Meta-learning Methods

CS771: Introduction to Machine Learning
Purushottam Kar

Announcements

- A few project proposals still not in! Please submit them by Sunday Nov 12 1159 IST
- Assignment 3 late submissions deadline cancelled! There is only one submission deadline now Nov 14 1159 IST
- Extra class Saturday Nov 11 6PM L16 (usual time, usual venue)
- Have started clearing Piazza doubts, will clear all of them
- Should expect Assignment 1 grades in a day or two.
- Assignment 2 grading already underway
- Project presentation/submission timeline to be released soon

Outline of today's discussion

- A few meta-learning methods
 - Techniques that can be applied to several learning models/tasks
- Model selection
- Ensemble methods
 - Bagging
 - Boosting
- Next up: Recommendation systems and learning with incomplete supervision

Model Selection

Many Myriad Models

- Every algorithm we have studied requires us to make high level decision about the design and structure of the algorithm
- Nearest neighbors: How many neighbors? What metric?
- Decision tree: How many levels? Binary/ternary splits?
- ML/MAP: Which prior (L1/L2)? What regularization constant?
- GMMs: How many components in the mixture
- (K)PCA: How many dimensions?
- SVMs: Which kernel? Which kernel hyperparameters?
- NNs: How many layers? How many nodes? Which activation fn?
- Which algo? NNs or SVMs or DTs or k-NN?
- Form a part of the inductive bias can we lessen this bias?

CS771: Intro to ML

Model Selection

- Let $\mathcal{M} = \{m_1, m_2, ..., m_k, ...\}$ be a set of models to choose from
- ullet Depending on our setting, each m_i could represent
 - ullet a regressor learnt using a regularization constant λ_i , or
 - a GMM learnt with n_i number of clusters, or
 - a NN learnt with L_i hidden layers, or
 - ullet a kernel SVM learnt with Gaussian kernel with hyperparameter γ_i
- Some of the m_i could be kernel SVMs, others could be NNs etc
- How to choose the model that will perform the best on test?
- Notation
 - $\theta_i = \text{TRAIN}(m_i, S)$ model m_i was trained on data S to get parameters θ_i
 - $v_i = \text{TEST}(m_i, \theta_i, T)$ model m_i with parameters θ_i was tested on data T to get performance $v_i \in \mathbb{R}$ (misclassifn rate, residual, reconstruction error)

Model Selection

- Let $\mathcal{M} = \{m_1, m_2, ..., m_k, ...\}$ be a set of models to choose from
- ullet Depending on the setting, each m_i could represent
 - a regressor learnt using a . Larization constant λ or If $\mathcal M$ contains variants of the
 - a GMM learnt with n_i number of cluster
 - a NN learnt with L_i hidden layers, or
 - a kernel SVM learnt with Gaussian kernel with Typerparameter γ_i
- Some of

• How to

Same model trained on different data gives different parameters θ_i

 $heta_i$ could be weights of regressor, cluster centers in GMM, network weights in NN

same model (e.g. all are DTs)

then ${\mathcal M}$ is called a *model class*

- Notation
 - $\theta_i = \text{TRAIN}(m_i, S)$ model m_i was trained on data S to get parameters θ_i
 - $v_i = \text{TEST}(m_i, \theta_i, T)$ model m_i with parameters θ_i was tested on data T to get performance $v_i \in \mathbb{R}$ (misclassifn rate, residual, reconstruction error)

Nov 08, 2017

Held-out Validation

S

- Split training set S into 2 parts S_1, S_2 randomly
- Train each model on S_1 , test on S_2 . Choose model with best perf. $m^* = \arg\min_{m_i \in \mathcal{M}} \mathrm{TEST}(m_i, \mathrm{TRAIN}(m_i, S_1), S_2)$
- Very efficient, widely used in practice 70-30, 80-20 splits popular
- Wastes data: S_2 never used in training
- Carries a risk of choosing an unfortunate split. If we are unlucky, S_2 may make a good model look bad and a bad model look good

Held-out Validation

- Split training set S into 2 parts S_1, S_2 randomly
- Train each model on S_1 , test on S_2 . Choose model with best perf. $m^* = \arg\min_{m_i \in \mathcal{M}} \mathrm{TEST}(m_i, \mathrm{TRAIN}(m_i, S_1), S_2)$
- Very efficient, widely used in practice 70-30, 80-20 splits popular
- Wastes data: S_2 never used in training
- Carries a risk of choosing an unfortunate split. If we are unlucky, S_2 may make a good model look bad and a bad model look good

