

数字逻辑 05 组合线路分析

组合线路分析方法与常见的组合线路

杨永全

计算机科学与技术学院

<u>目录</u>

- 1. 课程目标
- 2. 课程内容
- 3. 课堂练习
- 4. 课堂讨论
- 5. 课堂总结
- 6. 作业

1.课程目标

1. 目标

- 1. 熟练掌握组合线路分析方法
- 2. 掌握常见的组合线路

2.课程内容

1. 逐级推导法

组合线路分析方法: 逐级推导法

要使 F=1,则需要: $X_1 = 0$ 或者 $X_2 = 0$ 要使 $X_1 = 0$,则需要: A = 1 并且 B = 1 要使 $X_2 = 0$,则需要: A = 0 并且 B = 0 所以,当 A = B = 1 或 A = B = 0 时,F = 1 因此,这是一个判断 AB 是否相等的电路。

1. 逐级推导法

再看一个例子

要使 F=1,则需要: $X_1=0$ 或者 $X_2=0$ 要使 $X_1=0$,则需要: A=0, B=0 或 A=1, B=1 要使 $X_2=0$,则需要: B=0, C=0 或 B=1, C=1 所以,当 A=B=1 或 A=B=0 时,F=1 因此,这是一个判断是否 A=B 或 B=C。

试用列写逻辑表达式法分析下面逻辑电路的功能。

1. 写<u>出逻辑表达</u>式 *F = AB · BC · AC = AB + BC + AC*

试用列写逻辑表达式法分析下面逻辑电路的功能。

1. 写出逻辑表达式

$$F = \overline{AB} \cdot \overline{BC} \cdot \overline{AC} = AB + BC + AC$$

2. 写出真值表

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

试用列写逻辑表达式法分析下面逻辑电路的功能。

2. 写出真值表

Α	В	С	
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

3. 分析功能 多数输入变量为 1, 输出 F 为 1 多数输入变量为 0, 输出 F 为 0 这是一个三人表决电路。

试用列写逻辑表达式法分析下面逻辑电路的功能。

试用列写逻辑表达式法分析下面逻辑电路的功能。

1. 写出逻辑表达式

$$G_3 = B_3$$

$$G_2 = B_3 \bigoplus B_2$$

$$G_1 = B_2 \bigoplus B_1$$

$$G_0 = B_1 \bigoplus B_0$$

B_3	B_2	B_1	B_0	G_3	G_2	G_1	G_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

再练习一个例子。

再练习一个例子。

1. 写出逻辑表达式

$$F = \overline{(A \bigoplus B)(B \bigoplus C)} \overline{(\overline{A} + \overline{B})} + \overline{(A + C)}$$

$$= (A \bigoplus B)(B \bigoplus C) + \overline{(\overline{A} + \overline{B})} + \overline{(A + C)}$$

$$= (A\overline{B} + \overline{A}B)(B\overline{C} + \overline{B}C) + \overline{A}C + A\overline{B} + \overline{B}C$$

$$= A\overline{B}C + \overline{A}B\overline{C} + \overline{A}C + A\overline{B} + \overline{B}C$$

$$= \overline{A}(C + B) + A\overline{B}$$

$$= A \bigoplus B + \overline{A}C$$
(1)

再练习一个例子。

- 1. 写出逻辑表达式
- $F = A \bigoplus B + \overline{A}C$
- 2. 写出真值表

А	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
О	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

3. 常用的组合线路 1.全加器

全加器: 用来计算一位二进制数相加。

- 1. 先温习一下十进制的加法
- 2. 再介绍一下二进制的加法
- 3. 看该电路如何实现加法功能

$$S = A \bigoplus B \bigoplus C_{i-1}$$

$$C = \overline{(A \bigoplus B) \cdot C_{i-1} + AB}$$

$$= AB + A\overline{B}C_{i-1} + \overline{A}BC_{i-1}$$

$$= A(B + C_{i-1}) + \overline{A}BC_{i-1}$$

$$= AB + (A + B)C_{i-1}$$
(2)

