

MICROPROCESSADORES II

Professor: Patric Janner Marques

Aula: Conversor analógico digital e

Referência bibliográfica

Para aula de hoje:

- Salvador: seção 1.9.4 (bem básico).
- Miyadaira: Cap. 13; Cap. 14.

Lembre-se que a plib não funciona mais!!

Conversor A/D

 De uma forma geral, as grandezas físicas que se pode observar raramente são de natureza elétrica. O primeiro passo para trazer as informações que elas possuem para os sistemas microprocessados é o de transformar essas grandezas em sinais elétricos, e para isto utiliza-se sensores e transdutores.

Conversor A/D

- Mesmo obtendo as informações das grandezas como sinais elétricos, sua natureza ainda é analógica e contínua no tempo;
- Para essas grandezas serem processadas pelo microcontrolador é necessário realizar mais uma transformação do sinal analógico para um sinal digital;

 Essa transformação é realizada por um componente conhecido como Conversor A/D (Analógico/Digital).

Conversor A/D

 Sendo assim, um conversor A/D transforma um sinal analógico, contínuo no tempo, em um sinal amostrado (ou digital), ou seja, discreto no tempo e quantizado dentro de um número finito de

valores inteiros.

Observando:

- Amplitude
- Tempo

Conversor A/D – Na Amplitude

 A resolução do conversor se dá pelo seu número de bits (n), podendo ser 8, 10, 12, 16 entre outros, e a faixa de tensão elétrica a ser convertida, respeitando a equação:

Resolução =
$$\frac{Faixa}{2^n - 1} = \frac{5 - 0V}{2^{10} - 1} = \frac{5}{1023} = 4,8875mV/bit$$

Exemplo:

- No PIC18F4550 tem-se 13 ADCs multiplexados (AN0 a AN12);
- Detalhes na página 265 do datasheet;
- A resolução deles é de 10 bits;
- A tensão de referência (faixa de tensão) é configurável (próximo slide).
- Importante:
 - Se as entradas AN8 a AN12 forem utilizadas como ADC, a diretiva #pragma config PBADEN = ON deve ser usada;
 - Os pinos utilizados como ADC devem ser configurados como entrada pelo registrador TRIS.

- V_{ref-} = Pino 4 VREF- e V_{ref+} = Pino 5 VREF+
- V_{ref-} = Pino 4 VREF- e V_{ref+} = VCC
- $V_{ref-} = VSS$ e $V_{ref+} = Pino 5 VREF+$
- $V_{ref-} = VSS$ e $V_{ref+} = VCC$

TABLE 28-28: A/D CONVERTER CHARACTERISTICS: PIC18F2455/2550/4455/4550 (INDUSTRIAL) PIC18LF2455/2550/4455/4550 (INDUSTRIAL)

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
A01	NR	Resolution	_	_	10	bit	ΔVREF ≥ 3.0V	
A03	EIL	Integral Linearity Error	_	_	<±1	LSb	$\Delta VREF \ge 3.0V$	
A04	EDL	Differential Linearity Error	_	_	<±1	LSb	ΔVREF ≥ 3.0V	
A06	Eoff	Offset Error	_	_	<±1.5	LSb	ΔVREF ≥ 3.0V	
A07	EGN	Gain Error	_	_	<±1	LSb	ΔVREF ≥ 3.0V	
A10	_	Monotonicity	Gı	Guaranteed ⁽¹⁾			VSS ≤ VAIN ≤ VREF	
A20		Reference Voltage Range (VREFH – VREFL)	1.8 3	_	_	V V	VDD < 3.0V VDD ≥ 3.0V	
A21	VREFH	Reference Voltage High	Vss	_	VREFH	٧		
A22	VREFL	Reference Voltage Low	Vss - 0.3V	_	VDD - 3.0V	٧		
A25	VAIN	Analog Input Voltage	VREFL	_	VREFH	V		
A30		Recommended Impedance of Analog Voltage Source	_	_	2.5	kΩ		
A50	IREF	VREF Input Current ⁽²⁾	_	_	5 150	μA μA	During VAIN acquisition. During A/D conversion cycle.	

