

Semester One Examination, 2021 Question/Answer Booklet

MATHEMATICS METHODS ATAR Year 12 Section Two: Calculator-assumed

C	0	11	1 1	T	10	7	AI	C
2	U	L	U		16		N	2

Student Nai	ne:		
Please circle	your teacher's name		
Teacher:	Miss Hosking	Miss Rowden	
	wed for this paper be before commencing work:	10 minutes	

Materials required/recommended for this paper

To be provided by the supervisor

This Question/Answer Booklet
Formula Sheet (retained from Section One)

Number of additional	
answer booklets used	
(if applicable):	

To be provided by the candidate

Standard items:

Working time for paper:

pens (blue/black preferred), pencils (including coloured), sharpener,

100 minutes

correction fluid/tape, eraser, ruler, highlighters

Special items:

drawing instruments, templates, notes on two unfolded sheets of A4

paper, and up to three calculators approved for use in this

examination

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised material. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Structure of this paper

Section	Number of questions available	Number of questions to be answered	Suggested working time (minutes)	Marks available	Percentage of examination
Section One: Calculator free	8	8	50	52	35
Section Two: Calculator-assumed	13	13	100	96	65
				Total	100

Instructions to candidates

- 1. The rules for the conduct of the ATAR course examinations are detailed in the *Year 12 Information Handbook 2021*. Sitting this examination implies that you agree to abide by these rules.
- 2. Write your answers in this Question/Answer booklet.
- 3. You must be careful to confine your answers to the specific questions asked and to follow any instructions that are specific to a particular question.
- 4. Supplementary pages for the use planning/continuing your answer to a question have been provided at the end of the Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.
- 5. Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat any question, ensure that you cancel the answer you do not wish to have marked.
- 6. It is recommended that you do not use pencil, except in diagrams.
- 7. The Formula sheet is not to be handed in with your Question/Answer booklet.

Section Two: Calculator-assumed

65% (96 Marks)

This section has thirteen (13) questions. Answer all questions. Write your answers in the spaces provided.

Supplementary pages for the use of planning/continuing your answer to a question have been provided at the end of this Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.

Working time: 100 minutes.

Question 9 (7 marks)

A hot potato was removed from an oven and placed on a cooling rack. Its temperature T, in degrees Celsius, t minutes after being removed from the oven was modelled by

$$T = 16 + 188e^{kt}$$
.

The temperature of the potato halved between t = 0 and t = 6.8.

(a) Determine the value of the constant k.

(3 marks)

Solution
$T_0 = 16 + 188 = 204$
$102 = 16 + 188e^{6.8k} \Rightarrow k = -0.115$
Specific behaviours
✓ indicates initial temperature
✓ equation for temperature halving
✓ solves for k

(b) The temperature of the potato eventually reached a steady state. Determine the time taken for its temperature to first fall to within 4 °C of this steady state. (2 marks)

es
1197

(c) Determine the time at which the potato was cooling at a rate of 4 °C per minute.

(2 marks)

Solution	zuliali sit
$\frac{dT}{dt} = 21.62e^{-0.115t}$ $- 21.62e^{-0.115t} = -4 \Rightarrow t = 14.7 \text{ minute}$	S
Specific behaviours	
✓ indicates derivative	
✓ correct time, to at least 1 dp	

* wired sol

(8 marks)

Let $f(x) = 3x^4 + ax^2 + 1$.

(a) Sketch the graph of y = f(x) when a = -24.

(4 marks)

(b) Show that the graph of y = f(x) will always have a maximum turning point at x = 0 if a < 0. (4 marks)

$$f'(x) = 12x^3 + 2ax$$

$$f'(0) = 0$$

Hence curve always stationary when x = 0.

$$f''(x) = 36x^2 + 2a$$
$$f''(0) = 2a$$

If a < 0 then f''(0) < 0 and so the curve will always be concave down. Hence a maximum at x = 0.

