Hampshire Crime Analysis

My local town, Havant is the second safest major town in Hampshire, and is the 30th most dangerous overall out of Hampshire's 268 towns, villages, and cities. The overall crime rate in Havant in 2023 was 93 crimes per 1,000 people. This compares poorly to Hampshire's overall crime rate, coming in 14% higher than the Hampshire rate of 81 per 1,000 daytime population. For England, Wales, and Northern Ireland as a whole, Havant is the 30th safest major town, and the 1,281st most dangerous location out of all towns, cities, and villages.

In January 2024, Havant was the worst major town in Hampshire for drugs, with 35 crimes reported and a crime rate of 0.31 per 1,000 daytime population. January 2024 was also a bad month for Havant residents, when it was Hampshire's most dangerous major town for other crime, recording 14 crimes at a rate of 0.13 per 1,000 daytime population.

The most common crimes in Havant are violence and sexual offences, with 5,092 offences during 2023, giving a crime rate of 46. This is 8% lower than 2022's figure of 5,533 offences and a difference of 3.96 from 2022's crime rate of 50. Havant's least common crime is theft from the person, with 44 offences recorded in 2023, a decrease of 24% from 2022's figure of 58 crimes.

This notebook has a look at the crime stats for all districts in Hampshire as a whole (including 11 districts and two unitary authorities) to see if there are any patterns or interesting insights. We will then home in on Havant to see if we can conclude anything about the crimes reported in this town.

Crimes

- Violence and sexual offences homicide, violence with and without injury, rape and other sexual offences
- Robbery of business and personal property
- Theft burglary in dwelling or other building, vehicles, person, bicycle, shoplifting, all others
- Criminal damage and arson
- Drugs trafficking and possession
- Possession of weapons
- Public order
- Other miscellaneous offences

Data Sources:

Crime Tree

Hampshire Reported Street Crimes

Crime and Safety Havant

Population - census

Import data

```
In [1]:
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          import glob
          from mpl_toolkits.basemap import Basemap
          import folium
          from folium import plugins
          import warnings
In [2]:
         warnings.filterwarnings("ignore")
In [3]:
          # Set path to get data
         path = r'C:\Users\imoge\AllMLProjects\Data\HantsCrime'
          all_files = glob.glob(path + "/*.csv")
          li = []
         for filename in all files:
              df = pd.read_csv(filename, index_col=None, header=0)
              li.append(df)
In [4]:
          # Check we have picked up all the files
         len(li)
Out[4]: 36
In [5]:
          # Concat into a dataframe and get the shape
          df = pd.concat(li, axis=0, ignore_index=True)
         df.shape
        (565163, 12)
Out[5]:
In [6]:
          df.head()
Out[6]:
                                                                    Reported
                                                 Crime ID Month
                                                                               Falls within Long
                                                                          by
                                                           2021-
                                                                    Hampshire
                                                                                Hampshire
         0
                                                     NaN
                                                                                           -1.1
                                                              04 Constabulary Constabulary
                                                           2021-
                                                                    Hampshire
                                                                                Hampshire
         1 1e89d22ab70b2fca40c73246e918b7768dbbd747aa23c4...
                                                                                           -1.1
                                                              04 Constabulary Constabulary
```

	Crime ID	Month	Reported by	Falls within	Long
2	9ff12e79f8783d9b1d5384db940203c45b4fb0a0368132	2021- 04	Hampshire Constabulary	Hampshire Constabulary	-1.1
3	79c56665e645643bdbd3d563b923f51c1fd3ac059a0d9e	2021- 04	Hampshire Constabulary	Hampshire Constabulary	-1.1
4	cf9c98dd82e6e121c3e255ce7b0d995ebf1062c5623684	2021- 04	Hampshire Constabulary	Hampshire Constabulary	-1.1

Data Cleaning

```
In [7]:
              # Check datatypes and null values
              df.info()
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 565163 entries, 0 to 565162
            Data columns (total 12 columns):
                    Column
                                                     Non-Null Count Dtype
                                                       495724 non-null object
              0
                   Crime ID
                   Month 565163 non-null object object Reported by 565163 non-null object object Longitude 565163 non-null float64 Latitude 565163 non-null object LSOA code 565163 non-null object LSOA name 565163 non-null object Object LSOA name 565163 non-null object Object LSOA name 565163 non-null object Object Crime type 565163 non-null object Object Last outcome category 495724 non-null object
              1
                   Falls within
                   Longitude
              5
                   Latitude
              7
              9
              10 Last outcome category 495724 non-null object
              11 Context
                                                        0 non-null
                                                                                 float64
             dtypes: float64(3), object(9)
            memory usage: 51.7+ MB
In [8]:
              # Check nulls
              df.isnull().sum()
Out[8]: Crime ID
                                                     69439
            Month
                                                           0
            Reported by
                                                           0
                                                           0
            Falls within
            Longitude
                                                           0
            Latitude
                                                           0
            Location
                                                           0
                                                           0
            LSOA code
            LSOA name
                                                           0
            Crime type
                                                           0
```

69439

Last outcome category

Context 565163 dtype: int64

It is not entirely clear why there are so many blanks as there is a category for 'under investigation' and it might be assumed that there should be an outcome for all cases

```
In [10]: # Lets drop a few columns of no interest
    df = df.drop(columns = ['Crime ID','Reported by','Falls within','Context'],axis

In [11]: # Change the name of the Month column to date and then replace with a datetime of df.rename(columns = {'Month':'Date'},inplace = True)
    df['Date'] = pd.to_datetime(df['Date'])

# Extract year, month and day
    df['Year'] = df['Date'].dt.year
    df['Month'] = df['Date'].dt.month
    df['Month Name'] = df['Date'].dt.month_name()

# Drop the date column
    df.drop(columns = ['Date'],axis = 1, inplace = True)
```

In [12]:
 df.head()

Out[12]:		Longitude	Latitude	Location	LSOA code	LSOA name	Crime type	Last outcome category	Year	Моі
	0	-1.147727	51.353443	On or near The Beeches	E01022553	Basingstoke and Deane 001A	Anti- social behaviour	NaN	2021	
	1	-1.147940	51.355909	On or near Bishops Close	E01022553	Basingstoke and Deane 001A	Violence and sexual offences	Unable to prosecute suspect	2021	
	2	-1.147940	51.355909	On or near Bishops Close	E01022553	Basingstoke and Deane 001A	Violence and sexual offences	Unable to prosecute suspect	2021	
	3	-1.146700	51.353067	On or near	E01022553	Basingstoke and Deane	Violence and	Investigation complete;	2021	

	Longitude	Latitude	Location	LSOA code	LSOA name	Crime type	Last outcome category	Year	Моі
			Carrington Crescent		001A	sexual offences	no suspect identified		
4	-1.147940	51.355909	On or near Bishops Close	E01022553	Basingstoke and Deane 001A	Violence and sexual offences	Unable to prosecute suspect	2021	

In [13]:

df.tail()

Out[13]:

	Longitude	Latitude	Location	LSOA code	LSOA name	Crime type	Last outcome category	Yea
565158	-1.040917	50.881798	On or near Carey Lane	E01034734	Winchester 014G	Violence and sexual offences	Unable to prosecute suspect	202
565159	-1.047425	50.877058	On or near Newlands Avenue	E01034734	Winchester 014G	Violence and sexual offences	Unable to prosecute suspect	202.
565160	-1.048837	50.871224	On or near Marrelsmoor Avenue	E01034734	Winchester 014G	Violence and sexual offences	Investigation complete; no suspect identified	202.
565161	-1.048837	50.871224	On or near Marrelsmoor Avenue	E01034734	Winchester 014G	Violence and sexual offences	Under investigation	202
565162	-0.968508	51.361076	On or near Sun Lane	E01016690	Wokingham 017C	Public order	Investigation complete; no suspect identified	202

We have data from April 2021 through to March 2024, so we have two years of complete data, one year with nine months and one year with just three months. We will focus in on 2022 and 2023 and drop the rest of the data from the dataset. We will then be able to average these two years if required.

```
In [14]:
# Get data for 2022 and 2023
df2 = df[(df['Year']==2022) | (df['Year']==2023)]
df2.shape
```

```
In [15]: # What unique LSOA names do we have?
df2['LSOA name'].unique()
```

```
Out[15]: array(['Basingstoke and Deane 001A', 'Basingstoke and Deane 001B', 'Basingstoke and Deane 001C', ..., 'Bournemouth, Christchurch and Poole 019C', 'Dorset 007B', 'Surrey Heath 010B'], dtype=object)
```

It seems as if we have some LSOA names that are not Hampshire. We are interested in those that relate to Hampshire only. Lets have a look at one of these other ones.

```
In [16]: # Check one of them
df2[df2['LSOA name']=='Guildford 004C']
```

Out[16]:

	Longitude	Latitude	Location	LSOA code	LSOA name	Crime type	outcome	Year	Mont
336435	-0.728433	51.27784	On or near Stratford Road	E01030428	Guildford 004C	Bicycle theft	Investigation complete; no suspect identified	2022	1

Lact

Lower Layer Super Output Areas (LSOAs): LSOAs have an average population of 1500 people or 650 households. A lot more data is available directly at LSOA level, including the majority of the data included within our tool, Local Insight.

```
In [17]:
# how many unique codes do we have?
len(list(df2['LSOA code'].unique()))
```

Out[17]: 1326

Districts:

- Basingstoke & Deane Borough Council
- East Hampshire District Council
- Eastleigh Borough Council
- Fareham Borough Council
- Gosport Borough Council
- Hart District Council
- Havant Borough Council
- New Forest District Council
- Portsmouth City Council
- Rushmoor Borough Council
- Southampton City Council
- Test Valley Borough Council
- Winchester City Council

In [18]: # Read in the LSOA code list file
 code_list = pd.read_csv(r'C:\Users\imoge\AllMLProjects\Data\LSOAcodes.csv')
 code_list.head(2)

