SISTEM BILANGAN

Oleh: Audi Noventri, S.Pd., Gr

KONVERSI SISTEM BILANGAN

- Biner → Desimal
- Desimal → Biner
- Oktal → Biner
- Oktal → Desimal
- Hexadesimal → Biner
- Hexadesimal → Desimal

BINER → DESIMAL

BILANGAN BINER

Dihitung dari yang KANAN

$(\mathbf{x})_2$	1	1	1	1	1	1	1	1
	27							
$(x)_{10}$	128	64	32	16	8	4	2	1

BILANGAN DESIMAL

Contoh:

Jadi hasilnya dari $(11010)_2 = 2+8+16 = (26)_{10}$

$$(10011)_2 = (....)_{10}$$

DESIMAL -> BINER

$(\mathbf{x})_2$								
	27							
$(x)_{10}$	128	64	32	16	8	4	2	1

- 1. Cari angka tertinggi terdekat
- 2. Lalu kurangi angka desimal dengan angka tertinggi tersebut
- 3. Lakukan hingga angka desimal 0
- 4. Tuliskan angka biner yang dipakai untuk mengurangi nilai desimal dengan angka 1, dan menuliskan 0 bagian angka yang tidak dipakai untuk mengurangi angka yang ditanyakan

Contoh:

$$(50)_{10} = (...)_2$$

1 1 1 1 1 1 1 1 1

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

50-32=18-16=2-2=0

Jadi $(50)_{10} = (110010)_2$

$$(100)_{10} = (....)_2$$

OKTAL-> BINER

1 Bilangan OKTAL merepresentasikan 3 bilangan BINER yang berasal dari konversi desimal ke biner

Conto	oh : ~	(7	73	4)8	3=	():	2		
1	1	1		0	1	1		1	0	0
22	21	20		2 2	21	20		2 ²	2 1	<u>2⁰</u>
4	2	1		4	2	1		4	2	4

Jadi hasilnya $(734)_8 = (1110111100)_2$

$$(542)_8 = (....)_2$$

BINER-> OKTAL

Dihitung dari sebelah KANAN bilangan biner dihitung per 3 huruf bilangan biner konversi ke desimal.

Jadi hasilnya
$$(110010)_2 = (4+2)(2) = (62)_8$$

$$(10101001)_2 = (....)_8$$

HEXADESIMAL -> BINER

1 Bilangan HEXADESIMAL merepresentasikan 4 bilangan BINER yang berasal dari konversi desimal ke biner

Jadi hasilnya $(9B2)_{16} = (100110110010)_2$

$$(F7)_{16} = (...)_2$$

BINER-> HEXADESIMAL

Dihitung dari sebelah KANAN bilangan biner dihitung per 4 huruf bilangan biner konversi ke desimal.

Jadi hasilnya
$$(110010)_2 = (2+1)(2) = (32)_{16}$$

$$(10101001)_2 = (....)_{16}$$

SOAL LATIHAN

*wajib masukin cara mendapatkan hasilnya

KODE BILANGAN

- BCD (Binary Code Decimal)
- Kode Excess-3 (XS-3)
- Kode Gray
- Kode ASCII (American Standard Code for Information Interchange)

BCD (BINARY CODE DECIMAL)

Kode BCD standar disebut juga kode 8421. Setiap desimal dikodekan dengan satu angka BCD yang terdiri dari 4 bit.

Jadi hasilnya $(56)_{10} = (0101\ 0110)_{BCD}$

$$(83)_{10} = (...)_{BCD}$$

KODE EXCESS- 3 (XS- 3)

Kode XS3 dapat diperoleh dengan cara menambahkan 3 (0011) kepada kode BCD standar. Kode XS3 memiliki sifat self complementing. Maksudnya apabila XS3 dikomplemenkan akan menghasilkan komplemen dalam desimal.

