

Agenda

- I. Constrained supervised learning
 - Constrained learning theory
 - Constrained learning algorithms
 - · Resilient constrained learning

Break (10 min)

- II. Constrained reinforcement learning
 - Constrained RL duality
 - Constrained RL algorithms

Q&A and discussions

Why learning under requirements?

What is a requirements?

- Requirements are "shall" statements: describe necessary features subject to verification

What is a requirements?

- Goals are "should" statements: express recommendations (once "shall" statements are satisfied)

What is a requirements?

- Requirements are "shall" statements: describe necessary features subject to verification
 - Constraint space: things we decide
- Goals are "should" statements: express recommendations (once "shall" statements are satisfied)
 - Objective space: things the system achieves

What is (un)constrained learning?

$$P_{\mathsf{U}}^{\star} = \min_{\boldsymbol{\theta}} \quad \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathfrak{D}} \Big[\ell \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}), y \big) \Big]$$

- ibly nonlinear) parametrization [e.g., logistic classifier, (G)(C)NN]

What is (un)constrained learning?

$$\begin{split} P^* &= \min_{\pmb{\theta}} \quad \mathbb{E}_{(\pmb{x},y) \sim \mathfrak{D}} \left[\ell \Big(f_{\pmb{\theta}}(\pmb{x}), y \Big) \right] \\ \text{subject to} \quad \mathbb{E}_{(\pmb{x},y) \sim \mathfrak{A}} \left[g \Big(f_{\pmb{\theta}}(\pmb{x}), y \Big) \right] \leq c \\ \quad h \Big(f_{\pmb{\theta}}(\pmb{x}), y \Big) \leq u, \quad \mathfrak{P}\text{-a.e.} \end{split}$$

- ℓ, g are bounded, Lip
- f_{θ} is a (possibly nonlinear) parametrization [e.g., logistic classifier, (G)(C)NN]

What about penalties?

$$\begin{split} P^* &= \min_{\theta} \quad \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(f_{\theta}(x), y \right) \right] \\ &\text{subject to} \quad \mathbb{E}_{(x,y) \sim \mathcal{R}} \left[g \left(f_{\theta}(x), y \right) \right] \leq c \\ &\quad h \left(f_{\theta}(x), y \right) \leq u, \quad \mathfrak{P-a.e.} \\ &\qquad \qquad \downarrow \\ &\qquad \qquad \qquad \downarrow \\ &\qquad \qquad \min_{\theta} \quad \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(f_{\theta}(x), y \right) \right] + \lambda \mathbb{E}_{(x,y) \sim \mathcal{R}} \left[g \left(f_{\theta}(x), y \right) \right] + \mathbb{E}_{(x,y) \sim \mathcal{P}} \left[\mu(x, y) h \left(f_{\theta}(x), y \right) \right] \end{split}$$

What about penalties?

- \otimes There may not exist (λ, μ) such that the penalized solution is optimal and feasible
- $oldsymbol{\otimes}$ Even if such (λ, μ) exist, they are not easy to find (hyperparameter search, cross-validation...)

Applications

(e.g., [Goh et al., NeurIPS'16; Kearns et al., ICML'18; Cotter et al., JMLR'19; Chamon et al., IEEE TIT'23])

• Federated learning (e.g., [Shen et al., ICLR'22; Hounie et al., NeurIPS'23])

· Adversarially robust learning

Safe learning

(e.g., [Paternain et al., IEEE TAC'23])

Wireless resource allocation

(e.g., [Eisen et al., IEEE TSP'19; NaderiAlizadeh et al., IEEE TSP'22; Chowdhury et al., Asilomar'23])

Fairness

Problem

Predict whether an individual will recidivate

Fairness: "Equality" of odds

Problem
Predict whether an individual will recidivate at the same rate across races

 $\text{for Race} \in \{\text{African-American}, \text{Caucasian}, \text{Hispanic}, \text{Other}\}$

"We say "Race" to follow the terminology used during the data collection of the COMPAS dataset. [Goh et al., NeurlPS'16; Kearns et al., ICML'18; Cotter et al., JMLR'19; Chamon et al., IEEE TIT'23]

Fairness: "Equality" of odds

Problem
Predict whether an individual will recidivate at the same rate across races

$$\min_{\boldsymbol{\theta}} \quad \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \big)$$

subject to Prediction rate disparity (Race) $\leq c$.

for Race ∈ {African-American, Caucasian, Hispanic, Other}

Fairness: "Equality" of odds

Problem
Predict whether an individual will recidivate at the same rate across races

$$\begin{split} & \min_{\theta} \quad \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \left(f_{\theta}(\boldsymbol{x}_{n}), y_{n} \right) \\ & \text{subject to} \quad \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} \left[f_{\theta}(\boldsymbol{x}_{n}) = 1 \mid \mathsf{Race} \right] \leq \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} \left[f_{\theta}(\boldsymbol{x}_{n}) = 1 \right] + c. \end{split}$$

* We say "Race" to follow the terminology used during the data collection of the COMPAS dataset. [Goh et al., NeurlPS'16; Kearns et al., ICML'18; Cotter et al., JMLR'19; Chamon et al., IEEE TIT'23]

Applications

(e.g., [Shen et al., ICLR'22; Hounie et al., NeurIPS'23])

Federated learning

Learn a common model using data from K clients

$$\min_{\boldsymbol{\theta}} \quad \frac{1}{K} \sum_{k=1}^{K} \mathsf{Loss}_k(f_{\boldsymbol{\theta}})$$

Heterogeneous federated learning

[Shen et al., ICRL'22]

Learn a common model using data from K clients

$$\min_{\boldsymbol{\theta}} \quad \frac{1}{K} \sum_{k=1}^{K} \mathsf{Loss}_k(f_{\boldsymbol{\theta}})$$

• $k\text{-th client loss: } \mathsf{Loss}_k(f_{\pmb{\theta}}) = \frac{1}{N_k} \sum_{k=1}^{N_k} \mathsf{Loss} \left(f_{\pmb{\theta}}(\pmb{x}_{n_k}), y_{n_k}\right)$

Heterogeneous federated learning

• $k\text{-th client loss: } \mathsf{Loss}_k(f_\theta) = \frac{1}{N_k} \sum_{}^{N_k} \mathsf{Loss} \left(f_\theta(x_{n_k}), y_{n_k} \right)$

Applications

Adversarially robust learning

(e.g., [Chamon et al., NeurIPS'20; Robey et al., NeurIPS'21; Chamon et al., IEEE TIT'23])

Robustness

Problem

Learn an accurate classifier that is robust to input perturbations

Robustness

Robustness

Problem
Learn an accurate classifier that is robust to input perturbations

Robustness

Problem

Learn an accurate classifier that is robust to input perturbations

Invariance

Learn an accurate classifier that is invariant to transformation $g \in \mathcal{G}$, e.g., \mathcal{G}

Applications

- Safe learning
 - (e.g., [Paternain et al., IEEE TAC'23])
- ...

Safety

Problem
Find a control policy that navigates the environment effectively and safely

Safety

Problem
Find a control policy that navigates the environment effectively and safely

Safety

Problem
Find a control policy that navigates the environment effectively and safely

Safety

Problem Find a control policy that navigates the environment effectively and safely

Applications

- · Wireless resource allocation

Wireless resource allocation

•

Wireless resource allocation

Allocate the least transmit power to m devices to achieve a communication rate

Wireless resource allocation

Wireless resource allocation

Wireless resource allocation

Wireless resource allocation

 $\min_{\pi \in \mathcal{P}(S)}$

[Eisen, Zhang, Chamon, Lee, and Ribeiro, IEEE TSP'19]

Wireless resource allocation

Problem Allocate the least transmit power to $\it m$ devices to achieve a communication rate

[Eisen, Zhang, Chamon, Lee, and Ribeiro, IEEE TSP'19]

Wireless resource allocation

[Eisen, Zhang, Chamon, Lee, and Ribeiro, IEEE TSP'19]

Wireless resource allocation

Allocate power without depleting the battery of m devices to achieve a communication rate

Wireless resource allocation

Allocate power without depleting the battery of m devices to achieve a communication rate

And many more...

