special communications

Simple, accurate equations for human blood O₂ dissociation computations

JOHN W. SEVERINGHAUS

Cardiovascular Research Institute and Department of Anesthesia, University of California Medical School, San Francisco, California 94143

SEVERINGHAUS, JOHN W. Simple, accurate equations for human blood O_2 dissociation computations. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46(3): 599-602, 1979.— Hill's equation can be slightly modified to fit the standard human blood O_2 dissociation curve to within ± 0.0055 fractional saturation (S) from O < S < 1. Other modifications of Hill's equation may be used to compute Po_2 (Torr) from S (Eq. 2), and the temperature coefficient of Po_2 (Eq. 3). Variations of the Bohr coefficient with Po_2 are given by Eq. 4.

$$S = (((Po23 + 150 Po2)-1 \times 23,400) + 1)-1$$
 (1)

$$\ln Po_2 = 0.385 \ln (S^{-1} - 1)^{-1} + 3.32 - (72 S)^{-1} - 0.17(S^6)$$
 (2)

$$\Delta \ln Po_2/\Delta T = 0.058((0.243 \times Po_2/100)^{3.88} + 1)^{-1} + 0.013 \quad (3)$$

$$\Delta \ln Po_2/\Delta pH = (Po_2/26.6)^{0.184} - 2.2 \tag{4}$$

Procedures are described to determine Po_2 and S of blood iteratively after extraction or addition of a defined amount of O_2 , and to compute P_{50} of blood from a single sample after measuring Po_2 , pH, and S.

blood Po_2 ; Bohr effect; temperature effect; $(a-v)O_2$ content computation; O_2 saturation equation; pH effect on Po_2 calculation

THEORETIC ANALYSES OF O2 EXCHANGES between gas, blood, and tissue, and the effects of temperature and pH, require reasonably accurate expressions of the O2 dissociation curve and temperature coefficient. The Adair equation (6) although theoretically sound, could not be made to conform to whole blood O₂ dissociation to better than about ±1% saturation by Dr. E. DeLand, using a Rand Corporation computer curve-fitting program (6). Both the Adair and several empiric power functions (1, 4, 7, 9) are cumbersome multiconstant equations that may unacceptably delay small desk top calculators when iterative solutions are needed, as in computing arteriovenous Po₂ differences. The following equations were developed primarily to facilitate investigation of the determinants of transcutaneous Po2 under heated skin surface electrodes.

Symbols and units of measurement are defined.

Po₂ partial pressure of O₂ (Torr at 37°C)

S fractional O_2 saturation (% saturation/100)

 P_{50} Po₂ of a whole blood sample at 37°C (S = 0.5,

pH = 7.4)

C O_2 content (milliliters O_2 STPD per milliliters blood)

BE base excess of whole blood (meq/l)

' and " before and after gas exchange, i.e., arterial venous but valid for both increase and decrease of O₂

a trial computation of a variable

T temperature (°C)

In natural logarithm, used for all computations unless noted "log₁₀"

I. O₂ Saturation from Po₂

The Hill equation approximates the human blood O_2 dissociation curve reasonably well for S>0.3 but is unacceptably low at the bottom of the curve. The following modification of Hill's equation corrects most of this misfit, and matches the standard human blood O_2 dissociation curve at pH = 7.4, T = 37°C (6). Table 1 includes values obtained by extrapolation between the points in Table 2, columns 1 and 2 of Ref. 6. Figure 1 displays the error, as a function of O_2 saturation, of the equation

$$S = (((Po23 + 150 Po2)-1 \times 23,400) + 1)-1$$
 (1)

The greatest error is +0.55% at 98.77% Sat. The mean absolute error (with equal weight to each increment of saturation) is 0.26% saturation, less than half that of the Adair equation (6). P_{50} with $Eq.\ 1$ is 26.86, compared with 26.67 in the standard curve.

II. Po₂ from O₂ Saturation

Equation 1 cannot be directly solved for Po₂. Another empiric modification of Hill's equation may be used to compute Po₂ from S for S < 0.965

Figure 2 depicts the error of Eq. 2, the mean absolute error being 0.16 Torr for the range 0 < S < 0.965. The maximum error is 0.6 Torr. At S = 0.99, Eq. 2 is 37 Torr

J. W. SEVERINGHAUS

below the standard Po₂ of 174 Torr. Equation 1 is similarly low in this range, although for both, the error is less than 0.006 S.

