Verilog 流水线处理器

一、CPU 设计方案综述

(一) 总体设计概述

本 CPU 为 verilog 实现的流水线 MIPS - CPU,支持的指令集包含 MIPS-C4={LB、LBU、LH、LHU、LW、SB、SH、SW、ADD、ADDU、 SUB、 SUBU、 MULT、 MULTU、 DIV、 DIVU、 SLL、 SRL、 SRA、 SLLV、 SRLV、 SRAV、 AND、 OR、 XOR、 NOR、 ADDI、 ADDIU、 ANDI、 ORI、 XORI、 LUI、 SLT、 SLTI、 SLTIU、 SLTU、 BEQ、 BNE、 BLEZ、 BGTZ、 BLTZ、 BGEZ、 J、 JAL、 JALR、 JR、 MFHI、 MFLO、 MTHI、 MTLO、 MTC0、 MFC0、 ERET}。 为了实现这些功能, CPU 主要包含了 IM、 GRF、 DM、 ALU、 PC、 CU 等主要模块, 这些模块按照自顶向下的顶层设计逐级展开。

(二) 关键模块定义

1. GRF (通用寄存器组,也称为寄存器文件、寄存器堆) GRF 端口定义:

表 0 GRF 端口表

信号名	方向	描述
Clk	Ι	时钟信号
Reset	Ι	复位信号,将 32 个寄存器中的值全部清零
		1: 复位
		0: 无效
We I 写使能信号		
		1: 可向 GRF 中写入数据
		0: 不可向 GEF 中写入数据
A1	Ι	5 位地址输入信号,指定 32 个寄存器中的一个,将其中存储的数据读出至 RD1
A2	Ι	5 位地址输入信号,指定 32 个寄存器中的一个,将其中存储的数据读出至 RD2
А3	Ι	5 位地址输入信号,指定 32 个寄存器中的一个作为写入的目标寄存器
WD3	Ι	32 位数据输入信号

RD1	0	输出指定的寄存器中的 32 位数据
RD2	0	输出指定的寄存器中的 32 位数据

GRF 模块功能定义:

表 1 GRF 功能表

序号	功能名称	描述
1	复位	Reset 信号有效时,所有寄存器储存的数值清零
2	读数据	读出 A1, A2 地址对应寄存器中所储存的数据到 RD1, RD2
3	写数据	当 WE 有效且时钟上升沿来临时,将 WD 写入 A3 所对应的寄存器中

2. DM (数据存储器):

DM 端口定义:

表 2 DM 端口表

信号名	方向	描述					
C1k	Ι	时钟信号					
Reset	Ι	I 复位信号,将 32 个寄存器中的值全部清零 1: 复位 0: 无效 I 写使能信号 1: 可向 DM 中写入数据					
		1: 复位					
		0: 无效					
We I 写使能信号							
0: 不可向 DM 中写入数据							
A	Ι	5 位地址输入信号,指定中储存器上的地址,将其中存储的数据读出至 RD1					
WD	Ι	32 位数据输入信号					
RD	0	输出储存器指定地址上的 32 位数据					

DM 模块功能定义:

表 3 DM 功能表

序号	功能名称	描述
1	复位	Reset 信号有效时,储存器储存的所有数值清零
2	读数据	读出 A 地址对应储存器中所储存的数据到 RD
3	写数据	当 WE 有效且时钟上升沿来临时,将 WD 写入 A3 所对应的寄存器中

3. ALU (算术逻辑运算单元):

ALU 端口定义:

表 4 ALU 端口表

信号名	方向	描述
SrcA	Ι	32 位运算数输入信号
SrcB	Ι	32 位运算数输入信号
ALU Control	Ι	3 位逻辑运算选择信号,选择进行哪种逻辑运算
Zero	0	输出比较两运算数比较的1位输出
ALU Result	0	输出对两运算数进行指定逻辑运算后的 32 位结果

ALU 模块功能定义:

表 5 ALU 功能表

序号	功能名称	描述						
1	计算	根据控制信号进行对应的逻辑计算并输出						
2	比较	判断两个输入是否相等						

4. IM (指令存储器):

IM 端口定义:

表6 IM端口表

信号名	方向	描述
PC	I	5 位输入地址信号
Instr	0	输出地址所储存 32 位指令

IM 模块功能定义:

表 7 IM 功能表

序号	功能名称	描述
1	读指令	根据输入输出对应 32 位指令

5. Control Unit (指令译码器):

Control Unit 端口定义:

表 8 Control Unit 端口表

信号名	方向	描述
Opcode[5:0]	Ι	指令操作码
Funct[5:0]	Ι	指令功能码

Jump	0	跳转信号					
ToHigh16	0	高位置位信号					
ExtOp	0	ず展方式 アスティス アイス アイス アイス アイス アイス アイス アイス アイス アイス アイ					
MemtoReg	0	收内存信号					
MemWrite	0	内存写使能信号					
Branch	0	→ 支信号					
ALUCtr1[2:0]	0	ALU 控制信号					
ALUSrc	0	ALU 操作数 2 的来源 0: 寄存器 1: 立即数					
RegDst	0	寄存器写地址选择 0: Instr[20:16] 1: Instr[15:11]					
RegWrite	0	寄存器写使能信号					
DMop[1:0]	0	存储、读取方式控制信号					

