Ch4. Basic Functions and Transformations

1. Even Functions and Odd Functions.

Even function: A function f is called even if f(-a) = f(a) for all a.

 $f(-a) = (-a)^2 = \alpha^2 \Rightarrow f(-a) = f(a)$

Odd function: A function
$$f$$
 is called odd if $f(-\alpha)$

- Kraz	for all a	T(X)-/	3	3
	<u>[3</u> 3] 3	f(-q)=	-(-a) = -0	
) (a) =	(4) =(u)	, 1(3)	= ~ ^	fa)

3. Determine which of the following functions are even, odd, or neither. (a) $f(x) = 2x^2 + x^4$ (b) $f(x) = x + 3x^3$ (c) $f(x) = x^3 + 4x^2$ (a) $f(a) = 2(a)^2 + (a)^4$ (b) $f(a) = a + 3a^3$ $=2\alpha^{2}+\alpha^{4}$ $f(-\alpha)=2(-\alpha)^{2}+(-\alpha)^{4}$ f(-a)= (-a)+3(-a) $= -\alpha - 3\alpha^3$ $=-1\cdot(\alpha+\alpha^3)$ $= 2a^{2} + a^{4}$ Since $f(-a) = za^2 + a^4 = fa$ taxis odd f is an even function

(c) $f(a) = a^3 + 4a^2$ $\int_{1}^{1} f(-a) = (-1)^{3} + 4(-a)^{2}$ $= -a^{3} + 4a^{2}$ $-f(a) = -(a^3 + 4a^2)$ $=-\alpha^{3}-4\alpha^{2}$ f(x) is nither even nor odd

