

## ÉPREUVE SPÉCIFIQUE-FILIÈRE PSI

# **MATHÉMATIQUES 1**

Durée: 4 heures

Les calculatrices programmables et alphanumériques sont autorisées, sous réserve des conditions définies dans la circulaire n° 99-018 du 01.02.99.

### But du problème

Dans la partie I, on étudie les solutions d'une équation différentielle

(E) 
$$y'' - \alpha y = f(x)$$
,

solutions vérifiant en outre des conditions aux limites.

Dans la partie II, on introduit une fonction K de deux variables, fonction qui est définie comme somme d'une série.

Dans la partie III, à chaque fonction f continue impaire  $2\pi$ -périodique sur  $\mathbf{R}$ , on associe une fonction h grâce à la relation

$$h(x) = \int_{-\pi}^{\pi} K(x,t) f(t) dt$$

et on étudie quelques propriétés de la fonction ainsi obtenue.

### **PARTIE I**

Lorsque  $p \in \mathbb{N}$ , on désigne par  $\mathscr{L}^P([0,\pi], \mathbb{R})$  le  $\mathbb{R}$ -espace vectoriel des applications de classe  $\mathscr{L}^P$  de  $[0,\pi]$  dans  $\mathbb{R}$ .

Lorsque  $\alpha \in \mathbf{R}$  et  $f \in \mathcal{L}^{0}([0,\pi],\mathbf{R})$  on considère l'équation différentielle :

(E) 
$$y'' - \alpha y = f(x)$$
.

On désigne par :

- $\mathcal{S}(E)$  l'ensemble des solutions réelles sur l'intervalle  $[0,\pi]$  de l'équation différentielle (E);
- $\mathscr{S}^{0}(E)$  l'ensemble des fonctions F appartenant à  $\mathscr{S}(E)$  et vérifiant en outre :

$$F(0) = F(\pi) = 0.$$

I.1/ On suppose, dans cette question, que f est la fonction nulle.

I.1.1/ Déterminer l'ensemble  $\mathcal{S}^{o}(E)$  lorsque  $\alpha = 0$ .

- I.1.2/ Déterminer l'ensemble  $\mathcal{S}^{o}(E)$  (selon la valeur de  $\omega \in \mathbb{R}_{+}^{*}$ )
  - I.1.2.1/ lorsque  $\alpha = \omega^2$ ,
  - I.1.2.2/ lorsque  $\alpha = -\omega^2$ .
- I.2./ On suppose, dans cette question, que  $\alpha = 0$ .
  - I.2.1/ Déterminer l'ensemble  $\mathscr{S}^{o}(E)$ 
    - I.2.1.1/ lorsque  $f(x) = \cos x$ ,
    - I.2.1.2/ lorsque  $f(x) = \sin(nx)$  (où *n* désigne un entier naturel <u>non nul</u> fixé).
  - I.2.2/ On suppose que  $f(x) = |\cos x|$ .
    - I.2.2.1/ Déterminer l'ensemble  $\mathscr{S}(E)$ .
    - I.2.2.2/ Montrer que  $\mathcal{S}^{0}(E)$  contient un seul élément, (seule fonction F de classe  $\mathcal{S}^{2}$  sur  $[0,\pi]$  telle que pour tout  $x \in [0,\pi]$ ;  $F''(x) = |\cos x|$  et  $F(0) = F(\pi) = 0$ ); expliciter F(x) et indiquer l'allure de son graphe.
- I.3/ On suppose toujours que  $\alpha = 0$  et on désigne par f une fonction quelconque appartenant à  $\mathcal{L}^{0}([0,\pi], \mathbf{R})$ .

Montrer que  $F \in \mathcal{S}(E)$  si et seulement si il existe  $(A,B) \in \mathbb{R}^2$  tel que pour tout  $x \in [0,\pi]$  on ait :

$$F(x) = \int_0^x \int_0^u f(t) dt dt dt dt + Ax + B.$$

En déduire que pour tout  $f \in \mathcal{L}^{\circ}([0,\pi], \mathbf{R})$  l'ensemble  $\mathcal{L}^{\circ}(E)$  contient un seul élément que l'on notera  $F_1$ .

Dans toute la suite de cette partie, on désigne par  $\varphi$  l'application de  $\mathscr{L}^{\circ}([0,\pi], \mathbb{R})$  dans lui même qui à f associe l'élément  $F_1$  unique solution sur l'intervalle  $[0,\pi]$  de l'équation différentielle :

(E) 
$$y'' = f(x)$$
  
vérifiant en outre  $y(0) = y(\pi) = 0$ .

