LECTURE NOTES FOR MA3203 RING THEORY

ØYVIND SOLBERG

Contents

1. (Quivers	1
1.1.	Quivers, vertices, arrows and paths	1
1.2.	Path algebras	2
1.3.	Modules	5
Index		ϵ
References		6

1. Quivers

1.1. Quivers, vertices, arrows and paths.

Definition 1.1. A quiver $\Gamma = (\Gamma_0, \Gamma_1)$ is an oriented graph,

$$\Gamma_0 = \{\text{vertices}\} (= \{1, 2, \dots, n\}).$$

 $\Gamma_1 = \{\text{arrows}\}.$

We always assume that Γ_0 and Γ_1 are finite sets.

Example 1.2. $\Gamma: 1 \xrightarrow{\alpha} 2$, $\Gamma_0 = \{1, 2\}$ and $\Gamma_1 = \{\alpha\}$.

Example 1.3. Γ : $1 \bigcirc \alpha$, $\Gamma_0 = \{1\}$ and $\Gamma_1 = \{\alpha\}$.

Example 1.4.
$$\Gamma$$
: $1 \xrightarrow{\alpha \atop \beta \atop \delta} 2 \bigcirc \gamma$, $\Gamma_0 = \{1, 2, 3\}$ and $\Gamma_1 = \{\alpha, \beta, \gamma, \delta, \epsilon, \theta\}$.

Have maps: $s, e: \Gamma_1 \to \Gamma_0$

 $\mathfrak{s}(\alpha)$ = the vertex where $\alpha \in \Gamma_1$ starts,

 $\mathfrak{e}(\alpha)$ = the vertex where $\alpha \in \Gamma_1$ ends.

Definition 1.5. $\Gamma = (\Gamma_0, \Gamma_1)$ quiver. A path in Γ is either

(i) an ordered sequence of arrows $p = \alpha_n \alpha_{n-1} \cdots \alpha_1$, where

$$\mathfrak{e}(\alpha_t) = \mathfrak{s}(\alpha_{t+1})$$

for t = 1, 2, ..., n - 1 (non-trivial path) or

(ii) e_i for each i in Γ_0 (trivial path).

In addition,

$$\mathfrak{s}(p) = \mathfrak{s}(\alpha_1)$$
 $\mathfrak{s}(e_i) = i$ $\mathfrak{e}(p) = \mathfrak{e}(\alpha_n)$ $\mathfrak{e}(e_i) = i$

Example 1.6. $\Gamma: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$

Paths:

- (i) $\alpha, \beta, \gamma, \beta\alpha, \gamma\alpha$.
- (ii) e_1, e_2, e_3, e_4 .

Example 1.7. Γ : 1 $\bigcirc \alpha$.

 $_{
m Paths}$

- (i) $\alpha, \alpha^2 = \alpha \alpha, \alpha^3 = \alpha \alpha \alpha, \dots$
- (ii) e_1 .
- 1.2. **Path algebras.** Given $\Gamma = (\Gamma_0, \Gamma_1)$, a quiver, and k a field.

The path algebra $k\Gamma$: $k\Gamma$ is the vector space with all the paths in Γ as a basis. The elements in $k\Gamma$:

$$a_1p_1 + a_2p_2 + \dots + a_tp_t$$

where $a_i \in k$ and p_i are paths in Γ .

Example 1.8. Continuing Example 1.6:

$$x = a_1e_1 + a_2e_2 + a_3e_3 + a_4e_4 + a_5\alpha + a_6\beta + a_7\gamma + a_8\beta\alpha + a_9\gamma\alpha$$
$$y = b_1e_1 + b_2e_2 + b_3e_3 + b_4e_4 + b_5\alpha + b_6\beta + b_7\gamma + b_8\beta\alpha + b_9\gamma\alpha$$

$$x + y = (a_1 + b_1)e_1 + (a_2 + b_2)e_2 + (a_3 + b_3)e_3 + (a_4 + b_4)e_4 + (a_5 + b_5)\alpha$$
$$+ (a_6 + b_6)\beta + (a_7 + b_7)\gamma + (a_8 + b_8)\beta\alpha + (a_9 + b_9)\gamma\alpha$$

p, q paths in Γ :

