A Note on Sperner's Theorem for Modules over Finite Chain Rings

Ivan Landjev
New Bulgarian University

(joint work with Emiliyan Rogachev)

1. Preliminaries

Theorem. (E. Sperner, 1928) If A_1, A_2, \ldots, A_m are subsets of $X = \{1, 2, \ldots, n\}$ such that A_i is not a subset of A_j if $i \neq j$, then $m \leq \binom{n}{\lfloor n/2 \rfloor}$.

Theorem. If \mathcal{A} is an antichain in the partially ordered set of all subspaces of \mathbb{F}_q^n , then

$$|\mathcal{A}| \le \begin{bmatrix} n \\ \lfloor n/2 \rfloor \end{bmatrix}_q$$

where

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q} = \frac{(q^{n} - 1) \dots (q^{n-k+1} - 1)}{(q^{k} - 1) \dots (q - 1)}.$$

are the Gaussian coefficients.

2. Partially ordered sets

Let \mathcal{P} be a partially ordered set with a partial order " \leq ".

- We say that the element y of a poset \mathcal{P} covers the element $x \in \mathcal{P}$ if $x \prec y$ and $x \prec y' \leq y$ implies y = y'. This is denoted by $x \prec y$.
- Ranked poset \mathcal{P} : there exists a function (rank function) $r:\mathcal{P}\to\mathbb{N}_0$ with r(x)=0 for some minimal element and r(y)=r(x)+1 for all x,y with $x\prec y$.
- Graded poset: a ranked poset in which all minimal elements have rank 0.
- $L_i(\mathcal{P})$ the *i*-th level of \mathcal{P} : $L_i(\mathcal{P}) = \{x \in \mathcal{P} \mid r(x) = i\}$.

- ullet the i-th Whitney number: $W_i(\mathcal{P}) = |L_i(\mathcal{P})|$
- A poset is said to have the Sperner property if the maximum cardinality of an antichain equals the largest Whitney number.
- The Hasse diagram of a partially ordered set is a directed graph $H(\mathcal{P}) = (\mathcal{P}, E(\mathcal{P}))$ where

$$E(\mathcal{P}) = \{(x, y) \mid \text{ where } x \prec y\}.$$

The underlying nondirected graph is called the Hasse graph.

The poset of the partitions of n=7

A poset without the Sperner proerty

3. Modules over Finite Chain Rings

Theorem. Let R be a finite chain ring of length m and with residue field \mathbb{F}_q . For any finite module RM there exists a uniquely determined partition

$$\lambda = (\lambda_1, \dots, \lambda_k) \vdash \log_q |M|,$$

 $m \geq \lambda_1 \geq \ldots \geq \lambda_k > 0$, such that

$$_{R}M \cong R/(\operatorname{rad} R)^{\lambda_{1}} \oplus \ldots \oplus R/(\operatorname{rad} R)^{\lambda_{k}}.$$

- The partition λ is called the **shape of** $_RM$.
- The conjugate partition λ' to λ is called the **conjugate shape** of $_RM$.

The conjugate partition $\lambda' = (\lambda'_1, \lambda'_2, \ldots)$ is defined by:

 $\lambda_i'=$ number of parts in λ that are greater or equal to i

• The number k is called the rank of $_RM$.

4. Counting Formulas

Theorem. Let $_RM$ be a module of shape $\lambda=(\lambda_1,\ldots,\lambda_n)$. For every sequence $\mu=(\mu_1,\ldots,\mu_n)$, $\mu_1\geq\ldots\geq\mu_n\geq0$, satisfying $\mu\leq\lambda$ the module $_RM$ has exactly

$$\begin{bmatrix} \lambda \\ \mu \end{bmatrix}_{q^m} := \prod_{i=1}^m q^{\mu'_{i+1}(\lambda'_i - \mu'_i)} \cdot \begin{bmatrix} \lambda'_i - \mu'_{i+1} \\ \mu'_i - \mu'_{i+1} \end{bmatrix}_q$$

submodules of shape μ .

