LionBase x MedX

Data Report - May 18th, 2020

Summary of Results

To distribute the new drug to the most number of patients possible, MedX should prioritize distribution to counties that have a high incidence rate, lower median income, and higher rate of unemployment (i.e. less affluent communities).

- These communities tend to have a much higher cancer mortality per capita compared to wealthier communities they have a much greater need for this new drug
- Targeting these areas will result in the greatest number of lives being saved; the drug will be going to the areas with greatest demand
- Age, race, and marital status are nearly useless for predicting which counties will have the highest demand for the drug

Data Output

In the project zip file, you will find the following:

- Data (folder)
 - cancer_data.csv
- Regression Model (folder)
 - LionBaseXMedX.ipynb

Methods

- 1. Data used in this model came directly from the "cancer_data.csv" file provided to LionBase
- 2. Data was cleaned prior to analysis:
 - a. Null values were identified and addressed
 - b. Outliers were taken out
 - c. Duplicate entries were checked for
 - d. Redundant columns were taken out
 - e. Separate standardized data set was created
- 3. An initial linear regression model was fitted to the data
- 4. Initial model was iterated over to create an improved linear regression model

Linear Regression Example:

- Create a model based on given data
- Optimize the model to minimize the error in predictions
- Can be used to predict outcomes for future events

Analysis/Visualization

- Created regression model is multidimensional
- Represented with a collection of
 2D scatterplots (one per predicting variable)

Conclusion: Counties with higher amounts of cancer diagnoses per capita tend to have higher cancer mortality rates

Action: Prioritize shipping the drug to areas with high incidence rates to maximize the number of lives saved

Further Analysis of Model:

Conclusion: Counties with lower median incomes and higher rates of unemployment have greater death rates due to cancer

Action: Focus on shipping treatments to these areas where demand is greatest

Other Findings:

- The age of a county's population does not make a difference in the death rate due to cancer
- Model line is almost perfectly flat

Other Findings:

- Demographics of counties are not strong predictors
- These statistics are not relevant when determining optimal distribution of the drug

Model Quality

98.8% of variance in data is explained by this model

OLS Regression Resu	ılts		
Dep. Variable:	TARGET_deathRate	R-squared (uncentered):	0.988
Model:	OLS	Adj. R-squared (uncentered):	0.988
Method:	Least Squares	F-statistic:	2.005e+04
Date:	Mon, 18 May 2020	Prob (F-statistic):	0.00
Time:	17:47:01	Log-Likelihood:	-13331.
No. Observations:	3017	AIC:	2.669e+04
Df Residuals:	3005	BIC:	2.676e+04
Df Model:	12		
Covariance Type:	nonrobust		

Key Takeaways

- 1. Prioritize shipping to counties that have high incidence rates, lower median income, and higher rate of unemployment
- 2. Using the linear regression model, we can quickly determine which counties are at higher risk and can thus easily determine the optimal distribution
- 3. Determining optimal shipping orders can be done without incurring any additional costs
- 4. Ensures that as many lives are saved as possible and maximum revenue is achieved

Next Steps

- Pass all U.S. counties through the linear regression model to create a comprehensive priority listing of all potential counties to ship to
- Create algorithm to determine the optimal path to various counties, maximizing the quantity of products delivered while minimizing shipping costs