Analyse

Isabelle Galagher et Pierre Gervais

October 2, 2016

Contents

Ι	Topologie des espaces vectoriels normés	1
	Espaces vectoriels normés : premières définitions 1.1 Distances et normes	
2	Applications continues	9
3	Applications uniformément continues, applications linéaires continues	11
4	Espaces produits	12

Part I

Topologie des espaces vectoriels normés

1 Espaces vectoriels normés : premières définitions

1.1 Distances et normes

Définition 1. Étant donné un ensemble E, une distance sur E est une application $d: E \times E \longrightarrow \mathbb{R}$ vérifiant les propriétés suivantes :

- 1. d est $d\acute{e}finie$ positive : $d(x,y) \geqslant 0$ et $d(x,y) = 0 \Leftrightarrow x = y$
- 2. d est symétrique : d(x, y) = d(y, x)
- 3. d vérifie l'inégalité triangulaire : $\forall z \in E, \ d(x,y) \leq d(x,z) + d(z,y)$

$Exemple\ 1.$

- $E = \mathbb{R}$ et d(x,y) = |x y|
- $E = \mathbb{R}^2$ et $d\left(\binom{a}{b},\binom{c}{d}\right) = \sqrt{(a-c)^2 + (b-d)^2}$

Remarque 1. Par l'inégalité triangulaire, on déduit

-
$$d(x,z) \geqslant d(x,y) - d(y,z)$$

-
$$d(x,z) \geqslant d(z,y) - d(x,y)$$

d'où
$$|d(x,y) - d(z,y)| \le d(x,z)$$

Définition 2. Soit E un \mathbb{K} -espace vectoriel, une *norme* sur E est une application notée N ou $\|\cdot\|$ telle que

- 1. $(x,y) \mapsto ||x-y||$ est une distance
- 2. $\forall \lambda \in \mathbb{R}, \ \forall u \in E, \ \|\lambda u\| = |\lambda| \|u\| \ (homogénéité)$

Proposition 1. Une fonction $\|\cdot\|$: $E \longrightarrow \mathbb{R}$ est une norme si et seulement si :

- 1. elle est homogène
- 2. elle est définie
- 3. elle vérifie l'inégalité triangulaire

Preuve 1.

 \Longrightarrow

Soit $\|\cdot\|$ une norme.

- 1. ✓
- 2. ||x|| = d(x,0) où d(x,y) = ||x-y||, donc $||x|| \ge 0$ et $||x|| = 0 \iff d(x,0) = 0 \iff x = 0$
- 3. ||x+y|| = d(x+y,0) = d(x,-y), or $\forall x,y,z \in E$, $d(x,z) \le d(x,y) + d(y,z)$ donc $d(x,-y) \le d(x,0) + d(0,-y)$ D'où $||x+y|| \le d(x,0) + d(0,-y) \le ||x|| + ||-y|| \le ||x|| + ||y||$

 \leftarrow

Soit $\|\cdot\|$ vérifiant les trois propriétés, alors soit $d(x,y) = \|x-y\|$ et montrons que de st une distance.

- 1. $d(x,y) \ge 0$ car $||x-y|| \ge 0$ par (2). $d(x,y) = 0 \iff ||x-y|| = 0 \iff x = y$
- 2. d(x,y) = ||x-y|| = ||-(x-y)|| = ||y-x|| = d(y,x)
- 3. $d(x,y) = ||x-y|| = ||x-z+z-y|| \le ||x-z|| + ||z-x|| \le d(x,y) + d(z,y)$

Exemple 2.

1. Dans \mathbb{R}^n , on définit les normes $||x||_1 = \sum_{k=1}^n |x_k|$, $||x||_2 = \sqrt{\sum_{k=1}^n |x_k|^2}$, $||x||_p = \sqrt[p]{\sum_{k=1}^n |x_k|^p}$ et $||x||_\infty = \max_k ||x_k||$

- 2. Dans \mathbb{R}^n muni d'un produit scalaire, $||x|| = \sqrt{\langle x, x \rangle}$
- 3. Soit A un ensemble et F une espace vectoriel normé, et $\mathcal{B}(A,F)$ les fonctions bornées de A dans F, alors $\|f\|_{\infty} = \sup_{x \in A} \|f(x)\|$ est une norme.