- · Precision, recall, churn (e.g., [Cotter et al., JMLR'19])
- Scientific priors (e.g., [Lu et al., SIAM J. Sci. Comp.'21; Moro and Chamon, arXiv'24])
- Continual learning (e.g., [Peng et al., ICML'23])
- Active learning (e.g., [Elenter et al., NeurlPS'22])
- Semi-supervised learning (e.g., [Cerviño et al., ICML'23])

What is (un)constrained learning?

$$\begin{split} \dot{P}^{\star} &= \min_{\theta} \quad \frac{1}{N} \sum_{n=1}^{N} \ell \left(f_{\theta}(\boldsymbol{x}_{n}), y_{n} \right) \\ \text{subject to} \quad \frac{1}{N} \sum_{m=1}^{N} g \left(f_{\theta}(\boldsymbol{x}_{m}), y_{m} \right) \leq c \\ \qquad \qquad h \left(f_{\theta}(\boldsymbol{x}_{r}), y_{r} \right) \leq u, \quad r = 1, \dots, N \end{split}$$

- ℓ,g are bounded, Lipschitz continuous (possibly non-convex) functions
- $f_{m{ heta}}$ is a (possibly nonlinear) parametrization [e.g., logistic classifier, (G)(C)NN]
- $(x_n,y_n)\sim\mathfrak{D}, (x_m,y_m)\sim\mathfrak{A}, (x_r,y_r)\sim\mathfrak{P}$ (i.i.d.)

[Chamon et al., IEEE ICASSP'20 (best student paper); Chamon and Ribeiro, NeurIPS'20; Chamon et al., IEEE TIT'23]

Constrained learning challenges

$$\begin{split} \hat{P}^{\star} &= \min_{\pmb{\theta}} & \frac{1}{N} \sum_{n=1}^{N} \ell \left(f_{\pmb{\theta}}(\pmb{x}_n), y_n \right) & P^{\star} &= \min_{\pmb{\theta}} & \mathbb{E}_{(\pmb{x}, y) \sim \mathcal{D}} \left[\ell \left(f_{\pmb{\theta}}(\pmb{x}), y \right) \right] \\ \text{subject to} & \frac{1}{N} \sum_{m=1}^{N} g \left(f_{\pmb{\theta}}(\pmb{x}_m), y_m \right) \leq c & \\ & h \left(f_{\pmb{\theta}}(\pmb{x}_r, y_r) \leq u \right) & \text{subject to} & \mathbb{E}_{(\pmb{x}, y) \sim \mathcal{D}} \left[g \left(f_{\pmb{\theta}}(\pmb{x}), y \right) \right] \leq c \\ & h \left(f_{\pmb{\theta}}(\pmb{x}), y \right) \leq u \text{ a.e.} \end{split}$$

Challenge

1) Statistical: does the solution of the constrained empirical problem generalize?

Constrained learning challenges

Challenges

- 1) Statistical: does the solution of the constrained empirical problem generalize?
- 2) Computational: can we solve the constrained empirical problem?

Constrained learning challenges

Challenges

- 1) Statistical: does the solution of the constrained empirical problem generalize?
- 2) Computational: can we solve the constrained empirical problem?

Constrained learning challenges

Challenges

- 1) Statistical: does the solution of the constrained empirical problem generalize?
- 2) Computational: can we solve the constrained empirical problem

Agenda

Constrained learning theory

Constrained learning algorithms

Resilient constrained learning

What classical learning theory says?

 $m{arphi}$ f is probably approximately correct (PAC) learnable

e.g., linear functions, smooth functions (finite RKHS norm, bandlimited), NNs. . . $(N \approx 1/\epsilon^2)$

What's in a solution?

Definition (PAC learnability)

 f_{θ} is a probably approximately correct (PAC) learnable if for every ϵ, δ and every distributions $\mathfrak{D}, \mathfrak{A}$, we can obtain f_{θ^1} from $N_f(\epsilon, \delta)$ samples such that, with prob. $1 - \delta$,

near-optimal

$$P^{\star} - \mathbb{E}_{(x,y) \sim \mathfrak{D}} \left[\ell \left(f_{\theta^{\dagger}}(x), y \right) \right] \leq \epsilon$$

What's in a solution?

Definition (PACC learnability)

 f_{θ} is a *probably approximately correct constrained (PACC)* learnable if for every ϵ, δ and every distributions $\mathfrak{D}, \mathfrak{A}$, we can obtain $f_{\theta 1}$ from $N_f(\epsilon, \delta)$ samples such that, with prob. $1 - \delta$,

near-optimal

$$P^* - \mathbb{E}_{(\boldsymbol{x},y)\sim \mathfrak{D}} \left[\ell(f_{\boldsymbol{\theta}^{\dagger}}(\boldsymbol{x}), y)\right] \leq \epsilon$$

approximately feasible

$$\mathbb{E}_{(\boldsymbol{x},y)\sim\mathfrak{A}}\Big[g\big(f_{\boldsymbol{\theta}^{\dagger}}(\boldsymbol{x}),y\big)\Big]\leq c+\epsilon$$

IChamon and Ribeiro NeurIPS'20: Chamon Paternain Calvo-Eullana Ribeiro IEEE TIT'231

When is constrained learning possible?

$$\hat{P}^* = \min_{\theta} \quad \frac{1}{N} \sum_{n=1}^{N} \ell \left(f_{\theta}(\boldsymbol{x}_n), y_n \right)$$
subject to
$$\frac{1}{N} \sum_{m=1}^{N} g \left(f_{\theta}(\boldsymbol{x}_m), y_m \right) \leq c$$
subject to
$$\mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathfrak{A}} \left[g \left(f_{\theta}(\boldsymbol{x}), \boldsymbol{y} \right) \right] \leq c$$
subject to
$$\mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathfrak{A}} \left[g \left(f_{\theta}(\boldsymbol{x}), \boldsymbol{y} \right) \right] \leq c$$

Proposition

 f_{θ} is PAC learnable $\Rightarrow f_{\theta}$ is PACC learnable

[Chamon and Ribeiro, NeurlPS'20; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'2:

ECRM is not a PACC learner

Counter-example

$$\begin{split} P^{\star} &= \min_{\boldsymbol{\theta} \in \Theta} \quad J(\boldsymbol{\theta}) \\ \text{subject to} \quad \theta_2 \, \mathbb{E}_{\tau}[\tau] &\leq \theta_1 - 1 \\ &- \theta_1 \, \mathbb{E}_{\tau}[\tau] \leq \theta_2 - 1 \end{split}$$

$$J(\boldsymbol{\theta}) = \begin{cases} 1/16, & \boldsymbol{\theta} = [1/2, 1/2] \\ 1/8, & \boldsymbol{\theta} = [1, 1] \\ 1/4, & \boldsymbol{\theta} = [1, 0] \end{cases}$$

