

Линейная лекция

Множества, элементы которых можно складывать друг с другом и умножать на числа

$$V$$
 — множество $v_1,v_2\in V \quad \Rightarrow \quad v_1+v_2\in V$ $v\in V,\; c$ — число $\Rightarrow \; cv\in V$

Множества, элементы которых можно складывать друг с другом и умножать на числа

$$V-$$
 множество $v_1,v_2\in V \quad\Rightarrow\quad v_1+v_2\in V$ $v\in V,\;c\in\mathbb{R} \quad\Rightarrow\;cv\in V$

Линейное пространство над **R**

Множества, элементы которых можно складывать друг с другом и умножать на числа

$$V-$$
 множество $v_1,v_2\in V \quad\Rightarrow\quad v_1+v_2\in V$ $v\in V,\ c\in\mathbb{C} \quad\Rightarrow\quad cv\in V$

Линейное пространство над С

$$V$$
 — множество $v_1,v_2\in V \quad \Rightarrow \quad v_1+v_2\in V$ $v\in V,\ c$ — число $\Rightarrow \quad cv\in V$

Как называются элементы v линейного пространства?

Векторы

$$V$$
 — множество $v_1,v_2\in V \quad\Rightarrow\quad v_1+v_2\in V$ $v\in V,\;c$ — число $\Rightarrow\;cv\in V$

Как называются числа c, на которые можно умножать?

Скаляры

Вещественные числа $\mathbb R$

Сложение векторов

$$2 + 5 = 7$$

$$-10 \cdot 5 = -50$$

Векторы \mathbb{R}^n

Сложение векторов

$$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 7 \\ 7 \\ 7 \end{bmatrix} = \begin{bmatrix} 8 \\ 9 \\ 7 \end{bmatrix}$$

$$2 \cdot \begin{bmatrix} 7 \\ 7 \\ 7 \end{bmatrix} = \begin{bmatrix} 14 \\ 14 \\ 14 \end{bmatrix}$$

Матрицы $\mathbb{R}^{m imes n}$

Сложение векторов

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 5 & 6 \\ 7 & 8 \end{bmatrix}$$

$$3 \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 3 \\ 3 & 3 \end{bmatrix}$$

Множество из одного нуля {0}

Сложение векторов

$$0 + 0 = 0$$

$$5 \cdot 0 = 0$$

Множество P_n многочленов степени $\leq n$

Сложение векторов

$$(1+x^2) + (x-x^2) = 1+x$$

$$5 \cdot (1 + x^2) = 5 + 5x^2$$

Множество P_{∞} всех многочленов

Сложение векторов

$$(x^2) + (x^{999} - x^2) = x^{999}$$

$$3 \cdot 2x^{1001} = 6x^{1001}$$

Множество C^0 всех непрерывных функций (на \mathbb{R})

Сложение векторов

$$f(x) + g(x)$$

$$\mathbf{c} \cdot f(x)$$

Множество C^{∞} всех гладких функций (на \mathbb{R})

Сложение векторов

$$f(x) + g(x)$$

$$\mathbf{c} \cdot f(x)$$

Множество l^{∞} всех ограниченных последовательностей

Сложение векторов

$$= 4, 0, 4, 0, 4, 0, \dots$$

Является ли линейным пространством над \mathbb{R} ?

Множество С комплексных чисел

Является ли линейным пространством над \mathbb{R} ?

Множество $\mathbb{R}_{>0}$ всех положительных чисел

Является ли линейным пространством над \mathbb{R} ?

Множество \mathbb{S}^n симметричных матриц размера $n \times n$

Является ли линейным пространством над \mathbb{R} ?

Множество O(n) ортогональных матриц размера $n \times n$

Является ли линейным пространством над \mathbb{R} ?

Множество $\{f \mid f(x) = f(-x)\}$ всех чётных функций на $\mathbb R$

Является ли линейным пространством над \mathbb{R} ?

Множество $\{f \mid f(x) = -f(-x)\}$ всех нечётных функций на $\mathbb R$

Является ли линейным пространством над \mathbb{R} ?

Множество всех функций, имеющих разрыв типа "скачок"

Является ли линейным пространством над \mathbb{R} ?

Множество всех возрастающих функций

Является ли линейным пространством над \mathbb{R} ?

Множество всех вещественных матриц

Подпространства

Если подмножество W линейного пространства V само является линейным пространством, то оно называется его подпространством

$$W \subseteq V$$

Кто кому подпространство?