- A amostragem feita no microcontrolador é realizada pelo processo Sample and Hold (amostragem e retenção);
- O conversor A/D possui um capacitor interno, chamado de C_{Hold} (25pF), que é ligado ao canal analógico selecionado durante a amostragem do sinal;
- Assim, ele é carregado com a tensão presente na entrada e quando um processo de conversão tem início, o capacitor é desligado do canal selecionado, mantendo assim a tensão anteriormente presente na entrada;
- Desta forma, mesmo que a tensão na entrada sofra pequenas variações, estas não afetarão a conversão que agora está em andamento internamente;
- O processo de conversão da tensão armazenada no capacitor é feito pelo método de aproximações sucessivas.

Mas o que o tempo de conversão tem haver com isso?!?!?

Isso lembra algo???

- Após o tempo de carga do capacitor (THOLD) a entrada é desconectada e inicia-se o processo de conversão da tensão armazenada no capacitor;
- Logo, o tempo total de amostragem, que vai do instante em que o canal a ser amostrado é selecionado ao momento em que o resultado da conversão é armazenado nos registros de resultado do AD, é dado pela soma do tempo de aquisição com o tempo de conversão.
- O tempo de aquisição varia em função da temperatura, da tensão de alimentação e da resistência da fonte do sinal a ser amostrado, que pode ser equacionado da seguinte forma:

TACQ = Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient

= TAMP + TC + TCOFF

Tempo de estabilização do amplificador

Tamp = $0.2 \,\mu s$

Tempo de carregamento do capacitor

TC = -(CHOLD)(RIC + RSS + RS) ln(1/2048)

O coeficiente de temperatura somente é necessário para temperatura acima de 25°C. Para valores abaixo TCOFF = 0 ms.

Coeficiente de temperatura

TCOFF =
$$(\text{Temp} - 25^{\circ}\text{C})(0.02 \,\mu\text{s}/^{\circ}\text{C})$$

 Para RS 2.5kOhm (o máximo recomendado) e temperatura de 85° C, tem-se:

TAMP = 0.2 μs

$$TCOFF = (Temp - 25°C)(0.02 \mu s/°C) (85°C - 25°C)(0.02 \mu s/°C) (1.2 \mu s)$$

$$TC = -(CHOLD)(RIC + Rss + Rs) ln(1/2048) \mu s -(25 pF) (1 kΩ + 2 kΩ + 2.5 kΩ) ln(0.0004883) \mu s 1.05 μs$$

$$TACQ = 0.2 \mu s + 1.05 \mu s + 1.2 \mu s 2.45 \mu s$$

Observação importante:

A resistência da fonte da tensão a ser convertida (Rs no circuito do slide 10) não deve ser superior a $2.5k\Omega$, caso contrário o capacitor CHOLD pode não ser completamente carregado quando se iniciar a conversão, resultando em uma medida incorreta.

- O T_{AD} é o tempo necessário para a conversão de 1 bit;
- E para a conversão de 10 bit do ADC é necessário aguardar
 11 T_{AD} para a correta conversão;
- Sendo a fonte de clock do sistema do A/D dada pelo firmware desenvolvido, tomando como base o clock da CPU.

Deve-se respeitar os limites no PIC18F4550.....

TABLE 28-29:		A/D CONVERSION REQUIREMENTS							
Param No.	Symbol	Characteristic			Max	Units	Conditions		
130	TAD	A/D Clock Period	0.7	25.0 ⁽¹⁾	μs	Tosc based, VREF ≥ 3.0V			
F		PIC18LFXXXX	1.4	25.0 ⁽¹⁾	μs	VDD = 2.0V, Tosc based, VREF full range			
	PIC18F		PIC18FXXXX	TBD	1	μs	A/D RC mode		
			PIC18LFXXXX	TBD	3	μs	VDD = 2.0V, A/D RC mode		
131	TCNV	Conversion Time (not including acquisitio	11	12	TAD				
132	TACQ	Acquisition Time ⁽³⁾	1.4 TBD	_	μs μs	-40°C to +85°C 0°C ≤ to ≤ +85°C			
135	Tswc	Switching Time from Co	_	(Note 4)					
137	TDIS	Discharge Time	0.2	_	μs				