(1) p, q both non-trivial

$$p \cdot q = \begin{cases} pq, & \text{if } \mathfrak{c}(q) = \mathfrak{s}(p) \\ 0, & \text{otherwise} \end{cases}$$

(2) p non-trivial, q trivial, $q = e_i$

$$p \cdot q = \begin{cases} p, & \text{if } \mathfrak{s}(p) = i = \mathfrak{e}(q) \\ 0, & \text{otherwise} \end{cases}$$

$$q \cdot p = \begin{cases} p, & \text{if } \mathfrak{e}(p) = i = \mathfrak{s}(q) \\ 0, & \text{otherwise} \end{cases}$$

(3) $p = e_i, q = e_j$ (both trivial)

$$p \cdot q = \begin{cases} e_i, & \text{if } \mathfrak{c}(q) = j = i = \mathfrak{s}(p) \\ 0, & \text{otherwise} \end{cases}$$

This is extended distributively to an operator on $k\Gamma$ (see [1, page 50]).

Example 1.9. $\Gamma: 1 \xrightarrow{\alpha} 2$, k field.

Elements in $k\Gamma$: $a_1e_1 + a_2e_2 + a_3\alpha = y$.

$$\begin{array}{c|cccc} & e_1 & e_2 & \alpha \\ \hline e_1 & e_1 & 0 & 0 \\ \hline e_2 & 0 & e_2 & \alpha \\ \hline \alpha & \alpha & 0 & 0 \\ \hline \end{array}$$

$$(e_1 + e_2) \cdot y = (e_1 + e_2)(a_1e_1 + a_2e_2 + a_3\alpha)$$

$$= a_1e_1^2 + a_2\underbrace{e_1e_2}_{=0} + a_3\underbrace{e_1\alpha}_{=0} + a_1\underbrace{e_2e_1}_{=0} + a_2e_2^2 + a_3e_2\alpha$$

$$= a_1e_1 + a_2e_2 + a_3\alpha = y$$

Similary $y \cdot (e_1 + e_2) = y$. Hence, $e_1 + e_2$ acts like 1 in $k\Gamma$.

Basis for $k\Gamma$: $\{e_1, e_2, \alpha\}$, $\dim_k k\Gamma = 3$.

Example 1.10. Γ : 1 \bigcap_{α} , and k a field. $k\Gamma$ has basis: $\{e_1, \alpha, \alpha^2, \alpha^3, \ldots\}$, that is, $\dim_k k\Gamma = \infty$. Elemenets in $k\Gamma$: $a_0e_1 + a_1\alpha + a\alpha^2 + \cdots + a_t\alpha^t$, with a_i in k and $t \ge 0$.

Notes

(1) In general, $\{e_i\}_{i\in\Gamma}$ are orthogonal idempotents in $k\Gamma$, ie.

$$\begin{cases} e_i^2 = e_i \\ e_i e_j = 0 \text{ for } i \neq j \end{cases}$$

(2) Suppose $\Gamma_0 = \{1, 2, ..., n\}$. Then $e_1 + e_2 + ... + e_n$ acts like 1 in $k\Gamma$. Enough to show that $p = (e_1 + e_2 + ... + e_n)p = p(e_1 + e_2 + ... + e_n)$ for any path p. Suppose that $\mathfrak{s}(p) = i$ and $\mathfrak{e}(p) = j$ Then

$$(e_1 + e_2 + \dots + e_n)p = e_1p + e_2p + \dots + e_pp + \dots + e_np = e_p \stackrel{\text{def}}{=} p$$

$$p(e_1 + e_2 + \dots + e_n) = pe_1 + pe_2 + \dots + pe_i + \dots + pe_n = e_j p \stackrel{\text{def}}{=} p$$

