ANSWER/HINTS

MATHEMATICS-I (MA10001)

- 1. -156 + 38i (the integral is path independent).
- 2. $\frac{4\pi e^2}{3}$ (use $\left| \int_{\Gamma} \frac{e^z}{z^2+1} dz \right| \leq \int_{\Gamma} \left| \frac{e^z}{z^2+1} \right| dz$ and $\left| \frac{e^z}{z^2+1} \right| \leq \frac{e^3}{3}$).
- 3. The maximum value of $\frac{1}{|z|^2}$ on C is 1 and the arc length of C is 2.
- 4. (i) (a) Alone the curve C in (a), $\frac{2}{3}(1+i)$ (parametrize the line segment C).
 - (b) Along the curve C in (b), 1 + i.
 - (ii) (a) -1 + i (parametrize the line segment).
 - (b) -1 + i.
- 5. (a) $\frac{8+i}{3}$ (parametrize the line segment C). (b) $\frac{70+91i}{30}$ (parametrize the line segment C).
- 6. By Cauchy's theorem.
- 7. 0 (use Cauchy's theorem).
- 8. i-1.
- 9. (a) 0
 - (b) $4\pi i$.
- 10. (a) $\frac{-4+8i}{3}$.
- 11. (a) e^2 (use Cauchy integral formula)
 - (b) 0 (use Cauchy't theorem).
- 12. (a) $-2\pi i$ (use Cauchy integral formula)
 - (b) 0 (use Cauchy's theorem).
- 13. $-\pi i$ (use Cauchy integral formula).
- 14. 0 (use Cauchy integral theorem).
- 15. The maximum value of $\left|\frac{1}{\overline{z}^2+\overline{z}+1}\right|$ is $\frac{1}{5}$ on C and the arc length is $\frac{6\pi}{4}$.
- 16. Use Cauchy integral formula.
- 17. Apply Cauchy Integral theorem and the fact that e^z is entire function.
- 18. $\frac{\pi i}{2}$ (Apply Cauchy Integral formula).
- 19. $\frac{\pi i}{2}$ (Use Cauchy Integral formula)