TỔ CHỨC VÀ CẦU TRÚC MÁY TÍNH II

CHƯƠNG 2: BIỂU DIỄN THÔNG TIN TRONG MÁY TÍNH

Trình bày các cách biểu diễn thông tin bên trong máy tính, các hệ cơ số thông dụng như: hệ nhị phân, hệ thập phân, hệ thập lục phân và các chuyển đổi giữa các hệ cơ số. Tiếp đó trình bày về các phép toán trên hệ nhị phân và giới thiệu một số dạng biểu diễn thông tin khác như: BCD, dấu chấm động và mã ASCII

PHAN ĐÌNH DUY

NỘI DUNG

- 1. Các hệ thống số thông dụng
- 2. Chuyển đổi giữa các hệ thống số
- 3. Các phép toán trong hệ nhị phân
- 4. Biểu diễn số có dấu
- 5. Các dạng biểu diễn thông tin khác

Các hệ thống số thông dụng - hệ thập phân

- Con người sử dụng hệ thập phân để biểu diễn giá trị
 - 10 ký số: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Kết hợp các ký số có thể biểu diễn giá trị lớn hơn 9
 - Gán trọng số (10ⁱ) cho mỗi ký số trong chuỗi ký số
- VD: Biểu diễn 269 trong hệ thập phân có giá trị bao nhiêu?

$$2x10^2 + 6x10^1 + 9x10^0 = 200 + 60 + 9 = 269$$

Các hệ thống số thông dụng - hệ nhị phân

- Máy tính lưu trữ, xử lý và truyền các tín hiệu số
- Tín hiệu số chỉ có 2 giá trị 0 và 1
 - Hệ nhị phân với 2 ký số: 0, 1
 - Đơn vị thông tin là bit (binary digit)

1 B	8 bit
1 KB	1024 B (2 ¹⁰ B)
1 MB	1024 KB (2 ¹⁰ KB)
1 GB	1024 MB (2 ¹⁰ MB)
1 TB	1024 GB (2 ¹⁰ GB)

Đơn vị	1 TB =				
DOIL AI	Theo tiêu chuẩn SI	Theo số học nhị phân			
Byte (B)	1012	240			
Kilobyte (KB)	10°	230			
Megabyte (MB)	106	220			
Gigabyte (GB)	10³	210			
Terabyte (GB)	1	1			
Petabyte (PB)	10-3	2-10			
Exabyte (EB)	10-6	2-20			

Quiz - Quy đổi trong hệ nhị phân

b	В	KB	MB	GB	TB
					1
				512	
			1024		
		2048			
	4096				
32768					

Tính giá trị thập phân tương ứng

 Một số nguyên dương được biểu diễn trong hệ nhị phân như là một chuỗi bit:

Giá trị nhỏ nhất: 0; Giá trị lớn nhất: $2^n - 1$

$$v = \sum_{i=0}^{9} 2^{i} b_{i} = 2^{9}.1 + 2^{7}.1 + 2^{6}.1 + 2^{5}.1 + 2^{3}.1 + 2^{0}.1$$

$$= 512 + 128 + 64 + 32 + 8 + 1$$

$$= 745$$

Quiz - Tính giá trị thập phân của các số nhị phân

Nhị phân	Thập phân
0_2	
12	
10010_{2}	
1010100112	
1011110100112	
100101011001110 ₂	

Các hệ thống số thông dụng - hệ thập lục phân (16)

- · Các chuỗi bit dài dẫn đến nhàm chán và dễ sai sót khi biểu diễn
 - Đề xuất: Sử dụng các hệ cơ số cao hơn
 - Số lượng ký số giảm xuống nhưng ký số trở nên phức tạp
 - Giải pháp: Lựa chọn hệ cơ số cao hơn, thỏa 2 điều kiện:
 - Biểu diễn lại chuỗi bit chứ không trực tiếp biểu diễn thông tin
 - Đơn giản cho việc khôi phục lại chuỗi bit
- Hệ cơ số 16
 - Đủ lớn → Số lượng ký số giảm xuống
 - Lũy thừa của 2 → Đơn giản cho việc khôi phục lại chuỗi bit

Các hệ thống số thông dụng - hệ thập lục phân (tt)

Cơ số 10	0	1	2	3	4	5	6	7
Cơ số 2	0000	0001	0010	0011	0100	0101	0110	0111
Cơ số 16	0	1	2	3	4	5	6	7

Cơ số 10	8	9	10	11	12	13	14	15
Cơ số 2	1000	1001	1010	1011	1100	1101	1110	1111
Cơ số 16	8	9	A	В	С	D	Е	F

