Numerická integrace

Michal Čihák

29. listopadu 2011

- V přednáškách z matematické analýzy jste se seznámili s mnoha metodami výpočtu integrálů.
- V praxi se ale poměrně často můžeme setkat s případy, kdy žádná z těchto metod nevede k cíli.
- Potom je jedinou možností použít některou z přibližných metod výpočtu integrálu.

- V přednáškách z matematické analýzy jste se seznámili s mnoha metodami výpočtu integrálů.
- V praxi se ale poměrně často můžeme setkat s případy, kdy žádná z těchto metod nevede k cíli.
- Potom je jedinou možností použít některou z přibližných metod výpočtu integrálu.

- V přednáškách z matematické analýzy jste se seznámili s mnoha metodami výpočtu integrálů.
- V praxi se ale poměrně často můžeme setkat s případy, kdy žádná z těchto metod nevede k cíli.
- Potom je jedinou možností použít některou z přibližných metod výpočtu integrálu.

Příklad: V matematické statistice často pracujeme s tzv. *normovaným normálním rozdělením*, jehož hustota je dána funkcí

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Příklad: V matematické statistice často pracujeme s tzv. *normovaným normálním rozdělením*, jehož hustota je dána funkcí

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Chceme-li určit pravděpodobnost, že hodnota náhodné veličiny s normálním rozdělením leží v intervalu $\langle a,b\rangle$, pak musíme vypočítat

$$\int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx.$$

Příklad: V matematické statistice často pracujeme s tzv. *normovaným normálním rozdělením*, jehož hustota je dána funkcí

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Chceme-li určit pravděpodobnost, že hodnota náhodné veličiny s normálním rozdělením leží v intervalu $\langle a,b \rangle$, pak musíme vypočítat

$$\int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

Tento integrál ale nelze exaktními metodami určit.

Představme si, že známe hodnoty neznámé spojité funkce f v n+1 bodech $x_0 < x_1 < \cdots < x_n$. Pro těchto n+1 bodů existuje n+1 tzv. nultých dělených diferencí funkce f

$$f[x_i] = f(x_i), \qquad i = 0, 1, \dots, n.$$

Představme si, že známe hodnoty neznámé spojité funkce f v n+1 bodech $x_0 < x_1 < \cdots < x_n$. Pro těchto n+1 bodů existuje n+1 tzv. nultých dělených diferencí funkce f

$$f[x_i] = f(x_i), \qquad i = 0, 1, \dots, n.$$

Dále existuje n tzv. prvních dělených diferencí funkce f

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}, \quad i = 0, 1, \dots, n-1.$$

Představme si, že známe hodnoty neznámé spojité funkce f v n+1 bodech $x_0 < x_1 < \cdots < x_n$. Pro těchto n+1 bodů existuje n+1 tzv. nultých dělených diferencí funkce f

$$f[x_i] = f(x_i), \qquad i = 0, 1, \dots, n.$$

Dále existuje n tzv. prvních dělených diferencí funkce f

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}, \quad i = 0, 1, \dots, n-1.$$

Dále pokračujeme indukcí. Pokud známe (k-1)-ní dělené diference

$$f[x_i, x_{i+1}, \dots, x_{i+k-1}], \qquad f[x_{i+1}, x_{i+2}, \dots, x_{i+k}],$$

potom pro k-tou dělenou diferenci platí

$$f[x_i, x_{i+1}, \dots, x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, \dots, x_{i+k}] - f[x_i, x_{i+1}, \dots, x_{i+k-1}]}{x_{i+k} - x_i}.$$

Celý proces ukončíme určením jediné n-té dělené diference

$$f[x_0, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_0, \dots, x_{n-1}]}{x_n - x_0}.$$

Celý proces ukončíme určením jediné n-té dělené diference

$$f[x_0, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_0, \dots, x_{n-1}]}{x_n - x_0}.$$

S pomocí dělených diferencí lze Lagrangeův interpolační polynom pro funkci f s uzly x_0, x_1, \ldots, x_n vyjádřit ve tvaru

$$P_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots$$

$$f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \cdots (x - x_{n-1}),$$

který se nazývá Newtonův vzorec dělených diferencí.

