

PII: S0040-9383(98)00052-4

THE K-THEORY LOCALIZATIONS AND v_1 -PERIODIC HOMOTOPY GROUPS OF H-SPACES

A. K. Bousfield[†]

(Received 6 November 1997; in revised form August 1998)

We determine the mod p K-theory localizations and v_1 -periodic homotopy groups of finite H-spaces and of other spaces with torsion-free exterior p-adic K-cohomology algebras at an odd prime p. Our localization results generalize those of Mahowald and Thompson (Topology 1992, **31**, 133–141) for odd-dimensional spheres. We construct our mod p K-theory localizations as homotopy fibers of unstable maps between infinite loop spaces, and similarly construct a wide array of new spaces having torsion-free exterior p-adic K-cohomology algebras with prescribed Adams operations. This leads, for example, to a classification of the odd mod p K-homology spheres. © 1999 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

In this paper, we study the localization $X_{K/p}$ of a space X with respect to mod p complex K-homology theory or p-adic K-cohomology theory at an odd prime p (see [4] and 2.5). This localization has previously been determined when X is an infinite loop space [6] or odd sphere [27], but in few other cases. We now let X be a 1-connected space whose p-adic K-cohomology $K^*(X; \hat{Z}_p)$ is isomorphic, as a Z/2-graded p-adic λ -ring, to an exterior algebra $\hat{\Lambda}(M)$ generated by a regular torsion-free p-adic Adams module $M \subset K^1(X; \hat{Z}_p)$ (see 2.10, 3.2, and 4.4). For example, by Theorem 6.3, X might be any 1-connected finite H-space such that the multiplication in $H_*(X;Q)$ is associative. In Theorem 4.8, we construct the localization $X_{K/p}$ as a homotopy fiber of a certain map $\Omega^\infty \mathcal{M}(M,1) \to \Omega^\infty \mathcal{M}(M,1)$ with low-dimensional adjustments, where $\mathcal{M}(G,1)$ is a $K\hat{Z}_p^*$ -Moore spectrum obtained as follows: by Theorem 3.4, for each stable p-adic Adams module G, there exists a homotopically unique K/p_* -local spectrum $\mathcal{M}(G,1)$ such that $K^0(\mathcal{M}(G,1); \hat{Z}_p) = 0$ and $K^1(\mathcal{M}(G,1); \hat{Z}_p) \cong G$.

We also study the v_1 -periodic homotopy groups $v_1^{-1}\pi_*(X;V)$ of a pointed space X with coefficients in a finite p-torsion spectrum V (see 7.1). Roughly speaking, these are obtained by choosing a v_1 -map $\omega: \Sigma^d V \to V$ and then inverting the action of ω on the homotopy groups of X with coefficients in a desuspension space of V. By [8, 12, Section 6, 21], or [23], there exists a functor $\Phi: Ho_* \to \mathscr{S}$ and natural equivalences

$$v_1^{-1}\pi_*(X;V) \cong [V,\Phi X]_* \cong [V,\tau_p\Phi X]_*$$

where Ho_* is the homotopy category of pointed CW-complexes, where $\mathscr S$ is the stable homotopy category, and where $\tau_p\Phi X$ is the p-torsion part of ΦX . From this perspective, the absolute v_1 -periodic homotopy groups $v_1^{-1}\pi_*X$, introduced by Davis and Mahowald [20], may be interpreted as stable homotopy groups $v_1^{-1}\pi_*X \cong \pi_*\tau_p\Phi X$ (see [21] and Theorem 7.5). Important examples of v_1 -periodic homotopy groups have been computed

[†]The author was partially supported by the National Science Foundation.

with considerable effort by Bendersky, Davis, Mahowald, Mimura, Thompson, and others as explained in [19].

In this paper, we develop a K-theoretic approach to v_1 -periodic homotopy groups, generalizing that used by Langsetmo and Thompson in their calculation of $v_1^{-1}\pi_*S^{2n+1}$ [24, 19]. This approach is based on results of Thompson [33] and the author [10, 14] showing that v_1 -periodic homotopy equivalences of spaces are very closely related to K/p_* -equivalences. Here, we deduce that $\Phi X \simeq \Phi(X_{K/p})$ when X is an H-space or an odd sphere or any other K/p_* -durable space (see Theorem 7.9). For a 1-connected finite H-space X with $H_*(X;Q)$ associative, we use our knowledge of $X_{K/p}$ to prove in Theorem 9.2 that $\Phi X \simeq \mathcal{M}(M/\psi^p,1)$ where $M = \hat{Q}K^1(X;\hat{Z}_p) \cong PK^1(X;\hat{Z}_p)$ is the p-adic Adams module of indecomposables or primitives. We may now use the $K\hat{Z}_p^*$ -Adams spectral sequence (Theorems 8.2 and 10.4) to calculate the v_1 -periodic homotopy groups $v_1^{-1}\pi_*(X;V) \cong [V,\Phi X]_*$, and we obtain the strikingly simple expressions

$$v_1^{-1}\pi_{2m}X \cong [W^m(M/\psi^p)]^\#$$

 $v_1^{-1}\pi_{2m-1}X \cong [W_1^m(M/\psi^p)]^\#$

in Theorem 9.2 for the absolute v_1 -periodic homotopy groups of X, where $[-]^\#$ denotes the Pontrjagin dual, and where $W^m(M/\psi^p)$ and $W_1^m(M/\psi^p)$, respectively, denote the cokernel and kernel of $\psi^r - r^m \colon M/\psi^p \to M/\psi^p$ for an integer r generating the group of units $(Z/p^2)^\times$. In particular, $v_1^{-1}\pi_{2m}X$ and $v_1^{-1}\pi_{2m-1}X$ are finite p-groups of the same order. To illustrate our approach, we recover the main result of [18] on the v_1 -periodic homotopy groups of SU(n).

In the process of constructing our K/p_* -localizations, we also construct a large new family of K/p_* -local spaces. For each regular torsion-free p-adic Adams module M, we obtain a K/p_* -local space X with $M \subset K^1(X; \hat{Z}_p)$ and $K^*(X; \hat{Z}_p) \cong \hat{\Lambda}(M)$ in Theorem 4.7. Moreover, we show that X is homotopically unique when $M \cong \hat{Z}_p$. This leads to an almost complete homotopy classification of the K/p_* -local spaces X with $K_0(X; Z/p) = 0$ and $K_1(X; Z/p) \cong Z/p$ in Theorem 5.3. We call these spaces $K_1(X; Z/p) \cong K_2(P)$ in Theorem 5.3. We call these spaces $K_1(X; Z/p) \cong K_2(P)$ in Theorem 5.3. We call these spaces odd K/p-homology spheres, and we determine their V_1 -periodic homotopy groups in 9.11. The odd K/p-homology spheres $K_1(X; Z/p) \cong K_2(X; Z/p) \cong$

$$(\Sigma^{\infty}\Theta E)_{K/p} \simeq E_{K/p}$$

for each spectrum E.

The present work sets the stage for a p-adic K-theoretic unstable Adams spectral sequence, analogous to the classical mod p unstable Adams spectral sequence of Massey and Peterson [28] or Bousfield and Kan [15, 16, p. 22]. For a space X, our assumption that $K^*(X; \hat{Z}_p) \cong \hat{\Lambda}(M)$, for a regular p-adic Adams module M, is analogous to the Massey-Peterson assumption that $H^*(X; Z/p)$ is a free unstable algebra over the Steenrod algebra in the sense of Steenrod and Epstein [31]. The p-adic K-theoretic unstable E_2 -term for X will be given by an unstable Ext for M, and the spectral sequence will converge to $\pi_* X_{K/p}$ above the bottom dimensions by arguments using our results on $X_{K/p}$.

Throughout this paper, we let p denote a fixed odd prime, except in Section 2 where we also allow p=2. We let \hat{Z}_p denote the p-adic integers and let Z_{p^n} denote the p-torsion subgroup of Q/Z. We use the symbols Z_{p^n} and Z/p^n interchangeably.

2. THE p-ADIC K-COHOMOLOGY OF SPACES AND SPECTRA

In this section, we develop some needed preliminaries on the p-adic K-cohomology of spaces and spectra where p is an arbitrary prime. We start more generally by considering

2.1. Brown–Comenetz duality and *p***-adic cohomology theories.** For a locally compact Hausdorff abelian group G, the *Pontrjagin dual* $G^{\#}$ is given by $\operatorname{Hom}_{\operatorname{cont}}(G, \mathbb{R}/Z)$ with the compact-open topology. This restricts to a duality between the categories of discrete abelian groups and compact Hausdorff abelian groups, and restricts further to a duality between the categories of discrete *p*-torsion abelian groups and *p*-profinite abelian groups. Following [17], for a spectrum E, we let cE denote the function spectrum F(E, cS) where cS is determined by the natural equivalence $[X, cS] \cong (\pi_0 X)^{\#}$ for spectra $X \in S$. The spectrum cE is called the *Brown–Comenetz dual* of E, and the associated cohomology theory has a natural *universal coefficient isomorphism*

$$(cE)^n X \cong (E_n X)^\#$$

for a space or spectrum X and $n \in Z$. In particular, $\pi_n(cE) \cong (\pi_{-n}E)^\#$. Following Anderson [2] or Yosimura [35], we have

2.2. Proposition. There are canonical equivalences $c(KZ_{p^{\infty}}) \simeq K\hat{Z}_p$ and $c(KZ/p^i) \simeq KZ/p^i$ for $i \ge 1$.

Proof. We let $e: K\hat{Z}_p \to c(KZ_{p^{\infty}})$ be the adjoint of the map $K\hat{Z}_p \wedge KZ_{p^{\infty}} \to cS$ corresponding to the homomorphism

$$\pi_0(K\widehat{Z}_p \wedge KZ_{p^{\infty}}) \to \pi_0KZ_{p^{\infty}} = Z_{p^{\infty}} \subset \mathbb{R}/Z$$

induced by the multiplication map $K\hat{Z}_p \wedge KZ_{p^{\infty}} \to KZ_{p^{\infty}}$. Since the multiplication map induces an isomorphism

$$\pi_n K \hat{Z}_p \cong \operatorname{Hom}(\pi_{-n} K Z_{p^{\infty}}, \pi_0 K Z_{p^{\infty}}) \cong (\pi_{-n} K Z_{p^{\infty}})^{\#}$$

for each n, we conclude that $e_*: \pi_* K \hat{Z}_p \cong \pi_* c(KZ_{p^\infty})$ and hence $e: K \hat{Z}_p \simeq c(KZ_{p^\infty})$. The proof for KZ/p^i is similar.

2.3. Corollary. For a space or spectrum X and $i, n \in Z$ with $i \ge 1$, there are natural universal coefficient isomorphisms

$$K^{n}(X; \hat{Z}_{p}) \cong K_{n}(X; Z_{p^{\infty}})^{\#}$$
$$K^{n}(X; Z/p^{i}) \cong K_{n}(X; Z/p^{i})^{\#}.$$

Thus, each of the cohomology groups $K^n(X; \hat{Z}_p)$ and $K^n(X; Z/p^i)$ has a natural p-profinite abelian group structure. This structure agrees with the usual inverse limit topology [32] since there are natural topological isomorphisms $K^n(X; \hat{Z}_p) \cong \lim_{\alpha} K^n(X_{\alpha}; \hat{Z}_p)$ and $K^n(X; Z/p^i) \cong \lim_{\alpha} K^n(X_{\alpha}; Z/p^i)$, dual to the corresponding discrete isomorphisms for K_n , where $\{X_{\alpha}\}$ are the finite CW-subobjects of X.

Using Corollary 2.3 and Bockstein arguments, we see

2.4. Proposition. For a map $f: X \to Y$ of spaces or spectra and an integer $i \ge 1$, the following are equivalent:

(i)
$$f^*$$
: $K^*(Y; \hat{Z}_p) \cong K^*(X; \hat{Z}_p)$;

- (ii) $f^*: K^*(Y; \mathbb{Z}/p^i) \cong K^*(X; \mathbb{Z}/p^i);$
- (iii) $f_*: K_*(X; \mathbb{Z}/p^i) \cong K_*(Y; \mathbb{Z}/p^i);$
- (iv) $f_*: K_*(X; Z_{p^{\infty}}) \cong K_*(Y; Z_{p^{\infty}}).$
- **2.5. The** K/p_* -localization. We let $X \to X_{K/p}$ denote the localization of a space or spectrum X with respect to the homology $K/p_* = K_*(-;Z/p)$ as in [4] or [5]. By Proposition 2.4, this is the same as the localization with respect to any one of the (co) homologies $K^*(-;\hat{Z}_p)$, $K^*(-;Z/p^i)$, $K_*(-;Z/p^i)$, and $K_*(-;Z_{p^*})$. Although each of these (co)homologies may be used to capture the K/p_* -local properties of spaces and spectra, we shall rely primarily on $K^*(-;\hat{Z}_p)$ because of its rich operational structure. To describe this structure for spectra, we introduce
- **2.6.** The stable *p*-adic Adams modules. By a *finite stable p*-adic Adams module, we mean a finite abelian *p*-group *G* with endomorphisms ψ^k : $G \to G$ for $k \in Z pZ$ such that:
 - (i) $\psi^1 = \text{Id}$ and $\psi^j \psi^k = \psi^{jk}$ for all $j, k \in \mathbb{Z} p\mathbb{Z}$;
 - (ii) there exists an integer $n \ge 1$ such that $\psi^k = \psi^{k+p^n j}$ on G for all $k \in \mathbb{Z} p\mathbb{Z}$ and $i \in \mathbb{Z}$.

These conditions ensure that the monoidal action of $Z-pZ=\{\psi^k\}_{k\in Z-pZ}$ on G factors through the group of units $(Z/p^n)^\times$ for sufficiently large n and thus extends to a continuous action of the p-adic units \hat{Z}_p^\times . By a stable p-adic Adams module, we mean the topological inverse limit of an inverse system of finite stable p-adic Adams modules. Let A denote the abelian category of stable p-adic Adams modules or (depending on the context) of Z/2-graded stable p-adic Adams modules.

