This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-101139

(43)Date of publication of application: 07.04.2000

(51)Int.CI.

H01L 33/00

(21)Application number: 10-272286

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

25.09.1998

(72)Inventor: YOSHIDA HIROAKI

ITAYA KAZUHIKO SAITO SHINJI NISHIO JOSHI

NUNOGAMI SHINYA

(54) SEMICONDUCTOR LIGHT-EMITTING ELEMENT, MANUFACTURE THEREOF AND DEVICE USING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To separate easily a sapphire substrate with good reproducibility and to improve the heat dissipation property and leakage withstand voltage property of a semiconductor lightemitting element, by a method wherein a first electrode is provided on the end on one side of the ends of a laminated material formed by laminating a plurality of layers consisting of a nitride semiconductor layer, a second electrode is provided on the other end of the laminated material, and the thickness of the laminated material is specified.

SOLUTION: An N-type GaN layer 15 is crystal-grown on a sapphire substrate via a lift-off layer by a hydride VPE method. The sapphire substrate is separated from the part of the lift-off layer to use the layer 15 as a substrate, and layers 24 to 30 are grown by an MOCVD method. Moreover, a ridge structure constituted using the current constricting layer 29 is formed by a photolithography technique using a photosensitive resist and a day stabing using reactive photography layer. The combined processing approach is the current constriction of the combined process.

and a dry etching using reactive chlorine ions. The sapphire substrate can be separated, the mirror surface end surface of a laser can be stably formed and the oscillation characteristics of the laser can be improved. Moreover, by forming the thickness of the part of a semiconductor light-emitting element in a thickness of 20 ì m or thinner, the luminescent points of the element and an element adjacent to the element come close to each other, the element is easily excited by light from an active layer of the element adjacent to the element and the luminous efficiency of the element is enhanced.

LEGAL STATUS

[Date of request for examination]

05.02.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3525061

[Date of registration]

20.02.2004

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2000-101139

(P2000-101139A) (43)公開日 平成12年4月7日(2000.4.7)

(51) Int. C1. 7

識別記号

FΙ

テーマコード(参考)

H O 1 L 33/00

HO1L 33/00

C 5F041

審査請求 未請求 請求項の数7 〇L		OL	(全17頁)	
(21)出願番号	特願平10-272286	(71)出願人	000003078	
(0.0) (1.077.00			株式会社東芝	
(22)出願日	平成10年9月25日 (1998. 9. 25)		神奈川県川崎市幸区堀川町72番地	
		(72)発明者	吉 田 博 昭	
		•	神奈川県川崎市幸区小向東芝町1 株式会	
			社東芝研究開発センター内	
		(72)発明者	板谷和彦	
			神奈川県川崎市幸区小向東芝町1 株式会	
			社東芝研究開発センター内	
		(74)代理人	100064285	
			弁理士 佐藤 一雄 (外3名)	
			, , , , , , , , , , , , , , , , , , , ,	
			最終頁に続く	

(54) 【発明の名称】半導体発光素子及びその製造方法並びに半導体発光装置

(57) 【要約】

【課題】 良好なへき開性、放熱性、リーク耐圧性などを有する窒化物系半導体の半導体発光素子及びその製造方法並びに半導体発光装置を提供することを目的とする。

【解決手段】 サファイアなどの基板上に窒化物系半導体層をエピタキシャル成長させ、基板を剥離する。基板を剥離する方法としては、「リフトオフ層」を設ける方法と、基板の表面に加工を施して凹部を設ける方法と、基板の裏面側からレーザ光を照射する方法を挙げることができる。基板を剥離して得られた窒化物系半導体層を新たな基板としてその上に高品質の窒化物系半導体層をエピタキシャル成長させることもできる。

2

【特許請求の範囲】

【請求項1】半導体発光素子の製造方法であって、

基板上に結晶欠陥または欠損部の少なくともいずれかを 含んだリフトオフ層を設ける工程と、

前記リフトオフ層の上に窒化物系半導体からなる層を設ける工程と、

前記リフトオフ層に応力を加えることにより、前記基板 と前記窒化物系半導体からなる層とを分離する工程と、 を備えたことを特徴とする半導体発光素子の製造方法。

【請求項2】基板の表面に凹部を設ける工程と、

前記凹部を塞ぐように前記基板の上に窒化物系半導体からなる層を設ける工程と、

前記基板と前記窒化物系半導体からなる層とを分離する 工程と、

を備えたことを特徴とする半導体発光素子の製造方法。 【請求項3】前記分離する工程は、温度を変化させることにより行うことを特徴とする請求項2記載の半導体発光素子の製造方法。

【請求項4】前記分離する工程は、超音波を印加することにより行うことを特徴とする請求項2記載の半導体発 20 光素子の製造方法。

【請求項5】窒化物系半導体からなる複数の層を積層してなる積層体と、

前記積層体の一端に設けられた第1の電極と、

前記積層体の他端に設けられた第2の電極と、

を備え、

前記積層体の厚みは、20μm以下であることを特徴と する半導体発光素子。

【請求項6】請求項5記載の半導体発光素子と、

金属が被覆されたヒートシンクと、

を備え、

前記半導体発光素子の前記第1の電極と前記第2の電極 のいずれかと前記ヒートシンクに被覆された前記金属と は、低融点金属を介在することなく密着していることを 特徴とする半導体発光装置。

【請求項7】基板上に前記基板を構成する材料よりも小さいバンドギャップを有する窒化物系半導体からなる第1の層を設ける工程と、

前記第1の層の上に窒化物系半導体からなる第2の層を 設ける工程と、

前記基板の裏面からレーザ光を照射して前記第1の層に 吸収させることにより前記基板と前記第2の層とを分離 する工程と、

を備えたことを特徴とする半導体発光素子の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は半導体発光素子及び その製造方法並びに半導体発光装置に関する。より具体 的には、本発明は、窒化物系半導体を用いた半導体光発 光素子に関し、サファイア基板を容易且つ確実に分離す 50 ることにより高品質の結晶が得られる半導体発光素子及 びその製造方法並びに半導体発光装置に関する。

[0002]

【従来の技術】近年、家庭電化製品、OA機器、通信機器、工業計測器などさまざまな分野で発光ダイオード (LED) や半導体レーザなどの半導体発光素子が利用されている。例えば、多くの分野で用いられることになるであろうと予想される高密度光ディスク記録等への応用を目的として、短波長の半導体レーザの開発が注力されている。

【0003】現在は赤色半導体レーザが用いられており、それまでの赤外半導体レーザに比べ記録密度が向上した。この赤色の半導体レーザは、InGaAIP系の材料を用いた600nm帯での発光素子であり、光ディスクの読み取りと書き込みのどちらも可能なレベルにまで特性改善され、すでに実用化されている。

【0004】しかし、この材料系による赤色の半導体レーザは、次世代の光ディスク記録等への応用に対しては結晶欠陥の低減が困難で、動作電圧が高いなど材料的な問題が数多く存在する。また、発振波長は短いものでも460nm程度であり、システムから要求される420nm台での発振は物性からいって困難である。

【0005】一方で、さらなる記録密度の向上を目指して青色半導体レーザの開発が進められている。すでに、II-VI族系材料を用いた半導体レーザは発振動作が確認されてい。しかしながら、その信頼性は100時間程度にリミットされるなど実用化への障壁は多く、また発振波長を480nm以下とすることも困難であるなど、次世代の光ディスクシステム等への応用には材料的なリミットが数多く存在する。

【0006】これに対して、GaN (窒化ガリウム)を含む窒化物系半導体レーザは、原理的には350nm以下までの短波長化が可能であり、400nmでの発振動作が報告されている。信頼性に関しても、LEDにおいて1万時間以上の信頼性が確認されている。また、室温でのレーザ発振も最近、確認された。このように、窒化物半導体系は、次世代の光ディスク記録用光源などの種々の用途において必要とされる条件を満たす優れた特性を持つ材料である。

【0007】なお、本願において「窒化物系半導体」とは、 B_x I n_y Al $_z$ Ga $_{(1-x-y-z)}$ N(O \leq x \leq 1 、O \leq y \leq 1 、O \leq z \leq 1)なる化学式で表されるIII-V族化合物半導体を含み、さらに、V族元素としては、Nに加えてリン(P)や砒素(As)などを含有する混晶も含むものとする。

