MATH 470: Communications and Cryptography

Homework 5

Due date: 4 October 2023 Name: Huy Lai

Problem 1. Alice publishes her RSA public key: modulus N=2038667 and exponent e=103. **Subproblem 1.** Bob wants to send Alice the message m=892383. What ciphertext does Bob send to Alice?

Solution:

Bob sends $c = m^e \equiv 45293 \mod N$

Subproblem 2. Alice knows that her modulus factors into a product of two primes, one of which is p = 1301. Find a decryption exponent d for Alice.

Solution:

The modulus $N = 1301 \cdot 1567$, so $\phi(N) = 1300 \cdot 1568 = 2035800$.

A decryption exponent is given by a solution to

$$e \cdot d \equiv 1 \mod \phi(N)$$

The solution is $d = 810367 \mod \phi(N)$

Subproblem 3. Alice receives the ciphertext c = 317730 from Bob. Decrypt the message.

Solution:

Alice needs to solve $m^e \equiv c \mod N$.

Raising both sides to the power of d yields

$$m \equiv c^d \mod N \equiv 514407 \mod N$$

Problem 2. Let N = pq = 352717 and (p - 1)(q - 1) = 351520, use the method described in Remark 3.11 to determine p and q.

Solution:

$$p + q = N + 1 - (p - 1)(q - 1) = 1198$$
, so

$$X^{2} - (p+q)X + N = X^{2} - 1198X + 352717 = (X - 677)(X - 521)$$

Hence p = 677, q = 521

Problem 3. Alice decides to use RSA with the public key N=1889570071. In order to guard against transmission errors, Alice has Bob encrypt his message twice, once using the encryption exponent $e_1=1021763679$ and once using the encryption exponent $e_2=519424709$. Eve intercepts the two encrypted messages

$$c_1 = 1244183534$$
 and $c_2 = 732959706$

Assuming that Eve also knows N and the two encryption exponents e_1 and e_2 , use the method described in Example 3.15 to help Eve recover Bob's plaintext without finding a factorization of N.

Solution:

With the method described in Example 3.15, we find that

$$u \cdot e_1 + v \cdot e_2 = 1$$

with

$$u = 252426389$$
 and $v = -496549570$

Then the plaintext is

$$m \equiv c_1^u \cdot c_2^v \equiv 1054592380 \mod N$$

Problem 4. Use the Miller–Rabin test on each of the following numbers. In each case, either provide a Miller-Rabin witness for the compositeness of n, or conclude that n is probably prime by providing 10 numbers that are not Miller-Rabin witnesses for n.

Subproblem 1. n = 118901509

Solution:

```
n-1 = 118901508 = 2^2 \cdot 29725377
2^{29725377} \equiv 7906806 \mod n
2^{2\cdot 29725377} \equiv -1 \mod n
3^{2\cdot 29725377} \equiv -1 \mod n
3^{2\cdot 29725377} \equiv 1 \mod n
5^{29725377} \equiv -1 \mod n
5^{2\cdot 29725377} \equiv 1 \mod n
7^{29725377} \equiv 7906806 \mod n
7^{2\cdot 29725377} \equiv -1 \mod n
11^{2\cdot 29725377} \equiv -1 \mod n
11^{2\cdot 29725377} \equiv -1 \mod n
11^{2\cdot 29725377} \equiv 1 \mod n
```

Thus 2, 3, 5, 7, and 11 are not Miller–Rabin witnesses for n. n is probably prime.

Subproblem 2. n = 118901521

Solution:

```
n - 1 = 118901520 = 2^4 \cdot 7431345
2^{7431345} \equiv 45274074 \mod n
2^{2 \cdot 7431345} \equiv 1758249 \mod n
2^{4 \cdot 7431345} \equiv 1 \mod n
2^{8 \cdot 7431345} \equiv 1 \mod n
```

Thus 118901521 is composite. It factors into $n = 271 \cdot 541 \cdot 811$

Problem 5. Show that the Elgamal encryption protocol is insecure against a Chosen Ciphertext Attack. More specifically, suppose Bob has published a prime p, primitive root $g \mod p$, and his public key B. Alice has sent Bob a ciphertext (c_1, c_2) . So far Eve only knows p, g, B, and (c_1, c_2) . But suppose now that Eve can somehow make Bob decrypt "random-looking" ciphertexts (c'_1, c'_2) of Eve's choice (by "random-looking" we mean that Bob should not be able to tell that (c'_1, c'_2) or its decryption is related to Alice's message in any way). Show how Eve can use this ability to decrypt Alice's message.

