

Express Mail Label No. EL615485148USPATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants

Nobuyuki Itoh et al.

Application No.

09/801,968

Filed

March 7, 2001

For

HUMAN FGF-23 GENE AND GENE EXPRESSION PRODUCTS

Examiner

xammer

: 1646

Art Unit
Docket No.

PP-17150.001 / 201130.40901

Date

July 2, 2001

Box Missing Parts Commissioner for Patents Washington, DC 20231

FILING FORMAL DRAWINGS

Commissioner for Patents:

Enclosed are 22 sheets of formal drawings, Figures 1-16, for filing in the above-identified application.

Respectfully submitted,

Seed Intellectual Property Law Group PLLC

00500

PATENT TRADEMARK OFFICE

Jane E. R. Potter

Registration No. 33,332

(JEP:cew) #191149

CSCLUSS CYCLS

Title: HUMAN FGF-23 GENE AND GENE EXPRESSION PRODUCTS

Inventor(s): Nobuyuki Itoh et al.
Serial No. 09/801,968

968 Docket No. 201130.40901

Fig. 1

Mouse FGF-23 ATGCTAGGGACCTGCCTTAGACTCCTGGTGGGCGTGCTCTGCACTGTCTGCAGCTTGGGC M L G T C L R L L V G V L C T V C S L G ACTGCTAGAGCCTATCCAGACACTTCCCCATTGCTTGGCTCCAACTGGGGAAGCCTGACC TARAYPDTSPLLGSNWGSLT CACCTGTACACGGCTACAGCCAGGACCAGCTATCACCTACAGATCCATAGGGATGGTCAT H L Y T A T A R T S Y H L Q I H R D G H GTAGATGGCACCCCCATCAGACCATCTACAGTGCCCTGATGATTACATCAGAGGACGCC V D G T P H Q T I Y S A L M I T S E D A GGCTCTGTGGTGATAACAGGAGCCATGACTCGAAGGTTCCTTTGTATGGATCTCCACGGC GSVVITGAMTRRFLCMDLHG AACATTTTTGGATCGCTTCACTTCAGCCCAGAGAATTGCAAGTTCCGCCAGTGGACGCTG NIFGSLHFSPENCKFROWTL GAGAATGGCTATGACGTCTACTTGTCGCAGAAGCATCACTACCTGGTGAGCCTGGGCCGC ENGYDVYLSQKHHYLVSLGR GCCAAGCGCATTTTCCAGCCGGGCACCAACCCGCCCCTTCTCCCAGTTCCTGGCTCGC A K R I F Q P G T N P P P F S Q F L A R AGGAACGAGGTCCCGCTGCTGCACTTCTACACTGTTCGCCCACGGCGCCACACGCGCAGC RNEVPLLHFYTVRPRRHTRS GCCGAGGACCCACCGAGCGCGACCCACTGAACGTGCTCAAGCCGCGCCCCGCGCCACG A E D P P E R D P L N V L K P R P R A T

Fig. 2A

Inventor(s): Nobuyuki Itoh et al. Serial No. 09/801,968 Docket No. 201130.40901

550 560 570 580 590 600 GCCGAGGACCCACCGAGCGCGACCCACTGAACGTGCTCAAGCCGCGGCCCCGCGCCACG A E D P P E R D P L N V L K P R P R A T 620 630 640 650 660 610 CCTGTGCCTGTATCCTGCTCTCGCGAGCTGCCGAGCGCAGAGGAAGGTGGCCCCGCAGCC P V P V S C S R E L P S A E E G G P A A 670 680 690 700 710 720 AGCGATCCTCTGGGGGTGCTGCGCAGAGGCCGTGGAGATGCTCGCGGGGGGCGCGGGAGGC S D P L G V L R R G R G D A R G G A G G 730 740 750 760 GCGGATAGGTGTCGCCCCTTTCCCAGGTTCGTCTAG ADRCRPFPRFV*

