# МГТУ им. Н. Э. Баумана

#### И. Н. ФЕТИСОВ

### ИЗУЧЕНИЕ ПОГЛОЩЕНИЯ ГАММА-ИЗЛУЧЕНИЯ В ВЕЩЕСТВЕ

Методические указания к лабораторной работе O-51 по курсу общей физики Под редакцией А. И. Савельевой Москва, 1988

<u>Цель работы</u> - изучение закономерностей взаимодействия *ү*-излучения с веществом.

### ТЕОРЕТИЧЕСКАЯ ЧАСТЬ.

### Взаимодействие у -излучения с веществом

Гамма-излучение (а также рентгеновское излучение) - это электромагнитные волны с чрезвычайно малой длиной волны  $\lambda$ . Кванты (фотоны) этих излучений обладают большими значениями энергии  $E=hv=hc/\lambda$  и импульса  $p=h/\lambda$  (h - постоянная Планка, c - скорость света,  $\nu$  - частота).

Испускание  $\gamma$ -квантов сопровождает радиоактивный распад в тех случаях; когда образующиеся ядра находятся в возбужденном состоянии. При переходе ядра с верхнего энергетического уровня на нижний излучается  $\gamma$ -квант с энергией, равной разности энергии уровней, между которыми происходит переход. Для конкретного изотопа E имеет одно или несколько дискретных значений в диапазоне от  $\sim 10^4$  до  $\sim 10^6$  эВ. Большие энергии можно получить с помощью ускорителей элементарных частиц.

Рентгеновское излучение (РИ), образующееся в рентгеновской трубке при торможении быстрых электронов в металлической пластине (аноде), имеет сплошной спектр. Максимальная анергия квантов РИ равна кинетической энергии ускоренного в трубке электрона.

При взаимодействии у-излучения и РИ с веществом происходят следующие основные процессы: эффект Комптона, фотоэффект и рождение пары электрон-позитрон. Все они имеют корпускулярный характер.

<u>Эффект Комптона</u> - упругое рассеяние фотонов на свободных (или слабо связанных атомных) электронах, сопровождающееся увеличением длины волны. Фотон передает часть своей энергии и импульса электрону и изменяет направление движения; уменьшение энергии фотона и означает увеличение длины волны рассеянного излучения.



Рис. 1 иллюстрирует закон сохранения импульса при комптон-эффекте: до столкновения электрон покоится;  $\vec{p}$  и  $\vec{p}'$  - импульсы налетающего и рассеянного фотонов;  $\vec{p}_e$  - импульс электрона отдачи;  $\theta$  - угол рассеяния фотона;  $\phi$  - угол, под которым летит электрон отдачи относительно направления падающего фотона. Совместное

решение уравнений, выражающих законы сохранения энергии и импульса при комптонэффекте, дает для сдвига джига волны формулу Комптона:

$$\Delta \lambda = \lambda' - \lambda = \lambda_{\rm C} (1 - \cos \theta). \tag{1}$$

Здесь  $\lambda'$  - длина волны рассеянного излучения,  $\lambda_C = h/(mc) = 2,4 \cdot 10^{-12}$  м - комптоновская длина волны электрона (m -масса покоя электрона). Из (1) следует что сдвиг  $\Delta\lambda$  не зависит от

длины волны падающего излучения, а определяется лишь углом и максимален при  $\theta$ =180° ( $\lambda_{max}$ =2 $\lambda_{C}$ ). Однако относительный сдвиг  $\Delta\lambda/\lambda$  возрастает с уменьшением  $\lambda$ .

В действительности электроны не свободны, а связаны в атомах. Электрону необходимо сообщить энергию  $\geq E_{\rm CB}$ , чтобы вырвать его из атома. Величина  $E_{\rm CB}$  называется энергией связи электрона. Она возрастает с увеличением зарядового числа Z и уменьшением радиуса орбиты. Если энергия  $\gamma$ -кванта велика по сравнению с  $E_{\rm CB}$ , рассеяние происходит как на свободных электронах.

<u>Фотоэффект</u> - квантовое явление, при котором фотон поглощается, а его энергия передается электрону. В отличие от комптон-эффекта, при фотоэффекте: а) фотон исчезает; б) процесс происходит на связанных электронах, так как свободный электрон не может поглотить фотон (при этом не могут быть соблюдены одновременно законы сохранения энергии и импульса).

Различают следующие случаи фотоэффекта.

