

# Medição de Temperatura Usando-se Termopar

#### Lúcia Moreira

HELP-temperatura (www.help-temperatura.com.br)

lmoreira@help-temperatura.com.br

**Resumo:** Os termopares são os sensores de temperatura preferidos nas aplicações industriais, seja pela sua robustez, seja pela simplicidade de operação. Entretanto, para que as medições de temperatura com termopar sejam significativas e confiáveis, é fundamental conhecer não somente os princípios básicos de operação, como também as condições que o usuário deve proporcionar para que esses princípios sejam válidos. Este é o enfoque principal do texto a seguir.

Palavra-chaves: medição, temperatura, termopar

## 1. Introdução

Os termopares são os sensores de temperatura mais utilizados. Sua simplicidade e confiabilidade são o maior apelo à sua utilização.

A maioria dos princípios básicos da termometria de termopares já eram conhecidos por volta de 1900, mas só recentemente tornou-se clara a verdadeira fonte do potencial termoelétrico.

O termopar é um transdutor que compreende dois pedaços de fios dissimilares, unidos em uma das extremidades.

#### 2. Efeito de Seebeck

O circuito de um termopar é ilustrado na Fig. 1. Tanto a junção de medição (ou junta quente) quanto a junção de referência (ou junta fria)\* estão em ambientes isotérmicos (de temperatura constante), cada uma numa temperatura diferente

A tensão de circuito aberto através da junção de referência é a chamada *tensão de Seebeck* e aumenta à medida que a diferença de temperatura entre as junções aumenta. Embora o efeito de Seebeck seja muito fácil de ser medido e demonstrado nas condições da Fig. 1, os físicos levaram um grande tempo para provar como o efeito de Seebeck funciona. Parte do problema reside no fato de que a tensão de Seebeck somente é observada em um circuito completo

que envolva pelo menos *dois tipos de fios*. Entretanto, os físicos conseguiram demonstrar que o efeito de Seebeck ocorre para *qualquer par de pontos que não estejam à mesma temperatura*, em qualquer parte de um fio condutor elétrico. Isso significa que, embora uma tensão de Seebeck possa ser atribuída a um único fio metálico, na prática ela só é observada com dois fios diferentes.

A tensão de Seebeck surge de um *gradiente de temperatura* é uma propriedade material do fio e não depende de uma junção ou da presença de outros fios no circuito. A Fig. 2 ilustra o fenômeno.

O termopar, que opera sob o efeito Seebeck é, portanto, diferente da maioria dos outros sensores de temperatura uma vez que sua saída não está diretamente relacionada à temperatura, mas sim ao *gradiente de temperatura*, ou seja, da diferença de temperatura ao longo do fio termopar.

Assim sendo, é fundamental que os fios usados para fabricação do termopar sejam homogêneos em toda sua extensão do termopar, ou seja, tenham o mesmo coeficiente de Seebeck. E aqui é importante lembrar que o termopar é "tudo aquilo" que está entre a junção de medição e a junção de referência, incluindo os cabos de extensão ou compensação\*\*. Porções não homogêneas que porventura sejam submetidas a gradientes de temperatura, contribuirão para a tensão de Seebeck produzida e causarão erros na temperatura indicada.

A palavra "homogêneo" implica que cada parte do fio tem uma condição idêntica, tanto física quanto quimica-

<sup>\*</sup> Para simplificar a tratativa matemática dos termopares foi escolhida uma única temperatura de referência para todos os termopares, que é 0 °C, o ponto de gelo.

<sup>\*\*</sup> Cabos de extensão são fabricados com ligas similares às do termopar; cabos de compensação são fabricados com ligas diferentes das do termopar porém que apresentam características termoelétricas semelhantes.



**Figura 1.** Circuito para medir o potencial de Seebeck compreendendo dois fios diferentes, A e B, duas junções e um voltímetro. Fios de cobre conectam a junção de referência ao instrumento.

mente. As não homogeneidades produzidas pela exposição do termopar à temperatura do processo são a causa principal da deriva dos termopares dom o uso.

Um exemplo típico de zonas naturalmente não homogêneas são as emendas que se fazem entre o termopar e o cabo de extensão. As junções devem ser mantidas em ambiente isotérmico. Gradiente de temperatura zero significa tensão zero.

A parte mais complexa do circuito na Fig. 1 é o voltímetro e para remover sua contribuição termoelétrica à medição, ele também deve ser mantido numa condição isotérmica. Como os efeitos termoelétricos são a maior fonte de erro nos voltímetros, a maioria é projetada de modo a minimizá-los. Por exemplo, são usados terminais de ligação de latão mas deve-se tomar todo o cuidado para evitar mudanças rápidas na temperatura ambiente.

## 3. Tipos de Termopares

Existem três categorias de tipos de termopares: termopares padronizados de metal nobre (R, S, B),

termopares padronizados de metal base (K, J, N, E, T) e termopares não definidos por letras. N prática a distinção entre "base" e "nobre" é que metais nobres contêm platina e metais base contêm níquel.

As aplicações para os termopares são as mais variadas possíveis, tendo como principal limite *a tolerância do processo que se vai medir*. Para a medição de temperaturas acima de 500 °C, eles são a única escolha quando se fala em termômetros de contato. A tabela a seguir ilustra algumas recomendações sobre as condições ambientais de operação.

## Modelo de Medição

Os principais aspectos de uma medição com termopar são ilustrados Fig. 2.

