NE/1

COPY OF ALL CLAIMS

compound

1. (currently amended) A cyclohexenonequinolinoyl derivative of the formula I

$$\mathbb{R}^4$$
 \mathbb{R}^2

where:

R¹ is hydrogen, nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxyiminomethyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_6 -haloalkylsulfonyl, aminosulfonyl, N-(C_1 - C_6 -alkyl)aminosulfonyl,

N, N-di-(C_1 - C_6 -alkyl) aminosulfonyl ,

N-(C₁-C₆-alkylsulfonyl)amino,

N-(C₁-C₆-haloalkylsulfonyl)amino,

N-(C₁-C₆-alkyl)-N-(C₁-C₆-alkylsulfonyl)amino,

 $N-(C_1-C_6--alkyl)-N-(C_1-C_6-haloalkylsulfonyl)amino,$

phenoxy, heterocyclyloxy, or phenylthio or heterocyclylthio, it may be being possible for the four last-mentioned radicals to be may partially or fully halogenated and/or to carry one to two of the

following one to three of the following substituents:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl,

C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

 R^2 , R^3 are hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl or halogen;

R4 is a compound IIa or IIb

$$(R^6)$$
 R^5
 R^5
Ila
Ilb

where

R⁵ is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, POR⁸R⁹, OPOR⁸R⁹, OPOR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-linked heterocyclyl or O-(N-linked heterocyclyl), it being possible for the heterocyclyl radical of the two last-mentioned substituents to be partially or fully halogenated and/or to

carry one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-G₄-haloalkoxy;

R⁶ is nitro, halogen, cyano, C₁-C₆-alkyl,

C₁-C₆-haloalkyl, di-(C₁-C₆-alkoxy)methyl,

di-(C₁-C₆-alkylthio)methyl,

(C₁-C₆-alkoxy)(C₁-C₆-alkylthio)methyl, hydroxyl,

C₁-C₆-alkoxy, C₁-C₆-haloalkoxy,

C₁-C₆-alkoxycarbonyloxy, C₁-C₆-alkylthio,

C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl,

C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl,

C₁-C₆-haloalkylsulfonyl, C₁-C₆-alkylcarbonyl,

C₁-C₆-haloalkylcarbonyl, C₁-C₆-alkoxycarbonyl or

C₁-C₆-haloalkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form an -O-(CH₂)_m-O-, -O-(CH₂)_m-S-, -S-(CH₂)_m-S-, -O-(CH₂)_n- or -S-(CH₂)_n chain which is unsubstituted or substituted by one to three radicals from the following group: halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or C_1 - C_4 -alkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form a -(CH_2)_p chain which possibly is interrupted by oxygen or sulfur and/or is unsubstituted or substituted by one to four radicals from the following group: halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or C_1 - C_4 -alkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form a methylidene group which is unsubstituted or substituted by one or two radicals from the following group: halogen, hydroxyl, formyl, cyano, C_1 - C_6 -alkyl, C_1 - C_8 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl or C_1 - C_6 -haloalkylsulfonyl;

or

two radicals, which are linked to the same carbon, together with this carbon form a carbonyl group;

or

two radicals, which are linked to different carbons, together form a -(CH₂)_n chain which is unsubstituted or

substituted by one to three radicals from the following group:

halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, hydroxyl or C_1 - C_6 -alkoxycarbonyl;

 R^7 is C_1-C_6 ,-alkyl, C_3-C_6 -alkenyl, C_3-C_6 -haloalkenyl,

 C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkynyl, C_3 - C_6 -cyloalkyl,

C₁-C₂₀-alkylcarbonyl, C₂-C₆-alkenylcarbonyl,

 C_2 - C_6 -alkynylcarbonyl, C_3 - C_6 -cyloalkylcarbonyl,

C₁-C₆-alkoxycarbonyl, C₃-C₆-alkenyloxycarbonyl,

C₃-C₆-alkynyloxycarbonyl,

(C1-C20-alkylthio)carbonyl,

C₁-C₆-alkylaminocarbonyl,

C₃-C₆-alkenylaminocarbonyl,

C₃-C₆-alkynylaminocarbonyl,

N,N-di-(C₁-C₆-alkyl)aminocarbonyl,

N-(C_3 - C_6 -alkenyl)-N-(C_1 - C_6 -alkyl) aminocarbonyl ,

N-(Ç₃-C₆-alkynyl)-N-(C₁-C₈-alkyl) aminocarbonyl,

N-(C₁-C₆-alkoxy)-

N-(C_1 - C_6 -alkyl) aminocarbonyl , N-(C_3 - C_6 -alkenyl)-

N-(C₁-C₆-alkoxy) aminocarbonyl , N-(C₃-C₆-alkynyl)-

 $N-(C_1-C_6-alkoxy)$ aminocarbonyl, di- $(C_1-C_8-alkyl)$ -

aminothiocarbonyl, C₁-C₆-alkylcarbonyl-C₁-C₈-alkyl,

radicals:

C₁-C₆-alkoxyimino-C₁-C₆-alkyl,

N-(C₁-C₆-alkylamino) imino-C₁-C₆-alkyl or N,N-di-(C₁-C₆-alkylamino)imino-C₁-C₆-alkyl, it being possible for the above-mentioned alkyl, cycloalkyl and alkoxy radicals to be partially or fully halogenated and/or to carry one to three of the following groups: cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio, di-(C₁-C₄- alkyl)amino, C₁-C₄-alkylcarbonyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkoxy-C₁-C₄-alkoxycarbonyl, di-(C₁-C₄-alkyl)amino-C₁-C₄alkoxycarbonyl, hydroxycarbonyl, C₁-C₄-alkylaminocarbonyl, di-(C₁-C₄-alkyl)aminocarbonyl, aminocarbonyl, C₁-C₄alkylcarbonyloxy or C₃-C₆-cycloalkyl; phenyl, phenyl-C₁-C₆-alkyl, phenylcarbonyl-C₁-C₆-alkyl, phenylcarbonyl, phenoxycarbonyl, phenoxythiocarbonyl, phenoxy-C₁-C₆-alkylcarbonyl, phenylaminocarbonyl, N-(C₁-C_s-alkyl)-N-(phenyl)aminocarbonyl, or phenyl-C₂-C_salkenylcarbonyl, it being possible for the phenyl radical of the 10 last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following

phenyl, phenyl-C₁-G₆-alkyl, heterocyclyl-G₁-G₆-alkyl, phenylcarbonyl-G₁-G₆-alkyl, heterocyclylcarbonyl-G₁-G₆-alkyl, phenylcarbonyl,

heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxy-C₁-G₆-alkylcarbonyl, heterocyclyloxy-C₁-G₆-alkylcarbonyl, phenylaminocarbonyl, N-(C₁-G₆-alkyl)-N-(phenyl)aminocarbonyl, heterocyclylaminocarbonyl, N-(C₁-G₆-alkyl)-N-(heterocyclyl)aminocarbonyl, phenyl-G₂-G₆-alkenylcarbonyl or heterocyclyl-C₂-G₆-alkenylcarbonyl, it being possible for the phenyl and the heterocyclyl radical of the 20 last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -halogenalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^8 , R^9 are C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkynyl, C_3 - C_6 -cycloalkyl, hydroxyl, C_1 - C_6 -alkoxy, amino, C_1 - C_6 -alkylamino, C_1 - C_6 -haloalkylamino, it being possible for the abovementioned alkyl, cycloalkyl and alkoxy radicals to be partially or fully halogenated and/or to carry one to three of the following groups: cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di- $(C_1$ - C_4 -alkyl)amino,

 C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkoxycarbonyl, di- $(C_1$ - C_4 -alkyl)amino- C_1 - C_4 -

alkoxycarbonyl,

hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di- $(C_1$ - C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl;

phenyl, phenyl-C₁-C₆-alkyl, phenoxy, it-being-possible for the may phenyl radical of the last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals:

phenyl, heterocyclyl, phenyl- C_t - C_6 -alkyl, heterocyclyl- C_t - C_6 -alkyl, phenoxy, heterocyclyloxy, it being possible for the phenyl and the heterocyclyl radical of the last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R¹⁰ is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cycloalkyl, hydroxyl, C₁-C₆-alkoxy, C₃-C₆-alkenyloxy, C₃-C₆-alkynyloxy, amino, C₁-C₆-alkylamino, di-(C₁-C₆-alkyl)amino or C₁-C₆-alkylcarbonylamino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three radicals from the

following group:

cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di-(C_1 - C_4 -alkyl)amino, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxycarbonyl, di-(C_1 - C_4 -alkyl)amino- C_1 - C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di-(C_1 - C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl; phenyl, or phenyl- C_1 - C_6 -alkyl, where the phenyl radical of the two last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

phenyl, heterocyclyl, phenyl-C₁-G₆-alkyl or heterocyclyl-G₁-G₆-alkyl, where the phenyl or heterocyclyl radical of the four last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R¹¹,R¹²are C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl or C₁-C₆-alkylcarbonyl;

