

EC20 R2.0 Mini PCIe-C (Audio 版本) 硬件设计手册

LTE 系列

版本: EC20 R2.0_Mini_PCle-C(Audio 版本)_硬件设计手册_V1.0

日期: 2016-06-23

移远公司始终以为客户提供最及时、最全面的服务为宗旨,如需任何帮助,请随时联系我司上海总部,联系方式如下:

上海移远通信技术有限公司

地址: 上海市徐汇区田州路 99 号 13 幢 501 室

电话: +86 21 51086236 邮箱: <u>info@quectel.com</u>

或联系我司当地办事处,详情请登录:

http://www.quectel.com/support/salesupport.aspx

如需技术支持或反馈我司技术文档中的问题,可随时登陆如下网址:

http://www.quectel.com/support/techsupport.aspx

或者发送邮件至: Support@quectel.com

前言

移远公司提供该文档内容用以支持其客户的产品设计。客户须按照文档中提供的规范,参数来设计其产品。由于客户操作不当而造成的人身伤害或财产损失,本公司不承担任何责任。在未声明前,移远公司有权对该文档规范进行更新。

版权申明

本文档手册版权属于移远公司,任何人未经我公司复制转载该文档将承担法律责任。

版权所有 ©上海移远通信技术有限公司 2016, 保留一切权利。

Copyright © Quectel Wireless Solutions Co., Ltd. 2016

文档历史

修订记录

版本	日期	作者	变更表述	
1.0	2016-06-23	Woody WU/ Jenson WU	初始版本	

目录

文档	当历史	2
目录	₹	3
表格	各索引	5
图片	十索引	6
1	引言	7
•	1.1. 安全须知	
2	产品综述	
	2.1. 本章概述	8
	2.2. 产品简介	
	2.3. 关键特性	
	2.4. 主要功能	11
3	接口应用	13
	3.1. 本章概述	_
	3.2. EC20 R2.0 Mini PCIe-C 接口	
	3.2.1. 接口定义	
	3.2.2. 管脚分配	
	3.3. 电源接口	
	3.4. UART接口	
	3.5. USIM 卡接口	
	3.6. USB接口	
	3.7. 模拟音频接口	
	3.7.1. 防止 TDD 噪声及其它噪声	
	3.7.2. 麦克风接口电路	
	3.7.3. 听筒接口电路	
	3.8. 控制信号	
	3.8.1. UART DTR 信号	
	3.8.2. W DISABLE#信号	
	3.8.3. PERST#信号	25
	3.8.4. LED_WWAN#信号	
	3.8.5. WAKEUP_IN 和 WAKEUP_OUT 信号	
	3.9. 天线接口	
	3.9.1. 天线要求	27
	3.9.2. RF 连接器	
		00
4	接口电气及射频特性	
	4.1. 本章概述	
	4.2. 电源特性	
	4.3. I/O 接口特性	
	4.4. 射频性能	
	4.5. GNSS 接收性能	31

	4.6.	ESD 特性	31
5	外形组	吉构及包装	33
	5.1.	EC20 R2.0 Mini PCIe-C 外形尺寸	33
	5.2.	Mini PCI Express 标准尺寸	33
	5.3.	包装	35
6	附录	参考文档及术语缩写	36

表格索引

表 1:	EC20 R2.0 MINI PCIE-C 模块产品	8
表 2:	EC20 R2.0 MINI PCIE-C 关键特性	9
表 3:	I/O 参数定义	13
表 4:	管脚定义	14
表 5:	电源接口定义	17
表 6:	UART 接口信号定义	18
表 7:	USIM 卡接口信号定义	19
表 8:	USB 接口信号定义	20
表 9:	模拟音频接口信号定义	22
表 10:	: 控制信号接口定义	24
表 11:	射频操作状态	25
	: LED_WWAN#信号网络状态指示	
表 13:	:WAKEUP_IN 和 WAKEUP_OUT 信号描述	26
表 14:	: 天线要求	27
表 15:	: 输入电源范围	29
表 16:	: I/O 接口电气特性	30
表 17:	: 射频发射功率	30
表 18:	: 射频接收灵敏度	31
	: ESD 特性	
表 20:	: 参考文档	36
表 21:	· 术语缩写	36

图片索引

图	1:	EC20 R2.0 MINI PCIE-C 功能框图	. 12
图	2:	EC20 R2.0 MINI PCIE-C 接口管脚分配	. 16
图	3:	LDO 电源参考电路	. 17
图	4:	3.3V 电平匹配参考电路	. 18
图	5:	6-PIN USIM 卡电路连接参考图	. 19
图	6:	USB 接口电路参考设计图	. 21
图	7:	麦克风通道参考电路	. 23
图	8:	SPK 输出参考电路	. 23
图	9:	带音频功放输出参考电路	. 24
图	10:	复位时序图	. 25
图	11:	状态指示灯参考电路	. 26
图	12:	EC20 R2.0 MINI PCIE-C 天线接口	. 27
图	13:	天线连接座尺寸	. 28
		天线连接座配套插头	
		EC20 R2.0 MINI PCIE-C 外形尺寸	
图	16:	标准 MINI PCI EXPRESS 卡尺寸	. 34
冬	17:	MINI PCI EXPRESS 连接器	. 34

1 引言

本文档介绍了 EC20 R2.0 Mini PCIe-C (Audio 版本)模块的功能、关键特性、接口说明和电气特性、射频特性及结构等相关内容,可供用户参考。

1.1. 安全须知

通过遵循以下安全原则,可确保个人安全并有助于保护产品和工作环境免遭潜在损坏。

道路行驶安全第一! 当你开车时,请勿使用手持移动终端设备,即使其有免提功能。请停车,再打电话!

