Design and Analysis of Algorithms

José Dorronsoro Escuela Politécnica Superior Universidad Autónoma de Madrid CONTENTS 2

Contents

1	Elementary Graph Algorithms								
	1.1		3						
	1.2	Minimum Distances on Graphs	4						
	1.3	All Pairs Shortest Paths	9						
2	Minimum Spanning Trees								
	2.1	The Algorithms of Prim and Kruskal	12						
	2.2	The Disjoint Set Abstract Data Type	14						
	2.3	Correctness of Prim and Kruskal	21						
3	Eulerian and Hamiltonian Circuits								
	3.1	Eulerian Circuits	24						
	3.2	Hamiltonian Circuits and an Excursion on Complexity Theory	30						
	3.3	The Traveling Salesman Problem	34						
4	An Excursion on DNA Sequencing								
	4.1		38						
	4.2	From Reads to the Genome	42						
5	Depth First Search and Connectivity								
	5.1	Depth First Search	46						
	5.2		49						
		DAGs. Topological Sort and Project Graphs	52						

1 Elementary Graph Algorithms

1.1 Basic Concepts on Graphs

Definitions

- Graph: Pair G = (V, E) of a set V of vertices (nodes) and a set E of edges (u, v) with $u, v \in V$
- ullet Edges imply direction: in (u, v) we go from u to v
- In general, graphs are **directed**
- Undirected graphs: $(u, v) \in E$ iff $(v, u) \in E$
- Unweighted graphs: we only consider edge structure
- Weighted graphs: edges (u, v) have weights w_{uv}

Storing an Unweighted Graph

- Adjacency matrix: Assume $V = \{1, ..., N\}$. Then if $(i, j) \in E$, $m_{ij} = 1$; else, $m_{ij} = 0$
 - By convention $m_{ii} = 1$ (although sometimes we may consider $m_{ii} = 0$)
- Cost: $\Theta(N^2)$
- Adjacency list: We work with pointer table T[i] where T[i] points to a linked list
 - If $(i, j) \in E$, then j is in one of nodes pointed by T[i]
- Cost: $\Theta(|V|) + \Theta(|E|)$
- In general $|E| \le |V|(|V|-1) = O(|V|^2)$

The Size of a Graph

- While |V| and |E| are in general independent, we may expect |V| = O(|E|) for interesting graphs
 - |E| will usually be G's size

1 ELEMENTARY GRAPH ALGORITHMS

4

- G is **dense** if $|E| = \Theta(|V|^2)$
- G is sparse if $\Omega(|V|) = |E| \ll |V|^2$
- If G s dense, the adjacency matrix storage is more efficient; if G is sparse, adjacency lists are better
- We will usually work with adjacency lists, using adjacency matrices for special algorithms

1.2 Minimum Distances on Graphs

Minimum Distance Problems

- Path from u to v: a subset $\pi = \{u = u_0, \dots, u_K = v\}$ with $(u_i, u_{i+1}) \in E$
- Length of π : $|\pi| = K = \#$ number of edges
- First problem: given u, find a **shortest path** (i.e., a path with the smallest number of edges) π from u to any other v
- First question: how to obtain such paths?
- ullet First idea: get a tree like "descending representation" T of G starting from u and avoiding lower duplicate vertices

Minimum Distance Example

- \bullet Think of each vertex as a ball and of edges as equal lenght strings, and make G "hang" from u discarding "'repeated" edges
- Example:

• Once obtained, the tree layers give vertices at distances 1, 2, 3 and so on

Some Observations on Minimum Distance Problems

- If d[v] is the depth of v in T, it is reasonable to expect d[v] to be the minimum distance from u to v, but we have to prove it
- If p[v] is the father of v in T, we can obtain a minimum length (backward) path from u to v with edges $(w = p[v], v), (p[w], w), \dots$
- Notice that we have found all the minimum distance paths from u to all $v \in V$
- Q: how can we derive an algorithm for this?
- ullet We can use a standard FIFO queue Q to process the different vertices and the tables p[v] and d[v]
- In fact, this fits in the general framework of **Breadth First Search**

First Algorithm for Minimum Distances

- We need tables p[v] for the vertex "previous" to v, d[v] for the minimum distance from u to v and v[v] to mark v as seen
- First, queue-based, pseudocode:

```
def distMin(u, G):
    s[] = F; p[] = NULL; d[] = inf
    Q = q()
    d[u] = 0; Q.put(u); s[u] = T
    while not Q.empty():
        v = Q.get()
        for all z adjacent to v:
            if not s[z]: #first time z is seen
            d[z] = d[v] + c(v,z)
            p[z] = v; Q.put(z); s[z] = T
    return p, d
```

Some Observations on distMin

- The table $s[\]$ is redundant: s[v] == T if and only if $d[v] < \infty$ (exercise: update the psc)
- We can use $p[\]$ to reconstruct the minimum paths from u to all v (exercise)
- We can use $p[\]$ to reconstruct the minimum distance table $d[\]$ (exercise), so $p[\]$ is the table to return in, say, a C function

- A vertex enters Q only once \Rightarrow the linked lists are traversed only once \Rightarrow the cost of distmin is O(|E|), i.e., linear on G's size
- distMin is a particular instance of the general Breadth First Search algorithm

Breadth First Search (BFS) v 1.0

• The pseudocode of the first, queue-based version of BFS is

```
def BFS(u, G):
    s[] = F; p[] = NULL
    Q = q()
    doSomething(u); Q.put(u)
    while not Q.empty():
        v = Q.get()
        for all z adjacent to v:
            if not s[z]:
            s[z] = T
             doSomething(z)
            p[z] = v; Q.put(z)
    return p
```

- Since we enter each list only once, if the cost of dosomething is O(1), the cost of BFS is O(|E|) (actually $\Theta(|E|)$, i.e., linear,
- If needed, we add a driver to restart BFS at unseen nodes

Minimum Distances on Weighted Graphs

- G = (V, E) is a **weighted** graph if there is a function $c : E \to R$
 - We think of c(i, j) as the cost of going from i to j (although sometimes c(i, j) can be negative)
- Cost of path π : $c(\pi) = c(\{u_0, \dots, u_K\}) = \sum_{1}^{K} c(u_{j-1}, u_j)$
- Working with adjacency matrices we can store c as $m_{ij} = c_{ij}$ if $(i, j) \in E$ and $m_{ij} = \infty$ if not.
 - Now the convention is $m_{ii} = 0$
- Working with adjacency lists we can store c_{ij} in a second field of the same node of T[i] that stores j

Problems . . .

• Observation: working with the tree like representation of G is now trickier

• Example:

- The node 2 gets out of Q too soon \Rightarrow we have to change the ordering in Q
- We need a **priority queue** Q that orders vertices using the current value of d[v]
- Now v is seen when it **leaves** Q
 - We also need (again) a table s[v] to check whether v has left Q and we do not consider it any longer
- This leads to Dijkstra's algorithm

Dijkstra's Algorithm

• Dijkstra's pseudocode is:

```
def Dijkstra(G, u):
   s[] = F; p[] = NULL; d[] = inf
   Q = pq()
   d[u] = 0; Q.put((d[u], u))
                                        # 2
   while not Q.empty():
       d[v], v = Q.get()
       if not s[v]:
          s[v] = T
                                      # 4
          for all z adjacent to v:
              if d[z] > d[v] + c(v, z):
                 d[z] = d[v] + c(v, z)
                  p[z] = v
                  Q.put((d[z], z)) # 5
   return p, d
```

Dijkstra's Algorithm II

• Example: First steps of Dijkstra's algorithm on the previous graph

	d	p	v	d	p	v	d	p	V
1	0	-	F	0	-	-	0	-	-
2	∞	-	F	10	1	F	10	1	F
3	∞	-	F	1	1	F	1	1	T
4	∞	-	F	∞	-	-	2	3	F
PQ	1_0			$3_1, 2_{10}$			$4_2, 2_{10}$		

Dijkstra's Cost

- The five commented numbers in the psc determine its cost
- The cost of (1) is clearly O(N)
- Q will contain at most all edges, so |Q| = O(|E|)
- Using a PQ over a binary heap the cost of Q.put, Q.get is $O(\log |Q|)$
 - Thus, the cost of (3) over all iterations in (2) is $O(|E|\log|E|)$
- The total number of joint iterations in (2) and (4) is |E| and the cost of (5) over all iterations is thus $O(|E| \log |E|)$
- Since $|E| = O(|V|^2)$, the overall cost is

$$O(|V|) + O(|E|\log |E|) = O(|V|) + O(|E|\log |V|^2)$$

= $O(|V|) + O(|E|\log |V|)$

ullet This will be $O(|E|\log |V|)$ for most graphs, i.e., log linear in a graph's size

