TA201P

INTRODUCTION TO MANUFACTURING PROCESSES

SUMMER TERM 2021

ROTATING BRIDGE

PROJECT REPORT

GROUP 7 SECTION S7

Instructor: Dr. Anish Upadhyaya Tutor: Dr. Shashank Shekhar

Teaching Assistants: Mr. Abhishek Kumar & Mr. Albert Linda

Lab In-charge: Mr. IP Singh

GROUP MEMBERS

Anupam Kumar Yadav (190166)

Anjali Rai (190146)

Arpit Verma (190178)

Aritra Banerjee (190174)

Jayanth Reddy (190156)

Arpit Maheshwari (190176)

Anshuman Singh (190162)

Anirudh Meena (190141)

Arvendra Singh Kushwaha (190183)

Aparna Nagdeve (190171)

Anshumann(190162)

TABLE OF CONTENTS

Preface

Abstract

Isometric Drawing of the Project

The Rotating Bridge+ Circular Base+ Rotating Pillar Section

Gears (Spokes +Pillars)

Project Base

- Conveyer Belt
- Conveyer Pulley

Box Covering Gear Mechanism

Peripherals

Ship

Full Body Analysis

Weight Analysis

Cost Analysis

Acknowledgement

PREFACE

While we took three weeks to design the project, but we needed the accumulated knowledge, experience, and study of a lifetime during that time.

We are third-year students of IITK's electrical engineering department. We always wanted to do our own metallurgical project, and the college provided us with the opportunity under the course TA201A, currently taught by Prof. Anish Upadhyaya.

The design of every part has been given great detail as well as trying to satisfy its purpose so that it can be manufactured efficiently and effectively.

ABSTRACT

We picked up the idea of rotating bridge for our project because we wished to construct a dynamic project that had some real life applications. So in our project we have displayed the problem that is faced by a stationary bridge and have presented a solution to it. The model consists of two rotating bridge halves each supported by a rotating pillar. The rotation mechanism is brought into action by bevel gear mechanism which are in turn rotated manually by a handle attached. Also it consists of a conveyor belt with a ship to display how upon arrival of a ship with a sufficiently larger height the rotating bridge comes into action. To show the working of the project conveniently we have used a single axle which upon rotation causes both, the movement of the ship and rotation of bridges.

WORK DISTRIBUTION

WORK	NAME
Complete Isometric	Anupam Kumar Yadav
Railing + Bridge(including circular base and supporting pillars)	Anjali Rai, Arpit Verma
Rotating pillars+spokes	Aritra Banerjee ,Anshumann
Hollow covering +handle	Jayanth Reddy
Conveyor + 3Pulley+supporting rods of pulley	Arpit Maheshwari, Anshuman Singh
Abstract, Motivation, Acknowledgement	Anirudh Meena
Ship	Arvendra Singh Kushwaha
Compilation of work into final report	Aparna Nagdev

ISOMETRIC DRAWING

Dimensions are in cm.

PART 1

THE ROTATING BRIGDE+ CIRCULAR BASE+ ROTATING PILLAR SECTION

Design

Orthographic: Bridge + Circular base + supporting pillars

Parts with Materials used

Materials Used: Mild steel rods, Mild steel (for casting)

Manufacturing

Manufacturing: Casting, Welding, Cutting

PART 2

GEARS(SPOKES+PILLARS)

Design

Parts with Materials used

Materials used: Mild Steel Round rod (5 mm dia) x 16 Mild Steel Round Pipe(20mm dia) x2

Manufacturing

Manufacturing Processes: Welding, Casting, polishing

PART 3 HOLLOW BOX & HANDLE

Design

Parts with Materials used

Material required-iron rods, mild steel sheets

Manufacturing

Manufacturing process-bending, welding, cutting, brazing

Part 4

CONVEYOR BELT

Design

Manufacturing

This conveyor belt consists of solid woven fabric dipped in PVC paste and adding PVC or Nitrile covers which are combined together by a process called vulcanising

CONVEYOR PULLEY (Central & Side)

Parts with Materials used

Manufacturing process: Sand moulding, casting

Manufacturing

Material required: Cast iron, wooden pattern of pulley, sand

PART 5

Ship

Parts with Materials used

Material used: Aluminium Sheet Metal (0.5mm)

Manufacturing

Manufacturing Processes: Sheet Metal Bending, Soldering

Timeline of Workflow

Week number	Work done
Week 1	Discussion for project proposal
Week 2	Finalisation of idea and work distribution
Week 3	Complete isometric and abstract
Week 4	Engineering drawing of all components
Week 5	Compilation

ACKNOWLEDGEMENT

As we went through this project we had an opportunity to demonstrate our creativity. We encountered many difficulties. We were inspired by Prof. Anish Upadhyaya as we went through the project and provided us with an outlet for expressing ourselves.

Thank you to tutor Dr. Shashank Shekhar, teaching assistants Abhishek Kumar and Albert Linda, and the technical staff Mr Indra Pal Singh really helped us to handle our project properly and thoroughly.

Afterward, we were assigned the final task of completing the project, and we are very appreciative of all the TAs, Lab Assistants, Helpers, who made sure that our project was done.

Thank you again to everyone who helped us with this project.

Besides earning points, Our team is working on this project also to gain knowledge and experience the process of designing and implementing our ideas on our own. Thanks to all who assisted along the way.