

Library Indian Institute of Science Education and Research Mohali

DSpace@IISERMohali (/jspui/)

- / Publications of IISER Mohali (/jspui/handle/123456789/4)
- / Research Articles (/jspui/handle/123456789/9)

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/5139

Title: Stable CsPbl3-Mesoporous Alumina Composite Thin Film at Ambient Condition: Preparation,

Characterization, and Study of Ultrafast Charge-Transfer Dynamics

Authors: Mishra, Samita (/jspui/browse?type=author&value=Mishra%2C+Samita)

Takhellambam, Daimiota (/jspui/browse?type=author&value=Takhellambam%2C+Daimiota)

De, Arijit K. (/jspui/browse?type=author&value=De%2C+Arijit+K.)
Jana, Debrina (/jspui/browse?type=author&value=Jana%2C+Debrina)

Keywords: Thin films

Organic polymers

Issue Date: 202

Publisher: ACS Publications

Citation: The Journal of Physical Chemistry C, 125(6), 3285–3294.

Abstract:

Among the all-inorganic lead halide perovskites, CsPbI3 has emerged as a competent photovoltaic material because of its enhanced stability and comparable efficiency to that of organic-inorganic hybrid perovskites, but the main constraint lies in the phase instability of the active cubic α-CsPbI3 perovskite at room temperature as it degrades to nonperovskite yellowcolored phase. Herein, we describe the synthesis of the active cubic α -CsPbl3 perovskite along with orthorhombic in the presence of surface capping agent poly-vinylpyrrolidone (PVP) inside a mesoporous alumina film, which restricts its interaction with air and moisture, leading to significantly enhanced stability of the composite film. Moreover, the conversion rate from the active cubic (α) to inactive yellow δ (orthorhombic) phase is found to be nominal in a time period of minimum 8 months. The as-synthesized composite CsPbl3-alumina film is found to be stable at ambient condition. To examine the charge-transport property of this stable composite film in a thin film device setup, electron and hole transport layers are used and femtosecond transient absorption spectroscopy is employed, all at room temperature and ambient condition, to investigate the charge-transfer kinetics of PVP-capped CsPbl3 in mesostructured alumina. The spectral data confirms the efficient charge transfer occurring from CsPbl3 to charge-conducting layers, and the electron and hole transfers happen in 40 ps and 600 fs, respectively. This study is expected to encourage new possibilities of using a surface capping agent as well as a mesostructured layer to synthesize and confine stable active perovskite nanocrystals useful for practical photovoltaic applications.

Description: Only IISER Mohali authors are available in the record.

URI: https://pubs.acs.org/doi/10.1021/acs.jpcc.0c10260

(https://pubs.acs.org/doi/10.1021/acs.jpcc.0c10260) http://hdl.handle.net/123456789/5139 (http://hdl.handle.net/123456789/5139)

Appears in Research Articles (/jspui/handle/123456789/9)

Collections:

Files in This Item

File Description Size Format

Need To Add...Full Text_PDF (/jspui/bitstream/123456789/5139/1/Need%20To%20Add%e2%80%a6Full%20Text_PDF)

15.36 Unknown kB

View/Open (/jspui/t

Show full item record (/jspui/handle/123456789/5139?mode=full)

. II (/jspui/handle/123456789/5139/statistics)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.