Observations on Dijkstra's Algorithm

- We allow that several instances of the same v be in Q
- We can stop the algorithm earlier using a counter of seen vertices (exercise)
 - But have to clear Q, so ...
- Dijkstra works: at the end d[v] contains the minimum distances from u to v and we can get the minimum paths using p[v]
 - But this has to be proved
- Dijkstra is an example of the general **breadth first search** graph algorithm

Breadth First Search (BFS) v 2.0

• The pseudocode for general, PQ based BFS, is

- If needed, we add a driver to restart BFS at unseen nodes
- If the cost of dosomething is O(1) and we work with a PQ over min heaps, the cost of BFS is $O(|E|\log |V|)$

1.3 All Pairs Shortest Paths

All Pairs Shortest Paths

- If (G, c) is a weighted directed graph, we can consider in principle three minimum distance problems:
 - For u, v fixed, find **only** the minimum distance between u and v
 - For u fixed, find the minimum distance between u and all other $v \in V$
 - For all $u, v \in V$, find the minimum distance between u and v
- While the first problem seems easier, no algorithm for general graphs is better than the best one for the second problem
 - Notice that a minimal path from u to v is also minimal for all vertices in between
- We can solve the third problem iterating an algorithm for the second one over all $u \in V$
- For instance, iterating Dijkstra over all $u \in V$ has a cost $|V| \times O(|E| \log |V|) = O(|V||E| \log |V|)$
 - If G is dense, the cost is then $O(|V|^3 \log |V|)$

- Assume $V = \{1, \dots, N\}$ and the cost c is nonnegative
- Denote by d_{ij} be the minimum distance between i and j
- We define d_{ij}^k be the minimum distance between i,j but where **the intermediate** nodes are taken only from $\{1,\ldots,k\}$
- It is clear that

$$d_{ij}^0 = c(i,j), \quad d_{ij}^N = d_{ij}$$

• It is clear that no vertex is repeated on the optimal path that gives d_{ij}^k

Improving on Dijkstra II

- Obvioulsy, an optimal path between i and j with $\{1, \ldots, k\}$ as intermediate nodes may or may not contain k
- If it doesn't, we have

$$d_{ij}^k = d_{ij}^{k-1}$$

• If it does, we have

$$d_{ij}^k = d_{ik}^{k-1} + d_{kj}^{k-1}$$

• A path from i to j is optimal iff the partial subpaths between i and k and j are optimal, i.e.,

$$d_{ij}^k = d_{ik}^k + d_{kj}^k$$

- A path having another k between i and k or between k and j cannot be optimal: we can remove the subpath from k to k
- But then obviously

$$d_{ik}^k = d_{ik}^{k-1}, d_{kj}^k = d_{kj}^{k-1}$$

Floyd-Warshall Algorithm

- We can conclude $d_{ij}^k = \min\{d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}\}$ and $d_{ij} = d_{ij}^N$
- Working with adjacency matrices, this suggest the following (quite bad) pseudocode

```
def FW_0(m_c):
    n = m_c.shape[0]
    d = np.empty( (n, n, n+1) )
    d[:, :, 0] = m_c
    for k in range(n):
        for i in range(n):
            t = d[i, k, k] + d[k, j, k]
            d[i, j, k+1] = min(d[i, j, k], t)
    return d[:, :, n]
```

• The algorithm is \pm obviously correct

Floyd-Warshall Cost

- The time cost is $O(N^3)$, better than iterated Dijkstra for dense graphs
- The space cost is a first sight also $O(N^3)$ as we use N matrices $N \times N$; but in fact a single matrix D is enough, for
 - We first "retain" d_{ik}, d_{kj}
 - Then for i or $j \neq k$ we set $c = d_{ik} + d_{kj}$, and we can overwrite d_{ij} as $d_{ij} = \min\{d_{ij}, c\}$
- Exercise (easy): rewrite FW taking advantage of this
 - Is it now a good algorithm?
- Exercise (more difficult): how can we recover the optimal paths?
- Observation: FW is our first example of a problem solvable by a **DP** algorithm
 - An optimization problem with an **optimal substructure** (obvious: any optimization problem has it) that we are able to make **explicit**
 - The explicit substructure formula also shows FW to be correct

Applying Floyd-Warshall

• Example:

2 Minimum Spanning Trees

2.1 The Algorithms of Prim and Kruskal

Trees

- An undirected graph G=(V,E) is **connected** if for every pair $u,v\in V$ there is a path π in E from u to v
- A cycle π in a graph G = (V, E) is a path that starts and ends at the same point
- A **tree** is an undirected connected graph that is also **acyclic**, i.e., there are no cycles in E
- A tree T is a spanning tree (ST) for G = (V, E) if $T = (V, E_T)$ with $E_T \subset E$
- If G is weighted, the **cost** of an ST T is

$$c(T) = \sum_{(u,v)\in E_T} c(u,v)$$

• $T = (V, E_T)$ is a **minimum spanning tree** (MST) for the undirected graph G = (V, E) if for any other ST $T' = (V, E_T')$ we have $c(T) \le c(T')$

Prim's Algorithm

• Changing slightly Dijktsra's gives **Prim's** algorithm for finding MSTs

• The second if not s[z] didn't appear in Dijkstra; do we need it here?

Observations on MSTs

- There may be several minimum spanning trees in a graph
- We have $c(T) = \sum_{v \neq u} c(p[v], v)$
- The cost of Prim is $O(|E| \log |V|)$ if the PQ is built over a min heap
- **Prim works**: at the end p[v] gives the edges (p[v], v) of a MST E_T and cE[v] its costs
 - But again this has to be proved
 - And we do not need to check s[v] == T (although it saves time) for if z already seen,

```
c_t[z] <= c(v, z),
since it is correct,</pre>
```

• Prim and Dijkstra are examples of a **greedy** algorithms

Greedy Algorithms

- A greedy algorithm tries to solve a **global optimization problem** by making **locally optimal choices** at each of its steps
- Simple example: the Nearest Neighbor algorithm for the **Traveling Salesman Problem** (TSP)
- ullet Dijkstra maintains a table d[v] of locally minimum distances from u to v computed over a partial subset of all paths from u to v
- Prim maintains a table $c_t[v]$ of locally minimum edge costs of a partial spanning subtree that is progressively grown from a starting node u
- The greedy strategy is quite natural, but Dijkstra and Prim are not obviously correct algorithms
 - It often results on wrong algorithms, with greedy TSP an example
- Kruskal's is another, clearer example of a greedy algorithm to obtain a MST

A First Look at Kruskal's Algorithm

- Main idea: sort the edges of E in a PQ by increasing costs and build a forest of partial STs
 - Starting from single node trees $T_u = (\{u\}, \emptyset)$ and

- Adding edges from the PQ that do not produce cycles

• Example:

Elements of Kruskal's Algorithm

- To implement Kruskal we need a PQ, a way of storing the selected edges and a way to maintain the forest of partial subtrees and to detect cycles
- No problem with the PQ and we can store the edges on a linked list (or simply build the graph of the final MST)
- At first sight maintaining trees and detecting cycles in them looks complicated and costly
- However, observe that (u, v) gives a cycle iff u and v are in the same subset V_{T^c} of the vertices of a tree T' in the Kruskal forest
 - Thus we do not need to work with trees but with **subsets**
- We do this with a new abstract data type, the **Disjoint Set**

2.2 The Disjoint Set Abstract Data Type

Disjoint Set

- A **Disjoint Set** (DS) S over a universal set U is a dynamic family of disjoint subsets of U (i.e., a **partition** of U), each of which is **represented** by a certain element x and that has the following primitives:
 - init_Ds(U, s): receives the universal set U and returns the initial S as the famility of atomic subsets $\{\{u\}: u \in U\}$

- find(x, s): receives an element $x \in U$ and returns the representative of the subset S_x of S that contains x
- union(x, y): receives two representatives x, y, computes their union $S_x \cup S_y$ and returns the representative of the subset $S_x \cup S_y$

Observations on the Disjoint Set

- The subsets of a Disjoint Set are never split; they can only change to bigger subsets
 - The Disjoint Set is never empty
- After init_Ds we start with a partition with |U| subsets;
 - Thus, the maximum number of unions is |U|-1
- Even if we don't have yet a data structure for DS, its primitives allow us to write a first pseudocode for Kruskal

