GATE-All BRANCHES Engineering Mathematics

Linear Algebra

By- Rahul sir

Recap of previous lecture

Topic

Question based on system of equations

Topic

Span of vector space

Topics to be Covered

Topic

Properties of matrices

Topic

Question based on properties of the matrix

Topic

Concept of eigen values and eigen vectors

Topic

Problems based on eigen values and eigen vectors

Calculate The eigenvalue

$$A = \begin{bmatrix} y & 5 \\ 2 & 1 \end{bmatrix}_{2\times2}$$

$$| 4-\lambda | 5 | = 0 \quad | A-I\lambda| = 0$$

$$| 2 & 1-\lambda | = 0 \quad | \lambda^2 - (\text{Trace } A) \wedge + \text{det } A = 0$$

$$| 3 & \lambda^2 - 5 \wedge + (y-10) = 0$$

$$| 3 & \lambda^2 - 5 \wedge - 6 = 0$$

$$| 3 & \lambda^2 - 6 \wedge + \lambda - 6 = 0$$

$$| 3 & \lambda (\lambda - 6) + 1 (\lambda - 6) = 0$$

$$| 3 & \lambda = -1 \wedge - 6 = 0$$

$$\lambda_1 = -1$$

Eigen values

 $\lambda_2 = 6$

Corresponding eigen value $\lambda_1 = -1$ $\lambda_2 = 6$

$$\lambda = \lambda_{1} \qquad A \qquad X_{1} = \lambda_{1} X_{1}$$

$$\lambda = \lambda_{2} \qquad \sum [A - I \lambda_{1}] X_{1} = [0]$$

$$V \text{ song eigen vector.} \qquad Equations$$

$$[A - I \lambda_{1}] X_{1} = [0]$$

$$\lambda_{1} = -1 \qquad \left(\frac{u - \lambda_{1}}{2}, \frac{s}{1 - (-1)} \right) \left(\frac{\varkappa_{1}}{\varkappa_{2}} \right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 4 - (-1) & 5 \\ 2 & 1 - (-1) \end{bmatrix} \left(\frac{\varkappa_{1}}{\varkappa_{2}} \right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 5 \\ 2 & 2 \end{bmatrix} \left(\frac{\varkappa_{1}}{\varkappa_{2}} \right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Infinite
$$= 35 \times 45 \times 2 = 0$$

Engan verters $= 2 \times 4 + 2 \times 2 = 0$
SAME
 $= 2 \times 4 + 2 \times 2 = 0$
Finite $= 2 \times 4 + 2 \times 2 = 0$
Finite $= 2 \times 4 + 2 \times 2 = 0$
Finite $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
SAME
 $= 2 \times 4 + 2 \times 2 = 0$
SAME
 $= 2 \times 4 + 2 \times 2 = 0$
SAME
 $= 2 \times 4 + 2 \times 2 = 0$
Solutions $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
Solutions $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
Solutions $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2 = 0$
 $= 2 \times 4 + 2 \times 2$

Properties of Eu	gen verter MO2 M ⁿ Mortenx	SAME	
Normalization:	A 02 A-1	SAME	
A = (ZK)	AOLKA	SAME	
	AOL AT	Defferent	Row = column
= [2K]	AOR	SAME	
N(2K)2+(K)2 K	An + ao An - 1 + ay An - 2 +		
$=$ $\left[\frac{1}{2} \right]$	+an-1=0		1 4 / / /
N3K2 K	eigen vorlne -	- 3 eigenvalue	
J. 5			
		*	

FIR
$$\lambda = 6$$

$$\begin{bmatrix}
4-6 & 5 \\
2 & 1-6
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}0 \\
0
\end{bmatrix}$$

$$= \begin{bmatrix} -2 & 5 \\
2 & -5 \end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}0 \\
0
\end{bmatrix}$$

$$= -2x_1 + 5x_2 = 0$$

$$2x_1 - 5x_2 = 0$$

$$2x_1 - 5x_2 = 0$$

$$2x_1 - 5x_2$$

$$x_2 = K$$

$$x_1 = 5K$$

$$x_1 = 5K$$

$$x_2 = 5K$$

$$x_1 = 5K$$

$$x_2 = 5K$$

Topic: Eigen values

$$A = \begin{bmatrix} 2 & 1 \\ 1 & P \end{bmatrix}_{2X2}$$

Estimates $A = \begin{bmatrix} 2 & 1 \\ 1 & P \end{bmatrix}_{2\times 2}$ Trace(A) $A = \begin{bmatrix} 2 & 1 \\ 1 & P \end{bmatrix}_{2\times 2}$ Trace(A) $A = \begin{bmatrix} 2 & 1 \\ 1 & P \end{bmatrix}_{2\times 2}$ Trace(A) $A = \begin{bmatrix} 2 & 1 \\ 1 & P \end{bmatrix}_{2\times 2}$ Trace(A) $A = \begin{bmatrix} 2 & 1 \\ 1 & P \end{bmatrix}_{2\times 2}$ Have a ratio of 3:1 for p=2.

P > 2 Mercut

P > #Q. The two eigen values of the matrix 1

What is another value of "p" for which the eigen values have the same

ratio of 3:1?

$$A = \begin{bmatrix} 2 & 1 \\ 1 & p \end{bmatrix}_{2X2}$$

$$\lambda_1 + 3\lambda_2 = \beta + 2$$

$$\left(\lambda_2 = \frac{p+2}{4}\right)$$

$$\frac{\lambda_1}{\lambda_2} = \frac{3}{1}$$

$$3\lambda_{2}$$
 = $(2|p-1)$

$$\beta_{l} = 3 \lambda_{z}$$

$$3 \lambda_{2}^{2} = (2p-1)$$

$$= 3 \times \left(\frac{p+2}{4}\right)^{2} = (2p-1)$$

$$= 3(p+2)^{2} = 16(2p-1)$$

$$= 3(p^{2}+4+4p) = 32p-16$$

$$= 3p^{2}-20p+28=0$$

$$\Rightarrow p=2$$

$$p=14$$

Topic: Eigen values

Ergen values.

