Utility

- DAG (Directed Acyclic Graph)
 - There is a direct edge from i to j if j > i

- There is a direct edge from i to j if j > i
 - Q: which are the most preferred nodes?

- There is a direct edge from i to j if j > i
 - Q: which are the least preferred nodes?

- There is a direct edge from i to j if j > i
 - Q: is k preferred to f?

- There is a direct edge from i to j if j > i
 - Q: is h preferred to f?

- There is a direct edge from i to j if j > i
 - Q: how can I identify two indifferent nodes?

- There is a direct edge from i to j if j > i
 - Q: Is this preference relation transitive?

- If the number of alternatives is small
 - preference relation can be an ordered list from best to worst

- In some cases, the alternatives are grouped into a <u>small number of categories</u>
 - we describe the preferences on X by specifying the preferences on the set of categories

- "I prefer the fastest car"
- "I prefer the taller basketball player"
- "I prefer the more expensive present"
- "I prefer a teacher who gives higher grades"

- They can naturally be specified by
 - $x \ge y$ if $V(x) \ge V(y)$ (or $V(x) \le V(y)$), where $V: X \to \mathbb{R}$
- For example, the preferences stated by "I prefer the taller basketball player" can be expressed formally by
 - X is the set of all conceivable basketball players, and
 V(x) is the height of player x

- Note that the statement x ≥ y if V(x) ≥ V(y) always defines a preference relation because...
 - ... the relation ≥ on ℝ satisfies <u>completeness</u> and <u>transitivity</u>

- We say that the function $U: X \to \mathbb{R}$ represents the preference \geq if for all x and $y \in X$, $x \geq y$ iff $U(x) \geq U(y)$
- If the function *U* represents the preference relation ≥, we refer to it as a <u>utility function</u>, and we say that ≥ has a utility representation

Claim:

```
If U represents \geq, then for any <u>strictly increasing</u> function f: \mathbb{R} \to \mathbb{R}, the function V(x) = f(U(x)) \dots represents \geq as well
```

• Proof:

- a ≥ b
- iff U(a) ≥ U(b) (since U represents ≥)
- iff f(U(a)) ≥ f(U(b)) (since f is strictly increasing)
- iff V(a) ≥ V(b)

Claim:

- If U represents \geq , then for any <u>strictly increasing</u> function $f: \mathbb{R} \to \mathbb{R}$, the function V(x) = f(U(x)) represents \geq as well
- What does this mean?
 - Various forms of utility functions may exist to represent a preference relation

 If any preference relation could be represented by a <u>utility function</u>, then...

- If any preference relation could be represented by a <u>utility function</u>, then it would "grant a license" to use utility functions rather than preference relations with no loss of generality
- Why is this important?

- Easier to compare two items
 - Q: is k preferred to f?

- Possibility of numerical representations carrying additional meanings
 - Ex:
 - a is preferred to b more than c is preferred to d

Under what assumptions do utility representations exist?

- Lemma:
 - In any <u>finite</u> set A ⊆ X, there is a minimal element (similarly, there is also a maximal element)
- That is, there is an element that is <u>less</u> <u>preferred</u> to any other element
- Which property guarantees that?

Lemma:

 In any <u>finite</u> set A ⊆ X, there is a minimal element (similarly, there is also a maximal element)

• Proof:

- By induction on the size of A
- If A is a singleton, then by completeness its only element is minimal
- For the inductive step, let A be of cardinality n+1 and let x∈ A.
 The set A {x} is of cardinality n and by the inductive assumption has a minimal element denoted by y
- If $x \ge y$, then y is minimal in A
- If y ≥ x, then by <u>transitivity</u> z ≥ x for all z ∈ A-{x}, and thus x is minimal

Reminder

- Recall that X is <u>countable</u> and <u>infinite</u> if there is a <u>one-to-one function</u> from X onto the natural numbers
- It is possible to specify an enumeration of all its members
 - $\{x_n\}_{n=1,2,...}$

. Claim:

If X is countable, then any preference relation on X has a utility representation with a range (-1, 1)

• Proof:

- Let {x_n} be an enumeration of all elements in X
- Set $U(x_1) = 0$
- Assume that you have completed the definition of the values $U(x_1), \ldots, U(x_{n-1})$ so that $x_k \gtrsim x_l$ iff $U(x_k) \geq U(x_l)$
- If x_n is indifferent to x_k for some k < n, then assign $U(x_n) = U(x_k)$
- If not, by transitivity, all numbers in the nonempty set $\{U(x_k)|x_k < x_n\} \ U \ \{-1\}$ are below all numbers in the nonempty set $\{U(x_k)|x_k > x_n\} \ U \ \{1\}$
- Choose $U(x_n)$ to be between the two sets
- This guarantees that for any k < n we have x_n ≥ x_k iff U(x_n) ≥ U(x_k)
- Thus, the function defined on $\{x_1, \ldots, x_n\}$ represents the preferences on those elements
- To complete the proof that U represents \geq , take any two elements, x and $y \in X$. For some k and l we have $x = x_k$ and $y = x_l$. The above applied to $n = max\{k, l\}$ yields $x_k \geq x_l$ iff $U(x_k) \geq U(x_l)$

Let's put that in practice...

