Ejercicio 6. Sean $a, b \in \mathbb{Z}$ números enteros tales que a > 0, b > 0 y mcd(a, b) = 1.

- (a) Demuestra que si $ab=c^2$, para algún número entero c, entonces existen x, $y\in\mathbb{Z}$ tales que $a=x^2,b=y^2$, y $\operatorname{mcd}(x,y)=1$.
- (b) Da un ejemplo que enseña que en el caso en que no sea mcd(a, b) = 1, se puede tener una igualdad de la forma $ab = c^2$, con $c \in \mathbb{Z}$, pero a y b no cuadrados.

Solución 6.

(a) Sea c > 0 un entero tal que $ab = c^2$. Si c = 1 entonces ab = 1 y $a = b = 1 = 1^2$. Supongamos ahora que c > 1.

Sea $c=p_1^{q_1}*...*p_n^{q_n}$ la factorización en números primos de c, siendo $p_1,...,p_2$ primos distintos entre sí y $q_1,...,q_n\in\mathbb{N}$. Entonces $c^2=p_1^{2q_1}*...*p_n^{2q_n}$ es la factorización en factores primos de c^2 . Luego, $c^2=ab=p_1^{2q_1}*...*p_n^{2q_n}$.

Como $a|c^2$ y $b|c^2$ se sigue que $a = p_1^{s_1} * ... * p_n^{s_n}$ y $b = p_1^{t_1} * ... * p_n^{t_n}$, donde $0 \le s_i \le 2q_i$ y $0 \le t_i \le 2q_i$, con i = 1, ..., n.

Tenemos entonces que $c^2 = ab = p_1^{s_1+t_1} * ... * p_n^{s_n+t_n}$, y como la factorización en primos es única para cada número deducimos que $s_i + t_i = 2q_i$, i = 1, ..., n.

Ahora bien, por la hipótesis de que $\operatorname{mcd}(a,b)=1$ tenemos que no puede haber ningún i tal que $s_i>0$ y $t_i>0$. Luego, para cada i tenemos que o bien $s_1=0$ y $t_i=2q_i$, o bien $s_1=2q_i$ y $t_i=0$. Como consecuencia, todos los s_i y t_i son pares, y tanto a como b son cuadrados perfectos, siendo $x^2=p_1^{s_1}*\dots*p_n^{s_n}$ e $y^2=p_1^{t_1}*\dots*p_n^{t_n}$. Además, como x^2 e y^2 no tienen ningún factor en común se tiene que $\operatorname{mcd}(x,y)=1$

(b) Un ejemplo podría ser a = 2 y b = 18, donde mcd(2, 8) = 2, y por tanto distinto de 1. Como vemos el producto de ab da como resultado a un cuadrado perfecto ab = 36, y sin embargo ni a ni b son cuadrados perfectos.