(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent:

 15.12.2004 Bulletin 2004/51
- (21) Application number: 94931345.6
- (22) Date of filing: 13.10.1994

- (51) Int Cl.⁷: **C12N 15/57**, C12N 9/54, C12N 1/21
- (86) International application number: PCT/US1994/011562
- (87) International publication number: WO 1995/010615 (20.04.1995 Gazette 1995/17)

(54) SUBTILISIN VARIANTS

SUBTILISIN VARIANTEN
VARIANTS DE SUBTILISINE

- (84) Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL
 PT SE
- (30) Priority: 14.10.1993 US 137240
- (43) Date of publication of application: 31.07.1996 Bulletin 1996/31
- (60) Divisional application: 04024046.7
- (73) Proprietor: GENENCOR INTERNATIONAL, INC. Palo Alto, California 94304 (US)
- (72) Inventors:
 - GRAYCAR, Thomas, P. Pacifica, CA 94044 (US)
 - BOTT, Richard, R.
 Burlingame, CA 94010 (US)
 - WILSON, Lori, J.
 Millbrae, CA 94030 (US)
- (74) Representative: Kiddle, Simon John et al Mewburn Ellis LLP York House,
 23 Kingsway
 London WC2B 6HP (GB)

(56) References cited:

EP-A- 0 251 446 EP-A- 0 405 901 WO-A-88/08028 WO-A-91/06637 EP-A- 0 398 539 EP-A- 0 405 902 WO-A-89/09819 WO-A-92/08778

- BIOCHEMISTRY., vol.28, 1989, EASTON, PA US pages 7205 - 7213 M. PANTOLIANO ET AL 'Large increases in general stability for subtilisin BPN' through incremental changes in the free energy of unfolding'
- BIOLOGICAL ABSTRACTS, vol. 91, no. 9 1991, Philadelphia, PA, US; abstract no. 95173, L.
 NARHIET AL 'Enhanced stability of subtilisin by three point mutations' page 385; & BIOTECHNOL. APPL. BIOCHEM., vol.13, no.1, 1991 pages 12 - 24
- ANNALS OF THE NEW YORK ACADAMY OF SCIENCES, vol.672, 1992 pages 71 - 79 T.
 GRAYCAR ET AL 'Altering the proteolytic activity of subtilisin through protein engineering'
- ANNALS OF THE NEW YORK ACADAMY OF SCIENCES, vol.672, 1992 pages 10 - 19 R. BOTT ET AL 'Using structural comparison as a guide in protein engineering'
- PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA., vol.84, March 1987, WASHINGTON US pages 1219 - 1223 J. WELLS ET AL 'Designing substrate specificity by protein engineering of electrostatic interactions'
- PROTEIN ENGINEERING, vol.4, no.7, 1991 pages 719 - 737 R. SIEZEN ET AL 'Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteases'

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

Field of the Invention

[0001] The present invention relates to novel carbonyl hydrolase variants having an amino acid sequence wherein a plurality of amino acid residues of a precursor carbonyl hydrolase, specifically those at positions corresponding or equivalent to residue +76 in combination with one or more of the residues selected from the group consisting of +99, +101, +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206, +210, +216, +217, +218, +222, +260, +265 and/or +274 in *Bacillus amyloliquefaciens* subtilisin, have been substituted with a different amino acid. Such mutant/variant carbonyl hydrolases, in general, are obtained by *in vitro* modification of a precursor DNA sequence encoding a naturally-occurring or recombinant carbonyl hydrolase to encode the substitution of a plurality of these amino acid residues in a precursor amino acid sequence alone or in combination with other substitution, insertion or deletion in the precursor amino acid sequence.

15 Background of the Invention

20

40

[0002] Serine proteases are a subgroup of carbonyl hydrolase. They comprise a diverse class of enzymes having a wide range of specificities and biological functions. Stroud, R. Sci. Amer., 131:74-88. Despite their functional diversity, the catalytic machinery of serine proteases has been approached by at least two genetically distinct families of enzymes: the subtilisins and the mammalian chymotrypsin related and homologous bacterial serine proteases (e.g., trypsin and *S. gresius* trypsin). These two families of serine proteases show remarkably similar mechanisms of catalysis. Kraut, J. (1977), Ann. Rev. Biochem., 46:331-358. Furthermore, although the primary structure is unrelated, the tertiary structure of these two enzyme families bring together a conserved catalytic triad of amino acids consisting of serine, histidine and aspartate.

[0003] Subtilisin is a serine endoprotease (MW 27,500) which is secreted in large amounts from a wide variety of Bacillus species and other microorganisms. The protein sequence of subtilisin has been determined from at least four different species of *Bacillus*. Markland, F.S., et al. (1983), Honne-Sevler's Z. Physiol. Chem., 364:1537-1540. The three-dimensional crystallographic structure of *Bacillus amyloliquefaciens* subtilisin to 2.5Å resolution has also been reported. Wright, C.S., et al. (1969), Nature, 221:235-242; Drenth, J., et al. (1972), Eur. J. Biochem., 26:177-181. These studies indicate that although subtilisin is genetically unrelated to the mammalian serine proteases, it has a similar active site structure. The x-ray crystal structures of subtilisin containing covalently bound peptide inhibitors (Robertus, J.D., et al. (1972), Biochemistry, 11:2439-2449) or product complexes (Robertus, J.D., et al. (1976), J. Biol. Chem., 251:1097-1103) have also provided information regarding the active site and putative substrate binding cleft of subtilisin. In addition, a large number of kinetic and chemical modification studies have been reported for subtilisin (Philipp, M., et al. (1983), Mol. Cell. Biochem., 51:5-32; Svendsen, B. (1976), Carlsberg Res. Comm., 41:237-291; Markland, F.S. Id.) as well as at least one report wherein the side chain of methionine at residue 222 of subtilisin was converted by hydrogen peroxide to methionine-sulfoxide (Stauffer, D.C., et al. (1965), J. Biol. Chem., 244:5333-5338) and the side chain of serine at residue 221 converted to cysteine by chemical modification (Polgar, et al. (1981), Biochimica et Biophysica Acta, 667:351-354.)

[0004] US Patent 4,760,025 (RE 34,606) discloses the modification of subtilisin amino acid residues corresponding to positions in *Bacillus amyloliquefaciens* subtilisin tyrosine -1, aspartate +32, asparagine +155, tyrosine +104, methionine +222, glycine +166, histidine +64, glycine +169, phenylalanine +189, serine +33, serine +221, tyrosine +217, glutamate +156 and alanine +152. US Patent 5,182,204 discloses the modification of the amino acid +224 residue in *Bacillus amyloliquefaciens* subtilisin and equivalent positions in other subtilisins which may be modified by way of substitution, insertion or deletion and which may be combined with modifications to the residues identified in US Patent 4,760,025 (RE 34,606) to form useful subtilisin mutants or variants. US Patent 5,155,033 discloses similar mutant subtilisins having a modification at an equivalent position to +225 of *B. amyloliquefaciens* subtilisin. US Patents 5,185,258 and 5,204,015 disclose mutant subtilisins having a modification at positions +123 and/or +274.

[0005] US Patent Application SN 07/898,382 discloses the modification of many amino acid residues within subtilisin, including specifically +99, +101, +103, +107, +126, +128, +135, +197 and +204. All of these patents/applications are commonly owned. US Patent 4,914,031 discloses certain subtilisin analogs, including a subtilisin modified at position +76. The particular residues identified herein and/or the specific combinations claimed herein, however, are not identified in these references.

[0006] The present invention provides subtilisin variants as set out in claim 1. Preferred subtilisin variants are as set out in claim 2.

[0007] The invention further provides DNA sequences encoding such variants, as well as expression vectors containing such variant DNA sequences.

[0008] The invention further provides host cells transformed with such vectors, as well as host cells which are capable

of expressing such DNA to produce variants either intracellularly or extracellularly.

[0009] The references discussed above are provided solely for their disclosure prior to the filing date of the instant case, and nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of priority based on earlier filed applications.

Summary of the Invention

[0010] The invention includes non-naturally-occurring subtilisin, variants having, improved wash performance characteristics as compared to the precursor subtilisin from which the amino acid sequence of the variant is derived. The precursor subtilisin may be a naturally-occurring or recombinant subtilisin. Specifically, such variants have an amino acid sequence not found in nature, which is derived by replacement of a plurality of amino acid residues of a precursor subtilisin with different amino acids.

[0011] The invention also includes variant DNA sequences encoding such subtilisin variants. These variant DNA sequences are derived from a precursor DNA sequence which encodes a Although the amino acid residues identified for modification herein are identified according to the numbering applicable to *B. amyloliquefaciens* (which has become the conventional method for identifying residue positions in all subtilisins), the preferred precursor DNA sequence useful in the present invention is the DNA sequence of *Bacillus lentus* as shown in Fig. 6 (Seq ID No.11).

Brief Description of the Drawings

[0012]

5

15

20

25

30

35

40

45

50

Figs. 1 A-C depict the DNA and amino acid sequence for *Bacillus amyloliquefaciens* subtilisin and a partial restriction map of this gene (Seq. ID No.6).

Fig. 2 depicts the conserved amino acid residues among subtilisins from *Bacillus amyloliquefaciens* (BPN)' and *Bacillus lentus* (wild-type).

Figs. 3A and 3B depict the amino acid sequence of four subtilisins. The top line represents the amino acid sequence of subtilisin from *Bacillus amyloliquefaciens* subtilisin (also sometimes referred to as subtilisin BPN') (Seq. ID No. 7). The second line depicts the amino acid sequence of subtilisin from *Bacillus subtilis* (Seq. ID No.8). The third line depicts the amino acid sequence of subtilisin from *B. licheniformis* (Seq. ID No.9). The fourth line depicts the amino acid sequence of subtilisin from *Bacillus lentus* (also referred to as subtilisin 309 in PCT WO89/06276) (Seq. ID No.10). The symbol * denotes the absence of specific amino acid residues as compared to subtilisin BPN'.

Fig. 4 depicts the construction of plasmid GGA274.

Fig. 5 depicts the construction of GGT274 which is an intermediate to certain expression plasmids used in this application.

Figs. 6A and 6B depict the DNA and amino acid sequence of subtilisin from *Bacillus lentus* (Seq. ID No.11). The mature subtilisin protein is coded by the codons beginning at the codon GCG (334-336) corresponding to Ala.

Figs. 7A and 7B depict the DNA and amino acid sequence of a preferred embodiment of the invention (N76D/S103A/V104I) (Seq. ID No.12). The DNA in this figure has been modified by the methods described to encode aspartate at position 76, alanine at position 103 and isoleucine at position 104. The mature subtilisin variant protein is coded by the codons beginning at the codon GCG (334-336) corresponding to Ala.

Fig. 8 depicts the construction of vector pBCDAICAT.

Fig. 9 depicts the construction of vector pUCCATFNA.

Fig. 10 shows the stability of a preferred mutant enzyme compared to wild-type, in a liquid detergent formulation.

55 [0013] Carbonyl hydrolases are enzymes which hydrolyze compounds containing

bonds in which X is oxygen or nitrogen. They include naturally-occurring carbonyl hydrolases and recombinant carbonyl hydrolases. Naturally-occurring carbonyl hydrolases principally include hydrolases, e.g., peptide hydrolases such as subtilisins or metalloproteases. Peptide hydrolases include α-aminoacylpeptide hydrolase, peptidylamino acid hydrolase, acylamino hydrolase, serine carboxypeptidase, metallocarboxypeptidase, thiol proteinase, carboxylproteinase and metalloproteinase. Serine, metallo, thiol and acid proteases are included, as well as endo and exo-proteases.

