2020 Our Husky Compact Assessment in Technology

Department of Residential Life

St. Cloud State University

Claude Haneum Lee

Fall 2020

Our Husky Compact

Essential and cross-cutting attributes of a St.
 Cloud State education that we value

* 2020-2021 Academic Year Focus: Integrate Existing And Evolving Technologies

Assessment

Goal

 Observe the preference of using technology and evaluate how the technology is used in engagement programs among residence halls at SCSU

*Engagement program: student-department interactions in residence halls

Plan

- Launch two surveys: Student and Student Staff (Community Advisors, or CAs)
- Analyze three areas: Scheduling, Communication, and Meeting

Surveys

Part 1	(CAs & Students) Preference of using technology in three areas		
	(Student) Kind of online applications used in student experience		
	Mainly used for descriptive statistics to show general preference and experience		
Part 2	Fluency and use of technology Whether know how to use/frequently use some basic features in each online application type for three areas		
(Same for Students and CAs)	Convert responses to Fluency Score and Usage Score		
	Joined with demographic/enrollment data (obtained from SCSU database) to compare groups and show areas of improvements		

Fluency and Usage Questions

Video Call Application

Application

Schedule a weekly/recurrent meeting

Make the meeting private (set passcode)

Share contents or draw on whiteboard

Require other attendees

Sort or filter the inbox

Prioritize/flag an email

Use polls

Research Questions

Which method is most commonly used in scheduling, communication, and meetings, separately?

What are some of the common reasons why students and staff prefer non-technological methods for scheduling, communication, and meetings?

Which areas of Res Life needs an improvement in using technology?

Which groups in residence hall needs special attention for technology fluency and use?

Findings – Use of Technology

· Current findings are based on 12-2-20 data

https://rpubs.com/haneumlee99/705381

Most Commonly Used Method - Scheduling

- Online Scheduling for all
- Quite a large proportion of hand-written preference
- Many CA have used online applications

Which Online Scheduling Application?

- Microsoft Soft Outlook
- Other entries: nonscheduling apps

What online app did your CA use to schedule an event with you

Why Hand-Written Schedule?

- * Easy to keep up with
- Very few privacy and influency

Most Commonly Used Method -Communication

- Similar patterns for all
- Highest in email, some phone/phone apps, and few in-person

Which Online Communication Application?

- Microsoft Soft Outlook
- Some phone calls/messages
- Other entries: Group Me, other phone apps

What online app did your CA use to communicate with you?

Why In-Person Communication?

* Too small of sample size – hard to tell

Most Commonly Used Method - Meeting

- Question Condition: if in-person is not desirable, ...
- Largely in online app, but quite a lot in "still" in-person
- Experience: mainly online, some in-person

Which Online Meeting/Video Call Application?

- Majority for Zoom
- Some for phone and social media

Why In-Person Meeting?

- CAs: Possible in-person connections
- Students: easy to be part of & in-person connections

Areas of Improvements for Technology Use in Res Life

- CAs
 - Engagement programs and communication
 - Meetings and scheduling came after.

- Students
 - Overall even responses for each area.

Findings – Fluency and Usage Score

- Survey Results based on 12-2-20 data
- Due to small dataset, all grouping become statistically insignificant
- Analysis depends on mean difference and the size of p-values
- Some uses nonparametric approximated tests
 - p-values may be off every time R code runs

Fluency and Usage Questions

Video Call Application

Application

Schedule a weekly/recurrent meeting

Make the meeting private (set passcode)

Share contents or draw on whiteboard

Require other attendees

Sort or filter the inbox

Prioritize/flag an email

Use polls

Score Explanation

- 6 Different Scores
 - Area: Scheduling, Communication, Meeting
 - Type: Fluency (know how to), Usage (use frequently)

- 0-5 Scale
 - 5 Questions
 - Number of "Yes" = Number of points

Mean Scores

- Usage scores are overall much lower
- Fluent in communication, but worst in usage

