Problem Set 2

Due: 10/14 (Friday) at 11:59pm on Gradescope Group members: Rylan Schaeffer, Connor Settle

Please follow the homework policies on the course website.

1. (8 pt.) [Counting small cuts.]

Recall that a cut of an undirected graph G = (V, E) is a partition of the vertices V into nonempty disjoint sets A and B. A $min\ cut$ of G is a cut that minimizes the number of edges that cross the cut (have one endpoint in A and one in B).

In the following problems, assume G is a connected graph on n vertices (i.e., there is no cut with 0 edges that cross it).

- (a) (2 pt.) A graph may have many possible min cuts. Prove that G has at most n(n-1)/2 min cuts.
- (b) (2 pt.) Show that part (a) is tight; for every $n \ge 2$, give a connected graph on n vertices with exactly n(n-1)/2 min cuts.
- (c) (4 pt.) Let α be a positive integer. Suppose that any min cut of G has k edges that cross the cut. An α -small cut of G is a cut that has at most αk edges that cross the cut. Prove that the number of such cuts is at most $O(n^{2\alpha})$.

[Note: If you find it easier, you'll still get full credit if you prove a bound of $O((2n)^{2\alpha})$.] [HINT: Consider stopping Karger's algorithm early and then outputting a random cut in the contracted graph. What is the probability that this returns a fixed α -small cut of G?]

(d) (0 pt.) [Optional: this won't be graded] Let $f(n, \alpha)$ be the maximum number of α -small cuts that an n vertex graph can have. What are the tightest upper and lower bounds you can find for $f(n, \alpha)$?

SOLUTION:

- (a) Lecture 2 Theorem 2.2's proof states the probability that a specific min cut C is found is $\geq \frac{2}{n(n-1)}$. Suppose, for purposes of contradiction, the number of min cuts is $> \frac{n(n-1)}{2}$. Then the total probability of finding these min cuts is $> \frac{2}{n(n-1)} \frac{n(n-1)}{2} = 1$, which is impossible.
- (b) Let G be a cycle graph. This graph has exactly n(n-1)/2 min cuts, where each min cut is given by choosing a start node and an end node, and taking all nodes in between them as one partition and the complement as the other partition. There are $\binom{n}{2} = \frac{n(n-1)}{2}$ possible ways to pick the start and end nodes.
- (c) Consider a particular α -small cut. Suppose we run Karger's algorithm until 2α edges remain. The probability that Karger's algorithm, prematurely ended, doesn't contract an edge in that α -small cut is:

$$Pr[\text{not violating the cut}] \ge \frac{n-2\alpha}{n} \frac{n-2\alpha-1}{n-1} \dots \frac{1}{2\alpha+1}$$

Annihilating terms gives:

$$Pr[\text{not violating the cut}] \ge \frac{(2\alpha)...(3)(2)(1)}{n(n-1)...(n-2\alpha+1)}$$

With 2α remaining vertices, $2^{2\alpha} - 1$ partitions are possible; a random sampling of the possible partitions chooses our particular α -small cut is $1/2^{2\alpha}$. Thus, the probability we select our particular α -small cut is:

$$Pr[\text{select this particular cut}] = \frac{1}{2^{2\alpha}} Pr[\text{not violating the cut}]$$

$$\geq \frac{1}{n(n-1)...(n-2\alpha+1)}$$

$$\geq n^{-2\alpha}$$

Since the summed probability of all α -small cuts must not exceed 1, the total number of α -small cuts must be $O(n^{2\alpha})$

2. (12 pt.) [Tightness of Markov's and Chebyshev's Inequalities]