10

20

35

50

- [0014] "Recombinant carbonyl hydrolase" refers to a carbonyl hydrolase in which the DNA sequence encoding the naturally-occurring carbonyl hydrolase is modified to produce a mutant DNA sequence which encodes the substitution, insertion or deletion of one or more amino acids in the carbonyl hydrolase amino acid sequence. Suitable modification methods are disclosed herein, and in US Patent 4,760,025 (RE 34,606), US Patent 5,204,015 and US Patent 5,185,258. [0015] Subtilisins are bacterial or fungal carbonyl hydrolases which generally act to cleave peptide bonds of proteins or peptides. As used herein, "subtilisin" means a naturally-occurring subtilisin or a recombinant subtilisin. A series of naturally-occurring subtilisins is known to be produced and often secreted by various microbial species. Amino acid sequences of the members of this series are not entirely homologous. However, the subtilisins in this series exhibit the same or similar type of proteolytic activity. This class of serine proteases shares a common amino acid sequence defining a catalytic triad which distinguishes them from the chymotrypsin related class of serine proteases. The subtilisins and chymotrypsin related serine proteases both have a catalytic triad comprising aspartate, histidine and serine. In the subtilisin related proteases the relative order of these amino acids, reading from the amino to carboxy terminus, is aspartate-histidine-serine. In the chymotrypsin related proteases the relative order, however, is histidine-aspartate-serine. Thus, subtilisin herein refers to a serine protease having the catalytic triad of subtilisin related proteases. Examples include but are not limited to the subtilisins identified in Fig. 3 herein.
- [0016] "Recombinant subtilisin" refers to a subtilisin in which the DNA sequence encoding the subtilisin is modified to produce a variant (or mutant) DNA sequence which encodes the substitution, deletion or insertion of one or more amino acids in the naturally-occurring subtilisin amino acid sequence. Suitable methods to produce such modification, and which may be combined with those disclosed herein, include those disclosed in US Patent 4,760,025 (RE 34,606), US Patent 5,204,015 and US Patent 5,185,258.
- [0017] "Non-human carbonyl hydrolases" and the DNA encoding them may be obtained from many procaryotic and eucaryotic organisms. Suitable examples of procaryotic organisms include gram negative organisms such as *E. coli* or *Pseudomonas* and gram positive bacteria such as *Micrococcus* or *Bacillus*. Examples of eucaryotic organisms from which carbonyl hydrolase and their genes may be obtained include yeast such as *Saccharomyces cerevisiae*, fungi such as *Aspergillus* sp. and non-human mammalian sources such as, for example, *bovine* sp. from which the gene encoding the carbonyl hydrolase chymosin can be obtained. As with subtilisins, a series of carbonyl hydrolases can be obtained from various related species which have amino acid sequences which are not entirely homologous between the members of that series but which nevertheless exhibit the same or similar type of biological activity. Thus, non-human carbonyl hydrolase as used herein has a functional definition which refers to carbonyl hydrolases which are associated, directly or indirectly, with procaryotic and eucaryotic sources.
- 40 [0018] A "carbonyl hydrolase variant" has an amino acid sequence which is derived from the amino acid sequence of a "precursor carbonyl hydrolase." The precursor carbonyl hydrolases (such as a subtilisin) include naturally-occurring carbonyl hydrolases (subtilisin) and recombinant carbonyl hydrolases (subtilisin). The amino acid sequence of the carbonyl hydrolase variant is "derived" from the precursor hydrolase amino acid sequence by the substitution, deletion or insertion of one or more amino acids of the precursor amino acid sequence. Such modification is of the "precursor DNA sequence" which encodes the amino acid sequence of the precursor carbonyl hydrolase (subtilisin) rather than manipulation of the precursor carbonyl hydrolase (subtilisin) enzyme per se. Suitable methods for such manipulation of the precursor DNA sequence include methods disclosed herein, as well as methods known to those skilled in the art (see, for example, EP 0 328299, WO89/06279 and the US patents and applications already referenced herein).
 - [0019] Subtilisin variants of the invention are described in claims 1 and 2. The amino acid position numbers refer to those assigned to the mature *Bacillus amyloliquefaciens* subtilisin sequence presented in Fig. 1. The invention, however, is not limited to the mutation of this particular subtilisin but extends to precursor carbonyl hydrolases containing amino acid residues at positions which are "equivalent" to the particular identified residues in *Bacillus amyloliquefaciens* subtilisin. In a preferred embodiment of the present invention, the precursor subtilisin is *Bacillus lentus* subtilisin and the substitutions, deletions or insertions are made at the equivalent amino acid residue in *B. lentus*.
 - [0020] A residue (amino acid) of a precursor carbonyl hydrolase is equivalent to a residue of *Bacillus amyloliquefaciens* subtilisin if it is either homologous (i.e., corresponding in position in either primary or tertiary structure) or analogous to a specific residue or portion of that residue in *Bacillus amyloliquefaciens* subtilisin (i.e., having the same or similar functional capacity to combine, react, or interact chemically).

[0021] In order to establish homology to primary structure, the amino acid sequence of a precursor carbonyl hydrolase is directly compared to the *Bacillus amyloliquefaciens* subtilisin primary sequence and particularly to a set of residues known to be invariant in subtilisins for which sequence is known. Fig. 2 herein shows the conserved residues as between *B. amyloliquefaciens* subtilisin and *B. lentus* subtilisin. After aligning the conserved residues, allowing for necessary insertions and deletions in order to maintain alignment (i.e., avoiding the elimination of conserved residues through arbitrary deletion and insertion), the residues equivalent to particular amino acids in the primary sequence of *Bacillus amyloliquefaciens* subtilisin are defined. Alignment of conserved residues preferably should conserve 100% of such residues. However, alignment of greater than 75% or as little as 50% of conserved residues is also adequate to define equivalent residues. Conservation of the catalytic triad, Asp32/His64/Ser221 should be maintained.

[0022] For example, in Fig. 3 the amino acid sequence of subtilisin from *Bacillus amyloliquefaciens*, *Bacillus subtilis*, *Bacillus licheniformis* (*carlsbergensis*) and *Bacillus lentus* are aligned to provide the maximum amount of homology between amino acid sequences. A comparison of these sequences shows that there are a number of conserved residues contained in each sequence. These conserved residues (as between BPN' and *B. lentus*) are identified in Fig. 2. [0023] These conserved residues, thus, may be used to define the corresponding equivalent amino acid residues of *Bacillus amyloliquefaciens* subtilisin in other carbonyl hydrolases such as subtilisin from *Bacillus lentus* (PCT Publication No. W089/06279 published July 13, 1989), the preferred subtilisin precursor enzyme herein, or the subtilisin referred to as PB92 (EP 0 328 299), which is highly homologous to the preferred *Bacillus lentus* subtilisin. The amino acid sequences of certain of these subtilisins are aligned in Figs. 3A and 3B with the sequence of *Bacillus amyloliquefaciens* subtilisin to produce the maximum homology of conserved residues. As can be seen, there are a number of deletions in the sequence of *Bacillus lentus* as compared to *Bacillus amyloliquefaciens* subtilisin. Thus, for example, the equivalent amino acid for Val165 in *Bacillus amyloliquefaciens* subtilisin in the other subtilisins is isoleucine for *B. lentus* and *B. licheniformis*.

[0024] Thus, for example, the amino acid at position +76 is asparagine (N) in both *B. amyloliquefaciens* and *B. lentus* subtilisins. In the subtilisin variant of the invention, however, the amino acid equivalent to +76 in *Bacillus amyloliquefaciens* subtilisin is substituted with aspartate (D). A comparison of certain of the amino acid residues identified herein for substitution versus the, or the most preferred substitution for each such position is provided in Table I for illustrative purposes.

		Table I					
	+76	+99	+101	+103	+104	+107	+123
B. amyloliquefaciens (wild-type)	N	D	S	Q	Y	1	N
B. lentus (wild-type)	N	s	s	s	V	i i	N
Most Preferred Substitution	D	D	R	Α	I/Y	V	S

15

25

30

35

40

[0025] Equivalent residues may also be defined by determining homology at the level of tertiary structure for a precursor carbonyl hydrolase whose tertiary structure has been determined by x-ray crystallography. Equivalent residues are defined as those for which the atomic coordinates of two or more of the main chain atoms of a particular amino acid residue of the precursor carbonyl hydrolase and *Bacillus amyloliquefaciens* subtilisin (N on N, CA on CA, C on C and O on O) are within 0.13nm and preferably 0.1nm after alignment. Alignment is achieved after the best model has been oriented and positioned to give the maximum overlap of atomic coordinates of non-hydrogen protein atoms of the carbonyl hydrolase in question to the *Bacillus amyloliquefaciens* subtilisin. The best model is the crystallographic model giving the lowest R factor for experimental diffraction data at the highest resolution available.

45

$$R \ factor = \frac{\sum_{h} |Fo(h)| - |Fc(h)|}{\sum_{h} |Fo(h)|}$$

[0026] Equivalent residues which are functionally analogous to a specific residue of *Bacillus amyloliquefaciens* subtilisin are defined as those amino acids of the precursor carbonyl hydrolases which may adopt a conformation such that they either alter, modify or contribute to protein structure, substrate binding or catalysis in a manner defined and attributed to a specific residue of the *Bacillus amyloliquefaciens* subtilisin. Further, they are those residues of the precursor carbonyl hydrolase (for which a tertiary structure has been obtained by x-ray crystallography) which occupy an analogous position to the extent that, although the main chain atoms of the given residue may not satisfy the criteria of equivalence on the basis of occupying a homologous position, the atomic coordinates of at least two of the side chain atoms of the residue lie with 0.13nm of the corresponding side chain atoms of *Bacillus amyloliquefaciens* subtilisin. The coordinates of the three dimensional structure of *Bacillus amyloliquefaciens* subtilisin are set forth in EPO Publi-

cation No. 0 251 446 (equivalent to US Patent Application SN 08/212,291) and can be used as outlined above to determine equivalent residues on the level of tertiary structure.

[0027] Some of the residues identified for substitution are conserved residues whereas others are not. In the case of residues which are not conserved, the replacement of one or more amino acids is limited to substitutions which produce a variant which has an amino acid sequence that does not correspond to one found in nature. In the case of conserved residues, such replacements should not result in a naturally-occurring sequence. The carbonyl hydrolase variants of the present invention include the mature forms of carbonyl hydrolase variants, as well as the pro- and prepro-forms of such hydrolase variants. The prepro-forms are the preferred construction since this facilitates the expression, secretion and maturation of the carbonyl hydrolase variants.

[0028] "Prosequence" refers to a sequence of amino acids bound to the N-terminal portion of the mature form of a carbonyl hydrolase which when removed results in the appearance of the "mature" form of the carbonyl hydrolase. Many proteolytic enzymes are found in nature as translational proenzyme products and, in the absence of post-translational processing, are expressed in this fashion. A preferred prosequence for producing carbonyl hydrolase variants, specifically subtilisin variants, is the putative prosequence of *Bacillus amyloliquefaciens* subtilisin, although other subtilisin prosequences may be used. In Examples 1 and 2 the putative prosequence from the subtilisin from *Bacillus lentus* (ATCC 21536) was used.

10

20

[0029] A "signal sequence" or "presequence" refers to any sequence of amino acids bound to the N-terminal portion of a carbonyl hydrolase or to the N-terminal portion of a prohydrolase which may participate in the secretion of the mature or pro forms of the hydrolase. This definition of signal sequence is a functional one, meant to include all those amino acid sequences encoded by the N-terminal portion of the subtilisin gene or other secretable carbonyl hydrolases which participate in the effectuation of the secretion of subtilisin or other carbonyl hydrolases under native conditions. The present invention utilizes such sequences to effect the secretion of the carbonyl hydrolase variants as defined herein. A preferred signal sequence used in the Examples comprises the first seven amino acid residues of the signal sequence from *Bacillus subtilis* subtilisin fused to the remainder of the signal sequence of the subtilisin from *Bacillus lentus* (ATCC 21536).

[0030] A "prepro" form of a carbonyl hydrolase variant consists of the mature form of the hydrolase having a prosequence operably linked to the amino terminus of the hydrolase and a "pre" or "signal" sequence operably linked to the amino terminus of the prosequence.

[0031] "Expression vector" refers to a DNA construct containing a DNA sequence which is operably linked to a suitable control sequence capable of effecting the expression of said DNA in a suitable host. Such control sequences include a promoter to effect transcription, an optional operator sequence to control such transcription, a sequence encoding suitable mRNA ribosome binding sites and sequences which control termination of transcription and translation. The vector may be a plasmid, a phage particle, or simply a potential genomic insert. Once transformed into a suitable host, the vector may replicate and function independently of the host genome, or may, in some instances, integrate into the genome itself. In the present specification, "plasmid" and "vector" are sometimes used interchangeably as the plasmid is the most commonly used form of vector at present. However, the invention is intended to include such other forms of expression vectors which serve equivalent functions and which are, or become, known in the art. [0032] The "host cells" used in the present invention generally are procaryotic or eucaryotic hosts which preferably have been manipulated by the methods disclosed in US Patent 4,760,025 (RE 34,606) to render them incapable of secreting enzymatically active endoprotease. A preferred host cell for expressing subtilisin is the Bacillus strain BG2036 which is deficient in enzymatically active neutral protease and alkaline protease (subtilisin). The construction of strain BG2036 is described in detail in US Patent 5,264,366. Other host cells for expressing subtilisin include Bacillus subtilis I168 (also described in US Patent 4,760,025 (RE 34,606) and US Patent 5,264,366), as well as any suitable Bacillus strain such as B. licheniformis, B. lentus, etc.

[0033] Host cells are transformed or transfected with vectors constructed using recombinant DNA techniques. Such transformed host cells are capable of either replicating vectors encoding the carbonyl hydrolase variants or expressing the desired carbonyl hydrolase variant. In the case of vectors which encode the pre- or prepro-form of the carbonyl hydrolase variant, such variants, when expressed, are typically secreted from the host cell into the host cell medium. [0034] "Operably linked," when describing the relationship between two DNA regions, simply means that they are functionally related to each other. For example, a presequence is operably linked to a peptide if it functions as a signal sequence, participating in the secretion of the mature form of the protein most probably involving cleavage of the signal sequence. A promoter is operably linked to a coding sequence if it controls the transcription of the sequence; a ribosome binding site is operably linked to a coding sequence if it is positioned so as to permit translation.

[0035] The genes encoding the naturally-occurring precursor carbonyl hydrolase may be obtained in accord with the general methods known to those skilled in the art. The methods generally comprise synthesizing labeled probes having putative sequences encoding regions of the hydrolase of interest, preparing genomic libraries from organisms expressing the hydrolase, and screening the libraries for the gene of interest by hybridization to the probes. Positively hybridizing clones are then mapped and sequenced. The *B. lentus* gene used in the Examples was cloned as described in Example

1 of US Patent 5,185,258. The BPN' gene used in Example 5 was cloned as described in Example 1 in RE 34,606.

[0036] The cloned carbonyl hydrolase is then used to transform a host cell in order to express the hydrolase. The hydrolase gene is then ligated into a high copy number plasmid. This plasmid replicates in hosts in the sense that it contains the well-known elements necessary for plasmid replication: a promoter operably linked to the gene in question (which may be supplied as the gene's own homologous promotor if it is recognized, i.e., transcribed, by the host), a transcription termination and polyadenylation region (necessary for stability of the mRNA transcribed by the host from

transcription termination and polyadenylation region (necessary for stability of the mRNA transcribed by the host from the hydrolase gene in certain eucaryotic host cells) which is exogenous or is supplied by the endogenous terminator region of the hydrolase gene and, desirably, a selection gene such as an antibiotic resistance gene that enables continuous cultural maintenance of plasmid-infected host cells by growth in antibiotic-containing media. High copy number plasmids also contain an origin of replication for the host, thereby enabling large numbers of plasmids to be generated in the cytoplasm without chromosomal limitations. However, it is within the scope herein to integrate multiple copies of the hydrolase gene into host genome. This is facilitated by procaryotic and eucaryotic organisms which are particularly susceptible to homologous recombination.

