NATURAL LANGUAGE PROCESSING

Dr. G. Bharadwaja Kumar

PARTS OF SPEECH

• The parts of speech explain how a word is used in a sentence.

 Based on their usage and functionality words are categorized into several types or parts of speech.

 Words having major parts of speech contribute for meaning to a greater extent, and hence are sometimes called content words

- Nouns, verbs, adjectives, and adverbs are content parts of speech.
- Function words are words that exist to explain or create grammatical or structural relationships into which the content words may fit.
 - Pronouns, prepositions, conjunctions, determiners, qualifiers/intensifiers, and interrogatives are some function parts of speech.

Use of POS Tagging

- Useful in
 - Information Retrieval
 - Text to Speech: object(N) vs. object(V);
 discount(N) vs. discount(V)
 - Word Sense Disambiguation

- Useful as a preprocessing step of parsing
 - Unique tag to each word reduces the number of parses

Nouns

This part of a speech refers to words that are used to name persons, things, animals, places, ideas, or events.

- Tom Hanks is very versatile.
 - The italicized noun refers to a name of a person.
- Dogs can be extremely cute.
 - In this example, the italicized word is considered a noun because it names an animal.
- It is my *birthday*.
 - The word "birthday" is a noun which refers to an event.

Noun – Subcategories

- **Proper** proper nouns always start with a capital letter and refers to specific names of persons, places, or things.
- Examples: Volkswagen Beetle, Shakey's Pizza, Game of Thrones
- Common— common nouns are the opposite of proper nouns. These are just generic names of persons, things, or places.
- Examples: car, pizza parlor, TV series
- Concrete— this kind refers to nouns which you can perceive through your five senses.
- Examples: folder, sand, board
- Abstract- unlike concrete nouns, abstract nouns are those which you can't perceive through your five senses.
- Examples: happiness, grudge, bravery

- Count- it refers to anything that is countable, and has a singular and plural form.
- Examples: kitten, video, ball
- Mass- this is the opposite of count nouns. Mass nouns are also called non-countable nouns, and they need to have "counters" to quantify them.
- Examples of Counters: kilo, cup, meter
- Examples of Mass Nouns: rice, flour, garter
- Collective- refers to a group of persons, animals, or things.
- Example: faculty (group of teachers), class (group of students), pride (group of lions)

Pronoun

A pronoun is a part of a speech which functions as a replacement for a noun.

Some examples of pronouns are: I, it, he, she, mine, his, hers, we, they, theirs, and ours.

Sample Sentences:

- •Janice is a very stubborn child. She just stared at me and when I told her to stop.
- •The largest slice is *mine*.
- We are number one.

Adjectives

This part of a speech is used to describe a noun or a pronoun. Adjectives can specify the quality, the size, and the number of nouns or pronouns.

- The carvings are *intricate*.
 - The italicized word describes the appearance of the noun "carvings."
- I have *two* hamsters.
 - The italicized word "two," is an adjective which describes the number of the noun "hamsters."
- Wow! That doughnut is huge!
 - The italicized word is an adjective which describes the size of the noun "doughnut."

Conjuctions

- The conjunction is a part of a speech which joins words, phrases, or clauses together.
- Examples of Conjunctions: and, yet, but, for, nor, or, and so
- Sample Sentences:
 - This cup of tea is delicious and very soothing.
 - Kiyoko has to start all over again because she didn't follow the professor's instructions.
 - Homer always wanted to join the play, but he didn't have the guts to audition.
- The italicized words in the sentences above are some examples of conjunctions.

Verbs

- This is the most important part of a speech, for without a verb, a sentence would not exist. Simply put, this is a word that shows an action (physical or mental) or state of being of the subject in a sentence.
- Examples of "State of Being Verbs": am, is, was, are, and were
- Sample Sentences:
- As usual, the Stormtroopers *missed* their shot.
 - The italicized word expresses the action of the subject "Stormtroopers."
- They are always prepared in emergencies.
 - The verb "are" refers to the state of being of the pronoun "they," which is the subject in the sentence.

Adverb

- Just like adjectives, adverbs are also used to describe words, but the difference is that adverbs describe adjectives, verbs, or another adverb.
- The different types of adverbs are:
- Adverb of Manner- this refers to how something happens or how an action is done.
- Example: Annie *danced* gracefully.
- The word "gracefully" tells how Annie *danced*.
- Adverb of Time- this states "when" something happens or "when" it is done.
- Example: She came yesterday.
- The italicized word tells when she "came."

