```
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
1 df = pd.read_csv("/content/train.csv")
```

1 df.head(2)

	Property_ID	Property_Type	Property_Area	Number_of_Windows	Number_of_Doors	Fı
0	0x21e3	Apartment	106	NaN	1	Semi_
1	0x68d4	Apartment	733	2.0	2	U
j	2.					
4						•

1 df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 39499 entries, 0 to 39498 Data columns (total 15 columns):

#	Column	Non-N	ıll Count	Dtype
0	Property_ID	39499	non-null	object
1	Property_Type	39499	non-null	object
2	Property_Area	39499	non-null	int64
3	Number_of_Windows	37845	non-null	float64
4	Number_of_Doors	39499	non-null	int64
5	Furnishing	38457	non-null	object
6	Frequency_of_Powercuts	38116	non-null	float64
7	Power_Backup	39499	non-null	object
8	Water_Supply	39499	non-null	object
9	Traffic_Density_Score	39499	non-null	float64
10	Crime_Rate	38712	non-null	object
11	Dust_and_Noise	38280	non-null	object
12	Air_Quality_Index	39499	non-null	float64
13	Neighborhood_Review	39499	non-null	float64
14	Habitability_score	39499	non-null	float64
dtyp	es: float64(6), int64(2)	, obje	ct(7)	

memory usage: 4.5+ MB

1 df.dropna(inplace=True)

1 df.head(2)

	Property_ID	Property_Type	Property_Area	Number_of_Windows	Number_of_Doors	Furni
1	0x68d4	Apartment	733	2.0	2	Unfur
2	0x7d81	Apartment	737	4.0	2	Fur
D						

1 df1 = df.iloc[:,[1,5,7,8,10,11]] 2 df1

	Property_Type	Furnishing	Power_Backup	Water_Supply	Crime_Rate	Dust_and_!
1	Apartment	Unfurnished	No	Once in a day - Evening	Well below average	Me
2	Apartment	Fully Furnished	No	Once in a day - Morning	Slightly below average	Me
3	Apartment	Unfurnished	Yes	Once in a day - Morning	Well above average	Mŧ
4	Bungalow	Fully Furnished	No	All time	Well below average	Me
5	Single-family home	Unfurnished	No	Once in a day - Morning	Well below average	Me
39491	Bungalow	Semi_Furnished	Yes	All time	Well below average	Me
39492	Bungalow	Fully Furnished	No	All time	Slightly above average	Me
39495	Apartment	Fully Furnished	No	All time	Slightly above average	Me
39496	Bungalow	Unfurnished	Yes	Once in two days	Well below average	Me
39498	Single-family home	Fully Furnished	No	All time	Well below average	
22770 r/	oue v G columns					•

¹ for a in df1.columns:

2 print(a,len(df1[a].unique()))

```
Property_Type 6
Furnishing 3
Power Backup 3
Water Supply 5
Crime_Rate 4
Dust and Noise 3
```

1 from sklearn.preprocessing import OneHotEncoder

```
1 ohe = OneHotEncoder()
2 df1 = ohe.fit_transform(df1)
```

1 df1=pd.DataFrame(df1.toarray())

	Property_Area	Number_of_Windows	Number_of_Doors	Frequency_of_Powercuts	Traffic_[
1	733	2.0	2	1.0	
2	737	4.0	2	0.0	
3	900	3.0	2	2.0	
4	2238	14.0	6	0.0	
5	1185	3.0	3	0.0	
D	+				

1 from sklearn.preprocessing import StandardScaler

1 sc = StandardScaler()

1 df2 = sc.fit_transform(df2)

1 df2 = pd.DataFrame(df2)

1 final = pd.concat([df2,df1],axis=1)

