

# 基于凸优化的星球着陆自主轨迹规划

刘新福

# 内容概要



- > 星球着陆问题的描述
- > 凸化处理过程
- > 等价性分析
- > 数值结果

# 内容概要



- > 星球着陆问题的描述
- > 凸化处理过程
- > 等价性分析
- > 数值结果



> 火星动力下降着陆轨迹优化





> 火星动力下降着陆轨迹优化





#### 动力学方程:

$$\ddot{r}(t) = g + \frac{T(t)}{m(t)}$$

$$\dot{m}(t) = -\alpha ||T(t)||$$



#### 动力学方程是非线性的

$$\mathbf{r} = [r_1, r_2, r_3]^T$$
 — 位置矢量

$$T = [T_1, T_2, T_3]^T$$
 — 推力矢量

$$\mathbf{g} = [-g, 0, 0]^T$$
 — 火星重力加速度

$$\alpha = 1/(I_{\rm sp}g_0)$$
 —— 关于燃料消耗速率的常数

$$I_{\rm sp}$$
 —— 发动机比冲



过程约束:

$$0 < T_{\min} \le ||\boldsymbol{T}(t)|| \le T_{\max}$$

推力大小约束(非凸)

$$\sqrt{r_2(t)^2 + r_3(t)^2} \le r_1(t)\cot\gamma_{gs}$$
 Glideslope 约束(凸) where  $0 < \gamma_{gs} \le 90^\circ$ 

终端约束:  $r(t_f) = \dot{r}(t_f) = 0$ 

优化目标:  $J = \int_0^{t_f} || \boldsymbol{T}(t) || dt$ 

燃料消耗最小



#### 优化问题:

P0: min 
$$J = \int_0^{t_f} || \boldsymbol{T}(t) || dt$$
  
s.t.  $\ddot{\boldsymbol{r}}(t) = \boldsymbol{g} + \frac{\boldsymbol{T}(t)}{m(t)}$   
 $\dot{m}(t) = -\alpha || \boldsymbol{T}(t) ||$   
 $0 < \boldsymbol{T}_{\min} \le || \boldsymbol{T}(t) || \le \boldsymbol{T}_{\max}$   
 $\sqrt{r_2(t)^2 + r_3(t)^2} \le r_1(t) \cot \gamma_{gs}$   
 $\boldsymbol{r}(t_f) = \dot{\boldsymbol{r}}(t_f) = 0$ 



如何利用二阶锥优化进行求解?

# 内容概要



- > 星球着陆问题的描述
- > 凸化处理过程
- > 等价性分析
- > 数值结果



#### 凸化处理

非凸不等式约束 ——— 二阶锥约束或者线性不等式约束

#### 主要方法:

- ▶ 无损凸化(凸松弛)
- > 二阶锥近似
- > 线性近似

非线性动力学方程 ———— 线性动力学方程

#### 主要方法:

- > 变量替换
- ▶ 直接线性化(需要迭代)
- ▶ 部分非线性保留-线性化(需要迭代)



ightharpoonup 凸化非凸约束  $T_{\min} \leq ||T|| \leq T_{\max}$ 

方法:无损凸化(凸松弛)

$$T_{\min} \le ||T|| \le T_{\max}$$



$$\begin{cases} ||T|| \le \Gamma \\ T_{\min} \le \Gamma \le T_{\max} \end{cases}$$







P0: min 
$$J = \int_0^{t_f} || \boldsymbol{T}(t) || dt$$
  
s.t.  $\ddot{\boldsymbol{r}}(t) = \boldsymbol{g} + \frac{\boldsymbol{T}(t)}{m(t)}$   
 $\dot{m}(t) = -\alpha || \boldsymbol{T}(t) ||$   
 $0 < T_{\min} \le || \boldsymbol{T}(t) || \le T_{\max}$   
 $\sqrt{r_2(t)^2 + r_3(t)^2} \le r_1(t) \cot \gamma_{gs}$   
 $\boldsymbol{r}(t_f) = \dot{\boldsymbol{r}}(t_f) = 0$ 

等价?

