Deep Learning Assignments

MTech (CS), IIIT Bhubaneswar March - 2025

Student ID: A124013

Student Name: Snehashisa Ratna

Solutions of Deep Learning Assignments

1. Deriving the Optimal Weights for Linear Regression:

For a *D*-dimensional input vector, show that the optimal weights can be represented by the expression:

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}$$

Also, interpret what this expression means in terms of estimating w.

Solution:

Let's consider we are given a dataset with N samples. Let:

- X be the $N \times D$ matrix of inputs (called the design matrix),
- **t** be the $N \times 1$ target vector, and
- w be the $D \times 1$ vector of weights we want to find.

The objective in linear regression is to minimize the squared error between the predicted outputs $\mathbf{X}\mathbf{w}$ and the actual target values \mathbf{t} . So we define the error function:

$$E(\mathbf{w}) = \|\mathbf{t} - \mathbf{X}\mathbf{w}\|^2$$

Expanding the norm:

$$E(\mathbf{w}) = (\mathbf{t} - \mathbf{X}\mathbf{w})^T (\mathbf{t} - \mathbf{X}\mathbf{w})$$

Now, to minimize this, we take the derivative with respect to w and set it to zero:

$$\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = -2\mathbf{X}^T(\mathbf{t} - \mathbf{X}\mathbf{w}) = 0$$

Rearranging terms:

$$\mathbf{X}^T \mathbf{t} = \mathbf{X}^T \mathbf{X} \mathbf{w} \Rightarrow \mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}$$

Interpretation:

The final formula we derived, $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}$, is called the *normal equation*. It gives the optimal linear weights that minimize squared error on the training data.

This is also known as the **Best Linear Unbiased Estimator (BLUE)** — it works well when the typical assumptions of linear regression (like no multicollinearity, constant variance of errors, etc.) are satisfied.

So, this equation provides a neat and powerful way to compute weights directly, without iterative optimization methods.

2. OR Gate Implementation Using a Single-Layer Neural Network

Solution:

To implement the OR gate, I used a single-layer perceptron model with two inputs. The perceptron calculates output based on the following equation:

$$y = f(w_1 x_1 + w_2 x_2 + b)$$

Where:

- Initial weights: $w_1 = 1.5, w_2 = 2$
- Bias: b = -2
- Learning rate: $\eta = 0.5$
- Activation function:

$$f(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

OR Gate Truth Table:

x_1	x_2	t (Target)
0	0	0
0	1	1
1	0	1
1	1	1

Epoch 1 – Initial Check:

• Input (0,0):

$$z = 1.5 \cdot 0 + 2 \cdot 0 + (-2) = -2 \Rightarrow y = 0$$

• Input (0,1):

$$z = 1.5 \cdot 0 + 2 \cdot 1 + (-2) = 0 \Rightarrow y = 1 \checkmark$$

• Input (1,0):

$$z = 1.5 \cdot 1 + 2 \cdot 0 + (-2) = -0.5 \Rightarrow y = 0 \times$$
 (Expected 1)

Since this was incorrect, I updated the weights and bias:

$$\Delta w_1 = \eta(t - y)x_1 = 0.5(1 - 0)(1) = 0.5$$

$$\Delta w_2 = \eta(t - y)x_2 = 0.5(1 - 0)(0) = 0$$

$$\Delta b = \eta(t - y) = 0.5(1 - 0) = 0.5$$

Updated parameters:

$$w_1 = 1.5 + 0.5 = 2.0$$

 $w_2 = 2.0 + 0 = 2.0$
 $b = -2 + 0.5 = -1.5$

$$z = 2 \cdot 1 + 2 \cdot 1 + (-1.5) = 2.5 \Rightarrow y = 1\checkmark$$

Epoch 2 - Rechecking After Update:

Now I tested again using the updated values:

New values: $w_1 = 2.0, w_2 = 2.0, b = -1.5$

$$z = 2 \cdot 0 + 2 \cdot 0 + (-1.5) = -1.5 \Rightarrow y = 0 \checkmark$$

$$z = 2 \cdot 0 + 2 \cdot 1 + (-1.5) = 0.5 \Rightarrow y = 1\checkmark$$

$$z = 2 \cdot 1 + 2 \cdot 0 + (-1.5) = 0.5 \Rightarrow y = 1\checkmark$$

$$z = 2 \cdot 1 + 2 \cdot 1 + (-1.5) = 2.5 \Rightarrow y = 1\checkmark$$

Final Outcome:

After just one update, the perceptron correctly predicts all OR gate outputs.