Kruskal's Algorithm

```
def kruskal(G):
   L = []
                                 #we save the MST in L
   init_DS(V, S)
                                 # 1
   Q = pq()
   for all (u, v) in E:
      Q.put((c(u, v), (u, v))) # 2
                                  # 3
   while not Q.empty:
      _, (u, v) = Q.get()
                                # 4
      x = find(u, S)
                                 # 5
      y = find(v, S)
       if x != y:
          L.append( (u, v) ) # 6
          union(x, y, S)
   return L
```

Observations on Kruskal's Algorithm

- We simply store E_T on a list L
- The algorithm may return a faulty ST, for instance if G is not connected
 - We can control this introducing a counter c and increasing it when a new edge is added to ${\cal L}$

- c should have the value |V| 1 when the PQ is empty
- Python exercise: add it
- The maximum number of unions is |V|-1
- Even if we achieve a efficient implementation of union and find, the cost of Kruskal will be at least $O(|E| \log |V|)$ because of (1)

A First Data Structure for DS

- We assume $V = \{1, \dots, N\}$
- A simple idea is keep each subset in a list with the representative in the first node
- We also construct a pointer (dict?) table T[] where T[i] points to the list that contains i
- The cost of find is clearly O(1)
- To implement union(x, y, s) we can concatenate the list T[y] after the list T[x] and then make sure that for each j in T[y] we have T[j] = T[x]
- However this is not satisfactory as the cost of the union is then
 - |T[x] | (to find the end point) plus
 - |T[y]| (to reset the pointers of $V_{T(y)}$)

Improving the First Data Structure

- We can improve things if we keep track of the last node of each T[i] and also on the sizes |T[x]|.
- This way we find the last element of T[x] with cost O(1) and then join the smaller subset to the largest one
- Working with pure linked lists, notice that we have to keep track of the size and the last element only at the first node of T[x]
 - The extra cost is then O(1)
- The cost of union(x, y, s) is then min (|T[x]|, |T[y]|) and
 - If done well, we'll see in the exercises it is always $O(\log N)$

- But we need to work with 3-field nodes in the lists, which in most nodes just keep outdated information
 - Although things are much simpler in Python
- We try to do something better

A Second Data Structure for DS

- Our second data structure stores DS as trees (not to be confused with the conceptual subtrees that Kruskal builds)
- The representative x of a subset S is at the root of the subset tree T_S
- The cost of union (x, y, s) is then just O(1), as we simply make, say, T_{S_y} a child subtree of the x root
- ullet To implement find(u, s) we need a fast way to first locate the tree of u and then to go from the u node to the root
- This can be easily done if we place the subsets on a table p[]:
 - p[u] is the index of the father of u
 - p[x]=-1 for a root x, i.e., a representative

Union and Find over Trees

- To initialize the DS we simply need p[i]=-1 for all i
- The simplest pseudocode for find is

```
def find(u, p):
    while p[u] != -1:
        u = p[u]
    return u
```

• The pseudocode for union is

```
def union(x, y, p):
    p[y] = x  #join second tree to first
    return x
```

Improving Union

• Since the cost of find is $O(height(T_x))$ it is clear that we should join the shorter tree into the taller one

- For this we need to keep a tree's height h
 - We simply can change p[x] at the root x from -1 to -h
- We then change the pseudocode for union as

• We also change the while condition on find to

```
while p[u] >= 0:
```

The Cost of Find

- **Proposition.** If prof(T) denotes the depth of a DS tree T, we have $prof(T) \le \lg |T|$
- Proof Sketch:
 - Use induction on |T|, with an obvious base case |T| = 1
 - Assume it true for $|T^{\prime}| < |T|$ and that we join T_y into T_x
 - If $prof(T_u) < prof(T_x)$,

$$prof(T_x \cup T_y) = prof(T_x) \le \lg |T_x| \le \lg |T_x \cup T_y|$$

- If $prof(T_y) = prof(T_x)$ and $|T_y| \le |T_x|$,

$$prof(T_x \cup T_y) = 1 + prof(T_y) \le 1 + \lg |T_y| = \lg 2|T_y|$$

 $\le \lg |T_x \cup T_y|$

Improving Find

- Thus, the cost of find (x, p) is also $O(\log |S_x|) = O(\log N)$
- We thus get the same cost as before but with a much simpler data structure.
- Moreover, we can further improve on this
- Observe that when finding the representative of u we also find the **representative** of all the v between u and the root of its tree

- ullet We can thus change find to update p[v] for al v between u and the root
- In other words, we can **compress the path** from u to the root

Path Compression

- Recall that after finding the representative of u, we also know it for all the other nodes between u and the root of the tree
- We thus improve find as follows:

```
def find_cc(u, p):
    # find the representative
    z=u
    while p[z] >= 0:
        z = p[z]

# compress the path from u to the root
    while p[u] >= 0:
        y= p[u]
        p[u] = z
        u = y
    return z;
```

Path Compression and Union by Rank

- The problem is now that, after find, we no longer have in -p[x] the tree's height
- We do nothing about this other than calling -p[x] the tree's rank
- We change nothing on union although it is no longer a union by height but a union by rank
- However the joint cost of unions and finds considerably improves
- **Proposition:** If on a DS with N elements we do L unions by rank and $M = \Omega(N)$ path compression finds, the overall cost is

$$O(L + M \lg^* N)$$

The lg* Function

• We define $\lg^* H = K$ if K is the smallest integer such that after K binary logs we have

$$\lg(\ldots \lg(\lg H)\ldots) < 1$$

• For instance $\lg^* 65536 = \lg^* 2^{16} = 4$, but then

$$\lg^* 2^{65536} = 1 + \lg^* 2^{16} = 5$$

- Now 2^{65536} is a huge number:
 - Find out how many digits its decimal expression has (easy)
 - Then try to write it using millions, billions, googols and so on! ;-)
- For practical purposes $\lg^* H = O(1)$

Back to Kruskal's Algorithm

 Assume we work with union by rank and path compression and go back to Kruskal's pseudocode

```
def kruskal(G):
   l_mst = []
                                        # we save the MST in L
   p = init_DS(V)
                                        # 1
   Q = pq()
    for all (u, v) in E:
       Q.put((c(u, v), (u, v))) # 2
       le not Q.empty: # 3
_, (u, v) = Q.get() # 4
   while not Q.empty:
                                       # 5
       x = find(u, p)
       y = find(v, p)
        if x != y:
           l_mst.append((u, v)) # 6
union(x, v, p) # 7
           union(x, y, p)
    return l_mst
```

The Cost of Kruskal's Algorithm

- Clearly the cost of (1) is $O(|E| \log |V|)$ and that of (2) is O(|V|)
- \bullet The cost of (4) accumulated over (3) is again $O(|E|\log|V|)$
- Since the single cost of (6) and (7) is O(1) and only happens when x!=y, their accumulated costs are O(|V|)
- Finally, since we must do at least one findPC for each node, the total number is $\Omega(N)$ and, therefore, the cost of (5) accumulated over (3) is $O(|E|\lg^*|V|)$, that is, essentially O(|E|)

- Summing things up, the cost of Kruskal is $O(|E| \lg |V|)$, dominated by the PQ operations
- In particular the DS operations do not penalize the algorithm

Applying Kruskal's Algorithm

• Example:

2.3 Correctness of Prim and Kruskal

Cuts and Minimal Crossings

- Assume we have an undirected weighted graph G(V, E) with cost c
- A cut P of G is a partition of V into two disjoint subsets P = (S, V S)
- An edge (u, v) crosses P if either $u \in S$ and $v \in V S$ or viceversa
- A subset $A \subset E$ preserves P if no edge in A crosses P
- An edge (u, v) that crosses P is **minimal** w.r. to P if $c(u, v) \le c(w, z)$ for any other edge (w, z) that crosses P

A Meta MST Algorithm

• Consider the following meta-algorithm to find MSTs

```
def metaMST(G, c):
   L = []  #we see L as a subset of E

while len(L) < |V|:
   find a cut P that preserves L
   select (u, v) minimal w.r. to P
   L.append( (u,v) )

return L</pre>
```

- Notice that metaMST is also a kind of greedy meta-algorithm
 - At each step a minimal edge is added to the MST list

Prim as an Example of metaMST

- ullet Recall that Prim works with a table $v[\]$ of nodes "seen" and that the nodes still in Q are ordered by their cost at insertion
- ullet Assume that a node v has been extracted from Q just before is marked as seen, and take

```
- P = (\{seen \ nodes\}, \{others\})
- L = \{(p[w], w) : w \in \{seen \ nodes\}\}
```

