https://ivan-sergeyev.github.io/seymour/https://github.com/Ivan-Sergeyev/seymourhttps://ivan-sergeyev.github.io/seymour/docs/

Regularity of 1-, 2-, and 3-Sums of Matroids

Ivan Sergeev and Martin Dvorak

May 27, 2025

Chapter 1

Preliminaries

1.1 Total Unimodularity

Definition 1. We say that a matrix $A \in \mathbb{Q}^{X \times Y}$ is totally unimodular, or TU for short, if for every $k \in \mathbb{Z}_{>1}$, every $k \times k$ submatrix T of A has det $T \in \{0, \pm 1\}$.

Lemma 2. Let A be a TU matrix. Suppose some rows and columns of A are multiplied by $\{0, \pm 1\}$ factors. Then the resulting matrix A' is also TU.

Proof. We prove that A' is TU by Definition $\ref{thm:proof.proof.}$ To this end, let T' be a square submatrix of A'. Our goal is to show that $\det T' \in \{0, \pm 1\}$. Let T be the submatrix of A that represents T' before pivoting. If some of the rows or columns of T were multiplied by zeros, then T' contains zero rows or columns, and hence $\det T' = 0$. Otherwise, T' was obtained from T by multiplying certain rows and columns by -1. Since T' has finitely many rows and columns, the number of such multiplications is also finite. Since multiplying either a row or a column by -1 results in the determinant getting multiplied by -1, we get $\det T' = \pm \det T \in \{0, \pm 1\}$, as desired.

Definition 3. Given $k \in \mathbb{Z}_{\geq 1}$, we say that a matrix A is k-partially unimodular, or k-PU for short, if every $k \times k$ submatrix T of A has det $T \in \{0, \pm 1\}$.

Lemma 4. A matrix A is TU if and only if A is k-PU for every $k \in \mathbb{Z}_{\geq 1}$.

Proof. This follows from Definitions ?? and ??.

1.2 Pivoting

Definition 5. Let $A \in R^{X \times Y}$ be a matrix and let $(x,y) \in X \times Y$ be such that $A(x,y) \neq 0$. A long tableau pivot in A on (x,y) is the operation that maps A to the matrix A' where

$$\forall i \in X, \ \forall j \in Y, \ A'(i,j) = \begin{cases} \frac{A(i,j)}{A(x,y)}, & \text{if } i = x, \\ A(i,j) - \frac{A(i,y) \cdot A(x,j)}{A(x,y)}, & \text{if } i \neq x. \end{cases}$$

Lemma 6. Let $A \in R^{X \times Y}$ be a matrix and let $(x,y) \in X \times Y$ be such that $A(x,y) \neq 0$. Let A' be the result of performing a long tableau pivot in A on (x,y). Then A' can be equivalently obtained from A as follows:

1. For every row $i \in X \setminus \{x\}$, add row x multiplied by A(i,y)/A(x,y) to row i.

2. Multiply row x by 1/A(x, y).

Proof. See implementation in Lean.

Lemma 7. Let $A \in \mathbb{Q}^{X \times Y}$ be a TU matrix and let $(x, y) \in X \times Y$ be such that $A(x, y) \neq 0$. Then performing the long tableau pivot in A on (x, y) yields a TU matrix A'.

Proof. See implementation in Lean.

Definition 8. Let $A \in R^{X \times Y}$ be a matrix and let $(x,y) \in X \times Y$ be such that $A(x,y) \neq 0$. Perform the following sequence of operations.

- 1. Adjoin the identity matrix $1 \in R^{X \times X}$ to A, resulting in the matrix $B = \begin{bmatrix} 1 & A \end{bmatrix} \in R^{X \times (X \oplus Y)}$.
- 2. Perform a long tableau pivot in B on (x, y), and let C denote the result.
- 3. Swap columns x and y in C, and let D be the resulting matrix.
- 4. Finally, remove columns indexed by X from D, and let A' be the resulting matrix.

A short tableau pivot in A on (x, y) is the operation that maps A to the matrix A' defined above.

Lemma 9. Let $A \in \mathbb{R}^{X \times Y}$ be a matrix and let $(x, y) \in X \times Y$ be such that $A(x, y) \neq 0$. Then the short tableau pivot in A on (x, y) maps A to A' with

$$\forall i \in X, \ \forall j \in Y, \ A'(i,j) = \begin{cases} \frac{1}{A(x,y)}, & \text{if } i = x \text{ and } j = y, \\ \frac{A(x,j)}{A(x,y)}, & \text{if } i = x \text{ and } j \neq y, \\ -\frac{A(i,j)}{A(x,y)}, & \text{if } i \neq x \text{ and } j = y, \\ A(i,j) - \frac{A(i,y) \cdot A(x,j)}{A(x,y)}, & \text{if } i \neq x \text{ and } j \neq y. \end{cases}$$

Proof. Follows by direct calculation.

Lemma 10. Let $B = \begin{bmatrix} B_{11} & 0 \\ B_{21} & B_{22} \end{bmatrix} \in \mathbb{Q}^{\{X_1 \cup X_2\} \times \{Y_1 \times Y_2\}}$. Let $B' = \begin{bmatrix} B'_{11} & B'_{12} \\ B'_{21} & B'_{22} \end{bmatrix}$ be the result of performing a short tableau pivot on $(x,y) \in X_1 \times Y_1$ in B. Then $B'_{12} = 0$, $B'_{22} = B_{22}$, and $\begin{bmatrix} B'_{11} \\ B'_{21} \end{bmatrix}$ is the matrix resulting from performing a short tableau pivot on (x,y) in $\begin{bmatrix} B_{11} \\ B_{21} \end{bmatrix}$.

Proof. This follows by a direct calculation. Indeed, because of the 0 block in B, B_{12} and B_{22} remain unchanged, and since $\begin{bmatrix} B_{11} \\ B_{21} \end{bmatrix}$ is a submatrix of B containing the pivot element, performing a short tableau pivot in it is equivalent to performing a short tableau pivot in B and then taking the corresponding submatrix.

Lemma 11. Let $k \in \mathbb{Z}_{\geq 1}$, let $A \in \mathbb{Q}^{k \times k}$, and let A' be the result of performing a short tableau pivot in A on (x,y) with $x,y \in \{1,\ldots,k\}$ such that $A(x,y) \neq 0$. Then A' contains a submatrix A'' of size $(k-1) \times (k-1)$ with $|\det A''| = |\det A|/|A(x,y)|$.

