2019--2020 学年第一学期

《概率论与数理统计》试卷评分标准及参考答案(A卷)

注: 本试卷参考数据: $\sqrt{60} = 7.75$, $\Phi(1.29)=0.9014$, $\Phi(2.33)=0.9901$, $z_{0.05}=1.645$, $t_{0.05}(24)=1.7109, t_{0.05}(25)=1.7081.$

(注意: 所有答案必须写在答题卡上, 在试卷上作答无效)

- 一、单选题(7小题,每小题3分,共21分)
- 1. 设 A, B 为两随机事件, $P(A) = 0.7, P(A B) = 0.3, 则 <math>P(\overline{AB}) = (B)$
- (A) 0.4;
- (B) 0.6:
- (C) 0.12;
- (D) 0.8.

2. 设随机变量 X 的分布律

则 X 的分布函数值 F(2)=(C)

- (A) 0.5;
- (B) 0.6;
- (C) 0.8;
- (D) 0.7.
- 3. 设二维随机变量(X, Y)的概率密度为 $f(x,y) = \begin{cases} c, & -1 \le x \le 1, 0 \le y \le 2 \\ 0, & \pm c \end{cases}$

则 c = (C)

- (A) $\frac{1}{2}$;
- (B) $\frac{1}{2}$;
- (C) $\frac{1}{4}$;
- 4. 已知随机变量 X 和 Y 相互独立,则下列选项不一定正确的是(D)
- (A) D(X+Y) = D(X) + D(Y);
- (B) E(X+Y) = E(X) + E(Y);
- (C) E(XY) = E(X)E(Y);
- (D) D(XY) = D(X)D(Y).
- 5. 设总体 $X \sim Exp(\theta)$. X_1, X_2, \dots, X_n 是 X 的一个样本, \overline{X} , S^2 分别为样本均值

和样本方差,则 $E(\overline{X})$, $E(S^2)$ 分别为(A)

- (A) θ , θ^2 ; (B) θ^2 , θ ; (C) θ , $\frac{\theta}{r}$; (D) θ , $\frac{\theta}{r}$.

6. 设总体 $X \sim N(\mu, 1)$, $X_1, X_2, ..., X_n$ 为样本, μ 是未知参数,则下列选项中不是 统计量的是(C)

- (A) $\frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^2$;
- (B) $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X})^2$;
- (C) $\sum_{n=0}^{\infty} (\bar{X} \mu)^2$;
- (D) $\sum_{i=1}^{n} (X_i)^2$.

7. 设某种清漆的干燥时间 $X \sim N(\mu, \sigma^2)$, σ 未知, 现抽取 9 个样品, 测得样本均值 $\tilde{x} = 6($ 小时),样本标准差s = 1(小时),则 μ 的置信水平为 0.95 的置信区间为(B)

- (A) $\left(6 \pm \frac{1}{9} t_{0.025}(8)\right)$;
- (B) $\left(6\pm\frac{1}{3}t_{0.025}(8)\right)$;

(C) $\left(6 \pm \frac{1}{9} t_{0.025}(9)\right)$;

(D) $\left(6 \pm \frac{1}{3} t_{0.025}(9)\right)$.

二、填空题(7小题,每小题3分,共21分)

- 8. 现有5名留学生, 其中3名来自巴基斯坦,2名来自埃及,随机选2名留学生参加春 节晚会,则参加晚会的2名学生均来自巴基斯坦的概率为 0.3 .
- 9. 设总体 X 的均值为 μ , 方差为 σ^2 , X_1 , X_2 , ..., X_n (n>2) 为样本, 已知 \overline{X} 与 X_1 均

 μ 的无偏估计量, 比较这两个估计量得, \overline{X} 更有效.

- 10. 设 $X \sim N(1, 2)$, $Y \sim N(-2, 3)$, 且 X = Y相互独立,则 $X Y \sim N(3, 5)$.
- 11. 设随机变量(X,Y)具有 D(X) = 9, D(Y) = 4, $\rho_{XY} = -\frac{1}{6}$, 则

Cov(X,Y) = -1.

12. 已知 $P\{X > 3.5\} = 0.01$, 则随机变量 X 的上 0.01 分位数为 3.5 .

13. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 是 X 的一个样本,则 $\sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2$ 服

从的分布为 $\chi^2(n)$ ____.

14. 设总体 X 的概率密度函数为 $f(x) = \begin{cases} (\theta+1)x^{\theta}, & 0 < x < 1 \\ 0, & 其它 \end{cases}$, θ 是待估参数,

 $x_1, x_2, \cdots x_n$ 是样本观测值,则基于 $x_1, x_2, \cdots x_n$ 的似然函数是

$$f(x) = \begin{cases} (\theta+1)^n (x_1 x_2 \cdots x_n)^{\theta}, & 0 < x_1, x_2, \cdots x_n < 1 \\ 0, & \not\exists \Xi \end{cases}.$$

三、解答题(7小题,共58分)

- 15. (本题 8 分)设某班男女之比为 51:49, 男生有 5%来自澳门, 女生有 2%来自澳门, 现从该班中随机抽取一名学生参加全国大学生数学竞赛,请解答:
- (1) 该生来自澳门的概率是多少?
- (2) 已知参加数学竞赛的学生来自澳门, 问该生为男生的概率是多少?

