Algorithms and Analysis

Lesson 8: Keep Trees Balanced

AVL trees, red-black trees, TreeSet, TreeMap

AICE1005

Algorithms and Analys

Recap

- Binary search trees are commonly used to store data because we need to only look down one branch to find any element.
- We saw how to implement many methods of the binary search tree
 - ★ find
 - ⋆ insert
 - ★ successor (in outline)
- One method we missed was remove!

AICE1005

Algorithms and Analys

Code to remove Node n

AICE1005

Algorithms and Analysis

Outline

- 1. Deletion
- 2. Balancing Trees
 - Rotations
- 3. AVL
- 4. Red-Black Trees
 - TreeSet
 - TreeMap

Outline

- 1. Deletion
- 2. Balancing Trees
 - Rotations
- 3. AVL
- 4. Red-Black Trees
 - TreeSet
 - TreeMap

AICE1005

Algorithms and Analysis

Deletion

- Suppose we want to delete some elements from a treel
- It is relatively easy if the element is a leaf node (e.g. 50)
- It is not so hard if the node has one child (e.g. 20)

AICE1005

Algorithms and Analy

Removing Element with Two Children

- If an element has two children then
 - ⋆ replace that element by its successor
 - ★ and then remove the successor using the above procedure remove (80)

AICE1005

Algorithms and Analysis

Why Balance Trees

- The number of comparisons to access an element depends on the depth of the node
- The average depth of the node depends on the shape of the tree!

 The shape of the tree depends on the order the elements are added

Time Complexity

- In the best situation (a full tree) the number of elements in a tree is $n=\Theta(2^l)$ the depth is l so that the maximum depth is $\log_2(n)$
- ullet It turns out for random sequences the average depth is $\Theta(\log(n))$
- In the worst case (when the tree is effectively a linked list), the average depth is $\Theta(n)$
- Unfortunately, the worst case happens when the elements are added in order (not a rare event)

AICE1005 Algorithms and Analysis

Types of Rotations

- We can get by with 4 types of rotations
 - ★ Left rotation (as above)
 - ★ Right rotation (symmetric to above)

- ⋆ Left-right double rotation
- ★ Right-left double rotation

AICE1005 Algorithms and Analysis 1

When Single Rotations Work

 Single rotations balance the tree when the unbalanced subtree is on the outside

AICE1005 Algorithms and Analysis 1

Outline

- 1. Deletion
- 2. Balancing Trees
 - Rotations
- 3. **AVL**
- 4. Red-Black Trees
 - TreeSet
 - TreeMap

Rotations

- To avoid unbalanced trees we would like to modify the shapel
- This is possible as the shape of the tree is not uniquely defined (e.g. we could make any node the root)
- We can change the shape of a tree using rotations
- E.g. left rotation

Coding Rotations

AICE1005 Algorithms and Analysis 12

Double Rotations

 If the unbalanced subtree is on the inside we need a double rotation

AICE1005 Algorithms and Analysis

Balancing Trees

- There are different strategies for using rotations for balancing trees
- The three most popular are
- ⋆ AVL-trees
- ⋆ Red-black trees
- ⋆ Splay trees
- They differ in the criteria they use for doing rotations

ICE1005 Algorithms and Analysis 15 AICE1005 Algorithms and Analysis 16

- AVL-trees were invented in 1962 by two Russian mathematicians Adelson-Velski and Landis
- In AVL trees
- 1. The heights of the left and right subtree differ by at most 1
- 2. The left and right subtrees are AVL trees
- This guarantees that the worst case AVL tree has logarithmic depth
- ullet Let m(h) be the minimum number of nodes in a tree of height h
- This has to be made up of two subtrees: one of height h-1; and, in the worst case, one of height h-2
- Thus, the least number of nodes in a tree of height h is $m(h)=m(h-1)+m(h-2)+1 \quad \stackrel{h}{=} \quad \stackrel{h-\frac{1}{1}}{=} \quad \stackrel{A}{\stackrel{}{\sum}} \quad \stackrel{1}{\stackrel{}{\sum}} \quad h-2$
- with m(1) = 1, m(2) = 2

AICE1005 Algorithms and Analysis 1

Proof of Exponential Number of Nodes

- We have m(h)=m(h-1)+m(h-2)+1 with m(1)=1, $m(2)=2\mathbb{I}$
- \bullet This gives us a sequence $1,2,4,7,12,\cdots$
- Compare this with Fibonacci f(h) = f(h-1) + f(h-2), with f(1) = f(2) = 1
- This gives us a sequence $1,1,2,3,5,8,13,\cdots$
- It looks like m(h) = f(h+2) 1
- Proof by substitution

AICE1005 Algorithms and Analysis 1

Implementing AVL Trees

 In practice to implement an AVL tree we include additional information at each node indicating the balance of the subtrees

 $\mbox{balanceFactor} = \left\{ \begin{array}{ll} -1 & \mbox{ right subtree deeper than left subtree} \\ 0 & \mbox{ left and right subtrees equal} \\ +1 & \mbox{ left subtree deeper than right subtree} \end{array} \right.$