Proof. Let $X = \{1, \ldots, k\} \setminus \{x\}$ and $Y = \{1, \ldots, k\} \setminus \{y\}$, and let A'' = A'(X, Y). Since A'' does not contain the pivot row or the pivot column, $\forall (i, j) \in X \times Y$ we have $A''(i, j) = A(i, j) - \frac{A(i, y) \cdot A(x, j)}{A(x, y)}$. For $\forall j \in Y$, let B_j be the matrix obtained from A by removing row x and column j, and let B''_j be the matrix obtained from A'' by replacing column j with A(X, y) (i.e., the pivot column without the pivot element). The cofactor expansion along row x in A yields

$$\det A = \sum_{j=1}^{k} (-1)^{y+j} \cdot A(x,j) \cdot \det B_j.$$

By reordering columns of every B_j to match their order in B''_j , we get

$$\det A = (-1)^{x+y} \cdot \left(A(x,y) \cdot \det A' - \sum_{j \in Y} A(x,j) \cdot \det B''_j \right).$$

By linearity of the determinant applied to $\det A''$, we have

$$\det A'' = \det A' - \sum_{j \in Y} \frac{A(x,j)}{A(x,y)} \cdot \det B''_j$$

Therefore, $|\det A''| = |\det A|/|A(x,y)|$.

Lemma 12. Let $k \in \mathbb{Z}_{\geq 1}$, let $A \in \mathbb{Q}^{k \times k}$, and let A' be the result of performing a short tableau pivot in A on (x,y) with $x,y \in \{1,\ldots,k\}$ such that $A(x,y) \in \{\pm 1\}$. Then A' contains a submatrix A'' of size $(k-1) \times (k-1)$ with $|\det A''| = |\det A|$.

Proof. Apply Lemma ?? to A and use that $A(x,y) \in \{\pm 1\}$.

Lemma 13. Let $A \in \mathbb{Q}^{X \times Y}$ be a TU matrix and let $(x, y) \in X \times Y$ be such that $A(x, y) \neq 0$. Then performing the short tableau pivot in A on (x, y) yields a TU matrix A'.

Proof. See implementation in Lean.

1.3 Vector Matroids

Definition 14. Let R be a semiring, let X and Y be sets, and let $A \in R^{X \times Y}$ be a matrix. The vector matroid of A is the matroid $M = (Y, \mathcal{I})$ where a set $I \subset Y$ is independent in M if and only if the columns of A indexed by I are linearly independent.

Definition 15. Let R be a semiring, let X and Y be disjoint sets, and let $S \in R^{X \times Y}$ be a matrix. Let $A = \begin{bmatrix} 1 & S \end{bmatrix} \in R^{X \times (X \cup Y)}$ be the matrix obtained from S by adjoining the identity matrix as columns, and let M be the vector matroid of A. Then S is called the standard representation of M.

Lemma 16. Let $S \in \mathbb{R}^{X \times Y}$ be a standard representation of a vector matroid M. Then X is a base in M.

Proof. See implementation in Lean.

Lemma 17. Let $A \in \mathbb{Q}^{X \times Y}$ be a matrix, let M be the vector matroid of A, and let B be a base of M. Then there exists a standard representation matrix $S \in \mathbb{Q}^{B \times (Y \setminus B)}$ of M.

Proof. See implementation in Lean.

Lemma 18. Let $A \in \mathbb{Q}^{X \times Y}$ be a TU matrix, let M be the vector matroid of A, and let B be a base of M. Then there exists a matrix $S \in \mathbb{Q}^{B \times (Y \setminus B)}$ such that S is TU and S is a standard representation of M.

Proof. See implementation in Lean.

Definition 19. Let F be a field. The support of matrix $A \in F^{X \times Y}$ is $A^{\#} \in \{0,1\}^{X \times Y}$ given by

$$\forall i \in X, \ \forall j \in Y, \ A^{\#}(i,j) = \begin{cases} 0, & \text{if } A(i,j) = 0, \\ 1, & \text{if } A(i,j) \neq 0. \end{cases}$$

Definition 20. Let M be a matroid, let B be a base of M, and let $e \in E \setminus B$ be an element. The fundamental circuit C(e, B) of e with respect to B is the unique circuit contained in $B \cup \{e\}$.

Lemma 21. Let M be a matroid and let $S \in F^{X \times Y}$ be a standard representation matrix of M over a field F. Then $\forall y \in Y$, the fundamental circuit of y w.r.t. X is $C(y,X) = \{y\} \cup \{x \in X \mid S(x,y) \neq 0\}$.

Proof. Let $y \in Y$. Our goal is to show that $C'(y, X) = \{y\} \cup \{x \in X \mid D(x, y) \neq 0\}$ is a fundamental circuit of y with respect to X.

- $C'(y, X) \subseteq X \cup \{y\}$ by construction.
- C'(y,X) is dependent, since columns of $[I \mid S]$ indexed by elements of C(y,X) are linearly dependent.

- If $C \subsetneq C'(y, X)$, then C is independent. To show this, let V be the set of columns of $[I \mid S]$ indexed by elements of C and consider two cases.
 - 1. Suppose that $y \notin C$. Then vectors in V are linearly independent (as columns of I). Thus, C is independent.
 - 2. Suppose $\exists x \in X \setminus C$ such that $S(x,y) \neq 0$. Then any nontrivial linear combination of vectors in V has a non-zero entry in row x. Thus, these vectors are linearly independent, so C is independent.

Lemma 22. Let M be a matroid and let $S \in F^{X \times Y}$ be a standard representation matrix of M over a field F. Then $\forall y \in Y$, column $S^{\#}(\bullet, y)$ is the characteristic vector of $C(y, X) \setminus \{y\}$.

Proof. Directly follows from Lemma ??.

Lemma 23. Let A be a TU matrix.

- 1. If a matroid is represented by A, then it is also represented by $A^{\#}$.
- 2. If a matroid is represented by $A^{\#}$, then it is also represented by A.

Proof. See implementation in Lean.

1.4 Regular Matroids

Definition 24. A matroid M is regular if there exists a TU matrix $A \in \mathbb{Q}^{X \times Y}$ such that M is a vector matroid of A.

Definition 25. We say that $A' \in \mathbb{Q}^{X \times Y}$ is a TU signing of $A \in \mathbb{Z}_2^{X \times Y}$ if A' is TU and

$$\forall i \in X, \ \forall j \in Y, \ |A'(i,j)| = A(i,j).$$

Lemma 26. Let $B \in \mathbb{Z}_2^{X \times Y}$ be a standard representation matrix of a matroid M. Then M is regular if and only if B has a TU signing.

Proof. Suppose that M is regular. By Definition \ref{M} , there exists $A \in \mathbb{Q}^{X \times Y}$ such that M = M[A] and A is TU. By Lemma \ref{M} , X (the row set of B) is a base of M. By Lemma \ref{M} , X can be converted into a standard representation matrix $X \in \mathbb{Q}^{X \times Y}$ of X such that $X \in \mathbb{Q}^{X \times Y}$ of X such that $X \in \mathbb{Q}^{X \times Y}$ of $X \in \mathbb{Q}^{X \times Y}$ is also TU. Since $X \in \mathbb{Q}^{X \times Y}$ and $X \in \mathbb{Q}^{X \times Y}$ is TU signing of $X \in \mathbb{Q}^{X \times Y}$. Then $X \in \mathbb{Q}^{X \times Y}$ is TU, as it

Suppose that B has a TU signing $B' \in \mathbb{Q}^{X \times Y}$. Then $A = [I \mid B']$ is TU, as it is obtained from B' by adjoining the identity matrix. Moreover, by Lemma $\ref{lem:suppose}$, A represents the same matroid as $A^\# = [I \mid B]$, which is M. Thus, A is a TU matrix representing M, so M is regular.

