CS4375 Homework 2 Report

Anthony Tran axt220037 Kacie Yee

1.1 Gradient Descent

1. Find the error (simple squared error)

$$E(w) = \frac{1}{2} \sum_{j=1}^{n} (t_{j} - O_{j})^{2}$$

$$W_{new} = W_{old} + \Delta W$$

$$\Delta W = -\eta \frac{\partial E}{\partial W}$$

Now, derive the partial derivative.

$$\frac{\partial E}{\partial w} = \frac{\partial}{\partial w_i} \left(\begin{array}{c} t_j - o_j \end{array} \right)^2$$

$$= \frac{1}{n} \sum_{j} \left(\begin{array}{c} t_j - o_j \end{array} \right)^2$$

$$= \frac{1}{n} \sum_{j} \left(\begin{array}{c} t_j - o_j \end{array} \right) \left(\begin{array}{c} t_j - o_j \end{array} \right)$$

$$= \frac{1}{n} \sum_{j} \left(\begin{array}{c} t_j - o_j \end{array} \right) \left(\begin{array}{c} t_j - o_j \end{array} \right)$$

$$= \sum_{j} \left(\begin{array}{c} t_j - o_j \end{array} \right) \left(\begin{array}{c} -x_{ja} \end{array} \right)$$

$$\frac{\partial E}{\partial w_i} = \sum_{j} \left(\begin{array}{c} t_j - o_j \end{array} \right) \left(\begin{array}{c} -x_{ja} \end{array} \right)$$

50,
$$\triangle W_i = \eta \sum_{j=0}^{\infty} (t_j - o_j) \times ij$$
our final weight update

Using this equation, we can compute the Duit for each weight, and use that to update each weight.

1.2 Comparing Activation Function

Report:

	activation	learning_rate	epochs	layers	test_mae	train_mae	test_loss
0	sigmoid	0.01	100	2	1.477041	1.394334	4.416725
1	sigmoid	0.01	100	3	1.505339	1.388505	4.443105
2	sigmoid	0.01	200	2	1.639835	1.408230	5.026944
3	sigmoid	0.01	200	3	1.545813	1.312767	4.785028
4	sigmoid	0.10	100	2	1.648743	1.498624	4.904697
5	sigmoid	0.10	100	3	1.988100	1.977970	7.295230
6	sigmoid	0.10	200	2	1.819599	1.640983	5.943343
7	sigmoid	0.10	200	3	1.733765	1.676414	5.491228
8	tanh	0.01	100	2	1.523842	1.324666	4.641914
9	tanh	0.01	100	3	1.559050	1.429311	4.574947
10	tanh	0.01	200	2	1.581151	1.222847	4.962899
11	tanh	0.01	200	3	1.598864	1.173827	5.345596
12	tanh	0.10	100	2	1.757748	1.755021	5.888821
13	tanh	0.10	100	3	2.470859	2.422840	11.839838
14	tanh	0.10	200	2	1.845451	1.762927	6.006831
15	tanh	0.10	200	3	2.895843	2.838145	12.776013
16	relu	0.01	100	2	1.525081	1.371497	4.642535
17	relu	0.01	100	3	1.593909	1.439553	4.717119
18	relu	0.01	200	2	1.599572	1.305960	6.204692
19	relu	0.01	200	3	1.625210	1.291479	5.106838
20	relu	0.10	100	2	1.600400	1.538947	4.685734
21	relu	0.10	100	3	1.597669	1.548882	5.176435
22	relu	0.10	200	2	1.621776	1.550816	4.903563
23	relu	0.10	200	3	1.658133	1.557553	5.010948

train_loss 3.967221 0 3.916803 1 2 3.584769 3 3.389249 4 4.127173 5 7.335787 4.653182 6 7 5.316587 8 3.540610 9 3.864309 10 2.997593 11 2.711775 5.867476 12 13 11.722538 14 5.793617 12.220264 15 16 3.746282 17 3.894003 18 3.329473 19 3.210882 4.326734 20 4.902181 21 22 4.588874 23 4.538371

0

In our model, Sigmoid and ReLu performed the best due to their low test MAE and low test loss. This could be because since calculating the age of abalone has a linear relationship with the features, sigmoid was able to show its primary strength. For ReLu, it was also effective since adding a bit of nonlinearity did lower the test loss by a percent.