

CORRIGÉ DE QUELQUES QUESTIONS DE LA SÉRIE DE TD D'ANALYSE 4

Fonctions définies par des intégrales

Exercice 1. Posons:

$$\mathscr{F}(x) = \int_0^1 \frac{\mathrm{d}t}{(1+t)t^{1-x}}.$$

- (1) Déterminer le domaine de définition \mathcal{D} de \mathcal{F} .
- (2) Étudier la continuité de \mathscr{F} sur \mathscr{D} .
- (3) Calculer $\mathscr{F}(x+1) + \mathscr{F}(x)$, pour tout $x \in \mathscr{D}$.
- (4) Déduire un équivalent de \mathscr{F} en 0^+ .
- (5) Calculer $\lim_{x \to +\infty} \mathscr{F}(x)$.

Corrigé de l'exercice 1. Posons $f(t,x) = \frac{1}{(t+t)t^{1-x}}$.

- (1) Nous distinguons les deux cas suivants (selon de signe de 1-x):
 - (a) $\mathbf{1}^{\text{er}}$ cas (si $x \geq 1$). Dans ces cas, la fonction $t \longmapsto f(t,x)$ est continue sur [0,1], donc l'intégrale $\int_0^1 f(t,x) \, dt$ est bien définie. Par conséquent, la fonction \mathscr{F} est définie en x.
 - (b) $2^{\mathrm{nd}} \cos$ (si x < 1). Dans ce cas, la fonction $t \longmapsto f(t,x)$ est définie sur]0,1] mais pas en 0; l'intégrale $\int_0^1 f(t,x) \, \mathrm{d}t$ est donc impropre en 0. Puisque la fonction $t \longmapsto f(t,x)$ est positive sur]0,1] et $f(t,x) \sim_{t \to 0^+} \frac{1}{t^{1-x}}$, alors, d'après le théorème d'équivalence, les deux intégrales $\int_0^1 f(t,x) \, \mathrm{d}t$ et $\int_0^1 \frac{1}{t^{1-x}} \, \mathrm{d}t$ ont la même nature. Puisque l'intégrale $\int_0^1 \frac{1}{t^{1-x}} \, \mathrm{d}t$ converge si et seulement si 1-x < 0 (i.e., x > 0), alors l'intégrale $\int_0^1 f(t,x) \, \mathrm{d}t$ converge seulement quand x > 0. D'où $\mathscr{F}(x)$ est définie seulement quand x > 0.

On en déduit des deux points précédents que $\mathfrak{D} =]0, +\infty[$.

- (2) Nous partageons l'étude de continuité de ${\mathscr F}$ en deux parties :
 - (a) Continuité de \mathscr{F} sur $[1, +\infty[$. La fonction f est clairement continue sur $[0, 1] \times [1, +\infty[$. Il s'ensuit (en vertu du théorème de continuité des fonctions définies par des intégrales ordinaires) que la fonction \mathscr{F} est continue sur $[1, +\infty[$.
 - (b) Continuité de \mathscr{F} sur]0,1[. Étudions d'abord la convergence normale de l'intégrale impropre $\int_0^1 f(t,x) \, dt$ sur]0,1[. On a pour tout $t \in]0,1[$:

$$\sup_{x \in [0,1]} |f(t,x)| = \frac{1}{t(1+t)} \sup_{x \in [0,1]} t^x = \frac{1}{t(1+t)} \quad (\text{car } \lim_{x \to 0} t^x = 1 \text{ et } t^x \le 1).$$

L'intégrale $\int_0^1 \frac{1}{t(1+t)} \, \mathrm{d}t$ est divergente (on peut le vérifier par un calcul direct ou en utilisant le théorème d'équivalence); donc l'intégrale $\int_0^1 f(t,x) \, \mathrm{d}t$ ne converge pas normalement sur]0,1[; donc on ne peut rien conclure sur la convergence uniforme de l'intégrale $\int_0^1 f(t,x) \, \mathrm{d}t$ dans l'intervalle]0,1[. Nous allons restreindre notre étude sur les intervalles $[c,d]\subset]0,1[$ (ça peut se faire aussi sur des intervalles du type $[c,1[\subset]0,1[)$. Soit donc $[c,d]\subset]0,1[$. On a : f est clairement continue sur $]0,1]\times [c,d]$, l'intégrale $\int_0^1 f(t,x) \, \mathrm{d}t$ converge normalement (donc uniformément) sur [c,d] (car pour tout $t\in]0,1]: \sup_{x\in [c,d]} |f(t,x)| = \frac{1}{(1+t)t^{1-c}} = f(t,c)$ et l'intégrale $\int_0^1 f(t,c) \, \mathrm{d}t$ converge d'après la première question). D'après le théorème de continuité des fonctions définies par des intégrales impropres la fonction $\mathscr F$ est continue sur]0,1[.

D'où \mathscr{F} est continue sur $\mathfrak{D} =]0,1[$.