- 1. Внешний фотоэффект испускание электронов твердыми телами и жидкостями в вакуум иди другую среду.
- 2. Внутренний фотоэффект перераспределение электронов по энергетическим состояниям в конденсированной среде, проявляющееся в полупроводниках и диэлектриках в изменении электропроводности среды. Внешний и внутренний фотоэффекты играют важную роль для излучения оптического диапазона.
- 3. При достаточно больших энергиях квантов ( $\gamma$ -излучение, РИ) электроны могут вырываться из внутренних оболочек атома; кинетическая энергия вылетевшего электрона выражается соотношением Эйнштейна:  $E_{\text{кин}}$ = $h\nu$   $E_{\text{св}}$

Рождение пары электрон-позитрон происходит в электрическом поле ядра под действием  $\gamma$ -излучения. При этом  $\gamma$ -квант исчезает, а его энергия затрачивается на энергию покоя  $(2mc^2)$  и кинетическую энергию электрона и позитрона. В соответствия с законом сохранения полной релятивистской энергии рождение пар возможно при hv>2 $mc^2$ ≈1 МэВ.

Вероятность того, что  $\gamma$  -квант провзаимодействует с веществом путем того или иного из указанных процессов, зависит от его энергии E и зарядового числа Z вещества. С увеличением E доминируют сначала фотоэффект (особенно для больших Z), затем комптоновское рассеяние (при E $\approx$ 1...4 МэВ для Pb и 0,05...10 МэВ для Al) и, наконец, рождение пар.

#### Ослабление пучка у-излучения.

Выведем формулу для ослабления параллельного пучка  $\gamma$  -квантов одинаковой энергии. На поглотитель толщиной l падает поток  $I_0$  (число  $\gamma$ -квантов в секунду). Обозначим



Рис.2

I(x) поток на глубине x. Рассмотрим ослабление потока в слое толщиной dx на глубине x. Имеется некоторая вероятность, что квант провзаимодействует в этом слое и выбудет из пучка, поглотится в результате фотоэффекта или рождения пары (луч 1 на рис. 26) или рассеется при комптоновском взаимодействии (луч 2). В результате поток I(x), состоящий из

большого числа квантов, уменьшится в среднем на величину dI, пропорциональную толщине dx и потоку



$$-dI = \mu I(x)dx \tag{2}$$

где  $\mu$ =const для данного вещества и E . Интегрируя (2), получим выражение для потока, прошедшего слой толщиной l :

$$I=I_0 \exp(-\mu l) \tag{3}$$

На рис. 3 представлена эта зависимость для различных значений линейного коэффициента ослабления  $\mu$ . Величина  $\mu$  измеряется в единицах м<sup>1</sup>. Она имеет следующий смысл: в слое толщиной  $1/\mu$  поток ослабляется в  $e\approx 2,72$  раза.

Для одного и того же вещества, например, воздуха, µ пропорционально плотности р. Поэтому часто удобнее пользоваться массовым коэффициентом ослабления:

$$\mu_{\rm M} = \mu/\rho \tag{4}$$

Тогда из (3) получаем

$$I = I_0 \exp(-\mu_{\scriptscriptstyle M} l \rho), \tag{5}$$

Где lр— «толщина» поглотителя, кг/м²;  $\mu_{\rm M}$ — массовый коэффициент ослабления, м²/кг. На рис. 4 представлены теоретические зависимости  $\mu_{\rm M}$  от Е для свинца и алюминия. Не показанные на рис. 4 зависимости для элементов с промежуточными значениями Z (между Al



Рис.4

и Рв) располагаются между приведенными кривыми.

На рис. 4 видна интересная особенность, которую можно проверить в данной работе. Для  $E \approx 1...4$  МэВ  $\mu_{\text{м}}$  почти не зависит от Z. Объяснение состоит в том, что в этом энергетическом интервале преобладает комптоновское рассеяние, вероятность которого пропорциональна числу атомных электронов на пути кванта, а число электронов пропорционально толщине поглотителя  $\rho l$ . Поэтому поглотители из различных веществ, но с одинаковым значением  $\rho l$  имеют примерно одинаковое ослабление.

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.

# Методика измерений.

Схема опыта представлена на рис. 26. Гамма-излучение с энергией примерно 1,2 МэВ испускается при распаде изотопа <sup>60</sup>Co. Сцинтилляционный счетчик регистрирует отдельные у-кванты, вырабатывая электрический импульс. Импульсы считаются пересчетным устройством (ПУ). Пусть за время t появилось N' импульсов. Средней скоростью счета называется отношение n'=N'/t. Если радиоактивный препарат убрать, то скорость счета уменьшается до величины  $n_{\phi}$  называемой фоном счетчика. Фон обусловлен частицами космического излучения, естественной радиоактивностью и процессами в самом счетчике. Разность n=n'-n<sub>d</sub> есть скорость счета излучения исследуемого препарата. пропорциональна потоку у-квантов:

$$n = aI \tag{6}$$

Подставляя (6) в (3), получим

$$n = n_0 \exp(-\mu l), \tag{7}$$

где  $n_0$  и n - скорость счета без поглотителя и с поглотителем толщиной l. После логарифмирования (7) имеем

$$ln(n/n_0) = -\mu l \tag{8}$$

Если, измерив скорость счета без поглотителя и для различных толщин l, построить графическую зависимость  $ln(n/n_0)$  как функцию l, то можно проверить экспоненциальный закон ослабления (3) и определить численное значение  $\mu$  для данного вещества. В соответствии с (8) экспериментальные точки должны ложиться на прямую (рис. 5). Из наклона прямой можно получить численное значение  $\mu$ :

$$\mu = -\ln(n/n_0)/l \tag{9}$$

подставив в (9) значения l и  $ln(n/n_0)$  для любой точки A, лежащей на прямой (рис. 5).