登机前请关闭移动终端设备。移动终端的无线功能在飞机上禁止开启用以防止对飞机通讯系统的干扰。忽略该提示项可能会导致飞行安全,甚至触犯法律。

当在医院或健康看护场所,注意是否有移动终端设备使用限制。RF干扰会导致医疗设备运行失常,因此可能需要关闭移动终端设备。

移动终端设备并不保障任何情况下都能进行有效连接,例如在移动终端设备没有话费或 SIM 无效。当你在紧急情况下遇见以上情况,请记住使用紧急呼叫,同时保证您的设备开机并且处于信号强度足够的区域。

您的移动终端设备在开机时会接收和发射射频信号。当靠近电视,收音机电脑或者其他电子设备时都会产生射频干扰。

请将移动终端设备远离易燃气体。当你靠近加油站,油库,化工厂或爆炸作业场所,请关闭移动终端设备。在任何有潜在爆炸危险场所操作电子设备都有安全隐患。

2 产品综述

2.1. 本章概述

EC20 R2.0 Mini PCIe-C 模块是 PCI Express Mini Card 1.2 标准接口 LTE 模块,提供FDD-LTE/TDD-LTE/WCDMA/TD-SCDMA/CDMA/GSM 网络数据连接,支持 WinCE/Linux/Android 等嵌入式操作系统。

EC20 R2.0 Mini PCIe-C 模块可应用在以下场合:

- 上网本、笔记本
- 远程监控
- 车载
- 无线 POS 机
- 智能抄表
- 无线路由、交换机
- 其它无线终端

本章主要对 EC20 R2.0 Mini PCle-C 模块进行总体介绍,包括:

- 产品简介
- 关键特性
- 主要功能

2.2. 产品简介

EC20 R2.0 Mini PCIe-C 模块产品有 Data only 和 Telematics 两个版本。其中 Data only 版本不支持音频功能,Telematics 版本支持音频功能。EC20 R2.0 Mini PCIe-C 模块产品如下表所示。

表 1: EC20 R2.0 Mini PCIe-C 模块产品

产品名称	产品描述
EC20-C R2.0 Mini PCIe-C	支持 FDD-LTE: B1/B3/B8 支持 TDD-LTE: B38/B39/B40/B41

	支持 WCDMA: B1/B8 支持 TD-SCDMA: B34/B39 支持 GSM900/1800		
	支持 GPS, GLONASS, BeiDou/Compass, Galileo, QZSS ¹⁾ 支持模拟音频 ²⁾		
	支持 FDD-LTE: B1/B3/B8		
	支持 TDD-LTE: B38/B39/B40/B41		
	支持 WCDMA: B1/B8		
EC20-CE R2.0 Mini PCIe-C	支持 TD-SCDMA: B34/B39		
EC20-CE R2.0 WIIII PCIE-C	支持 CDMA: BC0		
	支持 GSM900/1800		
	支持 GPS, GLONASS, BeiDou/Compass, Galileo, QZSS ¹⁾ 支持模拟音频 ²⁾		

备注

- 1. GPS, GLONASS, BeiDou/Compass, Galileo, QZSS 功能可选。
- 2. 音频功能只在 Telematics 版本上支持。
- 3. EC20 R2.0 MiniPCIe-C 包括 EC20CFA-MINIPCIE-C 和 EC20CFD-MINIPCIE-C (采购编码)。 EC20CFD-MINIPCIE-C 不支持分集接收和 GNSS 功能。

2.3. 关键特性

下表描述了 EC20 R2.0 Mini PCIe-C 模块关键特性:

表 2: EC20 R2.0 Mini PCle-C 关键特性

特性	说明
Mini PCIe 接口	采用 PCI Express Mini Card 1.2 标准接口
工作电压	3.3~3.6V
	Class 4 (33dBm±2dB) for GSM900
	Class 1 (30dBm±2dB) for DCS1800
	Class E2 (27dBm±3dB) for GSM900 8-PSK
	Class E2 (26dBm±3dB) for DCS1800 8-PSK
发射功率	Class 3 (24dBm+3/-1dB) for CDMA BC0
	Class 3 (24dBm+1/-3dB) for WCDMA bands
	Class 2 (24dBm+1/-3dB) for TD-SCDMA bands
	Class 3 (23dBm±2dB) for LTE FDD bands
	Class 3 (23dBm±2dB) for LTE TDD bands

