Heston Model Parameters' Sensitivity Analysis

Outline

- Introduction
- Understanding the parameters
- Variance in CEV process
- Monte Carlo method
- Conclusion

Heston Model (1993)

- The Black-Scholes implied volatility extracted from market's data indicates **skewness** and "**volatility smile**", i.e. options takes higher values being far in or out of the money
- It is because the BS model crudely assume constant volatility and in log-normal returns
- There is also an empirically observed "leverage effect", which means that volatility is usually negatively correlated with the underlying asset
- The Heston Model takes the non-log normal distribution of the assets returns, the leverage effect into account, by introducting the correlation between the two Wiener processes

$$dS_t = rS_t dt + \sqrt{v_t} S_t dW_t^S$$

• where v_t the instantaneous variance, is a CIR process:

$$dv_t = \kappa(\theta - v_t) + \sigma\sqrt{v_t} \, dW_t^v$$

• W_t^S , W_t^v are Wiener processes with correlation ρ , i.e.

$$dW_t^S dW_t^v = \rho dt$$

• This can be simulated by generating two independent random variables Z_1 and Z_2 , and define

$$Z_v = Z_1 \text{ and } Z_s = \rho Z_v + \sqrt{1 - \rho^2} Z_2$$

Introduction Heston Model (1993) Limitations

- The financial instruments studied are options written on an underlying asset with stochastic price and variance dynamics.
- To improve the Heston model, one could further incorporate jump into it to match closer with the reality
- For a further justification for the use and properties of stochastic volatility models with jumps, the reader may refer to Cont and Tankov (2004).
- Also, there is a significant amount of research on models driven by L'evy processes Generalized Poisson, Normal Inverse Gaussian, Variance Gamma, say.

As introduced before, the Heston model is

$$dS_t = rS_t dt + \sqrt{v_t} S_t dW_t^S$$

$$dv_t = \kappa(\theta - v_t) + \sigma\sqrt{v_t} dW_t^v$$

$$dW_t^S dW_t^v = \rho dt$$

The model parameters are:

- r is the rate of return of the asset.
- θ is the long-term variance, or long run average price variance; as t tends to infinity, the expected value of v_t tends to θ .
- κ is the rate at which v_t reverts to θ .
- σ is the volatility of the volatility, or 'vol of vol', and determines the variance of v_t .

- In a model following the CIR dynamics, some studies show that the mean-reversion coefficient κ , is strictly positive, and in particular k > 1.
- The volatility of the variance is positive, i.e. $\sigma > 0$. Also, naturally, θ and v0 are nonnegative.
- Finally, as already mentioned, the correlation between the two Wiener processes characterizing then underlying asset and the variance dynamics should be non-positive, i.e. $\rho \le 0$.
- To prevent the CIR process of the variance reaching zero, the Feller condition [Feller (1951)] must be satisfied

$$\frac{\sigma^2}{2\kappa\theta} \le 1$$

• In many studies before, the value of the Heston's parameters calibrated are around:

$$r = 5\%, \theta = (20\%)^2, \kappa = 20\%, \sigma = 60\%, \rho = -0.7, v_0 = (20\%)^2$$

- Therefore, in the following research, this set of parameters above are used as benchmark,
- all valuations are performed on European Put options
- The main objective in this study is the effect of different parameters to the I.V. of the option price simulated under Heston model
- The asset price S and variance v are discretized under Milstein's scheme:

$$S_{t+dt} = S_t e^{\left(r - q - \frac{1}{2}v_t\right)dt + \sqrt{v_t}\sqrt{dt}Z_s}$$

$$v_{t+dt} = \left(\sqrt{v_t} + \frac{1}{2}\sigma\sqrt{dt}Z_v\right)^2 + \kappa(\theta - v_t)dt - \frac{1}{4}\sigma^2dt$$

• In the Monte-Carlo simulation below, the variance-reduction method control-variate and antithetic-variate are applied. 100,000 of scenarios and time-step dt=0.001 are used. The efficiency of CV and AV will be shown in the appendix.