Solution:

We can generate a "random" cipher text for Bob to decrypt using a second message m' and Eve's secret key k' as follows and a random integer r:

$$c'_1 = c_1 \cdot g^{k'} \mod p$$
$$c'_2 = c_2 \cdot r \cdot B^{k'} \mod p$$

Bob uses this information to calculate the "encrypted" message to return the decryption:

$$m' \equiv (c'_1)^{-b}(c'_2)$$

$$\equiv (c_1 g^{k'})^{-b}(c_2 r B^{k'})$$

$$\equiv (g^{k'}(g^a))^{-b}(r B^{k'}(B^a m))$$

$$\equiv (g^{-k'b} g^{-ab})(r g^{bk'} g^{ba} m)$$

$$\equiv r m \mod p$$

Note that the decryption m' looks random from the random integer r. Eve can recover m by multiplying Bob's decryption by $r^{-1} \mod p$ **Problem 6.** Let N=pq be a product of two distinct odd primes p and q. Show that there are four square roots of 1 modulo N. In other words, show that there are exactly four integers in $\{1, 2, 3, \dots, N-1\}$ whose squares are congruent to $1 \mod N$.

Solution:

Let x be an integer such that $x^2 \equiv 1 \mod N$.

Since N = pq, we have $x^2 \equiv 1 \mod p$ and $x^2 \equiv 1 \mod q$.

By 1.36(a), p,q are odd primes, there are exactly two solutions to $x^2 \equiv 1 \mod p$, namely $x \equiv \pm 1 \mod p$. Additionally, there are exactly two solutions to $x^2 \equiv 1 \mod q$, namely $x \equiv \pm 1 \mod q$.

So there are four possible cases for x:

$$x \equiv 1 \mod p \quad \text{and} \quad x \equiv 1 \mod q \tag{1}$$

$$x \equiv 1 \mod p \quad \text{and} \quad x \equiv -1 \mod q \tag{2}$$

$$x \equiv -1 \mod p \quad \text{and} \quad x \equiv 1 \mod q \tag{3}$$

$$x \equiv -1 \mod p \quad \text{and} \quad x \equiv -1 \mod q \tag{4}$$

Since p, q are distinct odd primes, we have gcd(p, q) = 1, so we can apply the Chinese Remainder Theorem. Each of the four systems of congruences above have a solution that is unique modulo N = pq.

This implies that there are at most four solutions.

To see why there are exactly four, note that $+1 \not\equiv -1 \mod p$ nor $+1 \not\equiv -1 \mod q$ (because p, q are odd), so the solutions to the four systems of congruences above are distinct modulo either p or q.

In either case, they are all distinct modulo N.

Hence there are exactly four solutions to $x^2 \equiv 1 \mod N$.

Problem 7. Suppose that you are given an integer N and a pair of integers e,d with the promise that N is the product of two large primes and that $ed \equiv 1 \mod \phi(N)$ (but you are not given the factors of N nor the value of $\phi(N)$. Describe an algorithm that efficiently factors N.

Solution:

Note that since $ed \equiv 1 \mod \phi(N)$, by proposition, $\phi(N) \mid ed - 1$. This implies that $k \cdot \phi N + 1 = ed, k \in \mathbb{Z}$

- 1. Compute a random integer a such that 1 < a < N. This is similar to how the Miller-Rabin primality test selects random witnesses.
- 2. Calculate the value $x \equiv a^d \mod N$. Since $ed \equiv 1 \mod \phi(N)$, this means that $x^e \equiv a^{(d \cdot e)} \equiv a^{(k \cdot \phi(N) + 1)} \equiv a \mod N$, where k is an integer.
- 3. Use the Extended Euclidean Algorithm to find $g = \gcd(N, x a)$. If the g > 1, then it means that N has a non-trivial factor in common with x a.
- 4. If g = 1, repeat steps 1-3 with a different random value of a. Keep doing this until you find g > 1 or until you've tried a sufficient number of random values of a.
- 5. Once you find a g > 1, you have effectively found one of the prime factors of N, either p or q.