- \checkmark shows f'(0) = 0
- \checkmark states always stationary when x = 0
- \checkmark shows f''(0) = 2a
- ✓ justifies maximum using second derivative

CALCULATOR-ASSUMED

The graph of function g, and a table of values for function f and its derivatives are shown below.

x	1	2	3
f(x)	3	1	2
f'(x)	1	4	2
f"(x)	2	-1	-2

Evaluate h'(k) when (a)

(i)
$$h(x) = f(g(x)) \text{ and } k = 1.$$

(3 marks)

$$h'(1) = f'(g(1)) \times g'(1)$$

$$= f'(3) \times (-1)$$

$$= (2)(-1) = -2$$

Specific behaviours

- ✓ correct application of chain rule
- \checkmark correct values for g(x) and g'(x)
- ✓ correct value

(ii)
$$h(x) = g(x) \div f(x)$$
 and $k = 2$.

(3 marks)

Solution
$$h'(2) = \frac{g'(2)f(2) - g(2)f'(2)}{f(2)^2}$$

$$= \frac{(-2)(1) - (1.5)(4)}{(1)^2} = -8$$

Specific behaviours

- correct application of quotient rule
- \checkmark correct values for g(x) and g'(x)
- ✓ correct value

Evaluate h''(3) when $h'(x) = f'(x) \times g'(x)$. (b)

(2 marks)

Solution

$$h''(3) = f''(3)g'(3) + f'(3)g''(3)$$
$$= (-2)(2) + (3)(0)$$
$$= -4$$

- ✓ uses product rule with at least two correct values.
- ✓ correct result

(9 marks)

If $x = \log_b 4$ and $y = \log_b 9$ then, in terms of x and y, determine:

10.

 $\log_b 36$ (i)

Solution	
$\log_b 36 = \log_b 4 + \log_b 9$	
= x + y	
Specific behaviours	
✓ correct expression	

(1 marks)

Solution	
$\log_b \frac{2}{3} = \frac{1}{2} \log_b \left(\frac{4}{9}\right)$	
$=\frac{1}{2}(x-y)$	
Specific behaviours	
✓ applies the log laws of powers	

(2 marks)

 $\log_b 144b^3$ (iii)

Solution

 $\log_b 144b^3 = \log_b 4^2 \cdot 9 \cdot b^3$ = 2x + y + 3

(2 marks)

310jub = 3

Specific behaviours

✓ correct expression

Question 12 continued

(b) The loudness L, in decibels, of sound is given by the equation

$$L = 10\log_{10}\left(\frac{I}{I_0}\right)$$

Where I is the intensity of sound and I_0 is the intensity of the sound just audible to the human ear.

(i) Find the loudness if the sound is 140 times as intense as I_0 .

(2 marks)

Solution

$$L = 10\log_{10}\left(\frac{140I_0}{I_0}\right)$$

$$L = 21.46 \, dB$$

Specific behaviours

- ✓ substitutes for I
- ✓correctly evaluates L

(ii) If the loudness was 28dB find in terms of I_0 intensity of sound. (2 marks)

Solution

$$28 = 10\log_{10}\left(\frac{I}{I_0}\right)$$

$$2.8 = \log_{10}\left(\frac{I}{I_0}\right)$$

$$10^{2.8} = \frac{I}{I_0}$$

$$631I_0 = I$$

- ✓ converts from a log to index statement
- ✓ correctly expresses I in terms of I₀

(8 marks)

The graph of y = f(x) is shown at right with 4 equal width inscribed rectangles. An estimate for the area under the curve between x = 0.5 and x = 1.5 is required.

The function f is defined as $f(x) = 2x^2 + 7$ and let the area sum of the 4 rectangles be S_4 .

 S_n , the area estimate using n inscribed rectangles can be calculated using

$$S_n = \sum_{i=1}^{i=n} f(x_i) \delta x$$

(a) State the values of x_1, x_2, x_3, x_4 and δx that should be used to determine S_4 . (1 mark)

Solution
$$x_1 = 0.5, x_2 = 0.75, x_3 = 1, x_4 = 1.25, \delta x = 0.25$$
Specific behaviours

✓ correctly states all values

(b) Calculate the value of S_4 .

