Chapter 10

THE UNIT CIRCLE AND RADIAN MEASURE

EXERCISE 10A

1 a
$$180^{\circ} = \pi$$
 radians

$$\therefore$$
 90° = $\frac{\pi}{2}$ radians

d
$$180^{\circ} = \pi$$
 radians

$$\therefore$$
 $18^{\circ} = \frac{\pi}{10}$ radians

g
$$180^{\circ} = \pi$$
 radians

$$\therefore$$
 $45^{\circ} = \frac{\pi}{4}$ radians

$$\therefore$$
 225° = $\frac{5\pi}{4}$ radians

j
$$720^{\circ} = 4 \times 180^{\circ}$$

= 4π radians

m
$$180^{\circ} = \pi \text{ radians}$$

$$\therefore 36^{\circ} = \frac{\pi}{5} \text{ radians}$$

$$= 36.7 imes rac{\pi}{180}$$
 radians $pprox 0.641$ radians

d
$$219.6^{\circ}$$
 e $=219.6 \times \frac{\pi}{180}$ radians ≈ 3.83 radians

$$\frac{\pi}{5}$$

3

$$= 36^{\circ}$$

$$\frac{7\pi}{9}$$
 g $\frac{\pi}{10}$ h $\frac{3\pi}{20}$ i $\frac{7\pi}{6}$ j $7\times180^\circ$

$$= 140^{\circ}$$

 2^c

 $\approx 114.59^{\circ}$

$$=36^{\circ}$$
 $=108^{\circ}$ $=135^{\circ}$ $=20^{\circ}$

$$= \frac{7 \times 180^{\circ}}{9} = \frac{180^{\circ}}{10} = \frac{3 \times 180^{\circ}}{20} = \frac{7 \times 180^{\circ}}{6} = \frac{180^{\circ}}{8}$$

 $=18^{\circ}$

$$1.53^c$$
 c $= 1.53 imes rac{180}{\pi}$ degrees $pprox 87.66^\circ$

 $=27^{\circ}$

$$3.179^c$$

= $3.179 \times \frac{180}{\pi}$ degrees
 $\approx 182.14^\circ$

 $= 2 \times \frac{180}{\pi}$ degrees

b
$$180^{\circ} = \pi \text{ radians}$$

$$\therefore$$
 $60^{\circ} = \frac{\pi}{3}$ radians

e
$$180^{\circ} = \pi$$
 radians

$$\therefore$$
 $9^{\circ} = \frac{\pi}{20}$ radians

h
$$180^{\circ} = \pi \text{ radians}$$

$$\therefore$$
 90° = $\frac{\pi}{2}$ radians

$$\therefore$$
 270° = $\frac{3\pi}{2}$ radians

k
$$180^{\circ} = \pi$$
 radians

$$\therefore$$
 $45^{\circ} = \frac{\pi}{4}$ radians

$$\therefore$$
 315° = $\frac{7\pi}{4}$ radians

$$180^{\circ} = \pi \text{ radians}$$

$$\therefore$$
 $10^{\circ} = \frac{\pi}{18}$ radians

$$\therefore 80^{\circ} = \frac{8\pi}{18} \text{ radians}$$
$$= \frac{4\pi}{9} \text{ radians}$$

$$=137.2 imes rac{\pi}{180}$$
 radians

$$\approx 2.39$$
 radians

$$=396.7 imesrac{\pi}{180}$$
 radians

$$\approx 6.92 \text{ radians}$$

$$=\frac{18}{18}$$

$$=10^{\circ}$$

$$= \frac{7 \times 180^{\circ}}{}$$

$$=210^{\circ}$$
 $=22.5^{\circ}$

c
$$0.867^c$$

$$= 0.867 \times \frac{180}{\pi}$$
 degrees $\approx 49.68^{\circ}$

 $180^{\circ} = \pi \text{ radians}$

 $180^{\circ} = \pi \text{ radians}$

 \therefore 45° = $\frac{\pi}{4}$ radians

 \therefore 135° = $\frac{3\pi}{4}$ radians

 $=2\pi$ radians

 $180^{\circ} = \pi \text{ radians}$

 \therefore 540° = 3π radians

 $180^{\circ} = \pi$ radians

 \therefore $10^{\circ} = \frac{\pi}{18}$ radians

 \therefore 230° = $\frac{23\pi}{18}$ radians

 $=317.9 \times \frac{\pi}{180}$ radians

 317.9°

 ≈ 5.55 radians

i $360^{\circ} = 2 \times 180^{\circ}$

 \therefore 30° = $\frac{\pi}{6}$ radians

e
$$5.267^c$$

$$= 3.179 \times \frac{180}{\pi} \text{ degrees}$$

$$= 5.267 \times \frac{180}{\pi} \text{ degrees}$$

$$\approx 301.78^{\circ}$$

5	а

Degrees	0	45	90	135	180	225	270	315	360
Radians	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π

