Analiza prędkości pojazdów transportu publicznego w Warszawie

w zależności od warunków pogodowych

Zespół KPK: Paulina Jaszczuk, Kacper Grzymkowski, Jakub Fołtyn

Potencjalne korzyści:

- kwestie bezpieczeństwa
 - analiza prędkości pojazdu w zależności od warunków drogowych
- zarządzanie transportem publicznym
 - czasu w trasie i dystansu pokonywanego przez pojazdy poszczególnych linii

Opis danych o autobusach

- Dane pochodzą z API <u>Dane po warszawsku</u>
- Zdecydowaliśmy się na dane o autobusach
- Informacje takie jak: długość szerokość geograficzna, czas sygnału GPS, numer linii i brygady
- Dane pobieramy bezpośrednio z API (JSON) oraz z pliku CSV z danymi za lipiec

Opis danych o pogodzie

- Dane pochodzą z serwisu <u>Meteostat</u>
- Dane ze stacji Warszawa- Okęcie
- Dane zbierane co godzinę
- Informacje takie jak: data i godzina pomiaru, opady, wilgotność, prędkość i kierunek wiatru, ogólna jakość pogody (kod COCO)
- Ładowanie pliku z API (pełna historia od 1928) oraz "napływ danych" przy pomocy skryptu i API Python (ostatni tydzień)

Schemat rozwiązania

Przetwarzanie w Nifi - dane o autobusach

Przetwarzanie w Nifi- dane o pogodzie

Składowanie danych

- Dane pogodowe foldery na HDFS, przechowujące dane z odpowiedniego roku (2020, 2021 itd), składowane jako CSV
- Dane o autobusach foldery na HDFS, zbierane przez pewien czas, i dopiero zapisywane, składowane jako AVRO, partycje po dacie

Wzbogacenie danych

- Dane o autobusach zostały ubogacone przy użyciu PySpark
- Inferencja poprzednich obserwacji dla danego pojazdu
- Dodanie kolumn: prędkość chwilowa, dystans przebyty od ostatniego pomiaru, czas od ostatniego pomiaru

Analiza w Pyspark

Przeprowadzono następujące analizy:

- Łączny przejechany dystans, czas w trasie oraz średnie prędkości dla pojazdów.
- Łączny przejechany dystans, czas w trasie oraz średnie prędkości dla linii.
- Łączny przejechany dystans, czas w trasie oraz średnie prędkości wszystkich pojazdów w zależności od kondycji pogodowej
- Łączny przejechany dystans, czas w trasie oraz średnie prędkości linii w zależności od ilości opadów
- Łączny przejechany dystans, czas w trasie oraz średnie prędkości pojazdów w zależności od prędkości wiatru.

Analizy końcowe - wpływ warunków pogodowych na prędkość

Analizy końcowe - analiza dystansu pokonanego przez pojazdy

	Lines	mean
169	733	188.055087
176	743	164.255865
171	736	143.600393
183	L-3	142.989906
119	264	136.499688
210	L40	131.712477
167	730	121.156442
158	719	119.527083
181	L-1	115.605433
152	712	112.140171

Podsumowanie projektu

- Udało się spełnić praktycznie wszystkie pierwotne założenia projektowe.
- Z punktu widzenia biznesowego wyniki mogą okazać się pomocne w podejmowaniu decyzji zarządczych dot. transportu miejskiego.
- Analizy można rozszerzać o kolejne statystyki oraz o dane np. z innych okresów i pór roku.