Ósme laboratorium

Aleksandra Nycz 226270 18.05.2017

1 Wyniki

W zadaniu należało zaimplementować drzewo AVL, wypełnić je w losowy sposób oraz zmierzyć czas wyszukiwania elementu. Pomiary były przeprowadzone dla elementu o kluczu, który został dodany jako ostatni.

ilość elementów	czas [s]
10^{1}	0.000000261
10^{2}	0.000000327
10^{3}	0.0000005443
10^{4}	0.0000005019
10^{5}	0.00000040791
10^{6}	0.0000004
10^{7}	0.000002
10^{8}	0.000002

2 Problemy

• Wskaźniki, które są polami węzła, zostały zaimplementowane jako publiczne, ponieważ pojawił się problem z funkcją zwracającą wskaźnik.

- Pojawił się problem z funkcją neutralise, czyli ze zwalnianiem pamięci.
- $\bullet\,$ Nie można było przeprowadzić pomiarów dla danych powyżej ilości $10^8,$ poniewaz sprzęt odmówił posłuszeństwa.

3 Wnioski

- Klasa złożoności powinna wyjść około $O(\log n)$.
- Z kilkukrotnie powtórzonych pomiarów wykres widać, że czas odczytu elementu niezbyt wzrasta. Linia oscyluje, ale jest prawie prosta. Dopiero przy ilości elementów powyżej miliona zaczyna rosnąć czas.
- Albo zaimplementowany algorytm jest niesamowicie dobry, albo coś jest nie tak przy pomiarach.