To Reload or Not To Reload? Motivating Risk-Averse Executives Using Employee Stock Options With An Enhanced Reload Feature

Djekic Davor ¹

¹Bocconi University

July 17, 2024

Table of Contents

- 1 Employee Stock Options (ESOs)
- 2 Literature Review
- 3 The Problem
- Theoretical Model
- Two Approaches Qualitative Analysis Numerical Simulations
- **6** Conclusions

Employee Stock Options (ESOs)

Employee Stock Options (ESOs)

- ESOs are call options on firm's stock
- Features: strike price, maturity, vesting, OTM/ATM/ITM + non-transferability, limited hedging
- Why? Incentive alignment, talent attraction, deferred cash expenditure, . . .

Employee Stock Options (ESOs)

Employee Stock Options (ESOs)

- ESOs are call options on firm's stock
- Features: strike price, maturity, vesting, OTM/ATM/ITM + non-transferability, limited hedging
- Why? Incentive alignment, talent attraction, deferred cash expenditure, . . .
- ESO Value = Intrinsic value + Time value

Literature Review I

- Sharp increase starting in 1990: ownership concentration, liquidity, CEO and institutional ownership, investment intensity, and historical market returns (Pasternack et al., 2002)
- Now, in US: 6,533 ESO plans, holding total assets \$2.1+ trillion (NCEO, 2024); but shifting also towards other performance-based compensation (Frydman and Jenter, 2010)
- Deadweight loss: undiversified managers at avg NYSE firm value ESOs 30% less than market value, while those at startups value theirs 47% less (Meulbroek, 2001)
- Executives' risk aversion is lower than average, with some heterogeneity — also related to age and gender (Brenner (2015), Carter, Franco, and Gine (2017), Iqbal, Sewon, and Baek (2006))

4/31

Literature Review II

- Cook (1987) introduces reload options: at exercise, receive one stock and one new option
- Huang et al. (2013) introduce Dynamic ESOs: at exercise, receive part in stock and part in option (e.g., 70% stock, 30% new ESO)
 - For executive: recoup time value, lock-in gain, decrease risk exposure, better compensation scheme
 - For firm: higher risk-taking, tax benefits

The Problem

2 facts:

- Executives are exposed to undiversified (firm-specific) risk
- 2 Risk aversion (+ non-transferability) drives the difference between executive valuation and market value of ESOs

The Problem

2 facts:

- Executives are exposed to undiversified (firm-specific) risk
- Risk aversion (+ non-transferability) drives the difference between executive valuation and market value of ESOs

Research Question

Can we re-align values and incentives by offering an additional ESO, that at exercise reloads and offers a risk premium, to heterogeneous executives?

Main Elements

- Stock Price
- **2** 2 Options: RN and $R_{\alpha,\gamma}$
- 3 Risk-averse executives with heterogeneous risk aversion
- 4 Public, risk-neutral firm
- 6 Problem with adverse selection and moral hazard

Stock Price

- Geometric Brownian motion process $W = \{W_t, \mathcal{F}_t\}_{t>0}$ on a probability space (Ω, \mathcal{F}, P)
- Stock price follows: $dS_t = \mu S_t dt + \bar{\sigma} S_t dW_t$

Stock Price

- Geometric Brownian motion process $W = \{W_t, \mathscr{F}_t\}_{t \geq 0}$ on a probability space (Ω, \mathscr{F}, P)
- Stock price follows: $dS_t = \mu S_t dt + \bar{\sigma} S_t dW_t$
- ullet When managed by executive: $doldsymbol{S}_t = lpha oldsymbol{a_t} dt + \delta \sigma_t oldsymbol{S}_t dt + ar{\sigma} oldsymbol{S}_t dW_t$
 - $a = \{a_t\}_{t \geq 0}$ is effort and $\sigma = \{\sigma_t\}_{t \geq 0}$ is volatility
 - $\delta \in [0,1]$: impact of project on firm's volatility
 - $\alpha \in [0,1]$: relevance of executive

