Supplementary Materials

Model equations

Force of infection

Each compartment is subdivided into separate components for each age group (16 age groups in five-year intervals), represented by the subscript *i*. Note: a table of parameter definitions is available at the end of this supplement.

The force of infection (λ_i) among susceptible individuals (in age group i) is conceptualized as a function of contacts with asymptomatic/pre-symptomatic and mild symptomatic individuals (λ_i') and with severe symptomatic individuals (λ_i'') , who are assumed to self-isolate. Infection rate is parameterized with a contact rate between individuals in age group i and j (cr_{ij}) , probability of transmission given contact (β) , and a time-dependent reduction associated with public health measures and physical distancing (f(t)). A separate contact rate with individuals who have severe symptoms (cro_{ij}) was used to represent the assumption that all severe cases self-isolate and is assumed to be 25% of projected home contacts.

$$\lambda_i = \lambda_i' + \lambda_i''$$

$$\lambda_{i}' = \sum_{j=1}^{16} \frac{1}{N_{j}} \beta cr_{ij} \cdot rrpd_{t} (A_{j} + Av_{j} + P_{j} + Pv_{j}' + Pv_{j}'' + M_{j} + Mv_{j})$$

$$\lambda_i^{\prime\prime} = \sum_{j=1}^{16} \frac{1}{N_j} \beta cro_{ij} \left(X_j + X v_j + X v_j^{\prime} + X v_j^{\prime\prime} \right)$$

Natural history of infection and disease

$$\begin{split} \frac{dS_{i}}{dt} &= -\lambda_{i}S_{i} - \frac{S_{i}}{S_{i} + R_{i}}\Omega_{dose1} + \xi''V\chi''_{i} + w(R_{i} + Rv_{i}) - \chi(S_{i} - S_{i-1}) \\ \frac{dE_{i}}{dt} &= \lambda_{i}S_{i} - \rho E_{i} - \chi(E_{i} - E_{i-1}) \\ \frac{dA_{i}}{dt} &= \alpha \rho E_{i} - \left(\delta_{p}^{-1} + \gamma^{-1}\right)^{-1}A_{i} - \chi(A_{i} - A_{i-1}) \\ \frac{dP_{i}}{dt} &= (1 - \alpha)\rho E_{i} - \delta_{p}P_{i} - \chi(P_{i} - P_{i-1}) \\ \frac{dM_{i}}{dt} &= (1 - \kappa)\delta_{p}P_{i} - \gamma M_{i} - \chi(M_{i} - M_{i-1}) \\ \frac{dX_{i}}{dt} &= \kappa \delta_{p}P_{i} - \delta_{x}X_{i} - \chi(X_{i} - X_{i-1}) \\ \frac{dH_{i}}{dt} &= \delta_{x}X_{i} - \frac{(1 - \mu_{h})}{losr_{h}}H_{i} - \frac{\mu_{h}}{losd_{h}}H_{i} - \chi(H_{i} - H_{i-1}) \\ \frac{dR_{i}}{dt} &= \left(\delta_{p}^{-1} + \gamma^{-1}\right)^{-1}A_{i} + \gamma M_{i} + \frac{(1 - \mu_{h})}{losr_{h}}H_{i} - \frac{R_{i}}{S_{i} + R_{i}}\Omega_{dose1} - wR_{i} - \chi(R_{i} - R_{i-1}) \\ \frac{dD_{i}}{dt} &= \frac{\mu_{h}}{losd_{h}}(H_{i} + Hv_{i}) + (1 - ve'_{death})\frac{\mu_{h}}{losd_{h}}Hv'_{i} + (1 - ve''_{death})\frac{\mu_{h}}{losd_{h}}Hv''_{i} \end{split}$$

Vaccination

We conceptualize the maximum daily vaccine uptake as a function of the current vaccine supply, Z, and the vaccination capacity, $vaccrate_{max}$, and the number of individuals eligible for vaccination. The maximum daily number of doses available for administration, Ω , is the lesser of current vaccine supply, Z, and the vaccination capacity, $vaccrate_{max}$. We also proportioned the daily vaccine supply over the week. The maximum daily doses is prioritized for all individuals who are waiting for dose 2 and any remaining doses are then allocated to individuals eligible for dose 1.

$$\frac{dZ}{dt} = -\Omega_{dose1} - \Omega_{dose2}$$

$$\Omega = min\left(\frac{Z}{days\ remaining\ in\ supply\ week}, vaccrate_{max}\right)$$

$$\Omega_{dose1} = min \left(S + R, max \left(0, \Omega - V{q'}_{i} - V{s'}_{i} - Vr{q'}_{i}\right)\right)$$

$$\Omega_{dose2} = min(\Omega, Vq'_i + Vs'_i + Vrq'_i)$$

Vaccinated individuals are initially subject to the same force of infection as unvaccinated individuals. If infected, individuals can move to a latent, vaccinated compartment (Ev_i). Protection from symptomatic COVID-19 is applied against the fraction of individuals who transition to the pre-symptomatic compartment ($1-ve_{symp}',1-ve_{symp}''$). Uninfected individuals transition to a partially protected compartment where they wait for the second dose for the remaining time of the base case interval (tt_{dose2}). In scenarios where extended intervals are considered, individuals wait in a queued compartment (Vq_i') before receiving their second dose. We assumed that waning protection does not begin until after the base case interval has elapsed (tt_{dose2}). Individuals whose protection wanes, move to a separate compartment (Vs_i') where they are subject to the same force of infection as unvaccinated individuals. Individuals with waned protection receive a second dose if they remain uninfected. The effect of the second dose begins after a pre-set period prior to which vaccinated individuals are subject to a reduced force of infection conferred by first dose protection.