Lembrando que 2 TOSC = FOSC/2

Modo automático

TABLE 21-1: TAD vs. DEVICE OPERATING FREQUENCIES

	AD Cloc	k Sou	rce (TAD)	Maximum Device Frequency						
	Operation		ADCS2:ADCS0	PIC18FXXXX	PIC18LFXXXX ⁽⁴⁾					
	2 Tosc		000	2.86 MHz	1.43 MHz					
	4 Tosc		100	5.71 MHz	2.86 MHz					
	8 Tosc		001	11.43 MHz	5.72 MHz					
	16 Tosc		101	22.86 MHz	11.43 MHz					
	32 Tosc		010	45.71 MHz	22.86 MHz					
64 Tosc			110	48.0 MHz	45.71 MHz					
RC ⁽³⁾			x11	1.00 MHz ⁽¹⁾	1.00 MHz ⁽²⁾					

Exemplo: Fosc= 20MHz, deve-se usar Fosc/16

$$TDA = \frac{1}{\frac{Fosc}{16}} = \frac{16}{20MHz} = 0.8 \mu s$$

Conversor A/D - Programação

E a programação?????????

Temos que construir a nossa biblioteca para o ADC e adicionar no .h: #define ADC_V5

- Com base em "plib/adc.h":
 - OpenADC(configurações) Habilita e configura o módulo conversor;
 - Configurações: são as configurações do conversor separadas por um &.
 - SetChanADC(configuração) Seleciona o canal analógico que será usado para efetuar a conversão.
 - Configuração: Nome do canal que será selecionado, por exemplo, ADC_CH0.
 - ConvertADC() Inicia o processo de conversão do sinal analógico.

Conversor A/D - Programação

- BusyADC() Verifica se o módulo conversor está em processo de conversão ou não. Se estiver ocupado (em processo de conversão) retorna 1, ou retorna 0 se estiver disponível para realizar uma nova conversão;
- ReadADC() Retorna o valor que foi convertido pelo conversor;
- CloseADC() Desabilita o conversor.

Clock para conversão (Define T_{AD}):

ADC FOSC 2 //A/D base de tempo de conversão é Fosc/2 ADC_FOSC_4 //A/D base de tempo de conversão é Fosc/4 ADC_FOSC_8 //A/D base de tempo de conversão é Fosc/8 ADC_FOSC_16 //A/D base de tempo de conversão é Fosc/16 ADC_FOSC_32 //A/D base de tempo de conversão é Fosc/32 ADC FOSC 64 //A/D base de tempo de conversão é Fosc/64 ADC_FOSC_RC//A/D base de tempo de conversão é Internal RC OSC

Formato do resultado:

```
ADC_RIGHT_JUST //Justificado a direita
```

ADC_LEFT_JUST //Justificado a esquerda

Quando se utiliza 10 bits:

ADC_RIGHT_JUST

Quando se utiliza menos que 10 bits, exemplo, somente 8 bits:

ADC_LEFT_JUST

Mais informações: < http://picguides.com/beginner/adc.php >

Tempo de aquisição automático (Define T_{ACO}):

```
ADC_0_TAD
              //A/D tempo de aquisição é 0 TAD
ADC_2_TAD
             //A/D tempo de aquisição é 2 TAD
ADC_4_TAD
              //A/D tempo de aquisição é 4 TAD
ADC_6_TAD
              //A/D tempo de aquisição é 6 TAD
ADC_8_TAD
              //A/D tempo de aquisição é 8 TAD
ADC 12 TAD
              //A/D tempo de aquisição é 12 TAD
ADC 16 TAD
              //A/D tempo de aquisição é 16 TAD
ADC_20_TAD
              //A/D tempo de aquisição é 20 TAD
```

Tempo Interrupção:

ADC_INT_ON //Habilita a interrupção ADC_INT_OFF //Desabilita a interrupção

Configuração do V_{REF}:

```
ADC_REF_VREFPLUS_VREFMINUS //Vref- = Pino 4 VREF- e
Vref+ = Pino 5 VREF+

ADC_REF_VDD_VREFMINUS //Vref- = Pino 4 VREF- e Vref+ = VCC

ADC_REF_VREFPLUS_VSS //Vref- = VSS e Vref+ = Pino 5 VREF+

ADC_REF_VDD_VSS //Vref- = VSS e Vref+ = VCC
```

