Створення функціональних покриттів на сталі 45 пошаровим електроіскровим легуванням хромом, вольфрамом та графітом

Виконав: студент групи ФМ-31

Богомаз Р.Д.

Керівник: к.т.н. Лобачова Г.Г.

Актуальність

Мета роботи

Дослідження

- структури,
- фазового складу
- та властивостей покриттів

одержаних пошаровим нанесенням

- вольфраму,
- хрому
- та графіту

на поверхню сталі 45 в процесі електроіскрового легування.

Методика дослідження

- Мікроструктурний аналіз
- Гравіметричний аналіз
- Рентгеноструктурний аналіз
- Мікродюрометричний аналіз
- Випробування на зносостійкість

Методика експерименту

Режим роботи

- Сила струму: 2 А;
- Напруга: 60 В;
- Час легування: 9 хв (3 хв на етап);
- Середовище: повітря.

Запропоновані схеми легування

Cr-W-C

W-Cr-C

■ W-C-Cr

C-Cr-W

Мікроструктурний аналіз

Гравіметричний аналіз

Гравіметричний аналіз

Ефективність процесу утворення зміненої поверхні

$$Y_{t_X} = \bar{K}_{t_X} \cdot t_X \cdot \sum_{t=0}^{t_X} \Delta m_t^k$$

$$Y_{t_{cr}} = \bar{K}_{t_{cr}} \cdot t_{cr} \cdot \sum_{t=0}^{t_{cr}} \Delta m_t^k$$
(1)

$$Y_{t_{cr}} = \bar{K}_{t_{cr}} \cdot t_{cr} \cdot \sum_{t=0}^{t_{cr}} \Delta m_t^k$$
 (2)

Дифрактограма зразка Cr-W-C

Фазовий склад

ε-F₃C, Cr₃C₂, C(графіт)

Дифрактограма зразка W-Cr-C

Фазовий склад

WC, W2C, Fe3C

Дифрактограма зразка W-C-Cr

Фазовий склад

Cr, W₂C, WC, CrC

Дифрактограма зразка C-Cr-W

Фазовий склад

Fe₃C, CrC, W₂C

Мікродюрометричний аналіз

Випробування на зносостійкість

Порівняння отриманих властивостей

Порівняння максимальної мікротвердості та зносостійкості

15/16

висновки

Встановлено можливість створення

функціональних покриттів товщиною 15-30 мкм на поверхні сталі 45 в процесі пошарового ЕІЛ W-, Cr-, С-анодами.

Встановлено підвищення поверхневої мікротвердості

сталі 45 від 11,5 ГПа до 18,9 ГПа після нанесення електроіскрових покриттів за всіма запропонованими схемами за рахунок наявності твердих розчинів матеріалів електродів та карбідів WC, W_2 C, Fe_3 C, Cr_3 C $_2$, CrC.

Виявлено, що зносостійкість покриттів

зростає в ряду C-Cr-W \to W-C-Cr \to W-Cr-C \to Cr-W-C у 2,9-23 рази у порівнянні з необробленою поверхнею сталі 45.

Найвищу зносостійкість має покриття Cr-W-C за рахунок наявності вільного графіту.