Problema do Caixeiro Viajante

André Leinio && Davi Morales && Lucas Lellis

Enunciado

"Dada uma lista de cidades e as distâncias entre cada par de cidades, qual seria a menor rota possível a qual visitasse cada cidade exatamente uma vez e retornasse à cidade de origem"

Métodos Utilizados

- Soluções exatas:
 - Força bruta;
 - Backtracking.
- Solução aproximada:
 - Simulated Annealing.

Considerações

- Formato da entrada;
- Representação do problema:

Cidades 1 6 3 5 9 7 2 10 8 4
--

Força Bruta

- Todas as possíveis permutações;
- Comparação com melhor solução;
- Complexidade O(n.n!)

Backtracking

- Baseado em algoritmo de permutações;
- Aplicação de poda;
- O(n!) no pior caso;

- Metaheurística;
- Simula o processo de recozimento de metais;
- Sólido é aquecido além de seu ponto de fusão e resfriado;
 - Resfriamento rápido: produtos meta-estáveis, maior energia interna;
 - Resfriamento lento: produtos estáveis, de menor energia.

Analogia:

estados possíveis	soluções do espaço de busca
energia	função objetivo
energia mínima	solução ótima local, possivelmente global

- Soluções vizinhas geradas aleatoriamente;
- Caso:
 - Melhora: nova solução substitui solução corrente;
 - Piora: e-△/⊤ chances de aceitar estado, onde:
 - Δ → FO.corrente FO.vizinho;
 - T → Temperatura corrente.

Altas temperaturas	Baixas temperaturas
Altas chances de se aceitar estado de piora	Baixas chances de se aceitar estado de piora
Todas as soluções têm as mesmas chances de se tornarem a solução corrente	Soluções com baixos valores terão alta probabilidade de se tornarem a solução corrente

- Parâmetros que influenciam tempo de execução:
 - T₀: alta o suficiente para permitir movimentação;
 - Taxa de resfriamento α;
 - SAmax: iterações para cada temperatura;
 - Tamanho do vetor de cidades;
 - Temperatura final T_f.

- Laço externo: T₀ multiplicada por α até T_f;
- Laço interno: SAmax execuções;
 - Cálculo de função objetivo (O(n)) .
- Complexidade total: O(pqn), onde
 - $p \rightarrow log_{\alpha}T_f/T_0;$
 - q → Samax;
 - n → tamanho do vetor.

Resultados e Discussão

- Não foi possivel terminar a execução dos algoritimos exatos para as instâncias da literatura;
- No menor teste n=52 algo na ordem de 10⁶⁷ iterações.
- Embora as soluções implementadas retornem resultados ótimos, não foi possível execução em tempo hábil.
- Porém, foram obtidos resultados ótimos em instâncias menores utilizando os dois algoritmos.

Berlin52 – Simulated Annealing

Berlin52 – Simulated Annealing

Pr76 – Simulated Annealing

Pr76 – Simulated Annealing

Ch150 – Simulated Annealing

Ch150 – Simulated Annealing

Soluções Exatas

- No menor teste n=52 algo na ordem de 10⁶⁷ iterações.
- Embora as soluções implementadas retornem resultados ótimos, não foi possível execução em tempo hábil.

Conclusão

- Os seguintes objetivos foram alcançados:
 - Fomos capazes de implementar soluções exatas para o problema;
 - Fomos capazes de implementar soluções aproximadas para o problema em tempo hábil e resultados de qualidade razoável em comparação aos resultados exatos da literatura;
 - Foi possível o estudo do método aproximado através de comparações entre resultados com parâmetros diferentes.