 \mathcal{C}^0 – непрерывные функции

 C^{∞} – гладкие функции

 P_{10} – полиномы степени ≤ 10

 P_{∞} — все полиномы

F — все функции

 F_{\uparrow} — возрастающие функции

 $F_{
m odd}$ — нечётные функции

 $F_{
m even}$ – чётные функции

$$P_{10} \subset P_{\infty} \subset C^{\infty} \subset C^{0} \subset F$$

 F_{\uparrow}

$$F_{\text{odd}} \subset F$$

$$F_{\text{even}} \subset F$$

Я тут лишний

Линейная оболочка набора векторов

$$Span(v_1, v_2, ..., v_n) = \{a_1v_1 + a_2v_2 + \cdots + a_nv_n \mid a_i \in \mathbb{R}\}$$

множество всех линейных комбинаций этих векторов

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix},\begin{bmatrix}2\\3\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix},\begin{bmatrix}2\\3\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \left\{\begin{bmatrix}a\\a\end{bmatrix} \mid a \in \mathbb{R}\right\}$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix},\begin{bmatrix}2\\3\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \left\{ \begin{bmatrix} a\\a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}-5\\-5\end{bmatrix}\right) = \left\{\begin{bmatrix}a\\a\end{bmatrix} \mid a \in \mathbb{R}\right\}$$

Решение линейного однородного дифференциального уравнения – линейная оболочка его мод (простейших решений)

Уравнение

$$\ddot{y} + y = 0$$

Характеристические корни

$$\lambda_{1,2} = \pm i$$

Моды

$$\sin(t), \cos(t)$$

Решение уравнения

$$y(t) = c_1 \sin(t) + c_2 \cos(t)$$

Решение линейного однородного дифференциального уравнения — линейная оболочка его мод (простейших решений)

Уравнение

$$\ddot{y} + y = 0$$

Характеристические корни

$$\lambda_{1,2} = \pm i$$

Моды

$$\sin(t), \cos(t)$$

Решение уравнения

$$y(t) \in \operatorname{Span}(\sin(t), \cos(t))$$

Является ли линейная оболочка линейным пространством?

Да!

$$x, y \in \text{Span}(v_1, v_2)$$
 \Rightarrow $x + y \in \text{Span}(v_1, v_2)$ $c \in \mathbb{R}$ $c \cdot x \in \text{Span}(v_1, v_2)$

Базис и размерность

Пусть n — наименьшее возможное число элементов набора $\{v_1, v_2, ..., v_n\}$ такого, что $\mathrm{Span}(v_1, v_2, ..., v_n) = V$

Число n называется размерностью пространства V $\dim V = n$

Сам набор $\{v_1, v_2, ..., v_n\}$ — называется базисом пространства V (одним из возможных)

Базис и размерность

Какова размерность пространства полиномов ≤ 3 степени

$$P_3 = \{ax^3 + bx^2 + cx + d \mid a, b, c, d \in \mathbb{R}\}?$$

$$P_3 = \text{Span}(1, x, x^2, x^3)$$

$$\dim P_3 = 4$$

Базис и размерность

Какова размерность пространства всех полиномов P_{∞} ?

$$P_{\infty} = \text{Span}(1, x, x^2, x^3, x^4, x^5, ...)$$

$$\dim P_{\infty} = \infty$$

(счетная бесконечность)

Базис и размерность

Какова размерность пространства гладких функций C^{∞} ?

$$C^{\infty} = \operatorname{Span}(???)$$

$$\dim C^{\infty} = \infty$$

(несчетная бесконечность)

Линейные отображения

Отображение $f:V \to W$ между линейными пространствами V и W называется линейным, если

$$f(v_1 + v_2) = f(v_1) + f(v_2)$$
$$f(cv) = cf(v)$$

Линейная комбинация координат вектора

$$f: \mathbb{R}^2 \to \mathbb{R}: \begin{bmatrix} x \\ y \end{bmatrix} \mapsto 2x + 3y$$

Уважает сложение

$$f\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}\right) = 2(x_1 + x_2) + 3(y_1 + y_2) = f\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}\right) + f\left(\begin{bmatrix} x_2 \\ y_2 \end{bmatrix}\right)$$

Линейная комбинация координат вектора

$$f: \mathbb{R}^2 \to \mathbb{R}: \begin{bmatrix} x \\ y \end{bmatrix} \mapsto 2x + 3y$$

