3 Isolierte Singularitäten

3.1 Klassifikation und Laurentreihe

Definition 3.1.

Beispiel 3.2.

Theorem 3.3.

Beispiel 3.4.

Theorem 3.5.

Bemerkung. (a) Man kann in Theorem 3.5 auf die Voraussetzung des Zusammenhangs verzichten.

(b) todo

Zusatz zu Theorem 3.5: Wenn $f: D \to f(D)$ biholomorph, dann gilt nach Satz 1.8(a):

$$f'(z) \neq 0 \quad (\forall z \in D), \qquad (f^{-1})'(w) = \frac{1}{f'(f^{-1}(w))} \quad (w \in f(D)).$$

Seien $a_n \in \mathbb{C}$ $(n \in \mathbb{Z})$ und $z_0 \in \mathbb{C}$ gegeben. Wir sagen, dass die Laurentreihe

$$\sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$$

für ein $z \in \mathbb{C}$ konvergiert, wenn ihr regulärer Anteil

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$

und ihr singulärer Anteil

$$\sum_{n=1}^{\infty} a_{-n} (z - z_0)^{-n}$$

konvergiert. Die Laurentreihe ist dann die Summe der beiden Anteile. Entsprechend definiert man absolute beziehungsweise gleichmäßige Konvergenz auf Kompakta.

Theorem 3.6 (Laurent). Seien $f \in H(D)$, $z_0 \in \mathbb{C}$, R > 0 mit $D_0 = B(z_0, R) \setminus \{z_0\} \subseteq D$. Für $\rho \in (0, R)$, setze $K_\rho = \partial B(z_0, \rho)$ und

$$a_n = \frac{1}{2\pi i} \int_{K_\rho} \frac{f(w)}{w - z_0)^{n+1}} dw, \quad n \in \mathbb{Z}$$
 (3.1)

Dann gilt:

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n \ f \ddot{u} r \ z \in D_0$$
 (3.2)

mit absoluter und gleichmäßiger Konvergenz auf Kompakta in D_0 . Die Koeffizienten a_n sind dabei eindeutig bestimmt, insbesondere sind sie unabhängig von ρ .

Beweis. 1) Existenz: Sei $K \subseteq D_0$ kompakt. Dann existieren

$$0 < s < s + \delta < r - \delta < r < R \text{ mit } s + \delta \le |z - z_0| \le r - \delta, \quad \forall z \in K$$

(vgl. den Beweis von Theorem 2.25). Wähle ein $z \in K$. Setze

$$\theta = \arg(z - z_0), \quad S_{\varphi} = \{z_0 + te^{i\varphi}, \ s \le t \le r\}$$

für $\varphi \in \mathbb{R}$ und

$$K_{\sigma}^{1} = \left\{ z = z_{0} + \sigma e^{i\alpha} : \theta - \frac{\pi}{2} \le \alpha \le \theta + \frac{\pi}{2} \right\}, \quad K_{\sigma}^{2} = K_{\sigma} \setminus K_{\sigma}^{1}, \quad \sigma = s, r.$$

Setze weiter

$$\Gamma_{1} = K_{r}^{1} + (-S_{\theta + \frac{\pi}{2}}) + (-K_{s}^{1}) + S_{\theta - \frac{\pi}{2}},$$

$$\Gamma_{2} = K_{r}^{2} + (-S_{\theta - \frac{\pi}{2}}) + (-K_{s}^{2}) + S_{\theta + \frac{\pi}{2}}.$$
(*)

Beachte: Es gilt: $n(\Gamma_1, z) = 1$, $n(\Gamma_2, z) = 0$, sowie

$$\Gamma_1 \subseteq D_1 := D_0 \setminus S_{\theta + \pi}, \quad \Gamma_2 \subseteq D_2 := D_0 \setminus S_{\theta - \frac{\pi}{4}}$$

und D_1 und D_2 sind sternförmig.

Die (CIF) auf D_1 beziehungsweise D_2 liefert:

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_1} \frac{f(w)}{w - z} dw + \frac{1}{2\pi i} \underbrace{\int_{\Gamma_2} \frac{f(w)}{w - z} dw}_{=0} \stackrel{(*)}{=} \underbrace{\frac{1}{2\pi i} \int_{K_r} \frac{f(w)}{w - z} dw}_{=:f_1(z)} - \underbrace{\frac{1}{2\pi i} \int_{K_s} \frac{f(w)}{w - z} dw}_{=:f_2(z)}.$$

Der obige Ausdruck für f_1 (beziehungsweise für f_2) ist für alle $z \in B(z_0, r)$ (beziehungsweise $z \in \mathbb{C} \setminus \overline{B(z_0, s)}$) definiert und nach Satz 2.7 dort holomorph.

Nach Theorem 2.25 existieren $a_n \in \mathbb{C}$ $(n \in \mathbb{N}_0)$ mit

$$f_1(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad a_n = \frac{1}{2\pi i} \int_{K_r} \frac{f(w)}{(w - z_0)^{n+1}} dw, \quad (n \in \mathbb{N}_0).$$
 (+)

Diese Reihe konvergiert absolut und gleichmäßig für z mit $|z-z_0| \le r-\delta$. Für $|z-z_0| \ge s+\delta$ und $|w-z_0| \le s$ gilt:

$$\frac{|w - z_0|}{|z - z_0|} \le \frac{s}{s + \delta} =: q < 1.$$

Somit:

$$f_{2}(z) = +\frac{1}{2\pi i} \int_{K_{s}} \frac{f(w)}{z - z_{0}} \frac{1}{1 - \frac{w - z_{0}}{z - z_{0}}} dw \stackrel{q \leq 1}{=} \frac{1}{2\pi i} \int_{K_{s}} \frac{f(w)}{z - z_{0}} \sum_{k=0}^{\infty} \frac{(w - z_{0})^{k}}{(z - z_{0})^{k}} dw$$

$$\stackrel{\text{Satz}}{=} \sum_{k=0}^{\infty} \frac{1}{2\pi i} \int_{K_{s}} \frac{f(w)}{(w - z_{0})^{-k}} dw (z - z_{0})^{-k-1}$$

$$=:a_{r}$$

$$(++)$$

mit $n = -k - 1 \in \{-1, -2, ...\}$. Diese Reihe konvergiert absolut und gleichmäßig für z mit $|z - z_0| \ge s + \delta$. Damit konvergieren auch (+) und (++) absolut und gleichmäßig auf K. Somit ist die Existenz einer Laurentreihe gezeigt.

2) Eindeutigkeit und (3.1): Seien $\rho \in (0, R)$ und $b_n \in \mathbb{C}$ $(n \in \mathbb{Z})$ mit

$$f(z) = \sum_{n = -\infty}^{\infty} b_n (z - z_0)^n \text{ für } z \in D_0$$

mit absoluter und gleichmäßiger Konvergenz auf K_{ρ} (z.B. $b_n = a_n$ aus Teil 1 mit $0 < s < \rho < r < R$). Sei $m \in \mathbb{Z}$. Dann:

$$\frac{1}{2\pi i} \int_{K_{\rho}} \frac{f(w)}{(w - z_0)^{n+1}} dw \stackrel{\text{Satz}}{=} \sum_{n = -\infty}^{\infty} b_n \frac{1}{2\pi i} \int_{K_{\rho}} (w - z_0)^{n-m-1} dw = b_m, \quad (**)$$

wobei nach Beispiel 2.6 gilt:

$$\frac{1}{2\pi i} \int_{K_{\rho}} (w - z_0)^{n-m-1} dw = \begin{cases} 0, & n-m-1 \neq -1, \\ 1, & n-m-1 = -1. \end{cases}$$

Speziell kann man also in Teil 1 die Radien s, r für a_n durch jedes $\rho \in (s, r)$ ersetzen. Da in Teil 1 s beliebig nahe an 0 und r beliebig nahe an R gewählt werden kann, folgt (3.1) für jedes $\rho \in (0, R)$. Schließlich liefert (**) auch die Eindeutigkeit der Koeffizienten in (3.2).

