

INFO 251: Applied Machine Learning

Machine Learning & Causal Inference

Today's Focus

- How can ML help answer casual questions?
 - I'll highlight a few promising areas
 - But we're still figuring this out!

 Great background: "Machine Learning Methods Economists Should Know About", by Susan Athey and Guido Imbens. Annual Review of Economics

Outline

- ML for measurement
- Inference after selection
- Selecting among many controls
- Selecting among many instruments
- Heterogeneous treatment effects
- Other topics

ML for measurement

- One way ML can help answer causal questions is by making it possible (or easier) to observe a variable that was previously difficult to observe
- Version A: "Same question, same identification strategy, new measurement strategy"
 - e.g., "predicting poverty" lecture provides a method for measuring wealth in data-poor environments
 - Wealth is one of the most common/important "LHS variables"
 - Wealth is an important "RHS variable" or interaction/heterogeneity
 - Blumenstock et al., 2016. Airtime Transfers and Mobile Communications: Evidence in the Aftermath of Natural Disasters. Journal of Development Economics
 - Note: better measurement doesn't imply causality!!!

ML for measurement

- Version B: "Same question, new identification strategy, new measurement strategy"
 - Better measurement can facilitate new approaches to causal identification for long-standing questions
 - Spatial regression discontinuity
 - Donaldson, D., Storeygard, A., 2016. The View from Above: Applications of Satellite Data in Economics. JEP
 - Dell, M., Querubin, P., 2018. Nation building through foreign intervention: Evidence from discontinuities in military strategies. QJE
 - Event studies and temporal regression discontinuity
 - Xu, W., Li, Z., Cheng, C., Zheng, T., 2013. Data mining for unemployment rate prediction using search engine query data. Service Oriented Computing and Applications
 - Hall, A.S., 2018. Machine learning approaches to macroeconomic forecasting. *The Federal Reserve Bank of Kansas City Economic Review*

ML for measurement

- Version C: "New question, new identification strategy, new measurement strategy"
 - The combination of new measurement and new identification can make it possible to empirically analyze questions that were historically intractable
 - Blumenstock, J.E., Chi, G., Tan, X., 2025. Migration and the Value of Social Networks.

Outline

- ML for measurement
- Inference after selection
- Selecting among many controls
- Selecting among many instruments
- Heterogeneous treatment effects
- Other topics

Recall LASSO

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k - Y_i)^2 + \lambda \sum_{j=1}^{k} |\theta_j|$$

- How to interpret the θ 's?
 - Regularization shrinks them
 - Biased toward zero
 - Penalized by magnitude
 - Not just on zero vs. non-zero

LASSO

- A method for estimation of the coefficients of a sparse/penalized linear model
- Useful for prediction and forecasting
 - Regularization helps reduce overfitting!
- Provides a rough indication of which variables are correlated with the outcome
- Without additional steps, bad for inference!

- "Post LASSO"
 - What if I run LASSO for variable selection, and then run OLS on the remaining coefficients?
 - This is "cheating", since you've already looked at the data -- the resulting pvalues and confidence intervals will no longer be valid
 - A "quiet scandal" in the statistical community Leo Breiman
 - Similar to "p-hacking", but now done algorithmically!
 - Note: Under some conditions this may be okay, in particular, if "the set of variables selected by the lasso is deterministic and non-data dependent with high probability" – see Zhao et al. (2017), "In Defense of the Indefensible: A Very Naive Approach to High-Dimensional Inference"

Example

HIV data: mutations that predict response to a drug. Selection intervals for lasso with fixed tuning parameter λ .

- So... What to do?
 - Data splitting
 - Data carving
 - Randomized response
 - Exact procedures, polyhedral lemmas
 - Exponential family framework (MCMC)
 - **-**

- Split-sample "Post LASSO"
 - Using half the data: Use LASSO to select H variables from X
 - 2. Using the other half: Run OLS of Y on H
 - This dates back to Cox, D. (1975). A note on data-splitting for the evaluation of significance levels. *Biometrika*
 - Good review article: Taylor, J. and Tibshirani, R. J. (2015). Statistical learning and selective inference. PNAS
 - Advantage: very easy and transparent
 - Disadvantages: you waste data, fitted model may be different between the two halves

Example of fitted model changing with folds

- Key citations:
 - Lee, Jason D., et al. "Exact post-selection inference, with application to the lasso." The Annals of Statistics 44.3 (2016): 907-927.
 - Taylor, Jonathan, and Robert J. Tibshirani. "Statistical learning and selective inference." *Proceedings of the National Academy of Sciences* 112.25 (2015): 7629-7634.