•
$$\tau \sim \text{Uniform} \left(-1/2, 1/2\right)$$

ECRM is not a PACC learner

Counter-example

$$\begin{split} P^{\star} &= \min_{\theta \in \Theta} \quad J(\theta) = \frac{1}{8} \\ &\text{subject to} \quad \theta_2 \, \mathbb{E}_{\tau}[\tau] \leq \theta_1 - 1 \Rightarrow \theta_1 \geq 1 \\ &- \theta_1 \, \mathbb{E}_{\tau}[\tau] \leq \theta_2 - 1 \Rightarrow \theta_2 \leq 1 \end{split}$$

$$J(\theta) = \begin{cases} 1/16, & \theta = [1/2, 1/2] \\ 1/8, & \theta = [1, 1] \\ 1/4, & \theta = [1, 0] \end{cases}$$

• $\tau \sim \text{Uniform} \left(-1/2, 1/2\right)$

ECRM is not a PACC learner

Counter-example

$$\begin{split} P^{\star} &= \min_{\theta \in \Theta} \quad J(\theta) = \frac{1}{8} \\ &\text{subject to} \quad \theta_2 \, \mathbb{E}_{\tau}[\tau] \leq \theta_1 - 1 \Rightarrow \theta_1 \geq 1 \\ &- \theta_1 \, \mathbb{E}_{\tau}[\tau] \leq \theta_2 - 1 \Rightarrow \theta_2 \leq 1 \end{split}$$

$$J(\boldsymbol{\theta}) = \begin{cases} 1/16, & \boldsymbol{\theta} = [1/2, 1/2] \\ 1/8, & \boldsymbol{\theta} = [1, 1] \\ 1/4, & \boldsymbol{\theta} = [1, 0] \end{cases}$$

$$\hat{P}^{\star} = \min_{\theta \in \Theta} J(\theta)$$

$$\mathbb{P}\left[|\hat{P}^{\star} - P^{\star}| \leq 1/32\right] = \mathbb{P}\left[\bar{\tau}_{N} = 0\right] = 0$$

subject to
$$\theta_2 \bar{\tau}_N \le \theta_1 - 1$$

 $-\theta_1 \bar{\tau}_N \le 1 - \theta_2$

•
$$au\sim \mathrm{Uniform} \Big(-1/2,1/2\Big) \ o ar{ au}_N = rac{1}{N} \sum_{n=1}^N au_n$$

ECRM is not a PACC learner

Counter-example

$$\begin{split} P^{\star} &= \min_{\theta \in \Theta} \quad J(\theta) = \frac{1}{8} \\ \text{subject to} \quad \theta_2 \, \mathbb{E}_{\tau}[\tau] \leq \theta_1 - 1 \Rightarrow \theta_1 \geq 1 \\ &- \theta_1 \, \mathbb{E}_{\tau}[\tau] \leq \theta_2 - 1 \Rightarrow \theta_2 \leq 1 \end{split}$$

$$J(\boldsymbol{\theta}) = \begin{cases} 1/16, & \boldsymbol{\theta} = [1/2, 1/2] \\ 1/8, & \boldsymbol{\theta} = [1, 1] \\ 1/4, & \boldsymbol{\theta} = [1, 0] \end{cases}$$

$$\begin{split} \hat{P}_r^{\star} &= \min_{\boldsymbol{\theta} \in \Theta} \quad J(\boldsymbol{\theta}) \\ \text{subject to} \quad \theta_2 \bar{\tau}_N \leq \theta_1 - 1 + r_1 \end{split}$$

$$\begin{split} \mathbb{P}\left[|\hat{P}_{\pmb{r}}^{\star} - P^{\star}| \leq 1/32\right] \leq 4e^{-0.001N}, \\ \text{unless } \bar{\tau}_N \leq \frac{\pmb{r}_1}{2} < \frac{\bar{\tau}_N + 1}{2} \text{ and } \frac{\pmb{r}_2}{2} \geq \bar{\tau}_I \end{split}$$

• $\tau \sim \text{Uniform} \left(-1/2, 1/2\right) \rightarrow \bar{\tau}_N = \frac{1}{N} \sum_{n=1}^N \tau_n$

 $-\theta_1 \bar{\tau}_N \le 1 - \theta_2 + r_2$

Constrained learning challenges

$$\begin{array}{ll} \dot{\mathcal{P}}^{\star} = \min_{\theta} & \frac{1}{N} \sum_{n=1}^{N} \ell \big(f_{\theta}(\boldsymbol{x}_{n}), y_{n} \big) & P^{\star} = \min_{\theta} & \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{D}} \left[\ell \big(f_{\theta}(\boldsymbol{x}), \boldsymbol{y} \big) \right] \\ \text{subject to} & \frac{1}{N} \sum_{m=1}^{N} g \big(f_{\theta}(\boldsymbol{x}_{m}), y_{m} \big) \leq c & \text{subject to} & \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{D}} \left[g \big(f_{\theta}(\boldsymbol{x}), \boldsymbol{y} \big) \right] \leq c \\ & h \left(f_{\theta}(\boldsymbol{x}_{r}, y_{r}) \leq u & h \left(f_{\theta}(\boldsymbol{x}), \boldsymbol{y} \right) \leq u \text{ a.e.} \end{array}$$

Challenge

- 1) Statistical: does the solution of the constrained empirical problem generalize?
- 2) Computational: can we solve the constrained empirical problem?

Constrained learning challenges

$$\begin{split} \dot{P}^{\star} &= \min_{\theta} \quad \frac{1}{N} \sum_{n=1}^{N} \ell \Big(f_{\theta}(\boldsymbol{x}_{n}), y_{n} \Big) \\ &\text{subject to} \quad \frac{1}{N} \sum_{m=1}^{N} g \Big(f_{\theta}(\boldsymbol{x}_{m}), y_{m} \Big) \leq c \end{split} \qquad \begin{aligned} &P^{\star} &= \min_{\theta} \quad \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{D}} \Big[\ell \Big(f_{\theta}(\boldsymbol{x}), \boldsymbol{y} \Big) \Big] \\ &\text{subject to} \quad \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{D}} \Big[g \Big(f_{\theta}(\boldsymbol{x}), \boldsymbol{y} \Big) \Big] \leq c \end{aligned}$$

Challenges

- 1) Statistical: does the solution of the constrained empirical problem generalize?
- 2) Computational: can we solve the constrained empirical problem?

Duality

Duality

$$\hat{P}^* = \min_{\theta} \frac{1}{N} \sum_{n=1}^{N} \ell(f_{\theta}(\boldsymbol{x}_n), y_n) \text{ subject to } \frac{1}{N} \sum_{m=1}^{N} g(f_{\theta}(\boldsymbol{x}_m), y_m) \le c$$

Duality

$$\hat{P}^{\star} = \min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{n=1}^{N} \ell \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{n}), y_{n} \right) \text{ subject to } \frac{1}{N} \sum_{m=1}^{N} g \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{m}), y_{m} \right) \leq c$$

$$\hat{D}^{\star} = \max_{\lambda \geq 0} \min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{n=1}^{N} \ell \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{n}), y_{n} \right) + \lambda \left[\frac{1}{N} \sum_{m=1}^{N} g \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{m}), y_{m} \right) - c \right]$$

Duality

$$\begin{split} \hat{P}^* &= \min_{\pmb{\theta}} \ \frac{1}{N} \sum_{n=1}^N \ell \Big(f_{\pmb{\theta}}(\pmb{x}_n), y_n \Big) \text{ subject to } \frac{1}{N} \sum_{m=1}^N g \Big(f_{\pmb{\theta}}(\pmb{x}_m), y_m \Big) \leq c \\ & \qquad \qquad \downarrow \\ \hat{D}^* &= \max_{\lambda \geq 0} \ \min_{\pmb{\theta}} \ \frac{1}{N} \sum_{n=1}^N \ell \left(f_{\pmb{\theta}}(\pmb{x}_n), y_n \right) + \lambda \Bigg[\frac{1}{N} \sum_{m=1}^N g \left(f_{\pmb{\theta}}(\pmb{x}_m), y_m \right) - c \Bigg] \end{split}$$

