Last time
$$Cl_X(A) = X - Int_X(X - A)$$

...wrt the box topology? [draw]

Q what is the closure of R^{∞} in R^{ω} in the box top? in the product top?

no: x in $(0, 2) \times (0, 1) \times (0, 2/3) \times ...$

a useful formula:

...wrt the product topology?

yes: suppose V open in R^{ω} and x in V

 $CI_X(A)$

 $= X - \{x \mid \text{have V open in X s.t. x in V sub } X - A\}$

= $\{x \mid \text{no V open in X s.t. } x \text{ in V and V sub } X - A\}$

= $\{x \mid \text{if V is open in X and contains x,}$ then $V \text{ cap } A \neq \emptyset \}$ B = prod_i B_i, where B_i ≠ R for only fin many i so B contains elts of R^∞

pick basis elt B s.t. x in B sub V

so V cap R[^]∞ ≠ Ø

Q let x = (1, 1/2, 1/3, 1/4, ...)is x in Cl $\{R^{\infty}\}(R^{\infty})...$ [other ways to describe CI_X(A)?] [limits and convergence?]

 \underline{Df} a sequence x_1, x_2, ... of points in X $\underline{converges}$ to x

iff, for all open V containing x have N s.t. x_N , $x_{N + 1}$, ... in V

thus: if some seq in A converges to x in X

then x in Cl_X(A)

[Munkres Lem 21.2: if the topology on X comes from a metric then the converse holds]

Q can a seq converge to multiple pts?

<u>Ex</u> give X the indiscrete topology: every seq converges to every pt at once!

Df X is Hausdorff iff, for all $x \neq y$ in X, there are disjoint open U and V s.t. x in U and y in V

Thm if X is Hausdorff then any sequence in X converges to at most one pt

 \underline{Pf} suppose $(x_n)_n$ converges to x and y

suppose $x \neq y$: then have disj open U, V s.t. x in U and y in V if x_N , x_{N+1} , ... in U, then notin V contradiction

Separation Conditions

 $T_2 = \text{Hausdorff}$ for all $x \neq y$, disjoint open U, V

s.t. x in U and y in V

T_1 for all $x \neq y$, have open U

s.t. x in U and y notin U

T_0 for all $x \neq y$, have open U

s.t. either x in U and y notin U,

or vice versa

Ex T_0 but not T_1:

{b} is open
a notin {b} and b in {b}
but no open U s.t. a in U and b notin U]