- Adverb of Place
 — this tells something about "where" something happens or "where" something is done.
- Example: Of course, I looked everywhere!
- The adverb "everywhere" tells where I "looked."
- Adverb of Degree
 — this states the intensity or the degree to which a specific thing happens or is done.
- Example: The child is *very* talented.
- The italicized adverb answers the question, "To what degree is the child talented?"

Prepositions

- This part of a speech basically refers to words that specify location or a location in time.
- Examples of Prepositions: above, below, throughout, outside, before, near, and since
- Sample Sentences:
 - Micah is hiding under the bed.
 - The italicized preposition introduces the prepositional phrase "under the bed," and tells where Micah is hiding.
 - During the game, the audience never stopped cheering for their team.
 - The italicized preposition introduces the prepositional phrase "during the game," and tells when the audience cheered.

Interjections

This part of a speech refers to words which express emotions. Since interjections are commonly used to convey strong emotions, they are usually followed by an exclamation point.

Sample Sentences:

- Ouch! That must have hurt.
- Hurray, we won!
- Hey! I said enough!

Parts of Speech

NOUN

Name of a person, place, thing or idea.

Examples: Daniel, London, table, hope- Mary uses a blue pen for her notes.

ADJECTIVE

Describes, modifies or gives more information about a noun or pronoun.

Examples: cold, happy, young, two, fun

- The little girl has a pink hat.

ADVERB

Modifies a verb, an adjective or another adverb. It tells how (often), where, when.

Examples: slowly, very, always, well, too

- Yesterday, I ate my lunch quickly.

CONJUNCTION

Joins two words, ideas, phrases together and shows how they are connected.

Examples: and, or, but, because, yet, so - I was hot *and* tired *but* still finished it.

PRONOUN

A pronoun is used in place of a noun or noun phrase to avoid repetition.

Examples: I, you, it, we, us, them, those

- I want her to dance with me.

VERB

Shows an action or a state of being.

Examples: go, speak, eat, live, are, is
- I *listen* to the word and then *repeat* it.

PREPOSITION

Shows the relationship of a noun or pronoun to another word.

Examples: at, on, in, from, with, about - I left my keys *on* the table *for* you.

INTERJECTION

A word or phrase that expresses a strong emotion. It is a short exclamation.

Examples: Ouch! Hey! Oh! Watch out! - Wow! I passed my English exam.

Brown/Penn Treebank tags

Tag	Description	Example	Tag	De
CC	Coordin. Conjunction	and, but, or	SYM	Syı
CD	Cardinal number	one, two, three	TO	"to
DT	Determiner	a, the	UH	Inte
EX	Existential 'there'	there	VB	Vei
FW	Foreign word	mea culpa	VBD	Ver
IN	Preposition/sub-conj	of, in, by	VBG	Vei
\mathbf{JJ}	Adjective	yellow	VBN	Ver
JJR	Adj., comparative	bigger	VBP	Vei
JJS	Adj., superlative	wildest	VBZ	Ver
LS	List item marker	1, 2, One	WDT	Wh
MD	Modal	can, should	WP	Wh
NN	Noun, sing. or mass	llama	WP\$	Pos
NNS	Noun, plural	llamas	WRB	Wh
NNP	Proper noun, singular	IBM	\$	Do
NNPS	Proper noun, plural	Carolinas	#	Pou
PDT	Predeterminer	all, both	66	Lef
POS	Possessive ending	's	"	Rig
PP	Personal pronoun	I, you, he	(Lef
PP\$	Possessive pronoun	your, one's)	Rig
RB	Adverb	quickly, never	,	Co
RBR	Adverb, comparative	faster		Ser
RBS		fastest	:	Mi
RP	Particle	up, off		
			1	

