1. (1%)請比較有無 normalize(rating)的差別。並説明如何 normalize.

訓練方式: loss='mse' optimizer='adam' batch_size=512 epochs=30

validation_split=0.2 EarlyStopping latent dimension=256

需要注意的是 loss 是 mse 而 Kaggle 的評分是 rmse,所以最好的 validation loss 要開根號才會接近 Kaggle 上的分數。

normalize 的方式是把所有的 rating 扣掉平均再除以標準差。

無 normalize:

epoch	1	2	3	4	5	6	7
train loss	5.0368	0.8377	0.7214	0.5994	0.4715	0.3506	0.2536
val loss	0.9038	0.8232	0.7820	0.7692	0.7759	0.7998	0.8315

有 normalize:

epoch	1	2	3	4	5
train loss	0.8368	0.5298	0.3443	0.2028	0.1233
val loss	0.6568	0.6043	0.6136	0.6482	0.6839

平均: 3.5817 標準差: 1.1169

比較有無 normalize 的 val loss 時必須先把有 normalize 的結果乘以標準差才正確。0.6043*1.1169=0.6749 比沒有 normalize 的情形好上許多,且也比較快收斂。

2. (1%)比較不同的 latent dimension 的結果。 這裡都使用有 normalize 的情況,比較不同 latent dimension 最低的 val loss。Best epoch 是指訓練花了幾個 epoch 才達到這個最好的 loss。

latent dimension	8	16	32	64	128	256
lowest val loss	0.6133	0.6099	0.6048	0.6034	0.5997	0.6001
Best epoch	12	7	5	4	3	2

可以觀察到其實在 latent dimension=16 以後最佳的 val loss 都幾乎已經不再下降,但是收斂速度越來越快。

3. (1%)比較有無 bias 的結果。 有 normalize, latent dimension=256

epoch	1	2	3	4	5
with bias val loss	0.6454	0.5981	0.6170	0.6549	0.6897
without bias val loss	0.6545	0.6001	0.6087	0.6443	0.6792

差異並不顯著,這裡的 bias 實做方式是把 user id 和 movie id 都通過一層 embedding layer 在接到 merge layer 加起來。

4. (1%)請試著用 DNN 來解決這個問題,並且説明實做的方法(方法不限)。並比較 MF 和 NN 的結果,討論結果的差異。

分別將 user id 和 movie id 通過一層 embedding layer 後 flatten,利用 Concatenate Merge 把兩個向量接起來後經過一層 Dense(256, 'relu'),最後給 Dense(1, 'linear')得到最後的 output。

MF

epoch	1	2	3	4	5
train loss	0.8368	0.5298	0.3443	0.2028	0.1233
val loss	0.6568	0.6043	0.6136	0.6482	0.6839

DNN

epoch	1	2	3	4	5	6	7	8
train loss	0.6885	0.6326	0.6099	0.5910	0.5672	0.5401	0.5116	0.4849
val loss	0.6518	0.6310	0.6221	0.6188	0.6129	0.6133	0.6156	0.6207

DNN 的結果比 MF 還要差,也收斂的比較慢。

5. (1%)請試著將 movie 的 embedding 用 tsne 降維後,將 movie category 當作 label 來作圖。

共有 17 類的電影。 因為 tsne 適用於維度比較低的降維,所以我重新訓練了一個 50 維的 embedding,用 tsne 降維後做出的圖如上,數據點完全沒有分開。

6. (BONUS)(1%)試著使用除了 rating 以外的 feature, 並説明你的作法和結果, 結果 好壞不會影響評分。

嘗試把使用者的年齡和電影類型和原本的 embedding 後的 user id 和 movie id 接起來後放進第四題的 DNN,結果如下。

epoch	1	2	3	4	5	6	7	8
train loss	0.6903	0.6320	0.6003	0.5422	0.5331	0.5211	0.5013	0.4897
val loss	0.6528	0.6312	0.6133	0.6174	0.6121	0.6145	0.6157	0.6217

和第四題的 DNN 結果比較發現並沒有太大的差異。