Уважает умножение на скаляр

$$f\left(\mathbf{c}\cdot\begin{bmatrix}x\\y\end{bmatrix}\right) = 2cx + 3cy = \mathbf{c}\cdot f\left(\begin{bmatrix}x\\y\end{bmatrix}\right)$$

Вычисление следа матрицы

$$tr: \mathbb{R}^{n \times n} \to \mathbb{R}: A \mapsto trace(A)$$

Уважает сложение

$$tr(A + B) = \sum (a_{ii} + b_{ii}) = \sum a_{ii} + \sum b_{ii} = tr(A) + tr(B)$$

Вычисление следа матрицы

$$tr: \mathbb{R}^{n \times n} \to \mathbb{R}: A \mapsto trace(A)$$

Уважает умножение на скаляр

$$tr(c \cdot A) = \sum ca_{ii} = c \sum a_{ii} = c \cdot tr(A)$$

Взятие производной

$$\frac{d}{dt}: C^{\infty} \to C^{\infty}: y(t) \mapsto \dot{y}(t)$$

Уважает сложение

$$\frac{d}{dt}(y_1 + y_2) = \frac{d}{dt}(y_1) + \frac{d}{dt}(y_2)$$

Взятие производной

$$\frac{d}{dt}: C^{\infty} \to C^{\infty}: y(t) \mapsto \dot{y}(t)$$

Уважает умножение на скаляр

$$\frac{d}{dt}(\mathbf{c} \cdot \mathbf{y}) = \mathbf{c} \cdot \frac{d}{dt}(\mathbf{y})$$

Покупка инвестиционных активов

Является ли отображение f линейным?

Антипримеры

Вычисление длины вектора

$$f: \mathbb{R}^n \to \mathbb{R}: v \mapsto ||v||$$

Вычисление определителя

$$f: \mathbb{R}^{n \times n} \to \mathbb{R}: A \mapsto \det(A)$$

Не уважает сложение

$$||a + b|| \neq ||a|| + ||b||$$

Не уважает умножение на скаляр

$$\det(cA) = c^n \det(A) \neq c \det(A)$$

Проверка понимания

Эти отображения – линейные?

$$\mathbb{R}^{n\times n}\to\mathbb{R}^{n\times n}:A\mapsto A^{\top}$$

$$\mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n} : A \mapsto A^{-1}$$

Матрице $A_{m \times n}$ соответствует линейное отображение

$$f: \mathbb{R}^n \to \mathbb{R}^m: \chi \mapsto A\chi$$

Пространство \mathbb{R}^2

Пространство \mathbb{R}^2

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$

0 5 2

Пространство \mathbb{R}^2

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 5 \\ 9 \end{bmatrix}$$

Пространство \mathbb{R}^2

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 5 \\ 9 \end{bmatrix}$$

Матрица 2×3 сработала как линейное отображение $\mathbb{R}^3 \to \mathbb{R}^2$

$$\begin{bmatrix} 0 \\ 5 \\ 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 12 \\ 25 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} * & * & * & * & * \\ * & * & A & * & * \\ * & * & * & * \end{bmatrix} \begin{bmatrix} 1 \\ x \\ 1 \end{bmatrix}$$

Матрица $A \in \mathbb{R}^{m \times n}$ отображает вектор $x \in \mathbb{R}^n$ в вектор $y \in \mathbb{R}^m$ (легко показать, что это отображение – линейное)

Факт

Любое линейное отображение $\mathbb{R}^n o \mathbb{R}^m$

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \xrightarrow{A} \begin{bmatrix} e \\ f \\ g \end{bmatrix}$$

можно задать как умножение на матрицу

Столбцы матрицы – это...

Столбцы матрицы – это...

Столбцы матрицы – это...

...образы базисных векторов

Правило «строка на столбец» возникает само собой, если

- Столбцы образы базисных векторов
- Умножение матрицы на вектор линейное отображение

$$\begin{bmatrix} 0 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Правило «строка на столбец» возникает само собой, если

- Столбцы образы базисных векторов
- Умножение матрицы на вектор линейное отображение

$$\begin{bmatrix} 0 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix} \begin{pmatrix} a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}$$

Правило «строка на столбец» возникает само собой, если

- Столбцы образы базисных векторов
- Умножение матрицы на вектор линейное отображение

$$a \begin{bmatrix} 0 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Правило «строка на столбец» возникает само собой, если

- Столбцы образы базисных векторов
- Умножение матрицы на вектор линейное отображение

$$a \begin{bmatrix} 0 \\ 2 \end{bmatrix} + b \begin{bmatrix} 0 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Правило «строка на столбец» возникает само собой, если

