Diszkrét matematika I. Előadas

3. előadás

A számfogalom bővítése

- Természetes számok: $\mathbb{N} = \{0, 1, 2, ...\}$ Nincs olyan $x \in \mathbb{N}$ természetes szám, melyre x + 2 = 1! \mathbb{N} halmazon a kivonás nem értelmezett!
- Egész számok: $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ A kivonás elvégezhető: x = -1.

 Nincs olyan $x \in \mathbb{Z}$ egész szám, melyre $x \cdot 2 = 1$! \mathbb{Z} halmazon az osztás nem értelmezett!
- Racionális számok: $\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$

Az osztás nemnulla számokkal elvégezhető: $x = \frac{1}{2}$. Nincs olyan $x \in \mathbb{Q}$ racionális szám, melyre $x^2 = 2!$

Q halmazon a négyzetgyökvonás nem (mindíg) elvégezhető még nemnegatív számok esetén sem!

• Valós számok: \mathbb{R} . Nincs olyan $x \in \mathbb{R}$ valós szám, melyre $x^2 = -1!$

U.i.: Ha
$$x \ge 0$$
, akkor $x^2 \ge 0$.
Ha $x < 0$, akkor $x^2 = (-x)^2 > 0$.

A számfogalom bővítése

A komplex számok körében az $x^2 = -1$ egyenlet megoldható!

Komplex számok alkalmazása:

- egyenletek megoldása;
- geometria;
- fizika (áramlástan, kvantummechanika, relativitáselmélet);
- grafika, kvantumszámítógépek.

Komplex számok bevezetése

Definíció (képzetes egység)

Legyen i (képzetes egység) megoldása az $x^2 = -1$ egyenletnek.

A szokásos számolási szabályok szerint számoljunk az i szimbólummal formálisan, $i^2=-1$ helyettesítéssel:

$$(1+i)^2 = 1+2i+i^2 = 1+2i+(-1) = 2i$$

. Általában:

$$(a+bi)(c+di) = ac - bd + (ad + bc)i$$

A komplex számok definíciója

Definíció (komplex számok)

Az a+bi alakú kifejezéseket, ahol $a,b\in\mathbb{R}$, komplex számoknak (\mathbb{C}) hívjuk, az ilyen formában való felírásukat algebrai alaknak nevezzük.

- összeadás: (a + bi) + (c + di) = a + c + (b + d)i.
- szorzás: (a+bi)(c+di) = ac-bd+(ad+bc)i.

Definíció (komplex szám valós és képzetes része)

A $z=a+bi\in\mathbb{C}$ $(a,b\in\mathbb{R})$ komplex szám valós része: $Re(z)=a\in\mathbb{R}$, képzetes része: $Im(z)=b\in\mathbb{R}$.

- Figyelem! $Im(z) \neq bi$
- Az a + 0 · i alakú komplex számok a valós számok. A 0 + bi alakú komplex számok a tisztán képzetes számok.
- Az a + bi és a c + di algebrai alakban megadott komplex számok pontosan akkor egyenlőek: a + bi = c + di, ha a = c és b = d.

A komplex számok definíciója

Definíció (komplex számok formális definíciója)

A komplex halmaza $\mathbb C$ az $(a,b)\in\mathbb R imes\mathbb R$ párok halmaza az alábbi műveletekkel:

- összeadás: (a, b) + (c, d) = (a + c, d + b);
- szorzás: $(a,b)\cdot(c,d)=(ac-bd,ad+bc)$.

A két definíció ekvivalens: $a + bi \leftrightarrow (a, b)$, pl. $i \leftrightarrow (0, 1)$.

Az a + bi formátum kényelmesebb számoláshoz.

Az (a, b) formátum kényelmesebb ábrázoláshoz (grafikusan, számítógépen).

További formális számokra nincs szükség:

Tétel (Algebra alaptétele, NB)

Legyen n > 0 és $a_0, \ldots, a_n \in \mathbb{C}$, $a_n \neq 0$. Ekkor az $a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ polinomnak létezik gyöke \mathbb{C} -ben, azaz létezik olyan z komplex szám, melyre $a_0 + a_1z + a_2z^2 + \ldots + a_nz^n = 0$.

