Plataforma HW/SW de sistemas de procesamiento

Maestría en Sistemas Digitales

Alejandro J. Cabrera Sarmiento

Dpto. de Automática y Computación Universidad Tecnológica de La Habana "José Antonio Echeverría" CUJAE

alex@automatica.cujae.edu.cu

Sumario

- Creación de proyectos con BSB
- Definición de especificaciones HW con XPS
 - Fichero MHS (Microprocessor Hardware Specification)
- Platgen: Platform Generator
- Configuración de la plataforma SW con XPS
 - Fichero MSS (Microprocessor Software Specification)
- LibGen: Library Generator

Inicio de proyectos en XPS

- □ La creación de un proyecto de un sistema de procesamiento empotrado basado en MicroBlaze (o Power PC) requiere la definición de los ficheros de especificación de hardware (MHS) y software (MSS)
- Existen tres procedimientos para crear una plataforma en XPS:
 - Mediante el asistente Base System Builder (BSB)
 - Si la placa que se utiliza es una de las soportadas
 - Mediante Xilinx Platform Studio (XPS):
 - IP Catalog: especificación hardware ... MHS
 - Software Platform Settings: configuración software ... MSS
 - Combinación de ambos

Creación de Proyectos con BSB

Al iniciar XPS...

Bus de expansión en BSB

AXI sólo con Spartan-6+, Virtex-6+ y Zynq

1.- Selección de placa de desarrollo

2.- Sistema (single o dual processor)

3.- Configuración del procesador

4.- Selección de periféricos

5.- [Configuración de Cache]

6.- Configuración software

7.- Resumen del sistema

Xilinx Platform Studio (XPS)

Estructura del proyecto

Creación de proyectos con Platform Studio

Creación de un proyecto desde cero

Proyecto (Proyect Tab)

Opciones del flujo de diseño

Especificación hardware de la plataforma

Especificación hardware de la plataforma

1.- Inclusión de componentes (IP Catalog)

1.- Inclusión de componentes (IP Catalog)

1.- Inclusión de componentes

2.- Conexión de buses (Bus Interfaces)

Conexión de buses

Conexiones de módulos IP

2.- Conexión de buses

3.- Definición de direcciones (Addresses)

3.- Definición de direcciones

4.- Declaración de puertos de E/S (Ports)

4.- Declaración de puertos de E/S

5.- Configuración de módulos (Parámetros)

Parámetros de configuración de módulos IP

system.mhs

Microprocessor Hardware Specification

Microprocessor Peripheral Definitions

```
BEGIN opb_uartlite

PARAMETER INSTANCE = myuart

PARAMETER HW_VER = 1.00.b

PARAMETER C_DATA_BITS = 8

PARAMETER C_CLK_FREQ = 1000000000

PARAMETER C_BAUDRATE = 9600

PARAMETER C_USE PARITY = 0

PARAMETER C_ODD_PARITY = 1

PARAMETER C_BASEADDR = 0x00010000

PARAMETER C_HIGHADDR = 0x000100FF

PORT OPB_Clk = sys_clk

PORT OPB_Rst = peripheral_rst

PORT TX = rx

PORT TX = tx

BUS_INTERFACE SOPB = myopb

END
```

```
OPTION SIM_MODELS = BEHAVIORAL : STRUCTURAL

BUS_INTERFACE BUS=SOPB, BUS_STD=OPB, BUS_TYPE=SLAVE

# Generics for vhdl or parameters for verilog
PARAMETER C_BASEADDR = OxFFFF8000, DT=std_logic_vector
PARAMETER C_HIGHADDR = OxFFFF80FF, DT=std_logic_vector
PARAMETER C_OPB_DWIDTH = 32, DT=integer
PARAMETER C_OPB_AWIDTH = 32, DT=integer
PARAMETER C_DATA_BITS = 8, DT="integer range 5 to 8"
PARAMETER C_CLK_FREQ = 125_000_000, DT=integer
PARAMETER C_BAUDRATE = 9600, DT=integer
PARAMETER C_USE_PARITY = 1, DT=integer
PARAMETER C_ODD_PARITY = 1, DT=integer
```

Sobrescribe los valores definidos en el fichero MPD

Contiene los valores por defecto de todos los parámetros

Fichero MHS (Proyect Tab)

Fichero de especificaciones de hardware

- PORT
 - Fuera de un componente:
 señales externas
 - Dentro del componente: interconexiones
- Componentes entre BEGIN y END
- PARAMETER: parámetros locales del componente
- BUS_INTERFACE:
 - Conexión a buses

Fichero de especificaciones de hardware

```
75
76 BEGIN lmb_bram_if_cntlr
77 PARAMETER INSTANCE = ilmb cntlr
78 PARAMETER HW_VER = 2.10.b
79 PARAMETER C_BASEADDR = 0x000000000
                                             → Direcciones de memoria
80 PARAMETER C HIGHADDR = 0x00001fff
81 BUS INTERFACE SLMB = ilmb
82 BUS INTERFACE BRAM PORT = ilmb port
83 END
85 BEGIN bram block
PARAMETER INSTANCE = lmb_bram
PARAMETER HW_VER = 1.00.a
                                         → Versión del IP (HW)
88 BUS INTERFACE PORTA = ilmb port
89 BUS INTERFACE PORTB = dlmb port
 90
    END
92 BEGIN xps_uartlite
93 PARAMETER INSTANCE = RS232 DTE
94 PARAMETER C BAUDRATE = 9600
95 PARAMETER C_DATA_BITS = 8
                                             → Configuración periférico
     PARAMETER C USE PARITY = 0
     PARAMETER C ODD PARITY = 0
   PARAMETER HW VER = 1.01.a
    PARAMETER C BASEADDR = 0x84000000
     PARAMETER C HIGHADDR = 0x8400ffff
100
     BUS INTERFACE SPLB = mb plb
101
     PORT RX = fpga 0 RS232 DTE RX pin
     PORT TX = fpga 0 RS232 DTE TX pin
    END
```