Korollar 3.7. Seien $f \in H(D)$, $z_0 \in \mathbb{C}$, R > 0 mit $D_0 = B(z_0, R) \setminus \{z_0\} \subseteq D$ und a_n die Koeffizienten der Laurentreihe $(n \in \mathbb{Z})$. Dann:

- (a) z_0 hebbar $\iff a_n = 0, \forall n < 0.$
- (b) z_0 ist Pol m-ter Ordnung $\iff a_n = 0, \ \forall n < -m \ und \ a_{-m} \neq 0 \ f \ddot{u} r \ e in \ m \in \mathbb{N}.$
- (c) z_0 ist we sentlich $\iff \exists n_j \longrightarrow -\infty \text{ mit } a_{n_j} \neq 0 \ (\forall j \in \mathbb{N}).$

Beweis. c) folgt per Negation aus a) und b).

a) und b): Bezeichne (nur hier) eine hebbare Singularität als "Pol o-ter Ordnung" (setze dann m=0). Nach Definition (m=0) beziehungsweise nach Theorem 3.3 (m>0) ist z_0 genau dann ein Pol m-ter Ordnung von f, wenn

$$g(z) := (z - z_0)^m f(z)$$

bei z_0 holomorph fortgesetzt werden kann, wobei $g(z_0) \neq 0$, wenn m > 0. Nach Theorem 2.25 ist dies genau dann der Fall, wenn g auf einem Kreis $B(z_0, r)$, $r \leq R$, eine Potenzreihe mit Koeffizienten b_n , $n \in \mathbb{N}_0$, besitzt, wobei $b_0 \neq 0$ falls m > 0. Also genau dann, wenn

$$f(z) = \sum_{k=0}^{\infty} b_k (z - z_0)^{k-m}$$
 für alle $z \in B(z_0, r) \setminus \{z_0\}.$

Dies ist eine Laurentreihe mit Koeffizienten $a_{-m} = b_0 \neq 0$, wenn m > 0.

Also liefert die Eindeutigkeit in Theorem 3.6 die Behautungen a) und b).

Beispiel 3.8. (a)
$$e^{\frac{1}{z}} = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{1}{z}\right)^k \stackrel{(n=-k)}{=} \sum_{n=-\infty}^{0} \frac{1}{(-n)!} z^n$$
, $(z \neq 0)$, also ist $z = 0$ wesentlich.

(b)
$$z^{-6}(\cos(z) - 1) = z^{-6} \left(\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k} - 1 \right) = \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k-6} \stackrel{j=k-3}{=} - \sum_{j=-2}^{\infty} \frac{(-1)^j}{(2j+6)!} z^{2j}$$

$$= -\frac{z^{-4}}{2} + \frac{z^{-2}}{4!} - \frac{1}{6!} + \frac{z^2}{8!} - \cdots$$
sing. Teil reg. Teil

für $(z \neq 0)$. Also ist 0 Pol mit m = 4.

(c) Sei $z \in B(0, \frac{1}{2}) \setminus \{0\}$. Dann:

$$f(z) = \frac{1+z}{z-z^2} = \frac{1+z}{z} \frac{1}{1-z} = \left(1 + \frac{1}{z}\right) \sum_{n=0}^{\infty} z^n = \frac{1}{z} + \sum_{n=0}^{\infty} 2z^n.$$

Also ist 0 Pol 1. Ordnung.

3.2 Der Residuensatz und reelle Integrale

Definition 3.9. Sei z_0 eine isolierte Singularität von $f \in H(D)$. Der Koeffizient a_{-1} der Laurentreihe von f bei z_0 heißt $Residuum \operatorname{Res}(f, z_0)$ von f bei z_0 . Es gilt also

Res
$$(f, z_0) \stackrel{\text{(3.1)}}{=} \frac{1}{2\pi i} \int_{\partial B(z_0, r)} f(w) dw$$

(wobei $\overline{B}(z_0,r)\setminus\{z_0\}\subseteq D$).

Bemerkung. $f \mapsto \text{Res}(f, z_0)$ ist linear auf H(D).

Theorem 3.10 (Residuensatz). Sei $U \subseteq \mathbb{C}$ sternförmig, $A = \{z_1, \ldots, z_l\} \subseteq U$, $D = A \setminus U$, $f \in H(D)$ und $\Gamma \subseteq D$ eine geschlossene Kurve. Dann gilt

$$\int_{\Gamma} f(z) dz = 2\pi i \sum_{j=1}^{l} n(\Gamma, z_j) \operatorname{Res}(f, z_j).$$
(3.3)

Bemerkung. Wenn alle z_j hebbar sind, dann ist $\operatorname{Res}(f, z_j) = 0$ für alle $j = 1, \dots, l$ und somit hat f eine Fortsetzung in H(U). Also ist der Cauchy-Integralsatz ein Spezialfall von (3.3).

Beweis. Sei $r_j > 0$ mit $D_j := B(z_j, r_j) \setminus \{z_j\} \subseteq D$ für $j = 1, \ldots, l$. Sei weiter

$$g_j(z) = \sum_{n=1}^{\infty} a_{-n}(z_j)(z - z_j)^{-n} \quad (\forall z \in D_j)$$
 (*)

der singuläre Anteil der Laurentreihe von f bei z_j mit Koeffizienten $a_{-n}(z_j)$ für $j=1,\ldots,l$. Nach dem Beweis von Theorem 3.6 kann man g_j holomorph auf $H(\mathbb{C}\setminus\{z_j\})$ fortsetzen (siehe f_2 im dortigen Beweis für beliebig kleine s>0). Wir bezeichnen diese Fortsetzung auch mit g_j . Setze $h_0=f-g_1-\cdots-g_l$ auf D. Da $f-g_j$ nach (*) eine Potenzreihe auf D_j ist, hat $f-g_j$ eine holomorphe Fortsetzung in z_j und damit hat h_0 eine holomorphe Fortsetzung $h\in H(U)$.

Mit Theorem 2.21 (Integralsatz) folgt $\int_{\Gamma} h \, dz = 0$ (da U sternförmig). Da alle Funktionen auf Γ stetig sind, folgt

$$\int_{\Gamma} f \, dz = \sum_{j=1}^{l} \int_{\Gamma} g_j \, dz \stackrel{(*),(2.7)}{=} \sum_{j=1}^{l} \left(a_{-1}(z_j) \underbrace{\int_{\Gamma} \frac{dz}{z - z_j}}_{=2\pi \mathbf{i} \cdot n(\Gamma, z_j)} + \sum_{n=2}^{\infty} a_{-n}(z_j) \underbrace{\int_{\Gamma} \frac{dz}{(z - z_j)^n}}_{=0 \text{ (Bsp. 2.6)}} \right). \quad \Box$$

Lemma 3.11. Sei z_0 ein Pol m-ter Ordnung von $f \in H(D)$ $(m \in \mathbb{N})$ und g die holomorphe Fortsetzung der Funktion $z \mapsto (z - z_0)^m f(z)$ auf eine Kugel $B(z_0, r) \subseteq D$ (vgl. Theorem ??). Dann gilt

Res
$$(f, z_0) = \frac{1}{(m-1)!} g^{(m-1)}(z_0) = \lim_{z \to z_0} \frac{1}{(m-1)!} g^{(m-1)}(z).$$

Speziell für m = 1:

Res
$$(f, z_0) = \lim_{z \to z_0} (z - z_0) f(z)$$
.

