Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome (Gibson, 2008)

Lauren Primer & Kylie Snyder November 1, 2018 ABE 591 - Journal Club

Background

- Bacterium: *Mycoplasma genitalium*
 - Smallest genome of any independently replicating cell grown in pure culture
 - Lab use is limited to ~100/485 genes that are non-essential
- Ultimate goal:
 - Which genes are simultaneously dispensable?
 - Produce compact genomes by chemical synthesis, assembly, and cloning
 - Introduce them into cells to test viability of essential genetic functions for life

Wild type cells showing cytoskeleton supporting terminal organelle and nap layer surrounding cell membrane

Main Objectives

- Design, chemical synthesis, assembly, and cloning (in yeast) of entire *M. genitalium* JCVI-1.0 chromosome based on *M. genitalium* G37
 - Would be the largest chemically synthesized molecule of defined structure with 582,970 bp total
 - Except MG408 disrupted by an antibiotic marker to block pathogenicity and allow for selection

Phylogenetic tree of *M. genitalium*

Barriers

- Completed synthetic genomes were strictly viral
- Mycoplasma = bacterial
 - Able to reproduce without a host
- Magnitude
 - 32,000 bp (viral) vs. 582,970 bp
 - Larger sections of DNA need to be handled and may be unstable in *E. coli*

New Methods

- 1. In vitro recombination using *E. coli*
 - *M. genitalium* sequence was split into 101 cassettes
 - Each ~5-7 kb
 - Boundaries placed at intergenic sites
 - Contains one or more genes
 - Cassette 101 overlaps 1 -> loop

In Vitro Recombination Reaction

- Gibson method***
- Overlapping DNA molecules are digested with a 3' exonuclease to expose overhangs
- Complementary overlaps are annealed
- Joints are repaired via ligase

Assembly of Synthetic Cassettes

- PCR amplification used to produce BAC vector for cloning each assembly
- Cassettes assembled 4

 at a time in presence
 of appropriate BAC
 vector
- Not I = restriction site

Assembly Problems

- In vitro (*E. coli*) -> in vivo (yeast): difficulties in executing the planned assembly and cloning of the half and whole synthetic genomes in E. coli
 - Conclusion: larger assemblies were unstable in *E. coli*
 - Inefficient circularization of large DNA molecules
 - Breakage during the handling of DNA before transforming the E. coli
 - Solution: Turn to yeast, *S. cerevisiαe*, as cloning host using TAR

New Methods

- 2. In vivo, transformation-associated recombination (TAR) using *S. cerevisiae*
 - TAR cloning implemented TARBAC vector to propagate synthetic chromosome in yeast
 - Isolation for sequence verification
 - Production outsourced for large DNA synthesis
 - Blue Heron Technology, DNA 2.0, GENEART

What is required to assemble constructs in this manner?

Assembly Plan

- Phases of combination
- $A \rightarrow C$
 - In vitro recombination
- $D \rightarrow E$
 - In vivo yeast recombination
 - Larger assemblies not stable in *E. coli*

*D and E series ultimately omitted

Stage 1 - In Vitro Recomb., E. coli

- Sets of 4 neighboring cassettes assembled by in vitro recombination
- Joined to a bacterial artificial chromosome (BAC) vector DNA to form circularized recombinant plasmids with ~24-kb inserts
 - Ex: cassettes 1-4 form A1-4
 - Ex: cassettes 5-8 form A5-8

4 neighboring cassettes form a set

Stage 2 - In Vitro Recomb., E. coli

- The 25 A-series assemblies taken 3-at-a-time to form 8 B-series assemblies
- Each 1/8 the size of a genome at ~72 kb
 - Ex: A1-4, A5-8, A9-12 form B1-12

3 neighboring cassettes form a set

Stage 3 - In Vitro Recomb., E. coli

- The 1/8 genome B-assemblies were taken 2-at-a-time to form 4 C-assemblies
- Each 1/4 of genome at ~144 kb
 - Ex: B1-12 and B13-24 form C1-24

2 neighboring cassettes form a set

Stages 4 and 5 - Ideal In Vitro Recomb., *E. coli*

- Initial plan for Stages 4 and 5
 - C-assemblies would be joined 2-at-a-time to form 2 D-assemblies
 - Remaining 2 D-assemblies would form E-assembly
- For the final molecule, the D-series half molecules were not employed.
 - Rather, the whole molecule was comprised of 4 C-series quarter molecules.
- PCR Amplification → BAC vector
- FIGE Analysis/gel electrophoresis: unviable b/c too large, unstable

D and E assemblies

Stages 4 and 5 - Actual In Vivo Recomb. (TAR), S. cerevisiae

- Linear YAC Cloning:
 - Produced via ligation of an insert into a restriction enzyme cloning site
- TAR Cloning:
 - Cotransformation of overlapping insert and vector DNAs into yeast spheroplasts -> joined by homologous recombination -> circular clones
- Linear YAC Clones vs. TAR Clones
 - Both contain a centromere and maintained at a copy # along with a native yeast genome
 - TAR Advantage: circular TAR clones can be separated from linear yeast chromosomes
- To assemble quarter genomes into halves/wholes in yeast:
 - Use pTARBAC3 vector, containing YAC and BAC sequences
 - Construction similar to that of BAC vectors but with longer 60-bp overlaps at termini

