WIMA FKP 1

≤ 3 · 10-4

≤6.10-4

Verlustfaktoren bei +20° C: tan δ

1 kHz |≤ 3·10⁻²

 $10 \text{ kHz} \leq 4 \cdot 10^{-4}$

Dielektrische Absorption:

100 kHz ≤ 10·10-4

Spannungsderating:

um 1,35% je 1 K

Zuverlässigkeit:

Betriebszeit > 300 000 h

bei

Gemessen $C \le 0,1 \mu F = 0,1 \mu F < C \le 0,22 \mu F$

Die zulässige Spannung vermindert sich

bei Wechselspannungsbetrieb ab +75° C

Ausfallrate < 1 fit (0,5 \cdot U_N und 40° C)

gegenüber der Nennspannung bei

Gleichspannungsbetrieb ab +85° C,

Impulsfeste Polypropylen (PP) -Kondensatoren mit schoopierten Metallfolienbelägen und doppelseitig ausheilfähiger, innerer Reihenschaltung für höchste Strombelastbarkeit in den Rastermaßen 15 mm bis 37,5 mm

Spezielle Eigenschaften

- Extrem impulsbelastbar
- Ausheilfähig
- Innere Reihenschaltung
- Sehr niedriger Verlustfaktor
- Negative Kapazitätsänderung über Temperatur
- Konform RoHS 2002/95/EC

Anwendungsgebiete

Einsatz in impuls- und frequenzbelasteten Applikationen wie z.B.

- Schaltnetzteile
- Umrichterschaltungen der Antriebsund Energietechnik
- Ablenkschaltungen der Fernsehund Monitortechnik
- Elektronische Vorschaltgeräte

Aufbau

Dielektrikum:

Polypropylen (PP) Folie

Beläge:

Aluminiumfolie und doppelseitig metallisierte Kunststoff-Folie

Innerer Aufbau:

Umhüllung:

Lösungsmittelresistentes, flammhemmendes Kunststoffgehäuse mit Epoxidharzverguß, UL 94 V-0

Anschlüsse:

Verzinnter Draht.

Kennzeichnung:

Farbe: Rot. Aufdruck: Schwarz. Epoxidharzverguß: Gelb

Elektrische Daten

Kapazitätsspektrum:

100 pF bis 0,22 μ F (E12-Werte auf Anfrage)

Nennspannungen:

400 V-, 630 V-, 1000 V-, 1250 V-, 1600 V-, 2000 V-, 4000 V-, 6000 V-

Kapazitätstoleranzen:

±20%, ±10%, ±5%

(andere Toleranzen auf Anfrage)

Betriebstemperaturbereich:

-55° C bis +100° C

Klimaprüfklasse:

55/100/56 nach IEC

Isolationswerte bei +20° C:

 $C \leq 0.1 \ \mu F_{:} \geq 1 \cdot 10^5 M\Omega$

(Mittelwert: $5 \cdot 10^5 M\Omega$)

 $C > 0.1 \ \mu\text{F}$: $\geq 30000 \ \text{s} \ \text{IM} \Omega \cdot \mu\text{F}$

(Mittelwert: 100 000 s)

Meßspannung: 100 V/1 min.

Prüfspannung:

2 U_N, 2s / 6 kV: 1,6 U_N, 2s.

Impulsbelastung:

C-Wert	400.1	max. Flankensteilheit V/µs bei T _A < 40° C 400 V- 630 V- 1000 V- 1250 V- 1600 V- 2000 V- 4000 V- 6000 V								
pF/ μ F	400 V-	630 V-	1000 V-	1250 V-	1600 V-	2000 V-	4000 V-	6000 V-		
100 220	_	_	_	_	56000	56000	_	_		
330 680	_	_	_	-	51000	56000	56000	56000		
1000 2200	29000	29000	29000	29000	46000	51000	51000	51000		
3300 6800	9000	14000	27000	29000	29000	29000	29000	29000		
0,01 0,022	9000	11000	11000	11000	11000	13000	13000	13000		
0,033 0,068	9000	11000	11000	11000	11000	11000	_	_		
0,1 0,22	7000	11000	11000	11000	11000	-	-	-		

bei vollem Spannungshub

Mechanische Prüfungen

Zugtest Anschlußdrähte:

 $d \leq 0.8 \, \phi$: 10 N in Drahtrichtung $d > 0.8 \, \phi$: 20 N in Drahtrichtung nach IEC 60068-2-21

Schwingen:

6 h bei 10...2000 Hz und 0,75 mm Auslenkung bzw. 10 g nach IEC 60068-2-6

Unterdruck:

1kPa = 10 mbar nach IEC 60068-2-13

Stoßtest:

4000 Stöße mit 390 m/s² nach IEC 60068-2-29

Verpackung

Gegurtet lieferbar bis einschließlich Bauform $15 \times 26 \times 31,5 / RM 27,5 mm$.

Detaillierte Gurtungsangaben und Maßzeichnungen am Ende des Hauptkataloges.

Weitere Angaben siehe Technische Information.

WIMA FKP 1

Fortsetzung

Wertespektrum

Vana areitikt	Vanazität 400 V−/250 V~*			ć					250 V-	250 V-/600 V~*						
Kapazität	В	Н	L	RM**	В	Н	L	RM**	В	Н	l L	RM**	В	Н	L	RM**
1000 pF 1500 "	5 5]]]]	18 18	15 15	5 5	 	18 18	15 15	5 5	11 11	18 18	15 15	5 5]]]]	18 18	15 15
2200 " 3300 "	5 5	11 11	18 18	15 15	5 5	11 11	18 18	15 15	5 5	11 11	18 18	15 15	5 6	11 12,5	18 18	15 15
4700 " 6800 "	5 5	11 11	18 18	15 15	5 6	11 12,5	18 18	15 15	6 7	12,5 14	18 18	15 15	7 8 5	14 15 14	18 18 26,5	15 15* 22,5*
0,01 μF	5	11	18	15	7 5	14 14	18 26,5	15* 22,5*	8	15 15	18 26,5	15* 22,5*	7	16,5	26,5	22,5
0,015 "	6	12,5	18	15	8	15 15	18 26,5	15* 22,5*	6	15	26,5	22,5	8,5	18,5	26,5	22,5
0,022 "	7 5	14 14	18 26,5	15 * 22,5 *	7	16,5	26,5	22,5	8,5	18,5	26,5	22,5	10,5	20,5	26,5	22,5
0,033 "	8 6	15 15	18 26,5	15* 22,5*	8,5	18,5	26,5	22,5	10,5 9	20,5 19	26,5 31,5	22,5* 27,5*	11 9	21 19	31,5 41,5	27,5* 37,5*
0,047 "	7	16,5	26,5	22,5	10,5 9	20,5 19	26,5 31,5	22,5* 27,5*	11	21	31,5	27,5	13 11	24 22	31,5 41,5	27,5* 37,5*
0,068 "	8,5	18,5	26,5	22,5	11 9	21 19	31,5 41,5	27,5* 37,5*	13 11	24 22	31,5 41,5	27,5* 37,5*	11	22	41,5	37,5
0,1 μF	10,5 9	20,5 19	26,5 31,5	22,5* 27,5*	13 11	24 22	31,5 41,5	27,5* 37,5*	13	24	41,5	37,5	15	26	41,5	37,5
0,15 " 0,22 "	11 13	21 24	31,5 31,5	27,5 27,5	13 15	24 26	41,5 41,5	37,5 37,5	15 19	26 32	41,5 41,5	37,5 37,5	17 19	29 32	41,5 41,5	37,5 37,5

- * Wechselspannungen: f \leq 1000 Hz; 1,4 \cdot U $_{\rm eff}$ \sim + U- \leq U $_{\rm N}$
- ** RM = Rastermaß
- * Bei Bestellung bitte das gewünschte <u>Rastermaß</u> angeben. Wenn keine Angaben erfolgen, wird grundsätzlich das kleinere RM geliefert.

Alle Maße in mm.

