清華大學 109 學年(下) 物理系普通物理 Ⅱ 補考-1 4/8 20:00~21:30

1. Charge is distributed uniformly over a large square plane of side ℓ as shown. The charge per unit area is σ . In the limit $\ell \to \infty$, show that the calculated electric field at a point P a distance z above the center of the plane is **consistent with** Gauss's law: $\vec{E} = \sigma \vec{z}/(2\varepsilon_0 |\vec{z}|)$.

Hint: Divide the plane into long narrow **strips** of width dy: $\lambda = dq/\ell = \sigma dy$ and apply the resulted E-field of a uniformly charged straight **wire** of the length ℓ :

$$E = \frac{\lambda}{2\pi\varepsilon_0} \frac{\ell}{\sqrt{y^2 + z^2} \left(\ell^2 + 4\sqrt{y^2 + z^2}\right)^{1/2}};$$
 then

sum the fields due to each strip to get the total field.

PS.
$$\frac{du}{1+u^2} = d \tan^{-1} u$$
. [20%]

2. (1) A disk of radius R has a total charge q uniformly distributed on it. The surface charge density of the disk is σ. The disk is rotating around a vertical axis through its center with angular frequency w.

Hint:
$$d\vec{B} = \frac{\mu_o}{4\pi} \frac{Id\vec{\ell} \times \hat{d}}{d^2}$$
 (1D) $\rightarrow \frac{\mu_o}{4\pi} \frac{\vec{J}_s da \times \hat{d}}{d^2}$ (2D) $\vec{J}_s = \sigma \vec{v} = \sigma \vec{w} \times \vec{r} = \sigma w r \hat{\phi}$ (0 \le r \le R)

- ((i)) Derive the magnetic flux density vector at point O: $\vec{B}(x) = \frac{\mu_o \sigma w R}{2} \hat{x}$. [5%]
- ((ii)) The B-field at point P is $\vec{B}(x) = \frac{\mu_o \sigma w}{2} \left(\sqrt{R^2 + x^2} 2|x| + \frac{x^2}{\sqrt{R^2 + x^2}} \right) \hat{x}$. Derive the effective magnetic moment vector of this rotating disk. [5%]
- (2) What are the main features of the B-field along the axis of a pair of Helmholtz coils (i.e., two similar co-axial coils with radius R placed in the same distance R)? [5%]
- (3) The Hall effect is the production of a voltage difference, $V_{\rm H}$, across an electrical conductor, transverse to an electric current in the conductor and a magnetic field perpendicular to the current. What is the meaning of each term in $V_{\rm H} = \frac{I \cdot B}{n \cdot t \cdot e}$? [5%]

- **3.** (a) 請寫出國際單位制 (SI) 中電容 C 的單位, 即 [C] =?
 - (b) 將電阻R 的常用單位:歐姆(Ω), 改寫成 MKSA 的標準單位。
 - (c) R 乘以 C 的單位是什麼,即 [RC] =? 須加上單位的換算過程或說明理由。
- **4.** (d) 以平行電板的電容器為例,推導: $C = \varepsilon_{\text{air}} \frac{A}{d}$ 。其中,A 為電板的面積、d 為兩電板間的距離、 $d << \sqrt{A}$,且兩電板間空氣的電容率 $\varepsilon_{\text{air}} \approx \varepsilon_0$ (真空誘電率)。
 - (e) 為什麼電容器的兩導體電極間常置入高介電常數的絕緣性介電物質?
 - (f) 為什麼常見的電容器是構裝成圓柱體的外觀?
 - (g) 若構裝成細長圓柱體的電阻器 (A 為截面積、I 為長度),其材質的電阻率為 ρ , 寫出電阻 R 的表示式。
- 5. 一個圓柱體的均勻性導電物質(A 為截面積、 σ 為電導率)在兩端加上電壓、內部 形成電場 \vec{E} ,因而有電流密度向量 \vec{j} 的電荷與能量傳輸。
 - (h) 寫出該導電物質的歐姆定率。
 - (i) 判斷並說明:導電物質內在通電過程中的載子電荷密度 (ρ) 的時間變化率?
 - (j) 什麼是傳輸載子的漂移速度(drift velocity, vd)?
 - (k) 設載子的電荷濃度為 n, 寫出漂移速率和電流密度的關係。
 - (l) 扼要說明:若是已知銅導線的直徑(d) 和銅的質量密度(ρ_m),則還需要什麼相關的數據資訊,才能估算出此條件下銅導線內的載子漂移速率?
 - (m) 一般家庭用電的電流導線中,載子漂移速率的數量級約是多少 m/s?
- **6.** (n) 計算左下圖 $a \rightarrow b$ 兩點間的等效電容。(各電容的單位為 μ F)