Outline

- Motivation
- ML for measurement
- Inference after selection
- Selecting among many controls
- Selecting among many instruments
- Heterogeneous treatment effects
- Other topics

"Selection on observables" design [recap]

$$Y_i = \alpha + \beta T_i + \gamma X_i + \epsilon_i$$

- We are interested in unbiased estimates of β
- We assume treatment assignment is exogenous after conditioning on control variables
 - After controlling for X, T is "as good as random"
 - $E[\epsilon_i|T_i,X_i]=0$
- Note:
 - This is a strong assumption, but very common in applied settings

$$Y_i = \alpha + \beta T_i + \gamma X_i + \epsilon_i$$

- Typically, in such models, k<<N
- What happens when k >> N?
 - Standard OLS will perfectly fit training data
 - LASSO can shrink β (as well as γ) possibly to zero

$$Y_i = \alpha + \beta T_i + \gamma X_i + \epsilon_i$$

- Why not just exclude β from LASSO penalty?
 - Use LASSO to select H variables from X
 - Then estimate $Y_i = \alpha + \beta T_i + \delta H_i + \epsilon_i$
 - Issue: LASSO designed for prediction, not inference
 - Example: what if a variable in X is highly correlated with T?
 - From the standpoint of *prediction*, it should be dropped
 - From the standpoint of inference, it should be kept!
 - Can create *omitted variable bias* if real relationship exists ($\gamma \neq 0$)
 - E.g., Y = wages; T = education; X = parental wealth

- Option 1: "Regularized regression adjustment"
 - Assumes that T_i is randomly assigned
 - (Also requires other iid/Gaussian assumptions see citations)
- Example (Ludwig et al 2018):
 - Use cross-validation to predict Y from X, call this $\hat{f}(X_i)$
 - Control for $\hat{f}(X_i)$: $Y_i = \alpha + \beta T_i + \gamma \hat{f}(X_i) + \epsilon_i$

- Key Citations
 - Bloniarz, A., Liu, H., Zhang, C.-H., Sekhon, J.S., Yu, B., 2016. Lasso adjustments of treatment effect estimates in randomized experiments. PNAS 113, 7383-7390.
 - Ludwig, J., Mullainathan, S., Spiess, J., 2019. Augmenting pre-analysis plans with machine learning, in: AEA Papers and Proceedings. pp. 71– 76.
 - Wager, S., Du, W., Taylor, J., Tibshirani, R.J., 2016. High-dimensional regression adjustments in randomized experiments. PNAS 113, 12673–12678.

- Option 2: "Double Selection" (aka Post-double selection LASSO):
 - 1. Use LASSO to select H features from regressing Y on X
 - 2. Use LASSO to select K features from regressing T on X
 - If T is truly randomly assigned, K will be empty
 - In practice, K is almost never empty
 - 3. Regress Y on T and the union of H and K
 - Key citation: Belloni, Chernozhukov, Hansen (Review of Economic Studies), "Inference on Treatment Effects after Selection amongst High- Dimensional Controls."

A: A Naive Post-Model Selection Estimator

B: A Post-Double-Selection Estimator

Source: Belloni, Chernozhukov, and Hansen (forthcoming).

Notes: The left panel shows the sampling distribution of the estimator of α based on the first naive procedure described in this section: applying LASSO to the equation $y_i = d_i + x_i' \theta_y + r_{yi} + \zeta_i$ while forcing the treatment variable to remain in the model by excluding α from the LASSO penalty. The right panel shows the sampling distribution of the "double selection" estimator (see text for details) as in Belloni, Chernozhukov, and Hansen (forthcoming). The distributions are given for centered and studentized quantities.