[0008]

40

【発明が解決しようとする課題】しかし、窒化物系半導体を用いた従来の発光素子は、以下に詳述する種々の問題を有する。

【0009】すなわち、窒化物系半導体を用いた従来の

発光素子は、サファイア基板の上にエピタキシャル成長 させることが一般的であった。しかし、サファイア基板 と窒素化物系半導体とは格子定数が顕著に異なるため、 成長結晶に結晶欠陥が多数発生する。このような結晶欠 陥が、本質的に、種々の素子特性や素子寿命の改善に対 する阻害要因となっている。

【0010】また、絶縁性のサファイア基板上に形成するため、n側電極とp側電極のいずれも、エピタキシャル成長面側に形成する必要がある。そのために、p型層と活性層とn型層の一部をエッチング除去し、n側電極 10をn型層の上に形成している。しかし、この構造では実際に素子として動作する部分は厚いサファイア基板上に形成されており、レーザに必要な共振器面を作成するためのへき開が困難である。

【0011】また、素子の放熱性を向上させるためには、通常はヒートシンクに素子を密着させるが、この構造ではサファイア側をヒートシンクに密着させても、サファイアの熱伝導率が低いために十分な放熱を確保することができない。逆に、電極側をヒートシンクに密着させた場合には、熱抵抗は減少するが電極を基板に対して20同じ方向に設置しているこの素子では作成が難しく歩留まりが悪い。

【0012】また、ヒートシンクと接していない側には サファイア基板がついており、やはり放熱性が悪い。

【0013】さらに、サファイア基板がついている限りは、電極から注入した電流を素子の横方向に流す必要があり、素子抵抗が大きくなる。

【0014】また、p側電極とn側電極との間の幾何学的にもっとも近い経路は素子の表面となり、リーク電流が多く生じる。

【0015】一方、HCI (塩酸) を輸送担体として用いるハイドライド化学堆積法(H-CVE法)により、窒化物系半導体の結晶を厚膜で成長する方法が最近行われはじめている。しかし、成長基板としてサファイア基板を用いているため、成長した結晶には結晶欠陥が多く含まれ、その上に作成した発光素子の素子特性の向上を阻害する要因のひとつなっている。

【0016】また、この際に、石英で局所的にマスクをつくり成長を行うラテラル成長方法が行われはじめているが、石英マスク上に成長した部分に小けい角粒界や欠 40 陥やボイドの発生が見られる。

【0017】一方、上述したような種々の問題を避けるために、サファイヤ基板上に $GaNe100\mu$ m程度形成し、サファイヤ基板を除去し、得られたGaN膜を擬似基板として利用する技術が提案されている。しかし、硬いサファイヤ基板を除去するために通常用いられる研磨法ではスループットが悪く、また研磨時に異常割れなどが発生するという問題があった。

【0018】本発明は係る種々の問題点に鑑みてなされたものである。すなわち、その目的は、再現性良く容易 50

且つ確実にサファイア基板を分離することにより、良好なへき開性、放熱性、リーク耐圧性などを有する窒化物系半導体の半導体発光素子及びその製造方法並びに半導体発光装置を提供することにある。

4

[0019]

【課題を解決するための手段】上記目的を達成するために、本発明によれば、サファイアなどの基板上に窒化物系半導体層をエピタキシャル成長させ、容易且つ確実に基板を剥離する方法を提供する。基板を剥離して得られた窒化物系半導体層を新たな基板としてその上に高品質の窒化物系半導体層をエピタキシャル成長させることもできる。

【0020】本発明において基板を剥離する方法は、大別して3つの方法に分類される。すなわち、「リフトオフ層」を設ける方法と、基板の表面に加工を施して凹部を設ける方法と、基板の裏面側からレーザ光を照射する方法を挙げることができる。

【0021】すなわち、本発明の半導体発光素子の製造方法は、基板上に結晶欠陥または欠損部の少なくともいずれかを含んだリフトオフ層を設ける工程と、前記リフトオフ層の上に窒化物系半導体からなる層を設ける工程と、前記リフトオフ層に応力を加えることにより、前記基板と前記窒化物系半導体からなる層とを分離する工程と、を備えたことを特徴とする。ここで、リフトオフ層が有する「結晶欠陥」とは、転位、点欠陥、面欠陥などの種々の結晶のミクロな不整を含むものであり、「欠損」とは、後に詳述するように、クラック、空隙、ピットなどのマクロな欠陥を含むものである。

【0022】または、本発明の半導体発光素子の製造方法は、基板の表面に凹部を設ける工程と、前記凹部を塞ぐように前記基板の上に窒化物系半導体からなる層を設ける工程と、前記基板と前記窒化物系半導体からなる層とを分離する工程と、を備えたことを特徴とする。

【0023】ここで、前記分離する工程は、温度を変化させることにより行うことを特徴とする。

【0024】または、前記分離する工程は、超音波を印加することにより行うことを特徴とする。

【0025】一方、本発明の半導体発光素子は、窒化物系半導体からなる複数の層を積層してなる積層体と、前記積層体の一端に設けられた第1の電極と、前記積層体の他端に設けられた第2の電極と、を備え、前記積層体の厚みは、20μm以下であることを特徴とする。

【0026】また、本発明の半導体発光装置は、上記の 半導体発光素子と、金属が被覆されたヒートシンクと、 を備え、前記半導体発光素子の前記第1の電極と前記第 2の電極のいずれかと前記ヒートシンクに被覆された前 記金属とは、低融点金属を介在することなく密着してい ることを特徴とする。

【0027】また、本発明の半導体発光装置の製造方法は、基板上に前記基板を構成する材料よりも小さいバン

ドギャップを有する窒化物系半導体からなる第1の層を設ける工程と、前記第1の層の上に窒化物系半導体からなる第2の層を設ける工程と、前記基板の裏面からレーザ光を照射して前記第1の層に吸収させることにより前記基板と前記第2の層とを分離する工程と、を備えたことを特徴とする。

[0028]

【発明の実施の形態】以下、本発明の実施の形態について図面を参照しつつ説明する。まず、本発明の第1の実施の形態として「リフトオフ層」を用いて基板を剥離す 10 る方法について説明する。

【0029】図1は、本発明の第1の実施の形態にかかる半導体発光素子の製造方法を例示する工程断面図である。すなわち、同図は、窒化物系半導体を用いた半導体レーザの製造方法を表す。

【0030】まず、図1 (a) に示したように、サファイヤ基板11の上にMOCVD (有機金属気相成長法) によりGaN層12、AlGaN層13、n型GaN層14を成長する。ここで、基板11とGaN層12との間には、図示しないバッファ層を設けても良い。各層の 20成長時の圧力は常圧とし、バッファ層以外のGaN層12、14及びAlGaN層13は、基本的には窒素、水素、アンモニアを混合した雰囲気において1000℃から1100℃の温度範囲内で成長した。

【0031】ここで、AIGaN層13のAI組成は30%前後とし、成長層の全面にクラックが入るように層厚を厚くする。このように欠損部を有したAIGaN層13は、後に詳述するように基板11を剥離するための「リフトオフ層」として作用する。

【0032】次に、図1 (b) に示したように、n型G 30 a N層15を80 μ m前後の層厚に成長し、さらに、半導体レーザの要部となるダブルヘテロ構造などを含む多層構造部16を成長する。ここで、n型GaN層15を層厚80 μ m前後の層厚に成長するためには、MOCV D法よりも成長速度が大きいハイドライドVPE (Vapor Phase Epitaxy) 法を用いることが望ましい。一方、多層構造部16の成長に際しては、従来と同様にMOC VD法を用いることができる。

【0033】次に、図1(c)に示したように、基板11を剥離する。具体的には、フォトリソグラフィ法など 40を用いて半導体レーザのメサストライフ部などを形成した後、レーザの多層構造部16を下にして治具17にワックスなどで貼り付ける。そして、基板11の側面または裏面に対して治具をあてて刷動させるなどの方法により応力を加えることで、簡単に基板11を剥離することができる。ここで、剥離は、「リフトオフ層」すなわちA1GaN層13の前後の界面付近において生ずる。

