STA286 Lecture 17

Neil Montgomery

Last edited: 2017-03-06 12:41

We say Z has a "standard" normal distribution, or $Z \sim N(0,1)$, if its density is:

$$f(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}, \qquad -\infty < z < \infty$$

We say Z has a "standard" normal distribution, or $Z \sim N(0,1)$, if its density is:

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}, \quad -\infty < z < \infty$$

Is this a density?

We say Z has a "standard" normal distribution, or $Z \sim N(0,1)$, if its density is:

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}, \quad -\infty < z < \infty$$

Is this a density?

$$E(Z) = 0$$
 (easy integral) and $Var(Z) = 1$ (easy integration by parts).

We say Z has a "standard" normal distribution, or $Z \sim N(0,1)$, if its density is:

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}, \quad -\infty < z < \infty$$

Is this a density?

$$E(Z) = 0$$
 (easy integral) and $Var(Z) = 1$ (easy integration by parts).

Since $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} dz = 1$, the change of variables $z = \frac{x-\mu}{\sigma}$ for any μ and any $\sigma > 0$ shows the following is also a valid density:

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

We say Z has a "standard" normal distribution, or $Z \sim N(0,1)$, if its density is:

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}, \quad -\infty < z < \infty$$

Is this a density?

$$E(Z) = 0$$
 (easy integral) and $Var(Z) = 1$ (easy integration by parts).

Since $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} dz = 1$, the change of variables $z = \frac{x-\mu}{\sigma}$ for any μ and any $\sigma > 0$ shows the following is also a valid density:

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

We say X has a normal distribution with parameters μ and σ , or $X \sim N(\mu, \sigma)$, when it has this density.

Tedious algebra and calculus show (not interesting - see textbook or internet):

$$M_X(t) = e^{\mu t + \sigma^2 t^2/2}$$

Tedious algebra and calculus show (not interesting - see textbook or internet):

$$M_X(t)=e^{\mu t+\sigma^2t^2/2}$$

Suppose $Z \sim N(0,1)$. What is the distribution of $X = \mu + \sigma Z$ for any μ and $\sigma > 0$?

Tedious algebra and calculus show (not interesting - see textbook or internet):

$$M_X(t) = e^{\mu t + \sigma^2 t^2/2}$$

Suppose $Z \sim N(0,1)$. What is the distribution of $X = \mu + \sigma Z$ for any μ and $\sigma > 0$? Answer: $X \sim N(\mu, \sigma)$.

Tedious algebra and calculus show (not interesting - see textbook or internet):

$$M_X(t) = e^{\mu t + \sigma^2 t^2/2}$$

Suppose $Z \sim N(0,1)$. What is the distribution of $X = \mu + \sigma Z$ for any μ and $\sigma > 0$?

Answer: $X \sim N(\mu, \sigma)$.

Suppose $X \sim N(\mu, \sigma)$. What is the distribution of $Z = \frac{X - \mu}{\sigma}$?

Tedious algebra and calculus show (not interesting - see textbook or internet):

$$M_X(t) = e^{\mu t + \sigma^2 t^2/2}$$

Suppose $Z \sim N(0,1)$. What is the distribution of $X = \mu + \sigma Z$ for any μ and $\sigma > 0$?

Answer: $X \sim N(\mu, \sigma)$.

Suppose $X \sim N(\mu, \sigma)$. What is the distribution of $Z = \frac{X - \mu}{\sigma}$?

Answer: $Z \sim N(0,1)$.

Tedious algebra and calculus show (not interesting - see textbook or internet):

$$M_X(t) = e^{\mu t + \sigma^2 t^2/2}$$

Suppose $Z \sim N(0,1)$. What is the distribution of $X = \mu + \sigma Z$ for any μ and $\sigma > 0$?

Answer: $X \sim N(\mu, \sigma)$.

Suppose $X \sim N(\mu, \sigma)$. What is the distribution of $Z = \frac{X - \mu}{\sigma}$?

Answer: $Z \sim N(0,1)$.

A linear transformation of a normal is normal.

Tedious algebra and calculus show (not interesting - see textbook or internet):

$$M_X(t) = e^{\mu t + \sigma^2 t^2/2}$$

Suppose $Z \sim N(0,1)$. What is the distribution of $X = \mu + \sigma Z$ for any μ and $\sigma > 0$?

Answer: $X \sim N(\mu, \sigma)$.

Suppose $X \sim N(\mu, \sigma)$. What is the distribution of $Z = \frac{X - \mu}{\sigma}$?

Answer: $Z \sim N(0,1)$.

A linear transformation of a normal is normal.

If X_1 and X_2 are normal, what is $X_1 + X_2$?

normal probability calculations

Since the normal density has no anti-derivative (the usual case with functions, BTW), probability calculations are a problem for the computer, or a table of probabilities, which you will need to practice if necessary.

normal probability calculations

Since the normal density has no anti-derivative (the usual case with functions, BTW), probability calculations are a problem for the computer, or a table of probabilities, which you will need to practice if necessary.

Why only one table when there are many normal distributions?

normal probability calculations

Since the normal density has no anti-derivative (the usual case with functions, BTW), probability calculations are a problem for the computer, or a table of probabilities, which you will need to practice if necessary.

Why only one table when there are many normal distributions?

I'll do a few examples from the normal_bootcamp.pdf drill document contained with these notes.

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.68$$
 (0.6826895)

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.68$$
 (0.6826895)

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.95$$
 (0.9544997)

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.68$$
 (0.6826895)

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.95$$
 (0.9544997)

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.997$$
 (0.9973002)

The classic plus-or-minus $k\sigma$ probabilities (with exact values):

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.68$$
 (0.6826895)

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.95$$
 (0.9544997)

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.997$$
 (0.9973002)

Bonus probabilities:

$$P(\mu - 6\sigma < X < \mu + 6\sigma) = 0.99999999999027$$

 $P(\mu - 8.5\sigma < X < \mu + 4.5\sigma) = 0.999996602327$