# Static and Dynamic Variance Compensation for Recognition of Reverberant Speech With Dereverberation Preprocessing

Author: Marc Delcroix, Tomohiro Nakatani and Shinji Watanabe

Professor: 陳嘉平

Reporter: 吳國豪

#### Outline

Introduction

 Dereverberation Based on Late Reverberation Energy Suppression

Proposed Method for Variance Compensation

Experiments

#### Introduction

 The performance of automatic speech recognition is severely degraded in the presence of noise or reverberation.

 In this paper, we use a dereverberation method to reduce reverberation prior to recognition.



Fig. 1. Schematic diagram of recognition system for reverberant speech.

#### Dereverberation

• Reverberant speech  $u(\tau)$  is usually modeled as the convolution of clean speech  $x(\tau)$  with a room impulse response  $h(\tau)$  as

$$u(\tau) = x(\tau) * h(\tau)$$

 Let us divide the room impulse response into two parts: early reflections and late reflections.

$$u(\tau) = x(\tau) * h_c(\tau) + x(\tau) * h_l(\tau)$$

#### Dereverberation

- In this paper, we use a dereverberation method that focuses on late reverberation removal.
- We can show that an **estimate of the late reverberation**  $l(\tau)$  can be approximated by a convolution of observed reverberant speech  $u(\tau)$  with a linear prediction filter  $w_D(\tau)$  as

$$l(\tau) = w_D(\tau) * u(\tau)$$



Fig. 2. Schematic diagram of the dereverberation preprocessor.

 Speech is modeled using a hidden Markov model (HMM) with the state density modeled by a Gaussian mixture (GM)

$$p(x_t|n) = \sum_{m=1}^{M} p(m)p(x_t|n,m)$$
$$= \sum_{m=1}^{M} p(m)N(x_t; \mu_{n,m}, \Sigma_{n,m})$$

n: state index

m: the Gaussian mixture component index

 $\mu_{n,m}$ :mean vector

 $\Sigma_{n,m}$ : covariance matrix

• Let us model the mismatch  $b_t$  between clean speech and reverberant speech as

$$u_t = x_t + b_t$$

where  $u_t$  is the observed reverberant speech feature and  $b_t$  is modeled as a Gaussian with

$$p(b_t) \approx N(b_t; \hat{b}_t, \sum b_t)$$

where  $\hat{b}_t$  is an estimate of the mismatch, i.e.,  $\hat{b}_t = u_t - y_t$ ,  $y_t$  is the dereverberated speech feature, and  $\sum b_t$  represents a time-varying feature covariance matrix.

 The likelihood of a reverberant speech feature given a state n can be obtained by marginalizing the joint probability over clean speech

$$p(u_t|n) = \int_{-\infty}^{+\infty} p(u_t, x_t|n) dx_t$$
$$= \int_{-\infty}^{+\infty} p(u_t|x_t, n) p(x_t|n) dx_t$$

• It is assumed that  $p(u_t|x_t,n)=p(b_t|x_t,n)pprox p(b_t)$ 

$$p(u_t|n) = \int_{-\infty}^{+\infty} \sum_{m=1}^{M} p(m)N(x_t, \mu_{n,m}, \Sigma_{n,m})$$

$$N(u_t - x_t; u_t - y_t, \Sigma_{b_t}) dx_t$$

$$= \sum_{m=1}^{M} p(m)N(y_t; \mu_{n,m}, \Sigma_{n,m} + \Sigma_{b_t})$$

$$\stackrel{\triangle}{=} \Sigma_{n,m,t}$$

The compensated mixture covariance matrix is modeled as

$$\sum_{n,m,t}' = \sum_{S} + \sum_{D}$$

where  $\Sigma_S$  and  $\Sigma_D$  resent **static** and **dynamic** variance components, respectively.

• We further express  $\Sigma_S$  and  $\Sigma_D$  with a parametric representation similar to MLLR. The **static variance**  $\Sigma_S$  can thus be expressed as  $\sum_S (\sum_{n,m} L) = L \sum_{n,m} L^T$ 

where  ${f L}$  is a matrix of static variance compensation parameters.

• If we assume the use of a **diagonal covariance matrix**, which is widely employed in speech recognition

$$(\sum_{S}(\sum_{n,m},\lambda))_{i,i}=\lambda_{i}\sigma_{n,m,i}^{2}$$

where  $\lambda_i$  can be interpreted as the weight of the variances of the acoustic models.

In a similar way, we model the dynamic variance as

$$\sum_{D} (\sum_{b_t}, A) = A \sum_{b_t} A^T$$

where A is a matrix of dynamic variance compensation parameters.

We can express the dynamic variance component as

$$(\sum_{D}(\hat{b}_{t},\alpha))_{i,i}=\alpha_{i}\hat{b}_{t,i}^{2}$$

where  $\alpha_i$  are model parameters.