Die Ionisationseinsatzgrenze kann im Einzelfall unter der Wechselspannungsangabe liegen.

Gegurtete Ausführung siehe Seite 104.

ød	RM
0,8	15 - 27,5
1,0	37,5

Abweichungen und Konstruktionsänderungen vorbehalten.

Fortsetzung Seite 76

WIMA FKP 1

Fortsetzung

Wertespektrum

weilesbekiid	veries perirum															
I/ ''''	1	600 V-	/650 V~	_*	2	000 V-	/700 V~	_*	4000 V-/700 V~*				6000 V-/700 V~*			
Kapazität	В	Н	l L	RM**	В	Н	L	RM**	В	H	L	RM**	В	Н	L	RM**
100 pF	5	11	18	15	5	11	18	15								
150 "	5	11	18	15	5	11	18	15								
220 "	5	11	18	15	5	11	18	15								
330 "	5	11	18	15	6	12,5	18	15								
470 "	5	11	18	15	6	12,5	18	15	5	14	26,5	22,5	5	14	26,5	22,5
680 "	5	11	18	15	6	12,5	18	15	5	14	26,5	22,5	5	14	26,5	22,5
1000 pF	6	12,5	18	15*	7	14	18	15*	5	14	26,5	22,5	5	14	26,5	22,5
	5	14	26,5	22,5*	5	14	26,5	22,5*								
1500 "	7	14	18	15*	6	15	26,5	22,5	7	16,5	26,5	22,5	7	16,5	26,5	22,5
	5	14	26,5	22,5*												
2200 "	8	15	18	15*	7	16,5	26,5	22,5	8,5	18,5	26,5	22,5	10,5	20,5	26,5	22,5
	5	14	26,5	22,5*	_											
3300 "	6	15	26,5	22,5	7	16,5	26,5	22,5	10,5	20,5	26,5	22,5	10,5	20,5	26,5	22,5
4700 "	7	16,5	26,5	22,5	8,5	18,5	26,5	22,5		21	31,5	27,5		21	31,5	27,5
6800 "	8,5	18,5	26,5	22,5	10,5	20,5	26,5	22,5	13	24	31,5	27,5	13	24	31,5	27,5
0,01 µ F	10,5	20,5	26,5	22,5	11	21	31,5	27,5	15	26	31,5	27,5	15	26	31,5	27,5
0,015 "	11	21	31,5	27,5	13	24	31,5	27,5	13	24	41,5	37,5	13	24	41,5	37,5
0,022 "	11	21	31,5	27,5	15	26	31,5	27,5*	17	29	41,5	37,5	17	29	41,5	37,5
0.000	1.0	0.4	01.5	07.5*	13	24	41,5	37,5*								
0,033 "	13	24	31,5	27,5*	13	24	41,5	37,5			_	te das ç	-			
0.047	13 13	24 24	41,5	37,5*	17	29	41 E	27.5	angeben. Wenn keine Angaben erfolgen, wird grundsätzlich das kleinere RM geliefert.							
0,047 "	13	24	41,5	37,5	17	29	41,5	37,5								

* Wechselspannungen: f \leq 1000 Hz; 1,4 \cdot U $_{\rm eff}$ \sim + U - \leq U $_{\rm N}$

41,5

41,5

37,5

37,5

19

** RM = Rastermaß

Alle Maße in mm.

0,068 "

Die Ionisationseinsatzgrenze kann im Einzelfall unter der Wechselspannungsangabe liegen.

29

Gegurtete Ausführung siehe Seite 104.

15

17

Abweichungen und Konstruktionsänderungen vorbehalten.

ød	RM
0,8	15 - 27,5
1,0	37,5

41,5

37,5

Verarbeitungs- und Applikations- —— empfehlungen für bedrahtete Bauteile

Lötprozess

Ein Vorheizen bedrahteter WIMA Kondensatoren ist bis zu einer Temperatur von $T_{max} < 100\,^{\circ}$ C erlaubt. In der Praxis hat sich eine Vorheizdauer von t < 5 min. bewährt.

