Lecture 4a: Parsing

COSC 4316

(grateful acknowledgement to Robert van Engelen and Elizabeth White for some of the material from which these slides have been adapted)

Position of a Parser in the Compiler Model

Syntax Described by CF Grammars (BNF)

- Advantages of CFGs
 - Precise, easily understood syntactic specification of a language
 - Automatic construction of parsers
 - Makes syntactic ambiguities more obvious
 - Allows extension of language to be done more readily

COSC 4316, Timothy J. McGuire

4

Static Analysis - Parsing

We can use context free grammars to specify the syntax of programming languages.

COSC 4316, Timothy J. McGuire

5

Role of the Parser

- Obtain a string of tokens from the lexical analyzer
- Verify that the string can be generated by the grammar for the source language
- Report syntax errors (intelligibly)
- Recover from some syntax errors

COSC 4316, Timothy J. McGuire

3 Types of Parsers

- Universal parsing algorithms
 - Examples: CYK algorithm or Earley's algorithm
 - May be used for any CF grammar
 - Too inefficient for practical use
- Top down parsers (often constructed by hand)
 - Build parse trees from the root down to the leaves
 - Works with certain classes of grammars (e.g. LL grammars *later*)
- Bottom up parsers (often build with automated tools)
 - Build parsers from the leaves up to the root
 - Work with a broader class of grammars (LR)

COSC 4316, Timothy J. McGuire

7

Error Handling

- Errors will occur
- A good compiler should assist in identifying and locating errors
 - Lexical errors: important, compiler can easily recover and continue
 - Syntax errors: most important for compiler, can almost always recover
 - Static semantic errors: important, can sometimes recover
 - Goal: detection of an error as soon as possible without further consuming unnecessary input
 - How: detect an error as soon as the prefix of the input does not match a prefix of any string in the language (the *viable prefix property*)

Error Recovery Strategies

- Bail out (sudden death)
 - Stop when first error found
- Panic mode
 - Discard input until a token in a set of designated synchronizing tokens is found (e.g., a semicolon or a })
- Phrase-level recovery
 - Perform local correction on the input to repair the error
 - Easy to do in predictive parsing because you know what is expected (match)
- Error productions
 - Augment grammar with productions for erroneous constructs
- Global correction
 - Choose a minimal sequence of changes to obtain a global least-cost correction

ç

Context-Free Grammars (Recap)

- Context-free grammar is a 4-tuple
 - G = (N, T, P, S) where
 - -T is a finite set of tokens (terminal symbols)
 - N is a finite set of nonterminals
 - -P is a finite set of *productions* of the form

 $A \rightarrow \beta$ where $A \in N$ and $\beta \in (N \cup T)^*$

 $-S \in N$ is a designated *start symbol*

Notational Conventions Used

Terminals

 $a,b,c,... \in T$ (lowercase letters early in the alphabet) specific terminals: 0, 1, id, +

• Nonterminals (uppercase letters early in the alphabet)

 $A,B,C,... \in N$

specific nonterminals: expr, term, stmt

- Grammar symbols (uppercase letters late in the alphabet) $X,Y,Z \in (N \cup T)$
- Strings of terminals (lowercase letters late in the alphabet) $u, v, w, x, y, z \in T^*$
- Strings of grammar symbols (Greek letters) $\alpha, \beta, \gamma \in (N \cup T)^*$

11

Derivations

• The *one-step derivation* is defined by

 $\alpha A \beta \Rightarrow \alpha \gamma \beta$

where $A \rightarrow \gamma$ is a production in the grammar

- In addition, we define
 - \Rightarrow is *leftmost* \Rightarrow_{lm} if α does not contain a nonterminal
 - $-\Rightarrow$ is $\mathit{rightmost} \Rightarrow_{\mathit{rm}}$ if β does not contain a nonterminal
 - Transitive closure ⇒* (zero or more steps)
 - Positive closure ⇒⁺ (one or more steps)

Derivations

- A derivation is an alternative to constructing a parse tree.
- We view a production as a rewriting rule.
- The sequence of replacements is called a *derivation*.
- If $S \Rightarrow^* \alpha$, then α is said to be a *sentential form* of the CFG, G
- The *language generated by G* is defined by $L(G) = \{w \in T^* \mid S \Rightarrow^+ w\}$ and w is called a sentence in L(G) (a sentential form with no non-terminals)

13

Derivations

- When deriving a token sequence, if more than one nonterminal is present, we have a choice of which to replace next.
- One convention:
 - Leftmost derivation -
 - Choose the leftmost possible nonterminal at each step.
 - $\bullet \Rightarrow_{lm} \Rightarrow^*_{lm} \Rightarrow^+_{lm}$
- A sentential form produced via a leftmost derivation is called a *left* sentential form

Derivation (Example)

$$S \rightarrow P(S) \mid \underline{var} R$$
 $P \rightarrow \underline{func} \mid \epsilon$
 $R \rightarrow + S \mid \epsilon$

Expressions of variables and functions

• A leftmost derivation of <u>func</u> (<u>var</u> + <u>var</u>) is

$$S \Rightarrow_{lm} P(S) \Rightarrow_{lm} \underline{\mathbf{func}}(S) \Rightarrow_{lm} \underline{\mathbf{func}}(\underline{\mathbf{var}} R)$$

$$\Rightarrow_{lm} \underline{\mathbf{func}}(\underline{\mathbf{var}} + S) \Rightarrow_{lm} \underline{\mathbf{func}}(\underline{\mathbf{var}} + \underline{\mathbf{var}} R)$$

$$\Rightarrow_{lm} \underline{\mathbf{func}}(\underline{\mathbf{var}} + \underline{\mathbf{var}})$$

15

Derivations

- Analogous to leftmost derivations, we have *rightmost derivations*.
- These seem less intuitive, but they correspond to a large class of parsers (the *bottom-up parsers*.)
- Leftmost derivations are usually associated with top-down parsing.
- Rightmost derivations are sometimes called *canonical derivations*.

