Cursul 5 Spații liniare

Spaţii liniare. Subspaţii liniare

Definiția 2.1 Fie V o mulțime nevidă și K un corp comutativ. Spunem că pe V, este definită o **structură** algebrică de spațiu liniar peste corpul K dacă și numai dacă există o lege internă $+: V \times V \to V$ și o lege de compoziție externă $\cdot: K \times V \to V$, astfel încât sunt îndeplinite următoarele axiome:

- i) $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}, \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{V};$
- ii) $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}, \ \forall \mathbf{x}, \mathbf{y} \in \mathbf{V};$
- $iii) \quad \exists \mathbf{0} \in \mathbf{V}, \forall \mathbf{x} \in \mathbf{V}: \ \mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x} = \mathbf{x};$
- $iv) \quad \forall \mathbf{x} \in \mathbf{V}, \exists (-\mathbf{x}) \in \mathbf{V} : \mathbf{x} + (-\mathbf{x}) = (-\mathbf{x}) + \mathbf{x} = \mathbf{0};$
- v) $\alpha \cdot (\mathbf{x} + \mathbf{y}) = \alpha \cdot \mathbf{x} + \alpha \cdot \mathbf{y}, \forall \alpha \in K, \mathbf{x}, \mathbf{y} \in V;$
- vi) $(\alpha + \beta) \cdot \mathbf{x} = \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{x}, \forall \alpha, \beta \in K, \mathbf{x} \in V;$
- vii) $\alpha \cdot (\beta \cdot \mathbf{x}) = (\alpha \beta) \cdot \mathbf{x}, \forall \alpha, \beta \in K, \mathbf{x} \in V;$
- viii) $1 \cdot \mathbf{x} = \mathbf{x}, \ \forall \ \mathbf{x} \in V$, unde 1 este elementul unitate din K.

Ansamblul $(V, K, +, \cdot)$ se numește **spațiu liniar** (sau **spațiu vectorial**) peste K. Elementele spațiului liniar V se numesc **vectori**, iar elementele lui K sunt numite **scalari**. Legea de compoziție internă "+" poartă denumirea de **adunare a vectorilor**, iar legea de compoziție externă "·" se numește **înmultire cu scalari**.

Când $K = \mathbb{R}$, V se mai numește **spațiul liniar real**, iar când $K = \mathbb{C}$, V se mai numește **spațiu liniar complex**. Elementul neutru $\mathbf{0} \in V$ se numește **vector nul**, în timp ce vectorul $-\mathbf{x}$ se numește **vectorul opus** lui $\mathbf{x} \in V$.

Primele patru proprietăți din definiția de mai sus afirmă că (V, +) este grup comutativ. Celelalte patru arată legătura între operația externă \cdot și operația internă +. Dacă \mathbf{x} și \mathbf{y} sunt doi vectori, se obișnuiește a se nota $\mathbf{x} - \mathbf{y}$ în loc de $\mathbf{x} + (-\mathbf{y})$ (ca în cazul grupurilor aditive).

Se poate arăta cu uşurință că $(\mathbb{R}, +, \cdot)$ are o structură de spațiu liniar peste \mathbb{R} . Un exemplu mai general este dat de spațiul \mathbb{R}^n , pe care îl vom utiliza destul de des în cadrul acestui curs.

Propoziția 2.2 Fie $n \in \mathbb{N}^*$, fie mulțimea $\mathbb{R}^n = \underbrace{\mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R}}_{n \text{ ori}}$, și fie operațiile $+ : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$, respectiv

 $: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, definite prin

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) := (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n), \forall (x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \in \mathbb{R}^n;$$
$$\alpha \cdot (x_1, x_2, \dots, x_n) := (\alpha x_1, \alpha x_2, \dots, \alpha x_n), \forall \alpha \in \mathbb{R}, (x_1, x_2, \dots, x_n) \in \mathbb{R}^n.$$

Atunci $(\mathbb{R}^n, +, \cdot)$ este spațiu liniar peste corpul \mathbb{R} .

Dacă nu este specificat altfel, vom considera că spațiul \mathbb{R}^n este dotat cu operațiile de mai sus, numite și operații canonice. Dacă $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, atunci vom numi x_1, x_2, \dots, x_n coordonatele lui \mathbf{x} .

Demonstrație: Vom verifica proprietățile care definesc un spațiu liniar peste \mathbb{R} .

Fie $\alpha, \beta \in \mathbb{R}$ şi $\mathbf{x} = (x_1, x_2, \dots, x_n)$, $\mathbf{y} = (y_1, y_2, \dots, y_n)$ şi $\mathbf{z} = (z_1, z_2, \dots, z_n)$ în \mathbb{R}^n . Definim de asemenea $\mathbf{0} = (0, 0, \dots, 0)$, şi $(-\mathbf{x}) = (-x_1, -x_2, \dots, -x_n)$.

i)
$$\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (x_1, \dots, x_n) + ((y_1, \dots, y_n) + (z_1, \dots, z_n)) = (x_1, \dots, x_n) + (y_1 + z_1, \dots, y_n + z_n)$$

$$= (x_1 + y_1 + z_1, \dots, x_n + y_n + z_n) = (x_1 + y_1, \dots, x_n + y_n) + (z_1, \dots, z_n)$$

$$= ((x_1, \dots, x_n) + (y_1, \dots, y_n)) + (z_1, \dots, z_n) = (\mathbf{x} + \mathbf{y}) + \mathbf{z};$$

ii)
$$\mathbf{x} + \mathbf{y} = (x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n) = (y_1 + x_1, \dots, y_n + x_n)$$

= $(y_1, \dots, y_n) + (x_1, \dots, x_n) = \mathbf{y} + \mathbf{x};$

iii)
$$\mathbf{x} + \mathbf{0} = (x_1, \dots, x_n) + (0, \dots, 0) = (x_1, \dots, x_n) = \mathbf{x};$$

iv)
$$\mathbf{x} + (-\mathbf{x}) = (x_1, \dots, x_n) + (-x_1, \dots, -x_n) = (x_1 - x_1, \dots, x_n - x_n) = (0, \dots, 0) = \mathbf{0};$$

v)
$$\alpha \cdot (\mathbf{x} + \mathbf{y}) = \alpha \cdot (x_1 + y_1, \dots, x_n + y_n) = (\alpha(x_1 + y_1), \dots, \alpha(x_n + y_n)) = (\alpha x_1 + \alpha y_1, \dots, \alpha x_n + \alpha y_n)$$

