

Formação do Cientista de Dados Montagem do conjunto de dados – Módulo Básico

Luis Enrique Zárate

Conteúdo do Curso

- Montagem da base de dados
 - 1. Fonte e origem dos dados
 - 2. Tipos de bases de dados: Estáticas, Temporais e Longitudinais
 - 3. Pivotagem reversa
 - 4. Enriquecimento dos dados
 - 5. Melhoramento dos dados
 - 6. Granulidade dos dados
 - 7. Realce de características
 - 8. Avaliação da representatividade da base de dados
 - 9. Análise de domínio dos atributos
 - 10. Incremento exponencial da amostra
 - 11. Expansão exponencial da amostra
 - 12. Distanciamento entre instâncias
 - 13. Problemas de indução
 - 14. Fluxo para a tomada de decisão

Montagem da Base de Dados

□ O cientista de dados deve buscar em bases de dados disponíveis e fontes externas dados para os atributos vinculados ao domínio do problema considerado.

Algumas restições de acesso a Dados

- ✓ Fatores Legais (ex. dados sensíveis)
- ✓ Fatores Departamentais (ex. setor financeiro)
- ✓ Razões Políticas (ex. restrições a dados públicos)
- ✓ Formato dos Dados (ex. junção de dados de bases distintas)
- ✓ Conectividade (ex. Bloquei para uso de crowlers)
- ✓ Arquiteturas das Bases de Dados (ex. Junção de tecnologias antigas)

Alguns deste problemas são fortes restrições. Estas restrições devem ser consideradas para o proseguimento do projeto de Ciência dos Dados.

Base de dados: Estáticas

OBS: Qualquer base considerada Estática é intrinsecamente Temporal

Base de dados: Temporais

N: representa o número de instâncias, registros ou exemplos.

M: representa o número de atributos ou variáveis (numéricas ou categóricas).

Cada elemento **Ztij** corresponde a uma observação do registro **i** e atributo **j**.

Cada valor **t=1...T** corresponde ao período de observação na série

Base de dados: Temporais

$$[Z] = \begin{bmatrix} Z_{t^{11}} & Z_{t^{12}} & \cdots & Z_{t^{1M}} \\ Z_{t^{21}} & Z_{t^{22}} & \cdots & Z_{t^{2M}} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{t^{N1}} & Z_{t^{N2}} & \cdots & Z_{t^{NM}} \end{bmatrix} \rightarrow \begin{bmatrix} \text{Feature Extraction} \\ Z^*_{ijh} = \begin{bmatrix} \overline{Z}_{ijh}, \hat{T}_{ijh} \end{bmatrix} \rightarrow \begin{bmatrix} Z^* \end{bmatrix} = \begin{bmatrix} \overline{Z}_{ijh}, \hat{T}_{ijh} \end{bmatrix} \rightarrow \begin{bmatrix} Z^* \end{bmatrix} = \begin{bmatrix} \overline{Z}_{ijh}, \hat{T}_{ijh} \end{bmatrix} \rightarrow \begin{bmatrix} \overline{$$

$$Z^*_{ijh} = \left[\overline{Z}_{ijh}, \hat{T}_{ijh}\right]
ightharpoonup \left[Z^*_{ijh}, \hat{T}_{ijh}\right]$$

Média e Tendência

	Z^*_{111}	Z^st_{121}	• • •	Z^*_{1M1}	ו
	Z^*_{211}	$Z^{^st}_{221}$		Z^*_{2M1}	
	:	:	٠.	•	
	Z^*_{N11}	Z^*_{N21}		$Z^{st}_{\mathit{NM}1}$	
	Z^*_{112}	Z^*_{122}		Z^*_{1M2}	ı
	Z^*_{212}	Z^{st}_{222}		Z^*_{2M2}	
=		:	٠.	:	-
	Z^*_{N12}	Z^*_{N22}		$Z^{st}_{\mathit{NM}2}$	
	٠.	·	٠.	٠.	1
	Z^*_{11H}	$Z^st_{_{12H}}$		$Z^{^st}_{^{1MH}}$	ı
	Z^*_{21H}	Z^{st}_{22H}		$Z^*_{_{2MH}}$	
	:	•	٠.	:	
	Z^*_{N1H}	Z^*_{N2H}		Z^{st}_{NMH} _	

Base de dados: Longitudinais

Dados longitudinais é uma forma de dado temporal na qual a mesma amostra de registros é observada repetidamente em diferentes pontos de tempo chamadas ondas.

