# Reading Group: Semi-Supervised Learning for ASR

Slimipl: Language-Model-Free Iterative Pseudo-Labeling, https://arxiv.org/pdf/2010.11524.pdf

Momentum Pseudo-Labeling for Semi-Supervised Speech Recognition, https://arxiv.org/pdf/2106.08922.pdf

Kaizen: Continuously Improving Teacher Using Exponential Moving Average For Semi-Supervised Speech Recognition, Https://Arxiv.Org/

Pdf/2106.07759.Pdf

Wav2Vec-S: Semi-Supervised Pre-Training For Speech Recognition, Https://Arxiv.Org/Pdf/2110.04484.Pdf

Joint Masked Cpc And Ctc Training For Asr, Https://Arxiv.Org/Pdf/2011.00093.Pdf

Joint Unsupervised And Supervised Training For Asr, Https://Arxiv.Org/Abs/2111.08137

Don't Stop Pretraining: Adapt Language Models To Domains And Tasks, https://arxiv.org/abs/2004.10964

Should We Be Pre-Training? An Argument For End-Task Aware Training As An Alternative, https://arxiv.org/abs/2109.07437

Dan Berrebbi

April 27th 2022

## Introduction and Setup

- Supervised
- Unsupervised (Self-Supervised)
- Semi-Supervised —> Self Training, Pseudo Labeling (PL)

## Data:

- D<sub>I</sub> : set of labeled data {(X<sub>i</sub>,Y<sub>i</sub>) for i in ...}
- Du: set of unlabeled data {Xi for j in ...}

Self-training employs a base model trained with labeled data which acts as a "teacher" and is used to label unlabeled data (the resulting labels are referred as "pseudo-labels"). A "student" model is then trained with both labeled and pseudo-labeled data to yield a final model.

## Why Semi-Supervised Learning?

- Supervised: limited amount of labeled data (e2e are hungry)
- Unsupervised (Self-Supervised): needs lots of data, heuristics ...
- Semi-Supervised: can combine both advantages but also limitations

- ✓ We do have labeled data
- √ Single stage training
- √ Task specific
- √ Tuning is easier : early stoping ...

# SLIMIPL: Language-Model-Free Iterative Pseudo-Labeling

#### A PREPRINT

Tatiana Likhomanenko Qiantong Xu Jacob Kahn Gabriel Synnaeve Ronan Collobert
Facebook AI Research
antares@fb.com

#### IPL idea:

- Use labeled data to generate pseudo labels for unlabeled data
- Iteratively re-generate new PL as model learns —> to improve the teacher model
- Supervised loss on labeled and pseudo-labeled data

### Key differences of this work:

- No beam-search decoding or LM to generate PL (efficiency + overfit to LM)
- Maintain a dynamic cache with PL, not re-generating labels at each iteration (stability)

Pseudo Labeling: CTC loss using argmax: choosing the most likely token at each time step!

## Hyperparameters:

- When PL generation begins (...)
- Size of the cache
- Proportion of labeled and unlabeled data
- •

#### **Algorithm 1:** slimIPL

**Data:** labeled  $L = \{ \boldsymbol{x}_i, \boldsymbol{y}_i \}$  and unlabeled  $U = \{ \boldsymbol{x}_j \}$ 

**Result:** Acoustic model  $\mathcal{M}_{\theta}$ 

- 1. Train  $\mathcal{M}_{\theta}$  on L with augmentation for M updates;
- 2. while cache is not full at size C do
  - Draw a random batch from  $x \in U$ ;
  - Generate its PL  $\hat{y}$  by  $\mathcal{M}_{\theta}$  following Eq.(1);
  - Store  $\{\boldsymbol{x}, \hat{\boldsymbol{y}}\}$  into the cache;
  - Train  $\mathcal{M}_{\theta}$  on L with augmentation for 1 update;

#### end

3. Decrease model's  $\mathcal{M}_{\theta}$  dropout;

**Tuning ...** (dropout is set high in the supervised training to not overfit to small amount of data)

**Semi-supervised Training** 

Initial supervised training and filling of the cache

#### repeat

- 4. Train  $\mathcal{M}_{\theta}$  on L with augmentation for  $N_L$  updates;
- 5. for  $N_U$  updates do
  - Draw a random batch  $B = \{ \boldsymbol{x}, \hat{\boldsymbol{y}} \}$  from the cache;
  - With probability p, B is removed from cache and a new pair of random batch  $x' \in U$  and its PL  $\hat{y}'$  generated by  $\mathcal{M}_{\theta}$  is added in;
  - Apply augmentation to batch B and make an optimization step to update  $\mathcal{M}_{\theta}$ .