If
$$\lambda = (\underbrace{m, \dots m}_{k_m}, \underbrace{(m-1), \dots, (m-1)}_{k_{m-1}}, \dots, \underbrace{1, \dots, 1}_{k_1})$$

then we shall write $m^{k_m}(m-1)^{k_{m-1}}\dots 1^{k_1}$.

- The family of all submodules of a finitely generated left R-module RM ordered by inclusion is a graded poset. If $RM = RR^n$ we denote this poset by P_n .
- Rank function: $r(L)=\sum_{i=1}^n \lambda_i=\log_q |L|$, where $_RL<_RM$ and L has shape $(\lambda_1,\ldots,\lambda_n)$.
- We have $r(\mathcal{P}_n) = mn$, where m is the length of R.
- The *k*-th Whitney number:

$$W_k(\mathcal{P}_n) = \sum_{\boldsymbol{\mu}} \begin{bmatrix} \boldsymbol{m}_n \\ \boldsymbol{\mu} \end{bmatrix}_{q^m},$$

where the sum is over all shapes $\boldsymbol{\mu}=(\mu_1,\ldots,\mu_n)$ with $\sum_i \mu_i=k$.

$\mathcal{P}(\mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus 2\mathbb{Z}_4)$

Problem. Let R be a finite chain ring and let R be a (left) module over R.

What is the size of the largest antichain in the poset $\mathcal{P}(M)$ of all submodules of $_RM$?

⁻ Finite Geometries 2022, Sixth Irsee Conference, Kloster Irsee, Germany, 28.08.-03.09.2022 -

5. A Sperner-type Theorem for Free Modules

Let \mathcal{P} be a graded poset.

It is said that level L_i can be matched into level L_j , where j=i-1 or i+1, if there is a matching of size W_i in the subgraph of the Hasse graph of $\mathcal P$ defined on the vertices from $L_i \cup L_j$.

Theorem. Let \mathcal{P} be a graded poset. If there exist indices g and h such that L_i can be matched into L_{i+1} for all $i=0,1,\ldots,g-1$, and L_j can be matched into L_{j-1} for all $j=h+1,\ldots,n$ then there exists a largest antichain which is contained in levels L_g,L_{g+1},\ldots,L_h .

Let R be a finite chain ring with nilpotency index 2 and residue field \mathbb{F}_q and let $RM = RR^n$.

Lemma A. Let a, b be non-negative integers with $2a+b \leq n$. Denote by X be the set of all submodules of ${}_RR^n$ of shape $2^{a-1}1^{b+1}$, and by Y – the set of all submodules of ${}_RR^n$ of shape 2^a1^b . Let $G=(X\cup Y,E)$ be the bipartite graph with edges given by set-theoretical inclusion. The X can be matched into Y.

$$q^{(a-1)(n-a-b)} \begin{bmatrix} n-a+1 \\ b+1 \end{bmatrix}_q \begin{bmatrix} a \\ a-1 \end{bmatrix}_q$$

$$q^{a(n-a-b)} \begin{bmatrix} n-a \\ b \end{bmatrix}_q \begin{bmatrix} n \\ a \end{bmatrix}_q$$

$$2^{a-1} b + 1$$

$$X$$

Lemma B. Let a be a non-negative integer with $2a+1 \le n$. Denote by X be the set of all submodules of ${}_RR^n$ of shape 2^a , and $2^{a-1}1^2$, and by Y – the set of all submodules of ${}_RR^n$ of shape 2^a1^1 . Let $G=(X\cup Y,E)$ be the bipartite graph with edges given by set-theoretical inclusion. The X can be matched into Y.

Lemma C. Let $G = (X \cup Y, E)$ be a bipartite graph with $X = X_1 \cup X_2$ and $|X| \leq |Y|$. Each vetex from X_i is adjacent to x_i vertices of Y, and each vertex of Y is adjacent to y_i vertices of X_i , i = 1, 2. If

$$y_1 + y_2 \le \min(x_1, x_2),$$

then G has a matching of |X| edges.

