Plateforme Pédagogique du cours

Méthodes Pédagogiques

Objectifs

Evaluations

Les concepts de base

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

M.A: Mathématiques Appliquées

Plan

Objectifs (compétences à acquérir)

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

Université Internationale de Casablanca

➤ → Méthodes Pédagogiques

▶ → Évaluations

Travaux Pratiques (Mini Projets)

•

Dates

Pourquoi Apprendre ''MA''

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

M.A

Questions fondamentales

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

✓ Quels sont les <u>moyens</u> qui permettent de bien apprendre ?

✓ Que doit <u>apprendre</u> l'élève ?

✓ <u>Vérifier</u> que l'élève a bien appris!

OBJECTIFS

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

Ce cours de Mathématiques Appliquées est un cours de base obligatoire.

Les étudiants ont la possibilité de le suivre en Tronc Commun.

Il constitue un enseignement indispensable pour le métier d'ingénieur.

Ce cours a pour objectifs

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

Etude et Application des Transformations de Fourier et de Laplace

Etude des propriétés et classification des systèmes d'équations aux dérivées partielles; analyse des propriétés (précision, stabilité) des méthodes numériques aux différences finies utilisées pour les résoudre.

Pré - requis ...

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

Cours d'Analyse

Notions de dérivées partielles et résolution analytique de certaines équations différentielles ordinaires (voir cours 1ère année - *mathématiques*). Cours de base en analyse numérique (indispensable et vivement conseillé).

Outils informatiques (matlab, scilab, C,)

MÉTHODES PÉDAGOGIQUES

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

Dans chacune des séances du cours, l'étudiant :

1 - Reçoit des apports précis sur le cas de la séance,

2 - **Participe** à l'analyse du cas, à la résolution d'exercices,

3- Participe à la discussion de certains points du programme.

TRAVAIL A EFFECTUER ET CONTRÔLE CONTINU

Méthodes Pédagogiques → Lectures obligatoires avant chaque séance voir programme par séance).

Objectifs

→ Deux contrôles continus d'une durée d'une heure et demie et portant sur la totalité du programme et comprend des questions ou des développements au choix, des exercices et / ou l'étude d'un cas.

Evaluations

Bibliographie

→ Un examen Final

MODALITÉS D'ÉVALUATION

Méthodes Pédagogiques Les modalités d'évaluation ont un double objectif :

Objectifs

Évaluer un savoir (compréhension des concepts, connaissance des méthodes)

Evaluations

Objectif-2

Objectif -1

Bibliographie

Évaluer un savoir-faire (mise en œuvre des méthodes sur des cas concrets et pratiques et résolution de problèmes réels)

→ Contrôle continu (écrit)......?%

Méthodes Pédagogiques

→ Participation en classe, Quiz, Travaux à réaliser à domicile......

Objectifs

→ Examen final ?%

Evaluations

- Les conditions de mise en œuvre de cette évaluation doivent être respectées scrupuleusement. En particulier,

Bibliographie

- toute absence non justifiée par un certificat médical à l'une des épreuves entraînera la note 0.

Remarque Importante

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

► Il est essentiel que l'étudiant considère cette évaluation non comme un contrôle mais comme l'une des composantes de base de son processus d'apprentissage.

Programme

Méthodes Pédagogiques

Objectifs

Evaluations

- Techniques des transformations de Fourrier et de Laplace
- ► Applications des transformations
- Equations aux dérivées partielles
- Méthode des différences finies

Planning des séances et déroulement du programme

Méthodes
Pédagogiques

Objectifs

Evaluations

Université Internationale de Casablanca
LAUREATE INTERNATIONAL UNIVERSITIES

Séance	Programme de la séance	type
1	Présentation des objectifs du cours. Syllabus Motivation	Exposé exemples
2+3	Chapitre 1	Cours + T.D
3+4	Travaux dirigés	Cours + T.D
5+6	Chapitre 2	Cours +
		T.D

Ressources pour votre étude

Méthodes Pédagogiques

Objectifs

Evaluations

- Lectures,
- Les présentations Powerpoint,
- Les exercices faits en classe,
- Les exercices faits dans le cadre des séances de travaux supplémentaires:
 - Internet
- Vos notes de cours personnelles.

