对称二叉树

【问题描述】

- 一棵有点权的有根树如果满足以下条件,则被轩轩称为对称二叉树:
- 1. 二叉树;
- 2. 将这棵树**所有**节点的左右子树交换,新树和原树对应位置的结构相同且点权相等。

下图中节点内的数字为权值, 节点外的 id 表示节点编号。

	对称二叉树	非对称二叉树	非对称二叉树
		(权值不对称)	(结构不对称)
原树	id = 2 id = 3 id = 3 id = 3 id = 6 id = 1 5 1 1 5	id = 1 $id = 3$ $id = 3$ $id = 4$ $id = 5$ $id = 6$ $id = 7$ 5 1 2 5	id = 2 $id = 3$ $id = 3$ $id = 6$ $id = 6$ 1 1 1
所有节 点的左 右子树 交换后	id = 3 id = 2 4 id = 5 id = 5	id = 1 $id = 3$ $id = 2$ $id = 6$ $id = 5$ $id = 4$	id = 1 $id = 3$ $id = 3$ $id = 2$ 4 $id = 6$ $id = 5$ $id = 3$
	5 1 1 5	5 2 1 5	1 1 1

现在给出一棵二叉树, 希望你找出它的一棵子树,**该子树为对称二叉树**,**且节点数 最多**。请输出这棵子树的节点数。

注意: 只有树根的树也是对称二叉树。 本题中约定, 以节点 T 为子树根的一棵"子 树"指的是: 节点 T 和它的**全部**后代节点构成的二叉树。

【输入格式】

第一行一个正整数 n,表示给定的树的节点的数目,规定节点编号 $1^{\sim}n$,其中节点 1 是树根。

第二行 n 个正整数, 用一个空格分隔, 第 i 个正整数 vi 代表节点 i 的权值。接下来 n 行,每行两个正整数 li , Ti ,分别表示节点 i 的左右孩子的编号。如果不存在左 / 右孩子,则以 -1 表示。两个数之间用一个空格隔开。

【输出格式】

输出文件共一行, 包含一个整数, 表示给定的树的最大对称二叉子树的节点数。

【数据规模与约定】

共 25 个测试点。

vi ≤ 1000.

测试点 $1^{\sim}3$, $n \leq 10$, 保证根结点的左子树的所有节点都没有右孩子, 根结点的右 子树的所有节点都没有左孩子。

测试点 4^8 , $n \leq 10$ 。

测试点 $9^{\sim}12$, $n \leq 105$, 保证输入是一棵"满二叉树"。

测试点 $13^{\sim}16$, $n \leq 105$, 保证输入是一棵"完全二叉树"。

测试点 17^2 20 , n \leq 105 ,保证输入的树的点权均为 1。 测试点 21^2 25 , n \leq 106。

本题约定:

层次:节点的层次从根开始定义起,根为第一层,根的孩子为第二层。树中任一节点的层次等于其父亲节点的层次加 1。

树的深度: 树中节点的最大层次称为树的深度。

满二叉树: 设二叉树的深度为 h,且二叉树有 2h -1 个节点,这就是满二叉树。

满二叉树 (深度为 3)

完全二叉树: 设二叉树的深度为 h,除第 h 层外,其它各层的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。

完全二叉树 (深度为 3)

完全二叉树(深度为 3)