Assignment 4

- 1. Let Z_t be a sequence of independent random variables defined as $Z_t = +1$ or -1 with equal probability of 1/2 if t is even, and $Z_t = Z_{t-1}$ if t is odd.
 - (a) Is the process first order stationary in distribution?
 - (b) Is it second order stationary in distribution?
- 2. Let $Z_t = U \sin(2\pi\omega t) + V \cos(2\pi\omega t)$, where U and V are independent random variables, each with mean 0 and variance 1.
 - (a) Is Z_t strictly stationary?
 - (b) Is Z_t covariance stationary?
- 3. Verify the following properties for the autocorrelation function of a stationary process:
 - (a) $\rho_0 = 1$
 - (b) $|\rho_k| \le 1$
 - (c) $\rho_k = \rho_{-k}$
- 4. Prove or disprove the following processes are covariance stationary:
 - (a) $Z_t = A \sin(2\pi\omega t + \theta)$ where A is a constant, and θ is a random variable which has a uniformly distribution on $[0, 2\pi]$.
 - (b) $Z_t = Asin(2\pi\omega t + \theta)$ where A is a random variable with zero mean and unit variance, and θ is a constant.
 - (c) $Z_t = (-1)^t A$ where A is a random variable with zero mean and unit variance.