Analysis 1

Mike Desgrottes

October 2020

Theorem 1. Suppose that $\alpha \in End(v)$ and $V = W_1 \oplus ... \oplus W_k$ such that each subspace is α -invariant. Prove that there exists a basis B for V such that the representation matrix of α with respect to B has the form $A = [A_{ij}]$ are zero matrices for all $i \neq j$.

Proof. Let B_i be a basis for W_i , then the matrix representation of α with respect to B_i is contained in W_i because W_i is α -invariant. $\bigcup_{i=1}^k B_i$ is a basis for V. Then for every $v \in B_i$, then $\alpha(v) \notin B_j$ for $j \neq i$. Hence $A = diag(A_{11}, ..., A_{kk})$.

Theorem 2. Let A be a matrix such that its characteristic polynomial is completely reducible. Prove that A is nilpotent if and only if $spec(\alpha) = \{0\}$.

Proof. Since the characteristic polynomial of A is completely reducible, then A is similar to a diagonal matrix. Hence, the diagonal matrix is also nilpotent. Let $B = diag(\lambda_1, ..., \lambda_n)$ is the diagonal matrix, then $B^k = diag(\lambda_1^k, ..., \lambda_n^k) = 0 \implies \lambda_i = 0$ for all i. So, A being nilpotent implies $spec(A) = \{0\}$.

Suppose that the spectrum of A is trivial, then A is similar to the zero matrix. Hence $A = P^T B P = 0$ which is nilpotent.

Theorem 3. Prove that if J is a m x m Jordan block with zero maind diagonal, then $det(tI - J) = t^m$ is the minimal polynomial of J.

Theorem 4. let $p(t) = t^3 - 6t^2 + 11t - 6$. Describe the Jordan Canonical forms of the 3 x 3 matrices A that statisfies p(A) = 0 if such matrices exist.