MATH 3332 Data Analytic Tools Homework 4

Due date: 16 November, 6pm, Monday

- 1. Find the gradient of the following functions $f:V\mapsto\mathbb{R}$, where V is a Hilbert space with inner product $\langle\cdot,\cdot\rangle$ and norm $\|\cdot\|$.
 - (a) $f(\mathbf{x}) = ||\mathbf{x} \mathbf{a}||$ for a given $\mathbf{a} \in V$, and $\mathbf{x} \neq \mathbf{a}$.
 - (b) $f(\mathbf{x}) = ||2\mathbf{x} \mathbf{a}||^2$ for a given $\mathbf{a} \in V$.
 - (c) $f(\boldsymbol{x}) = \frac{1}{\|\boldsymbol{x}\|}$, where $\boldsymbol{x} \neq \boldsymbol{0}$.
 - (d) $f(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} \boldsymbol{b}\|^2 + \lambda \|\boldsymbol{B}\boldsymbol{x}\|^2$, where $\lambda > 0$, $\boldsymbol{x} \in \mathbb{R}^n$, $\boldsymbol{b} \in \mathbb{R}^m$, $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, $\boldsymbol{B} \in \mathbb{R}^{p \times n}$.
 - (e) $V = \mathbb{R}^n$ and $f(x) = \sum_{i=1}^n \sqrt{x_i^2 + c}$ for some c > 0.
 - (f) Let $f: \mathbb{R}^m \to \mathbb{R}$ be differentiable everywhere. Let $A \in \mathbb{R}^{m \times n}$ be a matrix. Let $g: \mathbb{R}^m \to \mathbb{R}$ be defined by

$$g(\mathbf{x}) = f(\mathbf{A}\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^n.$$

Express $\nabla g(x)$ in terms of **A** and gradient of f.

- 2. Determine whether or not the following functions are convex.
 - (a) $f(x) = e^x 1$ on \mathbb{R} .
 - (b) $f(\mathbf{x}) = \sum_{i=1}^{n} \sqrt{|x_i|}$ on \mathbb{R}^n .
- 3. Let f_1 and f_2 be two convex functions from \mathbb{R}^n to \mathbb{R} .
 - (a) Let

$$f(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x}), \quad \forall \ \mathbf{x} \in \mathbb{R}^n.$$

Prove that f is convex.

(b) Let

$$g(\mathbf{x}) = f_1(\mathbf{x}) - f_2(\mathbf{x}), \quad \forall \ \mathbf{x} \in \mathbb{R}^n.$$

Give an example of f_1 and f_2 such that g is not convex.

(c) Let

$$h(\mathbf{x}) = \max\{f_1(\mathbf{x}), f_2(\mathbf{x})\}, \quad \forall \ \mathbf{x} \in \mathbb{R}^n.$$

Prove that h is convex.

(d) Let

$$k(\boldsymbol{x}) = \min\{f_1(\boldsymbol{x}), f_2(\boldsymbol{x})\}, \quad \forall \ \boldsymbol{x} \in \mathbb{R}^n.$$

Give an example of f_1 and f_2 such that k is not convex.