Tutorial de Análisis Numérico Interpolación : Splines cúbicos

Jesús García Quesada

Departamento de Informática y Sistemas

Universidad de Las Palmas de Gran Canaria

35017 Campus de Tafira, España

Email: jgarcia@dis.ulpgc.es

2 de Octubre de 2000, v0.3

Informática

Página Web

Página de Inicio

Contenido

Página 1 de 22

Volver

Pantalla completa

Cerrar

Índice General

PROBLEMAS

1	INTERPOLA	CIÓN POI	R SPLINES	CÚBICOS

Soluciones a los Problemas

16

19

3

ULPGC

Informática

Página Web

Página de Inicio

Contenido

Página 2 de 22

Volver

Pantalla completa

Cerrar

1. INTERPOLACIÓN POR SPLINES CÚBICOS

Supongamos que tenemos los n+1 puntos:

$$P_k(x_k, y_k)$$
, donde $y_k = f(x_k), k = 0, 1, ..., n$

en los cuales se quiere interpolar la función f. Las abcisas no es necesario que sean equidistantes, pero se suponen ordenados, o sea,

$$x_0 < x_1 < x_2 < \cdots < x_n$$

En ésta sección trataremos de la interpolación polinómica a trozos. La idea es encontrar polinomios cúbicos $q_k(x)$ que interpolen la función f en el subintervalo $[x_k, x_{k+1}], k = 0, 1, \ldots, n-1$.

Definición 1. La función s(x) se llama cúbica a trozos en $[x_0, x_n]$ si existen polinomios cúbicos $q_0(x), q_1(x), \ldots, q_{n-1}(x)$ tales que :

$$s(x) = q_k(x)$$
 en $[x_k, x_{k+1}]$, para $k = 0, 1, ..., n-1$

Para que s(x) interpole en los puntos P_0, P_1, \dots, P_n los $q_k(x)$ han de verificar :

$$\begin{cases} q_k(x_k) = y_k \\ q_k(x_{k+1}) = y_{k+1}, \quad k = 0, 1, \dots, n-1 \end{cases}$$
 (1)

ULPGC

Informática

Página Web

Página de Inicio

Contenido

Volver

Pantalla completa

Cerrar

 ${\bf Figura\ 1:\ Interpolaci\'on\ polin\'omica\ a\ trozos.}$

ULPGC

Informática

Página Web

Página de Inicio

Contenido

Página 4 de 22

Volver

Pantalla completa

Cerrar

lo cual supone 2n condiciones. Llamaremos a s(x) spline cúbico, o simplemente spline, si los polinomios $q_k(x)$ tienen la misma pendiente y la misma concavidad en los nodos que las unen, o sea :

$$\begin{cases} q'_{k-1}(x_k) = q'_k(x_k) \\ q''_{k-1}(x_k) = q''_k(x_k), \quad k = 1, 2, \dots, n-1 \end{cases}$$
 (2)

lo cual supone 2(n-1) condiciones a cumplir. Al tener que verificar las condiciones (1) y (2) se asegura que s(x) tiene su primera y segunda derivadas continuas en $[x_0, x_n]$. En éste caso se dice que s(x) es un spline interpolador para P_0, P_1, \ldots, P_n .

Si s(x) es cúbica a trozos en el intervalo $[x_0, x_n]$, su derivada segunda s''(x) es lineal en el mismo intervalo e interpola en los puntos $(x_k, s''(x_k))$ y $(x_{k+1}, s''(x_{k+1}))$ en $[x_k, x_{k+1}]$. Por tanto, $q_k(x)$ es un polinomio de grado uno que interpola en los puntos $(x_k, s''(x_k))$ y $(x_{k+1}, s''(x_{k+1}))$:

$$q_k''(x) = s''(x_k) \frac{x - x_{k+1}}{x_k - x_{k+1}} + s''(x_{k+1}) \frac{x - x_k}{x_{k+1} - x_k}, \text{ para } k = 0, 1, \dots, n-1$$

