

Introduction

Sunglok Choi, Assistant Professor, Ph.D. Computer Science and Engineering Department, SEOULTECH sunglok@seoultech.ac.kr | https://mint-lab.github.io/

- Computer vision is an interdisciplinary field that deals with how computers can be made to gain high-level understanding from digital images or videos.
- From the perspective of engineering, it seeks to automate tasks that the human visual system can do.[1][2][3]
- "Computer vision is concerned with the automatic extraction, analysis and understanding of useful information from a single image or a sequence of images.
- It involves the development of a theoretical and algorithmic basis to achieve automatic visual understanding."[9]

Reference: Wikipedia

- Computer vision is an interdisciplinary field that deals with how computers can be made to gain <u>high-level understanding</u> from digital images or videos.
- From the perspective of engineering, it seeks to automate tasks that the human visual system can do.[1][2][3]
- "Computer vision is concerned with the automatic extraction, analysis and understanding of useful information from a single image or a sequence of images.
- It involves the development of a theoretical and algorithmic basis to achieve automatic visual understanding."[9]

Reference: Wikipedia

Image Understanding

Computer Vision

Examples: Image Editing and Generation

Inpainting

Matting

■ **MMEditing** (2022)

Super Resolution

Frame Interpolation

Generation

Examples: Object Detection (+ Instance Segmentation)

■ **YOLOv8** (2023)

Examples: Multi-Object Tracking (MOT)

■ **<u>ByteTrack</u>** (2022)

Examples: Human Pose Estimation

■ MediaPipe Holostic (2019)

Examples: Localization and Mapping

• **ORB-SLAM3** (2021)

A sparse model of central Rome using 21K photos produced by COLMAP's SfM pipeline

Dense models of several landmarks produced by COLMAP's MVS pipeline

Examples: New View Synthesis

■ <u>NeRF</u> (2020)

Why Do We Study Computer Vision?

- Vision is *useful*.
- Vision is interesting.
- Vision is difficult.
 - The half of primate cerebral cortex is devoted to visual processing.
 - Achieving human-level visual perception is probably "AI-complete".

Challenges: 2D Projection

Image: Floor trick arts

Michelangelo (1475-1564)

Challenges: Illumination Change

J. Koenderink

Challenges: Scale Ambiguity

The Sandcrawler @ Star Wars IV: A New Hope (1977)

Challenges: Deformation

Challenges: Object Intra-class Variation

Challenges: Local Ambiguity

Slide: Fei-Fei Li (CS2321a)

Summary

What is computer vision?

Automatic visual understanding

Examples

- Object detection, ..., 3D reconstruction, ...

Why do we study computer vision?

- Vision is *useful*.
- Vision is *interesting*.
- Vision is difficult.

Challenges

- 2D projection, ..., object intra-class variation, ...