(o) 計算右上圖中 a 和 b 兩端點的電位差。

7. 兩電阻 $R_1 \setminus R_2$ 和電容 C 的電路如下圖,其中 E 為電壓值固定的電源電動勢。

- (p) 當t=0的時刻接通開關,此瞬間的電源輸出電流 $I(0^+)=?$
- (q) 畫出電容在充電過程中蓄電量 Q(t) 的時間函數曲線。
- (r) 當通電的時間足夠長,流經電阻 R_1 的電流為何,即 $\lim_{t\to\infty}I_{R_1}(t)=?$
- (s) 並聯上伏特計、跨接電阻 R_2 的兩端可測電壓值,問:如何配置伏特計的內阻?
- (t) 畫出電阻 R_2 兩端電壓差的時間函數曲線,以及 $V_{R_2}(t)=?$
- (u) 電容飽和充電後儲存的電能量是多少?
- 8. 一個中心固定的電偶 $\vec{p} = Q\vec{d}$ 置於外加均勻的電場 $\vec{E}_{\rm ext}$ 中,且 $\vec{p} \perp \vec{E}_{\rm ext}$,問:
 - (v) 此電偶受到的力矩為 $\vec{\tau} = \vec{p} \times \vec{E}_{ext}$,自行設立座標系加以証明。
 - (\mathbf{w}) 力矩令電偶偏轉而作功 $W = \int \vec{\boldsymbol{\tau}} \cdot d\vec{\boldsymbol{\theta}} = -\int \tau d\theta$,說明式子中右端負號的由來。
 - (x) 依據功與動能轉換原理和機械能守恆定率,即 $\Delta U = U_f U_i = -W$;換言之 $U U_{\mathcal{R}} = \int_{\theta_{\mathcal{R}}}^{\theta} \tau d\theta \text{ , 其中的 } U_{\mathcal{R}} \text{ 是位於角位移 } \theta_{\mathcal{R}} \text{ 角度的 $\%$ 考電位能。}$ 說明為什麼一般可寫成 $U = -\vec{p} \cdot \vec{E}_{\text{ext}}$?
 - (y) 電偶本身也會在空間中形成電場的作用,約和遠離電偶距離的幾次方成比例?
 - (z) 驗證 $(1+x)^{-1/2} = 1 \frac{1}{2}x + \frac{3}{8}x^2 \frac{5}{16}x^3 + \cdots$, 其中的 |x| << 1 。

提示:利用牛頓二項式定理較為直接而簡便。

(2) 凡得瓦力是感應電偶和感應電偶間的靜電作用力,和距離的關係又是如何?[5%]

(3) A High-Pass Filter. One application of L-R-C series circuits is to high-pass or lowpass filters, which filter out either the low- or high-frequency components of a signal. A highness filter is

shown in Figure, where the output voltage is taken across the L-R combination. (a) Derive an expression for (V_{out} / V_s) , the ratio of the output and source voltage amplitudes, as a function of the angular frequency ω of the source and R, L, and C parameters. (b) Show that when ω is small, this ratio is proportional to ω and thus is small, and (c) show that the ratio approaches unity in the limit of large frequency. [10%, find the reactance of L and C to construct the voltage and current]

Circuit Element	Average Power	Reactance	Phase of Current	Voltage Amplitude
Resistor R	$\langle P_R \rangle = \frac{{\mathcal{E}_m}^2}{2R}$	R	Current is in phase with the voltage	$V_{_R}=I_{_R}R$
Capacitor C	$\langle P_C \rangle = 0$	$X_C = \frac{1}{\omega C}$	Current leads voltage by a quarter of a period	$V_C = I_C X_C = \frac{I_C}{\omega C}$
Inductor L	$\langle P_L \rangle = 0$	$X_L = \omega L$	Current lags behind voltage by a quarter of a period	$V_L = I_L X_L = I_L \omega L$