

	ASSIGN MENT Pages / / D
99	Reduce the following Boolean expressions to the indicated number of literals:
(g) (g)	A'C' + ABC + AC' (n'y'+z)' + z + ny + wz A'B(D'+c'D) + B(A+A'CD) (A'+C)(A'+C')(A+B+C'D) ABC'D + A'BD + ABCD to three literals to three literals
	Draw the logic diagrams that implement the original and simplified expressions.
GA .	(a) A'C' + ABC + AC' to three literall = c'(A'+A) + ABC = (' + AB)(C'+C) [distributive law] = [AB+C']
	A'c' + ABC + Ac' = AB + c'
	8 = B D D = B D D = B D D D = B D D D D D

	 -		1
9	Dr.	-	at
The state of the s	-	-	-

:
$$F(N, y, z) = \Sigma(2, 4, 5, 4, 7) = \Pi(0, 1, 8)$$

2. F = bc + a'c'

							LESS BOLD OF STREET
		a	6	1	be	a'c'	be+a'e'
ı		0	0	0	0	1 10	Dio11- 2 3
		0	0	1	0	0	101110 - 44
	- 3	0	1	0	0	Tak	
	1	0	1	1	1	0	000 13 301
-	FRE	1	0	0	0	0	11 000 0 8 @ C
		1	0	1	0	0	0
		1	1	6	0	0	Hadra O. A.
		1	1	1	1	D	THE MOUNT OF

(called bitwise operation).

Given two eight-bit strings A= 10110001 and B= 10101100, evaluate the eight-bit result after the following logical operations:

(a) AND

(b) OR

(c) XOR

(d) NOT A

(e) NOT B

The second second	
	Dorte / / Page
As)	A = 1011 0001
	B= 10 10 1100
	180+30-3
(A AND R = 10100000
	A.B= 10100000
	de to be de la
(9)	A OR B = 10111101
	A+B = 10111101
	713 0 10 10
(3)	A XOR B = 00011101
	A A B = 000 11101
(6)	NOT A = 01001110
	TA = 01001110
(e)	NOT B = 01010011) T = (1001010 = 6 d.d.)
	$\overline{B} = 01010011$
	(O 0101001)
1000	to taxinda no taxid a fine
40	In societo na societarios langual carefresques ses ses 60
- 49	Implement the boolean function
	F = NU + N'II' + II' >
	4 650 (000) 01 5th Zonyto +14-4-3
(4)	with him, on and inverse later.
- 67	and inverser gales.
	THE THE THE CATES.
	with NAND and INVERTER GATES.
(e)	with NOR and INVERTER GATES.
	900
	80x (9)
	A TOW (b)
	a tou (s)
T RESIDENCE OF	

A5) F(A, B, C, D) = B'D + A'D + BD (TIZE) THE (BULL) 7 (2) = B'D(c+c') + A'D(B+B') + BD(A+A') = B'CD + B'C'D + A'BD + A'B'D + ABD + A'BD = 8'CD (A+A') + B'C'D (A+A') + A'BD (L+C') + A'B'D (C+C') + ABD(C+C') = AB'CD + A'B'CD + AB'C'D + A'B'C'D + A'BCD + A'BCD + A'B'CD + A'B'C'D + ABCD + ABC'D and realty ant of primariles and the dans treavant (D) = AB'CD + A'B'CD + AB'C'D + A'B'C'D + A'BCD + A'BC'D + ABCD + ABC'D = 2(11, 3, 9, 1, 7, 5, 15, 13) = (5, 11, 10) = (6) (1) F(R, B, C, D) = TT (8, S, 8, 1) = \E(1,3,5,7,9,11,18,15) Sum of munteams 17(0,2,4,6,8,10,12,14) product of maxterns. of Express the following complement of the following function in sum-of-minterns form: (a) F(A,B,C,D) = 5(2,4,7,10,12,14) (b) F(x, y, z) = T(3,5,7) AD (6) F(A,B,C,D) = & (2,4,7, 10, 12, 14) (1) (1) (1)

F'(A,B,C,D) = \(\infty\)(0,1,3,5,6,8,9,11,13,15)

A8) ((+ x w) (x + 01 V) = Ux + UU'V + x.x.w + xwv'V = UX + 0 + XW + XWU'V = UN + WN (1+U'V) = [UN + WN] - Sum of products. = x(v+w) - Product of fums. (b) n' + n(n+y')(y+z') = x' + x (xy + yy' + xz' + y'z') = n' + n.ny + n.nz' + ny'z' = x' + xy + xz' + xy'z' = x' + xy + xz'(1+y')= x' + xy + xz' = (n'+n)(y+n') + nz' distributive] = 4+x1+x21 = y + 6x+n')(z'+n')

= [9 + n' + z') -> Sum of products
and Product of Sums. (BOTH)

- Q9) Doraw the logic diagram corresponding to the following Boolean expressions without simplifying them:
- (a) BC' + AB + ACD
- (b) (A+B) (c+D) (A'+B+D)
- (c) (AB + A'B')((D+C'D)
- (d) A + cD + (A+D)(C'+D)