Insbesondere gilt Res $(f, z_0) = h(z_0)$, wenn $f(z) = \frac{h(z)}{z - z_0}$ für ein $h \in H(B(z_0, r))$ mit $B(z_0, r) \subseteq D$. Somit ist (CIF) ein Speziallfall von (3.3) für solche f und l = 1.

Beweis. Nach Theorem 3.6 gibt es ein r > 0 mit $D_0 = B(z_0, r) \setminus \{z_0\} \subseteq D$, $h \in H(B(z_0, r))$ und $a_{-1}, \ldots, a_{-m} \in \mathbb{C}$ mit $a_{-m} \neq 0$ und

$$f(z) = \frac{a_{-m}}{(z - z_0)^m} + \dots + \frac{a_{-1}}{z - z_0} + h(z), \quad z \in D_0.$$

Daraus erhält man $g(z) = a_{-m} + \cdots + (z - z_0)^{m-1}a_{-1} + (z - z_0)^m h(z), z \in D_0$, und weiter $g^{(m-1)}(z) = 0 + a_{-1}(m-1)! + (z - z_0)\varphi(z)$ für ein $\varphi \in H(B(z_0, r))$.

$$\implies \lim_{z \to z_0} g^{(m-1)}(z) = (m-1)! a_{-1}.$$

Damit ist die erste Behauptung gezeigt. Sei nun f wie in der letzten Behauptung. Wenn $h(z_0) \neq 0$, dann ist z_0 ein Pol erster Ordnung von $f(z) = \frac{h(z)}{z-z_0}$. Mit der ersten Behauptung mit m=1 folgt $\operatorname{Res}(f,z_0) = h(z_0)$. Falls $h(z_0) = 0$, dann hat h eine Nullstelle n-ter Ordnung $(n \in \mathbb{N})$ bei z_0 , also ist z_0 eine hebbare Singularität von f und damit $\operatorname{Res}(f,z_0) = 0 = h(z_0)$.

Beispiel 3.12. (a) Sei U offen, $z_1, z_2 \in U$, $z_1 \neq z_2$, $g \in H(U)$. Betrachte $f(z) = \frac{g(z)}{(z-z_1)(z-z_2)^2}$ für $z \in D = U \setminus \{z_1, z_2\}$. Es sei $g(z_j) \neq 0$ (j = 1, 2). Dann existiert der Grenzwert $\lim_{z \to z_j} (z - z_j)^j f(z) \neq 0$, also ist z_j ein Pol j-ter Ordnung (j = 1, 2). Mit Lemma 3.11 folgt:

Res
$$(f, z_1)$$
 = $\lim_{z \to z_1} (z - z_1) f(z)$ = $\lim_{z \to z_1} \frac{g(z)}{(z - z_2)^2}$ = $\frac{g(z_1)}{(z_1 - z_2)^2} \neq 0$,
Res (f, z_2) = $\lim_{z \to z_2} \left(\frac{d}{dz} (z - z_2)^2 f(z) \right)$ = $\lim_{z \to z_2} \frac{d}{dz} \frac{g(z)}{z - z_1}$
= $\lim_{z \to z_2} \left(\frac{g'(z)}{z - z_1} - \frac{g(z)}{(z - z_1)^2} \right)$ = $\frac{g'(z_2)}{z_2 - z_1} - \frac{g(z_2)}{(z_2 - z_1)^2}$.

(b) Sei $f(z)=(\cot z)^2=\frac{\cos^2 z}{\sin^2 z}$ für $z\in B(0,\pi)\setminus\{0\}=:D$. Wie in Bsp. 3.4 sieht man: 0 ist Pol zweiter Ordnung, denn $z^2\cot^2 z=\left(\frac{z}{\sin z}\right)^2\cos^2 z\to 1,\ z\to 0$. Setze $g(z)=z^2\cot^2 z$ für $z\in D$. Mit Lemma 3.11 folgt:

$$\operatorname{Res}\left(\cot^{2},0\right) = \lim_{z \to 0} \frac{\mathrm{d}}{\mathrm{d}z} g(z) = \lim_{z \to 0} \left(2z \frac{\cos^{2}z}{\sin^{2}z} + 2z^{2} \cot z \cot' z\right)$$

(Beachte: $\cot' = \frac{1}{\sin^2}$)

$$= \lim_{z \to 0} \left(\underbrace{2 \frac{z}{\sin z} \cos z}_{\to 2} \frac{\sin z \cos z - z}{\sin^2 z} \right)$$

$$= 2 \lim_{z \to 0} \underbrace{\frac{z^2}{\sin^2 z}}_{\to 1} \underbrace{\frac{\frac{1}{2} \sin 2z - z}{z^2}}_{=:Q}.$$

Weiter ist

$$Q = \frac{1}{z^2} \left(\frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n-1)!} (2z)^{2n+1} - z \right) = 2 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (2z)^{2n-1}$$

eine Potenzreihe um 0 mit dem Wert 0 an der Stelle 0. Damit folgt $\lim_{z\to 0} Q=0$ und Res $(\cot^2,0)=0$.

Reelle Integrale

Beispiel 3.13. Sei a > 1. Dann ist

$$J := \int_{-\pi}^{\pi} \frac{\mathrm{d}x}{a + \cos x} = \frac{2\pi}{\sqrt{a^2 - 1}}.$$

Beweis.

$$J \stackrel{\text{(1.14)}}{=} \int_{-\pi}^{\pi} \frac{\mathrm{d}x}{a + \frac{1}{2} \left(e^{\mathrm{i}x} + e^{-\mathrm{i}x} \right)} = \frac{2}{\mathrm{i}} \int_{-\pi}^{\pi} \frac{\mathrm{i}e^{\mathrm{i}x}}{2ae^{\mathrm{i}x} + \left(e^{\mathrm{i}x} \right)^2 + 1} \, \mathrm{d}x$$

$$\stackrel{z=e^{\mathrm{i}x}}{=} \frac{2}{\mathrm{i}} \int_{\partial \mathbb{D}} \frac{\mathrm{d}z}{z^2 + 2az + 1} = \frac{4\pi}{2\pi \mathrm{i}} \int_{\partial \mathbb{D}} \frac{\frac{1}{z - z_2}}{z - z_1} \, \mathrm{d}z,$$

wobei $z_{1,2} = -a \pm \sqrt{a^2 - 1} \in \mathbb{R}, z_1 \in (-1,1), z_2 < -1$. Damit und mit (CIF) folgt

$$J = 4\pi \frac{1}{z_1 - z_2} = \frac{2\pi}{\sqrt{a^2 - 1}}.$$

Beispiel 3.14. Sei $t \in \mathbb{R}$. Dann $J = \int_{\mathbb{R}} e^{itx} \frac{1}{1+x^2} dx = \pi e^{-|t|}$.