Inventor(s): Nobuyuki Itoh et al.
Serial No. 09/801,968
Docket No. 201130.40901

Human FGF-23

Fig. 3A

THE THE WAS TH

Title: HUMAN FGF-23 GENE AND GENE EXPRESSION PRODUCTS

Inventor(s): Nobuyuki Itoh et al. Serial No. 09/801,968 Docket No. 201130.40901

610 620 630 640 650 660 ccggccccggcctcctgttcacaggagctcccgagcgccgaggacaacagcccgatggcc P A P A S C S Q E L P S A E D N S P M A

730 740 750 760 ccggaaggctgccgccccttcgccaagttcatctag P E G C R P F A K F I *

240

AEDPPERDPLNVLKPRPRATPVPVSCSRELPSAEEGGPAASDPLGVLRRGRGDARGGAGG

AEDDSERDPLNVLKPRARMTPAPASCSQELPSAEDNSPMASDPLGVVRGGRVNTHAGGTG

251

ADRCRPFPRFV
. **** *.
PEGCRPFAKFI

251

240

Inventor(s): Nobuyuki Itoh et al. Serial No. 09/801,968 Docket No. 201130.40901

9 120 120 180 180 9 ENGYDVYLSQKHHYLVSLGRAKRIFQPGTNPPPFSQFLARRNEVPLLHFYTVRPRRHTRS MLGTCLRLLVGVLCTVCSLGTARAYPDTSPLLGSNWGSLTHLYTATARTSYHLQIHRDGH MLGARLRLWVCALCSVCSMSVLRAYPNASPLLGSSWGGLIHLYTATARNSYHLQIHKNGH VDGTPHQT1YSALMITSEDAGSVVITGAMTRRFLCMDLHGNIFGSLHFSPENCKFRQWTL VDGAPHQTIYSALMIRSEDAGFVVITGVMSRRYLCMDFRGNIFGSHYFDPENCRFQHQTL ENGYDVYHSPQYHFLVSLGRAKRAFLPGMNPPPYSQFLSRRNEIPLIHFNTPIPRRHTRS Mouse FGF-23 Human FGF-23

12 m

THE CHART WE WANTED

The flesh than than than than

Fig. 4

216

251

NTHAGGTGPEGCRPFAKFI

Inventor(s): Nobuyuki Itoh et al. Serial No. 09/801,968 Docket No. 201130.40901

> 53 9 120 232 RFQHQTLENGYDVYHSPQYHFLVSLGRAK-RAFLPGMNPPPYSQFLSRRNEIPLIHFNTP RIRADGVVDCARGQSAHSLLEIKAVALRTVAIKGVHSVRYLCMGADGKMQGLLQYSEEDC QIHKNGHVDGAPHQTIYSALMIRSEDAGFVVITGVMSRRYLCMDFRGNIFGSHYFDPENC I PRRHTRSAEDDSERDPLNVLKPRARMTPAPASCSQELPSAEDNSPMASDPLGVVRGGRV MRSGCVVVHVWILAGLWLAVAGRPLAFSDAGPHVHYGWGDPIRLRHLYTSGPHGLSSCFL MLGARLRLWVCALCSVCSMSVLRAYPNASPLLGSSWGG----LIHLYTATAR--NSYHI GHLESDMFSSPLETDSMDPFGLVTGLEAVRSPSFEK Human FGF-19 Human FGF-23

AND AND HAND OF BAND AND BAND BAND

The first well first and then that

Inventor(s): Nobuyuki Itoh et al. Serial No. 09/801,968 Docket No. 201130.40901

52 172 9 120 232 209 CRFQHQTLENGYDVYHSPQYHFLVSLGRAKRAFLPGMNPPPYSQFLSRRNEIPLIHFNTP CSFRELLLEDGYNVYQSEAHGLPLHLPGNKSP-HRDPAPRGPARFLPLPGLPPALP--EP LEIREDGTVGGAADQSPESLLQLKALKPGVIQILGVKTSRFLCQRPDGALYGSLHFDPEA IPRRHTRSAEDDSERDPLNVLKPRARMTPAPASCSQELPSAEDNSPMASDPLGVVRGGRV LQIHKNGHVDGAPHQTIYSALMIRSEDAGFVVITGVMSRRYLCMDFRGNIFGSHYFDPEN MLGARLRLWVCALCS-VCSMSVLRAYPNASPLLG-SSWGGLIHLYTATARNS-YH -PGILAPQPPDVGSSDPLSMVGPSQGRSPSYAS Human FGF-21 Human FGF-23