CFG Examples

Indicates a production

$$T = \{+,-,0..9\}, N = \{L,D\}, S = L$$

$$L \rightarrow L + D \mid L - D \mid D$$

$$D \rightarrow 0 \mid ... \mid 9$$
Shorthand for multiple productions

T={ (,)}, N = {L}, S = L
L
$$\rightarrow$$
 (L)L
L \rightarrow ϵ

COSC 4316, Timothy J. McGuire

17

Languages

Regular	$A \rightarrow a B, C \rightarrow \varepsilon$
Context free	$A \rightarrow \alpha$
Context sensitive	$\alpha A\beta \rightarrow \alpha \gamma \beta$
Type 0	$\alpha \rightarrow \beta$

COSC 4316, Timothy J. McGuire

Any regular language can be expressed using a CFG

Starting with a NFA:

- For each state S_i in the NFA
 - Create non-terminal A_i
 - If transition $(S_i,a) = S_k$, create production A_i → a A_k
 - If transition $(S_i, \varepsilon) = S_k$, create production $A_i \rightarrow A_k$
 - If S_i is a final state, create production $A_i \rightarrow \varepsilon$
 - If S_i is the NFA start state, $s = A_i$
- What does the existence of this algorithm tell us about the relationship between regular and context free languages?

COSC 4316, Timothy J. McGuire

19

NFA to CFG Example

ab*a

$$A_{1} \rightarrow a A_{2}$$

$$A_{2} \rightarrow b A_{2}$$

$$A_{2} \rightarrow a A_{3}$$

$$A_{3} \rightarrow \epsilon$$

COSC 4316, Timothy J. McGuire

Writing Grammars

When writing a grammar (or RE) for some language, the following must be true:

- 1. All strings generated are in the language.
- 2. Your grammar produces all strings in the language.

COSC 4316, Timothy J. McGuire

21

Try these:

- Integers divisible by 2
- Legal postfix expressions
- Floating point numbers with no extra zeros
- Strings of 0,1 where there are more 0 than 1 (hard)

COSC 4316, Timothy J. McGuire

Regular Expressions vs. CFGs

• A grammar in which every production is of the form:

$$A \rightarrow w B$$
 $(w, x \in T^* \text{ and } A, B \in N)$
 $or \quad A \rightarrow x$

is called a *right-linear grammar*. (*Left-linear grammar* defined analogously.)

• It can be proven that any right-linear grammar generates a regular language, and *vice versa*.

COSC 4316, Timothy J. McGuire

23

Regular Expressions vs. CFGs

- Why use regular expressions to denote the lexical syntax of a language if we could use CFGs instead?
 - Lexical rules are simple don't use a chainsaw to prune a rose
 - Regular expressions are more concise and easier to understand than CFGs
 - Easier to generate a lexical analyzer from a regular expression than an <u>arbitrary</u> grammar.
 - Promotes modularity of the front end.

COSC 4316, Timothy J. McGuire

Parsing

- The task of parsing is figuring out what the parse tree looks like for a given input and language.
- If a string is in the given language, a parse tree must exist.
- However, just because a parse tree exists for some string in a given language doesn't mean a given algorithm can find it.

COSC 4316, Timothy J. McGuire

25

Parse Trees

The parse tree for some string in a language that is defined by the grammar G as follows:

- The root is the start symbol of G
- The leaves are terminals or ε . When visited from left to right, the leaves form the input string
- The interior nodes are non-terminals of G
- For every non-terminal A in the tree with children $B_1 \dots B_k$, there is some production $A \rightarrow B_1 \dots B_k$

COSC 4316, Timothy J. McGuire

Parse Trees & Derivations

- A derivation is a *linear* representation of a parse tree.
- Equivalently, a parse tree is a *graphical representation* of a derivation.

For the grammar and the string

 $\underline{\text{func}} (\underline{\text{var}} + \underline{\text{var}})$:

 $S \rightarrow P(S) | \underline{var} R$

 $P \rightarrow \underline{\mathbf{func}} \mid \epsilon$

 $R \rightarrow + S \mid \epsilon$

$$S \Rightarrow_{lm} P (S) \Rightarrow_{lm} \underline{\mathbf{func}} (S) \Rightarrow_{lm} \underline{\mathbf{func}} (\underbrace{\mathbf{var}} R)$$

 $\Rightarrow_{lm} \underline{\mathbf{func}} (\underline{\mathbf{var}} + \mathbf{S})$

 $\Rightarrow_{lm} \underline{\mathbf{func}} (\underline{\mathbf{var}} + \underline{\mathbf{var}} \mathbf{R})$

 $\Rightarrow_{lm} \underline{\mathbf{func}} (\underline{\mathbf{var}} + \underline{\mathbf{var}})$

COSC 4316, Timothy J. McGuire

29

Single Step Derivation

Definition: Given $\underline{\alpha} \underline{A} \underline{\beta}$ (with α, β in

 $(V_n \cup V_t)^*$) and a production $\underline{A} \rightarrow \underline{\gamma}$,

 $\alpha \land \beta \Rightarrow \alpha \land \beta$ is a single step derivation.