Beweis. Sei t > 0 (falls t < 0: substituiere y = -x, setze s = -t > 0 in J). Das Integral existiert, da

$$\left| \frac{\mathrm{e}^{\mathrm{i}tx}}{1+x^2} \right| = \frac{1}{1+x^2},$$

was integrierbar ist. Setze $f(z) = \frac{e^{itz}}{(z-i)(z+i)}$. Dann ist $f \in H(\mathbb{C} \setminus \{\pm i\})$ und $\pm i$ sind einfache Pole. Es gilt

$$J = \lim_{r \to \infty} \int_{-r}^{r} f(x) \, dx = \lim_{r \to \infty} \left(\underbrace{\int_{\Gamma_r} f \, dz}_{=:J_1} - \underbrace{\int_{K_r} f \, dz}_{=:J_2} \right).$$

$$\Gamma_r = [-r, r] + K_r, \qquad K_r : z = re^{i\theta}, 0 \le \theta \le \pi, r > 1$$

Es gilt $J_1 \stackrel{\text{Thm. 3.10}}{=} 2\pi i \text{Res}(f, i) \stackrel{\text{Lem. 3.11}}{=} 2\pi i \lim_{z \to i} (z - i) f(z) = 2\pi i \frac{e^{i^2 t}}{i + i} = \pi e^{-t}$

und
$$|J_2| \le \pi r \max_{z \in K_r} \left| \frac{e^{izt}}{1+z^2} \right| \le \pi r \max_{z \in K_r} \frac{e^{t \operatorname{Re} iz}}{|z|^2 - 1} \stackrel{\text{iz=}}{=}$$

$$\pi r \max_{0 \le \theta \le \pi} \frac{e^{-tr\sin\theta}}{r^2 - 1} \le \frac{\pi r}{r^2 - 1} \to 0, \quad r \to \infty. \quad \Box$$

Beispiel 3.15.

$$J = \int_{-\infty}^{\infty} \frac{x^2}{1 + x^4} \, \mathrm{d}x = \frac{\pi}{\sqrt{2}}.$$

Beweis. Existenz: für

$$|x| \ge 1 : x^2 + x^4 \le 2 + 2x^4 \iff \frac{x^2}{1 + x^4} \le \frac{2}{1 + x^2},$$

was integrierbar ist.

Setze

$$f(z) = \frac{z^2}{1+z^4} =: \frac{g(z)}{h(z)}.$$

Dabei hat $h(z) = 1 + z^4$ die 4 Nullstellen

$$w_k = e^{i\frac{\pi}{4}}e^{ik\frac{\pi}{2}}, \quad k = 0, 1, 2, 3.$$

Dann ist f holomorph auf

$$D = \{ z \in \mathbb{C} : \text{Im } z > -\frac{1}{2}, \ z \neq w_1, w_2 \}.$$

Weiterhin gilt nach Übungsaufgabe 22b (da $g(w_k) \neq 0, h'(w_k) \neq 0$):

Res
$$(f, w_1) = \frac{g(w_1)}{h'(w_1)} = \frac{w_1^2}{4w_1^3} = \frac{1}{4e^{i\frac{\pi}{4}}}.$$

Genauso: Res $(f, w_2) = \frac{1}{4e^{i\frac{\pi}{4}}}e^{i\frac{\pi}{2}}$. Damit gilt:

Res
$$(f, w_1) = \frac{\sqrt{2}}{4(1+i)}$$
, Res $(f, w_2) = \frac{\sqrt{2}}{4(i-1)}$

Für r > 1: K_r : $z = re^{it}$, $0 \le t \le \pi$

Setze $\Gamma_r = [-r, r] + K_r$. Damit:

$$\begin{split} \int_{-r}^{r} \frac{x^2}{1+x^4} \, \mathrm{d}x + \int_{K_r} \frac{z^2}{1+z^4} \, \mathrm{d}z &= \int_{\Gamma_r} \frac{z^2}{1+z^4} \, \mathrm{d}z = \int_{\Gamma_r} \frac{z^2}{1+z^4} \, \mathrm{d}z = \int_{\Gamma_r} \frac{z^2}{1+z^4} \, \mathrm{d}z \stackrel{3.10}{=} 2\pi \mathrm{i}(\mathrm{Res}\,(f,w_1) + \mathrm{Res}\,(f,w_2)) \\ &= \frac{\mathrm{i}\pi}{\sqrt{2}} \left(\frac{1}{\mathrm{i}+1} + \frac{1}{\mathrm{i}-1} \right) = \frac{\mathrm{i}\pi}{\sqrt{2}} \frac{\mathrm{i}-1+\mathrm{i}+1}{i^2-1} = \frac{\pi}{\sqrt{2}}. \end{split}$$

Ferner:

$$\left| \int_{K_r} f \, \mathrm{d}z \right| \le \pi r \max_{z \in K_r} \left| \frac{z^2}{1 + z^4} \right| \le \pi r \max_{|z| = r} \frac{\left| z \right|^2}{\left| z \right|^4 - 1} \le \frac{\pi r^3}{r^4} \longrightarrow 0$$

für $r \to \infty$. Damit folgt die Behauptung.

Beispiel. Für $t \in \mathbb{R}$ gilt:

$$\lim_{R \to \infty} \int_{-R}^{R} \frac{\sin x}{x} e^{itx} dx = \begin{cases} \pi, & t \in (-1, 1), \\ \frac{\pi}{2}, & t = \pm 1, \\ 0, & |t| > 1. \end{cases}$$

Beweis. Sei $t \in \mathbb{R}$ fest. Die Funktion

$$f(z) = \begin{cases} \frac{\sin z}{z} e^{itz}, & z \in \mathbb{C} \setminus \{0\} \\ 1, & z = 0. \end{cases}$$

ist ganz.

Betrachte $S_R = [-R, -1] + \{e^{i\theta}: -\pi \le \theta \le 0\} + [1, R]$ (für R > 1). Der Cauchy-Integralsatz (Theorem 2.21) liefert mit $D = \mathbb{C}$:

$$\int_{-S_R + [-R,R]} f \, \mathrm{d}z = 0.$$

Setze:

$$I(R) = \int_{-R}^{R} \frac{\sin x}{x} e^{itx} dx \implies I(R) = \int_{S_R} f dz$$

Setze ferner

$$\varphi_R(s) = \frac{1}{2i} \int_{S_R} \frac{e^{isz}}{z} dz, \qquad s \in \mathbb{R}.$$
(+)

Mit $\sin z = \frac{1}{2i}(e^{iz} - e^{-iz})$ folgt $I(R) = \varphi_R(t+1) - \varphi_R(t-1)$. Sei

$$K_R^+ = \{ Re^{i\theta} : 0 \le \theta \le \pi \}, \quad K_R^- = \{ Re^{i\theta} : -\pi \le \theta \le 0 \},$$

 $\Gamma_R^+ = S_R + K_R^+, \quad \Gamma_R^- = S_R + (-K_R^-).$

Die (CIF) mit $D = \mathbb{C}$ liefert:

$$\pi = \pi e^{is0} = \frac{1}{2i} \int_{\Gamma_R^+} \frac{e^{isz}}{z - 0} dz,$$
 (*)

$$0 = \frac{1}{2i} \int_{\Gamma_R^-} \frac{e^{isz}}{z} dz, \quad da \ n(\Gamma_R^-, 0) = 0$$
 (**)

$$\implies \varphi_R(s) \stackrel{(**)}{=} \frac{1}{2\mathrm{i}} \int_{K_D^-} \frac{\mathrm{e}^{\mathrm{i}sz}}{z} \, \mathrm{d}z = \frac{1}{2\mathrm{i}} \int_{-\pi}^0 R\mathrm{i}\mathrm{e}^{\theta} \frac{\mathrm{e}^{\mathrm{i}sR\mathrm{e}^{\mathrm{i}\theta}}}{R\mathrm{e}^{\mathrm{i}\theta}} \, \mathrm{d}\theta = \frac{1}{2} \int_{-\pi}^0 \exp(\mathrm{i}sR\mathrm{e}^{\mathrm{i}\theta}) \, \mathrm{d}\theta, \qquad (++)$$

$$\varphi_R(s) \stackrel{(*)}{=} \pi - \frac{1}{2i} \int_{K_R^+} \frac{e^{isz}}{z} dz = \pi - \frac{1}{2} \int_0^{\pi} \underbrace{\exp(ise^{i\theta})}_{=:\alpha(R)} d\theta \qquad (+++)$$

Beachte: $|\alpha(R)| = \exp(sR \cdot \text{Re}(i\cos\theta + i^2\sin\theta)) = e^{-sR\sin\theta}$.

