혜령 10 - 기하와 벡터[수능특강]

9단원 : 도형의 방정식

2016년 6월 26일

차 례

차	례		1
	1	09-예제2	3
	2	09-유제3	3
	3	09-유제4	3
	4	09-예제3	3
	5	09-예제4	4
	6	09-유제8	4
	7	09-기초3	4
	8	09-기초3-1	4
	9	09-기초3-2	5
	10	09-기본1	5
	11	09-기본2	5
	12	09-기본3	5
	13	09-기본5	6
	14	09-기본6	6
	15	09-기본7	6
	16	09-기본8	7
	17	09-실력1	8
	18	09-실력2	8
	19	09-실력3	9

20	09-실력5 .														10)
21	09-기축														1()

1 09-예제2

좌표공간의 점 A에서 만나는 두 직선 $l:-x+3=\frac{y}{5}=z-2,\ m:x-2=y+1=-z+3$ 이 있다. 직선 l위의 점 P에서 직선 m에 내린 수선의 발을 H라고 할 때, $\overline{PH}=4$ 이다. 선분 AP의 길이는?

 $\sqrt{15}$

24

 $3\sqrt{17}$

 $4.3\sqrt{2}$

 $\sqrt{5}\sqrt{19}$

2 09-유제3

좌표공간에서 직선 $\frac{x-3}{2}=\frac{y+1}{a}=-z$ 가 직선 $-x=-\frac{1}{2}y+3=bz+1$ 에 평행하고 직선 $\frac{x+2}{2}=\frac{-y+3}{2}=\frac{z}{c}$ 와 수직일 때, 세 상수 a,b,c에 대하여 a+b+c의 값은? (단, $abc\neq 0$)

10

21

32

43

54

3 09-유제4

좌표공간의 점 A(1,3,-2) 에서 직선 $x=\frac{y-5}{2}=\frac{z-10}{2}$ 에 내린 수선의 발을 H(a,b,c) 라고 할 때, a+b+c의 값은?

10

21

32

43

54

4 09-예제3

좌표공간에서 점 A(2,-3,1)를 지나고 두 평면 x+y+z=5, 2x+y+z=6에 각각 수직인 평면을 α 라고 하자. 점 P=(3,0,k)가 평면 α 위의 점일 때, k의 값은?

10

21

32

43

54

5 09-예제4

좌표 공간의 두 점 A=(1,5,-4), B(3,1,2)와 임의의 점 P의 위치벡터를 각각 $\vec{a}, \vec{b}, \vec{x}$ 라고 할 때, 다음 조건을 만족시키는 점 P가 나타내는 도형을 S라고 하자.

$$(\vec{x} - \vec{a}) \bullet (\vec{x} - \vec{b}) = \vec{0}$$

도형 S와 평면 x-z+1=0이 만나서 생기는 도형의 넓이는?

 $\mathfrak{D}6\pi$

 28π

 310π

 412π

 $\mathfrak{5}14\pi$

6 09-유제8

좌표공간의 두 점 A(3,-4,1), B(1,0,3)에 대하여 $\overrightarrow{AP} \bullet \overrightarrow{BP} = 0$ 을 만족시키는 점 P 가 나타내는 도형을 T 라고 하고, 원점 O를 지나는 직선이 도형 T 와 한점에서만 만날 때 그 점을 Q라고 하자. 선분 OQ의 길이를 l이라고 할 때, l^2 의 값을 구하시오.

①3

26

39

412

⑤15

7 09-기초3

좌표공간에서 매개변수 t로 나타낸 직선 $x=3t-1,\ y=t,\ z=\frac{1}{2}t+5$ (t는 실수) 에 수직이고 점 (3,-1,2)를 지나는 평면의 방정식은 6x+ay+bz+c=0이다. 세 상수 a,b,c에 대하여 a+b+c의 값을 구하시오.

 $\mathfrak{D}-18$

2-15

3-12

 $^{-9}$

 $\mathfrak{S} - 6$

8 09-기초3-1

좌표공간에서 점 A(3,-2,-1)와 법선벡터가 (4,-4,7)인 평면 α 사이의 거리가 3일 때, 평면 α 는 z축과 점 P(0,0,-k)에서 만난다. 양수 k의 값을 구하시오.

1)2

26

310

414

⑤18

9 09-기초3-2

좌표공간에서 점 A(2,5,0)의 위치벡터를 \vec{a} 라고 하자. 벡터 $\vec{u}=(1,-1,2)$ 에 대해 $\vec{p}=\vec{a}+t\vec{u}(t$ 는 실수)를 만족시키는 점 P가 나타내는 직선과 x축이 이루는 각도를 θ 라고 할 때 $\cos^2\theta$ 의 값을 구하여라. (단, \vec{p} 는 점 P의 위치벡터이다.) $①\frac{1}{2}$ ② $\frac{1}{2}$ ③ $\frac{1}{4}$ ④ $\frac{1}{5}$ ⑤ $\frac{1}{6}$

10 09-기본1

11 09-기본2

좌표공간에서 점 A(1,1,0)을 지나는 직선 l이 다음 조건을 만족시킨다.

- (가) 직선 l의 xy 평면 위로의 정사영의 방정식은 x + y = 2, z = 0이다.
- (나) 직선 l과 z축이 이루는 예각의 크기는 $\frac{\pi}{6}$ 이다.

직선 l이 yz 평면과 만나는 점을 P라고 할 때, 삼각형 OAP의 넓이는? (단 O는 원점이고, P의 z좌표는 양수이다.)

