# Topic V22

Input/Output Devices

Reading: (Section 6.9)

# Storage and I/O

#### I/O connections



## Storage and I/O



# What is a parallel bus?



### Memory Mapped I/O × I/O Instructions

#### Memory mapped I/O

Use a memory address to access an I/O register Address decoder captures I/O accesses
OS ensures that I/O-mapped addresses are only accessible to kernel

#### I/O instructions

Separate instructions to access I/O registers Can only be executed in kernel mode Example: x86

#### Memory-Mapped IO

Memory-mapped IO allows interaction with external devices through an interface pretending to be system memory. This mapping allows the processor to communicate with these devices using the load-word and store-word instructions. Here are the memory mappings and descriptions of important I/O registers for this lab:

| Register         | Memory<br>Address | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Keyboard control | 0xFFFF0000        | For keyboard interrupts to be enabled, bit 1 of this register must be set to 1; after the keyboard interrupt occurs, this bit is automatically reset to 0.                                                                                                                                                                                                                                                                                                                                                                |
| Keyboard data    | 0xFFFF0004        | The ASCII value of the last key pressed is stored here.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Display control  | 0xFFFF0008        | Bit 0 of this register indicates whether the processor can write to the display. While this bit is 0 the processor cannot write to the display. Thus, the program must wait until this bit is 1.                                                                                                                                                                                                                                                                                                                          |
| Display data     | 0xffff000C        | When a character is placed into this register, given that the display control ready bit (bit 0) is 1, that character is drawn onto the display. If the character is the bell character (ASCII code 0x07) the display will move the cursor and the bits 8-19 and 20-31 correspond to the row and column respectively.  You should not have to work with this register directly in this lab, as the mechanics of printing to the MMIO display are handled by the printChar and printStr functions that are provided to you. |
| Time             | 0xFFFF0018        | This is a read-only register that holds the time since the program has started in milliseconds.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Тітестр          | 0xFFFF0020        | When the user-specified value in this register is less than or equal to the value in the time register an interrupt is generated. Writing to this register is required to set up a timer.                                                                                                                                                                                                                                                                                                                                 |

### Processor-Memory Bus × I/O buses



Doug Abbott, PCI Bus Demystified, Second Edition

### A PCI-Host Bridge



http://www.cast-inc.com/ip-cores/interfaces/pci-hb/

### The IBM POWER4 Interconnections



I/O Bus

http://ixbtlabs.com/articles/ibmpower4/

### Bus Synchronization

#### Synchronous

Uses a bus clock



#### Asynchronous

Uses request/acknowledge control lines for handshaking



### Typical x86 PC I/O System

DIMMs = Dual Inline memory modules



### I/O Management

- I/O is mediated by the OS
  - Multiple programs share I/O resources
    - Need protection and scheduling
  - I/O causes asynchronous interrupts
    - Same mechanism as exceptions
  - I/O programming is fiddly
    - OS provides abstractions to programs