Agenda

- I. Constrained supervised learning
 - Constrained learning theory
 - Constrained learning algorithms
 - Resilient constrained learning

Break (10 min)

- II. Constrained reinforcement learning
 - Constrained RL duality
 - Constrained RL algorithms

Q&A and discussions

IMPRS tutorial Sep. 19, 2024

supervised and reinforcement learning under requirements

Luiz F. O. Chamon

Agenda

Constrained reinforcement learning

Agenda

CMDP duality

Agenda

CRL algorithms

Primal-dual algorithm

$$D_{\theta}^{\star} = \min_{\lambda \succeq 0} \ \max_{\theta \in \Theta} \mathbb{E}_{s, a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{0}(s_{t}, a_{t}) \right] + \lambda \left(\mathbb{E}_{s, a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{1}(s_{t}, a_{t}) \right] - c_{1} \right)$$

Primal-dual algorithm

$$D_{\theta}^{\star} = \min_{\lambda \succeq 0} \max_{\theta \in \Theta} \mathbb{E}_{s, a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{0}(s_{t}, a_{t}) \right] + \lambda \left(\mathbb{E}_{s, a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{1}(s_{t}, a_{t}) \right] - c_{1} \right)$$

- Maximize the primal (\equiv vanilla RL)

$$\begin{split} \pmb{\theta}^{\dagger} \in \underset{\theta \in \Theta}{\operatorname{argmax}} \ \mathbb{E}_{\boldsymbol{a}, \boldsymbol{a} \sim \pi_{\pmb{\theta}}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_{\lambda_k}(s_t, a_t) \right] \\ r_{\lambda_k}(s, a) = r_0(s, a) + \lambda_k r_1(s, a) \end{split}$$

Primal-dual algorithm

$$D_{\theta}^{+} = \min_{\lambda \succeq 0} \max_{\theta \in \Theta} \mathbb{E}_{s,a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{0}(s_{t}, a_{t}) \right] + \lambda \left(\mathbb{E}_{s,a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{1}(s_{t}, a_{t}) \right] - c_{1} \right)$$

$$\boldsymbol{\theta}^{\dagger} \in \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmax}} \ \mathbb{E}_{s,a \sim \pi_{\boldsymbol{\theta}}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{\lambda_{k}}(s_{t}, a_{t}) \right]$$

Update the dual (≡ policy evaluation)

$$\lambda_{k+1} = \left[\lambda_k - \eta \left(\mathbb{E}_{s, a \sim \pi_{\boldsymbol{\theta}^{\dagger}}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_1(s_t, a_t) \right] - c_1 \right) \right]_+$$

In practice...

$$D_{\theta}^{\star} = \min_{\lambda \succeq 0} \max_{\theta \in \Theta} \mathbb{E}_{s,a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{0}(s_{t}, a_{t}) \right] + \lambda \left(\mathbb{E}_{s,a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{1}(s_{t}, a_{t}) \right] - c_{1} \right)$$

Maximize the primal (\equiv vanilla RL): $\{s_t, a_t\} \sim \pi_{\theta_k}$

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \eta \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_{\lambda_k}(s_t, a_t) \right] \nabla_{\boldsymbol{\theta}} \log \left(\pi_{\boldsymbol{\theta}}(a_0 | s_0) \right)$$

Update the dual (\equiv policy evaluation): $\{s_t, a_t\} \sim \pi_{\theta_k}$

$$\lambda_{k+1} = \left[\lambda_k - \eta \left(\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_1(s_t, a_t) - c_1\right)\right]_{t=0}^T$$

Dual CRL

Suppose θ^{\dagger}

$$\boldsymbol{\theta}^{\dagger} \approx \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmax}} \ \mathbb{E}_{s,a \sim \pi_{\boldsymbol{\theta}}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{\lambda}(s_{t}, a_{t}) \right].$$

 $\left | rac{|\lambda^*|^2}{\alpha}
ight | + 1$ dual iterations with step size $\eta \leq rac{1-\gamma}{mB}$,

the iterates $ig(oldsymbol{ heta}_K,oldsymbol{\lambda}_Kig)$ are such that

$$\left|P^{\star} - L\Big(\boldsymbol{\theta}_{K}, \boldsymbol{\lambda}_{K}\Big)\right| \leq \frac{1 + \|\boldsymbol{\lambda}_{\nu}^{\star}\|_{1}}{1 - \gamma} \, B\nu + \frac{\rho}{\rho}$$

Dual CRL

$$\left| P^* - L\left(\boldsymbol{\theta}_K, \boldsymbol{\lambda}_K\right) \right| \leq \frac{1 + \|\boldsymbol{\lambda}_{\nu}^*\|_1}{1 - \gamma} B\nu + \rho$$

