Interferometro di Michelson

Laboratorio di Ottica, Elettronica e Fisica Moderna C.d.L. in Fisica, a.a. 2023-2024 Università degli Studi di Milano

Lucrezia Bioni, Leonardo Cerasi, Giulia Federica Bianca Coppi Matricole: 13655A, 11410A, 11823A

9 novembre 2023

1 Introduzione

1.1 Scopo

In questa esperienza ci si propone di misurare - mediante l'utilizzo dell'interferometro di Michelson - le seguenti quantità: la lunghezza d'onda di un fascio di luce monocromatica, l'indice di rifrazione dell'aria, la lunghezza di coerenza dei pacchetti d'onda di una sorgente non monocromatica e la separazione tra le due lunghezze d'onda del doppietto del sodio.

1.2 Metodo

Per la misurazione delle quattro grandezze interessate, si utilizza l'apparato sviluppato da Michelson riportato in figura:

Fig. 1: Schema dell'interferometro di Michelson accoppiato con la sorgente di luce disposta su un banco ottico separato.

L'interferometro è costituito da quattro lastre di vetro (S_1, S_2, S_3, L_c) : S_1 è semiriflettente - rivolta verso S_2 - a facce piane e parallele, S_2 ed S_3 sono completamente riflettenti sulla faccia rivolta verso S_1 , L_c è una lastra trasparente il cui scopo è quello di rendere uguali i cammini ottici compiuti dai raggi lungo i due bracci dello strumento.

Dopo aver verificato che S_2 ed S_3 siano perpendicolari e che formino un angolo di 45° con S_1 , il raggio luminoso inciderà su S_1 sdoppiandosi: il primo verrà riflesso da S_2 e dalla faccia riflettente di S_1 , per poi proseguire verso lo schermo, il secondo - riflesso da S_1 - verrà riflesso da S_3 ed inciderà sullo schermo dove formerà delle figure di interferenza con il primo raggio - douvuta alla coerenza dei due fasci luminosi.

1.2.1 Lunghezza d'onda di un fascio di luce monocromatica

Si vuole misurare la lunghezza d'onda di un fascio di luce laser. Agendo sulla variazione di cammino ottico dei due fasci - spostando lo specchio S_3 - si conta il numero di frange chiare (o scure) passanti per un punto prefissato dello schermo. La misura della lunghezza d'onda è pertanto data dall'equazione:

$$\lambda = \frac{2n_a \Delta x}{N_1} \tag{1.2.1}$$

dove λ è la lunghezza d'onda incognita, n_a è l'indice di rifrazione dell'aria, Δx è lo spostamento dello specchio S_3 ed N_1 è il numero di frange chiare (o scure) contate.

1.2.2 Indice di rifrazione dell'aria

Tra gli specchi S_1 ed S_2 viene inserita una cameretta contenente una pompa per la creazione del vuoto. Il cammino ottico percorso dal fascio luminoso nel vuoto cambia, poichè questo è legato all'indice di rifrazione del mezzo che attraversa come mostrato dall'equazione 1.2.1. Quindi, facendo rientrare lentamente l'aria nella cameretta e contando le frange di interferenza passanti per un dato punto sullo schermo, si riuscirà a fornire una stima del valore dell'indice di rifrazione dell'aria n_a secondo la seguente equazione:

$$2d(n_a - 1) = N_2\lambda \tag{1.2.2}$$

dove n_a è l'indice di rifrazione dell'aria, N_2 è il numero di frange contate su un punto dello schermo, λ è la lunghezza d'onda del fascio emesso dalla sorgente monocromatica e d è la lunghezza interna della cameretta dove viene praticato il vuoto.

