

Presented By

Calista Damara

Outline

Project Background

Growth of Delivery Operations Business

Source: Statista Market Analysis

Social Behavioural

Digitalization

Problem

Rapid growth in Delivery Operations Business makes this sector has high competition

Project Background

- **Analyzing** Customer Behaviours on Deliv Operation Services and found features that influence Rating Rate
- Create a predictive model that can accurately predict Rating Rate

Increase Rating rate 30% within 3 months by create predictive model on Rating Rate and optimizing features that influences it.

Data Shape

Rows: 45.584

Columns: 20

2 Missing Value

8 columns

O Delivery_	person_Ratings	1908	4.19
1 Delive	ery_person_Age	1854	4.07
2	Time_Orderd	1731	3.80
3	City	1200	2.63
4 mu	ultiple_deliveries	993	2.18
5 Wes	ather_conditions	616	1.35
6 Roa	d_traffic_density	601	1.32
7	Festival	228	0.50

Data Information

	•			
	eIndex: 45584 entries, 0 to 4	5583		
Data	columns (total 20 columns):			
#	Column	Non-Null	l Count	Dtype
0	ID	45584 no	on-null	object
1	Delivery_person_ID	45584 no	on-null	object
2	Delivery_person_Age	43730 nc	on-null	float64
3	Delivery_person_Ratings	43676 no	on-null	float64
4	Restaurant_latitude	45584 no	on-null	float64
5	Restaurant_longitude	45584 no	on-null	float64
6	Delivery_location_latitude	45584 nc	on-null	float64
7	Delivery_location_longitude	45584 no	on-null	float64
8	Order_Date	45584 no	on-null	object
9	Time_Orderd	43853 no	on-null	object
10	Time_Order_picked	45584 no	on-null	object
11	Weather_conditions	44968 no	on-null	object
12	Road_traffic_density	44983 no	on-null	object
13	Vehicle_condition	45584 no	on-null	int64
14	Type_of_order	45584 no	on-null	object
15	Type_of_vehicle	45584 no	on-null	object
16	multiple_deliveries	44591 no	on-null	float64
17	Festival	45356 no	on-null	object
18	City	44384 no	on-null	object
19	Time taken (min)	45584 no	on-null	int64
	dtypes: float64(7), int64(2), object(11)			
	memory usage: 7.0+ MB			

3 columns

Pre-processing

Data Preprocessing

Handling Missing Value

	Features	Treatment	
	City (2.63%)		
ical	multiple_deliveries (2.18%)	Replace with Mode value	
Categorical	Weather_conditions (1.35%)	Mode from City: Metropolitian Mode from multiple_deliveries: 1.0	
Cate	Road_traffic_density (1.32%)	Mode from Weather_conditions: Fog Mode from Road_traffic_density: Low Mode from Festival: No	
	Festival (0.5%)		
ין	Delivery_person_Ratings	Replace with Median from each features	
Numerical	(4.19%)	Median from Delivery_person_Ratings: 4.7	
	Delivery_person_Age (4.07%)	Median from Delivery_person_Age: 30.0	
2	Time_Order (3.80%)	Drop	

<u>Duplicate Value</u>

No duplicate value detected

```
['21:55', '14:55', '17:30', '09:20', '19:50', '20:25', '20:20', '20:40', '21:15', '20:20', '22:30', '08:15', '19:30', '12:18:35', '20:35', '23:20', '21:20', '23:35', '22:35', '23:21:35', '18:55', '14:15', '0.458333333', '09:45', '0.958333333', '17:25', '19:45', '19:10', '10:55', '21:40', '0.7916666667', '16:45', '11:30', '15:10', '22:45', '22:10', '20:45', '22:50', '17:55', '09:25', '20:15', '22:50', '10:20', '20:55', '10:40', '15:25', '10:20', '20:55', '10:40', '15:25', '10:35', '21:10', '20:50', '12:20', '10:35', '21:10', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:50', '12:20', '20:
```

--> filter uncorrect format of time

Data Type Convert

Features	Data Type
Order_Date	object -> datetime
Time_ordered	object -> datetime
Time_Order_p icked	object -> datetime

Feature Engineering

~ Creating new features

New Features	Description
order_prepare_time	the difference between Time_Ordered and Time_Order_picked , reflecting the time taken for order preparation
distance	the spatial separation between Restaurant_coordinates and Delivery_coordinates .
day_of_week	Extracted from Order_Date , specifying the day (Sunday/Monday/etc)
time_category	Time_Order grouping -> Morning (00.00-10.00), Afternoon(10.01-14.00), Evening (14.01-18.00), Night (18.01-23.59)

~ Drop unnecessary features

Restaurant_latitude, Restaurant_longitude, Delivery_location_latitude, Delivery_location_longitude, Time_Orderd, Time_Order_picked

Exploratory Data Analysis

How is customer behavior on the time and day features?

Customers most likely to use Delivery Service on the night (after 18.00 - 23.59) and The day with the most customer's orders is Wednesday.

Exploratory Data Analysis

How is customer behavior on type of Order?

Favorite order in each time:

Morning: Meal Afternoon: Meal Evening: Drink Night: Snack

Does the large number of orders coming in at night affect the rating?