Denotando con

$$h_k = x_{k+1} - x_k, \quad k = 0, 1, \dots, n-1$$

У

$$\sigma_k = s''(x_k), \quad k = 0, 1, \dots, n$$

tenemos:

$$q_k''(x) = \frac{\sigma_k}{h_k}(x_{k+1} - x) + \frac{\sigma_{k+1}}{h_k}(x - x_k), \quad \text{para } k = 0, 1, \dots, n - 1$$
 (3)

ULPGC

Informática

Página Web

Página de Inicio

Contenido

Página 5 de 22

Volver

Pantalla completa

Cerrar

donde h_k y σ_k son constantes (σ_k a determinar). Integrando dos veces :

$$q_k(x) = \frac{\sigma_k}{h_k} \frac{(x_{k+1} - x)^3}{6} + \frac{\sigma_{k+1}}{h_k} \frac{(x - x_k)^3}{6} + C_k + D_k x \tag{4}$$

donde el término lineal lo podemos escribir como:

$$C_k + D_k x = A_k(x - x_k) + B_k(x_{k+1} - x)$$

siendo A_k y B_k constantes arbitrarias, quedando entonces :

$$q_k(x) = \frac{\sigma_k}{h_k} \frac{(x_{k+1} - x)^3}{6} + \frac{\sigma_{k+1}}{h_k} \frac{(x - x_k)^3}{6} + A_k(x - x_k) + B_k(x_{k+1} - x)$$
 (5)

Aplicando a (5) las condiciones (1):

$$y_k = \frac{\sigma_k}{h_k} \frac{h_k^3}{6} + \frac{\sigma_{k+1}}{h_k} 0 + A_k \cdot 0 + B_k h_k = \frac{\sigma_k}{6} h_k^2 + B_k h_k \tag{6}$$

$$y_{k+1} = \frac{\sigma_{k+1}}{h_k} h_k^3 + A_k h_k = \frac{\sigma_{k+1}}{6} h_k^2 + A_k h_k \tag{7}$$

Informática

Página Web

Página de Inicio

Contenido

Página 6 de 22

Volver

Pantalla completa

Cerrar

y despejando de aquí A_k y B_k y sustituyendo en (5) resulta :

$$q_{k}(x) = \frac{\sigma_{k}}{6} \left[\frac{(x_{k+1} - x)^{3}}{h_{k}} - h_{k}(x_{k+1} - x) \right]$$

$$+ \frac{\sigma_{k+1}}{6} \left[\frac{(x - x_{k})^{3}}{h_{k}} - h_{k}(x - x_{k}) \right]$$

$$+ y_{k} \left[\frac{x_{k+1} - x}{h_{k}} \right] + y_{k+1} \left[\frac{x - x_{k}}{h_{k}} \right], \quad \text{para } k = 0, 1, \dots, n - 1$$

$$(8)$$

que es la ecuación del spline $q_k(x)$.

Nos falta aún conocer los valores $\sigma_0, \sigma_1, \dots, \sigma_n$ (n+1 incógnitas) para lo cual usamos (2); derivando en (8) tenemos :

$$q'_k(x) = \frac{\sigma_k}{6} \left[\frac{-3(x_{k+1} - x)^2}{h_k} + h_k \right] + \frac{\sigma_{k+1}}{6} \left[\frac{3(x_k - x)^2}{h_k} - h_k \right] + \frac{y_{k+1} - y_k}{h_k}$$

Por tanto:

$$q_k'(x_k) = \frac{\sigma_k}{6}(-2h_k) + \frac{\sigma_{k+1}}{6}(-h_k) + \frac{y_{k+1} - y_k}{h_k}$$
(9)

$$q'_k(x_{k+1}) = \frac{\sigma_k}{6}(h_k) + \frac{\sigma_{k+1}}{6}(2h_k) + \frac{y_{k+1} - y_k}{h_k}$$
(10)