4. Sur
$$C([0,1],\mathbb{R})$$
, $||f||_1 = \int_0^1 |f(x)|$, $||f||_2 = \sqrt{\int_0^1 |f(x)|^2} \text{ et} ||f||_\infty = \sup_{0 \leqslant x \leqslant 1} |f(x)|$

Définition 3. Deux normes N_1 et N_2 sont dites équivalentes s'il existe des constantes strictement positives C_1 et C_2 telles que $\forall x \in E, C_1N_2(x) \leq N_1(x) \leq C_2N_2(x)$

Exemple 3. Par exemple dans \mathbb{R}^n , les normes $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_\infty$ sont équivalentes. En effet

$$||x||_1 = |x_1| + |x_2| \leqslant 2||x||_{\infty}$$

et
$$||x_i| \ge ||x||_{\infty}, i = 1, 2$$

En dimension finie, toutes les normes sont équivalentes! Cela n'est en revanche pas vraie en dimension infinie.

1.2 Ouverts et fermés

Définition 4. Soit E un espace vectoriel normé, on appelle boule fermée de centre x et de rayon r > 0 l'ensemble $\overline{\mathcal{B}}(x,r) = \{u \in E \mid ||x-u|| \leq r\}$, et la boule ouverte de centre x et de rayon r > 0 l'ensemble $\mathcal{B}(x,r) = \{u \in E \mid ||x-u|| < r\}$.

Définition 5. Soit $X \subseteq E$

- 1. On dit que $U \subseteq X$ est un ouvert de X si $\forall x \in U, \exists r > 0 : \mathcal{B}(x,r) \cap X \subseteq U$
- 2. On dit que $F \subseteq X$ est un fermé de X si son complémentaire dans X est un ouvert de X.

Remarque 2.

- 1. Un ouvert dans X n'est pas nécessairement ouvert dans E, comme montré dans le deuxième exemple de la figure ci-dessus.
- 2. Un ouvert de E sera appelé un **ouvert**, de même pour les fermés.
- 3. Toute boule ouverte est un ouvert.
- 4. Toute boule fermée est un fermé.

Figure 1: Différentes boules unités

En bleu : $\mathcal{B}_{\infty}(0,1)$ En rouge : $\mathcal{B}_{2}(0,1)$ En turquoise : $\mathcal{B}_{1}(0,1)$

Preuve 2. On considère une boule ouverte $\mathcal{B}(x_0, r)$, montrons que c'est un ouvert. Soit $x \in \mathcal{B}(x_0, r)$, alors $||x - x_0|| < r$. On cherche r' tel que $\mathcal{B}(x, r') \subseteq \mathcal{B}(x_0, r)$ donc r' doit vérifier

$$||x - y|| < r' \Longrightarrow ||x_0 - y|| < r$$

Mais $||x_0 - y|| \le ||x - y|| + ||x - x_0|| < ||x - y|| + r$. Soit $\delta = r - ||x - x_0|| > 0$, on pose alors $r' = \frac{\delta}{2} > 0$, alors $||x_0 - y|| \le r' + ||x - x_0|| \le r' + r - \delta < r$

Proposition 2. L'intersection de deux ouverts est un ouvert et toute réunion d'ouverts est un ouvert.

Figure 2: Deux exemples d'ouverts

Preuve 3. Soient U et U' deux ouverts, montrons que $U \cap U'$ est un ouvert. Soit $x \in U \cap U'$, il existe r > 0 et r' > 0 tels que $(B)(x,r) \subseteq U$ et $\mathcal{B}(x,r') \subseteq U'$. On pose $\widetilde{r} = \min(r,r')$ et on a $\mathcal{B}(x,\widetilde{r}) \subseteq U \cap U'$

Preuve 4. Soit $(U_i)_{i\in I}$ une famille d'ouverts, montrons que $U=\bigcup_{i\in I}U_i$ est un ouvert.

Soit $x \in U$, alors il existe $i_0 \in I$ tel que $x \in U_{i_0}$, il existe donc r tel que $\mathcal{B}(x,r) \subseteq U_{i_0}$ car U_{i_0} est ouvert, d'où $\mathcal{B}(x,r) \subseteq U$.

Proposition 3. Soit $X \subseteq E$, tout ouvert U de X s'écrit sous la forme $U = X \cap \widetilde{U}$, où \widetilde{U} est un ouvert. De même pour tout fermé F de X s'écrit $F = X \cap \widetilde{F}$ où \widetilde{F} est un fermé.

