Documentação Etapa 2 e 3 CCF 425

Nome: Murillo Santhiago Souza Jacob

Matrícula: 4243

Etapa 1 - Trabalhando Em Cima das Colunas do Dataframe

Os microdados do enem, vieram com uma série de necessidade de tratamento, tanto de nome quanto de informação. Vieram com uma série de valores NaN, sem contar que a quantidade de linhas é extremamente grande, a ponto de travar o kernel python que o notebook utiliza. Visto isso, limitei inicialmente a 500 mil linhas, valor que pode ser alterado no futuro, e dropei os valores NaN, e momentaneamente, mantive valores que não foram informados inicialmente.

Além disso, diversos campos vieram com valores nada descritivos no nome das colunas, como Q001 - Q025, fora os valores que substituem valores categóricos por valores numéricos, o que pode confundir e muito na hora de construir o modelo e realizar a análise exploratória, dito isso, também alteramos esses valores para os respectivos dados categóricos.

Outro problema é nas questões 1-25, que foram renomeadas, porém, os valores também estão abreviados, e muitas perguntas do tipo quantidade de eletrodomésticos por exemplo, podem ser convertidas para numéricos, porém, nessa primeira análise exploratória, manterei dessa forma para facilitar a análise. Fora isso, também foi construída a coluna nota final, com base na média das outras notas

Etapa 2 - Análise Exploratória

Começamos inicialmente com a análise exploratória da renda x nota, pois é algo que pode afetar diretamente a nota final, e tivemos o seguinte resultado:

Podemos observar que quanto mais a renda aumenta, maior a concentração de notas na parte de cima da tabela, existe uma correlação clara entre essas duas variáveis.

Já na questão da faixa etária, tirando o gráfico de count dos valores, vemos uma predominância enorme entre o público jovem, como pode ser observado aqui:

Como vemos, temos uma predominância muito grande entre os indivíduos de 17 e 18 anos, e uma taxa bem menor dos indivíduos de faixa etária mais avançada.

E, sobre a correlação entre a nota e idade, temos o seguinte gráfico:

Como podemos ver, as notas de pessoas mais velhas tendem a ser mais baixas, porém, mais esporádicas, visto que essas pessoas ocupam uma quantidade menor na taxa de matriculados. Agora, será que essas notas são mais baixas por uma dificuldade devido a idade, ou devido a quantidade menor de pessoas?

Já analisando a questão das raças, temos a seguinte diistribuição:

Como podemos ver, temos uma concentração muito maior de brancos e pardos do que o restante, vamos ver o impacto disso nas notas:

Aqui, vemos que os indígenas ficam um pouco abaixo da maioria, e pessoas brancas tem o maior range. Será que isso pode ser por oportunidades a mais do que os demais? Algo que é muito palpável, visto que as cotas têm um papel importante para corrigir essa diferença, e é aplicada no enem.

Vemos que temos muito mais alunos de escola pública do que privada, cerca de aproximadamente, o triplo. E visto isso, vamos analisar o impacto disso nas notas.

Aqui, podemos ver que a nota de pessoas da escola privada acaba tendo uma média maior do que as notas da escola pública, o que pode ser justificado devido a diferença de nível de ensino durante o ensino médio dos dois tipos de instituições. Sabemos que no Brasil, o ensino básico carece de recursos e de infraestrutura. Esses valores também podem ser esperados, visto que temos uma cota para instituições públicas.

Até o momento, tudo que foi especulado, está se mostrando nos dados, portanto, vamos continuar a análise.

Agora, analisaremos o estado civil e o impacto disso nas notas, pra começar com a distribuição dos mesmos:

Vemos que a grande maioria é solteira, seguido de pessoas que não informaram, e um pequeno índice de divorciados. Vemos também que casados e viúvos são mínimos. Já com relação a distribuição das notas:

Aqui, vemos os viúvos bem abaixo da média, sendo que o seu maior valor de nota é de cerca de 600. Os solteiros com as maiores, mas também com as menores notas, o que é justificado por serem a maioria, e os casados e divorciados se mantendo entre 400 - 800.

Partindo para análise entre gêneros, temos a seguinte distribuição:

Vemos uma quantidade significativamente maior de mulheres do que de homens.

E na distribuição entre notas, temos:

Aqui, vemos uma distribuição bem semelhante entre os gêneros, com ambos ocupando praticamente a mesma faixa. Como dropamos os valores NaN, as pessoas que faltaram foram descartadas, logo descartamos essa abordagem.

Também podemos ver a discrepância nas notas de pessoas que possuem e não possuem acesso a internet abaixo:

A discrepância é relativamente alta, e é bem evidente que ela existia, o acesso a internet acaba sendo um grande canal de estudos, e sem o mesmo, acaba sendo difícil se preparar para a prova.

Aqui, vemos a relação entre a quantidade de computadores e a nota

Vemos uma relevância significativa nesse quesito, em que quanto mais computadores, maior a tendência de agrupamento no topo, mostrando que esse dado é significativo e importante.

Já a relação entre redações anuladas e relações não anuladas, temos o seguinte:

Já na questão de escolha de lingua estrangeira, achamos o seguinte:

Vemos que as pessoas que escolheram inglês tiraram notas um pouco mais elevadas do que as que escolheram espanhol.

Etapa 3

O primeiro passo para a realização do modelo, era padronizar os dados, visto que os microdados do enem vem completamente fora de forma de uso, sem contar que em várias vezes, ele possui valores NaN, que dificultam e muito o processo de tratamento dos dados. Visto isso, foi realizado um novo tratamento, substituindo valores NaN por 0 em colunas de notas por exemplo, e descartando dados nulos, fazendo uma filtragem melhor.