Chapter 2

Regularity of 1-Sum

Definition 27. Let R be a semiring (we will use $R = \mathbb{Z}_2$ and $R = \mathbb{Q}$). Let $B_{\ell} \in R^{X_{\ell} \times Y_{\ell}}$ and $B_r \in R^{X_r \times Y_r}$ be matrices where $X_{\ell}, Y_{\ell}, X_r, Y_r$ are pairwise disjoint sets. The 1-sum $B = B_{\ell} \oplus_1 B_r$ of B_{ℓ} and B_r is

$$B = \begin{bmatrix} B_{\ell} & 0 \\ 0 & B_r \end{bmatrix} \in R^{(X_{\ell} \cup X_r) \times (Y_{\ell} \cup Y_r)}.$$

Definition 28. A matroid M is a 1-sum of matroids M_{ℓ} and M_r if there exist standard \mathbb{Z}_2 representation matrices B, B_{ℓ} , and B_r (for M, M_{ℓ} , and M_r , respectively) of the form given in Definition ??.

Lemma 29. Let A be a square matrix of the form $A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$. Then $\det A = \det A_{11} \cdot \det A_{22}$.

Proof. This lemma is proved in MathLib.

Lemma 30. Let B_{ℓ} and B_r from Definition ?? be TU matrices (over \mathbb{Q}). Then $B = B_{\ell} \oplus_{1} B_r$ is TU.

Proof. We prove that B is TU by Definition ??. To this end, let T be a square submatrix of B. Our goal is to show that $\det T \in \{0, \pm 1\}$.

Let T_{ℓ} and T_r denote the submatrices in the intersection of T with B_{ℓ} and B_r , respectively. Then T has the form

$$T = \begin{bmatrix} T_{\ell} & 0 \\ 0 & T_r \end{bmatrix}.$$

First, suppose that T_{ℓ} and T_r are square. Then $\det T = \det T_{\ell} \cdot \det T_r$ by Lemma ??. Moreover, $\det T_{\ell}$, $\det T_r \in \{0, \pm 1\}$, since T_{ℓ} and T_r are square submatrices of TU matrices B_{ℓ} and B_r , respectively. Thus, $\det T \in \{0, \pm 1\}$, as desired.

Without loss of generality we may assume that T_{ℓ} has fewer rows than columns. Otherwise we can transpose all matrices and use the same proof,

since TUness and determinants are preserved under transposition. Thus, T can be represented in the form

$$T = \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix},$$

where T_{11} contains T_{ℓ} and some zero rows, T_{22} is a submatrix of T_r , and T_{12} contains the rest of the rows of T_r (not contained in T_{22}) and some zero rows. By Lemma ??, we have $\det T = \det T_{11} \cdot \det T_{22}$. Since T_{11} contains at least one zero row, $\det T_{11} = 0$. Thus, $\det T = 0 \in \{0, \pm 1\}$, as desired.

Lemma 31. Let M be a 1-sum of regular matroids M_{ℓ} and M_r . Then M is also regular.

Proof. Let B, B_{ℓ} , and B_r be standard \mathbb{Z}_2 representation matrices from Definition ??. Since M_{ℓ} and M_r are regular, by Lemma ??, B_{ℓ} and B_r have TU signings B'_{ℓ} and B'_{r} , respectively. Then $B' = B'_{\ell} \oplus_1 B'_{r}$ is a TU signing of B. Indeed, B' is TU by Lemma ??, and a direct calculation shows that B' is a signing of B. Thus, M is regular by Lemma ??.

Chapter 3

Regularity of 2-Sum

Definition 32. Let R be a semiring (we will use $R = \mathbb{Z}_2$ and $R = \mathbb{Q}$). Let $B_{\ell} \in R^{(X_{\ell} \cup \{x\}) \times Y_{\ell}}$ and $B_r \in R^{X_r \times (Y_r \cup \{y\})}$ be matrices of the form

$$B_{\ell} = \begin{bmatrix} A_{\ell} \\ r \end{bmatrix}, \quad B_r = \begin{bmatrix} c & A_r \end{bmatrix}.$$

The 2-sum $B = B_{\ell} \oplus_{2,x,y} B_r$ of B_{ℓ} and B_r is defined as

$$B = \begin{bmatrix} A_{\ell} & 0 \\ D & A_r \end{bmatrix} \quad \text{where} \quad D = c \otimes r.$$

Here $A_{\ell} \in R^{X_{\ell} \times Y_{\ell}}$, $A_r \in R^{X_r \times Y_r}$, $r \in R^{Y_{\ell}}$, $c \in R^{X_r}$, $D \in R^{X_r \times Y_{\ell}}$, and the indexing is consistent everywhere.

Definition 33. A matroid M is a 2-sum of matroids M_{ℓ} and M_r if there exist standard \mathbb{Z}_2 representation matrices B, B_{ℓ} , and B_r (for M, M_{ℓ} , and M_r , respectively) of the form given in Definition ??.

Lemma 34. Let B_{ℓ} and B_r from Definition ?? be TU matrices (over \mathbb{Q}). Then $C = \begin{bmatrix} D & A_r \end{bmatrix}$ is TU.

Proof. Since B_{ℓ} is TU, all its entries are in $\{0, \pm 1\}$. In particular, r is a $\{0, \pm 1\}$ vector. Therefore, every column of D is a copy of y, -y, or the zero column. Thus, C can be obtained from B_r by adjoining zero columns, duplicating the y column, and multiplying some columns by -1. Since all these operations preserve TUess and since B_r is TU, C is also TU.

Lemma 35. Let B_{ℓ} and B_r be matrices from Definition ??. Let B'_{ℓ} and B' be the matrices obtained by performing a short tableau pivot on $(x_{\ell}, y_{\ell}) \in X_{\ell} \times Y_{\ell}$ in B_{ℓ} and B, respectively. Then $B' = B'_{\ell} \oplus_{2,x,y} B_r$.

Proof. Let

$$B'_{\ell} = \begin{bmatrix} A'_{\ell} \\ r' \end{bmatrix}, \quad B' = \begin{bmatrix} B'_{11} & B'_{12} \\ B'_{21} & B'_{22} \end{bmatrix}$$

where the blocks have the same dimensions as in B_{ℓ} and B, respectively. By Lemma ??, $B'_{11} = A'_{\ell}$, $B'_{12} = 0$, and $B'_{22} = A_r$. Equality $B'_{21} = c \otimes r'$ can be verified via a direct calculation. Thus, $B' = B'_{\ell} \oplus_{2,x,y} B_r$.

Lemma 36. Let B_{ℓ} and B_r from Definition ?? be TU matrices (over \mathbb{Q}). Then $B_{\ell} \oplus_{2,x,y} B_r$ is TU.

