

SUBSCRIPTION BASED SYSTEMS, METHODS AND COMPONENTS
FOR PROVIDING GENOMIC AND PROTEOMIC PRODUCTS AND
SERVICES

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention is directed to systems and methods for providing research products and services (*e.g.*, for industries involved in genomic and proteomic research), as well as research products supplied as part of the systems and methods.

Background Art

[0002] Genomics relates to the study of genes and how they relate to the health, development, structure, and disease of an organism. The sequencing of the human genome has been a large focus of scientists over the past decade. Now that the task has been completed, life science research is shifting beyond sequencing to functional studies. This has given rise to the science of proteomics. Proteomics examines the role that proteins play with respect to both normal and abnormal biological (*e.g.*, cellular) processes. Together, genomic and proteomic research are driving, for example, the race to mine the human genome to identify and exploit druggable targets.

[0003] A druggable target is a gene whose function can be modulated by a drug, such as an organic molecule with one or more pharmacological activities. The number of gene targets within the human genome that are of pharmaceutical relevance is limited. Presently, the pharmaceutical industry is focusing primarily on certain areas of high interest, such as CNS (central nervous systems) disorders, metabolic diseases, cardiovascular diseases, oncology, inflammation and infectious diseases. Within these areas, each pharmaceutical company has identified their own prioritized list of “druggable targets”.

[0004] Many currently available drugs were designed without the benefit of using clones encoding the intended druggable targets, and show undesirable, or sometimes unacceptable, side effects. It is generally believed that the poor side effect profiles of currently available drugs often stem from the interaction of these drugs with (sometimes multiple) family members of the target molecule. Each family member may be involved in a physiological function distinct from the other family members. More than one family member, however, may respond to a non-specific drug. As a consequence, a non-specific drug intended to exert its effects on one physiological function may in fact influence other physiological functions, thereby causing undesirable side effects. Therefore, the pharmaceutical industry is expressing an urgent need for access to complete sets of gene families.

[0005] Further, a major theme of pharmaceutical and biotechnology companies is to improve their lead compound selection process at the earliest stages of drug development. If these attempts are successful, those drug candidates that enter the clinic to treat human disease should possess much improved side effect and safety profiles. For example, drugs with undesirable or unacceptable side effects can be eliminated at the research stage, rather than at the clinical stage. Accordingly, there is a need to improve the lead compound selection process in order to reduce the costs associated with new drug development. Conducting research on open reading frame clones is one way of improving the identification of lead compounds. Thus, there is also a need to generate a representative open reading frame (ORF) clone collection for every human gene and/or gene family.

[0006] Pharmaceutical and biotechnology companies have invested significant resources in various genomics technologies developing, for example databases, gene expression platforms, *etc.* Further, a number of companies provide products and services related to these technologies. However, the offerings of these companies are generic, as opposed to customized, to the individual needs of the pharmaceutical and biotechnology companies. Heretofore, there has not been a single source upon which a pharmaceutical or biotechnology company could rely to meet most, if not all, of its needs for

genomic and proteomic products and services. Thus, there is a need for an integrated system for providing customized genomic and proteomic products and services.

[0007] These needs and others are met by the present invention.

BRIEF SUMMARY OF THE INVENTION

[0008] The present invention provides subscription-based systems, methods, and components for providing research products and services (*e.g.*, for use in industries involved in genomic and proteomic research and development). In addition, the present invention encompasses the products provided as well as methods of performing the services provided. The system includes a provider of research products and services and one or more customers desirous of obtaining one or more research products and/or services. Customers are identified as either subscribers or non-subscribers.

[0009] In some aspects, the system may comprise one or more databases. A database may comprise various types of information of interest to customers (*e.g.*, individuals or organizations conducting research). For example, a database may contain information regarding products and/or services available (*e.g.*, cloning services, expression services, expressed polypeptides, antibodies that bind expressed polypeptides, *etc.*), clones, sequences of clones, sequences of open reading frames (ORFs) contained in clones, physical characteristics of polypeptides expressed from open reading frames (*e.g.*, molecular weight, amino acid composition, isoelectric point, *etc.*), activities (*e.g.*, enzymatic, immunogenic, regulatory, *etc.*) of polypeptides expressed from ORFs, protein-protein interactions (*e.g.*, identities of proteins that bind to/interact with polypeptides expressed from ORFs contained in clones), expression information (*e.g.*, amount and/or activity of one or more polypeptides produced by one or more host cells containing one or more clones), functional regions (*e.g.*, domains and/or sequences of polypeptides and/or nucleic acids having an activity and/or characteristic such as enzyme active sites, protein binding sites, promoter sequences, enhancer/repressor sequences, nucleic acid

sequences bound by polypeptides, centromeres, telomeres, *etc.*), and the like. A database may contain more than one type of information (*e.g.*, two, three, four, five, six, seven, eight, nine, ten, *etc.* types of information) and a given type of information may be in more than one database. A database may contain private and/or public information. For example, a database may contain private information (*e.g.*, trade secret and/or patentable information) regarding, for example, one or more clones (*e.g.*, sequence of an ORF encoded by the clone, expression information, *etc.*) as well as public information (*e.g.*, GenBank, EMBL, *etc.* sequences of related ORFs).

- [0010] In one embodiment, one or more directories of available research products and services (*e.g.*, genomic and proteomic research products and services) is maintained in a research products and services database. This database may be accessed by subscribers and non-subscribers (*e.g.*, via an interface, such as a graphical user interface).
- [0011] In one embodiment, the system may comprise one or more clone collection databases. Clone collection databases may be associated with the research products and services database or may be independent of the research products and services database. A clone collection database may comprise a private area that is only accessible by one or more subscribers and/or a public area that is accessible by both subscribers and non-subscribers. In one embodiment, the private area may be further sub-divided into private areas (*e.g.*, for maintaining sub-categories of data and/or data accessible to specific subscribers). Such sub-divided portions of a private database may be accessible to one or more subscribers and inaccessible to others. A clone collection database may contain information identifying the characteristics of private and public clone collections available from the provider.
- [0012] The system may further comprise one or more expression databases. An expression database may contain information identifying optimized expression systems for one or more clones in private and/or public clone collections. Such information may comprise one or more suitable host cells or cell types (*e.g.*, mammalian cells, insect cells, *etc.*), as well as promoter information, enhancer information, repressor information, and the like. An

expression database may comprise information regarding culture conditions suitable for a specific host cell type, isolation conditions for purifying a polypeptide encoded by a clone, and any other information related to expression of a polypeptide. An expression database may comprise information regarding an RNA expressed from a clone. The RNA may be translated or un-translated. The information may comprise information regarded 5' and/or 3' un-translated regions, RNA stability, *etc.* In some embodiments, an expression database may comprise information regarding suitable host cells for expression of a polypeptide having desired characteristics. For example, a database may contain information regarding post-translational modifications (*e.g.*, glycosylation, acylation, *etc.*) that occur in a given host and information regarding the effects of such post-translational modification on one or more characteristics of the polypeptide (*e.g.*, activity, immunogenicity, *etc.*).

- [0013] In some embodiments, systems of the invention may be provided with one or more subscriber records. Such records may be used to, for example, manage subscriptions to the products and services of the provider. A subscriber record may include a subscription identification field, a subscription fee payment field, a clone purchase credit field, a clone purchase field, a subscriber site identification field, and/or combinations of any two or more of the above.
- [0014] In one aspect, the present invention provides one or more compositions identified in one or more databases. The invention also encompasses reaction mixtures comprising such compositions and methods of making and using such reaction mixtures.
- [0015] In one embodiment, the present invention provides the subscriber with access to the research products and services of the provider using a computer system and a graphical user interface. In addition to providing the subscriber with access to multiple databases, the present invention enables the subscriber to identify products and/or services, which may not have been previously available from the provider, that the subscriber desires to obtain. In one embodiment, clones to be built and added to the private or public clone

collections of the provider may be identified by a subscriber. In some embodiments, the subscriber may be able to prioritize the order in which the identified clones are built and added to a clone collection. The present invention encompasses methods for preparing clone collections as well as clone collections prepared using the methods of the invention. Still further, the present invention provides research and development consulting services to one or more sites designated by the subscriber.

- [0016] In some embodiments, the present invention provides clone collections. Clones making up a clone collection may contain any nucleic acids (*e.g.*, two, three, five, ten, twenty, *etc.*) of interest, for example, nucleic acids that contain one or more open reading frames (ORFs), nucleic acids containing un-translated sequences, (*e.g.*, 5' and/or 3' un-translated sequences, introns, *etc.*), which may be from cDNA and/or genomic DNA, nucleic acids containing promoter elements, and any other nucleic acid of interest to a customer. A clone collection may contain ORFs, which may be in vectors, representing all, substantially all, a majority, or a representative number of members of a class of polypeptides (*e.g.*, all known polypeptides having a particular activity and/or characteristic of interest). A collection may comprise clones comprising ORFs encoding all, substantially all, a majority, or a representative number of polypeptides related to and/or affected by a particular activity. A collection may comprise clones comprising ORFs encoding all, substantially all, a majority, or a representative number of polypeptides involved in the metabolism (*e.g.*, synthesis and degradation) of a metabolite of interest (*e.g.*, a lipid, carbohydrate, peptide, *etc.*) as well as clones comprising one or more ORFs encoding polypeptides affected by the metabolite. One or more individual members of a clone collection may comprise ORFs flanked by recognition sites (*e.g.*, recombination sites, topoisomerase sites, restriction enzyme sites, *etc.*). When a clone contains multiple recombination sites, such sites may or may not recombine with each other.

- [0017] Clones of a collection may also contain one or more functional sequences (*e.g.*, transcriptional regulatory sequences, sequences comprising

stop codons, *etc.*). Such functional sequences may be operably linked to a sequence of interest (*e.g.*, an ORF). Clones of a collection may also comprise one or more stop codons that may be repressible as well as one or more sequences encoding one or more tags (*e.g.*, one or more C-terminal and/or N-terminal tags). One or members of a clone collection may comprise sequences other than ORFs. For example, one or more members of a clone might contain 5'-un-translated regions, regions of genomic nucleic acids, intron regions, promoter regions, enhancer regions, and the like.

[0018] The present invention also contemplates methods of making clones to be included in clone collections, methods of making clone collections, clones, and collections made by the methods of the invention, as well as reaction mixtures and compositions comprising one or more clones or collections.

[0019] Further features and advantages of the present invention, as well as the structure and operation of various embodiments of the invention, are described in detail below with reference to the accompanying drawings. In the drawings, like reference numbers generally indicate identical, functionally similar and/or structurally similar elements. The drawing in which an element first appears is generally indicated by the leftmost digit(s) in the corresponding reference number.

BRIEF DESCRIPTION OF THE FIGURES

[0020] The present invention will be described with reference to the accompanying drawings, wherein:

[0021] FIG. 1 is a block diagram of a system for providing genomic and proteomic products and services according to an embodiment of the present invention;

[0022] FIG. 2A is a table describing exemplary genomic and proteomic products offered by a provider according to an embodiment of the present invention;

- [0023] FIG. 2B is a table describing exemplary genomic and proteomic services offered by a provider according to an embodiment of the present invention;
- [0024] FIG. 3 is a block diagram illustration of a subscriber record according to an embodiment of the present invention;
- [0025] FIG. 4 is a block diagram illustration depicting a client/server implementation according to an embodiment of the present invention;
- [0026] FIG. 5 is a block diagram illustration of an exemplary computer system embodiment of the client/server implementation of FIG. 4;
- [0027] FIG. 6 is a flow chart diagram of a method for providing genomic and proteomic products and services according to an embodiment of the present invention;
- [0028] FIG. 7 is a flow chart diagram of a method for providing genomic and proteomic products and services according to an embodiment of the present invention;
- [0029] FIG. 8 is a flow chart diagram of a method for providing clone construction and related genomic and proteomic products and services according to an embodiment of the present invention; and
- [0030] FIG. 9 is a flow chart diagram of a method for constructing a clone according to an embodiment of the present invention;
- [0031] FIG. 10 is a flow chart diagram of an exemplary implementation of an embodiment of the present invention;
- [0032] FIG. 11 is a schematic representation of some of the services that may be provided in conjunction with the present invention; and
- [0033] Fig. 12A-12F are schematic representations of configurations of vectors and sequences of interest that may be used in various embodiments of the invention.

Table of Contents

1. Definitions
2. Overview of the Invention
3. Exemplary system embodiments
 - 3.1 Genomic and Proteomic Research Products and Services System
 - 3.1.1 Exemplary Products
 - 3.1.2 Exemplary Services
 - 3.1.3 Customers
 - 3.2 Exemplary computer system embodiment
 - 3.2.1 Genomic and Proteomic Products and Services databases
 - 3.2.1.1 Subscriber database
 - 3.2.1.2 Clone collection database
 - 3.2.1.3 Expression Database
 - 3.2.2 Client/Server Architecture
 4. Exemplary operational embodiments
 - 4.1 Accessing Genomic and Proteomic Research Products and Services
 - 4.2 Providing Genomic and Proteomic Research Products and Services
 5. Detailed Description of Exemplary Products
 6. Detailed Description of Exemplary Services
 7. Conclusion

1. Definitions

- [0034] In the description that follows, a number of terms used in recombinant nucleic acid technology are utilized extensively. In order to provide a clear and more consistent understanding of the specification and claims, including the scope to be given such terms, the following definitions are provided.
- [0035] Genomic Products and Services: As used herein, the term genomic products and services refers to products and services that may be used to conduct research involving nucleic acids.
- [0036] Proteomic Products and Services: As used herein, the term proteomic products and services refers to products and services that may be used to conduct research involving polypeptides.
- [0037] Clone Collection: As used herein, "clone collection" refers to two or more nucleic acid molecules, each of which comprises one or more nucleic acid sequences of interest.
- [0038] Customer: As used herein, the term customer refers to any individual, institution, corporation, university, or organization seeking to obtain genomic and proteomic products and services.
- [0039] Provider: As used herein, the term provider refers to any individual, institution, corporation, university, or organization seeking to provide genomic and proteomic products and services.
- [0040] Subscriber: As used herein, the term subscriber refers to any customer having an agreement with a provider to obtain public and private genomic and proteomic products and services at subscriber rates.
- [0041] Non-subscriber: As used herein, the term non-subscriber refers to any customer who does not have an agreement with a provider to obtain public and private genomic and proteomic products and services at subscriber rates.
- [0042] Host: As used herein, the term "host" refers to any prokaryotic or eukaryotic (*e.g.*, mammalian, insect, yeast, plant, avian, animal, *etc.*) cell and/or organism that is a recipient of a replicable expression vector, cloning vector or any nucleic acid molecule. The nucleic acid molecule may contain, but is not limited to, a sequence of interest, a transcriptional regulatory sequence (such as a promoter, enhancer, repressor, and the like) and/or an

origin of replication. As used herein, the terms "host," "host cell," "recombinant host" and "recombinant host cell" may be used interchangeably. For examples of such hosts, see Sambrook, *et al.*, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

- [0043] Transcriptional Regulatory Sequence: As used herein, the phrase "transcriptional regulatory sequence" refers to a functional stretch of nucleotides contained on a nucleic acid molecule, in any configuration or geometry, that act to regulate the transcription of (1) one or more nucleic acid sequences that may comprise ORFs, (*e.g.*, two, three, four, five, seven, ten, *etc.*) into messenger RNA or (2) one or more nucleic acid sequences into untranslated RNA. Examples of transcriptional regulatory sequences include, but are not limited to, promoters, enhancers, repressors, operators (*e.g.*, the tet operator), and the like.
- [0044] Promoter: As used herein, a promoter is an example of a transcriptional regulatory sequence, and is specifically a nucleic acid generally described as the 5'-region of a gene located proximal to the start codon or nucleic acid that encodes untranslated RNA. The transcription of an adjacent nucleic acid segment is initiated at or near the promoter. A repressible promoter's rate of transcription decreases in response to a repressing agent. An inducible promoter's rate of transcription increases in response to an inducing agent. A constitutive promoter's rate of transcription is not specifically regulated, though it can vary under the influence of general metabolic conditions.
- [0045] Insert: As used herein, the term "insert" refers to a desired nucleic acid segment that is a part of a larger nucleic acid molecule. In many instances, the insert will be introduced into the larger nucleic acid molecule using techniques known to those of skill in the art; *e.g.*, recombinational cloning, topoisomerase cloning or joining, ligation, *etc.*
- [0046] Target Nucleic Acid Molecule: As used herein, the phrase "target nucleic acid molecule" refers to a nucleic acid molecule comprising at least one nucleic acid sequence of interest, preferably a nucleic acid molecule that

is to be acted upon using the compounds and methods of the present invention. Such target nucleic acid molecules may contain one or more (e.g., two, three, four, five, seven, ten, twelve, fifteen, twenty, thirty, fifty, etc.) sequences of interest..

[0047] **Recognition Sequence:** As used herein, the phrase "recognition sequence" or "recognition site" refers to a particular sequence to which a protein, chemical compound, DNA, or RNA molecule (e.g., restriction endonuclease, a topoisomerase, a modification methylase, a recombinase, etc.) recognizes and binds. In the present invention, a recognition sequence may refer to a recombination site. For example, the recognition sequence for Cre recombinase is loxP which is a 34 base pair sequence comprising two 13 base pair inverted repeats (serving as the recombinase binding sites) flanking an 8 base pair core sequence (see Fig. 1 of Sauer, B., *Current Opinion in Biotechnology* 5:521-527 (1994)). Other examples of recognition sequences are the attB, attP, attL, and attR sequences, which are recognized by the recombinase enzyme λ Integrase. attB is an approximately 25 base pair sequence containing two 9 base pair core-type Int binding sites and a 7 base pair overlap region. attP is an approximately 240 base pair sequence containing core-type Int binding sites and arm-type Int binding sites as well as sites for auxiliary proteins integration host factor (IHF), FIS and excisionase (Xis) (see Landy, *Current Opinion in Biotechnology* 3:699-707 (1993)). Such sites may also be engineered according to the present invention to enhance production of products in the methods of the invention. For example, when such engineered sites lack the P1 or H1 domains to make the recombination reactions irreversible (e.g., attR or attP), such sites may be designated attR' or attP' to show that the domains of these sites have been modified in some way.

[0048] **Recombination Proteins:** As used herein, the phrase "recombination proteins" includes excisive or integrative proteins, enzymes, co-factors or associated proteins that are involved in recombination reactions involving one or more recombination sites (e.g., two, three, four, five, seven, ten, twelve, fifteen, twenty, thirty, fifty, etc.), which may be wild-type proteins (see Landy, *Current Opinion in Biotechnology* 3:699-707 (1993)), or mutants, derivatives

(e.g., fusion proteins containing the recombination protein sequences or fragments thereof), fragments, and variants thereof. Examples of recombination proteins include Cre, Int, IHF, Xis, Flp, Fis, Hin, Gin, ΦC31, Cin, Tn3 resolvase, TndX, XerC, XerD, TnpX, Hjc, Gin, SpCCE1, and ParA.

[0049] Recombinases: As used herein, the term "recombinases" is used to refer to the protein that catalyzes strand cleavage and re-ligation in a recombination reaction. Site-specific recombinases are proteins that are present in many organisms (e.g., viruses and bacteria) and have been characterized as having both endonuclease and ligase properties. These recombinases (along with associated proteins in some cases) recognize specific sequences of bases in a nucleic acid molecule and exchange the nucleic acid segments flanking those sequences. The recombinases and associated proteins are collectively referred to as "recombination proteins" (see, e.g., Landy, A., *Current Opinion in Biotechnology* 3:699-707 (1993)).

[0050] Numerous recombination systems from various organisms have been described. See, e.g., Hoess, *et al.*, *Nucleic Acids Research* 14(6):2287 (1986); Abremski, *et al.*, *J. Biol. Chem.* 261(1):391 (1986); Campbell, *J. Bacteriol.* 174(23):7495 (1992); Qian, *et al.*, *J. Biol. Chem.* 267(11):7794 (1992); Araki, *et al.*, *J. Mol. Biol.* 225(1):25 (1992); Maeser and Kahnmann, *Mol. Gen. Genet.* 230:170-176 (1991); Esposito, *et al.*, *Nucl. Acids Res.* 25(18):3605 (1997). Many of these belong to the integrase family of recombinases (Argos, *et al.*, *EMBO J.* 5:433-440 (1986); Voziyanov, *et al.*, *Nucl. Acids Res.* 27:930 (1999)). Perhaps the best studied of these are the Integrase/att system from bacteriophage λ (Landy, A. *Current Opinions in Genetics and Devel.* 3:699-707 (1993)), the Cre/loxP system from bacteriophage P1 (Hoess and Abremski (1990) In *Nucleic Acids and Molecular Biology*, vol. 4. Eds.: Eckstein and Lilley, Berlin-Heidelberg: Springer-Verlag; pp. 90-109), and the FLP/FRT system from the *Saccharomyces cerevisiae* 2 μ circle plasmid (Broach, *et al.*, *Cell* 29:227-234 (1982)).

[0051] Recombination Site: As used herein, the phrase "recombination site" refers to a recognition sequence on a nucleic acid molecule that participates in an integration/recombination reaction by recombination proteins.

Recombination sites are discrete sections or segments of nucleic acid on the participating nucleic acid molecules that are recognized and bound by a site-specific recombination protein during the initial stages of integration or recombination. For example, the recombination site for Cre recombinase is loxP, which is a 34 base pair sequence comprised of two 13 base pair inverted repeats (serving as the recombinase binding sites) flanking an 8 base pair core sequence (see Fig. 1 of Sauer, B., *Curr. Opin. Biotech.* 5:521-527 (1994)). Other examples of recombination sites include the attB, attP, attL, and attR sequences described in United States provisional patent applications 60/136,744, filed May 28, 1999, and 60/188,000, filed March 9, 2000, and in co-pending United States patent applications 09/517,466 and 09/732,91—all of which are specifically incorporated herein by reference—and mutants, fragments, variants and derivatives thereof, which are recognized by the recombination protein λ Int and by the auxiliary proteins integration host factor (IHF), FIS and excisionase (Xis) (see Landy, *Curr. Opin. Biotech.* 3:699-707 (1993)).

[0052] Mutating specific residues in the core region of the att site can generate a large number of different att sites. As with the att1 and att2 sites utilized in GATEWAY™, each additional mutation potentially creates a novel att site with unique specificity that will recombine only with its cognate partner att site bearing the same mutation and will not cross-react with any other mutant or wild-type att site. Novel mutated att sites (*e.g.*, attB 1-10, attP 1-10, attR 1-10 and attL 1-10) are described in previous patent application serial number 09/517,466, filed March 2, 2000, which is specifically incorporated herein by reference. Other recombination sites having unique specificity (*i.e.*, a first site will recombine with its corresponding site and will not recombine or not substantially recombine with a second site having a different specificity) may be used to practice the present invention. Examples of suitable recombination sites include, but are not limited to, loxP sites; loxP site mutants, variants or derivatives such as loxP511 (see U.S. Patent No. 5,851,808); frt sites; frt site mutants, variants or derivatives; dif sites; dif site mutants, variants or

derivatives; psi sites; psi site mutants, variants or derivatives; cer sites; and cer site mutants, variants or derivatives.

[0053] Recombination sites may be added to molecules by any number of known methods. For example, recombination sites can be added to nucleic acid molecules by blunt end ligation, PCR performed with fully or partially random primers, or inserting the nucleic acid molecules into a vector using a restriction site flanked by recombination sites.

[0054] Recombinational Cloning: As used herein, the phrase "recombinational cloning" refers to a method whereby segments of nucleic acid molecules or populations of such molecules are exchanged, inserted, replaced, substituted or modified, *in vitro* or *in vivo*. Preferably, such cloning method is an *in vitro* method.

[0055] Suitable recombinational cloning systems that utilize recombination at defined recombination sites have been previously described in U.S. patent no. 5,888,732, U.S. patent no. 6,143,557, U.S. patent no. 6,171,861, U.S. patent no. 6,270,969, and U.S. patent no. 6,277,608, and in pending United States application no. 09/517,466, and in published United States application no. 20020007051, (each of which is fully incorporated herein by reference), all assigned to the Invitrogen Corporation, Carlsbad, Ca. In brief, the GATEWAY™ Cloning System described in these patents utilizes vectors that contain at least one recombination site to clone desired nucleic acid molecules *in vivo* or *in vitro*. In some embodiments, the system utilizes vectors that contain at least two different site-specific recombination sites that may be based on the bacteriophage lambda system (*e.g.*, att1 and att2) that are mutated from the wild-type (att0) sites. Each mutated site has a unique specificity for its cognate partner att site (*i.e.*, its binding partner recombination site) of the same type (for example attB1 with attP1, or attL1 with attR1) and will not cross-react with recombination sites of the other mutant type or with the wild-type att0 site. Different site specificities allow directional cloning or linkage of desired molecules thus providing desired orientation of the cloned molecules. Nucleic acid fragments flanked by recombination sites are cloned and subcloned using the GATEWAY™ system by replacing a selectable marker

(for example, *ccdB*) flanked by att sites on the recipient plasmid molecule, sometimes termed the Destination Vector. Desired clones are then selected by transformation of a *ccdB* sensitive host strain and positive selection for a marker on the recipient molecule. Similar strategies for negative selection (e.g., use of toxic genes) can be used in other organisms such as thymidine kinase (TK) in mammals and insects.

[0056] Topoisomerase recognition site. As used herein, the term "topoisomerase recognition site" means a defined nucleotide sequence that is recognized and bound by a site specific topoisomerase. For example, the nucleotide sequence 5'-(C/T)CCTT-3' is a topoisomerase recognition site that is bound specifically by most poxvirus topoisomerases, including vaccinia virus DNA topoisomerase I, which then can cleave the strand after the 3'-most thymidine of the recognition site to produce a nucleotide sequence comprising 5'-(C/T)CCTT-PO₄-TOPO, *i.e.*, a complex of the topoisomerase covalently bound to the 3' phosphate through a tyrosine residue in the topoisomerase (see, Shuman, *J. Biol. Chem.* 266:11372-11379, 1991; Sekiguchi and Shuman, *Nucl. Acids Res.* 22:5360-5365, 1994; each of which is incorporated herein by reference; see, also, U.S. Pat. No. 5,766,891; PCT/US95/16099; and PCT/US98/12372). In comparison, the nucleotide sequence 5'-GCAACTT-3' is the topoisomerase recognition site for type IA *E. coli* topoisomerase III.

[0057] Repression Cassette: As used herein, the phrase "repression cassette" refers to a nucleic acid segment that contains a repressor or a selectable marker present in the subcloning vector.

[0058] Selectable Marker: As used herein, the phrase "selectable marker" refers to a nucleic acid segment that allows one to select for or against a molecule (e.g., a replicon) or a cell that contains it, often under particular conditions. These markers can encode an activity, such as, but not limited to, production of RNA, peptide, or protein, or can provide a binding site for RNA, peptides, proteins, inorganic and organic compounds or compositions and the like. Examples of selectable markers include but are not limited to: (1) nucleic acid segments that encode products that provide resistance against otherwise toxic compounds (e.g., antibiotics); (2) nucleic acid segments that encode

products that are otherwise lacking in the recipient cell (e.g., tRNA genes, auxotrophic markers); (3) nucleic acid segments that encode products that suppress the activity of a gene product; (4) nucleic acid segments that encode products that can be readily identified (e.g., phenotypic markers such as (β -galactosidase, green fluorescent protein (GFP), yellow fluorescent protein (YFP), red fluorescent protein (RFP), cyan fluorescent protein (CFP), and cell surface proteins); (5) nucleic acid segments that bind products that are otherwise detrimental to cell survival and/or function; (6) nucleic acid segments that otherwise inhibit the activity of any of the nucleic acid segments described in Nos. 1-5 above (e.g., antisense oligonucleotides); (7) nucleic acid segments that bind products that modify a substrate (e.g., restriction endonucleases); (8) nucleic acid segments that can be used to isolate or identify a desired molecule (e.g., specific protein binding sites); (9) nucleic acid segments that encode a specific nucleotide sequence that can be otherwise non-functional (e.g., for PCR amplification of subpopulations of molecules); (10) nucleic acid segments that, when absent, directly or indirectly confer resistance or sensitivity to particular compounds; and/or (11) nucleic acid segments that encode products that either are toxic (e.g., Diphtheria toxin) or convert a relatively non-toxic compound to a toxic compound (e.g., Herpes simplex thymidine kinase, cytosine deaminase) in recipient cells; (12) nucleic acid segments that inhibit replication, partition or heritability of nucleic acid molecules that contain them; and/or (13) nucleic acid segments that encode conditional replication functions, e.g., replication in certain hosts or host cell strains or under certain environmental conditions (e.g., temperature, nutritional conditions, etc.).

[0059] Site-Specific Recombinase: As used herein, the phrase "site-specific recombinase" refers to a type of recombinase that typically has at least the following four activities (or combinations thereof): (1) recognition of specific nucleic acid sequences; (2) cleavage of said sequence or sequences; (3) topoisomerase activity involved in strand exchange; and (4) ligase activity to reseal the cleaved strands of nucleic acid (see Sauer, B., *Current Opinions in Biotechnology* 5:521-527 (1994)). Conservative site-specific recombination is

distinguished from homologous recombination and transposition by a high degree of sequence specificity for both partners. The strand exchange mechanism involves the cleavage and rejoicing of specific nucleic acid sequences in the absence of DNA synthesis (Landy, A. (1989) *Ann. Rev. Biochem.* 58:913-949).

- [0060] Suppressor tRNAs. As used herein, the phrase "suppressor tRNA" refers to a molecule that mediates the incorporation of an amino acid in a polypeptide in a position corresponding to a stop codon in the mRNA being translated.
- [0061] Homologous Recombination: As used herein, the phrase "homologous recombination" refers to the process in which nucleic acid molecules with similar nucleotide sequences associate and exchange nucleotide strands. A nucleotide sequence of a first nucleic acid molecule that is effective for engaging in homologous recombination at a predefined position of a second nucleic acid molecule will therefore have a nucleotide sequence that facilitates the exchange of nucleotide strands between the first nucleic acid molecule and a defined position of the second nucleic acid molecule. Thus, the first nucleic acid will generally have a nucleotide sequence that is sufficiently complementary to a portion of the second nucleic acid molecule to promote nucleotide base pairing.
- [0062] Homologous recombination requires homologous sequences in the two recombining partner nucleic acids but does not require any specific sequences. As indicated above, site-specific recombination that occurs, for example, at recombination sites such as att sites, is not considered to be "homologous recombination," as the phrase is used herein.
- [0063] Vector: As used herein, the term "vector" refers to a nucleic acid molecule (preferably DNA) that provides a useful biological or biochemical property to an insert. Examples include plasmids, phages, viruses, autonomously replicating sequences (ARS); centromeres, and other sequences that are able to replicate or be replicated *in vitro* or in a host cell, or to convey a desired nucleic acid segment to a desired location within a host cell. A vector can have one or more restriction endonuclease recognition sites (e.g.,

two, three, four, five, seven, ten, *etc.*) at which the sequences can be cut in a determinable fashion without loss of an essential biological function of the vector, and into which a nucleic acid fragment can be spliced in order to bring about its replication and cloning. Vectors can further provide primer sites (e.g., for PCR), transcriptional and/or translational initiation and/or regulation sites, recombinational signals, replicons, selectable markers, *etc.* Clearly, methods of inserting a desired nucleic acid fragment that do not require the use of recombination, transpositions or restriction enzymes (such as, but not limited to, uracil N-glycosylase (UDG) cloning of PCR fragments (U.S. Patent No. 5,334,575 and 5,888,795, both of which are entirely incorporated herein by reference), T:A cloning, and the like) can also be applied to clone a fragment into a cloning vector to be used according to the present invention. The cloning vector can further contain one or more selectable markers (e.g., two, three, four, five, seven, ten, *etc.*) suitable for use in the identification of cells transformed with the cloning vector.

[0064] Subcloning Vector: As used herein, the phrase "subcloning vector" refers to a cloning vector comprising a circular or linear nucleic acid molecule that includes, preferably, an appropriate replicon. In the present invention, the subcloning vector can also contain functional and/or regulatory elements that are desired to be incorporated into the final product to act upon or with the cloned nucleic acid insert. The subcloning vector can also contain a selectable marker (preferably DNA).

[0065] Primer: As used herein, the term "primer" refers to a single stranded or double stranded oligonucleotide that is extended by covalent bonding of nucleotide monomers during amplification or polymerization of a nucleic acid molecule (e.g., a DNA molecule). In one aspect, the primer may be a sequencing primer (for example, a universal sequencing primer). In another aspect, the primer may comprise a recombination site or portion thereof.

[0066] Adapter: As used herein, the term "adapter" refers to an oligonucleotide or nucleic acid fragment or segment (preferably DNA) that comprises one or more recombination sites (or portions of such recombination sites) that can be added to a circular or linear nucleic acid molecule as well as

to other nucleic acid molecules described herein. When using portions of recombination sites, the missing portion may be provided by the nucleic acid molecule. Such adapters may be added at any location within a circular or linear molecule, although the adapters are preferably added at or near one or both termini of a linear molecule. Preferably, adapters are positioned to be located on both sides (flanking) a particular nucleic acid molecule of interest. In accordance with the invention, adapters may be added to nucleic acid molecules of interest by standard recombinant techniques (*e.g.*, restriction digest and ligation). For example, adapters may be added to a circular molecule by first digesting the molecule with an appropriate restriction enzyme, adding the adapter at the cleavage site and reforming the circular molecule that contains the adapter(s) at the site of cleavage. In other aspects, adapters may be added by homologous recombination, by integration of RNA molecules, and the like. Alternatively, adapters may be ligated directly to one or more and preferably both termini of a linear molecule thereby resulting in linear molecule(s) having adapters at one or both termini. In one aspect of the invention, adapters may be added to a population of linear molecules, (*e.g.*, a cDNA library or genomic DNA that has been cleaved or digested) to form a population of linear molecules containing adapters at one and preferably both termini of all or substantial portion of said population.

[0067] Adapter-Primer: As used herein, the phrase "adapter-primer" refers to a primer molecule that comprises one or more recombination sites (or portions of such recombination sites) that can be added to a circular or to a linear nucleic acid molecule described herein. When using portions of recombination sites, the missing portion may be provided by a nucleic acid molecule (*e.g.*, an adapter) of the invention. Such adapter-primers may be added at any location within a circular or linear molecule, although the adapter-primers are preferably added at or near one or both termini of a linear molecule. Such adapter-primers may be used to add one or more recombination sites or portions thereof to circular or linear nucleic acid molecules in a variety of contexts and by a variety of techniques, including but not limited to amplification (*e.g.*, PCR), ligation (*e.g.*, enzymatic or

chemical/synthetic ligation), recombination (e.g., homologous or non-homologous (illegitimate) recombination) and the like.

[0068] Template: As used herein, the term "template" refers to a double stranded or single stranded nucleic acid molecule, all or a portion of which is to be amplified, synthesized, reverse transcribed, or sequenced. In the case of a double-stranded DNA molecule, denaturation of its strands to form a first and a second strand is preferably performed before these molecules may be amplified, synthesized or sequenced, or the double stranded molecule may be used directly as a template. For single stranded templates, a primer complementary to at least a portion of the template hybridizes under appropriate conditions and one or more polypeptides having polymerase activity (e.g., two, three, four, five, or seven DNA polymerases and/or reverse transcriptases) may then synthesize a molecule complementary to all or a portion of the template. Alternatively, for double stranded templates, one or more transcriptional regulatory sequences (e.g., two, three, four, five, seven or more promoters) may be used in combination with one or more polymerases to make nucleic acid molecules complementary to all or a portion of the template. The newly synthesized molecule, according to the invention, may be of equal or shorter length compared to the original template. Mismatch incorporation or strand slippage during the synthesis or extension of the newly synthesized molecule may result in one or a number of mismatched base pairs. Thus, the synthesized molecule need not be exactly complementary to the template. Additionally, a population of nucleic acid templates may be used during synthesis or amplification to produce a population of nucleic acid molecules typically representative of the original template population.

[0069] Incorporating: As used herein, the term "incorporating" means becoming a part of a nucleic acid (e.g., DNA) molecule or primer.

[0070] Library: As used herein, the term "library" refers to a collection of nucleic acid molecules (circular or linear). In one embodiment, a library may comprise a plurality of nucleic acid molecules (e.g., two, three, four, five, seven, ten, twelve, fifteen, twenty, thirty, fifty, one hundred, two hundred, five hundred one thousand, five thousand, or more), that may or may not be from a

common source organism, organ, tissue, or cell. In another embodiment, a library is representative of all or a portion or a significant portion of the nucleic acid content of an organism (a "genomic" library), or a set of nucleic acid molecules representative of all or a portion or a significant portion of the expressed nucleic acid molecules (a cDNA library or segments derived therefrom) in a cell, tissue, organ or organism. A library may also comprise nucleic acid molecules having random sequences made by *de novo* synthesis, mutagenesis of one or more nucleic acid molecules, and the like. Such libraries may or may not be contained in one or more vectors (*e.g.*, two, three, four, five, seven, ten, twelve, fifteen, twenty, thirty, fifty, *etc.*). In some embodiments, a library may be "normalized" library (*i.e.*, a library of cloned nucleic acid molecules from which each member nucleic acid molecule can be isolated with approximately equivalent probability).

[0071] Normalized. As used herein, the term "normalized" or "normalized library" means a nucleic acid library that has been manipulated, preferably using the methods of the invention, to reduce the relative variation in abundance among member nucleic acid molecules in the library to a range of no greater than about 25-fold, no greater than about 20-fold, no greater than about 15-fold, no greater than about 10-fold, no greater than about 7-fold, no greater than about 6-fold, no greater than about 5-fold, no greater than about 4-fold, no greater than about 3-fold or no greater than about 2-fold.

[0072] Amplification: As used herein, the term "amplification" refers to any *in vitro* method for increasing the number of copies of a nucleic acid molecule with the use of one or more polypeptides having polymerase activity (*e.g.*, one, two, three, four or more nucleic acid polymerases or reverse transcriptases). Nucleic acid amplification results in the incorporation of nucleotides into a DNA and/or RNA molecule or primer thereby forming a new nucleic acid molecule complementary to a template. The formed nucleic acid molecule and its template can be used as templates to synthesize additional nucleic acid molecules. As used herein, one amplification reaction may consist of many rounds of nucleic acid replication. DNA amplification reactions include, for example, polymerase chain reaction (PCR). One PCR

reaction may consist of 5 to 100 cycles of denaturation and synthesis of a DNA molecule.

[0073] Nucleotide: As used herein, the term "nucleotide" refers to a base-sugar-phosphate combination. Nucleotides are monomeric units of a nucleic acid molecule (DNA and RNA). The term nucleotide includes ribonucleoside triphosphates ATP, UTP, CTG, GTP and deoxyribonucleoside triphosphates such as dATP, dCTP, dITP, dUTP, dGTP, dTTP, or derivatives thereof. Such derivatives include, for example, [α -S]dATP, 7-deaza-dGTP and 7-deaza-dATP. The term nucleotide as used herein also refers to dideoxyribonucleoside triphosphates (ddNTPs) and their derivatives. Illustrated examples of dideoxyribonucleoside triphosphates include, but are not limited to, ddATP, ddCTP, ddGTP, ddITP, and ddTTP. According to the present invention, a "nucleotide" may be unlabeled or detectably labeled by well known techniques. Detectable labels include, for example, radioactive isotopes, fluorescent labels, chemiluminescent labels, bioluminescent labels and enzyme labels.