Out[18]:		LSOA11CD	LSOA11NM	LSOA21CD	LSOA21NM	LAD22CD	LAD22NM	LAD22NMW	Objec
	0	E01000155	Barnet 030D	E01033916	Barnet 042B	E09000003	Barnet	NaN	
	1	E01000305	Barnet 036B	E01000305	Barnet 036B	E09000003	Barnet	NaN	

In [19]:

Check one of the districts
code_list[code_list['LSOA11NM'].str.contains('Basingstoke')].head()

Out[19]:		LSOA11CD	LSOA11NM	LSOA21CD	LSOA21NM	LAD22CD	LAD22NM	LAD22NMW
	21603	E01022552	Basingstoke and Deane 014E	E01022552	Basingstoke and Deane 014E	E07000084	Basingstoke and Deane	NaN
	21625	E01022553	Basingstoke and Deane 001A	E01022553	Basingstoke and Deane 001A	E07000084	Basingstoke and Deane	NaN
	21630	E01022554	Basingstoke and Deane 001B	E01022554	Basingstoke and Deane 001B	E07000084	Basingstoke and Deane	NaN
	21636	E01022555	Basingstoke and Deane 001C	E01022555	Basingstoke and Deane 001C	E07000084	Basingstoke and Deane	NaN
	21642	E01022556	Basingstoke and Deane 001D	E01022556	Basingstoke and Deane 001D	E07000084	Basingstoke and Deane	NaN

In [20]:

Get the codes for each district [We add in a space for Hart so we don't pick (
basingstoke = list(code_list[code_list['LSOA11NM'].str.contains('Basingstoke')]
easthants = list(code_list[code_list['LSOA11NM'].str.contains('East Hamp')]['LSo
eastleigh = list(code_list[code_list['LSOA11NM'].str.contains('Eastleigh')]['LSo
fareham = list(code_list[code_list['LSOA11NM'].str.contains('Fareham')]['LSOA11
gosport = list(code_list[code_list['LSOA11NM'].str.contains('Gosport')]['LSOA11
havant = list(code_list[code_list['LSOA11NM'].str.contains('Havant')]['LSOA11CD
newf = list(code_list[code_list['LSOA11NM'].str.contains('New Forest')]['LSOA11
ports = list(code_list[code_list['LSOA11NM'].str.contains('Portsmouth')]['LSOA11
rush = list(code_list[code_list['LSOA11NM'].str.contains('Southampton')]['LSOA1
test = list(code_list[code_list['LSOA11NM'].str.contains('Test Valley')]['LSOA1
winch = list(code_list[code_list['LSOA11NM'].str.contains('Winchester')]['LSOA1
hart = list(code_list[code_list['LSOA11NM'].str.contains('Hart ')]['LSOA11CD'].

```
# Add them into one list
districts = basingstoke + easthants + eastleigh + fareham + gosport + havant +

In [21]:
# Filter the dataframe against this list to give us just the LSOAs we are intered ffiltered = df2[df2['LSOA code'].isin(districts)]
df_filtered.shape

Out[21]: (338917, 10)

Some of the questions/issues we might want to ask/investigate based on the data:

• crimes by location (LSOA area and latitude/longitude
• types of crimes in the county overall and by area
• types of crimes by date of report
• outcomes for crimes for the county and by area

Types of crimes

In [22]:
# Get unique types of crime
df_filtered['Crime type'].unique()
```

```
In [22]:
Out[22]: array(['Other theft', 'Public order', 'Violence and sexual offences',
                   'Anti-social behaviour', 'Drugs', 'Shoplifting',
'Theft from the person', 'Criminal damage and arson',
'Possession of weapons', 'Burglary', 'Vehicle crime',
                   'Other crime', 'Bicycle theft', 'Robbery'], dtype=object)
          We have 14 categories of crime which we can consolidate a bit to make analysis easier.
In [23]:
           pd.options.mode.chained assignment = None
            # Combine some categories
            df_filtered['Crime type'].replace({'Other theft':'Theft',
                                                    'Bicycle theft': 'Theft',
                                                    'Theft from the person': 'Theft',
                                                    'Public order': 'Anti-social & Public Order',
                                                    'Anti-social behaviour': 'Anti-social & Publi
                                                    'Robbery': 'Burglary & Robbery',
                                                    'Burglary':'Burglary & Robbery'},inplace = T
In [24]:
            # Groupby crime type
            crimes = df_filtered.groupby(['Crime type'],as_index = False)['Year'].count().se
            crimes['Average'] = crimes['Year']/2
            crimes['%'] = crimes['Average']/crimes['Average'].sum()*100
            crimes
Out[24]:
                            Crime type
                                                                 %
                                           Year Average
           9 Violence and sexual offences 135941 67970.5 40.110411
           0
                Anti-social & Public Order
                                         73215 36607.5 21.602634
           7
                                         28246 14123.0 8.334194
                                  Theft
```

27214 13607.0 8.029695

2

Criminal damage and arson

	Crime type	Year	Average	%
6	Shoplifting	20117	10058.5	5.935672
8	Vehicle crime	19938	9969.0	5.882856
1	Burglary & Robbery	16973	8486.5	5.008011
3	Drugs	8785	4392.5	2.592080
4	Other crime	4624	2312.0	1.364346
5	Possession of weapons	3864	1932.0	1.140102

The most commonly occurring crime is violence and sexual offences, with an average of almost 68000 per year accounting for 40% of the total.

violent and sexual crimes include: domestic abuse, rape, sexual offences, stalking, harassment, so-called 'honour-based' violence including forced marriage, female genital mutilation, child abuse, human trafficking focusing on sexual exploitation, prostitution, pornography and obscenity.

```
In [25]:
```

```
# Plot the crimes across the county for the two year period
ax = sns.barplot(data = crimes, y = 'Crime type', x = 'Average', palette = 'dar
plt.title('Average Number of Crimes by Type (2022/2023)', fontsize = 10)
plt.ylabel("")
plt.xlabel("Number of Crimes per Year", labelpad = 15)
ax.spines[['right', 'top']].set_visible(False);
```


We can see that violence is the biggest category by far and possession of weapons is the smallest of the reported crimes

```
In [26]:
```

```
df_filtered.head()
```

0	u	t	Γ	2	6	1	:

	Longitude	Latitude	Location	LSOA code	LSOA name	Crime type	Last outcome category	Year
151109	-1.144834	51.353800	On or near Stanfield	E01022553	Basingstoke and Deane 001A	Theft	Unable to prosecute suspect	2022
151110	-1.151854	51.357016	On or near Supermarket	E01022554	Basingstoke and Deane 001B	Anti- social & Public Order	Local resolution	2022
151111	-1.153329	51.357269	On or near The Burrows	E01022554	Basingstoke and Deane 001B	Violence and sexual offences	Unable to prosecute suspect	2022
151112	-1.141741	51.354829	On or near The Parade	E01022555	Basingstoke and Deane 001C	Anti- social & Public Order	NaN	2022
151113	-1.140079	51.350798	On or near Maple Grove	E01022555	Basingstoke and Deane 001C	Anti- social & Public Order	NaN	2022

Types of crimes by year

```
In [27]: # Does this vary by year?
    crimes_year = df_filtered.groupby(['Year','Crime type'],as_index = False)['Monte
    crimes_year['%change'] = round((crimes_year[2023] - crimes_year[2022])/crimes_year:year.sort_values(by = '%change',ascending = False)
```

Out[27]: Year 2022 2023 %change

Crime type			
Shoplifting	8632	11485	33.1
Drugs	4348	4437	2.0
Possession of weapons	1979	1885	-4.7
Vehicle crime	10395	9543	-8.2
Other crime	2446	2178	-11.0
Criminal damage and arson	14553	12661	-13.0
Theft	15194	13052	-14.1
Violence and sexual offences	73700	62241	-15.5
Burglary & Robbery	9453	7520	-20.4

Crime type

Anti-social & Public Order 41339 31876 -22.9

This table highlights some interesting changes between 2022 and 2023. Shoplifting as a crime has seen a 33% increase in reports whereas all of the other crimes bar drugs have reduced over the period.

This is interesting as anecdotally, shops in my local town have been reporting significant increases in shoplifting, with one shop off-licence locking doors and only opening them when a customer approaches.

In the nearest city, this increase has been reported in the news and it would be interesting to have a look at which towns and cities are impacted by this the most.

Portsmouth News Article

```
In [28]: # Plot chart
    sns.set_palette('dark')
    ax = crimes_year[[2022,2023]].plot(kind = 'barh',stacked = True)

# Add titles
    plt.title('Types of Crime by Year')
    plt.xlabel("")

# Remove frames
    ax.spines[['right', 'top']].set_visible(False)

# Legend
    handles, labels = ax.get_legend_handles_labels()
    ax.legend(reversed(handles), reversed(labels),loc='upper right', bbox_to_anchorncol=1, fancybox=True, shadow=True);
```


2023 2022

Types of crimes by month

Does the pattern of total crime vary by month?

Does the pattern of different types of crime vary by month?

```
months = list(df_filtered['Month Name'].unique())
    crime_month = df_filtered.groupby(['Month'],as_index = False)['Year'].count()
    crime_month.index = months
    crime_month['Average'] = crime_month['Year']/2
    crime_month.sort_values(by = 'Average',ascending = False)
```

```
Out[29]:
                     Month
                              Year Average
                May
                          5 30558
                                    15279.0
              March
                          3 30271
                                    15135.5
                          7 30112
                July
                                    15056.0
               June
                          6 29381
                                    14690.5
             August
                          8 29182
                                    14591.0
               April
                          4 28819
                                    14409.5
             January
                          1 28085
                                    14042.5
             October
                         10 28068
                                    14034.0
                          9 27945
          September
                                    13972.5
                          2 27156
            February
                                    13578.0
          November
                         11 26088
                                    13044.0
           December
                         12 23252
                                   11626.0
```

```
In [30]: # Plot crimes by month
    ax = crime_month['Average'].plot(kind = 'bar')
    plt.title('Average Crimes Reported by Month')

# Remove frames
    ax.spines[['right', 'top']].set_visible(False)

# Legend
    ax.legend_ = None
    plt.xticks(rotation=45, ha='right');
```


There is no significant pattern, other than we can see that total reported crimes are highest in May and lowest in December.