1.2.3 Lunghezza dei pacchetti d'onda di una sorgente non monocromatica

Il fascio di luce prodotto da una sorgente non monocromatica è costituito da impulsi di lunghezza limitata. L'inferferenza dei fasci luminosi riflessi dagli specchi S_2 ed S_3 si manifesta quando la distanza tra le due sorgenti immagine è inferiore alla lunghezza del pacchetto. Quando viene superata tale lunghezza, si osserva sullo schermo una figura uniformemente illuminata. Dunque, si misura la distanza tra due zone di uniforme illuminazione - mediante la misura dello spostamento di S_3 - per quantificare tale grandezza.

1.2.4 Differenza tra le lunghezze d'onda del doppietto del sodio

Si utilizza ora una sorgente luminosa al sodio per misurare le due lunghezze d'onda che emette e la loro conseguente separazione. Quando le frange di interferenza delle due lunghezze d'onda si vanno a sovrapporre, sullo schermo si vede una figura di interferenza con frange molto nette - in particolare quando la differenza di cammino ottico tra i fasci provenieni da S_2 ed S_3 è nulla. Si misura quindi lo spostamento dello specchio S_3 e si ricava:

$$\lambda_2 - \lambda_1 = \frac{m\bar{\lambda}^2}{2\Delta x} \tag{1.2.3}$$

dove λ_1 e λ_2 sono le due lunghezze d'onda del doppietto del sodio, m è il numero di alternanze tra le condizioni di interferenza netta, $\bar{\lambda}$ è la media delle due lunghezze d'onda e Δx è lo spostamento dello specchio S_3 .

2 Misure

2.1 Lunghezza d'onda di un fascio di luce monocromatica

La misura della lunghezza d'onda del fascio laser viene effettuata prendendo 5 misure dello spostamento dello specchio mobile e contando le frange passanti per un punto fissato dello schermo. Le misure effettuate sono riportate nella seguente Tabella:

N_1	$x_1 [\mathrm{mm}]$	$x_2 [\mathrm{mm}]$
195	10.00	10.30
194	10.00	10.30
150	10.00	10.23
150	10.00	10.23
180	10.00	10.28

Tab. 1: Misure di N_1 , x_1 e x_2 effetuate per valutare la lunghezza d'onda della sorgente laser

Al conteggio N_1 viene fornito un errore di ± 5 , a seguito di una valutazione dell'errore commesso dagli sperimentatori; mentre alle misure di x_1 e x_2 viene fornita come incertezza la risoluzione dello strumento, pari a $0.01 \,\mathrm{mm}$.

Gli spostamenti x_1 e x_2 sono effettuati attraverso una vita micrometrica che permette spostamenti fini dello specchio S_3 pari ad $\frac{1}{5}$ di quelli impressi dallo sperimentatore.

2.2 Indice di rifrazione dell'aria

La camera usata per creare il vuoto ha lunghezza $D=0.05\,\mathrm{m}$ - valore considerato senza incertezza. Fissato un punto dello schermo, durante la reimmissione dell'aria nella camera, si conta il numero di frange d'interferenza che vi passano: in 5 misurazioni di fila, si è sempre ottenuto il valore $N_2=42\pm5.$

2.3 Lunghezza dei pacchetti d'onda di una sorgente non monocromatica

Vengono fatte, attraverso la lettura della posizione della vite micrometrica, 6 misure dello spostamento dello specchio per valutare la lunghezza del treno di impulsi come descritto nel Paragrafo 1.2.3. I risultati sono riportati in tabella:

$x_1 [\mathrm{mm}]$	$x_2 [\mathrm{mm}]$
15.58	15.54
15.58	15.54
15.57	15.54
15.57	15.54
15.57	15.54
15.57	15.54

Tab. 2: Misure della posizione iniziale e finale dello specchio S_3

A queste misure viene sempre fornita l'incertezza strumentale pari a 0.01mm.

