GRADE 100%

TO PASS 80% or higher

Optimization algorithms

LATEST SUBMISSION GRADE 100%

1.	Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?	1/
	a ^{[3]{8}(7)}	
	$\bigcirc \ a^{[3]\{7\}\{8\}}$	
	$\bigcirc a^{[8]\{3\}\{7)}$	
	$\bigcirc \ a^{[8]\{7\}\{3)}$	
	✓ Correct	
	Which of these statements about mini-batch gradient descent do you agree with?	1/
	 Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent. 	g
	 You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization). 	
	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.	
	✓ Correct	
	Why is the best mini-batch size usually not 1 and not m, but instead something in-between?	1/
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.	
	✓ Correct	
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.	
	☐ If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.	h
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training se before making progress.	t
	✓ Correct	
	Suppose your learning algorithm's cost J , plotted as a function of the number of iterations, looks like this:	1/

\cap	Whether you're using	hatch gradient des	scent or mini-hatch o	radient descent th	is looks accentable

- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks accentable.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

5. Suppose the temperature in Casablanca over the first three days of January are the same:

ee days of January are the same.

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0, v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$\bigcirc \ v_2 = 10, v_2^{corrected} = 10$$

$$\bigcirc \ v_2=10, v_2^{corrected}=7.5$$

$$\bigcirc \hspace{0.5em} v_2 = 7.5, v_2^{corrected} = 10$$

$$\bigcirc v_2 = 7.5, v_2^{corrected} = 7.5$$

6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

1/1 point

$$\bigcap \alpha = \frac{1}{\sqrt{t}}\alpha_0$$

$$\bigcirc \ \alpha = 0.95^t \alpha_0$$

$$\bigcap \alpha = \frac{1}{1+2*t}\alpha_0$$

✓ Correct

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

1 / 1 point

- $\hfill \square$ Increasing β will shift the red line slightly to the right.

 \bigcap The learning rate hyperparameter α in Adam usually needs to be tuned.

✓ Correct