Преобразование базиса Грёбнера нульмерного идеала к иному мономиальноальному упорядочению.

Федоров Глеб М33351 $\label{eq: 1.1}$ Октябрь 2020

- 1 Оглавление
- 1.1 Постановка проблемы
- 1.2 Дополнительная теория
- 1.3 Алгоритм FGLM
- 1.4 Примерная архитектура программы

2 Постановка проблемы

Дан базис Грёбнера нульмерного идеала, построенный на мономиальном упорядочении m1. Привести данный базис к иному мономиальному упорядочению m2.

3 Дополнительная теория

3.1 Исключающий идеал

Теорема(об исключении): Пусть $I\subset F[x_1,x_2,\ldots,x_s]$ - идеал и G - его базис Грёбнера по отношению к lex-упорядочению с $x_1>x_2>\ldots>x_n$. Тогда $\forall l:0\leq l\leq n$ множество

$$G_l = G \cap F[x_1, x_2, \dots, x_s]$$

является базисом Грёбнера l-го исключающего идеала I_l . Доказательство:

3.2 Нульмерный идеал

Теорема: Пусть поле F алгебраически замкнуто и $I \in F[x_1, x_2, \dots, x_n]$. Тогда следующие условия эквивалентны:

- 1. Алгебра $A = F[x_1, x_2, \dots, x_n]$ I конечномерна над F.
- 2. $V(I) \subset F^n$ конечно.
- 3. Если G базис Грёбнера идеала I, то

$$\forall i \exists m_i \ge 0 : x_i^{m_i} = LM(g)$$

для некоторого $g \in G$.

4. Для каждой переменной x_i исключающий идеал $I \cap F[x_1, x_2, \dots, x_n]$ является ненулевым.

Доказательство: Идеал, удовлетворяюзий данной теореме называется нульмерным

4 Алгоритм FGLM