S

- Split training set S into k parts $S_1, S_2, ..., S_k$ randomly (k = 5 popular)
- Train each model on all but S_i , test on S_i . Repeat for all $j=1,\ldots,k$
- Choose mode with best average performance

$$m^* = \arg\min_{m_i \in \mathcal{M}} \frac{1}{k} \sum_{j=1}^{k} \text{TEST}(m_i, \text{TRAIN}(m_i, S \setminus S_j), S_j)$$

- Much more expensive but more reliable too
- Even if one part is "bad" there are other parts

$$S_1$$
 S_2 S_3 S_4 S_5

- Split training set S into k parts $S_1, S_2, ..., S_k$ randomly (k = 5 popular)
- Train each model on all but S_i , test on S_i . Repeat for all $j=1,\ldots,k$
- Choose mode with best average performance

$$m^* = \arg\min_{m_i \in \mathcal{M}} \frac{1}{k} \sum_{j=1}^{k} \text{TEST}(m_i, \text{TRAIN}(m_i, S \setminus S_j), S_j)$$

- Much more expensive but more reliable too
- Even if one part is "bad" there are other parts

$$S_1$$
 S_2 S_3 S_4 S_5

- Split training set S into k parts $S_1, S_2, ..., S_k$ randomly (k = 5 popular)
- Train each model on all but S_i , test on S_i . Repeat for all $j=1,\ldots,k$
- Choose mode with best average performance

$$m^* = \arg\min_{m_i \in \mathcal{M}} \frac{1}{k} \sum_{j=1}^{k} \text{TEST}(m_i, \text{TRAIN}(m_i, S \setminus S_j), S_j)$$

- Much more expensive but more reliable too
- Even if one part is "bad" there are other parts

$$S_1$$
 S_2 S_3 S_4 S_5

- Split training set S into k parts $S_1, S_2, ..., S_k$ randomly (k = 5 popular)
- Train each model on all but S_i , test on S_i . Repeat for all $j=1,\ldots,k$
- Choose mode with best average performance

$$m^* = \arg\min_{m_i \in \mathcal{M}} \frac{1}{k} \sum_{j=1}^{k} \text{TEST}(m_i, \text{TRAIN}(m_i, S \setminus S_j), S_j)$$

- Much more expensive but more reliable too
- Even if one part is "bad" there are other parts

$$S_1$$
 S_2 S_3 S_4 S_5

- Split training set S into k parts $S_1, S_2, ..., S_k$ randomly (k = 5 popular)
- Train each model on all but S_i , test on S_i . Repeat for all $j=1,\ldots,k$
- Choose mode with best average performance

$$m^* = \arg\min_{m_i \in \mathcal{M}} \frac{1}{k} \sum_{j=1}^{k} \text{TEST}(m_i, \text{TRAIN}(m_i, S \setminus S_j), S_j)$$

- Much more expensive but more reliable too
- Even if one part is "bad" there are other parts

$$S_1$$
 S_2 S_3 S_4 S_5

- Split training set S into k parts $S_1, S_2, ..., S_k$ randomly (k = 5 popular)
- Train each model on all but S_i , test on S_i . Repeat for all $j=1,\ldots,k$
- Choose mode with best average performance

$$m^* = \arg\min_{m_i \in \mathcal{M}} \frac{1}{k} \sum_{j=1}^{k} \text{TEST}(m_i, \text{TRAIN}(m_i, S \setminus S_j), S_j)$$

- Much more expensive but more reliable too
- Even if one part is "bad" there are other parts

- Split training set S into k parts $S_1, S_2, ..., S_k$ randomly (k = 5 popular)
- Train each model on all but S_i , test on S_i . Repeat for all $j=1,\ldots,k$
- Choose mode with best average performance

$$m^* = \arg\min_{m_i \in \mathcal{M}} \frac{1}{k} \sum_{j=1}^{k} \text{TEST}(m_i, \text{TRAIN}(m_i, S \setminus S_j), S_j)$$