Examples:

$$L + D \Longrightarrow L - D + D \qquad \qquad L \xrightarrow{} L - D$$

 $(L)(L) \Rightarrow ((L)L)(L)$ $L \Rightarrow (L)L$

Greek letters $(\alpha, \beta, \chi,...)$ denote a (possibly empty) sequence of terminals and non-terminals.

COSC 4316, Timothy J. McGuire

Derivations

Definition: A sequence of the form:

$$w_0 \Rightarrow w_1 \Rightarrow ... \Rightarrow w_n$$
 is a **derivation** of w_n from w_0 ($w_0 \Rightarrow^* w_n$)

```
\begin{array}{ll} L & \operatorname{production} L \to (L) L \\ \Longrightarrow (L) L & \operatorname{production} L \to \epsilon \\ \Longrightarrow () L & \operatorname{production} L \to \epsilon \\ \Longrightarrow () & \\ L \Longrightarrow^* () & \end{array}
```

If w_i has non-terminal symbols, it is referred to as *sentential* form.

COSC 4316, Timothy J. McGuire

31

$$L \Rightarrow^* (()) ()$$

COSC 4316, Timothy J. McGuire

- L(G), the language generated by grammar G is {w in T*: S ⇒* w, for start symbol S}
- Both () and (())() are in L(G) for the following grammar.

```
-L \rightarrow (L)L
```

 $-L \rightarrow \epsilon$

COSC 4316, Timothy J. McGuire

33

Leftmost Derivations

- Recall that a leftmost derivation is one where the leftmost nonterminal is always chosen
- If a string is in a given language (i.e. a derivation exists), then a leftmost derivation *must* exist
- Rightmost derivation defined as you would expect

COSC 4316, Timothy J. McGuire

Leftmost Derivation for (())()

```
L production L → (L) L

⇒ (L) L production L → (L) L

⇒ ((L) L) L production L → ε

⇒ (() L) L production L → ε

⇒ (()) L production L → (L) L

⇒ (()) (L) L production L → ε

⇒ (()) (L) L production L → ε

⇒ (()) () L production L → ε
```

 $L \rightarrow (L) L$ $L \rightarrow \epsilon$

COSC 4316, Timothy J. McGuire

35

Rightmost Derivation for (())()

 $L \rightarrow (L)L$ $L \rightarrow \epsilon$

COSC 4316, Timothy J. McGuire

Ambiguity

• An *ambiguous* grammar is one in which two (or more) parse trees or leftmost derivations exist for *some string in the language*

$$E \rightarrow E + E$$

$$E \rightarrow E - E$$

$$E \rightarrow 0 \mid \dots \mid 9$$

$$2 - 3 + 4$$

37

• Two leftmost derivations

• We must either write unambiguous grammars **or** have *disambiguating* rules.

COSC 4316, Timothy J. McGuire

• An ambiguous grammar can sometimes be made unambiguous:

$$E \rightarrow E + T \mid E - T \mid T$$

$$T \rightarrow 0 \mid \dots \mid 9$$
enforces the correct associativity

• Precedence can be specified as well:

$$E \rightarrow E + T | E - T | T$$

$$T \rightarrow T * F | T / F | F$$

$$F \rightarrow (E) | 0 | ... | 9$$

COSC 4316, Timothy J. McGuire

39

Another example of ambiguity

```
    if-else in Java
    if (expr)
    if (expr)
    stmt;
```

else

stmt;

- Which **if** is the **else** associated with?
- The last one, but we can't specify that via the definition.
- Could fix this by requiring the use of an **endif** keyword

COSC 4316, Timothy J. McGuire

Yet another example of ambiguity

- $L = \{ 0^i 1^j \mid i \ge j \ge 0 \}$ $(0 \equiv if, 1 \equiv else)$
- Expressed by the grammar $S \rightarrow 0 S \mid 0 S 1 \mid \epsilon$

Parse trees for 001

Disambiguating rule: match each 1 with the closest unmatched 0

COSC 4316, Timothy J. McGuire

41

Disambiguating rule incorporated into the grammar

- $S \rightarrow 0 S \mid A$
- $A \rightarrow 0 A 1 \mid \epsilon$

Parse trees for 001

Disambiguating rule: match each 1 with the closest unmatched 0

Grammar still has issues, because we can't use a predictive parser – cant predict whether the 0 is matched or unmatched.

The dangling else is really a language design issue.

Conclusion: If you ever design a programming language, you need to know the issues involved in parsing that language!

