Chris Sainsbury

Consultant Physician (Diabetes & Endocrinology)
Gartnavel General Hospital

c.sainsbury@nhs.net @csainsbury http://glucose.ai

What's new in diabetes?

Type 1 diabetes

- focus on glucose variability as metric
- techniques to reduce variability: new insulins, CGMS / flash glucose monitoring, closed-loop sensor/pump systems

Type 2 diabetes

- focus on glucose variability as key metric
- move from surrogate to outcome driven therapeutic choices

Type 1 Diabetes

Type 1 diabetes: Glucose Variability

- median glucose (HbA1c associated with complications) has traditionally driven management decisions
- multiscale glucose variability associates with short and long term outcomes (hypoglycaemia / mortality)

CBG variability vs inpatient hypoglycaemia rate

HbA1c variability vs 5y mortality (1)

Type 1 diabetes: Strategies to reduce glycaemic variability

- improve patient view of glucose throughout 24h period (CGMS / flash monitoring)
- improve insulin requirement / delivery matching
 - structured education / DAFNE
- improve insulin kinetics / delivery mechanism
 - new insulins
 - insulin pump / closed loop systems
- intelligent ML based systems to assist decision making

Type 1 diabetes: flash monitoring

PRODUCTS

DISCOVER

SUPPORT

FREESTYLE LIBRE SENSOR

Please note that quantities are limited to 10 Sensor per customer per purchase.

Daily Patterns (with glucose readings)

26 May 2016 - 8 June 2016 (14 days)

Estimated A1c 5.0% or 31 mmol/mol

Hourly Pattern with glucose reading for every day at different time. Check late nights and early mornings, there seems to be a little rise.

improved understanding of glycaemia leads to better decision making by patients and doctors

Glucose Pattern Insights

13 September 2014 - 10 October 2014 (28 days)
LOW-GLUCOSE ALLOWANCE SETTING: Medium
MEDIAN GOAL SETTING: 8.6 mmol/L (A1c: 7.0% or 53 mmol/mol)

Estimated A1c 5.8% or 40 mmol/mol

Type 1 diabetes: new insulins

faster acting short-acting insulins
 reduce interval required pre-meal for dosing
 quicker time to peak reduces post-prandial glucose

faster asparte (FIAsp)

Type 1 diabetes: new insulins

- - insulin glargine U300 (Tuojeo) insulin degludec (Tresiba)

Type 1 diabetes: pump technologies

Medtronic 670G – FDA approved

BREAKING NEWS: FDA APPROVES THE MINIMED 670G SYSTEM, WORLD'S FIRST HYBRID CLOSED LOOP SYSTEM

Posted by Sara Tilleskjor On September 29, 2016 In Meaningful Innovation

Type 1 diabetes: machine learning / Al

Medtronic / IBM Watson – sugar.IQ

- pattern recognition using multiple data sources:
- CBG / CGMS, accelerometer data, CHO / nutritional data, location, weather etc

Type 2 Diabetes

Type 2 diabetes is increasingly prevalent

 Globally, 387 million people are living with diabetes¹

 At least 68% of people >65 years with diabetes die of heart disease²

1. IDF Diabetes Atlas 6th Edition 2014 http://www.idf.org/diabetesatlas; 2. Centers for Disease Control and Prevention, National Diabetes Fact Sheet, 2011 Available at http://www.cdc.gov/diabetes/pubs/pdf/ndfs 2011.pdf; 3. Seshasai SRK et al. N Engl J Med 2011;364:829-41 Supplementary Appendix

Diabetes is associated with significant loss of life years

On average, a 50-year-old individual with diabetes and no history of vascular disease will die 6 years earlier compared to someone without diabetes

How well do we manage glycaemia in T2DM?

Scottish Diabetes Survey 2015

Number of Patients with Type 2 with HbA1c Controlled

Type 2 diabetes: guidelines

- many in existence
- all basically similar ie
 metformin + others in various orders

what is the mortality evidence for other agents?

Antihyperglycemic therapy in type 2 diabetes: general recommendations (15).