Although most of customers using delivery services on the night, It doesn't affects the Ratings. Night shift drivers still has good performance. So, what features that impact to Rating Rate?

Exploratory Data Analysis

One of the features that impact to Rating is Time (Delivery) Taken. It has negative correlation.

It means the longer time can make the lowest ratings.

Feature Engineering

~ Scaling the Numerical Features

'Delivery_person_Age','distance','Time_taken (min)','order_prepare_time (min)

~ Encoding the Categorical Features

Festival

Value	Encode
No	0
Yes	1

Traffic_road_density

Value	Encode
Low	1
Medium	2
High	3
Jam	4

Weather_condi

Value	Encode
Sunny	1
Cloudy	2
Windy	3
Fog	4
Sandstorm	5
Stormy	6

Type of vehicle

Value	Enco de
motorcycle	1
scooter	2
electric scooter	3

City

Value	Enco de
Metropolitan	1
Urban	2
Semi-Urban	3

time category

Value	Encode
Morning	1
Evening	2
Afternoon	3
Night	4

type of order

Value	Encode
Buffet	1
Drinks	2
Meal	3
Snack	4

day

Value	Encode
Monday	1
Tuesday	2
Wednesda y	3
Thursday	4
Friday	5
Saturday	6
Sunday	7

Machine Learning

Split the Data

<u>Train vs Test</u> (80 : 20)

VIF Score

	feature	vif_score
1	Delivery_person_Age	1.140712
2	Weather_conditions	1.009250
3	Road_traffic_density	1.416486
4	Vehicle_condition	1.754595
5	Type_of_order	1.000424
6	Type_of_vehicle	1.659652
7	multiple_deliveries	1.167387
8	Festival	1.094867
9	City	1.024379
10	Time_taken (min)	1.787629
11	order_prepare_time (min)	1.003937
12	distance	1.000584
13	time_category	1.211087
14	day_of_week	1.000993

VIF Score < 4.0, Multicollinearity between independent variables is low and model is stable, so there is no need for multicollinearity handling.

Heatmap Correlation

Modeling & Evaluation Training Evaluation

Models	Metrics		
	RMSE	MAE	MAPE
Ridge Reg	0.2922	0.2170	0.0491
Lasso Reg	0.2936	02161	0.0491
Random Forest Reg	0.0948	0.0682	0.015
Xgboost Reg	0.1663	0.1344	0.0295

Testing Evaluation

Models	Metrics		
	RMSE	MAE	MAPE
Ridge Reg	0.2871	0.2131	0.0482
Lasso Reg	0.2883	0.2124	0.0482
Random Forest Reg	0.2261	0.1773	0.039
Xgboost Reg	0.2213	0.1750	0.038

From 4 models, RandomForest Regression is the best model, The model has smallest error and experience increase in performance when implemented from training data to test data.

Hyperparameter Tuning

params	mean_test_score	rank_test_score
20 {'max_depth': 5, 'n_estimators': 10}	0.493689	1
21 {'max_depth': 5, 'n_estimators': 20}	0.493640	2
24 {'max_depth': 5, 'n_estimators': 50}	0.493585	3

Using cross validation with GridSearchCV The highest score (0.493689) was achieved by the model with max_depth=5 and n_estimators=10.

O Hyperparameter Tuning

	Metrics	Before Tuning	After Tuning
0	RMSE	0.226105	0.224063
1	MAE	0.177353	0.179030
2	MAPE	0.039190	0.039698

After tuning, the model shows better accuration of test data

Importance Features

Top 3 features that influences Rating:

- 1. Time taken
- 2. Weather condition
- 3. Vehicle condition

Conclusion & Recommendation

Optimize Night Operational Service

Customers most likely to use Delivery Service on the **night (after 18.00 - 23.59)**

Recommendations

- Prioritizing resource allocation such as drivers, vehicles, and night monitoring systems to accommodate high demand.
- Provide **incentives** to night drivers to maintain motivation and performance,

Peak Days Strategy

The day with the most customer's orders is Wednesday

Recommendation

Special promotions such as discounts or bundling on that day to increase customer satisfaction and potential repeat orders.

Favorite Order

Favorite order in each time: Morning: Meal; Afternoon: Meal; Evening: Drink; Night: Snack

Recommendation

Morning and Afternoon: Promote meal Afternoon: Offer discounts on popular drinks. Evening: Create special promotions for late-night snacks such as discounts on snack orders.

Conclusion & Recommendation

- Predictive Model successfully build, the best model is Random Forest Regressor,
- Top 3 The Most Importance Features are:
 - 1. Time taken
 - 2. Weather condition
 - 3. Vehicle condition

Recommendations to Manage Time- taken

- Optimize delivery routing algorithms to ensure more efficient trips.
- Invest in technology like traffic prediction and delivery time estimation to assist drivers.

Recommendations to Manage Weather Condition

Offer customers notification of potential delays due to extreme weather conditions.

Recommendations to Manage Vehicle Conditions

Design regulation of vehicle inspections into operational flows to minimize the risk of delays.

THANK YOU!

Notebook: https://bit.ly/DeliveryOp_Project

calistadmra@gmail.com

in Calista Damara

github.com/calistadamara