1 final

	0	1	2	3	4	5	6	0	1
0	-0.337143	-0.715193	-0.284456	0.685475	-1.627038	-0.407715	-0.231744	0.0	1.0
1	-0.335111	0.027420	-0.284456	-0.643602	0.896389	-0.007047	0.094363	0.0	1.0
2	-0.252293	-0.343886	-0.284456	2.014552	-0.160501	-0.343608	-3.003652	0.0	1.0
3	0.427527	3.740487	3.099358	-0.643602	-0.734007	-0.087181	1.298450	0.0	0.0
4	-0.107488	-0.343886	0.561498	-0.643602	-0.545569	-0.487849	0.947258	0.0	0.0
33767	1.329890	2.997874	3.099358	-0.643602	0.937354	-0.664143	1.348620	0.0	0.0
33768	0.975753	2.255260	1.407451	2.014552	-1.889212	-0.327582	-1.812108	0.0	0.0
33769	-0.483472	-1.086500	0.561498	0.685475	-0.537376	-0.567983	-1.009383	0.0	1.0
33770	1.210997	0.770034	3.099358	-0.643602	0.396620	0.249380	0.081820	0.0	0.0
33771	-0.085132	-0.715193	1.407451	-0.643602	1.584597	0.169247	1.173024	0.0	0.0

33772 rows × 31 columns

1 y = df.iloc[:,14]

 $1 \times = final$

2 x

1

```
2
                                                                                                                                                                                                                    3
                                                                                                                                                                                                                                                                                                             5
                                                                                  0
                                                                                                                             1
                                                                                                                                                                                                                                                                                                                                                                                              1
                             0
                                                  -0.337143 \quad -0.715193 \quad -0.284456 \quad 0.685475 \quad -1.627038 \quad -0.407715 \quad -0.231744 \quad 0.0 \quad 1.0 \quad -0.231744 \quad 0.0 \quad 0.0 \quad 0.0 \quad -0.231744 \quad 0.0 \quad
                                                   -0.335111
                                                                                          0.027420 -0.284456 -0.643602
                                                                                                                                                                                                                                0.896389 -0.007047 0.094363
                                                   -0.252293 -0.343886 -0.284456 2.014552 -0.160501 -0.343608 -3.003652 0.0 1.0
1 from sklearn.model selection import train test split
1 x train,x test,y train,y test = train test split(x,y,test size=0.2)
1 from sklearn.linear_model import LinearRegression
                    33769 0.075753 2.255260 1.407451 2.014552 _1.880212 _0.327582 _1.812108 0.0 0.0
1 lr = LinearRegression()
1 lr.fit(x_train,y_train)
                LinearRegression()
1 y pred = lr.predict(x test)
1 from sklearn.metrics import mean_absolute_error
1 mean_absolute_error(y_test,y_pred)
                7.230068836508659
               from sklearn.tree import DecisionTreeRegressor
1
                dtr = DecisionTreeRegressor()
1
1
               dtr.fit(x_train,y_train)
                DecisionTreeRegressor()
               y pred2 = dtr.predict(x test)
1
               mean_absolute_error(y_test,y_pred2)
                5.762447076239822
```

from sklearn.ensemble import RandomForestRegressor

```
1 rfr = RandomForestRegressor()
```

RandomForestRegressor()

1 from sklearn.svm import SVR

$$1 \text{ svr} = \text{SVR}()$$

5.7100159987768935

1 df.head(2)

	Property_ID	Property_Type	Property_Area	Number_of_Windows	Number_of_Doors	Furni
1	0x68d4	Apartment	733	2.0	2	Unfur
2	0x7d81	Apartment	737	4.0	2	Fur

1 df1.head(2)

		0	1	2	3	4	5	6	7	8	9	 14	15	16	17	18	19	20	21
()	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	 1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
•	1	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	 0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0
2 rows × 24 columns																			

1 df2.head(2)

	0	1	2	3	4	5	6	10+
0	-0.337143	-0.715193	-0.284456	0.685475	-1.627038	-0.407715	-0.231744	
1	-0.335111	0.027420	-0.284456	-0.643602	0.896389	-0.007047	0.094363	