Proof. By Lemma ??, it suffices to show that $B_{\ell} \oplus_{2,x,y} B_r$ is k-PU for every $k \in \mathbb{Z}_{\geq 1}$. We prove this claim by induction on k. The base case with k = 1 holds, since all entries of $B_{\ell} \oplus_{2,x,y} B_r$ are in $\{0,\pm 1\}$ by construction.

Suppose that for some $k \in \mathbb{Z}_{\geq 1}$ we know that for any TU matrices B'_{ℓ} and B'_{r} (from Definition ??) their 2-sum $B'_{\ell} \oplus_{2,x,y} B'_{r}$ is k-PU. Now, given TU matrices B_{ℓ} and B_{r} (from Definition ??), our goal is to show that $B = B_{\ell} \oplus_{2,x,y} B_{r}$ is (k+1)-PU, i.e., that every $(k+1) \times (k+1)$ submatrix T of B has det $T \in \{0, \pm 1\}$.

First, suppose that T has no rows in X_{ℓ} . Then T is a submatrix of $\begin{bmatrix} D & A_r \end{bmatrix}$, which is TU by Lemma ??, so det $T \in \{0, \pm 1\}$. Thus, we may assume that T contains a row $x_{\ell} \in X_{\ell}$.

Next, note that without loss of generality we may assume that there exists $y_{\ell} \in Y_{\ell}$ such that $T(x_{\ell}, y_{\ell}) \neq 0$. Indeed, if $T(x_{\ell}, y) = 0$ for all y, then det T = 0 and we are done, and $T(x_{\ell}, y) = 0$ holds whenever $y \in Y_r$.

Lemma 37. Let M be a 2-sum of regular matroids M_{ℓ} and M_r . Then M is also regular.

Proof. Let B, B_{ℓ} , and B_r be standard \mathbb{Z}_2 representation matrices from Definition ??. Since M_{ℓ} and M_r are regular, by Lemma ??, B_{ℓ} and B_r have TU signings B'_{ℓ} and B'_{r} , respectively. Then $B' = B'_{\ell} \oplus_{2,x,y} B'_{r}$ is a TU signing of B. Indeed, B' is TU by Lemma ??, and a direct calculation verifies that B' is a signing of B. Thus, M is regular by Lemma ??.

Chapter 4

Regularity of 3-Sum

Definition 4.1

Definition 38. Let $B_l \in \mathbb{Z}_2^{(X_l \cup \{x_0, x_1\}) \times (Y_l \cup \{y_2\})}, B_r \in \mathbb{Z}_2^{(X_r \cup \{x_2\}) \times (Y_r \cup \{y_0, y_1\})}$ be matrices of the form

The 3-sum $B = B_l \oplus_3 B_r \in \mathbb{Z}_2^{(X_l \cup X_r) \times (Y_l \cup Y_r)}$ of B_l and B_r is defined as

$$B = \begin{bmatrix} A_l & 0 & 0 \\ & 1 & 1 & 0 \\ D_l & D_0 & 1A_r & \\ D_{lr} & D_r & 1 \end{bmatrix} \quad \text{where} \quad D_{lr} = D_r \cdot (D_0)^{-1} \cdot D_l.$$

Here $x_2 \in X_l, x_0, x_1 \in X_r, y_0, y_1 \in Y_l, y_2 \in Y_r, A_l \in \mathbb{Z}_2^{X_l \times Y_l}, A_r \in \mathbb{Z}_2^{X_r \times Y_r}, D_l \in \mathbb{Z}_2^{\{x_0, x_1\} \times (Y_l \setminus \{y_0, y_1\})}, D_r \in \mathbb{Z}_2^{(X_r \setminus \{x_0, x_1\}) \times \{y_0, y_1\}}, D_{lr} \in \mathbb{Z}_2^{(X_r \setminus \{x_0, x_1\}) \times (Y_l \setminus \{y_0, y_1\})}, D_0 \in \mathbb{Z}_2^{\{x_0, x_1\} \times \{y_0, y_1\}}.$ The indexing is consistent everywhere.

Note that D_0 is non-singular by construction, so D_{lr} and B are well-defined. Moreover, a non-singular $\mathbb{Z}_2^{2 \times 2}$ matrix is either $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ or $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ up to re-

indexing. Thus, Definition ?? can be equivalently restated with D_0 required to be non-singular and B_l , B_r , and B re-indexed appropriately.

Definition 39. A matroid M is a 3-sum of matroids M_{ℓ} and M_r if there exist standard \mathbb{Z}_2 representation matrices B, B_{ℓ} , and B_r (for M, M_{ℓ} , and M_r , respectively) of the form given in Definition ??.

4.2 Canonical Signing

Definition 40. We call $D'_0 \in \mathbb{Q}^{\{x_0,x_1\} \times \{y_0,y_1\}}$ the canonical signing of $D_0 \in \mathbb{Z}_3^{\{x_0,x_1\} \times \{y_0,y_1\}}$ if

$$D_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad D_0' = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \text{or} \quad D_0 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad D_0' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

Similarly, we call $S' \in \mathbb{Q}^{\{x_0, x_1, x_2\} \times \{y_0, y_1, y_2\}}$ the canonical signing of $S \in \mathbb{Z}_2^{\{x_0, x_1, x_2\} \times \{y_0, y_1, y_2\}}$ if

$$S = \begin{bmatrix} 1 & 1 & 0 \\ D_0 & & 1 \\ & & 1 \end{bmatrix} \quad \text{and} \quad S' = \begin{bmatrix} 1 & 1 & 0 \\ D'_0 & & 1 \\ & & 1 \end{bmatrix}.$$

To simplify notation, going forward we use D_0 , D'_0 , S, and S' to refer to the matrices of the form above.

Lemma 41. The canonical signing S' of S (from Definition ??) is TU.

Proof. Verified via a direct calculation.

Lemma 42. Let Q be a TU signing of S (from Definition $\ref{Mathematical Proof of Proof$

$$u(i) = \begin{cases} Q(x_2, y_0) \cdot Q(x_0, y_0), & i = x_0, \\ Q(x_2, y_0) \cdot Q(x_0, y_0) \cdot Q(x_0, y_2) \cdot Q(x_1, y_2), & i = x_1, \\ 1, & i = x_2, \end{cases}$$

$$v(j) = \begin{cases} Q(x_2, y_0), & j = y_0, \\ Q(x_2, y_1), & j = y_1, \\ Q(x_2, y_0) \cdot Q(x_0, y_0) \cdot Q(x_0, y_2), & j = y_2, \end{cases}$$

$$'(i, j) = Q(i, j) \cdot u(i) \cdot v(j) \quad \forall i \in \{x_0, x_1, x_2\}, \ \forall j \in \{y_0, y_1, y_2\}.$$

Then Q' = S' (from Definition ??).