First dose

$$\begin{split} \frac{dVn_{i}}{dt} &= \frac{S_{i}}{S_{i} + R_{i}} \Omega_{dose1} - \psi'Vn_{i} - \lambda_{i}Vn_{i} - \chi(Vn_{i} - Vn_{i-1}) \\ \frac{dV'_{i}}{dt} &= \psi'Vn_{i} - \left(1 - ve'_{inf}\right)\lambda_{i}V'_{i} - \frac{V'_{i}}{(tt_{dose2}^{-1} - \psi'^{-1})} - \chi(V'_{i} - V'_{i-1}) \\ \frac{dVq'_{i}}{dt} &= \frac{V'_{i}}{tt_{dose2}^{-1} - \psi'^{-1}} - \frac{Vq'_{i}}{Vq'_{i} + Vs'_{i} + Vrq'_{i}} \tau_{1}\Omega_{dose2} - \left(1 - ve'_{inf}\right)\lambda_{i}Vq'_{i} - \xi'Vq'_{i} \\ &- \chi(Vq'_{i} - Vq'_{i-1}) \end{split}$$

$$\frac{dVs'_{i}}{dt} &= \xi'Vq'_{i} - \frac{Vs'_{i}}{Vq'_{i} + Vs'_{i} + Vrq'_{i}} \tau_{2}\Omega_{dose} - \lambda_{i}Vs'_{i} - \chi(Vs'_{i} - Vs'_{i-1}) \end{split}$$

$$\frac{dVr'_{i}}{dt} = \frac{R_{i}}{S_{i} + R_{i}} \Omega_{dose1} - \frac{Vr'_{i}}{tt_{dose2}} - \chi(Vr'_{i} - Vr'_{i-1})$$

$$\frac{dVrq'_{i}}{dt} = \frac{Vr'_{i}}{tt_{dose2}} - \frac{Vrq'_{i}}{Vq'_{i} + Vs'_{i} + Vrq'_{i}} \tau_{1}\Omega_{dose2} - \chi(Vrq'_{i} - Vrq'_{i-1})$$

Second dose

$$\begin{split} \frac{dV''_{i}}{dt} &= \frac{Vq'_{i}}{Vq'_{i} + Vs'_{i} + Vrq'_{i}} \tau_{1} \Omega_{dose2} - \psi''V''_{i} - \left(1 - ve'_{inf}\right)V''_{i} - \chi(V''_{i} - V''_{i-1}) \\ \frac{dVs''_{i}}{dt} &= \frac{Vs'_{i}}{Vq'_{i} + Vs'_{i} + Vrq'_{i}} \tau_{2} \Omega_{dose2} - \psi''Vs''_{i} - \lambda_{i}Vs''_{i} - \chi(Vs''_{i} - Vs''_{i-1}) \\ \frac{dVx''_{i}}{dt} &= \psi''(V''_{i} + Vs''_{i}) - \xi''Vx''_{i} - \left(1 - ve''_{inf}\right)\lambda_{i}Vx''_{i} - \chi(Vx''_{i} - Vx''_{i-1}) \\ \frac{dVr''_{i}}{dt} &= \frac{Vrq'_{i}}{Vq'_{i} + Vs'_{i} + Vrq'_{i}} \tau_{1}\Omega_{dose2} - \psi''Vr''_{i} - \chi(Vr''_{i} - Vr''_{i-1}) \end{split}$$

Vaccinated, Infected

$$\begin{split} \frac{dEv_{i}}{dt} &= \lambda_{i}(Vn_{i} + Vs_{i}' + Vs_{i}'') - \rho Ev_{i} - \chi(Ev_{i} - Ev_{i-1}) \\ \frac{dEv_{i}'}{dt} &= \left(1 - ve_{inf}'\right)\lambda_{i}(V_{i}' + Vq_{i}' + V_{i}'') - \rho Ev_{i}' - \chi(Ev_{i}' - Ev_{i-1}') \\ \frac{dEv_{i}''}{dt} &= \left(1 - ve_{inf}''\right)\lambda_{i}Vx_{i}'' - \rho Ev_{i}'' - \chi(Ev_{i}'' - Ev_{i-1}'') \end{split}$$

We define an adjustment factor, xf_{symp} , to ensure that the total transition rate out of the latent compartment does not change with vaccination.