= $(\alpha x_1, \dots, \alpha x_n) + (\alpha y_1, \dots, \alpha y_n) = \alpha \cdot \mathbf{x} + \alpha \cdot \mathbf{y};$

vi)
$$(\alpha + \beta) \cdot \mathbf{x} = (\alpha + \beta) \cdot (x_1, \dots, x_n) = ((\alpha + \beta)x_1, \dots, (\alpha + \beta)x_n) = (\alpha x_1 + \beta x_1, \dots, \alpha x_n + \beta x_n)$$

= $(\alpha x_1, \dots, \alpha x_n) + (\beta x_1, \dots, \beta x_n) = \alpha \cdot (x_1, \dots, x_n) + \beta \cdot (x_1, x_2, \dots, x_n) = \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{x};$

vii)
$$\alpha \cdot (\beta \cdot \mathbf{x}) = \alpha \cdot (\beta \cdot (x_1, x_2, \dots, x_n)) = \alpha \cdot (\beta x_1, \beta x_2, \dots, \beta x_n) = ((\alpha \beta) x_1, (\alpha \beta) x_2, \dots, (\alpha \beta) x_n)$$

= $(\alpha \beta) \cdot (x_1, x_2, \dots, x_n) = (\alpha \beta) \cdot \mathbf{x};$

viii)
$$\mathbf{1} \cdot \mathbf{x} = \mathbf{1} \cdot (x_1, x_2, \dots, x_n) = (1 \cdot x_1, 1 \cdot x_2, \dots, 1 \cdot x_n) = (x_1, x_2, \dots, x_n) = \mathbf{x}.$$

În concluzie, $(\mathbb{R}^n, +, \cdot)$ este un spațiu liniar real.

Exemple de spații liniare

- 1. Fie $m, n \in \mathbb{N}^*$. Atunci mulțimea $\mathcal{M}_{m,n}(\mathbb{R})$ a matricilor cu m linii şi n coloane formează, împreună cu operațiile de adunare a matricilor și de înmulțire a matricilor cu numere reale, un spațiu liniar real.
- 2. Fie $\mathbb{R}[X]$ mulţimea tuturor polinoamelor cu coeficienţi reali. Dacă + notează adunarea polinoamelor, iar · reprezintă înmulţirea polinoamelor cu numere reale, atunci ($\mathbb{R}[X], +, \cdot$) este un spaţiu liniar real.
- 3. Fie X o mulţime nevidă, $(V, +, \cdot)$ un spaţiu liniar şi $\mathcal{F}(X, V) = \{f : X \to V\}$. Dacă definim $+ : \mathcal{F}(X, V) \times \mathcal{F}(X, V) \to \mathcal{F}(X, V)$ şi $\cdot : \mathbb{R} \times \mathcal{F}(X, V) \to \mathcal{F}(X, V)$ prin

$$(f+g)(x) = f(x) + g(x), \forall x \in X f, g \in \mathcal{F}(X, V)$$

$$(\alpha \cdot f)(x) = \alpha \cdot f(x), \forall \alpha \in \mathbb{R}, x \in X, f \in \mathcal{F}(X, V),$$

atunci $(\mathcal{F}(X,V),+,\cdot)$ formează un spațiu liniar peste \mathbb{R} .

Particularizând X și V, obținem diverse exemple de spații vectoriale:

- Dacă $X = \{1, 2, \dots, m\} \times \{1, 2, \dots, n\}$ și $V = \mathbb{R}$, atunci obținem spațiul liniar $(\mathcal{M}_{m,n}(\mathbb{R}), +, \cdot)$.
- Dacă $X \subseteq \mathbb{R}$ și $V = \mathbb{R}$, se obține spațiul liniar $(\mathcal{F}, (X, \mathbb{R})+, \cdot)$ al funcțiilor reale, de o singură variabilă reală, definite pe X.
- Dacă $m, n \in \mathbb{N}^*$, $X \subseteq \mathbb{R}^n$ și $V = \mathbb{R}^m$, atunci $(\mathcal{F}(X, \mathbb{R}^m), +, \cdot)$ este spațiul liniar real al funcțiilor de n variabile cu valori în \mathbb{R}^m .
- Dacă $X = \mathbb{N}$ și $V = \mathbb{R}$, multimea $(\mathcal{F}(X, V), +, \cdot)$ spațiul liniar real al șirurilor de numere reale.

Propoziția 2.3 Fie $(V, +, \cdot)$ un spațiu liniar real. Atunci:

i)
$$0 \cdot \mathbf{x} = \alpha \cdot \mathbf{0} = \mathbf{0}, \ \forall \ \mathbf{x} \in V, \alpha \in \mathbb{R};$$

ii)
$$(-\alpha) \cdot \mathbf{x} = \alpha \cdot (-\mathbf{x}) = -\alpha \cdot \mathbf{x}, \forall \alpha \in \mathbb{R}, \mathbf{x} \in V;$$

iii)
$$(-\alpha) \cdot (-\mathbf{x}) = \alpha \cdot \mathbf{x}, \forall \alpha \in \mathbb{R}, \mathbf{x} \in V;$$

iv)
$$\alpha \cdot \mathbf{x} = \mathbf{0} \Rightarrow \alpha = 0 \text{ sau } \mathbf{x} = \mathbf{0}$$
.

Demonstrație: Fie $\alpha \in \mathbb{R}$ și $\mathbf{x} \in V$.

- i) Avem $0 \cdot \mathbf{x} = (0+0) \cdot \mathbf{x} = 0 \cdot \mathbf{x} + 0 \cdot \mathbf{x}, \ \forall \ \mathbf{x} \in V$, de unde $0 \cdot \mathbf{x} = \mathbf{0}$. (putem scădea $0 \cdot \mathbf{x}$) De asemenea, avem $\alpha \cdot \mathbf{0} = \alpha \cdot (\mathbf{0} + \mathbf{0}) = \alpha \cdot \mathbf{0} + \alpha \cdot \mathbf{0}$, deci $\alpha \cdot \mathbf{0} = \mathbf{0}$.
- ii) $\mathbf{0} = 0 \cdot \mathbf{x} = (\alpha \alpha) \cdot \mathbf{x} = \alpha \cdot \mathbf{x} + (-\alpha) \cdot \mathbf{x} \Rightarrow (-\alpha) \cdot \mathbf{x} = -\alpha \cdot \mathbf{x} \text{ si } \mathbf{0} = \alpha \cdot \mathbf{0} = \alpha \cdot (-\mathbf{x} + \mathbf{x}) = \alpha \cdot (-\mathbf{x}) + \alpha \cdot \mathbf{x} \Rightarrow \alpha \cdot (-\mathbf{x}) = -\alpha \cdot \mathbf{x};$
 - iii) $(-\alpha) \cdot (-\mathbf{x}) = -\alpha \cdot (-\mathbf{x}) = -(-(\alpha \cdot \mathbf{x})) = \alpha \cdot \mathbf{x}$;
- iv) Dacă $\alpha \neq 0$ și $\alpha \cdot \mathbf{x} = \mathbf{0}$, atunci $\mathbf{x} = \mathbf{1} \cdot \mathbf{x} = (\alpha^{-1} \cdot \alpha) \cdot \mathbf{x} = \alpha^{-1} \cdot (\alpha \cdot \mathbf{x}) = \alpha^{-1} \cdot \mathbf{0} = \mathbf{0}$. Altfel, dacă $\alpha = 0$ și \mathbf{x} este arbitrar în V.

