

Хоёр төрлийн эрэмбэтэй дараалал байдаг:

- Минимум эрэмбэтэй дараалал.
- Максимум эрэмбэтэй дараалал.

Минимум эрэмбэтэй дараалал

- Элементүүдийн цуглуулга.
- Элемент бүр эрэмбэ буюу түлхүүртэй.
- Хийгдэх үйлдлүүд:
 - isEmpty
 - size
 - add/put (эрэмбэтэй дараалал элемент оруулах)
 - get (min эрэмбэтэй элементийг авах)
 - remove (min эрэмбэтэй элементийг устгах)

Максимум эрэмбэтэй дараалал

- Элементүүдийн цуглуулга.
- Элемент бүр эрэмбэ буюу түлхүүртэй.
- Хийгдэх үйлдлүүд:
 - isEmpty
 - size
 - add/put (эрэмбэтэй дараалал элемент оруулах)
 - get (max эрэмбэтэй элементийг авах)
 - remove (max эрэмбэтэй элементийг устгах)

Үйлдлийг гүйцэтгэх хугацаа

Сайн хэрэгжүүлэлт нь heap-овоо, leftist tree-зүүний мод.

isEmpty, size, get \Rightarrow O(1)

put , remove => O(log n) , үүнд n – эрэмбэтэй дарааллын хэмжээ

Хэрэглээ

Эрэмбэлэлт

- Элементийн түлхүүрийг эрэмбэ болгон ашиглах
- Эрэмбэлэх элементүүдийг эрэмбэтэй дараалалд хийх
- Эрэмбийн дараалаар элементийг гаргаж авах
 - Хэрвээ min эрэмбэтэй дараалал бол, элементүүдийг эрэмбийн(түлхүүрийн) өсөх дарааллаар гаргана
 - Хэрвээ max эрэмбэтэй дараалал бол, элементүүдийг эрэмбийн(түлхүүрийн) буурах дарааллаар гаргана

Эрэмбэлэлтийн жишээ

- 6, 8, 2, 4, 1 гэсэн түлхүүртэй таван элементийг таван эрэмбэтэй дарааллын аргаар эрэмбэлэе.
 - Таван элементийг тах эрэмбэтэй дараалалд хийнэ.
 - remove max үйлдлийг таван удаа гүйцэтгэхдээ устгагдсан элэментүүдийг эрэмбэлэсэн массивт баруунаас зүүн тийш хийнэ.

Мах эрэмбэтэй дараалалд хийсний дараа

Эрэмбэлэгдсэн массив

Эхний Remove Max үйлдлийн дараа

Эрэмбэлэгдсэн массив

Хоёр дахь Remove Max үйлдлийн дараа

Эрэмбэлэгдсэн массив

Гурав дахь Remove Max үйлдлийн дараа

Эрэмбэлэгдсэн массив

Дөрөв дэх Remove Max үйлдлийн дараа

Эрэмбэтэй массив

Тав дахь Remove Max үйлдлийн дараа

Эрэмбэлэгдсэн массив

Эрэмбэлэлтийн хугацаа

n элементийн эрэмбэлэлт.

- n put үйлдэл \Rightarrow O(n log n).
- n remove max үйлдэл $=> O(n \log n)$.
- Нийт хугацаа O(n log n).
- 2-р бүлэгт үзсэн эрэмбэлэлтийн аргаар $O(n^2)$.

Овоолго(Неар)-ын Эрэмбэлэлт

Овоог хэрэгжүүлэхдээ тах эрэмбэтэй дараалыг ашиглана.

Эхний put үйлдлүүдийг овоолгыг идэвхижүүлэх алхмаар орлуулахад O(n) хугацаа шаардана.

Машины төлөвлөлт

- m ижил төрлийн машин (өрөм, зүсэгч, г.м.)
- n ажил гүйцэтгэх хэрэгтэй
- Машинуудыг ажлаар ачаалахдаа сүүлийн ажлыг гүйцэтгэх хугацааг минимум болгох

Машины төлөвлөлтийн жишээ

3 машин, **7** ажил

Ажлын хугацаа [6, 2, 3, 5, 10, 7, 14]

Боломжит төлөвлөлт:

Машины төлөвлөлтийн жишээ

Дуусах хугацаа = 21

Зорилго: Дуусах хугацааг минимум болгох.

LPT Төлөвлөлт

Longest Processing Time - эхлээд.

Ажлууд дараах байдлаар эрэмбэлэгджээ 14, 10, 7, 6, 5, 3, 2

Ажил бүрийг түрүүлж дуусгасан машин дээр хуваарилна.

LPT төлөвлөлт

[14, 10, 7, 6, 5, 3, 2]

Дуусах хугацаа 16!

