Exploiting Imprecise Information Sources in Sequential Decision Making Problems under Uncertainty

N.Drougard

under D.Dubois, J-L.Farges and F.Teichteil-Königsbuch supervision
doctoral school: EDSYS institution: ISAE-SUPAERO
laboratory: ONERA-The French Aerospace Lab

retour sur innovation

Overview

- 1 Context
- 2 Introductory example (HMI)
- 3 Updates of the qualitative possibilistic model
- 4 Symbolic solver and factorization
- 5 An hybrid perspective
- 6 Conclusion/Perspectives

Overview

- 1 Context
- 2 Introductory example (HMI)
- 3 Updates of the qualitative possibilistic model
- 4 Symbolic solver and factorization
- 5 An hybrid perspective
- 6 Conclusion/Perspectives

Autonomous robotics

Onera, DCSD

Automatics, AI, Flight Mechanics, Cognitive Sciences

Autonomous robotics

Onera, DCSD

Automatics, AI, Flight Mechanics, Cognitive Sciences

among many other works:

- autonomy, steering architectures and human factors
- decision making, planning
- experimental/industrial applications: UAVs, orbital systems, exploration robots

Partially Observable Markov Decision Processes (POMDPs)

s_t

a_t

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$

belief state: $b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$

belief state: $b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$

probabilistic belief update - a selected, o' received

$$b_{t+1}(s') \propto \mathbf{p}\left(\left.o'\left|\right.\right.s',a\right) \cdot \sum_{s \in \mathcal{S}} \mathbf{p}\left(\left.s'\left|\right.\right.s,a\right) \cdot b_{t}(s)$$

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' | s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$

belief state: $b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$

probabilistic belief update – a selected, o' received

$$b_{t+1}(s') \propto \mathbf{p}\left(\left.o'\left|\right.\right.s',a\right) \cdot \sum_{s \in \mathcal{S}} \mathbf{p}\left(\left.s'\left|\right.\right.s,a\right) \cdot b_{t}(s)$$

action choices: strategy $\delta(b_t) = a_t \in \mathcal{A}$

maximizing
$$\mathbb{E}_{s_0 \sim b_0}\left[\sum_{t=0}^{+\infty} \gamma^t \cdot r\Big(s_t, \deltaig(b_t)\Big)
ight]$$
, $0<\gamma<1$

Flaws of the POMDP model POMDPs in practice

- optimal strategy computation > PSPACE (Papadimitriou et al. 1987)
- probabilities are imprecisely known in practice

agent's ignorance not taken into account

practical issues: Complexity, Vision and Initial Belief

■ POMDP optimal strategy computation undecidable in infinite horizon — *Madani et al. (AAAI-99)*

- POMDP optimal strategy computation undecidable in infinite horizon *Madani et al. (AAAI-99)*
- → optimality for "small" or "structured" POMDPs
- $\rightarrow \mathsf{approximate}\ \mathsf{computations}$

- POMDP optimal strategy computation undecidable in infinite horizon *Madani et al. (AAAI-99)*
- → optimality for "small" or "structured" POMDPs
- \rightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning

- POMDP optimal strategy computation undecidable in infinite horizon *Madani et al. (AAAI-99)*
- \rightarrow optimality for "small" or "structured" POMDPs
- ightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning
- → unknown environments: image variability of the datasets?

practical issues: Complexity, Vision and Initial Belief

- POMDP optimal strategy computation undecidable in infinite horizon *Madani et al. (AAAI-99)*
- → optimality for "small" or "structured" POMDPs
- \rightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning
- → unknown environments: image variability of the datasets?

Lack of prior information on the system state: initial belief state b_0

- POMDP optimal strategy computation undecidable in infinite horizon *Madani et al. (AAAI-99)*
- → optimality for "small" or "structured" POMDPs
- \rightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning
- → unknown environments: image variability of the datasets?

- Lack of prior information on the system state: initial belief state b_0
- \rightarrow uniform probability distribution \neq ignorance!

Qualitative Possibility Theory

presentation – (max,min) "tropical" algebra

finite scale \mathcal{L}

usually $\{0, \frac{1}{k}, \frac{2}{k}, \dots, 1\}$

events $e \subset \Omega$ (universe) sorted using possibility degrees $\pi(e) \in \mathcal{L}$ \neq quantified with frequencies $\mathbf{p}(e) \in [0,1]$ (probabilities)

Qualitative Possibility Theory

presentation - (max,min) "tropical" algebra

finite scale \mathcal{L}

usually
$$\{0,\frac{1}{k},\frac{2}{k},\dots,1\}$$

events
$$e \subset \Omega$$
 (universe) sorted using possibility degrees $\pi(e) \in \mathcal{L}$

quantified with **frequencies** $p(e) \in [0,1]$ (probabilities)

$$e_1 \neq e_2$$
, 2 events $\subset \Omega$

 $\blacksquare \pi(e_1) < \pi(e_2) \Leftrightarrow "e_1 \text{ is less plausible than } e_2"$

Qualitative Possibility Theory

Criteria from Sugeno integral

Probability	/ Possibility:
+	max
×	min
$X\in\mathbb{R}$	$X\in\mathcal{L}$
	optimistic:
$\mathbb{E}[X] = \sum_{x \in X} x \cdot \mathbf{p}(x)$	$\mathbb{S}_{\Pi}[X] = \max_{x \in X} \min \left\{ x, \pi(x) \right\}$
	cautious:
	$\mathbb{S}_{\mathcal{N}}[X] = \min_{x \in X} \max\{x, 1 - \pi(x)\}$

Qualitative Possibility Theory qualitative possibilistic POMDP (π -POMDP)

Sabbadin (UAI-98) introduces

the qualitative possibilistic POMDP

 π -POMDP: $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, T^{\pi}, O^{\pi}, \rho \rangle$

Qualitative Possibility Theory qualitative possibilistic POMDP (π -POMDP)

Sabbadin (UAI-98) introduces

the qualitative possibilistic POMDP

$$\pi$$
-POMDP: $\langle S, A, \mathcal{O}, T^{\pi}, O^{\pi}, \rho \rangle$

- **transition** function $T^{\pi}(s, a, s') = \pi(s' | s, a) \in \mathcal{L}$
- **observation** function $O^{\pi}(s', a, o') = \pi(o' | s', a) \in \mathcal{L}$
- **preference** function $\rho: \mathcal{S} \times \mathcal{A} \to \mathcal{L}$

Sabbadin (UAI-98) introduces

the qualitative possibilistic POMDP

$$\pi$$
-POMDP: $\langle S, A, \mathcal{O}, T^{\pi}, O^{\pi}, \rho \rangle$

- transition function $T^{\pi}(s, a, s') = \pi(s' | s, a) \in \mathcal{L}$
- **observation** function $O^{\pi}(s', a, o') = \pi(o' | s', a) \in \mathcal{L}$
- **preference** function $\rho: \mathcal{S} \times \mathcal{A} \to \mathcal{L}$
- belief space trick: POMDP \rightarrow MDP with **infinite** \mathcal{S} π -POMDP \rightarrow π -MDP with **finite** \mathcal{S}
- $\forall s \in \mathcal{S}$, $\pi(s) = 1 \Leftrightarrow$ total ignorance about s

A possibilistic belief state

finite belief space

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 $\rightarrow i.e.$ finite belief space

A possibilistic belief state

finite belief space

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 $\rightarrow i.e.$ finite belief space

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

A possibilistic belief state

finite belief space

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 $\rightarrow i.e.$ finite belief space

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

possibilistic belief update – a selected, o' received

joint distribution on $\mathcal{S} \times \mathcal{O}$ from b_t^{π} : $\pi \left(o', s' \mid b_t^{\pi}, a \right)$

A possibilistic belief state

finite belief space

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 $\rightarrow i.e.$ **finite belief space**

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

possibilistic belief update – a selected, o' received

joint distribution on $\mathcal{S} imes \mathcal{O}$ from b_t^π : $\pi\left(\left.o', s' \left|\right.\right. b_t^\pi, a\right)$

$$ightarrow$$
 next belief state: $b_{t+1}^{\pi}(s') = \pi\left(o', s' \mid b_t^{\pi}, a\right)$ unless s' maximizes $\pi\left(o', s' \mid b_t^{\pi}, a\right)$, then $b_{t+1}^{\pi}(s') = 1$

denoted by $b_{t+1}^{\pi}(s') \propto^{\pi} \pi(o', s' \mid b_t^{\pi}, a)$

A possibilistic belief state

finite belief space

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 $\rightarrow i.e.$ **finite belief space**