Preuve 5. Soit \widetilde{U} un ouvert de E, alors $\widetilde{U} \cap X$ est un ouvert de X par construction. Inversement soit U ouvert de X, alors $\forall x \in U$, $\exists r(x) > 0$ tel que $\mathcal{B}(x, r(x)) \cap X \subseteq U$ Soit alors $\widetilde{U} = \bigcup_{x \in U} \mathcal{B}(x, r(x))$, alors \widetilde{U} est un ouvert et $U = X \cap U$

Définition 6. Une suite à valeurs dans E est dite convergente vers $x \in E$ si pour tout $\varepsilon > 0$ il existe un rang N tel que pour tout $n \ge N$ on ait $||x_n - x|| < \varepsilon$.

Celle-ci est unique et on la note $\lim_{n} x_n = x$.

On remarquera qu'une suite convergente est bornée.

Preuve 6. Soient x et y deux limites de la suite convergente $(x_n)_n$.

Pour tout $\varepsilon > 0$ on peut trouver un rang N à partir duquel $||x_n - x|| < \varepsilon$ et $||y_n - x|| < \varepsilon$, d'où

$$||x - y|| \le ||x - x_n|| + ||x_n - y|| < 2\varepsilon$$

Figure 3: Construction de la boule ouverte

Cette inégalité est vraie pour tout $\varepsilon > 0$ donc x = y.

Remarque~3.~ On rappelle que dans $\mathbb{R},$ toute suite majorée croissante est convergente.

Soit $A = \{x_n \mid n \ge 0\}$, et on note $l = \sup A$.

Soit $\varepsilon > 0$, $l - \varepsilon$ ne majore pas A donc il existe un rang N à partir duquel $x_n \ge l - \varepsilon$, mais on a aussi $x_n \le l$ pour tout n, on a ainsi à partir de N l'encadrement $l - \varepsilon \le x_n \le l + \varepsilon$.

On a de plus que $\lim_{n} x_n = \sup\{x_n | n \ge 0\}$

Remarque 4. Si une suite est convergente pour une norme, alors elle l'est pour toute norme équivalente à celle-ci. Cela n'est pas vrai en général si les normes ne sont pas équivalentes.

Sur l'ensemble des fonctions continue sur [0,1] on définit les normes

$$||f||_{\infty} = \sup_{[0,1]} |f(x)| \text{ et } ||f|| = \int_0^1 |f|$$

On considère la suite de fonction $f_n : x \longmapsto x^n$, on a

$$||f_n||_{\infty} = \sup_{[0,1]} |f_n(x)| = 1$$

mais $||f_n|| = \int_0^1 x^n dx = \frac{1}{n+1} \longrightarrow 0$, les normes ne sont pas équivalentes.

Définition 7. On appelle valeur d'adhérence de x_n toute limite d'une sous-suite (suite extraite) de (x_n) . Et on appelle point d'accumulation d'une suite (x_n) un point x tel que $\forall \varepsilon > 0$, $\forall N, \exists n > N : ||x_n - x|| < \varepsilon$.

Proposition 4. Tout point d'accumulation d'une suite convergente (x_n) est une valeur d'adhérence, et réciproquement.

Preuve 7.

$Valeur\ d'adh\'erence \Longrightarrow point\ d'accumulation:$

Soit x une valeur d'adhérence de (x_n) , il existe une fonction entière strictement croissante φ telle que

$$\forall \varepsilon > 0, \ \exists N : \ \forall n > N, \ \|x_{\varphi(n)} - x\| < \varepsilon$$

donc x est un point d'accumulation. \checkmark

$Point\ d'accumulation \Longrightarrow valeur\ d'adhérence:$

Réciproquement, soit x un point d'accumulation d'une suite (x_n) , on construit par récurrence φ telle que x soit la limite de $(x_{\varphi(n)})_n$ par

$$\varphi(n) = \begin{cases} 0, & n = 0 \\ \min\{k > \varphi(n-1) \mid ||x_k - x|| < 2^{-n}\}, & n > 0 \end{cases}$$

L'application est bien strictement croissante.

Montrons à présent que $y_n = x_{\varphi(n)}$ converge vers x:

soit $\varepsilon \in]0,1[$, on cherche N tel que pour tout n > N, $||x_n - x|| < \varepsilon$.