$$(1 - ve_{symp})(1 - \alpha) + xf_{symp}\alpha\rho = \rho$$

$$1 - \alpha - ve_{symp} + \alpha ve_{symp} + xf_{symp}\alpha = 1$$

$$xf_{symp} = \frac{\alpha + ve_{symp} - \alpha ve_{symp}}{\alpha}$$

$$\frac{dAv_i}{dt} = \alpha\rho \left[Ev_i + \frac{ve'_{symp} + \alpha - ve'_{symp}\alpha}{\alpha} Ev'_i + \frac{ve''_{symp} + \alpha - ve''_{symp}\alpha}{\alpha} Ev''_i \right] - (\delta_p^{-1} + \gamma^{-1})^{-1} Av_i$$

$$- \chi(Av_i - Av_{i-1})$$

$$\frac{dPv_i}{dt} = (1 - \alpha)\rho Ev_i - \delta_p Pv_i - \chi(Pv_i - Pv_{i-1})$$

$$\frac{dPv_i'}{dt} = \left(1 - ve_{symp}'\right)(1 - \alpha)\rho Ev_i' - \delta_p Pv_i' - \chi(Pv_i' - Pv_{i-1}')$$

$$\frac{dPv_{i}''}{dt} = (1 - ve_{symp}'')(1 - \alpha)\rho Ev_{i}'' - \delta_{p}Pv_{i}'' - \chi(Pv_{i}'' - Pv_{i-1}'')$$

We define an adjustment factor, xf_{hosp} , to ensure that the total transition rate out of the presymptomatic compartment and into the mild/moderate and severe compartments does not change with vaccination.

$$xf_{hosp}(1-\kappa)\delta_p + (1-ve_{hosp})\kappa\delta_p = \delta_p$$

$$xf_{hosp} - xf_{hosp}\kappa + \kappa - ve_{hosp}\kappa = 1$$

$$xf_{hosp} = \frac{1 - \kappa + ve_{hosp}\kappa}{1 - \kappa}$$

$$\frac{dMv_i}{dt} = (1 - \kappa)\delta_p \left(Pv_i + \frac{1 - \kappa + ve'_{hosp}\kappa}{1 - \kappa} Pv'_i + \frac{1 - \kappa + ve''_{hosp}\kappa}{1 - \kappa} Pv''_i \right) - \gamma Mv_i - \chi (Mv_i - Mv_{i-1})$$

$$\frac{dXv_i}{dt} = \kappa \delta_p P v_i - \delta_x X v_i - \chi (X v_i - X v_{i-1})$$

$$\frac{dXv_i'}{dt} = \left(1 - ve_{hosp}'\right)\kappa\delta_p Pv_i' - \delta_\chi Xv_i' - \chi(Xv_i' - Xv_{i-1}')$$

$$\frac{dXv_i''}{dt} = \left(1 - ve_{hosp}''\right)\kappa\delta_p Pv_i'' - \delta_x Xv_i'' - \chi(Xv_i'' - Xv_{i-1}'')$$

$$\frac{dHv_i}{dt} = \delta_x X v_i - \frac{(1 - \mu_h)}{los r_h} H v_i - \frac{\mu_h}{los d_h} H v_i - \chi (H v_i - H v_{i-1})$$

We define an adjustment factor, xf_{death} , to ensure that the total transition rate out of the hospitalized compartment (survivors + non-survivors) does not change with vaccination.

$$xf_{death} \frac{1 - \mu_h}{los r_h} + (1 - ve_{death}) \frac{\mu_h}{los d_h} = \frac{1 - \mu_h}{los r_h} + \frac{\mu_h}{los d_h}$$

$$xf_{death}(1-\mu_h)losd_h + (1-ve_{death})\mu_h losr_h = (1-\mu_h)losd_h + \mu_h losr_h$$

$$xf_{death} = \frac{(1 - \mu_h)losd_h + \mu_h losr_h - \mu_h losr_h + ve_{death}\mu_h losr_h}{(1 - \mu_h)losd_h}$$

$$xf_{death} = 1 + \frac{ve_{death}\mu_h los r_h}{(1 - \mu_h) los d_h}$$

$$\begin{split} \frac{dHv_{i}'}{dt} &= \delta_{x}Xv_{i}' - \left(1 + \frac{ve_{death}'\mu_{h}losr_{h}}{(1 - \mu_{h})losd_{h}}\right) \left(\frac{1 - \mu_{h}}{losr_{h}}\right) Hv_{i}' - (1 - ve_{death}') \frac{\mu_{h}}{losd_{h}} Hv_{i}' - \chi(Hv_{i}' - Hv_{i}'') \\ \frac{dHv_{i}''}{dt} &= \delta_{x}Xv_{i}'' - \left(1 + \frac{ve_{death}'\mu_{h}losr_{h}}{(1 - \mu_{h})losd_{h}}\right) \left(\frac{1 - \mu_{h}}{losr_{h}}\right) Hv_{i}'' - (1 - ve_{death}') \frac{\mu_{h}}{losd_{h}} Hv_{i}'' \\ &- \chi(Hv_{i}'' - Hv_{i-1}'') \end{split}$$

