Package 'BayesMultiMode'

April 3, 2023

```
Type Package
Title Bayesian Mode Inference
Version 0.5.0
Description
```

A bayesian approach for mode inference which works in two steps. First, a mixture distribution is fitted on the data using a sparse finite mixture (SFM) Markov chain Monte Carlo (MCMC) algorithm following Malsiner-Walli, Frühwirth-Schnatter and Grün (2016) <doi:10.1007/s11222-014-9500-2>). The number of mixture components does not have to be specified; the size of the mixture is estimated endogenously through the SFM approach. Second, the modes of the estimated mixture at each MCMC draw are retrieved using algorithms specifically tailored for mode detection. These estimates are then used to construct posterior probabilities for the number of modes, their locations and uncertainties, providing a powerful tool for mode inference.

```
License GPL (>= 3)
Imports assertthat,
     bayesplot,
     dplyr,
     ggplot2,
     ggpubr,
     gtools,
     magrittr,
     MCMCglmm,
     mvtnorm,
     posterior,
     sn,
     stringr,
     tidyr,
     Rdpack,
     scales
Depends R (>= 3.4.0)
Suggests testthat (>= 3.0.0)
RdMacros Rdpack
Encoding UTF-8
LazyData true
URL https://github.com/paullabonne/BayesMultiMode
BugReports https://github.com/paullabonne/BayesMultiMode/issues
```

2 bayes_estimation

```
NeedsCompilation no
RoxygenNote 7.2.3
Config/testthat/edition 3
```

R topics documented:

bayes_estimation

Bayesian estimation of mixture distributions

Description

Gibbs samplers for sparse finite mixture Markov chain Monte Carlo (SFM MCMC) estimation.

Usage

```
bayes_estimation(
  data,
  K,
  dist,
  priors = list(),
  nb_iter = 2000,
  burnin = nb_iter/2,
  printing = TRUE
)
```

Arguments

```
data
                   Vector of observations
Κ
                   Maximum number of mixture components
dist
                   String indicating the distribution of the mixture components Currently supports
                   "normal", "skew_normal", "poisson" and "shifted_poisson"
                   List of priors; default is an empty list which implies the following priors:
priors
                   a0 = 1,
                   A0 = 200,
                   b0 = median(y),
                   B0 = (\max(y) - \min(y))^2 \text{ (normal)},
                   D_xi = 1,
                   D_psi = 1, (skew normal: B0 = diag(D_xi, D_psi)),
                   c0 = 2.5,
                   10 = 1.1 (poisson),
                   10 = 5 (shifted poisson),
                   L0 = 1.1/median(y),
                   L0 = 10 - 1 (shifted poisson),
                   g0 = 0.5,
                   G0 = 100*g0/c0/B0 \text{ (normal)},
                   G0 = g0/(0.5*var(y)) (skew normal)
nb_iter
                   Number of MCMC iterations; default is 2000
burnin
                   Number of MCMC iterations used as burnin; default is nb_iter/2
printing
                   Showing MCMC progression?
```

bayes_estimation 3

Value

A list of class 'BayesMixture' containing

- · data Same as argument
- dist_type Type of the distribution (continuous or discrete)
- pars_names Names of the mixture components' parameters
- mcmc Matrix of MCMC draws where the rows corresponding to burnin have been discarded
- mcmc_all Original matrix of MCMC draws

References

Malsiner-Walli G, Fruhwirth-Schnatter S, Grun B (2016). "Model-based clustering based on sparse finite Gaussian mixtures." *Statistics and Computing*, **26**(1), 303–324. ISSN 1573-1375, doi:10.1007/s1122201495002.

Frühwirth-Schnatter S, Pyne S (2010). "Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions." *Biostatistics*, **11**(2), 317–336. ISSN 1465-4644, doi:10.1093/biostatistics/kxp062, 2023-02-22.

Frühwirth-Schnatter S, Malsiner-Walli G (2019). "From here to infinity: sparse finite versus Dirichlet process mixtures in model-based clustering." *Advances in Data Analysis and Classification*, **13**, 33–64.