(三) 重要机制实现方法

1. J 类型指令

根据输入判断和 ALU 模块协同工作算出跳转地址后跳转。

2. R 类型指令

根据输入判断和 ALU 模块协同工作算出结果后存储回寄存器堆中以实现指令 R 类型指令。

3.1 类型指令

根据输入判断和 ALU 模块和 DM 模块协同工作支持 I 类型指令。

4. 暂停&转发

见附页

二、测试方案

```
import os
import re
import shutil
f = open("result.txt", "w")
def fileCmp(std_path, ise_path, std, ise, filename): # file a,b
   stdText = std.read()
   iseText = ise.read()
   isSame = True
   stdLogs = re.findall("@[^\\n]*\\n?", stdText)
   iseLogs = re.findall("@[^\\n]*\\n?", iseText)
   for i in range(len(stdLogs)):
       if (stdLogs[i] != iseLogs[i]):
          isSame = False
           f.write(filename + ":\n")
          if (isSame is True):
       print("\tAccepted")
       f.write("Accepted: " + filename + "\n")
       flag = 1
```

```
print("\tWrongAnswer")
       flag = 0
   stdLog.close()
   iseLog.close()
   if (flag == 1):
       os.remove(std_path)
       os.remove(ise_path)
  return flag
# mipsDir = input(
mipsDirs = []
for filename in os.listdir():
    if re.match(r"[\w]+\ asm", filename):
       mipsDirs.append(filename)
hexCodeDir = "code.txt" - # Hex Code For ISE
for mipsDir in mipsDirs:
   spMarsJarDir = "Mars_test.jar" # 修改版Mars地址
   stdLogDir = mipsDir[:-4] + "_std_ans.txt" # 标准输出
   os.system("java -jar " + spMarsJarDir + " " + mipsDir
```

```
os.system("java -jar " + spMarsJarDir + " " + mipsDir + " 100000 db nc mc CompactDataAtZero a dump .text HexText " + hexCodeDir)
          os.system("java -jar " + spMarsJarDir + " " + mipsDir
                       100000 db nc mc CompactDataAtZero >" + stdLogDir)
          testDir = input("工程文件夹地址(e.g. D:/test): \n")
         tclFile = open(testDir + "/test.tcl", "w")
·#·tcl文件声明了工程运行的参数
68
          tclFile.write("run 100us;\nexit")
          prjFile = open(testDir + "/test.prj", "w")
          for root, dirs, files in os.walk(testDir):
               for fileName in files:
                   if re.match(r"[\w]+\.v", fileName):
                       prjFile.write("Verilog work " + root + "/" + fileName + "\n")
          tclFile.close()
          prjFile.close()
          iseCompileLogDir = "ise_log.txt"
          userLogDir = mipsDir[:-4] + "_ise_ans.txt" # 我的输出
          ise_path = input("ISE安装文件夹(e.g. D:/Xilinx/14.7/ISE_DS/ISE):\n")
          os.environ['XILINX'] == ise_path
#-os.environ['XILINX'] == "D:/Xilinx/14.7/ISE_DS/ISE" · #-ISE安装文件夹
```

(1) CP0 设计

CPO 要干的事就是接收到中断异常时看看是否允许其发生,允许的话记录一下状态交给 handler 处理。

我们要实现 CPO 中的四个寄存器: SR, Cause, EPC, PrID。

SR 表示系统的状态, 比如能不能发生异常

Cause 记录异常的信息,比如是否处于延迟槽以及异常的原因

EPC 记录发生异常的位置,便于处理完中断异常的时候返回

PrID 是一个可以随便定义的寄存器,表示你的 CPU 型号

SR 只要实现一部分: SR[15:10]表示允许发生的中断; SR[1]表示是否处于中断异常中(是的话就不能发生中断异常); SR[0]表示是否允许中断。Cause 也只要实现一部分: Cause[31]表示延迟槽标记; Cause[15:10]表示发生了哪个中断; Cause[6:2]表示异常原因。 为了方便定义一些宏。

```
'define IM SR[15:10] define EXL SR[1]

define IE SR[0]

define BD Cause[31]

define hwint_pend Cause[15:10]

define ExcCode Cause[6:2]
```

异常和中断的条件:

1 wire IntReq = (|(HWInt & `IM)) & !`EXL & `IE; // 允许当前中断 且 不在中断异常中 且 2

发生异常的处理方法:

3

- if (Req) begin // int exc

```
3
4    `EXL <= 1'b1;
5
6
    EPCreg <= tempEPC;
    `BD <= bdIn;end</pre>
```

BD:如果异常发生在延迟槽,那么按照要求我们返回的时候要返回跳转指令。所以如果 BD 信号为真时应该输出上一条指令的 PC。

```
wire [31:2] tempEPC = (Req) ? (bdIn ? PC[31:2]-1 : PC[31:2])

: EPCreg;

assign EPCout = {tempEPC, 2'b0};
```

每个时钟上升沿都要更新 HWInt:

1 `hwint_pend <= HWInt;</pre>

退出异常的条件是识别到了 eret, 我们直接把 EXLCIr 接上 M_eret 就好

(2) Bridge 与 IO 设计

桥和 DM

我们的 CPU 把 DM 中一块特殊的区域用来作为与外设交互的接口,中间通过桥来连接。

```
1
2
     wire selTC1 = (`RAddr >= `StartAddrTC1) && (`RAddr <= `EndAddrTC1),</pre>
3
      selTC2 = (`RAddr >= `StartAddrTC2) && (`RAddr <= `EndAddrTC2);wire TCwe1 = selTC1</pre>
5
6
      TCwe2 = selTC2 && PrWE; wire [31:0] TCout1, TCout2; wire IRQ1, IRQ2; assign PrRD = se
10
      selTC2 ? TCout2 :0; wire [5:0] HWInt = {3'b0, interrupt, IRQ2, IRQ1};
\mathsf{DM}
注意 DM 写入的条件(WE 接口)为 M_WE & (!req)。
内部 always@(posedge clk) 中的也要改(考虑到外设)。
 1
 2
      if (WE && (addr >= `StartAddrDM) && (addr <= `EndAddrDM)) begin
```

```
if (WE && (addr >= `StartAddrDM) && (addr <= `EndAddrDM)) begin

// ...end
```

注意下一级寄存器(W_reg)传入 DM 数据时要判断是否是外设的数据。

```
1
2
3
W_REG W_reg(
3
4
5
// ...
.DM_in((M_ALUout >= 32'h0000_7f00) ? PrRD : M_DMout),
// ...);
```

(3)异常中断测试

1.ADEL

(1).ktext 0x4180

mfc0 \$k0, \$14

addu \$k0, \$k0, 4

mtc0 \$k0, \$14

eret

.text

ori \$28, \$0, 0x0000

ori \$29, \$0, 0x0000

lui \$8, 0x7000

lui \$9, 0xf000

lw \$9,3(\$0)

sub \$10, \$8,\$9

or \$10, \$8, \$9

(2).ktext 0x4180

mfc0 \$k0, \$14

addu \$k0, \$k0, 4

mtc0 \$k0, \$14

eret

.text

ori \$28, \$0, 0x0000

ori \$29, \$0, 0x0000

lui \$8, 0x7000

lui \$9, 0xf000

lh \$9,3(\$0)

sub \$10, \$8,\$9

or \$10, \$8, \$9

(3).text

ori \$28, \$0, 0x0000

ori \$29, \$0, 0x0000

ori \$8,0x7fffffff

lui \$9, 0x1

add \$10, \$8,\$9

lw \$a0,0x1000(\$8)

or \$10, \$8, \$9

2.ADES

(1).text

ori \$28, \$0, 0x0000

ori \$29, \$0, 0x0000

ori \$8, 0x7f00

lui \$9, 0xf000

sw \$9,3(\$0)

sub \$10, \$8,\$9

or \$10, \$8, \$9

(2).text

ori \$28, \$0, 0x0000

ori \$29, \$0, 0x0000

ori \$8, 0x7f00

lui \$9, 0xf000

sh \$9,1(\$0)

sub \$10, \$8,\$9

or \$10, \$8, \$9

3.RI

在其他测试的机器码中插入 ffffffff

4.0v

.ktext 0x4180

mfc0 \$k0, \$14

sub \$8,\$8,\$8

mtc0 \$k0, \$14

eret

.text

ori \$28, \$0, 0x0000

ori \$29, \$0, 0x0000

lui \$8, 0x7fff

lui \$9, 0x7fff

add \$10, \$8,\$9

or \$10, \$8, \$9

.text

ori \$28, \$0, 0x0000

ori \$29, \$0, 0x0000

lui \$8, 0x7fff

lui \$9, 0x7fff

addi \$10, \$8,0x7fff0000

or \$10, \$8, \$9

.text

ori \$28, \$0, 0x0000

ori \$29, \$0, 0x0000

lui \$8, 0x7fff

ori \$8, \$8, 0xffff

addi\$10, \$8, 1

ori \$a0,\$0,100

.text

ori \$28, \$0, 0x0000

ori \$29, \$0, 0x0000

lui \$8, 0x7000

lui \$9, 0xf000

sub \$10, \$8,\$9

or \$10, \$8, \$9

```
.text
```

ori \$28, \$0, 0x0000

ori \$29, \$0, 0x0000

ori \$8, 0x7f00

lui \$9, 0xf000

lw \$9,0(\$8)

sub \$10, \$8,\$9

or \$10, \$8, \$9

.text

ori \$28, \$0, 0x0000

ori \$29, \$0, 0x0000

ori \$8, 0x7f00

lui \$9, 0xf000

sh \$9,4(\$8)

sub \$10, \$8,\$9

or \$10, \$8, \$9

5.延迟槽

(1) .ktext 0x4180

mfc0 \$1,\$13

sub \$9,\$9,\$9

eret

.text

ori \$28, \$0, 0x0000

ori \$29, \$0, 0x0000

ori \$8,0x7fffffff

ori \$9, 0x1000

j eee

add \$10, \$8,\$9

lw \$a0,0x1000(\$8)

eee:

```
or $10, $8, $9
```

(2) .ktext 0x4180

mfc0 \$1,\$13

sub \$9,\$9,\$9

eret

.text

ori \$8,0x7fffffff

ori \$9, 0x1000

ori \$t1 0x00007f00

ori \$a0,0x0009

ori \$a3,0xfc01

beq \$9,\$8,eee

add \$10,\$8,\$9

ori \$a1,2

sw \$a1,4(\$t1)

eee:

sw \$a0,0(\$t1)