ULPGC

Informática

Página Web

Página de Inicio

Contenido

Página 7 de 22

Volver

Pantalla completa

Cerrar

Reemplazando k por k-1 en (10) para obtener $q_{k-1}'(x_k)$ e igualando a (9) nos da :

$$h_{k-1} \sigma_{k-1} + 2 (h_{k-1} + h_k) \sigma_k + h_k \sigma_{k+1} = 6 \left(\frac{y_{k+1} - y_k}{h_k} - \frac{y_k - y_{k-1}}{h_{k-1}} \right), \text{ para } k = 1, 2, \dots, n-1$$
(11)

o también

$$h_{k-1} \sigma_{k-1} + 2 (h_{k-1} + h_k) \sigma_k + h_k \sigma_{k+1} = 6 \left(\frac{\Delta y_k}{h_k} - \frac{\Delta y_{k-1}}{h_{k-1}} \right), \text{ para } k = 1, 2, \dots, n-1$$
(12)

o incluso

$$h_{k-1} \sigma_{k-1} + 2 (h_{k-1} + h_k) \sigma_k + h_k \sigma_{k+1} = 6 \left(f[x_k, x_{k+1}] - f[x_{k-1}, x_k] \right), \text{ para } k = 1, 2, \dots, n-1$$
(13)

Como el índice k varía de 1 a n-1, se producen n-1 ecuaciones lineales con n+1 incógnitas $\sigma_0, \sigma_1, \ldots, \sigma_n$, lo cual produce un sistema *subdeterminado* que tiene infinitas soluciones.

Existen varias estrategias para eliminar σ_0 de la primera ecuación y σ_n de la (n-1)ésima produciendo un *sistema tridiagonal* de orden (n-1) en las variables $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$.

ALTERNATIVA I Especificar el valor de s''(x) en los puntos extremos : $\sigma_0 = s''(x_0)$ y $\sigma_n = s''(x_n)$. Si se pone $\sigma_0 = 0$, $\sigma_n = 0$ se denomina spline cúbico natural.

ALTERNATIVA II Suponer que s''(x) es constante en los extremos : $\sigma_0 = \sigma_1$ y $\sigma_n = \sigma_{n-1}$

ULPGC

Informática

Página Web

Página de Inicio

Contenido

Página 8 de 22

Volver

Pantalla completa

Cerrar

ALTERNATIVA III Suponer que s''(x) es lineal cerca de los extremos : $\sigma_0 = \frac{1}{h_1} ((h_0 + h_1)\sigma_1 - h_0\sigma_2)$ y $\sigma_n = \frac{1}{h_1} (-h_{n-1})\sigma_{n-2} + (h_{n-2} + h_{n-1})\sigma_{n-1})$

ALTERNATIVA IV Especificar el valor de s'(x) en los puntos extremos :

$$\sigma_0 = \frac{3}{h_0} \left[\Delta y_0 - s'(x_0) \right] - \frac{1}{2} \sigma_1 y$$

$$\sigma_n = \frac{3}{h_{n-1}} \left[s'(x_n) - \Delta y_{n-1} \right] - \frac{1}{2} \sigma_{n-1}$$

Si hay que calcular muchas veces s(z) entonces es preferible hacer la sustitución :

$$x_{k+1} - z = (x_{k+1} - x_k) - (z - x_k) = h_k - (z - x_k)$$

en $q_k(z)$ y entonces expresar éste en potencias de $z-x_k$ para obtener :

$$q_k(z) = y_k + \alpha_1(z - x_k) + \alpha_2(z - x_k)^2 + \alpha_3(z - x_k)^3$$

= $y_k + (z - x_k)(\alpha_1 + (z - x_k)(\alpha_2 + (z - x_k)\alpha_3))$

evaluado con sólo 4 sumas/restas y 3 productos, donde

$$\alpha_1 = f[x_k, x_{k+1}] - \frac{h_k}{6}(\sigma_{k+1} + 2\sigma_k), \quad \alpha_2 = \frac{\sigma_k}{2}, \quad \alpha_3 = \frac{\sigma_{k+1} - \sigma_k}{6h_k}$$