[0074] Nucleic Acid Molecule: As used herein, the phrase "nucleic acid molecule" refers to a sequence of contiguous nucleotides (riboNTPs, dNTPs, ddNTPs, or combinations thereof) of any length. A nucleic acid molecule may encode a full-length polypeptide or a fragment of any length thereof, or may be non-coding. As used herein, the terms "nucleic acid molecule" and "polynucleotide" may be used interchangeably and include both RNA and DNA.

[0075] Oligonucleotide: As used herein, the term "oligonucleotide" refers to a synthetic or natural molecule comprising a covalently linked sequence of nucleotides that are joined by a phosphodiester bond between the 3' position of the pentose of one nucleotide and the 5' position of the pentose of the adjacent nucleotide.

[0076] Open Reading Frame (ORF): As used herein, an open reading frame or ORF refers to a sequence of nucleotides that codes for a contiguous sequence of amino acids. ORFs of the invention may be constructed to code for the amino acids of a polypeptide of interest from the N-terminus of the

polypeptide (typically a methionine encoded by a sequence that is transcribed as AUG) to the C-terminus of the polypeptide. ORFs of the invention include sequences that encode a contiguous sequence of amino acids with no intervening sequences (*e.g.*, an ORF from a cDNA) as well as ORFs that comprise one or more intervening sequences (*e.g.*, introns) that may be processed from an mRNA containing them (*e.g.*, by splicing) when an mRNA containing the ORF is transcribed in a suitable host cell. ORFs of the invention also comprise splice variants of ORFs containing intervening sequences.

[0077] ORFs may optionally be provided with one or more sequences that function as stop codons (*e.g.*, contain nucleotides that are transcribed as UAG, an amber stop codon, UGA, an opal stop codon, and/or UAA, an ochre stop codon). When present, a stop codon may be provided after the codon encoding the C-terminus of a polypeptide of interest (*e.g.*, after the last amino acid of the polypeptide) and/or may be located within the coding sequence of the polypeptide of interest. When located after the C-terminus of the polypeptide of interest, a stop codon may be immediately adjacent to the codon encoding the last amino acid of the polypeptide or there may be one or more codons (*e.g.*, one, two, three, four, five, ten, twenty, etc) between the codon encoding the last amino acid of the polypeptide of interest and the stop codon. A nucleic acid molecule containing an ORF may be provided with a stop codon upstream of the initiation codon (*e.g.*, an AUG codon) of the ORF. When located upstream of the initiation codon of the polypeptide of interest, a stop codon may be immediately adjacent to the initiation codon or there may be one or more codons (*e.g.*, one, two, three, four, five, ten, twenty, etc) between the initiation codon and the stop codon.

[0078] Polypeptide: As used herein, the term "polypeptide" refers to a sequence of contiguous amino acids of any length. The terms "peptide," "oligopeptide," or "protein" may be used interchangeably herein with the term "polypeptide."

[0079] Hybridization: As used herein, the terms "hybridization" and "hybridizing" refer to base pairing of two complementary single-stranded

nucleic acid molecules (RNA and/or DNA) to give a double stranded molecule. As used herein, two nucleic acid molecules may hybridize, although the base pairing is not completely complementary. Accordingly, mismatched bases do not prevent hybridization of two nucleic acid molecules provided that appropriate conditions, well known in the art, are used. In some aspects, hybridization is said to be under "stringent conditions." By "stringent conditions," as the phrase is used herein, is meant overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (750 mM NaCl, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 µg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1 x SSC at about 65°C.

[0080] Other terms used in the fields of recombinant nucleic acid technology and molecular and cell biology as used herein will be generally understood by one of ordinary skill in the applicable arts.

2. Overview

[0081] The present invention provides subscription-based and non-subscription based systems and methods for providing research products and services (*e.g.*, for industries involved in genomic and proteomic research). A provider of genomic and proteomic research products and services provides such products and services to customers for a fee. In exchange for payment of a subscription fee, a customer may be designated a subscriber. Subscribers are charged subscriber fees for the genomic and proteomic research products and services they request. In one embodiment, the subscriber fees are less than the fees charged to non-subscribers.

[0082] Users of the system are provided access to one or more clone collections of the provider. The users may also be given access to databases that contain data describing the attributes of the clones represented in the clone collections. In addition to providing the subscriber with access to multiple databases, the present invention enables the subscriber to identify clones to be built and added to the clone collections of the provider. Access to these clones

may or may not be provided to non-subscribers and/or to other subscribers. Further, the subscriber is able to prioritize the order in which the identified clones are to be built and added to the clone collection. In this way, the clone collection can be customized and prioritized according to the research needs of the subscriber. Still further, the present invention provides research and development consulting services to one or more sites designated by the subscriber.

3. Exemplary System Embodiments

3.1 Genomics and Proteomics research products and services system

[0083] FIG. 1 is a block diagram illustration of a system 100 for providing genomic and proteomic products and services according to an embodiment of the present invention. In FIG. 1, a provider 105 provides genomic and proteomic products 103 and services 107 to customers.

3.1.1 Exemplary Products

[0084] FIG. 2A provides an exemplary list of the types of products offered by the provider 105. Such products may comprise clone collections, individual clones, compositions comprising one or more clones and/or collections of clones, reaction mixtures comprising one or more clones and/or collections of clones, polypeptides, antibodies, libraries (*e.g.*, cDNA libraries, genomic libraries, *etc.*), and kits, as well as individual clones. Additional details of these exemplary products are provided below. Further, these exemplary products are provided for example only and are not intended to limit the present invention.

3.1.2 Exemplary Services

[0085] FIG. 2B provides an exemplary list of the types of services offered by the provider 105. Such services include clone construction services, protein expression services, antibody production services, library (*e.g.*, cDNA library, genomic library, *etc.*) construction services, and research and development consulting services. In some embodiments, library construction services may comprise construction of a library having specified characteristics (*e.g.*, full-length, normalized, *etc.*). Library construction services may be performed using tissues and/or organisms of any source. In some embodiments, libraries may be constructed from human, mouse, dog, rat, and/or other mammalian tissues. Libraries may be constructed from more than one tissue source within an organism, for example, from brain, liver, kidney, pancreas, lung, heart, *etc.* Libraries may be normalized, full-length and/or both normalized and full-length libraries. Thus, the present invention contemplates cDNA library construction (*e.g.*, full-length and/or normalized) for human, mouse, dog, rat, and other organisms. The invention also contemplates normalization of standard cDNA libraries (*e.g.*, for organisms other than human, mouse, dog, or rat). Additional details of these exemplary products and services, as well as other products and services, are provided below. Further, these exemplary services are provided for example only and are not intended to limit the present invention.

3.1.3 Customers

[0086] Referring again to FIG. 1, in an embodiment of the present invention, the exemplary products and services set out in FIGS. 2A and 2B are provided to the customers in exchange for the payment of fees associated with the products or services requested. In one embodiment of the present invention, the customers can elect to pay a subscription fee in order to be designated as a subscriber. Accordingly, the customers in FIG. 1 are shown as subscribers 112 and non-subscribers 110. In another embodiment of the present invention,

subscribers 112 are able to obtain subscriber benefits offered by the provider 105.

[0087] One example subscriber benefit is the ability to purchase the products and services of the provider 115 at subscriber rates. In one embodiment of the present invention, subscriber rates are less than non-subscriber rates. An additional subscriber benefit includes the ability to access private clone collections (*i.e.*, clone collections only made available to all or some subscribers). Another subscriber benefit includes the ability to identify clones to be built and added to the clone collections maintained by the provider 105. The ability to prioritize the order in which clones are built and added to the clone collections maintained by the provider 105 is an additional subscriber benefit. In some embodiments, a subscriber may have the ability to specify the size of a clone collection (*e.g.*, one, ten, fifty, one hundred, five hundred, one thousand, *etc.*) and may also have the ability to specify when one or more specific clones are made and supplied (*e.g.*, the clones will be made and supplied within 2 to 8, 3 to 20, 2 to 20, 4 to 20, 6 to 20, 6 to 15, *etc.* weeks). Yet another subscriber benefit is the ability to designate one or more sites to receive research and development consulting services from the provider 105. In one embodiment, research and development consulting services include providing the subscriber designated sites with information relating to new products and services being developed by the provider. In another embodiment, the research and development consulting services also include provider evaluation of new products and services being developed by the subscriber. In other embodiments, the number of sites that the subscriber can designate is one, two, three, four, five or six. However, the subscriber may designate more sites (*e.g.*, eight, ten, twenty, *etc.*) by paying an additional fee for each additional site designated.

[0088] Referring to FIG. 3, for each customer who chooses to become a subscriber, a subscriber record 300 may be maintained. The subscriber record may be used to maintain information identifying each subscriber 112 and for tracking the products and services provided to each of the subscribers. In one embodiment, the subscriber record comprises a subscriber identification field

305, a subscription fee field 310, a clone purchase credit field 315, a clone total order field 320, and a subscriber site identification field 325. In this embodiment, the subscriber identification field may be used to record a unique subscriber identification number for each subscriber 112. The subscription fee field is used to record the subscription fee paid by the subscriber 112. The clone purchase credit field 315 may be used to record the amount of funds the subscriber 112 has credited toward the purchase of clones. The clone total order field may be used to record the number of clones the subscriber 112 has ordered during a designated accounting period. For example, the provider 112 could track the number of clones ordered during a month, quarter or year. The subscriber site identification field 325 may be used to record unique identifiers for one or more sites designated by the subscriber 112. In an embodiment of the present invention, the designated sites receive research and development consulting services from the provider 105. Additional subscriber record fields will be apparent to a person skilled in the relevant arts based at least on the teachings contained herein.

3.2 Exemplary computer system embodiment

[0089] In one embodiment of the present invention, system 100 is implemented in part using one or more computer systems. FIG. 4 is a block diagram of a client/server system 400 for providing genomic and proteomic products and services according to an embodiment of the present invention.

3.2.1 Databases

[0090] In one embodiment, one or more databases are used to store data related to the genomic and proteomic products and services. In one embodiment, the databases may be organized by fields, records, and files. A field may represent a single piece of information. A record may represent one complete set of fields. Finally, a collection of records may be organized into a

file. In FIG. 4, system 400 includes a subscriber database 425, a clone collection database 430, and an expression database 435.

3.2.1.1 Subscriber database

[0091] Subscriber database 425 contains a subscriber record, such as subscriber record 300 of FIG. 3, for each subscriber of genomic and proteomic products and services.

3.2.1.2 Clone collection database

[0092] The clone collection database 430 is configured to store data describing the attributes of the clones available in one or more clone collections (e.g., public and/or private clone collections). Examples of attributes that may be stored in a clone collection database include, but are not limited to, the nucleotide sequence of an ORF in a clone, the source of the template used to construct the ORF, the sequences of known allelic variants of the ORF, sequences of splice variants, sites of known polymorphisms and/or mutations in the ORF (e.g., single nucleotide polymorphisms, etc.), post-translational modifications (e.g., glycosylation, protein splicing, etc.) that are known to occur to the polypeptide expressed from the ORF, sites at which such post-translational modifications occur, and other similar information. Clone collection databases may comprise attributes of the polypeptides expressed from one or more clones. Attributes of a polypeptide that a clone collection database may comprise include, but are not limited to, the amino acid sequence, amino acid residues known to be involved in one or more activity (e.g., active site residues, epitopes, etc.), locations of structural and/or functional domains, molecular weight, isoelectric point, catalytic activities, number and kind of post-translational modifications, amino acids that are post-translationally modified, the amino acid sequence of structurally related polypeptides, and the like.

[0093] Clone collection databases may be searchable (e.g., with a nucleotide and/or polypeptide sequence). In some embodiments, it may be possible to search a clone collection database with all or a portion of the amino acid sequence of a polypeptide in order to identify clones encoding all or a portion of the polypeptide or encoding all or a portion of one or more related polypeptides. In some embodiments, the amino acid sequence of a portion of a polypeptide (e.g., a structural and/or functional domain, an amino acid motif, etc.) may be used to search a clone collection database to identify one or more clones encoding polypeptides that have an amino acid sequence similar to the search sequence (e.g., have a similar domain and/or motif).

[0094] In some embodiments, a clone collection database may contain sequence information. Such sequence information may or may not be of any particular clone present in the collection. For example, a clone collection database may have sequence information concerning one or more nucleic acids, which may encode one or more polypeptides, that are not present in a clone collection. In some embodiments, a subscriber may request that a clone be prepared from all or a part of such a sequence.

[0095] In one embodiment of the present invention, the clone collection database 430 includes a private area and a public area. The private area of clone collection database 430 maintains information describing clones that are only available to one or more subscribers. The public area of the clone collection database 430 maintains information describing the clones from the provider's clone collections that are available to everyone (*i.e.*, all customers).

3.2.1.3 Expression database

[0096] The expression database 435 is configured to store data describing the results of protein expression analyses performed for the clones in the clone collections. In this way, optimized protein expression systems identifying the best vector and host for a particular clone are readily accessible.

[0097] In addition to vector and host systems, a protein expression database may comprise information related to codon usage in one or more hosts. The

optimum codon usage based on any particular host may be identified. Clones employing the optimum codon usage may be constructed and added to a clone collection in order to optimize the expression of one or more polypeptides in one or more hosts. In some embodiments, clones in a clone collection may encode polypeptides using optimized codons for a particular organism (*e.g.*, *E. coli*, yeast, insect cells, mammalian cells, *etc.*). A clone collection may comprise multiple sequences encoding the same polypeptide but employing different codons in order to optimize the expression of the polypeptide in a variety of host cells.

[0098] In addition, protein expression databases may comprise other information including, but not limited to, information regarding the characteristics of a polypeptide expressed from an ORF in the clone collection. Characteristics that might be included include the molecular weight of the expressed polypeptide, the site, extent and nature of post-translational modification undergone by the polypeptide in its native organism, the specific activity of the polypeptide, known stimulators and/or inhibitors of an activity of the polypeptide, physiological role of the polypeptide in its native organism, and similar information.

3.2.1.4 Client/Server Architecture

[0099] A provider server 420 provides access to subscriber database 425, clone collection database 430, and expression database 435. Customer computer systems 410 are connected to provider server 420 via a communications network 415 (such as a local area network, a wide area network, point-to-point links, the Internet, *etc.*, or combinations thereof). Users may access and traverse the functions provided by the provider server 420 in any number of ways via interaction with menus or icons provided by a user interface. Other ways of accessing system 400 will be apparent to persons skilled in the relevant arts based at least on the teachings contained herein.

[0100] In an embodiment, the provider server 420 and the customer systems 410 are implemented using a computer system 500 such as that shown in FIG. 5.

[0101] Referring to FIG. 5, the computer system 500 includes one or more processors 502. Processor 502 is connected to a communication bus 504. The computer system 500 also includes a main memory 506. Main memory 506 is preferably random access memory (RAM). Computer system 500 further includes secondary memory 508. Secondary memory 508 includes, for example, hard disk drive 510 and/or removable storage drive 512. Removable storage drive 512 could be, for example, a floppy disk drive, a magnetic tape drive, a compact disk drive, a program cartridge and cartridge interface, or a removable memory chip. Removable storage drive 512 reads from and writes to a removable storage unit 514. Removable storage unit 514, also called a program storage device or computer program product, represents a floppy disk, magnetic tape, compact disk, or other data storage device. Computer programs or computer control logic are stored in main memory 506 and/or secondary memory 508 and/or removable storage unit 514. When executed, these computer programs enable the provider server 420 and customer systems 410 to perform various functions of the present invention as discussed herein. In particular, the computer programs enable the processor 502 to perform some of the functions of the present invention. Accordingly, such computer programs represent controllers of the system 400. Computer system 500 further includes a communications interface 516. Communications interface 516 facilitates communications between computer system 500 and local or remote external devices 518. External devices 518 could be, for example, personal computers, displays, databases, and additional computer systems 500. In particular, communications interface 516 enables computer system 500 to send and receive software and data to/from external devices 518 via signals, which are also herein referred to as computer program products. Examples of communications interface 516 include a modem, a network interface, and a communications port.

4. Exemplary operational embodiments

[0102] Exemplary methods for providing genomic and proteomic products and services in accordance with embodiments of the present invention will now be described with reference to FIG. 1, FIG. 4, and the steps described in FIGS. 6-8 and 10.

4.1 Accessing Genomic and Proteomic Research Products and Services

[0103] Referring to FIG. 6, in a step 605, a determination may be made as to whether a customer is a subscriber or not. The results of this determination will often dictate the nature, extent, configuration, and other details of products and services to which the customer is provided access.

[0104] Next, if the customer is a subscriber, then the customer may be presented with means for enabling the selection of public and private genomic and proteomic products and services from the provider 105 (step 610). In one embodiment, a listing of available products and services is provided to the customer on a display associated with a customer computer system such as customer system 410 illustrated in FIG. 4. The user is then able to select products and services from the list using an input device such as a keyboard or mouse.

[0105] Once a product or service has been selected, in a step 615, the provider 105 responds by providing the selected product or service at an established subscriber rate.

[0106] Alternatively, where the customer is not a subscriber, in a step 620, the customer may be, for example, presented with means for enabling the selection of public genomic and proteomic products and services from the provider 105. The products and services available to a non-subscriber may be the same or different from those available to a subscriber. In some embodiments, more products and services may be available to a subscriber than are available to a non-subscriber.

- [0107] Once a product or service has been selected, in a step 625, the provider 105 responds by providing the selected product or service at an established non-subscriber rate.
- [0108] Steps 610 or 620 provide the subscribers and non-subscribers with multiple products and services from which to choose. Accordingly, in steps 615 or 625, a variety of operational flows could be executed; such operational flows are within the scope and spirit of the invention. Further, as a consequence of providing a particular product or service, the need for additional products or services may arise. Accordingly, in an embodiment of the present invention, the need for additional products and services is anticipated.
- [0109] An exemplary method for providing additional products and services related to an initial product or service provided to the subscribers and non-subscribers is now provided with reference to FIG. 7.
- [0110] In step 705, a determination is made as to whether a customer is a subscriber or not. The results of this determination will dictate the nature, extent, configuration, and other details of products and services to which the customer is provided access.
- [0111] Next, if the customer is a subscriber, then the customer is presented with means for enabling the selection of public and private genomic and proteomic products and services from the provider 105 (step 710).
- [0112] Alternatively, where the customer is not a subscriber, in a step 715, the customer is presented with means for enabling the selection of public genomic and proteomic products and services from the provider 105.
- [0113] In one embodiment, a listing of available products and services is provided to the customer on a display associated with a customer computer system such as customer system 410 illustrated in FIG. 4. The user is then able to select products and services from the list using an input device such as a keyboard or mouse.
- [0114] Once an initial selection of products or services has been made, in a step 720, the provider 105 responds by providing the selected initial product or

service. In one embodiment, the customer will be charged a subscriber rate or a non-subscriber rate for the selected product or service.

[0115] In a step 725, products or services that are related to the initial products or services provided are identified. For example, an initial product may be a clone from a clone collection, related products would include, but not be limited to, a polypeptide encoded by the clone, an expression system (*e.g.*, a vector comprising the ORF for the polypeptide and a suitable host cell) for expressing the polypeptide, antibodies that specifically bind to the polypeptide, reagents for assaying an activity of the polypeptide and the like. Related services may include the production of any related product, for example, expression and purification of the polypeptide, production of antibodies specific to the polypeptide, and the like.

[0116] Next, the customer is presented with means for enabling the selection of the identified products or services that are related to the initially provided product or service (step 730).

[0117] If the customer elects to obtain a related product or service (step 735), the provider 105 responds by providing the related product or service (step 740).

[0118] If the customer does not wish to obtain the related product or service, in a step 745, he or she can elect to request new products or services. In this case, the customer is again presented with the option of selecting initial genomic and proteomic products and services (steps 710 or 715).

4.2 Providing Genomic and Proteomic Research Products and Services

[0119] Requesting clone construction is one service that can be requested by both subscribers and non-subscribers and is likely to lead to the need for additional products or services. FIGS. 8 and 9 will now be used to describe an exemplary method for providing clone construction and activities related thereto in accordance with one embodiment of the present invention.

- [0120] In a step 805, the provider constructs one or more clones in response to a customer's selection of this service. An exemplary method for constructing clones is described with reference to the steps shown in FIG. 9.
- [0121] In a step 905, target templates are identified. A target template may be a nucleic acid molecule that contains a nucleic acid sequence of interest that a customer desires to be included in a clone. In an embodiment of the present invention, all or a portion of a nucleic acid sequence of interest may be compared (*e.g.*, BLASTed) against a number of available public and/or private clone databases in order to identify potential templates from which to amplify corresponding sequence of interest (*e.g.*, ORF).
- [0122] Next, in a step 910, clones corresponding to the identified potential templates are processed. The desired template is isolated and a clone comprising the desired nucleic acid sequence is prepared from the template using standard techniques (*e.g.*, PCR cloning, recombinational cloning, restriction digest and ligation cloning, topoisomerase-mediated cloning, *etc.*). For example, the desired nucleic acid sequence of interest may be amplified from a template using PCR primers that flank the desired sequence. PCR primers may contain sequences corresponding to one or more recognition sites. For example, a PCR primer may contain the sequence of all or a portion of a recombination site, all or a portion of a topoisomerase site, all or a portion of a restriction enzyme site, or combinations of the above. After amplification, the amplification product may be inserted into one or more vectors making use of one or more of the recognition sites. For example, after PCR, an amplification product comprising recombination sites may be contacted with one or more vectors comprising compatible recombination sites and one or more recombination proteins under conditions causing the amplification product to be inserted in the vector.
- [0123] A clone comprises a nucleic acid sequence of interest. A nucleic acid sequence of interest may be any nucleic acid sequence. For example, a nucleic acid sequence of interest may comprise an ORF. The ORF may correspond to all or a portion of a polypeptide (*e.g.*, may be a full-length ORF or a partial ORF). A sequence comprising an ORF may further comprise one

or more stop codons, one or more promoters, one or more enhancers, one or more polyadenylation sites, one or more splice sites or other sequences known to those skilled in the art. A nucleic acid sequence of interest may comprise a sequence of an un-translated RNA molecule. For example, a sequence of interest may comprise the sequence of a tRNA, a ribozyme, an RNAi, an anti-sense molecule and the like.

[0124] In one embodiment, full-length clones that correspond to the targets are inoculated into 96-well Bio-Blocks for subsequent mini-preps. In parallel, PCR primers, which flank each ORF including the stop codon, are designed. In an embodiment, primers include the full attB1 and attB2 sites. In this way, subsequent cloning of the amplicons into a Gateway-compatible donor vector (e.g. pDONR221) can be performed. Primers may be synthesized at a 50 nmol scale, desalted purity, in the same format as the arrayed clones (96-well) in order to facilitate set-up of the amplification reactions. For those targets which are deemed vital to the collection but are not present within the clone collections, the provider utilizes its collection of >50 full-length and normalized full-length human cDNA libraries as potential templates from which to amplify the ORF. Primer design and synthesis proceeds as described earlier. Amplification of the ORF proceeds using a DNA polymerase, preferably one with proofreading activity (e.g. Platinum *Pfx*), under conditions which will minimize the potential for PCR-induced nucleotide mutations (e.g. base changes, insertions, deletions). Immediately following amplification, products are run out on a 1% agarose gel containing ethidium bromide (0.25 µg/ml) and visualized on a gel documentation system in order to confirm amplification of the correct product. Products are then purified in a 96-well format using a commercially available filter plate to remove excess primer and unincorporated nucleotides. Purified PCR products are then reacted with pDONR221 in a BxP Gateway™ cloning reaction in a 96-well format to produce entry clones. Upon termination of the BxP reaction with proteinase K, DNA is transformed, for example, into MultiShot™ TOP10 chemically competent *E. coli* and selected on solid medium containing kanamycin (50

μg/ml). One or two individual antibiotic-resistant colonies are then selected per clone and subjected to diagnostic PCR using vector-specific primers in order to confirm presence of the ORF insert within the entry vector.

[0125] Next, in a step 915, the entry clones produced in step 910 are confirmed. In one embodiment, confirmation is achieved via agarose gel electrophoresis and subsequent visualization on a gel documentation system.

[0126] Processing of the entry clones continues in step 920. In one embodiment, confirmed entry clones from step 915 are inoculated into liquid media containing kanamycin (50 μg/ml) and cultured overnight for the purpose of producing glycerol stocks of each of the entry clones. Full-length nucleotide sequence verification of the glycerol stocks is then completed. The confirmed entry clones are then prepped and initially subjected to 5' and 3' end sequencing using the universal sequencing sites within the vector. Full-length sequencing proceeds via primer walking and results in 2X coverage of the ORFs.

[0127] Finally, in step 925, once the sequence data is annotated and confirmed, the entry clones are entered into the clone collection. In one embodiment, the clone is added to either the public clone collection or the private clone collection.

[0128] In accordance with an embodiment of the present invention, the customer is able to identify the clones that are built and added to the clone collection. Further, the subscriber may stipulate the order in which clones are built and added to the clone collection. In this way, the populating of the clone collection is prioritized to meet the research needs of the subscriber.

[0129] Returning to FIG. 8, once the clones have been constructed and added to the clone collection, in a step 810, the clone collection database may be updated with information describing the attributes of the newly added entry clones.

[0130] In a step 815, where the customer is a subscriber, the subscriber record for the customer may be updated. Accordingly, the amount of funds credited for clone purchases may be reduced by an amount equal to the subscriber fee

for this service. Additionally, the total number of clones ordered is incremented by an amount equal to the number of clones ordered.

[0131] In a step 820, the provider identifies optimized protein expression systems for one or more of the clones in the clone collection. In one embodiment, data describing the characteristics of the optimized protein expression systems is maintained in the expression database 435. Optimized protein expression systems may identify the vector and host shown to yield protein of a particular type or quantity. An optimized protein expression system may identify codons to be used for one or more amino acids that result in improved expression in one or more host cells. One or more clones may be constructed that use one or more of the optimized codons to encode the polypeptide to be expressed. By taking advantage of this service, the customer can avoid the time and expense involved with identifying optimized protein expression systems on their own.

[0132] In a step 825, the provider determines if the customer would like to obtain protein produced by any of the clones in the clone collection. If protein is desired, then in step 830, the purified protein products are produced and/or provided to the customer.

[0133] In a step 835, the provider determines if the customer would like to obtain antibodies produced by any of the clones in the clone collection. If antibodies are desired, then in step 840, antibody products are provided to the customer.

[0134] In accordance with the above described system and methods, a customer is able to obtain customized genomic and proteomic products and services. In this way, a single resource for assisting with the efficient identification of pharmacologically accessible targets is realized.

[0135] FIG. 10 illustrates yet another exemplary method for iteratively providing genomic and proteomic products and services in accordance with one embodiment of the present invention.

[0136] In a step 1005, customers are given access to one or more databases by the provider.

[0137] In a step 1010, customers may request a product or service, such as requesting reagents, for example.

[0138] In response, in a step 1015, the provider supplies the requested reagents.

[0139] Next, in a step 1020, customers may request additional reagents related to the originally requested product or service. For example, customers may request protein antibodies, *etc.*

[0140] In response, in a step 1025, the provider supplies the related reagents requested by the customers.

[0141] The steps described herein are presented for explanation only and are not intended to limit the present invention. Based at least on the teachings described herein, a person skilled in the relevant arts will recognize that one or more steps could be added or removed without departing from the spirit and scope of the present invention. Further details of the products and services available in accordance with embodiments of the present invention will now be described.

5. Detailed Exemplary Products Description

Clone Collections.

[0142] In some embodiments of the invention, a collection of clones (*e.g.*, clones comprising an ORF or other sequence of interest) may be constructed. A collection of clones may be constructed in response to a request from a subscriber and may comprise one or more sequences identified by a subscriber. A clone collection may comprise clones comprising any sequences that are of interest to a subscriber. A clone collection may contain sequences representing all, substantially all, a majority, or a representative number of all known members of a class of polypeptides. For example, a collection may contain clones comprising ORFs of all known polypeptides having a particular activity and/or characteristic of interest (*e.g.*, all human polypeptides having a particular enzymatic activity of interest).

- [0143] Collections may comprise clones comprising ORFs encoding all, substantially all, a majority, or a representative number of polypeptides related to and/or affected by a particular activity. For example, a collection may comprise clones comprising ORFs relating to or affected by a particular ligand. Clones in a collection of this type might comprise ORFs encoding signal transduction polypeptides (*e.g.*, receptors), related signaling polypeptides (*e.g.*, polypeptides involved in signaling pathways), and polypeptides affected by the ligand (*e.g.*, polypeptides induced, repressed, activated, in-activated, *etc.*).
- [0144] Collections may comprise clones comprising ORFs encoding all, substantially all, a majority, or a representative number of polypeptides involved in the metabolism (*e.g.*, synthesis and degradation) of a metabolite of interest (*e.g.*, a lipid, carbohydrate, peptide, *etc.*) as well as clones comprising ORFs encoding the polypeptides affected by the metabolite. For example, a collection may contain clones comprising ORFs encoding the enzymes of the biosynthetic pathway that results in the production of a metabolite of interest, those involved in the degradative pathway of the metabolite as well as those affected by the presence or absence of the metabolite. Representative metabolites include, but are not limited to, lipids (*e.g.*, eicosanoids, prostaglandins, prostacyclins, thromboxanes, leukotrienes, steroid hormones, *etc.*) carbohydrates (*e.g.*, inositol phosphate), peptides (*e.g.*, cytokines, chemokines, interleukins, growth factors) and the like.
- [0145] Examples of collections that may be prepared include, but are not limited to, those in Tables 1-15 or subsets thereof. Tables 1-15 contain the GenBank accession numbers of sequences relating to various molecules of interest (*e.g.*, polypeptides, hormones, small molecules, *etc.*). Sequences relating to a molecule of interest may comprise sequences of the molecules of interest (*e.g.*, when the molecule of interest is a polypeptide or nucleic acid), sequences of polypeptides involved in the metabolism (*e.g.*, synthesis and/or degradation) of the molecule of interest, sequences of polypeptides that are affected by the molecule of interest (directly or indirectly), and/or polypeptides involved in signaling or other processes mediated by the

molecule of interest. The accession numbers of the sequences listed in the tables, as well as the underlying full GenBank record of each accession number (*e.g.*, sequences and references cited) are specifically incorporated herein by reference.

[0146] Nucleic acid sequences of interest to be included in a clone collection of the invention (*e.g.*, ORFs, tRNAs, ribozymes, RNAis, 5'-un-translated regions, promoters, enhancers, *etc.*) may be provided in any suitable vector for inclusion in a collection. In some instances, it may be desirable to position a nucleic acid sequence of interest (*e.g.*, an ORF or other nucleic acid of interest) in the vector such that the orientation of the nucleic acid sequence of interest with respect to the vector is controlled. This may be accomplished by equipping nucleic acid sequence of interest with one or more adapter sequences prior to inserting the nucleic acid into the vector. Adapter sequences may comprise one or more functional sites such as one or more recognition sites (*e.g.*, restriction enzyme recognition sites, one or more recombination sites and/or one or more topoisomerase recognition sites). Suitable adapter sequences may be attached to a nucleic acid sequence of interest using techniques well known in the art, for example, by ligating an adapter to the nucleic acid or by amplifying the nucleic acid with a primer containing the adapter sequences.

[0147] Clone collections of the invention may contain two or more clones (*e.g.*, a plurality of individual clones each comprising a vector and a nucleic acid sequence of interest or insert). In many instances, the nucleic acid inserts will reside in a vector such that the insert is not normally transcribed. In such instances, the vectors of the clone collection may be used to propagate and/or transfer the inserts to other nucleic acid molecules (*e.g.*, vectors, chromosomes, *etc.*). In other instances, clone collections of the invention will be designed so that nucleic acid insert is operably linked to an expression control element (*e.g.*, a promoter). Regardless of whether the nucleic acid insert resides in a vector in an expressible format, the insert may be linked to nucleic acid which is co-transcribed with the insert under appropriate conditions. As an example, when the nucleic acid insert is an ORF, the ORF

may be linked to nucleic acid which encodes an amino acid sequence which is not normally associated with the expression product of the ORF. Thus, upon transcription and translation, a fusion protein is produced.

[0148] As explained elsewhere herein, fusion proteins may be produced when stop codon suppression is employed. In other words, a stop codon may be located between the ORF and the nucleic acid which encodes the other amino acid sequence and stop codon suppression can be used to generate a fusion product. Of course, expression of the ORF in the absence of stop codon suppression will yield the product of the ORF without the other amino acid sequence.

[0149] As noted above, clone collections of the invention may contain essentially any number of clones. Further, these clones may encode RNA and/or polypeptide fusion products. Clone collections of the invention may contain from about 2 to about 100,000 clones, from about 2 to about 50,000 clones, from about 2 to about 40,000 clones, from about 2 to about 30,000 clones, from about 2 to about 20,000 clones, from about 2 to about 10,000 clones, from about 2 to about 5,000 clones, from about 2 to about 2,000 clones, from about 20 to about 100,000 clones, from about 20 to about 50,000 clones, from about 20 to about 30,000 clones, from about 20 to about 20,000 clones, from about 20 to about 10,000 clones, from about 20 to about 5,000 clones, from about 20 to about 500 clones, from about 50 to about 100,000 clones, from about 50 to about 50,000 clones, from about 50 to about 40,000 clones, from about 50 to about 30,000 clones, from about 50 to about 20,000 clones, from about 50 to about 10,000 clones, from about 50 to about 5,000 clones, from about 50 to about 3,000 clones, from about 50 to about 1,000 clones, from about 100 to about 100,000 clones, from about 100 to about 50,000 clones, from about 100 to about 30,000 clones, from about 100 to about 20,000 clones, from about 100 to about 10,000 clones, from about 100 to about 5,000 clones, from about 100 to about 3,000 clones, from about 200 to about 100,000 clones, from about 200 to about 50,000 clones, from about 200 to about 40,000 clones, from about 200 to about 30,000 clones, from about 200 to about 20,000 clones, from about 200 to about 10,000 clones,

from about 200 to about 5,000 clones, from about 200 to about 4,000 clones, from about 200 to about 3,000 clones, from about 200 to about 2,000 clones, from about 200 to about 1,000 clones, from about 300 to about 100,000 clones, from about 300 to about 50,000 clones, from about 30 to about 30,000 clones, from about 300 to about 20,000 clones, from about 300 to about 10,000 clones, from about 300 to about 5,000 clones, from about 300 to about 3,000 clones, from about 300 to about 2,000 clones, from about 300 to about 1,000 clones, from about 400 to about 100,000 clones, from about 400 to about 50,000 clones, from about 400 to about 30,000 clones, from about 400 to about 10,000 clones, from about 400 to about 5,000 clones, from about 400 to about 3,000 clones, from about 400 to about 2,000 clones, from about 400 to about 1,000 clones, from about 500 to about 100,000 clones, from about 500 to about 50,000 clones, from about 500 to about 25,000 clones, from about 500 to about 10,000 clones, from about 500 to about 5,000 clones, from about 500 to about 3,000 clones, from about 500 to about 2,000 clones, from about 500 to about 1,000 clones, from about 750 to about 100,000 clones, from about 750 to about 50,000 clones, from about 750 to about 30,000 clones, from about 750 to about 10,000 clones, from about 750 to about 5,000 clones, from about 750 to about 3,000 clones, from about 750 to about 2,000 clones, from about 750 to about 1,000 clones, from about 1,000 to about 100,000 clones, from about 1,000 to about 50,000 clones, from about 1,000 to about 30,000 clones, from about 1,000 to about 10,000 clones, from about 1,000 to about 5,000 clones, from about 1,000 to about 3,000 clones, from about 2,000 to about 100,000 clones, from about 2,000 to about 50,000 clones, from about 2,000 to about 30,000 clones, from about 2,000 to about 10,000 clones, from about 2,000 to about 5,000 clones, from about 2,000 to about 2,000 clones, from about 2,000 to about 150,000 clones, from about 2,000 to about 200,000 clones, from about 2,000 to about 300,000 clones, from about 2,000 to about 400,000 clones, from about 2,000 to about 500,000 clones, from about 2,000 to about 600,000 clones, from about 2,000 to about 800,000 clones, from about 2,000 to about 1,000,000 clones, from about 5,000 to about 1,000,000 clones, from about 5,000 to about 500,000 clones, from about 5,000 to about 250,000 clones,

from about 5,000 to about 100,000 clones, from about 5,000 to about 50,000 clones, from about 5,000 to about 25,000 clones, from about 5,000 to about 10,000 clones, from about 10,000 to about 100,000 clones, from about 10,000 to about 250,000 clones, from about 10,000 to about 500,000 clones, from about 10,000 to about 750,000 clones, from about 10,000 to about 1,000,000 clones, from about 10,000 to about 50,000 clones, from about 10,000 to about 25,000 clones, from about 20,000 to about 100,000 clones, from about 20,000 to about 250,000 clones, from about 20,000 to about 500,000 clones, from about 20,000 to about 1,000,000 clones, from about 20,000 to about 50,000 clones, from about 20,000 to about 40,000 clones, from about 40,000 to about 100,000 clones, from about 40,000 to about 250,000 clones, from about 40,000 to about 500,000 clones, from about 40,000 to about 1,000,000 clones, from about 40,000 to about 75,000 clones, from about 60,000 to about 80,000 clones, from about 60,000 to about 100,000 clones, from about 60,000 to about 250,000 clones, from about 60,000 to about 500,000 clones, or from about 60,000 to about 1,000,000 clones.

[0150] A clone collection may comprise clones containing any nucleic acid sequences of interest. As examples, collections of clones which encode proteins involved in the same or related biological processes (see Tables 1-15); clones with inserts from a particular/individual organism (e.g., a human), clones with inserts from a particular species of organism, and clones with inserts from a particular strain of an organism (e.g., *E. coli* K12). In some embodiments, a clone collection may comprise nucleic acid sequences of interest that are derived from human, mouse, dog, rat, and/or other mammalian tissues. Clone collections may be constructed from more than one tissue source within an organism, for example, from brain, liver, kidney, pancreas, lung, heart, etc.

[0151] Nucleic acid segments used to prepare clones of collections of the invention may or may not contain one or more recombination sites and/or one or more topoisomerase recognition site. Further, in some collections, some clones may contain one or more recombination sites and/or one or more

topoisomerase recognition site while other clones may not contain any such sites.