Definiția 2.4 Fie $(V, +, \cdot)$ un spațiu liniar și W o submulțime nevidă a lui V. Spunem că $(W, +, \cdot)$ este este subspațiu liniar al lui $(V, +, \cdot)$ dacă pentru orice $\alpha \in \mathbb{R}$, și $\mathbf{x}, \mathbf{y} \in W$, avem $\mathbf{x} + \mathbf{y} \in W$ și $\alpha \cdot \mathbf{x} \in W$.

Exemple:

- 1) Fie $n \in \mathbb{N}^*$. Mulţimea $\{\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid x_1 = 0\}$ este, în raport cu adunarea vectorilor din \mathbb{R}^n şi înmulţirea lor cu scalari din \mathbb{R} , un subspaţiu liniar al lui $(\mathbb{R}^n, +, \cdot)$.
- 2) Fie $n \in \mathbb{N}^*$ și fie $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, nu toți nuli (adică, $(\alpha_1, \ldots, \alpha_2) \neq \mathbf{0}$). Mulțimea

$$H = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid \alpha_1 x_1 + \dots + \alpha_n x_n = 0\}$$

este un subspațiu liniar al lui \mathbb{R}^n , numit hiperplan.

3) Multimea funcțiilor pare, definită prin

$$\{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(x) = f(-x), \forall x \in \mathbb{R}\}\$$

este un subspațiu liniar al spațiului liniar real $(\mathcal{F}(\mathbb{R},\mathbb{R}),+,\cdot)$.

Propoziția 2.5 Fie W_1 și W_2 două subspații liniare ale lui $(V, +, \cdot)$. Atunci

- i) $W_1 \cap W_2$ este tot un subspațiu liniar al lui V.
- ii) $W_1 \cup W_2$ nu este întotdeauna un subspațiu liniar al lui V.

Demonstrație: i) Ținând seama de Propoziția 2.3 și de Definiția 2.4, putem afirma că orice subspațiu liniar al lui V conține vectorul nul $\mathbf{0}$. Așadar $W_1 \cap W_2 \neq \emptyset$.

Fie $x, y \in W_1 \cap W_2$. Cum W_1 și W_2 sunt subspații liniare ale lui $(V, +, \cdot)$, reiese că,

$$\forall \alpha, \beta \in \mathbb{R} \Rightarrow \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{y} \in W_1 \text{ si } \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{y} \in W_2.$$

Deci $\alpha \cdot \mathbf{x} + \beta \cdot \mathbf{y} \in W_1 \cap W_2$, $\forall \alpha, \beta \in \mathbb{R}$, $\forall \mathbf{x}, \mathbf{y} \in W_1 \cap W_2$, adică $W_1 \cap W_2$ este un subspațiu liniar al lui V. ii) Observăm că deși mulțimile $V_1 = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid x_n = 0\}$ și $V_2 = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid x_1 = 0\}$

sunt subspaţii liniare ale lui \mathbb{R}^n , iar vectorii $(1,0,\ldots,0) \in V_1$ şi $(0,0,\ldots,1) \in V_2$, aparţin reuniunii $V_1 \cup V_2$, suma lor, adică vectorul $(1,0,\ldots,0,1)$, nu mai aparţine acestei reuniuni. Deci, în acest caz, reuniunea subspaţiilor liniare V_1 şi V_2 nu este un subspaţiu liniar al lui $V = \mathbb{R}^n$.

Combinații liniare

Definiția 2.6 Fie $(V, +, \cdot)$ un spațiu liniar. O combinație liniară a vectorilor $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in V$, este un vector $\mathbf{y} \in V$, ce se poate scrie astfel

$$\mathbf{x} = \sum_{k=1}^{n} \alpha_k \mathbf{x}_k$$

unde $n \in \mathbb{N}^*$, $iar \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}$.

Definiția 2.7 O submulțime nevidă W a unui spațiu liniar $(V, +, \cdot)$ se numește **subspațiu liniar** al lui V dacă și numai dacă

$$\forall \alpha, \beta \in \mathbb{R}, \mathbf{x}, \mathbf{y} \in W \Rightarrow \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{y} \in W.$$

Definiția 2.8 Fie $(V, +, \cdot)$ un spațiu liniar și U o submulțime nevidă a lui V. Atunci mulțimea tuturor combinațiilor liniare de elemente din U,

$$\{\alpha_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2 + \ldots + \alpha_n\mathbf{x}_n \mid n \in \mathbb{N}^*, \alpha_1, \ldots, \alpha_n \in \mathbb{R}, \mathbf{x}_1, \ldots, \mathbf{x}_n \in U\}$$

se numește subspațiul liniar generat de U, notat Lin(U) sau Span(U).

Se poate constata ușor că Lin(U) este un subspațiu liniar al lui $(V, +, \cdot)$ (de unde și notația), și că are loc $U \subseteq Lin(U)$. Mai mult, se poate demonstra că Lin(U) este cel mai mic subspațiu al lui V, care îl conține pe U.

Exemplu: Dacă $V = \mathbb{R}^3$, subspațiul liniar generat de $U = \{(1, -2, 1)\}$ este dreapta $\{(\alpha, -2\alpha, \alpha) \mid \alpha \in \mathbb{R}\}$.

Liniară dependență și independență

Definiția 2.9 Fie $(V, +, \cdot)$ un spațiu liniar și $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in V$.

a) Elementele $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ se numesc liniar dependente dacă există $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}$, dintre care cel puțin unul nenul, astfel încât

$$\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \ldots + \alpha_n \mathbf{x}_n = \mathbf{0}.$$

b) Elementele $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ se numesc liniar independente dacă ecuația

$$\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \ldots + \alpha_n \mathbf{x}_n = \mathbf{0},$$

are soluție unică $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0.$

c) O submulțime U a lui V se numește liniar independentă dacă pentru orice vectori $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in U$, distincți, $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ sunt liniar independenți.

Observații: O submulțime liniar independentă a unui spațiu liniar nu conține vectorul nul 0.