 $\begin{array}{c|c}
S \\
S \\
A \\
A \\
E
\end{array}$

COSC 4316, Timothy J. McGuire

Input: begin simplestmt; simplestmt; end

COSC 4316, Timothy J. McGuire

43

Top Down (LL) Parsing

COSC 4316, Timothy J. McGuire

Top Down (LL) Parsing

COSC 4316, Timothy J. McGuire

45

Top Down (LL) Parsing

COSC 4316, Timothy J. McGuire

Top Down (LL) Parsing

COSC 4316, Timothy J. McGuire

47

Top Down (LL) Parsing

COSC 4316, Timothy J. McGuire

COSC 4316, Timothy J. McGuire

49

Bottomup (LR) Parsing

```
P→ begin SS end
```

 $SS \rightarrow S$; SS

 $SS \rightarrow \epsilon$

 $S \rightarrow simplestmt$

 $S \rightarrow begin SS end$

COSC 4316, Timothy J. McGuire

Bottomup (LR) Parsing

```
P \rightarrow begin SS end
```

 $SS \rightarrow S$; SS

 $SS \rightarrow \epsilon$

 $S \rightarrow simplestmt$

 $S \rightarrow begin SS end$

COSC 4316, Timothy J. McGuire

51

Bottomup (LR) Parsing

P→ begin SS end

 $SS \rightarrow S$; SS

 $SS \rightarrow \epsilon$

 $S \rightarrow simplestmt$

 $S \rightarrow begin SS end$

COSC 4316, Timothy J. McGuire

Bottomup (LR) Parsing

 $P \rightarrow begin SS end$

 $SS \rightarrow S$; SS

 $SS \rightarrow \epsilon$

 $S \rightarrow simplestmt$

 $S \rightarrow begin SS end$

COSC 4316, Timothy J. McGuire

53

Bottomup (LR) Parsing

P→ begin SS end

 $SS \rightarrow S$; SS

 $SS \rightarrow \epsilon$

 $S \rightarrow simplestmt$

 $S \xrightarrow{} begin \ SS \ end$

begin

COSC 4316, Timothy J. McGuire

Bottomup (LR) Parsing

COSC 4316, Timothy J. McGuire

55

Left Recursion (Recap)

• Productions of the form

$$A \rightarrow A \alpha$$
 β

are left recursive

• When one of the productions in a grammar is left recursive then a predictive parser loops forever on certain inputs

Left Recursion (Recap)

• Replace

$$A \rightarrow A \alpha$$
 $/\beta$

with

$$A \to \beta R$$

$$R \to \alpha R / \varepsilon$$

57

Indirect Left Recursion

• What about indirect left recursion?

$$B \to D \alpha$$

$$D \rightarrow B \beta$$

General Left Recursion Elimination Method

```
Arrange the nonterminals in some order A_1, A_2, \ldots A_n for i=1,\ldots,n do for j=1,\ldots,i-1 do for each production A_i \to A_j \alpha and A_j \to \beta do Replace A_i \to A_j \alpha with A_i \to \beta \alpha endfor eliminate any direct left recursion among A_i endfor
```

59

Example Left Recursion Elimination

$$A \rightarrow B \mathbf{a} \mid \mathbf{b} C$$

$$B \rightarrow B \mathbf{c} \mid A \mathbf{d}$$

$$C \rightarrow \mathbf{e} \mid \mathbf{f}$$
Choose arrangement: $A = A_1, B = A_2, C = A_3$

A unchanged

 $B \rightarrow B \mathbf{c} / B \mathbf{a} \mathbf{d} / \mathbf{b} C \mathbf{d}$

 $B \rightarrow \mathbf{b} \ C \mathbf{d} D$ (eliminating direct left recursion)

 $D \rightarrow \mathbf{c} D / \mathbf{a} \mathbf{d} D / \varepsilon$

C unchanged

Result:

 $A \rightarrow B \mathbf{a} \mid \mathbf{b} C$

 $B \rightarrow \mathbf{b} \ C \mathbf{d} D$

 $C \rightarrow \mathbf{e} \mid \mathbf{f}$

 $D \rightarrow \mathbf{c} D / \mathbf{a} \mathbf{d} D / \varepsilon$

Left Factoring

- Most problems with predictive parsing are either (a) left recursion (which we have already dealt with) or (b) common prefixes
- Example:
 - stmt → if expr then seq-of-stmts endif
 - stmt \rightarrow if expr then seq-of-stmts else seq-of-stmts endif
- Solution: Rewrite the production to defer the decision until we have enough information to make the right choice.

61

Left Factoring

• Replace productions

$$A \to \alpha \beta \mid \alpha \gamma$$
with
$$A \to \alpha A_R$$

$$A_R \to \beta / \gamma$$

- e.g.
 - stmt \rightarrow **if** expr **then** seq-of-stmts opt_end
 - opt_end \rightarrow endif | else seq-of-stmts endif

Non-context-free Language Constructs

- Not all syntactic rules are expressible using CFGs.
 - *e.g.*, "variables must be declared before they are used" cannot be exptessed in a CFG.
 - *or*, "the number of formal parameters for a function must equal the number of actual parameters."
- In practice, syntactic details that cannot be represented in a CFG are considered part of the *static semantics* and deferred to the semantic analysis phase.

