1. Dado el siguiente modelo:

$$IP_{t} = \alpha + \beta_{0}PBIR_{t} + \beta_{1}PBIR_{t-1} + \alpha_{0}M_{t} + \alpha_{1}M_{t-1} + \mu_{t}$$

De acuerdo a la propuesta de Almon y suponiendo polinomio de primer grado, con base a la data Data1_Examen sustitutorio

- a) Deducir el modelo a estimar
- b) Escribir la regresión del modelo propuesto
- c) ¿Cuáles son los efectos de corto plazo y de largo plazo? ¿el efecto de corto plazo es estadísticamente significativo? ¿Por qué?

2. Dado el siguiente modelo:

$$IP_{t} = \sum_{i=1}^{3} \alpha_{i} PBI_{t-i} + \sum_{j=1}^{3} \beta_{j} IP_{t-j} + \mu_{1t}$$

$$PBI_{t} = \sum_{i=1}^{3} \lambda_{i} PBI_{t-i} + \sum_{j=1}^{3} \delta_{j} IP_{t-j} + \mu_{2t}$$

Con base a la data Data1_Examen sustitutorio y utilizando el EXCEL ¿Cuál es la dirección de la causalidad según la Prueba de Granger?

$$IP_{t} = \sum_{i=1}^{3} \alpha_{i} PBI_{t-i} + \sum_{i=1}^{3} \beta_{j} IP_{t-j} + \mu_{1t}$$

Resumen

Estadísticas de la regresión					
Coeficiente de correlación					
múltiple	0.81220221				
Coeficiente de					
determinación R^2	0.65967243				
R^2 ajustado	0.61622636				
Error típico	2570.9589				
Observaciones	54				

ANÁLISIS DE VARIANZA

	Grados de	Suma de	Promedio de los		Valor crítico de
	libertad	cuadrados	cuadrados	F	F
Regresión	6	602170307	100361718	15.1837071	1.4164E-09
Residuos	47	310661995	6609829.68		

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%
Intercepción	4187.76687	2339.34196	1.79014737	0.07987319	-518.3821328
IP-1	1.15311237	0.31668749	3.64116805	0.00067458	0.516019317
IP-2	-0.44221857	0.29790871	-1.48440968	0.1443765	-1.041533582
IP-3	0.13067007	0.28156062	0.46409215	0.64472421	-0.435756831
PBIR-1	-0.12145676	0.10384196	-1.16963083	0.24804697	-0.330359851
PBI-2	0.0205523	0.08491785	0.24202565	0.80981324	-0.150280383
PBIR-3	0.09839439	0.09861595	0.99775331	0.32350835	-0.099995309

$$PBI_t = \sum_{i=1}^3 \lambda_i PBI_{t-i} + \sum_{j=1}^3 \delta_j IP_{t-j} + \mu_{2t}$$

Resumen

Estadísticas de la regresión				
Coeficiente de correlación				
múltiple	0.91087147			
Coeficiente de determinación				
R^2	0.82968684			
R^2 ajustado	0.80794473			
Error típico	7678.24341			
Observaciones	54			

ANÁLISIS DE VARIANZA

	Grados de	Suma de	Promedio de los		Valor crítico de
	libertad	cuadrados	cuadrados	F	F
Regresión	6	1.3499E+10	2249760802	38.1603716	1.8798E-16
Residuos	47	2770904826	58955421.8		
Total	53	1.6269E+10			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%
Intercepción	11241.1775	6986.51269	1.60898262	0.1143175	-2813.873128
IP-1	1.87730594	0.94579639	1.98489438	0.05301014	-0.025390973
IP-2	-3.00151929	0.889713	-3.37358146	0.00149418	-4.79139098
IP-3	1.25770465	0.84088896	1.49568457	0.14142091	-0.433945747
PBIR-1	0.06049076	0.31012704	0.19505156	0.84619334	-0.563404374
PBI-2	0.76116194	0.25360963	3.00131329	0.00429358	0.250965183
PBIR-3	0.06673099	0.29451939	0.22657588	0.82173611	-0.525765601

¿Cuál es la dirección de la causalidad según la Prueba de Granger?

$$IP_{t} = \sum_{i=1}^{3} \alpha_{i} PBI_{t-i} + \sum_{j=1}^{3} \beta_{j} IP_{t-j} + \mu_{1t}$$

Sumatoria de alfas: 0.84156388

Sumatoria de betas: -0.00251008

 Existe una causalidad bilateral (La relación de las dos variables es BIDIRECCIONAL)

$$PBI_{t} = \sum_{i=1}^{3} \lambda_{i} PBI_{t-i} + \sum_{j=1}^{3} \delta_{j} IP_{t-j} + \mu_{2t}$$

Sumatoria de landas: 0.8883837

Sumatoria de deltas: 0.13349129

 Existe una causalidad bilateral (Tenemos una causalidad BIDIRECCIONAL en el sentido de Granger.)