

ELECTRON ICS CLUB

ELECTROMANIA LECTURE AND PROBLEM STATEMENT DISCUSSION

A quick review

Electronic Circuits: Analog and Digital

Analog

Digital

Digital Electronics

- Deals with discrete values
- Voltage higher than a particular threshold corresponds to 1.

Number Systems

Number Systems - Decimal

We have decimal system with 10 numbers, viz 0,1,2,......9

Decimal number system

```
1 1 0 9 10^{0} = ones 10^{1} = tens 10^{2} = hundreds 10^{3} = thousands
```

$$1*1000 + 1*100 + 1*10 + 9*1 = 1,109$$

Number Systems - Binary

Another method of number representation Binary consists of two digits 0 and 1.

$$1 \ 0 \ 1 \ 0 \ 2^{\circ} = ones$$

$$2^1 = twos$$

$$2^2 = fours$$

$$2^3 = eights$$

$$1*8 + 0*4 + 1*2 + 0*1 = 10(base-10)$$

$$1010(base-2) = 10(base-10)$$

Basic Workshop - A digital Watch

What's a clock?

At the basic level, just a special waveform.

Flowchart

What hardware do we need?

IC(s) Breadboard:

Breadboard

What's an IC?

- An integrated circuit.
- •For our purposes, we will treat it as a black box.
- •We do not concern ourselves about the insides of an IC.
- •We look at it from the outside, from an input/output standpoint.

What's inside an IC?

We will several three ICs today

- **-**555
- **4**029
- **-**7447
- •Mux-Demux
- •Flipflops (4027)
- Logic Gates (AND/OR/NOT)

The Clock – 555 (Astable Mode)

555 in Monostable Mode

Generates Clock pulse when triggered

The Counter - 4029

The Display

The Problem - Binary to Decimal?

The Solution - 7447

The Final Circuit

How do I put the 'Logic'?

AND GATE

Truth Table(A.B)

INPUT		OUTPUT
A	В	A AND B
О	0	О
О	1	О
1	0	О
1	1	1

OR GATE

Truth Table(A+B)

INPUT		OUTPUT
Α	В	A AND B
0	0	0
0	1	1
1	0	1
1	1	1

NOT GATE

Truth Table(~A)

INPUT	ОИТРИТ
А	NOT A
0	1
1	0

NAND, NOR

XOR GATE

Truth Table

INPUT		OUTPUT
Α	В	A AND B
0	0	0
0	1	1
1	0	1
1	1	0

Multiplexers and Demultiplexers

Multiplexers

- •Multiple input, one output
- A single line is connected electrically to the output
- •The selection of the input which is to be connected to the output is done via selection pins

Multiplexers

Electrical Connection

What's an Electrical Connection?

- What we have are analog multiplexers
- Not a digital connection
- It is similar to the input and output being connected by a wire.

Demultiplexers

- A mirror of the multiplexer
- Multiple output, one input
- One of the output is electrically connected to the input
- •The selection of the input which is to be connected to the output is done via selection pins

Demultiplexers

Do we need two separate devices?

What Mux-Demux are available?

- 4051 4bit Mux/Demux
- 4052 8bit Mux/Demux

Mux in Action!

Flipflops (4027)

Inputs					Outputs	
S _d	C _d	СР	J	K	O _{n+1}	\overline{O}_{n+1}
L	L	_	L	L	O _n	\overline{O}_n
L	L	_	Η	L	Н	L
L	L	_	L	Н	L	н
L	L		Н	Н	\overline{O}_{n}	O _n

Using switches

Never leave a input pin unconnected.

Pull Up/Pull Down.

Some Useful Advice

- •Tight, clean, non-overlapping connections, which must follow wire color conventions
- •Test each and every small part of the circuit, do not allow the circuit to grow too big before testing it.
- •Use gates for combining input, do not combine by direct shorting.
- Do NOT leave any input pin unconnected, pull it up/down.
- Do NOT divide one output into many wires.
- Be very careful while making power connections: this may burn your IC.
- Regularly meet club secretaries, and when needed, the coordinators.

Problem Statement

- The aim of the competition is to design and build a "Crazy Taxi" using LEDs for display.
- The object of the game is to avoid collisions with the incoming cars while driving on the wrong side of a busy road.

Problem Statement

Compulsory feature #1

Roads of LEDs:

- There must be at least 2 roads (rows) of LEDs with a minimum of 4 LEDs in each rows.
- A car depicted by a glowing LED must move continuously in each of the rows.

Compulsory feature #2

Navigation keys for car

Left and Right navigation keys must be present to move the car in the horizontal direction.

Compulsory Feature #3

Collision Detection:

In case of collision of the frog with the car, it must be detected by the circuit and a signal must be generated (either by glowing a LED or any other way possible).

Additional Features

Apart from the compulsory features, various additional features can be added to the circuit like

- 1. 2 Cars on the same road instead of 1.
- 2. Different levels of game with different speed of cars.
- 3. Scoring Mechanism, etc.
- 4. Pausing the game, reset score button

Join Us

Website:

http://students.iitk.ac.in/eclub/index.php

FB Group:

https://www.facebook.com/groups/eclub.iitk/

E-mail : <u>eclub.iitk@gmail.com</u>

Youtube:

http://www.youtube.com/user/electronicsclub

Contact Us

Avi Singh A-129 / Hall 10 avisingh@iitk.ac.in 8853544535

Kevin Jose 366 / Hall 2 <u>kevinj@iitk.ac.in</u>

8127762331

Piyush Awasthi 150/Hall 2 piyushst@iitk.ac. in

9616384444