MEMORY REDUNDANCE SYSTEM

Publication number: JP53000032 Publication date: 1978-01-05

Inventor:

TAKEZONO TAKASHI

Applicant:

FUJITSU LTD

Classification:

- international:

G06F12/16; G06F11/00; G06F11/16; G11C29/00; G11C29/04; G06F12/16; G06F11/00; G06F11/16; G11C29/00; G11C29/04; (IPC1-7): G06F11/00;

G11C9/00; G11C29/00

- european:

Application number: JP19760074876 19760623 Priority number(s): JP19760074876 19760623

Report a data error here

Abstract of JP53000032

PURPOSE:To secure a selection by switching a defective module to an optional good-quality module without specifying the position for the auxiliary module.

Data supplied from the esp@cenet database - Worldwide

19日本国特許庁

① 特許出願公開

公開特許公報

昭53-32

Int. Cl².G 11 C 29/00

G 06 F 11/00

G 11 C 9/00

識別記号

每日本分類97(7) C 0197(7) C 02

97(7) G 12

庁内整理番号 7056—56 6453—56 6676—56 砂公開 昭和53年(1978)1月5日

発明の数 1 審査請求 未請求

(全 7 頁)

砂記憶装置冗長方式

願 昭51-74876

②特 ②出

額 昭51(1976)6月23日

⑩発 明 者 竹鼠隆

川崎市中原区上小田中1015番地 富士通株式会社内

⑪出 願 人 富士通株式会社

川崎市中原区上小田中1015番地

個代 理 人 弁理士 玉蟲久五郎 外3名

明細. 自

1. 発明の名称

記憶装置冗長方式

2. 特許請求の範囲

3. 発明の詳細な説明

本発明は、記憶装置冗長方式、特にメモリ・モ

ジュールに一部不良ピットが含まれていても、良品モジュールのみをアクセスするようにした冗長 方式に関するものである。

最近の半導体技術では、案子の高密度化を図るためにウェハ・メモリの実現が検討されてみないのウェハ・メモリを実現する場合、重要をは製造時の歩留りである。歩留りを向上させくの見いないが、回路技術的られてはならないが、あらいがで見からないないできる。また、信頼性の観点をもま、冗長性を持たせた設計を行りことは、きわめて重要である。

冗長性を持たせる手段としては、 ECC に代表されるソフト・ウェア的手法と、予備モジュールを用意しておき、不良メモリ・モジュールをこれに切換えて使用するような方法に代表されるハード・ウェア的手法とがある。

とのりち、後者の方式においては、例えば、特開昭 47-7060号公報, 特開昭 48-16536号公報等

特别 第53--32(2)

に示されるように、予備モジュールの領域あるいはモジュール内の予備チップの領域があらかじめ 定められており、不良モジュールあるいは不良チップがアクセスされたことを織別すると、特定の 予備モジュール、予備チップに切換えている。

本発明は、従来の冗長方式のよりに予備モジュールの領域を限定することなく、モジュール全体として必要数に少くとも1個の冗長性を持た性、不良モジュール以外の任意のモジュールを予備として用いることにより、不良モジュールをアクセスさせないようにすることを目的とするもので、は品モジュールのみを接続するために、ガロア体の要素をアドレス・コードとして割付けることを特徴としている。

先ず、第1図(s)に示すよりに、通常の3ピットの情報で選択される8個のモジュール群を考えてみる。

いま、外部より与えられるアドレス情報が (000) ~(011) までの 7 通りであり、 (111) のアドレス は与えられないものと仮定する。 すなわち、実験 に必要なモジュールの数は7個で、他の1個は予備である。第1図(ので明らかなように、あるモジュールに着目すると、その前後のモジュールに割付けられたアドレス・コードより、1を減じたもの、かよび1を加えたものに等しい。したがって、当然、各モジュールにアドレス・コードとして割付けられている3ビットの組合は、3ビットのカウンタによって順次発生される周期8の数列の各要素に等しくなっている。

さて、第1図(a)のモジュール群において、アド レス・コード (010)のモジュールが不良であった とする。

そこで、外部より与えられるアドレス情報 ADRSを第1 図(のに示すように加算器 ADDに入力し、(110)を加算して、この結果を内部アドレス情報として使用することを考えてみる。このようにすると、外部から与えられないことにしたアドレス (111)は、内部では (010) に相当するようになり、このことは結果的に不良モジュールがアクセスされな

