- 1. Multiple choice. Circle all that apply.
 - (a) [3 pts] If a particle moves along a straight line, what can you say about its acceleration vector?
 - (i) The acceleration vector is parallel to the tangent vector.
 - (ii) The acceleration vector has magnitude equal to one.
 - (iii) The acceleration vector equals the velocity vector.
 - (iv) The acceleration vector is parallel to the unit normal vector.
 - (v) The acceleration vector has a magnitude equal to zero.
 - (b) [3 pts] If a particle moves with constant speed along a curve, what can you say about its acceleration vector?
 - (i) The acceleration vector is parallel to the tangent vector.
 - (ii) The acceleration vector has a magnitude of one.
 - (iii) The acceleration vector equals the velocity vector.
 - (iv) The acceleration vector is parallel to the unit normal vector.
 - (v) The acceleration vector has a magnitude of zero.

2. [4 pts] Suppose the trajectory of a particle is parametrized by the curve

$$\mathbf{r}(t) = \langle 2e^t, e^{2t}, t \rangle, \quad -1 \le t \le 1.$$

Compute the distance traveled by the particle.

3. [6 pts] Match each of the six sets of level curves below with the appropriate function.

- (a) $\cos(x) \cos(y)$ _____
- (b) $\sin(x^2)$ _____
- (c) $\frac{10x}{x^2 + y^2}$ _____
- (d) $x \cos(y)$ _____
- (e) $\sin(y-x)$ _____
- (f) $\cos(y x)$ _____

В