2021.02.25

Osszeadás és szorzás alaptulajdonságai C-n

A definíciók alapján könnyen belátható, hogy a C-n bevezetett összeadás és szorzás rendelkezik a következő alaptulajdonságokkal:

Állítás (Összeadás és szorzás alaptulajdonságai C-n)

Összeadás tulajdonságai

- Asszociativitás: $\forall a, b, c \in \mathbb{C}$: (a+b)+c=a+(b+c).
- **2** Kommutativitás: $\forall a, b \in \mathbb{C}$: a + b = b + a.
- **③** Semleges elem (nullelem): ∃**0**∈ \mathbb{C} (nullelem), hogy $\forall a \in \mathbb{C}$: 0 + a = a + 0 = a.
- Additiv inverz (ellentett): $\forall a \in \mathbb{C} : \exists -a \in \mathbb{C}$ (a ellentettje), melyre a + (-a) = (-a) + a = 0.

Összeadás és szorzás alaptulajdonságai C-n

Állítás (Összeadás és szorzás alaptulajdonságai ℂ-n)

Szorzás tulajdonságai

- **1** Asszociativitás: $\forall a, b, c \in \mathbb{C} : (a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- **2** Kommutativitás: $\forall a, b, c \in \mathbb{C}$: $a \cdot b = b \cdot a$.
- **3** Egységelem: $\exists 1 \in \mathbb{C}$ (egységelem), melyre $\forall a \in \mathbb{C} : 1 \cdot a = a \cdot 1 = a$.
- **③** Multiplikatív inverz (reciprok): $\forall a \in \mathbb{C}$ nemnulla számhoz $\exists a^{-1} = \frac{1}{a} \in \mathbb{C}$ (a reciproka), melyre $a \cdot a^{-1} = a^{-1} \cdot a = 1$.

Disztributivitás

$$\forall a, b, c \in \mathbb{C} : a(b+c) = ab + ac$$
 (és $(a+b)c = ac + bc$)

Következmény:

- A fenti tulajdonságok miatt a $(\mathbb{C},+,\cdot)$ algebrai struktúra ún. *test* $((\mathbb{Q},+,\cdot)$ és $(\mathbb{R},+,\cdot)$ is test).
- Informálisan azt mondhatjuk, hogy a komplex számokkal "ugyanúgy" számolhatunk, mint a valós számokkal (összegek, szorzatok átzárójelezhetők; összeg tagjai, ill. szorzat tényezői felcserélhetők; zárójelek a disztributivitás szabályai szerint kibonthatók etc.).

Komplex számok ábrázolása

A komplex számok ábrázolhatók a komplex számsíkon (Gauss-sík):

- $z = a + bi \leftrightarrow (a, b)$
- \bullet bijekció (kölcsönösen egyértelmű megfeleltetés) $\mathbb C$ és a sík pontjai (vagy helyvektorai) között

Számolás komplex számokkal: abszolút érték, konjugált

Definíció (komplex szám abszolút értéke)

Egy $z = a + bi \in \mathbb{C}$ algebrai alakban megadott komplex szám abszolút értéke: $|z| = |a + bi| = \sqrt{a^2 + b^2}$.

Valós számok esetében ez a hagyományos abszolút érték: $|a| = \sqrt{a^2}$.

Állítás (HF)

Tetszőleges z komplex szám esetén:

- **1** $|z| \geq 0$,
- $|z| = 0 \Leftrightarrow z = 0.$

Definíció (komplex szám konjugáltja)

Egy z = a + bi algebrai alakban megadott komplex szám konjugáltja a $\overline{z} = a + bi = a - bi$ szám.

Számolás komplex számokkal: ellentett, kivonás

Definíció (komplex szám ellentettje)

Egy $z \in \mathbb{C}$ szám ellentettje az a \hat{z} szám, melyre $z + \hat{z} = 0$.

Egy $r \in \mathbb{R}$ szám ellentettje: -r.

Állítás (Komplex szám ellentettje; Biz. HF)

Egy $z = a + bi \in \mathbb{C}$ algebrai alakban megadott komplex szám ellentettje a -z = -a - bi algebrai alakban megadott komplex szám.