COSC 4316, Timothy J. McGuire

63

An LL(1) grammar can always

be parsed top-down without

backtracking.

Top-Down Parsing

- General Algorithms:
 - LL (top down)
 - (We looked at elementary recursive descent parsing in module 2)
 - LR (bottom up)
- Both algorithms are driven by the input grammar and the input to be parsed
- LL(1) grammars are those suitable for predictive parsing
- "LL(1)" \equiv scans input from \underline{L} eft to right, \underline{L} eftmost derivation, $\underline{1}$ token lookahead.

COSC 4316, Timothy J. McGuire

64

Non-Recursive Predictive Parsing: Table-Driven Parsing

• Given an LL(1) grammar G = (N, T, P, S) construct a table M[A,a] for $A \in N$, $a \in T$ and use a *driver program* with a *stack*

Predictive Parsing Algorithm

- If $X = \mathbf{a} = \$$ ··· parser halts. Success!
- If $X = \mathbf{a} \neq \$$
 - Pop X off stack
 - Advance input pointer
- If X is a non-terminal, look up M[X,a]
 - If, for example $M[X, \mathbf{a}] = X \rightarrow UVW$, push WVU on the stack (U on top)

COSC 4316, Timothy J. McGuire

Predictive Parsing Program (Driver)

```
\begin{array}{l} \operatorname{push}(\$) \\ \operatorname{push}(S) \\ a := \operatorname{lookahead} \\ \mathbf{repeat} \\ X := \operatorname{pop}() \\ \text{ if } X \text{ is a terminal or } X = \$ \text{ then} \\ & \operatorname{match}(X) \\ & \operatorname{else if } M[X,a] = X \to Y_1Y_2...Y_k \text{ then} \\ & \operatorname{push}(Y_k, Y_{k-1}, ..., Y_2, Y_1) \\ & \operatorname{until } X = \$ \end{array}
```

67

Example Table

$$E \rightarrow E + T / T$$

$$T \rightarrow T * F / F$$

$$F \rightarrow (E) \mid \mathbf{id}$$

$$Eliminate left recursion$$

$$E \rightarrow T E_R$$

$$E_R \rightarrow + T E_R \mid \varepsilon$$

$$T \rightarrow F T_R$$

$$T_R \rightarrow * F T_R \mid \varepsilon$$

$$F \rightarrow (E) \mid \mathbf{id}$$

Nevermind how the parse table is built just yet

	id	+	*	()	\$
Ε	$E \to T E_R$			$E \to T E_R$		
E_R		$E_R \rightarrow + T E_R$			$E_R \rightarrow \varepsilon$	$E_R \rightarrow \varepsilon$
T	$T \rightarrow F T_R$			$T \to F T_R$		
T_R		$T_R \rightarrow \varepsilon$	$T_R \to *FT_R$		$T_R \rightarrow \varepsilon$	$T_R \rightarrow \varepsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

Parsing Example

	id	+	*	()	\$
Е	$E \rightarrow T E_R$			$E \to T$ E_R		
E_R		$E_R \rightarrow + T E_R$			$E_R \rightarrow \varepsilon$	$E_R \rightarrow \epsilon$
Т	$T \rightarrow F T_R$			$T \rightarrow F T_R$		
T_R		$T_R \rightarrow \varepsilon$	$T_R \rightarrow *FT_R$		$T_R \rightarrow \varepsilon$	$T_R \rightarrow \varepsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

Stack	Input	Production applied
\$ <u>E</u>	<u>id</u> +id*id\$	$E \rightarrow T E_R$
$\$E_R\underline{T}$	<u>id</u> +id*id\$	$T \rightarrow F T_R$
$SE_RT_R\underline{F}$	<u>id</u> +id*id\$	$F \rightarrow id$
$\mathbf{\$}E_{R}T_{R}\mathbf{id}$	<u>id</u> +id*id\$	
$\$E_R\underline{T}_R$	<u>+</u> id*id\$	$T_R \rightarrow \varepsilon$
$\mathbf{\$}\underline{E}_R$	<u>+</u> id*id\$	$E_R \rightarrow + T E_R$
$\$E_RT\pm$	<u>+</u> id*id\$	
$\$E_R\underline{T}$	<u>id</u> *id\$	$T \rightarrow F T_R$
$SE_RT_R\underline{F}$	<u>id</u> *id\$	$F \rightarrow id$
$\mathbf{\$}E_{R}T_{R}\mathbf{id}$	<u>id</u> *id\$	
$\$E_R\underline{T}_R$	<u>*</u> id\$	$T_R \rightarrow *FT_R$
$\$E_RT_RF^*$	<u>*</u> id\$	
$\$E_RT_R\underline{F}$	<u>id</u> \$	$F \rightarrow id$
$\mathbf{\$}E_{R}T_{R}\mathbf{id}$	<u>id</u> \$	
$\$E_R\underline{T}_R$	<u>\$</u>	$T_R \rightarrow \varepsilon$
$\$\underline{E}_R$	<u>\$</u>	$E_R \rightarrow \varepsilon$
<u>\$</u>	<u>\$</u>	

• So, the big question:

How do we compute the parse tables?

• We're going to need some more theory, folks, so hang on to your hats.