[0152] In some instances, a clone to be included in a clone collection may comprise a vector containing an ORF. A vector may be provided with one or more functional sequences. Functional sequences on the vector may be used to control the expression of a polypeptide of interest from an ORF and to influence the characteristics of the expressed polypeptide. Such sequences may be located anywhere in the vector that allows them to exert their function. For example, a vector may comprise a variety of sequences including, but not limited to, sequences suitable for use as primer sites (e.g., sequences to which a primer, such as a sequencing primer or amplification primer may hybridize to initiate nucleic acid synthesis, amplification or sequencing), transcription or translation signals or regulatory sequences such as promoters and/or enhancers, ribosomal binding sites, Kozak sequences, start codons, termination signals such as stop codons, origins of replication, recombination sites (or portions thereof), selectable markers, and ORFs or portions of ORFs to create protein fusions (e.g., N-terminal or C-terminal) such as GST, GUS, GFP, YFP, CFP, maltose binding protein, 6 histidines (HIS6), epitopes, haptens and the like and combinations thereof. In some embodiments, any one or more of the functional sequences discussed above may be operably linked to an ORF to form a nucleic acid sequence of interest comprising the ORF and one or more functional sequences. Thus functional sequences may be provided on a vector and/or as part of a nucleic acid sequence of interest.

[0153] An ORF may be cloned from a known sequence (e.g., all or a part of a sequence having a GenBank accession number) using standard techniques (see, Sambrook, *et al.*, *supra*). For example, PCR amplification may be conducted using a template nucleic acid comprising the ORF. In some embodiments, primers for amplification may comprise all or a portion of one or more recognition sequences (e.g., restriction sites, topoisomerase recognition sites, and/or recombination sites). The amplification product may be inserted into a nucleic acid molecule (e.g., a vector) using techniques known in the art. In some preferred embodiments, primers for amplification

of an ORF may comprise a recombination site and the amplification product may be inserted into a vector using GATEWAY™ recombinational cloning techniques available from Invitrogen Corporation, Carlsbad, CA.

[0154] After cloning an ORF into a vector, the entire ORF may be sequenced to ensure that the cloned ORF has the desired sequence. Sequencing may be accomplished using standard techniques (*e.g.*, dideoxy sequencing).

[0155] In some embodiments, ORFs of the invention and/or vectors comprising the ORFs of the invention may be provided with one or more recombination sites. Recombination sites for use in the invention may be any nucleic acid that can serve as a substrate in a recombination reaction. Such recombination sites may be wild-type or naturally occurring recombination sites, or modified, variant, derivative, or mutant recombination sites. Examples of recombination sites for use in the invention include, but are not limited to, phage-lambda recombination sites (such as attP, attB, attL, and attR and mutants or derivatives thereof) and recombination sites from other bacteriophages such as phi80, P22, P2, 186, P4 and P1 (including lox sites such as loxP and loxP511).

[0156] Recombination proteins and mutant, modified, variant, or derivative recombination sites for use in the invention include those described in U.S. Patent Nos. 5,888,732, 6,143,557, 6,171,861, 6,270,969, and 6,277,608 and in U.S. application no. 09/438,358 (filed November 12, 1999), based upon United States provisional application no. 60/108,324 (filed November 13, 1998). Mutated att sites (*e.g.*, attB 1-10, attP 1-10, attR 1-10 and attL 1-10) are described in United States provisional patent application numbers 60/122,389, filed March 2, 1999, 60/126,049, filed March 23, 1999, 60/136,744, filed May 28, 1999, 60/169,983, filed December 10, 1999, and 60/188,000, filed March 9, 2000, and in United States application numbers 09/517,466, filed March 2, 2000, and 09/732,914, filed December 11, 2000 (published as 20020007051-A1) the disclosures of which are specifically incorporated herein by reference in their entirety. Other suitable recombination sites and proteins are those associated with the GATEWAY™ Cloning Technology available from Invitrogen Corp., Carlsbad, CA, and

described in the product literature of the GATEWAY™ Cloning Technology, the entire disclosures of all of which are specifically incorporated herein by reference in their entireties.

[0157] Sites that may be used in the present invention include att sites. The 15 bp core region of the wild-type att site (GCTTTTTAT ACTAA (SEQ ID NO:)), which is identical in all wild-type att sites, may be mutated in one or more positions. Other att sites that specifically recombine with other att sites can be constructed by altering nucleotides in and near the 7 base pair overlap region, bases 6-12 of the core region. Thus, recombination sites suitable for use in the methods, molecules, compositions, and vectors of the invention include, but are not limited to, those with insertions, deletions or substitutions of one, two, three, four, or more nucleotide bases within the 15 base pair core region (see U.S. Application Nos. 08/663,002, filed June 7, 1996 (now U.S. Patent No. 5,888,732) and 09/177,387, filed October 23, 1998, which describes the core region in further detail, and the disclosures of which are incorporated herein by reference in their entireties). Recombination sites suitable for use in the methods, compositions, and vectors of the invention also include those with insertions, deletions or substitutions of one, two, three, four, or more nucleotide bases within the 15 base pair core region that are at least 50% identical, at least 55% identical, at least 60% identical, at least 65% identical, at least 70% identical, at least 75% identical, at least 80% identical, at least 85% identical, at least 90% identical, or at least 95% identical to this 15 base pair core region.

[0158] Analogously, the core regions in attB1, attP1, attL1 and attR1 are identical to one another, as are the core regions in attB2, attP2, attL2 and attR2. Nucleic acid molecules suitable for use with the invention also include those comprising insertions, deletions or substitutions of one, two, three, four, or more nucleotides within the seven base pair overlap region (TTTATAc, bases 6-12 in the core region). The overlap region is defined by the cut sites for the integrase protein and is the region where strand exchange takes place. Examples of such mutants, fragments, variants and derivatives include, but are not limited to, nucleic acid molecules in which (1) the thymine at position 1 of

the seven bp overlap region has been deleted or substituted with a guanine, cytosine, or adenine; (2) the thymine at position 2 of the seven bp overlap region has been deleted or substituted with a guanine, cytosine, or adenine; (3) the thymine at position 3 of the seven bp overlap region has been deleted or substituted with a guanine, cytosine, or adenine; (4) the adenine at position 4 of the seven bp overlap region has been deleted or substituted with a guanine, cytosine, or thymine; (5) the thymine at position 5 of the seven bp overlap region has been deleted or substituted with a guanine, cytosine, or adenine; (6) the adenine at position 6 of the seven bp overlap region has been deleted or substituted with a guanine, cytosine, or thymine; and (7) the cytosine at position 7 of the seven bp overlap region has been deleted or substituted with a guanine, thymine, or adenine; or any combination of one or more (*e.g.*, two, three, four, five, *etc.*) such deletions and/or substitutions within this seven bp overlap region. The nucleotide sequences of representative seven base pair core regions are set out below.

[0159] Altered att sites have been constructed that demonstrate that (1) substitutions made within the first three positions of the seven base pair overlap (TTTATAC) strongly affect the specificity of recombination, (2) substitutions made in the last four positions (TTTATAC) only partially alter recombination specificity, and (3) nucleotide substitutions outside of the seven bp overlap, but elsewhere within the 15 base pair core region, do not affect specificity of recombination but do influence the efficiency of recombination. Thus, nucleic acid molecules and methods of the invention include those comprising or employing one, two, three, four, five, six, eight, ten, or more recombination sites which affect recombination specificity, particularly one or more (*e.g.*, one, two, three, four, five, six, eight, ten, twenty, thirty, forty, fifty, *etc.*) different recombination sites that may correspond substantially to the seven base pair overlap within the 15 base pair core region, having one or more mutations that affect recombination specificity. Particularly preferred such molecules may comprise a consensus sequence such as NNNATAC wherein "N" refers to any nucleotide (*i.e.*, may be A, G, T/U or C). Preferably, if one of the first three nucleotides in the consensus sequence is a

T/U, then at least one of the other two of the first three nucleotides is not a T/U.

[0160] The core sequence of each att site (attB, attP, attL and attR) can be divided into functional units consisting of integrase binding sites, integrase cleavage sites and sequences that determine specificity. Specificity determinants are defined by the first three positions following the integrase top strand cleavage site. These three positions are shown with underlining in the following reference sequence: CAACTTTTTATAC AAAGTTG (SEQ ID NO:). Modification of these three positions (64 possible combinations, Table 16) can be used to generate att sites that recombine with high specificity with other att sites having the same sequence for the first three nucleotides of the seven base pair overlap region. The possible combinations of first three nucleotides of the overlap region are shown in Table 16.

[0161] Representative examples of seven base pair att site overlap regions suitable for in methods, compositions and vectors of the invention are shown in Table 17. The invention further includes nucleic acid molecules comprising one or more (*e.g.*, one, two, three, four, five, six, eight, ten, twenty, thirty, forty, fifty, *etc.*) nucleotides sequences set out in Table 17. Thus, for example, in one aspect, the invention provides nucleic acid molecules comprising the nucleotide sequence GAAATAC, GATATAC, ACAATAC, or TGCATAC.

[0162] As noted above, alterations of nucleotides located 3' to the three base pair region discussed above can also affect recombination specificity. For example, alterations within the last four positions of the seven base pair overlap can also affect recombination specificity.

[0163] For example, mutated att sites that may be used in the practice of the present invention include attB1 (AGCCTGCTTT TTTGTACAAA CTTGT (SEQ ID NO:)), attP1 (TACAGGTAC TAATACCATC TAAGTAGTTG ATTCATAGTG ACTGGATATG TTGTGTTTA CAGTATTATG TAGTCTGTT TTTATGCAAA ATCTAATTAA ATATATTGAT ATTTATATCA TTTTACGTTT CTCGTTCAAGC TTTTTGTAC AAAGTTGGCA TTATAAAAAAA GCATTGCTCA TCAATTGTT GCAACGAACA GGTCACTATC AGTCAAAATA AAATCATTAT

TTG (SEQ ID NO:)), attL1 (CAAATAATGA TTTTATTTG ACTGATAGTG ACCTGTCGT TGCAACAAAT TGATAAGCAA TGCTTTTA TAATGCCAAC TTTGTACAAA AAAGCAGGCT (SEQ ID NO:)), and attR1 (ACAAGTTGT ACAAAAAAGC TGAACGAGAA ACGTAAAATG ATATAAATAT CAATATATTA AATTAGATT TGCATAAAAA ACAGACTACA TAATACTGTA AAACACAAACA TATCCAGTCA CTATG (SEQ ID NO:)). Table 18 provides the sequences of the regions surrounding the core region for the wild type att sites (attB0, P0, R0, and L0) as well as a variety of other suitable recombination sites. Those skilled in the art will appreciate that the remainder of the site may be the same as the corresponding site (B, P, L, or R) listed above.

[0164] Other recombination sites having unique specificity (*i.e.*, a first site will recombine with its corresponding site and will not substantially recombine with a second site having a different specificity) are known to those skilled in the art and may be used to practice the present invention. Corresponding recombination proteins for these systems may be used in accordance with the invention with the indicated recombination sites. Other systems providing recombination sites and recombination proteins for use in the invention include the FLP/FRT system from *Saccharomyces cerevisiae*, the resolvase family (*e.g.*, $\gamma\delta$, TndX, TnpX, Tn3 resolvase, Hin, Hjc, Gin, SpCCE1, ParA, and Cin), and IS231 and other *Bacillus thuringiensis* transposable elements. Other suitable recombination systems for use in the present invention include the XerC and XerD recombinases and the psi, dif and cer recombination sites in *E. coli*. Other suitable recombination sites may be found in United States patent no. 5,851,808 issued to Elledge and Liu which is specifically incorporated herein by reference.

[0165] The materials and methods of the invention may further encompass the use of "single use" recombination sites which undergo recombination one time and then either undergo recombination with low frequency (*e.g.*, have at least five fold, at least ten fold, at least fifty fold, at least one hundred fold, or at least one thousand fold lower recombination activity in subsequent recombination reactions) or are essentially incapable of undergoing

recombination. The invention also provides methods for making and using nucleic acid molecules which contain such single use recombination sites and molecules which contain these sites. Examples of methods which can be used to generate and identify such single use recombination sites are set out in PCT/US00/21623, published as WO 01/11058, which claims priority to United States provisional patent application 60/147,892, filed August 9, 1999, both of which are specifically incorporated herein by reference.

[0166] Single use recombination sites are especially useful for either decreasing the frequency of or preventing recombination when either large number of nucleic acid segments are attached to each other or multiple recombination reactions are performed. Thus, the invention further includes nucleic acid molecules which contain single use recombination sites, as well as methods for performing recombination using these sites.

[0167] Recombination sites used with the invention may also have embedded functions or properties. An embedded functionality is a function or property conferred by a nucleotide sequence in a recombination site that is not directly associated with recombination efficiency or specificity. For example, recombination sites may contain protein coding sequences (*e.g.*, intein coding sequences), intron/exon splice sites, origins of replication, and/or stop codons. Further, recombination sites that have more than one (*e.g.*, two, three, four, five, *etc.*) embedded functions or properties may also be prepared.

[0168] In some instances it will be advantageous to remove either RNA corresponding to recombination sites from RNA transcripts or amino acid residues encoded by recombination sites from polypeptides translated from such RNAs. Removal of such sequences can be performed in several ways and can occur at either the RNA or protein level. One instance where it may be advantageous to remove RNA transcribed from a recombination site will be when constructing a fusion polypeptide between a polypeptide of interest and a coding sequence present on the vector. The presence of an intervening recombination site between the ORF of the polypeptide of interest and the vector coding sequences may result in the recombination site (1) contributing codons to the mRNA that result in the inclusion of additional amino acid

residues in the expression product, (2) contributing a stop codon to the mRNA that prevents the production of the desired fusion protein, and/or (3) shifting the reading frame of the mRNA such that the two protein are not fused "in-frame."

[0169] In one aspect, the invention provides methods for removing nucleotide sequences encoded by recombination sites from RNA molecules. One example of such a method employs the use of intron/exon splice sites to remove RNA encoded by recombination sites from RNA transcripts. Nucleotide sequences that encode intron/exon splice sites may be fully or partially embedded in the recombination sites used in the present invention and/or may be encoded by adjacent nucleic acid sequence. Sequences to be excised from RNA molecules may be flanked by splice sites that are appropriately located in the sequence of interest and/or on the vector. For example, one intron/exon splice site may be encoded by a recombination site and another intron/exon splice site may be encoded by other nucleotide sequences (e.g., nucleic acid sequences of the vector or a nucleic acid of interest). Nucleic acid splicing is well known to those skilled in the art and is discussed in the following publications: R. Reed, *Curr. Opin. Genet. Devel.* 6:215-220 (1996); S. Mount, *Nucl. Acids. Res.* 10:459-472, (1982); P. Sharp, *Cell* 77:805-815, (1994); K. Nelson and M. Green, *Genes and Devel.* 23:319-329 (1988); and T. Cooper and W. Mattox, *Am. J. Hum. Genet.* 61:259-266 (1997).

[0170] Splice sites can be suitably positioned in a number of locations. For example, a vector designed to express an inserted ORF with an N-terminal fusion—for example, with a detectable marker—the first splice site could be encoded by vector sequences located 3' to the detectable marker coding sequences and the second splice site could be partially embedded in the recombination site that separates the detectable marker coding sequences from the coding sequences of the ORF. Further, the second splice site either could abut the 3' end of the recombination site or could be positioned a short distance (e.g., 2, 4, 8, 10, 20 nucleotides) 3' to the recombination site. In

addition, depending on the length of the recombination site, the second splice site could be fully embedded in the recombination site.

[0171] A modification of the method described above involves the connection of multiple (*i.e.*, two or more) nucleic acid segments such that, upon expression, a fusion protein is produced. In one specific example, one nucleic acid segment encodes a detectable marker—for example, a vector comprising the GFP coding sequence—and another nucleic acid segment encodes an ORF of interest. Each of these segments may contain one or more recombination sites at one or both ends. In addition, the nucleic acid segment that encodes the detectable marker may contain an intron/exon splice site near its 3' terminus and the nucleic acid segment that contains the ORF of interest may also contain an intron/exon splice site near its 5' terminus. Upon recombination, the nucleic acid segment that encodes the detectable marker is positioned 5' to the nucleic acid segment that encodes the ORF of interest. Further, these two nucleic acid segments are separated by a recombination site that is flanked by intron/exon splice sites. Excision of the intervening recombination site thus occurs after transcription of the fusion mRNA. Thus, in one aspect, the invention is directed to methods for removing RNA transcribed from recombination sites from transcripts generated from nucleic acids described herein. In many embodiments, the processed RNA will encode an ORF of interest which upon expression results in the production of a fusion protein.

[0172] Splice sites may be introduced into nucleic acid molecules to be used in the present invention in a variety of ways. One method that could be used to introduce intron/exon splice sites into nucleic acid segments is PCR. For example, primers could be used to generate nucleic acid segments corresponding to an ORF of interest and containing both a recombination site and an intron/exon splice site.

[0173] The above methods can also be used to remove RNA corresponding to recombination sites when the nucleic acid segment that is recombined with another nucleic acid segment encodes RNA that is not produced in a translatable format. One example of such an instance is where a nucleic acid

segment is inserted into a vector in a manner that results in the production of antisense RNA. This antisense RNA may be fused, for example, with RNA that encodes a ribozyme. Thus, the invention also provides methods for removing RNA corresponding to recombination sites from such molecules.

[0174] The invention further provides methods for removing one or more amino acid sequences from protein expression products by protein splicing. Nucleotide sequences that encode protein splice sites may be fully or partially embedded in the sequence of the protein expression product and/or protein splice sites may be encoded by adjacent nucleotide sequences. In some embodiments, the invention provides methods of removing tag sequences by protein splicing. Suitable splice sites are encoded in the sequence of interest and/or in vector sequences and a tag sequence may be removed by splicing after translation. In some embodiments, the invention provides methods for removing amino acid sequences encoded by functional sequences (e.g., recombination sites) from protein expression products by protein splicing. Nucleotide sequences that encode protein splice sites may be fully or partially embedded in the recombination sites that encode amino acid sequences excised from proteins or protein splice sites may be encoded by adjacent nucleotide sequences. Similarly, one protein splice site may be encoded by a recombination site and another protein splice site may be encoded by other nucleotide sequences (e.g., nucleic acid sequences of the vector or a nucleic acid of interest).

[0175] It has been shown that protein splicing can occur by excision of an intein from a protein molecule and ligation of flanking segments (see, e.g., Derbyshire *et al.*, *Proc. Natl. Acad. Sci. (USA)* 95:1356-1357 (1998)). In brief, inteins are amino acid segments that are post-translationally excised from proteins by a self-catalytic splicing process. A considerable number of intein consensus sequences have been identified (see, e.g., Perler, *Nucleic Acids Res.* 27:346-347 (1999)). Thus, inteins can be used, for example, to separate tags from proteins encoded by ORFs of interest.

[0176] Similar to intron/exon splicing, N- and C-terminal intein motifs have been shown to be involved in protein splicing. Thus, the invention further

provides compositions and methods for removing one or more amino acid sequences from protein expression products by protein splicing. Nucleotide sequences that encode protein splice sites may be fully or partially embedded in the sequence of the protein expression product and/or protein splice sites may be encoded by adjacent nucleotide sequences. In some embodiments, the invention provides compositions and methods for removing amino acid residues encoded by functional sequences (*e.g.*, recombination sites) from protein expression products by protein splicing. In a particular embodiment, this aspect of the invention is related to the positioning of nucleic acid sequences that encode intein splice sites on both the 5' and 3' end of recombination sites positioned between two coding regions. Thus, when the protein expression product is incubated under suitable conditions, amino acid residues encoded by these recombination sites will be excised. In another particular embodiment, this aspect of the invention is related to the positioning of nucleic acid sequences that encode intein splice sites on both the 5' and 3' end of amino acid tag sequences, which may be on the N-terminal, C-terminal and/or interior of the expression product. Thus, when the protein expression product is incubated under suitable conditions, amino acid residues of the tag sequence will be excised.

[0177] Protein splicing may be used to remove all or part of the amino acid sequences encoded by one or more recombination sites or amino acids sequences of one or more tags. Nucleic acid sequence that encode inteins may be, for example, fully or partially embedded in recombination sites or may adjacent to such sites. In certain circumstances, it may be desirable to remove a considerable number of amino acid residues. For example, an expression product may comprise a tag sequence and amino acids encoded by a recombination site. Such amino acids may extend beyond the N- and/or C-terminal ends of a polypeptide of interest. In such instances, intein coding sequence may be located a distance (*e.g.*, 30, 50, 75, 100, *etc.* nucleotides) 5' and/or 3' of the sequences to be removed (*e.g.*, the sequences encoded by the recombination site and the tag sequence).

[0178] While conditions suitable for intein excision will vary with the particular intein, as well as the protein that contains this intein, Chong *et al.*, *Gene* 192:271-281 (1997), have demonstrated that a modified *Saccharomyces cerevisiae* intein, referred to as Sce VMA intein, can be induced to undergo self-cleavage by a number of agents including 1,4-dithiothreitol (DTT), β -mercaptoethanol, and cysteine. For example, intein excision/splicing can be induced by incubation in the presence of 30 mM DTT, at 4°C for 16 hours.

Polypeptides

[0179] In some embodiments, the present invention provides polypeptides expressed from clones containing ORFs. The polypeptides may be expressed as native polypeptides, *i.e.*, without any modifications to the primary sequence. Polypeptides may also be expressed as fusion proteins (*e.g.*, N-terminal and/or C-terminal) and/or may be post-translationally modified (*e.g.*, glycosylated, *etc.*).

[0180] In some embodiments, the polypeptides expressed from cloned ORFs of the present invention may be modified to contain a tag (*e.g.*, an affinity tag) in order to facilitate the purification of the polypeptide. Suitable tags are well known to those skilled in the art and include, but are not limited to, repeated sequences of amino acids such as six histidines, epitopes such as the hemagglutinin epitope, the V5 epitope, and the myc epitope, and other amino acid sequences that permit the simplified purification of the polypeptide.

[0181] The invention further relates to fusion proteins comprising (1) a polypeptide, or fragment thereof, having one or more desired characteristics and/or activities and (2) a tag (*e.g.*, an affinity tag), as well as nucleic acid molecules and collections of nucleic acid molecules which encode such fusion proteins. In particular embodiments, the invention includes a polypeptide described herein having one or more (*e.g.*, one, two, three, four, five, six, seven, eight, *etc.*) tags. These tags may be located, for example, (1) at the N-terminus, (2) at the C-terminus, or (3) at both the N-terminus and C-terminus of the protein, or a fragment thereof having one or more desired

characteristic and/or activity. A tag may also be located internally (*e.g.*, between regions of amino acid sequence derived from a polypeptide encoded by a cloned ORF). The invention further includes collections of RNA (*e.g.*, mRNA) and polypeptide expression products (*e.g.*, fusion proteins, non-fusion proteins *etc.*) encoded by clone collections described herein.

[0182] Tags used in the invention may vary in length but will typically be from about 5 to about 100, from about 10 to about 100, from about 15 to about 100, from about 20 to about 100, from about 25 to about 100, from about 30 to about 100 from about 35 to about 100, from about 40 to about 100, from about 45 to about 100, from about 50 to about 100, from about 55 to about 100, from about 60 to about 100, from about 65 to about 100, from about 70 to about 100, from about 75 to about 100, from about 80 to about 100, from about 85 to about 100, from about 90 to about 100, from about 95 to about 100, from about 5 to about 80, from about 10 to about 80, from about 20 to about 80, from about 30 to about 80, from about 40 to about 80, from about 50 to about 80, from about 60 to about 80, from about 70 to about 80, from about 5 to about 60, from about 10 to about 60, from about 20 to about 60, from about 30 to about 60, from about 40 to about 60, from about 50 to about 60, from about 5 to about 40, from about 10 to about 40, from about 20 to about 40, from about 30 to about 40, from about 5 to about 30, from about 10 to about 30, from about 20 to about 30, from about 5 to about 25, from about 10 to about 25, or from about 15 to about 25 amino acid residues in length.

[0183] Tags used in the practice of the invention may serve any number of purposes. For example, such tags may (1) contribute to protein-protein interactions both internally within a protein (*e.g.*, between a tag sequence and a polypeptide sequence to which the tag has been attached) and with other protein molecules, (2) make the polypeptide amenable to particular purification methods (*e.g.*, affinity purification), (3) enable one to identify whether the polypeptide is present in a composition (*e.g.* ELISA, Western blot, *etc.*), and/or (4) stabilize or destabilize intra-protein interactions with the protein to which the tag has been added (*e.g.*, increase or decrease thermostability of the protein).

[0184] Examples of tags which may be used in the practice of the invention include metal binding domains (*e.g.*, a poly-histidine segments such as a three, four, five, six, or seven histidine region), immunoglobulin binding domains (*e.g.*, (1) Protein A; (2) Protein G; (3) T cell, B cell, and/or Fc receptors; and/or (4) complement protein antibody-binding domain); sugar binding domains (*e.g.*, a maltose binding domain); and detectable domains (*e.g.*, at least a portion of β -galactosidase). Fusion proteins may contain one or more tags such as those described above. Typically, fusion proteins that contain more than one tag will contain these tags at one terminus or both termini (*i.e.*, the N-terminus and the C-terminus) of the polypeptide, although one or more tags may be located internally in addition to those present at the termini. Further, more than one tag may be present at one terminus, internally and/or at both termini of the polypeptide. For example, three consecutive tags could be linked end-to-end at the N-terminus of the polypeptide. The invention further includes compositions and reaction mixture that contain the above fusion proteins, as well as methods for preparing these fusion proteins, nucleic acid molecules (*e.g.*, vectors) which encode these fusion proteins and recombinant host cells that contain these nucleic acid molecules. The invention also includes methods for using these fusion proteins as described elsewhere herein.

[0185] Tags that enable one to identify whether the fusion protein is present in a composition include, for example, tags that can be used to identify the protein in an electrophoretic gel. A number of such tags are known in the art and include epitopes and antibody binding domains, which can be used for Western blots.

[0186] The amino acid composition of the tags for use in the present invention may vary. In some embodiments, a tag may contain from about 1% to about 5% amino acids that have a positive charge at physiological pH, *e.g.*, lysine, arginine, and histidine, or from about 5% to about 10% amino acids that have a positive charge at physiological pH, or from about 10% to about 20% amino acids that have a positive charge at physiological pH, or from about 10% to about 30% amino acids that have a positive charge at physiological pH, or

from about 10% to about 50% amino acids that have a positive charge at physiological pH, or from about 10% to about 75% amino acids that have a positive charge at physiological pH. In some embodiments, a tag may contain from about 1% to about 5% amino acids that have a negative charge at physiological pH; e.g., aspartic acid and glutamic acid, or from about 5% to about 10% amino acids that have a negative charge at physiological pH, or from about 10% to about 20% amino acids that have a negative charge at physiological pH, or from about 10% to about 30% amino acids that have a negative charge at physiological pH, or from about 10% to about 50% amino acids that have a negative charge at physiological pH, or from about 10% to about 75% amino acids that have a negative charge at physiological pH. In some embodiments, a tag may comprise a sequence of amino acids that contains two or more contiguous charged amino acids that may be the same or different and may be of the same or different charge. For example, a tag may contain a series (e.g., two, three, four, five, six, ten etc.) of positively charged amino acids that may be the same or different. A tag may contain a series (e.g., two, three, four, five, six, ten etc.) of negatively charged amino acids that may be the same or different. In some embodiments, a tag may contain a series (e.g., two, three, four, five, six, ten etc.) of alternating positively charged and negatively charged amino acids that may be the same or different (e.g., positive, negative, positive, negative, etc.). Any of the above-described series of amino acids (e.g., positively charged, negatively charged or alternating charge) may comprise one or more neutral polar or non-polar amino acids (e.g., two, three, four, five, six, ten etc.) spaced between the charged amino acids. Such neutral amino acids may be evenly distributed through out the series of charged amino acids (e.g., charged, neutral, charged, neutral) or may be unevenly distributed throughout the series (e.g., charged, a plurality of neutral, charged, neutral, a plurality of charged, etc.).

[0187] In some embodiments, tags to be attached to the polypeptides of the invention may have an overall charge at physiological pH (e.g., positive charge or negative charge). The size of the overall charge may vary, for

example, the tag may contain a net plus one, two, three, four, five, *etc.* or may possess a net negative one, two, three, four, five, *etc.*

[0188] In some embodiments, it may be desirable to remove all or a portion of a tag sequence from a fusion protein comprising a tag sequence and a polypeptide sequence encoded by a cloned ORF of the invention. In embodiments of this type, one or more amino acids forming a cleavage site, *e.g.*, for a protease enzyme, may be incorporated into the primary sequence of the fusion protein. The cleavage site may be located such that cleavage at the site may remove all or a portion of the tag sequence from the fusion protein. In some embodiments, the cleavage site may be located between the tag sequence and the sequence of the polypeptide such that all of the tag sequence is removed by cleavage with a protease enzyme that recognizes the cleavage site. Examples of suitable cleavage sites include, but are not limited to, the Factor Xa cleavage site having the sequence Ile-Glu-Gly-Arg (SEQ ID NO:), which is recognized and cleaved by blood coagulation factor Xa, and the thrombin cleavage site having the sequence Leu-Val-Pro-Arg (SEQ ID NO:), which is recognized and cleaved by thrombin. Other suitable cleavage sites are known to those skilled in the art and may be used in conjunction with the present invention.

[0189] Polypeptides of the invention may be post-translationally modified, for example, may be glycosylated, acylated, *etc.*. Various eukaryotic expression systems may be used to produce glycosylated polypeptides (*e.g.*, baculovirus, vaccinia virus, yeast, *etc.*). Those skilled in the art will appreciate that the number and character of glycosyl chains that may be added to the polypeptides of the invention by post-translational modification may vary depending upon the expression system used (*e.g.*, expression vector and host cell). The invention thus includes collections of vectors, which allow for the expression of glycosylated polypeptides, as well as vectors (*e.g.*, an entry vector) that can be used to prepare such expression vectors.

Antibodies

- [0190] Antibodies may be prepared that are specific to one or more of the polypeptides encoded by the cloned ORFs of a collection. Antibodies may be polyclonal and/or monoclonal. They may be prepared against an entire polypeptide or against a fragment of the polypeptide.
- [0191] In some instances, antibodies are prepared that recognize all, substantially all, or a representative number of the polypeptides encoded by the ORFs of a collection. In other instances, antibodies may be prepared that are specific to a single polypeptide. In some embodiments, antibodies may be prepared that specifically bind to a subset of the polypeptides encoded by the ORFs of a collection. Thus, the invention also includes collections of antibodies that bind to proteins encoded by one or more ORFs of a collection.
- [0192] Antibodies may be used for the detection of the polypeptides in an immunoassay, such as ELISA, Western blot, radioimmunoassay, enzyme immunoassay, and may be used in immunocytochemistry. In some embodiments, an anti-polypeptide antibody may be in solution and the polypeptide to be recognized may be in solution (*e.g.*, an immunoprecipitation) or may be on or attached to a solid surface (*e.g.*, a Western blot). In other embodiments, the antibody may be attached to a solid surface and the polypeptide may be in solution (*e.g.*, affinity chromatography).
- [0193] Antibodies to the polypeptides encoded by the ORFs of a collection may be used to determine the presence, absence or amount of one or more of the polypeptides in a sample (*e.g.*, a patient-derived sample). The amount of specifically bound polypeptide may be determined using an antibody to which is attached a label or other marker, such as a radioactive, a fluorescent, or an enzymatic label. Alternatively, a labeled secondary antibody (*e.g.*, an antibody that recognizes the antibody that is specific to the polypeptide) may be used to detect a polypeptide-antibody complex between the specific antibody and the polypeptide.

cDNA and cDNA Libraries

- [0194] In some embodiments, the present invention provides cDNA molecules and/or cDNA libraries.
- [0195] In some embodiments, the present invention provides a collection of clones comprising all, substantially all, a majority, or a representative number of clones of a cDNA library. Clones of a cDNA library may be provided as full length clones, *i.e.*, as DNA copies of the mRNAs, or may only contain the sequence corresponding to the ORF, *i.e.*, from the start codon to the stop codon. As discussed above, clones containing an ORF may be provided with or without a stop codon and with or without one or more tag sequences.
- [0196] cDNA and/or cDNA libraries can be prepared from any prokaryotic or eukaryotic cells, tissues and/or organs. The cells, tissues and/or organs may be normal, diseased; transformed, established, progenitors, precursors, fetal or embryonic. Diseased cells may, for example, include those involved in infectious diseases (caused by bacteria, fungi or yeast, viruses (including AIDS, HIV, HTLV, herpes, hepatitis and the like) or parasites), in genetic or biochemical pathologies (*e.g.*, cystic fibrosis, hemophilia, Alzheimer's disease, muscular dystrophy or multiple sclerosis) or in cancerous processes. Transformed or established animal cell lines may include, for example, COS cells, CHO cells, VERO cells, BHK cells, HeLa cells, HepG2 cells, K562 cells, 293 cells, L929 cells, F9 cells, and the like.
- [0197] cDNA libraries of the invention may be normalized. A normalized library is a library that has been produced such that all or substantially all of the members of the library can be isolated with approximately equal probability. Suitable examples of normalized libraries and method of making such libraries may be found in United States patent number 6,399,334, which is specifically incorporated herein by reference.

Kits

[0198] In another aspect, the invention provides kits that may be used in conjunction with the invention. Kits according to this aspect of the invention may comprise one or more containers, which may contain one or more components selected from the group consisting of one or more nucleic acid molecules (e.g., one or more vectors comprising a selectable marker, one or more vectors comprising one or more recombination sites and/or functional sequences, and the like) and/or clones comprising nucleic acid sequences of interest (e.g., sequences encoding ORFs, RNAi, ribozymes, etc.), one or more primers, one or more polymerases, one or more reverse transcriptases, one or more recombination proteins (or other enzymes for carrying out the methods of the invention), one or more buffers, one or more detergents, one or more restriction endonucleases, one or more nucleotides, one or more terminating agents (e.g., ddNTPs), one or more transfection reagents, pyrophosphatase, and the like. In some embodiments, kits of the invention may comprise a plurality of clones of the invention wherein each clone is in a different container. In some embodiments of this type, a kit may comprise a plurality of clones, each of which is separately contained in a well of a 96-well plate.

[0199] A wide variety of nucleic acid molecules and/or clones comprising nucleic acid sequences of interest (e.g., sequences encoding ORFs, RNAi, ribozymes, etc.) can be used with the invention. Further, when nucleic acid sequences of interest are provided with flanking recombination sites, these sequences can be combined with a wide range of other nucleic acid molecules comprising recombination sites (e.g., vectors, genomic DNA, etc) in wide range of ways. Examples of nucleic acid molecules that can be supplied in kits of the invention include those that contain functional sequences such as promoters, signal peptides, enhancers, repressors, selection markers, transcription signals, translation signals, primer hybridization sites (e.g., for sequencing or PCR), recombination sites, restriction sites and polylinkers, sites that suppress the termination of translation in the presence of a suppressor tRNA, suppressor tRNA coding sequences, sequences that encode

domains and/or regions (e.g., 6 His tag) for the preparation of fusion proteins, origins of replication, telomeres, centromeres, and the like.

[0200] Similarly, collections and/or libraries can be supplied in kits of the invention. These collections and/or libraries may be in the form of replicable nucleic acid molecules or they may comprise nucleic acid molecules that are not associated with an origin of replication. As one skilled in the art would recognize, the nucleic acid molecules of libraries, as well as other nucleic acid molecules that are not associated with an origin of replication, either could be inserted into other nucleic acid molecules that have an origin of replication or would be an expendable kit components.

[0201] Further, in some embodiments, collections and/or libraries supplied in kits of the invention may comprise two components: (1) the nucleic acid molecules of these collections and/or libraries and (2) 5' and/or 3' recombination sites and/or topoisomerase recognition sites. In some embodiments, when the nucleic acid molecules of a collection and/or library are supplied with 5' and/or 3' recombination sites, it will be possible to insert these molecules into nucleic acid molecules comprising one or more compatible recombination sites, which also may be supplied as a kit component, using recombination reactions. In other embodiments, recombination sites can be attached to the nucleic acid molecules of the collections and/or libraries before use (e.g., by the use of a ligase, which may also be supplied with the kit). In such cases, nucleic acid molecules that contain recombination sites or primers that can be used to generate recombination sites may be supplied with the kits.

[0202] Nucleic acid molecules to be supplied in kits of the invention (e.g., vectors, clones comprising ORFs, etc.) can vary greatly. In some instances, these molecules will contain an origin of replication, at least one selectable marker, and at least one recombination site. For example, molecules supplied in kits of the invention can have four separate recombination sites that allow for insertion of sequence of interest at two different locations. Other attributes of vectors supplied in kits of the invention are described elsewhere herein.

[0203] In some embodiments, the kits of the invention may comprise a plurality of containers, each container comprising one or more nucleic acid segments comprising a nucleic acid sequence of interest (e.g., sequence encoding an ORF, RNAi, ribozyme, etc.) and/or recombination sites. Segments may be provided with recombination sites such that a series of segments (e.g., two, three, four, five six, seven, eight, nine, ten, etc.) may be combined in order to construct a nucleic acid comprising multiple sequences of interest, which may be the same or different. Segments may be combined in reactions involving two or more segments (e.g., three, four, five, six, seven, eight, nine, ten, etc.). Each segment may be from about 100 bp to about 35 kb in length, or from about 100 bp to about 20 kb in length, or from about 100 bp to about 10 kb in length, or from about 100 bp to about 5 kb in length, or from about 100 bp to about 2.5 kb in length, or from about 100 bp to about 1 kb in length, or from about 100 bp to about 500 bp in length.

[0204] A kit of the present invention may comprise a container containing a nucleic acid molecule comprising all or a portion of a nucleic acid sequence of interest (e.g., sequence encoding an ORF, RNAi, ribozyme, etc.) and comprising two recombination sites that do not recombine with each other. The recombination sites may flank a selectable marker that allows selection for or against the presence of the nucleic acid molecule in a host cell or identification of a host cell containing or not containing the nucleic acid. A nucleic acid molecule to be included in a kit may comprise more than two recombination sites, for example, a nucleic acid molecule may comprise multiple pairs of recombination sites (e.g., two, three, four, five, six, seven, eight, nine, ten, etc.) where members of a pair of recombination sites do not recombine or substantially recombine with each other. In some embodiments, members of one pair of recombination sites do not recombine with members of another pair present in the same nucleic acid molecule.

[0205] Kits of the invention may comprise containers containing one or more recombination proteins. Suitable recombination proteins have been disclosed above and include, but are not limited to, Cre, Int, IHF, Xis, Flp, Fis, Hin, Gin, Cin, Tn3 resolvase, Φ C31, TndX, XerC, and XerD.

[0206] Kits of the invention may also comprise one or more topoisomerase proteins and/or one or more nucleic acids comprising one or more topoisomerase recognition sequence. Suitable topoisomerases include Type IA topoisomerases, Type IB topoisomerases and/or Type II topoisomerases. Suitable topoisomerases include, but are not limited to, poxvirus topoisomerases, including vaccinia virus DNA topoisomerase I, *E. coli* topoisomerase III, *E. coli* topoisomerase I, topoisomerase III, eukaryotic topoisomerase II, archeal reverse gyrase, yeast topoisomerase III, *Drosophila* topoisomerase III, human topoisomerase III, *Streptococcus pneumoniae* topoisomerase III, bacterial gyrase, bacterial DNA topoisomerase IV, eukaryotic DNA topoisomerase II, and T-even phage encoded DNA topoisomerases, and the like. Suitable recognition sequences have been described above.