CO CO AN TO AN AND AN

the first of the first that the

Fig. 6

251

NTHAGGTGPEGCRPFAKFI

Codon usage for yeast (highly expressed) genes

AmAcid	Codon	Number	/1000	Fraction
Gly	GGG	33.00	0.86	0.01
Gly	GGA	70.00	1.82	0.02
Gly	GGT	2672.00	69.62	0.91
Gly	GGC	171.00	4.46	0.06
Glu	GAG	277.00	7.22	0.10
Glu	GAA	2442.00	63.63	0.90
Asp	GAT	1100.00	28.66	0.48
Asp	GAC	1211.00	31.55	0.52
Val Val Val	GTG GTA GTT GTC	117.00 75.00 1548.00 1026.00	3.05 1.95 40.33 26.73	0.04 0.03 0.56 0.37
Ala	GCG	36.00	0.94	0.01
Ala	GCA	203.00	5.29	0.06
Ala	GCT	2221.00	57.87	0.65
Ala	GCC	969.00	25.25	0.28
Arg	AGG	20.00	0.52	0.01
Arg	AGA	1336.00	34.81	0.83
Ser	AGT	116.00	3.02	0.05
Ser	AGC	94.00	2.45	0.04
Lys	AAG	2365.00	61.62	0.78
Lys	AAA	651.00	16.96	0.22
Asn	AAT	347.00	9.04	0.22
Asn	AAC	1259.00	32.80	0.78
Met	ATG	766.00	19.96	1.00
Ile	ATA	43.00	1.12	0.02
Ile	ATT	1223.00	31.87	0.52
Ile	ATC	1070.00	27.88	0.46
Thr	ACG	28.00	0.73	0.01
Thr	ACA	126.00	3.28	0.06

Fig. 7A

Inventor(s): Nobuyuki Itoh et al. Serial No. 09/801,968 Docket No. 201130.40901

Thr	ACT	1129.00	29.42	0.50
Thr	ACC	962.00	25.07	0.43
Trp	TGG	325.00	8.47	1.00
End	TGA	10.00	0.26	0.09
Cys	TGT	254.00	6.62	0.89
Cys	TGC	33.00	0.86	0.11
End	TAG	11.00	0.29	0.10
End	TAA	85.00	2.21	0.80
Tyr	TAT	219.00	5.71	0.19
Tyr	TAC	913.00	23.79	0.81
Leu	TTG	2202.00	57.38	0.69
Leu	TTA	576.00	15.01	0.18
Phe	TTT	432.00	11.26	0.27
Phe	TTC	1145.00	29.83	0.73
Ser	TCG	26.00	0.68	0.01
Ser	TCA	149.00	3.88	0.06
Ser	TCT	1279.00	33.33	0.52
Ser	TCC	818.00	21.31	0.33
Arg	CGG	0.00	0.00	0.00
Arg	CGA	1.00	0.03	0.00
Arg	CGT	249.00	6.49	0.15
Arg	CGC	5.00	0.13	0.00
Gln	CAG	62.00	1.62	0.05
Gln	CAA	1225.00	31.92	0.95
His	CAT	236.00	6.15	0.35
His	CAC	433.00	11.28	0.65
Leu	CTG	52.00	1.35	0.02
Leu	CTA	236.00	6.15	0.07
Leu	CTT	90.00	2.35	0.03
Leu	CTC	14.00	0.36	0.00
Pro	CCG	10.00	0.26	0.01
Pro	CCA	1271.00	33.12	0.80
Pro	CCT	279.00	7.27	0.18
Pro	CCC	33.00	0.86	0.02

Fig. 7B

" We give he was first the first fir

Inventor(s): Nobuyuki Itoh et al.