Contoh:

Jadi hasilnya $(95)_{10} = (1100\ 1000)_{XS-3}$

$$(37)_{10} = (...)_{XS-3}$$

KODE GRAY

Digit pertama (MSD = Most Significant Digit) kode Gray dengan MSD Biner. Kemudian digit MSD bilangan biner ditambahkan ke digit berikutnya sampai penambahan terakhir dengan digit akhir (LSD = Least Significant Digit) dari bilangan biner yang hasilnya merupakan LSD dari kode Gray

KODE GRAY

Contoh:

$$(1011)_2 = (....)_{GRAY}$$
 1110

Jadi hasilnya $(1011)_2 = (1110)_{GRAY}$

$$(11010)_2 = (...)_{GRAY}$$

KODE ASCI I

(AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE)

Kode Standar Amerika untuk Pertukaran Informasi atau ASCII (American Standard Code for Information Interchange) merupakan suatu standar internasional dalam kode Hex dan Unicode, tetapi ASCII lebih bersifat universal, contohnya 124 adalah untuk karakter "|". Ia selalu digunakan oleh komputer dan alat komunikasi lain untuk menunjukkan teks. Kode ASCII sebenarnya memiliki komposisi bilangan biner sebanyak 7 bit. Namun, ASCII disimpan sebagai sandi 8 bit dengan menambakan satu angka 0 sebagai bit significant paling tinggi. Kegunaan kode ASCII untuk mewakili karakter-karakter angka maupun huruf didalam komputer, sebagai contoh dapat kita lihat pada karakter 1, 2, 3, A, B, C, dan sebagainya

Dec	Hex	Char	Dec	Нех	Char	Dec	Hex	Char	Dec	Hex	Char	
0	00	Null	32	20	Space	64	40	0	96	60	٠.	LODE ACCII
1	01	Start of heading	33	21	!	65	41	A	97	61	а	KODE ASCII
2	02	Start of text	34	22	"	66	42	В	98	62	b	
3	03	End of text	35	23	#	67	43	C	99	63	c	
4	04	End of transmit	36	24	\$	68	44	D	100	64	d	
5	05	Enquiry	37	25	4	69	45	E	101	65	e	
6	06	Acknowledge	38	26	€	70	46	F	102	66	f	
7	07	Audible bell	39	27	'	71	47	G	103	67	g	
8	08	Backspace	40	28	(72	48	H	104	68	h	
9	09	Horizontal tab	41	29)	73	49	I	105	69	í	
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	j	
11	OB	Vertical tab	43	2B	+	75	4B	K	107	6B	k	
12	OC.	Form feed	44	2C	,	76	4C	L	108	6C	1	
13	OD	Carriage return	45	2 D	-	77	4D	М	109	6D	m	
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n	
15	OF	Shift in	47	2F	/	79	4F	0	111	6F	0	(AMERICAN STANDARD CODE FOR
16	10	Data link escape	48	30	0	80	50	P	112	70	р	·
17	11	Device control 1	49	31	1	81	51	Q	113	71	ď	INFORMATION INTERCHANGE)
18	12	Device control 2	50	32	2	82	52	R	114	72	r	
19	13	Device control 3	51	33	3	83	53	ន	115	73	8	
20	14	Device control 4	52	34	4	84	54	Т	116	74	t	
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u	
22	16	Synchronous idle	54	36	6	86	56	v	118	76	v	
23	17	End trans. block	55	37	7	87	57	พ	119	77	u	
24	18	Cancel	56	38	8	88	58	X	120	78	x	
25	19	End of medium	57	39	9	89	59	Y	121	79	У	
26	1A	Substitution	58	3A	:	90	5A	Z	122	7A	Z	
27	1B	Escape	59	3B	;	91	5B	[123	7B	{	
28	1C	File separator	60	3 C	<	92	5C	/	124	7C	I	
29	1D	Group separator	61	ЗD	-	93]	125		}	
30	1E	Record separator	62	ЗE	>	94	5E	^	126		~	
31	1F	Unit separator	63	3 F	?	95	5F		127	7F		

THANKS!