Prop: If $n, k \in \mathbb{N}_0$ then $\binom{n+k}{n} = \sum_{i=0}^{k} \binom{n+i-1}{n-i}$
Pf. let X = {n-element subsets of [n+k]}
Each x E X has largest element between n & n+k inclusion
For each i E 20.1,, kg, let Xn+i be the set of all
x & X, whose largest element is n+i.
Clearly $ X = \sum_{i=0}^{n} X_{n+i} $
Clearly $ X = \sum_{i=0}^{n} X_{n+i} $ and $ X = \binom{n+k}{k}$ To construct a set in X we must select $n+i$ as
$\frac{1}{2}$
the largest element, and then we have (17-1) choices
For the rest. So $ X_{n+i} = {n+i-1 \choose n-1}$
For the rest. So $ X_{n+i} = {n+i-1 \choose n-1}$. Thus ${n+k \choose n} = 7 X = \sum X_{n+i} = \sum {n+i-1 \choose n-1}$
Some problems vue've considered:

How many subsets at [n] of size k are there?

How many permutations are their of [n]?

Let S be a set

Let w be a 'weight' function assigning a non-negative integer veight w(o) to each $\sigma \in S$.

How many $\sigma \in S$ have weight k?

· How many binoury strings of length n are there?

Given
$$S$$
 & w , we define the generating series $\Phi_s(z)$ by $\Phi_s(z) = \sum_{\sigma \in S} \chi^{w(\sigma)}$

E.g. if
$$S = \{1, 3, 5\} \times \{2, 4, 6\}$$

let $w(a,b) = a+b$

$$\Phi_{6}(x) = \sum_{\sigma \in S} x^{\omega(\sigma)} = x^{\omega(1,2)} + x^{\omega(1,4)} + x^{\omega(1,6)} + x^{\omega(3,4)} + x^{\omega(3,4)} + x^{\omega(3,6)} + x^{\omega(6,2)} + x^{\omega(6,4)} + x^{\omega(6,4)} + x^{\omega(6,6)}$$

$$= x^{3} + x^{5} + x^{7} + x^{6} + x^{7} + x^{9} + x^{7} + x^{9} + x^{7} + x^{9} + x^{7}$$

$$= x^{3} + \lambda x^{5} + 3x^{7} + \lambda x^{7} + x^{9} + x^{1}$$

$$\frac{p_{rop:}}{p_{s(z)}} = \sum_{k \ge 0} (\# elements of S whose weight is k) x^k$$

equivalently: The coefficient of
$$x^k$$
 in $\overline{I}(x)$ is # elements of S of weight k .

Eg. let
$$S = \{\text{subsets of [n]}\}\ \text{and } w(\sigma) = |\sigma| \text{ for each } \sigma \in S$$
.

$$\overline{\Phi}_{s}(x) = \sum_{k=0}^{n} \binom{n}{k} x^{k} = \left(1+\lambda\right)^{n}$$

In our first example,

$$S = \{1,3,5\} \times \{2,4,6\}, \ w(a,6) = a+6$$

 $\overline{\Delta}_s(x) = x^3 + \lambda_x^5 + 3x^4 + \lambda_x^9 + x^9$
 $= (x^1 + x^3 + x^5)(x^2 + x^4 + x^6)$

Another example. Let 5 = & positive odd numbers} and w(o)=o $\underline{\mathcal{D}}_{S}(\alpha) = \sum_{\sigma \in S} x^{\omega(\sigma)} = \sum_{\substack{n \text{ odd} \\ n=0}} x^{n} = x^{1} + x^{3} + x^{5} \dots$ E.g. Let 3 = { permutations of [K] for any k} = { (), (1), (1,2), (2,1), (1,2,3), (2,3,3), (2,3,1) -- } and w(o) = length $\overline{\Phi}_s(\alpha) = \sum_{k \ge 0} (\# permutations of [k]) \alpha^k = \sum_{k \ge 0} k! x^k$ For a generating series $\Phi(z)$ that is finite in length, write $\Phi(1)$ for the value obtained by subbing in z=1. Write I'(x) for the 'derivative' of I Prop. It S is finite and w is a weight function, than [N= (1)]

Is(1) = total weight of elements