

Rob J Hyndman

Optimal forecast reconciliation for big time series data

Follow along using R

Requirements

Install the hts package and its dependencies.

Outline

- 1 Hierarchical and grouped time series
- 2 BLUF: Best Linear Unbiased Forecasts
- 3 Application: Australian tourism
- 4 Temporal hierarchies
- **5** References

Labour market participation

Australia and New Zealand Standard Classification of Occupations

- 8 major groups
 - 43 sub-major groups
 - 97 minor groups
 - 359 unit groups
 - * 1023 occupations

Example: statistician

- 2 Professionals
 - 22 Business, Human Resource and Marketing Professionals
 - 224 Information and Organisation Professionals
 2241 Actuaries, Mathematicians and Statisticians
 224113 Statistician

Labour market participation

Australia and New Zealand Standard Classification of Occupations

- 8 major groups
 - 43 sub-major groups
 - 97 minor groups
 - 359 unit groups
 - * 1023 occupations

Example: statistician

- 2 Professionals
 - 22 Business, Human Resource and Marketing Professionals
 - 224 Information and Organisation Professionals
 2241 Actuaries, Mathematicians and Statisticians
 224113 Statistician

Australian tourism demand

Australian tourism demand

- Quarterly data on visitor night from 1998:Q1 – 2013:Q4
- From: *National Visitor Survey*, based on annual interviews of 120,000 Australians aged 15+, collected by Tourism Research Australia.
- Split by 7 states, 27 zones and 76 regions (a geographical hierarchy)
- Also split by purpose of travel
 - Holiday
 - Visiting friends and relatives (VFR)
 - Business
 - Other
- 304 bottom-level series

·

A **hierarchical time series** is a collection of several time series that are linked together in a hierarchical structure.

- Labour turnover by occupation
- Tourism by state and region

A **hierarchical time series** is a collection of several time series that are linked together in a hierarchical structure.

- Labour turnover by occupation
- Tourism by state and region

A **hierarchical time series** is a collection of several time series that are linked together in a hierarchical structure.

- Labour turnover by occupation
- Tourism by state and region

Grouped time series

A **grouped time series** is a collection of time series that can be grouped together in a number of non-hierarchical ways.

Examples

Labour turnover by occupation and stateTourism by state and purpose of travel

Grouped time series

A **grouped time series** is a collection of time series that can be grouped together in a number of non-hierarchical ways.

- Labour turnover by occupation and state
- Tourism by state and purpose of travel

Grouped time series

A **grouped time series** is a collection of time series that can be grouped together in a number of non-hierarchical ways.

- Labour turnover by occupation and state
- Tourism by state and purpose of travel

 y_t : observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time t.

y_t: observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time t.

y_t: observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time t.

$$m{y}_t = [y_t, y_{A,t}, y_{B,t}, y_{C,t}]' = egin{pmatrix} 1 & 1 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} egin{pmatrix} y_{A,t} \ y_{B,t} \ y_{C,t} \end{pmatrix}$$

y_t: observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time t.

$$\mathbf{y}_{t} = [y_{t}, y_{A,t}, y_{B,t}, y_{C,t}]' = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{f}} \begin{pmatrix} y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix}$$

y_t: observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time t.

$$\boldsymbol{y}_{t} = [y_{t}, y_{A,t}, y_{B,t}, y_{C,t}]' = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\boldsymbol{b}_{t}} \underbrace{\begin{pmatrix} y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix}}_{\boldsymbol{b}_{t}}$$

y_t: observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time t.

$$\mathbf{y}_{t} = [y_{t}, y_{A,t}, y_{B,t}, y_{C,t}]' = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{b}_{t}} \underbrace{\begin{pmatrix} y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

 $\mathbf{y}_t = \mathbf{S} \mathbf{b}_t$

Grouped data

Total

$$m{y}_t = egin{pmatrix} y_t \ y_{A,t} \ y_{B,t} \ y_{X,t} \ y_{Y,t} \ y_{AX,t} \ y_{BX,t} \ y_{BY,t} \end{pmatrix} = egin{pmatrix} 1 & 1 & 1 & 1 \ 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

 $\underbrace{\begin{pmatrix} y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix}}_{\boldsymbol{b}_t}$

Grouped data

В

Total

$$\mathbf{y}_{t} = \begin{pmatrix} y_{t} \\ y_{A,t} \\ y_{B,t} \\ y_{X,t} \\ y_{Y,t} \\ y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \underbrace{\begin{pmatrix} y_{AX,t} \\ y_{AY,t} \\ y_{BY,t} \\ y_{BY,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

Grouped data

$$\mathbf{y}_{t} = \begin{pmatrix} y_{t} \\ y_{A,t} \\ y_{B,t} \\ y_{X,t} \\ y_{Y,t} \\ y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \underbrace{\begin{pmatrix} y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

 $\mathbf{y}_t = \mathbf{S} \mathbf{b}_t$

Hierarchical and grouped time series

Every collection of time series with aggregation constraints can be written as

$$oldsymbol{y}_t = oldsymbol{S}oldsymbol{b}_t$$

where

- \mathbf{y}_t is a vector of all series at time t
- **b**_t is a vector of the most disaggregated series at time t
- **S** is a "summing matrix" containing the aggregation constraints.

hts package for R

hts: Hierarchical and grouped time series

Methods for analysing and forecasting hierarchical and grouped time series

Version: 4.5

Depends: forecast (\geq 5.0), SparseM

Imports: parallel, utils Published: 2015-06-29

Author: Rob J Hyndman, Earo Wang and Alan Lee

with contributions from Shanika Wickramasuriya

Maintainer: Rob J Hyndman < Rob. Hyndman at monash.edu> BugReports: https://github.com/robjhyndman/hts/issues

