Basis of Computer Programming (java A) Tutorial 3

[Experimental Objective]

- 1. Learn how to use command line parameters to input values, which is (String[] args) in public static void main().and review to input values by Scanner.
- 2. Learn how to use the *if* and *if ···else* selection statements to choose among alternative actions.
- 3. Learn how to use the *while* repetition statement to execute statements in a program repeatedly.

[Exercises]

1. (String[] args) is a set of values to input to public static void main(), which is a String array we will learn later. There may be several values, 0 or 1 or more. It should be parsed in the main() method, to many different data types.

Rewrite an application to input name, age, weight and grade in command line, and prints out in a specific format, which achieves almost the same effects like exercise 2 in Lab2.

Sample code:

```
public class Lab3_E1 {
    public static void main(String[] args) {
        String name = args[0];
        int age = Integer. parseInt(args[1]);
        float weight = Float. parseFloat(args[2]);
        char grade = args[3]. charAt(0);

        System. out. printf("You are %s. \nYou are %d years old. \n", name, age);
        System. out. printf("You weigh %. 1f KG. \n The highest grade you got is %c. \n", weight, grade);
    }
}
```

It can be compiled and run by different methods.

Notice: the parameters should be separated by Blank space.

(1) in command line

```
C:\workspace\javaLab\src\Lab3>javac Lab3_E1.java
C:\workspace\javaLab\src\Lab3>java Lab3_E1 zhangsan 20 60.1 A
You are zhangsan.
You are 20 years old.
You weigh 60.1 KG.
The highest grade you got is A.
C:\workspace\javaLab\src\Lab3>
```

(2) in IDEA Settings:

What will happen if you input more or less than 4 parameters, or input wrong data type?

2. Write an application which can convert the grades on 100-point scale into GPA according to the following table.

Grade	GPA
100~90	4.0
89~80	3.0
79~70	2.0
69~60	1.0
59~0	0

Sample code:

```
□public class Lab3 E2 {
     public static void main(String[] args) {
        float qpa;
         float score = Float.parseFloat(args[0]);
         if(score >= 60)
             System.out.println("You passed the exam.");
         else
             System.out.println("You failed in the exam.");
         if(score >= 90)
            gpa = (float) 4.0;
         else if(score >= 80)
            gpa = 3.0f;
         else if(score >= 70)
            gpa = 2.0f;
         else if(score >= 60)
            gpa = 1.0f;
         else if(score > 0)
           gpa = 0.0f;
         else
             System.out.println("Invalide grade");
         System.out.printf("Your score is %.1f, the GPA is %.1f\n", score, gpa);
```

Sample output:

```
C:\workspace\javaLab\src\Lab3>javac Lab3 E2.java
C:\workspace\javaLab\src\Lab3>java Lab3_E2 96
You passed the exam.
Your score is 96.0, the GPA is 4.0
C:\workspace\javaLab\src\Lab3>java Lab3_E2 85
You passed the exam.
Your score is 85.0, the GPA is 3.0
C:\workspace\javaLab\src\Lab3>java Lab3 E2 77
You passed the exam.
Your score is 77.0, the GPA is 2.0
C:\workspace\javaLab\src\Lab3>java Lab3 E2 60
You passed the exam.
Your score is 60.0, the GPA is 1.0
C:\workspace\javaLab\src\Lab3>java Lab3 E2 59
You failed in the exam.
Your score is 59.0, the GPA is 0.0
```

3. Write a program to print 99 multiplication table, by using the while repetition statement.

Notice: printf using %02d, "3" will be "03"; %2d, "3" will be " 3", with a blank space on the left.

Sample output:

```
1 * 1 = 1

1 * 2 = 2  2 * 2 = 4

1 * 3 = 3  2 * 3 = 6  3 * 3 = 9

1 * 4 = 4  2 * 4 = 8  3 * 4 = 12  4 * 4 = 16

1 * 5 = 5  2 * 5 = 10  3 * 5 = 15  4 * 5 = 20  5 * 5 = 25

1 * 6 = 6  2 * 6 = 12  3 * 6 = 18  4 * 6 = 24  5 * 6 = 30  6 * 6 = 36

1 * 7 = 7  2 * 7 = 14  3 * 7 = 21  4 * 7 = 28  5 * 7 = 35  6 * 7 = 42  7 * 7 = 49

1 * 8 = 8  2 * 8 = 16  3 * 8 = 24  4 * 8 = 32  5 * 8 = 40  6 * 8 = 48  7 * 8 = 56  8 * 8 = 64

1 * 9 = 9  2 * 9 = 18  3 * 9 = 27  4 * 9 = 36  5 * 9 = 45  6 * 9 = 54  7 * 9 = 63  8 * 9 = 72  9 * 9 = 81
```

4. Create a class called GuessingNumber. In the main method, you should generate a random integer magicNum between 0 and 9, then keep asking the user to input an integer between 0 and 9 until the input number is equal to the attribute magicNum. When the input number is greater than the attribute magicNum, the method should output "Too big!Please try again:". When the input number is less than the attribute magicNum, the method should output "Too small!Please try again:". Then the method waits for the user to input a new integer. When the input number is equal to the attribute magicNum, the method should output "Congratulations!" and terminate.

Sample code:

import java.util.Random;

```
public static void main(String[] args) {
   Random random = new Random();
   int magicNum = random.nextInt(10);
   int inputNum;
   Scanner sc = new Scanner (System. in);
   System. out. println ("Please input an Integer in
\{0, 1, 2, \ldots, 9\}:");
   inputNum = sc.nextInt();
                               \overline{} (// to finish it
   while(
                               )// to finish it
      if (
        System. out. println("Too big!Please try again:");
        System. out. println("Too small!Please try again:");
      inputNum = sc.nextInt();
   System. out. println("Congratulations!");
   sc. close();
}
```

Sample output:

```
Please input an Integer in {0,1,2,...,9}:

3
Too small!Please try again:

5
Too small!Please try again:

7
Congratulations!
```

5. Calculate the value of π from the infinite series

$$\pi = 4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \frac{4}{11} + \cdots$$

Input an integer n which presents the times to compute as above. It is precise when n is bigger. Using while repetition statements to show the value of π .

sample output:

```
Please input n:
10000
The estimation of Pi is 3.141498
```

Advanced:

Input a double which presents a precision threshold. And the program will terminate when the difference between two successive values being smaller than the precision threshold. Print the value of the estimation, and the iteration numbers.

Sample running:

```
Please input the precision:

0.0001
The estimation of Pi is 3.141547
It computed 19998 times
```

Tips: Math.abs()

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html