- In general, $\hat{D}^{\star} < \hat{P}^{\star}$
- But in some cases, $\hat{D}^{\star} = \hat{P}^{\star}$ (strong duality) [e.g., convex optimization

Duality

$$\begin{split} \hat{P}^{\star} &= \min_{\pmb{\theta}} \ \frac{1}{N} \sum_{n=1}^{N} \ell \Big(f_{\pmb{\theta}}(\pmb{x}_n), y_n \Big) \text{ subject to } \frac{1}{N} \sum_{m=1}^{N} g \Big(f_{\pmb{\theta}}(\pmb{x}_m), y_m \Big) \leq c \\ & \qquad \qquad \downarrow \\ \hat{D}^{\star} &= \max_{\lambda \geq 0} \ \min_{\pmb{\theta}} \ \frac{1}{N} \sum_{n=1}^{N} \ell \left(f_{\pmb{\theta}}(\pmb{x}_n), y_n \right) + \lambda \Bigg[\frac{1}{N} \sum_{m=1}^{N} g \left(f_{\pmb{\theta}}(\pmb{x}_m), y_m \right) - c \Bigg] \end{split}$$

- In general $\hat{D}^{\star} < \hat{P}^{\star}$
- But in some cases, $\hat{D}^* = \hat{P}^*$ (strong duality) [e.g., convex optimization]

An alternative path

chamon and Ribeiro, NeurIPS'20; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23

An alternative path

Non-convex variational duality

Convex optimization: Primal ←→ Dual

Non-convex, finite dimensional optimization: Primal +/+ Dual

Non-convex variational duality

Sparse logistic regression

$$\begin{split} & \min_{\boldsymbol{\theta} \in \mathbb{R}^p} - \sum_{n=1}^{N} \log \left[1 + \exp \left(y_n \cdot \boldsymbol{\theta}^T \boldsymbol{x}_n \right) \right] \\ & \text{s. to } \|\boldsymbol{\theta}\|_0 = \sum_{t=1}^{p} \mathbb{I} \left[\boldsymbol{\theta}_t \neq 0 \right] \leq k \end{split}$$

Sparse logistic regression

$$\begin{aligned} & \min_{\boldsymbol{\theta} \in \mathbb{R}^p} - \sum_{n=1}^{N} \log \left[1 + \exp \left(y_n \cdot \boldsymbol{\theta}^T \boldsymbol{x}_n \right) \right] \\ & \text{s. to } \|\boldsymbol{\theta}\|_0 = \sum_{t=1}^p \mathbb{I} \left[\boldsymbol{\theta}_t \neq 0 \right] \leq k \end{aligned}$$

Sparse logistic regression

 $\sum \log \left[1 + \exp\left(y_n \cdot \int \theta(t) x_n(t) dt\right)\right]$

An alternative path

An alternative path

Dual (near-)PACC learning

An alternative path

Let f be ν -universal, i.e., for each θ_1, θ_2 , and $\gamma \in [0,1]$ there exists θ such that $\mathbb{E}\left[\left|\gamma f_{\theta_1}(\boldsymbol{x}) + (1-\gamma)f_{\theta_2}(\boldsymbol{x}) - f_{\theta}(\boldsymbol{x})\right|\right] \leq \nu$

 $ig[\{f_{m{ heta}}\}\ ext{is a good covering of } \overline{ ext{conv}}(\{f_{m{ heta}}\})ig]$

Dual (near-)PACC learning

Then \hat{D}^* is a (near-)PACC learner, i.e., with probability $1 - \delta$,

Near-optimal:
$$\left|P^{\star} - \hat{D}^{\star}\right| \leq \widetilde{O}\left(\nu + \frac{1}{\sqrt{N}}\right)$$

Dual (near-)PACC learning

Then \hat{D}^* is a (near-)PACC learner, i.e., for all $(\theta^{\dagger}, \lambda^{\dagger})$ that achieve \hat{D}^* , with probability $1 - \delta$,

Near-optimal:
$$\left|P^{\star} - \hat{D}^{\star}\right| \leq \widetilde{O}\left(\nu + \frac{1}{\sqrt{N}}\right)$$

Approximately feasible:
$$\mathbb{E}\Big[g\big(f_{\theta^\dagger}(x),y\big)\Big] \leq c + \widetilde{O}\left(\nu + \frac{1}{\sqrt{N}}\right)$$

 $h(f_{\theta^{\dagger}}(x), y) \le r$, with \mathfrak{P} -prob. $1 - \widetilde{O}\left(\nu + \frac{1}{\sqrt{N}}\right)$

Dual (near-)PACC learning

The universal with VC dimension $d_{\rm VC}<\infty$, ℓ_0 strongly convex, and g convex. Then, f_{θ^\dagger} is a (near-)PACC solution of (P-CSL) for all $(\theta^\dagger,\lambda^\dagger)$ that achieve \hat{D}^* , i.e., with probability at least $1-\delta$,

$$\begin{split} \left| P^{\star} - \hat{D}^{\star} \right| &\leq (1 + \Delta) \left(\epsilon_{0} + \epsilon \right) \\ \mathbb{E} \left[g \left(f_{\theta^{\dagger}}(\boldsymbol{x}), \boldsymbol{y} \right) \right] &\leq c + (1 + \Delta)^{3/2} \left(M \sqrt{\epsilon_{0}} + \epsilon \right) \end{split}$$

$$\epsilon_0 = M\nu$$
 $\epsilon = B\sqrt{\frac{1}{N}\left[1 + \log\left(\frac{4m(2N)^{d_{\text{VC}}}}{\delta}\right)\right]}$ $\Delta = \max\left(\left\|\lambda^*\right\|_1, \left\|\hat{\lambda}^*\right\|_1, \left\|\hat{\lambda}^*\right\|_1\right)\right]$

Sources of error

Dual (near-)PACC learning

 $\label{eq:convex} \begin{array}{l} \textbf{Theorem} \\ \textbf{Let } f \text{ be } \nu\text{-universal with VC dimension } d_{\text{VC}} < \infty, \ell_0 \text{ strongly convex, and } g \text{ convex. Then, } f_{\theta^\dagger} \text{ is a (near-)PACC solution of (P-CSL) for all } (\theta^\dagger, \lambda^\dagger) \text{ that achieve } \hat{D}^*, \text{ i.e., with probability at least } 1 - \delta, \end{cases}$

$$\begin{split} \left| P^{\star} - \hat{D}^{\star} \right| &\leq (1 + \Delta) \left(\mathbf{\epsilon_0} + \epsilon \right) \\ \mathbb{E} \left[g \left(f_{\theta^{\dagger}}(\boldsymbol{x}), \boldsymbol{y} \right) \right] &\leq c + (1 + \Delta)^{3/2} \left(M \sqrt{\mathbf{\epsilon_0}} + \epsilon \right) \end{split}$$

$$\boldsymbol{\epsilon_0} = M\boldsymbol{\nu} \qquad \quad \boldsymbol{\epsilon} = B\sqrt{\frac{1}{N}\left[1 + \log\left(\frac{4m(2N)^d \text{vc}}{\delta}\right)\right]} \qquad \quad \Delta = \max\left(\left\|\boldsymbol{\lambda}^*\right\|_1, \left\|\tilde{\boldsymbol{\lambda}}^*\right\|_1, \left\|\tilde{\boldsymbol{\lambda}}^*\right\|_1\right)$$

Sources of error

parametrization richness (ν)