Final Parameters:

$$w_1 = 2.0, \quad w_2 = 2.0, \quad b = -1.5$$

Decision Boundary:

$$2x_1 + 2x_2 + (-1.5) = 0$$

3. Design a Perceptron algorithm to classify Iris flowers using either sepal or petal features and create a decision boundary.

Solution:

We design a simple perceptron algorithm to classify two classes of Iris flowers using either their sepal or petal measurements. The goal is to train a model that learns to distinguish between species using a linear decision boundary.

1. Data Preparation

• Feature Selection:

$$Features = \begin{cases} (sepal length, sepal width) & \text{if using sepal features} \\ (petal length, petal width) & \text{if using petal features} \end{cases}$$

• Binary Encoding (e.g., Setosa vs Virginica):

$$y = \begin{cases} 1 & \text{Virginica} \\ 0 & \text{Setosa} \end{cases}$$

• Min-Max Normalization:

$$x_{\text{norm}} = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$

2. Model Initialization

• $w_1, w_2 \sim \mathcal{U}(-0.01, 0.01)$ (small random weights)

• b = 0 (initial bias)

• $\eta = 0.1$ (learning rate)

3. Training Phase (repeat until convergence)

1. Compute Activation:

$$z = w_1 x_1 + w_2 x_2 + b$$

2. Apply Step Function:

$$\hat{y} = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{otherwise} \end{cases}$$

3. Update Parameters (if misclassified):

$$\Delta w_i = \eta(y - \hat{y})x_i$$
 for $i = 1, 2$
$$\Delta b = \eta(y - \hat{y})$$

4. Decision Boundary

Once the perceptron has converged, the decision boundary separating the two classes is described by:

$$w_1x_1 + w_2x_2 + b = 0$$

We can rearrange this into slope-intercept form to visualize it:

$$x_2 = -\frac{w_1}{w_2}x_1 - \frac{b}{w_2}$$

This line divides the input space into two halves, with each side corresponding to one of the flower classes.

Python Code with Comments:

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

# Ask user to choose features and class pair
def get_user_config():
    print("Choose input feature type:")
```

```
print("1. Sepal (Length & Width)")
10
       print("2. Petal (Length & Width)")
       feature_mode = int(input("Enter choice (1 or 2): "))
13
       print("\nSelect class pair:")
14
       print("1. Setosa (0) vs Versicolor (1)")
15
       print("2. Setosa (0) vs Virginica (2)")
16
       print("3. Versicolor (1) vs Virginica (2)")
17
       class_option = int(input("Enter class pair (1-3): "))
18
       return feature_mode, class_option
19
20
   # Load and preprocess the dataset based on chosen options
21
22
   def load_and_prepare_data(feature_mode, class_option):
       iris = load_iris()
23
       X = iris.data[:, :2] if feature_mode == 1 else iris.data[:,
24
          2:]
       feature_labels = iris.feature_names[:2] if feature_mode == 1
25
          else iris.feature_names[2:]
26
       class_map = \{1: (0, 1), 2: (0, 2), 3: (1, 2)\}
27
       cls_a, cls_b = class_map[class_option]
28
29
       selected = np.isin(iris.target, [cls_a, cls_b])
30
       X = X[selected]
31
       y = np.where(iris.target[selected] == cls_b, 1, 0)
32
       return X, y, feature_labels, iris.target_names[cls_a], iris.
33
          target_names[cls_b]
34
   # Train a simple perceptron using the rule: update weights if
35
      prediction is wrong
   def train_perceptron(X, y, lr=0.1, epochs=500):
36
37
       weights = np.zeros(X.shape[1])
       bias = 0
38
       for _ in range(epochs):
39
           for xi, target in zip(X, y):
40
               z = np.dot(xi, weights) + bias
41
               pred = int(z > 0)
42
               update = lr * (target - pred)
43
               weights += update * xi
44
               bias += update
45
       return weights, bias
46
47
   # Evaluate model on test data
48
   def evaluate(X, y, weights, bias):
49
       preds = (np.dot(X, weights) + bias > 0).astype(int)
50
       return np.mean(preds == y)
51
   # Plot the decision boundary learned by the perceptron
   def plot_decision_boundary(X_train, X_test, y_train, y_test,
54
      weights, bias, features, classes):
       x_{\min}, x_{\max} = X_{\min}[:, 0].min() - 1, X_{\min}[:, 0].max() +
       y_min, y_max = X_train[:, 1].min() - 1, X_train[:, 1].max() +
56
       xx, yy = np.meshgrid(np.linspace(x_min, x_max, 200),
```