Simulation

https://medium.com/teconomics-blog/using-ml-to-resolve-experiments-faster-bd8o53ff6o2e

- Option 3: "Double Machine Learning"
 - 1. Start with double selection to obtain H and K
 - 2. Compute residuals Y* from regressing*Y on H
 - 3. Compute residuals T* from regressing* T on K
 - 4. Regress Y* on T*. This is the causal estimate
- Key citation: Chernozhukov et al (2018 Econometrics Journal), "Double/debiased machine learning for treatment and structural parameters"
 - Slightly more general than double selection
 - *Can be used on wider range of ML models (not just LASSO)

- DML example: Duflo, Dupas, Kramer (2011 AER)
 - Effects of secondary schooling on labor market outcomes
 - RCT in Ghana provided secondary school scholarships to 682 randomly selected students
 - 2011 paper: scholarship is instrument for schooling
 - Re-analysis: Compares IV to OLS and DML

Outline

- Motivation
- ML for measurement
- Inference after selection
- Selecting among many controls
- Selecting among many instruments
- Heterogeneous treatment effects
- Other topics

- Recall instrumental variables:
 - You want to estimate: $Y_i = \alpha + \beta X_i + u_i$
 - Assume you have a valid instrument Z_i
 - Instrument relevance: $corr(Z_i, X_i) \neq 0$
 - Instrument exogeneity: $corr(Z_i, u_i) = 0$
 - Stage 1: $X_i = b_0 + b_1 Z_i + v_i$
 - Stage 2: $Y_i = \alpha + \beta \widehat{X}_i + u_i$

- Often, we struggle to find any instruments
- Sometimes, there are many potential instruments to choose between
 - Example: Tech firm running millions of randomized experiments, some of which might affect X
 - X = leaving a review; Y = subsequent purchases
- What to do?
 - Idea: Use LASSO to select first stage instruments

- Belloni et al (2012 *Econometrica*)
 - Provides a set of formal conditions under which conventional inference from two-stage least squares, based on instruments selected by LASSO, is valid for learning about β
 - Intuition: The variable selection part of the problem is limited to the first-stage equation, which is a pure predictive relationship
 - "The second-stage estimate is orthogonal or immune to variable selection errors where instruments... are mistakenly excluded from estimation."

- Belloni et al (2012 Econometrica)
 - Call M the full set of possible instruments. Run LASSO of X on M → yields Z instruments
 - 2. Use standard IV of Y on X, using Z as instrument for X

- Key References
 - Belloni, Chen, Chernozhukov, and Hansen (2012 Econometrica),
 "Sparse models and methods for optimal instruments with an application to eminent domain".
 - Jason Hartford, Greg Lewis, Kevin Leyton-Brown, Matt Taddy (2017):
 "Deep IV: A Flexible Approach for Counterfactual Prediction." ICML.

For another applied example, see:

Dissecting the Effect of Credit Supply on Trade: Evidence from Matched Credit-Export Data

Daniel Paravisini ▼, Veronica Rappoport, Philipp Schnabl, Daniel Wolfenzon

The Review of Economic Studies, Volume 82, Issue 1, January 2015, Pages 333–359,

 Idea: "credit supply" for a firm can depend on many different factors; they use LASSO to select relevant factors

Outline

- Motivation
- ML for measurement
- Inference after selection
- Selecting among many controls
- Selecting among many instruments
- Heterogeneous treatment effects
- Other topics

- Recap of heterogeneous TE's (Lecture 4)
- How to simultaneously measure the effect of a treatment T and a non-experimental control variable X and a differential effect of treatment by control variable on an outcome Y in a regression setting?

$$Y_i = \alpha + \beta T_i + \gamma X_i + \delta (T_i * X_i) + \epsilon_i$$

- When might this happen in practice?
 - Treatment effect is different for different types (X_i)
 - Some types of people respond to medicine, others don't
 - Some types of people respond to cookies, others don't

- This begs the question: which "types" X_i are likely to exhibit heterogeneity?
- Typically don't to test all possible X_i (why?)
 - With many variables in X, data are sparse, overfitting likely
 - Biased confidence intervals / p-values
 - With *k* variables, this amounts to *k* statistical tests
 - At very least, would require multiple testing corrections
 - When *k* approaches *N*, need enormous/precise effects