#### end

until convergence or maximum iterations are reached;



Figure 1: Learning curves on *dev-other* for models trained on LL-10/LS-960 (left) and LS-100/LS-860 (right). slimIPL models refer to baseline models (grey) from Table 3.

## No cache : unstable —> PL become empty sentences

Table 2: Comparison with other semi- and unsupervised methods: LL-10/LS-960 (top) and LS-100/LS-860 (bottom).

| Method           | Method Stride |         | Criterion | LM                               | Dev WER            |                    | Test WER           |                     | Compute Resources |          |            |
|------------------|---------------|---------|-----------|----------------------------------|--------------------|--------------------|--------------------|---------------------|-------------------|----------|------------|
| Wiculou          | Stride        | Tokens  | Cincilon  | LIVI                             | clean              | other              | clean              | other               | Train Time (Days) | # G/TPUs | G/TPU-days |
| Libri-Light [2]  | 20 ms         | letters | CTC       | word 4-gram                      | 30.5               | 55.8               | 30.1               | 57.2                | -                 | -        | -          |
| IPL [5]          | 80ms          | 5k wp   | CTC       | -<br>+ rescoring                 | 23.8<br>23.5       | 25.7<br>25.5       | 24.6<br>24.4       | 26.5<br>26.0        | 3                 | 64 GPUs  | 192        |
| wav2vec 2.0 [28] | 20ms          | letters | CTC       | -<br>word 4-gram<br>word Transf. | 8.1<br>3.4<br>2.9  | 12.0<br>6.9<br>5.7 | 8.0<br>3.8<br>3.2  | 12.1<br>7.3<br>6.1  | 2.3               | 128 GPUs | 294.4      |
| slimIPL          | 30ms          | letters | CTC       | -<br>word 4-gram<br>+ rescoring  | 11.4<br>6.6<br>5.3 | 14<br>9.6<br>7.9   | 11.4<br>6.8<br>5.5 | 14.7<br>10.5<br>9.0 | 4.7               | 16 GPUs  | 75.2       |
| IPL [5]          | 80ms          | 5k wp   | CTC       | -<br>+ rescoring                 | 5.5<br>5.0         | 9.3<br>8.0         | 6.0<br>5.6         | 10.3<br>9.0         | 3                 | 64 GPUs  | 192        |
| Improved T/S [9] | -             | 16k wp  | S2S       | LSTM                             | 4.3<br>3.9         | 9.7<br>8.8         | 4.5<br>4.2         | 9.5<br>8.6          | 10 × 5            | 32 TPUs  | 1600       |
| wav2vec 2.0 [28] | 20ms          | letters | CTC       | -<br>word 4-gram<br>word Transf. | 4.6<br>2.3<br>2.1  | 9.3<br>5.7<br>4.8  | 4.7<br>2.8<br>2.3  | 9.0<br>6.0<br>5.0   | 2.3               | 128 GPUs | 294.4      |
| slimIPL          | 30ms          | letters | CTC       | -<br>word 4-gram<br>+ rescoring  | 3.7<br>2.8<br>2.2  | 7.3<br>5.6<br>4.6  | 3.8<br>3.1<br>2.7  | 7.5<br>6.1<br>5.2   | 5.2               | 16 GPUs  | 83.2       |

## Momentum Pseudo-Labeling for Semi-Supervised Speech Recognition

Yosuke Higuchi<sup>1,2\*</sup>, Niko Moritz<sup>1</sup>, Jonathan Le Roux<sup>1</sup>, Takaaki Hori<sup>1</sup>

<sup>1</sup>Mitsubishi Electric Research Laboratories (MERL), USA <sup>2</sup>Waseda University, Japan

higuchi@pcl.cs.waseda.ac.jp, {moritz, leroux, thori}@merl.com

- Train a supervised model
- Initialize 2 models (teacher student) with the supervised model
- Teacher generates PL, and is updated with momentum
- Student is « classically » trained (data augmentation is used)

