1 Introduction to Dynamic Programming

Dynamics: $x_{k+1} = f_k(x_k, u_k, w_k)$ with k = 0, 1, ..., N-1. $x_k \in S_k$ state space, $u_k \in \mathcal{U}_k(x_k)$ control space and w_k is the disturbance.

1.1 Open Loop and Closed Loop Control

Open loop: controls \bar{u}_k are fixed at time k=0, used in deterministic problems. Closed loop: controls u_k are state dependent, used in stochastic problems. The expected closed loop cost is $J_\pi(x) := \mathop{\mathsf{E}}_{w_k} \Big[g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k) \Big].$ Let Π denote the set of all admissible policies. The *optimal cost* is $J^*(x_0) := J_{\pi^*}(x_0)$ where π^* is called an *optimal policy* if $J_{\pi^*}(x) \leq J_{\pi}(x)$, $\forall \pi \in \Pi, \forall x \in S_0$.

1.1.1 Computation

Consider a system with N_x states, N_u control inputs and N stages. The number of strategies for each control method is given by

Open loop	Closed loop	Brute force
N_{u}^{N}	$N_u^{N_{\times}(N-1)+1}$	$N_u^{N_{\times}N}$

2 The Dynamic Programming Algorithm (DPA)

Initialization $J_N(x_N) = g_N(x_N), \forall x_N \in S_N$

Recursion The cost-to-go at state $x \in S_k$ is

$$J_k(x) := \min_{u_k \in \mathcal{U}_k(x)} \mathbb{E}\left[g_k(x_k, u_k, w_k) + J_{k+1}(f_k(x_k, u_k, w_k))\right], \forall x \in \mathcal{S}_k$$

If $u^* =: \mu_k^*(x)$ minimizes this recursion equation for each k, the policy $\pi^* = {\{\mu_0^*(\cdot), ..., \mu_{N-1}^*(\cdot)\}}$ is optimal.

2.1 Converting non-standard problems to the standard form

2.1.1 Time Lags

Suppose the dynamics are $x_{k+1} = f_k(x_k, x_{k-1}, u_k, u_{k-1}, w_k)$.

Solution Define new states $y_k := x_{k-1}$, $s_k := u_{k-1}$, $\tilde{x}_k := (x_k, y_k, s_k)$. Now the new dynamics are

$$\tilde{x}_{k+1} := \begin{bmatrix} x_{k+1} \\ y_{k+1} \\ s_{k+1} \end{bmatrix} = \begin{bmatrix} f_k(x_k, y_k, u_k, s_k, w_k) \\ x_k \\ u_k \end{bmatrix} = : \tilde{f}_k(\tilde{x}_k, u_k, w_k)$$

Remark This works for an arbitrary number of lags.

2.1.2 Correlated Disturbances

Suppose the disturbance dynamics are $w_k = C_k y_{k+1}$ and $y_{k+1} = A_k y_k + \xi_k$, where A_k, C_k are given and ξ_k are independent RVs.

Solution Let the augmented state be $\tilde{x}_k = (x_k, y_k)$. Now the new dynam-

$$\tilde{\mathbf{x}}_{k+1} := \begin{bmatrix} \mathbf{x}_{k+1} \\ \mathbf{y}_{k+1} \end{bmatrix} = \begin{bmatrix} f_k(\mathbf{x}_k, \mathbf{u}_k, C_k(A_k \mathbf{y}_k + \boldsymbol{\xi}_k)) \\ A_k \mathbf{y}_k + \boldsymbol{\xi}_k \end{bmatrix} = : \tilde{f}_k(\tilde{\mathbf{x}}_k, \mathbf{u}_k, \boldsymbol{\xi}_k).$$

2.1.3 Forecasts

Suppose we receive a forecast that $y_k = i$. We can generate w_k from the given distribution $p_{w_k|y_k}(\cdot|i)$. Suppose that the forecast has its own given prior $y_{k+1} = \xi_k$, where ξ_k are independent RVs taking the value $i \in \{1,...,m\}$ with probability $p_{\xi_k}(i)$.

