Základní praktikum FJFI ČVUT v Praze

Název úlohy: Průchod svazku záření beta látkou

Datum: 1. 3. 2017 Vypracoval: Michal Šesták

Číslo úlohy: 6 Skupina: 3 Čas praktik: Středa, 11.30 Klasifikace:

1 Pracovní úkoly

1. Změřte zeslabovací křivku β záření 90 Sr + 90 Y v papíru pomocí GM počítače. Dobu měření zvolte tak, aby počet detekovaných částic bez stínící vrstvy byl minimálně 100 000.

- 2. Po odečtení pozadí stanovte části experimentálně získané zeslabovací křivky, ve kterých je její průběh přibližně exponenciální a určete z ní hmotnostní a lineární součinitel absorpce odděleně pro β částice ⁹⁰Sr a ⁹⁰Y. Výsledky fitů srovnejte s výsledky podle vztahu (2).
- 3. Diskutujte vztah mezi počtem detekovaných částic N_{01} a N_{02} získaných z prokladů 90 Sr a 90 Y podle vztahu (1) a zhodnoť te jejich vztah k aktivitě obou radionuklidů.

2 Použité přístroje a pomůcky

MiniBin NIM rack ORTEC model 4006, zesilovač-jednokanálový analyzátor ORTEC model 590A, čítač ORTEC model 871, zdroj vysokého napětí ORTEC, sonda pro β záření s okénkovým GM počítačem, sada papírových destiček, mikrometr, olověný stínící domek s vestavěným kolimátorem, zdroj záření 90 Sr + 90 Y.

3 Teoretický úvod

Převážnou část zeslabovací křivky β záření je možno popsat vztahem

$$N = N_0 e^{-\mu x},\tag{1}$$

kde N je počet elektronů zaznamenaných za vrstvou materiálu tloušťky x, N_0 je počet elektronů na tomtéž místě bez procházení materiálem a μ je součinitel absorpce.

Pro hmotnostní součinitel absorpce $\mu_m = \frac{\mu}{\rho}$, kde ρ je hustota materiálu a μ je lineární součinitel absorpce, platí přibližný empirický vztah

$$\mu_m = 22 \cdot T_{max}^{-4/3},\tag{2}$$

kde $T_{max}^{-4/3}$ se dosazuje v MeV a μ_m vychází v cm²·g⁻¹. Pro ⁹⁰Sr je $T_{max} = 0.546$ MeV, pro ⁹⁰Y je $T_{max} = 2.288$ Mev. Vztahy byly brány z [1].

4 Postup měření

Měřící aparatura byla plně připravena, mohli jsme tedy rovnou přistoupit k měření. Nejprve jsme změřili třikrát každý rozměr balíku papírků (posuvným měřítkem s chybou 0.005 cm) a jeho hmotnost (digitální vahou s chybou 0.05 g). Měření zeslabovací křivky β záření zdroje 90 Sr + 90 Y probíhalo postupným přidáváním papírků, přičemž pro každou tloušťku (daný počet papírků) se emitované částice zaznamenávali 100 sekund; bylo využito 58 papírků, proběhlo tedy 59 měření.

5 Výsledky měření

Vypočtené rozměry a hmotnost balíku podle vztahů (12) a (13) jsou v tab. 1. Z tloušťky balíku X se určila tloušťka jednoho papírku podle vztahu $x=\frac{X}{58}$ a tedy

$$x = 0.333 \text{ mm}, \tag{3}$$

chybu zanedbáme. Hustotu papírku byla vypočítána ze vztahu $\rho=\frac{m}{Xab}$, chyba podle vztahu (14), vyšlo

$$\rho = (746 \pm 8) \text{ kg/m}^3. \tag{4}$$

	X [m]	a [m]	b [m]	m [kg]
	0.0190	0.0618	0.0694	0.0617
	0.0194	0.0616	0.0694	0.0617
	0.0194	0.0616	0.0696	0.0617
Průměr	0.0193	0.06167	0.06947	0.06170
Chyba	0.0002	0.00012	0.00012	0.00005

Tab. 1: Naměřené hodnoty rozměrů balíku papírků X, a, b (X je tloušťka) s chybou 0.005 cm a hmotnosti balíku m s chybou 0.05 g. Tabulka dále obsahuje vypočtené průměry a chyby jednotlivých veličin; chyba veličiny je součtem střední kvadratické odchylky a chyby měřícího přístroje.