LTE 特性	最大支持 non-CA CAT4 支持 1.4~20MHz 射频带宽 下行支持多用户 MIMO FDD:最大上行速率 50Mbps,最大下行速率 150Mbps TDD:最大上行速率 35Mbps,最大下行速率 130Mbps
WCDMA 特性	支持 3GPP R8 DC-HSPA+ 支持 16-QAM,64-QAM 和 QPSK modulation 3GPP R6 CAT6 HSUPA: 最大上行速率 5.76Mbps 3GPP R8 CAT24 DC-HSPA+: 最大下行速率 42Mbps
TD-SCDMA 特性	支持 CCSA Relese3 最大上行速率 2.2Mbps,最大下行速率 4.2Mbps
CDMA 特性	支持 CDMA 1X Advanced,1XEV-DOr0/-DOrA 最大上行速率 1.8Mbps,最大下行速率 3.1Mbps
GSM/GPRS/EDGE 特性	R99: CSD 传输速率: 9.6kbps, 14.4kbps GPRS: 支持 GPRS multi-slot class 12 (默认为 12) 编码方式: CS-1/CS-2/CS-3 和 CS-4 支持每帧最大 4 个 RX 时隙 EDGE: 支持 EDGE multi-slot class 12 (默认为 12) 支持 GMSK 和 8-PSK 不同调制和编码方式 支持上/下行编码方式: CS 1-4 和 MCS 1-9
网络协议特性	支持 TCP/UDP/PPP/FTP/HTTP/SMTP/MMS/NTP/PING/QMI 协议 支持 PAP 协议 (Password Authentication Protocol) 和 CHAP 协议 (Challenge Handshake Authentication Protocol)
短消息(SMS)业务	支持 Text 和 PDU 模式 支持点对点 MO 和 MT 支持小区广播短信息 SMS 存储: 默认 ME
USIM 卡接口	支持 USIM/SIM 卡: 1.8V 和 3.0V
UART 接口	支持 RTS 和 CTS 硬件流控 波特率可达到 230400bps, 默认 115200bps 可用于 AT 命令和数据传输
模拟音频接口	支持 1 路差分输入 支持 1 路差分输出
USB 接口	符合 USB2.0 协议(只能作从设备使用),最高传输速率支持 480Mbps 用于软件升级、AT 命令、数据传输,抓取 LOG 和 GNSS NMEA 语句输出 USB 驱动支持: Windows XP, Windows Vista, Windows 7, Windows 8/8.1, Linux 2.6 or Later, WinCE 5.0/6.0/7.0, Android 2.3/4.0/4.2/4.4/5.0

	支持主天线接口
天线接口	支持分集天线接口
	支持 GNSS 天线接口
GNSS 特性	采用高通 Gen8C-Lite 技术
	支持协议: NMEA 0183
	尺寸: 51.0 × 30.0 × 4.9mm
尺寸及重量	重量:约 9.8 克
温度	正常工作温度: -35°C ~ +75°C ¹⁾
値 /支	扩展工作温度: -40°C ~ +85°C ²⁾
软件升级	通过 USB 和 DFOTA 升级
RoHS	所有元器件均符合欧盟 RoHS 标准

备注

- 1. 1) 表示当模块工作在此温度范围时,模块的相关性能满足 3GPP 标准要求。
- 2. ²⁾ 表示当模块工作在此温度范围时,模块仍能保持正常工作状态,具备语音、短信、数据传输、紧急呼叫等功能;不会出现不可恢复的故障;射频频谱、网络基本不受影响;仅个别指标如输出功率等参数的值可能会超出 3GPP 标准的范围。当温度返回至正常工作温度范围时,模块的各项指标也恢复正常。

2.4. 主要功能

EC20 R2.0 Mini PCIe-C 模块支持主要功能如下

- 支持 1 路 USIM 卡接口
- 支持 1 路 USB 2.0 接口
- 支持 1 路 UART 接口
- 支持 1 路模拟音频接口
- 支持 LED 状态指示
- 支持关闭射频功能
- 支持外部复位功能
- 支持睡眠控制和睡眠指示功能
- 支持3个射频天线接口

图 1: EC20 R2.0 Mini PCle-C 功能框图

3 接口应用

3.1. 本章概述

本章主要介绍 EC20 R2.0 Mini PCle-C 模块接口定义和应用,包括:

- 电源接口
- UART接口
- USIM 接口
- USB接口
- 模拟音频接口
- 控制信号
- 天线接口

3.2. EC20 R2.0 Mini PCle-C 接口

3.2.1. 接口定义

EC20 R2.0 Mini PCIe-C 信号接口是标准 Mini PCI Express 接口,下表给出了 EC20 R2.0 Mini PCIe-C 模块对应的 52pin 金手指管脚功能定义及说明。

表 3: I/O 参数定义

标志	描述
Ю	双向输入输出
DI	数字输入
DO	数字输出
Al	模拟输入
AO	模拟输出
PI	电源输入
РО	电源输出

OC 集电极开路

表 4: 管脚定义

管脚号	Mini PCI Express 标准管脚定义	EC20 R2.0 Mini PCle-C 模块管脚 定义	I/O 属性	功能描述	备注
1	WAKE#	MIC_P*	Al	音频输入正端	
2	3.3Vaux	VBAT	PI	电源输入	
3	COEX1	MIC_N*	Al	音频输入负端	
4	GND	GND		地	
5	COEX2	SPK_P*	AO	音频输出正端	
6	1.5V	NC	-		
7	CLKREQ#	SPK_N*	AO	音频输出负端	
8	UIM_PWR	USIM_VDD	РО	USIM 电源输出	
9	GND	GND		地	
10	UIM_DATA	USIM_DATA	Ю	USIM 数据信号	
11	REFCLK-	VDD_EXT	РО	1.8V 输出电源	
12	UIM_CLK	USIM_CLK	DO	USIM 时钟信号	
13	REFCLK+	RESERVED	_	预留	
14	UIM_RESET	USIM_RST	DO	USIM 复位信号	
15	GND	GND		地	
16	UIM_VPP	RESERVED	_	预留	
17	RESERVED	RESERVED	_	预留	
18	GND	GND		地	
19	RESERVED	WAKEUP_IN	DI	模块睡眠控制管脚	低电平允许模 块进入睡眠
20	W_DISABLE#	W_DISABLE#	DI	关闭射频通信	低电平有效
21	GND	GND		地	