- Causal Tree (Athey and Imbens, 2016 PNAS)
 - Similar to a regression tree, with key differences:
 - Split sample into two halves randomly: the "structure" sample and "estimation" sample
 - 2. Build regression tree on structure sample, *optimizing splits for treatment effect heterogeneity* (instead of purity of dependent variable)
 - More on this on next slide
 - 3. Use estimation sample to estimate treatment effects in each leaf
 - The estimate in each leaf is the average treatment effect for samples with those characteristics

- Causal Tree (Athey and Imbens, 2016 PNAS)
 - What is the splitting criterion that optimizes for treatment effect heterogeneity?
 - In principle, we want to split to obtain more precise estimates of the average treatment effects
 - Problem: this typically requires that we observe true treatment effects,
 but of course we don't observe unit-level treatment effects
 - Instead, reweight Y by propensity score [details]:

$$Y_i^* = Y_i \cdot \frac{T_i - p(X)}{p(X) \cdot (1 - p(X))}$$

- Causal Tree (Athey and Imbens, 2016 PNAS)
 - Advantages:
 - Easy to implement and understand
 - A tree is "honest" if each training observation is only used to either estimate
 either estimate decide where to split, or estimate local treatment effect, but not
 both
 - Disadvantages:
 - As with any single tree, the structure is data-dependent, sensitive to outliers, and somewhat arbitrary
 - The tree doesn't immediately answer the most common question: Which dimensions of heterogeneity are most important?

Example

Does Information Change Attitudes Towards Immigrants?

Representative Evidence from Survey Experiments*

Alexis Grigorieff[†]

Christopher Roth[‡]

Diego Ubfal§

Panel A: Opinions 1

Panel C: Petition

Panel B: Opinions 2

Panel D: Political Preferences

Causal Tree Estimation of Heterogeneous Household Response to Time-Of-Use Electricity Pricing Schemes

