ECE 486/586 Computer Architecture

Prof. Mark G. Faust

Maseeh College of Engineering and Computer Science

Outline

Topics

- Binary Arithmetic (Unsigned binary operands)
- Signed number representations
 - Signed Magnitude
 - Diminished Radix Complement (Ones Complement)
 - Radix Complement (Twos Complement)
- Binary Arithmetic Revisited and Overflow
- Sign Extension
- IEEE 754 Floating Point

Binary Arithmetic

Rules for "carry" same as in decimal

Unsigned Binary (UB) Addition

• Examples (4-bit word)

Overflow (Underflow)

Definition:

Result of an arithmetic operation is too large (or small) to be represented in number of bits available

Detection:

Varies with the representation. For unsigned binary, it's determined by a carry out of the MSB

8 bit operands

Signed Numbers

- Have been assuming non-negative numbers
 - Unsigned Binary (UB)
- Several representations for signed numbers
 - Sign Magnitude (SM)
 - Diminished Radix Complement (DRC)
 - 1s Complement
 - Radix Complement (RC)
 - 2s Complement

Sign Magnitude

MSB functions as sign bit

0 = positive

1 = negative

Range of numbers:

$$-(2^{n-1}-1)$$
 to $+(2^{n-1}-1)$

n = 6

Two representations for 0

Negative formed by complementing sign bit

$$15_{10} = 001111_{SM}$$

 $-15_{10} = 101111_{SM}$

$$010100_{SM} = 20_{10}$$

 $110100_{SM} = -20_{10}$

Diminished Radix Complement (DRC)

Called "Ones Complement"

MSB indicates sign

0 = positive

1 = negative

(but not a sign bit!)

Range of numbers:

$$-(2^{n-1}-1)$$
 to $+(2^{n-1}-1)$

Two representations for 0

Negative formed by complementing entire word (called "taking the ones complement").

$$15_{10} = 001111_{DRC}$$

- $15_{10} = 110000_{DRC}$

$$010100_{DRC} = 20_{10}$$

 $101011_{DRC} = -20_{10}$

		DF	RC 1	nun	nbe	r	Decimal number
	d_5	d_4	d_3	d_2	d_1	d_0	
	0	1	1	1	1	1	$+31 = +(2^5 - 1)$
	0	1	1	1	1	0	+30
	0	1	1	1	0	1	+29
	0	1	1	1	0	0	+28
				•			
	0	0	0	0	1	0	+2
	0	0	0	0	0	1	+1
	0	0	0	0	0	0	+0
	1	1	1	1	1	1	-0
d	1	1	1	1	1	0	-1
-	1	1	1	1	0	1	-2
				•			
	1	0	0	0	1	1	-28
	1	0	0	0	1	0	-29
	1	0	0	0	0	1	-30
	1	0	0	0	0	0	$-31 = -(2^5 - 1)$

Radix Complement (RC)

Called "Twos Complement"

MSB indicates sign

0 = positive

1 = negative

(but not a sign bit)

Range of numbers:

$$-(2^{n-1})$$
 to $+(2^{n-1}-1)$

Only one representation for 0

Negative formed by complementing entire word and adding 1 (called "taking the twos complement"

$$15_{10} = 001111_{RC}$$

 $-15_{10} = 110001_{RC}$

$$010100_{RC} = 20_{10}$$

 $101100_{RC} = -20_{10}$

		R	C n	um	ber	•	Decimal number
-	d_{5}	d_4	d_3	d_2	d_1	d_0	
	0	1	1	1	1	1	$+31 = +(2^5 - 1)$
	0	1	1	1	1	0	+30
	0	1	1	1	0	1	+29
	0	1	1	1	0	0	+28
				•			
	0	0	0	0	1	0	+2
	0	0	0	0	0	1	+1
	0	0	0	0	0	0	+0
	0	0	0	0	0	0	-0
	1	1	1	1	1	1	- 1
	1	1	1	1	1	0	-2
· ·							
าt") ₁	0	0	1	0	0	-28
	1	0	0	0	1	1	-29
	1	0	0	0	1	0	-30
	1	0	0	O	0	1	-31
	1	0	0	0	0	0	$-32 = -2^5$

Twos Complement – Special Cases

Example: Take Twos Complement (RC) of 0000 (0_{10})

Ignore carry out of MSB

Twos Complement – Special Cases

Example: Take Twos Complement (RC) of 1000 (-8₁₀) (most negative)

1000

1 1 1

O111 ← Complement

+ 1

Add One abs(most negative number)

1000

Conversions of Signed Representations

From decimal

- Represent the absolute value of the number in UB
- Use the correct number of bits (add leading 0s)
- If the decimal number is negative, use the appropriate rule to negate the representation
 - S/M complement the sign bit
 - DRC (ones complement) complement every bit
 - RC (twos complement) complement every bit, add 1

To decimal

- If number is +, convert from UB to decimal (done!)
- If number is use appropriate rule to negate it (obtain its absolute value)
 - S/M complement the sign bit
 - DRC (ones complement) complement every bit
 - RC (twos complement) complement every bit, add 1
- Convert this (positive) number as though UB to decimal
- Add a negative sign

Why do we use RC (Twos Complement)?

