ST 705 Linear models and variance components Homework problem set 3

January 26, 2022

- 1. Let $G: \mathbb{R}^p \to \mathbb{R}$ defined by $G(\beta) := (y X\beta)'W(y X\beta)$. Derive an expression for $\nabla_{\beta}G(\beta)$.
- 2. Show that if $\operatorname{rank}(BC) = \operatorname{rank}(B)$, then $\operatorname{col}(BC) = \operatorname{col}(B)$, where $\operatorname{col}(\cdot)$ denotes the column space.
- 3. Let $A \in \mathbb{R}^{n \times p}$ with rank(A) = p. Further, suppose $X \in \mathbb{R}^{n \times q}$ with col(X) = col(A). Show that there exists a unique matrix S so that X = AS.
- 4. Let $X \in \mathbb{R}^{n \times p}$, $u \in \mathbb{R}^n$, and $v \in \mathbb{R}^p$.
 - (a) Prove that

$$|u'Xv| \le \left(\max_{1 \le j \le p} \left\{ \sum_{i=1}^n |X_{i,j}| \right\} \right)^{\frac{1}{2}} \left(\max_{1 \le i \le n} \left\{ \sum_{j=1}^p |X_{i,j}| \right\} \right)^{\frac{1}{2}} \cdot ||u||_2 \cdot ||v||_2.$$

- (b) Show that the Cauchy-Schwarz inequality is a special case of the inequality given in part (a).
- 5. Let A be an $m \times n$ matrix with rank m. Prove that there exists an $n \times m$ matrix B such that $AB = I_m$.
- 6. Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. Prove that AB can be written as a sum of n matrices of rank at most one. Hint: think about empirical covariance matrices.
- 7. Let S be a nonempty subset of an inner product space V. The orthogonal complement to the set S is defined as

$$S^{\perp} := \{x \in V : \langle x, y \rangle = 0 \text{ for every } y \in S\}.$$

- (a) Show that S^{\perp} is a subspace of V for any $S \subseteq V$.
- (b) Let $W \subseteq V$ be a finite dimensional subspace, and let $y \in V$. Show that there exist **unique** vectors $u \in W$ and $z \in W^{\perp}$ such that y = u + z.
- (c) Let $X \in \mathbb{R}^{n \times p}$. Verify that $\operatorname{col}(X)$ and $\operatorname{null}(X')$ are orthogonal complements.