Dynamique longitudinale

Equation de **propulsion** sur x_a :

$$m\dot{V} = -\frac{1}{2}\rho V^2 SCx + F - mg\sin\gamma$$

Р

Equation de **sustentation** sur z_a :

$$-mV\dot{\gamma} = -\frac{1}{2}\rho V^2 SCz + mg\cos\gamma$$

S

Equation de **moment de tangage** sur y :

$$B\dot{q} = \frac{1}{2}\rho V^2 S\ell \, Cm_{/G} + M_{F/G}$$

M

Equations cinématiques

$$\dot{\alpha} = q - \dot{\gamma}$$

$$\dot{h} = V \sin \gamma$$

Cq

Ch

Modèles:

Portance:
$$Cz = Cz_{\alpha}(\alpha - \alpha_0) + Cz_q \frac{q\ell}{V} + Cz_{\delta m}\delta m$$

Trainée :
$$Cx = Cx_0 + k_iCz^2$$

Poussée:
$$F = k_f \rho V^{\lambda_f} \delta x$$

Tangage:
$$Cm_{/G}=Cm_0+Cm_{\alpha}(\alpha-\alpha_0)+Cm_q\frac{q\ell}{V}+Cm_{\delta m}\delta m$$

Atmosphère :
$$\rho = \rho(h)$$

Variables d'état longitudinal:

$$X = [V \quad \gamma \quad \alpha \quad q \quad h]^T$$
$$U = [\delta x \quad \delta m]^T$$

Petits angles

- Les efforts de propulsion sont parallèles à la vitesse.
- Il n'y a pas de moment dû aux moteurs : $M_{F/G}=0$
- La pente γ est faible : $\cos \gamma = 1$ et $\sin \gamma = \gamma$
- Incidence α faible

$$\dot{V} = -\frac{\rho V^2 S}{2m} C x(\alpha, q, \delta m) + \frac{F(\delta x)}{m} - g \cdot \sin \gamma$$

$$\dot{\gamma} = \frac{\rho V S}{2m} C z(\alpha, q, \delta m) - \frac{g}{V}$$

$$\dot{q} = \frac{\rho V^2 S \ell}{2B} C m_{/G} (\alpha, q, \delta m)$$

$$\dot{\alpha} = q - \dot{\gamma}$$

$$\dot{h} = V \cdot \gamma$$

Oscillation d'incidence

Oscillation d'incidence

On suppose que G n'a pas de mouvement verticalement

• Modèle simplifié :

$$\dot{q} = \frac{1}{2B} \rho V^2 S \ell \left[C m_0 + C m_\alpha^G (\alpha - \alpha_0) + C m_q \frac{q \ell}{V} + C m_{\delta m}^G \delta m \right]$$

$$\dot{\alpha} = q - \dot{\gamma} = q$$

Oscillation d'incidence : Modèle simplifié

$$\dot{q} = \frac{1}{2B} \rho V^2 S \ell \left[C m_{\alpha}^G (\alpha - \alpha_0) + C m_q \frac{q\ell}{V} + C m_{\delta m}^G \delta m \right]$$

$$\dot{lpha}=q$$

•
$$\delta \alpha = \alpha - \alpha_e$$

$$\delta q = q - q_e = q$$

•
$$\ddot{\delta \alpha} = m_{\alpha} \delta \alpha + m_{q} \dot{\delta \alpha}$$

•
$$s^2 - m_q s - m_\alpha = 0$$

$$m_{\alpha} = \frac{\rho V^2 S \ell}{2B} C m_{\alpha}$$

$$m_q = \frac{\rho V S \ell^2}{2B} C m_q$$

Oscillation d'incidence : Modèle simplifié

• Equation caractéristique d'un oscillateur amorti:

•
$$s^2 + 2\lambda s + \omega_0^2 = 0$$

•
$$s/\bar{s} = -\lambda \pm i\sqrt{\omega_0^2 - \lambda^2} = -\lambda \pm i\omega_n$$