- l is 0 to 6;
- m is 2 to 4;
- n is 1 to 5;

p is 2 to 5;

and their agriculturally useful salts.

compound

- 2. (currently amended) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1 where
 - is halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, heterocyclyloxy or phenylthio, it being possible-for the two last-mentioned may radical radicals to be partially or fully halogenated and/or to carry one to two carry one to three of the substituents mentioned below:

 nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;
 - is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹

 OPSR⁸R⁹, NR¹⁰R¹¹ or N-bonded heterocyclyl, which is unsubstituted or partially or fully halogenated and/or carries one to three of the following radicals:

 nitro, cyano, C₁-G₄-alkyl, G₁-G₄-haloalkyl, G₁-G₄-alkoxy or G₁-G₄-haloalkoxy.

compound

- 3. (currently amended) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim I, where
 - R⁵ is halogen, OR⁷, NR¹⁰R¹¹ or N-bonded heterocyclyl which is unsubstituted

or partially or fully halogenated and/or carries one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy.

4. (previously presented) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1, where

R⁷ is C₁-C₆-alkyl, C₁-C₂₀-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, (C₁-C₂₀-alkylthio)carbonyl, N,N-di-(C₁-C₆-alkyl)aminocarbonyl, phenyl, phenylcarbonyl or phenoxy-C₁-C₈-alkylcarbonyl, it being possible for the phenyl radical of the three last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

 R^{10} is C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy;

 R^{11} is C_1 - C_6 -alkyl.

compound

- (previously presented) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1, where
 - R⁶ is nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, di-(C₁-

 C_6 -alkoxy)methyl, di- $(C_1$ - C_8 -alkylthio)methyl, $(C_1$ - C_6 -alkoxy) $(C_1$ - C_6 -alkylthio)-methyl, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkoxycarbonyloxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_8 -haloalkylsulfinyl, C_1 - C_8 -alkylsulfonyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -alkoxycarbonyl or C_1 - C_6 -haloalkylcarbonyl, C_1 - C_6 -alkoxycarbonyl or C_1 - C_6 -haloalkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form an -O-(CH_2)_m-O-, -O-(CH_2)_m-S-, -S-(CH_2)_m-S-, -O-(CH_2)_n- or -S-(CH_2)_n chain which is unsubstituted or substituted by one to three radicals from the following group :

halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or C₁-C₄-alkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together $\max_{p \in \mathcal{C}} \frac{1}{p} = \mathbb{E}$ form a -(CH₂)_p chain which possibly is interrupted by oxygen or sulfur and which is unsubstituted or substituted by one to four radicals from the following group :

halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or C_1 - C_4 -alkoxycarbonyl;

or

WITSCHEL et al., Serial No. 09/763,704

two radicals, which are linked to the same carbon, together with this carbon form a carbonyl group.

6. (previously presented) A process for preparing compounds of the formula I as claimed in claim 1 where R⁵ = halogen, which comprises reacting a cyclohexanedione derivative of the formula III,

$$(R^6)$$

where the variables R^1 to R^3 , and I are each as defined in claim 1, with a halogenating agent.

7. (previously presented) A process for preparing compounds of the formula I as claimed in claim 1 where R⁵ = OR⁷, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹ or OPSR⁸R⁹,

which comprises reacting a cyclohexanedione derivative of the formula III,

$$(R^6)$$

where the variables R¹ to R³, and I are each as defined in claim 1, with a compound of the formula IV α , IV β , IV γ , IV δ or IV ϵ ,

$$L^1-R^7$$
 L^1-SO_2 R^8 $L^1-PR^8R^9$ $L^1-POR^8R^9$ $L^1-PSR^8R^9$ (IV α) (IV β) (IV γ) (IV δ) (IV ϵ)

where the variables R⁷ to R⁹ are each as defined in claim 1 and L¹ is a nucleophilically replaceable leaving group.

