Department of Electrical and Computer Engineering

```
Zainab Hussein
Author:
Title:
            LafBot
Date:
            3-27-2017
1. Time Spent: 6 Hours
2. Commented code
/*
* File:
         LafBot.c
 * Author: Zainab Hussein
 * Bot used: SN 2
 * Created on March 23, 2017, 9:01 PM
#include "ece212.h"
int main() {
    ece212_lafbot_setup();
    int minSpeed = 0 \times 000F;
                                //min speed of robot
                                //max speed of robot on big track
    int maxSpeed = 0xFFF0;
    int outOfBounds = 0x1FF;
                                //the ADC threshold for determining
                                // whether the robot is on the line
        while (1){
            if(SW3)
                maxSpeed = 0xF000;
                                        //max speed of robot on small track
            /**
                  *when the right sensor detects a value out of bounds, the left
wheel
            * will spin forward at its maxspeed and the right wheel will spin
            * forward at its minSpeed */
            while (analogRead(RIGHT_SENSOR) > outOfBounds) {
            LFORWARD = maxSpeed;
            RFORWARD = minSpeed;
            }
            /**
                  *when the left sensor detects a value out of bounds, the left
wheel
            * will spin forward at its minSpeed and the right wheel will spin
            * forward at its maxSpeed */
            while (analogRead(LEFT_SENSOR) > outOfBounds) {
            RFORWARD = maxSpeed;
            LFORWARD = minSpeed;
            /**when the left sensor and right sensor both detect a value within
            * bound, the left and right wheel will spin forward at their
            * maxSpeeds */
            while (analogRead(LEFT_SENSOR) < outOfBounds</pre>
            && analogRead(RIGHT_SENSOR) < outOfBounds) {
            RFORWARD = maxSpeed;
            LFORWARD = maxSpeed;
        }
}
```

3. Acceptance Testing Plan

Tests to run	Test Implementation	Pass
Follow straight black line	Have robot follow black line	Bot follows black line without
	5-8 times	deviation
Test for noise tolerance to	Vary the ADC threshold value	Lafbot never gets stuck on
ensure small deviations in	by checking the values result	the track
the intensity of the black line	in lafbot remaining in/out of	
	bounds	
Test for noise tolerance to	Vary the ADC threshold value	Lafbot remains on black
ensure small deviations in	by checking the values result	track, not veering outside of
the intensity of the black line	in lafbot remaining in/out of	track
	bounds	
Lafbot smoothly completes	Run lafbot 4 times without	Lafbot never leaves track or
small oval track	fail or deviation from course	get stuck
Lafbot smoothly completes	Run lafbot 4 times without	Lafbot never leaves track or
big oval track	fail or deviation from course	get stuck
Lafbot smoothly completes	Run lafbot 2 times without	Lafbot never leaves track or
special track	fail or deviation from course	get stuck
Start Lafbot at different	Start lafbot at 7 different	Lafbot performs correctly at
locations on the track	parts of the big track	every starting point

^{4.} The result of the acceptance test plan is indicated to have passed in table above. The time on the big track was 21 seconds. I would say the design passed as a whole. Improvements could be done in better noise tolerance for the lafbot, because even though the lafbot remains on track all through, there is some wiggle at a point in the track before it stabilizes.