くなったととを意味する。

他の7個のモジュールに対する外部アドレス情報 ADRS も、それぞれ第1図(のに示すようにアドレス変換されて内部アドレス adra となる。したがって、このモジュール群は、見掛上第1図(8)に示すように、不良モジュールの次のモジュールから順にアドレス・コードが割付けられたことになる。

さて、前述の例は、説明のために通常の3 ビットのパイナリ情報を使用し、(111)がアクセスされないという条件をつけたが、実際はこのような条件が成立する場合は殆んどなく、この例は実用的ではない。

そとで、次にパイナリ情報を使用せず、別の数 外群の要素をアドレス・コードとして各モジュー ルに割付けることを考える。

すなわち、 2*+1 個のモジュール群から 2*個のモジュールのみを選択できるようなアドレス・コートの割付け方法を考えてみる。

さて、代数学の数示するところによれば、ガロ

ア体 $GP(2^n)$ は、 1,0 をその要素とするガロア体 GP(2) の上の n 次の既約多項式を法とする多項式 環の剰余類からなっている。したがって、いま既 約多項式 P(x) の根を α とすると、 $GP(2^n)$ の諸 要素は、 1, α , α^2 , ... α^{n-1} の線形結合で下記のよう に 表わすことができる。

 $a_0 + a_1 a + a_2 a^2 + \dots a_{n-1} a^{n-1}$

また、別の表わし方として、係数 α₀, α₁, α₂ ... α_{n-1}だけをとったペクトルでも殺わせる。

 $(a_0, a_1, a_2 \dots a_{n-1})$

さらに、また GP (2ⁿ) から零の要素を除いた残りの要素は巡回群をなし、一般に GP (2ⁿ) の各要素は a の 電乗で表わせる。

いま、一例として GP(2)上の 3 次の既約多項式 P(s)= s³+s+1 を法とする多項式環であるガロア 体 GP(2³)を考えてみると、 GP(2³)のそれぞれの要素は第 2 図のように表わすことができる。

すなわち、 $P(s)=s^3+s+1$ により、 $s^3+s+1=0$ の根は $1,a,a^3$ の線形結合で表わされるから、正負の符号を考慮せずに、 $1+a+a^3=0$ の a^3 の項を右

特別 以53--32 (3) P(z)=1+z³+z⁴である。また、このガロア体の各

辺に移填すれば、 $1+\alpha=\alpha^3$ となって、 $1+\alpha$ は α^3 で 冪乗表示される。同じょうにして、 $1+\alpha=\alpha^3$ の 両辺に α を 乗算すれば、 $\alpha+\alpha^2=\alpha^3\cdot\alpha$ と たるから、 $\alpha+\alpha^3$ は α^4 で表わされ、 $1+\alpha=\alpha^3$ の 両辺に α^3 を 加えれば、 $1+\alpha+\alpha^2=\alpha^3+\alpha^2=\alpha^2$ ($\alpha+1$)= α^5 であるから、 $1+\alpha+\alpha^2$ は α^5 で 表わされる。

つまり、との GP(2³) 上の各要素は周期 2³-1 の巡回数列であり、ある要素に着目した場合、その前後の要素はその着目した要素を a で除したもの、および a を乗じたものに等しい。

したがって、 GP (2*)の中で、その要素の位数が 2*+1 となるものを見出して、そのガロア体の法 多項式を使用し、かつモジュールの各アドレス・コードとしてこのガロア体の要素を割付け、 資算処理としては、第1凶(a)の加算回路のかわりに a 乗算回路を使用すれば、最初の例(第1図(a)(b)(c)) の非実用性は改善される。

以下、実施例について説明する。

いき、その要素の位数が 2³+1 であるガロア体を探すと、 GF(2⁵)の中にあり、この法多項式は

成図である。第4図において、各モジュールは 4EFF×16ii で構成され、このモジュールが 9×22 のマトリクスに配置されて、全体として 32EFF 22 bit の SEC-DEDメモリ・システムを構成している。 なお、図中、 4EFF 選択用アドレス 12 ビットおよ び ECC 関連回路は、本発明に直接関係がないため 省略してある。

