AULA 3 CB0534 WEBCONFERÊNCIA 20-03-2023

PROPRIEDADES DOS LIMITES:

- 1. $Se\ f(x) = x$, então $\lim_{x \to a} f(x) = a$.
- **2.**Se f(x) = C, C constante, então $\lim_{x \to a} f(x) = C$
- 3.Se existem, $\lim_{x\to a} f(x) = L e \lim_{x\to a} g(x) = M$, então:
 - i) Existe $\lim_{x\to a} [f(x) + g(x)] = L + M$.
 - ii) Existe $\lim_{x\to a} \{f(x). g(x)\} = L. M$
 - iii) Se $M \neq 0$, existe $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}$.
 - iv) Se n é par e L > 0, $existe \lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{L}$.

Veja no Livro as demonstrações.

Exemplo 2: $Se\ f(x) = x$, então $\lim_{x\to a} f(x) = a$.

Solução: É o mesmo que mostrar que $\lim_{x\to a} x = a$.

Para isso, dado $\epsilon > 0$, encontrar $\delta > 0$, de modo que

Quando $0 < |x - a| < \delta$, então $|x - a| < \epsilon$

Qual seria um $\delta > 0$ que satisfaça isso?

Certamente, $\delta = \epsilon$ satisfaz.

Assim escrevemos, tomando $\delta = \epsilon$, teremos

Quando $0 < |x - a| < \epsilon$, então $|x - a| < \epsilon$

Isso prova que $\lim_{x\to a} f(x) = a$.

Exemplo 3: Como prova que $\lim_{x\to 5} x = 5$.

Solução: dado $\epsilon > 0$, $devo\ encontrar\ \delta > 0$, de modo que

quando $0<|x-5|<\delta$, então $|x-5|<\epsilon$ tomando $\delta=\epsilon$, obtemos quando $0<|x-5|<\epsilon$, então $|x-5|<\epsilon$

quando $0 < |x - 5| < \epsilon$, entao $|x - 5| < \epsilon$ Isso prova que existe $\lim_{x \to 5} x = 5$.

Exemplo 4: Como prova que $\lim_{x\to 2} 3x = 6$.

Solução: dado $\epsilon>0$, $devo\ encontrar\ \delta>0$, de modo que

quando $0<|x-2|<\delta$, então $|3x-6|<\epsilon$

temos que |3x - 6| = 3|x - 2|

então quando $0<|x-2|<\delta$, então $3|x-2|<\epsilon$

tomando $\delta = \frac{\epsilon}{3}$, obtemos

quando $0<|x-2|<rac{\epsilon}{3}$, então $3|x-2|<3.rac{\epsilon}{3}=\epsilon$

ié, quando $0<|x-2|<rac{\epsilon}{3}$, então $|3x-6|<3.rac{\epsilon}{3}=\epsilon$

Isso prova que existe $\lim_{x\to 2} 3x = 6$.

LIMITES LATERAIS

Vimos que:

$$\lim_{x \to a} f(x) = L \Leftrightarrow \begin{cases} dado \ \epsilon > 0, \exists \delta > 0 \ tal \ que, quando \\ 0 < |x - a| < \delta \ ent \ ao \ |f(x) - L| < \epsilon \end{cases}$$

Vejamos que o lado direito da equivalência acima, Pode ser escrito como abaixo:

$$\begin{bmatrix} dado \, \epsilon > 0, \exists \delta_1 > 0 \ tal \ que, \\ quando \\ 0 < x - a < \delta_1 \ \Rightarrow \ |f(x) - L| < \epsilon \\ e \\ dado \, \epsilon > 0, \exists \delta_2 > 0 \ tal \ que, \\ quando \\ 0 < a - x < \delta_2 \ \Rightarrow \ |f(x) - L| < \epsilon \end{bmatrix}$$

Mais ainda, vejamos que podemos escrever:

$$\begin{bmatrix} dado \ \epsilon > 0, \exists \delta_1 > 0 \ tal \ que, \\ quando \\ 0 < x - a < \delta_1 \ \Rightarrow \ |f(x) - L_1| < \epsilon \\ e \\ dado \ \epsilon > 0, \exists \delta_2 > 0 \ tal \ que, \\ quando \\ 0 < a - x < \delta_2 \ \Rightarrow \ |f(x) - L_2| < \epsilon \\ e \ L_1 = L_2 \end{bmatrix}$$