Ex. Estudos de longevidade, de doenças, sociais

Fonte e Origem dos Dados

Montagem da base de dados - Pivotagem reversa

- Para montar um conjunto de dados para o projeto possivelmente será necessário aplicar um processo de <u>pivotagem</u>.
- A pivotagem é necessária para construir um conjunto de dados consistente.

PIVOTAGEM REVERSA

Registro de transações de Supermercado => Registro de consumo

PIVOTAGEM REVERSA

Registro de transações bancárias => Registros por clientes

PIVOTAGEM REVERSA

Registro de transações Cartão de Crédito => Registro por clientes

ENRIQUECIMENTO DOS DADOS

É o processo de inserir dados de fontes externas ao conjunto de dados.

Exemplo 1: o perfil dos grupos pode não ser suficiente para decidir a liberação de crédito de uma pessoa. Pode ser necessário inserir o histórico de crédito e/ou de consumo.

Exemplo 2: a valorização de um imóvel somente pelas suas característica intrínsecas pode não ser suficiente para decidir seu valor. É necessário inserir informações sobre dados relativos ao lazer, índice de criminalidade, projetos de expansão futura, etc.

MELHORAMENTO DOS DADOS

É o processo de realçar características dos dados sem adição de fontes externas.

Exemplo 1: do campo "observações clínicas" (campo textual) podem ser *extraídas características* adicionais para definir melhor o perfil de cada paciente.

Exemplo 2: em processos físicos, quando a variabilidade de um parâmetro é grande (por exemplo, temperatura) pode ser necessário medir esse parâmetro com períodos de amostragem menor. Isso realça as características do parâmetro.

GRANULARIDADE DOS DADOS

Granularidade = nível (detalhes/Agregação)

Dados detalhados pode ser preferível a dados agregados

Para um determinado produto

REALCE DE CARACTERÍSTICAS

Ex. Registro de Medições de variáveis físicas - Clima

Registro de transações horárias: O importante é a quantidade de mudanças significativas nas medidas.

		_ ~					06:00	
Data	Hora	Pressão atmosférica	Velocidade vento	relativa	Radiação		06:15	
01-04	06:00						06:30	Realce
01-04	07:00						06:45	
01-04	08:00						07:00	

Avaliação da Representatividade

- □ A partir da análise dos domínios dos atributos deve ser feita uma avaliação da representatividade da base de dados resultante da etapa de montagem. Entende-se por representatividade, conter dados suficientes para descrever o domínio de problema.
- □ Caso a base de dados resultante não seja representativa o suficiente para a descoberta de conhecimento, o cientista de dados pode decidir por prosseguir, voltar à etapa anterior ou impor restrições ao conhecimento extraído.

Analisando o domínio das variáveis ♣Licap

Por exemplo 1:Pontos por multa de transito = {7,5,4,3,0}. Para traçar o perfil dos motoristas é necessário ter uma representatividade equilibrada entre as combinações desses valores. A soma de pontos com valor elevado pode representar a existência de outliers, o que obrigaria a segmentar o estudo e colocar restrições aos resultados alcançados.

Por exemplo 2: Estado civil de pessoas = $\{S, C, V, D\}$. A falta de registros ou o deseguilibrio destes em relação ao estado civil pode levar a restrições nos resultados, dependendo do domínio de problema sendo tratado.