Serial No. 09/801,968

Docket No. 201130.40901

Codon usage for Drosophila (highly expressed) genes

AmAcid	Codon	Number	/1000	Fraction
Gly	GGG	6.00	0.28	0.00
Gly	GGA	380.00	18.04	0.22
Gly	GGT	575.00	27.29	0.34
Gly	GGC	746.00	35.41	0.44
Glu	GAG	1217.00	57.77	0.91
Glu	GAA	115.00	5.46	0.09
Asp	GAT	503.00	23.88	0.43
Asp	GAC	654.00	31.04	0.57
Val	GTG	719.00	34.13	0.45
Val	GTA	29.00	1.38	0.02
Val	GTT	226.00	10.73	0.14
Val	GTC	608.00	28.86	0.38
Ala	GCG	94.00	4.46	0.05
Ala	GCA	80.00	3.80	0.04
Ala	GCT	446.00	21.17	0.24
Ala	GCC	1277.00	60.61	0.67
Arg	AGG	48.00	2.28	0.06
Arg	AGA	12.00	0.57	0.01
Ser	AGT	16.00	0.76	0.01
Ser	AGC	267.00	12.67	0.23
Lys	AAG	1360.00	64.55	0.93
Lys	AAA	108.00	5.13	0.07
Asn	AAT	127.00	6.03	0.13
Asn	AAC	878.00	41.67	0.87
Met	ATG	387.00	18.37	1.00
Ile	ATA	4.00	0.19	0.00
Ile	ATT	390.00	18.51	0.29
Ile	ATC	969.00	45.99	0.71
Thr	ACG	114.00	5.41	0.08
Thr	ACA	34.00	1.61	0.02

Fig. 8A

Title: HUMAN FGF-23 GENE AND GENE EXPRESSION PRODUCTS
Inventor(s): Nobuyuki Itoh et al. Serial No. 09/801,968 Docket No. 201130.40901

Thr	ACT	164.00	7.78	0.11
Thr	ACC	1127.00	53.49	0.78
Trp	TGG	243.00	11.53	1.00
End	TGA	1.00	0.05	0.01
Cys	TGT	20.00	0.95	0.08
Cys	TGC	220.00	10.44	0.92
End	TAG	12.00	0.57	0.17
End	TAA	58.00	2.75	0.82
Tyr	TAT	113.00	5.36	0.16
Tyr	TAC	574.00	27.25	0.84
Leu	TTG	210.00	9.97	0.12
Leu	TTA	9.00	0.43	0.01
Phe	TTT	62.00	2.94	0.09
Phe	TTC	635.00	30.14	0.91
Ser	TCG	195.00	9.26	0.17
Ser	TCA	29.00	1.38	0.02
Ser	TCT	103.00	4.89	0.09
Ser	TCC	558.00	26.49	0.48
Arg	CGG	7.00	0.33	0.01
Arg	CGA	25.00	1.19	0.03
Arg	CGT	281.00	13.34	0.34
Arg	CGC	465.00	22.07	0.55
Gln	CAG	703.00	33.37	0.91
Gln	CAA	66.00	3.13	0.09
His	CAT	88.00	4.18	0.22
His	CAC	312.00	14.81	0.78
Leu	CTG	1182.00	56.10	0.69
Leu	CTA	21.00	1.00	0.01
Leu	CTT	55.00	2.61	0.03
Leu	CTC	224.00	10.63	0.13
Pro	CCG	84.00	3.99	0.09
Pro	CCA	135.00	6.41	0.15
Pro	CCT	72.00	3.42	0.08
Pro	CCC	626.00	29.71	0.68