```
np.linspace(y_min, y_max, 200))
       Z = (weights[0]*xx + weights[1]*yy + bias > 0).astype(int)
59
       plt.figure(figsize=(8, 6))
61
       plt.contourf(xx, yy, Z, alpha=0.3, cmap='coolwarm')
62
       plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap='
63
          coolwarm', edgecolors='k', label="Train")
       plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='
64
          coolwarm', marker='x', label="Test")
       plt.xlabel(f"{features[0]} (standardized)")
65
       plt.ylabel(f"{features[1]} (standardized)")
66
       plt.title(f"Perceptron Classifier: {classes[0]} vs {classes
67
           [1]}")
       plt.legend()
68
       plt.grid(True)
69
       plt.show()
70
71
72
   # Main function to run the whole process
   def main():
73
       feature_mode, class_option = get_user_config()
74
       X, y, feature_names, cls_a, cls_b = load_and_prepare_data(
75
          feature_mode, class_option)
       X_train, X_test, y_train, y_test = train_test_split(X, y,
76
          test_size=0.2, random_state=1)
       scaler = StandardScaler()
77
       X_train = scaler.fit_transform(X_train)
78
       X_test = scaler.transform(XTest)
79
       weights, bias = train_perceptron(X_train, y_train)
       acc = evaluate(X_test, y_test, weights, bias)
81
       print(f"\nTest Accuracy: {acc:.2%}")
82
       plot_decision_boundary(X_train, X_test, y_train, y_test,
83
          weights, bias, feature_names, (cls_a, cls_b))
84
     __name__ == "__main__":
85
       main()
                   Listing 1: Perceptron Classifier for Iris Dataset
```

4. Figure 1: Generalization of Intersection in Shallow Neural Networks

(a) Generalized Point of Intersection for Shallow Neural Networks for input space parameterized by spherical coordinates θ and ϕ

Solution:

Step 1: Structure of a Shallow Neural Network

We consider a shallow neural network with the following elements:

 \bullet Input dimension: d

 \bullet Hidden neurons: m

• Activation function: σ

• Weight vectors: $\mathbf{w}_i \in \mathbb{R}^d$

• Bias terms: $b_i \in \mathbb{R}$

• Output weights: $a_i \in \mathbb{R}$

The network output is:

$$f(x) = \sum_{i=1}^{m} a_i \, \sigma(\mathbf{w}_i^T x + b_i)$$

Step 2: Weight Vectors in Spherical Coordinates

The weight vector in spherical form is:

$$\mathbf{w} = \|\mathbf{w}\| \begin{bmatrix} \sin(\theta)\cos(\phi) \\ \sin(\theta)\sin(\phi) \\ \cos(\theta) \end{bmatrix}$$

Step 3: Decision Boundary Condition

For each neuron, the decision boundary is where:

$$\mathbf{w}_i^T x + b_i = 0$$

In spherical coordinates:

$$\|\mathbf{w}_i\| [x_1 \sin(\theta_i) \cos(\phi_i) + x_2 \sin(\theta_i) \sin(\phi_i) + x_3 \cos(\theta_i)] + b_i = 0$$

Step 4: Intersection of Two Neuron Hyperplanes

To find an intersection point of two neurons:

$$\mathbf{w}_i^T x + b_i = 0$$
 and $\mathbf{w}_i^T x + b_j = 0$

This becomes:

$$\|\mathbf{w}_i\| \cdot x \cdot v(\theta_i, \phi_i) + b_i = 0 \|\mathbf{w}_i\| \cdot x \cdot v(\theta_i, \phi_i) + b_i = 0$$

Step 5: Solving for the Intersection Point

We form a system:

$$x = A^{-1}b$$

Where:

- A is formed by direction vectors $v(\theta_i, \phi_i)$
- b is formed by the bias terms $-b_i/\|\mathbf{w}_i\|$

(b) Equation of Line Segments in Output Graph

Solution:

We consider a shallow network with 3 hidden ReLU units. The output is given by:

$$y = \phi_0 + \phi_1 h_1 + \phi_2 h_2 + \phi_3 h_3$$

Where:

$$h_i = \max(0, \theta_{i0} + \theta_{i1}x)$$

The output y(x) has four piecewise-linear segments:

$$y(x) = \begin{cases} \phi_0, & x < x_1 \\ \phi_0 + \phi_1(\theta_{10} + \theta_{11}x), & x_1 \le x < x_2 \\ \phi_0 + \phi_1(\theta_{10} + \theta_{11}x) + \phi_2(\theta_{20} + \theta_{21}x), & x_2 \le x < x_3 \\ \phi_0 + \phi_1(\theta_{10} + \theta_{11}x) + \phi_2(\theta_{20} + \theta_{21}x) + \phi_3(\theta_{30} + \theta_{31}x), & x \ge x_3 \end{cases}$$

Where:

$$x_i = -\frac{\theta_{i0}}{\theta_{i1}}$$
 for each neuron

Line Segment Equations:

- Segment 1: $y = \phi_0$
- Segment 2: $y = \phi_0 + \phi_1(\theta_{10} + \theta_{11}x)$
- Segment 3: $y = \phi_0 + \phi_1(\theta_{10} + \theta_{11}x) + \phi_2(\theta_{20} + \theta_{21}x)$
- Segment 4: $y = \phi_0 + \phi_1(\theta_{10} + \theta_{11}x) + \phi_2(\theta_{20} + \theta_{21}x) + \phi_3(\theta_{30} + \theta_{31}x)$

This piecewise form illustrates how shallow neural networks construct nonlinear outputs using linear regions stitched at the activation thresholds.

5. What is the general form of the second output in a Two-Output Feedforward Neural Network (2D case), if the first output is already given?

Solution:

We analyze a feedforward neural network architecture that has:

- Two input features: x_1 and x_2
- A hidden layer with *D* neurons
- Two output units: y_1 and y_2
- Nonlinear activation function $a(\cdot)$ used in the hidden layer

1. Hidden Layer Computation:

Each hidden neuron processes the input vector (x_1, x_2) by applying a weighted sum followed by a non-linear activation. For the d^{th} hidden neuron:

$$h_d = a (\theta_{d0} + \theta_{d1}x_1 + \theta_{d2}x_2)$$
 for $d = 1, 2, ..., D$

Where:

- θ_{d0} is the bias term for the d^{th} hidden neuron
- θ_{d1}, θ_{d2} are weights connecting inputs to neuron d
- $a(\cdot)$ is typically ReLU, sigmoid, or tanh

2. Output Layer Computation:

Each output neuron combines the hidden activations linearly, with its own set of weights and a bias:

$$y_j = \phi_{j0} + \sum_{d=1}^{D} \phi_{jd} \cdot h_d$$
 for $j = 1, 2$

So if we already have:

$$y_1 = \phi_{10} + \sum_{d=1}^{D} \phi_{1d} \cdot h_d$$

Then the second output is given by:

$$y_2 = \phi_{20} + \sum_{d=1}^{D} \phi_{2d} \cdot h_d$$

Observation:

- Both y_1 and y_2 use the same set of hidden layer outputs h_1, h_2, \ldots, h_D
- The distinction lies in how each output neuron weighs these hidden activations
- This architecture allows multiple outputs to react differently to the same input

3. Combined General Form:

By substituting the hidden layer equations into the output equations, we get a complete form of both outputs in terms of the inputs:

$$y_1 = \phi_{10} + \sum_{d=1}^{D} \phi_{1d} \cdot a \left(\theta_{d0} + \theta_{d1} x_1 + \theta_{d2} x_2 \right)$$
$$y_2 = \phi_{20} + \sum_{d=1}^{D} \phi_{2d} \cdot a \left(\theta_{d0} + \theta_{d1} x_1 + \theta_{d2} x_2 \right)$$

4. Intuition:

This shows that both y_1 and y_2 are just different weighted views of the same non-linear transformations of the input vector. One can think of the hidden layer as extracting features, while the output layer interprets those features differently for different tasks or labels.

