Netzwerke und Kommunikation B-LS-MI 004 Übungen IP-Adressen

7. Oktober 2020

1 Prefix isolieren

Router arbeiten nur aufgrund des Prefix-Anteils einer IP-Adresse (Routingtabelle).

Die Trennung einer IP-Adresse in Netz- und Host-Anteil erfolgt mit der Netzmasken-Applikation. Der Netz-Anteil wird nach CIDR auch $Pr\ddot{a}fix$ (etwa "Vorwahl") genannt. Grundsätzlich werden die Adresse(n) und die Maske im binären Format mit einer Bit-And¹

- Maske im "dotted-decimal" Format applizieren
 - 0-Byte in der Maske \rightarrow 0-Byte im Ergebnis
 - -255-Byte in der Maske \rightarrow übernehmen des Bytes aus der Adresse in das Ergebnis
 - bei anderen Werte eines Maskenbytes werden für diese Byte-Position die Maske und die Adresse in das binäre Format umgewandelt und dann Bit-für-Bit AND verknüpft. Da es nach CIDR² für ein Masken-Byte nur 9 Möglichkeiten gibt, kann man sich folgende Tabelle³ zur Hilfe nehmen:

¹Bit-für-Bit Adresse:Maske AND-Operation. Die AND-Operation ergibt nur dann eine "1" (true) wenn beide Eingangsbits "1" sind

²Restriktion für die Maske: zusammenhängende Reihe von "1"-Bits von "links" (höherwertige Bits)

³diese Tabelle wird in der Probe zur Verfügung stehen. **Achtung:** die "relative Präfixlänge" muss zu eventuell bestehenden 255=8 Längen addiert werden

	Dezimal	Binär	relative Präfixlänge
Tabelle 1	0	00000000	+/0
	128	10000000	+/1
	192	11000000	+/2
	224	11100000	+/3
	240	11110000	+/4
	248	11111000	+/5
	252	11111100	+/6
	254	11111110	+/7
	255	11111111	+/8

Ebenfalls praktisch in diesem Zusammenhang ist eine Darstellung der Bit-Wertigkeit 4 in einem Byte

- Beispiele:
 - 1. Maske nur aus 0- und 255-Bytes zusammengesetzt:

Adresse	194	41	241	12
Maske	255	255	255	0
Resultat	194	41	241	0

2. Maske mit "kompliziertem" Byte
5 (240) \rightarrow nur diese Byte-Position muss binär bearbeitet werden:

Adresse	172	30	22	7
Maske	255	240	0	0
Zwischenschritt:				
Adresse-Binär	_	00011110	-	-
Maske-Binär	-	11110000	-	-
Bit-And:	(übernehmen)	00010000	(0)	(0)
Resultat	172	16	0	0

- Übungen: Maske applizieren (Lösungen am Schluss)

 $^{^4}$ einfach für alle "1"-Bits die Wertigkeiten zusammenzählen – et voila, wieder ins dezimale übersetzt

⁵Dabei kann das Masken-Byte aus der Tabelle abgelesen werden

Adresse	Maske
221.37.133.77	255.255.254.0
10.202.5.245	255.255.255.0
192.16.45.12	255.255.240.0
194.41.242.190	255.255.255.128
202.101.10.13	255.255.255.255
202.101.10.13	255.255.254.248
88.97.142.31	255.255.255.224
17.254.12.11	255.0.0.0
147.86.3.160	255.224.0.0
12.12.12.12	0.0.0.0

2 CIDR Präfixlänge

- die kompakte Darstellung der Präfixlänge nach CIDR ergibt bei den IPv4-Adressen (32-Bit) insgesamt 32 Möglichkeiten. Eine Tabelle mit 32 Einträgen "dotted-decimalmask" \(\infty "CIDR-prefixlength" zu erstellen ergibt jedoch nur wenig Sinn. Am besten geht man folgendermassen vor:
 - $\mathsf{mask} \to \mathsf{prefixlength}$ man liest die "dotted-decimal" Maske von links beginnend und addiert für jedes 255-Byte 8 zur Präfixlänge plus die "relative" Länge aus Tabelle 1 für die "angeschnittenen" Bytes
 - **prefixlength** \to **mask** 6 für "Präfixlänge div 8" wird je ein 255-Maskenbyte geschrieben und nach Tabelle 1 für "Präfixlänge mod 8" den entsprechenden Eintrag. Die potentiell restlichen Maskenbytes werden als 0 notiert
- Beispiele:
 - 1. Maske \rightarrow Präfixlänge

