Standard Workflow – Non-Essential genes [**NE1**] **Bsd** first tm1 -> tm1a -> tm1/tm1a

First Electroporation:

Diagram:			O BSd O O
Genotype:		wt/wt	tm1/wt
LOA CRIT	- OHT	2	1
LOA TAM *	+ OHT	2	1
LOA DEL	- OHT	2	1
NEO **		0	0
BSD		0	1

tm1/wt is what you want

wt/wt is total failure of electroporation

- * No final loxp site with Bsd vector so no benefit in doing + OHT assay
- ** No Neo resistance in cassette so no benefit in doing Neo assay

<u>Standard Workflow – Non-Essential genes [**NE1**]</u>

Bsd first tm1 -> tm1a -> tm1/tm1a

Second Electroporation:

Diagram:			○ Bsd	O Neo Neo	O Neo Neo	O Bsd O Neo Neo	Neo Neo
Genotype:		wt/wt	tm1/wt	tm1/tm1a	wt/tm1a	tm1/tm1e	wt/tm1e
LOA CRIT	- OHT	2	1	1	2	1	1
LOA TAM	+ OHT	2	1	0	1	1	1
LOA DEL	- OHT	2	1	0	1	0	1
NEO		0	0	1	1	1	1
BSD		0	1	1	0	1	0

tm1/tm1a is what you want

wt/tm1a is best possible control but rare

tm1/wt is second best control and very likely

wt/wt is total failure of both electroporations but still a useful control

<u>Standard Workflow – Non-Essential genes [**NE1a**]</u>

Neo first tm1a -> tm1 -> tm1a/tm1

First Electroporation:

Diagram:		0—————————————————————————————————————	o Neo	o Neo D
Genotype:		wt/wt	tm1a/wt	tm1e/wt
LOA CRIT	- OHT	2	2	2
LOA TAM	+ OHT	2	1	2
LOA DEL	- OHT	2	1	1
NEO		0	1	1
BSD **		0	0	0

tm1a/wt is what you want

tm1e/wt is where most of the cassette goes in but the final loxp does not

wt/wt is total failure of electroporation

** No Bsd resistance in cassette so no benefit to performing the Bsd assay

<u>Standard Workflow – Non-Essential genes [**NE1a**]</u>

Neo first tm1a -> tm1 -> tm1a/tm1

Second Electroporation:

Diagram:		(°	o Neo	o Neo D	o Neo Bsd —	o Neo Bsd o	0 Bsd 1 -
Genotype:		wt/wt	tm1a/wt	tm1e/wt	tm1a/tm1	tm1e/tm1	wt/tm1
LOA CRIT	- OHT	2	2	2	1	1	1
LOA TAM	+ OHT	2	1	2	0	1	1
LOA DEL	- OHT	2	1	1	0	0	1
NEO		0	1	1	1	1	0
BSD		0	0	0	1	1	1

tm1a/tm1 is what you want

wt/tm1 is best possible control but rare

tm1a/wt is second best control and very likely

wt/wt is total failure of both electroporations but still a useful control

<u>Standard Workflow – Essential genes [E]</u>

Neo first $tm1a \rightarrow (Dox) \rightarrow tm1 \rightarrow tm1c/tm1$

First Electroporation:

Diagram:		 • • • • • • • • •		o Neo Neo	o Neo	
Genotype:		wt/wt	tm1c/wt	tm1a/wt	tm1e/wt	tm1f/wt
LOA CRIT	- OHT	2	2	2	2	2
LOA TAM	+ OHT	2	1	1	2	2
LOA DEL	- OHT	2	1	1	1	1
NEO		0	0	1	1	0
BSD **		0	0	0	0	0

tm1c/wt is what you want

tm1a/wt is where the Dox does *not* excise the Neo resistance

tm1f/wt is where the Dox does excise the Neo resistance but the final loxp site was *not* inserted

tm1e/wt is where the Dox does *not* excise the Neo resistance *and* the final loxp was not inserted

wt/wt is total failure of electroporation

** No Bsd resistance in cassette so no benefit to doing Bsd assay

<u>Standard Workflow – Essential genes [E]</u>

Neo first $tm1a \rightarrow (Dox) \rightarrow tm1 \rightarrow tm1c/tm1$

Second Electroporation:

Diagram:			Neo Neo		o Neo D		0 Bsd 1 O	o Neo Bsd -	0 Bsd -	o Neo Bsd —	0 Bsd 1
Genotype:		wt/wt	tm1a/wt	tm1c/wt	tm1e/wt	tm1f/wt	wt/tm1	tm1a/tm1	tm1c/tm1	tm1e/tm1	tm1f/tm1
LOA CRIT	- OHT	2	2	2	2	2	1	1	1	1	1
LOA TAM	+ OHT	2	1	1	2	2	1	0	0	1	1
LOA DEL	- OHT	2	1	1	1	1	1	0	0	0	0
NEO		0	1	0	1	0	0	1	0	1	0
BSD		0	0	0	0	0	1	1	1	1	1

tm1c/tm1 is what you want

tm1c/wt shows the SEP failed and is a good control

wt/tm1 is also a good control