의료 Artificial Intelligence

지식과 추론 / 불확실성 (chap4, 5)

2022.03.31

오늘 배울 내용 …

1. 전문가 시스템

- 2. 불확실성
- 3. 논리설계 통계 논리 실습
- 4. mblock: 프로시저

어렵지 않다 쉬운 것도 아니다

인공지능 이론

지능을 만드는 재료

자료 (Data)	 단순한 사실의 나열 특정 분야에서 관측된 아직 가공되지 않은 것 사실인 것처럼 관측되지만 오류나 잡음 포함 가능
정보 (Information)	의미 있는 데이터자료를 가공해 어떤 의미나 목적을 갖는 것데이터+의미
지식 (Knowledge)	 가치 있는 정보 정보를 집적하고 체계화해 장래의 일반적 사용에 대비한 보편성 확보 정보+가치
지혜 (Wisdom)	 패턴화된 지식 경험과 학습을 통해 얻은 지식보다 높은 수준의 통찰 지식+추론

기계에 지능을 넣는 법

지식을 주입하는 가, 데이터를 주입하는 가?

전문가 시스템

- 기계에 전문가들이 사용하는 지식을 알고리즘으로 만들어 주입
- 지식 기반 시스템 (Knowledge-based System)
- 좁은 범위의 문제 영역에 전문가의 결정과 판단력을 시뮬레이션 하여 문제 해결
- 과거의 전문가 시스템(지식중심) 지식을 단순히 코드/Rule로 만들어 주입 현재의 전문가 시스템(지식+자료) - 통계적 방법, 신경망 기술 적용으로 주입

기계에 지능을 넣는 법

불확실성

- · 불확실성은 앞으로 나타날 현상이나 일의 예측으로 부터 나타남 **예측이 곧 지능의 핵심** 기능
- · 컴퓨터의 경우 불확실성을 수학적으로 표현하여 처리하고 이를 바탕으로 추론 도출

예측되지 않는 결과가 나오는 이유

1. 자료의 불확실성

- 자료를 **획득할 수 있는 기계 또는 센서 장치의 부정확성**에서 기인 → 오차 포함

2. 자료의 불완전성

- **일부의 정보만 받아들여 판단** 해야 하는 상황에서의 불완전성
- 무인 자동차의 경우 주행 시 발생하는 모든 상황에 대한 방대한 정보를 모두 다 입력 받아 처리할 수 없음

3. 지식의 불확실성 → 전문가 시스템의 경우

- 지식의 표현이 자연어로 처리될 때 인간이 사용하는 모호한 표현을 사용하게 되며 이 모호한 내용으로 인해 여러 가지 해석을 불러일으킴
- 시스템에 획득한 지식의 표현 및 저장 시 문제점으로 발생 (잘못된 추상화)

4. 확률적 불규칙성

- **예측이 안 되었거나 불가능한 요인**에 따라 발생하는 불규칙성
- 고속도로의 운전에서 갑작스럽게 튀어오는 돌멩이나 축구의 수비수가 자살골을 넣는 행동

불확실성의 표현

- · 불확실한 지식을 표현하는 방법 : <u>확률 통계</u>
- 일어나지 않은 일에 대한 확률을 '불확실성'의 개념으로 접근
- 주어진 사건과 관련 있는 여러 가지 확률을 이용해 새롭게 일어날 수 있는
 사후 사건 확률에 대해 추론하는 방법을 사용 → 베이지안 정리

P(A) = 사건 A가 일어날 수 있는 경우의수 일어날 수 있는 모든 경우의 수

확률 기초

- 확률의 덧셈
 - 어떤 사건 A와 다른 사건 B가 각각 발생할 때, 두 사건의 합집합의 확률인 P(AUB)의 계산

- 표본공간 S에서 두 개의 사건 A와 B가 있을 때 집합 이론(set theory)에 의해 아래의 식이 성립
 ✓ n(A∪B) = n(A) + n(B) n(A∩B)
- 여기서 양변을 n(S)(전체사건)로 나누면 n(A∪B)/n(S) = n(A)/n(S) + n(B)/n(S) n(A∩B)/n(S)
 → 확률로 변환
- 확률 개념의 도입과 확률의 덧셈 법칙(additive rule) 도출
 - \checkmark P(A) = n(A)/n(S), P(B) = n(B)/n(S)

2 확률의 덧셈 법칙: P(A∪B) = P(A) + P(B) - P(A∩B)