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

possibilistic belief update – a selected, o' received

joint distribution on $\mathcal{S} imes \mathcal{O}$ from b_t^π : $\pi\left(\left.o', s' \left|\right.\right. b_t^\pi, a\right)$

$$ightarrow$$
 next belief state: $b_{t+1}^{\pi}(s') = \pi\left(o', s' \mid b_t^{\pi}, a\right)$ unless s' maximizes $\pi\left(o', s' \mid b_t^{\pi}, a\right)$, then $b_{t+1}^{\pi}(s') = 1$

denoted by
$$b^\pi_{t+1}(s') \propto^\pi \pi\left(\left.o', s' \left|\right.\right. b^\pi_t, a\right)$$

lacktriangle the update only depends on o', a and b_t^π

Qualitative Possibility Theory:

ightarrow simplification, ignorance and imprecision modeling

Qualitative Possibility Theory:

- → simplification, ignorance and imprecision modeling
 - introduction
 - 2 natural use of a qualitative possibilistic model
 - ${f 3}$ updates and first use of the $\pi ext{-POMDP}$ model
 - 4 simplify computation: ADDs and factorization
 - probabilistic-possibilistic (hybrid) approach
 - 6 conclusion

Overview

- 1 Context
- 2 Introductory example (HMI)
- 3 Updates of the qualitative possibilistic model
- 4 Symbolic solver and factorization
- 5 An hybrid perspective
- 6 Conclusion/Perspectives

joint work with Sergio Pizziol - Context

joint work with Sergio Pizziol - Context

Issue: incorrect human assessment of the machine state \rightarrow accident

joint work with Sergio Pizziol - Context

Issue: incorrect human assessment of the machine state \rightarrow accident

π -POMDP without actions: π -Hidden Markov Process

- **system space** \mathcal{S} : set of human assessments o **hidden**
- **observation space** \mathcal{O} : feedbacks/human selections

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state A o B

■ machine feedback observation $o_f \in \mathcal{O}$:

human usually aware of feedbacks $\to \pi\left(s_B',o_f'\mid s_A\right)=1$ but may lost a feedback $\to \pi\left(s_A',o_f'\mid s_A\right)=\frac{2}{3}$

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state $A \rightarrow B$

■ machine feedback observation $o_f \in \mathcal{O}$:

human usually aware of feedbacks $\to \pi\left(s_B',o_f'\mid s_A\right)=1$ but may lost a feedback $\to \pi\left(s_A',o_f'\mid s_A\right)=\frac{2}{3}$

■ human selection observation $o_s \in \mathcal{O}$:

selection o_s' normal under $s_A \to \pi\left(s_B', o_s' \mid s_A\right) = 1$ anormal selection $= \frac{1}{3}$

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state $A \rightarrow B$

■ machine feedback observation $o_f \in \mathcal{O}$:

human usually aware of feedbacks $\to \pi\left(s_B',o_f'\mid s_A\right)=1$ but may lost a feedback $\to \pi\left(s_A',o_f'\mid s_A\right)=\frac{2}{3}$

■ human selection observation $o_s \in \mathcal{O}$:

selection
$$o_s'$$
 normal under $s_A \to \pi \left(s_B', o_s' \mid s_A \right) = 1$ anormal selection $= \frac{1}{3}$

■ impossible cases: possibility degree 0

Qualitative Possibilistic Hidden Markov Process:

diagnosis tool for Human-Machine interaction (with Sergio Pizziol)

Qualitative Possibilistic Hidden Markov Process: diagnosis tool for Human-Machine interaction (with Sergio Pizziol)

- estimation of the human assessment ⇔ possibilistic belief state
- detection of human assessment errors
- **diagnosis** using *leximin* operator
- results on flight simulator missions with pilots

Overview

- 1 Context
- 2 Introductory example (HMI)
- 3 Updates of the qualitative possibilistic model
- 4 Symbolic solver and factorization
- 5 An hybrid perspective
- 6 Conclusion/Perspectives

Mixed-Observability (MOMDP) — Ong et al. (RSS-05)

 π -Mixed-Observable Markov Decision Process (π -MOMDP)

contribution (UAI-13):

Mixed-Observability: system state $s \in \mathcal{S} = \mathcal{S}_{v} \times \mathcal{S}_{h}$ *i.e.* state $s = \text{visible component } s_{h}$ hidden component s_{h}

Mixed-Observability (MOMDP) — Ong et al. (RSS-05)

 π -Mixed-Observable Markov Decision Process (π -MOMDP)

contribution (UAI-13):

Mixed-Observability: system state $s \in \mathcal{S} = \mathcal{S}_v \times \mathcal{S}_h$ *i.e.* state $s = \text{visible component } s_v$ & hidden component s_h

■ belief states only over S_h (component s_v observed)

Mixed-Observability (MOMDP) — Ong et al. (RSS-05) π -Mixed-Observable Markov Decision Process (π -MOMDP)

contribution (UAI-13):

Mixed-Observability: system state $s \in \mathcal{S} = \mathcal{S}_v \times \mathcal{S}_h$ *i.e.* state $s = \text{visible component } s_v$ & hidden component s_h

- belief states only over S_h (component s_v observed)
- → π -POMDP: belief space $\Pi_{\mathcal{L}}^{\mathcal{S}}$ $\#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}}$ → π -MOMDP: computations on $\mathcal{X} = \mathcal{S}_{\mathbf{v}} \times \Pi_{\mathcal{L}}^{\mathcal{S}_{h}}$ $\#\mathcal{X} \sim \#\mathcal{S}_{\mathbf{v}} \cdot \#\mathcal{L}^{\#\mathcal{S}_{h}} \ll \#\Pi_{\mathcal{L}}^{\mathcal{S}}$

Use of the π -MOMDP in practice undefined horizon

contribution (UAI-13): Undefined Horizon

Use of the π -MOMDP in practice undefined horizon

contribution (UAI-13): Undefined Horizon

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$

- lacksquare assumption: \exists artificial "stay" action as in classical planning/ γ counterpart
- value function = criterion: non decreasing with horizon

Use of the π -MOMDP in practice undefined horizon

contribution (UAI-13): Undefined Horizon

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$

- lacktriangle assumption: \exists artificial "stay" action as in classical planning/ γ counterpart
- value function = criterion: non decreasing with horizon
- action update for states increasing the value function
- proof of optimality

Use of the π -MOMDP in practice simulations

- **goal:** reach the object A = T1 or T2
- noisy observations of the location of the object A

Overview

- 1 Context
- 2 Introductory example (HMI)
- 3 Updates of the qualitative possibilistic mode
- 4 Symbolic solver and factorization
- 5 An hybrid perspective
- 6 Conclusion/Perspectives

Factored π -MOMDP and computations with ADDs

qualitative possibilistic models to reduce complexity

contribution (AAAI-14): factored π -MOMDP \Leftrightarrow state space $\mathcal{X} = \mathcal{S}_{\nu} \times \Pi^{\mathcal{S}_h}_{\mathcal{L}} =$ Boolean variables (X_1, \dots, X_n) + independence assumptions \Leftarrow graphical model

Factored π -MOMDP and computations with ADDs

qualitative possibilistic models to reduce complexity

contribution (AAAI-14): factored
$$\pi$$
-MOMDP \Leftrightarrow state space $\mathcal{X} = \mathcal{S}_{\nu} \times \Pi_{\mathcal{L}}^{\mathcal{S}_h} = \text{Boolean variables } (X_1, \dots, X_n) + \text{independence assumptions} \Leftarrow \text{graphical model}$

■ **factorization:** transition functions $T_i^a = \pi\left(X_i' \mid parents(X_i'), a\right)$ stored as **Algebraic Decision Diagrams (ADD)** probabilistic case: SPUDD. *Hoey et al., UAI-99*

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

- probabilistic model: + and $\times \Rightarrow$ new values created \Rightarrow number of ADDs leaves **potentially huge**
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded. **ADDs smaller**.

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

- probabilistic model: + and × ⇒ new values created ⇒ number of ADDs leaves potentially huge
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded. **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

factorization ⇒ DP steps divided into n stages
 → used ADDs smaller ⇒ faster computations

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

- probabilistic model: + and × ⇒ new values created ⇒ number of ADDs leaves potentially huge
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

- factorization ⇒ DP steps divided into n stages
 → used ADDs smaller ⇒ faster computations
- computations on trees: CU Decision Diagram Package.

Natural factorization: belief independence

contribution (AAAI-14):

independent sensors, hidden states, $\ldots \Rightarrow$ graphical model

Natural factorization: belief independence

contribution (AAAI-14):

independent sensors, hidden states, $\ldots \Rightarrow$ graphical model

d-Separation
$$\Rightarrow$$
 $(s_{v}, \beta) = (s_{v,1}, \dots, s_{v,m}, \beta_{1}, \dots, \beta_{l})$
 $\beta_{i} \in \Pi_{\mathcal{L}}^{S_{h,i}}$, belief over $s_{h,i}$

Experiments - perfect sensing: Navigation problem

PPUDD vs SPUDD Hoey et al.