Teorema 2.10 Vectorii $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ ai unui spațiu liniar sunt liniar dependenți dacă și numai dacă unul dintre vectori se poate scrie ca o combinație liniară a celorlalți.

Demonstraţie: " \Rightarrow :" Într-adevăr, dacă vectorii $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ sunt liniar dependenți, atunci, conform Definiției 2.9, există scalarii $\alpha_1, \alpha_2, \dots, \alpha_n$, nu toți nuli, astfel încât $\sum_{k=1}^n \alpha_k \mathbf{x}_k = \mathbf{0}$. Presupunem că $\alpha_1 \neq 0$, ar reieși atunci

că avem: $\mathbf{x}_1 = -\sum_{k=2}^n (\alpha_1^{-1} \cdot \alpha_k) x_k$. Deci, unul dintre elementele $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$, aici \mathbf{x}_1 , ar fi o combinație liniară de celelalte.

"
$$\Leftarrow$$
:" Dacă $\mathbf{x}_j = \sum_{\substack{k=1\\k\neq j}}^n \beta_k \mathbf{x}_k$, atunci $\mathbf{x}_j - \sum_{\substack{k=1\\k\neq j}}^n \beta_k \mathbf{x}_k = \mathbf{0}$, ceea ce înseamnă că, pentru elementele $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$,

există scalarii $\beta_1, \ldots, \beta_{j-1}, 1, \beta_{j+1}, \ldots, \beta_n$, evident nu toți nuli, așa încât se poate vorbi despre o combinație liniară a respectivelor elemente egală cu vectorul nul.

Exemple:

1. Multimea $\{\mathbf{0}\}$ este liniar dependentă deoarece are loc $\alpha \cdot \mathbf{x} = 0, \forall \alpha \in \mathbb{R}$.

2. Fie spațiul liniar \mathbb{R}^n , și sistemul de vectori

$$B = {\mathbf{e}_1 = (1, 0, \dots, 0), \dots, \mathbf{e}_n = (0, 0, \dots, 1)}.$$

Atunci, sistemul de vectori $\mathbf{e}_1, \dots, \mathbf{e}_n$ este liniar independent.

Într-adevăr, fie $\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \ldots + \alpha_n \mathbf{x}_n = \mathbf{0}$. Atunci avem

$$\alpha_1(1,0,\ldots,0) + \alpha_2(0,1,\ldots,0) + \ldots + \alpha_n(0,0,\ldots,1) = (\alpha_1,\alpha_2,\ldots,\alpha_n).$$

Prin urmare, $(\alpha_1, \alpha_2, \dots, \alpha_n) = \mathbf{0} \Leftrightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0.$

Deci din orice combinație liniară obținem coeficienții nuli.

3. Fie spațiul liniar al tuturor polinoamelor de grad cel mult n. Atunci polinoamele $1, x, x^2, \ldots, x^n$ formează un sistem liniar independent, deoarece

$$\alpha_0 1 + \alpha_2 x + \ldots + \alpha_n x^n = 0$$

are loc doar dacă $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.

Dimensiunea unui spațiu liniar. Bază algebrică. Schimbare de bază

Definiția 2.11 Fie $(V, +, \cdot)$ un spațiu liniar.

- i) Se numește dimensiune (algebrică) a spațiului liniar V numărul maxim de elemente liniar independente din V. Vom nota dimensiunea spațiului V cu dim(V).
- ii) Spaţiul liniar V este numit **infinit-dimensional** dacă există cel puţin o submulţime infinită şi liniar independentă a lui V. În caz contrar, V este numit **spaţiu liniar finit-dimensional**.

Exemple:

- 1. $\dim_{\mathbb{R}}(\mathbb{R}^n) = n;$
- 2. $\dim_{\mathbb{R}} \mathcal{M}_{m,n}(\mathbb{R}^n) = m \cdot n$.

Definiția 2.12 Fie $(V, +, \cdot)$ un spațiu liniar și fie B o submulțime nevidă a lui V.

Se numește bază algebrică sau bază Hamel (sau, mai simplu bază) a lui V dacă B este o submulțime liniar independentă și Lin(B) = V.

În cazul unui spațiu liniar n-dimensional V, o bază a lui V este o mulțime B alcătuită din n elemente, $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n$, liniar independente, din V. Fiecare element $\mathbf{x} \in V$ se reprezintă atunci, în mod unic, sub forma

$$\mathbf{x} = \sum_{k=1}^{n} \alpha_k \mathbf{b}_k.$$

Scalarii $\alpha_1, \ldots, \alpha_n$ se numesc **coordonatele lui x în baza** B.

Orice bază a unui spațiu liniar V are un număr de vectori egal cu dimensiunea lui V. Altfel spus, dim(V) nu depinde de baza lui V.

Dacă notăm cu X_B matricea coloană $X_B \stackrel{not}{=} \left[\begin{array}{c} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{array} \right] \in \mathcal{M}_{n,1}, \text{ unde } \alpha_1, \dots, \alpha_n \text{ sunt coordonatele lui } \mathbf{x} \text{ în baza } B,$

și cu $\tilde{B} \stackrel{not}{=} [\mathbf{b}_1^T \ \mathbf{b}_2^T \ \dots \ \mathbf{b}_n^T] \in \mathcal{M}_n$ matricea ce are pe coloana k coordonatele vectorului \mathbf{b}_k , atunci relația $\mathbf{x} = \sum_{k=1}^n \alpha_k \mathbf{b}_k$ se poate reda, matriceal, sub forma:

$$\mathbf{x}^T = \tilde{B} \cdot X_B = [\mathbf{b}_1^T \ \mathbf{b}_2^T \dots \mathbf{b}_n^T] \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}.$$

Teorema 2.13 Fie $n \in \mathbb{N}^*$. Atunci mulţimea $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\} \subseteq \mathbb{R}^n$, este o bază a lui \mathbb{R}^n , numită baza canonică a lui \mathbb{R}^n .

Demonstrație: Multimea $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\} \subseteq \mathbb{R}^n$ este liniar independentă (a se vedea Exemplul 2.). Arătăm că $Lin(\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}) = \mathbb{R}^n$.

Fie $\mathbf{x} \in \mathbb{R}^n$ arbitrar, $\mathbf{x} = (x_1, x_2, \dots, x_n)$. Atunci

$$x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + \ldots + x_n\mathbf{e}_n = x_1(1, 0, \ldots, 0) + x_2(0, 1, \ldots, 0) + \ldots + x_n(0, 0, \ldots, 1)$$
$$= (x_1, 0, \ldots, 0) + (0, x_2, \ldots, 0) + \ldots + (0, 0, \ldots, x_n) = (x_1, x_2, \ldots, x_n) = \mathbf{x}.$$

Prin urmare, $Lin(\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}) = \mathbb{R}^n$.