- (a) (4 pt.) Show that Markov's inequality is tight. Specifically, for each value c > 1, describe a distribution D_c supported on non-negative real numbers such that if the random variable X is drawn according to D_c then (1) $\mathbb{E}[X] > 0$ and (2) $\Pr[X \ge c\mathbb{E}[X]] = 1/c$.
- (b) (4 pt.) Show that Chebyshev's inequality is tight. Specifically, for each value c > 1, describe a distribution D_c supported on real numbers such that if the random variable X is drawn according to D_c then (1) $\mathbb{E}[X] = 0$ and Var[X] = 1 and (2) $\Pr[|X \mathbb{E}[X]| \ge c\sqrt{\text{Var}[X]} = 1/c^2$.
- (c) (4 pt.) [One-sided version of Chebyshev's Inequality] Prove a one-sided bound on the distribution of a random variable X given its variance. That is, if Var[X] = 1, what the best upper bound on $Pr[X \mathbb{E}[X] \ge t]$? Give your answer in terms of t. Prove your bound (a) is true and (b) is tight by coming up with a variable X with distribution D_t and variance 1 for which $Pr[X \mathbb{E}[X] \ge t]$ equals your answer.

SOLUTION:

(a) Fix c > 1. Define the distribution $D_c(x) = (1 - \frac{1}{c})\delta_0(x) + \frac{1}{c}\delta_1(x)$, where $\delta_c(x)$ is the Dirac measure. Note that the first condition is met:

$$\mathbb{E}[X] = \left(1 - \frac{1}{c}\right)0 + \left(\frac{1}{c}\right)1 = \frac{1}{c} > 0$$

Note that the second condition is also met:

$$Pr[X \ge c\mathbb{E}[X] = c\frac{1}{c} = 1] = \frac{1}{c}$$

(b) Define $D_c(x) = \frac{1}{2c^2}\delta_{-c}(x) + \frac{1}{2c^2}\delta_c(x) + (1 - \frac{1}{c^2})\delta_0(x)$, where δ is again a Dirac measure. Note that the first condition is met:

$$\mathbb{E}[X] = \left(\frac{1}{2c^2}\right)(-c) + \left(\frac{1}{2c^2}\right)(c) + \left(1 - \frac{1}{c^2}\right)(0) = 0$$

Note that the second condition is also met:

$$\mathbb{V}[X] = \left(\frac{1}{2c^2}\right)(-c)^2 + \left(\frac{1}{2c^2}\right)(c)^2 = \frac{1}{2} + \frac{1}{2} = 1$$

Note that the third condition is also met:

$$Pr(|X - \mathbb{E}[X]| \ge c) = \frac{1}{c^2}$$

(c) I'm going to answer the questions in reverse order. I'll first show that a distribution D_t exists with a particular probability, then show that this is an upper bound. Define a distribution $D_t = (1 - \frac{1}{1+t^2})\delta_{-1/t}(x) + \frac{1}{1+t^2}\delta_t(x)$. Note that the variance is 1:

$$\mathbb{V}[X] = (1 - \frac{1}{1+t^2})(-1/t)^2 + \frac{1}{1+t^2}t^2 = -\frac{t^2}{1+t^2} + \frac{t^2}{1+t^2} = 1$$

For this D_t , $Pr[X - \mathbb{E}[X] \ge t] = \frac{1}{1+t^2}$. I claim that this is an upper bound i.e. that for all distributions with variance 1, $Pr[X - \mathbb{E}[X] \ge t] \le \frac{1}{1+t^2}$:

$$\begin{split} Pr[X - \mathbb{E}[X] &\geq t] = Pr[X - \mathbb{E}[X] + \frac{\mathbb{V}[X]}{t} \geq t + \frac{\mathbb{V}[X]}{t}] \\ &\leq Pr \left[(X - \mathbb{E}[X] + \frac{\mathbb{V}[X]}{t})^2 \geq (t + \frac{\mathbb{V}[X]}{t})^2 \right] \\ &\leq \frac{\mathbb{V}[X] + \mathbb{V}[X]^2/t^2}{(\mathbb{V}[X]/t + t)^2} \\ &= \frac{\mathbb{V}[X](t^2 + \mathbb{V}[X])}{(\mathbb{V}[X] + t^2)^2} \\ &= \frac{\mathbb{V}[X]}{\mathbb{V}[X] + t^2} \end{split}$$

This bound is tight because the D_t we defined earlier meets the equality.