Solution Let $\tilde{x}_k := (x_k, y_k)$ and $\tilde{w}_k := (w_k, \xi_k)$ where we specify $p(\tilde{w}_k|\tilde{x}_k,u_k)=p(w_k|y_k)p(\xi_k)$ by using the chain rule and eliminating solving the linear system of equations the variables on which \tilde{w}_k doesn't depend. Now the new dynamics are

$$\widetilde{x}_{k+1} := \begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = \begin{bmatrix} f_k(x_k, u_k, w_k) \\ \xi_k \end{bmatrix} = : \widetilde{f}_k(\widetilde{x}_k, u_k, \widetilde{w}_k)$$

DYNAMIC PROGRAMMING AND OPTIMAL CONTROL Georges Pantalos The associated DPA is now: $J_N(\tilde{x}) = J_N(x,y) = g_N(x), \ x \in \mathcal{S}_N, y \in \mathbb{I}$ Stage 2 Obtain new stationary policy satisfying $\{1,...,m\}$ and repeat:

$$J_k(\tilde{x}) = \min_{u \in U_k(x)w_k} \left[g_k(x, u, w_k) + \mathop{\mathsf{E}}_{\xi_k} [J_{k+1}(f_k(x, u, w_k), \xi_k)] \right].$$

3 Infinite Horizon Problems (i.e. $N \rightarrow \infty$)

Bellman Equation (BE)

$$J(x) = \min_{u \in \mathcal{U}(x)w} \mathbb{E}[g(x,u,w) + J(f(x,u,w))], \forall x \in \mathcal{S}$$

Assuming that the limit of $N \to \infty$ of the DPA converges, J(x) is the same. optimal cost-to-go. Note that the BE has to be solved for all $x \in S$ simultaneously.

3.1 The Stochastic Shortest Path (SSP) Problem

Suppose the dynamics are $x_{k+1} = w_k$, $x_k \in S$ and we are given the probability transition matrix $P_{ii}(u)$, $u \in \mathcal{U}(i)$.

Assumption 1 There exists a cost-free termination state 0 such that $P_{00}(u) = 1$ and g(0,u,0) = 0, $\forall u \in \mathcal{U}(0)$.

Remarks A well defined infinite horizon problem satisfies $\sum_{i \in S} P_{ij}(u) =$ 1, $\forall i \in \mathcal{S}$. The probability of leaving the termination state must be 0.

Notation $S^+ := S \setminus \{0\}$

3.2 Theorem: SSP and BE

Definiton A stationary policy μ is said to be *proper* if, when using this policy, the probability of reaching the termination state is > 0.

Assumption 2 There exists at least one proper policy $\mu \in \Pi$. Furthermore, for every improper policy μ' , the cost $J_{\mu'}(i)$ is ∞ for at least one state $i \in \mathcal{S}$.

Theorem Under assumptions 1 and 2, and for the SSP problem:

1) Given any initial conditions $V_0(i)$, the sequence $V_\ell(i)$ generated

by the iteration $V_{\ell+1}(i) = \min_{u \in \mathcal{U}(i)} \left(q(i,u) + \sum_{j=1}^{n} P_{ij} V_{\ell}(j) \right), \forall i \in \mathcal{S}^+, \text{ where }$ q(i, u) := E[g(i, u, w)], converges to the optimal cost $J^*(i)$ for all

- 2) The optimal costs satisfy the BE $\forall i \in S^+$.
- 3) The solution to the BE is unique.
- 4) The minimizing u for each $i \in S^+$ of the BE gives an optimal policy, which is proper.

4 Solving the Bellman Equation

4.1 Value Iteration (VI)

 $i \in S^+$.

$$V_{\ell+1}(i) = \min_{u \in \mathcal{U}(i)} \left(q(i,u) + \sum_{i=1}^{n} P_{ij}(u) V_{\ell}(j) \right), \ \forall i \in \mathcal{S}^{+}$$

Converges in an infinite number of steps.