Navigation benchmark: reach a goal – spots with accident risk M1 (resp. M2) optimistic (resp. cautious) criterion

Experiments – perfect sensing: Navigation problem

PPUDD vs SPUDD Hoey et al.

Navigation benchmark: reach a goal – spots with accident risk M1 (resp. M2) optimistic (resp. cautious) criterion

Performances, function of the instance size

reached goal frequency

Experiments – perfect sensing: Navigation problem

computation time

max size of ADDs

- PPUDD + M2 (pessimistic criterion)faster with same performances as SPUDD
- SPUDD only solves the first 5 instances
- verified intuition: ADDs are smaller

Experiments – imperfect sensing: RockSample problem

PPUDD vs APPL *Kurniawati et al.*, solver MOMDP symbolic HSVI *Sim et al.*, solver POMDP RockSample benchmark: recognize and sample "good" rocks

Experiments – imperfect sensing: RockSample problem

PPUDD vs APPL *Kurniawati et al.*, solver MOMDP symbolic HSVI *Sim et al.*, solver POMDP RockSample benchmark: recognize and sample "good" rocks

computation time: probabilistic solvers, prec. 1 PPUDD. exact resolution

average of rewards APPL stopped when PPUDD end

- approximate model + exact resolution solver
 - \rightarrow improvement of computation time and performances

IPPC 2014 – ADD-based approaches: PPUDD vs symbolic LRTDP

PPUDD + BDD mask over reachable states.

Figure: average of rewards over simulations

Overview

- 1 Context
- 2 Introductory example (HMI)
- 3 Updates of the qualitative possibilistic model
- 4 Symbolic solver and factorization
- 5 An hybrid perspective
- 6 Conclusion/Perspectives

Qualitative possibilistic approach: benefits/drawbacks towards a hybrid POMDP

Qualitative Possibilistic models:

- granulated belief space (discrete)
- efficient problem **simplification** (PPUDD 2× better than LRTDP with ADDs)
- ignorance and imprecision modeling

Qualitative possibilistic approach: benefits/drawbacks towards a hybrid POMDP

Qualitative Possibilistic models:

- **granulated** belief space (discrete)
- efficient problem **simplification** (PPUDD 2× better than LRTDP with ADDs)
- ignorance and imprecision modeling
- ADD methods ≺ state space search methods: winners of IPPC 2014, 2× better than PPUDD
- choice of the qualitative criterion (optimistic/pessimistic)
- non additive utility degrees same scale as possibility degrees (commensurability)
- frequentist information lost

A hybrid model

a probabilistic POMDP with possibilistic belief states

hybrid approach

- agent knowledge = possibilistic belief states
- probabilistic dynamics & quantitative rewards

A hybrid model

a probabilistic POMDP with possibilistic belief states

hybrid approach

- agent knowledge = possibilistic belief states
- probabilistic dynamics & quantitative rewards
- → heuristic for solving POMDPs: results in a standard (finite state space) MDP
- ightarrow problem with qualitative & quantitative uncertainty

Transitions and rewards

belief-based transition and reward functions

■ possibility distribution $\beta \to \text{probability distribution } \overline{\beta}$ using poss-prob tranformations (Dubois et al., FSS-92)

$$\Rightarrow \mathbf{p}(\beta'|\beta, a) = \sum_{\substack{o' \text{ t.q.} \\ \textit{update}(\beta, a, o') = \beta'}} \mathbf{p}(o' \mid \beta, a)$$

Transitions and rewards

belief-based transition and reward functions

■ possibility distribution $\beta \to \text{probability distribution } \overline{\beta}$ using poss-prob tranformations (Dubois et al., FSS-92)

$$\Rightarrow \mathbf{p}(\beta' | \beta, a) = \sum_{\substack{o' \text{ t.q.} \\ \textit{update}(\beta, a, o') = \beta'}} \mathbf{p}(o' | \beta, a)$$

 \blacksquare reward cautious according to β

Pessimistic Choquet Integral

$$r(\beta, a) = \sum_{i=1}^{\#\mathcal{L}-1} (l_i - l_{i+1}) \cdot \min_{\substack{s \in \mathcal{S} \text{ s.t.} \\ \beta(s) \geqslant l_i}} r(s, a)$$

translation summary contribution (SUM-15):

```
input: a POMDP \langle S, A, \mathcal{O}, T, O, r, \gamma \rangle; output: the MDP \langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle:
```

translation summary contribution (SUM-15):

```
input: a POMDP \langle \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{O}, r, \gamma \rangle; output: the MDP \langle \tilde{\mathcal{S}}, \mathcal{A}, \tilde{\mathcal{T}}, \tilde{r}, \gamma \rangle:
```

■ state space $\tilde{S} = \Pi_{\mathcal{L}}^{S}$, the set of the possibility distributions over S;

translation summary contribution (SUM-15):

```
input: a POMDP \langle S, A, \mathcal{O}, T, O, r, \gamma \rangle; output: the MDP \langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle:
```

- state space $\tilde{S} = \Pi_{\mathcal{L}}^{S}$, the set of the possibility distributions over S;
- $\forall \beta, \beta'$ possibilistic belief states $\in \Pi_{\mathcal{L}}^{\mathcal{S}}$, $\forall a \in \mathcal{A}$, transitions $\tilde{T}(\beta, a, \beta') = \mathbf{p}(\beta' | \beta, a)$;

translation summary contribution (SUM-15):

```
input: a POMDP \langle S, A, \mathcal{O}, T, O, r, \gamma \rangle; output: the MDP \langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle:
```

- state space $\tilde{S} = \Pi_{\mathcal{L}}^{S}$, the set of the possibility distributions over S;
- $\forall \beta, \beta'$ possibilistic belief states $\in \Pi_{\mathcal{L}}^{\mathcal{S}}$, $\forall a \in \mathcal{A}$, transitions $\tilde{T}(\beta, a, \beta') = \mathbf{p}(\beta' | \beta, a)$;
- reward $\tilde{r}(a,\beta) = \underline{Ch}(r(a,.))$,

translation summary contribution (SUM-15):

input: a POMDP $\langle S, A, \mathcal{O}, T, O, r, \gamma \rangle$; output: the MDP $\langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle$:

- state space $\tilde{S} = \Pi_{\mathcal{L}}^{S}$, the set of the possibility distributions over S;
- $\forall \beta, \beta'$ possibilistic belief states $\in \Pi_{\mathcal{L}}^{\mathcal{S}}$, $\forall a \in \mathcal{A}$, transitions $\tilde{T}(\beta, a, \beta') = \mathbf{p}(\beta'|\beta, a)$;
- reward $\tilde{r}(a,\beta) = \underline{Ch}(r(a,.))$,

criterion:
$$\mathbb{E}_{\beta_{t} \sim \tilde{T}}\left[\sum_{t=0}^{+\infty} \gamma^{t} \cdot \tilde{r}\left(\beta_{t}, d_{t}\right)\right]$$
.

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

inferred hidden $s_h' \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

$$s'_{v} \xrightarrow{s'_{v} = o'_{v}} o'_{v}$$

inferred hidden $s_h' \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

$$S'_{\nu} \xrightarrow{S'_{\nu} = O'_{\nu}} O'_{\nu}$$

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$S'_{\nu} \xrightarrow{S'_{\nu} = O'_{\nu}} O'_{\nu}$$

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

 $S'_{\nu} \xrightarrow{S'_{\nu} = O'_{\nu}} O'_{\nu}$

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$eta_{t+1}(s_{\mathsf{v}}') = \mathbb{1}_{\{s_{\mathsf{v}}' = o_{\mathsf{v}}'\}}(s_{\mathsf{v}}')$$

inferred hidden
$$s_h' \in \mathbb{S}_h$$

$$\beta_{t+1}\Big(parents(o'_i)\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$S_{\nu}' \xrightarrow{S_{\nu} = O_{\nu}} O_{\nu}'$$

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden
$$s'_h \in \mathbb{S}_h$$

$$\beta_{t+1}\Big(\mathit{parents}(o_i')\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

$$\propto^{\pi} \pi \Big(o_i', \mathit{parents}(o_i') \Big| eta_t, a \Big)$$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$eta_{t+1}(s_{v}')=\mathbb{1}_{\{s_{v}'=o_{v}'\}}(s_{v}')$$

inferred hidden
$$s_h' \in \mathbb{S}_h$$

$$\beta_{t+1}\Big(parents(o_i')\Big) = \beta_{t+1}\big(s_h, s_h^a, s_h^b, s_h^c\big)$$

$$\propto^{\pi} \pi\Big(o_i', parents(o_i')\Big|\beta_t, a\Big)$$

 S_h^a S_h^b S_h^c

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

fully hidden
$$s_f' \in \mathbb{S}_f$$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

sistic belief variable
$$\beta_{t+1}(s'_{v}) = \mathbb{1}_{\{s'_{t}=o'_{v}\}}(s'_{v})$$

$$s'_{v} \xrightarrow{s'_{v} = o'_{v}} o'_{v}$$

inferred hidden
$$s_h' \in \mathbb{S}_h$$

$$\beta_{t+1}\Big(parents(o'_i)\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

$$\propto^{\pi} \pi \Big(o_i', parents(o_i') \Big| \beta_t, a \Big)$$

 $\wedge \mathcal{P}(o_i')$ may contain visible variables.