【0034】基板11を剥離したら、図1(d)に示したように、p側電極18とn側電極19を形成する。さらに、 \sim き開によりレーザ端面を形成してチップ化す

る。

【0035】なお、レーザの多層構造部16は、基板11を剥離した後に形成しても良い。すなわち、n型GaN層15をハイドライドVPEにより成長した後に、図1(c)に示したように基板11を剥離し、得られたn型GaN層15を新たな基板として多層構造部15を成長し、電極18、19を形成しても良い。

6

【0036】本実施形態において、基板11を剥離できるメカニズムについて以下に説明する。図2は、図1のGaN12、AlGaN層13、GaN層14の部分を表す要部拡大断面図である。本実施形態においては、AlGaN層13を成長する時にAl(アルミニウム)がもたらす格子歪によってクラック20Aが発生する。特に、Alの組成を30%以上とすることでクラック20Aは高密度化する。本発明者の実験によれば、このクラック20Aを平面的に観察すると6角形状に発生する場合が多いことが分かった。

【0037】このようにAlGaN層13を成長した後

にその成長温度においてウェーハを一旦保持すると、ク ラック20Aの下部にあるGaN層12の一部が成長雰 囲気に含まれる水素によってエッチングされ、空隙 20 Bが生ずる。この上にn型GaN層14を成長すると、 2次元成長モードによりクラック20Aの上が埋められ て平坦化し、これより上の成長には悪影響は生じない。 【0038】こうして形成されたクラック20Aや空隙 20Bにより、「リフトオフ層」すなわちA1GaN層 13の界面は、物理的に脆弱となる。そこに例えば上述 したように応力を与えることで、クラック20Aや空隙 20 Bをきっかけとして基板11を剥離することができ る。本実施形態において、基板11の剥離を容易に生じ させるためには、「リフトオフ層」であるAIGaN層 13のA1組成は、10~30%の範囲内とすることが 望ましい。また、その層厚は、0.1~1µmの範囲内 とすることが望ましい。Al組成がこれよりも低く、ま たは層厚が薄いと、クラックが不足して基板11の剥離 が容易でなく、また、A1組成がこれよりも高く、また は層厚がこれよりも厚いと、この上に成長する窒化物系 半導体層の結晶性が劣化する傾向が顕著となるからであ る。

40 【0039】応力を負荷する方法としては、治具を用いて加える方法の他にも、多層構造部16の成長後に、降温を急峻に行うことでも基板は剥離する。また、サファイア基板11の裏面側にダイサーなどで一部に「けがき」を入れるような方法を用いても剥離することができる。さらに、超音波洗浄機にウェーハを投入しても剥離することができる。また、後に詳述するように、サファイア基板11の裏面側から紫外線領域の波長のレーザ光を照射し、窒化物系半導体層での光吸収により局所的な熱を発生させ、窒化物系半導体を蒸発させて剥離するこちのともできる。

【0040】本実施形態における層13、すなわち基板 11を剥離するための「リフトオフ層」としては、高組 成のAIGaN以外にも、格子歪みを生ずる各種の材料 を用いることができる。図3は、「リフトオフ層」とし て In GaNを用いた場合を例示する要部断面図であ る。すなわち、同図に示した構成においては、GaN層 12とn型GaN層14との間にInGaN層21が設 けられている。ここで、InGaN層21のIn (イン ジウム)の組成は20%前後とすることができる。 In GaN層21を挿入した場合、Inの相分離が原因と考 10 えられる高密度のピット20Cが成長中に形成される。 このピット20Cは、InGaN層21を貫通する微細 な孔であり、10⁷~10⁹/c m²程度の密度で形成さ れる場合が多い。このピットにより、InGaN層21 は物理的には脆弱な層となり、基板11を容易に剥離す ることができる。

【0041】ここで、基板11の剥離を容易に生じさせ るためには、「リフトオフ層」であるInGaN層13 の In組成は、10%以上とすることが望ましく、20 %以上とすることがさらに望ましい。但し、MOCVD 法を用いる場合には、In組成が高いほど成長が容易で ない傾向がある。また、その層厚は、 $0.1 \sim 1 \mu m$ の 範囲内とすることが望ましい。In組成がこれよりも低 く、または層厚が薄いと、ピットが不足して基板11の 剥離が容易でなく、また、InGaN層の層厚がこれよ りも厚いと、この上に成長する窒化物系半導体層の結晶 性が劣化する傾向が顕著となるからである。

【0042】InGaNはハイドライドVPE法でも成 長が可能である。したがって、成長条件を最適化すれば サファイヤ基板11の上に直接GaN層12からハイド 30 ライドVPE法により成長することもできる。

【0043】一方、本実施形態における「リフトオフ 層」として用いることができるものは、前述したような クラックやピットなどの空間的な空隙を有するものの他 にも、例えば、転位などの結晶欠陥を他の部分と比べて 著しく高密度に有する層でも良い。具体的には、欠陥密 度が10⁸/cm²以上であり、層厚が10nm以上の半 導体層であれば、「リフトオフ層」として作用させるこ とが可能である。また、以上説明したようなリフトオフ 層は、サファイア基板の上に直接設けても良い。

【0044】あるいは、結晶成長によりリフトオフ層を 設けなくても、GaN層12の上にSiOタなどの誘電 体膜をストライプ状などの形状にパターニングし、MO CVDやハイドライドVPEによる成長時に横方向の成 長モードを加速させて上方向への転位を終端させる方法 もある。この場合には、SiO2層の部分を基板の剥離 のための「リフトオフ層」として利用できる。また、こ の場合に、成長後に弗酸などでSiOzをサイドエッチ ングし、空隙を形成しても良い。

レーザを例示する概略断面図である。図中15は、ハイ ドライドVPE成長によるn型GaNコンタクト層(S iドープ、ドーピング濃度 $1 \times 10^{18} \text{ c m}^{-3}$) であり、 図1(c)に関して前述したように、サファイア基板上 に成長した後に剥離して新たな基板として用いられるも のである。また、図中24は、n型Alo.osGao.92N クラッド層(Siドープ、1×10¹⁸ c m⁻³、層厚〇. 8 μm)、25はGaN光導波層、26は多重量子井戸 構造(MQW)からなる活性層部、27はGaN光導波 層(Mgドープ、 1×10^{19} c m^{-3} 、 $O. 1 \mu m$)であ る。

【0046】ここで、活性層部26のMQWの井戸層は 3 nm厚の I no. 15G a o. 85N層からなり、バリア層は 厚さ6 n mの I no. o2 G a o. 98 Nからなる。また、井戸 層は5層である。また、活性層部26は、MQWとp型 光導波層27との間に、層厚2nmのp型Alo.20Ga o. soNキャップ層を有する。

【0047】さらに、図中28はp型Alo.osGao.92 Nクラッド層(Mg ドープ、 5×10^{19} c m^{-3} 、0. 8 μ m) 、30はp型GaNコンタクト層 (Mgドープ、 8×10¹⁹ c m⁻³、O. 5 μ m) であり、最上部はM g を 2×10²⁰ c m⁻³まで高濃度化した。 29 は n 型 I n GaNからなる電流狭窄層、31はPt/Ti/Pt/ Auをこの順に積層したp側電極、32はn側電極であ る。紙面に対して平行方向に設けられる端面のレーザミ ラーは、へき開により形成する。

【0048】図4のレーザは、図1に関して前述した通 りである。すなわち、図示しないサファイア基板上にリ フトオフ層を介してハイドライドVPE (H-VPE) 法によりn型GaN層15を結晶成長する。そして、リ フトオフ層の部分からサファイア基板を剥離することに より得られたn型GaN層15を基板として層24~3 0をMOCVD法より成長することにより製造される。 あるいは、サファイア基板上において、リフトオフ層を 介して層15~30を成長した後に、サファイア基板を 剥離しても良い。

【0049】また、電流狭窄層29を用いたリッジ構造 は、感光レジストを用いた光リソグラフィー技術と反応 性塩素系イオンによるドライエッチング技術を用いて形 成することができる。すなわち、選択再成長法を用いて 電流狭窄層29を成長し、その上にコンタクト層30を 成長する。

【0050】本実施形態によれば、サファイア基板を剥 離することができるので、レーザの端面を形成するため のへき開を容易且つ確実に行うことができる。つまり、 従来の窒化物系半導体のレーザ素子よりも鏡面状の端面 を安定して形成することができ、レーザの発振特性を大 きく改善することができる。