Outline

- 1. Introduction
- 2. Understanding the parameters
- 3. Variance in CEV process
- 4. Monte Carlo method
- 5. Conclusion

I.V. using benchmark parameters v.s. Exercise prices

- As shown above is the I.V. curve of the benchmark parameters: S = 100, r = 5%, $\theta = (20\%)^2$, $\kappa = 20\%$, $\sigma = 60\%$, $\rho = -0.7$, $v_0 = (20\%)^2$
- The corresponding I.V. against different exercise prices is shown above
- The results are generated through Monte-Carlo method using time-step dt=0.001, and 100,000 scenarios are used

Mean reversion speed κ=20% – Term-structure

- · The benchmark parameters are used
- Plotted on the right axis is the standard deviation of the implied volaility of the 6 different moneyness with the corresponding maturity
- It is observed that the S.D. decreases exponentially across the maturity

Mean reversion speed κ=200% – Term-structure

• Same set of benchmark parameters are used except with a much larger κ , it is observed that the I.V. can start to converge to the long-term variance θ in about 10 years

I. Correlation ρ

- In the test above, the value of parameters are $S=100, r=5\%, \kappa=20\%, \theta=(20\%)^2, \sigma=60\%, \ v_0=(20\%)^2$
- Due to numerical instability, it is difficult to extract the I.V. for large correlation with short maturity.
- We can see that the correlation ρ determines the direction of skew
- Positive ρ corresponds to a positive slope and vice versa
- For shorter maturity, the smile pattern is more obvious

II. Volatility of variance σ

- The value of parameters used are S = 100, r = 5%, $\theta = (20\%)^2$, $\kappa = 20\%$, $\rho = -0.7$, $v_0 = (20\%)^2$
- Increasing values of the volatility of variance σ increases the curvature of the smile
- The effect is more obvious for shorter maturity

III. Mean reversion speed κ – Moneyness

- The value of parameters used S = 100, r = 5%, $\theta = (20\%)^2$, $\sigma = 60\%$, $\rho = -0.7$, $v_0 = (20\%)^2$
- The mean reversion speed κ also controls the degree of curvature,
- A larger κ flattens the implied volatility curve more.

IV. Long-term variance θ

- The value of parameters used are S = 100, r = 5%, $\kappa = 20\%$, $\sigma = 60\%$, $\rho = -0.7$, $v_0 = (20\%)^2$
- A larger initial variance v_0 shifts I.V. higher,
- and decreases the curvatures of I.V.

V. Initial variance v_0

- The value of parameters used S = 100, r = 5%, θ = (20%)², κ = 20%, σ = 60%, ρ = -0.7
- For small moneyness and high initial variance, A larger initial variance v_0 shifts I.V. higher,
- and decreases the curvatures of I.V.

Mean reversion speed κ – ATM Term-structure(cont')

• It is observed that with a larger κ, the I.V. can converge to the long-term volatility 20%.

Outline

- 1. Introduction
- 2. Understanding the parameters
- **3.** Variance in CEV process
- 4. Monte Carlo method
- 5. Conclusion

Variance in CEV process

- In the original Heston model, the stock price is modeled by: $dS_t = rS_t dt + \sqrt{v_t} S_t dW_t^S$
- ,where v_t the instantaneous variance is running under CIR process: $dv_t = \kappa(\theta v_t) + \sigma\sqrt{v_t} \ dW_t^v$
- We are going to change the process of variance to be

$$dv_t = \kappa(\theta - v_t) + \sigma v_t^{\gamma} dW_t^{\nu}$$

- where $\gamma \in [0.5, 1]$, and test its effect to the I.V. structure
- When γ = 0.5, it returns to the CIR process, namely Heston model for the stock price S
- Under Milstein scheme, the process of variance is derived to be

$$v_{t+dt} = v_t + \kappa(\theta - v_t) + \sigma v_t^{\gamma} \sqrt{dt} \, Z_v + \frac{1}{2} \sigma^2 v_t^{2\gamma - 1} dt (Z_v^2 - 1)$$

Variance in CEV process

VI. varying γ

- The value of parameters used are S = 100, r = 5%, $\theta = (20\%)^2$, $\kappa = 20\%$, $\sigma = 60\%$, $\rho = -0.7$, $v_0 = (20\%)^2$
- For γ=0.5, which is the original Heston model, the smile pattern is more obvious in short-maturity
- For long-maturity, the I.V. curve flattens in all 3 cases.
- A larger γ reduces the curvature of the I.V. curve