Which bundle do you prefer?

3 chocolates6 snacks4 sodas

2 chocolates 2 snacks 10 sodas

Bundle #3

1 beer 1 snack 1 chocolate

3 chocolates 6 snacks 4 sodas

2 chocolates 2 snacks 10 sodas

Bundle #3

1 beer 1 snack 1 chocolate

- Let (≥_k)_{k=1,...,K} be a K-tuple of preferences over the set X
- The lexicographic preferences induced by those preferences are defined by x ≥ _L y if
 - (1) there is k* such that for all k < k* we have x ~_k y and x >_{k*} y or
 - (2) $x \sim_k y$ for all k
- The lower the **k**, the more relevant it is

• Example:

- Let X be the unit square, that is, $X = [0, 1] \times [0, 1]$
- Let $x \gtrsim_k y$ if $x_k \ge y_k$
- The lexicographic preferences ≥_L induced from ≥ ₁
 and ≥ ₂ are:
 - . $(a_1, a_2) \gtrsim_L (b_1, b_2)$ if $a_1 > b_1$ or both $a_1 = b_1$ and $a_2 \ge b_2$

. Claim:

- The lexicographic preference relation \geq_L on $[0, 1] \times [0, 1]$, induced from the relations $x \geq_k y$ if $x_k \geq y_k$ (k = 1, 2), does not have a utility representation

Why it cannot be represented by a utility function?

• Proof:

Theorem: *ℝ* is uncountable

Theorem: every subset of Q is countable

Corollary: there is no one-to-one function $f: \mathbb{R} \to \mathbb{Q}$

Theorem: Q is dense in R

• Proof:

- Assume by contradiction that the function $oldsymbol{u}:oldsymbol{X}
 ightarrow oldsymbol{\mathbb{R}}$ represents $oldsymbol{artriangle}_{L}$
- For any a ∈ [0, 1], (a, 1) > (a, 0) and, therefore, u(a, 1) > u(a, 0)
- Let q(a) be a <u>rational number</u> in the nonempty interval I_a = (u(a, 0), u(a, 1))
- The function q is a function from [0, 1] into the set of rational numbers @
- It is a <u>one-to-one</u> function since if b > a, then (b, 0) >_L (a, 1), u(b, 0) > u(a, 1), and, therefore, the intervals I_a and I_b are disjoint
 - For all **b**, there is a rational **q(b)** number
- Thus, $q(a) \neq q(b)$
- But the cardinality of the rational numbers is lower than that of the continuum, a contradiction

Reminder: continuous functions

• Is this function continuous?

 A function is continuous when its graph is a single unbroken curve...

 that you could draw without lifting your pen from the paper

• Examples:

• Examples:

$$g(x) = 1/(x-1)$$
 for $x>1$
Continuous

- Formal definition:
 - A function f is <u>continuous</u> when, for every value c in its Domain:
 - f(c) is defined, and

$$\lim_{x o c}f(x)=f(c)$$

- the limit of f(x) as x approaches c equals f(c)
- "as x gets closer and closer to c, f(x) gets closer and closer to f(c)"

$$h(x) = \begin{cases} 2, & \text{if } x \le 1 \\ x, & \text{if } x > 1 \end{cases}$$
 which looks like:

- It is defined at x=1, since h(1)=2
- But you cannot say what the <u>limit</u> is at x=1
 - from the left: 2
 - from the right: 1

Why is it important to talk about this?

- In economics, the set X is often an <u>infinite</u> subset of a Euclidean space
- In \mathbb{R}^1
 - Ex: gold
- In \mathbb{R}^2
 - Ex: (salary, vacation time per year)
- In \mathbb{R}^3
 - Ex: (coffee, bread, milk)

- In economics, the set X is often an <u>infinite</u> subset of a Euclidean space
- Is there a utility representation in such a case?

• Which one do you prefer?

12 free months

OR

2011 CORE SET

100k miles

20 boosters

• Which one do you prefer?

12 free months

OR

99.8k miles

19 boosters

• Which one do you prefer?

