Algorithm & Data Structure Analysis

Lecture 2: Integer Arithmetics

Overview

School method addition

School method multiplication

Example of addition

Let
$$a=1709$$
 and $b=2530$
Compute $a+b$

Example of addition

Let
$$a=1709$$
 and $b=2530$ Compute $a+b$

a	1	7	0	9	
Ь	2	5	3	0	+
carries	1	0	0	0	+
sum	4	2	3	9	

Number representation

An integer d can be expressed as

$$d = \sum_{i=0}^{n-1} d_i B^i$$

where B > 1 and $0 \le d_i < B$.

B is called base or radix

$$d = \sum_{i=0}^{n-1} d_i B^i$$

$$B = 10 \text{ (decimal)}$$
 $1.10^3 + 7.10^2 + 0.10^1 + 9.10^0 = 1709_{10}$

$$d = \sum_{i=0}^{n-1} d_i B^i$$

$$B=2 \quad \text{(binary)} \qquad \qquad 1 \cdot 2^3 \ + \ 0 \cdot 2^2 \ + \ 1 \cdot 2^1 \ + 1 \cdot 2^0 \ = \qquad 11_{10}$$

$$B = 10 \text{ (decimal)} \qquad \qquad 1 \cdot 10^3 \, + \, \, 7 \cdot 10^2 \, + \, 0 \cdot 10^1 \, + \, 9 \cdot 10^0 \, = \, \, 1709_{10}$$

$$d = \sum_{i=0}^{n-1} d_i B^i$$

$$B = 2 \quad \text{(binary)} \qquad \qquad 1 \cdot 2^3 \ + \ 0 \cdot 2^2 \ + \ 1 \cdot 2^1 \ + \ 1 \cdot 2^0 \ = \qquad 11_{10}$$

$$B=10 \; \text{(decimal)} \qquad \qquad 1 \cdot 10^3 \; + \; 7 \cdot 10^2 \; + \; 0 \cdot 10^1 \; + \; 9 \cdot 10^0 \; = \; 1709_{10}$$

$$B=16$$
 (hexadecimal) $A \cdot 16^3 + D \cdot 16^2 + 5 \cdot 16^1 + A \cdot 16^0 = 44378_{10}$

$$d = \sum_{i=0}^{n-1} d_i B^i$$

$$B=2$$
 (binary) $1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 11_{10}$ $B=8$ (octal) $5 \cdot 8^3 + 3 \cdot 8^2 + 4 \cdot 8^1 + 7 \cdot 8^0 = 2791_{10}$ $B=10$ (decimal) $1 \cdot 10^3 + 7 \cdot 10^2 + 0 \cdot 10^1 + 9 \cdot 10^0 = 1709_{10}$ $B=16$ (hexadecimal) $A \cdot 16^3 + D \cdot 16^2 + 5 \cdot 16^1 + A \cdot 16^0 = 44378_{10}$

Assume that we have:

• Addition of three 1-digit

- Addition of three 1-digit
 - obtaining a 2-digit result (full adder)

- Addition of three 1-digit
 - obtaining a 2-digit result (full adder)
 - ex. (B=2): $1+1+1=11_2$
 - ex. (B=10): $9 + 9 + 9 = 27_{10}$

- Addition of three 1-digit
 - obtaining a 2-digit result (full adder)
 - ex. (B=2): $1+1+1=11_2$
 - ex. (B=10): $9+9+9=27_{10}$
- Multiplication of 1-digit by 1-digit

- Addition of three 1-digit
 - obtaining a 2-digit result (full adder)
 - ex. (B=2): $1+1+1=11_2$
 - ex. (B=10): $9 + 9 + 9 = 27_{10}$
- Multiplication of 1-digit by 1-digit
 - obtaining a 2-digit result

- Addition of three 1-digit
 - obtaining a 2-digit result (full adder)
 - ex. (B=2): $1+1+1=11_2$
 - ex. (B=10): $9+9+9=27_{10}$
- Multiplication of 1-digit by 1-digit
 - obtaining a 2-digit result
 - ex. (B=10): $9 \times 9 = 81_{10}$
 - ex. (B=16): $F \times F = E1_{16}$

• Let $a=a_{n-1}\cdots a_0$ and $b=b_{n-1}\cdots b_0$ be two n-digit integers in base B

- Let $a=a_{n-1}\cdots a_0$ and $b=b_{n-1}\cdots b_0$ be two n-digit integers in base B
- Compute s=a+b where $s=s_n\cdots s_0$ is an (n+1)-digit integer

- Let $a=a_{n-1}\cdots a_0$ and $b=b_{n-1}\cdots b_0$ be two n-digit integers in base B
- Compute s=a+b where $s=s_n\cdots s_0$ is an (n+1)-digit integer

$$a_{n-1} \cdots a_1$$
 a_0 first operand $b_{n-1} \cdots b_1$ b_0^+ second operand c_n $c_{n-1} \cdots c_1$ 0^+ carries s_n $s_{n-1} \cdots s_1$ s_0 addition result