License: GPL (\geq 2)

library(hts)

```
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```

library(hts)

```
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```


library(hts)

```
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```



```
summary(y)
smatrix(y)
```

Example 1 illustrating the usage of the "groups" argument

```
abc <- ts(5 + matrix(sort(rnorm(1600)), ncol = 16, nrow = 100))
sex <- rep(c("female", "male"), each = 8)</pre>
state <- rep(c("NSW","VIC","QLD","SA","WA","NT","ACT","TAS"), 2)
gc <- rbind(sex, state) # a matrix consists of strings.</pre>
qn < - rbind(rep(1:2, each = 8), rep(1:8, 2))
rownames(gc) <- rownames(gn) <- c("Sex", "State")
x \leftarrow qts(abc, qroups = qc)
y <- qts(abc, groups = gn)
plot(x,level=3)
plot(x,level=2)
plot(x,level=1)
plot(x,level=0)
```

Example 2 with two simple hierarchies (geography and product) to show the argument "characters"

```
bnames1 <- c("VICMelbA1". "VICMelbA2". "VICGeelA1". "VICGeelA2".</pre>
             "VICMelbB1", "VICMelbB2", "VICGeelB1", "VICGeelB2",
             "NSWSyndA1", "NSWSyndA2", "NSWWollA1", "NSWWollA2",
             "NSWSyndB1", "NSWSyndB2", "NSWWollB1", "NSWWollB2")
bts1 <- matrix(ts(rnorm(160)), ncol = 16)
colnames(bts1) <- bnames1
x1 \leftarrow gts(bts1, characters = list(c(3, 4), c(1, 1)),
  qnames = c("State","State.City","Product","Product.Size",
  "State.Product", "State.Product.Size", "State.City.Product"))
plot(x1, level=1)
plot(x1, level=7)
```

Example 3 with a non-hierarchical grouped time series of 3 grouping variables (state, age and sex)

Outline

- 1 Hierarchical and grouped time series
- 2 BLUF: Best Linear Unbiased Forecasts
- 3 Application: Australian tourism
- 4 Temporal hierarchies
- **5** References

Forecasting notation

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (They may not add up.)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SP}\hat{\mathbf{y}}_n(h)$$

for some matrix **P**.

Forecasting notation

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (They may not add up.)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SP}\hat{\mathbf{y}}_n(h)$$

for some matrix P.

 $\hat{y}_n(h)$ to get bottom-level forecasts.

S adds them up

Forecasting notation

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (They may not add up.)

Reconciled forecasts must be of the form:

$$\tilde{m{y}}_n(h) = m{SP}\hat{m{y}}_n(h)$$

for some matrix P.

- **P** extracts and combines base forecasts $\hat{y}_n(h)$ to get bottom-level forecasts.
- **S** adds them up

Forecasting notation

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (They may not add up.)

Reconciled forecasts must be of the form:

$$\tilde{m{y}}_n(h) = m{SP}\hat{m{y}}_n(h)$$

for some matrix P.

- P extracts and combines base forecasts $\hat{y}_n(h)$ to get bottom-level forecasts.
- **S** adds them up

Forecasting notation

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (They may not add up.)

Reconciled forecasts must be of the form:

$$\tilde{m{y}}_n(h) = m{SP}\hat{m{y}}_n(h)$$

for some matrix **P**.

- **P** extracts and combines base forecasts $\hat{y}_n(h)$ to get bottom-level forecasts.
- S adds them up

$$\tilde{m{y}}_n(h) = m{SP}\hat{m{y}}_n(h)$$

Assume: base forecasts $\hat{\mathbf{y}}_n(h)$ are unbiased: $E[\hat{\mathbf{y}}_n(h) \mid \mathbf{y}_1, \dots, \mathbf{y}_n] = E[\mathbf{y}_{n+h} \mid \mathbf{y}_1, \dots, \mathbf{y}_n]$

Let $\boldsymbol{b}_n(h)$ be bottom level base forecasts with $\boldsymbol{\beta}_n(h) = \mathsf{E}[\hat{\boldsymbol{b}}_n(h) \mid \boldsymbol{y}_1, \dots, \boldsymbol{y}_n].$

We want the revised forecasts to be

unulased. $E[y_n(n)] = SPSD_n(n) = SD_n(n)$

Revised forecasts are unbiased iff $extbf{ extit{SPS}} = extbf{ extit{S}}$.

$$\widetilde{m{y}}_n(h) = m{SP}\hat{m{y}}_n(h)$$

Assume: base forecasts $\hat{y}_n(h)$ are unbiased:

$$\mathsf{E}[\hat{\boldsymbol{y}}_n(h)\mid \boldsymbol{y}_1,\ldots,\boldsymbol{y}_n] = \mathsf{E}[\boldsymbol{y}_{n+h}\mid \boldsymbol{y}_1,\ldots,\boldsymbol{y}_n]$$

unulaseu. $\mathbf{E}[\mathbf{y}_n(n)] = \mathbf{SPS}p_n(n) = \mathbf{S}p_n(n)$

$$\tilde{m{y}}_n(h) = m{SP}\hat{m{y}}_n(h)$$

Assume: base forecasts $\hat{y}_n(h)$ are unbiased:

$$\mathsf{E}[\hat{\boldsymbol{y}}_n(h)\mid \boldsymbol{y}_1,\ldots,\boldsymbol{y}_n]=\mathsf{E}[\boldsymbol{y}_{n+h}\mid \boldsymbol{y}_1,\ldots,\boldsymbol{y}_n]$$

- Let $\hat{\boldsymbol{b}}_n(h)$ be bottom level base forecasts with $\boldsymbol{\beta}_n(h) = \mathsf{E}[\hat{\boldsymbol{b}}_n(h) \mid \boldsymbol{y}_1, \dots, \boldsymbol{y}_n].$
- Then $E[\hat{\mathbf{y}}_n(h)] = \mathbf{S}\boldsymbol{\beta}_n(h)$.
- We want the revised forecasts to be unbiased: $E[\tilde{\mathbf{y}}_n(h)] = \mathbf{SPS}\beta_n(h) = \mathbf{S}\beta_n(h)$.

Revised forecasts are unbiased iff SPS = S

$$\tilde{m{y}}_n(h) = m{SP}\hat{m{y}}_n(h)$$

Assume: base forecasts $\hat{y}_n(h)$ are unbiased:

$$\mathsf{E}[\hat{\boldsymbol{y}}_n(h)\mid \boldsymbol{y}_1,\ldots,\boldsymbol{y}_n]=\mathsf{E}[\boldsymbol{y}_{n+h}\mid \boldsymbol{y}_1,\ldots,\boldsymbol{y}_n]$$

- Let $\hat{\boldsymbol{b}}_n(h)$ be bottom level base forecasts with $\boldsymbol{\beta}_n(h) = \mathsf{E}[\hat{\boldsymbol{b}}_n(h) \mid \boldsymbol{y}_1, \dots, \boldsymbol{y}_n].$
- Then $E[\hat{\mathbf{y}}_n(h)] = \mathbf{S}\boldsymbol{\beta}_n(h)$.
- We want the revised forecasts to be unbiased: $E[\tilde{\mathbf{y}}_n(h)] = \mathbf{SPS}\beta_n(h) = \mathbf{S}\beta_n(h)$.

Revised forecasts are unbiased iff SPS = S.

$$\tilde{m{y}}_n(h) = m{SP}\hat{m{y}}_n(h)$$

Assume: base forecasts $\hat{\mathbf{y}}_n(h)$ are unbiased: $\mathsf{E}[\hat{\mathbf{y}}_n(h) \mid \mathbf{y}_1, \dots, \mathbf{y}_n] = \mathsf{E}[\mathbf{y}_{n+h} \mid \mathbf{y}_1, \dots, \mathbf{y}_n]$

- Let $\hat{\boldsymbol{b}}_n(h)$ be bottom level base forecasts with $\boldsymbol{\beta}_n(h) = \mathsf{E}[\hat{\boldsymbol{b}}_n(h) \mid \boldsymbol{y}_1, \dots, \boldsymbol{y}_n].$
- Then $E[\hat{\mathbf{y}}_n(h)] = \mathbf{S}\beta_n(h)$.
- We want the revised forecasts to be unbiased: $\mathsf{E}[\tilde{\mathbf{y}}_n(h)] = \mathbf{SPS}\boldsymbol{\beta}_n(h) = \mathbf{S}\boldsymbol{\beta}_n(h).$

Revised forecasts are unbiased iff SPS = S

$$\tilde{m{y}}_n(h) = m{SP}\hat{m{y}}_n(h)$$

Assume: base forecasts $\hat{y}_n(h)$ are unbiased:

$$\mathsf{E}[\hat{\boldsymbol{y}}_n(h)\mid \boldsymbol{y}_1,\ldots,\boldsymbol{y}_n]=\mathsf{E}[\boldsymbol{y}_{n+h}\mid \boldsymbol{y}_1,\ldots,\boldsymbol{y}_n]$$

- Let $\hat{\boldsymbol{b}}_n(h)$ be bottom level base forecasts with $\boldsymbol{\beta}_n(h) = \mathsf{E}[\hat{\boldsymbol{b}}_n(h) \mid \boldsymbol{y}_1, \dots, \boldsymbol{y}_n].$
- Then $E[\hat{\mathbf{y}}_n(h)] = \mathbf{S}\beta_n(h)$.
- We want the revised forecasts to be unbiased: $\mathsf{E}[\tilde{\mathbf{y}}_n(h)] = \mathbf{SPS}\boldsymbol{\beta}_n(h) = \mathbf{S}\boldsymbol{\beta}_n(h).$

Revised forecasts are unbiased iff SPS = S

$$\tilde{m{y}}_n(h) = m{SP}\hat{m{y}}_n(h)$$

Assume: base forecasts $\hat{y}_n(h)$ are unbiased:

$$\mathsf{E}[\hat{\boldsymbol{y}}_n(h)\mid\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n]=\mathsf{E}[\boldsymbol{y}_{n+h}\mid\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n]$$

- Let $\hat{\boldsymbol{b}}_n(h)$ be bottom level base forecasts with $\boldsymbol{\beta}_n(h) = \mathsf{E}[\hat{\boldsymbol{b}}_n(h) \mid \boldsymbol{y}_1, \dots, \boldsymbol{y}_n].$
- Then $E[\hat{\mathbf{y}}_n(h)] = \mathbf{S}\beta_n(h)$.
- We want the revised forecasts to be unbiased: $\mathsf{E}[\tilde{\mathbf{y}}_n(h)] = \mathbf{SPS}\boldsymbol{\beta}_n(h) = \mathbf{S}\boldsymbol{\beta}_n(h).$

Revised forecasts are unbiased iff SPS = S.

General properties: variance

$$\tilde{m{y}}_n(h) = m{SP}\hat{m{y}}_n(h)$$

Let error variance of h-step base forecasts $\hat{\mathbf{y}}_n(h)$ be

$$\mathbf{W}_h = \operatorname{Var}[\mathbf{y}_{n+h} - \hat{\mathbf{y}}_n(h) \mid \mathbf{y}_1, \dots, \mathbf{y}_n]$$

Then the error variance of the corresponding revised forecasts is

$$Var[\mathbf{y}_{n+h} - \tilde{\mathbf{y}}_n(h) \mid \mathbf{y}_1, \dots, \mathbf{y}_n] = \mathbf{SPW}_h \mathbf{P}' \mathbf{S}'$$

General properties: variance

$$\tilde{m{y}}_n(h) = m{SP}\hat{m{y}}_n(h)$$

Let error variance of h-step base forecasts $\hat{\boldsymbol{y}}_n(h)$ be

$$\mathbf{W}_h = \operatorname{Var}[\mathbf{y}_{n+h} - \hat{\mathbf{y}}_n(h) \mid \mathbf{y}_1, \dots, \mathbf{y}_n]$$

Then the error variance of the corresponding revised forecasts is

$$Var[\mathbf{y}_{n+h} - \tilde{\mathbf{y}}_n(h) \mid \mathbf{y}_1, \dots, \mathbf{y}_n] = \mathbf{SPW}_h \mathbf{P}' \mathbf{S}'$$