- Much more expensive but more reliable too
- Even if one part is "bad" there are other parts

$$S_1$$
 S_2 S_3 S_4 S_5

- Split training set S into k parts $S_1, S_2, ...$
- Train each model on all but S_i , test or
- Extreme variant LOO (leaveone-out) If |S| = n, then k = ni.e. every data point is a part
- Choose mode with best average performance

$$m^* = \arg\min_{m_i \in \mathcal{M}} \frac{1}{k} \sum_{j=1}^{k} \text{TEST}(m_i, \text{TRAIN}(m_i, S \setminus S_j), S_j)$$

- Much more expensive but more reliable too
- Even if one part is "bad" there are other parts

Other techniques

- Overlapping fold selection: select k randomly chosen sets of size, say 0.3n, S_1 , ..., S_k . Train on $S \setminus S_k$, test on S_k . Choose best avg perf.
- Bootstrap: select *n* data points randomly with replacement and use as training set (may have repeated points). Use points never selected as validation set.
- Structural risk minimization (SRM): Define a complexity term for each model $r(m_i)$ (# layers, clusters, magnitude of hyper param)
 - Prefers models that are less "complex" (see Occam's razor) $m^* = \arg\min_{m_i \in \mathcal{M}} \{ \text{TEST}(m_i, \text{TRAIN}(m_i, S), S) + r(m_i) \}$
- Akaike/Bayesian information criteria (AIC, BIC): Counterpart to SRM in PML techniques. Replace test error with likelihood.

Other techniques

- Bandit Optimization: useful when each $m \in \mathcal{M}$ corresponds to a hyperparameter. View model selection as an optimization problem $m^* = \arg\min_{m \in \mathcal{M}} f(m) = \arg\min_{m \in \mathcal{M}} \mathrm{TEST}(m, \mathrm{TRAIN}(m, S), S)$
 - However, getting "gradients" for the above objective function intractable
 - ullet Hence cannot request for gradients or Hessians of f while optimizing it
 - Can only ask for $f(\cdot)$ values on specific models $m^1, m^2, ...$
 - Also known as zeroth-order optimization, derivative-free optimization
 - Bayesian optimization is an example of Bandit optimization
- Bayesian Learning: cast model selection as a learning problem!
 - Establish a prior over the model class $\mathcal M$ and a likelihood $\mathbb P[S\mid m]$
 - Perform model learning jointly with parameter learning

Ultimate goal of ML is to do well on test data

- Ultimate goal of ML is to do well on test data
- Two main sources of bad test performance

- Ultimate goal of ML is to do well on test data
- Two main sources of bad test performance
 - Bias: your model class is too weak e.g. linear model for a very complex task Even the best trained linear model is pathetic

- Ultimate goal of ML is to do well on test data
- Two main sources of bad test performance
 - Bias: your model class is too weak e.g. linear model for a very complex task Even the best trained linear model is pathetic
 - Variance: your model class is strong but you could not train it properly e.g.
 NNs. The best trained NN is NP-hard to learn

- Ultimate goal of ML is to do well on test data
- Two main sources of bad test performance
 - Bias: your model class is too weak e.g. linear model for a very complex task Even the best trained linear model is pathetic
 - Variance: your model class is strong but you could not train it properly e.g.
 NNs. The best trained NN is NP-hard to learn
- Models with high variance usually are brittle too. Changing the training data even slightly changes the model parameters a lot

- Ultimate goal of ML is to do well on test data
- Two main sources of bad test performance
 - Bias: your model class is too weak e.g. linear model for a very complex task Even the best trained linear model is pathetic
 - Variance: your model class is strong but you could not train it properly e.g.
 NNs. The best trained NN is NP-hard to learn
- Models with high variance usually are brittle too. Changing the training data even slightly changes the model parameters a lot
- Usually models that are weak are easy to train very accurately

- Ultimate goal of ML is to do well on test data
- Two main sources of bad test performance
 - Bias: your model class is too weak e.g. linear model for a very complex task Even the best trained linear model is pathetic
 - Variance: your model class is strong but you could not train it properly e.g.
 NNs. The best trained NN is NP-hard to learn
- Models with high variance usually are brittle too. Changing the training data even slightly changes the model parameters a lot
- Usually models that are weak are easy to train very accurately
 - High bias, low variance