EPRG Working Paper 1906

Cambridge Working Paper in Economics 186

Eoghan O'Neill and Melvyn Weeks

Example

(1)		(2)	(3)	(4)	(5)	(1)	(2)	(3)	(4)	(5)
	salForest variable importance	(-)	grf variable importance	(-)	p-value	causalForest variable importance	(-)	grf variable importance	6-7	p-value
atti	c insulated	0.04	water instantly heated	0	0.9	mean 13:00-13:30 usage	40.68	number of freezers	10.02	0.09
mea	an 01:00-01:30 usage	0.08	number of washing machines	0.17	0.95	mean 07:00-07:30 usage	40.77	mean h-h coef. of variation	10.51	1
mea	an 00:30-01:00 usage	0.1	unheated, lack of money	0.22	0.78	var. September peak usage	40.78	mean daytime usage	10.83	0.19
prop	p. elec. saving lightbulbs	0.14	electric plugin heating	0.25	0.27	number of bedrooms	40.9	variance night usage	11.03	0.98
mea	an 07:30-08:00 usage	0.16	electric central heating	0.34	0.95	mean 15:00-15:30 usage	41.1	mean 10:30-11:00 usage	11.33	0.94
	an usage - weekdays	0.86	prop. double glazed windows	0.42	1	own or rent home	41.21	mean 22:00-22:30 usage	11.4	0.76
	an 00:00-00:30 usage	1.3	number of electric cookers	0.52	1	mean 21:00-21:30 usage	41.43	mean 13:00-13:30 usage	11.82	
	iance daytime usage	1.37	number of tumble dryers	0.59	1	variance peak usage	42.06	var. night usage - weekdays	11.86	0.99
	ernal walls insulated	1.51	number of dishwashers	0.73	1	mean 10:30-11:00 usage	42.13	mean 23:00-23:30 usage	12.09	0.93
	an 08:00-08:30 usage	1.8	number of immersion heaters	0.81	1	number of small TVs	42.9	mean 14:30-15:00 usage	12.11	0.8
	an 05:00-05:30 usage	1.89	sex of respondent	1.08	1	type of home	43.36	var. night usage - weekends	12.17	0.98
	iance nonpeak usage	2.03	type of cooker	1.08	1	electric central heating	44.66	mean 21:30-22:00 usage	12.26	0.63
	an h-h coef. of variation	2.12	attic insulated	1.12	1	education	44.82	number of laptop PCs	12.56	0.19
	ging jacking	2.31	own or rent home	1.21	1	mean peak usage	45	mean 22:30-23:00 usage	12.7	0.81
	an 04:00-04:30 usage	2.33	no. of elec. convector heaters	1.22	1	mean 14:30-15:00 usage	45.12	mean 06:30-07:00 usage	12.72	0.97
	an 05:30-06:00 usage	2.53	regular internet user	1.24	1	mean night usage	45.36 45.38	mean daytime usage - weekends	12.78	0.1
	an daytime usage	2.81	water pumped from elec. well water immersion	1.41	0.99	number of dishwashers mean 12:30-13:00 usage	45.4	mean 00:00-00:30 usage	13.66 14.16	
	an 02:00-02:30 usage	3.19		1.47	1	other internet users	45.44	mean daytime usage - weekdays	14.16	0.12
	of elec. convector heaters	3.31	number of instant elec. showers other internet users	1.48	0.61	mean daily max. usage	45.54	variance nonpeak usage var. nonpeak usage - weekdays	15	0.19
	ter pumped from elec. well an 06:00-06:30 usage	3.4	external walls insulated	1.49	1	var. December peak usage	45.84	mean daily min, usage	15.84	0.20
	nber of desktop PCs	3.42	number of hot tank elec. showers	1.63	1	mean 10:00-10:30 usage	46.8	mean 10:00-10:30 usage	15.89	0.64
	an 03:30-04:00 usage	3.75	water centrally heated	2.12	0.98	electric pluqin heating	46.85	mean 23:30-00:00 usage	15.9	0.78
	n 05:50-04:00 usage n half-hourly usage	3.75	lagging jacking	2.16	0.38	mean 12:00-12:30 usage	47.19	mean 07:30-08:00 usage	16.37	0.78
	nber of freezers	4.02	age of home	2.39	1	mean 21:30-22:00 usage	47.5	min. half-hourly usage	16.51	0.88
	nber of instant elec. showers	4.39	has an energy rating	2.85	0.6	mean 11:00-11:30 usage	48.6	variance daytime usage	16.58	0.14
	iance of usage	4.91	number of small TVs	3.01	1	lives alone	48.65	mean lunchtime / mean day usage	16.61	1
	nber of big TVs	4.96	number of games consoles	3.29	0.85	mean 11:30-12:00 usage	50.24	mean 18:00-18:30 usage	16.82	0.34
	nber of games consoles	5.1	lives alone	3.39	0.82	mean 22:00-22:30 usage	50.95	var. daytime usage - weekdays	17.6	0.18
	p. double glazed windows	5.64	mean 02:30-03:00 usage	4.03	1	unheated, lack of money	51.56	mean 21:00-21:30 usage	17.61	0.26
	x. half-hourly usage	5.73	type of home	4.06	1	var. October peak usage	51.7	mean 09:00-09:30 usage	18	0.69
	an 08:30-09:00 usage	6.29	age of respondent	4.25	1	internet access	52.08	variance of usage	18.14	0.05
	usage - weekdays	6.52	education	4.26	1	water centrally heated	52 25	var. usage - weekdays	18.29	0.06
