

BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschrift ® DE 19838466 A 1

f) Int. Cl.⁷: G 01 N 27/409

DE 19838466

F 02 D 41/14

DEUTSCHES PATENT- UND **MARKENAMT** (21) Aktenzeichen: 2 Anmeldetag:

198 38 466.1 25. 8. 1998

(43) Offenlegungstag:

2. 3.2000

(7) Anmelder:

Robert Bosch GmbH, 70469 Stuttgart, DE

(2) Erfinder:

Lenfers, Martin, 71134 Aidlingen, DE; Diehl, Lothar, Dr., 70499 Stuttgart, DE; Schwarz, Jürgen, 71277 Rutesheim, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (§) Verfahren zum Ansteuern eines Meßfühlers zum Bestimmen einer Sauerstoffkonzentration in einem Gasgemisch
- Die Erfindung betrifft ein Verfahren zum Ansteuern eines Meßfühlers zum Bestimmen einer Sauerstoffkonzentration in einem Gasgemisch, insbesondere in Abgasen von Verbrennungskraftmaschinen, wobei eine der Sauerstoffkonzentration entsprechende, von einer Nernst-Meßzelle gelieferte Detektionsspannung von einer Schaltungsanordnung in eine Pumpspannung für eine Pumpzelle transferiert wird, und je nach Sauerstoffgehalt des Gasgemisches ein anodischer oder ein kathodischer Grenzstrom über die Pumpzelle fließt.

Es ist vorgesehen, daß bei stabilem Betrieb des Meßfühlers (10), bei dem über eine wählbare Zeitspanne ein anodischer Grenzstrom fließt, die Pumpzelle (14) und/oder die Nernst-Meßzelle (12) mit wenigstens einem, unabhängig von der gemessenen Detektionsspannung (UD) beziehungsweise dem sich einstellenden Pumpstrom (Ip), bereitgestellten Spannungspuls derart beaufschlagt wird, daß eine Depolarisierung des Meßfühlers (10) erfolgt.

Beschreibung

Die Erfindung betrifft ein Verfahren zum Ansteuern eines Meßfühlers zum Bestimmen einer Sauerstoffkonzentration in einem Gasgemisch, insbesondere in Abgasen von Verbrennungskraftmaschinen, mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen.

Stand der Technik

Meßfühler der gattungsgemäßen Art sind bekannt. Derartige Meßfühler dienen dazu, über die Bestimmung der Sauerstoffkonzentration in dem Abgas der Verbrennungskraftmaschine die Einstellung eines Kraftstoff-Luft-Gemisches Das Kraftstoff-Luft-Gemisch kann im sogenannten fetten Bereich vorliegen, das heißt, der Kraftstoff liegt im stöchiometrischen Überschuß vor, so daß im Abgas nur eine geringe Menge an Sauerstoff gegenüber anderen teilweise unverbrannten Bestandteilen vorhanden ist. Im sogenannten 20 mageren Bereich, bei dem der Sauerstoff der Luft in dem Kraftstoff-Luft-Gemisch überwiegt, ist eine Sauerstoffkonzentration in dem Abgas entsprechend hoch.

