



Group 8:

Group Member: Yefan Li, Jue Li, Yijin Wang, Xiao Ma, Wenxuan Gu, Pengru Lyu, Ziyi Xue, Yanqing Li



# Dataset

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

The dataset is divided into five training batches and one test batch, each with 10,000 images. The test batch contains exactly 10,000 randomly-selected images from each class.



# **Support Vector Machines (SVM)**



SVM is a set of supervised learning methods that find the hyperplanes to separate datasets.

Pros & Cons of SVM (with this dataset):

Pros: effective in high dimensional spaces, by mapping input data with different kernels

Cons:

a. computationally intensive, especially we choose the k-fold CV method for turning parameters

b.highly affected by the choice of the kernel





# **Preprocessing Data**

#### Shape of the dataset:

- a. Change 32 \* 32\*3 color image data into 1 Dimension (potential problems caused by the really high dimensions)
- b. Scale the pixel value in [0,1]

#### Balance of the data:





• • •



### **SVM Model Parameters & Selection**







finalModel = SVC(C=1, gamma=`scale`, kernel='poly')

Parameters:

Regularization parameter (c):

The strength of the regularization is inversely proportional to

C. Must be strictly positive. The penalty is a squared I2 penalty.

gamma: determine the width of the kernel (useless for linear kernel)

Kernel: 'linear'; 'poly'; 'rdf'; 'sigmoid'

Degree: Degree of the polynomial kernel function ('poly') and ignore by



all other kernel.

- Method:
  - 1) Fixed gamma value, different C value (1, 5, 10, 50, 100)
  - 2) Fixed C value, different gamma value (1e-2, 1e-3, 1e-4)





# **Results & Performance of SVM**









linear\_model = SVC(kernel='linear')

Linear SVM with accuracy around 30.31 %

Nonlinear (rbf) with parameter tuning:

SVC(C=5, gamma='scale', kernel='rbf', degree=2)

Accuracy: 48.29%

Runtime: 1283.28 s (~21.4 min)

Nonlinear (poly) without parameter tuning:

Accuracy: 52.86%

Runtime: 9747.61 s (~3hr)

10000 trained and test data





# Difficulty & Future Work...



#### Difficulties & Problems:

- Computation complexity: for high dimensions (p = 3072) and large sample size (for both training and testing data)
- **Noise of dataset:** the images have much noises, which lead to the bad performance of SVM
- **Long runtime:** somewhat hard to run the whole 50,000 dataset at once therefore not having the most accurate result

#### Possible Solutions:

- Computation complexity: parallel processing
- **Noise of dataset:** data smoothing methods, such as penalized models and resample with different ratios.
- Long runtime: try to use CPU or GPU to run the dataset more faster



# Convolutional Neural Network(CNN)





What is neural network?



What is convolutional neural network (CNN)?



Why CNN?







Our Neural Network Model process can be explained as above





### **Activation Function Selection: Sigmoid VS ReLU**







Figure: Sigmoid vs. ReLU

Source: https://miro.medium.com/v2/resize:fit:720/format:webp/1\*XxxiA0jJvPrHEJHD4z893g.png

Pengru Lyu



### Sigmoid vs. ReLU







Pengru Lyu



# First Attempt: Add More Convolutional Layers



32-64-128



#### [4] amount\_layers = len(model.layers) amount\_layers

17

model\_summa = model.summary()

| □* | Model: | "sequential" |
|----|--------|--------------|
|    |        |              |

|                                                            | Output Shape       | Param # |
|------------------------------------------------------------|--------------------|---------|
|                                                            |                    |         |
| conv2d (Conv2D)                                            | (None, 32, 32, 32) | 896     |
| batch_normalization (BatchN ormalization)                  | (None, 32, 32, 32) | 128     |
| conv2d_1 (Conv2D)                                          | (None, 32, 32, 32) | 9248    |
| batch_normalization_1 (BatchNormalization)                 | (None, 32, 32, 32) | 128     |
| <pre>max_pooling2d (MaxPooling2D )</pre>                   | (None, 16, 16, 32) | 0       |
| dropout (Dropout)                                          | (None, 16, 16, 32) | 0       |
| conv2d_2 (Conv2D)                                          | (None, 16, 16, 64) | 18496   |
| batch_normalization_2 (BatchNormalization)                 | (None, 16, 16, 64) | 256     |
| conv2d_3 (Conv2D)                                          | (None, 16, 16, 64) | 36928   |
| <pre>batch_normalization_3 (Batc<br/>hNormalization)</pre> | (None, 16, 16, 64) | 256     |
| <pre>max_pooling2d_1 (MaxPooling 2D)</pre>                 | (None, 8, 8, 64)   | 0       |
| dropout_1 (Dropout)                                        | (None, 8, 8, 64)   | 0       |
| flatten (Flatten)                                          | (None, 4096)       | 0       |
| dense (Dense)                                              | (None, 64)         | 262208  |
| batch_normalization_4 (BatchNormalization)                 | (None, 64)         | 256     |
| dropout_2 (Dropout)                                        | (None, 64)         | 0       |
| dense 1 (Dense)                                            | (None, 10)         | 650     |

