MA1522: Linear Algebra for Computing

Tutorial 9

Revision

Eigenvalue, Eigenvector, Eigenspace

- Let **A** be a square matrix of order n. $\lambda \in \mathbb{R}$ is an <u>eigenvalue</u> of **A** and **v** an associated an <u>eigenvector</u> if $\mathbf{v} \neq \mathbf{0}$ with $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$.
- ▶ The characteristic polynomial of **A**, is the degree *n* polynomial det(xI A).
- $\lambda \in \mathbb{R}$ is an eigenvalue of **A** if and only if λ is a root of the characteristic polynomial $\det(x\mathbf{I} \mathbf{A})$.
- ▶ The algebraic multiplicity of λ is the largest integer r_{λ} such that $\det(x\mathbf{I} \mathbf{A}) = (x \lambda)^{r_{\lambda}} p(x)$.
- ► The eigenvaules of a triangular matrix are the diagonal entries.
- The nonzero (nontrivial) solutions to the homogeneous system $(\lambda \mathbf{I} \mathbf{A})\mathbf{x} = \mathbf{0}$ are the eigenvector of \mathbf{A} associated to λ .
- ▶ The eigenspace associated to λ is $E_{\lambda} = \{ \mathbf{v} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{v} = \lambda\mathbf{v} \} = \text{Null}(\lambda\mathbf{I} \mathbf{A}).$
- The geometric multiplicity of an eigenvalue λ is the dimension of its associated eigenspace, $\dim(\overline{E_{\lambda}}) = \text{nullity}(\lambda \mathbf{I} \mathbf{A})$.

Diagonalization

A is diagonalizable if there exists an invertible matrix **P** such that $P^{-1}AP = D$ is a diagonal matrix, or $A = PDP^{-1}$.

Theorem

A is diagonalizable if and only if the characteristic polynomial of A splits into linear factors,

$$\det(x\mathbf{I}-\mathbf{A})=(x-\lambda_1)^{r_{\lambda_1}}(x-\lambda_2)^{r_{\lambda_2}}\cdots(x-\lambda_k)^{r_{\lambda_k}},$$

and the geometric multiplicity is equal to the algebraic multiplicity for each eigenvalue λ_i , dim $(E_{\lambda_i}) = r_{\lambda_i}$.

Algorithm to Diagonalization

- 1. Compute the characteristic polynomial $det(x\mathbf{I} \mathbf{A})$ and find its roots.
- 2. For each eigenvalue λ_i of \mathbf{A} , i=1,...,k, find a basis S_{λ_i} for the solution space of $(\lambda_i \mathbf{I} \mathbf{A})\mathbf{x} = \mathbf{0}$.
- 3. Let $S = \bigcup_{i=1}^k S_{\lambda_i}$. Then $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ is a basis for \mathbb{R}^n consisting of eigenvectors of \mathbf{A} .
- 4. Let $\mathbf{P} = (\mathbf{u}_1 \quad \mathbf{u}_2 \quad \cdots \quad \mathbf{u}_n)$, and $\mathbf{D} = \operatorname{diag}(\mu_1, \mu_2, ..., \mu_n)$, where μ_i is the eigenvalue associated to \mathbf{u}_i , i = 1, ..., n, $\mathbf{A}\mathbf{u}_i = \mu_i \mathbf{u}_i$. Then

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}.$$

Orthogonally Diagonalization

A is orthogonally diagonalizable if $\mathbf{A} = \mathbf{PDP}^T$ for some orthogonal matrix \mathbf{P} and diagonal matrix \mathbf{D} . \Leftrightarrow **A** is symmetric.

Algorithm to Orthogonally Diagonalization

Same as diagonalization, except to apply change the basis for each eigenspace to an orthonormal basis (i.e. apply Gram-Schmidt process to the basis in each eigenspaces).

Tutorial 9 Solutions

Question 1(a)

A father wishes to distribute an amount of money among his three sons Jack, Jim, and John. He wish to distribute such that the following conditions are all satisfied.

- (i) The amount Jack receives plus twice the amount Jim receives is \$300.
- (ii) The amount Jim receives plus the amount John receives is \$300.
- (iii) Jack receives \$300 more than twice of what John receives.

Is it possible for the following conditions to all be satisfied?

Let x, y, z be the amount of money that Jack, Jim, and John receives, respectively. The conditions are

$$\begin{cases} x + 2y & = 300 \\ y + z & = 300 \\ x & - 2z & = 300 \end{cases}$$

>> A=[1 2 0;0 1 1;1 0 -2]; b=[300;300;300]; rref([A b])
This system is inconsistent. So, there are no solution to the distribution problem.