Controle da porta do conversor:

```
ADC_0ANA //Todos pinos digitais

ADC_1ANA //AN0 analógico, o resto (AN1-AN15) digital

ADC_2ANA // AN0-AN1 analógicos, o resto (AN2-AN15) digital

ADC_3ANA // AN0-AN2 analógicos, o resto (AN3-AN15) digital
```

Assim sucessivamente até:

ADC_15ANA // Todos pinos analógicos

Conversor A/D – Programação – Exemplo

```
OpenADC(ADC_FOSC_64 & // ADC_FOSC_64: Clock de conversão do A/D igual a
                   // FAD = FOSC/64 = 48MHz/64 = 750kHz
                   // Desta forma, TAD=1/FAD = 1,33us.
     ADC_RIGHT_JUST & // ADC_RIGHT_JUST: Resultado da conversão ocupará os
                    // bits menos significativos dos registradores ADRESH e ADRESL
     ADC 2 TAD.
                         // ADC_2_TAD: Determina o tempo de aquisição
                   // Neste caso será igual a 2*TAD = 2*1,33us = 2,6us.
     ADC CH0 &
                              // ADC_CH0: selecionar o canal no qual será realizada a
                             // conversão inicial, neste caso o ANO.
     ADC_INT_OFF & // ADC_INT_OFF: Desabilita a interrupção de término de conversão.
     ADC_REF_VDD_VSS, // ADC_VREFPLUS_VDD: Determina o VDD (+5V) como tensão de
                             //referência positiva (VREF+) e o VSS (0V)como tensão de
                             //referência negativa (VREF-).
     ADC_5ANA); // Configura os pinos AN0 a AN4 como Entradas Analógicas, o resto digital.
```

Conversor A/D – Programação

```
void main(void) {
 unsigned int valor;
 TRISB= 0; // Setando toda a porta B como saída
 TRISA = 0b00000001; // Setando RA0 como entrada p/ ADC
 LATB=255; // Inicializando os leds apagados
 OpenADC (ADC_FOSC_16 & //FAD = FOSC/16 = 20MHz/16 = 125kHz. Desta forma, TAD=1/FAD = 0,8us.
   ADC RIGHT JUST &
   ADC 4 TAD,
                           //Tempo de conversão de uma palavra de 10-bits, neste caso será igual a 4*TAD = 4*0,8us = 3,2us.
   ADC_CH0 &
   ADC_INT_OFF &
   ADC_REF_VDD_VSS, //Determina o VDD (+5V) como tensão de referência positiva (VREF+) e o VSS (0V)como tensão de
             //referência negativa (VREF-).
   ADC_1ANA);
                  // Será um canal no momento
 SetChanADC (ADC_CH0); // Seleciona o canal para a conversão
 while(1)
   ConvertADC();
   while(BusyADC());
   valor = ReadADC();
   LATB = valor;
   } }
```

- Quando se trabalha com microcontroladores, existe situações onde é necessária uma comparação rápida entre dois ou mais valores analógicos para que seja tomada alguma ação sem uma intervenção do programa principal;
- Isso poderia ser vantajoso se fosse feito de forma automática pelo microcontrolador ao invés de se ter módulos A/D para fazer este tipo de tarefa.

- No microcontrolador PIC18F4550 tem-se um periférico que possui esta característica. Página 273 do Datasheet;
- O modulo de comparação analógica contém dois comparadores que podem ser configurados de várias formas;
- As entradas podem ser pinos multiplexados de entrada da Porta A (RA0 até RA5), bem como podem ser referências de tensões obtidas dentro do microcontrolador;
- As saídas digitais podem ser obtidas com valores normais ou inversos, estando disponíveis na saída do módulo comparador ou ainda podem ser lidas através do registro de controle.