Avec

•
$$\lambda = -\frac{m_q}{2}$$

•
$$\omega_0^2 = -m_\alpha$$

Oscillation d'incidence : Modèle simplifié

$$\dot{\delta\alpha} - m_q \dot{\delta\alpha} - m_\alpha \delta\alpha = 0$$
$$s^2 - m_q s - m_\alpha = 0$$

$$\Rightarrow s^2 + 2\lambda \, s + \omega_0^2 = 0$$

$$s/\bar{s} = -\lambda \pm i \sqrt{\omega_0^2 - \lambda^2} = -\lambda \pm i \omega_n$$

$$\lambda = -\frac{m_q}{2}$$
$$\omega_0^2 = -m_\alpha$$

Oscillation d'incidence : approche simplifiée

Oscillation d'incidence : approche simplifiée

• Etude de la dynamique : Hypothèse de linéarisation

- On suppose le vol symétrique
 - A partir d'un état d'équilibre pour de « faibles » angles et de petits mouvements
- > Hypothèse de découplage des modes longitudinal et latéral
 - ⇒ 5 Equations Longitudinales et 4 Latérales
- > Linéarisation des équations autour d'un point d'équilibre

$$\dot{V} = -\frac{\rho V^2 S}{2m} C x(\alpha, q, \delta m) + \frac{k_f \rho V^{\Lambda f}}{m} \delta x - g \cdot \gamma$$

$$\dot{\gamma} = \frac{\rho V S}{2m} C z(\alpha, q, \delta m) - \frac{g}{V}$$

$$\dot{q} = \frac{\rho V^2 S \ell}{2B} C m_{/G}(\alpha, q, \delta m)$$

$$\dot{\alpha} = q - \dot{\gamma}$$

$$\dot{h} = V \cdot \gamma$$

$$\dot{X} = f(X, U)$$

Equilibre pour

$$\dot{X_e} = 0 = f(X_e, U_e)$$

Linéarisation:

$$\dot{\delta X} = \frac{\partial f}{\partial X}(X_e, U_e) \, \delta X + \frac{\partial f}{\partial U}(X_e, U_e) \, \delta U$$

avec

$$\delta X = X - X_e, \qquad \delta U = U - U_e$$

$$\dot{X} = f(X, U) \implies \dot{\delta X} = A \, \delta X + B \, \delta U$$

$$\dot{X} = A X + B U$$

Solution de l'équation différentielle sans second membre

$$\dot{X} = A X \implies X = X_0 e^{st}$$

$$sX_0e^{st} = AX_0e^{st} \Rightarrow [A - sI]X_0e^{st} = 0$$
$$\Rightarrow [A - sI]X_0 = 0$$

Pour $X_0 \neq 0$, il y a une solution si :

$$\det[A - sI] = 0$$

(équation caractéristique)

$$\det[A - sI] = 0$$

(s racine de l'équation, est une valeur propre de A)

Si s est réel :
$$X = X_0 e^{st} \Rightarrow X = X_0 e^{-t/\tau}$$

→ le mode est apériodique

$$s < 0$$
 \rightarrow le mode est convergent

$$\tau = -\frac{1}{s} > 0$$

→ le mode est divergent

$$\tau = -\frac{1}{s} < 0$$

Si s est complexe : $s = -\lambda \pm i\omega \implies X = e^{-\lambda t} (K \cos \omega t + K' \sin \omega t)$

→ le mode est **oscillant** (périodique)

$$Re(s) = -\lambda < 0$$

→ le mode est convergent

$$\xi = \frac{\lambda}{\omega} > 0$$

$$Re(s) = -\lambda > 0$$

 $Re(s) = -\lambda > 0$ \rightarrow le mode est divergent

$$\xi = \frac{\lambda}{\omega} < 0$$

Mode apériodique – 1ier ordre

$$\frac{dx}{dt} + \frac{x}{\tau} = 0 \Rightarrow s = -\frac{1}{\tau} \Rightarrow x = x_0 e^{st} = x_0 e^{-\frac{t}{\tau}}$$

-- τ positif : mode convergent

τ négatif : mode divergent ——

Mode oscillatoire – 2nd ordre

$$\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega_0^2 x = 0 \Rightarrow s^2 + 2\lambda s + \omega_0^2 = 0$$

$$\Delta = \lambda^2 - \omega_0^2 < 0$$

$$\Rightarrow s/\bar{s} = -\lambda \pm i\sqrt{\omega_0^2 - \lambda^2} = -\lambda \pm i\omega_n \Rightarrow x = x_0 \frac{e^{-\lambda t}}{\sqrt{1 - \xi^2}} \sin(\omega_n t + \varphi)$$

