Matricola.....

Algebra e Geometria - Corso di Laurea in Informatica docente: prof.ssa Marta Morigi 20 maggio 2025

Nota: Le risposte vanno motivate. I calcoli e le motivazioni delle risposte sono parte integrante dello svolgimento dell'esercizio.

Esercizio 1. (9 punti)

Sia $F_k: \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare definita da:

$$F_k(x_1, x_2, x_3, x_4) = (x_1 - kx_2 + x_3 + kx_4, 2x_1 + 4x_2 - kx_3 - 4x_4, x_1 + x_2 + 4x_3 - (k+3)x_4).$$

- a) Si stabilisca per quali valori di k si ha che F_k è suriettiva.
- b) Scelto un valore a di k tale che F_a sia suriettiva, si determinino una base del nucleo e una base dell'immagine di F_a .
- -c) Si stabilisca per quale valore di k si ha che il vettore (1,0,1,-1) appartiene alla controimmagine $F_k^{-1}(-2,2,12)$.
- d) Siano $\mathcal{B} = \{e_1 e_2, e_3, e_2 + e_4, e_1 + e_3\}$ un'altra base ordinata di \mathbb{R}^4 e $\mathcal{B}' = \{e_1 + e_3, e_1 + e_2 + e_3, e_2 + e_3\}$ un'altra base ordinata di \mathbb{R}^3 . Posto k = 0, si determini la matrice $A_{\mathcal{B},\mathcal{B}'}$ associata ad F_0 rispetto alla base \mathcal{B} nel dominio e alla base \mathcal{B}' nel codominio.

Esercizio 2. (10 punti)

Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da:

$$T(e_1) = 5e_1 - 2e_2 - e_3$$
 $T(e_2) = -2e_1 + 2e_2 - 2e_3$ $T(e_3) = -e_1 - 2e_2 + 5e_3$

e sia A la matrice associata a T rispetto alla base canonica (in dominio e codominio).

- a) Si verifichi che T ha un autospazio W di dimensione 2 e se ne determini una base \mathcal{B} .
- b) Si stabilisca per quali valori di a si ha che $v = e_1 + ae_2 + e_3$ è un autovettore di T. Esistono
 - valori di a per cui $v \in W$? Se si, per tali valori determinare le coordine te di v rispetto alla base \mathcal{B} .
 - c) Si determinino, se possibile, due matrici distinte P_1 e P_2 tali che $P_1^T A P_1 = P_2^T A P_2 = D$, ove D è una matrice diagonale.

Esercizio 3. (8 punti) Sia W_k il sottospazio di \mathbb{R}^4 di equazioni cartesiane:

$$\begin{cases} x_1 + x_3 + 2x_4 = 0 \\ x_2 - x_4 = 0 \\ 2x_1 + x_2 + kx_3 + 3x_4 = 0 \end{cases}$$

- a) Si stabilisca per quale valori a di k la dimensione di W_a è 2.
- b) Posto k = a, si determini una base ortonormale di W_a^{\perp} ;
- c) Posto k = a, si determini la proiezione ortogonale del vettore $\mathbf{v} = (1, 4, -1, 0)$ su W.

• Esercizio 4 (4 punti)

Si determinino tutte le soluzioni intere della congruenza: $47x \equiv_{116} -2$.