Após isso, foi realizada uma pesquisa minuciosa em cada coluna categórica, visando excluir colunas que geram um certo viés para o modelo, por estar extremamente desbalanceada entre seus diferentes valores.

Após toda essa filtragem e seleção dos dados para serem utilizados no modelo, foi feito uma análise de correlação de variáveis, ou seja, qual variável teria mais impacto na nota final, sem contar nas variáveis que possuem correlações entre si, que deveriam ser removidas. Visto isso, foram realizadas 3 filtragens distintas, procurando remover atributos desnecessários, e criar atributos novos, que representam melhor os dados. E após isso, tivemos um data frame com as seguintes colunas:

- EMPREGADOS DOMESTICOS FAMILIA
- BANHEIROS RESIDENCIA
- QUARTOS RESIDENCIA
- QNTD CARROS
- QNTD FREEZER
- QNTD MAQUINA LAVAR
- QNTD MICROONDAS
- QNTD TELEVISAO
- TV ASSINATURA

- QNTD CELULAR
- QNTD COMPUTADOR
- ACESSO INTERNET
- TP COR RACA Branca
- TP_ST_CONCLUSAO_ensino medio completo
- TP ESCOLA Publica
- TP PRESENCA CH Presente
- TP PRESENCA MT Presente
- TP DEPENDENCIA ADM ESC Estadual
- TP_DEPENDENCIA_ADM_ESC_Federal
- TP DEPENDENCIA_ADM_ESC_Privada
- TP PRESENCA CH Presente
- TP PRESENCA MT Presente
- TP LINGUA Ingles
- renda baixo mediana
- idade_menor_dezessete
- ESCOLARIDADE_MAE_ENSINO_SUPERIOR
- ESCOLARIDADE PAI ENSINO SUPERIOR

A variável alvo foi a ACIMA_MEDIA_NOTA_FINAL, que buscava verificar através de uma regressão logística, se um determinado participante teve uma taxa de acerto maior ou menor que a média dos participantes. A ideia inicial, era de prever a nota do enem em si, porém, não consegui achar artifícios suficientes para realizar a operação utilizando a regressão logística, e os demais métodos, fugiam bastante do que foi passado em aula, visto que queremos calcular uma infinidade de valores reais. Poderíamos aplicar a regressão linear, porém, em decorrência das variáveis, esta não teve um bom desempenho. Portanto, optei por seguir o caminho de dedução binário. Visto isso, tivemos as seguintes métricas utilizando o sklearn:

	precision	recall	f1-score	support
0 1	1.00 0.93	0.83 1.00	0.91 0.97	11869 28306
accuracy macro avg weighted avg	0.97 0.95	0.91 0.95	0.95 0.94 0.95	40175 40175 40175
[[9842 2027] [8 28298]	•	- - : - :		

E usando a biblioteca statsmodels, obtivemos os seguintes resultados:

Logi	t Regress	ion Resu	ilts				
converged:	Logit MLE	Df Res Df Mod Pseudo Log-Li LL-Nul	R-squ.: kelihood:		160698 160673 24 0.7267 -26692. -97659. 0.000		
		coef	std err	Z	P> z	[0.025	0.975]
EMPREGADOS DOMESTICOS FAMILIA		0.1373	nan	nan	nan	nan	nan
BANHEIROS RESIDENCIA	-	0.2369	nan	nan	nan	nan	nan
QUARTOS_RESIDENCIA	-(0.0877	nan	nan	nan	nan	nan
QNTD CARROS	-	0.0474	nan	nan	nan	nan	nan
QNTD FREEZER		0.3287	nan	nan	nan	nan	nan
QNTD MAQUINA LAVAR		0.0957	nan	nan	nan	nan	nan
QNTD_MICROONDAS		0.1120	nan	nan	nan	nan	nan
QNTD_TELEVISAO	-(0.1487	nan	nan	nan	nan	nan
TV_ASSINATURA	-(0.2768	nan	nan	nan	nan	nan
QNTD CELULAR	- (0.0089	nan	nan	nan	nan	nan
QNTD_COMPUTADOR		0.1565	nan	nan	nan	nan	nan
ACESSO_INTERNET		0.1988	nan	nan	nan	nan	nan
TP_COR_RACA_Branca		0.3201	nan	nan	nan	nan	nan
TP_ST_CONCLUSAO_ensino medio completo		3.4508	nan	nan	nan	nan	nan
TP_ESCOLA_Publica		2.0346	nan	nan	nan	nan	nan
TP_PRESENCA_CH_Presente		1.6008	nan	nan	nan	nan	nan
TP_PRESENCA_MT_Presente		3.9348	nan	nan	nan	nan	nan
TP_DEPENDENCIA_ADM_ESC_Estadual		2.1692	nan	nan	nan	nan	nan
TP_DEPENDENCIA_ADM_ESC_Federal		0.3114	nan	nan	nan	nan	nan
TP_DEPENDENCIA_ADM_ESC_Privada		1.4113	nan	nan	nan	nan	nan
TP_PRESENCA_CH_Presente		1.6008	nan	nan	nan	nan	nan
TP_PRESENCA_MT_Presente		3.9348	nan	nan	nan	nan	nan
TP_LINGUA_Ingles		0.5536	nan	nan	nan	nan	nan
renda_baixo_mediana		1.7993	nan	nan	nan	nan	nan
idade_menor_dezessete		0.4930	nan	nan	nan	nan	nan
ESCOLARIDADE_MAE_ENSINO_SUPERIOR		0.0966	nan	nan	nan	nan	nan
ESCOLARIDADE PAI ENSINO SUPERIOR		0.0245	nan	nan	nan	nan	nan