 Therefore, with the proposed model, we can rewrite the timevarying state variance as

$$(\sum_{n,m,t}^{'})_{i,i} = \alpha_i \hat{b}_{t,i}^2 + \lambda_i \sigma_{n,m,i}^2$$

• The model variance parameters,  $\theta = (\alpha, \lambda)$ , can be obtained by maximizing the likelihood as

$$(\theta, W) = \arg \max_{\theta, W} p(U | W, \theta) p(W)$$

where  $U = [u_1, ..., u_T]$  is a sequence of observed speech features. The word sequence W is known.

• The maximum-likelihood estimation problem can be solved using the EM algorithm. We define an auxiliary function  $Q(\theta|\bar{\theta})$ 

as 
$$Q(\theta|\bar{\theta}) = \sum_{S} \sum_{C} \int \int_{X+B=U} p(X,B,S,C|\Psi,\bar{\theta}) \\ \times \log(p(X,B,S,C|\Psi,\theta)) dX dB$$

Where B is a mismatch feature sequence, S is a set of all possible state sequences, C is a set of all mixture components,  $\Psi$  represents the acoustic model parameters, and  $\bar{\theta}$  represents an estimate of parameter  $\theta$  obtained from the previous step of the EM algorithm.

$$Q(\theta | \overline{\theta}) \propto \sum_{S} \sum_{C} \iint_{X+B=U} p(X,B,S,C | \psi,\overline{\theta})$$

$$\times \log \left( \prod_{t=1}^{T} p(b_{t} | \alpha) p(x_{t} | s_{t} = n, c_{t} = m, \lambda) \right) dXdB$$

$$= \sum_{t=1}^{T} \sum_{n=1}^{N} \sum_{m=1}^{M} \iint_{X+B=U} p(X,B,n,m | \psi,\overline{\theta}) \log(p(b_{t} | \alpha)) dXdB$$

$$+ \sum_{t=1}^{T} \sum_{n=1}^{N} \sum_{m=1}^{M} \iint_{X+B=U} p(X,B,n,m | \psi,\overline{\theta}) \log(p(x_{t} | n,m,\lambda)) dXdB$$

$$\lambda_{i} = \frac{\sum_{t=1}^{T} \sum_{n=1}^{N} \sum_{m=1}^{M} \gamma_{t}(n, m) \frac{R(x_{t,i}, y_{t}, n, m, \Psi, \bar{\alpha}, \bar{\lambda})}{\bar{\lambda}_{i} \sigma_{n,m,i}^{2}}}{\sum_{t=1}^{T} \sum_{n=1}^{N} \sum_{m=1}^{M} \gamma_{t}(n, m)}$$

•  $R(x_{t,i},y_t,n,m,\Psi,\bar{\alpha},\bar{\lambda})$  is an estimate of the dereverberated feature variance. It is given by

$$R(x_{t,i}, y_t, n, m, \Psi, \bar{\alpha}, \bar{\lambda})$$

$$= \mu_{n,m,i}^2 - 2\mu_{n,m,i} E\{x_{t,i} | y_t, n, m, \Psi, \bar{\alpha}, \bar{\lambda}\}$$

$$+ E\{x_{t,i}^2 | y_t, n, m, \Psi, \bar{\alpha}, \bar{\lambda}\}$$

•  $E\{x_{t,i}|y_t,n,m,\Psi,\bar{\alpha},\bar{\lambda}\}$  is an estimate of the clean speech feature, expressed as

$$\begin{split} E\{x_{t,i}|y_t,n,m,\Psi,\bar{\alpha},\bar{\lambda}\} \\ &= \frac{\int \int_{X+B=U} x_{t,i} p(x_t,b_t,n,m|\Psi,\bar{\theta}) dx_t db_t}{p(y_t|n,m,\Psi,\bar{\theta})} \\ &= \frac{\bar{\alpha}_i \hat{b}_{t,i}^2 \bar{\lambda}_i \sigma_{n,m,i}^2}{\bar{\alpha}_i \hat{b}_{t,i}^2 + \bar{\lambda}_i \sigma_{n,m,i}^2} \left( \frac{y_{t,i}}{\bar{\alpha}_i \hat{b}_{t,i}^2} + \frac{\mu_{n,m,i}}{\bar{\lambda}_i \sigma_{n,m,i}^2} \right) \end{split}$$

•  $E\{x_{t,i}^2|y_t,n,m,\Psi,\bar{\alpha},\bar{\lambda}\}$  is an estimate of the clean feature variance, expressed as

$$E\{x_{t,i}^{2}|y_{t}, n, m, \Psi, \bar{\alpha}, \bar{\lambda}\}$$

$$= \frac{\int \int_{X+B=U} x_{t,i}^{2} p(x_{t}, b_{t}, n, m|\Psi, \bar{\theta}) dx_{t} db_{t}}{p(y_{t}|n, m, \Psi, \bar{\theta})}$$

$$= \frac{\bar{\alpha}_{i} \hat{b}_{t,i}^{2} \bar{\lambda}_{i} \sigma_{n,m,i}^{2}}{\bar{\alpha}_{i} \hat{b}_{t,i}^{2} + \bar{\lambda}_{i} \sigma_{n,m,i}^{2}} + E\{x_{t,i}|y_{t}, n, m, \Psi, \bar{\alpha}, \bar{\lambda}\}^{2}$$

$$\int x_{t,i} p(x_t | y_t, n, m, \psi, \overline{\theta}) dx_t$$

$$= \int x_{t,i} \frac{p(x_t, y_t | n, m, \psi, \overline{\theta})}{p(y_t | n, m, \psi, \overline{\theta})} dx_t$$

$$= \frac{\int \int p(x_t, y_t | n, m, \psi, \overline{\theta}) dx_t db_t}{p(y_t | n, m, \psi, \overline{\theta}) dx_t db_t}$$

