Tutorial 2

Problem 2.1

Let X be a random variable with the following cumulative distribution function (CDF).

$$F(x) = \begin{cases} 1 - e^{-(x/\alpha)^{\beta}} & for \ x > 0 \\ 0 & otherwise \end{cases}$$

where α and $\beta > 0$ are constants. The distribution of X is called a **Weibull distribution**.

- a) Find the PDF of the random variable X.
- b) Let $Y = (X/\alpha)^{\beta}$. Identify the distribution of Y.

For
$$x>0$$
, $f(x) = \frac{d}{dx} \left(1 - e^{-(\frac{x}{\alpha})^{\beta}}\right)$

$$= -e^{-(\frac{x}{\alpha})^{\beta}} \cdot \frac{d}{dx} \left(-\frac{x^{\beta}}{\alpha^{\beta}}\right)$$

$$= \frac{\beta e^{-(\frac{x}{\alpha})^{\beta}}}{\alpha^{\beta} x^{1-\beta}}$$

b) $f(y) = f(y \le y) = f(\frac{x^{\beta}}{\alpha^{\beta}} \le y) = f(x \le \alpha y^{\frac{1}{\beta}}) = 1 - e^{-(\frac{\alpha y^{\frac{1}{\beta}}}{\alpha^{\beta}})^{\beta}}$

$$= 1 - e^{-y}$$

$$f(y) = e^{-y}$$

$$f_{y}(y) = e^{-7}$$
 for $y > 0$.
 $f_{y}(y) = e^{-7}$ for $y > 0$.
 $f_{y}(y) = e^{-7}$ for $y > 0$.

Problem 2.2

Let $X \sim Exp(\lambda)$. Determine the distributions of $Y_1 = \lambda X$ and $Y_2 = 2\lambda X$.

Let
$$X \sim Exp(\lambda)$$
. Determine the distributions of $Y_1 = \lambda X$ and $Y_2 = 2\lambda X$.

$$M_{Y_1}(t) = M_X(\Lambda t) = \frac{\Lambda}{\Lambda - \Lambda t} = \frac{1}{1 - t} \Rightarrow Gamma(1, 1), t < 1$$

$$M_{\gamma_1}(t) = M_{\chi}(2\Lambda t) = \frac{\Lambda}{\Lambda - 2\Lambda t} = \frac{1}{1 - 1 t} \Rightarrow Gamma(1, 2), t < \frac{1}{2}$$

Gamma
$$(1, \frac{L}{\Lambda}) = Px_p(\Lambda)$$

Problem 2.3

Let $X_1, ..., X_5$ be i.i.d. $\sim N(0, 1)$ and let $\overline{X} = \frac{1}{5} \sum_{i=1}^5 X_i$ be the sample mean. Let $Y \sim N(0, 1)$ be another random variable which is independent from $X_1, ..., X_5$. Find the distributions of the following random variables and justify your answers.

- a) Random variable $W=\sum_{i=1}^5 X_i^2$ b) Random variable $U=\sum_{i=1}^5 (X_i \bar{X}\,)^2$
- T = C) ~ Xu~.

- c) Random variable $2Y/\sqrt{U}$
- d) Random variable $2(5\bar{X}^2 + Y^2)/U$

$$\overset{\sim}{\chi} \sim N(0, \frac{1}{2})$$

(6)
$$S^2: \frac{1}{n-1} \sum_{i=1}^{n} (x_i - x_i)^2$$
 $y_{i=0}, \delta^2: 1$

(c)
$$\frac{2\gamma}{\sqrt{u}} \propto \frac{N(0,1)}{\sqrt{\frac{2v^2}{4u}}} : t_{\psi}$$

$$\frac{\sqrt{n}(\bar{X}-\mu)}{\delta}$$
 ~ $Mo,1$

(d)
$$X \sim N(0, \frac{1}{2}) \Rightarrow JSX \sim N(0, 1) \Rightarrow JX \sim Gamna(\frac{1}{2}, \nu)$$

 $Y \sim N(0, 1) \Rightarrow Y^{2} \sim Gamna(\frac{1}{2}, \nu)$

$$M_{D}(t) = (1-2t)^{-\frac{1}{2}} (1-2t)^{-\frac{1}{2}} = (1-2t)^{-1}$$

$$\frac{2(5\bar{x}^2+4^2)}{u}\sim\frac{2\chi^2}{\chi_4^2}=\frac{\chi^2}{\chi_4^2}\sim F(2,4)$$

Problem 2.4

Let $X_1, ..., X_{16}$ be i.i.d. $\sim N(0, 1)$ and let \overline{X} be the sample mean.

- a) Find the constant c such that $P(|\overline{X}| < c) = 0.5$.
- b) Find the mean and the variance of the sample variance S^2 .