$$\frac{dRv_{i}}{dt} &= \left(\delta_{p}^{-1} + \gamma^{-1}\right)^{-1} Av_{i} + \gamma Mv_{i} + \frac{(1 - \mu_{h})}{losr_{h}} Hv_{i} + \left(1 + \frac{ve_{death}'\mu_{h}losr_{h}}{(1 - \mu_{h})losd_{h}}\right) \left(\frac{1 - \mu_{h}}{losr_{h}}\right) Hv_{i}' \\ &+ \left(1 + \frac{ve_{death}'\mu_{h}losr_{h}}{(1 - \mu_{h})losd_{h}}\right) \left(\frac{1 - \mu_{h}}{losr_{h}}\right) Hv_{i}'' + \psi''Vr''_{i} - wRv_{i} - \chi(Rv_{i} - Rv_{i-1}) \end{split}$$

Table S1. Compartment definitions

Compartment	Definition
S	Susceptible
E	Infected (latent)
A	Infectious, asymptomatic
Р	Pre-symptomatic
М	Symptomatic (mild)
X	Symptomatic (severe)
Н	Hospitalized
R	Recovered
D	Dead
Vn	Vaccinated, first dose, no effect
V'	Vaccinated, first dose, first dose effect
Vq'	Vaccinated, first dose, first dose effect, queued for second dose
Vs'	Vaccinated, first dose, first dose waned protection, queued for second dose
V''	Vaccinated, second dose, first dose efect
Vs''	Vaccinated, second dose, first dose waned protection
Vx''	Vaccinated, second dose, second dose effect
Vr'	Vaccinated, first dose, recovered from previous infection
Vrq'	Vaccinated, queued for second dose, recovered from previous infection
Vr''	Vaccinated, second dose, recovered from previous infection
Ev	Vaccinated, no protection, infected (latent)
Ev'	Vaccinated, first dose protection, infected (latent)
Ev''	Vaccinated, second dose protection, infected (latent)
Av	Vaccinated, infectious, asymptomatic
Pv	Vaccinated, no protection, pre-symptomatic
Pv'	Vaccinated, first dose protection, pre-symptomatic
Pv''	Vaccinated, second dose protection, pre-symptomatic
Mv	Vaccinated, symptomatic (mild)
Xv	Vaccinated, no protection, symptomatic (severe)
Xv'	Vaccinated, first dose protection, symptomatic (severe)
Xv''	Vaccinated, second dose protection, symptomatic (severe)
Hv	Vaccinated, no protection, hospitalized
Hv'	Vaccinated, first dose protection, hospitalized
Hv"	Vaccinated, second dose protection, hospitalized
Rv	Vaccinated, recovered

Model calibration

We calibrated model parameters to reported COVID-19 hospitalizations and deaths in the province of Ontario from March 16 up to December 18, 2020. We used four calibration targets: daily hospitalizations, daily deaths, cumulative hospitalizations by age group, and cumulative deaths by age group. Aggregated daily hospitalization data were obtained from Ontario's case and contact management (CCM Plus) database. Aggregated daily deaths were obtained from the Ontario Data Catalogue. We used age-stratified proportions of hospitalizations and deaths in Canada, reported by the Public Health Agency of Canada, to infer cumulative hospitalizations by age. To derive cumulative deaths by age, we used the proportion of deaths in Canada for ages 0-64 years and used the proportion of deaths by age for individuals 65 years and older reported by Public Health Ontario, stratified by long-term care status. We applied the proportion of deaths by age group against the total deaths on December 18, 2020 to derive the cumulative deaths by age. Table S2 lists the distributions of hospitalizations and deaths by age that were used as calibration targets.

Table S2. Distributions of hospitalizations and deaths by age inferred as calibration targets

Age	Hospitalizations (%)	Deaths (%)	
0-19	1.5	0	
20-29	3.1	0.3	
30-39	5.1	0.8	
40-49	7.0	1.8	
50-59	12.0	6.4	
60-69	16.8	10.7	
70-74	10.5	12.2	
75+	44.0	67.8	

To infer parameters of the transmission model, we fitted a time-dependent parameter ($rrpd_t$) that modulated the force of infection to represent the collective effect of public health measures and compliance with physical and social distancing. We fitted values for $rrpd_t$ for four different periods from March 16 to December 18, 2020 (Table S3). For the periods covering March 16 to July 17, 2020 (lockdown and limited recovery) and July 17 to September 8, 2020 (Stage 3 recovery), we allowed $rrpd_t$ to change linearly with time until it reached the first and second fitted values. We also calibrated the daily rates of decrease, tf_1 , and increase, tf_2 , in $rrpd_t$. For the remaining periods, $rrpd_t$ was subject to a one-time change at the beginning of each period. We describe this calibration of $rrpd_t$ with the following function:

$$f(t) = \begin{cases} 1, t < 75 \\ max(1 - (t - 75)tf_1, rrpd1), 75 \le t < 198 \\ min(rrpd_1 + (t - 198)tf_2, rrpd2, 198 \le t < 251) \\ rrpd3, 251 \le t < 283 \\ rrpd4, 283 \le t < 353 \end{cases}$$

In addition, we searched for a time point to initialize the model with 100 infections in the 40-year old latent compartment.