Zur Bestimmung der Sauerstoffkonzentration im Abgas sind sogenannte Lambda-Sonden bekannt, die im mageren 25 Bereich einen Lambdawert > 1, im fetten Bereich < 1 und im stöchiometrischen Bereich einen Lambdawert = 1 detektieren. Eine Nernst-Meßzelle des Meßfühlers liefert hierbei in bekannter Weise eine Detektionsspannung, die einer Schaltungsanordnung zugeführt wird. Mit Hilfe der Schaltungsanordnung wird die Detektionsspannung in eine Pumpspannung für eine Meßsonde (Pumpzelle) transferiert, die ebenfalls Bestandteil des Meßfühlers ist. Die Meßsonde arbeitet dabei als Pumpzelle, bei der je nach vorliegender Sauerstoffkonzentration in dem zu messenden Gasgemisch Sauerstoffionen von einer ersten zu einer zweiten Elektrode der Pumpzelle oder umgekehrt gepumpt werden. Je nachdem, ob die Lambda-Sonde einen fetten Bereich, also einen Lambdawert < 1, oder einen mageren Bereich, also einen Lambdawert > 1, detektiert, wird über die Schaltungsanord- 40 nung bestimmt, ob eine mit einem aktiven Eingang der Schaltungsanordnung verbundene Elektrode der Pumpzelle als Katode oder Anode geschaltet ist. Die zweite Elektrode der Pumpzelle liegt gegen Masse, so daß sich an der Pumpzelle entweder ein kathodischer Grenzstrom, bei fettem 45 Meßgas, oder ein anodischer Grenzstrom, bei magerem Meßgas, einstellt.

Bei einem bekannten Aufbau des Meßfühlers ist jeweils eine Elektrode der Nernst-Meßzelle und eine Elektrode der Pumpzelle in einem gemeinsamen Hohlraum des Meßfüh- 50 näher erläutert. lers angeordnet, der über eine Diffusionsbarriere mit dem Abgas beaufschlagbar ist. Liegt das zu überwachende Kraftstoff-Luft-Gemisch über einen längeren Zeitraum im mageren Bereich vor, diffundieren Sauerstoffionen aus dem Abgas durch die Diffusionsbarriere in den gemeinsamen Hohlraum der Nernst-Elektrode der Nernst-Meßzelle und der einen Pumpelektrode der Pumpzelle. Entsprechend dem im mageren Bereich überwiegenden Sauerstoffanteil wird über die Schaltungsanordnung die Pumpzelle mit einem anodischen Grenzstrom beaufschlagt. Hierdurch werden zusätzlich Sauerstoffionen in den gemeinsamen Hohlraum über die Pumpzelle gepumpt. Hierbei ist nachteilig, daß bei einem dauernden Magerbetrieb der Verbrennungskraftmaschine, beispielsweise über mehrere Stunden, weniger Sauerstoffionen in den gemeinsamen Hohlraum der Nernst- 65 Elektrode und der einen Pumpelektrode über die Pumpzelle gepumpt werden, als zur Herstellung von $\lambda = 1$ im Hohlraum nötig wäre. Dies liegt an der Verfälschung der Span-

nung der Nernst-Meßzelle durch die Beteiligung der Nernstelektrode an der Aufgabe der inneren Pumpelektrode. Dieser Fall liegt vor, wenn die innere Pumpelektrode durch dauernden kathodischen Betrieb oder durch Fertigungsstreuung inaktiv geworden ist. Die Nernst-Meßzelle schließt jedoch aufgrund der steigenden Konzentration von Sauerstoffionen in dem gemeinsamen Hohlraum auf ein fetter werdendes Kraftstoff-Luft-Gemisch, so daß der Meßfühler einer sogenannten Fettdrift unterliegt, die zu Ungenauigkeiten eines 10 Ausgangssignals führen.