2 Options: RN and $R_{\alpha,\gamma}$

- Fix $S_0, K, T, v \rightarrow RN + R_{\alpha, \gamma}$ for $\alpha, \gamma \in [0, 1]$
- $R_{\alpha,\gamma}$: at exercise, (i) α in stock, (ii) $(1-\alpha+\gamma)$ in new RN
 - $\gamma > 0$: risk premium
 - $R_{1.0} = RN$

Example of $R_{0.75,0.1}$

Assume K = 30 and constant $S_t = 31$ for $t \in [0, 2T]$

Example of $R_{0.75,0.1}$

Assume K = 30 and constant $S_t = 31$ for $t \in [0, 2T]$

Example of $R_{0.75,0.1}$

Assume K = 30 and constant $S_t = 31$ for $t \in [0, 2T]$

12/31

Djekic D. To Reload or Not To Reload? July 2024

Example of $R_{0.75,0.1}$

Assume K=30 and $S_t=31$ for $t\in[0,\tau_1]$, $S_t=29$ for $t\in[\tau_1,2T]$

Risk-averse executives

- $\rho \in \{\rho_L, \rho_H\}$ s.t. $\rho_L < \rho_H$
 - $\lambda = \mathbb{P}(\rho = \rho_L)$ is common knowledge
- $W_t = n_S S_t + n_O (S_t K)^+ + c (1 + r_f)^t$
 - W_0 determines the composition of portfolio: 67 33 or 50 50
- $u_{\rho}(W_t, a_t) = \frac{W_t^{1-\rho}}{1-\rho} \frac{1}{2}a_t^2$
- $U_{\rho}(a,\sigma) = \mathbb{E}\left[r\int_{0}^{T} e^{-rt}u_{\rho}(W_{t},a_{t})dt\right]$

Risk-averse executives

- $\rho \in {\{\rho_L, \rho_H\}}$ s.t. $\rho_L < \rho_H$ • $\lambda = \mathbb{P}(\rho = \rho_L)$ is common knowledge
- $W_t = n_S S_t + n_O (S_t K)^+ + c (1 + r_f)^t$
 - W_0 determines the composition of portfolio: 67 33 or 50 50
- $u_{\rho}(W_t, a_t) = \frac{W_t^{1-\rho}}{1-\rho} \frac{1}{2}a_t^2$
- $U_{\rho}(a,\sigma) = \mathbb{E}\left[r\int_{0}^{T}e^{-rt}u_{\rho}(W_{t},a_{t})dt\right]$
- Chooses $(a, \sigma, \theta) \in \{a_L, a_H\} \times \{\sigma_L, \sigma_H\} \times \{\theta_{RN}, \theta_{R_{\alpha, \gamma}}\}$

Public, risk-neutral firm

- $\Pi(\alpha, \gamma; \beta, \mu) = \beta \mathbb{E} \left[S_T \right] \left[\mu C(\theta_{RN}) + (1 \mu) C(\theta_{R\alpha, \gamma}) \right]$
 - ullet eta: relevance of terminal stock price to firm
 - μ : fraction of executives choosing RN
 - In principle, $\mu \neq \lambda$

Public, risk-neutral firm

- $\Pi(\alpha, \gamma; \beta, \mu) = \beta \mathbb{E} \left[S_T \right] \left[\mu C(\theta_{RN}) + (1 \mu) C(\theta_{R\alpha, \gamma}) \right]$
 - ullet eta: relevance of terminal stock price to firm
 - μ : fraction of executives choosing RN
 - In principle, $\mu \neq \lambda$
- Chooses (α, γ) for $R_{\alpha, \gamma}$

Agent's Problem

$$\max_{\mathbf{a},\sigma,\theta} \quad U_{\rho}(\mathbf{a},\sigma,\theta)$$
s.t.
$$\mathbf{a} \in \{a_{L},a_{H}\}$$

$$\sigma \in \{\sigma_{L},\sigma_{H}\}$$

$$\theta \in \{\theta_{RN},\theta_{R\alpha,\alpha}\}$$

Firm's Problem(s)

No moral hazard nor adverse selection:

$$\max_{\alpha,\gamma} \quad \Pi(\alpha,\gamma;\beta,\mu)$$

s.t.
$$U_{\rho}(a^*, \sigma^*, \theta^*) \geq \hat{U} \quad \forall \rho \in \{\rho_L, \rho_H\}$$