En forma matricial, el sistema tridiagonal que resulta es (caso de spline cúbico natural):

ULPGC

Informática

Página Web

Página de Inicio

Contenido

Página 9 de 22

Volver

Pantalla completa

Cerrar

$\begin{bmatrix} 2 (h_0 + h_1) & h_1 & \cdots & 0 \\ h_1 & 2 (h_1 + h_2) & \cdots & 0 \\ 0 & h_2 & \cdots & 0 \\ \vdots & \vdots & 2 (h_{n-3} + h_{n-2}) & h_{n-2} \\ 0 & 0 & h_{n-2} & 2 (h_{n-2} + h_{n-1}) \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \vdots \\ \sigma_{n-1} \end{bmatrix} =$ Informática Página Web $= 6 \begin{bmatrix} f[x_1, x_2] - f[x_0, x_1] \\ f[x_2, x_3] - f[x_1, x_2] \\ f[x_3, x_4] - f[x_2, x_3] \\ \vdots \\ f[x_{n-1}, x_n] - f[x_{n-1}, x_{n-2}] \end{bmatrix}$ Página de Inicio Contenido o también

 $\begin{bmatrix} 2 \left(h_0 + h_1\right) & h_1 & \cdots & 0 \\ h_1 & 2 \left(h_1 + h_2\right) & \cdots & 0 \\ 0 & h_2 & \cdots & 0 \\ \vdots & \vdots & 2 \left(h_{n-3} + h_{n-2}\right) & h_{n-2} \\ 0 & 0 & h_{n-2} & 2 \left(h_{n-2} + h_{n-1}\right) \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \vdots \\ \sigma_{n-1} \end{bmatrix} = 6 \begin{bmatrix} \frac{\Delta y_1}{h_1} - \frac{\Delta y_0}{h_0} \\ \frac{\Delta y_2}{h_2} - \frac{\Delta y_1}{h_1} \\ \frac{\Delta y_3}{h_3} - \frac{\Delta y_2}{h_2} \\ \vdots \\ \frac{\Delta y_{n-1}}{h_{n-1}} - \frac{\Delta y_{n-2}}{h_{n-2}} \end{bmatrix}$

Página 10 de 22

ULPGC

Volver

Pantalla completa

Cerrar

Ejemplo.

Interpolar por splines cúbicos la función f(x) = 1/x en x = 1.5 tomando los puntos (0.1, 10.0), (0.2, 5.0), (0.5, 2.0), (1.0, 1.0), (2.0, 0.5), (5.0, 0.2), (10.0, 0.1). Solución:

$$h_0 = 0.2 - 0.1 = 0.1$$
 $h_3 = 2.0 - 1.0 = 1.0$
 $h_1 = 0.5 - 0.2 = 0.3$ $h_4 = 5.0 - 2.0 = 3.0$
 $h_2 = 1.0 - 0.5 = 0.5$ $h_5 = 10.0 - 5.0 = 5.0$

El sistema que resulta es

$$0.1 \,\sigma_0 + 2 \,(0.1 + 0.3) \,\sigma_1 + 0.3 \,\sigma_2 = 6 \,\left(\frac{2 - 5}{0.5 - 0.2} - \frac{5 - 10}{0.2 - 0.1}\right)$$

$$0.3 \,\sigma_1 + 2 \,(0.3 + 0.5) \,\sigma_2 + 0.5 \,\sigma_3 = 6 \,\left(\frac{1 - 2}{1.0 - 0.5} - \frac{2 - 5}{0.5 - 0.2}\right)$$

$$0.5 \,\sigma_2 + 2 \,(0.5 + 1.0) \,\sigma_3 + 1.0 \,\sigma_4 = 6 \,\left(\frac{0.5 - 1.0}{2.0 - 1.0} - \frac{1 - 2}{1.0 - 0.5}\right)$$

$$1.0 \,\sigma_3 + 2 \,(1.0 + 3.0) \,\sigma_4 + 3.0 \,\sigma_5 = 6 \,\left(\frac{0.2 - 0.5}{5.0 - 2.0} - \frac{0.5 - 1.0}{2.0 - 1.0}\right)$$

$$3.0 \,\sigma_4 + 2 \,(3.0 + 5.0) \,\sigma_5 + 5.0 \,\sigma_6 = 6 \,\left(\frac{0.1 - 0.2}{1.0 - 5.0} - \frac{0.2 - 0.5}{5.0 - 2.0}\right)$$