(3) Pour tout x > 0, on a :

$$\mathscr{F}(x+1) + \mathscr{F}(x) = \int_0^1 \frac{\mathrm{d}t}{(1+t)t^{-x}} + \int_0^1 \frac{\mathrm{d}t}{(1+t)t^{1-x}}$$

$$= \int_0^1 \left(\frac{1}{(1+t)t^{-x}} + \frac{1}{(1+t)t^{1-x}}\right) \, \mathrm{d}t$$

$$= \int_0^1 \left(\frac{t}{(1+t)t^{1-x}} + \frac{1}{(1+t)t^{1-x}}\right) \, \mathrm{d}t$$

$$= \int_0^1 \frac{1+t}{(1+t)t^{1-x}} \, \mathrm{d}t = \int_0^1 \frac{1}{t^{1-x}} \, \mathrm{d}t$$

$$= \int_0^1 t^{x-1} \, \mathrm{d}t = \frac{1}{x}.$$

(4) D'après la question précédente, on a :

$$x\mathscr{F}(x+1) + x\mathscr{F}(x) = 1$$
, $(\forall x > 0)$.

En passant à la limite quand x tend vers 0^+ , on obtient :

$$\lim_{x \to 0^+} x \mathscr{F}(x) = 1.$$

En effet, on a puisque \mathscr{F} est continue en $1:\lim_{x\to 0}\mathscr{F}(x+1)=\mathscr{F}(1)\in\mathbb{R}$; donc $\lim_{x\to 0^+}x\mathscr{F}(x+1)=0$. Cela montre que $\lim_{x\to 0^+}\frac{\mathscr{F}(x)}{1/x}=1$ et donc $F(x)\sim_{0^+}\frac{1}{x}$.

(5) Puisque la fonction $t \mapsto f(t, x)$ est positive sur]0,1] pour tout x > 0, alors $\mathscr{F}(x) \ge 0$ pour tout x > 0. On a par conséquent :

$$0 \le \mathscr{F}(x) \le \mathscr{F}(x+1) + \mathscr{F}(x) = \frac{1}{x} \ (\forall x > 0).$$

Puisque $\lim_{x\to +\infty} \frac{1}{x} = 0$, alors : $\lim_{x\to +\infty} \mathscr{F}(x) = 0$.

Exercice 2. Considérons les deux fonctions F et G définies pour tout $x \in \mathbb{R}$ par :

$$F(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt \text{ et } G(x) = \left(\int_0^x e^{-t^2} dt\right)^2.$$

- (1) Montrer que F et G sont de classe \mathscr{C}^1 sur \mathbb{R} et préciser F' et G'.
- (2) Montrer que la fonction F + G est constante.
- (3) Calculer $\lim_{x\to +\infty} F(x)$ et déduire la valeur de l'intégrale de Gauss $\int_0^{+\infty} e^{-t^2} dt$.

Corrigé de l'exercice 2.

(1) La fonction $t \mapsto e^{-t^2} dt$ est continue sur \mathbb{R} , donc $x \mapsto \int_0^x e^{-t^2} dt$ est de classe \mathscr{C}^1 sur \mathbb{R} et on a :

$$\left(\int_0^x e^{-t^2} dt\right)' = e^{-x^2}, \quad \forall x \in \mathbb{R}.$$

Cela entraı̂ne que la fonction $G:x\longmapsto \left(\int_0^x e^{-t^2}\ \mathrm{d}t\right)^2$ est de classe \mathscr{C}^1 sur \mathbb{R} et on a :

$$G'(x) = 2e^{-x^2} \int_0^x e^{-t^2} dt$$
, $\forall x \in \mathbb{R}$.

Posons $f(t,x) = \frac{e^{-x^2(1+t^2)}}{1+t^2}$. On a:

- (a) La fonction $t \mapsto f(t,x)$ est clairement continue sur [0,1] pour tout $x \in \mathbb{R}$.
- (b) La fonction $\frac{\partial f}{\partial x}(t,x) = -2xe^{-x^2(1+t^2)}$ est continue sur $[0,1] \times \mathbb{R}$.

D'après le théorème de dérivation des fonctions définies par des intégrales ordinaires, la fonction F est de classe \mathscr{C}^1 sur \mathbb{R} . De plus on a pour tout réel x:

$$F'(x) = \int_0^1 \frac{\partial f}{\partial x}(t, x) dt = -2xe^{-x^2} \int_0^1 e^{-(xt)^2} dt.$$

(2) Il suffit de prouver que (F+G)'=0. En effet, on a clairement (F+G)'(0)=0 et pour tout $x\in\mathbb{R}^*$:

$$(F+G)'(x) = F'(x) + G'(x) = -2xe^{-x^2} \int_0^1 e^{-(xt)^2} dt + 2e^{-x^2} \int_0^x e^{-t^2} dt$$

$$= -2e^{-x^2} \int_0^x e^{-u^2} du + 2e^{-x^2} \int_0^x e^{-t^2} dt \quad \text{(où I'on a posé } u = tx\text{)}$$

$$= 0.$$

3

Ce qui confirme le résultat requis.

(3) Cette question sera traitée dans la séance prochaine en TD.