

**Predicting Forest** Cover Types within the Roosevelt **National Forest** 

### Content

- Predicting Forest Cover Types within the Roosevelt National Forest
  - Background & Methodology
  - Findings & Recommendations
  - Future Work & Next Steps
- Questions
- Appendix

## **Background & Methodology**

### Purpose

- ➤ Machine Learning project with Flatiron School
  - Select a dataset for classification modeling



- Predicting forest cover types within Roosevelt National Forest
  - Environmental sustainability
  - Understand the ecosystem
  - Conservation efforts
  - Colorado centered

### Data

| DATABASE DETAILS           |                                                                                                                                                                                                    |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Data Sourced:              | From Kaggle as part of the UCI Machine Learning Repository Original Owners: Remote Sensing and GIS Program, Department of Forest Sciences, College of Natural Resources, Colorado State University |  |
| Data Determined By:        | US Forest Service (USFS) Region 2 Resource Information System (RIS)                                                                                                                                |  |
| Date Donated:              | 1998-08-01                                                                                                                                                                                         |  |
| Dataset Characteristics:   | Multivariate                                                                                                                                                                                       |  |
| Attribute Characteristics: | Categorical, Integer                                                                                                                                                                               |  |
| Associated Tasks:          | Classification                                                                                                                                                                                     |  |
| Number of Instances:       | 581,012                                                                                                                                                                                            |  |
| Number of Attributes:      | 54                                                                                                                                                                                                 |  |
| Missing Values?            | No                                                                                                                                                                                                 |  |

### Data (continued)

#### Study Area

- Roosevelt National Forest of Northern Colorado
- 4 wilderness areas : Rawah; Neota; Comanche Peak; Cache la Poudre
- Each instance represents 30m x 30m patch

#### Data Fields:

- Elevation Elevation in meters
- Aspect Aspect in degrees azimuth
- Slope Slope in degrees
- Horizontal\_Distance\_To\_Hydrology Horizontal Distance to nearest surface water features
- Vertical Distance To Hydrology Vertical Distance to nearest surface water features
- Horizontal Distance To Roadways Horizontal Distance to nearest roadway
- Hillshade 9am (0 to 255 index) Hillshade index at 9am, summer solstice
- Hillshade\_Noon (0 to 255 index) Hillshade index at noon, summer solstice
- Hillshade\_3pm (0 to 255 index) Hillshade index at 3pm, summer solstice
- Horizontal\_Distance\_To\_Fire\_Points Horizontal Distance to nearest wildfire ignition points
- Wilderness\_Area\* (4 binary columns, 0 = absence or 1 = presence) Wilderness area designation
- Soil\_Type\* (40 binary columns, 0 = absence or 1 = presence) Soil Type designation
- Cover\_Type\* (7 types, integers 1 to 7) Forest Cover Type designation
  - Spruce/Fir; Lodgepole Pine; Ponderosa Pine; Cottonwood/Willow; Aspen; Douglas-fir; Krummholz



<sup>\*</sup> A summary of each forest cover type designation, wilderness area designation, and soil type designation can be found in the Appendix

### Architecture

| ARCHITECTURE DETAILS        |                                                                  |  |
|-----------------------------|------------------------------------------------------------------|--|
| Server:                     | Google Colaboratory  RAM: 13GB  Storage: 38GB 2-core xeon 2.2GHz |  |
| Database:                   | Flat File (CSV)                                                  |  |
| Programming Language:       | Python 3                                                         |  |
| Machine Learning Libraries: | scikit-learn, XGBoost                                            |  |

### Methodology & Takeaway Analysis

#### Methodology

- Data collected from Kaggle
- Data explored for cleaning
  - No missing data or inaccurate data records
- Data explored for analysis
- Feature Engineering
  - Correlated features removed
  - Data resampled: Smaller soil types removed (outliers)
     & helped normalize the data (Elevation)
  - Data standardized for modeling
- Modeling
  - K-Nearest Neighbors
  - Random Forest
  - XGBoost