LPT төлөвлөлт

- LPT дүрэм баталгаат минимум дуусах хугацааг өгч чадахгүй.
- (LPT дуусах хугацаа)/(Min дуусах хугацаа) <= 4/3 1/(3m) үүнд m машины тоо.
- Ерөнхийдөө LPT дуусах хугацаа, min дуусах хугацаад ойрхон очдог.
- Min дуусах хагацаатай төлөвлөлтийг NP (nondeterministic polinomial)-hard өгдөг.

LPT төлөвлөлтийн хугацаа

- Ажлуудыг хугацаа буурах дарааллаар эрэмбэлнэ.
 - O(n log n) хугацаа (n ажлын тоо)
- Ажлуудыг энэ дарааллаар хуваарилна.
 - Ажлыг түрүүлж бэлэн болсон машинд хуваарилна
 - m (m машины тоо) дуусах хугацаанаас minimum-г олох ёстой
 - Энгийн стратеги хэрэглэхэд О(m) хугацаа зарна
 - Бүх п ажлыг төлөвлөхөд O(mn) хугацаа орно.

Min эрэмбэтэй дарааллыг ашиглах

- Min эрэмбэтэй дараалалд m машины дуусах хугацаа байна.
- Эхлээд бүх дуусах хугацаа 0.
- Ажлыг төлөвлөхийн тулд эрэмбэтэй дарааллаас минимум дуусах хугацаатай машиныг устгана.
- Сонгосон машины дуусах хугацааг өөрчлөөд буцаагаад эрэмбэтэй дараалалд хийнэ.

Min эрэмбэтэй дарааллыг ашиглах

- m put үйлдлээр эрэмбэтэй дарааллыг идэвхижүүлнэ
- 1 remove min, 1 put үйлдлүүдийг хуваарилагдсан ажил бүрт хийнэ
- put , remove min үйлдэл бүрт O(log m) хугацаа орно
- Төлөвлөх хугацаа O(n log m)
- Нийт хугацаа

```
O(n \log n + n \log m) = O(n \log (mn))
```

Хоффманы код

Хаягдалгүй шахахад тустай. LZW аргатай хослуулж болно. Номноос унш. Товч тайлбар: $\{a, x, u, z\}$ а-0, х-10, u-110, z-111 (давтамжаар хувьсах урттай код) аахиах (7 байт) -> 0010110010111 (13 бит)

Min модны тодорхойлолт

Модны зангилаа бүр утгатай.

Аливаа зангилааг үндэс гэж үзвэл утга нь дэд модондоо минимум байна.

Өөрөөр хэлбэл бага утгатай хойч байхгүй.

Min модны жишээ

Үндэс минимум элементтэй.

Мах модны жишээ

Үндэс максимум элементтэй.

Min овоолгын тодорхойлолт

- Төгс хоёртын мод
- min мод

9 зангилаатай Міп овоолго

9 зангилаатай төгс хоёртын мод.

9 зангилаатай Міп овоолго

9 зангилаатай төгс хоёртын мод мөн min мод.

9 зангилаатай Мах овоолго

9 зангилаатай төгс хоёртын мод мөн тах мод.

Овоолгын өндөр

Нэгэнт овоолго нь төгс хоёртын мод болохоор n зангилаатай овоолгын өндөр $\log_2(n+1)$.

Овоолгыг массиваар оновчтой дүрсэлж болно

Овоолгоор дээш, доош явах

Мах овоолгод элемент хийх

10 зангилаатай төгс хоёртын мод.

11 зангилаатай төгс хоёртын мод.

Шинэ элемент 15.

Шинэ элемент 15.

Шинэ элемент 15.

Put үйлдлийн хугацаа

Хугацаа O(log n), үүнд n овоолгын хэмжээ.

Мах элемент нь үндэс.

тах элементийг устгасны дараа.

10 зангилаатай овоолго.

Овоолгод 8 – г дахин хийх.

Овоолгод 8 – г дахин хийх.

Овоолгод 8 – г дахин хийх.

Овоолго 8 – г дахин хийх.

Мах элемент 15.

тах элементийг устгасны дараа.

9 зангилаатай овоолго.

7 -г дахин хийх

7 -г дахин хийх

7 -г дахин хийх

Remove Max үйлдлийн хугацаа

Хугацаа O(log n).

Оролтын массив = [-, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

Массивын хамгийн баруун байршилтай хүүхэдтэй зангилаанаас эхэлнэ.

Индекс нь n/2.

Массивын дараачийн доод байршил руу явна.

Гүйцлээ, массвын дараачийн доод байршил руу явна. 70

Гүйцлээ.

Хугацаа

Овоолгын өндөp = h.

j түвшинд үндэстэй дэд моднуудын тоо <=2 j-1.

Дэд мод бүрийн хугацаа O(h-j+1).

Хугацаа

j түвшний моднуудын хугацаа $<= 2^{j-1}(h-j+1) = t(j).$

Нийт хугацаа t(1) + t(2) + ... + t(h-1) = O(n).