fully hidden
$$s_f' \in \mathbb{S}_f$$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$(s_{\nu}')^{-\nu}$$

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

$$\beta_{t+1}\Big(parents(o_i')\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

$$\propto^{\pi} \pi \Big(o_i', \mathit{parents}(o_i') \Big| eta_t, a \Big)$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

$$\beta_{t+1}(s_f') = \pi(s_f' \mid \beta_t, a)$$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$eta_{t+1}(s_{\mathsf{v}}') = \mathbb{1}_{\{s_{\mathsf{v}}' = o_{\mathsf{v}}'\}}(s_{\mathsf{v}}')$$

inferred hidden $s_h' \in \mathbb{S}_h$

$$\beta_{t+1}\Big(parents(o'_i)\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

$$\propto^{\pi} \pi \Big(o_i', parents(o_i') \Big| \beta_t, a \Big)$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

fully hidden $s'_f \in \mathbb{S}_f$

 \rightarrow observations don't inform belief state on s'_f .

$$\beta_{t+1}(s_f') = \pi(s_f' \mid \beta_t, a)$$

Possibilistic belief variables

global belief state

bound over the global belief state

$$\beta_{t+1}(s'_1,\ldots,s'_n)=\pi(s'_1,\ldots,s'_n|a_0,o_1,\ldots,a_t,o_{t+1})$$

$$\leqslant \min \Biggl\{ \min_{s_j' \in \mathbb{S}_v} \Biggl[\mathbb{1}_{\left\{s_j' = o_j'\right\}} \Biggr], \min_{s_j' \in \mathbb{S}_f} \Biggl[\beta_{t+1}(s_j') \Biggr], \min_{o_i' \in \mathbb{O}_h} \Biggl[\beta_{t+1} \left(parents(o_i') \right) \Biggr] \Biggr\}$$

bound over the global belief state

$$\beta_{t+1}(s'_1,\ldots,s'_n)=\pi(s'_1,\ldots,s'_n|a_0,o_1,\ldots,a_t,o_{t+1})$$

$$\leqslant \min \Biggl\{ \min_{s_j' \in \mathbb{S}_v} \Biggl[\mathbb{1}_{\left\{s_j' = o_j'\right\}} \Biggr], \min_{s_j' \in \mathbb{S}_f} \Biggl[\beta_{t+1}(s_j') \Biggr], \min_{o_i' \in \mathbb{O}_h} \Biggl[\beta_{t+1} \left(parents(o_i') \right) \Biggr] \Biggr\}$$

- min of marginals = less informative belief state
- computed using marginal belief states
 - → factorization & smaller state space

Overview

- 1 Context
- 2 Introductory example (HMI)
- 3 Updates of the qualitative possibilistic mode
- 4 Symbolic solver and factorization
- 5 An hybrid perspective
- 6 Conclusion/Perspectives

Conclusion contributions

- udates: → mixed-observability modeling → undefined horizon
- modeling: → human-machine interaction
 → robust recognition mission with possibilistic beliefs
- computations: factorization work & PPUDD algorithm (competitive solver, IPPC 2014)

Conclusion contributions

- udates: → mixed-observability modeling → undefined horizon
- modeling: → human-machine interaction
 → robust recognition mission with possibilistic beliefs
- computations: factorization work & PPUDD algorithm (competitive solver, IPPC 2014)

new refined criteria \rightarrow finer π -POMDP

Conclusion contributions

- udates: → mixed-observability modeling → undefined horizon
- modeling: → human-machine interaction
 → robust recognition mission with possibilistic beliefs
- computations: factorization work & PPUDD algorithm (competitive solver, IPPC 2014)

new refined criteria \rightarrow finer π -POMDP

quantitative information may be available: hybrid work

POMDP translation MDP with finite state space

transition probabilities on the possibilistic belief states;

POMDP translation MDP with finite state space

- transition probabilities on the possibilistic belief states;
- pessimistic evaluation of the rewards (Choquet integral);

POMDP translation MDP with finite state space

- transition probabilities on the possibilistic belief states;
- pessimistic evaluation of the rewards (Choquet integral);
- factored POMDP $\xrightarrow{\text{translation}}$ factored MPD.

POMDP translation MDP with finite state space

- transition probabilities on the possibilistic belief states;
- pessimistic evaluation of the rewards (Choquet integral);

perspectives:

■ IPPC problems (factored POMDPs);

POMDP translation MDP with finite state space

- transition probabilities on the possibilistic belief states;
- pessimistic evaluation of the rewards (Choquet integral);
- factored POMDP translation factored MPD.

perspectives:

- IPPC problems (factored POMDPs);
- tests of this approach:
 - **1 simplification:** π distributions definition?
 - **2** imprecision: robust in practice?

Thank you!

Uncertainty theories

Most known uncertainty theories and their relations

- IPT: most general uncertainty theory. Use of sets of probability measures over Ω .
- BFT: use of a mass function $m: 2^{\Omega} \to [0,1]$, with $\sum_{A \subset \Omega} m(A) = 1$.
 - **1** plausibility measure: $\forall A \subset \Omega$, $PI(A) = \sum_{B \cap A \neq \emptyset} m(B)$.
 - **2** belief function: $\forall A \subset \Omega$, $bel(A) = \sum_{B \subset A} m(B)$.

Focal sets of a mass function $m: 2^{\Omega} \to [0,1]$: subsets A of $\Omega = \{\omega_1, \dots, \omega_7\}$ such that m(A) > 0.

- if focal sets are all singletons
 - \rightarrow probability distribution (bel = $Pl = \mathbb{P}$)
- if focal sets are nested, e.g. $F_3 \subset F_2 \subset F_1 = \Omega$,
 - \rightarrow possibility distribution:

bel=necessity measure, Pl=possibility measure.

probabilistic case

possibilistic case

example of focal set i.e. singleton ω_1 ω_2 ω_3 ω_4 ω_6 ω_7

Probabilistic belief update

Figure : Bayesian Network illustrating the belief update

- the **system states** are the gray circular nodes,
- the action is the red square node ,
- and the observation is the blue circular node.

The belief state b_t (resp. b_{t+1}) is the probabilistic estimation of the current (resp. next) system state s_t (resp. s_{t+1})

probabilistic belief update

$$b_{t+1}(s') \propto \mathbf{p}(o' \mid s', a) \cdot \sum_{s \in \mathcal{S}} \mathbf{p}(s' \mid s, a) \cdot b_t(s)$$

Rewritings of parameters **PROBABILISTIC** parameters

$$T_j^a(\mathbb{S}, s_j') = T_j^a(\mathcal{P}(s_j'), s_j');$$

$$O_j^a(\mathbb{S}', o_i') = O_j^a(\mathcal{P}(o_i'), o_i').$$

$$O_i^a(\mathbb{S}',o_i') = O_i^a(\mathcal{P}(o_i'),o_i')$$

Rewritings of parameters **PROBABILISTIC** parameters

- $T_j^a\left(\mathbb{S},s_j'\right) = T_j^a\left(\mathcal{P}(s_j'),s_j'\right);$
- $O_i^a(\mathbb{S}',o_i') = O_i^a(\mathcal{P}(o_i'),o_i').$

consequences on the joint distribution

$$\mathbf{p}\left(o_{i}^{\prime}, \mathcal{P}(o_{i}^{\prime}) \mid \mathbb{S}, a\right) = O_{i}^{a}\left(\mathcal{P}(o_{i}^{\prime}), o_{i}^{\prime}\right) \cdot \prod_{s_{j}^{\prime} \in \mathcal{P}(o_{i}^{\prime})} T_{i}^{a}\left(\mathcal{P}(s_{j}^{\prime}), s_{j}^{\prime}\right)$$
$$= \mathbf{p}\left(o_{i}^{\prime}, \mathcal{P}(o_{i}^{\prime}) \mid \mathcal{Q}(o_{i}^{\prime}), a\right).$$

