Lenguajes y Compiladores. 24/03/2021

Objetivos: Comprender el concepto de ligadura de variables. Reconocer la dificultad de la sustitución en lenguajes con ligadura. Comprender la necesidad de un "estado" para lenguajes con variables. Conocer y poder probar las propiedades semánticas: coincidencia y sustitución. Usamos fuente sans-serif (como en x) para referirnos a variables concretas y serif (como en p),

Usamos fuente sans-serif (como en x) para referirnos a variables concretas y serif (como en p), para meta-variables.

SIEMPRE piense a qué conjunto pertenecen las entidades matemáticas involucradas (por ejemplo, para entender qué significan que dos cosas en el mismo conjunto sean iguales).

Repaso. Decida si las siguientes afirmaciones son verdaderas o falsas; justifique su respuesta.

- 1. Sea L un lenguaje, D el dominio semántico y sea $[-]: L \to D$:
 - a) si $\llbracket \rrbracket$ NO es inyectiva, entonces NO es una función semántica.
 - b) si $\llbracket \rrbracket$ NO es survectiva, entonces NO es una función semántica.
- 2. La dirección por sintaxis garantiza que un conjunto de ecuaciones define una función semántica.
- 3. Si un conjunto de ecuaciones que define una semántica no es dirigido por sintaxis, entonces la semántica no es composicional.

Ejercicios.

1. Considere los siguientes predicados (con la semántica dada en el teórico).

$$x \div y = z$$

 $\exists r.(0 \le r < y) \land (x = y * z + r)$

- a) Dé un estado en el cual estos predicados tienen distinta semántica.
- b) Caracterizar los $\sigma \in \Sigma$ para los cuales estos predicados tienen la misma semántica.
- 2. Extienda la gramática abstracta de las expresiones enteras para la sumatoria; luego defina la semántica de la nueva expresión. Recuerde las propiedades que debe tener un conjunto de ecuaciones para que definan una función semántica.
- 3. En cada una de las siguientes expresiones, ¿cuáles son las ocurrencias ligadoras, cuáles las ligadas y cuáles las libres?
 - $a) \ \forall \mathsf{x}. \ \forall \mathsf{z}. \ \mathsf{x} < \mathsf{t} \land \mathsf{t} \leq \mathsf{z} \Rightarrow \exists \mathsf{y}. \ \mathsf{x} \leq \mathsf{y} \land \mathsf{y} < \mathsf{z}$
 - b) $x > 0 \Rightarrow (\forall y.y \ge x \Rightarrow \exists x.x > 0 \land x < y).$
 - c) $\sum_{i=0}^{n} (k * \sum_{k=1}^{i} (i k) * k)$.
- 4. Dé el resultado de la sustitución simultánea:
 - a) t por x + y + z en $\forall x$. $\forall z$. $x < t \land t \le z \Rightarrow \exists y$. $x \le y \land y < z$
 - b) y por x, z por y y x por z en $x > 0 \Rightarrow (\forall y.y \ge x \Rightarrow \exists x.x > 0 \land x < y)$.
- 5. Dé un ejemplo que muestre que si hacemos reemplazo sintáctico en lugar de sustitución, podemos alterar la semántica.
- 6. Pruebe por inducción en los predicados: $FV(p/\delta) = \bigcup_{w \in FV(p)} FV(\delta w)$

¿Necesita una propiedad similar para las expresiones?

- 7. Enunciar y demostrar de manera detallada el Teorema de Coincidencia para la Lógica de Predicados.
- 8. Sean p,q dos frases de la misma categoría sintáctica, usar el teorema de sustitución para demostrar que si [p] = [q] entonces para todo $\delta \in \Delta$, $[p/\delta] = [q/\delta]$.
- 9. ¿Vale el recíproco? Es decir, dados p,q en la misma categoría sintáctica, si para todo $\delta \in \Delta$, $[\![p/\delta]\!] = [\![q/\delta]\!]$, ¿se cumple necesariamente $[\![p]\!] = [\![q]\!]$?
- 10. a) Sean δ y γ dos sustituciones, defina la composición de δ con γ ($\delta \circ \gamma \in \Delta$).
 - b) Pruebe que para toda frase p y cualesquiera sustituciones δ y γ vale $\llbracket p/\delta \circ \gamma \rrbracket = \llbracket (p/\delta)/\gamma \rrbracket$.