

Curriculum Vitae

Personal Information

Name: Attila Cangi, Ph.D.

Birth Place and Rotthalmünster, Germany, 29.10.1982

Date:

Nationality: German

Languages: German (native), English (full professional proficiency)

ORCID iD: 0000-0001-9162-262X

Institutional Department Machine Learning for Materials Design, Center for Advanced

Address: Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf,

Untermarkt 20, 02826 Görlitz, Germany

Phone: +49 3581 375 2352 **Email:** a.cangi@hzdr.de

Websites: Lab Website, Department Website, Institutional Profile

Current Position

Head of Department, Machine Learning for Materials Design, Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf, Germany (since 2024)

Academic Career

2022–2024	Helmholtz-Zentrum Dresden-Rossendorf, Germany	Head of Department (acting), Staff Scientist (permanent)
2020–2022	Helmholtz-Zentrum Dresden-Rossendorf, Germany	Staff Scientist
2019–2020	Sandia National Laboratories, Albuquerque, United States	Staff Scientist (permanent)
2017–2019	Sandia National Laboratories, Albuquerque, United States	Staff Scientist (LTE)
2011–2016	Max Planck Institute of Microstructure Physics, Halle (Saale), Germany	Postdoctoral Researcher (with E.K.U. Gross)
Education		
2011	University of California, Irvine, United States	PhD in Chemistry (with K. Burke)
2006	Rutgers, The State University of New Jersey, United States	MSc in Physics
2005	University of Würzburg, Germany	Vordiplom in Physics

Third-Party Funded Projects

2021–2024	Helmholtz AI,	Machine-Learning Based Synthetic Data Generation
	Helmholtz	For Rapid Physics Modeling
	Association	
2019–2020	DOE, LDRD	Quantum-Accurate Multiscale Modeling of Shock
	(Project ID	Hugoniots, Ramp Compression Paths, Structural and
	218454)	Magnetic Phase Transitions, and Transport
		Properties in Highly Compressed Metals
2019–2022	DOE, LDRD	Accelerating Multiscale Materials Modeling with
	(Project ID	Machine Learning
	218319)	
2019–2022	DOE, LDRD	Improving Predictive Capability in Radiation,
	(Project ID	Electrical, and High Energy Density Science
	218456)	Simulations with Fast, Accurate, and Consistent
		Non-Equilibrium Material Properties
2017–2019	DOE, LDRD	Making Density Functionals Work for All Materials
	(Project ID	
	200202)	

Awards & Honours

2023	R&D 100 Award, R&D World, United States
2018	SPOT Award, Sandia National Laboratories, United States
2017	SPOT Award, Sandia National Laboratories, United States
2005	German Academic Exchange Service (DAAD), University of Würzburg,
	Germany and Rutgers, The State University of New Jersey, United States

Academic Service & Leadership

Institutional Responsibilities

2024-present	Member of Doctoral Advisory Board, Helmholtz-Zentrum
	Dresden-Rossendorf, Germany
2022-present	Member of Working Group Digitalization, Helmholtz-Zentrum
	Dresden-Rossendorf, Germany
2021-present	Helmholtz Al Associate, Helmholtz Association, Germany
2022–2024	Member of Working Group Graduate Student Education,
	Helmholtz-Zentrum Dresden-Rossendorf, Germany
2018	Coordinator of Summer Student Program, Center for Computing
	Research, Sandia National Laboratories, United States

Reviewing Activities

Research	Nature Communications, Nature Computational Science, Nature	
Journals	Communcations Materials, npj Computational Materials, Computer	
	Physics Communications, Scientific Reports, Journal of Chemical	
	Physics, Physical Review Journals, Journal of Physical Chemistry,	
	International Journal of Quantum Chemistry	
Funding Agencies	European Research Council (ERC), Swiss National Science Foundation	
	(SNSE), U.SIsrael Binational Science Foundation (BSE), Centre	

(SNSF), U.S.-Israel Binational Science Foundation (BSF), Centre Européen de Calcul Atomique et Moléculaire (CECAM), National High

