TERMS

Probability Model: a mathematical representation of a random event. Sample Space: a range of values of a random variable. Probability: a quantifiable amount for the likelihood of an event occurring. Independent: one event does not influence another. In conditional probability, this means $P(A \cap B) = P(A) \cdot P(B)$. Disjoint: the probability of two specific events occurring is 0. Neither (example): a person does not eat red meat & is vegetarian. Both (example): because you passed your driver's test, you have a driver's license. PMF: $P(X=x) \to \text{mapped}$ value. Case: elements in the collection and has one or more attributes. Collection (Population): $\forall \in S$ (S denotes set). Collection (Sample): $\subset \in S$. Parameter: any numerical quantity that characterizes a given population or some aspect of it (quantitative). Statistic: a characteristic of a sample (qualitative). Distribution (Variable): a description of the relative number of times each possible outcome will occur in a number of trails. Distribution (Sampling): a description of the given sample observed. Bias: the process to over-or-under estimate the value of a population. Biased Estimator: difference between expected value and the true value of the parameter being estimated. (residual?) BINS: Binary outcome, Independent trials, Number of trials is fixed, Same value of p for all trials. Explanatory variable: a type of independent variable (X value) Response variable: dependent variable (y-value) Observational study: not interacting with test subjects Experimental study: manipulate environmental variables that affect test subjects. Levels of a Factor: the number of variation of a given factor that were used in an experiment. Interacting variables: two variables that interact with each other to produce an interaction effect (internal agent). Confounding variables: a variable that influences both the dependent variable and independent variable, causing a spurious action (external agent). Placebo Effect: a beneficial effect produced by a placebo treatment, which cannot be attributed to the properties of the placebo itself. This is generally used in the control group. Control: a group that is placed in conditions that are seen as inert, not affecting the outcome of the study. Randomization: does not lead to bias Replication: the ability to do the study with other experimenters and get similar results Repetition: do something over and over by the same experimenter getting similar results. Random Design: anyone in the sample is likely to get a particular treatment and there are no predetermined groups. Block Design: the experimenter divides the groups into based on a criteria then those groups are given specific treatments. Matched Pairs: two subjects of similar characteristics are given two different treatments and the differences are compared. Single-Blind: information is concealed from the patients in the study Double-Blind: information is concealed from both experimenters and the patients in the study. Conditional Probability: an events outcome probability is dictated by previous events

FORMULAS

- $\mu_x = \Sigma x \cdot p(x)$ [expected value]
- $\sigma_x^2 = \Sigma[x^2 \cdot P(x)] \mu_x^2$ [variance]
- $\sigma_x = \sqrt{\Sigma[x^2 \cdot P(x)] \mu_x^2}$ [standard devitation]
- $E(X \pm Y) = E(X) \pm E(Y)$ [expected value (transformation)]
- $Var(X \pm Y) = Var(X) \pm Var(Y)$ [variance (transformation)]
- $E(\hat{p}) = p$ [expected value (sample proportion)]
- $\sigma_{\hat{p}}^2 = \frac{p(1-p)}{n}$ [variance (sample proportion)]
- $\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$ [standard deviation (sample proportion)]
- $E(X) = \mu_x = nP$ [expected value (BRV)]
- $Var(X) = n \cdot P \cdot (1 P)$ [variance (BRV)]

TWO WAY TABLE

Validity	Do not reject H_o	Reject H _o
H _o is true	Correct decision	Type I Error α
H _o is false	Type II Error β	Correct decision

- Type I Error: seeing a wolf when there is not a wolf
- Type II Error: not seeing a wolf when there is a wolf

DIAGNOSTIC TEST TABLE

	(+)	(-)	
+	TP	FN	Sensitivity
-	FP	TN	Specificity
	PPV	NPV	

- $PPV = \frac{TP}{TP + FP}$ $NPV = \frac{TN}{TN + FN}$
- $SN = \frac{TP}{TP + FN}$ $SP = \frac{TN}{TN + FP}$

FRAMEWORKS

Neyman-Pearson Hypothesis Testing

- H_0 : $\mu = 0$
- H_a : $\mu = n$
- Requires a rejection region, a small area where the null hypothesis should be rejected
- If the observed value falls in the region, Ha is true, reject Ho, vice

Fisher's Significance Testing

- Select an appropriate test
- Calculate the theoretical proabability of the results under Ho (p)
- If $p = \alpha$: statistically significant
- If $p > \alpha$: statistically insignificant

Null Hypothesis Significance Testing

- Ho: (if candy causes cancer, assume candy does not cause cancer an find counter arguments)
- H_a : $\theta[<,>,\neq]\theta_1$
- Find its distribution under Ho
- \bullet Define a critical region such that if in critical region, reject H_o .
- Else fail to reject Ho