Lesson 5 Data Visualization with R

Outline

- Types of Data
- Creating data visualization using base graphics system
 - Visualizing one categorical variable
 - Visualizing one numeric variable
 - Visualizing two categorical variables
 - Visualizing two numeric variables
 - Visualizing both a categorical and a numeric variable
- Creating data visualization using ggplot2

Outline

- Types of Data
- Creating data visualization using base graphics system
 - Visualizing one categorical variable
 - Visualizing one numeric variable
 - Visualizing two categorical variables
 - Visualizing two numeric variables
 - Visualizing both a categorical and a numeric variable
- Creating data visualization using ggplot2

Types of Data

- Data is oftentimes classified into one of two types:
 - Qualitative data (categorical data):
 associated with a property or a quality
 - Quantitative data (numeric data):
 associated with a numeric measurement

Exercise

- What type of data is race (i.e. Caucasian, African American, Asian, Hispanic, etc.)?
- What type of data is bmi category (i.e. obese, overweight, normal weight, underweight)?
- What type of data is weight (in lbs)?

Types of Data Analysis

Qualitative Quantitative Univariate Univariate Analysis Analysis Number of Variables Quantitative **Qual & Quant Qualitative Bivariate Bivariate Bivariate Analysis Analysis Analysis Trivariate Analysis** Type of Variable(s)

Titanic data

Data Dictionary

Variable	Definition	Key
survival	Survival	0=No, 1=Yes
pclass	Ticket Class	$1=1^{st}$, $2=2^{nd}$, $3=3^{rd}$
sex	Sex	Female, male
age	Age in years	
sibsp	#of siblings/spouses	
parch	# of parents/children	
ticket	Ticket Number	
fare	Passenger fare	
cabin	Cabin number	
···		

Summarizing Categorical Data

To summarize qualitative (categorical) data tables are used. Suppose we want to summarize the survival variable:

```
> table(data$survived)
    0    1
809 500
```

Here we use the table() command to generate frequencies of qualitative data.

Summarizing Categorical Data

• We can also use the table() command and the prop.table() command to generate proportions for categorical data.

> table(data\$survived) / length(data\$survived)

0 1 0.618029 0.381971

> prop.table(table(data\$survived))

0 1 0.618029 0.381971

The frequencies of categorical data can be graphically represented in a bar plot (also called a bar chart) barplot(table(data\$survived), main = "Titanic Survival Rate", col = "pink", ylim = c(0, 1000), xlab = "survived", ylab = "passenger count")

Titanic Survival Rate

0

By default, R creates a vertical bar plot, you can add the "horiz=TRUE" option to create a horizontal bar plot. barplot(table(data\$survived),

```
horiz = TRUE,
main = "Titanic Survival Rate",
col = "green",
ylab = "survived",
xlab = "passenger count")
```

Titanic Survival Rate


```
Bar plots can also be created using plot.
       plot(x = data$survived,
           main = "Titanic Survival Rate",
           col = "pink",
           xlab = "survived",
           ylab = "passenger count")
       plot(x = data$survived,
           horiz = TRUE,
           main = "Titanic Survival Rate",
           col = "pink",
           ylab = "survived",
           xlab = "passenger count")
```

A pie chart can also be used to display categorical data percentages.

```
lables <- names(table(data$pclass))

percentage <- round(table(data$pclass) / length(data$pclass)*100)

newlables <- paste("Passenger Class", lables, percentage, "%")

pie(table(data$pclass),
    labels = newlables,
    clockwise = TRUE,
    col = c("brown", "green", "skyblue"))
```


Summarizing Quantitative Data

- We can summarize quantitative data using the mean, median, standard deviation, quartiles/interquartile range.
- The following commands can be use to generate descriptive statistics for quantitative data:
 - mean()
 - median()
 - min() or max()
 - sd()
 - var()
 - range()
 - summary()

Summarizing Quantitative Data

• When there are missing values for a variable (we have a lot in this dataset), R will by default give the result "NA". To work around this, we need to use the "na.rm=TRUE" option.

```
mean(data$age, na.rm = TRUE)
median(data$age, na.rm = TRUE)
min(data$age, na.rm = TRUE)
sd(data$age, na.rm = TRUE)
var(data$age, na.rm = TRUE)
range(data$age, na.rm = TRUE)
summary(data$age)
```

Summarizing Quantitative Data

- The quantile() function can be used to directly compute percentiles.
- ◆ The IQR() function can be used to compute the interquartile range (Q3 Q1)

```
> quantile(data$age, c(0,0.25,0.5,0.75,1), na.rm = TRUE)
    0% 25% 50% 75% 100%
    0.17 21.00 28.00 39.00 80.00
> IQR(data$age, na.rm = TRUE)
[1] 18
```

- Below are ways of graphically displaying quantitative data.
 - Dot plot
 - Jitter plot
 - Box plot (box and whisker plots)
 - Histogram
 - Density plot

```
1. Dot Plot
plot(x = data$age,
    y = rep(0, nrow(data)), #repeat 0, nrow(data) times
    main = "Distribution of passenger age",
    xlab = "Age",
    ylab = "", #no y label necessary
    yaxt = "n") #to suppress rendering of the y-axis text
```