Propoziția 2.14 Fie $(V, +, \cdot)$ un spațiu liniar cu dim(V) = n. Atunci

- 1. Orice multime de m elemente din V, cu m > n, este liniar dependentă;
- 2. Orice mulțime de n elemente din V este bază a lui V dacă și numai dacă este mulțime liniar independentă.
- 3. Orice mulțime de n vectori din V este bază a lui V dacă și numai dacă mulțimea este un sistem de generatori al lui V.

Exemplu: Să se arate că mulțimea $\mathcal{B} = \{v_1 = (1, 0, -1), v_2 = (2, 1, 0), v_3 = (0, 1, 1)\}$ este o bază a spațiului vectorial \mathbb{R}^3 . Determinați coordonatele vectorului v = (1, 2, 3) în această bază.

Soluție: Cum mulțimea \mathcal{B} are 3 elemente, iar $\dim_{\mathbb{R}}(\mathbb{R}^3) = 3$, este suficient să arătăm, conform Propoziției 2.14, că \mathcal{B} este o mulțime liniar independentă.

Fie $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ astfel încât $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = 0_{\mathbb{R}^3} \Rightarrow \alpha_1(1,0,-1) + \alpha_2(2,1,0) + \alpha_3(0,1,1) = (0,0,0)$. Atunci, utilizând proprietățiile operațiilor "+" și "·" pe mulțimea \mathbb{R}^3 , deducem:

$$\begin{cases} \alpha_1 + 2\alpha_2 = 0 \\ \alpha_2 + \alpha_3 = 0 \\ -\alpha_1 + \alpha_3 = 0. \end{cases}$$

Avem astfel un sistem liniar și omogen de trei ecuații cu trei necunoscute. Deoarece determinantul

$$\Delta = \left| \begin{array}{ccc} 1 & 2 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{array} \right| = -1 \neq 0,$$

este nenul, rezultă că sistemul omogen are soluția banală $\alpha_1 = \alpha_2 = \alpha_3$. Așadar, vectorii mulțimii \mathcal{B} sunt liniar independenți și deci mulțimea \mathcal{B} formează o bază.

Pentru a doua parte a exercițiului, trebuie să determinăm scalarii $\beta_1, \beta_2, \beta_3$ cu proprietatea că

$$v = \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3.$$

Rezolvând sistemul

$$\begin{cases} \beta_1 + 2\beta_2 = 1\\ \beta_2 + \beta_3 = 2\\ -\beta_1 + \beta_3 = 3, \end{cases}$$

obţinem soluţia $\beta_1 = -3, \beta_2 = 2, \beta_3 = 0$. Aşadar, coordonatele vectorului v = (1, 2, 3) în baza \mathcal{B} sunt (-3, 2, 0).

Definiția 2.15 Se numește **rang al unei mulțimi** U, de vectori din spațiul vectorial $(V, +, \cdot)$, dimensiunea subspațiului generat de U, adică dim (Lin(U)) și se notează cu rang(U).

Observație: Dacă V este un spațiu liniar n-dimensional, atunci orice mulțime de n vectori liniar independenți din V este o bază a lui V și, de asemenea, orice sistem de n vectori din V care generează spațiul liniar V alcătuiește o bază a lui V.

Definiția 2.16 Fie $(V, +, \cdot)$ un spațiu liniar cu $dim(V) = n \in \mathbb{N}^*$, fie $B = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ o bază a lui V și fie $B' = \{\mathbf{b}'_1, \mathbf{b}'_2, \dots, \mathbf{b}'_m\}$ o mulțime de m vectori din V

Se numește matrice de trecere (schimbare) de la baza B la sistemul de vectori B' matricea

$$S = \begin{pmatrix} s_{11} & s_{12} & \dots & s_{1m} \\ s_{21} & s_{22} & \dots & s_{2m} \\ \vdots & \vdots & \dots & \vdots \\ s_{n1} & s_{n2} & \dots & s_{nm} \end{pmatrix} \in \mathcal{M}_{n,m}$$

unde, pentru $1 \le k \le m$, s_{1k}, \ldots, s_{nk} , sunt coordonatele vectorului \mathbf{b}'_k , în raport cu $\mathbf{b}_1, \ldots, \mathbf{b}_n$. Cu alte cuvinte, s_{ij} sunt astfel încât

$$\begin{cases} \mathbf{b}'_{1} &= s_{11}\mathbf{b}_{1} + s_{21}\mathbf{b}_{2} + \ldots + s_{n1}\mathbf{b}_{n} \\ \mathbf{b}'_{2} &= s_{12}\mathbf{b}_{1} + s_{22}\mathbf{b}_{2} + \ldots + s_{n2}\mathbf{b}_{n} \\ \vdots &\vdots &\vdots \\ \mathbf{b}'_{m} &= s_{1m}\mathbf{b}_{1} + s_{2m}\mathbf{b}_{2} + \ldots + s_{nm}\mathbf{b}_{n} \end{cases}$$

Din punct de vedere formal, putem scrie $B' = \tilde{B} \cdot S$, unde $B' = [\mathbf{b}_1' \ \mathbf{b}_2' \dots \mathbf{b}_m']$ şi $\tilde{B} = [\mathbf{b}_1 \ \mathbf{b}_2 \dots \mathbf{b}_n]$.

Propoziția 2.17 Fie $(V, +, \cdot)$ un spațiu liniar finit-dimensional, cu dim $V = n \in \mathbb{N}^*$. Dacă $B = \{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$, $B' = \{\mathbf{b}'_1, \ldots, \mathbf{b}'_n\}$ sunt două baze a lui V, iar S este matricea de trecere de la B la B', atunci matricea S este nesingulară (adică cu determinantul diferit de 0) şi S^{-1} este matricea de trecere de la B' la B (adică $B = B' \cdot S^{-1}$).

Mai mult, dacă $\mathbf{x} \in V$, iar $\alpha_1, \dots, \alpha_n, \alpha'_1, \dots, \alpha'_n$ sunt coordonatele lui \mathbf{x} în raport cu $\mathbf{b}_1, \dots, \mathbf{b}_n$, respectiv $\mathbf{b}'_1, \dots, \mathbf{b}'_n$, atunci

$$X_{B'} = S^{-1} \cdot X_B,$$

unde
$$X_B \stackrel{not}{=} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathcal{M}_{n,1}, \ iar \ X_{B'} \stackrel{not}{=} \begin{bmatrix} \alpha'_1 \\ \vdots \\ \alpha'_n \end{bmatrix} \in \mathcal{M}_{n,1}.$$

Definiția 2.18 Fie $(V, +, \cdot)$ un spațiu liniar, finit-dimensional și două baze ale sale, B și B'. Spunem că **bazele** B și B' sunt **la fel orientate** dacă determinantul matricii S de trecere de la B la B' este pozitiv. Bazele B și B' se numesc **contrar orientate** dacă $\det(S) < 0$.