3. 常用的组合线路 1.全加器

全加器:用来计算一位二进制数相加。

Α	В	C _{i-1}	S	С
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

3. 常用的组合线路 2.译码器

译码器:将一种编码格式变换成另外一种编码格式。

3. 常用的组合线路 2.译码器

译码器: 将一种编码格式变换成另外一种编码格式。

$$F_{0} = \overline{A}\overline{B}\overline{C}$$

$$F_{1} = \overline{A}\overline{B}C$$

$$F_{2} = \overline{A}B\overline{C}$$

$$F_{3} = \overline{A}BC$$

$$F_{4} = A\overline{B}\overline{C}$$

$$F_{5} = A\overline{B}C$$

$$F_{6} = AB\overline{C}$$

$$F_{7} = ABC$$
(3)

3. 常用的组合线路 2.译码器

译码器:将一种编码格式变换成另外一种编码格式。

$$F_{0} = \overline{A}\overline{B}\overline{C}$$

$$F_{1} = \overline{A}\overline{B}C$$

$$F_{2} = \overline{A}B\overline{C}$$

$$F_{3} = \overline{A}BC$$

$$F_{4} = A\overline{B}\overline{C}$$

$$F_{5} = A\overline{B}C$$

$$F_{6} = AB\overline{C}$$

$$F_{7} = ABC$$

$$(4)$$

A	В	С	Fo	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

3. 常用的组合线路 3.奇偶校验器

奇偶码生成器。

$$P = B_8 \bigoplus B_4 \bigoplus B_2 \bigoplus B_1 \bigoplus 1$$

B ₈	B ₄	B ₂	B ₁	Р
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

3. 常用的组合线路 3.奇偶校验器

奇偶校验器: 检验特定的二进制序列内 1 的个数是否为奇数或偶数。

B_8	B ₄	B ₂	B ₁	P	S
0	0	0	0	1	1
0	0	0	1	0	1
0	0	1	0	0	1
0	0	1	1	1	1
0	1	0	0	0	1
0	1	0	1	1	1
0	1	1	0	1	1
0	1	1	1	0	1
1	0	0	0	0	1
1	0	0	1	1	1
1	0	1	0	1	1
1	0	1	1	0	1
1	1	0	0	1	1
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	1	1

3. 常用的组合线路 4.数据选择器

数据选择器: 有输入信号与控制信号, 控制信号的取值, 决定了输出哪一路输入。

3. 常用的组合线路 4.数据选择器

数据选择器: 有输入信号与控制信号, 控制信号的取值, 决定了输出哪一路输入。

$$F = \alpha_0 \overline{X_0} \overline{X_1} + \alpha_1 \overline{X_0} X_1 + \alpha_2 X_0 \overline{X_1} + \alpha_3 X_0 X_1$$

3. 常用的组合线路 4.数据选择器

数据选择器: 有输入信号与控制信号, 控制信号的取值, 决定了输出哪一路输入。

$\mathbf{x_1} \ \mathbf{x_2}$	f
0 0	a_0
0 1	a ₁
1 0	a_2
1 1	a_3

3.课堂练习

1. 问题

列出图示线路的输出逻辑表达式,判断该表达式是否能化简。若能,则将它化为最简,并用最简线路实现之。

2. 答案

化简后的结果

 $F = B \bigoplus C$

4.课堂讨论

1. 问题

有了全加器,如何设置一个十进制加法器?

5.课堂总结

1. 课堂总结

□ 笔记

现在可以总结自己的笔记,提炼大纲,回顾课程。

● 总结

还可以将课程的总结、心得记录在总结区。

6.作业

1. 题目

1. 已知下图为两种十进制代码的转换器,输入是余 3 码,问输出是什么代码?(4 分)

1. 题目

2. 已知下图是一个受 M 控制的 8421 码和格雷码相互转换器,试说明它的逻辑功能。(6分)

问答环节