## **Algorithm 1 Momentum Pseudo-Labeling**

```
Input:
         \mathcal{D}_{\sup}, \mathcal{D}_{\operatorname{unsup}} \quad \triangleright \text{ labeled and unlabeled data}
                                    1: Train a base model P_{\theta} with architecture \mathcal{A} on \mathcal{D}_{\sup} using (2)
  2: Initialize an online model P_{\xi} and an offline model P_{\phi} with P_{\theta}
 3: repeat
           for all S \in \mathcal{D}_{\sup} \cup \mathcal{D}_{\operatorname{unsup}} do
              Obtain X \sim S
Obtain Y = \begin{cases} Y \sim S & (S \in \mathcal{D}_{\sup}) \\ \hat{Y} \sim P_{\phi}(Y|X) & (S \in \mathcal{D}_{unsup}) \end{cases}
                 Compute loss \mathcal{L} for P_{\mathcal{E}}(Y|X) with (2) or (4)
                 Update \xi using \nabla_{\xi} \mathcal{L}
                 Update \phi \leftarrow \alpha \phi + (1 - \alpha)\xi
10:
            end for
11: until maximum iterations are reached
12: return P_{\xi}, P_{\phi}
```

$$\phi^{(K)} = \alpha^K \phi^{(0)} + (1 - \alpha) \sum_{k=1}^K \alpha^{K-k} \xi^{(k)}, \tag{6}$$

- More sensitive to alpha when domain mismatch (TED)
- No LM or Beam Search
- Alpha = 0 -> IPL, not stable
- Alpha enables to understand and control the model updates



Figure 1: Influence of momentum update weight w on WER.

## KAIZEN: CONTINUOUSLY IMPROVING TEACHER USING EXPONENTIAL MOVING AVERAGE FOR SEMI-SUPERVISED SPEECH RECOGNITION

Vimal Manohar, Tatiana Likhomanenko, Qiantong Xu, Wei-Ning Hsu, Ronan Collobert, Yatharth Saraf, Geoffrey Zweig, Abdelrahman Mohamed

#### Facebook AI

- Tried in a bit more setups (10h supervised data only ...)
- « Half-precision floating point training »
- « The Kaizen framework can be seen as a continuous version of the iterative pseudo-labeling approach for semi-supervised training. »

| Model            | LM                             | de    | ev    | test  |       |  |
|------------------|--------------------------------|-------|-------|-------|-------|--|
|                  | LIVI                           | clean | other | clean | other |  |
| 10h aun Uybrid   | 4-gram                         | 15.9  | 37.2  | 16.6  | 38.2  |  |
| 10h sup Hybrid   | $GB \setminus LV \setminus LS$ | 15.1  | 36.3  | 15.9  | 37.1  |  |
| 10h sup [14]     | 4-gram                         | 18.8  | 39.3  | 19.6  | 39.7  |  |
| w2v 2.0 [47]     | -                              | 6.3   | 9.8   | 6.3   | 10.0  |  |
| WZV Z.U [47]     | Transformer                    | 2.4   | 4.8   | 2.6   | 4.9   |  |
| HUBERT [48]      | -                              | 6.8   | 9.6   | 6.7   | 9.9   |  |
| HODERI [40]      | Transformer                    | 2.2   | 4.3   | 2.4   | 4.6   |  |
| slimIPL          | -                              | 5.5   | 9.4   | 5.6   | 9.9   |  |
| SIIIIIPL         | Transformer                    | 2.6   | 5.4   | 3.2   | 6.1   |  |
| Kaizen           | -                              | 5.4   | 9.5   | 5.5   | 10.1  |  |
| Kaizeii          | Transformer                    | 2.5   | 5.3   | 3.0   | 6.0   |  |
| Kaizen+slimIPL   | -                              | 5.1   | 8.2   | 5.1   | 8.8   |  |
| Kaizen+siiiiii L | Transformer                    | 2.4   | 4.9   | 2.9   | 5.5   |  |

**Table 5**. LibriSpeech WERs for supervised baselines and different semi/self-supervised methods trained on Libri-Light, 10h labeled and 54k hours unlabeled data. If not stated all models are CTC-based.



Fig. 1. Block diagram of the Kaizen framework.