Rewritings of parameters PROBABILISTIC parameters

- $T_j^a\left(\mathbb{S},s_j'\right)=T_j^a\left(\mathcal{P}(s_j'),s_j'\right);$
- $O_i^a(\mathbb{S}',o_i') = O_i^a(\mathcal{P}(o_i'),o_i').$

consequences on the joint distribution

$$\begin{aligned} \mathbf{p}\left(o_{i}^{\prime}, \mathcal{P}(o_{i}^{\prime}) \mid \mathbb{S}, a\right) &= O_{i}^{a}\left(\mathcal{P}(o_{i}^{\prime}), o_{i}^{\prime}\right) \cdot \prod_{s_{j}^{\prime} \in \mathcal{P}(o_{i}^{\prime})} T_{i}^{a}\left(\mathcal{P}(s_{j}^{\prime}), s_{j}^{\prime}\right) \\ &= \mathbf{p}\left(o_{i}^{\prime}, \mathcal{P}(o_{i}^{\prime}) \mid \mathcal{Q}(o_{i}^{\prime}), a\right). \end{aligned}$$

observation probabilities

$$b^\pi(\mathbb{S}) \xrightarrow{\textbf{marginalization}} b^\pi(\mathcal{Q}(o_i')) \xrightarrow{\textbf{transformation}} \overline{b^\pi}(\mathcal{Q}(o_i'))$$

$$\mathbf{p}\left(\left.o_{i}'\right|\ b^{\pi},a\right) = \sum_{2^{\mathcal{P}\left(o_{i}'\right)}\ 2^{\mathcal{Q}\left(o_{i}'\right)}}\mathbf{p}\left(\left.o_{i}',\mathcal{P}(o_{i}')\right|\ \mathcal{Q}(o_{i}'),a\right)\cdot\overline{b^{\pi}}\big(\mathcal{Q}(o_{i}')\big)$$

$$\blacksquare \pi (s_i' \mid \mathbb{S}, a) = \pi (s_i' \mid \mathcal{P}(s_i'), a);$$

$$\blacksquare \pi(o'_i | S', a) = \pi(o'_i | \mathcal{P}(o'_i), a).$$

$$\blacksquare \pi(s_i' \mid \mathbb{S}, a) = \pi(s_i' \mid \mathcal{P}(s_i'), a);$$

$$\blacksquare \pi(o'_i \mid \mathbb{S}', a) = \pi(o'_i \mid \mathcal{P}(o'_i), a).$$

marginal possibilistic belief states

$$\forall o_i' \in \mathbb{O}$$
,

$$b_{t+1}^{\pi}\Big(\mathcal{P}(o_i')\Big) \propto^{\pi} \pi\Big(o_i', \mathcal{P}(o_i')\Big|a_0, o_1, \ldots, a_{t-1}, o_t\Big)$$

$$\blacksquare \pi(s_i' \mid \mathbb{S}, a) = \pi(s_i' \mid \mathcal{P}(s_i'), a);$$

$$\pi (o'_i | \mathbb{S}', a) = \pi (o'_i | \mathcal{P}(o'_i), a).$$

marginal possibilistic belief states

$$\begin{aligned} \forall o_i' \in \mathbb{O}, \\ b_{t+1}^{\pi} \Big(\mathcal{P}(o_i') \Big) & \propto^{\pi} \pi \Big(o_i', \mathcal{P}(o_i') \Big| a_0, o_1, \dots, a_{t-1}, o_t \Big) \\ &= \max_{2^{\mathcal{Q}(o_i')}} \min \left\{ \pi \Big(o_i', \mathcal{P}(o_i') \Big| \mathcal{Q}(o_i'), a \Big), b_t^{\pi} \Big(\mathcal{Q}(o_i') \Big) \right\} \end{aligned}$$

$$\blacksquare \pi(s_i' \mid S, a) = \pi(s_i' \mid \mathcal{P}(s_i'), a);$$

$$\pi \left(o'_i \mid \mathbb{S}', a \right) = \pi \left(o'_i \mid \mathcal{P}(o'_i), a \right).$$

marginal possibilistic belief states

$$\begin{split} \forall o_i' \in \mathbb{O}, \\ b_{t+1}^{\pi} \Big(\mathcal{P}(o_i') \Big) & \propto^{\pi} \pi \Big(o_i', \mathcal{P}(o_i') \Big| a_0, o_1, \dots, a_{t-1}, o_t \Big) \\ &= \max_{2^{\mathcal{Q}(o_i')}} \min \left\{ \pi \Big(o_i', \mathcal{P}(o_i') \Big| \mathcal{Q}(o_i'), a \Big), b_t^{\pi} \Big(\mathcal{Q}(o_i') \Big) \right\} \\ & \text{denoted by } \pi \Big(o_i', \mathcal{P}(o_i') \Big| b_t^{\pi}, a \Big). \end{split}$$

finite belief space

$$\Pi_{\mathcal{S}}^{\mathcal{L}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{S}}^{\mathcal{L}} < +\infty$$

 $\rightarrow \textbf{finite belief space}$

finite belief space

$$\Pi_{\mathcal{S}}^{\mathcal{L}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{S}}^{\mathcal{L}} < +\infty$$

 \rightarrow finite belief space

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

finite belief space

$$\Pi_{\mathcal{S}}^{\mathcal{L}} = \Big\{ \text{ possibility distributions } \Big\} : \ \#\Pi_{\mathcal{S}}^{\mathcal{L}} < +\infty$$

 \rightarrow finite belief space

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

update - possibilistic belief state

$$b_{t+1}^{\pi}(s') = \begin{cases} 1 & \text{if } \pi\left(o', s' \mid b_t^{\pi}, a\right) = \pi\left(o' \mid b_t^{\pi}, a\right) \\ \pi\left(o', s' \mid b_t^{\pi}, a\right) & \text{otherwise.} \end{cases}$$

denoted by $b_{t+1}^{\pi}(s') \propto^{\pi} \pi(o', s' \mid b_t^{\pi}, a)$

finite belief space

$$\Pi_{\mathcal{S}}^{\mathcal{L}} = \Big\{ \text{ possibility distributions } \Big\} : \ \#\Pi_{\mathcal{S}}^{\mathcal{L}} < +\infty$$

 \rightarrow finite belief space

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

update - possibilistic belief state

$$b_{t+1}^{\pi}(s') = \begin{cases} 1 & \text{if } \pi\left(o', s' \mid b_t^{\pi}, a\right) = \pi\left(o' \mid b_t^{\pi}, a\right) \\ \pi\left(o', s' \mid b_t^{\pi}, a\right) & \text{otherwise.} \end{cases}$$

denoted by $b_{t+1}^{\pi}(s') \propto^{\pi} \pi(o', s' \mid b_t^{\pi}, a)$

- $\blacksquare \pi(o' \mid s', a) = \max_{s' \in \mathcal{S}} \pi(o', s' \mid b_t^{\pi}, a).$

finite belief space

$$\Pi_{\mathcal{S}}^{\mathcal{L}} = \Big\{ \text{ possibility distributions } \Big\} : \ \#\Pi_{\mathcal{S}}^{\mathcal{L}} < +\infty$$

 \rightarrow finite belief space

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

update – **possibilistic** belief state

$$b_{t+1}^{\pi}(s') = \begin{cases} 1 & \text{if } \pi\left(o', s' \mid b_t^{\pi}, a\right) = \pi\left(o' \mid b_t^{\pi}, a\right) \\ \pi\left(o', s' \mid b_t^{\pi}, a\right) & \text{otherwise.} \end{cases}$$

denoted by
$$b_{t+1}^{\pi}(s') \propto^{\pi} \pi(o', s' \mid b_t^{\pi}, a)$$

■ the update only depends on o' and a.

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$.

$$\forall x \in \mathcal{X}$$
, $V_0(x) = \rho(x)$ preference,

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$.

 $\forall x \in \mathcal{X}, \ V_0(x) = \rho(x)$ **preference**, and, until convergence,

$$\bullet V_{i+1}(x) = \max_{a \in \mathcal{A}} \max_{x' \in \mathcal{X}} \min \left\{ \pi \left(x' \mid x, a \right), V_i(x') \right\},\,$$

Dynamic Programming scheme: # iterations < #X.

 $\forall x \in \mathcal{X}, \ V_0(x) = \rho(x)$ **preference**, and, until convergence,

$$\bullet V_{i+1}(x) = \max_{a \in \mathcal{A}} \max_{x' \in \mathcal{X}} \min \left\{ \pi \left(x' \mid x, a \right), V_i(x') \right\}, \quad \text{and} \quad$$

if
$$V_{i+1}(x) > V_i(x)$$
, $\delta(x) = \underset{a \in A}{\operatorname{argmaxmaxmin}} \{\pi(x' \mid x, a), V_i(x')\}$.

- probabilistic model: + and × ⇒ new values created, number of ADDs leaves potentially huge.
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite, number of leaves bounded, **ADDs smaller**.