(3) .ktext 0x4180

mfc0 \$1,\$13

sub \$9,\$9,\$9

eret

.text

ori \$8, 0x7fff0000

ori \$9, 0x7fff0000

ori \$a0,0x0009

ori \$a3,0xfc01

beq \$9,\$8,eee

add \$10,\$8,\$9

ori \$a1,2

sw \$a1,4(\$t1)

eee: sw \$a0,0(\$t1) (4) .ktext 0x4180 mfc0 \$1,\$13 sub \$8,\$8,\$8 sub \$9,\$9,\$9 eret .text ori \$8, 0x7fff0000 ori \$9, 0x7fff0000 ori \$a0,0x0009 ori \$a3,0xfc01 beq \$9,\$8,eee add \$10,\$8,\$9 ori \$a1,2 sw \$a1,4(\$t1) eee: sw \$a0,0(\$t1) (5) .ktext 0x4180 mfc0 \$1,\$13 sub \$9,\$9,\$9 eret .text ori \$28, \$0, 0x0000 ori \$29, \$0, 0x0000 ori \$8, 0x7fffffff ori \$9, 0x1000 j eee

add \$10, \$8,\$0

lw \$a0,0x1000(\$8)

```
eee:
                or $10, $8, $9
                j end
                add $10,$8,$9
                end:
                ori $a0,$0,0
(6) .ktext 0x4180
                mfc0 $1,$13
                sub $9,$9,$9
                eret
.text
                ori $28, $0, 0x0000
                ori $29, $0, 0x0000
                ori $8,0x7fffffff
                ori $9, 0x1000
                j eee
                add $10, $8,$0
                lw $a0,0x1000($8)
                eee:
                or $10, $8, $9
                j end
                sh $1,1($0)
                end:
                ori $a0,$0,0
(7) .text
                ori $28, $0, 0x0000
                ori $29, $0, 0x0000
                ori $8,0x7fffffff
                ori $9, 0x1000
```

j eee

add \$10, \$8,\$0

lw \$a0,0x1000(\$8)

eee:

or \$10, \$8, \$9

j end

sw \$1,1(\$0)

end:

ori \$a0,\$0,0

(8) .text

ori \$28, \$0, 0x0000

ori \$29, \$0, 0x0000

ori \$8,0x7fffffff

ori \$9, 0x1000

j eee

add \$10, \$8,\$0

lw \$a0,0x1000(\$8)

eee:

or \$10, \$8, \$9

j end

lh \$1,1(\$0)

end:

ori \$a0,\$0,0

(9) .text

ori \$28, \$0, 0x0000

ori \$29, \$0, 0x0000

ori \$8, 0x7fffffff

ori \$9, 0x1000

j eee

add \$10, \$8,\$0

lw \$a0,0x1000(\$8)

```
eee:
                or $10, $8, $9
                j end
                lw $1,1($0)
                end:
                ori $a0,$0,0
(10).text
                ori $28, $0, 0x0000
                ori $29, $0, 0x0000
                ori $8,0x7fffffff
                ori $9, 0x1000
                j eee
                add $10, $8,$0
                lw $a0,0x1000($8)
                eee:
                or $10, $8, $9
                j end
                lhu $1,1($0)
                end:
                ori $a0,$0,0
6.中断
 (1) .ktext 0x4180
                mfc0 $1,$13
                sub $9,$9,$9
                mtc0 $0,$12
                eret
.text
                ori $8,0x7fffffff
```

ori \$9, 0x1000

ori \$t1 0x00007f00

ori \$a0,0x0009

ori \$a3,0xfc01

ori \$a1,2

sw \$a1,4(\$t1)

sw \$a0,0(\$t1)

mtc0 \$a3,\$12

or \$10, \$8, \$9

ori \$28, \$0, 0x0000

ori \$29, \$0, 0x0000

ori \$28, \$0, 0x0010

ori \$29, \$0, 0x0111

nop

nop

nop

(2) .ktext 0x4180

mfc0 \$1,\$13

sub \$9,\$9,\$9

mtc0 \$0,\$12

eret

.text

ori \$8,0x7fffffff

ori \$9, 0x1000

ori \$t1 0x00007f00

ori \$a0,0x0009

ori \$a3,0xfc01

ori \$a1,2

sw \$a1,4(\$t1)

sw \$a0,0(\$t1)

add \$11,\$8,\$9

mtc0 \$a3,\$12

```
or $10, $8, $9
                ori $28, $0, 0x0000
                ori $29, $0, 0x0000
                ori $28, $0, 0x0010
                ori $29, $0, 0x0111
                nop
                nop
                nop
 (3) .ktext 0x4180
                mfc0 $1,$13
                sub $9,$9,$9
                sub $29,$29,$29
                mtc0 $0,$12
                ori $v1,$0,0x00007f00
                sw $a3,0($v1)
                eret
.text
                ori $8,0x7fffffff
                ori $9, 0x1000
                add $11,$8,$9
                ori $t1 0x00007f00
                ori $a0,0x0009
                ori $a3,0xfc01
                ori $a1,1
                sw $a1,4($t1)
                sw $a0,0($t1)
                mtc0 $a3,$12
                nop
                ori $a0,1111
```

