IETF Hackathon

-Comprehensive Evaluation of Multicast Source Routing over IPv6

IETF 118
4-5 November 2023
Prague, Czech Republic

Hackathon Plan

- Implement MSR6 BE, MSR6 TE and MSR6 TE with RLB on hardware using the P4 language.
- Evaluate the hardware performance of MSR6 based on several P4 switches.
- Conduct simulations to evaluate the resource performance of MSR6 and other 5 multicast solutions from a macro perspective based on real network topology.
- Documents
 - https://datatracker.ietf.org/doc/draft-geng-msr6-traffic-engineering/02
 - https://datatracker.ietf.org/doc/draft-geng-msr6-rlb-segment/01
 - https://datatracker.ietf.org/doc/draft-chen-pim-srv6-p2mp-path/
 - https://datatracker.ietf.org/doc/draft-chen-pim-mrh6/

HARDWARE-BASED EVALUATION

- Multi-node testing topology was constructed using 6 P4 switches as the ingress, transit, and egress nodes in the MSR6 domain.
- The data to be measured are *hardware resource usage*, *process delay* and *stability*.

Resource Occupancy of MSR6 TE

	Average	0	1	2	3
Action Data Bus Bytes	6.1%	3.1%	0.0%	1.6%	68.8%
Exact Match Input Xbar	2.5%	14.8%	0.8%	1.6%	12.5%
Gateway	1.0%	6.3%	0.0%	6.3%	0.0%
Hash Bit	2.0%	12.0%	2.4%	0.0%	9.6%
Logical Table ID	4.2%	25.0%	6.3%	12.5%	6.3%
SRAM	3.8%	7.5%	1.3%	1.3%	35.0%
Stash	2.1%	12.5%	6.3%	0.0%	6.3%
TCAM	2.1%	0.0%	0.0%	25.0%	0.0%
Ternary Match Input Xbar	2.0%	0.0%	0.0%	24.2%	0.0%
VLIW Instruction	2.1%	6.3%	6.3%	6.3%	6.3%
Exact Match Search Bus	2.1%	12.5%	6.3%	6.3%	6.3%
Exact Match Result Bus	2.1%	12.5%	6.3%	0.0%	6.3%
Ternary Result Bus	2.1%	12.5%	0.0%	12.5%	0.0%

SOFTWARE-BASED EVALUATION

- We conducted macro-mathematical simulations on *five multicast TE schemes*.
- We evaluated these five schemes from the perspectives of multicast Policy Length,
 Parsing Times, Feasibility of Compression, and Complexity of the Pointer-processing
 in data center network topology scenarios and randomly generated network
 topology scenarios, respectively.

Conclusions

• Hardware-based evaluation:

 We tested the MSR6 BE and MSR6 TE schemes and proved that the MSR6 scheme prototype can work in the experimental environment.

delay test	MSR6-related actions can achieve a delay similar to normal IPv6 forwarding actions.
stability test	The traffic path switching in MSR6 TE will not affect the continuity of data packets.

Software-based evaluation:

Small multicast business tree size (less than 1/5 of the total number of topology nodes)	all multicast source routing schemes	have significant advantages compared to the BIER-TE scheme.
Relatively large multicast business tree size	MSR6 TE with RLB	superior to other MSR, taking into account encapsulation length and parsing times.
	MSR6 PToMP	is better for situations where downstream nodes are large and congested.

Wrap Up

Team members:

- Weihong Wu (<u>wuweihong@bupt.edu.cn</u> / <u>wwh_bupt@foxmail.com</u>)
- Yuxin Jiang (jyxin@bupt.edu.cn)
- Yunyi Tang (tangyunyi0708@bupt.edu.cn)
- Jiang Liu (<u>liujiang@bupt.edu.cn</u>)
- Pei Anbang(<u>anbangpei@bupt.edu.cn</u>)