Falls $s \cdot \sin \theta > 0$, ist $|\alpha(R)| \le 1$ und es gilt $\alpha(R) \longrightarrow 0$ für alle R > 1 mit $R \to \infty$.

Majorisierte Konvergenz folgt aus (++), da $\varphi_R(s) \longrightarrow 0 \ (R \to \infty)$, wenn s < 0 und aus (+++), also $\varphi_R(s) \longrightarrow \pi$, wenn s > 0. Mit (**) folgt

$$\varphi_R(0) = \frac{\pi}{2}, \quad (\forall R > 1).$$

Setze in (+) s = t + 1, bzw. s = t - 1. Dann:

$$\lim_{R \to \infty} I(R) = \begin{cases} \pi - \pi = 0, & t > 1, \\ \pi - \frac{\pi}{2} = \frac{\pi}{2}, & t = 1, \\ \pi - 0 = \pi, & -1 < t < 1, \\ \frac{\pi}{2} - 0 = \frac{\pi}{2}, & t = -1, \\ 0 - 0 = 0, & t < -1, \end{cases}$$

wie gewünscht.

3.3 Das Argumentprinzip

Für $f \in H(D)$ sei N(f) die Menge der Nullstellen von f in D und $m(z) = m_f(z)$ die Vielfachheit von $z \in N(f)$. Ziel: Bestimme N(f) und m(z) mit einem Kurvenintegral.

Theorem 3.16 (Argumentprinzip). Sei $D \subseteq \mathbb{C}$ ein sternförmiges Gebiet, $f \in H(D)$ und $\Gamma \subseteq D$ geschlossene Kurve mit $\Gamma \cap N(f) = \emptyset$. Dann:

$$\sum_{z_j \in N(f)} m(z_j) n(\Gamma, z_j) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz = n(\Gamma_f, 0), \tag{3.4}$$

wobei Γ_f die Parametrisierung $f \circ \gamma$ hat und γ die Parametrisierung von Γ ist. Die Summe in (3.4) hat nur endlich viele Summanden, die nicht o sind.

Beweis. Zur letzten Behauptung: Sei $z \notin D$. Dann ist

$$w \mapsto \frac{1}{w-z}$$

auf D holomorph und somit nach Theorem 2.21

$$n(\Gamma, z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{1}{w - z} dw = 0, \qquad (*)$$

da D sternförmig ist.

Annahme: Es gibt $z_n \in N(f)$ mit $z_n \neq z_m$ und $n(\Gamma, z_n) \neq 0$ für alle $n \neq m$ in \mathbb{N} . Da $n(\Gamma, z_n) = 0$ in unbeschränkten Zusammenhangskomponenten von $\mathbb{C} \setminus \Gamma$ (nach Satz 2.16), ist (z_n) beschränkt. Also gibt es Teilfolgen $z_{n_i} \longrightarrow z(j \to \infty)$.

Da $f \neq 0$ (da $N(f) \cap \Gamma = \emptyset$), liefert der Nullstellensatz (Korollar 2.36), dass

$$z \in \partial D \stackrel{(*)}{\Longrightarrow} n(\Gamma, z) = 0,$$

aber

$$n(\Gamma, z) = \lim_{n \to \infty} \underline{n(\Gamma, z_n)} \neq 0$$
 Widerspruch . $\in \mathbb{Z} \setminus \{0\}$

Sei $z_0 \in N(f)$ und m = m(z). Nach Korollar 2.36 existieren r > 0 und $g \in H(B(z_0, r))$, mit $B(z_0, r) \subseteq D$, $g(z) \neq 0$ und

$$f(z) = (z - z_0)^m g(z) \quad (\forall z \in B(z_0, r)).$$

Damit:

$$f'(z) = m(z - z_0)^{m-1}g(z) + (z - z_0)^m g'(z)$$

$$\implies \frac{f'(z)}{f(z)} = \frac{m}{z - z_0} + \frac{g'(z)}{g(z)} \quad (\forall z \in B(z_0, r)).$$

Da $\frac{g'}{g}$ holomorph auf $B(z_0, r)$ ist, folgt

$$\operatorname{Res}\left(\frac{f'}{f}, z_0\right) = m.$$

Theorem 3.10 liefert also die erste Gleichung. Weiter:

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'}{f} dz = \frac{1}{2\pi i} \int_{a}^{b} \frac{f'(\gamma(t))}{f(\gamma(t))} \gamma'(t) dt = \frac{1}{2\pi i} \int_{a}^{b} \frac{1}{(f \circ \gamma)(t)} (f \circ \gamma)'(t) dt$$

$$= \frac{1}{2\pi i} \int_{\Gamma_{f}} \frac{1}{w} dw = n(\Gamma_{f}, 0). \qquad \Box$$

Korollar 3.17 (Rouché). Sei $D \subseteq \mathbb{C}$ ein sternförmiges Gebiet, $f, g \in H(D)$, $\Gamma \subseteq D$ eine geschlossene Kurve. Es gelte zusätzlich

$$|f(z) - g(z)| < |f(z)| + |g(z)|, \quad \forall z \in \Gamma.$$

$$(3.5)$$

Dann gilt:

$$\sum_{z_j \in N(f)} n(\Gamma, z_j) m_f(z_j) = \sum_{w_k \in N(y)} n(\Gamma, w_k) m_g(w_k).$$

Beweis. Da f, g stetig sind und Γ kompakt ist, gibt es ein offenes $U \subseteq D$ mit $\Gamma \subseteq U$, so dass (3.5) für U gilt. Damit: $f(z) \neq 0$, $g(z) \neq 0$ für alle $z \in U$ und

$$\left|1 - \frac{f(z)}{g(z)}\right| < 1 + \left|\frac{f(z)}{g(z)}\right|, \quad \forall z \in U.$$
 (*)

Annahme: $\frac{f(z)}{g(z)} =: t \in \mathbb{R}_-$ für ein $z \in U$. Dann folgt:

$$1 + |t| = 1 - t \le |1 - t| \stackrel{(*)}{\le} 1 + |t|$$
 Widerspruch

Also gilt:
$$\frac{f(z)}{g(z)} \in \Sigma_{\pi} \quad (\forall z \in U) \implies h := \log \frac{f}{g} \in H(U) \implies h' = \frac{1}{\frac{f}{g}} \frac{f'g - fg'}{g^2} = \frac{f'}{f} - \frac{g'}{g}.$$

Da h' eine Stammfunktion hat, gilt

$$0 = \int_{\Gamma} h' \, dz = \int_{\Gamma} \frac{f'}{f} \, dz - \int_{\Gamma} \frac{g'}{g} \, dz.$$

Die Behauptung folgt dann aus (3.4).

Beispiel 3.18. Für festes $\lambda > 1$ hat die Gleichung $\lambda = z + e^{-z}$ genau eine Lösung $z \in \mathbb{C}_+$.

