

Lecture 13: Filter Design – IIR

Outlines

- ☐ Filter Design Specifications
- Analog Filter Design
- Digital Filters from Analog Prototypes

1. Filter Design Specifications

The filter design process:

Performance Constraints

.. in terms of magnitude response:

Performance Constraints

"Best" filter:

- improving one usually worsens others
- But: increasing filter order (i.e. cost) can improve all three measures

Passband Ripple

• Assume peak passband gain = 1 then minimum passband gain = $\frac{1}{\sqrt{1+\varepsilon^2}}$

• Or, ripple
$$\alpha_{\text{max}} = 20 \log_{10} \sqrt{1 + \varepsilon^2}$$
 dB

Stopband Ripple

- Peak passband gain is A× larger than peak stopband gain
- Hence, minimum stopband attenuation $\alpha_s = -20 \log_{10} \frac{1}{A} = 20 \log_{10} A$ dB

Filter Type Choice: FIR vs. IIR

	FIR	IIR
	 No feedback (just zeros) Always stable Can be linear phase 	 Feedback (poles & zeros) May be unstable Difficult to control phase
BUT	 High order (20-2000) Unrelated to continuous- time filtering 	 Typ. < 1/10th order of FIR (4-20) Derive from analog prototype

FIR vs. IIR

- If you care about computational cost
 - → use low-complexity IIR
 - (computation no object → linear phase FIR)

- If you care about phase response
 - → use linear-phase FIR
 - (phase unimportant → go with simple IIR)

IIR Filter Design

- IIR filters are directly related to analog filters (continuous time)
 - via a mapping of H(s) (CT) to H(z) (DT) that preserves many properties
- Analog filter design is sophisticated
 - signal processing research since 1940s
- → Design IIR filters via analog prototype
 - need to learn some CT filter design

2. Analog Filter Design

- Decades of analysis of transistor-based filters – sophisticated, well understood
- Basic choices:
 - ripples vs. flatness in stop and/or passband
 - more ripples → narrower transition band

Family	PassBand	StopBand
Butterworth	flat	flat
Chebyshev I	ripples	flat
Chebyshev II	flat	ripples
Elliptical	ripples	ripples

Analog Filter Types Summary

Maximally flat in pass and stop bands

• Magnitude response (LP): $|H_a(j\Omega)|^2 = \frac{1}{1 + \left(\frac{\Omega}{\Omega_c}\right)^{2N}}$ filter order

$$\Omega \ll \Omega_c,$$

$$|H_a(j\Omega)|^2 \to 1$$

$$\Omega = \Omega_c,$$

$$|H_a(j\Omega)|^2 = 1/2$$

3dB point

Example: first-order

$$H(f) = \frac{V_b(f)}{V_a(f)} = \frac{1}{1 + j\frac{f}{f_0}}$$

3dB cut-off frequency:
$$f_0 = \frac{1}{2\pi RC}$$

- 6N dB/oct rolloff

$$\Omega \gg \Omega_c, \quad |H_a(j\Omega)|^2 \to (\Omega_c/\Omega)^{2N}$$

Log-log magnitude response

• flat
$$\rightarrow \frac{d^n}{d\Omega^n} |H_a(j\Omega)|^2 = 0$$

②
$$\Omega = 0$$
 for $n = 1 ... 2N-1$

How to meet design specifications?

Design Equation

$$N \ge \frac{1}{2} \frac{\log_{10}\left(\frac{A^2 - 1}{\varepsilon^2}\right)}{\log_{10}\left(\frac{\Omega_s}{\Omega_p}\right)}$$

•
$$k_1 = \frac{\varepsilon}{\sqrt{A^2 - 1}}$$
="discrimination" «

$$k_1 = \frac{\varepsilon}{\sqrt{A^2 - 1}} \qquad \qquad k = \frac{\Omega_p}{\Omega_s}$$
 = "discrimination", « 1 = "selectivity", < 1

$$|H_a(j\Omega)|^2 = \frac{1}{1 + (\frac{\Omega}{\Omega_s})^{2N}} \dots \text{ but what is } H_a(s)?$$