Table S3. Fitting time-dependent values for $rrpd_t$

Period	Rationale	rrpdt
March 16 – July 17	Lockdown, Stage 1 recovery,	rrpd _t decreased linearly with
	Stage 2 recovery	time to the first fitted value
July 17 – September 8	Stage 3 recovery	rrpd _t increased linearly with
		time to the second fitted value
September 8 – October 10	Partial re-opening of schools	A one-time increase in $rrpd_t$
		(third fitted value)
October 10 – December 18	Modified Stage 2	A one-time decrease in $rrpd_t$
		(fourth fitted value)

We used a Differential-Evolution Monte Carlo Markov Chain (DE-MCMC) algorithm, ^{4,5} using 12 Markov chains to sample the target distribution. The algorithm was run with a burn-in period until the potential scale reduction factor fell below 1.05 for all parameters. 10,000 samples were then drawn for each chain following the burn-in period. We note that we used a smaller number of chains than recommended in the literature, but chose 12 chains as a trade-off in computational cost. Thus, it is possible that the posterior distributions may not have been fully sampled due to suboptimal mixing between chains.

We constrained the parameter space based on published and pre-published COVID-19 literature and other public reports relevant to the Canadian epidemic (Table S4). The model was fitted to daily hospitalizations and deaths using a Poisson distribution and to cumulative hospitalizations and deaths using a binomial distribution. All model parameters (fitted and fixed) are listed in Table S5. We used informative priors for the asymptomatic proportion, latent period, and pre-symptomatic period to reflect a stronger assumption about these values and to anchor the posterior distributions for remaining parameters around these assumptions. We used uninformative priors for the transmission coefficient, mild/moderate symptom onset to recovery, severe symptom onset to hospitalization, hospital length of stay (non-survivors), age-dependent probabilities of severe/hospitalization, age-dependent probabilities

of death, relative reduction in transmission due to public health measures and physical distancing, and rate of change in \textit{rrpd}_t .

Table S4. Prior and posterior distributions for fitted parameters

Parameter	Parameter space	Prior	Posterior	Rationale
Transmission coefficient (β)	0-1	Beta (1,1)	Beta (12824, 557000)	N/A
Proportion asymptomatic (α)	0.1 – 0.25	Beta (8, 32)	Beta (1452, 8054)	Byambasuren et al. ⁶
Latent period $(\frac{1}{\rho})$	3-5	Lognormal (1.194, 0.234)	Lognormal (1.376, 0.012)	Zhao et al. ⁷
Pre-symptomatic period $(\frac{1}{\delta_p})$	1-3	Lognormal (0.663, 0.246)	Lognormal (0.907, 0.029)	He et al. ⁸
Mild/moderate symptom onset to recovery $(\frac{1}{\gamma})$	2-8	Uniform (2, 8)	Lognormal (1.631, 0.009)	He et al. ⁸
Severe symptom onset to hospitalization $(\frac{1}{\delta_x})$	3 – 10	Uniform (3, 10)	Lognormal (1.740, 0.012)	PHAC Weekly Epidemiological Report 17 January to 23 January 20219
Length of hospital stay, non-survivors $(losd_h)$	10 – 30	Uniform (10, 30)	Lognormal (2.988, 0.003)	CIHI ¹⁰
Probability of severe/hospitalization infected (κ)	0-1	Beta (1,1)	0-19: Beta (171, 132658) 20-29: Beta (273, 65590) 30-39: Beta (447, 56249) 40-49: Beta (681, 62457) 50-59: Beta (1242, 62888) 60-69: Beta (1863, 29100) 70-74: Beta (1259, 10257) 75+: Beta (1217, 1081)	Starting values were chosen from a range based on PHAC surveillance data
Probability of death \mid hospitalized (μ_h)	0-1	Beta (1, 1)	0-19: Beta (35, 5397) 20-29: Beta (3, 159) 30-39: Beta (131, 2002) 40-49: Beta (30, 362)	Starting values were chosen from a range based on PHAC

			50-59: Beta (364, 1570)	surveillance
			60-69: Beta (210, 714)	data
			70-74: Beta (6529, 9573)	
			75+: Beta (8705, 7818)	
Relative reduction in	0-1	Beta (1, 1)	03/16 – 07/17: Beta (9717,	
transmission ($rrpd_t$)			22051)	
			07/17 – 09/08: Beta (4518,	
			6581)	
			09/08 – 10/10: Beta (2947,	
			1948)	
			10/10 – 12/18: Beta (5654,	
			6424)	
Daily rate of decrease	0-1	Uniform (0, 1)	03/16 – 07/17: Lognormal	Starting values
in $rrpd_t$ (tf_1)			(-2.675, 0.008)	were chosen
				from a range
				based on an
				assumption
				that the rate
				would not
				exceed 10%
				per day
Daily rate of increase	0-1	Uniform (0, 1)	07/17 – 09/11: Lognormal	Starting values
in $rrpd_t$ (tf_2)			(-4.456, 0.072)	were chosen
				from a range
				based on an
				assumption
				that the rate
				would not
				exceed 2% per
				day
Time of model	20 – 31	Uniform (20,	Lognormal (3.283, 0.012)	
initialization (days		31)		
since January 1, 2020)				