Mode oscillatoire – 2nd ordre

$$s^2 + 2\lambda s + \omega_0^2 = 0$$

Amortissement : λ

Fréquence réelle ou fréquence propre : ω_{O}

Amortissement réduit : $\xi = \lambda/\omega_0$

Fréquence propre non armorie : $\omega_n = \omega_0 \sqrt{1 - \xi^2}$

Norme: Confort & Sécurité:

Fréquence : $\omega_0 > 1 \, \text{rad/s}$

Amortissement : $\xi > 0.3$

Constante de temps : $\tau_{min} < \tau < \tau_{max}$

Mode oscillatoire – 2nd ordre

Dynamique longitudinale

$$\dot{V} = -\frac{\rho V^2 S}{2m} Cx(\alpha, q, \delta m) + \frac{k_f \rho V^{\lambda_f}}{m} \delta x - g \sin \gamma$$

$$\dot{\gamma} = \frac{\rho V S}{2m} Cz(\alpha, q, \delta m) - \frac{g}{V}$$

$$\dot{q} = \frac{\rho V^2 S \ell}{2B} Cm_{/G} (\alpha, q, \delta m)$$

$$\dot{\alpha} = q - \dot{\gamma}$$

$$\dot{h} = V \sin \gamma$$

Linéarisation

Pour un point d'équilibre $(V_e, \gamma_e = 0, \alpha_e, q_e = 0, h_e)$

On pose:

$$\begin{split} \delta V &= V - V_e \\ \delta \gamma &= \gamma - \gamma_e = \gamma \\ \delta \alpha &= \alpha - \alpha_e \\ \delta q &= q - q_e = q \\ \delta h &= h - h_e \end{split}$$

$$\begin{split} \delta \delta x &= \delta x - \delta x_e \\ \delta \delta m &= \delta m - \delta m_e \end{split}$$

Linéarisation

Exemple de linéarisation (en supposant ρ constant) – équation de sustentation

$$\dot{\gamma} = \frac{\rho VS}{2m} Cz(\alpha, q, \delta m) - \frac{g}{V}$$

$$\delta \dot{\gamma} = \delta \left[\frac{\rho VS}{2m} Cz - \frac{g}{V} \right]$$

$$= \frac{\rho SCz}{2m} \delta V + \frac{\rho VS}{2m} \delta Cz + \frac{g}{V^2} \delta V = \left[\frac{\rho SCz}{2m} + \frac{g}{V^2} \right] \delta V + \frac{\rho VS}{2m} \delta Cz$$

$$= \frac{2g}{V^2} \delta V + \frac{\rho VS}{2m} (Cz_\alpha \delta \alpha + Cz_q \frac{l}{V} \delta q + Cz_{\delta m} \delta \delta m)$$

$$\delta \dot{\gamma} = \frac{2g}{V^2} \delta V + \frac{\rho VSCz_{\alpha}}{2m} \delta \alpha + \frac{\rho SlCz_q}{2m} \delta q + \frac{\rho VSCz_{\delta m}}{2m} \delta \delta m$$

Modèle d'état linéarisé

Equations d'état :

$$\dot{V} = -\frac{\rho V^2 S}{2m} (Cx_0 + k_i Cz^2) + \frac{k_f \rho V^{\lambda_f}}{m} \delta x - g \cdot \gamma$$

$$\dot{\gamma} = \frac{\rho V S}{2m} Cz - \frac{g}{V}$$

$$\dot{q} = \frac{\rho V^2 S \ell}{2B} Cm_{/G}$$

$$\dot{\alpha} = q - \dot{\gamma}$$

$$\dot{h} = V \cdot \gamma$$

Forme d'état linéarisée

$$\begin{bmatrix} \dot{\delta V} \\ \dot{\delta \gamma} \\ \dot{\delta \alpha} \\ \dot{\delta \dot{q}} \\ \dot{\delta \dot{h}} \end{bmatrix} = \begin{bmatrix} x_V & x_\gamma & x_\alpha & x_q & 0 \\ z_V & 0 & z_\alpha & z_q & z_h \\ -z_V & 0 - z_\alpha (1 - z_q) - z_h \\ 0 & 0 & m_\alpha & m_q & 0 \\ 0 & V_e & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \delta V \\ \delta \gamma \\ \delta \alpha \\ \delta q \\ \delta h \end{bmatrix} + \begin{bmatrix} x_{\delta x} & x_{\delta m} \\ 0 & z_{\delta m} \\ 0 & -z_{\delta m} \\ 0 & m_{\delta m} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta \delta x \\ \delta \delta m \end{bmatrix}$$