Wellenlöten

Lotbadtemperatur: T < 260 ° C Eintauchdauer: t < 5 s

Doppelwellenlöten

Lotbadtemperatur: T < 260 ° C Eintauchdauer: $2 \times t < 3 \text{ s}$

Temperatur/Zeitdiagramm für die max. zulässige Lötwärmebelastung der bedrahteten WIMA-Kondensatoren für Doppelwellenlötung

WIMA Qualitäts- und Umweltphilosophie

ISO 9001:2000 Anerkennung

ISO 9001:2000 ist eine internationale Grundnom zur Zertifizierung von Qualitätssicherungssystemen für alle Industriebereiche. Allen WIMA-Fertigungsstätten wurde durch das VDE-Prüf- und Zertifizierungsinstitut die Herstelleranerkennung gemäß ISO 9001:2000 erteilt. Damit wird bestätigt, dass Organisation, Einrichtungen und Qualitätssicherungsmaßnahmen international anerkannten Standards entsprechen.

WIMA WPCS

Das WIMA Process Control System WPCSI ist ein von WIMA entwickeltes Qualitätsüberwachungs- und Qualitätssicherungssystem, das als Hauptbestandteil der qualitätsorientierten WIMA-Fertigung zu sehen ist. Die Einsatzstellen innerhalb des Fertigungsprozesses sind

- Wareneingangskontrolle
- Metallisierung
- Folienkontrolle
- Schoopen
- Ausheilen
- Kontaktieren
- Gießharzaufbereitung/Vergießen
- 100%ige Endkontrolle
- AQL Kontrolle

WIMA Umweltpolitik

Alle WIMA Kondensatoren, bedrahtet wie SMD, werden aus umweltverträglichen Materialien gefertigt. Weder in der Fertigung, noch in den Produkten selbst werden toxische Stoffe verwendet, wie z.B.

- Blei PBB / PBDE
- PCB Arsen
- FCKW Cadmium
- CKW– Quecksilber
- Chrom 6+ etc.

Bei der Verpackung unserer Bauteile werden ausschließlich sortenreine, recyclebare Materialien verwendet, wie z.B.

- Graukarton
- Wellpappe
- Papierklebeband
- Polystyrol

Zur Minimierung des Verpackungsaufwandes können Kunststoffteile zur Wiederverwertung zurückgenommen werden, z.B.

- WIMA EPS-Paletten
- WIMA Kunststoffhaspeln

Auf folgende Verpackungsmaterialien wird weitgehend verzichtet:

- Styropor[®]
- Kunststoffklebebänder
- Metallklammern

RoHS Schadstoffverordnung

Gemäß der EU Schadstoffverordnung, die sich in der RoHS-Richtlinie (2002/95/EC) widerspiegelt, dürfen ab 01.07.2006 bestimmte Schadstoffe wie Blei, Cadmium, Quecksilber usw. nicht mehr in elektronischen Geräten verarbeitet werden. Der Umwelt zuliebe verzichtet WIMA bereits seit Jahrzehnten auf den Einsatz dieser Substanzen.

WIMA Kondensatoren sind bleifrei konform RoHS 2002/95/EG

WIMA capacitors are lead free in accordance with RoHS 2002/95/EC

Kennzeichnungsband für bleifreie WIMA Kondensatoren.

DIN EN ISO 14001:2005

WIMA hat sein Umweltmanagementsystem gemäß den Richtlinien der DIN EN ISO 14001:2005 ausgelegt. Die Zertifizierung erfolgte im Juni 2006.