Vorteile der Erfindung

Das erfindungsgemäße Verfahren zum Ansteuern eines zum Betreiben der Verbrennungskraftmaschine vorzugeben. 15 Meßfühlers bietet demgegenüber den Vorteil, daß eine derartige Fettdrift ausgeglichen werden kann. Dadurch, daß nach einer wählbaren Zeitspanne, innerhalb der ausschließlich ein Magerbetrieb des Meßfühlers erfolgt, eine Umpolung der Pumpspannung oder eine Erhöhung der Nernstspannung in wählbaren Intervallen erfolgt, ist vorteilhaft möglich, über die Pumpzelle oder die Nernst-Meßzelle Sauerstoffionen aus dem gemeinsamen Hohlraum der Nernst-Elektrode und der einen Pumpelektrode zu pumpen, so daß eine Fettdrift der Meßsonde ausgeglichen wird. Ferner kann eine Beseitigung einer CO-Elektrodenbelegung erfolgen. Hierdurch kommt es zu einer Aktivierung der Nernst-Elektrode, so daß ein Sauerstoffkonzentrationsunterschied zwischen der Nernst-Elektrode und einer Referenzelektrode wieder dem tatsächlichen Sauerstoffgehalt in dem zu messenden Gasgemisch entspricht. Entsprechend der Wahl einer Frequenz der Impulse und einer Länge der Impulse kann das kurzzeitige Abpumpen von Sauerstoffionen eingestellt werden. Die Frequenz und die Dauer der Impulse läßt sich durch eine Auswerte- und Ansteuerschaltungsanordnung des Meßfühlers in Abhängigkeit eines detektierten Sauerstoffgehaltes in dem zu messenden Gasgemisch variieren. So wird sichergestellt, daß tatsächlich nur die Fettdrift des Meßfühlers ausgeglichen wird und eine entgegengesetzte Signalverfälschung durch Störung der Einstellung von $\lambda = 1$ im Hohlraum vermieden wird.

> Bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merk-

Zeichnung

Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnung, die eine Schnittdarstellung durch einen Kopf eines Meßfühlers zeigt,

Beschreibung des Ausführungsbeispiels

In der Figur ist ein Meßfühler 10 in einer Schnittdarstellung durch einen Meßkopf gezeigt. Der Meßfühler 10 ist als planarer Breitband-Meßfühler ausgebildet und besteht aus einer Anzahl einzelner, übereinander angeordneter Schichten, die beispielsweise durch Foliengießen, Stanzen, Siebdrucken, Laminieren, Schneiden, Sintern oder dergleichen strukturiert werden können. Auf die Erzielung des Schichtaufbaus soll im Rahmen der vorliegenden Beschreibung nicht näher eingegangen werden, da dieses bekannt ist.

Der Meßfühler 10 dient der Bestimmung einer Sauerstoffkonzentration in Abgasen von Verbrennungskraftmaschinen, um ein Steuersignal zur Einstellung eines Kraftstoff-Luft-Gemisches, mit dem die Verbrennungskraftmaschine betrieben wird, zu erhalten. Der Meßfühler 10 besitzt eine Nernst-Meßzelle 12 und eine Pumpzelle 14. Die

Nernst-Meßzelle 12 besitzt eine erste Elektrode 16 und eine zweite Elektrode 18, zwischen denen ein Festelektrolyt 20 angeordnet ist. Die Elektrode 16 ist über eine Diffusionsbarriere 22 dem zu messenden Abgas 24 ausgesetzt. Der Meßfühler 10 besitzt eine Meßöffnung 26, die mit dem Abgas 24 beaufschlagbar ist. Am Grund der Meßöffnung 26 erstreckt sich die Diffusionsbarriere 22, wobei es zur Ausbildung eines Hohlraumes 28 kommt, innerhalb dem die Elektrode 16 angeordnet ist. Die Elektrode 18 der Nernst-Meßzelle 12 ist in einem Referenzluftkanal 30 angeordnet und einem in dem Referenzluftkanal 30 anliegenden Referenzgas, beispielsweise Luft, ausgesetzt. Der Festelektrolyt 20 besteht beispielsweise aus yttriumoxidstabilisiertem Zirkoniumoxid, während die Elektroden 16 und 18 beispielsweise aus Platin bestehen.

Der Meßfühler 10 ist mit einer hier lediglich angedeuteten Schaltungsanordnung 32 verbunden, die der Auswertung von Signalen des Meßfühlers 10 und der Ansteuerung des Meßfühlers dient. Die Elektroden 16 und 18 sind hierbei mit Eingängen 34 beziehungsweise 36 verbunden, an denen eine Detektionsspannung U_D der Nernst-Meßzelle 12 anliegt.