【0051】また、サファイア基板上に形成した従来の 【0045】図4は、本実施形態により作製した半導体 50 素子では、メサを形成し、同じ表面からp側とn側の電 極をとっていたが、これと比較して本実施形態によれば リーク電流が減少する。

【0052】さらに、窒化物系半導体とは熱膨張係数の 異なるサファイア基板がないためにレーザの動作時の発 熱による歪みが生じず素子の寿命が向上する。また、サ ファイア基板とGaN界面で生じていた光反射がないた めに発振モードが安定しており、しきい値も低下する。

【0053】例えば、本実施形態によれば、リッジの幅が底面で 4μ mの場合に、しきい値65mAで室温において連続発振した。また、p側電極31をヒートシンク 10にマウントして測定した結果、発振波長は405nmであり、動作電圧は約4.5Vであった。ビーム特性は単峰性であり、非点隔差は約 10μ mと十分小さな値が得られた。また、最高光出力は連続発振で10mWまで得られ、最高連続発振温度は60Cであった。信頼性に関しても室温で1000時間以上安定に動作した。すなわち、本実施形態によれば、サファイア基板から容易且つ確実にエピタキシャル成長層を剥離することにより、極めて高性能且つ高信頼性を有する半導体発光素子を製造することができるようになる。 20

【0054】しかも、剥離したサファイア基板は基板剥離によってもほとんどダメージを受けないので、これを再利用して次の結晶成長に用いることができる。これにより、欠陥の少ない良質な窒化物系半導体のエピタキシャル結晶を多量にコストも安く生産することが可能となる。

【0056】また、36はp型Alo.osGao.s2Nクラッド層(Mgドープ、 $5\times10^{19}\,\mathrm{cm^{-3}}$ 、0. $1\,\mu$ m)、37はp型GaNコンタクト層(Mgドープ、8 40× $10^{19}\,\mathrm{cm^{-3}}$ 、0. $1\,\mu$ m)であり、最上部はMgを $2\times10^{20}\,\mathrm{cm^{-3}}$ まで高濃度化した。また、38はPt/Ti/Pt/Auからなるp側電極、39はn側電極、40はチップキャリヤである。

【0057】本具体例によれば、p側電極38を光反射層として作用させることができ、また全面コンタクトを取ることが可能で、光取り出し効率の向上と動作電圧の低減が可能である。また、p側とn側の電極をそれぞれチップの上下に設けることができるので、サファイア基板の上に形成した従来の窒化物系LEDよりもチップサ 50

イズを小型化できる。

【0058】本具体例では、印加電圧2.8Vで20m Aの電流が得られ、450nmの青色波長帯において1 0mWの光出力が得られた。

10

【0059】次に、本発明の第2の実施の形態について 説明する。本実施形態においては、サファイアなどの基 板の表面に予め加工を施した後に窒化物系半導体層をエ ピタキシャル成長させ、基板を容易且つ確実に剥離す る。

【0060】図6は、本発明の第2実施形態を説明するための概念図である。すなわち、同図は基板部分の工程断面図であり、101はサファイア基板、102は空隙、103はGaNエピタキシャル層、104は多結晶化したGaNをそれぞれ表す。

【0061】本実施形態においては、まず、図6 (a) に示したように、サファイア基板101の表面に凹部を形成する。具体的には、サファイア基板101に図示しないマスクをつけ、ドライエッチング法を用いて例えば幅 2μ m で深さ 3μ m を溝を形成する。

【0062】次に、マスクを除去し、図6(b)に示したように、ハイドライドVPE法を用いてGaN層103をエピタキシャル成長する。ガリウム(Ga)の原料としては金属ガリウム、窒素(N)の原料としてはアンモニアを用い、ガリウムの輸送担体としては塩化水素(HC1)を用い、結晶成長温度を約950℃として8時間成長することにより、約100μmのGaN層103をエピタキシャル成長させることができる。このエピタキシャル成長により、基板101の凹部の上が塞がれて、空隙102が形成される。また、この際に、基板101の空隙102の底面には、多結晶状のGaN104が堆積する。

【0063】エピタキシャル成長の後に、室温まで降温すると、図6 (c) に示したように、エピタキシャル成長したGaN層103から基板101が剥離する。これは、降温時に、基板101とGaN層103との間に、熱収縮率の差による歪みに起因してクラックが発生するためであると考えられる。本実施形態によれば、空隙102を設けることにより、このようなクラックの発生を促進させ、基板101の容易且つ確実に剥離することができる。

【0064】また、基板101を剥離するには、エピタキシャル成長温度から冷却する方法の他にも、熱的あるいは機械的な衝撃を印加するあらゆる方法を用いることができる。例えば、エピタキシャル成長後に室温まで冷却して基板101が剥離しない場合には、RTA(Rapid Thermal Annealing)のような方法により急加熱・急冷を施すことにより、基板101とGaN層103との間にクラックを生じさせ基板101を剥離することができる。または、後に詳述するように、基板101の裏面側から、GaNの吸収率が高い波長のレーザ光を照射す

ることにより、界面付近のG a Nを蒸発させ、基板を剥離することができる。または、各種の治具あるい超音波などをもちいて機械的な応力ないし衝撃を与えることによっても、基板を容易且つ確実に剥離することができる。

【0065】このようにして得られた厚さ約100 μ m のGaN層103の表面はミラー状であり、n型の導電性を示し、キャリア濃度はおよそ 10^{17} c m^{-3} であった。キャリア濃度は、エピタキシャル成長の際のドーピングにより調節することができる。また、このようにし 10て得られた厚さ約 100μ mのGaN層103を溶融水酸化カリウム中で約350℃においてエッチングしたところ、エッチピットはおよそ 10^{6} c m^{-2} オーダーであった。従来の方法により、平坦なサファイア基板上に成長させたままのGaN層のエッチピット密度が約 10^{8} c m^{-2} であることと比較すると、本実施形態によれば大きな改善が得られたといえる。

【0066】次に、図6 (d) に示したように、このようにして得られた低欠陥密度のGaN層103を基板として、その上に所定の素子構造106をエピタキシャル成長させる。さらに、必要に応じて、図示しない電極や保護膜などを形成する。

【0067】なお、図6(b)に示したようにハイドライドVPE法によりGaN層103を成長した後に、ウェーハを室温まで冷却してもサファイア基板101が剥離しない場合には、そのまま、ウェーハをMOCVD装置に導入してレーザの素子構造106を成長しても良い。しかる後に、前述したような方法により熱的あるいは機械的な衝撃を加えることにより、サファイア基板101を容易且つ確実に剥離することができる。

【0068】本実施形態においても、剥離したサファイア基板は基板剥離によってもほとんどダメージを受けないので、これを再利用して次の結晶成長に用いることができる。これにより、欠陥の少ない良質な窒化物系半導体のエピタキシャル結晶を多量にコストも安く生産することが可能となる。

【0069】ここで、本実施形態においてサファイア基板101の表面に形成する凹部は、図6(a)に示したような溝には限定されず、その他の各種の形状のものでも良い。すなわち、その上に成長するGaN層103に40より塞ぐことができ、また、クラックを生じさせて基板の剥離を容易にする形状であれば良く、平行に形成された複数の溝の他に、互いに交差する複数の溝や、多数の独立した孔であっても良い。このような孔の開口形状としては、円形の他に、楕円形や多角形などの種々の形状が挙げられ、不定形であっても良い。

【0070】また、本発明者の試作の結果によれば、サファイア基板101の表面に形成する凹部の幅をA、深さをB、隣接する凹部間の距離をCとした場合に、A \leq C かつA \leq B なる関係とすると良好な結果が得られる傾 50

