

What we'll cover this semester

Mathematical models of computation

Complexity Theory

(Resources required so that problems can be computed)

S={blue, red, yellow, green} Sets Set Elements (or members) A={blue, red} such that green ∉ S $A \subseteq S$ $A \subsetneq S$ $A=\{1, 2, 3,\}$ or All elements in A are also in S All elements in A are also in S and $A = \{ n \mid n \in \mathbb{N} \}$ $\forall x \in A \implies x \in S$ exists at least one element in S that is not in A Infinite set $S \subseteq S$ $\forall x \in A \implies x \in S \land$ Subsets $\exists y \in S \implies y \notin A$ B={red, blue} Proper subset B={} B={white} The empty set Unordered pair

Singleton set

Venn Diagrams of Sets – operations on sets

 $(A \cup B)$

Union

 $(A \cap B)$

Intersection

 $(A \cap B)^C \approx \overline{(A \cap B)}$

Complement
(A and B contain all elements)

Sets

$$\{1,2,3\} = \{1,1,3,2\}$$
 Order and repetition of elements does not matter $\{1,2,3\} \neq \{1,1,2\}$

All elements in set A are also in set B <u>and</u> all elements in Set B are also in set A.

$$\forall x \in A \implies x \in B \land \forall x \in B \implies x \in A$$

Equivalent Sets

$$A = \{0, 1\}$$

$$\mathcal{P}(A) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$$

$$|\mathcal{P}(A)| = 2^{|A|} = 2^2 = 4$$

Power Set

$$|\{1,2,3\}| = 3$$

 $|\{1,1,2,3\}| = 3$
 $|\{\}| = 0$

Cardinality

Sequences and Tuples

$$(a_1,a_2,\ldots,a_k)$$

 $(1,2,3) \neq (1,1,2,3)$ Order and repetition of elements do matter

K-tuple (Ordered pair if k=2)

$$A = \{0, 1\}$$

$$B = \{x, y\}$$

$$A \times B = \{(0, x), (0, y), (1, x), (1, y)\}$$

$$B \times A = \{(x, 0), (y, 0), (x, 1), (y, 1)\}$$

$$A \times B \neq B \times A$$

Cross (or Cartesian) Product of Sets

|(1,2,3)| = 3|(1,2,2,3)| = 4

Cardinality

Definitions, Theorems, and Proofs

- Statement: an unambiguous, precise description of some property that an object has.
 - A statement may be true or not
- Theorem: a statement that has been proved to be true
- Proof: a convincing logical argument that a statement is true i.e., holds

How to work out a proof

- Understand a statement and all its parts
- Is the statement is true or false? Try a few examples. Find a counterexample
- Can a proof be adapted to a new theorem? Explore differences, what is missing, what is not needed?
- Create an outline of the proof. E.g., First I need to show this, after that I need to show that, etc.
- If you get stuck, try to prove an simplified statement or a special case of it. Try different proof method

Ensure that other people reading your proof (and yourself) can follow your statements

Types of Proofs

By deduction

- Sequence of statements whose truth leads us from the initial statements, the hypotheses, to a conclusions statement.
 - Example: All men are mortal. Socrates is a man. Therefore Socrates is mortal.

By construction

- Many theorems state that a particular type of object exists. To prove such theorems we can demonstrate how to construct the corresponding object.
 - Example: How to construct a graph with even number of nodes.

By induction

- Used to show properties of infinite sets.
- Show that property holds for case i, which is usually 0 or 1, then assume it holds for the case k where k
 i, then show that the property hold for the case k+1 using the results of the case k.

• Example:
$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

By contradiction

- We assume that the theorem is false and then show that following this assumption leads to a contradiction, i.e., a statement that is both true and false.
 - Example: proof that $\sqrt{2}$ is irrational by starting with the claim that $\sqrt{2}$ is a rational number.

