Differential Equations in Geophysical Fluid Dynamics

X. Other heat equation problems

Jang-Geun Choi

Center for Ocean Engineering University of New Hampshire

Apr, 2025

This seminar is supported by mathematics community EM (maintained by Prof. Gunhee Cho) and oceanography community COKOAA.

Recap

How to solve the simplest version of heat equation problem?

$$\frac{\partial \eta}{\partial t} = \gamma \frac{\partial^2 \eta}{\partial x^2} \tag{1}$$

$$\eta|_{t=0} = \eta_0 \sin(k_0 x) \tag{2}$$

Assume $\eta = X(x)T(t)$ and substituting it into (1) yields

Must be the same as a constant.

$$\frac{1}{\gamma} \frac{T'}{T} = \frac{X''}{X} = \frac{\lambda}{\lambda}.$$
 (3)

Function of only t Function of only x

Therefore, we can obtain two ODEs:

$$T' = \gamma \lambda T, \qquad X'' = \lambda X \tag{4}$$

Note that assuming $X = e^{kx}$ yields $k = \pm \sqrt{\lambda}$.

Recap

- 1. If $\lambda = 0$, $\eta = A_0 x + B_0$.
- 2. If $0 < \lambda$ ($\lambda \equiv \lambda^+$; positive), $\eta = e^{\gamma \lambda^+ t} (A_1 e^{\sqrt{\lambda^+} x} + B_1 e^{-\sqrt{\lambda^+} x})$.
- 3. If $\lambda < 0$ ($\lambda \equiv -\lambda^-$; negative), $\eta = e^{-\gamma \lambda^- t} (A_2 \cos(\sqrt{\lambda^- x}) + B_2 \sin(\sqrt{\lambda^- x}))$

Therefore, general solution based on superposition principle is

$$\eta = A_0 x + B_0 + e^{\gamma \lambda t} (A_1 e^{\sqrt{\lambda^+} x} + B_1 e^{-\sqrt{\lambda^+} x})$$

$$+ e^{-\gamma \lambda^- t} (A_2 \cos(\sqrt{\lambda^-} x) + B_2 \sin(\sqrt{\lambda^-} x))$$
(5)

Based on initial condition, $A_0=B_0=A_1=B_1=A_2=0$, $B_2=\eta_0$, $\sqrt{\lambda^-}=\sqrt{-\lambda}=k_0$. So the particulate solution is given by

$$\left| \eta = \eta_0 e^{-\lambda k_0^2 t} \sin(k_0 x) \right| \tag{6}$$

$$-f\bar{v} = -g\frac{\partial\eta}{\partial x} \qquad (7a) \qquad \qquad \left| \frac{\partial\eta}{\partial t} = \gamma'\frac{\partial^2\eta}{\partial x^2} \right| \qquad (8)$$

$$f\bar{u} = -\frac{\gamma}{h}\bar{v} \qquad (7b) \qquad \text{Let us consider arbitrary initial condition given by}$$

$$\frac{\partial\eta}{\partial t} + h\frac{\partial\bar{u}}{\partial x} = 0 \qquad (7c) \qquad \qquad \left| \frac{\eta|_{t=0} = f(x)}{1} \right| \qquad (9)$$

$$\bar{u}|_{x=0} = 0 \qquad (7d) \qquad \text{with boundary conditions:}$$

$$\bar{u}|_{x=L} = 0 \qquad (7e) \qquad \left| \frac{\partial\eta}{\partial x} \right|_{x=0} = 0, \quad \left| \frac{\partial\eta}{\partial x} \right|_{x=L} = 0.$$

$$Closed B.C. \qquad (10)$$

Q. The easiest initial condition to solve this problem is $f(x) = \eta_0 \cos(k_0 x)$. Why \cos not \sin ?

$$\eta = \sum_{n=0}^{\infty} A_n e^{-\gamma (n\pi/L)^2 t} \cos\left(\frac{n\pi x}{L}\right) \tag{11}$$

