

Réseaux ATM

André-Luc BEYLOT ENSEEIHT

Département Télécommunications et Réseaux

Historique

- De nouvelles applications avec des débits très hétérogènes
 - Voix
 - Données
 - Images fixes
 - Video
- Améliorations des technologies :
 - fibres optiques
 - commutateurs
- Limitations des solutions existantes :
 - ◆ X.25 et Relayage de Trames
 - Solutions Circuits (téléphonie avec plusieurs débits)
 - Ethernet, TCP/IP?

2

Description Générale

- Plan Utilisateur : Données Utilisateurs
- · Plan de Contrôle : Signalisation
- Plan de Gestion : surveillance du réseau

Caractéristiques Générales

- Mode Connecté
- Peu de contrôle
 - d'erreur, de flux, de congestion
- Couches ATM et physique commune
- Mode paquets, de taille unique, petits
- Couche AAL dépendant (du type) de l'application
- Correspondance OSI Modèle ITU
 - ◆ PHY <=> Couche 1
 - ◆ ATM <=> Couches 2 et 3
 - ◆ AAL <=> Couche 4

4

Caractéristiques Générales

Format Général de la cellule

Numéro CV Type E Données

Cell. C Données

- Cellule ATM = paquet de taille constante
- HEC = Header Error Control Couche Physique
- Pas de contrôle d'erreur sur les données
- Longueur totale = 53 octets Compromis (1989)
 - Européens : 32 octets (voix)Américains : 64 octets (données)

Fonctionnalités - AAL

Classe de Service Classe A		Classe B	Classe C	Classe D
Contraintes Temporelles	oui	oui	non	non
Débit	constant	variable	variable	variable
Type Fonctionnement	Orienté connexion	Orienté connexion	Orienté connexion	Sans connexion
Exemples • Circuit • Téléphonie • Visiophonie		Video à débit variable Parole avec compression	Données en mode connecté Fichiers	Données en mode non connecté - Messages

- Synchronisation de bout en bout
- Protection contre les erreurs
- Segmentation et Réassemblage

Couche ATM

- Mode Connecté :
 - Fonctionnement par numéro de CV : à la mode X.25
 - 2 parties
 - + numéro de circuit virtuel (Virtual Channel)
 - + numéro de conduit virtuel (Virtual Path)
 - multiplexage de circuits virtuels à l'intérieur de conduit virtuel
 - Cellule non numérotées => doit préserver l'ordre
- Traduction des étiquettes (à la mode X.25)
- Création/Extension d'en-tête
- Multiplexage/Démultiplexage des cellules

8

Les deux niveaux de commutation

VCI - Virtual Channel Identifier

VPI - Virtual Path Identifier

VCC - Connexion de Circuits Virtuels = {étiquettes VPI/VCI}

VPC - Connexion de Conduits Virtuels = {étiquettes VPI}

Ces connexions sont permanentes ou commutées

Les deux niveaux de commutation

Les couches physiques pour l'ATM

Couche Physique

ATM supporté par tout système de transmission

- Délimitation des cellules indépendante des synchro de transmissions
- Couche Physique découpée en 2
 - + Convergence de Transmission
 - · Découplage/délimitation des cellules
 - · Création/Vérification HEC
 - · Adaptation à la trame de transmission
 - · Création/Récupération de Trame
 - Support Physique
 - · Horloge binaire
 - · Support physique

Lié à l'ATM

Lié au système de Transmission

Adaptation des débits : Justification Cellule

Protection contre les erreurs

- Contrôle en-tête par HEC Code cyclique, x8 + x2 + x + 1
- Détection d'erreurs multiples et corrige erreur simple

Délimitation des Cellules

- Utilisation d'un fanion (type HDLC): trop coûteux
- (Utilisation des pointeurs SDH :
 - trop lié à la SDH
 - s 'adapte mal aux autres supports physiques)
- Utilisation du HEC :
 - recherche permanente du HEC
 - motif présent dans chaque cellule
 - indépendant du système de transmission flux auto-cadré
 - Sécurité et robustesse améliorées par un embrouilleur (données embrouillées pour éviter la détection d'un faux HEC)

La Couche ATM

Adaptation au conduit de transmission

- Conduit confié au réseau par interface normalisée
- Dirigé vers l'équipement ATM destinataire où les cellules sont extraites

