Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

CKE 2013	WPISUJE ZDAJĄCY		Miejsce	
d graficzny ©	KOD	PESEL	Miejsce na naklejkę z kodem	
Układ			dysleksja	

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19 stron (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MAJ 2014

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

MMA-P1 1P-142

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. *(1 pkt)*

Na rysunku przedstawiono geometryczną interpretację jednego z niżej zapisanych układów równań.

Wskaż ten układ.

A.
$$\begin{cases} y = x + 1 \\ y = -2x + 4 \end{cases}$$
 B. $\begin{cases} y = x - 1 \\ y = 2x + 4 \end{cases}$ C. $\begin{cases} y = x - 1 \\ y = -2x + 4 \end{cases}$ D. $\begin{cases} y = x + 1 \\ y = 2x + 4 \end{cases}$

B.
$$\begin{cases} y = x - 1 \\ y = 2x + 4 \end{cases}$$

C.
$$\begin{cases} y = x - 1 \\ y = -2x + 4 \end{cases}$$

$$\mathbf{D.} \quad \begin{cases} y = x + 1 \\ y = 2x + 4 \end{cases}$$

Zadanie 2. (1 pkt)

Jeżeli liczba 78 jest o 50% większa od liczby c, to

A.
$$c = 60$$

B.
$$c = 52$$

C.
$$c = 48$$

D.
$$c = 39$$

Zadanie 3. (1 pkt)

Wartość wyrażenia $\frac{2}{\sqrt{3}-1} - \frac{2}{\sqrt{3}+1}$ jest równa

A.
$$-2$$

B.
$$-2\sqrt{3}$$

D.
$$2\sqrt{3}$$

Zadanie 4.*(1 pkt)*

Suma log₈16+1 jest równa

B.
$$\frac{3}{2}$$

B.
$$\frac{3}{2}$$
 C. $\log_8 17$ **D.** $\frac{7}{3}$

D.
$$\frac{7}{3}$$

Zadanie 5. *(1 pkt)*

Wspólnym pierwiastkiem równań $(x^2-1)(x-10)(x-5)=0$ oraz $\frac{2x-10}{x-1}=0$ jest liczba

Zadanie 6. (1 pkt)

Funkcja liniowa $f(x) = (m^2 - 4)x + 2$ jest malejąca, gdy

A.
$$m \in \{-2, 2\}$$

B.
$$m \in (-2, 2)$$

A.
$$m \in \{-2, 2\}$$
 B. $m \in (-2, 2)$ **C.** $m \in (-\infty, -2)$ **D.** $m \in (2, +\infty)$

D.
$$m \in (2, +\infty)$$

Zadanie 7. (1 pkt)

Na rysunku przedstawiono fragment wykresu funkcji kwadratowej f.

Funkcja f jest określona wzorem

A.
$$f(x) = \frac{1}{2}(x+3)(x-1)$$

B.
$$f(x) = \frac{1}{2}(x-3)(x+1)$$

C.
$$f(x) = -\frac{1}{2}(x+3)(x-1)$$

D.
$$f(x) = -\frac{1}{2}(x-3)(x+1)$$

Zadanie 8. (1 pkt)

Punkt C = (0,2) jest wierzchołkiem trapezu ABCD, którego podstawa AB jest zawarta w prostej o równaniu y = 2x - 4. Wskaż równanie prostej zawierającej podstawę CD.

A.
$$y = \frac{1}{2}x + 2$$

B.
$$y = -2x + 2$$

A.
$$y = \frac{1}{2}x + 2$$
 B. $y = -2x + 2$ **C.** $y = -\frac{1}{2}x + 2$ **D.** $y = 2x + 2$

D.
$$y = 2x + 2$$

Zadanie 9. (1 pkt)

Dla każdej liczby x, spełniającej warunek -3 < x < 0, wyrażenie $\frac{|x+3|-x+3}{x}$ jest równe

C.
$$-\frac{6}{x}$$

$$\mathbf{D.} \quad \frac{6}{x}$$

Zadanie 10. *(1 pkt)*

Pierwiastki x_1 , x_2 równania 2(x+2)(x-2) = 0 spełniają warunek

A.
$$\frac{1}{x_1} + \frac{1}{x_2} = -1$$

B.
$$\frac{1}{x_1} + \frac{1}{x_2} = 0$$

A.
$$\frac{1}{x_1} + \frac{1}{x_2} = -1$$
 B. $\frac{1}{x_1} + \frac{1}{x_2} = 0$ **C.** $\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{4}$ **D.** $\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{2}$

$$\mathbf{D.} \quad \frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{2}$$

