Sessão 04

WiDS Recife Live Coding, 11/01/2020

Como serão os live codings?

- Sessões ao-vivo todos os sábados das 14h às 15h
- Código e slides serão disponibilizados no nosso site
- O objetivo é treinar para participar do <u>Datathon</u> em 2020

Recapitulando!

Recapitulando

- Usamos o Pandas para explorar os dados
- Usamos o scikit-learn para selecionar as melhores features e treinar o modelo com o algoritmo de Árvore de Decisão
- Conhecemos algumas métricas para avaliar a performance de um modelo
- Avaliamos o modelo para identificar "onde ele está errando"
- Slides da sessão passada: https://github.com/widsrecife/live-coding

Começando!

Roteiro

- Entender o que é viés e o que é variância e como isso impacta na avaliação dos modelos
- Conhecer formas de particionar os dados para avaliar os modelos
- Usar curvas de aprendizagem para avaliar o viés e a variância dos modelos

O problema

- Nosso conjunto de dados é composto por atributos de vestidos
- Queremos treinar um modelo onde a gente envie os atributos do vestido e ele diga qual a melhor época do ano para usá-lo

Etapas para resolver o problema

- 1. Importar os dados
- 2. Explorar os dados
- 3. Treinar o modelo com o conjunto de treinamento
- 4. Avaliar o modelo com o conjunto de testes

5. Avaliar o modelo

• 5. Avaliar o modelo

 Duas fontes de erros comuns: viés e variância (bias e variance em Inglês)

Principais fontes de erro nos modelos de predição

- Viés (bias)
- Variância (variance)
- Erro irredutível (Irreducible Error)

Viés (bias)

O que é

 É a incapacidade do modelo em classificar corretamente os dados, quando o modelo não consegue identificar a relação entre as features de entrada e as classes de saída

Quando acontece

 Quando o modelo é simples demais para aprender como modelar os dados (underfitting)

Exemplo

Criar uma árvore com max_depth == 2

Variância (variance)

O que é

 É quando o modelo classifica bem um conjunto de dados mas se comporta de forma ruim com novos dados

Quando acontece

 Quando o modelo "aprende muito" os dados do conjunto de treinamento, fazendo com que ele não generalize bem (overfitting)

Exemplo

 Criar uma árvore de decisão para cada instância dos dados da mesma estação

"Erro irredutível" (irreducible error)

- O que é
 - Um erro atribuído à aleatoriedade inerente aos dados

Complexidade do modelo

- Tanto o viés quanto a variância estão relacionados à complexidade do modelo
 - Modelo muito simples -> viés alto (underfitting)
 - Modelo muito complexo -> variância alta (overfitting)
- É impossível reduzir o viés sem aumentar a variância e é impossível reduzir a variância sem aumentar o viés

Como os dados influenciam na avaliação

Avaliando a capacidade do modelo generalizar

- Normalmente temos poucos dados disponíveis, e se usarmos o conjunto de testes para avaliar e melhorar o modelo corremos o risco de aumentar a variância
- Uma técnica útil para avaliar a capacidade de generalização do modelo é a validação cruzada
 - O objetivo é tentar estimar quão bom um modelo é na prática (na prática: quando a gente sair do cenário de testes e for para o cenário real)

Validação cruzada

- Consiste em particionar os dados em conjuntos mutuamente exclusivos
- As três formas mais utilizadas de se fazer isso são:
 - Método holdout (separar os dados em treinamento e teste)
 - Método k-fold (dividir os dados em k-conjuntos mutuamente exclusivos)
 - Método leave-one-out (erro calculado para cada dado)

K-fold

Exemplo onde k = 5

Fonte: http://ethen8181.github.io/machine-learning/model selection/model selection.html

Stratified k-fold

 Preserva as porcentagens das instâncias dos dados para cada classe Formas de avaliar o modelo quanto ao viés e a variância

Identificando viés e variância nos modelos

- Existem fórmulas teóricas é difícil calcular os valores reais, então uma forma mais simples é estimar os erros de forma empírica com curvas de aprendizagem de curvas de validação [1]
- Vamos plotar a curva de aprendizagem

Curva de aprendizagem

- Mostra a performance do modelo ao variar o número de instâncias do conjunto de treinamento
 - Curva de treinamento: score do conjunto de treinamento
 - Curva de validação: score no conjunto da validação cruzada

Curva de aprendizagem - Diagnosticando

- As duas curvas convergindo para um valor baixo: provavelmente o modelo não se beneficia ao adicionar mais dados
- As duas curvas estão perto: underfitting
- As duas curvas estão longe: overfitting

Obrigada!

E até semana que vem!

Referências

- [1] https://www.packtpub.com/data/hands-on-ensemble-learning-with-python
- [2] https://pt.wikipedia.org/wiki/Valida%C3%A7%C3%A3o cruzada
- [3] https://scikit-learn.org/stable/modules/learning-curve.html
- [4] <u>https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/</u>
- [5] https://github.com/jakevdp/sklearn_tutorial/blob/master/notebooks/05-Validation.ipynb