American Diabetes Association Dia Care 2015;38:S41-S48

NICE NG28 – Algorithm for blood glucose lowering therapy in adults with type 2 diabetes

NICE updated its guidance for type 2 diabetes in Dec 2015 (NG28)
This sets an initial HbA1c target of 6.5%, with a target of 7.0% at further intensification steps with 3/6 month patient reviews

SIGN recommendations for pharmacological management of glycaemic control in people with T2D

REVIEW AND SET GLYCAEMIC TARGET: HbA1c < 7% (53 mmol/mol) OR INDIVIDUALISED AS AGREED

3	rd LINE OPTIONS in addition to lifestyle measures, adherence to medication and dose optimisation; ADD OR SUBSTITUTE WITH ONE OF								
	ORAL (continue MF/SU if tolerated)		INJECTABLE (if willing to self inject; continue MF/SU if tolerated)						
(In pic If r	pioglitazone is licensed)	DPP-IV inhibitor* If weight gain a concern	Insulin* (inject before bed) If osmotic symptoms/rising HbA1c; NPH insulin initially If hypos a concern, use basal analogue insulin as an alternative Add prandial insulin with time if required	GLP-1 agonists* • If BMI >30 kg/m² • If a desire to lose weight • Usually <10 years from diagnosis					

Prescribers should refer to the British National Formulary (www.bnf.org) and the Scottish Medicines Consortium (www.scottishmedicines.org.uk) for updated guidance on licensed indications, full contraindications and monitoring requirements.

Usual approach
Alternative approach. Special considerations
Continue medication if EITHER individualised target achieved OR HbA1c falls >0.5% (5.5 mmol/mol) in 3-6 months

NHS GGC Guidelines

http://ggcprescribing.org.uk/cli nical-guidelines/

consider insulin therapy

MANAGEMENT OF TYPE 2 DIABETES

Refer to GGC Formulary for preferred agents and restrictions including updates 3 month trial of lifestyle changes. Refer to structured education programme (DESMOND or equivalent). Set glycaemic target HbA1c < 53mmol/mol or individualised If HbA1c > 53mmol/mol or individualised target is not met FIRST LINE OPTIONS - Please see Tables A and B overleaf ADD METFORMIN (refer to guidance on p. 4 to ensure titration to maximum tolerated dose) or SULFONYLUREA if intolerant of Metformin If HbA1c > 53mmol/mol or individualised target is not met SECOND LINE OPTIONS - Please see Tables A and B overleaf ADD **ADD GLITAZONE** ADD GLIPTIN ADD SGLT-2 **SULFONYLUREA** Withdraw treatment after 6 months if HbA1c has decreased by < 6 mmol/mol. If HbA1c > 59 mmol/mol or individualised target is not met THIRD LINE OPTIONS - Please see Tables A and B overleaf **ORAL ADMINISTRATION** SUBCUTANEOUS ADMINISTRATION Only likely to be effective if HbA1c is < 86 mmol/mol ADD GLP-1 AGONIST ADD GLIPTIN ADD SGLT-2 **ADD INSULIN** ADD **GLITAZONE** Only if BMI >30kg/m² Treatment targets: HbA1c reduction of 6 mmol / mol AND individualised weight loss target If HbA1c > 59 mmol/mol or if individualised target is not If HbA1c > 59Review regularly at 6 met withdraw treatment and consider injectable therapy mmol/mol or months; unless both individualised target is targets are achieved refer not met intensify for specialist review. insulin treatment If HbA1c target not met

Sulphonylureas and risk of cardiovascular disease: systematic review and meta-analysis

Glucose-lowering treatments and associated CV risk

Risk of cardiovascular mortality and non-fatal myocardial infarction (6171 events)

CV: cardiovascular

Adapted from Jørgensen CH, et al. Cardiovasc Diabetol 2010;9:54.

