Homework 2

Problem #1

Decision variables

 x_1, x_2, x_3

Where,

 x_1 is the number of product A to be produced weekly

 x_2 is the number of product B to be produced weekly

 x_3 is the number of product C to be produced weekly

Objective function

Maximize weekly profit (in \$)

$$10 x_1 + 10 x_2 + 10 x_3$$

Calculations:

Profit per unit of product A = 101 - 7*3 - 5*2 - 15*4 = \$10

Profit per unit of product B = 67 - 7*1 - 5*4 - 15*2 = \$10

Profit per unit of product B = 97.50 - 7*5 - 5*0 - 15*3.5 = \$10

Subject to Constraints

 $3 x_1 + x_2 + 5 x_3 \le 300$ (Each week there is 300 lbs. of Material 1)

 $2 x_1 + 4 x_2 \le 400$ (Each week there is 400 lbs. of Material 2)

 $4 x_1 + 2 x_2 + 3.5 x_3 \le 200$ (Each week there is 200 labor hours)

 $x_1 \ge 0$ (Non-negativity constraint)

 $x_2 \ge 0$ (Non-negativity constraint)

 $x_3 \ge 10$ (Demand of at least 10 of product C each week)

Set up

Solution

The number of units of Product A, B and C to be produced weekly to maximize profits is 0, 82.5 and 10 respectively. The maximum profit is \$925.

Note that fraction of units have been allowed. If we do not want units in fraction, additional 'integer' constraints will have to be specified.

DECISION	VARIABLES								Material	Material:	2 Labor cos
	Weekly Production	n	Material 1	Material 2	Labor	Selling Price	Total cost	Profit per unit	7	5	1.
Product A		0		3 2	4	101	91	10			
Product B		<mark>82</mark>	:	1 4	2	67	57	10			
Product C		10		5 0	3.5	97.5	87.5	10			
MAXIMIZE	9	20									
Constraint	ts										
132	<=	300)								
328	<=	400)								
199	<=	200)								
0	>=	(
82	>=	(
10	>=	10)								

With integer constraint:

The number of units of Product A, B and C to be produced weekly to maximize profits is 0, 82 and 10 respectively. The maximum profit is \$920.

Problem #2

Decision variables

$$x_1, x_2, x_3, x_4$$

Where,

 x_1 is the number of footballs made by the company per month in morning shift x_2 is the number of baseballs made by the company per month in morning shift x_3 is the number of footballs made by the company per month in evening shift x_4 is the number of baseballs made by the company per month in evening shift

Objective function

Minimize cost (in \$)

$$20 x_1 + 20 x_2 + 25 x_1 + 25 x_2$$

Subject to Constraints

$$0.75 \, x_1 + 2 \, x_2 \le 5000$$

$$0.75 x_3 + 2 x_4 \le 2000$$

$$7 x_1 + 15 x_2 \le 15000$$

$$7 x_3 + 15 x_4 \le 14000$$

$$0.5 x_1 + 2 x_2 \le 2000$$

$$0.5 x_3 + 2 x_4 \le 1500$$

$$x_1 + x_3 \ge 1500$$

$$x_2 + x_4 \ge 1200$$

 x_1 , x_2 , x_3 , $x_4 \ge 0$ (Non-negativity constraint)

We will also use integer constraints for all 4 decision variables.

Set up

Units	Production cost	Resource	Football	Baseball
	20	Labor	0.75	2
	20	Leather	7	15
	25	Inner Plas	0.5	2
	25	Total dem	1500	1200
0				
5000				
2000				
15000				
14000				
2000				
1500				
1500				
1200				
0				
0				
0				
	5000 2000 15000 14000 2000 1500 1500 1200 0	20 20 25 25 25 25 25 25 25 25 25 25 25 25 25	20 Labor 20 Leather 21 Inner Plas 25 Total dem 0	20 Labor 0.75 20 Leather 7 25 Inner Plas 0.5 25 Total dem 1500 5000 2000 15000 14000 2000 1500 1500 1500 1000 1000 1000 1

Solution

Decision Variable	5					
	Units	Production cost	Resource	Football	Baseball	
Football, morning	805	20	Labor	0.75	2	
Baseball, morning	g 624	20	Leather	7	15	
Football, evening	695	25	Inner Plas	0.5	2	
Baseball, evening	576	25	Total dem	1500	1200	
Minimize cost	60355					
Constraints						
1851.75 <=	5000					
1673.25 <=	2000					
14995 <=	15000					
13505 <=	14000					
1650.5 <=	2000					
1499.5 <=	1500					
1500 >=	1500					
1200 >=	1200					
805 >=	0					
624 >=	0					
695 >=	0					
576 >=	0					

Number of footballs made by the company is 805 in the morning and 695 in the evening. The number of baseballs made by the company is 624 in the morning and 576 in the evening. The minimized cost is \$60,355.

