$$f(x) = \frac{P(x)}{Q(x)}$$
Rahonal

Suppose order of $P \ge$

order of Q .

Write
$$P(x) = A(x)Q(x) + R(x)$$

$$P(x) = A(x)Q(x) + R(x)$$

$$P(x) = A(x) + \frac{R(x)}{Q(x)}$$
Where order of $R <$ order of Q .

Example
$$f(x) = \frac{x^3}{1+x^2}$$

$$X^3 = X(1+x^2) - X$$

$$\frac{\chi^3}{1+\chi^2} = \chi - \frac{\chi}{1+\chi^2}$$

$$\int_{1+x^2}^{2} \frac{x^3}{1+x^2} = \frac{x^2}{2} - \frac{1}{2} \log (1+x^2) + c$$

Complex Integration

Consider Safaldx

Can take f lo be a complex function of a real variable

$$x$$
 shill real

 $f(x)$ can be complex

Can define

 $\int_{a}^{b} f(x) dx = \int_{a}^{b} Re f(x) dx$
 $f(x)$
 $f(x)$

(a)
$$\int_0^{\pi} \frac{dx}{x+i}$$
 (b) $\int_{-\pi}^{\pi} e^{ix} dx$

$$\frac{1}{X+i} = \frac{1}{X+i} \cdot \frac{X-i}{X-i} = \frac{X-i}{1+X^2}$$

$$\int_{0}^{1} dx \frac{1}{x+i} dx = \int_{0}^{1} \frac{x}{1+x^{2}} dx - i \int_{0}^{1} \frac{dx}{1+x^{2}}$$

$$= \frac{1}{2} \left[\log \left(1+x^{2} \right) \right]_{0}^{1} - i \frac{\pi}{4}$$

$$= \frac{1}{2} \left[\log 2 - i \frac{\pi}{4} \right]$$

$$\int_{0}^{1} \frac{dx}{x+i} = \left[\log \left(x+i \right) \right]_{0}^{1}$$

$$= \left[\log \left(1+i \right) - \log \left(i \right) \right]$$

$$= \log \sqrt{2} + i \frac{\pi}{4} - i \frac{\pi}{2}$$

= 1/2 Loy 2 - i II

$$\int_{-\pi}^{\pi} e^{ix} dx$$

$$= \int_{-\pi}^{\pi} \left(\cos x + i \sin x \right) dx$$

$$= 0 + i0 = 0$$

$$\int_{-\pi}^{\pi} e^{ix} dx = \frac{e^{ix}}{i} \Big|_{-\pi}^{\pi}$$

$$= \frac{e^{i\pi}}{i} - \frac{e^{i\pi}}{i} = \frac{-1}{i} - \frac{-1}{i} = 0$$

Can use complex integrals

$$T = \int_{-\pi}^{\pi} \cos^8 x \, dx$$

Use
$$\cos x = \frac{e^{ix} - ix}{2}$$

$$I = \frac{1}{2^8} \int_{-\pi}^{\pi} \left(e^{ix} + e^{ix} \right)^8 dx$$

$$= \frac{1}{28} \int_{-\pi}^{\pi} \left[e^{8ix} + {8 \choose 1} e^{6ix} + {8 \choose 2} e^{4ix} \right]$$

$$+\left(\frac{8}{3}\right)e^{2ix}+\left(\frac{8}{4}\right)1+\cdots dx$$

But
$$\int_{-\pi}^{\pi} e^{inx} dx = 0$$
 $n \in \mathbb{Z}$ and $n \neq 0$

$$J = \frac{1}{2^8} \begin{pmatrix} 8 \\ 4 \end{pmatrix} 2\pi$$

Sim i learly

$$\int_{-\pi}^{\pi} \cos^{2p} x \, dx$$

P & 7/

P >0

$$= \frac{1}{2^{2p}} \left(\begin{array}{c} 2p \\ p \end{array} \right) 2\pi$$

$$= \frac{1}{4P} \frac{(2p)!}{(p!)^2} 2\pi$$

Differentiating under the integral (see problems class next week!)

Bar Notation

F(x) | b understood to be

F/61 - F/91

eg $\int_{0}^{1} e^{x} dx = e^{x} \Big|_{0}^{1} = e^{1} - e^{0}$ = e - 1

Improper Integrals

These are definite integrals with infinite limits or

unbounded

integrands

Examples

$$\int_{0}^{\infty} \frac{\sin x}{x} dx$$

$$\int_{-\infty}^{\infty} e^{-X^2} dX$$

$$\int_{0}^{1} \frac{-\frac{1}{2}}{x} dx$$

$$\int_{0}^{\frac{\pi}{2}} X \tan x \, dx$$

Riemann's definition does not work for improper in tegrals (Upper Rumann Sum or Lower Riemann Sum or both undefined) Can define improper in tegrals as particular limits of Riemann integrals Sa f(x)dx interpreted as the limit

$$\lim_{b\to\infty} \int_a^b f(x) dx$$

Example
$$f(x) = e^{-X}$$

$$\int_{0}^{\infty} e^{-X} dX = \lim_{b \to \infty} \int_{0}^{b} e^{-X} dX$$

$$= \lim_{b\to\infty} \left(\frac{-x}{e} \right)^{b}$$

$$=\lim_{b\to\infty}\left(1-e^{b}\right)=14$$

 $\int_{1}^{\infty} \frac{dx}{x} \stackrel{?}{=} \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x}$ un defined Area infinite.

or undefined Similarly $\int_{-\infty}^{b} f(x) dx$ can be interpreted q $\lim_{a \to -\infty} \int_{-\infty}^{b} f(x) dx$

If f is unbounded (but range of integration finite) can also interpret integrals as limits.

$$\int_{0}^{1} x^{-\frac{1}{2}} dx = \lim_{\alpha \to 0^{+}} \int_{0}^{1} x^{-\frac{1}{2}} dx$$

$$= \lim_{\alpha \to 0^+} +2x^{\frac{1}{2}} \Big|_{\alpha}^{1}$$

=
$$\lim_{\alpha \to 0^{+}} (2 - 2a^{\frac{1}{2}}) = 2$$

Area = 2
$$x^{-\frac{1}{2}}$$
Area = 2

$$\int_{0}^{1} \frac{dx}{x} \quad \text{undefined}$$

$$\int_{0}^{1} x^{-\frac{3}{2}} dx \quad \text{undefined}$$

$$\int_{0}^{1} x^{\frac{3}{2}} dx = \lim_{\alpha \to 0^{+}} \int_{0}^{1} x^{\frac{3}{2}} dx$$

$$=\lim_{\alpha\to 0^+}-2x^{-\frac{1}{2}}\Big|^{\frac{1}{2}}$$

=
$$\lim_{\Omega \to 0^+} = \left(-2 + 2 a^{\frac{1}{2}}\right)$$

undefined