目	录	1
	目录	
1	基本几何体	2
2	叉积	2
3	球	2
	3.1 反射	2

数学知识点

Lei Xinyue

1 叉积

即向量积。 $|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot sin\theta, \theta = \left\langle \vec{a}, \vec{b} \right\rangle, 0^{\circ} \leq \theta \leq 180^{\circ}$ 设 $\vec{c} = \vec{a} \times \vec{b}$,则 \vec{c} 的长度在数值上等于以 \vec{a}, \vec{b} 为边,夹角为 θ 的平行四边形的面积。 \vec{c} 垂直于 \vec{a}, \vec{b} 所决定的平面,其指向按右手定则从 \vec{a} 转向 \vec{b} (当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向)。

混合积 $[\vec{a}\vec{b}\vec{c}] = (\vec{a} \times \vec{b}) \cdot \vec{c}$ 表示以 $\vec{a}, \vec{b}, \vec{c}$ 为棱的平等六面体的体积。

2 球

设球S有球心C,半径r。 设**射线**R有源点O,方向d。 C, O, D都是三维向量。

2.1 反射

给定入射光线v, 法线n, 求反射光线r, 其中v, n, r是三维向量,n是单位向量。如第3页的图1所示,反射光线方向为 $r = v - 2 \times (dot(v, n)) \times n$ 。

2 球 3

图 1: 反射示意图

;