Definíció (komplex számok kivonása)

A z, w komplex számok különbsége:

$$z - w = z + (-w)$$

Számolás komplex számokkal: reciprok, hányados

Definíció (nemnulla komplex szám reciproka)

Egy $z \in \mathbb{C}$ nemnulla szám reciproka az a $z^{-1} = \frac{1}{z}$ szám, melyre $z \cdot z^{-1} = 1$.

A reciprok segítségével a nemnulla komplex számmal történő osztás is definiálható:

Definíció (osztás nemnulla komplex számmal)

Két $z, w \neq 0$ komplex szám hányadosa:

$$\frac{z}{w} = z \cdot \frac{1}{w}$$
.

Számolás komplex számokkal: hányados kiszámítása

Mi lesz $\frac{2+3i}{1+i}$ algebrai alakban?

Ötlet: Hasonló, mint valós törteknél a gyöktelenítés:

$$\frac{1}{1+\sqrt{2}} = \frac{1}{1+\sqrt{2}} \cdot \frac{1-\sqrt{2}}{1-\sqrt{2}} = \frac{1-\sqrt{2}}{(1+\sqrt{2})(1-\sqrt{2})} = \frac{1-\sqrt{2}}{1^2-\sqrt{2}^2} = \frac{1-\sqrt{2}}{1-2} = -1+\sqrt{2}$$

Nevező konjugáltjával való bővítés:

$$\frac{2+3i}{1+i} = \frac{2+3i}{1+i} \cdot \frac{1-i}{1-i} = \frac{(2+3i)(1-i)}{(1+i)(1-i)} = \frac{2-2i+3i-3i^2}{1^2-i^2} = \frac{5+i}{1-(-1)} = \frac{5+i}{2} = \frac{5}{2} + \frac{1}{2}i$$

Számolás komplex számokkal: hányados kiszámítása

Lemma

Tetszőleges z komplex szám esetén: $z \cdot \overline{z} = |z|^2$.

Bizonyítás.

Legyen z algebrai alakja a + bi. Ekkor $z \cdot \overline{z} = (a + bi)(a - bi) = a^2 + b^2 = |z|^2$.

Allítás (Hányados kiszámítása algebrai alakban)

Legyenek $z,w\in\mathbb{C}$, $w\neq 0$. Ekkor $\frac{z}{w}$ algebrai alakja megkapható a nevező konjugáltjával való bővítéssel: $\frac{z}{w} = \frac{z \cdot \overline{w}}{w \cdot \overline{w}}$.

Bizonyítás.

Legyenek
$$z=a+bi$$
 és $w=c+di$ (a, b, c, $d\in\mathbb{R}$). Ekkor
$$\frac{z}{w}=\frac{z\cdot\overline{w}}{w\cdot\overline{w}}=\frac{(a+bi)(c-di)}{(c+di)(c-di)}=\frac{ac+bd+(bc-ad)i}{c^2+d^2}=\frac{ac+bd}{c^2+d^2}+\frac{bc-ad}{c^2+d^2}i.$$

Számolás komplex számokkal

Tétel (A konjugálás és az abszolút érték tulajdonságai; Biz. HF.)

Tetszőleges $z,w\in\mathbb{C}$ esetén:

- $\mathbf{0} \ \overline{\overline{z}} = z$:

- $\mathbf{6} \ \ z \cdot \overline{z} = |z|^2;$
- 0 / 0 / 1 / 1
- **1** |0| = 0 és $z \neq 0$ esetén |z| > 0;

- $|z+w| \le |z| + |w|$ (háromszög-egyenlőtlenség).

Számolás komplex számokkal

Tétel

:

:

Bizonyítás.

$$|z \cdot w|^2 = z \cdot w \cdot \overline{z \cdot w} = z \cdot w \cdot \overline{z} \cdot \overline{w} = z \cdot \overline{z} \cdot w \cdot \overline{w} = |z|^2 \cdot |w|^2 = (|z| \cdot |w|)^2. \quad \Box$$

Komplex számok trigonometrikus alakja

Legyen $z=a+bi\in\mathbb{C}$ $(a,b\in\mathbb{R})$, $z\neq 0$. A komplex számsíkon:

- Az (a, b) vektor hossza: $r = |z| = \sqrt{a^2 + b^2}$.
- Jelölje φ az (a,b) vektornak a pozitív valós tengellyel bezárt (előjeles) szögét (azaz z egy irányszögét; megjegyzés: ez nem egyértelmű, mert 2π többszörösei hozzáadhatók).

