				Lin	ear	Dis	scrim	inan	t A	nalys	Bis					
_	LDA	(on	b	2	usid		for	W	ulti	-cla	N.	elas	sific	ation	
	unlike			ic										,		
_	LDA	js		more		sta	ble	th	an	lo	gisti	<u> </u>	regr <i>e</i>	พ่างงา	w	res
	N is	2	Sma	U,	a	nd	W	hen	C	lasse	٥	are	l	vell	sepa	rated.
							Mo	del								
	LDA	tr	ies	to		appi	r ox)n	nate	11	le	Ba	ye's	С	lassi	fier	
(+	e clas	ifier	H	nt.	ha	<u> </u>							′ ′		L be	οω:
			,					(pr'	or)			liKeli, k	ood)	0		
	P(`	Y = k		(= 5	c)	=	K	7 ()	= /2) .	r (x	= 2	1 /	= R)	
							\sum_{i}	P	(Y =	1)	. Р	(X :	= x) =	l)	
							χ	(
	where,		"								he	total	ηu	mber	of c	losses
				resem								1.				
		P (Y=k	X =							•		lity	the	at oc	
		0/\	/ 0								k.					
		F()	= k					7	_ ′			V			es pon.	se.
		0 ()									<i>G</i> 3		/			
		r (X	= X												of o	
												a of	T	9,14	en t	ne
						CI) ST	ribui	/on	of of	K.						

					FiH	ing	the	_ N	1odel								
We	nee	<u>d</u>	two	9	µan:	lities	+	D .	Comé	ι	ip 1	with	th	e Ba	iye's	cla	ssifier:
1.	P((pr	Y = j ior)		of_	dat	<u>C</u>	poin	h	pres	we ent	in	Ca	rch	cla	W.		action
						· '				en			,			u c	
2.	P()																
			sum														
			ted								\sim						
	IN.	Car	se o	7	mu	TIPIE	<u> </u>	rear	CTOIS	<i>)</i> ·	Num	ber (f c	li gtri k	ou 17 on	s —	
	P()	< = <i>5</i>	x)	Y = k	() =	(2	. 兀) ^f	 ⁄2 Σ	K 1 1/2	ехр	$\left(-\frac{1}{2}\right)$	- (x	_K - µ	, T	\(\sigma \)	(x _K -	$-\mu_{\scriptscriptstyle K})$
j.e.	ob:	3er va	tions	fr	<i>o</i> m	Kth	clan		ul	drai	vn j	rom	N	(μ	κ, Σ		
	wh	vil	α	μ_{\dagger}	ζ, Σ	م <u>لا</u>	e F	ζ ^r .									
Esti	mating							•								and	Σκ
			m		, v											}1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
			10						V .	1.							

), gʻ			١ ،						•	funct					sith	μ _κ
	gest		W	e	can	С	ompu	y te	C 02	y K	fo	r w	hιcη	F (7	×)	1S
Comr	outing	ı o	~9 Ma	× (1	Paye!	A C	lasifi	er)		Comp	uting	ora	3 max	Cdis	Crim	ingaa t	function)
			K										K	Cons		price of 7	
	>							K	5								
	wher		DISCrin	ninamT	=	x	$\sum_{i=1}^{n}$	μ_{κ}	_	<u>1</u> 2	μ_{κ}^{T}	$\sum_{i=1}^{n}$	μ_{κ}	+	109) (Y =	к)
	The		functi ISCr		ant	fu	mcti	οη	ìs		inea	r	ln	oc,	hes	ce t	he
	nav	<u>u</u>	"Fim	ear	d	i SC r	imin	ant	C	anal	ysis)					
								tions									
1.			(•							XY).
2.	All	c	asse	<u> </u>	sho	ares	Ct	vari	ance	γ	natr'	ΙX	Σ.	Thi	s i	S	,
	ad	dres	sed) y	gu	ad ro	atic	d	iscr	mina	ant	Q ₁	naly	Sis.		

	Quadratic Discri	iminant Analysis	
• Model	is same as	L DA.	
			ept that QDA
			itrices for each
class +	o be the so	ame re. Z	± ∑₂ ≠ ··· + ∑κ.
The above	e assumption 1	eads to cha	uge in the discriminant
function	which now	becomes quo	adratic in x:
K =	= arg max S	(K)	
	K		
where, $\partial(K)$	$=$ $ \frac{1}{2}$ $(x -)$	$(x) \geq (x-1)$	$(x) + \log p(y=\kappa)$
quadrati		each class has	
function	η	a different Z	
· Assumpti	ion: The only	assumption i	s that the density
		are Gaussian	
Note: L	- DA is be Her	r than QDA	where the data
			, and when there
		'	servation).
			boundary is non-linear ate each I properly.

LDA — high bias, less variance QDA — less bias, high variance - When true decision boundary is linear: LDA, log reg > QDA, KNN - When X are normally distributed: LDA, QDA > log reg				LD	A	_	hija	h	bia	٥,	less	Va	ria	nce				
- When true decision boundary is linear: LDA, log reg > QDA, KNN																		
Then X are mormally elistributed: LDA, ODA > log reg	_	When	n t	rul	dec	ision	Ь	und	ary	js	line	ar:	LD	A, Joe	reg	7 01	DA, K	NN
	_	When	Л	× 0	u	Morm	ally	elist	ribute	<u>.</u>	L	DA,	ODF	>	log	reg		