{mn} + \cdots$$

$$m{V^{(D)}} = \pi^2 \prod_i \mathcal{A}^i imes \left\{ \left(\sum_i rac{M_1^{(i)}}{\mathcal{A}^{(i)}}
ight)^2 + \left(\sum_i rac{M_2^{(i)}}{\mathcal{A}^{(i)}}
ight)^2
ight\}$$

By magnetic fluxes in an extra dimension, moduli $\mathcal{A}^{(i)}(x)$ obtain its potential $V^{(D)}$.

Finding minima and determining the VEVs of $\langle A^i \rangle$.

Potential by magnetic fluxes

$$F^{MN}F_{MN}=F^{\mu
u}F_{\mu
u}+\overbrace{F^{mn}F_{mn}}_{+\cdots}+\cdots$$

$$egin{split} oldsymbol{V^{(D)}} &= \pi^2 \prod_i \mathcal{A}^i imes \left\{ \underbrace{\left(\sum_i rac{M_1^{(i)}}{\mathcal{A}^{(i)}}
ight)^2}_{} + \underbrace{\left(\sum_i rac{M_2^{(i)}}{\mathcal{A}^{(i)}}
ight)^2}_{}
ight\} \end{split}$$

$$\longrightarrow rac{M_a^{(1)}}{\langle \mathcal{A}^{(1)}
angle} + rac{M_a^{(2)}}{\langle \mathcal{A}^{(2)}
angle} + rac{M_a^{(3)}}{\langle \mathcal{A}^{(3)}
angle} = \mathbf{0} \quad ext{for } a=1,2$$

Relation of the VEVs $\langle \mathcal{A}^{(1)} \rangle$, $\langle \mathcal{A}^{(2)} \rangle$, $\langle \mathcal{A}^{(3)} \rangle$

$$rac{M_a^{(1)}}{\langle \mathcal{A}^{(1)}
angle} + rac{M_a^{(2)}}{\langle \mathcal{A}^{(2)}
angle} + rac{M_a^{(3)}}{\langle \mathcal{A}^{(3)}
angle} = 0 \quad ext{for } a = 1, 2$$

Relation of the VEVs $\langle \mathcal{A}^{(1)} \rangle$, $\langle \mathcal{A}^{(2)} \rangle$, $\langle \mathcal{A}^{(3)} \rangle$

$$\begin{split} \frac{M_a^{(1)}}{\langle \mathcal{A}^{(1)} \rangle} + \frac{M_a^{(2)}}{\langle \mathcal{A}^{(2)} \rangle} + \frac{M_a^{(3)}}{\langle \mathcal{A}^{(3)} \rangle} &= 0 \quad \text{for } a = 1, 2 \\ \\ \longrightarrow \quad M_a^{(1)} + M_a^{(2)} \frac{\langle \mathcal{A}^{(1)} \rangle}{\langle \mathcal{A}^{(2)} \rangle} + M_a^{(3)} \frac{\langle \mathcal{A}^{(1)} \rangle}{\langle \mathcal{A}^{(3)} \rangle} &= 0 \\ \\ \downarrow \\ \frac{\langle \mathcal{A}^{(1)} \rangle}{\langle \mathcal{A}^{(2)} \rangle} &= \frac{M_1^{(3)} M_2^{(1)} - M_1^{(1)} M_2^{(3)}}{M_1^{(2)} M_2^{(3)} - M_1^{(3)} M_2^{(2)}}, \frac{\langle \mathcal{A}^{(1)} \rangle}{\langle \mathcal{A}^{(3)} \rangle} &= -\frac{M_1^{(2)} M_2^{(1)} - M_1^{(1)} M_2^{(2)}}{M_1^{(2)} M_2^{(3)} - M_1^{(3)} M_2^{(2)}} \end{split}$$