BLUF via trace minimization

Theorem

For any **P** satisfying SPS = S, then

$$\min_{\mathbf{P}} = \operatorname{trace}[\mathbf{SPW}_h \mathbf{P}' \mathbf{S}']$$

has solution
$$\mathbf{P} = (\mathbf{S}' \mathbf{W}_h^{\dagger} \mathbf{S})^{-1} \mathbf{S}' \mathbf{W}_h^{\dagger}$$
.

- \blacksquare W_h is generalized inverse of W_h
- **Problem:** W_h hard to estimate, especially
 - tor h > 1.

BLUF via trace minimization

Theorem

For any **P** satisfying SPS = S, then

$$\min_{\mathbf{P}} = \operatorname{trace}[\mathbf{SPW}_h \mathbf{P}' \mathbf{S}']$$

has solution
$$\mathbf{P} = (\mathbf{S}' \mathbf{W}_h^{\dagger} \mathbf{S})^{-1} \mathbf{S}' \mathbf{W}_h^{\dagger}$$
.

- W_h^{\dagger} is generalized inverse of W_h .
- **Problem:** W_h hard to estimate, especially for h > 1.

BLUF via trace minimization

Theorem

For any **P** satisfying SPS = S, then

$$\min_{\mathbf{P}} = \operatorname{trace}[\mathbf{SPW}_h \mathbf{P}' \mathbf{S}']$$

has solution
$$\mathbf{P} = (\mathbf{S}' \mathbf{W}_h^{\dagger} \mathbf{S})^{-1} \mathbf{S}' \mathbf{W}_h^{\dagger}$$
.

- **\mathbf{W}_h^{\dagger}** is generalized inverse of \mathbf{W}_h .
- **Problem:** W_h hard to estimate, especially for h > 1.

$$|\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{h}^{\dagger}\hat{\mathbf{y}}_{n}(h)|$$

Revised forecasts

Base forecasts

- Assume forecast errors have the same aggregation constraints as the data.
- Then $W_h = S\Omega_h S'$ where Ω_h is covariance matrix of bottom level errors
- If Moore-Penrose generalized inverse used, then $(S'W_n^{\dagger}S)^{-1}S'W_n^{\dagger} = (S'S)^{-1}S'$.

$$|\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{h}^{\dagger}\hat{\mathbf{y}}_{n}(h)|$$

Revised forecasts

Base forecasts

- Assume forecast errors have the same aggregation constraints as the data.
- Then $W_h = S\Omega_h S'$ where Ω_h is covariance matrix of bottom level errors.
- If Moore-Penrose generalized inverse used, then $(S'W_h^{\dagger}S)^{-1}S'W_h^{\dagger} = (S'S)^{-1}S'$.

$$|\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{h}^{\dagger}\hat{\mathbf{y}}_{n}(h)|$$

Revised forecasts

Base forecasts

- Assume forecast errors have the same aggregation constraints as the data.
- Then $\mathbf{W}_h = \mathbf{S}\Omega_h\mathbf{S}'$ where Ω_h is covariance matrix of bottom level errors.
- If Moore-Penrose generalized inverse used, then $(\mathbf{S}'\mathbf{W}_h^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_h^{\dagger} = (\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'$.

$$\tilde{\mathbf{y}}_{n}(\mathbf{h}) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{h}^{\dagger}\hat{\mathbf{y}}_{n}(\mathbf{h})$$

Revised forecasts

Base forecasts

- Assume forecast errors have the same aggregation constraints as the data.
- Then $\mathbf{W}_h = \mathbf{S}\Omega_h\mathbf{S}'$ where Ω_h is covariance matrix of bottom level errors.
- If Moore-Penrose generalized inverse used, then $(\mathbf{S}'\mathbf{W}_h^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_h^{\dagger} = (\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'$.

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{h}^{\dagger}\hat{\mathbf{y}}_{n}(h)$$

Revised forecasts

Base forecasts

- Assume forecast errors have the same aggregation constraints as the data.
- Then $\mathbf{W}_h = \mathbf{S}\Omega_h\mathbf{S}'$ where Ω_h is covariance matrix of bottom level errors.
- If Moore-Penrose generalized inverse used, then $(\mathbf{S}'\mathbf{W}_h^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_h^{\dagger} = (\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'$.

$$\tilde{\mathbf{y}}_n(h) = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{y}}_n(h)$$

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{h}^{\dagger}\hat{\mathbf{y}}_{n}(h)$$

Revised forecasts

Base forecasts

- Assume forecast errors have the same aggregation constraints as the data.
- Then $\mathbf{W}_h = \mathbf{S}\Omega_h\mathbf{S}'$ where Ω_h is covariance matrix of bottom level errors.
- If Moore-Penrose generalized inverse used, then $(\mathbf{S}'\mathbf{W}_h^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_h^{\dagger} = (\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'$.