We can see if there are any noticeable patterns with regard to types of crime by month

```
# Groupby month and type
crime_month_type = df_filtered.groupby(['Month','Crime type'],as_index = False)
crime_month_type['Average'] = crime_month_type['Year']/2
crime_month_type
```

Out[31]:		Month	Crime type	Year	Average
	0	1	Anti-social & Public Order	5572	2786.0
	1	1	Burglary & Robbery	1524	762.0
	2	1	Criminal damage and arson	2157	1078.5
	3 1		Drugs	750	375.0
	4 1		Other crime	429	214.5
	•••	•••			
	115	12	Possession of weapons	251	125.5
	116	12	Shoplifting	1549	774.5
	117	12	Theft	2160	1080.0
	118 12		Vehicle crime	1550	775.0
	119	12	Violence and sexual offences	9583	4791.5

120 rows × 4 columns

```
In [32]:
# Create pivot table
crime_month_type = crime_month_type.pivot(index = 'Month', columns = 'Crime type
crime_month_type.index = months
crime_month_type
```

Out[32]:

Crime type	Anti- social & Public Order	Burglary & Robbery	Criminal damage and arson	Drugs	Other crime	Possession of weapons	Shoplifting	Theft	Vehicle crime
January	2786.0	762.0	1078.5	375.0	214.5	135.5	773.0	1061.0	928.5
February	2786.0	686.5	1129.5	340.0	202.0	156.5	764.5	1133.0	825.5
March	3168.0	727.0	1239.0	385.0	230.5	178.5	849.0	1222.5	816.5
April	3276.0	698.0	1195.5	337.0	195.5	151.5	877.5	1163.0	821.0
May	3658.0	623.5	1271.0	411.5	195.5	186.5	863.5	1198.5	737.5
June	3514.0	665.5	1158.5	346.0	194.5	167.0	809.5	1188.5	772.5
July	3734.5	675.5	1158.5	365.0	209.0	170.5	929.5	1226.0	747.0
August	3515.0	708.0	1128.0	395.5	167.5	167.5	937.0	1243.0	855.0
September	3001.0	781.0	1039.5	333.5	184.5	174.0	804.5	1193.5	851.5
October	2911.5	742.5	1167.5	381.0	178.0	178.5	827.5	1220.5	960.5
November	2275.0	804.0	1083.5	364.5	173.0	140.5	848.5	1193.5	878.5
December	1982.5	613.0	958.0	358.5	167.5	125.5	774.5	1080.0	775.0


```
In [33]: # Plot the data
    sns.set_palette('dark')

# Plot
    fig, ax = plt.subplots(figsize = (10,8))
        crime_month_type.plot(ax = ax, kind = 'bar',stacked = True)

# Title
    plt.title("Average Crimes by Month (2022/2023)")

# Remove frames
    ax.spines[['right', 'top']].set_visible(False)

# Legend
    handles, labels = ax.get_legend_handles_labels()
    ax.legend(reversed(handles), reversed(labels),loc='upper right', bbox_to_anchorn col=1, fancybox=True, shadow=True);
```


- We can see an increase in anti-social and public order offences reported during the summer months which declines over the year
- Violence and sexual offences also reduce

We can see this a little better if we plot each of these crime types separately

```
def plot_line_charts(df):
    columns = df.columns[:10] # Select the first 10 columns from the dataframe
    for column in columns:
        plt.figure(figsize = (15,4))
        plt.plot(df.index, df[column])
        plt.title(f" {column}")
        plt.xlabel("Months", labelpad = 10)
        plt.ylabel("Average Number", labelpad = 10)
        plt.show()
```

In [35]: plot_line_charts(crime_month_type)

Pattern of crimes by month:

- Anti-social and public order increases over the summer and then decreases into the winter. This might align with protests and riots occurring over the better summer weather, increased drinking out of the home over the summer etc.
- Burglary & Robbery hits a low point in May and then increases gradually over the rest of the year to a peak in November prior to the Christmas period
- Criminal damage and arson is highest in May as the weather increases with another peak in October. These might coincide with holiday periods.
- Drugs crime has a distinct cyclical pattern peaking in March, May, August and October, possibly in line with school holidays

- Other crime no comments
- Possession of weapons has similar peaks as drug crime but without the dips, again indicating possible association with drug crime
- Shoplifting has peaks in April, over the summer and a smaller increase in November.
 Some of this might be associated with school holidays at Easter, Summer and prior to Christmas.
- Theft increases in January through to March and then remains high over the summer and autumn only dipping in December.
- Vehicle crime is at a peak in October and much lower over the summer, which might be related to break-ins to steal items bought for Christmas and left in the car
- Violence and sexual offences appear to peak in March and then decline over the rest of the year.

Crimes by district

To analyse the crimes by district, we can filter by the LSOA codes we used earlier.

```
In [36]:
          # Add a district column
          df_filtered.loc[(df_filtered['LSOA name'].str.contains('Basingstoke')), 'Distri
          df_filtered.loc[(df_filtered['LSOA name'].str.contains('East Hamp')), 'District'
          df_filtered.loc[(df_filtered['LSOA name'].str.contains('Eastleigh')), 'District
          df_filtered.loc[(df_filtered['LSOA name'].str.contains('Fareham')), 'District']
          df_filtered.loc[(df_filtered['LSOA name'].str.contains('Gosport')), 'District']
          df_filtered.loc[(df_filtered['LSOA name'].str.contains('Havant')), 'District']
          df_filtered.loc[(df_filtered['LSOA name'].str.contains('New Forest')), 'Distric'
          df_filtered.loc[(df_filtered['LSOA name'].str.contains('Portsmouth')), 'Distric'
          df_filtered.loc[(df_filtered['LSOA name'].str.contains('Rushmoor')), 'District'
          df_filtered.loc[(df_filtered['LSOA name'].str.contains('Southampton')), 'Distri
          df_filtered.loc[(df_filtered['LSOA name'].str.contains('Test Valley')), 'Distri
          df_filtered.loc[(df_filtered['LSOA name'].str.contains('Winchester')), 'Distric'
          df_filtered.loc[(df_filtered['LSOA name'].str.contains('Hart ')), 'District'] =
In [37]:
          df_filtered.head()
```

Out[37]:

	Longitude	Latitude	Location	LSOA code	LSOA name	Crime type	Last outcome category	Year
151109	-1.144834	51.353800	On or near Stanfield	E01022553	Basingstoke and Deane 001A	Theft	Unable to prosecute suspect	2022
151110	-1.151854	51.357016	On or near Supermarket	E01022554	Basingstoke and Deane 001B	Anti- social & Public Order	Local resolution	2022
151111	-1.153329	51.357269	On or near The Burrows	E01022554	Basingstoke and Deane 001B	Violence and sexual offences	Unable to prosecute suspect	2022
151112	-1.141741	51.354829	On or near The Parade	E01022555	Basingstoke and Deane	Anti- social &	NaN	2022

	Longitude	Latitude	Location	LSOA code	LSOA name	Crime type	Last outcome category	Year	
					001C	Public Order			
151113	-1.140079	51.350798	On or near Maple Grove	E01022555	Basingstoke and Deane 001C	Anti- social & Public Order	NaN	2022	

In [38]:

crime_district = df_filtered.groupby(['District','Crime type'],as_index = False
crime_district['Average'] = crime_district['Month']/2
crime_district

Out[38]:		District	Crime type	Month	Average
	0	Basingstoke	Anti-social & Public Order	6213	3106.5
	1	Basingstoke	Burglary & Robbery	1391	695.5
	2	Basingstoke	Criminal damage and arson	2332	1166.0
	3	Basingstoke	Drugs	678	339.0
	4	Basingstoke	Other crime	445	222.5
	•••				
	125	Winchester	Possession of weapons	156	78.0
	126	Winchester	Shoplifting	1038	519.0
	127	Winchester	Theft	1678	839.0
	128	Winchester	Vehicle crime	1238	619.0
	129	Winchester	Violence and sexual offences	6835	3417.5

130 rows × 4 columns

In [39]:

crime_district_pivot = crime_district.pivot(index = 'District',columns = 'Crime
crime_district_pivot = crime_district_pivot.sort_index()
crime_district_pivot['Total'] = crime_district_pivot.iloc[:, 0:].sum(axis=1)
crime_district_pivot

Out[39]:

39]:	Crime type	social & Public Order	Burglary & Robbery	Criminal damage and arson	Drugs	Other crime	Possession of weapons	Shoplifting	Theft	Vehic crim
	District									
	Basingstoke	3106.5	695.5	1166.0	339.0	222.5	159.0	690.5	1136.5	565
	East Hampshire	1693.0	491.0	647.0	170.5	103.5	60.5	321.0	664.5	497

Crime type	Anti- social & Public Order	Burglary & Robbery	Criminal damage and arson	Drugs	Other crime	Possession of weapons	Shoplifting	Theft	Vehic crim
District									
Eastleigh	2201.0	519.5	745.5	173.0	143.5	87.0	596.5	785.0	619
Fareham	1720.5	292.5	542.0	127.5	97.5	63.0	485.5	601.0	386
Gosport	1936.5	267.5	690.5	172.5	111.5	90.0	409.5	604.5	279
Hart	1134.0	264.0	402.0	95.5	70.5	44.5	142.5	484.0	338
Havant	2717.5	386.0	927.0	263.0	172.5	128.0	671.5	826.0	436
New Forest	2531.0	987.0	1271.5	301.0	173.0	123.5	677.5	1159.5	795
Portsmouth	6380.5	1186.5	2337.5	862.0	343.5	417.5	2183.5	2408.5	1740
Rushmoor	2060.5	374.0	687.0	237.5	120.0	108.5	694.5	832.5	712
Southampton	7123.5	1908.5	2839.0	1100.0	444.0	486.5	2191.5	3027.0	2452
Test Valley	1927.0	610.5	660.0	241.0	137.5	86.0	475.5	755.0	529
Winchester	2076.0	504.0	692.0	310.0	172.5	78.0	519.0	839.0	619

```
In [40]:
# Plot the data
fig, ax = plt.subplots(figsize = (10,8))
crime_district_pivot.plot(ax = ax, kind = 'barh', stacked = True)

# Title
plt.title("Average Crimes by District")

# Remove frames
ax.spines[['right', 'top']].set_visible(False)
ax.invert_yaxis()

# Legend
handles, labels = ax.get_legend_handles_labels()
ax.legend(reversed(handles), reversed(labels),loc='upper right', bbox_to_anchor_ncol=1, fancybox=True, shadow=True);
```