[0207] In use, a nucleic acid molecule comprising all or a portion of a nucleic acid sequence of interest, which may be provided in a kit of the invention, may be combined with a nucleic acid molecule comprising a functional sequence (e.g., using recombinational cloning, topoisomerase-mediated cloning, etc.). The nucleic acid molecule comprising all or a nucleic acid sequence of interest may be provided, for example, with two recombination sites that do not recombine with each other. The nucleic acid molecule comprising a functional sequence may also be provided with two recombination sites, each of which is capable of recombining with one of the two sites present on the a nucleic acid molecule comprising all or a portion of a nucleic acid sequence of interest. In the presence of the appropriate recombination proteins, the nucleic acid molecule comprising a functional sequence recombines the nucleic acid molecule comprising all or a portion of a nucleic acid sequence of interest in order to form a recombinant nucleic acid molecule containing the functional sequence and all or a portion of a nucleic acid sequence of interest. In embodiments of this type, the functional sequence may become operably linked to the nucleic acid sequence of interest as a result of the recombination reaction. When the nucleic acid molecule comprising all or a portion of a nucleic acid sequence of interest comprises multiple pairs of recombination

sites, multiple nucleic acid molecules comprising functional sequences and/or other sequences of interest, which may be the same or different, may be combined with the nucleic acid molecule comprising all or a portion of a nucleic acid sequence of interest in order to form a nucleic acid molecule comprising all or a portion of a nucleic acid sequence of interest and also comprising multiple functional sequences and/or multiple sequences of interest. In such embodiments, some or all of the functional sequences and/or other sequences of interest may be operably linked to one or more nucleic acid sequences of interest or portion thereof.

[0208] Kits of the invention can also be supplied with primers. These primers will generally be designed to anneal to molecules having specific nucleotide sequences. For example, these primers can be designed for use in PCR to amplify a particular nucleic acid molecule. Further, primers supplied with kits of the invention can be sequencing primers designed to hybridize to vector sequences. Thus, such primers will generally be supplied as part of a kit for sequencing nucleic acid molecules that have been inserted into a vector.

[0209] One or more buffers (e.g., one, two, three, four, five, eight, ten, fifteen) may be supplied in kits of the invention. These buffers may be supplied at a working concentrations or may be supplied in concentrated form and then diluted to the working concentrations. These buffers will often contain salt, metal ions, co-factors, metal ion chelating agents, etc. for the enhancement of activities of the stabilization of either the buffer itself or molecules in the buffer. Further, these buffers may be supplied in dried or aqueous forms. When buffers are supplied in a dried form, they will generally be dissolved in water prior to use.

[0210] Kits of the invention may contain virtually any combination of the components set out above or described elsewhere herein. As one skilled in the art would recognize, the components supplied with kits of the invention will vary with the intended use for the kits. Thus, kits may be designed to perform various functions set out in this application and the components of such kits will vary accordingly.

[0211] Kits of the invention may comprise one or more pages of written instructions for carrying out the methods of the invention. For example, instructions may comprise methods steps necessary to carryout recombinational cloning of an ORF provided with recombination sites and a vector also comprising recombination sites and optionally further comprising one or more functional sequences.

6. Detailed Exemplary Services Description

[0212] The present invention provides numerous services of value to business in the biotechnology and pharmaceutical fields. With reference to FIG. 11, a clone (e.g., an entry clone) may be prepared. A clone may comprise a nucleic acid sequence of interest to a subscriber, which sequence may be optionally flanked by one or more recognition sites (e.g., recombination sites, topoisomerase sites, etc.). Using recombinational cloning, the nucleic acid sequence of interest may be transferred to a plurality of expression vectors and tested in a plurality of expression systems to identify a suitable system or systems. Factors that may be considered in determining the expression system(s) of choice may include amount and/or activity of the polypeptide, cost per unit of polypeptide produced, and/or length of time required to produce a desired amount of polypeptide.

[0213] After a suitable expression system has been selected, the present invention also provides the service of producing and purifying the polypeptide of interest. This can be done using techniques known in the art including, but not limited to, chromatography, electrophoresis, differential precipitation and the like.

[0214] Purified polypeptide may be used for a variety of purposes. Purified polypeptide may be characterized by any number of methods. For example, crystals may be grown of the polypeptide and the crystal structure determined. This may be useful to identify an active site of a polypeptide, which may then be further used to model compounds to identify those that modulate

polypeptide activity. Purified polypeptide may be used directly, for example in assays. Polypeptides also may be used to generate antibodies.

[0215] In some embodiments, clones (e.g., entry clones) containing nucleic acid sequences of interest may be further manipulated to produce vectors that may be used in gene targeting applications. For example, an ORF (with or without additional sequences) may be introduced into a cell and/or organism to produce a recombinant cell and/or organism that expresses the polypeptide encoded by the ORF.

Construction of Clones and Clone Collections

[0216] Suitable nucleic acid sequences to be cloned and included in a collection may be identified using techniques known in the art. For example, a collection may comprise clones of members of a family of proteins. A collection of clones may comprise nucleic acids that do not encode proteins (e.g., ribozymes, tRNAs, RNAis, etc.).

[0217] Suitable sequences (e.g., protein-encoding or otherwise) to be included in a collection may be identified by percentage sequence identity with, for example, a reference sequence. For example, a family may be a set of sequences having a sequence that is at least a specified percentage (e.g., 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, etc.) identical to a reference sequence.

[0218] By a sequence of interest (e.g., amino acid or nucleotide) at least, for example, 70% "identical" to a reference sequence, it is intended that the sequence of interest is identical to the reference sequence except that the sequence of interest may include up to 30 alterations per each 100 positions (e.g., amino acids or nucleotides) of the reference sequence.

[0219] In other words, to obtain a protein having an amino acid sequence at least 70% identical to a reference amino acid sequence, up to 30% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 30% of the total amino acid residues in the reference sequence may be inserted into the

reference sequence. These alterations of the reference sequence may occur at the amino (N-) and/or carboxy (C-) terminal positions of the reference amino acid sequence and/or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence and/or in one or more contiguous groups within the reference sequence. As a practical matter, whether a given amino acid sequence is, for example, at least 70% identical to the amino acid sequence of a reference protein can be determined conventionally using known computer programs such as the CLUSTAL W program (Thompson, J.D., *et al.*, *Nucleic Acids Res.* 22:4673-4680 (1994)).

[0220] To obtain a nucleic acid sequence at least 70% identical to a reference nucleic acid sequence, up to 30% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 30% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the 5'-terminal, 3'-terminal and/or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence and/or in one or more contiguous groups within the reference sequence. Percent sequence identity may be determined using a computer program as discussed herein.

[0221] Sequence identity may be determined by comparing a reference sequence or a subsequence of the reference sequence to a test sequence. The reference sequence and the test sequence are optimally aligned over an arbitrary number of residues termed a comparison window. In order to obtain optimal alignment, additions or deletions, such as gaps, may be introduced into the test sequence. The percent sequence identity is determined by determining the number of positions at which the same residue is present in both sequences and dividing the number of matching positions by the total length of the sequences in the comparison window and multiplying by 100 to give the percentage. In addition to the number of matching positions, the number and size of gaps is also considered in calculating the percentage sequence identity.

[0222] Sequence identity is typically determined using computer programs. A representative program is the BLAST (Basic Local Alignment Search Tool) program publicly accessible at the National Center for Biotechnology Information (NCBI, <http://www.ncbi.nlm.nih.gov/>). This program compares segments in a test sequence to sequences in a database to determine the statistical significance of the matches, then identifies and reports only those matches that are more significant than a threshold level. A suitable version of the BLAST program is one that allows gaps, for example, version 2.X (Altschul, *et al.*, *Nucleic Acids Res.* 25(17):3389-402, 1997). Standard BLAST programs for searching nucleotide sequences (blastn) or protein (blastp) may be used. Translated query searches in which the query sequence is translated, *i.e.*, from nucleotide sequence to protein (blastx) or from protein to nucleic acid sequence (tbblastn) may also be used as well as queries in which a nucleotide query sequence is translated into protein sequences in all 6 reading frames and then compared to an NCBI nucleotide database which has been translated in all six reading frames (tbblastx).

[0223] Additional suitable programs for identifying ORFs to be included in a collection of a family of proteins include, but are not limited to, PHI-BLAST (Pattern Hit Initiated BLAST, Zhang, *et al.*, *Nucleic Acids Res.* 26(17):3986-90, 1998) and PSI-BLAST (Position-Specific Iterated BLAST, Altschul, *et al.*, *Nucleic Acids Res.* 25(17):3389-402, 1997).

[0224] Programs may be used with default searching parameters. Alternatively, one or more search parameter may be adjusted. Selecting suitable search parameter values is within the abilities of one of ordinary skill in the art.

[0225] Once a suitable nucleic acid molecule comprising the nucleic acid sequence of interest has been identified, the nucleic acid sequence of interest (*e.g.*, ORF) may be prepared from the nucleic acid molecule. In some embodiments, the sequence of interest may be amplified by PCR using primers constructed to contain a sequence corresponding to all or a portion of a recombination site. After amplification, the amplification product may be contacted with one or more recombination proteins and one or more vectors

comprising recombination sites to effect insertion of the amplification product into the vector.

[0226] With reference to Fig. 12, a vector used to prepare a clone of the invention may or may not provide one or more sequences that may be operably linked to the sequence of interest. In Fig. 12A, a sequence of interest (Insert) is cloned into a vector. The vector contains an origin of replication and a selectable marker and does not contain any sequences that are operably linked to the Insert. Fig. 12B shows the case where the sequence of interest is cloned into a vector containing one or more transcriptional regulatory sequences (e.g., promoters). Such transcriptional regulatory sequences may be operably linked to the sequence of interest (Insert). The promoter can be used to produce RNA corresponding to the sequence of interest, which may or may not be translated into a polypeptide. Fig. 12C shows the situation where the vector comprises a tag sequence located at the 3' end of the sequence of interest. The tag sequence is separated from the sequence of interest by a suppressible stop codon. The tag is also followed by a stop codon. Transcription and translation in the absence of a suppressor tRNA results in the expression of a polypeptide having a native C-terminal. Expression of a suppressor tRNA that suppresses the suppressible stop codon results in the expression of a polypeptide containing a C-terminal tag. Fig. 12D shows the case where the vector contains a promoter followed by a tag sequence and an internal ribosome entry site (IRES) operably linked to a sequence of interest (Insert). Transcription from the promoter and translation of the resultant mRNA results in the production of two different polypeptides. Translation starting at the ATG of the tag sequence results in the production of a polypeptide having an N-terminal tag. Translation starting at an ATG in the context of an IRES results in a polypeptide not containing an N-terminal tag sequence. Fig. 12E shows the case where the vector contains the promoter, tag, and IRES structure of Fig. 12D in combination with the suppressible stop codon and tag sequence of Fig. 12C. A tag at the N-terminal (Tag1) may be the same or different as a tag at the C-terminal (Tag2). A construct of this sort permits the expression of native polypeptide when translation is initiated at the

IRES and terminated at the suppressible stop codon, an N-terminal tagged protein when translation begins at the ATG of the Tag1 sequence and terminates at the suppressible stop codon, an N- and C-terminal tagged polypeptide when translation begins at the ATG of the Tag1 sequence and termination at the suppressible stop codon is suppressed by the presence of the appropriate suppressor tRNA, and a C-terminal tagged polypeptide when translation is initiated at the IRES and termination at the suppressible stop codon is suppressed by the presence of the appropriate suppressor tRNA. Fig. 12E shows the case when the vector provides a tag sequence that may be operably linked to the sequence of interest. In embodiments of this type, the sequence of interest may or may not contain a promoter.

[0227] Recognition sites (*e.g.*, recombination sites, topoisomerase recognition sites, restriction enzyme recognition sites, *etc.*) may be provided at one or both ends of any one or more of the segments of the vectors identified in Figs. 12A-F (*e.g.*, promoter, Insert, Tag1, Tag2, ori, IRES, and/or suppressible stop codon). When more than one recombination sites are provided, they may have the same or different specificities. Vectors used to prepare clones and/or collections of clones may be any vector that can be used for molecular cloning and/or expression, including, but not limited to, plasmids, cosmids, phagemids, BACs, YACS, baculoviruses, adenovirus, and the like.

[0228] In some embodiments, the present invention provides the service of constructing a clone comprising the entire coding sequence of an open reading frame. A customer may have a portion of a sequence of interest, for example, may have the sequence of a proteolytic fragment of a polypeptide of interest. Using the sequence information provided by the customer, a sequence corresponding to the full-length coding sequence can be obtained and used to construct a clone of the invention.

[0229] In some embodiments, the present invention provides the service of constructing a clone comprising a sequence corresponding to the full-length of an mRNA molecule. For example, an mRNA molecule may be identified by a customer, for example, by providing a sequence of the polypeptide encoded by the mRNA. Using techniques known in the art, for example, 5'-RACE, a

cDNA molecule corresponding to the full-length of the mRNA (including 5' and/or 3'-un-translated regions) may be obtained and used to construct a clone of the invention. Any method known in the art may be used to construct the full length clones of the invention.

PROTEIN EXPRESSION SERVICES

Expression of Polypeptides

[0230] In some embodiments, the present invention provides the service of optimizing the expression of a polypeptide for a subscriber. In addition, the invention contemplates the construction of a panel of expression vectors comprising the ORF of a polypeptide.

[0231] To optimize expression of the polypeptides of the present invention, inducible or constitutive promoters may be used to express high levels of a polypeptide in a recombinant host. Similarly, high copy number vectors, well known in the art, may be used to achieve high levels of expression. Vectors having an inducible high copy number may also be useful to enhance expression of the polypeptides of the invention in a recombinant host.

[0232] To express the desired polypeptide in a prokaryotic cell (such as, *E. coli*, *B. subtilis*, *Pseudomonas*, etc.), it is necessary to operably link the ORF encoding the polypeptide to a functional prokaryotic promoter. Such promoters may be used to enhance expression and may either be constitutive or regulatable (*i.e.*, inducible or derepressible) promoters. Examples of constitutive promoters include the *int* promoter of bacteriophage λ , and the *bla* promoter of the β -lactamase gene of pBR322. Examples of inducible prokaryotic promoters include the major right and left promoters of bacteriophage λ (P_R and P_L), *trp*, *recA*, *lacZ*, *lacI*, *tet*, *gal*, *trc*, and *tac* promoters of *E. coli*. The *B. subtilis* promoters include α -amylase (Ulmanen, et al., *J. Bacteriol* 162:176-182 (1985)) and *Bacillus* bacteriophage promoters (Gryczan, T., In: *The Molecular Biology Of Bacilli*, Academic Press, New York (1982)). *Streptomyces* promoters are described by Ward, et al., *Mol.*

Gen. Genet. 203:468478 (1986)). Prokaryotic promoters are also reviewed by Glick, *J. Ind. Microbiol.* 1:277-282 (1987); Cenatiempo, Y., *Biochimie* 68:505-516 (1986); and Gottesman, *Ann. Rev. Genet.* 18:415-442 (1984). Expression in a prokaryotic cell also requires the presence of a ribosomal binding site upstream of the gene-encoding sequence. Such ribosomal binding sites are disclosed, for example, by Gold, *et al.*, *Ann. Rev. Microbiol.* 35:365404 (1981).

[0233] To enhance the expression of polypeptides of the invention in a eukaryotic cell, well known eukaryotic promoters and hosts may be used. Suitable promoters include, for example, the cytomegalovirus promoter, the gal 10 promoter and the *Autographa californica* multiple nuclear polyhedrosis virus (AcMNPV) polyhedral promoter.

[0234] Examples of eukaryotic hosts suitable for use with the present invention include fungal cells (*e.g.*, *Saccharomyces cerevisiae* cells, *Pichia pastoris* cells, *etc.*), plant cells, and animal (*e.g.*, insect and mammalian) cells (*e.g.*, *Drosophila melanogaster* cells, *Spodoptera frugiperda* Sf9 and Sf21 cells, *Trichoplusa* High-Five cells, *C. elegans* cells, *Xenopus laevis* cells, CHO cells, COS cells, VERO cells, BHK cells, Hela cells, 293 cells, *etc.*).

[0235] Those skilled in the art will appreciate that each organism has preferred codons for each amino acid. Thus, the present invention contemplates optimizing the codon usage to comport with the host cell type chosen. A nucleic acid encoding the polypeptide of interest can be constructed so as to contain the codons most commonly used by a particular organism in order to optimize the expression of the polypeptide in the particular organism.

[0236] A polypeptide encoded by a cloned ORF of the present invention is preferably produced by growth in culture of the recombinant host containing and expressing the desired polypeptide. Fragments of a polypeptide encoded by an ORF of the invention are also included in the present invention. Such fragments include proteolytic fragments and fragments having a desired characteristic and/or activity (*e.g.*, antigenic fragments, enzymatically active fragments, *etc.*).

[0237] Any nutrient that can be assimilated by a host containing a clone comprising an ORF may be added to the culture medium. Optimal culture conditions should be selected case by case according to the strain used and the composition of the culture medium. Antibiotics may also be added to the growth media to insure maintenance of vector DNA containing the desired ORF to be expressed. Media formulations have been described in DSM or ATCC Catalogs and Sambrook *et al.*, In: *Molecular Cloning, a Laboratory Manual* (2nd ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

[0238] Recombinant host cells producing polypeptide expressed from a cloned ORF of the invention can be separated from liquid culture, for example, by centrifugation. In general, the collected cells (*e.g.*, eukaryotic or prokaryotic) are dispersed in a suitable buffer, and then broken open by well known procedures (*e.g.*, hypotonic lysis, detergent treatment, enzyme treatment, french press, sonication, and the like) to allow extraction of the polypeptide by the buffer solution. After removal of cell debris by ultracentrifugation or centrifugation, the polypeptide can be purified by standard protein purification techniques such as extraction, precipitation, chromatography, affinity chromatography, electrophoresis or the like. Assays to detect the presence of the polypeptide during purification are well known in the art and can be used during conventional biochemical purification methods to determine the presence of the polypeptide.

[0239] The invention also relates to host cells comprising one or more of the vectors and/or nucleic acids molecules of the invention containing one or more nucleic acids of interest (*e.g.*, two, three, four, five, seven, ten, twelve, fifteen, twenty, thirty, fifty, *etc.*), particularly those vectors described in detail herein. Representative host cells that may be used according to this aspect of the invention include, but are not limited to, bacterial cells, yeast cells, plant cells and animal cells. Preferred bacterial host cells include *Escherichia* spp. cells (particularly *E. coli* cells and most particularly *E. coli* strains DH10B, Stbl2, DH5 α , DB3, DB3.1 (preferably *E. coli* LIBRARY EFFICIENCY® DB3.1™ Competent Cells; Invitrogen Corp., Carlsbad, CA), DB4 and DB5 (see U.S.

Application No. 09/518,188, filed on March 2, 2000, and U.S. Provisional Application No. 60/122,392, filed on March 2, 1999, the disclosures of which are incorporated by reference herein in their entireties), *Bacillus* spp. cells (particularly *B. subtilis* and *B. megaterium* cells), *Streptomyces* spp. cells, *Erwinia* spp. cells, *Klebsiella* spp. cells, *Serratia* spp. cells (particularly *S. marcessans* cells), *Pseudomonas* spp. cells (particularly *P. aeruginosa* cells), and *Salmonella* spp. cells (particularly *S. typhimurium* and *S. typhi* cells). Preferred animal host cells include insect cells (most particularly *Drosophila melanogaster* cells, *Spodoptera frugiperda* Sf9 and Sf21 cells and *Trichoplusia* High-Five cells), nematode cells (particularly *C. elegans* cells), avian cells, amphibian cells (particularly *Xenopus laevis* cells), reptilian cells, and mammalian cells (most particularly NIH3T3, 293, CHO, COS, VERO, BHK and human cells). Preferred yeast host cells include *Saccharomyces cerevisiae* cells and *Pichia pastoris* cells. These and other suitable host cells are available commercially, for example, from Invitrogen Corp., (Carlsbad, CA), American Type Culture Collection (Manassas, Virginia), and Agricultural Research Culture Collection (NRRL; Peoria, Illinois).

[0240] Methods for introducing the vectors and/or nucleic acids molecules of the invention into the host cells described herein, to produce host cells comprising one or more of the vectors and/or nucleic acids molecules of the invention, will be familiar to those of ordinary skill in the art. For instance, the nucleic acid molecules and/or vectors of the invention may be introduced into host cells using well known techniques of infection, transduction, electroporation, transfection, and transformation. The nucleic acid molecules and/or vectors of the invention may be introduced alone or in conjunction with other nucleic acid molecules and/or vectors and/or proteins, peptides or RNAs. Alternatively, the nucleic acid molecules and/or vectors of the invention may be introduced into host cells as a precipitate, such as a calcium phosphate precipitate, or in a complex with a lipid. Electroporation also may be used to introduce the nucleic acid molecules and/or vectors of the invention into a host. Likewise, such molecules may be introduced into chemically competent cells such as *E. coli*. If the vector is a virus, it may be packaged *in vitro* or

introduced into a packaging cell and the packaged virus may be transduced into cells. Thus nucleic acid molecules of the invention may contain and/or encode one or more packaging signal (e.g., viral packaging signals that direct the packaging of viral nucleic acid molecules). Hence, a wide variety of techniques suitable for introducing the nucleic acid molecules and/or vectors of the invention into cells in accordance with this aspect of the invention are well known and routine to those of skill in the art. Such techniques are reviewed at length, for example, in Sambrook, J., et al., *Molecular Cloning, a Laboratory Manual*, 2nd Ed., Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 16.30-16.55 (1989), Watson, J.D., et al., *Recombinant DNA*, 2nd Ed., New York: W.H. Freeman and Co., pp. 213-234 (1992), and Winnacker, E.-L., *From Genes to Clones*, New York: VCH Publishers (1987), which are illustrative of the many laboratory manuals that detail these techniques and which are incorporated by reference herein in their entireties for their relevant disclosures.

[0241] The present invention also provides the option of producing a polypeptide with a tag sequence from the same clone used to produce the untagged polypeptide by suppressing one or more stop codons present in the clone. Mutant tRNA molecules that recognize what are ordinarily stop codons suppress the termination of translation of an mRNA molecule and are termed suppressor tRNAs. Three codons are used by both eukaryotes and prokaryotes to signal the end of gene. When transcribed into mRNA, the codons have the following sequences: UAG (amber), UGA (opal) and UAA (ochre). Under most circumstances, the cell does not contain any tRNA molecules that recognize these codons. Thus, when a ribosome translating an mRNA reaches one of these codons, the ribosome stalls and falls off the RNA, terminating translation of the mRNA. The release of the ribosome from the mRNA is mediated by specific factors (see S. Mottagui-Tabar, *Nucleic Acids Research* 26(11), 2789, 1998). A gene with an in-frame stop codon (TAA, TAG, or TGA) will ordinarily encode a protein with a native carboxy terminus. However, suppressor tRNAs, can result in the insertion of amino acids and continuation of translation past stop codons.

[0242] A number of such suppressor tRNAs have been found. Examples include, but are not limited to, the supE, supP, supD, supF and supZ suppressors, which suppress the termination of translation of the amber stop codon, supB, gIT, supL, supN, supC and supM suppressors, which suppress the function of the ochre stop codon and glyT, trpT and Su-9 suppressors, which suppress the function of the opal stop codon. In general, suppressor tRNAs contain one or more mutations in the anti-codon loop of the tRNA that allows the tRNA to base pair with a codon that ordinarily functions as a stop codon. The mutant tRNA is charged with its cognate amino acid residue and the cognate amino acid residue is inserted into the translating polypeptide when the stop codon is encountered. For a more detailed discussion of suppressor tRNAs, the reader may consult Eggertsson, *et al.*, (1988) *Microbiological Review* 52(3):354-374, and Engleerg-Kukla, *et al.* (1996) in *Escherichia coli and Salmonella Cellular and Molecular Biology*, Chapter 60, pps 909-921, Neidhardt, *et al.* eds., ASM Press, Washington, DC.

[0243] Mutations that enhance the efficiency of termination suppressors, *i.e.*, increase the read through of the stop codon, have been identified. These include, but are not limited to, mutations in the uar gene (also known as the prfA gene), mutations in the ups gene, mutations in the sueA, sueB and sueC genes, mutations in the rpsD (ramA) and rpsE (spcA) genes and mutations in the rplL gene. Suppression in some organisms (*e.g.*, *E. coli*) may be improved when the stop codon is followed immediately by the nucleotide adenosine. Thus, the present invention contemplates nucleic acid sequences comprising stop codons followed by adenosine (*e.g.*, comprising the sequences TAGA, TAAA and/or TGAA).

[0244] Under ordinary circumstances, host cells would not be expected to be healthy if suppression of stop codons is too efficient. This is because of the thousands or tens of thousands of genes in a genome, a significant fraction will naturally have one of the three stop codons; complete read-through of these would result in a large number of aberrant proteins containing additional amino acids at their carboxy termini. If some level of suppressing tRNA is

present, there is a race between the incorporation of the amino acid and the release of the ribosome. Higher levels of tRNA may lead to more read-through although other factors, such as the codon context, can influence the efficiency of suppression.

[0245] Organisms ordinarily have multiple genes for tRNAs. Combined with the redundancy of the genetic code (multiple codons for many of the amino acids), mutation of one tRNA gene to a suppressor tRNA status does not lead to high levels of suppression. The TAA stop codon is the strongest, and most difficult to suppress. The TGA is the weakest, and naturally (*in E. coli*) leaks to the extent of 3%. The TAG (amber) codon is relatively tight, with a read-through of ~1% without suppression. In addition, the amber codon can be suppressed with efficiencies on the order of 50% with naturally occurring suppressor mutants.

[0246] Suppression has been studied for decades in bacteria and bacteriophages. In addition, suppression is known in yeast, flies, plants and other eukaryotic cells including mammalian cells. For example, Capone, *et al.* (*Molecular and Cellular Biology* 6(9):3059-3067, 1986) demonstrated that suppressor tRNAs derived from mammalian tRNAs could be used to suppress a stop codon in mammalian cells. A copy of the *E. coli* chloramphenicol acetyltransferase (cat) gene having a stop codon in place of the codon for serine 27 was transfected into mammalian cells along with a gene encoding a human serine tRNA that had been mutated to form an amber, ochre, or opal suppressor derivative of the gene. Successful expression of the cat gene was observed. An inducible mammalian amber suppressor has been used to suppress a mutation in the replicase gene of polio virus and cell lines expressing the suppressor were successfully used to propagate the mutated virus (Sedivy, *et al.*, *Cell* 50: 379-389 (1987)). The context effects on the efficiency of suppression of stop codons by suppressor tRNAs has been shown to be different in mammalian cells as compared to *E. coli* (Phillips-Jones, *et al.*, *Molecular and Cellular Biology* 15(12): 6593-6600 (1995), Martin, *et al.*, *Biochemical Society Transactions* 21: (1993)) Since some human diseases are caused by nonsense mutations in essential genes, the potential of suppression

for gene therapy has long been recognized (see Temple, *et al.*, *Nature* 296(5857):537-40 (1982)). The suppression of single and double nonsense mutations introduced into the diphtheria toxin A-gene has been used as the basis of a binary system for toxin gene therapy (Robinson, *et al.*, *Human Gene Therapy* 6:137-143 (1995)).

[0247] The present invention contemplates fusion polypeptides wherein a portion of the fusion protein is translated from an mRNA sequence that is 3'-to at least one stop codon. In general terms, a gene may be expressed in four forms: native at both amino and carboxy termini, modified at either end, or modified at both ends. A construct containing an ORF of interest may include the N-terminal methionine ATG codon, and a stop codon at the carboxy end, of the open reading frame, or ORF, thus ATG - ORF - stop. Frequently, a gene construct will include translation initiation sequences, tis, that may be located upstream of the ATG that allow expression of the ORF, thus tis - ATG - ORF - stop. Constructs of this sort allow expression of a gene as a protein that contains the same amino and carboxy amino acids as in the native, uncloned, protein. When such a construct is fused in-frame with an amino-terminal protein tag, e.g., GST, the tag will have its own tis, thus tis - ATG - tag - tis - ATG - ORF - stop, and the bases comprising the tis of the ORF will be translated into amino acids between the tag and the ORF. In addition, some level of translation initiation may be expected in the interior of the mRNA (*i.e.*, at the ORF's ATG and not the tag's ATG) resulting in a certain amount of native protein expression contaminating the desired protein.

[0248] DNA (lower case): tis1 - atg - tag - tis2 - atg - orf - stop

[0249] RNA (lower case, italics): tis1 - atg - tag - tis2 - atg - orf - stop

[0250] Protein (upper case): ATG - TAG - TIS2 - ATG - ORF (tis1 and stop are not translated) + contaminating ATG - ORF (translation of ORF beginning at tis2).

[0251] Using one or more of the cloning techniques described herein (e.g., recombinational cloning, topoisomerase-mediated cloning, etc.) it is a simple matter for those skilled in the art to construct a vector containing a tag

adjacent to a recombination site permitting the in frame fusion of a tag to the C- and/or N-terminus of the ORF of interest.

[0252] Given the ability to rapidly create a number of clones in a variety of vectors, there is a need in the art to maximize the number of ways a single cloned ORF can be expressed without the need to manipulate the ORF-containing clone itself. The present invention meets this need by providing materials and methods for the controlled expression of a C- and/or N-terminal fusion to a target ORF using one or more suppressor tRNAs to suppress the termination of translation at a stop codon. Thus, the present invention provides materials and methods in which an ORF-containing clone is prepared such that the ORF is flanked with recombination sites.

[0253] The construct may be prepared with a sequence coding for a stop codon preferably at the C-terminus of the ORF of interest. In some embodiments, a stop codon can be located adjacent to the ORF, for example, within a recombination site flanking the ORF or at or near the 3' end of the sequence of the ORF before a recombination site. The ORF construct can be transferred through recombination to various vectors that can provide various C-terminal or N-terminal tags (e.g., GFP, GST, His Tag, GUS, etc.) to the ORF of interest. When the stop codon is located at the carboxy terminus of the ORF, expression of the corresponding polypeptide with a "native" carboxy end amino acid sequence occurs under non-suppressing conditions (i.e., when the suppressor tRNA is not expressed) while expression of the polypeptide as a carboxy fusion protein occurs under suppressing conditions. Those skilled in the art will recognize that any suppressors and any stop codons could be used in the practice of the present invention.

[0254] In some embodiments, the gene coding for the suppressing tRNA may be incorporated into the vector from which the ORF of interest is to be expressed. In other embodiments, the gene for the suppressor tRNA may be in the genome of the host cell. In still other embodiments, the gene for the suppressor may be located on a separate other vector—i.e., plasmid, cosmid, virus, etc.—and provided in trans.

[0255] More than one copy of a gene encoding a suppressor tRNA may be provided in all of the embodiments described herein. For example, a host cell may be provided that contains multiple copies of a gene encoding the suppressor tRNA. Alternatively, multiple gene copies of the suppressor tRNA under the same or different promoters may be provided in the same vector background as the target gene of interest. In some embodiments, multiple copies of a suppressor tRNA may be provided in a different vector than the one containing the target gene of interest. In other embodiments, one or more copies of the suppressor tRNA gene may be provided on the vector containing the ORF of the polypeptide of interest and/or on another vector and/or in the genome of the host cell or in combinations of the above. When more than one copy of a suppressor tRNA gene is provided, the genes may be expressed from the same or different promoters that may be the same or different as the promoter used to express the ORF encoding the polypeptide of interest.

[0256] In some embodiments, two or more different suppressor tRNA genes may be provided. In embodiments of this type one or more of the individual suppressors may be provided in multiple copies and the number of copies of a particular suppressor tRNA gene may be the same or different as the number of copies of another suppressor tRNA gene. Each suppressor tRNA gene, independently of any other suppressor tRNA gene, may be provided on the vector used to express the ORF of interest and/or on a different vector and/or in the genome of the host cell. A given tRNA gene may be provided in more than one place in some embodiments. For example, a copy of the suppressor tRNA may be provided on the vector containing the ORF of interest while one or more additional copies may be provided on an additional vector and/or in the genome of the host cell. When more than one copy of a suppressor tRNA gene is provided, the genes may be expressed from the same or different promoters that may be the same or different as the promoter used to express the gene encoding the protein of interest and may be the same or different as a promoter used to express a different tRNA gene.

[0257] In some embodiments of the present invention, the ORF of interest and the gene expressing the suppressor tRNA may be controlled by the same

promoter. In other embodiments, the ORF of interest may be expressed from a different promoter than the suppressor tRNA. Those skilled in the art will appreciate that, under certain circumstances, it may be desirable to control the expression of the suppressor tRNA and/or the ORF of interest using a regulatable promoter. For example, either the ORF of interest and/or the gene expressing the suppressor tRNA may be controlled by a promoter such as the lac promoter or derivatives thereof such as the tac promoter. In some embodiments, both the ORF of interest and the suppressor tRNA gene are expressed from the T7 RNA polymerase promoter and, optionally, are expressed as part of one RNA molecule. In embodiments of this type, the portion of the RNA corresponding to the suppressor tRNA is processed from the originally transcribed RNA molecule by cellular factors.

[0258] In some embodiments, the expression of the suppressor tRNA gene may be under the control of a different promoter from that of the ORF of interest. In some embodiments, it may be possible to express the suppressor gene before the expression of the ORF. This would allow levels of suppressor to build up to a high level, before they are needed to allow expression of a fusion protein by suppression of a the stop codon. For example, in embodiments of the invention where the suppressor gene is controlled by a promoter inducible with IPTG, the ORF may be controlled by the T7 RNA polymerase promoter and the expression of the T7 RNA polymerase may controlled by a promoter inducible with an inducing signal other than IPTG, e.g., NaCl, one could turn on expression of the suppressor tRNA gene with IPTG prior to the induction of the T7 RNA polymerase gene and subsequent expression of the ORF of interest. In some embodiments, the expression of the suppressor tRNA might be induced about 15 minutes to about one hour before the induction of the T7 RNA polymerase gene. In one embodiment, the expression of the suppressor tRNA may be induced from about 15 minutes to about 30 minutes before induction of the T7 RNA polymerase gene. In some embodiments, the expression of the T7 RNA polymerase gene is under the control of an inducible promoter.

[0259] In additional embodiments, the expression of the ORF of interest and the suppressor tRNA can be arranged in the form of a feedback loop. For example, the ORF of interest may be placed under the control of the T7 RNA polymerase promoter while the suppressor gene is under the control of both the T7 promoter and the lac promoter. The T7 RNA polymerase gene itself is also under the control of both the T7 promoter and the lac promoter. In addition, the T7 RNA polymerase gene has an amber stop mutation replacing a normal tyrosine codon, e.g., the 28th codon (out of 883). No active T7 RNA polymerase can be made before levels of suppressor are high enough to give significant suppression. Then expression of the polymerase rapidly rises, because the T7 polymerase expresses the suppressor gene as well as itself. In other preferred embodiments, only the suppressor gene is expressed from the T7 RNA polymerase promoter. Embodiments of this type would give a high level of suppressor without producing an excess amount of T7 RNA polymerase. In other preferred embodiments, the T7 RNA polymerase gene has more than one amber stop mutation. This will require higher levels of suppressor before active T7 RNA polymerase is produced.

[0260] In some embodiments of the present invention it may be desirable to have more than one stop codon suppressible by more than one suppressor tRNA. A recombinant vector may be constructed so as to permit the regulatable expression of N- and/or C-terminal fusions of a polypeptide expressed from an ORF of interest from the same construct. A vector may comprise a first tag sequence expressed from a promoter and may include a first stop codon in the same reading frame as the tag. The stop codon may be located anywhere in the tag sequence and is preferably located at or near the C-terminal of the tag sequence. The stop codon may also be located in a recombination site or in an internal ribosome entry sequence (IRES). The vector may also include an ORF of interest that includes a second stop codon. The first tag and the ORF of interest are preferably in the same reading frame although inclusion of a sequence that causes frame shifting to bring the first tag into the same reading frame as the ORF of interest is within the scope of the present invention. The second stop codon is preferably in the same

reading frame as the ORF of interest and is preferably located at or near the end of the coding sequence of the ORF. The second stop codon may optionally be located within a recombination site located 3' to the ORF of interest. The construct may also include a second tag sequence in the same reading frame as the ORF of interest and the second tag sequence may optionally include a third stop codon in the same reading frame as the second tag. A transcription terminator and/or a polyadenylation sequence may be included in the construct after the coding sequence of the second tag. The first, second and third stop codons may be the same or different. In some embodiments, all three stop codons are different. In embodiments where the first and the second stop codons are different, the same construct may be used to express an N-terminal fusion, a C-terminal fusion and the native protein by varying the expression of the appropriate suppressor tRNA. For example, to express the native protein, no suppressor tRNAs are expressed and protein translation is controlled by an appropriately located IRES. When an N-terminal fusion is desired, a suppressor tRNA that suppresses the first stop codon is expressed while a suppressor tRNA that suppresses the second stop codon is expressed in order to produce a C-terminal fusion. In some instances it may be desirable to express a doubly tagged protein of interest in which case suppressor tRNAs that suppress both the first and the second stop codons may be expressed.

Antibody Production Services

- [0261] One or more of the polypeptides encoded by the ORFs of a collection may be used as immunogens to prepare polyclonal and/or monoclonal antibodies capable of binding the polypeptides using techniques well known in the art (Harlow & Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1988). In brief, antibodies are prepared by immunization of suitable subjects (e.g., mice, rats, rabbits, goats, etc.) with all or a part of the polypeptides of the invention. If the polypeptide or fragment thereof is sufficiently immunogenic, it may be used to immunize

the subject. If necessary or desired to increase immunogenicity, the polypeptide or fragment may be conjugated to a suitable carrier molecule (e.g., BSA, KLH, and the like). Polypeptides of the invention or fragments thereof may be conjugated to carriers using techniques well known in the art. For example, they may be directly conjugated to a carrier using, for example, carbodiimide reagents. Other suitable linking reagents are commercially available from, for example, Pierce Chemical Co., Rockford, Ill.

- [0262] Suitably prepared polypeptides of the invention or fragments thereof may be administered by injection over a suitable time period. They may be administered with or without the use of an adjuvant (e.g., Freunds). They may be administered one or more times until antibody titers reach a desired level.
- [0263] In some embodiments, it may be desirable to produce monoclonal antibodies to the polypeptides of the invention or fragments thereof. Immortalized cell lines that produce the desired monoclonal antibodies may be prepared using the standard method of Kohler and Milstein or other techniques well known in the art. Cells producing the desired monoclonal antibody can be cultured either *in vitro* or by production in ascites fluid.
- [0264] In some embodiments, it may be desirable to use a fragment of an antibody that is capable of binding a polypeptide of the invention or fragment thereof. For example, Fab, Fab', or F(ab')₂ fragments may be produced using techniques well known in the art.