Problem #3

Decision variables

$$x_1, x_2, x_3, x_4, x_5, x_6$$

Where,

 x_1 is the number of fire fighters joining at beginning of shift midnight-4am x_2 is the number of fire fighters joining at beginning of shift 4am – 8am x_3 is the number of fire fighters joining at beginning of shift 8am - noon x_4 is the number of fire fighters joining at beginning of shift noon – 4 pm x_5 is the number of fire fighters joining at beginning of shift 4pm - 8pm x_6 is the number of fire fighters joining at beginning of shift 8pm - midnight

Objective function

Minimize total number of fire fighters

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6$$

Subject to Constraints

$$x_6 + x_1 \ge 5$$

$$x_1 + x_2 \ge 6$$

$$x_2 + x_3 \ge 10$$

$$x_3 + x_4 \ge 12$$

$$x_4 + x_5 \ge 8$$

$$x_5 + x_6 \ge 5$$

$$x_1$$
, x_2 , x_3 , x_4 , x_5 , $x_6 \ge 0$ (Non-negativity constraint)

Set up

Decision variabl	es			
Shift	No. of fire fighters joining at beginning of the shift		Requireme	ent
Midnight - 4am			5	
4am-8am			6	
8am-noon			10	
noon-4pm			12	
4pm-8pm			8	
8pm -midnight			5	
MINIMIZE	0			
Constraints				
0	>=	5		
0	>=	6		
0	>=	10		
0	>=	12		
0	>II	8		
0	>=	5		
Non-negativity	and integer constraints			

Solution

01.154				
Shift	No. of fire fighters joining at beginning of the shift		Requirem	en
Midnight - 4am	0		5	
4am-8am	6		6	
8am-noon	4		10	
noon-4pm	8		12	
4pm-8pm	0		8	
8pm -midnight	5		5	
MINIMIZE	23			
Constraints				
5	>=	5		
6	>=	6		
10	>=	10		
12	>=	12		
8	>II	8		
5	>=	5		
Non-negativity	and integer constraints			

Minimum number of fire fighters needed to be join at beginning of the shifts midnight-4am, 4am-8am, 8am-noon, noon-4pm, 4pm-8pm, 8pm-midnight are 0, 6, 4, 8, 0 and 5 respectively. Overall, minimum of 23 fire fighters are needed to meet the shifts' requirements.

Problem #4

Decision variables

Let PSS, PSO, PSN and PSD be the production schedule of Standard for Sep, Oct, Nov and Dec respectively

Let PHS, PHO, PHN and PHD be the production schedule of Heavy Duty for Sep, Oct, Nov and Dec respectively

The following are derived from decision variables

Let ISS, ISO, ISN and ISD be the inventory of Standard for Sep, Oct, Nov and Dec respectively

Let IHS, IHO, IHN and IHD be the inventory of Heavy Duty for Sep, Oct, Nov and Dec respectively

Derived using these:

Balance equations for inventories

$$0 + PSS - 650 = ISS$$

 $0 + PHS - 900 = IHS$

$$ISS + PSO - 875 = ISO$$

$$IHS + PHO - 350 = IHO$$

$$ISO + PSN - 790 = ISN$$

$$IHO + PHN - 1200 = IHN$$

$$ISN + PSD - 1100 = ISD$$

$$IHN + PHD - 1300 = IHD$$

Objective function

Minimum total cost = Production cost + Inventory cost

Total production cost

Total Inventory cost

$$= 5 (ISS + ISO + ISN + ISD + IHS + IHO + IHN + IHD)$$

Note that inventory cost can be expressed in terms of decision variables using balance equations of inventories described above.

Subject to Constraints

ISD >= 800

IHD >= 850

ISS + IHS <= 1800

ISO + IHO <= 1800

ISN + IHN <= 1800

ISD + IHD <= 1800

0.45 PSS + 0.52 PHS >= 1000

0.45 PSS + 0.52 PHS <= 1200

0.45 PSO + 0.52 PHO >= 1000

0.45 PSO + 0.52 PHO <= 1200

0.45 PSN + 0.52 PHN >= 1000

0.45 PSN + 0.52 PHN <= 1200

0.45 PSD + 0.52 PHD>= 1000

0.45 PSD + 0.52 PHD <= 1100

Non-negativity and integer constraints for all production decisions and inventories

