# Convolutional Neural Networks (CNNs): Basic Structure

Laura E. Boucheron

College of Engineering

Klipsch School of Electrical and Computer Engineering



BE BOLD. Shape the Future.

# A Visualization of our MNIST network

• The Sequential model allows you to stack layers in a linear fashion



Convolution

Convolution

Max-Pool

Dense







**BE BOLD.** Shape the Future.

- Learn some  $M_{conv}$   $K \times K \times C$  filters (and  $M_{conv}$  biases)
  - $M_{conv}$  is the total number of filters in the current layer
  - *K* is the kernel size
  - C is the number of channels over which the filter operates
- Input is some  $N_i \times N_i \times C$  tensor (think multidimensional image)
  - $N_i$  is the spatial dimension
  - C is the number of channels
- Output are some  $M_{conv}$   $N_o \times N_o$  filtered images, also commonly called "feature maps" or "activations"
  - $N_o$  is the spatial dimension
    - Commonly,  $N_o = N_i (K 1)$  since the filtered output at the boundaries of the image is less reliable than at the center





|                         |                                                   | conv1                  |
|-------------------------|---------------------------------------------------|------------------------|
| • $M_{conv}$            | number of filters in the current layer            | 32                     |
| • <i>K</i>              | kernel size                                       | 3                      |
| • C                     | number of channels over which the filter operates | 1                      |
| • <i>N</i> <sub>i</sub> | spatial dimension of the input                    | 28                     |
| • <i>N</i> <sub>o</sub> | spatial dimension of the output                   | 26                     |
| 32@26x26<br>@28x28      | 1x10 • Input is image • Output                    | the 28x28x1 are the 32 |
| Convolution             | Convolution Max-Pool Dense                        |                        |



Convolution

мах-Роог

Dense

|                         |                                                   | conv2        |
|-------------------------|---------------------------------------------------|--------------|
| • $M_{conv}$            | number of filters in the current layer            | 32           |
| • <i>K</i>              | kernel size                                       | 3            |
| • C                     | number of channels over which the filter operates | 32           |
| • <i>N</i> <sub>i</sub> | spatial dimension of the input                    | 26           |
| • <i>N</i> <sub>o</sub> | spatial dimension of the output                   | 24           |
| 32@26x26<br>1@28x28     | filters  1x10  Input is activati                  | are 32 24x24 |
| Convolution             | Convolution Max-Pool Dense                        |              |



Hierarchical representation of image content



First layer often converges to filters that highlight oriented edges



 Second layer can combine oriented edges and represent more complex structures such as corners, circles, or other shapes



 Third layer can combine those shapes and learn to represent even more abstract structures

## Pooling Layers (MaxPooling2D)

- Reduce the spatial resolution via subsampling, usually after a convolutional layer
  - Pool size *P*
- Input is some  $N_i \times N_i \times C$  image
  - $N_i$  is the spatial dimension of the input
  - C is the number of channels
- Output are some  $C \frac{N_i}{P} \times \frac{N_i}{P}$  subsampled activations

## Pooling Layers (MaxPooling2D)

• P pool size 2 •  $N_i$  spatial dimension of the input 24 • C number of channels 32



## Pooling Layers (MaxPooling2D)

- Reduce the spatial resolution via subsampling
  - Reduces the computational complexity (fewer pixels to filter)
  - Contributes to the scale invariance and hierarchical nature of the network
- Multiple forms of pooling
  - Max pooling (common): take maximum value within  $P \times P$  pooling window
  - Average pooling: take average value within  $P \times P$  pooling window
  - Others



## Fully Connected (Dense)

- Learn some  $M_{FC}$  nodes  $(M_{FC} \cdot N_1 \cdot N_2 \cdot N_3)$  weights and  $M_{FC}$  biases) associated with a standard fully connected 1D neural network
  - $M_{FC}$  is the number of nodes in the current fully connected layer
  - $N_1$ ,  $N_2$ , and  $N_3$  are the dimensions of the input
- Input is some  $1 \times N_1 \cdot N_2 \cdot N_3$  tensor of activations from the previous layer
  - The Flatten function "flattens" the  $N_1 \times N_2 \times N_3$  tensor output from the previous layer to a  $1 \times N_1 \cdot N_2 \cdot N_3$  tensor
- Output are some  $M_{FC}$  activations

# **Fully Connected**

•  $M_{FC}$ 

number of nodes in the current fully connected layer

128

FC1

•  $N_1, N_2, N_3$ 

dimensions of the input

12, 12, 32



Convolution

Convolution

Max-Pool

Dense



# **Fully Connected**

- $M_{FC}$
- $N_1, N_2, N_3$
- number of nodes in the current fully connected layer
- $N_3$  dimensions of the input

1, 128, 1

10

FC1



Max-Pool

Dense



Convolution

Convolution





**BE BOLD.** Shape the Future.

#### **Activations**

- Included as the activation option in the Convolution2D and Dense layers
- Common activation for convolutional layers is the rectified linear unit (ReLU), activation='relu'
  - Clips negative values to 0
  - Identity for positive values



- Common activation for output of classifier network is the softmax, activation='softmax'
  - Normalizes the input to probabilities of class membership





**BE BOLD.** Shape the Future.

#### **Loss Functions**

- The loss function is THE metric that the NETWORK USES to train
- The loss function should somehow compare the current predicted labels to the ground truth labels
  - Should have good computational characteristics (e.g., doesn't overflow)



# **Optimizers**

- Optimizers control adaptation of the parameters
  - Given the error, you know which direction to adapt the learned weights in backpropagation

Ground truth

- How exactly you adapt those weights and how "fast" you adapt them is the job of the optimizer
- The "Adam" optimizer is pretty good generalpurpose optimizer, optimizer='adam'





#### **Metrics**

- Metrics are the metrics WE are interested in
- Generally are some form of accuracy
   metrics=['accuracy']



# **Batches and Epochs**

- We need to specify how long we are willing to wait for our network to train
- We don't expect to reach a loss of 0 (implying an accuracy of 100%)
- May other simulations invoke the notion of an "iteration"
- We cannot necessarily operate on our entire training set at once (due to memory constraints)
  - Batch: break up the training data into smaller, more manageable chunks (this is where the "stochastic" in stochastic gradient descent comes in), we specify the size of the batches with the batch\_size parameter
  - Epoch: however many batches are needed to visit every training sample once, i.e., an epoch processes  $\frac{N_{samples}}{batch\ size}$  batches
- We specify the maximum number of epochs with the epochs parameter





#### There's more!?!?!

- There are many other options available:
  - Other layer types
  - Other activation functions
  - Other loss functions
  - Other optimizers
  - Other options in all of the above
- Check out the keras documentation at <a href="https://keras.io">https://keras.io</a>
  for more details.