

Этикетка

КСНЛ.431242.002 ЭТ

Микросхема 1564ИДЗТЭП

Микросхема интегральная 1564ИДЗТЭП Функциональное назначение: Дешифратор 4×16.

Условное графическое обозначение Схема расположения выводов Номера выводов показаны условно DC Масса не более 1 г. C1 C2 Ключ V_{CC}

Таблица назначения выводов

0V

№	Обозначение	Назначение вывода	№	Обозначение	Назначение
вывода	вывода		вывода	вывода	вывода
1	Q0	Выход	13	Q11	Выход
2	Q1	Выход	14	Q12	Выход
3	Q2	Выход	15	Q13	Выход
4	Q3	Выход	16	Q14	Выход
5	Q4	Выход	17	Q15	Выход
6	Q5	Выход	18	C1	Вход стробирования
7	Q6	Выход	19	C2	Вход стробирования
8	Q7	Выход	20	D8	Вход
9	Q8	Выход	21	D4	Вход
10	Q9	Выход	22	D2	Вход
11	Q10	Выход	23	D1	Вход
12	0V	Общий	24	V_{CC}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2,0 \text{ B}, U_{IL}=0,3 \text{ B}, U_{IH}=1,5 \text{ B}, I_0=20 \text{ MKA}$	U _{OL max}	-	0,10
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 20 мкА		-	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		-	0,10
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 4,0 mA		-	0,26
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 mA		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC}=2,0 \text{ B}, U_{IL}=0,3 \text{ B}, U_{IH}=1,5 \text{ B}, I_{O}=20 \text{ MKA}$	U_{OHmin}	1,9	-
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 20 mKA		4,4	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		5,9	-
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =4,0 mA		3,98	-
$U_{CC}=6,0 \text{ B}, U_{IL}=1,2 \text{ B}, U_{IH}=4,2 \text{ B}, I_{O}=5,2 \text{ MA}$		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IL}	-	/-0,1/
4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	-	0,1
5. Ток потребления, мкА, при			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	8,0
6. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B}, f = 10 \text{ M}\Gamma \text{u}$	I_{OCC}	•	12

7. Время задержки распространения при включении и выключении нс,			
при:	t_{PHL} , t_{PLH}		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	160
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ n}\Phi$		-	36
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ п}\Phi$		-	30
11. Входная емкость, пФ, при:			
$U_{CC} = 0 B$	C_{I}	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г. серебро г.

в том числе:

золото г/мм на 24 выводах длиной мм.

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

2.2 Гамма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.424-02ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ИДЗТЭП соответствуют техническим условиям АЕЯР.431200.424-02ТУ и признаны годными для эксплуатации.

Приняты по	OT		
(извещение, ак	ги др.)	(дата)	
Место для штампа ОТК			Место для штампа ПЗ
Место для штампа « Перег	проверка произ	ведена	»
Приняты по(извещение,		(дата)	
Место для штампа ОТК	_		Место для штампа ПЗ
Цена договорная			

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – вывод общий, вход – вывод питание.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