F14T2A3

Berechne für $\gamma:[0,2\pi]\to\mathbb{C},\ t\mapsto 2e^{2it}$ und $\eta:[0,2\pi]\to\mathbb{C},\ t\mapsto i+e^{-it}$ die Kurvenintegrale:

a)
$$\int_{\gamma} \frac{e^{iz^2} - 1}{z^2} dz$$
b)
$$\int_{\eta} \frac{e^z}{(z - i)^3} dz$$
c)
$$\int_{\gamma} e^{\frac{1}{z}} dz$$

b)
$$\int_{\eta} \frac{e^z}{(z-i)^3} dz$$

c)
$$\int_{\gamma} e^{\frac{1}{z}} dz$$

Zu a):

 $z \neq 0$:

$$\frac{e^{iz^2} - 1}{z^2} dz = \frac{\left(\sum_{k=0}^{\infty} \frac{(iz^2)^k}{k!}\right) - 1}{z^2} = \frac{\sum_{k=1}^{\infty} \frac{(iz^2)^k}{k!}}{z^2} = \frac{z^2 i \sum_{l=0}^{\infty} \frac{(iz^2)^l}{(l+1)!}}{z^2} = i \sum_{l=0}^{\infty} \frac{(iz^2)^l}{(l+1)!}$$

gibt in 0 eine analytische Fortsetzung.

$$f: \mathbb{C} \to \mathbb{C}, \quad z \mapsto i \sum_{l=0}^{\infty} \frac{(iz^2)^l}{(l+1)!}$$

von $\mathbb{C}\setminus\{0\}\to\mathbb{C}$, $z\mapsto \frac{e^{iz^2}}{z^2}$, also ist

$$\int_{\gamma} \frac{e^{iz^2} - 1}{z^2} dz = \int_{\gamma} f(z) dz = 0$$

nach Cauchy-Integralsatz.

Zu b):

 $\exp: \mathbb{C} \to \mathbb{C}, z \mapsto e^z$ holomorph, η als geschlossener Weg nullhomolog in \mathbb{C} , also gilt laut Cauchy-Integralformel (für die 2. Ableitung)

$$n(\eta, i) \exp''(i) = \frac{2!}{2\pi i} \int_{\eta} \frac{e^z}{(z - i)^{2+1}} dz$$

$$n(\eta, i) = \frac{1}{2\pi i} \int_{\eta} \frac{dz}{z - i} = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{-ie^{-it}}{e^{-it}} dt = -1$$

$$\Rightarrow \int_{\eta} \frac{e^{z}}{(z - i)^{3}} dz = -\pi i e^{i}$$

Zu c):

Für $z \neq 0$ ist $e^{\frac{1}{z}} = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{1}{z}\right)^k$ die Laurentreihe von $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}, \ z \mapsto e^{\frac{1}{z}},$ da es hier ∞ -viele Terme ungleich 0 im Hauptteil gibt, ist 0 eine wesentliche Singularität von f. Res(f,0)=1 (Koeffizient von $\frac{1}{z}$ in dieser Laurentreihe).

 $\mathrm{Spur}\gamma\subseteq\mathbb{C}\backslash\{0\},\,\gamma$ nullhomolog in $\mathbb{C}=(\mathbb{C}\backslash\{0\})\cup\{0\}$

Residuensatz
$$\int_{\gamma} e^{\frac{1}{z}} dz = \int_{\gamma} f(z) dz = 2\pi i \operatorname{Res}(f, 0) \underbrace{n(\gamma, 0)}_{=2} = 4\pi i$$