j eee

ori \$29, \$0, 0x0111

eee:

or \$10, \$8, \$9

ori \$28, \$0, 0x0000

ori \$29, \$0, 0x0000

ori \$29,0x1000

lui \$v1,1

j end

add \$10,\$8,\$29

end:

lui \$a0,1

lui \$a2,2

7.乘除相关

(1) .ktext 0x4180

mfc0 \$1,\$13

sub \$a0,\$a0,\$a0

eret

.text

ori \$8,0x7fffffff

ori \$9, 0x1000

div \$8,\$9

lui \$a0,0x7f00

add \$a0,\$a0,\$a0

mthi \$a0

mflo \$s7

ori \$a1,1

ori \$v0,1

addu \$a1,\$v0,\$v0

nop

ori \$s0,11

```
(2) .ktext 0x4180
                mfc0 $1,$13
                mtc0 $0,$12
                mflo $s2
                mfhi $s1
                ori $v1,$0,0x00007f00
                sw $a3,0($v1)
                eret
.text
                ori $t1,0x00007f00
                ori $a0,0x0009
                ori $a3,0xfc01
                ori $a1,3
                sw $a1,4($t1)
                sw $a0,0($t1)
                mtc0 $a3,$12
                mult $t1,$a3
                mthi $a3
                mfhi $a2
                ori $29,0x1000
                lui $v1,1
(3) mult 中断
.ktext 0x4180
                mfc0 $1,$13
                mtc0 $0,$12
                mflo $s2
                mfhi $s1
                ori $v1,$0,0x00007f00
                sw $a3,0($v1)
```

eret

```
.text
```

ori \$t1,0x00007f00 ori \$a0,0x0009 ori \$a3,0xfc01 ori \$a1,3 sw \$a1,4(\$t1) sw \$a0,0(\$t1) mtc0 \$a3,\$12 mult \$t1,\$a3 mthi \$a3 mfhi \$a2 ori \$29,0x1000 lui \$v1,1 (4) .ktext 0x4180 mfc0 \$1,\$13 mtc0 \$0,\$12 mflo \$s2 mfhi \$s1 ori \$v1,\$0,0x00007f00 sw \$a3,0(\$v1) eret .text ori \$t1,0x00007f00 ori \$a0,0x0009 ori \$a3,0xfc01 ori \$a1,4 sw \$a1,4(\$t1) sw \$a0,0(\$t1) mtc0 \$a3,\$12 mult \$t1,\$a3

mthi \$a3 mfhi \$a2 ori \$29,0x1000 lui \$v1,1 (5) .ktext 0x4180 mfc0 \$1,\$13 mtc0 \$0,\$12 mflo \$s2 mfhi \$s1 ori \$v1,\$0,0x00007f00 sw \$a3,0(\$v1) eret .text ori \$t1,0x00007f00 mult \$t1,\$t1 ori \$a0,0x0009 ori \$a3,0xfc01 ori \$a1,3 sw \$a1,4(\$t1) sw \$a0,0(\$t1) mtc0 \$a3,\$12 mult \$t1,\$a3 #mthi \$a3 #mfhi \$a2 ori \$29,0x1000 lui \$v1,1 (6) .ktext 0x4180 mfc0 \$1,\$13 mtc0 \$0,\$12

mflo \$s2

mfhi \$s1

ori \$v1,\$0,0x00007f00

sw \$a3,0(\$v1)

eret

.text

ori \$t1,0x00007f00

mult \$t1,\$t1

ori \$a0,0x0009

ori \$a3,0xfc01

ori \$a1,8

sw \$a1,4(\$t1)

sw \$a0,0(\$t1)

mtc0 \$a3,\$12

ori \$29,0x1000

mthi \$a3

ori \$a0,0x000b

sw \$a0,0(\$t1)

mthi \$a3

mfhi \$a2

ori \$29,0x1000

mult \$t1,\$t1

div \$a2,\$a2

lui \$a0,1

110@00003000: \$ 9 <= 00007f00

150@00003008: \$ 4 <= 00000009

170@0000300c: \$ 7 <= 0000fc01

190@0003010: \$ 5 <= 00000008

270@0003020: \$29 <= 00001000

310@00003028: \$ 4 <= 0000000b

370@00003034: \$ 6 <= 0000fc01

390@0003038: \$29 <= 00001000

550@00004180: \$ 1 <= 00000000

590@00004188: \$18 <= 3f010000

610@0000418c: \$17 <= 00000000

630@00004190: \$ 3 <= 00007f00

870@0003044: \$ 4 <= 00010000

三、思考题

1、我们计组课程一本参考书目标题中有"硬件/软件接口"接口字样,那么到底什么是"硬件/软件接口"?(Tips: 什么是接口? 和我们到现在为止所学的有什么联系?)

解:

硬件

目标: CPU 与外设(被控对象)在硬件上连接构成一个有机整体

方法: I/0 接口电路(接口、接口控制器)

软件

目标:控制设备工作方式,完成信息传送

方法:接口控制程序(或驱动程序)

硬软件接口就是计算机硬件与软件的交互手段,人类与电脑等信息机器或人类与程序之间的接口称为用户界面。电脑等信息机器硬件组件间的接口叫硬件接口。电脑等信息机器软件组件间的接口叫软件接口。硬件接口指的是两个硬件设备之间的连接方式。硬件接口既包括物理上的接口,还包括逻辑上的数据传送协议。软件不同部分之间的交互接口。通常就是所谓的 API——应用程序编程接口,其表现的形式是源代码。

2、BE 部件对所有的外设都是必要的吗?