Pour $N > \frac{\ln \varepsilon}{\ln 2}$ on a

$$\forall n > N, \|y_n - x\| < 2^{-n} < \varepsilon$$

 $(y_n)_n$ est bien une suite convergeant vers x. \checkmark

Proposition 5. Soit E un espace vectoriel normé et $F \subseteq E$.

F est fermé si et seulement si F contient la limite de toutes ses suites convergentes.

Preuve 8.

$F \text{ ferm\'e} \Longrightarrow F \text{ contient les limites de ses suites}$

Soit (x_n) une suite convergente de F de limite x. Montrons que $x \in F$.

Supposons par l'absurde $x \notin F$, alors $x \in (E \backslash F)$ qui est ouvert. Il existe donc r > 0 tel que $\mathcal{B}(x,r) \subseteq (E \backslash F)$, mais il existe un rang à partir duquel $||x_n - x|| < \frac{r}{2}$, c'est à dire $x_n \in \mathcal{B}(x,r)$, ce qui contredit $\mathcal{B}(x,r) \subseteq (E \backslash F)$. \checkmark

F contient les limites de ses suites $\Longrightarrow F$ est fermé

On suppose à présent que F contient la limite de toute ses suites convergentes, montrons que F est fermée, donc que $E \backslash F$ est ouvert.

Soit $x \in (E \backslash F)$, montrons qu'il existe r > 0 tel que $\mathcal{B}(x, r) \subseteq (E \backslash F)$.

Supposons que pour tout $n, \mathcal{B}\left(x, \frac{1}{n}\right) \not\subseteq (E \backslash F)$, c'est à dire quil existe $x_n \in F$ tel que $x_n \in \mathcal{B}\left(x, \frac{1}{n}\right)$

On a ainsi construit une suite de F convergente vers $x \in F$, donc par hypothèse $x \in F$, ce qui contredit le fait que x appartienne au complémentaire de F. \checkmark

Définition 8. Soit X une partie d'un espace vectoriel normé E.

- L'intérieur de X est le plus grand ouvert inclus dans X noté \mathring{A} .
- L'adhérence de X est le plus petit fermé contenant X noté \overline{X} .
- La frontière de X est l'ensemble $\partial X = Fr(X) = \overline{X} \backslash \mathring{X}$

Exemple 4. Si X = [0, 1] sur \mathbb{R} alors $\mathring{X} = [0, 1]$, $\overline{X} = [0, 1]$ et $Fr(X) = \{0, 1\}$.

Remarque 5. X est ouvert si est seulement si X = X et X est fermé si et seulement si $\overline{X} = X$.

Exercice 1. Le montrer.

Preuve 9. Intérieur

Soit \mathring{X} l'ensemble des $x \in X$ tels qu'il existe r > 0 tel que $\mathcal{B}(x,r) \subseteq X$, alors \mathring{X} est la réunion de tous les ouverts contenus dans X.

En effet, \mathring{X} est ouvert dans X par définiton, donc $\mathring{X} \subseteq$ "réunion des ouverts de X".

Soit U un ouvert de X, montrer que $U \subseteq X$.

Soit $x \in U$, il existe r > 0 tel que $\mathcal{B}(x,r) \subseteq U$ ar U est ouvert. Donc $x \in \mathring{X}$.

 \mathring{X} est donc ouvert, contenu dans X. Il contient tous les ouverts de X, donc c'est le plus grand de X, d'où le résultat.

Proposition 6. On caractérise l'adhérence d'une partie X comme étant l'ensemble des limites de sous-suites de X

Preuve 10. Soit A l'ensemble des limites de suites convergentes à valeurs dans X.

A est un fermé contenant X

Pour tout $x \in X$, x peut être la limite d'une suite à valeur dans X, c'est à dire $x \in A$ et donc $X \subseteq A$. Cela signifie en particulier que A contient les limites de ses suites : c'est un fermé. \checkmark

A est le plus petit fermé contenant X

Supposons que A ne soit pas minimal, soit B un fermé vérifiant

$$\left\{ \begin{array}{l} X \subseteq B \\ B \subsetneq A \end{array} \right.$$

Il existe donc $a \in A$ tel que $a \notin B$, c'est à dire la limite d'une suite $(a_n)_n$ à valeurs dans X.

Or B est un fermé, donc il contient la limite de ses suites, dont (a_n) , donc $a \in B$: contradiction.

