- 1. X を距離空間, $A \subset X$ を部分集合, A^c をその補集合 $X \setminus A$ とする.
 - (a) A が X の開集合ならば A^c は X の閉集合であることを示せ.
 - (b) A が X の閉集合ならば A^c は X の開集合であることを示せ.

(解答例)

 $x \in X$ を A^c の境界点とすると, x は A の境界点でもあることに注意する. このとき

「Aは開集合」 \iff 「 $x \in X$ がAの境界点ならば $x \notin A$ 」 \iff 「 $x \in X$ が A^c の境界点ならば $x \notin A$ 」 \iff 「 $x \in X$ が A^c の境界点ならば $x \in A^c$ 」 \iff 「 A^c は閉集合」

である. 以上より示された.

2. 距離空間の間の写像 $f: X \to Y$ について, 以下を示せ.

Y の任意の開集合 O に対して $f^{-1}(O)$ は X の開集合 \iff Y の任意の閉集合 F に対して $f^{-1}(F)$ は X の閉集合.

(解答例)

同様なので「 \Longrightarrow 」のみ示す. 任意に閉集合 $F\subset Y$ を取る. このとき逆像の性質から

$$f^{-1}(F^c) = f^{-1}(F)^c$$

が成り立つ. 問 1 より F^c は開集合であり、さらに仮定より $f^{-1}(F^c)$ は開集合である. したがって上記の等式より $f^{-1}(F)^c$ も開集合であるから、再び問 1 より

$$f^{-1}(F) = (f^{-1}(F)^c)^c$$

は閉集合である. 以上より示された.