Die Pumpzelle 14 besteht aus einer ersten Elektrode 38 sowie einer zweiten Elektrode 40, zwischen denen ein Festelektrolyt 42 angeordnet ist. Der Festelektrolyt 42 besteht wiederum beispielsweise aus einem yttriumoxidstabilisierten Zirkoniumoxid, während die Elektroden 38 und 40 wiederum aus Platin bestehen können. Die Elektrode 38 ist ebenfalls in dem Hohlraum 28 angeordnet und somit ebenfalls über die Diffusionsbarriere 22 dem Abgas 24 ausgesetzt. Die Elektrode 40 ist mit einer Schutzschicht 44 abgedeckelt, die porös ist, so daß die Elektrode 40 dem Abgas 24 direkt ausgesetzt ist. Die Elektrode 40 ist mit einem Eingang 46 der Schaltungsanordnung 32 verbunden, während die Elektrode 38 mit der Elektrode 16 verbunden ist und mit 35 dieser gemeinsam am Eingang 34 der Schaltungsanordnung 32 geschaltet ist.

Der Meßfühler 10 umfaßt ferner eine Heizeinrichtung 49, die von einem sogenannten Heizmäander gebildet ist. Die Heizeinrichtung 49 ist mit einer Heizspannung U_H beaufschlagbar.

Die Funktion des Meßfühlers 10 ist folgende:

Das Abgas 24 liegt über die Meßöffnung 26 und die Diffusionsbarriere 22 in dem Hohlraum 28 und somit an den Elektroden 16 der Nernst-Meßzelle 12 und der Elektrode 38 45 der Pumpzelle 14 an. Aufgrund der in dem zu messenden Abgas vorhandenen Sauerstoffkonzentration stellt sich ein Sauerstoffkonzentrationsunterschied zwischen der Elektrode 16 und der dem Referenzgas ausgesetzten Elektrode 18 ein. Über den Anschluß 34 ist die Elektrode 16 mit einer 50 Stromquelle der Schaltungsanordnung 32 verbunden, die einen konstanten Strom liefert. Aufgrund eines vorhandenen Sauerstoffkonzentrationsunterschiedes an den Elektroden 16 und 18 stellt sich eine bestimmte Detektionsspannung Up ein. Die Nernst-Meßzelle 12 arbeitet hierbei als Lambda-Sonde, die detektiert, ob in dem Abgas 24 eine hohe Sauerstoffkonzentration oder eine niedrige Sauerstoffkonzentration vorhanden ist. Anhand der Sauerstoffkonzentration ist klar, ob es sich bei dem Kraftstoff-Luft-Gemisch, mit dem die Verbrennungskraftmaschine betrieben wird, um ein fettes oder ein mageres Gemisch handelt. Bei einem Wechsel vom fetten in den mageren Bereich oder umgekehrt fällt die Detektionsspannung UD ab beziehungsweise steigt an.

Mit Hilfe der Schaltungsanordnung 32 wird die Detektionsspannung U_D zum Ermitteln einer Pumpspannung U_P eingesetzt, mit der die Pumpzelle 14 zwischen ihren Elektroden 38 beziehungsweise 40 beaufschlagt wird. Je nachdem, ob über die Detektionsspannung U_D signalisiert wird,

daß sich das Kraftstoff-Luft-Gemisch im fetten oder mageren Bereich befindet, ist die Pumpspannung U_P negativ oder positiv, so daß die Elektrode 40 entweder als Katode oder Anode geschaltet ist. Entsprechend stellt sich ein Pumpstrom I_P ein, der über eine Meßeinrichtung der Schaltungsanordnung 32 meßbar ist. Mit Hilfe des Pumpstromes I_P werden entweder Sauerstoffionen von der Elektrode 40 zur Elektrode 38 oder umgekehrt gepumpt. Der gemessene Pumpstrom I_P dient zur Ansteuerung einer Einrichtung zur Einstellung des Kraftstoff-Luft-Gemisches, mit dem die Verbrennungskraftmaschine betrieben wird.