22	PERST#	PERST#	DI	复位控制管脚 低电平有效
23	PERn0	UART_RXD	DI	模块接收端
24	3.3Vaux	VBAT	PI	电源输入
25	PERp0	UART_RTS	DO	模块请求发送
26	GND	GND		地
27	GND	GND		地
28	1.5V	UART_CTS	DI	模块发送清除
29	GND	GND		地
30	SMB_CLK	UART_DCD	DO	模块载波检测
31	PETn0	UART_TXD	DO	模块发送端
32	SMB_DATA	WAKEUP_OUT	DO	模块睡眠指示
33	PETp0	PERST#	DI	复位控制管脚 低电平有效
34	GND	GND		地
35	GND	GND		地
36	USB_D-	USB_DM	Ю	USB 差分信号(-)
37	GND	GND		地
38	USB_D+	USB_DP	10	USB 差分信号(+)
39	3.3Vaux	VBAT	PI	电源输入
40	GND	GND		地
41	3.3Vaux	VBAT	PI	电源输入
42	LED_WWAN#	LED_WWAN#	OC	工作状态灯指示
43	GND	GND		地
44	LED_WLAN#	RESERVED	_	预留
45	RESERVED	RESERVED	_	预留
46	LED_WPAN#	UART_DTR	DI	DTE 准备就绪
47	RESERVED	RESERVED	_	预留
48	1.5V	NC	_	_

49	RESERVED	RESERVED	_	预留
50	GND	GND		地
51	RESERVED	RESERVED	_	预留
52	3.3Vaux	VBAT	PI	电源输入

备注

- 1. 除 USIM 接口外,模块其他数字接口电压域均为 1.8V, USIM 接口电压支持 1.8V 和 3.0V。
- 2. 所有 NC, RESERVED 以及未使用管脚请悬空。
- 3. "*"表示音频功能只在 Telematics 版本支持。

3.2.2. 管脚分配

下图给出了 EC20 R2.0 Mini PCle-C 模块接口管脚分配,其中贴有 EC20 R2.0 模块和天线连接器为 TOP 面,反面为 BOT 面。

图 2: EC20 R2.0 Mini PCle-C 接口管脚分配

3.3. 电源接口

EC20 R2.0 Mini PCIe-C 模块电源接口定义如下表所示。

表 5: 电源接口定义

管脚号	EC20 R2.0 Mini PCle-C 模块管脚定义	I/O 属性	功能描述
2、24、39、41、52	VBAT	PI	3.3~3.6V 电源输入
4、9、15、18、21、 26、27、29、34、35、 37、40、43、50	GND		地

EC20 R2.0 Mini PCIe-C 模块使用 VBAT 供电。在 EGSM900 模式下,瞬间峰值电流最大可能达到 2.0A。为防止电压跌落到 3.3V 以下,使用开关电源或 LDO 时需要能够提供足够电流,建议在模块供电端口处加一个容值大于 470uF 的钽电容或电解电容。若使用开关电源给模块供电,开关电源的功率器件、电源走线应尽量避开天线部分,以防止 EMI 干扰。

下图给出了使用 LDO 给模块供电的电源电路参考设计。其中 R2 和 R3 两颗电阻精度为 1%, 电容 C3 需要具有较小的 ESR。

图 3: LDO 电源参考电路

3.4. UART 接口

EC20 R2.0 Mini PCIe-C 模块 UART 接口信号定义如下表所示。

表 6: UART 接口信号定义

管脚号	EC20 R2.0 Mini PCle-C 模块管脚定义	I/O 属性	电压域	功能描述
23	UART_RXD	DI	1.8V	模块串口接收数据
31	UART_TXD	DO	1.8V	模块串口发送数据
28	UART_CTS	DI	1.8V	模块发送清除
25	UART_RTS	DO	1.8V	模块请求发送
46	UART_DTR	DI	1.8V	DTE 准备就绪
30	UART_DCD	DO	1.8V	模块载波检测

EC20 R2.0 Mini PCIe-C 模块支持 1 路带硬件流控功能串口(不支持 DSR 和 RI 信号)。该串口可支持 9600、19200、38400、57600、115200、230400bps 波特率,默认波特率为 115200bps。

3.3V 电平情况下电平匹配电路参考设计如下。如下的虚线部分可以参考实线电路,需要注意连接方向。 模块输入虚线部分参考模块输入实线电路,模块输出虚线部分参考模块输出实线电路。

图 4: 3.3V 电平匹配参考电路

备注

- 1. 硬件流控功能默认是关闭的。可通过 AT 命令 AT+IFC=2,2 使能该功能,也可以通过 AT 命令 AT+IFC=0,0 关闭该功能;详情请参考文档 [2]。
- 2. 可通过 AT 命令 AT+IPR 更改串口的波特率,请参考文档 [2]获取更多相关 AT 配置信息。
- 3. UART_DTR 有睡眠控制功能,如果客户只使用 WAKEUP_IN 来用作睡眠控制,可以使用 AT+QCFG="pwrsavedtr",0 命令来关闭 UART_DTR 的睡眠控制功能。