확률 기초

- 조건부 확률(conditional probability)
 - 어떤 사건이 일어난 후 그것을 바탕으로 다른 사건이 일어날 확률
 - ✓ 의미 : 사건 B가 먼저 일어나고 그것을 바탕으로 사건 A가 일어날 경우에 사건 A의 조건부 확률인 P(A | B)

조건부 확률:
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

확률의 곱셈 법칙: $P(A \cap B) = P(B) \times P(A \mid B)$
 $P(A \cap B) = P(A) \times P(B \mid A)$

 예시: 20대 3600명과 50대 3600명에 대한 건강검진에서 전체 7200면 중 4000명이 정상체중, 3200명이 과체중

	20대(A1)	50대(A2)	계
정상체중(B1)	2400	1600	4000
과체중(B2)	1200	2000	3200
계	3600	3600	7200

$$\checkmark$$
 P(A1) = 3600/7200 = 0.5

✓ 20대에서 한 명을 뽑았을 때 그 사람이 정상체중일 확률

- P(B1 | A1)의 조건부 확률

 $- P(B1 \mid A1) = P(B1 \cap A1) / P(A1)$ = 2400/3600 = 0.66

. 베이지안 정리 : 두 확률 변수의 사전확률과 사후 확률 사이의 관계를 나타내는 것 → 결과에 대한 확률을 통해 원인의 확률을 추정하는 것

·사전 설계: 코호트(Cohort) 연구, 전향 연구

- P(B | A): 원인(A)가 발생한 후 결과(B)가 나타날 확률

- <u>사전(Prior)</u> 확률 P(B | A) : A(원인) → B(결과)

· 사후 설계: 대조 연구, 후향적 연구

- P(A | B): 결과(B)가 나온 이후에 원인(A)일 확률

- <u>사후(Posterior) 확률 P(A | B) : B(결과) → A(원인)</u>

(전체 합계=1)

·조건부확률과 사후확률

사전확률 P(A)	A일 확률이 있고		
조건부확률 $P(B \mid A) = \frac{P(A \cap B)}{P(A)}$	A일 때 B가 일어날 확률을 알고 있으면		
사후확률 $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$ $P(B) > 0$	B일 때 A의 확률을 알 수 있다.		

· 사전에 알고 있는 확률값을 바탕으로 조건부 확률을 구함

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \longrightarrow P(A \cap B) = P(A)P(B|A)$$

$$P(B) = P(A)P(B|A) + P(A')P(B|A')$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(A')P(B|A')}$$

확신도

<u>확신도는 규칙과 사실의 신뢰 정도를 -1~1 구간의 값으로 표현</u>

전제 규칙(A이면 B): 만약 기침을 하면 감기이다(의사의 경험에 의한 확신도 0.4).

환자 증상(A): 종종 기침을 한다(확신도 0.7).

감기일 확신도(B): $0.4 \times 0.7 = 0.28$

- ·퍼지 이론
- 자데에 의해 1965년 퍼지 집합에 관한 이론이 처음 제시
- 퍼지 명제나 규칙을 다루기 위한 퍼지 논리로 발전
- Fuzzy 애매모호함
- 언어적 애매모호성이 퍼지 이론 탄생 예쁜, 큰, 뜨거운, 달큰한, 검붉은 ···

Lotfi Aliasker Zadeh

·퍼지 이론

- 제어 수행시 정확한 수치로 해법을 수행하는 것이 아니라
- 인공지능을 이용한 근사값으로써 적당히 결과를 보며 컴퓨팅 처리

·매직 세븐: 인간이 사물을 판정하는 어림수는 7개를 넘지 않음

NL - Negative Large, NM - Negative Medium, NS - Negative Small	부정
Z - Zero	중립
PS - Positive Small, PM - Positive Medium, PL - Positive Large	긍정

·사람들은 보통 5, 7개의 어림 범위로 표현

Strong positive	Positive	e Neutral	Negative	Strong negative		
(1)	(2)	(3)	(4)	(5)		
Strongly agree	Agree	More or less agree	Undecided	More or less disagree	Disagree	Strongly disagree
(1)	(2)	(3)	(4)	(5)	(6)	(7)

빨래의 양에 따라 세탁기를 퍼지로 제어 - 퍼지 집합을 X와 Y의 부분집합으로 정의

·X는 '매우 적은, 적은, 보통, 많은, 매우많은'

·Y는 '매우 느리게, 느리게, 보통으로, 빠르게, 매우 빠르게'

- •규칙 1: 만약 빨래의 양이 매우 적다면 회전 속도는 매우 느리게 돈다.
- •규칙 2: 만약 빨래의 양이 적으면 회전 속도는 느리게 돈다.
- •규칙 3: 만약 빨래의 양이 보통이면 회전 속도는 중간 정도로 돈다.
- •규칙 4: 만약 빨래의 양이 많으면 회전 속도는 빠르게 돈다.
- •규칙 5: 만약 빨래의 양이 매우 많으면 회전 속도는 매우 빠르게 돈다.