解: 设 $B = \{$ 随机抽取的学生来自澳门 $\}$, $A_1 = \{$ 抽到男生 $\}$, $A_2 = \{$ 抽到女生 $\}$,

$$P(A_1) = \frac{51}{100}$$
, $P(A_2) = \frac{49}{100}$, $P(B \mid A_1) = 5\%$, $P(B \mid A_2) = 2\%$,

(1)由全概率公式,

$$P(B) = P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2) = \frac{51}{100} \times 0.05 + \frac{49}{100} \cdot 0.02 = \frac{353}{10000} = 0.0353,$$

5分

由贝叶斯公式得

$$P(A_1|B) = \frac{P(A_1B)}{P(B)} = \frac{P(A_1)P(B|A_1)}{P(B)} = \frac{0.51 \times 0.05}{0.0354} = \frac{255}{353} \approx 0.72.$$

注: 若两问的最终答案分别成 $\frac{353}{10000}$ 与 $\frac{255}{353}$ 即可得 8 分.

- 16. (本题 8 分) 小战同学有时需要坐校车去新区上课,设候车时间 $X \sim U(0,30)$, 若候车超过 10 分钟,则小战改乘出租车.
- (1) 求小战未乘校车而改乘出租车的概率;
- (2) 小战一个月需要到新区 4 次, Y 表示他未坐校车而改乘出租车的次数,请写出 Y 的分布律,并求 $P\{Y \ge 1\}$.

解: (1)由已知可得
$$X$$
 的概率密度函数 $f(x) = \begin{cases} \frac{1}{30}, & 0 \le x \le 30, \\ 0, & \text{其它,} \end{cases}$

则根据题意可得小战未乘校车而改乘出租车的概率为 $p = P\{X > 10\} = \int_{10}^{30} \frac{1}{30} dx = \frac{2}{3}$,

3分

(2) 根据题意,
$$Y \sim B(4, \frac{2}{3})$$
, 4 分

则 Y 的分布律为
$$P{Y = k} = C_4^k \left(\frac{2}{3}\right)^k \left(1 - \frac{2}{3}\right)^{4-k} = C_4^k \left(\frac{2}{3}\right)^k \left(\frac{1}{3}\right)^{4-k}$$
, 6

分

因此
$$P{Y \ge 1} = 1 - P{Y = 0} = 1 - \left(\frac{1}{3}\right)^4 = \frac{80}{81}$$
.

17. (本题 8 分)设二维随机变量(X,Y)的分布律如下表所示

Y	2	3	8
4	0.1	0.3	0.4
8	0.05	0.12	0.03

- 求: (1)关于 X 和关于 Y 的边缘分布律;
 - (2) X和 Y是否相互独立?请说明理由;
 - (3) Z=max(X, Y)的分布律.

第 2 页/共 5 页

节约用纸 两面书写

X	11	3	-3	Y	6	4	-1
$\overline{P_i}$	0.2	0.7	0.1	P_i	0.2	0.7	0.1

解

(1)

X Y	2	3	8	$P{X=$ y_i}
4	0.1	0.3	0.4	0.8
8	0.05	0.12	0.03	0.2
$P\{X=x_i\}$	0.15	0.42	0.43	1

3分

X
 4
 8
 因此,
 Y
 2
 3
 8

$$p_i$$
 0.8
 0.2
 关于 X
 p_j
 0.15
 0.42
 0.43

 和关于

Y的边缘分布律

(2)
$$\pm \frac{Z \qquad 4 \qquad 8}{p \qquad 0.4 \qquad 0.6} P\{X = 4, Y = 2\} = 0.1,$$

 $\overline{m} P\{X=4\}P\{Y=2\}=0.8\times0.15=0.12$,

易知 $P{X = 4, Y = 2} ≠ P{X = 4}P{Y = 2}$, 故 X和 Y不相互独立. 6 分

(3) Z=max(X, Y)的分布律为

8分

18. (本题 7 分)某人有一笔资金,可投入两个项目:房产和商业,其收益都与市场状态有关.若把未来市场划分为好,中,差三个等级,其发生的概率分别为:0.2,0.7,0.1.通过调查,该投资者认为投资于房产的收益 *X*(万元)和投资于商业的收益 *Y*(万元)的分布分别为

- (1) 计算投资于房产和商业的平均收益 E(X), E(Y);
- (2) 计算两种投资方案收益的方差 D(X), D(Y);
- (3) 投资者如何投资较好? 并说明理由.