Séances de COURS

Une séance dure 2 heures:

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

- 15 mn: Rappel de cours et Questions

45 mn: COURS

 1h Travaux Dirigés et correction des exercices. Les étudiants seront amenés à solutionner en classe les exercices présentés dans le polycopié.

À faire après un cours

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

1 séance de cours

1 heure minimum de travail à la maison

Il est dans votre intérêt de faire systématiquement votre travail de révision après <u>chacune</u> des <u>séances</u>.

Règles de comportement

Méthodes Pédagogiques **▶**Ponctualité

Objectifs

▶Silence

Evaluations

Interactivité

Consultation Pédagogique

Possibilité #

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

Vous pourrez poser vos questions par email : helou_di@yahoo.fr/h.elouardi@ensem.ac.ma

Enfin!!!

Méthodes Pédagogiques

Objectifs

Evaluations

TRES IMPORTANT!!!

Nous retenons:

Méthodes Pédagogiques

→ 10% DE CE QUE NOUS LISONS.

Objectifs

→ 15% DE CE QUE NOUS ENTENDONS.

Evaluations

→ 30% DE CE QUE NOUS VOYONS.

→ 50% DE CE QUE NOUS VOYONS ET ENTENDONS (AUDIO-VISUEL).

Bibliographie

→80% DE CE QUE NOUS PRATIQUONS.

Méthodes des différences finies

Méthodes Pédagogiques

Objectifs

Professeur Hamid El Ouardi

Evaluations

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

MOTIVATION

Motivation

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

- Les cas où une solution analytique peut être trouvée sont très rares et simples:
 - géométrie simple (dimension 1)
 - Equations de la chaleur, des ondes

Les solutions obtenues sont souvent très lourdes même pour ces cas simplistes ...

Exemple 1

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

Trouver u: $a,b \mapsto IR$ tel que: $\begin{cases} -\mathbf{u}''(\mathbf{x}) = \mathbf{f}(\mathbf{x}) & \forall \mathbf{x} \in \mathbf{a}, \mathbf{b} \\ \mathbf{u}(\mathbf{a}) = \alpha & \text{et } \mathbf{u}(\mathbf{b}) = \beta \end{cases}$ $a, b, \alpha, \beta \in \mathbb{R}$ et $f: [a,b] \to \mathbb{R}$ donnés

Exemple 2

(Equation de la chaleur)

Méthodes Pédagogiques

Objectifs

Evaluations

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} - \Delta \mathbf{u} = \mathbf{f} \\ \mathbf{u}(\mathbf{x}, \mathbf{t}) = \mathbf{0} \\ \mathbf{u}(\mathbf{x}, \mathbf{t}_0) = \phi(\mathbf{x}) \end{cases}$$

Exemple 3

Méthodes Pédagogiques

Objectifs

Evaluations

$$\begin{cases} \frac{\partial^2 \mathbf{u}}{\partial t^2} - \Delta \mathbf{u} = \mathbf{f} \\ \mathbf{u}(\mathbf{x}, \mathbf{t}) = \mathbf{0} \\ \mathbf{u}(\mathbf{x}, \mathbf{t}_0) = \phi_1(\mathbf{x}) \\ \frac{\partial \mathbf{u}}{\partial t}(\mathbf{x}, \mathbf{t}_0) = \phi_2(\mathbf{x}) \end{cases}$$

Problèmes Pratiques

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

Méthodes des différences finies

Modèle mathématique

Définition du domaine d'étude :

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

$$x \in [0, L]$$

► Équilibre thermique régi par :

$$\vec{\nabla} \cdot \vec{q}(x) - f = 0, \quad \forall \ x \in [0, L]$$

► Loi de comportement : $\vec{q}(x) = -k\vec{\nabla}T(x)$

soit à résoudre:
$$k \frac{d^2T(x)}{dx^2} + f = 0$$
, $\forall x \in [0, L]$

- ► Conditions aux limites (CL) :
 - Température imposée en x=0 (CL type Dirichlet) : T(0) = 30 °C
 - Condition en flux en x=L (CL type Cauchy) : $q(L) = h(T(L) T_{ext})$

