这就是说,对任意 $y \in Y$,有 $y = f(a \land y) \in f(X)$ 。因此, f 是满射,从而是双射。由上题结论可知, f 是 L 上的自同态,从而也是 $X,Y \subseteq L$ 上的同态。

这就证明了 f 是从 X 到 Y 的同构。

注意到,对任意 $x \in X$,有

$$g \circ f(x) = g(f(x))$$
 (函数合成运算定义)
 $= (x \lor b) \land a$ (f, g 定义)
 $= (x \land a) \lor (b \land a)$ (分配律)
 $= x \lor (b \land a)$ ($x \preccurlyeq a$ 、教材定理 19.2)
 $= x$ ($b \land a \preccurlyeq x$ 、教材定理 19.2)

这就是说,g 是 f 的左逆。由 f 是双射和教材定理 3.10(4) 可知, $g = f^{-1}$ 是 f 唯一的逆,从而是 Y 到 X 的同构("同构映射的逆也是同构映射"这一结论的证明见习题 15.23 第 (2) 小题)。□

19.22

证明:对任意 $f,g \in A, x,y \in L$,有

$$f \circ g(x \wedge y) = f(g(x \wedge y))$$
 (合成运算定义)
 $= f(g(x) \wedge g(y))$ (g 是自同态)
 $= f(g(x)) \wedge f(g(y))$ (f 是自同态)
 $= f \circ g(x) \wedge f \circ g(y)$ (合成运算定义)
 $f \circ g(x \vee y) = f(g(x \vee y))$ (g 是自同态)
 $= f(g(x)) \vee g(y)$ (g 是自同态)
 $= f(g(x)) \vee f(g(y))$ (g 是自同态)
 $= f \circ g(x) \vee f \circ g(y)$ (g 是自同态)

这就证明了,对任意 $f,g \in A$,有 $f \circ g \in A$ 。从而 \circ 是 A 上的二元运算。

由于函数合成运算满足结合律,而恒等映射 $I_L \in A$ 是关于函数合成运算的单位元。因此,A 关于合成运算构成独异点。

19.23 L 的理想有: $L_0 = \{0\}$, $L_a = \{0, a\}$, $L_b = \{0, b\}$, $L_c = \{0, c\}$, $L_1 = \{0, a, b, c, 1\}$ 。理想格为:

19.24

证明: 作 $\varphi: L \to I_0(L)$, $\forall x \in L$, $\varphi(x) = \{x \mid x \in L \perp x \leq a\}$ 。 教材定理 19.12 已证明, φ 是 从 L 到 $I_0(L)$ 的单同态。现在只需证明 $\varphi(L) = I(L)$ 即可。

首先,对任何 $x \in L$,由 φ 定义和教材定理 19.12 有 $\varphi(x) \in I_0(L) = I(L) \cup \{\emptyset\}$,而 $x \in \varphi(x)$,从而 $x \neq \emptyset$ 。这就是说, $\varphi(x) \in I(L)$ 。由 x 的任意性知, $\varphi(L) \subseteq I(L)$ 。

由于 L 是有限格,所以对任意 $I\in I(L)$, $\forall I=\bigvee_{x\in I}x$ 是存在的,记 $a=\forall I$ 。注意到,由理想 对 \forall 运算的封闭性有 $a\in I$ 。下面证明 $I=\varphi(a)\in \varphi(L)$ 。