10

15

30

40

[0037] The genes used in the present examples are a natural *B. lentus* gene and a natural *B. amyloliquefaciens* gene. Alternatively, a synthetic gene encoding a naturally-occurring or mutant precursor carbonyl hydrolase (subtilisin) may be produced. In such an approach, the DNA and/or amino acid sequence of the precursor hydrolase (subtilisin) is determined. Multiple, overlapping synthetic single-stranded DNA fragments are thereafter synthesized, which upon hybridization and ligation produce a synthetic DNA encoding the precursor hydrolase. An example of synthetic gene construction is set forth in Example 3 of US Patent 5,204,015.

[0038] Once the naturally-occurring or synthetic precursor carbonyl hydrolase gene has been cloned, a number of modifications are undertaken to enhance the use of the gene beyond synthesis of the naturally-occurring precursor carbonyl hydrolase. Such modifications include the production of recombinant carbonyl hydrolases as disclosed in US Patent 4,760,025 (RE 34,606) and EPO Publication No. 0 251 446 and the production of carbonyl hydrolase variants described herein.

[0039] The following cassette mutagenesis method may be used to facilitate the construction and identification of the carbonyl hydrolase variants of the present invention, although other methods including site-directed mutagenesis may be used. First, the naturally-occurring gene encoding the hydrolase is obtained and sequenced in whole or in part. Then the sequence is scanned for a point at which it is desired to make a mutation (deletion, insertion or substitution) of one or more amino acids in the encoded enzyme. The sequences flanking this point are evaluated for the presence of restriction sites for replacing a short segment of the gene with an oligonucleotide pool which when expressed will encode various mutants. Such restriction sites are preferably unique sites within the hydrolase gene so as to facilitate the replacement of the gene segment. However, any convenient restriction site which is not overly redundant in the hydrolase gene may be used, provided the gene fragments generated by restriction digestion can be reassembled in proper sequence. If restriction sites are not present at locations within a convenient distance from the selected point (from 10 to 15 nucleotides), such sites are generated by substituting nucleotides in the gene in such a fashion that neither the reading frame nor the amino acids encoded are changed in the final construction. Mutation of the gene in order to change its sequence to conform to the desired sequence is accomplished by M13 primer extension in accord with generally known methods. The task of locating suitable flanking regions and evaluating the needed changes to arrive at two convenient restriction site sequences is made routine by the redundancy of the genetic code, a restriction enzyme map of the gene and the large number of different restriction enzymes. Note that if a convenient flanking restriction site is available, the above method need be used only in connection with the flanking region which does not contain a site.

[0040] Once the naturally-occurring DNA or synthetic DNA is cloned, the restriction sites flanking the positions to be mutated are digested with the cognate restriction enzymes and a plurality of end termini-complementary oligonucleotide cassettes are ligated into the gene. The mutagenesis is simplified by this method because all of the oligonucleotides can be synthesized so as to have the same restriction sites, and no synthetic linkers are necessary to create the restriction sites.

[0041] As used herein, proteolytic activity is defined as the rate of hydrolysis of peptide bonds per milligram of active enzyme. Many well known procedures exist for measuring proteolytic activity (K. M. Kalisz, "Microbial Proteinases," Advances in Biochemical Engineering/Biotechnology, A. Fiechter ed., 1988). In addition to Improved such performance, the variant enzymes of the present invention may have other modified properties such as K_m , k_{cat} ,

[0042] The variant carbonyl hydrolase may have altered proteolytic activity as compared to the precursor carbonyl hydrolase, since increasing such activity (numerically larger) enables the use of the enzyme to more efficiently act on a target substrate.. Also of interest are variant enzymes having altered thermal stability and/or altered substrate specificity as compared to the precursor. The carbonyl hydrolase to be mutated is a subtilisin. These two terms are used interchangeably in this specification.

[0043] Embodiments of the invention are set forth in the Examples. These include the following specific combinations of substituted residues: N76D/V104I; N76D/S99D/V104I; N76D/S103A/V104I; N76D/V104I/107V; N76D/V104Y/ I107V and N76D/S101A/V104I. Also described in the Examples are all mutant combinations specifically claimed in the present invention. These substitutions are preferably made in *Bacillus lentus* (recombinant or native-type) subtilisin, although the substitutions may be made in any *Bacillus subtilisin*.

[0044] The carbonyl hydrolase variants of the invention are useful in formulating various detergent compositions. A number of known compounds are suitable surfactants useful in compositions comprising the carbonyl hydrolase mutants of the invention. These include nonionic, anionic, cationic, anionic or zwitterionic detergents, as disclosed in US 4,404,128 to Barry J. Anderson and US 4,261,868 to Jiri Flora, et al. A suitable detergent formulation is that described in Example 7 of US Patent 5,204,015. The art is familiar with the different formulations which can be used as cleaning compositions. In addition to typical cleaning compositions, it is readily understood that the subtilisin variants of the present invention may be used for any purpose that native or wild-type subtilisins are used. Thus, these variants can be used, for example, in bar or liquid soap applications, dishcare formulations, contact lens cleaning solutions or products, peptide hydrolysis, waste treatment, textile applications, as fusion-cleavage enzymes in protein production, etc. The variants of the present invention show enhanced performance in a detergent composition (as compared to the precursor). As used herein, enhanced performance in a detergent is defined as increasing cleaning of certain enzyme sensitive stains such as grass or blood, as determined by usual evaluation after a standard wash cycle.

[0045] Subtilisins of the invention can be formulated into known powdered and liquid detergents having pH between 6.5 and 12.0 at levels of about .01 to about 5% (preferably .1% to .5%) by weight. These detergent cleaning compositions can also include other enzymes such as known proteases, amylases, cellulases, lipases or endoglycosidases, as well as builders and stabilizers.

[0046] The addition of subtilising of the invention to conventional cleaning compositions does not create any special use limitation.

In other words, any temperature and pH suitable for the detergent is also suitable for the present compositions as long as the pH is within the above range, and the temperature is below the described subtilisin's denaturing temperature. In addition, subtilisins of the invention can be used in a cleaning composition without detergents, again either alone or in combination with builders and stabilizers.

[0047] The following is presented by way of example and is not to be construed as a limitation to the scope of the claims.

Example 1

30

40

50

Construction for the Expression of GG36 Gene in B. subtilis

[0048] The cloning and the construction for expression of the subtilisin gene from *B. lentus* was performed essentially the same as that described in US Patent 5,185,258. The plasmid GGA274 (described in Fig. 4 herein) was further modified in the following manner, as shown in Fig. 5. The Pstl site that was introduced during the construction of the GGA274 plasmid was removed by the oligonucleotide directed mutagenesis described below, with an oligonucleotide having the following sequence: 5'GAAGCTGCAACTCGTTAAA3' (Seq. ID No.1). The underlined "A" residue eliminated the recognition sequence of restriction enzyme Pstl and changed the corresponding amino acid residue from alanine to threonine at position 274. Threonine at position 274 is the wild-type residue originally found in the cloned *B. lentus* subtilisin gene sequences. The DNA segment encoding subtilisin was excised from the plasmid GGA274 or its derivatives (GGT274 shown in Fig. 5) by EcoRI and BamHI digest. The DNA fragment was subcloned back into Bacteriophage M13-based vectors, such as MP19, for mutagenesis. After mutagenesis, the EcoRI and HindIII digest, followed by cloning, were performed to move the mutated subtilisin gene back into an expression plasmid like GGA274 for the expression and the recovery of mutated subtilisin proteins.

Example 2

Oligonucleotide-Directed Mutagenesis

[0049] Oligonucleotide-directed mutagenesis was performed as described in Zoller, M., et al. (1983), Methods Enzymol., 100:468-500. As an example, a synthetic oligonucleotide of the sequence 5' GCTGCTCTAGACAATTCG 3' (Seq. ID No.2) was used to change the amino acid residue at position 76 from asparagine (N) to aspartic acid (D), or N76D. The underlined "G" and "C" residues denote changes from the wild-type gene sequence. The CA keeps the leucine at position +75 and changes the amino acid sequence to introduce an Xbal recognition site of the Xbal restriction enzyme (TCTAGA), while the change at GAC changes asparagine at +76 to aspartate.

[0050] For mutagenesis at positions 99, 101, 103 and 104, different oligonucleotides can be used depending on the

combination of mutations desired. For example, an oligonucleotide of the sequence 5' GTATTAGGGGCGACGGTCGAGGCGACGGTCGAGCGCCATCAGCTCGATT 3' (Seq. ID No. 3) was used to simultaneously make the following changes: S99D; S101R; S103A and V104I in a single subtilisin molecule. Similarly, oligonucleotides of the sequence 5' TCAGGTTCGGTCTCGAGCGTTGCCCAAGGATTG 3' (Seq. ID No.4) and 5' CACGTTGCTAGCTTGAGTTTAG 3' (Seq. ID No.5) were utilized to generate I107V and N123S, respectively. Again, the underlined residues denote changes from wild-type sequences which produced desired changes either in amino acid sequences or restriction enzyme recognition sequences.

Example 3

10

20

25

30

35

40

45

50

Proteolytic Activity of Subtilisin Variants

[0051] Following the methods of Example 2, the variants listed in Table III were made. Proteolytic activity of each of these subtilisin variants is shown in Table II. The kinetic parameters k_{cat} , k_{M} , and k_{cat}/k_{M} were measured for hydrolysis of the synthetic peptide substrate succinyl-L-Ala-L-Pro-L-Phe-p-nitroanilide using the method described in P. Bonneau, et al. (1991) J. Am. Chem. Soc., Vol. 113, No. 3, p. 1030. Briefly, a small aliquot of subtilisin variant stock solution was added to a 1 cm cuvette containing substrate dissolved in 0.1M Tris-HCL buffer, pH 8.6, and thermostated at 25°C. The reaction progress was followed spectrophotometrically by monitoring the absorbance of the reaction product p-nitroaniline at 410 nm. Kinetic parameters were obtained by using a non-linear regression algorithm to fit the reaction velocity and product concentration for each reaction to the Michaelis-Menten equation.

Table II

Kinetic Parameters k _{cat} , K _M and k _{cat} /K _M Measured for <i>Bacillus Ientus</i> Subtilisin and Variants				
Enzyme	k _{cat} (s ⁻¹)	K _M (M)	k _{cat} /K _M (s ⁻¹ M ⁻¹)	
B. lentus Subtilisin	170	0.00078	2.18x10 ⁵	
N76D	219	0.0008	2.74x10 ⁵	
N76D/S99D	88	0.00061	1.44x10 ⁵	
N76D/S103A	400	0.0014	2.86x10 ⁵	
N76D/V104I	459	0.0011	4.17x10 ⁵	
N76D/I107V	219	0.0011	1.99x10 ⁵	
N76D/N123S	115	0.0018	6.40x10 ⁴	
N76D/S99D/S101R	146	0.00038	3.84x10 ⁵	
N76D/S99D/S103A	157	0.0012	1.31x10 ⁵	
N76D/S99D/V104I.	247	0.00097	2.55x10 ⁵	
N76D/S101R/S103A	405	0.00069	5.90x10 ⁵	
N76D/S101R/V104I	540	0.00049	1.10x10 ⁶	
N76D/S103A/V104I	832	0.0016	5.20x10 ⁵	
N76D/V109I/I107V	497	0.00045	1.10x10 ⁶	
N76D/V104Y/I107V	330	0.00017	1.90x10 ⁶	
N76D/V104I/N123S	251	0.0026	9.65x10⁴	
N76D/I107V/N123S	147	0.0035	4.20x10 ⁴	
N76D/S99D/S101R/S103A	242	0.00074	3.27x10 ⁵	
N76D/S99D/S101R/V104I	403	0.00072	5.60x10 ⁵	
N76D/S99D/S103A/V104I	420	0.0016	2.62x10 ⁵	
N76D/S101R/S103A/V104I	731	0.00065	1.12x10 ⁶	
N76D/S103A/V104I/N123S	321	0.0026	1.23x10 ⁵	
N76D/V104I/I107V/N123S	231	0.003	7.70x10 ⁴	
N76D/S99D/S101R/S103A/V104I	624	0.00098	6.37x10 ⁵	
N76D/S99D/S103A/V104I/N123S	194	0.0043	4.51x10 ⁴	
N76D/S99D/S101R/S103A/V104I/N123S	311	0.0023	1.35x10 ⁵	

[0052] The results listed in Table II indicate that all of the subtilisin variants tested retain proteolytic activity. Further, detailed analysis of the data reveal that proteolytic activity was significantly altered for *Bacillus lentus* subtilisin by the various combinations of substitutions at amino acid residues equivalent to positions 76, 99, 101, 103, 104, 107 and

123 in Bacillus amyloliquefaciens.

Example 4

20

25

30

35

40

45

50

55

Thermal Stability of Subtilisin Variants

[0053] A comparison of thermal stability observed for *Bacillus lentus* subtilisin and the variants of the present invention made by the process of Example 2 is shown in Table III. Purified enzyme, 15 ug/ml in 0.1 M glycine 0.01% Tween-80 pH 10.0, with or without 50 mM CaCl₂, was aliquotted into small tubes and incubated at 10°C for 5 minutes, 10°C to 60°C over 1 minute, and 60°C for 20 minutes. Tubes were then placed on ice for 10 minutes. Aliquots from the tubes were assayed for enzyme activity by addition to 1 cm cuvettes containing 1.2 mM of the synthetic peptide substrate succinyl-L-ala-L-Ala-L-Pro-L-Phe-p-nitroanilide dissolved in 0.1 M tris-HCL buffer, pH 8.6, thermostatted at 25°C. The initial linear reaction velocity was followed spectrophotometrically by monitoring the absorbance of the reaction product p-nitroaniline at 410 nm as a function of time. Data are presented as percent activity prior to heating. The results listed in Table III indicate that a vast majority of variants exhibit thermal stability comparable to *Bacillus lentus* subtilisin (24 out of 26) in the test condition with 50mM CaCl₂ added. In the test condition without 50mM CaCl₂ added, a vast majority of variants (19 out of 26) are significantly more stable than *Bacillus lentus* subtilisin. Further, the variants N76D/S99D, N76D/V104I, N76D/S99D/V104I, N76D/S103A/V104I, N76D/S103A/V104I, N76D/S103A/V104I, N76D/S103A/V104I are significantly more stable than the single substitution variant N76D in the test condition without 50mM CaCl₂ added.