COSC 4316, Timothy J. McGuire

FIRST Sets

FIRST(α) is the set of all terminal symbols that can begin some sentential form in a derivation that starts with α

$$\alpha \Rightarrow ... \Rightarrow a \beta$$
 (also include ϵ if $\alpha \Rightarrow^* \epsilon$

- FIRST(α) = { $\mathbf{a} \in T \mid \alpha \Rightarrow^* \mathbf{a}\beta$ } \cup { ε if $\alpha \Rightarrow^* \varepsilon$ }
- Example:

```
simple → integer | char | num dotdot num
FIRST(simple) = { integer, char, num }
```

COSC 4316, Timothy J. McGuire

71

Computing FIRST

- To compute FIRST(X) for any single grammar symbol X:
 - 1. If X is a terminal, $FIRST(X) = \{X\}$
 - 2. If $X \to \varepsilon$ is a production, add ε to FIRST(X)
 - 3. If X is a nonterminal and $X \to Y_1 Y_2 \dots Y_n$ is a production, add a to FIRST(X) if $a \in FIRST(Y_i)$ and $\epsilon \in FIRST(Y_1) \cap FIRST(Y_2) \cap \dots \cap FIRST(Y_{i-1})$

(i.e,
$$Y_1 Y_2 \dots Y_{i-1} \Rightarrow^* \varepsilon$$
)

COSC 4316, Timothy J. McGuire

Computing FIRST

- To compute FIRST(α) where $\alpha = X_1 X_2 ... X_n$:
 - 1. Add non- ϵ symbols of FIRST(X_1)
 - 2. If $\varepsilon \in FIRST(X_1)$ then add non- ε symbols of $FIRST(X_2)$.
 - 3. As long as $\varepsilon \in FIRST(X_{i-1})$ then add non- ε symbols of $FIRST(X_i)$.
 - 4. If ϵ is a member of *all* the FIRST(X_i) sets then add ϵ to FIRST(α)

COSC 4316, Timothy J. McGuire

73

Example 1

- $S \rightarrow a S e$
- $S \rightarrow B$
- B → b B e
- $B \rightarrow C$
- $C \rightarrow \underline{c} C e$
- $C \rightarrow d$

• $FIRST(C) = \{c,d\}$

• FIRST(B) =

• FIRST(S) =

Start with the 'simplest' non-terminal

COSC 4316, Timothy J. McGuire

- $S \rightarrow a S e$
- $S \rightarrow B$
- $B \rightarrow \underline{b} B e$
- $B \rightarrow \underline{C}$
- $C \rightarrow c C e$
- $C \rightarrow d$

- $FIRST(C) = \{c,d\}$
- $FIRST(B) = \{b,c,d\}$
- FIRST(S) =

Now that we know FIRST(C) ...

COSC 4316, Timothy J. McGuire

75

Example 1

- $S \rightarrow a S e$
- $S \rightarrow \underline{B}$
- B → b B e
- $B \rightarrow C$
- $C \rightarrow c C e$
- $C \rightarrow d$

- $FIRST(C) = \{c,d\}$
- $FIRST(B) = \{b,c,d\}$
- $FIRST(S) = \{a,b,c,d\}$

COSC 4316, Timothy J. McGuire

- $P \rightarrow \underline{i} | \underline{c} | \underline{n} T S$
- $Q \rightarrow P \mid a S \mid d S c S T$
- $R \rightarrow \underline{b} \mid \underline{\varepsilon}$
- $S \rightarrow e \mid R \mid n \mid \epsilon$
- $T \rightarrow R S q$

- FIRST(P) = $\{i,c,n\}$
- FIRST(Q) =
- FIRST(R) = $\{b, \varepsilon\}$
- FIRST(S) =
- FIRST(T) =

COSC 4316, Timothy J. McGuire

77

Example 2

- $P \rightarrow i \mid c \mid n T S$
- $Q \rightarrow \underline{P} | \underline{a} S | \underline{d} S c S T$
- $R \rightarrow b \mid \epsilon$
- $S \rightarrow e | R n | \varepsilon$
- $T \rightarrow R S q$

- FIRST(P) = $\{i,c,n\}$
- FIRST(Q) = $\{i,c,n,a,d\}$
- FIRST(R) = $\{b, \varepsilon\}$
- FIRST(S) =
- FIRST(T) =

COSC 4316, Timothy J. McGuire

- $P \rightarrow i \mid c \mid n T S$
- $Q \rightarrow P \mid a S \mid d S c S T$
- $R \rightarrow b \mid \epsilon$
- $S \rightarrow \underline{e} | \underline{R} \underline{n} | \underline{\varepsilon}$
- $T \rightarrow R S q$

- FIRST(P) = $\{i,c,n\}$
- FIRST(Q) = $\{i,c,n,a,d\}$
- FIRST(R) = $\{b, \varepsilon\}$
- FIRST(S) = $\{e,b,n,\epsilon\}$
- FIRST(T) =

Note:

 $S \Rightarrow R \ n \Rightarrow n \text{ because } R \Rightarrow^* \epsilon$

COSC 4316, Timothy J. McGuire

79

Example 2

- $P \rightarrow i \mid c \mid n T S$
- $Q \rightarrow P \mid a S \mid d S c S T$
- $R \rightarrow b \mid \epsilon$
- $S \rightarrow e | R n | \varepsilon$
- $T \rightarrow RSq$