Examples

- Equivalence of sets with repeated elements
 - Consider A = $\{a_1, a_2, a_3, a_4, ...\}$ = $\{x \mid x = a_1 \lor x = a_2 \lor x = a_3 \lor x = a_4 \lor ...\}$. Show that a set with repeated elements, e.g., $\{1,1\}$, is equivalent to a set without repeated elements, e.g., to $\{1\}$
 - Thinking about the proof. By the above definition we can rewrite $\{1,1\}$ as $\{x \mid x = 1 \lor x = 1\}$. However $x = 1 \lor x = 1$ is equivalent to x = 1 because v operator is idempotent* for the same terms. Therefore we can rewrite $\{1,1\}$ as $\{x \mid x = 1\}$ which by the set definition is $\{1\}$
 - Proof.
 - Assume that a set $\{a_1, a_2, a_3, a_4, ...\}$ has some repeated elements.
 - Without loss of generality let it be elements a; and a;.
 - Then those elements will appear as terms in disjunctions of the set's definition, i.e., $x = a_i v x = a_j$.
 - Because v is idempotent for the same terms one of the terms can be eliminated, i.e., $x = a_i$.
 - The simplified definition will provide us with the set that does not contain repeated elements.

^{*}Element of a set that is unchanged in value when multiplied or otherwise operated on by itself

Examples – Whiteboard Work

- 1. Prove that the following statement is true: $\overline{(AUB)} = \bar{A} \cap \bar{B}$
 - 1. Hint, If X=Y, then that means that Y=X, show that in your proof
- 2. Let S be a finite subset of some infinite set U. Let T be the complement of S with respect to U. Then T is infinite
 - Hint, think of cardinality of set and proof by contradiction assuming T is finite.

Strings

- An alphabet is a set of symbols
 - Examples

$$\Sigma_1 = \{0, 1\}$$

$$\Sigma_2 = \{a, b, c, d, e, f, g, h, \dots, z\}$$

- A **string** is a finite sequence of symbols over an alphabet
 - Examples

$$(0,0),(1,0,1),(1,1)\dots \\ 00,101,11,\dots \\ Strings over \Sigma_1 \\ Simplifications \\ (h,i),(h,e,l,l,o),\dots \\ hi,hello,\dots \\ Strings over \Sigma_2$$

Strings

- More info on strings
 - Length (number of symbols in a string)

$$w = 101 \text{ then } |w| = 3$$

Empty string (string of length zero)

 $\boldsymbol{\epsilon}$

Concatenation (association of strings)

$$x = 101 y = 00 then xy = 10100$$

• Repetition (wi)

$$w = 10 \text{ then } w^3 = 101010 \text{ and } w^0 = \epsilon$$

Strings Cont.

• Reverse (w^R)

$$w = x_1 x_2 ... x_n$$
 then $w^R = x_n x_{n-1} ... x_1$
 $w = abc$ then $w^R = cba$
 $w = w^R$ then w is a palindrome

Substring (string that appears consecutively within another string)

Languages

- A language is a set of strings over an alphabet
 - Example:

$$\Sigma = \{0, 1\}$$

- Special cases
 - Empty language Ø, i.e., a language without strings
 - The size of the empty language is | Ø | = 0
 - Language (c) is a language with one string that happens to be the empty string
 - The size of the language that includes only the empty string is $|\{\epsilon\}| = 1$
- Remember!
 - The syntax of a language constrains the set of strings that are part of a language to satisfy certain properties

Languages

- We define a language by
 - Listing all strings
 - {01,0011,000111,...}
 - Describing how to construct a typical string
 - $\circ \{0^k1^k \mid k > 0\}$
 - Describing how to test a string for membership
 - {x over {0,1} | x has the same number of 0's and 1's, has at least one 0, and all 0's precede all 1's }
 - Defining a machine/program that accepts all strings in a language
 - Defining a machine/program that *generates* all strings in a language

So Far....

- Review on sets and sequences
- General overview of languages