Beweis. Betrachte $f(z) = \lambda - z - e^{-z}$, $g(z) = \lambda - z$ für $z \in D := \mathbb{C}_+$. Dann ist $N(g) = \{\lambda\}$, $m_g(\lambda) = 1$. Wähle $r > \lambda$ und $\varepsilon \in (0, \lambda - 1)$. Setze $\Gamma = \partial B(r, r - \varepsilon) \subseteq D$. Dann $\lambda \in B(r, r - \varepsilon)$. Damit folgt:

$$|f(z) - g(z)| = |e^{-z}| = e^{-\operatorname{Re} z} \stackrel{z \in \mathbb{C}_+}{<} \lambda - \varepsilon \le |\lambda - z| = |g(z)| \le |f(z)| + |g(z)| \quad (\forall z \in \Gamma).$$

Rouché (Theorem 3.17) liefert dann

$$m_g(\lambda)n(\Gamma,\lambda) = 1 = \sum_{z_j \in N(f)} \underline{m_f(z_j)} n(\Gamma,z_j)$$

und $n(\Gamma, z_j)$ ist 1, wenn $z_j \in B(r, r - \varepsilon)$, und 0 sonst. Also existiert genau eine einfache Nullstelle von f in $B(r, r - \varepsilon)$. Das gilt für alle $r > \lambda$, $\varepsilon \in (0, \lambda - 1)$. Mit $r \to \infty$, $\varepsilon \to 0$ folgt die Behauptung.

Beispiel 3.19. Sei D sternförmig mit $\overline{\mathbb{D}} \subseteq D$. Weiter sei $f \in H(D)$ mit |f(z)| < 1 für alle $z \in \partial \mathbb{D}$. Sei $n \in \mathbb{N}$. Dann gibt es genau n (eventuell mehrfach gezählte) Lösungen von $f(z) = z^n$ mit $z \in D$.

Beweis. Betrachte $g(z) = f(z) - z^n$, $h(z) = -z^n$ für $z \in D$. Dann sind $g, h \in H(D)$. Ferner ist $N(h) = \{0\}$ und $m_h(0) = n$. Wähle $\Gamma = \partial \mathbb{D}$. Dann gilt $|g(z) - h(z)| = |f(z)| < 1 = |h(z)| \le |g(z)| + |h(z)|$ für alle $z \in \partial \mathbb{D}$. Rouché liefert dann

$$n = \sum_{z_j \in N(g)} m_g(z_j) n(\partial \mathbb{D}, z_j) = \sum_{z_j \in N(g) \cap \mathbb{D}} m_g(z_j),$$

da $n(\partial \mathbb{D}, z_i) = 1$ für $z_i \in \mathbb{D}$ und 0 sonst.

Sei $p(\lambda) = \lambda^n + a_1 \lambda^{n-1} \cdots + a_n$ für $\lambda \in \mathbb{C}$ und gegebene $a_1, \ldots, a_n \in \mathbb{R}$. Frage: Haben alle Nullstellen von p strikt negativen Realteil? (Dann heißt p stabil.) Setze $a_j = 0$ für j > n, $a_0 = 1$ und

$$\Delta_1 = a_1, \ \Delta_2 = \left| \begin{pmatrix} a_1 & a_3 \\ a_0 & a_2 \end{pmatrix} \right|, \ \Delta_3 = \left| \begin{pmatrix} a_1 & a_3 & a_5 \\ a_0 & a_2 & a_4 \\ 0 & a_1 & a_3 \end{pmatrix} \right|, \ \Delta_4 = \left| \begin{pmatrix} a_1 & a_3 & a_5 & a_7 \\ a_0 & a_2 & a_4 & a_6 \\ 0 & a_1 & a_3 & a_4 \\ 0 & a_0 & a_2 & a_4 \end{pmatrix} \right|,$$

und allgemein Δ_n die Determinante der $n \times n$ -Matrix

$$\begin{pmatrix} a_1 & a_3 & a_5 & \dots & a_{2n-1} \\ a_0 & a_2 & \dots & \dots & a_{2n-2} \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & & \vdots \\ \vdots & & \ddots & & \vdots \\ 0 & \dots & a_{n-2} & a_n \end{pmatrix}.$$

Theorem 3.20 (Routh-Hurwitz). Seien $a_1, \ldots, a_n \in \mathbb{R}$ und $\Delta_1, \ldots, \Delta_n \neq 0$. Genau dann haben alle Nullstellen von p strikt negativen Realteil, wenn

$$\Delta_1 > 0, \ \Delta_2 > 0, \ \dots, \ \Delta_n > 0.$$
(3.6)

(Gantmacher: Matrix Theory II, AMS, 2000, §XV.6)

Beispiel. (a) n = 2: p stabil $\iff a_1 > 0, a_2 > 0$

- (b) n = 3: p stabil $\iff a_1 > 0, a_3 > 0, a_1a_2 > a_3$
- (c) n = 4: p stabil $\iff a_1 > 0$, $a_4 > 0$, $a_1 a_2 > a_3$, $a_1 a_2 a_3 > a_1^2 a_4 + a_2^2$

Beweisskizze (nur " \Leftarrow "). Behauptung 1: p hat keine Nullstelle auf i \mathbb{R} . Sei N die Anzahl der Nullstellen von p in \mathbb{C}_+ (mit Vielfachheit gezählt). Sei $r > r_0 := \max |\lambda| | \lambda \in N(p)$, I(r) = i[-r, r], $H(r) = \{re^{i\theta} | -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}\}$, $\Gamma(r) = H(r) - I(r)$.

Also

$$n(\lambda, \Gamma(r)) = 1, \quad \forall \lambda \in N(p) \cap \mathbb{C}_+.$$

Nach Theorem 3.16 gilt:

$$2\pi N = \frac{1}{i} \int_{\Gamma(r)} \frac{p'(\lambda)}{p(\lambda)} d\lambda = \underbrace{\frac{1}{i} \int_{H(r)} \frac{p'}{p} d\lambda}_{=:J_1(r)} - \underbrace{\frac{1}{i} \int_{-ir}^{ir} \frac{p'}{p} d\lambda}_{=:J_2(r)}. \tag{*}$$

Zu J_1 :

$$\frac{p'(\lambda)}{p(\lambda)} = \frac{n\lambda^{n-1} + a_1(n-1)\lambda^{n-2} + \dots + a_{n-1}}{\lambda^n + a_1\lambda^{n-1} + \dots + a_n}$$

$$= \frac{n}{\lambda} \frac{\lambda^{n-1} + a_1(1 - \frac{1}{n})\lambda^{n-2} + \dots + \frac{a_{n-1}}{n}}{\lambda^{n-1} + a_1\lambda^{n-2} + \dots + \frac{a_n}{\lambda}}$$

$$= \frac{n}{\lambda} \left(1 - \frac{\frac{q_1}{n}\lambda^{n-2} + \dots + \frac{a_n}{\lambda}}{\lambda^{n-1} + a_1\lambda^{n-2} + \dots + \frac{a_n}{\lambda}} \right).$$

$$=: q(\lambda)$$

Weiterhin gibt es $r_1 \ge r_0, \, \mu > 0$ mit

$$|q(\lambda)| \leq \frac{\mu}{|\lambda|}, \quad \forall \lambda \text{ mit } |\lambda| \geq r_1.$$

Sei $r > r_1$. Dann:

$$J_1(r) = \frac{n}{i} \int_{H(r)} \frac{d\lambda}{\lambda} - \underbrace{\frac{n}{i} \int_{H(r)} \frac{q(\lambda)}{\lambda} d\lambda}_{=:J_3(r)} = \underbrace{\frac{n}{i} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{rie^{i\theta}}{re^{i\theta}} d\theta}_{=n\pi} - J_3(r).$$

Dabei:

$$|J_3| \le n\pi r \max_{|\lambda|=r} \frac{|p(\lambda)|}{|\lambda|} \le \frac{n\pi \mu r}{r^2} \longrightarrow 0, \quad r \to \infty.$$

$$\implies J_1(r) \longrightarrow n\pi \quad (n \to \infty)$$

Bleibt zu zeigen:

$$\lim_{r \to \infty} J_2(r) = n\pi,$$

da dann aus (*) N = 0 folgt.