解: (1)

$$E(X) = 11 \times 0.2 + 3 \times 0.7 + (-3) \times 0.1 = 4.0 \, (\pi \pi),$$

$$E(Y) = 6 \times 0.2 + 4 \times 0.7 + (-1) \times 0.1 = 3.9$$
 (万元),

(2)

$$D(X) = (11-4)^2 \times 0.2 + (3-4)^2 \times 0.7 + (-3-4)^2 \times 0.1 = 15.4$$
,

$$D(Y) = (6-3.9)^2 \times 0.2 + (4-3.9)^2 \times 0.7 + (-1-3.9)^2 \times 0.1 = 3.29$$
, 5 $\%$

(3)从平均收益看,投资房产比投资商业多收益 0.1 万元,但另一方面,

由于方差越大,收益的波动越大,从而风险也大,根据计算结果看投资房产比投资商

业的风险要大的多,因此投资商业较好.

7分

注:若回答宁愿承受较大风险而去投资房产,仍可得满分,即能表达出"方差体现收益的波动性"相关意思的解答均为正确答案.

19. (本题 8 分)

已知某本书有 300 页, 第 i 页印刷错误的个数 $X_i \sim P(0.2)$, $i = 1,2,3,\cdots,300$.

第 3 页/共 5 页

节约用纸 两面书写

- (1) 利用独立同分布的中心极限定理,写出 $\sum_{i=1}^{300} X_i$ 所服从的近似分布;
- (2) 求整本书中印刷错误总数不多于 70 个的概率.

解: (1) 由
$$X_i \sim P(0.2)$$
可知 $E(X_i) = 0.2$, $D(X_i) = 0.2$, 2 分

因此
$$\sum_{i=1}^{300} X_i \sim N(300 \times 0.2, 300 \times 0.2)$$
,即 $\sum_{i=1}^{300} X_i \sim N(60, 60)$. 4 分

(2)所求概率为

$$P\left\{\sum_{i=1}^{300} X_i \le 70\right\} = P\left\{\frac{\sum_{i=1}^{300} X_i - 60}{\sqrt{60}} \le \frac{70 - 60}{\sqrt{60}}\right\}$$

$$= P \left\{ \frac{\sum_{i=1}^{300} X_i - 60}{\sqrt{60}} \le \frac{10}{\sqrt{60}} \right\} \approx \Phi\left(\frac{10}{\sqrt{60}}\right) \approx \Phi\left(1.29\right) = 0.9014$$
8 分

20. (本题 10 分)

设总体 X 的概率密度函数为 $f(x) = \begin{cases} \frac{2}{\theta^2}(\theta - x), & 0 < x < \theta, \\ 0, & 其他, \end{cases}$

 $X_1, X_2, \cdots X_n$ 是为来自总体X的样本.

- (1) 求参数 θ 的矩估计量,并判断此估计量是否是参数 θ 的无偏估计量;
- (2) 抽样得到的样本观测值为 0.8, 0.6, 0.4, 0.5, 0.5, 0.6, 0.6, 0.8, 求参数 θ 的矩估计值. 解: (1)

$$E(X) = \int_{0}^{\theta} \frac{2}{\theta^{2}} (\theta - x) x dx = \frac{1}{3} \theta, \quad \theta = 3E(X),$$

因此 θ 的矩估计量 $\hat{\theta}=3\bar{X}$.

4分

由 $E(\hat{\theta})=E(3\bar{X})=3E(\bar{X})=3E(X)=\theta$ 得, $\hat{\theta}=3\bar{X}$ 为 θ 的无偏估计量, 6 分 (2) 计算得

$$\overline{x} = \frac{1}{8}(0.8 + 0.6 + 0.4 + 0.5 + 0.5 + 0.6 + 0.6 + 0.8) = 0.6,$$

结合(1)可得参数 θ 的矩估计值为 $\hat{\theta}$ =3 \bar{x} =1.8. 10 分

- 21. (本题9分)从某种实验动物中取出 25个样品,测量其发热量,算得平均值为 12214, 样本标准差 315. 设发热量 $X \sim N(\mu, \sigma^2)$,
- (1) 在显著水平 $\alpha = 0.05$ 下,是否可以认为该试验物发热量的平均值 μ 不大于 12100? (2) 你的检验结果可能会犯哪一类错误? 犯该类错误的概率能否控制?

解: (1) 假设:
$$H_0: \mu \leq \mu_0 H_1: \mu > \mu_0$$
 1 分

此为右边检验,由于方差未知,应选用 t 统计量检验,在显著水平 $\alpha = 0.05$ 下, H_0 的

拒绝域为
$$\left\{ t = \frac{\overline{x} - \mu_0}{\sqrt[8]{\sqrt{n}}} \ge t_\alpha(n-1) \right\} = \left\{ t \ge t_{0.05}(25-1) \right\}$$
 3分

由表得 $\{t_{0.05}(24)\}$ =1.71, 现有 \bar{x} =12214, s=315, μ_0 =12100, 计算得到

$$t = \frac{\overline{x} - \mu_0}{\sqrt[S]{n}} = 1.8 > 1.71$$
 5 \(\frac{\sigma}{n}\)

t 落入拒绝域中,故在 0.05 的显著水平下应拒绝 H_0 ,认为该试验物发热量的平均值大于 12100.

(2) 检验结果可能会犯第一类(弃真)错误,犯该类错误的概率可以控制在 0.05 以下(犯该类错误的概率小于等于 0.05). 9分

第 4 页/共 5 页

节约用纸 两面书写