	an 03:00-03:30 usage	7.72	mean 12:00-12:30 usage	4.28	1	mean 16:30-17:00 usage	52.6	max. half-hourly usage	18.53	0.87
	an energy rating	8.97	number of bedrooms	4.52	0.96	mean 22:30-23:00 usage	52.7	mean 19:00-19:30 usage	18.67	0.21
	an 01:30-02:00 usage	9.69	prop. elec. saving lightbulbs	4.56	1	type of cooker	53.21	mean 19:30-20:00 usage	19.41	0.15
mea	an nonpeak usage	9.69	internet access	4.94	0.1	water instantly heated	53.31	mean 16:00-16:30 usage	19.46	0.44
	an of usage	10.08	mean 03:30-04:00 usage	4.96	1	regular internet user	53.37	mean 20:00-20:30 usage	20.3	0.08
nun	nber of laptop PCs	10.44	mean 06:00-06:30 usage	5.3	1	water immersion	54.64	mean 15:00-15:30 usage	21.12	0.28
mea	an 09:00-09:30 usage	12.29	mean 03:00-03:30 usage	5.4	1	mean 23:00-23:30 usage	54.82	var. usage - weekends	21.89	0.08
mea	an 02:30-03:00 usage	15.9	mean 00:30-01:00 usage	5.7	1	var. July peak usage	55.12	mean November peak usage	22.02	0.18
var.	night usage - weekends	23.13	mean 05:30-06:00 usage	6.01	1	number of electric cookers	55.44	mean 18:30-19:00 usage	22.3	0.1
mea	an 04:30-05:00 usage	25.78	mean 04:30-05:00 usage	6.03	1	mean 23:30-00:00 usage	57.26	mean 08:00-08:30 usage	22.37	0.69
mea	an 16:00-16:30 usage	26.07	mean 01:30-02:00 usage	6.29	1	number of immersion heaters	57.53	mean 09:30-10:00 usage	23.8	0.37
mea	an 17:00-17:30 usage	27.02	mean 11:00-11:30 usage	6.46	1	mean night / mean day usage	59.33	var. daytime usage - weekends	23.94	0.06
mea	an daily min. usage	28.03	mean 04:00-04:30 usage	6.54	1	mean December peak usage	59.96	mean 16:30-17:00 usage	24.27	0.36
	an 17:30-18:00 usage	28.56	mean 05:00-05:30 usage	6.73	1	social class	61.34	var. November peak usage	25.8	0.3
	an 18:30-19:00 usage	28.87	number of desktop PCs	7.16	0.12	mean October peak usage	62.19	mean 15:30-16:00 usage	27.1	0.17
	an 18:00-18:30 usage	29.28	mean night usage - weekends	7.24	0.97	mean night usage - weekends	62.44	mean daily max. usage	27.36	0.04
	iance night usage	29.51	social class	7.51	0.7	var. daytime usage - weekdays	62.5	mean 08:30-09:00 usage	30.15	0.33
	an July peak usage	29.74	number of big TVs	7.76	0.53	var. nonpeak usage - weekdays	64.71	mean peak usage - weekdays	33.35	0.03
	an 06:30-07:00 usage	30.99	mean 01:00-01:30 usage	7.91	1	number of tumble dryers	71	mean peak usage	34.52	0.01
	an 15:30-16:00 usage	31.99	employment	7.93	0.57	age of respondent	71.25	mean 20:30-21:00 usage	36.62	0.01
	an September peak usage	32.25	mean 11:30-12:00 usage	8.1	0.99	mean lunchtime / mean day usage	71.33	variance peak usage	40.62	0.01
	an 19:00-19:30 usage	32.69	mean 02:00-02:30 usage	8.1	0.98	sex of respondent	71.68	var. peak usage - weekdays	40.73	0.05
	an November peak usage	32.81	mean 12:30-13:00 usage	8.15	1	mean nonpeak usage - weekdays	74.69	var. December peak usage	40.75	0.1
	August peak usage	33.2	mean night usage	8.2	0.88	number of hot tank elec. showers	75.34	mean September peak usage	47.41	0.02
	nber of washing machines	33.87	mean night usage - weekdays	8.88	0.91	mean usage - weekends	78.1	mean 17:00-17:30 usage	52.63	0.01
	an 20:00-20:30 usage	34.29	mean of usage	8.99	0.18	employment	78.23	mean December peak usage	53.13	0
	an 13:30-14:00 usage	35.56	mean night / mean day usage	9.09	1	var. daytime usage - weekends	80.36	mean July peak usage	53.33	
	an 19:30-20:00 usage	35.69	mean nonpeak usage - weekdays	9.14	0.29	mean daytime usage - weekends	82.81	mean 17:30-18:00 usage	53.36	0
	November peak usage	35.92	mean nonpeak usage	9.38	0.22	mean night usage - weekdays	85.08	mean August peak usage	54.18	0.01
	an 09:30-10:00 usage	36.4	mean 13:30-14:00 usage	9.41	0.95	var. peak usage - weekdays	87.83	var. July peak usage	55.36	0.1
	an 20:30-21:00 usage	36.68	mean 14:00-14:30 usage	9.41	0.92	var. usage - weekends	91.21	var. September peak usage	56.17	0.04
mea	an 14:00-14:30 usage	36.97 39.59	mean usage - weekdays mean 07:00-07:30 usage	9.57 9.91	0.19	mean daytime usage - weekdays var. night usage - weekdays	94.64	mean October peak usage var. August peak usage	64.96	0
									71.73	0
mea	an August peak usage of home		mean usage - weekends	10.02	0.23	mean peak usage - weekdays	100	var. October peak usage	100	0