- Then we have
 - 1. L preserves P for if $(p[w], w) \in L$, both w and p[w] are seen
 - 2. (p[v], v) crosses P, for v is unseen but p[v] was processed when v entered Q, i.e., it is seen by now
 - 3. If other (w, z) crosses P we have v[w] = T, v[z] = F and, hence, $z \in Q$ since it is adjacent to the already seen node w
 - 4. Since we extract v but not z, $c(p[v],v) \leq c(w,z)$ and, thus, (p[v],v) is minimal
- Hence, Prim is a particular case of metaMST

Kruskal as an Example of metaMST

- Assume that we are about to add the edge (u, v) and let
 - $L = \{(w, z)\}$ be the edges already selected
 - $P = (S_u, V S_u)$ where S_u is the subset of the tree T_u that contains u
- Then we have
 - 1. L preserves P for the subtrees are disjoint and if $(w, z) \in L$, they are in the same subtree T, which cannot happen if $w \in S_u$ and $z \in V S_u$
 - 2. (u, v) crosses P: if not, it would make a cycle in T_u

- 3. If (w, z) also crosses P, it must connect different subtrees and cannot make a cycle
- 4. Thus (w, z) must still be in Q: it can only be been discharged if w and z were in the same subtree
- 5. Thus, $c(u, v) \le c(w, z)$ and (u, v) is minimal w.r. P
- Hence, Kruskal is a particular case of metaMST

Correctness of metaMST I

- Thus, if metaMST is correct, Prim and Kruskal will also be correct
- Proposition. Let G = (V, E) be a undirected, connected, weighted graph and assume A ⊂ E verifies A ⊂ E_T for some MST T.
 Then, if A preserves some P and (u, v) is minimal w.r. to P, we have A ∪ {(u, v)} ⊂ E_{T'} for some MST T'

• Proof sketch:

- Assume $T=(V,E_T)$; then $\pi=E_T\cup\{(u,v)\}$ is a cycle with an edge (w,z) that crosses P
- Define $T'=(V,E_{T'})$ with $E_{T'}=(E_T-\{(w,z)\})\cup\{(u,v)\}$; clearly $c(T')\leq c(T)$ and to prove T' a tree we have to check it connected
- Assume x, y at different sides of P; since T is connected, there is a path π from x to y in E_T and it crosses P at (w, z) (if two edges of T cross P, T would be a cycle)
- We can decompose π as $\pi=\pi_{x,w}\cup\{(w,z)\}\cup\pi_{z,y}$
- Then $\pi' = \pi_{x,w} \cup \pi_{w,u} \cup \{(u,v)\} \cup \pi_{v,z} \cup \pi_{z,y}$ is a path on $E_{T'}$

Loop Invariants

- The proposition says that at each iteration the selected edges are part of a MST
- This is an example of a **loop invariant**:
 - A condition that remains true after each loop and that "leads" the algorithm towards a correct solution
- The standard way to prove the correctness of an iterative algorithm is to find an adequate loop invariant for its iterations

- Example: loop invariants for InsertSort or BubbleSort
 - InsertSort: after iteration $i, i = p + 1, \dots, u$, the subtable $T[p], \dots, T[i]$ is sorted
 - BubbleSort: after iteration $i, i = u, \dots, p+1$, the subtable $T[i], \dots, T[u]$ is sorted

Correctness of metaMST II

- Corollary. metaMST returns a MST
- Proof sketch:
 - We just exploit the loop invariant provided by the previous proposition
 - Let $L_0 = \emptyset \subset L_1 \subset \ldots \subset L_{N-1}$ be the successive subsets metamst produces
 - If L_j is a subset of some MST, the proposition shows that so is L_{j+1}
 - But obviously L_0 is a subset of some MST and, thus, so is L_{N-1} and since it has N-1 edges, (V, L_{N-1}) is a MST
- Corollary Prim and Kruskal also return MSTs

3 Eulerian and Hamiltonian Circuits

3.1 Eulerian Circuits

The Bridges of Königsberg

• The bridges of Königsberg (East Prussia) over the Pregel river circa 1700:

• The problem: find a promenade that crosses all bridges but only once

• Exercise: google pregel graph

The Bridges of Königsberg as a Graph Problem

• We can depict the bridges of Königsberg as a multigraph (i.e., we allow for multiple edges between two nodes)

- The problem: find a circuit that passes through all edges but only once
- Such a circuit in a multigraph is called an **Eulerian circuit** (EC)

Euler's Insight

- Leonhard Euler showed in 1736 (*Solutio problematis ad geometriam situs pertinentis*) that such a circuit is not possible
- If G is an udirected graph, we define the **degree** deg(w) of a node w as the number of edges that leave w (or that enter w or simply the size of T[w])
- Assume that $\pi = \{(u = u_0, u_1), \dots, (u_{K-1}, u_K = u)\}$ is an EC for G
- If $w \neq u$ is a node in π , each time we enter w we substract 1 from deg(w) and also when we leave w
 - Since at the end we have passed by all the edges of w, we must have at the beginning deg(w) even
- Similarly each time we enter u inside π we substract 1 from deg(u) and also when we leave u; moreover, when we start and end π we also substract 1 from deg(u)

- Thus, we must also have deg(u) even

There Are No ECs in Königsberg

- It follows from the previous analysis that a necessary condition to have an EC is that deg(v) is even for all $v \in V$
- Since all the nodes in the previous multigraph have odd degrees, Euler concluded that no Eulerian circuit is possible in Königsberg
- ullet As we shall see later, Euler also proved that the condition is sufficient: If deg(v) is even for all nodes v of an undirected graph G, then there is an Eulerian circuit in G

The Bridges of Kaliningrad

After World War II Königsberg becomes Kaliningrad (Russia)

The Bridges of Kaliningrad II

• And there only remain five bridges of the initial seven (and some more modern ones)

• But still, there is no EC

Drawing Houses Without Lifting the Pen

• A child's game is to try to draw the house below without lifting the pen from the sheet

• It is very easy if we start at nodes 1 or 2 but impossible if we start from 3, 4 or 5

Euler's Insight Again

- Now we want to find an Eulerian path (EP) and not a circuit
- Let $\pi=\{(u=u_0,u_1),\ldots,(u_{K-1},u_K=v\neq u)\}$ be such an EP

- 28
- If $w \neq u, v$ is a node in π , each time we enter w we substract 1 from deg(w) and also when we leave w:
 - Since at the end we have passed through all the edges of w, we must have at the beginning deg(w) even
- Similarly each time we enter u inside π we substract 1 from deg(u) and also when we leave u; moreover, since we start π at u, we also substract 1 from deg(u)
 - Thus, we must also have deg(u) odd
- Similarly each time we enter v inside π we substract 1 from deg(v) and also when we leave v; moreover, since we end π at v, we also substract 1 from deg(v)
 - Thus, we must also have deg(v) odd
- Thus, a necessary condition to have an EP is that deg(w) is even for all w except the first node u and the final one v of π

Back to Drawing Houses

• Since deg(1) = deg(2) = 3 we can find an EP for the house drawing if we start at either 1 or 2

• But since deg(3) = deg(4) = deg(5) even, it is impossible to draw an EP for the house starting at them

Euler's Theorem for Circuits

• Theorem. If G = (V, E) is a connected undirected multigraph, there is an EC in G iff deg(u) is even for all $u \in V$

Proof sketch: We argue by induction on |V|

- The theorem is obviously true if |V|=2 and assume it also to be true for any G'=(V',E') such that |V'|<|V|
- We start walking from a node u substracting from deg at each node until we arrive at v such that deg(v)=0 after we enter v and, thus, cannot leave it
- It is easy to see that v=u and we have found a cycle π
- We remove E_{π} from E and from V the nodes w whose deg π has exhausted and let G' = (V', E') be the resulting graph
- Since $|V'| \leq |V| 1$ and $deg_{G'}(w) = deg_{G}(w) deg_{\pi}(w)$ is even, we can apply induction on the connected components G_1, \ldots, G_K of G'
- By induction there are ECs π_k in the G_k that start at nodes from π and we get an EC on G "collating" π and the π_k

Euler's Theorem for Paths

• Corollary. If G is a connected undirected graph, there is an EP π in G iff deg(w) is even for all $w \in V$ except for two vertices u and v. Moreover, then π starts at u and ends at v or viceversa

Proof sketch: We just show the condition to be sufficient:

- Consider $G' = (V, E' = E \cup \{(u, v)\})$, i.e., we add an extra edge (u, v) to E
- Since $deg_{G'}(u) = deg_{G}(u) + 1$, $deg_{G'}(v) = deg_{G}(v) + 1$ and $deg_{G'}(w) = deg_{G}(w)$ for all other w, all the G' degrees are even and there is an EC π' in G'
- Let's write π' as $\pi' = \{(v, z), \dots, (w, u), (u, v)\}$, with the last edge the one we added to get G'.
- Then removing this edge we get the EP $\pi = \{(v, z), \dots, (w, u)\}.$

How to Find an EC

• Assuming an EC exists, the basic idea is simply to follow the proof's argument

- We start at any u_1 and build $\pi_1 = \{(u_1, v_2), \dots, (v_{K-1}, v_K)\}$ substacting 1 from deg(w) each time we enter or leave w and where we stop because after entering v_K we have $deg(v_K) = 0$
 - It is then clear that $u_1 = v_K$, and
- Let $G_1 = (V_1, E_1)$ the graph obtained after removing π_1 from E and all the $w \in V$ for which deg(w) = 0 after π , i.e., for which $deg_{\pi}(w) = deg_{G}(w)$
 - Clearly u_1 at least will be removed, i.e., $|V_1| < |V|$
 - If $|V_1| = 0$, clearly π_1 is an EC in G
 - If however $|V_1| > 0$, there is a first u_2 in π_1 such that $deg_{G_1}(u_2) > 0$
 - We can thus **restart the above process on** G_1 obtaining a new circuit π_2 and a "remaining" graph G_2
- If we repeat the preceding and find circuits π_1, \ldots, π_M until $V_M = \emptyset$, then we can "collate" the π_j circuits to get an EC π for G

How to Find an EC II

• Example:

• We do not write a pseudocode (good exercise!) but it is clear that its cost will be O(|E|)

3.2 Hamiltonian Circuits and an Excursion on Complexity Theory

Hamiltonian Circuits

• If G is an undirected connected graph, a **Hamiltonian circuit** (HC) is a circuit on G that visits **only once each node** other than the initial

- 31
- Finding HCs may be trivial in some cases, such as complete graphs
- There are also sufficient conditions for special graphs
- But for general graphs, while finding ECs has an O(|E|) cost, finding HCs is much costlier
- In fact, essentially the only general algorithm is an exhaustive search with back-tracking

Hamiltonian Circuits II

• Example:

- \bullet Since the number of node orderings is N!, the search's cost can be very high
- Actually, finding HCs in general graphs is an example of an NP-complete problem

P and NP I

- We will make a brief (and light) excursion on Complexity Theory
- We consider **decision problems** \mathcal{P} for which there is a set of solution inputs $S_{\mathcal{P}}$, i.e., the decision on an input I is 1 iff $I \in S_{\mathcal{P}}$ otherwise
 - To decide whether a graph has an EC or HC is a decision problem but notice that an algorithm does not have to actually find an EC or HC to solve them
 - Optimization problems can be partially reduced to decision problems using a bound C: change find the optimum by find a solution with $cost \le C$
- ullet For an input I we can consider its size |I| to be the number of bits needed to store it

- We say that \mathcal{P} is in the class P if there is an algorithm A with cost polynomial on |I| that solves \mathcal{P} , i.e., A(I) = 1 iff $I \in S_{\mathcal{P}}$
 - Note that to be in class P does not mean that A is efficient: if its cost is $O(|I|^{1000})$, \mathcal{P} is in P

P and NP II

- Decision–EC is in P: we check in linear time whether or not there are ECs in G by counting degrees and checking that they are even
- An algorithm C(I,t) is a **certifier** for \mathcal{P} if
 - For every input $I \in S_{\mathcal{P}}$ there is another, different input t = t(I) to C such that C(I,t) = 1
 - If $I \notin S_{\mathcal{P}}$, then C(I,t) = 0 no matter which t is used
- t is a kind of certificate (solution?) that the certifier validates
 - For the EC or HC problems, t can just be a possible EC or HC
- We say that \mathcal{P} is in the class NP if there is a certifier C that runs in polynomial time on the sizes |I| and |t|
 - For instance, if I = G and t is a possible CH, we can check it in polynomial time;
 - Thus HC belongs to NP

P and NP III

- Clearly $P \subset NP$: if $P \in P$ and A solves it, set C(I, t) = A(I); then
 - If $I \in S_{\mathcal{P}}$, we can simply use an empty certificate and set $C(I, \emptyset) = A(I)$
 - If $I \notin S_{\mathcal{P}}$, we will have C(I,t) = A(I) = 0 no matter the t presented
- Big question: P = NP?
- If yes, there would be a polynomial time algorithm for HC
- It is one of the Millenium Problems of the Clay Mathematics Institute with a 1M \$ prize

- For more details see http://www.claymath.org/millennium/P_vs_NP

• General opinion: $P \neq NP$

• Reason: NP-complete problems

NP-complete Problems

• We say that \mathcal{P}_1 is **reducible** to \mathcal{P}_2 if there is a map

$$T: \{ inputs \ of \ \mathcal{P}_1 \} \rightarrow \{ inputs \ of \ \mathcal{P}_2 \}$$

such that I_1 has a solution for \mathcal{P}_1 iff $T(I_1)$ has a solution for \mathcal{P}_2

• Thus, if A is an algorithm that solves \mathcal{P}_2 , then $A \circ T$ solves \mathcal{P}_1 :

$$I \in S_{\mathcal{P}_1}$$
 iff $T(I) \in S_{\mathcal{P}_2}$ iff $A(T(I)) \equiv A \circ T(I) \equiv 1$

- If T has polynomial cost, we say that \mathcal{P}_1 is **polynomially reducible** to \mathcal{P}_2
- We say that problem \mathcal{P} is NP-complete if any other $\mathcal{P}' \in NP$ is polynomially reducible to \mathcal{P}
- Notice that if we show for just one NP-complete problem \mathcal{P} that $\mathcal{P} \in P$, then we have proved that P = NP

Is There Any NP-complete Problem?

- ullet At first sight the NP-complete definition seems very strict so a natural question is whether there any such problem
- Answer: yes, and in fact many!! HC is such a problem
- The first (basically) NP-complete problem found is 3-SAT
- Given a Boolean expression B written using only AND, OR, NOT operators, and parentheses, the **satisfiability problem (SAT)** is to decide whether there is some assignment of T and F to the variables that will make B true
- The k-SAT problem deals with expressions in **conjunctive normal form** (i.e., as a sequence of OR clauses joined by AND) with k variables or their negation per clause

Cook's Theorem

• Example: 3–SAT deals with expressions like

```
(x11 OR !x12 OR x13) AND (!x21 OR x22 OR !x23) AND (x31 OR !x32 OR x33) AND ...
```

- Cook's Theorem (1971): 3-SAT is NP-complete
 - **–** However, 2-SAT ∈ P
- More to read: Chapter 5 of H. Wilff's book Algorithms and Complexity
- Much more to read: M.R. Garey and D.S. Johnson. **Computers and Intractability: A Guide to the Theory of NP-Completeness**. W.H. Freeman, 1979.
- But are P, NP and NP-complete problems just academic curiosities?

3.3 The Traveling Salesman Problem

The Traveling Salesman Problem

- TSP: Given a weighted complete graph G, find a HC (trivial) with minimum cost
- It is an optimization problem with obvious practical interest: many persons have to solve it every morning
 - Decision version: given a weighted complete graph G and a bound C, is there a HC π such that $c(\pi) \leq C$?
- TSP is **NP-hard**: every problem in NP can be polynomically reduced to TSP
 - A NP-hard problem may not have to be in NP or to be a decision problem
 - Also, TSP-decision for general graphs is NP-complete
- But TSP-decision is also NP-complete for "real world" problem versions, such as for cities in the plane with Euclidean distances
- Many related problems of great practical interest in planning, logistics or DNA sequencing are also NP-complete

- Fact: HC is polynomially reducible to TSP
- Assume tsp(V, c) is a routine that returns the TSP solution for G with cost c and consider the following routine for HC:

```
def tsp_2_hc(V, E):
    for any u, v in V:
        if (u, v) in E:
            c(u, v) = 1
        else:
            c(u, v) = 2

p = tsp(V, c)
    if cost(p) == |V|:
        return p
```

- tsp_2_hc solves HC for π is a HC on G iff $c(\pi) = |V|$
- Thus TSP has not only practical but also theoretical interest

A TSP Example

• Simple example:

```
cities = ["madrid", "barcelona", "sevilla", "valencia"]
```

• The (complete) graph is

• And distances given by a 4×4 Numpy matrix

A Greedy TSP Solution

• Simple greedy approach: Nearest–Neighborhood (NN) TSP, that simply visits the nearest unseen city

```
def nn_tsp_circuit(distance_matrix, node_ini=0):
    num_cities = distance_matrix.shape[0]
    circuit = [node_ini]

while len(circuit) < num_cities:
        current_city = circuit[-1]

    # sort cities in ascending distance from current
    options = list(np.argsort(distance_matrix[ current_city ]))

    # add first city in sorted list not visited yet
    for city in options:
        if city not in circuit:
            circuit.append(city)
            break

return circuit + [node_ini]</pre>
```

What Can We Do About TSP?