P1: min 
$$J = \int_0^{t_f} \Gamma(t) dt$$
  
s.t.  $\ddot{r}(t) = g + \frac{T(t)}{m(t)}$   
 $\dot{m}(t) = -\alpha \Gamma(t)$   
 $||T(t)|| \le \Gamma(t)$   
 $0 < T_{\min} \le \Gamma(t) \le T_{\max}$   
 $\sqrt{r_2(t)^2 + r_3(t)^2} \le r_1(t) \cot \gamma_{gs}$   
 $r(t_f) = \dot{r}(t_f) = 0$ 

Theorem: 若 $\{t_f^*, \mathbf{T}^*, \mathbf{\Gamma}^*\}$ 是问题P1的最优解,那么 $\{t_f^*, \mathbf{T}^*\}$ 

是问题PO的最优解,即 $\|\mathbf{T}^*\| = \Gamma^*$ 。

证明在下一节给出



$$\ddot{\boldsymbol{r}}(t) = \boldsymbol{g} + \frac{\boldsymbol{T}(t)}{m(t)}$$

方法: 变量替换

$$\dot{m}(t) = -\alpha\Gamma(t)$$

# 控制变量替换: $u := \frac{T}{m}, \sigma := \frac{\Gamma}{m}$

$$\ddot{\boldsymbol{r}}(t) = \boldsymbol{g} + \frac{\boldsymbol{T}(t)}{m(t)}$$



$$\ddot{r}(t) = g + u(t)$$

$$\dot{m}(t) = -\alpha \sigma(t) m(t)$$

#### 状态变量替换: $z := \ln m$

$$\dot{m}(t) = -\alpha \sigma(t) m(t)$$



$$\dot{z}(t) = -\alpha \sigma(t)$$



相应地

目标函数:

$$J = \int_0^{t_f} \Gamma(t) dt \qquad \qquad \qquad J = \int_0^{t_f} \sigma(t) dt$$

松弛约束:

$$|| \boldsymbol{T}(t) || \leq \Gamma(t)$$
  $|| \boldsymbol{u}(t) || \leq \sigma(t)$ 

推力大小约束:

$$T_{\min} \le \Gamma(t) \le T_{\max}$$
 
$$T_{\min} e^{-z(t)} \le \sigma(t) \le T_{\max} e^{-z(t)}$$



► 凸化约束  $T_{\min}e^{-z} \le \sigma(t) \le T_{\max}e^{-z}$ 

方法: 二阶锥近似和线性近似

用 $e^{-z}$ 的Taylor级数展开进行近似

$$z_0(t) = \ln(\underline{m_{\text{wet}} - \alpha T_{\text{max}} t})$$

最大推力飞行的质量变化

●  $T_{\min}e^{-z} \leq \sigma(t)$  凸约束,用二阶锥近似

$$T_{\min}e^{-z_0}\left[1-(z-z_0)+\frac{(z-z_0)^2}{2}\right] \leq \sigma$$

●  $\sigma(t) \leq T_{\text{max}} e^{-z}$  非凸约束,用线性近似

$$\sigma \le T_{\text{max}} e^{-z_0} [1 - (z - z_0)]$$

二阶锥近似和线性近似后需迭代求解吗?这里不需要迭代,原因在于 该近似的误差很小(在下一节将展示该误差的大小)



P2: min 
$$J = \int_{0}^{t_f} \sigma(t) dt$$
  
s.t.  $\ddot{r}(t) = g + u(t)$   
 $\dot{z}(t) = -\alpha \sigma(t)$   
 $||u(t)|| \le \sigma(t)$   
 $T_{\min} e^{-z_0(t)} \left[ 1 - (z(t) - z_0(t)) + \frac{(z(t) - z_0(t))^2}{2} \right] \le \sigma(t)$   
 $\le T_{\max} e^{-z_0(t)} [1 - (z(t) - z_0(t))]$   
 $\sqrt{r_2(t)^2 + r_3(t)^2} \le r_1(t) \cot \gamma_{gs}$   
 $r(t_f) = \dot{r}(t_f) = 0$ 

最优控制问题P2的动力学是线性的,不等式约束是线性或者二阶锥的形式,目标函数是线性的。该问题在经过离散化之后将会变成一个二阶锥优化(SOCP)问题。



#### 离散化后的优化问题

P3: min 
$$c^T y$$
  
s.t.  $Ay = b$   
 $Gy - s \succeq_K 0$ 

- ▶ y 包含了所有离散点上的状态和控制变量
- Ay = b 包含所有的线性等式约束动力学方程初始和终端约束
- Gy s ≥<sub>K</sub> 0 包含所有的锥约束
   线性锥约束 (线性不等式约束)
   二阶锥约束

#### 二阶锥优化问题

若该问题**有解**,原 始对偶内点**保证**在 多项式时间内找到 **全局最优解** 

# 内容概要



- > 星球着陆问题的描述
- > 凸化处理过程
- > 等价性分析
- > 数值结果



#### ➤ Theorem的证明

Theorem:  ${\it \Xi}\{t_f^*, {\bf T}^*, \Gamma^*\}$ 是问题P1的最优解,那

么 $\{t_f^*, \mathbf{T}^*\}$ 是问题PO的最优解,即 $\|\mathbf{T}^*\| = \Gamma^*$ 。

定义:

$$\boldsymbol{x}_1 = \boldsymbol{r}, \, \boldsymbol{x}_2 = \dot{\boldsymbol{r}}$$