Performance Computing (NHR)

Supervision & Mentoring

Postdocs supervised:	10
PhD students supervised:	5
MSc/BSc students supervised:	15

Teaching Experience

SS 2025	Nanostructured Materials	Lecture, Exercises	TU Dresden,
			Germany
WS 2024	Atomistic Simulation	Lecture	TU Dresden,
	Methods		Germany

Memberships

German Physical Society (DPG)

Organization of Scientific Meetings and Schools

2024	Critical Use of AI in Quantum Chemistry,	Member of Organizing
	Swiss Chemical Society Seminar on	Committee
	Artificial Intelligence 2024, University of	
	Fribourg, Switzerland	
2023	Accelerating improvements in Density	Organization Committee
	Functional Theory, Swiss Federal Institute of	Chair
	Technology, Lausanne, Switzerland	
2022	Multiscale Modeling of Matter under	Organizing Committee
	Extreme Conditions, Center for Advanced	Chair
	Systems Understanding, Helmholtz-Zentrum	
	Dresden-Rossendorf, Görlitz, Germany	
2022	Strongly Coupled Coulomb Systems, Center	Local Organizing
	for Advanced Systems Understanding,	Committee Chair, Program
	Helmholtz-Zentrum Dresden-Rossendorf,	Committee Member
	Görlitz, Germany	

2022	DFT Methods for Matter under Extreme	Organization Committee
	Conditions, Center for Advanced Systems	Chair
	Understanding, Helmholtz-Zentrum	
	Dresden-Rossendorf, Görlitz, Germany	
2019	Improving the Theory in Density Functional	Organization Committee
	Theory, Swiss Federal Institute of	Chair
	Technology, Lausanne, Switzerland	
2017	Teaching the Theory in Density Functional	Organization Committee
	Theory, Swiss Federal Institute of	Chair
	Technology, Lausanne, Switzerland	
2016	Putting the Theory Back in Density	Organization Committee
	Functional Theory, Institute for Pure and	Member
	Applied Mathematics, University of	
	California, Los Angeles, USA	
2013	Density Functional Theory: Learning from	Organization Committee
	the Past, Looking to the Future,	Member
	Magnus-Haus of the Deutsche	
	Physikalische Gesellschaft, Berlin, Germany	

Invited Talks (selected)

2025	Theoretical Chemistry Colloquium, University of Marburg, Germany
2024	Department Seminar, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
2024	Progress in Ensemble Density Functional Theory: Opportunities and Challenges, Durham University, Durham, United Kingdom
2024	Machine Learning in Electronic-Structure Theory, Institute for
	Mathematical and Statistical Innovation (IMSI), University of Chicago, United States
2024	APS March Meeting, Focus Session: Big Datasets and Big Data in
	Physics, Minneapolis, United States
2023	Accelerating Improvements in Density Functional Theory, CECAM
	Workshop, Lausanne, Switzerland
2023	TDDFT School & Workshop: Excited states and dynamics, Rutgers University, Newark, United States
2023	High Energy Density Science Seminar Series, Lawrence Livermore
	National Laboratory, Livermore, United States
2023	Theoretical Chemistry Seminar, Dresden University of Technology,
	Germany
2023	Joint Theory Seminar of European XFEL, CFEL, and the University of
	Hamburg, Germany
2023	Research Seminar Many-Body Theory, Kiel University, Germany

