最优化方法

大作业

计算机学院 余皓然 2023/4/6

实验课

- 1. 置换流水车间调度问题
- 2. 拓展题
- 3. 大作业要求

问题描述

流水车间调度 (Flow Shop Scheduling)

m台机器依次加工1个工件(1辆车)的例子

问题描述

m台机器加工n个工件的流水车间调度

每个工件需要依次经过 m 道工序,每道工序要求不同的机器加工,每个机器同时只能加工一个工件,一个工件不能同时在不同的机器上加工。 每个工件在每台机器上的加工时间是给定的。

求n个工件在每台机器上的加工顺序,最小化总完工时间(完成最后一个工件加工的时刻减开始对第一个工件加工的时刻)

问题描述

• 已知

- 有n个工件需要在m台机器上流水加工
- 每个工件的加工顺序相同,从第一台机器至最后一台机器
- 每个工件均在0时刻释放
- 每个工件在每台机器上只加工一次
- 一个工件不能同时在不同的机器上加工
- 每个机器同时只能加工一个工件
- 各个工件在各个机器上的加工时间(共nm个数字)

目标

- 给出调度方案(即n个工件的排列顺序),使总完工时间最小
- 要求
 - 使用模拟退火算法进行求解

- 3台机器
- 3个工件
- 加工时间表

工件	机器1	机器2	机器3
工件1	5	7	9
工件2	9	9	7
工件3	5	9	5

- 3台机器
- 3个工件
- 加工时间表

工件	机器1	机器2	机器3
工件1	5	7	9
工件2	9	9	7
工件3	5	9	5

调度方案为1→2→3时的加工情况(甘特图)

注意: 这只是例子,工件1不是必须放在第一个进行加工

•	3	台	机	器
	•	ш.	47	шпп

- 3个工件
- 加工时间表

工件	机器1	机器2	机器3
工件1	5	7	9
工件2	9	9	7
工件3	5	9	5

调度方案为1→2→3时的加工情况(甘特图)

这里我们把解空间限定为由n个工件的各种排列顺序构成的|n!|大小的集合

如果允许在不同机器上用不同的顺序加工工件,是否可以进一步减少完工时间?

比如在上例中,M1和M2的顺序是 $1\rightarrow 2\rightarrow 3$,M3的顺序是 $2\rightarrow 1\rightarrow 3$

置换流水车间调度问题(PFSP): 把解空间限定在n个工件各种排列顺序构成的集合非置换流水车间调度问题(NPFSP): 允许不同机器用不同的顺序加工工件

置换流水车间调度问题(PFSP): 把解空间限定在n个工件各种排列顺序构成的集合非置换流水车间调度问题(NPFSP): 允许不同机器用不同的顺序加工工件

permutation

non-permutation

置換流水车间调度问题(PFSP): 把解空间限定在n个工件各种排列顺序构成的集合非置换流水车间调度问题(NPFSP): 允许不同机器用不同的顺序加工工件

permutation

non-permutation

令机器3加工工件2 与 机器4加工工件1 同步进行,缩短时间

置換流水车间调度问题(PFSP): 把解空间限定在n个工件各种排列顺序构成的集合非置换流水车间调度问题(NPFSP): 允许不同机器用不同的顺序加工工件

大作业只考虑置换流水车间问题 (即解空间更小的情况)

用例说明

- 每个用例的第一行为两个数字: 工件数n, 机器数m
- 接下来有n行,每行包含m组数字(机器序号,加工时间)

instance 0

11 5

0 375 1 12 2 142 3 245 4 412

0 632 1 452 2 758 3 278 4 398

0 12 1 876 2 124 3 534 4 765

0 460 1 542 2 523 3 120 4 499

0 528 1 101 2 789 3 124 4 999

0 796 1 245 2 632 3 375 4 123

0 532 1 230 2 543 3 896 4 452

0 14 1 124 2 214 3 543 4 785

0 257 1 527 2 753 3 210 4 463

0 896 1 896 2 214 3 258 4 259

0 532 1 302 2 501 3 765 4 988

第一行表示有11个工件,5个机器

第二行表示第一个工件在机器0的加工时间为375单位时间,在机器1的加工时间为12单位时间,在机器2的加工时间为142单位时间,在机器3的加工时间为245单位时间,在机器4的加工时间为412单位时间

这个示例的最优加工时间为7038单位时间

optimum result: 7038

实验课

- 1. 置换流水车间调度问题
- 2. 拓展题
- 3. 大作业要求

无等待约束

无等待置换流水车间调度问题(no-wait permutation flow shop scheduling problem)

在原问题基础上额外加上无等待约束,即任意工件相邻的两个加工工序之间不 允许有等待

	Process time on			
Job	M1	M2	М3	M4
1	2	4	8	10
2	3	4	7	11
3	2	6	9	12
4	1	5	9	13
5	3	6	8	14

例子

_	<u>→</u>	 → / _	E. 1.1	
_	_~~	工户	マリた	1 西
	$\neg =$	平1て	ナとい	
	<u> </u>	. 1 :	J	ノノト

	Process time on			
Job	M1	M2	М3	M4
ı	2	4	8	10
2	3	4	7	- 11
3	2	6	9	12
4	1	5	9	13
5	3	6	8	14

无等待置换流水车间调度问题(no-wait permutation flow shop scheduling problem)

在原问题基础上额外加上无等待约束,即任意工件相邻的两个加工工序之间不 允许有等待

加工顺序都是4→1→5→2→3

不满足无等待约束

满足无等待约束

问题的解空间没变,但完工时间的计算方式、最优解、甘特图可能会变

无等待约束

Process time on			
M1	M2	М3	M4
2	4	8	10
3	4	7	11
2	6	9	12
1	5	9	13
3	6	8	14
	2 3 2	M1 M2 2 4 3 4 2 6 1 5	M1 M2 M3 2 4 8 3 4 7 2 6 9 1 5 9

无等待置换流水车间调度问题(no-wait permutation flow shop scheduling problem)

 在原问题基础上额外加上无等待约束,即任意工件相邻的两个加工工序之间不 允许有等待

应用场景包括化学药品加工(避免化学物在等待中挥发)、炼钢(避免已经加热的钢件在等待中冷却)、食品生产(避免未装罐食品在等待中变质)

实验课

- 1. 置换流水车间调度问题
- 2. 拓展题
- 3. 大作业要求

评分标准

- 代码(20分)
 - 有效性(14分)(在报告中明确给出14个例子的调度方案、加工完成时间、甘特图)
 - 代码注释(6分)有适当注释,增加可读性

不允许直接调用模拟退火程序包,代码要有算法过程

- 报告(50分)
 - 具体要求见报告模版说明(严格按得分点给分)

提交要求

- 截止时间
 - 5月28日23:59 (第十四周周日)
 - 过期补交0分
- 提交方式
 - 乐学平台提交
 - 分两个文件上传
 - 报告(把word转成PDF格式再提交,不要交word格式)
 - 代码(压缩包形式)
- 严禁抄袭
 - 抄袭: 与任何他人、网络上(如CSDN)的内容明显相似
 - 抄袭则大作业0分(挂科): 如果A抄B,则A和B两人大作业都是0分
 - 2021年10人挂科/2022年15人挂科,大多为抄袭或缺交