状态变量:  $x = [x_1^T, x_2^T]^T$ 

$$\mathbf{y} = [\mathbf{x}^T, m]^T$$

控制变量:  $\mathbf{v} = [\mathbf{T}^T, \Gamma]^T$ 

P1: min 
$$J = \int_0^{t_f} \Gamma(t) dt$$
  
s.t.  $\ddot{r}(t) = g + \frac{T(t)}{m(t)}$   
 $\dot{m}(t) = -\alpha \Gamma(t)$   
 $||T(t)|| \le \Gamma(t)$   
 $0 < T_{\min} \le \Gamma(t) \le T_{\max}$   
 $\sqrt{r_2(t)^2 + r_3(t)^2} \le r_1(t) \cot \gamma_{gs}$   
 $r(t_f) = \dot{r}(t_f) = 0$ 

控制集:  $\Omega = \{ \boldsymbol{v} = [\boldsymbol{T}^T, \Gamma]^T \mid 0 < T_{\min} \le \Gamma \le T, \|\boldsymbol{T}\| \le \Gamma \}$ 

注:本节仅给出当glideslope约束不活跃情况的证明。该约束活跃清况的证明参考文献 Blackmore, L., Acikmese, B., and Scharf, D. P., "Minimum-Landing-Error Powered-Descent Guidance for Mars Landing Using Convex Optimization," Journal of Guidance, Control, and Dynamics, Vol. 33, No. 4, 2010, pp. 1161–1171.



对问题P1使用极大值原理(Maximum Principle)

#### 哈密顿函数

$$H(\mathbf{y}, \mathbf{v}, \lambda_0, \lambda) = \lambda_0 \Gamma + \lambda_1^T \mathbf{x}_2 + \lambda_2^T \mathbf{T} / m + \lambda_2^T \mathbf{g} - \alpha \lambda_3 \Gamma$$

#### 1. 非平凡条件

$$[\lambda_0, \lambda(t)^T]^T \neq 0, \forall t \in [0, t_f^*]$$

#### 2. 协态变量 $\lambda$ 动力学方程

$$\dot{\lambda}_1 = -\frac{\partial H}{\partial x_1} = 0$$

$$\dot{\lambda}_2 = -\frac{\partial H}{\partial x_2} = -\lambda_1$$

$$\dot{\lambda}_3 = -\frac{\partial H}{\partial m} = \frac{\lambda_2^T T}{m^2}$$

#### 3. 极大值条件

$$\mathbf{v}^*(t) = \arg\max_{\mathbf{v} \in \Omega} H(\mathbf{y}, \mathbf{v}, \lambda_0, \lambda)$$

#### 4. 横截条件

$$\lambda_3(t_f^*) = 0$$

$$H(\mathbf{y}^*(t_f^*), \mathbf{v}^*(t_f^*), \lambda_0, \lambda(t_f^*)) = 0$$

#### 协态变量

$$\lambda_1, \lambda_2 \in \mathbb{R}^3$$

$$\lambda = [\lambda_1^T, \lambda_2^T, \lambda_3]^T \in \Re^7$$

$$\lambda_0 = \text{const} \leq 0$$



第一步, 证明  $\lambda_2(t) \neq 0$ , a.e. on  $[0, t_f^*]$ 

运用反证法,假设  $\exists [t_1, t_2] \subset [0, t_f^*]$ , s.t.  $\forall t \in [t_1, t_2], \lambda_2(t) = 0$ 

由协态变量动力学  $\dot{\lambda}_1 = 0$ ,  $\dot{\lambda}_2 = -\lambda_1$  可以推出  $\lambda_1 = a$ ,  $\lambda_2 = at + b$ ,  $\forall t \in [0, t_f^*]$ 

根据  $\forall t \in [t_1, t_2], \lambda_2(t) = 0$  可以推出 a = b = 0

所以  $\lambda_1 = \lambda_2 = 0, \forall t \in [0, t_f^*]$ 

再根据  $\dot{\lambda}_3 = \lambda_2^T T / m^2$  和横截条件  $\lambda_3(t_f^*) = 0$  可以推出  $\forall t \in [0, t_f^*], \lambda_3(t) = 0$ 

最后根据横截条件 $H(y^*(t_f^*), v^*(t_f^*), \lambda_0, \lambda(t_f^*)) = 0$  推出 $[\lambda_0, \lambda(t)^T]^T = 0$ 

与非平凡条件矛盾!