Connexions ATM

- Service ATM orienté connexion
 - Cnx de conduits virtuels = VPC (Virtual Path Connection)
 - Cnx de circuits virtuels = VCC (Virtual Channel Connection)
- Sur un VPC multiplexage de plusieurs VCC
- 2 niveaux de commutation
 - commutation de VPs = Brasseurs
 - commutation de VCs = Commutateurs
- Connexions de VP (mux bcp de VCCs même origine/dest):
 - essentiellement (semi)permanente
 - établies par le plan de gestion
- Connexions de VC:
 - essentiellement commutées (SVC) éventuellement PVC
 - établies par le plan de contrôle

Format des Cellules ATM

UNI						
GFC	VPI					
VPI	VCI					
VCI						
VCI	PT CL					
HEC						
Payload						

GFC: Generic Flow Control PT : Payload Type CLP: Cell Loss Priority

NNI					
VPI					
VPI	VCI				
VCI					
VCI	PT C				
HEC					
Payload					

- GFC: plusieurs configurations possibles au niveau B-NT2
- => conflits possibles d'accès contrôle de flux sur la partie usager contrôle de la QoS

Différents Types de Cellule

	Cellules Utilisateur				
0	0	0	Cellule Utilisateur, pas de congestion		
0	0	1	Cellule Utilisateur, pas de congestion		
0	1	0	Cellule Utilisateur, congestion		
0	1	1	Cellule Utilisateur, congestion		
	Cellules Réseau				
1	0	0	Cellule F5 - OAM (local)		
1	0	1	Cellule F5 - OAM (bout en bout)		
1	1	0	Cellule FRM - gestion de ressources rapide		
1	1	1	Réservé		

1er bit à 1 : cellule destinée au plan de maintenance **OAM**: Operation And Maintenance FRM: Fast Ressource Management

F5 - OAM: attaché à un VCC Autres flux OAM F1, F2, F3: couche physique

F4: attaché à un VPC, utilise un VCC particulier SAP de flux OAM + SAP de flux FRM : définis dans le plan de gestion

Les différents types de flux

- Flux de Signalisation (VPI = 0, à l'UNI, à NNI par défaut)
 - Meta-Signalisation : VCI = 1
 - Diffusion (pas pour PVC): VCI = 2
 - Point à Point : VCI = 5
- Flux de Gestion
 - ILMI: Interim Local Management Protocol (VCI=16, VPI=0)
 - + gestion de l'interface UNI : adresses, configurations
 - + la BD stocke : statistiques sur les niveaux PHY, ATM, VCC ...
 - + repose sur SNMP
 - OAM
 - + F1, F2, F3 réservés à la couche physique
 - + F4 pour une cnx VPC : VCI = 3 (entre 2 noeuds), VCI = 4 entre extrémités
 - + F5 pour une cnx VCC: PT = 4 (entre 2 nœuds), PT = 5 (entre extrémités)

CAC: Call Admission Control

UPC/NPC: User/Network Parameter Control

TS: Traffic Shaping PC: Priority Control

Contrôle ATM

RM: Resource Management

Introduction

Les Couches d'adaptation à l'ATM :

SAR: Segmentation and Reassembly CS: Convergence Sublayer

Fonctions AAL

- Segmentation et Réassemblage
- Convergence: fonctions spécifiques de l'application
 - Traitements des Erreurs
 - Absorption de la gique
 - synchronisation de bout en bout

Les différentes AAL

Classe de Service Classe A		Classe B	Classe C	Classe D
Contraintes Temporelles	oui	oui non		non
Débit	constant	variable	variable	variable
Type Fonctionnement	Orienté connexion	Orienté connexion	Orienté connexion	Sans connexion
AAL	AAL 1	AAL 2	AAL 3	AAL 4

AAL 4: SMDS - Switched Multi-megabit Data Service

AAL 3: Frame Relay, X.25

=> Peu de différences : fusion en une AAL 3/4

AAL 5: Signalisation, IP.