Table III

Enzyme	% Initial Activity Remaining		
	- CaCl ₂	+ CaCl ₂	
B. lentus Subtilisin	2	96	
N76D	34	97	
N76D/S99D	49	98	
N76D/S103A	26	92	
N-76D/V104I	58	98	
N76D/I107V	32	96	
N76D/N123S	0	97	
N76D/S99D/S101R	30	100	
N76D/S99D/S103A	36	100	
N76D/S99D/V104I	48	97	
N76D/S101R/S103A	26	100	
N76D/S101R/V104I	38	100	
N76D/S103A/V104I	58	100	
N76D/V104I/I107V	60	97	
N76D/V104Y/I107V	48	74	
N76D/V104I/N123S	0	98	
N76D/I107V/N123S	16	100	
N76D/S99D/S101R/S103A	38	100	
N76D/S99D/S101R/V104I	33	100	
N76D/S99D/S103A/V104I	38	98	
N76D/S101R/S103A/V104I	40	99	
N76D/S103A/V104I/N123S	1	98	
N76D/V104I/I107V/N123S	3	99	
N76D/S99D/S101R/S103A/V104I	36	99	
N76D/S99D/S103A/V104I/N123S	2	95	
N76D/S99D/S101R/S103A/V104I/N123S	0	100	

Example 5

5

35

40

50

55

Oligonucleotide-Directed Mutagenesis with

Single-Stranded DNA Template Generated from Phagemid

A. Construction of B. lentus Variants

[0054] The mutagenesis protocol was essentially the same as described above in Example 2. The single-stranded DNA template was generated by phagemid method. To construct the phagemid vector for generating the single-stranded DNA template we first constructed the vector pBCDAlCAT. The flow chart of vector construction is outlined in Figure 8. First, the Clal to Clal fragment encoding the CAT gene from pC194 plasmid (Horinouchi, S. and Weisblum, B., J. Bacteriol., 150:8-15, 1982) was cloned into the Accl site of polylinker region of pUC19 (New England BioLabs, Beverly, MA) to make plasmid pUCCHL and the EcoRl-Dral 0.6 KB fragment from the 5' end of the GG36DAl encoding DNA was cloned into the EcoRl and EcoRV sites of pBSKS plasmid (Stratagene, Inc., San Diego, CA) to make pBC2SK5. The single EcoRl site of the plasmid pBC2SK5 was eliminated by EcoRl digestion, followed by filling in catalyzed-by-T4 DNA polymerase, and religation to generate the plasmid pBC2SK-5R which does not have the EcoRl site. The EcoRl-Dral fragment which was cloned into pBCSK-5R was isolated as a Pstl-HindIII fragment and cloned into the Pstl-HindIII site of the pUCCHL (part of the polylinker of pUC19) to generate plasmid pUCCHL5R. The encoding sequence of GG36DAl gene was excised as an EcoRl-BamHI fragment and cloned into the EcoRl-BamHI sites of pUCCHL5R to make pUCCAT. The large EcoRl-HindIII fragment of pUCCAT was then cloned into the EcoRl and HindIII sites of BS2KS+ to generate the plasmid pBCDAICAT.

[0055] To generate single-stranded DNA, *E. coli*-containing pBCDAlCAT were infected with phage R408 (obtained from Stratagene, San Diego, CA) following the protocol described in Russel, M., Kidd, S. and Kelley, M.R., GENE 45: 333-338, 1986. Once the single-stranded DNA template was available, standard mutagenesis methods as described above in Example 2 were carried out. The construction of certain mutants is detailed below for illustrative purposes. [0056] For the construction of *B. lentus* (GG36) N76D/S103A/V104I/L217H, an *EcoRI-BamHI* DNA fragment encoding GG36 N76D/S103A/V104I was used in the construction of pUCCAT (see Fig. 8) to generate the plasmid pBCDA-ICAT. After the single-stranded DNA template was made following the protocol described above, a mutagenesis primer with the following sequence

following sequence

5 TAT GCC AGC CAC AAC GGT ACT TCG ATG GCT 3' (Seq. ID No.13)

was used to make the L217H. As before, the underlined residues denote the nucleotide changes that were made and the x Clal indicates that the existing Clal site was eliminated after the mutagenesis. The mutagenesis protocol was as described in Example 2. After the mutagenesis, plasmid DNA was first screened for the elimination of the Clal site and those clones missing the Clal site were subjected to DNA sequence analysis to verify the DNA sequence which made the L to H change at the 217th amino acid residue.

B. Construction of BPN' Variants and their Expression in B. subtilis

[0057] The construction of *B. amyloliquefaciens* (BPN') N76D/Q103A/Y104I/Y217L was done in a similar fashion except in two consecutive steps. N76D was first introduced into BPN' Y217L to make BPN' N76D/Y217L and a second mutagenesis was done to convert BPN' N76D/Y217L to BPN' N76D/Q103A/Y104I/Y217L. To generate the single-stranded DNA template for the first mutagenesis, an *EcoRI-BamHI* fragment encoding BPN' Y217L subtilisin (derived from the Y217L plasmid described in Wells, J., et al., PNAS, 84, 5167, 1087) was used to construct a plasmid pUC-CATFNA (see Fig. 9). The pUCCATFNA plasmid containing BPN' Y217L was used to construct the pBCFNACAT plasmid (Fig. 9). Single-stranded DNA was generated as described above. To generate BPN' N76D/Y217L, an oligonucle-otide primer with the sequence

was used to generate the change N76D. Single-stranded DNA was then prepared from the pBCFNACAT plasmid

containing the BPN' N76D/Y217L (the pBCFNACAT plasmid after N76D mutagenesis) and mutagenized with another oligonucleotide with the sequence

* *** ** x PvuII

5' GCT GAC GGT TCC GGC GCT ATT AGT TGG ATC ATT 3' (Seq. ID No.15)

to obtain BPN' N76D/Q103A/Y109I/Y217L. All steps involved in the cloning, the single-stranded DNA preparation, the mutagenesis, and the screening for mutants were carried out as described above.

[0058] Expression of the BPN' gene and its variants were achieved by integrating plasmid DNA (pBCFNACAT containing the different variants' BPN' gene) directly into a protease-deficient strain of *Bacillus subtilis* as described in RE 34.606.

[0059] Numerous variants were made as per the teachings of Examples 2 and 5. Kinetics data and stability data were generated for such variants. The kinetics data were generated using the methods described in Example 3 and are provided in Table IV. The stability data were generated as detailed herein. Results are shown in Table V.

Thermal Stability Assay Procedure

5

30

35

40

45

50

55

[0060] Purified enzyme was buffer-exchanged into 0.1 M glycine pH 10.0, 0.01% Tween-80 by applying the enzyme to a column consisting of Sephadex G-25 equilibrated with this buffer and eluting the enzyme from the column using the same buffer.

[0061] To a tube containing 0.1 M glycine, 0.01% Tween-80 pH 10.0 thermostatted at 60°C, the buffer-exchanged enzyme was added to give a final enzyme concentration of 15 ug/ml.

[0062] Aliquots were removed from the 60°C incubation at various times and immediately assayed for enzyme activity by addition to a 1 cm cuvette containing 1.2 mM of the synthetic peptide substrate succinyl-L-Ala-L-Ala-L-Pro-L-Phep-nitroanilide dissolved in 0.1 M tris-HCL buffer, pH 8.6, thermostatted at 25°C. The initial linear reaction velocity was followed spectrophotometrically by monitoring the absorbance of the reaction product p-nitroaniline at 410 nm as a function of time

[0063] Half-life, which is the length of time required for 50% enzyme inactivation, was determined from the first-order plot of reaction velocity as a function of the time of incubation at 60°C.

[0064] The data are presented in Table V as percent of the half-life determined for *Bacillus lentus* subtilisin (GG36) under identical conditions.

Table IV

Enzyme	kcat (s ⁻¹)	KM (mM)	kcat/KM (s ⁻¹ M ⁻¹)
B. lentus subtilisin	170	0.78	2.20E+05
N76D/S103G/V104I*	380	1.4	2.70E+05
N76D/S103A/V104F	730	0.33	2.20E+06
N76D/S103A/V104N	790	2.8	2.80E+05
N76D/S103A/V104S	170	0.83	2.00E+05
N76D/S103A/V104T	370	1.9	2.00E+05
N76D/S103A/V104W	880	0.31	2.80E+06
N76D/S103A/V104Y	690	0.5	1.40E+06
K27R/N76D/V104Y/N123S	500	1.2	4.20E+05
N76D/S101G/S103A/V104I*	620	1.3	4.80E+05
N76D/S103A/V104I/S105A*	550	1.3	4.20E+05
N76D/S103A/V104I/S105D*	440	1.7	2.60E+05
N76D/S103A/V104T/I107A*	120	5.7	2.10E+04
N76D/S103A/V104T/I107L*	310	3.2	9.70E+04
N76D/S103A/V104I/L126A	90	2.2	4.10E+04
N76D/S103A/V104I/L126F	180	1.9	9.50E+04
N76D/S103A/V104I/L126I	100	2.4	4.20E+04
N76D/S103A/V109I/L126V	64	3.2	2.00E+04

Table IV (continued)

Enzyme	kcat (s ⁻¹)	KM (mM)	kcat/KM (s ⁻¹ M ⁻¹)
N76D/S103A/V104I/S128G*	560	1.7	3.30E+05
N76D/S203A/V104I/S128L*	430	3.8	1.10E+05
N76D/S103A/V104I/L135A	140	0.76	1.80E+05
N76D/S103A/V104I/L135F	390	0.69	5.70E+05
N76D/S103A/V104I/L135I	110	0.73	1.50E+05
N76D/S103A/V104I/L135V	140	0.86	1.60E+05
N76D/S103A/V104I/S156E*	170	2.6	6.50E+04
N76D/S103A/V104I/S166D*	160	3.5	4.60E+04
N76D/S103A/V104I/D197E	510	1.4	3.60E+05
N76D/S103A/V104I/N204A*	530	1.1	4.80E+05
N76D/S103A/V104I/N204G*	580	1.4	4.10E+05
N76D/S103A/V104I/N204C*	370	1.3	2.90E+05
N76/S103A/V104I/P210I*	500	1.2	4.20E+05
N76D/ST03A/V104I/L217H*	80	0.63	1.30E+05
N76D/S103A/V104I/M222A	70	3.1	2.30E+04
N76D/S103A/V104I/M222S	80	3.1	2.60E+04
N76D/S103A/V104I/T260P	660	1.5	4.40E+05
N76D/S103A/V104I/S265N	590	1.3	4.50E+05
K27R/N76D/V104Y/I107V/N123S	220	1.4	1.60E+05
K27R/N76D/V104Y/N123S/D197E	430	1.1	3.90E+05
K27R/N76D/V104Y/N123S/N204C	400	1.1	3.60E+05
K27R/N76D/V104Y/N123S/Q206L	440	1.2	3.70E+05
K27R/N76D/V104Y/N123S/S216V	440	1.2	3.70E+05
K27R/N76D/V104Y/N123S/N218S	760	0.98	7.80E+05
K27R/N76D/V104Y/N123S/T260P	410	1.2	3.40E+05
K27R/N76D/V104Y/N123S/T274A	390	1	3.90E+05
N76D/S103A/V104I/L126F/S265N	170	2.1	8.10E+04
N76D/S103A/V104I/S156E/S166D*	40	6.3	6.40E+03
K27R/N76D/V104Y/N123S/G195E/G197E	410	0.98	4.20E+05
K27R/N76D/V104Y/N123S/G195E/N218S	540	0.66	8.20E+05
K27R/N76D/V104Y/N123S/D197E/N218S	770	0.79	9.80E+05
K27R/N76D/V104Y/N123S/N204C/N218S	610	0.99	6.20E+05
K27R/N76D/V104Y/N123S/Q206L/N218S	580	0.78	7.40E+05
K27R/M76D/V104Y/N123S/N218S/T260P	660	1	6.60E+05
K27R/N76D/V104Y/N123S/N218S/T274A	590	0.89	6.60E+05
K27R/N76D/V104Y/Q109S/N123S/N218S/T274A	520	1	5.20E+05
K27R/N76D/V104Y/N123S/G195E/D197E/N218S	460	0.65	7.10E+05
B. amyloliquefaciens subtilisin (BPN')	50	0.14	3.60E+05
BFN'-N76D/Y217L*	380	0.46	8.30E+05
* These mutants made as per Example 5, all others made as per Example 2			

Table V

Enzyme	Thermal Stability (% half-life of native enzyme)
B. lentus subtilisin	100

Table V (continued)

	Enzyme	Thermal Stability (% half-life of native enzyme)
5	N76D	590
	N76D/S99D	840
	N76D/S103A	390
	N76D/V104I	660
10	N76D/I107V	710
	N76D/N123S	70
	N76D/S99D/S101R	610
	N76D/S99D/S103A	590
	N76D/S99D/V104I	910
15	N76D/S101R/S103A	930
	N76D/S101R/V104I	500
	N76D/S103A/V104I	460
	N76D/S103G/V104I*	370
20	N76D/S103A/V104F	480
	N76D/S103A/V104N	230
	N76D/S103A/V104S	230
	N76D/S103A/V104T	370
	N76D/S103A/V104W	280
25	N76D/S103A/V104Y	400
	N76D/V104I/I107V	940
	N76D/V104Y/I107V	820
	N76D/V104I/N123S	80
30	N76D/I107V/N123S	150
	K27R/N76D/V104Y/N123S	100
	N76D/S99D/S101R/S103A	570
	N76D/S99D/S101R/V104I	1000
	N76D/S99D/S103A/V104I	680
35	N76D/S101G/S103A/V104I*	390
	N76D/S101R/S103A/V104I	470
	N76D/\$103A/V104I/\$105A*	360
	N76D/S103A/V104I/S105D*	370
40	N76D/S103A/V104T/I107A*	270
,,	N76D/S103A/V104T/I107L*	230
	N76D/S103A/V104I/N123S	110
	N76D/V104I/I107V/N123S	220
	N76D/S103A/V104I/L126A	270
45	N76D/S103A/V104I/L126F	950
	N76D/S103A/V104I/L126I	410
	N76D/S103A/V104I/L126V	320
	N76D/S103A/V104I/S128G*	640
50	N76D/S103A/VI04I/S128L*	760
30	N76D/S103A/V104I/L135A	230
	N76D/S103A/V104I/L135F	200
	N76D/S103A/V104I/L135I	510
	N76D/S103A/V104I/L135V	500
55	N76D/S103A/V104I/S156E*	120
	N76D/S103A/V104I/S166D*	590
	N76D/S103A/V104I/D197E	460