Fig. 8B

Inventor(s): Nobuyuki Itoh et al. Serial No. 09/801,968 Docket No. 201130.40901

Codon usage for enteric bacterial (highly expressed) genes

AmAcid	Codon	Number	/1000	Fraction
Gly	GGG	13.00	1.89	0.02
Gly	GGA	3.00	0.44	0.00
Gly	GGU	365.00	52.99	0.59
Gly	GGC	238.00	34.55	0.38
Glu	GAG	108.00	15.68	0.22
Glu	GAA	394.00	57.20	0.78
Asp	GAU	149.00	21.63	0.33
Asp	GAC	298.00	43.26	0.67
Val	GUG	93.00	13.50	0.16
Val	GUA	146.00	21.20	0.26
Val	GUU	289.00	41.96	0.51
Val	GUC	38.00	5.52	0.07
Ala	GCG	161.00	23.37	0.26
Ala	GCA	173.00	25.12	0.28
Ala	GCU	212.00	30.78	0.35
Ala	GCC	62.00	9.00	0.10
Arg	AGG	1.00	0.15	0.00
Arg	AGA	0.00	0.00	0.00
Ser	AGU	9.00	1.31	0.03
Ser	AGC	71.00	10.31	0.20
Lys	AAG	111.00	16.11	0.26
Lys	AAA	320.00	46.46	0.74
Asn	AAU	19.00	2.76	0.06
Asn	AAC	274.00	39.78	0.94
Met	AUG	170.00	24.68	1.00
Ile	AUA	1.00	0.15	0.00
Ile	AUU	70.00	10.16	0.17
Ile	AUC	345.00	50.09	0.83
Thr	ACG	25.00	3.63	0.07
Thr	ACA	14.00	2.03	0.04

Fig. 9A

Title: HUMAN FGF-23 GENE AND GENE EXPRESSION PRODUCTS
Inventor(s): Nobuyuki Itoh et al. Serial No. 09/801,968 Docket No. 201130.40901

Thr	ACU	130.00	18.87	0.35
Thr	ACC	206.00	29.91	0.55
Trp	UGG	55.00	7.98	1.00
End	UGA	0.00	0.00	0.00
Cys	UGU	22.00	3.19	0.49
Cys	UGC	23.00	3.34	0.51
End	UAG	0.00	0.00	0.00
End	UAA	0.00	0.00	0.00
Tyr	UAU	51.00	7.40	0.24
Tyr	UAC	157.00	22.79	0.75
Leu	UUG	18.00	2.61	0.03
Leu	UUA	12.00	1.74	0.02
Phe	UUU	51.00	7.40	0.24
Phe	UUC	166.00	24.10	0.76
Ser	UCG	14.00	2.03	0.04
Ser	UCA	7.00	1.02	0.02
Ser	UCU	120.00	17.42	0.34
Ser	UCC	131.00	19.02	0.37
Arg	CGG	1.00	0.15	0.00
Arg	CGA	2.00	0.29	0.01
Arg	CGU	290.00	42.10	0.74
Arg	CGC	96.00	13.94	0.25
Gln	CAG	233.00	33.83	0.86
Gln	CAA	37.00	5.37	0.14
His	CAU	18.00	2.61	0.17
His	CAC	85.00	12.34	0.83
Leu	CUG	480.00	69.69	0.83
Leu	CUA	2.00	0.29	0.00
Leu	CUU	25.00	3.63	0.04
Leu	CUC	38.00	5.52	0.07
Pro	CCG	190.00	27.58	0.77
Pro	CCA	36.00	5.23	0.15
Pro	CCU	19.00	2.76	0.08
Pro	CCC	1.00	0.15	0.00

Fig. 9B

The first first first that the first first

Chromosomal localization of genes of the FGF family in human

Gene	Localization	Gene	Localization
FGF-1 FGF-2 FGF-3 FGF-4 FGF-5 FGF-6 FGF-7 FGF-8 FGF-9 FGF-10 FGF-11	5q31.3-q33.2 4q26 11q13 11q13.3 4q21 12p13 15q13-q22 10q25-q26 13q11-q12 5p12-p13	FGF-12 FGF-13 FGF-14 (FGF-15) FGF-16 FGF-17 FGF-19 FGF-20 FGF-21 FGF-21 FGF-23	3q29-qter X 13 - 8p21 5 11q13.1 8p21.3-p22 19q13.1-qter 19p13.3 12p13

Human FGF-15 gene has not been identified. The localization of human FGF-16 gene has not been determined.

