Starke Zusammenhangskomponente

Programmieren und Software-Engineering Theorie

2. September 2025

WH: Zusammenhangskomponenten

Definition 1 (Zusammenhangskomponenten)

In einem ungerichteten Graphen G ist eine Zusammenhangskomponente ein maximaler, zusammenhängender Teilgraph. Zwei Knoten u und v sind in der selben Zusammenhangskomponente, genau dann wenn $u \rightsquigarrow v$.

Wie kann der Begriff der *Zusammenhangskomponente* auf gerichtete Graphen übertragen werden?

 $[^]au \leadsto v$ bedeutet, dass v von u aus erreichbar ist. Im ungerichteten Graphen impliziert dies $v \leadsto u$.

Zusammenhang in gerichteten Graphen

Definition 2 (Schwacher Zusammenhang)

Man spricht von *schwachem Zusammenhang* in einem gerichteten Graphen, wenn der zugrunde liegende ungerichtete Graph ("Schatten") zusammenhängend ist.

Definition 3 (Starke Zusammenhangskomponente)

Eine Starke Zusammenhangskomponente ist eine maximale Teilmenge an Knoten $U \subseteq V$ mit der Eigenschaft, dass für alle Paare an Knoten $u, v \in U$ gilt, dass sowohl $u \rightsquigarrow v$ als auch $v \rightsquigarrow u$.

Definition 4 (Transponierter Graph G^T)

Sei $G^T = (V, A^T)$ der Graph der aus dem gerichteten Graphen G = (V, A) entsteht indem alle gerichteten Kanten "umgedreht" werden, also $A^T = \{(j, i) \mid (i, j) \in A\}$.

Aufruf der Tiefensuche DFS(G):

- Im ersten Aufruf werden nicht unbedingt alle Knoten erreicht
- Die Tiefensuche wird dann so lange für die verbleibenden (unbesuchten) Knoten aufgerufen, bis alle Knoten besucht sind.
- Auch für erneuten Aufruf gilt: besuchte Knoten werden nicht erneut besucht
- Wenn zu jedem Knoten eine gerichtete Kante vom Vorgänger auf diesen Knoten gespeichert wird, entsteht Tiefensuch-Wald (mehrere gerichtete Bäume)

Algorithmus zur Berechnung der starken Zusammenhangskomponente

Algorithmus von Kosaraju-Shahir

- **1** Aufruf von DFS(G) $\Rightarrow \tau_f(v)$
- 2 Berechne G^T
- **3** Aufruf von DFS(G^T) für Knoten $v \in V$ in absteigender Reihenfolge bezüglich $\tau_f(v)$ aus Schritt (1).
- Die Knotenmengen die in einem Aufruf der DFS in Schritt (3) gefunden werden entsprechen den starken Zusammenhangskomponenten.

Abbildung: Beispiel: Bestimmung der starken Zusammenhangskomponenten

Abbildung: Die Werte in den Knoten entsprechen den Fertigstellungszeiten τ_f (Bem. τ_d 's werden hier vernachlässigt)

Abbildung: Nach dem ersten Aufruf der DFS wird der transponierte Graph G^T von G berechnet.

Abbildung: Die DFS Aufrufe in Schritt (3) liefern als Ergebnis die Starken Zusammenhangskomponenten von G^T (und somit von G).

Sei G' = (V', E') der Graph der daraus entsteht indem in G jede Starke-Zusammenhangs-Komponente (SZK) in einen einzelnen Knoten kontrahiert wird. G' ist dann ein gerichteter azyklischer Graph, (engl. directed acyclic graph, **DAG**).

Beweis:

- Angenommen es gibt einen Kreis C_1, C_2, \ldots, C_n mit $C_i \in V'$
- \Rightarrow Dann existiert eine gerichtete Kante a=(i,j) mit $i\in C_k$ und $j\in C_{k+1}$ (und jeweils $i\in C_n$ und $j\in C_1$) für $1\leq k\leq n-1$
- Es existiert ein Pfad P von jedem Knoten in C_i zu jedem Knoten in C_j für alle $i, j \in \{1 \dots n\}$.
- Alle $v \in V(\bigcup_{i \in \mathsf{Kreis}} C_i)$ gehören zur selben S7K

- Ein DAG enthält keinen gerichteten Kreis.
- Die Knoten k\u00f6nnen so angeordnet werden, dass alle Kanten von links nach rechts verlaufen.
- Diese Anordnung wird auch topologische Sortierung genannt.
- \Rightarrow Jeder DAG enthält mindestens einen Knoten vmit $d^+(v) = 0$, und mindestens einen Knoten vmit $d^-(v) = 0$.

Sei C eine SZK von G ohne auslaufenden Kanten. Ein DFS-Aufruf für einen Knoten $v \in C$ besucht **genau alle** Knoten $u \in C$.