	Tag	Description	Example	3
l	SYM	Symbol	+,%,&	Ì
l	TO	"to"	to	3
l	UH	Interjection	ah, oops	
l	VB	Verb, base form	eat	
l	VBD	Verb, past tense	ate	
l	VBG	Verb, gerund	eating	
l	VBN	Verb, past participle	eaten	
l	VBP	Verb, non-3sg pres	eat	
l	VBZ	Verb, 3sg pres	eats	
l	WDT	Wh-determiner	which, that	
l	WP	Wh-pronoun	what, who	
l	WP\$	Possessive wh-	whose	
l	WRB	Wh-adverb	how, where	
l	\$	Dollar sign	\$	
l	#	Pound sign	#	
l	66	Left quote	(' or ")	
l	"	Right quote	(' or ")	
l	(Left parenthesis	([,(,{,<)	
)	Right parenthesis	$(],),\},>)$	
	,	Comma	,	
		Sentence-final punc	(.!?)	
	:	Mid-sentence punc	(:;)	

Example English Part-of-Speech Tagsets

- Brown corpus 87 tags
 - Allows compound tags
 - "I'm" tagged as PPSS+BEM
 - PPSS for "non-3rd person nominative personal pronoun" and BEM for "am, 'm"
- Others have derived their work from Brown Corpus
 - LOB Corpus: 135 tags
 - Lancaster UCREL Group: 165 tags
 - London-Lund Corpus: 197 tags.
 - BNC 61 tags (C5)
 - PTB 45 tags
- Other languages have developed other tagsets

- Rule-Based POS tagging
 - e.g., ENGTWOL [Voutilainen, 1995]
 - large collection (> 1000) of constraints on what sequences of tags are allowable
- Transformation-based tagging
 - e.g.,Brill's tagger [Brill, 1995]
- Stochastic (Probabilistic) tagging
 - e.g., TNT [Brants, 2000]

Sample rules

N-IP rule:

A tag N (noun) cannot be followed by a tag IP (interrogative pronoun)

... man who ...

- man: {N}
- who: {RP, IP} --> {RP} relative pronoun

ART-V rule:

A tag ART (article) cannot be followed by a tag V (verb) ...the book...

- the: {ART}
- book: {N, V} --> {N}

A Simple Strategy for POS Tagging

- Choose the most likely tag for each ambiguous word, independent of previous words
 - i.e., assign each token the POS category it occurred as most often in the training set
 - e.g., race which POS is more likely in a corpus?
- This strategy gives you 90% accuracy in controlled tests
 - So, this "unigram baseline" must always be compared against

Example of the Simple Strategy

- Which POS is more likely in a corpus (1,273,000 tokens)?
 NN VB Total
 race 400 600 1000
- P(NN|race) = P(race&NN) / P(race) by the definition of conditional probability
 - $P(race) \approx 1000/1,273,000 = .0008$
 - $P(race&NN) \approx 400/1,273,000 = .0003$
 - $P(race\&VB) \cong 600/1,273,000 = .0005$
- And so we obtain:
 - P(NN|race) = P(race&NN)/P(race) = .0003/.0008 = .375
 - P(VB|race) = P(race&VB)/P(race) = .0004/.0008 = .625

Hand-coded Rules: ENGCG System

- Uses 56,000-word lexicon which lists parts-of-speech for each word (using two-level morphology)
- Uses up to 3,744 rules, or constraints, for POS disambiguation

ADV-that rule

```
Given input "that" (ADV/PRON/DET/COMP)
```

If (+1 A/ADV/QUANT) #next word is adj, adverb, or quantifier

(+2 SENT_LIM) #and following word is a sentence boundary

(NOT -1 SVOC/A) #and the previous word is not a verb like

#consider which allows adjs as object complements

Then eliminate non-ADV tags

Else eliminate ADV tag

1. TBL: A Symbolic Learning Method

- A method called error-driven Transformation-Based Learning (TBL)
 (Brill algorithm) can be used for symbolic learning
 - The rules (actually, a sequence of rules) are learned from an annotated corpus
 - Performs about as accurately as other statistical approaches

How TBL Rules are Learned

- We will assume that we have a tagged corpus.
- Brill's TBL algorithm has three major steps.
 - Tag the corpus with the most likely tag for each (unigram model)
 - Choose a transformation that deterministically replaces an existing tag with a new tag such that the resulting tagged training corpus has the lowest error rate out of all transformations.
 - Apply the transformation to the training corpus.
- These steps are repeated until a stopping criterion is reached.
- The result (which will be our tagger) will be:
 - First tags using most-likely tags
 - Then apply the learned transformations

