Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

February/March 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

D	Determine whether f is an increasing function, a decreasing function or neither.
••	
••	
••	
••	
••	
••	
•••	
••	
••	
••	
••	
•••	
••	

Describe fully the two stransformation.	ingle transform	nations which	have been co	mbined to give	the resul	lting [4]
						••••
						•••••
						••••
						••••
						•••••
						••••
						•••••
						•••••
						••••
	•••••	•••••		•••••	•••••	•••••

3

The diagram shows part of the curve with equation $y = x^2 + 1$. The shaded region enclosed by the curve, the y-axis and the line y = 5 is rotated through 360° about the y-axis.

Find the volume obtained.	[4]
	•••••
	•••••
	•••••

Find the <i>x</i> -co	oordinate of <i>F</i>	? .				
••••••	••••••		•	••••••	•••••	••••••
••••••	••••••	•••••		•••••••	••••••	••••••
••••••	•••••			••••••	•••••	•••••
••••••						
••••••	•••••			•••••	•••••	
••••••						
•••••						

5	Solve	the ec	quation
•	50110	uic cc	Juditon

	$\frac{\tan\theta + 3\sin\theta + 2}{\tan\theta - 3\sin\theta + 1} = 2$
for $0^{\circ} \le \theta \le 90^{\circ}$.	[5]

6	The coefficient of	$f(\frac{1}{x})$ in the exp	ansion of	$\left(2x + \frac{a}{x^2}\right)^5 \text{ is 720.}$
	() E: 1.1	.1 1	C .1	

(a)	Find the possible values of the constant a .	[3]
(b)	Hence find the coefficient of $\frac{1}{x^7}$ in the expansion.	[2]

The diagram shows a sector AOB which is part of a circle with centre O and radius 6 cm and with angle AOB = 0.8 radians. The point C on OB is such that AC is perpendicular to OB. The arc CD is part of a circle with centre O, where O lies on OA.

Find the area of the shaded region.	[6]

	voman's basic salary for her first year with a particular company is \$30000 and at the end of the r she also gets a bonus of \$600.
(a)	For her first year, express her bonus as a percentage of her basic salary. [1]
	the end of each complete year, the woman's basic salary will increase by 3% and her bonus wil rease by \$100.
(b)	Express the bonus she will be paid at the end of her 24th year as a percentage of the basic salary paid during that year. [5]

)	Express $2x^2 + 12x + 11$ in the form $2(x + a)^2 + b$, where a and b are constants.	
		•••••
		•••••
		••••••
		••••••
	function f is defined by $f(x) = 2x^2 + 12x + 11$ for $x \le -4$. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	

The function g is defined by g(x) = 2x - 3 for $x \le k$.

For the case where $k = -1$, solve the equality	<i>S</i> (<i>)</i>	[2
		6 1
State the largest value of k possible for the	ne composition ig to be del	fined.

	at at $(a, 14)$, where a is a positive constant.	
(a)	Find the value of a .	
(b)	Determine the nature of the stationary point.	

(c)	Find the equation of the curve.	[4]

11	(a)	Solve the equation $3 \tan^2 x - 5 \tan x - 2 = 0$ for $0^\circ \le x \le 180^\circ$.	-]
			••
			••
			••
			••
			••
			••
			••
			••
			••
			••
	(b)	Find the set of values of k for which the equation $3 \tan^2 x - 5 \tan x + k = 0$ has no solutions. [2]	1
	(D)	This the set of values of κ for which the equation $S \tan x + S \tan x + \kappa = 0$ has no solutions. [2]	ر،
			••
			••

For the equation $3 \tan^2 x - 5 \tan x + k = 0$, state the value of k for which the interval $0^{\circ} \le x \le 180^{\circ}$, and find these solutions.	
	••••••
	••••••
	•••••
	•••••
	•••••
	•••••

12 A diameter of a circle C_1 has end-points at (-3, -5) and (7, 3).

(a)

Find an equation of the circle C_1 .	[3]
	•••••
	•••••
	•••••

The circle C_1 is translated by $\begin{pmatrix} 8\\4 \end{pmatrix}$ to give circle C_2 , as shown in the diagram.

(b)	Find an equation of the circle C_2 .	[2]
		•••••
		· • • • •

The two circles intersect at points R and S.

(c)	Show that the equation of the line RS is $y = -2x + 13$.	[4]
(d)	Hence show that the x-coordinates of R and S satisfy the equation $5x^2 - 60x + 159 =$	= 0. [2]
` /		

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.