A Formal Approach to Explainability

(by Lior Wolf, Tomer Galanti, and Tamir Hazan)

Phaphontee Yamchote

July 29, 2024

Outline

Setting

Consistency and Explainability of Representation

Validity and Completeness of Explanation Function

Setting

Consistency and Explainability of Representation

Validity and Completeness of Explanation Function

Setting

Let

- ightharpoonup an input space $\mathcal X$
- ightharpoonup an output space ${\cal Y}$
- ightharpoonup a representation space $\mathcal R$
- ightharpoonup an explanation space G
- ightharpoonup a representation function $f:\mathcal{X} \to \mathcal{R}$
- ightharpoonup a classifier function $c:\mathcal{R} o\mathcal{Y}$

We want to explain a model $h=c\circ f$ by an explanation function $g:\mathcal{X}\times\mathcal{Y}\to G$ in terms of g(x,h(x))

Setting

Consistency and Explainability of Representation

Validity and Completeness of Explanation Function

Consistency

Definition (Consistent Representation)

Given a function $\beta:(0,\infty)\to(0,\infty)$ mapping distance in \mathcal{R} into distance in G.

A representation f is β -consistent w.r.t. g if

$$\forall \epsilon > 0 \forall x_1, x_2 \in \mathcal{X}, |g(x_1, h(x_1)) - g(x_2, h(x_2))| \leqslant \epsilon \Rightarrow |f(x_1) - f(x_2)| \leqslant \beta(\epsilon)$$

 ${\sf Explainability}$

Definition (Explainable Representation)

Given a function $\gamma:(0,\infty)\to(0,\infty)$ mapping distance in $\mathcal R$ into distance in G.

A representation f is γ -explainable w.r.t. g if

$$\forall \epsilon > 0 \forall x_1, x_2 \in \mathcal{X}, |f(x_1) - f(x_2)| \leqslant \epsilon \Rightarrow |g(x_1, h(x_1)) - g(x_2, h(x_2))| \leqslant \gamma(\epsilon)$$

Explainability

Definition (Explainable Representation)

Given a function $\gamma:(0,\infty)\to(0,\infty)$ mapping distance in $\mathcal R$ into distance in G.

A representation f is γ -explainable w.r.t. g if

$$\forall \epsilon > 0 \forall x_1, x_2 \in \mathcal{X}, |f(x_1) - f(x_2)| \leqslant \epsilon \Rightarrow |g(x_1, h(x_1)) - g(x_2, h(x_2))| \leqslant \gamma(\epsilon)$$

Definition (Second-order Explainable Representation)

Given a function $\gamma:(0,\infty)\times(0,\infty)\to(0,\infty)$.

A representation f is second-order γ -explainable w.r.t. g if

$$\forall \epsilon_0 \epsilon_1 > 0 \forall x_1, x_2 \in \mathcal{X}, |f(x_1) - f(x_2)| \leqslant \epsilon_0 \land |f_x(x_1) - f_x(x_2)| \leqslant \epsilon_1$$

$$\Downarrow$$

$$|g(x_1, h(x_1)) - g(x_2, h(x_2))| \leqslant \gamma(\epsilon_0, \epsilon_1)$$

Consistency Recall

$$\forall \epsilon > 0 \forall x_1, x_2 \in \mathcal{X}, |g(x_1, h(x_1)) - g(x_2, h(x_2))| \leqslant \epsilon \Rightarrow |f(x_1) - f(x_2)| \leqslant \beta(\epsilon)$$

- What if the representation of our machine learning model is consistent, i.e. h(x) = c(f(x)) where f is consistent?
- Let try: $|h(x_1) h(x_2)| = |c(f(x_1)) c(f(x_2))|$.
- ▶ What can connect between $|c(f(x_1)) c(f(x_2))|$ and $|f(x_1) f(x_2)|$?

Definition (*l*-Lipschitz continuous)

A function L is l-Lipschitz continuous if

$$\forall x_1, x_2, |F(x_1) - F(x_2)| \le l |x_1 - x_2|$$

Consistency representation and Lipschitz classifier

Theorem (Lipschitz o Consistent is Consistent)

Given a model $h=c\circ f:\mathcal{X}\to\mathcal{Y}$ with an explanation function $g:\mathcal{X}\times\mathcal{Y}\to G$, if f is β -consistent w.r.t. g and c is l-Lipschitz continuous, then h is $l\beta$ -consistent w.r.t. g.

Let's prove!

Explainable representation and Lipschitz classifier

$$\forall \epsilon > 0 \forall x_1, x_2 \in \mathcal{X}, |f(x_1) - f(x_2)| \leqslant \epsilon \Rightarrow |g(x_1, h(x_1)) - g(x_2, h(x_2))| \leqslant \gamma(\epsilon)$$

Theorem (upstream function in Lipschitz o Consistent is consistent)

Given a model $h=c\circ (f_2\circ f_1):\mathcal{X}\to\mathcal{Y}$ with an explanation function $g:\mathcal{X}\times\mathcal{Y}\to G$, if f is γ -explainable w.r.t. g and c is l-Lipschitz continuous, then f_1 is $\hat{\gamma}$ -explainable w.r.t. g where $\hat{\gamma}(\epsilon):=\gamma(l\epsilon)$.

