Mock Olympiad #3 Solutions

July 6, 2009

1. (IMO Short list 2008, C2)

Let X_n be the number of permutations of $\{1, 2, ..., n\}$ that have the given property, and let Y_n be the number of permutations of $\{2, 3, ..., n+1\}$ that have the given property. Note that $2(a_1 + a_2 + ... + a_k) \equiv 2((a_1 - 1) + (a_2 - 1) + ... + (a_k - 1)) \pmod{k}$, so we can always subtract one from each $a_1, a_2, ..., a_n$ without changing the problem. In particular, this means that $X_n = Y_n$.

It is easy to check that $X_1=1, X_2=2$, and $X_3=6$. From now on, we will assume $n\geq 4$. We have $2(a_1+a_2+\ldots+a_n)=2(1+2+l\cdots+n)=n(n+1)\equiv 0 \pmod n$, so a permutation need only satisfy the given condition for $k=1,2,\ldots,n-1$. Examining the condition for n-1, we see that

$$(n-1)|2(a_1+a_2+\cdots+a_n-a_n),$$

SO

$$(n-1)|n(n+1)-2a_n.$$

This says that $2a_n = 2 \pmod{n-1}$, so either $a_n = 1, n$ or n is odd and $a_n = \frac{n+1}{2}$. Suppose we're in the latter case. Then examining the condition for n-2, we get

$$(n-2)|2(a_1+a_2+\cdots+a_n-a_n-a_{n-1}),$$

SO

$$(n-2)|n^2 - 1 - 2a_{n-1}.$$

But this implies $2a_{n-1} = 3 \pmod{n-2}$, and since n-2 is odd, this has the unique solution $a_{n-1} = \frac{n+1}{2}$, which contradicts $a_{n-1} \neq a_n$. So we must have $a_n = 1$ or $a_n = n$. This means that $X_n = X_{n-1} + Y_{n-1} = 2X_{n-1}$. For $n \geq 3$, we therefore have $X_n = 3 \cdot 2^{n-2}$.

2. (Mongolia 2008 TST, #2.1)

Claim: For any positive real numbers a, b, c, d satisfying $d^2 = a^2 + b^2 + c^2$, we have f(a) + f(b) + f(c) = f(d).

Proof: Set $z = \frac{d-a}{2}, x = \frac{b^2}{4z}, y = \frac{c^2}{4z}$. These values are all positive since d > a. Further-

more,

$$x + y - z = \frac{b^2 + c^2}{4z} - z = \frac{(d^2 - a^2) - (d^2 + a^2 - 2ad)}{2(d - a)} = a,$$

$$2\sqrt{xz} = 2\sqrt{z \cdot \frac{b^2}{4z}} = b, \qquad 2\sqrt{yz} = 2\sqrt{z \cdot \frac{c^2}{4z}} = c, \quad \text{and}$$

$$x + y + z = \frac{b^2 + c^2}{4z} + z = \frac{(d^2 - a^2) + (d^2 + a^2 - 2ad)}{2(d - a)} = d.$$

Since x + y - z = a > 0, we can substitute x, y, z into the given equation to get f(a) + f(b) + f(c) = f(d), which completes the proof of the claim.

Now let $g(x) = f(\sqrt{x})$. We have proven that g(a) + g(b) + g(c) = g(a+b+c) for all a, b, c > 0. Taking a = b = c = x, we have g(3x) = 3g(x). Taking a = b = 3x and c = x, we then have g(7x) = 7g(x). Taking a = b = 2x and c = 3x, we then have g(2x) = 2g(x). Now, taking a = b = x and c = (n-2)x, we have g(nx) = 2g(x) + g((n-2)x), so it follows that g(nx) = ng(x) for all positive integers n. For any positive integers p, q, we therefore have $g(\frac{p}{q}) = \frac{1}{q} \cdot g(p) = \frac{p}{q} \cdot g(1)$ (*).

Also, if a < d, then g(d) - g(a) = g(b) + g(c) > 0, so g is increasing. Since the rationals are dense in the reals, it now follows from (*) that g(x) = Cx for some constant C > 0, and hence $f(x) = Cx^2$. Conversely, if $f(x) = Cx^2$, then $f(x + y - z) + f(2\sqrt{xz}) + f(2\sqrt{yz}) = (x + y - z)^2 + (2\sqrt{xz})^2 + (2\sqrt{yz})^2 = (x + y + z)^2 = f(x + y + z)$.

Remark: It isn't necessary to calculate x, y, z explicitly to prove the claim. One may also proceed as follows: First fix the products xz and yz, and let z vary. Then if z is very small, x + y - z will approach infinity, and if z is very big, x + y - z will approach minus infinity, so by continuity of x + y - z as a function of z, x + y - z will take every possible value. If you find this sort of argument confusing and want to understand it better, feel free to speak to one of the trainers!

3. (IMO Short list 2002, N4

If p = 5, then a = 2 satisfies the given condition. From this point forward, we will assume $p \ge 7$.

Claim 1: If $x \in [1, p-1]$, then $x^{p-1} \not\equiv (p-x)^{p-1} \pmod{p^2}$.

Proof: By the binomial theorem,

$$(p-x)^{p-1} \equiv x^{p-1} - p(p-1) \cdot x^{p-2} \not\equiv x^{p-1} \pmod{p^2}$$

since $p \not| x, p-1$.

Claim 2: If $x \in [1, p-1]$, then $x^{p-1} \not\equiv (x+2p)^{p-1} \pmod{p^2}$.

Proof: Again, the binomial theorem gives

$$(x+2p)^{p-1} \equiv x^{p-1} + 2p(p-1) \cdot x^{p-2} \not\equiv x^{p-1} \pmod{p^2}$$

since $p \not| x, p-1$.

Let us call a number x "good" if $x^{p-1} \equiv 1 \pmod{p^2}$. By pairing up x and p-x for all $x \in \left[1, \frac{p-1}{2}\right]$, Condition 1 implies that at most $\frac{p-1}{2}$ numbers in [1, p-1] are good. Furthermore,

we already know that 1 is good. Now, if two consecutive numbers in [1,p] are not good, then the problem is done. Otherwise, the good numbers in [1,p] must be exactly $1,3,5,\ldots,p-2$. Now, $(3p-6)^{p-1} \equiv 3^{p-1} \cdot (p-2)^{p-1} \equiv 1 \pmod{p^2}$, so 3p-6 is good. However, we already know p-6 is good, so this contradicts Claim 2. The proof is now complete.