Creación de la plataforma hardware

Platform Generator (PlatGen)

- > PlatGen crea el hardware de la plataforma a partir de:
 - Fichero MHS (Microprocessor Hardware Specification)
 - Ficheros MPD (Microprocessor Peripheral Definition)
- PlatGen construye el sistema de procesado empotrado como un conjunto de listas de conexionado de hardware (ficheros HDL y netlists de implementación)
- > Las salidas de *PlatGen* se organizan en los directorios:
 - HDL
 - synthesis
 - implementation

Ficheros generados por PlatGen

Directorio_del_proyecto

Ficheros generados por PlatGen (cont.)

Ficheros generados por *PlatGen* (cont.)

Ficheros generados por *PlatGen* (cont.)

Implementación del sistema con Xflow

- La opción "Generate Bitstream" permite generar el fichero de configuración de la FPGA a través de Xflow
- Xflow ejecuta las distintas herramientas de implementación del entorno ISE:
 - Traducción (ngdbuild)
 - Mapeo tecnológico (map)
 - Place & Route (par)
 - Generación del bitstream (bitgen)
- El proceso de implementación puede controlarse mediante los ficheros: etc/fast_runtime.opt y etc/bitgen_spartan3.ut
- Es necesario definir el fichero de restricciones con la localización de los pines I/O de la FPGA: data/system.ucf
- Tras realizar el proceso se obtiene las conexiones del sistema de procesado en: implementation / system.bit

Configuración software de la plataforma

Software platform settings

- Se elimina a partir de ISE-DS v13
- Reemplazado por SDK (Eclipse)

1.- Software Platform

SO Standalone

Lo que apenas se ve...

"Standalone is a simple, low-level software layer. It provides access to basic processor features such as caches, interrupts and exceptions as well as the basic features of a hosted environment, such as standard input and output, profiling, abort and exit."

2.- OS and Library Configuration

3.- Drivers

Fichero MSS (Proyect Tab)

Fichero de Especificaciones de Software

```
1
2
                                             Parámetro global
     PARAMETER VERSION = 2.2.0
 3
   BEGIN OS
   PARAMETER OS NAME = standalone
                                           OS: Sistema operativo,
   PARAMETER OS VER = 3.00.a
   PARAMETER PROC INSTANCE = microblaze 0
                                               Versión, Identificador,
   PARAMETER stdin = RS232
                                               E/S estándar
    PARAMETER stdout = RS232
    END
10
11
   BEGIN PROCESSOR
12
                                            PROCESSOR: Nombre,
   PARAMETER DRIVER NAME = cpu
13
   PARAMETER DRIVER VER = 1.13.a
                                            Versión, Identificador,
14
   PARAMETER HW INSTANCE = microblaze 0
15
                                            Compilador, Periférico de
   PARAMETER COMPILER = mb-gcc
16
   PARAMETER ARCHIVER = mb-ar
17
                                            depuración
   PARAMETER xmdstub peripheral = RS232
18
19
    END
20
21
    BEGIN DRIVER
                                           DRIVER: Nombre, Versión,
   PARAMETER DRIVER NAME = uartlite
22
   PARAMETER DRIVER VER = 2.00.a
23
                                                    Identificador
    PARAMETER HW INSTANCE = RS232
24
25
    END
26
```

Generación del software de la plataforma

Library Generator (LibGen)

- ➤ **LibGen** configura, a partir del fichero de especificación de software (MSS), las bibliotecas y drivers que utilizarán las aplicaciones del sistema empotrado
- Para cada procesador presente en el sistema, LibGen genera la siguiente estructura de directorios:

include

- Ficheros de cabecera (.h) de los drivers
- Fichero xparameters.h (direcciones base, #defines, funciones prototipo)

lib

• Bibliotecas compiladas libc.a, libm.a, libxil.a

libsrc

 Ficheros intermedios y makefiles necesarios para compilar SO, drivers y bibliotecas

code

Repositorio para ejecutables (xmdstub.elf)

Ficheros generados por LibGen

Ficheros generados por LibGen (cont.)

Creación de la plataforma HW/SW

Documentación

Manuales

- Platform Studio User Guide
- Embedded System Tools Ref. Manual → Basic System Builder
- Embedded System Tools Ref. Manual → Platform Generator
- Embedded System Tools Ref. Manual → Library Generator

Soporte Web

- EDK
 - http://www.xilinx.com/edk
- Ejemplos
 - http://www.xilinx.com/ise/embedded/edk_examples.htm
- Tutoriales
 - http://support.xilinx.com/support/techsup/tutorials/index.htm