Mỗi ký số trong hệ cơ số 16 tương ứng với 4 bit

$$001011101001_2 = 2E9_{16} = 0x2E9$$

Hệ thống số	Cơ số	Chữ số (digit)
Thập Phân	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Nhị Phân	2	0, 1
Thập Lục	16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9 A, B, C, D, E, F
Bát Phân	8	0, 1, 2, 3, 4, 5, 6, 7

MSD: Most Significant Digit : Số có trọng số lớn nhất LSD: Least Significant Digit : Số có trọng số nhỏ nhất

- Hệ thập phân, b=10
- Ví dụ: 2745.214₁₀

••	3	2	1	0		-1	-2	-3	-4	-5	
•••					•						•••
											•••
	2	7	4	5	•	2	1	4	0	0	

$$2745.214_{10} = 2 * 10^{3} + 7 * 10^{2} + 4 * 10^{1} + 5 * 10^{0} + 2 * 10^{-1} + 1 * 10^{-2} + 4 * 10^{-3}$$

Chuyển đổi giữa các hệ thống số

Chuyển hệ nhị phân sang hệ thập phân

MSB: Most Significant Bit

LSB: Least Significant Bit

Chuyển hệ nhị phân sang hệ thập phân (tt)

MSB: Most Significant Bit LSB: Least Significant Bit

Chuyển hệ nhị phân sang hệ thập phân(tt)

- Hệ nhị phân, b=2
- Ví dụ: 1001.11011

MSB ... 3 2 1 0 -1 -2 -3 -4 -5 ... LSB ... 1 0 0 1 1

$$1001.11011_{2} = 1*2^{3} + 0*2^{2} + 0*2^{1} + 1*2^{0}$$

$$+ 1*2^{-1} + 1*2^{-2} + 0*2^{-3} + 1*2^{-4} + 1*2^{-5} = 9.84375_{10}$$

Chuyển hệ thập lục phân sang hệ thập phân

- Hệ thập lục phân, b=16
- Ví dụ: 3BA₁₆

MSB

••	3	2	1	0		-1	-2	-3	-4	-5	
•••					•						•••
											•••
		3	В	Α	•	0	0	0	0	0	

LSB

Hệ 10

$$= 3x16^2 + 11x16^1 + 10x16^0 = 954$$

Chuyển hệ thập phân sang hệ nhị phân

Với số nguyên dương trong hệ thập phân (cách 1):

- Chia số thập phân với 2 và sau đó viết ra phần dư còn lại
- Chia cho đến khi có thương số là 0.
- Phần số dư đầu tiên gọi là LSB
- Phần số dư cuối cùng gọi là MSB

Ví dụ: 25₁₀ → Số nhị phân

Chuyển hệ thập phân sang hệ nhị phân

Với số nguyên dương trong hệ thập phân (cách 2):

- Phân tích số nguyên dương thành tổng của các lũy thừa 2
 - Tìm lũy thừa 2 lớn nhất trước
- Số mũ của các lũy thừa 2 chính là vị trí mà bit có trọng số tương ứng bằng 1
- Ví dụ: 23

•
$$23 = 2^4 + 2^2 + 2^1 + 2^0$$

2^4	2^3	2^2	2^1	2^{0}
1	0	1	1	1

Quiz - chuyển hệ thập phân sang hệ nhị phân

Thập phân	Nhị phân
0	
1	
10	
34	
67	
159	

Chuyển hệ thập phân sang thập lục phân

- Chia số thập phân cho 16 và viết ra phần dư còn lại.
- Chia cho đến khi có thương số là 0.
- Phần số dư đầu tiên gọi là LSD
- Phần số dư cuối cùng gọi là MSD

Ví dụ: 423₁₀ → Số thập lục phân

$$\frac{423}{16} = 26 + \text{remainder of 7}$$
 $\frac{26}{16} = 1 + \text{remainder of 10}$
 $\frac{1}{16} = 0 + \text{remainder of 1}$
 $423_{10} = 1 + 7_{16}$

Quiz - chuyển hệ thập phân sang hệ thập lục phân

Thập phân	Thập lục phân
0	
1	
10	
34	
67	
159	

Chuyển hệ thập lục phân sang nhị phân

Cơ số 10	0	1	2	3	4	5	6	7
Cơ số 2	0000	0001	0010	0011	0100	0101	0110	0111
Cơ số 16	0	1	2	3	4	5	6	7

Cơ số 10	8	9	10	11	12	13	14	15
Cơ số 2	1000	1001	1010	1011	1100	1101	1110	1111
Cơ số 16	8	9	A	В	С	D	Е	F