(3 marks)

Solution
$$S_4 = 0.25((2(0.5)^2 + 7) + (2(0.75)^2 + 7) + (2(1)^2 + 7) + (2(1.25)^2 + 7))$$

$$= 0.25(7.5 + 8.125 + 9 + 10.125)$$

$$= 0.25(34.75)$$

$$= \frac{139}{16} = 8.6875 \text{ u}^2$$

Specific behaviours

- ✓ indicates correct calculation for one rectangle
- correct heights of all rectangles
- ✓ correct value
- (c) Explain, with reasons, how the value of δx and the area estimate S_n will change as the number of inscribed rectangles increase. (2 marks)

Solution

 δx is the width of each rectangle and so must decrease. S_n will increase, approaching true area under curve, as area 'lost' between curve and rectangles will decrease.

Specific behaviours

- \checkmark indicates δx will decrease as it's the rectangle width
- \checkmark indicates S_n will increase
- (d) Determine the limiting value of S_n as $n \to \infty$.

(2 marks)

	Solution	
$S_{\infty} = \int$	$\int_{0.5}^{1.5} f(x) dx = \frac{55}{6} = 9.16$	δ u ²

Specific behaviours

- correct integral
- ✓ correct limiting value

See next page

(6 marks)

The area A of a regular polygon with n sides of length x is given by

$$A = \frac{n \, x^2 \cos\left(\frac{\pi}{n}\right)}{4 \sin\left(\frac{\pi}{n}\right)}$$

(a) Determine the exact area of a regular hexagon with side length 3 cm.

√ correct area

	Solution	on
$A(x) = \frac{6}{}$	$\times 3^2 \cos\left(\frac{\pi}{6}\right)$	$= \frac{27\sqrt{3}cm^2}{2}$
Cn	acific hat	aviaura

(1 mark)

* correct son's

(b) Simplify the above formula when n=12 to obtain a function for the area of a regular dodecagon. (2 marks)

302 (13+1) 15-1 up date

Specific behaviours

- √ correctly substitutes
- √ simplified function

(c) Use the increments formula to estimate the change in area of a regular dodecagon when its side length increases from 10 cm to 10.3 cm. (3 marks)

62 (53+1) 13-1.

Solution					
$\frac{dA}{dx}=12x(\sqrt{3}+2),$	x = 10,	$\delta x = 0.3$			
$\delta A \approx \frac{dA}{dx} \delta x$					
$\approx 12(10)$	$(\sqrt{3}+2)(0.3)$	3)			
$\approx 18(\sqrt{3} -$	$+2) \approx 67.2$	cm ²			

uplate sdrs.

- Specific behaviours
- \checkmark derivative of A with respect to x
- correct use of increments formula
- ✓ calculates change

(8 marks)

Hick's law, shown below, models the average time, T seconds, for a person to make a

 $T = a + b \log_2(n + 1)$, where a and b are positive constants.

(a) Draw the graph of T vs n on the axes below when a=4 and b=8. (3 marks)

(b) When a pizzeria had 10 choices of pizza, the average time for patrons to make a choice was 40 seconds. After doubling the number of choices, the average time to make their choice increased by 25%.

Modelling the relationship with Hick's law, predict the average time to make a choice if patrons were offered a choice of 35 pizzas. (5 marks)

Solution $40 = a + b \log_2(10 + 1)$ $40 \times 1.25 = a + b \log_2(2 \times 10 + 1)$ a = 2.917, b = 10.719 $T = 2.917 + 10.719 \log_2(35 + 1)$ $T = 58.34 \approx 58 \text{ seconds}$ Specific behaviours ✓ writes first equation ✓ writes second equation ✓ solves for variables ✓ substitutes correctly ✓ states time, rounded to nearest second

(8 marks)

The volume, V litres, of fuel in a tank is reduced between t = 0 and t = 48 minutes so that

$$\frac{dV}{dt} = -175\pi \sin\left(\frac{\pi t}{48}\right)$$

- (a) Determine, to the nearest litre, the amount of fuel emptied from the tank
 - (i) in the first minute.

