CS 4650/7650 ECE 4655/7655 Digital Image Processing 2024 Homework 1A: Point Processes in Python [40 pts]

Out: Tuesday August 27, 2024

Due: Thursday Sep 5 (Midnight)

Image credit:

https://micro.magnet.fsu.edu/primer/techniques/fluorescence/gallery/cells/u2/u2cellslarge14.html

The goals of this first assignment are:

- (1) to become familiar with OpenCV library and Python functions needed in image processing;
- (2) trying out basic image read, write, access, display and plotting functions; and
- (3) review of point process (intensity transformation) concepts.

[20 pts] Part A1 - Color to Grayscale Conversion (Satisfactory/Unsatisfactory)

Write Python code using the OpenCV library to read a color image (RGB), convert it to a grayscale image and write it out to disk.

Use the following formula to convert from color to grayscale:

Gray[x][y] = 0.2989 * Red[x][y] + 0.5871 * Green[x][y] + 0.1140 * Blue[x][y]

Note that you will need to use the actual image data structure for accessing the red, green and blue channels.

Program name and arguments:

./rgb2gray input_color_image_filename output_grayscale_image_filename

[20 pts] Part A2 - Image Binarization (or Thresholding)

Goal: Segmentation of the bone cell nuclei (blue elliptical regions in the image) using image thresholding.

1) Use the grayscale image (computed in Part A1) and convert it to a binary image using a user provided threshold value on the command line and write out the binarized image to disk.

2) Use a color channel of choice and convert it to a binary image using a user provided threshold value on the command line and write out the binarized image to disk.

Program name and arguments:

./gray2binary input_grayscale_image_filename output_binary_image_filename threshold_value

Implementation issues to consider and be aware of:

- input pixel data type (unsigned char vs float vs double),
- computation pixel data type,
- output pixel data type,
- accessing color channels,
- image dimensions,
- row-column indexing,
- zero vs one convention (array vs matrix representation),
- input and output image file formats

OpenCV (or other libraries) are used read and write a variety of image file formats and include an image display function.

<u>Submission Instructions</u>: Submit electronic version from Canvas (https://courses.missouri.edu/). Submit an archive (tar) or zip file that contains the following directories and files:

- 1. src should contain all code files
- 2. A <u>report in PDF format</u> (not Word or other formats that are difficult to handle with images and equations). Note that you can print to PDF.
- 3. Images (if any) should be in a separate folder for example if you tried your own images

Tar file naming convention: DIPFall2024_LastName_FirstName_Assignment#

Windows users can use 7zip to create tar files.

Report Structure: Your Written Report must conform to the following format.

- 1. Header
 - Course number and name
 - Assignment number and title
 - Your name
 - Date
- 2. Abstract (2 to 4 sentences describing the problem and the major results obtained)
- 3. Introduction (A brief statement of the experiments to be performed and the goal of the assignment)
- 4. Experiments and Results (figures, tables, graphs, ...). You need to use given test images.
 - a. Input RGB image
 - b. Output grayscale image

- c. Input grayscale image
- d. Binarized result 1
- e. Binarized result 2

5. Discussion/Conclusions

Did the programs work as expected?
Are the results satisfactory? Why/Why not?

6. References/Appendix (As needed)

References

- 1. General tools that are useful to look at your input and output images: NIH ImageJ or Fiji which is an extension of ImageJ (opensource Java), imageMagick (opensource), gimp (opensource C++), Paint.Net, irfanview (shareware), Adobe Photoshop, Preview (MacOS), Windows PhotoViewer.
- 2. Lec2_Introduction_IP2.pdf
- 3. Lect3_IntensityTransformations.pdf
- 4. Canvas\Modules\Programming Resources