AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A method for constitutive and/or inducible gene knock down in a non-human vertebrate selected from the group consisting of mouse and fish, which comprises stably integrating by homologous recombination an expression vector into a polymerase II dependent locus of the genome of the non-human vertebrate and achieving a reduction in the activity of a product of said gene, said expression vector comprising a short hairpin RNA (shRNA) construct under control of a ubiquitous promoter and homologous homologous sequences which integrate through homologous recombination at a polymerase II dependent locus of the genome of the non-human vertebrate mouse, wherein the ubiquitous promoter is selected from the group consisting of polymerase I, II and III dependent promoters.

2.-4. (Canceled)

- 5. (Previously Presented) The method of claim 1, wherein the polymerase II dependent locus is selected from the group consisting of a Rosa26, collagen, RNA polymerase, actin and HPRT locus.
- 6. (Previously Presented) The method of claim 1, wherein the expression vector further contains functional sequences selected from the group consisting of splice acceptor sequences, polyadenylation sites and selectable marker sequences.

7. (Canceled)

8. (Previously Presented) The method of claim 1, wherein the ubiquitous promoter is a polymerase II or III dependent promoter.

- The method of claim 1, wherein the ubiquitous 9. (Previously Presented) promoter is selected from the group consisting of a CMV promoter, a CAGGS promoter, a snRNA promoter, a RNAse P RNA promoter, a tRNA promoter, a 7SL RNA promoter, and a 5 S rRNA promoter.
- 10. (Previously Presented) The method of claim 1, wherein the ubiquitous promoter is a constitutive promoter.
- The method of claim 1, wherein the ubiquitous 11. (Previously Presented) promoter is an inducible promoter.
- The method of claim 11, wherein the inducible 12. (Previously Presented) promoter is a promoter containing an operator sequence selected from the group consisting of tet, Gal4, and lac.
 - 13. (Canceled)
 - 14. (Canceled)
- The method of claim 1, wherein the expression 15. (PreviouslyPresented) vector is a Pol III dependent promoter driven shRNA construct to be integrated into a ubiquitously active Pol II dependent locus.
- The method of claim 15, wherein the promoter is a 16. (Original) constitutive H1 or U6 promoter.
- The method of claim 15, wherein the promoter is an 17. (Original) inducible U6 or H1 promoter.
- The method of claim 1, wherein the expression 18. (Previously Presented) vector is a Pol II dependent promoter driven shRNA construct to be integrated into a ubiquitously active Pol II dependent locus.

- The method of claim 18, wherein the promoter is an 19. (Original) inducible CMV promoter.
- The method of claim 1, wherein the shRNA comprises at 20. (Original) least one DNA segment

A-B-C

wherein

A is a 15 to 35 bp DNA sequence with at least 95% complementarily to the gene to be knocked down;

B is a spacer DNA sequence having 5 to 9 bp forming the loop of the expressed RNA hair pin molecule, and

C is a 15 to 35 bp DNA sequence with at least 85% complementarily to the sequence A.

- The method of claim 20, wherein A is a 19 to 29 bp DNA 21. (Original) sequence.
- The method of claim 20, wherein the DNA sequence A has 22. (Original) 100% complementarily to the gene to be knocked down.
- The method of claim 20, wherein C is a 19 to 29 bp DNA 23. (Original) sequence.
- The method of claim 1, wherein the shRNA 24. (Previously Presented) comprises a stop and/or polyadenylation sequence.
 - 25. (Canceled)

- The method of claim 1, wherein the method for 26. (Previously Presented) constitutive and/or inducible gene knock down in a non-human vertebrate comprises integrating the expression vector into ES cells of the non-human vertebrate.
- A non-human vertebrate selected from the group 27. (Currently Amended) consisting of mouse and fish having stably integrated by homologous recombination at a polymerase II dependent locus of the non-human vertebrate mouse an expression vector comprising a short hairpin RNA (shRNA) construct under control of a ubiquitous promoter and homologous sequences which integrate at a polymerase II dependent locus of the genome of the non-human vertebrate mouse, wherein the ubiquitous promoter is selected from the group consisting of polymerase I, II and III dependent promoters.

28.-29. (Canceled)

- An expression vector comprising a short hairpin 30. (Currently Amended) RNA (shRNA) construct under control of a ubiquitous promoter and homologous sequences which integrate at a polymerase II dependent locus of the genome of a nonhuman vertebrate selected from the group consisting of mouse and fish, wherein the ubiquitous promoter is selected from the group consisting of polymerase I, II and III dependent promoters.
- An expression vector for constitutive and/or inducible gene 31. (New) knockdown in a mouse, wherein said expression vector when introduced into a mouse stably integrates at the rosa26 locus in the genome of said mouse, and wherein said expression vector comprises:
 - a ubiquitous promoter selected from the group consisting of a CMV a) promoter, a CAGGS promoter, a snRNA promoter, a RNAse P RNA promoter, a tRNA promoter, a 7SL RNA promoter, and a 5 S rRNA promoter;

a short hairpin RNA (shRNA) sequence under the control of said b) ubiquitous promoter, wherein said shRNA sequence comprises at least one DNA segment

A-B-C

wherein

- A is a 15 to 35 bp DNA sequence with at least 95% complementarily to the gene to be knocked down;
- B is a spacer DNA sequence having 5 to 9 bp forming the loop of the expressed RNA hair pin molecule, and
- C is a 15 to 35 bp DNA sequence with at least 85% complementarily to the sequence A;
- a splice acceptor sequence under the control of the endogenous rosa26 c) promoter; and
- a stop and/or polyadenylation sequence. d)
- The expression vector of claim 31, wherein A is a 19 to 29 bp 32. (New) DNA sequence.
- The expression vector of claim 31, wherein the DNA sequence A 33. (New) has 100% complementarily to the gene to be knocked down.
- The expression vector of claim 31, wherein C is a 19 to 29 bp 34. (New) DNA sequence.
- The expression vector of claim 31, wherein the shRNA sequence is 35. (New) selected from the group consisting of SEQ ID NOS.: 19-220.

- The expression vector according to claim 31, which comprises: 36. (New)
- a U6 or H1 promoter; a)
- shRluc or shFluc under the control of said promoter; b)
- an adenovirus splice acceptor sequence; and c)
- a polyadenylation sequence. d)
- A method for gene knock down in a mouse, said method 37. (New) comprising:
 - providing an expression vector according to any one of claims 31-36; a)
 - stably integrating said expression vector into the rosa26 locus of the b) genome of embryonic stem cells of said mouse by homologous recombination; and thereby
 - achieving an at least 30% reduction in the activity of an expression c) product of said gene.
- A mouse having an expression vector according to any one of 38. (New) claims 31-36 stably integrated into the rosa26 locus of the genome of cells of said mouse by homologous recombination.