Zadanie 1.

Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa $X_0, X_1, ... X_n, ...$ o trzech stanach $\{1, 2, 3\}$ jest postaci

$$\begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{3} & 0 & \frac{2}{3} \end{bmatrix}$$

(oczywiście, element p_{ij} stojący w i-tym wierszu i j-tej kolumnie tej macierzy oznacza $P(X_{n+1}=j\mid X_n=i)$).

Wtedy $\lim_{n\to +\infty} \text{Cov}(X_n, X_{n+1})$ jest równa

- (A) 2,125
- (B) 0,125
- (C) 0,375
- (D) 1,875
- (E) 0

Zadanie 2.

Niech $X_1, X_2, ..., X_n, ...$ będą niezależnymi zmiennymi losowymi o tym samym

rozkładzie jednostajnym na przedziale [1, 2]. Niech N będzie zmienną losowa o rozkładzie ujemnym dwumianowym

$$P(N=n) = {n+2 \choose n} p^3 (1-p)^n$$
 dla $n = 0,1,2,...,$

niezależną od zmiennych losowych $X_1, X_2, ..., X_n, ...$

Niech

$$M_N = \begin{cases} \max(X_1, X_2, \dots, X_N) & gdy \ N > 0 \\ 0 & gdy \ N = 0 \end{cases}$$

Obliczyć $E(M_N)$.

(A)
$$2-2p^3-\frac{1}{2}p^2+\frac{1}{2}p$$

(B)
$$2-\frac{1}{2}p^2-\frac{1}{2}p$$

(C)
$$2+p^3-\frac{1}{2}p^2-\frac{1}{2}p$$

(D)
$$2-p^3-\frac{1}{2}p^2-\frac{1}{2}p$$

(E)
$$2 - p^2 - p$$

Zadanie 3.

Zakładamy, że $X_1, X_2, ..., X_n$, $Y_1, Y_2, ..., Y_n$ są niezależnymi zmiennymi losowymi o rozkładach normalnych, przy czym $EX_i = EY_i = \mu$, $VarX_i = \sigma^2$, $VarY_i = 4\sigma^2$ dla i = 1, 2, ..., n. Parametry μ i σ są nieznane. Niech $\hat{\sigma}^2$ będzie estymatorem największej wiarogodności parametru σ^2 w tym modelu. Wyznaczyć stałą a, tak aby $\tilde{\sigma}^2 = a\hat{\sigma}^2$ był estymatorem nieobciążonym parametru σ^2 .

A)
$$a = \frac{8n}{8n-4}$$

(B)
$$a=1$$

$$(C) \qquad a = \frac{8n}{8n-1}$$

$$(D) \qquad a = \frac{8n}{8n - 8}$$

$$(E) \qquad a = \frac{8n}{8n - 2}$$

Zadanie 4.

W urnie znajduje się razem 76 kul: białych i czarnych. Wylosowano 10 kul, wśród których było 6 kul białych. Wyznaczyć wartość estymatora największej wiarogodności liczby kul białych w urnie.

- (A) 43
- (B) 44
- (C) 45
- (D) 46
- (E) 47

Zadanie 5.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym EX=4 i EY=6. Rozważamy zmienną losową $Z=\frac{X}{X+Y}$. Wtedy

- (A) EZ = 0.4
- (B) funkcja gęstości zmiennej losowej Z wyraża się wzorem $g(z) = 504z^3(1-z)^5$ dla $z \in (0,1)$
- (C) mediana rozkładu zmiennej losowej Z jest równa 0,4
- (D) funkcja gęstości zmiennej losowej Z wyraża się wzorem $g(z) = 140z^3(1-z)^3$ dla $z \in (0,1)$
- (E) mediana rozkładu zmiennej losowej Z jest równa 0,5

Zadanie 6.

Niech $X_1, X_2, ..., X_{10}$ będą niezależnymi zmiennymi losowymi o tym samym rozkładzie ciągłym o ściśle rosnącej dystrybuancie F. Hipotezę

 \boldsymbol{H}_0 : \boldsymbol{F} jest dystrybuantą rozkładu symetrycznego, tzn. takiego że dla każdego \boldsymbol{x}

$$F(-x) = 1 - F(x)$$

odrzucamy, gdy spełniona jest nierówność

$$K > 7$$
 lub $K < 3$

gdzie K jest liczbą elementów w próbie losowej $X_1, X_2, ..., X_{10}$ o wartościach większych od 0. Wyznaczyć rozmiar testu.

- (A) $\frac{5}{64}$
- (B) $\frac{9}{64}$
- (C) $\frac{7}{64}$
- (D) $\frac{17}{64}$
- (E) $\frac{15}{64}$

Zadanie 7.

Zmienne losowe $X_1,X_2,...,X_{25}$ są niezależne o jednakowym rozkładzie normalnym $N(m,\sigma^2)$. Niech $S_{10}=\sum_{i=1}^{10}X_i$ i $S_{25}=\sum_{i=1}^{25}X_i$. Wtedy $E\left(S_{10}^2\mid S_{25}\right)$ jest równa

(A)
$$15\sigma^2 + 0.4S_{25}^2$$

(B)
$$6\sigma^2 + 0.4S_{25}^2$$

(C)
$$0.4S_{25}^2$$

(D)
$$6\sigma^2 + 0.16S_{25}^2$$

(E)
$$15\sigma^2 + 0.16S_{25}^2$$

Zadanie 8.