- **2.7.** The stable *p*-adic cohomology $K^*(E; \hat{Z}_p)$. For a spectrum E, the groups $K^*(E; \hat{Z}_p)$ are stable *p*-adic Adams modules as in [11, 8.1] with a Bott isomorphism $B: K^*(E; \hat{Z}_p) \cong K^{*-2}(E; \hat{Z}_p)$ such that $\psi^k B = kB\psi^k$ for $k \in Z pZ$. We shall treat $K^*(E; \hat{Z}_p)$ as a Z/2-graded stable *p*-adic Adams module $\{K^0(E; \hat{Z}_p), K^1(E; \hat{Z}_p)\}$. To similarly describe the *p*-adic K-theory of spaces, we introduce
- **2.8. The** *p*-adic Adams modules. By a *finite p*-adic Adams module, we mean a finite abelian *p*-group M with endomorphisms $\psi^k \colon M \to M$ for $k \in \mathbb{Z}$ such that
 - (i) $\psi^1 = \text{Id}$ and $\psi^j \psi^k = \psi^{jk}$ for all $j, k \in \mathbb{Z}$;
 - (ii) there exists an integer $n \ge 1$ such that $\psi^k = \psi^{k+p^n j}$ on M for all $j, k \in \mathbb{Z}$.

These conditions ensure that the monoidal action of $Z \cong \{\psi^k\}_{k \in Z}$ on M factors through Z/p^n for sufficiently large n, and thus extends to a continuous monoidal action of \hat{Z}_p . By a p-adic Adams module, we mean the topological inverse limit of an inverse system of finite p-adic Adams modules. Since ψ^0 acts idempotently on a p-adic Adams module M, there is a natural decomposition, $M = M_{\rm red} \oplus M_{\rm fix}$, where $M_{\rm red} = \{x \in M | \psi^0 x = 0\}$ and $M_{\rm fix} = \{x \in M | \psi^0 x = x\}$. Moreover, since $\psi^k \psi^0 = \psi^0$, we have $\psi^k x = x$ for each $x \in M_{\rm fix}$ and $k \in Z$. We say that M is reduced when $M = M_{\rm red}$ or equivalently when $\psi^0 = 0$ on M. We let $\mathscr U$ denote the abelian category of p-adic Adams modules or (depending on the context) of Z/2-graded p-adic Adams modules.

2.9. The *p*-adic cohomology $K^*(X; \hat{Z}_p)$. For a space X, we may treat $K^*(X; \hat{Z}_p)$ as a $\mathbb{Z}/2$ -graded *p*-adic Adams module $\{K^0(X; \hat{Z}_p), K^1(X; \hat{Z}_p)\}$, and we note that there are natural isomorphisms $K^0(X; \hat{Z}_p)_{\text{fix}} \cong H^0(X; \hat{Z}_p)$ and $K^1(X; \hat{Z}_p)_{\text{fix}} \cong H^1(X; \hat{Z}_p)$ by [11, 4.5]. In addition, $K^*(X; \hat{Z}_p)$ is a $\mathbb{Z}/2$ -graded commutative algebra with $w^2 = 0$ for each

 $w \in K^1(X; \hat{Z}_p)$, and the Adams operations ψ^k respect multiplication as follows: for elements $a, b \in K^0(X; \hat{Z}_p)$ and $x, y \in K^1(X; \hat{Z}_p)$, there are identities $\psi^k(ab) = \psi^k(a)\psi^k(b)$, $\psi^k(ax) = \psi^k(a)\psi^k(x)$, $\psi^k(xy) = k\psi^k(x)\psi^k(y)$, and $\psi^k(1) = 1$. Finally, we briefly recall

2.10. The *p*-adic λ -ring structure of $K^*(X; \hat{Z}_p)$. In [11], we formulated the notion of a $\mathbb{Z}/2$ -graded *p*-adic λ -ring, extending the similar ungraded notion of [3], and we showed that $K^*(X; \hat{Z}_p)$ is a $\mathbb{Z}/2$ -graded *p*-adic λ -ring for each connected space X. As a part of its structure, a $\mathbb{Z}/2$ -graded *p*-adic λ -ring A has a $\mathbb{Z}/2$ -graded commutative multiplication and has canonical Adams operations $\psi^k: A \to A$, for $k \in \mathbb{Z}$ with the properties given above in 2.9. In [11], we showed that the remaining parts of its structure are completely captured by a single non-additive operation $\theta^p: A^0 \to A^0$ which satisfies $\psi^p(x) = x^p + p\theta^p(x)$ (and other conditions) for each $x \in A^0$. In fact, we showed that a $\mathbb{Z}/2$ -graded p-adic λ -ring is precisely equivalent to a " $\mathbb{Z}/2$ -graded p-adic θ^p -ring equipped with Adams operations." We refer the reader to [11] for the full details.

3. THE p-ADIC K-COHOMOLOGY OF INFINITE LOOP SPACES

In this section, we recall some results of [11] on the *p*-adic *K*-cohomology of infinite loop spaces, where *p* is a fixed odd prime, and we introduce the fundamental infinite loop spaces which will be our building blocks for K/p_* -localizations of spaces. We shall need

3.1. Free *p*-adic Adams modules. For a stable *p*-adic Adams module *G*, let $\tilde{F}(G)$ denote the reduced *p*-adic Adams module generated freely by *G*. Thus, $\tilde{F}(G) = G \times G \times G \times ...$ with Adams operations

$$\psi^{p}(x_{1}, x_{2}, x_{3}, \dots) = (0, x_{1}, x_{2}, \dots)$$

$$\psi^{k}(x_{1}, x_{2}, x_{3}, \dots) = (\psi^{k} x_{1}, \psi^{k} x_{2}, \psi^{k} x_{3}, \dots)$$

for $k \in Z - pZ$, where G is embedded in $\widetilde{F}(G)$ by identifying each $x \in G$ with $(x, 0, 0, \dots) \in \widetilde{F}(G)$. The inclusion $G \subset \widetilde{F}(G)$ is the universal homomorphism from G to a reduced p-adic Adams module.

3.2. Exterior algebras on p-adic Adams modules. For a p-adic Adams module M placed in degree 1, let $\hat{\Lambda}(M)$ denote the Z/2-graded p-adic exterior algebra on M given by $\hat{\Lambda}(M) = \lim_{\alpha} \Lambda(M_{\alpha})$ where $\{M_{\alpha}\}_{\alpha}$ are the quotient finite p-adic Adams modules of M and Λ is the exterior algebra functor for abelian groups. Then $\hat{\Lambda}(M)$ has a canonical Z/2-graded p-adic λ -ring structure by [11, Theorem 6.3], and the inclusion $M \subset \hat{\Lambda}(M)$ is the universal homomorphism from M to a Z/2-graded p-adic λ -ring.

For a spectrum E with $K^*(E; \hat{Z}_p)$ torsion-free, we determined the p-adic K-cohomology $K^*(\Omega^\infty E; \hat{Z}_p)$ in [11, Theorem 8.3], and our result specializes to

3.3. THEOREM. If E is a 0-connected spectrum with $H^1(E;\hat{Z}_p)=0=H^2(E;\hat{Z}_p)$, with $K^0(E;\hat{Z}_p)=0$, and with $K^1(E;\hat{Z}_p)$ torsion-free, then there is a natural isomorphism of $\mathbb{Z}/2$ -graded p-adic λ -rings

$$\hat{\Lambda} \tilde{F} K^1(E; \hat{Z}_p) \cong K^*(\Omega^{\infty} E; \hat{Z}_p).$$

We shall apply this theorem to certain spectra $E = \widetilde{\mathcal{M}}(G, 1)$ which will be constructed from the following $K\hat{Z}_p^*$ -Moore spectra $\mathcal{M}(G, 1)$.

3.4. THEOREM. For a stable p-adic Adams module G, there exists a K/p_* -local spectrum $\mathcal{M}(G,1)$ with $K^1(\mathcal{M}(G,1);\hat{Z}_p) \cong G$ and $K^0(\mathcal{M}(G,1);\hat{Z}_p) = 0$, and such a spectrum is homotopically unique.

This will be proved later in 10.3. We also let $\mathcal{M}(G, 0)$ denote $\Sigma^{-1}\mathcal{M}(G, 1)$. To construct $\tilde{M}(G, 1)$, we need

3.5. The *p*-complete spectra. For an abelian group A, let SA denote the Moore spectrum with $\pi_i SA = 0$ for i < 0, $H_0 SA \cong A$, and $H_i SA = 0$ for $i \ne 0$. A spectrum X is called *p*-complete when it is SZ/p_* -local, or equivalently when F(SZ[1/p], X) = 0, or equivalently when $Ext(Z[1/p], \pi_*X) = 0 = Hom(Z[1/p], \pi_*X)$ as in [5]. Thus, a spectrum X is *p*-complete if and only if the groups π_*X are Ext-*p*-complete in the sense of [16]. Recall that each spectrum X has a natural *p*-completion $X \to \hat{X}_p$ given by the SZ/p_* -localization, where the groups $\pi_*\hat{X}_p$ are given by a splittable short exact sequence

$$0 \to \operatorname{Ext}(Z_{p^{\infty}}, \pi_* X) \to \pi_* \hat{X}_p \to \operatorname{Hom}(Z_{p^{\infty}}, \pi_{*-1} X) \to 0$$

as in [5, Proposition 2.5]. If X is an E_* -local spectrum for a homology theory E_* with p-torsion coefficient groups π_*E , then X is p-complete since SZ[1/p] is E-acyclic. In particular, the K/p_* -local spectra $\mathcal{M}(G,1)$ of Theorem 3.4 are p-complete. As in [16], an Ext-p-complete abelian group B is called adjusted when Hom(B,C)=0 for every torsion-free Ext-p-complete abelian group C, and each Ext-p-complete abelian group C belongs to a splittable short exact sequence $0 \to \hat{t}_p A \to A \to A/\hat{t}_p A \to 0$ where $\hat{t}_p A$ is the greatest adjusted Ext-p-complete subgroup of C and where C-complete quotient group of C-complete spectrum C-complete quotient group of C

$$\pi_i \overline{P}^n X = \begin{cases} \pi_i X & \text{if } i < n \\ \pi_n X / \hat{t}_p \pi_n X & \text{if } i = n \\ 0 & \text{if } i > n. \end{cases}$$

For a stable *p*-adic Adams module *G*, we now let $\widetilde{\mathcal{M}}(G, 1)$ denote the homotopy fiber of $\mathcal{M}(G, 1) \to \overline{P}^2 \mathcal{M}(G, 1)$. The map $\widetilde{\mathcal{M}}(G, 1) \to \mathcal{M}(G, 1)$ is a KZ/p_* -localization, or equivalently a $K\widehat{Z}_p^*$ -localization, by

3.6. Lemma. If $f: X \to Y$ is a map of spectra with $f_*: \pi_i X \cong \pi_i Y$ for all sufficiently large i, then $f_*: K_*(X; Z/p) \cong K_*(Y; Z/p)$ and $f^*: K^*(Y; \hat{Z}_p) \cong K^*(X; \hat{Z}_p)$.

Proof. This follows by Proposition 2.4 since the Eilenberg-MacLane spectra, and thus the Postnikov spectra, are K/p_* -acyclic.

We now consider the infinite loop spaces $\Omega^{\infty}\widetilde{\mathcal{M}}(G,1)$ which will serve as our building blocks for K/p_* -localizations of spaces.

3.7. Theorem. For a stable p-adic Adams module G, the space $\Omega^{\infty}\widetilde{\mathcal{M}}(G,1)$ is K/p_* -local, and there is a natural isomorphism of $\mathbb{Z}/2$ -graded p-adic λ -rings $K^*(\Omega^{\infty}\widetilde{\mathcal{M}}(G,1);\hat{\mathbb{Z}}_p)\cong \hat{\Lambda}\widetilde{F}G$ when G is torsion-free.

Proof. The first statement follows from Theorem 3.8 below, and the last from Theorem 3.3. \Box

We have used the following result of [6].

3.8. THEOREM. For a 0-connected p-complete spectrum E, there is a natural equivalence $(\Omega^{\infty}E)_{K/p} \simeq \Omega^{\infty}(E_{K/p}^c)$ where $E_{K/p}^c$ is given by the homotopy fiber square

To classify maps into the space $\Omega^{\infty} \widetilde{\mathcal{M}}(G, 1)$, we use

3.9. Theorem. For spectra X and Y such that $K^*(Y; \hat{Z}_p)$ is torsion-free, there is a natural short exact sequence

$$0 \to \operatorname{Ext}^1_{\mathcal{A}}(K^*(Y; \hat{Z}_p), K^*(\Sigma X; \hat{Z}_p)) \to [X, Y_{K/p}] \to \operatorname{Hom}_{\mathcal{A}}(K^*(Y; \hat{Z}_p), K^*(X; \hat{Z}_p)) \to 0.$$

This will be proved later in 10.5. Note that for stable p-adic Adams modules G and G' with G torsion-free, this theorem implies

$$[\mathcal{M}(G', 1), \mathcal{M}(G, 1)] \cong \operatorname{Hom}_{\mathcal{A}}(G, G').$$

Also, for a spectrum E with $K^*(E; \hat{Z}_p)$ torsion-free, it implies

$$E_{K/p} \simeq \mathcal{M}(K^1(E; \hat{Z}_p), 1) \times \mathcal{M}(K^0(E; \hat{Z}_p), 0).$$

We use Theorem 3.9 to deduce

3.10. Theorem. Let X be a connected space with $H^1(X;\hat{Z}_p) = 0 = H^2(X;\hat{Z}_p)$, and let G be a torsion-free stable p-adic Adams module. If $\phi: K^*(\Omega^\infty \widetilde{\mathcal{M}}(G,1);\hat{Z}_p) \to K^*(X;\hat{Z}_p)$ is a homomorphism of $\mathbb{Z}/2$ -graded p-adic λ -rings, then there exists a map $f: X \to \Omega^\infty \widetilde{\mathcal{M}}(G,1)$ such that $f^* = \phi$. Moreover, f is homotopically unique when $\widetilde{K}^0(X;\hat{Z}_p) = 0$.

Proof. Since $K^*(\Omega^\infty \widetilde{\mathcal{M}}(G,1); \hat{Z}_p) \cong \widehat{\Lambda} \widetilde{F}G$ by Theorem 3.7, ϕ corresponds to a stable p-adic Adams module homomorphism $\overline{\phi}: G \to K^1(X; \hat{Z}_p) \cong K^1(\Sigma^\infty X; \hat{Z}_p)$, and there exists a map $\overline{f}: \Sigma^\infty X \to \mathcal{M}(G,1)$ with $\overline{f}^* = \overline{\phi}$ by Theorem 3.9. Since $\mathcal{M}(G,1)$ is p-complete and $(\Sigma^\infty X)_p^\wedge$ is 1-connected with $\pi_2(\Sigma^\infty X)_p^\wedge$ adjusted, \overline{f} corresponds to a map f': $\Sigma^\infty X \to \widetilde{\mathcal{M}}(G,1)$, and the adjoint map $f: X \to \Omega^\infty \widetilde{\mathcal{M}}(G,1)$ has the desired properties. When $\widetilde{K}^0(X; \widehat{Z}_p) = 0$, f is homotopically unique by Theorem 3.9, and hence \overline{f} is homotopically unique.