1 dft1 = df_test.iloc[:,[1,5,7,8,10,11]]
2 dft1

12:10 PN	Л	HackerEarthCompetition.ipynb - Colaboratory													
		Property_Type	Furnishing	Power_	_Backup	Water_Supply	Crime_Rate	Dust_and_!							
_	0	Apartment	Unfurnished		No	Once in a day - Morning	Well above average	Me							
	1	Apartment	Semi_Furnished		No	Once in a day - Evening	Well below average	Me							
1 for	a in	dft1.columns:													
2 p	rint(a	,len(dft1[a].ur	nique()))												
F P W C D	urnish Power_B Water_S Crime_R Dust_an	Backup 3 Supply 5 Bate 4 Id_Noise 3													
1 fro	m skle	arn.preprocessi	ng import OneHo	tEncode	er										
						Once in a day	Slightly								
		HotEncoder() e.fit_transform	n(dft1)												
	10496	OUITAITIEI 	Semi Furnished		Yes	All time	4 A CII DCIO AA	Me							
1 dft	1=pd.D	ataFrame(dft1.t	coarray())												
	10497	Duplex	Fully Furnished		No										
	2 = df 2.head		2,3,4,6,9,12,13]]											

	Property_Area	Number_of_Windows	Number_of_Doors	Frequency_of_Powercuts	Traffic_[
0	293	3.0	1	0.0	
1	586	4.0	1	0.0	
2	305	1.0	2	1.0	
3	258	2.0	1	1.0	
4	3031	12.0	4	0.0	
7	+				
4					+

1 from sklearn.preprocessing import StandardScaler

1 sc = StandardScaler()

1 dft2 = sc.fit_transform(dft2)

- 1 dft2 = pd.DataFrame(dft2)
- 1 final2 = pd.concat([dft2,dft1],axis=1)
- 1 dft1.head(2)

	0	1	2	3	4	5	6	7	8	9	• • •	14	15	16	17	18	19	20	21
0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0		0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0
1	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0		1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
2 rows x 24 columns																			

2 rows × 24 columns

1 dft2.head(2)

	0	1	2	3	4	5	6	10-
0	-0.590717	-0.333468	-1.128739	-0.647132	0.755214	0.565622	-1.530498	
1	-0.429161	0.038983	-1.128739	-0.647132	1.043000	-0.512868	0.536849	

1 final2

```
0
                              1
                                        2
                                                                                           1
       0
            -0.590717 -0.333468 -1.128739 -0.647132
                                                     0.755214
                                                                0.565622 -1.530498 0.0 1.0
1 p1 = lr.predict(final2)
2 p2 = dtr.predict(final2)
3 p3 = rfr.predict(final2)
4 p4 = svr.predict(final2)
             0 010075 2 010505
                                 1 100060
                                          A 6/7122
                                                      1 006007
                                                                 1 176766
1 mean absolute error(p1,p2)
    7.261287617935883
1 mean_absolute_error(p2,p3)
    4.054170942857143
1 mean_absolute_error(p3,p4)
    3.782548119975854
1 mean_absolute_error(p4,p2)
    5.833542737963133
1 p3
    array([30.9022, 81.0418, 65.2626, ..., 75.4154, 79.661 , 79.8095])
1 df_test.head()
```

		Property_ID	Property_Type	Property_Area	Number_of_Windows	Number_of_Doors	Ft
	0	0x6e93	Apartment	293	3.0	1	U
1 id	=	df_test.iloc[:,0]				
	\mathbf{T}	UX0/0/	Араппети	000	4.0	1	oemi_

1 pd.read_csv("/content/sample_submission.csv")

	Property_ID	Habitability_score
0	0x21e3	71.98
1	0x68d4	71.20
2	0x7d81	71.39
3	0x7a57	31.46
4	0x9409	93.70

1 submission = pd.DataFrame({"Property_ID":id,"Habitability_score":p3})

1 submission

	Property_ID	Habitability_score
0	0x6e93	30.9022
1	0x8787	81.0418
2	0x6c17	65.2626
3	0x9dbd	71.2135
4	0xbfde	74.3830
10495	0x423d	60.9617
10496	0x78c5	83.0341
10497	0xbf3	75.4154
10498	0x305b	79.6610
10499	0x5cff	79.8095

10500 rows × 2 columns

¹ submission.to_csv("Submission.csv",index=False)

¹ nd.read csv("Submission.csv")

	Property_ID	Habitability_score
0	0x6e93	30.9022
1	0x8787	81.0418
2	0x6c17	65.2626
3	0x9dbd	71.2135
4	0xbfde	74.3830
10495	0x423d	60.9617
10496	0x78c5	83.0341
10497	0xbf3	75.4154
10498	0x305b	79.6610
10499	0x5cff	79.8095

10500 rows × 2 columns

1