

MR-JE-C (Ethernet)

TPI-JEC-ETH

www.mitsubishielectric.com/fa/br_pt/

Data da Revisão	Nome do Arquivo	Revisão
Março/2019	Treinamento Servo MR-JE-C(A)	1ª Edição

Contato de Suporte Técnico

Assistência telefônica disponível em (11) 4689-3000 (op 2). Assistência por e-mail disponível em cat@mitsubishielectric.com.br.

Ressalva

Este manual não implica em garantia ou implementação de direitos para propriedade industrial ou implementação de outros direitos. A Mitsubishi Electric não é responsável por problemas de propriedade industrial causados pelo uso ou mau uso do conteúdo deste manual.

© 2015 Mitsubishi Electric do Brasil Com. e Serviços Ltda.

Sumário

Apreser	ntação da Aula	6
Objetiv	os do Curso	6
Pré-reqi	uisitos	6
Duração	o do Curso	6
	ão dos Capítulos	
Lista de	Manuais Relevantes	8
1. IN	TRODUÇÃO	9
1.1 In	ıtrodução à servo-motores	9
1.2 L	inha de servos Mitsubishi	10
1.3 Se	érie MR-JE	11
2. MI	R-JE-C	12
2.1 D	escrição de Hardware	13
3. PR	OJETO	14
3.1 In	ıtrodução	14
3.2 P	reparação dos softwares	14
3.3 P	arametrização do servo	15
3.4 P	arametrização do CLP	17
3.4.1	Configuração Porta Ethernet	17
3.4.2	Adicionar os FB's que serão utilizados	19
3.4.3	Configuração das Label's	19
3.5 P	rogramação	20
3.5.1	Configuração inicial do programa	20
3.5.2	Atualização dos registros de referência do Eixo 1 (Axis1)	20
3.5.3	Leitura de dados e status do Servo Drive	21
3.5.4	Servo ON, Referenciamento (HOME) e Reset	21

	3.5.5	Movimentação em JOG	21
	3.5.6	Movimentos absolutos e incremental	22
4.	EX	ERCÍCIO	23
4.	1 In	nicial	. 23
4.	2 O	Pperação Manual	. 23
4.	3 O	neração Automático	24

Apresentação da Aula

Seja bem-vindo ao Treinamento de Servo Drive MR-JE-C.

Objetivos do Curso

Ao final deste curso de treinamento, o estudante deve ser capaz de:

- Entender as ferramentas do software MR Configurator2;
- Parametrizar o Drive MR-JE-C;
- Criar programas em ladder estruturado utilizando o software GX Works3;
- Configurar os parâmetros dos CLP's iQ-F;
- Comunicar Drive MR-JE-C e CLP iQ-F via porta Ethernet com protocolo CC Link IE Field Basic:
- Operar o Drive através dos FB's dedicados e padronizados de acordo com o PLC Open de Motion.

Pré-requisitos

Antes de frequentar esta aula, é altamente recomendado que o estudante tenha conhecimentos de elétrica industrial e de programação em linguagem ladder genérica para controladores lógico-programáveis (PLC).

É indicado apenas aos alunos que já fizeram o treinamento do software GX Works3

Duração do Curso

Este curso é planejado para a duração de um dia de aula.

Descrição dos Capítulos

CAPÍTULO 1 - INTRODUÇÃO

Nesse capítulo é apresentado uma introdução aos servos motores e as linhas da Mitsubishi.

CAPÍTULO 2 – MR-JE-C

Nesse capítulo são apresentadas as funcionalidades do Servo Motor MR-JE-C.

CAPÍTULO 3 – PROJETO

Nesse capítulo são apresentados os métodos de configuração GX Works3 e do MR Configurator2.

CAPÍTULO 4 – EXERCICIOS

Nesse capítulo são apresentados os exercícios de fixação quanto a operação.

