Generative models

Neural Networks Design And Application

Training data

 χ

Training data

Inverse distribution function

Inverse distribution function

19

Q: how many Gaussian distributions?

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

Q: how many Gaussian distributions?

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

Q: how many Gaussian distributions?

$$P(x', y) = P(x'|y)P(y)$$

$$P(x',y) = P(x'|y)P(y)$$

Pick the label y with largest P(x', y)

$$P(x',+1) = P(x'|+1)P(+1)$$

$$P(x',-1) = P(x'|-1)P(-1)$$

$$P(x',y) = P(x'|y)P(y)$$

Pick the label y with largest P(x', y)

Generative models

$$Pr(x,y) = Pr(y)Pr(x|y) = \pi_y P_y(x).$$

Generative models

$$Pr(x, y) = Pr(y)Pr(x|y) = \pi_y P_y(x).$$

Generative models

$$Pr(x,y) = Pr(y) Pr(x|y) = \pi_y P_y(x).$$

Pick the label y making P(x, y) largest

Generative models

$$Pr(x, y) = Pr(y) Pr(x|y) = \pi_y P_y(x).$$

Pick the label y making P(x, y) largest

Adversarial learning and generative models

Adversarial learning and generative models

Limit: additive noise is only one way to generate adversarial data

Adversarial learning and generative models

Limit: additive noise is only one way to generate adversarial data

Q: can generative models help? **Panda** Best hyperplane Worst adversarial ML model for panda recognition All possible onepixel modification Not panda 0~255 Q: for a grey scale images of size 28x28, how 255 x 28 x 28 Small modification (one pixel) many possible one-pixel changes can we have? = 199920

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

More details at tutorial note https://arxiv.org/pdf/1701.00160.pdf and original paper https://arxiv.org/pdf/1406.2661.pdf

Maximum likelihood estimation

More details at tutorial note https://arxiv.org/pdf/1701.00160.pdf and original paper https://arxiv.org/pdf/1406.2661.pdf

More details at tutorial note https://arxiv.org/pdf/1406.2661.pdf and original paper https://arxiv.org/pdf/1406.2661.pdf

More details at tutorial note https://arxiv.org/pdf/1406.2661.pdf and original paper https://arxiv.org/pdf/1406.2661.pdf