A Glimpse of NLP in Industry

Bo HAN (bo.a.han@accenture.com.au) 24/05/2021

Outline

- My Journey & motivations (5 mins)
- Use Case: Geolocation Prediction (20 mins)
- Academia and Industry comparisons (5 mins)
- NLP landscape in industry applications (10 mins)
- Mindset for Industry (10 mins)
- Questions and Answers (10 mins)

My Journey with NLP

Industry Research Institutions: Microsoft Research Asia (2007-2009), IBM Research Australia (2014-2016)

Universities: University of Melbourne/NICTA (2010-2014)

Professional Firms: Start-up (2016-2017), Kaplan (2017-2018), Accenture (2018-now)

Why should I care NLP/ML in industry?

Papers per organisations (2012-2020)

Papers per country/region (2020) (Australia ranked 6th)

Why should I care NLP/ML in industry?

If you'd told me year ago that today I would finish a marathon, I wou Add an article: had a huge affect on rayear

Gase study: Geolocation Prediction

Game time: Can you guess the city?

Text-based Geolocation Prediction

Assign a unambiguous geographical location to a piece of text

Input: text data, e.g. an English tweet

Output: one of metro cities across the world, e.g. London, Sydney, New York

Task: A multi-class classification task

Hypothesis: Words carry varying amount of geolocation information

- Gazetted terms: Australia, Canada, London, Seattle,
- Local sports: hockey, footy, cricket
- Dialectal words: arvo, yinz, howdy
- Geo entities: tube, tram, skyscraper, ferry

Local Words: yinz

Somewhat Local Words: ferry

Common Words: today

Geolocation Prediction from Academia View

A Text-based Geo Prediction Framework

Text-based Geo Prediction (Academia)

Q: How to find Location Indicative Words? (LIW)

Q: How to measure model prediction accuracy? (Evaluation)

Q: What are suitable classifiers for this multi-classification? (ML Model)

Q: How does input size (i.e. amount of text data) affect the accuracy? (Data)

Q: Will my prediction model accuracy decrease over time? (Generalisation)

Q: Will language, metadata, text-derived network relations affect model accuracy? (NLP)

. . .

Geolocation Prediction from Industry View

Text-based Geo Prediction (Industry App)

Q: How to find Location Indicative Words? (LIW)

Q: How to measure model prediction accuracy? (Evaluation)

Q: What are suitable classifiers for this multi-classification? (ML Model)

Q: How does input size (i.e. amount of text data) affect the accuracy? (Data)

Q: Will my prediction model accuracy decrease over time? (Generalisation)

Q: Will language, metadata, text-derived network relations affect model accuracy? (NLP)

• • •

Text-based Geo Prediction (Industry App)

Q: How to measure model prediction accuracy? (Evaluation)

Q: Will my prediction model accuracy decrease over time? (Generalisation)

Q: What business service/product can leverage this service? (Utility)

Q: What is the throughput of this deployed service? (Performance)

Q: What are ethics/data privacy/... risks? (Risk)

Q: Should we apply a patent or keep it as a business secret? (IP)

...

Regulations

DevOps:

Version Control: Git/Bitbucket CICD: Jenkins/Bamboo Project Management: JIRA/Trello Containerisation: Docker/K8S

Full Stack: ...

A Pilot Comparison

Academia:

- Broaden the human knowledge boundaries,
 e.g., improve accuracy from X% to Y% where
 Y > X and the result is statistically significant
- It is typically driven by research questions
- Work output: **publications**
- Typical activities:
 - Literature review (required)
 - Experiments (required)
 - Publish papers (required)
 - Understand relevant work (required)
 - O ..
 - A working demo website (optional)

Industry:

- Mostly about applications, e.g., apply sentiment analysis to collect customer feedback and improve our products.
- It is typically driven by **business needs**
- Work output: **business application**
- Typical activities:
 - A working PoC demo (required)
 - Deployment (required)
 - Cost estimation (required)
 - Information security (required)
 - Regulation requirements (required)
 - 0 ..
 - Utilise state-of-the-art result from academia (required)
 - Papers (optional) and other IPs (required)

Benefit from Mutuals

Benefit from mutuals (Industry -> Academia)

Academia:

Business need is a good (but not the only) source for your research topic

(Hypothetical) business need: A small cafe short staffed

Automated Speech Recognition (ASR)
Text to Speech (TTS)
Neural networks

...

Benefit from mutuals (Industry -> Academia)

Academia:

- Research with clear or potential business applications may get more funding
- Yahoo! Key Scientific Challenges Program
- Microsoft Faculty Fellowship
- Google Faculty Research Awards in NLP and other fields
- ..