Modèle d'état linéarisé

Equation de propulsion $(\delta \dot{V})$

$$\begin{aligned} x_V &= \frac{g(\lambda_f - 2)}{f_e}, & x_\gamma &= -g, & x_\alpha &= -2gk_iCz_\alpha, & x_q &= -\frac{2g\ell k_i}{V_e}Cz_q \\ x_{\delta x} &= \frac{g}{f_e}\frac{1}{\delta x_e}, & x_{\delta m} &= -2gk_iCz_{\delta m} \end{aligned}$$

Equation de sustentation $(\dot{\delta\gamma})$

$$z_V = \frac{2g}{V_e},$$
 $z_{\gamma} = 0,$ $z_{\alpha} = \frac{\rho_e V_e S}{2m} C z_{\alpha},$ $z_q = \frac{\rho_e S \ell}{2m} C z_q$ $z_{\delta x} = 0,$ $z_{\delta m} = \frac{\rho_e V_e S}{2m} C z_{\delta m}$

Equation de tangage ($\dot{\delta q}$)

$$m_V=0,$$
 $m_{\alpha}=rac{
ho_e V_e^2 S \ell}{2B} C m_{\alpha},$ $m_q=rac{
ho_e V_e S \ell^2}{2B} C m_q$ $m_{\delta x}=0,$ $m_{\delta m}=rac{
ho_e V_e^2 S \ell}{2B} C m_{\delta m}$

Douglas DC-8

Constructeur Douglas Aircraft Company

puis McDonnell Douglas

Équipage 3 (1 pilote, 1 copilote et 1 officier

mécanicien navigant)

Premier vol 30 mai 1958

Mise en service 18 septembre 1959
Retrait Retiré du service

Premier client United Airlines et Delta Air Lines

Production 556

Dimensions

Longueur45,87 mEnvergure43,41 mHauteur13,21 mAire alaire $257,4 \text{ m}^2$

Masse et capacité d'emport

Max. à vide 54,88 t Max. au décollage 140,6 t Passagers 200

Motorisation

Moteurs 4 turboréacteurs Pratt & Whitney

JT3C-6 ou JT4A-9

Poussée unitaire 60,06 kN **Poussée totale** 240,24 kN

Performances

Vitesse de croisière maximale 940 km/h
Vitesse maximale 990 km/h
Autonomie 7 250 km
Plafond 9 150 m
Charge alaire 546,2 kg/m²

Rapport poussée/poids 0,217

Avion « classique »

Condition de vol:

• Marge statique à -30%

- Altitude 1524 m = 5000 ft

Vitesse 100 m/s = 194 kts

(M = 0.3)

Réponse de l'avion sur 10 sec.

Réponse de l'avion sur 3 min.

Réponse de l'avion sur 15 min.

Réponse de l'avion sur 1 heure

Modes longitudinaux

$$\begin{bmatrix} \dot{\delta V} \\ \dot{\delta \gamma} \\ \dot{\delta \alpha} \\ \dot{\delta \dot{q}} \\ \dot{\delta \dot{h}} \end{bmatrix} = \begin{bmatrix} x_V & x_{\gamma} & x_{\alpha} & x_{q} & 0 \\ z_V & 0 & z_{\alpha} & z_{q} & z_{h} \\ -z_V & 0 - z_{\alpha} (1 - z_q) - z_{h} \\ 0 & 0 & m_{\alpha} & m_{q} & 0 \\ 0 & V_e & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \delta V \\ \delta \gamma \\ \delta \alpha \\ \delta q \\ \delta h \end{bmatrix} + \begin{bmatrix} x_{\delta x} & x_{\delta m} \\ 0 & z_{\delta m} \\ 0 & -z_{\delta m} \\ 0 & m_{\delta m} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta \delta x \\ \delta \delta m \end{bmatrix}$$