# Mixing Semi-Supervised approaches and SSL

#### WAV2VEC-S: SEMI-SUPERVISED PRE-TRAINING FOR SPEECH RECOGNITION

Han Zhu<sup>1,2</sup>, Li Wang<sup>1</sup>, Ying Hou<sup>3</sup>, Jindong Wang<sup>4</sup>, Gaofeng Cheng<sup>1</sup>, Pengyuan Zhang<sup>1,2</sup>, Yonghong Yan<sup>1,2</sup>

<sup>1</sup>Key Laboratory of Speech Acoustics and Content Understanding, Institute of Acoustics, China
 <sup>2</sup> University of Chinese Academy of Sciences, China
 <sup>3</sup> Department of Computer Science and Technology, Tsinghua University, China
 <sup>4</sup> Microsoft Research Asia, China

There is a gap between the task-agnostic pre-training and the task-specific downstream fine-tuning, which may degrade the downstream performance. —> task-specific semi-supervised pre-training to bridge this gap.



$$\mathcal{L}_{\text{semi}} = \mathcal{L}_{\text{label}} + \lambda \mathcal{L}_{\text{unlabel}},$$

Loss used: CTC with argmax (best token at each time step)
They used momentum, or SlimIPL no precise mention.

Fig. 1. Illustration of the wav2vec-S procedure.

**Table 1**. 1h and 10h fine-tuning with different pre-training approaches.

|                      |                   |           | WER (%) |        |             |      |      |           |      |      |
|----------------------|-------------------|-----------|---------|--------|-------------|------|------|-----------|------|------|
| Method               | Pre-training Data |           | WSJ     |        | SWBD        |      |      | AISHELL-1 |      |      |
|                      | Labed             | Unlabeled | dev93   | eval92 | RT03        | H-SB | Н-СН | dev       | test | AVG  |
| 1h fine-tune         |                   |           |         |        |             |      |      |           |      |      |
|                      | 100h              | ×         | 18.7    | 13     | 50.2        | 38.6 | 56   | 76.4      | 77.4 | 47.2 |
| Supervised Pre-train | 960h              | ×         | 7.1     | 4.0    | 29.1        | 20.0 | 32.0 | 59.2      | 60.2 | 30.2 |
| Wav2vec 2.0          | ×                 | 960h      | 8.4     | 6.4    | 28.1        | 19.9 | 28.9 | 67.3      | 66.8 | 32.3 |
| Wav2vec-S            | 100h              | 860h      | 5.4     | 3.8    | 22.6        | 14.2 | 22.7 | 48.9      | 48.7 | 23.8 |
| 10h fine-tune        |                   |           |         |        |             |      |      |           |      |      |
|                      | 100h              | ×         | 13.8    | 8.5    | 41.8        | 29.9 | 47.8 | 15.3      | 15   | 24.6 |
| Supervised Pre-train | 960h              | ×         | 6.2     | 3.6    | 25.8        | 15.6 | 29.7 | 27.0      | 27.8 | 19.4 |
| Wav2vec 2.0          | ×                 | 960h      | 5.1     | 3.5    | 19.6        | 11.8 | 19.6 | 14.8      | 14.6 | 12.7 |
| Wav2vec-S            | 100h              | 860h      | 4.4     | 2.9    | <b>18.7</b> | 10.8 | 18.8 | 13.6      | 14.0 | 11.9 |



Fig. 2. Comparison of training time.

**Table 2**. Wav2vec-S performance with different semi-supervised pre-training data.

|                   |           |       |        | W    | /ER (%) |      |           |      |      |
|-------------------|-----------|-------|--------|------|---------|------|-----------|------|------|
| Pre-training Data |           | WSJ   |        | SWBD |         |      | AISHELL-1 |      |      |
| Labed             | Unlabeled | dev93 | eval92 | RT03 | H-SB    | Н-СН | dev       | test | AVG  |
| 100h              | 0h        | 4.6   | 2.7    | 19.1 | 11.2    | 18.8 | 14.1      | 14.2 | 12.1 |
| 960h              | 0h        | 4.3   | 2.6    | 19.0 | 10.8    | 18.6 | 13.5      | 13.8 | 11.8 |
| 100h              | 860h      | 4.4   | 2.9    | 18.7 | 10.8    | 18.8 | 13.6      | 14.0 | 11.9 |

**Table 4**. Wav2vec-S performance with different training updates during semi-supervised pre-training. Valid denotes the validation WER on dev-other subset.

|         | WER (%) |       |        |      |      |           |      |      |  |
|---------|---------|-------|--------|------|------|-----------|------|------|--|
| Updates |         | WSJ   |        |      | SWBD | AISHELL-1 |      |      |  |
|         | Valid   | dev93 | eval92 | RT03 | H-SB | Н-СН      | dev  | test |  |
| 10k     | 8.3     | 4.7   | 2.8    | 19.3 | 11.0 | 19.2      | 13.5 | 13.9 |  |
| 20k     | 7.7     | 4.4   | 2.9    | 18.7 | 10.8 | 18.8      | 13.6 | 14.0 |  |
| 40k     | 7.3     | 4.2   | 2.4    | 18.7 | 10.8 | 18.5      | 13.9 | 14.2 |  |

With more training updates, the wav2vec-S model becomes more language-specific and the cross-lingual generalization ability is degraded.