2. Präfixlänge \rightarrow Maske

Präfixlänge // 23
Zwischenschritt-1:
$$1 \times 8$$
 1×8 Rest 7 +/0
Zwischenschritt-2: +/8 +/8 +/7 +/0

Maske | 255 | 255 | 254 | 0
 $(+/7 \rightarrow 254 \text{ aus Tabelle 1})$

⁶ div ist die Ganzzahldivision, mod der Restwert bei Ganzzahldivision

 \bullet Übungen: Maske \leftrightarrow Präfixlänge (Lösungen am Schluss)

Maske	Präfixlänge
255.255.255.0	?
?	/32
255.240.0.0	?
?	/25
255.255.224.0	?
?	/17
255.255.255.128	?
?	/20
255.255.255.255	?
?	/12

- "sind zwei Adressen in selben Netz?" Dazu wird die Maske auf beide Adressen appliziert und das Ergebnis (Netz/Präfix) verglichen
 - -Übungen "Selbes Netz?" (Lösungen am Schluss)

Maske/Präfixlänge	Adresse-A	Adresse-B	selbes Netz (ja/nein)
255.255.255.0	192.168.2.24	192.168.2.250	?
/16	172.31.250.7	172.31.7.250	?
255.255.255.128	194.41.241.126	194.41.241.135	?
/20	138.191.15.12	138.191.0.252	?
0.0.0.0	212.121.7.35	17.254.12.3	?
/32	12.32.22.3	12.32.22.4	?

• "wieviele Adressen pro Maske oder Präfixlänge?"

Hier muss die Anzahl⁷ Permutationen der *Host*bits gerechnet werden. Dazu rechnet man 2^{Hostbits} – 2. Um von der Präfixlänge auf die Anzahl Hostbits zu kommen rechnet man 32-Präfixlänge – bei dotted-decimal Masken ist es ein bisschen schwieriger, am besten wird zuerst die Präfixlänge ausgerechnet.

-Übungen "wieviele Adressen pro Maske oder Präfixlänge" (Lösungen am Schluss) Maske/Präfixlänge

255.255.240.0 /8 255.255.254.0 /0 255.255.192.0

⁷minus zwei Adressen: alle Hostbits=0 und alle Hostbits=1

• "welche Maske oder Präfixlänge für eine gegebene Anzahl Adressen?"
Wenn Sie einen Taschenrechner haben: 32 − [ln₂ Anzahl] − d.h. der binäre⁸ Logarithmus der Anzahl aufgerundet auf die nächste Ganzzahl ergibt die Hostbits, 32 − Hostbits ist dann die gesuchte Präfixlänge. Wenn Sie keinen Taschenrechner haben: jedes Bit mehr⁹ in den Hostbits bedeutet eine Verdoppelung des Bereichs − nun müssen Sie sich nur noch merken, dass 8 Bit = 256 Möglichkeiten/Adressen (0 bis 255) → 9 Bit demnach 512, 10 Bit ist 1024, etc

Achtung: das sind die Hostbits! D.h. um auf die Präfixlänge zu kommen müssen Sie 32 - Hostbits (wie oben angegeben) rechnen.

