Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

- 1-17. (Canceled)
- 18. (New) A method for detecting PrP in a biological sample of human or animal origin that may contain said PrP, comprising:
- a) contacting the biological sample with a molecule selected from the group consisting of polyallylamine, triethylenetetraamine (TET), bis-3-aminopropylamine, spermine tetrahydrochloride, dihydrostreptomycin sesquisulfate, streptomycin, and salts of streptomycin to form PrP aggregates in a reaction mixture;
 - b) adding to the sample a macrocyclic ligand having general formula (I):

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_6
 R_6
 R_6
 R_6

where:

 R_1 represents a hydrogen atom, a hydroxyl group, an OR group or an OCOR group, R being as defined below,

R₂ represents a hydrogen atom or an R, COR, Pol or CH₂Pol group, in which Pol represents a phosphate, sulfate, amine, ammonium or carboxylic acid group, and R is as defined below,

 R_3 represents a hydrogen atom, a hydroxyl group, an OR group or an OCOR group in which R is as defined below,

 R_4 represents a hydrogen atom, a hydroxyl group, an OR group, an OCH₂R group or an OCOR group, in which R is as defined below,

Y is a carbon, nitrogen or sulfur atom,

 R_5 and R_6 each independently are absent or represent a hydrogen atom, a CH_2 group or an R group as defined below, or else R_5 and R_6 together represent an oxygen or sulfur atom,

X represents a CH₂ group, or an oxygen or sulfur atom, m represents an integer equal to 0 or 1,

R represents a hydrogen atom or a saturated or unsaturated, branched or unbranched, cyclic or noncyclic hydrocarbon-based chain which may or may not be substituted with a halogen group, and which carries polar or nonpolar functions,

n is an integer between 3 and 15, and

the substituents R_1 to R_5 , R, X and Y and the integer m may be different in nature according to the units; and

- c) detecting the presence of PrP.
- 19. (New) The method of claim 18, wherein (a) is performed before (b).
- 20. (New) The method of claim 18, further comprising adding proteinase K to the sample.
 - 21. (New) The method of claim 18, further comprising:
 adding proteinase K to the sample to digest PrP^c before (a); and detecting the presence of PrP detects the presence of PrP^{res}.
 - 22. (New) The method of claim 18, further comprising between (b) and (c): separating the PrP aggregates from the reaction mixture, and denaturing the PrP aggregates.

- 23. (New) The method of claim 18, wherein detecting the presence of PrP comprises contacting the PrP with a PrP-specific binding partner for an immunoreaction between the PrP-specific binding partner and the PrP.
- 24. (New) The method of claim 18, wherein the macrocyclic ligand is bound to a solid support.
- 25. (New) The method of claim 18, wherein the macrocyclic ligand corresponds to general formula (Ia) below:

$$R_2$$
 R_2
 R_2

where:

n is an integer between 4 and 8,

each group R₂, taken independently, is a sulfate group or a phosphate group,

and

 R_7 represents a $(CH_2)_t$ - $(CO)_s$ - (NH_2) group or a $(CH_2)_t$ -COOH group where t is an integer between 0 and 6 and s is an integer between 0 and 6.

26. (New) The method of claim 25, wherein said ligand is a calixarene of formula (Ia) where:

the two R₂ groups are each a sulfate group,

n is 4, 6 or 8, and

 R_7 is a hydrogen atom, a -CH₂COOH group, a -CH₂CONH₂ group, or a -CH₂CH₂NH₂ group.

27. (New) The method of claim 25, where: the two R_2 groups are each a sulfate group,

n = 6, and

 R_7 is $-CH_2CH_2NH_2$.

- 28. (New) The method of claim 18, wherein the molecule of (a) is streptomycin.
- 29. (New) The method of claim 18, wherein the molecule of (a) is a salt of streptomycin.