

Sumário

4

- 1. Bibliografia
- 2. Exercícios
- 3. Soluções dos Exercícios

Bibliografia

Bibliografia da Aula 05

Fundamentos da Matemática Elementar: 1 (Click para baixar)

Uma empresa produz e vende determinado tipo de produto. A quantidade que ela consegue vender varia conforme o preço, da seguinte forma: a um preço y ela consegue vender x unidades do produto, de acordo com a equação $y=50-\frac{1}{2}x$. Sabendo que a receita (quantidade vendida vezes o preço de venda) obtida foi de R\$ 1250,00, qual foi a quantidade vendida?

Uma empresa produz e vende determinado tipo de produto. A quantidade que ela consegue vender varia conforme o preço, da seguinte forma: a um preço y ela consegue vender x unidades do produto, de acordo com a equação $y=50-\frac{1}{2}x$. Sabendo que a receita (quantidade vendida vezes o preço de venda) obtida foi de R\$ 1250, 00, qual foi a quantidade vendida?

Para resolver uma **equação** quadrática $ax^2 + bx + c = 0$, devemos encontrar as raízes da função $f(x) = ax^2 + bx + c$ e verificar se a solução encontrada é adequada ao problema proposto.

Determine os valores de m para que a função quadrática

$$f(x) = mx^2 + (3m-1)x + (m+1)$$

tenha raízes reais.

Determine os valores de m para que a função quadrática

$$f(x) = mx^2 + (3m - 1)x + (m + 1)$$

tenha raízes reais.

- Para resolver uma inequação quadrática:
 - $ax^2 + bx + c > 0$ ou $ax^2 + bx + c \ge 0$,
 - $ax^2 + bx + c < 0$ ou $ax^2 + bx + c \le 0$,

devemos esboçar o gráfico da função $f(x) = ax^2 + bx + c$, a fim de determinar os seus zeros, para quais valores a função é positiva e para quais é negativa.

Mostre que na equação quadrática $ax^2 + bx + c = 0$, de raízes x_1 e x_2 , temos para a soma x_2 s das raízes e para o produto x_2 das raízes, respectivamente:

$$S = x_1 + x_2 = -\frac{b}{a},$$

$$P = x_1 \cdot x_2 = \frac{c}{a}.$$

Em particular, se a = 1, *temos:* $S = x_1 + x_2 = -b e P = x_1 \cdot x_2 = c$.

Exercício 4

Resolva as inequações abaixo.

- a) $x^2 2x + 2 < 0$.
- b) $-x^2 + x + 6 > 0$.
- c) $x^2 6x + 9 \ge 0$.

Exercício 5

Para quais valores de x o trinômio $-x^2 + 3x + 4$ é negativo?

Exercício 6

Se
$$A = \{x \in \mathbb{R} \mid x^2 - 3x + 2 \le 0\}$$
 e $B = \{x \in \mathbb{R} \mid x^2 - 4x + 3 > 0\}$, determine $A \cap B$.

Exercício 7

Dentre os números inteiros que são soluções da inequação

$$(x^2-21x+20)\cdot(3-x)>0,$$

qual é o maior?

Exercício 8

Resolva a inequação $\frac{2x^2+x-1}{2x-x^2} \leq 0$ em \mathbb{R} .

Soluções dos Exercícios

Arquivo com as Soluções

Baixe aqui o arquivo com as soluções dos exercícios.