Zu J_2 : Sei $\varphi(t) = p(it), t \in \mathbb{R}$. Setze

$$K(r) = \varphi([-r, r]) = p([-\mathrm{i} r, \mathrm{i} r]).$$

Dann ist K(r) eine C^1 -Kurve von p(-ir) nach p(ir) (wobei $r \ge r_1$). Wie im Beweis von 3.10 ist

$$J_2(r) = \frac{1}{i} \int_{K(r)} \frac{\mathrm{d}w}{w}.$$

Nach Behauptung 1 ist $p(ix) \neq 0$ für alle $x \in \mathbb{R}$, also $0 \notin K(r)$, also ist das Integral wohldefiniert. Sei nun n gerade (anderer Fall analog).

Behauptung 2: K(r) schneidet i \mathbb{R} genau n mal, und zwar entweder vom ersten Quadranten in den zweiten oder vom dritten in den vierten.

Seien $iy_j = p(ix_j)$, (j = 1, ..., n) die n Schnittstellen aus Behauptung 2, $K_j(r)$ die Teilkurve von K(r) von iy_{j-1} nach iy_j , für j = 2, ..., n, $K_1(r)$ die Teilkurve von p(-ir) nach iy_1 , $K_{n+1}(r)$ von iy_n nach p(ir).

Auf $\mathbb{C} \setminus \mathbb{R}_+$ betrachte

$$Log(re^{i\varphi}) = ln(r) + i\varphi, \tag{+}$$

wobei $r > 0, \, 0 < \varphi < 2\pi$. Dann:

$$\exp \operatorname{Log}(w) = w \quad (w \in \mathbb{C} \setminus \mathbb{R}_+), \qquad \operatorname{Log} \exp(z) = z \quad (\operatorname{Im} z \in (0, 2\pi)).$$

Mit Satz 1.8 sieht man wie für log, dass

$$Log'(w) = \frac{1}{w}, \quad w \in \mathbb{C} \setminus \mathbb{R}_+.$$

Da n gerade ist, gilt

$$p(\pm ir) = ((\pm i)^2)^{\frac{n}{2}} r^n + c_{\pm} r^{n-1} + \dots + a_n = (-1)^{\frac{n}{2}} + c_{\pm} r^{n-1} + \dots + a_n$$

für gewisse $c_{\pm} \in \mathbb{C}$. Für $r \to \infty$ folgen

$$\frac{p(\pm ir)}{r^n} \longrightarrow (-1)^{\frac{n}{2}}, \qquad \frac{|p(\pm ir)|}{|p(-ir)|} = \frac{\frac{|p(ir)|}{|r^n|}}{\frac{|p(-ir)|}{|r^n|}} \longrightarrow 1 \qquad (r \to \infty),$$

$$\arg(p(\pm ir)) = \arg \frac{p(\pm ir)}{r^n} \longrightarrow \begin{cases} 0, & \frac{n}{2} \text{ gerade,} \\ \pi, & \frac{n}{2} \text{ ungerade.} \end{cases} \tag{**}$$

Also gibt es $r_2 \ge r_1$, so dass für alle $r > r_2$ $p(\pm i)$ beide entweder in \mathbb{C}_+ (wenn $\frac{n}{2}$ gerade) oder in \mathbb{C}_- (wenn $\frac{n}{2}$ ungerade) liegen. Sei im folgenden $\frac{n}{2}$ gerade.

Sei nun r so groß, dass $p(\pm ir) \in \mathbb{C}_+$. Wegen Behauptungen 1 und 2 gilt: $K_1(r)$ geht von p(-ir) nach $iy_1 \in i(0,\infty)$ durch \mathbb{C}_+ . $K_{n+1}(r)$ geht von $iy_n \in -i(0,\infty)$ nach p(ir) durch \mathbb{C}_+ , $K_j(r)$ $(j=2,\ldots,n)$ läuft von iy_{j-1} nach iy_j entweder von $i(0,\infty)$ durch \mathbb{C}_- nach $-i(0,\infty)$ oder von $-i(0,\infty)$ durch \mathbb{C}_+ nach $i(0,\infty)$. Damit:

$$J_2(r) = \sum_{i=1}^{n+1} \frac{1}{i} \int_{K_j(r)} \frac{\mathrm{d}w}{w}.$$

Es gilt: Stammfunktion von $f(w) = \frac{1}{w}$ ist

in
$$\mathbb{C} \setminus \mathbb{R}_-$$
: $\log(w) = \ln(w) + i \arg(w)$ (nach (1.11))
in $\mathbb{C} \setminus \mathbb{R}_+$: $\log(w) = \ln(w) + i\phi$, wobei $w = |w| e^{i\phi}$, $|w| > 0$, $\phi \in (0, 2\pi)$ (nach (+))

$$\implies J_{2}(r) = \frac{1}{\mathrm{i}} \Big(\log(\mathrm{i}y_{1}) - \log p(-\mathrm{i}r) \Big) + \frac{1}{\mathrm{i}} \sum_{i=2,\dots,n} \Big(\log(\mathrm{i}y_{j}) - \log(\mathrm{i}y_{j-1}) \Big) \\
+ \frac{1}{\mathrm{i}} \sum_{i=2,\dots,n} \Big(\mathrm{Log}(\mathrm{i}y_{j}) - \mathrm{Log}(\mathrm{i}y_{j-1}) \Big) + \frac{1}{\mathrm{i}} \Big(\log p(\mathrm{i}r) - \log(\mathrm{i}y_{n}) \Big) \\
\stackrel{(1.11)}{=} \frac{1}{\mathrm{i}} \ln |y_{1}| + \frac{\pi}{2} - \frac{1}{\mathrm{i}} \ln |p(-\mathrm{i}r)| - \arg(p(-\mathrm{i}r)) + \frac{1}{\mathrm{i}} \ln |p(\mathrm{i}r)| - \frac{1}{\mathrm{i}} \ln |y_{n}| + \frac{\pi}{2} \\
+ \sum_{K_{j}(r) \subseteq \overline{\mathbb{C}_{+}}} \Big(\frac{1}{\mathrm{i}} \ln |y_{j}| + \frac{\pi}{2} - \frac{1}{\mathrm{i}} \ln |y_{j-1}| + \frac{\pi}{2} \Big) \\
+ \sum_{K_{j}(r) \subseteq \overline{\mathbb{C}_{-}}} \Big(\frac{1}{\mathrm{i}} \ln |y_{j}| + \frac{3\pi}{2} - \frac{1}{\mathrm{i}} \ln |y_{j-1}| - \frac{\pi}{2} \Big) \\
= n\pi + \sum_{j=1}^{n} \frac{1}{\mathrm{i}} \ln |y_{j}| - \sum_{j=2}^{n+1} \frac{1}{\mathrm{i}} \ln |y_{j-1}| + \frac{1}{\mathrm{i}} \ln \frac{|p(\mathrm{i}r)|}{|p(-\mathrm{i}r)|} + \arg(p(\mathrm{i}r)) - \arg(p(-\mathrm{i}r)) \\
\to n\pi \qquad (n \to \infty).$$

Wegen (**) sind wir fertig.