A koordináták r és φ segítségével kifejezve:

$$a = r \cdot \cos \varphi, \quad b = r \cdot \sin \varphi$$

2021.02.25

Komplex számok trigonometrikus alakja

Definíció (trigonometrikus alak)

Egy $z \in \mathbb{C}$ nemnulla szám trigonometrikus alakja:

$$z = r(\cos\varphi + i\sin\varphi),$$

ahol r = |z|.

Figyelem!

- A 0-nak nem használjuk a trigonometrikus alakját.
- A trigonometrikus alak nem egyértelmű (mert az irányszög nem egyértelmű): $r(\cos \varphi + i \sin \varphi) = r(\cos(\varphi + 2\pi) + i \sin(\varphi + 2\pi))$.

Definíció (argumentum)

Egy nemnulla $z \in \mathbb{C}$ argumentuma az a $\varphi = arg(z) \in [0, 2\pi)$, melyre $z = r(\cos \varphi + i \sin \varphi)$.

Áttérés algebrai alakról trigonometrikus alakra

Adott $z=a+bi\neq 0$ algebrai alakban megadott komplex számnak keressük a trigonometrikus alakját.

$$a + bi = r(\cos \varphi + i \sin \varphi)$$

Adottak: a és b. Keressük: r és φ .

- $r = \sqrt{a^2 + b^2}$.
- ullet φ meghatározása:

$$\left. \begin{array}{l}
a = r\cos\varphi \\
b = r\sin\varphi
\end{array} \right\}$$

Ha $a \neq 0$, akkor $tg\varphi = \frac{b}{a}$, és így

$$\varphi = \begin{cases} \frac{\pi}{2}, & \text{ha } a = 0 \text{ \'es } b > 0 \\ \frac{3\pi}{2}, & \text{ha } a = 0 \text{ \'es } b < 0 \\ \textit{arctg} \frac{b}{a}, & \text{ha } a > 0; \\ \textit{arctg} \frac{b}{a} + \pi, & \text{ha } a < 0. \end{cases}$$

Moivre-azonosságok

Tétel (Moivre-azonosságok)

Legyenek $z, w \in \mathbb{C}$ nemnulla komplex számok: $z = |z|(\cos \varphi + i \sin \varphi)$, $w = |w|(\cos \psi + i \sin \psi)$, és legyen $n \in \mathbb{N}^+$. Ekkor

- $z^n = |z|^n (\cos n\varphi + i \sin n\varphi).$

A szögek összeadódnak, kivonódnak, szorzódnak. Az argumentumot ezek után redukcióval kapjuk!

Geometriai jelentés

Egy $z\in\mathbb{C}$ komplex számmal való szorzás a komplex számsíkon mint nyújtva-forgatás hat. |z|-vel nyújt, arg(z) szöggel forgat.

Bizonyítás.


```
 zw = |z|(\cos \varphi + i \sin \varphi) \cdot |w|(\cos \psi + i \sin \psi) = \\ = |z||w|(\cos \varphi \cos \psi - \sin \varphi \sin \psi + i(\cos \varphi \sin \psi + \sin \varphi \cos \psi)) = \\ \text{fgy az addíciós képletek alapján:} \\ = |z||w|(\cos(\varphi + \psi) + i \sin(\varphi + \psi))
```

Addíciós képletek:

$$\cos(\varphi + \psi) = \cos\varphi\cos\psi - \sin\varphi\sin\psi$$
$$\sin(\varphi + \psi) = \cos\varphi\sin\psi + \sin\varphi\cos\psi$$

- A szorzat abszolút értéke: |zw| = |z||w|.
- A szorzat egy irányszöge: $\varphi + \psi$. (Ha az argumentumot szeretnénk megkapni, akkor az irányszöget esetleg

redukálni kell:

- ha $0 \le arg(z) + arg(w) < 2\pi$, akkor arg(zw) = arg(z) + arg(w);
- ha $2\pi \le arg(z) + arg(w) < 4\pi$, akkor $arg(zw) = arg(z) + arg(w) 2\pi$.