Proof. Since Q is a TU signing of S and Q' is obtained from Q by multiplying rows and columns by ± 1 factors, Q' is also a TU signing of S. By construction,

we have

$$\begin{split} &Q'(x_2,y_0) = Q(x_2,y_0) \cdot 1 \cdot Q(x_2,y_0) = 1, \\ &Q'(x_2,y_1) = Q(x_2,y_1) \cdot 1 \cdot Q(x_2,y_1) = 1, \\ &Q'(x_2,y_2) = 0, \\ &Q'(x_0,y_0) = Q(x_0,y_0) \cdot (Q(x_2,y_0) \cdot Q(x_0,y_0)) \cdot Q(x_2,y_0) = 1, \\ &Q'(x_0,y_1) = Q(x_0,y_1) \cdot (Q(x_2,y_0) \cdot Q(x_0,y_0)) \cdot Q(x_2,y_1), \\ &Q'(x_0,y_2) = Q(x_0,y_2) \cdot (Q(x_2,y_0) \cdot Q(x_0,y_0)) \cdot (Q(x_2,y_0) \cdot Q(x_0,y_0) \cdot Q(x_0,y_2)) = 1, \\ &Q'(x_1,y_0) = 0, \\ &Q'(x_1,y_1) = Q(x_1,y_1) \cdot (Q(x_2,y_0) \cdot Q(x_0,y_0) \cdot Q(x_0,y_2) \cdot Q(x_1,y_2)) \cdot (Q(x_2,y_0) \cdot Q(x_0,y_2)) = 1. \end{split}$$

Thus, it remains to show that $Q'(x_0, y_1) = S'(x_0, y_1)$ and $Q'(x_1, y_1) = S'(x_1, y_1)$. Consider the entry $Q'(x_0, y_1)$. If $D_0(x_0, y_1) = 0$, then $Q'(x_0, y_1) = 0 = S'(x_0, y_1)$. Otherwise, we have $D_0(x_0, y_1) = 1$, and so $Q'(x_0, y_1) \in \{\pm 1\}$, as Q' is a signing of S. If $Q'(x_0, y_1) = -1$, then

$$\det Q'(\{x_0, x_2\}, \{y_0, y_1\}) = \det \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = 2 \notin \{0, \pm 1\},$$

which contradicts TUness of Q'. Thus, $Q'(x_0, y_1) = 1 = S'(x_0, y_1)$. Consider the entry $Q'(x_1, y_1)$. Since Q' is a signing of S, we have $Q'(x_1, y_1) \in \{\pm 1\}$. Consider two cases.

- 1. Suppose that $D_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. If $Q'(x_1, y_1) = 1$, then $\det Q = \det \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = -2 \notin \{0, \pm 1\}$, which contradicts TUness of Q'. Thus, $Q'(x_1, y_1) = -1 = S'(x_1, y_1)$.
- 2. Suppose that $D_0 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. If $Q'(x_1, y_1) = -1$, then $\det Q(\{x_0, x_1\}, \{y_1, y_2\}) = \det \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = 2 \notin \{0, \pm 1\}$, which contradicts TUness of Q'. Thus, $Q'(x_1, y_1) = 1 = S'(x_1, y_1)$.

Definition 43. Let X and Y be sets with $\{x_0, x_1, x_2\} \subseteq X$ and $\{y_0, y_1, y_2\} \subseteq Y$. Let $Q \in \mathbb{Q}^{X \times Y}$ be a TU matrix. Define $u \in \{0, \pm 1\}^X$, $v \in \{0, \pm 1\}^Y$, and Q' as

follows:

$$u(i) = \begin{cases} Q(x_2, y_0) \cdot Q(x_0, y_0), & i = x_0, \\ Q(x_2, y_0) \cdot Q(x_0, y_0) \cdot Q(x_0, y_2) \cdot Q(x_1, y_2), & i = x_1, \\ 1, & i = x_2, \\ 1, & i \in X \setminus \{x_0, x_1, x_2\}, \end{cases}$$

$$v(j) = \begin{cases} Q(x_2, y_0), & j = y_0, \\ Q(x_2, y_1), & j = y_1, \\ Q(x_2, y_0) \cdot Q(x_0, y_0) \cdot Q(x_0, y_2), & j = y_2, \\ 1, & j \in Y \setminus \{y_0, y_1, y_2\}, \end{cases}$$

$$v(j) = \begin{cases} Q(x_1, y_0), & j = y_0, \\ Q(x_2, y_0), & j = y_1, \\ Q(x_2, y_0), & j = y_2, \\ 1, & j \in Y \setminus \{y_0, y_1, y_2\}, \end{cases}$$

We call Q' the canonical re-signing of Q.

Lemma 44. Let X and Y be sets with $\{x_0, x_1, x_2\} \subseteq X$ and $\{y_0, y_1, y_2\} \subseteq Y$. Let $Q \in \mathbb{Q}^{X \times Y}$ be a TU signing of $Q_0 \in \mathbb{Z}_2^{X \times Y}$ such that $Q_0(\{x_0, x_1, x_2\}, \{y_0, y_1, y_2\}) = \mathbb{Z}_2^{X \times Y}$ S (from Definition ??). Then the canonical re-signing Q' of Q is a TU signing of Q_0 and $Q'(\{x_0, x_1, x_2\}, \{y_0, y_1, y_2\}) = S'$ (from Definition ??).

Proof. Since Q is a TU signing of Q_0 and Q' is obtained from Q by multiplying some rows and columns by ± 1 factors, Q' is also a TU signing of Q_0 . Equality $Q'(\{x_0, x_1, x_2\}, \{y_0, y_1, y_2\}) = S'$ follows from Lemma ??.

Definition 45. Suppose that B_l and B_r from Definition ?? have TU signings B'_l and B'_r , respectively. Let B''_l and B''_r be the canonical re-signings (from Definition ??) of B'_l and B'_r , respectively. Let A''_l , A''_r , D''_l , D''_r , and D''_0 be blocks of B''_l and B''_r analogous to blocks A_l , A_r , D_l , D_r , and D_0 of B_l and B_r . The canonical signing B'' of B is defined as

$$B'' = \begin{bmatrix} A_l'' & & & 0 \\ & & & \\ D_l'' & D_0'' & & 1A_r'' \\ D_{lr}'' & D_r'' & & & \\ \end{bmatrix} \quad \text{where} \quad D_{lr}'' = D_r'' \cdot (D_0'')^{-1} \cdot D_l''.$$

Note that D_0'' is non-singular by construction, so D_{lr}'' and hence B'' are welldefined.

Properties of Canonical Signing

Lemma 46. B'' from Definition ?? is a signing of B.

Proof. By Lemma ??, B''_l and B''_r are TU signings of B_l and B_r , respectively. As a result, blocks A''_l , A''_r , D''_l , D''_r , and D''_0 in B'' are signings of the corresponding blocks in B. Thus, it remains to show that D''_{lr} is a signing of D_{lr} . This can be verified via a direct calculation. (Todo: Need details?)

Lemma 47. Suppose that B_r from Definition ?? has a TU signing B'_r . Let B''_r be the canonical re-signing (from Definition ??) of B'_r . Let $c''_0 = B''_r(X_r, y_0)$, $c''_1 = B''_r(X_r, y_1)$, and $c''_2 = c''_0 - c''_1$. Then the following statements hold.