Poniendo $\sigma_0 = \sigma_6 = 0$ tenemos

ULPGC

Informática

Página Web

Página de Inicio

Contenido

Página 11 de 22

Volver

Pantalla completa

Cerrar

de donde se obtienen

$$\sigma_1 = 311.65398570643$$
 $\sigma_2 = -31.077295217152$ $\sigma_3 = 8.4549532710280$ $\sigma_4 = -.82621220450797$ $\sigma_5 = 0.18491478834524$

Para x = 1.5 habrá que elegir $q_3(x)$

 $q_3(x) = \frac{\sigma_3}{6} \left[\frac{(2.0 - x)^3}{1.0} - 1.0(2.0 - x) \right] + \frac{\sigma_4}{6} \left[\frac{(x - 1.0)^3}{1.0} - 1.0(x - 1.0) \right] + 1.0(2.0 - x) + 0.5(x - 1.0)$

interpolación polinómica (ver figura 2).

Volver

Pantalla completa

Cerrar

Salir

ULPGC

Informática

Página Web

Página de Inicio

Contenido

Los diferentes splines que resultan son:

$$\begin{aligned} q_0(x) = &519.423309x^3 - 155.826993x^2 - 39.611534x + 15 \\ q_1(x) = &-190.406267x^3 + 270.070753x^2 - 124.791083x + 20.678637 \\ q_2(x) = &13.177416x^3 - 35.304772x^2 + 27.896679x - 4.769324 \\ q_3(x) = &-1.546861x^3 + 8.868059x^2 - 16.276152x + 9.954953 \\ q_4(x) = &+0.0561737x^3 - 0.750148x^2 + 2.960264x - 2.869324 \\ q_5(x) = &-0.00616383x^3 + 0.1849148x^2 - 1.715052x + 4.922870 \end{aligned}$$

$$s(x) = \begin{cases} q_0(x) , & \text{si } x \in [0.1, 0.2], & \text{(también } (-\infty, 0.2]) \\ q_1(x) , & \text{si } x \in [0.2, 0.5], \\ q_2(x) , & \text{si } x \in [0.5, 1.0], \\ q_3(x) , & \text{si } x \in [1.0, 2.0], \\ q_4(x) , & \text{si } x \in [2.0, 5.0], \\ q_5(x) , & \text{si } x \in [5.0, 10.0], & \text{(también } [5.0, +\infty)) \end{cases}$$

En el intervalo [1.0, 2.0], la representación de ambas funciones es la que aparece en la figura 2.

Ejemplo. Interpolar por splines cúbicos la función $f(x) = 1/(x^2 + 1)$ en el intervalo $0 \le x \le 1$ tomando los seis puntos de abcisas $x_k = k/5$, k = 0, 1, 2, 3, 4, 5. Solución:

Por cálculo directo tenemos:

ULPGC

Informática

Página Web

Página de Inicio

Contenido

Página 13 de 22

Volver

Pantalla completa

Cerrar

Figura 2: La función 1/x y $q_3(x)$ en el intervalo [1.0,2.0].