Construction of cDNA Libraries

- [0265] In some embodiments, the present invention provides the service of preparing cDNA molecules and cDNA libraries for a subscriber. Such cDNAs and cDNA libraries may be prepared for any cell or tissue source.
- [0266] In accordance with the invention, cDNA molecules (single-stranded or double-stranded) may be prepared from a variety of nucleic acid template molecules. Preferred nucleic acid molecules for use in the present invention include single-stranded or double-stranded DNA and RNA molecules, as well as double-stranded DNA:RNA hybrids. More preferred nucleic acid

molecules include messenger RNA (mRNA), transfer RNA (tRNA) and ribosomal RNA (rRNA) molecules, although mRNA molecules are the preferred template according to the invention.

[0267] The nucleic acid molecules that are used to prepare cDNA molecules according to the methods of the present invention may be prepared synthetically according to standard organic chemical synthesis methods that will be familiar to one of ordinary skill. More preferably, the nucleic acid molecules may be obtained from natural sources, such as a variety of cells, tissues, organs or organisms. Cells that may be used as sources of nucleic acid molecules may be prokaryotic (bacterial cells, including but not limited to those of species of the genera Escherichia, Bacillus, Serratia, Salmonella, Staphylococcus, Streptococcus, Clostridium, Chlamydia, Neisseria, Treponema, Mycoplasma, Borrelia, Legionella, Pseudomonas, Mycobacterium, Helicobacter, Erwinia, Agrobacterium, Rhizobium, Xanthomonas and Streptomyces) or eukaryotic (including fungi (especially yeasts), plants, protozoans and other parasites, and animals including insects (particularly Drosophila spp. cells), nematodes (particularly Caenorhabditis elegans cells), and mammals (particularly human cells)).

[0268] Mammalian somatic cells that may be used as sources of nucleic acids include blood cells (reticulocytes and leukocytes), endothelial cells, epithelial cells, neuronal cells (from the central or peripheral nervous systems), muscle cells (including myocytes and myoblasts from skeletal, smooth or cardiac muscle), connective tissue cells (including fibroblasts, adipocytes, chondrocytes, chondroblasts, osteocytes and osteoblasts) and other stromal cells (e.g., macrophages, dendritic cells, Schwann cells). Mammalian germ cells (spermatocytes and oocytes) may also be used as sources of nucleic acids for use in the invention, as may the progenitors, precursors and stem cells that give rise to the above somatic and germ cells. Also suitable for use as nucleic acid sources are mammalian tissues or organs such as those derived from brain, kidney, liver, pancreas, blood, bone marrow, muscle, nervous, skin, genitourinary, circulatory, lymphoid, gastrointestinal and connective tissue

sources, as well as those derived from a mammalian (including human) embryo or fetus.

[0269] Any of the above prokaryotic or eukaryotic cells, tissues and organs may be normal, diseased, transformed, established, progenitors, precursors, fetal or embryonic. Diseased cells may, for example, include those involved in infectious diseases (caused by bacteria, fungi or yeast, viruses (including AIDS, HIV, HTLV, herpes, hepatitis and the like) or parasites), in genetic or biochemical pathologies (e.g., cystic fibrosis, hemophilia, Alzheimer's disease, muscular dystrophy or multiple sclerosis) or in cancerous processes. Transformed or established animal cell lines may include, for example, COS cells, CHO cells, VERO cells, BHK cells, HeLa cells, HepG2 cells, K562 cells, 293 cells, L929 cells, F9 cells, and the like. Other cells, cell lines, tissues, organs and organisms suitable as sources of nucleic acids for use in the present invention will be apparent to one of ordinary skill in the art.

[0270] Once the starting cells, tissues, organs or other samples are obtained, nucleic acid molecules (such as mRNA) may be isolated therefrom by methods that are well-known in the art (See, e.g., Maniatis, T., et al., Cell 15:687-701 (1978); Okayama, H., and Berg, P., Mol. Cell. Biol. 2:161-170 (1982); Gubler, U., and Hoffman, B.J., Gene 25:263-269 (1983)). The nucleic acid molecules thus isolated may then be used to prepare cDNA molecules and cDNA libraries in accordance with the present invention.

[0271] In the practice of the invention, cDNA molecules or cDNA libraries are produced by mixing one or more nucleic acid molecules obtained as described above, which is preferably one or more mRNA molecules such as a population of mRNA molecules, with a reverse transcriptase and/or a DNA polymerase under conditions favoring the reverse transcription of the nucleic acid molecule to form a cDNA molecule (single-stranded or double-stranded). Methods of preparing cDNA and cDNA libraries are well known in the art (see, e.g., Gubler, U., and Hoffman, B.J., Gene 25:263-269 (1983); Krug, M.S., and Berger, S.L., Meth. Enzymol. 152:316-325 (1987); Sambrook, J., et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 8.60-8.63 (1989); WO

99/15702; WO 98/47912; and WO 98/51699). Other methods of cDNA synthesis which may advantageously use the present invention will be readily apparent to one of ordinary skill in the art.

[0272] Methods for generating full-length cDNA molecules are known in the art. For example, United States Patent number 6,197,554 issued to Lin, et al., discloses a method for preparing a full-length cDNA library from a single cell or a small number of cells using repeated reverse transcription and amplification steps. United States Patent number 6,187,544, issued to Bergsma, et al., discloses a method for high throughput cloning of full length cDNA sequences using a plurality of clone arrays prepared from cDNA libraries which have been preferably enriched for 5' mRNA sequences and size fractionated into several discrete ranges (sub-libraries). United States Patent number 6,174,669, issued to Hayashizaki, et al., relates to a method for making full-length cDNAs having a length corresponding to full-length mRNAs by binding a tag molecule to a diol structure present in the cap of mRNAs, reverse transcribing the mRNA to make a RNA-DNA hybrid and isolating the RNA-DNA hybrids using the tag molecule.

[0273] In some embodiments, the libraries constructed according to the present invention may be normalized. As discussed above, a normalized library is one that has been constructed so as to reduce the relative variation in abundance among member nucleic acid molecules in the library. In brief, a library may be normalized by reducing the abundance of molecules that are represented at a high level in the library.

[0274] The present invention encompasses methods of preparing normalized libraries and the normalized libraries (i.e., libraries of cloned nucleic acid molecules from which each member nucleic acid molecule can be isolated with approximately equivalent probability) prepared by such methods, clones comprising such members of such libraries, and compositions comprising such clones and/or libraries.

[0275] A normalized library may be produced by synthesizing one or more nucleic acid molecules complementary to all or a portion of the nucleic acid molecules of the library, wherein the synthesized nucleic acid molecules

comprise at least one hapten, thereby producing hapteneated nucleic acid molecules (which may be RNA molecules or DNA molecules); incubating a nucleic acid library to be normalized with the hapteneated nucleic acid molecules (e.g. also referred to as driver) under conditions favoring the hybridization of the more highly abundant molecules of the library with the hapteneated nucleic acid molecules; and removing the hybridized molecules, thereby producing a normalized library.

[0276] In some embodiments, the relative concentration of all members of the normalized library are within one to two orders of magnitude. In another aspect, contaminating nucleic acid molecules (e.g., vectors without inserts) are removed from the normalized library. In this manner, all or a substantial portion of the normalized library will comprise vectors containing inserted nucleic acid molecules of the library.

[0277] In some embodiments, a population of mRNA is incubated under conditions sufficient to produce a population of cDNA molecules complementary to all or a portion of said mRNA molecules. Conditions may comprise mixing the population of mRNA molecules with one or more polypeptides having reverse transcriptase activity and incubating the mixture under conditions sufficient to produce a population of single stranded cDNA molecules complementary to all or a portion of the mRNA molecules. The single stranded cDNA molecules may then be used to make double stranded cDNA molecules by incubating the mixture under appropriate conditions in the presence of one or more DNA polymerases. The resulting population of double-stranded or single-stranded cDNA molecules makes up a library that may be normalized using the methods of the invention. Such cDNA libraries may be inserted into one or more vectors prior to normalization. Alternatively, the cDNA libraries may be normalized prior to insertion within one or more vectors, and after normalization may be cloned into one or more vectors.

[0278] The library to be normalized may be contained in (inserted in) one or more vectors, which may be a plasmid, a cosmid, a phagemid, a virus and the like. Such vectors preferably comprise one or more promoters that allow the

synthesis of at least one RNA molecule from all or a portion of the nucleic acid molecules (preferably cDNA molecules) inserted in the vector. Thus, by use of the promoters, hapteneylated RNA molecules complementary to all or a portion of the nucleic acid molecules of the library may be made and used to normalize the library in accordance with the invention. Such synthesized RNA molecules (which have been hapteneylated) will be complementary to all or a portion of the vector inserts of the library. More highly abundant molecules in the library may then be preferentially removed by hybridizing the hapteneylated RNA molecules to the library, thereby producing the normalized library of the invention. Without being limited, the synthesized RNA molecules are thought to be representative of the library; that is, more highly abundant species in the library result in more highly abundant hapteneylated RNA using the above method. The relative abundance of the molecules within the library, and therefore, within the hapteneylated RNA determines the rate of removal of particular species of the library; if a particular species abundance is high, such highly abundant species will be removed more readily while low abundant species will be removed less readily from the population. Normalization by this process thus allows one to substantially equalize the level of each species within the library.

[0279] In another aspect of the invention, the library to be normalized need not be inserted in one or more vectors prior to normalization. In such aspect of the invention, the nucleic acid molecules of the library may be used to synthesize hapteneylated nucleic acid molecules using well known techniques. For example, hapteneylated nucleic acid molecules may be synthesized in the presence of one or more DNA polymerases, one or more appropriate primers or probes and one or more nucleotides (the nucleotides and/or primers or probes may be hapteneylated). In this manner, hapteneylated DNA molecules will be produced and may be used to normalized the library in accordance with the invention. Alternatively, one or more promoters may be added to (e.g., ligated, attached using topoisomerase, attached via recombination, etc) the library molecules, thereby allowing synthesis of hapteneylated RNA molecules for use to normalize the library in accordance with the invention.

For example, adapters containing one or more promoters may be added to one or more ends of double stranded library molecules (e.g., cDNA library prepared from a population of mRNA molecules). Such promoters may then be used to prepare hapteneated RNA molecules complementary to all or a portion of the nucleic acid molecules of the library. In accordance with the invention, the library may then be normalized and, if desired, inserted into one or more vectors.

[0280] While hapteneated RNA is preferably used to normalize libraries, other hapteneated nucleic acid molecules may be used in accordance with the invention. For example, hapteneated DNA may be synthesized from the library and used in accordance with the invention.

[0281] Haptens suitable for use in the methods of the invention include, but are not limited to, avidin, streptavidin, protein A, protein G, a cell-surface Fc receptor, an antibody-specific antigen, an enzyme-specific substrate, polymyxin B, endotoxin-neutralizing protein (ENP), Fe⁺⁺⁺, a transferrin receptor, an insulin receptor, a cytokine receptor, CD4, spectrin, fodrin, ICAM-1, ICAM-2, C3bi, fibrinogen, Factor X, ankyrin, an integrin, vitronectin, fibronectin, collagen, laminin, glycophorin, Mac-1, LFA-1, β-actin, gp120, a cytokine, insulin, ferrotransferrin, apotransferrin, lipopolysaccharide, an enzyme, an antibody, biotin and combinations thereof. A particularly preferred hapten is biotin.

[0282] In accordance with the invention, hybridized molecules produced by the above-described methods may be isolated, for example by extraction or by hapten-ligand interactions. Preferably, extraction methods (e.g. using organic solvents) are used. Isolation by hapten-ligand interactions may be accomplished by incubation of the hapteneated molecules with a solid support comprising at least one ligand that binds the hapten. Preferred ligands for use in such isolation methods correspond to the particular hapten used, and include, but are not limited to, biotin, an antibody, an enzyme, lipopolysaccharide, apotransferrin, ferrotransferrin, insulin, a cytokine, gp120, β-actin, LFA-1, Mac-1, glycophorin, laminin, collagen, fibronectin, vitronectin, an integrin, ankyrin, C3bi, fibrinogen, Factor X, ICAM-1, ICAM-

2, spectrin, fodrin, CD4, a cytokine receptor, an insulin receptor, a transferrin receptor, Fe⁺⁺⁺, polymyxin B, endotoxin-neutralizing protein (ENP), an enzyme-specific substrate, protein A, protein G, a cell-surface Fc receptor, an antibody-specific antigen, avidin, streptavidin or combinations thereof. The solid support used in these isolation methods may be nitrocellulose, diazocellulose, glass, polystyrene, polyvinylchloride, polypropylene, polyethylene, dextran, Sepharose, agar, starch, nylon, a latex bead, a magnetic bead, a paramagnetic bead, a superparamagnetic bead or a microtitre plate. Preferred solid supports are magnetic beads, paramagnetic beads and superparamagnetic beads, and particularly preferred are such beads comprising one or more streptavidin or avidin molecules.

[0283] In another aspect of the invention, normalized libraries are subjected to further isolation or selection steps which allow removal of unwanted contamination or background. Such contamination or background may include undesirable nucleic acids. For example, when a library to be normalized is constructed in one or more vectors, a low percentage of vector (without insert) may be present in the library. Upon normalization, such low abundance molecules (e.g. vector background) may become a more significant constituent as a result of the normalization process. That is, the relative level of such low abundance background may be increased as part of the normalization process.

[0284] Removal of such contaminating nucleic acids may be accomplished by incubating a normalized library with one or more hapteneated probes which are specific for the nucleic acid molecules of the library (e.g. target specific probes). In principal, removal of contaminating sequences can be accomplished by selecting those nucleic acids having the sequence of interest or by eliminating those molecules that do not contain sequences of interest. In accordance with the invention, removal of contaminating nucleic acid molecules may be performed on any normalized library (whether or not the library is constructed in a vector). Thus, the probes will be designed such that they will not recognize or hybridize to contaminating nucleic acids. Upon hybridization of the hapteneated probe with nucleic acid molecules of the

library, the haptenylated probes will bind to and select desired sequences within the normalized library and leave behind contaminating nucleic acid molecules, resulting in a selected normalized library. The selected normalized library may then be isolated. In a preferred aspect, such isolated selected normalized libraries are single-stranded, and may be made double stranded following selection by incubating the single-stranded library under conditions sufficient to render the nucleic acid molecules double-stranded. The double stranded molecules may then be transformed into one or more host cells. Alternatively, the normalized library may be made double stranded using the haptenylated probe or primer (preferably target specific) and then selected by extraction or ligand-hapten interactions. Such selected double stranded molecules may then be transformed into one or more host cells.

[0285] In another aspect of the invention, contaminating nucleic acids may be reduced or eliminated by incubating the normalized library in the presence of one or more primers specific for library sequences. This aspect of the invention may comprise incubating the single stranded normalized library with one or more nucleotides (preferably nucleotides which confer nuclease resistance to the synthesized nucleic acid molecules), and one or more polypeptides having polymerase activity, under conditions sufficient to render the nucleic acid molecules double-stranded. The resulting double stranded molecules may then be transformed into one or more host cells. Alternatively, resulting double stranded molecules containing nucleotides which confer nuclease resistance may be digested with such a nuclease and transformed into one or more host cells.

[0286] In yet another aspect, the elimination or removal of contaminating nucleic acid may be accomplished prior to normalization of the library, thereby resulting in selected normalized library of the invention. In such a method, the library to be normalized may be subjected to any of the methods described herein to remove unwanted nucleic acid molecules and then the library may then be normalized by the process of the invention to provide for the selected normalized libraries of the invention.

[0287] In accordance with the invention, double stranded nucleic acid molecules are preferably made single stranded before hybridization. Thus, the methods of the invention may further comprise treating the above-described double-stranded nucleic acid molecules of the library under conditions sufficient to render the nucleic acid molecules single-stranded. Such conditions may comprise degradation of one strand of the double-stranded nucleic acid molecules (preferably using gene II protein and Exonuclease III), or denaturing the double-stranded nucleic acid molecules using heat, alkali and the like.

[0288] The invention also relates to normalized nucleic acid libraries, selected normalized nucleic acid libraries and transformed host cells produced by the above-described methods.

[0289] The above-described technique may be used to prepare a normalized library from any organism or tissue source. In some embodiments, normalized libraries may be prepared from tissue of mammalian origin (e.g., human, rat, mouse, dog, etc.). Normalized libraries may be prepared from numerous tissue types from a single organism (e.g., from human heart, lung, liver, kidney, brain, etc.).

[0290] An additional service available in the present invention is the normalization of libraries prepared by a customer. For example, a customer may have previously prepared a library from a particular source. The customer may request that the provider prepare a normalized library from the previously prepared library. The provider may prepare the normalized library using the technique described above or any other suitable technique.

Research and Development Consulting.

[0291] In some embodiments, the present invention provides the service of analyzing subscriber Research and Development. A provider may provide one or more individuals to a subscriber in order to analyze the methodology used by the subscriber. The individuals may identify portions of the subscriber's Research and Development that might be improved using materials and/or

knowledge provided by the provider. For example, a subscriber may, as part of its business, analyze the effects of small molecules on enzymes. The provider may provide improved materials and/or methods to facilitate this type of analysis. For example, the provider may provide improved reaction conditions under which to assay an enzyme of interest. The provider might provide a more suitable assay to assess the effects of the small molecules on enzyme activity than the assay used by the customer.

[0292] It will be understood by one of ordinary skill in the relevant arts that other suitable modifications and adaptations to the methods and applications described herein are readily apparent from the description of the invention contained herein in view of information known to the ordinarily skilled artisan, and may be made without departing from the scope of the invention or any embodiment thereof.

[0293] The entire disclosures of U.S. Appl. No. 08/486,139, (now abandoned), filed June 7, 1995, U.S. Appl. No. 08/663,002, filed June 7, 1996 (now U.S. Patent No. 5,888,732), U.S. Appl. No. 09/233,492, filed January 20, 1999, (now U.S. Patent No. 6,270,969), U.S. Appl. No. 09/233,493, filed January 20, 1999, (now U.S. Patent No. 6,143,557), U.S. Appl. No. 09/005,476, filed January 12, 1998, (now U.S. Patent No. 6,171,861), U.S. Appl. No. 09/432,085 filed November 2, 1999, U.S. Appl. No. 09/498,074 filed February 4, 2000, U.S. Appl. No. 60/065,930, filed October 24, 1997, U.S. Appl. No. 09/177,387, filed October 23, 1998, U.S. Appl. No. 09/296,280, filed April 22, 1999, (now U.S. Patent No. 6,277,608), U.S. Appl. No. 09/296,281, filed April 22, 1999, (now abandoned), U.S. Appl. No. 09/648,790, filed August 28, 2000, U.S. Appl. No. 09/855,797, filed May 16, 2001, U.S. Appl. No. 09/907,719, filed July 19, 2001, U.S. Appl. No. 09/907,900, filed July 19, 2001, U.S. Appl. No. 09/985,448, filed November 2, 2001, U.S. Appl. No. 60/108,324, filed November 13, 1998, U.S. Appl. No. 09/438,358, filed November 12, 1999, U.S. Appl. No. 60/161,403, filed October 25, 1999, U.S. Appl. No. 09/695,065, filed October 25, 2000, U.S. Appl. No. 09/984,239, filed October 29, 2001, U.S. Appl. No. 60/122,389, filed March 2, 1999, U.S. Appl. No. 60/126,049, filed March 23, 1999, U.S. Appl. No. 60/136,744, filed

May 28, 1999, U.S. Appl. No. 09/517,466, filed March 2, 2000, U.S. Appl. No. 60/122,392, filed March 2, 1999, U.S. Appl. No. 09/518,188, filed March 2, 2000, U.S. Appl. No. 60/169,983, filed December 10, 1999, U.S. Appl. No. 60/188,000, filed March 9, 2000, U.S. Appl. No. 09/732,914, filed December 11, 2001, U.S. Appl. No. 60/284,528, filed April 19, 2001, U.S. Appl. No. 60/291,973, filed May 21, 2001, U.S. Appl. No. 60/318,902, filed September 14, 2001, U.S. Appl. No. 60/333,124, filed November 27, 2001, and U.S. Appl. No. 10/005,876, filed December 7, 2001, are herein incorporated by reference.

[0294] Having now fully described the present invention in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious to one of ordinary skill in the art that the same can be performed by modifying or changing the invention within a wide and equivalent range of conditions, formulations and other parameters without affecting the scope of the invention or any specific embodiment thereof, and that such modifications or changes are intended to be encompassed within the scope of the appended claims.

[0295] All publications, patents and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains, and are herein incorporated by reference to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference.

Table 1: GenBank Accession numbers of human sequence records identified as related to nucleic acids encoding protein kinases potentially connected to the cell cycle.

1: NM_005858	2: NM_144490	3: NM_016248	4: M37712
5: NM_139323	6: NM_003404	7: NM_003157	8: NM_001255
9: NM_139014	10: NM_139013	11: NM_139012	12: NT_008902
13: NT_023678	14: NT_030040	15: NT_033984	16: NT_033894
17: NM_078467	18: NM_031988	19: NM_002758	20: NM_001315
21: NT_033944	22: XM_005420	23: NM_006142	24: NT_006497
25: NT_007819	26: NT_033964	27: NM_138923	28: NM_004606
29: NM_000051	30: NM_138293	31: NM_138292	32: NM_001211
33: NM_001184	34: NM_003600	35: NM_003390	36: NM_001396
37: NM_130438	38: NM_130437	39: NM_130436	40: NM_101395
41: NM_000389	42: NM_001799	43: NM_003503	44: NM_004690
45: NM_007194	46: NM_006271	47: NM_005400	48: NM_024011
49: NM_033621	50: NM_033537	51: NM_033536	52: NM_033534
53: NM_033532	54: NM_033531	55: NM_033529	56: NM_033528
57: NM_033527	58: AF049105	59: NM_016508	60: NM_001261
61: NM_001259	62: NM_052988	63: NM_052987	64: NM_001260
65: NM_003674	66: NM_052984	67: NM_000075	68: NM_052827
69: NM_001798	70: NM_033493	71: NM_033492	72: NM_033491
73: NM_033490	74: NM_033489	75: NM_033488	76: NM_033487
77: NM_033486	78: NM_001787	79: NM_033379	80: NM_001786
81: NM_003137	82: NM_006575	83: AX136049	84: NM_031267
85: NM_003718	86: NM_005906	87: NM_004954	88: NM_017490
89: AJ277546	90: NM_001924	91: NM_007186	92: NM_004853
93: NM_003158	94: NM_003160	95: NM_002497	96: NM_001827
97: NM_001826	98: AF162667	99: AF162666	100: AF174135
101: AF107297	102: AB017332	103: AF086904	104: AF005209
105: AF032874	106: D84212	107: Y13115	108: U78073
109: Z25437	110: Z25436	111: Z25435	112: Z25434
113: Z25433	114: Z25432	115: Z25431	116: Z25430
117: Z25429	118: Z25428	119: Z25427	120: Z25426
121: Z25425	122: Z25424	123: Z25423	124: Z25422
125: Z25421	126: X73458	127: Z29067	128: Z29066
129: Y00272	130: L19559		

Table 2: GenBank Accession numbers of human sequence records identified as related to nucleic acids encoding polypeptides potentially related to inositol metabolism and/or signaling.

1: AF469196	2: NM_022468	3: NM_144489	4: NM_144488
5: NM_134427	6: NM_017790	7: NM_021106	8: NM_130795
9: NM_000276	10: NM_001587	11: NM_022718	12: NM_014216
13: AF273055	14: NM_002649	15: NM_054111	16: NT_030828
17: NT_009458	18: NT_008902	19: NT_008769	20: NT_011139
21: NT_024040	22: NT_007972	23: NT_005990	24: NT_005927
25: NT_004525	26: NT_004511	27: NT_006258	28: NT_022760
29: NT_022439	30: NT_033930	31: NM_138687	32: NM_003559
33: NM_005028	34: NM_016532	35: NM_130766	36: NT_011903
37: NM_006085	38: NT_033291	39: NT_011512	40: NT_010692
41: NT_007592	42: XM_165804	43: XM_165697	44: NT_010956
45: NT_009471	46: NT_033944	47: XM_084759	48: XM_056913
49: XM_114817	50: NM_016368	51: XM_095533	52: XM_062470
53: XM_067111	54: XM_067089	55: NM_052885	56: XM_044063
57: XM_028610	58: NT_011526	59: XM_008065	60: XM_006747
61: XM_030060	62: XM_003530	63: NM_006319	64: NT_029991
65: NT_009799	66: XM_018252	67: NT_011288	68: XM_165960
69: XM_114004	70: NT_026437	71: XM_029288	72: NT_005414
73: XM_096169	74: NT_005403	75: XM_115825	76: NT_022197
77: NT_022171	78: XM_002493	79: XM_002279	80: XM_029748
81: BC027960	82: NM_002676	83: NM_017584	84: BC026331
85: NM_004897	86: NM_130785	87: AF009963	88: NM_014845
89: NM_025194	90: NM_006069	91: NM_130385	92: AL365444
93: AY064416	94: NM_078488	95: NM_004665	96: BC018952
97: NM_003866	98: NM_019892	99: NM_014937	100: Y18024
101: AK057550	102: AK056586	103: AF039945	104: BC018192
105: NM_005086	106: BC017189	107: BC017176	108: BC009565
109: BC015496	110: AF393812	111: U84400	112: AF368319
113: AB057723	114: AJ315644	115: NM_007368	116: BC008381
117: BC005274	118: BC004362	119: BC003622	120: BC001864
121: BC001444	122: AJ290975	123: AB057724	124: AF279372
125: AJ242780	126: AY032885	127: AL136579	128: AL050356
129: X83558	130: M88162	131: AF184215	132: NM_004027
133: NM_001566	134: NM_006506	135: AF063823	136: AF063822
137: AB042328	138: AL096840	139: AF207640	140: NM_002222
141: NM_000717	142: NM_005536	143: NM_016291	144: NM_014214
145: NM_006933	146: NM_005541	147: NM_005539	148: NM_005139
149: NM_001567	150: NM_002194	151: NM_003895	152: NM_002224
153: NM_002223	154: NM_002221	155: NM_002220	156: AC023051
157: AK024596	158: AK024045	159: AK022846	160: AK021526
161: AY007091	162: AF251265	163: AH009098	164: AF220249
165: AF220259	166: AF220258	167: AF220257	168: AF220256
169: AF220255	170: AF220254	171: AF220253	172: AF220252
173: AF220251	174: AF220250	175: AF220530	176: AF218361
177: AF187891	178: AF025878	179: AH007532	180: AF014398
181: AP001719	182: AF025886	183: AF025885	184: AF025884
185: AF025883	186: AF085632	187: AF085631	188: AF085630
189: AF085629	190: AF085628	191: AF085627	192: AF025882
193: AF025881	194: AF025880	195: AF025879	196: AF042729
197: AF178754	198: AF016028	199: AB036831	200: AB036830
201: AB036829	202: AK001325	203: AL137749	204: AJ251881

205: D13435	206: AF141325	207: AJ249339	208: AF177145
209: AF200432	210: AF125042	211: D89974	212: AH007823
213: AF157102	214: AF157101	215: AF157100	216: AF157099
217: AF157098	218: AF157097	219: AF157096	220: AF046915
221: AF046914	222: AC007192	223: S82269	224: S74936
225: AF115573	226: AF084944	227: AF084943	228: U53470
229: AB012610	230: U88725	231: AF009040	232: AF009039
233: U51336	234: U50041	235: U50040	236: U01062
237: L38500	238: AF027153	239: X80907	240: U23850
241: Y15056	242: Y14385	243: Y11366	244: Y11365
245: Y11364	246: Y11363	247: Y11367	248: Y11362
249: Y11361	250: Y11360	251: U96922	252: U96919
253: D38169	254: D26070	255: D26351	256: D26350
257: U57650	258: Y11999	259: X89105	260: X98429
261: L38019	262: U26398	263: X66922	264: X57206
265: X77567	266: Z31695	267: X54938	268: L36818
269: M74161	270: L47220	271: M63310	272: L08488
273: AH001430	274: L10955	275: L10954	276: L10953

Table 3: GenBank Accession numbers of human sequence records identified as related to nucleic acids encoding polypeptides potentially related to adenylate cyclase metabolism and/or signaling.

1: NM_139247	2: D17516	3: NM_020983	4: NM_015270
5: NT_008769	6: NT_023709	7: NT_028053	8: XM_007897
9: XM_012740	10: XM_028817	11: XM_036725	12: XM_096265
13: XM_113762	14: XM_036671	15: XM_041507	16: NT_006859
17: NT_009984	18: XM_036383	19: NT_010164	20: NT_007819
21: XM_166593	22: XM_039712	23: XM_090617	24: XM_036413
25: BC028085	26: BC027943	27: BC020148	28: NM_001841
29: AK056745	30: NM_033181	31: D86984	32: NM_000681
33: NM_004624	34: AK001637	35: NM_016083	36: NM_001840
37: AY028959	38: AY028957	39: AY028956	40: AY028955
41: AY028954	42: AY028953	43: AY028952	44: AY028951
45: AY028950	46: AY028949	47: AY028948	48: AH010599
49: NM_000872	50: NM_019860	51: NM_019859	52: NM_000025
53: NM_001117	54: NM_004036	55: NM_000866	56: NM_012125
57: NM_000677	58: NM_000054	59: NM_005281	60: NM_005145
61: NM_001116	62: NM_001115	63: NM_001114	64: NM_000741
65: NM_000740	66: NM_000739	67: NM_000738	68: NM_000676
69: NM_000674	70: NM_001118	71: AK022951	72: U09216
73: AJ012074	74: S56143	75: AK001924	76: AK001854
77: AK001438	78: X60435	79: S83513	80: U18810
81: L21195	82: AF088070	83: AF086306	84: AF086230
85: Y12507	86: Y12506	87: Y12505	88: D38299
89: D38301	90: D38300	91: D28472	92: X74210
93: X83956	94: X07036	95: X04408	96: X04409
97: X04828	98: M23533	99: L04962	100: L05597
101: L25124			

Table 4: GenBank Accession numbers of human sequence records identified as related to nucleic acids encoding polypeptides potentially related to potassium channel metabolism and/or signaling.

1: AF348984	2: AF348983	3: AF348982
4: NM_144633	5: NM_138318	6: NM_138317
7: NM_021161	8: NM_033456	9: NM_033455
10: NM_033348	11: NM_033347	12: NM_005714
13: NM_002249	14: NM_002243	15: NM_001194
16: AF493798	17: AF472412	18: AF000972
19: NM_139318	20: NM_002236	21: NM_033311
22: NM_033310	23: NM_016611	24: NM_002246
25: NM_022358	26: NM_014217	27: AF065163
28: SEG_HUMUKATPS	29: D50315	30: D50314
31: D50313	32: NM_139137	33: NM_139136
34: NT_009307	35: NT_010376	36: NT_024375
37: NT_030075	38: NT_008104	39: NT_008413
40: NT_004612	41: NT_004416	42: NT_022517
43: NT_021909	44: NT_021877	45: NT_019273
46: NT_033262	47: NT_033200	48: NT_033241
49: AF418206	50: NT_010422	51: NT_011512
52: NT_033899	53: NT_011333	54: NT_010700
55: NT_007592	56: XM_056976	57: XM_001299
58: XM_059493	59: XM_084080	60: XM_115258
61: XM_165593	62: XM_115027	63: XM_113221
64: XM_114797	65: NM_133329	66: NM_133497
67: XM_091498	68: XM_084762	69: XM_090187
70: XM_084388	71: XM_088998	72: NT_011362
73: XM_065997	74: XM_028862	75: XM_006988
76: XM_018513	77: NM_016121	78: NT_011669
79: NT_033316	80: XM_113356	81: NT_030171
82: NT_011233	83: NT_006576	84: XM_116412
85: NT_026437	86: NT_005367	87: NT_005334
88: NT_005612	89: XM_056742	90: NT_015120
91: XM_093482	92: XM_066592	93: XM_042027
94: XM_010829	95: XM_029336	96: AF385400
97: AF385399	98: NM_133490	99: BC028739
100: AF305072	101: AF302044	102: NM_014505
103: NM_002252	104: NM_014407	105: AF482710
106: AH011548	107: AC005833	108: BC025726
109: AF453246	110: AF453244	111: AJ272506
112: M38217	113: AJ272519	114: AJ272518
115: AJ272517	116: AJ272516	117: AJ272515
118: AJ272514	119: AJ272513	120: AJ272512
121: AJ272511	122: AJ272510	123: AJ272509
124: AJ272508	125: AJ272507	126: AF294352
127: AF294351	128: AF294350	129: AK074390
130: NM_031460	131: AF349445	132: NM_001364
133: NM_013348	134: AF055989	135: AF438203
136: AF438202	137: NM_016601	138: NM_033272
139: NM_020122	140: AK055089	141: BC018051
142: AL158822	143: NM_004974	144: AY053503
145: AY040849	146: AF358910	147: AF344826
148: NM_022055	149: NM_032115	150: AF268897
151: AF268896	152: NM_022054	153: AY049734

154: AF074247	155: AJ006128	156: AL157833
157: NM 003740	158: NM 004823	159: NM 002245
160: AF294266	161: BC012779	162: AF397175
163: BC004367	164: BC000178	165: AF257081
166: AF257080	167: AL121829	168: AF315818
169: AF336797	170: AF171068	171: AF319633
172: AJ310479	173: AJ251016	174: AF031815
175: U52155	176: U52154	177: US2153
178: U52152	179: AK027657	180: AK027347
181: NM 031886	182: AF358909	183: AF336342
184: AF153819	185: AF153818	186: AH009400
187: AC005559	188: AL118522	189: AL121827
190: AL353658	191: NM 030779	192: AF339912
193: NM 002251	194: AF129399	195: AF043473
196: AB044585	197: AB044584	198: AF153814
199: AF153813	200: AF153812	201: AF153811
202: AF153810	203: AF153809	204: AH009401
205: AF153820	206: AF153817	207: AF153816
208: AF153815	209: AF082182	210: AL121785
211: AL035685	212: AF287303	213: AF287302
214: NM 020298	215: NM 020297	216: NM 006855
217: NM 016657	218: NM 005691	219: AF029780
220: AF311913	221: AF239613	222: AF305735
223: AF305734	224: AF305733	225: AF305732
226: AF305731	227: AH009923	228: U32376
229: AF248242	230: AF248241	231: AJ297404
232: AJ297405	233: NM 000220	234: NM 019842
235: NM 014379	236: NM 014406	237: NM 012283
238: NM 002248	239: NM 005477	240: NM 004983
241: NM 004982	242: NM 000890	243: NM 004981
244: NM 005136	245: NM 004978	246: NM 004977
247: NM 004976	248: NM 004975	249: NM 004700
250: NM 004519	251: NM 004518	252: NM 004732
253: NM 000238	254: NM 000218	255: NM 000219
256: NM 000217	257: NM 001365	258: NM 002250
259: NM 002247	260: NM 002244	261: NM 002240
262: NM 002239	263: NM 000891	264: NM 002241
265: NM 002238	266: NM 002237	267: NM 003636
268: NM 003471	269: NM 002235	270: NM 002234
271: NM 002233	272: NM 002232	273: AF081466
274: AK024857	275: AK022344	276: AF279890
277: AL136087	278: AF179353	279: AF295530
280: AF295076	281: AF181988	282: AF021139
283: AF032897	284: AF249278	285: AF170917
286: AF170916	287: AF202977	288: AF279809
289: AB021865	290: AF263835	291: AP001730
292: AP001729	293: AP001731	294: AP001720
295: AP000365	296: AF212829	297: U11058
298: AF160967	299: AF166011	300: AF166010
301: AF166009	302: AH009283	303: AF160968
304: AF155652	305: AF166008	306: AF166007
307: AH009258	308: AF166006	309: AF166005
310: AF166004	311: AH009257	312: AF166003
313: AF120491	314: AF247042	315: AB032013
316: AB032012	317: AB032011	318: SEG AB032011S

319: SEG AB01514S	320: AB015163	321: AB015162
322: AB015161	323: AB015160	324: AB015159
325: AB015158	326: AB015157	327: AB015156
328: AB015155	329: AB015154	330: AB015153
331: AB015152	332: AB015151	333: AB015150
334: AB015149	335: AB015148	336: AB015147
337: AF011904	338: AJ276317	339: AC010072
340: AF214561	341: AF209747	342: AF207992
343: AL133016	344: AL122115	345: AF199599
346: AF199598	347: AF199597	348: AF155110
349: AF043472	350: AF205857	351: AF205856
352: AC004946	353: AC004888	354: AF167082
355: AF139471	356: Z97056	357: AF207550
358: AB013891	359: AB013889	360: AF078742
361: AF078741	362: U69883	363: AF187964
364: AF187963	365: AJ010969	366: AJ011021
367: AF142568	368: AF117708	369: U65406
370: AF016411	371: AH007779	372: AF131948
373: AF131947	374: AF131946	375: AF131945
376: AF131944	377: AF131943	378: AF131942
379: AF131941	380: AF131940	381: AF131939
382: AF131938	383: AF137071	384: AJ006344
385: AJ006343	386: AF076531	387: AF071002
388: AF135188	389: AF121104	390: AF105373
391: AF105372	392: AF110020	393: AH007377
394: AF105216	395: AF105215	396: AF105214
397: AF105213	398: AF105212	399: AF105211
400: AF105210	401: AF105209	402: AF105208
403: AF105207	404: AF105206	405: AF105205
406: AF105204	407: AF105203	408: AF105202
409: AF035046	410: AF004711	411: AH007067
412: AF071491	413: AF071490	414: AF071489
415: AF071488	416: AF071487	417: AF071486
418: AF071485	419: AF071484	420: AF071483
421: AF071482	422: AF071481	423: AF071480
424: AF071479	425: AF071478	426: AJ012369
427: Y10745	428: AF052728	429: Y13896
430: Y13895	431: AJ001891	432: AJ001366
433: AJ007557	434: S72503	435: AF015607
436: AF015606	437: AF015605	438: AF022797
439: U89364	440: U96110	441: U33429
442: U73193	443: U73192	444: U73191
445: U52432	446: U33428	447: U11717
448: U24660	449: U16953	450: U17968
451: U12507	452: AF033021	453: AF053478
454: AF053477	455: AJ010538	456: L23499
457: AJ005898	458: AF022150	459: AF061118
460: AF033383	461: AF033382	462: AF048713
463: AF048712	464: Y15065	465: AF003743
466: AF044253	467: U76996	468: AF033348
469: AF033347	470: AF026005	471: AF026002
472: AF025999	473: AF029749	474: U61537
475: U61536	476: D87327	477: D87291
478: D50134	479: U86146	480: D50312
481: U39196	482: U39195	483: U90065

484: U24055	485: U50964	486: X83127
487: S78737	488: S56770	489: U42600
490: AH003672	491: U42603	492: U42602
493: U42601	494: U69962	495: U25138
496: L78480	497: X83582	498: X17622
499: X68302	500: Z11585	501: U23767
502: U16861	503: U13913	504: U24056
505: L36069	506: U22413	507: L33815
508: U04270	509: U12545	510: U12544
511: U12543	512: U12542	513: U12541
514: M60451	515: M60450	516: M83254
517: M55514	518: M96747	519: M85217
520: L28168	521: M64676	522: U09384
523: U02632	524: M55515	525: M55513
526: L02840	527: L00621	528: L02752
529: L02751	530: L02750	531: M26685
532: U07364	533: U07918	

Table 5: GenBank Accession numbers of human sequence records identified as related to nucleic acids encoding polypeptides potentially related to sodium channel metabolism and/or signaling.

