

119458 - Prática de Circuitos Eletrônicos 2 Turma C – Semestre 2018/02

PROJETO FINAL

Detector de Polaridade

Docente: Prof. Roberto de Souza Baptista

Nome	Matrícula	Assinatura				
Rafael Feijó Leonardo	15/0145497					
Bismark Cotrim Teixeira	14/0132121					
Matheus Six Madureira Guedes	14/0056823					
Datas						
Entrega da Proposta	01/10/2018					
Entrega do Relatório	29/11/2018					

Sumário

1.	Introdução		
2.	Objetivos		
3.	. Metodologia e Materiais Utilizados		
4.	Resu	ltados	5
	4.1.	Simulação	5
	4.2.	Prototipagem	6
5. Discussão		ıssão	10
	5.1.	Simulação	10
	5.2.	Prototipagem	11
6.	5. Conclusão		11
7.	Referências Bibliográficas		

1. Introdução

Fisicamente, a polaridade de um circuito se refere às suas cargas elétricas, os prótons (+) e os elétrons (-). A presença de cargas eletricamente carregadas em um circuito é denominada diferença de potencial (DDP) e, esta, gera um fluxo de partículas, denominado corrente elétrica, que flui do terminal negativo para o terminal positivo.

Os dispositivos eletrônicos são alimentados, no geral, por fontes de tensão contínua (VDC), que fornecem corrente elétrica suficiente para seu funcionamento. A tensão (DDP) e a corrente necessária para o circuito são relacionadas entre si pela Lei de Ohm, que diz:

$$U = R \times i \tag{1}$$

onde U é a tensão, i é a corrente e R a resistência do circuito.

Para a alimentação, deve-se atentar para a polaridade da fonte, tal que a inversão desta pode acarretar, dentre outros problemas, na queima do dispositivo. Dessa forma, foi proposto um circuito identificador de polaridade para fontes de tensões entre -12V à +12V.

2. Objetivos

- Desenvolver os assuntos abordados na matéria Laboratório de Circuitos Eletrônicos 2, UNB campus Gama, em um projeto final;
- Identificar a polaridade de fontes de alimentação DC de tensões entre -12V à +12V;

3. Metodologia e Materiais Utilizados

Inicialmente, foi realizada uma pesquisa bibliográfica à fim de estudar as soluções já abordadas e possíveis alternativas. Então, foi definido o modelo de circuito a ser seguido e iniciaram-se as simulações e adaptações de acordo com o escopo definido.

Componente	Código/Modelo	Quantidade
Fonte de Alimentação Digital 32V/5A Dupla	MPL-3305, Minipa	1
Fonte de Alimentação 32V/10A		1
Multímetro Digital		1
Osciloscópio BK Precision	2530, 25MHz, 250MSa/s	1
Protoboard	3220 furos	1

Tabela 1: Lista de instrumentos utilizados para alimentação e medição no circuito proposto.

Componente	Código/Modelo	Quantidade	Preço Un. (R\$)
Transformador Tap Central	220V/15+15V	1	36,90
Amplificador Operacional	LM741	1	1,24
Diodo Retificador	1N4007	4	0,09
Capacitor Eletrolítico	2200uF, 25V	2	0,48
Regulador de Tensão	7812	1	0,99
Regulador de Tensão	7912	1	0,84
Capacitor Eletrolítico	100uF, 16v	2	0,09
Resistor	100KΩ,1/4W	1	0,04
Resistor	10KΩ,1/4W	5	0,04
Resistor	680Ω,1/4W	1	0,04
Resistor	330Ω, 1/4W	1	0,04
Trimpot Multivoltas Vertical	Carenagem Curta 5K Ω	1	1,25
LED Difuso Verde	5 mm	1	0,09
LED Difuso Vermelho	5 mm	1	0,15
Conector Borne	KRE 3T - 5MM	1	0,85
Conector Borne	KRE 2T - 5MM	1	0,75
Cabo de Força	Paralelo - Plug Bipolar	1	0,89

Tabela 2: Lista de componentes utilizados no circuito proposto.

Para as simulações e confecção dos esquemáticos, *layout*s e visão 3D dos circuitos considerados, foram utilizados os softwares *ISIS Proteus v8.0* e *Falstad* [3].

4. Resultados

4.1. Simulação

Figura 1: Esquemático montado no software ISIS PROTEUS v8.0 para simulação do circuito indicador de polaridade.

Figura 2: Simulação do circuito indicador de polaridade aplicando um tensão de +2V nos terminais de entrada. Observe que o LED verde acendeu, indicando uma polaridade positiva.

Figura 3: Simulação do circuito indicador de polaridade aplicando um tensão de -9V nos terminais de entrada. Observe que o LED vermelho acendeu, indicando uma polaridade negativa.

4.2. Prototipagem

Figura 4 - Prototipagem do circuito indicador de polaridade em *protoboard*.

Figura 5 - Foto do resultado obtido de tensão regulada em +12V no circuito.

Figura 6 - Foto do resultado obtido de tensão regulada em -12V no circuito.

Figura 7 - Foto da tensão aferida sobre o LED sem nenhuma tensão aplicada a entrada do circuito integrado.