Viallefont V, Richardson S, Peter J (2002). "Bayesian analysis of Poisson mixtures." *Journal of Nonparametric Statistics*, **14**(1-2), 181–202.

```
set.seed(123)
# retrieve galaxy data
y = galaxy
# estimation
bayesmix = bayes_estimation(data = y,
                    K = 5, #not many to run the example rapidly
                    dist = "normal",
                    nb_iter = 500, #not many to run the example rapidly
                    burnin = 100)
# plot estimated mixture
# plot(bayesmix, max_size = 200)
set.seed(123)
# retrieve DNA data
y = d4z4
# estimation
bayesmix = bayes_estimation(data = y,
                    K = 5, #not many to run the example rapidly
```

4 bayes_mode

bayes_mode

Bayesian mode inference

Description

Estimates modes for each mcmc draws which are then used to compute posterior probabilities for the number of modes and their locations. The fixed-point algorithm of Carreira-Perpinan (2000) is used for Gaussian mixtures while the Modal EM algorithm of Li et al. (2007) is used for other continuous mixtures.

Usage

```
bayes_mode(
  BayesMix,
  rd = 1,
  tol_x = sd(BayesMix$data)/10,
  show_plot = FALSE,
  nb_iter = NULL
)
```

Arguments

BayesMix	An object of class 'BayesMixture'
rd	Rounding parameter
tol_x	Tolerance parameter for distance in-between modes; default is sd(data)/10 where data is an element of BayesMix. If two modes are closer than tol_x, only the first estimated mode is kept. Not needed for mixtures of discrete distributions.
show_plot	Show density with estimated mode as vertical bars?
nb_iter	Number of draws on which the mode-finding algorithm is run; default is NULL which means the algorithm is run on all draws.

Value

A list of class 'BayesMode' containing

- data from BayesMix argument
- dist from BayesMix argument
- dist_type from BayesMix argument
- pars_names from BayesMix argument
- modes Matrix with a row for each draw and columns showing modes
- p1 Posterior probability of unimodality
- tb_nb_modes Matrix showing posterior probabilities for the number of modes
- table_location Matrix showing the posterior probilities for location points being modes

bayes_mode 5

References

Carreira-Perpinan MA (2000). "Mode-finding for mixtures of Gaussian distributions." *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **22**(11), 1318–1323. ISSN 1939-3539, doi:10.1109/34.888716, Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.

Li J, Ray S, Lindsay BG (2007). "A Nonparametric Statistical Approach to Clustering via Mode Identification." *Journal of Machine Learning Research*, **8**, 1687-1723.

```
set.seed(123)
# retrieve galaxy data
y = galaxy
# estimation
bayesmix = bayes_estimation(data = y,
                      K = 5, #not many to run the example rapidly
                      dist = "normal",
                      nb_iter = 500, #not many to run the example rapidly
                      burnin = 100)
# mode estimation
bayesmode = bayes_mode(bayesmix)
# plot
# plot(bayesmode, max_size = 200)
# summary
# summary(bayesmode)
set.seed(123)
# retrieve galaxy data
y = d4z4
# estimation
bayesmix = bayes_estimation(data = y,
                      K = 5, #not many to run the example rapidly
                      dist = "shifted_poisson",
                      nb_iter = 500, #not many to run the example rapidly
                      burnin = 100)
# mode estimation
bayesmode = bayes_mode(bayesmix)
# plot(bayesmode, max_size = 200)
# summary
# summary(bayesmode)
```

6 ct47

bayes_trace

Trace plots

Description

This is wrapper around the 'mcmc_trace()' function from package bayesplot.

Usage

```
bayes_trace(BayesMix, mcmc_vars = NULL, with_burnin = FALSE, ...)
```

Arguments

BayesMix An object of class BayesMixture

mcmc_vars Variables to plot; default is all the variable in the MCMC output

with_burnin Plot all draws?

... Additional arguments passed to function 'mcmc_trace()' from the package bayesplot.

Value

A trace plot.

Examples

ct47

X chromosomal macrosatellite repeats ct47

Description

Repeat units that encode for a cancer testis antigen.