• The counting function:  $n_t = (X, B, m, n) = \begin{cases} 1, & \text{if } s = n, c = m \\ 0, & \text{otherwise} \end{cases}$ 

$$Q(\theta | \overline{\theta}) \propto \sum_{S} \sum_{C} \iint_{X+B=U} p(X,B,S,C | \psi,\overline{\theta})$$

$$\times \log \left( \left( \prod_{t=1}^{T} p(b_{t} | \alpha) p(x_{t} | s_{t} = n, c_{t} = m, \lambda) \right) dXdB$$

$$= \sum_{S} \sum_{C} \iint_{X+B=U} n_{t}(X,B,C,s) p(X,B,S,C | \psi,\overline{\theta})$$

$$\times \log \left( \left( \prod_{t=1}^{T} p(b_{t} | \alpha) p(x_{t} | s_{t} = n, c_{t} = m, \lambda) \right) dXdB$$

$$r_t(n,m) = \sum_{S} \sum_{C} (X,B,n,m) p(X,B,S,C | \psi, \overline{\theta})$$

$$\alpha_{i} = \frac{\sum_{t=1}^{T} \sum_{n=1}^{N} \sum_{m=1}^{M} \gamma_{t}(n, m) \frac{E\{b_{t,i}^{2} | y_{t}, n, m, \Psi, \bar{\alpha}, \bar{\lambda}\}}{\hat{b}_{t,i}^{2}}}{\sum_{t=1}^{T} \sum_{n=1}^{N} \sum_{m=1}^{M} \gamma_{t}(n, m)}$$

$$\begin{split} &E\left\{b_{t,i}^{2}|y_{t},n,m,\Psi,\bar{\alpha},\bar{\lambda}\right\} \\ &= \frac{\int \int_{X+B=U} b_{t,i}^{2} p(x_{t},b_{t},n,m|\Psi,\bar{\theta}) dx_{t} db_{t}}{p(y_{t}|n,m,\Psi,\bar{\theta})} \\ &= \frac{\bar{\alpha}_{i} \hat{b}_{t,i}^{2} \bar{\lambda}_{i} \sigma_{n,m,i}^{2}}{\bar{\alpha}_{i} \hat{b}_{t,i}^{2} + \bar{\lambda}_{i} \sigma_{n,m,i}^{2}} + E\{b_{t,i}|y_{t},n,m,\Psi,\bar{\alpha},\bar{\lambda}\}^{2} \\ &E\left\{b_{t,i}|y_{t},n,m,\Psi,\bar{\alpha},\bar{\lambda}\right\} \\ &= \frac{\int \int_{X+B=U} b_{t,i} p(x_{t},b_{t},n,m|\Psi,\bar{\theta}) dx_{t} db_{t}}{p(y_{t}|n,m,\Psi,\bar{\theta})} \\ &= \frac{\bar{\alpha}_{i} \hat{b}_{t,i}^{2}}{\bar{\alpha}_{i} \hat{b}_{t,i}^{2} + \bar{\lambda}_{i} \sigma_{n,m,i}^{2}} (y_{t,i} - \mu_{n,m,i}). \end{split}$$

#### Experiments

- NTT Corporation
- The recognition task consisted of continuous digit utterances.
- The acoustic features consisted of 39 coefficients: 12 MFCCs, the 0th cepstrum coefficient, delta, and acceleration.

|                                                     | WER (%) |
|-----------------------------------------------------|---------|
| Clean                                               | 1.2     |
| Reverberant                                         | 32.7    |
| Dereverberated                                      | 31.0    |
| Variance compensation ( $\alpha = 1, \lambda = 1$ ) | 15.9    |
| Variance compensation                               | 3.3     |
|                                                     |         |

|                       |        | 1.5 m  |         |        | 2 m    |         |
|-----------------------|--------|--------|---------|--------|--------|---------|
| Reverberant           |        | 32.7 % |         |        | 37.1 % |         |
| Dereverberated        |        | 31.0 % |         |        | 36.3 % |         |
| Variance Compensation |        | 15.9 % |         |        | 19.5 % |         |
| (without adaptation)  |        |        |         |        |        |         |
|                       | 2 ut.  | 32 ut. | 512 ut. | 2 ut.  | 32 ut. | 512 ut. |
| SVA                   | 15.1 % | 15.1 % | 15.2 %  | 18.4 % | 18.4 % | 18.5 %  |
| DVA                   | 15.6 % | 15.5 % | 15.5 %  | 19.6 % | 19.4 % | 19.2 %  |
| SDVA                  | 13.5 % | 13.3 % | 13.4 %  | 16.6 % | 16.3 % | 16.3 %  |