

Facultad de Ingeniería

Laboratorio de Fundamentos de Control(6655)

Profesor: Salcedo Ubilla María Leonor Ing.

Semestre 2019-1

Práctica No. 7

Control de temperatura

Grupo 2

Brigada: 4

Martínez López Rodrigo Adrián

Vivar Colina Pablo

Ciudad Universitaria Agosto de 2018.

Índice

1.	Resumen	1
	Introducción 2.1. NI ELVIS	1
3.	Objetivos	1
4.	Materiales y métodos	1
5.	Resultados	2
6.	Análisis de Resultados	4
7.	Conclusiones	4
8.	Referencias	4

1. Resumen

2. Introducción

2.1. NI ELVIS

Para crear una aplicación completa de NI ELVIS, explore otras soluciones de laboratorio para NI ELVIS.

Proporciona una experiencia de aprendizaje basada en proyectos, usando medidas en línea y diseño práctico y embebido.

El NI Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) es un dispositivo modular de laboratorio educativo de ingeniería desarrollado específicamente para la academia. Con este enfoque práctico, los profesores pueden ayudar a los estudiantes a aprender habilidades de ingeniería prácticas y experimentales. NI ELVIS incluye un osciloscopio, multímetro digital, generador de funciones, fuente de alimentación variable, analizador de Bode y otros instrumentos comunes de laboratorio. Puede conectar una PC al NI ELVIS usando USB y desarrollar circuitos en su protoboard desmontable. [1]

3. Objetivos

 Utilizar la herramientas de National Instruments para verificar las ecuaciones de función de transferencia

4. Materiales y métodos

■ NI Elvis

• Computadora con Suite de herramientas Texas Instruments

5. Resultados

Tran	Transductor RTD		sductor THC	Termómetro
^{o}C	V	^{o}C	V	^{o}C
55	1.845	62	2.023	43
61	2.002	67	2.192	46
70	2.288	76	2.512	52
75	2.432	82	2.683	56
80	2.601	88	2.885	58
90	2.89	99	3.209	69
95	3.072	105	3.42	79
100	3.22	111	3.612	78
105	3.409	117	3.79	80
110	3.524	122	3.954	85
115	3.708	128	4.162	86
120	3.89	135	4.374	99
125	4.031	140	4.534	109
130	4.184	147	4.739	117
135	4.353	153	4.936	121
140	4.507	159	5.118	123
145	4.66	165	5.315	138
150	4.817	171	5.499	143

Se usa el circuito operacional con realimentacion negativa.

- 2->Entrada Inversora
- 3->Entrada no inversora
- 4->Fuente -10[V]
- 5->Vacío
- 6->Salida
- 7->Fuente +10[V]

$$\frac{1,42}{s^2 + 2,42s + 1,42}\tag{1}$$

Función de transferencia

En la figura 1 se puede pareciar el circuito que se ocupó en la experimentación.

En la figura 2 se puede apreciar la configuración del generador de funciones el cual genera una señal senoidal de $100~[\mathrm{Hz}]~\mathrm{y}$ con $0.25~[\mathrm{Vpp}].$

En la figura 1 se aprecia la respuesta del circuito mostrado anteriormente.

Tran	Transductor RTD		sductor THC	Termómetro
^{o}C	V	^{o}C	V	^{o}C
150	4.815	172	5.52	144
145	4.635	167	5.27	151
140	4.532	163	5.16	146
135	4.33	157	5.01	141
130	4.149	150	4.819	149
125	3.99	144	4.617	127
120	3.78	141	4.567	126
115	3.688	133	4.25	125
110	3.533	127	4.082	120
105	3.367	121	3.884	115
100	3.277	116	3.73	111
95	3.077	111	3.551	105
90	2.916	105	3.381	100
85	2.758	99	3.201	95
80	2.604	94	3.004	84
75	2.44	88	2.829	78
70	2.34	82	2.653	77
65	2.125	77	2.481	66
60	1.903	71	2.312	60
55	1.81	65	2.117	58
50	1.649	60	1.946	52
45	4.88	55	1.77	45

Figura 1: Circuito de Amplificadores operacionales

Figura 2: Generador de funciones

Figura 3: Valor de la resistencia 5 del circuito 1 con 10 k, con frecuencia en la señal de 2[kHz]

Figura 4: Valor de la resistencia 5 del circuito 1 con 10 k, con frecuencia en la señal de 8[kHz]

Figura 5: Valor de la resistencia 5 del circuito 1 con 10 k

Figura 6: Valor de la resistencia 5 del circuito 1 con 100 k

- 6. Análisis de Resultados
- 7. Conclusiones
- 8. Referencias

Referencias

[1] NationalInstruments. NI Elvis, 2018.