Substituting (11) into the initial condition (9) yields

$$\sum_{n=0}^{\infty} A_n \cos\left(\frac{n\pi x}{L}\right) = f(x) \tag{12}$$

Fourier's trick

$$\int_{0}^{L} \cos(\frac{m\pi x}{L}) \left[\sum_{n=0}^{\infty} A_n \cos\left(\frac{n\pi x}{L}\right) = f(x) \right] \frac{dx}{dx}$$

$$\sum_{n=0}^{\infty} A_n \left| \int_0^L \cos(\frac{m\pi x}{L}) \cos\left(\frac{n\pi x}{L}\right) dx \right| = \int_0^L \cos(\frac{m\pi x}{L}) f(x) dx$$

Orthogonality of sinusoidal functions

$$\int_{0}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = \begin{cases} L/2 & n = m\\ 0 & n \neq m \end{cases}$$
 (14a)

$$\int_{0}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = \begin{cases} L/2 & n = m \neq 0 \\ L & n = m = 0 \\ 0 & n \neq m \end{cases}$$
 (14b)

$$\int_{0}^{L} \sin\left(\frac{n\pi x}{L_{x}}\right) \cos\left(\frac{m\pi x}{L_{x}}\right) dx = 0$$
 (14c)

$$\sum_{n=0}^{\infty} A_n \left| \int_0^L \cos(\frac{m\pi x}{L}) \cos\left(\frac{n\pi x}{L}\right) dx \right| = A_m \frac{L}{2}$$
 (15)

Only one mode of which $m=n(\neq 0)$ (nonzero) survive, so it can be solved for $A_m=A_n!$

Consequently, the particulate solution is given by

$$\eta = \sum_{n=0}^{\infty} A_n e^{-\gamma (n\pi/L)^2 t} \cos\left(\frac{n\pi x}{L}\right)$$
 (16)

where

$$A_{n} = \begin{cases} \frac{1}{L} \int_{0}^{L} f(x)dx & n = 0\\ \frac{2}{L} \int_{0}^{L} \cos\left(\frac{n\pi x}{L}\right) f(x)dx & n \neq 0. \end{cases}$$
 (17)

Other heat equation problem

Heat equation analogy of coastal trapped wave (Csanady, 1978)

$$-f_0\bar{v} = -g\frac{\partial\eta}{\partial x} \qquad (18)$$

$$f_0 \bar{u} = -g \frac{\partial \eta}{\partial y} - \frac{\gamma}{h} \bar{v}$$
 (19)

that can be approximately written as

$$\frac{\partial(h\bar{u})}{\partial x} + \frac{\partial(h\bar{v})}{\partial y} = 0 \qquad (20)$$

$$h = \alpha x + h_0 \tag{21}$$

$$\frac{\partial \psi}{\partial y} = -\gamma' \frac{\partial^2 \psi}{\partial x^2}$$

$$\psi|_{y=0} = f(x)$$
(22)

Other heat equation problem

-20

0

-1

Inertia-Ekman current (Elipot and Gille, 2009; Wenegrat and McPhaden, 2016)

$$\frac{\partial \vec{u}}{\partial t} + if\vec{u} = A_z \frac{\partial^2 \vec{u}}{\partial z^2} \qquad (23a) \qquad A_z \frac{\partial \vec{u}}{\partial z} \Big|_{z=0} = \frac{\vec{\tau}^s}{\rho_0}$$

$$\vec{u}|_{t=0} = 0 \qquad (23b)$$

$$\vec{u}|_{z=-h} = 0$$

-20

-40

https://jang-geun.github.io/ vis_inertia_ekman. gif

(24)

(25)

Assignment

1. Solve system (7) for \bar{u} to obtain one equation. Shows that the result is

$$\frac{\partial \bar{u}}{\partial t} = \gamma' \frac{\partial^2 \bar{u}}{\partial x^2} \tag{26}$$

that is still the heat equation.

2. Solve (23) with boundary conditions (7) and an arbitrary initial condition $\bar{u}|_{t=0} = g(x)$.

References I

- Csanady, G. T. (1978). "The arrested topographic wave". In: *Journal of Physical Oceanography* 8.1, pp. 47–62.
- Elipot, S. and S. T. Gille (2009). "Ekman layers in the Southern Ocean: Spectral models and observations, vertical viscosity and boundary layer depth". In: *Ocean Science* 5.2, pp. 115–139.
- Wenegrat, Jacob O and Michael J McPhaden (2016). "A simple analytical model of the diurnal Ekman layer". In: *Journal of Physical Oceanography* 46.9, pp. 2877–2894.