The state-action sequence $\left\{s_t,a_t\sim\pi^\dagger(m{\lambda}_k)
ight\}$ generated by dual CRL is (
ho=
u=0)

i) almost surely feasible:
$$\lim_{T\to\infty}\frac{1}{T}\sum_{t=0}^{T-1}r_i(s_t,a_t)\geq c_i \ \ \text{a.s.},\quad \text{for all } i$$

ii) near-optimal:
$$\lim_{T\to\infty}\mathbb{E}\bigg[\frac{1}{T}\sum_{t=0}^{T-1}r_0(s_t,a_t)\bigg]\geq P^\star-\frac{\eta B}{2}$$

Safe navigation

Find a control policy that navigates the environment effectively and safely

Safe navigation

Find a control policy that navigates the environment effectively and safely

Wireless resource allocation

Problem Allocate the least

The dual variables oscillate \Rightarrow the policy switch \Rightarrow constraint slacks to oscillate (fe

Monitoring task

Problem Find a policy that maximizes the time in R_0 while monitoring R_1 and R_2 at least 1/3 of the time each

The dual variables oscillate \Rightarrow the policy switch \Rightarrow constraint slacks to oscillate (fe

What dual CRL cannot do

Theorem

$$\left| P^* - L\left(\boldsymbol{\theta}_K, \lambda_T\right) \right| \leq \frac{1 + \|\boldsymbol{\lambda}_{\nu}^*\|_1}{1 - \gamma} B\nu + \rho$$

Theorem

The state-action sequence $\left\{s_t,a_t\sim\pi^\dagger(\lambda_k)\right\}$ generated by dual CRL is (
ho=
u=0)

(i) almost surely feasible:
$$\lim_{T\to\infty}\frac{1}{T}\sum_{t=0}^{T-1}r_i(s_t,a_t)\geq c_i \ \text{ a.s.,} \quad \text{for all }$$

ii) near-optimal:
$$\lim_{T o \infty} \mathbb{E} \left[\frac{1}{T} \sum_{j=1}^{T-1} r_0(j) \right]$$

i.e., is a solution of the CRL problem

 \Rightarrow Cannot *effectively* obtain an optimal policy π^\star from the sequence of Lagrangian maximizers $\pi^\dagger(\lambda_k)$

[Paternain, Chamon, Calvo-Fullana, and Ribeiro, NeurlPS'19; Calvo-Fullana, Paternain, Chamon, and Ribeiro, IEEE TAC'24]

Primal recovery

- · General issue with duality
 - $\qquad \text{(Primal-)} \text{dual methods: } \frac{1}{K} \sum_{k=0}^{K-1} f(\boldsymbol{\theta}_k) \to f(\boldsymbol{\theta}^\star), \text{ but } f(\boldsymbol{\theta}_k) \not\to f(\boldsymbol{\theta}^\star)$
- Convex optimization ⇒ dual averaging

$$\bullet \quad f\Big(\frac{1}{K}\sum_{k=0}^{K-1}\theta_k\Big) \leq \frac{1}{K}\sum_{k=0}^{K-1}f(\theta_k) \text{ for all } K \text{ (convexity)} \Rightarrow \frac{1}{K}\sum_{k=1}^{K}\pmb{\theta}_k \rightarrow \pmb{\theta}$$

- Solution Non-convex optimization → randomization
 - $\bullet \ \theta^{\dagger} \sim \mathrm{Uniform}(\theta_k) \Rightarrow \mathbb{E}\left[f(\theta^{\dagger})\right] = \frac{1}{K} \sum^K f(\theta_k) \rightarrow f(\theta^{\star})$

(requires memorizing the whole training sequence)

What we CANNOT do

 \odot We do not know how to find an optimal policy π^* in the policy space

$$\begin{split} \pi^{\star} \in \underset{\pi \in \mathcal{P}(\mathcal{S})}{\operatorname{argmax}} & & \lim_{T \to \infty} \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} r_0(s_t, a_t) \right] \\ & \text{subject to} & & \lim_{T \to \infty} \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} r_1(s_t, a_t) \right] \geq c_1 \end{split}$$

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

What we CAN do

lacktriangledown Find Lagrangian maximizing policies $\pi^{\dagger}(\lambda_k) \Rightarrow$ unconstrained RL problem with reward $r_{\lambda_k}(s,a)$

$$\boldsymbol{\pi^{\dagger}(\lambda_k)} \in \underset{\boldsymbol{\pi} \in \mathcal{P}(\mathcal{S})}{\operatorname{argmax}} \quad \lim_{T \to \infty} \mathbb{E}_{s,a \sim \boldsymbol{\pi}} \left[\frac{1}{T} \sum_{t=0}^{T-1} r_{\lambda_k}(s_t, a_t) \right]$$