Assim,

Assim,

$$\lim_{x \to a} f(x) = L \iff egin{bmatrix} dado & \epsilon > 0, \exists \delta_1 > 0 \ tal \ que, \ quando \ 0 < x - a < \delta_1 \ \Rightarrow \ |f(x) - L_1| < \epsilon \ e \ dado \ \epsilon > 0, \exists \delta_2 > 0 \ tal \ que, \ quando \ 0 < a - x < \delta_2 \ \Rightarrow \ |f(x) - L_2| < \epsilon \ e \ L_1 = L_2 \ \end{bmatrix}$$

Definimos:

1.Se $dado \epsilon > 0$, $\exists \delta_1 > 0$ tal que, quando $0 < x - a < \delta_1 \; \Rightarrow \; |f(x) - L_1| < \epsilon$, dizemos que existe o limite de f(x) quando x tende à a, pela direita e vale L_1 .

Notação: $\lim_{x\to a^+} f(x) = L_1$

2. Se dado $\epsilon > 0$, $\exists \delta_2 > 0$ tal que, quando $0 < a - x < \delta_2 \; \Rightarrow \; |f(x) - L_2| < \epsilon$, dizemos que existe o limite de

f(x) quando x tende à a, pela esquerda e vale L_2

$$Nota$$
ção: $\lim_{x \to a^-} f(x) = L_2$. Concluímos:
$$\lim_{x \to a} f(x) = L \iff \begin{bmatrix} Existem \\ \lim_{x \to a^+} f(x) = L_1 e \lim_{x \to a^-} f(x) = L_2 \\ e \ L_1 = L_2 \end{bmatrix}$$

Exemplo 5: Verifique se existe $\lim_{x\to a} f(x)$, onde

$$f(x) = \begin{cases} -x^2 + 2x, & se \ x \le 2 \\ x - 2, & se \ x > 2 \end{cases} \quad a = 2.$$

Solução:

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2} \left(-x^{2} + 2x \right) = 0$$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2} (x - 2) = 0$$

Portanto existe $\lim_{x\to 2} f(x) = 0$.

Exemplo 6: Verifique se existe $\lim_{x\to a} g(x)$, onde

$$g(x) = \begin{cases} -x^2 + 2x, & se \ x < 2 \\ x - 2, & se \ x > 2 \\ 1, & se \ x = 2 \end{cases} \quad a = 2$$

Solução:

$$\lim_{x \to 2^{-}} g(x) = \lim_{x \to 2} (-x^{2} + 2x) = 0$$

$$\lim_{x \to 2^+} g(x) = \lim_{x \to 2} (x - 2) = 0$$

Portanto existe $\lim_{x\to 2} g(x) = 0$.

Exemplo 7: Verifique se existe $\lim_{x\to a} f(x)$, onde

$$f(x) = \begin{cases} x^2 - 2x + 2, & se \ x \le 1 \\ x - 1, & se \ x > 1 \end{cases} \quad a = 1.$$

Solução:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} (x^{2} - 2x + 2) = 1$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1} (x - 1) = 0$$

Como $\lim_{x\to 1^-} f(x) \neq \lim_{x\to 1^+} f(x)$, concluímos que

Não existe $\lim_{x\to 1} f(x)$.

Exemplo 8: Verifique se existe $\lim_{x\to 2} \frac{x^2-x-2}{x-2}$.

Solução:

Veja que não podemos usar a propriedade do limite do quociente.

Sabemos que para verificar o limite quando $x \rightarrow a$, consideramos $x \neq a$.

Verificamos que para $x \neq 2$, $\frac{x^2-x-2}{x-2} = x + 1$.

Então
$$\lim_{x\to 2} \frac{x^2-x-2}{x-2} = \lim_{x\to 2} (x+1) = 3$$
.

Exemplo 9: Verificar $\lim_{x\to 1} \frac{1}{(x-1)^2}$,

veja $\lim_{x\to 1} (x-1)^2 = 0$, logo não se aplica a propriedade do limite do quociente.

O gráfico de
$$f(x) = \frac{1}{(x-1)^2}$$

No caso dizemos que a reta x = 1 é assíntota Vertical ao gráfico.

<u>Definição</u>: Seja f definida num intervalo aberto contendo a, exceto possivelmente em a.

Dizemos que f(x) cresce indefinidamente

quando $x \to a$, se para qualquer N > 0, existe $\delta > 0$ tal que, quando $0 < |x - a| < \delta \Rightarrow f(x) > N$.