Table V (continued)

Enzyme	Thermal Stability (% half-life of native enzyme)
N76D/S103A/V104I/N204A*	230
N76D/S103A/V104I/N204G*	240
N76D/S103A/V104I/N204C*	500
N76D/S103A/V104I/P210I*	1370
N76D/S103A/V104I/L217H*	60
N76D/S103A/VI04I/M222A	520
N76D/S103A/VI04I/M222S	490
N76D/S103A/V104I/T260P	490
N76D/S103A/V104I/S265N	360
K27R/N76D/V104Y/I107V/N123S	210
K27R/N76D/V104Y/N123S/D197E	120
K27R/N76D/V104Y/N123S/N204C	110
K27R/N76D/V104Y/N123S/Q206L	380
K27R/N76D/V104Y/N123S/S216V	140
K27R/N76D/V104Y/N123S/N218S	270
K27R1N76D/V104Y/N123S/T260P	40
K27R/N76D/V104Y/N123S/T274A	60
N76D/S99D/S101R/S103A/V104I	590
N76D/S99D/S103A/V104I/N123S	110
N76D/S103A/V104I/L126F/S265N	810
N76D/S103A/V104I/S156E/S166D*	220
K27R/N76D/V104Y/N123S/G195E/G197E	90
K27R/N76D/V104Y/N123S/G195E/N218S	250
K27R/N76D/V104Y/N123S/D197E/N218S	270
K27R/N76D/V104Y/N123S/N204C/N218S	460
K27R/N76D/V104Y/N123S/Q206L/N218S	1400
K27R/N76D/V104Y/N123S/N218S/T260P	310
K27R/N76D/V104Y/N123S/N218S/T274A	180
N76D/S99D/S101R/S103A/V104I/N123S	90
K27R/N76D/V104Y/Q109S/N123S/N218S/T274A	230
K27R/N76D/V104Y/N123S/G195E/D197E/N218S	240
B. amyloliquefaciens subtilisin (BPN')	100
BPN'-N76D/Y217L*	420

^{*} These mutants made as per Example 5, all others made as per Example 2

Example 6

10

15

20

25

30

35

40

45

Wash Performance Test

[0065] The wash performance of the variants described in the previous examples was evaluated by measuring the removal of stain from EMPA 116 (blood/milk/carbon black on cotton) cloth swatches (Testfabrics, Inc., Middlesex, NJ 07030).

[0066] Six EMPA 116 swatches, cut to 3 X 4-1/2 inches with pinked edges, were placed in each pot of a Model 72435 Terg-O-Tometer (United States Testing Co., Inc., Hoboken, NJ) containing 1000 ml of water, 15 gpg hardness (Ca++: Mg++::3:1::w:w), 7 g of detergent, and enzyme as appropriate. The detergent base was WFK1 detergent from wfk - Testgewebe GmbH, Adlerstrasse 42, Postfach 13 07 62, D-47759 Krefeld, Germany:

Component	% of Final Formulation
Zeolite A	25%
Sodium sulfate	25%
Soda Ash	10%
Linear alkylbenzenesulfonate	8.8%
Alcohol ethoxylate (7-8 EO)	4.5%
Sodium soap	3%
Sodium silicate	3%
(SiO ₂ :Na ₂ O::3.3:1)	

[0067] To this base detergent, the following additions were made:

15		

10

20

25

35

40

45

50

55

Component % of Final Formulation

Sodium perborate monohydrate
Copolymer (Sokalan CP5) 4%

TAED (Mykon ATC Green) 3%
Enzyme 0.5%
Brightener (Tinopal AMS-GX) 0.2%

[0068] Sodium perborate monohydrate was obtained from Degussa Corporation, Ridgefield-Park,_NJ 07660. Sokalan CP5 was obtained from BASF Corporation, Parsippany, NJ 07054. Mykon ATC Green (TAED, tetraacetylethylenediamine) was obtained from Warwick International, Limited, Mostyn, Holywell, Clwyd CH8 9HE, England. Tinopal AMS GX was obtained from Ciba-Geigy Corporation, Greensboro, NC 27419.

[0069] Six EMPA 116 swatches were washed in detergent with enzyme for 30 minutes at 60°C and were subsequently rinsed twice for 5 minutes each time in 1000 ml water. Enzymes were added at final concentrations of 0.05 to 1 ppm for standard curves, and 0.25 ppm for routine analyses. Swatches were dried and pressed, and the reflectance from the swatches was measured using the L value on the L*a*b* scale of a Minolta Chroma Meter, Model CR-200 (Minolta Corporation, Ramsey, NJ 07446). Performance is reported as a percentage of the performance of *B. lentus* (GG36) protease and was calculated by dividing the amount of *B. lentus* (GG36) protease by the amount of variant protease that was needed to provide the same stain removal performance X 100. The data are shown in Table VII.

Table VI

Enzyme	Wash Performance
B. lentus subtilisin	100
N76D	310
N76D/S103A	230
N76D/V104I	130
N76D/I107V	160
N76D/S99D/S101R	370
N76D/S99D/S103A	290
N76D/S101R/S103A	130
N76D/S101R/V104I	300
N76D/S103A/V104I	320
N76D/S103G/V104I	160
N76D/S103A/V104F	210
N76D/S103A/V109N	110
N76D/S103A/V104T	170
N76D/V104I/I107V	210
N76D/S99D/S101R/S103A	220
N76D/S99D/S101R/V104I	140

Table VI (continued)

Enzyme	Wash Performance
N76D/S101G/S103A/V104I	170
N76D/S101R/S103A/V104I	150
N76D/S103A/V104I/S105A	170
N76D/S103A/V104T/I107A	120
N76D/S103A/V104T/I107L	110
N76D/S103A/V104I/L126F	110
N76D/S103A/V104I/S128G	280
N76D/S103A/V104I/L135I	160
N76D/S103A/V104I/L135V	160
N76D/S103A/V104I/D197E	170
N76D/S103A/V104I/N204A	160
N76D/S103A/V104I/N204G	150
N76D/S103A/V104I/P210I	470
N76D/S103A/V104I/M222A	100
N76D/S103A/V104I/T260P	280
N76D/S103A/V104I/S265N	190

Example 7

10

15

20

25

Protease Stability in a Liquid Detergent Formulation

[0070] A comparison of protease stability toward inactivation in a liquid detergent formulation was made for Bacillus lentus subtilisin and it's variant enzyme N76D/S103A/V104I according to the procedure outlined herein. The detergent formulation used for the study was a commercially purchased bottle of Tide Ultra liquid lanudry detergent made in the USA by Procter & Gamble Company. Heat treatment of the detergent formulation was necessary to inactivate in-situ protease. This was accomplished by incubating the detergent at 96°C for a period of 4.5 hours. Concentrated preparations of the B. lentus subtilisin and N76D/S103A/V104I variant, in the range of 20 grams/liter enzyme, were then added to the heat-treated Tide Ultra at room-temperature to a final concentratrion of 0.3 grams/liter enzyme in the detergent formulation. The heat-treated detergent with protease added was then incubated in a water bath thermostatted at 50°C. Aliquots were removed from the incubation tubes at 0, 24, 46, 76, and 112 hour time intervals and assayed for enzyme activity by addition to a 1 cm cuvette containing 1.2 mM of the synthetic peptide substrate suc-Ala-Ala-Prophe-p-nitroanilide dissolved in 0.1M tris-HCL buffer, pH 8.6, and thermostatted at 25°C. The initial linear reaction velocity was followed spectrophotometrically by monitoring the absorbance of the reaction product p-nitroaniline at 410nm as a function of time. As shown in Fig. 10, the N76D/S103A/V104I variant was observed to have significantly greater stability towards inactivation than the native B. lentus enzyme. Estimated half-lives for inactivation in the Tide Ultra detergent formulation for the two enzymes, under the specified test conditions, are 45 hours for B. lentus subtilisin and 125 hours for the N76D/S103A/V104I variant.

[0071] Throughout this application reference is made to various amino acids by way of common one- and three-letter codes. Such codes are identified in Dale, J.W. (1989), Molecular Genetics of Bacteria, John Wiley & Sons, Ltd., Appendix B.

[0072] Although the preferred embodiments of the invention have been described above, it will be obvious to those skilled in the art to which the invention pertains, that, after understanding the invention as a whole, various changes and equivalent modifications may be made without departing from the scope of the invention as defined by the appended claims.

SEQUENCE LISTING

[0073]

55

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Graycar, Thomas P

Bott, Richard R Wilson, Lori J

10

(ii) TITLE OF INVENTION: Subtilisin Variants

(A) ADDRESSEE: Genencor International, Inc

(iii) NUMBER OF SEQUENCES: 15

(iv) CORRESPONDENCE ADDRESS:

	(B) STREET: 180 Kimball Way	
	(C) CITY: So. San Francisco	
	(D) STATE: CA	· ·
	(E) COUNTRY: USA	
15	(F) ZIP: 94080	
	(v) COMPUTER READABLE FORM:	
	(A) MEDIUM TYPE: Floppy disk	
20	(B) COMPUTER: IBM PC compatible	
	(C) OPERATING SYSTEM: PC-DOS/MS-DOS	
	(D) SOFTWARE: Patentin Release #1.0, Version #1.25	
	(vi) CURRENT APPLICATION DATA:	
25		
	(A) APPLICATION NUMBER:	
	(B) FILING DATE: 13-OCT-1994	
	(C) CLASSIFICATION:	
30	(viii) ATTORNEY/AGENT INFORMATION:	
	(A) NAME: Horn, Margaret A.	
	(B) REGISTRATION NUMBER: 33,401	
	(C) REFERENCE/DOCKET NUMBER: GC235-2	
35	(ix) TELECOMMUNICATION INFORMATION:	
	(A) TELEPHONE: (415) 742-7536	
	(B) TELEFAX: (415) 742-7217	
40		
	(2) INFORMATION FOR SEQ ID NO:1:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 19 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
<i>55</i>	GAAGCTGCAA CTCGTTAAA	1
<i>JJ</i>		
	(2) INFORMATION FOR SEQ ID NO:2:	

	(i) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH: 18 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
	GCTGCTCTAG ACAATTCG	18
15	(2) INFORMATION FOR SEQ ID NO:3:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 39 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
	GTATTAGGGG CGGACGGTCG AGGCGCCATC AGCTCGATT	39
30	(2) INFORMATION FOR SEQ ID NO:4:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 33 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
45	TCAGGTTCGG TCTCGAGCGT TGCCCAAGGA TTG	33
	(2) INFORMATION FOR SEQ ID NO:5:	
50	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 22 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
55	(ii) MOLECULE TYPE: DNA (genomic)	·
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	

CACGTTGCTA GCTTGAGTTT AG

22

	(2) INFORMATION FOR SEQ ID NO:6:								
5	(i) SEQUENCE CHARACTERISTICS:								
10	(A) LENGTH: 1497 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	;							
	(ii) MOLECULE TYPE: DNA (genomic)								
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:								
	GGTCTACTAR ARTATTATTC CATACTATAC ARTTARTACA CAGARTARTC TGTCTATTGG	60							
	TTATTCTGCA AATGAAAAAA AGGAGAGGAT AAAGAGTGAG AGGCAAAAAA GTATGGATCA	120							
20	GTTTGCTGTT TGCTTTAGCG TTAATCTTTA CGATGGCGTT CGGCAGCACA TCCTCTGCCC	180							
	AGGCGGCAGG GAAATCAAAC GGGGAAAAGA AATATATTGT CGGGTTTAAA CAGACAATGA	240							
	GCACGATGAG CGCCGCTAAG AAGAAAGATG TCATTTCTGA AAAAAGGCGGG AAAGTGCAAA	300							
25	AGCAATTCAA ATATGTAGAC GCAGCTTCAG TCACATTAAA CGAAAAAGCT GTAAAAGAAT	360							
	TGAAAAAAGA CCCGAGCGTC GCTTACGTTG AAGAAGATCA CGTAGCACAT GCGTACGCGC	420							
30	AGTCCGTGCC TTACGGCGTA TCACAAATTA AAGCCCCTGC TCTGCACTCT CAAGGCTACA	480							
	CTGGATCAAA TGTTAAAGTA GCGGTTATCG ACAGCGGTAT CGATTCTTCT CATCCTGATT	540							
	TAAAGGTAGC AAGCGGAGCC AGCATGGTTC CTTCTGAAAC AAATCCTTTC CAAGACAACA	600							
35	ACTOTOACGG AACTOACGTT GOOGGCACAG TTGCGGCTCT TAATAACTCA ATCGGTGTAT	660							
	TAGGCGTTGC GCCAAGCGCA TCACTTTACG CTGTAAAAGT TCTCGGTGCT GACGGTTCCG	720							
	GCCAATACAG CTGGATCATT AACGGAATCG AGTGGGCGAT CGCAAACAAT ATGGACGTTA	780							
	TTAACATGAG CCTCGGCGGA CCTTCTGGTT CTGCTGCTTT AAAAGCGGCA GTTGATAAAG	840							
40	CCGTTGCATC CGGCGTCGTA GTCGTTGCGG CAGCCGGTAA CGAAGGCACT TCCGGCAGCT	900							
	CAAGCACAGT GGGCTACCCT GGTAAATACC CTTCTGTCAT TGCAGTAGGC GCTGTTGACA	960							
	GCAGCAACCA AAGAGCATCT TTCTCAAGCG TAGGACCTGA GCTTGATGTC ATGGCACCTG	1020							
45	GCGTATCTAT CCAAAGCACG CTTCCTGGAA ACAAATACGG GGCGTACAAC GGTACGTCAA	1080							
	TGGCATCTCC GCACGTTGCC GGAGCGGCTG CTTTGATTCT TTCTAAGCAC CCGAACTGGA	1140							
	CAAACACTCA AGTCCGCAGC AGTTTAGAAA ACACCACTAC AAAACTTGGT GATTCTTTGT	1200							
50	ACTATGGAAA AGGGCTGATC AACGTACAAG CGGCAGCTCA GTAAAACATA AAAAACCGGC	1260							
	CTTGGCCCCG CCGGTTTTTT ATTATTTTTC TTCCTCCGCA TGTTCAATCC GCTCCATAAT	1320							
	CGACGGATGG CTCCCTCTGA AAATTTTAAC GAGAAACGGC GGGTTGACCC GGCTCAGTCC	1380							
	CGTAACGGCC AACTCCTGAA ACGTCTCAAT CGCCGCTTCC CGGTTTCCGG TCAGCTCAAT	1440							
55	GCCATAACGG TCGGCGGCGT TTTCCTGATA CCGGGAGACG GCATTCGTAA TCGGATC	1497							