- FIRST(P) = $\{i,c,n\}$
- FIRST(Q) = $\{i,c,n,a,d\}$
- FIRST(R) = $\{b, \varepsilon\}$
- FIRST(S) = $\{e,b,n,\epsilon\}$
- FIRST(T) = $\{b,c,n,q\}$

Note:

 $T \Rightarrow R S q \Rightarrow S q \Rightarrow q$ because both R and $S \Rightarrow^* \varepsilon$

COSC 4316, Timothy J. McGuire

- $S \rightarrow a S e | S T S$
- $T \rightarrow RSe \mid Q$
- $R \rightarrow r S r | \epsilon$
- $Q \rightarrow ST \mid \epsilon$

- FIRST(S) =
- FIRST(R) =
- FIRST(T) =
- FIRST(Q) =

COSC 4316, Timothy J. McGuire

81

Example 3

- $S \rightarrow a S e \mid S T S$
- $T \rightarrow R S e | Q$
- $R \rightarrow r S r | \epsilon$
- $Q \rightarrow ST \mid \epsilon$

- $FIRST(S) = \{a\}$
- FIRST(R) = $\{r, \epsilon\}$
- FIRST(T) = $\{r,a, \epsilon\}$
- FIRST(Q) = $\{a, \epsilon\}$

COSC 4316, Timothy J. McGuire

FOLLOW Sets

- FOLLOW(A) is the set of terminals (including end of file \$) that may follow non-terminal A in some sentential form.
- FOLLOW(A) = $\{a \in T \mid S \Rightarrow^+ \alpha Aa\beta\} \cup \{\$\} \text{ if } S \Rightarrow^+ \gamma A$
- For example, consider $L \Longrightarrow^+ (())(L)L$ Both ')' and end of file can follow L
- NOTE: \(\epsilon\) is **never** in FOLLOW sets

COSC 4316, Timothy J. McGuire

83

Computing FOLLOW(A)

- 1. If S is the start symbol, put \$ in FOLLOW(S)
- 2. Productions of the form $B \rightarrow \alpha A \beta$, Add FIRST(β) { ϵ } to FOLLOW(A)

INTUITION: Suppose B \rightarrow AX and FIRST(X) = {c}

$$S \Rightarrow^{+} \alpha B \beta \Rightarrow \alpha A X \beta \Rightarrow^{+} \alpha A c \delta \beta$$

$$= FIRST(X)$$

COSC 4316, Timothy J. McGuire

3. Productions of the form B $\rightarrow \alpha$ A or

B
$$\rightarrow$$
 α A β where β \Longrightarrow * ε (i.e, ε \in FIRST(β))

Add everything in FOLLOW(B) to FOLLOW(A)

INTUITION:

- Suppose $B \rightarrow Y A$

$$S \Rightarrow^+ \alpha B \beta \Rightarrow \alpha Y A \beta$$

- Suppose B → A X and X \Rightarrow * ε

$$S \Rightarrow {}^{+}\alpha B \beta \Rightarrow \alpha A X \beta \Rightarrow {}^{*}\alpha A \beta$$

COSC 4316, Timothy J. McGuire

85

Assume the first non-terminal is the start symbol

Example 4

- $S \rightarrow a S e \mid B$
- FOLLOW(C) =
- $B \rightarrow b B C f | C$
- $C \rightarrow c C g | d | \epsilon$
- FOLLOW(B) =
- FIRST(C) = $\{c,d,\epsilon\}$
- FOLLOW(S) = {\$}
- FIRST(B) = $\{b,c,d,\epsilon\}$
- FIRST(S) = $\{a,b,c,d,\epsilon\}$

Using rule #1

COSC 4316, Timothy J. McGuire

- $S \rightarrow a \underline{Se} \mid B$
- $FOLLOW(C) = \{f,g\}$
- B \rightarrow b B C f | C
- $C \rightarrow c \underline{C} \underline{g} | d | \epsilon$
- $FOLLOW(B) = \{c,d,f\}$
- FIRST(C) = $\{c,d,\epsilon\}$
- $FOLLOW(S) = \{\$,e\}$
- FIRST(B) = $\{b,c,d,\epsilon\}$
- FIRST(S) = $\{a,b,c,d,\epsilon\}$

Using rule #2

COSC 4316, Timothy J. McGuire

87

Example 4

- $S \rightarrow a S e \mid \underline{B}$
- $B \rightarrow b B C f | \underline{C}$
- $C \rightarrow c C g | d | \epsilon$
- $\bullet \ \ FOLLOW(C) = \\ \{f,g\} \cup FOLLOW(B)$
- = {c,d,e,f,g,\$} • FOLLOW(B) =
- $\{c,d,f\} \cup FOLLOW(S)$
- = $\{c,d,e,f,\$\}$ • FOLLOW(S) = $\{\$,e\}$
- FIRST(C) = $\{c,d,\epsilon\}$
- FIRST(B) = $\{b,c,d,\epsilon\}$
- FIRST(S) = $\{a,b,c,d,\epsilon\}$