- Traditionally, look it up in a table
 - calculate N → normalized filter with $Ω_c$ = 1
 - scale all coefficients for desired Ω_c

In fact,
$$H_a(s) = \frac{1}{\prod_i (s - p_i)}$$

$$\lim_{\Omega_c} \lim_{\Omega_c} \sup_{\Omega_c} \lim_{\Omega_c} \sup_{Re\{s\}} \lim_{\Omega_c} \lim_{Re\{s\}} \lim_{\Omega_c} \lim_{\Omega_c}$$

odd-indexed uniform divisions of Ω_c -radius circle

s-plane

Butterworth Example

Design a Butterworth filter with 1 dB cutoff at 1kHz and a minimum attenuation of 40 dB at 5 kHz

$$\frac{1}{\sqrt{1+\epsilon^2}} = -1 \text{ dB}$$

$$\frac{1}{A} = -40 \text{ dB}$$

$$\frac{1}{A} = -40 \text{ dB}$$

$$1 \text{kHz} \qquad 5 \text{kHz}$$

$$= \Omega_p \qquad = \Omega_s$$

$$-1dB = 20 \log_{10} \frac{1}{\sqrt{1+\varepsilon^2}} \implies \varepsilon^2 = 0.259$$

$$-40 dB = 20 \log_{10} \frac{1}{A} \implies A = 100$$

$$\frac{\Omega_s}{\Omega_n} = 5$$

$$N \ge \frac{1}{2} \frac{\log_{10} \frac{9999}{0.259}}{\log_{10} 5}$$

$$\Rightarrow N = 4 \ge 3.28$$

Butterworth Example

- Order N = 4 will satisfy constraints;
 What are Ω_c and filter coefficients?
 - from a table, $\Omega_{-1\text{dB}} = 0.845$ when $\Omega_{c} = 1$ $\Rightarrow \Omega_{c} = 1000/0.845 = 1.184 \text{ kHz}$
 - from a table, get normalized coefficients for

N = 4, scale by $1184 \cdot 2\pi$

Or, use Matlab:

Chebyshev I Filter

- Equiripple in passband (flat in stopband)
 - → minimize maximum error

$$|H(j\Omega)|^2 = \frac{1}{1 + \varepsilon^2 T_N^2(\frac{\Omega}{\Omega_p})}$$

Chebyshev polynomial
$$T_N(\Omega) = \begin{cases} \cos(N\cos^{-1}\Omega) & |\Omega| \\ \cosh(N\cosh^{-1}\Omega) & |\Omega| \end{cases}$$

Chebyshev I Filter

Design procedure:

- desired passband ripple $\rightarrow \varepsilon$
- min. stopband atten., Ω_p , $\Omega_s \to N$:

$$\frac{1}{A^{2}} = \frac{1}{1 + \varepsilon^{2} T_{N}^{2} \left(\frac{\Omega_{s}}{\Omega_{p}}\right)} = \frac{1}{1 + \varepsilon^{2} \left[\cosh\left(N\cosh^{-1}\frac{\Omega_{s}}{\Omega_{p}}\right)\right]^{2}}$$

$$\Rightarrow N \geq \frac{\cosh^{-1}\left(\frac{\sqrt{A^{2}-1}}{\varepsilon}\right)}{\cosh^{-1}\left(\frac{\Omega_{s}}{\Omega_{p}}\right)} \xrightarrow{1/k_{1}, \text{ discrimination}} \frac{\cosh^{-1}\operatorname{grows}}{\cosh^{-1}\left(\frac{\Omega_{s}}{\Omega_{p}}\right)} \xrightarrow{1/k_{1}, \text{ selectivity}} \frac{\cosh^{-1}\operatorname{grows}}{\log 10}$$

Chebyshev II Filter

Flat in passband, equiripple in stopband

$$\begin{aligned} \left| H_a(j\Omega) \right|^2 &= \frac{1}{\text{constant}} \\ &= \frac{1 + \varepsilon^2}{T_N(\frac{\Omega_s}{\Omega_p})} \\ &= \frac{1}{T_N(1/\Omega)} \end{aligned}$$