Brill Algorithm (More Detailed)

- 1. Label every word token with its most likely tag (based on lexical generation probabilities).
- List the positions of tagging errors and their counts, by comparing with "truth" (T)
- 3. For each error position, consider each instantiation I of X, Y, and Z in Rule template.
 - If Y=T, increment improvements[I], else increment errors [1].
- 4. Pick the I which results in the greatest error reduction, and add to output
 - VB NN PREV1OR2TAG DT improves on 98 errors, but produces 18 new errors, so net decrease of 80 errors
- 5. Apply that I to corpus
- Go to 2, unless stopping criterion Page 17 is reached

Most likely tag:

P(NN|race) = .98

P(VB|race) = .02

Is/VBZ expected/VBN to/TO race/NN tomorrow/NN

Rule template: Change a word from tag X to tag Y when previous tag is Z

> Rule Instantiation for above example: NN VB PREVIOR2TAG TO

Applying this rule yields:

Is/VBZ expected/VBN to/TO race/VB tomorrow/NN

Transformation Rules

Rewrite rules: what to replace

POS: $t_i \rightarrow t_j$; $* \rightarrow t_j$ (replace tag t_i / any tag by tag t_j)

Triggering environment: when to replace

POS:

Non-lexicalized templates:

- The preceding (following) word is tagged t_a.
- The word two before (after) is tagged t_a.
- One of the two preceding (following) words is tagged t_a.
- One of the three preceding (following) words is tagged t_a.
- The preceding word is tagged t_a and the following word is tagged t_b.
- The preceding (following) word is tagged t_a and the word two before (after) is tagged t_b.

Lexicalized templates:

- 1. The preceding (following) word is w_a .
- The word two before (after) is w_a.
- One of the two preceding (following) words is w_a.
- The current word is w_a and the preceding (following) word is w_b.
- The current word is w_a and the preceding (following) word is tagged t_a.
- The current word is W_a.
- The preceding (following) word is W_a and the preceding (following) tag is t_a.
- The current word is w_a, the preceding (following) word is w_b and the preceding ing (following) tag is t_a.

Rules Learnt

The first rules learnt by Brill's POS tagger (with examples):

#	From	To	If
1	NN	VB	previous tag is TO
	to/TO	conflic	$ct/NN \rightarrow NB$
2	VBP	VB	one of the previous 3 tags is MD
	might/	MD v	anish/VBP ightarrow VB
3	NN	VB	one of the previous two tags is MD
	might/	MD n	ot reply/NN → VB
4	VB	NN	one of the previous two tags is DT
	the/DT	amaz	$sing\ play/VB \rightarrow NN$

Tagging Unknown Words

Additional rule templates use character-based cues: Change the tag of an unknown word from X to Y if:

- 1. Deleting the prefix (suffix) x, $|x| \le 4$, results in a word.
- 2. The first (last) 1–4 characters of the word are x.
- 3. Adding the character string x, $|x| \le 4$, as a prefix (suffix) results in a word.
- 4. Word w appears immediately to the left (right) of the word.
- 5. Character z appears in the word.

Unknown Words: Rules Learnt

#	From	To	If
1	NN	NNS	has suffix -s
	$rules/NN \rightarrow NNS$		
4	NN	VBN	has suffix -ed
	tagged	$/NN \rightarrow$	VBN
5	NN	VBG	has suffix -ing
	applying/NN $\rightarrow VBG$		
18	NNS	NN	has suffix -ss
	actress	/NNS-	$\rightarrow NN$

Strengths of transformation-based tagging

exploits a wider range of <u>lexical and syntactic</u> regularities

- can look at a wider context
 - condition the tags on preceding/next words not just preceding tags.
 - can use more context than bigram or trigram.

transformation rules are easier to understand

Stochastic POS tagging

- Assume that a word's tag only depends on the previous tags (not following ones)
- Use a training set (manually tagged corpus) to:
 - learn the regularities of tag sequences
 - learn the possible tags for a word
 - model this info through a Markov process

Hidden Markov Model

- For Markov chains, the output symbols are the same as the states.
 - See sunny weather: we're in state sunny
- But in part-of-speech tagging (and other things)
 - The output symbols are words
 - But the hidden states are part-of-speech tags
- So we need an extension!
- A Hidden Markov Model is an extension of a Markov chain in which the output symbols are not the same as the states.
- This means we don't know which state we are in.