- On average, NN gives a path that is about 25% longer than the optimum
- But one can set up special instances of TSP where NN gives the worst route
- If c satisfies the triangle inequality $c(u, v) \le c(u, z) + c(z, v)$ for any z, we have

$$c(\pi_{NN}) = O(\log |V|) \times c^*,$$

with π_{NN} the NN solution and c^* the optimal cost

- TSP has great practical importance, but there is no cost effective **exact** algorithm for general graphs
- So, it may be very hard to find the best route to, say, deliver mail (at least in big cities)

Approximation Algorithms

- Alternative: approximate algorithms
- **Definition:** Given an optimization problem \mathcal{P} , an **approximate algorithm** for \mathcal{P} with bound $\lambda \geq 1$ is an algorithm A that for every input I returns a solution $s_A(I)$ such that

$$c^*(I) \le c(s_A(I)) \le \lambda c^*(I)$$

with $c^*(I)$ the optimal cost for $\mathcal P$ on I

• NN is not exactly an approximate algorithm for TSP, since its bound is $O(\log |V|)$ and depends on |V|

Approximation Algorithms for TSP

• **Proposition:** *If the cost function is Euclidean, i.e., it verifies*

$$c(u, v) \le c(u, w) + c(w, v)$$
 for all $u, v, w \in V$,

then there is an approximate algorithm for TSP with $\lambda = 2$

• Algorithm:

```
def euclideanTSP(g, c):
    find a MST t on g
    duplicate its edges to obtain a graph g_1

#now each node in g_1 has degree 2 and there is an EC
    find a EC p_1 in g_1

short--cut seen edges in p_1 to get HC p
    return p
```

Approximation Algorithms for TSP

• **Proof sketch:** Let T_1 , p_1 and p be the MST, the Eulerian and the returned circuits in the previous algorithm

Let p^* be an optimal HC and remove an edge on p^* to get a spanning tree T^*

- Since T_1 is an MST, we have $c(T_1) \le c(T^*) \le c(\pi^*)$
- And using the Euclidean distance property, we then we conclude that

$$c(\pi) \le c(\pi_1) = 2c(T_1) \le 2c(\pi^*)$$

- The **Christofides** algorithm improves this to $\lambda = 1.5$
- To learn more: Johnson, McGeoch, The Traveling Salesman Problem: A Case Study in Local Optimization
 - Or the movie The Travelling Salesman

Approximation Algorithms for TSP II

• Example

4 An Excursion on DNA Sequencing

4.1 Hamilton, Euler and DNA Sequencing

DNA Sequencing

- Note: this is a very, very light description of DNA Sequencing
- ullet Goal: decompose a gene into a sequence of four letters $\{A,C,G,T\}$ that correspond to DNA bases
- Shotgun sequencing follows a four step process:
 - Blast the gene into random short fragments ("reads") of 100–500 bases
 - Identify read subsequences by hybridizing them on a DNA microarray
 - Reconstruct each read from these subsequences
 - Reconstruct the entire gene from the reads
- First two steps: biochemistry
- Third step: Hamiltonian or (better) Eulerian circuits
- Fourth step: compute the Shortest Superstring Problem solving TSP (plus more algorithms and a lot of biochemistry)

Sequencing by Hybridization II

• Scheme of the process:

From bitesizebio.com/7206/introduction-to-dna-microarrays

Microarray Hybridization

- Put all the posible lenght ℓ probes, i.e., DNA subsequences of a fixed lenght ℓ , into the spots of a microarray
- Put a drop of fluorescently labeled DNA into each microspot of the array
- The DNA fragment hybridizes with those microspots that are complementary to a certain substring of length ℓ of the fragment
- ullet This way we get all possible lenght ℓ subsequences that make the fragment but they are **unordered**

ℓ-mers and the Spectrum

- We call the sequence on each one of the probes an ℓ -mer
- The ℓ -spectrum $sp(S,\ell)$ of a sequence S is the set of all the ℓ -mers from S
- For instance, s = [TATGGTGC] we have sp(S, 3) = {TAT, ATG, TGG, GGT, GTG, TGC}
- We have $|sp(S, \ell)| < |S| \ell + 1$
- After hybridization, the hybridized probes in the microarray give us an unordered version of $sp(S,\ell)$ that we have to correct to recover S
- The overlap $\omega(s_1, s_2)$ between two ℓ -mers s_1 , s_2 is the longest leght of a suffix of s_1 that is also a prefix of s_2

• We clearly have $\omega(s_1, s_2) \leq \ell - 1$ and if s_2 follows s_1 in S, we must have $\omega(s_1, s_2) = \ell - 1$

Sequencing by Hamiltonian Paths

- We can reconstruct the sequence S by finding an ordering s_{i_1},\ldots,s_{i_K} of $sp(S,\ell)$ such that $\omega(s_{i_j},s_{i_{j+1}})=\ell-1$
- This suggests to define the graph $G_{\ell}(S) = (V_{\ell}, E_{\ell})$ where
 - $V_{\ell} = sp(S, \ell)$ and
 - (s, s') ∈ E_{ℓ} iff $ω(s, s') = \ell 1$
- \bullet Notice that reconstructing S is equivalent to pass once through all the nodes of $G_{\ell}(S)$
- In other words, we can reconstruct S by finding a Hamiltonian path in $G_{\ell}(S)$

Sequencing by Hamiltonian Paths II

• Example: consider s = [TATGGTGC] and the unordered 3—spectrum

```
sp(S, 3) = \{GGT, TAT, TGG, TGC, ATG, GTG\}
```

Sequencing by Eulerian Paths

- The obvious problem of HP sequencing is the lack of efficient algorithms to solve the HP problem
- The alternative is to try to have ℓ -mers on the edges instead of on nodes
- If $s \in sp(S, \ell)$ and s_1 is its $\ell 1$ prefix and s_2 its $\ell 1$ suffix, we can consider s as the edge connecting nodes s_1 and s_2

- Now we have $\omega(s_1, s_2) = \ell 2$
- We define now the graph $G_{\ell-1} = (V_{\ell-1}, E_{\ell-1})$ where
 - $-V_{\ell-1} = sp(S, \ell-1)$ and
 - $(s,s')\in E_{\ell-1}$ iff they are respectively prefix and suffix of an $s\in sp(S,\ell)$
- Notice that now reconstructing S is equivalent to pass once over all the edges of $G_{\ell-1}$
- In other words, we can reconstruct S by finding a EP in $G_{\ell-1}$

Eulerian Circuits on Directed Graphs

- However, notice that $G_{\ell-1}$ is a **directed** graph and we have to adapt the Eulerian circuit/path theory to these graphs
- ullet In an directed graph G(V,E) we have to distinguish between incident and adjacent edges
- For any $u \in V$, we say that (u, v) is an **adjacent** (outgoing) edge and (w, u) an **incident** (incoming) edge
- The **indegree** in(u) of u is the number of incoming edges to u
- The **outdegree** out(u) is the number of outgoing edges from u

Eulerian Circuits on Directed Graphs II

- Assume that $\pi = \{(u = u_0, u_1), \dots, (u_{K-1}, u_K = u)\}$ is an Eulerian circuit on G
- If $w \neq u$ is a node in π , each time we enter w we substract 1 from in(w) and also from out(w) when we leave w
- Since at the end we have passed through all the edges of w, we must have at the beginning in(w) = out(w)
- Similarly each time we enter u inside π we substract 1 from in(u) and also from out(u) when we leave it

Moreover, when we start we substract 1 from out(u) and also substract 1 we substract 1 from in(u) when we finish

• Thus, we must also have in(u) = out(u)

Euler's Theorem for Directed Graphs

- Euler's Theorem. A neccesary and sufficient condition to have an EC in a directed G is that in(v) = out(v) for all $v \in V$
- Corollary. A neccesary and sufficient condition to have an Eulerian path $\pi = \{(u = u_0, u_1), \dots, (u_{K-1}, u_K = v) \text{ in a directed graph } G \text{ is that we have } in(w) = out(w) \text{ for all } w \in V \text{ different from } u \text{ and } v \text{ and also } in(v) = out(v) + 1, in(u) = out(u) 1$
- ullet Essentially the same O(|E|) algorithm we saw for undirected graphs can be applied to directed ones
- Thus we can efficiently sequence genomic reads

