Homework of chapter 4

Date: Name: Student ID:

Submit time: Jun. 11th

1. A 300-kg space vehicle traveling with a velocity $v_0 = (360m/s)i$ pass through the origin O at t=0.Explosive charges then separate the vehicle into three parts A, B and C, with mass, respectively, 150kg, 100kg, and 50kg. Knowing that at t=4s, the position of parts A and B are observed to be A (1170m, -290m, -585m) and B (1975m, 365m, 800m), determine the corresponding position of part C. Neglect the effect of gravity.

2. A system consists of three particles A, B, and C. We know that $m_A = 3$ kg, $m_B = 4$ kg, and $m_C = 5$ kg and that the velocities of the particles expressed in m/s are, respectively, $\mathbf{v}_A = -4\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}, \mathbf{v}_B = -6\mathbf{i} + 8\mathbf{j} + 4\mathbf{k}$, and $\mathbf{v}_C = 2\mathbf{i} - 6\mathbf{j} - 4\mathbf{k}$. Determine the angular momentum \mathbf{H}_O of the system about O.

3. In a game of pool, ball A is moving with a velocity v_0 when it strikes balls B and C which are at rest and aligned as known, Knowing that after the collision the three balls move in the directions indicated and that $v_0 = 12 ft / s$ and $v_C = 6.29 ft / s$. Determine the magnitude of the velocity of ball A and ball B.

Fig.3

• Ball B, of mass m_B , is suspended from a cord of length l attached to cart A, of mass m_A , which can roll freely on a frictionless horizontal track. If the ball is given an initial horizontal velocity \mathbf{v}_0 while the cart is at rest, determine (a) the velocity of B as it reaches its maximum elevation, (b) the maximum vertical distance h through which B will rise. (It is assumed that $v_0^2 < 2gl$.)

Fig.4