#Q. The eigen values of the matrix $A = \begin{bmatrix} 0 & 5 \\ 0 & 6 \end{bmatrix}$

A

-1,5,6

1,5,+6i,-6i

В

D

1,5,5

$$A^{3}-(Trane)^{2}+(A_{11}+A_{22}+A_{33})A-det A=0$$

$$=A^{3}-(1+5+5)A^{2}+(71)A-61=0$$

$$=A^{3}-11A^{2}+71A-61=0$$

$$Roots \rightarrow 1,5\pm6i$$

Topic: Eigen values

#Q. The eigen values of a 2×2 matrix X are -2 and -3. The eigen values of matrix $(X + I)^{-1}(X + 5I)$ are $2 \times 2 \longrightarrow -2 \longrightarrow -2 \longrightarrow -3$

$$T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \longrightarrow 1, 1$$

$$(x+1)^{-1}(x+51) = (x+1)^{-1}(x+1)+y(x+1)$$

$$= (x+1)^{-1}(x+1)+y(x+1)-1$$

$$x \to -2, -3$$

$$x+1 = -2+1, -3+1$$

$$= -1, -2$$

$$(x+1)^{-1} = -1, -\frac{1}{2}$$

$$= 1 + -\frac{1}{2}xy = -1$$

#Q. Consider the 5×5 matrix A = real eigen value.

Then the real eigen value of A is:

. It is given that A has only

A –2.5

C 15

B (

D 25

#Q. Two eigenvalues of a 3 × 3 real matrix \underline{P} are $(2+\sqrt{-1})$ and 3. The determinant of \underline{P} is $\underline{\hspace{1cm}}$.

det of
$$l = l^{2}$$
 rodnet of The eigen values
$$= (2+i)(2-i) \times 3$$

$$= (15)$$

#Q. A matrix has eigen values —1 and —2. The corresponding eigenvectors

are
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ respectively. Then matrix is-

$$\left(\begin{bmatrix} a & b \\ c & a \end{bmatrix}\begin{bmatrix} 1 \\ -1 \end{bmatrix} = -1\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right)$$

$$\begin{bmatrix} 1 & 2 \\ -2 & -4 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

#Q. Consider the matrix $A = \begin{bmatrix} 50 & 70 \\ 70 & 80 \end{bmatrix}$ whose eigenvectors corresponding

to eigen values
$$\lambda_1$$
 and λ_2 are $x_1 = \begin{bmatrix} 70 \\ \lambda_1 & -50 \end{bmatrix}$ and $x_2 = \begin{bmatrix} \lambda_2 & -80 \\ 70 \end{bmatrix}$,

respectively. The value of $x_1^T x_2$ is_____.

Trave=
$$|30|$$

Det = $|4000 - 4900|$
 $= -900$
 $|1+1/2=|30|$
 $|1/2=-900|$

$$\begin{bmatrix} 70 & \lambda_1 - 50 \end{bmatrix} \begin{bmatrix} \lambda_2 - 80 \\ 100 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 100 \end{bmatrix} \begin{bmatrix} \lambda_1 - 80 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \lambda_2 - 80 \\ 0 & 0 \end{bmatrix}$$

#Q. Let the eigenvalues of a 2×2 matrix A be 1,-2 with eigenvectors x_1 and x₂ respectively. Then the eigenvalues and eigenvectors of the matrix $\begin{array}{c} 2\times2 \longrightarrow 1, -2 \\ A^{2}-3A+4I \longrightarrow \chi_{1}, \chi_{2} \end{array}$ $A^2 - 3A + 4I$ would respectively, be

 $A^{2}-3A+4I=(1)^{2}-3X1+4,(-2)^{2}-3(-2)+4$

- $2, 14; x_1, x_2$
- 2, 14; $x_1 + x_2$; $x_1 x_2$
- $2, 0; x_1, x_2$
- $2, 0; x_1 + x_2, x_1 x_2$

$$-3, -3, (5)$$

#Q. The matrix
$$M = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & 6 \\ -1 & -2 & 0 \end{bmatrix}$$
 has eigen values $\begin{bmatrix} -3, -3, 5 \end{bmatrix}$. An eigen vector

corresponding to the eigen value 5 is $[1\ 2\ -1]^T$. One of the eigen vector

of the matrix
$$M^3$$
 is-
$$M^3 = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$$

$$M \otimes M$$

$$M \rightarrow [12-1]^{\mathbb{B}}$$

#Q. For the matrix $\begin{vmatrix} 4 & 2 \\ 2 & 4 \end{vmatrix}$. The eigen value corresponding to the eigen

$$X = \begin{bmatrix} |0| \\ |0| \end{bmatrix}$$

vector
$$\begin{bmatrix} 101 \\ 101 \end{bmatrix}$$
 is- $A = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$ $X = \begin{bmatrix} 101 \\ 101 \end{bmatrix}$ $\begin{bmatrix} A & X = \lambda X \\ 4 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 101 \\ 101 \end{bmatrix} = \lambda \begin{bmatrix} 101 \\ 101 \end{bmatrix}$

$$\begin{array}{c|c} \mathbf{B} & 4 & - & 606 \\ \hline & 606 & -\lambda & |0| \\ \hline & 606 & |0| \end{array}$$

$$6 \left[\begin{array}{c} |0| \\ |0| \end{array} \right] = \lambda \left[\begin{array}{c} |0| \\ |0| \end{array} \right]$$

THANK - YOU