

IT Security 2024/2025 Exercise Sheet 3

Security of Distributed and Resource Limited Systems

Dr. Thorsten Aurisch

Publication: 24.10.2024 Deadline: 30.10.2024 10:00

Submit your solutions as answers.pdf to the repository.

Exercise 1 (Explain in your own words, 1+1+1 points).

- a) Write down the Needham-Schroeder protocol and explain the weakness of the protocol in case of a stolen session key and a man-in-the-middle attack.
- b) Explain the two different types of secret sharing from the lecture.
- c) Explain the basic operation of a blockchain-based distributed ledger.

Exercise 2 (Distributed Group Key Management, 2+1+2 points).

Figure 1: Key tree of the TGDH protocol

Given is the group \mathbb{Z}_{37}^* with generator g=2. The users u_1, u_2, u_3, u_4 , and u_5 use the Tree-based Group Diffie-Hellman (TGDH) protocol with the key tree shown in Figure 1 for the group key establishment. Assuming that the following keys are stored in the leaves: $k_{3,0}=9, k_{3,1}=5, k_{2,1}=8, k_{2,2}=17, k_{2,3}=27.$

- a) The user u_6 with the key k=19 joins the group. Draw the modified tree.
- b) Write down the messages of the sponsor.
- c) Now the user u_5 leaves the group. Hence, the user u_4 alters his private key to 10. Calculate the new group key.

Exercise 3 (Secret Sharing, 1+1 points).

- a) A one-time pad is the simplest 2-out-of-2 secret-sharing algorithm. Only the authorized set of users u_1 and u_2 can reconstruct the secret. Specify the algorithm and reconstruct the message from the shares $s_1 := 0110000011$ and $s_2 := 10110101111$.
- b) Assuming five users u_i , i = 1, 2, 3, 4, 5 and a (3,5)-threshold sharing algorithm with the polynomial $f(x) = 15x^2 + 14x + 6 \mod 17$. Calculate a share for each user. Show that the secret can be restored by using the key shares of users u_1 , u_2 , u_3 . (useful calculation rules: $(-a) \mod b = (kb a) \mod b$, https://de.planetcalc.com/8329/).