Fig. 10

Fig. 11

Fig. 12

Fig. 13A

Fig. 13B

Fig. 14

1900 (2011) 2011 (2011)

		11774	kDa	₋ 9713		7520	kDa
	(213)	213 220		$230 \mid kDa$	240	250	
FGF23	(141)	AKRAFILPGMNF	PPYSQF	LSRRNEIPL	IHRNTPIPRR	HTRSAEDDSE	ĒR
hFGF-1			GKRGP-	-RTHYGQKA	เปิรโคิเคโรร	D	
hFGF-10	(175)		PRRGQ-	KTRRKNT\$	AHFLPMVVHS		
hFGF-11	(170)						
hFGF-12	(172)	AWFLGLNKEGO	IMKGN-	-RVKKTKP\$	SHFVPKATEV	CMYR	
hFGF-13	(168)	GWYLGLNKEGE	IMKGN-	-HVKKNKPA	AHFLPKPUKV	AMYK	
hFGF-14	(170)	AWFLGUNKEGO					
	(175)	AWFLGUNKEGO					
hFGF-16	(160)	QYYVALINKIDGS					
hFGF-17	()	-WFMAFTRQGR					
hFGF-18							
hFGF-19		`					
hFGF-2		;					
hFGF-21		-LPUHUPGNKS			1 1		
hFGF-3	, ,	LLWYVSVNGKGR				•	}-
hFGF-4	,		1 1				_
hFGF-5 pLTR122		EWYVALNKRGK					
hFGF-6	(179)	-TYIALSKYGR					
hFGF-7		EMFVALINOKGI					
hFGF-8		WYMAFTRKGR					
hFGF-9	(161)	RYYVALNKOGT					
hFGF-20	(164)	RYFVALINKOGT					
hFGF-22Nobu	(139)	-MFLALIDEREGG					-
Consensus	(213)	WYVAL K G F	TKKG	RTKK A	AHFLPR V		

Fig. 15A

Inventor(s): Nobuyuki Itoh et al. Serial No. 09/801,968 Docket No. 201130.40901

6630 kDa

260	270	280	290	300	310	323
DPLNVLKF	RARMTPAPA	SCSQELPSAE	DNSPMASDP	LGVVRGGRVNT	THAGGTGPEGC	RPFAKFI
						
EPSLHSVF	EAS	-PSSPPAP				
SMSRDLFF	IYR				. 	
OKOFEFVO	SAPTRRTKR	TRRP0P	LT			
OKPFKYTT	VTKRSRRIR	PTHPA-				
		<u></u>				
EPPGILAP	OPP-DVGSS	DPLSMVGPS0	GRSPSYAS-			-
PEKKKPPS	PIKPKIPLS	APRKNTNSVK'	YRLKFRFG-			
						
SLRFEFLN	IYPPFTRSLR	GSORTWAPEP	R		. 	
ELYKDILS	OS					
ELYKDLLM	· YT					

Fig. 15B

Cleavage of baculovirus—expressed 6XHis—tagged hFGF—23 secreted by Sf9 cells

]			
oknis-tagged nrur-23 secreted by 319 cells	Cleavage Event(s)	 Signal peptide removal (P26 ↓N27) C-terminal cleavage (R179 ↓S180) R179 removed by contaminating carboxypeptidase 	 Alternate signal peptide (G33 4S34) C-terminal cleavage (R179 4S180) R179 removed by contaminating carboxypeptidase 	 C-terminal cleavage (R179 \$180\$) H257 removed by confaminating carboxypeptidase Glycosylation present 				
ragged nr Gr – 23	Sequence assignment	N27-T178	S34-T178	S180-H256 (with SS bond)	** aprotinin (added to preparation)			
	Mass by Mass Spec	17414	19291	8204	tinin (added			
	N-terminal Sequence	NASPLLGSS	-XXWGGLIHLY	-SAEDDSERDP	** apro			
				_				
	PFGF-		The second secon	Coomassie-Stained	<u> </u>			
ırds	Stando	0 840		Soomas				
	к 250 250 250 36 36 36 36 30 30 Со							

Fig. 16