Základní metody výpočtu určitých integrálů

- Funkci, jejíž určitý integrál na intervalu $\langle a,b \rangle$ chceme určit, nahradíme Lagrangeovým interpolačním polynomem.
- Z tohoto polynomu určíme určitý integrál na intervalu $\langle a, b \rangle$.
- Otázkou je, jaký stupeň Lagrangeova interpolačního polynomu zvolit (kolik uzlů zvolit).

Základní metody výpočtu určitých integrálů

- Funkci, jejíž určitý integrál na intervalu $\langle a,b \rangle$ chceme určit, nahradíme Lagrangeovým interpolačním polynomem.
- Z tohoto polynomu určíme určitý integrál na intervalu $\langle a,b\rangle$.
- Otázkou je, jaký stupeň Lagrangeova interpolačního polynomu zvolit (kolik uzlů zvolit).

Základní metody výpočtu určitých integrálů

- Funkci, jejíž určitý integrál na intervalu $\langle a,b \rangle$ chceme určit, nahradíme Lagrangeovým interpolačním polynomem.
- Z tohoto polynomu určíme určitý integrál na intervalu $\langle a,b\rangle$.
- Otázkou je, jaký stupeň Lagrangeova interpolačního polynomu zvolit (kolik uzlů zvolit).

Začneme tím, že zvolíme jeden uzel (stupeň Lagrangeova interpolačního polynomu bude 0). Tento uzel zvolíme uprostřed intervalu $\langle a,b\rangle$.

Začneme tím, že zvolíme jeden uzel (stupeň Lagrangeova interpolačního polynomu bude 0). Tento uzel zvolíme uprostřed intervalu $\langle a,b\rangle$.

Potom lze vyjádřit

$$\int_a^b f(x)dx \approx \int_a^b P_0(x)dx = \int_a^b f[x_0]dx = f[x_0](b-a) = f\left(\frac{a+b}{2}\right)(b-a).$$

Obdélníkové pravidlo:

$$\int_{a}^{b} f(x)dx \approx f\left(\frac{a+b}{2}\right)(b-a).$$

Nyní zvolíme dva uzly (stupeň Lagrangeova interpolačního polynomu bude 1). Za uzly zvolíme krajní body intervalu $\langle a,b\rangle$.

Nyní zvolíme dva uzly (stupeň Lagrangeova interpolačního polynomu bude 1). Za uzly zvolíme krajní body intervalu $\langle a,b\rangle$.

Potom lze vyjádřit

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} P_{1}(x)dx = \int_{a}^{b} (f[x_{0}] + f[x_{0}, x_{1}](x - x_{0}))dx.$$

Postupně vypočítáme

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} P_{1}(x)dx = \int_{a}^{b} \left(f[x_{0}] + f[x_{0}, x_{1}](x - x_{0})\right)dx =$$

$$= \left[f[a]x + f[a, b]\frac{(x - a)^{2}}{2}\right]_{a}^{b} =$$

$$= f(a)(b - a) + \frac{f(b) - f(a)}{b - a} \left[\frac{(b - a)^{2}}{2} - \frac{(a - a)^{2}}{2}\right] =$$

$$= (b - a)\frac{f(a) + f(b)}{2}.$$

Lichoběžníkové pravidlo:

$$\int_{a}^{b} f(x)dx \approx (b-a)\frac{f(a)+f(b)}{2}.$$

Nyní zvolíme tři uzly (stupeň Lagrangeova interpolačního polynomu bude 2). Za uzly zvolíme krajní body a střed intervalu $\langle a,b\rangle$.

Nyní zvolíme tři uzly (stupeň Lagrangeova interpolačního polynomu bude 2). Za uzly zvolíme krajní body a střed intervalu $\langle a,b\rangle$.