Ví dụ: A28₁₆ → Nhị phân

Chuyển hệ nhị phân sang thập lục phân

- Gom số nhị phân từ phải sang trái thành các nhóm 4 bit
- Chuyển từ nhóm 4 bit thành các ký tự thập lục phân theo bảng bên dưới

Cơ số 10	0	1	2	3	4	5	6	7
Cơ số 2	0000	0001	0010	0011	0100	0101	0110	0111
Cơ số 16	0	1	2	3	4	5	6	7

Cơ số 10	8	9	10	11	12	13	14	15
Cơ số 2	1000	1001	1010	1011	1100	1101	1110	1111
Cơ số 16	8	9	A	В	С	D	Е	F

Ví dụ: 10101101001101011011₂ → Thập lục phân

Quiz - Chuyển đổi các hệ cơ số

• Thực hiện phép chuyển đổi giữa các hệ thống số

Decimal	Binary	Hexadecimal
35		
	1101101	
		1AF

Các phép toán trong hệ nhị phân

- Phép cộng
- Phép trừ
- Phép nhân
- Phép chia

Phép cộng

- Phép cộng
 - Ví dụ: 7 + 6 (5 bit)

Α	В	Tổng	Nhớ
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- Tổng quan: $a_n a_{n-1} ... a_1 a_0 + b_n b_{n-1} ... b_1 b_0$
 - Cộng tuần tự các bit từ trọng số thấp đến các bit có trọng số cao
 - Các bit nhớ từ phép cộng bit có trọng số thấp sẽ được cộng dồn vào phép cộng bit có trọng số cao liền kề

Phép trừ

- Phép trừ
 - Ví dụ: 6 3 (5 bit)

$$\begin{array}{c} - & 00110 \\ \hline 00011 \\ \hline \hline 00011 \end{array}$$

Α	В	Hiệu	Mượn
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

- Tổng quan: $a_n a_{n-1} ... a_1 a_0 b_n b_{n-1} ... b_1 b_0$
 - Trừ tuần tự các bit từ trọng số thấp đến các bit có trọng số cao
 - Các bit mượn từ phép trừ bit có trọng số thấp sẽ được trừ dồn vào phép trừ bit có trọng số cao liền kề

Phép nhân

• Ví dụ: $8 \times 9 = 72$

Số bị nhân:

Số nhân:

1000 (8)

1001 (9)

1000

0000

0000

1000

Tích: 1001000 (72)

- Nhân số bị nhân với từng bit của số nhân từ phải sang trái
- ■Nếu bit số nhân bằng 1 thì kết quả bằng chính số bị nhân
- ■Nếu bit số nhân bằng 0 thì kết quả bằng 0
- ■Kết quả của phép nhân bit sau sẽ dịch trái 1 bit so với kết quả của phép nhân bit trước đó
- Cộng tất cả các kết quả phép nhân sẽ được giá trị tích cuối cùng

Phép chia

- Ví dụ: 40:19
 - Giải thuật 1 Số bị chia Số chia
 101000 | 10011
 -10011 10
 01 Thường
 010
 Số dư

- ☐ Kiểm tra Số chia có bằng 0 hay không
- ☐ Khi Số chia khác 0
 - Nếu Số chia ≤ Các bit của Số bị chia, đặt "1"
 vào Thương, lấy Số bị chia Số chia
 - Ngược lại, đặt "0" vào Thương, thêm bit kế tiếp của Số bị chia

Quiz - Các phép toán trong hệ nhị phân

- a. Cho A = 45 và B = 31 (đối sang hệ nhị phân 6 bit). Hãy thực hiện các phép toán bên dưới trong hệ nhị phân
- b. Tương tự câu a với A = 53 và B = 17.
 - A + B
 - A B
 - A * B
 - A/B

Biểu diễn số có dấu

Số dương (+) và Số âm (-)

• Sử dụng thêm 1 bit (sign bit) để thể hiện dấu của số:

• 0: dương

• 1: âm

• Bit thể hiện dấu nằm ở ngoài cùng bên trái của số

Biểu diễn số có dấu (tt)

Có 3 dạng phổ biến để biểu diễn số có dấu:

- Dạng số "dấu và độ lớn"
- Dạng số "bù 1"
- Dạng số "bù 2"

Dạng số "dấu và độ lớn"

Ví dụ: biểu diễn 1 số 6 bits có dấu

Giá trị số dấu và độ lớn $= (-1)^{b_{n-1}} \times \sum_{i=0}^{n-2} b_i 2^i$

n: số bit biểu diễn số bù 2

b: giá trị của bit (0, 1)

Dạng số "bù 1" và "bù 2"