Lista de Manuais Relevantes

SH(NA)030257ENG-C(1810) MR-JE-_C SERVO AMPLIFIER INSTRUCTION MANUAL

Manual de instruções do drive MR-JE-C, especificação de parâmetros, ligação elétrica e funções de manutenção

SH(NA)030254ENG-C(1810) MR-JE-_C SERVO AMPLIFIER INSTRUCTION MANUAL (Profile Mode)

Manual de instruções do drive MR-JE-C dedicado ao modo de operação Profile (Ci402)

SH(NA)030277ENG-A(1810) MR-JE-_C SERVO AMPLIFIER INSTRUCTION MANUAL (Positioning Mode)

Manual de instruções do drive MR-JE-C dedicado ao modo operação Posicionamento

SH(NA)030256ENG-C(1810) MR-JE-_C SERVO AMPLIFIER INSTRUCTION MANUAL (Network)

Manual de instruções do drive MR-JE-C dedicado as instruções de Rede, CC LinklE Field Basic, Modbus/TCP e MODBUS/RTU

SH(NA)030269ENG-A(1708) MR-JE-_C SERVO AMPLIFIER INSTRUCTION MANUAL (Modbus TCP)

Manual de instruções do drive MR-JE-C dedicado as instruções de rede usando o MODBUS/TCP

SH(NA)030256ENG-B(1708) MR-JE-_C SERVO AMPLIFIER INSTRUCTION MANUAL (CC-Link IE Field Network Basic)

Manual de instruções do drive MR-JE-C dedicado as instruções de rede usando o CC LinklE Field Basic

SH(NA)030166ENG-F(1811) MR-JE SERVO AMPLIFIER (Trouble Shooting) Manual de instruções do drive MR-JE, dedicado as falhas

MEU-F0007-001-A MELSEC iQ-F MR-JE-C Servo Amplifier PLCOpen Motion Function Block Reference 00A

Manual dos blocos de PLC Open Motion para PLC iQ-F e Drive MR-JE-C

1. INTRODUÇÃO

1.1 Introdução à servo-motores

Geralmente conhecido como um sistema de controle onde suas variáveis são posição, velocidade, torque e direção, um servomecanismo consiste na detecção de seus valores atuais (posição, velocidade, torque e etc) para executar o controle em relação ao valor configurado, tendendo sempre a minimizar a diferença entre esses valores, conforme a figura abaixo mostra.

Figura 1 – Exemplo de sistema com servo acionamento

Todo sistema de servos possui alguns elementos comuns, como descritos abaixo:

- Servo Amplificador: responsável pelo controle do sistema, recebe o set point de um controlador, calcula a diferença entre o valor atual e envia o comando ao servo motor. O sinal de comando enviado para o servo motor passa por um circuito semelhante ao inversor de frequência;
- Servo Motor: responsável pelo movimento a ser realizado. Sua característica
 construtiva garante que tenha momento de inercia menor comparado a motores
 do tipo gaiola, podendo assim responder dinamicamente a alterações de tensão
 e corrente provenientes do servo amplificador;
- Encoder: responsável por detectar a posição atual do servo motor, servindo como feedback entre servo amplificador e servo motor, quanto maior a resolução, mais preciso o sistema de posição.

Figura 2 – Gráfico de comparação Toque x Rotação

1.2 Linha de servos Mitsubishi

A Mitsubishi Electric vem fabricando servo motores desde 1980, abaixo temos um breve histórico sobre as séries e sua evolução. No Brasil, temos o MR-J4 e o MR-JE.