8. (currently amended) A process for preparing compounds of the formula I as claimed

in claim 1 where $R^5 = OR^7$, SR^7 , POR^8R^9 , $NR^{10}R^{11}$, $ONR^{11}R^{12}$, or N-linked heterocyclyl or O-(N-linked heterocyclyl), which comprises reacting a compound of the formula I α (\equiv I where R^5 = halogen, OSO_2R^8),

$$(\mathsf{R}^6) \xrightarrow{\mathsf{R}^3} \mathsf{R}^2 \\ (\mathsf{R}^6) \xrightarrow{\mathsf{R}^5} \mathsf{R}^1 \\ (\mathsf{R}^6) \xrightarrow{\mathsf{R}^6} \mathsf{R}^3$$

I where R5= halogen or OSO₂R8

where the variables R^1 to R^3 , R^6 and I are each as defined in claim 1, with a compound of the formula $V\alpha_1V\beta_1$, $V\gamma_1V\delta_1V\epsilon_1V\gamma_1$, $V\vartheta_1$,

HOR ⁷	HSR ⁷	HPOR®R®	HNR ¹⁰ R ¹¹	HONR ¹¹ R ¹²	
(Va)	(Vβ)	(Vy)	(Vδ)	(Vε)	
	H(N-linked	H(ON-linked			
heterocyclyl)			heterocyclyl)		
	Vη		₩		

where the variables R^7 to R^{12} are each as defined in claim 1, if appropriate

in the presence of a base.

9. (previously presented) A process for preparing compounds of the formula I as claimed in claim 1, where $R^5 = SOR^8$, SO_2R^8 , which comprises reacting a compound of the formula I β (\equiv I where $R^5 = SR^8$),

$$(\mathsf{R}^6) \overset{\mathsf{R}^3}{\longleftarrow} \mathsf{R}^2 \qquad (\mathsf{R}^6) \overset{\mathsf{R}^5}{\longleftarrow} \mathsf{R}^2$$

I where R5= SR8

where the variables R¹ to R⁸ and I are each as defined in claim 1, with an oxidizing agent.

10. (previously presented) A composition, comprising a herbicidally effective amount of compound at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 1 and auxiliaries which

WITSCHEL et al., Serial No. 09/763,704

are conventionally used for formulating crop protection agents.

- 11. (previously presented) A process for preparing a composition as claimed in claim 10, which comprises mixing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I and auxiliaries which are conventionally used for formulating crop protection agents.
- 12. (previously presented) A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 1 to act on plants, their habitat and/or on seeds.

13. (canceled)

૯૧૦૦૦ અફ્રેગ્યાની 2. 14. (currently amended) A cyclohexenonequinolinoyl derivative of the formula I

$$R^4$$
 R^4
 R^2
 R^1

where:

R¹ is hydrogen, nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxyiminomethyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl, aminosulfonyl, N-(C_1 - C_6 -alkylsulfonyl, aminosulfonyl, N-(C_1 - C_6 -alkyl)aminosulfonyl,

N, N-di-(C_1 - C_6 -alkyl) aminosulfonyl ,

N-(C₁-C₆-alkylsulfonyl)amino,

N-(C₁-C₆-haloalkylsulfonyl)amino,

 $N-(C_1-C_6-alkyl)-N-(C_1-C_6-alkylsulfonyl)amino,$

 $\label{eq:n-continuous} \textbf{N-}(\textbf{C}_1\textbf{-}\textbf{C}_6\textbf{--alkyl})\textbf{-}\textbf{N-}(\textbf{C}_1\textbf{-}\textbf{C}_6\textbf{--haloalkylsulfonyl})\textbf{amino,}$

phenoxy, heterocyclyloxy, or phenylthio or heterocyclylthio, it beingpossible for the two four last-mentioned radicals to be partially or fully halogenated and/or to carry one to two one to three of the following substituents:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl,

C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R², R³ are hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl or halogen;

R⁴ is a compound lla

$$(R^6)$$
 R^5
 R^5
 R^5
 R^5

where

R⁵ is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, POR⁶R⁹,

OPR®R®, OPOR®R®, OPSR®R®, NR®R®, NR®R®, NR®R®, N-linked heterocyclyl or O-(N-linked heterocyclyl), it being possible for the heterocyclyl radical of the two last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkyl, C₁-C₄-alkoxy;

R⁶ is nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, di- $(C_1$ - C_6 -alkoxy)methyl, $di-(C_1$ - C_6 -alkylthio)methyl,

