Sequence Alignment and Recognition of DNA Motifs

A Bioinformatics Approach

Background

What are DNA sequence motifs?

A Broad Biological Phenomena

"Sequence motifs are short, recurring patterns in DNA that are presumed to have a biological function. Often they indicate sequence-specific binding sites for proteins... others are involved in important processes at the RNA level... - Patrik D'haeseleer

Motif Recognition and Representation

A Visual Pathway

Inquiry and Approach

Research Inquiry Discovering DNA Motifs

"If a data set of sequences is believed to possess a motif, how can we determine the composition and location of this

Addressing the Inquiry

A General Approach

- 1. Find a data set known to have the same, conserved motif in each sequence.
- 2. Select one sequence to be a reference.
- 3. Align all sequences to that reference at the motif location.
- 4. Determine the frequency and relative entropy of nucleotides at each position.

Computational Concerns

- Without knowing the motifs beforehand, aligning sequences together at the motif becomes an algorithmically and computationally intensive affair.
 - The approach used for this pipeline involves finding a "sliding" score between a reference sequence and another.
 - The value for this score signifies at that specific shift of one sequence to the reference, how many nucleotides are similar at each position.
 - The higher the score, the more ideal alignment has been reached, but this may not be motif alignment.

Computational Concerns

CCTATTGTTCTC

CCCATTGTTCTC

Score: 11

This is the maximum score.

Computational Concerns

- Modeling and recognition of DNA sequence motifs often involves matrix encodement and mathematics.
 - It is simply quite difficult to run predictive complex models where the four nucleotides are represented as characters such as "A", "C", "G", and "T."
 - The approach for this pipeline uses an encoding method where each of the four nucleotides are represented in 3dimensional space where the position of each nucleotide is equidistant to zero.

Computational Concerns

1.		A	C	G	T
	W	1	-1	-1	1
	y	-1	1	-1	1
	k	-1	-1	1	1

Pipeline

Pipeline Steps

Reproducible Computation

- 1. Encode all the desired data (as .fasta files) into wyk format.
- 2. Determine the shift value by calculating scores between an established reference wyk file and all remaining wyk files in the data set.
- 3. Shift the non-reference wyk files to align with the reference by adding 0's at the beginning or end of the file with the number of 0's obtained from the shift value.
- 4. Add by each index position (or line) the contents of the reference wyk file and all the non-reference, shifted wyk files to create a final sum file.
- 5. Convert the final sum wyk file into a nucleotide probability matrix.
- 6. Upload the contents of the nucleotide probability matrix to a DNA logo generator (http://www.benoslab.pitt.edu/cgi-bin/enologos/enologos.cgi) to visualize output.

Data, Results, and Analysis

Test 1 Data Set

Sequences With Identical Motifs

>test1a

ATATCGAAAAAAAAAAAAA

>test1b

TITITITITI ATATCG

Test 1 Data Set

DNA Logo Results

Test 2 Data Set Sequences With No Similarities

>test2a

ATATATATATATATAT

>test2b

CGCGCGCGCGCGCGCG

Test 2 Data Set

DNA Logo Results

Test 3 Data Set

Sequences That Are Identical

>test3a

ACGTACGTACGTACGT

>test3b

ACGTACGTACGTACGT

Test 3 Data Set DNA Logo Results

Test 3 Consensus Relative Entropy bits 1.0 3' **Position**

Exploring An E. coli Motif

An Almost Palindromic Binding Site For Proteins

Dummy Data Set

Sequences With Same Motifs As E.coli CRP/CAP Binding Protein

>dummy1

TGTGAAAAAATCACAAAAAAAAAAAAAAAAAAAA

>dummy2

CCCCCCCCCCCCCTGTGACCCCCCTCACA

>dummy3

>dummy4

Dummy Data Set

DNA Logo Results

Dummy Consensus Relative Entropy

E. coli Data Set Seven Genes With Common Motifs

>ECOBGLR1 (REFERENCE)