4.2 Policy Iteration (PI)

Initialize with a proper policy $\mu^0 \in \Pi$

Stage 1 Given a policy μ^h , solve for the corresponding cost $J_{\mu h}$ by

$$J_{\mu^h}(i) = q(i, \mu^h(i)) + \sum_{j=1}^n P_{ij}(\mu^h(i)) J_{\mu^h}(j), \ \forall i \in S^+$$

$$\mu^{h+1}(i) = \underset{u \in \mathcal{U}(i)}{\operatorname{argmin}} \left(q(i, u) + \sum_{j=1}^{n} P_{ij}(u) J_{\mu^{h}}(j) \right), \, \forall i \in \mathcal{S}^{+}$$

Repeat until $J_{\mu h+1}(i) = J_{\mu h}(i) \forall i \in S^+$

Theorem Under assumptions 1 and 2, PI converges to an optimal policy after a finite number of steps.

Remark In every iteration of PI, the cost either decreases or stays the

4.3 Analogy and Comparison between VI and PI

Let *p* denote the maximum size of $\mathcal{U}(i)$ for all $i \in \mathcal{S}^+$.

Complexity of PI S1: *n* linear equations with *n* unknowns: $\mathcal{O}(n^3)$. S2: *n* minimizations over p possible controls, and evaluating the sum takes n steps: $\mathcal{O}(n^2p)$. Total: $\mathcal{O}(n^2(n+p))$ at each iteration. Number of iterations in worst case: p^n .

Complexity of VI n minimizations over p possible controls, and evaluating the sum takes *n* steps: $\mathcal{O}(n^2p)$ at each iteration.

4.4 Linear Programming (LP)

Theorem The solution to the optimization problem $\max_{V} \sum_{i \in S^+} V(i)$

subject to
$$V(i) \le \left(q(i,u) + \sum_{j=1}^{n} P_{ij}(u)V(j)\right)$$
, $\forall u \in \mathcal{U}(i)$, $\forall i \in \mathcal{S}^{+}$ also solves the BE to yield the optimal cost J^{*} for the SSP problem.

5 Discounted Problems

Class of infinite horizon problems where there is no assumption of a termination state. Discount factor $\alpha < 1$. By introducing a « virtual termination state » we have the associated SSP:

- 1) $P_{ij}(u) \leftarrow \alpha P_{ij}(u), u \in \mathcal{U}(i), \forall i, j \in \mathcal{S}^+$
- 2) $P_{i0}(u) \leftarrow 1-\alpha$, $u \in \mathcal{U}(i), \forall i \in \mathcal{S}^+$
- 3) $P_{0i}(u) \leftarrow 0$, $u = \text{stay}, \forall j \in S^+$
- 4) $P_{00}(u) \leftarrow 1$, u = stay.

The new BE is given by

$$J^*(i) = \min_{u \in \mathcal{U}(i)} \left[q(i,u) + \alpha \sum_{j=1}^n P_{ij}(U) J^*(j) \right], i \in \mathcal{S}^+$$

where $q(i,u) = \sum_{j=0}^{N-1} P_{ij}(u)g(i,u,j)$. Note that we also have to consider the termination state in discounted problems.

Remark I-P is invertible if the policy inducing P is proper.

6 Shortest Path Problems and Deterministic Finite State Systems

6.1 The Shortest Path (SP) Problem

Vertex space V, weighted edge space $C := \{(i, j, c_{i,j}) \in V \times V \times \mathbb{R} \cup V \in V \in \mathbb{R} \}$ $\{\infty\}|i,j\in\mathcal{V}\}$, path $Q:=(i_1,...,i_q)\in\mathcal{V}^q$, set of all paths that start at S and

end at T is $\mathbb{Q}_{S,T}$. Path length $J_Q = \sum_{i=1}^{q-1} c_{i_h,i_{h+1}}$, objective $Q^* = \underset{Q \in Q_{S,T}}{\operatorname{argmin}} J_Q$.

Assumption 3 $c_{i,i} \ge 0$, $\forall i \in \mathcal{V}$ (no negative cycles).