4. CONSTRUCTIONS OF K/p_{\downarrow} -LOCALIZATIONS

We now give our main results on the K/p_* -localizations of spaces X with $K^*(X; \hat{Z}_p) \cong \hat{\Lambda}(M)$ for a reduced p-adic Adams module M, and on the existence of such spaces X, where p is a fixed odd prime. Our constructions are based on

4.1. Lemma. For a reduced p-adic Adams module M, there is a short exact sequence

$$0 \to \tilde{F}M \stackrel{\partial}{\to} \tilde{F}M \stackrel{\alpha}{\to} M \to 0$$

where α is the adjunction map with $\alpha(x_1, x_2, x_3, \dots) = x_1 + \psi^p x_2 + (\psi^p)^2 x_3 + \dots$ and $\partial = \tilde{F}\psi^p - \psi^p$.

This is easily verified and suggests that $\hat{\Lambda}(M)$ might be realized as the fiber of a map $\Omega^{\infty}\widetilde{\mathcal{M}}(M,1) \to \Omega^{\infty}\widetilde{\mathcal{M}}(M,1)$ which realizes $\hat{\Lambda}(\hat{\partial})$. To actually do this, we need a weak technical condition on M which will be introduced in 4.4 using

- **4.2.** Linearity, quasilinearity, and strict nonlinearity conditions. As in [13], a p-adic Adams module H is called linear when $\psi^k x = kx$ for all $k \in Z$ and $x \in H$, and H is called quasilinear when $pH \subset \psi^p H$. The quasilinear subobjects of a p-adic Adams module M are all contained in a largest quasilinear subobject $M_{ql} \subset M$, which includes, for instance, all $x \in M$ with px = 0, or $\psi^p x = x$, or $\psi^p x = cpx$ for a p-adic unit c. A p-adic Adams module M is called strictly nonlinear when $M_{q\ell} = 0$. This is equivalent to saying that Hom(H, M) = 0 for each quasilinear p-adic Adams module H, and implies that M is reduced (see 2.8) and torsion-free. Note that strict nonlinearity is preserved by inverse limits, extensions, and subobjects. A torsion-free p-adic Adams module with $\psi^p = p^k$ for some $k \ge 2$ is strictly nonlinear, and many other examples follow from
- **4.3.** PROPOSITION. If M is a torsion-free p-adic Adams module with $(\psi^p)^n M \subset p^{n+1} M$ for some $n \ge 1$, then M is strictly nonlinear.

This is proved in [13, 2.5].

4.4. Regularity. A *p*-adic Adams module *M* will be called *regular* when the kernel of $M \to \text{Lin } M$ is strictly nonlinear where

$$\operatorname{Lin} M = M/((\psi^r - r)M + (\psi^p - p)M)$$

is the largest linear quotient of M, constructed using an integer r generating $(Z/p^2)^{\times}$. Thus, M is regular whenever it is an extension of a strictly nonlinear submodule by a linear quotient module. If a p-adic Adams module M is regular, then so are all of its submodules. For any connected space X with $K^*(X; \hat{Z}_p)$ torsion-free, we know that $\tilde{K}^0(X; \hat{Z}_p)$ is regular by [11, Theorem 6.3] and [13, Theorem 2.6], and in every case that we have examined with $H^1(X; \hat{Z}_p) = 0$, we have found that $K^1(X; \hat{Z}_p)$ is also regular (see Proposition 5.4 and Lemma 6.1).

4.6. The main construction. By Theorem 3.10, for a torsion-free *p*-adic Adams module M, there exists a map $f: \Omega^{\infty} \widetilde{\mathcal{M}}(M, 1) \to \Omega^{\infty} \widetilde{\mathcal{M}}(M, 1)$ with

$$f^* = \hat{\Lambda}(\partial) : \hat{\Lambda}(\tilde{F}M) \to \hat{\Lambda}(\tilde{F}M)$$

where $\partial = \tilde{F}\psi^p - \psi^p$. Any such f will be called a *companion map* of M, and Fib f will denote its homotopy fiber. Since $\Omega^{\infty} \tilde{\mathcal{M}}(M, 1)$ is K/p_* -local, so are Fib f and \bar{P}^2 Fib f, where \bar{P}^2 Fib f

denotes the modified 2nd Postnikov section of Fib f as in 3.5. We let $\widetilde{\text{Fib}} f$ denote the homotopy fiber of the map Fib $f \to \bar{P}^2$ Fib f, and we conclude that $\widetilde{\text{Fib}} f$ is K/p_* -local with

$$\pi_{i} \widetilde{\text{Fib}} f = \begin{cases} 0 & \text{if} \quad i < 2\\ \widehat{t}_{p}(\pi_{2} \operatorname{Fib} f) & \text{if} \quad i = 2\\ \pi_{i} \operatorname{Fib} f & \text{if} \quad i > 2. \end{cases}$$

4.7. Theorem. For a regular torsion-free p-adic Adams module M and any companion $map f: \Omega^{\infty} \widetilde{\mathcal{M}}(M,1) \to \Omega^{\infty} \widetilde{\mathcal{M}}(M,1)$, there is a canonical isomorphism $K^*(\widetilde{\operatorname{Fib}}\ f; \widehat{Z}_p) \cong \widehat{\Lambda}(M)$ of $\mathbb{Z}/2$ -graded p-adic λ -rings with M in degree 1.

This will be proved later in 11.8 and leads immediately to our main result on K/p_* -localizations.

4.8. Theorem. If X is a connected space with $K^*(X; \hat{Z}_p) \cong \hat{\Lambda}(M)$ for a regular torsion-free p-adic Adams module $M \subset K^1(X; \hat{Z}_p)$, then $X_{K/p} \cong \widetilde{\text{Fib}} f$ for some companion map $f: \Omega^{\infty} \widetilde{\mathcal{M}}(M, 1) \to \Omega^{\infty} \widetilde{\mathcal{M}}(M, 1)$ of M. Moreover, $H^1(X; \hat{Z}_p) = 0 = H^2(X; \hat{Z}_p)$.

Proof. The last statement follows since $\{Z_p \oplus H^2(X; \hat{Z}_p), H^1(X; \hat{Z}_p)\}$ is a quotient ring of $K^*(X; \hat{Z}_p) \cong \hat{\Lambda}(M)$ as shown in [11, 5.4], and since the homomorphism $M \to H^1(X; \hat{Z}_p)$ must be trivial because it factors through $M_{\text{fix}} = 0$. Applying Theorem 3.10 twice, we obtain a map $h: X \to \Omega^\infty \tilde{M}(M, 1)$ with $h^* = \hat{\Lambda}(\alpha): \hat{\Lambda}(\tilde{F}M) \to \hat{\Lambda}(M)$ and then obtain a map $k: Cof h \to \Omega^\infty \tilde{M}(M, 1)$ with

$$k^* = \hat{\Lambda}(\beta) \colon \hat{\Lambda}(\widetilde{F}M) \to K^*(\operatorname{Cof} h; \hat{Z}_p) \subset \hat{\Lambda}(\widetilde{F}M).$$

Composing the canonical map $\Omega^{\infty}\widetilde{\mathcal{M}}(M,1) \to \operatorname{Cof} h$ with k, we obtain a companion map $f: \Omega^{\infty}\widetilde{\mathcal{M}}(M,1) \to \Omega^{\infty}\widetilde{\mathcal{M}}(M,1)$ of M such that h lifts to a map $w:X \to \operatorname{Fib} f$. Since $[X,P^2\operatorname{Fib} f]=0$, w lifts to a map $u:X \to \widetilde{\operatorname{Fib}} f$ which is a $K^*(-;\hat{Z}_p)$ -equivalence by Theorem 4.7. Hence, $u:X \to \widetilde{\operatorname{Fib}} f$ is a K/p_* -equivalence to the K/p_* -local space $\widetilde{\operatorname{Fib}} f$. \square

Similarly, using the homotopical uniqueness statement of Theorem 3.10, we obtain

4.9. Theorem. Let $f: \Omega^{\infty}\widetilde{M}(M,1) \to \Omega^{\infty}\widetilde{M}(M,1)$ be a companion map of a regular torsion-free p-adic Adams module M, and let X be a connected space with $H^1(X; \hat{Z}_p) = 0 = H^2(X; \hat{Z}_p)$ and $\widetilde{K}^0(X; \hat{Z}_p) = 0$. Then each homomorphism $\widehat{\Lambda}(M) \to K^*(X; \hat{Z}_p)$ of Z/2-graded λ -rings is induced by a map $h: X \to \widetilde{\text{Fib}}$ f.

We shall apply this theorem below when X is an odd K/p-homology sphere.

5. APPLICATIONS TO K/p_* -HOMOLOGY SPHERES

By an odd (resp. even) K/p-homology sphere we mean a space X such that $\widetilde{K}_i(X; Z/p)$ is Z/p for i odd (resp. even) and is trivial otherwise. We shall apply the results of Section 4 to obtain almost complete results on the K/p_* -localizations of odd K/p-homology spheres and

on the classification of the resulting K/p_* -local homotopy types, where p is a fixed odd prime. For this purpose, we use

5.1. LEMMA A space X is an odd K/p-homology sphere if and only if $K^1(X; \hat{Z}_p) \cong \hat{Z}_p$ and $\tilde{K}^0(X; \hat{Z}_p) = 0$.

Proof. Using the coefficient sequence $0 \to Z/p \to Z_{p^{\infty}} \to Z_{p^{\infty}} \to 0$, we see that a space X is a K/p-homology sphere if and only if $\widetilde{K}_0(X;Z_{p^{\infty}})=0$ and $K_1(X;Z_{p^{\infty}})\cong D$ for a p-torsion group D with D/p=0 and $D\setminus p\cong Z/p$, i.e. for $D\cong Z_{p^{\infty}}$. The lemma now follows by Corollary 2.3.

- **5.2.** The spherical p-adic Adams modules. A p-adic Adams module M will be called spherical when it is isomorphic to \hat{Z}_p as a p-profinite group. In general, the Adams operations on a p-adic Adams module M are all determined by ψ^p and ψ^r where r is a fixed integer generating the group of units $(Z/p^2)^{\times}$. It is easy to see that a spherical p-adic Adams module M must satisfy one of the following conditions:
 - (i) M is spherical of class 0 when it has $\psi^k = 1$ for each $k \in \mathbb{Z}$;
 - (ii) *M* is spherical of class *n* for $1 \le n < \infty$ when it has $\psi^p = u p^n$ and $\psi^r = v$ for *p*-adic units $u, v \in \hat{Z}_p^\times$;
 - (iii) M is spherical of class ∞ when it has $\psi^p = 0$ and $\psi^r = v$ for a p-adic unit $v \in \hat{Z}_p^{\times}$.

Moreover, these conditions (with no further restrictions on n, u, v) completely classify the spherical p-adic Adams modules up to isomorphism. Note that, for $0 \le n < \infty$, $K^1(S^{2n+1}; \hat{Z}_p)$ is spherical of class n with $\psi^k = k^n$ for each $k \in \mathbb{Z}$. These spherical p-adic Adams modules will be called standard. Our main theorem on odd K/p-homology spheres is

5.3. THEOREM. Let M be a spherical p-adic Adams module of class n for $0 \le n \le \infty$ which is standard when n = 1. Then there exists a homotopically unique odd K/p-homology sphere S(M, 1) which is K/p_* -local with $K^1(S(M, 1); \hat{Z}_p) \cong M$. Moreover, if X is any odd K/p-homology sphere with $K^1(X; \hat{Z}_p) \cong M$, then $X_{K/p} \cong S(M, 1)$.

Proof. For n=0 we may assume that $M=\hat{Z}_p$ with $\psi^k=1$ for all $k\in \mathbb{Z}$, and we may let $S(M,1)=K(\hat{Z}_m,1)$. Since

$$[X,K(\hat{Z}_p,1)] \cong H^1(X;\hat{Z}_p) \cong \mathrm{K}^1(X;\hat{Z}_p)_{\mathrm{fix}} \cong \mathrm{Hom}_{\mathscr{U}}(M,K^1(X;\hat{Z}_p))$$

there is a K/p_* -localization $X \to K(\hat{Z}_p, 1)$ corresponding to an isomorphism $M \cong K^1(X; \hat{Z}_p)$. For $n \ge 1$, M is regular since it is linear or strictly nonlinear, and we let S(M, 1) be Fib f for a companion map $f : \Omega^\infty \widetilde{\mathcal{M}}(M, 1) \to \Omega^\infty \widetilde{\mathcal{M}}(M, 1)$ of M. Then S(M, 1) is K/p_* -local with $K^1(S(M, 1); \hat{Z}_p) \cong M$ and $\widetilde{K}^0(S(M, 1); \hat{Z}_p) \cong 0$ by Theorem 4.7. There is also a K/p_* -localization map $X \to S(M, 1)$ by Theorems 4.7 and 4.8. The homotopical uniqueness of S(M, 1) follows since our version of S(M, 1) is the K/p_* -localization of any other version.

We do not know which, if any, of the nonstandard spherical p-adic Adams modules of class 1 can be realized as $K^1(X; \hat{Z}_p)$ for an odd K/p-homology sphere X. However, since these modules are irregular, such an X could not be a 1-connected H-space by Lemma 6.1 below, and could not be finite dimensional by

5.4. PROPOSITION. If X is a connected finite dimensional CW-complex with $H^1(X; \hat{Z}_p) = 0$ and with $K^1(X; \hat{Z}_p)$ torsion-free, then $K^1(X; \hat{Z}_p)$ is regular.

The proof will depend on two lemmas.

5.5. LEMMA. If X is a connected CW-complex with $H^1(X; \hat{Z}_p) = 0$, then the kernel of the canonical map $K^1(X; \hat{Z}_p) \to H^3(X; \hat{Z}_p)$ is isomorphic to $K^1(X/X^3; \hat{Z}_p)$ where X^3 denotes the 3-skeleton of X.

Proof. The map $K\hat{Z}_p \to P^2K\hat{Z}_p$ induces a ladder of exact sequences

$$\begin{split} \widetilde{K}^0(X; \hat{Z}_p) & \longrightarrow \widetilde{K}^0(X^3; \hat{Z}_p) & \longrightarrow K^1(X/X^3; \hat{Z}_p) & \longrightarrow K^1(X; \hat{Z}_p) & \longrightarrow K^1(X^3; \hat{Z}_p) \\ & \downarrow & \qquad \downarrow & \qquad \downarrow & \qquad \downarrow \\ H^2(X; \hat{Z}_p) & \longrightarrow H^2(X^3; \hat{Z}_p) & \longrightarrow H^3(X/X^3; \hat{Z}_p) & \longrightarrow H^3(X; \hat{Z}_p) & \longrightarrow H^3(X^3; \hat{Z}_p) & \longrightarrow H^$$

in which first vertical map is onto by [11, 5.4], while the second and fifth are isomorphisms. Since $H^3(X/X^3; \hat{Z}_p) = 0$, the map $\tilde{K}^0(X; \hat{Z}_p) \to \tilde{K}^0(X^3; \hat{Z}_p)$ is onto, and the lemma follows by a diagram chase.