Modes longitudinaux

Modes	Grandeurs associées	Туре	Freq f _n (Hz)	Amort. ξ	Constante de temps (s)
Oscillation d'Incidence	lpha, q	Oscillant	0.208	0.52	1.46
Phugoïde	<i>V, γ</i>	Oscillant	0.019	0.02	400
Rappel de Propulsion	h	Apériodique			1511

$$\begin{bmatrix} \dot{\overline{V}} \\ \dot{\overline{V}} \\ \dot{\overline{q}} \\ \dot{\overline{h}} \end{bmatrix} = \begin{bmatrix} x_{V} & x_{\gamma} & x_{\alpha} & x_{q} & 0 \\ z_{V} & 0 & z_{\alpha} & z_{q} & z_{h} \\ -z_{V} & 0 & -z_{\alpha} & (1-z_{q}) & -z_{h} \\ 0 & 0 & m_{\alpha} & m_{q} & 0 \\ 0 & V_{e} & 0 & \uparrow & 0 & \uparrow \end{bmatrix} \begin{bmatrix} \overline{V} \\ \overline{\gamma} \\ \overline{\alpha} \\ \overline{q} \\ \overline{h} \end{bmatrix} + \begin{bmatrix} x_{\delta x} & x_{\delta m} \\ 0 & z_{\delta m} \\ 0 & -z_{\delta m} \\ 0 & m_{\delta m} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \overline{\delta x} \\ \overline{\delta m} \end{bmatrix}$$

$$PH \qquad OI \qquad RP$$

Oscillation d'incidence : approche couplée

Oscillation d'incidence : approche couplée

On suppose que h ne varie pas et que V est constant : $\delta V = 0$

$$\begin{bmatrix} \dot{\bar{\gamma}} \\ \dot{\bar{\alpha}} \\ \dot{q} \end{bmatrix} = \begin{bmatrix} 0 & z_{\alpha} & z_{q} \\ 0 & -z_{\alpha} & 1 - z_{q} \\ 0 & m_{\alpha} & m_{q} \end{bmatrix} \begin{bmatrix} \bar{\gamma} \\ \bar{\alpha} \\ q \end{bmatrix} + \begin{bmatrix} 0 & z_{\delta m} \\ 0 & -z_{\delta m} \\ 0 & m_{\delta m} \end{bmatrix} \begin{bmatrix} \overline{\delta x} \\ \overline{\delta m} \end{bmatrix}$$

$$\begin{bmatrix} \dot{\bar{\alpha}} \\ \dot{q} \end{bmatrix} = \begin{bmatrix} -z_{\alpha} & 1 - z_{q} \\ m_{\alpha} & m_{q} \end{bmatrix} \begin{bmatrix} \bar{\alpha} \\ q \end{bmatrix} + \begin{bmatrix} 0 & -z_{\delta m} \\ 0 & m_{\delta m} \end{bmatrix} \begin{bmatrix} \overline{\delta x} \\ \overline{\delta m} \end{bmatrix}$$

$$\lambda = -\frac{m_q - z_\alpha}{2}$$

$$\omega_0^2 = -m_\alpha (1 - z_q) - m_q z_\alpha$$

Oscillation d'incidence : approche couplée

Le centre de gravité G est animé par un mouvement d'oscillation vertical du aux variation de portance.

L'aile voit une variation d'angle d'incidence ce qui produit une variation de portance opposé au mouvement de G

Oscillation d'incidence : approche couplée

Oscillation d'incidence : approche couplée

Bien que l'avion soit instable « statiquement », le vecteur vitesse change de direction de sorte que la variation d'incidence $(\alpha = \theta - \gamma)$ peut décroitre