2023	Institute Seminar, Institute of Theoretical Physics, University of Wroclaw, Poland
2022	NHR-Atomistic Simulation Symposium 2022, online, Germany
2022	Research Seminar Many-Body Theory, Kiel University, Germany
2022	Big Data Analytical Methods for Complex Systems, University of
	Wroclaw, Wroclaw, Poland
2022	Helmholtz Al Conference 2022, Dresden, Germany
2021	CFEL-DESY Theory Seminar, Hamburg, Germany
2021	8th International Symposium on Optics & its Applications, Rostock,
	Germany
2021	17th Conference on the Physics of Non-Ideal Plasmas, Dresden,
	Germany
2021	Supercomputing Frontiers Europe 2021, online
2019	Workshop on the Future of Uncertainty Quantification and Multiscale
	Modeling Across the Department of Energy, Sandia National
	Laboratories, Albuquerque, United States
2019	Machine Learning R&D Workshop Sandia National Laboratories,
	Albuquerque, United States
2019	Z Fundamental Science Workshop, Sandia National Laboratories,
	Albuquerque, United States
2019	10th International Workshop on Warm Dense Matter, Travemünde,
	Germany
2019	Computational Modeling for High Energy Density Science and Complex
	Systems, City University of New York, Department of Physics, New York,
	United States
2019	Improving the Theory in Density Functional Theory, CECAM Workshop,
	EPFL Lausanne, Switzerland
2018	Electronic Structure at the Cutting Edge with ELK, MPI of Microstructure
	Physics, Halle, Germany
2017	Teaching the Theory in Density Functional Theory, CECAM School, EPFL
	Lausanne, Switzerland
2015	Theoretical Physics Seminar, University of Rostock, Germany

Publications

Research Articles

A. Cangi, L. Fiedler, B. Brzoza, K. Shah, T. J. Callow, D. Kotik, S. Schmerler, M. C. Barry, J. M. Goff, A. Rohskopf, D. J. Vogel, N. A. Modine, A. P. Thompson, S. Rajamanickam, "Materials Learning Algorithms (MALA): Scalable Machine Learning for Electronic Structure Calculations in Large-Scale Atomistic Simulations", Comput. Phys. Commun. 314, 109654 (2025).

52	T. Gawne, Z. A. Moldabekov, O. S. Humphries, K. Appel, C. Baehtz, V. Bouffetier, E. Brambrink, A. Cangi , C. Crépisson, S. Göde, Z. Konôpková, M. Makita, M. Mishchenko, M. Nakatsutsumi, L. Randolph, S. Schwalbe, J. Vorberger, U. Zastrau, T. Dornheim and T. R. Preston, "Strong geometry dependence of the X-ray Thomson Scattering Spectrum in single crystal silicon", Electron. Struct. 7 025002 (2025).
51	S. Nikolov, K. Ramakrishna, A. Rohskopf, M. Lokamani, J. Tranchida, J. Carpenter, A. Cangi , M. A. Wood, "Probing Iron in Earth's Core With Molecular-Spin Dynamics", Proc. Natl. Acad. Sci. U.S.A. 121, e2408897121 (2024).
50	K. Ramakrishna, M. Lokamani, A. Cangi , Electrical Conductivity of Warm Dense Hydrogen from Ohm's Law and Time-Dependent Density Functional Theory, Electron. Struct. 6, 045008 (2024).
49	A. Cangi , "Bridging the gap in electronic structure calculations via machine learning", Nat. Comput. Sci. 4, 729 (2024).
48	T. Gawne, H. Bellenbaum, L. B. Fletcher, K. Appel, C. Baehtz, V. Bouffetier, E. Brambrink, D. Brown, A. Cangi , A. Descamps, S. Göde, N. J. Hartley, ML. Herbert, P. Hesselbach, H. Höppner, O. S. Humphries, Z. Konôpková, A. Laso, B. Lindqvist, J. Lütgert, M. J. MacDonald, M. Makita, W. Martin, M. Mishchenko, Z. A. Moldabekov, M. Nakatsutsumi, JP. Naedler, P. Neumayer, A. Pelka, C. Qu, L. Randolph, J. Rips, T. Toncian, J. Vorberger, L. Wollenweber, U. Zastrau, D. Kraus, T. R. Preston, T. Dornheim, "Effects of Mosaic Crystal Instrument Functions on X-Ray Thomson Scattering Diagnostics", J. Appl. Phys. 136, 105902 (2024).
47	K. Shah, A. Cangi , "Accelerating Electron Dynamics Simulations through Machine Learned Time Propagators", ICML Workshop 2024, Al for Science: Scaling in Al for Scientific Discovery, arXiv:2407.09628 (2024).
46	T. Gawne, Z. A. Moldabekov, O. S. Humphries, K. Appel, C. Bähtz, V. Bouffetier, E. Brambrink, A. Cangi , S. Göde, Z. Konôpková, M. Makita, M. Mishchenko, M. Nakatsutsumi, K. Ramakrishna, L. Randolph, S. Schwalbe, J. Vorberger, L. Wollenweber, U. Zastrau, T. Dornheim, T. R. Preston, "Ultrahigh resolution x-ray Thomson scattering measurements at the European X-ray Free Electron Laser", Phys. Rev. B 109, L241112 (2024).
45	H. Tahmasbi, K. Ramakrishna, M. Lokamani, A. Cangi , "Machine Learning-Driven Structure Prediction for Iron Hydrides", Phys. Rev. Mater. 8, 033803 (2024).
44	V. Martinetto, K. Shah, A. Cangi , A. Pribram-Jones, "Inverting the Kohn-Sham equations with physics-informed machine learning", Mach. Learn.: Sci. Technol. 5 015050 (2024).