Distribution of passenger age

2. Jitter Plot plot(x = data\$age, y = jitter(rep(0, nrow(data))), main = "Distribution of passenger age"), xlab = "Age", ylab = "", #no y label necessary yaxt = "n") #to suppress rendering of the y-axis text

Distribution of passenger age

3. Box Plot: Boxplot provides the five number summary statistics and outliers.

```
boxplot(x = data$age,
    horizontal = TRUE,
    main = "Distribution of passenger age",
    xlab = "Age")
```

Distribution of passenger age

Box Plot shows min, Q1, Q2, Q3, max and outliers. (outliers > Q3+1.5 * IQR or < Q1 - 1.5 * IQR)

4. Histogram

```
hist(x = data$age,
breaks = 15, #of bins, default 20
main = "Distribution of passenger age",
xlab = "Age")
```

Distribution of passenger age

5. Density Plot

```
plot(x = density(na.omit(data$age)), #omit missing age values
    main = "Distribution of passenger age",
    xlab = "Age")
```

Distribution of passenger age

- Bivariate data analysis examines the relationship between two variables.
- Suppose we want to know the survival rate by gender for the titanic data.
- To do this, we would want to create a contingency table of the data.

To create a contingency table we can use the table() command. Note that the first variable specifies the rows, the second variable specifies the columns.

> table(data\$sex, data\$survived)

0 1 female 127 339 male 682 161

Row names and column names can be added to a contingency table to make interpretation easier.

• Question: What is the probability of the females who survived among all the passengers?

In R, the prop.table() command can be used to compute proportions.

```
> prop.table(x)
```

```
not survived survived
female 0.09702063 0.25897632
male 0.52100840 0.12299465
```

Example interpretation: "Among all the passengers,
 52% are male and did not survive."

To get the proportions by row or by column we can use the prop.table() function again.

```
> prop.table(x, 1)
```

```
not survived survived
female 0.2725322 0.7274678
male 0.8090154 0.1909846
```

> prop.table(x, 2)

```
not survived survived
female 0.1569839 0.6780000
male 0.8430161 0.3220000
```

proportions by row

proportions by column

Graphically Displaying Bivariate Qualitative Data

- Below are ways of graphically displaying bivariate qualitative data.
 - grouped frequency bar chart
 - stacked frequency bar chart
 - spine plot
 - mosaic plot

An Example: Grouped Frequency Bar Chart

An Example: Mosaic Plot

```
mosaicplot(table(data$sex, data$survived),

main = "Survival By Gender",

xlab = "gender",

ylab="survival",

color = c("pink", "blue"))
```

Survival By Gender

Graphically Displaying Bivariate Quantitative Data

- Thus far we have been examining bivariate relationships with categorical data. Now we will explore bivariate relationships with numeric data.
- A scatterplot is typically used to examine the relationship between two numeric variables. These can be generated with plot() command. plot(data\$age, data\$fare)

Graphically Displaying Bivariate Quantitative Data

- Other plots for displaying bivariate quantitative data are
 - binned frequency Heatmap
 - contour plot
 - level plot
 - mesh plot
 - surface plot
 - step chart
 - line chart
 - area chart

Graphically Displaying Bivariate Categorical and Numeric data

- Plots for displaying bivariate categorical and numeric data are
 - bivariate bar chart
 - bivariate box plot
 - bivariate violin plot

An Example: bivariate box plot

boxplot(data\$fare ~ data\$pclass,

xlab = "Class",

ylab = "Ticket

Outline

- Types of Data
- Creating data visualization using base graphics system
 - Visualizing one categorical variable
 - Visualizing one numeric variable
 - Visualizing two categorical variables
 - Visualizing two numeric variables
 - Visualizing both a categorical and a numeric variable
- Creating data visualization using ggplot2

Introduction to ggplot2

- Standard visualization package in R
 - install.packages("ggplot2")
 - library(ggplot2)
- Elegant data visualization using the grammar of graphics.
- Designed for print-quality graphics in seconds.

Introduction to ggplot2

- Each ggplot2 visualization has three required components
 - Data: the raw material of your visualization. (type of data frame)
 - Aesthetics: the mapping of your data to the visualization.
 For example, mapping the value of Titanic passenger ages to the y-axis of a graph.
 - Layers: what you see on the plots (e.g. points, lines, etc.)
 These layers typically take the form of a ggplot2 geom function.

Example:

ggplot(data, aes(x = data\$Survived)) +
geom_bar()

An Example

```
ggplot(data, aes(x = data$Sex, fill = data$Survived)) +
   theme_bw() +
   geom_bar() +
   labs(y = "Passenger Count", title = "Titanic Survival Rates by Sex")
```


Another Example

Interesting Example of Data Visualizations

Hans Rosling: Master of Data Visualizations - ED talk on public health and longevity:

https://www.youtube.com/watch?v=hVimVzgtD6w