A p-adic Adams module M will be called weakly nonlinear when $p^i M_{q\ell} = 0$ for some $i \ge 0$, where $M_{q\ell} \subset M$ is the largest quasilinear submodule of M (see 4.2).

5.6. Lemma. If X is a finite dimensional CW-complex with $X^3 = *$, then $K^1(X; \hat{Z}_p)$ is weakly nonlinear, and is strictly nonlinear when it is torsion-free.

Proof. It will suffice to show that $K^1(X^n; \hat{Z}_p)$ is weakly nonlinear for $n \ge 4$. We assume inductively that $K^1(X^{n-1}; \hat{Z}_p)$ is weakly nonlinear and consider the exact sequence $K^1(X^n/X^{n-1}; \hat{Z}_p) \to K^1(X^n; \hat{Z}_p) \to K^1(X^{n-1}; \hat{Z}_p)$. The image I of the first map has $pI_{q\ell} = 0$ since I has $\psi^p = p^j$ for some $j \ge 2$. Since $(-)_{q\ell}$ is left exact, we deduce that $K^1(X^n; \hat{Z}_p)$ is weakly nonlinear.

5.7. Proof of Proposition 5.4. Using the exact sequence

$$0 \to K^1(X/X^3;\hat{Z}_p) \to K^1(X;\hat{Z}_p) \to H^3(X;\hat{Z}_p)$$

of Lemma 5.5, we see that $K^1(X; \hat{Z}_p)$ is regular since $H^3(X; \hat{Z}_p)$ is linear and $K^1(X/X^3; \hat{Z}_p)$ is strictly nonlinear by Lemma 5.6.

5.8. Desuspensions of K/p-homology spheres. A p-adic Adams module N "suspends" as in [7, 1.6] to give a p-adic Adams module σN such that $\psi^k : \sigma N \to \sigma N$ equals $k\psi^k : N \to N$ for $k \in \mathbb{Z}$. If M is a spherical p-adic Adams module of class $n \ge 1$, assumed standard when $n \le 2$, then there is a unique p-adic Adams module N of class n - 1 with $\sigma N = M$, and there is an equivalence

$$(\Sigma^2 S(N,1))_{K/p} \simeq S(M,1)$$

by Theorem 5.3. Thus if X is an odd K/p-homology sphere with $K^1(X; \hat{Z}_p)$ of class $n \ge 1$, assumed standard when $n \le 2$, then X has a unique double desuspension in K/p_* -local homotopy theory. Such desuspensions may be iterated until the lowest possible class is

reached. When $K^1(X; \hat{Z}_p)$ is of class ∞ , then X desuspends infinitely in K/p_* -local homotopy theory.

6. ON THE K/p_* -LOCALIZATIONS OF H-SPACES

Working at an odd prime p, we shall show that our main K/p_* -localization result, Theorem 4.8, applies to a wide range of H-spaces. Recall that this theorem gives the K/p_* -localization of any connected space Y such that $K^*(Y; \hat{Z}_p) \cong \hat{\Lambda}(M)$ for a regular torsion-free p-adic Adams module $M \subset K^1(Y; \hat{Z}_p)$. This condition implies that $K_*(Y; Z/p)$ is an exterior coalgebra $\Lambda(M_p^\#)$, where $M_p^\#$ is the discrete Pontrjagin dual of M/p. Thus, $K_*(Y; Z/p)$ has trivial even primitives $PK_0(Y; Z/p) = 0$ and odd primitives $PK_1(Y; Z/p) \cong M_p^\#$. We shall determine the K/p_* -localizations of most H-spaces X with $PK_0(X; Z/p) = 0$, and hence of most finite H-spaces X. By the results 1.8, 2.6, 10.2, and 10.5 of [13], we know

- **6.1.** LEMMA. If X is a 1-connected H-space with $PK_0(X; \mathbb{Z}/p) = 0$, then:
- (i) $K^*(X; \hat{Z}_p)$ and $K^*(\Omega X; \hat{Z}_p)$ are torsion-free with $K^1(\Omega X; \hat{Z}_p) = 0$;
- (ii) there is a suspension isomorphism $\hat{Q}K^1(X;\hat{Z}_p) \cong PK^0(\Omega X;\hat{Z}_p)$ and both sides are regular torsion-free p-adic Adams modules;
- (iii) there is a suspension isomorphism $QK_0(\Omega X; \mathbb{Z}/p) \cong PK_1(X; \mathbb{Z}/p)$ and $K_*(X; \mathbb{Z}/p)$ is an exterior coalgebra which is generated by $PK_1(X; \mathbb{Z}/p)$ as a (possibly non-associative) algebra.

For an *H*-space X with $K^*(X; \hat{Z}_p)$ torsion-free as above, the multiplication map $X \times X \to X$ induces a comultiplication

$$K^*(X;\hat{Z}_p) \to K^*(X;\hat{Z}_p) \, \hat{\otimes} \, K^*(X;\hat{Z}_p).$$

6.2. Theorem. Let X be a 1-connected H-space with $PK_0(X; Z/p) = 0$. If X is homotopy associative (or more generally if $K^*(X; \hat{Z}_p)$ is coassociative), then $K^*(X; \hat{Z}_p) \cong \hat{\Lambda}(PK^1(X; \hat{Z}_p))$ and the p-adic Adams module $PK^1(X; \hat{Z}_p)$ is regular and torsion-free. Hence, $X_{K/p} \cong \widetilde{\text{Fib}}$ for some companion map $f: \Omega^{\infty} \tilde{\mathcal{M}}(M, 1) \to \Omega^{\infty} \tilde{\mathcal{M}}(M, 1)$ of $M = PK^1(X; \hat{Z}_p)$.

Proof. Since $K^*(X; \hat{Z}_p)$ is coassociative and torsion-free by Lemma 6.1, $K_*(X; \mathbb{Z}/p) \cong K^*(X; \hat{\mathbb{Z}}_p)_p^\#$ is associative. Since $PK_0(X; \mathbb{Z}/p) = 0$, the elements of Lie brackets, and the induced homomorphism $PK_1(X; \mathbb{Z}/p)$ have trivial $\Lambda(PK_1(X;Z/p)) \to K_*(X;Z/p)$ is an isomorphism by 6.1(iii) and Proposition 10.4 of [11]. Since $K^*(X; \hat{Z}_p)$ is a torsion-free p-profinite Hopf algebra, $K_*(X; Z/p^n)$ is a Hopf algebra of free \mathbb{Z}/p^n -modules with $K_*(X;\mathbb{Z}/p^n)\otimes\mathbb{Z}/p\cong K_*(X;\mathbb{Z}/p)$ for $n\geqslant 1$. Thus, $PK_0(X;\mathbb{Z}/p^n)=0$ since $PK_0(X; \mathbb{Z}/p) = 0$, and the elements of $PK_1(X; \mathbb{Z}/p^n)$ must have trivial Lie brackets. Since the algebra $K_*(X; \mathbb{Z}/p)$ is generated by elements in the image of the suspension $K_0(\Omega X; Z/p) \to PK_1(X; Z/p)$, and since $K_0(\Omega X; Z/p) \cong K_0(\Omega X; Z/p^n) \otimes Z/p$ by Lemma 6.1, we deduce that the algebra $K_*(X; \mathbb{Z}/p^n)$ is likewise generated by elements in the image of the suspension $K_0(\Omega X; \mathbb{Z}/p^n) \to PK_1(X; \mathbb{Z}/p^n)$. Thus, $K_*(X; \mathbb{Z}/p^n)$ is commutative for $n \ge 1$, and consequently $K^*(X; \hat{Z}_p)$ is cocommutative. Now [13, Theorem 4.8] gives the desired isomorphism $\hat{\Lambda}(PK^1(X;\hat{Z}_p)) \cong K^*(X;\hat{Z}_p)$, and the p-adic Adams module $PK^{1}(X; \hat{Z}_{n}) \cong \hat{Q}K^{1}(X; \hat{Z}_{n})$ is regular by Lemma 6.1.

The above result applies to most 1-connected finite H-spaces

6.3. THEOREM. If X is a 1-connected H-space with $H_*(X;Q)$ associative as an algebra and with $H_*(X;Z_{(p)})$ finitely generated over $Z_{(p)}$ (and thus vanishing above some dimension), then $K^*(X;\hat{Z}_p) \cong \hat{\Lambda}(PK^1(X;\hat{Z}_p))$ where $PK^1(X;\hat{Z}_p)$ is regular and torsion-free. Thus Theorem 6.2 applies to give $X_{K/p}$.

Proof. As in [13, Corollary 10.4], this follows from work of Lin [25] which shows that $K_*(X; Z_{(p)})$ is $Z_{(p)}$ -free and $PK_0(X; Z/p) = 0$.

7. ON v_1 -PERIODIC HOMOTOPY GROUPS AND K/p_* -LOCALIZATIONS OF SPACES

In this section, we study the v_1 -periodic homotopy groups of spaces and explain how they may be captured using spectra as in the work of Davis and Mahowald [21], Kuhn [23], and the author [8, 12]. This will set the stage for the next section where we shall determine v_1 -periodic homotopy groups of finite H-spaces using our knowledge of their K/p_* -localizations. We first recall

7.1. The v_1 -periodic homotopy groups of spaces. By a finite p-torsion spectrum $W \in \mathcal{S}$, we mean a finite CW-spectrum with finite p-torsion integral homology. For such a W, a v_1 -map is a K/p_* -equivalence (or $K(1)_*$ -equivalence) $\omega: \Sigma^d W \to W$ with d>0 such that $K(n)_*\omega=0$ for n>1, where $K(n)_*$ is the n^{th} Morava K-theory. The Hopkins-Smith periodicity theorem (see [22] or [29]) ensures that each finite p-torsion spectrum W has a v_1 -map $\omega: \Sigma^d W \to W$ with d=2(p-1) p^e for some $e\geqslant 0$, and that any two v_1 -maps for W become equivalent after sufficient iteration. Since the sequence $W \overset{\omega}{\leftarrow} \Sigma^d W \overset{\omega}{\leftarrow} \Sigma^d W \overset{\omega}{\leftarrow} \Sigma^{d} W \overset{\omega}{\leftarrow} \cdots$ in $\mathscr S$ eventually desuspends uniquely to Ho_* , we may define the v_1 -periodic homotopy groups of a space $Y \in Ho_*$ with coefficients in a finite p-torsion spectrum W by

$$v_1^{-1}\pi_*(Y;W) = \underset{m}{\text{colim}} [\Sigma^{dm}W, Y]_*.$$

By [22] or [23], the groups $v_1^{-1}\pi_*(Y;W)$ do not depend on the choice of ω and are natural in W as well as Y. Following Davis and Mahowald [20], we may also define the absolute v_1 -periodic homotopy groups of a space $Y \in Ho_*$ by

$$v_1^{-1}\pi_*Y = \operatornamewithlimits{colim}_k v_1^{-1}\pi_{*+1}(Y; Z/p^k) = \operatornamewithlimits{colim}_k v_1^{-1}\pi_{*+1}(Y; S^{-1}Z/p^k)$$

using the Moore spectra $S^{-1}Z/p^k = S^{-1} \cup_{p^k} e^0$ and the canonical maps $S^{-1}Z/p^{k+1} \to S^{-1}Z/p^k$ which have degree p on the top cell and degree 1 on the bottom cell. The v_1 -periodic homotopy groups of spaces are completely captured by

- **7.2.** The functor $\Phi: Ho_* \to \mathscr{S}$. By [8, 12, Section 6, 21], or [23], there is a functor $\Phi: Ho_* \to \mathscr{S}$ such that:
 - (i) for a space $Y \in Ho_*$ and finite *p*-torsion spectrum $W \in \mathcal{S}$, there is a natural isomorphism $v_1^{-1}\pi_*(Y;W) \cong [W,\Phi Y]_*$;
 - (ii) ΦY is K/p_* -local for each $Y \in Ho_*$;
 - (iii) for a spectrum E, there is a natural equivalence $\Phi(\Omega^{\infty} E) \simeq E_{K/p}$;
 - (iv) Φ preserves homotopy fiber squares.

To extract the v_1 -periodic homotopy groups $v_1^{-1}\pi_*Y$ from ΦY , we use

- 7.3. The *p*-torsion part of a spectrum. A spectrum $A \in \mathcal{S}$ is called *p*-torsion when π_*A is *p*-torsion. For each spectrum $E \in \mathcal{S}$, there is a universal map $\tau_p E \to E$ from a *p*-torsion spectrum to E in \mathcal{S} , given by the homotopy fiber of the localization $E \to E[1/p]$ away from p. We note that $\tau_p E \simeq E \wedge \tau_p S$, where $\tau_p S$ is the Moore spectrum $S^{-1}Z_{p^\infty}$, and we call $\tau_p E$ the *p*-torsion part of E. The functor $\tau_p \colon \mathcal{S} \to \mathcal{S}$ is left adjoint to the *p*-completion functor $\widehat{(-)}_p \colon \mathcal{S} \to \mathcal{S}$ of 3.5, since the *p*-completion of a spectrum may be constructed as the map of function spectra $E \simeq F(S, E) \to F(\tau_p S, E) \simeq \widehat{E}_p$ induced by $\tau_p S \to S$ (see [5, 2.5]). From another standpoint, the maps $\tau_p E \to E$ and $E \to \widehat{E}_p$ are the universal examples of SZ/p_* -equivalences into and out of E in \mathcal{S} . As in [12, 6.7], we easily deduce
- **7.4.** PROPOSITION. The adjoint functors $\tau_p: \mathscr{S} \to \mathscr{S}$ and $\widehat{(-)}_p: \mathscr{S} \to \mathscr{S}$ restrict to adjoint equivalences: (i) between the full subcategories of p-complete spectra and p-torsion spectra; and (ii) between the full subcategories of K/p_* -local spectra and p-torsion K_* -local spectra.

Thus, the K/p_* -local spectrum ΦY corresponds to the p-torsion K_* -local spectrum $\tau_p \Phi Y$, and we have the following reinterpretation of the v_1 -periodic homotopy groups $v_1^{-1}\pi_* Y$ in the spirit Davis and Mahowald [21].