#### **Takeaway Analysis**

- K-Nearest Neighbors
  - Accuracy = 88%
  - Model does not provide prediction for feature importance
- Random Forest
  - Accuracy = 91%
  - Most important feature = Elevation (heavy dependence)
- XGBoost
  - Accuracy = 92%
  - Most important feature = Soil\_Type12

## Findings & Recommendations

Distributions

Distribution of Features



## Exploration Correlation

**Correlated Features** 





Forest Cover Types



Elevation & Horizontal Distance to Nearest Roadways





Soil Types



# Exploration Wilderness Areas



# Machine Learning Classifier Performance: Metrics

| Model               | METRICS  |           |        |           |
|---------------------|----------|-----------|--------|-----------|
|                     | Accuracy | Precision | Recall | F-1 Score |
| K-Nearest Neighbors | 0.879    | 0.877     | 0.879  | 0.878     |
| Random Forest       | 0.912    | 0.911     | 0.912  | 0.911     |
| XGBoost             | 0.918    | 0.917     | 0.918  | 0.917     |

Performance: K-Nearest Neighbors Confusion Matrix

#### **Misclassification Findings:**

0.15: Spruce/Fir with Lodgepole Pine

0.16: Lodgepole Pine with Spruce/Fir

0.08: Lodgepole Pine with Aspen

0.10: Ponderosa Pine with Douglas-fir

0.07: Douglas-fir with Ponderosa Pine

| MATRIX KEY |                   |
|------------|-------------------|
| 1          | Spruce/Fir        |
| 2          | Lodgepole Pine    |
| 3          | Ponderosa Pine    |
| 4          | Cottonwood/Willow |
| 5          | Aspen             |
| 6          | Douglas-fir       |
| 7          | Krummholz         |



Performance: Random Forest Confusion Matrix

#### **Misclassification Findings:**

0.13: Spruce/Fir with Lodgepole Pine 0.13: Lodgepole Pine with Spruce/Fir

0.05: Lodgepole Pine with Aspen

0.07: Ponderosa Pine with Douglas-fir

0.06: Douglas-fir with Ponderosa Pine

| M | MATRIX KEY        |  |
|---|-------------------|--|
| 1 | Spruce/Fir        |  |
| 2 | Lodgepole Pine    |  |
| 3 | Ponderosa Pine    |  |
| 4 | Cottonwood/Willow |  |
| 5 | Aspen             |  |
| 6 | Douglas-fir       |  |
| 7 | Krummholz         |  |



Performance: XGBoost Confusion Matrix

#### **Misclassification Findings:**

0.15: Spruce/Fir with Lodgepole Pine

0.12: Lodgepole Pine with Spruce/Fir

0.05: Lodgepole Pine with Aspen

0.05: Ponderosa Pine with Douglas-fir

0.05: Douglas-fir with Ponderosa Pine

| M | MATRIX KEY        |  |
|---|-------------------|--|
| 1 | Spruce/Fir        |  |
| 2 | Lodgepole Pine    |  |
| 3 | Ponderosa Pine    |  |
| 4 | Cottonwood/Willow |  |
| 5 | Aspen             |  |
| 6 | Douglas-fir       |  |
| 7 | Krummholz         |  |



# Machine Learning Classifier Performance: K-Nearest Neighbors ROC Curve



### **Area Under the Curve (AUC)**

Spruce/Fir: 0.873

Lodgepole Pine: 0.834

Ponderosa Pine: 0.919

Cottonwood/Willow: 0.987

0.970 Aspen:

Douglas-fir: 0.938

Krummholz: 0.984

Performance: Random Forest ROC Curve



### **Area Under the Curve (AUC)**

Spruce/Fir: 0.985

Lodgepole Pine: 0.978

Ponderosa Pine: 0.994

Cottonwood/Willow: 0.999

**A**spen: 0.999

**—** Douglas-fir: 0.996

Krummholz: 0.999

Performance: XGBoost ROC Curve



### **Area Under the Curve (AUC)**

Spruce/Fir: 0.986

Lodgepole Pine: 0.979

Ponderosa Pine: 0.996

Cottonwood/Willow: 0.999

**A**spen: 0.999

**—** Douglas-fir: 0.997

Krummholz: 0.999

Performance: Feature Importance





### Future Work & Next Steps

### Future Work & Next Steps

- Perform additional analysis to determine predictions for wildfires, and assisting in their prevention
  - Obtain data on the history of wildfires within the Roosevelt National Forest