43	T. J. Callow, E. Kraisler, A. Cangi , "Physics-enhanced neural networks for equation-of-state calculations", Mach. Learn.: Sci. Technol. 4, 045055 (2023).
42	S. L. S. Balakrishnan, M. Lokamani, K. Ramakrishna, A. Cangi , D. Murali, M. Posselt, A. A. Sasikala Devi, A. Sharan, "Ab-initio insights on the ultrafast strong-field dynamics of anatase TiO2", Phys. Rev. B 108, 195149 (2023).
41	K. Ramakrishna, M. Lokamani, A. Baczewski, J. Vorberger, A. Cangi , "Impact of electronic correlations on high-pressure iron: insights from time-dependent density functional theory", Electron. Struct. 5, 045002 (2023).
40	L. Fiedler, N. A. Modine, K. D. Miller, A. Cangi , "Machine learning the electronic structure of matter across temperatures", Phys. Rev. B 108, 125146 (2023).
39	S. Kumar, H. Tahmasbi, K. Ramakrishna, M. Lokamani, S. Nikolov, J. Tranchida, M. A. Wood, A. Cangi , "Transferable Interatomic Potentials for Aluminum from Ambient Conditions to Warm Dense Matter", Phys. Rev. Research 5, 033162 (2023).
38	L. Fiedler, N. A. Modine, S. Schmerler, D. J. Vogel, G. A. Popoola, A. P. Thompson, S. Rajamanickam, A. Cangi , "Predicting electronic structures at any length scale with machine learning", Npj Comput. Mater. 9, 115 (2023).
37	T. W. Hentschel, A. Kononov, A. Olmstead, A. Cangi , A. D. Baczewski, S. B. Hansen, "Improving dynamic collision frequencies: impacts on dynamic structure factors and stopping powers in warm dense matter", Phys. Plasmas 30, 062703 (2023).
36	T. Dornheim, M. P. Böhme, D. Chapman, D. Kraus, T. R. Preston, Z. A. Moldabekov, N. Schlünzen, A. Cangi , T. Döppner, J. Vorberger, Imaginary-time correlation function thermometry: "A new, high-accuracy and model-free temperature analysis technique for x-ray Thomson scattering data", Phys. Plasmas 30, 042707 (2023).
35	T. Dornheim, Z. A. Moldabekov, K. Ramakrishna, P. Tolias, A. D. Baczewski, D. Kraus, T. R. Preston, D. A. Chapman, M. P. Böhme, T. Döppner, F. Graziani, M. Bonitz, A. Cangi , J. Vorberger, "Electronic Density Response of Warm Dense Matter", Phys. Plasmas 30, 032705 (2023).
34	K. Ramakrishna, M. Lokamani, A. Baczewski, J. Vorberger, A. Cangi , "Electrical Conductivity of Iron in Earth's Core from Microscopic Ohm's Law", Phys. Rev. B 107, 115131 (2023).
33	Z. A. Moldabekov, M. Lokamani, J. Vorberger, A. Cangi , T. Dornheim, "Non-empirical mixing coefficient for hybrid XC functionals from analysis of the XC kernel", J. Phys. Chem. Lett. 14, 1326 (2023).

