#### Mr. Gangadhar Immadi,

Immadi.gangadhar@gmail.com 9986789040

## **DESCRIPTIVE ANALYTICS**

## **Descriptive Analytics**

- ➤ Structured / Unstructured data
- Science of describing past data
- > Types of Data Measurement Scale
- ➤ Population and Sample
- ➤ Measures f Central Tendency
- ➤ Mesures of Variation
- ➤ Data Visualization

# Dataset consists of Nominal and Ratio Scale

| No. | Gender | Age | Percentage SSC | Board SSC | Percentage<br>HSC | Percentage<br>Degree | Salary |
|-----|--------|-----|----------------|-----------|-------------------|----------------------|--------|
| 1   | M      | 23  | 62             | Others    | 88                | 52                   | 270000 |
| 2   | M      | 21  | 76.33          | ICSE      | 75.33             | 75.48                | 220000 |
| 3   | M      | 22  | 72             | Others    | 78                | 66.63                | 240000 |
| 4   | М      | 22  | 60             | CBSE      | 63                | 58                   | 250000 |
| 5   | M      | 22  | 61             | CBSE      | 55                | 54                   | 180000 |
| 6   | М      | 23  | 55             | ICSE      | 64                | 50                   | 300000 |
| 7   | F      | 24  | 70             | Others    | 54                | 65                   | 240000 |
| 8   | M      | 22  | 68             | ICSE      | 77                | 72.5                 | 235000 |
| 9   | M      | 24  | 82.8           | CBSE      | 70.6              | 69.3                 | 425000 |
| 10  | F      | 23  | 59             | CBSE      | 74                | 59                   | 240000 |

## MCT – Mean / Average

- Mathematical average of values and its most frequently used measure
- $\triangleright$  Population mean  $\mu$  and Sample mean x

Mean=
$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \sum_{i=1}^{n} \frac{x_i}{n}$$

$$\overline{X} = \frac{(270 + 220 + 240 + 250 + 180 + 300 + 240 + 235 + 425 + 240) \times 1000}{10} = 260000$$

$$\sum_{i=1}^{n} \left( X_i - \overline{X} \right) = 0$$

Suffers from extreme high or low values

### Mean of Grouped Data

- ➤ Weighted average of class midpoints
- > Class frequencies are the weights

$$\mu = \frac{\sum fM}{\sum f} = \frac{\int fM}{N} = \frac{f_1M_1 + f_2M_2 + f_3M_3 + \dots + f_iM_i}{f_1 + f_2 + f_3 + \dots + f_i}$$

| Class Interval    | Frequency(f) | Class Midpoint(M) | fM   |
|-------------------|--------------|-------------------|------|
| 20-under 30       | 6            | 25                | 150  |
| 30-under 40       | 18           | 35                | 630  |
| 40-under 50       | 11           | 45                | 495  |
| 50-under 60       | 11           | 55                | 605  |
| 60-under 70       | 3            | 65                | 195  |
| 70-under 80       | 1            | 75                | 75   |
|                   | 50           |                   | 2150 |
| $\nabla \alpha a$ |              |                   |      |

$$\mu = \frac{\sum fM}{\sum f} = \frac{2150}{50} = 43.0$$
Mr Gangadhar Imm

### Weighted Average

- ➤ wish to average numbers
- Assign more importance, or weight, to some of the numbers.

  Weighted Average =  $\frac{\sum xw}{\sum w}$

Suppose your midterm test score is 83 and your final exam score is 95. Using weights of 40% for the midterm and 60% for the final exam, compute the weighted average of your scores. If the minimum average for an A is 90, will you earn an A?

Weighted Average = 
$$\frac{(83)(0.40)+(95)(0.60)}{0.40+0.60}$$
$$= \frac{32+57}{1} = 90.2$$

#### MCT - Median (or Mid) Value

- Median is the value that divides the data into two equal parts
- ➤ When n is **odd** value at position (n + 1)/2 when n is odd
- When n is **even**, the median is the **average** value of  $(n/2)^{th}$  and  $(n + 2)/2^{th}$
- ➤ Number of deposits in a Bank

| Day       | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
|-----------|-----|-----|-----|-----|-----|-----|-----|
| Number of | 245 | 326 | 180 | 226 | 445 | 319 | 260 |
| Deposits  |     | 323 |     |     |     | 0_0 |     |