## JOINT MASKED CPC AND CTC TRAINING FOR ASR

Chaitanya Talnikar, Tatiana Likhomanenko, Ronan Collobert, Gabriel Synnaeve

Facebook AI Research, New York, Menlo Park & Paris, USA & France

## JOINT UNSUPERVISED AND SUPERVISED TRAINING FOR MULTILINGUAL ASR

Junwen Bai\*, Bo Li, Yu Zhang, Ankur Bapna, Nikhil Siddhartha, Khe Chai Sim, Tara N. Sainath

Google, USA

{junwen, boboli, ngyuzh, ankurbpn, nikhilsid, khechai, tsainath}@google.com

Joint, not Semi-Supervised:

- No pseudo-labels
- Still task specific
- Still single stage training (for ASR) (—> early stop …)

### JOINT MASKED CPC AND CTC TRAINING FOR ASR

Chaitanya Talnikar, Tatiana Likhomanenko, Ronan Collobert, Gabriel Synnaeve

Facebook AI Research, New York, Menlo Park & Paris, USA & France

## Optimization related tricks:

- One batch of U, one batch of S
- Separate adaptative momentum optimizers with different learning rates —> updates on one loss are not affected by updates on the other loss
- N=1: equal opportunity for the unsupervised and supervised loss. If N>1: expensive, if inverse:
   ~supervised results

## **Algorithm 1:** Alternating minimization algorithm.

**Data:** Labeled data  $L = \{ {m x}, {m y} \}$ , Unlabeled data  $U = \{ {m x} \}$ 

**Result:** Acoustic model  $p_{\theta}$ 

Randomly initialize parameters of the acoustic model  $p_{\theta}$ ;

### repeat

#### repeat

- 1. Forward the model with Eq. (1) and (2) obtaining z and  $\tilde{z}$
- 3. Update  $p_{\theta}$  with  $\eta_u$  and  $g_u$

until N times for  $x \in U$ ;

4. Forward the model for  $x \in L$  with Eq. (1)-(3) obtaining  $p_{\theta}(y|x)$ 

CTC loss

- 5. Compute  $g_s = \nabla_{\boldsymbol{\theta}} \mathcal{L}_s(\boldsymbol{\theta}, \boldsymbol{x}, \boldsymbol{y})$  using  $p_{\boldsymbol{\theta}}(\boldsymbol{y} | \boldsymbol{x})$
- 6. Update  $p_{\theta}$  with  $\eta_s$  and  $g_s$

until convergence in word error rate or maximum iterations are reached;

**Table 2**. Word error rates of models trained on the Librispeech 960-hours unlabeled and 100-hours labeled datasets.

| Mathad            | TM      | D     | ev    | Test  |       |  |
|-------------------|---------|-------|-------|-------|-------|--|
| Method            | LM      | clean | other | clean | other |  |
| Noisy student [3] | LSTM    | 3.9   | 8.8   | 4.2   | 8.6   |  |
| wav2vec LARGE     | None    | 4.6   | 9.3   | 4.7   | 9.0   |  |
| (quantized) [8]   | 4-gram  | 2.3   | 5.7   | 2.8   | 6.0   |  |
|                   | Transf. | 2.1   | 4.8   | 2.3   | 5.0   |  |
| Joint LARGE       | None    | 4.2   | 8.9   | 4.3   | 9.2   |  |
| (continuous)      | 4-gram  | 2.6   | 6.1   | 3.0   | 6.5   |  |
|                   | Transf. | 2.0   | 5.1   | 2.5   | 5.3   |  |

**Table 3**. Word error rate (dev-other dataset, 4-gram LM) of models with different hyperparameters compared to baseline.

