Hilbert spaces

Manel Martínez-Ramón

ECE, UNM

October, 2018

• A vector space X over the reals \mathbb{R} is an inner product space if there exists a real-valued symmetric bilinear map $\langle \cdot, \cdot \rangle$ that satisfies

$$\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$$

This map is an inner or dot product. It is strict if the equality is true only for $\mathbf{x} = \mathbf{0}$.

- If the dot product is strict, then we can define a norm $||\mathbf{x}||_2 = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ and a metric $||\mathbf{x} \mathbf{z}||_2$.
- A Hilbert space \mathcal{F} is a strict inner product space that is *separable* and *complete*.

Hilbert spaces

• Completeness means that every Cauchy sequence h_n converges to an element $h \in \mathcal{F}$. A Cauchy sequence is one for which

$$\lim_{n\to\infty} \sup_{m>n} ||h_n - h_m|| \to 0$$

• Separability means that a countable set of elements $h_1 \cdots h_n$ in \mathcal{F} exists such that for all $h \in \mathcal{F}$ and for $\epsilon > 0$

$$||h_i - h|| < \epsilon$$

• ℓ^2 space. This is the space of all countable sequences of real numbers $\mathbf{x} = x_1, x_2, \dots, x_n, \dots$ such that $\sum_{i=1}^{\infty} x_i^2 < \infty$. Its dot product is

$$\langle \mathbf{x}, \mathbf{z} \rangle = \sum_{i=0}^{\infty} x_i z_i$$

Examples of dot products

• Let $X = \mathbb{R}^n$. A suitable dot product is

$$\langle \mathbf{x}, \mathbf{z} \rangle = \sum_{i=1}^{n} \lambda_i x_i z_i = \mathbf{x}^{\top} \mathbf{\Lambda} \mathbf{z}$$

Note that this is equivalent to the "standard" dot product over the transformed vectors $\Lambda^{\frac{1}{2}}\mathbf{x}$ and $\Lambda^{\frac{1}{2}}\mathbf{z}$.

• The scalars λ_i must be positive. Otherwise, a vector can be found for which the corresponding metric is negative. If one or more values of λ_i are zero, then the dot product is not strict.

Examples of dot products

• Let $\mathcal{F} = L_2(X)$ be the space of square integrable functions on a compact subset of X. For $f, g \in \mathcal{F}$, the dot product is

$$\langle f, g \rangle = \int_X f(x)g(x)dx$$

• When functions are defined in \mathbb{C} , an equavalent expression exists where one of the functions is conjugated.

The Cauchy-Schwartz inequality

• In an inner product space

$$\langle \mathbf{x}, \mathbf{z} \rangle^2 \le ||\mathbf{x}||^2 ||\mathbf{z}||^2$$

The angle between two vectors in an inner product space is defined as

$$\cos \theta = \frac{\langle \mathbf{x}, \mathbf{z} \rangle}{||\mathbf{x}|| ||\mathbf{z}||}$$

Obviously, if the cosine is 1, then both vectors are parallel. If the cosine is 0, then both vectors are orthogonal.

Positive semi-definite matrices

- A symmetric matrix **A** is positive semi-definite if its eigenvalues are all non-negative.
- Indeed, the Courant-Fisher theorem says that the minimal eigenvalue of a symmetric matrix is

$$\lambda_m(\mathbf{A}) = \min_{\mathbf{0} \neq \mathbf{v} \in \mathbb{R}^{\mathbf{n}}} = \frac{\mathbf{v}^{\top} \mathbf{A} \mathbf{v}}{\mathbf{v}^{\top} \mathbf{v}}$$

ullet Then, a symmetric matrix ${f A}$ is positive semi-definite if and only if

$$\mathbf{v}^{\top}\mathbf{A}\mathbf{v} \geq 0$$

Positive semi-definite matrices

- Gram and Kernel matrices are positive semi-definite matrices.
- First, we formally define a kernel as a function $k(\cdot,\cdot)$ such that

$$k(\mathbf{x}, \mathbf{z}) = \langle \boldsymbol{\varphi}(\mathbf{x}), \boldsymbol{\varphi}(\mathbf{z}) \rangle$$

where $\varphi(\cdot)$ is a mapping from a space X to a Hilbert space \mathcal{F}

$$oldsymbol{arphi}: \mathbf{x}
ightarrow oldsymbol{arphi}(\mathbf{x}) \in \mathcal{F}$$

• Them we define the kernel matrix as

$$K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$$

• With that, we can prove that he product $\mathbf{v}^{\top} \mathbf{K} \mathbf{v}$ is nonnegative $\forall \mathbf{v}$.

$$\mathbf{v}^{\top} \mathbf{K} \mathbf{v} = \sum_{i} \sum_{j} v_{i} v_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j})$$

$$= \sum_{i} \sum_{j} v_{i} v_{j} \langle \boldsymbol{\varphi}(\mathbf{x}_{i}), \boldsymbol{\varphi}(\mathbf{x}_{j}) \rangle$$

$$= \left\langle \sum_{i} v_{i} \boldsymbol{\varphi}(\mathbf{x}_{i}), \sum_{i} v_{i} \boldsymbol{\varphi}(\mathbf{x}_{i}) \right\rangle$$

$$= \left\| \sum_{i} v_{i} \boldsymbol{\varphi}(\mathbf{x}_{i}) \right\|^{2}$$

This expression is nonnegative for any sequence v_i .

Kernel matrices are positive semi-definite

- A matrix **A** is positive semi-definite if and only if $\mathbf{A} = \mathbf{B}^{\top} \mathbf{B}$.
- The proof is straightforward if we assume that $\mathbf{A} = \mathbf{B}^{\top}\mathbf{B}$ and we compute $\mathbf{v}^{\top}\mathbf{A}\mathbf{v}$:

$$\mathbf{v}^{\top} \mathbf{A} \mathbf{v} = \mathbf{v}^{\top} \mathbf{B}^{\top} \mathbf{B} \mathbf{v} = \| \mathbf{B} \mathbf{v} \|^2$$

Here we identify in $\mathbf{B}^{\top}\mathbf{B}$ a matrix of dot product in a space where coordinates are given. Since there is a isometric isomorphism between \mathcal{F} and ℓ^2 or \mathbb{R}^n , this and the previous result become equivalent.

Outcomes of this lesson

In this lesson we have seen the definition of a Hilbert space and some important aspects of Hilbert spaces:

- Completeness, separability and ℓ^2 space.
- Examples of dot products.
- Positive semi definite property of kernel matrices.