12 free months

119

OR

100k miles

20 both CORE SET IS-CARD BOOSTER PACK

20 boosters

• The basic intuition, captured by the notion of a <u>continuous preference relation</u>, is that if a is preferred to b, then "small" deviations from a or from b will not reverse the ordering

Definition C1

- A preference relation \geq on X is <u>continuous</u> if whenever a > b there are balls (neighborhoods in the relevant topology) B_a and B_b around a and b, respectively, such that for all $x \in B_a$ and $y \in B_b$, x > y

. Definition C1

. Definition C2

- A preference relation ≥ on X is continuous if the graph of ≥ (i.e., the set {(x, y)|x ≥ y} ⊆ X × X) is a closed set (with the product topology)
- That is, if $\{(a_n, b_n)\}$ is a sequence of pairs of elements in X satisfying $a_n \ge b_n$ for all n and $a_n \to a$ and $b_n \to b$, then $a \ge b$

. Definition C2

Claim:

The preference relation ≥ on X satisfies C1 if and only if it satisfies C2

Proof: (if)

- Assume that \geq on X is continuous according to C1. Let $\{(a_n, b_n)\}$ be a sequence of pairs satisfying $a_n \geq b_n$ for all n and $a_n \rightarrow a$ and $b_n \rightarrow b$
- If it is not true that $a \ge b$ (i.e., b > a), then there exist two balls B_a and B_b around a and b, respectively, such that for all $y \in B_b$ and $x \in B_a$, y > x
- There is an N large enough such that for all n > N, both $b_n \in B_b$ and $a_n \in B_a$
- Therefore, for all n > N, we have $b_n > a_n$, which is a contradiction

- Proof: (only if)
 - Assume that ≥ is continuous according to C2
 - Let a > b
 - Assume by contradiction that for all n there exist $a_n \in Ball(a, 1/n)$ and $b_n \in Ball(b, 1/n)$ such that $b_n \ge a_n$
 - The sequence (b_n, a_n) converges to (b, a)
 - By the second definition, (b, a) is within the graph of
 ≿, that is, b ≥ a, which is a contradiction

Remark #1

- ≥ on X is represented by a continuous function U,

 then ≥ is continuous
- To see this, note that if a > b, then U(a) > U(b)
- Let $\varepsilon = (U(a) U(b))/2$
- By the continuity of U, there is a $\delta > 0$ such that for all x distanced less than δ from a, $U(x) > U(a) \varepsilon$, and for all y distanced less than δ from b, $U(y) < U(b) + \varepsilon$
- Thus, for x and y within the balls of radius δ around
 a and b, respectively, x > y

Remark #2

- The lexicographic preferences that were used in the counterexample to the existence of a utility representation are not continuous
- Why?
- This is because (1, 1) > (1, 0), but in any ball around (1, 1) there are points inferior to (1, 0)

• Remark #2

 The lexicographic preferences that were used in the counterexample to the existence of a utility representation are not continuous

Remark #3

- Note that the second definition of continuity can be applied to any binary relation over a topological space, not just to a preference relation
- For example, the relation = on the real numbers (ℝ)
 is continuous, whereas the relation ≠ is not
 - . Why?

Debreu's theorem

- Continuous preferences have a continuous utility representation
- Proof in the book

Reminder

Claim:

- If *U* represents \geq , then for any <u>strictly increasing</u> function $f: \mathbb{R} \to \mathbb{R}$, the function V(x) = f(U(x)) represents \geq as well

• Proof:

- a ≥ b
- iff U(a) ≥ U(b) (since U represents ≥)
- iff f(U(a)) ≥ f(U(b)) (since f is strictly increasing)
- iff V(a) ≥ V(b)

Problem

- a) Is the statement "if both U and V represent \geq , then there is a strictly monotonic function $f: \mathbb{R} \to \mathbb{R}$ such that V(x) = f(U(x))" correct?
- FALSE

Let $X = \Re$ and preferences be represented by the utility functions

$$V(x) = x$$
 and $U(x) = \begin{cases} x & \text{if } x \leq 0 \\ x+1 & \text{if } x > 0. \end{cases}$

The only increasing function $f: \Re \to \Re$ that satisfies V(x) = f(U(x)) is

$$f(x) = \begin{cases} x & \text{if } x \le 0 \\ 0 & \text{if } 0 < x \le 1 \\ x - 1 & \text{if } x > 1 \end{cases}$$

8

Problem

- b) Can a continuous preference relation be represented by a discontinuous utility function?
- True: The preferences (x ≥ y if x ≥ y) is represented by U in (a) are continuous, though
 U is discontinuous

Problem

- c) Show that in the case of $X = \mathbb{R}$, the preference relation that is represented by the discontinuous utility function u(x) = floor(x) is not a continuous relation
 - floor(x): the largest integer n such that x ≥ n

2	B