故  $\lambda_2(t) \neq 0$ , a.e. on  $[0, t_f^*]$ 



第二步, 证明  $||T^*(t)||=\Gamma^*(t)$ , a.e. on  $[0,t_f^*]$ 

$$H(\mathbf{y}, \mathbf{v}, \lambda_0, \lambda) = R_1(t)\Gamma + \mathbf{R}_2(t)^T \mathbf{T} + R_0(t)$$

$$R_0(t) = \lambda_1(t)^T \mathbf{x}_2(t) + \lambda_2^T \mathbf{g}$$

$$R_1(t) = \lambda_0 - \alpha \lambda_3(t)$$

$$\mathbf{R}_2(t) = \lambda_2(t) / m(t)$$

因为  $\lambda_2(t) \neq 0$ , a.e. on  $[0, t_f^*]$  且  $m^*(t) > 0$  所以  $\mathbf{R}_2(t) \neq 0$ , a.e. on  $[0, t_f^*]$ 

因此哈密顿函数线性地依赖于T,由极大值条件

$$\mathbf{v}^*(t) = \arg\max_{\mathbf{v} \in \Omega} H(\mathbf{y}, \mathbf{v}, \lambda_0, \lambda)$$

可得

$$|| \boldsymbol{T}^*(t) || = \Gamma^*(t)$$
, a.e. on  $[0, t_f^*]$   $T_{\min} \le || \boldsymbol{T}^*(t) || \le T_{\max}$ 



#### > 线性近似和二阶锥近似的误差分析

$$T_{\min}e^{-z} \leq \sigma(t) \leq T_{\max}e^{-z} \qquad \qquad T_{\min}e^{-z_0(t)} \left[1 - (z(t) - z_0(t)) + \frac{(z(t) - z_0(t))^2}{2}\right] \leq \sigma(t) \leq T_{\max}e^{-z_0(t)} \left[1 - (z(t) - z_0(t))\right]$$

#### 1. 左边不等式

$$\exists \, \overline{z} \in [z_0, z_u], \text{ s.t. } e^{-z} = e^{-z_0} \left[ 1 - (z - z_0) + \frac{(z - z_0)^2}{2} \right] - e^{-\overline{z}} \frac{(z - z_0)^3}{6}$$

定义余项 
$$a(z) := e^{-\overline{z}} \frac{(z - z_0)^3}{6}, \quad p_{e1} := 100 a(z) / e^{-z} = \frac{50m}{3\overline{m}} \ln \left(\frac{m}{m_0}\right)^3$$

由于  $m, \bar{m} \in [m_0, m_u]$ 

$$0 \le p_{e1}(t) \le \frac{50m_u(t)}{3m_0(t)} \ln \left(\frac{m_u(t)}{m_0(t)}\right)^3$$

#### 2. 右边不等式

同理可得

$$0 \le p_{e2}(t) \le \frac{50m_u(t)}{m_0(t)} \ln \left(\frac{m_u(t)}{m_0(t)}\right)^2$$

$$m_0(t) = m_{\text{wet}} - \alpha T_{\text{max}} t$$

$$m_u(t) = m_{\text{wet}} - \alpha T_{\text{min}} t$$

$$z_0(t) = \ln m_0(t)$$

$$z_u(t) = \ln m_u(t)$$



$$0 \le p_{e1}(t) \le \frac{50m_u(t)}{3m_0(t)} \ln \left(\frac{m_u(t)}{m_0(t)}\right)^3$$

$$0 \le p_{e2}(t) \le \frac{50m_u(t)}{m_0(t)} \ln \left(\frac{m_u(t)}{m_0(t)}\right)^2$$



# 内容概要



- > 星球着陆问题的描述
- > 凸化处理过程
- > 等价性分析
- > 数值结果



▶ 计算软件: ECOS

> 计算机CPU: Intel® Core™ i7-7500U CPU @ 2.70GHz

▶ 离散点个数: 31, 51, 101, 151

> 离散方法: 欧拉法

> 初始条件:  $r = [1500, 0, 2000]^T$  m,  $\dot{r} = [75, 0, 100]^T$  m/s

▶ 飞行时间(给定): 75 s

Glideslope 约束:  $\gamma_{gs} = 4^{\circ}$ 



#### 着陆器参数参考:

Acikmese, B. and Ploen, S. R., "Convex Programming Approach to Powered Descent Guidance for Mars Landing," Journal of Guidance, Control, and Dynamics, Vol. 30, No. 5, 2007, pp. 1353–1366.



#### 不同离散点计算时间比较

| 离散点个数 | ECOS求解时间(ms) |
|-------|--------------|
| 31    | 28.4         |
| 51    | 49.1         |
| 101   | 98.3         |
| 151   | 176.7        |



#### 以51个离散点为例, 计算结果展示



$$|| \textbf{\textit{T}}^* || = \Gamma^*$$
  
始终满足