Dual (near-)PACC learning

Let f be ν -universal with VC dimension $d_{VC} < \infty$, ℓ_0 strongly convex, and g convex. Then, $f_{\theta^{\dagger}}$ is a (near-)PACC solution of (P-CSL) for all $(\theta^{\dagger}, \lambda^{\dagger})$ that achieve \hat{D}^* , i.e., with probability at least $1 - \delta$,

$$\begin{split} \left| P^{\star} - \hat{D}^{\star} \right| &\leq (1 + \Delta) \left(\epsilon_{0} + \epsilon \right) \\ \mathbb{E} \left[g \Big(f_{\theta^{\dagger}}(\boldsymbol{x}), \boldsymbol{y} \Big) \right] &\leq c + (1 + \Delta)^{3/2} \left(M \sqrt{\epsilon_{0}} + \epsilon \right) \end{split}$$

$$\boldsymbol{\epsilon_0} = M \boldsymbol{\nu} \qquad \quad \boldsymbol{\epsilon} = B \sqrt{\frac{1}{N} \left[1 + \log \left(\frac{4m(2N)^{\text{dyc}}}{\delta} \right) \right]} \qquad \quad \Delta = \max \left(\left\| \boldsymbol{\lambda}^* \right\|_1 \cdot \left\| \hat{\boldsymbol{\lambda}}^* \right\|_1 \cdot \left\| \hat{\boldsymbol{\lambda}}^* \right\|_1 \right)$$

Sources of error

Dual (near-)PACC learning

Let f be r-universal with VC dimension $d_{VC} < \infty$, ℓ_0 strongly convex, and g convex. Then, $f_{\theta^{\dagger}}$ is a (near-)PACC solution of (P-CSL) for all $(\theta^{\dagger}, \lambda^{\dagger})$ that achieve \hat{D}^* , i.e., with probability at least $1 - \delta$,

$$\begin{split} \left| P^{\star} - \hat{D}^{\star} \right| &\leq (1 + \Delta) \left(\epsilon_{0} + \epsilon \right) \\ \mathbb{E} \left[g \left(f_{\theta^{\dagger}}(\boldsymbol{x}), \boldsymbol{y} \right) \right] &\leq c + (1 + \Delta)^{3/2} \left(M \sqrt{\epsilon_{0}} + \epsilon \right) \end{split}$$

$$\epsilon_0 = M \nu \qquad \quad \epsilon = B \sqrt{\frac{1}{N} \left[1 + \log \left(\frac{4m(2N)^{\mathsf{d}\mathsf{vc}}}{\delta} \right) \right]} \qquad \quad \Delta = \max \left(\left\| \lambda^* \right\|_1, \left\| \bar{\lambda}^* \right\|_1, \left\| \bar{\lambda}^* \right\|_1 \right)$$

Sources of error

Dual (near-)PACC learning

 $\label{eq:convex} \begin{array}{l} \textbf{Theorem} \\ \textbf{Let } f \text{ be } \nu\text{-universal with VC dimension } d_{\text{VC}} < \infty, \ell_0 \text{ strongly convex, and } g \text{ convex. Then, } f_{\theta^{\dagger}} \text{ is a (near-)PACC solution of (P-CSL) for all } (\theta^{\dagger}, \lambda^{\dagger}) \text{ that achieve } \hat{D}^*, \text{i.e., with probability at least } 1 - \delta, \end{array}$

$$\begin{split} \left| P^{\star} - \hat{D}^{\star} \right| &\leq (1 + \Delta) \Big(\mathbf{\epsilon_0} + \epsilon \Big) \\ \mathbb{E} \left[g \Big(f_{\theta^{\dagger}}(\mathbf{x}), \mathbf{y} \Big) \right] &\leq c + (1 + \Delta)^{3/2} \Big(M \sqrt{\mathbf{\epsilon_0}} + \epsilon \Big) \end{split}$$

$$\epsilon_0 = M \nu$$

$$\epsilon = B \sqrt{\frac{1}{N} \left[1 + \log \left(\frac{4m(2N)^{d_{\text{NC}}}}{\delta} \right) \right]}$$

$$\Delta = \max \left(\left\| \lambda^* \right\|_{1^*} \left\| \hat{\lambda}^* \right\|_{1^*} \right\| \tilde{\lambda}^* \right)$$

Sources of error

parametrization richness (ν)

Dual learning trade-offs

Unconstrained learning

parametrization × sample size

Dual learning trade-offs

- Unconstrained learning parametrization × sample size

When is constrained learning possible?

Corollary

 f_{θ} is PAC learnable $pprox^* f_{\theta}$ is PACC learnable

Constrained learning is essentially as hard as unconstrained learning

When is constrained learning possible?

Corollary

Fairness

Problem

Predict whether an individual will recidivate

Fairness: "Equality" of odds

Problem
Predict whether an individual will recidivate at the same rate across races

$$\begin{split} & & & \min_{\theta} & & \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \big(f_{\theta}(\boldsymbol{x}_{n}), y_{n} \big) \\ & & \text{subject to} & & \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} \left[f_{\theta}(\boldsymbol{x}_{n}) = 1 \mid \mathsf{Race} \right] \leq \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} \left[f_{\theta}(\boldsymbol{x}_{n}) = 1 \right] + c \\ & & \text{for Race} \in \left\{ \mathsf{African-American, Caucasian, Hispanic, Other} \right\} \end{split}$$

*We say "Race" to follow the terminology used during the data collection of the CI [Cotter et al., JMLR'19; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

Fairness: "Equality" of odds

Problem
Predict whether an individual will recidivate at the same rate across races

$$\begin{aligned} & \min_{\boldsymbol{\theta}} & & \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \big) \\ & \text{subject to} & & \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} \left[f_{\boldsymbol{\theta}}(\boldsymbol{x}_n) = 1 \mid \mathsf{Race} \right] \leq \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} \left[f_{\boldsymbol{\theta}}(\boldsymbol{x}_n) = 1 \right] + c, \\ & \text{for Race} \in \{\mathsf{African-American, Caucasian, Hispanic, Other} \} \end{aligned}$$

*We say "Race" to follow the terminology used during the data collection of the C [Cotter et al., JMLR'19; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

Fairness: "Equality" of odds

$$\min_{\theta} \quad \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \big(f_{\theta}(\boldsymbol{x}_n), y_n \big)$$

$$\text{subject to} \quad \frac{1}{N} \sum_{n=1}^{N} \sigma \big(f_{\theta}(\boldsymbol{x}_n) - 0.5 \big) \, \mathbb{I} \big[\boldsymbol{x}_n \in \mathsf{Race} \big] \leq \frac{1}{N} \sum_{n=1}^{N} \sigma \big(f_{\theta}(\boldsymbol{x}_n) - 0.5 \big) + c,$$

$$\text{for Race} \in \{\mathsf{African-American, Caucasian, Hispanic, Other} \}$$

*We say "Race" to follow the terminology used during the data collection of the C [Cotter et al., JMLR'19; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

Fairness: "Equality" of odds

redict whether an individual will recidivate at the same rate across races

Fairness: "Equality" of odds

Problem
Predict whether an individual will recidivate at the same rate across races

* We say "Race" to follow the terminology used during the [Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

Fairness: "Equality" of odds

*We say "Race" to follow the terminology used during the [Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

Fairness: "Equality" of odds

*We say "Race" to follow the terminology used during the da [Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

Fairness: "Equality" of odds

*We say "Race" to follow the terminology used during the [Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

Agenda

Constrained learning algorithms

Constrained optimization methods

$$\hat{P}^* = \min_{\theta} \quad \frac{1}{N} \sum_{n=1}^{N} \ell(f_{\theta}(\boldsymbol{x}_n), y_n)$$
subject to
$$\frac{1}{N} \sum_{m=1}^{N} g(f_{\theta}(\boldsymbol{x}_m), y_m) \leq c$$

$$h(f_{\theta}(\boldsymbol{x}_r), y_r) \leq u$$

Constrained optimization methods

- Feasible update methods
- e.g., conditional gradients (Frank-Wolfe)
- Tractability [non-convex constraints]
- Interior point methods e.g., barriers, projection, polyhedral approx.
- 3 Tractability [non-convex constraints]
- Feasible candidate solution