Produs scalar. Norme în \mathbb{R}^n

Definiția 2.19 Fie $(V, +, \cdot)$ un spațiu vectorial.

- a) Se numeste produs scalar pe V o aplicație $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$, care satisface următoarele proprietăți:
 - PS1) $\langle \cdot, \cdot \rangle$ este **pozitiv definită**, adică

$$i. \ \langle \mathbf{x}, \mathbf{x} \rangle \geqslant 0, \ \forall \, \mathbf{x} \in V \ \text{si}$$

ii.
$$\langle \mathbf{x}, \mathbf{x} \rangle = 0$$
, dacă și numai dacă $\mathbf{x} = \mathbf{0} \in V$;

 $PS2) \langle \cdot, \cdot \rangle$ este **simetrică**, adică

i.
$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle, \ \forall \ \mathbf{x}, \mathbf{y} \in V;$$

 $PS3) \langle \cdot, \cdot \rangle$ este **biliniară**, adică

i.
$$\langle \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle$$
, şi

ii.
$$\langle \mathbf{x}, \alpha \cdot \mathbf{y} + \beta \cdot \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle + \beta \langle \mathbf{x}, \mathbf{z} \rangle, \ \forall \alpha, \beta \in \mathbb{R}, \mathbf{x}, \mathbf{y}, \mathbf{z} \in V.$$

b) Cvadruplul $(V, +, \cdot, \langle \cdot, \cdot \rangle)$, în care $(V, +, \cdot)$ este un spațiu liniar, iar $\langle \cdot, \cdot \rangle$ este un produs scalar pe V se numește **spațiu prehilbertian**. Pentru simplitate, vom nota $(V, \langle \cdot, \cdot \rangle)$ în loc de $(V, +, \cdot, \langle \cdot, \cdot \rangle)$.

Propoziția 2.20 Fie $n \in \mathbb{N}^*$ și $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ definită prin

$$\langle (x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \rangle := x_1 y_1 + x_2 y_2 + \dots + x_n y_n, \quad \forall (x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \in \mathbb{R}^n,$$

Atunci $\langle \cdot, \cdot \rangle$ este un produs scalar pe \mathbb{R}^n , numit **produsul scalar euclidian**(canonic).

Demonstrația acestui rezultat este imediată și este lăsată ca exercițiu. Dacă nu este precizat altfel, spațiul \mathbb{R}^n va fi întotdeauna considerat ca dotat cu produsul scalar euclidian.

Definiția 2.21 Fie $(V, \langle \cdot, \cdot \rangle)$ un spațiu prehilbertian.

- 1) Doi vectori $\mathbf{x} \in V$ și $\mathbf{y} \in V$ se numesc **ortogonali**, și notăm $\mathbf{x} \perp \mathbf{y}$ dacă $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.
- 2) Fie $\mathbf{x} \in V$ şi U o submulțime nevidă a lui V. Spunem \mathbf{x} este **ortogonal pe mulțimea** $U(\text{notăm } \mathbf{x} \perp U)$, $dacă \langle \mathbf{x}, \mathbf{y} \rangle = 0, \ \forall \mathbf{y} \in U$.
- 3) Dacă U este o submulțime nevidă a lui V, numim U sistem ortogonal dacă $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, $\forall \mathbf{x}, \mathbf{y} \in U$, cu $\mathbf{x} \neq \mathbf{y}$.
- 4) Dacă $U \subseteq V$, atunci prin **suplimentul ortogonal al lui** U, înțelegem mulțimea tuturor vectorilor ortogonali pe U. Altfel scris

$$U^{\perp} := \{ \mathbf{x} \in V \mid \mathbf{x} \perp U \}$$

Definiția 2.22 $Fie(V, +, \cdot, \langle \cdot, \cdot \rangle)$ un spațiu euclidian și $\mathbf{x}, \mathbf{y} \in V \setminus \{\mathbf{0}\}$. Unghiul dintre vectorii \mathbf{x} și \mathbf{y} , notat prin $\sphericalangle(\mathbf{x}, \mathbf{y})$ sau $\widehat{(\mathbf{x}, \mathbf{y})}$, se definește prin relația:

$$\widehat{(\mathbf{x},\mathbf{y})} = \arccos \frac{\langle \mathbf{x},\mathbf{y} \rangle}{\sqrt{\langle \mathbf{x},\mathbf{x} \rangle} \sqrt{\langle \mathbf{y},\mathbf{y} \rangle}}.$$

Observaţie: Se poate observa cu uşurință că $\widehat{(\mathbf{x},\mathbf{y})} = \widehat{(\mathbf{y},\mathbf{x})} \in [0,\pi], \forall \mathbf{x},\mathbf{y} \in V \setminus \{0\}$. Mai mult, dacă $\mathbf{x},\mathbf{y} \in V \setminus \{0\}, \widehat{(\mathbf{x},\mathbf{y})} = \frac{\pi}{2}$, dacă și numai dacă $\mathbf{x}\perp\mathbf{y}$.

Definiția 2.23 Fie $(V, +, \cdot)$ un spațiu liniar real. Spunem că aplicația $\|\cdot\|: V \to \mathbb{R}$ este o **normă** pe V dacă

- $N1) \|\mathbf{x}\| \geqslant 0, \, \forall \, \mathbf{x} \in V$
- N2) $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$:
- *N3*) $\|\alpha \cdot \mathbf{x}\| = |\alpha| \|\mathbf{x}\|, \ \forall \alpha \in \mathbb{R}, \ \forall \mathbf{x} \in V \ (omogenitate);$
- N_4) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|, \ \forall \mathbf{x}, \mathbf{y} \in V (inegalitatea \ triunghiulară).$

Perechea $(V, \|\cdot\|)$ se numește **spațiu normat**.

Propoziția 2.24 Fie $n \in \mathbb{N}^*$. Norma indusă de produsul scalar euclidian pe \mathbb{R}^n , definită prin

$$\|\mathbf{x}\|_{2} = \sqrt{x_{1}^{2} + x_{2}^{2} + \ldots + x_{n}^{2}} = \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}, \forall \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} = (x_{1}, x_{2}, \ldots, x_{n}),$$

se numește norma euclidiană.