6.2 Deterministic Finite State (DFS) Problem

No feedback needed since deterministic (i.e. $w_k = 0, \forall k$).

6.3 Equivalence of SP and DFS

6.3.1 DFS to SP

Every state $x_k \in S_k$ at each stage k is represented by a node in the graph: $V_k := \{(k, x_k) | x_k \in S_k\}, k = 0,...,N.$ A virtual termination node T is added

such that the arc lengths to T are simply the terminal costs of the DFS.

6.3.2 SP to DFS

We are given V and C and need to find the SP from node S to node T. Assume $c_{i,i}=0, \forall i\in\mathcal{V}$. Set $N:=|\mathcal{V}|-1$. Then we have $S_k := \mathcal{V}\setminus\{T\}$, $k \in \{1, ..., N-1\}$, $S_N := \{T\}$, $S_0 := \{S\}$ $U_k := V \setminus \{T\}, k \in \{0,...,N-2\}, U_{N-1} := \{T\}.$

Dynamics $x_{k+1} = u_k, u_k \in \mathcal{U}_k, k \in \{0,...,N-1\}$

Stage costs $g_k(x_k,u_k) := c_{x_k,u_k}, k \in \{0,...,N-1\}, g_N(T) := 0.$

We can solve this DFS using DPA, where $J_k(i)$ is the optimal cost of getting from node *i* to node *T* in $N-k=|\mathcal{V}|-1-k$ moves.

Forward DP algorithm SP is symmetric. Set $c_{i,j} \leftarrow c_{j,i}$.

6.4 Hidden Markov Models and the Viterbi Algorithm

We want to convert an estimation problem to an SP problem. Consider the finite state, TI system $x_{k+1} = w_k, x_k \in \mathcal{S}, P_{ii} := p_{w|x}(j|i), \forall i, j \in \mathcal{S}.$ The measurement model is $M_{ij}(z) := p_{z|x,w}(z|i,j), z \in \mathcal{Z}$ where \mathcal{Z} is the measurement space and $p_{z|x,w}$ is the likelihood function. We assume independent observations, *i.e.* $z_k \perp (x_{n-1}, z_n) | (x_{k-1}, x_k), \forall n < k-1$.

Objective Let $Z_i := (z_{i:N})$ and $X_i := (x_{i:N})$. Given Z_1 , we want to find most likely X_0 , i.e. find a maximum a posteriori (MAP) estimate $\hat{X}_0 = \operatorname{argmax}_{X_0} p(X_0|Z_1)$ or equivalently, find $\min_{X_0} \left(c_{S,(0,x_0)} + \sum_{k=1}^N c_{(k-1,x_{k-1}),(k,x_k)} \right)$ where

$$c_{S,(0,x_0)} = \begin{cases} -\ln p(x_0) & p(x_0) > 0 \\ \infty & p(x_0) = 0 \end{cases}, \ c_{(k-1,x_{k-1}),(k,x_k)} = \begin{cases} -\ln(\lambda) & \lambda > 0 \\ \infty & \lambda = 0 \end{cases}$$
 and λ represents $P_{x_{k-1}x_k} M_{x_{k-1}x_k}(z_k)$.

7 Shortest Path Algorithms

7.1 Label correcting methods

To satisfy assumption 3, we assume additionally that $c_{i,i} > 0$, $\forall (i,j,c_{i,i}) \in \mathcal{C}$.

- 0: Place *S* in OPEN, set $d_S = 0, d_i = \infty \forall j \in \mathcal{V} \setminus \{S\}$.
- 1: Remove a node *i* from OPEN and execute step 2 for all children i of i.
- 2: If $d_i + c_{i,j} < \min\{d_j, d_T\}$, set $d_i = d_i + c_{i,j}$ and set i to be the parent of j. If $j \neq T$ place j in OPEN.
- 3: If OPEN is empty, we are done. Else go to step 1.

