

Model Evaluation

Semester 1, 2021 Kris Ehinger

Announcements

- Assignment 1 released tomorrow (Friday) night
 - Pose classification using naïve Bayes
 - Due April 12
- New lecturer next week! Ling Luo

Outline

- Selecting test data
- Evaluation methods
- Comparisons: baselines and benchmarks
- Final thoughts

What is a good classifier?

- Supervised classifier learns to map attributes to class labels
- Goal is to generalise: assign correct class labels to instances never seen before
- How to identify a good classifier?
 - Train on some training data
 - Test on test data (not seen during training)
 - Evaluate performance on the test data

What is a good classifier?

Basic evaluation metric: Accuracy

```
Accuracy = \frac{Number of correctly labeled test instances}{Total number of test instances}
```

 Measures the percent of time the classifier is correct

Accuracy on ImageNet

True or false?

not always the full proture

- If two models have the same accuracy on a test set, they have learned the same thing.
- If two models make the same pattern of errors on a test set, they have learned the same thing.
- A model with higher accuracy on a test set will generalise to novel situations better than a model with lower accuracy.

Selecting test data

Train/test split

- Classifier trains on "training" data and tests on "test" data
- Usually, we just have data a collection of instances
 - How to get "training" and "test" data?

Do we even need "test" data?

 Why not just train on the entire dataset and present that result?

Random holdout

- Randomly partition data into "training" or "test"
 - A portion of the data is "held out"; never seen during training
 - Model is tested only on the unseen "holdout" data
- Common splits (train-test): 50-50, 80-20, 90-10
 - Leave-one-out: (N-1) − 1
- Trade-off between having enough data for training and a representative test set

Repeated random subsampling

- Random holdout repeated multiple times:
 - Randomly assign data to "training" and "test" (usually with a fixed split, like 50-50)
 - Train a new model on "training" data
 - Test on the "test" data
- Final evaluation: average over all iterations
- Slower, but result should be more reliable than one random holdout

Cross-validation

- Preferred alternative to repeated random subsampling: Cross-validation
- Data is split into m partitions, and iteratively:
 - One partition is held out as a test set
 - The other m-1 partitions are used as training data
- Evaluation metric is aggregated across m partitions
 - Sometimes this means averaging, but more often results are saved for each partition then concatenated
- Every item appears as a test item exactly once

Cross-validation

- How big is m (m-fold cross validation)?
- More folds = fewer test instances / more training instances per partition
- Common choices: m=10 or m=5
 - Mimics 90-10 or 80-20 holdout, but more reliable
- Best choice: Leave-one-out cross-validation
 - m = N (number of instances)
 - Maximises training data
 - Far too slow to be used in practice, unless N is tiny

Practical issues

- Should we ensure the proportion of classes is identical in the training vs. test set?
 - Random sampling may produce different proportions
 - Stratification or vertical sampling training data and test data both have the same class distribution as the dataset as a whole

```
Densure each of the subjects of a variable don't represent the true of the confidently clarify of cent confidently clarify of the confidently clarify of the
```

Case study

Task: An international company is developing a pedestrian detection system for driverless cars.

Dataset: 3 million video frames from videos taken over 5 days driving around Melbourne

Suggestion: train on odd frames, test on even frames

Is this a good suggestion? Or would you try a different train/test split? What other video data would you collect for further tests?

Case study

Training instance

Frame 127,405

Test instance

Frame 127,406 0.033 seconds later

Practical issues

- Inductive Learning Hypothesis: Any model which approximates the target function well over a large training set will also generalise to unseen examples
- However, machine learners also suffer from inductive bias – assumptions made about the data to build the model and make predictions
 - Different assumptions -> different predictions

assumption don't match the real world

Validation set?

- Sometimes data is split into train/validation/test
- Validation set is a "test" set for your training data
 - Used to choose weights or parameters
 - Check if the model converged to a good solution
- Why use a validation set?
 - Why not just train N models and see which is best on test set?
 - Why not just choose parameters on the whole training set?

 parameter overfit on training set and can't

parameters overfit on training set and can't generalise on test set

Evaluation methods

Evaluation metrics

- Accuracy is a good start, but we'd like to know more about what the model is doing
- Consider a two-class problem where the goal is to find a class of interest ("positive" class) among uninteresting distractors ("negative" class). Examples:
 - Pedestrian (+) vs. not a pedestrian (-)
 - Has a disease (+) vs. does not have the disease (-)
 - Purchased product (+) vs. did not purchase (-)

Types of errors

- Possible classification results:
 - Positive case classified as "positive" (true positive, TP)
 - Positive case classified as "negative" (false negative, FN)
 - Negative case classified as "positive" (false positive, FP)
 - Negative case classified as "negative" (true negative, TP)

		Predicted			
		Positive Negative			
Actual	Positive	True positive (TP)	False negative (FN)		
	Negative	False positive (FP)	True negative (TN)		

Accuracy and error rate

$$Accuracy = \frac{TP + TN \leftarrow Correct responses}{TP + FP + FN + TN} \leftarrow All responses$$

$$\frac{FP + FN}{TP + FP + FN + TN} \leftarrow \frac{Incorrect responses}{All responses}$$

$$\frac{\text{Error rate reduction}}{\text{ER}_0} = \frac{ER_0 - ER}{ER_0} \quad \begin{array}{l} \text{Change in error rate} \\ \text{relative to a base} \\ \text{model's error rate} \end{array}$$

Types of errors

- Are some types of errors more important than others?
- Example: An autonomous vehicle uses a computer vision system to detect pedestrians in the road (positive class = pedestrian)

		Predicted				
		Positive Negative				
Actual	Positive	True positive (TP)	False negative (FN)			
	Negative	False positive (FP)	True negative (TN)			

Types of errors

• Example: We've developed two machine learning methods to detect a disease. We test each algorithm on a set of 1000 cases (1% of which have the disease). Each model is 99% accurate.

