Семинар 24

Пример 1 (Демидович № 3817, самостоятельно). Вычислить $I(p) = \int_0^{+\infty} \left(\frac{\sin px}{x}\right)^2 dx$.

- **1.** Заметим, что функция I(p) является чётной (относительно p), I(0) = 0, поэтому достаточно найти I(p) при p > 0.
- **2.** Продифференцируем (формально) по параметру p под знаком интеграла, а затем обоснуем возможность такого дифференцирования:

$$I'(p) = \int_{0}^{+\infty} \frac{\partial}{\partial p} \left[\left(\frac{\sin px}{x} \right)^{2} \right] dx = \int_{0}^{+\infty} 2 \frac{\sin px}{x} \cdot \frac{x \cos px}{x} dx = \int_{0}^{+\infty} \frac{2 \sin px \cos px}{x} dx = \int_{0}^{+\infty} \frac{\sin 2px}{x} dx = D(2p) = \frac{\pi}{2} \operatorname{sgn} p.$$

Тогда при p > 0: $I(p) = \frac{\pi}{2}$, $I(p) = \frac{\pi}{2}p + C$.

- 2. Теперь обоснуем возможность дифференцирования по параметру под знаком интеграла при p > 0:
 - 1) функция $f(x,p) = \left(\frac{\sin px}{x}\right)^2$ непрерывна (после доопределения при x = 0 по непрерывности значением p^2) при $x \ge 0, p \in \mathbb{R}$; функция $f_p(x,p) = \frac{\sin 2px}{x}$ тоже непрерывна (доопределяется при x=0 предельным значением 2p) при $x \ge 0, p \in \mathbb{R}$;
 - 2) интеграл I(p) сходится даже равномерно на $\mathbb R$ по признаку Вейерштрасса, т. к. $|f(x,p)| = \left(\frac{\sin px}{x}\right)^2 \le \frac{1}{x^2} = F(x)$ при x > 0 и $\forall p$, а мажорантный интеграл $\int_1^{+\infty} \frac{dx}{x^2}$
 - 3) интеграл $\int_0^{+\infty} f_p(x,p) dx = \int_0^{+\infty} \frac{\sin 2px}{x} dx$ сходится равномерно на множестве $p \ge p_0 > 0$ по признаку Дирихле

a)
$$\left| \int_0^A \sin 2px \, dx \right| = \left| -\frac{\cos 2px}{2p} \right|_0^A = \left| \frac{1 - \cos 2pA}{2p} \right| \le \frac{1}{p} \le \frac{1}{p_0} \, \forall p \ge p_0, \, \forall A;$$

б) функция $\frac{1}{x}$ монотонно убывает по переменной x; в) $\lim_{x \to +\infty} \sup_{p \ge p_0} \left| \frac{1}{x} \right| = \lim_{x \to +\infty} \frac{1}{x} = 0.$

B)
$$\lim_{x \to +\infty} \sup_{n > n_0} \left| \frac{1}{x} \right| = \lim_{x \to +\infty} \frac{1}{x} = 0.$$

Поэтому I'(p) действительно можно находить с помощью дифференцирования под знаком интеграла при $p \ge p_0$, а в силу произвольности числа $p_0 > 0$ — при $\forall p > 0$.

Таким образом мы доказали, что $I(p) = \frac{\pi}{2}p + C$ при p > 0.

3. Найдём неизвестную константу C.

Поскольку подынтегральная функция $f(x,p) = \left(\frac{\sin px}{x}\right)^2$ непрерывна (при x=0 доопределяется предельным значением p^2) и интеграл I(p) сходится равномерно на \mathbb{R} (см. п. 2), то функция I(p) непрерывна при всех p.

В частности,
$$0 = I(0) = \lim_{p \to 0+0} I(p) = \lim_{p \to 0+0} \left(\frac{\pi}{2}p + C\right) = C.$$
 Итак, $I(p) = \frac{\pi}{2}p$ при $p \ge 0$.