7.1.1 Methods to remove items from OPEN

- Depth-First Search: last in, first out
- Brendth-First Search: first in, first out
- $d_{i*} = \min_{i \in OPEN} d_i$

7.1.2 A* - Algorithm

Replace step 2 in the label correcting method by $d_i + c_{i,i} < \min\{d_i, d_T - d_i\}$ h_i }, where h_i is some positive lower bound on the cost to go from j to T.

8 Deterministic Continuous Time Optimal Control and the HJB

Dynamics $\dot{x}(t) = f(x(t), u(t))$, state space $S := \mathbb{R}^n$, control constraint set $\mathcal{U} \subset \mathbb{R}^m$, feedback control law $u(t) = \mu(t,x) \in \mathcal{U}, \forall t \in [0,T], \forall x \in \mathcal{S}$, where $f \in C^1(\mathcal{S},\mathcal{U}).$

Assumption 4 For any admissible control law μ , initial time $t \in [0,T]$ and initial condition $x(t) \in \mathcal{S}$, there exists a unique state trajectory $x(\tau)$ that satisfies $\dot{x}(\tau) = f(x(\tau), u(\tau)), \forall \tau \in [t, T].$

8.1 The HJB Equation

Assuming that $J^*(\cdot,\cdot)$ is differentiable w.r.t. t and x,

$$0 = \min_{u \in \mathcal{U}} \left[g(x, u) + \frac{\partial J^*(t, x)}{\partial t} + \frac{\partial J^*(t, x)}{\partial x} f(x, u) \right],$$

 $\forall x \in \mathcal{S}, \forall t \in [0,T]$ s.t. the terminal condition $J^*(T,x) = h(x), \forall x \in \mathcal{S}$.

8.1.1 Sufficiency of the HJB

Theorem Suppose V(t,x) is a solution to the HJB equation and that $\mu(t,x)$ attains the minimum in the r.h.s of the HJB for all t and x. Then, under assumption 4, V(t,x) is equal to the cost-to-go function, *i.e.* $V(t,x) = J^*(t,x), \forall x \in S, t \in [0,T]$. Furthermore, the mapping μ is an optimal feedback law.

9 Pontryagin's Minimum Principle

Lemma Let $F(t,x,u) \in C^1(\mathbb{R},\mathbb{R}^n,\mathbb{R}^m)$ and let $\mathcal{U} \subseteq \mathbb{R}^m$ be a convex set. Assume $\mu^*(t,x) := \operatorname{argmin}_{u \in \mathcal{U}} F(t,x,u)$ exists and is continuously differentiable. Then for all t and x,

en for all
$$t$$
 and x ,
$$\frac{\partial \min_{u \in \mathcal{U}} F(t, x, u)}{\partial \lambda} = \frac{\partial F(t, x, u)}{\partial \lambda} \Big|_{u = \mu^*(t, x)}$$
 x or t .

where λ is either \times or t.

9.1 The Minimum Principle

Cost: $h(x(T)) + \int_0^T g(x(\tau), u(\tau)) d\tau$.

Theorem For a given IC $x(0) = x_0 \in S$, let $u^*(t)$ be an optimal control trajectory with associated $x^*(t)$ for system $\dot{x}(t) = f(x(t), u(t))$. Then, we have

- State equation:

$$\dot{x}^{*}(t) = \frac{\partial H(x,u,p)}{\partial p} \Big|_{x^{*}(t),u^{*}(t),p(t)}^{\top}, x^{*}(0) = x_{0}$$

- Adjoint (or co-state) equation:

$$\dot{p}(t) = -\frac{\partial H(x, u, p)}{\partial x}\Big|_{x^*(t), u^*(t), p(t)}^{\top}, p(T) = \frac{\partial h(x)}{\partial x}\Big|_{x^*(T)}^{\top}$$

- Control input:

$$u^*(t) = \underset{u \in \mathcal{U}}{\operatorname{argmin}} H(x^*(t), u, p(t))$$

- Hamiltonian:

$$H(x^*(t),u^*(t),p(t)) = \text{const}, \forall t \in [0,T]$$

where $H(x,u,p) := g(x,u) + p^{T} f(x,u)$.