TTACACAAAGTTAATAAC**TGTGA**GCATGG**TCATA**TTTTTATCAAT

>ECOCYA

ACGGTGCTACACTTGTATGTAGCGCATCTTTCTTTACGGTCAATCAGCAAGGTGTTAAAT

TGATCACGTTTTAGACCATTTTTTCGTCGTGAAACTAAAAAAACC

>ECOTNAA

CTCCCGAACGATTGTGATTCGATTCACATTTAAACAATTTCAGA

>TDC

GATTTTTATACTTTAACTTGTTGATATTTAAAGGTATTTAATTGTAATAACGATACTCTG

GAAAGTATTGAAAGTTAATTTGTGAGTGGTCGCACATATCCTGTT

>ECOOMPA

TTCACACTTGTAAGTTTTCAACTACGTTGTAGACTTTACATCGCC

>ECOMALBA

ACATTACCGCCAATTCTGTAACAGAGATCACACAAAGCGACGGTGGGGCGTAGGGGCAAG

GAGGATGGAAAGAGGTTGCCGTATAAAGAAACTAGAGTCCGTTTA

>ECOMALBA2

GGAGGAGGCGGAGGATGAGAACACGGCTTCTGTGAACTAAACCGAGGTCATGTAAGGAA

TTTCGTGATGTTGCTTGCAAAAATCGTGGCGATTTTATGTGCGCAA

Pipeline DNA Logo Results

Pipeline Consensus Relative Entropy

E. coli Data Set Revisiting the Data Set

Sequence	Reference	Hand-Counted Distance from One End to Motif	Relative Distance from Reference	
ECOBLGR1	Yes	8	N/A	
ECOCYA	No	34	26	
ECOTNAA	No	13	5	
TDC	No	6	-2	
ECOOMPA	No	36	28	
ECOMALBA	No	62	54	
ECOMALBA2	No	47	39	

A Graphical Troubleshoot

A Graphical Troubleshoot

A Graphical Troubleshoot

Further Data Analysis

Sequence	Reference	Hand-Counted Distance from One End to Motif	Relative Distance from Reference	Obtained Shift/ Relative Distance	Consensus
ECOBLGR1	Yes	8	N/A	N/A	N/A
ECOCYA	No	34	26	26	Good
ECOTNAA	No	13	5	5	Good
TDC	No	6	-2	-4	Close
ECOOMPA	No	36	28	30	Close
ECOMALBA	No	62	54	-22	Little to None
ECOMALBA 2	No	47	39	0	Little to None

Good Consensus DNA Logo Results

Good Peak Consensus Relative Entropy

Close Consensus DNA Logo Results

Close Peak Consensus Relative Entropy

Little to No Consensus DNA Logo Results

Little to No Peak Consensus Relative Entropy

Manually Selected Peak Consensus DNA Logo Results

Selected Peak Consensus Relative Entropy

Citations and Conclusion

Sources & Works CitedSpecial Thanks to the Gary D. Stormo, *Ph.D* Lab

Stormo GD, Hartzell GW 3rd. Identifying protein-binding sites from unaligned DNA fragments. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1183-7. doi: 10.1073/pnas.86.4.1183. PMID: 2919167; PMCID: PMC286650.

D'haeseleer, P. What are DNA sequence motifs?. *Nat Biotechnol* **24**, 423–425 (2006). https://doi.org/10.1038/nbt0406-423

Stormo GD. Maximally efficient modeling of DNA sequence motifs at all levels of complexity. Genetics. 2011 Apr;187(4):1219-24. doi: 10.1534/genetics.110.126052. Epub 2011 Feb 7. Erratum in: Genetics. 2011 Dec;189(4):1525. PMID: 21300846; PMCID: PMC3070529.

Workman CT, Yin Y, Corcoran DL, Ideker T, Stormo GD, Benos PV. enoLOGOS: a versatile web tool for energy normalized sequence logos. *Nucleic Acids Res.* 2005 Jul 1;33(Web Server issue):W389-92.

Robison, K., McGuire, A. M., Church, G. M. A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K12 genome. Journal of Molecular Biology (1998) 284, 241-254.

Patterson, Adrian & Chang, James & Taylor, Corinda & Fineran, Peter. (2015). Regulation of the type I-F CRISPR-Cas system by CRP-cAMP and GalM controls spacer acquisition and interference. Nucleic acids research. 43. 10.1093/nar/gkv517.