32	Z. A. Moldabekov, M. Lokamani, J. Vorberger, A. Cangi , T. Dornheim, "Assessing the accuracy of hybrid exchange-correlation functionals for the density response of warm dense electrons", J. Chem. Phys. 158, 094105 (2023).
31	D. Konar, A. Das Sarma, S. Bhandary, S. Bhattacharyya, A. Cangi , V. Aggarwal, "A shallow hybrid classical–quantum spiking feedforward neural network for noise-robust image classification", Appl. Soft Comput. 136, 110099 (2023).
30	T. J. Callow, E. Kraisler, A. Cangi , "Improved calculations of mean ionization states with an average-atom model", Phys. Rev. Res. 5, 013049 (2023).
29	K. Shah, P. Stiller, N. Hoffmann, A. Cangi , "Physics-Informed Neural Networks as Solvers for the Time-Dependent Schrödinger Equation", NeurIPS Workshop Machine Learning and the Physical Sciences, arxiv:2210.12522 (2022).
28	L. Fiedler, N. Hoffmann, P. Mohammed, G. A. Popoola, T. Yovell, V. Oles, J. A. Ellis, S. Rajamanickam, A. Cangi , "Training-free hyperparameter optimization of neural networks for electronic structures in matter", Mach. Learn.: Sci. Technol. 3, 045008 (2022).
27	L. Fiedler, Z. A. Moldabekov, X. Shao, K. Jiang, T. Dornheim, M. Pavanello, A. Cangi , "Accelerating Equilibration in First-Principles Molecular Dynamics with Orbital-Free Density Functional Theory", Phys. Rev. Res. 4, 043033 (2022).
26	M. Schörner, B. B. L. Witte, A. D. Baczewski, A. Cangi , R. Redmer, "An ab-initio study of shock-compressed copper", Phys. Rev. B 106, 054304 (2022).
25	T. J. Callow, D. Kotik, E. Kraisler, A. Cangi , "AtoMEC: an open-source average-atom Python code", Proceedings of the 21st Python in Science Conference, 37 (2022).
24	T. Dornheim, P. Tolias, Z. A. Moldabekov, A. Cangi , J. Vorberger, "Effective electronic forces and potentials from ab initio path integral Monte Carlo simulations", J. Chem. Phys. 156, 244113 (2022).
23	T. J. Callow, E. Kraisler, S. B. Hansen, A. Cangi , "First-principles derivation and properties of density-functional average-atom models", Phys. Rev. Res. 4, 023055 (2022).
22	L. Fiedler, K. Shah, M. Bussmann, A. Cangi , "Deep Dive into Machine Learning Density Functional Theory for Materials Science and Chemistry", Phys. Rev. Mater. 6, 040301 (2022).
21	S. Nikolov, J. Tranchida, K. Ramakrishna, M. Lokamani, A. Cangi , M. A. Wood, "Dissociating the phononic, magnetic and electronic contributions to thermal conductivity: a computational study in alpha-iron", J. Mater. Sci. 57, 10535 (2022).