4. В силу чётности подынтегральной функции относительно параметра p, при p < 0 получаем:

$$I(p) = I(-|p|) = I(|p|) = \frac{\pi}{2}|p|.$$

Окончательно имеем:

$$I(p) = \frac{\pi}{2}|p|, \quad p \in \mathbb{R}.$$

Ombem:
$$I(p) = \frac{\pi}{2}|p|, \ p \in \mathbb{R}.$$

Эйлеровы интегралы

1) Гамма-функция Эйлера: $\Gamma(p) = \int_0^{+\infty} x^{p-1} e^{-x} dx$, p > 0.

При p > 0 она определена, непрерывна, бесконечное число раз дифференцируема. Её можно дифференцировать по p под знаком интеграла сколько угодно раз.

Формула понижения: $\Gamma(p+1) = p\Gamma(p)$, p > 0. (Доказывается с помощью интегрирования по частям.)

 $\Gamma(1) = 1$. (Вычисляется непосредственно.)

 $\overline{\Gamma(n+1) = n!}$ (n = 0, 1, 2, ...). (Следует из формулы понижения.)

Формула дополнения: $\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin \pi p}$, 0 . (Доказывается методами ТФКП, см. пример 5 семинара 20.)

2) Бета-функция Эйлера: $B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$, p > 0, q > 0.

При p > 0, q > 0 она определена, непрерывна, бесконечное число раз дифференцируема. Её можно дифференцировать по p и по q под знаком интеграла сколько угодно раз.

Симметричность: B(p,q) = B(q,p). (Доказывается с помощью замены переменной.)

Связь с гамма-функцией Эйлера: $B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$.

Пример 2 (Демидович № 3859, самостоятельно).

Вычислить интеграл $I(p) = \int_0^{+\infty} e^{-x^p} dx$, p > 0.

Заметим, что интеграл похож на гамма-функцию. Попробуем его к ней свести. Сделаем замену:

$$x^p = t, x = t^{\frac{1}{p}}, dx = \frac{1}{p} t^{\frac{1}{p}-1} dt.$$

$$I(p) = \frac{1}{p} \int_{0}^{+\infty} e^{-t} t^{\frac{1}{p}-1} dt = \frac{\Gamma(1/p)}{p}.$$

Значение $\Gamma(1/p)$ для *произвольного* p>0 мы вычислить не можем, поэтому оставим ответ в таком виде.

Ответ: $I(p) = \frac{\Gamma(1/p)}{p}$.

Отсюда получим значение интеграла Пуассона:

$$\int_{-\infty}^{+\infty} e^{-x^2} dx = 2 \int_{0}^{+\infty} e^{-x^2} dx = 2I(2) = 2 \frac{\Gamma\left(\frac{1}{2}\right)}{2} = \Gamma\left(\frac{1}{2}\right).$$

Вычислим $\Gamma\left(\frac{1}{2}\right)$, воспользовавшись формулой дополнения:

$$\Gamma\left(\frac{1}{2}\right)\Gamma\left(1-\frac{1}{2}\right) = \frac{\pi}{\sin\frac{\pi}{2}}.$$

 $\Gamma^2\left(\frac{1}{2}\right) = \pi \Rightarrow \boxed{\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}}$. (Поскольку из определения гамма-функции видно, что при ве-

щественных p её значения положительны.)

Тогда $\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$.

Пример 3 (Демидович № 3844, самостоятельно). Вычислить $I(p) = \int_0^p x^2 \sqrt{p^2 - x^2} \, dx$, p > 0.