- 1. For every $i \in X_r$, $\begin{bmatrix} c_0''(i) & c_1''(i) \end{bmatrix} \in \{0, \pm 1\}^{\{y_0, y_1\}} \setminus \{\begin{bmatrix} 1 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \end{bmatrix}\}$.
- 2. For every $i \in X_r$, $c_2''(i) \in \{0, \pm 1\}$.
- 3. $\begin{bmatrix} c_0'' & c_2'' & A_r'' \end{bmatrix}$ is TU.
- 4. $[c_1'' \ c_2'' \ A_r'']$ is TU.
- 5. $\begin{bmatrix} c_0'' & c_1'' & c_2'' & A_r'' \end{bmatrix}$ is TU.

Proof. Throughout the proof we use that B''_r is TU, which holds by Lemma ??.

1. Since B_r'' is TU, all its entries are in $\{0, \pm 1\}$, and in particular $\begin{bmatrix} c_0''(i) & c_1''(i) \end{bmatrix} \in \{0, \pm 1\}^{\{y_0, y_1\}}$. If $\begin{bmatrix} c_0'(i) & c_1''(i) \end{bmatrix} = \begin{bmatrix} 1 & -1 \end{bmatrix}$, then

$$\det B_r''(\{x_2, i\}, \{y_0, y_1\}) = \det \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = -2 \notin \{0, \pm 1\},$$

which contradicts TUness of B_r'' . Similarly, if $\begin{bmatrix} c_0''(i) & c_1''(i) \end{bmatrix} = \begin{bmatrix} -1 & 1 \end{bmatrix}$, then

$$\det B_r''(\{x_2, i\}, \{y_0, y_1\}) = \det \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = 2 \notin \{0, \pm 1\},$$

which contradicts TUness of B_r'' . Thus, the desired statement holds.

- 2. Follows from item ?? and a direct calculation.
- 3. Performing a short tableau pivot in B''_r on (x_2, y_0) yields:

$$B_r'' = \begin{bmatrix} 1 & 1 & 0 \\ c_0 & c_1 & A_r \end{bmatrix} \quad \rightarrow \quad \begin{bmatrix} [hvlines, right - margin = 1em, left - margin = 1em] ccccc1 \\ -c_0 \end{bmatrix}$$

(Todo: Circle pivot element) The resulting matrix can be transformed into $\begin{bmatrix} c_0'' & c_2'' & A_r'' \end{bmatrix}$ by removing row x_2 and multiplying columns y_0 and y_1 by -1. Since B_r'' is TU and since TUness is preserved under pivoting, taking submatrices, multiplying columns by ± 1 factors, we conclude that $\begin{bmatrix} c_0'' & c_2'' & A_r'' \end{bmatrix}$ is TU.

4. Similar to item ??, performing a short tableau pivot in B''_r on (x_2, y_1) yields:

$$B_r'' = \begin{bmatrix} 1 & 1 & 0 \\ c_0 & c_1 & A_r \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 \\ c_0'' - c_1 & -c_1 & A_r \end{bmatrix}$$

(Todo: Circle pivot element) The resulting matrix can be transformed into $\begin{bmatrix} c_1'' & c_2'' & A_r'' \end{bmatrix}$ by removing row x_2 , multiplying column y_1 by -1, and swapping the order of columns y_0 and y_1 . Since B_r'' is TU and since TUness is preserved under pivoting, taking submatrices, multiplying columns by ± 1 factors, and re-ordering columns, we conclude that $\begin{bmatrix} c_1'' & c_2'' & A_r'' \end{bmatrix}$ is TU.

5. Let V be a square submatrix of $\begin{bmatrix} c_0'' & c_1'' & c_2'' & A_r'' \end{bmatrix}$. Our goal is to show that $\det V \in \{0, \pm 1\}$.

Suppose that column c_2'' is not in V. Then V is a submatrix of B_r'' , which is TU. Thus, $\det V \in \{0, \pm 1\}$. Going forward we assume that column z is in V.

Suppose that columns c_0'' and c_1'' are both in V. Then V contains columns c_0'' , c_1'' , and $c_2'' = c_0'' - c_1''$, which are linearly. Thus, $\det V = 0$. Going forward we assume that at least one of the columns c_0'' and c_1'' is not in V.

Suppose that column c_1'' is not in V. Then V is a submatrix of $\begin{bmatrix} c_0'' & c_2'' & A_r'' \end{bmatrix}$, which is TU by item $\ref{eq:colored}$??. Thus, $\det V \in \{0,\pm 1\}$. Similarly, if column c_0'' is not in V, then V is a submatrix of $\begin{bmatrix} c_1'' & c_2'' & A_r'' \end{bmatrix}$, which is TU by item $\ref{eq:colored}$??. Thus, $\det V \in \{0,\pm 1\}$.

Lemma 48. Suppose that B_l from Definition ?? has a TU signing B'_l . Let B''_l be the canonical re-signing (from Definition ??) of B'_l . Let $d''_0 = B''_l(x_0, Y_l)$, $d''_1 = B''_l(x_1, Y_l)$, and $d''_2 = d''_0 - d''_1$. Then the following statements hold.

1. For every
$$j \in Y_l$$
, $\begin{bmatrix} d_0''(i) \\ d_1''(j) \end{bmatrix} \in \{0, \pm 1\}^{\{x_0, x_1\}} \setminus \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$.

2. For every $j \in Y_l, d_2''(j) \in \{0, \pm 1\}.$

3.
$$\begin{bmatrix} A_l'' \\ d_0'' \\ d_2'' \end{bmatrix}$$
 is TU.

4.
$$\begin{bmatrix} A_l'' \\ d_1'' \\ d_2'' \end{bmatrix}$$
 is TU.

5.
$$\begin{bmatrix} A_l'' \\ d_0'' \\ d_1'' \\ d_2'' \end{bmatrix}$$
 is TU.

 Lemma 49. Let B'' be from Definition ??. Let $c_0'' = B''(X_r, y_0)$, $c_1'' = B''(X_r, y_1)$, and $c_2'' = c_0'' - c_1''$. Similarly, let $d_0'' = B''(x_0, Y_l)$, $d_1'' = B''(x_1, Y_l)$, and $d_2'' = d_0'' - d_1''$. Then the following statements hold.

- 1. For every $i \in X_r$, $c_2''(i) \in \{0, \pm 1\}$.
- 2. If $D_0'' = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, then $D'' = c_0'' \otimes d_0'' c_1'' \otimes d_1''$. If $D_0'' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, then $D'' = c_0'' \otimes d_0'' c_0'' \otimes d_1'' + c_1'' \otimes d_1''$.
- 3. For every $j \in Y_l$, $D''(X_r, j) \in \{0, \pm c_0'', \pm c_1'', \pm c_2''\}$.
- 4. For every $i \in X_r$, $D''(i, Y_l) \in \{0, \pm d_0'', \pm d_1'', \pm d_2''\}$.
- 5. $\begin{bmatrix} D'' & A_r'' \end{bmatrix}$ is TU.
- 6. $\begin{bmatrix} A_l'' \\ D''' \end{bmatrix}$ is TU.