Solution $\Delta V = \int_0^1 V' dt$ = -17.985

(3 marks)

Hence 18 litres were emptied.

Specific behaviours

- ✓ writes integral for change
- ✓ evaluates integral
 - answers as positive number of litres
- (ii) in the last 7 minutes.

Solution
$$\Delta V = \int_{41}^{48} V' dt = -866.3$$

(1 mark)

Hence 866 litres were emptied.

Specific behaviours

correct number of litres

The tank initially held 18 600 litres of fuel.

(b) Determine the volume of fuel in the tank 5 minutes after the volume in the tank reached 12 000 litres. (4 marks)

Solution $\int_{0}^{T} V' dt = -6600$ T = 20.70 $\Delta V = \int_{20.7}^{25.7} V' dt$ = -2733 V(25.7) = 12000 - 2733 = 9267 L

 $V(t) = \int V' dt = 8400 \cos\left(\frac{\pi t}{48}\right) + c$ $V(0) = 18600 \Rightarrow c = 10200$ $V(T) = 12000 \Rightarrow T = 20.70$ V(25.7) = 9267 L

Alternative Solution

Specific behaviours

- ✓ equation for $\Delta V = -6\,600$
- √ determines T
- ✓ determines ΔV
- √ correct volume

- \checkmark antiderivative for V(t)
- ✓ determines c
- ✓ determines T
- ✓ correct volume

(7 marks)

Regions A, B, C and D bounded by the curve y = f(x) and the x-axis are shown on this graph:

The areas of A, B, C and D are 5, 31, 27 and 23 square units respectively.

(a) Determine the value of

(i)
$$\int_0^3 f(x) \, dx.$$

Solution
$$I = -5 + 31 = 26$$

(1 mark)

Specific behaviours

✓ correct value

(ii)
$$\int_3^8 4f(x) \, dx.$$

Solution
$$I = 4(-27 + 23) = 4(-4) = -16$$

(2 marks)

Specific behaviours

✓ shows sum of signed areas

✓ uses linearity to obtain correct value

(iii)
$$\int_1^8 (5 - f(x)) dx.$$

Solution
$$I = [5(7)] - [31 - 27 + 23]$$

$$I = 35 - 27 = 8$$

(2 marks)

Specific behaviours

✓ uses linearity to obtain two integrals

✓ correct value

(b) Explain why
$$\int_{1}^{5} f'(x) dx = 0.$$

(2 marks)

Solution

Using fundamental theorem, result is f(5) - f(1). Since f(1) = f(5) = 0, then the difference is 0.

Specific behaviours

- ✓ uses fundamental theorem to obtain result
- ✓ explains value of 0 using the two roots

See next page

(7 marks)

The table below shows the sign of the polynomial f(x) and some of its derivatives at various values of x. There are no other zeroes of f(x), f'(x) or f''(x) apart from those shown in the table.

x	-2	-1	0	1	2	3	4
f(x)	-	0	+	+	+	0	-
f'(x)	+	+	0		-	0	_
f''(x)	-	-	-	0	+	0	_

(a) For what value(s) of *x* is the graph of the function concave down?

(1 mark)

rt z	Solution
	x < 1 and $x > 3$
	Specific behaviours
√ co	rrect inequalities and domain

(b) At what location does the graph of *f* have a turning point? Explain your answer.

(2 marks)

(c) Sketch a possible graph of y = f(x) on the axes below.

(4 marks)

See next page

(8 marks)

An offshore wind turbine W lies 12 km away from the nearest point P on a straight coast. It must be connected to a power storage facility S that lies on the coast 24 km away from P.

Engineers will lay the cable in two straight sections, from W to Q, where Q is a point on the coast x km from P, and then from Q to S.

The cost of installing cable along the coastline is \$1000 per km and offshore is \$2600 per km.

(a) Determine, to the nearest hundred dollars, the cost of installing the cable when *Q* lies midway from *A* to *P*.