- I.4/ Vérifier que  $\varphi$  est un endomorphisme de  $\mathscr{L}^{0}([0,\pi], \mathbf{R})$ .
- I.5/ L'endomorphisme  $\varphi$  est-il injectif? surjectif?
- I.6/ Déterminer les éléments propres de l'endomorphisme  $\varphi$ .
- I.7/ Pour tout  $x \in [0,\pi]$  on désigne par  $T_x$  l'ensemble des couples  $(t,u) \in \mathbb{R}^2$  tels que  $0 \le t \le u \le x$ .
  - I.7.1/ Représenter l'ensemble  $T_x$  dans le plan euclidien pour un x fixé,  $(0 < x < \pi)$ .
  - I.7.2/ Justifier les égalités suivantes, pour  $x \in [0,\pi]$  et  $f \in \mathcal{L}^0([0,\pi], \mathbb{R})$ :

$$\iint_{T_x} f(t) \ du \ dt = \int_0^x \left[ \int_0^u f(t) \ dt \right] \ du = \int_0^x \left( x - t \right) \ f(t) dt \ .$$

I.7.3/ Soient  $f \in \mathcal{L}^{0}([0,\pi], \mathbf{R})$  et  $F_1 = \varphi(f)$ .

I.7.3.1/ Montrer qu'il existe  $\beta \in \mathbf{R}$  ( $\beta$  que l'on explicitera) tel que pour tout  $x \in [0,\pi]$  on ait l'égalité :  $F_1(x) = \int_0^x (x-t) f(t) dt + \beta x \int_0^\pi (\pi - t) f(t) dt$ .

I.7.3.2/ En déduire qu'il existe  $\gamma \in \mathbf{R}$  ( $\gamma$  que l'on explicitera) tel que pour tout  $x \in [0,\pi]$  on ait l'égalité :  $F_1(x) = \gamma \left[ \int_0^x t(\pi - x) f(t) dt + \int_x^\pi x(\pi - t) f(t) dt \right]$ .

#### PARTIE II.

## Etude d'une fonction de deux variables

Pour  $(x, y) \in \mathbb{R}^2$  on note  $K(x, y) = \sum_{n=1}^{+\infty} \frac{\sin(nx)\sin(ny)}{n^2}$ , lorsque la série converge.

II.1/ Montrer que la fonction K est définie sur  $\mathbb{R}^2$ .

II.2/ Soit y un réel fixé, étudier la continuité de l'application  $x \mapsto K(x, y)$ .

II.3/ Développement en série de Fourier d'une fonction  $E_x$ .

On considère un nombre réel x fixé,  $x \in [0, \pi]$  et on désigne par  $E_x$  l'application de  $\mathbb{R}$  dans  $\mathbb{R}$   $2\pi$ -périodique et impaire, définie sur  $[0, \pi]$  par :

$$E_x(t) = t(\pi - x)$$
 lorsque  $0 \le t \le x$   
et  
 $E_x(t) = x(\pi - t)$  lorsque  $x \le t \le \pi$ .

II.3.1/ Indiquer l'allure du graphe de  $t\mapsto E_x(t)$  sur l'intervalle  $[-\pi, \pi]$  (pour un x fixé,  $x\in ]0,\pi[$ ); justifier la convergence de la série de Fourier réelle de  $E_x$  et préciser sa somme.

(**Rappel**: la série de Fourier réelle de  $E_x$  est :  $\frac{a_0}{2} + \sum_{n \ge 1} a_n \cos(nt) + b_n \sin(nt)$ 

où 
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} E_x(t) \cos(nt) dt$$
 et  $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} E_x(t) \sin(nt) dt$ 

sont les coefficients de Fourier réels de  $E_x$ ).

II.3.2/ Calculer les coefficients de Fourier réels de la fonction  $E_x$ .

II.3.3/ Exprimer K(x, t) en fonction de  $E_x(t)$  pour  $x \in [0, \pi]$  et  $t \in [0, \pi]$ .

II.4/ On considère les sous-ensembles suivants de  $\mathbb{R}^2$ :

le carré C ensemble des couples  $(x,t) \in [0,\pi] \times [0,\pi]$ ,

le triangle U ensemble des couples  $(x,t) \in C$  tels que  $0 < t < x < \pi$ ,

le triangle  $\overline{U}$  ensemble des couples  $(x,t) \in C$  tels que  $0 \le t \le x \le \pi$ .

II.4.1/ Déduire de II.3.3 l'existence d'un minimum et d'un maximum pour la fonction K sur le carré C et préciser la valeur du minimum.

II.4.2/ La fonction K possède-t-elle un maximum relatif sur le triangle U?

II.4.3/ Etudier les extremums de la fonction K sur l'ensemble  $\overline{U} \setminus U$  (bords du triangle de  $\overline{U}$  ).

