Department of Mathematics, Bennett University EMAT102L, Tutorial Sheet 8 **Ordinary Differential Equations**

- 1. Find all real valued C^1 solutions y(x) of the differential equation xy'(x) + y(x) = $x, x \in (-1,1).$
- 2. Under what conditions, the following differential equations are exact?

(a)
$$[h(x) + g(y)]dx + [f(x) + k(y)]dy = 0$$
 (b) $(x^3 + xy^2)dx + (ax^2y + bxy^2)dy = 0$ (c) $\left(\frac{1}{x^2} + \frac{1}{y^2}\right)dx + \left(\frac{cx+1}{y^3}\right)dy = 0$

3. Examine the following differential equations for exactness. Solve them by finding appropriate integrating factors if necessary:

(a) $(\sin x \tan y + 1)dx - \cos x \sec^2 y dy = 0$. (b) $e^x dx + (e^x \cot y + 2y \csc y) dy = 0$.

(d) $ydx + (2x - ye^y)dy = 0$. (c) $(3xy + y^2)dx + (x^2 + xy)dy = 0$.

- 4. Suppose M(x,y)dx + N(x,y)dy = 0 has an integrating factor $\mu(x,y)$ such that $df = \mu M dx + \mu N dy$ is an exact differential. Show that the equation has an infinite number of integrating factors by demonstrating that the product $\mu G(f)$, where G is an arbitrary continuous function from \mathbb{R} to \mathbb{R} , is also an integrating factor.
- 5. Solve the following linear/reducible to linear ODEs:

(a) $(x+2y^3)\frac{dy}{dx} = y$ (b) $(1+y^2) + (x - e^{-\tan^{-1}y})\frac{dy}{dx} = 0$ (c) $x\frac{dy}{dx} + y = x^2y^2$ (d) $y^{1/2}\frac{dy}{dx} + y^{3/2} = 1, y(0) = 4.$

6. (a) Find the orthogonal trajectories to the family of curves $x^2 + y^2 = cx$.

(b) Find the value of n such that the curves $x^n + y^n = c$ are orthogonal trajectories of the family $y = \frac{x}{1 - c_1 x}$

- (c) Show that the family of parabolas $y^2 = 2cx + c^2$ is self-orthogonal.
- 7. Suppose P(x) is continuous on some closed interval I and a is a number in I. What can be said about the existence and uniqueness of the solution of initial value problem y' + P(x)y = 0; y(a) = 0(Without Soving)?
- 8. Verify whether the following functions satisfy Lipschitz condition or not on the given sets R.

1

(i) $f(x, y) = x^3 \sin y$ on $R : |x| < 2, -\infty < y < \infty$.

(ii) $f(x,y) = y^{1/3}$ on $R: |x| \le 1, |y| \le 1$.

(iii) $f(x,y) = x^2 + y, |x| \le 1, |y| < \infty.$

9. Discuss the existence and uniqueness of solution for the following initial value prob-

lems (IVP) in the region
$$R: |x| \le 1, |y| \le 1$$
.
(a) $\frac{dy}{dx} = 3y^{2/3}, \ y(0) = 0.$ (b) $\frac{dy}{dx} = x^2 + y^2, \ y(0) = 0.$
(c) $\frac{dy}{dx} = \sin x \cos y + xy^2, \ y(0) = 0.$

(c)
$$\frac{d\widetilde{y}}{dx} = \sin x \cos y + xy^2, \ y(0) = 0.$$

10. For the following initial value problems, compute the first three iterates using Picard's iteration method.

(i)
$$y' = x^2 + y^2 - 1$$
, $y(0) = 1$. (ii) $y' = 1 + 2y^2$, $y(0) = 0$.