Question 1(b)

If it is not possible, find a least square solution. (Make sure that your least square solution is feasible. For example, one cannot give a negative amount of money to anybody.)

The least square solutions to the system in (a) is

$$x = 200 + 2t$$
, $y = 100 - t$, $z = t$, $t \in \mathbb{R}$.

Need $x, y, z \ge 0$, so $0 \le t \le 100$.

Question 2(a)

Suppose **A** is a $m \times n$ matrix where m > n. Let **A** = **QR** be a **QR** factorization of **A**. Explain how you might use this to write

$$\mathbf{A} = \mathbf{Q}'\mathbf{R}',$$

where \mathbf{Q}' is an $m \times m$ orthogonal matrix, and \mathbf{R}' a $m \times n$ matrix with m-n zero rows at the bottom. This is known as the *full* QR factorization of \mathbf{A} .

Write
$$\mathbf{Q} = (\mathbf{q}_1 \quad \cdots \quad \mathbf{q}_n)$$
 and $\mathbf{R} = \begin{pmatrix} r_{11} & * & \cdots & * \\ 0 & r_{22} & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{nn} \end{pmatrix}$. Then

$$\mathbf{A} = \mathbf{Q}\mathbf{R} = \begin{pmatrix} \mathbf{Q} \begin{pmatrix} r_{11} \\ 0 \\ \vdots \\ 0 \end{pmatrix} & \mathbf{Q} \begin{pmatrix} r_{12} \\ r_{22} \\ \vdots \\ 0 \end{pmatrix} & \cdots & \mathbf{Q} \begin{pmatrix} r_{1n} \\ r_{2n} \\ \vdots \\ r_{nn} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} r_{11}\mathbf{q}_1 & r_{12}\mathbf{q}_1 + r_{22}\mathbf{q}_2 & \cdots & r_{1n}\mathbf{q}_1 + \cdots + r_{nn}\mathbf{q}_n \end{pmatrix}.$$

Question 2(a)

Suppose
$$\mathbf{R}' = \begin{pmatrix} r_{11} & * & \cdots & * \\ 0 & r_{22} & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{nn} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$
, then for any $\{\mathbf{q}_{n+1}, ..., \mathbf{q}_m\}$, if $\mathbf{Q}' = (\mathbf{q}_1 & \cdots & \mathbf{q}_n & \mathbf{q}_{n+1} & \cdots & \mathbf{q}_m)$,
$$\mathbf{Q}'\mathbf{R}' = (r_{11}\mathbf{q}_1 & r_{12}\mathbf{q}_1 + r_{22}\mathbf{q}_2 & \cdots & r_{1n}\mathbf{q}_1 + \cdots + r_{nn}\mathbf{q}_n) = \mathbf{A}.$$

Next for \mathbf{Q}' to be orthogonal, the columns must form an orthonormal basis for \mathbb{R}^m . Hence, suffice to extend $\mathcal{T} = \{\mathbf{q}_1,...,\mathbf{q}_n\}$ to an orthonormal basis $\{\mathbf{q}_1,...,\mathbf{q}_n,\mathbf{q}_{n+1},...,\mathbf{q}_m\}$ for \mathbb{R}^m .

Question 2(b) and (c)

```
In MATLAB, enter the following.
>> A=sym([1 1 0;1 1 0;1 1 1;0 1 1])
>> [Q R]=qr(A)
```

What is \mathbf{Q} and \mathbf{R} and explain how you might use the command $q\mathbf{r}$ in MATLAB to find a QR factorization of a $m \times n$ matrix \mathbf{A} ?

It is the full QR factorization of **A**. If we let \Rightarrow Q=Q(:,[1:3]), R=R([1:3],:) Then we obtain the answer from tutorial 8 question 5.

In general, let $\mathbf{A} = \mathbf{Q}'\mathbf{R}'$ be the full QR factorization computed in MATLAB. Then let \mathbf{Q} be the first n columns of \mathbf{Q}' , and \mathbf{R} be the first n (nonzero) rows of \mathbf{R}' . The MATLAB code are $\mathbf{Q}' = \mathbf{Q} \cdot \mathbf{Q} \cdot \mathbf{Q}$

```
>> Q=(:,[1:n]), R=R([1:n],:)
```

Consider

$$p(X) = X^3 - 4X^2 - X + 4I.$$

Compute
$$p(\mathbf{X})$$
 for $\mathbf{X} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}$.