Figura 3 – Histórico de linhas de servo motores Mitsubishi

1.3 Série MR-JE

A seguir uma tabela com as principais funcionalidades:

Função	MR-JE-A	MR-JE-B	MR-JE-C
Controle de Posição (Trem de pulso)	Χ		Χ
Controle de Posição (Tabela de Pontos)	Х		Х
Controle de Posição (Método de Programa)	Х		
Controle de Posição (via Rede)		Х	Х
Controle de Posição (Came eletrônico)	X	Х	
Controle de Velocidade (Trem de Pulso)	Х		Х
Controle de Velocidade (Analógico)	Х		Х
Controle de Velocidade (via Rede)		Х	Х
Controle de Torque (Analógico)	Х		Х
Controle de Torque (via Rede)		Х	Х
Modo Profile			Х
FB para PLC Open (iQ-F)	Х	Х	Х
Rede SSCNET III/H)		Х	
Rede Modbus/RTU	Х		Х
Rede Modbus/TCP			Х
Rede CC Link IE Field Basic			Х
Trem de Pulso sink (NPN)	Х		Х
Trem de Pulso source (PNP) *usar entrada diferencial + 2x resistor 1.2KΩ	Х		X*

2. MR-JE-C

Dentre as funcionalidades que implementam tal serie podemos concluir apenas que o produto é voltado para a conectividade e padronização de fábrica.

As principais comunicações (MODBUS/RTU e MODBUS/TCP) já estão implementados.

Figura 4 – Apresentação da série MR-JE-C

E a padronização de programação do PLC Open Motion com o a comunicação CC Link IE Field Basic já consolidados, faz com que as parametrizações sejam fáceis de serem realizadas.

2.1 Descrição de Hardware

Figura 5 – Descrição de hardware

3. PROJETO

3.1 Introdução

Como foco principal deste treinamento iremos fazer as configurações e programações necessárias para a funcionalidade destes blocos da PLC Open. A configuração de hardware necessária será a que está descrita na Figura 6.

Figura 6 – Projeto do treinamento

3.2 Preparação dos softwares

Para continuar com este treinamento é necessário ter instalado os seguintes softwares:

- MR Configurator2 => será utilizado para parametrizar o servo drive MR-JE-C.
- GX Works3 => será utilizado para parametrizar e programar o CLP iQ-F.
- GT Designer 3 => será utilizado para criação de telas na IHM GS.

Os blocos de funções que serão utilizados estão dentro do arquivo "MotionControl_JEC_FBs_F_00A.mslm" e devem ser instalados de acordo com a imagem a seguir.

Figura 7 - Configuração de FB's de PLC Open Motion para MR-JE-C

3.3 Parametrização do servo

Devido as facilidades de programação presente nessa série, precisamos trocar apenas 2 parâmetros de acordo com a tabela a seguir:

Parâmetro	Valor	Descrição
PA01	1009h	Configuração do modo de operação para Profile Mode
PA06	360000	Movimento de giro com uma volta (360,000°)
PA07	131072	Pulsos de do encoder com um volta
PD01	1C00h	Desabilitar uso de Fim de Curso Mecânico e Sinal de Emergência

Para isso iremos conector via USB o drive MR-JE-C, criar um projeto novo no MR Configurator2 para o drive MR-JE-C e seguir o passo a passo da Figura 8 e da Figura 9.

Figura 8 - Configuração do Parâmetro PA01

Figura 9 - Configuração do Parâmetro PD01

Após a configuração confirmar se os Rotary switches frontais do Drive estão conforme a figura a seguir e desligar e ligar novamente o drive. Isso fará com que o Drive inicialize com o endereço de IP 192.168.3.50 (32h).

Figura 10 – Configuração do Rotary switch no valor de 32h

3.4 Parametrização do CLP

Há três pontos a seguir:

- 1. Configurar a porta internet
- 2. Adicionar os FB's ao projeto
- 3. Configurar as Label's necessárias

3.4.1 Configuração Porta Ethernet

As configurações necessárias para o funcionamento adequado dessas instruções são:

- Colocar o endereço de IP adequado aos padrões da rede;
- Habilitar e configurar o protocolo de comunicação CC Link IE Field Basic;
- Registrar o Servo Drive MR-JE-C nas configurações e as configurações de atualização (Refresh settings).

Assim, basta seguir o passo a passo descrito abaixo para que tenha configurado.