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

What we CAN do

- \bigcirc Find Lagrangian maximizing policies $\pi^{\dagger}(\lambda_{k}) \Rightarrow \text{unconstrained RL problem with reward } r_{k} (s, a)$
- \bigcirc Update λ_k to generate a sequence of $\pi^{\dagger}(\lambda_k)$ that are "samples" from π

$$\lambda_{k+1} = \left\lceil \lambda_k - \eta \left(\mathbb{E}_{s, a \sim \pi^{\dagger}(\lambda_k)} \left\lceil \frac{1}{T} \sum_{t=0}^{T-1} r_1(s_t, a_t) \right\rceil - c_1 \right) \right\rceil$$

Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23

State-augmented CRL

- $\begin{tabular}{l} \hline \begin{tabular}{l} \hline \end{tabular} \hline \end{tabular} \\ \hline$
- lacksquare Update λ_k to generate a sequence of $\pi^\dagger(\lambda_k)$ that are "samples" from π^\star
 - \Rightarrow equivalent to an MDP with (augmented) states $\tilde{s}=(s,\lambda)$

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'2:

State-augmented CRL

- $\red{ \begin{tabular}{l} \hline \emptyset Find Lagrangian maximizing policies $\pi^{\dag}(\lambda_k)$ \Rightarrow unconstrained RL problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline ϕ is a problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \b$
- lackloss Update λ_k to generate a sequence of $\pi^\dagger(\lambda_k)$ that are "samples" from π^\star
 - \Rightarrow equivalent to an MDP with (augmented) states $\bar{s}=(s,\lambda)$ and (augmented) transition kernel that includes the dual variables updates

State-augmented CRL in practice

State-augmented CRL in practice

State-augmented CRL in practice

• During training: Learn a family of policies $\pi^\dagger_\theta(s,\lambda)$ that maximizes the Lagrangian for all (fixed) λ

State-augmented CRL in practice

• During training: Learn a family of policies $\pi^\dagger_{\theta}(s,\lambda)$ that maximizes the Lagrangian for all (fixed) λ

$$\pi^{\dagger}_{\theta}(\lambda) \in \operatorname*{argmax}_{\theta \in \Theta} \ \mathbb{E}_{\lambda \sim \mathfrak{m}} \left[\lim_{T \to \infty} \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} r_{\lambda}(s_t, a_t) \right] \right]$$

-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

Monitoring task

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

State-augmented CRL in practice

$$\lambda_{k+1} = \left[\lambda_k - \frac{\eta}{T_0} \sum_{t=0}^{(k+1)T_0 - 1} \left(r_1(s_t, a_t) - c_1 \right) \right]$$

Monitoring task

Solving CRL

- A-CRL solves (P-CRL) by generating state-action sequences $\{(s_t, a_t)\}$ that are (i) almost surely feasible and (ii) $O(\eta)$ -optimal [Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE

Solving CRL

- A-CRL solves (P-CRL) by generating state-action sequences $\{(s_t,a_t)\}$ that are (i) almost surely feasible and (ii) $O(\eta)$ -optimal |Calvo-Fullana, Paternain, Charnon, Ribeiro, IEEE

- But A-CRL does not find a feasible and $\mathcal{O}(\eta)$ -optimal policy π^\star ⇒ It finds a policy π¹/_θ on an augmented MDP (s, λ) that generates the same trajectories as dual CRL on the original MDP (s)

Monitoring task

Wireless resource allocation

Allocate the least transmit power to m device pairs to achieve a communication rate

Summary

- Constrained RL is the a tool for decision making under requirements
- Constrained RL is hard...
- ...but possible. How?

Summary

- Constrained RL is the a tool for decision making under requirements CRL is a natural way of specifying complex behaviors that cannot be handled by unconstrained RL \Rightarrow (P-RL) \subsetneq (P-CRL) e.g., Safety [Patemain et al., IEEE TAC23], Wireless resource allocation [Eisen et al., IEEE TSP19; Chowdrury et al., Asilomari.
- · Constrained RL is hard...
- · ...but possible. How?

Summary

- Constrained RL is the a tool for decision making under requirements CRL is a natural way of specifying complex behaviors that cannot be handled by unconstrained RL \Rightarrow (P-RL) \subsetneq (P-CRL)
- Constrained RL is hard...
 - CRL is strongly dual (despite non-convexity), but that is not always enough to obtain feasible solutions
- · ...but possible. How?

Summary

- Constrained RL is the a tool for decision making under requirements CRL is a natural way of specifying complex behaviors that cannot be handled by unconstrained RL \Rightarrow (P-RL) \subsetneq (P-CRL)
- Constrained RL is hard...
- CRL is strongly dual (despite non-convexity), but that is not always enough to obtain feasible solutions
- ...but possible. How?

When combined with a systematic state augmentation technique, we can use policies that solve (P-RL) to solve (P-CRL)

Agenda

- I. Constrained supervised learning
 - Constrained learning theory
 - Constrained learning algorithms
 - · Resilient constrained learning

Break (10 min)

- II. Constrained reinforcement learning
 - Constrained RL duality
 - Constrained RL algorithms

Q&A and discussions