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 275 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

10

20

30

40

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Ala Gln Ser Val Pro Tyr Gly Val Ser Gln Ile Lys Ala Pro Ala Leu 15
His Ser Gln Gly Tyr Thr Gly Ser Asn Val Lys Val Ala Val Ile Asp Ser Gly Ile Asp Ser Ser His Pro Asp Leu Lys Val Ala Gly Gly Ala Ser Met Val Pro Ser Glu Thr Asn Pro Phe Gln Asp Asn Asn Ser His 50
Gly Thr His Val Ala Gly Thr Val Ala Ala Leu Asn Asn Ser Ile Gly 70
Val Leu Gly Val Ala Pro Ser Ala Ser Leu Tyr Ala Val Lys Val Leu 95
Gly Ala Asp Gly Ser Gly Gln Tyr Ser Trp Ile Ile Asn Gly Ile Glu

Trp Ala Ile Ala Asn Asn Met Asp Val Ile Asn Met Ser Leu Gly Gly 115

Pro Ser Gly Ser Ala Ala Leu Lys Ala Ala Val Asp Lys Ala Val Ala Ser Gly Val Val Val Val Ala Ala Ala Gly Asn Glu Gly Thr Ser Gly 145

Ser Ser Ser Thr Val Gly Tyr Pro Gly Lys Tyr Pro Ser Val Ile Ala 175

Val Gly Ala Val Asp Ser Ser Asn Gln Arg Ala Ser Phe Ser Ser Val 180

Gly Pro Glu Leu Asp Val Met Ala Pro Gly Val Ser Ile Gln Ser Thr 195

Leu Pro Gly Asn Lys Tyr Gly Ala Tyr Asn Gly Thr Ser Met Ala Ser Pro His Val Ala Gly Ala Ala Ala Leu Ile Leu Ser Lys His Pro Asn 225

Trp Thr Asn Thr Gln Val Arg Ser Ser Leu Glu Asn Thr Thr Thr Lys 265

Leu Gly Asp Ser Phe Tyr Tyr Gly Lys Gly Leu Ile Asn Val Gln Ala Ala Ala Ala Gln 275

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 275 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

10

15

20

30

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:B:

Ala Gln Ser Val Pro Tyr Gly Ile Ser Gln Ile Lys Ala Pro Ala Leu 15

His Ser Gln Gly Tyr Thr Gly Ser Asn Val Lys Val Ala Val Ile Asp 30

Ser Gly Ile Asp Ser Ser His Pro Asp Leu Asn Val Arg Gly Gly Ala Ser Phe Val Pro Ser Glu Thr Asn Pro Tyr Gln Asp Gly Ser Ser His 60

Gly Thr His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly 65

Val Leu Gly Val Ser Pro Ser Ala Ser Leu Tyr Ala Val Lys Val Leu 95

Asp Ser Thr Gly Ser Gly Gln Tyr Ser Trp Ile Ile Asn Gly Ile Glu Gly Trp Ala Ile Ser Asn Asn Ser Ile Glu Trp Ala Ile Ser Asn Asn Met Asp Val Ile Asn Met Ser Leu Gly Gly Pro Thr Gly Ser Thr Ala Leu Lys Thr Val Val Asp Lys Ala Val Ser

 Ser Gly Ile
 Val
 Ala Ala Ala Ala Ala Ala Ala Gly Asn Glu Gly Ser Ser Gly 160

 Ser Thr
 Ser Thr Val 165
 Gly Tyr Pro Ala Lys Tyr Pro Ser Thr Ile Ala 175

 Val Gly Ala Val Asn Ser Ser Asn 185
 Gln Arg Ala Ser Phe Ser Ser Ala 180

 Gly Ser Glu Leu Asp Val Met 200
 Pro Gly Val Ser Ile Gln Ser Thr 205

 Leu Pro Gly Gly Gly Thr Tyr Gly Ala Tyr Asn Gly Thr Ser Met Ala Thr 215

 Pro His Val Ala Gly Ala Ala Ala Leu Ile Leu Ser Lys His Pro Thr 240

 Trp Thr Asn Ala Gln Val Arg Asp Arg Leu Glu Ser Thr Ala Thr 255

 Leu Gly Asn Ser Phe Tyr Tyr Gly Lys Gly Leu Ile Asn Val Gln Ala 275

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 274 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

10

15

30

35

45

50

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

 Ala
 Gln
 Thr
 Val
 Pro
 Tyr
 Gly
 Ile
 Pro
 Leu
 Ile
 Lys
 Ala
 Asp
 Lys
 Val
 Ala
 Lys
 Val
 Ala
 Asp
 Leu
 Asp
 Val
 Ala
 Val
 Leu
 Asp
 Leu
 Asp
 Val
 Ala
 Gly
 Gly
 Ala

 Ser
 Phe
 Val
 Ala
 Ser
 His
 Pro
 Asp
 Leu
 Asp
 Val
 Val
 Gly
 Ala

 Ser
 Phe
 Val
 Ala
 Gly
 Glu
 Ala
 Tyr
 Asp
 Leu
 Asp
 Asp
 Gly
 Asp
 Gly
 Asp
 Gly
 Asp
 Asp
 Asp
 Thr
 Thr
 Gly
 Val
 Asp
 Asp
 Asp
 Asp
 Thr
 Thr
 Asp
 Asp

Gly Ala Val Asp Ser Asn Ser Asn Arg Ala Ser Phe Ser Ser Val Gly Ala Glu Leu 195 Glu Val Met Ala Pro Gly Ala Gly Val Tyr Ser Thr Tyr Pro Thr Asn Thr Tyr Ala Thr Leu Asn Gly Thr Ser Met Ala Ser Pro 210 Ala Gly Ala Ala Leu Ile Leu Ser Lys His Pro Asn Leu 240 Ser Ala Ser Gln Val Arg Asn Arg Leu Ser Ser Thr Ala Thr Tyr Leu 255 Ala Gly Ser Ser Phe Tyr Tyr Gly Lys Gly Leu Ile Asn Val Glu Ala Ala Ala Ala Gln

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

10

15

20

30

35

40

45

50

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

 Ala
 Gln
 Ser
 Val
 Pro
 Trp
 Gly
 Ile
 Ser
 Arg
 Val
 Glo
 Ala
 Pro
 Ala
 Ala</th

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala
Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile
235
Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu
255
Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1140 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

5

10

15

20

25

30

35

40

45

50

55

ATGAAGAAAC	CGTTGGGGAA	AATTGTCGCA	AGCACCGCAC	TACTCATTTC	TGTTGCTTTT	60
AGTTCATCGA	TCGCATCGGC	TGCTGAAGAA	GCAAAAGAAA	TAATTTAAT	TGGCTTTAAT	120
GAGCAGGAAG	CTGTCAGTGA	GTTTGTAGAA	CAAGTAGAGG	CAAATGACGA	GGTCGCCATT	180
CTCTCTGAGG	AAGAGGAAGT	CGAAATTGAA	TTGCTTCATG	AATTTGAAAC	GATTCCTGTT	240
TTATCCGTTG	AGTTAAGCCC	AGAAGATGTG	GACGCGCTTG	AACTCGATCC	AGCGATTTCT	300
TATATTGAAG	AGGATGCAGA	AGTAACGACA	ATGGCGCAAT	CAGTGCCATG	GGGAATTAGC	360
CGTGTGCAAG	CCCCAGCTGC	CCATAACCGT	GGATTGACAG	GTTCTGGTGT	AAAAGTTGCT	420
GTCCTCGATA	CAGGTATTTC	CACTCATCCA	GACTTAAATA	TTCGTGGTGG	CGCTAGCTTT	480
GTACCAGGGG	AACCATCCAC	TCAAGATGGG	AATGGGCATG	GCACGCATGT	GGCCGGGACG	540
ATTGCTGCTT	TAAACAATTC	GATTGGCGTT	CTTGGCGTAG	CGCCGAGCGC	GGAACTATAC	600
GCTGTTAAAG	TATTAGGGGC	GAGCGGTTCA	GGTTCGGTCA	GCTCGATTGC	CCAAGGATTG	660
GAATGGGCAG	GGAACAATGG	CATGCACGTT	GCTAATTTGA	GTTTAGGAAG	CCCTTCGCCA	720
AGTGCCACAC	TTGAGCAAGC	TGTTAATAGC	GCGACTTCTA	GAGGCGTTCT	TGTTGTAGCG	780
GCATCTGGGA	ATTCAGGTGC	AGGCTCAATC	AGCTATCCGG	CCCGTTATGC	GAACGCAATG	840
GCAGTCGGAG	CTACTGACCA	AAACAACAAC	CGCGCCAGCT	TTTCACAGTA	TGGCGCAGGG	900
CTTGACATTG	TCGCACCAGG	TGTAAACGTG	CAGAGCACAT	ACCCAGGTTC	AACGTATGCC	960
AGCTTAAACG	GTACATCGAT	GGCTACTCCT	CATGTTGCAG	GTGCAGCAGC	CCTTGTTAAA	1020
CAAAAGAACC	CATCTTGGTC	CAATGTACAA	ATCCGCAATC	ATCTAAAGAA	TACGGCAACG	1080
AGCTTAGGAA	GCACGAACTT	GTATGGAAGC	GGACTTGTCA	ATGCAGAAGC	GGCAACACGC	1140

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1140 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

	ATGAAGAAAC CGTTGGGGAA AATTGTCGCA AGCACCGCAC TACTCATTTC TGTTGCTTTT 60	-									
	AGTTCATCGA TCGCATCGGC TGCTGAAGAA GCAAAAGAAA AATATTTAAT TGGCTTTAAT 120										
5	GAGCAGGAAG CTGTCAGTGA GTTTGTAGAA CAAGTAGAGG CAAATGACGA GGTCGCCATT 180										
	CTCTCTGAGG AAGAGGAAGT CGAAATTGAA TTGCTTCATG AATTTGAAAC GATTCCTGTT 240										
	TTATCCGTTG AGTTAAGCCC AGAAGATGTG GACGCGCTTG AACTCGATCC AGCGATTTCT 300										
10	TATATTGAAG AGGATGCAGA AGTAACGACA ATGGCGCAAT CAGTGCCATG GGGAATTAGC 360										
	CGTGTGCAAG CCCCAGCTGC CCATAACCGT GGATTGACAG GTTCTGGTGT AAAAGTTGCT 420										
	GTCCTCGATA CAGGTATTTC CACTCATCCA GACTTAAATA TTCGTGGTGG CGCTAGCTTT 480										
	GTACCAGGGG AACCATCCAC TCAAGATGGG AATGGGCATG GCACGCATGT GGCCGGGACG 540										
15	ATTGCTGCTT TAGACAACTC GATTGGCGTT CTTGGCGTAG CGCCGAGCGC GGAACTATAC 600										
	GCTGTTAAAG TATTAGGGGC GAGCGGTTCA GGCGCCATCA GCTCGATTGC CCAAGGATTG 660										
	GAATGGGCAG GGAACAATGG CATGCACGTT GCTAATTTGA GTTTAGGAAG CCCTTCGCCA 720										
20	AGTGCCACAC TTGAGCAAGC TGTTAATAGC GCGACTTCTA GAGGCGTTCT TGTTGTAGCG 780										
	GCATCTGGGA ATTCAGGTGC AGGCTCAATC AGCTATCCGG CCCGTTATGC GAACGCAATG 840										
	GCAGTCGGAG CTACTGACCA AAACAACAAC CGCGCCAGCT TTTCACAGTA TGGCGCAGGG 900										
25	CTTGACATTG TCGCACCAGG TGTAAACGTG CAGAGCACAT ACCCAGGTTC AACGTATGCC 960										
	AGCTTAAACG GTACATCGAT GGCTACTCCT CATGTTGCAG GTGCAGCAGC CCTTGTTAAA 1020										
	CAAAAGAACC CATCTTGGTC CAATGTACAA ATCCGCAATC ATCTAAAGAA TACGGCAACG 1080										
	AGCTTAGGAA GCACGAACTT GTATGGAAGC GGACTTGTCA ATGCAGAAGC GGCAACACGC 1140										
30	(2) INFORMATION FOR SEQ ID NO:13:										
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear										
	(ii) MOLECULE TYPE: DNA (genomic)										
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:										
	TATGCCAGCC ACAACGGTAC TTCGATGGCT	3 (
45	(2) INFORMATION FOR SEQ ID NO:14:										
	(i) SEQUENCE CHARACTERISTICS:										
50	(A) LENGTH: 31 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear										
55	(ii) MOLECULE TYPE: DNA (genomic)										
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:										

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GCTGACGGTT CCGGCGCTAT TAGTTGGATC ATT

33

20

30

35

5

10

15

Claims

- A subtilisin variant having an amino acid sequence not found in nature, derived from a precursor subtilisin, comprising substitutions corresponding to: N76D/S103A; N76D/V104I; N76D/I107V or N76D/S99D/S101R of B. amyloliquefaciens subtilisin, wherein the subtilisin variant has improved wash performance as compared to the precursor subtilisin.
 - A subtilisin variant of claim 1 wherein the subtilisin variants comprise substitutions corresponding to: N76D/S99D/S103A; N76D/S101R/S103A; N76D/S101R/V104I; N76D/S103A/V104I; N76D/S103G/V104I; N76D/S103A/V104I; N76D/S103A/V104I; N76D/S103A/V104I; N76D/S103A/V104I, N76D/S103A/V104I, N76D/S101R/S103A/V104I, N76D/S101R/S103A/V104I, N76D/S103A/V104I, N76D/S103A/V104I/S105A; N76D/S103A/V104I/I107A; N76D/S103A/V104I/I107L; N76D/S103A/V104I/L126F; N76D/S103A/V104I/S128G; N76D/S103A/V104I/L135I; N76D/S103A/V104I/L135V; N76D/S103A/V104I/D197E; N76D/S103A/V104I/N204A; N76D/S103A/V104I/N204G; N76D/S103A/V104I/P210I; N76D/S103A/V104I/T260P or N76D/S103A/V104I/S265N of B. amyloliquefaciens subtilisin.
 - 3. A subtilisin variant according to claim 1 or claim 2 wherein the precursor subtilisin is a Bacillus subtilisin.
- A subtilisin variant according to claim 3 wherein the precursor subtilisin is Bacillus lentus subtilisin.
 - 5. DNA encoding a subtilisin variant of claim 1 or claim 2.
 - 6. An expression vector encoding the DNA of claim 5.

