Генеративные модели

Нормализационные потоки

Елена Кантонистова (по мотивам лекции Михаила Гущина)

Генеративные модели в компьютерном зрении

Классы генеративных CV-моделей

- Вариационные автокодировщики (VAE)
- Генеративно-состязательные сети (GAN)
- Нормализационные потоки (NF)
- Авторегрессионные модели (AR models)
- Диффузионные модели (Diffusion)

Timeline генеративных CV-моделей

Тренды

Динамика популярности ?

Приложения

Results after N compression/decompression operations

Lossy Image Compression with Normalizing Flows, ICLR 2021

Neural Importance Sampling

Поиск новой физики

Интуиция

Нормализационный поток – последовательность обратимых преобразований одного распределения в другое

Интуиция

https://youtu.be/QQpz7V3OgFc

Теорема о замене переменных

Замена переменных

$$z = f(x)$$

$$x_i \sim p_x(x)$$

$$p_x(x)$$
 - ?

$$z_i \sim p_z(z)$$

$$p_{z}(z)$$
 - известно

Теорема о замене переменных

Пусть даны $p_z(z)$ и z = f(x), тогда $p_x(x)$ находим так:

$$p_{x}(x_{i}) = \mathbf{p_{z}}(\mathbf{f}(x_{i})) \left| \det \frac{\partial \mathbf{f}(x_{i})}{\partial x_{i}} \right|,$$

Отношение объема ∂z к новому объему

где матрица первых производных определяется так:

$$\frac{\partial f(x_i)}{\partial x_i} = \begin{pmatrix} \frac{\partial f(x_i)_1}{\partial x_{i1}} & \cdots & \frac{\partial f(x_i)_1}{\partial x_{in}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(x_i)_m}{\partial x_{i1}} & \cdots & \frac{\partial f(x_i)_m}{\partial x_{in}} \end{pmatrix}.$$

$$z = f(x) = 0.5x - 2.5$$

$$x_i \sim p_x(x)$$
$$p_x(x) - ?$$

$$p_{\chi}(\chi)$$
 - ?

$$p_z(z) = \mathcal{N}(0, 1)$$

Итак, дана функция f(x):

$$z = f(x) = 0.5x - 2.5$$

Тогда, матрица первых производных:

$$\frac{\partial f(x_i)}{\partial x_i} = (0.5)$$

И значение Якобиана:

$$\left| \det \frac{\partial \boldsymbol{f}(\boldsymbol{x}_i)}{\partial \boldsymbol{x}_i} \right| = 0.5$$

Формула замены пременных:

$$p_x(x_i) = \mathbf{p_z}(\mathbf{f}(x_i)) \left| \det \frac{\partial \mathbf{f}(x_i)}{\partial x_i} \right|,$$

Подставим известные выражения:

$$p_{z}(z_{i}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(z_{i})^{2}}{2}}$$

$$p_{x}(x_{i}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(0.5x_{i}-2.5)^{2}}{2}} * 0.5$$

$$= \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x_{i}-5)^{2}}{2*2^{2}}} = \mathcal{N}(5,2)$$

$$z = f(x) = 0.5x - 2.5$$

Теорема о замене переменных

Пусть даны $p_z(z)$ и z = f(x), тогда $p_x(x)$ находим так:

$$p_x(x_i) = \mathbf{p_z}(\mathbf{f}(x_i)) \left| \det \frac{\partial \mathbf{f}(x_i)}{\partial x_i} \right|,$$

Отношение объема ∂z к новому объему ∂x

Обратная замена переменных:

$$p_{\mathbf{z}}(z_i) = p_{\mathbf{x}}\left(\mathbf{f}^{-1}(z_i)\right) \left| \det \frac{\partial \mathbf{f}^{-1}(z_i)}{\partial z_i} \right|$$

Постановка задачи

$$z = f(x) - ?$$

Постановка задачи

Дано:

- матрица реальных объектов X

Задача:

- найти такую $z_i = f(x_i)$, чтобы $z_i \sim p_z(z)$
- при этом, $p_z(z)$ известно и задано

Решение

- ightharpoonup Как будем находить $z_i = f(x_i)$?
- **Ответ:** методом градиентного спуска!