Optional: A visual representation of the architecture would involve:

- 2 input nodes
- D hidden neurons with activation $a(\cdot)$
- 2 output nodes with independent weights from the hidden layer

6. Let x_1, x_2, \ldots, x_n be independent and identically distributed (i.i.d.) vectors from a multivariate normal distribution:

$$x_i \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

where μ is the unknown mean vector and Σ is a known covariance matrix. Derive the Maximum Likelihood Estimate (MLE) of μ .

Solution:

We are given that x_1, x_2, \ldots, x_n are i.i.d. samples from a p-dimensional multivariate normal distribution:

$$x_i \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

Here, μ is the unknown parameter to be estimated, while Σ is known.

Step 1: Probability Density Function (PDF)

The PDF of a single sample x_i under the multivariate normal distribution is:

$$f(x_i|\boldsymbol{\mu}) = \frac{1}{(2\pi)^{p/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(x_i - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(x_i - \boldsymbol{\mu})\right)$$

Step 2: Likelihood Function

Assuming independence of the n observations, the joint likelihood function is the product of the individual PDFs:

$$L(\boldsymbol{\mu}) = \prod_{i=1}^{n} f(x_i|\boldsymbol{\mu})$$

Taking the natural logarithm gives the log-likelihood:

$$\log L(\boldsymbol{\mu}) = -\frac{np}{2}\log(2\pi) - \frac{n}{2}\log|\boldsymbol{\Sigma}| - \frac{1}{2}\sum_{i=1}^{n}(x_i - \boldsymbol{\mu})^T\boldsymbol{\Sigma}^{-1}(x_i - \boldsymbol{\mu})$$

Step 3: Maximizing the Log-Likelihood

We now differentiate the log-likelihood with respect to μ and set the derivative to zero:

$$\frac{\partial \log L}{\partial \boldsymbol{\mu}} = \sum_{i=1}^{n} \boldsymbol{\Sigma}^{-1} (x_i - \boldsymbol{\mu}) = 0$$

Multiplying through by Σ :

$$\sum_{i=1}^{n} (x_i - \boldsymbol{\mu}) = 0 \quad \Rightarrow \quad \sum_{i=1}^{n} x_i = n\boldsymbol{\mu}$$

Solving for μ :

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Conclusion:

The maximum likelihood estimate (MLE) of the mean vector μ is simply the **sample mean**:

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

This result makes intuitive sense: the best estimate for the average of a Gaussian distribution, when covariance is known, is just the average of the observed data.

7. Backpropagation for the cross-entropy loss function of a network with 3 outputs (f_1, f_2, f_3) . Assume the outputs are the only parameters of the loss.

Solution:

We consider a neural network with 3 output logits: f_1, f_2, f_3 . These are passed through the softmax function to produce class probabilities:

$$p_i = \frac{e^{f_i}}{\sum_{j=1}^3 e^{f_j}}$$
 for $i = 1, 2, 3$

Assume the ground truth label is one-hot encoded:

 $\mathbf{y} = (y_1, y_2, y_3)$ where $y_k = 1$ for the correct class and $y_i = 0$ for $i \neq k$

Cross-Entropy Loss Function:

The loss is computed as:

$$L = -\sum_{i=1}^{3} y_i \log(p_i)$$

Since only $y_k = 1$, the loss simplifies to:

$$L = -\log(p_k)$$

Goal: Compute the gradient $\frac{\partial L}{\partial f_i}$ for i=1,2,3

Step 1: Compute $\frac{\partial L}{\partial p_j}$

$$\frac{\partial L}{\partial p_i} = -\frac{y_j}{p_i}$$