Im weiteren wird unterstellt, daß das Kraftstoff-Luft-Gemisch, mit dem die Verbrennungskraftmaschine betrieben wird, über einen längeren Zeitraum in einem Magerbereich 15 liegt. Hierdurch stellt sich ein entsprechend hoher Sauerstoffgehalt in dem Abgas 24 ein, der über den Meßfühler 10 detektiert wird. Entsprechend dem hohen Sauerstoffgehalt liegt eine dementsprechende Detektionsspannung UD über den Zeitraum des Magerbetriebes an. Die Schaltungsanordnung 32 umfaßt ein hier lediglich angedeutetes Zeitglied 50, mit dem die Detektionsspannung UD abgetastet wird und festgestellt wird, über welchen Zeitraum diese welche Höhe aufweist. Das Zeitglied 50 stellt ein Signal 52 bereit, wenn die Detektionsspannung UD über eine festlegbare Zeitspanne, die beispielsweise mehrere Minuten, Stunden oder dergleichen betragen kann, innerhalb eines bestimmten Wertebereiches liegt, der einem Magerbetrieb der Verbrennungskraftmaschine entspricht. Während des Magerbetriebes der Verbrennungskraftmaschine fließt ein kathodischer Pumpstrom I_P Durch diesen kathodischen Pumpstrom I_P werden Sauerstoffionen aus dem Hohlraum 28 über die Elektrode 38 gepumpt, so daß über einen längeren Zeitraum über den kathodischen Pumpstrom Ip weniger Sauerstoffionen aus dem Hohlraum 28 gepumpt werden, als durch das Abgas 24 über die Diffusionsbarriere 22 in den Hohlraum 28 gelangen. Durch den sinkenden Pumpstrom der Pumpzelle detektiert die Nernst-Meßzelle 12 ein fetter werdendes Kraftstoff-Luft-Gemisch. Der Meßfühler 10 unterliegt somit einer sogenannten Fettdrift. Ursache hierfür ist die fehlerhafte Detektion der Sauerstoffkonzentration im Hohlraum. Da sich die Verteilung des Pumpstroms auf die innere Pump- und Nernstelektrode 38, 16 mit der Zeit zu ungunsten der inneren Pumpelektrode verändert, entspricht die detektierte Nernstspannung UD 16, 18 nicht mehr dem Konzentrationsverhältnis zwischen Hohlraum 28 und Referenz 30, sondern wird durch eine überlagerte Polarisationsspannung verfälscht. Sie wird scheinbar vergrößert. Dadurch regelt das System eine höhere Sauerstoffkonzentration als $\lambda = 1$ im Hohlraum ein.

Mittels des vom Zeitglied 50 generierten Signals 52 wird ein Schaltmittel 54 angesteuert, das impulsartig eine Umkehr des Pumpstromes IP bewirkt. Das Schaltglied 54 schaltet somit den Pumpstrom Ip obwohl dieser entsprechend der tatsächlichen Messung der Sauerstoffkonzentration im Abgas 24 als anodischer Strom fließt, kurzzeitig impulsmäßig in einen kathodischen Pumpstrom Ip um. Hierdurch werden entsprechend dieser impulsartigen Umschaltung Sauerstoffionen von der Elektrode 38 der Pumpzelle 14 zu der Elektrode 40 und somit aus dem Hohlraum 28 gepumpt. Eine Frequenz und eine Dauer der Impulse, mit der der Pumpstrom Ip kurzfristig umgepolt wird, ist abhängig vom Signal 52, das wiederum abhängig von der Detektionsspannung U_D ist. Somit ist es möglich, bei unterschiedlichen Sauerstoffkonzentrationen im Abgas 24 und unterschiedlichem Zeitbereich, innerhalb dem die Detektionsspannung UD in einem bestimmten Wertebereich liegt, unterschiedliche Signale 52 bereitzustellen. Demnach kann die Frequenz und/ oder die Impulslänge, mit der der Pumpstrom Ip umgekehrt

wird, variabel gestaltet werden. Die Frequenz und die Impulslänge sind so abgestimmt, daß lediglich die Fettdrift des Meßfühlers 10 ausgeglichen wird.