- probabilistic model: + and × ⇒ new values created, number of ADDs leaves potentially huge.
- **possibilistic** model: min and max \Rightarrow values $\in \mathcal{L}$ finite, number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

```
\begin{array}{c|c} \mathbf{1} & V^* \leftarrow 0 \; ; \, V^c \leftarrow \mu \; ; \, \delta \leftarrow \overline{a} \; ; \\ \mathbf{2} & \mathbf{while} \; V^* \neq V^c \; \mathbf{do} \\ \mathbf{3} & V^* \leftarrow V^c \; ; \\ \mathbf{4} & \mathbf{for} \; a \in \mathcal{A} \; \mathbf{do} \\ \mathbf{5} & \mathbf{for} \; 1 \leqslant i \leqslant n \; \mathbf{do} \\ \mathbf{7} & \mathbf{for} \; 1 \leqslant i \leqslant n \; \mathbf{do} \\ \mathbf{7} & \mathbf{8} & q^a \leftarrow \overline{\min} \{q^a, \pi(X_i' \mid parents(X_i'), a)\} \; ; \\ \mathbf{8} & q^a \leftarrow \overline{\max}_{X_i'} q^a \; ; \\ \mathbf{9} & V^c \leftarrow \overline{\max} \{q^a, V^c\} \; ; \\ \mathbf{10} & \mathbf{volume} \; \mathbf{0} \; \mathbf{volume} \; \mathbf{0} \; \mathbf{0} \; \mathbf{0} \; \mathbf{0} \\ \mathbf{1} & \mathbf{0} \; \mathbf{0} \;
```

computations on trees: CU Decision Diagram Package.

- probabilistic model: + and × ⇒ new values created, number of ADDs leaves potentially huge.
- **possibilistic** model: min and max \Rightarrow values $\in \mathcal{L}$ finite, number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

```
 \begin{array}{lll} 1 & V^* \leftarrow 0 \; ; \, V^c \leftarrow \mu \; ; \, \delta \leftarrow \overline{a} \; ; \\ \mathbf{2} & \mathbf{while} \; V^* \neq V^c \; \mathbf{do} & \blacktriangleleft & \texttt{factorization} \\ \mathbf{3} & V^* \leftarrow V^c \; ; \\ \mathbf{4} & \mathbf{for} \; a \in \mathcal{A} \; \mathbf{do} & \Rightarrow & \mathsf{dynamic} \; \mathsf{programming} \\ \mathbf{5} & \mathbf{for} \; 1 \leqslant i \leqslant n \; \mathbf{do} & \\ \mathbf{7} & \mathbf{for} \; 1 \leqslant i \leqslant n \; \mathbf{do} & \\ \mathbf{7} & \mathbf{8} & q^a \leftarrow \overline{\min} \{ q^a, \pi(X_i' \mid \mathit{parents}(X_i'), a) \} \; ; \\ \mathbf{8} & q^a \leftarrow \overline{\max}_{X_i'} q^a \; ; \\ \mathbf{9} & V^c \leftarrow \overline{\max}_{X_i'} \{ q^a, V^c \} \; ; \\ \mathbf{10} & \mathbf{volume} \; \mathbf{1} \; \mathbf{1} \; \mathbf{volume} \; \mathbf{1} \; \mathbf{1} \; \mathbf{volume} \; \mathbf{1} \; \mathbf{
```

computations on trees: CU Decision Diagram Package.

- probabilistic model: + and × ⇒ new values created, number of ADDs leaves potentially huge.
- **possibilistic** model: min and max \Rightarrow values $\in \mathcal{L}$ finite, number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

Pignistic transformation and transitions Pignistic transformation

numbering of the n = #S system states: $1 = b^{\pi}(s_1) \geqslant \ldots \geqslant b^{\pi}(s_n) \geqslant b^{\pi}(s_{n+1}) = 0$.

pignistic transformation – $P:\Pi_{\mathcal{S}} \to \mathbb{P}_{\mathcal{S}}$

$$\overline{b^\pi}(s_i) = \sum_{j=i}^{\#\mathcal{S}} \frac{b^\pi(s_j) - b^\pi(s_{j+1})}{j}.$$

- probability distribution $\overline{b^{\pi}} = \mathbf{gravity}$ center of the represented probabilistic distributions;
- Laplace principle: ignorance → uniform probability.

Pignistic transformation

Examples of pignistic transformations (red) of possibility distributions (blue)

hybrid POMDP and π -POMDP

differences with possibilistic models

	hybrid POMDP	$\pi ext{-POMDP}$
transitions	probabilities	qualitative possibility
rewards	quantitative $\in \mathbb{R}$	qualitative $\in \mathcal{L}$
situation	-some imprecisions -large POMDP	few quantitative
issues	π definition	commensurability
in practice	MDP	$\pi ext{-MDP}$

hybrid POMDP and π -POMDP

differences with possibilistic models

	hybrid POMDP	$\pi ext{-POMDP}$
transitions	probabilities	qualitative possibility
rewards	quantitative $\in \mathbb{R}$	qualitative $\in \mathcal{L}$
situation	-some imprecisions -large POMDP	few quantitative
issues	π definition	commensurability
in practice	MDP	$\pi ext{-MDP}$

hybrid model:

- only belief states are possibilistic:
- \rightarrow agent knowledge = **possibility** distribution;
 - probabilistic dynamics:
- → approximated (prob.) transition between epistemic states.

factorized POMDP definition

■ S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;

definition

- S described by $S = \{s_1, ..., s_m\}$: $S = s_1 \times ... \times s_m$. Notation: $S' = \{s'_1, ..., s'_m\}$;
- transition function of s'_j , $T^a_j(\mathbb{S}, s'_j) = \mathbf{p}\left(s'_j \mid \mathbb{S}, a\right), \ \forall j \in \{1, \dots, m\} \text{ et } \forall a \in \mathcal{A};$

definition

- S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;
- transition function of s'_j , $T^a_j(\mathbb{S}, s'_j) = \mathbf{p}\left(s'_j \mid \mathbb{S}, a\right)$, $\forall j \in \{1, \dots, m\}$ et $\forall a \in \mathcal{A}$;
- lacksquare \mathcal{O} described by $\mathbb{O} = \{o_1, \ldots, o_n\}$: $\mathcal{O} = o_1 \times \ldots \times o_n$;

definition

- S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;
- **transition** function of s'_j , $T^a_j(\mathbb{S}, s'_j) = \mathbf{p}\left(s'_j \mid \mathbb{S}, a\right)$, $\forall j \in \{1, \dots, m\}$ et $\forall a \in \mathcal{A}$;
- lacksquare \mathcal{O} described by $\mathbb{O} = \{o_1, \ldots, o_n\}$: $\mathcal{O} = o_1 \times \ldots \times o_n$;
- **observation** function of o'_i , $O^a_i(\mathbb{S}', o'_i) = \mathbf{p}(o'_i | \mathbb{S}', a), \forall i \in \{1, \dots, n\} \text{ et } \forall a \in \mathcal{A}.$

definition

- S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;
- transition function of s'_j , $T^a_j(\mathbb{S}, s'_j) = \mathbf{p}\left(s'_j \mid \mathbb{S}, a\right)$, $\forall j \in \{1, \dots, m\}$ et $\forall a \in \mathcal{A}$;
- lacksquare \mathcal{O} described by $\mathbb{O} = \{o_1, \ldots, o_n\}$: $\mathcal{O} = o_1 \times \ldots \times o_n$;
- **observation** function of o'_i , $O^a_i(\mathbb{S}', o'_i) = \mathbf{p}(o'_i | \mathbb{S}', a), \forall i \in \{1, \dots, n\} \text{ et } \forall a \in \mathcal{A}.$

independences:

$$o orall s_i', s_j' \in \mathbb{S}'$$
, $s_i' \perp \!\!\! \perp s_j' \mid \{ \mathbb{S}, a \in \mathcal{A} \}$,

$$\rightarrow \forall o_i', o_i' \in \mathbb{O}', \quad o_i' \perp\!\!\!\perp o_i' \mid \{\mathbb{S}', a \in \mathcal{A}\}.$$

some variables does not interact with each other

variables about the current system state,

variable s'_j about the **next** state.

some variables does not interact with each other

variables about the current system state,

$$s_k o s_j'$$

 $\exists a \in \mathcal{A}$, such that

 $T_i^a(\mathbb{S}, s_i')$ depends on s_k .

some variables does not interact with each other

variables about the current system state,

concerning observation variables

next state

concerning observation variables

$$s_j' o o_i'$$
 \Leftrightarrow $\exists a \in \mathcal{A}, ext{ such that } O_i^a(\mathbb{S}', o_i')$ depends on s_i' .