①1 ② $\sqrt{2}$ ③ $\sqrt{3}$ ④2 ⑤5

12 09-기본3

좌표공간에 점 A(1,-3,5)과 임의의 점 P가 있다. $\overrightarrow{OA}=\vec{a},\overrightarrow{OP}=\vec{x}$ 라고 할 때, 방정식 $(\vec{x}-\vec{a}) \bullet (\vec{x}-\vec{a}) = 6$ 을 만족시키는 점 P와 직선 $x-6=\frac{y-8}{4}=-\frac{z+2}{2}$ 사이의 거리의 최댓값은? (단, O는 원점이다.)

 $0\sqrt{6}$ $22\sqrt{6}$ $33\sqrt{6}$ $44\sqrt{6}$ $55\sqrt{6}$

13 09-기본5

좌표공간의 두 점 A(4,-3,-5), B(3,5,-1)에서 같은 거리에 있는 점 P가 나 타내는 도형이 평면 x=3와 이루는 각의 크기를 $\theta(0\leq\theta\leq\frac{\pi}{2})$ 라고 할 때, $\cos \theta$ 의 값은?

 $\mathfrak{D}_{\overline{\mathbf{q}}}^{1}$

 $2^{\frac{2}{9}}$

 $3\frac{1}{3}$ $4\frac{4}{9}$ $5\frac{5}{9}$

14 09-기본6

좌표공간에서 두 직선 $\frac{x-1}{3}=-y=z+5, \frac{x+5}{2}=y-3=\frac{z}{4}$ 을 포함하는 평면을 α 라고 하자. y축과 평면 α 가 이루는 각의 크기를 $\theta(0 \leq \theta \leq \frac{\pi}{2})$ 라고 할 때, $\sin \theta$ 의 값은?

① $\frac{\sqrt{3}}{3}$

② $\frac{2}{3}$ ③ $\frac{\sqrt{5}}{3}$ ④ $\frac{\sqrt{6}}{3}$ ⑤ $\frac{\sqrt{7}}{3}$

15 09-기본7

좌표공간에서 높이가 3인 원기둥의 두 밑면이 각각 평면 2x - 6y + 3z = 0, ax + by + cz + 21 = 0 위에 놓여 있다. 세 상수 a, b, c에 대하여 $a^2 + b^2 + c^2$ 의 값을 구하시오.

116

225

336

449

564

16 09-기본8

좌표공간에서 평면 x+y+z=1이 x축, y축, z축과 만나는 점을 각각 A,B,C라고 할 때, 평면 y=5 위의 점 P(a,5,b)에 대하여 사면체 PABC는 다음 조건을 만족시킨다.

- (가) 두 삼각형 PCA와 PCB의 넓이가 서로 같다.
- (나) 사면체 *PABC*의 부피는 9이다.

$\frac{b}{a}$ 의 최댓값은?

17 09-실력1

그림과 같이 두 밑면 ABCD, EFGH는 한 변의 길이가 $\sqrt{2}$ 인 마름모이고 네 옆면은 정사각형인 육면체 ABCD-EFGH를 세 점 E, F, H의 좌표가 각각 E(0,0,1), F(1,0,0), H(0,1,0)이 되도록 좌표공간에 놓았다. 두 점 BC를 지나는 직선이 xy 평면과 만나는 점을 P(a,b,0)이라고 할 때, a+b의 값은? (단, 점 A의 좌표는 양수이다.)

18 09-실력2

좌표평면에서 xy 평면, yz 평면, zx 평면에 동시에 접하면서 반지름의 길이가 1 인 구를 S_1 이라고 하고, xy 평면, yz 평면, 7 중 1에 동시에 접하면서 반지름의 길이가 1인 구를 10 구를 12 만 구를 12 만 가장 하고 된 12 만 가장 13 만 하고 된 15 만 작표가 15 만 대, 삼각형 15 사람이는? (단, 두 된 15 사용의 15 자표, 15 작표, 15 작표는 모두 양수이다.)

①1 ②
$$\sqrt{2}$$
 ③ $\sqrt{3}$ ④2 ⑤ $\sqrt{5}$

19 09-실력3

그림과 같이 모든 모서리의 길이가 2인 사각뿔 A-BCDE에서 삼각형 ACD의 무게중심을 G라고 하자. 점 P가 선분 BG위의 점일 때, $\overrightarrow{PB} \bullet \overrightarrow{PD}$ 의 최솟 값은?

3-1

$$\mathbf{5} - \frac{25}{9}$$

20 09-실력5

그림과 같이 $\overline{AB}=1$, $\overline{AD}=2$, $\overline{AE}=1$ 인 직육면체 ABCD-EFGH를 세 점 $A,\,F,\,H$ 의 좌표가 각각 $A(0,0,1),\,F(1,0,0),\,H(0,2,0)$ 이 되도록 좌표공간에 놓았다.

두 선분 AD, BC를 3:1로 내분하는 점을 각각 I, J라고 하고 두 선분 FG, EH의 중점을 각각 K, L이라고 하자. 직선 AG와 평면 IJKL이 만나는 점을 P라고 할 때, 직선 DP와 xy 평면이 만나는 점의 좌표를 (a,b,c)라고 하자. a+b+c의 값은?

21 09-기출

좌표공간에서 직선 $l:x=\frac{y-2}{3}=\frac{3-z}{2}$ 와 평면 α 가 점 P(2,8,-1) 에서 수직으로 만난다. 직선 l 위의 점 A(a,b,c)와 평면 α 위의 점 Q에 대하여 $\overrightarrow{AP} \bullet \overrightarrow{AQ}=14$ 일 때 a+b+c의 값은? (단, c>0)

①3 ②4 ③5 ④6 ⑤7

1	4	2	3	3	1	4	5
5	1	6	2	7	2	8	1
9	5	10	5	11	4	12	2
13	1	14	4	15	4	16	4
17	3	18	5	19	4	20	5
21	5						