TABLE 1. Values for standard human blood O_2 dissociation curve at 37°C, pH = 7.4, extrapolated between points from Ref. 6

Po ₂	%S	Po ₂	%s	Po ₂	%S
1	0.60	34	65.16	80	95.84
2	1.19	36	68.63	85	96.42
4	2.56	38	71.94	90	96.88
6	4.37	40	74.69	95	97.25
8	6.68	42	77.29	100	97.49
10	9.58	44	79.55	110	97.91
12	12.96	46	81.71	120	98.21
14	16.89	48	83.52	130	98.44
16	21.40	50	85.08	140	98.62
18	26.50	52	86.59	150	98.77
20	32.12	54	87.70	175	99.03
22	37.60	56	88.93	200	99.20
24	43.14	58	89.95	225	99.32
26	48.27	60	90.85	250	99.41
28	53.16	65	92.73	300	99.53
30	57.54	70	94.06	400	99.65
32	61.69	75	95.10	500	99.72

III. Temperature Coefficient of Po₂ in Blood

The effect of changing temperature on blood Po_2 varies from 7.4%/°C at low saturation, to 1.3%/°C at high Po_2 . This factor depends on the slope of the O_2 dissociation curve at the Po_2 of the blood. A modification of Hill's equation expresses slope, and may be used to compute the temperature coefficient at any given Po_2 . This equation is

$$\Delta \ln \text{Po}_2/\Delta T = 0.058((0.243 \times \text{Po}_2/100)^{3.88} + 1)^{-1} + 0.013$$
 (3)

In Fig. 3, Eq. 3 is plotted as a function of both Po₂ and saturation. This equation applies to Po₂ at 37°C. To begin with some other temperature, one may estimate a trial 37°C Po₂ using the factors 6%/°C if Po₂ < 100, and 6 Torr/°C above 100 Torr, and proceed iteratively in Eq. 3.

Little experimental data is available to verify the temperature correction. Nunn et al. (5) obtained a few points in good agreement with the values computed from the dissociation curve by the present author (8). Equation 3 yields values in close accord with the complex procedure of Thomas (9), and that of Ruiz et al. (7).

FIG. 1. Error, in % saturation, of Eq. 1 as a function of saturation from 0 to 100%, from "standard blood O_2 dissociation curve" data of Table 1.

FIG. 2. Error, in Torr, of Eq. 2 as a function of saturation fraction S, also compared with data of Table 1. Above S = 0.965, errors which are about +0.005 S, become very large as Po₂ errors.

FIG. 3. Relationship of anaerobic temperature coefficient of whole blood Po_2 to the level of Po_2 (lower curve and lower abscissa, in both Torr and in kPa), or to saturation percentage (upper ordinates and curves). Nearly horizontal line at 0.07 is value from $80 < So_2\% < 90$.

FIG. 4. Bohr factor as a function of saturation. Data points from Hlastala, and one (not shown) at S = 0.99 from Ref. 6, are represented by an empiric equation. Data are for CO₂ variations of pH in whole human blood with normal BE and 2,3-DPG.

IV. Correction of Po_2 to pH = 7.40 (Bohr Effect)

As a first approximation, the effect of respiratory variations of pH on Po₂ at constant saturation is a factor independent of Po₂.

 $\Delta \log_{10} \text{ Po}_2/\text{pH} = -0.48$, or computing $-0.48(\ln 10) = 1.1$

$$Po_2(7.4) = Po_2 \times e^{1.1(pH-7.4)}$$
 (4)

The Bohr effect falls off at high saturation and increases at very low saturation, as illustrated in Fig. 4, taken from the work of Hlastala and Woodson (2). An additional point Roughton and I (6) obtained at S=0.99

is -0.78 (-0.34 in \log_{10}) is not shown in Fig. 4. When CO_2 is the acid variable, about 20% of the Bohr effect is due to a CO_2 effect independent of pH. For this one may add a correction of +0.003 BE (8). An empiric estimate of the Bohr effect taking these data into account is then

$$\Delta \ln \text{ Po}_2/\Delta \text{pH} = (\text{Po}_2/26.7)^{0.184} + 0.003 \text{ BE} - 2.2$$
 (5)

Values from Eq. 5 may be substituted in Eq. 4 in place of (1.1).

V. Program for Computing S from Po₂ and pH

These equations are easily programmed on hand-held

5. W. SEVERINGHAUS

calculators. A typical program (Novus 4515 Mathematician PR) including initial Po₂ correction for pH, is as follows: Start; Enter; Halt; Enter; 7.4; -; 1.1; x; e^x ; x; Enter; Fx²; 150; +; 23400; /; 1/x; 1; +; 1/x; Skip.