concerning observation variables

$$s_j' o o_i'$$
 \Leftrightarrow $\exists a \in \mathcal{A}, ext{ such that}$ $O_i^a(\mathbb{S}', o_i')$ depends on $s_j'.$

concerning observation variables

next state

concerning observation variables

 $\exists a \in \mathcal{A}, \text{ such that}$ $O_i^a(\mathbb{S}', o_i')$ depends on s_i' .

concerning observation variables

 $s_j^{\cdot} \rightarrow o_i^{\cdot}$ \Leftrightarrow $\exists a \in \mathcal{A}$, such that $O_i^a(\mathbb{S}',o_i^{\prime})$ depends on s_j^{\prime} .

concerning observation variables

different according to the class of the variable

$$\lambda = \#\mathcal{L}$$

different according to the class of the variable

$$\lambda = \#\mathcal{L}$$

 $\forall s'_v \in \mathbb{S}_v$, 1 variable β'_v is enough.

different according to the class of the variable

$$\lambda = \#\mathcal{L}$$

- $\forall s'_v \in \mathbb{S}_v$, 1 variable β'_v is enough.
- $p_i = \# \mathcal{P}(o_i').$

$$\forall o_i \in \mathbb{O} \setminus \mathbb{S}_v$$
, $\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}}$ belief states,
 $\Rightarrow \lceil \log_2(\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}}) \rceil$ boolean variables β_h' .

different according to the class of the variable

$$\lambda = \#\mathcal{L}$$

- $\forall s'_v \in \mathbb{S}_v$, 1 variable β'_v is enough.
- $p_i = \# \mathcal{P}(o_i').$

$$\forall o_i \in \mathbb{O} \setminus \mathbb{S}_v$$
, $\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}}$ belief states,
 $\Rightarrow \lceil \log_2(\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}}) \rceil$ boolean variables β_h' .

■ $\forall s'_f \in \mathbb{S}_f$, $\lambda^2 - (\lambda - 1)^2 = 2\lambda - 1$ belief states, ⇒ $\lceil \log_2(2\lambda - 1) \rceil$ boolean variables β'_f .

resulting MDP in practice

final structured MDP

factorized model's variables:
$$\#\mathbb{O} + \#\mathbb{S}_{\nu} +$$

$$+\sum_{i=1}^{\#\mathbb{O}_h} \left\lceil \log_2 \left(\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}} \right) \right\rceil + \#\mathbb{S}_f \cdot \left\lceil \log_2 \left(2\lambda - 1 \right) \right\rceil$$

initial hybrid model's variables:

$$\left\lceil \log_2 \left(\lambda^{2^{\#\mathbb{S}}} - (\lambda - 1)^{2^{\#\mathbb{S}}} \right)
ight
ceil$$

resulting MDP in practice final structured MDP

factorized model's variables:

$$\leqslant \#\mathbb{O} + \#\mathbb{S}_{v} + \sum_{i=1}^{r-\mathfrak{O}_{n}} \log_{2}(\lambda) \cdot 2^{p_{i}} + \#\mathbb{S}_{f} \cdot (1 + \log_{2}(\lambda))$$

 \ll # initial hybrid model's variables: $\geq \log_2(\lambda) \cdot (2^{\#\mathbb{S}} - 1).$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

inferred hidden $s_h' \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

$$s_{v}' \xrightarrow{s_{v}' = o_{v}'} o_{v}'$$

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

$$s'_{v} \xrightarrow{s'_{v} = o'_{v}} o'_{v}$$

$$\mathbf{p}\left(s_{v}'\mid\ b_{t}^{\pi},a
ight)=\sum_{2^{\mathcal{P}\left(s_{v}'
ight)}}T^{a}\left(\mathcal{P}(s_{v}'),s_{v}'
ight)\cdot\overline{b_{t}^{\pi}}\left(\mathcal{P}(s_{v}')
ight)$$

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$s'_{v} \stackrel{s'_{v} = o'_{v}}{\longrightarrow} o'_{v}$$

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a
ight)=\sum_{2^{\mathcal{P}\left(s_{v}'
ight)}}T^{a}(\mathcal{P}(s_{v}'),s_{v}')\cdot\overline{b_{t}^{\pi}}\Big(\mathcal{P}(s_{v}')\Big)$$

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a
ight)=\sum_{2^{\mathcal{P}\left(s_{v}'
ight)}}T^{a}(\mathcal{P}(s_{v}'),s_{v}')\cdot\overline{b_{t}^{\pi}}\Big(\mathcal{P}(s_{v}')\Big)$$

inferred hidden $s_h' \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: visible $s'_{v} \in \mathbb{S}_{v}$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a
ight)=\sum_{2^{\mathcal{P}\left(s_{v}'
ight)}}T^{a}\left(\mathcal{P}(s_{v}'),s_{v}'
ight)\cdot\overline{b_{t}^{\pi}}\Big(\mathcal{P}(s_{v}')\Big)$$

inferred hidden $s_h' \in \mathbb{S}_h$

$$b_{t+1}^{\pi}(\mathcal{P}(o_i')) = b_{t+1}^{\pi}(s_h, s_h^a, s_h^b, s_h^c)$$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a
ight)=\sum_{2^{\mathcal{P}\left(s_{v}'
ight)}}T^{a}(\mathcal{P}(s_{v}'),s_{v}')\cdot\overline{b_{t}^{\pi}}\Big(\mathcal{P}(s_{v}')\Big)$$

inferred hidden $s_h' \in \mathbb{S}_h$

$$b_{t+1}^{\pi}(\mathcal{P}(o_i')) = b_{t+1}^{\pi}(s_h, s_h^a, s_h^b, s_h^c)$$
$$\propto^{\pi} \pi \left(o_i', \mathcal{P}(o_i') \middle| b_t^{\pi}, a\right).$$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}' \mid b_{t}^{\pi}, a\right) = \sum_{2^{\mathcal{P}(s_{v}')}} T^{a}(\mathcal{P}(s_{v}'), s_{v}') \cdot \overline{b_{t}^{\pi}} \Big(\mathcal{P}(s_{v}')\Big)$$

inferred hidden $s_h' \in \mathbb{S}_h$

$$b_{t+1}^{\pi}(\mathcal{P}(o_i')) = b_{t+1}^{\pi}(s_h, s_h^a, s_h^b, s_h^c) \ \propto^{\pi} \pi\Big(o_i', \mathcal{P}(o_i') \Big| b_t^{\pi}, a\Big).$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables

 S_h^a S_h^b S_h^c

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$S_{\nu}' \xrightarrow{S_{\nu} - O_{\nu}} O_{\nu}'$$

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a
ight)=\sum_{2^{\mathcal{P}\left(s_{v}'
ight)}}T^{a}(\mathcal{P}(s_{v}'),s_{v}')\cdot\overline{b_{t}^{\pi}}\Big(\mathcal{P}(s_{v}')\Big)$$

inferred hidden $s'_h \in \mathbb{S}_h$

$$egin{aligned} b^\pi_{t+1}(\mathcal{P}(o_i')) &= b^\pi_{t+1}(s_h, s_h^a, s_h^b, s_h^c) \ &\propto^\pi \pi\Big(o_i', \mathcal{P}(o_i') \Big| b_t^\pi, a\Big). \end{aligned}$$

 S_h^a S_h^c S_h^c

 $\wedge \mathcal{P}(o_i)$ may contain visible variables

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$S_{\nu}' \xrightarrow{S_{\nu} - O_{\nu}} O_{\nu}'$$

$$\mathbf{p}\left(s_{v}' \mid b_{t}^{\pi}, a\right) = \sum_{2^{\mathcal{P}(s_{v}')}} T^{a}\left(\mathcal{P}(s_{v}'), s_{v}'\right) \cdot \overline{b_{t}^{\pi}}\left(\mathcal{P}(s_{v}')\right)$$

inferred hidden $s'_h \in \mathbb{S}_h$

$$egin{aligned} b^\pi_{t+1}(\mathcal{P}(o'_i)) &= b^\pi_{t+1}(s_h, s^a_h, s^b_h, s^c_h) \ &\propto^\pi \pi\Big(o'_i, \mathcal{P}(o'_i) \Big| b^\pi_t, a\Big). \end{aligned}$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables

$$b^{\pi}_{t+1}(s'_f) = \max_{2^{\mathcal{P}(s'_f)}} \min \left\{ \pi ig(s'_f ig| \mathcal{P}(s'_f), aig), b^{\pi}_t ig(\mathcal{P}(s'_f)ig)
ight\}$$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$S'_{v} \stackrel{S'_{v} = O'_{v}}{\longrightarrow} O'_{v}$$