- **▶**180, 226, 245, 260, 319, 326, 445,451
- >(n+1)/2=(8/2)=4

## MCT - Median of Grouped Data

$$Median = L + \frac{\frac{N}{2} - cf_p}{f_{med}}(W)$$

- ✓ L the lower limit of the median class
- $\checkmark$  cf<sub>p</sub> = cumulative frequency of class preceding the median class
- $\checkmark$  f<sub>med</sub> = frequency of the median class
- $\checkmark$  W = width of the median class
- $\checkmark$  N = total of frequencies

| 7              |           | Cumulative | 50                       |
|----------------|-----------|------------|--------------------------|
| Class Interval | Frequency | Frequency  | $-40 + \frac{2}{2} - 24$ |
| 20-under 30    | 6         | 6          | $=40+\frac{11}{11}$      |
| 30-under 40    | 18        | 24         |                          |
| 40-under 50    | 11        | 35         | 40,000                   |
| 50-under 60    | 11        | 46         | =40.909                  |
| 60-under 70    | 3         | 49         |                          |
| 70-under 80    | <u>_1</u> | 50         |                          |
|                | N = 50    |            |                          |

#### **MCT - Mode**

> Most frequently occurring value in the dataset

Only measure of central tendency which is valid for qualitative (nominal) data

- Bimodal, Multimodal, No Mode
- For example, (a) Married, (b) Unmarried (d) Divorced Female.
- > Applicable for all types of data scales
- ➤ Mode :44



### MCT - Mode of Grouped Data

- ➤ Midpoint of the modal class
- Modal class has the greatest frequency

$$Mode = L_{Mo} + \left(\frac{d_1}{d_1 + d_2}\right)w$$

| Class Interval     | Frequency | (                                     |
|--------------------|-----------|---------------------------------------|
| 20-under 30        | 6         | $30 + \left(\frac{12}{12+7}\right)10$ |
| <b>30-under 40</b> | 18        | $(12+7)^{13}$                         |
| 40-under 50        | 11        |                                       |
| 50-under 60        | 11        | = 36.31                               |
| 60-under 70        | 3         |                                       |
| 70-under 80        | 1         |                                       |

## MCT – Percentile, Decile, Quartile

- Frequently used to identify the position of the observation in the dataset (student position)
- $\triangleright P_x$ , is the value of the data at which x percentage of the data lie below that value
- $\triangleright$  Position corresponding to  $P_x \approx x (n+1)/100$
- $\triangleright P_x$  is the position in the data calculated, where n is the number of observations in the data.
- ➤ Decile divide the data into 10 equal parts. First decile contains first 10% of the data and second decile contains first 20% of the data and so on.

- > Quartile divides the data into 4 equal parts.
- > Example Time between failures of wire-cut (in hours)

| 2  | 22 | 32 | 39 | 46 | 56 | 76 | 79 | 88 | 93  |
|----|----|----|----|----|----|----|----|----|-----|
| 3  | 24 | 33 | 44 | 46 | 66 | 77 | 79 | 89 | 99  |
| 5  | 24 | 34 | 45 | 47 | 67 | 77 | 86 | 89 | 99  |
| 9  | 26 | 37 | 45 | 55 | 67 | 78 | 86 | 89 | 99  |
| 21 | 31 | 39 | 46 | 56 | 75 | 78 | 87 | 90 | 102 |

- 1. Calculate the mean, median, and mode of time between failures of wire-cuts
- 2. The company would like to know by what time 10% (ten percentile or  $P_{10}$ ) and 90% (ninety percentile or  $P_{90}$ ) of the wire-cuts will fail?
- 3. Calculate the values of  $P_{25}$  and  $P_{75}$ .