Potom lze vyjádřit

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} P_{2}(x)dx.$$

$$\begin{split} & \int_{a}^{b} P_{0,1,2}(x) \, dx \\ & = \int_{a}^{b} \left\{ f(a) + f\left[a, \frac{a+b}{2}\right] (x-a) + f\left[a, \frac{a+b}{2}, b\right] (x-a) \left(x - \frac{a+b}{2}\right) \right\} dx \\ & = \left[f(a)x + f\left[a, \frac{a+b}{2}\right] \frac{(x-a)^2}{2} \right]_{a}^{b} \\ & + f\left[a, \frac{a+b}{2}, b\right] \int_{a}^{b} (x-a) \left[(x-a) + \left(a - \frac{a+b}{2}\right) \right] \, dx \\ & = f(a)(b-a) + \frac{f(\frac{a+b}{2}) - f(a)}{\frac{a+b}{2} - a} \frac{(b-a)^2}{2} \\ & + \frac{f\left[\frac{a+b}{2}, b\right] - f\left[a, \frac{a+b}{2}\right]}{b-a} \left[\frac{(x-a)^3}{3} + \frac{(x-a)^2}{2} \left(\frac{a-b}{2}\right) \right]_{a}^{b} \\ & = (b-a) \left[f(a) + f\left(\frac{a+b}{2}\right) - f(a) \right] \\ & + \left(\frac{1}{b-a}\right) \left[\frac{f(b) - f(\frac{a+b}{2})}{\frac{b-a}{2}} - \frac{f(\frac{a+b}{2}) - f(a)}{\frac{b-a}{2}} \right] \left[\frac{(b-a)^3}{3} - \frac{(b-a)^3}{4} \right] \\ & = (b-a) f\left(\frac{a+b}{2}\right) + \frac{2}{(b-a)^2} \left[f(b) - 2f\left(\frac{a+b}{2}\right) + f(a) \right] \frac{(b-a)^3}{12} \, . \end{split}$$

Simpsonovo pravidlo:

$$\int_{a}^{b} f(x)dx \approx \frac{(b-a)}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right].$$

V první tabulce jsou uvedeny hodnoty určitých integrálů různých funkcí vypočtené na intervalu $\langle 1;1,2\rangle$ různými metodami – obdélníkovým pravidlem (Midpoint), lichoběžníkovým pravidlem (Trapezoidal) a Simpsonovým pravidlem. V prvním řádku tabulky jsou přitom uvedeny přesné hodnoty.

V první tabulce jsou uvedeny hodnoty určitých integrálů různých funkcí vypočtené na intervalu $\langle 1;1,2\rangle$ různými metodami – obdélníkovým pravidlem (Midpoint), lichoběžníkovým pravidlem (Trapezoidal) a Simpsonovým pravidlem. V prvním řádku tabulky jsou přitom uvedeny přesné hodnoty.

f(x)	x^2	x^4	1/(x+1)	$\sqrt{1+x^2}$	$\sin x$	e^x
Exact value Midpoint Trapezoidal Simpson's	0.24267	0.29766	0.09531	0.29742	0.17794	0.60184
	0.24200	0.29282	0.09524	0.29732	0.17824	0.60083
	0.24400	0.30736	0.09545	0.29626	0.17735	0.60384
	0.24267	0.29767	0.09531	0.29742	0.17794	0.60184

Ve druhé tabulce jsou uvedeny hodnoty určitých integrálů různých funkcí vypočtené na intervalu $\langle 0;2\rangle$ různými metodami – obdélníkovým pravidlem (Midpoint), lichoběžníkovým pravidlem (Trapezoidal) a Simpsonovým pravidlem. V prvním řádku tabulky jsou přitom uvedeny přesné hodnoty.