Notação: $\lim_{x\to a} f(x) = +\infty$

No caso,
$$\lim_{x\to 1} \frac{1}{(x-1)^2}$$

Dado N>0, queremos encontrar $\delta>0$ de modo

Que,
$$0 < |x-1| < \delta \Rightarrow f(x) > N$$
, istoé, $\frac{1}{(x-1)^2} > N$

Mas,
$$\frac{1}{(x-1)^2} > N \Leftrightarrow |x-1| < \frac{1}{\sqrt{N}}$$

Tomando, então, $\delta = \frac{1}{\sqrt{N}}$

Quando
$$0 < |x-1| < \frac{1}{\sqrt{N}} \Rightarrow \frac{1}{N} > |x-1|^2 = (x-1)^2$$

Logo
$$\frac{1}{(x-1)^2} > N$$
. Portanto $\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$

Observação: Essa a notação escolhida para dizer que $f(x) = \frac{1}{(x-1)^2}$ cresce indefinidamente quando $x \to 1$.

Não se trata de limite como definido anteriormente mas somente de uma notação.

No caso a reta x = 1 é chamada <u>assíntota vertical</u> ao gráfico de f.

De modo análogo, definimos:

<u>Definição</u>: Seja f definida num intervalo aberto contendo a, exceto possivelmente em a.

Dizemos que f(x) decresce indefinidamente

Quando $x \to a$, se para qualquer N < 0, existe $\delta > 0$ tal que, quando $0 < |x - a| < \delta \Rightarrow f(x) < N$.

Notação:
$$\lim_{x\to a} f(x) = -\infty$$
.

Observe que novamente trata-se de uma notação. Nesse caso também diz-se que a reta x = a é uma assíntota vertical ao gráfico de f.

<u>Definição</u>: Dizemos que a reta x = a é uma assíntota vertical ao gráfico de f, se acontecer uma das condições:

$$\lim_{x\to a} f(x) = -\infty; \quad \lim_{x\to a} f(x) = +\infty; \quad \lim_{x\to a^{-}} f(x) = +\infty.$$

$$\lim_{x\to a^+} f(x) = +\infty; \quad \lim_{x\to a^+} f(x) = -\infty; \quad \lim_{x\to a^-} f(x) = -\infty.$$

Do modo como provamos no exemplo anterior Podemos provar para $r \in N$:

1.
$$\lim_{x\to 0^+} \frac{1}{x^r} = +\infty$$
; 2. $\lim_{x\to 0^-} \frac{1}{x^r} = \begin{cases} -\infty, se\ r\ impar \\ +\infty, se\ r\ par. \end{cases}$;

Caso de
$$\lim_{x\to a} \frac{g(x)}{f(x)}$$
,

onde
$$\lim_{x\to a} g(x) = c \neq 0$$
 e $\lim_{x\to a} f(x) = 0$

Teorema: Suponha a um número real, existem

$$\lim_{x\to a} f(x) = 0$$
 e $\lim_{x\to a} g(x) = c \neq 0$, então:

i)Se
$$c>0$$
 e
$$\begin{cases} f(x) \to 0^+, teremos \lim_{x \to a} \frac{g(x)}{f(x)} = +\infty \\ f(x) \to 0^-, teremos \lim_{x \to a} \frac{g(x)}{f(x)} = -\infty \end{cases}$$

ii)Se
$$c < 0$$
 e
$$\begin{cases} f(x) \to 0^+, teremos \lim_{x \to a} \frac{g(x)}{f(x)} = -\infty \\ f(x) \to 0^-, teremos \lim_{x \to a} \frac{g(x)}{f(x)} = +\infty \end{cases}$$

Exemplo 9:
$$\lim_{x \to -2^-} \frac{x+3}{x+2}$$

Temos:

$$\lim_{x \to -2^{-}} (x+3) = 1 e \lim_{x \to -2^{-}} (x+2) = 0$$

Mas quando
$$x o -2^- \Rightarrow (x+2) o 0^-$$

Assim, pelo Teorema,
$$\lim_{x\to -2^-} \frac{x+3}{x+2} = -\infty$$
.

Exemplos 10: Determine as assíntotas verticais ao

Gráfico de
$$f(x) = \frac{x+3}{x+2}$$

Solução:

No exemplo anterior vimos que $\lim_{x\to -2^-} \frac{x+3}{x+2} = -\infty$.

Logo a reta x = -2 é uma assíntota vertical ao gráfico de f.

Podemos ver que para qualquer outro valor de x, o limite f(x) existe. Logo esse gráfico só possui uma assíntota vertical.