We can see that the largest offences are reported in the two largest towns/cities in Hampshire, Portsmouth and Southampton with violence and sexual offences being the largest category. The lowest number of crimes is reported in Hart, a rural district.

```
In [41]:
           # Add total crimes by district column
           crime district pivot['Total']=crime district pivot.sum(axis = 1)
           # Add the population from the 2021 census for each district
           crime_district_pivot.insert(11, "Pop", [185200,125700,136400,114500,
                                                      81900,99400,124200,175800,
                                                      208100,99800,249000,130500,127500],True)
           # Add crimes per head
           crime_district_pivot['Crimes per head'] = crime_district_pivot['Total']/crime_d
In [42]:
           crime_district_pivot.sort_values(by = 'Crimes per head',ascending = False)
Out[42]:
                         Anti-
                                         Criminal
                         social
                               Burglary
                                                                Possession
                                                         Other
                                                                                              Vehic
                                         damage
             Crime type
                            &
                                                  Drugs
                                                                           Shoplifting
                                                                                       Theft
                                                                       of
                                                         crime
                                                                                               crim
                                            and
                        Public
                               Robbery
                                                                 weapons
                                           arson
                        Order
                District
          Southampton 7123.5
                                 1908.5
                                          2839.0 1100.0
                                                                    486.5
                                                                               2191.5 3027.0
                                                                                              2452
                                                         444.0
            Portsmouth 6380.5
                                 1186.5
                                          2337.5
                                                   862.0
                                                         343.5
                                                                    417.5
                                                                               2183.5 2408.5
                                                                                              1740
                                                                     90.0
                                                                                               279
               Gosport 1936.5
                                  267.5
                                           690.5
                                                   172.5
                                                         111.5
                                                                                409.5
                                                                                       604.5
```

Crime type	Anti- social & Public Order	Burglary & Robbery	Criminal damage and arson	Drugs	Other crime	Possession of weapons	Shoplifting	Theft	Vehic crim
District									
Rushmoor	2060.5	374.0	687.0	237.5	120.0	108.5	694.5	832.5	712
Havant	2717.5	386.0	927.0	263.0	172.5	128.0	671.5	826.0	436
Basingstoke	3106.5	695.5	1166.0	339.0	222.5	159.0	690.5	1136.5	565
New Forest	2531.0	987.0	1271.5	301.0	173.0	123.5	677.5	1159.5	795
Winchester	2076.0	504.0	692.0	310.0	172.5	78.0	519.0	839.0	619
Eastleigh	2201.0	519.5	745.5	173.0	143.5	87.0	596.5	785.0	619
Test Valley	1927.0	610.5	660.0	241.0	137.5	86.0	475.5	755.0	529
Fareham	1720.5	292.5	542.0	127.5	97.5	63.0	485.5	601.0	386
East Hampshire	1693.0	491.0	647.0	170.5	103.5	60.5	321.0	664.5	497
Hart	1134.0	264.0	402.0	95.5	70.5	44.5	142.5	484.0	338

```
In [43]: # Plot the data
fig, ax = plt.subplots(figsize = (10,8))
crime_district_pivot['Crimes per head'].sort_values(ascending = False).plot(ax = ax.invert_yaxis()
plt.title('Crimes Reported per 000 Population')
plt.xlabel('Number', labelpad = 10)
plt.ylabel("")

# Remove frames
ax.spines[['right', 'top']].set_visible(False)
```

Crimes Reported per 000 Population

- On average Southampton has just over 36000 crimes reported per year. When expressed per head of population, this equates to 140 crimes per 000 population of which 40% is violent and sexual offences.
- For Portsmouth, the picture is similar with a slightly lower number of crimes with a smaller population resulting in 140 reported crimes per 000 population.
- The lowest reported crimes per head is in the district of Hart at just under 50 crimes per 000 population
- It appears that the two largest connurbations also have the highest crime levels per head

Relationship between crimes

```
In [44]:
    crime_corr = crime_district_pivot.iloc[:,0:10].corr()

# Lets Look at a heatmap
    cmap = sns.cm.rocket_r
    fig, ax = plt.subplots(figsize = (12,10))
    sns.heatmap(crime_corr, annot = True, cmap = cmap);
```


There is pretty strong correlation between different types of crime being reported in a district. This is what we might expect. For example drugs offences are highly positively correlated with theft, violence, possession of weapons and anti-social behaviour. Shoplifting and burglary are less highly correlated.

What are the hotspots for particular crimes?

Look at the top three districts for each type of crime reported. We might expect Southampton, Portsmouth and Basingstoke to be the highest on all crimes but there may be some differences in the results.

```
# Sort the table by each crime in descending order and take the top 3
for i in crime_district_pivot.columns[0:10]:
    r = crime_district_pivot.sort_values(by = i,ascending = False).head(10)
    display(r)
```

Crime type District	Anti- social & Public Order	Burglary & Robbery	Criminal damage and arson	Drugs	Other crime	Possession of weapons	Shoplifting	Theft	Vehic crim
Southampton	7123.5	1908.5	2839.0	1100.0	444.0	486.5	2191.5	3027.0	2452
Portsmouth	6380.5	1186.5	2337.5	862.0	343.5	417.5	2183.5	2408.5	1740
Basingstoke	3106.5	695.5	1166.0	339.0	222.5	159.0	690.5	1136.5	565
Havant	2717.5	386.0	927.0	263.0	172.5	128.0	671.5	826.0	436
New Forest	2531.0	987.0	1271.5	301.0	173.0	123.5	677.5	1159.5	795
Eastleigh	2201.0	519.5	745.5	173.0	143.5	87.0	596.5	785.0	619
Winchester	2076.0	504.0	692.0	310.0	172.5	78.0	519.0	839.0	619
Rushmoor	2060.5	374.0	687.0	237.5	120.0	108.5	694.5	832.5	712
Gosport	1936.5	267.5	690.5	172.5	111.5	90.0	409.5	604.5	279
Test Valley	1927.0	610.5	660.0	241.0	137.5	86.0	475.5	755.0	529
4									
Crime type	Anti- social & Public Order	Burglary & Robbery	Criminal damage and arson	Drugs	Other crime	Possession of weapons	Shoplifting	Theft	Vehic crim
Crime type District	social & Public	&	damage and	Drugs		of	Shoplifting	Theft	
	social & Public	&	damage and	Drugs 1100.0		of	Shoplifting 2191.5	Theft 3027.0	
District	social & Public Order	& Robbery	damage and arson		crime	of weapons	. ,		crim
District	social & Public Order 7123.5 6380.5	& Robbery 1908.5	damage and arson 2839.0	1100.0	crime 444.0	of weapons 486.5	2191.5	3027.0	crim 2452
District Southampton Portsmouth	social & Public Order 7123.5 6380.5	8 Robbery 1908.5 1186.5	damage and arson 2839.0 2337.5	1100.0 862.0	crime 444.0 343.5	of weapons 486.5 417.5	2191.5 2183.5	3027.0 2408.5	2452 1740
District Southampton Portsmouth New Forest	social & Public Order 7123.5 6380.5 2531.0	8 Robbery 1908.5 1186.5 987.0	damage and arson 2839.0 2337.5 1271.5	1100.0 862.0 301.0	444.0 343.5 173.0	of weapons 486.5 417.5 123.5	2191.5 2183.5 677.5	3027.0 2408.5 1159.5	2452 1740 795
District Southampton Portsmouth New Forest Basingstoke	7123.5 6380.5 2531.0 3106.5	80 Robbery 1908.5 1186.5 987.0 695.5	2839.0 2337.5 1271.5 1166.0	1100.0 862.0 301.0 339.0	444.0 343.5 173.0 222.5	of weapons 486.5 417.5 123.5 159.0	2191.5 2183.5 677.5 690.5	3027.0 2408.5 1159.5 1136.5	2452 1740 795 565

647.0

927.0

687.0

491.0

386.0

374.0

170.5 103.5

172.5

120.0

263.0

237.5

321.0

671.5

694.5

60.5

128.0

108.5

664.5

826.0

832.5

497

436

712

East 1693.0

Havant 2717.5

Rushmoor 2060.5

Hampshire

Crime type	Anti- social & Public Order	Burglary & Robbery	Criminal damage and arson	Drugs	Other crime	Possession of weapons	Shoplifting	Theft	Vehic crim
District									
Southampton	7123.5	1908.5	2839.0	1100.0	444.0	486.5	2191.5	3027.0	2452
Portsmouth	6380.5	1186.5	2337.5	862.0	343.5	417.5	2183.5	2408.5	1740
New Forest	2531.0	987.0	1271.5	301.0	173.0	123.5	677.5	1159.5	795
Basingstoke	3106.5	695.5	1166.0	339.0	222.5	159.0	690.5	1136.5	565
Havant	2717.5	386.0	927.0	263.0	172.5	128.0	671.5	826.0	436
Eastleigh	2201.0	519.5	745.5	173.0	143.5	87.0	596.5	785.0	619
Winchester	2076.0	504.0	692.0	310.0	172.5	78.0	519.0	839.0	619
Gosport	1936.5	267.5	690.5	172.5	111.5	90.0	409.5	604.5	279
Rushmoor	2060.5	374.0	687.0	237.5	120.0	108.5	694.5	832.5	712
Test Valley	1927.0	610.5	660.0	241.0	137.5	86.0	475.5	755.0	529
4									
Crime type	Anti- social & Public Order	Burglary & Robbery	Criminal damage and arson	Drugs	Other crime	Possession of weapons	Shoplifting	Theft	Vehic crim
District									
Southampton	7123.5	1908.5	2839.0	1100.0	444.0	486.5	2191.5	3027.0	2452
Portsmouth	6380.5	1186.5	2337.5	862.0	343.5	417.5	2183.5	2408.5	1740
Basingstoke	3106.5	695.5	1166.0	339.0	222.5	159.0	690.5	1136.5	565
Winchester	2076.0	504.0	692.0	310.0	172.5	78.0	519.0	839.0	619
New Forest	2531.0	987.0	1271.5	301.0	173.0	123.5	677.5	1159.5	795
Havant	2717.5	386.0	927.0	263.0	172.5	128.0	671.5	826.0	436
Test Valley	1927.0	610.5	660.0	241.0	137.5	86.0	475.5	755.0	529
Rushmoor	2060.5	374.0	687.0	237.5	120.0	108.5	694.5	832.5	712