向が認められた。すなわち、このような条件とすると、 クラックの発生を容易にしつつ、凹部をGaN層103 により塞ぐことができる。

12

【0071】図7は、本実施形態により製造した半導体 レーザ装置の構造の一例を表す概略断面図である。すな わち、同図においては、基板として用いるGaN層10 3が向かって上側に示されている。同図中206はn型 クラッド層(GaN層:アンドープ、層厚40nm、A l G a N層: S i ドープ、3~5×10¹⁸ c m⁻³、層厚 40 n m、全膜厚 0. 8 μ m)、207はGaN光閉じ 込め層(アンドープ、0. 1 μm)、208は I n_{o.2} Gao.sN/GaN-MQW活性層(アンドープ、井戸 層2nm、障壁層4nm、3周期)、209はGaN光 閉じ込め層(アンドープ、 $0.1\mu m$)、210は第1 のp型Alo.o3Gao.97Nクラッド層(Mgドープ、1 $\times 10^{18} \,\mathrm{c}\,\mathrm{m}^{-3}$, S i F- \mathcal{T} , $1 \times 10^{17} \,\mathrm{c}\,\mathrm{m}^{-3}$, 0. 1 μm) 、211はn型Alo. o3Gao. 97N電流狭窄層 (Sі ドープ、 1×10^{18} с m^{-3} 、Sі ドープ、 1×1 0¹⁷ c m⁻³、0. 1 μ m) 、212は第2のp型A1 o. o3G a o. 97Nクラッド層(Mgドープ、1×10¹⁸c $\rm m^{-3}$, S i F-7 , 1 \times 1 0 $^{17}\,\rm c$ $\rm m^{-3}$, 0 . 1 μ m) , 213はp型GaNコンタクト層をそれぞれ表す。

【0072】具体的な成長手順としては、まず、GaN層103の上にクラッド層206~電流狭窄層211までを成長する。その後、成長室からウェーハを取り出し、電流を流す部分を選択的にエッチングしてクラッド層210を露出させる。次に、再び成長室にウェーハを導入し、第2のクラッド層212とコンタクト層213を成長する。レーザの素子構造106の一連の成長は、30 MOCVD法により行うことができる。

【0073】このようにして成長したウェーハに図示しない電極を形成し、へき開してチップ化し、ヒートシンク300にマウントすることよりレーザ装置が完成する。このようにして形成したレーザ装置は、チップの上側にn側電極を有し、下側にp側電極を有する。

【0074】本発明により製造された半導体発光素子は、従来のサファイア基板上に形成された発光素子と比較して、極めて良質の結晶性を有し、電気的光学的特性が顕著に改善される。しかも、前述した第1実施形態と同様に、p側とn側電極をそれぞれ素子の上下に設けることができるので、コンタクト面積を拡大して素子抵抗を低減させ、チップサイズも小型化することができる。 【0075】また、チップの上下方向に電流を流すこと

【0075】また、チップの上下方向に電流を流すことができるために、素子中の欠陥が極端に減少し、レーザの信頼性が大きく向上した。すなわち、信頼性試験の結果、室温で50mWの動作条件において10万時間を越える寿命が予想される結果が得られた。

【0076】図8は、本実施形態により製造される半導体レーザ装置の第2の具体例を表す概略断面図である。 同図関しては、図7と同様の部分には、同一の符号を付

して詳細な説明は省略する。図8のレーザ装置は、ヒー トシンク300とは反対側の表面にp側電極260とn 側電極250が形成されている。

【0077】このタイプの素子を作成するには、素子構 造106の形成までは、図7に前述した工程と同じで良 いが、その次にn側電極250を形成するためのエッチ ングが必要となる。すなわち、はじめに p 側電極 2 6 0 をパターニングして形成する。次に、p側電極260が 作成される部分にはSiO2などによるマスクを形成 し、それ以外の部分をドライエッチング法により選択的 10 にエッチングしてn型GaN層103を露出させる。S i O₂を除去した後に、n側電極を形成する部分とp側 電極以外をSi0₂電流リーク防止膜240で覆う。最 後に、n側電極250を形成する。

【0078】図8に示したレーザ装置の場合には、従来 の装置と異なりサファイア基板がヒートシンクと活性層 との間に存在しないので、熱の放出が効率的に行われレ ーザの熱特性、寿命、及び発光効率が大きく向上した。 【0079】次に、本実施形態の変形例について説明す る。図9は、本発明の第2実施形態の変形例を表す概略 20 工程断面図である。本具体例においては、まず、図9 (a) に示したように、サファイア基板101の上にハ

【0080】次に、図9(b)に示したように溝を形成 する。具体的には、図示しないマスクを形成し、ドライ エッチング法を用いて例えば幅 2 μ m で深さ 3 μ m のエ ッチングを施して溝102を形成する。

イドライドVPE法によりGaN層107を約1μmの

層厚に成長する。

【0081】次に、図9 (c) に示したように、GaN 層を成長する。具体的には、ウェーハをもう一度ハイド 30 ライド成長装置に導入し、約100μmの層厚のGaN 層103を成長する。この際に、予め成長したGaN層 107がエピタキシャル成長の結晶核となり、溝102 を安定して塞ぐことができる。

【0082】その後、室温まで冷却することにより、図 9 (d) に示したように、サファイア基板101を剥離 することができる。この後、得られたGaN層103と 107の積層体を新たな基板としてMOCVD装置に導 入し、所定の素子構造を成長することができる。

【0083】なお、GaN層103を成長後にサファイ 40 ア基板101が剥離しない場合には、ウェーハをそのま まMOCVD層に導入し、所定の素子構造を形成してか ら、熱的あるいは機械的な負荷を加えることによって応 力を印加し、サファイア基板101を剥離しても良い。

【0084】本具体例においても、図6~図8に関して 前述した種々の効果を同様に得ることができる。さら に、本具体例においては、サファイア基板101の上に 予めGaN層107を成長することにより、その上のG a N層103の成長が容易となり、溝102を安定して らに向上させることができる。

【0085】次に、本実施形態の第2の変形例について 説明する。図10は、本発明の第2実施形態の第2変形 例を表す概略工程断面図である。本具体例においては、 まず、図10(a)に示したように、サファイア基板1 01の上に溝102を形成する。具体的には、サファイ ア基板にダイシングカッターで例えば幅 $20 \mu m$ 、深さ 20μmの溝を約40μm間隔で形成する。

14

【0086】次に、図10(b)に示したように溝の底 部にマスク層108を堆積する。具体的には、溝102 以外の部分に図示しないマスクを形成し、SiOzなど を堆積してマスク層108とする。この場合、マスク層 108となるSiO₂の厚さはサファイアの溝の深さで ある 20μ m以下であれば良く、例えば 1μ mとするこ とができる。

【0087】次に、図9 (c) に示したように、GaN 層103を成長する。具体的には、ウェーハをもう一度 ハイドライド成長装置に導入し、約100μmの層厚の GaN層103を成長する。この際に、溝102の底部 に予めマスク層108を設けたことにより、GaNの異 常成長を防ぐことができる。すなわち、サファイア基板 の溝102の底部は、ダイシングなどによる加工の際の 歪みが残留している場合が多い。このような歪みは、そ の上に成長するGaNの異常成長を引き起こすことがあ り、このために、溝102がGaN層103によりうま く塞がれず、その上に成長する素子構造部の結晶性が劣 化するという事態が生ずることがある。

【0088】本変形例においては、溝102の底部にS iO2などのマスク層108を設けることにより、Ga Nの異常成長を抑止し、良好な結晶品質を有する窒化物 系半導体のエピタキシャル層を得ることができる。

【0089】本変形例により、およそ100μmの層厚 のGaN層103を成長したところ、その表面はミラー 状の平坦面となり、光学顕微鏡で観察しても穴(ピッ ト)などの目立った表面パターンは見られなかった。ま た、GaN層103を成長したウェーハをハイドライド 成長装置を取り出したところ、ほとんどのウェーハはサ ファイア基板から剥離していた。剥離しなかったウェー ハを、純水の中で超音波洗浄した結果、5分程度でサフ アイア基板101が剥離した。

【0090】さらに、得られたGaN層103の上に図 7および図8と同様のレーザ素子を作製したところ、ほ ぼ同様の特性が得られた。一方、剥離したサファイア基 板について通常の前処理を行い、再びGaN層103を 成長したところ、前に得られたGaN層103と同様の 高品質の結晶が得られた。

【0091】このように、本変型例によっても、容易且 つ確実にサファイア基板を剥離し、極めて良質の結晶性 を有するGaN層を得ることができる。また、窒化物系 塞ぐとともに、この上に成長する素子構造の結晶性をさ 50 半導体からなる半導体素子の生産コストのうちで大きな 部分を占めるサファイア基板を再利用でき、顕著なコストダウンも併せて実現することができる。