2.4 Differenza tra le lunghezze d'onda del doppietto del sodio

Per valutare la differenza $\Delta\lambda$ tra le due lunghezze d'onda emesse dal sodio, si misura, attraverso la vite micrometrica, lo spostamento che intercorre tra due posizioni di S_3 tali per cui si osservi un'illuminazione completamente diffusa. Vengono prese 8 misure dello spostamento dello specchio S_3 , fornendo anche il numero m di alternanze di interferenze nette viste sullo schermo durante lo spostamento dello specchio mobile. Le misure vengono riportate in tabella:

m	$x_1 [\mathrm{mm}]$	$x_2 [\mathrm{mm}]$
1	16.24	17.73
1	17.73	19.11
1	19.11	20.66
1	20.66	22.07
1	22.07	23.58
1	23.58	24.98
1	17.72	19.15
2	19.15	22.17

Tab. 3: Misure di m, x_1 e x_2 effettuate per valutare $\Delta \lambda$ del doppietto di Na

Dove l'indice m rappresenta il numero di interferenze nitide osservate tra le posizioni iniziale e finale dello specchio rilevate. L'incertezza attribuita alle misure di x_1 e x_2 è quella strumentale: 0.01mm.

3 Analisi Dati

Ogni volta che si è misurato lo spostamento Δx , si è dovuto considerare quanto osservato in precedenza: lo spostamento effettivo dello specchio S_3 risulta essere $\frac{1}{5}$ di quello effettuato mediante vite micrometrica. Da una propagazione dell'errore sulla singola misura di posizione, e tenuto conto del meccanismo di funzionamento dello strumento, l'incertezza risulta essere:

$$\sigma_{\Delta x} = \sqrt{\left(\frac{\sigma_{x_1}}{5}\right)^2 + \left(\frac{\sigma_{x_2}}{5}\right)^2} = 3\,\mu\text{m} \tag{3.4}$$

3.1 Lunghezza d'onda di un fascio di luce monocromatica

A partire dai dati in Tab. 1 e approssimando l'indice di rifrazione dell'aria a $n_a \approx 1$, tramite la relazione 1.2.1, si sono ricavati i valori di λ_0 :

$\lambda_0 \pm \sigma_{\lambda_0}$ [nm]	1]
615 ± 33	
617 ± 33	
613 ± 43	
613 ± 43	
622 ± 36	

Tab. 4: Valori della lunghezza d'onda ricavati dal set di misure.

dove l'incertezza è stata attribuita mediante propagazione degli errori sulle grandezze Δx e N_1 nella 1.2.1:

$$\sigma_{\lambda_0} = \sqrt{\left(\frac{2n_a}{N_1}\right)^2 \sigma_{\Delta x}^2 + \left(\frac{2n_a \Delta x}{N_1^2}\right)^2 \sigma_N^2}$$
(3.1.5)

Si è scelto di attribuire come incertezza a ogni singola misura quella sistematica poiché l'incertezza statistica, determinata mediante deviazione standard, è risultata di un ordine di grandezza inferiore, ovvero pari a 2.5 nm per tutte le misure.

Attraverso la media ponderata dei valori di λ_0 ottenuti, si ottiene una stima della misura della lunghezza d'onda della luce laser:

$$\lambda_0 = 617 \pm 16 \,\text{nm} \tag{3.1.6}$$

dove l'incertezza è quella di una media ponderata.

3.2 Indice di rifrazione dell'aria

A partire dalle equazioni 1.2.1 e 1.2.2, si possono ricavare le seguenti espressioni per n_a e λ_a :

$$n_a = \frac{N_1 D}{N_1 D - N_2 \Delta x}$$
 $\lambda_a = \frac{2\Delta x D}{N_1 D - N_2 \Delta x}$ (3.2.7)

