1

Assignment 16

M Pavan Manesh - EE20MTECH14017

Download the latex-tikz codes from

https://github.com/pavanmanesh/EE5609/tree/master/Assignment16

1 Problem

True or false? If the triangular matrix A is similar to a diagonal matrix, then A is already diagonal.

2 **Definitions**

Characteristic Polynomial	For an $n \times n$ matrix A , characteristic polynomial is defined by, $p(x) = x\mathbf{I} - \mathbf{A} $		
Minimal Polynomial	Minimal polynomial $m(x)$ is the smallest factor of characteristic polynomial $p(x)$ such that, $m(\mathbf{A}) = 0$		
Theorem	Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V . Then T is diagonalizable if and only if the minimal polynomial for T has the form $p = (x - c_1) \dots (x - c_k) \tag{2.0.1}$ where $c_1, c_2,, c_k$ are distinct elements of F .		
Diagonalizable	A is called diagonalizable if it is similar to diagnol matrix B i.e., if \exists an invertible matrix P such that $\mathbf{A} = \mathbf{P}\mathbf{B}\mathbf{P}^{-1} \tag{2.0.2}$		

TABLE 1: Definitions and theorem used

3 Solution

Given	The triangular matrix A is similar to a diagonal matrix.		
Example	Let		
	$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$	(3.0.1)	
	We can see that A is triangular but not diagonal.		
	$\left x\mathbf{I} - \mathbf{A} \right = \left \begin{matrix} x - 1 & 2 \\ 0 & x - 3 \end{matrix} \right $	(3.0.2)	
Characteristic polynomial	= (x-1)(x-3)	(3.0.3)	
Minimal polynomial	As the eigen values are distinct, minimal polynomial		
Minimal polynomial	m(x) = (x-1)(x-3)	(3.0.4)	
Diagonalizable	From theorem (2.0.1), We can say that A diagonalizable i.e., it is similar to a diagnol matrix.		
Conclusion	From above, we can say that A need not be diagonal to satisfy given conditions. So, given statement is false.		

TABLE 2: Finding minimal polynomial and solution