Aufgabe 1: Dijkstra-Algorithmus

(a)

Schritt	Kosten					
-	A	В	\mathbf{C}	D	\mathbf{E}	F
Initialisierung	0	∞	∞	∞	∞	∞
1	0	3	8	∞	13	∞
2	0	3	8	∞	13	18
3	0	3	8	10	13	18
4	0	3	8	10	13	16
5	0	3	8	10	12	16

Aufgabe 2: Delaunay-Triangulierung

(a)

Dies ist eine initiale Triangulierung die mit dem "Plane-Sweep"-Verfahren erstellt wurde.

(b) Aus der Triangulation aus Teilaufgabe a) soll jetzt eine Delaunay-Triangulation erstellt werden. Zu Begin werden alle Kanten, welche die Delaunay Eigenschaft verletzen auf auf einen Stack geschoben, in diesem Fall rot markiert.

Hier sind die Kanten die die Delaunay-Eigenschaft verletzen rot markiert und bereit zur Abarbeitung.

In diesem Schritt wurde die Kante b entfernt und ein "Edge-Flip"-Schritt durchgeführt, und dadurch die Kante j hinzugefügt. Als nächstes müssen wir die Kante a_1 abarbeiten, weil sie zum einen die Delaunay-Eigenschaft verletzt und zum anderen

weil j, a_1 schneidet und somit eine (gedachte) höhere Priorität im Stack erhält.

Hier wurde die Kante a_1 entfernt und die Kante a hinzugefügt. Die Kante b_1 ist die bis jetzt noch die letzte Kante im Stack, wenn durch den "Edge-Flip" von b_1 aber weitere Delaunay-Eigenschaften verletzt werden wächst dieser Stack wieder an.

Da keine weiteren Verletzungen geschehen sind, ist unser Graph ${\cal G}$ nun eine Delaunay-Triangulation

Aufgabe 3: Impl in Java

Aufgabe 4: Algorithmus von Kruskal

(a)

- (b) AD +
 - DF +
 - CE +
 - BE +
 - AB +
 - BC -
 - EF -
 - EG +
 - FG -
 - BD -
 - DE -

Aufgabe 5: Literaturrecherche

- (a) E.W. Dijkstra gibt bei dem erstem Problem zwei Schritte die wiederholt werden bis das Problem gelöst ist
 - E.W. Dijkstra gibt bei dem zweiten Problem zwei Anmerkungen an

```
(b) @article{
       dijkstra1959note,
       title={A note on two problems in connexion with graphs},
       author={Dijkstra, Edsger W},
       journal={Numerische mathematik},
       volume={1},
       number={1},
       pages=\{269--271\},
       year={1959},
       publisher={Springer}
   }
(c) @Article{Dijkstra1959,
       author="Dijkstra, E. W.",
       title="A note on two problems in connexion with graphs",
       journal="Numerische Mathematik",
       year="1959",
       volume="1",
       number="1",
       pages="269--271",
       issn="0945-3245",
       doi="10.1007/BF01386390",
       url="http://dx.doi.org/10.1007/BF01386390"
   }
```

(d) Da es verschiedene BibTEX-"Repositories" gibt, unter anderem auch eine von Google-Scholar und vom Springer-Verlag hat jede Platform eine eigene Style-Convention