Relation of the VEVs $\langle \mathcal{A}^{(1)} \rangle$, $\langle \mathcal{A}^{(2)} \rangle$, $\langle \mathcal{A}^{(3)} \rangle$

$$\begin{split} \frac{M_a^{(1)}}{\langle \mathcal{A}^{(1)} \rangle} + \frac{M_a^{(2)}}{\langle \mathcal{A}^{(2)} \rangle} + \frac{M_a^{(3)}}{\langle \mathcal{A}^{(3)} \rangle} &= 0 \quad \text{for } a = 1, 2 \\ \\ \longrightarrow \quad M_a^{(1)} + M_a^{(2)} \frac{\langle \mathcal{A}^{(1)} \rangle}{\langle \mathcal{A}^{(2)} \rangle} + M_a^{(3)} \frac{\langle \mathcal{A}^{(1)} \rangle}{\langle \mathcal{A}^{(3)} \rangle} &= 0 \\ \\ \downarrow \\ \frac{\langle \mathcal{A}^{(1)} \rangle}{\langle \mathcal{A}^{(2)} \rangle} &= \frac{M_1^{(3)} M_2^{(1)} - M_1^{(1)} M_2^{(3)}}{M_1^{(2)} M_2^{(3)} - M_1^{(3)} M_2^{(2)}}, \frac{\langle \mathcal{A}^{(1)} \rangle}{\langle \mathcal{A}^{(3)} \rangle} &= -\frac{M_1^{(2)} M_2^{(1)} - M_1^{(1)} M_2^{(2)}}{M_1^{(2)} M_2^{(3)} - M_1^{(3)} M_2^{(2)}} \end{split}$$

The ratios of the moduli's VEVs are determined by the fluxes potential.

Summary so far

• We could stabilize the moduli and obtain the ratio of its VEVs $\langle \mathcal{A}^{(1)} \rangle / \langle \mathcal{A}^{(2)} \rangle$ & $\langle \mathcal{A}^{(1)} \rangle / \langle \mathcal{A}^{(3)} \rangle$.

Summary so far

- We could stabilize the moduli and obtain the ratio of its VEVs $\langle \mathcal{A}^{(1)} \rangle / \langle \mathcal{A}^{(2)} \rangle$ & $\langle \mathcal{A}^{(1)} \rangle / \langle \mathcal{A}^{(3)} \rangle$.
- But the **overall factor** T is undetermined.

$$T \propto \langle \mathcal{A}^{(1)} \rangle, \langle \mathcal{A}^{(2)} \rangle, \langle \mathcal{A}^{(3)} \rangle$$

Summary so far

- We could stabilize the moduli and obtain the ratio of its VEVs $\langle \mathcal{A}^{(1)} \rangle / \langle \mathcal{A}^{(2)} \rangle$ & $\langle \mathcal{A}^{(1)} \rangle / \langle \mathcal{A}^{(3)} \rangle$.
- But the **overall factor** *T* is undetermined.

$$T \propto \langle \mathcal{A}^{(1)} \rangle, \langle \mathcal{A}^{(2)} \rangle, \langle \mathcal{A}^{(3)} \rangle$$

Introducing a potential that has a different origin than the magnetic fluxes to stabilize overall factor T.

Determination of the overall factor

F-term potential

Effective potential for moduli T

- Its effective theory remains supersymmetric.
- Supersymmetric action is determined
 by super potential W and Kähler potential K.
- We will study the following potential now[3]:

$$egin{cases} W = w_0 - Ae^{-aT} + BX \ K = -3\ln(T+ar{T}) + |X|^2 \end{cases}$$

Introducing a new scalar field X and w_0, A, B, a are parameters.

F-term potential

*We set the Planck constant as $M_{\rm Pl}$ ($\sim 2.4 \times 10^{18}$ GeV) = 1.