7.5. Theorem. For a space $Y \in Ho_*$ and a finite p-torsion spectrum $W \in \mathcal{S}$, there are natural isomorphisms

$$v_1^{-1}\pi_*(Y;W) \cong [W,\Phi Y]_* \cong [W,\tau_p\Phi Y]_*$$
$$v_1^{-1}\pi_*Y \cong \pi_*\tau_p\Phi Y.$$

Proof. The first isomorphisms follow from 7.2 and 7.3, and the last follows by

$$\begin{split} v_1^{-1}\pi_*Y &\cong \operatornamewithlimits{colim}_k v_1^{-1}\pi_{*+1}(Y;Z/p^k) \cong \operatornamewithlimits{colim}_k \left[S^{-1}Z/p^k, \Phi Y\right]_{*+1} \\ &\cong \operatornamewithlimits{colim}_k \pi_{*+1}(DS^{-1}Z/p^k \wedge \Phi Y) \cong \pi_*(S^{-1}Z_{p^\infty} \wedge \Phi Y) \cong \pi_*\tau_p \Phi Y. \end{split}$$

where *D* is the Spanier–Whitehead duality functor.

- **7.6.** COROLLARY. For a map $f: X \to Y$ in Ho_* and a finite p-torsion spectrum W with $K_*(W; Z/p) \neq 0$, the following are equivalent:
 - (i) $f_*: v_1^{-1}\pi_*(X; W) \cong v_1^{-1}\pi_*(Y; W);$
 - (ii) $f_*: v_1^{-1}\pi_*(X; \mathbb{Z}/p) \cong v_1^{-1}\pi_*(Y; \mathbb{Z}/p);$
 - (iii) $f_*: v_1^{-1}\pi_*X \cong v_1^{-1}\pi_*Y;$
 - (iv) $\Phi f: \Phi X \simeq \Phi Y$.

Proof. If W is a finite p-torsion spectrum, then $\langle D(SZ/p) \rangle = \langle DW \rangle$ by Hopkins and Smith (see [22] or [29, Theorem 7.2.7]), and hence the condition $(\Phi f)_*$: $[SZ/p, \Phi X]_* \cong [SZ/p, \Phi Y]_*$ is equivalent to $(\Phi f)_*$: $[W, \Phi X]_* \cong [W, \Phi Y]_*$. Hence (i) \Leftrightarrow (ii) by Theorem 7.5, and the corollary follows easily since ΦX and ΦY are p-complete.

A map $f: X \to Y$ in Ho_* will be called a v_1 -periodic equivalence when it satisfies the conditions of Corollary 7.6. The v_1 -periodic equivalences of spaces are very closely related to the K/p_* -equivalences by [10, 34]. In [14, 11.12], we proved

7.7. Theorem. If $f: X \to Y$ is a K/p_* -equivalence of H-spaces, then f is a v_1 -periodic equivalence.

To generalize this theorem beyond H-spaces, we say that a space $X \in Ho_*$ is K/p_* -durable when its K/p_* -localization map $X \to X_{K/p}$ is a v_1 -periodic equivalence. By [14, Theorem 11.11], this is equivalent to saying that the natural map $\pi_i(\Omega X)_{K/p} \to \pi_i\Omega(X_{K/p})$ is an isomorphism for sufficiently large i. Each K/p_* -local space is obviously K/p_* -durable, and using the p-completion of [16] or [5, Section 4] for nilpotent spaces, we have

7.8. COROLLARY. If X is an H-space, or more generally if X is a pointed nilpotent space whose p-completion \hat{X}_p is an H-space, then X is K/p_* -durable.

Proof. This follows by Theorem 7.7 since the *p*-completion map $X \to \hat{X}_p$ is a v_1 -periodic equivalence as well as a K/p_* -equivalence, and since $X_{K/p}$ is an *H*-space.

Note that the odd spheres are K/p_* -durable since their *p*-completions are *H*-spaces. Now, Theorem 7.7 immediately extends to

7.9. Theorem. If $f: X \to Y$ is a K/p_* -equivalence of K/p_* -durable spaces, then f is a v_1 -periodic equivalence.

We may now approach the v_1 -periodic homotopy groups of a K/p_* -durable space by applying Theorem 7.5 to the spectrum $\Phi X \simeq \Phi(X_{K/p})$. To determine this spectrum using our knowledge of $X_{K/p}$, we shall need

7.10. Lemma. For a pointed space X, the natural homomorphism $\Phi: K^*(X; \hat{Z}_p) \to K^*(\Phi X; \hat{Z}_p)$ factors through the indecomposable quotient $\hat{Q}K^*(X; \hat{Z}_p)/\psi^p$.

Proof. Φ factors through the indecomposables $\hat{Q}K^*(X;\hat{Z}_p)$ since it factors through the suspension homomorphism $K^*(X;\hat{Z}_p) \to K^{*-1}(\Omega X;\hat{Z}_p)$ by 7.2(iv). To show that Φ factors through $K^*(X;\hat{Z}_p)/\psi^p$, it suffices to show that it carries $\psi^p : \Omega^\infty \Sigma^n K \hat{Z}_p \to \Omega^\infty \Sigma^n K \hat{Z}_p$ to a trivial map $\Phi \psi^p : \Sigma^n K \hat{Z}_p \to \Sigma^n K \hat{Z}_p$ for n=0,1. Thus, by Corollary 6.4.8 of [1], it suffices to show that $(\Phi \psi^p)_* = 0 : \pi_* \Sigma^n K \hat{Z}_p \to \pi_* \Sigma^n K \hat{Z}_p$. This follows since $(\Phi \psi^p)_*$ is infinitely divisible by p, which in turn follows since $\Phi \psi^p \simeq p \Sigma^2 (\Phi \psi^p)$ because $\Omega^2 (\Phi \psi^p) \simeq \Phi(\Omega^2 \psi^p) \simeq \Phi(p \psi^p) \simeq p \Phi \psi^p$.

8. ON THE SPECTRA ΦX

For a K/p_* -durable space X such that $K^*(X; \hat{Z}_p) \cong \hat{\Lambda}(M)$ for a regular torsion-free p-adic Adams module M, we now determine the spectrum ΦX and show that it is often a $K\hat{Z}_p^*$ -Moore spectrum. We also develop results on the stable homotopy theory of $K\hat{Z}_p^*$ -Moore spectra which may be used to determine the v_1 -periodic homotopy groups $v_1^{-1}\pi_*(X;W) \cong [W,\Phi X]_*$ and $v_1^{-1}\pi_*X \cong \pi_*\tau_p\Phi X$. This work will be applied in Section 9 to derive more explicit results on the v_1 -periodic homotopy groups of finite H-spaces and K/p-homology spheres.

Recall from Theorem 3.4 that for each stable *p*-adic Adams module *G*, there exists a homotopically unique K/p_* -local spectrum $\mathcal{M}(G, 1)$ with $K^1(\mathcal{M}(G, 1); \hat{Z}_p) = G$ and $K^0(\mathcal{M}(G, 1)); \hat{Z}_p) = 0$. Also, recall from Theorem 3.9 that for stable *p*-adic Adams modules *G* and *G'* with *G* torsion-free, there is a natural isomorphism

$$K\hat{Z}_p^*$$
: $[\mathcal{M}(G', 1), \mathcal{M}(G, 1)] \cong \operatorname{Hom}_{\mathcal{A}}(G, G')$.

Thus, a homomorphism $h: G \to G'$ induces a map $\mathcal{M}(h, 1): \mathcal{M}(G', 1) \to \mathcal{M}(G, 1)$, and we can state

8.1. Theorem. If X is a connected K/p_* -durable space (e.g. a connected H-space) with $K^*(X; \hat{Z}_p) \cong \hat{\Lambda}(M)$ for a regular torsion-free p-adic Adams module $M \subset K^1(X; \hat{Z}_p)$, then ΦX is the homotopy fibre of the map $\mathcal{M}(\psi^p, 1) \colon \mathcal{M}(M, 1) \to \mathcal{M}(M, 1)$. In particular, if $\psi^p \colon M \to M$ is monic, then $\Phi X \simeq \mathcal{M}(M/\psi^p, 1)$.

Proof. By Theorem 4.8, $X_{K/p} \simeq \widetilde{\operatorname{Fib}} f$ for some companion map $f \colon \Omega^{\infty} \widetilde{\mathcal{M}}(M,1) \to \Omega^{\infty} \widetilde{\mathcal{M}}(M,1)$ of M. Thus, since X is K/p_* -durable, ΦX is the homotopy fiber of $\Phi f \colon \Phi \Omega^{\infty} \widetilde{\mathcal{M}}(M,1) \to \Phi \Omega^{\infty} \widetilde{\mathcal{M}}(M,1)$. There is a natural equivalence

$$\Phi\Omega^{\infty}\widetilde{\mathscr{M}}(M,1)\simeq\widetilde{\mathscr{M}}(M,1)_{K/n}\simeq\mathscr{M}(M,1)$$

by 7.2(iii), and the homomorphism

$$\Phi: K^*(\Omega^{\infty} \widetilde{\mathcal{M}}(M, 1); \hat{Z}_n) \to K^*(\mathcal{M}(M, 1); \hat{Z}_n)$$

corresponds to the natural retraction

$$\hat{\Lambda}(\tilde{F}M) \rightarrow \hat{Q}\hat{\Lambda}(\tilde{F}M)/\psi^p \cong M$$

by Theorem 3.7 and Lemma 7.10. Since $f^* = \hat{\Lambda}(\tilde{F}\psi^p - \psi^p)$ on $\hat{\Lambda}(\tilde{F}M)$, we deduce that $\Phi F \simeq \mathcal{M}(\psi^p, 1)$ on $\mathcal{M}(M, 1)$ and hence ΦX is the homotopy fiber of $\mathcal{M}(\psi^p, 1)$.

The groups $v_1^{-1}\pi_*(X;W) \cong [W, \mathcal{M}(M/\psi^p, 1)]_*$ may be calculated in principle using the $K\hat{Z}_p^*$ -Adams spectral sequence (see Theorem 10.4), and the following special case (proved in 10.6) will often suffice.

8.2. Theorem. For a stable p-adic Adams module G and a spectrum E with $K^0(E; \hat{Z}_p) = 0$, there is a splittable short exact sequence

$$0 \to \operatorname{Ext}_{\mathcal{A}}^2(G, K^1(\Sigma^2 E; \hat{Z}_p)) \to [E, \mathcal{M}(G, 1)] \to \operatorname{Hom}_{\mathcal{A}}(G, K^1(E; \, \hat{Z}_p)) \to 0$$

and an isomorphism

$$[\Sigma E,\,\mathcal{M}(G,\,1)]\cong \operatorname{Ext}^1_{\mathcal{A}}(G,\,K^1(\Sigma^2 E;\,\widehat{Z}_p)).$$

We now turn to the problem of calculating the groups $\operatorname{Ext}^s_{\mathscr{A}}(G,N)$. Let \mathscr{G} be the abelian category of p-profinite abelian groups. Since \mathscr{G} is Pontrjagin dual to the category of p-torsion abelian groups, it has enough projectives, which are precisely the torsion-free objects, and each object of \mathscr{G} has projective dimension ≤ 1 . The forgetful functor $\mathscr{A} \to \mathscr{G}$ has a left adjoint $V:\mathscr{G} \to \mathscr{A}$ which is exact by [7, 3.8 and 6.1]. Hence, \mathscr{A} has enough projectives, and there are natural isomorphisms

$$\operatorname{Ext}_{\mathscr{A}}^{s}(VH,N) \cong \operatorname{Ext}_{\mathscr{A}}^{s}(H,N) \cong \operatorname{Ext}^{s}(N^{\#},H^{\#})$$

for $H \in \mathcal{G}$, $N \in \mathcal{A}$, and $s \ge 0$. More generally, to determine $\operatorname{Ext}_{\mathcal{A}}^{s}(G, N)$ for $G, N \in \mathcal{A}$, we let r be a fixed integer generating the group of units $(Z/p^2)^{\times}$, and we use the "fundamental exact sequence"

 $0 \to V(G) \xrightarrow{V\psi^r - \psi^r} V(G) \xrightarrow{\alpha} G \to 0$

where α is the adjunction counit (see [7, 7.5] or [9, 6.10]). By taking the long exact Ext_A-sequence, we obtain

8.3. Theorem. For stable p-adic Adams modules $G, N \in \mathcal{A}$, there is a natural exact sequence

$$0 \to \operatorname{Hom}_{\mathscr{I}}(G, N) \to \operatorname{Hom}_{\mathscr{G}}(G, N) \xrightarrow{\psi'_{G} - \psi'_{N}} \operatorname{Hom}_{\mathscr{G}}(G, N)$$

$$\to \operatorname{Ext}^{1}_{\mathscr{I}}(G, N) \to \operatorname{Ext}^{1}_{\mathscr{G}}(G, N) \xrightarrow{\psi'_{G} - \psi'_{N}} \operatorname{Ext}^{1}_{\mathscr{G}}(G, N)$$

$$\to \operatorname{Ext}^{2}_{\mathscr{I}}(G, N) \to 0$$

and $\operatorname{Ext}_{\mathscr{A}}^{s}(G, N) = 0$ for s > 2.

The groups $\operatorname{Ext}_{\mathscr{A}}^s(G,N)$ are particularly accessible when N is m-powered for an integer m, that is, when $\psi^k = k^m$ on N for all $k \in Z - pZ$. For a stable p-adic Adams module G and integer m, we let W^mG denote the largest m-powered quotient module of G. The functor W^m and its first left derived functor W^m are given by

$$W^{m}G = \operatorname{coker}(\psi^{r} - r^{m})$$
$$W_{1}^{m}G = \ker(\psi^{r} - r^{m})$$

for $\psi^r - r^m : G \to G$, and we have

8.4. Theorem. For stable p-adic Adams modules $G, N \in \mathcal{A}$ such that N is m-powered, there are natural isomorphisms

$$\operatorname{Hom}_{\mathscr{A}}(G, N) \cong \operatorname{Hom}_{\mathscr{G}}(W^m G, N)$$

 $\operatorname{Ext}^1_{\mathscr{A}}(G, N) \cong \operatorname{Ext}^1_{\mathscr{A}}(W_1^m G, N)$

and a splittable natural short exact sequence

$$0 \to \operatorname{Ext}_{\mathscr{G}}^{1}(W^{m}G, N) \to \operatorname{Ext}_{\mathscr{A}}^{1}(G, N) \to \operatorname{Hom}_{\mathscr{G}}(W_{1}^{m}G, N) \to 0.$$

Proof. There is a natural isomorphism $Hom_{\mathscr{A}}(X,N) \cong Hom_{\mathscr{G}}(W^mX,N)$ for $X \in \mathscr{A}$, and the functor W^m carries projectives to projectives since it is left adjoint to an exact functor. Hence, the theorem follows by a universal coefficient or Grothendieck spectral sequence argument.