Proof. 1. Holds by Lemma ??.??.

2. Note that

$$\begin{bmatrix} D_l'' \\ D_{l''}'' \end{bmatrix} = \begin{bmatrix} D_0'' \\ D_r'' \end{bmatrix} \cdot (D_0'')^{-1} \cdot D_l'', \quad \begin{bmatrix} D_0'' \\ D_r'' \end{bmatrix} = \begin{bmatrix} D_0'' \\ D_r'' \end{bmatrix} \cdot (D_0'')^{-1} \cdot D_0'', \quad \begin{bmatrix} D_0'' \\ D_r'' \end{bmatrix} = \begin{bmatrix} c_0'' & c_1'' \end{bmatrix}, \quad \begin{bmatrix} D_l'' & D_0'' \end{bmatrix} = \begin{bmatrix} d_0'' \\ d_1'' \end{bmatrix}.$$

Thus.

$$D'' = \begin{bmatrix} D_l'' & D_0'' \\ D_{lr}'' & D_r'' \end{bmatrix} = \begin{bmatrix} D_0'' \\ D_r'' \end{bmatrix} \cdot (D_0'')^{-1} \cdot \begin{bmatrix} D_l'' & D_0'' \end{bmatrix} = \begin{bmatrix} c_0'' & c_1'' \end{bmatrix} \cdot (D_0'')^{-1} \cdot \begin{bmatrix} d_0'' \\ d_1'' \end{bmatrix}.$$

Considering the two cases for D_0'' and performing the calculations yields the desired results.

- 3. Let $j \in Y_l$. By Lemma ??.??, $\begin{bmatrix} d_0''(i) \\ d_1''(j) \end{bmatrix} \in \{0, \pm 1\}^{\{x_0, x_1\}} \setminus \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$. Consider two cases.
 - (a) If $D_0'' = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, then by item ?? we have $D''(X_r, j) = d_0''(j) \cdot c_0'' + (-d_1''(j)) \cdot c_1''$. By considering all possible cases for $d_0''(j)$ and $d_1''(j)$, we conclude that $D''(X_r, j) \in \{0, \pm c_0'', \pm c_1'', \pm (c_0'' c_1'')\}$.
 - (b) If $D_0'' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, then by item ?? we have $D''(X_r, j) = (d_0''(j) d_1''(j)) \cdot c_0'' + d_1''(j) \cdot c_1''$. By considering all possible cases for $d_0''(j)$ and $d_1''(j)$, we conclude that $D''(X_r, j) \in \{0, \pm c_0'', \pm c_1'', \pm (c_0'' c_1'')\}$.
- 4. Let $i \in X_r$. By Lemma ??.??, $\begin{bmatrix} c_0''(i) & c_1''(i) \end{bmatrix} \in \{0, \pm 1\}^{\{y_0, y_1\}} \setminus \{\begin{bmatrix} 1 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \end{bmatrix} \}$. Consider two cases.

- (a) If $D_0'' = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, then by item ?? we have $D''(i, Y_l) = c_0''(i) \cdot d_0'' + (-c_1''(i)) \cdot d_1''$. By considering all possible cases for $c_0''(i)$ and $c_1''(i)$, we conclude that $D''(i, Y_l) \in \{0, \pm d_0'', \pm d_1'', \pm d_2''\}$.
- (b) If $D_0'' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, then by item ?? we have $D''(i, Y_l) = c_0''(i) \cdot d_0'' + (c_1''(i) c_0''(i)) \cdot d_1''$. By considering all possible cases for $c_0''(i)$ and $c_1''(i)$, we conclude that $D''(i, Y_l) \in \{0, \pm d_0'', \pm d_1'', \pm d_2''\}$.
- 5. By Lemma ??.??, $\begin{bmatrix} c_0'' & c_1'' & c_2'' & A_r'' \end{bmatrix}$ is TU. Since TUness is preserved under adjoining zero columns, copies of existing columns, and multiplying columns by ± 1 factors, $\begin{bmatrix} 0 & \pm c_0'' & \pm c_1'' & \pm c_2'' & A_r'' \end{bmatrix}$ is also TU. By item ??, $\begin{bmatrix} D'' & A_r'' \end{bmatrix}$ is a submatrix of the latter matrix, hence it is also TU.
- 6. By Lemma ??.??, $\begin{bmatrix} A_l'' \\ d_0'' \\ d_1'' \\ d_2'' \end{bmatrix}$ is TU. Since TUness is preserved under adjoining zero rows, copies of existing rows, and multiplying rows by ± 1 factors, $\begin{bmatrix} A_l'' \\ 0 \\ \pm d_0'' \\ \pm d_1'' \end{bmatrix}$ is also TU. By item ??, $\begin{bmatrix} A_l'' \\ D'' \end{bmatrix}$ is a submatrix of the latter matrix, $\begin{bmatrix} A_l'' \\ D'' \end{bmatrix}$

hence it is also TU.

4.4 Proof of Regularity

Definition 50. Let X_l, Y_l, X_r, Y_r be sets and let $c_0, c_1 \in \mathbb{Q}^{X_r}$ be column vectors such that for every $i \in X_r$ we have $c_0(i), c_1(i), c_0(i) - c_1(i) \in \{0, \pm 1\}$. Define $\mathcal{C}(X_l, Y_l, X_r, Y_r; c_0, c_1)$ to be the family of matrices of the form $\begin{bmatrix} A_l & 0 \\ D & A_r \end{bmatrix}$ where $A_l \in \mathbb{Q}^{X_l \times Y_l}, A_r \in \mathbb{Q}^{X_r \times Y_r}$, and $D \in \mathbb{Q}^{X_r \times Y_l}$ are such that:

- 1. for every $j \in Y_r$, $D(X_r, j) \in \{0, \pm c_0, \pm c_1, \pm (c_0 c_1)\}$
- 2. $\begin{bmatrix} c_0 & c_1 & c_0 c_1 & A_r \end{bmatrix}$ is TU,
- 3. $\begin{bmatrix} A_l \\ D \end{bmatrix}$ is TU.

Lemma 51. Let B'' be from Definition ??. Then $B'' \in \mathcal{C}(X_l, Y_l, X_r, Y_r; c_0'', c_1'')$ where $c_0'' = B''(X_r, y_0)$ and $c_1'' = B''(X_r, y_1)$.

Proof. Recall that $c_0''-c_1''\in\{0,\pm 1\}^{X_r}$ by Lemma ??.??, so $\mathcal{C}(X_l,Y_l,X_r,Y_r;c_0'',c_1'')$ is well-defined. To see that $B''\in\mathcal{C}(X_l,Y_l,X_r,Y_r;c_0'',c_1'')$, note that all properties

from Definition ?? are satisfied: property ?? holds by Lemma ??.??, property ?? holds by Lemma ??.??.