1: NM_020039	2: NM_001095	3: NM_001094	4: NM_002976
5: NM_015277	6: NM_004588	7: BC030193	8: NT_009151
9: NT_009731	10: NT_009609	11: NT_006129	12: NT_033049
13: NM_005612	14: NT_033284	15: XM_113296	16: NT_033899
17: NT_010736	18: NT_011085	19: XM_114084	20: XM_113411
21: XM_116055	22: XM_083942	23: XM_028504	24: XM_064330
25: XM_008249	26: XM_032835	27: XM_007990	28: XM_097396
29: NT_007914	30: NT_033178	31: NT_005343	32: XM_010769
33: XM_114281	34: XM_054184	35: XM_033675	36: BQ268051
37: AY043484	38: AF260228	39: AF260227	40: AH011264
41: AF260226	42: NM_006922	43: U81961	44: AY007685
45: BD004564	46: BD004563	47: BD004562	48: E37451
49: AX354521	50: AX354520	51: NM_002837	52: NM_001649
53: BM353290	54: BM352813	55: AJ310898	56: AJ310897
57: AJ310896	58: AJ310895	59: AJ310894	60: AJ310893
61: AJ310892	62: AJ310891	63: AJ310890	64: AJ310889
65: AJ310888	66: AJ310887	67: AJ310886	68: AJ310885
69: AJ310884	70: AJ310883	71: AJ310882	72: BM314926
73: NM_018400	74: BC006526	75: BI964932	76: BI962702
77: AH005909	78: AF049497	79: AF049496	80: AB071179
81: BI789210	82: AF087511	83: AF087510	84: AY038064
85: AH007622	86: AF060913	87: AF060912	88: AF060911
89: AF060910	90: BG108767	91: AJ251507	92: AF356502
93: AF356501	94: AF356500	95: AF356499	96: AF356498
97: AF356497	98: AF356496	99: AF356495	100: AF356494
101: AF356493	102: AH010738	103: AU099675	104: AU099608
105: NM_001091	106: S82622	107: E36123	108: M55662
109: NM_021602	110: NM_000626	111: NM_020322	112: NM_020321
113: NM_004769	114: BG152517	115: AF225987	116: AF225986
117: AF225985	118: AF330135	119: AF330134	120: AF330133
121: AF330132	122: AF330131	123: AF330130	124: AF330129
125: AF330128	126: AF330127	127: AF330126	128: AF330125
129: AF330124	130: AF330123	131: AF330122	132: AF330121
133: AF330120	134: AF330119	135: AF330118	136: AF330117
137: AF330116	138: AH010233	139: AF327246	140: AF327245
141: AF327244	142: AF327243	143: AF327242	144: AF327241
145: AF327240	146: AF327239	147: AF327238	148: AF327237
149: AF327236	150: AF327235	151: AF327234	152: AF327233
153: AF327232	154: AF327231	155: AF327230	156: AF327229
157: AF327228	158: AF327227	159: AF327226	160: AF327225
161: AF327224	162: AH010232	163: BF941784	164: NM_000336
165: NM_000335	166: AF038871	167: AJ002484	168: AJ002483
169: BF195781	170: NM_021007	171: NM_014191	172: NM_014139
173: NM_006514	174: NM_001039	175: NM_002978	176: NM_001038
177: NM_002977	178: NM_000334	179: NM_001037	180: G64248
181: BF061009	182: BF002594	183: AX017233	184: AX017232
185: AX017231	186: AX017230	187: AX017229	188: AX017228
189: AX017227	190: AX017226	191: AX017225	192: AX017224
193: AX017223	194: AX017222	195: AX017221	196: AX017220
197: AX017219	198: BE671436	199: AJ277395	200: AJ277394
201: AJ277393	202: AJ276142	203: AJ276141	204: AJ276140

205: AJ276139	206: BE463571	207: AB037525	208: U48937
209: AW771930	210: AJ252011	211: L48689	212: AF239921
213: AJ243396	214: AW468811	215: AF225988	216: A82786
217: A82597	218: A82595	219: A82593	220: AF150882
221: AF109737	222: AW276630	223: U87555	224: AF188679
225: AC002300	226: AW190344	227: AW170363	228: AF059683
229: AW105326	230: AW025990	231: AW008644	232: AW002349
233: AW001231	234: AF126739	235: AF107028	236: AI932372
237: AI915394	238: AI884536	239: AI862563	240: AI796228
241: AB027567	242: AI683977	243: AI675767	244: AF117907
245: AH007414	246: AF050736	247: AF050735	248: AF050734
249: AF050733	250: AF050732	251: AF050731	252: AF050730
253: AF050729	254: AF050728	255: AF050727	256: AF050726
257: AF050725	258: AF050724	259: AF050723	260: AF050722
261: AF050721	262: AF050720	263: AF050719	264: AF050718
265: AF050717	266: AF050716	267: AF050715	268: AF050714
269: AF050713	270: AF050712	271: AF050711	272: AJ005393
273: AJ005392	274: AJ005391	275: AJ005390	276: AJ005389
277: AJ005388	278: AJ005387	279: AJ005386	280: AJ005385
281: AJ005384	282: AJ005383	283: AI567447	284: AI553866
285: AF049618	286: AI361695	287: S75992	288: AI401486
289: AI280308	290: AI277385	291: AI275868	292: AI377290
293: AI361696	294: AA885031	295: AA885211	296: AI338340
297: AI199647	298: AI241832	299: AI191453	300: AI131238
301: AI146968	302: AH006646	303: U53853	304: U53852
305: U53851	306: U53850	307: U53849	308: U53848
309: U53847	310: U53846	311: U53845	312: U53844
313: U53843	314: U53842	315: U53841	316: U53840
317: U53839	318: U53838	319: U53837	320: U53836
321: U53835	322: U48936	323: U50352	324: U38254
325: U35630	326: AI026646	327: AI027237	328: AI017422
329: AI016157	330: AI005419	331: AA994701	332: AA912739
333: AI091722	334: AF035686	335: AF035685	336: X65362
337: Z92978	338: Z92982	339: Z92981	340: Z92980
341: Z92979	342: AJ002482	343: AF007783	344: X97925
345: AA917500	346: AA913881	347: AA913423	348: AA887514
349: AA984063	350: X65361	351: AB010575	352: U24693
353: AA214661	354: AA211081	355: AF049498	356: AA778416
357: AH005825	358: U12194	359: U12193	360: U12192
361: U12188	362: U12191	363: U12190	364: U12189
365: AA666056	366: AA429417	367: AA428361	368: AA422068
369: AA620400	370: AA595839	371: AA397575	372: AA393950
373: AF007782	374: AF007781	375: AH005307	376: L04236
377: L04235	378: L04234	379: L04233	380: L04232
381: L04231	382: L04230	383: L04229	384: L04228
385: L04227	386: L04226	387: L04225	388: L04224
389: L04223	390: L04222	391: L04221	392: L04220
393: L04219	394: L04218	395: L04217	396: L04216
397: AA449579	398: AA446878	399: AA035472	400: AA035445
401: AA029133	402: AA383040	403: AA360938	404: AA322364
405: AA298508	406: AA297746	407: AA297047	408: AA295926
409: U57352	410: U78181	411: U78180	412: AA206530
413: S71446	414: S69887	415: Z50169	416: U22314
417: X82835	418: X87160	419: X87159	420: N53512
421: AH003201	422: L01968	423: L01964	424: L01983

425: L01982	426: L01981	427: L01980	428: L01979
429: L01978	430: L01977	431: L01976	432: L01975
433: L01974	434: L01973	435: L01972	436: L01971
437: L01970	438: L01969	439: L01967	440: L01966
441: L01965	442: L01963	443: L01962	444: L36593
445: L36592	446: T29303	447: T28389	448: R90820
449: H26938	450: H23297	451: R74525	452: U16023
453: R53503	454: L16242	455: M81758	456: L10338
457: M91556	458: M77235	459: T19733	460: M85046
461: M85045	462: M91804	463: M91803	464: L29007
465: M94055	466: U02693	467: T07957	468: T06279

Table 6: GenBank Accession numbers of human sequence records identified as related to nucleic acids encoding polypeptides potentially related to serotonin metabolism and/or signaling.

1: NM_000870	2: NT_009151	3: NT_009714	4: NT_008769
5: NT_004610	6: NT_029218	7: NT_005791	8: NT_024897
9: NT_010641	10: NT_028405	11: XM_049607	12: NT_025741
13: NT_023399	14: NT_033922	15: XM_165640	16: NT_006859
17: NT_006431	18: NT_007666	19: NT_005403	20: XM_004134
21: XM_003692	22: AF498985	23: AF498984	24: AF498983
25: AF498982	26: AF498981	27: AF498980	28: AF498979
29: AF498978	30: NM_003739	31: NM_000864	32: AJ011371
33: NM_130770	34: AF459285	35: NM_000675	36: AX253256
37: AB041403	38: BC007720	39: BC002354	40: AB061801
41: AB061800	42: AB061799	43: AJ308680	44: AJ308679
45: NM_002383	46: S78723	47: NM_024012	48: NM_000872
49: NM_019860	50: NM_019859	51: AJ131724	52: NM_001088
53: NM_000866	54: NM_000621	55: NM_014626	56: NM_014627
57: NM_006028	58: NM_004179	59: NM_000240	60: NM_001045
61: NM_000871	62: NM_000869	63: NM_000868	64: NM_000867
65: NM_000865	66: NM_000863	67: NM_000524	68: NM_000674
69: AF298814	70: AF149416	71: AL157777	72: AJ005205
73: AB037533	74: AB037513	75: AF208053	76: D49394
77: AB041373	78: AB041370	79: AF233399	80: AL049576
81: AF112461	82: AF112460	83: AJ003080	84: AJ003078
85: AJ243213	86: AB031259	87: AB031258	88: AB031257
89: AB031256	90: AB031255	91: AB031254	92: AB031253
93: AB031252	94: AB031251	95: AB031250	96: AB031249
97: AB031248	98: AB031247	99: AL049595	100: X80763
101: AF169255	102: AH003966	103: S42168	104: S42167
105: AH001421	106: M84601	107: M84592	108: M84591
109: M84590	110: M84589	111: M84588	112: M84599
113: M84598	114: M84595	115: M84597	116: M84596
117: M84594	118: M84593	119: M84600	120: M77828
121: L13665	122: AF126506	123: AI819939	124: X57829
125: AF117826	126: X76753	127: Y13147	128: AF080582
129: Y09586	130: U40391	131: U40347	132: L21195
133: AF072904	134: Y12507	135: Y12506	136: U88828
137: Y12505	138: Y08756	139: AF007141	140: Y13584
141: U86813	142: AA757429	143: Y10437	144: AA722177
145: U79746	146: AA708262	147: AA700086	148: AA700070
149: Z49119	150: Z48150	151: U73443	152: D10995
153: D87030	154: AA365330	155: AA364412	156: U49648
157: U49516	158: X76757	159: X76756	160: X76754
161: X76762	162: X76761	163: X76760	164: X76759
165: X76758	166: X76755	167: X98194	168: X98147
169: X98193	170: S71229	171: C06167	172: Z36748
173: Z11168	174: U33819	175: X81412	176: X81411
177: X77307	178: X52836	179: Z34845	180: X70697
181: X57830	182: Z11166	183: L41147	184: M83181
185: M81778	186: M81590	187: M81589	188: M75128
189: M92826	190: M86841	191: M91467	192: L04962
193: L05597	194: M83180	195: L06179	196: L05568
197: M89955	198: M89478		

Table 7: GenBank Accession numbers of human sequence records identified as related to nucleic acids encoding polypeptides potentially related to fibroblast growth factors metabolism and/or signaling.

1: BC032697	2: NM_139266	3: NM_007315	4: AF508782
5: AF520763	6: NM_004385	7: NM_006654	8: D14872
9: NT_009151	10: NT_024192	11: NT_024413	12: NT_010194
13: NT_008769	14: NT_030764	15: NT_030040	16: NT_005501
17: NT_006111	18: NT_006109	19: NT_022865	20: NT_016354
21: NT_033229	22: NT_024773	23: NT_010478	24: XM_049890
25: NT_010823	26: NT_033929	27: XM_169242	28: XM_167430
29: NT_033944	30: XM_084481	31: XM_044120	32: XM_064055
33: XM_055784	34: XM_003444	35: XM_017651	36: XM_042695
37: NM_013394	38: NT_011719	39: NT_009799	40: NT_033316
41: NT_024524	42: NT_030171	43: NT_006859	44: XM_096234
45: NT_009952	46: NT_006725	47: NT_008300	48: NT_008251
49: XM_049463	50: NT_007819	51: NT_030737	52: NT_023132
53: NT_023098	54: NT_033210	55: NT_005367	56: XM_090648
57: XM_084273	58: M88272	59: BQ269244	60: AF487554
61: AY094623	62: AF487555	63: NM_007083	64: AF497475
65: NM_133336	66: NM_133335	67: NM_133334	68: NM_133333
69: NM_133332	70: NM_133331	71: NM_133330	72: NM_014919
73: NM_007331	74: AF245114	75: NM_007050	76: NM_133170
77: AF360695	78: AH010989	79: AF410480	80: AX378915
81: AX378914	82: BM874752	83: BM874259	84: NM_080838
85: NM_003882	86: AF359246	87: NM_012201	88: NM_006595
89: BM311972	90: AX318785	91: AX318710	92: AX318684
93: NM_007373	94: NM_006824	95: M34641	96: AX275080
97: AX275079	98: AX275054	99: AX275053	100: AX275042
101: BC017664	102: AF035374	103: AX287610	104: AX287608
105: AX287596	106: BC017448	107: AJ298918	108: AJ298917
109: AJ298916	110: AY049782	111: NM_033649	112: NM_004114
113: NM_033642	114: NM_003862	115: NM_003867	116: AX250592
117: AF359241	118: AB014615	119: AF411527	120: BC014388
121: AX235431	122: NM_005247	123: NM_002006	124: NM_003868
125: NM_006119	126: NM_033165	127: NM_033164	128: NM_033163
129: NM_002009	130: NM_020996	131: NM_004112	132: NM_004465
133: NM_002010	134: AX179562	135: AX179564	136: BC011847
137: NM_004464	138: NM_033143	139: NM_020638	140: NM_000800
141: NM_033137	142: NM_033136	143: NM_020637	144: NM_019113
145: NM_002007	146: BC010956	147: NM_005117	148: NM_019851
149: NM_004115	150: NM_000088	151: BC006245	152: BC002537
153: AX156438	154: AX156436	155: AX156434	156: AL160153
157: AF369213	158: AF369212	159: AF369211	160: AX105677
161: AX105675	162: AX105674	163: AX105673	164: AX105671
165: AX105669	166: AX105667	167: AX105665	168: AX105663
169: AX105661	170: AF110400	171: AU100202	172: AX097639
173: AX092981	174: AF279689	175: S67291	176: NM_023031
177: NM_023030	178: NM_023028	179: NM_022976	180: NM_022975
181: NM_022974	182: NM_022973	183: NM_022972	184: NM_022971
185: NM_022970	186: NM_022969	187: NM_015850	188: NM_023111
189: NM_023110	190: NM_023109	191: NM_023029	192: NM_023108
193: NM_000141	194: NM_023107	195: NM_023106	196: NM_023105
197: NM_000604	198: AF312678	199: AX080371	200: AX080370
201: AX080369	202: AX080368	203: AX080364	204: NM_021923

205: NM_002011	206: NM_022963	207: NM_022965	208: NM_000142
209: AB021925	210: E30326	211: NM_004214	212: AF229254
213: AF229253	214: AF250392	215: AF250391	216: U69263
217: BF739878	218: BF739773	219: AL139378	220: AB037973
221: AB030648	222: NM_021032	223: BF221906	224: NM_004339
225: NM_004219	226: NM_000214	227: NM_007045	228: NM_004113
229: NM_005211	230: NM_004383	231: NM_000428	232: NM_003453
233: NM_003199	234: NM_002660	235: NM_001553	236: AJ277437
237: BF110834	238: BF062689	239: BF059273	240: BF058753
241: BF056554	242: BF002774	243: AK026508	244: BE673878
245: BE673874	246: BE673061	247: BE672701	248: BE672483
249: BE671952	250: BE671715	251: BE552216	252: BE551725
253: BE551556	254: BE550968	255: BE549662	256: AF238374
257: BE504886	258: BE502050	259: BE501873	260: AF171928
261: BE466386	262: BE466124	263: BE208220	264: BE207666
265: BE205845	266: BE350605	267: BE349962	268: BE348962
269: BE328768	270: BE301283	271: BE301278	272: BE221273
273: BE047232	274: AF239155	275: BE019402	276: BE019081
277: S81809	278: AW873016	279: AW779920	280: AW779255
281: AW779029	282: AW778975	283: AH003714	284: S41873
285: AH003713	286: S41870	287: S41845	288: S41355
289: AW770670	290: AC004416	291: AW662345	292: AU077033
293: AU076629	294: AF043644	295: AW629787	296: AW628470
297: AW590506	298: AW583780	299: AF233344	300: AF169399
301: AW571604	302: AW518111	303: AW515079	304: AW514184
305: AW510973	306: AW474533	307: AW474496	308: AF010187
309: AL096753	310: X68559	311: AW418776	312: AF199613
313: AF199612	314: AW341130	315: AW338831	316: AW338787
317: AW338133	318: AF202063	319: AW301094	320: AW299662
321: AF211188	322: AF211169	323: AW275471	324: AW273483
325: AW271784	326: AW271769	327: AW270662	328: AW268519
329: AW264608	330: AW262507	331: AW237589	332: AW237163
333: AW235776	334: AW196650	335: AW196066	336: AJ250952
337: AL031386	338: AW172838	339: AW167176	340: AW157414
341: AW151574	342: AW118881	343: AW086037	344: AW081195
345: AW074378	346: AW074098	347: AW073347	348: AW057787
349: AW052021	350: AW025920	351: AW009550	352: AW003200
353: AW002405	354: AW001782	355: AW000986	356: AI991116
357: AI989589	358: AI989525	359: AI984931	360: AI972087
361: AI971057	362: AI969759	363: AI968746	364: AI962257
365: AI952845	366: AI937526	367: AI936283	368: AI932287
369: AI929112	370: AI927457	371: AI927348	372: AI927305
373: AI926324	374: AI924133	375: AI921760	376: AF036718
377: AF036717	378: AI918567	379: AI918460	380: AI915058
381: AI889594	382: AI887836	383: AI887420	384: AI885536
385: AI884363	386: AI873746	387: AI871363	388: AI871071
389: AI869111	390: AI868556	391: AI858722	392: AI858707
393: AI831133	394: AI828125	395: AI825718	396: U76381
397: AI819406	398: AI815637	399: AI814182	400: Y17131
401: AI811355	402: AI810411	403: AI807481	404: AI807060
405: AI805693	406: AI805484	407: AI804152	408: AI802531
409: AI801468	410: AI796742	411: AI768439	412: AI767738
413: AI762738	414: AI762110	415: AI762100	416: AI743298
417: AH007696	418: AF097354	419: AF097353	420: AF097352
421: AF097351	422: AF097350	423: AF097349	424: AF097348

425: AF097347	426: AF097346	427: AF097345	428: AF097344
429: AF097343	430: AF097342	431: AF097341	432: AF097340
433: AF097339	434: AF097338	435: AF097337	436: AF097336
437: AI721131	438: AI720427	439: AI708818	440: AI703144
441: AI702628	442: AI701349	443: AI699955	444: AI698883
445: AI698843	446: AI695161	447: AI694924	448: AI690405
449: AI689479	450: AI689318	451: AI684499	452: AI683268
453: AI681540	454: AI671094	455: AI670114	456: AB002097
457: AI659722	458: AI655715	459: AI655144	460: AI654503
461: AI653112	462: AI652947	463: AI651153	464: AI650627
465: AI640755	466: AI640605	467: AF019633	468: AF019632
469: AF019634	470: AI638490	471: AI638387	472: AI638356
473: AI638328	474: AI638209	475: AI630825	476: AI628825
477: AI624745	478: AI624729	479: AI621022	480: AI608828
481: AI598047	482: AI587337	483: AI583394	484: AI572541
485: AF108756	486: AI560207	487: AI559529	488: X14071
489: X14073	490: X14072	491: Y18046	492: AI539845
493: AI538706	494: AI521743	495: AI493472	496: AI493152
497: AI500404	498: AI500276	499: AI498743	500: AI480167
501: Y13468	502: AF100144	503: AF100143	504: AI474895
505: AI474284	506: AI472373	507: AI459892	508: AI436212
509: AI433806	510: AI433805	511: AI423809	512: AI423808
513: AI422168	514: AI421090	515: AI374640	516: AI369615
517: AI368565	518: AI367719	519: AI360211	520: AI341373
521: AI341329	522: AI338128	523: AI143675	524: AI140801
525: S82438	526: S76658	527: S47380	528: AI400425
529: AI400423	530: AI264866	531: AI263615	532: AI263602
533: AI263355	534: AI306634	535: AI302760	536: AI266466
537: AI266461	538: AI292351	539: AI290617	540: AI273321
541: AI261528	542: AI245969	543: AI245767	544: AI379638
545: AI379298	546: AI379172	547: AI378807	548: AI377468
549: AI369220	550: AA889062	551: AA843793	552: AI343936
553: AA774439	554: AA772399	555: AA772398	556: AA772257
557: AI341894	558: AI336070	559: AI332806	560: AI284647
561: AI275235	562: AI274671	563: AI247085	564: AI270451
565: AI199217	566: AI218552	567: AI217705	568: AB016517
569: X04431	570: AI083781	571: AA985469	572: AI244735
573: AI219687	574: AI192569	575: AI185500	576: AI192433
577: AI188214	578: AI126344	579: AI127918	580: AI143063
581: AI142488	582: AI168407	583: AI167998	584: AI146896
585: AI146864	586: AA975393	587: AI199931	588: AI189158
589: AI186077	590: U73663	591: U73662	592: U73661
593: U73660	594: AI092048	595: AI092260	596: AF075292
597: AI087269	598: AI087201	599: AI087119	600: AI086966
601: AI086936	602: AI086833	603: AI086748	604: AI086711
605: AI086679	606: AI086487	607: AI084796	608: AI084737
609: AI084723	610: AI083989	611: AI082070	612: AI080060
613: AI079867	614: AI079236	615: AI079226	616: AI076759
617: AI076491	618: AI074202	619: AI074048	620: AI057095
621: AI052395	622: AI052337	623: AI052334	624: AI142967
625: AJ224901	626: AI095303	627: AI094703	628: AI085184
629: AI085149	630: AI081876	631: AI077609	632: AI075639
633: AI074992	634: AI074925	635: AI073629	636: AI042137
637: AI041763	638: AI039864	639: AI038887	640: AI037989
641: AA939239	642: U77720	643: U77914	644: AH006649

645: U47011	646: U47010	647: U47009	648: L49241
649: L49240	650: L49239	651: L49238	652: L49242
653: L49237	654: AF062639	655: L78738	656: L78737
657: L78736	658: L78735	659: L78734	660: L78733
661: L78732	662: L78731	663: L78730	664: L78729
665: L78728	666: L78727	667: L78726	668: L78725
669: L78724	670: L78723	671: L78722	672: L78721
673: L78720	674: L25647	675: AC005592	676: AI085805
677: AI023180	678: AI022940	679: AI073906	680: AI017114
681: AI005377	682: AI005374	683: AI004492	684: AA993569
685: AI086867	686: AI086860	687: AI085968	688: AI080594
689: AI078769	690: AI074256	691: AI066663	692: AB007422
693: AI052335	694: AI050058	695: AI049904	696: AF054828
697: AA939114	698: AA932095	699: AI042628	700: AI041773
701: AA928957	702: AA973525	703: AA922587	704: AA913131
705: AA909405	706: AI002948	707: AA916549	708: AA913622
709: AA912389	710: AA905041	711: AA902794	712: AA987837
713: AA984329	714: AA976463	715: AA975827	716: Y13472
717: AA953586	718: AA873489	719: AA934000	720: AB009249
721: AA910578	722: AA902796	723: AA878913	724: AA878580
725: AC004449	726: AA191059	727: AA190616	728: AA195894
729: AA164882	730: AA489435	731: AA599664	732: AA621648
733: AA621439	734: AA608928	735: AB009391	736: AA776567
737: AA776527	738: Y13901	739: AA757478	740: AA738073
741: AA724695	742: AA731115	743: AA723410	744: AA706746
745: AA131477	746: AA074576	747: AA100216	748: AA083999
749: AA081728	750: AA070651	751: AA070081	752: AA071169
753: AA070677	754: AA069659	755: AA702307	756: AA687581
757: AA658115	758: AA678868	759: AA664355	760: AA284286
761: Y08736	762: AA643845	763: AA635556	764: AA426235
765: AA424505	766: AA424365	767: AA424099	768: AA424022
769: AA417704	770: AA417654	771: AA417586	772: AA419620
773: AA419611	774: AA419508	775: AA419497	776: AA419484
777: AA621461	778: D38752	779: AA613015	780: AA587307
781: AA598537	782: AF007878	783: AA574041	784: AA551848
785: AA514485	786: AA288012	787: AA279375	788: AA516449
789: AA405082	790: AA548551	791: AA236812	792: AA235751
793: AA235346	794: AA256191	795: AA256152	796: AA253505
797: AA253402	798: AA258618	799: A46444	800: AA133849
801: AF015910	802: AF006657	803: U67918	804: Y08087
805: Z69640	806: Z69641	807: AH005423	808: M23534
809: M23536	810: M23535	811: L03840	812: E05102
813: E05101	814: E04557	815: E04552	816: E03194
817: E03043	818: E02544	819: E02243	820: E02144
821: D14838	822: AA446994	823: AA446876	824: AA446431
825: AA446123	826: AA443093	827: AA442053	828: AA442030
829: AA441940	830: AA441920	831: AA411000	832: AA410992
833: AA411626	834: AA406576	835: AA293228	836: AA293012
837: AA088648	838: AA088248	839: AA039680	840: AA033657
841: AA032183	842: AA009507	843: AA002254	844: AA001295
845: AA378797	846: AA377626	847: AA376435	848: AA376353
849: AA376295	850: AA376249	851: AA376219	852: AA376130
853: AA375854	854: AA375922	855: AA375695	856: AA375660
857: AA375650	858: AA375508	859: AA375435	860: AA375356
861: AA375129	862: AA375326	863: AA375309	864: AA375301

865: AA375208	866: AA375181	867: AA375167	868: AA375088
869: AA375052	870: AA374874	871: AA374628	872: AA374626
873: AA374622	874: AA374430	875: AA374371	876: AA374364
877: AA374328	878: AA374263	879: AA374161	880: AA374160
881: AA374044	882: AA374064	883: AA373980	884: AA373990
885: AA373825	886: AA373734	887: AA373568	888: AA373794
889: AA373788	890: AA373723	891: AA373667	892: AA373713
893: AA373674	894: AA373617	895: AA373597	896: AA373565
897: AA373516	898: AA373442	899: AA373379	900: AA373369
901: AA373305	902: AA373315	903: AA373300	904: AA373292
905: AA373257	906: AA373244	907: AA373018	908: AA373233
909: AA373074	910: AA373041	911: AA372212	912: AA366756
913: AA361781	914: AA360690	915: AA360561	916: AA357573
917: AA357468	918: AA356426	919: AA356425	920: AA344199
921: AA341853	922: AA330669	923: AA325962	924: AA323790
925: AA316916	926: AA311070	927: AA309032	928: AA309031
929: AA304140	930: AA298698	931: AA298681	932: AA298593
933: AA298620	934: AA298617	935: AA298614	936: AA298582
937: AA298500	938: AA298567	939: AA298557	940: AA298550
941: AA297966	942: AA297637	943: AA297311	944: AA297287
945: AA297220	946: AA297158	947: Y09852	948: Y08092
949: Y08091	950: Y08090	951: Y08089	952: Y08088
953: Y08086	954: Y08101	955: Y08100	956: Y08099
957: Y08098	958: Y08097	959: Y08096	960: Y08095
961: Y08094	962: Y08093	963: AA235910	964: AA232084
965: AA232083	966: Z50197	967: Z50196	968: Z50201
969: X56191	970: AA039601	971: AA039600	972: AA022484
973: AA022483	974: N77733	975: N58365	976: U46214
977: U46213	978: U46212	979: U46211	980: X84939
981: Z70276	982: Z70275	983: AA169370	984: AA152209
985: AA152243	986: S82451	987: AA037149	988: AA037148
989: W51760	990: W25492	991: W25484	992: W25323
993: W25340	994: S76733	995: AH004637	996: S74129
997: S74128	998: S67294	999: S67292	1000: S36271
1001: S36219	1002: S81661	1003: S41878	1004: AH003712
1005: S41350	1006: AH003711	1007: S40851	1008: S40858
1009: S40853	1010: AA115405	1011: U66200	1012: U66199
1013: U66198	1014: U66197	1015: AH003682	1016: U36228
1017: U36227	1018: U36226	1019: U36225	1020: U36223
1021: W72842	1022: W68006	1023: W61036	1024: W52234
1025: W53020	1026: W52295	1027: W52176	1028: W47310
1029: W47603	1030: W47575	1031: W47408	1032: W47218
1033: W46522	1034: W44678	1035: W44677	1036: W44455
1037: W44341	1038: W45667	1039: W45595	1040: W45594
1041: W45612	1042: W45557	1043: W44900	1044: W39595
1045: AA053699	1046: AA037285	1047: AA037281	1048: AA037338
1049: M37825	1050: U64791	1051: W31071	1052: W23905
1053: N95383	1054: W24057	1055: N91902	1056: U56978
1057: W88635	1058: W88553	1059: W87790	1060: U28811
1061: U49177	1062: U49176	1063: U49175	1064: U49174
1065: U49173	1066: W52380	1067: W52112	1068: X65779
1069: Z14152	1070: Z14151	1071: Z14150	1072: Z14149
1073: X65778	1074: X66945	1075: X64875	1076: X51943
1077: X57121	1078: X57120	1079: X57119	1080: X57122
1081: X62586	1082: X52833	1083: X52832	1084: X57205

1085: X51803	1086: X04433	1087: X04432	1088: X59065
1089: X59612	1090: X59932	1091: W49577	1092: W49555
1093: W49554	1094: A29216	1095: A09132	1096: W47595
1097: W47556	1098: W47051	1099: W45649	1100: W44919
1101: W39566	1102: W37147	1103: W32691	1104: W31180
1105: W25267	1106: R58184	1107: W17139	1108: W07463
1109: W05259	1110: Z37976	1111: M30494	1112: N98876
1113: N92237	1114: N91660	1115: N85292	1116: N85228
1117: N84692	1118: N81103	1119: N75511	1120: N67307
1121: N69800	1122: N68644	1123: N66630	1124: N57287
1125: N55322	1126: N50463	1127: N50410	1128: N22749
1129: H89352	1130: H89359	1131: H88160	1132: H89545
1133: H89538	1134: H87979	1135: H87878	1136: H87341
1137: H84447	1138: H83199	1139: H82967	1140: H82912
1141: H80559	1142: H80508	1143: H74055	1144: H73434
1145: H73493	1146: H62035	1147: T29856	1148: T29711
1149: T29093	1150: T29091	1151: T28903	1152: T28486
1153: M37722	1154: R93497	1155: R93496	1156: R92862
1157: R92676	1158: R92588	1159: R91444	1160: R85021
1161: R84974	1162: R83219	1163: H45566	1164: H45559
1165: H42621	1166: H42118	1167: H26048	1168: H23526
1169: H11702	1170: H03123	1171: R81409	1172: R80670
1173: R80475	1174: R77173	1175: R77151	1176: U22410
1177: R71604	1178: R70205	1179: R68912	1180: U26555
1181: R59269	1182: L31408	1183: R54610	1184: R54846
1185: R48871	1186: R38513	1187: U03877	1188: R33868
1189: R28572	1190: R28404	1191: R25381	1192: U16306
1193: R13671	1194: R10619	1195: R10464	1196: R07270
1197: R07269	1198: T94993	1199: M73240	1200: M73239
1201: T94939	1202: T89898	1203: T89622	1204: T89263
1205: T84335	1206: T83836	1207: T83672	1208: T83170
1209: T82019	1210: T71565	1211: M60828	1212: U17170
1213: J03358	1214: M55614	1215: M87843	1216: M34057
1217: M96956	1218: M30493	1219: J03278	1220: M22734
1221: M17446	1222: M87772	1223: M87771	1224: M87770
1225: M64347	1226: M80635	1227: T12244	1228: T12243
1229: L01488	1230: L01486	1231: M85289	1232: L02931
1233: M23086	1234: M23017	1235: M17599	1236: J04513
1237: L01487	1238: M58051	1239: M97193	1240: M27968
1241: AH002695	1242: M30492	1243: M30491	1244: M30490
1245: L01485	1246: M74028	1247: M60516	1248: AH002592
1249: M60521	1250: M60520	1251: M60515	1252: AH002591
1253: M60519	1254: M60518	1255: AH001553	1256: M63978
1257: M63977	1258: M63976	1259: M63975	1260: M63974
1261: M63973	1262: M63972	1263: M63971	1264: M34667
1265: J02814	1266: M21616	1267: M55379	1268: M80638
1269: M80636	1270: M63889	1271: M63888	1272: M63887
1273: M60485	1274: M34188	1275: M34187	1276: M34186
1277: M34185	1278: L22970	1279: L22969	1280: L22968
1281: L22967	1282: J02683	1283: M78197	

Table 8: GenBank Accession numbers of human sequence records identified as related to nucleic acids encoding polypeptides potentially related to numbers of human sequences identified as related to arachidonate metabolism and/or signaling.

1: BC032594	2: NM_138318	3: NM_138317	4: NM_021161
5: NM_033311	6: NM_033310	7: NM_016611	8: BC029032
9: NT_008476	10: NT_004641	11: NT_033241	12: NT_033985
13: NT_033299	14: NT_010823	15: XM_113327	16: XM_115027
17: XM_165564	18: XM_091607	19: XM_034446	20: XM_071012
21: XM_036599	22: NT_033997	23: AJ305028	24: AJ305026
25: AJ305020	26: AJ305031	27: AJ305030	28: AJ305029
29: AJ305027	30: AJ305025	31: AJ305024	32: AJ305023
33: AJ305022	34: AJ305021	35: BC028174	36: AF468054
37: AF468053	38: AF468052	39: AF468051	40: NG_001072
41: NM_000775	42: U37143	43: NM_016601	44: AF039089
45: D12638	46: NM_022054	47: NM_001629	48: NM_004823
49: BI712628	50: BI712395	51: G73175	52: G73174
53: NM_013402	54: NM_023944	55: NM_022977	56: NM_004457
57: NM_004458	58: BF593874	59: BF589297	60: BF445948
61: NM_021628	62: BF435282	63: NM_003647	64: NM_001141
65: NM_000698	66: NM_001140	67: NM_001139	68: NM_000697
69: BF055436	70: BF002497	71: BE676451	72: BE676267
73: BE674834	74: AF221943	75: BE222781	76: BE222767
77: BE222760	78: AF226273	79: AW779220	80: AF247042
81: SEG_HUMCPLA	82: D38177	83: D38176	84: AW594003
85: AW518813	86: AW236332	87: AW169993	88: AB019692
89: AW087663	90: AW082242	91: AW081721	92: AW051026
93: AW044581	94: AW044543	95: AW026639	96: AW007295
97: AI922141	98: AI913434	99: AI911767	100: AI864921
101: AI830710	102: AI824788	103: AI804734	104: AI802680
105: AI799008	106: AI798007	107: AI768011	108: AI762841
109: AI762560	110: AI744699	111: AI698814	112: AI696859
113: AI660644	114: AI598073	115: AI572375	116: AI524200
117: AI523931	118: AI523842	119: AI479105	120: AI439947
121: AI436362	122: AI423500	123: AI372974	124: AI372944
125: AI371675	126: AI365403	127: AI363782	128: AI361850
129: AI360992	130: S68587	131: S68588	132: AI401142
133: AI400783	134: AI393821	135: AI393457	136: AI300995
137: AI288519	138: AI380545	139: AI243470	140: AA897232
141: AA860302	142: AA724768	143: AI282525	144: AI221308
145: AI219534	146: AI093644	147: AI219535	148: AI186139
149: AI148820	150: AI128268	151: AI168502	152: AI147982
153: AI142268	154: AI081242	155: AI075284	156: AI056468
157: U49379	158: AF038461	159: AI125083	160: AI123817
161: AI033442	162: AI025269	163: AA995910	164: AA994068
165: AA938017	166: AA931760	167: AA972081	168: AA922175
169: AA975447	170: AA926891	171: AA909607	172: AA904880
173: AA974928	174: AA961104	175: AA903058	176: AA873295
177: AA904309	178: AA825428	179: AA906097	180: AA905982
181: AA897656	182: AA835927	183: AA834872	184: AA876937
185: AA829467	186: AA810216	187: AA838239	188: AA872924
189: AA164575	190: AA629604	191: AA814032	192: AA835909
193: AA810409	194: AA806779	195: AA812165	196: AA811395
197: AA811107	198: AA765334	199: AA804368	200: AA748796

201: AA748538	202: AA748495	203: AA811906	204: AA808006
205: AA777140	206: AA741244	207: AA760798	208: AA761683
209: AA767202	210: AA765905	211: AA766333	212: AA767516
213: AA736656	214: AA748855	215: AA745655	216: AA743363
217: AA721294	218: AA737609	219: AA707722	220: AA122247
221: AA102430	222: AA702824	223: AA665475	224: AA652440
225: AA649213	226: AA613560	227: AA648464	228: AA632217
229: AA622768	230: AA593628	231: AA587388	232: AA587201
233: AA593920	234: AA569903	235: AA583219	236: AA552491
237: AA552112	238: AA521143	239: AA259174	240: AA228877
241: AA515026	242: AA505143	243: AA504178	244: AA504177
245: AA491374	246: AA279070	247: AA280714	248: AA281429
249: AA281261	250: AA258232	251: AA251106	252: AA262146
253: AA261947	254: AA487554	255: AA487262	256: AA548544
257: AA479055	258: AA410835	259: AA455503	260: AA455502
261: AA411551	262: AA411550	263: AA411441	264: AA411432
265: AA401645	266: AA398435	267: AA001754	268: AA355365
269: AA315865	270: AA021259	271: AA020955	272: AA018827
273: AA019064	274: N78045	275: AA013478	276: W81524
277: W47166	278: AA054258	279: W31083	280: W74172
281: M72393	282: N78291	283: N63856	284: N57659
285: N47673	286: N47638	287: N33729	288: H81930
289: H78331	290: H75692	291: H66675	292: H51574
293: H50910	294: R99246	295: T29353	296: R91299
297: H41485	298: H29144	299: H22440	300: H03094
301: R53728	302: R52945	303: R39192	304: R26797
305: R25994	306: R20635	307: R10655	308: T97526
309: T97446	310: T97387	311: T97276	312: T90253
313: T87977	314: T69964	315: T69914	316: T63581
317: T63549	318: T62206	319: T62015	320: T57850
321: M87004	322: M62982		

Table 9: GenBank Accession numbers of human sequence records identified as related to nucleic acids encoding polypeptides potentially related to leukotriene metabolism and/or signaling.