- Столбцы образы базисных векторов
- Умножение матрицы на вектор линейное отображение

$$a\begin{bmatrix}0\\2\end{bmatrix}+b\begin{bmatrix}3\\2\end{bmatrix}+c\begin{bmatrix}0\\2&2&1\end{bmatrix}\begin{bmatrix}0\\0\\1\end{bmatrix}$$

Правило «строка на столбец» возникает само собой, если

- Столбцы образы базисных векторов
- Умножение матрицы на вектор линейное отображение

$$a\begin{bmatrix}0\\2\end{bmatrix}+b\begin{bmatrix}3\\2\end{bmatrix}+c\begin{bmatrix}3\\1\end{bmatrix}$$

Правило «строка на столбец» возникает само собой, если

- Столбцы образы базисных векторов
- Умножение матрицы на вектор линейное отображение

$$\begin{bmatrix} 0a + 3b + 3c \\ 2a + 2b + 1c \end{bmatrix}$$

Правило «строка на столбец» возникает само собой, если

- Столбцы образы базисных векторов
- Умножение матрицы на вектор линейное отображение

$$\begin{bmatrix} 0 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0a + 3b + 3c \\ 2a + 2b + 1c \end{bmatrix}$$

Произведение матриц – композиция отображений

Коммутативная диаграмма

Определитель – множитель площади (объёма) со знаком

Определитель – множитель площади (объёма) со знаком

$$\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$$

$$\det = 3$$

Обратная матрица – обратное преобразование

Матрица A^{-1} возвращает обратно то, что сделала матрица A

Обратная матрица – обратное преобразование

Матрица A^{-1} возвращает обратно то, что сделала матрица A

Обратная матрица – обратное преобразование

Матрица A^{-1} возвращает обратно то, что сделала матрица A

Нейтральное преобразование

$$AA^{-1} = A^{-1}A = I$$

$$\det(A^{-1}A) = \det(A) \cdot \frac{1}{\det(A)} = 1$$

«Увеличение» «Уменьшение»

Транспонированная матрица – «в другую сторону»

Матрица A^{T} делает примерно то же, что A, но «в другую сторону»

Транспонированная матрица – «в другую сторону»

Матрица A^{T} делает примерно то же, что A, но «в другую сторону»

Транспонированная матрица – «в другую сторону»

Матрица A^{T} делает примерно то же, что A, но «в другую сторону»

Матричные «квадраты»

$$AA^{\mathsf{T}}$$
 и $A^{\mathsf{T}}A$

$$\det(A^{\mathsf{T}}A) = \det(A) \cdot \det(A)$$

«Увеличение» «Увеличение»

Range A

Множество всех векторов $Ax \in \mathbb{R}^m$, которые могут получиться из всевозможных векторов $x \in \mathbb{R}^n$ в результате отображения $x \mapsto Ax$

Range
$$A_{m \times n} = \{ y \in \mathbb{R}^m \mid y = Ax, x \in \mathbb{R}^n \}$$

Другие названия

Образ матрицы A, столбцовое пространство матрицы A, Im(A)

множество всех возможных значений произведения

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= \mathbb{R}$$

Range
$$\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} =$$

множество всех возможных

значений произведения

$$\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= \left\{ \begin{bmatrix} a \\ 0 \end{bmatrix} \middle| a \in \mathbb{R} \right\}$$

Nullspace A

Множество всех векторов $x \in \mathbb{R}^n$ таких, что Ax = 0, то есть те вектора, которые отображаются в ноль

Nullspace
$$A_{m \times n} = \{x \in \mathbb{R}^n \mid Ax = 0 \in \mathbb{R}^m\}$$

Другие названия

Нуль-пространство матрицы A, ядро матрицы A, $\operatorname{Ker}(A)$

множество всех векторов, которые обнуляются:

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

$$= \left\{ \begin{bmatrix} a \\ -a \end{bmatrix} \middle| a \in \mathbb{R} \right\}$$

Nullspace
$$\begin{bmatrix} 5 & 0 \\ 0 & 0 \end{bmatrix} =$$

множество всех векторов, которые обнуляются:

$$\begin{bmatrix} 5 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$= \left\{ \begin{bmatrix} 0 \\ b \end{bmatrix} \middle| b \in \mathbb{R} \right\}$$