3.5. USIM 卡接口

EC20 R2.0 Mini PCIe-C 模块 USIM 卡接口信号定义如下表所示。

表 7:	USIM	卡接口信	言号定义

管脚号	EC20 R2.0 Mini PCle-C 模块管脚定义	I/O 属性	电压域	功能描述
8	USIM_VDD	РО	1.8V/3.0V	USIM/SIM 电源输出
10	USIM_DATA	Ю	1.8V/3.0V	USIM/SIM 数据信号
12	USIM_CLK	DO	1.8V/3.0V	USIM/SIM 时钟信号
14	USIM_RST	DO	1.8V/3.0V	USIM/SIM 复位信号

EC20 R2.0 Mini PCIe-C 模块 USIM 卡接口可支持 1.8V 和 3.0V USIM/SIM 卡。下图显示了 6-pin USIM 卡接口参考电路。

图 5: 6-pin USIM 卡电路连接参考图

为了提高 USIM 卡电路可靠性和稳定性,在电路设计中须注意以下几点:

- 1. USIM 卡座应与模块 USIM 接口距离尽量短,确保走线长度小于 200mm。
- 2. USIM 信号线走线需要远离 RF 天线和模块供电电源线。
- 3. USIM_VDD 处去耦电容应小于 1uF,并且靠近卡座放置。
- 4. 为避免 USIM_CLK 和 USIM_DATA 信号相互串扰,两者走线不能距离太近,需要进行包地屏蔽,此外,USIM_RST 信号也需要包地保护。
- 5. 靠近卡座端需放置 TVS 器件,确保良好的 ESD 性能,选择的 TVS 管寄生电容不大于 50pF。
- 6. USIM_CLK、USIM_DATA、USIM_RST 走线上串联 22Ω 的电阻,可以抑制 EMI,增强 ESD 防护;同时,并联 33pF 电容可以有效滤除 EGSM900 射频干扰,这些阻容器件也需要靠近 USIM 卡座放置。
- 7. USIM_DATA 上的上拉电阻有利于增加 USIM 卡的抗干扰能力; 当 USIM 卡走线过长,或者有干扰 源比较近的情况下,建议靠近卡座位置增加上拉电阻。

3.6. USB 接口

EC20 R2.0 Mini PCIe-C 模块 USB 接口信号定义如下表所示。

表 8: USB 接口信号定义

管脚号	EC20 R2.0 Mini PCIe-C 模块管脚 定义	I/O 属性	功能描述	备注
36	USB_DM	Ю	USB 差分信号(-)	90ohm 差分特性阻抗
38	USB_DP	Ю	USB 差分信号(+)	90ohm 差分特性阻抗

EC20 R2.0 Mini PCIe-C 模块 USB 接口支持 USB2.0 高速(480Mbps)模式、全速(12Mbps)模式;在系统应用中只能作为从设备使用(Device)。USB 接口主要用于 AT 命令传输、数据传输、抓取 LOG、GNSS NMEA 信息输出和软件升级。

下图所示模块 USB 接口与 MCU 连接参考图:

图 6: USB 接口电路参考设计图

为了满足 USB 数据线信号完整性要求,R1、R2、R3、R4 必须靠近模块放置,并且这些电阻需要彼此靠近放置。测试分支走线必须尽可能短。

在符合 USB2.0 标准 USB 接口电路设计中,需要遵循以下几点:

- 1. USB 差分走线需控制为 900hm 差分特性阻抗。
- 2. USB 信号差分走线不要走在晶振、振荡器、磁性器件以及 RF 信号下方;远离干扰源和易受干扰 信号,走线走内层,并进行包地处理。
- 3. 如果模块 USB 接口与 USB 插座连接,需要在靠近 USB 插座位置放置 ESD 防护器件,并且 ESD 防护器件结电容要求小于 2pF。
- 4. 为了避免噪声耦合到 USB 数据线上,请保持 USB 数据测试点桩线尽可能短。如果可能,USB 数据线上建议增加 0 欧姆电阻。

备注

EC20 R2.0 Mini PCIe-C 模块有 2 个管脚可以控制模块睡眠功能: UART_DTR 和 WAKEUP_IN。进入睡眠的四个条件:

- 1. 模块执行 AT+QSCLK=1 命令使能睡眠模式,详情请参考文档[2]。
- 2. WAKEUP IN 必须保持低电平或悬空(内部已下拉)。
- 3. 如果连接了 UART_DTR,需要使用 **AT+QCFG="pwrsavedtr",0** 来关闭 UART_DTR 睡眠功能,或者保持 UART_DTR 为高电平。
- 4. 模块必须连接 USB, 且处于 suspended 状态。

3.7. 模拟音频接口

EC20 R2.0 Mini PCIe-C 模块支持模拟音频接口,信号定义如下表所示。

表 9: 模拟音频接口信号定义

管脚号	EC20 R2.0 Mini PCle-C 模块管脚定 义	I/O 属性	功能描述	备注
1	MIC_P	AI	音频输入正端	不用则悬空
3	MIC_N	AI	音频输入负端	不用则悬空
5	SPK_P	AO	音频输出正端	不用则悬空
7	SPK_N	AO	音频输出负端	不用则悬空