第4図は本発明の一実施例を示す記憶装置の構

要案は第3図に示すとおりである。

各モシュール選択用コードとして、上記 CP(2⁶) の各要案が割付けられ、例えば、(100000)の割付けられたモシュールは、アドレス信号の6ピットが(100000)となったときにイネーブルされる。

外部より入力される 8 個のモジュールを選択するためのアドレス信号 ADRS 3 ビットは、先ず、銃出専用メモリ(以下 ROM)に入力され、 6 ビットの GP (2*)の要素 (a*) に変換される。 この ROM の内容を第 5 図に示す。また同時に、このアドレス信号 ADRS は、各列ごとに設けられた不良モジュ

ール・アドレス・レジスタ REC に入力される。そして、もし ECC 回路でエラーの検出が行われ、このモジュールに関するエラー履歴より CPU によってモジュール切換の必要があると判断されると、SET 信号とシンドローム(ボジション情報 POS)が第4図のデコーダ回路 DEC に入力される。これにより、指定されたヒット位値(列)の不良モジュール・アドレス・レジスタ REG に SET 信号が入力され、このときのアドレスがラッチされる。このとき、同時に SET 信号もラッチされて、こので切換えが行われたことも記憶する。

3 ビットのバイナリ情報から 6 ビットの GP(2°)の要素に変換されたアドレス情報は、各モジュール列ごとに設けられたα 乗算回路 (×α^k) に入力される。 k の値は、アドレス・レジスタ REG にラッチされた情報によって制御される。 c の真理値表を第 6 図に示す。

第7 図は、第4 図におけるα乗算回路の詳細接 税図である。なお、第6 図における「選択入力」 は、第7 図中のマルチブレクサ MPX のいずれの入 力端子の情。報が出力されるかを示している。

森 乗算回路 (xa^1) は、次の方法で設計される。 いま、 $GP(2^8)$ 中の任意のエレメントを $(a_0a_1a_2a_3a_4a_5)$ とし、これを多項式の形で扱わすと、次式が成立する。

$$a \times (a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5)$$

$$= b_0 + b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4 + b_5 x^5$$

$$mod, x^6 + x^3 + 1$$

これを解いて、 eo …… es と bo …… be の関係を求り で 放めると以下のようになる。

$$b_0 = a_5$$
, $b_1 = a_0$, $b_2 = a_1$, $b_3 = a_2 + a_5$, $b_4 = a_2$, $b_5 = a_4$

同じよりにして、α²,α³…… を算出すると、第8 図に示すよりになる。第4図は、第8図に基づいて論理を構成したものである。

第4図において、例えば最初の列の3番目のモジュール(001000)が不良であった場合、 GP(2⁶)の要素(001000)に対応する外部アドレス情報
ADRS は第5図に示すように (010) であるので、 この列のアドレス・レジスタ REC には、第6図の

よりに(1010)がセットされる。との結果、α乗算 回路(×αk)のkの値はるになる。そして、この列 に対して分配されるアドレス信号は第9図に示す よりになる。第9図より明らかなように、不良モ ジュール (001000) の次のモジュールから順に、 変換後のアドレス・コードが割付けられるため、 不良モジュールの前のモジュールまでで 2* 個が 選択される。したがって、不良モジュール(0010 00) は外部よりアクセスされなくなり、かつ良品 モジュール8個がアクセス可能となって、切換動 作が行われたことになる。

実施例では、必要個数に1個だけ冗長性を持た せた場合を説明したが、任意の個数だけ予備モジ ュールを用意することにより、予備モジュールと 同一個数のバースト不良モジュールを許容すると とができる。例えば、チップ上に 2*+・個のモジ ュールを用意し、各々にガロア体 GF(2) の 2*+i 個の要素をアドレス・コードとして割付けておき、 連続した。個までの不良モジュールが検出された ときには、アドレスとガロア体の要素との対応づ

特開 暗53-32(4) けを変化させて、不良モジュールの次のモジュー ルから順に変換後のアドレス・コードを割付ける ことにより、良品モジュール 2™ 個のみをアクセ スさせることが可能となる。