 Phương pháp tìm số âm của một số dưới dạng số "bù 1" và dưới dạng số "bù 2":

Biểu diễn số có dấu dưới dạng số bù 2

Giá trị số bù 2 =
$$-b_{n-1}2^{n-1} + \sum_{i=0}^{n-2} b_i 2^i$$

n: số bit biểu diễn số bù 2

b: giá trị của bit (0, 1)

Tầm giá trị biểu diễn

• Cho số có dấu n bit

$b_3b_2b_1b_0$	Sign-magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

Số dương được biểu diễn giống nhau ở cả 3 dạng

$$-(2^{n-1}-1) \rightarrow 2^{n-1}-1 - (2^{n-1}-1) \rightarrow 2^{n-1}-1 - 2^{n-1} \rightarrow 2^{n-1}-1$$

$$-2^{n-1} \rightarrow 2^{n-1}-1$$

Ví dụ

Biểu diễn số có dấu áp dụng phương pháp dạng số bù 2 5-bit
 (a) +13

(b) -9

(c) -12

(d) -6

Ví dụ (tt)

Tìm số thập phân tương ứng với biểu diễn số có dấu dưới dạng số bù 2
6-bit bên dưới
(a) 101001

(b) 011011

(c) 111010

(d) 110110

Biểu diễn các loại số khác

- Số BCD
- Số dấu chấm động
- Mã ASCII

BCD (Binary Coded Decimal)

	Hệ nhị phân	Hệ thập phân
Ưu điểm	 Tính toán đơn giản Phù hợp với phần cứng máy tính 	 Dễ hiểu cho con người Cần ít ký số để biểu diễn giá trị
Nhược điểm	- Cần nhiều bit để biểu diễn giá trị	- Tính toán phức tạp

- Cần một phương pháp biểu diễn mới!
 - Phù hợp với phần cứng máy tính
 - Dễ hiểu cho con người

Binary Coded Decimal Nhị phân mã hóa thập phân

BCD (Binary Coded Decimal)

Mỗi chữ số của số thập phân được biểu diễn bằng số nhị phân
 4 bits tương ứng

0	1	2	3	4	5 -	6	7	8	9
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

- Công dụng: Hiển thị số thập phân trên các thiết bị máy tính
- Ví dụ:

$$10_{10} => BCD$$

$$847_{10} => BCD$$

0001 0000

1000 0100 0111

Ví dụ số BCD

$$137_{10} = 10001001_2$$
 (Số Nhị Phân)

$$\Rightarrow$$
Decimal: 1 * 2⁷ + 1 * 2³ + 1 * 2⁰

$$137_{10} = 0001 0011 0111 (BCD)$$

$$\Rightarrow$$
Decimal: 1 3

BCD sử dụng nhiều bits hơn nhưng việc chuyến đổi đơn giản hơn

Quiz - Số BCD

- a. Chuyển các số hệ thập phân sau sang dạng số BCD
 - 2348
 - 564
 - 436701
- b. Chuyển các số dạng BCD sang số hệ thập phân tương ứng
 - 01100111100110000101_{BCD}
 - 10000110001101110101_{BCD}

Số dấu chấm động (Floating point)

- Làm sao biểu diễn những số có giá trị rất lớn hoặc rất nhỏ?
- Làm sao để biểu diễn các giá trị số thập phân? 5.25?
 - $5.25 = (2^2 + 2^0 + 2^{-2}) \rightarrow 101.01$
- Làm sao để biểu diễn dấu chấm (.): 0 hay1?
 - Ý tưởng chuẩn hóa: Trước dấu chấm (.) chỉ được biểu diễn 1 ký số khác 0
 - $\pm 101.01 = \pm 1.0101 \times 2^{2}$
 - Không cần phải biểu diễn bit trước dấu chấm vì chắc chắn là 1.
 - Phần sau dấu chấm cần bao nhiêu bit? Biểu diễn như thế nào?
 - Số mũ nhị phân là số nguyên bao nhiêu bit? Biểu diễn như thế nào?
 - Dấu: Có thể + hoặc -

Số dấu chấm động (tt)

- Hai phiên bản:
 - Chính xác đơn: 32 bit (float)
 - Chính xác kép: 64 bit (double)
- Dấu:
 - Âm: S = 1, KHÔNG âm: S = 0
- Mũ: Biểu diễn quá (excess)
 - Đảm bảo E không âm
 - Chính xác đơn: bias = 127
 - Chính xác kép: bias = 1023