Demonstrație: Se verifică axiomele *N1*)-*N4*) din Definiția 2.23:

N1):
$$\|\mathbf{x}\|_2 = \left(\sum_{k=1}^n x_i^2\right)^{1/2} \geqslant 0, \, \forall \, \mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n;$$

N2):
$$\|\mathbf{x}\|_2 = 0 \Leftrightarrow \sum_{k=1}^n x_i^2 = 0 \Leftrightarrow x_1 = x_2 = \dots = x_n = 0 \Leftrightarrow \mathbf{x} = \mathbf{0};$$

N3):
$$\|\alpha \cdot \mathbf{x}\|_2 = \left(\sum_{k=1}^n \alpha^2 x_i^2\right)^{1/2} = |\alpha| \left(\sum_{k=1}^n x_i^2\right)^{1/2} = |\alpha| \|\mathbf{x}\|, \ \forall \alpha \in \mathbb{R}, \ \forall \mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n;$$

N4): aplicând inegalitatea lui Minkowski, pentru p = 2, obțin concluzia.

Propoziția 2.25 Fie $(V, \langle \cdot, \cdot \rangle)$ un spațiu prehilbertian. Atunci aplicația $\| \cdot \| : V \to \mathbb{R}$ definită de

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}, \forall \, \mathbf{x} \in V$$

este o normă pe V numită **norma indusă de produsul scalar** $\langle \cdot, \cdot \rangle$.

Demonstrație: Proprietățile N1) – N3) sunt evidente. Vom demonstra proprietatea N4). Fie $\mathbf{x}, \mathbf{y} \in V$. Cum produsul scalar este biliniar și simetric, vom putea scrie

$$\langle \mathbf{x} + \lambda \mathbf{y}, \mathbf{x} + \lambda \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + 2\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle = \|\mathbf{x}\|^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2, \forall \lambda \in \mathbb{R}.$$
(1)

Însă, $\langle \mathbf{x} + \lambda \mathbf{y}, \mathbf{x} + \lambda \mathbf{y} \rangle \geq 0, \forall \lambda \in \mathbb{R}$. Prin urmare, discriminantul ecuației de gradul II, în λ este negativ, adică

$$\Delta = \langle \mathbf{x}, \mathbf{y} \rangle^2 - \|\mathbf{x}\| \cdot \|\mathbf{y}\| \le 0.$$

Aşadar, $\langle \mathbf{x}, \mathbf{y} \rangle^2 \leq ||\mathbf{x}|| \cdot ||\mathbf{y}||$ (inegalitate cunoscută sub numele de *Inegalitatea lui Schwarz*). Dacă luăm $\lambda = 1$ în (1), vom obține

$$\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle = \|\mathbf{x}\|^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2 < \|\mathbf{x}\|^2 + 2\|\mathbf{x}\| \cdot \|\mathbf{y}\| + \|\mathbf{y}\|^2 = (\|\mathbf{x}\| + \|\mathbf{y}\|)^2.$$

Deci, inegalitatea triunghiulară are loc.

Observație: Există și norme neinduse de vreun produs scalar.

Definiția 2.26 Fie $(V, \|\cdot\|)$ un spațiu normat și $\mathbf{x} \in V$. Elementul \mathbf{x} se numește **versor** dacă $\|\mathbf{x}\| = 1$.

Baze ortonormate. Procedeul de ortonormalizare Gram-Schmidt

Definiția 2.27 Fie $(V, \langle \cdot, \cdot \rangle)$ un spațiu prehilbertian.

- a) O submulțime nevidă $U \subseteq V$ se numește sistem ortonormal dacă U este un sistem ortogonal și fiecare element al lui U este un versor.
- b) Dacă B este o bază a lui V și B este un sistem ortogonal, atunci B se numește bază ortogonală a lui V.
- c) Dacă B este o bază a lui V și B este un sistem ortonormal, atunci B se numește bază ortonormală a lui V.

Cu alte cuvinte, U este un sistem ortonormal dacă și numai dacă, pentru orice $\mathbf{x}, \mathbf{y} \in U$

$$\langle \mathbf{x}, \mathbf{y} \rangle = \begin{cases} 0, & \text{când } \mathbf{x} \neq \mathbf{y} \\ 1, & \text{când } \mathbf{x} = \mathbf{y} \end{cases}$$

Bineînteles, baza canonică $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$, a lui \mathbb{R}^n , este o bază ortonormală a lui \mathbb{R}^n .

Definiția 2.28 Fie $(V, \langle \cdot, \cdot \rangle)$ un spațiu prehilbertian de dimensiune $n \in \mathbb{N}^*$ şi fie $B = \{\mathbf{b}_1, \mathbf{b}_2, \dots \mathbf{b}_n\}$ o bază a lui V. Se numește **determinantul Gram** asociat unei baze B, numărul $\det G \in \mathbb{R}$, unde

$$G = \begin{pmatrix} \langle \mathbf{b}_{1}, \mathbf{b}_{1} \rangle & \langle \mathbf{b}_{1}, \mathbf{b}_{2} \rangle & \dots & \langle \mathbf{b}_{1}, \mathbf{b}_{n} \rangle \\ \langle \mathbf{b}_{2}, \mathbf{b}_{1} \rangle & \langle \mathbf{b}_{2}, \mathbf{b}_{2} \rangle & \dots & \langle \mathbf{b}_{2}, \mathbf{b}_{n} \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle \mathbf{b}_{n}, \mathbf{b}_{1} \rangle & \langle \mathbf{b}_{n}, \mathbf{b}_{2} \rangle & \dots & \langle \mathbf{b}_{n}, \mathbf{b}_{n} \rangle \end{pmatrix} \in \mathcal{M}_{n}(\mathbb{R})$$

$$(2)$$

Se poate observa că G este o matrice simetrică și nesingulară. Într-adevăr, dacă notăm $g_{ij} = \langle \mathbf{b}_i, \mathbf{b}_j \rangle$, pentru $1 \leq i, j \leq n$, atunci a rezolva sistemul omogen cu n ecuații și n necunoscute

$$\begin{cases}
g_{11}x_1 + g_{12}x_2 + \dots + g_{1n}x_n = 0 \\
\dots \\
g_{n1}x_1 + g_{n2}x_2 + \dots + g_{nn}x_n = 0
\end{cases}$$
(3)

revine la a găsi $\mathbf{x} = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + \ldots + x_n \mathbf{b}_n$, astfel încât $\langle \mathbf{b}_1, \mathbf{x} \rangle = 0, \ldots \langle \mathbf{b}_n, \mathbf{x} \rangle = 0$, adică $\mathbf{x} \perp B$. Deoarece $B^{\perp} = Lin(B)^{\perp} = V^{\perp} = \{\mathbf{0}\}$, \mathbf{x} nu poate fi decât $\mathbf{0}$, ceea ce înseamnă, datorită liniarei independențe a vectorilor $\mathbf{b}_1, \ldots, \mathbf{b}_n$, că sistemul (3) are doar soluția trivială, deci G este inversabilă.