Результат измерения  $\mu$  в некоторой степени зависит от геометрических условий опыта. Если  $\gamma$ -квант рассеялся на малый угол и попал в счетчик, то он будет восприниматься





# Сцинтилляционный счетчик

В действием некоторых веществах, называемых сцинтилляторами, ПОД ионизирующих быстрых частиц сцинтилляции возникают световые вспышки (разновидность люминесценции). Для регистрации  $\gamma$ -излучения используют кристаллы NaI(Tl) размером несколько сантиметров.

 $\gamma$ -квант в результате взаимодействия с веществом сцинтиллятора (эффект Комптона, фотоэффект, рождение  $e^-e^+$  пары) передает энергию электрону (и позитрону); сцинтилляция производится заряженной частицей. Устройство счетчика показано на рис. 6.



Рис.6

Вспышка света регистрируется с помощью фотоэлектронного умножителя (ФЭУ), сочетающего в одном электровакуумном приборе фотоэлемент и усилитель тока. ФЭУ состоит из фотокатода (ФК), анода (А) и нескольких промежуточных электродов - динодов (Д). С помощью высоковольтного источника и делителя напряжения на диноды и анод подается положительный потенциал. По мере удаления от ФК потенциал каждого последующего электрода возрастает примерно на 100 В. Электроны, испускаемые фотокатодом под действием света, ускоряются электрическим полем и выбивают из первого динода вторичные электроны, число которых в  $\delta$  раз больше числа первичных электронов. Этот процесс повторяется на каждом диноде и приводит к значительному усилению тока (например, в  $\delta^{\kappa} = 2 < 10^6$  раз для  $\delta = 5$  и  $\kappa = 9$  динодов). Лавина электронов достигает анода в создает в его цепи значительный электрический импульсы считаются пересчетным устройством.

# Описание лабораторной установки.



Установка (рис. 7) включает в себя счетчик у-излучения (Сч), пересчетное устройство (ПУ), источник питания счетчика (ИП). Сцинтиллятор 1 находится в нижней части светонепроницаемого кожуха. Счетчик можно перемещать по вертикали; рабочим является верхнее положение, когда выступ 2 входит в короткую прорезь.

Источник у-излучения представляет собой герметичную стальную ампулу, внутри которой находится радиоактивный препарат незначительной активности. Направляющие 3 служат да установки источника в рабочее положение.

К установке прилагаются наборы пластин алюминия, меди (латуни) и свинца.

# Выполнение эксперимента.

1. Ознакомиться с установкой (рис. 7). Включить СЕТЬ источника питания и пересчетного устройства. В рабочем положении ПУ должны быть утоплены клавиши:



# НЕПРЕРЫВНО-ОДНОКРАТНО и одна из клавиш экспозиции.

2. Установить счетчик в верхнем положении (выступ 2 входит в короткую прорезь).

# ВНИМАНИЕ! За кабель счетчика не тянуть!

- 3. Пока установка прогревается (3 мин), выполнить несколько пробных измерений фона с экспозицией 10 с (нажать клавишу 10) Управление ПУ производится последовательным нажатием клавши СБРОС и ПУСК. По окончании заданного времени, когда лампочка СЧЕТ погаснет, считать с индикатора число зарегистрированных импульсов ( $N_{\phi} \approx 20...50$ )
- 4. Утопить клавишу 100, измерить три раза фон с экспозицией 100 с, результаты записать в табл. 1.
- 5. Получить у лаборанта у-источник. Установить его в рабочее положение (по направляющим 3 до упора),
- 6. Без поглотителя измерить три раза число импульсов и записать результаты в табл. 1.