Zadanie 11. *(1 pkt)*

Liczby 2,-1,-4 są trzema początkowymi wyrazami ciągu arytmetycznego (a_n) , określonego dla liczb naturalnych $n \ge 1$. Wzór ogólny tego ciągu ma postać

A.
$$a_n = -3n + 5$$

B.
$$a_n = n - 3$$

B.
$$a_n = n-3$$
 C. $a_n = -n+3$ **D.** $a_n = 3n-5$

D.
$$a_n = 3n - 5$$

Zadanie 12. *(1 pkt)*

Jeżeli trójkąty \widehat{ABC} i A'B'C' są podobne, a ich pola są, odpowiednio, równe 25 cm² i 50 cm², to skala podobieństwa $\frac{A'B'}{AB}$ jest równa

A. 2

C. $\sqrt{2}$

D. $\frac{\sqrt{2}}{2}$

Zadanie 13. *(1 pkt)*

Liczby: x-2, 6, 12, w podanej kolejności, są trzema kolejnymi wyrazami ciągu geometrycznego. Liczba x jest równa

A. 0

B. 2

C. 3

D. 5

Zadanie 14. *(1 pkt)*

Jeżeli α jest kątem ostrym oraz $tg\alpha = \frac{2}{5}$, to wartość wyrażenia $\frac{3\cos\alpha - 2\sin\alpha}{\sin\alpha - 5\cos\alpha}$ jest równa

A. $-\frac{11}{23}$

B. $\frac{24}{5}$ **C.** $-\frac{23}{11}$ **D.** $\frac{5}{24}$

Zadanie 15. *(1 pkt)*

Liczba punktów wspólnych okręgu o równaniu $(x+2)^2 + (y-3)^2 = 4$ z osiami układu współrzędnych jest równa

В.

C. 2

D. 4

Zadanie 16. (1 pkt)

Wysokość trapezu równoramiennego o kącie ostrym 60° i ramieniu długości $2\sqrt{3}$ jest równa

A. $\sqrt{3}$

B. 3

C. $2\sqrt{3}$

Zadanie 17. *(1 pkt)*

Kąt środkowy oparty na łuku, którego długość jest równa $\frac{4}{9}$ długości okręgu, ma miarę

A. 160°

80° B.

C. 40°

D. 20°

Zadanie 18. *(1 pkt)*

O funkcji liniowej f wiadomo, że f(1) = 2. Do wykresu tej funkcji należy punkt P = (-2,3). Wzór funkcji f to

A. $f(x) = -\frac{1}{3}x + \frac{7}{3}$ **B.** $f(x) = -\frac{1}{2}x + 2$ **C.** f(x) = -3x + 7 **D.** f(x) = -2x + 4

Zadanie 19. *(1 pkt)*

Jeżeli ostrosłup ma 10 krawędzi, to liczba ścian bocznych jest równa

A. 5

B. 7

C. 8

D. 10

Zadanie 20. (1 pkt)

Stożek i walec mają takie same podstawy i równe pola powierzchni bocznych. Wtedy tworząca stożka jest

- A. sześć razy dłuższa od wysokości walca.
- **B.** trzy razy dłuższa od wysokości walca.
- C. dwa razy dłuższa od wysokości walca.
- **D.** równa wysokości walca.