Pobieramy próbkę niezależnych realizacji zmiennych losowych o rozkładzie Poissona z wartością oczekiwaną $\lambda>0$. Niestety sposób obserwacji uniemożliwia odnotowanie realizacji o wartości 0. Pobieranie próbki kończymy w momencie, gdy liczebność odnotowanych realizacji wynosi n. Tak więc, każda z naszych kolejnych odnotowanych realizacji K_1, K_2, \ldots, K_n wynosi co najmniej 1 i nic nie wiemy o tym, ile w międzyczasie pojawiło się obserwacji o wartości 0. Estymujemy parametr λ za pomocą estymatora postaci

$$\hat{\lambda} = \frac{1}{n} \sum_{i=2}^{+\infty} i N_i ,$$

gdzie N_i jest liczbą obserwacji o wartości i. Obliczyć wariancję estymatora $\hat{\lambda}$.

(A)
$$\frac{1}{n} \left[\lambda - \lambda e^{-\lambda} \left(1 + \lambda e^{-\lambda} - 2\lambda \right) \right]$$

(B)
$$\frac{\lambda^2}{n}$$

(C)
$$\frac{\lambda^2 - \lambda + \lambda^2 e^{\lambda}}{n(e^{\lambda} - 1)}$$

(D)
$$\frac{\lambda^2 + \lambda - \lambda e^{-\lambda}}{n(1 - e^{-\lambda})}$$

(E)
$$\frac{\lambda^2 - \lambda + \lambda e^{\lambda}}{n(e^{\lambda} - 1)}$$

Zadanie 9.

Obserwujemy X_1, X_2, X_3, X_4 niezależnych zmiennych losowych o tym samym rozkładzie Pareto o gęstości

$$f_{\theta_1}(x) = \begin{cases} \frac{2^{\theta_1} \theta_1}{(2+x)^{\theta_1+1}} & gdy & x > 0\\ 0 & gdy & x \le 0 \end{cases}$$

i Y_1, Y_2, Y_5 niezależnych zmiennych losowych o tym samym rozkładzie Pareto o gęstości

$$f_{\theta_2}(x) = \begin{cases} \frac{2^{\theta_2} \theta_2}{(2+x)^{\theta_2+1}} & gdy & x > 0\\ 0 & gdy & x \le 0 \end{cases}$$

gdzie θ_1 i θ_2 są nieznanymi parametrami dodatnimi.

Wszystkie zmienne losowe są niezależne. Testujemy hipotezę $H_0: \frac{\theta_1}{\theta_2} = 1$ przy

alternatywie H_1 : $\frac{\theta_1}{\theta_2} > 1$ za pomocą testu o obszarze krytycznym

$$K = \left\{ \frac{\hat{\theta}_1}{\hat{\theta}_2} > t \right\}$$

gdzie $\hat{\theta}_1$ i $\hat{\theta}_2$ są estymatorami największej wiarogodności odpowiednio parametrów θ_1 i θ_2 wyznaczonymi na podstawie prób losowych $X_1, X_2, ..., X_4$ i Y_1, Y_2, Y_5. Dobrać stałą t tak, aby otrzymać test o rozmiarze 0,05.

- (A) t = 6,256
- (B) t = 3,347
- (C) t = 3.072
- (D) t = 5,192
- (E) t = 4.184

Zadanie 10.

Zakładamy, że X_1, X_2, \ldots, X_{12} są niezależnymi zmiennymi losowymi o rozkładach normalnych, przy czym $\mathrm{E} X_i = \mu$ i $\mathrm{Var} X_i = \frac{\sigma^2}{i}$, gdzie parametry $\mu \in R$ i $\sigma > 0$ są nieznane. Budujemy przedział ufności $\left[\hat{\sigma}_1^2, \hat{\sigma}_2^2\right]$ dla parametru σ^2 na poziomie ufności 0,9.

Niech
$$\overline{X} = \frac{\sum_{i=1}^{12} X_i}{12}$$
 i $\overline{X}_w = \frac{\sum_{i=1}^{12} i X_i}{78}$.

Dla którego z poniższych przedziałów zachodzi

$$P(\hat{\sigma}_1^2 > \sigma^2) = P(\hat{\sigma}_2^2 < \sigma^2) = 0.05?$$

(A)
$$\left[\frac{\sum_{i=1}^{12} (X_i - \overline{X})^2}{19,6752}, \frac{\sum_{i=1}^{12} (X_i - \overline{X})^2}{4,5748}\right]$$

(B)
$$\left[\frac{\sum_{i=1}^{12} i(X_i - \overline{X})^2}{19,6752}, \frac{\sum_{i=1}^{12} i(X_i - \overline{X})^2}{4,5748}\right]$$

(C)
$$\left[\frac{\sum_{i=1}^{12} i(X_i - \overline{X}_w)^2}{19,6752}, \frac{\sum_{i=1}^{12} i(X_i - \overline{X}_w)^2}{4,5748}\right]$$

(D)
$$\left[\frac{\sum_{i=1}^{12} \frac{i}{78} (X_i - \overline{X}_w)^2}{19,6752}, \frac{\sum_{i=1}^{12} \frac{i}{78} (X_i - \overline{X}_w)^2}{4,5748}\right]$$

(E)
$$\left[\frac{\sum_{i=1}^{12} (X_i - \overline{X}_w)^2}{19,6752}, \frac{\sum_{i=1}^{12} (X_i - \overline{X}_w)^2}{4,5748}\right]$$

Egzamin dla Aktuariuszy z 9 października 2006 r.

Prawdopodobieństwo i statystyka

Arkusz odpowiedzi*

Imię i nazwisko :	K L U C Z	ODPOWIEDZI	
Dagal			

Zadanie nr	Odpowiedź	Punktacja⁴
1	В	
2	D	
3	A	
4	D	
5	C	
6	С	
7	D	
8	Е	
9	В	
10	C	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.