Таблица 1

|             |                 |                  |                       | таолица т           |  |
|-------------|-----------------|------------------|-----------------------|---------------------|--|
| Измерения   | Число импульсов | Суммарное число  | Скорость счета, имп/с |                     |  |
|             | за 100с         | импульсов в трех |                       |                     |  |
|             |                 | измерениях       |                       |                     |  |
| Фона        | 1.<br>2.        | $N_{\phi}=$      | $n_{\phi}=$           |                     |  |
|             | 3.              | J                |                       |                     |  |
| Без         | 1.              | )                |                       |                     |  |
| поглотителя | 2.              | $N_0=$           | n' <sub>0</sub> =     | $n_0=n'_0-n_{\phi}$ |  |
|             | 3.              | J                |                       |                     |  |

Таблица 2

| Поглотитель | Толщина  | l | N' | Обработка |                 |         |             |
|-------------|----------|---|----|-----------|-----------------|---------|-------------|
|             | пластины |   |    | n'        | $n=n'-n_{\phi}$ | $n/n_0$ | $ln(n/n_0)$ |
|             |          |   |    |           |                 |         |             |

- 7. Для алюминия измерить число импульсов N′ (по одному измерению за 100 с) для различной толщины поглотителя l (изменять l с шагом 15...20 мм до 80...90 мм). Толщину отдельных пластин измерить штангенциркулем. Результаты измерений записать в таблицу 2.
- 8. Повторить измерения п. 7 для одного материала с большим Z: меди (латуни) с шагом 10...12 мм до 60...70 мм или свинца с шагом 4...6 мм до  $\sim 40$  мм,
- 9. Выключить СЕТЬ приборов, сдать у -источник, убрать поглотитель в коробку.

# Обработка и анализ результатов измерений.

- 1. Построить графическую зависимость  $ln(n/n_0)$  от l (на одном графике для двух поглотителей). Через отчетливо изображенные экспериментальные точки и начало координат провести для каждого материала прямую так, чтобы отклонения точек от нее были наименьшими (рис. 5).
- 2. Сделать вывод, согласуются ли результаты опыта с экспоненциальной зависимостью (3).
- 3. Найти значения  $\mu$ , используя построенный график и формулу (9). Выразить  $\mu$  в единицах  $M^{-1}$ , результат записать в табл. 3.
- 4. По формуле (4) вычислить  $\mu_{\rm M}$  и записать результаты в табл. 3 ( $\rho$  в единицах  $10^3$  кг/м<sup>3</sup> принять равным 2.8 для алюминия; 8.5 для латуни; 8.9 для Cu и 11,3 для Pb).

Таблица 3

| Поглотитель | Экс                | Теория                                                           |                                                    |
|-------------|--------------------|------------------------------------------------------------------|----------------------------------------------------|
|             | μ, м <sup>-1</sup> | $\mu_{\rm M} \pm \Delta \mu_{\rm M}$ , ${\rm M}^2/{\rm K}\Gamma$ | $\mu_{\scriptscriptstyle \mathrm{M}}$ , м $^2$ /кг |
|             |                    |                                                                  |                                                    |

5. Оценить погрешность измерения значений  $\mu_{M}$  . Из (4), (9) получаем

$$\mu_{M} = -ln(n/n_0)/(\rho l)$$
.

По правилам вычисления относительной средней квадратичной погрешности косвенных измерений имеем

$$\left(\frac{\Delta \mu_{M}}{\mu_{M}}\right)^{2} = \left(\frac{\Delta l}{l}\right)^{2} + \left(\frac{\Delta \rho}{\rho}\right)^{2} + \left(\frac{\Delta \ln(n/n_{0})}{\ln(n/n_{0})}\right)^{2} \tag{10}$$

где  $\Delta l$  - средняя квадратичная погрешность измерения толщины поглотителя. Последнее слагаемое в (10), обусловленное статистической природой радиоактивного распада, в данной работе невелико и им можно пренебречь. Тогда из (10) получим

$$\Delta \mu_{M} = \mu_{M} \sqrt{\left(\Delta l / l\right)^{2} + \left(\Delta \rho / \rho\right)^{2}}$$
(11)

Вычислить погрешность по формуле (11), приняв  $\Delta \rho / \rho = 0.01$  (разброс плотности различных марок металла). Погрешность  $\Delta l$  оценить самостоятельно.

6. Пользуясь рис. 4, определить теоретические значения  $\mu_{\rm M}$  для материалов данной работы; записать результаты в табл. 3. Объяснить возможное расхождение эксперимента с теорией.

### Контрольные вопросы

- 1. Опишите процессы взаимодействия у-излучения с веществом.
- 2. Как изменяется поток у-квантов с толщиной поглотителя?
- 3. Какой физический смысл имеют величины  $\mu$  и  $\mu_{M}$ , как они зависят от Z и E ?
- 4. Почему при  $E \approx 1...4$  МэВ различные поглотители имеют близкие значения  $\mu_{\rm M}$ ?
- 5. Объяснить причину расхождения теоретических и экспериментальных значений  $\mu_{\rm M}$

# Содержание отчета

Отчет должен содержать краткий конспект теоретической части, схему опыта и экспериментальные данные (таблицы 1...3 и график).

# Литература

Детлаф А. А., Яворский Б.М. Курс физики. – М.: Высшая школа. - 1979. - Т. 3. - 511 с.