Hidden Markov Model (HMM) Taggers

Goal: maximize P(word|tag) x P(tag|previous n tags)

- P(word|tag)
 - word/lexical likelihood
 - probability that given this tag, we have this word
 - NOT probability that this word has this tag
 - modeled through language model (word-tag matrix)
- P(tag|previous n tags)
 - tag sequence likelihood
 - probability that this tag follows these previous tags
 - modeled through language model (tag-tag matrix)

Efficient Tagging

 How to find the most likely sequence of tags for a sequence of words

• Given the contextual and lexical estimates, we can use the Viterbi algorithm to avoid using the brute force method, which for N tags and T words examines N^T sequences.

For "Flies like a flower", there are four words and four possible tags, giving 256 sequences depicted below. In a brute force method, all of them would be examined.

Viterbi Notation

- To track the probability of the best sequence leading to each possible tag at each position, the algorithm uses δ , an N×n array, where N is the number of tags and n is the number of words in the sentence. $\delta_t(t^i)$ records the probability of the best sequence up to position t that ends with the tag, t^i .
- To record the actual best sequence, it suffices to record only the one preceding tag for each tag and position. Hence, another array γ , an Nxn array, is used. $\gamma_t(t^i)$ indicates for the tag t^i in position t which tag at position t is in the best sequence.

Viterbi Algorithm

• Given the word sequence $W_{1,n}$, the lexical tags $t^{1,N}$, the lexical probabilities $P(w_t|t_t)$, and the bigram probabilities $P(t^i|t^j)$, find the most likely sequence of lexical tags for the word sequence.

Initialization Step:

```
For i= 1 to N do

\delta_1(t^i) = P(w_1|t^i) \times P(t^i|\emptyset)

\gamma_1(t^i) = 0
```

```
// For all tag states t<sup>1,N</sup>
```

// Starting point

Viterbi Algorithm

Iteration Step:

```
For f=2 to n // next word index  \begin{aligned} &\text{For i= 1 to N} \quad // \text{ tag states } t^{1,N} \\ &\delta_f(t^i) = \max_{j=1,N} \left( \delta_{f\text{-}1}(t^j) \times P(t^i \mid t^j) \right) \times P(w_f \mid t^i) ) \\ &\gamma_f(t^i) = \text{argmax}_{i=1,N} \left( \delta_{f\text{-}1}(t^j) \times P(t^i \mid t^j) \right) \times P(w_f \mid t^i) ) \quad // \text{index that gave max} \end{aligned}
```

Sequence Identification Step:

```
\begin{array}{lll} X_n = argmax_{j=1,N}\,\delta_n(t^j) & // \;\; \text{Get the best ending tag state for } w_n \\ \\ For \; i = n\text{-}1 \;to \; 1 \;do & // \;\; \text{Get the rest} \\ \\ X_i = \gamma_{i+1}(X_{i+1}) & // \;\; \text{Use the back pointer from subsequent state} \\ P(X_1,...,X_n) = max_{j=1,N}\,\delta_n(t^j) \end{array}
```

Example

Second Iteration Step

Final Iteration

Now we have to backtrack to get the best sequence "Flies N like V a ART flower N"

HMM Training

Supervised Learning:

- All training sequences are completely labeled (tagged).
- That is, nothing is really "hidden" strictly speaking.
- Learning is very simple
 by MLE estimate

Unsupervised Learning:

- All training sequences are unlabeled (tags are unknown)
- We do assume the number of tags, i.e. states
- True HMM case. → Forward-Backward Algorithm, (also known as "Baum-Welch algorithm") which is a special case of <u>Expectation Maximization (EM)</u> training

HMM Learning: Supervised

 Estimate state transition probabilities based on tag bigram and unigram statistics in the labeled data.

$$a_{ij} = \frac{C(q_t = s_i, q_{t+1} = s_j)}{C(q_t = s_i)}$$

 Estimate the observation probabilities based on tag/word co-occurrence statistics in the labeled data.

$$b_j(k) = \frac{C(q_i = s_j, o_i = v_k)}{C(q_i = s_j)}$$

Use appropriate smoothing if training data is sparse.