【0092】次に、本発明の第3の実施の形態について 説明する。図11は、本発明の第3の実施の形態を表す 要部工程断面図である。また、図12は、本実施形態に より製造されるレーザ装置の一例を表す概略断面図であ る。まず、図12に示したレーザ装置の構成を説明する と、同図中の符号402はp側電極、403はp型Ga Nコンタクト層 (Mgドープ、3~5×10ⁱ⁹cm⁻³、 O. O 1 μm)、4 O 4 は第1のA I G a Nクラッド層 10 $(Mg F-7, 3\sim 5\times 10^{18} c m^{-3}, 0.7 \mu m)$ 405はAlGaN電流狭窄層(Siドープ、3~5× 10¹⁸c m⁻³、0.2 μm)、406は第2のAIGa Nクラッド層(Mgドープ、 $3\sim5\times10^{18}\,\mathrm{cm}^{-3}$ 、 O. $1 \mu m$)、407はAIGaNオーバーフロー防止 層、408は $GaNガイド層(アンドープ、<math>0.1\mu$ m) 、 4.0.9 はMQW(I $n_{0..2}$ G $a_{0..8}$ N/I $n_{0..03}$ G a o. 97N、3周期)活性層、410はGaNガイド層 (S i $\vec{F} - \vec{J}$, $5 \times 10^{18} \text{ c m}^{-3}$, 0. $1 \,\mu$ m), 4 11はn型AlGaNクラッド層(Siドープ、3~5 ×10¹⁸cm⁻³、0.8 μm)、412はn型GaNコ ンタクト層 (Siドープ、3~5×10¹⁸cm⁻³、0. O 1 μm)、413はGaリッチn型GaN層(Siド $-\mathcal{T}$, $3\sim5\times10^{18}\,\mathrm{c\,m^{-3}}$, 0. $01\,\mu\,\mathrm{m}$), 414はn側電極である。また、同図中500はヒートシンク である。

【0093】このようなレーザ素子は、サファイア基板 101の上にエピタキシャル成長することにより製造することができる。すなわち、図11(a)に示したように、MOCVD法によりサファイア基板101の上に素 30子構造部401を成長する。

【0094】具体的には、まず、GaN層412からAlGaN電流狭窄層405までをこの順番にサファイア基板101の上に成長する。この後、MOCVD装置の成長室よりウェーハを取り出し、電流狭窄層405上の一部にマスクを形成しクラッド層406が露出するまでエッチングを行い一部を除去し、電流が流れる部分を設けた後、再成長を行いクラッド層404とコンタクト層403を成長する。

【0095】次に、図11(b)に示したように、サフ 40 アイア基板101の裏面側からレーザ光を照射する。すると、GaN層412が電界により分解され、ガリウム(Ga)と窒素(N)に分かれて窒素が蒸発し、図11(c)に示したようにサファイア基板101を剥離することができる。

【0096】ここで照射するレーザ光としては、サファイア基板101の上に成長されたGaN層412において吸収率が高い波長の光とすることが望ましい。具体的には、例えば窒素レーザを用いることができる。また、基板を安定して剥離するためには、レーザ光の照射密度 50

は、 $20\,\mathrm{MW/c\,m^2}$ 以上とすることが望ましい。但し、結晶が多結晶であったり、 $I\,n\,G\,a\,N$ のような $I\,n$ (インジウム)を含む層である場合には、 $1\,\mathrm{MW/c\,m}$ 2程度でも基板を剥離することが可能であった。

16

【0097】このようにしてサファイア基板101を剥離すると、GaN層412の剥離面においてGaNがガリウム(Ga)と窒素とに分離し、表面付近の窒素が乖離してGaリッチGaN層413が形成される。

【0098】このようにしてサファイア基板101を剥離した素子構造401の上下に電極402、414を形成し、へき開してチップ化する。GaリッチGaN層413の上にn側電極414を形成する際には、電極とGaN層413とが合金化しやすく、接触抵抗を従来よりも小さくすることができるという利点が得られる。

【0099】その後、p側電極402をヒートシンク500に接合させる。p側電極と金属ヒートシンクを接合するためには、高真空中でそれぞれの表面を水素やアルゴンなどのプラズマにより処理することが望ましい。この場合には、ヒートシンクの表面は、鲖(Cu)、アルミニウム(A1)またはそのいずれかの合金によりコーティングされていることが望ましい。このようにして接合すれば、従来用いていたようなIn(4ンジウム)やガリウム(Ga)あるいはすず(Sn)、鉛(Pb)などの低融点金属半田を用いた場合に問題となっていた金属の遣い上がりによる電流リークを解消することができる

【0100】このようして製造したレーザ装置を動作させたところ、しきい値70mAで室温で連続発振した。また、発振波長は410nmであり、動作電圧は3.1 Vであった。さらに、サファイア基板を介することなくヒートシンクにマウントすることにより、レーザの放熱特性は従来のものに比べて5倍向上した。また、共振器面をへき開により安定して形成することができるために端面反射率が高く、また、高反射コートを施した場合にも面の荒れが少ないので高反射が容易に得られる。これらの効果により、しきい値を始めとする諸特性を改善することができる。

【0101】また、サファイア基板上に形成した従来の素子では、メサを形成し、同じ表面からp側とn側の電極をとっていたが、これと比較して本実施形態によればリーク電流が減少する。

【0102】さらに、窒化物系半導体とは熱膨張係数の異なるサファイア基板がないためにレーザの動作時の発熱による歪みが生じず素子の寿命が向上する。また、サファイア基板とGaN界面で生じていた光反射がないために発振モードが安定しており、しきい値も低下する。

【0103】また、本実施形態においても、剥離したサファイア基板を再利用することにより、製造コストを大幅に低減することもできる。

【0104】従来は、プロセス中の取扱いの容易さや結

20

18

晶成長時に用いる基板の関係上、研磨などにより薄膜化を行うものの、その全体の厚みは、 100μ m程度であった。しかし、このように厚い素子では、素子の特に活性層から発生した熱を放出するため際の熱抵抗及び熱容量が大きくなる。また、厚みが限定以上になると、熱の分布により素子中の歪みが大きくなり、特性の劣化を引*

厚み (μm) 10 20 30 素子A 10⁵ 10⁵ 6×10⁴ 素子B 10⁵ 10⁵ 10⁵ 素子C 10⁵ 10⁵ 4×10⁴

【0106】ここで、素子Aは、ヒートシンクに接している窒化物層がGaNであるレーザ素子であり、素子Bは、ヒートシンクに接している窒化物層がAlGaN(Al組成は5%)、素子Cは、ヒートシンクに接している窒化物層がInGaN(In組成は10%)のレーザ素子である。いずれの素子構成の場合にも、素子の厚みが薄くなる方が寿命が良好であることが分かる。素子の構造によりばらつきがあるが、素子の厚みがおよそ 20μ mよりも薄くなると寿命が安定している。つまり、本実施形態において、素子の部分の厚みを 20μ m以下とすると、良好な寿命が得られる。

【0107】ここで、サファイア基板を剥離して得られ る素子部の厚みが20μm以下の場合にも、通常は、既 存の製造方法によりで製造することは十分に可能であ る。しかし、ハンドリングが容易でない場合には、サフ アイア基板を剥離する前に、p側電極を形成し、適当な 基板を貼り付けてハンドリングを行えば良い。この場合 に、貼り付ける基板として、へき開性のある基板を用 い、素子のGaN層とへき開方向が平行になるように貼 30 り付けることが望ましい。このようにすれば、レーザの 端面を形成する際のへき開を円滑に行うことができる。 このような基板としては、Si、SiC、GaAs、I nP、GaP、GaNなどを用いることができる。この 基板は、主要なプロセスが終了した時点で剥離すれば良 い。このようにすれば、素子の厚みが薄い場合において も、ハンドリング性が向上し生産効率を改善することが できる。

【0108】次に、本実施形態の第2の具体例について 説明する。図13は、本実施形態の第2の具体例を表す 40 概略断面図である。すなわち、同図は、サファイア基板 101の上に素子構造を形成した状態を表す。同図に関 しては、図12について前述した部分と同一の部分に は、同一の符号を付して詳細な説明は省略する。

