Atividade 5 - Tabu Search Aplicado ao Problema KQBF

Ítalo Fernandes Gonçalves RA 234990 Luiz Gustavo Silva Aguiar RA 240499 Lucas Guesser Targino da Silva RA 203534

23 de maio de 2022

1 Definições

Definição 1 (Conjunto Binário). $\mathbb{B} = \{0, 1\}$

Definição 2 (Função Binária Quadrática (QBF)). É uma função $f: \mathbb{B}^n \to \mathbb{Z}$ da forma:

$$f(x) = \sum_{j=1}^{n} x_i \cdot a_{i,j} \cdot x_j = x^T \cdot A \cdot x \tag{1}$$

em que $a_{i,j} \in \mathbb{Z}, \ \forall i,j \in \{1,\cdots,n\}$ e A é a matriz n por n induzida pelos $a_{i,j}$.

Definição 3 (Problema de Maximização de uma Função Binária Quadrática (MAX-QBF)). Dada uma QBF f, um MAX-QBF é um problema da forma:

$$\max_{x} f(x) \tag{2}$$

Fato 1. MAX-QBF é NP-difícil [1]

Definição 4 (Maximum knapsack quadractic binary function (MAX-KQBF)). Dada uma QBF f, um vetor $w \in \mathbb{Z}^{n1}$, e um valor $W \in \mathbb{Z}$, um MAX-KQBF é um problema da forma:

$$\max \quad f(x)$$
subjected to
$$w^T x \leq W$$

$$x \in \mathbb{R}^n$$

 $^{^1}$ O problema original foi definido com números reais. Decidimos aqui utilizar inteiros por dois motivos. Primeiro, todas as instâncias fornecidas possuem apenas valores inteiros para $a_{i,j}, w, W$. Garante-se que os valores são sempre inteiros pois $\mathbb Z$ é fechado nas operações envolvidas: adição e multiplicação. Segundo, simplifica a implementação e comparações (não é necessário fazer comparação de números em ponto flutuante).

	instances	local search	tenure ratio	method variation	running time	best cost
0	020	best	0.2	default	1.263000	93
\vdash	020	best	0.2	intensification	0.447000	93
2	020	best	0.2	diversification	0.246000	93
ಣ	020	best	0.4	default	0.997000	120
4	020	best	0.4	intensification	0.476000	120
5	020	best	0.4	diversification	0.255000	120
9	020	first	0.2	default	0.043000	93
7	020	first	0.2	intensification	0.035000	104
∞	020	first	0.2	diversification	0.031000	93
6	020	first	0.4	default	0.057000	102
10	020	first	0.4	intensification	0.205000	110
111	020	first	0.4	diversification	0.035000	104

Tabela 1: Solução obtida para cada configuração e instância do problema - parte 0.

	instances	local search	tenure ratio	method variation	running time	best cost
12	040	best	0.2	default	2.660000	239
13	040	best	0.2	intensification	1.633000	290
14	040	best	0.2	diversification	1.284000	260
15	040	best	0.4	default	2.707000	308
16	040	best	0.4	intensification	4.774000	316
17	040	best	0.4	diversification	1.218000	303
18	040	first	0.2	default	0.049000	201
19	040	first	0.2	intensification	0.090000	239
20	040	first	0.2	diversification	0.195000	243
21	040	first	0.4	default	0.114000	239
22	040	first	0.4	intensification	0.147000	239
23	040	first	0.4	diversification	0.224000	239

Tabela 2: Solução obtida para cada configuração e instância do problema - parte 1.

	instances	local search	tenure ratio	method variation	running time	best cost
24	090	best	0.2	default	5.390000	368
25	090	best	0.2	intensification	4.510000	480
26	090	best	0.2	diversification	3.904000	483
27	090	best	0.4	default	5.427000	491
28	090	best	0.4	intensification	5.166000	446
29	090	best	0.4	diversification	5.662000	491
30	090	first	0.2	default	0.066000	413
31	090	first	0.2	intensification	0.238000	452
32	090	first	0.2	diversification	0.715000	406
33	090	first	0.4	default	0.163000	408
34	090	first	0.4	intensification	0.327000	397
35	090	first	0.4	diversification	3.064000	455

Tabela 3: Solução obtida para cada configuração e instância do problema - parte 2.

	instances	local search	tenure ratio	method variation	running time	best cost
36	080	hest	0.2	default	10.182000	683
37	080	best	0.2	intensification	7.984000	662
38	080	best	0.2	diversification	7.651000	780
39	080	best	0.4	default	10.318000	783
40	080	best	0.4	intensification	8.769000	732
41	080	best	0.4	diversification	6.590000	702
42	080	first	0.2	default	0.089000	299
43	080	first	0.2	intensification	0.513000	674
44	080	first	0.2	diversification	2.313000	089
45	080	first	0.4	default	0.273000	692
46	080	first	0.4	intensification	0.649000	692
47	080	first	0.4	diversification	2.205000	692

Tabela 4: Solução obtida para cada configuração e instância do problema - parte 3.

	nstances	local searcii	COTTOTIC TOPLO	method variation	rummg ume	Dest cost
48 10	00	best	0.2	default	17.558000	1220
49 10	00	best	0.2	intensification	15.455000	1116
50 10	00	best	0.2	diversification	130.585000	1193
51 10	00	best	0.4	default	17.549000	1227
52 10	00	best	0.4	intensification	28.078000	1249
53 10	00	best	0.4	diversification	17.294000	1225
54 10	00	first	0.2	default	0.118000	626
55 10	00	first	0.2	intensification	1.041000	996
56 10	00	first	0.2	diversification	5.663000	850
57 10	00	first	0.4	default	0.350000	1121
58 10	00	first	0.4	intensification	1.519000	1128
59 1(00	first	0.4	diversification	6.309000	878

Tabela 5: Solução obtida para cada configuração e instância do problema - parte 4.

Referências

[1] G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lü, H. Wang, and Y. Wang, "The unconstrained binary quadratic programming problem: a survey," *Journal of combinatorial optimization*, vol. 28, no. 1, pp. 58–81, 2014.