Locus (hg18): Xq24 Unit (kb): 4.8

Restriction enzyme: EcoRI

Encoded product: cancer testis antigen 47

cyclone 7

Usage

ct47

Format

A vector of counts with 410 elements.

References

Schaap M, Lemmers RJ, Maassen R, van der Vliet PJ, Hoogerheide LF, van Dijk HK, Basturk N, de Knijff P, van der Maarel SM (2013). "Genome-wide analysis of macrosatellite repeat copy number variation in worldwide populations: evidence for differences and commonalities in size distributions and size restrictions." *BMC Genomics*, **14**(1), 143. ISSN 1471-2164, doi:10.1186/1471216414143.

cyclone

Tropical cyclones lifetime maximum intensity

Description

Dataset constructed using the International Best Track Archive for Climate Stewardship (IBTrACS). The distribution of tropical cyclones lifetime maximum intensity across the globe is known to be bimodal which has important implications for climate modelling.

Usage

cyclone

Format

A dataset with three columns showing the identification of the cyclone, its year of occurrence and its lifetime maximum intensity (LMI). LMI is calculated as the maximum wind speed for each cyclone with unit ks.

Source

https://www.ncei.noaa.gov/products/international-best-track-archive

References

Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010). "The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying Tropical Cyclone Data." *Bulletin of the American Meteorological Society*, **91**(3), 363–376. ISSN 0003-0007, 1520-0477, doi:10.1175/2009BAMS2755.1, Publisher: American Meteorological Society Section: Bulletin of the American Meteorological Society, 2023–03–29.

Knapp KR, Diamond HJ, J.P. K, Kruk MC, Schreck CJ (2018). "International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4." *NOAA National Centers for Environmental Information*. doi:10.1175/2009BAMS2755.1.

8 discrete_MF

d4z4

Autosomal macrosatellite repeats d4z4

Description

Macrosatellite repeats D4Z4 in the subtelomere of chromosome 4q.

Locus (hg18): 4q35.2

Unit (kb): 3.3

Restriction enzyme: EcoRI + HindIII/EcoRI + BlnI/XapI

Encoded product: DUX4

Usage

d4z4

Format

A vector of counts with 410 elements.

References

Schaap M, Lemmers RJ, Maassen R, van der Vliet PJ, Hoogerheide LF, van Dijk HK, Basturk N, de Knijff P, van der Maarel SM (2013). "Genome-wide analysis of macrosatellite repeat copy number variation in worldwide populations: evidence for differences and commonalities in size distributions and size restrictions." *BMC Genomics*, **14**(1), 143. ISSN 1471-2164, doi:10.1186/1471216414143.

discrete_MF

Mode-finding algorithm for mixture of discrete distributions

Description

Mode-finding algorithm for mixture of discrete distributions

Usage

```
discrete_MF(
  mcmc,
  data,
  pars_names,
  dist = "NA",
  pmf_func = NULL,
  type = "all",
  show_plot = FALSE
)
```

discrete_MF

Arguments

mcmc	Vector of estimated mixture parameters
data	Vector of observations used for estimating the mixture
pars_names	Names of the mixture parameters; first element should correspond to the mixture proportions.
dist	String indicating the distribution of the mixture components Currently supports "poisson" and "shifted_poisson"; default is "NA"; only use this argument if you have used Poisson and shifted Poisson distributions identical to the one used in the package.
pmf_func	Pmf of the mixture components associated with the mcmc draws (if mcmc estimation has not been carried out with BayesMultiMode); default is null
type	Type of modes, either unique or all (the latter includes flat modes); default is "all"
show_plot	If true show the data and estimated modes; default is false