$$\tilde{\mathbf{y}}_n(h) = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{y}}_n(h)$$

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{h}^{\dagger}\hat{\mathbf{y}}_{n}(h)$$

Revised forecasts

Base forecasts

- Suppose we approximate W_1 by its diagonal and assume that $W_h \propto W_1$.
- Easy to estimate, and places weight where we have best forecasts.
- Empirically, WLS gives better forecasts than OIS.

$$|\hat{\mathbf{y}}_{\mathbf{n}}(\mathbf{h}) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{\mathbf{h}}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{\mathbf{h}}^{\dagger}\hat{\mathbf{y}}_{\mathbf{n}}(\mathbf{h})|$$

Revised forecasts

Base forecasts

- Suppose we approximate W_1 by its diagonal and assume that $W_h \propto W_1$.
- Easy to estimate, and places weight where we have best forecasts.
- Empirically, WLS gives better forecasts than OLS.
- Still need to estimate covariance matrix to produce prediction intervals.

$$|\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{h}^{\dagger}\hat{\mathbf{y}}_{n}(h)|$$

Revised forecasts

Base forecasts

- Suppose we approximate \mathbf{W}_1 by its diagonal and assume that $\mathbf{W}_h \propto \mathbf{W}_1$.
- Easy to estimate, and places weight where we have best forecasts.
- Empirically, WLS gives better forecasts than OLS.
- Still need to estimate covariance matrix to produce prediction intervals.

$$|\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{h}^{\dagger}\hat{\mathbf{y}}_{n}(h)|$$

Revised forecasts

Base forecasts

- Suppose we approximate \mathbf{W}_1 by its diagonal and assume that $\mathbf{W}_h \propto \mathbf{W}_1$.
- Easy to estimate, and places weight where we have best forecasts.
- Empirically, WLS gives better forecasts than OLS.
- Still need to estimate covariance matrix to produce prediction intervals.

$$|\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{h}^{\dagger}\hat{\mathbf{y}}_{n}(h)|$$

Revised forecasts

Base forecasts

- Suppose we approximate W_1 by its diagonal and assume that $W_h \propto W_1$.
- Easy to estimate, and places weight where we have best forecasts.
- Empirically, WLS gives better forecasts than OLS.
- Still need to estimate covariance matrix to produce prediction intervals.

$$|\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{h}^{\dagger}\hat{\mathbf{y}}_{n}(h)|$$

Revised forecasts

Base forecasts

- Estimate W_1 using shrinkage to the diagonal and assume that $W_h \propto W_1$.
 - Allows for covariances.
 - Empirically, GLS gives better forecasts than WIS or OTS
- Difficult to compute for large numbers of time
 - Selles

$$|\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{h}^{\dagger}\hat{\mathbf{y}}_{n}(h)|$$

Revised forecasts

Base forecasts

- Estimate W_1 using shrinkage to the diagonal and assume that $W_h \propto W_1$.
- Allows for covariances.
- Empirically, GLS gives better forecasts than WLS or OLS.
- Difficult to compute for large numbers of time series.

$$|\hat{\mathbf{y}}_{\mathbf{n}}(\mathbf{h}) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{\mathbf{h}}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{\mathbf{h}}^{\dagger}\hat{\mathbf{y}}_{\mathbf{n}}(\mathbf{h})|$$

Revised forecasts

Base forecasts

- Estimate W_1 using shrinkage to the diagonal and assume that $W_h \propto W_1$.
- Allows for covariances.
- Empirically, GLS gives better forecasts than WLS or OLS.
- Difficult to compute for large numbers of time series.

$$|\hat{\mathbf{y}}_{n}(\mathbf{h}) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{h}^{\dagger}\hat{\mathbf{y}}_{n}(\mathbf{h})|$$

Revised forecasts

Base forecasts

- Estimate W_1 using shrinkage to the diagonal and assume that $W_h \propto W_1$.
- Allows for covariances.
- Empirically, GLS gives better forecasts than WLS or OLS.
- Difficult to compute for large numbers of time series.

$$|\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\mathbf{W}_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_{h}^{\dagger}\hat{\mathbf{y}}_{n}(h)|$$

Revised forecasts

Base forecasts

- Estimate W_1 using shrinkage to the diagonal and assume that $W_h \propto W_1$.
- Allows for covariances.
- Empirically, GLS gives better forecasts than WLS or OLS.
- Difficult to compute for large numbers of time series.

Example using R

