Multi-Input Functional Encryption and Obfuscation
A Thesis
Presented to
The Established Interdisciplinary Committee for Mathematics and Natural Science
Reed College
In Partial Fulfillment
of the Requirements for the Degree
Bachelor of Arts

Sage R. Michaels

 $\mathrm{May}\ 2018$

Approved for the Division (Mathematics)

Dylan McNamee

Acknowledgements

I want to thank a few people.

Abstract

This is an example of a thesis setup to use the reed thesis document class.

Table of Contents

\mathbf{Introd}	$f uction = \dots $	1
Chapte	er 1: Background	3
1.1	Encryption	S
	1.1.1 Early Encryption	
1.2	Black Box Obfuscation	
1.3	Diffie-Hellman Key Exchange	į
\mathbf{Chapt}	er 2: Multi-Linear Maps	-
2.1	Definition	L
2.2	Intuition	1
2.3	Construction Outline	
2.4	Candidate Goups/Quotient Rings/Fields	
Chapt	er 3: Indistinguishability Obfuscation	7
3.1	Definition	7
3.2	Construction	7
3.3	Usage, Limitations, and Goals	7
Chapt	er 4: Multi-Party Input Functional Encryption	ç
4.1	Scheme	Ć
4.2	Construction	Ć
4.3	Limitations and Goals	Ć
Chapte	er 5: A Brief Introduction to the 5-GenC library	11
5.1		11
5.2	Circuits and Branching Programs	11
5.3		11
Chapt	er 6: Experiments	13
6.1		13
6.2		13
Chapt	er 7: Conclusion	15
Refere	nces	17

Introduction

Background

1.1 Encryption

In plain English, Encryption is any way to share a message so that only the intended recipient(s) of that message are able to read it. Historically this was done by means of obscurity, in the sense that correspondents assumed only they knew the specific method by which messages between them would be encrypted. The problem with Encryption by obscurity is that as soon as a method of obscurity becomes popular, it immediately becomes obsolete.

Modern Cryptography

1.2 Black Box Obfuscation

1.3 Diffie-Hellman Key Exchange

Multi-Linear Maps

- 2.1 Definition
- 2.2 Intuition
- 2.3 Construction Outline
- 2.4 Candidate Goups/Quotient Rings/Fields

Indistinguishability Obfuscation

- 3.1 Definition
- 3.2 Construction
- 3.3 Usage, Limitations, and Goals

Multi-Party Input Functional Encryption

- 4.1 Scheme
- 4.2 Construction
- 4.3 Limitations and Goals

A Brief Introduction to the 5-GenC library

- 5.1 The DSL
- 5.2 Circuits and Branching Programs
- 5.3 Base and MMaps

Experiments

- 6.1 Comparison Circuit
- 6.2 Runtime Evaluation

Conclusion

References

- Angel, E. (2000). Interactive Computer Graphics: A Top-Down Approach with OpenGL. Boston, MA: Addison Wesley Longman.
- Angel, E. (2001a). Batch-file Computer Graphics: A Bottom-Up Approach with QuickTime. Boston, MA: Wesley Addison Longman.
- Angel, E. (2001b). test second book by angel. Boston, MA: Wesley Addison Longman.
- Deussen, O., & Strothotte, T. (2000). Computer-generated pen-and-ink illustration of trees. "Proceedings of" SIGGRAPH 2000, (pp. 13–18).
- Fisher, R., Perkins, S., Walker, A., & Wolfart, E. (1997). Hypermedia Image Processing Reference. New York, NY: John Wiley & Sons.
- Gooch, B., & Gooch, A. (2001a). *Non-Photorealistic Rendering*. Natick, Massachusetts: A K Peters.
- Gooch, B., & Gooch, A. (2001b). Test second book by gooches. Natick, Massachusetts: A K Peters.
- Hertzmann, A., & Zorin, D. (2000). Illustrating smooth surfaces. *Proceedings of SIGGRAPH 2000*, 5(17), 517–526.
- Jain, A. K. (1989). Fundamentals of Digital Image Processing. Englewood Cliffs, New Jersey: Prentice-Hall.
- Molina, S. T., & Borkovec, T. D. (1994). The Penn State worry questionnaire: Psychometric properties and associated characteristics. In G. C. L. Davey, & F. Tallis (Eds.), Worrying: Perspectives on theory, assessment and treatment, (pp. 265–283). New York: Wiley.
- Noble, S. G. (2002). Turning images into simple line-art. Undergraduate thesis, Reed College.
- Reed College (2007). Latex your document. http://web.reed.edu/cis/help/LaTeX/index.html
- Russ, J. C. (1995). The Image Processing Handbook, Second Edition. Boca Raton, Florida: CRC Press.

18 References

Salisbury, M. P., Wong, M. T., Hughes, J. F., & Salesin, D. H. (1997). Orientable textures for image-based pen-and-ink illustration. "Proceedings of" SIGGRAPH 97, (pp. 401–406).

- Savitch, W. (2001). JAVA: An Introduction to Computer Science & Programming. Upper Saddle River, New Jersey: Prentice Hall.
- Wong, E. (1999). Artistic Rendering of Portrait Photographs. Master's thesis, Cornell University.