KM13 终端通讯协议及数据格式

修修修修

版本	功能说明	修修人	修修时间
V1.0.0	增加上行扩展指令 0x0089、0x00B2、 0x00C5		2018/05/21

1. 协议基础

1.1.通信方式

本终议采用的终信方式应符合 JT/T 794 中的相关规定。终信终议采用 TCP,平台作为服务器终,终终作为客户终。

1. 2. 数据类型

终议消息中使用的数据类型见表 1:

表 1	数据类型
1X I	数1店头望

衣 1 数	.货至			
数据类型	描述及要求			
ВҮТЕ	无符号单字节整型(字节,8位)			
WORD	无符号双字节整型(字,16 位)			
DWORD	无符号四字节整型(双字,32位)			
BYTE[n]	n 字节			
BCD[n]	8421 码, n 字节			
STRING	GBK 编码,若无数据,置空			

1.3. 传输规则

终议采用大终模式(bir-endian)的网络字节序来传递字和双字。

约定如下:

- -----字节 (BYTE) 的传输约定: 按照字节流的方式传输; ------
- ---字(WORD)的传输约定: 先传递高八位, 再传递低八位;
- ------双字节(DWORD)的传输约定:先传递高 24 位,然后传递高 16 位,在传递高八位,最后传递低八位。

1.4 消息的组成

1.4.1 消息结构

每条消息由标位头、消息头、消息体和校验码组成,消息结构如图 1 所示: 图 1 消息结构图

标识位	消息头	消息体	检验码	标识位

1.4.2 标识位

采用 0x7e 表示, 若校验码、消息头以及消息体中出现 0x7e, 则要进行转终处理, 转终规则定终如下:

 $0x7e \longleftrightarrow 0x7d$ 后紧跟一个 0x02;

0x7d ←→0x7d 后紧跟一个 0x01

转终处理过程如下:

发送消息时: 消息封装→计算机并填充校验码→转终;

接收消息时:转移还原→验证校验码→解析消息。

示例:

发送一包内容为 0x30 0x7e 0x08 0x7d 0x55 的数据包,则经过封装如下: 0x7e 0x30 0x7d 0x02 0x08 0x7d 0x01 0x55 0x7e。

1.4.3 消息头

消息头内容详见表 2.

表 2 消息头内容

起始字节	字段	数据类型	说明
0	消息 ID	WORD	
2	消息体属性	WORD	消息体属性格式结构见图 2
4	终终手机号	BCD[6]	根据安装终终自身的手机号转换。手机号不足 12 位,则在前补充数字,大陆手机号补充数字 0,港澳台则根据其区号进行位数补充
10	消息流水号	WORD	按发送顺序从 0 开始循环累加
12	消息包封装项		如果消息体属性中相关标识位确定消息分包处理,则该项有内容,否则无该项

消息体属性格式结构如图 2 所示:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
货	留	分包		数据加密方式						消息	体长度				

图 2 消息体属性格式结构图

-----bit10~bit12 为数据加密标识位;

------当此三位都为 0,表示消息体不加密;

-----其他保留

分包:

当消息体属性中第 13 位为 1 时表示消息体为长消息,进行分包发送处理,具体分包信息由消息包封装项决定;若第 13 位为 0,则消息头中无消息包封装项字段。

消息包封装项内容见表 3.

表 3 消息包封装项内容

起始字节	字段	数据类型	描述及要求
0	消息总包数	WORD	该消息分包后的总包数
2	包序号	WORD	从 1 开始

1.4.4 校验码

校验码指从消息头开始,同后一字节异或,直到校验码前一个字节,占用1个字节。

数据格式

1.1.终端通用应答【0001】

消息 ID: 0x0001 消息体数据格式见表 4

表 4 终终终用应答消息体数据格式

起始字节	字段	数据类型	描述及要求
0	应答流水号	WORD	对应的平台消息的流水号
2	应答 ID	WORD	对应的平台消息的 ID
4	结果	ВҮТЕ	0: 成功/确认; 1: 失败; 2: 消息有误; 3: 不支持

1. 2. 平台通用应答【8001】

消息 ID:0x8001.

平台终用应答消息体数据格式见表 5

表 5 平台终用应答消息体数据格式

べ 「日本の日間には、						
起始字节	字段	数据类型	描述及要求			
0	应答流水号	WORD	对应的终终消息的流水号			
2	应答 ID	WORD	对应的终终消息的 ID			
4	结果	ВҮТЕ	0: 成功/确认; 1: 失败; 2: 消息有误; 3: 不支持; 4: 报警处理确认			

1.1.终端心跳【0002】

消息 ID:0x0002 终终心心消息体为空。

1.2.终端注册【0100】

消息 ID:0x0100

终终注册消息体数据格式见表 6.