【0109】図13に示した具体例においては、結晶成長の際にいわゆるラテラル成長を行い結晶の欠陥を低減する。具体的には、サファイア基板101の上にGaN層502を成長し、成長室より取り出してGaN層502の一部を覆うように選択的にSiO₂層503を形成する。その後、再びMOCVD装置に導入し、SiO₂

*き起こす。

【0105】本発明者は、このような素子の厚みと特性の関係を調べた。下記の表は、素子の厚みと、寿命試験により得られた素子寿命(時間)との関係を表すものである。

50 70 9×10³ 6×10³ 8×10⁴ 6×10⁴ 6×10³ 4×10² (時間)

層 5 0 3 の間隙に露出する G a N層 5 0 2 を結晶成長の 核として面内方向に G a Nを成長させるラテラル成長に より、 G a N層 5 0 4 を成長する。

【0110】その後、n型コンタクト層412からp型コンタクト層403までの各層を成長する。しかる後に、サファイア基板101の裏面側からレーザ光を照射して基板101を剥離し、GaN層504、 SiO_2 層503、GaN層504をドライエッチングにより除去してコンタクト層412を露出させる。さらに、電極を形成してレーザ素子が完成する。

【0111】本変形例によれば、サファイア基板101の上に窒化物系半導体の層をエピタキシャル成長するに際して、いわゆるラテラル成長を採用することにより、素子の各層の結晶欠陥を大幅に減少し、発光特性や電気特性さらに素子寿命を向上させることができる。

【0112】次に、本実施形態の第3の具体例について 説明する。図14は、本実施形態の第3の具体例を表す 概略断面図である。すなわち、同図は、サファイア基板 101の上に素子構造を形成した状態を表す。まず、サ ファイア基板101の上にGaN層601を成長し、成 長装置からウェーハを取り出し、一部分を残してSiO 2膜602で表面を覆う。この後、再び成長を行う。す なわち、GaNバッファ層603、InGaN層60 4、n型GaN層605、n型GaN/AlGaN超格 子クラッド層(GaN層:アンドープ、40nm、Al GaN層: Siドープ、3~5×10¹⁸cm⁻³、40n m、全膜厚O. 8 μm) 606、GaN光閉じ込め層 $(r \vee F - r)$, O. $1 \mu m$) 607, In_{0.2}G a_{0.8}N /GaN-MQW活性層(アンドープ、井戸層2nm、 障壁層4 n m、3周期) 608、GaN光閉じ込め層 (アンドープ、0. 1 μm) 609、第1のp型A1 o. o3G a o. 97Nクラッド層(Mgドープ、1×10¹⁸c m^{-3} , S i F- \mathcal{I} , 1 × 1 0 17 c m^{-3} , 0. 1 μ m) 6 10、n型Alo.o3Gao.97N電流狭窄層(Siドー \mathcal{I} , 1×10^{18} c m⁻³, S i F- \mathcal{I} , 1×10^{17} c m^{-3} 、0. 1 μ m) 6 1 1 をこの順に成長する。

【0113】その後成長室からウェーハを取り出し、電流を流す部分をエッチングにより選択的に除去して第1 50 のクラッド層610を露出させ、さらに第2のp型Al o. o3 G a o. 97 N クラッド層(M g ドープ、 1×1 0 ¹⁸ c m^{-3} 、S i ドープ、 1×1 0 ¹⁷ c m^{-3} 、0. 1μ m) 6 1 2、n 型G a N コンタクト層 6 1 3 を成長する。この 状態を表したものが図 1 4 である。

【0114】この後、サファイア基板101の裏面からレーザ光を照射して基板101を剥離する。ここで、レーザ光の波長として、GaNに対しては透明でInGaNに対して吸収率が高い波長を用いることにより、InGaN層604にレーザ光を吸収させて電界によりInGaNが分解され、サファイア基板101とともにGaN 層601、Si02 膜602 およびGaN バッファ層603 を剥離することができる。

【0115】InGaN層604のIn (インジウム) 組成比が20%程度の場合には、レーザ光の波長は40 0nm前後がよい。

【0116】このようにして剥離した後、素子の両面に それぞれ電極を形成し、へき開してチップ化する。これ をヒートシンク500の上にマウントすることにより、 図15に示したような半導体レーザ装置が完成する。

【0117】また、図16は、ヒートシンク500と反 20 対側の表面においてp側電極とn側電極を形成した例を表す概略断面図である。このレーザ素子も、前述したものと同様に、サファイア基板上に各層を結晶成長し、基板の裏面からレーザ光を照射することにより基板を剥離して形成することができる。図16の素子の構成は、図8に関して前述したものと概略同様であるので、ここでは同一の符号を付して詳細な説明は省略する。

【0118】本実施形態においても、サファイア基板を容易且つ確実に剥離することができるので、前述した第1実施形態や第2実施形態と同様の効果を得ることがで30きる。さらに、本実施形態においては、サファイア基板を剥離して得られる素子の厚みを20 um以下とすることにより、前述したように寿命を改善することができる。

【0119】次に、本発明により得られるスタック (積層)型レーザについて説明する。

【0120】図17は、本発明により得られるスタック型レーザの構成を例示する概念図である。すなわち、本発明のスタック型レーザ700は、レーザ素子701を縦横に積層した構成を有する。それぞれのレーザ素子7400間には、ヒートシンク702が設けられ、電極としての役割も有する。また、一端に正極側の電極710が設けられ、他端に負極側の電極720が設けられる。レーザ素子701は、前述した第1乃至第3実施形態により製造することができ、それぞれ素子の上下にp側コンタクトとn側コンタクトを有するものである。電流の注入は、上下の電極710、720を介して行う。

【0121】このようなスタック型レーザにより超高出力が得られる。図17においては、5行5列にレーザ素子701を積層したレーザを例示したが、素子の個数は 50

何個でもよい。本発明によれば、これらのレーザ素子701にはサファイア基板がないので放熱特性が良好で非常にコンパクトなスタック型レーザが得られる。これにより得られるレーザビームスポットは、固体レーザやガスレーザとほぼ同じサイズも可能であり大口径の平行ビームが得られる。

20

【0122】本発明によれば、特に高出力でビームスポットが小さいことと、半導体レーザゆえに高速変調ができることを利用することによりレーザプロジェクタの光源としても非常に理想的なスタック型レーザが実現される。

【0123】本発明者の実験の結果、図17のレーザに電流を注入したところ、動作電圧15 Vで発振しきい値150 mA、駆動電流10 Aにおいて出力90 Wの発光特性が得られた。スタック型レーザを構成しているレーザ素子701の厚みが 20μ m程度なので、5 段重ねた場合には、ヒートシンク702 の厚さを加えても、全体の厚みは数mm程度である。

【0124】従来の高出力スタック型レーザにおいては、積層前の個々のレーザ素子の電極間の厚みが100 μm以上もあり、つまり、レーザ素子の発光点の間隔がこのような素子の厚みの分だけあった。このようなレーザでは、それぞれの素子から放出されるレーザビームは独立したものであり、ある素子から放出された光が隣接する素子に与える影響は極めて小さかった。

【0125】これに対して、本発明によれば、個々のレーザ素子701の厚みを 20μ m程度とすることによって発光点が近接し、相互に隣接するレーザ素子からの光の影響をうけるようになる。その結果として、個々のレーザ素子701は、隣接する素子の活性層からの光により励起されやすくなり、発光効率が上昇する。

【0126】図18は、本発明によるスタック型レーザの変形例を表す概念図である。すなわち、同図のスタック型レーザにおいては、ヒートシンク704としてダイヤモンド薄膜を用い、電流注入のための電極703をダイヤモンド薄膜704の上にパターニングして形成することにより、レーザ素子701のそれぞれを個別に制御することが可能である。

【0127】また、それぞれの素子701の電極とヒートシンク704の上の電極とを接合するために高真空中でそれぞれの表面を水素やアルゴンなどのプラズマにより処理し接合することにより、これまで用いていたような低融点金属を用いた場合に問題となっていた金属の這い上がりによる電流リークを抑えることができる。