Figures S1-S2 show the results of the fitted model against observed daily hospital admissions and deaths in Ontario (up to December 18, 2020). The model fit well to hospital admissions. The model showed good fit to deaths in the latter half of the year but did not fit as well in the first wave. We believe this may be related to the assumptions used to infer the cumulative deaths by age in the absence of long-

term care deaths by age group. The distribution of deaths in older age groups may be different in the latter half of the year than in the first wave and may be contributing to a less optimal fit in the first wave. In addition, dates of long-term care deaths may not have been precisely reported in the first wave, which may affect our estimated deaths in the community (derived by subtracting long-term care deaths from total deaths). However, we believe it is more important for the model to provide a reasonable representation of hospitalizations and deaths over a more recent period. Figures S3-S4 show the results of the fitted model to the target cumulative hospitalizations and deaths by age group up to December 18, 2020. The fitted model produced a distribution of hospitalizations and deaths across ages closely to our calibration targets. We also note a study that estimated susceptibility to infection by age in Ontario, Canada that, at least qualitatively, indicates our fitted estimates of susceptibility to severe disease are similar when considering our asymptomatic fraction.¹¹

Modelled and observed hospital admissions

Figure S1. Fitted hospitalizations: model vs observation

Modelled and observed deaths

Figure S2. Fitted deaths: model vs observation.

Hospitalizations by age 3500 Target Model 3000 2500 2000 1500 1000 200 0-19 20-29 30-39 40-49 50-59 60-69 70-74 75+

Figure S3. Cumulative hospitalizations by age up to December 18, 2020.

Figure S4. Cumulative deaths by age (excluding long-term care).

Table S5. Model parameters

Parameter	Definition	Value	Source
β	Probability transmission contact	0.0225	Fitted
cr _{ij}	Contact matrix	See reference	Prem et al. ¹²
cro_{ij}	Contact matrix isolated	Used home contacts from Prem et al. Assumed 25% of home contacts.	Prem et al. ¹²
$rrpd_t$	Relative transmission rate associated with public health measures and physical distancing	03/16 - 07/17: 0.306 07/17 - 09/11: 0.407 09/11 - 10/10: 0.602 10/10 - 12/18: 0.468	Fitted
tf_1	Linear decrease in rrpdt during period of 03/16 – 07/17	0.0689	Fitted
tf_2	Linear increase in $rrpd_t$ during period of $07/17 - 09/11$	0.0116	Fitted
α	Proportion of asymptomatic infections	0.152	Fitted
$\frac{1}{\rho}$	Latent period (days)	3.96	Fitted
$\frac{1}{\delta_p}$	Pre-symptomatic period (days)	2.48	Fitted
$\frac{1}{\gamma}$	Mild/moderate symptom onset to recovery (days)	5.11	Fitted
$\frac{1}{\delta_x}$	Severe symptom onset to hospitalization (days)	5.70	Fitted
κ	Proportion of severe infection symptomatic infection	0-19: 0.0013 20-29: 0.0042 30-39: 0.0079 40-49: 0.0108 50-59: 0.0194 60-69: 0.0602 70-74: 0.1093 75+: 0.5298	Fitted
losr _h	Hospital length of stay (survivors) (days)	11	PHAC Weekly Report ⁹
$losd_h$	Hospital length of stay (non- survivors) (days)	19.84	Fitted
μ_h	Probability of death hospitalized	0-19: 0.0064	Fitted