Further tune the XGBoost model to improve accuracy and even out feature importance

- Determine if the XGBoost model will perform well for other forests within Colorado
  - Verify if additional forest cover type data has been collected by the College of Natural Resources at Colorado State University

### **Thank You!**

### Questions?

## **Appendix**

### Appendix: Data

#### **Forest Cover Type Designation:**

- 1 Spruce/Fir
- 2 Lodgepole Pine
- 3 Ponderosa Pine
- 4 Cottonwood/Willow
- 5 Aspen
- 6 Douglas-fir
- 7 Krummholz

#### **Wilderness Area Designation:**

- 1 Rawah Wilderness Area
- 2 Neota Wilderness Area
- 3 Comanche Peak Wilderness Area
- 4 Cache la Poudre Wilderness Area

### Appendix: Data

#### **Soil Type Designation:**

- 1 Cathedral family Rock outcrop complex, extremely stony.
- 2 Vanet Ratake families complex, very stony.
- 3 Haploborolis Rock outcrop complex, rubbly.
- 4 Ratake family Rock outcrop complex, rubbly.
- 5 Vanet family Rock outcrop complex complex, rubbly.
- 6 Vanet Wetmore families Rock outcrop complex, stony.
- 7 Gothic family.
- 8 Supervisor Limber families complex.
- 9 Troutville family, very stony.
- 10 Bullwark Catamount families Rock outcrop complex, rubbly.
- 11 Bullwark Catamount families Rock land complex, rubbly.
- 12 Legault family Rock land complex, stony.
- 13 Catamount family Rock land Bullwark family complex, rubbly.
- 14 Pachic Argiborolis Aquolis complex.
- 15 unspecified in the USFS Soil and ELU Survey.
- 16 Cryaquolis Cryoborolis complex.
- 17 Gateview family Cryaquolis complex.
- 18 Rogert family, very stony.
- 19 Typic Cryaquolis Borohemists complex.
- 20 Typic Cryaquepts Typic Cryaquolls complex.

- 21 Typic Cryaquolls Leighcan family, till substratum complex.
- 22 Leighcan family, till substratum, extremely bouldery.
- 23 Leighcan family, till substratum Typic Cryaquolls complex.
- 24 Leighcan family, extremely stony.
- 25 Leighcan family, warm, extremely stony.
- 26 Granile Catamount families complex, very stony.
- 27 Leighcan family, warm Rock outcrop complex, extremely stony.
- 28 Leighcan family Rock outcrop complex, extremely stony.
- 29 Como Legault families complex, extremely stony.
- 30 Como family Rock land Legault family complex, extremely stony.
- 31 Leighcan Catamount families complex, extremely stony.
- 32 Catamount family Rock outcrop Leighcan family complex, extremely stony.
- 33 Leighcan Catamount families Rock outcrop complex, extremely stony.
- 34 Cryorthents Rock land complex, extremely stony.
- 35 Cryumbrepts Rock outcrop Cryaquepts complex.
- 36 Bross family Rock land Cryumbrepts complex, extremely stony.
- 37 Rock outcrop Cryumbrepts Cryorthents complex, extremely stony.
- 38 Leighcan Moran families Cryaquolls complex, extremely stony.
- 39 Moran family Cryorthents Leighcan family complex, extremely stony.
- 40 Moran family Cryorthents Rock land complex, extremely stony.

### Appendix: Notebook Link

• GitHub Link: <u>Predicting Forest Cover Types</u>