Benefit from mutuals (Industry -> Academia)

Academia:

• An increasing number of **key research papers** are from industry research labs

Benefit from mutuals (Academia -> Industry)

- Obtain **state-of-the-art algorithms and models** from academia
 - **LSTM**: Sepp Hochreiter; Jürgen Schmidhuber (21 August 1995), Long Short Term Memory
 - **Expectation-maximization algorithm**: Dempster, A.P.; Laird, N.M.; Rubin, D.B. (1977). "Maximum" Likelihood from Incomplete Data via the EM Algorithm". Journal of the Royal Statistical Society, Series B. 39 (1): 1-38. JSTOR 2984875. MR 0501537.
 - **Viterbi algorithm**: Viterbi AJ. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory. April 1967, 13 (2): 260-269

0

Benefit from mutuals (Academia -> Industry)

Industry:

Software, data and other resource free to use for commercials

maqad	APACHE	BSD	lliL	EPL 3 Free as in Freedom	LGPU 3 Free as in Freedom	AGPL 3 Free as in Freedom
Туре	Permissive	Permissive	Permissive	Copyleft	Copyleft	Copyleft
Provides copyright protection	√ TRUE	√ TRUE	√ TRUE	√ TRUE	√ TRUE	√ TRUE
Can be used in commercial applications	√ TRUE	√ TRUE	√ TRUE	√ TRUE	√ TRUE	√ TRUE
Provides an explicit patent license	✓ TRUE	X FALSE	X FALSE	X FALSE	X FALSE	X FALSE
Can be used in proprietary (closed source) projects	✓ _{TRUE}	√ TRUE	✓ TRUE	X FALSE	X FALSE partially	X FALSE for web
Popular open- source and free projects	Kubernetes Swift Firebase	Django React Flutter	Angular.js JQuery, .NET Core Laravel	Joomla Notepad++ MySQL	Qt SharpDevelop	SugarCRM Launchpad

NLP Landscape in Industry

Two Key Factors

Cost

Revenue

NLP Applications in Industry

Sentiment Analysis to identify people's opinions or feelings towards a product/service to collect customer feedback and unlock potential actions

- Provide marketing and competitive intelligence
- Enhance product development
- Improve customer retention
- Analyze the impact of an event (e.g. a product launch or redesign)

NLP Applications in Industry

Chatbots (Virtual Assist) enable conversations between computers and customers to help customers seek relevant information or perform a specific task.

- Improve business processes and reduce support costs
- Enhance search and knowledge-seeking experiences
- Human-in-the-loop to compensate bad experience

Ref: Top Natural Language Processing Applications in Business (Accenture)

Mindset for Industry

NLP/ML Jobs in Industry (application)

https://www.kdnuggets.com/201 7/04/cartoon-machine-learningwhat-they-think.html

Example: Lower Customer Churn

Customer Service: Hi XXX, you recently cancelled the contract with us, I have a good deal for you

Business Question

- 1. Question: Can I lower the churn rate in my company?
- 2. Motivation:

- a. Customer churn will impact our revenue
- b. It will affect our long term growth and eventually our leader position in the market
- C. .

Analysis

- 1. How many customers are we losing?
- 2. Who are they?
- 3. Are all customers the same?
- 4. Can I collect information that characterise customers
- 5. ..

Analysis

- 1. How many customers are we losing? **5% in a month**
- 2. Who are they? **New joiners during previous promotions**
- 3. Are all customers the same? **No**
- Can I collect information that characterise customers? Service, usage statistics, ...
- 5. ...

Data Science Prediction

Background work:

- Data ETL (data collection, cleansing, validation, loading)
- Data modelling (a classification or a regression task)
- ...

Delivery model:

- Input: a customer's information
- Output: when this customer will leave the company

Actionable Insight

If those customer are going to leave,

- What retention policies should I use?
- How should I assign to them?
- Can we further segment those customers into subgroups for different policies?
- Based on your retention model, what would be the long term profits (after subtracting the retention cost)?

Actionable Insight

If those customer are going to leave,

- What retention policies should I use? One month free, bonus gift card, ...
- How should I assign to them? Emails, mails, ...
- Can we further segment those customers into subgroups for different policies? **Yes, based on their usage plan, we can ...**
- Based on your retention model, what would be the long term profits (after subtracting the retention cost)? 1M AUD this year

Lower Customer Churn Loop

Recommended Practise

- Practise 1: Fast Food Store Locations
 - Given budget X, where should I select the location for my new store to maximum my profits?
- Practise 2: Who Should I Hire?
 - o I need to fill a positions with X, Y, Z requirements, who should I hire?
- Guess techniques:
 - How would you implement an App that has ML/NLP components in your mobile phone?
 - Company X just released service Y, what are the underlying techniques they need to deliver and operate that service?
- Guess applications:
 - Where can AlphaGo and its variations algorithms apply?

A few more words to say

- Ask Alumni Service:
 <a href="https://www.unimelb.edu.au/alumni/get-involved/volunteer/ask-alumni/get-involved/yolunteer/ask-alumni/get-involved/volunteer/ask-alumni/get-involved/yolunteer/ask-alumni/get-involved/yolunteer/ask-alumni/get-involved/yolunteer/ask-alumni/get-involved/yolunteer/ask-alumni/get-involved/yolunteer/ask-alumni/get-involved/yolunteer/ask-alumni/get-involved/yolunteer/ask-alumni/get-involved/yolunteer/ask-alumni/get-involved/yolunteer/ask-alumni/get-involved/yolunteer/ask-alumni/get-involved/yolunteer/ask-alumni/get-involved/yolunt
- Github, personal website or other public presence of your work
- Tech Meetups (a mixture of industry practitioners, researchers, hobbyist)
- Online Course: Coursera, Udacity, O'Reilly...
- Beginner class for cloud computing: AWS Cloud Practitioner
-