1: BC029498	2: NT_008438	3: NT_004434	4: NT_033258
5: XM_088569	6: XM_060500	7: XM_033240	8: NT_011597
9: NT_033922	10: NT_006932	11: NT_025130	12: NT_011281
13: NT_010164	14: XM_065152	15: XM_065151	16: XM_029072
17: NM_080842	18: AX304816	19: AX304815	20: AX304814
21: AX304812	22: AX304811	23: AX304810	24: AX304809
25: AX304808	26: AX304807	27: AX304806	28: AX304804
29: AX250331	30: NM_001629	31: AX211656	32: U62025
33: AF133266	34: AC004597	35: BC004545	36: AF279611
37: AC005336	38: AU100177	39: AU099086	40: NM_001082
41: NM_000896	42: AL137118	43: BF939017	44: AL135787
45: AF308571	46: BF590658	47: BF590373	48: BF438819
49: BF438176	50: BF223033	51: NM_020377	52: NM_019839
53: NM_005036	54: NM_006639	55: NM_004121	56: NM_000897
57: NM_000752	58: NM_000895	59: BF114973	60: BF111542
61: BF109754	62: AB041644	63: BF001557	64: AF254664
65: AB044402	66: AB008193	67: AB029892	68: BE551649
69: AB038269	70: AF277230	71: BE468252	72: BE467347
73: BE465656	74: BE464525	75: BE208128	76: U02388
77: BE206519	78: AF221943	79: BE301515	80: AJ278605
81: BE222208	82: BE222016	83: BE042562	84: BE018008
85: AW780275	86: AW771680	87: AW769807	88: AW768775
89: AW768774	90: AB015307	91: SEG_AB01529S	92: AB015306
93: AB015305	94: AB015304	95: AB015303	96: AB015302
97: AB015301	98: AB015300	99: AB015299	100: AB015298
101: AB015297	102: AB015296	103: AB015295	104: SEG_AB002455S
105: AB002461	106: AB002460	107: AB002459	108: AB002458
109: AB002457	110: AB002456	111: AB002462	112: AB002455
113: AW663477	114: AU076907	115: AW615391	116: AW614119
117: AW612553	118: AW612542	119: AW594576	120: AW572845
121: AW518470	122: AW513073	123: AW474311	124: AW469906
125: AW418845	126: AW418767	127: AW339795	128: AW302266
129: AW301707	130: AW301232	131: AW300035	132: AW274396
133: AW236605	134: AW235789	135: AW235300	136: AW183518
137: AW173557	138: AW089665	139: AW087424	140: AW085086
141: AW075528	142: AW058452	143: AW051945	144: AW024508
145: AI985846	146: AI971682	147: AI962575	148: AI961053
149: AI942264	150: AI927415	151: AI921942	152: AI887357
153: AI867323	154: AI865127	155: D12620	156: D12621
157: AI819899	158: AI819721	159: AI819193	160: AI817081
161: AI810292	162: AI797155	163: AF119711	164: AI769908
165: AI769157	166: AI768316	167: AI767278	168: AI766909
169: AI743746	170: AI741766	171: AI697874	172: AI697850
173: AI696788	174: AI690919	175: AI680647	176: AI675321
177: AI674309	178: AI670926	179: AI658628	180: AI655883
181: AI654958	182: AI653619	183: AI650452	184: AI640249
185: AI638776	186: AI638615	187: AI637513	188: AI636026
189: AI635095	190: AI624995	191: AI621247	192: AI621085
193: AI598016	194: AI589108	195: AI582379	196: AI568633
197: AI567317	198: AI539521	199: AI539253	200: AI538292
201: AI521212	202: AI494342	203: AI498676	204: AI480325

205: AI478687	206: AI471212	207: AI470813	208: AI470397
209: AI476663	210: AI474060	211: AI458191	212: AI453742
213: AI434588	214: AI424409	215: AI419536	216: AI373285
217: AI373189	218: AI366863	219: AI203390	220: AI342740
221: AI299075	222: AI268038	223: AI276610	224: AI244788
225: AI379927	226: H49887	227: AI373191	228: AA868493
229: AA860804	230: AI254358	231: AI197820	232: AI242991
233: AI251847	234: AA995855	235: AI097442	236: AI159898
237: AI092835	238: AI051125	239: AI038752	240: AA938888
241: U77604	242: U50136	243: AH006631	244: U43411
245: U43410	246: AI129804	247: AI027805	248: AI023562
249: AI017689	250: AI017654	251: AI016629	252: AI015315
253: AA992816	254: AA977614	255: AA919105	256: AI095208
257: AI091347	258: AI081983	259: U65080	260: AI025313
261: AA991238	262: AA987920	263: AB002454	264: AC004609
265: AA857997	266: AA903138	267: AA896996	268: AA830693
269: AC004523	270: AA847890	271: AA227874	272: AA227873
273: AA857983	274: AA486929	275: AA628131	276: AA743405
277: AA100843	278: AA677046	279: AA703053	280: AA694114
281: AA649092	282: AA143730	283: AA658381	284: AA649335
285: AA626145	286: AA594870	287: AA582641	288: AA559954
289: AA534720	290: AA533595	291: AA565266	292: AA286910
293: AA513348	294: AA281397	295: AA465366	296: AA204704
297: D89079	298: D89078	299: AA452952	300: D49387
301: D26480	302: AA447884	303: AA443448	304: AA443313
305: AA411483	306: AA293255	307: AA291372	308: AA122237
309: AA115940	310: AA381256	311: AA381240	312: AA376869
313: AA375164	314: AA361649	315: AA347345	316: AA346986
317: AA333760	318: AA316671	319: AA314593	320: AA303424
321: AA298616	322: AA297531	323: AA297320	324: AA297314
325: AA296166	326: AD000091	327: N76885	328: N55276
329: AA101453	330: AA100471	331: AA135238	332: AA135125
333: AA011245	334: AA010417	335: W80460	336: W67534
337: W67533	338: W45520	339: W45533	340: X52195
341: R57602	342: N79883	343: N89761	344: N86553
345: N84188	346: N62977	347: AH003354	348: U27293
349: U27292	350: U27291	351: U27290	352: U27289
353: U27288	354: U27287	355: U27286	356: U27285
357: U27284	358: U27283	359: U27282	360: U27281
361: U27280	362: U27279	363: U27278	364: U27277
365: U27276	366: U27275	367: N47508	368: N47507
369: N46659	370: N46112	371: N46111	372: N40365
373: N27550	374: N25087	375: N24395	376: H99146
377: H98865	378: H98864	379: H65433	380: H95493
381: H94973	382: H65432	383: H70526	384: H59380
385: T29585	386: R86096	387: R83819	388: R83378
389: H45442	390: H45141	391: H27032	392: H11149
393: R73358	394: R43438	395: R43393	396: R41544
397: R39103	398: R37480	399: R33232	400: R22687
401: R17948	402: R15120	403: R14197	404: R11911
405: R11267	406: R11209	407: R08919	408: R08229
409: R02521	410: R00042	411: T98002	412: T85456
413: T85359	414: T84363	415: T77751	416: T77750
417: T58950	418: T58888	419: T55357	420: U11552
421: J02959	422: J03459	423: U09353	

Table 10: GenBank Accession numbers of human sequence records identified as related to nucleic acids encoding polypeptides potentially related to interleukin metabolism and/or signaling.

1: BC032474	2: NM_012448	3: NM_003152	4: NM_003151
5: NM_005546	6: NM_001570	7: NM_145071	8: NM_013324
9: NM_003153	10: NM_033339	11: NM_033338	12: NM_003745
13: NM_004857	14: AF517934	15: BC030975	16: AY090769
17: NM_144701	18: AF293463	19: AF293462	20: NM_000155
21: NM_019009	22: NM_014339	23: AY099265	24: AF461422
25: NM_012455	26: AF512686	27: BC029569	28: BC029273
29: BC029493	30: BC029121	31: NT_009151	32: NT_009781
33: NT_009506	34: NT_009485	35: NT_009458	36: NT_010356
37: NT_029419	38: NT_011176	39: NT_008186	40: NT_011104
41: NT_024115	42: NT_008476	43: NT_004861	44: NT_004858
45: NT_030040	46: NT_005986	47: NT_005927	48: NT_004636
49: NT_005883	50: NT_006258	51: NT_004391	52: NT_030577
53: NT_029258	54: NT_028054	55: NT_021877	56: NT_016354
57: NT_015169	58: NT_033930	59: NT_033983	60: NT_033982
61: NM_138578	62: NM_001191	63: AY071841	64: AY071840
65: NM_032989	66: NM_004322	67: NM_006428	68: NT_010591
69: NT_010552	70: NT_010404	71: NT_011512	72: XM_114185
73: XM_090078	74: XM_006447	75: NT_011387	76: NT_033899
77: NT_010718	78: NT_010663	79: NT_007592	80: NT_011005
81: NT_033321	82: NT_030889	83: NT_028406	84: NT_028405
85: NT_025965	86: NT_025307	87: XM_034304	88: XM_055737
89: XM_059563	90: XM_010533	91: XM_040009	92: XM_113270
93: XM_116140	94: XM_165550	95: NM_032556	96: XM_064619
97: XM_085726	98: XM_084856	99: XM_061442	100: XM_067380
101: XM_086576	102: XM_029434	103: XM_089078	104: NT_011519
105: XM_066253	106: XM_062004	107: XM_062003	108: XM_063176
109: XM_035511	110: NT_011520	111: XM_049427	112: XM_027568
113: XM_028349	114: XM_032349	115: NM_032732	116: XM_013114
117: XM_015989	118: NM_016584	119: NM_012219	120: NM_007199
121: NM_004620	122: NM_004515	123: NT_025741	124: NT_011651
125: NT_009799	126: NT_007072	127: XM_098435	128: XM_085927
129: NT_006859	130: NT_025133	131: XM_115636	132: NT_006788
133: NT_011288	134: NT_011255	135: XM_035638	136: NT_011225
137: NT_010164	138: NT_023195	139: XM_096226	140: NT_016864
141: NT_033965	142: NT_005403	143: NT_005337	144: XM_115806
145: NT_005612	146: NT_005229	147: NT_005567	148: XM_087367
149: NT_005034	150: NT_022171	151: XM_002686	152: NT_019306
153: XM_114217	154: XM_114220	155: XM_031204	156: XM_031221
157: XM_034808	158: XM_008906	159: XM_004011	160: XM_004438
161: XM_002685	162: AF465829	163: BC027733	164: BC028082
165: BC028221	166: BC027599	167: NM_016123	168: NM_138284
169: AF213987	170: AF445802	171: AJ271338	172: AJ242738
173: AJ242737	174: AF276916	175: AF494012	176: NM_004512
177: NM_014439	178: NM_002994	179: NM_016026	180: NM_014143
181: NM_015650	182: NM_014438	183: NM_004103	184: NM_001561
185: NM_004513	186: NM_000628	187: NM_000577	188: NM_133336
189: NM_134470	190: NM_033307	191: NM_033306	192: NM_002182
193: NM_000635	194: NM_134433	195: NM_003268	196: NM_003264
197: NM_003263	198: AL136852	199: AF242456	200: NM_052872
201: AY078238	202: AF362378	203: AF481335	204: BC024747

205: BC025691	206: AY079002	207: AC007165	208: AF053412
209: L37036	210: NM 006504	211: NM 130435	212: AF469756
213: AF469755	214: AF469754	215: NM 001225	216: AF190052
217: AF172150	218: AF172149	219: NM 001560	220: AF093065
221: U58197	222: U58196	223: BC022315	224: AY071830
225: AL391280	226: BC020739	227: BC020717	228: NM 018725
229: NM 001247	230: NM 080591	231: NM 000962	232: NM 000963
233: AF247608	234: AF247607	235: AF247606	236: AF247605
237: AF247604	238: AF247603	239: AY029413	240: AJ297262
241: AY064474	242: NM 022304	243: AL121878	244: NM 004448
245: NM 003680	246: NM 002051	247: NM 001465	248: NM 001806
249: AF077611	250: NM 030804	251: NM 021258	252: NM 018402
253: AF206696	254: AF230377	255: AF039224	256: NM 004926
257: AL158080	258: AY062931	259: AB017505	260: SEG HUMIL3RA
261: D49412	262: D49410	263: D49408	264: D49409
265: D49407	266: D49406	267: D49404	268: D49403
269: D49402	270: D49401	271: D49411	272: D49405
273: AF416600	274: NM 005755	275: AF054013	276: BC009681
277: BC015768	278: BC014972	279: NM 052962	280: NM 052887
281: BC016141	282: BC009572	283: AF420465	284: AF420464
285: AF420463	286: NM 004347	287: BC015863	288: AF417842
289: AF401315	290: AF384857	291: U57613	292: AF421855
293: AJ289235	294: BC015511	295: X78437	296: NM 000575
297: AF302043	298: AF302042	299: AJ277248	300: AY008847
301: AY008332	302: AY008331	303: AF276915	304: AH008153
305: AF146427	306: AF146426	307: AF172151	308: L41142
309: AF418271	310: NM 033358	311: NM 033357	312: NM 033356
313: NM 033355	314: NM 001228	315: NM 033340	316: NM 001227
317: BC014096	318: AF349574	319: BC013615	320: NM 033295
321: NM 033294	322: NM 033293	323: NM 033292	324: NM 001223
325: U63015	326: AY044641	327: BC013142	328: BC012506
329: AY040367	330: BC012580	331: BC012346	332: AF005485
333: AY040568	334: AY040567	335: AY040566	336: AF404773
337: AF402002	338: BC012071	339: BC011624	340: AF346607
341: NM 032977	342: NM 032976	343: NM 032974	344: NM 001230
345: NM 032992	346: NM 001226	347: NM 032996	348: NM 001229
349: NM 004346	350: NM 032991	351: BC009960	352: BC009745
353: BC008678	354: AY026753	355: BC007461	356: BC007007
357: BC001770	358: BC005823	359: BC004973	360: BC004348
361: BC003110	362: BC001903	363: BC000382	364: AF395008
365: NM 004759	366: NM 032960	367: NM 006850	368: AF334756
369: AF334755	370: NM 006134	371: AF390905	372: AF386077
373: AF385628	374: AF387519	375: AF366364	376: AF366363
377: AF366362	378: AF377331	379: AF372214	380: AF365976
381: AF380360	382: AL135902	383: AF251120	384: AF251119
385: AF251118	386: U91746	387: AJ293654	388: AJ293653
389: AJ293652	390: AJ293651	391: AJ293650	392: AJ293649
393: AJ293648	394: AJ293647	395: AY029171	396: AF361105
397: AF359939	398: AF353265	399: NM 004248	400: AL035252
401: NM 030751	402: NM 002183	403: NM 002186	404: AF295024
405: S61784	406: NM 000104	407: NM 018724	408: Z30175
409: NM 014432	410: S81601	411: S71404	412: AJ271747
413: AJ271746	414: AJ271745	415: AJ271744	416: AJ271741
417: AF283296	418: NM 016232	419: NM 020525	420: NM 012218
421: NM 004516	422: NM 003856	423: AF043337	424: AF228636

425: AF224266	426: NM 022789	427: AF203083	428: AF114158
429: AF305200	430: U52112	431: AF218727	432: AF218728
433: AJ277247	434: AF110385	435: AF301620	436: U64198
437: AF079806	438: NM 017416	439: NM 021803	440: NM 021798
441: AF254069	442: AF254067	443: NM 002309	444: NM 021571
445: NM 005699	446: NM 000585	447: NM 000586	448: NM 000576
449: NM 000572	450: NM 000564	451: NM 000641	452: NM 000640
453: NM 000600	454: NM 000590	455: NM 000584	456: NM 020994
457: NM 006705	458: NM 019618	459: NM 018949	460: NM 014271
461: NM 014443	462: NM 014440	463: NM 005565	464: NM 002298
465: NM 013371	466: NM 013278	467: NM 012275	468: NM 012099
469: NM 006664	470: NM 006165	471: NM 005535	472: NM 005384
473: NM 005263	474: NM 004590	475: NM 004514	476: NM 004633
477: NM 001569	478: NM 000395	479: NM 000206	480: NM 000215
481: NM 000418	482: NM 000417	483: NM 001192	484: NM 002852
485: NM 003954	486: NM 003749	487: NM 001557	488: NM 000634
489: NM 002185	490: NM 000880	491: NM 002184	492: NM 000565
493: NM 000879	494: NM 000589	495: NM 000588	496: NM 000878
497: NM 003854	498: NM 000877	499: NM 003853	500: NM 003855
501: NM 001562	502: NM 002190	503: NM 002189	504: NM 002188
505: NM 001559	506: NM 002187	507: NM 000882	508: NM 001558
509: NM 001504	510: NM 001901	511: U55847	512: AF208005
513: AF269133	514: AF212016	515: AF284436	516: AF284435
517: AF284434	518: AF286095	519: AF279437	520: AF176907
521: L07295	522: AJ295724	523: AF244575	524: AF242300
525: AF193840	526: AF193839	527: AF193838	528: AF276953
529: AF121105	530: AF202445	531: AJ271736	532: AF035279
533: AJ242972	534: AF212311	535: AF235038	536: AF216693
537: AF045606	538: AF039906	539: AF167342	540: AF167341
541: AF167340	542: AF167339	543: AF167338	544: AF167337
545: AF167336	546: AF167335	547: AF167334	548: AF167333
549: AH009309	550: AF167343	551: AF200496	552: AF200494
553: AF200492	554: AF030876	555: AB015961	556: AB015021
557: D82874	558: D31968	559: D16358	560: D14283
561: AJ251550	562: AJ251551	563: AJ251549	564: AF215907
565: AF181286	566: AF181285	567: AF181284	568: AJ272096
569: U62858	570: U48258	571: U48257	572: U48256
573: AF098934	574: AF098933	575: AL034343	576: D11086
577: AF152099	578: AF152098	579: AF177937	580: AF201833
581: AF201832	582: AF201831	583: AF201830	584: AB022176
585: U67206	586: AF031075	587: AL022314	588: AB010445
589: AL031575	590: Z72522	591: Z69719	592: AF152113
593: AC004525	594: AJ012835	595: AJ012834	596: AJ012833
597: AF186094	598: AF038163	599: AF029213	600: AF180563
601: AF180562	602: AF001862	603: AJ243874	604: U81379
605: AF113136	606: AF168416	607: J00264	608: AF017633
609: U81380	610: AF118452	611: AF005095	612: U58146
613: AF039904	614: AF039905	615: AF039907	616: S77834
617: AF077011	618: D64068	619: AB019504	620: X06750
621: AJ005835	622: X67285	623: AF110801	624: AF110800
625: AF110799	626: AF110798	627: AF110460	628: AF101062
629: AH007439	630: AF085452	631: AF085451	632: U43895
633: AF054830	634: S81555	635: L27475	636: AH007359
637: S77835	638: S71420	639: 551359	640: S71419
641: S56892	642: AF069543	643: AF083251	644: AF043938

645: AF017653	646: U94587	647: U93690	648: U74649
649: U63127	650: AF104230	651: AH007043	652: AF043129
653: AF043128	654: AF043127	655: AF043126	656: AF043125
657: AF043124	658: AF043123	659: X53093	660: AF077346
661: AH006906	662: M29053	663: M29052	664: M29051
665: M29050	666: M29049	667: M29048	668: S72848
669: AF035593	670: AF035592	671: U67320	672: U67319
673: U60521	674: U60519	675: U60520	676: U47686
677: U43672	678: U40281	679: U32659	680: U31628
681: U37449	682: U37448	683: U32674	684: U32672
685: U20537	686: U20536	687: U23852	688: U20240
689: U13700	690: U13699	691: U13698	692: U13697
693: L76191	694: M54894	695: AF043143	696: AF016261
697: L10616	698: L19546	699: AF051152	700: AF051151
701: U88881	702: U88880	703: U88879	704: U88878
705: U88540	706: AC005578	707: L39064	708: AF078533
709: AJ002523	710: AF029894	711: AC004763	712: M99412
713: AF057168	714: AB006537	715: AC004511	716: AF048692
717: AF050083	718: M98335	719: AF043336	720: AF043335
721: AF043334	722: AF043333	723: U58917	724: AC004039
725: AC004042	726: AF031167	727: D13720	728: AF039228
729: AF039227	730: AF039226	731: AF039225	732: D00044
733: X01586	734: AF026273	735: AF031845	736: AC003112
737: X97748	738: AF023338	739: AF021799	740: AF008556
741: X64532	742: X65858	743: Z70243	744: AH005384
745: U11869	746: U11868	747: U11867	748: U11866
749: U18373	750: U13738	751: K03122	752: L19593
753: L19591	754: Y08768	755: D28118	756: Y09908
757: U97679	758: U97678	759: U97677	760: U97676
761: U82972	762: U49065	763: D78260	764: U90652
765: U89323	766: X80878	767: X69079	768: X03131
769: S82692	770: U86214	771: L39063	772: L39062
773: Z84723	774: M63099	775: X91233	776: U78798
777: U32324	778: U32323	779: S81089	780: S79880
781: S67780	782: S36271	783: S36219	784: S75511
785: S75512	786: S75513	787: S75514	788: S75515
789: S75516	790: S75517	791: S64248	792: X99404
793: U70981	794: X94223	795: X94222	796: Z58820
797: U43185	798: L78780	799: L78779	800: L78778
801: L78777	802: L78776	803: L78775	804: L78774
805: L78773	806: L78770	807: L78760	808: L78754
809: L78753	810: L78751	811: L78752	812: L78750
813: L78746	814: L78745	815: L78744	816: L78743
817: L78742	818: U64094	819: X95302	820: U58198
821: U31120	822: Z14320	823: Z14319	824: Z14318
825: Z14317	826: Z14954	827: X04664	828: X05232
829: X62156	830: X63053	831: X63613	832: Z48810
833: X52430	834: Y00787	835: X13967	836: X65859
837: Z11686	838: X81851	839: X60787	840: X04602
841: X12830	842: X61176	843: X61178	844: X61177
845: X04688	846: X52425	847: X03138	848: X03137
849: X03136	850: X03135	851: X03134	852: X03133
853: X03132	854: X01057	855: X84348	856: Z38000
857: Z46595	858: Z38102	859: Z46596	860: Z14955
861: X16896	862: X59770	863: X02851	864: X65019

865: X02532	866: X02531	867: X03833	868: X00695
869: V00564	870: X77090	871: X58298	872: X53296
873: X52015	874: X64802	875: Z47277	876: Z47276
877: Z47275	878: Z47274	879: Z47273	880: Z47272
881: Z47271	882: Z47270	883: Z47269	884: Z47268
885: Z47267	886: Z47266	887: Z47265	888: Z47264
889: Z47263	890: Z47262	891: Z47261	892: Z47260
893: Z47259	894: Z47258	895: Z47257	896: Z47256
897: Z47255	898: Z47254	899: Z47253	900: Z47252
901: Z47251	902: Z47250	903: Z47249	904: Z47248
905: Z47247	906: Z47246	907: Z47245	908: Z47244
909: X58377	910: K02056	911: J02971	912: X94993
913: U41806	914: L08187	915: L77073	916: L77072
917: L77071	918: L77070	919: L77069	920: L77068
921: L77067	922: L77060	923: L77044	924: L77040
925: L77039	926: L77036	927: L77035	928: L77034
929: L77033	930: L77032	931: L77031	932: X73536
933: M87879	934: U25804	935: U10307	936: M73969
937: L49046	938: U16720	939: L48479	940: L48478
941: L48477	942: L48476	943: L48475	944: L48474
945: L48473	946: L48472	947: U14750	948: U28015
949: U28014	950: L46904	951: L46900	952: L46899
953: J03478	954: M15840	955: U25676	956: L43412
957: L43411	958: L43399	959: L43398	960: L43393
961: L43392	962: L43391	963: L43387	964: L43386
965: U26540	966: AH003109	967: M11065	968: M11066
969: M11064	970: M11063	971: M11062	972: M11061
973: M11060	974: M10322	975: M87507	976: L42104
977: L42103	978: L42102	979: L42098	980: L42097
981: L42096	982: L42095	983: L42094	984: L42091
985: L42090	986: L42089	987: L42088	988: L42087
989: L42086	990: L42085	991: L42080	992: L42079
993: L42078	994: U13737	995: U11878	996: U11877
997: U11876	998: U11875	999: U11874	1000: U11873
1001: U11872	1002: U11871	1003: U11870	1004: J02923
1005: M57627	1006: M91557	1007: L19592	1008: M94654
1009: M15864	1010: M86593	1011: M97502	1012: M68932
1013: M28130	1014: AH002843	1015: L12183	1016: L12182
1017: L12181	1018: L12180	1019: L12179	1020: L12177
1021: L12176	1022: L12178	1023: M29696	1024: J04156
1025: M29150	1026: M22111	1027: M96652	1028: M96651
1029: M23442	1030: M13982	1031: M60870	1032: M74782
1033: M20137	1034: M14743	1035: M16285	1036: M26062
1037: M32979	1038: M14098	1039: M13879	1040: M22005
1041: AH002842	1042: M33198	1043: M33199	1044: M97748
1045: M55646	1046: M27492	1047: M54933	1048: M15330
1049: M28983	1050: M15329	1051: M81890	1052: M57765
1053: U13022	1054: U13021	1055: M84747	1056: L05921
1057: U16031	1058: U06844	1059: M18403	1060: J03049
1061: M14584	1062: M75914	1063: M94582	1064: L09701
1065: M13784	1066: L13029	1067: L06801	1068: K02770
1069: L07488	1070: M17115	1071: M65272	1072: M65271
1073: U14407	1074: U10324	1075: U10323	1076: U03688
1077: U00672	1078: U08191		

Table 11: GenBank Accession numbers of human sequence records identified as related to nucleic acids encoding polypeptides potentially related to G-protein-coupled receptors metabolism and/or signaling.

1: AX429467	2: AX429465	3: AX427634	4: NM_021634
5: AX417288	6: AX417287	7: AX417286	8: AX417285
9: AX417284	10: AX417283	11: AX417281	12: AX417279
13: NM_144766	14: NM_002927	15: NM_013936	16: AX411685
17: AX411548	18: AX411478	19: AX411477	20: AX411476
21: AX411475	22: AX411474	23: AX411473	24: AX411472
25: AX411471	26: AX411470	27: AX411469	28: AX411468
29: AX411467	30: AX411464	31: AX407143	32: AX407142
33: AX407139	34: AX404911	35: NM_144773	36: BC030948
37: NM_002921	38: AF369708	39: AF232905	40: L12116
41: NM_032554	42: NM_004054	43: NM_005300	44: NM_054021
45: AX399470	46: AX399466	47: NM_139201	48: NM_057170
49: NM_057169	50: NM_014776	51: NM_139209	52: NM_017572
53: NM_013345	54: NM_006564	55: NM_004778	56: D17516
57: D13168	58: D13167	59: D13166	60: D13165
61: D13164	62: D13163	63: D13162	64: D11151
65: D11150	66: D11149	67: D11148	68: D11147
69: D11146	70: D11145	71: D11144	72: AF385432
73: AF385431	74: AB083632	75: AB083631	76: AB083630
77: AB083629	78: AB083628	79: AB083627	80: AB083626
81: AB083625	82: AB083624	83: AB083623	84: AB083622
85: AB083621	86: AB083620	87: AB083619	88: AB083618
89: AB083617	90: AB083616	91: AB083615	92: AB083614
93: AB083613	94: AB083612	95: AB083611	96: AB083610
97: AB083609	98: AB083608	99: AB083607	100: AB083606
101: AB083605	102: AB083604	103: AB083603	104: AB083602
105: AB083601	106: AB083600	107: AB083599	108: AB083598
109: AB083597	110: AB083596	111: AB083595	112: AB083594
113: AB083593	114: AB083592	115: AB083591	116: AB083590
117: AB083589	118: AB083588	119: AB083587	120: AB083586
121: AB083585	122: AB083584	123: AB083583	124: AX395171
125: AX395169	126: NM_018485	127: BC030147	128: BC029363
129: NT_009368	130: NT_009307	131: NT_009770	132: NT_009731
133: NT_009714	134: NT_030828	135: NT_009528	136: NT_009485
137: NT_009464	138: NT_008902	139: NT_011176	140: NT_011148
141: NT_011139	142: NT_011109	143: NT_011091	144: NT_024064
145: NT_030032	146: NT_023868	147: NT_008438	148: NT_004858
149: NT_019483	150: NT_004836	151: NT_004668	152: NT_004612
153: NT_005849	154: NT_005832	155: NT_005825	156: NT_006302
157: NT_004434	158: NT_006216	159: NT_004350	160: NT_005527
161: NT_004308	162: NT_006081	163: NT_006051	164: NT_025667
165: NT_028053	166: NT_026943	167: NT_022411	168: NT_033903
169: NT_033902	170: NT_033900	171: NT_022454	172: NT_022740
173: AY089976	174: 20143796	175: 20142348	176: NM_078473
177: NM_031940	178: NM_032027	179: NM_007264	180: AC008115
181: NM_003717	182: NT_024812	183: XM_115412	184: NT_024776
185: XM_064062	186: XM_165649	187: NT_010393	188: XM_061650
189: XM_089844	190: XM_045812	191: XM_085672	192: XM_089954
193: XM_089955	194: NT_011333	195: NT_033302	196: XM_115586
197: NT_010672	198: NT_007592	199: XM_167160	200: XM_167080
201: XM_167214	202: XM_167129	203: NT_033363	204: NT_009702

205: XM 115948	206: XM 114696	207: XM 090428	208: NT 033340
209: XM 166070	210: NT 033321	211: NT 009563	212: NT 028405
213: NT 007422	214: XM 090326	215: XM 015921	216: NT 011793
217: NT 011786	218: NT 033944	219: XM 061555	220: XM 005969
221: XM 085864	222: XM 085103	223: XM 070357	224: XM 097508
225: XM 067593	226: XM 003091	227: XM 001499	228: XM 068013
229: XM 093332	230: XM 115096	231: XM 115095	232: XM 115094
233: XM 115082	234: XM 115600	235: XM 116729	236: XM 166794
237: XM 166195	238: XM 113529	239: XM 116678	240: XM 116151
241: XM 116127	242: XM 113420	243: XM 116279	244: XM 114092
245: XM 057872	246: XM 115966	247: NM 138964	248: NM 130806
249: NM 031936	250: XM 045532	251: XM 006549	252: XM 089843
253: XM 060898	254: XM 010608	255: XM 086232	256: NM 080818
257: XM 066873	258: XM 066104	259: XM 064958	260: XM 064909
261: XM 064908	262: XM 047911	263: XM 062248	264: NT 030871
265: XM 064220	266: XM 068231	267: XM 060177	268: XM 057984
269: NT 011520	270: NM 020960	271: XM 001907	272: XM 009140
273: XM 001543	274: NM 020400	275: NM 013308	276: NM 006056
277: NM 004767	278: NT 011719	279: NT 011669	280: NT 025741
281: NT 009799	282: NT 033922	283: NT 019424	284: NT 024524
285: NT 006859	286: NT 009984	287: NT 011296	288: NT 011295
289: NT 011294	290: NT 009952	291: NT 011277	292: XM 044591
293: NT 011268	294: NT 011258	295: NM 000710	296: NT 026437
297: NT 007968	298: NT 007933	299: NT 010164	300: NT 028179
301: XM 057299	302: NT 023085	303: NT 029366	304: NT 005472
305: NT 005403	306: NT 005370	307: NT 005367	308: NT 005612
309: XM 067401	310: NT 005204	311: NT 005151	312: XM 115784
313: XM 051522	314: NT 005079	315: NT 005034	316: XM 115750
317: NT 022140	318: XM 115681	319: XM 116850	320: XM 092364
321: XM 007392	322: XM 018505	323: XM 096288	324: XM 092406
325: XM 086954	326: XM 066655	327: XM 062863	328: XM 066605
329: XM 063192	330: XM 033082	331: XM 068829	332: NM 053278
333: XM 057250	334: XM 003736	335: XM 046588	336: XM 033529
337: XM 010228	338: XM 002624	339: NM 080819	340: NM 080817
341: NM 030784	342: AF502962	343: NM 005302	344: BC028163
345: BC027597	346: AF498922	347: AF498919	348: AF498918
349: AF498917	350: AF498916	351: AF498915	352: NM 002054
353: AF502281	354: NG 001272	355: NG 001217	356: NG 001132
357: NG 001131	358: AF498961	359: AF498921	360: AF498920
361: AF458154	362: AF458153	363: AF458152	364: AF458151
365: AF458150	366: AF458149	367: AH011576	368: NM 005458
369: BC026357	370: NM 018969	371: NM 007227	372: NM 005682
373: NM 030774	374: NM 018697	375: NM 001337	376: NM 032119
377: AF293323	378: AF293322	379: AH011557	380: AX393069
381: AX392789	382: AX385030	383: AX391087	384: AX391083
385: AX385042	386: AX385040	387: AX385037	388: AX385035
389: AX385032	390: AX385027	391: AX384675	392: AX384666
393: AX384665	394: AX384664	395: AX384663	396: AX384661
397: AX384211	398: AX384210	399: AX384209	400: AX384207
401: AX379474	402: AX379473	403: AX379472	404: AX379470
405: AX379468	406: AX378810	407: AX378806	408: AX378804
409: AX378802	410: AC078860	411: BC025695	412: AF474992
413: AF474991	414: AF474990	415: AF474989	416: AF474988
417: AF474987	418: AX376587	419: AX376585	420: AX376583
421: AX376581	422: AX376579	423: AX376577	424: AX376575

425: BI480949	426: AX365511	427: AX369353	428: AX369349
429: AX369310	430: NM 006794	431: AF439409	432: AX365515
433: AX365514	434: AX360197	435: AX360195	436: AX358252
437: AX357037	438: BM503956	439: NM 057159	440: NM 001401
441: AH003177	442: L31584	443: L31583	444: L31582
445: NM 054032	446: NM 054031	447: NM 054030	448: BD010057
449: BD010056	450: BD010055	451: BD010054	452: BD010053
453: BD010052	454: BD010051	455: BD010050	456: BD010049
457: BD010046	458: BD010035	459: BD010034	460: BD010028
461: BD010022	462: E51301	463: E51300	464: E51299
465: E51298	466: E51297	467: E51296	468: E50838
469: E50837	470: E50836	471: E50835	472: E50834
473: E50833	474: BD003056	475: E55122	476: E55121
477: E55120	478: E55119	479: E55118	480: E55117
481: E58499	482: E58495	483: E58494	484: E58488
485: E58485	486: E58484	487: E58479	488: E44151
489: E44032	490: AX356204	491: AX355996	492: AX355871
493: AX355868	494: AX355867	495: AX355841	496: AX355837
497: AX354961	498: AX354959	499: AX353651	500: AX353650
501: AX353649	502: AX353643	503: AX351008	504: AX350707
505: AX350705	506: AX350702	507: AX350701	508: AX350698
509: AX350697	510: AX350694	511: AX350693	512: AX350689
513: AX350686	514: AX350685	515: AX350683	516: AX350679
517: AX350675	518: AX350673	519: AX350672	520: AX350669
521: AX350668	522: AX350664	523: AX350663	524: AX350661
525: AX350659	526: AX350653	527: AX350651	528: AX350647
529: AX350645	530: AX350643	531: AX350641	532: AX350639
533: AX350637	534: AX350635	535: AX350633	536: AX350631
537: AX350629	538: AX350627	539: AX350625	540: AX350623
541: AX350374	542: AX350372	543: AX343924	544: AX343922
545: AX343921	546: AX343917	547: AF453828	548: NM 023915
549: NM 018490	550: NM 003667	551: NM 016235	552: NM 006055
553: BC021553	554: BC020752	555: BC020614	556: BC020678
557: AJ298292	558: AX342691	559: AX342465	560: NM 030760
561: AX339742	562: AX339740	563: AX338965	564: AX338964
565: AX338963	566: AX338960	567: AX338958	568: AX338219
569: AX338078	570: AX338076	571: AX329226	572: AX327312
573: AX327310	574: AF258342	575: AF435925	576: NM 019888
577: NM 000795	578: NM 016574	579: AY062031	580: AY062030
581: AX318782	582: AX317852	583: AX317850	584: AX317848
585: AX317846	586: AX317844	587: AX317842	588: AX317840
589: AX317838	590: AX317836	591: AX317834	592: AX317832
593: AX317830	594: AX317828	595: AX317826	596: AX316190
597: AX316189	598: NM 078474	599: NM 025141	600: NM 014286
601: AX305114	602: AX305113	603: AX305111	604: L78805
605: NM 032966	606: NM 001716	607: NM 004951	608: NM 022304
609: NM 007232	610: NM 005307	611: NM 004230	612: NM 001841
613: NM 025195	614: AF257182	615: NM 007369	616: NM 007223
617: NM 006018	618: AL590083	619: AF411117	620: AF411116
621: AF411115	622: AF411114	623: AF411113	624: AF411112
625: AF411111	626: AF411110	627: AF411109	628: AF411108
629: AF411107	630: AK056697	631: AK056040	632: AX276991
633: AX276989	634: AX275089	635: AX275088	636: AX275087
637: AX275085	638: AX275083	639: AX268495	640: AX268494
641: AX268493	642: AX268492	643: AX268491	644: AX268489