- MIC P和 MIC N通道是用作于作麦克风差分输入。麦克风通常选用驻极体麦克风。
- SPK_P和 SPK_N通道是用于听筒或者扬声器(需外置音频功放)差分输出。

客户都可以使用 AT+QMIC 来调节麦克风输入增益,也可以使用 AT+CLVL 命令来调节输出到听筒音量增益。AT+QSIDET 命令则用以设置侧音增益。要了解更多,请参考文档 [2]。

3.7.1. 防止 TDD 噪声及其它噪声

手持话柄及免提麦克风建议采用内置射频滤波双电容(如 10pF 和 33pF)驻极体麦克风,从干扰源头滤除射频干扰,会很大程度改善耦合 TDD 噪音。33pF 电容用于滤除模块工作在 900MHz 频率时高频干扰,10pF 电容是用以滤除工作在 1800MHz 频率时高频干扰。如果不加该电容,在通话时候有可能会听到 TDD 噪声。需要注意的是由于电容谐振点很大程度上取决于电容材料以及制造工艺,因此选择电容时,需要咨询电容供应商,选择最合适的容值来滤除工作在 EGSM900/DCS1800 时的高频噪声。

GSM 发射时高频干扰严重程度通常主要取决于客户应用设计。在有些情况下,EGSM900 的 TDD 噪声比较严重,而有些情况下,DCS1800 的 TDD 噪声比较严重。因此客户可以根据测试结果选择需要的滤波电容。

PCB 板上射频滤波电容摆放位置要尽量靠近音频器件或音频接口,走线尽量短,要先经过滤波电容再到其他连接点。天线位置离音频元件和音频走线尽量远,减少辐射干扰,电源走线和音频走线不能平行,电源线尽量远离音频线。差分音频走线必须遵循差分信号的布线规则。

3.7.2. 麦克风接口电路

MIC_P/MIC_N 通道在 EC20 R2.0 Mini PCIe-C 内部已提供驻极体麦克风偏置电压,不需外面增加偏置电路。麦克风通道参考电路如下图所示:

图 7: 麦克风通道参考电路

3.7.3. 听筒接口电路

图 8: SPK 输出参考电路

图 9: 带音频功放输出参考电路

3.8. 控制信号

EC20 R2.0 Mini PCIe-C 模块控制信号接口定义如下表所示。

表 10: 控制信号接口定义

管脚号	EC20 R2.0 Mini PCle-C 模块管脚定义	I/O 属性	电压域	功能描述
46	UART_DTR	DI	1.8V	模块睡眠控制管脚
20	W_DISABLE#	DI	1.8V	关闭射频通信,低电平有效(内部上拉)
22、33	PERST#	DI	1.8V	复位控制,低电平复位模块(内部上拉)
42	LED_WWAN#	OC	_	工作状态灯指示
19	WAKEUP_IN	DI	1.8V	模块睡眠控制管脚(内部下拉)
32	WAKEUP_OUT	DO	1.8V	模块睡眠指示

3.8.1. UART_DTR 信号

UART_DTR 信号可用来控制模块睡眠功能。拉低 UART_DTR 将会唤醒模块。可以使用 AT+QCFG="pwrsavedtr",0 命令来关闭 UART_DTR 的睡眠控制功能。

备注

1. UART_DTR 作唤醒功能时, WAKEUP_IN 要保持低电平。

3.8.2. W_DISABLE#信号

EC20 R2.0 Mini PCIe-C 模块 W_DISABLE#信号可用来关闭模块射频通信(不包括 GNSS)。对模块射频控制可通过硬件或软件两种形式。下表显示了模块射频操作状态,AT 命令控制请参考*文档 [2]*。

表 11: 射频操作状态

W_DISABLE#	AT 命令控制	射频状态
高电平	AT+CFUN=1	使能 RF
高电平	AT+CFUN=0 AT+CFUN=4	关闭 RF
低电平	AT+CFUN=0 AT+CFUN=1 AT+CFUN=4	关闭 RF

3.8.3. PERST#信号

EC20 R2.0 Mini PCIe-C 模块 PERST#信号通过外接复位电路,可实现模块复位。拉低 PERST#150~460ms 后可使模块复位。PERST#信号对干扰比较敏感,在模块接口板上的走线应尽量的短,且包地处理。

图 10: 复位时序图

3.8.4. LED_WWAN#信号

EC20 R2.0 Mini PCle-C 模块的 LED_WWAN#信号接口为 OC 输出形式,最大流入电流可达到 40mA。当外接 LED 灯时,需要串接一个限流电阻,电阻值可以根据 LED 灯亮度做相应调节。

当 LED_WWAN#信号为低时,外接 LED 灯点亮,下图显示状态指示灯参考电路。

图 11: 状态指示灯参考电路

如下表所示 LED_WWAN#信号网络状态指示,当 EC20 R2.0 Mini PCIe-C 模块注册网络成功后,LED 被点亮。当模块处于射频关闭状态、关机状态或出错状态(无 SIM 卡或注册失败)时,LED 熄灭。