ULPGC

Informática

Página Web

Página de Inicio

Contenido

Página 14 de 22

Volver

Pantalla completa

Cerrar

$$y_0 = 1.00000000$$
 $y_3 = 0.73529412$
 $y_1 = 0.96153846$ $y_4 = 0.60975610$
 $y_2 = 0.86206896$ $y_5 = 0.50000000$

y es $h_0=h_1=h_2=h_3=h_4=1/5=h$ y poniendo $\sigma_0=\sigma_5=0$ y multiplicando ambas partes por 6/h :

$$\begin{bmatrix} 4 & 1 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \end{bmatrix} = \frac{6}{h^2} \begin{bmatrix} y_2 - 2y_1 + y_0 \\ y_3 - 2y_2 + y_1 \\ y_4 - 2y_3 + y_2 \\ y_5 - 2y_4 + y_3 \end{bmatrix} = \begin{bmatrix} -9.151194 \\ -4.095801 \\ 0.185523 \\ 2.367288 \end{bmatrix}$$

y resolviendo $\sigma_1 = -2.165814$, $\sigma_2 = -0.487920$, $\sigma_3 = 0.022536$, $\sigma_4 = 0.581866$ y tabulando la función entre 0 y 1.0 con paso 0.002 la gráfica de f(x) y el spline cúbico son indistinguibles (error máximo $\simeq 0.0040$ que se produce entre 0 y 0.2).

Informática

Página Web

Página de Inicio

Contenido

Página 15 de 22

Volver

Pantalla completa

Cerrar

2. PROBLEMAS

Problema 1. Construir el spline cúbico natural que interpola a partir de los datos:

Problema 2. Considerando los datos:

	0.15					2.11
<u>y</u>	0.3495	0.2989	0.2685	0.2251	0.0893	0.0431

obtener el spline cúbico natural que interpola en dichos puntos.

ULPGC

Informática

Página Web

Página de Inicio

Contenido

Página 16 de 22

Volver

Pantalla completa

Cerrar

Referencias

- [Act90] F.S. Acton. Numerical Methods That (Usually) Work. The Mathematical Association of America, Washington, 1990.
- [Atk89] K. E. Atkinson. An Introduction to Numerical Analysis. John Wiley, New York, 2nd. edition, 1989.
- [BF80] R.L. Burden and D. Faires. *Análisis Numérico*. Grupo Editorial Iberoamericana, México, 1980.
- [CC89] S.C. Chapra and R.P. Canale. *Numerical Methods for Engineers*. McGraw-Hill International, New York, second edition, 1989.
- [CdB80] S. D. Conte and C. de Boor. *Elementary Numerical Analysis: An Algorithmic Approach*. McGraw–Hill, New York, third edition, 1980.
- [DB74] Germund Dahlquist and Åke Björck. *Numerical Methods*. Prentice-Hall, Englewood Cliffs, New Jersey, 1974.
- [Fad59] V.N. Faddeeva. Computational Methods of Linear Algebra. Dover Publications, Inc, New York, 1959.
- [Frö79] C.-E. Fröberg. *Introduction to Numerical Analysis*. Adison–Wesley, Reading, Massachusetts, 2nd. edition, 1979.
- [GW89] C.F. Gerald and P.O. Wheatley. *Applied Numerical Analysis*. Addison-Wesley Publishing Co., Reading, Massachusets, fourth edition, 1989.

ULPGC

Informática

Página Web

Página de Inicio

Contenido

Página 17 de 22

Volver

Pantalla completa

Cerrar

[Hil74] F. B. Hildebrand. *Introduction to Numerical Analysis*. McGraw–Hill, New York, second edition, 1974.

[KC94] D. Kincaid and W. Cheney. Análisis Numérico: las matemáticas del cálculo científico. Addison-Wesley Iberoamericana, 1994.

[Mar87] M. J. Maron. Numerical Analysis: A Practical Approach. Macmillan Publishing Co., New York, second edition, 1987.

[ML91] M. J. Maron and R. J. Lopez. Numerical Analysis: A Practical Approach. Wadsworth, Belmont, California, third edition, 1991.

[RR78] Anthony Ralston and Philip Rabinowitz. A First Course in Numerical Analysis. McGraw-Hill, New York, 2nd. edition, 1978.

[Sch89] H.R. Schwarz. Numerical Analysis. John Wiley & Sons, Chichester, 1989.