Value

Vector of estimated modes

References

Schaap M, Lemmers RJ, Maassen R, van der Vliet PJ, Hoogerheide LF, van Dijk HK, Basturk N, de Knijff P, van der Maarel SM (2013). "Genome-wide analysis of macrosatellite repeat copy number variation in worldwide populations: evidence for differences and commonalities in size distributions and size restrictions." *BMC Genomics*, **14**(1), 143. ISSN 1471-2164, doi:10.1186/1471216414143.

```
lambda = c(0.1, 10)
p = c(0.5, 0.5)
params = c(eta = p, lambda = lambda)
pars_names = c("eta", "lambda")
dist = "poisson"
data = c(rpois(p[1]*1e3, lambda[1]),
       rpois(p[2]*1e3, lambda[2]))
modes = discrete_MF(params, data = data, pars_names = pars_names, dist = dist)
mu = c(20,5)
size = c(20, 0.5)
p = c(0.5, 0.5)
params = c(eta = p, mu = mu, size = size)
pars_names = c("eta", "mu", "size")
data = c(rnbinom(p[1]*1e3, mu = mu[1], size = size[1]),
       rnbinom(p[2]*1e3, mu = mu[2], size = size[2]))
pmf_func <- function(x, pars) {</pre>
 dnbinom(x, mu = pars["mu"], size = pars["size"])
```

10 fixed_point

```
modes = discrete_MF(params, data = data, pars_names = pars_names, pmf_func = pmf_func)
```

fixed_point

Modal fixed-point algorithm

Description

Algorithm for estimating modes in mixture of Normal distributions.

Usage

```
fixed_point(mcmc, data, pars_names, tol_x = sd(data)/10, show_plot = F)
```

Arguments

mcmc	Vector of estimated mixture parameters
data	Vector of observations used for estimating the mixture
pars_names	Names of the mixture parameters; first element should correspond to the mixture proportions; second to the mean; third to the standard deviation.
tol_x	Tolerance parameter for distance in-between modes; default is sd(data)/10; if two modes are closer than tol_x, only the first estimated mode is kept.
show_plot	If true show the data and estimated modes; default is false

Value

Vector of estimated modes

References

Carreira-Perpinan MA (2000). "Mode-finding for mixtures of Gaussian distributions." *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **22**(11), 1318–1323. ISSN 1939-3539, doi:10.1109/34.888716, Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.

```
 \begin{aligned} &\text{mu} = c(\emptyset,5) \\ &\text{sigma} = c(1,2) \\ &p = c(\emptyset.5,\emptyset.5) \end{aligned} \\ &\text{data} = c(\text{rnorm}(p[1]*100, mu[1], sigma[1]), rnorm(p[2]*100, mu[2], sigma[2])) \\ &\text{params} = c(\text{eta} = p, mu = mu, sigma = sigma) \\ &\text{pars\_names} = c(\text{"eta"}, \text{"mu"}, \text{"sigma"}) \\ &\text{modes} = \text{fixed\_point}(\text{params}, \text{data}, \text{pars\_names}) \end{aligned}
```

galaxy 11

galaxy

Galaxy series

Description

Velocity at which 82 galaxies in the Corona Borealis region are moving away from our galaxy, scaled by 1000.

Usage

galaxy

Format

An object of class numeric of length 82.

Source

https://people.maths.bris.ac.uk/~mapjg/mixdata

References

Richardson S, Green PJ (1997). "On Bayesian Analysis of Mixtures with an Unknown Number of Components." *Journal of the Royal Statistical Society. Series B (Methodological)*, **59**(4), pp. 731–792. ISSN 00359246.

MEM

Modal EM algorithm (MEM)

Description

Algorithm to find modes in mixture of continuous distributions.

Usage

```
MEM(
    mcmc,
    data,
    pars_names,
    dist = "NA",
    pdf_func = NULL,
    tol_x = sd(data)/10,
    show_plot = FALSE
)
```

12 MEM

Arguments

mcmc	Vector of estimated mixture parameters
data	Vector of observations used for estimating the mixture
pars_names	Names of the mixture parameters; the first element of this vector should be the name of the mixture proportions. If you have used the skew normal of Azzalini, then the second element should correspond to the location, the third to the scale and the fourth to the shape.
dist	String indicating the distribution of the mixture components; default is "NA" Currently supports "normal" and "skew_normal"; not needed if pdf_func is provided
pdf_func	Pdf of the mixture components associated with the mcmc draws (if mcmc estimation has not been carried out with BayesMultiMode); default is null
tol_x	Tolerance parameter for distance in-between modes; default is sd(data)/10; if two modes are closer than tol_x, only the first estimated mode is kept.
show_plot	If true show the data and estimated modes; default is false

Value

Vector of estimated modes

References

Li J, Ray S, Lindsay BG (2007). "A Nonparametric Statistical Approach to Clustering via Mode Identification." *Journal of Machine Learning Research*, **8**, 1687-1723.

