Category	Name	Instruction syntax add \$d,\$s,\$t	Meaning \$d = \$s + \$t	Fo	Format/opcode/funct			Notes/Encoding
	A 1.1			R	0	20 ₁₆	adds two registers, executes a trap on overflow	
	Add			K		U	2016	000000ss sssttttt ddddd100000
	Add	addu						as above but ignores an overflow
	unsigned	\$d,\$s,\$t	\$d = \$s + \$t	R		0	21 ₁₆	000000ss sssttttt ddddd100001
	Subtract	sub	\$d = \$s - \$t	R		0	22 ₁₆	subtracts two registers, executes a trap on overflow
	Subtract	\$d,\$s,\$t	φα – φ3 φε			U	2216	000000ss sssttttt ddddd100010
	Subtract							as above but ignores an overflow
	unsigned	subu \$d,\$s,\$t	\$d = \$s - \$t	R		0	23 ₁₆	000000ss sssttttt ddddd000 00100011
	Add immediate	addi \$t,\$s,C	\$t = \$s + C (signed)	I		8 ₁₆	-	Used to add sign-extended constants (and also to copy one register to another: addi \$1, \$2, 0), executes a trap on overflow
								001000ss sssttttt CCCCCCC CCCCCCC
Arithmetic	Add	addiu \$t,\$s,C	\$t = \$s + C (unsigned)			_	-	as above but ignores an overflow
	immediate unsigned			I		9 ₁₆		001001ss sssttttt CCCCCCCC CCCCCCCC
								Multiplies two registers and puts the 64-bit result in two special memory spots - LO and HI. Alternatively, one could say the result of this operation is:

Multiply	mult \$s,\$t	LO = ((\$s * \$t) << 32) >> 32; HI = (\$s * \$t) >> 32;	R		18 ₁₆	(int HI,int LO) = (64-bit) \$s * \$t
						. See mfhi and mflo for accessing LO and HI regs.
Multiply unsigned	multu \$s,\$t	LO = ((\$s * \$t) << 32) >> 32; HI = (\$s * \$t) >> 32;	R	0	19 ₁₆	Multiplies two registers and puts the 64-bit result in two special memory spots - LO and HI. Alternatively, one could say the result of this operation is:
unsigned						(int HI,int LO) = (64-bit) \$s * \$t
						. See mfhi and mflo for accessing LO and HI regs.
Divide	div \$s, \$t	LO = \$s / \$t HI = \$s % \$t	R	0	1A ₁₆	Divides two registers and puts the 32-bit integer result in LO and the remainder in HI. ^[36]
Divide unsigned	divu \$s, \$t	LO = \$s / \$t HI = \$s % \$t	R	0	1B ₁₆	Divides two registers and puts the 32-bit integer result in LO and the remainder in HI.
Load	lw \$t,C(\$s)	\$t = Memory[\$s + C]	I	23 ₁₆	-	loads the word stored from: MEM[\$s+C] and the following 3 bytes.
Load halfword	lh \$t,C(\$s)	<pre>\$t = Memory[\$s + C] (signed)</pre>	I	21 ₁₆	-	loads the halfword stored from: MEM[\$s+C] and the following byte. Sign is extended to width of register.
Load halfword unsigned	lhu \$t,C(\$s)	<pre>\$t = Memory[\$s + C] (unsigned)</pre>	I	25 ₁₆	-	As above without sign extension.
Load byte	lb \$t,C(\$s)	\$t = Memory[\$s + C] (signed)	I	20 ₁₆	-	loads the byte stored from: MEM[\$s+C].
Load byte unsigned		<pre>\$t = Memory[\$s + C] (unsigned)</pre>	I	24 ₁₆	-	As above without sign extension.
						stores a word into: MEM[\$s+C]

Data Transfer	Store	sw \$t,C(\$s)	Memory[\$s + C] = \$t	I	2B ₁₆	-	and the following 3 bytes. The order of the operands is a large source of confusion.
	Store half	sh \$t,C(\$s)	Memory[\$s + C] = \$t	I	29 ₁₆	-	stores the least-significant 16-bit of a register (a halfword) into: MEM[\$s+C].
	Store byte	sb \$t,C(\$s)	Memory[\$s + C] = \$t	I	28 ₁₆	-	stores the least-significant 8-bit of a register (a byte) into: MEM[\$s+C].
	Load upper immediate		\$t = C << 16	I	F ₁₆	-	loads a 16-bit immediate operand into the upper 16-bits of the register specified. Maximum value of constant is 2 ¹⁶ -1
	Move from high	mfhi \$d	\$d = HI	R	0	10 ₁₆	Moves a value from HI to a register. Do not use a multiply or a divide instruction within two instructions of mfhi (that action is undefined because of the MIPS pipeline).
	Move from low	mflo \$d	\$d = LO	R	0	12 ₁₆	Moves a value from LO to a register. Do not use a multiply or a divide instruction within two instructions of mflo (that action is undefined because of the MIPS pipeline).
	Move from Control Register	mfcZ \$t, \$d	<pre>\$t = Coprocessor[Z].ControlRegister[\$d]</pre>	R	0		Moves a 4 byte value from Coprocessor Z Control register to a general purpose register. Sign extension.
	Move to Control Register	mtcZ \$t, \$d	Coprocessor[Z].ControlRegister[\$d] = \$t	R	0		Moves a 4 byte value from a general purpose register to a Coprocessor Z Control register. Sign extension.
	And	and \$d,\$s,\$t	\$d = \$s & \$t	R	0	24 ₁₆	Bitwise and