Zadanie 21. *(1 pkt)*

Liczba
$$\left(\frac{1}{\left(\sqrt[3]{729} + \sqrt[4]{256} + 2\right)^0}\right)^{-2}$$
 jest równa

A.
$$\frac{1}{225}$$

B.
$$\frac{1}{15}$$

Zadanie 22. *(1 pkt)*

Do wykresu funkcji, określonej dla wszystkich liczb rzeczywistych wzorem $y = -2^{x-2}$, należy punkt

A.
$$A = (1, -2)$$

B.
$$B = (2, -1)$$

B.
$$B = (2, -1)$$
 C. $C = \left(1, \frac{1}{2}\right)$ **D.** $D = (4, 4)$

D.
$$D = (4,4)$$

Zadanie 23. (1 pkt)

Jeżeli A jest zdarzeniem losowym, a A'-zdarzeniem przeciwnym do zdarzenia A oraz zachodzi równość $P(A) = 2 \cdot P(A')$, to

A.
$$P(A) = \frac{2}{3}$$

B.
$$P(A) = \frac{1}{2}$$
 C. $P(A) = \frac{1}{3}$ **D.** $P(A) = \frac{1}{6}$

C.
$$P(A) = \frac{1}{3}$$

D.
$$P(A) = \frac{1}{6}$$

Zadanie 24. (1 pkt)

Na ile sposobów można wybrać dwóch graczy spośród 10 zawodników?

Zadanie 25. *(1 pkt)*

Mediana zestawu danych 2, 12, a, 10, 5, 3 jest równa 7. Wówczas

A.
$$a = 4$$

B.
$$a = 6$$

C.
$$a = 7$$

D.
$$a = 9$$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 34. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. (2 pkt)

Wykresem funkcji kwadratowej $f(x) = 2x^2 + bx + c$ jest parabola, której wierzchołkiem jest punkt W = (4,0). Oblicz wartości współczynników b i c.

Zadanie 27. *(2 pkt)*

Rozwiąż równanie $9x^3 + 18x^2 - 4x - 8 = 0$.

	Nr zadania	26.	27.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 28. *(2 pkt)* Udowodnij, że każda liczba całkowita k, która przy dzieleniu przez 7 daje resztę 2, ma tę własność, że reszta z dzielenia liczby $3k^2$ przez 7 jest równa 5.

Zadanie 29. (2 pkt)

Na rysunku przedstawiono fragment wykresu funkcji f, który powstał w wyniku przesunięcia wykresu funkcji określonej wzorem $y = \frac{1}{x}$ dla każdej liczby rzeczywistej $x \neq 0$.

- a) Odczytaj z wykresu i zapisz zbiór tych wszystkich argumentów, dla których wartości funkcji *f* są większe od 0.
- b) Podaj miejsce zerowe funkcji g określonej wzorem g(x) = f(x-3).

Odpowiedź: a)

b)

Wypełnia	Nr zadania	28.	29.
	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 30. *(2 pkt)*

Ze zbioru liczb $\{1, 2, 3, 4, 5, 6, 7, 8\}$ losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A, polegającego na wylosowaniu liczb, z których pierwsza jest większa od drugiej o 4 lub 6.

Zadanie 31. *(2 pkt)*

Środek S okręgu opisanego na trójkącie równoramiennym ABC, o ramionach AC i BC, leży wewnątrz tego trójkąta (zobacz rysunek).

Wykaż, że miara kąta wypukłego ASB jest cztery razy większa od miary kąta wypukłego SBC.

	Nr zadania	30.	31.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 32. (4 pkt)

Pole powierzchni całkowitej prostopadłościanu jest równe 198. Stosunki długości krawędzi prostopadłościanu wychodzących z tego samego wierzchołka prostopadłościanu to 1:2:3. Oblicz długość przekątnej tego prostopadłościanu.

Zadanie 33. *(5 pkt)*

Turysta zwiedzał zamek stojący na wzgórzu. Droga łącząca parking z zamkiem ma długość 2,1 km. Łączny czas wędrówki turysty z parkingu do zamku i z powrotem, nie licząc czasu poświęconego na zwiedzanie, był równy 1 godzinę i 4 minuty. Oblicz, z jaką średnią prędkością turysta wchodził na wzgórze, jeżeli prędkość ta była o 1 $\frac{\text{km}}{\text{h}}$ mniejsza od średniej prędkości, z jaką schodził ze wzgórza.

Odpowiedź:

agzaminator	Nr zadania	32.	33.
	Maks. liczba pkt	4	5
	Uzyskana liczba pkt		

Zadanie 34. (4 pkt)

Kąt *CAB* trójkąta prostokątnego *ACB* ma miarę 30°. Pole kwadratu *DEFG*, wpisanego w ten trójkąt (zobacz rysunek), jest równe 4. Oblicz pole trójkąta *ACB*.

	Nr zadania	34.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	