7. A host cell transformed with the expression vector of claim 6.

Patentansprüche

50

55

45

- Subtilisinvariante mit einer nicht in der Natur vorkommenden Aminosäuresequenz, die von einem Vorläufersubtilisin stammt, das Substitutionen umfasst, die N76D/S103A; N76DN1041; N76D/I107V oder N76D/S99D/S101R von B.-amyloliquefaciens-Subtilisin entsprechen, worin die Subtilisinvariante im Vergleich zum Vorläufersubtilisin verbesserte Waschleistung aufweist.
- Subtilisinvariante nach Anspruch 1, worin die Subtilisinvarianten Substitutionen umfassen, die N76D/S99D/SI03A; N76D/S101R/S103A; N76D/S101R/V104I; N76D/S103A/V104I; N76D/S103G/V104I; N76D/S103A/V104F;

N76D/S103A/V104N; N76D/S103A/V104T; N76D/V104I/I107V; N76D/S99D/S101R/S103A; N76D/S99D/S101R/V104l; N76D/S101G/S103A/V104I; N76D/S101R/S103A/V104I; N76D/S103A/V104I/S105A; N76D/S103A/V104T/I107A; N76D/S103A/V104T/I107L; N76D/S103A/V104I/L126F; N76D/S103A/V104I/S128G; N76D/S103A/V104I/L135I; N76D/S103A/V104I/L135V; N76D/S103A/V104I/D197E; N76D/S103A/V109I/N204A; N76D/S103A/V104I/N204G; N76D/S103A/V104I/P210I; N76D/S103A/V104I/T260P oder 10 N76D/S103A/V104I/S265N von B.-amyloliquefaciens-Subtilisin entsprechen.

- 3. Subtilisinvariante nach Anspruch 1 oder Anspruch 2, worin das Vorläufersubtilisin ein Bacillus-Subtilisin ist.
- 4. Subtilisinvariante nach Anspruch 3, worin das Vorläufersubtilisin Bacillus-lentus-Subtilisin ist. 15
 - 5. DNA, die für eine Subtilisinvariante nach Anspruch 1 oder Anspruch 2 kodiert.
 - Expressionsvektor, der für die DNA nach Anspruch 5 kodiert.
 - 7. Wirtszelle, die mit dem Expressionsvektor nach Anspruch 6 transformiert ist.

Revendications

de Bacillus.

25

20

5

- 1. Variant de subtilisine ayant une séquence d'acides aminés que l'on ne trouve pas dans la nature, dérivé d'une subtilisine précurseur, comprenant des substitutions correspondant à: N76D/S103A; N76D/V104I; N76D/I107V ou N76D/S99D/S101R de la subtilisine de B. amyloliquefaciens, où le variant de subtilisine a une meilleure performance de lavage en comparaison avec la subtilisine précurseur.
- 30
- Variant de subtilisine de la revendication 1 où les variants de subtilisine comprennent des substitu tions correspondant à:

N76D/S99D/S103A; N76D/S101R/S103A; N76D/S101R/V104I: N76D/S103A/V104I; N76D/S103G/V104I; N76D/S103A/V104F; 35 N76D/S103A/V104N; N76D/S103A/V104T; N76D/V104I; I107V; N76D/S99D/S101R/S103A; N76D/S99D/S101R/V104I; N76D/S101G/S103A/V104I; N76D/S101R/S103A/V104I; N76D/S103A/V104I/S105A; N76D/S103A/V104T/I107A; N76D/S103A/V104T/I107L; N76D/S103A/V104I/L126F; 40 N76D/S103A/V104I/S128G; N76D/S103A/V104I/L135I; N76D/S103A/V104I/L135V; N76D/S103A/V104I/D197E; N76D/S103A/V104I/N204A; N76D/S103A/V104I/N204G; N76D/S103A/V104I/P210I; N76D/S103A/V104I/T260P ou

45

- Variant de subtilisine selon la revendication 1 ou la revendication 2 où la subtilisine précurseur est une substilisine
- 50 4. Variant de subtilisine selon la revendication 3 où la subtilisine précurseur est la subtilisine de Baccilus lentus.
 - ADN codant pour un variant de subtilisine de la revendication 1 ou de la revendication 2.

N76D/S103A/V104I/S265N de la subtilisine du B. amyloliquefaciens.

Vecteur d'expression codant pour l'ADN de la revendication 5.

55

7. Cellule hôte transformée par le vecteur d'expression de la revendication 6.

	Ser 100	Met	Ala GCA	Asp	58	Val GTA
	AC #	ACG ACG	Asp	oge S X	Ser TCT	Lys AG
-107 fMet GTG	Ser	Ser	val GTA	3 8 8 8 8 8 8 8 8 8 8	His CAC	1 E
AAGA	<u>\$</u>	-60 Met ATG	Ty!	Val GTT	ر و 576	AS GAT
<u>G</u> ATA	# C	ACA Th	Eys AA	Tyr	Ala GCT	8 g S S
RBS GAGAG	SCG GCG	CAG CAG	Phe TTC	Ala GCT	S.C.	SA ₹
RBS TCTGCAAATGAAAAAAG <u>GAGAGG</u> ATAAAGA	Met	R PS	₽ ₹	val GTC	SC AB	Ser TCT
AAA	Thr ACG	#E	Lys AAG	Ser AGC	₹ }	Ser TCT
AATG	F Page	999 899	CA Si Si	გ. ეეე	the ATT	Asp
TGCA	% -90 NF -90 ATC	Val GTC	Val GTG	Asp GAC	5 g 3 \$	lle ATC
TATTC	I e	o = E	Lys AAA	Lys AA	Ser TCA	<u>65</u>
F -1991	Ala GCG	PRO Tyr lle	©√ ©€	Lys	Val GTA	Ser
CIAI	TE Lea	\$ ~	ე გე	Leu TG	ည် ဗိဇ္ဇ	Asp GAC
(4) TAATACACAGAATAATCTGTCTATTGGTTAT	Ala	-70 Lys	\$ \$5	05. 2 6 6 4 8	Ty TAC	Ile ATC
AATAA	ag E	- 65 8 € 8 €	G GE	₹	85	S T E
ACAG	C Ee	99 26	Ser TCT	vaf GTA	val GTG	Ata GCG
ATAC	PRE Leu Le	Age Age	lle ATT	Ala GCT		Val
⊕ * ¥	Ser AGT	1 Sg.	val GTC	15 A	G CAG	₹₹
) Se	8 - 30 ATC	₹	-50 Asp GAT	G G G G A	Afa GCG	CTT C
ATACT	P. 150	Gly GGG	Lys AA	Asn	- 1×2	Asn
) P SGICIACIAAAATATTATTCCA <u>IACIA</u> I	Val	SC AB	Lys AAG	TA E	Ala GCG	Ser
IATTA	₹.	SCG SCG	Lys	ACA	His CAT	₹ 8
P AAAA.	Lys	CAG GB	Ala	Ala GCT	Afa GCA	ACT ACT
<u>IA</u> CT	299 209	8 8 S	Ala GCC	30 Ser TCA	Val GTA	TAC
€ <u>661(</u>	Arg AGA	1C &	Ser AGC	Ala GCT	His CAC	လွှင် လွှင့်
_	66	174	249	324	399	474

FIG._1B - 1

G GGT **8**55 Met ATG Ala GCA **8** E 5 SC Pa ≸સ્ **≱** 89 8 Asa Agc Asn AAC Val SC 25 Val GTA Asn Val Val Ala GCC TAC TX TX Asa Ala ÇA ₹ £ 89€ Ser AGC SC & ₹ 156 15 A SC & TAC TAC ACT TA Gy GGG Val GTG 190 1CA ASa Asa ASa SA SA Ile ATC CHE 8 GG¥ GGA § 800 800 Ala GCG ¥Ş Ş 를 일 그 등 ₹<u>₹</u> Val GTT Ata 1CA SK FS Ser Se Re Ser TCT **₹** 15 15 15 15 SC A Ser Ala GCA Ser TCT Lys AAG SC AB Asn Gle GAG Ala GCG Ser TCA Ser AGC Asn AAC GGA ₽°E Ser TCT Ser AGC at C ξ¥ 8 S 160 GGC GCC CAA CCT re Es 5€ 56 66A T ¥ Ala GCG Asp GAC Asn 골등 AT e Ala GCT ASI Val G∏ § ₹ , 3 € Ser AGC ACG T⊒ Ser Thr ACT ე დ_____ NE AT &a GCT Ser Ser AGC **9** 8 8 lle ATC Ser TCT 25 TS ₹ Asp క్ర క్రి Ala GCT ₽ Se 17p 16G **6**€ Val GTA Pro Asn AAT 88 As 23 As 25 As Val GTT #e ATC Asn AAC Ser 138 1CT ප <u>ද</u>ිව 100 ¥Ç ₹ GGA GGA GCT Ala Ser TCT GGT GGT lle ATC SC 33 ₹ Y **₹** Aa GCC ය ලේද Val SC AB G G G క్ర్ క్ర Ser 1CA Ser TCT දුර පුල් Val GTT 3 3 3 3 4 Val gg Bg ဗွဲ့ ဗွဲ့ Pro CCT Asa His CAC SC AB Ala GCG 85 SE CE ఠ Asn Z Ser 8 8 8 8 Ser AGC 150 Val GTT ATT ATT GCA 56. 56. 56. 50 Met ATG SE CHE Val GTC Met ATG Met ATG Ser TCT Asp GAC Val GTC Ser AGC AB GCT STC SC Pa Ala GCG Asn Val GTA Ser TCT Ala GCC Asp GCT Asp GAT Met Val GTC S S gg̃ **89** ¥ ∰ SH Kal ල්ල් ≅E C∃E <u>ک</u> کو Val GTT 14 140 ე ცე 35 ¥ ₹ \$ \fr Glu GAG Asp GAC ද ල් ලේද Ser TCC Ag CCA Val 86 849 924 774 549 86 524

250 Gin Gin Vai Arg Ser Ser Leu Glu Asn Thr Thr Thr Lys Leu Gly Asp Ser Phe Tyr Tyr Gly Lys Gly Leu lie Asn 1149 CAA GTC CGC AGC AGT TTA GAA AAC ACC ACT ACA AAA CTT GGT GAT ICT TTC TAC TAT GGA AAA GGG CTG ATC AAC 270 TERM Val Gin Ala Ala Gin OC TERM VAL GIN ALA ALA GIN AACATAAAAAACCGGCCCCGCCCGCCCGCCGGTTTTTATTTTTCTTCCTCCGCATGTTCAATCCGCTCC

1316 ATAATCGACGGATGGCTCCCTCTGAAAATTTTAACGAGAAACGGCGGGTTGACCCGGCTCAGTCCCGTAACGGCCAAGTCCTGAAACGTCTCAATCGCCG

1416 CTTCCCGGTTTCCGGTCAGCTCAATGCCGTAACGGTCGGCGGCGTTTTCCTGATACCGGGAGACGGCATTCGTAATCGGATC

FIG._1B-3

CONSERVED RESIDUES IN SUBTILISINS FROM BACILLUS AMYLOLIQUEFACIENS

1 A	Q	s	v	P		G	•		10		•	A	P	A	•	н	•		20 G
21	T	G	s	•	v	ĸ	v	A	3 C V		D	•	G	•	•	•	•	н	40 P
41 D	L		•	•	G	G	A	s	50	v	P	•	•	•	•	•	•	Q	60 D
61	N	•	н	G	T	н	v	A	70 G	T	•	A	A	L	N	N	s	I	80 G
81 V	L	G	v	A	P	S	A	•	90 L		A	v	ĸ	v	L	G	A.		00 G
10 S)1 G	•	•	s	•	L	•	•	110 G		E	W	A	•	N		•		.20
12 V		N	•	s	L	G		P	130 S		s	•	•	•	•		A		40
	1	•	•	•	G	v	•	v	50 V	A	A		G	N	•	G			.60
			•	•	•	¥	P	•	.70	Y	•	•	•	•	A	v	G		.80
18 D		•	N	•	•	A	s	F	190 S			G	•	•	L	D	•		A A
20 P	1 G	v	•		Q	s	T		210 P	G	•	•	Y	•	•	•	N	G G	20 T
22 S	1 M	A	•	P	н	v	A	G	230 A	A	A	L	•	•	•	ĸ			40
24 W	1	•	•	Ω	•	R			250 L		N	T	•	•	•	L	G		
26		Y	G	•	G	L	•	N ²	270	•	A	A	•	•					