		1	1
		20-29: 0.0180	
		30-39: 0.0614	
		40-49: 0.0767	
		50-59: 0.1880	
		60-69: 0.2273	
		70-74: 0.4055	
		75+: 0.5268	
ve'_{inf}	First dose effectiveness vs infection	90% of ve' _{symp}	Informed by
		50% of ve' _{symp}	Heymann et al, ¹³
		(conservative scenario)	Shah et al,14 Amit
			et al, ¹⁵ Pawlowski
			et al ¹⁶
$ve_{inf}^{\prime\prime}$	Second dose effectiveness vs	90% of ve' _{symp}	Informed by
,	infection	50% of ve' _{symp}	Heymann et al., ¹³
		(conservative scenario)	Shah et al.,14 Amit
			et al.,15 Pawlowski
			et al.,16 Dagan et
			al., ¹⁷ Haas et al. ¹⁸
ve' _{symp}	First dose effectiveness vs	$1 - \frac{1 - VE_{disease,dose\ 1}}{1 - ve'_{inf}}$	Overall
	symptomatic disease given infection	$1-\frac{1-ve'_{inf}}{1-ve'_{inf}}$	effectiveness
			values in main text
ve'' _{symp}	First dose effectiveness vs	$1 - \frac{1 - VE_{disease,dose\ 2}}{1 - ve_{inf}^{"}}$	Overall
	symptomatic disease after second	$1-\frac{1-ve_{inf}^{"}}{1-ve_{inf}^{"}}$	effectiveness
	dose		values in main text
ve'_{hosp}	First dose effectiveness vs	$1 - VE_{hosp,dose\ 1}$	Overall
	hospitalization given symptomatic	$1 - \frac{1 - VE_{hosp,dose\ 1}}{1 - VE_{disease,dose\ 1}}$	effectiveness
	disease		values in main text
ve'' _{hosp}	Second dose effectiveness vs	$1 - \frac{1 - VE_{hosp,dose\ 2}}{1 - VE_{disease,dose2}}$	Overall
	hospitalization symptomatic	$1 - \frac{1}{1 - VE_{disease,dose2}}$	effectiveness
	disease		values in main text
ve'_{death}	First dose effectiveness vs death	$1 - VE_{death,dose\ 1}$	Overall
	hospitalization	$1 - \frac{1 - VE_{death,dose\ 1}}{1 - VE_{hosp,dose1}}$	effectiveness
			values in main text
$ve_{death}^{\prime\prime}$	Second dose effectiveness vs death	$1 - VE_{death,dose\ 2}$	Overall
	hospitalization	$1 - \frac{1 - VE_{death,dose\ 2}}{1 - VE_{hosp,dose2}}$	effectiveness
	·		values in main text
1	Time to efficacy after first dose	14	Baden et al. ¹⁹
$\overline{\psi'}$	(days)		Polack et al. ²⁰
	· / /		

1	Time to efficacy after second dose	7	Baden et al. ¹⁹
$\psi^{\prime\prime}$	(days)		Polack et al. ²⁰
1	Extended dosing interval (days). If no		Varied by scenario
$ au_1$	extension to dosing interval, τ_1 =1.		
1	max(1, duration of protection –		
$ au_2$	extended dosing interval)		
1	Duration of vaccine protection after	2	Assumption
ζ'	first dose (years)		
1	Duration of vaccine protection after	Not implemented in	
ζ''	second dose	model	
1	Duration of acquired immunity	Not implemented in	
\overline{w}		model	
1	Age interval (years)	5	
χ			

Vaccine supply schedule

Table S6 shows the exemplary vaccine supply schedule used in this analysis. Monthly supply was proportioned into a weekly delivery schedule. Supply numbers are based on publicly reported numbers^{21,22} and proportioned to represent a decreasing supply constraint over time. However, these numbers should not be interpreted as actual supply projections for Canada.

Table S6. Vaccine supply schedule used in analysis

Month	Supply
January (4 weeks)	1.2M
February (4 weeks)	1.8M
March (5 weeks)	3M
April (4 weeks)	3.9M
May (5 weeks)	7.8M
June (4 weeks)	7.8M
July (4 weeks)	7.8M
August (5 weeks)	23.4M
September (4 weeks)	27.3M
October (4 weeks)	0
November (5 weeks)	0
December (4 weeks)	0

Supplementary analyses

Probabilistic analyses: $VE_{inf} = 40-60\%$ relative to VE_{dis}

A scenario assuming lower effectiveness against infection (VE_{inf} = 40-60% VE_{dis}) continued to project reductions in symptomatic disease, hospitalizations, and deaths in the population with extended intervals (Figure S5). The two VE_{inf} scenarios (40-60% and 80-95% relative to VE_{dis}) projected very similar results indicating that the benefits of extended intervals were not sensitive to this assumption.

Figure S5. Reductions in symptomatic disease, hospitalizations, and deaths at 12 months compared to a 6-week interval (mRNA6) over 2,000 sampled values of vaccine effectiveness with $VE_{inf} = 40-60\%$ VE_{dis} .

3rd wave scenarios

Figure S6 shows how a less severe wave ($R_{eff} = 1.1$) than the base case ($R_{eff} = 1.2$) results in an increase in the VE_{death} threshold (from 65% to 70%). In Figure S7, a more severe wave ($R_{eff} = 1.3$) lowers the VE_{death} threshold from (65% to 60%). If the risk of infection and severe outcomes increases later in the year, a lower first-dose effectiveness against death can still prevent more deaths in exchange for deferred higher protection in high-risk individuals early in the year when the risk is lower. Conversely, if the risk of infection and severe outcomes starts to decrease later in the year (or is lower relative other epidemic

scenarios), the relative benefit of accelerating protection in the population waiting for vaccines begins to decrease as there are fewer deaths to prevent, thus requiring a higher first dose effectiveness against death to have greater benefit than shorter intervals.