□

Lemma 52. Let $C \in \mathcal{C}(X_l, Y_l, X_r, Y_r; c_0, c_1)$ from Definition ??. Let $x \in X_l$ and $y \in Y_l$ be such that $A_l(x, y) \neq 0$, and let C' be the result of performing a short tableau pivot in C on (x, y). Then $C' \in \mathcal{C}(X_l, Y_l, X_r, Y_r; c_0, c_1)$.

Proof. Our goal is to show that C' satisfies all properties from Definition $\ref{eq:condition}$. Let $C' = \begin{bmatrix} C'_{11} & C'_{12} \\ C'_{21} & C'_{22} \end{bmatrix}$, and let $\begin{bmatrix} A'_l \\ D' \end{bmatrix}$ be the result of performing a short tableau pivot on (x,y) in $\begin{bmatrix} A_l \\ D \end{bmatrix}$. Observe the following.

- By Lemma ??, $C'_{11} = A'_l$, $C'_{12} = 0$, $C'_{21} = D'$, and $C'_{22} = A_r$.
- Since $\begin{bmatrix} A_l \\ D \end{bmatrix}$ is TU by property ?? for C, all entries of A_l are in $\{0, \pm 1\}$.
- $A_l(x,y) \in \{\pm 1\}$, as $A_l(x,y) \in \{0,\pm 1\}$ by the above observation and $A_l(x,y) \neq 0$ by the assumption.
- Since $\begin{bmatrix} A_l \\ D \end{bmatrix}$ is TU by property ?? for C and since pivoting preserves TUness, $\begin{bmatrix} A'_l \\ D' \end{bmatrix}$ is also TU.

These observations immediately imply properties $\ref{eq:condition}$ and $\ref{eq:condition}$? for C'. Indeed, property $\ref{eq:condition}$? holds for C', since $C'_{22} = A_r$ and $\begin{bmatrix} c_0 & c_1 & c_0 - c_1 & A_r \end{bmatrix}$ is TU by property $\ref{eq:condition}$? follows from $C'_{11} = A'_l$, $C'_{21} = D'$, and $\begin{bmatrix} A'_l \\ D' \end{bmatrix}$ being TU. Thus, it only remains to show that C' satisfies property $\ref{eq:condition}$. Let $j \in Y_r$. Our goal is to prove that $D'(X_r, j) \in \{0, \pm c_0, \pm c_1, \pm (c_0 - c_1)\}$.

Suppose j=y. By the pivot formula, $D'(X_r,y)=-\frac{D(X_r,y)}{A_l(x,y)}$. Since $D(X_r,y)\in\{0,\pm c_0,\pm c_1,\pm (c_0-c_1)\}$ by property ?? for C and since $A_l(x,y)\in\{\pm 1\}$, we get $D'(X_r,y)\in\{0,\pm c_0,\pm c_1,\pm (c_0-c_1)\}$.

Now suppose $j \in Y_l \setminus \{y\}$. By the pivot formula, $D'(X_r, j) = D(X_r, j) - \frac{A_l(x,j)}{A_l(x,y)} \cdot D(X_r, y)$. Here $D(X_r, j)$, $D(X_r, y) \in \{0, \pm c_0, \pm c_1, \pm (c_0 - c_1)\}$ by property ?? for C, and $A_l(x, j) \in \{0, \pm 1\}$ and $A_l(x, y) \in \{\pm 1\}$ by the prior observations. Perform an exhaustive case distinction on $D(X_r, j)$, $D(X_r, y)$, $A_l(x, j)$, and $A_l(x, y)$. In every case, we can show that either $\begin{bmatrix} A_l(x, y) & A_l(x, j) \\ D(X_r, y) & D(X_r, j) \end{bmatrix}$ contains a submatrix with determinant not in $\{0, \pm 1\}$, which contradicts TUness of $\begin{bmatrix} A_l \\ D \end{bmatrix}$, or that $D'(X_r, j) \in \{0, \pm c_0, \pm c_1, \pm (c_0 - c_1)\}$, as desired. (Todo: need details?)

Lemma 53. Let $C \in \mathcal{C}(X_l, Y_l, X_r, Y_r; c_0, c_1)$ from Definition ??. Then C is TU.

Proof. By Lemma ??, it suffices to show that C is k-PU for every $k \in \mathbb{Z}_{\geq 1}$. We prove this claim by induction on k. The base case with k = 1 holds, since properties ?? and ?? in Definition ?? imply that A_l , A_r , and D are TU, so all their entries of $C = \begin{bmatrix} A_l & 0 \\ D & A_r \end{bmatrix}$ are in $\{0, \pm 1\}$, as desired.

Suppose that for some $k \in \mathbb{Z}_{\geq 1}$ we know that every $C' \in \mathcal{C}(X_l, Y_l, X_r, Y_r; c_0, c_1)$ is k-PU. Our goal is to show that C is k-PU, i.e., that every $(k+1) \times (k+1)$ submatrix S of C has $\det V \in \{0, \pm 1\}$.

First, suppose that V has no rows in X_{ℓ} . Then V is a submatrix of $\begin{bmatrix} D & A_r \end{bmatrix}$, which is TU by property ?? in Definition ??, so det $V \in \{0, \pm 1\}$. Thus, we may assume that S contains a row $x_{\ell} \in X_{\ell}$.

Next, note that without loss of generality we may assume that there exists $y_{\ell} \in Y_{\ell}$ such that $V(x_{\ell}, y_{\ell}) \neq 0$. Indeed, if $V(x_{\ell}, y) = 0$ for all y, then det V = 0 and we are done, and $V(x_{\ell}, y) = 0$ holds whenever $y \in Y_r$.

Since C is 1-PU, all entries of V are in $\{0, \pm 1\}$, and hence $V(x_\ell, y_\ell) \in \{\pm 1\}$. Thus, by Lemma \ref{Lemma} , performing a short tableau pivot in V on (x_ℓ, y_ℓ) yields a matrix that contains a $k \times k$ submatrix S'' such that $|\det V| = |\det V''|$. Since V is a submatrix of C, matrix V'' is a submatrix of the matrix C' resulting from performing a short tableau pivot in C on the same entry (x_ℓ, y_ℓ) . By Lemma \ref{Lemma} , we have $C' \in \mathcal{C}(X_l, Y_l, X_r, Y_r; c_0, c_1)$. Thus, by the inductive hypothesis applied to V'' and C', we have $\det V'' \in \{0, \pm 1\}$. Since $|\det V| = |\det V''|$, we conclude that $\det V \in \{0, \pm 1\}$.

Lemma 54. B'' from Definition ?? is TU.

Proof. Combine the results of Lemmas ?? and ??.

Lemma 55. Let M be a 3-sum of regular matroids M_{ℓ} and M_r . Then M is also regular.

Proof. Let B, B_{ℓ} , and B_r be standard \mathbb{Z}_2 representation matrices from Definition ??. Since M_{ℓ} and M_r are regular, by Lemma ??, B_{ℓ} and B_r have TU signings. Then the canonical signing B'' from Definition ?? is a TU signing of B. Indeed, B'' is a signing of B by Lemma ??, and B'' is TU by Lemma ??. Thus, M is regular by Lemma ??.