Typische Maßangaben für die Radial Gurtung

Skizze 2: RM 10/15 mm

Skizze 3: RM 22,5 und 27,5*mm
*RM 27,5-Gurtung auch mit 2 Führungsloch-Abständen

				Maßang	aben zur Radial	-Gurtung					
Bezeichnung	Symbol	RM 2,5-Gurtung	RM 5-Gurtung	RM 7,5-Gurtung	RM 10-Gurtung*	RM 15-Gurtung*	RM 22,5-Gurtung	RM 27,5-Gurtung			
Trägerbandbreite	W	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5			
Klebebandbreite	W ₀	6,0 für Heißsiegel- klebeband	6,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband			
Lage der Führungslöcher	Wı	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5			
Lage Klebeband	W ₂	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,			
Führungsloch-Durchmesser	D ₀	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2			
Abstand der Bauelemente	Р	12,7 ±1,0	12,7 ±1,0	12,7 ±1,0	25,4 ±1,0	25,4 ±1,0	38,1 ±1,5	38,1 ±1,5 bzw, 50,8 ±1			
Abstand der Führungslöcher	P ₀	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nac 20 Schritten 1,0 max,			
Abstand Führungsloch zu Drahtanschluß	P ₁	5,1 ±0,5	3,85 ±0,7	2,6 ±0,7	7,7 ±0,7	5,2 ±0,7	7,8 ±0,7	5,3 ±0,7			
Abstand Führungsloch zu Bauelementmitte	P ₂	6,35 ±1,3	6,35 ±1,3	6,35 ±1,3	12,7 ±1,3	12,7 ±1,3	19,05 ±1,3	19,05 ±1,3			
Abstand Führungsloch	Н▲	16,5 ±0,3	16,5 ±0,3	16,5 ±0,5	16,5 ±0,5	16,5 ±0,5	16,5 ±0,5	16,5 ±0,5			
zur Bauelementunterkante	" -	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5			
Abstand Führungsloch zur Bauelementoberkante	H ₁	H+H _{Bauelement} < H ₁ 32,25 max,	H+H _{Bauelement} < H ₁ 32,25 max,	H+H _{Bauelement} < H ₁ 24,5 bis 31,5	H+H _{Bauelement} < H ₁ 25,0 bis 31,5	H+H _{Bauelement} < H ₁ 26,0 bis 37,0	H+H _{Bauelement} < H ₁ 30,0 bis 43,0	H+H _{Bauelement} < H ₁ 35,0 bis 45,0			
Rastermaß Oberkante Trägerband	F	2,5 ±0,5	5,0 ^{+0,8} _{-0,2}	7,5 ±0,8	10,0 ±0,8	15 ±0,8	22,5 ±0,8	27,5 ±0,8			
Draht-Durchmesser	d	0,4 ±0,05	0,5 ±0,05	*0,5 ±0,05 o, 0,6 +0.06	*0,5 ±0,05 o, 0,6 +0,06	0,8 +0,08	0,8 +0,08	0,8 +0.08 -0,05			
Parallelität	Δh	± 2,0 max,	± 2,0 max,	± 3,0 max,	± 3,0 max,	± 3,0 max,	± 3,0 max,	± 3,0 max,			
Gesamtdicke des Bandes	t	0,7 ±0,2	0,7 ±0,2	0,7 ±0,2	0,7 ±0,2	0,7 ±0,2	0,7 ±0,2	0,7 ±0,2			
Al . 15-1		ROLL//	AMMO			AMMO	,	,			
Abstand Führungsloch (siehe dazu auch Seite 105)	A	REEL Ø 360 max. Ø 30 ±1	B 52 ±2 abhängig von Bauform		REEL \$\psi\$ 360 max. B 52 \pm 2 \\ \$\phi\$ 30 \pm 1 B 66 \pm 2	oder REEL # 300 max. B 60	±2 abhänging ±2 von RM ±2 und Bauform				
Einheit				siehe Angaben auf Seite 107.							

 $^{{\}color{black} \blacktriangle}$ Bei Bestellung bitte Maß H und gewünschte Verpackungsart angeben.

Alle Maße in mm.

Draht-Durchmesser gem. Werteübersichten. Anwenderspezifische Abweichungen sind mit dem Hersteller zu klären.

RM 10 und RM 15 kann auf RM 7,5 gekröpft werden. Es gelten die Gurtungsangaben der entsprechenden Rastermaße, Bauteilposition jedoch wie bei RM 7,5 (Skizze 1). $P_0 = 12,7$ oder 15,0 ist möglich.