Embedded Real Time Systems

PRACTICAL EXERCISE + FINAL EXAM

Embedded Real Time Systems

FINAL EXAM

Preparation Guidlines

- Exam Basis
 - Slide Set entitled
 - EVENT DRIVEN PROGRAMMING PRÜFUNGSÜBERSICHT
 - Circa 20 Questions as per topics in Slide Set
 - Time Frame: 90 Min.
- Exam Date : TBA
- Exam Venue: TBA

Embedded Real Time Systems

PRACTICAL EXERCISE

Exercise Goals

- Demonstrate on Resource Constrained Device
 - OO Prinicples Applied to C /ASM Environment
 - Encapsulation
 - Inheiritance
 - Polymorphism
 - Execution Control via RT Framework
 - Capture
 - Dispatch
 - Control
- Use of UML State Charts

Exercise Requirements

- Each Team will be assigned a project
- Create an UML HSM Model for the assigned project
- Program an QM Active Object implementation for the assigned application:
- Adapt Implementation bsp to reflect event driven input/out specifics

Exercise Environement

- HW
 - MCB 2300 RAM
 - Srf06eb-cc2358
- SW
 - $-\mu Vison 4$
 - QEP / QF
- Templates
 - History
 - Comp
 - Bomb4
 - Calc

Project Assignments-TBD

- Group 1
 - Kevin Beck
 - Graf Daniel
 - Diez Dimitrie
- Group 2
 - Marcel Schmalzl
 - Stephan Ploederl
 - Michael Stefan Kraus
- Group 3
 - Ludwig Wagner
 - Jakob Schuster
 - Kai Löhr
 - Wolfgang Reiter

- Group 4
 - Dennis Schock
 - Alexander Schuhmann
 - Maximilian Pachl
- Group 5
 - Florian Neuner
 - Müller Peter
 - Zarwel Rene
 - Wilhelm Andreas
- Group 6
 - Maximilian Peter Oeckler
 - Alexandra Vogel
 - Reinbold Manuel
 - Fabian Uhlmann

Project - Oven Control

- Project Goals:
 - Model a protoype of an industrial control architecture for a commerical oven
- Functionality:
 - Temperature control
 - Oven Door open/closed state control
 - Audible alarm signals
 - Display in real time of temp, and door state

Project - Oven Control

- Use μVision "history" project as Template to model and implement an Oven Control system that has this functionality:
 - Temperature Control Use MCB2300 AD/DC
 - State Set temperature within 0-350 Degrees
 - State Simulate heating / cooling
 - State Show actual temp on LCD
 - Alarm Functions Use MCB2300 buzzer
 - Sound audio when temperature exceeds critical value
 - Use LED as warning annunciators as temp approaches critical value
 - Door Functions Use MCB2300 Int0 Button
 - shut to stop
 - –tart heading
 - Debug Info: use RS2323

Project - Bomb5

- Project Goals:
 - Extend the course state machine example bomb
 - Model state machine as Active Object
 - Replace RS232 keyboard input with Interrupt driven perpherials on MCB2300

Project - Bomb5

- Use µVision "bomb4" project as template to implement an advanced detonation device with these functions:
- Setting
 - Integrate the RTC (driver provided) to show:
 - Current time, year, date, month on LCD
 - Set Countdown (UP / DOWN) via AC/DC (AD)
 - Display current countdown value on LCD
- Arming
 - Arm / Disarm with int0 button (driver provided)
 - Display countdown value on LCD
 - Correlate LED to countdown
 - On ARM light up all LEDs
 - As countdowm progresses extinguish an led
 - Simulate BOOM with buzzer

Project - Calc

- Project Goals:
 - Implement a Pocket Calcuator
 - Model state machine as Active Object
 - Replace RS232 keyboard input with Interrupt driven perpherials on MCB2300

Project - Calc

- Use μVision "calc" project as Template
- UML Model Calc in calcuml.jpg as HSM base
- Required Functionality
 - Use Serial Input as number padfor
 - Operands and Operator
 - Clear / Clear Error via AC/DC Wheel
 - Use LCD for Display:

1	0	,	5		+		8	,	1			
=		1	8	,	6	0						

Use Buzzer to signal divide by zero error

Project - Coffee

- Two Versions MC2300 Srf60eb
- Project Goals:
 - Model as an Active Object a consumer friendly
 Coffee Maker
 - Functionality:
 - Develop a multi stage menu to control
 - Display of current time (RTC)
 - Time to start brewing
 - Brew Strength
 - Control Pot State in / out

Application - Coffee -MCB2300

- Use μVision "comp" project as template to implement a coffee maker with these functions:
 - Clock: Integrate the RTC (driver provided) to show:
 - Current time, year, date, month on LCD
 - Brewing Control Menu
 - INTO Button
 - Set Time-of-day via RTC
 - Set Brew Strength
 - Set Start Time for Brew
 - Simulate Removal of Pot to stop brewing
 - Use AC/DC Wheel to set:
 - "brew" strength
 - LED to show strength 2 weak 4 medium 6

Application - Coffee - Srf06eb

- Use μVision "comp" project in conjunction with the bomb1 port to the Srf06eb as templates to implement a coffee maker with these functions:
 - Clock: Develop a RTC Hint: See Sleep Timer in CC2538 Manual
 - Current time, year, date, month on LCD
 - Brewing Control Menu
 - Display on Srf06EB LCD
 - Use Up/Down/Side / SelectButtons to navigate menue
 - Set Time-of-day via RTC
 - Set Brew Strength
 - Set Start Time for Brew
 - LED red for Brew active
 - Use light sensor to simulate Pot in-out state Toggel Red LED
 - Use AC/DC Wheel to set:
 - "brew" strength

Presentation

- Presentation scheduled for: TBA
- Each Team / Person present
 - UML Model
 - BSP Extentions / Adaptions
 - Code running on target HW
- Timeframe: 15 to 20 min
- Discussion

