Optimization algorithms

LATEST SUBMISSION GRADE

✓ Correct

TO PASS 80% or higher

100%			
1.		ich notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th	1/1 point
	0	$a^{(3)\{7\}(8)}$	
	0	$a^{[8]\{7\}\{3\}}$	
	(1)	$a^{(3)\{8\}(7)}$	
	0	$a^{ 8 \{3\}(7)}$	
		✓ Correct	
2.	Which of these statements about mini-batch gradient descent do you agree with?		1/1 point
	•	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.	
	0	You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).	
	0	Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.	

- 3. Why is the best mini-batch size usually not 1 and not m, but instead something in-between?
 - If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.

- If the mini-batch size is 1, you end up having to process the entire training set before making any progress.
- If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.
- If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.

Which of the following do you agree with?

- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

1/1 point

Jan 1st:
$$\theta_1=10^oC$$

Jan 2nd: $\theta_2\,10^{\circ}\,C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

- $v_2 = 7.5, v_2^{corrected} = 10$
- \bigcirc $v_2 = 10, v_2^{corrected} = 7.5$
- $\bigcirc \ v_2 = 7.5, v_2^{corrected} = 7.5$
- \bigcirc $v_2 = 10$, $v_2^{corrected} = 10$

- 6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.
 - $\alpha = \frac{1}{1+2*t}\alpha_0$

 - $\bigcirc \alpha = \frac{1}{\sqrt{t}}\alpha_0$
 - $\alpha = 0.95^t \alpha_0$

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

- \square Decreasing β will shift the red line slightly to the right.
- lacksquare Increasing eta will shift the red line slightly to the right.

/

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

✓ Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

8. Consider this figure:

1/1 point

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Try mini-batch gradient descent

- Try initializing all the weights to zero
- lacksquare Try tuning the learning rate lpha

Try using Adam

Try better random initialization for the weights

10. Which of the following statements about Adam is False?

1/1 point

- O We usually use "default" values for the hyperparameters eta_1,eta_2 and arepsilon in Adam ($eta_1=0.9,eta_2=0.999,arepsilon=10^{-8}$)
- Adam should be used with batch gradient computations, not with mini-batches.