 $(C_1-C_6$ -alkoxy) $(C_1-C_6$ -alkylthio)methyl, hydroxyl,

 C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy,

 C_1 - C_6 -alkoxycarbonyloxy, C_1 - C_6 -alkylthio,

 C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl,

C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl,

C₁-C₆-haloalkylsulfonyl, C₁-C₆-alkylcarbonyl,

C₁-C₆-haloalkylcarbonyl, C₁-C₆-alkoxycarbonyl or

 C_1 - C_6 -haloalkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form an -O-(CH_2)_m-O-, -O-(CH_2)_m-S-, -S-(CH_2)_m-S-, -

 $O_{-}(CH_2)_n^-$ or $-S_{-}(CH_2)_n$ chain which is unsubstituted or substituted by one to three radicals from the following group: halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or C_1 - C_4 -alkoxycarbonyl;

or

two radicals , which are linked to the same carbon, way be together form a -(CH_2)_p chain which possibly is interrupted by oxygen or sulfur and/or is unsubstituted or substituted by one to four radicals from the following group: halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or C_1 - C_4 -alkoxycarbonyl;

OL

two radicals , which are linked to the same carbon, together form a methylidene group which is unsubstituted or substituted by one or two radicals from the following group: halogen, hydroxyl, formyl, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl or C_1 - C_6 -haloalkylsulfonyl;

or

two radicals, which are linked to the same carbon,

together with this carbon form a carbonyl group;

or

two radicals , which are linked to different carbons, together form a -(CH_2)_n chain which is unsubstituted or substituted by one to three radicals from the following group: halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, hydroxyl or C_1 - C_6 -alkoxycarbonyl;

 $R^7 \qquad \text{is C_1-C_6,-alkyl, C_3-C_6-alkenyl, C_3-C_6-haloalkenyl,} \\ C_3-C_8-alkynyl, C_3-C_8-haloalkynyl, C_3-C_6-cyloalkyl,} \\ C_1-C_{20}-alkylcarbonyl, C_2-C_6-alkenylcarbonyl,} \\ C_2-C_8-alkynylcarbonyl, C_3-C_8-cyloalkylcarbonyl,} \\ C_1-C_8-alkoxycarbonyl, C_3-C_6-alkenyloxycarbonyl,} \\ C_3-C_6-alkynyloxycarbonyl,} \\ (C_1-C_{20}-alkylthio)carbonyl,} \\ C_3-C_8-alkylaminocarbonyl,} \\ C_3-C_8-alkenylaminocarbonyl,} \\ C_3-C_8-alkynylaminocarbonyl,} \\ N,N-di-(C_1-C_6-alkyl)aminocarbonyl,} \\ N-(C_3-C_8-alkenyl-)-N-(C_1-C_8-alkyl-) aminocarbonyl,} \\ N-(C_3-C_8-alkynyl-)-N-(C_1-C_8-alkyl-) aminocarbonyl,} \\ N-(C_3-C_8-alkynyl-)-N-(C$

N-(C₁-C₆-alkoxy)-

N-(C_1 - C_6 -alkyl) aminocarbonyl, N-(C_3 - C_6 -alkenyl)-N-(C_1 - C_6 -alkoxy) aminocarbonyl, N-(C_3 - C_6 -alkynyl)-N-(C_1 - C_6 -alkoxy) aminocarbonyl, di-(C_1 - C_6 -alkyl)-aminothiocarbonyl, C_1 - C_6 -alkylcarbonyl- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxyimino- C_1 - C_6 -alkyl,

N-(C_1 - C_6 -alkylamino) imino- C_1 - C_6 -alkyl or

N,N-di-(C_1 - C_6 -alkylamino)imino- C_1 - C_6 -alkyl, it being possible for the above-mentioned alkyl, cycloalkyl and alkoxy radicals to be partially or fully halogenated and/or to carry one to three of the following groups: cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di-(C_1 - C_4 -alkyl) amino, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxycarbonyl, di-(C_1 - C_4 -alkyl)amino- C_1 - C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di-(C_1 - C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl;

phenyl, phenyl-C₁-C₆-alkyl, phenylcarbonyl-C₁-C₆-alkyl, phenylcarbonyl, phenoxycarbonyl, phenoxythiocarbonyl, phenoxy-C₁-C₆-alkylcarbonyl, phenoxy-C₁-C₆-alkylcarbonyl, phenylaminocarbonyl, or phenyl-C₂-C₈-alkenylcarbonyl, it being possible for the phenyl radical of the 10 last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals:

