Problem

Let $CNF_{H1} = \{ \langle \phi \rangle \}$ | ? is a satisfiable cnf-formula where each clause contains any number of positive literals and at most one negated literal. Furthermore, each negated literal has at most one occurrence in ?}. Show that CNF_{H1} is NL- complete.

Step-by-step solution

Step 1 of 3

Consider the ${}^{\mbox{\footnotesize CNF}_{\mbox{\footnotesize HI}}}$, which is defined as:

 $CNF_{HI} = \{ < \varnothing > | \varnothing \text{ is a satisfiable cnf-formula where each clause contain nay number of positive literals and at most one negative literals} \}$

Now, it is known that $CNF_{H1} \in NL$. It can be proved by using the following approach: Situation is quite clear as all user needs to find the dependability of CNF_{H1} on P and NL.

Comment

Step 2 of 3

Dependability can be viewed as:

1. Consider that $CNF_2 \in NL$

Consider first situation of ϕ and consider it belongs to some x and if there is any $\neg x$ then reject.

Consider one more situation of ϕ that will be belonging to some other variable let's say y and here situation will rejected if there is any $\neg y$ otherwise accepted.

• Two situations are discussed here remove those situation from ϕ and relate those two situations, let's say M and N, to ϕ and call the result. This way it is proved that $CNF_2 \in NL$.

Comment

Step 3 of 3

2. Consider another situation $CNF_3 \in NL$

Consider first situation of ϕ and consider it belongs to some p and if there is any $\neg p$ then reject.

Consider one more situation of ϕ that will be belonging to some other variable, let's say q and r here situation will rejected if there is any q otherwise accepted.

• Two situations are discussed here remove those situation from ϕ and relate those two situations, let's say A and B, to ϕ and call the result. This way it is proved that $CNF_3 \in NL$.

Similarly, this situation will be held true for ${^{CNF}_{^{HI}}}$. In other words, it can be said that" ${^{CNF}_{^{HI}}} \in {^{NL}}$ " or ${^{CNF}_{^{HI}}} \in {^{NL}}$ " or ${^{CNF}_{^{HI}}} \in {^{NL}}$ " or ${^{NL}} = {^{NL}} = {^{NL}}$ " or ${^{NL}} = {^{NL}} = {^{NL}$

Comment