Convolutional Neural Networks II

Dr. Chelsea Parlett-Pelleriti

Convolutional Neural Networks

Data Augmentation

Data Augmentation

- Crop
- Flip
- Translation
- Rotation
- Zoom
- Contrast
- Brightness

```
We can use take(N) to only sample
            plt.figure(figsize=(10, 10))
                                                                                N batches from the dataset. This is
            for images, _ in train_dataset.take(1):
                                                                                equivalent to inserting a break in
                 for i in range (9):
                                                                                the loop after the Nth batch.
                      augmented images = data augmentation(images)
   Apply the
                      ax = plt.subplot(3, 3, i + 1)
augmentation
                      plt.imshow(augmented_images[0].numpy().astype("uint8"))
 stage to the
                      plt.axis("off")
     batch of
                                                          Display the first image in the output batch.
     images.
                                                             For each of the nine iterations, this is a
                                                          different augmentation of the same image.
```


Figure 8.10 Generating variations of a very good boy via random data augmentation

Residual Connections

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$

Parameters to be learned: γ , β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean
$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$ // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Depthwise Separable Convolutions

Depthwise Separable Convolutions

Image from: https://www.geeksforgeeks.org/depth-wise-separable-convolutional-neural-networks/

Depthwise Separable Convolutions

Type of Convolution	Complexity
Standard	N x Dp ² x Dg ² x M
Depth wise separable	M x Dp ² x (Dk ² + N)

Visualizing Convnets

Visualizing ConvNets

- Visualizing Layer Activations
- Visualizing Filters
- Visualizing Class Activation Heatmaps

Visualizing Layer Activations

Visualizing Layer Activations

- 1. Take a test image
- 2. Feed it through each layer and save the output/activations
- 3. Plot

Image from: Deep Learning with Python (Chollet)

Visualizing Layer Activations

You can see:

- The sparsity of higher layers (due to ReLu)
- The increasing abstraction of higher layers

Visualizing Filters

- What image would the filter maximally respond to? What activates it the most?
- Start with a blank image and use gradient descent to change it until the filter responds maximally

Figure 9.17 Some filter patterns for layers block2_sepconv1, block4_sepconv1, and block8 sepconv1

Visualizing Filters

 Filter seems to respond to horizontal lines

Grad-CAM:

creates
heatmaps of how
intensely the
input images
activates the
class

How **intensely** the input image **activated different channels** in the last layer

 Send image through network and get activations of final conv layer (before classification layer) How **important** each **channel** is with regard to that class

 calculate the gradient for a specific class with respect to the activations of the final conv layer

Heatmap of how intensely the input images activates the class

Heatmap of how

NOTE: We usually create these heatmaps for the top/predicted class but we CAN create it for any class

Predicted: Wolf True: Wolf

Predicted: Husky True: Husky

Predicted: Husky True: Husky

Predicted: Wolf True: Wolf

Predicted: Wolf True: Wolf

Predicted: Wolf True: Wolf

Predicted: Husky True: Wolf

Predicted: Wolf True: Wolf

Predicted: Wolf True: Husky

Predicted: Husky True: Husky

Image from: Besse, Philippe & Castets-Renard, Céline & Garivier, Aurélien & Loubes, Jean-Michel. (2018). Can Everyday Al be Ethical? Machine Learning Algorithm Fairness (english version). 10.13140/RG.2.2.22973.31207.

Bonus: Occlusion

Mask part of the image before feeding to CNN, check how much predicted probabilities change

P(elephant) = 0.95

P(elephant) = 0.75

Bonus: Tricking Convnets

 $+.007 \times$

_

"panda"
57.7% confidence

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode"
8.2% confidence

 $\epsilon \operatorname{sign}(\nabla_{x}J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon"

99.3 % confidence

Types of Computer Vision Tasks

- Image Classification (done)
- Image Segmentation
- Object Detection
- Inpainting

Image Segmentation

Figure 9.2 Semantic segmentation vs. instance segmentation

Image from: Deep Learning with Python (Chollet)

Image Segmentation

Image Segmentation

Object Detection

Object detection

Image from: Deep Learning with Python (Chollet)

Neural Inpainting

Image from: Altinel, Fazil & Ozay, Mete & Okatani, Takayuki. (2018). Deep Structured Energy-Based Image Inpainting.

Pre-trained Models

