Orthogonal \(\text{Distance (Polar Space)} \)

By connecting two points we can form a line.

-

By having one point and a slope we can also form a line.

Point P(x,y) in a Cartesian coordinate system:

Line in a slope-intercept parameter space.

note that vertical lines can not be represented in this space because:

- slope of a vertical line is undefined (division by zero)
- vertical lines do not have y-intercept (they are parallel to y-axis)

Unfortunately, in Cartesian space, the slope of a vertical line is undefined. Thus, we need a different coordinate system, i.e., Polar Coordinate system. This system describes a point in space as an angle (polar angle, angular coordinate, azimuth, θ , φ , t) of rotation around the origin (pole) and a radius (radial distance, radial coordinate, r, ρ) from the origin.

Point $P(\rho,\theta)$ in a Polar coordinate system:

In order to represent a line in Hough Space, we need two parameters, i.e., the orthogonal \bot distance from the origin to the line that intersects via point P, and the angle θ of that line with respect to x-axis (here our angle θ will correspond to polar angle θ). Let's use basic trigonometry and both coordinate systems to derive the \bot distance (note that the \bot distance will correspond to radius ρ).

fact: the slopes of two orthogonal lines are opposite reciprocals:

At last, we can express the orthogonal \perp distance from the origin to any line (at any angle) transecting via point P:

 $\rho = x \cos\theta + y \sin\theta$

Notes are based on the lectures given by Dr. Tsaiyun Phillips in Spring 2019

©Copyright by Martin Gregory Sendrowicz 2020

All Rights Reserved