DÉVELOPPEMENTS LIMITÉS

1. FONCTIONS NÉGLIGEABLES ET ÉQUIVALENTES

On considère des fonctions f, g de V dans \mathbf{R} où V est un voisinage épointé dans $\overline{\mathbf{R}} = \mathbf{R} \cup \{\infty\}$. C'est-à-dire que V est de la forme $U - \{a\}$ où U est un voisinage de a dans $\overline{\mathbf{R}}$ et $a \in \overline{\mathbf{R}}$.

- si $a = \infty$ alors $V \supset \{k, \infty\}$;
- si $a \in \mathbf{R}$ alors $V \supset]k, a[\cup]a, l[$ avec $k < a < l \text{ et } k, l \in \mathbf{R}$.

f, g sont définies au voisinage de $a \in \overline{\mathbf{R}}$.

1.1. Négligeable

Définition 1.1.0.1. —

On dit que f est $n\acute{e}gligeable$ devant g au voisinage de a s'il existe un voisinage V tel qu'il existe une fonction $\varepsilon:V\to\mathbf{R}$ telle que : $-f=\varepsilon\cdot g\,; \\ -\lim_a\varepsilon=0.$ On note $f=\mathrm{o}(g).$

Remarque. — On note :

$$\varepsilon f \colon \left\{ egin{aligned} V &\to \mathbf{R} \\ t &\mapsto \varepsilon(t) f(t) \end{aligned} \right.$$

Exemples. — Par exemple :

- 1. Si g = 1 alors f = o(1) si, et seulement si, $\lim_a f = 0$.
- 2. Si f = 0 au voisinage de a alors pour toute fonction g : f = o(g).
- 3. Si f est bornée et $\lim_{a}(g) = \infty$ alors $f = \mathrm{o}(g)$ (on prend alors $\varepsilon = f/g$).
- 4. On a $x^m = o(x^n)$ si, et seulement si, m < n.

5. Pour tous $\alpha, \beta > 0$:

$$\begin{cases} x^{\alpha} \underset{\infty}{=} o(e^{\beta x}) \\ (\ln x)^{\alpha} \underset{(\infty)}{=} o(x^{\beta}) \end{cases},$$

 $\operatorname{car} \lim_{\infty} x^{\alpha} e^{-\beta x} = 0.$

Proposition 1.1.0.1. —

Si f/g est définie dans un voisinage de a, alors :

$$f \underset{(a)}{=} o(g) \iff \lim_{a} (f/g) = 0.$$

DÉMONSTRATION 1.1.0.1. —

On prend $\varepsilon = f/g$.

Remarque. — Il peut arriver que f/g n'est pas défini dans aucun voisinage de a.

Exemples. — Contre-exemples :

- 1. Avec $g(t) = \sin(1/[t-a])$, pour tout voisinage de V de a, g(t) s'annule en un point de V.
- 2. Même si le quotient n'est pas définit : $t = o(\sin(1/t))$.

Proposition 1.1.0.2. —

On a au voisinage de a:

- 1. la propriété o est transitive ; 2. la propriété o est compatible avec la multiplication, i.e. : si $f={\rm o}(g)$ alors $fh={\rm o}(gh)$;
- 3. si f = o(g) et si h = o(k) alors fh = o(gk).

DÉMONSTRATION 1.1.0.2. —

- ans l'ordre :

 1. Pour $f = \varepsilon_1 g$ et $g = \varepsilon_2 h$ avec $\lim_a \varepsilon_i = 0$ alors : $f = \varepsilon_1 \varepsilon_2 h$ et $\lim_a \varepsilon_1 \varepsilon_2 = 0$.

 2. Si $f = \varepsilon g$, $\lim_a \varepsilon = 0$, alors $fh = \varepsilon gh$.

Contre-exemple. — o n'est pas compatible avec l'addition. Par exemple : $x = o(x^3)$ et $x^2 = o(-x^3)$ n'entraine pas $x + x^2 = o(0)$.

1.2. Équivalence

Définition 1.2.0.2. —

On dit que f est équivalence à g au voisinage de a si : f - g = o(g). On note $f \sim g$.

Proposition 1.2.0.3. —

Si f/g est définie dans un voisinage de a alors :

$$f \underset{(a)}{\sim} g \iff \lim_{a} f/g = 1.$$

Proposition 1.2.0.4. —

 $\sim_{(a)}$ est une relation d'équivalence.

Démonstration 1.2.0.3. —

Par définition:

- 1. elle est réflexive : $f \sim_{(a)} f$ puisque 0 = o(f); 2. elle est symétrique si $f \sim_{(a)} g$ alors il existe ε telle que $\lim_a \varepsilon = 0$ et $f = (1+\varepsilon)g$, or $1/(1+\varepsilon)$ est aussi définie au voisinage de a et puisque $g=(1/[1+\varepsilon])f$ on a

$$g = (1 + (1/[1+\varepsilon]-1))f$$

or en posant $\varepsilon' = [1 + \varepsilon] - 1$ on a $\lim_a \varepsilon' = 0$;

3. elle est transitive : $f \sim g$ et $g \sim h$ implique qu'il existe $\varepsilon_1, \varepsilon_2$ telles que $f = (1+\varepsilon_1)g$, $g = (1+\varepsilon_2)h$ et donc $f = (1+\varepsilon)h$ avec $\varepsilon = \varepsilon_1 + \varepsilon_2 + \varepsilon_1\varepsilon_2$ et $\lim_a \varepsilon = 0$.