Отображение:
$$A_{m \times n} : \mathbb{R}^n \to \mathbb{R}^m$$

Пространства:

Range A – линейное подпространство в \mathbb{R}^m

Nullspace A — линейное подпространство в \mathbb{R}^n

Размерности:

 $\operatorname{rank} A = \dim(\operatorname{Range} A)$ – размерность образа

 $\operatorname{nullity} A = \dim(\operatorname{Nullspace} A) - \operatorname{размерность} ядра$

$$A_{m\times n}:\mathbb{R}^n\to\mathbb{R}^m$$

$$\operatorname{rank} A = \dim(\operatorname{Range} A)$$
 – размерность образа $\operatorname{nullity} A = \dim(\operatorname{Nullspace} A)$ – размерность ядра

Rank-nullity theorem

(теорема о ранге и дефекте, теорема о размерностях ядра и образа)

$$\operatorname{rank} A_{m \times n} + \operatorname{nullity} A_{m \times n} = n$$

Размерность синенького + размерность красненького = размерность исходного пространства

Пространства, связанные с матрицей: пример

Рассмотрим три линейных отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

плоскость \rightarrow плоскость

Range
$$A = \mathbb{R}^2$$

$$rank A = 2$$

Nullspace
$$A = \{0\}$$

nullity
$$A = 0$$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

плоскость → прямая

Range
$$B = \text{Span}\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right)$$

$$rank B = 1$$

Nullspace
$$B = \text{Span}\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$$

nullity $B = 1$

$$C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

плоскость → точка

Range
$$C = \{0\}$$

$$rank C = 0$$

Nullspace
$$C = \mathbb{R}^2$$

nullity
$$C = 2$$

Красивые факты для продвинутых

$$A_{m\times n}:\mathbb{R}^n\to\mathbb{R}^m$$

Прямая сумма образа матрицы A и ядра матрицы A^{T} равна пространству, в которое отображает матрица A

Range
$$A \oplus \text{Nullspace } A^{\mathsf{T}} = \mathbb{R}^m$$

⊕ – символ прямой суммы

Красивые факты для продвинутых

$$A_{m\times n}:\mathbb{R}^n\to\mathbb{R}^m$$

Прямая сумма ядра матрицы A и образа матрицы A^{T} равна пространству, из которого отображает матрица A

Nullspace
$$A \oplus \text{Range } A^{\mathsf{T}} = \mathbb{R}^n$$

⊕ – символ прямой суммы

Красивые факты для продвинутых

$$A_{m\times n}:\mathbb{R}^n\to\mathbb{R}^m$$

Образ матрицы A ортогонален ядру матрицы A^{T} (и наоборот)

$$(Range A)^{\perp} = Nullspace A^{\top}$$

$$(\text{Nullspace } A)^{\perp} = \text{Range } A^{\top}$$

⊥ – символ ортогонального дополнения

Образ и ядро дифференциальных операторов

$$\frac{d}{dt}: C^{\infty} \to C^{\infty}: y(t) \mapsto \dot{y}(t)$$

Что является ядром этого отображения?

Nullspace
$$\frac{d}{dt} = \{ f \mid f(x) = const \}$$

Образ и ядро дифференциальных операторов

$$\frac{d}{dt}: C^{\infty} \to C^{\infty}: y(t) \mapsto \dot{y}(t)$$

Что является ядром этого отображения?

Nullspace
$$\frac{d}{dt} = P_0$$

Образ и ядро дифференциальных операторов

$$\frac{d^2}{dt^2}: P_5 \to P_5: \ y(t) \mapsto \ddot{y}(t)$$

Что является образом и ядром этого отображения? Чему равны их размерности?

Ортогональные O(n)

$$V \in \mathbb{R}^{n \times n}$$
 $V^{-1} = V^{\mathsf{T}}$

$$\det V = \pm 1$$

Повороты и отражения

Специальные ортогональные SO(n)

$$U \in \mathbb{R}^{n \times n}$$
 $U^{-1} = U^{\mathsf{T}}$

$$\det U = 1$$

Только повороты

Групповые свойства

Если как-то повернуть и потом ещё как-то повернуть, то результат получится как от одного поворота

$$A, B \in SO(n) \Rightarrow AB \in SO(n)$$

Для любого поворота есть обратный поворот

$$A \in SO(n) \Rightarrow A^{-1} \in SO(n)$$

Ортогональные матрицы имеют ясный геометрический смысл, поэтому их часто используют в 3D-графике и робототехнике

Всем большое спасибо!