6.8.1 二项队列结构

二项队列(binomial queue)与我们已经看到的所有优先队列的实现的区别在于,一个二项队列不是一棵堆序的树,而是堆序的树的集合,称为森林(forest)。每一棵堆序树都是有约束的形式,叫做二项树(binomial tree,后面将看到该名称的由来是显然的)。每一个高度上至多存在一棵二项树。高度为 0 的二项树是一棵单节点树;高度为 k 的二项树 B_k 通过将一棵二项树 B_{k-1} 附接到另一棵二项树 B_{k-1} 的根上而构成。图 6-34 显示二项树 B_0 、 B_1 、 B_2 、 B_3 以及 B_4 。

图 6-34 二项树 B₀、B₁、B₂、B₃以及 B₄

从图中看到,二项树 B_k 由一个带有儿子 B_0 , B_1 ,…, B_{k-1} 的根组成。高度为 k 的二项树恰好有 2^k 个节点,而在深度 d 处的节点数是二项系数 $\binom{k}{d}$ 。如果我们把堆序施加到二项树上并允许任意高度上最多一棵二项树,那么就能够用二项树的集合表示任意大小的优先队列。例如,大小为 13 的优先队列可以用森林 B_3 , B_2 , B_0 表示。我们可以把这种表示写成 1101,它不仅以二进制表示了 13,而且也表示这样的事实:在上述表示中, B_3 , B_2 , B_0 出现,而 B_1 则没有。

作为一个例子,6个元素的优先队列可以表示为图 6-35 中的形状。

图 6-35 具有 6 个元素的二项队列 H₁

6.8.2 二项队列操作

此时,最小元可以通过搜索所有的树的根来找出。由于最多有 $\log N$ 棵不同的树,因此找到最小元的时间可以为 $O(\log N)$ 。另外,如果我们记住当最小元在其他操作期间变化时更新它,那么也可保留最小元的信息并以 O(1)时间执行这种操作。

合并两个二项队列在概念上是一个容易的操作,我们将通过例子描述它。考虑两个二项队列 H_1 和 H_2 ,它们分别具有 6 个和 7 个元素,见图 6-36。

图 6-36 两个二项队列 H₁ 和 H₂