- Какую функцию потерь будем оптимизировать?
- **Ответ:** логарифм правдоподобия:

$$L = -\frac{1}{n} \sum_{i=1}^{n} \log p_{x}(x_i)$$

Функция потерь

Функция потерь:

$$L = -\frac{1}{n} \sum_{i=1}^{n} \log p_{x}(x_{i})$$

Замена переменных:

$$p_x(x_i) = p_z(f(x_i)) \left| det \frac{\partial f(x_i)}{\partial x_i} \right|$$

Подставим в функцию потерь:

$$L = -\frac{1}{n} \sum_{i=1}^{n} \left(\log p_z(f(x_i)) + \log \left| \det \frac{\partial f(x_i)}{\partial x_i} \right| \right)$$

Общий алгоритм

Алгоритм обучения

Алгоритм обучения

Цикл обучения:

- **Р** Берем m реальных объектов $\{x_1, x_2, ..., x_m\}$
- Считаем функцию потерь:

$$L = -\frac{1}{m} \sum_{i=1}^{m} \left(\log p_z(f(x_i)) + \log \left| \det \frac{\partial f(x_i)}{\partial x_i} \right| \right)$$

lack Обновляем параметры $heta_f$ функции $z_i = f(x_i)$:

$$\theta_f = \theta_f - \nabla_{\theta_f} L$$

Алгоритм генерации

- ightharpoonup Генерируем случайный шум $\{z_1, z_2, ..., z_m\}$
- **Р** Генерируем новые объекты $\{x_1, x_2, ..., x_m\}$ по формуле:

$$x_i = f^{-1}(z_i)$$

Выбор функции

Как выбрать такую функцию $z_i = f(x_i)$, чтобы она:

- была дифференцируемой,
- была обратимой?

Real-NVP

Real-NVP

Функция

$$z = f(x) = \begin{cases} z_{1:d} = x_{1:d} \\ z_{d+1:D} = x_{d+1:D} \odot \exp(s(x_{1:d})) + t(x_{1:d}) \end{cases}$$

где:

- $ightharpoonup z_{1:d}$ первые d компонент вектора z;
- $s(x_{1:d})$ и $t(x_{1:d})$ нейронные сети с d входами и D-d выходами;
- О поэлементное умножение.

Якобиан

Матрица первых производных:

$$\frac{\partial f(x)}{\partial x} = \begin{pmatrix} \mathbb{I}_d & 0 \\ \frac{\partial z_{1:d}}{\partial x_{1:d}} & diag\left(\exp(s(x_{1:d}))\right) \end{pmatrix}$$

Значение Якобиана:

$$\left| \det \frac{\partial f(x)}{\partial x} \right| = \exp\left(\sum_{j=d+1}^{D} s(x_{1:d})_{j} \right)$$

https://arxiv.org/abs/1605.08803

Обратная функция

$$x = \mathbf{f}^{-1}(z) = \begin{cases} x_{1:d} = z_{1:d} \\ x_{d+1:D} = (z_{d+1:D} - \mathbf{t}(x_{1:d})) \odot \exp(-\mathbf{s}(x_{1:d})) \end{cases}$$

Рис.: https://github.com/laurent-dinh/laurent-dinh.github.io/blob/master/img/real_nvp_fig/celeba_samples.png

Пример Glow

https://ameroyer.github.io/portfolio/2021-04-12-Glow/ https://arxiv.org/pdf/1807.03039.pdf

Больше слоев

Больше слоев!

https://towardsdatascience.com/introduction-to-normalizing-flows-d002af262a4b

Больше слоев!

Пусть $z_i = f_2(y_i)$, $y_i = f_1(x_i)$.

Тогда:

$$p_x(x_i) = p_y(f_1(x_i)) \left| det \frac{\partial f_1(x_i)}{\partial x_i} \right|$$

$$p_{y}(y_{i}) = p_{z}(f_{2}(y_{i})) \left| det \frac{\partial f_{2}(y_{i})}{\partial y_{i}} \right|$$

В итоге получим:

$$p_{x}(x_{i}) = p_{z}\left(f_{2}(f_{1}(x_{i}))\right) \left| det \frac{\partial f_{2}(y_{i})}{\partial y_{i}} \right| \left| det \frac{\partial f_{1}(x_{i})}{\partial x_{i}} \right|$$

Практика

https://colab.research.google.com/drive/11sZHiEPzaBkmp_J31C8 f2f0oqeDytign?usp=sharing