IC: Lista de Exercícios Obrigatórios 2

Questão 1 – Vamos investigar a tensão de interferência de modo série V_{SM} que pode surgir num circuito devido ao acoplamento indutivo. Suponha que o circuito fechado de um sistema de medição consista num laço de área A. Considere que uma carga foi acionada nas proximidades, sendo sua corrente modelada no tempo por $i(t) = Iu(t)(1 - e^{-t/\tau})$ ampères, onde u(t) é uma entrada do tipo degrau unitário, I é a magnitude da corrente em regime permanente e au uma constante de tempo. Admita que o campo magnético $m{B}$ produzido pela corrente da carga sobre a área total do circuito seja uniforme e tenha módulo $B = \mu_0 i/2\pi d$, onde d é a distância da carga ao laço do circuito de medição. Nesse caso, se a área A é plana e ortogonal a B, o fluxo magnético sobre a mesma é $\phi = BA$, de modo que a indutância mútua $M=\phi/i$ entre o circuito da carga e o de medição seria dada por $M=\mu_0A/2\pi d$. A Figura 1 ilustra o modelo a ser considerado, sendo $Z_{Th}=R_{Th}$, $Z_L=R_L$ e $R_L\gg R_{Th}$.

Figura 1

A partir das informações dadas, responda:

- a) Valendo-se do princípio da superposição, faça $E_{Th}=0~\mathrm{V}$ para investigar apenas o efeito da tensão de interferência V_{SM} associada à indutância mútua M, isto é, $V_{SM} = Mdi/dt$, onde i(t) é a corrente que alimenta a carga próxima¹. Assim, supondo que $A=0.4~{\rm m^2}$, $I=10~{\rm A}$, $d=1~{\rm m}$, $\tau=1~{\rm ms}$ e $\mu_0=4\pi\cdot 10^{-7}~{\rm TmA^{-1}}$, determine a tensão medida sobre Z_L . Qual o seu valor máximo?
- b) Considere agora o efeito de um relâmpago cuja corrente é modelada ainda por $i(t) = Iu(t)(1 - e^{-t/\tau})$ dentro do intervalo $(0, t_f)^2$, mas com $I = 10^5 \,\mathrm{A}$ e $\tau = 50 \, \mu \mathrm{s} \ll t_f$. Assuma o mesmo modelo para o campo magnético **B** produzido e sua relação com a área $A = 0.4 \text{ m}^2$ do circuito de medição, ou seja, a indutância mútua continua sendo dada por $M=\mu_0A/2\pi d$, sendo que desta vez, tome $d=5~\mathrm{km}$. Determine a tensão medida sobre Z_L dentro do intervalo $(0,t_f)$. Qual o seu valor máximo?
- c) Considerando os valores típicos de sinais não amplificados de sistemas de medição com RTD's, extensômetros - ligados a pontes de deflexão - termopares, etc., os valores obtidos nos itens "a" e "b" são desprezíveis? Como reduzir esses efeitos?

² Naturalmente, espera-se que a corrente do relâmpago comece a decrescer em algum momento. O que

¹ Não confunda essa corrente com a que circula no próprio circuito de medição.

o exercício propõe é que i(t) modele o comportamento inicial da corrente em um intervalo $(0,t_f)$, quando ela parte de $0~\mathrm{A}$ e atinge o máximo de I ampères. Após $t>t_f$, ela poderia começar a diminuir.

Questão 2 – Considere um termistor cuja resistência $R(\theta)$ seja dada pela Eq. (1).

$$R(\theta) = k \cdot \exp\left(\frac{\beta}{\theta}\right)$$
 (1).

Na Eq. (1), θ é a temperatura em kelvins e k e β são parâmetros do componente.