Scalar potential

$$V^{(F)}=e^K(K^{Iar{J}}(D_IW)(D_{ar{J}}ar{W})-3|W|^2)$$
 s $\left\{egin{aligned} D_IW&\equiv\partial_IW+K_IW\ K^{Iar{J}}: & ext{inverse matrix of }K_{Iar{J}} \end{aligned}
ight.$ $(I=X,T)$

Parameters

$$w_0\sim 2.17 imes 10^{-18}\ ,\ a=4\pi^2\ ,\ A=1\ ,\ B=e^{-4\pi^2}$$
 and $\langle X
angle=\sqrt{3}-1$
$$\to \langle T
angle\sim 1.085$$

Report progresses

In my senior thesis, we

- fix the value of the fluxes $M_a^{(i)}$
- ullet and compute the area of the tori $\langle \mathcal{A}^{(i)}
 angle \ (i=1,2,3).$

Report progresses

In my senior thesis, we

- and compute the area of the tori $\,\langle {\cal A}^{(i)} \rangle\,\,(i=1,2,3).\,\,$ During this vacation I mainly

During this vacation, I mainly studied the F-term potential more general form:

$$egin{cases} W = w_0 - Ae^{-aT} + B \dot{e}^{-bT} X \ K = -3 \ln(T + ar{T}) + |X|^2 - rac{1}{\Lambda^2} |X|^4 \end{cases}$$

Wavy factors are the difference from the previous one.

Report progresses

We can stabilize the moduli T, X but \cdots

Parameters

$$A=B=1, a=b=4\pi^2, w_0=10^{-17}, \Lambda=10^{-4} \ \longrightarrow \ \langle T \rangle \sim 1.07, \ \langle X \rangle \sim 10^{-8}, \ V_{\min} \sim -10^{-35}$$

Difficulites

ullet We should tune the parameters A,B,a,b,w_0,Λ to uplift the potential minima V_{\min} to the order $+10^{-120}$.

Difficulites

- We should tune the parameters A, B, a, b, w_0, Λ to uplift the potential minima V_{\min} to the order $+10^{-120}$.
- But it is difficult (at least for me) since
 - we can not find the minimum points analytically
 - thus what we can do is only

to choose the parameters and find the minimum for each time.

Difficulites

- We should tune the parameters A, B, a, b, w_0, Λ to uplift the potential minima V_{\min} to the order $+10^{-120}$.
- But it is difficult (at least for me) since
 - we can not find the minimum points analytically
 - thus what we can do is only

to choose the parameters and find the minimum for each time.

I want to find more efficient ways to search the set of parameters.

$$\underline{\text{e.g.}} \quad \frac{\partial V}{\partial T} = \frac{\partial V}{\partial X} = 0 \quad \& \quad \frac{\partial V}{\partial a} = \frac{\partial V}{\partial b} = \frac{\partial V}{\partial A} = \frac{\partial V}{\partial B} = \frac{\partial V}{\partial w_0} = 0$$

(I tried it but it seems not to converge the Newtonian method...)

Summary & Future Works

Summary

- Discussing moduli stabilization in magnetized torus model
- ullet Determining the ratio of the moduli by potential $V^{(D)}$ with fluxes
- ullet Stabilizing the overall moduli T by potential $V^{(F)}$ that has a different origin

Future Works

- [new!] Finding more efficient ways to search the set of parameters.
- Discussing soft SUSY breaking and mass of supersymmetric particles, etc.

Reference

- H. Abe, T. Kobayashi, H. Ohki, and K. Sumita, Superfield description of 10D SYM theory with magnetized extra dimensions, Nucl. Phys. B 863 (2012) 1–18, arxiv:1204.5327 [hep-ph, physics:hep-th].
- [2] H. Abe, T. Kobayashi, K. Sumita, and S. Uemura, Kähler moduli stabilization in semi-realistic magnetized orbifold models, Phys. Rev. D 96 (2017) 026019, arxiv:1703.03402 [hep-ph, physics:hep-th].
- [3] H. Abe, T. Higaki, T. Kobayashi, and Y. Omura, Moduli stabilization, f-term uplifting and soft supersymmetry breaking terms, Phys. Rev. D 75 (2007) 025019, arxiv:hep-th/0611024.
- [4] H. Abe, T. Higaki, and T. Kobayashi, More about f-term uplifting, Phys. Rev. D 76 (2007) 105003, arxiv:0707.2671 [hep-ph, physics:hep-th].
- J. Wess and J. Bagger, Supersymmetry and Supergravity. Princeton University Press, Princeton, N.J, 1992.