Firm's Problem(s)

With moral hazard:

$$\max_{\alpha,\gamma} \quad \Pi(\alpha,\gamma;\beta,\mu)$$
s.t.
$$U_{\rho}(\mathbf{a}^*,\sigma^*,\theta^*) \geq \hat{U} \qquad \forall \rho \in \{\rho_L,\rho_H\}$$

$$U_{\rho}(\mathbf{a}^*,\sigma^*,\theta^*) \geq U_{\rho}(\mathbf{a},\sigma,\theta^*) \quad \forall \rho \in \{\rho_L,\rho_H\},$$

$$\forall \mathbf{a} \in \{a_L,a_H\},$$

$$\forall \sigma \in \{\sigma_L,\sigma_H\}$$

Firm's Problem(s)

With moral hazard and adverse selection:

$$\begin{aligned} \max_{\alpha,\gamma} \quad & \Pi(\alpha,\gamma;\beta,\mu) \\ \text{s.t.} \quad & U_{\rho}(\mathbf{a}^*,\sigma^*,\theta^*) \geq \hat{U} & \forall \rho \in \{\rho_L,\rho_H\} \\ & U_{\rho}(\mathbf{a}^*,\sigma^*,\theta^*) \geq U_{\rho}(\mathbf{a},\sigma,\theta) & \forall \rho \in \{\rho_L,\rho_H\}, \\ & \forall a \in \{a_L,a_H\}, \\ & \forall \sigma \in \{\theta_{RN},\theta_{R\alpha,\alpha}\} \end{aligned}$$

Two Approaches

 ${f 1}$ Qualitative Analysis

Firm and Exec valuations Analysis of incentives Numerical Simulations

Simulations' results Robustness checks

Valuation of Options

- For Firm: binomial (risk-neutral) pricing
 - C(RN) and $C(R_{\alpha,\gamma})$ computed backwards, with early exercise multiple technique by Hull and White (2004)
 - $R_{\alpha,\gamma}$ valuation accounts for recouped time value
- For Executive: utility maximization
 - E_c such that $U_\rho(n_s, n_o, c) = U_\rho(n_s, 0, c + E_c)$

Valuation of Options

- For Firm: binomial (risk-neutral) pricing
 - C(RN) and $C(R_{\alpha,\gamma})$ computed backwards, with early exercise multiple technique by Hull and White (2004)
 - $R_{\alpha,\gamma}$ valuation accounts for recouped time value
- For Executive: utility maximization
 - E_c such that $U_
 ho(n_s,n_o,c)=U_
 ho(n_S,0,c+E_c)$
- \Rightarrow $R_{\alpha,\gamma}$ is always more expensive than RN for the firm, decreasingly in α and increasingly in γ

Valuation of Options

- For Firm: binomial (risk-neutral) pricing
 - C(RN) and $C(R_{\alpha,\gamma})$ computed backwards, with early exercise multiple technique by Hull and White (2004)
 - $R_{\alpha,\gamma}$ valuation accounts for recouped time value
- For Executive: utility maximization
 - E_c such that $U_o(n_s, n_o, c) = U_o(n_s, 0, c + E_c)$
- $\Rightarrow R_{\alpha,\gamma}$ is always more expensive than RN for the firm, decreasingly in α and increasingly in γ
- • Executive value is always lower than firm value, but more
 stable for 50-50 agent
 - May be slightly under-estimated because utility-based method does not predict early exercise (Grasselli and Henderson, 2009)

Incentives

- Delta and vega are sensitivities of the option price to resp. stock price and volatility
 - Objective: predicted, by firm
 - Subjective: actual, by executive
- Computations are limited by computing power (6-8h to run one simulation)

Effort Incentives (K = 30)

