

NPN Silicon Digital Transistor

- Switching circuit, inverter, interface circuit, driver circuit
- Built in bias resistor (R_1 =22k Ω , R_2 =47k Ω)

BCR142/F/L3 BCR142T/W

Туре	Marking		Pin Configuration					Package
BCR142	WZs	1=B	2=E	3=C	-	-	-	SOT23
BCR142F	WZs	1=B	2=E	3=C	-	-	-	TSFP-3
BCR142FL3	WZ	1=B	2=E	3=C	-	-	-	TSLP-3-4
BCR142T	WZ	1=B	2=E	3=C	-	-	-	SC75
BCR142W	WZs	1=B	2=E	3=C	-	-	-	SOT323

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\sf CEO}$	50	V
Collector-base voltage	V_{CBO}	50	
Input forward voltage	V _{i(fwd)}	60	
Input reverse voltage	V _{i(rev)}	10	
Collector current	I_{C}	100	mA
Total power dissipation-	P _{tot}		mW
BCR142, <i>T</i> _S ≤ 102°C		200	
BCR142F, <i>T</i> _S ≤ 128°C		250	
BCR142L3, <i>T</i> _S ≤ 135°C		250	
BCR142T, <i>T</i> _S ≤ 109°C		250	
BCR142W, <i>T</i> _S ≤ 124°C		250	
Junction temperature	T_{i}	150	°C
Storage temperature	$T_{ m stg}$	-65 150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point1)	R_{thJS}		K/W
BCR142		≤ 240	
BCR142F		≤ 90	
BCR142L3		≤ 60	
BCR142T		≤ 165	
BCR142W		≤ 105	

 $^{^{1}\}mbox{For calculation of}\,\ensuremath{\ensuremath{R_{thJA}}}$ please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A = 25^{\circ}$ C, unless otherwise specified **Values** Unit **Symbol Parameter** min. typ. max. **DC Characteristics** $V_{(BR)CEO}$ ٧ 50 Collector-emitter breakdown voltage $I_{\rm C}$ = 100 μ A, $I_{\rm B}$ = 0 Collector-base breakdown voltage $V_{(BR)CBO}$ 50 $I_{\rm C} = 10 \; \mu {\rm A}, \; I_{\rm E} = 0$ Collector-base cutoff current 100 nΑ I_{CBO} $V_{\rm CB} = 40 \text{ V}, I_{\rm E} = 0$ 227 μΑ Emitter-base cutoff current I_{EBO} $V_{\rm EB}$ = 10 V, $I_{\rm C}$ = 0 DC current gain-1) 70 h_{FE} - $I_{\rm C}$ = 5 mA, $V_{\rm CE}$ = 5 V Collector-emitter saturation voltage¹⁾ V_{CEsat} V 0.3 $I_{\rm C}$ = 10 mA, $I_{\rm B}$ = 0.5 mA Input off voltage $V_{i(off)}$ 0.5 1.2 $I_{\rm C}$ = 100 μ A, $V_{\rm CE}$ = 5 V Input on voltage $V_{i(on)}$ 8.0 2.5 $I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 0.3 V R_1 15 22 29 Input resistor $\mathsf{k}\Omega$ R_1/R_2 0.42 0.47 0.52 Resistor ratio **AC Characteristics** f_{T} MHz 150 Transition frequency $I_{\rm C}$ = 10 mA, $V_{\rm CE}$ = 5 V, f = 100 MHz рF C_{cb} 3 Collector-base capacitance

 $V_{CB} = 10 \text{ V}, f = 1 \text{ MHz}$

¹Pulse test: t < 300µs; D < 2%

DC current gain $h_{FE} = f(I_C)$

 V_{CE} = 5V (common emitter configuration)

Input on Voltage $Vi_{(on)} = f(I_C)$

 V_{CE} = 0.3V (common emitter configuration)

Collector-emitter saturation voltage

 $V_{CEsat} = f(I_C)$, $h_{FE} = 20$

Input off voltage $V_{i(Off)} = f(I_C)$

 V_{CE} = 5V (common emitter configuration)

Total power dissipation $P_{tot} = f(T_S)$ BCR142

Total power dissipation $P_{tot} = f(T_S)$ BCR142L3

Total power dissipation $P_{tot} = f(T_S)$ BCR142F

Total power dissipation $P_{tot} = f(T_S)$ BCR142T

Total power dissipation $P_{tot} = f(T_S)$

BCR142W

Permissible Pulse Load $R_{thJS} = f(t_p)$ BCR142

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ BCR142

6 2006-05-04

Permissible Puls Load $R_{thJS} = f(t_p)$ BCR142F

Permissible Puls Load $R_{thJS} = f(t_p)$ BCR142L3

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ BCR142F

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ BCR142L3

Permissible Puls Load $R_{thJS} = f(t_p)$ BCR142T

Permissible Puls Load $R_{thJS} = f(t_p)$ BCR142W

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ BCR142T

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ BCR142W

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Date Code marking for discrete packages with one digit (SCD80, SC79, SC751) CES-Code

Month	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
01	а	р	Α	Р	а	р	Α	Р	а	р	Α	Р
02	b	q	В	Q	b	q	В	Q	b	q	В	Q
03	С	r	С	R	С	r	С	R	С	r	С	R
04	d	S	D	S	d	S	D	S	d	S	D	S
05	е	t	Е	T	е	t	Е	Т	е	t	Е	Т
06	f	u	F	U	f	u	F	U	f	u	F	U
07	g	٧	G	V	g	٧	G	٧	g	٧	G	V
08	h	Х	Η	Х	h	Х	Н	Χ	h	Х	Η	X
09	j	у	7	Υ	j	у	7	Υ	j	у	J	Υ
10	k	Z	K	Z	k	Z	K	Z	k	Z	K	Z
11	I	2	L	4	I	2	L	4	I	2	L	4
12	n	3	N	5	n	3	N	5	n	3	N	5

¹⁾ New Marking Layout for SC75, implemented at October 2005.

10 2006-05-04

1) Lead width can be 0.6 max. in dambar area

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

1) Dimension applies to plated terminal

Foot Print

For board assembly information please refer to Infineon website "Packages"

Marking Layout

Standard Packing

Reel ø180 mm = 15.000 Pieces/Reel

Edition 2006-02-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2006. All Rights Reserved.

Attention please!

The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

15 2006-05-04

www.s-manuals.com