- Let $a=a_{n-1}\cdots a_0$ and $b=b_{n-1}\cdots b_0$ be two n-digit integers in base B
- Compute s=a+b where $s=s_n\cdots s_0$ is an (n+1)-digit integer

$$a_{n-1}\cdots a_1$$
 a_0 first operand $b_{n-1}\cdots b_1$ b_0^+ second operand c_n $c_{n-1}\cdots c_1$ 0^+ carries s_n $s_{n-1}\cdots s_1$ s_0 addition result

• $c_n \cdots c_0$ is a sequence of carries where $c_0 = 0$ and $c_{i+1} \cdot B + s_i = a_i + b_i + c_i$ for $0 \le i \le n$

School method addition (cont.)

Let a and b be n-digit integers Compute s=a+b $c \leftarrow 0$ for i=0 to n-1 do $(c_{i+1}s_i) \leftarrow a_i + b_i + c_i$ end for $s_n \leftarrow c_n$

School method addition (cont.)

Let
$$a$$
 and b be n -digit integers
Compute $s = a + b$
 $c \leftarrow 0$
for $i = 0$ to $n - 1$ do
 $(c_{i+1}s_i) \leftarrow a_i + b_i + c_i$
end for
 $s_n \leftarrow c_n$

Theorem

The school method addition of two n-digit integers requires exactly n primitive operations resulting in an (n+1)-digit integer.

Let a=1709 and b=25 in base 10 Compute $a\times b$

Let
$$a=1709$$
 and $b=25$ in base 10 Compute $a\times b$

Let
$$a=1709$$
 and $b=25$ in base 10 Compute $a\times b$

	multiplicand		9	0	7	1	
,	imes multiplie	×	5	2			
_	partial product $a \cdot b$		5	4	5	8	

Let
$$a=1709$$
 and $b=25$ in base 10 Compute $a\times b$

multiplicand		9	0	7	1	
multiplier	×	5	2			
partial product $a \cdot b_0$		5	4	5	8	
partial product $a \cdot b_1$	+		8	1	4	3

Let
$$a=1709$$
 and $b=25$ in base 10 Compute $a\times b$

multiplicand		_	_	7	1	
multiplie	×	5	2			
partial product $a \cdot b_0$		_		5	_	
partial product $a \cdot b_1$	+		8	1	4	_ 3
add aligned partial products		5	2	7	2	4

• Let $a=a_{n-1}\cdots a_0$ and $b=b_{n-1}\cdots b_0$ be two n-digit integers in base B

- Let $a=a_{n-1}\cdots a_0$ and $b=b_{n-1}\cdots b_0$ be two n-digit integers in base B
- ullet Compute $p=a\cdot b$ where $p=p_{2n-1}\cdots p_0$ is an 2n-digit integer

- Let $a=a_{n-1}\cdots a_0$ and $b=b_{n-1}\cdots b_0$ be two n-digit integers in base B
- Compute $p=a\cdot b$ where $p=p_{2n-1}\cdots p_0$ is an 2n-digit integer

Procedure:

- Let $a=a_{n-1}\cdots a_0$ and $b=b_{n-1}\cdots b_0$ be two n-digit integers in base B
- Compute $p=a\cdot b$ where $p=p_{2n-1}\cdots p_0$ is an 2n-digit integer

Procedure:

• Multiply an n-digit integer a by a 1-digit integer b_j obtaining a partial product p_j for $0 \le j \le n-1$

- Let $a=a_{n-1}\cdots a_0$ and $b=b_{n-1}\cdots b_0$ be two n-digit integers in base B
- Compute $p=a\cdot b$ where $p=p_{2n-1}\cdots p_0$ is an 2n-digit integer

Procedure:

- Multiply an n-digit integer a by a 1-digit integer b_j obtaining a partial product p_j for $0 \le j \le n-1$
- ② Add the aligned partial product $p_j \cdot B^j$

Compute
$$p_j=a\cdot b_j$$

$$a_{n-1}\ \cdots\ a_3\ a_2\ a_1\ a_0 \qquad \text{multiplicand}$$

$$b_{n-1}\ \cdots\ b_3\ b_2\ b_1\ b_0^{igmta} \qquad \text{multiplier}$$

Compute
$$p_j = a \cdot b_j$$

	a_{n-1}	• • •	a_3	a_2	a_1	a_0	multiplicand
	b_{n-1}		b_3	b_2	b_1	b_0^{\times}	multiplier
c_{n-1}	c_{n-2}		c_2	c_1	c_0	0	carries
	d_{n-1}		d_3	d_2	d_1	d_0	$a \cdot b_0$