Stages 4 and 5 - Actual In Vivo Recomb. (TAR), S. cerevisiae

- TAR cloning:
 - Recombination stimulated by a factor of 20 at double-stranded breaks
 - Vector integrated at the cleaved intergenic BsmB I site in C50-77
 - 4 bases of the BsmB I 5' overhang were eliminated
 - DNA to be transformed had 6 pieces
 - 1 vector, 2 fragments of quarter 3, quarters 1, 2 and 4
 - To obtain a full-sized genome as an insert in <u>pTARBAC3 vector</u>, a single yeast cell <u>must take up all 6 pieces</u> and assemble via homologous recombination

Stages 4 and 5 - Actual In Vivo Recomb. (TAR), S. cerevisiae

- Transformation of yeast cells:
 - Equimolar amounts of vector and inserts
 - 1. PCR screening
 - 2. <u>Southern blot with mycoplasma-specific probes</u>
 - Positive clones tested for stability via Southern blotting of subclones
 - At least 17/94 transformants carried a complete synthetic genome
 - Clone sMgTARBAC37 was selected for sequencing
 - TAR cloning with each of the 4 sets of 2 adjacent quarter genomes
 - DNAs from transformants isolated and electroporated into E. coli
 - BAC clones of expected sizes were obtained
 - DI-49 was sequenced -> verified

Error Management

- Differences between actual and designed sequence can arise
 - Error in sequence supplied to contractors
 - Contractors could produce errors
 - During repair of assembly junctions
 - From propagations in *E. coli* or yeast at later stages
- All errors found
- Clones were sequenced for verification

Field Inversion Gel Electrophoresis (FIGE) analysis of assemblies

Overlap with Class (human practices, responsibility)

- Genome assembly: construct and clone large DNA molecules from chemically synthesized pieces and combinations of natural and synthetic DNA segments larger than those previously reported
 - Constructs may be delivered by plasmids or <u>host genomes</u>
 - To form circuits:
 - 1. Chemical addition (chem-synthesized oligonucleotides)
 - 2. Homologous recombination (recombineering: in vitro, in vivo)
 - 3. Anneal + polymerization (ability of single stranded DNA to anneal (stick) to complementary strands in vitro, PCR amplification)
 - 4. Digestion + ligation (Type IIS REs defined overhang in in vivo, create 'sticky' overhangs -> annealed to join DNA pieces)
 - Recombineering: recombination cloning, isolation, and sequencing techniques used to chemically synthesize a full synthetic genome

Overlap with Class (human practices, responsibility)

- Gibson Assembly was developed in this paper (Week 9 Lecture)

Gibson Assembly

Workflow

Advantages	Disadvantages
 Parts don't need to be formatted (sequence independent) Can make combinatorial libraries (up to 5 parts) One-pot reaction (fast/simple) Scarless 	 Requires long primers that may be challenging Expensive

Foundational Principles Used

- Complete DNA synthesis
- Construction of genetic circuits
 - Parts
 - M. genitalium
 - S. cerevisiae
 - TARBAC vector
 - BAC vector
 - Assembly methods
 - In vitro recombination
 - In vivo recombination

- Responsible Design
 - Eugenics?
 - Biosafety?

Main Conclusions

- Based on *M. genitalium* G37, a 582,970-bp *Mycoplasma genitalium* JCVI-1.0 genome was designed, chemically synthesized, assembled, and cloned
 - Final product: ~10⁴ synthetic oligonucleotides
- Challenge: obtain DNA molecules larger than any previously reported using a 5-stage assembly
 - Stages 1-3: in vitro recombination with *E. coli ->* assembly too large, unstable
 - Stages 4-5: in vivo transformation-associated recombination (TAR) with yeast as host
- Larger than any other chemically synthesized DNA product and largest chemically synthesized molecule of defined structure
 - Previously large non-synthetic constructs have been produced from bacterial genomic DNA and in vivo methods

Advantages/Limitations

- Advantages:
 - Previous methods for large DNA use restriction enzymes (ex: type IIS) to generate sticky ends
 - As pieces get larger, it becomes more difficult to find Type IIS REs that do not cleave within piece
 - Can use enzymes (Not I) that cleave infrequently
 - 4 quarters recombined and cloned to yield full genome
 - Ability to assemble many DNA pieces in a single reaction -> useful to generate combinatorial genome libraries
 - Methodology not restricted to chemically synthesized DNA
 - Simply need to design PCR primers with appropriate overlaps

Advantages/Limitations

- Limitations:

- In vitro recombination: efficiency declined as assembly size increased (only 1/4 genome could be achieved) -> had to resort to in vivo TAR
- Use of TARBAC vector to propagate synthetic chromosome in yeast
 - Unknown if...
 - Vector may interfere with production of viable cells by transplantation
 - Genomic location of the vector could affect viability
 - Vector sequences/excise vector must be altered before transplantation
- Such large DNA synthesis -> outsourced production to contractors -> errors
- Contains all genes of wild-type *M. genitalium* G37 *except* Gene MG408 (2514-bp insertion into cassette 89) containing aminoglycoside resistance gene
 - A strain with this defect in this virulence factor cannot adhere to mammalian cells ->
 eliminate pathogenicity in the best available model systems

General Lessons

- Possible to re-engineer recombineering
- Future:
 - Ability to assemble many pieces of DNA in single step
 - Methodology not restricted to chemically synthesized DNA
- Natural errors and mutations
 - E. coli clones had errors → Rebuild assemblies
 - Sequence verification
- Novel ways to clone genomes

Thank you