AICE1005 Algorithms and Analysis 2

AVL Deletions

- AVL deletions are similar to AVL insertions
- One difference is that after performing a rotation the tree may still
 not satisfy the AVL criteria so higher levels need to be examined.
- ullet In the worst case $\Theta(\log(n))$ rotations may be necessary
- This may be relatively slow—but in many applications deletions are rare—

Proof of Logarithmic Depth

- m(h) = m(h-1) + m(h-2) + 1 with m(1) = 1, m(2) = 2
- We can prove by inductions, $m(h) \ge (3/2)^{h-1}$
- $$\begin{split} \bullet \ m(1) &= 1 \geq (3/2)^0 = 1, \ m(2) = 2 \geq (3/2)^1 = 3/2 \end{split}$$

 $$\begin{split} m(h) \geq & (\frac{3}{2})^{h-3} \left(\frac{3}{2} + 1 + (\frac{3}{2})^{3-h}\right) \mathbb{E}(\frac{3}{2})^{h-3} \frac{5}{2} \mathbb{E}(\frac{3}{2})^{h-3} \frac{10}{4} \mathbb{E}(\frac{3}{2})^{h-3} \frac{9}{4} \mathbb{E}(\frac{3}{2})^{h-1} \mathbb{V} \mathbb{I} \end{split}$$
- Taking logs: $\log(m(h)) \ge (h-1)\log(3/2)$ or

$$h \le \frac{\log(m(h))}{\log(3/2)} + 1 = O\left(\log(m(h))\right) \blacksquare$$

 \bullet The number of elements, n, we can store in an AVL tree is $n \geq m(h)$ thus

$$h \leq O(\log(n))$$

AICE1005 Algorithms and

Balancing AVL Trees

- When adding an element to an AVL tree!
 - ★ Find the location where it is to be inserted
 - ★ Iterate up through the parents re-adjusting the balanceFactor
 - \star If the balance factor exceeds ± 1 then re-balance the tree and stop
 - ★ else if the balance factor goes to zero then stop

AICE1005 Algorithms and Analysis

AVL Tree Performance

- Insertion, deletion and search in AVL trees are, at worst, $\Theta(\log(n)) \mathbb{I}$
- \bullet The height of an average AVL tree is $1.44\log_2(n)$
- ullet The height of an average binary search tree is $2.1\log_2(n)$
- Despite being more compact insertion is slightly slower in AVL trees than binary search trees without balancing (for random input sequences)
- Search is, of course, quicker

Outline

- 1. Deletion
- 2. Balancing Trees
 - Rotations
- 3. AVL
- 4. Red-Black Trees
 - TreeSet
 - TreeMap

AICE1005

Algorithms and Analysi

Restructuring

- When inserting a new element we first find its position
- If it is the root we colour it black otherwise we colour it red
- If its parent is red we must either relabel or restructure the tree

AICE1005

lgorithms and Analysis

Set

- The standard template library (STL) has a class std::set<T>
- It also has a std::underordered_set<T> class (which uses a hash table covered later)
- As well as std::multiset<T> that implements a multiset (i.e. a set, but with repetitions)
- Using sets you can also implement maps

AICE1005

Algorithms and Analysis

Implementing a Map

 Maps can be implemented using a set by making each node hold a pair<K, V> objects

class pair<K,V>
{
 public:
 K first;
 V second;
}

• We can count words using the key for words and value to count

Red-Black Trees

- Red-black trees are another strategy for balancing trees
- Nodes are either red or black
- Two rules are imposed

Red Rule: the children of a red node must be black

Black Rule: the number of black elements must be the same in

all paths from the root to elements with no children or with one

child

AICE1005

Algorithms and Analysis

Performance of Red-Black Trees

- Red-black trees are slightly more complicated to code than AVL trees
- Red-black trees tend to be slightly less compact than AVL trees
- However, insertion and deletion run slightly quicker
- Both Java Collection classes and C++ STL use red-black trees

AICE1005

Algorithms and Analysis

Maps

- One major abstract data type (ADT) we have not encountered is the map class
- The map class std:map<Key,V> contain key-value pairs pair<Key,V>
 - ⋆ The first element of type Key is the key
- ★ The second element of type V is the **value**
- Maps work as content addressable arrays

map<string, int> students; student["John_Smith"] = 89; student["Terry_Jones"] = 98; cout << students["John_Smith"];</pre>

AICE1005

Algorithms and Analysi

cconc

Lessons

- \bullet Binary search trees are very efficient (order $\log(n)$ insertion, deletion and search) provided they are balanced
- Balanced trees are achieved by performing rotations
- There are different strategies for deciding when to rotate including
 - ⋆ AVL trees
 - ⋆ Red-black trees
- Binary trees are used for implementing sets and maps!

AICE1005 Algorithms and Analysis 31

Algorithms and Analys