A sin, cos függvények 2π szerint periodikusak, az argumentum meghatározásánál redukálni kell az argumentumok összegét.)

Gyökvonás

Definíció (komplex szám *n*-edik gyökei)

Legyen $n \in \mathbb{N}^+$. A z komplex szám n-edik gyökei az olyan w komplex számok, melyekre $w^n = z$.

Tétel (Gyökvonás komplex számok körében)

Legyen $z = |z|(\cos \varphi + i \sin \varphi)$, $n \in \mathbb{N}^+$. Ekkor a z n-edik gyökei:

$$w_k = \sqrt[n]{|z|} \left(\cos(\frac{\varphi}{n} + \frac{2k\pi}{n}) + i\sin(\frac{\varphi}{n} + \frac{2k\pi}{n})\right)$$

$$k=0,1,\ldots,n-1.$$

A tétel bizonyításánál fel fogjuk használni a következőt:

A $z=|z|(\cos\varphi+i\sin\varphi)$ és $w=|w|(\cos\psi+i\sin\psi)$ trigonometrikus alakban megadott komplex számok pontosan akkor egyenlőek:

$$|z|(\cos\varphi+i\sin\varphi)=|w|(\cos\psi+i\sin\psi),$$

ha:

- |z| = |w| és
- $\varphi = \psi + 2k\pi$ valamely $k \in \mathbb{Z}$ szám esetén.

Gyökvonás

Tétel (Gyökvonás komplex számok körében)

Legyen $z = |z|(\cos \varphi + i \sin \varphi)$, $n \in \mathbb{N}^+$. Ekkor a z n-edik gyökei:

$$w_k = \sqrt[n]{|z|}(\cos(\frac{\varphi}{n} + \frac{2k\pi}{n}) + i\sin(\frac{\varphi}{n} + \frac{2k\pi}{n}))$$

$$k=0,1,\ldots,n-1.$$

Bizonyítás.

Tetszőleges $w=|w|(\cos\psi+i\sin\psi)$ komplex számra, a hatványozásra vonatkozó Moivre-azonosság alapján: $w^n=|w|^n(\cos n\psi+i\sin n\psi)$. Így $w^n=z$ pontosan akkor, ha $|w|^n(\cos n\psi+i\sin n\psi)=|z|(\cos\varphi+i\sin\varphi)$, ami azzal ekvivalens, hogy

- $|w|^n = |z| \Leftrightarrow |w| = \sqrt[n]{|z|}$ és
- $n\psi = \varphi + 2k\pi$ valamely $k \in \mathbb{Z}$ -re $\Leftrightarrow \psi = \frac{\varphi}{n} + \frac{2k\pi}{n}$ valamely $k \in \mathbb{Z}$ -re.

Ha $k \in \{0,1,\ldots,n-1\}$, akkor ezek mind különböző komplex számot adnak.

Példa

Példa

Számítsuk ki $\frac{1-i}{\sqrt{3}+i}$ 6. gyökeinek (w) az értékeit!

$$1 - i = \sqrt{2} \left(\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right) = \sqrt{2} \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right)$$

$$\sqrt{3} + I = 2(\frac{\sqrt{3}}{2} + I\frac{1}{2}) = 2(\cos\frac{\pi}{6} + I\sin\frac{\pi}{6})$$
Mixel $7\pi = \pi - 19\pi$ except: $1-i = 1$

 $\begin{array}{l} \sqrt{3} + i = 2(\frac{\sqrt{3}}{2} + i\frac{1}{2}) = 2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}) \\ \text{Mivel } \frac{7\pi}{4} - \frac{\pi}{6} = \frac{19\pi}{12} \text{, ezért: } \frac{1-i}{\sqrt{3}+i} = \frac{1}{\sqrt{2}}(\cos\frac{19\pi}{12} + i\sin\frac{19\pi}{12}). \end{array}$

és így a 6. gyökök:

$$w_k = \frac{1}{\sqrt[12]{2}} \left(\cos\frac{19\pi + 24k\pi}{72} + i\sin\frac{19\pi + 24k\pi}{72}\right) : k = 0, 1, \dots, 5$$

Komplex egységgyökök

Definíció (n-edik egységgyökök)

Tetszőleges $n \in \mathbb{N}^+$ esetén az 1 n-edik gyökei az n-edik egységgyökök. (Azaz az $\epsilon^n = 1$ feltételnek eleget tevő komplex számok.)