Figura 11 - Configuração da Porta Ethernet do CLP iQ-F

- Clicar duas vezes sobre Parameter > FX5UCPU > Module Parameter > Ethernet Port.
- 2) Configurar o Endereço de IP, Mascara de Rede e Gateway Padrão de acordo com os dados da rede que serão utilizados. Para este exemplo estamos configurando conforme imagem a seguir:

Figura 12 – Endereço de IP

3) Habilitar a opção de usar o protocolo CC Link IE Field Basic.

Figura 13 – Habilitação do Protocolo CC-Link IE Field Basic

4) Duplo clique sobre *Detail settings* para configurar os drivers de comunicação.

Figura 14 - Adicionando o Servo MR-JE-C nas configurações do CLP

5) Duplo clique sobre *Detail settings* para configurar a área de atualização:

Figura 15 – Configuração da área de atualização

6) Clicar em Apply para confirmar as alterações.

3.4.2 Adicionar os FB's que serão utilizados

Para as configuração basta copiar do local onde foi adicionado a biblioteca (Figura 16) e colar na área de projetos como ilustra a Figura 17.

Figura 16 – Tela da biblioteca com os FBs

Figura 17 – Importado os dados da biblioteca

3.4.3 Configuração das Label's

Criar uma label para cada eixo que for ser usado.

Figura 18 - Label criada para o Eixo1

3.5 Programação

Será criada de acordo com a sequência dos blocos que iremos mostrar agora.

Essa sequência é importante para a configuração adequada e normatização de acordo com o PLC Open Motion.

Obs: Todos os FBs do PLC Open Motion são desenvolvidos para trabalhar apenas com um pulso na entrada.

3.5.1 Configuração inicial do programa

Na inicialização do programa precisamos definir os valores de endereço do eixo e limites de torques permissíveis para o mesmo.

Figura 19 - Configuração inicial do programa

3.5.2 Atualização dos registros de referência do Eixo 1 (Axis1)

Este FB serve para manter o controle do Eixo1 ativo.

Figura 20 - Ladder para atualização.

3.5.3 Leitura de dados e status do Servo Drive

Este conjunto de FBs servem para ler os valores de Posição, Velocidade e Torque além de status como o Erro do Servo Drive.

Figura 21 - Status e Valores do Eixo 1

3.5.4 Servo ON, Referenciamento (HOME) e Reset

A seguir está descrito os FBs de como realizar o

Figura 22 – Blocos de Servo ON, HOME e Reset de Erros

3.5.5 Movimentação em JOG

Na padronização do PLC Open não existe o FB de movimentação em JOG, justamente porque todos os FBs devem trabalhar com um pulso de borda de subida.

Para podermos fazer a operação de JOG usaremos os FB de MoveVelocity e Halt, conforme descrito na imagem a seguir.

Figura 23 - Operação em JOG

3.5.6 Movimentos absolutos e incremental

Esses são os FBs que serão utilizados para as movimentações. Abaixo temos um exemplo para realizar as configurações adequadamente.

Figura 24 – FBs para movimentos absolutos e incrementais

O contato de saída *Done* pode ser usado para encadear uma sequência de movimentos.

4. EXERCÍCIO

4.1 Inicial

Fazer toda configuração dos servos motores e do CLP conforme descritos nos itens 3.3 e 3.4.

4.2 Operação Manual

Realizar a programação para que os registros da IHM (descritos na IHM abaixo) operem o ladder conforme descrito no item 3.5.

Figura 25 - Tela exemplo da IHM

4.3 Operação Automático

Realizar a programação para que os registros da IHM (descritos na Figura 25) façam a seguinte operação:

Acionamento	Operação
M1000	Uma volta positiva. Aguarda 2s Retorna ao Zero Duas voltas negativa Aguarda 2s Retorna ao Zero
M1001	Incrementa 45° a cada 2s
M1002	Retorna a posição Zero