Finally, if X is a space with $\Phi X \simeq \mathcal{M}(M/\psi^p, 1)$ as in Theorem 8.1, then the v_1 -periodic homotopy groups $v_1^{-1}\pi_*X \cong \pi_*(\tau_p\Phi X)$ may be calculated using

8.5. THEOREM. For a stable p-adic Adams module G, there are natural isomorphisms $\pi_{2m}(\tau_p \mathcal{M}(G,1)) \cong (W^m G)^\#$ and $\pi_{2m-1}(\tau_p \mathcal{M}(G,1)) \cong (W_1^m G)^\#$ for $m \in \mathbb{Z}$.

This will be proved in 10.7.

9. ON THE v_1 -PERIODIC HOMOTOPY GROUPS OF FINITE H-SPACES AND K/p-HOMOLOGY SPHERES

We now apply the results of Section 8 to determine the v_1 -periodic homotopy groups of finite H-spaces and K/p-homology spheres. We discuss the example of SU(n) in some detail, recovering the main result of Davis [18]. Since the associated spectra will be of the form $\mathcal{M}(G, 1)$, we start by collecting

9.1. Some properties of the spectra $\mathcal{M}(G,1)$. Let G be a stable p-adic Adams module with $p^eG=0$ for some $e\geqslant 1$. Then the spectrum $\mathcal{M}(G,1)$ is periodic with $\Sigma^{2(p-1)p^{e-1}}\mathcal{M}(G,1)\simeq \mathcal{M}(G,1)$ by Theorem 3.4, and $p^e\simeq 0:\mathcal{M}(G,1)\to \mathcal{M}(G,1)$ by Theorem 8.2. Hence, $\tau_p\mathcal{M}(G,1)\simeq \mathcal{M}(G,1)$. Moreover, by Theorem 8.5, $\pi_{2m}\mathcal{M}(G,1)\cong (W^mG)^\#$ and $\pi_{2m-1}\mathcal{M}(G,1)\cong (W^mG)^\#$ for $m\in Z$, where W^mG and W_1^mG are respectively the cokernel and kernel of $\psi^r-r^m\colon G\to G$. In particular, if G is finite, then $\pi_{2m}\mathcal{M}(G,1)$ and $\pi_{2m-1}\mathcal{M}(G,1)$ are finite p-groups of the same order for each $m\in Z$.

Our main result on the v_1 -periodic homotopy groups of finite H-spaces is

9.2. Theorem. If X is a 1-connected H-space with $H_*(X;Q)$ associative and with $H_*(X;Z_{(p)})$ finitely generated over $Z_{(p)}$, then $\Phi X \simeq \mathcal{M}(M/\psi^p,1)$ where $M=PK^1(X;\hat{Z}_p)\cong \hat{Q}K^1(X;\hat{Z}_p)$. Moreover, M/ψ^p is finite, and the v_1 -periodic homotopy groups of X are given by $v_1^{-1}\pi_{2m}X\cong [W^m(M/\psi^p)]^\#$ and $v_1^{-1}\pi_{2m-1}X\cong [W^m(M/\psi^p)]^\#$, which are of the same order for each $m\in Z$.

Proof. By Theorem 6.3, $PK^1(X; \hat{Z}_p)$ is a regular torsion-free p-adic Adams module and $K^*(X; \hat{Z}_p) \cong \hat{\Lambda}(PK^*(X; \hat{Z}_p))$. Hence, Theorem 8.1 applies to X, and it suffices to show that ψ^p is monic on $K^1(X; \hat{Z}_p)$. Since $K_*(X; Z_{(p)})$ is finitely generated and $Z_{(p)}$ -free by Lin [25], we have $K^1(X; \hat{Z}_p) \cong \hat{Z}_p \otimes K^1(X; Z_{(p)})$ and $K^1(X; Z_{(p)}) \subset K^1(X; Q)$. Hence, since ψ^p is monic on $K^1(X; Q)$, it is also monic on $K^1(X; \hat{Z}_p)$.

To illustrate the use of this theorem, we shall recover the main result of [18] on

9.3. The v_1 -periodic homotopy groups of SU(n). Applying Theorem 9.2 to SU(n) for $n \ge 2$, we see that $\Phi SU(n) \simeq \mathcal{M}(M_n/\psi^p, 1)$ where

$$M_n \cong \hat{Q}K^1(SU(n);\hat{Z}_p) \cong K^1(\Sigma CP^{n-1};\hat{Z}_p) \cong \tilde{K}^0(CP^{n-1};\hat{Z}_p).$$

Since $K^0(CP^{n-1};\hat{Z}_p)$ is the truncated polynomial algebra $\hat{Z}_p[x]/(x^n)$ generated by $x=\xi-1$ where ξ is the canonical line bundle on CP^{n-1} , we have $M_n=\hat{Z}_p\{x,x^2,\ldots,x^{n-1}\}$ with $\psi^k x=\sum_{i=1}^{n-1}\binom{k}{i}x^i$ and $\psi^k x^m=(\psi^k x)^m$ for $k\in Z$ and $1\leqslant m\leqslant n-1$. The v_1 -periodic homotopy groups of SU(n) are now given algebraically by $v_1^{-1}\pi_{2m}SU(n)\cong [W^m(M_n/\psi^p)]^\#$ and $v_1^{-1}\pi_{2m-1}SU(n)\cong [W^m(M_n/\psi^p)]^\#$ for $m\in Z$. Before describing these groups more explicitly in Theorem 9.10, we shall discuss the structure of M_n/ψ^p as an abelian group.

9.4. Proposition. The stable p-adic Adams module M_n/ψ^p is of order $p^{\binom{n}{2}}$ with a composition series $Z/p, Z/p^2, \ldots, Z/p^{n-1}$.

Proof. Using the filtration of M_n by its powers $M_n^m = \hat{Z}_p[x^m, x^{m+1}, \dots, x^{n-1}]$, we see that $\psi^p = p^m$ on $M_n^m/M_n^{m+1} \cong \hat{Z}_p$ for $1 \le m \le n-1$.

By the *p-exponent* of an object A in an additive category, we mean the smallest integer $e \ge 0$ such that $p^e = 0 : A \to A$ (when such an integer exists). Also, by the *exponent of p* in a nonzero integer k, we mean the largest integer $e \ge 0$ such that $p^e | k$, and we write $v_p(k) = e$. Our computations suggest

9.5. Conjecture. The p-exponent of M_n/ψ^p is $(n-1) + v_p((n-1)!)$ for $n \ge 2$.

The *p*-exponent of M_n/ψ^p is of interest since it is also the *p*-exponent of the spectrum $\Phi SU(n) \simeq \mathcal{M}(M_n/\psi^p, 1)$ and determines its periodicity by 9.1. In this conjecture, $v_p((n-1)!)$ may be evaluated using the following theorem of Legendre (see [30, p. 546]). For an integer $m = \sum_{i \ge 0} a_i p^i$ with $0 \le a_i < p$ for each *i*, let $\alpha(m) = \sum_{i \ge 0} a_i$ denote the *p*-adic weight of *m*.

9.6. THEOREM. (Legendre). For $m \ge 1$, the exponent of p in m! is given by

$$v_p(m!) = (m - \alpha(m))/(p - 1).$$

We can easily prove a weak version of Conjecture 9.5.

9.7. Proposition. The p-exponent of M_n/ψ^p (and hence of $\Phi SU(n)$) is at least n-1 and at most 2n-3 for $n \ge 2$.

Proof. By induction on $m \ge 1$, we have

$$\psi^{p}(x^{m}) = p^{m}x^{m} + k_{1}p^{m-1}x^{m+1} + k_{2}p^{m-2}x^{m+2} + \dots + k_{m}x^{2m} + \text{(higher terms)}$$

in M_n for integers $k_i \ge 0$ depending on m. Thus, by another induction, the elements $p^{n-1}x^{n-1}$, p^nx^{n-2} , ..., $p^{2n-3}x$ are all in the image of $\psi^p: M_n \to M_n$. Hence, the p-exponent of M_n/ψ^p is at most 2n-3, and it is at least n-1 by Proposition 9.4.

We now proceed to evaluate the groups $v_1^{-1}\pi_{2m}SU(n) \cong [W^m(M_n/\psi^p)]^\#$.

9.8. Lemma. For $n \ge 2$ and $m \in \mathbb{Z}$, $W^m(M_n/\psi^p)$ is the p-finite quotient of $\widehat{\mathbb{Z}}_p$ by the relations $T_p(m,j) = 0$ for all $j \ge n$ where

$$T_p(m,j) = \sum_{\substack{i \ge 0 \ (i,p)=1}} (-1)^{i+j} {j \choose i} i^m.$$

Proof. We may obtain $W^m(M_n/\psi^p)$ from $K^0(CP^\infty; \hat{Z}_p)$ by taking its largest p-profinite quotient group with: (i) $\psi^p w = 0$ and $\psi^r w = r^m w$ for each $w \in K^0(CP^\infty; \hat{Z}_p)$; and (ii) $(\xi - 1)^j = 0$ for each $j \ge n$. Letting $C_k = \{1, \xi, \xi^2, \dots, \xi^{k-1}\}$ denote the cyclic group of order k on the generator ξ , we have $K^0(CP^\infty; \hat{Z}_p) \cong \lim_s Z_{p^s} C_{p^s}$. The p-profinite quotient of $K^0(CP^\infty; \hat{Z}_p)$ by the relations in (i) is just $\lim_s Z_{p^s} \{\xi\} \cong \hat{Z}_p \{\xi\} \cong \hat{Z}_p \text{ since } Z_{p^n} \{\xi\} \cong Z_{p^s}$ is the quotient of $Z_{p^s} C_{p^s}$ by the relations: $\xi^k = 0$ when $p \mid k$, and $\xi^k = k^m \xi$ when (k, p) = 1. Thus $W_m(M_n/\psi^p)$ is the p-finite quotient of $\hat{Z}_p \{\xi\}$ by the relations in (ii).

The numbers $T_p(m, j)$ have been studied by Lundell [26, p. 41] and are related to the Stirling numbers of the second kind, S(m, j), which satisfy

$$j!S(m,j) = \sum_{i \ge 0} (-1)^{i+j} {j \choose i} i^m$$

for $m, j \ge 1$. In fact, following Davis [18], we may replace Lemma 9.8 by

9.9. Lemma. For $n \ge 2$ and $m \ge n$, $W^m(M_n/\psi^p)$ is the p-finite quotient of \hat{Z}_p by the relations j!S(m, j) = 0 for j = n, n + 1, ..., m.

Proof. Since S(m, m) = 1, we have $v_p(m!S(m, m)) = (m - \alpha(m))/(p - 1) < m$ by Theorem 9.6. Thus since $j!S(m,j) \equiv T_p(m,j) \mod p^m$ for all j, $W^m(M_n/\psi^p)$ is the p-finite quotient of \hat{Z}_p by the relations j!S(m,j)=0 for all $j \ge n$. The lemma now follows since S(m,j)=0 for П j > m.

Combining this lemma with 9.3, we recover the following main result of Davis [18].

9.10. THEOREM. If $m \ge n \ge 2$, then the group $v_1^{-1}\pi_{2m}SU(n)$ is cyclic of order p^e where $e = \min \{ v_n(j!S(m,j)) | n \le j \le m \}$

and the group $v_1^{-1}\pi_{2m-1}SU(n)$ is of the same order.

Note that this describes all of the groups $v_1^{-1}\pi_*SU(n) \cong \pi_*\tau_p\mathcal{M}(M_n/\psi^p, 1)$ by periodicity (see 9.1). Finally, we determine

9.11. The v_1 -periodic homotopy groups of K/p-homology spheres. Let $X \in Ho_*$ be an odd K/p-homology sphere with $\tilde{K}^0(X;\hat{Z}_p) = 0$ and $K^1(X;\hat{Z}_p) = N$ for a spherical p-adic Adams module N (see 5.2), and assume that X is K/p_* -durable (as it is when $X = S^{2n+1}$ or X = S(N, 1)). Suppose that $N \cong \hat{Z}_p$ has Adams operations $\psi^p = up^n$ and $\psi^r = v$ for $1 \le n < \infty$ and $u, v \in \hat{Z}_p^{\times}$, where u = 1 and v = r when n = 1. Now choose an integer m such that $v \equiv r^m \mod p^n$, and observe that $N/\psi^p \cong Z/p^n$ has Adams operations $\psi^k = k^m$ for each $k \in \mathbb{Z} - p\mathbb{Z}$. Hence, $\Phi X \simeq \mathcal{M}(N/\psi^p, 1)$ is the K/p_* -localization of the mod p^n Moore spectrum $S^{2m} \cup_{r} e^{2m+1}$ by Theorems 8.1 and 3.4, and X has v_1 -periodic homotopy groups

$$v_1^{-1}\pi_{2i}X \cong v_1^{-1}\pi_{2i-1}X \cong \begin{cases} Z/p^{\min(n,v_p(a)+1)} & \text{if } i=m+(p-1)a\\ 0 & \text{otherwise} \end{cases}$$
 by 9.1, since $v_p(a)+1=v_p(r^m-r^i)$. This generalizes the result of Thompson (see [33, 24] or

[19]) for the ordinary odd spheres S^{2n+1} .

We obtain very different results when we suppose that the spherical p-adic Adams module N is of class ∞ (see 5.2), so that $N = \hat{Z}_p$ has Adams operations $\psi^p = 0$ and $\psi^r = v$ for a p-adic unit $v \in \hat{Z}_p^{\times}$. In this case, $\Phi X \simeq \mathcal{M}(N, 1) \vee \mathcal{M}(N, 0)$ by Theorem 8.1. If $v = r^m$ for some integer m, then N has Adams operations $\psi^k = k^m$ for each $k \in \mathbb{Z} - p\mathbb{Z}$, and $\mathcal{M}(N, 1)$ is the K/p_* -localization of the sphere spectrum S^{2m+1} . Moreover,

$$v_1^{-1}\pi_{2i}X \cong \begin{cases} Z/p^{v_p(a)+1} & \text{if } i=m+(p-1)a \text{ for } a\neq 0 \\ Z_{p^{\infty}} & \text{if } i=m \text{ or } m-1 \\ 0 & \text{otherwise} \end{cases}$$

$$v_1^{-1}\pi_{2i-1}X \cong \begin{cases} Z/p^{v_p(a)+1} & \text{if } i=m+(p-1)a \text{ for } a\neq 0 \\ Z_{p^{\infty}} \oplus Z_{p^{\infty}} & \text{if } i=m \\ 0 & \text{otherwise} \end{cases}$$

by Theorems 7.5 and 8.5. Similarly, if v is not an integral power of r, then

$$v_1^{-1}\pi_{2i}X \cong v_1^{-1}\pi_{2i-1}X \cong Z/p^{v_p(v-r^i)}$$

for each integer i.