Eastleigh 2201.0

Gosport 1936.5

519.5

267.5

745.5

690.5

173.0

172.5

143.5

111.5

87.0

90.0

596.5

409.5

785.0

604.5

619

279

Crime type	Anti- social & Public Order	Burglary & Robbery	Criminal damage and arson	Drugs	Other crime	Possession of weapons	Shoplifting	Theft	Vehic crim
District									
Southampton	7123.5	1908.5	2839.0	1100.0	444.0	486.5	2191.5	3027.0	2452
Portsmouth	6380.5	1186.5	2337.5	862.0	343.5	417.5	2183.5	2408.5	1740
Basingstoke	3106.5	695.5	1166.0	339.0	222.5	159.0	690.5	1136.5	565
New Forest	2531.0	987.0	1271.5	301.0	173.0	123.5	677.5	1159.5	795
Havant	2717.5	386.0	927.0	263.0	172.5	128.0	671.5	826.0	436
Winchester	2076.0	504.0	692.0	310.0	172.5	78.0	519.0	839.0	619
Eastleigh	2201.0	519.5	745.5	173.0	143.5	87.0	596.5	785.0	619
Test Valley	1927.0	610.5	660.0	241.0	137.5	86.0	475.5	755.0	529
Rushmoor	2060.5	374.0	687.0	237.5	120.0	108.5	694.5	832.5	712
Gosport	1936.5	267.5	690.5	172.5	111.5	90.0	409.5	604.5	279
4									
Crime type	Anti- social & Public Order	Burglary & Robbery	Criminal damage and arson	Drugs	Other crime	Possession of weapons	Shoplifting	Theft	Vehic crim
District									
Southampton	7123.5	1908.5	2839.0	1100.0	444.0	486.5	2191.5	3027.0	2452
Portsmouth	6380.5	1186.5	2337.5	862.0	343.5	417.5	2183.5	2408.5	1740
Basingstoke	3106.5	695.5	1166.0	339.0	222.5	159.0	690.5	1136.5	565
Havant	2717.5	386.0	927.0	263.0	172.5	128.0	671.5	826.0	436
New Forest	2531.0	987.0	1271.5	301.0	173.0	123.5	677.5	1159.5	795
Rushmoor	2060.5	374.0	687.0	237.5	120.0	108.5	694.5	832.5	712
Gosport	1936.5	267.5	690.5	172.5	111.5	90.0	409.5	604.5	279

745.5

660.0

692.0

173.0

241.0

310.0

143.5

137.5

172.5

87.0

86.0

78.0

596.5

475.5

519.0

785.0

755.0

839.0

619

529

619

519.5

610.5

504.0

Eastleigh 2201.0

Test Valley 1927.0

Winchester 2076.0

Crime type District	Anti- social & Public Order	Burglary & Robbery	Criminal damage and arson	Drugs	Other crime	Possession of weapons	Shoplifting	Theft	Vehic crim
Southampton	7123.5	1908.5	2839.0	1100.0	444.0	486.5	2191.5	3027.0	2452
Portsmouth	6380.5	1186.5	2337.5	862.0	343.5	417.5	2183.5	2408.5	1740
Rushmoor	2060.5	374.0	687.0	237.5	120.0	108.5	694.5	832.5	712
Basingstoke	3106.5	695.5	1166.0	339.0	222.5	159.0	690.5	1136.5	565
New Forest	2531.0	987.0	1271.5	301.0	173.0	123.5	677.5	1159.5	795
Havant	2717.5	386.0	927.0	263.0	172.5	128.0	671.5	826.0	436
Eastleigh	2201.0	519.5	745.5	173.0	143.5	87.0	596.5	785.0	619
Winchester	2076.0	504.0	692.0	310.0	172.5	78.0	519.0	839.0	619
Fareham	1720.5	292.5	542.0	127.5	97.5	63.0	485.5	601.0	386
Test Valley	1927.0	610.5	660.0	241.0	137.5	86.0	475.5	755.0	529
4									
Crime type	Anti- social & Public Order	Burglary & Robbery	Criminal damage and arson	Drugs	Other	Possession of weapons	Shoplifting	Theft	Vehic crim
Crime type District	social & Public	&	damage and	Drugs		of	Shoplifting	Theft	
	social & Public	&	damage and	Drugs		of	Shoplifting 2191.5	Theft 3027.0	
District	social & Public Order	& Robbery	damage and arson		crime	of weapons			crim
District	social & Public Order 7123.5 6380.5	& Robbery 1908.5	damage and arson 2839.0	1100.0	crime 444.0	of weapons 486.5	2191.5	3027.0	crim 2452
District Southampton Portsmouth	social & Public Order 7123.5 6380.5	8 Robbery 1908.5 1186.5	damage and arson 2839.0 2337.5	1100.0 862.0	crime 444.0 343.5	of weapons 486.5 417.5	2191.5 2183.5	3027.0 2408.5	2452 1740
District Southampton Portsmouth New Forest	social & Public Order 7123.5 6380.5 2531.0	8 Robbery 1908.5 1186.5 987.0	damage and arson 2839.0 2337.5 1271.5	1100.0 862.0 301.0	444.0 343.5 173.0	of weapons 486.5 417.5 123.5	2191.5 2183.5 677.5	3027.0 2408.5 1159.5	2452 1740 795
District Southampton Portsmouth New Forest Basingstoke	7123.5 6380.5 2531.0 3106.5 2076.0	8 Robbery 1908.5 1186.5 987.0 695.5	2839.0 2337.5 1271.5 1166.0	1100.0 862.0 301.0 339.0	444.0 343.5 173.0 222.5	of weapons 486.5 417.5 123.5 159.0	2191.5 2183.5 677.5 690.5	3027.0 2408.5 1159.5 1136.5	2452 1740 795 565
District Southampton Portsmouth New Forest Basingstoke Winchester	7123.5 6380.5 2531.0 3106.5 2076.0 2060.5	8 Robbery 1908.5 1186.5 987.0 695.5 504.0	2839.0 2337.5 1271.5 1166.0 692.0	1100.0 862.0 301.0 339.0 310.0	444.0 343.5 173.0 222.5 172.5	of weapons 486.5 417.5 123.5 159.0 78.0	2191.5 2183.5 677.5 690.5 519.0	3027.0 2408.5 1159.5 1136.5 839.0	2452 1740 795 565 619