A questo punto, incrociando i dati in Tab. 1 con quelli riportati nel Par. 2.2, si ottengono i valori riportati in Tab. 7, nella quale i valori delle incertezze sono stati ricavati tramite le relative propagazioni degli errori:

$$\sigma_n = \frac{N_1 N_2 D \Delta x}{\left(N_1 D - N_2 \Delta x\right)^2} \sqrt{\left(\frac{\sigma_{N_1}}{N_1}\right)^2 + \left(\frac{\sigma_{\Delta x}}{\Delta x}\right)^2 + \left(\frac{\sigma_{N_2}}{N_2}\right)^2 + \left(\frac{\sigma_D}{D}\right)^2}$$
(3.2.8)

$$\sigma_{\lambda} = \frac{\Delta x^2 D^2}{2 \left(N_1 D - N_2 \Delta x \right)^2} \sqrt{\left(\frac{N_1}{\Delta x} \right)^2 \left(\left(\frac{\sigma_{N_1}}{N_1} \right)^2 + \left(\frac{\sigma_{\Delta x}}{\Delta x} \right)^2 \right) + \left(\frac{N_2}{D} \right)^2 \left(\left(\frac{\sigma_{N_2}}{N_2} \right)^2 + \left(\frac{\sigma_D}{D} \right)^2 \right)}$$
(3.2.9)

Il valore finale e la rispettiva incertezza di n_a e λ_a sono stati determinati tramite media ponderata:

$$n_a = 1.000259 \pm 0.000007$$
 $\lambda_a = 617 \pm 8 \,\text{nm}$ (3.2.10)

3.3 Lunghezza dei pacchetti d'onda di una sorgente non monocromatica

Si calcola la lunghezza di coerenza del pacchetto d'onda della sorgente attraverso la seguente relazione: $L = \Delta x$. A tale grandezza, si attribuisce incertezza mediante propagazione degli errori su x_1 e x_2 . Si può inoltre ricavare l'ampiezza del pacchetto d'onda nello spazio delle frequenze: $\Delta \nu = \frac{c}{L}$, cui è stata attribuita un'incertezza sempre mediante propagazione degli errori:

$$\sigma_{\Delta\nu} = \frac{c}{L^2} \sigma_L \tag{3.3.11}$$

I valori di L e di $\Delta \nu$ così ottenuti sono riportati nella seguente tabella:

$L \pm \sigma_L \ [\mu m]$	$\Delta \nu \pm \sigma_{\Delta \nu} \left[\cdot 10^{13} \mathrm{Hz} \right]$
8 ± 3	4 ± 1
8 ± 3	4 ± 1
6 ± 3	5 ± 2

Tab. 5: Valori della lunghezza di coerenza L e dell'ampiezza del pacchetto d'onda nello spazio delle frequenze $\Delta \nu$ ricavati dal set di misure.

Attraverso una media ponderata, si ottengono i valori finali per L e $\Delta \nu$ e le rispettive incertezze:

$$L = 7 \pm 1 \,\mu\text{m}$$
 $\Delta \nu = (4 \pm 1) \cdot 10^{13} \,\text{Hz}$ (3.3.12)

3.4 Differenza tra le lunghezze d'onda del doppietto del sodio

Attraverso la relazione 1.2.3, si determina la differenza tra le due lunghezze d'onda del Na, cui è attribuita un'incertezza mediante propagazione degli errori sulla grandezza Δx :

$$\sigma_{\Delta\lambda} = \frac{m\bar{\lambda}}{2\Delta x^2} \sigma_{\Delta x} \tag{3.4.13}$$

I valori così ottenuti sono riportati nella seguente tabella:

$\Delta \lambda [{ m nm}]$		
0.583 ± 0.006		
0.629 ± 0.006		
0.560 ± 0.005		
0.616 ± 0.006		
0.575 ± 0.005		
0.620 ± 0.006		
0.607 ± 0.006		
0.575 ± 0.003		

Tab. 6: Valori di $\Delta \lambda$.

Attraverso la media ponderata, si è ottenuto il valore finale, con la sua incertezza, della differenza di lunghezza d'onda del doppietto del sodio:

$$\Delta \lambda = (0.587 \pm 0.002) \,\text{nm}$$
 (3.4.14)

4 Conclusioni

L'indice di rifrazione dell'aria ottenuto, $n_a = 1.000259 \pm 0.000007$, è in accordo, entro 2σ , con il valore universalmente accettato $\bar{n} = 1.000273$ (assumendo condizioni STP).