20	Z. A. Moldabekov, T. Dornheim, G. Gregori, F. Graziani, M. Bonitz, A. Cangi, "Towards a Quantum Fluid Theory of Correlated Many-Fermion Systems from First Principles". SciPost Phys. 12, 063 (2023).
19	Systems from First Principles", SciPost Phys. 12, 062 (2022). Z. A. Moldabekov, T. Dornheim, J. Vorberger, A. Cangi , "Benchmarking Exchange-Correlation Functionals in the Spin-Polarized Inhomogeneous Electron Gas under Warm Dense Conditions", Phys. Rev. B 105, 035134 (2022).
18	Z. A. Moldabekov, T. Dornheim, A. Cangi , "Thermal Signals from Collective Electronic Excitations in Inhomogeneous Warm Dense Matter", Sci. Rep. 12, 1093 (2022).
17	Z. A. Moldabekov, Y. K. Aldakul, N. K. Bastykova, S. Sundar, A. Cangi , "Higher harmonics in complex plasmas with alternating screening", Phys. Rev. Res. 3, 043187 (2021).
16	S. Nikolov, M. A. Wood, A. Cangi , JB. Maillet, MC. Marinica, A. P. Thompson, M. P. Desjarlais, J. Tranchida, "Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics", Npj Comput. Mater. 7, 153 (2021).
15	Z. A. Moldabekov, T. Dornheim, M. Böhme, J. Vorberger, A. Cangi , "The Relevance of Electronic Perturbations in the Warm Dense Electron Gas", J. Chem. Phys. 155, 124116 (2021).
14	J. A. Ellis, L. Fiedler, G. A. Popoola, N. A. Modine, J. A. Stephens, A. P. Thompson, A. Cangi , S. Rajamanickam, "Accelerating Finite-temperature Kohn-Sham Density Functional Theory with Deep Neural Networks", Phys. Rev. B 104, 035120 (2021).
13	T. Dornheim, Z. A. Moldabekov, A. Cangi , "A Machine-Learning Surrogate Model for ab initio Electronic Correlations at Extreme Conditions", ICLR 2021 (2021).
12	K. Ramakrishna, A. Cangi , T. Dornheim, J. Vorberger, "First-principles modeling of plasmons in aluminum under ambient and extreme conditions", Phys. Rev. B 103, 125118 (2021).
11	T. Dornheim, A. Cangi , K. Ramakrishna, M. P. Böhme, S. Tanaka, J. Vorberger, "Effective static approximation: A fast and reliable tool for warm dense matter theory", Phys. Rev. Lett. 125, 235001 (2020).
10	T. Baldsiefen, A. Cangi , F. G. Eich, E. K. U. Gross, "Exchange-correlation approximations for reduced-density-matrix-functional theory at finite temperature: Capturing magnetic phase transitions in the homogeneous electron gas", Phys. Rev. A 96, 062508 (2017).
9	T. Baldsiefen, A. Cangi , E. K. U. Gross, "Reduced-density-matrix-functional theory at finite temperature: Theoretical foundations", Phys. Rev. A 92, 052514 (2015).
8	A. Cangi , A. Pribram-Jones, "Efficient formalism for warm dense matter simulations", Phys. Rev. B 92, 161113(R) (2015).

7	P. Elliott, A. Cangi , S. Pittalis, E. K. U. Gross, K. Burke, "Almost exact exchange at almost no computational cost in electronic structure", Phys.
	Rev. A 92, 022513 (2015).
6	R. F. Ribeiro, D. Lee, A. Cangi , P. Elliott, K. Burke, "Corrections to
	Thomas-Fermi Densities at Turning Points and Beyond", Phys. Rev. Lett.
	114, 050401 (2015).
5	H. Mirhosseini, A. Cangi, T. Baldsiefen, A. Sanna, C. R. Proetto, E. K. U.
	Gross, "Virial theorem and exact properties of density functionals for
	periodic systems", Phys. Rev. B 89, 220102(R) (2014).
4	A. Cangi, E. K. U. Gross, K. Burke, "Potential functionals versus density
	functionals", Phys. Rev. A 88, 062505 (2013).
3	A. Cangi, D. Lee, P. Elliott, K. Burke, E. K. U. Gross, "Electronic
	Structure via Potential Functional Approximations", Phys. Rev. Lett. 106,
	236404 (2011).
2	A. Cangi, D. Lee, P. Elliott, K. Burke, "Leading corrections to local
	approximations", Phys. Rev. B 81, 235128 (2010).
1	P. Elliott, D. Lee, A. Cangi , K. Burke, "Semiclassical Origins of Density
	Functionals", Phys. Rev. Lett. 100, 256406 (2008).

