

#### **Automotive MOSFET**

#### **OptiMOS™ 5 Power-Transistor**







#### **Features**

- OptiMOS<sup>™</sup> power MOSFET for automotive applications
- N-channel Enhancement mode Normal Level
- Extended qualification beyond AEC-Q101
- Enhanced electrical testing
- Robust design
- MSL3 up to 260°C peak reflow
- 175°C operating temperature
- Green product (RoHS compliant)
- 100% Avalanche tested



General automotive applications.

#### **Product validation**

Qualified for automotive applications. Product validation according to AEC-Q101.

## **Product Summary**

| $V_{ m DS}$                   | 40   | V  |
|-------------------------------|------|----|
| R <sub>DS(on),max</sub>       | 0.94 | mΩ |
| I <sub>D</sub> (chip limited) | 200  | Α  |

| Туре             | Package     | Marking  |
|------------------|-------------|----------|
| IAUA200N04S5N010 | PG-HSOF-5-1 | 5N04N010 |





IAUA200N04S5N010



## **Table of Contents**

| Description                         | 1    |
|-------------------------------------|------|
| Maximum ratings                     | . 3  |
| Thermal characteristics             | . 4  |
| Electrical characteristics          | 4    |
| Electrical characteristics diagrams | . 6  |
| Package outline & footprint         | . 10 |
| Disclaimer                          | . 11 |
| Revision history                    | . 12 |

IAUA200N04S5N010



# **Maximum ratings**

at Tj=25 °C, unless otherwise specified

| Parameter                                    | Symbol                      | l Conditions Value                                               |                  | Unit |
|----------------------------------------------|-----------------------------|------------------------------------------------------------------|------------------|------|
| Continuous dusis suurent                     | I <sub>D</sub>              | $T_{\rm C} = 25 {\rm ^{\circ}C}, V_{\rm GS} = 10 {\rm V}^{1)}$   | 200              | А    |
| Continuous drain current                     |                             | $T_{\rm C} = 100 {\rm ^{\circ}C},  V_{\rm GS} = 10 {\rm V}^{2)}$ | 200              |      |
| Pulsed drain current <sup>2)</sup>           | / <sub>D,pulse</sub>        | T <sub>C</sub> = 25 °C                                           | 800              |      |
| Avalanche energy, single pulse <sup>2)</sup> | E <sub>AS</sub>             | / <sub>D</sub> = 100 A                                           | 280              | mJ   |
| Avalanche current, single pulse              | I <sub>AS</sub>             | -                                                                | 200              | А    |
| Gate source voltage                          | V <sub>GS</sub>             | -                                                                | ±20              | V    |
| Power dissipation                            | P tot                       | T <sub>C</sub> =25 °C                                            | 167              | W    |
| Operating and storage temperature            | $T_{\rm j}$ , $T_{\rm stg}$ | -                                                                | -55 <b>+1</b> 75 | °C   |

IAUA200N04S5N010



# Thermal characteristics<sup>2)</sup>

| Parameter                              | Symbol | Conditions                                   | Values |      | Unit |     |
|----------------------------------------|--------|----------------------------------------------|--------|------|------|-----|
|                                        |        |                                              | min.   | typ. | max. |     |
| Thermal resistance, junction - case    | R thJC | -                                            | -      | -    | 0.90 | K/W |
| Thermal resistance, junction - ambient | R thJA | 6 cm <sup>2</sup> cooling area <sup>3)</sup> | -      | -    | 60   |     |

### **Electrical characteristics**

at Tj=25 °C, unless otherwise specified

| Parameter                        | Symbol              | Conditions                                                                    |      | Values |      | Unit |
|----------------------------------|---------------------|-------------------------------------------------------------------------------|------|--------|------|------|
|                                  |                     |                                                                               | min. | typ.   | max. |      |
| Static characteristics           | •                   |                                                                               | •    |        |      | -    |
| Drain-source breakdown voltage   | $V_{(BR)DSS}$       | $V_{GS} = 0 \text{ V},$ $I_D = 1 \text{ mA}$                                  | 40   | -      | -    | V    |
| Gate threshold voltage           | V <sub>GS(th)</sub> | $V_{DS} = V_{GS}, I_{D} = 100 \mu\text{A}$                                    | 2.2  | 2.8    | 3.4  | ]    |
| Zero gate voltage drain current  | I <sub>DSS</sub>    | $V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V},$<br>$T_j = 25 \text{ °C}$       | -    | -      | 1    | μΑ   |
|                                  |                     | $V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V},$<br>$T_j = 125 \text{ °C}^{2)}$ | -    | -      | 100  |      |
| Gate-source leakage current      | I <sub>GSS</sub>    | $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$                                 | _    | -      | 100  | nA   |
| Drain-source on-state resistance | R <sub>DS(on)</sub> | $V_{\rm GS} = 7  \text{V}, I_{\rm D} = 100  \text{A}$                         | _    | 0.90   | 1.20 | mΩ   |
|                                  |                     | $V_{GS} = 10 \text{ V}, I_D = 100 \text{ A}$                                  | _    | 0.80   | 0.94 |      |