Découpage pour AAL-5 de CS en

CPCS (Common Part Convergence Sublayer) SSCS (Service Specific Convergence Sublayer)

AAL5 - SAR et CPCS

SAR AAL-5

Charge Utile = 48 octets 48 octets

CPCS AAL-5

PAD CPCS CPI CPCS-PDU Payload Length CRC32

Exemple de SSCS - SAAL

- Signalisation ATM repose sur l'AAL5
- Q.2931, MTP-3 (Message Transfer Protocol), B.ISUP (Broadband Integrated Service User Part) proviennent du RNIS-BE
- SSCOP: Service Specific Connection Oriented Protocol)
- SSCF : Service Specific Coordination Function
- SSCOP: un nouveau protocole de niveau 2! Echange fiabilisé des infos de signalisation A la HDLC : connexion unidirectionnelle avec polling

Q.2931 + B-ISUP

Adressage ATM (ATM-Forum)

E.164 (cf. RNIS-BE)

AFI : Authority Format Identifier HO: High Order pour routage hiérarchique ESI: numéro de la machine, par exempl adresse MAC

SEL : Selector (par exemple démultiplexer des entités logiques dans le même équipement)

NSAP ISO

DCC: Data Country Code ICD : International Code Designator

Domain Specific Part

Initial Domain Domain Specific Part Identifier

Présentation Générale

PNNI : Routage dans les réseaux ATM

- Routage:
 - Protocole à état de liaisons
 - Routage Hiérarchique, Agrégation
 - Routage QoS
- Acheminement
 - "routage" par la source
 - GCAC et CAC
 - "Crankback"
- Aiguillage

Protocole à état de liaisons

- Chaque nœud gère sa base de données topologique
- Il envoie des messages "HELLO"
 - découverte/connectivités
 - Etats des liens : périodiquement + chaque changement significatif
 - Inondation

33

Hiérarchisation - Adressage

- Plusieurs formats d'adresses
- 20 octets dont 13 de préfixe
- Hiérarchique : Peer Group (PG) avec un "Leader" (PGL)
- Limite hiérarchique sur n'importe quel élément binaire
 - Jusqu'à 104 niveaux hiérarchiques

Hiérarchie avec PNNI

Hiérarchie PNNI

- PG: Les commutateurs d'1 PG possède un préfixe d'adresse commun
- Rôle du PGL
 - Agrège les informations du PG
 - Distribue les informations agrégées aux autres PG
 - Les nœuds logiques d'un PG disposent des mêmes informations de routage (inondation)

Ex: Connaissances de A.1.1

PNNI State Element

- Attributs : contraintes sur les éléments du chemin
 - maxCR: Maximum Cell Rate
 - AvCR : Available Cell Rate
 - Possibilité de Multicast
 - Trafic en transit admis
- Métriques : contraintes sur le chemin lui-même
 - Additives
 - + Cell Delay Variation
 - + Max Cell Transfer Delay
 - + Coût
 - Multiplicatives
 - Maximum Cell Loss Ratio

Agrégation

- Informations d'accessibilité
 - Repose sur le plan d'adressage
- Informations topologiques : 1 domaine de routage =
 - 1 boîte noire
 - + 1 nœud logique
 - + représenté par un jeu de paramètres (délai, BW disponible)
 - 1 représentation plus complexe : 1 graphe hybride

Remarques

- Les nœuds logiques ne correspondent pas aux nœuds réels mais une simple connectivité
- Compromis : précision / quantité d'informations
- Algorithmes de construction complexes
 - Ex: si l'on a plusieurs chemins débit min, moyen, max ?
- PNNI ne normalise que le format et les techniques d'échanges
- Grande latitude laissée pour le rafraichissement des informations de routage
- Techniques et Algorithmes d'agrégation non spécifiés

39

Calcul de Routage

- Jusque là, les algorithmes de routage n'utilisaient qu'une métrique (cf. Nombre de bonds dans RIP)
- Problème classique de RO : Moore-Dijkstra, Bellman-Ford
- Ici : Routage Multicritère
 - Attributs : débit des liens, debit résiduel
 - Métriques : gigue, délai, coût, perte
- Dès qu'il y a plus d'une métrique : très difficile
- complexité polynomiale pour
 - 1 métrique
 - plusieurs attributs
- Dans la pratique :
 - Considérées comme indépendantes => l'une après l'autre
 - Attention l'ordre importe (en général coût en premier) 40

Calcul des Tables

- En théorie : à la demande (très coûteux)
- Autre solution : Tables précalculées
 - Rafraichissement régulier + Seuils
 - stockage de plusieurs tables (1 pour le délai, la bande passante ...)
 - OU stockage de plusieurs chemins en fonction de la destination
- Solution hybride
 - Tables précalculées
 - Si aucun chemin ne convient, on lance les calculs