Ve druhé tabulce jsou uvedeny hodnoty určitých integrálů různých funkcí vypočtené na intervalu $\langle 0;2\rangle$ různými metodami – obdélníkovým pravidlem (Midpoint), lichoběžníkovým pravidlem (Trapezoidal) a Simpsonovým pravidlem. V prvním řádku tabulky jsou přitom uvedeny přesné hodnoty.

f(x)	x^2	x^4	1/(x+1)	$\sqrt{1+x^2}$	$\sin x$	e^x
Exact value	2.667	6.400	1.099	2.958	1.416	6.389
Midpoint	2.000	2.000	1.000	2.818	1.682	5.436
Trapezoidal	4.000	16.000	1.333	3.326	0.909	8.389
Simpson's	2.667	6.667	1.111	2.964	1.425	6.421

Jak zvýšit přesnost numerické integrace

Příklad: Určete pomocí Simpsonova pravidla $\int_0^2 e^x dx$.

Jak zvýšit přesnost numerické integrace

Příklad: Určete pomocí Simpsonova pravidla $\int_0^2 e^x dx$.

$$\int_0^2 e^x dx \approx \frac{1}{3}(e^0 + 4e^1 + e^2) = 6,4207278.$$

Jak zvýšit přesnost numerické integrace

Příklad: Určete pomocí Simpsonova pravidla $\int_0^2 e^x dx$.

$$\int_0^2 e^x dx \approx \frac{1}{3} (e^0 + 4e^1 + e^2) = 6,4207278.$$

Přesná hodnota je přitom

$$\int_0^2 e^x dx = [e^x]_0^2 = e^2 - e^0 = 6,3890561.$$

Příklad: Určete pomocí Simpsonova pravidla $\int_0^2 e^x dx$.

$$\int_0^2 e^x dx \approx \frac{1}{3}(e^0 + 4e^1 + e^2) = 6{,}4207278.$$

Přesná hodnota je přitom

$$\int_0^2 e^x dx = [e^x]_0^2 = e^2 - e^0 = 6,3890561.$$

Absolutní chyba aproximace je tedy 0,0316717. Takováto chyba může být pro některé aplikace nepřijatelně vysoká.

Zkusme zvýšit přesnost aproximace tím, že rozdělíme interval $\langle 0,2\rangle$ na dva podintervaly $\langle 0,1\rangle$ a $\langle 1,2\rangle$ a na každém z nich použijeme Simpsonovo pravidlo

Zkusme zvýšit přesnost aproximace tím, že rozdělíme interval $\langle 0,2\rangle$ na dva podintervaly $\langle 0,1\rangle$ a $\langle 1,2\rangle$ a na každém z nich použijeme Simpsonovo pravidlo

$$\int_0^2 e^x dx = \int_0^1 e^x dx + \int_1^2 e^x dx \approx \frac{1}{6} (e^0 + 4e^{0.5} + e^1) + \frac{1}{6} (e^1 + 4e^{1.5} + e^2) =$$

$$= \frac{1}{6} (e^0 + 4e^{0.5} + 2e^1) + 4e^{1.5} + e^2) = 6,3912102.$$

Zkusme zvýšit přesnost aproximace tím, že rozdělíme interval $\langle 0,2\rangle$ na dva podintervaly $\langle 0,1\rangle$ a $\langle 1,2\rangle$ a na každém z nich použijeme Simpsonovo pravidlo

$$\int_0^2 e^x dx = \int_0^1 e^x dx + \int_1^2 e^x dx \approx \frac{1}{6} (e^0 + 4e^{0.5} + e^1) + \frac{1}{6} (e^1 + 4e^{1.5} + e^2) =$$

$$= \frac{1}{6} (e^0 + 4e^{0.5} + 2e^1) + 4e^{1.5} + e^2) = 6,3912102.$$

Absolutní chyba aproximace se zmenšila o více než 90 % na 0,0021541.