Figura 8 - Foto da tensão aferida sobre o LED ao fornecer +9V ao circuito. Observe que o Led verde está aceso.

Figura 9 - Foto da tensão aferida sobre o LED ao fornecer +12V ao circuito. Observe que o Led verde está aceso.

Figura 10 - Foto da tensão aferida sobre o LED ao fornecer -9V ao circuito. Observe que o Led vermelho está aceso.

Figura 11 - Foto da tensão aferida sobre o LED ao fornecer -12V ao circuito. Observe que o Led vermelho está aceso.

5. Discussão

5.1. Simulação

Na Teoria o ganho da tensão de saída do amplificador sobre a tensão de entrada, seria de 148,06 V/V.

Obter esse resultado, considera o amplificador ideal e no nó da entrada negativa do amplificador.

$$\frac{V_i - 0}{680} + \frac{V_i - V_0}{100K} = 0$$
 $V_i(\frac{1}{680} + \frac{1}{100k}) = \frac{V_o}{100k}$ $\frac{V_o}{V_i} = 148,06 \frac{V}{V_i}$

Pode obter esse mesmo resultado partindo da seguinte afirmação, esse circuito é um somador não-inversor que só possui uma tensão para somar, aplica às fórmulas do somador não-inversor e deduzindo que K1 = 1, assim $Ra = 10K\Omega$.

$$0 = \frac{Ra}{1 - K1} \qquad , \qquad 10k\Omega = \frac{Ra}{K1}$$

Usando as fórmulas conclui que Rb = $680\,\Omega$ e assim K4 = 148,06. Após análises temos que a tensão de saída será Vout = 148,06 x Vin, se manipularmos temos o ganho de 148,06 V/V.

$$Rb = 680\Omega$$
, $100k\Omega = Rb(K4 - 1)$, assim: $K4 = 148,08$

$$V out = K4(K1 \times V in) = V out = 148,06(V in) = V out = 148,06\frac{V}{V}$$

Ao concluir a simulação temos um ganho de 0,856, pois a tensão de saída é Vout = 10,1V e Vin = 11,8V.

Com o processo de análise dos dois circuitos, um na teoria e o outro na simulação, conclui que o ganho do amplificador ideal é muito maior que o ganho do amplificador real simulado, considerando que o amplificador ideal na teoria teria sua corrente nas entradas igual a zero e a tensão delas serão iguais.

Com esse resultado não seria viável a análise da corrente e da tensão na teoria, com isso optou pela utilização do simulador para ajustar as resistências e deixar uma tensão de 2,27V, em média, para deixar a tensão desejável para o funcionamento correto dos leds.

5.2. Prototipagem

Inicialmente, foram aferidas as tensões de alimentação do circuito (Figuras 5 e 6). Foi observado que a ponte retificadora de onda completa, juntamente com os reguladores de tensão, estavam corretamente dimensionados para fornecer uma tensão simétrica de 12V ao LM741.

Posteriormente, foi aferido a tensão sobre o LED sem nenhuma tensão de entrada no circuito (Figura 7), resultando em 0,7 mV. Esse resultado foi obtido devido aos ajustes da tensão de *offset* do AmpOp. Para isso, foi adicionado um potenciômetro de $5K\Omega$ entre os terminais 1 e 5 do circuito integrado, como mostra o esquemático do circuito (Figura 1).

Então, foram inseridas tensões positivas na entrada do circuito (Figuras 7 e 8) de 9,5V e 12V. Inicialmente foi observado que o LED verde acendeu, tal que sobre ele foi aferida uma tensão de 4,7V. Ao variar a magnitude da tensão de entrada, foi notado que esta tensão sobre o diodo emissor se manteve constante.

Por fim, foram inseridas tensão negativas, ou seja, com polaridade trocada, na entrada do circuito (Figuras 10 e 11). Desta vez, foi observado que o LED vermelho acendeu, com uma tensão de -6,7V. Variando a magnitude desta fonte, também foi notado que a tensão não apresentava variações.

6. Conclusão

A identificação de polaridade é uma forma de fazer a distinção de uma fonte de tensão. Pode se identificar uma polaridade em circuitos de corrente contínua, porém em circuitos de corrente alternada, o sentido da corrente se inverte periodicamente.

Tendo em vista que o objetivo do trabalho é identificar a polaridade de fontes de alimentação DC de tensões entre -12V à +12V, pode se observar facilmente que o objetivo foi cumprido, visto que quando se fornece uma tensão negativa ao circuito o LED vermelho acende e quando se fornece uma tensão positiva ao circuito ocorre o mesmo com o LED verde, identificando quando uma tensão é positiva ou negativa. Analisando as simulações e a prototipagem do circuito indicador de polaridade em *protoboard* é visto que o circuito se encontra de forma funcional e cumprindo com os objetivos desejados.

7. Referências Bibliográficas

- 1. DORF, R.C.; SVOBODA, J.A. (2012) *Introdução aos Circuitos Elétricos, 8ª edição*, ISBN 9788521621164. Editora LTC.
- 2. NILSSON, J.W.; RIEDEL, S.A. (2009) Circuitos elétricos, 8ª edição, ISBN 9788576051596. Editora Pearson.
- 3. Electronic Circuit Simulator Applet, disponível em: http://www.falstad.com/circuit/>.