The Cantor-Schröder-Bernstein Theorem A formal proof in Lean4

Marieke-Eren

Heidelberg University

Table of contents

Overview

Statement

Proof

Axioms

Remarks

Sources

Theorem and appreciation

Theorem (Cantor-Schröder-Bernstein)

Let α and β be two sets. If there exist injective functions $f: \alpha \to \beta$ and $g: \beta \to \alpha$, then there exists a bijective function $h: \alpha \to \beta$.

Example (7)

Let $4 = \{0, 1, 2, 3\}$, $A := 4^{\mathbb{N}}$ and $B := \mathcal{P}(\mathbb{N})$. Here is a bijection:

$$h(x) := \{2n|q(x,n) \equiv 1\} \cup \{2n+1|p(x,n) \equiv 1\}$$

where p, q are defined as

$$p(x, n) := (x(n) \equiv 1(mod4)) \lor (x(n) \equiv 3(mod4)),$$

 $q(x, n) := (x(n) \equiv 2(mod4)) \lor (x(n) \equiv 3(mod4)).$

If we want to use the theorem, here are the injections:

$$f: A \to B, x \mapsto \{p_n^{\times(n)} | n \in \mathbb{N}, p_n \text{ is prime}\}$$

 $g: B \to A, S \mapsto (\lambda n \to 1, \text{if } n \in S; 0, \text{ else}).$

One way to prove the theorem is to construct h^{1} .

Some observations:

- ▶ We have f and g^{-1} from α to β .
- \blacktriangleright When their co-domains are restricted, both f,g are bijective.
- ▶ We need to partition α so that we can make use of f and g^{-1} .

Figure: Partition of α

Define the sets S_n for $n \in \mathbb{N}$ recursively as follows:

$$S_0 = \alpha \setminus g(\beta),$$

$$S_{(n+1)} = g(f(S_n)).$$

Let $S := \bigcup_{n=0}^{\infty} S_n$.

Define the function $h: \alpha \to \beta$ as follows:

$$h x := \begin{cases} f x & \text{, if } x \in S, \\ g^{-1} x & \text{, if } x \notin S. \end{cases}$$

Now, we need to verify that h is bijective:

- ▶ Injectivity: Suppose h x = h y. We need to show x = y.
- Surjectivity: For every $y \in \beta$, we need to find an $x \in \alpha$ such that $h \times y = y$.
 - g y ∈ S
 - g y ∉ S

Axioms

We can see the axioms used in our theorem by typing "#print axioms schroeder-bernstein".

- 1. Classical.choice
- 2. propext
- 3. Quot.sound

```
From 1, 2 and "Quot"; we get "funext":
```

- 4. funext
 - 1, 2 and 4 implies LEM:
- 5. LEM

Some remarks

- On the axiom of choice
 - Cantor's proof is a consequence of "the linear order of cardinal numbers" which was later shown by Hartogs to be equivalent to the AC [3].
 - ► The proof we use here assumes the AC (in the parts related with "invFun")
 - ▶ There is a proof (from König) not relying on the AC [3].
- On the law of excluded middle
 - $\triangleright \forall p$: Prop, $p \lor \neg p$
 - ► LEM can be derived from Classical.choice (+ propext + funext) and is not explicitly shown among the axioms [4].
 - ▶ No constructive proof: CSB implies LEM [5].
- A similar theorem (CSB-Escardó) for Types [6].

Sources

- For the code and the proof: https://leanprover-community.github.io/mathematics_in_lean/
- 2. For theorem finding: https://leanprover-community.github.io/mathlib4_docs/
- 3. https://en.wikipedia.org/wiki/Schröder-Bernstein_theorem
- 4. https://leanlang.org/theorem_proving_in_lean4/axioms_and_computation.html
- Chad E Brown, Cécilia Pradic. Cantor-Bernstein implies Excluded Middle. 2023. ffhal-02103517v3f
- https://unimath.github.io/agda-unimath/foundation.cantorschroder-bernstein-escardo.html
- 7. Ünlü, Özgün. Bilkent University Math 123 Midterm-2, 2023.
- 8. Christian Merten (Heidelberg Uni.) & Elif Üsküplü (Indiana Uni.)

