Ampliación de interpolación con Splines

Miguel Anguita Ruiz Pablo Baeyens Fernández Pablo David Medina Sánchez Ruben Morales Pérez Francisco Javier Morales Piqueras

Índice

1.	Splines cuadráticos		2
	1.1.	Descripción del espacio de splines cuadráticos	2
	1.2.	Ejemplos	2
2.	Spli	nes cúbicos	
	2.1.	Construcción a partir de los valores de $s''(x)$ en los nodos $\{x_i\}$	
	2.2.	Propiedades de minimización	9
		2.2.1. Cota de error en los splines cúbicos	9
	2.3.	Ejemplos	9
3.	Implementación en ordenador: Octave		4
	3.1.	Spline Lineal	4
	3 2	Splines quadráticos	/

1. Splines cuadráticos

El espacio de splines de clase 2 se nota $S_2(x_1, x_2, ..., x_n)$. Una base sería $\{1, x, x^2, (x - x_1)_+, (x - x_2)_+, ..., (x - x_n)_+\}$

1.1. Descripción del espacio de splines cuadráticos

El espacio de splines de clase 2 con n nodos se denota $S_2(x_1, x_2, ..., x_n)$. Los splines de clase 2 están constituidos por parábolas, de forma que además de tener una función continua, su derivada también lo es. Por lo tanto, para i = 1, ..., n - 1 tenemos la siguiente condición:

$$s_i(x_i) = s_{i+1}(x_{i+1})$$

$$s'_i(x_i) = s'_{i+1}(x_{i+1})$$

Proposición 1 El conjunto $S_2(x_1, x_2, ..., x_n)$ satisface las propiedades siguienes:

1. Es un espacio vectorial con $\dim(S_2(x_1, x_2, ..., x_n))$

1.2. Ejemplos

2. Splines cúbicos

2.1. Construcción a partir de los valores de s''(x) en los nodos $\{x_i\}$

2.2. Propiedades de minimización

2.2.1. Cota de error en los splines cúbicos

Teorema 1 Sea $f \in C^4([a,b])$, $n \in \mathbb{N}$, $P = \{x_i\}_{i=0...n} \in \mathscr{P}([a,b])$ y $s \in S_3^1(P)$ spline para f. Además, sean $h = \max\{x_i - x_{i-1}\}_{i=1...n}$, M > 0 cota superior de $|f^{iv}|$ en [a,b], E = f - s, $x \in [a,b]$.

Se verifica:

$$|E(x)| \le \frac{5M}{384}h^4\tag{1}$$

La prueba, así como cotas para las derivadas, puede consultarse en *Optimal Error Bounds for Cubic Spline Interpolation*, Charles Hall y Weston Meyer, (1976).

2.3. Ejemplos

3. Implementación en ordenador: Octave

Hemos implementado las siguientes funciones en Octave:

```
    SplineLineal: Calcula spline lineal. (Usado en los splines cúbicos)
    Spline31: Calcula spline de clase 1.
    SplineNat: Calcula spline natural.
    SplinePer: Calcula spline periódico.
    SplineSuj: Calcula spline sujeto.
    SplineCuad: Calcula spline cuadrático de clase 1.
```

3.1. Spline Lineal

La función que nos permite calcular un spline lineal es muy

```
function s = SplineLineal(x,y)
  p = diff(y)./diff(x);
  A = [p' y(1:end-1)'];
  s = mkpp(x,A);
end
```

3.2. Splines cuadráticos

Utilizando el sistema que vimos anteriormente, podemos definir fácilmente una función que calcule los coeficientes de un spline cuadrático de clase 1:

```
function s = coefsSplineCuad(x, y, d_k, k)
    # Número de intervalos
n = length(x) - 1;

# 1, x, x²
A(:,1) = [ones(n+1,1); 0];
A(:,2) = [x' ; 1];
A(:,3) = [x'.^2 ; 2.*x(k+1)];

# Potencias truncadas
for j = 4 : n + 2
    pot = @(t) (t > x(j-2)) .* (t - x(j-2));
    A(:,j) = [pot(x').^2; 2.*pot(x(k+1))];
end

# Resolución del sistema
s = A \ [y' ; d_k];
```

end

Definimos una función pot correspondiente a la potencia truncada en el valor correspondiente: pot = Q(t) (t > x(j-2)) .* (t - x(j-2)). Como Octave tiene tipos dinámicos convertirá (t > x(j-2)) a 1 o 0. De esta forma, $pot(x) = (x - x_{j-1})_+$.