表 12: LED_WWAN#信号网络状态指示

LED_WWAN#	描述
低电平(LED 亮)	成功注册网络
高阻态(LED 灭)	 无网络或网络注册失败 W_DISABLE# 管脚被拉低(关闭 RF) AT+CFUN=0 或 AT+CFUN=4 命令输入

3.8.5. WAKEUP_IN 和 WAKEUP_OUT 信号

EC20 R2.0 Mini PCIe-C 模块提供 WAKEUP_IN 管脚来控制模块睡眠功能,WAKEUP_OUT 管脚来指示模块是否处于睡眠状态。

表 13: WAKEUP_IN 和 WAKEUP_OUT 信号描述

管脚名称	描述		
WAKEUP_IN	H: DTE 唤醒 EC20 R2.0 L: DTE 允许 EC20 R2.0 进入睡眠模式		
WAKEUP_OUT	H:模块处于唤醒模式,此时 USB 和串口可以使用 L:模块处于睡眠模式,此时 USB 和串口不可以使用		

3.9. 天线接口

EC20 R2.0 Mini PCle-C 模块天线连接座均是使用深圳电连公司 ECT818000117,下图给出了模块天线接口位置。

图 12: EC20 R2.0 Mini PCle-C 天线接口

3.9.1. 天线要求

下表列出了对主天线、分集天线以及 GNSS 天线要求:

表 14: 天线要求

类型	要求
	频率范围: 1561 - 1615MHz
	极化: RHCP or linear
	VSWR: < 2 (典型值)
GNSS	被动天线增益: > 0dBi
0.100	主动天线噪声系数: < 1.5dB
	主动天线增益: > -2dBi
	主动天线内嵌 LNA 增益: 20dB (典型值)
	主动天线总增益: > 18dBi (典型值)
	VSWR: ≤2
	增益 (dBi): 1
	最大输入功率 (W): 50
GSM/	输入阻抗(ohm): 50
WCDMA/	极化类型:垂直方向
TD-SCDMA/	线缆插入损耗: < 1dB
CDMA/	(GSM900, WCDMA B8, CDMA BC0, LTE B8)
LTE	线缆插入损耗: < 1.5dB
	(GSM1800, WCDMA B1/B3/B8, TD-SCDMA B34/B39, LTE B1/B3/B34/B39)
	线缆插入损耗: < 2dB
	(LTE B38/B40/B41)

3.9.2. RF 连接器

如果使用 RF 连接器连接方式,推荐使用 Hirose 的 UF.L-R-SMT 连接器。下图显示了 RF 连接座尺寸,尺寸单位为 mm。

图 13: 天线连接座尺寸

下图描述的是与上述 RF 连接座配套的 U.FL-LP 系列连接器插头, 更多细节请参考 http://www.hirose.com。

图 14: 天线连接座配套插头

4 接口电气及射频特性

4.1. 本章概述

本章主要介绍 EC20 R2.0 Mini PCIe-C 模块接口电气特性和射频特性,包括:

- 电源特性
- IO 接口特性
- 工作电流
- 射频性能
- GNSS 接收性能
- ESD 特性

4.2. 电源特性

EC20 R2.0 Mini PCIe-C 模块采用 VBAT 电压供电,输入电压为 3.3~3.6V,供电输入至少要满足 2.0A 供流能力。模块输入电源要求如下表所示:

表 15: 输入电源范围

参数	参数描述	最小值	典型值	最大值	单位	
VBAT	模块电源	3.3		3.6	V	

4.3. I/O 接口特性

EC20 R2.0 Mini PCIe-C 模块数字 I/O 电气特性如下表所示。

表 16: I/O 接口电气特性

参数	参数描述	最小值	最大值	単位
V_{IH}	输入高电平电压	0.7*VDDIO ¹⁾	VDDIO ¹⁾ +0.3	V
V _{IL}	输入低电平电压	-0.3	0.3*VDDIO ¹⁾	V
V _{OH}	输出高电平电压	VDDIO ¹⁾ -0.5	VDDIO ¹⁾	V
V _{OL}	输出低电平电压	0	0.4	V

备注

- 1. PERST#和 W_DISABLE 信号 $VIL_{(max)}$ 为 0.5V。
- 2. VDDIO 电压为 1.8V

4.4. 射频性能

下表分别给出了模块的射频发射功率和接收灵敏度。

表 17: 射频发射功率

工作频段	最大功率值	最小功率值
GSM900	33dBm±2dB	5dBm±5dB
DCS1800	30dBm±2dB	0dBm±5dB
GSM900 (8-PSK)	27dBm±3dB	5dBm±5dB
DCS1800 (8-PSK)	26dBm±3dB	0dBm±5dB
WCDMA B1/B8	24dBm+1/-3dB	<-49dBm
TD-SCDMA B34/B39	24dBm+1/-3dB	<-49dBm
CDMA BC0	24dBm+3/-1dB	<-49dBm
LTE FDD B1/B3/B8	23dBm±2dB	<-39dBm
LTE TDD B38/B39/B40/B41	23dBm±2dB	<-39dBm