			, , , , , , , , , , , , , , , , , , ,	J I			
Logical	And immediate	andi \$t,\$s,C	\$t = \$s & C	I	C ₁₆	-	Leftmost 16 bits are padded with 0s 001100ss sssttttt ccccccc ccccccc
	Or	or \$d,\$s,\$t	\$d = \$s \$t	R	0	25 ₁₆	Bitwise or
	Or immediate	ori \$t,\$s,C	\$t = \$s C	I	D ₁₆	-	Leftmost 16 bits are padded with 0s
	Exclusive or	xor \$d,\$s,\$t	\$d = \$s ^ \$t	R	0	26 ₁₆	
	Nor	nor \$d,\$s,\$t	\$d = ~ (\$s \$t)	R	0	27 ₁₆	Bitwise nor
	Set on less than	slt \$d,\$s,\$t	\$d = (\$s < \$t)	R	0	2A ₁₆	Tests if one register is less than another.
	Set on less than unsigned	sltu \$d,\$s,\$t	\$d = (\$s < \$t)	R	0	2B ₁₆	Tests if unsigned integer in one register is less than another.
	Set on less than immediate	slti \$t,\$s,C	\$t = (\$s < C)	I	A ₁₆	-	Tests if one register is less than a constant.
	Shift left logical immediate	sll \$d,\$t,shamt	\$d = \$t << shamt	R	0	0	shifts shamt number of bits to the left (multiplies by 2 ^{shamt})
	Shift right logical immediate		\$d = \$t >> shamt	R	0	2 ₁₆	shifts shamt number of bits to the right - zeros are shifted in (divides by 2 ^{shamt}). Note that this instruction only works as division of a two's complement number if the value is positive.
Bitwise Shift	Shift right arithmetic immediate	sra \$d,\$t,shamt	\$d = \$t >> shamt + $\left(\sum_{n=1}^{\text{shamt}} 2^{32-n}\right) \cdot (\$t >> 31)$	R	0	3 ₁₆	shifts shamt number of bits - the sign bit is shifted in (divides a positive or even 2's complement number by 2 ^{shamt})
	Shift left logical	sllv \$d,\$t,\$s	\$d = \$t << \$s	R	0	4 16	shifts \$s number of bits to the left (multiplies by $2^{\$s}$)
T. Control of the Con	1	1	I The state of the		1		I

	Shift right logical	srlv \$d,\$t,\$s	\$d = \$t >> \$s	R	0	6 ₁₆	shifts \$s number of bits to the right - zeros are shifted in (divides by $2^{\$s}$). Note that this instruction only works as division of a two's complement number if the value is positive.
	Shift right arithmetic	srav \$d,\$t,\$s	$d = t >> s + \left(\sum_{n=1}^{s} 2^{32-n}\right) \cdot (t >> 31)$	R	0	7 ₁₆	shifts \$s number of bits - the sign bit is shifted in (divides a positive or even 2's complement number by 2 ^{\$s})
Conditional branch	Branch on equal	beq \$s,\$t,C	if (\$s == \$t) go to PC+4+4*C	I	4 ₁₆	-	Goes to the instruction at the specified address if two registers are equal. 000100ss ssstttt ccccccc ccccccc
	Branch on not equal	bne \$s,\$t,C	if (\$s != \$t) go to PC+4+4*C	I	5 ₁₆	-	Goes to the instruction at the specified address if two registers are <i>not</i> equal.
	Jump	j C	PC = PC+4[31:28] . C*4	J	2 ₁₆	-	Unconditionally jumps to the instruction at the specified address.
	Jump register	jr \$s	goto address \$s	R	0	8 ₁₆	Jumps to the address contained in the specified register
Unconditional jump	Jump and link	jal C	\$31 = PC + 4; PC = PC+4[31:28] . C*4	J	3 ₁₆	-	For procedure call - used to call a subroutine, \$31 holds the return address; returning from a subroutine is done by: jr \$31. Return address is PC + 8, not PC + 4 due to the use of a branch delay slot which forces the instruction after the jump to be executed

Note: In MIPS assembly code, the offset for branching instructions can be represented by a label elsewhere in the code.