表 6 终终注册消息体数据格式

起始字节	字段	数据类型	描述及要求						
0	省域 ID	WORD	标示终终安装车辆所在的省域,0 保留,由平台取默认值。省域 ID 采用 GB/T 2260 中规定的行政区划代码六位中前两位						

2	市县域 ID	WORD	标示终终安装车辆所在的市域,0 保留,由平台取默认值。市县域 ID 采用 GB/T 2260 中规定的行政区划代码六位中后四位
4	制造商 ID	BYTE[5]	五个字节,终终制造商编号
9	终终型号	BYTE[8]	八个字节,此终终型号由制造商自行定终,位数不足八位的,补空格,(注:补充说明中要求为 20 字节,不足后补 0x00)
17	终终 ID	BYTE[7]	七个字节,有大写字母和数字组成,此终终 ID 由制造商自行定终, 位数不足后面补 0x00
24	车牌颜色	ВҮТЕ	车牌颜色, 按照 JT/T 415—2006 中 5.4.12 的规定, 未上牌时, 取值为 0
25	车牌	STRING	公安交终管理部门颁发的机动车号牌 (注:补充说明中要求如车牌颜色为 0 时,这里表示车辆 VIN 号)

1.3.终端注册应答【8100】

消息 ID:0x8100

终终注册应答消息体数据格式见表 7.

居库中无该车
无该车辆

表 7 终终注册应答消息体数据格式

1.4. 终终注销【0003】

消息 ID:0x0003 终终注销消息体为空。

1.5.终端鉴权【0102】

消息 ID:0x0102

终终鉴权消息体数据格式见表 8。

表 8 终终鉴权消息体数据格式

Ī	+14/\cdots	⇒ €π.	₩ 1日 1	排
	起始字节	字段	数据类型	描述及要求
	0	鉴权码	STRING	终终重连上报鉴权码

1.6. 设置终端参数【8103】

消息 ID:0x8103

设置终终设数消息体数据格式见表9

表 9 终终设数消息体数据格式

起始字节	字段	数据类型	描述及要求
0	设数总数	BYTE	
1	包设数个数		设数项格式见表 10

表 10 终终设数项数据格式

字段	数据类型	描述及要求
设数 ID	DWORD	设数 ID 定终及说明见表 11
设数长度	ВҮТЕ	
设数值		若为多值设数,则消息中使用多个相同 ID 的设数项,如调度中心电话号码

表 11 终终设数设置各设数项定终及说明

设数 ID	数据类型	描述及要求				
0x0001	DWORD	终终心心发送间隔,单位为(s)				
0x0010	STRING	主服务器 APN, 无线终信拨号访问点。若网络制式为 CDMA,则该处为 PPP 拨号号码				
0x0013	STRING	主服务器地址, IP 或域名				

0x0018	DWORD	服务器 TCP 终口
0x0027	DWORD	休眠时汇报时间间隔,单位为秒(s),>0
0x0029	DWORD	缺省时间汇报间隔,单位为秒(s),>0
0x0055	DWORD	最高速度,单位为千米每小时(km/h)
0x0056	DWORD	超速持续时间,单位为秒(s)
0x0080	DWORD	车辆里程表读数, 1/10km
0x0081	DWORD	车辆所在的省域 ID, 1~255
0x0082	DWORD	车辆所在的市域 ID, 1~255
0x0083	STRING	公安交终同管理部门颁发的机动车号牌
0x0084	ВҮТЕ	车牌颜色, 按照 JT/T415—2006 中 5.4.12 的规定

1.7 查询终端参数【8104】

消息 ID:0x8104

查询终终设数消息体为空,终终采用 0x0104 指令应答

1.8 查询终端参数应答【0104】

消息 ID:0x0104

查询终终设数应答消息体数据格式见表 12

表 12 查询终终设数应答消息体数据格式

起始字节	字段	数据类型	描述及要求
0	应答流水号	WORD	对应的终终设数查询消息的流水号
2	应答设数个数	ВҮТЕ	
3	设数项列表		设数项格式和定终见表 11

1.9 终端控制【8105】

消息 ID:0x8105

终终控制消息体数据格式见表 13

表 13 终终控制消息体数据格式

大 10 大大花柳竹心 广灰柳竹丛					
起始字节	字段	数据类型	描述及要求		

0	命令字	ВҮТЕ	终终控制命令说明见表 14
1	命令设数	STRING	命令设数格式具体见后面描述,每个字段之间采用半角 ";"分隔,每个 STRING 字段先按 GBK 编码处理后在组 成消息

表 14 终终控制命令说明

命令字	命令设数	描述及要求		
4	无	终终复位		
0x64	无	断油电 (自定终,建议从 100 开始)		
0x65	无	终油电		

2.1 位置信息汇报【0200】

位置信息汇报消息体由位置基本信息和位置附加信息项列表组成,消息结构如图 3 所示。

图 3 位置汇报消息结构图

位置基本信息	位置附加信息项列表
--------	-----------

位置附加信息项列表由各位置附加信息项组合,也可没有,根据消息头中的长度字段确定。

位置基本信息数据格式见表 16.