Zkusme ještě dále rozdělit intervaly $\langle 0,1\rangle$ a $\langle 1,2\rangle$ na další podintervaly. Při použití Simpsonova pravidla dostaneme

Zkusme ještě dále rozdělit intervaly $\langle 0,1\rangle$ a $\langle 1,2\rangle$ na další podintervaly. Při použití Simpsonova pravidla dostaneme

$$\begin{split} \int_0^2 e^x dx &= \int_0^{0,5} e^x dx + \int_{0,5}^1 e^x dx + \int_1^{1,5} e^x dx + \int_{1,5}^2 e^x dx \approx \\ &\approx \frac{1}{12} (e^0 + 4e^{0,25} + e^{0,5}) + \frac{1}{12} (e^{0,5} + 4e^{0,75} + e^1) + \\ &+ \frac{1}{12} (e^1 + 4e^{1,25} + e^{1,5}) + \frac{1}{12} (e^{1,5} + 4e^{1,75} + e^2) = \\ &= \frac{1}{12} (e^0 + 4e^{0,25} + 2e^{0,5} + 4e^{0,75} + e^1 + 4e^{1,25} + 2e^{1,5} + 4e^{1,75} + e^2) \\ &= 6,3891937. \end{split}$$

Zkusme ještě dále rozdělit intervaly $\langle 0,1\rangle$ a $\langle 1,2\rangle$ na další podintervaly. Při použití Simpsonova pravidla dostaneme

$$\begin{split} \int_0^2 e^x dx &= \int_0^{0.5} e^x dx + \int_{0.5}^1 e^x dx + \int_1^{1.5} e^x dx + \int_{1,5}^2 e^x dx \approx \\ &\approx \frac{1}{12} (e^0 + 4e^{0.25} + e^{0.5}) + \frac{1}{12} (e^{0.5} + 4e^{0.75} + e^1) + \\ &+ \frac{1}{12} (e^1 + 4e^{1.25} + e^{1.5}) + \frac{1}{12} (e^{1.5} + 4e^{1.75} + e^2) = \\ &= \frac{1}{12} (e^0 + 4e^{0.25} + 2e^{0.5} + 4e^{0.75} + e^1 + 4e^{1.25} + 2e^{1.5} + 4e^{1.75} + e^2) \\ &= 6,3891937. \end{split}$$

Absolutní chyba aproximace se zmenšila na 0,0001376, což je už jen 0,4 % původní chyby (při použití Simpsonova pravidla na celý interval $\langle 0,2\rangle$).

Zobecněním předchozího postupu získáme tzv. Simpsonovo složené pravidlo.

Zobecněním předchozího postupu získáme tzv. Simpsonovo složené pravidlo.

Zvolíme sudé číslo n a rozdělíme interval $\langle a,b \rangle$ na n podintervalů. Označíme-li h=(b-a)/n, potom krajní body podintervalů jsou $a=x_0< x_1< \cdots < x_n=b$, kde $x_j=x_0+jh$ pro každé $j=0,1,\ldots,n$. Na každém z podintervalů použijeme Simpsonovo pravidlo

Zvolíme sudé číslo n a rozdělíme interval $\langle a,b \rangle$ na n podintervalů. Označíme-li h=(b-a)/n, potom krajní body podintervalů jsou $a=x_0 < x_1 < \cdots < x_n = b$, kde $x_j=x_0+jh$ pro každé $j=0,1,\ldots,n$. Na každém z podintervalů použijeme Simpsonovo pravidlo

$$\int_{a}^{b} f(x)dx \approx \sum_{j=1}^{n/2} \int_{x_{2j-2}}^{x_{2j}} f(x)dx =$$

$$= \sum_{j=1}^{n/2} \left(\frac{h}{3} \left[f(x_{2j-2}) + 4f(x_{2j-1}) + f(x_{2j}) \right] \right) =$$

$$= \frac{h}{3} \left[f(x_{0}) + 2 \sum_{j=1}^{(n/2)-1} f(x_{2j}) + 4 \sum_{j=1}^{n/2} f(x_{2j-1}) + f(x_{n}) \right].$$

Absolutní chyba aproximace Simpsonovým pravidlem

Lze odvodit (metodami diferenciálního a integrálního počtu), že absolutní chyba aproximace Simpsonovým pravidlem je rovna

$$\left| \frac{h^4(b-a)}{180} f^{(4)}(\xi) \right|,$$

kde $f^{(4)}(\xi)$ je čtvrtá derivace funkce f v bodě ξ , přičemž ξ je nějaké číslo z intervalu (a,b).

