

Large-Scale Matrix Inversion using Singular Value Decomposition

By Vaishnavi C K

Singular Value Decomposition(SVD)

SVD states that any m by n matrix A can be factored into

$$A = UDV^T$$

where

U=the eigen vectors of matrix AA^T

V= the eigen vectors of matrix A^TA

D=is the diagonal matrix consisting of square roots all eigen values of AA^T and A^TA

Inverse using SVD

- Therefore from SVD
- $A^{-1} = VD^{-1}U^{T}$

Where D⁻¹ is the matrix containing reciprocal of all elements of D because D is diagonal matrix

Method

- Consider a matrix A
- First we compute AA^T and A^TA
- Then we find the eigen values and eigen vectors of the above matrices and name the eigen vectors as U and V respectively. Also we find that the eigen values are same for both the matrices. Thus we name the matrix as d.
- Now we take the square roots of all the values of d and name the resulting matrix as D. We find D⁻¹ by reciprocating the diagonal values of D.
- Now we multiply U D^{-1} V^{T} to find the inverse of A.

Code

```
clc;clear all;close all;
 n=5;
 A=rand(n)*100
 y=A*A.';
 x=A.'*A;
 [U, D]=eig(y);%U stores eigen vector of Y
 [V, D]=eig(x);%U stores eigen vector of X
 %D stores eigen value of both X and Y
∃ for i=1:n
     d(i,i)=1/(sqrt(D(i,i)));
end
 disp("U=");
 disp(U)
 disp("V=");
 disp(V)
 disp("d=");
 disp(d)
 inverse=V*d*U.
 error≡inv(A)-inverse
```

Results

```
A =
   23.7599
            96.5005
                      16.6012
                                 6.8978
                                          97.0246
  81.7571
            76.5285
                      32.5998
                                16.6785
                                          99.8427
            57.4534
  40.5829
                      29.6436
                                94.7438
                                          98.7455
  46.6312
            91.5925
                      55.8298
                                81.1088
                                          15.0087
            49.5432
                                71.0456
   95.1536
                       6.7477
                                          95.8479
y =
  1.0e+04 *
   1.9614
                       1.7235
             1.9671
                                 1.2889
                                           1.6943
   1.9671
             2.3850
                       2.0120
                                 1.5493
                                           2.2546
   1.7235
             2.0120
                       2.4554
                                 1.7976
                                           2.3104
   1.2889
             1.5493
                       1.7976
                                 2.0485
                                           1.6553
             2.2546
   1.6943
                       2.3104
                                 1.6553
                                           2.5789
x =
  1.0e+04 *
   2.0124
             1.9866
                       0.7508
                                 1.5915
                                           2.4296
   1.9866
             2.9314
                       1.1248
                                 1.8334
                                           2.8800
   0.7508
             1.1248
                       0.5380
                                 0.8474
                                           0.9277
   1.5915
             1.8334
                       0.8474
                                 2.0928
                                           1.9717
    2.4296
             2.8800
                       0.9277
                                 1.9717
                                           3.8545
```

Results

U=	The state of the		. Incompa	100000	100 marks
1	-0.4217	0.3484	-0.5549	0.4832	0.3992
	0.6077	-0.4915	-0.0836	0.3981	0.4729
	0.3830	0.6972	0.2890	-0.2324	0.4792
	-0.0907	-0.2662	-0.4704	-0.7437	0.3828
	-0.5458	-0.2829	0.6167	0.0304	0.4907
V=					
-	-0.0539	-0.8206	0.3773	0.0300	0.4247
	-0.4231	-0.0448	-0.7404	-0.0307	0.5195
	0.8652	-0.1212	-0.3375	-0.2907	0.1959
	-0.1472	0.3547	0.3688	-0.7502	0.3920
	0.2190	0.4290	0.2440	0.5923	0.5980
d=					
	0.0561	0	0	0	0
	0	0.0191	0	0	0
	0	0	0.0133	0	0
	0	0	0	0.0107	0
	0	0	0	0	0.0032