Analisando o domínio das variáveis 🚣 Licap

Uma reflexão:

Se existir mais de 50 valores distintos num atributo discreta. Então, uma amostra de dados não pode conter menos de 50 instâncias observadas.

Caso existam mais valores que instâncias observadas a amostra não está completa e deverá ser coletada uma amostra maior. É importante contar com uma base de dados suficientemente grande e representativa.

Por exemplo: Considerando pontos por infração de trânsito [3,4,5,7]

Quantos pontos acumulados na carteira do motorista, até 3 multas, podem existir?

1	3	4	5	7
2	33-	43-	53-	73-
3	34-	44-	54-	74-
4	35-	45-	55-	75-
5	37-	47-	57-	77-
6	333	433	533	733
7	334	434	534	734
8	335	435	535	735
9	337	437	537	737
10	343	443	543	743
11	344	444	544	744
12	345	445	545	745
13	347	447	547	747
14	353	453	553	753
15	354	454	554	754
16	355	455	555	755
17	357	457	557	757
18	373	473	573	773
19	374	474	574	774
20	375	475	575	775
21	377	477	577	777

Por exemplo: Pontos por infração de trânsito [3,4,5,7]

Pontos na carteira do motorista até 3 multas:

Caso exista interesse no aspecto temporal no cometimento das multas (Mineração de Eventos Complexos)

$$\sum_{r=1}^{multas} n^r = 4^1 + 4^2 + 4^3 = 84$$

1	3	4	5	7
2	33-	44-	55-	77-
3	34-	45-	57-	
4	35-	47-		
5	37-			
6	333	444	555	777
7	334	445	557	
8	335	447	577	
9	337	455		
10	344	457		
11	345	477		
12	347			
13	355			
14	357			
15	377			

Por exemplo: Pontos por infração de trânsito [3,4,5,7]

Pontos na carteira do motorista até 3 multas:

Caso não exista interesse na ordem no cometimento das multas:

$$casos = 4 + 10 + 20 = 34$$

Incremento exponencial da amostra 🏻 🚣 Licap

Entendamos o problema do incremento exponencial da amostra:

V1	V2	V3	V4	 Vn

Consideremos que nosso conjunto de dados possui *n*=15 variáveis (atributos)

Consideremos que cada variável possui **k=4** possíveis valores

Logo:

A representatividade completa deve possuir:

$$Tamanho = k^n = 4^{15} = 1.073.741.824$$
 instâncias

Nossos modelos são sempre imperfeitos e com restrições.

Expansão exponencial da amostra

Para capturar uma uniforme e pequena porção de dados num espaço de alta-dimensão é necessária uma grande vizinhança. O cálculo desta expansão é dado por:

$$expansão(p,d) = p^{1/d}$$

Exemplo:

Se a porção da amostras em relação à população é p = 10%

para 1-dim: expansão(0,1;1)=0,1 para 2-dim: expansão(0,1;2)=0,32 para 3-dim: expansão(0,1;3)=0,46 para 10-dim: expansão(0,1;3)=0,80

0.46

Distanciamento entre instâncias

Cada instância deve estar mais próximo da fronteira do subhipercubo, que de outra instância da amostra. A distância esperada "D" entre objetos num espaço d-dim é dado por:

$$D(d,n) = \frac{1}{2} (\frac{1}{n})^{\frac{1}{d}}$$

Exemplo:

Se n=10000

para 1-dim: D(1,10000)=0,00005

para 2-dim: D(2,10000)=0,005

para 3-dim: D(3,10000)=0,023

para 10-dim: D(10,10000)=0,20

Nossos Modelos são Representativos o Suficientelacap

Problema de Indução de Hume

Não é possível generalizar a partir de observações persistentes

Fluxo para tomada de decisão

 Caso o Cientista de Dados opte por não prosseguir, os motivos são documentados e o processo de descoberta de conhecimento é cancelado.

Prática 5 – Para o problema identificado na etapa anterior, caracterize o domínio de problema por meio de atributos.

Formação Cientista de Dados

Obrigado!