解:

不是, timer 只能用 lw,sw,用不到 BE 了。

3、请阅读官方提供的定时器源代码,阐述两种中断模式的异同,并分别针对每一种模式绘制状态转移图。

解:

异:

模式 0 计时结束后,一直保持中断,直到 en 或 IM 被修改模式 1 计时结束后,中断一个周期,再重新计数可以理解为中断保持的逻辑不同

同:

都在 CNT 到 0 的时候产生了中断

2.绘制状态转移图

模式 0:

模式 1:

- 4、请开发一个主程序以及定时器的 exception handler。整个系统完成如下功能:
 - (1) 定时器在主程序中被初始化为模式 0;
 - (2) 定时器倒计数至 0 产生中断;
- (3) handler 设置使能 Enable 为 1 从而再次启动定时器的计数器。(2) 及 (3) 被无限重复。
- (4) 主程序在初始化时将定时器初始化为模式 0, 设定初值寄存器的初值为某个值, 如 100 或 1000。(注意, 主程序可能需要涉及对 CPO.SR 的编程, 推荐阅读过后文后再进行。)

解:

```
.ktext 0x4180

mfc0 $1,$13

mflo $s2

mfhi $s1

ori $v1,$0,0x000007f00

sw $a0,0($v1)

eret

.text

ori $t1,0x00007f00

mult $t1,$t1

ori $a0,0x0009

ori $a3,0xfc01

ori $a1,2

sw $a1,4($t1)

sw $a0,0($t1)
```

mtc0 \$a3,\$12

mult \$t1,\$a3

ori \$29,0x1000

lui \$v1,1

lui \$v0,2

lui \$s1,3

lui \$s0,4

5、请查阅相关资料,说明鼠标和键盘的输入信号是如何被 CPU 知晓的?

解:

设备实际上包括两部分接口控制器(也称为接口芯片)和设备主体,设备主体不直接与主机连接,而是通过接口控制器与主机连接。鼠标和键盘的输入信号相当于中断,当键盘、鼠标有信息时,产生一个中断然后中断例程会从端口读入数据到寄存器。CPU 接收到中断请求之后进入中断处理程序获得鼠标键盘的信息。

附 1:

数据通路

A	В	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
																	输入	来源	
		load	save	cal_r	cal_i	shift_s	b	mt	mf	mult(u)/div(u)	j	jal	jalr	jr	MUX	0	1	2	3
	PC	ADD4	ADD4	ADD4	ADD4	ADD4	NPC	NPC	NPC	NPC	NPC	NPC	RF.RD1	RF.RD1	M_PC	ADD4	NPC	MF_RS_D	BERE
F級	IM	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC		PC			
	ADD4	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC			PC			
D级	IR	IM	IM	IM	IM	IM	IM	IM	IM	IM	IM	IM	IM	IM		IM			
IF/ID	WPC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC		PC			
IF/ID	PC4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4			ADD4			
RF	A1	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	10.00	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D			IR[rs]@D	IR[rs]@D		IR[rs]@D			
	A2			IR[rt]@D		IR[rt]@D	IR[rt]@D	1 - 2 - 2 / 1 () () ()	IR[rt]@D	IR[rt]@D						IR[rt]@D			
EXT		IR[i16]@D	IR[i16]@D	0.00	IR[i16]@D	1000	02. 22	3	1,700		3					IR[i16]@D			
	PC4						PC4@D				PC4@D	PC4@D				PC4@D			
NPC	116						IR[i16]@D									IR[i16]@D			
	126										IR[i26]@D	IR[i26]@D				IR[i26]@D			
CMP	D1						RF.RD1				9 10 2-21 3	20 20			MF_RS_D	RF.RD1			0
Cinir	D2						RF.RD2								MF_RT_D	RF.RD2			_
	V1	RF.RD1	RF.RD1	RF.RD1	RF.RD1			RF.RD1		RF.RD1					MF_RS_D	RF.RD1			
- 22	V2		RF.RD2	RF.RD2		RF.RD2				RF.RD2					MF_RT_D	RF.RD2			
E板 ID/EX	IR	IR@D	IR@D	IR@D	IR@D	IR@D	IR@D	IR@D	IR@D	IR@D	IR@D	IR@D	IR@D	IR@D		IR@D			
	E32	EXT	EXT		EXT											EXT			
	WPC	WPC@D	WPC@D	WPC@D	WPC@D	WPC@D	WPC@D	WPC@D	WPC@D	WPC@D	WPC@D	WPC@D	WPC@D	WPC@D		WPC@D			
	PC4											PC4@D	PC4@D			PC4@D			
ALU	A	V1@E	V1@E	V1@E	V1@E	IR[shamt]@D									M_ALU_A	MF_ALUA_E	V1@E	IR[shamt]@D	
	В	E32@E	E32@E	V2@E	E32@E	V2@E									M_ALU_B	MF_ALUB_E	V2@E	E32@E	_
	IR							IR@E	IR@E	IR@E						IR@E			_
M_D	A							V1@E		V1@E					MF_ALUA_E	V1@E			
	В									V2@E					MF_ALUB_E	V2@E			_
	V2		V2@E												MF_ALUB_E	V2@E			
M委	AO	ALU	ALU	ALU	ALU	ALU			M_D						M_M_D	ALU	M_D		_
EX/MEM	IR	IR@E	IR@E	IR@E	IR@E	IR@E	IR@E	IR@E	IR@E	IR@E	IR@E	IR@E	IR@E	IR@E		IR@E			_
	WPC	WPC@E	WPC@E	WPC@E	WPC@E	WPC@E	WPC@E	WPC@E	WPC@E	WPC@E	WPC@E	WPC@E	WPC@E	WPC@E		WPC@E			-
	PC4				2			-				PC4@E	PC4@E			PC4@E			_
DM	A WD	A0@M	AO@M V2@M		-	-				-			_			A0@M		_	
		ID COM	V2@M IR@M	10.044	10.044	10.044	10.044	IDOM	IDOM	IDOM.	IDOM	IDOM	IDOM.	IDOM	MF_WD_M	V2@M IR@M			
	IR AO	IR@M	IK@M	IR@M AO@M	IR@M AO@M	IR@M AO@M	IR@M	IR@M	IR@M	IR@M AO@M	IR@M	IR@M	IR@M	IR@M		AO@M			
W級	DR	DM	4	AUØM	AUE/M	HOMM		-		AOWIM						DM			-
MEM/WB	WPC	WPC@M	WPC⊚M	WPC⊚M	WPC@M	WPC⊜M	WPC@M	WPC@M	WPC@M	WPC@M	WPC@M	WPC@M	WPC@M	WPC@M		WPC@M			
	PC4	WECEN	WPC@W	MACGIM	WECEM	WECEM	wrcew	wrcem	wrtem	WILCOM	MACGIN	PC4@M	PC4@M	MACGINI		PC4@M			
	A3	IR[rt]@W		IR[rd]@W	IR[rt]@W	IR[rd]@W			IR[rd]@W			PC4@M 31	IR[rd]@W		M A3 RF	IR[rt]@W	IR[rd]@W	31	
RF	WD WD	DR@W	Y	AO@W	AO@W	AO@W			AO@W			PC4@W+4	PC4@W+4		M_A3_RF M_RF_WD	AO@W	DR@W	9C4@W+4	
190003	WD	Drew	_	MOGW	AUGW	AUGW			AOBW	-		PC4@W+4	PC4@W+4		IN NE WD	NO@W	DUGAM	PC4@W+4	_
			255.1	86.30		241.1	58.192		150.2	24,231					255.91.91				