Eulerian Sequencing

• Example: consider again s = [TATGGTGC] and

```
sp(S, 2) = \{TA, AT, TG, GG, GT, GC\}
```

4.2 From Reads to the Genome

The Shortest Superstring Problem (SSP)

- Given a string set $\{s_1, \ldots, s_M\}$, find the shortest superstring S that contains the M substrings s_i
- Recall that the **overlap** $\omega_{i,j}$ between strings s_i, s_j is the length of the longest suffix of s_i that is also a prefix of s_j

- Notice that the length of the shortest string containing first s_i and then s_j is $|s_i| + |s_j| \omega_{i,j}$ where |s| denotes the length of s
- If we add another string s_k after s_j , the extra added length is $|s_k| \omega_{j,k}$
- Thus, if we get S' collating the ordering $\{s_{i_1},\ldots,s_{i_M}\}$ then

$$|S'| = |s_{i_1}| + |s_{i_2}| - \omega_{i_1,i_2} + |s_{i_3}| - \omega_{i_2,i_3} + \dots$$
$$= \sum_{1}^{M} |s_j| - \sum_{1}^{M-1} \omega_{i_j,i_{j+1}}$$

The Longest Path Problem (LPP)

- As an example, if we collate this way the strings 'atggtag', 'gtagacta', 'ctaggtatt' we get the sequence 'atggtagactaggtatt' of lenght 17=7+8+9-4-3
- Clearly |S'| will be minimal iff $\sum_{1}^{M-1} \omega_{i_j,i_{j+1}}$ is maximal
- Consider the complete graph G over $V = \{s_1, \dots, s_M\}$ and with cost $\omega_{i,j}$
- Solving the Shortest Superstring Problem is thus equivalent to solving the **Longest** Path Problem(LPP) in (G, ω) : to find a cycle–free path of maximal lenght

LPP and Hamiltonian Paths

- \bullet A Hamiltonian path (HP) is a path that passes over all the |V| vertices once
- It can be shown that HC reduces polynomially to HP (the argument is easy but not totally obvious)
- Consider LPP-d, the decision version of LPP: given a graph G and c, to decide whether there is an acyclic path in G with length $\geq c$
- It is easy to see that LPP-d is in NP
- It is also easy to see that HP reduces to LPP-d: there is a HP in G iff LPP-d over (G,|V|-1) returns 1
- As a consequence, if HC is NP-complete, so is HP and so is LPP-d
- In general, if P_1 is NP–complete and it reduces polinomially to P_2 , P_2 is also NP–complete

How to Create New NP-complete Problems

- Assume T is the reduction operator from P_1 to P_2 with cost $O(|I|^p)$ when applied to an input I of P_1
- If P' is another problem that reduces polinomially to P_1 via T', $T \circ T'$ reduces P' to P_2 with polynomial cost
- In fact, if I = T'(I') with I' an input of P' with size n and T' has cost $O(n^q)$, we have $|I| = O(n^q)$, for the size of the ouputs of T' cannot be larger than the cost of computing them
- But the cost of applying $T \circ T'$ to I' is $O(n^q + (n^q)^p) = O(n^{pq})$
- Thus, if a NP problem reduces polynomically to P_1 , so it does to P_2
- Thus, if P_1 is NP–complete, so is P_2
- Thus, if we manage to prove HC to be NP-complete, so is HP and so is LPP-d. And so is TSP-d

Another Look at SSP

• Alternatively, assume we decompose two sequences s and t as

$$s = pre_{st} + over_{st}; \ t = over_{st} + suf_{st}$$

with pre, over and suf the prefix, overlap and suffix of s and t and + the concatenation operator

- For instance, for s = ATGGTAG, t = GTAGACTA, we have tpre_s = ATG, tover_s= GTAG, tsuf_s = ACTA
- Then the shortest superstring $s \circ t$ of s and t is

$$pre_{st} + over_{st} + suf_{st} = s + suf_{st} = pre_{st} + t$$

• Now, concatenating s_i, s_j, s_k to get s_{ijk} , we have $s_{ijk} = s_i \circ (s_j \circ s_k) = s_i \circ s_{jk}$, i.e.,

$$s_{ijk} = s_i \circ s_{jk} = pre_{ij} + s_{jk} = pre_{ij} + pre_{jk} + s_k$$

• But $s_k = pre_{k\ell} + over_{k\ell}$ for any other s_ℓ

SSP and TSP

- Thus, choosing $\ell = i$, $s_{ijk} = s_i \circ (s_j \circ s_k) = pre_{ij} + pre_{jk} + pre_{ki} + over_{ki}$
- Therefore, setting $\rho_{i,j} = |pre_{ij}|$ and $\omega_{i,j} = |over_{ij}|$ we have

$$|s_{ijk}| = \rho_{i,j} + \rho_{j,k} + \rho_{k,i} + \omega_{k,i}$$

• Therefore, collating $\{s_{i_1}, \ldots, s_{i_M}\}$ to get a possible SS S', we have

$$|S'| = \sum_{1}^{M-1} \rho_{i_j, i_{j+1}} + \rho_{i_M, i_1} + \omega_{i_M, i_1}$$

- ullet Consider the complete graph G defined by the M sequences s_k with cost ho_{ij}
- Then, if ρ^* is the optimal cost of TSP on G we have

$$|S'| = \sum_{1}^{M-1} \rho_{i_j, i_{j+1}} + \rho_{i_M, i_1} + \omega_{i_M, i_1} \ge \rho^* + \omega_{i_M, i_1}$$

$$\ge \rho^* + \min_{j} \{\omega_{i_j, i_{j+1}}\} \ge \rho^*$$

Solving SSP and LPP

- Thus, the solution of TSP on the complete graph over the s_j with cost $c(i, j) = \rho_{i,j}$ gives a lower bound on the length of the shortest superstring
- The relationship between SPP and TSP hints that SPP-d is also NP-complete (and it is so)
- Both SSP and LPP are NP-hard
- There are approximation algorithms for SSP with a 2.5 bound
- But LPP is much harder to approximate
- For directed acyclic graphs (DAGs) LPP can be solved in linear time using the Topological Order algorithm

Back to Genome Sequencing

- Recall the four steps of the process:
 - Blast the gene into individual short fragments ("reads")
 - Identify read subsequences by hybridizing them on a DNA microarray
 - Reconstruct each read from these subsequences
 - Reconstruct the gene from the reads
- Biochemistry provides the first two and Computer Science (CS) can be applied to the last two steps and will give a plausible genome
- But: is it the one we started with?
- Not obvious in principle: much more Biochemistry needed!!

5 Depth First Search and Connectivity

5.1 Depth First Search

Breadth First Search (BFS)

• Recall the general pseudocode for BFS

- If the cost of do_something is O(1) and we work with a PQ, the cost of BFS is $O(|E|\log |V|)$ (which can be improved using more sophisticated PQ implementations)
- If we only need simple queue, we get a linear cost O(|E|)
- If needed, we add a driver to restart BFS at unseen nodes

Depth First Search (DFS)

• The alternative to BFS is recursive DFS

```
def DFS(u, G):
    s[u] = True
    do_something_before_DFS(u)
    for all w adjacent to u:
        if s[w] == False:
            p[w] = u
            DFS(w, G)
    do_something_after_DFS(u)
```

• The table p[] defines the DFS tree (or forest)

Depth First Search II

- We may have to restart DFS if not all nodes have been processed
- We need a driver for DFS

• An example:

• If doing something has cost O(1), the joint cost of <code>driver_DFS</code> and <code>DFS</code> is clearly O(|E|)

Edge Classification by DFS

- DFS induces a classification on the edges of G
 - Tree edges: (u, v) where u = p[v]
 - Back (ascending) edges: (u, v) where $v = p[\dots p[u] \dots]$ (one or more p)
 - **Forward (descending) edges**: (u, v) where $u = p[\dots p[v] \dots]$ (with at least 2 p)

- Cross edges: any other $(u, v) \in E$
- If G is undirected and (u, v) is a forward edge, then (v, u) is a back edge
 - Thus, we will not distinguish then between forward and back edges
- We prove next that if G is undirected there are no cross edges