To use, key in Po₂, Start, pH, Start.

VI. Arteriovenous Po₂ Differences from O₂ Content Differences

When blood exchanges O_2 with tissue or gas, variable amounts of the O_2 come from dissolved O_2 and HbO_2 , depending on the slope of the dissociation curve over which the blood moves. O_2 content (C) is computed as

$$C = (0.0134 \times Hb \times S) + (0.000031 \times Po_2) \text{ (at 37°C)}$$

Assuming known values of $P'o_2$, Hb, and the change in C (ΔC), one needs an iterative method to determine the final $P''o_2$ and S''. Proceed as follows.

With Eq. 1, compute S'.

Let $P'o_2 = P^*o_2$ and $\Delta C/2 = \Delta C^*$. Iteration

$$P^*o_2(1 - ((\Delta C - \Delta C^*)2VP^*o_2)) = P''o_2$$
 (7)
(if this $P''o_2 < 0$, set $P''o_2 = 10$)

Compute S" from new P" o_2 (Eq. 1)

REFERENCES

- ABERMAN, A., J. M. CAVANILLES, J. TROTTER, D. ERBECK, M. H. WEIL, AND H. SHUBIN. An equation for the oxygen hemoglobin dissociation curve. J. Appl. Physiol. 35: 570-571, 1973.
- HLASTALA, M. P., AND R. D. WOODSON. Saturation dependency of the Bohr effect: interactions among H⁺, CO₂, and DPG. J. Appl. Physiol. 38: 1126-1131, 1975.
- KELMAN, G. R. Digital computer subroutine for the conversion of oxygen tension into saturation. J. Appl. Physiol. 21: 1375-1376, 1966.
- Lutz, J., H. G. Schulze, and U. F. Michael. Calculation of O₂ saturation and of the oxyhemoglobin dissociation curve for different species, using a new programmable pocket calculator. *Pfluegers Arch.* 359: 285-295, 1975.
- 5. Nunn, J. F., N. A. Bergman, A. Bunatyan, and A. J. Coleman.

 $0.0134 \times Hb \times (S' - S'') + 0.000031$

$$\times (P'o_2 - P''o_2) = \Delta C^*$$

Let $P''o_2 = P^*o_2$ and iterate from Eq. 7 until ($\Delta C - \Delta C^*$) $< \pm 0.0001$. The empiric term VP^*o_2 in Eq. 7 scales the error in C to approximately match the slope of the O_2 dissociation curve at P^*o_2 .

Note that *Eqs. 1* and 2 are not precisely equivalent, and therefore can not be used sequentially in iterative solutions.

VII. Computation of P_{50}

Obtain a sample of the blood in question with 0.2 < S < 0.8. Measure S spectrophotometrically or by determination of C and O_2 capacity. Measure Po_2 and pH of the same sample at 37°C. Use $Eq.\ 2$ to compute Po_2 from measured S, and term this $Po_2(std)$. Use $Eqs.\ 4$ and 5 to compute Po_2 at pH = 7.4 from the measured Po_2 and pH, and term this $Po_2(obs)$.

$$P_{50} = 26.7 \times Po_2(obs)/Po_2(std)$$
 (8)

This research was supported in part by National Institutes of Health Grants HL-06285, GM-15571-10, and 5KO6-HL-19412-16.

Received 1 May 1978; accepted in final form 2 November 1978.

- Temperature coefficients for Pco₂ and Po₂ of blood in vitro. *J. Appl. Physiol.* 20: 23-26, 1965.
- ROUGHTON, F. J. W., AND J. W. SEVERINGHAUS. Accurate determination of O₂ dissociation curve of human blood above 98.7% saturation with data on O₂ solubility in unmodified human blood from 0° to 37°C. J. Appl. Physiol. 35: 861–869, 1973.
- RUIZ, B. C., W. K. TUCKER, AND R. R. KIRBY. A program for calculation of intrapulmonary shunts, blood-gas and acid-base values with a programmable calculator. *Anesthesiology* 42: 88-95, 1975.
- SEVERINGHAUS, J. W. Blood gas calculator. J. Appl. Physiol. 21: 1108-1116, 1966.
- THOMAS, L. J., JR. Algorithms for selected blood acid-base and blood gas calculations. J. Appl. Physiol. 33: 154-158, 1972.