Mansi Uniyal 19EE10039

PART - A
Triggering Circuit:

G1:

PART - B Circuit Diagram:

1.

Vrect=(3*sqrt*(3)/pi)*Vm*cos(a)

Id.R=(3*sqrt*(3)/pi)*Vm*cos(a)

ld=5A

a=0

Vm=220*sqrt(2/3)

5*R=220*sqrt(2/3)*(3*sqrt*(3)/pi)*cos(0)

R=59.42 ohm

Average load current = 4.972 A

2.

Vrect=(3*sqrt*(2)/pi)*220*cos(a)=220 cos(a)=pi/3*sqrt(2) = 0.7405a=42.23 deg

3.

Output Voltage:

Average output voltage = 217.7 V

AC side currents:

4. R = 59.421 Ω

Alpha (degree)	Average output Voltage (V)	AC side current (RMS) (A)
0	295.5	4.06
15	284.8	3.93
30	255.2	3.57
45	208.54	3.00
60	146.3	2.30
75	87.32	1.57
90	39.20	0.87

PART - C

Circuit Diagram:

1.

 $\label{eq:Vrect} Vrect = (3*sqrt(3)/(2*pi))*Vm*(1+cos(a)) = Id*R$

Id=5A

a=30 deg

Vm=220*sqrt(²/₃)

 $5*R=(3*sqrt(3)/(2*pi))*220*sqrt(\frac{2}{3})*(1+cos(a))$

R=55.44 ohm

Average Load current = 4.997 A

2.

Load current at alpha = 59°

Load current at alpha = 60°

Load current at alpha = 61°

Hence, the load current becomes discontinuous as soon as it crosses alpha = 60°

3.

Average output voltage = 277.1 V

4. R = 55.44 Ω

Alpha (degree)	Average output Voltage (V)	AC side current (RMS) (A)
0	296.8	4.31
15	292.1	4.23
30	277.3	4.01
45	254.3	3.68
60	223.1	3.28

75	185.2	2.86
90	148.0	2.42

PART - D

Parameter	Full-controlled Converter	Semi-controlled Converter
AC side currents (RMS)	4.08	4.08
Fundamental component of the AC side currents (RMS)	3.89	3.86
THD (%) of the AC side currents	31.13	34.10
Input power factor	0.922	0.913
Fundamental active power (W)	2025.60	2009.41
Fundamental reactive power (VAr)	542.7	538.4

Discussion Questions:

1. Consider an ideal three-phase full-controlled converter with an R load. Obtain the expression of the average output voltage (for $\alpha \in [0, \pi/2]$).

Avg output voltage of ideal 3 phase fully controlled converter with R load:

(i) a in [0,pi/3]

Vrect=(3/pi)*integral(sqrt(3)*Vm*sin(wt+(pi/6))) ...from limit a+pi/6 to a+pi/2 =3sqrt(3)*Vm*cos(a)/pi

(ii) a in [pi/6,pi/2]

Vrect=(3/pi)*integral(sqrt(3)*Vm*sin(wt+(pi/6))) ...from limit a+pi/6 to pi =3sqrt(3)Vmcos(a+pi/3)/pi

2. Refer to Part B(5), what is the commutation overlap angle μ ? What is the average output DC voltage?

Commutation overlap angle = $(63.01* 10^{-3} / 3.33) \times 180 \text{ deg} = 3.41 \text{ deg}$ Average DC voltage = 212.1 V

3. Refer to Part D, compare the distortion factor of the two converters. Why is the distortion factor less in the case of the semi-controlled rectifier?

Distortion factor of three-phase fully controlled AC to DC converter = $I_1/I = (3/p_i) = 0.955$ Distortion factor of three-phase semi-controlled AC to DC converter = $I_1/I = \sqrt{(6/p_i(p_i-a))} \times \cos(a/2) = 0.807$ for $a = \pi/12$.

For a semi-controlled rectifier, the diodes allow more harmonics in the output. That is why the distortion factor is less for semi-controlled AC to DC converter.