phenyl, heterocyclyl, phenyl-C₁-G₆-alkyl, heterocyclylcarbonyl-G₁-G₆-alkyl, phenylcarbonyl-G₁-G₆-alkyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxy-C₁-G₆-alkylcarbonyl, heterocyclyloxy-C₁-G₆-alkylcarbonyl, phenoxy-C₁-G₆-alkylcarbonyl, heterocyclyloxy-C₁-G₆-alkylcarbonyl, phenylaminocarbonyl, N-(G₁-G₆-alkyl)-N-(phenyl)aminocarbonyl, heterocyclylaminocarbonyl, N-(C₁-G₆-alkyl)-N-(heterocyclyl)aminocarbonyl, phenyl-C₂-G₆-alkenylcarbonyl or heterocyclyl-C₂-G₆-alkenylcarbonyl, it being possible for the phenyl and the heterocyclyl radical of the 20 last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -halogenalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R⁸,R⁹ are C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cycloalkyl, hydroxyl, C₁-C₆-alkoxy, amino, C₁-C₆-alkylamino, C₁-C₆-haloalkylamino, di-(C₁-C₆-alkyl) amino or di-(C₁-C₆-haloalkyl) amino, it being possible for the abovementioned alkyl, cycloalkyl and alkoxy radicals to be partially or fully halogenated and/or to carry one to three of the following groups:

cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di-(C_1 - C_4 -alkyl) amino, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxycarbonyl, di-(C_1 - C_4 -alkyl) amino- C_1 - C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di-(C_1 - C_4 -alkyl) aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_8 -cycloalkyl;

phenyl, phenyl-C₁-C₈-alkyl, phenoxy, it-being-possible for the phenyl radical of the last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals: phenyl, heterocyclyl, phenyl-C₁-C₆-alkyl, heterocyclyl-C₁-C₆-alkyl, phenoxy, heterocyclyloxy, it being possible for the phenyl and the heterocyclyl radical of the last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R¹⁰ is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C₃-C₆alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cycloalkyl, hydroxyl, C₁-C₆alkoxy, C₃-C₆-alkenyloxy, C₃-C₆-alkynyloxy, amino, C₁-C₆alkylamino, di-(C₁-C₆-alkyl)amino or C₁-C₆alkylcarbonylamino, it being possible for the
abovementioned alkyl, cycloalkyl and alkoxy radicals to be

partially or fully halogenated and/or to carry one to three

radicals from the following group:

cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio, di-(C₁-C₄-alkyl)amino,

C₁-C₄-alkylcarbonyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkoxy-C₁-

C₄-alkoxycarbonyl, di-(C₁-C₄-alkyl)amino-C₁-C₄-

alkoxycarbonyl, hydroxycarbonyl, C₁-C₄-alkylaminocarbonyl,

di-(C₁-C₄-alkyl)aminocarbonyl, aminocarbonyl, C₁-C₄-

alkylcarbonyloxy or C₃-C₆-cycloalkyl;

phenyl, or phenyl-C₁-C₆-alkyl, it being possible for the phenyl radical of the two last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the

following radicals:

phenyl, heterocyclyl, phenyl-C₁-C₆-alkyl or heterocyclyl-C₁-C₆-alkyl, it being possible for the phenyl or heterocyclyl radical of the four last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^{11} , R^{12} are C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl or C_1 - C_6 -alkylcarbonyl;

l is 0 to 6;

m is 2 to 4;

- n is 1 to 5;
- p is 2 to 5; and their agriculturally useful salts.
- COMPOUND

 15. (currently amended) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 14, where
 - R¹ is halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, heterocyclyloxy or phenylthio, it being possible for the two last-mentioned radical radicals to be partially or fully halogenated and/or to carry one to two one to three of the substituents mentioned below:

 nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;
 - is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹

 OPSR⁸R⁹, NR¹⁰R¹¹ or N-bonded heterocyclyl which is unsubstituted or partially or fully halogenated and/or carries one to three of the following radicals:

 nitro, cyano, C₁-G₄-alkyl, G₁-G₄-haloalkyl, G₁-G₄-alkoxy or G₁-G₄-haloalkoxy.
- (currently amended) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 14, where

is halogen, OR⁷, NR¹⁰R¹¹ or N-bonded heterocyclyl which is unsubstituted or partially or fully halogenated and/or carries one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkexy or C₁-C₄-haloalkoxy.