FIG._2

COMPARISON OF SUBTILISIN SEQUENCES FROM:

B.amyloliquefaciens B.subtilis B.licheniformis B.lentus

4444 * # # # 02 03 03 * ហ ហ ≮ F 9999 нннн 0000 4400 9999 нннч 30 >>> 4 4 4 A >>>> KKKK >>>> ZZZO 0 0 4 0 0000 HHHH でするよ 200 000 @ @ @ # 8 8 8 8 HEGH ココマス **A A K A** 4404 4 A A KKKO 4 H H H ខេត្ត ннн 000 Ö M M M PH PH PH >>> SUBES $\alpha \alpha \alpha \alpha$ PAPA

0000 ннен SOFS ZZZZ ZZAZ ココココ ARAR KKKK **5 H 5 H** 8 8 8 8 000 Ö **A A A A** >>>> 田田田田 **HHHH** 9 9 9 9 8 8 8 8 ZUZZ 2000 9999 **QQHQ** E4 > # E 4420 ZZZA H H K * 医医医医 8 8 8 8 A A A A >>>> N F F F F សសសស RARA 0000 0 0 0 0 ***** DDDH** KZZZ 0000 7444

** 3333 医医医医 110 G H G H G H 2200 HHPK нннн 3 3 0 0 0 0 0 0 4 4 4 4 9 9 9 9 0000 100 0 0 0 0 0 0 0 0 0 OFOO 4004 0220 4444 >>>> KKKK >>> > Z, AAA 五五五五五 84444 S S S S S **A 4 3 A** ស ស ស ស 4444 ROKK >>> 0000 コロロロ

8 A A A A

A A A #

KKKK

2200

2222

A S H Z

H H # 0

0000 8 8 8 8 HUZK 0000 豆豆豆のの 2 Z Z Z 0000 4440 REER æ A 4 4 > **«>** > > >> **P 1** > > H>> 0000 8 8 8 E 4 50 A 50 >> × 4 **KKK** 4 KKZS AAAZ >>>> **K > K K** 4 H 0 0 KKKE はははは KKKH AHHA 20 20 20 20 0000 **8** 64 88 88 4 4 4 4 0000 9 9 9 9 그 그 그 그 8 8 8 8 E M M L ZZZZ HHHK 4444

FIG. 3A

									S	1	8
		**	;	z # ;	z v				3A	!	FIG3B
		E E E >		4 64 6	ў, р ,				FIG.	1	FIG
		> > > H		= = :	r z					_;	!
		DEND		X X ;	4 14					•	
		2222		ນໝ	D 0					က	
		医医医氏		4 4 ,	a K	O	aa	×		FIG3	
		4044		н н э	→ >	4	KK	E		9	
		0000		44,	4	4	44	4		正	
		> 4 > >		44	4	4	44	4			
	0	2000	. 0	44	4 4	20	OE	M			
	13	တ္ဆလ္ဆ	23	44	4 4	4 %	>>	⋖			
		PI PI PI PI		9 0 0	9 0	z	ZZ	Z			
		លលលល		44	4 4	H	нн	>			
		**	}	> > :	> >	ц	44	ㅋ			
		瓦瓦瓦瓦	1	= = :	H H	ರ	00	O			
		oozz	1	P1 P4 P	74 br	×	K K	Ø			
		zzoz	1	ა 🗗 ເ	n H	ರ	00	O			
		SSSS		44	4	×	××	>	n		
		8 8 8 6		EE:	EZ	×	*	يا	×		
	0	0200	9	ល ល ប	s s	60	[24 [24	Z	í		
	18	> > > E	_ 5	H H 1	H		0 0	E (5		
		**		0 0 0	9 0		N	S	<u> </u>		
		0000)	zz:	ZZ	•	00	O L	_		
		>>>>	•	* * '	- -		ההו	H			
		**	1	4 4 I	H Ω	×	***	20			
		ннн≍	:	00	4	E	HH	H			
		> H > A	•	* * !	× ≯		44				
		0 0 0 2	•	K H I			HH				
		4 A A A	1	Z U	ZW	Z	. w w	Z			
Ī		***		001	H 0	N.	国员				
	7	K K K K	, %	PH PH I	P1 P4		1 1 1				
		UKKK	•	in n		U.) X X	#			
		P1 P1 P1 P1		HHI			DA				
		KKKK	•	0 W	လ လ		* * *				
		00000		9			· > >				
		>> H H		нн;			3 Q Q				
		H H H *		M M			4 4 10				
		ស ស 🌣 🛊		> >			2 2 4				
	10	0 H H *	0	დ დ		₹ 7	4 E4 63				
	16	ស ស ស *	Ñ	д д	<u>ы</u>	77 3	3 1	3			

MetLysLysProLeuGlyLysIleValAlaSerThrAlaLeuLeuIleSerValAlaPhe atgaagaaaccgttgggaaaattgtcgcaagcaccgcactactcatttctgttgtttt

SerSerSerIleAlaSerAlaAlaGluGluAlaLysGluLysTyrLeuIleGlyPheAsn

GluGlnGluAlaValSerGluPheValGluGlnValGluAlaAsnAspGluValAlaIle gagcaggaagctgtcagtgagtttgtagaacaagtagaggcaaatgacgaggtcgccatt

CTCTCTGAGGAAGAGGAAGTCGAAATTGAATTGCTTCATGAATTTGAAACGATTCCTGTT LeuSerGluGluGluGluValGluIleGluLeuLeuHisGluPheGluThrIleProVal

LeuSerValGluLeuSerProGluAspValAspAlaLeuGluLeuAspProAlaIleSer TIATCCGTTGAGTTAAGCCCAGAAGATGTGGACGCGCTTGAACTCGATCCAGCGATTTCT

Tatattgaagaggatgcagaagtaacgacaatggcgcaatcagtgccatggggaattagc TyrileGluGluAspAlaGluValThrThrMetAlaGlnSerValProTrpGlyIleSer

ArgValGlnAlaProAlaAlaHisAsnArgGlyLeuThrGlySerGlyValLysValAla **CGTGTGCAAGCCCCAGCTGCCATAACCGTGGATTGACAGGTTCTGGTGTAAAAGTTGCT** 390

FIG._6A

GTCCTCGATACAGGTATTTCCACTCATCCAGACTTAAATATTCGTGGTGGCGCTAGCTTT ValLeuAspThrGlyIleSerThrHisProAspLeuAsnIleArgGlyGlyAlaSerPhe

GTACCAGGGGAACCATCCACTCAAGATGGGAATGGGCATGGCCATGTGGCCGGGACG ValProGlyGluProSerThrGlnAspGlyAsnGlyHisGlyThrHisValAlaGlyThr

attgctgctttaaacaattcgattggcgttcttggcgtagcgccgagcgcggaactatac IlealaalaLeuaanaanSerIleGlyValLeuGlyValAlaProSerAlaGluLeuTy $oldsymbol{r}$ 570

GCTGTTAAAGTATTAGGGGCGAGCGGTTCAGGTTCGGTCAGCTCGATTGCCCAAGGATTG AlaValLygValLeuGlyAlaSerGlySerGlySerValSerSerIleAlaGlnGlyLeu

GluTrpAlaGlyAanAanGlyMetHisValAlaAanLeuSerLeuGlySerProSerPro Gaatgggcagggaacaatggcatgcacgttgctaatttgagtttaggaagcccttcgcca 069 670

agtgccacacttgagcaagctgttaatagcgcgacttctagaggcgttcttgtagtagcg **SerAlaThrLeuGluGlnAlaValAanSerAlaThrSerArgGlyValLeuValValAla**

GCATCTGGGAATTCAGGTGCAGGCTCAATCAGCTATCCGGCCCGTTATGCGAACGCAATG **AlaSerGlyAenSerGlyAlaGlySerIleSerTyrProAlaArgTyrAlaAenAlaMet** 810 790

FIG._6B

GCAGTCGGAGCTACTGACCAAACAACCACCGCCCAGCTTTTCACAGTATGGCGCAGGG AlaValGlyAlaThrAspGlnAsnAsnAsnArgAlaSerPheSerGlnTyrGlyAlaGly

CTTGACATTGTCGCACCAGGTGTAAACGTGCAGAGCACATACCCAGGTTCAACGTATGCC LeuAspileValAlaProGlyValAsnValGlnSerThrTyrProGlySerThrTyrAla 950 930

SerLeuAanGlyThrSerMetAlaThrProHiaValAlaGlyAlaAlaAlaLeuValLya AGCTTAAACGGTACATCGATGGCTACTCCTCATGTTGCAGGTGCAGCAGCCCTTGTTAAA 066

CAAAAGAACCCATCTTGGTCCAATGTACAAATCCGCAATCATCTAAAGAATACGGCAACG GlnLysAsnProSerTrpSerAsnValGlnIleArgAsnHisLeuLysAsnThrAlaThr 1050 1030

AGCTTAGGAAGCACGAACTTGTATGGAAGCGGACTTGTCAATGCAGAAGCGGCAACACGC SerLeuGlySerThrAgnLeuTyrGlySerGlyLeuValAgnAlaGluAlaAlaThrArg 1130 1110 1090

FIG._6C

MetlyslysProleuGlyLyslleValAlaSerThrAlaLeuLeuIleSerValAlaPhe atgaagaaaccettggggaaattgtcgcaagcaccgcactactcatttctgtttt

SerSerSerIleAlaSerAlaAlaGluGluAlaLyaGluLyaTyrLeuIleGlyPheAan agticatcgatcgcatcgctgctgaagaagcaaaagaaaaatattaattggctttaat

GluglnGluAlaValSerGluPheValGluGlnValGluAlaAsnAspGluValAlaIle GAGCAGGAAGCTGTCAGTGTTGTAGAACAAGTAGAGGCAAATGACGAGGTCGCCATT 170 150

CTCTCTGAGGAAGAGGAAGTCGAATTGAATTGCTTCATGAATTTGAAACGATTCCTGTT LeusergluglugluValglullegluLeuLeuHisgluPheGluThrIleProVal

LeuservalgluLeuserProgluAspValAspAlaLeuGluLeuAspProAlaIleser **TTATCCGTTGAGTTAAGCCCAGAGATGTGGACGCGCTTGAACTCGATCCAGCGATTTCT** 270

Tatattgaagagatgcagaagtaacgacaatggcgcaatcagtgccatggggaattagc TyrileGluGluAspAlaGluValThrThrMetAlaGlnSerValProTrpGlyIleSer 330

ArgValGlnAlaProAlaAlaHisAsnArgGlyLeuThrGlySerGlyValLysValAla CGTGTGCAAGCCCCAGCTGCCCATAACCGTGGATTGACAGGTTCTGGTGTAAAAGTTGCT 410 390

F1G._7A

ValLeuAspThrGlyIleSerThrHisProAspLeuAsnIleArgGlyGlyAlaSerPhe GTCCTCGATACAGGTATTTCCACTCATCCAGACTTAAATATTCGTGGTGGCGCTAGCTTT

GTACCAGGGAACCATCCACTCAAGATGGGAATGGGCATGGCACGCATGTGGCCGGGACG ValProGlyGluProSerThrGlnAspGlyAsnGlyHisGlyThrHisValAlaGlyThr 510

ATTGCTGCTTTAGACAACTCGATTGGCGTTCTTGGCGTAGCGCCGAGCGCGGAACTATAC IlealaalaLeuAspAsnSerIleGlyValLeuGlyValAlaProSerAlaGluLeuTyr 570

GCTGTTAAAGTATTAGGGGCGAGCGGTTCAGGCGCCCATCAGCTCGATTGCCCAAGGATTG AlaValLysValLeuGlyAlaSerGlySerGlyAlaIleSerSerIleAlaGlnGlyLeu 630 610

GluTrpAlaGlyAsnAsnGlyMetHisValAlaAsnLeuSerLeuGlySerProSerPro Gaatgegcagggaacaatgecatgcacgttgctaatttgagtttaggaagcccttcgcca 670

AGTGCCACACTTGAGCAAGCTGTTAATAGCGCGACTTCTAGAGGCGTTCTTGTTGTAGCG SerAlaThrLeuGluGlnAlaValAsnSerAlaThrSerArgGlyValLeuValValAla 770

GCATCTGGGAATTCAGGTGCAGGCTCAATCAGCTATCCGGCCCGGTTATGCGAACGCAATG **AlaSerGlyAsnSerGlyAlaGlySerIleSerTyrProAlaArgTyrAlaAsnAlaMet**

FIG._7B

FIG._ 7B

CAAAAGAACCCATCTTGGTCCAATGTACAATCCGCAATCATCTAAAGAATACGGCAACG AGCTTAGGAAGCACGAACTTGTATGGAAGCGGACTTGTCAATGCAGAAGCGGCAACACGC SerLeuGlySerThrAsnLeuTyrGlySerGlyLeuValAsnAlaGluAlaAlaThrArg SerLeuAsnGlyThrSerMetAlaThrProHisValAlaGlyAlaAlaAlaLeuValLys GlnLyBABnProSerTrpSerABnValGlnIleArgABnHisLeuLyBABnThrAlaThr GCAGTCGGAGCTACTGACCAAAACAACAACGCGCGCGCGTTTTCACAGTATGGCGCAGGG AlaValGlyAlaThrAspGlnAsnAsnArgAlaSerPheSerGlnTyrGlyAlaGly CTTGACATTGTCGCACCAGGTGTAAACGTGCAGAGCACATACCCAGGTTCAACGTATGCC LeuAspIleValAlaProGlyValAsnValGlnSerThrTyrProGlySerThrTyrAla **AGCTTAAACGGTACATCGATGGCTACTCCTCATGTTGCAGGTGCAGCAGCCCCTTGTTAAA** 1010 1110 930