Inpatient with preadmission SU/metformin

CAR Sainsbury, SG Cunningham, GC Jones DIABETIC MEDICINE 2016 33, 193-193

Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial

Figure 3. Kaplan-Meier curve of time to main secondary endpoint**Death from any cause, non-fatal myocardial infarction (excluding silent myocardial infarction), or stroke.

John A Dormandy et al

Lancet, Volume 366, Issue 9493, 2005, 1279-1289

http://dx.doi.org/10.1016/S0140-6736(05)67528-9

Cardiovascular safety studies (TECOS, EXAMINE, SAVOR-TIMI)

	Study Drug n/N (%)	Placebo n/N (%)	Hazard Ratio	95% CI		P Value
SAVOR-TIMI (saxagliptin vs. placebo)	613/8280 (7.4%)	609/8212 (7.4%)	1.00	0.89, 1.12	+	0.99
EXAMINE (alogliptin vs. placebo)	305/2701 (11.3%)	316/2679 (11.8%)	0.96	NA, 1.16	*	0.315
TECOS (sitagliptin vs. placebo)	745/7332 (10.2%)	746/7339 (10.2%)	0.99	0.89, 1.10	+	0.844
SAVOR + EXAMINE + TECOS	1663/18313 (9.1%)	1671/18230 (9.2%)	0.99	0.92, 1.06	+	
				0	Favors Favors Treatment placebo	2

Test for heterogeneity for 3 trials: p=0.877, I²=0%

- 1. Scirica BM et al. N Engl J Med 2013; 369: 1317-1326
- 2. White WB et al. N Engl J Med 2013; 369: 1327-1335
- 3. Green JB et al. NEJM 2015; DOI: 10.1056/NEJMoa1501352

*Lower Confidence Limit not given for EXAMINE trial

LEADER trial: Primary Outcome

First occurrence of CV death, nonfatal myocardial infarction, or nonfatal stroke in the time-to-event analysis in patients with type 2 diabetes and high CV risk.

Liraglutide Effect and Action in Diabetes: Evaluation of cardiovascular outcome Results (LEADER) trial

Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes

LEADER Trial Investigators N Engl J Med, 2016

LEADER (N=9340)

^{*}CV death, nonfatal MI (including silent MI), or nonfatal stroke; †CV death, nonfatal MI (including silent MI), nonfatal stroke, coronary revascularization, and hospitalization for unstable angina or HF.

Prepared 13/2/17 30

CI, confidence interval; CV, cardiovascular; MI, myocardial infarction.

Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes

Bernard Zinman et al, NEJM, 2015

3-point MACE

Cumulative incidence function. MACE, Major Adverse Cardiovascular Event; HR, hazard ratio

Zinman B et al. N Engl J Med 2015 DOI: 10.1056/NEJMoa1504720 Supplementary Appendix

CV death

Cumulative incidence function. HR, hazard ratio; RRR: Relative risk reduction; ARR; Absolute risk reduction; CER: Control Event Rate; EER: Experimental Event rate. ARR = CER – EER. Zinman B et al. N Engl J Med 2015 DOI: 10.1056/NEJMoa1504720 Supplementary Appendix

All-cause mortality

Kaplan-Meier estimate. HR, hazard ratio; RRR: Relative risk reduction; ARR; Absolute risk reduction; CER: Control Event Rate; EER: Experimental Event rate. ARR = CER – EER.

Zinman B et al. N Engl J Med 2015 DOI: 10.1056/NEJMoa1504720 Supplementary Appendix

Hospitalisation for heart failure

Cumulative incidence function. HR, hazard ratio; RRR: Relative risk reduction; ARR; Absolute risk reduction; CER: Control Event Rate; EER: Experimental Event rate. ARR = CER – EER

Numbers needed to treat comparison

Type 2 diabetes

optimum drug sequence (in high CV risk) may be:

metformin -> empagliflozin -> liraglutide

new evidence coming this year for other SGLT2s?
 extending benefit into non-high CV risk patients

Summary

- T1DM advances are likely to come from technology / bioengineering and data science.
- T2DM advances likely to come from optimum drug combinations based on large number of ongoing outcome trials.

Prepared 13/2/17	