RN option

 $R_{0.75,0.1}$ for $\rho = 2$ executive

 \Rightarrow Subjective > objective only when RN option slightly OTM/ITM

Djekic D. To Reload or Not To Reload? July 2024 23 / 31

Volatility Incentives

RN option

 $R_{0.75,0.1}$ for $\rho = 2$ executive

⇒ Subjective is always negative, while objective is always positive

Djekic D To Reload or Not To Reload? July 2024 24/31

Numerical Simulations

- We run 100 paths, each with 5,000 points (one per trading day)
- ullet Stock price simulations o Agent's controls o Firm's choice
- Assume constant effort and volatility \rightarrow NO instantaneous incentives
- We set T=20 years; $\rho_L=1.5$, $\rho_H=2.5$ (Carpenter, 1998); $y_{R1}=6$, $y_{RN}=y_{R2}=7$ (Murphy and Vance (2019) for RN); $a_L=0$, $a_H=1$; $\sigma_L=0$, $\sigma_H=0.01$
- We allow for $\alpha \in A = \{0.2, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 1\}$ and $\gamma \in \Gamma = \{0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1\}$

Literature Review The Problem Theoretical Model **Two Approaches** Conclusions

Simulation Results

Best	α^*	γ^*	θ^*	a*	$\rho_L \\ \sigma^*$	U	θ^*	a*	$\rho_H \\ \sigma^*$	U	$\mathbb{E}[S_T]$	П
1	A	Γ	RN	1	0.01	222.42	RN	1	0.01	24.73	222	209.39
2	А	Г	RN	0	0.01	296.61	RN	0	0.01	98.91	30	17.71
3	0.75, 0.8, 0.9, 1	0	RN	0	0.01	296.61	RN	0	0.01	98.91	30	17.71
3	1	0.05	RN	0	0.01	296.61	RN	0	0.01	98.91	30	17.71

Djekic D. To Reload or Not To Reload? July 2024 26 / 31

Numerical Simulations

- ⇒ Results are robust to changes in main parameters
 - Except for $a_L > 0$ or $y_{R1} > y_{RN}$ (but reload options encourage early exercise (Hemmer, Matsunaga, and Shevlin, 1998)).
- Special cases (RN only, stock only, effort or volatility only) are not meaningful

Discussion of Results

Both approaches suffer from limited computational capacity

Discussion of Results

- Both approaches suffer from limited computational capacity
- Contrasting results on incentives

Discussion of Results

- Both approaches suffer from limited computational capacity
- Contrasting results on incentives
 - Qualitative analysis does **not** account for cost of effort

Conclusions

Theoretical Model

- Both approaches suffer from **limited computational capacity**
- Contrasting results on incentives
 - Qualitative analysis does not account for cost of effort
 - But, cost of volatility is accounted for (maybe overestimated)

Discussion of Results

- Both approaches suffer from limited computational capacity
- Contrasting results on incentives
 - Qualitative analysis does not account for cost of effort
 - But, cost of volatility is accounted for (maybe overestimated)
- $R_{\alpha,\gamma}$ is never chosen in equilibrium, which is (surprising and) robust

Discussion of Results

- Both approaches suffer from limited computational capacity
- Contrasting results on incentives
 - Qualitative analysis does not account for cost of effort
 - But, cost of volatility is accounted for (maybe overestimated)
- $R_{\alpha,\gamma}$ is never chosen in equilibrium, which is (surprising and) robust
- But, in numerical simulations, firm's profit difference is never too high

Future Research

 Limitations of our analysis: block exercise, employee cannot leave firm, no stopping time, no firm preference on volatility

Future Research

- Limitations of our analysis: block exercise, employee cannot leave firm, no stopping time, no firm preference on volatility
- ⇒ Solve algebraically: requires complex stochastic machinery + no guarantee that closed-form solution exists
- ⇒ Different utility function for firm (and agent): allows to account for private firms
 - Of the 6,322 companies with an ESOP, 5,866 are private while only 456 are publicly traded (NCEO, 2024)

Future Research

- Limitations of our analysis: block exercise, employee cannot leave firm, no stopping time, no firm preference on volatility
- ⇒ Solve algebraically: requires complex stochastic machinery + no guarantee that closed-form solution exists
- ⇒ Different utility function for firm (and agent): allows to account for private firms
 - Of the 6,322 companies with an ESOP, 5,866 are private while only 456 are publicly traded (NCEO, 2024)
- Some (older) literature relies on strong assumptions on parameters, and small changes change significantly the results