Compute
$$p_j = a \cdot b_j$$

		a_{n-1}	 a_3	a_2	a_1	a_0	multiplicand
		b_{n-1}	 b_3	b_2	b_1	b_0^{\times}	multiplier
c_{n-1}	c_{n-2}	c_{n-3}	 c_1	c_0	0		carries
	d_{n-1}	d_{n-2}	 d_2	d_1	d_0		$a\cdot b_1$

Compute
$$p_j = a \cdot b_j$$

$$a_{n-1} \cdots a_3$$
 a_2 a_1 a_0 multiplicand $b_{n-1} \cdots b_3$ b_2 b_1 $b_0^{ imes}$ multiplier c_{n-1} c_{n-2} $c_{n-3} \cdots c_1$ c_0 0 carries d_{n-1} $d_{n-2} \cdots d_2$ d_1 d_0 $a \cdot b_1$

Number of primitive operation

Compute
$$p_j = a \cdot b_j$$

$$a_{n-1} \cdots a_3$$
 a_2 a_1 a_0 multiplicand $b_{n-1} \cdots b_3$ b_2 b_1 $b_0^{ imes}$ multiplier c_{n-1} c_{n-2} $c_{n-3} \cdots c_1$ c_0 0 carries d_{n-1} $d_{n-2} \cdots d_2$ d_1 d_0 $a \cdot b_1$

- Number of primitive operation
 - ightharpoonup n multiplications (a has n digits)

Partial product

Compute
$$p_j = a \cdot b_j$$

$$a_{n-1} \cdots a_3$$
 a_2 a_1 a_0 multiplicand $b_{n-1} \cdots b_3$ b_2 b_1 $b_0^{ imes}$ multiplier c_{n-1} c_{n-2} $c_{n-3} \cdots c_1$ c_0 0 carries d_{n-1} $d_{n-2} \cdots d_2$ d_1 d_0 $a \cdot b_1$

- Number of primitive operation
 - n multiplications (a has n digits)
 - n+1 additions (carries and alignment)

Partial product

Compute
$$p_j = a \cdot b_j$$

$$a_{n-1} \cdots a_3$$
 a_2 a_1 a_0 multiplicand $b_{n-1} \cdots b_3$ b_2 b_1 $b_0^ imes$ multiplier c_{n-1} c_{n-2} $c_{n-3} \cdots c_1$ c_0 0 carries d_{n-1} $d_{n-2} \cdots d_2$ d_1 d_0 $a \cdot b_1$

- Number of primitive operation
 - n multiplications (a has n digits)
 - ightharpoonup n+1 additions (carries and alignment)
 - ▶ total of 2n+1

School method multiplication (cont.)

Let a,b be n-digit integers in base B Compute $p=a\cdot b$

$$p \leftarrow 0$$

for $i = 0$ to $n - 1$ do
 $p \leftarrow p + a \cdot b_i \cdot B^i$
end for

School method multiplication (cont.)

Let a,b be n-digit integers in base B Compute $p=a\cdot b$ $p\leftarrow 0$ $\mathbf{for}\ i=0\ \mathrm{to}\ n-1\ \mathbf{do}$ $p\leftarrow p+a\cdot b_i\cdot B^i$ $\mathbf{end}\ \mathbf{for}$

Theorem

The school method multiplication of two n-digit integers requires $3n^2 + 2n = \Theta(n^2)$ primitive operations.

ullet 2n+1 operations for one partial product p_j

• 2n + 1 operations for one partial product p_j $\implies 2n^2 + n$ for $0 \le j < n$

- 2n + 1 operations for one partial product p_j $\Longrightarrow 2n^2 + n$ for $0 \le j < n$
- n summations of (n+1)-digit numbers

- 2n+1 operations for one partial product p_j $\Longrightarrow 2n^2+n$ for $0 \le j < n$
- n summations of (n+1)-digit numbers $\implies n^2 + n$ operations

- 2n + 1 operations for one partial product p_j $\Longrightarrow 2n^2 + n$ for $0 \le j < n$
- n summations of (n+1)-digit numbers $\implies n^2 + n$ operations
- In total, $3n^2 + 2n$ operations

- 2n + 1 operations for one partial product p_j $\Longrightarrow 2n^2 + n$ for $0 \le j < n$
- n summations of (n+1)-digit numbers $\implies n^2 + n$ operations
- In total, $3n^2 + 2n$ operations $\Longrightarrow \Theta(n^2)$

Summary

- ullet Addition can be done using n primitive operations
- School method multiplication requires $\Theta(n^2)$ primitive operations
- Questions: Faster multiplication algorithms?
- Reading: Algorithms and Data Structures
 - ► Chapter 1.1: Addition
 - Chapter 1.2: Multiplication: The School Method

Next week

• Recursive multiplication (Tuesday)

Karatsuba multiplication (Wednesday)

- Reading: Algorithms and Data Structures
 - Chapter 1.4: A Recursive Version of the School Method
 - Chapter 1.5: Karatsuba Multiplication