- Only one representation for zero
- Simplified Addition
 - Sign Magnitude Addition
 - Must consider two operands without sign bits
 - If sign bits same: perform add, check overflow
 - If sign bits different: subtract (two cases)
 - $+A and -B \rightarrow A -B$
 - A and + B \rightarrow B A
 - Generate correct sign bit for sum
 - Radix Complement (Twos Complement) Addition
 - Just add!
- Simple Subtraction
 - Done via addition
 - A + B
 - A B = A + (-B)
 - Caution: Can't take negative of most negative number

Binary Arithmetic

- Unsigned Binary (UB)
- Signed Binary (SB)
- - 1s complement
- Radix Complement (RC)
 - 2s complement

Radix Complement (RC) or Twos Complement Addition

Examples (4-bit word)

$$7 + (-2) \qquad 5 + (-7)$$

$$0111 \qquad 7 \qquad 0101 \qquad 5$$

$$+ 1110 \qquad + (-2) \qquad + 1001 \qquad + (-7)$$

$$10101 \qquad 5 \qquad (-2)$$

Radix Complement (RC) or Twos Complement Addition

Examples (4-bit word)

We added two negative numbers and got a positive result!

Overflow!!

$$-9 < -(2^3)$$

Carry and Overflow

Is this an overflow condition?

If this is an unsigned binary (UB) number — Yes!

Carry and Overflow

Is this an overflow condition?

If this is a radix complement (RC) number – No!

A negative number plus a positive number cannot produce an overflow

Carry and Overflow Radix Complement (2s Complement)

• Consider:

- Positive + Negative → Never overflow
- Negative + Negative → Overflow possible
- Positive + Positive → Overflow possible

Detecting Overflow:

- If signs of addends are same and sign of sum is different
- Equivalent to $C_{SBP} \neq C_{SBP+1}$

Carry and Overflow

Radix Complement (RC) Addition

Examples (4-bit word)

$$-7 + (-2)$$
 C_{SBP+1}
 C_{SBP}
 10000
 1001
 -7
 $+ 1110$
 $+ (-2)$
 10111
 -9

$$C_{SBP+1} \neq C_{SBP}$$

We added two negative numbers and got a positive result!

Overflow!

$$-9 < -(2^3)$$

Sign Extension

What happens when you move a number from a smaller word size to a larger one?

Floating Point

- Need to represent "real" numbers
- Fixed point too restrictive for precision and range
- Not unlike familiar "scientific notation"

Normalized mantissa – single digit to left of decimal point

A normalized (binary) mantissa will always have a leading 1 so we can assume it and get an extra bit of precision instead

Exponents are stored with a bias which is added to the exponent before being stored (allows fast magnitude compare)

Universally used on virtually all computers

Several levels of precision/range: Single, Double, Double-Extended

Single Precision – 32 bits, Bias = 127

 $F = -1^{Sign} x (1+Significand) x 2^{(Exponent-Bias)}$

• Example $F = -1^{Sign} x (1+Significand) x 2^{(Exponent-Bias)}$

Will commonly see these expressed as hex

COA00000

- Some Special Cases
 - Zero (no assumed leading 1)
 - Exponent = 0, Significand = 0
 - NaN (Not a Number), e.g. ∞
 - Exponent = 255
 - Denormalized numbers
 - Exponent = 0, Significand \neq 0

- Why do we need denormalized numbers?
 - Addresses gap caused by implicit leading 1
 - Smallest positive number (a) is 1.000...000 x 2⁻¹²⁶
 - Next number (b) is $1.000...001 \times 2^{-126} = (2^{-126} + 2^{-149})$

S	Exponent	Significand
1	8	23

0 0000000 00000000000000000000000000000	= 0
0 0000000 00000000000000000000000000000	= 1.00000000000000000001 x 2 ⁻¹²⁷
0 0000000 00000000000000000000000000000	= 1.00000000000000000010 x 2 ⁻¹²⁷
0 0000000 00000000000000000000000000000	= 1.00000000000000000011 x 2 ⁻¹²⁷
0 0000000 00000000000000000000000000000	= 1.000000000000000000100 x 2 ⁻¹²⁷

- Denormalized Numbers
 - Solution Non-normalized form
 - Exponent = 0, Significand \neq 0
 - Implicit Exponent of -126
 - $F = -1^{Sign} x$ (Significand) $x 2^{(-126)}$
 - Smallest positive number (a) = $0.000...001 \times 2^{-126} = 2^{-149}$
 - Next smallest number (b) = $0.000...010 \times 2^{-126} = 2^{-148}$