Case Study: Image Classification

I still don't understand this topic right now, it requires background in image processing, which I'm not familiar with

The following theorem states that if our model is of the form $h(x) = \arg\max_{i \in \mathcal{Y}} (m_i^\top \cdot p(x))$ and our EF has the form $g(x, h(x)) = \frac{\partial (m_{h(x)}^\top \cdot p(x))}{\partial x}$, where $p = c \circ f$ such that c, f and the derivative of c are Lipschitz continuous functions, then, f is explainable with respect to g.

THEOREM 4.3. Let $\mathcal{Y} = [K]$ and $h : \mathbb{R}^n \to \mathcal{Y}$ a model of the form, $h(x) = \arg\max_{i \in \mathcal{Y}} m_i^\top \cdot p(x)$, where $p : \mathbb{R}^n \to \mathbb{R}^d$ and $m_i \in \mathbb{R}^d$, for $i \in [K]$. Let $g(x,h(x)) = \frac{\partial (m_{h(x)}^\top p(x))}{\partial x}$ be an EF. Assume that for all $i \in [K]$, $p = c \circ f$, such that: c, $\frac{\partial c(x)}{\partial x}$, $\frac{\partial p(x)}{\partial x}$ and f are Lipschitz continuous functions. Additionally, assume that: $\forall i \neq j \in [K], x \in \mathcal{X} : m_i^\top \neq m_j^\top$ and $\forall x \in \mathcal{X} : |p(x)| \geq \Delta$, for some constant $\Delta > 0$. Then, f is second-order $O(\epsilon_0 + \epsilon_1)$ -explainable with respect to g.

Setting

Consistency and Explainability of Representation

Validity and Completeness of Explanation Function

Properties of Explanation Functions

Validity

Definition (Valid Explanation Functions)

Given a fixed constant $\epsilon > 0$ and $x \sim \mathcal{D}$.

An explanation function g is $\underline{\epsilon}$ -valid w.r.t. a model h if there is a function $t: G \to \mathcal{Y}$ s.t.

$$\mathbb{E}_{x \sim \mathcal{D}} \left[\ell \left(t \left(g \left(x, h \left(x \right) \right) \right), h \left(x \right) \right) \right] \leqslant \epsilon,$$

where ℓ is a loss function.

Properties of Explanation Functions

Completeness

Definition (Complete Explanation Functions)

Given a fixed constant $\alpha, \epsilon > 0$ and $x \sim \mathcal{D}$.

An explanation function g is $\underline{(\epsilon,\alpha)}\text{-complete}$ w.r.t. a model h

if every $\bar{g}:\mathcal{X}\to\mathbb{R}^d$ s.t. $I(g(\overline{x,h(x));\bar{g}(x)})\leqslant\epsilon$ and every $s:\mathbb{R}^d\to\mathcal{Y}$

$$\mathbb{E}_{x \sim \mathcal{D}} \left[\ell \left(s(\bar{g}(x)), h(x) \right) \right] \geqslant \alpha,$$

where ℓ is a loss function.

Properties of Explanation Functions

if we are able to recover h(x) from $\bar{g}(x)$ and from g(x,h(x)), then, $\bar{g}(x)$ and g(x,h(x)) cannot be independent of each other.

Theorem (Valid \Rightarrow Complete)

Let $h: \mathbb{R}^n \to \mathcal{Y}$ be a model, $g: \mathcal{Z} \to G$ an ϵ_0 -valid EF for some constant $\epsilon_0 \in (0, 0.5)$ and $x \sim D$.

Assume that $Y=\{\pm 1\}$ and denote, $p:=\mathbb{P}[h(x)=1].$

Then, g is (ϵ, α) -complete with respect to h, with $\alpha := \frac{\sqrt{1 + H(p)(H(p) - \epsilon - 2\sqrt{\epsilon_0}) - 1}}{H(p)}$ and any $\epsilon > 0$ that satisfies, $H(p) > \epsilon + 2\sqrt{\epsilon_0}$.

In particular, if p=1/2, we have: $\alpha=\sqrt{2-\epsilon-2\sqrt{\epsilon_0}}-1$.

Need a lot of lemmas from other works

Setting

Consistency and Explainability of Representation

Validity and Completeness of Explanation Function

Intersection and Union of RVs

Definition

Let $x \sim \mathcal{D}$ on \mathcal{X} , a constant $\epsilon > 0$ and given two functions $f_1: \mathcal{X} \to \mathcal{X}_1$ and $f_2: \mathcal{X} \to \mathcal{X}_2$. If there are two invertible functions $r_1: \mathcal{X}_1 \to \mathcal{V}_1$ and $r_2: \mathcal{X}_2 \to \mathcal{V}_2$ such that

$$r_1(f_1(x)) = (e_1(x), u(x))$$

 $r_2(f_2(x)) = (e_2(x), u(x)),$

where mutual information $I(e_i(x); f_j(x)) \leq \epsilon$ for $i \neq j \in \{1, 2\}$

- ▶ the RV u(x) is called ϵ -intersection of f_1 and f_2
- ▶ the RV $(e_1(x), u(x), e_2(x))$ is ϵ -union of f_1 and f_2

(Still don't get its idea why define like this) (this work as well proved that they are unique up to invertible transformation)