	Fluency	Usage
Scheduling	3.594059	1.49505
Communication	3.752475	1.178218
Meeting	3.059406	1.39604

Difference between Fluency and Usage Paired t-test between fluency and usage scores for each scheduling, communication, and meeting

For all, very small p-value (alternative: Fluency < Usage)

Mean Differences

Scheduling: 2.09

Communication: 2.57

Meeting: 1.66

Comparison of Three Areas

- Paired t-test of two scores
- Meeting score is low in fluency, but all three are similar in usage

Fluency

- Scheduling vs Communication
 - p-value: 0.2575
 - Mean Diff: -0.16
- Scheduling vs Meeting
 - p-value: 0.00017
 - Mean Diff: 0.53
- Communication vs Meeting
 - p-value: < 0.001
 - Mean Diff: 0.69

Usage

- Scheduling vs Communication
 - p-value: 0.02431
 - Mean Diff: 0.32
- Scheduling vs Meeting
 - p-value: 0.5469
 - Mean Diff: 0.099
- Communication vs Meeting
 - p-value: 0.1583
 - Mean Diff: -0.22

Student Staff vs Students

- 2 Sample t-test
 - Staff 30+ Students 100+
- Alternative: Staff ___ Students
 - Based on their mean differences

- Staff are slightly more fluent
- No big difference in usage

p-value	Fluency	Usage
Scheduling	0.4118 (>) 0.08335995	0.2765 (<) -0.2047269
Communication	0.2708 (>) 0.1830086	0.3129 (>) 0.1766209
Meeting	0.07205 (>) 0.5212392	0.272 (<) -0.2024912

Comparison by Hall

- Kruskal Wallis Test
 - Nonparametric test for comparing multiple groups (extended Mann-Whitney test)
 - Small group sizes

No consistent outcome

p-value	Fluency	Usage
Scheduling	0.7488	0.3257
Communication	0.7372	0.8792
Meeting	0.5163	0.7785

Comparison by Gender

- Two Sample t-Test
 - Large enough sample size
 - F 70, M 30
 - Only one unknown (ignored for simplicity)

- Slight difference in comm.
- Slightly higher for females in most areas

p-value	Fluency	Usage
Scheduling	0.807 -0.0952381	0.9621 0.01904762
Communication	0.3256 0.4190476	0.4778 0.2571429
Meeting	0.6385 0.2238095	0.9372 -0.03333333

Correlation with Age

- Pearson Correlation Test
 - Category vs Quantitative
 - Ave Age: 20.0495

- High variance in younger population
- High scores for older students in fluency, but low/average in usage

p-value	Fluency	Usage
Scheduling	0.8191 0.02545569	0.7798 -0.02238248
Communication	0.6321 0.05050889	0.3633 -0.08420549
Meeting	0.6432 0.04948217	0.4092 0.08743197

Comparison by Class (Year in College)

- Kruskal Wallis Test
 - Small group sizes
 - Large freshmen with less than 20 for other upper classes
 - * #: 56, 19, 16, 10

- Seniors have low scores mostly
- Sophomores and Freshmen have overall higher scores

p-value	Fluency	Usage
Scheduling	0.5821	0.7798
Communication	0.4648	0.6105
Meeting	0.5588	0.9497

Comparison by College/School

- Kruskal Wallis Test
 - Small group sizes
 - Removed unknown (3) and University College (1) for simplicity
- SOE and HB have high scores in fluency (also have low p-values)
- Usage scores vary too much between groups

p-value	Fluency	Usage
Scheduling	0.2118	0.941
Communication	0.3359	0.5728
Meeting	0.1835	0.4004

Discussion

- OLS fitting did not work out well
 - Only "Senior" indication showed 90% significance (others lower)
 - Due to small sample (multiple layers of grouping will result in very tiny group sizes)
- None of the comparisons came out as significant
 - Same reason as above
 - Focus on mean differences and p-value sizes
- Too many scores
 - Hard to decide what to focus on
 - May consider sum 3 areas into one and only consider fluency/usage