Technical Reports

7	M. Wood, S. Nikolov, A. Rohskopf, M. P. Desjarlais, A. Cangi , J. Tranchida, "Quantum-Accurate Multiscale Modeling of Shock Hugoniots, Ramp Compression Paths, Structural and Magnetic Phase Transitions, and Transport Properties in Highly Compressed Metals", Technical
	Report SAND2022-12792, United States Department of Energy (2022).
6	S. B. Hansen, A. D. Baczewski, T. Gomez, T. W. Hentschel, C. A.
	Jennings, A. Kononov, T. Nagayama, K. Adler, A. Cangi, K. Cochrane, B.
	Robinson, A. Schleife, "Improving Predictive Capability in REHEDS
	Simulations with Fast, Accurate, and Consistent Non-Equilibrium Material
	Properties", Technical Report SAND2022-13455, United States
	Department of Energy (2022).
5	N. A. Modine, J. A. Stephens, L. P. Swiler, A. P. Thompson, J. D. Vogel,
	L. Fiedler, A. Cangi, S. Rajamanickam, "Accelerating Multiscale
	Materials Modeling with Machine Learning", Technical Report
	SAND2022-12875, United States Department of Energy (2022).
4	J. A. Hubbard, M. A. Omana, D. S. Jensen, A. Cangi, T. J. Boyle,
	"Uranium Aerosol Dynamics: Chemical Kinetics, Primary Particle
	Formation, Coagulation and Condensation", Technical Report
	SAND2019-13154, United States Department of Energy (2019).

- A. Cangi, F. Sagredo, E. Decolvenaere, A. E. Mattsson, "Semi-local Density Functional Approximations for Bulk, Surface, and Confinement Physics",]Technical Report SAND2019-11805, United States Department of Energy (2019)](http://doi.org/10.2172/1569522).
- A. Cangi, "An Exchange-Correlation Functional Capturing Bulk, Surface, and Confinement Physics", Technical Report SAND2018-7447, United States Department of Energy (2018).
- 1 Author list hidden by publisher, Technical Report SAND2017-13554, United States Department of Energy (2017).

Edited Special Issues and Proceedings

- J. Yang, **A. Cangi**, A. O. Oliynyk, "Machine Learning and Artificial Intelligence in Materials Science and Condensed Matter Physics", Materials Today Physics (2025).
- S. Vučković, **A. Cangi**, "Focus issue: Quantum Chemistry and Artificial Intelligence learning from each other", Machine Learning: Science and Technology (2025).
- A. Cangi, J. Citrin, U. von Toussaint (Eds.), "Special issue: Machine learning methods in plasma physics", Contrib. Plasma Phys. e202300060 (2023).
- A. Cangi, M. L. Parks, "Center for Computing Research Summer Proceedings 2018, The Center for Computing Research at Sandia National Laboratories", Technical Report SAND2019-5093R, United States Department of Energy (2019).

Book Chapters

L. Fiedler, K. Shah, **A. Cangi**, "Machine-Learning for Static and Dynamic Electronic Structure Theory." In: Qu, C., Liu, H. (eds) Machine Learning in Molecular Sciences. Challenges and Advances in Computational Chemistry and Physics, vol 36. Springer, Cham (2023).

Software

- T. J. Callow, D. Kotik, E. Tsvetoslavova Stankulova, N. Rahat, E. Kraisler, **A. Cangi**, atoMEC (2023).
- A. Cangi, S. Rajamanickam, B. Brzoza, T. J. Callow, J. A. Ellis, O. Faruk, L. Fiedler, J. Fox, N. Hoffmann, K. D. Miller, D. Kotik, S. Kulkarni, N. Modine, P. Mohammed, V. Oles, G. A. Popoola, F. Pöschel, J. Romero, S. Schmerler, J. A. Stephens, H. Tahmasbi, A. P. Thompson, S. Verma, D. J. Vogel, Materials Learning Algorithms (MALA) (2023).