COMBINAÇÃO LINEAR:

Sejam os vetores: $\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}, \dots, \overrightarrow{v_n}$ do espaço vetorial V e os escalares $a_1, a_2, a_3, \dots, a_n$.

Qualquer vetor $\overrightarrow{v} \in V$ escrito na forma:

$$\overrightarrow{v} = a_1 \overrightarrow{v_1} + a_2 \overrightarrow{v_2} + a_3 \overrightarrow{v_3} + \dots + a_n \overrightarrow{v_n}$$

é uma combinação linear dos vetores $\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}, \dots, \overrightarrow{v_n}$.

Exemplos

1. No espaço vetorial P_2 dos polinômios de grau \leq 2, o polinômio $\vec{v} = 7x^2 + 11x - 26$ é uma combinação linear $\vec{v} = 3\vec{v_1} + 4\vec{v_2}$ dos polinômios: $\vec{v_1} = 5x^2 - 3x + 2$ e $\vec{v_2} = -2x^2 + 5x - 8$.

Solução:

- 2. Escrever o vetor \vec{v} = (-4, -18, 7) \in IR³ como combinação linear dos vetores \vec{v}_1 = (1, -3, 2) e \vec{v}_2 = (2, 4, -1) no IR³
- 3. Mostrar que o vetor v = (4,3,-6) não é combinação linear dos vetores v1=(1,-3,2) e v2=(2,4,-1) no IR^3
- 4. Determinar o valor de k para que o vetor $\vec{v} = (1, k, -7) \in \mathbb{R}^3$ seja combinações lineares do vetores: $\vec{v_1} = (1, -3, 2)$ e $\vec{v_2} = (2, 4, -1)$.
- 5. Determinar a condição para x, y e z de modo que $(x, y, z) \in IR^3$ seja combinação linear dos vetores: $\overrightarrow{v_1} = 1, -3, 2$) e $\overrightarrow{v_2} = (2, 4, -1)$.

Exercícios

- 1. Escreva o vetor \vec{v} = (5, -2) \in IR² como combinações lineares do vetores \vec{v}_1 = (1, -1) \in IR² e \vec{v}_2 = (1, 0) \in IR².
- **2**. Escreva o vetor $\vec{v} = (3, 9, -4, -2)$ no IR⁴ como combinações lineares dos vetores: $\vec{v_1} = (1, -2, 0, 3), \vec{v_2} = (2, 3, 0, -1)$ e $\vec{v_3} = (2, -1, 2, 1)$.
- 3. Verifique se o vetor \vec{v} = (2, 3, 0) \in IR³ é uma combinação linear dos vetores: $\vec{v_1}$ = (1, 0, 0) e $\vec{v_2}$ = (1, 1, 0).
- **4.** Mostre que o vetor \vec{v} = (2, 3, 2) não é uma combinação linear dos vetores: \vec{v}_1 = (1, 0, 0) e \vec{v}_2 = (1, 1, 0).
- **5.** Escreva a combinação linear do vetor \vec{v} = (1, 3, 2) em relação aos vetores: $\vec{v_1}$ = (1, 0, 0), $\vec{v_2}$ = (0, 1, 0) e $\vec{v_3}$ = (0, 0, 1).
- 6. Escreva a combinação linear do vetor \vec{v} = (1, 2, 1) em relação aos vetores: \vec{v}_1 = (1, 2, 0); \vec{v}_2 = (1, 0, 0) e \vec{v}_3 = (1, 1, 0).