>>
$$X=[1 \ 1 \ 2;1 \ 2 \ 1;2 \ 1 \ 1]; \ X^3-4*X^2-X+4*eye(3)$$

Question 3(b)

Find the characteristic polynomial of \boldsymbol{X} .

```
>> syms x; det(x*eye(3)-X)
```

Question 3(c)

Show that X invertible. Express the inverse of X as a function of X.

$$\mathbf{X}^3 - 4\mathbf{X}^2 - \mathbf{X} + 4\mathbf{I} = \mathbf{0}$$
 \Rightarrow $\mathbf{I} = -\frac{1}{4}(\mathbf{X}^3 - 4\mathbf{X}^2 - \mathbf{X}) = -\frac{1}{4}\mathbf{X}(\mathbf{X}^2 - 4\mathbf{X} - \mathbf{I})$

This shows that **X** is invertible with inverse $-\frac{1}{4}(\mathbf{X}^2 - 4\mathbf{X} - \mathbf{I})$.

This question demonstrated the *Cayley-Hamilton theorem*, which states that if p(x) is the characteristic polynomial of \mathbf{X} , then $p(\mathbf{X}) = 0$. This also show that if 0 is not an eigenvalue of \mathbf{X} , then the constant term of the characteristic polynomial p(x) is nonzero, and we can use that to compute the inverse of \mathbf{X} .

Challenge: Show that if
$$\det(x\mathbf{I} - \mathbf{A}) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$$
, then $a_0 = \det(\mathbf{A})$.

Hence, if $\det(A) \neq 0$, the Cayley-Hamilton theorem also shows that **A** is invertible with inverse $-\frac{1}{a_0}(\mathbf{A}^{n-1} + a_{n-1}\mathbf{A}^{n-2} + \cdots + a_1\mathbf{I})$.

Question 4(a)

$$\mathbf{A} = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}.$$

Determine if **A** is diagonalizable. If **A** is diagonalizable, find an invertible **P** that diagonalizes **A** and determine $P^{-1}AP$.

$$\Rightarrow$$
 A=[1 -3 3;3 -5 3;6 -6 4]; syms x; simplify(det(x*eye(3)-A))

The eigenvalues are $\lambda = -2$ and $\lambda = 4$ with multiplicities $r_{-2} = 2$, $r_4 = 1$. Then **A** is diagonalizable if and only if the geometric multiplicity of eigenvalue $\lambda = -2$ is 2, $\dim(E_{-2}) = 2 = r_{-2}$.

>> rref(-2*eye(3)-A) It is indeed diagonalizable. Compute also the basis for eigenspace associated to $\lambda = 4$.

Let
$$\mathbf{P} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
 and $\mathbf{D} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

Question 4(b)

$$\mathbf{A} = \begin{pmatrix} 9 & 8 & 6 & 3 \\ 0 & -1 & 3 & -4 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

$$\Rightarrow A = \begin{bmatrix} 9 & 8 & 6 & 3; 0 & -1 & 3 & -4; 0 & 0 & 2 & 0; 0 & 0 & 0 & 3 \end{bmatrix}; \ \text{rref}(9 * \text{eye}(4) - A)$$

$$\Rightarrow \text{rref}(-1 * \text{eye}(4) - A)$$

$$\Rightarrow \text{rref}(2 * \text{eye}(4) - A)$$

$$\text{rref}(3 * \text{eye}(4) - A)$$

$$\text{So, let } \mathbf{P} = \begin{pmatrix} 1 & -4 & -2 & 5 \\ 0 & 5 & 1 & -6 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 6 \end{pmatrix} \text{ and } \mathbf{D} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \begin{pmatrix} 9 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

Question 4(c)

$$\mathbf{A} = egin{pmatrix} 1 & 0 & 0 \ 1 & 1 & 0 \ 0 & 1 & 1 \end{pmatrix}.$$

>> A=[1 0 0;1 1 0;0 1 1]; rref(eye(3)-A)

Question 4(d)

$$\mathbf{A} = egin{pmatrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \end{pmatrix}.$$

- \Rightarrow A=[0 0 1 0;0 0 0 1;1 0 0 0;0 1 0 0]; simplify(det(x*eye(4)-A))
- >> rref(eye(4)-A)
- >> rref(-eye(4)-A)

Hence, **A** is diagonalizable, with
$$\mathbf{P} = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$
 and

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Question 4(e)

```
\mathbf{A} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \\ -4 & 2 & 3 \end{pmatrix}.
>> A=[-1 1 1;1 1 -1;-4 2 3]; simplify(det(x*eye(3)-A))
>> solve(ans)
```

Question 5(a) and (b)

(a) Show that λ is an eigenvalue of **A** if and only if it is an eigenvalue of \mathbf{A}^T .

$$\det(x\mathbf{I} - \mathbf{A}) = \det((x\mathbf{I} - \mathbf{A})^T) = \det((x\mathbf{I})^T - \mathbf{A}^T) = \det(x\mathbf{I} - \mathbf{A}^T).$$

Hence the roots of $det(x\mathbf{I} - \mathbf{A})$ are exactly the roots of $det(x\mathbf{I} - \mathbf{A}^T)$.