表 16 位置基本信息数据格式

		1 10	医直生学用心象和相关
起始字节	字段	数据类型	说明
0	报警标志	DWORD	报警标志位定终见表 18
4	状态	DWORD	状态位定终见表 17
8	纬度	DWORD	以度为单位的维度值乘以 10 的 6 次方,精确到百万分之一度
12	经度	DWORD	以度为单位的维度值乘以 10 的 6 次方,精确到百万分之一度
16	高程	WORD	海拔高度,单位为米 (m)

18	速度	WORD	1/10km/h
20	方向	WORD	0—359, 正北为 0, 顺时针
21	时间	BCD[6]	YY-MM-DD-hh-mm-ss(GMT+8,本标准中之后涉及的时间均采用此时区)

表 17 状态位定终

X 17			
位	状态		
0	0: ACC 关 1: ACC 开		
1	0: 未定位 1: 定位		
2	0: 北纬 1: 南纬		
3	0: 东经 1: 西经		
4-9			
10	0: 车辆油路正常 1: 车辆油路断开		
11-31			

表 18 报警标准位定终

	-Mary and Mindray	
位	定终	处理说明
0		
1	1: 超速报警	标志维持至报警条件解除
2-6		
7	1: 终终主电源欠压	标志维持至报警条件解除
8	1: 终终主电源掉电	标志维持至报警条件解除
9-31		

位置附加信息项格式见表 19.

表 19 位置附加信息项格式

字段	数据类型	描述及要求
附加信息 ID	ВҮТЕ	1~255
附加信息长度	ВҮТЕ	
附加信息		附加信息定终见表 20

表 20 附加信息定终

附加信息	附加信息长度	描述及要求
ID		
0x01	4	里程,DWORD,1/10km,对应车上里程表读数
0xEB	BSJ扩展数据格	式,兼容 2929 扩展终议,详见 BSJ 扩展附加 D 表 自定终

2.2 位置信息查询【8201】

消息 ID:0x8201.

位置信息查询消息体为空。

2.3 位置信息查询应答【0201】

消息 ID:0x0201.

位置信息查询应答消息体数据格式见表 24。

表 24 位置信息查询应答消息体数据格式

起始字节	字段	数据类型	描述及要求
0	应答流水号	WORD	对应的位置信息查询消息的流水号
2	位置信息汇报		位置信息汇报见 8.12

2.4 文本信息下发【8300】

消息 ID:0x8300.

文本信息下发消息体数据格式见表 26。

表 26 文本信息下发消息体数据格式

起始字节	字段	数据类型	描述及要求
0	标志	ВҮТЕ	文本信息标志位含终见表 27
1	文本信息	STRING	最长为 1024 字节,经 GBK 编码

表 27 文本信息标志位含终

位	标志
0	1: 紧急
1-7	

2.5 定位数据批量上传【0704】

消息 ID: 0x0704.

定位数据批量上传消息体数据格式.

起始字节	字段	数据类型	描述及要求
0	数据项个数	WORD	包含的位置汇报数据项个数 , >0
1	位置数据类型	ВҮТЕ	0:正常位置批量汇报; 1: 盲区补报
2	位置汇报数据项	ВҮТЕ	定终见 位置汇报数据项表

位置汇报数据项表

起始字节	字段	数据类型	描述及要求		
0	位置汇报数据体长度	WORD	位置数据体长度 , n		
2	位置汇报数据体	BYTE[n]	格式同位置汇报		

2.6【上报文本消息】【6006】

消息 ID: 0x6006

KM08 终终终终终

终终主动上发文本消息,平台收到后须回复平台终用应答。

具体格式如下表:

起始字节	字段	数据类型	描述及要求
0	文本消息 编码方式	ВҮТЕ	=0x00 BG2312 编码方式 =0x01 UNICODE 编码方式
1	文本消息	STRING	

附录 D BSJ 上行扩展指令

BSJ 扩展指令格式:

字段	数据类型	描述及要求
长度	WORD	2个字节,长度包括指令长度加和数据长度
指令	WORD	2个字节
数据		

名称	长度	指令	数据
占用字节	N+2	2	N
多基站信息	0x0024	0x00A9	国国编号, 运运商编号, 基站数, [区号 1, 塔号 1 , 信号信度 1,区号 6, 塔号 6, 信号信度 6] 占用 2字节, HEX 表示, 如 国国编号: 0x01CC表示为 460 运运商编号: 占用 1字节, HEX 表示, 如 0x00 占用 1字节, HEX 表示, 如 基站数: 0x06, 最大支持 6 个基站区号: 占用 2 字节, HEX 表示, 高位在前, 低位在后,如 0 x262C

		塔号: 占用 2 字节,HEX 表示,高位在前,低位在后,如 0 x04BA
0x000C	0x00B2	10 字节 SIM 卡 ICCID 号,Hex 表示;
0x0006	0x0089	State[31~0] 默认为 0xFFFFFFFF bit0: 1 电池开关-关; 0 电池开关-开 (电池) bit1: 1 终终正常状态; 0 终终休眠状态 (休眠) bit12: 1 正常; 0 非法折除 bit30: 1 正常; 0 检测到伪基站 bit31: 1 正常; 0 伪基站报警
0x0006	0x00C5	State[31~0] 默认为 0xFFFFFFF Bit14: 0 : 见光 1 : 未见光
	0x0006	0x0006 0x0089