(3) $\implies e_1 + e_2 + ... + e_n = 1_{k\Gamma} = identity in k\Gamma$

Can show: $k\Gamma$ is a k-algebra with $e_1 + e_2 + ... + e_n$ as an identity (see [1, page 50])

recall: Λ ring, k field

Definition 1.11. Λ is a k-algebra, if Λ is a vector space over k ($k \times \Lambda \longrightarrow \Lambda$, Λ is a module over $k, \alpha \in k, \lambda \in \Lambda, \alpha \cdot \lambda$ and $\alpha(\lambda \cdot \lambda') = (\alpha \cdot \lambda) \cdot \lambda' = \lambda(\alpha \cdot \lambda')$ $\forall \alpha \in k, \forall \lambda, \lambda' \in \Lambda$

Equivalent: Λ is a k-algebra, if $\exists \phi \colon k \to \Lambda$ a ring homomorphism such that Im $\phi \subseteq Z(\Lambda) = \{z \in \Lambda | z\lambda = \lambda z, \forall \lambda \in \Lambda\}$ ($\iff \exists R \subseteq \Lambda \text{ subring such that } R \simeq k$ with $R \subseteq Z(\Lambda)$

 $\phi(a) = a \cdot 1_{\Lambda}$ For $k\Gamma$ the ring homomorphisme $\phi: k \to k\Gamma$ is given by $\phi(a) = a \cdot 1_{\Lambda}$ $ae_1 + ae_2 + \dots + ae_n$

Exercises:

(1) $\Gamma: 1 \xrightarrow{\alpha} 2$, k field. Find a k-algebra isomorphisme

$$\psi \colon k\Gamma \to \begin{pmatrix} \mathbf{k} & 0 \\ \mathbf{k} & \mathbf{k} \end{pmatrix}$$

(2) Γ : 1 \bigcap_{α} . k field. Show that $k\Gamma \simeq k[x]$ as k-algebra's.

Definition 1.12. A non-trival path p in Γ is an oriented cycle if

$$\mathfrak{e}(p) = \mathfrak{s}(p)$$

Example 1.13. Γ : 1 \bigcirc α

Cycles: $\alpha, \alpha^3, \gamma \beta \alpha, \beta \alpha^1 0 \gamma, \dots \dim_k k \Gamma = \infty$

Proposition 1.14. $\Gamma = (\Gamma_0, \Gamma_1)$ quiver, k field. $dim_k k\Gamma < \infty \iff \Gamma$ has no oriented cycles.

Proof. Exercise \Box

Proposition 1.15. Assume that $\Gamma = (\Gamma_0, \Gamma_1)$ has no oriented cycles. $k\Gamma$ is semisimpel $\iff \Gamma_1 = \emptyset$

Proof. proposition 1.14 $\Longrightarrow \dim_k k\Gamma < \infty \Longrightarrow k\Gamma$ is a left artinian ring. $k\Gamma$ semisimpel \iff no non-zero nilpotent left ideals in $k\Gamma$

 \implies : Assume that $\Gamma_1 \neq \emptyset$. Let α_1 be an arrow in Γ . Want to find a vertex where at least one arrow ends and no arrow starts. if

$$\mathfrak{e}(\alpha_1)$$

is such a vertex, we are done. If not, there is an arrow α_2 starting in

$$\mathfrak{e}(\alpha_1)$$

. If also

$$\mathfrak{e}(\alpha_2)$$

is not as above, we continue. Since Γ has no oriented cycles and Γ is finite, we must end up in a vertex v, where arrows only end and no arrows starts. Say, $\alpha = \alpha_t$ is an arrow ending in v. Then consider $k\Gamma\alpha = k\alpha$ Since $(a_1\alpha)(a_2\alpha = (a_1a_2)(\alpha\alpha)) = 0$

$$\implies (k\Gamma\alpha)^2 = (0) \text{ and } k\Gamma\alpha \neq (0)$$

 $\implies k\Gamma \text{ is not semisimpel.}$

 \Leftarrow : assume that $\Gamma_1 = \emptyset$. then $\Gamma \ 1 \ 2 \cdots n$ (n vertice)