Inoltre, i due valori della lunghezza d'onda del laser, ottenuti con e senza approssimazione dell'indice di rifrazione dell'aria, sono in perfetto accordo tra loro: $\lambda_0=617\pm16\,\mathrm{nm}$ e $\lambda_a=616\pm7\,\mathrm{nm}$.

La lunghezza di coerenza del pacchetto di luce non monocromatica $L = 7 \pm 1 \,\mu\text{m}$ è consistente con quanto atteso: poiché la sorgente è policromatica, genera casualmente dei pacchetti non coerenti tra loro.

Infine, il valore della differenza tra le lunghezze d'onda del doppietto del sodio $\Delta\lambda=(0.587\pm0.002)$ nm è in buon accordo con il valore atteso, $\Delta\bar{\lambda}=(0.600)$ nm.

Appendice

N_1	$\Delta x \pm \sigma_{\Delta x} [\mathrm{mm}]$	N_2	$D[\mathrm{mm}]$	$n_a \pm \sigma_n$	$\lambda \pm \sigma_{\lambda} [\mathrm{nm}]$
195	0.060 ± 0.003	42	0.05	1.000259 ± 0.000034	616 ± 33
195	0.060 ± 0.003	42	0.05	1.000259 ± 0.000034	616 ± 33
195	0.060 ± 0.003	42	0.05	1.000259 ± 0.000034	616 ± 33
195	0.060 ± 0.003	42	0.05	1.000259 ± 0.000034	616 ± 33
195	0.060 ± 0.003	42	0.05	1.000259 ± 0.000034	616 ± 33
150	0.046 ± 0.003	42	0.05	1.000258 ± 0.000036	613 ± 43
150	0.046 ± 0.003	42	0.05	1.000258 ± 0.000036	613 ± 43
150	0.046 ± 0.003	42	0.05	1.000258 ± 0.000036	613 ± 43
150	0.046 ± 0.003	42	0.05	1.000258 ± 0.000036	613 ± 43
150	0.046 ± 0.003	42	0.05	1.000258 ± 0.000036	613 ± 43
180	0.056 ± 0.003	42	0.05	1.000261 ± 0.000035	622 ± 44
180	0.056 ± 0.003	42	0.05	1.000261 ± 0.000035	622 ± 44
180	0.056 ± 0.003	42	0.05	1.000261 ± 0.000035	622 ± 44
180	0.056 ± 0.003	42	0.05	1.000261 ± 0.000035	622 ± 44
180	0.056 ± 0.003	42	0.05	1.000261 ± 0.000035	622 ± 44
194	0.060 ± 0.003	42	0.05	1.000260 ± 0.000034	619 ± 33
194	0.060 ± 0.003	42	0.05	1.000260 ± 0.000034	619 ± 33
194	0.060 ± 0.003	42	0.05	1.000260 ± 0.000034	619 ± 33
194	0.060 ± 0.003	42	0.05	1.000260 ± 0.000034	619 ± 33
194	0.060 ± 0.003	42	0.05	1.000260 ± 0.000034	619 ± 33
150	0.046 ± 0.003	42	0.05	1.000258 ± 0.000036	613 ± 33
150	0.046 ± 0.003	42	0.05	1.000258 ± 0.000036	613 ± 33
150	0.046 ± 0.003	42	0.05	1.000258 ± 0.000036	613 ± 33
150	0.046 ± 0.003	42	0.05	1.000258 ± 0.000036	613 ± 33
150	0.046 ± 0.003	42	0.05	1.000258 ± 0.000036	613 ± 33

Tab. 7: Valori di indice di rifrazione dell'aria n_a e di lunghezza d'onda λ della luce laser con rispettive incertezze, relativi a ciascuna misura di spostamento Δx dello specchio S_3 , di spessore D della cameretta in cui si pratica il vuoto e di numero di frange luminose (N_1 con variazione di cammino geometrico ed N_2 con variazione di indice di rifrazione).