Universidade Federal de Pernambuco (UFPE) Centro de Informática (CIn) - Graduação em Cienciaa da Computação

$L\'ogica~para~Computa\~c\~ao$ 2° Semestre de 2014 - 1° Prova - 19 de Novembro de 2014

1. (3,0) Verifique, usando ${\bf a}$) o método dos tableaux analíticos; ${\bf b}$) dedução natural e ${\bf c}$) o método da resolução se

$$A \to (B \lor C), C \to (\neg A) \vdash (A \to B)$$

OBS: Em cada passo da dedução natural coloque a regra utilizada.

2. (2,0) Use o cálculo de sequentes para provar os seguintes teoremas. Determine se o teorema é aceito pela lógica intuicionista e qual o motivo. Em cada passo da dedução coloque a regra utilizada.

a)
$$(A \land \neg A) \to B$$
 b) $\neg (A \land B) \to (\neg A \lor \neg B)$

3. (1,0) Examine a seguinte árvore de prova em dedução natural e diga se está na forma normal. Em caso negativo, identifique a(s) fórmula(s) máxima(s), e aplique o procedimento de normalização para obter sua forma normal:

- **4.** (2,0) Prove por indução que para toda fórmula ϕ da lógica proposicional, o número de parênteses de ϕ é o dobro do número de conectivos de ϕ . Defina formalmente as funções necessárias para a formalização do problema e depois faça a prova usando indução.
- 5. (2,0) Defina indutivamente o conjunto de todas as cadeias sobre o alfabeto $\Sigma = \{a, b, c\}$ que tem o formato $a^{n+1}bc^n \ (n \ge 0)$. Identifique : (i) a base da indução; (ii) as funções geradoras e (iii) o maior conjunto indutivo. Prove se esse conjunto é ou não livremente gerado.

(1,0) (SOMENTE PARA QUEM FALTOU UMA MINI-PROVA)

Mostre que, dado um conjunto Γ de proposições e toda proposição φ ,

Se
$$\Gamma \cup \{\varphi\}$$
 for inconsistente, então $\Gamma \models \neg \varphi$