```
library(hts)
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y \leftarrow hts(bts, nodes=list(2, c(3,2)))
# Forecast 10-step-ahead using WLS combination method
# ETS used for each series by default
fc <- forecast(y, h=10)</pre>
# Select your own methods
ally <- aggts(y)
allf <- matrix(, nrow=10, ncol=ncol(ally))
for(i in 1:ncol(ally))
  allf[,i] <- mymethod(ally[,i], h=10)</pre>
allf <- ts(allf, start=2004)
# Reconcile forecasts so they add up
fc2 <- combinef(allf, nodes=y$nodes)</pre>
```

forecast.gts function

```
Usage
```

```
forecast(object, h,
 method = c("comb", "bu", "mo", "tdqsf", "tdqsa", "tdfp"),
  fmethod = c("ets", "rw", "arima"),
 weights = c("sd", "none", "nseries"),
  positive = FALSE,
  parallel = FALSE, num.cores = 2, ...)
```

Arguments

object Hierarchical time series object of class qts. h Forecast horizon method Method for distributing forecasts within the hierarchy. fmethod Forecasting method to use positive If TRUE, forecasts are forced to be strictly positive weights Weights used for "optimal combination" method. When weights = "sd", it takes account of the standard deviation of forecasts parallel

If TRUE, allow parallel processing

If parallel = TRUE, specify how many cores are going to be num, cores

used

Exercise

Use the infantgts data to:

- Plot various levels of aggregation.
- Forecast the series using auto.arima with the default WLS reconciliation method.
- Plot the reconciled forecasts at various levels of aggregation.

Outline

- 1 Hierarchical and grouped time series
- 2 BLUF: Best Linear Unbiased Forecasts
- 3 Application: Australian tourism
- **4** Temporal hierarchies
- **5** References

Australian tourism

Australian tourism

Australian tourism

Training sets

Hierarchy: states, zones, regions

							•
Forecast horizon							
RMSE	h = 1	h = 2	h = 3	h = 4	h = 5	h = 6	Ave
Australia							
Base	1762.04	1770.29	1766.02	1818.82	1705.35	1721.17	1757.28
Bottom	1736.92	1742.69	1722.79	1752.74	1666.73	1687.43	1718.22
OLS	1747.60	1757.68	1751.77	1800.67	1686.00	1706.45	1741.69
WLS	1705.21	1715.87	1703.75	1729.56	1627.79	1661.24	1690.57
GLS	1704.64	1715.60	1705.31	1729.04	1626.36	1661.64	1690.43
States							
Base	399.77	404.16	401.92	407.26	395.38	401.17	401.61
Bottom	404.29	406.95	404.96	409.02	399.80	401.55	404.43
OLS	404.47	407.62	405.43	413.79	401.10	404.90	406.22
WLS	398.84	402.12	400.71	405.03	394.76	398.23	399.95
GLS	398.84	402.16	400.86	405.03	394.59	398.22	399.95
Regions							
Base	93.15	93.38	93.45	93.79	93.50	93.56	93.47
Bottom	93.15	93.38	93.45	93.79	93.50	93.56	93.47
OLS	93.28	93.53	93.64	94.17	93.78	93.88	93.71
WLS	93.02	93.32	93.38	93.72	93.39	93.53	93.39

93.27

93.34

93.66

92.98

GLS

93.46

Outline

- 1 Hierarchical and grouped time series
- 2 BLUF: Best Linear Unbiased Forecasts
- 3 Application: Australian tourism
- 4 Temporal hierarchies
- **5** References

Temporal hierarchies

Basic idea:

- Forecast series at each available frequency.
- Optimally combine forecasts within the same year.

Temporal hierarchies

Basic idea:

- Forecast series at each available frequency.
- Optimally combine forecasts within the same year.

Monthly series

- k = 2, 4, 12 nodes
- k = 3, 6, 12 nodes
- Why not k = 2, 3, 4, 6, 12 nodes?

Monthly series

- k = 2, 4, 12 nodes
- k = 3, 6, 12 nodes
- Why not k = 2, 3, 4, 6, 12 nodes?

Monthly series

- k = 2, 4, 12 nodes
- k = 3, 6, 12 nodes
- Why not k = 2, 3, 4, 6, 12 nodes?

Monthly data

In general

For a time series y_1, \ldots, y_T , observed at frequency m, we generate aggregate series

$$y_j^{[k]} = \sum_{t=1+(j-1)k}^{jk} y_t, \qquad ext{for } j=1,\ldots,\lfloor T/k
floor$$

- $k \in F(m) = \{\text{factors of } m\}.$
- A single unique hierarchy is only possible when there are no coprime pairs in F(m).
- M_k = m/k is seasonal period of aggregated series.

In general

For a time series y_1, \ldots, y_T , observed at frequency m, we generate aggregate series

$$y_j^{[k]} = \sum_{t=1+(j-1)k}^{jk} y_t, \qquad ext{for } j=1,\ldots,\lfloor T/k
floor$$

- $k \in F(m) = \{\text{factors of } m\}.$
- A single unique hierarchy is only possible when there are no coprime pairs in F(m).
- $M_k = m/k$ is seasonal period of aggregated series.

In general

For a time series y_1, \ldots, y_T , observed at frequency m, we generate aggregate series

$$y_j^{[k]} = \sum_{t=1+(j-1)k}^{jk} y_t, \qquad ext{for } j=1,\ldots,\lfloor T/k
floor$$

- $k \in F(m) = \{\text{factors of } m\}.$