Survey variables are in italics.

Causal Tree Estimation of Heterogeneous Household Response to Time-Of-Use Electricity Pricing Schemes

EPRG Working Paper 1906
Cambridge Working Paper in Economics 1865

Eoghan O'Neill and Melvyn Weeks

- "Generic" approach (Chernozhukov et al, 2018)
 - A challenge with forests is that it is difficult to describe the output, since the estimated function may be quite complex.
 - In this approach, "the key will be to give up on estimating all the possible heterogeneity but focus on a limited number of core features (is there heterogeneity? what are the characteristics of those with the largest treatment effect?)"

- "Generic" approach focuses on "key features" of the CATE, rather than the CATE itself
 - Best Linear Predictor (BLP) of the CATE (conditional avg. treatment effect) based on the ML proxy predictor
 - Sorted Group Average Treatment Effects (GATES): average treatment effect by heterogeneity groups induced by the ML proxy predictor
 - Classification Analysis (CLAN): average characteristics of the most and least affected units defined in terms of the ML proxy predictor.

Best Linear Predictor: where is the heterogeneity?

Table 3. BLP of Microfinance Availability

	Elast	tic Net	Random Forest		
	ATE (β_1)	HET (β_2)	ATE (β_1)	HET (β_2)	
Amount of Loans	1,163	0.238	1,180	0.390	
	(545,1737)	(0.021, 0.448)	(546,1770)	(0.037, 0.779)	
	[0.000]	[0.060]	[0.001]	[0.062]	
Output	5,096	0.262	4,854	0.190	
	(230,10027)	(0.084, 0.431)	(-167,9982)	(-0.099,0.498)	
	[0.079]	[0.008]	[0.116]	[0.385]	
Profit	1,554	0.243	1,625	0.275	
	(-1344,4388)	(0.079, 0.416)	(-1332,4576)	(0.036, 0.510)	
	[0.584]	[0.008]	[0.577]	[0.045]	
Consumption	-59.2	0.154	-58.5	0.183	
	(-161.4,43.9)	(-0.054,0.382)	(-167.0, 45.9)	(-0.177,0.565)	
	[0.513]	[0.270]	[0.494]	[0.617]	

"Reject null hypothesis of no heterogeneity in TE of Micro-finance on output"

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

P-values for the hypothesis that the parameter is equal to zero in brackets.

Sorted Group Average Treatment Effects (GATES):

Class

	Elastic Net			
	10% Most	10% Least	Difference	
	(δ_{10})	(δ_1)	$(\delta_{10}-\delta_1)$	
Amount of Loans				
Head Age	29.3	35.2	-6.6	
	(26.3,32.4)	(32.2,38.2)	(-10.9,-2.4) [0.004]	
Non-agricultural self-emp.	0.199	0.068	0.123	
	(0.159, 0.238)	(0.030, 0.108)	(0.069,0.178) [0.000]	
Borrowed from Any Source	0.144	0.169	-0.038	
	(0.099, 0.189)	(0.124, 0.212)	(-0.101,0.025) [0.448]	
Output	-	-	[0.448]	
Head Age	36.280	36.708	-0.896	
	(33.4, 39.1)	(33.6, 39.6)	(-5.242,3.432)	
Non-agricultural self-emp.	0.275	0.050	[1.000] 0.226	
	(0.233, 0.315)	(0.007, 0.093)	(0.169, 0.285)	
Borrowed from Any Source	0.193	0.215	[0.000] -0.033	
Borrowed from 7thy Source		(0.167,0.262)	(-0.102, 0.034)	
Profit	-	-	[0.687]	
Tionic				
Head Age	34.1	40.4	-6.5	
	(31.2,37.0)	(37.5,43.4)	(-10.7,-2.5) [0.003]	
Non-agricultural self-emp.	0.181	0.108	0.082	
	(0.140,0.222)	(0.068, 0.149)	(0.022,0.138) [0.014]	
Borrowed from Any Source	0.180	0.257	-0.091	
•	(0.130, 0.230)	(0.207, 0.307)	(-0.160,-0.022)	
	-	-	[0.020]	