Using rule #3

COSC 4316, Timothy J. McGuire

- $S \rightarrow ABC \mid AD$
- $A \rightarrow \epsilon \mid a A$
- $B \rightarrow b | c | \epsilon$
- $C \rightarrow D d C$
- $D \rightarrow eb \mid fc$
- $FIRST(D) = \{e,f\}$
- FIRST(C) = $\{e,f\}$
- FIRST(B) = $\{b,c,\epsilon\}$
- FIRST(A) = $\{a, \varepsilon\}$
- FIRST(S) = $\{a,b,c,e,f\}$

- FOLLOW(S) =
- FOLLOW(A) =
- FOLLOW(B) =
- FOLLOW(C) =
- FOLLOW(D) =

COSC 4316, Timothy J. McGuire

89

Example 5

- $S \rightarrow ABC \mid AD$
- $A \rightarrow \epsilon \mid a A$
- $B \rightarrow b | c | \epsilon$
- $C \rightarrow D d C$
- $D \rightarrow eb \mid fc$
- $FIRST(D) = \{e,f\}$
- $FIRST(C) = \{e,f\}$
- FIRST(B) = $\{b,c,\epsilon\}$
- FIRST(A) = $\{a, \varepsilon\}$
- FIRST(S) = $\{a,b,c,e,f\}$

- FOLLOW(S) = {\$}
- $FOLLOW(A) = \{b,c,e,f\}$
- $FOLLOW(B) = \{e, f\}$
- FOLLOW(C) = {\$}
- FOLLOW(D) = {\$}

COSC 4316, Timothy J. McGuire

- $S \rightarrow (A) \mid \varepsilon$
- $A \rightarrow TE$
- $E \rightarrow \& TE \mid \varepsilon$
- $T \rightarrow (A) | a | b | c$
- $FIRST(T) = \{(,a,b,c)\}$
- FIRST(E) = $\{\&, \epsilon\}$
- $FIRST(A) = \{(,a,b,c)\}$
- FIRST(S) = $\{(, \varepsilon)\}$

- FOLLOW(S) =
- FOLLOW(A) =
- FOLLOW(E) =
- FOLLOW(T) =

COSC 4316, Timothy J. McGuire

91

Example 6

- $S \rightarrow (A) \mid \varepsilon$
- $A \rightarrow TE$
- $E \rightarrow \& T E \mid \varepsilon$
- $T \rightarrow (A) | a | b | c$
- $FIRST(T) = \{(,a,b,c)\}$
- FIRST(E) = $\{\&, \varepsilon\}$
- $FIRST(A) = \{(,a,b,c)\}$
- FIRST(S) = $\{(, \varepsilon)\}$

- FOLLOW(S) = {\$}
- FOLLOW(A) = {) }
- FOLLOW(E) =

 $FOLLOW(A) = \{ \}$

• FOLLOW(T) =

FIRST(E) \cup FOLLOW(A) \cup FOLLOW(E) = {&,)}

COSC 4316, Timothy J. McGuire

- $E \rightarrow TE'$
- $E' \rightarrow + T E' \mid \varepsilon$
- $T \rightarrow FT'$
- $T' \rightarrow * F T' \mid \varepsilon$
- $F \rightarrow (E) | id$

- FOLLOW(E) =
- FOLLOW(E') =
- FOLLOW(T) =
- FOLLOW(T') =
- FOLLOW(F) =
- FIRST(F) = FIRST(T) = FIRST(E) = {(,id}
- FIRST(T') = $\{*, \varepsilon\}$
- FIRST(E') = $\{+, \epsilon\}$

COSC 4316, Timothy J. McGuire

93

Example 7

- $E \rightarrow TE'$
- $E' \rightarrow + T E' \mid \epsilon$
- $T \rightarrow FT'$
- $T' \rightarrow * F T' \mid \varepsilon$
- $F \rightarrow (E) \mid id$

- $FOLLOW(E) = \{\$,\}$
- $FOLLOW(E') = FOLLOW(E) = \{\$,\}$
- FOLLOW(T) = FIRST(E') ∪ FOLLOW(E) ∪ FOLLOW(E') = {+,\$,)}
- $FOLLOW(T') = FOLLOW(T) = \{+,\$,\}$
- FOLLOW(F) = FIRST(T') \cup FOLLOW(T) \cup FOLLOW(T') = {*,+,\$,)}
- $FIRST(F) = FIRST(T) = FIRST(E) = \{(,id)\}\$
- FIRST(T') = $\{*, \varepsilon\}$
- FIRST(E') = $\{+, \epsilon\}$

COSC 4316, Timothy J. McGuire

Using FIRST and FOLLOW to Write a Recursive Descent Parser

```
procedure rest();
                                                begin
  expr \rightarrow term \ rest
                                                   if lookahead in FIRST(+ term rest) then
   rest \rightarrow + term \ rest
                                                     match('+'); term(); rest()
           - term rest
                                                   else if lookahead in FIRST(- term rest) then
                                                     match('-'); term(); rest()
           3 |
                                                   else if lookahead in FOLLOW(rest) then
  term \rightarrow id
                                                     return
                                                   else error()
                                                 end;
FIRST(+ term rest) = \{ + \}
FIRST(-term rest) = \{ - \}
FOLLOW(rest) = \{ \$ \}
```