Proposition 1.2.0.5. —

Si $f \sim g$ et si $\lim_a f$ existe alors $\lim_a g$ existe et $\lim_a g = \lim_a f$.

Démonstration 1.2.0.4. —

Soit ε telle que $\lim_a \varepsilon = 0$ alors puisque $f = (1 + \varepsilon)g$ on a

$$\lim_{a} f = \lim_{a} (1 + \varepsilon)g = \lim_{a} g.$$

Proposition 1.2.0.6. —

Le produit et le quotient (quand il est défini) d'équivalences est une équivalence.

Une puissance entière d'équivalences est une équivalence.

DÉMONSTRATION 1.2.0.5. —

Si $f = (1 + \varepsilon_1)g$ et $h = (1 + \varepsilon_2)k$ alors $fh = (1 + \varepsilon)gk$ avec $\varepsilon = \varepsilon_1 + \varepsilon_2 + \varepsilon_1\varepsilon_2$.

Proposition 1.2.0.7. -

Si $f \sim g$ et si $\varphi: I \to \mathbf{R}$ telle que $\lim_b \varphi = a, b \in I$. Alors

$$f \circ \varphi \sim_{(a)} g \circ \varphi.$$

Démonstration 1.2.0.6. —

Si $f = (1 + \varepsilon)g$ avec $\lim_a \varepsilon = 0$. Alors $f \circ \varphi = (1 + \varepsilon') \cdot g \circ \varphi$

$$f \circ \varphi = (1 + \varepsilon') \cdot g \circ \varphi$$

Proposition 1.2.0.8. —

On a:

- 1. Si f est dérivable en a alors si $f'(a) \neq 0$ on a $f(x) f(a) \sim f'(a)(x-a)$.
- 2. Si g est continue dans un voisinage épointé de a, alors si $f \sim g > 0$ alors

$$\int_{a}^{x} f(t) dt \sim \int_{a}^{x} g(t) dt.$$

DÉMONSTRATION 1.2.0.7. —

Dans l'ordre:

1. Si f est dérivable en a alors :

$$\frac{f(x) - f(a)}{x - a} \underset{(a)}{\sim} f'(a)$$

puisque si $\lim_a g = b \in \mathbf{R}^*$ alors $g \underset{(a)}{\sim} b$.

2. On sait que f - g = o(g) et on veut :

$$\int_{x}^{a} (f - g)(t) dt = o\left(\int_{x}^{a} g(t) dt\right).$$

En posant h = f - g on se ramène au problème :

$$h = o(g) \implies \int_a^x h = o \int_a^x g.$$

Si $h = \varepsilon g$ et $\lim_a \varepsilon = 0$ alors

$$\int_{a}^{x} g = \int_{a}^{x} \varepsilon g$$

Or

Donc

$$\frac{\left|\int_{x}^{a} \varepsilon g\right|}{\int_{a}^{x} g} \le \max_{[a,x]} |\varepsilon| \frac{\int_{a}^{x} g}{\int_{a}^{x} g} \xrightarrow[x \to a]{} 0.$$

$$\frac{\left|\int_{a}^{x} \varepsilon g = h\right|}{\left|\int_{a}^{x} g\right|} \xrightarrow[x \to a]{} 0.$$

2. DÉRIVÉES SUCCESSIVES ET FORMULES DE TAYLOR

Soit $p \ge 0$ un entier.

Définition 2.0.0.3. —

- Soit I un intervalle de ${\bf R}$ et $f:I\to {\bf R}$. 1. $f\in C^0$ si f est continue; 2. $f\in C^p$ $(p\geq 1)$ si f est dérivable et $f'\in C^{p-1}$.

Remarque. — Si $f \in C^p$ alors les p-ièmes dérivées successives et f sont toutes continues sur $I. f \in C^{\infty}$ si $f^{(p)}$ existe et est continue pour tout $p \ge 1$.

Proposition 2.0.0.9. —

Si $f, g \in C^p$ alors f + g, fg, f/g et $f \circ g$ (si définie) sont C^p .

DÉMONSTRATION 2.0.0.8. —

- 1. $(f+g)^{(p)} = f^{(p)} + g^{(p)}$ par récurrence sur p; 2. $(fg)^{(p)} = \sum_{k=0}^{p} \binom{p}{k} f^{(k)} g^{(p-k)}$;
- 3. par récurrence sur p pour $(f \circ g)^{(p)}$ en utilisant : $(f \circ g)' = (f' \circ g)g'$.