660.0

647.0

610.5

491.0

241.0 137.5

103.5

170.5

86.0

60.5

475.5

321.0

755.0

664.5

529

497

Test Valley 1927.0

East

Hampshire

1693.0

Crime type	Anti- social & Public Order	Burglary & Robbery	Criminal damage and arson	Drugs	Other crime	Possession of weapons	Shoplifting	Theft	Vehic crim
District									
Southampton	7123.5	1908.5	2839.0	1100.0	444.0	486.5	2191.5	3027.0	2452
Portsmouth	6380.5	1186.5	2337.5	862.0	343.5	417.5	2183.5	2408.5	1740
New Forest	2531.0	987.0	1271.5	301.0	173.0	123.5	677.5	1159.5	795
Rushmoor	2060.5	374.0	687.0	237.5	120.0	108.5	694.5	832.5	712
Eastleigh	2201.0	519.5	745.5	173.0	143.5	87.0	596.5	785.0	619
Winchester	2076.0	504.0	692.0	310.0	172.5	78.0	519.0	839.0	619
Basingstoke	3106.5	695.5	1166.0	339.0	222.5	159.0	690.5	1136.5	565
Test Valley	1927.0	610.5	660.0	241.0	137.5	86.0	475.5	755.0	529
East Hampshire	1693.0	491.0	647.0	170.5	103.5	60.5	321.0	664.5	497
Havant	2717.5	386.0	927.0	263.0	172.5	128.0	671.5	826.0	436
4	•	-							
								,	
Crime type	Anti- social & Public Order	Burglary & Robbery	Criminal damage and arson	Drugs	Other crime	Possession of weapons	Shoplifting	Theft	Vehic crim
Crime type District	social & Public	&	damage and	Drugs		of	Shoplifting	Theft	
	social & Public	&	damage and	Drugs 1100.0		of	Shoplifting 2191.5	Theft 3027.0	
District	social & Public Order	& Robbery	damage and arson		crime	of weapons	. ,		crim
District	social & Public Order 7123.5 6380.5	& Robbery 1908.5	damage and arson 2839.0	1100.0	crime 444.0	of weapons 486.5	2191.5	3027.0	crim 2452
District Southampton Portsmouth	social & Public Order 7123.5 6380.5 3106.5	8 Robbery 1908.5 1186.5	damage and arson 2839.0 2337.5	1100.0 862.0	444.0 343.5	of weapons 486.5 417.5	2191.5	3027.0 2408.5	2452 1740
District Southampton Portsmouth Basingstoke	7123.5 6380.5 3106.5 2717.5	8 Robbery 1908.5 1186.5 695.5	2839.0 2337.5 1166.0	1100.0 862.0 339.0	444.0 343.5 222.5	of weapons 486.5 417.5 159.0	2191.5 2183.5 690.5	3027.0 2408.5 1136.5	2452 1740 565
District Southampton Portsmouth Basingstoke Havant	7123.5 6380.5 3106.5 2717.5	1908.5 1186.5 695.5 386.0	2839.0 2337.5 1166.0 927.0	1100.0 862.0 339.0 263.0	444.0 343.5 222.5 172.5	of weapons 486.5 417.5 159.0 128.0	2191.5 2183.5 690.5 671.5	3027.0 2408.5 1136.5 826.0	2452 1740 565 436
District Southampton Portsmouth Basingstoke Havant New Forest	7123.5 6380.5 3106.5 2717.5 2531.0	1908.5 1186.5 695.5 386.0 987.0	2839.0 2337.5 1166.0 927.0 1271.5	1100.0 862.0 339.0 263.0 301.0	444.0 343.5 222.5 172.5 173.0	of weapons 486.5 417.5 159.0 128.0 123.5	2191.5 2183.5 690.5 671.5	3027.0 2408.5 1136.5 826.0 1159.5	2452 1740 565 436 795
District Southampton Portsmouth Basingstoke Havant New Forest Eastleigh	7123.5 6380.5 3106.5 2717.5 2531.0 2201.0 2060.5	8 Robbery 1908.5 1186.5 695.5 386.0 987.0 519.5	2839.0 2337.5 1166.0 927.0 1271.5 745.5	1100.0 862.0 339.0 263.0 301.0 173.0	444.0 343.5 222.5 172.5 173.0 143.5	of weapons 486.5 417.5 159.0 128.0 123.5 87.0	2191.5 2183.5 690.5 671.5 677.5 596.5	3027.0 2408.5 1136.5 826.0 1159.5 785.0	2452 1740 565 436 795 619
District Southampton Portsmouth Basingstoke Havant New Forest Eastleigh Rushmoor	7123.5 6380.5 3106.5 2717.5 2531.0 2201.0 2060.5 1927.0	8 Robbery 1908.5 1186.5 695.5 386.0 987.0 519.5 374.0	2839.0 2337.5 1166.0 927.0 1271.5 745.5 687.0	1100.0 862.0 339.0 263.0 301.0 173.0 237.5	444.0 343.5 222.5 172.5 173.0 143.5 120.0	of weapons 486.5 417.5 159.0 128.0 123.5 87.0 108.5	2191.5 2183.5 690.5 671.5 677.5 596.5	3027.0 2408.5 1136.5 826.0 1159.5 785.0 832.5	2452 1740 565 436 795 619 712
District Southampton Portsmouth Basingstoke Havant New Forest Eastleigh Rushmoor Test Valley	7123.5 6380.5 3106.5 2717.5 2531.0 2201.0 2060.5 1927.0	8 Robbery 1908.5 1186.5 695.5 386.0 987.0 519.5 374.0 610.5	2839.0 2337.5 1166.0 927.0 1271.5 745.5 687.0 660.0	1100.0 862.0 339.0 263.0 301.0 173.0 237.5 241.0	444.0 343.5 222.5 172.5 173.0 143.5 120.0 137.5	of weapons 486.5 417.5 159.0 128.0 123.5 87.0 108.5 86.0	2191.5 2183.5 690.5 671.5 677.5 596.5 694.5 475.5	3027.0 2408.5 1136.5 826.0 1159.5 785.0 832.5 755.0	2452 1740 565 436 795 619 712 529

- Burglary & Robbery/Criminal damage and arson/Theft/Vehicle crime New Forest 3rd place
- Shoplifting Rushmoor 3rd place

The New Forest is an area that receives a lot of visitors and there are a lot of expensive homes in this district too. This could explain it being a hotspot for these types of crimes

Rushmoor encompasses the towns of Farnborough and Aldershot, both military areas but it is not clear why it appears in third place for shoplifting

Lets plot this on a map. We are using the full dataframe here with latitude and longitude and crimes cover the two year period of 2022 and 2023.

```
In [46]: # Map these crimes on a map of England and Wales (2022 and 2023)

lat = df_filtered['Latitude'].to_list()
long = df_filtered['Longitude'].to_list()

crime_map = folium.Map([50.9, -1.08], zoom_start=9)

heatmap = plugins.HeatMap(list(zip(lat,long)),radius = 2, blur = 1)
crime_map.add_child(heatmap)
```


We can clearly see the hotspots in Hampshire on the map and these are clustered around the major connurbations as we might expect

```
In [50]: # Lets have a closer look at Havant (2022 and 2023)
    hav = df_filtered[df_filtered['District']=='Havant']
    # Map these crimes on a map of England and Wales
    lat = hav['Latitude'].to_list()
    long = hav['Longitude'].to_list()
```

```
crime_map = folium.Map([50.9, -0.95], zoom_start=12)
heatmap = plugins.HeatMap(list(zip(lat,long)),radius = 3, blur = 1)
crime_map.add_child(heatmap)
```

Out[50]:

There are some hotspot areas in the Havant district that we can narrow down to locations

```
In [51]: hav.groupby(['LSOA code'], as_index = False)['Year'].count().sort_values(by = '
```

Out[51]: LSOA code Year

- **71** E01022973 1307
- **51** E01022953 1172
 - **6** E01022905 934
 - **4** E01022903 772
- **15** E01022915 718

There are a couple of locations of interest

```
In [52]:
# Look at the first location -crimes over the two year period
hav[hav['LSOA code']=='E01022973'].groupby('Crime type',as_index = False)['Year
```

Out[52]:		Crime type	Year
	9	Violence and sexual offences	363
	0	Anti-social & Public Order	351
	6	Shoplifting	306
	7	Theft	111
	2	Criminal damage and arson	68

	Crime type	Year
1	Burglary & Robbery	50
5	Possession of weapons	22
3	Drugs	20
8	Vehicle crime	14
4	Other crime	2

We can see that most of these involve violence and sexual offences, followed by anti-social and public order and shoplifting. We could try to narrow this down a little more.

```
In [55]: # Lets have a closer Look at Havant (2022 and 2023)
E01022973 = hav[hav['LSOA code']=='E01022973']
# Map these crimes on a map of England and Wales
lat = E01022973['Latitude'].to_list()
long = E01022973['Longitude'].to_list()
crime_map = folium.Map([50.88, -1.02], zoom_start=15)
heatmap = plugins.HeatMap(list(zip(lat,long)),radius = 10, blur = 1)
crime_map.add_child(heatmap)
```


This LSOA is actually in Waterlooville, a nearby town to Havant but in the Havant and Waterlooville District

```
# Look at the first location -crimes over the two year period
E01022973.groupby('Location',as_index = False)['Year'].count().sort_values(by =
```

```
Out[56]:

On or near 281

Con or near Supermarket 167

Con or near Swiss Road 121

On or near Aysgarth Road 114

On or near Portland Road 105
```

5

4

Possession of weapons

Other crime

This first line doesn't provide much information, although we can see a couple of locations of interest which are around the central town shopping area

```
In [57]:
            # Look at the other LSOA
            hav[hav['LSOA code']=='E01022953'].groupby('Crime type',as_index = False)['Year
                             Crime type
Out[57]:
                                         Year
                 Anti-social & Public Order
           0
                                          338
             Violence and sexual offences
                                          321
           6
                              Shoplifting
                                          222
           7
                                   Theft
                                          115
           2
               Criminal damage and arson
                                           69
           1
                      Burglary & Robbery
                                           40
           8
                            Vehicle crime
                                           30
           3
                                  Drugs
                                           22
```

In this area, anti-social and public order offences are the top reported crime. Again, violence and shoplifting are also top reported crimes for this LSOA.

12

3

```
In [58]: # Lets have a closer look at Havant (2022 and 2023)

E01022953 = hav[hav['LSOA code']=='E01022953']

# Map these crimes on a map of England and Wales

lat = E01022953['Latitude'].to_list()
long = E01022953['Longitude'].to_list()

crime_map = folium.Map([50.8518, -0.98], zoom_start=15)

heatmap = plugins.HeatMap(list(zip(lat,long)),radius = 10, blur = 1)
crime_map.add_child(heatmap)
```


In [59]:

```
# Look at the first location -crimes over the two year period
E01022953.groupby('Location',as_index = False)['Year'].count().sort_values(by =
```

Out[59]:		Location	Year
	0	On or near	366
	31	On or near Shopping Area	70
	5	On or near Bulbeck Road	68
	18	On or near Market Parade	67
	6	On or near Rus/Coach Station	65

As before, there is not much information regarding the location name but we can see from the map the hotpspot areas which are again focussed primarily on the shopping centre areas

Economic Indicators

It might be interesting to have a look at some other economic indicators such as unemployment rates, median incomes or education to try to build up a picture by district and see if there are any obvious links between crime rate and other factors. From this we might be able to build up a model.