(b) Suppose **A** is diagonalizable. Is \mathbf{A}^T diagonalizable? Justify your answer.

Yes. Write $\mathbf{A} = \mathbf{PDP}^{-1}$. Then

$$\mathbf{A}^T = (\mathbf{P}\mathbf{D}\mathbf{P}^{-1})^T = (\mathbf{P}^{-1})^T \mathbf{D}^T \mathbf{P}^T = \mathbf{Q}\mathbf{D}\mathbf{Q}^{-1},$$

where the last equality follows from the fact that **D** is diagonal and thus symmetric, and letting $\mathbf{Q} = (\mathbf{P}^{-1})^T$ (recall that $(\mathbf{P}^{-1})^T = (\mathbf{P}^T)^{-1}$). That is, $\mathbf{Q} = (\mathbf{P}^{-1})^T$ diagonalizes \mathbf{A}^T .

Question 5(c) and (d)

(c) Suppose \mathbf{v} is an eigenvector of \mathbf{A} associated to eigenvalue λ . Show that \mathbf{v} is an eigenvector of \mathbf{A}^k associated to eigenvalue λ^k for any positive integer k.

By definition, we have $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$. Then

$$\mathbf{A}^k \mathbf{v} = \mathbf{A}^{k-1} \mathbf{A} \mathbf{v} = \lambda \mathbf{A}^{k-2} \mathbf{A} \mathbf{v} = \lambda^2 \mathbf{A}^{k-3} \mathbf{A} \mathbf{v} = \dots = \lambda^{k-1} \mathbf{A} \mathbf{v} = \lambda^k \mathbf{v}.$$

Since $\mathbf{v} \neq \mathbf{0}$, \mathbf{v} is a witness to λ^k being an eigenvalue of \mathbf{A}^k .

(d) If **A** is invertible, show that **v** is an eigenvector of \mathbf{A}^k associated to eigenvalue λ^k for any negative integer k.

Suppose k=-1. First note that since **A** is invertible, $k \neq 0$. Then $\mathbf{A}\mathbf{v} = \lambda\mathbf{v} \iff \lambda^{-1}\mathbf{v} = \mathbf{A}^{-1}\mathbf{v}$. Hence, λ^{-1} is an eigenvalue of \mathbf{A}^{-1} . The rest of the argument follows from (c).

Question 5(e), (f), and (g)

(e) A square matrix is said to be *nilpotent* if there is a positive integer k such that $\mathbf{A}^k = \mathbf{0}$. Show that if \mathbf{A} is nilpotent, then 0 is the only eigenvalue.

Let λ be an eigenvalue of **A** and **v** be an eigenvector associated to λ . By (c), $\mathbf{0} = \mathbf{A}^k \mathbf{v} = \lambda^k \mathbf{v}$. Since $\mathbf{v} \neq \mathbf{0}$, necessarily $\lambda^k = 0$, and hence $\lambda = 0$.

(f) Let **A** be a $n \times n$ matrix with one eigenvalue λ with algebraic multiplicity n. Show that **A** is diagonalizable if and only if **A** is a scalar matrix, $\mathbf{A} = \lambda \mathbf{I}$.

Suppose **A** is diagonalizable, say $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ for some invertible matrix **P**. Now since λ is the only eigenvalue with multiplicity n, necessarily $\mathbf{D} = \lambda \mathbf{I}$. Hence,

$$\mathbf{A} = \mathbf{P}\lambda \mathbf{I} \mathbf{P}^{-1} = \lambda \mathbf{P} \mathbf{I} \mathbf{P}^{-1} = \lambda \mathbf{I},$$

that is, $\mathbf{A} = \lambda \mathbf{I}$ is a scalar matrix. It is clear that a scalar matrix is diagonalizable.

(g) Show that the only diagonalizable nilpotent matrix is the zero matrix.

Let **A** be a nilpontent matrix. Then 0 is the only eigenvalue. If **A** is diagonalizable, then $\mathbf{A} = \mathbf{P} \operatorname{diag}(0, 0, ..., 0) \mathbf{P}^{-1} = \mathbf{0}$ for some invertible matrix P.