Dacă $\mathbf{x}, \mathbf{y} \in V$ iar $\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n$ sunt coordonatele vectorului \mathbf{x} , respectiv \mathbf{y} , în raport cu $\mathbf{b}_1, \dots, \mathbf{b}_n$, atunci

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \beta_j \langle \mathbf{b}_i, \mathbf{b}_j \rangle = X_B^T \cdot G \cdot Y_B,$$

unde
$$X_B = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$$
, iar $Y_B = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$.

Vom spune că baza B este ortogonală, respectiv ortonormală dacă și numai dacă matricea G este diagonală, adică $g_{ij} = 0, \forall i, j \in \{1, n\}, i \neq j$, respectiv dacă G este matricea unitate I_n .

Teorema 2.1 (Procedeul de ortonormalizare Gram-Schmidt)

Fie $(V, \langle \cdot, \cdot \rangle)$ un spaţiu prehilbertian de dimensiune $n \in \mathbb{N}^*$. Dacă $B = \{\mathbf{b}_1, \dots \mathbf{b}_n\}$ este o bază a lui V, atunci există o bază ortonormală $B' = \{\mathbf{b}'_1, \dots, \mathbf{b}'_n\}$, astfel încât $Lin(\{\mathbf{b}_1, \dots \mathbf{b}_k\}) = Lin(\{\mathbf{b}'_1, \dots, \mathbf{b}'_k\})$, pentru orice $k \in \{1, 2, \dots, n\}$.

Demonstrație: Fie $(V, \langle \cdot, \cdot \rangle)$ un spațiu prehilbertian n-dimensional și $B = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ o bază a lui. Plecând de la B, se poate construi o bază $B' = \{\mathbf{b}'_1, \mathbf{b}'_2, \dots, \mathbf{b}'_n\}$, ortogonală, a aceluiași spațiu V, utilizând algoritmul lui Gram-Schmidt, după cum urmează:

- 1. Pasul 1: $\mathbf{b}'_1 = \mathbf{b}_1$.
- 2. Pasul 2: Se determină scalarul $\lambda_1 \in \mathbb{R}$, așa încât vectorul $\mathbf{b}_2' = \mathbf{b}_2 + \lambda_1 \mathbf{b}_1'$ să fie ortogonal pe \mathbf{b}_1' , adică să avem $0 = \langle \mathbf{b}_1', \mathbf{b}_2 \rangle + \lambda_1 \langle \mathbf{b}_1', \mathbf{b}_1' \rangle$. Rezultă $\lambda_1 = -\frac{\langle \mathbf{b}_1', \mathbf{b}_2 \rangle}{\langle \mathbf{b}_1', \mathbf{b}_1' \rangle}$. Astfel,

$$\mathbf{b}_2' = \mathbf{b}_2 - rac{\langle \mathbf{b}_1', \mathbf{b}_2
angle}{\langle \mathbf{b}_1', \mathbf{b}_1'
angle} \mathbf{b}_1'.$$

3. Pasul 3: Se caută scalarii μ_1 și μ_2 din \mathbb{R} , așa încât $\mathbf{b}_3' = \mathbf{b}_3 + \mu_1 \mathbf{b}_1' + \mu_2 \mathbf{b}_2'$ să fie ortogonal pe sistemul $\{\mathbf{b}_1', \mathbf{b}_2'\}$, adică să avem $\langle \mathbf{b}_3', \mathbf{b}_1' \rangle = 0$ și $\langle \mathbf{b}_3', \mathbf{b}_2' \rangle = 0$.

Găsim
$$\mu_1 = -\frac{\langle \mathbf{b}_1', \mathbf{b}_3 \rangle}{\langle \mathbf{b}_1', \mathbf{b}_1' \rangle}$$
 și $\mu_2 = -\frac{\langle \mathbf{b}_2', \mathbf{b}_3 \rangle}{\langle \mathbf{b}_2', \mathbf{b}_2' \rangle}$. Prin urmare, avem:

$$\mathbf{b}_3' = \mathbf{b}_3 - \frac{\langle \mathbf{b}_1', \mathbf{b}_3 \rangle}{\langle \mathbf{b}_1', \mathbf{b}_1' \rangle} \mathbf{b}_1' - \frac{\langle \mathbf{b}_2', \mathbf{b}_3 \rangle}{\langle \mathbf{b}_2', \mathbf{b}_2' \rangle} \mathbf{b}_2'.$$

4. Pasul k: Continuând procedeul, obținem formula generală:

$$\mathbf{b}_k' = \mathbf{b}_k - \sum_{i=1}^{k-1} \frac{\langle \mathbf{b}_i', \mathbf{b}_k \rangle}{\langle \mathbf{b}_i', \mathbf{b}_i' \rangle} \mathbf{b}_i', k = \overline{2, n}.$$

Aşadar, am găsit baza ortogonală B'. În cele din urmă, pentru a obține o bază ortonormată, vom considera $B'' = \{\mathbf{b}_1'', \mathbf{b}_2'', \dots, \mathbf{b}_n''\}$, unde $\mathbf{b}_k'' = \frac{\mathbf{b}_k'}{\|\mathbf{b}_k'\|}$, $k = \overline{1, n}$, iar $\|\cdot\|$ este norma indusă de produsul scalar $\langle \cdot, \cdot \rangle$, considerat pe V.

Observație: O consecință importantă a acestui rezultat este că orice spațiu prehilbertian finit dimensional admite o bază finit dimensională.

Bibliografie orientativă

- [1] D. Buşneag, D. Piciu Lecții de algebră, Ed. Universitaria, Craiova, 2002.
- [2] Rodica Luca-Tudorache Analiză matematică, Editura Tehnopress, Iași, 2005.
- [3] Mihai Onucu Drâmbe Inegalități. Idei și metode., Ed. GIL, Zalău, 2003.
- [4] S. Burris, H. P. Sankappanavar A Course in Universal Algebra, The Millenium Edition, 2000.
- [5] F. L. Tiplea Introducere în teoria multimilor, Ed. Univ. "Al. I. Cuza", Iași, 1998.
- [6] T. Albu, I.D. Ion Itinerar elementar in algebra superioară, Matrix Rom București, 2012.
- [7] J. Harcet, L Heinrichs, P. M. Seiler Mathematics. Higher Lever, Oxford Univ. Press, 2012.
- [8] R. Solomon Notes on Ordinals and Cardinals, math.uconn.edu, 2014.