We will look at:

- Unemployment figures
- Median household income
- Population density

```
In [61]:
```

```
# Read in some other indicators
eco = pd.read_csv(r'C:\Users\imoge\AllMLProjects\Data\EconomicHants.csv')
```

```
Out[61]:
                 Unnamed: 0 med_salary unemp_rate Land_area
           0
                  Basingstoke
                                 39000.0
                                                 3.3
                                                         633.80
            1
              East Hampshire
                                 33000.0
                                                 3.1
                                                         514.40
           2
                    Eastleigh
                                 34400.0
                                                 2.3
                                                          80.00
            3
                    Fareham
                                                 2.4
                                                          74.20
                                 35800.0
            4
                     Gosport
                                 32100.0
                                                 3.4
                                                          25.29
            5
                        Hart
                                 39300.0
                                                 3.0
                                                         215.30
                                                          55.30
            6
                      Havant
                                 32900.0
                                                 4.0
            7
                  New Forest
                                 34600.0
                                                 2.9
                                                         753.20
           8
                  Portsmouth
                                 35200.0
                                                 3.8
                                                          40.25
           9
                   Rushmoor
                                 38400.0
                                                 3.0
                                                          39.00
           10
                Southampton
                                                          72.80
                                 35700.0
                                                 4.6
          11
                   Test Valley
                                 35100.0
                                                 2.3
                                                         627.60
          12
                  Winchester
                                 37100.0
                                                 3.0
                                                         660.97
          13
                        NaN
                                                NaN
                                    NaN
                                                           NaN
          14
                        NaN
                                    NaN
                                                NaN
                                                           NaN
          15
                        NaN
                                    NaN
                                                NaN
                                                           NaN
In [62]:
           # Drop the last few rows
           eco = eco.iloc[0:13,:]
           # Rename the first column
           eco.rename(columns = {'Unnamed: 0':'District Name'}, inplace = True)
In [63]:
           # Check the datatypes
           eco.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 13 entries, 0 to 12
          Data columns (total 4 columns):
           #
                Column
                                 Non-Null Count Dtype
           0
                District Name 13 non-null
                                                   object
                                                   float64
           1
                med_salary
                                 13 non-null
           2
                unemp_rate
                                 13 non-null
                                                   float64
                Land_area
                                 13 non-null
                                                   float64
          dtypes: float64(3), object(1)
          memory usage: 544.0+ bytes
In [64]:
           eco
Out[64]:
               District Name med_salary unemp_rate Land_area
           0
                                 39000.0
                                                 3.3
                                                         633.80
                  Basingstoke
```

District Name med_salary unemp_rate Land_area

Set the names of districts as index crime_district_all.set_index('District Name', inplace = True)

In [138... crime_district_all.head()

In [135...

In [136...

Out[138... Anti-**Criminal** social **Burglary Possession** Other Vehicle damage & **Shoplifting Theft** of and crime crime **Public** Robbery weapons arson Order **District** Name **Basingstoke** 3106.5 695.5 1166.0 339.0 222.5 159.0 690.5 1136.5 565.0 **East** 1693.0 491.0 647.0 170.5 103.5 60.5 321.0 664.5 497.5 Hampshire **Eastleigh** 2201.0 519.5 745.5 173.0 143.5 87.0 596.5 785.0 619.5 **Fareham** 1720.5 292.5 542.0 127.5 97.5 63.0 485.5 601.0 386.0 **Gosport** 1936.5 267.5 690.5 172.5 111.5 90.0 409.5 604.5 279.0

```
In [139...
              # Drop columns not wanted
              crime_district_all.drop(columns = ['Land_area', 'Pop'], axis = 1, inplace = True)
In [140...
              # Check head
              crime_district_all
Out[140...
                             Anti-
                                               Criminal
                             social
                                    Burglary
                                                                        Possession
                                                                 Other
                                               damage
                                                                                                          Vehic
                                &
                                                         Drugs
                                                                                    Shoplifting
                                                                                                  Theft
                                                                                 of
                                                   and
                                                                 crime
                                                                                                           crim
                            Public
                                    Robbery
                                                                          weapons
                                                 arson
                            Order
                   District
                    Name
                            3106.5
                                        695.5
                                                 1166.0
                                                          339.0
                                                                 222.5
                                                                              159.0
                                                                                           690.5 1136.5
              Basingstoke
                                                                                                           565
                      East
                            1693.0
                                        491.0
                                                  647.0
                                                          170.5
                                                                 103.5
                                                                               60.5
                                                                                           321.0
                                                                                                  664.5
                                                                                                           497
               Hampshire
                                                  745.5
                                                          173.0
                                                                               87.0
                                                                                           596.5
                                                                                                  785.0
                 Eastleigh
                           2201.0
                                        519.5
                                                                 143.5
                                                                                                           619
                           1720.5
                                                  542.0
                                                          127.5
                                                                                           485.5
                                                                                                  601.0
                                                                                                           386
                  Fareham
                                        292.5
                                                                  97.5
                                                                               63.0
                  Gosport 1936.5
                                        267.5
                                                  690.5
                                                          172.5
                                                                 111.5
                                                                               90.0
                                                                                           409.5
                                                                                                  604.5
                                                                                                           279
                      Hart 1134.0
                                        264.0
                                                  402.0
                                                           95.5
                                                                  70.5
                                                                               44.5
                                                                                           142.5
                                                                                                  484.0
                                                                                                           338
                   Havant 2717.5
                                        386.0
                                                  927.0
                                                          263.0
                                                                 172.5
                                                                              128.0
                                                                                           671.5
                                                                                                  826.0
                                                                                                           436
               New Forest 2531.0
                                        987.0
                                                 1271.5
                                                          301.0
                                                                 173.0
                                                                              123.5
                                                                                           677.5
                                                                                                 1159.5
                                                                                                           795
               Portsmouth
                           6380.5
                                                 2337.5
                                                          862.0
                                                                                          2183.5
                                                                                                 2408.5
                                      1186.5
                                                                 343.5
                                                                              417.5
                                                                                                          1740
                                                          237.5
                Rushmoor
                            2060.5
                                        374.0
                                                  687.0
                                                                 120.0
                                                                              108.5
                                                                                          694.5
                                                                                                  832.5
                                                                                                           712
                           7123.5
                                                         1100.0
                                                                                                 3027.0
             Southampton
                                      1908.5
                                                 2839.0
                                                                 444.0
                                                                              486.5
                                                                                         2191.5
                                                                                                          2452
                            1927.0
                Test Valley
                                                  660.0
                                                          241.0
                                                                               86.0
                                                                                           475.5
                                                                                                  755.0
                                                                                                           529
                                        610.5
                                                                 137.5
               Winchester
                           2076.0
                                                  692.0
                                                          310.0
                                                                               78.0
                                                                                           519.0
                                                                                                  839.0
                                                                                                           619
                                        504.0
                                                                 172.5
            Lets try clustering on this data
In [157...
              # Create new dataframe, drop the total column and shuffle
              df_cluster = crime_district_all.drop(columns = ['Total'],axis = 1).sample(frac
              df_cluster
Out[157...
                             Anti-
                                               Criminal
                             social
                                    Burglary
                                                                        Possession
                                               damage
                                                                 Other
                                                                                                          Vehic
                                &
                                                         Drugs
                                                                                    Shoplifting
                                                                                                  Theft
                                                                                 of
                                                                 crime
                                                                                                           crim
                                                   and
                            Public
                                    Robbery
                                                                          weapons
                                                 arson
                            Order
                   District
                    Name
```

987.0

New Forest 2531.0

1271.5

173.0

301.0

123.5

677.5 1159.5

795

	Anti- social & Public Order	Burglary & Robbery	Criminal damage and arson	Drugs	Other crime	Possession of weapons	Shoplifting	Theft	Vehic crim
District Name									
East Hampshire	1693.0	491.0	647.0	170.5	103.5	60.5	321.0	664.5	497
Gosport	1936.5	267.5	690.5	172.5	111.5	90.0	409.5	604.5	279
Test Valley	1927.0	610.5	660.0	241.0	137.5	86.0	475.5	755.0	529
Hart	1134.0	264.0	402.0	95.5	70.5	44.5	142.5	484.0	338
Southampton	7123.5	1908.5	2839.0	1100.0	444.0	486.5	2191.5	3027.0	2452
Havant	2717.5	386.0	927.0	263.0	172.5	128.0	671.5	826.0	436
Rushmoor	2060.5	374.0	687.0	237.5	120.0	108.5	694.5	832.5	712
Portsmouth	6380.5	1186.5	2337.5	862.0	343.5	417.5	2183.5	2408.5	1740
Fareham	1720.5	292.5	542.0	127.5	97.5	63.0	485.5	601.0	386
Basingstoke	3106.5	695.5	1166.0	339.0	222.5	159.0	690.5	1136.5	565
Winchester	2076.0	504.0	692.0	310.0	172.5	78.0	519.0	839.0	619
Eastleigh	2201.0	519.5	745.5	173.0	143.5	87.0	596.5	785.0	619

```
In [158...
           from sklearn.cluster import KMeans
           from sklearn.preprocessing import StandardScaler
In [159...
           object = StandardScaler()
           standard = object.fit_transform(df_cluster)
           standard
          array([[-0.16288866, 0.74422602, 0.32014892, -0.12866817, -0.04765897,
Out[159...
                  -0.18828374, -0.15462975, 0.10018044, 0.04774922, -0.12037444,
                   -0.43377056, -0.44191034, -0.4031652, -0.92527266],
                 [-0.64190312, -0.36033593, -0.56920232, -0.58390393, -0.73114919,
                  -0.66057895, -0.72747675, -0.57805329, -0.44884266, -0.67253282,
                  \hbox{-0.90458043, -1.16001465, -0.0948624, -0.91814009],}
                 [-0.50271455, -0.85805689, -0.50725392, -0.57692714, -0.65247406,
                   -0.43942485, -0.58526929, -0.66026344, -0.81295449, -0.46278525,
                   0.48768666, -1.56394832, 0.3675918, 1.03066435],
                 [-0.50814491, -0.09421667, -0.55068901, -0.33797197, -0.39677988,
                   -0.46941184, -0.47921627, -0.45405298, -0.39635057, -0.44518991,
                  -0.55636741, -0.21750275, -1.32807362, -0.94185022],
                 [-0.96143664, -0.86585118, -0.91810713, -0.84553368, -1.05568411,
                  -0.78052694, -1.01430196, -0.82536882, -0.71463597, -0.9350664,
                  -1.27359047, 1.66752106, -0.2490138, -0.77668983],
                 [\ 2.46225921,\ 2.7963507\ ,\ 2.55242766,\ 2.65856075,\ 2.61746115,
                   2.53303628,
                                2.27816226, 2.65897134, 2.80816684,
                                                                        2.57827522,
                   2.07257258, 0.05178637, 2.21740863, 1.1490579 ],
                 [-0.05628222, -0.59416457, -0.17045397, -0.26122724, -0.05257617,
```

```
-0.15454837, -0.16427094, -0.35677097, -0.55132723, -0.01661782,
         0.30863662, -1.20489617, 1.29250021, 0.38465646],
       [-0.43183413, -0.62088784, -0.51223827, -0.35018135, -0.56888173,
        -0.30073498, -0.12731307, -0.34786487, -0.09139649, -0.42801352,
                      1.26358738, -0.2490138, 0.58841234],
         0.35196045,
       [ 2.0375483 ,
                       1.18850044,
                                    1.83824087,
                                                  1.82832235,
                                                                1.62910479,
                      2.26530735,
                                    1.81152172,
         2.01576057,
                                                  1.62251207,
                                                                1.89708438,
                                                  2.28801804],
         2.03357398, -0.17262123,
                                    0.98419741,
       [-0.62618367, -0.8023834 \ , -0.71873296, -0.73390499, -0.79015554,
        -0.64183708, -0.46314763, -0.66505903, -0.63464801, -0.64195045,
        -0.76983071, 0.09666789, -1.17392221, -0.0727904 ],
       [ 0.16607652, 0.09507318, 0.16990624, 0.0038909 ,
                                                                0.43914341,
         0.07785086, -0.13374052,
                                    0.06866655, -0.3363596,
                      1.5328765 ,
        -0.38953773,
                                    0.2134404 , -0.88699943],
       [-0.42297408, -0.33138572, -0.50511777, -0.0972726, -0.05257617,
        -0.52938584, -0.40931769, -0.33895877, -0.24637315, -0.50579607,
                      0.68012764, -0.2490138 , -0.95163741],
        -0.45255361,
       [-0.35152204, -0.29686815, -0.42892835, -0.57518294, -0.33777353,
        -0.4619151 , -0.28478573 , -0.4129479 , -0.24553995 , -0.36656949 ,
        -0.47419936, -0.53167338, -1.32807362, 0.03257095]])
# Run kmeans with 2 clusters
kmeans = KMeans(n_clusters = 2, random_state = 42)
mod = kmeans.fit predict(standard)
mod1 = mod+1
mod1
array([1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1])
# Create cluster column
cluster = list(mod1)
df_cluster['Cluster']=cluster
# show dataframe
pd.set_option("display.max_rows", None, "display.max_columns", None)
df cluster
              Anti-
                             Criminal
              social
                    Burglary
                                                   Possession
                                             Other
                                                                                Vehic
                             damage
                 &
                          &
                                      Drugs
                                                          of
                                                              Shoplifting
                                                                          Theft
                                 and
                                             crime
                                                                                 crim
             Public
                    Robbery
                                                     weapons
                               arson
             Order
     District
      Name
  New Forest
             2531.0
                       987.0
                               1271.5
                                       301.0
                                             173.0
                                                        123.5
                                                                   677.5 1159.5
                                                                                  795
        East
             1693.0
                       491.0
                                647.0
                                       170.5
                                             103.5
                                                         60.5
                                                                   321.0
                                                                          664.5
                                                                                  497
  Hampshire
    Gosport 1936.5
                       267.5
                                690.5
                                       172.5
                                             111.5
                                                         90.0
                                                                   409.5
                                                                          604.5
                                                                                  279
  Test Valley 1927.0
                       610.5
                                660.0
                                       241.0
                                             137.5
                                                         86.0
                                                                          755.0
                                                                                  529
                                                                   475.5
       Hart 1134.0
                       264.0
                                402.0
                                        95.5
                                              70.5
                                                         44.5
                                                                   142.5
                                                                          484.0
                                                                                  338
```