- Filter has poles and zeros (some⁻)
- Complicated pole/zero pattern

Elliptical (Cauer) Filters

Ripples in both passband and stopband

$$\left|H_a(j\Omega)\right|^2 = \frac{1}{1+\varepsilon^2 R_N^2(\frac{\Omega}{\Omega_p})}$$

$$function; \ satisfies$$

$$R_N(\Omega^{-1}) = R_N(\Omega)^{-1}$$

$$zeros \ for \ \Omega < 1 \ \rightarrow \ poles \ for \ \Omega > 1$$

Complicated; not even closed form for N

Analog Filter Transformations

 All filters types shown as lowpass; other types (highpass, bandpass..) derived via transformations

i.e.
$$\hat{s} = F^{-1}(s)$$
 Desired alternate response; still a rational polynomial

General mapping of s-plane
 BUT keep LHHP & jΩ → jΩ;
 poles OK, frequency response 'shuffled'

3. Analog Protos → IIR Filters

- Can we map high-performance CT filters to DT domain?
- Approach: transformation $H_a(s) \rightarrow G(z)$ i.e. $G(z) = H_a(s)|_{s=F(z)}$ where s = F(z) maps s-plane $\leftrightarrow z$ -plane:

Every value of G(z) is a value of $H_a(s)$ somewhere on the s-plane & vice-versa

CT to DT Transformation

- Desired properties for s = F(z):
 - s-plane $j\Omega$ axis $\leftrightarrow z$ -plane unit circle
 - → preserves frequency response values
 - s-plane LHHP ↔ z-plane unit circle interior
 - → preserves stability of poles

Bilinear Transformation

Solution:
$$s = \frac{1-z^{-1}}{1+z^{-1}} = \frac{z-1}{z+1} \quad \begin{array}{c} \text{Bilinear} \\ \text{Transform} \end{array}$$

- Hence inverse: $z = \frac{1+s}{1-s}$ unique, 1:1 mapping
- Freq. axis? $s = j\Omega$ \rightarrow $z = \frac{1+j\Omega}{1-j\Omega}$ $\frac{|z|=1}{on \ unit \ circle}$

Poles?
$$s = \sigma + j\Omega$$
 $\Rightarrow z = \frac{(1+\sigma)+j\Omega}{(1-\sigma)-j\Omega}$

$$\Rightarrow |z|^2 = \frac{1+2\sigma+\sigma^2+\Omega^2}{1-2\sigma+\sigma^2+\Omega^2} \xrightarrow{\sigma<0} \longleftrightarrow |z|<1$$

Bilinear Trnsformation

How can entire half-plane fit inside u.c.?

- Highly nonuniform warping!
 - "Moebius Transformations Revealed"
 http://www.youtube.com/watch?v=G87ehdmHeac

Bilinear Transformation

What is CT↔DT freq. relation Ω↔ω?

$$z = e^{j\omega} \implies s = \frac{1 - e^{-j\omega}}{1 + e^{-j\omega}} = \frac{2 j \sin \omega / 2}{2 \cos \omega / 2} = j \tan \frac{\omega}{2} \lim_{i \to \infty} axis$$

■ i.e.

$$\Omega = \tan\left(\frac{\omega}{2}\right)$$

$$\omega = 2 \tan^{-1} \Omega$$

- *infinite* range of CT frequency $-\infty < \Omega < \infty$ maps to *finite* DT freq. range $-\pi < \omega < \pi$
- nonlinear; $\frac{d}{d\omega}\Omega \to \infty$ as $\omega \to \pi$ pack it all in!

Frequency Warping

Bilinear transform makes

$$G(e^{j\omega}) = H_a(j\Omega)|_{\omega=2 \tan^{-1}\Omega}$$
 for all ω , Ω

Same gain & phase (ε, A...), in same 'order', but with warped frequency axis

Other Filter Shapes

- Example was IIR LPF from LP prototype
- For other shapes (HPF, bandpass,...):

■ Transform LP→X in CT or DT domain...