

Principal Component Analysis

Karen Grace-Martin

How this Webinar Will Work:

- ~40 minutes of teaching
- Questions answered at the very end
- The slides handout is available for download on the GoToWebinar panel
- Recording will be sent via email within 48 hours

What You Will Learn:

- 1. What Principal Component Analysis Does
- 2. The Steps to Conduct a PCA

- 1. Extract the Components
- 2. Determine the Number of Components to Retain
- 3. Rotate
- 4. Interpret the Rotated Solution
- 5. Create Component Scores

What is PCA?

Principal Component Analysis

$$C = W_1(Y_1) + W_2(Y_2) + W_3(Y_3) + W_4(Y_4)$$

Factor Analysis

$$Y_1 = b_1 *F + u_1$$

 $Y_2 = b_2 *F + u_2$
 $Y_3 = b_3 *F + u_3$
 $Y_4 = b_4 *F + u_4$

A Motivating Example

weight body weight in kg

brainwt brain weight in g

slosleep slow wave ("nondreaming") sleep (hrs/day)

parsleep paradoxical ("dreaming") sleep (hrs/day)

totsleep total sleep (hrs/day) (sum of slow wave and paradoxical sleep)

lifespan maximum life span (years)

gestation time (days)

predation index (1-5)

expos sleep exposure index (1-5)

danger overall danger index (1-5)

Animal Sleep Example

Correlation Matrix

		weight	brainwt	slosleep	parsleep	totsleep	lifespan	gestatn	predatn	expos	danger
Correlation	weight	1.000	.956	394	075	343	.470	.714	.096	.406	.259
	brainwt	.956	1.000	387	074	337	.629	.734	015	.323	.151
	slosleep	394	387	1.000	.518	.968	372	606	353	580	535
	parsleep	075	074	.518	1.000	.717	268	409	398	504	572
	totsleep	343	337	.968	.717	1.000	382	614	405	621	604
	lifespan	.470	.629	372	268	382	1.000	.646	170	.316	.015
	gestatn	.714	.734	606	409	614	.646	1.000	.091	.573	.306
	predatn	.096	015	353	398	405	170	.091	1.000	.626	.927
	expos	.406	.323	580	504	621	.316	.573	.626	1.000	.790
	danger	.259	.151	535	572	604	.015	.306	.927	.790	1.000

The Steps

- 1. Extract the Components
- 2. Determine the Number of Components to Retain
- 3. Rotate
- 4. Interpret the Rotated Solution
- 5. Create Component Scores

Step 1: Extract the Components

	-:	
Initial	Eigenva	lues
III III GII	LIGCHVA	1000

Component	Total	% of Variance	Cumulative %
1	5.104	51.039	51.039
2	2.381	23.815	74.854
3	1.086	10.857	85.711
4	.565	5.646	91.357
5	.384	3.844	95.201
6	.287	2.868	98.069
7	.151	1.505	99.574
8	.025	.253	99.828
9	.017	.172	100.000
10	-1.665E-16	-1.665E-15	100.000

Extraction Method: Principal Component Analysis.

- Kaiser Criterion: Eigenvalues > 1
- 2. Variance Explained

		illitial Elgelivalu	
mnonent	Total	% of Variance	C

Initial Eigenvalues

Component	Total	% of Variance	Cumulative %
1	5.104	51.039	51.039
2	2.381	23.815	74.854
3	1.086	10.857	85.711
4	.565	5.646	91.357
5	.384	3.844	95.201
6	.287	2.868	98.069
7	.151	1.505	99.574
8	.025	.253	99.828
9	.017	.172	100.000
10	-1.665E-16	-1.665E-15	100.000

Extraction Method: Principal Component Analysis.

3. Scree Plot

4. Parallel Analysis

5. Interpretability of Rotated Components

Component Matrix^a

	Component			
	1	2		
weight	.653	.566		
brainwt	.630	.680		
slosleep	832	.079		
parsleep	648	.357		
totsleep	869	.169		
lifespan	.542	.583		
gestatn	.809	.423		
predatn	.517	703		
expos	.817	264		
danger	.728	595		

Extraction Method: Principal Component Analysis.

Rotated Component Matrix^a

	Component		
	1	2	
weight	.134	.853	
brainwt	.044	.926	
slosleep	687	476	
parsleep	726	145	
totsleep	774	431	
lifespan	.039	.795	
gestatn	.346	.845	
predatn	.849	204	
expos	.794	.325	
danger	.940	.014	

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

Step 3: Rotate

Step 4: Interpret Rotated Component Loadings

Component Matrix^a

	Component			
	1	2		
weight	.653	.566		
brainwt	.630	.680		
slosleep	832	.079		
parsleep	648	.357		
totsleep	869	.169		
lifespan	.542	.583		
gestatn	.809	.423		
predatn	.517	703		
expos	.817	264		
danger	.728	595		

Extraction Method: Principal Component Analysis.

Rotated Component Matrix

	Component			
	1	2		
weight	.134	.853		
brainwt	.044	.926		
slosleep	687	476		
parsleep	726	145		
totsleep	774	431		
lifespan	.039	.795		
gestatn	.346	.845		
predatn	.849	204		
expos	.794	.325		
danger	.940	.014		

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

Step 5: Create Component Scores

Component Scores are weighted averages for each individual

Rotated Component Matrix^a

	Component		
	1	2	
weight	.134	.853	
brainwt	.044	.926	
slosleep	687	476	
parsleep	726	145	
totsleep	774	431	
lifespan	.039	.795	
gestatn	.346	.845	
predatn	.849	204	
expos	.794	.325	
danger	.940	.014	

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

Component Score Coefficient Matrix

	Component			
	1	2		
weight	055	.264		
brainwt	090	.298		
slosleep	146	080		
parsleep	194	.033		
totsleep	176	055		
lifespan	077	.255		
gestatn	.007	.238		
predatn	.268	160		
expos	.194	.018		
danger	.270	099		

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

References and Further Reading

- Hatcher, L. (1994). A Step-by-Step Approach to Using the SAS System for Factor Analysis and Structural Equation Modeling. SAS Publishing. Chapter 1: Principal Component Analysis.
- Wang, Yun. (2002). Principal Components: Not Just Another Factor Analysis.
 https://cscu.cornell.edu/wp-content/uploads/49 pca.pdf

Resources Page: https://www.theanalysisfactor.com/resources/by-topic/pca-fa/

Questions?