Constrained optimization methods

Duality

Dual learning algorithm

$$\hat{D}^{\star} = \max_{\lambda \geq 0} \min_{\theta \in \mathbb{R}^{p}} \quad \frac{1}{N} \sum_{n=1}^{N} \ell\left(f_{\theta}(\boldsymbol{x}_{n}), y_{n}\right) + \lambda \left[\frac{1}{N} \sum_{m=1}^{N} g\left(f_{\theta}(\boldsymbol{x}_{m}), y_{m}\right) - c\right]$$

Dual learning algorithm

Minimize the primal (≡ ERM)

$$\boldsymbol{\theta}^{\dagger} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\operatorname{argmin}} \ \frac{1}{N} \sum_{n=1}^{N} \left[\ell\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n\right) + \lambda g\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n\right) \right]$$

$$\hat{D}^* = \max_{\lambda \geq 0} \min_{\boldsymbol{\theta} \in \mathbb{R}^p} \frac{1}{N} \sum_{n=1}^{N} \ell\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n\right) + \lambda \left[\frac{1}{N} \sum_{n=1}^{N} g\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_m), y_m\right) - \varepsilon\right]$$

Dual learning algorithm

Minimize the primal (≡ ERM)

$$\theta^+ \approx \theta - \eta \nabla_\theta \Big[\ell \Big(f_\theta(x_n), y_n \Big) + \lambda g \Big(f_\theta(x_n), y_n \Big) \Big], \quad n = 1, 2, \dots$$
[Haeffele et al., CVPR17; Ge et al., ICLR18; Mei et al., PNAS18; Kawaguchi et al., AISTATS 20...]

$$\hat{D}^* = \max_{\lambda \geq 0} \ \min_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \frac{1}{N} \sum_{n=1}^N \ell\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n\right) + \lambda \left[\frac{1}{N} \sum_{m=1}^N g\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_m), y_m\right) - \varepsilon\right]$$

Dual learning algorithm

• Minimize the primal (\equiv ERM)

$$\theta^+ \approx \theta - \eta \nabla_{\theta} \left[\ell \left(f_{\theta}(\boldsymbol{x}_n), y_n \right) + \lambda g \left(f_{\theta}(\boldsymbol{x}_n), y_n \right) \right], \quad n = 1, 2, \dots$$

· Update the dual

$$\lambda^{+} = \left[\lambda + \eta \left(\frac{1}{N} \sum_{m=1}^{N} g(f_{\theta^{+}}(\boldsymbol{x}_{m}), y_{m}) - c\right)\right]_{+}$$

$$\hat{D}^* = \max_{\pmb{\lambda} \geq \pmb{0}} \ \min_{\theta \in \mathbb{R}^p} \quad \frac{1}{N} \sum_{n=1}^N \ell\left(f\theta(x_n), y_n\right) + \pmb{\lambda} \bigg[\frac{1}{N} \sum_{m=1}^N g\left(f\theta(x_m), y_m\right) - c \bigg]$$

A (near-)PACC learner

Theorem

Suppose $heta^{\dagger}$ is a ho-approximate solution of the regularized ERM:

$$\theta^{\dagger} \approx \underset{\theta \in \mathbb{R}^p}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \left(\ell\left(f_{\theta}(\boldsymbol{x}_n), y_n\right) + \lambda g\left(f_{\theta}(\boldsymbol{x}_n), y_n\right) \right).$$

Then, after $T = \left[\frac{\|\lambda^*\|^2}{2nM\mu}\right] + 1$ dual iterations with step size $\eta \leq \frac{2\epsilon}{mR^2}$,

the iterates $\left(oldsymbol{ heta}^{(T)}, oldsymbol{\lambda}^{(T)}
ight)$ are such that

$$|P^{\star} - L(\boldsymbol{\theta}^{(T)}, \boldsymbol{\lambda}^{(T)})| \le (2 + \Delta)(\epsilon_0 + \epsilon) + \rho$$

with probability $1-\delta$ over sample sets.

[Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

In practice...

Minimize the primal (≡ ERM)

$$\theta^+ \approx \theta - \eta \nabla_{\theta} \left[\ell \left(f_{\theta}(x_n), y_n \right) + \lambda g \left(f_{\theta}(x_n), y_n \right) \right], \quad n = 1, 2, \dots$$

Update the dual

$$\boldsymbol{\lambda}^{+} = \left[\boldsymbol{\lambda} + \eta \Bigg(\frac{1}{N} \sum_{m=1}^{N} g\Big(f_{\theta^{+}}(\boldsymbol{x}_{m}), y_{m}\Big) - c\Bigg)\right]_{+}$$

$$\hat{D}^* = \max_{\lambda \geq 0} \min_{\boldsymbol{\theta} \in \mathbb{R}^p} \frac{1}{N} \sum_{n=1}^N \ell\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n\right) + \lambda \left[\frac{1}{N} \sum_{m=1}^N g\left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_m), y_m\right) - c\right]$$

In practice...

• Minimize the primal (\equiv **ERM**)

$$\boldsymbol{\theta^+} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \left[\ell \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \right) + \lambda g \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \right) \right], \quad \mathbf{n} = 1, 2, \dots, N$$

Update the dual

$$\lambda^{+} = \left[\lambda + \eta \left(\frac{1}{N} \sum_{m=1}^{N} g(f_{\theta^{+}}(\boldsymbol{x}_{m}), y_{m}) - c\right)\right]$$

$$\hat{D}^{\star} = \max_{\lambda \geq 0} \min_{\theta \in \mathbb{R}^{p}} \quad \frac{1}{N} \sum_{i}^{N} \ell\left(f_{\theta}(\boldsymbol{x}_{n}), y_{n}\right) + \lambda \left[\frac{1}{N} \sum_{i}^{N} g\left(f_{\theta}(\boldsymbol{x}_{m}), y_{m}\right) - c\right]$$

In practice...

2: **TOF**
$$t = 1, ..., T$$

4: **for**
$$n = 1, ..., N$$

$$\beta_{n+1} \leftarrow \beta_n - \eta_\theta \nabla_\beta \left[\ell \left(f_{\beta_n}(\boldsymbol{x}_n), y_n \right) + \lambda_{t-1} g \left(f_{\beta_n}(\boldsymbol{x}_n), y_n \right) \right]$$

7:
$$\theta_t \leftarrow \beta_N$$

7:
$$\theta_t \leftarrow \beta_{N+1}$$

8: $\lambda_t = \left[\lambda_{t-1} + \eta_{\lambda} \left(\frac{1}{N} \sum_{i=1}^{N} g(f_{\theta_t}(\boldsymbol{x}_m), y_n) - c\right)\right]$

In practice...

- 1: Initialize: $\boldsymbol{\theta}_0,\,\lambda_0$ 2: **for** t = 1, ..., T $\beta_1 \leftarrow \theta_{t-1}$ $\quad \text{for } n=1,\dots,N$ $\boldsymbol{\beta}_{n+1} \leftarrow \boldsymbol{\beta}_n - \eta_{\theta} \nabla_{\boldsymbol{\beta}} \left[\ell \left(f_{\boldsymbol{\beta}_n}(\boldsymbol{x}_n), y_n \right) + \lambda_{t-1} g \left(f_{\boldsymbol{\beta}_n}(\boldsymbol{x}_n), y_n \right) \right]$ end $\theta_t \leftarrow \beta_{N+1}$
- $\left[\lambda_{t-1} + \eta_{\lambda} \left(\frac{1}{N} \sum_{m=1}^{N} g(f_{\theta_t}(\boldsymbol{x}_m), y_n) c\right)\right]$ Use adaptive method (e.g., ADAM) 9: end
- 10: Output: θ_T , λ_T O PyTorch

https://github.com/lfochamon/csl

In practice...