đơn: 8 bitsđơn: 23 bitskép: 11 bitskép: 52 bits

S	E	F
---	---	---

$$B = (-1)^S \times (1.F) \times 2^{(E - bias)}$$

- Chuẩn hóa:
 - ➤ Không cần biểu diễn bit trước dấu chấm (mặc định là 1)
 - ➤Định trị là "1.F"

Chuyển sang số dấu chấm động (tt)

- Bước 1: Chuyển giá trị cần biểu diễn sang nhị phân
- Bước 2: Chuẩn hóa đưa dấu chấm thập phân về sau số 1 đầu tiên trong chuỗi bit dạng 1.F
- Bước 3: Xác định dấu (S), định trị (1.F) và số mũ quá 127 (E) ở dạng nhị phân (E = số mũ + 127)
- Bước 4: Biểu diễn theo thứ tự: S|E|F

Ví dụ: Chuyển đổi số 3.75 sang floating point 32 bit

Số dấu chấm động (tt)

• Bước 1: Chuyển giá trị cần biểu diễn sang nhị phân

$$3.75 = 11.11$$

 Bước 2: Chuẩn hóa đưa dấu chấm thập phân về sau số 1 đầu tiên trong chuỗi bit dạng 1.F*2x

Bước 3: Xác định dấu (S), định trị (1.F) và số mũ quá 127 (E) ở dạng nhị phân (E = số mũ (x) + 127)

$$E = 1 + 127 = 128 = 1000000$$

Tính giá trị số dấu chấm động

- Giá trị thập phân = $(-1)^S \times (1.F) \times 2^{(E-127)}$
- Ví dụ: Số dấu chấm động 32 bit:

$$E = 133 -> số mũ = 133 - 127 = 6$$

$$-> 1.0111*2^6 = 10111.0*2^2$$

Quiz - Số dấu chấm động

- Chuyển đổi số thập phân sau sang dạng dấu chấp động

 - 123.125
- Tính giá trị của các số dấu chấm động sau
 - 11000010 10101010 00000000 00000000
 - 01000010 10001000 00000000 00000000

Mã ASCII

ASCII

- ASCII-7 (American Standard Codes for Information Interchange) (7 bit): dùng để biểu diễn 128 ký tự (character) dưới dạng số nhị phân 7 bit
- Ví dụ: Mã ASCII-7 được dùng thể hiện các ký tự từ bàn phím
 - $(1000001)_{ASCII} = (41H) = A'$
 - (1000010)_{ASCII}=(42H)='B'
 - $(1100001)_{ASCII} = (61H) = 'a'$
 - (1100010)_{ASCII}=(62H)='b'
 - $(0110000)_{ASCII} = (30H) = 0$
 - $(0111001)_{\Delta SCII} = (39H) = '9'$

ASCII TABLE

Decimal	Hex	Char	_I Decimal	Нех	Char	_I Decimal	Hex	Char	_I Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	*
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	a
2	2	(START OF TEXT)	34	22	"	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	'	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	(HORIZONTAL TAB)	41	29)	73	49	1	105	69	i i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	М	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	/	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	Т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[END OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	Ĭ
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7F	[DEL]
		-						_			

Phương pháp sử dụng 7-bit để biểu diễn mỗi ký tự b₇b₆b₅

	, 0 3									
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111		
0000	NUL	DLE	SP	0	@	P	`	p		
0001	SOH	DC1	!	1	A	Q	a	q		
0010	STX	DC2	"	2	В	R	b	r		
0011	ETX	DC3	#	3	C	S	c	S		
0100	EOT	DC4	\$	4	D	T	d	t		
0101	ENQ	NAK	%	5	E	U	e	u		
0110	ACK	SYN	&	6	F	V	f	V		
0111	BEL	ETB	6	7	G	W	g	W		
1000	BS	CAN	(8	H	X	h	X		
1001	HT	EM)	9	I	Y	i	y		
1010	LF	SUB	*	:	J	Z	j	Z		
1011	VT	ESC	+	;	K]	k	{		
1100	FF	FS	,	<	L	\	1	I		
1101	CR	GS	_	=	M]	m	}		
1110	SO	RS		>	N	\wedge	n	~		
1111	SI	US	/	?	O	_	O	DEL		

ASCII (tt)

- Ví dụ:
 - IT012 có biểu diễn ASCII là:

10010011010100011000001100010110010

• it006 có biểu diễn ASCII là:

11010011110100011000001100000110110

• 1001100100111110101101000101 biểu diễn LOVE

Tóm tắt lại nội dung buổi học

- Các hệ thống số
- Chuyển đổi giữa các hệ thống số
- Các phép toán trong hệ nhị phân
- Biểu diễn số có dấu
- Các dạng biểu diễn thông tin khác