#### Solution

- ➤ Mean = 57.64, median = 56, and mode = 46,89,99
- The position of  $P_{10} = 10 \times (51)/100 = 5.1$  round off to 5 and value at 5<sup>th</sup> position is 21
- $P_{10} = 10 \times (51)/100 = 5.1$ 
  - Approximated as 21 + 0.1 × (value at 6<sup>th</sup> position
    - value at 5<sup>th</sup> position)

$$= 21 + 0.1(1) = 21.1$$

- $P_{90} = 90 \times 51/100 = 45.9$ 
  - Appriximated as-  $90 + 0.9 \times (3) = 92.7$

 $ho_{25}$  (1<sup>st</sup> Quartile or  $Q_1$ ) = 25 × 51/100 = 12.75 , Value at 12<sup>th</sup> position is

$$= 33$$

 $P_{25} = 33 + 0.75$  (value at  $13^{th}$  position – value at  $12^{th}$  position) = 33 + 0.75 (1) = 33.75

 $\triangleright P_{75}$  (3<sup>rd</sup> Quartile or  $Q_3$ )

$$= 75 \times 51/100 = 38.25$$

Value at 38<sup>th</sup> position is

 $P_{75} = 86 + 0.25$  (value at  $39^{th}$  position – value at  $38^{th}$  position) = 86 + 0.25 (0) = 86

## Measures of Variation / Dispersion

- Describe the spread or the dispersion of a data
- Reliability of measure of central tendency
- > To compare dispersion of various samples
- ➤ Measures
  - Range
  - Inter-quartile range
  - Mean Absolute Deviation
  - Variance
  - Standard Deviation
  - Z scores
  - Coefficient of Variation



- Range is the difference between maximum and minimum value of the data
  - Ignores all values except extreme values
  - Range = Largest Smallest = 48 35 = 13

## MOD – Inter Quartile Range / Distance

 $\triangleright$  Measure of the distance be and Quartile 3 ( $Q_3$ )



- Quartile values are not necessarily members of the data set
- Ordered array: 106, 109, 114, 116, 121, 122, 125, 129

$$ightharpoonup Q1: i = \frac{25}{100}(8) = 2 Q_1 = \frac{109 + 114}{2} = 111.5$$

$$ightharpoonup Q2$$
:  $i = \frac{50}{100}(8) = 4$   $Q_2 = \frac{116 + 121}{2} = 118.5$ 

Q3: 
$$i = \frac{75}{100}(8) = 6$$
  $Q_3 = \frac{122 + 125}{2} = 123.5$ 

> Less influenced by extremes

Interquartile Range =  $Q_3 - Q_1$ 

## MOD - Deviation from mean / Mean Absolute Deviation

• Data set: 5, 9, 16, 17, 18

• Deviations from the mean: -8, -4, 3, 4,  $\mu = \frac{\sum X}{N} = \frac{65}{5} = 13$ 

Average of the absolute deviations from the mean

| X  | $X - \mu$ | $X - \mu$           |
|----|-----------|---------------------|
| 5  | -8        | +8                  |
| 9  | -4        | +4                  |
| 16 | +3        | +3                  |
| 17 | +4        | +4                  |
| 18 | <u>+5</u> | <u>+5</u>           |
|    | 0         | 24                  |
|    |           | Mr.Gangadhar Immadi |

$$M.A.D. = \frac{\sum |X - \mu|}{N}$$
$$= \frac{24}{5}$$
$$= 4.8$$

## **MOD - Population Variance**

Average of the squared deviations from the arithmetic mean

| X      | $X - \mu$ | $(X-\mu)^2$ |
|--------|-----------|-------------|
| 5      | -8        | 64          |
| 5<br>9 | -4        | 16          |
| 16     | +3        | 9           |
| 17     | +4        | 16          |
| 18     | <u>+5</u> | <u>25</u>   |
|        | 0         | 130         |
|        |           |             |

$$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$$
$$= \frac{130}{5}$$

$$= 26.0$$

## **MOD - Population Standard Deviation**

Square root of the variance

| X  | $X - \mu$ | $(X - \mu)^2$ |
|----|-----------|---------------|
| 5  | -8        | 64            |
| 9  | -4        | 16            |
| 16 | +3        | 9             |
| 17 | +4        | 16            |
| 18 | <u>+5</u> | 25            |
|    | 0         | 130           |
|    | 0         | 130           |

$$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$$

$$= \frac{130}{5} = 26.0$$

$$\sigma = \sqrt{\sigma^2}$$

$$= \sqrt{26.0}$$

$$= 5.1$$

## MOD – Sample Variance / SD

• Average of the squared deviations from the arithmetic mean

| $X \supset$ | $Y - \overline{X}$ | $(X - \overline{X})$ |
|-------------|--------------------|----------------------|
| 2,398       | 625                | 390,625              |
| 1,844       | 71                 | 5,041                |
| 1,539       | -234               | 54,756               |
| 1,311       | -462               | 213,444              |
| 7,092       |                    | 663,866              |

$$= \frac{663,866}{3}$$

$$= 221,288.67$$

$$S = \sqrt{S^{2}}$$

$$= \sqrt{221,288.67}$$

$$= 470.41$$

#### **Uses of Standard Deviation**

- Indicator of financial risk
- Quality Control
  - construction of quality control charts
  - process capability studies
- Comparing populations
  - household incomes in two cities
  - employee absenteeism at two plants