Заметим, что

$$I(p) = \int_{0}^{p} x^{2} \sqrt{p^{2} - x^{2}} \, dx = p \int_{0}^{p} x^{2} \sqrt{1 - \frac{x^{2}}{p^{2}}} \, dx.$$

А последний интеграл похож на бета-функцию. Сделаем замену:

$$\left(\frac{x}{p}\right)^2 = t, x = p\sqrt{t}, dx = \frac{p}{2\sqrt{t}}dt$$

$$I(p) = p \int_{0}^{1} p^{2} t \sqrt{1 - t} \frac{p}{2\sqrt{t}} dt = \frac{p^{4}}{2} \int_{0}^{1} \sqrt{t} \sqrt{1 - t} dt = \frac{p^{4}}{2} B\left(\frac{3}{2}, \frac{3}{2}\right) = \frac{p^{4}}{2} \cdot \frac{\Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{3}{2}\right)}{\Gamma(3)}.$$

$$\Gamma\left(\frac{3}{2}\right) = \frac{1}{2}\Gamma\left(\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2}, \ \Gamma(3) = 2! = 2.$$

$$I(p) = \frac{p^4\pi}{16}.$$

Ответ: $I(p) = \frac{p^4\pi}{16}$.

Пример 4 (самостоятельно). Вычислить $I(p) = \int_0^{+\infty} \frac{dx}{x^{p+1}}, p > 1$.

Сделаем замену:

$$\frac{1}{x^{p+1}} = t, x = \left(\frac{1}{t} - 1\right)^{1/p}, dx = \frac{1}{p} \left(\frac{1}{t} - 1\right)^{\frac{1}{p} - 1} \left(-\frac{1}{t^2}\right) dt = -\frac{1}{p} \frac{(1 - t)^{\frac{1}{p} - 1}}{t^{\frac{1}{p} + 1}} dt.$$

ку гамма-функцию можно дифференцировать под знаком интеграла.

$$I(p) = \frac{1}{p} \int_{0}^{1} (1-t)^{\frac{1}{p}-1} t^{-\frac{1}{p}} dt = \frac{1}{p} B\left(1-\frac{1}{p},\frac{1}{p}\right) = \frac{1}{p} \frac{\Gamma\left(1-\frac{1}{p}\right)\Gamma\left(\frac{1}{p}\right)}{\Gamma(1)} = \frac{\pi}{p \sin\frac{\pi}{p}}.$$

Omsem: $I(p) = \frac{\pi}{p \sin \frac{\pi}{p}}$.

Пример 5 (самостоятельно). Вычислить $I(p) = \int_0^{+\infty} x^{p-1} e^{-x} \ln x \, dx, \, p > 0.$ Заметим, что $\int_0^{+\infty} x^{p-1} e^{-x} \ln x \, dx = \frac{d}{dp} \int_0^{+\infty} x^{p-1} e^{-x} \, dx = \frac{d}{dp} \Gamma(p) = \Gamma'(p), \, p > 0,$ посколь-

Ответ: $I(p) = \Gamma'(p)$.

Пример 6 (самостоятельно). Выразить бета-функцию через несобственный интеграл по полупрямой $[0, +\infty)$.

$$B(p,q) = \int_{0}^{1} x^{p-1} (1-x)^{q-1} dx.$$

Сделаем замену:

$$x = \frac{1}{t+1}, dx = -\frac{dt}{(t+1)^2}, t = \frac{1}{x} - 1.$$

$$B(p,q) = \int_{0}^{+\infty} \left(\frac{1}{t+1}\right)^{p-1} \left(1 - \frac{1}{t+1}\right)^{q-1} \frac{dt}{(t+1)^2} = \int_{0}^{+\infty} \frac{t^{q-1}}{(t+1)^{p+q}} dt.$$

Поскольку B(p,q) = B(q,p), то справедливо также представление

$$B(p,q) = \int_{0}^{+\infty} \frac{t^{p-1}}{(t+1)^{p+q}} dt.$$

Omsem:
$$B(p,q) = \int_0^{+\infty} \frac{t^{q-1}}{(t+1)^{p+q}} dt = \int_0^{+\infty} \frac{t^{p-1}}{(t+1)^{p+q}} dt$$
.

ДЗ 24. Демидович № 3845–3853, 3856, 3860, 3861, 3863.