Parenthesis Theorem

- Assume we have a counter c in DFS and consider 2 time–stamps:
 - **Discovery**: $d_u = c$; c+=1, updated when DFS starts on u
 - Finish: $f_u = c; c+=1$, updated when DFS ends on u
- Obviously $d_u < f_u$
- Parenthesis Theorem. For a graph G and $u,v \in V$, consider the intevals $I_u = (d_u, f_u)$, $I_v = (d_v, f_v)$. Assuming $d_u < d_v$ we either have $I_v \subset I_u$, or $I_u \cap I_v = \emptyset$
- **Proof sketch:** Assume $d_u < d_v$;
 - If $f_u < d_v$, obviously $I_u \cap I_v = \emptyset$
 - And if $f_u > d_v$, DFS recursively started on v before finishing with u; thus the recursion on v must finish before that of u and $f_v < f_u$
 - Thus, $I_v \subset I_u$

No Cross Edges in Undirected Graphs

- Corollary. If G is undirected there are no cross edges
- **Proof sketch:** Take $(u, v) \in E$:
 - Assume $d_u < d_v$; then we have $f_v < f_u$ for v is adjacent to u
 - If s[v] = F when we arrive at v, then (u, v) is a tree edge
 - And if s[v] = T when we arrive at v, we have processed $L[v] \Rightarrow$ we have processed (v, u), that must be a back edge
 - Thus, (u, v) is a forward edge
- Thus, in no case is (u, v) a cross edge

5.2 Biconnected Graphs

Undirected Graph Connectivity

- Recall that an undirected graph G=(V,E) is connected if for every pair $u,v\in V$ there is a path π in E from u to v
- Connected component: a maximal connected subgraph of G
- If $G_i = (V_i, E_i)$ are the connected components of G, the V_i are a **partition** of V and the E_i of E
- If we order the vertices of G as $V = V_1 \cup ... \cup V_K$, then the adjacency matrix M is **block diagonal** with the blocks M_k being the adjacency matrices of the G_k
- BFS can be used to give the connected components of G through the table $p[\]$ just counting how many nodes u verify v[u] = V and restarting BFS if it is < |V|
- DFS and its driver can also be used to give the connected components of G through the table $p[\]$

An Aside: Directed Graph Connectivity

- ullet A directed graph G=(V,E) is **weakly connected** if its extension to an undirected graph is connected
- A directed graph G = (V, E) is **strongly connected** if for every pair $u, v \in V$ there is a path π in E from u to v
- DFS is also used in **Tarjan's Algorithm** to obtain the strong components of a graph
- Tarjan's algorithm basically obtains the strong components computing DFS's ending times on G and applying again DFS to the transpose graph G^{τ} in the order inverse to the ending times

Articulation Points

• If G is undirected and connected, a **cut vertex** or **articulation point** (**AP**) is a vertex u such that

$$G' = (V - \{u\}, E - \{(u, z) \in E\})$$

is no longer connected

- An undirected and connected graph G is biconnected if it has no articulation points
- Biconnected graphs are desirable in computer networks, as they are more robust against router failures
- Q: how we detect APs?

How to Detect APs?

• An example: the graph below has two APs, B and E

• If we apply DFS ...

DFS and Articulation Points

- The example shows that the DFS tree gives a "top-bottom" view of a graph in which
 - APs other than the root disconnect lower parts of the graph
 - An AP at the root disconnects subtrees
- We can use two auxiliary tables to detect articulation points that can be computed by DFS
 - The **order** table $o[\]$ that contains the order in which DFS arrives at a node u.
 - The **ascent** table $a[\]$ which is defined as $a[u]=\min\{o[v]\}$ where v is any node that can be accessed from u by
 - * Going "down" through 0, 1 o more tree edges, and then

* Going"up" through a single back edge

Detecting Articulation Points

- Clearly if we remove a non root node u from the DFS tree, it will disconnect one of its children v unless v can go "above" o[u] using back edges,
- In other words, u will be an AP if for some child v we have $o[u] \leq a[v]$
 - Notice that a larger number means a "lower" node
- Since there are no cross edges on the DFS tree, the root node will be an AP if
 it has two or more children
- It is also clear that these sufficient conditions are also neccessary
 - A single root node cannot be an AP
 - If all children of u bypass it, u cannot be an AP

Computing $o[\]$ and $a[\]$

- We compute o[u] before DFS explores u's adjacency list
- We can use two auxiliary tables to compute the table $a[\]$
- The **direct ascent** table o'[u] that contains the order of highest node accessible from u by an ascending edge

$$o'[u] = \min\{o[v] : (v,u) \text{ is a back edge}\}$$

o'[u] can be computed **before** DFS looking at the w adjacent to u s.t. v[w] == T

ullet The **ascent by children** table a'[u] that contains the order of highest node accessible from any of the children of u

$$a'[u] = \min\{a[v]: u = p[v]\}$$

 $a^{\prime}[u]$ can be computed **after** the recursive call to DFS returns

• We then have $a[u] = \min\{o[u], o'[u], a'[u]\}$

Computing $o[\]$ and $a[\]$ II

- Assume the DFS driver has initialized $o[\]$ and $a[\]$ to ∞ and a counter c to 0
- We compute o[] and a[] recursively as follows

```
def ap_tables(u, G):
    s[u] = True; o[u] = c; a[u] = o[u]; c += 1
    for all w adjacent to u: # direct ascent
        if s[w] == True and w != p[u] and o[w] < a[u]:
            a[u] = o[w]
    for all w adjacent to u:
        if s[w] == False:
            p[w] = u; ap_tables(w, G)
    for all w adjacent to u: # ascent by children
        if p[w] == u and a[u] > a[w]:
            a[u] = a[w]
```

• The cost of ap_tables is clearly O(|E|)

Algorithm Application

• An example:

5.3 DAGs, Topological Sort and Project Graphs

Directed Acyclic Graphs

- A directed acyclic graph (DAG) is a directed graph without cycles
- **Proposition:** G is a DAG iff there are no ascending edges in G
 - If (v,u) is ascending, there is a path from u to v in the DFS forest, and adding (v,u) results in a cycle
 - Assume π is a cycle and let $u \in V_{\pi}$ be the first node processed in DFS and assume (v,u) in E_{π}

Then it can be shown that v descends from u in the DFS forest and, thus, (v,u) is ascending

- DFS can be used to detect cycles in a graph modifying our previous AP algorithm
- DAGs can be used to model many problems of interest

Topological Sort

- Recall: \leq is a **total order** if either $u \leq v$ or $v \leq u$ or both
- A topological sort in a DAG G = (V, E) is a total ordering of its vertices s.t. if $(u, v) \in E$, then $u \le v$
- If G is a DAG, a topological sort can be obtained
 - Applying DFS starting at u with inc[u] = 0 (there is always one) and
 - Adding a vertex u at the beginning of a linked list after DFS ends its process
- We end up with a topological sort of G:
 - Since DFS ended at v after processing of the vertices w adjacent to v, then these w are in the list after v
- The cost of TS on DAGs is thus O(|E|)

Applying Topological Sort

• An example:

Single Source Shortest Paths in DAGs

• A source in a DAG is a node with incidence 0

- TS can be used to find shortest paths in a weighted single source DAG with linear cost, i.e., better than Dijkstra's
- The psc is

• Easy exercise: change dist_min_DAG to another dist_max_DAG that computes longest paths

Finding Shortest Paths in a DAG

• An example:

Project Graphs

- A project graph (PG) is a DAG P
 - With a single node S with inc[S] = 0 and a single F with adj(F) = 0
 - The other nodes u correspond to tasks and have associated a time cost t(u)
 - Edges denote task dependences
- As such they are not weighted graphs
- A milestone graph is a weighted DAG version P_M of a PG P where if several tasks u, v, \ldots converge in another z
 - An extra node z' and edge (z', z) with cost t(z) is added

- The edges $(u,z),(v,z),\ldots$ are converted to $(u,z'),(v,z'),\ldots$ with weights c(w,z')=0
- If only task u incides in v, we have c(u, v) = t(v)

Critical Paths in Project Graphs

- The quantity of interest is T(F), the **minimum time** needed to arrive at F, i.e., to complete the project
- T(F) coincides with the length of the **longest path** from S to F in the milestone graph P_M
- Such a path is a **critical path**: any delay in any milestone node implies a delay in the project
- \bullet We can define for a milestone node v
 - Its minimum arrival time $T_{min}(v)$: the length of the longest path from S to v
 - Its **maximum departure time** $T_{max}(v)$: the latest time at which v can be completed without delaying the project
 - Its slack time $S(v) = T_{max}(v) T_{min}(v)$
- Any node w in a critical path verifies S(w) = 0.
- Solving LPP on DAGs is at the core of the Program Evaluation and Review Technique (PERT) for project management