- Ultimate goal of ML is to do well on test data
- Two main sources of bad test performance
 - Bias: your model class is too weak e.g. linear model for a very complex task Even the best trained linear model is pathetic
 - Variance: your model class is strong but you could not train it properly e.g.
 NNs. The best trained NN is NP-hard to learn
- Models with high variance usually are brittle too. Changing the training data even slightly changes the model parameters a lot
- Usually models that are weak are easy to train very accurately
 - High bias, low variance
- Usually models that are strong are more difficult to train too

- Ultimate goal of ML is to do well on test data
- Two main sources of bad test performance
 - Bias: your model class is too weak e.g. linear model for a very complex task Even the best trained linear model is pathetic
 - Variance: your model class is strong but you could not train it properly e.g.
 NNs. The best trained NN is NP-hard to learn
- Models with high variance usually are brittle too. Changing the training data even slightly changes the model parameters a lot
- Usually models that are weak are easy to train very accurately
 - High bias, low variance
- Usually models that are strong are more difficult to train too
 - Low-bias, high variance

Ultimate goal

- Two main sou
 - Bias: your modes
 Even the bes
 - Variance: you
 NNs. The bes
- Models with h training data
- Usually mode
 - High bias, lov
- Usually mode
 - Low-bias, high variance

a very complex task

rain it properly e.g.

Variance Changing the ameters a lot ry accurately

o train too

CS771: Intro to ML

Low training error but high test error

- Low training error but high test error
 - You may have overfit. Add more data or simplify the model class (or both) to decrease variance

- Low training error but high test error
 - You may have overfit. Add more data or simplify the model class (or both) to decrease variance
- High training error and high test error

- Low training error but high test error
 - You may have overfit. Add more data or simplify the model class (or both) to decrease variance
- High training error and high test error
 - You may have underfit. Increase model class complexity to decrease bias

- Low training error but high test error
 - You may have overfit. Add more data or simplify the model class (or both) to decrease variance
- High training error and high test error
 - You may have underfit. Increase model class complexity to decrease bias
 - Adding more data cannot decrease bias. Your model class just sucks

- Low training error but high test error
 - You may have overfit. Add more data or simplify the model class (or both) to decrease variance
- High training error and high test error
 - You may have underfit. Increase model class complexity to decrease bias
 - Adding more data cannot decrease bias. Your model class just sucks
- Low training error and low test error

- Low training error but high test error
 - You may have overfit. Add more data or simplify the model class (or both) to decrease variance
- High training error and high test error
 - You may have underfit. Increase model class complexity to decrease bias
 - Adding more data cannot decrease bias. Your model class just sucks
- Low training error and low test error
 - er ... exactly what are you complaining about?

- Low training error but high test error
 - You may have overfit. Add more data or simplify the model class (or both) to decrease variance
- High training error and high test error
 - You may have underfit. Increase model class complexity to decrease bias
 - Adding more data cannot decrease bias. Your model class just sucks
- Low training error and low test error
 - er ... exactly what are you complaining about?
- High training error and low test error

- Low training error but high test error
 - You may have overfit. Add more data or simplify the model class (or both) to decrease variance
- High training error and high test error
 - You may have underfit. Increase model class complexity to decrease bias
 - Adding more data cannot decrease bias. Your model class just sucks
- Low training error and low test error
 - er ... exactly what are you complaining about?
- High training error and low test error
 - Maybe you did early stopping which acted as a regularizer

- Low training error but high test error
 - You may have overfit. Add more data or simplify the model class (or both) to decrease variance
- High training error and high test error
 - You may have underfit. Increase model class complexity to decrease bias
 - Adding more data cannot decrease bias. Your model class just sucks
- Low training error and low test error
 - er ... exactly what are you complaining about?
- High training error and low test error
 - Maybe you did early stopping which acted as a regularizer
- May need to iterate the above two a bit to reach a sweet spot

Nov 08, 2017

- Low training
 - You may hav to decrease
- High training
 - You may hav
 - Adding more
- Low training
 - er ... exactly v
- High training
 - Maybe you d
- May need to i

pdel class (or both)

y to decrease bias ass just sucks

zer

sweet spot

Learning Ensembles

What are ensembles and why learn them?

