Big-O

TOTAL POINTS 7

1. Introduction and Learning Outcomes

1 / 1 point

0 / 1 point

1 / 1 point

1/1 point

The goal of this assignment is to practice with big-O notation.

Recall that we write f(n) = O(g(n)) to express the fact that f(n) grows no faster than g(n): there exist constants Nand c>0 so that for all $n\geq N$, $f(n)\leq c\cdot g(n)$.

Is it true that $\log_2 n = O(n^2)$?

- Yes
- O No

A logarithmic function grows slower than a polynomial function.

- 2. $n \log_2 n = O(n)$
 - O Yes
 - O No

X Incorrect

You didn't select an answer.

- 3. $n^2 = O(n^3)$
 - Yes
 - O No

✓ Correct

 n^a grows slower than n^b for constants a < b.

- 4. $n = O(\sqrt{n})$
 - O Yes
 - No

 $\sqrt{n}=n^{1/2}$ grows slower than $n=n^1$ as 1/2<1.

- 5. $5^{\log_2 n} = O(n^2)$
 - O Yes
 - No

Recall that $a^{\log_b c}=c^{\log_b a}$ so $5^{\log_2 n}=n^{\log_2 5}$. This grows faster than n^2 since $\log_2 5=2.321\ldots>2$.

- 6. $n^5 = O(2^{3 \log_2 n})$
 - Yes
 - O No

X Incorrect

0 / 1 point

1/1 point

Hint: $2^{\operatorname{sivg}_2 n} = (2^{\operatorname{svg}_2 n})^3 = n^3$

7. $2^n = O(2^{n+1})$

Yes

O No

✓ Correc

 $2^{n+1}=2\cdot 2^n$, that is, 2^n and 2^{n+1} have the same growth rate and hence $2^n=\Theta(2^{n+1})$.

1/1 point