Example: Types of errors

Model 1		Predicted		
IVIOGE		Positive Negative		
Actual	Positive	10	0	
Actual	Negative	10	980	

Model 2		Predicted		
Wiede		Positive Negative		
Actual	Positive	0	10	
Actual	Negative	0	990	

Model 2 just says "negative" to all cases!

- **Precision:** How often is the model correct, when it predicts a positive case?
- **Recall:** What proportion of the true positive cases in the dataset was the model able to detect?

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

Model 1			Predicted		
WIOGET 1		Ρ	ositiv	_' e	Negative
Actual	Positive		10		0
Actual	Negative		10		980

Precision

$$\frac{10}{10+10} = 0.5$$

Model 2			Predicted			
WIOGCI Z		Ρ	ositiv	⁄e	Negative	
Actual	Positive		0		10	
Actual	Negative		0		990	

$$\frac{0}{0+0} = undefined$$

(would probably be reported as 0)

Model 1			Predicted		
Misae	aci I		ositive	Negative	
Actual	Positive		10	0	
Actual	Negative		10	980	

Recall
$$\frac{10}{10+0} = 1.0$$

Model 2			Predicted		
WIOGCI Z		F	Positive	Negative	
Actual	Positive		0	10	
Actual	Negative		0	990	

$$\frac{0}{0+10} = 0$$

- Trade-off between precision and recall:
- High precision + low recall means the model requires a lot of evidence to say "positive"

 Low precision + high recall means the model doesn't
 - need much evidence to say "positive"
 - Ideally, we'd like both precision and recall to be high. A popular metric that combines both is the Fscore:

$$F_{\beta} = \frac{(1 + \beta^2)PR}{(\beta^2 P) + R}$$
 $F_1 = \frac{2PR}{P + R}$

Sensitivity and specificity

- Sensitivity: Another name for recall the proportion of true positive cases the model was able to detect
- **Specificity:** Proportion of true negative cases that the model was able to detect

Sensitivity =
$$\frac{TP}{TP + FN}$$

Specificity =
$$\frac{TN}{TN + FP}$$

- A confusion matrix shows the pattern of errors in a multiclass classification task
- How to compute precision and recall for this type of task?

Confusion matrix

- What if you have more than two classes?
- If you have one class of particular interest, you can evaluate **one-vs.-rest**: treat the one as portive

	Predicted					
Actual	Pedestrian	Road	Sidewalk	•••		
Pedestrian	TP	FN	FN	•••		
Road	FP	TN	TN			
Sidewalk	FP	TN	TN	•••		
•••	•••	•••	•••			

• Usually, you care about all of the classes:

			Predicte	ed	
	Actual	Pedestrian	Bus	Car	•••
Pede	strian	87	4	2	
	Bus	2	34	19	
	Car	1	22	27	
	•••				

Accuracy in one class: number of correct classifications in that row, over sum of that row

- Total accuracy: sum of diagonal cells (correct classifications) over sum of entire table
- Precision/recall/F-score are computed per class (using one vs. rest, with each class as the "positive" class and everything else as "negative") and averaged across c classes...

Macro-averaging: calculate P,R per class and take mean

$$Precision_{M} = \frac{\sum_{i=1}^{c} Precision(i)}{c} \qquad Recall_{M} = \frac{\sum_{i=1}^{c} Recall\ (i)}{c}$$

$$Accuracy = \frac{TP + TN \leftarrow Correct\ responses}{TP + FP + FN + TN} \leftarrow All\ responses$$

Micro-averaging: combine all instances into one pool

$$Precision_{\mu} = \frac{\sum_{i=1}^{c} TP_i}{\sum_{i=1}^{c} TP_i + FP_i} \qquad Recall_{\mu} = \frac{\sum_{i=1}^{c} TP_i}{\sum_{i=1}^{c} TP_i + FN_i}$$

 Weighted averaging: calculate P,R per class and take mean, weighted by proportion of instances in that class

$$Precision_W = \sum_{i=1}^{c} \left(\frac{n_i}{N}\right) Precision(i) \quad Recall_W = \sum_{i=1}^{c} \left(\frac{n_i}{N}\right) Recall(i)$$

Comparisons: baselines and benchmarks

Baseline vs. benchmark

- Baseline = simple naïve method that we would expect any machine learning method to beat
 - Example: random guessing
- Benchmark = established rival technique to which we are comparing our method
 - Example: current best-performing algorithm on a leaderboard
- In practice, people aren't strict about the usage of these terms ("baseline" is sometimes used for both)

Common baselines

- Random baseline
 - Guess a class label uniformly from the available labels
 - Guess labels based on class distribution in the training set
- Zero-R baseline
 - Always guess the most common label in the training set
- Other baselines
 - Regression always guess the mean value
 - Object detection always guess the middle of the image
 - ...

Baseline example

- A regression model predicts outcomes on a scale from 1.0 - 5.0
- Test set error = mean absolute difference between true and predicted label
- Is a model with error = 1.5 good?

	Error
Proposed model	1.5
Baseline: guess a random value between 1-5	
Baseline: guess "3" for every item	

Final thoughts

Model evaluation

- Why evaluate on "test" data? Is there a mathematical way to know which model will generalize the best?
- The only way to guarantee optimal performance on a test set is to know a priori what the unseen data will look like
 - "No free lunch" theorems Wolpert & Macready (1997)

Model evaluation

 How do we know if a model is solving a problem "correctly?" Can we know what a computer is thinking?

Haibe-Kains B., et al. (2020). Transparency and reproducibility in artificial intelligence. Nature, 586(7829), E14-E16.