A gyökvonás képlete alapján:

Tétel (Az n-edik egységgyökök trigonometrikus alakja)

Tetszőleges $n \in \mathbb{N}^+$ esetén az n-edik egységgyökök:

$$\epsilon_k = \epsilon_k^{(n)} = \left(\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}\right) : k = 0, 1, \dots, n-1.$$

Nyolcadik komplex egységgyökök:

Gyökvonás

Tétel (Az *n*-edik gyökök kifejezése egy *n*-edik gyök és az *n*-edik egységgyökök segítségével)

Legyen $z \in \mathbb{C}$ nemnulla komplex szám. $n \in \mathbb{N}^+$ és $w \in \mathbb{C}$ olyan, hogy $w^n = z$. Ekkor z n-edik gyökei felírhatóak a következő alakban:

$$w_k = w \epsilon_k \text{ ahol } k = 0, 1, ..., n-1.$$

Bizonyítás.

A $w\epsilon_k$ számok mind n-edik gyökök: $(w\epsilon_k)^n = w^n\epsilon_k^n = z \cdot 1 = z$. Ez n különböző szám, így az összes gyököt megkaptuk.

Rend

Bizonyos komplex számok hatványai periodikusan ismétlődnek:

- 1, 1, 1, . . .
- \bullet -1, 1, -1, 1, ...
- i, -1, -i, 1, i, -1, ...
- $\frac{1+i}{\sqrt{2}}$, i, $\frac{-1+i}{\sqrt{2}}$, -1, $\frac{-1-i}{\sqrt{2}}$, -i, $\frac{1-i}{\sqrt{2}}$, 1, $\frac{1+i}{\sqrt{2}}$, i, ...

Definíció (komplex szám rendje)

Egy z komplex szám különböző (egész kitevős) hatványainak számát a z rendjének nevezzük és o(z)-vel jelöljük.

Példa

- 1 rendje 1;
- 2 rendje ∞ : 2, 4, 8, 16, . . .;
- -1 rendje 2: 1, -1;
- i rendje 4: 1, i, -1, -i.

Rend

Tétel (Rend tulajdonságai)

Egy z komplex számnak vagy bármely két egész kitevős hatványa különböző (ilyenkor a rendje végtelen), vagy pedig a hatványok a rend szerint periodikusan ismétlődnek. Ekkor a rend a legkisebb olyan pozitív d szám, melyre $z^d = 1$. Továbbá $z^k = z^l \Leftrightarrow o(z)|k-l$. Speciálisan $z^k = 1 \Leftrightarrow o(z)|k$.

Bizonvítás.

NB.

Primitív *n*-edik egységgyökök

Az n-edik egységgyökök rendje nem feltétlenül n: 4-edik egységgyökök: 1, i, -1, -i.

- 1 rendje 1;
- -1 rendje 2;
- *i* rendje 4.

Definíció (primitív n-edik egységgyökök)

Az *n*-ed rendű *n*-edik egységgyökök a primitív *n*-edik egységgyökök.

A tétel következményei:

Következmény

- Egy primitív n-edik egységgyök hatványai pontosan az n-edik egységgyökök.
- Egy primitív n-edik egységgyök pontosan akkor k-adik egységgyök, ha n|k.

Primitív egységgyökök

Példa

- Primitív 1. egységgyök: 1;
- \bullet Primitív 2. egységgyök: -1;
- Primitív 3. egységgyökök: $\frac{-1\pm i\sqrt{3}}{2}$;
- Primitív 4. egységgyökök: $\pm i$;
- Primitív 5. egységgyökök: ... (HF)
- Primitív 6. egységgyökök: $\frac{1\pm i\sqrt{3}}{2}$.

Állítás (NB.)

Egy $\cos(\frac{2k\pi}{n}) + i\sin(\frac{2k\pi}{n})$ n-edik egységgyök pontosan akkor primitív n-edik egységgyök, ha (n, k) = 1.