计算流体力学第四次作业

朱林-2200011028

2025年4月29日

1 数理算法原理

1.1 控制方程与边界条件

二维稳态温度场满足拉普拉斯方程:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0 \tag{1}$$

边界条件:

- 上边界 (y = 12 cm): $T = 100 ^{\circ} \text{C}$
- 左边界 (x = 0)、右边界 (x = 15cm)、下边界 (y = 0): T = 20°C

1.2 有限差分离散化

1.2.1 网格参数

$$\Delta x = \frac{15}{N_x - 1}, \quad x_i = (i - 1)\Delta x \quad (i = 1, 2, ..., N_x)$$
 (2)

$$\Delta y = \frac{12}{N_y - 1}, \quad y_j = (j - 1)\Delta y \quad (j = 1, 2, ..., N_y)$$
 (3)

1.2.2 离散方程

内部节点 $(2 \le i \le N_x - 1, 2 \le j \le N_y - 1)$:

$$\frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{(\Delta x)^2} + \frac{T_{i,j+1} - 2T_{i,j} + T_{i,j-1}}{(\Delta y)^2} = 0$$
(4)

均匀网格 $(\Delta x = \Delta y = h)$ 简化为:

$$T_{i,j} = \frac{1}{4} \left(T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1} \right)$$
 (5)

1.2.3 边界节点处理

$$T_{1,j} = 20 \quad (\forall j), \quad T_{N_x,j} = 20 \quad (\forall j)$$
 (6)

$$T_{i,1} = 20 \quad (\forall i), \quad T_{i,N_y} = 100 \quad (\forall i)$$
 (7)

1 数理算法原理 2

1.3 迭代算法修正

1.3.1 高斯-赛德尔迭代

按列优先顺序更新 $(j \, \text{从 2 到 } N_y - 1)$:

$$T_{i,j}^{(k+1)} = \frac{1}{4} \left(T_{i-1,j}^{(k+1)} + T_{i+1,j}^{(k)} + T_{i,j-1}^{(k+1)} + \underbrace{T_{i,j+1}^{(k)}}_{\exists j+1=N_y} \operatorname{HF}_{100} \right)$$
(8)

1.3.2 SOR 加速算法

引入松弛因子 ω :

$$T_{i,j}^{(k+1)} = (1 - \omega)T_{i,j}^{(k)} + \frac{\omega}{4} \left(T_{i-1,j}^{(k+1)} + T_{i+1,j}^{(k)} + T_{i,j-1}^{(k+1)} + T_{i,j+1}^{(k)} \right)$$

$$\tag{9}$$

1.4 收敛性分析

- 残差定义: $R^{(k)} = \max_{\substack{2 \le i \le N_x 1 \\ 2 \le j \le N_y 1}} |T_{i,j}^{(k+1)} T_{i,j}^{(k)}|$
- 收敛判据: $R^{(k)} < \epsilon$ (通常取 $\epsilon = 10^{-5}$)
- 最优松弛因子:

$$\omega_{\text{opt}} = \frac{2}{1 + \sin\left(\frac{\pi}{\max(N_x, N_y) - 1}\right)} \tag{10}$$

1.5 数值实现伪代码

```
# 初始化温度场
```

T = 20 * np.ones((Nx, Ny))

T[:, -1] = 100 # 设置上边界

for k in range(max_iter):

$$R = 0$$

for j in range(1, Ny-1):

for i in range(1, Nx-1):

$$T_{new} = 0.25 * (T[i+1,j] + T[i-1,j] + T[i,j+1] + T[i,j-1])$$

 $R = max(R, abs(T_new - T[i,j]))$

$$T[i,j] = T_{new}$$

if R < epsilon:

break

1.6 理论验证

- 对称性检验: 温度场应关于 x = 7.5 cm 对称
- 极值原理: 内部温度 *T* ∈ (20, 100)°C

1 数理算法原理 3

• 能量守恒: 总热流量进出平衡