Step 2: Compute $\frac{\partial p_j}{\partial f_i}$ (derivative of softmax):

$$\frac{\partial p_j}{\partial f_i} = p_j(\delta_{ij} - p_i)$$

Where δ_{ij} is the Kronecker delta, equal to 1 if i = j, and 0 otherwise.

Step 3: Apply the Chain Rule:

$$\frac{\partial L}{\partial f_i} = \sum_{j=1}^{3} \frac{\partial L}{\partial p_j} \cdot \frac{\partial p_j}{\partial f_i} = \sum_{j=1}^{3} \left(-\frac{y_j}{p_j} \cdot p_j (\delta_{ij} - p_i) \right) = -\sum_{j=1}^{3} y_j (\delta_{ij} - p_i)$$

Since $y_j = 1$ only for j = k, the summation simplifies:

$$\frac{\partial L}{\partial f_i} = -(\delta_{ik} - p_i) = p_i - y_i$$

Final Result:

$$\frac{\partial L}{\partial f_i} = p_i - y_i$$
 for $i = 1, 2, 3$

Conclusion:

This elegant result shows that the gradient of the cross-entropy loss with softmax is simply the difference between the predicted probability and the true label. It forms the backbone of efficient training in multi-class classification networks using gradient descent.

8. Backpropagation for 3-class classification using a neural network with 2 inputs, 2 hidden sigmoid units, and 3 softmax output neurons. Derive the forward and backward pass expressions assuming cross-entropy loss.

Solution:

We consider a neural network with the following structure:

• Input layer: 2 features (x_1, x_2)

• Hidden layer: 2 neurons with sigmoid activation

• Output layer: 3 neurons with softmax activation

• Loss function: Cross-entropy loss

Notation:

- $W^{[1]} \in \mathbb{R}^{2 \times 2}$: weights from input to hidden layer
- $b^{[1]} \in \mathbb{R}^2$: biases for hidden layer
- $z^{[1]} = W^{[1]}x + b^{[1]}$: pre-activation for hidden layer
- $a^{[1]} = \sigma(z^{[1]})$: activations from sigmoid
- $W^{[2]} \in \mathbb{R}^{3 \times 2}$: weights from hidden to output layer
- $b^{[2]} \in \mathbb{R}^3$: biases for output layer

- $z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$: pre-softmax activations
- $\hat{y} = \text{softmax}(z^{[2]})$: predicted probabilities
- $y \in \mathbb{R}^3$: one-hot encoded true label

Forward Pass:

1. Hidden Layer:

$$z^{[1]} = W^{[1]}x + b^{[1]}, \quad a^{[1]} = \sigma(z^{[1]})$$

2. Output Layer:

$$z^{[2]} = W^{[2]} a^{[1]} + b^{[2]}, \quad \hat{y} = \operatorname{softmax}(z^{[2]})$$

3. Loss Function (Cross-Entropy):

$$L = -\sum_{i=1}^{3} y_i \log(\hat{y}_i)$$

Backward Pass:

1. Gradient w.r.t. Output Pre-activation $(z^{[2]})$:

$$\frac{\partial L}{\partial z^{[2]}} = \hat{y} - y$$

2. Gradients for Output Layer Weights and Biases:

$$\frac{\partial L}{\partial W^{[2]}} = (\hat{y} - y)(a^{[1]})^T \quad , \quad \frac{\partial L}{\partial b^{[2]}} = \hat{y} - y$$

3. Backprop to Hidden Layer:

$$\delta^{[1]} = \left(W^{[2]^T}(\hat{y} - y)\right) \circ \sigma'(z^{[1]})$$

Where:

$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$

4. Gradients for Hidden Layer Parameters:

$$\frac{\partial L}{\partial W^{[1]}} = \delta^{[1]} x^T \quad , \quad \frac{\partial L}{\partial b^{[1]}} = \delta^{[1]}$$

Conclusion:

These steps detail the full forward and backward passes for a 3-class neural network with one hidden layer of sigmoid units. The gradients derived can be used to update parameters using optimization algorithms like SGD or Adam.

 $^{^{\}dagger}$ This document is created using LATEX type setting system.