Zum Beweis von Behauptungen 1 und 2: Sei n gerade, $x \in \mathbb{R}$. Es gilt:

$$p(ix) = (i^{2})^{\frac{n}{2}}x^{n} + a_{1}i(i^{2})^{\frac{n-2}{2}}x^{n-1} + a_{2}(i^{2})^{\frac{n}{2}-1}x^{n-2} + \dots + ia_{n-1}x + a_{n}$$

$$= \underbrace{(-1)^{\frac{n}{2}} + (-1)^{\frac{n}{2}-1}a_{2}x^{n-2} + \dots + a_{n}}_{=:f_{1}(x) = \operatorname{Re}(p(ix))} + i\underbrace{((-1)^{\frac{n}{2}-1}a_{1}x^{n-1} + \dots + a_{n-1}x}_{=:f_{2}(x) = \operatorname{Im}(p(ix))}.$$

Gantmacher §XV.6 (33) und §XV.3 besagt, dass aus (3.6) folgt: Im euklidischen Algorithmus

$$f_{k-1} = q_k f_k - f_{k+1} \tag{***}$$

treten Polynome f_k , $k=1,\ldots,n+1$ mit Grad n+1-k, also $f_{n+1}\neq 0$ ist konstant, auf.

Weiter haben die f_k führende Koeffizienten ungleich o mit wechselndem Vorzeichen. (++)

Damit:

$$f_{k-1}, f_k \ (k=2,\ldots,n+1)$$
 haben keine gemeinsamen Nullstellen, $(+++)$

da sonst $f_{k+1}(x_0)=0$ aus (***) folgen würde. Iterativ folgt dann $f_{n+1}(x_0)=0$: WIDERSPRUCH . Also haben f_1 und f_2 keine gemeinsame Nullstelle, das heißt

$$p(ix) \neq 0 \quad \forall x \in \mathbb{R},$$

womit Behauptung 1 gezeigt ist.

Sei V(x) die Anzahl der Vorzeichenwechsel in $f_1(x), f_2(x), \ldots, f_{n+1}(x)$ (wobei $f_k(x) = 0$ ignoriert wird). Dann folgt nach (++)

$$\exists \alpha < \beta : V(x) = 0 \quad \forall x \le \alpha, \qquad V(x) = n \quad \forall x \ge \beta. \tag{X}$$

V(x) kann sich nur beim Durchgang eines f_k durch eine Nullstelle ändern. Nach (+++) behalten dabei f_{k-1} , f_{k+1} ihr Vorzeichen. Falls $f_k(x_0) = 0$ für ein $k \ge 2$, liefern (***) und (+++), dass

$$f_{k-1}(x_0) - f_{k+1}(x_0) < 0.$$

Wegen Stetigkeit gilt dies auch für $x \approx x_0$, zum Beispiel haben $f_{k-1}(x)$, $f_k(x)$, $f_{k+1}(x)$ die Vorzeichen +,+,- für $x' < x_0$, +,0,- für $x' = x_0$, +,-,- für $x' > x_0$, also ist V(x) = V(x'). Das gilt auch für die anderen Fälle, das heißt V(x) ändert sich nicht bei Nullstellen von f_2,\ldots,f_{n+1} . Wenn f_1 das Vorzeichen wechselt, ändert sich V um ± 1 (da nach (+++) das Vorzeichen von f_2 gleich bleibt). Nach (\times) muss V(x) bei $x = x_k$ um +1 ansteigen. Dazu: Für $x < x_k$, $x \approx x_k$ gilt für die Vorzeichen von $f_1(x)$, $f_2(x)$: ++,+-,-+, -- und für $x > x_k$, $x \approx x_k$: -+,--,++, --. Nur bei Übergängen von ++ zu -+ und -- zu +- steigt V(x) an, also können nur solche auftreten. Das entspricht Übergängen von dem 1. in den 2. Quadranten, beziehungsweise von dem 3. in den 4. Quadranten. Damit ist Behauptung 2 gezeigt.

Beispiel 3.21 (Grundmodell der Virendynamik, Nowak, May 2000). Sei

 $V(t) = \text{Anzahl der Viren zur Zeit } t \geq 0$

 $Z(t) = \text{Anzahl der gesunden Zellen zur Zeit } t \geq 0$

 $I(t) = \text{Anzahl der infizierten Zellen zur Zeit } t \geq 0$

und es seien Konstanten $\lambda, m, \mu, \nu, k, r > 0$ und Anfangswerte $V_0, Z_0, I_0 \ge 0$ gegeben. Betrachte

$$\begin{cases} V'(t) = kI(t) - \nu V(t), & t \ge 0 \\ Z'(t) = \lambda - mZ(t) - rV(t)Z(t), & t \ge 0 \\ I'(t) = rV(t)Z(t) - \mu I(t), & t \ge 0 \\ V(0) = V_0, \ Z(0) = Z_0, \ I(0) = I_0. \end{cases}$$

Setze u=(V,Z,I), rechte Seite =: f(u). Klar: $f\in C^1(\mathbb{R}^3,\mathbb{R}^3)$. Nach Picard-Lindelöf existiert genau eine Lösung. Weiter kann man zeigen, dass diese für alle $t\geq 0$ existiert und positiv ist. Wir suchen eine positive stationäre Lösung $u(t)=u_0=(V_0,Z_0,I_0)$ für alle $t\geq 0$, d.h. u'(t)=0 für alle $t\geq 0$, also $f(u_0)=0$. Dies gilt entweder für $(\overline{V},\overline{Z},\overline{I})=(0,\frac{\lambda}{m},0)$ ("krankheitsfrei") oder für

$$u_* = (V_*, Z_*, I_*) = \left((R-1)\frac{m}{r}, \frac{\lambda}{mR}, (R-1)\frac{m\nu}{rk} \right)$$

("endemisch") mit Reproduktionsrate $R = \frac{kr\lambda}{m\mu\nu} > 1$.

Frage: Gilt $u(t) \to u_*$ für $t \to \infty$ (R > 1)?

Analysis 2: einfache Antwort: Theorem von Lyapunov: Sei R > 1, $A = f'(u_*)$. Wenn $S(A) = \max \{ \text{Re } \lambda \mid \lambda \text{ Eigenwert von } A \} < 0$, dann existieren $c, \delta, \varepsilon > 0$, sodass für alle $u_0 > 0$ mit $|u_0 - u_*| \le \delta$ gilt: $|u(t) - u_*| \le c e^{-\varepsilon t}$ ($\forall t \ge 0$) (Aulbach: Gewöhnliche Differentialgleichungen, Theorem 7.6.3 und Beweis). Hier ist

$$A = f'(V_*, Z_*, I_*) = \begin{pmatrix} -\nu & 0 & k \\ -rZ_* & -m - rV_* & 0 \\ rZ_* & rV_* & -\mu \end{pmatrix}$$

und das charakteristische Polynom ist

$$p(\lambda) = \det(\lambda I - A) = \lambda^3 + \underbrace{(\nu + m + rV_* + \mu)}_{=a_1} \lambda^2 + \underbrace{(\mu + \nu)(m + rV_*)}_{=a_2} \lambda + \underbrace{\mu\nu rV_*}_{=a_0}.$$

Da $V_* > 0$, gilt $a_1 > 0$, $a_3 > 0$, $a_1 a_2 > a_3$. Nach Theorem 3.20 ist dann S(A) < 0. Also: wenn $u_0 \approx u_*$, dann $u(t) \to u_*$ exponentiell. Mehr Infos: Prüss, Schnaubelt, Zacher: Mathematische Biologie, §13.