Set up

Rotary Pump		5	Sep	Oct	Nov	Dec		
Standard (S)			650	875	790	1100		
Heavy Duty (H)			900	350	1200	1300		
Production Decision (S)								
Production Decision (H)								
Inventory (S)		0	-650	-1525	-2315	-3415		
Inventory (H)		0	-900	-1250	-2450	-3750		
Total Inventory			-1550	-2775	-4765	-7165		
Minimum Inventory (S)	>=		0	0	0	800		
Minimum Inventory (H)	>=		0	0	0	850		
Maximum Inventory	<=		1800	1800	1800	1800		
Production cost per unit (S)			125	131.25	137.8125	144.7031		
Production cost per unit (H)			135	141.75	148.8375	156.2794		
Total inventory cost							-81275	
Total production cost							0	
Total cost							-81275	MINIMIZE
Labor hours (S)			0	0	0	0		
Labor hours(H)			0	0	0	0		
Total Labor Hours			0	0	0	0		
Minimum Labor Hours	>=		1000	1000	1000	1000		
Maximum Labor Hours	<=		1200	1200	1200	1100		

Solution

Rotary Pump		Se	2p	Oct		Nov	Dec		
Standard (S)			650	8	375	790	1100		
Heavy Duty (H)			900		350	1200	1300		
Production Decision (S)			653	8	376	794	1098		
Production Decision (H)			1358	11	165	1236	973		
Inventory (S)		0	3		4	8	6		
Inventory (H)		0	458	12	273	1309	982		
Total Inventory			461	12	277	1317	988		
Minimum Inventory (S)	>=		0		0	0	800		
Minimum Inventory (H)	>=		0		0	0	850		
Maximum Inventory	<=		1800	18	300	1800	1800		
Production cost per unit (S)			125	131	.25	137.8125	144.7031		
Production cost per unit (H)			135	141	.75	148.8375	156.2794		
Total inventory cost								20215	
Total production cost								1149399	
Total cost								1169614	MINIMIZE
Labor hours (S)			293.85	39	4.2	357.3	494.1		
Labor hours(H)			706.16	60	5.8	642.72	505.96		
Total Labor Hours			1000.01	10	000	1000.02	1000.06		
Minimum Labor Hours	>=		1000	10	000	1000	1000		
Maximum Labor Hours	<=		1200	12	200	1200	1100		

Production schedule is:

Standard: Sep: 653 units, Oct: 876 units, Nov: 794 units and Dec: 1098 units

Heavy Duty: Sep: 1358 units, Oct: 1165 units, Nov: 1236 units and Dec: 973 units

The total minimized cost is \$1,169,614

Problem #5

- a) The developer should build 3 small and 44 large offices.
- b) The total optimal monthly revenue is 3*600 + 3*750 + 44*1000 = \$48,050
- c) Square footage unused = 100,000 48,200 = **51,800** square feet.
- d) The allowable increase for small offices is 400. The increase of rent for small office from \$600 to \$800 is an increase of \$200 which is within the allowable limits. Hence, there will be **no impact on the optimal allocation of the offices.** The objective function value would increase by 3*\$200 = \$600. Hence, the optimal monthly revenue would now be \$48,650.
- e) No impact. This is because the optimal number of offices (50) allowed has already been exhausted within 100,000 square feet with some unused square footage left. So, increase in 52,800 sq. feet of additional footage will not impact optimal objective function value.
- f) There will be **no change** in the current optimal allocation of offices/ current optimal solution. This is because an increase of \$50 for small offices and a decrease of \$200 for large offices is within the respective allowable increase of \$400 for small offices and allowable decrease of \$250 for large offices.

Change in objective function value = 3*50 - 44*200 = -8650.

New optimal monthly revenue = 48,050 - 8650 = \$39,400

Thus, the objective function value decreases by \$8650.

Extra Credit

Writing the 2 inequalities as planes in 3 dimensional space:

$$x + y + z = 5$$

-x + y +2z = 6

Put x = 0 in the equations, gives

$$y = 4, z = 1$$

Also, the two normal vectors to the plane are (1, 1, 1) and (-1, 1, 2). The cross product is (1, -3, 2)

The symmetric form of line of intersection of two planes is:

$$\frac{x-0}{1} = \frac{y-4}{-3} = \frac{z-1}{2} = t \text{ where } t \in R$$

This gives x = t, y = 4-3t and z = 1+2t

Since x, y and z are \geq 0, it gives us $0 \leq t \leq (4/3)$

The boundary/extreme point of the solid region obtained will be:

$$\{(t, 4-3t, 1+2t) | 0 \le t \le \frac{4}{3}\}$$