Equations Aux Dérivées partielles

Méthodes Pédagogiques

Objectifs

Quelques définitions et rappels

Schémas de discrétisation

Evaluations

Exemple: la conduction de chaleur

Convergence = Consistance + Stabilité

Méthode des différences finies

► formulation ponctuelle (équations d'équilibre)

Méthodes Pédagogiques

Evaluations

Bibliographie

 $\left\{ \begin{array}{l} A\ u\ =\ f \\ L\ u\ =\ g \end{array} \right. \begin{array}{l} \textbf{A}_{\text{h}}\ \text{et}\ L_{\text{h}}\ \text{op\'erateurs lin\'eaires} \\ \text{"approximations" de } L\ \text{et } A \\ \end{array}$

$$(P_h) \begin{cases} A_h u_h = f_h \\ L_h u_h = g_h \end{cases}$$

Le problème (P_h) conduit à des systèmes linéaires dont les matrices ont des propriétés similaires: creuses et de grande

taille

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

Université Internationale de Casablanca

Cependant, la méthode des différences finies est plus facile à mettre en œuvre sur des problèmes simples.

Le cours d'analyse numérique sera illustré sur les systèmes linéaires provenant de la discrétisation par la méthode des différences finies des 3 problèmes modèles suivants:

Laplacien en dimension 1

problème continu

Méthodes Pédagogiques

Objectifs

Trouver u:
$$[a,b] \rightarrow IR$$
 tel que:
$$\begin{cases} -\mathbf{u}''(\mathbf{x}) = \mathbf{f}(\mathbf{x}) \ \forall \ \mathbf{x} \in]\mathbf{a}, \mathbf{b}[\\ \mathbf{u}(\mathbf{a}) = \alpha \text{ et } \mathbf{u}(\mathbf{b}) = \beta \end{cases}$$

$$[a,b,\alpha,\beta \in IR \text{ et } f: [a,b] \rightarrow IR \text{ donnés}$$

Equation de la chaleur

Evaluations

Bibliographie

Université Internationale de Casablanca

DURCATE RITORNOTONAL DANGOSTICS

problème continu $\overline{\Omega} \to IR$ tel que:

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} - \Delta \mathbf{u}(\mathbf{x}, \mathbf{y}) = \mathbf{f}(\mathbf{x}, \mathbf{y}) & \forall (\mathbf{x}, \mathbf{y}) \in \Omega \\ \mathbf{u}(\mathbf{x}, \mathbf{y}) = \mathbf{g}(\mathbf{x}, \mathbf{y}) & \forall (\mathbf{x}, \mathbf{y}) \in \Gamma = \delta \mathbf{G} \end{cases}$$

 Ω ouvert borné de IR 2 de frontière Γ et f: $\overline{\Omega}$ \rightarrow IR et g: Γ \rightarrow IR donnés

Equation des ondes

Méthodes Pédagogiques

Objectifs

Evaluations

Bibliographie

Université Internationale de Casablanca

CASABORANCIA DI MARIONAL DI MARIONES

problème continu $\overline{\Omega} \to IR$ tel que:

$$\begin{cases} \frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} - \Delta \mathbf{u}(\mathbf{x}, \mathbf{y}) = \mathbf{f}(\mathbf{x}, \mathbf{y}) & \forall (\mathbf{x}, \mathbf{y}) \in \mathbf{\Omega} \\ \mathbf{u}(\mathbf{x}, \mathbf{y}) = \mathbf{g}(\mathbf{x}, \mathbf{y}) & \forall (\mathbf{x}, \mathbf{y}) \in \mathbf{\Gamma} = \delta \mathbf{\Omega} \end{cases}$$

 Ω ouvert borné de IR ² de frontière Γ et f: $\overline{\Omega} \to$ IR et g: $\Gamma \to$ IR donnés