10. ON $K\hat{Z}_{p}^{*}$ -MOORE SPECTRA AND THE $K\hat{Z}_{p}^{*}$ -ADAMS SPECTRAL SEQUENCE

In [7, 9], we obtained detailed results on $KZ_{(p)_*}$ -Moore spectra and the $KZ_{(p)_*}$ -Adams spectral sequence. We now use that work to derive some previously claimed results (Theorems 3.4, 3.9, 8.2, and 8.5) on $K\hat{Z}_p^*$ -Moore spectra and the $K\hat{Z}_p^*$ -Adams spectral sequence. In preparation, we show that the $K\hat{Z}_p^*$ -cohomologies of p-complete spectra correspond to the $KZ_{(p)_*}$ -homologies of p-torsion spectra.

Let $Z_{(p)}^{\times}$ be the group of units in the *p*-local integers. For each $k \in Z_{(p)}^{\times}$, there is a unique map of spectra $\psi^k \colon K_{(p)} \to K_{(p)}$ with $\psi^k = k^n \colon \pi_{2n} K_{(p)} \cong \pi_{2n} K_{(p)}$ for each $n \in \mathbb{Z}$ as in [7, Section 2]. This induces the Adams operation ψ^k in the associated homology and cohomology theories, and we have

10.1. Proposition. For a spectrum X, there is a natural isomorphism

$$K^*(X; \hat{Z}_p) \cong K_{*-1}(\tau_p X; Z_{(p)})^{\#}$$

such that ψ^k corresponds to $(\psi^{1/k})^\#$ for each $k \in Z_{(p)}^{\times}$.

Proof. Using Corollary 2.3 and the fiber sequence $KZ_{(p)} \to KQ \to KZ_{p^{\infty}}$, we obtain natural isomorphisms

$$K^*(X; \hat{Z}_p) \cong K_*(X; Z_{p^{\infty}})^{\#} \cong K_*(\tau_p X; Z_{p^{\infty}})^{\#} \cong K_{*-1}(\tau_p X; Z_{(p)})^{\#}$$

and we see that ψ^k corresponds to $(\psi^{1/k})^\#$ because the map $\psi^k: K\hat{Z}_p \to K\hat{Z}_p$ corresponds to $c(\psi^{1/k}): c(KZ_{p^\infty}) \to c(KZ_{p^\infty})$ by Proposition 2.2 and [7, Section 2].

- 10.2. Pontrjagin duality for stable Adams modules. By a stable p-torsion Adams module, we mean a direct limit of a directed system of finite stable p-adic Adams modules (see 2.6), or equivalently we mean a p-torsion object in the category $\mathscr{A}(p)$ of [7, Section 1]. For a stable p-adic Adams module G, the Pontrjagin dual $G^{\#}$ is now a stable p-torsion Adams module equipped with the operations $\psi^k = (\psi^{1/k})^{\#}$ for $k \in Z_{(p)}^{\times}$. Moreover, the Pontrjagin duality functor now gives a contravariant equivalence between the category \mathscr{A} of stable p-adic Adams modules and the category $\mathscr{A}^{\#}$ of stable p-torsion Adams modules. Propositions 7.4 and 10.1 combine to show that a p-complete spectrum X corresponds to a p-torsion spectrum $\tau_p X$ such that, $K_{*-1}(\tau_p X; Z_{(p)}) \in \mathscr{A}^{\#}$ is Pontrjagin dual to $K^*(X; \hat{Z}_p) \in \mathscr{A}$.
- **10.3. Proof of Theorem 3.4.** By [7, 3.8 and 8.7], for a stable *p*-adic Adams module $G \in \mathcal{A}$, there exists a *p*-torsion K_* -local spectrum Y with $K_0(Y; Z_{(p)}) \cong G^\# \in \mathcal{A}^\#$ and $K_1(Y; Z_{(p)}) = 0$, and this spectrum is unique up to equivalence. Using the above correspondence, we now obtain Theorem 3.4 by taking $\mathcal{M}(G, 1) = \hat{Y}_p$.

We similarly obtain a $K\hat{Z}_p^*$ -Adams spectral sequence. Let \mathscr{A} now denote the category of $\mathbb{Z}/2$ -graded stable p-adic Adams modules and note that Ext_A^s is trivial for s>2 by Theorem 8.3.

10.4. THEOREM. For spectra X and Y, there is a natural spectral sequence $\{E_r^{s,t}(X,Y)\}$ converging strongly to $[X,Y_{K/p}]_{t-s}$ with

$$d_r: E_r^{s,t}(X,Y) \to E_r^{s+r,t+r-1}(X,Y)$$

$$E_2^{s,t}(X,Y) = \operatorname{Ext}_{\mathcal{A}}^s(K^*(Y;\widehat{Z}_p),K^*(\Sigma^tX;\widehat{Z}_p))$$

$$E_3^{s,t}(X,Y) = E_{\infty}^{s,t}(X,Y) = (F^s/F^{s+1})[X,Y_{K/p}]_{t-s}$$
$$[X,Y_{K/p}]_* = F^0[X,Y_{K/p}]_* \supset \cdots \supset F^3[X,Y_{K/p}]_* = 0.$$

Proof. This follows by letting $\{E_r^{s,t}(X,Y)\}$ be the $KZ_{(p)_*}$ -Adams spectral sequence of [7, Section 8] for $\tau_p X$ and $\tau_p Y$, and by using 10.2 to obtain the present statement.

- **10.5.** Proof of Theorem 3.9. If $K^*(Y; \hat{Z}_p)$ is torsion-free, then it has projective dimension ≤ 1 in \mathscr{A} by Theorem 8.3 since it is projective in \mathscr{G} . Hence, in Theorem 10.4, we have $E_2^{s,t}(X,Y)=0$ for s>1, and the spectral sequence collapses to the form given in Theorem 3.9.
- **10.6.** Proof of Theorem 8.2. If E is a spectrum with $K^0(E; \hat{Z}_p) = 0$ and $K^1(E; \hat{Z}_p) = H \in \mathcal{A}$, then $E_{K/p} \simeq \mathcal{M}(H, 1)$ by Theorem 3.4. Hence, by [7, Section 9], the $K\hat{Z}_p^*$ -Adams spectral sequence for $[E, \mathcal{M}(G, 1)]_* \cong [\mathcal{M}(H, 1), \mathcal{M}(G, 1)]_*$ collapses to the form given in Theorem 8.2.
- **10.7.** Proof of Theorem 8.5. Since $\tau_p \mathcal{M}(G, 1)$ is a p-torsion K_* -local spectrum with $K_0(\tau_p \mathcal{M}(G, 1); Z_{(p)}) \cong G^\#$ and $K_1(\tau_p \mathcal{M}(G, 1); Z_{(p)}) = 0$, the $KZ_{(p)_*}$ -Adams spectral sequence of [7] for $\pi_* \tau_p \mathcal{M}(G, 1)$ collapses to give Theorem 8.5.

11. PROOF OF THEOREM 4.7

For a regular torsion-free p-adic Adams module M and a companion map $f: \Omega^{\infty} \widetilde{\mathcal{M}}(M,1) \to \Omega^{\infty} \widetilde{\mathcal{M}}(M,1)$, we must establish an isomorphism of $\mathbb{Z}/2$ -graded p-adic λ -rings $K^*(\widetilde{\operatorname{Fib}} f; \widehat{\mathbb{Z}}_p) \cong \widehat{\Lambda}(M)$. We shall first determine the p-adic K-cohomology of $\Omega\Omega^{\infty} \widetilde{\mathcal{M}}(M,1)$ using

11.1. A free *p*-adic λ -ring functor. Following [11, 13], we say that a (degree 0 or ungraded) *p*-adic λ -ring *R* is *linear* when xy = 0, $\theta^p x = x$, and $\psi^k x = kx$ for each $x, y \in \tilde{R}$ and $k \in Z$. A *p*-adic λ -ring *A* has a universal linear quotient $A/\hat{\Gamma}^2 \tilde{A}$, and

$$\tilde{K}^0(X;\hat{Z}_p)/\hat{\Gamma}^2\tilde{K}^0(X;\hat{Z}_p)\cong H^2(X;\hat{Z}_p)$$

for each connected space X by [11, 5.4]. Recall that a (degree 0 or ungraded) p-adic Adams module H is called *linear* when $\psi^k x = kx$ for each $k \in \mathbb{Z}$. By an augmented p-adic Adams module $M \downarrow H$, we mean a p-adic Adams module M with a given map to a linear p-adic Adams module H. As in [13, 3.5], there is a free p-adic λ -ring functor $U: \overline{\mathscr{U}} \to \mathscr{K}$ from the category $\overline{\mathscr{U}}$ of augmented p-adic Adams modules to the category \mathscr{K} of p-adic λ -rings, where U is left adjoint to the forgetful functor sending $A \in \mathscr{K}$ to $\widetilde{A} \downarrow (\widetilde{A}/\widehat{\Gamma}^2 \widetilde{A}) \in \overline{\mathscr{U}}$. For a 1-connected space X, there is a natural suspension homomorphism of p-adic λ -rings

$$\sigma\colon\! U(\hat{Q}K^1(X;\hat{Z}_p)\!\downarrow\! H^3(X;\hat{Z}_p))\to K^0(\Omega X;\hat{Z}_p),$$

and Theorems 10.2 and 10.5 of [13] show

11.2. Theorem. If X is a 1-connected H-space with $PK_0(X; \mathbb{Z}/p) = 0$, then $K^1(\Omega X; \hat{\mathbb{Z}}_p) = 0$ and $K^0(\Omega X; \hat{\mathbb{Z}}_p)$ is torsion-free with

$$\sigma\colon U(\hat{Q}K^1(X;\hat{Z}_p)\!\downarrow\! H^3(X;\hat{Z}_p))\cong K^0(\Omega X;\hat{Z}_p).$$

By Theorem 3.7, this applies to $X = \Omega^{\infty} \widetilde{\mathcal{M}}(G, 1)$ for a torsion-free stable *p*-adic Adams module *G*. For a 1-connected space *X*, the natural augmentation map $\widehat{Q}K^{1}(X; \widehat{Z}_{p}) \to H^{3}(X; \widehat{Z}_{p})$ induces a map

$$\alpha \colon \! \operatorname{Lin}(\hat{Q}K^1(X;\hat{Z}_p)) \to H^3(X;\hat{Z}_p)$$

where Lin is the linearization functor for p-adic Adams modules (see 4.4).

11.3. Proposition. If $X = \Omega^{\infty} \widetilde{\mathcal{M}}(G, 1)$ for a torsion-free stable p-adic Adams module G, then α : $\operatorname{Lin}(\hat{Q}K^1(X; \hat{Z}_p)) \cong H^3(X; \hat{Z}_p)$.

Proof. For the spectrum $E = \tilde{\mathcal{M}}(G, 1)$, there is a suspension isomorphism

$$W^1K^1(E;\hat{Z}_p)\cong W^1G\cong \mathrm{Lin}(\tilde{F}G)\cong \mathrm{Lin}(\hat{Q}K^1(X;\hat{Z}_p))$$

by Theorem 3.7, and there is also a suspension isomorphism $H^3(E;\hat{Z}_p)\cong H^3(X;\hat{Z}_p)$. Thus, it suffices to show that the stable augmentation map $K^1(E;\hat{Z}_p)\to H^3(E;\hat{Z}_p)$ induces an isomorphism $W^1K^1(E;\hat{Z}_p)\cong H^3(E;\hat{Z}_p)$. Hence, by Proposition 10.1 and Lemma 11.4 below, it suffices to show that the Hurewicz homomorphism $\pi_2(\tau_p E)\to K_0(\tau_p E;Z_{(p)})$ induces an isomorphism from $\pi_2(\tau_p E)$ to the kernel of $\psi^r-r:K_0(\tau_p E;Z_{(p)})\to K_0(\tau_p E;Z_{(p)})$. This follows using the $KZ_{(p)_*}$ -Adams spectral sequence [7] for $\pi_2(\tau_p E)\cong \pi_2(\tau_p \mathcal{M}(G,1))$.

We have used

11.4. Lemma. If X is a 1-connected space or spectrum whose p-torsion part $\tau_p X$ (the homotopy fiber of $X \to X[1/p]$) is also 1-connected, then there is a natural isomorphism $H^3(X; \hat{Z}_p) \cong (\pi_2(\tau_p X))^\#$.

Proof. This follows since there is a natural isomorphism $H^3(X; \hat{Z}_p) \cong H_2(\tau_p X; Z_{(p)})^\#$ obtained using the equivalence $c(HZ_{p^*}) \simeq H\hat{Z}_p$ as in Corollary 2.3 and Proposition 10.1.

For a torsion-free *p*-adic Adams module M and a companion map $f: \Omega^{\infty} \widetilde{\mathcal{M}}(M,1) \to \Omega^{\infty} \widetilde{\mathcal{M}}(M,1)$, the adjusted fiber $\widetilde{\text{Fib}} f$ of 4.6 belongs to a ladder of *p*-complete fiber sequences

$$\widetilde{\text{Fib}} f \longrightarrow X \xrightarrow{\widetilde{f}} Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\widetilde{\text{Fib}} f \longrightarrow \Omega^{\infty} \widetilde{\mathcal{M}}(M,1) \xrightarrow{f} \Omega^{\infty} \widetilde{\mathcal{M}}(M,1)$$

such that: $\tau_p \widetilde{\mathrm{Fib}} f$ is the 1-connected cover of $\tau_p \mathrm{Fib} f$; $\tau_p Y$ is the 2-connected cover of $\tau_p \Omega^\infty \widetilde{\mathscr{M}}(M,1)$; and $\tau_p X$ is 1-connected with $\pi_i(\tau_p X) \cong \pi_i(\tau_p \Omega^\infty \widetilde{\mathscr{M}}(M,1))$ for i>2 and

$$\pi_2(\tau_p X) = \ker(f_* : \pi_2(\tau_p \Omega^{\infty} \widetilde{\mathcal{M}}(M, 1)) \to \pi_2(\tau_p \Omega^{\infty} \widetilde{\mathcal{M}}(M, 1))).$$

Let

$$0 \to (\widetilde{F}M \downarrow 0) \xrightarrow{\partial} (\widetilde{F}M \downarrow \operatorname{Lin} M) \xrightarrow{\alpha} (M \downarrow \operatorname{Lin} M) \to 0$$

be the short exact sequence of augmented *p*-adic Adams modules induced by the short exact sequence of *p*-adic Adams modules $0 \to \tilde{F}M \xrightarrow{\partial} \tilde{F}M \xrightarrow{\alpha} M \to 0$ in Lemma 4.1.