| Hyperparameter                                         | Updates | LR   | dev-other |
|--------------------------------------------------------|---------|------|-----------|
| Baseline                                               | 1:1     | 20:1 | 8.0       |
| $\mathcal{L}_u$ to $\mathcal{L}_s$ update ratio        | 5:1     | 20:1 | 7.9       |
| $\mathcal{L}_u$ to $\mathcal{L}_s$ learning rate ratio | 1:1     | 4:1  | 9.0       |
| Single optimizer                                       | 1:1     | 20:1 | 11.1      |

No single optimizer

**Table 4**. Word error rates of models trained on Librispeech 960-hours labeled dataset.

| Mathad         | TM      | D     | ev    | Test  |       |  |
|----------------|---------|-------|-------|-------|-------|--|
| Method         | LM      | clean | other | clean | other |  |
|                | None    | 3.2   | 10.8  | 3.4   | 10.4  |  |
| Supervised     | 4-gram  | 2.1   | 7.2   | 2.7   | 7.2   |  |
|                | Transf. | 1.5   | 5.4   | 2.2   | 5.6   |  |
|                | None    | 3.4   | 9.0   | 3.6   | 9.2   |  |
| Joint training | 4-gram  | 2.1   | 5.8   | 2.6   | 6.3   |  |
|                | Transf. | 1.5   | 4.4   | 2.1   | 4.8   |  |

The method provides a regularization to the supervised loss when only using labeled data

## JOINT UNSUPERVISED AND SUPERVISED TRAINING FOR MULTILINGUAL ASR

Junwen Bai\*, Bo Li, Yu Zhang, Ankur Bapna, Nikhil Siddhartha, Khe Chai Sim, Tara N. Sainath

## Google, USA

{junwen, boboli, ngyuzh, ankurbpn, nikhilsid, khechai, tsainath}@google.com

## Differences:

- 2 SSL losses instead of one, inspired from w2v-bert
- RNN-T instead of CTC
- Trained on MLS, not only LS



**Fig. 1**: An overview of our JUST framework. Feature encoder, contrastive net, MLM net and decoder are stacked sequentially. The output of each module constitutes a loss in the objective function. Target vectors and ids in the blue boxes are for unsupervised losses. Supervised targets in the grey box are for RNN-T loss.

#### Don't Stop Pretraining: Adapt Language Models to Domains and Tasks

Suchin Gururangan<sup>†</sup> Ana Marasović<sup>†</sup> Swabha Swayamdipta<sup>†</sup> Kyle Lo<sup>†</sup> Iz Beltagy<sup>†</sup> Doug Downey<sup>†</sup> Noah A. Smith<sup>†</sup> ♦

†Allen Institute for Artificial Intelligence, Seattle, WA, USA

†Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA

{suching, anam, swabhas, kylel, beltagy, dougd, noah}@allenai.org



Figure 1: An illustration of data distributions. Task data is comprised of an observable task distribution, usually non-randomly sampled from a wider distribution (light grey ellipsis) within an even larger target domain, which is not necessarily one of the domains included in the original LM pretraining domain – though overlap is possible. We explore the benefits of continued pretraining on data from the task distribution and the domain distribution.



Figure 1: Pre-training trains on auxiliary task  $T_{\rm aux}$  before fine-tuning on primary task  $T^*$ . End-task aware training optimizes both  $T_{\rm aux}$  and  $T^*$  simultaneously and can find better minima since optimization is informed by the end-task.

SHOULD WE BE *Pre*-Training?
EXPLORING END-TASK AWARE TRAINING IN LIEU OF
CONTINUED PRE-TRAINING

Lucio M. Dery<sup>1</sup>, Paul Michel<sup>2</sup>, Ameet Talwalkar<sup>1,3</sup> & Graham Neubig<sup>1</sup>

<sup>1</sup> Carnegie Mellon University, <sup>2</sup> ENS PSL University, <sup>3</sup> Determined AI

ldery@andrew.cmu.edu, pmichel31415@gmail.com, talwalkar@cmu.edu, gneubig@cs.cmu.edu

Exploit the fact that we often know the end-task beforehand, and so we can make specific choices about our pre-training regimen to improve end-task performance.

Specific Continue PT approaches
Or Multi-task framework with task specific loss

## Conclusion and discussion points?

- Other interesting papers (Unispeech, XSLT ...)
- Filtering techniques
- Other loss (MLM, intermediate?)
- Low Resource scenario (10h supervised?)
- Softer labels ?