Seja o range de entrada do sistema definido por θ_{MIN} e θ_{MAX} , e defina $\theta_{MID}=(\theta_{MIN}+\theta_{MAX})/2$. Colocando-se o termistor no lugar de R_1 na ponte de deflexão mostrada na Figura 2, deseja-se ajustar os parâmetros V_S , $r=R_3/R_2$ e R_4 de modo que a saída $E_{Th}(\theta)$ em função da temperatura seja tal que $E_{Th}(\theta_{MIN})=0$ V, $E_{Th}(\theta_{MAX})=V_{MAX}$ e $E_{Th}(\theta_{MID})=V_{MID}$, onde $V_{MID}=V_{MAX}/2$. Assim sendo, faça o que se pede abaixo:

- a) Obtenha V_S , r e R_4 de modo que $E_{Th}(\theta)$ satisfaça as condições estabelecidas. Você pode expressar os resultados em função de $R(\theta_{MIN})$, $R(\theta_{MAX})$ e $R(\theta_{MID})$.
- b) Aplique o resultado do item anterior a um termistor do tipo PTC com range de entrada de -55 °C a 120 °C tal que $R(\theta_{MIN})=100~\Omega$ e $R(\theta_{MAX})=10~k\Omega$.

Figura 2

Questão 3 – A Figura 3 mostra um circuito usado para a medição de uma grandeza I com tensão e impedância equivalentes de Thévenin $E_{Th}=KI$ e Z_{Th} , respectivamente, onde K é um parâmetro do sistema. O circuito é ligado a um amplificador com impedância de entrada $Z_{IN}\gg Z_{Th}$. A saída do amplificador é conectada à impedância Z_{L} onde será feita a leitura do sinal por meio de cabos longos com resistência total $R_{C}=20~\Omega$. Agora, considere os dois casos seguintes:

- i. A saída do amplificador (linear) é tal que $O_{OUT}=1$ V para $I=I_{MIN}$ e $O_{OUT}=5$ V para $I=I_{MAX}$ (amplificador de tensão).
- ii. A saída do amplificador (linear) é tal que $O_{OUT}=4\,\mathrm{mA}$ para $I=I_{MIN}$ e $O_{OUT}=20\,\mathrm{mA}$ para $I=I_{MAX}$ (amplificador de transcondutância).

Suponha que os cabos estão sujeitos a uma tensão de interferência de modo série V_{SM} , a qual é um ruído gaussiano com média nula e densidade espectral de potência uniforme de $625 \, \mathrm{nWHz^{-1}}$ até uma frequência de $100 \, \mathrm{kHz}$. A partir dessas informações, responda os itens seguintes.

a) Modele a saída do amplificador de tensão (i) como uma fonte de tensão controlada O_{OUT} em série com uma resistência de $50~\Omega$. Obtenha a relação sinal ruído entre a

tensão de saída do amplificador e V_{SM} medidas sobre $Z_L \gg 70~\Omega$ para uma entrada constante $I = (I_{MAX} + I_{MIN})/2$. Obtenha também a potência do ruído, seu valor RMS e desvio padrão.

- b) Modele a saída do amplificador de transcondutância (ii) como uma fonte de corrente controlada O_{OUT} em paralelo com uma resistência de $25~\mathrm{k}\Omega$. Obtenha a relação sinal ruído entre a tensão devida ao amplificador³ e V_{SM} medidas sobre $Z_L=250~\Omega$ para uma entrada constante $I=(I_{MAX}+I_{MIN})/2$. Obtenha também a potência do ruído, seu valor RMS e desvio padrão medidos em Z_L . Compare esse resultado com o do item anterior.
- c) Obtenha as novas relações sinal/ruído para os casos dos dois itens anteriores supondo que Z_L é conectada a um filtro passa-baixas com ganho DC unitário e frequência de corte de $1\,\mathrm{kHz}$.

Figura 3

Questão 4 – Um sensor do tipo diafragma é utilizado para a medição de pressão P. A variação da capacitância ΔC em relação à capacitância mínima C_{MIN} , quando não há pressão aplicada, é dada pela Eq. (2).

$$\frac{\Delta C}{C_{MIN}} = \frac{(1 - v^2)a^4}{16Edt^3}P$$
 (2).

Na Eq. (2), ν é a razão de Poisson do diafragma, a é seu raio, E é seu módulo de Young, t é sua espessura e d é a separação entre as placas quando não há deformação. Mostre que ao se colocar esse sensor capacitivo numa ponte de deflexão reativa, a relação entre a saída E_{Th} da ponte e P pode ser aproximada por uma reta passando pela origem fazendo-se os devidos ajustes nos parâmetros do circuito de condicionamento. A frequência de alimentação da ponte afeta o resultado? Explique.

 $^{^3}$ Como o sinal é medido em Z_L , a tensão devida ao amplificador de transcondutância é a sua corrente vezes Z_L .