11.5. PROPOSITION. The map of p-adic λ -rings $\Omega \tilde{f}^*: K^0(\Omega Y; \hat{Z}_p) \to K^0(\Omega X; \hat{Z}_p)$ is equivalent to $U(\partial): U(\tilde{F}M\downarrow 0) \to U(\tilde{F}M\downarrow \text{Lin }M)$. Moreover, $K^0(\Omega X; \hat{Z}_p)$ and $K^0(\Omega Y; \hat{Z}_p)$ are torsion-free, while $K^1(\Omega X; \hat{Z}_p) = 0 = K^1(\Omega Y; \hat{Z}_p)$.

Proof. Theorem 11.2 applies to X and Y since the maps $X \to \Omega^{\infty} \widetilde{\mathcal{M}}(M,1)$ and $Y \to \Omega^{\infty} \widetilde{\mathcal{M}}(M,1)$ are K/p_* -equivalences of infinite loop spaces by [6]. Thus, since \widetilde{f}^* : $\widehat{Q}K^1(Y;\widehat{Z}_p) \to \widehat{Q}K^1(X;\widehat{Z}_p)$ is equivalent to $\partial: \widetilde{F}M \to \widetilde{F}M$, it suffices to show that $\widetilde{f}^*: H^3(Y;\widehat{Z}_p) \to H^3(X;\widehat{Z}_p)$ is equivalent to $0: 0 \to \operatorname{Lin} M$. This follows by Proposition 11.3 and Lemma 11.4 since the short exact sequence $0 \to \widetilde{F}M \xrightarrow{\delta} \widetilde{F}M \xrightarrow{\alpha} M \to 0$ induces a right exact sequence $\operatorname{Lin}(\widetilde{F}M) \to \operatorname{Lin}(\widetilde{F}M) \to \operatorname{Lin}(M) \to 0$.

11.6. Proposition. If M is a regular torsion-free p-adic Adams module, then $\Omega \tilde{f}_*: K_0(\Omega X; Z/p) \to K_0(\Omega Y; Z/p)$ is onto. Moreover, the Frobenius is monic in both $K_0(\Omega X; Z/p)$ and $K_0(\Omega Y; Z/p)$, while $K_1(\Omega X; Z/p) = 0 = K_1(\Omega Y; Z/p)$.

Proof. Following [13, 5.1], for an augmented p-adic Adams module $N \downarrow H$, let $U(N \downarrow H)_p^\#$ be the Pontrjagin dual of $U(N \downarrow H)/p$, and recall that $U(N \downarrow H)_p^\#$ belongs to the abelian category $\mathscr{H}(p)^{ev}$ of bicommutative irreducible Z/p-Hopf algebras. Since M is regular and torsion-free, $M \downarrow \text{Lin } M$ is properly torsion-free in the sense of [13, 4.5], and

$$Z/p \to U(M \downarrow \operatorname{Lin} M)_p^{\#} \stackrel{\alpha^*}{\to} U(\widetilde{F}M \downarrow \operatorname{Lin} M)_p^{\#} \stackrel{\partial^*}{\longrightarrow} U(\widetilde{F}M \downarrow 0)_p^{\#} \to Z/p$$

is a short exact sequence in $\mathcal{H}(p)^{ev}$ by [13, 6.10]. Moreover, the Frobenius is monic in each of these three objects by [13, 8.8]. The stated results now follow since ∂^* is equivalent to $\Omega \tilde{f}_*: K_0(\Omega X; Z/p) \to K_0(\Omega Y; Z/p)$ by Proposition 11.5.

11.7. Proposition. If M is a regular torsion-free p-adic Adams module, then the map $K_*(\widetilde{\operatorname{Fib}} f; Z/p) \to K_*(X; Z/p)$ is an injection onto the kernel of $\widetilde{f}_*: K_*(X; Z/p) \to K_*(Y; Z/k)$ in the category of Z/2-graded augmented cocommutative Z/p-coalgebras.

Proof. For the principal fibration $\Omega X \to \Omega Y \to \widetilde{\text{Fib}} f$, we consider the K/p_* -bar (or K/p_* -Eilenberg-Moore) spectral sequence of graded coalgebras abutting to $K_*(\widetilde{\text{Fib}} f; Z/p)$ with

$$E_s^2 \approx \operatorname{Tor}_s^{K_*(\Omega X; \mathbb{Z}/p)}(K_*(\Omega Y; \mathbb{Z}/p), \mathbb{Z}/p)$$

as in [6]. This maps to the K/p_* -bar spectral sequence of graded Hopf algebras abutting to $K_*(X;Z/p)$ with $E_s^2 = \operatorname{Tor}_{s^*}^{K_*(\Omega Y/Z/p)}(Z/p,Z/p)$, and this in turn maps to the K/p_* -bar spectral sequence of graded Hopf algebras abutting to $K_*(Y;Z/p)$ with $E_s^2 = \operatorname{Tor}_{s^*}^{K_*(\Omega Y;Z/p)}(Z/p,Z/p)$. Let $A \in \mathscr{H}(p)^{ev}$ denote the kernel of the epimorphism $\Omega \widetilde{f}_*: K_0(\Omega X;Z/p) \to K_0(\Omega Y;Z/p)$ in $\mathscr{H}(p)^{ev}$ (see Proposition 11.6). Then the sequence of indecomposables

$$0 \to QA \to QK_0(\Omega X; \mathbb{Z}/p) \to QK_0(\Omega Y; \mathbb{Z}/p) \to 0$$

is short exact, while the corresponding sequence of derived indecomposables is trivial by [13, B.5]. Thus, there are natural isomorphisms of E^2 -terms

$$\begin{aligned} &\operatorname{Tor}_{*}^{K_{*}(\Omega X;\,Z/p)}((K_{*}(\Omega Y;Z/p),Z/p)\cong\Lambda(QA) \\ &\operatorname{Tor}_{*}^{K_{*}(\Omega X;\,Z/p)}(Z/p,Z/p)\cong\Lambda(QK_{0}(\Omega X;Z/p)) \\ &\operatorname{Tor}_{*}^{K_{*}(\Omega X;\,Z/p)}(Z/p,Z/p)\cong\Lambda(QK_{0}(\Omega Y;Z/p)) \end{aligned}$$

by [6, 4.6, 13, 8.9], and our three spectral sequences must all collapse with $E^2 = E^{\infty}$, since the second and third are generated by infinite cycles, while the first injects into the second. Now, the map $K_*(\widetilde{\text{Fib}}\,f;Z/p) \to K_*(X;Z/p)$ is an injection onto the coalgebraic kernel of $\widetilde{f}_*: K_*(X;Z/p) \to K_*(Y;Z/p)$, since the associated graded map $\Lambda(QA) \to \Lambda(QK_0(\Omega X;Z/p))$ is an injection onto the coalgebraic kernel of $\Lambda(QK_0(\Omega X;Z/p)) \to \Lambda(QK_0(\Omega Y;Z/p))$.

11.8. Proof of Theorem 4.7. Since the map $\tilde{f}^*: K^*(Y; \hat{Z}_p) \to K^*(X; \hat{Z}_p)$ is equivalent to $\hat{\Lambda}(\partial): \hat{\Lambda}(\tilde{F}M) \to \hat{\Lambda}(\tilde{F}M)$, it has a cokernel $\hat{\Lambda}(M)$ in the category of $\mathbb{Z}/2$ -graded p-adic λ -rings. Hence, there is a canonical homomorphism of $\mathbb{Z}/2$ -graded p-adic λ -rings $u: \hat{\Lambda}(M) \to K^*(\widetilde{\operatorname{Fib}}f; \hat{Z}_p)$. Since $K_*(\widetilde{\operatorname{Fib}}f; \mathbb{Z}/p)$ maps injectively to $K_*(X; \mathbb{Z}/p)$, it has trivial Bockstein operations, and hence $K^*(\widetilde{\operatorname{Fib}}f; \hat{Z}_p)$ is torsion-free (like $\hat{\Lambda}(M)$). Thus, to show that u is an isomorphism, it suffices to show that $u_p^{\#}: K^*(\widetilde{\operatorname{Fib}}f; \hat{Z}_p)_p^{\#} \to \hat{\Lambda}(M)_p^{\#}$ is an isomorphism. This follows since $K^*(\widetilde{\operatorname{Fib}}f; \hat{Z}_p)_p^{\#} \cong K_*(\widetilde{\operatorname{Fib}}f; \mathbb{Z}/p)$ and since both $K_*(\widetilde{\operatorname{Fib}}f; \mathbb{Z}/p)$ and $\hat{\Lambda}(M)_p^{\#}$ represent the coalgebraic kernel of $K_*(X; \mathbb{Z}/p) \to K_*(Y; \mathbb{Z}/p)$ by Proposition 11.7.

REFERENCES

- Adams, J. F., Infinite Loop Spaces. Annals of Mathematics Studies, vol. 90. Princeton University Press, Princeton NJ, 1978.
- 2. Anderson, D. W., Universal coefficient theorems for K-theory. Mimeographed notes, Berkeley, 1969.
- Atiyah, M. F. and Tall, D. O., Group representations, λ-rings, and the *J*-homomorphism. *Topology*, 1969, 8, 253–297.
- 4. Bousfield, A. K., The localization of spaces with respect to homology. Topology, 1975, 14, 133-150.
- 5. Bousfield, A. K., The localization of spectra with respect to homology, Topology, 1979, 18, 257-281.
- Bousfield, A. K., K-localizations and K-equivalences of infinite loop spaces, Proceedings of the London Mathematical Society, 1982, 44, 1025–1042.
- Bousfield, A. K., On the homotopy theory of K-local spectra at an odd prime, American Journal of Mathematics, 1987, 109, 361–394.
- 8. Bousfield, A. K., Uniqueness of infinite deloopings for K-theoretic spaces. *Pacific Journal of Mathematics*, 1987, **129**, 1–31.
- 9. Bousfield, A. K., A classification of K-local spectra. Journal of Pure and Applied Algebra, 1990, 66, 121-163.
- Bousfield, A. K., Localization and periodicity in unstable homotopy theory. *Journal American Mathematical Society*, 1994, 7, 831–873.
- 11. Bousfield, A. K., On λ-rings and the K-theory of infinite loop spaces. K-theory, 1996, 10, 1–30.
- Bousfield, A. K., Unstable localization and periodicity. In Algebraic Topology: New Trends in Localization and Periodicity. Birkhauser, Basel, 1996, pp. 33–50.
- Bousfield, A. K., On p-adic λ-rings and the K-theory of H-spaces. Mathematische Zeitschrift, 1996, 223, 483-519.
- 14. Bousfield, A. K., Homotopical localizations of spaces, American Journal of Mathematics, 1997, 119, 1321-1354.
- Bousfield, A. K. and Kan, D. M., The homotopy spectral sequence of a space with coefficients in a ring. Topology, 1972, 11, 79–106.
- Bousfield, A. K. and Kan, D. M., Homotopy Limits, Completions and Localizations. Lecture Notes in Mathematics, Vol. 304. Springer, Berlin, 1972.
- 17. Brown, E. H. and Comenetz, M., Pontrjagin duality for generalized homology and cohomology theories, *American Journal of Mathematics*, 1976, **98**, 1–27.

- 18. Davis, D. M., The v_1 -periodic homotopy groups of SU(n) at odd primes. *Proceedings of the London Mathematical Society*, 1991, 43, 529–544.
- Davis, D. M., Computing v₁-periodic homotopy groups of spheres and some compact Lie groups, In Handbook of Algebraic Topology, ed. I. M. James. Elsevier, Amsterdam, 1995, pp. 993–1048.
- Davis, D. M., Mahowald, M., Some remarks on v₁-periodic homotopy groups, Adams Memorial Symposium on Algebraic Topology, London Mathematical Society Lecture Note Series, Vol. 176, 1992, pp. 55–72.
- 21. Davis, D. M. and Mahowald, M., v_1 -localizations of torsion spectra and spherically resolved spaces. *Topology*, 1993, **32**, 543–550.
- 22. Hopkins, M. J. and Smith, J. H., Nilpotence and stable homotopy theory II. Annals of Mathematics (to appear).
- Kuhn, N. J., Morava K-Theories and Infinite Loop Spaces, Lecture Notes in Mathematics, Vol. 1370, Springer, Berlin, 1989, pp. 243–257.
- 24. Langsetmo, L. and Thompson, R. D., Some applications of $K(1)_*W(n)$. Contemporary Mathematics, 1995, 181, 339–354.
- 25. Lin, J. P., Torsion in *H*-spaces II. Annals of Mathematics, 1978, **107**, 41-88.
- 26. Lundell, A. T., A divisibility property for Stirling numbers. Journal of Number Theory, 1978, 10, 35-54.
- Mahowald, M. and Thompson, R. D., The K-theory localization of an unstable sphere. Topology, 1992, 31, 133–141.
- 28. Massey, W. S. and Peterson, F. P., The mod-2 cohomology structure of certain fibre spaces. *Memoirs of the American Mathematical Society*, 1967, **74**, 1–97.
- Ravenel, D. C., Nilpotence and Periodicity in Stable Homotopy Theory, Annals of Mathematics Studies, Vol. 128, Princeton University Press, Princeton, NJ, 1992.
- 30. Singmaster, D., Notes on binomial coefficients I a generalization of Lucas' congruence. *Journal of London Mathematical Society*, 1974, **8**, 545–548.
- Steenrod, N. E. and Epstein, D. B. A., Cohomology Operations. Annals of Mathematics Studies, no. 50, Princetion University Press, Princeton, NJ, 1962.
- 32. Sullivan, D., Genetics of homotopy theory and the Adams conjecture. Annals of Mathematics, 1974, 100, 1-79.
- Thompson, R. D., The v₁-periodic homotopy groups of an unstable sphere at odd primes. Transactions of the American Mathematical Society, 1990, 319, 535–560.
- 34. Thompson, R. D., A relation between K-theory and unstable homotopy groups with an application to $B\Sigma_p$. Contemporary Mathematics, 1993, 146, 421–440.
- Yosimura, Z., Universal coefficient sequences for cohomology theories of CW spectra. Osaka Journal of Mathematics, 1975, 12, 305–323.

Department of Mathematics, Statistics, and Computer Science (M/C 249) University of Illinois at Chicago Chicago, IL 60607, U.S.A.