"Treatment effect on profits is larger for younger heads of household"

Notes: Medians over 100 splits. 90% confidence interval in parenthesis. P-values for the hypothesis that the parameter is equal to zero in brackets.

Other closely-related methods

- Causal Forests
 - Stefan Wager and Susan Athey. 2017. Estimation and inference of heterogeneous treatment effects using random forests. JASA
- SVM-based approach
 - Kosuke Imai, Marc Ratkovic, et al. 2013. Estimating treatment effect heterogeneity in randomized program evaluation. Annals of Applied Statistics
- Targeted Maximum Likelihood
 - Mark J van der Laan and Daniel Rubin. 2006. Targeted maximum likelihood learning. The International Journal of Biostatistics
- Meta-Learners
 - Künzel, S.R., Sekhon, J.S., Bickel, P.J., Yu, B., 2019. Metalearners for estimating heterogeneous treatment effects using machine learning. *Proceedings of the National Academy of Sciences*

Key Citations (Heterogeneous TE's)

- Athey, Susan and Guido W. Imbens (2016). "Recursive Partitioning for Heterogeneous Causal Effects". Proceedings of the National Academy of Sciences
- Chernozhukov, V., Demirer, M., Duflo, E., Fernández-Val, I., 2018.
 "Generic Machine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments". NBER Working Paper No. 24678
- Wager, Stefan and Susan Athey (2018). "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests".
 Journal of the American Statistical Association

Outline

- Motivation
- ML for measurement
- Inference after selection
- Selecting among many controls
- Selecting among many instruments
- Heterogeneous treatment effects
- Other topics

Other topics

- Also worth knowing about
 - ML to determine which outcomes are affected
 - Ludwig, J., Mullainathan, S., Spiess, J., 2019. "Machine-Learning Tests for Effects on Multiple Outcomes."
 - Ludwig, J., Mullainathan, S., Spiess, J., 2019. "Augmenting pre-analysis plans with machine learning"
 - Adaptive experimentation, ML to guide data collection and experimentation
 - If new units arrive over time, and we can adapt treatment choices, we can learn optimal treatment quickly
 - Bubeck, S. and Cesa-Bianchi, N. (2012). Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Foundations and Trends in Machine Learning

Other topics

- Also worth knowing about
 - Causal inference and casual/do-calculus
 - Pearl, J., 2009. Causality. Cambridge university press.
 - Pearl, J., Mackenzie, D., 2018. The Book of Why: The New Science of Cause and Effect. Basic Books
 - Pearl, J., 2019. The seven tools of causal inference, with reflections on machine learning. *Communications of the ACM*

Summary

- Contributions from causal inference
 - Identification and estimation of causal effects
 - Classical theory to yield asymptotically normal and centered confidence intervals
- Contributions from ML
 - Practical, high performance algorithms for personalized prediction and policy estimation
- Putting them together
 - Practical, high performance algorithms
 - Causal effects with valid confidence intervals

Good resources/repositories

- Key readings on bCourses
- Main innovators
 - Susan Athey, Alex Belloni, Victor Chernozhukov, Christian Hansen, Guido Imbens, Sendhil Mullainathan, Hal Varian
- Dario Sansone's list of resources
 - https://sites.google.com/view/dariosansone/resources/machine-learning
- Colin Cameron's list of resources
 - http://cameron.econ.ucdavis.edu/e24of/machinelearning.htm