Oscillation d'incidence : Point de Manœuvre

On suppose que : $\alpha = \text{cst et } q = 0$ (hypothèse de découplage)

$$\begin{bmatrix} \dot{\overline{V}} \\ \dot{\gamma} \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} x_V & x_{\gamma} & x_{\alpha} & x_q \\ z_V & 0 & z_{\alpha} & z_q \\ 0 & 0 & 0 & 1 \\ 0 & 0 & m_{\alpha} & m_q \end{bmatrix} \begin{bmatrix} \overline{V} \\ \gamma \\ \overline{\alpha} \\ q \end{bmatrix} + \begin{bmatrix} x_{\delta x} & x_{\delta m} \\ 0 & z_{\delta m} \\ 0 & 0 \\ 0 & m_{\delta m} \end{bmatrix} \begin{bmatrix} \overline{\delta x} \\ \overline{\delta m} \end{bmatrix}$$

$$\begin{bmatrix} \dot{\overline{V}} \\ \dot{\gamma} \end{bmatrix} = \begin{bmatrix} x_V & x_{\gamma} \\ z_V & 0 \end{bmatrix} \begin{bmatrix} \overline{V} \\ \gamma \end{bmatrix} + \begin{bmatrix} x_{\delta x} & x_{\delta m} - x_{\alpha} \frac{m_{\delta m}}{m_{\alpha}} \\ 0 & z_{\delta m} - z_{\alpha} \frac{m_{\delta m}}{m_{\alpha}} \end{bmatrix} \begin{bmatrix} \overline{\delta x} \\ \overline{\delta m} \end{bmatrix}$$

Time (s)

Interprétation physique :

Equation de propulsion : $m\dot{V} = F - T - mg \gamma$

Equation de sustentation : $mV\dot{\gamma} = P - mg$

⇒ Linéarisation

$$m\dot{\bar{V}} = \frac{\partial (F-T)}{\partial V}\bar{V} - mg\,\gamma$$
$$mV\dot{\bar{\gamma}} = \frac{2mg}{V}\bar{V}$$

$$\ddot{\bar{V}} - \frac{1}{m} \frac{\partial (F - T)}{\partial V} \dot{\bar{V}} + \frac{2g^2}{V^2} \bar{V} = 0$$

Matrice d'état :

$$A_{PH} = \begin{pmatrix} x_V & x_{\gamma} \\ z_V & 0 \end{pmatrix}$$
 avec
$$\begin{cases} x_V = \frac{g(\lambda_f - 2)}{fV} & x_{\gamma} = -\frac{g}{V} \\ z_V = \frac{2g}{V} \end{cases}$$

Fréquence propre & amortissement :

$$\lambda = -\frac{x_V}{2} = -\frac{1}{2m} \left(\frac{\partial F}{\partial V} - \rho V S C x \right) = \frac{2 - \lambda_f}{2f} \frac{g}{V}$$
$$\omega_0^2 = -z_V x_V \Rightarrow \omega_0 = \sqrt{2} \frac{g}{V}$$

Soit:

$$T = \frac{2\pi}{\omega_n} \approx \frac{2\pi}{\omega_0} \approx 0.45 V$$
$$\xi = \frac{2 - \lambda_f}{2\sqrt{2}f}$$

Stabilité Longitudinale

	Oscillation d'Incidence	Phugoïde
Variables	(α,q)	(V,γ)
Période	Fonction de ${\cal C}m_{\alpha}$ « rapide » apériodique pour CG arrière	T=0.45*V « lente » Toujours périodique
Amortissement	Fonction de Cm_q & Cz_α Fortement amorti	Fonction de $Cx \& dF/dV$ Faiblement amorti

Réponse à un échelon de commande des gaz : $\Delta \delta x$

Réponse à un échelon de gouverne : $\Delta \delta m$

Oscillation d'incidence puis Phugo $\ddot{}$ de par une commande δm

Hypothèse de découplage :

Toutes les équation à l'équilibre sauf : $\dot{h} = V \gamma$

⇒ Mouvement apériodique très lent qui ramène la pente à zéro.

$$\dot{h} = V \, \gamma$$
 à l'équilibre $\gamma = 0$

Equation d'état

$$\begin{bmatrix} \dot{\bar{V}} \\ \dot{\gamma} \\ \dot{\bar{\alpha}} \\ \dot{q} \\ \dot{\bar{h}} \end{bmatrix} = \begin{bmatrix} x_V & x_{\gamma} & x_{\alpha} & x_q & x_h \\ z_V & 0 & z_{\alpha} & z_q & z_h \\ -z_V & 0 - z_{\alpha} (1 - z_q) - z_h \\ 0 & 0 & m_{\alpha} & m_q & 0 \\ 0 & V_e & 0 & 0 & \mathbf{0} \end{bmatrix} \begin{bmatrix} \bar{V} \\ \gamma \\ \bar{\alpha} \\ q \\ \bar{h} \end{bmatrix} + \begin{bmatrix} x_{\delta x} & x_{\delta m} \\ 0 & z_{\delta m} \\ 0 & -z_{\delta m} \\ 0 & m_{\delta m} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \bar{\delta x} \\ \bar{\delta m} \end{bmatrix}$$