表 18: 射频接收灵敏度

频率		灵敏度(典型)		
グ 火 干	主集	分集	主集+分集	3GPP(主集+分集)
EGSM900	-109dBm	NA	NA	-102dBm
DCS1800	-109dBm	NA	NA	-102dBm
WCDMA Band1	-110dBm	NA	NA	-106.7dBm
WCDMA Band8	-110dBm	NA	NA	-103.7dBm
CDMA BC0	-107dBm	NA	NA	-104dBm
TD-SCDMA Band34	-108dBm	NA	NA	-108dBm
TD-SCDMA Band39	-108.5dBm	NA	NA	-108dBm
LTE-FDD B1(10M)	-97dBm	-97dBm	-101dBm	-96.3dBm
LTE-FDD B3(10M)	-95dBm	-94dBm	-96dBm	-93.3dBm
LTE-FDD B8(10M)	-94dBm	-94dBm	-97dBm	-93.3dBm
LTE-TDD B38(10M)	-97dBm	-97dBm	-97.5dBm	-96.3dBm
LTE-TDD B39(10M)	-97dBm	-97dBm	-102dBm	-96.3dBm
LTE-TDD B40(10M)	-97dBm	-97dBm	-100dBm	-96.3dBm
LTE-TDD B41(10M)	-96dBm	-96dBm	-98dBm	-94.3dBm

4.5. GNSS 接收性能

基于高通 Gen8C-Lite 技术的 EC20 R2.0 Mini PCIe-C GNSS 接收器,支持标准 NMEA-0183 协议,可通过 USB NMEA 接口输出 1Hz 频率的 NMEA 信息。

EC20 R2.0 Mini PCIe-C GNSS 接收器默认是关闭的,可通过 AT 命令开启。有关 GNSS 技术和配置信息请参考*文档 [3]*。GNSS 天线接口有 2.95V 电源连接,推荐使用符合该电压的有源天线。

4.6. ESD 特性

下表给出了 EC20 R2.0 Mini PCIe-C 接口 ESD 特性。

表 19: ESD 特性

参数描述	接触放电	空气放电	单位
电源和地接口	+/-5	+/-10	kV
天线接口	+/-4	+/-8	kV
USB 接口	+/-4	+/-8	kV
USIM 卡接口	+/-4	+/-8	kV
其他接口	+/-0.5	+/-1	kV

5 外形结构及包装

本章主要描述 EC20 R2.0 Mini PCIe-C 模块的机械尺寸以及包装信息,单位均为 mm。其机械尺寸主要包括:

- EC20 R2.0 Mini PCIe-C 外形尺寸
- Mini PCI Express 标准尺寸

5.1. EC20 R2.0 Mini PCIe-C 外形尺寸

图 15: EC20 R2.0 Mini PCle-C 外形尺寸

5.2. Mini PCI Express 标准尺寸

EC20 R2.0 Mini PCIe-C 模块采用标准的 Mini PCI Express 接口。下图所示的是标准的 Mini PCI Express 卡的尺寸,Detail A 和 Detail B 部分请参考文档 [1]。

图 16: 标准 Mini PCI Express 卡尺寸

符合标准的 PCI Express Mini Card 连接器均可以与本模块配套使用,如下图给出的 Molex 公司的 679100002 连接器。

图 17: Mini PCI Express 连接器

5.3. 包装

EC20 R2.0 Mini PCIe-C 模块采用托盘形式进行包装,每个托盘放置 10 片 EC20 R2.0 Mini PCIe-C 模块,最小包装内共包含 100 片模块。

6 附录 参考文档及术语缩写

表 20:参考文档

序号	文档名称	备注
[1]	PCI Express Mini Card Electromechanical Specification Revision 1.2	Mini PCI Express 规格书
[2]	EC20 R2.0_AT_Commands_Manual	EC20 R2.0 模块 AT 指令集
[3]	EC20 R2.0_GNSS_AT_Commands_Manual	EC20 R2.0 模块 GNSS 功能 AT 命令集

表 21: 术语缩写

缩写	描述
8-PSK	8-Phase Shift Keying
bps	Bits Per Second
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear To Send
DCE	Data Communications Equipment (typically module)
DL	Down Link
DTE	Data Terminal Equipment (typically computer, external controller)
DTR	Data Terminal Ready
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge
FDD	Frequency Division Duplexing

GLONASS	GLObalnayaNAvigatsionnayaSputnikovaya Sistema, the Russian Global Navigation Satellite System
GMSK	Gaussian Minimum Shift Keying
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
GSM	Global System for Mobile Communications
HSPA	High Speed Packet Access
I/O	Input/Output
kbps	KiloBitsPer Second
LED	Light Emitting Diode
LTE	Long Term Evolution
Mbps	Million Bits Per Second
MCS	Modulation and Coding Scheme
ME	Mobile Equipment
MMS	Multimedia Messaging Service
MO	Mobile Originated
MS	Mobile Station (GSM engine)
MT	Mobile Terminated
PAP	Password Authentication Protocol
PDU	Protocol Data Unit
PPP	Point-to-Point Protocol
RF	Radio Frequency
RX	Receive Direction
SIM	Subscriber Identification Module
SMS	Short Message Service
TDD	Time Division Duplexing

TD-SCDMA	Time Division-Synchronous Code Division Multiple Access
TE	Terminal Equipment
TTFF	Time to First Fix
TX	Transmitting Direction
UART	Universal Asynchronous Receiver & Transmitter
UL	Up Link
UMTS	Universal Mobile Telecommunications System
URC	Unsolicited Result Code
USSD	Unstructured Supplementary Service Data
WCDMA	Wideband Code Division Multiple Access