A est donc minimal. \checkmark

A est donc le plus petit fermé contenant X, c'est à dire $A = \overline{X}$

2 Applications continues

Définition 9. Soient E et F deux espaces vectoriels normés, soient $X \subseteq E$, $Y \subseteq F$ et f une application de X dans Y.

On dit que f est continue en un point $x \in X$ si

$$\forall \varepsilon > 0, \exists \delta > 0 : (\forall u, ||x - u|| < \delta \Longrightarrow ||f(x) - f(u)|| < \varepsilon)$$

Théorème 1. Une application $f: X \longrightarrow Y$ est continue en $x_0 \in X$ si et seulement si pour toute suite (y_n) convergeant vers x_0 , la suite $(f(y_n))_n$ converge vers $f(x_0)$.

Exercice 2. Le démontrer

Théorème 2. Soit une application $f: X \longrightarrow Y$, les assertions suivantes sont équivalentes :

- 1. f est continue sur X
- 2. l'image réciproque de tout ouvert de Y est un ouvert de X
- 3. l'image réciproque de tout fermé de X est une fermé de X.

Preuve 11.

 $1. \implies 2.$

Soit f continue sur X et U un ouvert de Y. Montrer que $f^{-1}(U) = V$ est un ouvert de X.

Soit $x \in f^{-1}(U)$, alors $f(x) \in U$, il existe donc r > 0 tel que $\mathcal{B}(f(x), r) \subseteq U$.

Or il existe $\delta > 0$ tel que pour $||x - u|| < \delta$, on a $||f(x) - f(y)|| < \frac{r}{2}$.

Ainsi si $y \in \mathcal{B}\left(x, \frac{\delta}{2}\right)$ alors $f(y) \in \mathcal{B}(f(x), r) \subseteq U$, donc $y \in f^{-1}(U)$.

 $f^{-1}(U)$ est donc un ouvert. \checkmark

 $2. \implies 1.$

Soit ε , on veut trouver $\delta > 0$ tel que si $||x - y|| < \delta$, alors $||f(x) - f(y)|| < \varepsilon$.

Soit $x \in X$, alors $\mathcal{B}_{\varepsilon}(f(x))$ est un ouvert de de Y, on sait que $f^{-1}(\mathcal{B}_{\varepsilon}(f(x)))$ est un ouvert de X contenant x, il existe donc $\delta > 0$ tel que $\mathcal{B}_{\delta}(x) \subseteq f^{-1}(\mathcal{B}_{\varepsilon}(f(x)))$.

Autrement dit, si $||x-y|| < \delta$ alors $y \in f^{-1}(\mathcal{B}_{\varepsilon}(f(x)))$, c'est-à-dire $||f(x)-f(y)|| < \varepsilon$.

1. \iff 2.

On le démontre en passant au complémentaire.

Corollaire 1. Soient $X \subseteq E$, $Y \subseteq F$ et f une application de X dans Y.

- 1. On suppose que f est continue, alors la restriction de f à $X' \subseteq X$ notée $f_{|X'|}$ est continue.
- 2. Si X' est un ouvert de X et si $f_{|X'}$ est continue alors f est continue en tout point de X'.
- 3. Soient f et g avec f: $E \longrightarrow F$ et g: $F \longrightarrow G$ avec E, F, G des espaces vectoriels normés. Si f et g sont continues alors $g \circ f$ est continue.

Remarque 6. L'hypothèse que X' soit ouvert est nécessaire pour le point 2.

Figure 4: Restriction continue sur une partie non-ouverte ou ouverte
$$f : \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ u & \longmapsto & \text{rouge si } u \in X', \end{array} \right. \text{bleu sinon}$$

- A gauche, $f_{|X'}$ est continue mais f n'est pas continue sur X' car on ne peut pas trouver une boule ouverte de X' autour du point u.
- A droite, on peut trouver une boule ouverte autour de u car X' est ouvert.

Preuve 12.

Point 1.

Soit $X' \subseteq X$ et V un ouvert de Y, montrons que $(f_{|X'})^{-1}(V)$ est un ouvert de X'. f est continue sur donc il existe U ouvert de E tel que $f^{-1}(V) = X \cap U$. Mais alors $(f_{|X'})^{-1}(V) = X' \cap X \cap U = X' \cap U$ qui est un ouvert de X'. Donc $f_{|X'}$ est continue. \checkmark

Point 2.

