

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине:

Методы математического моделирования сложных процессов и систем

Студент	Абидоков Рашид Ширамбиевич			
Группа	PK6-11M			
Тип задания	лабораторная работа			
Тема лабораторной работы	Разработка распределенных расширя			
	программных систем			
Студент	Абидоков Р. Ц			
Студент				
Студент Преподаватель				

Оценка

Оглавление

Задаг	Задание на лабораторную работу				
	Цель выполнения лабораторной работы3				
	Выполненные задачи				
	Общее описание программной реализации				
2. I	Плагины-конфигураторы	ϵ			
3. I	Плагины-решатели	. 7			
4. I	Плагины-виджеты	. 7			
Заклі	Заключение				

Задание на лабораторную работу

Доработать реализованное ПО, созданное в рамках лабораторной работы №1 так, чтобы функции, обеспечивающие решение ОДУ подключались автоматически, а при их отсутствии не происходило аварийного завершения работы программы. Аналогичное требование к функциям, обеспечивающим вывод результатов расчетов. Среди функций, реализующих вывод результатов должны быть созданы:

- функция вывода результата в консоль
- функция вывода результата в виде .csv файла
- выгрузку результата расчета на удалённый узел по протоколу FTP (настройки подключения не должны быть зашиты в код программы) (плагин-«визуализатор») (дополнительный модуль расширения, разрабатывать по желанию)

Цель выполнения лабораторной работы

Цель выполнения лабораторной работы — усвоить принципы создания модулей расширения (плагинов, англ. plug-ins) функциональных возможностей программных систем.

Выполненные задачи

- 1. Обеспечена возможность подключения и вызова произвольного количества плагинов трех типов "конфигураторы", "решатели", "виджеты".
- 2. Реализованы плагин-конфигуратор, взаимодействующий с configфайлом, плагины-решатели, реализующие методы Эйлера и Хойна, плагины-виджеты, выводящие результаты расчета в консоль и выходной .csv-файл.
- 3. Дополнительно реализован плагин-виджет, осуществляющий загрузку файла решения на удаленный сервер с помощью FTP.

4. Обеспечена работоспособность программы при отсутствии плагинов определенных типов, а также при ошибках, связанных с их инициализацией.

1. Общее описание программной реализации

Программная реализация состоит из основного модуля main.exe и шести файлов с расширением .plg, являющихся плагинами. Модуль main.exe осуществляет поиск в заданной папке всех файлов с расширением .plg, регистрацию плагинов (т.е. поиск и вызов функций регистрации с последующим определением типов плагинов и распределением их по соответствующим контейнерам), а затем последовательный вызов одного из конфигураторов, всех решателей и всех виджетов. Иерархия реализованных плагинов приведена на Рис. 1, интерфейс базового плагина – в Листинге 1.

Рис 1.

Листинг 1.

```
class ifc_BasePlugin {
public:
    virtual int get_id() const = 0;
    virtual const char* get_name() const = 0;
    virtual const char* get_type() const = 0;
    virtual const char* get_title() const = 0;
    virtual bool is_instance(const char* req_name) const = 0;
    virtual ~ifc_BasePlugin() {};
};
```

В случае, если нет ни одного плагина определенного типа, происходит соответствующая обработка — при отсутствии конфигураторов используются параметры по умолчанию, при отсутствии решателей — рассчитывается только аналитическое решение, при отсутствии виджетов — решение не выводится (т.к. вывод результата в консоль также реализован отдельным плагином).

После выполнения программы в консоль печатается краткий отчет, содержащий в себе параметры модели и зарегистрированные плагины. Пример вывода отчета приведен на Рис. 2.

```
Model parameters:
    gam_type: 1
    gam: 0.1
    T_s: 25
    T_beg: 150
    time_beg: 0
    time_end: 100
    n_steps: 1000

Console output:
    True (see above)

File output settings:
    out_file_name: out.csv
    csv_dlm: ,

FTP output settings:
    host: 127.0.0.1
    port: 21
    login: admin
    password: 12345678
    file_name: out.csv

Registered plugins:
ifc_ConfigPlugin
    cls_TxtConfig - txt config reader
used: cls_TxtConfig
ifc_SolverPlugin
    cls_EulerSolver - Euler method
    cls_EulerSolver - Heun method
ifc_WidgetPlugin - cls_ToConsolePlugin - prints the result to the console
    cls_ToCosvPlugin - csv writer
    cls_ToCosvPlugin - ftp client
```

2. Плагины-конфигураторы

Плагины-конфигураторы обеспечивают задание параметров математической модели, а также параметров, необходимых некоторым плагинам решателям. Интерфейс плагина-решателя приведен в Листинге 2. Непосредственный запуск плагина осуществляется вызовом функции config, возвращающей структуру, полями которой являются заданные параметры.