Achtung-2: zählen Sie jeweils zu der gegebenen Anzahl Hosts/Adressen noch zwei dazu (die beiden "verbotenen"/unbelegten Adressen: alle-Hostbits= $0 \rightarrow B$ asisadresse, alle-Hostbits= $1 \rightarrow l$ imited-Broadcast)

- Beispiel

Anzahl Adressen		Präfixlänge
12	$32 - \lceil \frac{\ln(12+2)}{\ln 2} \rceil$ oder $\frac{256}{2 \times 2 \times 2 \times 2 \times 2} = 16 \to 24 + 4$	28
254	$32 - \lceil \frac{\ln(254+2)}{\ln 2} \rceil$ oder $256 = 256 \rightarrow 24$	24

Anzahl-Adressen	$n\ddot{a}chste\ Zweierpotenz$	$ben\"{o}tigte\ Bits$	Präfixlänge	Maske
5	8	3	/29	255.255.255.248
180	256	8	/24	255.255.255.0
515	1024	10	/22	255.255.252.0
999	1024	10	/22	255.255.252.0

– Übungen "wieviele Adressen pro Maske oder Präfixlänge" (Lösungen am Schluss) Minimale Netzgrösse für eine gegebene Anzahl Hosts (/0 wäre sonst die Lösung für alles). Mit den zwei "Hilfskolonnen" nächste Zweierpotenz und Anzahlbenötigte Bits:

Anzahl-Adressen	$n\ddot{a}chste\ Zweierpotenz$	$ben\"{o}tigte\ Bits$	Präfixlänge	Maske
29				
110				
231				
1337				
5001				
371337				
1				

⁹jedes weniger: Halbierung des Bereichs

⁸wenn Sie den auf dem Taschenrechner nicht finden: $\ln_2 Anzahl = \frac{\ln Anzahl}{\ln 2}$

3 Lösungen

• Übungen: Maske applizieren

Adresse	Maske	Resultat
221.37.133.77	255.255.254.0	221.37.132.0
10.202.5.245	255.255.255.0	10.202.5.0
192.16.45.12	255.255.240.0	192.16.32.0
194.41.242.190	255.255.255.128	194.41.242.128
202.101.10.13	255.255.255.255	202.101.20.13
202.101.10.13	255.255.254.248	202.101.10.8
88.97.142.31	255.255.255.224	88.97.142.0
17.254.12.11	255.0.0.0	17.0.0.0
147.86.3.160	255.224.0.0	147.64.0.0
12.12.12.12	0.0.0.0	0.0.0.0

• Übungen "Selbes Netz?"

Maske/Präfixlänge	Adresse-A	Adresse-B	selbes Netz (ja/nein)
255.255.255.0	192.168.2.24	192.168.2.250	ja
/16	172.31.250.7	172.31.7.250	$\mathbf{j}\mathbf{a}$
255.255.255.128	194.41.241.126	194.41.241.135	nein
/20	138.191.15.12	138.191.0.252	ja
0.0.0.0	212.121.7.35	17.254.12.3	ja
/32	12.32.22.3	12.32.22.4	nein

• Übungen "wieviele Adressen pro Maske oder Präfixlänge"

Maske/Präfixlänge	Anzahl Adressen
255.255.240.0	4094 ("4k-2" ist auch OK)
/8	16777214 ("16M-2" ist auch OK
255.255.254.0	510
/0	4294967294 ("4G-2" ist auch OK)
255.255.192.0	16382

 $\bullet\;$ Übungen: Maske \leftrightarrow Präfixlänge

Maske	Präfixlänge
255.255.255.0	/24
255.255.255.255	/32
255.240.0.0	/12
255.255.255.128	/25
255.255.224.0	/19
255.255.128.0	/17
255.255.255.128	/25
255.255.240.0	/20
255.255.255.255	/32
255.240.0.0	/12

• Übungen: "welche Maske oder Präfixlänge für eine gegebene Anzahl Adressen?"

Anzahl-Adressen	$n\ddot{a}chste\ Zweierpotenz$	$ben\"{o}tigte\ Bits$	Präfixlänge	Maske
29	32	5	/27	255.255.255.224
110	128	γ	/25	255.255.255.128
231	256	8	/24	255.255.255.0
1337	2048	11	/21	255.255.248.0
5001	8192	13	/19	255.255.224.0
371337	65536	16	/16	255.255.0.0
1	$1 = 2^0$	0	/32	255.255.255.255