 $f_{|X'}$ est continue, soit $x \in X'$, montrons que f est continue en x. Soit $\varepsilon > 0$, il existe $\delta > 0$ tel que si $y \in X'$ et $||x - y|| < \delta$ alors $||f(x) - f(y)|| < \varepsilon$ Comme X' est ouvert, il existe r > 0 tel que $\mathcal{B}_r(x) \subseteq X'$. On choisit $\delta' \leq \min\{r, \delta\}$, alors $\forall y \in \mathcal{B}_{\delta'}$, $||f(x) - f(y)|| < \varepsilon$, donc f est continue en x. \checkmark

Point 3.

3 Applications uniformément continues, applications linéaires continues

Définition 10. Une application $f: E \longrightarrow F$ est uniformément continue si

$$\forall \varepsilon, \ \exists \delta > 0 : \ \forall x, y \in E, \ (\|x - y\| < \delta \Longrightarrow \|f(x) - f(y\| < \varepsilon)$$

Remarque 7. Si est uniformément continue alors elle est continue, la réciproque ets cependant fausse.

Définition 11. Une fonction f est k-lipschitzienne si

$$\forall x, y \in E, \ \|f(x) - f(y)\| \leqslant k\|x - y\|$$

Théorème 3. Soit $\varphi: E \longrightarrow F$ une application linéaire, alors les propriétés suivantes ont équivalentes :

- 1. φ est continue
- 2. φ est continue en 0
- 3. φ est uniformément continue
- 4. φ est bornée sur $\mathcal{B}_1(0)$
- 5. φ est k-lipschitzienne.

Preuve 13. Montrons $2. \Longrightarrow 4. \Longrightarrow 5. \Longrightarrow 3. \Longrightarrow 1. \Longrightarrow 2.$

 $1. \Longrightarrow 2.$

$2. \Longrightarrow 4.$

f est continue en 0, donc pour tout $\varepsilon > 0$ il existe $\delta > 0$ tel que $||x|| < \delta \Longrightarrow ||f(x)|| < \varepsilon$ Soit $x \in \mathcal{B}_1(0)$ avec $x \neq 0$, on a :

$$\|\delta x\| < \delta$$

$$||f(\delta \cdot x)|| < \varepsilon$$

$$||f(x)|| < \frac{\varepsilon}{\delta}$$

 $4. \Longrightarrow 5.$

Supposons que f soit majoré par M>0 sur la boule unité.

Soient $x \neq y \in E$, on a

$$x - y = (x - y) \cdot \frac{\|x - y\|}{\|x - y\|}$$

$$f(x - y) = ||x - y|| f\underbrace{\left(\frac{x - y}{||x - y||}\right)}_{\in \mathcal{B}_1(0)}$$

$$f(x - y) = ||x - y|| \cdot M$$

f est M-lipschitzienne. \checkmark

$$5. \Longrightarrow 3. \Longleftarrow 1. \Longrightarrow 2.$$

Définition 12. Soit f une application lipschitzienne, on appelle constante de Lipschitz de f ou norme d'opérateur de f la valeur $||f|| = \inf\{k > 0 \mid f \text{ est } k\text{-liptschitzienne}\} = \sup_{\|x\| = 1} ||f(x)|| = \sup_{\|x\| \le 1} ||f(x)||$

La norme d'opérateur est comme son nom l'indique une norme, en particulier

$$\forall x, y \in E, \ \|f(x)\| \leqslant \|f\| \|x\|$$

Proposition 7. Soient E et F deux espaces vectoriels normés, o note $\mathcal{L}_C(E)$ l'ensemble des applications linéaires continues de E dans F. C'est un espace vectoriel normé si on le munit de la norme d'opérateur.

$$\forall \varphi, \psi \in \mathcal{L}_C(E, E), \|\varphi \circ \psi\| \leq \|\varphi\| \|\psi\|$$

Remarque 8. On peut étendre ces résultats aux applications bilinéaires : soient E, E' et F trois espaces vectoriels normés, et $f: E \times E' \longrightarrow F$ bilinéaire continue, sa norme d'opérateur est définie par

$$||f|| = \sup\{||f(x,y)|| \mid ||x|| \le 1, ||y|| \le 1\}$$

On a en particulier $||f(x,y)|| \le ||f|| \cdot ||x|| \cdot ||y||$

4 Espaces produits

Définition 13. Soient (E_1, N_1) et (E_2, N_2) deux espaces vectoriels normés, on construit des normes sur $E_1 \times E_2$ en posant

$$||(x,y)||_1 = N_1(x) + N_2(y)$$
$$||(x,y)||_2 = \sqrt{N_1^2(x) + N_2^2(y)}$$
$$||(x,y)||_{\infty} = \max\{N_1(x), N_2(y)\}$$

