CS4234 Optimisation Algorithms

Notes

 $\mathrm{AY}2024/25$ Semester 1 • Prepared by Tian Xiao @snoidetx

Problems	Deterministic	Pandonized	LP + Rounding
Vertex Cover	Two special cases: ① Vertex cover on a tree; ② Known upper bound k. Deterministic Vertex Cover (2-approximation) Repeat until no remaining edge: ① Pick a rondom edge (u,v); ③ Add both u and v to vertex cover; G	Randomized VertexCover (2-approximation) Repeat until no remaining edge: ① Pick a random edge (u,v); ② Let 2=u or v w.p. ½; ③ Add 2 to vertex cover; G→ G-2.	For weighted vertex cover= min $\sum_{v \in V} w_v \pi_v$ 5.t. $\chi_{n+} \chi_v \approx 1$, $\forall (u,v) \in E$ $\forall v \in \{0,1\}$, $\forall v \in V$. $\frac{relax}{2}$ $[0,1]$ Rounding • If $\forall v \approx \frac{1}{2}$, add v to vertex cover. (2-approximation)
Set Cover	GreedySetCover (O(logn)-approximation) Repeat nntil all elements are covered: ① Choose the set S; that covers the most uncovered elements; ② X→ X\S; MST+DFS (for G-R, 2-approximation)	Linear programming max C^TX n variables s.t. $Ax \ge b$ m constraints. $X \ge 0$ Simplex Method ($O(M^n)$). ① Find any feasible vertex v .	Feasibility is in NP (1 co-NP ① No solution \Rightarrow \exists polynomial λ ② A solution exists \Rightarrow \exists polynomial solution Ellipsoid Method (polynomial time) $b-\varepsilon \in Ax \subseteq b+\varepsilon$, where $\varepsilon \in \frac{1}{2}$ physion LP Duality \Rightarrow if both fixite optimum exists
Traveling Salesman Metric General Repeat V V Non- Repeat V	① T←MST of G. Add T's edges to E. ② Let 0 be nodes in T with odd degree. 101 is even. ③ M←min cost perfect matching for O. ④ G←(X, EUM) (multigraph). ⑤ Return Enlerian cycle C for G.	If $Ax > b$ has no solution, then $\exists \lambda \ge 0$ $\in \mathbb{R}^m$ st. $\lambda^T Ax = 0$ and $\lambda^T b = 1$. Pandomized Weighted $k - CNF - SAT$ $\left(\left(1 - \frac{1}{2^k}\right) - approximation\right)$	max (TX = min bTy st. ATX = b; X>0. st. ATy = C; y = 0. Maximum Bipartite Motching Max [u,y) \(\xi \)
CNF-SAT	Greedy CNF - SAT $\left(\left(1-\frac{1}{2^{k}}\right)-\text{approximation for }k\text{- CNF-SAT};$ $\frac{\sqrt{S-1}}{2}-\text{approximation for general CNF-SAT}\right)$ For each χ_{i} , choose $\chi_{i}\in\left\{0,1\right\}$ $\mathbb{E}\left[W^{*}\left \chi_{1},,\chi_{i}\right \right]$.	For each χ_i , let $\chi_i = 1$ or 0 w.p. $\frac{1}{2}$. Roundowized Weighted CNF-SAT $(\frac{\sqrt{5}-1}{2}$ approximation) For each χ_i , let $\chi_i = 1$ w.p. $p = \frac{\sqrt{5}-1}{2}$.	$x_i \in \{0,1\}, \ \forall i=1,,n$ $y_j \in \{0,1\}, \ \forall j=1,,m$ Rounding = $\hat{\pi}_i = 1 \text{ w.p. } x_i^*$. $\left((1-\frac{1}{\epsilon}) - \text{approximation}\right)$
CSP-SAT	Lovász Local Lemma Let ϕ be a CSP. If $\exists \mu \in \mathcal{E}(0,i)$ for all $c \in \phi$ s.t. $\forall C \in \phi$, $\psi(c) \leq \mu_c \pi (1 - \mu_ci)$, then ϕ is satisfiable.	Moser's Algorithm (Ic me iter ① Randomly assign values to all re ⇒ ② While I unsartisfied constraint Randomly assign values to a variables in Ci.	ariables · Cj =
Network Flow	MFMC Theorem Let G=(V, E) with capacity c be a flow network, and fix any sit to. There exists a feosible flow f and a cut (S,T) on G St. f Saturates every edge from S to T and avoids any edge from T to S, with If = S,T Ford-Fulkerson Algorithm 0(IEIt) ① Let f(u→v) ← D, V u→v G E ② While s can reach t in Gt: (a) Use BFS or DFS to find an angumenting path P from S to t in 1b) F ← min Cf(u→v) (C) For all u→v G P, update its flow val i. f(u→v) ← f(u→v) + F. ii. f(v→u) ← f(v→v) - F. ③ Return f. Application: ① Edge-disjont paths ② Vertex capacities ③ Bipartite matching ④ Disjoint path cover of electricals	Flow-Decomposition Theorem Every non-negative (5,t)—flow can as a tve linear combination of dipath flows and directed cycle flows in a flow iff the amount of the edge is tve # paths + #cycles Edmonds-Karp Fat Pipes Algorith (1) Let f(u > v) \(\to \) o, \(\to \) u- (2) While s can reach t in (a) Use Dijktra's algorithm an augmenting path P from with the largest bottless in f(u > v) \(\to \) f(v > u) (b) For all u > v & P, update in f(u > v) \(\to \) f(v > u) (3) Return f.	rected (Sit) ows. An edge f flow through \leq E . m O(E ^2 og V og f*)) Dinitz Algorithm $O(E ^2 V)$ G_f : m togolstain Use BFS to obtain own S to $+$ in G_f , \Rightarrow angmenting path neck value F . With least no of vertices F its flow value: $+$ F .