Azzalini A (1985). "A Class of Distributions Which Includes the Normal Ones." *Scandinavian Journal of Statistics*, **12**(2), 171–178. ISSN 0303-6898, Publisher: [Board of the Foundation of the Scandinavian Journal of Statistics, Wiley], 2023–03–13.

```
xi = c(0,6)
omega = c(1,2)
alpha = c(0,0)
p = c(0.8, 0.2)
params = c(eta = p, xi = xi, omega = omega, alpha = alpha)
pars_names = c("eta", "xi", "omega", "alpha")
dist = "skew_normal"
data = c(sn::rsn(p[1]*100, xi[1], omega[1], alpha[1]),
       sn::rsn(p[2]*100, xi[2], omega[2], alpha[2]))
modes = MEM(params, data = data, pars_names = pars_names, dist = dist)
xi = c(0,6)
omega = c(1,2)
alpha = c(0,0)
nu = c(3,100)
p = c(0.8, 0.2)
params = c(eta = p, mu = xi, sigma = omega, xi = alpha, nu = nu)
pars_names = c("eta", "mu", "sigma", "xi", "nu")
```

new_BayesMixture 13

new_BayesMixture

Creating a S3 object of class 'BayesMixture'

Description

Function for creating an object of class 'bayes_estimation()' which can subsequently be used as argument in 'bayes_mode()'.

Usage

```
new_BayesMixture(
  mcmc,
  data,
  K,
  burnin,
  dist = "NA",
  pars_names,
  pdf_func = NULL,
  dist_type
)
```

Arguments

mcmc	A matrix of MCMC draws
data	A vector containing the data used for estimating the model and generating the MCMC draws
K	Number of mixture components
burnin	Number of draws to discard as burnin
dist	Distribution family of the mixture components supported by the package (e.g. "normal", "student", "skew_normal" or "shifted_poisson")
pars_names	Names of the mixture parameters; first element should correspond to the mixture proportions.
pdf_func	Pdf or pmf of the mixture components; this input is used only if dist_name is invalid or NULL.
dist_type	Either "continuous" or "discrete"

14 plot.BayesMode

Value

A list of class 'BayesMixture' containing:

- data Same as argument
- dist_type Same as argument
- pars_names Same as argument
- mcmc Matrix of MCMC draws where the rows corresponding to burnin have been discarded
- mcmc_all Original matrix of MCMC draws

plot.BayesMixture Plot an estimated mixture for a given number of draws with an histogram of the data.

Description

Plot an estimated mixture for a given number of draws with an histogram of the data.

Usage

```
## S3 method for class 'BayesMixture'
plot(x, max_size = 250, transparency = 0.1, ...)
```

Arguments

x An object of class BayesMixture.

max_size The number of MCMC draws to plot.

transparency transparency of the density lines. Default is 0.1. Should be greater than 0 and below or equal to 1.

Not used.

plot.BayesMode

Plot Bayesian mode estimates.

Description

Plot Bayesian mode estimates.

Usage

```
## S3 method for class 'BayesMode'
plot(x, graphs = c("p1", "number", "loc"), ...)
```

Arguments

```
x An object of class BayesMode.
graphs which plot to show ? Default is all three c("p1", "number", "loc").
... Not used.
```

summary.BayesMode 15

summary. Bayes Mode

Summary of Bayesian mode estimates.

Description

Summary of Bayesian mode estimates.

Usage

```
## S3 method for class 'BayesMode'
summary(object, ...)
```

Arguments

```
object An object of class BayesMode.
```

... Not used.