In [161...

Out[161...

In [162...

Out[162...

Southampton 7123.5

Havant 2717.5

Rushmoor 2060.5

1908.5

386.0

374.0

2839.0 1100.0

927.0

687.0

263.0

237.5

444.0

172.5

120.0

486.5

128.0

108.5

2191.5 3027.0

671.5

694.5

826.0

832.5

2452

436

712

District	Anti- social & Public Order	Burglary & Robbery	Criminal damage and arson	Drugs	Other crime	Possession of weapons	Shoplifting	Theft	Vehic crim
District Name									
Portsmouth	6380.5	1186.5	2337.5	862.0	343.5	417.5	2183.5	2408.5	1740
Fareham	1720.5	292.5	542.0	127.5	97.5	63.0	485.5	601.0	386
Basingstoke	3106.5	695.5	1166.0	339.0	222.5	159.0	690.5	1136.5	565
Winchester	2076.0	504.0	692.0	310.0	172.5	78.0	519.0	839.0	619
Eastleigh	2201.0	519.5	745.5	173.0	143.5	87.0	596.5	785.0	619

In [163...

pd.DataFrame(df_cluster.iloc[:,14])

Out[163...

Cluster

District Name	
New Forest	1
East Hampshire	1
Gosport	1
Test Valley	1
Hart	1
Southampton	2
Havant	1
Rushmoor	1
Portsmouth	2
Fareham	1
Basingstoke	1
Winchester	1
Eastleigh	1

In [91]:

```
# Plot an example chart
sns.scatterplot(data = df_cluster, x = 'Violence and sexual offences', y = 'Dru
plt.title('Violence against Robbery');
```


We can see that there is a relationship between these two crimes and two points are well apart from the others

```
In [165...
```

```
# Another example
sns.scatterplot(data = df_cluster, x = 'Drugs', y = 'Possession of weapons', hu
plt.title('Possession of weapons against Drugs');
```



```
In [175...
# Extract the inertia values
inertias = []
mapping1 = {}

K = range(1, 10)

for k in K:
    kmeanModel = KMeans(n_clusters=k, random_state=42).fit(standard)

    inertias.append(kmeanModel.inertia_)
    mapping1[k] = inertias[-1]
```

```
# Elbow chart
print("Inertia values:")
for key, val in mapping1.items():
```

```
print(f'{key} : {val}')

# Plotting the graph of k versus Inertia
plt.plot(K, inertias)
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Inertia')
plt.title('The Elbow Method using Inertia')
plt.show()
```

Inertia values:

```
1 : 182.0

2 : 44.02906924134521

3 : 31.50050778438595

4 : 23.22084431051492

5 : 17.887145849250526

6 : 13.139855290055085

7 : 9.364786335010809
```

8: 6.841716784621628 9: 4.621016427311179

The connurbations of Portsmouth and Southampton are quite distinct from the other districts in Hampshire in terms of the level of crimes reported

Build predictive model for crime based on economic indicators

```
In [180... # Select columns
    data = crime_district_all[['Total', 'med_salary','unemp_rate','Pop_density']]
    data = data.sample(frac = 1)

In [181... # Look at correlations
    data.corr()
```

Out[181		Total	med_salary	unemp_rate	Pop_density
	Total	1.000000	-0.029852	0.737380	0.659380
	med_salary	-0.029852	1.000000	-0.122282	-0.254994
	unemp rate	0.737380	-0.122282	1.000000	0.578733

Pop_density 0.659380 -0.254994 0.578733 1.000000

There is a fairly strong correlations between the total crimes and unemployment rate and population density, such that higher population density and unemployment rates are correlated with higher number of crimes. The correlation with median salary is weak negative, such that a higher salary is correlated with a lower crime rate.

We will have a look at the plots

```
In [182...
```

```
sns.regplot(data = data, x = 'unemp_rate', y = 'Total')
plt.title('Total Crimes against Unemployment Rate');
```



```
In [183...
```

```
sns.regplot(data = data, x = 'Pop_density', y = 'Total')
plt.title('Total Crimes against Population Density');
```



```
In [184...
```

```
sns.regplot(data = data, x = 'med_salary', y = 'Total')
plt.title('Total Crimes against Median Salary');
```


We will try to build a model but recognising that we have very few data points so it is unlikely to be a good model. We would need data from across the UK to build something we could rely upon. However, it is interesting to have a look

```
In [185...
           from sklearn.linear_model import LinearRegression
           from sklearn.model selection import train test split
           from sklearn.metrics import mean_squared_error, r2_score
In [207...
           # Define X and y
           X = data.drop(columns = ['Total'],axis = 1)
           y = data["Total"].values # This is the average of 2022 and 2023
In [313...
           # Split into train and test sets
           X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.2, shuff
           print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
           (10, 3) (3, 3) (10,) (3,)
In [314...
           scaler = StandardScaler()
           # Fit on training and transform both training and test data
           X_train_scaled = scaler.fit_transform(X_train)
           X_test_scaled = scaler.transform(X_test)
In [315...
           # Fit the model
           lr = LinearRegression()
           lr.fit(X_train_scaled, y_train)
          LinearRegression()
Out[315...
In [316...
           # Print the coefficients and intercept
           print(lr.coef_)
           print(lr.intercept_)
```

```
[ 1332.28793535 11508.06382328 3466.8365124 ] 23671.7
```

```
# Get the r-squared score on the training data lr.score(X_train_scaled,y_train)
```

Out[317... 0.6584895969688469

This is the percentage of the variation in crime which can be explained by the features of population density, median income and unemployment rate. The remaining percentage cannot be explained by our model.

```
# Residual plot
sns.residplot(data['med_salary'],data['Total'])
plt.title('Residual Plot Median Salary');
```



```
# Residual plot
sns.residplot(data['unemp_rate'],data['Total'])
plt.title('Residual Plot Unemployment Rate');
```



```
# Residual plot
sns.residplot(data['Pop_density'],data['Total'])
plt.title('Residual Plot Population Density');
```


We are looking for the residuals to be randomly spread around the X axis. It is a bit difficult to tell, especially with so few points.

Out[323... '


```
# Get mean squared error
mse = mean_squared_error(y_test, y_pred)
print('The mean square error of price and predicted value is: ', mse)
```

The mean square error of price and predicted value is: 194401580.61361882

```
# Get r-squared
r_squared = r2_score(y_test, y_pred)
print('The R-square value is: ', r_squared)
```

The R-square value is: 0.4166948040603897

This is quite a poor predictive model, explaining little more than we would expect by chance. A much bigger sample size would be needed to build a model and make reliable conclusions about crime levels being related to the features we identified and likely a whole host of different predictor variables would be needed making this quite a complicated model.

In []:	