Basis for $k\Gamma$: $\{e_1, e_2, \cdots, e_n\}$. Elements in $k\Gamma$: $a_1e_1 + a_2e_2 + \cdots + a_ne_n$ with $a_i \in k$. Have a ring homomorphisme. ψ : $\underbrace{k \times \cdots \times k}_{} \to k\Gamma$

given by $\psi(a_1, a_2, \dots, a_n) = a_1e_1 + a_2e_2 + \dots + a_ne_n$ (check this!). Show that ψ is an isomorphisme. Therefore $k\Gamma$ is semisimpel, since $k\Gamma$ is isomorphic to a finite product of full matrix rings over divisjon rings.

 $k\Gamma$ is not always semisimpel, but some factor of $k\Gamma$ is.

Proposition 1.16. $\Gamma = (\Gamma_0, \Gamma_1)$ quiver, k field. Let $J = \{all \ linear \ combinations \ of \ non-trivial \ paths\}$ Then J is an ideal in $k\Gamma$ and $k\Gamma/J \simeq \underbrace{k \times \cdots \times k}_{|\Gamma|}$, -semisimpel

Proof. "proof" Define
$$\psi \colon k\Gamma \to \underbrace{k \times \cdots \times}_{|\Gamma_0|=n} = k^n$$

 $\psi(a_1e_1+a_2e_2+\cdots+a_ne_n+$ linear combinations of non-trivial paths) = (a_1,a_2,\cdots,a_n)

Check:

- (1) ψ is well-defined
- (2) ψ homomorphism of rings
- (3) $\ker \psi = J$

$$\implies k\Gamma/J \simeq \text{Im}\psi = k^n$$

1.3. Modules.

Example 1.17. $\Gamma: 1 \xrightarrow{\alpha} 2$, k field What is a module over $k\Gamma$? Let M be a left $k\Gamma$ -module. Recall: $1_{k\Gamma} = e_1 + e_2$,

$$e_i e_j = \begin{cases} e_i^2 = e_i \\ e_i e_j = 0 \text{ for } i \neq j \end{cases}$$

Claim: $M = e_1 M \oplus e_2 M$ as vector space over k.

Proof:

$$m = 1_{k\Gamma} * m = (e_1 + e_2)m = e_1m + e_2m \in e_1M + e_2M$$

$$\implies M \subseteq e_1M + e_2M \subseteq M \implies M = e_1M + e_2M$$

Let
$$m \in e_1 M \cap e_2 M$$
, i.e $m = e_1 m' = e_2 m''$

$$e_1 m = e_1(e_1 m') = (e_1 e_1) m' = e_1 m' = m$$

= $e_1(e_2 m'') = \underbrace{(e_1 e_2) m''}_{=0} = 0 \cdot m'' = 0$

$$\implies m = 0$$
. hence $e_1 M \cap e_2 M = (0)$

$$\implies M = e_1 M \oplus e_2 M$$

INDEX

e, 1	trivial, 1
$\mathfrak{s}, 1$	path algebra, 2
note, 3	quiver, 1
path, 1	arrows, 1
non-trivial, 1	vertices, 1

References

[1] Auslander, M., Reiten, I., Smalø, S. O., Representation theory of Artin algebras. Corrected reprint of the 1995 original. Cambridge Studies in Advanced Mathematics, 36. Cambridge University Press, Cambridge, 1997. xiv+425 pp. ISBN: 0-521-41134-3; 0-521-59923-7.

Department of Mathematical Sciences, NTNU, N-7491 Trondheim, Norway $E\text{-}mail\ address:}$ oyvind.solberg@math.ntnu.no