VARIABLES ALÉATOIRES RÉELLES

Exercice 1 (Lois usuelles). Dans chaque cas, calculer $\mathbb{E}[X]$, Var(X), $\mathbb{E}[e^{tX}]$ si cela existe.

- a) $X \sim \mathcal{U}(n)$ (Uniforme sur $\{1, \ldots, n\}$).
- b) $X \sim \mathcal{B}(p)$ (Bernoulli de paramètre p).
- c) $X \sim \mathcal{B}(n, p)$ (Binomiale de paramètres n et p).
- d) $X \sim \mathcal{P}(\lambda)$ (Poisson de paramètre λ).
- e) $X \sim \mathcal{G}(p)$ (Géométrique de paramètre de succès p).
- f) $X \sim \mathcal{U}(a, b)$ (Uniforme sur [a, b]).
- g) $X \sim \mathcal{E}(\lambda)$ (Exponentielle de paramètre λ).
- h) $X \sim \mathcal{N}(\mu, \sigma^2)$ (Normale de paramètres μ et σ^2).
- i) $X \sim \Gamma(r, \lambda)$ (Gamma de paramètres r et λ).
- j) $X \sim \mathscr{C}(\lambda)$ (Cauchy de paramètre λ).

Exercice 2 (Changements de variables). Dans chacun des cas suivants, montrer que la variable aléatoire Y admet une densité que l'on explicitera.

- a) $Y = \exp(-X)$ avec $X \sim \mathcal{E}(1)$.
- b) $Y = \tan(X) \text{ avec } X \sim \mathcal{U}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$
- c) Y = 1/X avec $X \sim \mathscr{C}(\lambda)$.
- d) $Y = X^2$ avec $X \sim \mathcal{N}(0, 1)$.
- e) Y = aX + b avec $(a, b) \in \mathbb{R}^* \times \mathbb{R}$ et X de densité f quelconque.
- f) $Y = \frac{1}{X} \lfloor \frac{1}{X} \rfloor$ avec X de densité $x \mapsto \frac{1}{\ln(2)} \frac{1}{1+x} \mathbf{1}_{(0,1)}(x)$.
- g) $Y = 1/X^2$ avec $X \sim \mathcal{N}(0, 1)$.

Exercice 3 (Intégration par parties gaussienne). Soit X une variable de loi $\mathcal{N}(0,1)$, et soit $h \colon \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 telle que $\mathbb{E}[|h'(X)|] < \infty$.

- a) Montrer que $\mathbb{E}[|Xh(X)|] < \infty$.
- b) Montrer que $h(x)e^{-\frac{x^2}{2}} \to 0$ lorsque $x \to \pm \infty$.
- c) Établir la formule d'intégration par parties gaussienne :

$$\mathbb{E}\left[Xh(X)\right] = \mathbb{E}\left[h'(X)\right].$$

- d) En déduire $\mathbb{E}[X^n]$ pour tout $n \geq 0$.
- e) Généraliser cet exercice au cas où X est une variable gaussienne générale.

Exercice 4 (Absence de mémoire). Soit X une variable aléatoire positive. On dit que X (ou plutôt sa loi) a la propriété d'absence de mémoire si pour tout $s,t \geq 0$,

$$\mathbb{P}(X > t + s) = \mathbb{P}(X > t)\mathbb{P}(X > s).$$

- a) Vérifier que la loi Exponentielle a la propriété d'absence de mémoire.
- b) Trouver toutes les lois qui ont la propriété d'absence de mémoire.

Exercice 5 (Atomes). Soit X une variable aléatoire réelle, et soit

$$\mathscr{A} := \{x \in \mathbb{R} : \mathbb{P}(X = x) > 0\}.$$

- a) Montrer que \mathscr{A} est au plus dénombrable.
- b) Montrer que si X admet une densité, alors $\mathscr{A} = \emptyset$.
- c) On suppose que $\mathscr{A} = \emptyset$. Montrer que $F_X(X)$ suit la loi uniforme sur (0,1).

Exercice 6 (Hotelling-Solomons, 1932). Soit X une variable aléatoire réelle de carré intégrable. On suppose que X possède une unique médiane m et on note $\mu = \mathbb{E}[X]$ et $\sigma^2 = \text{Var}(X)$. Montrer que

$$|\mu - m| \leqslant \sigma$$
.

Indication: montrer qu'on peut se ramener sans perte de généralité à une v.a. de loi $\frac{1}{2}\delta_m + \frac{1}{2}\delta_\mu$.

Exercice 7 (Un classique). Soit X une variable aléatoire positive.

a) Justifier l'identité suivante :

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X > t) \, \mathrm{d}t.$$

- b) Que donne cette formule dans le cas particulier où X est à valeurs dans \mathbb{N} ?
- c) Montrer plus généralement que pour tout 0 , on a

$$\mathbb{E}[X^p] = p \int_0^\infty t^{p-1} \mathbb{P}(X > t) \, \mathrm{d}t.$$

d) Montrer que si X est dans L^p , alors $\mathbb{P}(X > t) = o(t^{-p})$ lorsque $t \to \infty$.

Exercice 8 (Inégalité de corrélation). Soit X une variable aléatoire réelle et $f, g : \mathbb{R} \to \mathbb{R}$ deux fonctions croissantes. Montrer que

$$\mathbb{E}[f(X)g(X)] \ge \mathbb{E}[f(X)]\mathbb{E}[g(X)].$$

Exercice 9 (Théorème de Stone-Weierstrass). Soit $f: [0,1] \to \mathbb{R}$ une fonction continue.

a) Vérifier que pour toute variable aléatoire X à valeurs dans [0,1] et tout $\delta > 0$,

$$\mathbb{E}\left[|f(X) - f\left(\mathbb{E}[X]\right)|\right] \quad \leq \quad \frac{2\|f\|_{\infty} \mathrm{Var}(X)}{\delta^2} + \sup_{|x-y| \leq \delta} |f(x) - f(y)| \,.$$

b) En déduire que les polynômes $(B_n)_{n\geq 1}$ convergent uniformémement vers f, où

$$B_n(t) := \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) t^k (1-t)^{n-k}.$$

c) Étendre ce résultat au cas où [0,1] est remplacé par un segment [a,b] quelconque.

Exercice 10 (Théorème de Strassen, 1965). Soient X,Y deux variables aléatoires sur un espace probabilisé $(\Omega, \mathscr{F}, \mathbb{P})$, de fonctions de répartition F_X et F_Y . On dit que X est stochastiquement dominée par Y si $F_Y \leq F_X$, et dans ce cas on note $X \leq Y$. L'objectif de l'exercice est de montrer le théorème de Strassen : $X \leq Y$ si et seulement s'il existe deux variables aléatoires X', Y' définies sur Ω telles que X a la même loi que X', Y a la même loi que Y', et telles que $\mathbb{P}(X' \leq Y') = 1$.

- a) Montrer le sens facile.
- b) On montre maintenant le sens moins facile. On définit l'inverse généralisé de F_X par

$$F^{-1}(u) = \inf\{x \in \mathbb{R} : F(x) \ge u\}.$$

- i) Montrer que si $U \sim \mathcal{U}[0,1]$, alors $F_X^{-1}(U)$ a la même loi que X.
- ii) Montrer que $F_X^{-1}(U)$ et $F_Y^{-1}(U)$ résolvent la deuxième partie du théorème.