645: AX262404	646: AX262402	647: AX259499	648: AX259498
649: AX259496	650: AX259494	651: AF406692	652: NM 023922
653: NM 023921	654: NM 023920	655: NM 023919	656: NM 023918
657: NM 023917	658: AL445495	659: BM141985	660: NM 000675
661: AX299707	662: AX299705	663: AX299475	664: AX299473
665: AX298070	666: BM129715	667: BM129426	668: BM128329
669: AF282269	670: AX286290	671: AX286289	672: AX286288
673: AX286287	674: AX286286	675: AX286285	676: AX286284
677: AX286283	678: AX286282	679: AX286281	680: AX286280
681: AX286279	682: AX286278	683: AX286277	684: AX286276
685: AX286275	686: AX286274	687: AX286272	688: AX283620
689: BM091360	690: BM091055	691: AF310685	692: AY033942
693: BC016860	694: BM053023	695: BM052746	696: AX282666
697: AX282663	698: AX282661	699: AX282660	700: AX282659
701: AX282658	702: AX282656	703: AX282654	704: AX282380
705: AX282378	706: AX282376	707: AX282374	708: AX282372
709: AX282370	710: AX282369	711: AX282367	712: AX282365
713: AX282363	714: AX282361	715: AX282359	716: AX282357
717: AX282355	718: AX282353	719: AX282351	720: AX281258
721: AX281256	722: AX277635	723: NM 053036	724: NM 032551
725: NM 000798	726: NM 000794	727: NM 014879	728: NM 000797
729: BI962766	730: BC009540	731: AF055084	732: AX254762
733: AX254760	734: AX254742	735: AX254632	736: AX254348
737: AX253448	738: AX253256	739: NM 033050	740: NM 023914
741: NM 020370	742: NM 005756	743: AX253152	744: AX253150
745: AX253148	746: AX253146	747: AX252471	748: AX252469
749: AX252467	750: AX252386	751: AX252384	752: AX252382
753: AX250688	754: AX250685	755: AX250683	756: AX250547
757: AX250545	758: AX250543	759: AX250541	760: AX250539
761: AX250331	762: AF303576	763: AY008280	764: BI792406
765: BI789257	766: AX240018	767: AX240016	768: AX240014
769: AX240012	770: AX240010	771: AX240008	772: AX240004
773: AX240002	774: AX240000	775: AX239998	776: AX239996
777: AX239993	778: AX239991	779: AX239989	780: AX239987
781: AX239985	782: AX239983	783: AX239981	784: AL035542
785: NM 000024	786: NM 000683	787: NM 000682	788: NM 000681
789: BI715205	790: BI712099	791: AF399937	792: AY029541
793: AY042216	794: AY042215	795: AY042214	796: AY042213
797: AX235352	798: AX235351	799: AX235350	800: AX235348
801: AX235262	802: AX235260	803: Y11395	804: AX214118
805: AX214117	806: AX214110	807: AX214107	808: AX214105
809: AX214103	810: AX214101	811: AX214099	812: AX214097
813: AX214095	814: AX214093	815: AX214091	816: AX214089
817: AX214087	818: AX211539	819: NM 000678	820: NM 000679
821: NM 033304	822: NM 033303	823: NM 033302	824: NM 000680
825: AX208080	826: AX208078	827: AX208076	828: AF317654
829: AF330055	830: AF330053	831: AF190501	832: AF190500
833: AJ309020	834: BC011634	835: AF343725	836: AF380193
837: AF380192	838: AF380189	839: AF380185	840: BC011349
841: NM 005292	842: AF395806	843: NM 032503	844: BC008770
845: AF345566	846: AF345565	847: BC008094	848: BC004555
849: BC004925	850: BC003187	851: BC000181	852: BC001736
853: BC001379	854: BC009277	855: AL121581	856: AX167470
857: AX167242	858: AF279611	859: AX163735	860: AX151331
861: AX151329	862: AX151327	863: AX151325	864: AX151323

865: AX151321	866: AX151319	867: AX151264	868: AX151263
869: AX151262	870: AX151260	871: AX151258	872: AX151256
873: AX151254	874: AX151252	875: AX151250	876: AX151248
877: AX151246	878: AX151244	879: AX151242	880: AX151240
881: AX151238	882: AX151236	883: AX151232	884: AX151230
885: AX151228	886: AX151226	887: AX151224	888: AX151222
889: AX151220	890: AX151218	891: AX151216	892: U73141
893: AF236083	894: AX139466	895: AX139465	896: AX139463
897: AX139441	898: AX139440	899: AX139438	900: AX139122
901: AX139121	902: AX139120	903: AX139119	904: AX139118
905: AX139117	906: AX139116	907: AX139115	908: AX139113
909: AX139112	910: AX139111	911: AX139110	912: AX139109
913: AX139107	914: AX139103	915: AX138881	916: AX138880
917: AX138878	918: AX138829	919: AX138796	920: AX138589
921: AX138588	922: AX138586	923: AB051065	924: AF347063
925: AX135421	926: AX134204	927: AH003248	928: U40771
929: AB060151	930: NM 031409	931: NM 004367	932: AK027784
933: AK027780	934: AF209923	935: AF207989	936: NM 018980
937: NM 016945	938: AF363791	939: AX109244	940: AX109242
941: AX109240	942: AX109238	943: AX109236	944: AX109234
945: AX107042	946: AX107041	947: AX107037	948: AF329449
949: AY029324	950: AF346711	951: AF346710	952: AF346709
953: AH010608	954: NM 030968	955: AU100154	956: AU099841
957: AU099821	958: AU099377	959: AU098961	960: AF295368
961: AF237763	962: AF237762	963: NM 004248	964: AX099247
965: AF348078	966: NM 019599	967: AX088165	968: AX087894
969: AX087885	970: NM 016944	971: NM 016943	972: AB038237
973: AF178982	974: AF321815	975: AL121755	976: BG370235
977: U48958	978: AX081250	979: AX081248	980: AX081246
981: AX080495	982: AX077889	983: AF317655	984: AF317653
985: AF317652	986: AX077691	987: NM 022036	988: NM 018653
989: NM 018654	990: AF312230	991: NM 001400	992: AF316895
993: AX076182	994: NM 000916	995: AF316894	996: NM 018971
997: NM 005242	998: NM 016334	999: NM 016602	1000: NM 000115
1001: NM 002980	1002: NM 003991	1003: BG150191	1004: AX068839
1005: BG057775	1006: BG057661	1007: BF941117	1008: BF940605
1009: BF939693	1010: AF313449	1011: BF733007	1012: BF732711
1013: BF732412	1014: NM 003979	1015: AJ272138	1016: NM 012152
1017: AF285095	1018: AF285094	1019: AF285093	1020: AL137000
1021: AF268899	1022: AF268898	1023: Y19228	1024: Y19231
1025: Y19230	1026: Y19229	1027: AJ272207	1028: AF311306
1029: NM 004885	1030: BF594242	1031: BF592107	1032: BF591300
1033: BF588506	1034: AF292402	1035: AL096774	1036: AF317676
1037: BF477409	1038: BF476145	1039: NM 022049	1040: AF281308
1041: BF447902	1042: BF447858	1043: BF447783	1044: BF446953
1045: BF446952	1046: AF205437	1047: BF439382	1048: BF439363
1049: BF435092	1050: BF434415	1051: BF434140	1052: BF432690
1053: BF432379	1054: BF431669	1055: BF431528	1056: AX041939
1057: AX041937	1058: AX041935	1059: AX041933	1060: AX041931
1061: AX041929	1062: AX041927	1063: AX041925	1064: AX041923
1065: AJ249248	1066: AB042411	1067: AB042410	1068: NM 004720
1069: NM 005226	1070: AF307973	1071: NM 005508	1072: NM 005283
1073: BF195014	1074: AF197929	1075: AF280400	1076: AF280399
1077: NM 018970	1078: NM 018949	1079: NM 016568	1080: NM 016540
1081: NM 014030	1082: NM 014626	1083: NM 014627	1084: NM 014373

1085: NM 013937	1086: NM 013941	1087: NM 001992	1088: NM 001526
1089: NM 006583	1090: NM 006143	1091: NM 005683	1092: NM 005684
1093: NM 000054	1094: NM 005308	1095: NM 005286	1096: NM 005285
1097: NM 005284	1098: NM 005282	1099: NM 005306	1100: NM 005305
1101: NM 005304	1102: NM 005303	1103: NM 005281	1104: NM 005301
1105: NM 005299	1106: NM 005298	1107: NM 005297	1108: NM 005296
1109: NM 005295	1110: NM 005294	1111: NM 005293	1112: NM 005279
1113: NM 005291	1114: NM 005290	1115: NM 005288	1116: NM 005161
1117: NM 005048	1118: NM 004224	1119: NM 004246	1120: NM 004072
1121: NM 001525	1122: NM 003272	1123: NM 003608	1124: NM 003485
1125: NM 000910	1126: NM 000752	1127: NM 000868	1128: NM 002082
1129: NM 001504	1130: NM 001508	1131: NM 001507	1132: NM 001506
1133: NM 001505	1134: NM 000164	1135: NM 003775	1136: NM 001838
1137: NM 000674	1138: AB019000	1139: AH007076	1140: AF019765
1141: AF019764	1142: AF272363	1143: AF272362	1144: BF109118
1145: BF062418	1146: BF061464	1147: BF061085	1148: BF060724
1149: BF058335	1150: BF055267	1151: BF054837	1152: BF054680
1153: AF239668	1154: AF029759	1155: AF089087	1156: AF254664
1157: AK024416	1158: BE858655	1159: BE858216	1160: AB041228
1161: AF250237	1162: AX018430	1163: AX018429	1164: AX018428
1165: AX018426	1166: AX014744	1167: AX014742	1168: BE677821
1169: BE671344	1170: BE671261	1171: BE671257	1172: BE670057
1173: BE646269	1174: AF257210	1175: AF233092	1176: BE503731
1177: BE503724	1178: BE502880	1179: BE502852	1180: BE502582
1181: BE501091	1182: AF282693	1183: AF236117	1184: BE467925
1185: BE466690	1186: BE465916	1187: BE464797	1188: BE464297
1189: AL121935	1190: BE208338	1191: BE350014	1192: BE328133
1193: BE328109	1194: BE328060	1195: BE219456	1196: BE218901
1197: BE218235	1198: BE218140	1199: BE218139	1200: AB040801
1201: AB040800	1202: AB040799	1203: BE049570	1204: BE046086
1205: BE042841	1206: BE041936	1207: AF208237	1208: AF073924
1209: D88437	1210: AW873727	1211: AW827198	1212: AW779207
1213: AW771926	1214: AW771412	1215: AW770712	1216: AW770705
1217: AW768971	1218: AF202640	1219: AF236081	1220: AF030335
1221: AF215981	1222: AF056085	1223: AW665207	1224: AW664477
1225: AU076620	1226: AW631295	1227: AW627455	1228: AW614983
1229: AW613556	1230: AW612883	1231: AW612249	1232: AW594595
1233: AW594481	1234: AW590950	1235: AW590629	1236: AF227139
1237: AF227138	1238: AF227137	1239: AF227136	1240: AF227135
1241: AF227134	1242: AF227133	1243: AF227132	1244: AF227131
1245: AF227130	1246: AF227129	1247: AW583167	1248: AW573093
1249: AF112462	1250: AF112461	1251: AF112460	1252: AW515813
1253: AW468602	1254: AW468498	1255: AW467603	1256: AW418550
1257: X89271	1258: AJ243213	1259: AC002381	1260: AW339203
1261: AW338938	1262: AW338568	1263: AW316632	1264: AW299960
1265: AW299685	1266: Z86090	1267: AW272269	1268: AW271290
1269: U78723	1270: AC004925	1271: AW239400	1272: AW239010
1273: AW197479	1274: AW193726	1275: AW191974	1276: AL022171
1277: AL009181	1278: Z85996	1279: Z69387	1280: Z68281
1281: Z68273	1282: Z68192	1283: AW188960	1284: AW188400
1285: AW173257	1286: AW173009	1287: AW170317	1288: AW150789
1289: AW149665	1290: AW148557	1291: AF181862	1292: X68149
1293: AW129012	1294: AW128849	1295: AW118213	1296: AW102735
1297: AW087372	1298: AW083550	1299: AW083541	1300: AW075850
1301: AW075598	1302: AW075549	1303: AW072548	1304: AW071110

1305: AF140631	1306: AF040752	1307: AF040751	1308: AF040753
1309: AF186380	1310: AF147204	1311: AW058177	1312: AF127138
1313: AF104939	1314: AF104266	1315: AW051846	1316: AW050562
1317: AF104938	1318: AW024131	1319: AH008056	1320: AF129514
1321: AW004908	1322: AW004735	1323: AF101472	1324: AF072693
1325: AW000832	1326: AI990500	1327: AI979039	1328: AI969765
1329: AI969011	1330: AI968199	1331: AI968062	1332: AF039686
1333: AI963290	1334: AI962628	1335: AI962439	1336: AI952936
1337: AI951598	1338: AJ238044	1339: AF083955	1340: E16188
1341: E16187	1342: E16186	1343: E14219	1344: E14218
1345: E14217	1346: AI937602	1347: AI936826	1348: AI936528
1349: AI934968	1350: AI929343	1351: AI921242	1352: AI920946
1353: AI910975	1354: AI890025	1355: AI889324	1356: AI884686
1357: AI884548	1358: AH005868	1359: AF044601	1360: AF044600
1361: AI870119	1362: AI869176	1363: AI867390	1364: AI866909
1365: AI864743	1366: AI861901	1367: AF153500	1368: AI859538
1369: AI858943	1370: AI857339	1371: AI831861	1372: AI830135
1373: AI817194	1374: X13556	1375: AI807566	1376: AI801319
1377: AI798928	1378: AI796432	1379: AF119711	1380: AI767062
1381: AI765236	1382: AI762692	1383: AI745026	1384: AI743546
1385: AI742092	1386: AI740732	1387: AI738477	1388: AF145207
1389: AI719098	1390: AI703458	1391: AI703188	1392: AI700112
1393: AI699236	1394: AI698562	1395: AI697249	1396: AI697103
1397: AI696158	1398: AI695339	1399: AI694940	1400: AI693678
1401: AI692576	1402: AF144308	1403: AI683322	1404: AI682902
1405: AI682706	1406: AI681718	1407: AI678669	1408: AI675038
1409: AI672910	1410: AI672677	1411: AI672434	1412: AI670734
1413: AF106858	1414: AI660355	1415: AI659965	1416: AI659657
1417: AI656746	1418: AI655538	1419: AI653213	1420: AI640447
1421: AI640213	1422: AI636061	1423: AI611298	1424: AI610565
1425: AF069755	1426: AI583169	1427: AI583146	1428: AI582682
1429: AI581657	1430: AF058762	1431: AF096786	1432: AF096785
1433: AF096784	1434: AI568975	1435: AF119815	1436: AI566829
1437: AC007136	1438: AF118266	1439: AF118265	1440: AI524429
1441: AI524007	1442: AF118670	1443: AI493618	1444: AI498729
1445: X97881	1446: X97880	1447: X97879	1448: AF105367
1449: AI470243	1450: AI470241	1451: AI470231	1452: AI468820
1453: AI476811	1454: AI473656	1455: AI457930	1456: AI439188
1457: AI434652	1458: AI422268	1459: AI370816	1460: AI368913
1461: AI359560	1462: AI358974	1463: AI358446	1464: AI355648
1465: AI308145	1466: AI338666	1467: AI338653	1468: AI123732
1469: U68031	1470: AI417609	1471: AI417456	1472: AI417427
1473: AI253178	1474: AI249788	1475: AI348152	1476: AI344724
1477: AI344626	1478: AI300807	1479: AI300764	1480: AI289854
1481: AI292165	1482: AI290226	1483: AI268995	1484: AI379767
1485: AI379745	1486: AI376916	1487: AI284206	1488: AI263529
1489: AI240328	1490: AI375269	1491: AF080586	1492: AA694447
1493: AF074483	1494: AA890050	1495: AA883367	1496: AF106941
1497: AI346265	1498: AA844623	1499: AA781110	1500: AA772427
1501: AF034780	1502: AI342261	1503: AI337353	1504: AI334621
1505: AI334042	1506: AF099148	1507: AF095448	1508: AC006132
1509: AI249966	1510: AI243295	1511: AH007062	1512: U90660
1513: U90659	1514: U90658	1515: AI243951	1516: AI239970
1517: AI218191	1518: AI215993	1519: AI208357	1520: Y12476
1521: AJ000479	1522: Y12477	1523: AF061444	1524: AI002547

1525: AI193140	1526: AI192675	1527: AI138606	1528: AI126520
1529: AI161367	1530: AI160744	1531: AI159856	1532: AI143180
1533: AI148328	1534: AI167285	1535: AF091890	1536: AI050884
1537: AI041787	1538: AF032132	1539: AF027957	1540: AF027956
1541: AF022137	1542: AF002986	1543: AF015257	1544: U83326
1545: AF012270	1546: U65402	1547: U94320	1548: U66581
1549: U66580	1550: U66579	1551: U66578	1552: U79527
1553: U79526	1554: U77827	1555: U68032	1556: U68030
1557: AH006663	1558: U50146	1559: U66275	1560: U62027
1561: U48405	1562: AH006647	1563: U47129	1564: U47128
1565: U47127	1566: U47126	1567: U34806	1568: U25341
1569: U28488	1570: U40223	1571: U32672	1572: AH006630
1573: U33168	1574: U33167	1575: U33166	1576: U33165
1577: U33164	1578: U33163	1579: U33162	1580: U33161
1581: U33160	1582: U33159	1583: U33158	1584: U33157
1585: U33156	1586: U33155	1587: U33154	1588: U33153
1589: U33056	1590: U33055	1591: U33054	1592: U22492
1593: U22491	1594: U31332	1595: U31099	1596: U31098
1597: U25128	1598: L40764	1599: AF045767	1600: AF045765
1601: AF045764	1602: AF027826	1603: AF041245	1604: AF041243
1605: AF073799	1606: D10202	1607: Y12546	1608: AI050992
1609: AI051919	1610: AI051863	1611: AI022030	1612: Z94155
1613: Z94154	1614: AF086432	1615: AI017452	1616: AA994898
1617: AA992531	1618: AA936395	1619: AI097347	1620: AI077789
1621: AF080214	1622: AF062006	1623: AF011466	1624: AI032237
1625: AI032226	1626: AA989434	1627: AF034633	1628: AF034632
1629: AI050023	1630: AA970139	1631: AA935899	1632: AA935648
1633: AA934643	1634: E12487	1635: E12484	1636: AA953688
1637: AA931357	1638: AA923762	1639: AA933596	1640: Y14838
1641: AA927880	1642: AA834277	1643: AA825595	1644: AF067733
1645: AA905915	1646: AA863264	1647: AA862435	1648: U71092
1649: AA857647	1650: Y16280	1651: AA834537	1652: AA826204
1653: AA808103	1654: AA829514	1655: AA883661	1656: AA836111
1657: AA836067	1658: AA832466	1659: AA824607	1660: AA205847
1661: AA197280	1662: AA181641	1663: AA634862	1664: AA634211
1665: AA451915	1666: AA827835	1667: AA804628	1668: AA811093
1669: AA760743	1670: AA748438	1671: AA804282	1672: AA779703
1673: AA780337	1674: AA731086	1675: AA744637	1676: AA760855
1677: AA769730	1678: AA768086	1679: U78192	1680: Z73157
1681: AA773241	1682: AA747545	1683: AA743645	1684: AA743379
1685: Y10530	1686: Y10529	1687: AA713608	1688: AA732228
1689: AF014826	1690: AA707668	1691: AA705077	1692: AA112062
1693: AA083607	1694: AH005747	1695: U15790	1696: U15789
1697: U15788	1698: U15787	1699: U15786	1700: U15785
1701: U14911	1702: AA661523	1703: AF007171	1704: U63917
1705: Y13583	1706: AF024690	1707: AF024689	1708: AF024688
1709: AF024687	1710: AA421523	1711: AA421558	1712: AA417176
1713: AA610463	1714: AA650037	1715: AF025375	1716: AA621854
1717: AA634201	1718: AA630455	1719: AA426566	1720: AA426644
1721: AA424850	1722: AA419064	1723: AA583854	1724: AF017263
1725: AF017264	1726: AF017262	1727: AA576017	1728: AA554406
1729: AC002511	1730: AA573161	1731: AA534523	1732: AA259199
1733: AA225739	1734: AA507254	1735: AA502605	1736: AA501992
1737: AA490436	1738: AA490329	1739: AA558023	1740: AA479467
1741: AA479357	1742: AA477030	1743: AA476919	1744: AA284569

1745: AA284857	1746: L42324	1747: AA148292	1748: AA148291
1749: AA523398	1750: AA059452	1751: AA059451	1752: AF007545
1753: Z79783	1754: AF004021	1755: U45984	1756: AF000546
1757: U90322	1758: U90323	1759: U45983	1760: X65857
1761: X65858	1762: AC002306	1763: U73531	1764: U73530
1765: U73529	1766: D89079	1767: D89078	1768: AH005415
1769: U48231	1770: U18550	1771: D38449	1772: Y09479
1773: AA436258	1774: AA194811	1775: AA194998	1776: X95876
1777: AF000545	1778: AA411265	1779: AA137186	1780: AA137185
1781: AA129610	1782: AA129609	1783: AA121357	1784: AA121265
1785: AA099858	1786: AA099323	1787: AA058812	1788: AA045235
1789: AA037526	1790: AA037376	1791: AA036907	1792: AA036853
1793: X98510	1794: AA314786	1795: AA298791	1796: AA297171
1797: U91939	1798: U64871	1799: U34038	1800: X70070
1801: AA193392	1802: N58609	1803: N54441	1804: U49516
1805: X98118	1806: X83864	1807: X70812	1808: AA127402
1809: AA127401	1810: X69680	1811: S45489	1812: Z79784
1813: Z79782	1814: U73304	1815: X98356	1816: W79920
1817: W77864	1818: W72081	1819: W73685	1820: U67784
1821: U33448	1822: U33447	1823: U49727	1824: X99393
1825: AA041219	1826: W40430	1827: W21494	1828: N93476
1829: W23870	1830: N95025	1831: AA007184	1832: AA007183
1833: L03718	1834: X96597	1835: N62053	1836: H97311
1837: X81121	1838: X81120	1839: X69920	1840: X69168
1841: X83956	1842: X72089	1843: X65181	1844: X65180
1845: X65179	1846: X65177	1847: X65178	1848: X68596
1849: X71635	1850: X65176	1851: X65175	1852: X65174
1853: X65173	1854: X65172	1855: X68829	1856: X52068
1857: X65859	1858: X64993	1859: X64992	1860: X64991
1861: X64990	1862: X64989	1863: X64988	1864: X64987
1865: X64986	1866: X64985	1867: X64984	1868: X64983
1869: X64982	1870: X64981	1871: X64980	1872: X64979
1873: X64974	1874: X64978	1875: X64977	1876: X64976
1877: X64975	1878: X64995	1879: X64994	1880: X75897
1881: X54937	1882: U55312	1883: W24753	1884: W17011
1885: U21051	1886: W01442	1887: U47124	1888: N93987
1889: N90783	1890: U45982	1891: N86436	1892: U32500
1893: U20350	1894: U18549	1895: U18548	1896: AH003369
1897: U23430	1898: U23429	1899: U23428	1900: M73481
1901: N49854	1902: U20760	1903: U20759	1904: N23898
1905: U39231	1906: H88656	1907: H88701	1908: U35399
1909: U35398	1910: L35318	1911: T29782	1912: T29676
1913: T28268	1914: R91585	1915: H37859	1916: L31581
1917: L32831	1918: L32830	1919: H45306	1920: H29103
1921: H29001	1922: H27787	1923: H14301	1924: H21565
1925: H20663	1926: H16711	1927: H16710	1928: H12955
1929: H06644	1930: R80054	1931: R78657	1932: R78620
1933: R76070	1934: R73329	1935: R72859	1936: R55156
1937: R55018	1938: R48699	1939: R48597	1940: R27256
1941: R23115	1942: R23114	1943: R20666	1944: R20475
1945: R15256	1946: R13546	1947: U13668	1948: U13667
1949: U13666	1950: T99860	1951: T98622	1952: U11878
1953: U11877	1954: U11876	1955: U11875	1956: U11874
1957: U11873	1958: U11872	1959: T87010	1960: L36150
1961: L36148	1962: T72605	1963: T64864	1964: L36149

1965: T62636	1966: T62491	1967: U17473	1968: T51359
1969: T51244	1970: U19487	1971: M74290	1972: L16862
1973: M73482	1974: L09237	1975: L15388	1976: L08176
1977: U14910	1978: M95489	1979: M67439	1980: L14856
1981: L10918	1982: L08177	1983: U03642	1984: L10820
1985: U00686	1986: L06797		

Table 12: GenBank Accession numbers of human sequence records identified as related to nucleic acids encoding polypeptides potentially related to orphan G-protein-coupled receptors metabolism and/or signaling.

1: NM_005300	2: NM_004778	3: NM_018485	4: NT_009714
5: NT_009528	6: NT_008902	7: NT_005849	8: NT_028053
9: AY089976	10: NM_003717	11: NT_010672	12: NT_033363
13: XM_114696	14: XM_061555	15: NM_138964	16: NT_011520
17: NM_004767	18: NT_033922	19: NT_005612	20: NT_005151
21: XM_086954	22: NM_007227	23: NM_001337	24: AC078860
25: NM_006794	26: BM503956	27: NM_003667	28: NM_016235
29: NM_053036	30: NM_032551	31: NM_033050	32: NM_023914
33: AY029541	34: AF343725	35: U73141	36: AF209923
37: AF207989	38: AU099377	39: AF295368	40: AF237763
41: AF237762	42: AF348078	43: AF321815	44: NM_022036
45: NM_018653	46: NM_018654	47: NM_016602	48: NM_003979
49: Y19228	50: Y19231	51: Y19230	52: Y19229
53: NM_004885	54: BF592107	55: NM_018949	56: NM_005281
57: NM_005291	58: NM_001508	59: NM_001507	60: AF250237
61: AF257210	62: AF208237	63: AF202640	64: AF236081
65: AF215981	66: X89271	67: AF140631	68: AF101472
69: AF072693	70: AI969765	71: AI968199	72: AI962439
73: AI951598	74: AH005868	75: AF044601	76: AF044600
77: AI831861	78: AI703458	79: AI699236	80: AI697103
81: AI694940	82: AI692576	83: AI681718	84: AI640447
85: AF069755	86: AF118266	87: AF118265	88: AF118670
89: AI215993	90: AF091890	91: AF027957	92: AF027956
93: U79527	94: U79526	95: U77827	96: U32672
97: AF045764	98: Y12546	99: Z94155	100: Z94154
101: AF062006	102: AF034633	103: AF034632	104: Y14838
105: Y16280	106: U67784	107: X96597	108: X83956
109: U20350	110: U17473	111: L06797	

Table 13: GenBank Accession numbers of human sequence records identified as related to nucleic acids encoding protein kinases potentially involved in transcription metabolism and/or signaling.

1: NM_020168	2: NM_004857	3: NM_139070	4: NM_139069
5: NM_139068	6: NM_002752	7: D10022	8: NM_138957
9: NM_002745	10: NM_002754	11: NM_138993	12: NM_002751
13: NM_139049	14: NM_139047	15: NM_139046	16: NM_005456
17: NM_139014	18: NM_139013	19: NM_139012	20: NM_138982
21: NM_138981	22: NM_138980	23: NM_002753	24: NM_139034
25: NM_139033	26: NM_139032	27: NM_002749	28: NM_002750
29: NT_009307	30: NT_009237	31: NT_024229	32: NT_009770
33: NT_024654	34: NT_010274	35: NT_010194	36: NT_030059
37: NT_011139	38: NT_011109	39: NT_007993	40: NT_010019
41: NT_008413	42: NT_004858	43: NT_030040	44: NT_004734
45: NT_004658	46: NT_006397	47: NT_004525	48: NT_006371
49: NT_021877	50: NT_019273	51: NT_033927	52: NT_033241
53: NT_028327	54: NT_033984	55: NT_033982	56: NT_033892
57: NM_002401	58: NM_032989	59: NM_004322	60: NM_031988
61: NM_002758	62: NM_001315	63: NT_033291	64: NT_010552
65: NT_010478	66: NT_010441	67: NT_011512	68: NT_011387
69: NT_010808	70: NT_010783	71: NT_010755	72: NT_010748
73: NT_010736	74: NT_010718	75: NT_031911	76: NT_007592
77: NT_009563	78: NT_009526	79: NT_025965	80: NT_007422
81: NT_025273	82: NT_007299	83: NT_033944	84: NT_011362
85: NT_011520	86: NT_033167	87: NT_030710	88: NT_025741
89: NT_009799	90: NT_023399	91: NT_007072	92: NT_006859
93: NT_011295	94: NT_011271	95: NT_011255	96: NT_009910
97: NT_006654	98: NT_006497	99: NT_026437	100: NT_007968
101: NT_007933	102: NT_008046	103: NT_025892	104: NT_010164
105: NT_007758	106: NT_008580	107: NT_007688	108: NT_033965
109: NT_033964	110: NT_030001	111: NT_029366	112: NT_017168
113: NT_005367	114: NT_005334	115: NT_005332	116: NT_005190
117: NT_005151	118: NT_022171	119: NT_022135	120: NM_138923
121: NM_004606	122: NM_080601	123: NM_002834	124: NM_022740
125: NM_005806	126: NM_001799	127: NM_022304	128: NM_002005
129: NM_037370	130: NM_012142	131: NM_012333	132: AY028384
133: NM_001261	134: NM_052988	135: NM_052987	136: NM_001260
137: NM_003674	138: NM_052827	139: NM_001798	140: NM_021104
141: NM_000024	142: NM_000681	143: NM_002006	144: NM_012138
145: NM_002755	146: NM_004635	147: AD000092	148: NM_031965
149: AF289865	150: NM_022550	151: NM_022406	152: NM_003401
153: NM_005734	154: AJ277546	155: NM_001924	156: NM_013311
157: NM_005163	158: NM_000165	159: NM_002227	160: AF184924
161: AP001751	162: U83994	163: U87803	164: AH007140
165: U87276	166: U87275	167: U87274	168: U87273
169: U87272	170: U87271	171: AF074715	172: AF015256
173: AF009225	174: U64573	175: U35005	176: U35004
177: U35003	178: U35002	179: U34822	180: U34821
181: U34820	182: U34819	183: Z92868	184: AF049893
185: Y10256	186: Y07641	187: AH004914	188: U03874

Table 14: GenBank Accession numbers of human sequence records identified as related to nucleic acids encoding protein kinases potentially involved in G-protein coupled receptor metabolism and/or signaling.

1: NM_007202	2: NM_144489	3: NM_144488	4: NM_134427
5: NM_017790	6: NM_021106	7: NM_130795	8: NM_138957
9: NM_002745	10: NM_139034	11: NM_139033	12: NM_139032
13: NM_002749	14: NT_009307	15: NT_009770	16: NT_030828
17: NT_010194	18: NT_008902	19: NT_011151	20: NT_011139
21: NT_011109	22: NT_008413	23: NT_004858	24: NT_006014
25: NT_004771	26: NT_004434	27: NT_004350	28: NT_006051
29: NT_025667	30: NT_029860	31: NT_028053	32: NT_026943
33: NT_033903	34: NT_010552	35: NT_010823	36: NT_010808
37: NT_010783	38: NT_007592	39: NT_009563	40: NT_007422
41: NT_007299	42: NT_011793	43: NT_033944	44: NT_011362
45: NT_011520	46: NT_011719	47: NT_011669	48: NT_025741
49: NT_009799	50: NT_033922	51: NT_006859	52: NT_011295
53: NT_006519	54: NT_026437	55: NT_007968	56: NT_007933
57: NT_007914	58: NT_010164	59: NT_008580	60: NT_029366
61: NT_017168	62: NT_005367	63: NT_005151	64: NT_005079
65: NM_022304	66: NM_006098	67: AF282269	68: NM_002880
69: NM_000024	70: NM_000681	71: NM_032938	72: NM_004489
73: NM_032442	74: NM_004127	75: NM_004041	76: NM_020251
77: NM_005160	78: AL031282	79: U20285	80: AC007136
81: U28963			

Table 15: GenBank Accession numbers of human sequence records identified as related to nucleic acids encoding protein kinases potentially involved in apoptosis.

1: NM_005923	2: NM_020168	3: NM_144489	4: NM_144488
5: NM_134427	6: NM_017790	7: NM_021106	8: NM_130795
9: NM_139070	10: NM_139069	11: NM_139068	12: NM_002752
13: NM_006712	14: NM_033015	15: NM_025096	16: NM_139049
17: NM_139047	18: NM_139046	19: NM_005456	20: NM_139014
21: NM_139013	22: NM_139012	23: NM_138982	24: NM_138981
25: NM_138980	26: NM_002753	27: NM_002750	28: NT_024192
29: NT_009770	30: NT_010194	31: NT_030059	32: NT_011109
33: NT_021877	34: NM_078467	35: NM_032989	36: NM_004322
37: NM_031988	38: NM_002758	39: NM_001315	40: NT_010552
41: NT_010478	42: NT_010823	43: NT_010755	44: NT_010748
45: NT_007592	46: NT_033944	47: NT_011520	48: NT_011694
49: NT_006497	50: NT_026437	51: NT_010164	52: NT_007819
53: NT_007758	54: NT_033181	55: NT_005190	56: XM_050441
57: NM_003821	58: NM_004103	59: NM_131917	60: NM_007051
61: NM_003682	62: NM_130476	63: NM_130475	64: NM_130474
65: NM_130473	66: NM_130472	67: NM_130471	68: NM_130470
69: AB040057	70: NM_014326	71: NM_000389	72: NM_005400
73: NM_004226	74: NM_024011	75: NM_033621	76: NM_033537
77: NM_033536	78: NM_033534	79: NM_033532	80: NM_033531
81: NM_033529	82: NM_033528	83: NM_033527	84: AF305840
85: NM_033493	86: NM_033492	87: NM_033491	88: NM_033490
89: NM_033489	90: NM_033488	91: NM_033487	92: NM_033486
93: NM_001787	94: NM_006947	95: NM_002880	96: NM_012138
97: NM_031267	98: NM_003718	99: NM_014245	100: NM_005163
101: NM_004760	102: NM_001348	103: AF052941	104: AB018001
105: AB011421	106: AB011420	107: AF027706	108: AF021792

Table 16. Modifications of the First Three Nucleotides of the *att* Site Seven Base Pair Overlap Region that Alter Recombination Specificity.

AAA	CAA	GAA	TAA
AAC	CAC	GAC	TAC
AAG	CAG	GAG	TAG
AAT	CAT	GAT	TAT
ACA	CCA	GCA	TCA
ACC	CCC	GCC	TCC
ACG	CCG	GCG	TCG
ACT	CCT	GCT	TCT
AGA	CGA	GGA	TGA
AGC	CGC	GGC	TGC
AGG	CGG	GGG	TGG
AGT	CGT	GGT	TGT
ATA	CTA	GTA	TTA
ATC	CTC	GTC	TTC
ATG	CTG	GTG	TTG
ATT	CTT	GTT	TTT

Table 17. Representative Examples of Seven Base Pair *att* Site Overlap Regions Suitable for use in the recombination sites of the Invention.

AAAATAC	CAAATAC	GAAATAC	TAAATAC
AACATAC	CACATAC	GACATAC	TACATAC
AAGATAC	CAGATAC	GAGATAC	TAGATAC
AATATAC	CATATAC	GATATAC	TATATAC
ACAATAC	CCAATAC	GCAATAC	TCAATAC
ACCATAC	CCCATAC	GCCATAC	TCCATAC
ACGATAC	CCGATAC	GCGATAC	TCGATAC
ACTATAC	CCTATAC	GCTATAC	TCTATAC
AGAATAC	CGAATAC	GGAATAC	TGAATAC
AGCATAC	CGCATAC	GGCATAC	TGCATAC
AGGATAC	CGGATAC	GGGATAC	TGGATAC
AGTATAC	CGTATAC	GGTATAC	TGTATAC
ATAATAC	CTAATAC	GTAATAC	TTAATAC
ATCATAC	CTCATAC	GTCATAC	TTCATAC
ATGATAC	CTGATAC	GTGATAC	TTGATAC
ATTATAC	CTTATAC	GTTATAC	TTTATAC

Table 18. Nucleotide sequences of att sites.

attB0	AGCCTGCTTT TTTATACTAA CTTGAGC	(SEQ ID NO:)
attP0	GTTCAAGCTTT TTTATACTAA GTTGGCA	(SEQ ID NO:)
attL0	AGCCTGCTTT TTTATACTAA GTTGGCA	(SEQ ID NO:)
attR0	GTTCAAGCTTT TTTATACTAA CTTGAGC	(SEQ ID NO:)
attB1	AGCCTGCTTT TTTGTACAAA CTTGT	(SEQ ID NO:)
attP1	GTTCAAGCTTT TTTGTACAAA GTTGGCA	(SEQ ID NO:)
attL1	AGCCTGCTTT TTTGTACAAA GTTGGCA	(SEQ ID NO:)
attR1	GTTCAAGCTTT TTTGTACAAA CTTGT	(SEQ ID NO:)
attB2	ACCCAGCTTT CTTGTACAAA GTGGT	(SEQ ID NO:)
attP2	GTTCAAGCTTT CTTGTACAAA GTTGGCA	(SEQ ID NO:)
attL2	ACCCAGCTTT CTTGTACAAA GTTGGCA	(SEQ ID NO:)
attR2	GTTCAAGCTTT CTTGTACAAA GTGGT	(SEQ ID NO:)
attB5	CAACTTTATT ATACAAAGTT GT	(SEQ ID NO:)
attP5	GTTCAACTTT ATTATACAAA GTTGGCA	(SEQ ID NO:)
attL5	CAACTTTATT ATACAAAGTT GGCA	(SEQ ID NO:)
attR5	GTTCAACTTT ATTATACAAA GTTGT	(SEQ ID NO:)
attB11	CAACTTTCT ATACAAAGTT GT	(SEQ ID NO:)
attP11	GTTCAACTTT TCTATACAAA GTTGGCA	(SEQ ID NO:)
attL11	CAACTTTCT ATACAAAGTT GGCA	(SEQ ID NO:)
attR11	GTTCAACTTT TCTATACAAA GTTGT	(SEQ ID NO:)
attB17	CAACTTTGT ATACAAAGTT GT	(SEQ ID NO:)
attP17	GTTCAACTTT TGTATACAAA GTTGGCA	(SEQ ID NO:)
attL17	CAACTTTGT ATACAAAGTT GGCA	(SEQ ID NO:)
attR17	GTTCAACTTT TGTATACAAA GTTGT	(SEQ ID NO:)

Table 18. Nucleotide sequences of att sites.

attB19	CAACTTTTC GTACAAAGTT GT	(SEQ ID NO:)
attP19	GTTCAACTTT TTCGTACAAA GTTGGCA	(SEQ ID NO:)
attL19	CAACTTTTC GTACAAAGTT GGCA	(SEQ ID NO:)
attR19	GTTCAACTTT TTCGTACAAA GTTGT	(SEQ ID NO:)
attB20	CAACTTTTG GTACAAAGTT GT	(SEQ ID NO:)
attP20	GTTCAACTTT TTGGTACAAA GTTGGCA	(SEQ ID NO:)
attL20	CAACTTTTG GTACAAAGTT GGCA	(SEQ ID NO:)
attR20	GTTCAACTTT TTGGTACAAA GTTGT	(SEQ ID NO:)
attB21	CAACTTTTA ATACAAAGTT GT	(SEQ ID NO:)
attP21	GTTCAACTTT TTAATACAAA GTTGGCA	(SEQ ID NO:)
attL21	CAACTTTTA ATACAAAGTT GGCA	(SEQ ID NO:)
attR21	GTTCAACTTT TTAATACAAA GTTGT	(SEQ ID NO:)

7. Conclusion

[0296] Various embodiments of the present invention have been described above. It should be understood that these embodiments have been presented by way of example only, and not limitation. It will be understood by those skilled in the relevant art that various changes in form and detail of the embodiments described above may be made without departing from the spirit and scope of the present invention as defined in the claims. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.