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a
ight)=\sum_{2^{\mathcal{P}\left(s_{v}'
ight)}}T^{a}(\mathcal{P}(s_{v}'),s_{v}')\cdot\overline{b_{t}^{\pi}}\Big(\mathcal{P}(s_{v}')\Big)$$

inferred hidden $s'_h \in \mathbb{S}_h$

$$egin{aligned} b^\pi_{t+1}(\mathcal{P}(o'_i)) &= b^\pi_{t+1}(s_h, s^a_h, s^b_h, s^c_h) \ &\propto^\pi \left. \pi\left(o'_i, \mathcal{P}(o'_i) \middle| b^\pi_t, a
ight). \end{aligned}$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables

fully hidden $s'_f \in \mathbb{S}_f$

ightarrow observations don't inform belief state on s_f'

$$b^{\pi}_{t+1}(s'_f) = \max_{2^{\mathcal{P}(s'_f)}} \min \left\{ \pi \big(s'_f \middle| \mathcal{P}(s'_f), \! a \big), b^{\pi}_t \big(\mathcal{P}(s'_f) \big) \right\}$$

Toy example: 2 machine states, 3 occurrences

columns		1	2	3	4	5
SITUATION						
v'	V_A	1				1
	v _B		1			
	V_C	1			1	
h	s_A	1	1		1	
	s B			1		1
BEHAVIOUR						
h'	s_A					1
	s _B		1		1	
EFFECT		ē	ẽ	ē	ê	<u>e</u>
POSSIBILITY		1	ε	1	λ	δ

Probability / Possibility :					
	<i>e</i> ₁ or <i>e</i> ₂	${f p}(e_1)+{f p}(e_2\cap\overline{e_1})$	$\max\left\{\pi(e_1),\pi(e_2)\right\}$		
ı	e ₁ and e ₂	$\mathbf{p}(e_1).\mathbf{p}\left(\left.e_2\left \right.\right.e_1\right.\right)$	$\min \{\pi(e_1), \pi(e_2 \mid e_1)\}$		

Back to general POMDP: Partially Observable Criteria

Rewriting: belief dependent reward (belief trick)

- $\mathbf{r}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ reward function
- $ho: \mathcal{S} \times \mathcal{A} \to \mathcal{L}$ preference function

Probability /	Possibility:	
$R(b_t, d_t)$	optimistic: $\overline{\Psi}(\beta_t, \delta_t)$	
$=\sum_{s}r(s,d_{t})\cdot b_{t}(s)$	$= \max_{s} \min \left\{ \rho(s, \delta_t), \beta_t(s) \right\}$	
3	pessimistic: $\underline{\Psi}(\beta_t, \delta_t)$	
	$= \min_{s} \max \left\{ \rho(s, \delta_t), 1 - \beta_t(s) \right\}$	
$\mathbb{E}[r(S_t,d_t)] = \mathbb{E}[R(b_t,d_t)]$	$\mathbb{S}_{\Pi}[ho(S_t, d_t)] = \mathbb{S}_{\Pi}[\overline{\Psi}(\beta_t, d_t)]$	
	$\mathbb{S}_{\mathcal{N}}[\rho(S_t, d_t)] = \mathbb{S}_{\mathcal{N}}[\underline{\Psi}(\beta_t, d_t)]$	

Note: $\mathbb{S}_{\Pi}[\underline{\Psi}(\beta_t, d_t)]$; $\mathbb{S}_{\mathcal{N}}[\overline{\Psi}(\beta_t, d_t)]$?

knowledge is not always encouraged with POMDPs

$$b_0(s_A)=1$$

knowledge is not always encouraged with POMDPs

knowledge is not always encouraged with POMDPs

knowledge is not always encouraged with POMDPs

knowledge is not always encouraged with POMDPs

$$\mathbb{E}_{s_0 \sim b_0} \left[\sum_{t=0}^{+\infty} \gamma^t \cdot r(s_t) \, \middle| \, a_0 = \tilde{\mathbf{a}} \text{ or } \mathbf{a'} \right] = r(s_0) + 5\gamma.$$
the safe action is not preferred.

Choquet integral and rewards

Choquet integral and rewards

•
$$Ch(r, N_{b_1^{\pi}} | a_0 = \tilde{a}) = r(s_D, \tilde{a}) = 5,$$

•
$$Ch(r, N_{b_1^{\pi}} | a_0 = a') = \min_{s \in \mathcal{S}} r(s, a') = 0.$$

the safe action is prefered! dispersion reduced

Choquet integral and rewards

- $Ch(r, N_{b_1^{\pi}} | a_0 = \tilde{a}) = r(s_D, \tilde{a}) = 5,$
- $Ch(r, N_{b_1^{\pi}} | a_0 = a') = \min_{s \in \mathcal{S}} r(s, a') = 0.$

the safe action is prefered! dispersion reduced

if $\mathcal{N}_{b_1^{\pi}}$ replaced by $b_1 \Rightarrow \mathit{Ch}(r,b_1) = \mathbb{E}_{s \sim b_1} \left[r(s,a) \right]$.

pessimistic evaluation of the rewards – necessity measure

imprecision of $b^{\pi} = \text{agent ignorance} + \text{discretization}$: **pessimistic reward** about these imprecisions.

pessimistic evaluation of the rewards - necessity measure

imprecision of $b^{\pi}=$ agent ignorance + discretization: **pessimistic reward** about these imprecisions.

Dual measure of $\Pi: 2^{\mathcal{S}} \to \mathcal{L}$

necessity \mathcal{N} such that $\forall A \subseteq \mathcal{S}$, $\mathcal{N}(A) = 1 - \Pi(\overline{A})$.

pessimistic evaluation of the rewards - necessity measure

imprecision of $b^{\pi}=$ agent ignorance + discretization: **pessimistic reward** about these imprecisions.

Dual measure of $\Pi: 2^{\mathcal{S}} \to \mathcal{L}$

necessity $\mathcal N$ such that $\forall A\subseteq \mathcal S$, $\mathcal N(A)=1-\Pi(\overline A)$.

 $r_1 > r_2 > \ldots > r_{k+1} = 0$ represents elements of $\{r(s, a) | s \in \mathcal{S}\}$.

Choquet integral of r with respect to $\mathcal N$

$$Ch(r,\mathcal{N}) = \sum_{i=1}^{\kappa} (r_i - r_{i+1}) \cdot \mathcal{N}(\lbrace r(s) \geqslant r_i \rbrace)$$
 (1)

(2)

pessimistic evaluation of the rewards – necessity measure

imprecision of $b^{\pi}=$ agent ignorance + discretization: **pessimistic reward** about these imprecisions.

Dual measure of $\Pi: 2^{\mathcal{S}} \to \mathcal{L}$

necessity $\mathcal N$ such that $\forall A\subseteq \mathcal S$, $\mathcal N(A)=1-\Pi(\overline A)$.

 $r_1 > r_2 > \ldots > r_{k+1} = 0$ represents elements of $\{r(s, a) | s \in \mathcal{S}\}$.

Choquet integral of r with respect to ${\cal N}$

$$Ch(r,\mathcal{N}) = \sum_{i=1}^{\kappa} (r_i - r_{i+1}) \cdot \mathcal{N}(\lbrace r(s) \geqslant r_i \rbrace) \qquad (1)$$

$$= \sum_{i=1}^{\#\mathcal{L}-1} (l_i - l_{i+1}) \cdot \min_{\substack{s \in \mathcal{S} \text{ s.t.} \\ b^{\pi}(s) \geqslant l_i}} r(s)$$
 (2)

notation $\mathcal{L} = \{ l_1 = 1, l_2, l_3, \dots, 0 \}.$

resulting MDP in practice

trick: "flipflop" variable

boolean variable "flipflop" f changes state at each time step \rightarrow defines 2 phases:

- 1 observation generation,
- 2 belief update (deterministic knowing the observation)

MDP variables:

$$\begin{split} \tilde{\mathbb{S}} &= \\ \mathbf{beliefs} \colon \beta = \beta_{v}^{1} \times \ldots \times \beta_{v}^{m_{v}} \times \beta_{h}^{1} \times \ldots \times \beta_{h}^{m_{h}} \times \beta_{f}^{1} \times \ldots \times \beta_{f}^{m_{f}} \\ &\times \\ \mathbf{visible} \\ \mathbf{variables} \colon v = f \times s_{v}^{1} \times \ldots \times s_{v}^{m_{v}} \times o_{1} \times \ldots \times o_{k}. \end{split}$$

resulting MDP in practice final structured MDP

$$\tilde{\mathbb{S}} =$$

beliefs:
$$\beta = \beta_v^1 \times \ldots \times \beta_v^{m_v} \times \beta_h^1 \times \ldots \times \beta_h^{m_h} \times \beta_f^1 \times \ldots \times \beta_f^{m_f}$$

visible variables :
$$v = f \times s_v^1 \times \ldots \times s_v^{m_v} \times o_1 \times \ldots \times o_k$$
.