Take-home

• We proposed a new type of option $(R_{\alpha,\gamma})$ for which we developed a novel valuation methodology

Take-home

- We proposed a new type of option $(R_{\alpha,\gamma})$ for which we developed a novel valuation methodology
- RN is always chosen in equilibrium

Take-home

- We proposed a new type of option $(R_{\alpha,\gamma})$ for which we developed a novel valuation methodology
- RN is always chosen in equilibrium
- There is difference between objective and subjective valuations (Meulbroek (2001), Ingersoll (2006)) and incentives
 - But, subjective incentive is not always lower than the predicted objective incentives
 - ⇒ Grant/reset ESOs slightly ITM/OTM for highest incentive

Thank you!

Bibliography I

- Brenner, Steffen (2015). "The risk preferences of US executives". In: *Management Science* 61.6, pp. 1344–1361.
- Carter, Mary Ellen, Francesca Franco, and Mireia Gine (2017). "Executive gender pay gaps: The roles of female risk aversion and board representation". In: *Contemporary Accounting Research* 34.2, pp. 1232–1264.
- Frydman, Carola and Dirk Jenter (2010). "CEO compensation". In: *Annu. Rev. Financ. Econ.* 2.1, pp. 75–102.
- Grasselli, Matheus and Vicky Henderson (2009). "Risk aversion and block exercise of executive stock options". In: *Journal of Economic Dynamics and Control* 33.1, pp. 109–127.

Bibliography II

- Hemmer, Thomas, Steve Matsunaga, and Terry Shevlin (1998). "Optimal exercise and the cost of granting employee stock options with a reload provision". In: *Journal of Accounting Research* 36.2, pp. 231–255.
- Huang, Yingping, Tao Li, Xisheng Xiao, Xihui Zhang, and John Olagues (2013). "Dynamic Employee Stock Options". In: *Annals of Management Science* 2.1, p. 1.
- Hull, John and Alan White (2004). "How to value employee stock options". In: *Financial Analysts Journal* 60.1, pp. 114–119.
- Ingersoll Jr, Jonathan E (2006). "Valuing reload options". In: Review of Derivatives Research 9, pp. 67–105.
- Iqbal, Zahid, O Sewon, and H Young Baek (2006). "Are female executives more risk-averse than male executives?" In: Atlantic Economic Journal 34, pp. 63–74.

Bibliography III

- Meulbroek, Lisa K (2001). "The efficiency of equity-linked compensation: Understanding the full cost of awarding executive stock options". In: *Financial management*, pp. 5–44.
- NCEO (2024). NCEO Home NCEO nceo.org. https://www.nceo.org/.
- Pasternack, Daniel et al. (2002). Factors driving stock option grants-empirical evidence from Finland. Svenska handelshogskolan.

Valuation of RN option

```
if not vested:
    C[j] = disc * (q*C_up + (1-q)*C_down)
elif vested & (S>=K*m):
    C[j] = S - K
elif vested & (S<K*m):
    C[j] = disc * (q*C_up + (1-q)*C_down)</pre>
```

Valuation of $R_{\alpha,\gamma}$ option

Valuation of RN option in a utility maximization setting

Valuation of $R_{\alpha,\gamma}$ option in a utility maximization setting

Firm Cost and Executive Value for different values of α

α	γ	Firm Cost	Executive Value			Firm Cost	Exec. Value Ratio			Ptf
			ho=1.5	$\rho = 2$	$\rho = 2.5$	Ratio	ho=1.5	$\rho = 2$	$\rho = 2.5$	ΓU
1	0	12.44	5.567	2.303	-0.957	1	1	1	1	67-33
0.75	0	13.58	5.533	2.237	-1.046	1.092	0.994	0.971	1.093	67-33
0.5	0	14.72	5.418	2.141	-1.128	1.184	0.973	0.930	1.178	67-33
1	0	12.44	9.742	7.865	5.992	1	1	1	1	50-50
0.75	0	13.58	9.750	7.855	5.964	1.092	1.001	0.999	0.995	50-50
0.5	0	14.72	9.611	7.728	5.848	1.184	0.987	0.983	0.976	50-50