とのように、本発明によれば、予備モジュール の位置を特定することなく、不良モジュールを任 意の良品モジュールに切換えて選択させることが でき、しかも、ガロア体の要素をアドレス・コー ドとして割付けるととにより、外部より与えられ るアドレス情報に何ら制限を設けないでよいから、 きわめて実用的であり、かつ簡単な構成により、 製造時の歩留りを向上させるととができる。

4. 図面の簡単な説明

第1図は本発明の原理説明図、第2図はガロア 体 GP(2) 上の 3 次の既約多項式 P(z)= z³+z+1 を 法とする GP(23)の要素の表示方法説明図、第3図 は 6 次の既約多項式 P(s) = s⁶+s³+1を法とするGP (26)の要素の説明図、第4図は本発明の一実施例 を示す記憶装置のブロック構成図、第5図は第4 図における読取専用メモリ(ROM)の記憶内容説明

図、第6図は α 乗算回路の情報説明図、第7図は 第4図におけるα乗算回路(×αk)の詳細接続図、 第8図は第4図のα乗算回路を設計するためのエ レメントの関係図、第9図は第4図における変換 アドレスの一例を示す説明図である。

ADRS: 外部よりのモジュール選択アドレス、 ADD:加算器、ROM: 読取専用メモリ、 SET: セ ット情報、 DBC: デコーダ回路、 POS: ポジショ ン情報、 RBG: 不良モジュール・アドレス・レジ スタ、×ak: α 乗算回路、 I/O BUP: 入出力バッ ファ、 SELSIG : モジュール選択信号、 BOR : エ ックス・クルーシブ・オア回路、 SFF : 切換情報、 MPX: マルチブレクサ、

> 特許出願人 富士 通 株 式 会 社 代理人弁理士 玉 蟲 久 五 郎(外3名)

才 2 図

線形結合	ベクトル	α の 幕 乗
0	(000)	
1	(100)	$\alpha^{\circ} = \alpha^{\gamma} - \alpha^{14}$
. α	(010)	$\alpha^1 = \alpha^1 = \alpha^{15}$
α*	(001)	$\alpha^2 = \alpha^3$.
1 + a	(110)	$\alpha^3 - \alpha^{10}$
$\alpha + \alpha^2$	(011)	$\alpha^4 = \alpha^{11}$
1 + a + a2	(111)	$\alpha^5 = \alpha^{12}$
1 + α²	(101)	$\alpha^6 = \alpha^{13}$

か 5 🛭

ROMTFUZ	ROM 增 報
000	100000 = a°
. 100	0 1 0 0 0 0 = a'
010	001000 = α2
1 1 0	000100 - α*
0 Ò I	0 0 0 0 1 0 = α4
101	000001 = a5
0 1 1	100100 αε
1 1 1	0 1 0 0 1 0 = α^7
A0 A1 A2	do de da da da da

才 6 图

遊択入力	a^k				アドレ
		Az	A,	A ₀	SET
1	α •	0	0	0	0
2	α¹	0	0	0	1
3	α2	0	0	1	1
4	α³	0	1	0	1
5	α.4	0	1	1	1
6	αs	1	0	0	1
7	a s	1	0	1	1
8	a,	1	1	0	1
9	αð	1	1 .	1	1

才 8 2

	α1	α²	α³	αª	α ⁵	αs	α ⁷	α
ь	as	a ₄	a,	az+as	a,+a4	a0+a3	a,	a,
Ь	a.	a ₅	a.	a,	a2+a5	a, . a.	a,+a,	a ₂
		a						
bo	a ₂ +a ₅	a,+a.	a ₀ + a ₃	a,	a,	a,	a ₅	a,
b ₄	а,	a _z ·as	a, . a.	ao+ az	az	a,	a,	a _s
b ₅	α ₄	a,	a ₂ + a ₅	a,+ a.	a ₀ +a ₃	a ₂	a,	a,

特開 昭53-- 32 (7)

オ 9 図

外部アドレス情報	変換前内部アド	レス	変換後アドレス情報	g (×α³)
000	100000	(α°)	000100	α,
100	010000	(α¹)	000010	α4
010	001000	(α^2)	000001	αs
110	000100	(α^2)	100100	α·
001	000010	(a 4)	010010	α ⁷
101	000001	(a 5)	001001	or ⁸
0 1	100100	(α_e)	100000	α ³ = α ^a
111	010010	(α ⁷)	010000	$\alpha^{10} = \alpha^{1}$