Variance in CEV process

VI. term-structure

ATM I.V. of differnet γ v.s. maturities

- The value of parameters used are S = 100, r = 5%, $\theta = (20\%)^2$, $\kappa = 20\%$, $\sigma = 60\%$, $\rho = -0.7$, $v_0 = (20\%)^2$
- With a larger γ , the I.V. can converge to the long-term variance θ faster
- We can also see that, using γ =0.5, which is the original Heston model, the I.V. fails to converge to θ .

Outline

- 1. Introduction
- 2. Understanding the parameters
- 3. Variance in CEV process
- 4. Monte Carlo method
- 5. Conclusion

Variance Reduction Methods - Control Variate

- To speed up the MC Method, there are two variance-reduction methods to be introduced which can in turn decrease the number of asset paths needed and improve its efficiency.
- As suggested by the paper [Guo Liu et. al. 2015], a simple control variate is proposed
- Assuming the asset price is moving under a time-dependent volatility:

$$dS(t) = S(t) \left(rdt + \sqrt{e^{-\kappa t} v_o + \theta (1 - e^{-\kappa t})} dW \right)$$

The value of a European Put is derived to be

$$V_{p}(t = 0) = Ke^{-rT}N(-d2) - S_{0}N(-d1)$$

$$d1 = \frac{a - lnK}{\sqrt{b}}$$

$$d2 = d1 - \sqrt{b}$$

$$a = lnS_{0} + rT + \frac{b}{2}$$

$$b = \theta T + \frac{1}{\kappa}(v_{0} - \theta)(1 - e^{-\kappa t})$$

Antithetic Variate

Consider we want to find the expected value of a payoff-function f(U) depending on a random variable U is a N(0,1) random variable.

$$I = E[f(U)] = \frac{1}{M} \sum_{i=1}^{M} f(U_i)$$

• However, we can use $\frac{f(U_i)+f(-U_i)}{2}$ instead of $f(U_i)$ to reduce the variance, where $-U_i$ is also a N(0,1) random variable. It is because

$$var\left(\frac{f(U_i) + f(-U_i)}{2}\right)$$

$$= \frac{1}{4} \left[var(f(U_i)) + var(f(-U_i)) + 2cov(f(U_i), f(-U_i))\right]$$

$$= \frac{1}{2} \left[var(f(U_i)) + cov(f(U_i), f(-U_i))\right]$$

It can be shown that

$$var\left(\frac{f(U_i) + f(-U_i)}{2}\right) \le \frac{1}{2} \left[var(f(U_i))\right]$$

, if the covariance is negative.

Efficiency of Control & Antithetic Variate

- Besides the benchmark parameters are used, the maturity T=1 year and time-step dt=0.001
- The same random-seed is used in all 3 cases
- When a few scenarios are used, the control-variate method can reduce the standard error to about a half.

Standard error of different number of scenarios

Std. Err. of option prices using 100 random seeds under diff. number of scenarios

- 4 different number of scenarios with the same 100 random seeds are simulated
- Since standard error is inversely proportional to the $\sqrt{\# scenarios}$. It is found that their standard error consecutively reduced by about $\sqrt{10}$.

Outline

- 1. Introduction
- 2. Understanding the parameters
- 3. Variance in CEV process
- 4. Monte Carlo method
- 5. Conclusion

Conclusion

It is found that:

- for a long maturity, the I.V. of different moneyness will converge to a value
- correlation ρ determines the direction of skew
- volatility of variance σ increases the curvature of the smile
- The mean reversion speed κ controls the degree of curvature, where a larger κ flattens the implied volatility curve more.
- A larger initial variance v_0 shifts I.V. higher and decreases the curvatures of I.V.

Besides the original Heston model, the variance is also changed to CEV process, and it is found that a larger γ reduces the curvature of the LV. curve

The Control variate method proposed above can reduce the standard error about 40%

Since standard error is inversely proportional to the $\sqrt{\# scenarios}$). It is found that their standard error consecutively reduced by about $\sqrt{10}$.