II.4.4/ En déduire la valeur du maximum de K sur le carré C.

II.4.5/ Si  $\delta \in \mathbb{R}$  on note  $\Gamma_{\delta}$  l'ensemble des  $(x,t) \in C$  tels que  $K(x,t) = \delta$ ,  $(\Gamma_{\delta}$  est la ligne de niveau  $\delta$ ).

Représenter (sur un même croquis) l'ensemble C,  $\Gamma_0$  et la ligne  $\Gamma_\delta$  passant par le point  $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ .

### **PARTIE III**

Dans cette partie on désigne par :

- $\mathcal{J}_{2\pi}$  le **R**-espace vectoriel des applications continues, impaires  $2\pi$ -périodiques de **R** dans **R**.
- K la fonction introduite dans la partie II  $\left(K(x, y) = \sum_{n=1}^{+\infty} \frac{\sin(nx)\sin(ny)}{n^2}\right)$ .

A toute fonction f appartenant à  $\mathcal{J}_{2\pi}$  on associe la fonction  $h = \psi(f)$  définie sur  $\mathbf{R}$  par

$$h(x) = \int_{-\pi}^{\pi} K(x,t) f(t)dt.$$

III.1/ Vérifier que si  $f \in \mathcal{J}_{2\pi}$  et si  $h = \psi(f)$  alors la fonction h est impaire,  $2\pi$ -périodique. Justifier l'égalité

$$h(x) = 2 \int_0^{\pi} K(x,t) f(t) dt.$$

III.2/ Déduire de II.3.3 et de la partie I que si  $f \in \mathcal{J}_{2\pi}$  alors les fonctions  $h = \psi(f)$  et  $F_1 = \varphi(f)$  sont proportionnelles sur  $[0, \pi]$ ; en déduire que h est de classe  $\mathcal{L}^2$  sur  $[0, \pi]$  et qu'elle vérifie les relations:

$$\begin{cases} \text{ pour tout } x \in ]0, \pi[\\ h''(x) = -\pi f(x) \\ h(0) = h(\pi) = 0. \end{cases}$$

III.3/En utilisant (en particulier) l'imparité de f et de h, montrer que h est de classe  $\mathcal{L}^2$  sur  $\mathbf{R}$ .

Dans toute la suite de cette partie, pour chaque application g  $2\pi$ -périodique, continue par morceaux de  $\mathbf{R}$  dans  $\mathbf{R}$ , on désigne par  $a_n(g)$  et  $b_n(g)$  les coefficients de Fourier réels de g:

pour tout 
$$n \in \mathbb{N}$$
:  $a_n(g) = \frac{1}{\pi} \int_{-\pi}^{\pi} g(t) \cos(nt) dt$ ,  $b_n(g) = \frac{1}{\pi} \int_{-\pi}^{\pi} g(t) \sin(nt) dt$ .

Soient désormais  $f \in \mathcal{J}_{2\pi}$  et  $h = \psi(f)$ .

III.4/ Etablir une relation entre  $b_n(h)$  et  $b_n(h'')$  pour  $n \in \mathbb{N}^*$ .

III.5/ Justifier la convergence de la série  $\sum_{n\geq 1} (b_n(f))^2$  respectivement  $\sum_{n\geq 1} \frac{(b_n(f))^2}{n^4}$  et exprimer  $\sum_{n=1}^{+\infty} (b_n(f))^2$  respectivement  $\sum_{n=1}^{+\infty} \frac{(b_n(f))^2}{n^4}$  en fonction d'une intégrale.

III.6/ Etablir l'inégalité:

$$\int_0^{\pi} (h(x))^2 dx \le \pi^2 \int_0^{\pi} (f(x))^2 dx.$$

III.7/ Soit  $D = \{(x, y) \in \mathbb{R}^2 / -\pi \le x \le \pi \text{ et } -\pi \le y \le \pi\}$ . On considère l'intégrale double :

$$J(f) = \iint_D K(x, y) f(x) f(y) dx dy.$$

III.7.1/ Exprimer J(f) en fonction de l'intégrale  $\int_0^{\pi} f(x) h(x) dx$ .

III.7.2/ Exprimer J(f) en fonction de l'intégrale  $\int_0^{\pi} (h'(x))^2 dx$ .

III.7.3/ Montrer que:

$$0 \le J(f) \le 2\pi \int_0^{\pi} (f(x))^2 dx.$$

III.7.4/ Déterminer les fonctions  $f \in \mathcal{J}_{2\pi}$  telles que :

$$J(f) = 2\pi \int_0^{\pi} (f(x))^2 dx.$$

Fin de l'énoncé