Probabilités et statistiques

Pierre-Damien Olive Mis à jour le 2019-04-15

Contents

1	Introduction	5
Ι	Probabilités	7
2	Rappels de probabilités 2.1 début des rappels	9 9
3	tests avec des matrices	11
II	Statistiques	13
4	Modèle linéaire	15
5	References	17
\mathbf{A}	Transformée de Laplace	19
\mathbf{B}	References	21

4 CONTENTS

Introduction

Le site avec la dernière version du cours est disponible sur : https://olivepierre.github.io/probaStats/ Markdown permet plein de mises en forme, en **gras** ou en *italique*. On peut également faire des formules $(E=mc^2)$.

Part I Probabilités

Rappels de probabilités

On fait des probabilités avec \mathbb{P} , pas avec \mathbb{Q} .

- 2.1 début des rappels
- 2.2 fin des rappels
- 2.2.1 rappels 1
- $\mathbf{2.2.2} \quad \mathbf{rappels} \ \mathbf{2}$
 - r1
 - r2

- 1. A
- 2. B
- 3. C

tests avec des matrices

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \end{bmatrix}$$

$$f(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$(3.1)$$

C'est l'équation (3.1)

Théorème 3.1. Je fais mon théorème

Part II Statistiques

Modèle linéaire

References

Appendix A

Transformée de Laplace

Appendix B

References