(b) Show that C, the cost in hundreds of dollars, to run the cable from W to Q to S, is given by

$$C = 26\sqrt{x^2 + 144} - 10x + 240.$$

(2 marks)

Solution
$$C_{WQ} = 26 \times QW = 26 \times \sqrt{x^2 + 12^2}$$

$$C_{QS} = 10(24 - x) = 240 - 10x$$
Hence
$$C = C_{WQ} + C_{QS} = 26\sqrt{x^2 + 144} - 10x + 240$$
Specific behaviours
$$\checkmark \text{ expression for cable from } W \text{ to } Q$$

$$\checkmark \text{ expression for cable from } Q \text{ to } S \text{ and shows sum}$$

(c) Use calculus techniques to determine, with justification, the minimum cost of laying the cable from W to S. (4 marks)

Solution
$$C'(x) = \frac{26x}{\sqrt{x^2 + 144}} - 10$$

$$C'(x) = 0 \Rightarrow x = 5$$

$$C(5) = 528$$

$$C''(5) \approx 1.7 \Rightarrow \text{minimum, as +ve concavity}$$
Hence minimum cost is \$52 800.

Specific behaviours
$$\checkmark \text{ correct derivative}$$

$$\checkmark \text{ solves for optimum value of } x$$

$$\checkmark \text{ justifies minimum}$$

$$\checkmark \text{ states minimum cost}$$

DO NOT WRITE IN THIS AREA AS IT WILL BE CLIT OFF

Question 20

(8 marks)

Small body A moves in a straight line with acceleration a cm/s² at time t s given by

$$a = pt + q$$

Initially, A has a displacement of 4 cm relative to a fixed point O and is moving with a velocity of 9 cm/s. Two seconds later, A has a displacement of 8.8 cm and a velocity of -3.6 cm/s.

Determine the value of the constant p and the value of the constant q.

(6 marks)

Velocity:

$$v = \int pt + q dt$$

$$v(t) = \frac{pt^2}{2} + qt + c$$

$$v(0) = 9 \Rightarrow c = 9$$

Solution

Displacement:

$$s(t) = \int \frac{pt^2}{2} + qt + 9 dt$$

$$s(t) = \frac{pt^3}{6} + \frac{qt^2}{2} + 9t + k$$

$$s(0) = 4 \Rightarrow k = 4$$

$$v(2) = 2p + 2q + 9 = -3.6$$

$$s(2) = \frac{4p}{3} + 2q + 18 = 8.8$$

Solve:

$$p = 0.9$$
, $q = -7.2$

Specific behaviours

- ✓ antiderivative for velocity, constant evaluated
- ✓ integral for displacement
- 🗸 displacement, constant evaluated
- \checkmark expressions for v(2) and s(2)
- ✓ value of p
- value of q

Determine the minimum velocity of A. (b)

Solution
$$c_{\parallel} \quad y' = 0 \Rightarrow 0.9t - 7.2 = 0 \Rightarrow t = 8$$

$$v(8) = -19.8 \text{ cm/s}$$

Specific behaviours

- ✓ indicates time for minimum
- correct minimum velocity

(2 marks)

* ohase

(5 marks)

(a) Determine the value of the constant a and the value of the constant b that make each of the following statements true, given that f(x) is a polynomial:

(ii)
$$\int_0^2 f(x) \, dx - \int_1^2 f(x) \, dx + \int_{-1}^0 f(x) \, dx = \int_a^b f(x) \, dx.$$
 (2 marks)

(b) Determine $\frac{d}{dx} \left(\int_{h(x)}^{3} f(t) dx. \right)$

(2 marks)

Solution
$$\frac{d}{dx} \left[\int_{g(x)}^{3} f(t) dt \right] = \frac{d}{dx} \left[-\int_{3}^{g(x)} f(t) dt \right]$$

$$= -f(g(x)) \cdot g'(x)$$

- √ reverses the boundaries by introducing negative one
- √ correctly uses fundamental theorem