-	1	~
	u	1
1	7	1

Degrees	0	30	60	90	120	150	180	210	240	270	300	330	360
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π

EXERCISE 10B

b

1 a arc length
$$=\frac{7\pi}{4} \times 9$$

$$\approx 49.5~\mathrm{cm}$$

$$area = \frac{1}{2} \times \frac{7\pi}{4} \times 9^2$$

$$\approx 223~\mathrm{cm}^2$$

b arc length
$$=4.67\times4.93$$

$$\approx 23.0~\mathrm{cm}$$

area =
$$\frac{1}{2}(4.67) \times 4.93^2$$

$$\approx 56.8~\mathrm{cm}^2$$

2 a
$$\theta = 107.9^{\circ}, l = 5.92$$

$$(\frac{107.9}{360}) \times 2\pi \times r = 5.92$$

$$\therefore \quad r = \frac{5.92 \times 360}{107.9 \times 2 \times \pi}$$

$$\therefore$$
 $r \approx 3.14 \text{ m}$

area
$$=\frac{1}{2}\theta r^2$$

$$20.8 = \frac{1}{2}(1.19) \times r^2$$

$$\therefore \quad \frac{20.8 \times 2}{1.19} = r^2$$

$$\therefore \quad r = \sqrt{\frac{20.8 \times 2}{1.19}}$$

$$\therefore$$
 $r \approx 5.91 \text{ cm}$

$$= l + 2r$$

$$\approx 1.19 \times 5.912 + 2 \times 5.912$$

$$\approx 18.9 \text{ cm}$$

4

$$l = \theta \times r$$

$$\therefore 2.95 = \theta \times 4.3$$
$$\therefore \theta \approx 0.686^c$$

$$\theta \approx 0.686^{\circ}$$

area
$$= \frac{1}{2}\theta r^2$$

$$\therefore 30 = \frac{1}{2} \times \theta \times 10^2$$

$$\therefore \frac{30 \times 2}{100} = \theta$$

b area = $\left(\frac{107.9}{360}\right) \times \pi \times (3.1436)^2$

 $\approx 9.30 \text{ m}^2$

$$\therefore \quad \theta = 0.6^c$$

5

$$l = \theta r$$

$$\therefore \quad 6 = \theta \times 8$$

$$\therefore \quad \theta = \frac{6}{8}$$

$$\theta = 0.75^c$$

area $=\frac{1}{2}\theta r^2$

$$=\frac{1}{2}(0.75)\times8^2$$

$$=24~\mathrm{cm}^2$$

b

 $l = \theta r$

$$\therefore 8.4 = \theta \times 5$$

$$\therefore \quad \theta = \frac{8.4}{5}$$

$$\theta = 1.68^c$$

area
$$=\frac{1}{2}\theta r^2$$

$$=\frac{1}{2}(1.68)\times 5^2$$

$$=21~\mathrm{cm}^2$$

C

$$\therefore 31.7 = \phi \times 8$$

$$\therefore \quad \phi = \frac{31.7}{8}$$

$$\phi \approx 3.96^c$$

But
$$\theta = 2\pi - \phi$$

 $\therefore \quad \theta \approx 2.32^c$

$$l = \phi r$$
 area $= \frac{1}{2}\phi r^2$
 $.7 = \phi \times 8$ $= 1 \times 31.7$

$$= \frac{1}{2} \times \frac{31.7}{8} \times 8^2$$

$$= 126.8 \text{ cm}^2$$

6

 $arc length = \theta r$ $=2\times5$ =10 cm

$$area = \frac{1}{2}\theta r^2$$

$$= \frac{1}{2} \times 2 \times 5^2$$

$$= 25 \text{ cm}^2$$

arc length = θr

$$\therefore \quad x = \theta(2x)$$

$$\therefore \quad \theta = \frac{1}{2}$$

 $=x^2 \text{ cm}^2$

area
$$= \frac{1}{2}\theta r^2$$

 $= \frac{1}{2} \times (\frac{1}{2}) \times (2x)^2$

 $s^2 = 6^2 + 10^2 \quad \{Pythagoras\}$

$$s = \sqrt{6^2 + 10^2}$$

 \therefore $s \approx 11.6619$

$$\therefore s \approx 11.7$$

slant length is 11.7 cm.