Remarks The minimum principle is a necessary condition for optimality. The HJB is a sufficient condition for optimality. If f(x, u) is linear, \mathcal{U} - Best-First Search (Dijkstra): remove best label, i.e. node i* for which a convex set, h and g convex functions and the minimum principle is satisfied, then the solution is necessary and sufficient.

9.2 Fixed Terminal State (i.e. $x(T) = x_T$)

The ODE with p(T) not valid anymore. The new ODEs are:

$$\dot{x}(t) = f(x(t), u(t)), x(0) = x_0, x(T) = x_T$$

$$\partial H(x, u, p) \mid^{\top}$$

$$\dot{p}(t) = -\frac{\partial H(x,u,p)}{\partial x}\Big|_{x(t),u(t),p(t)}^{\top}$$

9.3 Free initial state (i.e. x(0) not fixed)

New total cost: $\ell(x(0)) + h(x(T)) + \int_0^T g(x(t), u(t)) dt$. New boundary conditions: $p(0) = -\frac{\partial \ell(x)}{\partial x}\Big|_{x(0)}^{\top}$

9.4 Free Terminal Time (i.e. T not fixed)

 $H(x(t),u(t),p(t))=0, \forall t\in[0,T]$ and the cost becomes $\int_0^T 1dt$ if no other cost is specified.

9.5 Time Varying System and Cost

Suppose $\dot{x}(t) = f(x(t), u(t), t)$ and the cost is h(x(T)) + $\int_0^T g(x(\tau), u(\tau), \tau) d\tau$. Changes in Minimum Principle: H does not need to be constant along the optimal trajectory.

9.6 Singular Problems

In singular problems, $u(t) = \operatorname{argmin}_{u \in \mathcal{U}} H(x(t), u, p(t))$ is insufficient to determine u(t) for all t, because H is independent of u over a time interval. The optimal trajectory is then divided into regular and singular arcs.

Hint For $t_2 > t_1$ it holds: $p(t) = 0 \ \forall t \in [t_1, t_2] \Longrightarrow \dot{p}(t) = 0 \ \forall t \in]t_1, t_2[$

A Notes on linear differential equations

Consider the ODE $\dot{x}(t) + x(t) = f(t)$. The homogeneous solution must satisfy $\dot{x}_H(t) + x_H(t) = 0$ (i.e. the homogeneous equation). The particular solution $x_{\mathbb{P}}(t)$ is a guess that should be of similar form to f(t) and must satisfy the original ODE, i.e. $\dot{x}_P(t) + x_P(t) = f(t)$. The sum of both solutions $x(t) = x_H(t) + x_P(t)$ must satisfy the initial and terminal conditions.

A.1 Integrating factor

Consider the ODE $\dot{x}(t) + f(t)x(t) = h(t)$. Set the integrating factor to $I(t) := \exp\left[\int f(t)dt\right]$. A general solution is $x(t) = \frac{1}{I(t)}\left[\int I(t)h(t)dt + C\right]$.

B General notes

 $E[f(X)] := \sum_{x} f(x)p(X = x); var(X) := E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2};$ $\operatorname{var}(X+a) = \operatorname{var}(X), \operatorname{var}(aX) = a^2 \operatorname{var}(X).$

Forcing Function	Trial Solution		
ae^{rt}	Ae^{rt}		
$a\sin(\omega t) \text{ or } a\cos(\omega t)$	$A\sin\left(\omega t\right) + B\cos\left(\omega t\right)$		
at^n	P(t)		
n a positive integer	P a general polynomial of degree n		
at^ne^{rt}	$P(t)e^{rt}$		
n a positive integer	P a general polynomial of degree n		
$t^{n}[a\sin(\omega t) + b\cos(\omega t)]$	$P(t)[A\sin(\omega t) + B\cos(\omega t)]$		
n a positive integer	P a general polynomial of degree n		
$e^{rt}[a\sin(\omega t) + b\cos(\omega t)]$	$e^{rt}[A\sin(\omega t) + B\cos(\omega t)]$		