Beweis:

- Sei v ein beliebiger Knoten in C.
- $\forall u \in C : v \leadsto u$.
- Da C keine auslaufenden Kanten hat, sind keine weiteren Knoten erreichbar.

Seien C_1 und C_2 zwei SZK von G. Weiters sei a=(i,j) eine gerichtete Kante von einer Komponente in die andere, also $i\in C_1, j\in C_2$. Sei v^* der erste Knoten in C_1 der von DFS besucht wird. Dann gilt: $\tau_f(v^*) > \tau_f(v_k) \ \forall v_k \in C_2$.

Beweis:

case 1: DFS wird für einen Knoten $v \in C_1$ aufgerufen bevor sie für irgend einen Knoten in C_2 aufgerufen wird.

- Aufgrund der Annahme sind alle Knoten in C₁ und C₂ vom Knoten v aus erreichbar.
- DFS(v) ist fertig wenn alle Knoten in C₁ und C₂ abgeschlossen wurden.
- $\tau_f(v^*) > \tau_f(v_k) \quad \forall v_k \in C_2$.

Proof:

case 2: DFS wird für einen Knoten $v \in C_2$ bevor es für irgend einen anderen Knoten in C_1 aufgerufen wird.

- Es gibt keinen Weg von einem Knoten in C₂ zu einem in C₁.
- DFS ist für alle Knoten in C₂ abgeschlossen wenn es für den ersten Knoten in C₁ aufgerufen wird.
- $\tau_f(v^*) > \tau_f(v_k) \ \forall v_k \in C_2$.

Der Knoten v mit $\max(\tau_f(v))$ in G gehört zur SZK ohne einlaufende Kanten.

Beweis: folgt direkt aus Lemma 7

Der Knoten v mit $\max(\tau_f(v))$ in G gehört zur SZK ohne einlaufende Kanten.

Beweis: folgt direkt aus Lemma 7

Lemma 9

Die Knotenmengen der SZKn von G entsprechen jenen in G^T .

Beweis: Wir betrachten zwei Knoten $u, v \in G$ in der selben SZK in G.

$$u \rightsquigarrow v \land v \rightsquigarrow u$$

$$\Leftrightarrow u \leadsto v \land v \leadsto u \text{ in } G^T$$

u und v sind somit in der selben SZK in G^T .

Die zusammenhängenden Komponenten des resultierenden Tiefensuch-Waldes in G^T (Schritt 3 des Algorithmus) entsprechen den SZK in G.

Die zusammenhängenden Komponenten des resultierenden Tiefensuch-Waldes in G^T (Schritt 3 des Algorithmus) entsprechen den SZK in G.

Beweis:

Teil 1: Erster Aufruf der DFS in G^T:
 Es folgt aus Lemma 8, dass DFS für die SZK ohne auslaufende Kanten (in G^T) aufgerufen wird, ⇒ DFS besucht genau alle Knoten dieser SZK.

Teil 2: weitere DFS-Aufrufe in G^T:
 Sei v der Knoten für den DFS aufgerufen wird, und C_v die zugehörige
 SZK. Alle Knoten in C_v sind erreichbar und werden von diesem
 DFS-Aufruf besucht. Sei weiters v → w, w ∉ C_v (sondern in C_w). Es wird nun gezeigt, dass w nicht in diesem DFS-Aufruf besucht wird.

In G gilt, dass $w \rightsquigarrow v$. Wenn w schon in einem vorangegangenen DFS-Aufruf besucht wurde, wird es nicht erneut besucht. Somit betrachten wir die (kritische) Situation, dass w noch unbesucht ist.

Es muss somit gelten, dass $\max_{w' \in C_w} (\tau_f(w')) < \tau_f(v)$. (Anderenfalls wären ja alle Knoten von C_w schon zuvor besucht worden).

Es folgt somit, dass der DFS-Aufruf in G schon für alle Knoten $u \in C_w$ abgeschlossen war, bevor v abgeschlossen wurde.

Da jedoch $u \rightsquigarrow v \ \forall u \in C_w$ in G folgt, dass ein Knoten $u \in C_w$ existieren muss, für den $\tau_f(u) > \tau_f(v)$ gilt, was ein Widerspruch zu der vorigen Aussage ist.

Anmerkung: Wenn also eine Kante in G^T von C_v nach C_w führt, müssen alle Knoten in C_w nach jenen aus C_v fertiggestellt worden sein, da ja in G in diesem Fall eine Kante von C_w nach C_v verlaufen ist. Somit müssen diese Knoten im Schritt 3 schon zuvor fertiggestellt worden sein (da ja die Aufrufe in absteigender Reihenfolge der Fertigstellungszeiten aus Schritt 1 erfolgt.