Existe uma variedade de meios em que o termopar pode ser incorporado como um sensor capaz de medir temperatura de um sistema físico. Alguns detalhes da sua instalação são fundamentais para garantir a correta indicação da temperatura:

- a) É necessário garantir que a junção de medição esteja numa condição isotérmica, daí a importância de imergir o termopar a uma profundidade adequada (grosseiramente entre 5 e 15 vezes seu diâmetro externo – incluindo as proteções).
- b) Pelo fato de o transdutor responder a um gradiente de temperatura, ele deve ser conectado a dois sistemas físicos em duas temperaturas diferentes.
- c) A junção de referência deve ser isotérmica para propiciar uma temperatura conhecida e para auxiliar na obtenção de uma interface do sinal, que isola o sensor da instrumentação.

#### Instrumentação

Para se medir temperatura com termopares, são necessários dois tipos de medição: a tensão do termopar e a temperatura da junção de referência. A necessidade de se conhecer a temperatura da junção de referência complica a

|--|

| Sensor | Faixa de Utilização (°C) | Limite de Erro (Escoll | Limite de Erro (Escolher o maior) |  |
|--------|--------------------------|------------------------|-----------------------------------|--|
|        |                          | Padrão                 | Especial                          |  |
| E      | 0 - 870                  | ± 1,7 °C ou 0,5%       | ± 1 °C ou 0,4%                    |  |
|        | -200 a 30                | ± 1,7 °C ou 1%         | -                                 |  |
| J      | 0 - 760                  | ± 2,2 °C ou 0,75%      | ± 1,1 °C ou 0,4%                  |  |
| K, N   | 0 - 1260                 | ± 2,2 °C ou 0,75%      | ± 1,1 °C ou 0,4%                  |  |
|        | -200 a 30                | ± 2,2 °C ou 2%         | -                                 |  |
| T      | 0 - 370                  | ± 1 °C ou 0,75%        | ± 0,5 °C ou 0,4%                  |  |
|        | -200 a 30                | ± 1 °C ou 1,5%         | -                                 |  |
| R, S   | 0 - 1480                 | ± 1,5 °C ou 0,25%      | ± 0,6 °C ou 0,1%                  |  |
| В      | 870 - 1700               | ± 0,5%                 | -                                 |  |

**Tabela 2.** Uso dos diversos tipos de termopares.

| Tipo  | Ambiente                                    | Comentário                                                                                                 | Temperatura<br>máxima (°C) |
|-------|---------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------|
| В     | Oxidante, inerte, vácuo por períodos curtos | Evitar contato com metal. Mais adequado para alta temperatura. Possui tensão baixa à temperatura ambiente. | 1700                       |
| Е     | Oxidante, inerte                            | Bom para temperatura abaixo de zero.<br>Maior tensão dos termopares comuns                                 | 870                        |
| J     | Oxidante, inerte, redutor em vácuo parcial  | O ferro oxida rapidamente                                                                                  | 760                        |
| K     | Oxidante, inerte                            | Sujeito à "green rot" em algumas atmosferas                                                                | 1260                       |
| N     | Oxidante, inerte                            | Mais estável que o tipo K, em altas temperaturas                                                           | 1260                       |
| R & S | Oxidante, inerte                            | Evitar contato com metal                                                                                   | 1400                       |
| T     | Oxidante, inerte, redutor em vácuo parcial  | Temperaturas abaixo de zero. Tolera umidade                                                                | 370                        |



**Figura 2.** A tensão de Seebeck é gerada apenas nos segmentos momentaneamente não isotérmicos b-c e d-e, à medida em que são movidos para dentro do banho.



**Figura 3.** Modelo de medição com termopar. As molduras ao redor das junções indicam que elas estão numa situação isotérmica e que nenhuma tensão é produzida ali.

instrumentação para termopares e muitos métodos foram adotados para tornar esses instrumentos convenientes para o uso. Infelizmente existem métodos bons e ruins e o usuário raras vezes tem informações para avaliá-los. Preço e sofisticação não são garantias. Para garantir confiança na medição com termopar os seguintes passos devem ser cumpridos pelo usuário ou por funções automáticas do instrumento:

- a) Estabelecer uma junção de referência isotérmica;
- b) Conhecer a temperatura da junção de referência;
- c) Usar as tabelas padronizadas ou as funções de referência para determinar a tensão Seebeck na temperatura da junção de referência;
- d) Fazer uma medição exata da tensão Seebeck do termopar;
- e) Somar as duas tensões;
- f) Usar as tabelas padronizadas ou as funções de referência para determinar a temperatura medida.

#### Rastreabilidade

A rastreabilidade de uma medição é obtida através da calibração, ou seja, o procedimento que permite relacionar um termômetro desconhecido com a temperatura real, conforme definida pela Escala Internacional de Temperatura de 1990, ou ITS-90, atualmente em vigor. Essa relação é expressa ou através de um conjunto de correções em temperatura ou de uma equação que relaciona a leitura do termômetro com a temperatura.

## Referências

- Moreira, L.S. Sensores de Temperatura Princípios e Aplicações. Apostila do Curso, 2000.
- 2. Nicholas, J.V.; White, D.R Traceable Temperatures. v. 358,, p. John Wiley & Sons Ltd., Inglaterra, 1994.
- Reed, R.P. Thermoelectric Inhomogeneity Obscure obstacle to Quality. NCSL Workshop and Symposium, 1998.