10: Output: θ_T , λ_T

- 1: Initialize: $\boldsymbol{\theta}_0,\,\lambda_0$ 2: **for** t = 1, ..., T $\beta_1 \leftarrow \theta_{t-1}$ $\text{ for } n=1,\dots,N$ $\boldsymbol{\beta}_{n+1} \leftarrow \boldsymbol{\beta}_n - \eta_{\theta} \nabla_{\boldsymbol{\beta}} \left[\ell \left(f_{\boldsymbol{\beta}_n}(\boldsymbol{x}_n), y_n \right) + \lambda_{t-1} g \left(f_{\boldsymbol{\beta}_n}(\boldsymbol{x}_n), y_n \right) \right]$ end
- $\theta_t \leftarrow \beta_{N+1}$ $\left[\lambda_{t-1} + \eta_{\lambda} \left(\frac{1}{N} \sum_{i=1}^{N} g(f_{\theta_t}(x_m), y_n) - c\right)\right]$ 9: end

Use adaptive method (e.g., ADAM) Use different time-scales ($\eta_{\lambda} = 0.1\eta_{\theta}$)

0

O PyTorch

https://github.com/lfochamon/csl

In practice...

- 1: Initialize: $\pmb{\theta}_0,\,\lambda_0$
- 2: **for** t = 1, ..., T $\beta_1 \leftarrow \theta_{t-1}$
- for $n=1,\ldots,N$
- $\boldsymbol{\beta}_{n+1} \leftarrow \boldsymbol{\beta}_n \eta_{\theta} \nabla_{\!\boldsymbol{\beta}} \big[\ell \big(f_{\boldsymbol{\beta}_n}(\boldsymbol{x}_n), y_n \big) + \lambda_{t-1} g \big(f_{\boldsymbol{\beta}_n}(\boldsymbol{x}_n), y_n \big) \big]$
- end
- $\theta_t \leftarrow \beta_{N+1}$
- $\lambda_{t-1} + \eta_{\lambda} \left(\frac{1}{N} \sum_{m=1}^{N} g(f_{\theta_t}(\mathbf{x}_m), y_n) c \right)$
- 9: end
- 10: Output: θ_T , λ_T

•

•

O PyTorch

https://github.com/lfochamon/csl

In practice...

Penalty-based vs. dual learning

Penalty-based learning

 $\boldsymbol{\theta}^{\dagger} \in \operatorname{argmin} \ \mathsf{Loss}(\boldsymbol{\theta}) + \lambda \cdot \mathsf{Penalty}(\boldsymbol{\theta})$

- Parameter: λ (data-dependent)
- Generalizes with respect to Loss $+\lambda \text{Penalty}$

Dual learning

 $\boldsymbol{\theta}^{\dagger} \in \operatorname*{argmin} \ \mathsf{Loss}(\boldsymbol{\theta}) + \lambda \cdot \mathsf{Penalty}(\boldsymbol{\theta})$

$$\lambda^{+} = \left[\lambda + \eta \left(\mathsf{Penalty}(\boldsymbol{\theta}^{\dagger}) - c \right) \right]_{+}$$

- Parameter: c (requirement-dependent)
- Generalizes with respect to Loss and Penalty $\leq c$

Robust learning

Problem

Learn an accurate classifier that is robust to input perturbations

Adversarial training

Problem
Learn an accurate classifier that is robust to input perturbations

Adversarial training |

$$\min_{\boldsymbol{\theta}} \ \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \big) \longrightarrow \min_{\boldsymbol{\theta}} \ \frac{1}{N} \sum_{n=1}^{N} \left[\max_{\|\boldsymbol{\theta}\|_{\infty} \le \epsilon} \mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n + \boldsymbol{\delta}), y_n \big) \right]$$

Adversarial training

Problem

Learn an accurate classifier that is robust to input perturbations

Adversarial training

Learn an accurate classifier that is robust to input perturbations

Adversarial training

Problem

Learn an accurate classifier that is robust to input perturbations

[Zhang et al., ICML'19]

Constrained learning for robustness

Problem

Learn an accurate classifier that is robust to input perturbations

$$\begin{split} & \min_{\boldsymbol{\theta}} \quad \frac{1}{N} \sum_{n=1}^{N} \mathsf{Loss} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n), y_n \right) \\ & \text{subject to} \quad \frac{1}{N} \sum_{n=1}^{N} \left[\max_{\|\boldsymbol{\delta}\|_{\infty} \leq \epsilon} \mathsf{Loss} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_n + \boldsymbol{\delta}), y_n \right) \right] \leq \epsilon \end{split}$$

Constrained learning for robustness

Problem

Learn an accurate classifier that is robust to input perturbations

[Chamon and Ribeiro, NeurlPS'20; Robey et al., NeurlPS'21; Chamon et al., IEEE TIT'23]

Constrained learning for robustness

Problem

Learn an accurate classifier

Constrained learning for robustness

n, Calvo-Fullana, Ribeiro, IEEE TIT'23]

Constrained learning for robustness

Constrained learning for robustness

amon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

[Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23]

Constrained learning for robustness

Constrained learning for robustness

ns: [Zhang et al., ICML'20; Sitawarin, arXiv'20]

Constrained learning for robustness

Constrained learning for robustness

Penalty-based vs. dual learning

 $\boldsymbol{\theta}^{\dagger} \in \operatorname*{argmin}_{\boldsymbol{\theta}} \ \mathsf{Loss}(\boldsymbol{\theta}) + \lambda \cdot \mathsf{Penalty}(\boldsymbol{\theta})$

- Parameter: λ (data-dependent)

Dual learning

$$\boldsymbol{\theta}^{\dagger} \in \operatorname{argmin} \ \mathsf{Loss}(\boldsymbol{\theta}) + \lambda \cdot \mathsf{Penalty}(\boldsymbol{\theta})$$

$$\lambda^+ = \left[\lambda + \eta \left(\mathsf{Penalty}(\boldsymbol{\theta}^\dagger) - c \right) \right]_+$$

Clients

Agenda

Heterogeneous federated learning

$$\begin{aligned} & & & \min_{\theta} & & \frac{1}{K} \sum_{k=1}^{K} \mathsf{Loss}_k(f_{\theta}) \\ & & & & \text{subject to} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\$$

Heterogeneous federated learning

$$\begin{aligned} & & & \min_{\boldsymbol{\theta}} & & \frac{1}{K} \sum_{k=1}^{K} \mathsf{Loss}_k(f_{\boldsymbol{\theta}}) \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ &$$

Resilient constrained learning

Definition (Resilience)

(ecology) ability of an ecosystem to adapt its function to accommodate operating conditions

Resilient constrained learning

Definition (Resilience)

 (ecology) ability of an ecosystem to adapt its function to accommodate operating-conditions

 (learning)
 learning system

 specification
 data properties

Resilient constrained learning

Definition (Resilience)

(ecology) ability of an ecosystem to adapt its function to accommodate operating conditions (learning) learning system specification data properties

$$\begin{split} P^{\star} &= \min_{\theta} \ \mathbb{E}_{(x,y) \sim \mathcal{D}} \Big[\mathsf{Loss} \Big(f_{\theta}(x), y \Big) \Big] \\ \text{subject to} \ \mathbb{E}_{(x,y) \sim \mathfrak{A}_i} \Big[g_i \Big(f_{\theta}(x_m), y_m \Big) \Big] \leq c_i \end{split}$$