On a les relations

$$\|(x,y)\|_{\infty} \le \|(x,y)\|_{2} \le \|(x,y)\|_{1} \le 2\|(x,y)\|_{\infty}$$

Exemple 5. Soit E un espace vectoriel normé, on munit $E \times E$ de la norme définie par N(x,y) = ||x|| + ||y|| et on définit une distance d(u,v) = ||u-v||

d est lipschitzienne :

$$|d(x,y) - d(x',y')| = |||x - y|| - ||x' - y'|||$$

$$|d(x,y) - d(x',y')| \le |||(x-y) - (x'-y')|||$$

$$|d(x,y) - d(x',y')| \le |||(x-x') + (y'-y)|||$$

$$|d(x,y) - d(x',y')| \le ||(x-x')|| + ||(y'-y)||$$

$$|d(x,y) - d(x',y')| \le N((x-x') + (y'-y))$$

d est donc 1-lipschitzienne.

Proposition 8. Soient E_1 et E_2 deux espaces vectoriels normés, alors :

- 1. Les projections π_1 : $\begin{cases} E_1 \times E_2 & \longrightarrow & E_1 \\ (x,y) & \longmapsto & x \end{cases}$ et π_2 : $\begin{cases} E_1 \times E_2 & \longrightarrow & E_1 \\ (x,y) & \longmapsto & y \end{cases}$ sont lipschitziennes.
- 2. Une application $f: Y \longrightarrow E_1 \times E_2$ notée $f = (f_1, f_2)$ avec $f_1: Y \longrightarrow E_1$ et $f_2: Y \longrightarrow E_2$ est continue si et seulement si f_1 et f_2 sont continues.
- 3. Si $f: E_1 \times E_2 \longrightarrow F$ est continue alors pour tout $x \in E_1$, l'application $f_x: \begin{cases} E_2 \longrightarrow F \\ y \longmapsto f(x,y) \end{cases}$ est continue et de même $f_y: \begin{cases} E_1 \longrightarrow F \\ x \longmapsto f(x,y) \end{cases}$ est continue pour tout $y \in E_2$.
- Preuve 14. 1. Soit $(x, y) \in E_1 \times E_2$, alors $\pi_1(x, y) = x$, donc $\pi_1(x, y) \pi_2(x', y') = x' y'$ et donc $\|\pi_1(x, y) \pi_2(x', y')\| = \|x x'\| \le \|x x'\| + \|y y'\| = N_1(x x', y y')$ π_1 est 1-lipschitzienne.
 - 2. Si f est continue, alors $\pi_1 \circ f = f_1$ est continue comme composée d'applications continues.

De même $f_2 = \pi_2 \circ f$ est continue.

Inversement, supposons que $f_1: Y \longrightarrow E_1$ et $f_2: Y \longrightarrow E_2$ sont continues.

Montrons que
$$f = (f_1, f_2)$$
:
$$\begin{cases} Y & \longrightarrow & E \times E_2 \\ x & \longmapsto & (f_1(x), f_2(y)) \end{cases}$$

Soit $(x_n)_n$ une suite de Y convergeant vers $x \in Y$, montrons que $(f(x_n))_n$ converge vers f(x).

Comme f_1 est continue, $(f_1(x_n))_n$ converge $f_1(x)$ et de même pour f_2 .

Donc $f(x_n)_n$ converge vers $f(x) = (f_1(x), f_2(x))$

3. Se démontre de même par caractérisation séquentielle de la continuité.

Remarque 9. Une fonction peut être continue de chaque variable sans être continue du couple de variables, par exemple

$$f: \begin{cases} \mathbb{R}^2 & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto \frac{xy}{x^2 + y^2}, \text{ si } (x,y) \neq (0,0) \\ (0,0) & \longmapsto 0 \end{cases}$$

f est continue pour x et y fixé, mais $\forall \varepsilon > 0$, $f(\varepsilon, \varepsilon) = \frac{1}{2} f$ n'est donc pas continue car f(0, 0) = 0.

Figure 5: $\left(x, y, \frac{xy}{x^2 + y^2}\right)$ et (t, t, f(t, t))