附 2: 冲突策略矩阵

1			100000	111			1	11			
100			Tuse				I ok sa k			Tnew	1877
	指令	rs		rt		指令	功能部件		E	M	W
L	addu	1		1		addu	ALU		1	0	0
	subu	1		1		subu	ALU		1	0	0
	andi	1				andi	ALU		1	0	0
	ori	1				ori	ALU		1	0	0
	lw	1				lw	DM		2	1	0
	sw	1		2		sw	-				
	beq	0		0		beq					
	jr	0				jal	PC	1	0	0	0
	i	-				lui	EXT	- 00	0	0	0
	jal	-				i	-				
	lui	-				jr	-				
		- 12				,	8				
						7				100	
-							8				
-		- 1					6			-	
										- 1	
-								- j			
rei	等 略										
rs	策略矩阵 S: 暂停			E			M			W	
	策略矩阵 S. 暂停 F. 转发	Tuse\Tnew	ALU	E DM	PC	ALU	M DM	PC	ALU	W	PC
rsi	s. 暂停	Tuse\Tnew	ALU 1		PC 0	ALU 0		PC 0	ALU 0		PC 0
rsi S	s. 暂停	0	1 S	DM 2 S	0 F	0 F	DM 1 S	0 F	0 F	0 F	0 F
rsi S	s. 暂停		1	DM 2	0	0	DM 1	0	0	DM 0	0
1	S: 暂停 F: 转发	0	1 S	DM 2 S	0 F	0 F	DM 1 S	0 F	0 F	0 F	0 F
rsi	S: 暂停 F: 转发 策略矩阵	0	1 S	DM 2 S S	0 F	0 F	DM 1 S	0 F	0 F	DM 0 F	0 F
rsi	S: 暂停 F: 转发 策略矩阵 S: 暂停	0 1	1 S F	DM 2 S S	O F F	O F F	DM 1 S F	O F F	O F F	DM 0 F F	O F F
rsi	S: 暂停 F: 转发 策略矩阵	0	S F	DM 2 S S	O F F	O F F	DM 1 S F	O F F	F F	DM 0 F F	O F F
rsi	S: 暂停 F: 转发 策略矩阵 S: 暂停	0 1	S F	DM 2 S S S S DM 2	F F PC 0	O F F	DM 1 S F M DM 1	O F F	F F ALU	DM 0 F F W DM 0	O F F
rsi s	S: 暂停 F: 转发 策略矩阵 S: 暂停	0 1	S F	DM 2 S S	O F F	O F F	DM 1 S F	O F F	F F	DM 0 F F	O F F