Results

```
inverse =
   -0.0063
              0.0062
                       -0.0101
                                  0.0024
                                            0.0099
   0.0157
             -0.0125
                       -0.0117
                                  0.0079
                                            0.0080
   -0.0201
              0.0301
                        0.0167
                                  0.0009
                                           -0.0284
                                            0.0060
   -0.0002
             -0.0114
                        0.0054
                                  0.0031
                                           -0.0059
   -0.0003
              0.0066
                        0.0108
                                 -0.0088
error =
  1.0e-16 *
             -0.3036
                       -0.0347
                                 -0.0217
                                            0.2082
    0.1301
    0.2429
             -0.7980
                        0.0173
                                 -0.2082
                                            0.6939
   -0.1388
              0.7980
                       -0.2429
                                  0.5800
                                           -0.8674
   -0.1163
              0.1214
                        0.2168
                                 -0.2602
                                           -0.0607
              0.5031
                                  0.1214
                                           -0.4250
   -0.1155
                       -0.0867
```

Power Method

- This method can be used to find the most dominant eigen value and its corresponding eigen vector.
- It is an iterative method.
- In this method we have to assume the eigen vector to be a random value and multiply with the given matrix. Now we take the product and multiply with the matrix.
- We continue multiplying the each product to the matrix until the difference between the product obtained and the previous product that was multiplied is very low.
- This product is the dominant eigen vector. And the normalizing factor we get is the dominant eigen vector.

Example

For a matrix
$$A = \begin{bmatrix} 3 & 7 \\ 4 & 5 \end{bmatrix}$$

Using power method we get

$$Ay^{(1)} = x^{(0)} \rightarrow Ay^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} y_1^{(1)} \\ y_2^{(1)} \end{bmatrix} = \begin{bmatrix} 0.1538 \\ 0.0769 \end{bmatrix} = 0.1538 \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$

$$\rightarrow \alpha^{(1)} = 0.1538$$

$$Ay^{(2)} = x^{(1)} \rightarrow Ay^{(2)} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} \rightarrow \begin{bmatrix} y_1^{(2)} \\ y_2^{(2)} \end{bmatrix} = \begin{bmatrix} -0.11538 \\ 0.192307 \end{bmatrix} = 0.192307 \begin{bmatrix} -0.6 \\ 1 \end{bmatrix}$$

$$\rightarrow \alpha^{(2)} = -0.6538$$

$$Ay^{(3)} = x^{(3)} \rightarrow Ay^{(3)} = \begin{bmatrix} -0.6 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} y_1^{(3)} \\ y_2^{(3)} \end{bmatrix} = \begin{bmatrix} 0.7692 \\ -0.4153 \end{bmatrix} = 0.7692 \begin{bmatrix} 1 \\ -0.54 \end{bmatrix}$$

$$\rightarrow \alpha^{(3)} = -0.733$$

$$Ay^{(4)} = x^{(3)} \rightarrow Ay^{(4)} = \begin{bmatrix} 1 \\ -0.54 \end{bmatrix} \rightarrow \begin{bmatrix} y_1^{(4)} \\ y_2^{(4)} \end{bmatrix} = \begin{bmatrix} -0.7292 \\ 0.4554 \end{bmatrix} = -0.7292 \begin{bmatrix} 1 \\ 0.6245 \end{bmatrix}$$

$$\rightarrow \alpha_1^{(4)} = -0.729 \rightarrow \lambda_2 = -1.371, \dots$$

Code

```
clc;
 close all;
 A=[1 3 -1;3 2 4;-1 4 10]
 u= [1;1;1]; % The initial choice of eigenvector.
 n=length(u); % Size of initial eigenvector.
 v=zeros(n,1);
 eps=0.001; %error of tolerance
 err=10;m1=1;m2=1;
while err>eps %Calculating the greatest eigenvalue and the corresponding eigenvector.
    v=A*u;
    m2=max(abs(v));
    u=v/m2;
    err=abs(m1-m2);
    m1=m2;
  end
 fprintf('\n The greatest eigenvalue is %5.5f\n',ml);
 disp('The corresponding eigenvector is:');
 fprintf('\n %5.5f\n',u);
```

Result

Advantages of SVD

- The number of iterations is comparatively less compared to other conventional methods
- The inverse can be found out for any size of matrix even singular matrices.

Disadvantages using SVD

The calculation of eigen values and vectors were inefficient.

Finding the algorithm to efficiently calculate the eigen functions was difficult.