17333

14115

3 Hours / 100 Marks Seat No.

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answers with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Use of Non-programmable Electronic Pocket Calculator is permissible.

Marks

1. a) Attempt any <u>SIX</u> of the following:

12

- (i) Compare the digital system with analog system on four points.
- (ii) Define:
 - 1) Propagation delay
 - 2) Noise margin
- (iii) Draw the symbol and truth table of:
 - 1) EX-OR gate
 - 2) NAND gate
- (iv) State the meaning of universal gate. Name the universal gates.
- (v) Write the binary addition rules.

1	7	2	2	2
1	1	J	J	J

Marks

- (vi) Define Duality theorem and give example.
- (vii) Draw the logic diagram of IC 7485.
- (viii) Compare R-2R and weighted resistor DAC on four points.

b) Attempt any TWO of the following:

8

- (i) Convert the followings:
 - 1) $(93)_{10} = (?)_2$
 - 2) $(9B)_{16} = (?)_{10}$
- (ii) Construct the AND and OR gate using NAND gate. Write necessary outputs of gates.
- (iii) Perform the BCD arithmetic:
 - 1) $(264)_{10} + (668)_{10}$
 - $2) (454)_{10} + (379)_{10}$

2. Attempt any **FOUR** of the following:

16

- a) State De-Morgan's theorems and prove for two inputs.
- b) Reduce the following logic expression using Boolean laws and De-Morgan's theorems

$$Y = \overline{A \cdot (\overline{A \cdot B})} \cdot \overline{B \cdot (\overline{A \cdot B})}$$

c) Perform 2's complement subtraction:

$$(59)_{10} - (62)_{10}$$

d) For the given K-map in Figure No. 1, write minimized SOP expression and for the same draw NAND-NAND logic circuit.

	ζō	ī D	cs	cā	•
ĀĀ	0	1	0	0	
AB	\$		١	0	
AB	l	ł	1	0	
AB	0	0		0	

Fig. No. 1

- e) Draw 8:1 multiplexer using basic logic gates.
- f) Construct full adder using basic logic gates and K-Map technique.

3. Attempt any **FOUR** of the following:

16

a) Reduce the given logic expression using Boolean laws and draw NAND logic circuit.

$$Y = A + \overline{A} \cdot B + A \cdot B$$

- b) Construct 1:16 demultiplexer using only 1:4 demultiplexers.
- c) Draw the block diagram of BCD to seven segment decoder/driver using IC 7447. Also draw it's truth table.

d) For the given K-Map in Figure No. 2, write the POS expression and draw NOR-NOR logic circuit for same.

	ēδ	ζD	۵۵	cō	
ĀB	0	1	l	l	
ĀB	0	0	0	١	
AB	t	1	0	0	
AB	١	1	0	0	

Fig. No. 2

- e) Draw the symbol and truth table of followings:
 - (i) D-flip flop
 - (ii) R-S flip flop
- f) Draw the circuit diagram of 4 bit asynchronous counter and explain with timing diagram.

4. Attempt any **FOUR** of the following:

16

- a) Draw 4 bit SISO shift register using D-flip flop and explain it's working with timing diagram.
- b) Compare dual slope and successive approximation ADC on:
 - (i) Diagram
 - (ii) Working principle
- c) Construct D-flip flop using R-S flip flop and explain it's working along with truth table.
- d) Draw and explain the working of J-K flip flop with it's truth table.
- e) Draw and explain working of static RAM cell.
- f) With neat circuit diagram, explain the working of successive approximation ADC.

17333 [5]

(ii)

working.

		Mari					
5.		Atte	mpt any <u>FOUR</u> of the following:	16			
a)		Perfo	orm the binary arithmetic:				
		(i)	$(11011.11)_2 + (11011.01)_2 = (?)_2$				
		(ii)	$(11101.1101)_2 - (101.011)_2 = (?)_2$				
	b)	Explain the techniques used in elimination of 'Race-around' condition.					
	c)	Usin	g Boolean laws, simplify the expression:				
		Y =	$A(\overline{A}C)(\overline{A}B + \overline{C})$				
	d)	Drav	w Master - slave J-K flip flop and explain it's working.				
	e) Describe the operation of decimal to BCD encoder IC 7 with its truth table and pin diagram.						
	f)	ne 'Modulus of counter'. Determine number of flip flops to used in MOD-21 counter.					
6.		Attempt any <u>TWO</u> of the following: 16					
	a)	(i)	Define and draw the logical symbol of multiplexer.				
b)		(ii)	Find the reduced form of following function.				
			$f(A, B, C) = \Sigma m (2, 3, 4, 5, 6, 7)$				
			using K-map and draw logic circuit.				
	b)	(i)	List four applications flip flops.				
		(ii)	Compare synchronous and asynchronous counter on any two points.				
		(iii)	Convert JK-flip flop in to T-flip flop. Write it's truth table and explain.				
	c)	(i)	List any four specifications of DAC.				

Draw neat block diagram of Ramp ADC and explain its