	241,1	58,192								s_s/s_v/m	f -> cal_r							
转发:											_							
	0	1	2	3	4	5		ID,	/EX		EX/I	MEM				MEM/WB		
	输入0 AO_M		M4	PC8_E	PC8_M	PC8_W			ew		Tnew Tnew							
								jal	jalr	cal_r	cal_i	jal	jalr	cal_r	cal_i	load	jal	jalr
	液水级	源寄存器		指令	MUX	控制信号	输入0	0/31	0/rd	0/rd	O/rt	0/31	0/rd	0/rd	O/rt	O/rt	0/31	0/rd
	D	rs		t,b,jr,jalr,s_s	MF_RS_D		RF.RD1	PC8_E	PC8_E	AO	AO	PC8_M	PC8_M	M4	M4	M4	PC8_W	PC8_W
	D	rt		t,b,s_s	MF_RT_D		RF.RD2	PC8_E	PC8_E	AO	AO	PC8_M	PC8_M	M4	M4	M4	PC8_W	PC8_W
	E	rs	c_r,c_i,	ld,st,s_s	MF_ALUA_E	F_ALUA_Esel	V1@E			AO	AO	PC8_M	PC8_M	M4	M4	M4	PC8_W	PC8_W
	ALU_E	rt	c_r,:	st,s_s	MF_ALUB_E	F_ALUB_Esel	V2@E			AO	AO	PC8_M	PC8_M	M4	M4	M4	PC8_W	PC8_W
	M	rt		st	BAT IND BA	F WD Msel	V2@M							M4	M4	M4	PC8 W	PC8 W
	DM_M	10			IVII _VVD_IVI	I_WD_IMSEI	¥2@/#/							IVI	INP	1414	rco_w	rco_w
哲停:																		
		F/ID当前指令			ID/EX		EX/MEM											
					Tnew		Tnew											
	指令类型	源寄存器	Tuse	cal r	cal i	load	load											
				1/rd	1/rt	2/rt	1/rt											
	beq	rs/rt	0	哲停	哲停	哲停	哲停											
	cal r	rs/rt	1	63.7		暂停												
	cal i	rs	1			哲停												
	load	rs	1			哲停												
	store	rs	1			智停												
	store	rt	2			,												
	ir	rs	0	暂停	暂停	暂停	暂停											
	jalr	rs	0	哲停	哲停	哲停	哲停											
	,				213	17	- 11											

附 3:

控制器

指令	Opcode	RegWrite	DMop_R	DMop_S	ALU_Contr ol	CIVIP_type	NPC_sel	EXTop	start	PC_sel	ALU_Asel	ALU_Bsel	M_D_sel	A3_RFsel	RF_WDsel
R	000000	1/	XXX	000		XXX	XXX	XX	0	00/	0	0	0	01/	00/
load		1		000	0010	ххх	XXX	01	0	00	0	1	0	00	01
save		0	XXX		0010	XXX	XXX	01	0	00	0	1	0	00	XX
cal_i sll s		1	XXX	000		XXX	XXX	xx	0	00	0	0	0	01	00
b b		0	XXX	000	XXXX		010	XX	0	01	x	x	x	XX	xx
addi	001000	1	XXX	000	0010	XXX	XXX	01	0	00	0	1	0	00	00
j	000010	0	XXX	000	XXXX	XXX	001	хх	0	01	x	x	X	XX	XX
jal	000011	1	XXX	000	XXXX	XXX	001	XX	0	01	x	x	x	10	10
R_jr					XXXX				0	10	x	x			Ŭ.
R_ jalr					XXXX				0	10	x	x		01	10
R_mt		0			XXXX				0	-	x	x	x	22	19202
R_mf t_mult(u)/R_div		0			XXXX				0		x	x	1 x	01	00
	į.														
	ΔΙΙ	译码等	以 首值 :	E • RŽ	ŧ										
	ALU译码器真值表: R类 Funct					ALUControl									
			000(add	1)		010 (ta)									
			010(sul	-	- 5	110 (其) 000 (与)			Ī						
		100	100(and	1)											
		100)101(or)		001(或) 111(小于置位)					100				
		101	1010(slt)											
			001(add			010			- 1						
	100011(subu)						110								
J.S.		00	1001(jr)	(
	0000		0001	00	010	001	1	0100		0101	0:	110	011	1	
	与		或	_	tan .	异蓼	_	或丰	1	小于置1			符号)		置1
	1000		1001		010	101									
	lui	逻	楫左移	逻辑	右移	算数右	移								

附 4:

多路选择器控制信号

				优先级				
				低	中	高		
功能MUX	控制信号	转发MUX	控制信号	0	1	2		
M_PC	PC_sel	MF_RS_D	F_RS_Dsel	RF.RD1	AO@M	M_RF_WD		
M_ALU_A	ALU_Asel	MF_RT_D	F_RT_Dsel	RF.RD2	AO@M	M_RF_WD		
M_ALU_B	ALU_Bsel	MF_ALUA_E	F_ALUA_Esel	V1@E	AO@M	M_RF_WD		
M_M_D	M_Dsel	MF_ALUB_E	F_ALUB_Esel	V2@E	AO@M	M_RF_WD		
M_A3_RF	A3_RF_sel	MF_WD_M	F_WD_Msel	V2@M	M_RF_WD			
M RF WD	RF WDsel							