#### Total params: 329,450 Trainable params: 328,938 Non-trainable params: 512

#### ayer\_amount = len(model.layers) ayer\_amount

23

| Layer (type)                                    | Output Shape       | Param # |
|-------------------------------------------------|--------------------|---------|
|                                                 | (None, 32, 32, 32) | 896     |
| batch_normalization_14 (Bat<br>chNormalization) | (None, 32, 32, 32) | 128     |
| conv2d_13 (Conv2D)                              | (None, 32, 32, 32) | 9248    |
| batch_normalization_15 (Bat<br>chNormalization) | (None, 32, 32, 32) | 128     |
| max_pooling2d_6 (MaxPooling<br>2D)              | (None, 16, 16, 32) | 9       |
| dropout_8 (Dropout)                             | (None, 16, 16, 32) | 0       |
| conv2d_14 (Conv2D)                              | (None, 16, 16, 64) | 18496   |
| batch_normalization_16 (Bat<br>chNormalization) | (None, 16, 16, 64) | 256     |
| conv2d_15 (Conv2D)                              | (None, 16, 16, 64) | 36928   |
| batch_normalization_17 (Bat<br>chNormalization) | (None, 16, 16, 64) | 256     |
| max_pooling2d_7 (MaxPooling<br>2D)              | (None, 8, 8, 64)   | 8       |
| dropout_9 (Dropout)                             | (None, 8, 8, 64)   | 0       |
| conv2d_16 (Conv2D)                              | (None, 8, 8, 128)  | 73856   |
| batch_normalization_18 (Bat<br>chNormalization) | (None, 8, 8, 128)  | 512     |
| conv2d_17 (Conv2D)                              | (None, 8, 8, 128)  | 147584  |
| batch_normalization_19 (Bat<br>chNormalization) | (None, 8, 8, 128)  | 512     |
| max_pooling2d_8 (MaxPooling<br>2D)              | (None, 4, 4, 128)  | 0       |
| dropout_10 (Dropout)                            | (None, 4, 4, 128)  | 0       |
| flatten_2 (Flatten)                             | (None, 2048)       | 0       |
| dense_4 (Dense)                                 | (None, 128)        | 262272  |
| batch_normalization_20 (Bat<br>chNormalization) | (None, 128)        | 512     |
| dropout_11 (Dropout)                            | (None, 128)        | 0       |
| dense_5 (Dense)                                 | (None, 10)         | 1290    |







### **Second Attempt: Transfer Learning**





- Popular models: GoogLeNet network, ImageNet
- Results:
  - val\_output\_accuracy: 0.2540

Test accuracy: 0.7008000016212463







# Third Attempt: Learning Schedule and Regularization



• Learning Schedule: Also known as learning rate schedule or learning rate decay, involves adjusting the learning rate during training

```
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
    initial_learning_rate,
    decay_steps=train_images.shape[0] // batch_size,
    decay_rate=0.95,
    staircase=True)
```

 Regularization: Adding additional constraints to the training process to prevent overfitting
 Method: Dropout

```
layers.Conv2D(64, (3, 3), activation='relu', padding='same',
kernel_regularizer=12_reg),
layers.BatchNormalization(),
layers.MaxPooling2D((2, 2)),
layers.Dropout(0.5),
```







## **Final Model Accuracy**





Accuracy: 0.8715999722480774







## Way to Find the Maximum Epochs Needed





#### 1. Pseudocode:

Epoch = 1000

Run model Count == 0

While {

Track every accuracy outputted by Model

If ( Accuracy\_{i} - Accuracy\_{i-1} <= N )

Count += 1

If (count == 3)

Terminate model

Break}



#### 2. Example:



1.50 · 1.25 · 1.00 · 0.75 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.50 · 0.







### **Convolutional SVM**







#### CNN Flowchart:



#### 1 Epoch training convolution connect to SVM

CNN accuracy:0.4151

Convolutional SVM accuracy: 0.5797





Wenxuan Gu

# Conlusion



Performance (SVM vs. CNN)



Why ? (SVM suited for simpler datasets with fewer dimensions, CNN works better for image recognition task)



# Thanks!



Do you have any questions?

