

Mosaic

A Salma planeia colorir um mosaico de de barro numa parede. O mosaico é uma matriz de $N \times N$, composta por N^2 azulejos quadrados de 1×1 que estão inicialmente sem nenhuma cor. As linhas do mosaico são numeradas de 0 a N-1 de cima para baixo, e as colunas são numeradas de 0 a N-1 da esquerda para a direita. O azulejo na linha i e coluna j ($0 \le i < N$, $0 \le j < N$) é denotado por (i,j). Cada azulejo deve ser colorido a branco (denotado por 0) ou a preto (denotado por 1).

Para colorir o mosaico, a Salma escolhe primeiro dois arrays X e Y de tamanho N, cada um consistindo em valores 0 e 1, tal que X[0] = Y[0]. Ela pinta os azulejos da linha de cima (linha 0) de acordo com o array X, de modo que a cor do azulejo (0,j) é X[j] ($0 \le j < N$). Ela também pinta os azulejos da coluna mais à esquerda (coluna 0) de acordo com o array Y, de tal modo que a cor do azulejo (i,0) é Y[i] ($0 \le i < N$).

Depois ela repete os seguintes passos, até todos os azulejos estarem coloridos:

- Ela descobre um qualquer azulejo (i,j) sem cor tal que o seu vizinho de cima (azulejo (i-1,j) e o seu vizinho da esquerda (azulejo (i,j-1)) estão ambos já coloridos.
- Então, ela pinta o azulejo (i,j) de preto se ambos os vizinhos foram brancos; caso contrário ela pinta o azulejo (i,j) de branco.

Pode ser mostrado que as cores finais dos azulejos não dependem da ordem em que a Salma os pinta.

A Yasmin está muito curiosa com as cores dos azulejos no mosaico. Ela faz Q perguntas à Salma, numeradas de 0 a Q-1. Na questão k ($0 \le k < Q$), a Yasmin especifica um subretângulo do mosaico através de:

- A sua linha mais em cima T[k] e a sua linha mais em baixo B[k] ($0 \leq T[k] \leq B[k] < N$),
- A sua coluna mais à esquerda L[k] e a sua coluna mais à direita R[k] ($0 \leq L[k] \leq R[k] < N$).

A resposta à questão é o número de azulejos pretos neste subretângulo. Mais especificamente, a Salma deve descobrir quantos azulejos (i,j) existem, tal que $T[k] \le i \le B[k]$, $L[k] \le j \le R[k]$, e a cor do azulejo (i,j) é preto.

Escreve um programa para responder às questões de Yasmin.

Detalhes de Implementação

Deves implementar a seguinte função.

```
std::vector<long long> mosaic(
    std::vector<int> X, std::vector<int> Y,
    std::vector<int> T, std::vector<int> B,
    std::vector<int> L, std::vector<int> R)
```

- X, Y: arrays de tamanho N descrevendo as cores dos azulejos na linha de cima e as cores dos azulejos da coluna mais à esquerda, respetivamente.
- T, B, L, R: arrays de tamanho Q descrevendo as questões feitas pela Yasmin.
- A função deve devolver um array C de tamanho Q, tal que C[k] fornece a resposta à questão k ($0 \le k < Q$).
- Esta função é chamada exatamente uma vez para cada caso de teste.

Restrições

- $1 \le N \le 200\,000$
- 1 < Q < 200000
- $X[i] \in \{0,1\}$ e $Y[i] \in \{0,1\}$ para cada i tal que $0 \leq i < N$
- X[0] = Y[0]
- $0 \leq T[k] \leq B[k] < N$ e $0 \leq L[k] \leq R[k] < N$ para cada k tal que $0 \leq k < Q$

Subtarefa

Subtarefa	Pontos	Restrições Adicionais
1	5	$N \leq 2; Q \leq 10$
2	7	$N \leq 200; Q \leq 200$
3	7	$T[k] = B[k] = 0$ (para cada k tal que $0 \leq k < Q$)
4	10	$N \leq 5000$
5	8	$X[i] = Y[i] = 0$ (para cada i tal que $0 \leq i < N$)
6	22	$T[k] = B[k]$ e $L[k] = R[k]$ (para cada k tal que $0 \leq k < Q$)
7	19	$T[k] = B[k]$ (para cada k tal que $0 \leq k < Q$)
8	22	Nenhuma restrição adicional.

Exemplo

Considera a seguinte chamada.

```
mosaic([1, 0, 1, 0], [1, 1, 0, 1], [0, 2], [3, 3], [0, 0], [3, 2])
```

Este exemplo está ilustrado nas figuras seguintes. A figura da esquerda mostra as cores dos azulejos do mosaico. As figuras do meio e da direita mostram os subretangulos da primeira e da segunda pergunta da Yasmin, respetivamente.

	0	1	2	3
0	1	0	1	0
1	1	0	0	1
2	0	1	0	0
3	1	0	1	0

	0	1	2	3
0	1	0	1	0
1	1	0	0	1
2	0	1	0	0
3	1	0	1	0

	0	1	2	3
0	1	0	1	0
1	1	0	0	1
2	0	1	0	0
3	1	0	1	0

As respostas às perguntas (isto é, o número de uns nos retângulos sombreados) são 7 e 3, respetivamente. Deste modo, a função deve devolver [7,3].

Avaliador Exemplo

Formato de input:

```
N
X[0] X[1] ... X[N-1]
Y[0] Y[1] ... Y[N-1]
Q
T[0] B[0] L[0] R[0]
T[1] B[1] L[1] R[1]
...
T[Q-1] B[Q-1] L[Q-1] R[Q-1]
```

Formato de output:

```
C[0]
C[1]
...
C[S-1]
```

Aqui, S é o tamanho do array C devolvido por mosaic.