Resilient constrained learning

Definition (Resilience)

 (ecology)
 ability of an ecosystem to adapt its function to accommodate operating conditions

 (learning)
 learning system

 specification
 data properties

$$\begin{split} P^{\star}(\boldsymbol{r}) &= \min_{\boldsymbol{\theta}} \ \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{D}} \left[\mathsf{Loss} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}), \boldsymbol{y} \right) \right] \\ &\text{subject to} \ \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{A}_i} \left[g_i \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}), \boldsymbol{y}_m \right) \right] \leq c_i + \underline{r_i} \end{split}$$

Resilient constrained learning

Definition (Resilience) (eeology) ability of an eeosystem to adapt its function to accommodate operating conditions

earning) learning system specification data properties

$$\begin{split} P^{\star}(r) &= \min_{\theta} \ \mathbb{E}_{(x,y) \sim \mathfrak{D}} \left[\mathsf{Loss} \left(f_{\theta}(x), y \right) \right] \\ &\text{subject to} \ \mathbb{E}_{(x,y) \sim \mathfrak{A}_i} \left[g_i \left(f_{\theta}(x_m), y_m \right) \right] \leq c_i + r_i \end{split}$$

• Larger relaxations r decrease the objective $P^*(r)$ (benefit), but increase specification violation $c_i + r_i$ (cost)

Resilient constrained learning

Definition (Resilience)

 (ecology) ability of an ecosystem to adapt its function to accommodate operating conditions (learning)
 learning system
 specification
 data properties

$$\begin{split} P^*(\mathbf{r}) &= \min_{\theta} \ \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} \left[\mathsf{Loss} \left(f_{\theta}(\mathbf{x}), y \right) \right] \\ &\text{subject to} \ \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{A}_i} \left[g_i \left(f_{\theta}(\mathbf{x}_m), y_m \right) \right] \leq c_i + r_i \end{split}$$

- Larger relaxations r decrease the objective $P^*(r)$ (benefit),
- but increase specification violation $c_i + r_i$ (cost)
- Resilience is a compromise!

Resilient constrained learning

Definition (Resilient equilibrium)

For a strictly convex function h(r), we say the relaxation r^\star achieves the resilient equilibrium if

 $\nabla h(r^\star) \in -\partial P^\star(r^\star) \leftarrow (\partial: \text{subdifferential})$

 $\textbf{In words}: at the resilient equilibrium the marginal cost of relaxing equals the \\ \frac{\text{marginal gain of relaxing}}{\text{marginal gain of relaxing}}$

Resilient constrained learning

Definition (Resilient equilibrium)

For a strictly convex function h(r), we say the relaxation r^{\star} achieves the resilient equilibrium if

 $\nabla h({m r}^\star) \in -\frac{\partial P^\star({m r}^\star)}{\partial r^\star} \leftarrow (\partial : ext{subdifferential})$

In words: at the resilient equilibrium the marginal cost of relaxing equals the marginal gain of relaxing

Resilient constrained learning

Definition (Resilient equilibrium)

For a strictly convex function h(r), we say the relaxation r^* achieves the resilient equilibrium if

$$\nabla h(r^\star) \in -\partial P^\star(r^\star) \leftarrow (\partial: \text{subdifferential})$$

In words: at the resilient equilibrium the marginal cost of relaxing equals the marginal gain of relaxing

.....

Resilient constrained learning

Definition (Resilient equilibrium)

For a strictly convex function h(r), we say the relaxation r^* achieves the resilient equilibrium if

$$\nabla h(\boldsymbol{r}^{\star}) \in -\partial P^{\star}(\boldsymbol{r}^{\star}) \leftarrow (\partial: \text{subdifferential})$$

In words: at the resilient equilibrium the marginal cost of relaxing equals the marginal gain of relaxing

Hounie, Chamon, Ribeiro, NeurIPS'23]

Resilient constrained learning

Definition (Resilient equilibrium)

For a strictly convex function h(r), we say the relaxation r^\star achieves the resilient equilibrium if

$$\nabla h(\boldsymbol{r}^{\star}) \in -\partial P^{\star}(\boldsymbol{r}^{\star}) = \boldsymbol{\lambda}^{\star}(\boldsymbol{r}^{\star})$$

In words: at the resilient equilibrium the marginal cost of relaxing equals the marginal gain of relaxing

After relaxing, X*(r*) is smaller than X*(0)
⇒ Resilient constrained learning "generalizes better" (lower sample complexity)

Resilient constrained learning

Definition (Resilient equilibrium)

For a strictly convex function h(r), we say the relaxation r^\star achieves the resilient equilibrium if

$$\nabla h(\mathbf{r}^{\star}) \in -\partial P^{\star}(\mathbf{r}^{\star}) = \boldsymbol{\lambda}^{\star}(\mathbf{r}^{\star})$$

In words: at the resilient equilibrium the marginal cost of relaxing equals the marginal gain of relaxing

- $lack \$ After relaxing, $\lambda^*(r^*)$ is *smaller* than $\lambda^*(0)$ \Rightarrow Resilient constrained learning "generalizes better" (lower sample complexity)
- The resilient equilibrium exists and is unique (because h is strictly conve

[Hounie Chamon Ribeiro NeurlPS'2:

Resilient constrained learning

Definition (Resilient equilibrium)

For a strictly convex function h(r), we say the relaxation r^\star achieves the resilient equilibrium if

$$\begin{split} P^{\star}(\boldsymbol{r^{\star}}) &= \min_{\boldsymbol{\theta}, \boldsymbol{r}} \quad \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}} \Big[\mathsf{Loss} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}), y \big) \Big] + h(\boldsymbol{r}) \\ &\text{subject to} \quad \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{X}_i} \Big[g_i \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}_m), y_m \big) \Big] \leq c_i + r_i \end{split}$$

In words: at the resilient equilibrium the marginal cost of relaxing equals the marginal gain of relaxing

Hounie, Chamon, Ribeiro, NeurlPS'23

Heterogeneous federated learning

[Hounie, Chamon, Ribeiro, NeurlPS'23

Heterogeneous federated learning

Heterogeneous federated learning

Summary

- Constrained learning is the a tool to learn under requirements
- · Constrained learning is hard...
- · ...but possible. How?

Summary

- · Constrained learning is the a tool to learn under requirements Constrained learning imposes generalizable requirements organically during training, et al., IEEE TIT'23], heterogeneity [
- · Constrained learning is hard...
- · ...but possible. How?

Summary

- · Constrained learning is the a tool to learn under requirements Constrained learning imposes generalizable requirements organically during training, e.g., fairness [Ch IPS'20; Chamon et al., IEEE TIT'23], heterogeneity [SI
- Constrained learning is hard... Constrained, non-convex, statistical optimization problem
- · ...but possible. How?

Agenda

- I. Constrained supervised learning
 - Constrained learning theory
 - Constrained learning algorithms
 - Resilient constrained learning

Break (10 min)

- II. Constrained reinforcement learning
 - Constrained RL duality
 - Constrained RL algorithms

Q&A and discussions

Summary

- · Constrained learning is the a tool to learn under requirements Constrained learning imposes generalizable requirements organically during training, e.g., fairness [Chi rIPS'20; Chamon et al., IEEE TIT'23], heterogeneity [SI
- Constrained learning is hard... Constrained, non-convex, statistical optimization problem
- · ...but possible. How?

We can learn under requirements (essentially) whenever we can learn at all by solving (penalized) ERM problems. Resilient learning can then be used to adapt the requirements to the task difficulty [Hounie et al., NeurlPS23]

