

DIVE INTO CODE

MACHINE LEARNING

GRADUATION ASSIGNMENT

PROJECT

ELECTRICITY POWER CONSUMPTION

SELF INTRODUCTION

NAME: MOSES ALIEU BANGURA

UNIVERSITY: UNIVERSITY OF MANAGEMENT AND TECHNOLOGY

DEPARTMENT: COMPUTER SCIENCE

LEVEL: YEAR 3

COURSE: DIVE INTO CODE (DIC)

PROJECT: ELECTRICITY POWER CONSUMPTION

DATASET CODE OF ELECTRICITY POWER CONSUMPTION

/kaggle/input/electricity-consumption/train.csv /kaggle/input/electricity-consumption/test.csv

In 2 | pip install DataScienceHelper

Successfully installed DataScienceHelper-1.5.2

```
Collecting DataScienceHelper
Downloading datasciencehelper-1.5.2.tar.gz (6.4 kB)

Building wheels for collected packages: DataScienceHelper
Building wheel for DataScienceHelper (setup.py) ... done
Created wheel for DataScienceHelper: filename=datasciencehelper-1.5.2-py3-none-any.whl size=5727

sha256=6aaeddf275658cdbca7b7f0564ea1b409583a584d2286b32b46d052c0b3399ae
Stored in directory: /root/.cache/pip/wheels/49/5e/d2/84a664218a270ce173c1d02086f556367a00002afe0

aae6409

Successfully built DataScienceHelper
Installing collected packages: DataScienceHelper
```

In 3 !pip install --upgrade pip

```
Collecting pip

Downloading pip-20.2.2-py2.py3-none-any.whl (1.5 MB)

| Installing collected packages: pip

Attempting uninstall: pip

Found existing installation: pip 20.2.1

Uninstalling pip-20.2.1:

Successfully uninstalled pip-20.2.2

import numpy as np

import pandas as pd
```

In 4 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import DataScienceHelper as dsh Import plotly.express as px from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score

%matplotlib inline

In 5
import time
from datetime import datetime
import re
from math import *

In 6
 data = pd.read_csv("/kaggle/input/electricity-consumption/train.csv")
 data.head()

Out 6	ID	datetime	temperature	var1	pressure	windspeed	var2	electricity_consum ption	
	0	0	2013-07-01 00:00:00	-11.4	-17.1	1003.0	571.910	А	216.0
	1	1	2013-07-01 01:00:00	-12.1	-19.3	996.0	575.040	А	210.0
	2	2	2013-07-01 02:00:00	-12.9	-20.0	1000.0	578.435	А	225.0
	3	3	2013-07-01 03:00:00	-11.4	-17.1	995.0	582.580	А	216.0
	4	4	2013-07-01 04:00:00	-11.4	-19.3	1005.0	586.600	А	222.0

In 7 data.tail()

Out 7	ID	datetime	temperatur e	var1	pressure	windspeed	var2	electricity_ consumptio n	
	26491	34891	2017-06-23 19:00:00	-0.7	-15.0	1009.0	51.685	А	225.0
	26492	34892	2017-06-23 20:00:00	-2.9	-11.4	1005.0	56.105	А	213.0
	26493	34893	2017-06-23 21:00:00	-1.4	-12.9	995.0	61.275	А	213.0
	26494	34894	2017-06-23 22:00:00	-2.9	-11.4	996.0	67.210	А	210.0
	26495	34895	2017-06-23 23:00:00	-2.1	-11.4	1009.0	71.880	А	210.0

In 8 data.isnull().sum()

Out 8

ID	0
Datetime	0
temperature	0
var1	0
pressure	0
windspeed	0
var2	0
electricity_consumption	0
dtype: int64	

data.describe() In 9 electricity co Out 9 ID temperature var1 pressure windspeed nsumption 26496.000000 26496.000000 26496.000000 26496.000000 26496.000000 count 26496.000000 17455.500000 5.098989 -1.916233 986.450615 23.959956 298.359601 mean std 10122.873673 8.682860 10.424860 12.002647 48.280321 108.020555 min 0.000000 -17.100000 -32.900000 953.000000 1.075000 174.000000 25% 8717.750000 -2.900000 -10.700000 978.000000 3.155000 219.000000 50% 17435.500000 6.400000 -1.400000 986.000000 6.545000 267.000000

7.900000

18.600000

995.000000

1024.000000

22.260000

586.600000

342.000000

1386.000000

data count() In 10

75%

max

26177.250000

34895.000000

Out 10

uata.count()	
ID 26496 datetime	26496
temperature	26496
var1	26496
pressure	26496
windspeed	26496
var2	26496
electricity_consumption	26496
dtype: int64	