(a)
$$\frac{\sqrt{n(x-\mu)}}{6} \sim N(0,1)$$
 \Rightarrow $4x \sim N(0,1)$
 $P((x) < c) = P(-4c < 4x < 4c)$
 $= 2 \overline{P}(4c) - 1 = 0.5$
 $\overline{P}(4c) = 0.75 \Rightarrow 4c = 0.674 \Rightarrow c = 0.169$

(b)
$$\frac{(5)^2}{\sigma^2} \sim \chi_{62}^2 \Rightarrow (5)^2 \sim Gamma(\frac{15}{2}, \nu)$$

 $E((5)^2) = 15 \Rightarrow E(5)^2 = 1$
 $Var((5)^2) = \frac{1}{2}(\nu)(\nu) = 30 \Rightarrow Var(5)^2 = \frac{2}{(5)^2}$

Problem 2.5

Let $X_1, ..., X_n \sim \text{Poisson}(1)$ be an i.i.d. random sample. For each $n \in \{10, 100, 1000, 10000\}$, compute the following.

- a) The exact probability $\Pr(\sum_{i=1}^{n} X_i \leq n)$ for each n.
- b) The approximation of $\Pr(\sum_{i=1}^n X_i \le n)$ obtained from the Central Limit Theorem (CLT).

Hint: note that $\sqrt{n}(\bar{X}-\mu)/\sigma$ converges in distribution to N(0,1) for $n\to\infty$ where $\mu=E[X_1]$ and $\sigma=Var[X_1]$.

(a)
$$X_{(4...47n} \sim P_0(n)$$
.
 $P_r(\frac{8}{2}X_i \le 10) = P(Y \le 10) = 0.583$
 $P_r(\underbrace{2}X_i \le 100) = 0.527$
 $P_r(\underbrace{2}X_i \le 1000) = 0.5084$
 $P_r(\underbrace{2}X_i \le 1000) = 0.50266$.

(b)
$$p=E(X_1)=1$$
 $f=\int_{X_1}^{\infty} V_{\alpha}(X_1)=1$

$$\overline{X}=\int_{X_1}^{\infty} \sum_{i=1}^{\infty} X_i \quad \text{or} \quad N(|x_i|)$$

$$P(SXi \le n) = P(nX \le n)$$

$$= P(X \le 1)$$

$$= P(X \le 1)$$

$$= P(X \le 1)$$

$$= P(X \le n)$$

$$= P($$

Tutorial 2

Problem 2.1

Let X be a random variable with the following cumulative distribution function (CDF).

$$F(x) = \begin{cases} 1 - e^{-(x/\alpha)^{\beta}} & for \ x > 0 \\ 0 & otherwise \end{cases}$$

where α and $\beta > 0$ are constants. The distribution of X is called a **Weibull distribution**.

- a) Find the PDF of the random variable X.
- b) Let $Y = (X/\alpha)^{\beta}$. Identify the distribution of Y.

Problem 2.2

Let $X \sim Exp(\lambda)$. Determine the distributions of $Y_1 = \lambda X$ and $Y_2 = 2\lambda X$.

Problem 2.3

Let $X_1, ..., X_5$ be i.i.d. $\sim N(0,1)$ and let $\overline{X} = \frac{1}{5} \sum_{i=1}^5 X_i$ be the sample mean. Let $Y \sim N(0,1)$ be another random variable which is independent from $X_1, ..., X_5$. Find the distributions of the following random variables and justify your answers.

- a) Random variable $W = \sum_{i=1}^5 X_i^2$
- b) Random variable $U = \sum_{i=1}^{5} (X_i \bar{X})^2$
- c) Random variable $2Y/\sqrt{U}$
- d) Random variable $2(5\bar{X}^2 + Y^2)/U$

Problem 2.4

Let $X_1, ..., X_{16}$ be i.i.d. $\sim N(0, 1)$ and let \bar{X} be the sample mean.

- a) Find the constant c such that $P(|\overline{X}| < c) = 0.5$.
- b) Find the mean and the variance of the sample variance S^2 .

Problem 2.5

Let $X_1, ..., X_n \sim \text{Poisson}(1)$ be an i.i.d. random sample. For each $n \in \{10, 100, 1000, 10000\}$, compute the following.

- a) The exact probability $\Pr(\sum_{i=1}^n X_i \le n)$ for each n.
- b) The approximation of $\Pr(\sum_{i=1}^n X_i \le n)$ obtained from the Central Limit Theorem (CLT).

Hint: note that $\sqrt{n}(\bar{X}-\mu)/\sigma$ converges in distribution to N(0,1) for $n\to\infty$ where $\mu=E[X_1]$ and $\sigma=Var[X_1]$.