Figure S6. Cumulative hospitalizations and deaths over VE_{hosp} and VE_{death} values with a 3^{rd} wave beginning on April 1, 2021 ($R_{eff} = 1.1$ in the absence of vaccinations). $VE_{dis} = 50\%$ and $VE_{inf} = 90\%$ VE_{dis} .

Figure S7. Cumulative hospitalizations and deaths over VE_{hosp} and VE_{death} values with a 3^{rd} wave beginning on April 1, 2021 ($R_{eff} = 1.3$ in the absence of vaccinations). $VE_{dis} = 50\%$ and $VE_{inf} = 90\%$ VE_{dis} .

References

- 1. Public Health Ontario. iPHIS Resources [Internet]. 2021 [cited 2021 Jan 11]. Available from: https://www.publichealthontario.ca/en/diseases-and-conditions/infectious-diseases/ccm/iphis
- 2. Ontario Treasury Board Secretariat. Status of COVID-19 Cases in Ontario [Internet]. 2021.
- 3. Ontario Agency for Health Protection and Promotion (Public Health Ontario). Enhanced epidemiological summary: COVID-19 in long-term care home residents in Ontario January 15, 2020 to June 1, 2020. Toronto, ON; 2020.
- 4. ter Braak CJF, Vrugt JA. A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces. Stat Comput. 2006;16(3):239–49.
- 5. van Ravenzwaaij D, Cassey P, Brown SD. A simple introduction to Markov Chain Monte–Carlo sampling. Psychon Bull Rev. 2018;25(1):143–54.
- 6. Byambasuren O, Cardona M, Bell K, Clark J, McLaws M-L, Glasziou P. Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: Systematic review and meta-analysis. Off J Assoc Med Microbiol Infect Dis Canada. 2020 Dec 1;5(4):223–34.
- 7. Zhao S. Estimating the time interval between transmission generations when negative values occur in the serial interval data: using COVID-19 as an example. Math Biosci Eng. 2020;17(4):3512–9.
- 8. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672–5.
- 9. Public Health Agency of Canada. Canada COVID-19 Weekly Epidemiology Report 17 January to 23 January 2021 [Internet]. 2021. Available from: https://www.canada.ca/content/dam/phac-aspc/documents/services/diseases/2019-novel-coronavirus-infection/surv-covid19-weekly-epi-update-20210129-eng.pdf
- 10. Canadian Institute for Health Information. COVID-19 Hospitalization and Emergency Department Statistics, 2019–2020 and 2020–2021. Ottawa,ON: CIHI; 2020.
- 11. McCarthy Z, Xiao Y, Scarabel F, Tang B, Bragazzi NL, Nah K, et al. Quantifying the shift in social contact patterns in response to non-pharmaceutical interventions. J Math Ind. 2020;10(1):28.
- 12. Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLOS Comput Biol. 2017 Sep 12;13(9):e1005697.
- 13. Heymann AD, Zacay G, Shasha D, Bareket R, Kadim I, Sikron FH, et al. BNT162b2 Vaccine Effectiveness in Preventing Asymptomatic Infection with SARS-CoV-2 Virus: A Nationwide Historical Cohort Study. Available SSRN https://ssrn.com/abstract=3796868 or https://dx.doi.org/102139/ssrn3796868.
- 14. Shah AS V, Gribben C, Bishop J, Hanlon P, Caldwell D, Wood R, et al. Effect of vaccination on

- transmission of COVID-19: an observational study in healthcare workers and their households. medRxiv. 2021 Jan 1;2021.03.11.21253275.
- 15. Amit S, Regev-Yochay G, Afek A, Kreiss Y, Leshem E. Early rate reductions of SARS-CoV-2 infection and COVID-19 in BNT162b2 vaccine recipients. Lancet. 2021 Mar 6;397(10277):875–7.
- 16. Pawlowski C, Lenehan P, Puranik A, Agarwal V, Venkatakrishnan AJ, Niesen MJM, et al. FDA-authorized COVID-19 vaccines are effective per real-world evidence synthesized across a multi-state health system. medRxiv. 2021 Jan 1;2021.02.15.21251623.
- 17. Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, et al. BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. N Engl J Med. 2021 Feb 24;
- 18. Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, et al. Nationwide Vaccination Campaign with BNT162b2 in Israel Demonstrates High Vaccine Effectiveness and Marked Declines in Incidence of SARS-CoV-2 Infections and COVID-19 Cases, Hospitalizations, and Deaths. Available SSRN https://ssrn.com/abstract=3811387.
- 19. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2020 Dec 30;384:403–16.
- 20. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020 Dec 10;383(27):2603–15.
- 21. Tasker JP. Canada to receive 1 million COVID-19 vaccine doses a week starting in April: general [Internet]. CBC News. 2021. Available from: https://www.cbc.ca/news/politics/vaccine-rollout-update-fortin-1.5872766
- 22. Tasker JP. More Pfizer shots will arrive in 2nd quarter than originally planned: Trudeau [Internet]. CBC News. 2021. Available from: https://www.cbc.ca/news/politics/more-pfizer-shots-trudeau-1.5912209