12.100000

23.600000

In 11 data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26496 entries, 0 to 26495
Data columns (total 8 columns):
    Column
#
                                      Non-Null Count
                                                         Dtype
0
                                      26496 non-null
                                                        int64
     ID
    datetime
                                                        object
                                      26496 non-null
2
                                                        float64
    temperature
                                     26496 non-null
3
                                                        float64
    var1
                                      26496 non-null
                                     26496 non-null
                                                        float64
4
     pressure
    windspeed
                                     26496 non-null
                                                        float64
6
                                      26496 non-null
                                                         object
    var2
   electricity_consumption 26496 non-null
                                               float64
dtypes: float64(5), int64(1), object(2)
memory usage: 1.6+ MB
```

```
data.memory_usage()
In 12
Out 12
       Index
                                            128
       ID
                                            211968
       datetime
                                            211968
       temperature
                                            211968
                                            211968
       var1
                                            211968
       pressure
       windspeed
                                            211968
       var2
                                            211968
       electricity_consumption
                                            211968
       dtype: int64
```

In 13 data.windspeed.value_counts()

ut 13 2.265	380				
1.890	369				
2.015	359				
2.390	354				
2.140	347				
318.210	1				
123.435	1				
282.485	1				
160.465	1				
27.825	1				
Name: windspeed, Le	Name: windspeed, Length: 5603, dtype: int64				

```
In 14 plott = data.windspeed
    plt.plot(plott)
    plt.xlabel("samples")
    plt.ylabel("frequency of windspeed")
    plt.title("windspeed")
    plt.show()
```


plt.scatter(data.windspeed,data.electricity_consumption,c='green')
plt.xlabel("frequecy of windspeed")
plt.ylabel("electricty consumption")
plt.title("windspeed distribution")
plt.show()

In 15

```
average = round(data.windspeed.mean(),3)
In16
       max_windspeed = round(max(data.windspeed),3)
       min windspeed = round(min(data.windspeed),3)
       print(f'The average windspeed is : {average} ')
       print(f'The maximum windspeed is : {max_windspeed}')
       print(f'The minimum windspeed is : {min windspeed}')
       The average windspeed is: 23.96
       The maximum windspeed is: 586.6
       The minimum windspeed is: 1.075
       avg pressure = round(data.pressure.mean(),3)
In17
       max_pressure = round(data.pressure.max(),3)
       min pressure = round(data.pressure.min(),3)
       print(f'The average pressure is : {avg pressure}')
       print(f'The maximum pressure is : {max pressure}')
       print(f'The minimum pressure is : {min pressure}')
       The average pressure is: 986.451
       The maximum pressure is: 1024.0
       The minimum pressure is: 953.0
```

plt.plot(data.pressure)
plt.xlabel("samples")
plt.ylabel("frequency of pressure")
plt.title("Pressure Distribution")
plt.show()

In19 plt.scatter(data.pressure,data.electricity_consumption,c='red')
 plt.xlabel("frequency of pressure")
 plt.ylabel("electricity consumption")
 plt.title("Pressure Distribution")
 plt.show()

In20 plt.scatter(data.pressure,data.windspeed,c='blue')
 plt.xlabel("frequency of pressure")
 plt.ylabel("frequency of windspeed")
 plt.title("Pressure Distribution")
 plt.show()

In 21 sns.countplot(x='var2',data = data)

Out 21 <matplotlib.axes._subplots.AxesSubplot at 0x7f66e65e2f90>

In 43 fig,ax = plt.subplots(figsize = (15,10))
corr = data.corr()
sns.heatmap(corr,xticklabels = corr.columns,annot = True,yticklabels = corr.columns,linewidth =1.2)

Out 43 <matplotlib.axes._subplots.AxesSubplot at 0x7f66e6c07e50>


```
corr[abs(corr['electricity_consumption']) > 0.1]['electricity_consumption']
In 23
Out 23
                                              -0.117254
       temperature
                                              0.133914
       var1
       windspeed
                                              -0.238883
       electricity_consumption
                                              1.000000
       Name: electricity_consumption, dtype: float64
        data.var1.value counts()
In 24
Out 24
        10.0
                           836
       8.6
                           809
        10.7
                           797
        7.9
                           779
        9.3
                           770
       -29.3
                           3
        17.9
       -32.9
                           1
        18.6
```

Name: var1, Length: 71, dtype: int64

-32.1

In 25 data.var2.value_counts()

Out 25 A 25239

C 1040

B 217

Name: var2, dtype: int64

Reference

This is what i have gathered so far for my Graduation Assignment project title ELECTRICITY POWER CONSUMPTION, also gathered some assistance material on KAGGLE to add some important materials on my project

DIVE INTO CODE

MACHINE LEARNING

GRADUATION ASSIGNMENT

END OF SESSION