Příklad: Určete pomocí složeného Simpsonova pravidla $\int_0^\pi \sin dx$ s absolutní chybou menší než 0,00002. Kolik podintervalů intervalu $\langle 0,\pi \rangle$ budeme pro tento účel potřebovat?

Příklad: Určete pomocí složeného Simpsonova pravidla $\int_0^\pi \sin dx$ s absolutní chybou menší než 0,00002. Kolik podintervalů intervalu $\langle 0,\pi \rangle$ budeme pro tento účel potřebovat?

$$\left| \frac{h^4(b-a)}{180} f^{(4)}(\xi) \right| = \frac{h^4\pi}{180} \sin \xi \le \frac{h^4\pi}{180} \cdot 1 = \frac{\pi^5}{180n^4} < 0,00002.$$

Příklad: Určete pomocí složeného Simpsonova pravidla $\int_0^\pi \sin dx$ s absolutní chybou menší než 0,00002. Kolik podintervalů intervalu $\langle 0,\pi \rangle$ budeme pro tento účel potřebovat?

$$\left| \frac{h^4(b-a)}{180} f^{(4)}(\xi) \right| = \frac{h^4 \pi}{180} \sin \xi \le \frac{h^4 \pi}{180} \cdot 1 = \frac{\pi^5}{180n^4} < 0,00002.$$

Z poslední nerovnosti určíme, že n>18. Můžeme tedy zvolit například n=20 a $h=\pi/20.$

Příklad: Určete pomocí složeného Simpsonova pravidla $\int_0^\pi \sin dx$ s absolutní chybou menší než 0,00002. Kolik podintervalů intervalu $\langle 0,\pi \rangle$ budeme pro tento účel potřebovat?

$$\left| \frac{h^4(b-a)}{180} f^{(4)}(\xi) \right| = \frac{h^4 \pi}{180} \sin \xi \le \frac{h^4 \pi}{180} \cdot 1 = \frac{\pi^5}{180n^4} < 0,00002.$$

Z poslední nerovnosti určíme, že n>18. Můžeme tedy zvolit například n=20 a $h=\pi/20$. S použitím těchto hodnot obdržíme pomocí složeného Simpsonova pravidla

$$\int_0^{\pi} \sin x dx \approx \frac{\pi}{60} \left[\sin 0 + 2 \sum_{j=1}^9 \sin \left(\frac{j\pi}{10} \right) + 4 \sum_{j=1}^{10} \sin \left(\frac{(2j-1)j\pi}{20} \right) + \sin \pi \right] = 2,000006.$$

Příklad: Určete pomocí složeného Simpsonova pravidla $\int_0^\pi \sin dx$ s absolutní chybou menší než 0,00002. Kolik podintervalů intervalu $\langle 0,\pi \rangle$ budeme pro tento účel potřebovat?

$$\left| \frac{h^4(b-a)}{180} f^{(4)}(\xi) \right| = \frac{h^4 \pi}{180} \sin \xi \le \frac{h^4 \pi}{180} \cdot 1 = \frac{\pi^5}{180 n^4} < 0,00002.$$

Z poslední nerovnosti určíme, že n>18. Můžeme tedy zvolit například n=20 a $h=\pi/20$. S použitím těchto hodnot obdržíme pomocí složeného Simpsonova pravidla

$$\int_0^{\pi} \sin x dx \approx \frac{\pi}{60} \left[\sin 0 + 2 \sum_{j=1}^9 \sin \left(\frac{j\pi}{10} \right) + 4 \sum_{j=1}^{10} \sin \left(\frac{(2j-1)j\pi}{20} \right) + \sin \pi \right] =$$

$$= 2,000006.$$

Přesná hodnota je přitom $\int_0^\pi \sin x dx = 2$, tedy absolutní chyba je v tomto případě rovna 0,000006, což je skutečně méně než zadaná maximální přípustná chyba 0,00002.