99

4.7

132

| Parameter                                 | Symbol              | Conditions                                                                                  | onditions Values |      |      | Unit |
|-------------------------------------------|---------------------|---------------------------------------------------------------------------------------------|------------------|------|------|------|
|                                           |                     |                                                                                             | min.             | typ. | max. |      |
| Dynamic characteristics <sup>2)</sup>     |                     |                                                                                             |                  |      |      |      |
| Input capacitance                         | C iss               |                                                                                             | -                | 5750 | 7650 | pF   |
| Output capacitance                        | C oss               | $V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V},$<br>f = 1  MHz                                | -                | 1600 | 2130 |      |
| Reverse transfer capacitance              | C <sub>rss</sub>    |                                                                                             | -                | 80   | 120  |      |
| Turn-on delay time                        | t <sub>d(on)</sub>  |                                                                                             | -                | 11   | -    | ns   |
| Rise time                                 | t r                 | $V_{DD} = 20 \text{ V}, V_{GS} = 10 \text{ V},$ $I_{D} = 200 \text{ A}, R_{G} = 3.5 \Omega$ | -                | 6    | -    |      |
| Turn-off delay time                       | t <sub>d(off)</sub> |                                                                                             | -                | 23   | -    |      |
| Fall time                                 | t f                 |                                                                                             | -                | 12   | -    |      |
| Gate Charge Characteristics <sup>2)</sup> |                     |                                                                                             |                  |      |      |      |
| Gate to source charge                     | Q gs                |                                                                                             | -                | 28   | 37   | nC   |
| Gate to drain charge                      | Q <sub>gd</sub>     | $V_{DD} = 32 \text{ V}, I_{D} = 200 \text{ A},$                                             | -                | 21   | 32   | ]    |

#### **Reverse Diode**

Gate charge total

Gate plateau voltage

| Diode continous forward current <sup>2)</sup> | Is                   | T <sub>C</sub> = 25 °C                                                             | - | -   | 200 | A  |
|-----------------------------------------------|----------------------|------------------------------------------------------------------------------------|---|-----|-----|----|
| Diode pulse current <sup>2)</sup>             | I <sub>S,pulse</sub> | 7 c - 25 C                                                                         | ı | ı   | 800 |    |
| Diode forward voltage                         | V <sub>SD</sub>      | $V_{GS} = 0 \text{ V, } I_F = 100 \text{ A,}$<br>$T_j = 25 \text{ °C}$             | - | 0.8 | 1.1 | V  |
| Reverse recovery time <sup>2)</sup>           | t rr                 | $V_R = 20 \text{ V}, I_F = 50 \text{ A},$<br>$di_F/dt = 100 \text{ A}/\mu\text{s}$ | - | 65  | -   | ns |
| Reverse recovery charge <sup>2)</sup>         | Q <sub>rr</sub>      | $di_{F}/dt = 100 A/\mu s$                                                          | ı | 80  | ı   | nC |

 $V_{GS} = 0$  to 10 V

Q<sub>g</sub>

 $V_{\rm plateau}$ 

 $<sup>^{1)}</sup>$  Current is limited by package; with a Rthjc = 0.9 K/W the chip is able to carry 300 A at 25°C.

 $<sup>^{\</sup>rm 2)}$  The parameter is not subject to production test-verified by design/characterization.

<sup>&</sup>lt;sup>3)</sup> Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm<sup>2</sup> (one layer, 70 µm thick) copper area for drain connection. PCB is vertical in still air.



## **Electrical characteristics diagrams**

#### 1 Power dissipation



## 2 Drain current



#### 3 Safe operating area



#### 4 Max. transient thermal impedance



IAUA200N04S5N010



#### 5 Typ. output characteristics



#### 7 Typ. transfer characteristics



#### 6 Typ. drain-source on-state resistance



#### 8 Typ. drain-source on-state resistance



IAUA200N04S5N010



#### 9 Typ. gate threshold voltage





#### 10 Typ. capacitances



#### 12 Typ. avalanche characteristics



# infineon

#### 13 Typical avalanche energy





#### 15 Typ. gate charge



#### 16 Gate charge waveforms



IAUA200N04S5N010



#### **Package Outline**



#### **Footprint**



#### **Packaging**



IAUA200N04S5N010



# **Revision History**

| Revision     | Date       | Changes                                  |
|--------------|------------|------------------------------------------|
| Revision 1.0 | 07.12.2017 | Final Data Sheet                         |
| Revision 1.1 | 10.07.2018 | Package name, SOA curve 10 μs            |
| Revision 1.2 | 14.04.2021 | RDS(on) improved                         |
| Revision 1.3 | 24.01.2022 | Editorial changes, package drawing added |
| Revision 1.4 | 11.09.2023 | Corrected avalanche current Graph        |

#### Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-09-11

**Published by** 

**Infineon Technologies AG** 

81726 Munich, Germany

© 2023 Infineon Technologies AG

All Rights Reserved.

Do you have any questions about any aspect of this document?

Email: erratum@infineon.com

#### IMPORTANT NOTICE

The information given in this document shall in no event be For further information on technology, delivery regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

terms and conditions and prices, please contact the nearest Infineon Technologies Office  $(\underline{www.infineon.com}).$ 

#### WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact the nearest Infineon Technologies Office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.