注意 (1) 解を導きだす経過をできるだけ丁寧に記述すること。説明が不十分な場合は減点する。また、字が粗暴な解答も減点の対象とする。

(2) 終了時間前に <u>すべて解答できた場合</u> は途中退席しても構わない。未解答問題がある者は途中退席してはならない。

点

 $\boxed{\mathbf{1}}$ 次の式で与えられる数列 $\{a_n\}$ の初項から第 4 項まで (a_1,a_2,a_3,a_4) を求めよ. (各 5 点)

(1) $a_n = n^2 - 2n + 1$

0, 1, 4, 9

 $(2) \ a_n = \frac{2}{n}$

(2) 2, 1, $\frac{2}{3}$, $\frac{1}{4}$

(3) $a_1 = -1$, $a_{n+1} = 2a_n + 3$

(3) -1, 1, 5, 13

 $(4) a_1 = 2, a_{n+1} = -a_n + 1$

(4) 2, -1, 2, -1

② 次の式で与えられる数列 $\{a_n\}$ が等差数列か等比数列か答えよ。また、その公差または公比を答えよ。 (各 10 点)

 $(1) \quad a_n = 3n - 2$

⁽¹⁾ 公差が3の等差数列

(2) $a_n = 3^{1-n}$

(2) 公比が $\frac{1}{3}$ の等比数列

		8	
3	次の数列 $\{a_n\}$ に対し、	第1項から第8項までの和 $s_8 = \sum a_k$ を求めよ.	(各 10 点)
		k=1	

(1) $\{a_n\}$ は初項が -2,公差 3 の等差数列.

(2) $\{a_n\}$ は初項が 2,公比が $\frac{1}{2}$ の等比数列.

$$(2) \frac{255}{64}$$

4 次の式で与えられる数列 $\{a_n\}$ の階差数列 $\{b_n\}$ を初項から第 3 項まで (b_1,b_2,b_3) を求めよ. (各 10 点)

 $(1) \quad a_n = n^2 - n$

(2) $a_n = -3n + 4$

$$(2)$$
 -3 , -3 , -3

 $\boxed{\mathbf{5}}$ $a_1=2$, $a_{n+1}=2a_n-3$ で与えられる数列 $\{a_n\}$ の一般項 a_n を求めよ。(20 点)