[Wer84] W. Werner. Mathematics of Computation, 43:205–217, 1984.

[YG73a] David M. Young and R.T. Gregory. A Survey of Numerical Mathematics, volume I. Dover Publications, New York, 1973.

[YG73b] David M. Young and R.T. Gregory. A Survey of Numerical Mathematics, volume II. Dover Publications, New York, 1973.

ULPGC

Informática

Página Web

Página de Inicio

Contenido

Página 18 de 22

Volver

Pantalla completa

Cerrar

Soluciones a los Problemas

Problema 1. El sistema es:

$$\begin{bmatrix} 4 & 1 & 0 & 0 \\ 1 & 3 & 0.5 & 0 \\ 0 & 0.5 & 2 & 0.5 \\ 0 & 0 & 0.5 & 3 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \end{bmatrix} = \begin{bmatrix} 7.2 \\ -6.6 \\ 3.6 \\ 3 \end{bmatrix}$$

de donde se obtienen

$$\sigma_1 = 2.6788381742739$$
 $\sigma_2 = -3.5153526970954$
 $\sigma_3 = 2.5344398340249$ $\sigma_4 = 0.57759336099585$

Los diferentes splines son:

$$q_0(x) = +0.44647303x^3 - 1.24647303x + 1.4$$

$$q_1(x) = -1.03236514x^3 + 4.436514523x^2 - 5.68298755x + 2.87883817$$

$$q_2(x) = +2.01659751x^3 - 13.85726141x^2 + 30.90456432x - 21.51286307$$

$$q_3(x) = -0.65228216x^3 + 6.15933610x^2 - 19.13692946x + 20.18838174$$

$$q_4(x) = -0.09626556x^3 + 1.15518672x^2 - 4.12448133x + 5.17593361$$

ULPGC

Informática

Página Web

Página de Inicio

Contenido

Página 19 de 22

Volver

Pantalla completa

Cerrar

Página Web

Página de Inicio

Contenido

Página 20 de 22

Volver

Pantalla completa

Cerrar

Salir

ULPGC

Problema 2. El sistema es ahora:

$$\begin{bmatrix} 1.48 & 0.13 & 0 & 0 \\ 0.13 & 0.62 & 0.18 & 0 \\ 0 & 0.18 & 1.68 & 0.66 \\ 0 & 0 & 0.66 & 2.08 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \end{bmatrix} = \begin{bmatrix} -0.905372005 \\ -0.0435897436 \\ 0.212121212 \\ 0.50507177 \end{bmatrix}$$

obteniéndose:

$$\sigma_1 = -0.61616885710569$$
 $\sigma_2 = 0.050445411325263$
 $\sigma_3 = 0.029089182290732$ $\sigma_4 = 0.23359274520339$

Los diferentes splines son:

$$q_0(x) = -0.16835215x^3 + 0.075758466x^2 - 0.0316707558x + 0.35311424$$

$$q_1(x) = +0.85463368x^3 - 2.25664921x^2 + 1.74095908x - 0.095951989$$

$$q_2(x) = -0.019774286x^3 + 0.078020050x^2 - 0.33689656x + 0.52047852$$

$$q_3(x) = +0.051642314x^3 - 0.15122724x^2 - 0.091601967x + 0.43299011$$

$$q_4(x) = -0.10245296x^3 + 0.64852723x^2 - 1.47517719x + 1.23085182$$

$$s(x) = \begin{cases} q_0(x) , & \text{si } x \in [0.15, 0.76], \\ q_1(x) , & \text{si } x \in [0.76, 0.89], \\ q_2(x) , & \text{si } x \in [0.89, 1.07], \\ q_3(x) , & \text{si } x \in [1.07, 1.73], \\ q_4(x) , & \text{si } x \in [1.73, 2.11], \end{cases}$$
 (también $[1.73, +\infty)$)

ULPGC

Informática

Página Web

Página de Inicio

Contenido

Página 21 de 22

Volver

Pantalla completa

Cerrar

		•