 Quando a entrada analógica Vin+ é maior que a entrada analógica Vin-, a saída do comparador terá um valor de saída de nível lógico alto;

 Quando a entrada analógica em Vin- é maior que a entrada analógica Vin+, a saída do comparador possui sua saída com

um nível lógico baixo.

As áreas em negrito da saída do comparador representam a incerteza do valor de saída devido aos *offsets* e o tempo de resposta das entradas.

• O registrador para configurar os comparadores:

Registro CMCON:

R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1
C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0
bit 7							bit 0

- C2OUT: Armazena o valor de saída do comparador 2, onde:
 - Quando C2INV for zero, temos o valor um quando o valor de entrada Vin+ do comparador 2 for maior que Vin- e zero quando o valor de entrada de Vin+ for menor que Vin-;
 - Quando C2INV for um temos exatamente a situação contrária da anterior.
- C1OUT: Armazena o valor de saída do comparador 1, onde:
 - Quando C1INV for zero, temos o valor um quando o valor de entrada Vin+ do comparador 1 for maior que Vin- e zero quando o valor de entrada de Vin+ for menor que Vin-;
 - Quando C1INV for um temos exatamente a situação contrária da anterior.

 C2INV e C1INV: Como já pôde ser notado, quando possuem valor um inverte o valor de saída do comparador C2 e C1 respectivamente e quando em zero não inverte;

 CM2:CM1:CM0: Estes três registros são responsáveis pela seleção do modo de funcionamento dos dois comparadores, onde sua aplicação pode ser vista abaixo:

- Por fim, o registrador CIS serve para selecionar a que pinos estarão conectados os Vin- dos comparadores C1 e C2. Assim, quando usa-se CM2:CM1:CM0 = 110 tem-se:
- Quando CIS for igual a um, C1 Vin- estará conectado a RA3/AN3/Vref+ e C2 conectado a RA2/AN2/Vref-/CVref
- Quando CIS for igual a zero, C1 Vin- estará conectado a RAO/ANO e C2 conectado a RA1/AN1.

TABLE 22-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE										
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	55	
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	55	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	53	
PIR2	OSCFIF	CMIF	USBIF	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	56	
PIE2	OSCFIE	CMIE	USBIE	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	56	
IPR2	OSCFIP	CMIP	USBIP	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	56	
PORTA	_	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	56	
LATA	_	LATA6 ⁽¹⁾	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	56	
TRISA	_	TRISA6 ⁽¹⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	56	

 Para facilitar um pouco, o compilar xc8 tem uma biblioteca para ajudar na configuração dos comparadores, que não funciona mais!!

void Open_ancomp(unsigned char config);

Onde config pode ser:

/// Opções de saída invertida

COMP_1_2_OP_INV // Saída 1 e 2 invertidas

COMP_1_OP_INV // Saída 1 invertida

COMP_2_OP_INV // Saída 2 invertida

COMP_OP_INV_NONE // Nenhuma saída invertida

Temos que construir a nossa biblioteca para o comparador analógico. Não realizada no exemplo postado.

Onde config pode ser:

```
/// Opções de modo de operação
```

COMP_1_2_INDP // Comparadores independentes

COMP_1_2_INDP_OP // Comparadores independentes com saída externa

COMP_1_2_COMN_REF // Comparador com uma referência comum

COMP_1_2_COMN_REF_OP // Comparador com uma referência comum e saída externa

COMP_1_INDP_OP // Um comparador independente com saída externa

COMP_INT_REF_SAME_IP // 4 Entradas multiplexadas para 2 comparadores RA0 e RA1

COMP_INT_REF_MUX_IP // 4 Entradas multiplexadas para 2 comparadores RA3 e RA2

Onde config pode ser:

/// Opções de interrupção

COMP_INT_EN // Comparador gera interrupção

COMP_INT_DIS // Comparador não gera interrupção

```
Exemplo:
void main (void){
 TRISD = 0;
 LATD0 = 1;
 Open_ancomp(COMP_1_2_OP_INV&
      COMP_1_2_INDP&
      COMP_INT_DIS);
 while (1) {
   if(C1OUT == 1){ // testa o bit do comparador 1
         LATD0 = 1;
   else
         LATD0 = 0;
```