3. (0 pt.) [This whole problem is optional and will not be graded.] In this problem, you'll analyze a different primality test than we saw in class. This one is called the *Agrawal-Biswas Primality test*.

Given a degree d polynomial p(x) with integer coefficients, for any polynomial q(x) with integer coefficients, we say $q(x) \equiv t(x) \mod (p(x), n)$ if there exists some polynomial s(x) such that $q(x) = s(x) \cdot p(x) + t(x) \mod n$. (Here, we say that $\sum_i c_i x^i = \sum_i c_i' x^i \mod n$ if and only if $c_i = c_i' \mod n$ for all i.) For example, $x^5 + 6x^4 + 3x + 1 \equiv 3x + 1 \mod (x^2 + x, 5)$, since $(x^3)(x^2 + x) + (3x + 1) = x^5 + x^4 + 3x + 1 \equiv x^5 + 6x^4 + 3x + 1 \mod 5$.

Agrawal-Biswas Primality Test.

Given n:

- If n is divisible by 2,3,5,7,11, or 13, or is a perfect power (i.e. $n = c^r$ for integers c and r) then output **composite**.
- Set d to be the smallest integer greater than $\log n$, and choose a random degree d polynomial with leading coefficient 1:

$$r(x) = x^{d} + c_{d-1}x^{d-1} + \dots + c_{1}x + c_{0},$$

by choosing each coefficient c_i uniformly at random from $\{0, 1, \dots, n-1\}$.

• If $(x+1)^n \equiv x^n + 1 \mod (r(x), n)$ then output **prime**, else output **composite**.

Consider the following theorem (you can assume this if you like, or for even more optional work, try to prove it!):

Theorem 1 (Polynomial version of Fermat's little theorem).

- If n is prime, then for any integer a, $(x-a)^n = x^n a \mod n$.
- If n is not prime and is not a power of a prime, then for any a s.t. gcd(a,n) = 1 and any prime factor p of n, $(x-a)^n \neq x^n a \mod p$.

First, show that if n is prime, then the Agrawal-Biswas primality test will always return **prime**.

Now, we will prove that if n is composite, the probability over random choices of r(x) that the algorithm successfully finds a witness to the compositeness of n (and hence returns **composite**) is at least $\frac{1}{4d}$.

(a) Using the polynomial version of Fermat's Little Theorem, and the fact that, for prime q, every polynomial over \mathbb{Z}_q that has leading coefficient 1 (i.e. that is "monic") has a unique factorization into irreducible monic polynomials, prove that the number of irreducible degree d factors that the polynomial $(x+1)^n - (x^n+1)$ has over \mathbb{Z}_p is at most n/d, where p is any prime factor of n. (A polynomial is irreducible if it cannot be factored, for example $x^2 + 1 = (x+1)(x+1) \mod 2$ is not irreducible over \mathbb{Z}_2 , but $x^2 + 1$ is irreducible over \mathbb{Z}_3 .)

[HINT: Even though this question sounds complicated, the proof is just one line...]

(b) Let f(d, p) denote the number of irreducible monic degree d polynomials over \mathbb{Z}_p . Prove that if n is composite, and not a power of a prime, the probability that r(x) is a witness to the compositeness of n is at least $\frac{f(d,p)-n/d}{p^d}$, where p is a prime factor of n.

[HINT: p^d is the total number of monic degree d polynomials over \mathbb{Z}_p .]

(c) Now complete the proof, and prove that the algorithm succeeds with probability at least 1/(4d), leveraging the fact that the number of irreducible monic polynomials of degree d over \mathbb{Z}_p is at least $p^d/d - p^{d/2}$. (You should be able to prove a much better bound, though 1/4d is fine.)

[HINT: You will also need to leverage the fact that we chose $d > \log n$ and also explicitly made sure that n has no prime factors less than 17.]

SOLUTION:

- (a) asdf
- (b)