Compound

(currently amended) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 13, where

R⁷ is C₁-C₆-alkyl, C₁-C₂₀-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, (C₁-C₂₀-alkylthio)carbonyl, N,N-di-(C₁-C₆-alkyl)aminocarbonyl, phenyl, phenylcarbonyl or phenoxy-C₁-C₆-alkylcarbonyl, it being possible for the phenyl radical of the three last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

 R^{10} is C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy;

R¹¹ is C₁-C₆-alkyl.

18. (previously presented) A process for preparing compounds of the formula I as claimed in claim 13 where R5 = halogen, which comprises reacting a

cyclohexanedione derivative of the formula III

$$(R^6)$$

where the variables R^1 to R^3 , and I are each as defined in claim 14, with a halogenating agent.

18. (previously presented) A process for preparing compounds of the formula I as claimed in claim 14 where R⁵ = OR⁷, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹ or OPSR⁸R⁹, which comprises reacting a cyclohexanedione derivative of the formula III,

WITSCHEL et al., Serial No. 09/763,704

$$(R^6)$$

where the variables R^1 to R^3 , and I are each as defined in claim 14, with a compound of the formula IV α , IV β , IV γ , IV δ or IV ϵ ,

$$L^1-R^7$$
 L^1-SO_2 R^8 $L^1-PR^8R^9$ $L^1-POR^8R^9$ $L^1-PSR^8R^9$ (IVa) (IVb) (IVb)

where the variables R⁷ to R⁹ are each as defined in claim 14 and L¹ is a nucleophilically replaceable leaving group.

(currently amended) A process for preparing compounds of the formula I as claimed in claim $\frac{13}{14}$ where $R^5 = OR^7$, SR^7 , POR^8R^9 , $NR^{10}R^{11}$, $ONR^{11}R^{12}$, or N-linked

WITSCHEL et al., Serial No. 09/763,704

heterocyclyl N-linked heterocyclyl or O-(N-linked heterocyclyl), which comprises reacting a compound of the formula I α (\equiv I where R⁵ = halogen, OSO₂R⁸),

$$(\mathsf{R}^6) \overset{\mathsf{R}^3}{\longleftarrow} \mathsf{R}^2 \overset{\mathsf{R}^3}{\longleftarrow} \mathsf{R}^2$$
 and/or
$$(\mathsf{R}^6) \overset{\mathsf{R}^5}{\longleftarrow} \mathsf{R}^3$$

I where R⁵= halogen or OSO₂R⁸

HOR'	R ⁷ HSR ⁷ HPOR ⁸ R ⁹ HNR ¹⁰ R ¹¹		HONR ¹¹ R ¹²	
(Va)	(Vβ)	(VY)	(Vδ)	(Vε)
H(N-linked		H(ON-linked		
heterocyclyl)		heterocyclyl)		
Vη		₩		

where the variables R7 to R12 are each as defined in claim 14, if

appropriate in the presence of a base.

21. (previously presented) A process for preparing compounds of the formula I as claimed in claim 14 where R⁵ = SOR⁸, SO₂R⁸, which comprises reacting a compound of the formula Iβ (=I where R⁵ = SR⁸),

$$(\mathsf{R}^6)_{\mathsf{I}} \overset{\mathsf{R}^3}{\longleftarrow} \mathsf{R}^2 \overset{\mathsf{R}^3}{\longleftarrow} \mathsf{R}^2$$
 and/or
$$(\mathsf{R}^6)_{\mathsf{I}} \overset{\mathsf{R}^3}{\longleftarrow} \mathsf{R}^2$$

I where R5= SR8

where the variables R¹ to R⁵, R⁷, R⁸ and I are each as defined in claim 14, with an oxidizing agent.

2\
-22. (currently amended) A composition, comprising a herbicidally effective amount of at

WITSCHEL et al., Serial No. 09/763,704

compound

least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 14 and conventional crop protection formulation auxiliaries which are conventionally used for formulating crop protection agents.

- 23. (currently amended) A process for preparing a composition as claimed in claim 22, which comprises mixing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I and conventional crop protection formulation auxiliaries which are conventionally used for formulating crop protection agents.
- 24. (previously presented) A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 14 to act on plants, their habitat and/or on seeds.

25. (canceled)