Nach einem weiteren Ausführungsbeispiel, insbesondere bei einer gepumpten Referenz, kann vorgesehen sein, kurzzeitige Spannungsimpulse an die Nernst-Meßzelle 12 zu legen, die über der gemessenen Nernst-Spannung liegen und die gleiche Polarität aufweisen. Entsprechend der dann der Nernst-Meßzelle aufgeprägten Detektionsspannung UP stellt sich ein starker Transport von Sauerstoffionen aus dem 10 Hohlraum 28 über die Elektrode 16 in den Referenzluftkanal 30 ein. Hierdurch wird ebenfalls die Polarisation an Elektroden 16 und 38 infolge eines sinkenden Gehalts an Sauerstoffionen in dem Hohlraum 38 während eines andauernden Magerbetriebes beseitigt. Da über die Diffusionsbar- 15 riere 22 die Sauerstoffionen im Abgas 24 nicht so schnell nachdiffundieren können, beziehungsweise über die Pumpzelle 14 in den Hohlraum 28 gepumpt werden, wie über die Elektrode 16 abgepumpt werden, kommt es zu einer die sogenannte Fettdrift ausgleichenden Aktivierung der Elektro- 20 den 16 beziehungsweise 38. Der im Magerbetrieb vorliegende Pumpzustand der Pumpzelle unterstützt die Aktivie-

Insgesamt wird durch kurzzeitigen definierten Fettbetrieb des Meßfühlers 10 die Fettdrift während eines anhaltenden 25 Magerbetriebes eliminiert.

Patentansprüche

- 1. Verfahren zum Ansteuern eines Meßfühlers zum 30 Bestimmen einer Sauerstoffkonzentration in einem Gasgemisch, insbesondere in Abgasen von Verbrennungskraftmaschinen, wobei eine der Sauerstoffkonzentration entsprechende, von einer Nernst-Meßzelle gelieferte Detektionsspannung von einer Schaltungsan- 35 ordnung in eine Pumpspannung für eine Pumpzelle transferiert wird, und je nach Sauerstoffgehalt des Gasgemisches ein anodischer oder ein kathodischer Grenzstrom über die Pumpzelle fließt, dadurch gekennzeichnet, daß bei stabilem Betrieb des Meßfühlers 40 (10), bei dem über eine wählbare Zeitspanne ein anodischer Grenzstrom fließt, die Pumpzelle (14) und/oder die Nernst-Meßzelle (12) mit wenigstens einem, unabhängig von der gemessenen Detektionsspannung (UD) beziehungsweise dem sich einstellenden Pumpstrom 45 (Ip), bereitgestellten Spannungspuls derart beaufschlagt wird, daß eine Depolarisierung des Meßfühlers (10) erfolgt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Pumpspannung (U_P) impulsartig umgepolt 50 wird, so daß sich kurzfristig ein kathodischer Grenzstrom einstellt.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Nernst-Meßzelle
 impulsartig eine gegenüber der Detektionsspannung (U_D) höhere Spannung aufgeprägt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Frequenz und/ oder eine Dauer der Impulse, mit denen die Pumpspannung (Up) umgepolt und/oder die Detektionsspannung (UD) erhöht wird, durch eine Dauer und/oder eine Intensität des Magerbetriebes des Meßfühlers (10) bestimmt wird.
- 5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Dauer und/oder 65 eine Intensität des Magerbetriebes durch eine Überwachung der Detektionsspannung (U_D), der Nernst-Meßzelle (12) und/oder eine Überwachung des Pumpstro-

mes (I_P) der Pumpzelle (14) ermittelt wird.

Hierzu 1 Seite(n) Zeichnungen

- Leerseite -

F.g.