On suppose que V et γ ont atteint leur équilibre

$$\begin{cases} x_h = \frac{1}{m} \left(F_h - \frac{1}{2} V^2 S C x \cdot \rho_h \right) \approx \frac{1}{m} \left(F_h - \frac{F}{\rho} \cdot \rho_h \right) \\ z_h = \frac{V S C z}{2m} \cdot \rho_h = \frac{g}{\rho V} \cdot \rho_h \end{cases} \qquad \begin{bmatrix} 0 \\ 0 \\ \dot{\bar{h}} \end{bmatrix} = \begin{bmatrix} x_V & x_\gamma & x_h \\ z_V & 0 & z_h \\ 0 & V & 0 \end{bmatrix} \begin{bmatrix} \bar{V} \\ \bar{\gamma} \\ \bar{h} \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ \bar{h} \end{bmatrix} = \begin{bmatrix} x_V & x_\gamma & x_h \\ z_V & 0 & z_h \\ 0 & V & 0 \end{bmatrix} \begin{bmatrix} \bar{V} \\ \bar{\gamma} \\ \bar{h} \end{bmatrix}$$

$$\delta X = \delta X_0 e^{st} \Rightarrow \begin{vmatrix} x_V & x_\gamma & x_h \\ z_V & 0 & z_h \\ 0 & V & -s \end{vmatrix} = 0$$

$$\delta X = \delta X_0 e^{st} \Rightarrow \begin{vmatrix} x_V & x_\gamma & x_h \\ z_V & 0 & z_h \\ 0 & V & -s \end{vmatrix} = 0$$

$$s = -V \cdot \frac{\begin{vmatrix} x_V & x_h \\ z_V & z_h \end{vmatrix}}{\begin{vmatrix} x_V & x_\gamma \\ z_V & 0 \end{vmatrix}} = \frac{V}{g} \cdot \left(x_h - z_h \frac{x_V}{z_V}\right) = \frac{V^2}{2mg} \cdot \left(\frac{2F_h}{V} - \frac{\rho_h F_V}{\rho}\right) < 0$$

s est une valeur propre réelle \rightarrow mode apériodique ; convergent si $\tau > 0$

$$\frac{d\delta h}{dt} + \frac{\delta h}{\tau} = 0 \leftrightarrow s + \frac{1}{\tau} = 0 \leftrightarrow \delta h = \delta h_0 \cdot (1 - e^{st}) = \delta h_0 \cdot (1 - e^{-t/\tau})$$

$$\tau = -\frac{1}{s} = \frac{2mg}{V^2} \cdot \frac{\rho V}{\rho_h V \cdot F_V - 2\rho F_h} > 0$$

$$\dot{h} = V \cdot \gamma \Rightarrow \gamma = \frac{\dot{h}}{V} = \frac{\delta h_0}{V\tau} \cdot e^{-t/\tau} = \gamma_0 \cdot e^{-t/\tau}$$

Stabilité augmentée

Amortisseur de tangage

Amortisseur de tangage : $k_1 > 0$

 $\Rightarrow m_q$ est augmenté de $k_1.m_{\delta m}$

$$\begin{split} &Cm = Cm_0 + Cm_\alpha \overline{\alpha} + Cm_q \frac{qL}{V} + Cm_{\delta m} [\delta m + k_1 q] \\ &Cm = Cm_0 + Cm_\alpha \overline{\alpha} + \left[Cm_q + k_1 Cm_{\delta m} \frac{V}{L} \right] \frac{qL}{V} + Cm_{\delta m} \delta m \end{split}$$

- ⇒ Les oscillations d'incidence sont amorties
- ⇒ Le « point de manœuvre » est situé plus en arrière

Concorde : XF/L=56% ; XFq/L= $56.6\% \rightarrow 59.8\%$ (k1=1)