【0128】また、ヒートシンク704の上下から圧力を加えることにより、結晶に歪みがかかりバレンスバンドのパンドスプリッティングが生じ、状態密度が小さくなるのでしきい値の低減が図れる。同時に密着性が良くなり熱抵抗が減少する。

【0129】本発明のスタック型レーザをレーザプロジ

ェクタに使用したところ1000インチの大型画面であっても屋外で日中に鑑賞可能な輝度の高い高品位なプロジェクタが実現された。また、これまではガスレーザを用いていたので1500kgもあったプロジェクタ装置の重量を50kgに減少することができた。

【0130】以上、具体例を参照しつつ本発明の実施の 形態について説明した。しかし、本発明は、これらの具 体例に限定されるものではない。

【0131】例えば、各具体例において用いたサファイア基板の他に、サファイアに限定されず、その他にも、例えば、スピネル、MgO、 $ScAlMgO_4$ 、 $LaSrGaO_4$ 、(LaSr) (AlTa) O_3 などの絶縁性基板や、SiC、Si、Ge、GaAsなどの導電性基板も同様に用いてそれぞれの効果を得ることができる。また、II-VI族化合物半導体を基板として用いることもできる。ここで、 $ScAlMgO_4$ 基板の場合には、

(0001) 面、(LaSr) (AlTa) O₃基板の 場合には(111) 面を用いることが望ましい。

【0132】また、各具体例において示した発光素子の構造は一例に過ぎず、その構成は当業者が種々に変形す 20 ることができる。例えば、各層の導電型は、反転させることが可能であり、また、活性層として多重量子井戸構造を採用したり、また、種々の電流狭窄構造を採用しても良い。

【0133】さらに、本発明は半導体レーザに限定されず、発光ダイオードやその他の窒化物系半導体をもちいた発光素子に対して同様に適用して同様の効果を得ることができる。

[0134]

【発明の効果】本発明は、以上説明したような形態で実 30 施され、以下に説明する効果を奏する。

【0135】まず、本発明によれば、サファイア基板を容易且つ確実に剥離することができるので、サファイア基板との格子のズレによる結晶性の低下を解消することができる。その結果として、従来よりもはるかに品質の高い結晶を得ることができ、半導体発光素子の電気的、光学的特性を改善するとともに、寿命も伸ばすことができる。

【0136】また、本発明によれば、サファイア基板を 剥離することにより、レーザの端面を形成するためのへ 40 き開を容易且つ確実に行うことができる。つまり、従来 の窒化物系半導体のレーザ素子よりも鏡面状の端面を安 定して形成することができ、レーザの発振特性を大きく 改善することができる。

【0137】また、サファイア基板上に形成した従来の素子では、メサを形成し、同じ表面からp側とn側の電極をとっていたが、これと比較して本実施形態によればリーク電流が減少する。

【0138】さらに、窒化物系半導体とは熱膨張係数の 異なるサファイア基板がないためにレーザの動作時の発 50 熱による歪みが生じず素子の寿命が向上する。また、サファイア基板とGaN界面で生じていた光反射がないために発振モードが安定しており、しきい値も低下する。

22

【0139】しかも、本発明によれば、剥離したサファイア基板は基板剥離によってもほとんどダメージを受けないので、これを再利用して次の結晶成長に用いることができる。これにより、欠陥の少ない良質な窒化物系半導体のエピタキシャル結晶を多量にコストも安く生産することが可能となる。

【0140】以上詳述したように、本発明によれば、高性能且つ高信頼性を有する半導体発光素子を低コストで提供することができるようになり、その有用性は絶大である。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態にかかる半導体発光素子の製造方法を例示する工程断面図である。

【図2】図1のGaN12、AlGaN層13、GaN層14の部分を表す要部拡大断面図である。

【図3】「リフトオフ層」としてInGaNを用いた場合を例示する要部断面図である。

【図4】第1実施形態により作製した半導体レーザを例示する概略断面図である。

【図5】図4と同様な製造方法により作製した発光ダイオードを表す概略断面図である。

【図6】本発明の第2実施形態を説明するための概念図である。

【図7】第2実施形態により製造した半導体レーザの構造の一例を表す概略断面図である。

【図8】第2実施形態により製造されるレーザ素子の別の具体例を表す概略断面図である。

【図9】本発明の第2実施形態の第1変型例を表す概略 工程断面図である。

【図10】本発明の第2実施形態の第2変型例を表す概略工程断面図である。

【図11】本発明の第3の実施の形態を表す要部工程断面図である。

【図12】第3実施形態により製造されるレーザ素子の 一例を表す概略断面図である。

【図13】第3実施形態の第2の具体例を表す概略断面 図である。

【図14】第3実施形態の第3の具体例を表す概略断面 図である。

【図15】第3実施形態による半導体レーザ装置を表す 概略断面図である。

【図16】ヒートシンク500と反対側の表面において p側電極とn側電極を形成した例を表す概略断面図であ る。

【図17】本発明により得られるスタック型レーザの構成を例示する概念図である。

【図18】本発明によるスタック型レーザの変形例を表

	(13)		特開2000-10113
23			24
す概念図である。		2 1 1	n型A I o. o3G a o. 97N電流狭窄層
【符号の説明】		2 1 2	第2のp型Alo. o3Gao. 97Nクラッド層
12 GaN層		2 1 3	p型GaNコンタクト層
13 AIGaN層		240	保護膜
14 GaN層		250	n側電極
15 GaN層		260	p 側電極
16 多層構造部		300	ヒートシンク
17 治具		401	素子構造部
18 p側電極		402	p 側電極
19 n側電極	10	403	p型GaNコンタクト層
20A クラック		404	第1のAlGaNクラッド層
20B 空隙		405	AlGaN電流狭窄層
20C ピット		406	第2のAIGaNクラッド層
21 InGaN層		407	AlGaNオーバーフロー防止層
2 4 n型A l o. osG a o. 92Nクラッド層		408	G a Nガイド層
2 5 G a N光導波層		409	MQW活性層
26 多重量子井戸構造からなる活性層部		410	G a Nガイド層
2 7 G a N光導波層		411	n型AlGaNクラッド層
28 p型Alo.osGao.s2Nクラッド層		412	n型G a Nコンタクト層
29 n型InGaNからなる電流狭窄層	20	413	Gaリッチn型GaN層
30 p型GaNコンタクト層		414	n側電極
31 p側電極		500	ヒートシンク
3 2 n 側電極		601	GaN層
34 n型Alo.osGao.92Nクラッド層		602	S i O₂膜
3 5 多重量子井戸構造(MQW)活性層		603	G a Nパツファ層
36 p型Alo.osGao.s2Nクラッド層		604	InGaN層
37 p型GaNコンタクト層		605	n型G a N層
38 p側電極		606	n 型GaNクラッド層
3 9 n 側電極		607	GaN光閉じ込め層
40 チップキャリヤ	30	608	活性層
101 サファイア基板	1	609	G a N光閉じ込め層
102 空隙	1	610	第1のp型Alo. o3Gao. 97Nクラッド層
103 GaNエピタキシャル層	(n 型 A l o. o3 G a o. 97 N電流狭窄層
104 多結晶化したGaN	(6 1 2	第2のp型Alo. o3Gao. 97Nクラッド層
106 素子構造		5 1 3	n型G a Nコンタクト層
107 GaN層		700	スタック型レーザ

701 レーザ素子

702 ヒートシンク

703 電極

710 電極

720 電極

40 704 ヒートシンク

108 マスク層

206 n型クラッド層

207 GaN光閉じ込め層

209 GaN光閉じ込め層

208 I n_{o.2}G a_{o.8}N/G a N-MQW活性層

210 第1のp型Alo. o3Gao. 97Nクラッド層

【図15】

【図17】

【図14】

【図16】

【図18】

フロントページの続き

(72)発明者 斎 藤 真 司 神奈川県川崎市幸区小向東芝町1 株式会 社東芝研究開発センター内

(72)発明者 西 尾 譲 司 神奈川県川崎市幸区小向東芝町1 株式会 社東芝研究開発センター内 (72)発明者 布 上 真 也 神奈川県川崎市幸区小向東芝町1 株式会 社東芝研究開発センター内 Fターム(参考) 5F041 'AA31 AA43 CA05 CA40 CA46 CA65 CA67 CA77 CB36