- For sake of simplicity, focus only on binary classification only
- Similar techniques apply to regression, multi-label classfn too
- I wish to learn a classifier using a model class \mathcal{M} (say linear or NN)
- Why?
 - I have a nice implementation to learn from ${\mathcal M}$ don't wanna waste it
 - ullet Model class ${\mathcal M}$ has very low variance which is nice
 - Prediction using ${\mathcal M}$ is very cheap
 - But \mathcal{M} has very high bias \otimes what do I do?
- Or
 - Model class ${\mathcal M}$ is very powerful and has very low bias which is nice
 - ullet All my friends use models from ${\mathcal M}$ and I have FoMO issues
 - But $\mathcal M$ has very high variance \otimes what do I do?
- Ensembles to the rescue!!

- ullet Works even when training is not in our hands or not from single ${\mathcal M}$
- Suppose we have 5 sources to answer "Will it rain tomorrow?"

Nov 08, 2017 wikipedia.org

- ullet Works even when training is not in our hands or not from single ${\mathcal M}$
- Suppose we have 5 sources to answer "Will it rain tomorrow?"

- ullet Works even when training is not in our hands or not from single ${\mathcal M}$
- Suppose we have 5 sources to answer "Will it rain tomorrow?"

Nov 08, 2017 wikipedia.org

- ullet Works even when training is not in our hands or not from single ${\mathcal M}$
- Suppose we have 5 sources to answer "Will it rain tomorrow?"

Nov 08, 2017

wikipedia.org

CS771: Intro to ML

Works even when training is no

No individual network gets more than 66% correct predictions but if we take a majority vote, 100% correct

• Suppose we have 5 sources to wer Will it rain tomorrow?"

EDANGE OF THE 45 CS771: Intro to ML

Nov 08, 2017

Works even when training is no

No individual network gets more than 66% correct predictions but if we take a majority vote, 100% correct

• Suppose we have 5 sources to wer Will it rain tomorrow?"

wikipedia.org

Works even when training is no

No individual network gets more than 66% correct predictions but if we take a majority vote, 100% correct

CS771: Intro to ML

• Suppose we have 5 sources to wer Will it rain tomorrow?"

Works even when training is no

No individual network gets more than 66% correct predictions but if we take a majority vote, 100% correct

CS771: Intro to ML

• Suppose we have 5 sources to wer Will it rain tomorrow?"

Works even when training is no

No individual network gets more than 66% correct predictions but if we take a majority vote, 100% correct

CS771: Intro to ML

Suppose we have 5 sources to wer Will it rain tomorrow?"

Nov 08, 2017

wikipedia.org

Works even when training is no

No individual network gets more than 66% correct predictions but if we take a majority vote, 100% correct

CS771: Intro to ML

Suppose we have 5 sources to wer Will it rain tomorrow?"

Nov 08, 2017

wikipedia.org

Works even when training is no

No individual network gets more than 66% correct predictions but if we take a majority vote, 100% correct

• Suppose we have 5 sources to wer Will it rain tomorrow?"

EDANGE OF THE 45 CS771: Intro to ML

Works even when training is no

No individual network gets more than 66% correct predictions but if we take a majority vote, 100% correct

Suppose we have 5 sources to a wer Will it rain tomorrow?"

 \mathcal{A}

CS771: Intro to ML

Works even when training is no

No individual network gets more than 66% correct predictions but if we take a majority vote, 100% correct

• Suppose we have 5 sources to wer Will it rain tomorrow?"

 \mathcal{M}

CS771: Intro to ML

Works even when training is no

No individual network gets more than 66% correct predictions but if we take a majority vote, 100% correct

CS771: Intro to ML

• Suppose we have 5 sources to wer Will it rain tomorrow?"

Nov 08, 2017

wikipedia.org

Works even when training is no

No individual network gets more than 66% correct predictions but if we take a majority vote, 100% correct

CS771: Intro to ML

• Suppose we have 5 sources to wer Will it rain tomorrow?"

Nov 08, 2017

wikipedia.org

Works even when training is no

No individual network gets more than 66% correct predictions but if we take a majority vote, 100% correct

Suppose we have 5 sources to a wer Will it rain tomorrow?"

Nov 08, 2017

wikipedia.org

CS771: Intro to ML

Works even when training is no

No individual network gets more than 66% correct predictions but if we take a majority vote, 100% correct

• Suppose we have 5 sources to wer Will it rain tomorrow?"

