Markov? memoriless $P(x_{++1}|x_0.-x_t) = P(x_{t+1}|x_t)$

Today

What is an MDP?
What is a policy?
How to evaluate policies
Policy Search

MDPS

maximize Extr

"Tuple Definition"	
$(S, A, R, T_{\gamma\gamma}) + p_0 \qquad s \in S$ $s = (x, y) S = R$, 4
5-state space - set of states (e.g. {1,2,3}, /	?
S-state space - set of states (e.g. \{1,2,3\}, \} A-action spact - set of actions [0,1]* A(s)	`~g /
R-reward function $R:S\times A\times S \rightarrow R$ R(s,a) = E[R(s,a,s)]	
T-"transition. kernel" Explicit or Implicit ("Generative Model") Model" S'=6(5,a))
y - discount ye[0,1)	
po - initial state distribution	
Breakout Rooms:	
Cooking a pot of Pasta (S, A, R, T, y)	
(/, ~, ',) /	

$$\hat{u} = \sum_{t=0}^{T-1} y^{t} r_{4}$$

Simulation

5 = sumple (po)

û = 0

tor + in 0...

for t in 0...T-1 at $\pi(s)$ $s', r \in G(s, a)$ $\hat{u} + = y^{\dagger}r$ $s \in s'$ return \hat{u}

U≈ um = in ∑ui;

Monte (as) & Fetive te