·기하학적 측면에서 2개의 삼각형이 겹치는 부분을 '패치'라 부르며 규칙을 얻을 수 있음.

지능 만들기 - 논리설계 실습

논리설계 실습 - 1

다음 블록프로그램을 보고 출력결과를 써 보시오.

논리설계 실습 - 2

문자 찿기: 다음 블록 프로그램을 응용해서 숫자를 쉼표로 분리하는 프로그램으로 변환

- 쉼표를 만날 때까지 문자를 담을 변수를 만듦
- 쉼표가 아니면 숫자문자를 변수에 담고 쉼표를 만나면 변수를 출력
- 변수 출력 후에는 변수를 비우기

```
📜 클릭했을 때
   str ▼ 을(름) (112,23,66,55,44) 로(으로) 설정하기
   charnum ▼ 을(를) 문자열 str 의 길이 로(으로) 설정하기
   sept ▼ 을(를) 2 로(으로) 설정하기
   n ▼ 을(를) 1 로(으로) 설정하기
                 이(가) 참일 때까지 반복하기
            str 의 n 번째 문자 = (sept)
      n 와(과) 번째 발견 을(를) 결합한 문자열 을(를) 1 초 동안 말하기
    n ▼ 을(를) 1 만큼 변경하기
```

MBlock 실습

[mblock] 함수와 '내 블록' 만들기

함수 : 자주 사용되는 로직 / 코드블럭을 모듈로 분리하는 것

[내 블록]: 특정 기능을 수행하는 명령 블록을 하나의 블록으로 약속

1. 내 블록 정의

[mblock] 함수와 '내 블록' 만들기

2. 내 블록 사용

실습 예제 - 1

내 블록 만들기 예제

- v num1
 v num2
 v result
- num1 44
 num2 33
 result 77

```
      국자 입력해 주세요
      문고 기다리기

      num1 ▼ 을(를)
      대답 로(으로) 설정하기

      숫자 입력해 주세요
      문고 기다리기

      num2 ▼ 을(를)
      대답 로(으로) 설정하기

      plus num1
      num2

      result
      을(를) 말하기
```

```
plus num1 num2 더하기 정의하기 result ▼ 을(를) (num1) + (num2) 로(으로) 설정하기
```

게임 만들기

총알 피하기 게임

1단계: 분해

1. 펜더 객체

- 달리기 모션
- 점프: 1단, 2단
- 숙이기

2. 하단/상단 포탄 객체

- 포탄 생성
- 좌로 이동
- 모양 변함

3. 배경

- 횡스트롤

4. 대포 객체

- 거리가 30미터이면 모양 변경

5. 게임 룰

- 펜더가 포탄에 닿으면 수명이 줄어 듬
- 수명이 3개 이상 줄어 들면 게임 끝
- 펜더는 달리면서 이동 거리를 계산해서 말함
- 게임이 끝나면 'Game Over' 게임 클리어시에는 'You win the Game' 출력

게임 만들기

총알 피하기 게임

2단계: 추상화

- 1. 펜더 객체
- 달리기 모션
 - . 모양 바꾸기, 기다리기, 계속 반복하기
- 점프 : 1단 점프
 - . 위쪽 화살표 인식
 - . y 좌표이동, 기다리기, 원래 위치로 이동
- 점프: 2단 점프
 - . 스페이스키 인식
 - . y 좌표이동 (1단보다 멀리), 기다리기, 원래 위치로 이동
- 숙이기
 - . 엎드리는 모양 만들기 (모양 추가)
 - . 아래쪽 화살표 인식
 - . 모양 바꾸기, 기다리기

게임 만들기

3단계: 패턴 인식 (기존 예제 응용)

- 2단 뛰기 구현 (스페이스 키)
- 엎드리기 구현 (아래 화살표)