Nov 08, 2017

wikipedia.org

CS771: Intro to ML

- Receive K pre-trained classifiers $f_1, f_2, ..., f_K$ s.t. $f_i: \mathcal{X} \to \{-1, +1\}$
- Construct a new classifier \hat{f}_{MAJ} such that for any $x \in \mathcal{X}$

$$\hat{f}_{MAJ}(x) = sign\left(\sum_{k=1}^{K} f_k(x)\right)$$

- Hope that mistakes of one will be corrected by others
- Stacking: interpret $[f_1(x), f_2(x), ..., f_K(x)]$ as a K-dimensional vector and learn a new classifier over these "features"
- This is not expected to do well in general. If the classifiers were not trained properly, they may synchronize their mistakes
- Fixing this issue leads to useful techniques bagging and boosting

Bagging - Bootstrap AGGregatING

- Has variance reduction properties works for any model
- Given a training set S with n data points
 - Sample n data points with replacement from S call this S_1
 - Repeat this K times to obtain K bagged datasets S_1, S_2, \dots, S_K
 - Learn a model $f_i: \mathcal{X} \to \{-1,1\}$ using dataset S_i (maybe the same algo)
 - Predict a new point $x \in \mathcal{X}$ using $\hat{f}_{MAJ}(x) = \text{sign}(\sum_{k=1}^{K} f_i(x))$
- Can show that only about 63% of S lands up in any S_i
- This means all S_i have sufficient diff
- Even if we have a high variance method that overfits, it will overfit to substantially different sets
- Overall variance reduction effect

Bagging - Bootstrap AGGregatING

- Has variance reduction properties works f Usually all f_i are from
- ullet Given a training set S with n data points
 - Sample n data points with replacement from S d
 - Repeat this K times to obtain K bagged dataset $S_1, S_2, ..., S_K$
 - Learn a model $f_i: \mathcal{X} \to \{-1,1\}$ using dataset S_i (maybe the same algo)
 - Predict a new point $x \in \mathcal{X}$ using $\hat{f}_{MAJ}(x) = \text{sign}(\sum_{k=1}^{K} f_i(x))$
- Can show that only about 63% of S lands up in any S_i
- This means all S_i have sufficient diff
- Even if we have a high variance method that overfits, it will overfit to substantially different sets
- Overall variance reduction effect

the same model class

 ${\mathcal M}$ e.g. DTs

Bagging

- Note that the K models are trained independently
 - Allows for massive parallelization of learning algorithms
- We may train the same kind of model in these K iterations e.g. train K decision trees of the same/different depth
- Can be used to enforce regularization without the explicit use of regularizers useful in models where modifying code is tricky
- Seen to perform variance reduction
- Does not reduce bias because bagging usually applied to powerful models where bias is small to begin with
- Two popular algorithms: random forests and dropout, have their genesis in bagging

Random Forests

- A collection of decision trees is called a decision forest
- Let us fix the ID3 algorithm to learn a decision tree
- Let us have training data $S = \{(\mathbf{x}^i, y^i)\}_{i=1,\dots,n}$ with $x^i \in \mathbb{R}^d, y^i \in \{-1,1\}$
- Random forests learn K decision trees
- First, bagging is done to get datasets $S_1, ..., S_K$
- Next, "feature bagging" is done
 - Sample K subsets of [d] $F_1, F_2, ... F_K$, each of size d' where each is chosen randomly **without** replacement (note bagging was done with replacement)
 - Typically $d' \sim \sqrt{d}$ for DTs
- Learn the k-th DT on dataset S_k using only the features in F_k
- Intuition: if some feature is really good, every tree will use it and then all trees will behave similarly so restrict available features

Dropout

- Dropout for NNs can be seen as an attempt to perform bagging and feature bagging at a ridiculous scale
- If the NN has N nodes then dropout wishes to train all 2^N possible subnetworks as the $K=2^N$ models
- However, whereas in random forests, different trees usually have very different parameter values, dropout wants all these 2^N subnetworks to share the parameters (edge weights)
- Two subnetworks that contain the same edge must have the same weight on that edge
- Intractable to execute explicitly which is why dropout does this approximately.
- At every time step t a random subnetwork trained using a minibatch of data – mini-batch meant to approximate a bagged set⁶⁷

Please give your Feedback

http://tinyurl.com/ml17-18afb