Acheminement

- "routage" par la source : évite les incohérences + boucles
- GCAC (Generic Connection Acceptance Control)

DTL : Designated Transit List

- GCAC + conservatrice que les CAC (solutions propriétaires)
- Qd nœud accepte l'appel, MAJ de la table de commutation

Acheminement

Acheminement - Crankback

- En cas de mauvaise estimation GCAC
 - Panne physique, informations obsolètes
 - Insuffisance des informations agrégées
- On revient au dernier nœud ayant calculé un DTL

QoS, Trafic et Gestion des Ressources en ATM

Classes de Service (ATM Forum)

- Au départ, liées aux spécifications AAL
- ITU : capacités de transferts
- Beaucoup d'évolutions au cours des phases de normalisation
- CBR : Constant Bit Rate (DBR : Deterministic Bit Rate)
- VBR : Variable Bit Rate (SBR : Statistical Bit Rate)
 - VBR-rt : Temps RéelVBR-nrt : Non Temps Réel
- ABR : Available Bit Rate
- GFR: Guaranteed Frame Rate
- UBR : Unspecified Bit Rate

Garanties

	Garantie délai	Garantie gigue	Garantie débit	Garantie Perte	Indication congestion
CBR	oui	oui	oui	oui	non
VBR	oui	Oui/non	oui	oui	non
UBR	non	non	non	non	oui
ABR/GFR	non	non	Oui (minimum)	oui	oui

Paramètres de Trafic/QoS

- Paramètres de Trafic
 - PCR : débit crête
 - CDVT : Cell Delay Variation Tolerance
 - SCR: Sustainable Cell Rate "débit moyen à long terme"
 - BT : Burst Tolerance durée de rafale tolérée
 - ◆ MCR : Minimum Cell Rate
- Paramètres de QoS
 - CDV : Cell Delay Variation
 - maxCTD: Maximum Cell Transfer Delay
 - CLR : Cell Loss Ratio
 - CER : Cell Error Rate (< 4.10-6)
 - SECBR : Severely Errored Cell Block Ratio (< 10-4)
 - CMR : Cell Misinsertion Rate (< 1/jour)

négociables

Non négociables

48

Gigue d'insertion et de multiplexage

CDV-1 point et 2 points

■ CDV - 2 points = variation du délai entre 2 points de mesure $\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$

CDV - 1 point = dérive par rapport à un échéancier théorique

$$y(k) = c(k) - a(k)$$
$$c(k+1) = \max(c(k),a(k)) + T$$

50

Influence de la CDV - AAL1

- Service Isochrone.
- L'AAL1 tamponne pour délivrer périodiquement

- Dimensionnement AAL1:
 - $\delta / Pr[W(n) W(0) > \delta]$ faible
 - K taille du tampon : $d(n-K) \le a(n)$ i.e. $KT \ge W(n)-W(0)+ \delta$

GCRA - Generic Cell Rate Algorithm

T : Temps entre 2 cellules,

FinPour

- τ: gigue supportée / trafic réel conforme à l'intervalle d'émission Τ
- TAT(k) = Heure théorique d'arrivée cellule #k
- a(k) = Heure d'arrivée réelle cellule #k

TAT(0) := a(0); TAT(1) := TAT(0) + T;

Pour tout k Faire
y(k):=TAT(k) - a(k);
Si y(k) ≤ τ Alors
/* Cellule Conforme */
TAT(k+1):=Max(TAT(k),a(k)) + T;
Sinon
/* Cellule Non-conforme */
TAT(k+1):= TAT(k);
finsi

52

Illustration GCRA

Boîte à outils des contrôles de trafic

- A l'échelle de temps du délai A/R
 - Allocation rapide de ressources (débit ABT, mémoire -Cellule RM)
 - Adaptation du débit d'émission ABR
 - ◆ EFCI, EBCI (indication de congestion avant/arrière), GFC
- A l'échelle de temps de la cellule ATM
 - Contrôler à l'accès au réseau les paramètres négociés -Usage Parameter Control - Network Parameter Control
 - * Lisser le trafic selon le débit d'émission global négocié
 - Détruire les cellules de manière sélective
 - + Cellules vitales et ordinaires AAL (bit CLP)
 - + Violation Tagging (bit CLP), suspension de ressources