Naměřené počty částic v závislosti na tloušťce materiálu jsou v tab. 2 a v grafu 1 . Jednotlivé fity pro pozadí, pro β částice emitované z 90 Y a pro β částice emitované z 90 Sr jsou na obrázcích 2 , 3 a 4 ; v obr. 3 je odečtený příspěvek od pozadí a v obr. 4 je odečtený příspěvek od pozadí i od částic z 90 Y. Fitovalo se podle vztahu

$$f(z) = \ln N = -\mu \cdot z + \ln N_0,\tag{5}$$

kde z je tloušťka materiálu, μ a ln N_0 parametry fitu. Při odečítání daných příspěvků od celkového počtu impulzů se chyba rozdílu určovala pomocí (14), tyto chyby jsou vidět v obr. 3 a 4 (zlogaritmované). Pro lineární součinitele absorpce máme

$$\mu_1 = (5.4 \pm 0.2) \text{ cm}^{-1},$$
(6)

$$\mu_2 = (26 \pm 2) \text{ cm}^{-1},$$
 (7)

pro hodnoty N_0 máme

$$N_{01} = 24760 \pm 1, (8)$$

$$N_{02} = 57492 \pm 1. \tag{9}$$

S využitím (4) a (7) získáváme

$$\mu_{m_1} = (7.2 \pm 0.3) \text{ cm}^2/\text{g},$$
(10)

$$\mu_{m_2} = (35 \pm 3) \text{ cm}^2/\text{g}.$$
 (11)

Poče	t pap	írků	0		1	2	3	4	5	$ \epsilon $;	7	8	9	10	11	12	13	14	15	
Vrstva [mm]		0.00	(0.33	0.67	1.00	1.33	1.6	7 2	2.00	2.33	2.66	3.00	3.33	3.66	4.00	4.33	3 4.6	66 5.0	00	
${f N}$			1022	293	44564	28819	21689	17140	6 141	.03 1	2228	10561	9547	8610	7554	6953	6419	595	5 54	62 53	31
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	32	34	36	38	3	40	43
5.33	5.66	5.99	6.33	6.66	6 6.99	7.33	7.66	7.99	8.33	8.66	8.99	9.32	9.66	9.99	10.66	11.32	2 11.9	99 12	2.65	13.32	14.32
5130	4894	4754	4368	429	9 4320	4104	4139	4055	3885	3864	1 3730	3791	3615	3679	3551	3624	353	$4 \mid 36$	374	3510	3628
·	,			'	·			,										· ·			
46	49	52	55	5	58																
15.32	16.32	17.3	2 18.	32 1	9.31																
3429	3499	3670	351	.8 3	3457																

Tab. 2: Naměřené hodnoty počtu emitovaných částic N pro daný počet papírků. Tloušťka jednoho papírku je 0.333 mm.

6 Diskuze

;++;

7 Závěr

;++;

Reference

[1] Prusa, P.: Úloha ZPRA č. 6: Průchod svazku záření beta látkou. 2 s. Citováno 2. 3. 2017, dostupné z: https://behounek.fjfi.cvut.cz/

8 Přílohy

A Zpracování chyb měření

Při statistickém zpracování naměřených dat používáme vztahy pro aritmetický průměr a střední kvadratickou chybu aritmetického průměru

$$\overline{z} = \frac{1}{n} \sum_{i=1}^{n} z_i, \tag{12}$$

$$\sigma_{\overline{z}} = \sqrt{\frac{\sum_{i=1}^{n} (\overline{z} - z_i)^2}{n(n-1)}},\tag{13}$$

kde n je počet naměřených hodnot veličiny z.

Máme-li zjistit nepřesnost veličiny $f = f(x_1, x_2, ...)$ závislé na veličinách $x_1, x_2, ...$ ze známosti hodnot $x_1, x_2, ...$ s jejich chybami $\sigma_{x_1}, \sigma_{x_2}, ...$, pak využijeme vzorec

$$\sigma_f = \sqrt{\left(\frac{\partial f}{\partial x_1}\right)^2 \sigma_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 \sigma_{x_2}^2 + \dots}$$
(14)

B Grafy

Obr. 1: Naměřené počty impulzů N v závislosti na tloušťce materiálu.

Obr. 2: Fitovaná závislost počtu impulzů pocházejících od pozadí na tloušťce materiálu. Data byla fitována cca od tloušťky 0.95 cm.

Obr. 3: Fitovaná závislost počtu impulzů pocházejících od zdroje $^{90}{\rm Y}$ na tloušťce materiálu. Data byla fitována od tloušťky 0.16 cm.

Obr. 4: Fitovaná závislost počtu impulzů pocházejících od zdroje $^{90}\mathrm{Sr}$ na tloušťce materiálu.