Generative Al: Al capable of creating new content including text, audio, video, or images, learning from large datasets to produce original outputs.

Large Language Model: Al systems that process and generate language, trained on extensive text data using transformer architectures.

Example: GPT-3, which can generate essays and conversations.

Analogy: Think of it as a sophisticated autocomplete that crafts full texts.

Transformer: Type of AI architecture uses a method called self-attention to efficiently handle large datasets, focusing only on the relevant parts. It's significant for advanced AI tasks.

Foundation / Pretrained Model: Broad, general-purpose Al models trained on diverse datasets to support various tasks, forming the basis for more specialized models.

Analogy: A Swiss Army knife for AI, adaptable to many uses with slight adjustments.

Fine-tuned Model: A Foundational / Pretrained model refined on specific datasets to perform particular tasks more effectively.

Example: Language models adapted for healthcare by training on medical literature.

Analogy: Like water taking the shape of its container, foundational models adapt to specific tasks. Here, water is the foundational model, ice is the fine-tuned model, and the container is the training data.

Context-Length: The maximum amount of text an Al can handle at once for generating coherent responses.

Instruction Tuning: Enhancing pretrained models' ability to follow precise instructions through targeted prompt training.

Example: Improving a chatbot's responses by training with specific customer service dialogues.

Analogy: Teaching a student with tailored questions to excel in tests.

Unimodal Model: Al systems specialized in processing a single type of data, such as text, images, or audio.

Example: Text-only language models like GPT-3.

Analogy: Comparable to a specialist doctor focused exclusively on one medical field.

Multimodal Model: All systems that process and understand multiple types of data simultaneously to produce enriched outputs.

Example: All that analyzes videos to generate comprehensive summaries.

Prompt: Instructions given to AI to shape its outputs more effectively.

Analogy: Like giving an artist a theme to guide their artwork.

Embeddings: Converting data into numerical formats that Al can process, encapsulating meaning and relationships.

Analogy: Translating concepts into a numerical 'secret code' for Al comprehension.

Vector Database: Stores and manages data in the form of vectors - numerical representations typically used in machine learning. These vectors are stored in an n-dimensional space and are indexed using specialized algorithms, enabling fast retrieval based on similarity.