E	xpected Information Gain: r = 0.777 Bayesian model, based on Expected Information Gain	Expected Utility Model: r = 0.717 Bayesian model optimizing expected bonus	Context Insensitive Model: r = 0.367 Equivalent to no- knowledge state of Bayesian model	Random Subset Model: k = 5: k = 20: r = 0.437 r = 0.712 Pick random-k objects to use as a sampling set	Positive Test Strategy r = 0.79 Asks question most likely to receive a "yes" answer	Variational Clustering r = 0.79 Clusters objects according to game state
Bayesian update	Posterior computed over all objects	Posterior computed over all objects	Uniform distribution over objects	Posterior computed over k- chosen objects	Posterior computed over all objects	Posterior computed chosen clustering
Choice Metric	Expected Information Gain	Probability we can correctly guess the object out of a random 20	Expected Information Gain	Expected Information Gain	Probability of a "yes" response	Expected Information Gain
	Do people act in accordance with EIG in the bayesian framework?	Are people changing their behavior to be more efficient for the experiment design?	Are people picking questions from an overall "good bag", ignoring current game context?	Are people approximating the Bayesian model by considering a subset of objects rather than all 1000?	Are people approximating the Bayesian model by using a positive test strategy?	Are people approximating the Bayesian model by using clusters?