Листинг 2.

```
class ifc_ConfigPlugin : public ifc_BasePlugin {
public:
    virtual int get_id() const = 0;
    virtual const char* get_name() const = 0;
    virtual const char* get_type() const = 0;
    virtual bool is_instance(const char* req_name) const = 0;
    virtual ~ifc_ConfigPlugin() {};
    // Функция задания глобальных параметров
    virtual config_struct config(const char* settings = "") = 0;
};
```

Реализованный конфигуратор cls_TxtConfigPlugin обеспечивает чтение текстового файла config.txt и установку параметров. При отсутствии такого файла создает файл с настройками по умолчанию, структура которого приведена в Листинге 3.

Листинг 3.

```
# Тип задания коэффициента гамма математической модели
        # 1 для точного значения, 2 для интервала, 3 для M(gam) и D(gam)
gam type=1
        # Коэффициент гамма математической модели. Для gam_type=1 - одно число, для 2 и 3 - два числа через запятую
gam=0.1
       # Температура окружающей среды
        # Начальная температура тела
T_beg=150.
       # Начальное время
time_beg=0.
        # Конечное время
time_end=100.
        # Желаемое количество шагов интегрирования
n steps=1000
       # Настройки для виджета, выводящего результаты в файл
        # Имя выходного .csv файла
out_file_name=out.csv
        # Разделитель в выходном файле
csv_dlm=,
# Настройки для виджета, передающего результаты по FTP
        # Имя создаваемого на сервере .csv файла
ftp_file_name=out.csv
       # Хост
ftp_host=127.0.0.1
        # Порт
ftp port=21
       # Логин
ftp_login=admin
        # Пароль
ftp password=12345678
```

3. Плагины-решатели

Осуществляют численное решение. Работа обеспечивается посредством вызова функции solve(), возвращающей вектор пар время-температура. Интерфейс решателя приведен в Листинге 4.

Листинг 4.

```
class ifc_SolverPlugin : public ifc_BasePlugin {
public:
    virtual int get_id() const = 0;
    virtual const char* get_name() const = 0;
    virtual const char* get_type() const = 0;
    virtual bool is_instance(const char* req_name) const = 0;
    virtual ~ifc_SolverPlugin() {};
    virtual std::vector<std::pair<double, double> >& solve(double (*der_func)(double),
        double y0, double begin, double end, unsigned n_steps) = 0;
};
```

Реализованные плагины cls_EulerPlugin и cls_HeunPlugin представляют собой методы Эйлера и Хойна соответственно.

4. Плагины-виджеты

Осуществляют визуализацию результатов расчета. Интерфейс представлен в Листинге 5.

Листинг 5.

```
class ifc_WidgetPlugin : public ifc_BasePlugin {
public:
    virtual int get_id() const = 0;
    virtual const char* get_name() const = 0;
    virtual const char* get_type() const = 0;
    virtual bool is_instance(const char* req_name) const = 0;
    virtual ~ifc_WidgetPlugin() {};
    virtual int execute(map<string, vector<pair<double, double> > >& data, const char* settings = "") = 0;
};
```

Были реализованы три плагина-виджета. Вывод результатов в консоль осуществляет cls_ToConsolePlugin (пример вывода на Рис. 3). Запись в выходной .csv-файл обеспечивает cls_ToCsvPlugin. В свою очередь, cls_ToFtpPlugin производит загрузку результата на удаленный сервер с помощью FTP. Он написан с использованием библиотеки WinInet.

Calculation results					
Time	analytic	cls_EulerSol	cls_HeunSolv		
0.000000	150.000000	150.000000	150.000000		
0.100000	148.756229	148.751249	148.757486		
0.200000	147.524834	147.514973	147.527323		
0.300000	146.305692	146.291047	146.309388		
0.400000	145.098680	145.079348	145.103560		
0.500000	143.903678	143.879754	143.909717		
0.600000	142.720567	142.692144	142.727741		
0.700000	141.549227	141.516398	141.557515		
0.800000	140.389543	140.352398	140.398920		
0.900000	139.241398	139.200027	139.251842		
1.000000	138.104677	138.059167	138.116166		
1.100000	136.979267	136.929705	136.991779		
1.200000	135.865055	135.811526	135.878569		
1.300000	134.761929	134.704518	134.776424		
1.400000	133.669779	133.608569	133.685234		
1.500000	132.588497	132.523568	132.604891		
1.600000	131.517974	131.449407	131.535286		
1.700000	130.458102	130.385976	130.476314		
1.800000	129.408776	129.333169	129.427868		
1.900000	128.369892	128.290880	128.389843		
2.000000	127.341344	127.259003	127.362137		
2.100000	126.323031	126.237434	126.344646		
2.200000	125.314850	125.226071	125.337269		
2.300000	124.316700	124.224812	124.339905		
2.400000	123.328483	123.233555	123.352456		
2.500000	122.350098	122.252201	122.374822		
3 700000	777 777 777	111 100// FA	111 10000		

Рис 3.

Заключение

Получен опыт реализации модулей расширения (плагинов). Реализована программа, осуществляющая численное решение ОДУ и обеспечивающая возможность расширения путем подключения произвольного количества плагинов.