• $\mathcal{L}(m,n)$: the poset of all n-tuples $\lambda=(\lambda_1,\ldots,\lambda_n)$ with $m\geq \lambda_1\geq \ldots \geq \lambda_n\geq 0$ and $\sum \lambda_i\leq mn$ with partial order defined by

$$\lambda \leq \mu \iff \lambda_1 \leq \mu_1, \dots \lambda_n \leq \mu_n.$$

- ullet $\mathcal{L}(m,n)$ can be graded by the rank function $r(\lambda) = \sum_{i=1}^n \lambda_i$.
- $\mathcal{L}(m,n)$ is self dual: $(\lambda_1,\ldots,\lambda_n) \to (m-\lambda_n,\ldots,m-\lambda_1)$.

Theorem. Let R be a finite chain ring with nilpotency index 2 and residue field of order q. Let $\mathcal{P} = \mathcal{P}(R^n)$ be the partially ordered set of all submodules of R^n with partial order given by inclusion. Then P has the Sperner proerty and the size of a maximal antichain in P is equal to

$$\sum_{\mu \prec \mathbf{2}_n} egin{bmatrix} \mathbf{2}_n \ \mu \end{bmatrix}_{q^m},$$

where the sum is over all sequences $\mu=(\mu_1,\ldots,\mu_n)\prec \mathbf{2}_n$ with

$$\sum_{i=1}^{n} \mu_i = n.$$

Theorem. Let R be a finite chain ring with nilpotency index m and residue field of order q. Let $\mathcal{P}_n = \mathcal{P}_n(R)$ be the partially ordered set of all submodules of R^n with partial order given by inclusion. Then P has the Sperner proerty and the size of a maximal antichain in P is equal to

$$\sum_{\mu\prec m{m}_n}egin{bmatrix}m{m}_n\\mu\end{bmatrix}_{q^m},$$

where the sum is over all partitions $\mu = (\mu_1, \dots, \mu_n) \prec m_n$ with

$$\sum_{i=1}^{n} \mu_i = \lfloor \frac{mn}{2} \rfloor.$$

6. Partial Results for Non-free Modules

Let R be a finite chain ring of nilpotency index 2 and with residue field \mathbb{F}_q .

Set
$$\Gamma = \{\gamma_0 = 0, \gamma_1 = 1, \gamma_2, \dots, \gamma_{q-1}\}$$
 and $\operatorname{rad} R = R\theta$.

Let $_RM$ be a module of shape 2^11^n , e.g. the module generated by the rows of

$$A = \left(egin{array}{ccccc} 1 & 0 & 0 & \dots & 0 \\ 0 & heta & 0 & \dots & 0 \\ 0 & 0 & heta & \dots & 0 \\ dots & dots & dots & dots & dots \\ 0 & 0 & 0 & \dots & heta \end{array}
ight).$$

Consider the poset $\mathcal{P}(M)$ of all submodules of $_RM$.

Modules of shape 2^11^{2k}

Theorem. Let M be a module of shape 2^11^{2k} over the finite chain ring R of nilpotency index 2. Then $\mathcal{P}(M)$ has the Sperner property and the maximal antichain has size $W_{k+1}(\mathcal{P})$.

⁻ Finite Geometries 2022, Sixth Irsee Conference, Kloster Irsee, Germany, 28.08.-03.09.2022 -

Modules of shape 2^11^{2k-1}

$$\mathcal{P}(M) = \mathcal{P}(R \oplus \operatorname{rad} R)$$

Theorem. Let M be a module of shape 2^11^{2k-1} over the finite chain ring R of nilpotency index 2. Then $\mathcal{P}(M)$ does not have the Sperner property and the maximal antichain has size $2q^k \begin{bmatrix} 2k-1 \\ k-1 \end{bmatrix}_q$.