Mr.Gangadhar Immadi

#### **Kurtosis**

- Kurtosis is another measure of shape, aimed at shape of the tail,
- Checks whther the tail of the data distribution is heavy or light.

Kurtosis = 
$$\sum_{i=1}^{4} \left( X_i - \overline{X} \right)^4 / n$$

- Kurtosis value < 3 --- > platykurtic distribution
- Kurtosis value > 3 --- > leptokurtic distribution.
- kurtosis value = 3 --- > standard normal distribution (mesokurtic)

#### Leptokurtic, mesokurtic, and platykurtic distributions



#### **Data Visualization**

 Data visualization is an integral part of descriptive analytics and it assists decision maker with useful insights

 There are many useful charts such as histogram, bar chart, pie-chart, box-plot that would assist data scientist with visualization of the data

#### **Histogram**

- Histogram is the visual representation of the data which can be used to assess the probability distribution (frequency distribution) of the data
- Histograms are created for continuous (numerical) data.

 It is a frequency distribution of data arranged in consecutive and non-overlapping intervals

#### **Steps to construct histograms**

**Step 1:** Divide the data into finite number of non-overlapping and consecutive bins (interval)

Number of bins, 
$$N = \frac{X_{\text{max}} - X_{\text{min}}}{W}$$

Here  $X_{\text{max}}$  and  $X_{\text{min}}$  are the maximum and minimum values of the data and W is desired the width of the bin (interval). Intervals in histograms are usually of equal size

Sturges (1926) proposed the following formula for calculating the number of bins

Number of bins, 
$$N = 1 + 3.322 \log_{10}(n)$$

#### Steps to construct histograms

2) Count the number of observations from the data that fall under each bin (interval).

3) Create a frequency distribution (bin in the horizontal axis and frequency in the vertical axis) using the information obtained in steps 1 and 2

#### **Use of Histogram**

Histogram is very useful since it assists data scientist to identify the following:

- The shape of the distribution and to assess the probability distribution of the data.
- Measures of central tendency such median and mode.
- Measures of variability such as spread.
- Measure of shape such as skewness

#### **Histogram of Bollywood movie budget**



## Histogram of Bollywood movie box-office collection



#### **Ogive Curves**

 The cumulative histograms are called Ogive curves. The Ogive curve for Bollywood box-office collection is shown below:



## Histogram of Bollywood movie budget along with normal distribution frequency



#### **Bar Chart**

 Bar chart is a frequency chart for qualitative variable (or categorical variable)

 Bar chart can be used to assess the mostoccurring and least-occurring categories within a dataset

Histograms cannot be used when the variable is qualitative

#### **Bar chart for movie genre**



#### **Pie Chart**

 Pie chart is mainly used for categorical data and is a circular chart that displays the proportion of each category in the dataset
 Pie chart for movie genre



#### **Scatter Plot**

 Scatter plot is a plot of two variables that will assist data scientists to understand if there is any relationship between two variables

The relationship could be linear or non-linear

 scatter plot is also useful for assessing the strength of the relationship and to find if there are any outliers in the data

## Scatter plot between movie budget and box office collection



#### **Box Plot (or Box and Whisker Plot)**

- Box plot (aka Box and Whisker plot) is a graphical representation of numerical data that can be used to understand the variability of the data and the existence of outliers
- Box plot is designed by identifying the following descriptive statistics:
  - Lower quartile (1<sup>st</sup> Quartile), median and upper quartile (3<sup>rd</sup> Quartile).
  - Lowest and highest value
  - Inter-quartile range (IQR).

#### **IQR Box Plot**

The box plot is constructed using IQR, minimum and maximum values



#### **Bollywood movie Budget Boxplot**