Složené Simpsonovo pravidlo – shrnutí

Předpokládejme, že funkce f má spojité derivace až do 4. řádu na intervalu $\langle a,b\rangle$. Nechť dále n je sudé číslo, h=(b-a)/n a $x_j=a+jh$ pro každé $j=0,1,\ldots,n$. Potom pro nějaké $\xi\in(a,b)$ platí

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \left[f(a) + 2 \sum_{j=1}^{(n/2)-1} f(x_{2j}) + 4 \sum_{j=1}^{n/2} f(x_{2j-1}) + f(b) \right] - \frac{h^{4}(b-a)}{180} f^{(4)}(\xi).$$

Složené lichoběžníkové pravidlo

Předpokládejme, že funkce f má spojité derivace až do 2. řádu na intervalu $\langle a,b \rangle$. Nechť dále n je libovolné přirozené číslo, h=(b-a)/n a $x_j=a+jh$ pro každé $j=0,1,\ldots,n$. Potom pro nějaké $\xi\in(a,b)$ platí

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{(n-1)} f(x_j) + f(b) \right] - \frac{h^2(b-a)}{12} f^{(2)}(\xi).$$

4□ > 4□ > 4 亘 > 4 亘 > □ 9 < ○</p>

Složené obdélníkové pravidlo

Předpokládejme, že funkce f má spojité derivace až do 2. řádu na intervalu $\langle a,b\rangle$. Nechť dále n je sudé číslo, h=(b-a)/(n+2) a $x_j=a+(j+1)h$ pro každé $j=-1,0,1,\ldots,n+1$. Potom pro nějaké $\xi\in(a,b)$ platí

$$\int_{a}^{b} f(x)dx = 2h \sum_{j=0}^{n/2} f(x_{2j}) + \frac{h^{2}(b-a)}{6} f^{(2)}(\xi).$$

Složené lichoběžníkové a obdélníkové pravidlo – příklad

Příklad: Určete pomocí složeného lichoběžníkového pravidla $\int_0^\pi \sin dx$ s absolutní chybou menší než 0,00002. Kolik podintervalů intervalu $\langle 0,\pi \rangle$ budeme pro tento účel potřebovat?

Složené lichoběžníkové a obdélníkové pravidlo – příklad

Příklad: Určete pomocí složeného lichoběžníkového pravidla $\int_0^\pi \sin dx$ s absolutní chybou menší než 0,00002. Kolik podintervalů intervalu $\langle 0,\pi \rangle$ budeme pro tento účel potřebovat?

$$\left| \frac{h^2(b-a)}{12} f^{(2)}(\xi) \right| = \frac{h^2 \pi}{12} \sin \xi \le \frac{h^2 \pi}{12} \cdot 1 = \frac{\pi^3}{12n^2} \le 0,00002.$$

Složené lichoběžníkové a obdélníkové pravidlo – příklad

Příklad: Určete pomocí složeného lichoběžníkového pravidla $\int_0^\pi \sin dx$ s absolutní chybou menší než 0,00002. Kolik podintervalů intervalu $\langle 0,\pi \rangle$ budeme pro tento účel potřebovat?

$$\left| \frac{h^2(b-a)}{12} f^{(2)}(\xi) \right| = \frac{h^2 \pi}{12} \sin \xi \le \frac{h^2 \pi}{12} \cdot 1 = \frac{\pi^3}{12n^2} \le 0,00002.$$

Z poslední nerovnosti určíme, že n>360.