- A single unique hierarchy is only possible when there are no coprime pairs in F(m).
- $M_k = m/k$ is seasonal period of aggregated series.

Hierarchy variance scaling Λ_H : diagonal. Series variance scaling Λ_V : elements equal within aggregation level.

Structural scaling $\Lambda_S = \text{diag}(\boldsymbol{S1})$: elements equal to # nodes at each level.

- \blacksquare Depends only on seasonal period m.
- Independent of data and model.
- Allows forecasts where no errors available.

$$\begin{split} & \Lambda_{H} = \text{diag} \big(\hat{\sigma}_{A}^{2}, \ \hat{\sigma}_{S_{1}}^{2}, \ \hat{\sigma}_{S_{2}}^{2}, \ \hat{\sigma}_{Q_{1}}^{2}, \ \hat{\sigma}_{Q_{2}}^{2}, \ \hat{\sigma}_{Q_{3}}^{2}, \ \hat{\sigma}_{Q_{4}}^{2} \big) \\ & \Lambda_{V} = \text{diag} \big(\hat{\sigma}_{A}^{2}, \ \hat{\sigma}_{S}^{2}, \ \hat{\sigma}_{S}^{2}, \ \hat{\sigma}_{Q}^{2}, \ \hat{\sigma}_{Q}^{2}, \ \hat{\sigma}_{Q}^{2}, \ \hat{\sigma}_{Q}^{2} \big) \\ & \Lambda_{S} = \text{diag} \big(4, 2, 2, 1, 1, 1, 1 \big) \end{split}$$

Hierarchy variance scaling Λ_H : diagonal. Series variance scaling Λ_V : elements equal within aggregation level.

Structural scaling $\Lambda_S = \text{diag}(\textbf{S1})$: elements equal to # nodes at each level.

- Depends only on seasonal period m.
- Independent of data and model.
- Allows forecasts where no errors available.

$$\begin{split} & \Lambda_{H} = \text{diag} \big(\hat{\sigma}_{A}^{2}, \ \hat{\sigma}_{S_{1}}^{2}, \ \hat{\sigma}_{S_{2}}^{2}, \ \hat{\sigma}_{Q_{1}}^{2}, \ \hat{\sigma}_{Q_{2}}^{2}, \ \hat{\sigma}_{Q_{3}}^{2}, \ \hat{\sigma}_{Q_{4}}^{2} \big) \\ & \Lambda_{V} = \text{diag} \big(\hat{\sigma}_{A}^{2}, \ \hat{\sigma}_{S}^{2}, \ \hat{\sigma}_{S}^{2}, \ \hat{\sigma}_{Q}^{2}, \ \hat{\sigma}_{Q}^{2}, \ \hat{\sigma}_{Q}^{2}, \ \hat{\sigma}_{Q}^{2} \big) \\ & \Lambda_{S} = \text{diag} \big(4, 2, 2, 1, 1, 1, 1 \big) \end{split}$$

Hierarchy variance scaling Λ_H : diagonal. Series variance scaling Λ_V : elements equal within aggregation level.

Structural scaling $\Lambda_{\text{S}} = \text{diag}(\textbf{S1})$: elements equal to # nodes at each level.

- Depends only on seasonal period *m*.
- Independent of data and model.
- Allows forecasts where no errors available.

$$\begin{split} & \Lambda_{H} = \text{diag}\big(\hat{\sigma}_{A}^{2}, \ \hat{\sigma}_{S_{1}}^{2}, \ \hat{\sigma}_{S_{2}}^{2}, \ \hat{\sigma}_{Q_{1}}^{2}, \ \hat{\sigma}_{Q_{2}}^{2}, \ \hat{\sigma}_{Q_{3}}^{2}, \ \hat{\sigma}_{Q_{4}}^{2} \big) \\ & \Lambda_{V} = \text{diag}\big(\hat{\sigma}_{A}^{2}, \ \hat{\sigma}_{S}^{2}, \ \hat{\sigma}_{S}^{2}, \ \hat{\sigma}_{Q}^{2}, \ \hat{\sigma}_{Q}^{2}, \ \hat{\sigma}_{Q}^{2}, \ \hat{\sigma}_{Q}^{2} \big) \\ & \Lambda_{S} = \text{diag}\big(4, 2, 2, 1, 1, 1, 1\big) \end{split}$$

Hierarchy variance scaling Λ_H : diagonal. Series variance scaling Λ_V : elements equal within aggregation level.

Structural scaling $\Lambda_S = \text{diag}(\textbf{S1})$: elements equal to # nodes at each level.

- Depends only on seasonal period m.
- Independent of data and model.
- Allows forecasts where no errors available.

$$\begin{split} & \Lambda_{H} = \text{diag}\big(\hat{\sigma}_{A}^{2},~\hat{\sigma}_{S_{1}}^{2},~\hat{\sigma}_{S_{2}}^{2},~\hat{\sigma}_{Q_{1}}^{2},~\hat{\sigma}_{Q_{2}}^{2},~\hat{\sigma}_{Q_{3}}^{2},~\hat{\sigma}_{Q_{4}}^{2} \big) \\ & \Lambda_{V} = \text{diag}\big(\hat{\sigma}_{A}^{2},~\hat{\sigma}_{S}^{2},~\hat{\sigma}_{S}^{2},~\hat{\sigma}_{Q}^{2},~\hat{\sigma}_{Q}^{2},~\hat{\sigma}_{Q}^{2},~\hat{\sigma}_{Q}^{2} \big) \\ & \Lambda_{S} = \text{diag}\big(4,2,2,1,1,1,1\big) \end{split}$$

Hierarchy variance scaling Λ_H : diagonal. Series variance scaling Λ_V : elements equal within aggregation level.

Structural scaling $\Lambda_S = \text{diag}(\boldsymbol{S1})$: elements equal to # nodes at each level.

- Depends only on seasonal period *m*.
- Independent of data and model.
- Allows forecasts where no errors available.

$$\begin{split} & \Lambda_{H} = \text{diag}\big(\hat{\sigma}_{A}^{2}, \ \hat{\sigma}_{S_{1}}^{2}, \ \hat{\sigma}_{S_{2}}^{2}, \ \hat{\sigma}_{Q_{1}}^{2}, \ \hat{\sigma}_{Q_{2}}^{2}, \ \hat{\sigma}_{Q_{3}}^{2}, \ \hat{\sigma}_{Q_{4}}^{2} \big) \\ & \Lambda_{V} = \text{diag}\big(\hat{\sigma}_{A}^{2}, \ \hat{\sigma}_{S}^{2}, \ \hat{\sigma}_{S}^{2}, \ \hat{\sigma}_{Q}^{2}, \ \hat{\sigma}_{Q}^{2}, \ \hat{\sigma}_{Q}^{2}, \ \hat{\sigma}_{Q}^{2} \big) \\ & \Lambda_{S} = \text{diag}\big(4, 2, 2, 1, 1, 1, 1\big) \end{split}$$

Experimental setup:

- M3 forecasting competition (Makridakis and Hibon, 2000, *IJF*). In total 3003 series.
- 1,428 monthly series with a test sample of 12 observations each.
- 756 quarterly series with a test sample of 8 observations each.
- Forecast each series with ETS models.

Experimental setup:

- M3 forecasting competition (Makridakis and Hibon, 2000, *IJF*). In total 3003 series.
- 1,428 monthly series with a test sample of 12 observations each.
- 756 quarterly series with a test sample of 8 observations each.
- Forecast each series with ETS models.

Experimental setup:

- M3 forecasting competition (Makridakis and Hibon, 2000, *IJF*). In total 3003 series.
- 1,428 monthly series with a test sample of 12 observations each.
- 756 quarterly series with a test sample of 8 observations each.
- Forecast each series with ETS models.

Experimental setup:

- M3 forecasting competition (Makridakis and Hibon, 2000, *IJF*). In total 3003 series.
- 1,428 monthly series with a test sample of 12 observations each.
- 756 quarterly series with a test sample of 8 observations each.
- Forecast each series with ETS models.

Results: Monthly

MAE percent difference relative to base

x h	BU	WLS_H	WLS_V	$WLS_{\mathcal{S}}$
1	-19.6	-22.0	-22.0	-25.1
3	0.6	-4.0	-3.6	-5.4
4	2.0	-2.4	-2.2	-3.0
6	2.4	-1.6	-1.7	-2.8
9	0.7	-2.9	-3.3	-4.3
18	0.0	-2.2	-3.2	-3.9
	1 3 4 6 9	1 -19.6 3 0.6 4 2.0 6 2.4 9 0.7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Results: Quarterly

MAE percent difference relative to base

max	h	BU	WLS_H	WLS_V	$WLS_{\mathcal{S}}$
Annual	1	-20.9	-22.7	-22.8	-22.7
Semi-annual	3	-4.5	-6.0	-6.2	-4.8
Quarterly	6	0.0	-0.2	-1.1	-0.3

- Type 1 Departments Major A&E
- Type 2 Departments Single Specialty
- Type 3 Departments Other A&E/Minor Injury
- 4 Total Attendances
- Type 1 Departments Major A&E > 4 hrs
- Type 2 Departments Single Specialty > 4 hrs
- 7 Type 3 Departments Other A&E/Minor Injury > 4 hrs
- Total Attendances > 4 hrs
- Emergency Admissions via Type 1 A&E
- Total Emergency Admissions via A&E
- 11 Other Emergency Admissions (i.e., not via A&E)
- 12 Total Emergency Admissions
- Number of patients spending > 4 hrs from decision to admission

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- Reconciled using WLS_V.
- Mean Absolute Scaled Errors for 1, 4 and
 13 weeks ahead using a rolling origin.

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- \blacksquare Reconciled using WLS_V.
- Mean Absolute Scaled Errors for 1, 4 and
 13 weeks ahead using a rolling origin.

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- \blacksquare Reconciled using WLS_V.
- Mean Absolute Scaled Errors for 1, 4 and
 13 weeks ahead using a rolling origin.

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- \blacksquare Reconciled using WLS_V.
- Mean Absolute Scaled Errors for 1, 4 and
 13 weeks ahead using a rolling origin.

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- \blacksquare Reconciled using WLS_V.
- Mean Absolute Scaled Errors for 1, 4 and
 13 weeks ahead using a rolling origin.

Aggr. Level		Base	Reconciled	Change
Weekly	1	1.6	1.3	-17.2%
Weekly	4	1.9	1.5	-18.6%
Weekly	13	2.3	1.9	-16.2%
Weekly	1-52	2.0	1.9	-5.0%
Annual	1	3.4	1.9	-42.9%

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- Reconciled using WLS_V.
- Mean Absolute Scaled Errors for 1, 4 and
 13 weeks ahead using a rolling origin.

Aggr. Level	h	Base	Reconciled	Change
Weekly	1	1.6	1.3	-17.2%
Weekly	4	1.9	1.5	-18.6%
Weekly	13	2.3	1.9	-16.2%
Weekly	1–52	2.0	1.9	-5.0%
Annual	1	3.4	1.9	-42.9%

Outline

- 1 Hierarchical and grouped time series
- 2 BLUF: Best Linear Unbiased Forecasts
- 3 Application: Australian tourism
- **4** Temporal hierarchies
- **5** References

References

RJ Hyndman, RA Ahmed, G Athanasopoulos, and HL Shang (2011). "Optimal combination forecasts for hierarchical time series". *Computational statistics & data analysis* **55**(9), 2579–2589.

RJ Hyndman, AJ Lee, and E Wang (2014). Fast computation of reconciled forecasts for hierarchical and grouped time series. Working paper 17/14. Monash University

SL Wickramasuriya, G Athanasopoulos, and RJ Hyndman (2015). Forecasting hierarchical and grouped time series through trace minimization. Working paper 15/15. Monash University

G Athanasopoulos, RJ Hyndman, N Kourentzes, and F Petropoulos (2015). *Forecasting with temporal hierarchies*. Working paper. Monash University

RJ Hyndman, AJ Lee, and E Wang (2015). hts: Hierarchical and grouped time series. R package v4.5 on CRAN.