• arc length = circumference of cone base

$$= 2\pi \times 6$$

$$\approx 37.6991$$

$$\approx 37.7 \text{ cm}$$

 $arc length = \theta r$ d

 $\therefore 37.6991 \approx \theta \times 11.6619$

$$\therefore \quad \theta \approx \frac{37.6991}{11.6619}$$

b $r = s \approx 11.7$

 $\theta \approx 3.23 \text{ radians}$

9

$$\therefore \quad \alpha = \tan^{-1}\left(\frac{1}{3}\right)$$

$$\alpha \approx 18.43$$

 $\tan \alpha = \frac{5}{15}$ **b** $\theta + 2\alpha = 180$ {angles on a line} $\therefore \quad \alpha = \tan^{-1}\left(\frac{1}{3}\right)$ $\therefore \quad \theta \approx 180 - 2 \times 18.43$ $\therefore \quad \alpha \approx 18.43$ $\therefore \quad \theta \approx 143.1$

$$\theta \approx 180 - 2 \times 18.43$$

$$\theta \approx 143.1$$

area = $2 \times$ area of $\triangle CDB +$ area of sector

$$=2\times\frac{1}{2}\times\text{CD}\times\text{BD}+\left(\frac{\theta}{360}\right)\times\pi\times r^2$$

Now
$$r^2 = 5^2 + 15^2 = 250$$

$$\therefore \text{ area} \approx 2 \times \frac{1}{2} \times 15 \times 5 + \left(\frac{143.1}{360}\right) \times \pi \times 250$$
$$\approx 387 \text{ m}^2$$

10 Since [AT] is a tangent, OTA is a right angle.

$$\therefore \cos \theta = \frac{5}{13}$$

$$\theta \approx 67.38^{\circ}$$

arc length BT
$$=$$
 $\left(\frac{\theta}{360}\right) \times 2\pi r$ $\approx \frac{67.38}{360} \times 2 \times \pi \times 5$ $\approx 5.88~\mathrm{cm}$

$$AT^2 + OT^2 = OA^2$$
 {Pythagoras}

$$\therefore$$
 AT = 12 cm

5 cm 13 cm.

$$AT^2 = 13^2 - 5^2$$

$$\therefore$$
 AT = 12 cm

∴ perimeter = AT + arc length BT + AB

$$\approx 12 + 5.88 + (13 - 5)$$

 ≈ 25.9 cm

b speed =
$$\frac{\text{distanc}}{\text{time}}$$

$$speed = \frac{distance}{time} \quad \therefore \quad time = \frac{distance}{speed}$$

$$= \frac{2130 \text{ km}}{480 \text{ n miles h}^{-1}}$$

$$= \frac{2130 \text{ km}}{480 \times 1.853 \text{ km h}^{-1}}$$

$$\approx 2.395$$
 hours

$$\approx 2$$
 hours 24 min

294

A
$$M$$
 B 6 m 9 m

$$\therefore \quad \theta = \cos^{-1}\left(\frac{2}{3}\right) \qquad = \text{area of } \lambda$$

$$\therefore \quad \theta \approx 48.19^{\circ} \qquad \approx \frac{1}{2} \times 2 \times 48.19^{\circ}$$
So, $360 - 2\theta \approx 263.62^{\circ} \qquad + \left(\frac{263.6}{360}\right) \qquad + \left(\frac{263.6}{360}\right) \qquad \approx 227 \text{ m}^2$

$$= \sqrt{45}$$

$$\cos \theta = \frac{6}{9} = \frac{2}{3}$$
 \therefore available feeding area $= \operatorname{area of} \triangle + \operatorname{area of sector}$
 $\Rightarrow (1 + 1) = \cos^{-1}(\frac{2}{3})$ $\Rightarrow (2 + 1) = \cos^{-1}(\frac{2}{3})$ \Rightarrow

b $\theta + 90 + 90 + 2\alpha = 360$

 $\approx 180 - 2 \times 5.739$

 $\theta = 180 - 2\alpha$

$$4\,\mathrm{cm}$$

$$2\,\mathrm{cm}$$

$$20\,\mathrm{cm}$$

9 m

a
$$\sin \alpha = \frac{2}{20} = 0.1$$

 $\therefore \quad \alpha = \sin^{-1}(0.1)$
 $\therefore \quad \alpha \approx 5.739$

 $\phi \approx 360 - 168.5$

 $\phi \approx 191.5$

$$\approx 168.5$$

$$= 2 \times \sqrt{20^2 - 2^2}$$

$$+ \frac{\theta}{360} \times 2\pi \times 4$$

$$+ \frac{\phi}{360} \times 2\pi \times 6$$

$$\approx 71.62 \text{ cm}$$

EXERCISE 10C

i $A(\cos 26^{\circ}, \sin 26^{\circ}), B(\cos 146^{\circ}, \sin 146^{\circ}), C(\cos 199^{\circ}, \sin 199^{\circ})$ 1

ii A(0.899, 0.438), B(-0.829, 0.559), C(-0.946, -0.326)

i $A(\cos 123^{\circ}, \sin 123^{\circ}), B(\cos 251^{\circ}, \sin 251^{\circ}), C(\cos(-35^{\circ}), \sin(-35^{\circ}))$

ii A(-0.545, 0.839), B(-0.326, -0.946), C(0.819, -0.574)

2	θ (degrees)	0°	90°	180°	270°	360°	450°
	θ (radians)	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π	$\frac{5\pi}{2}$
	sine	0	1	0	-1	0	1
	cosine	1	0	-1	0	1	0
	tangent	0	undef.	0	undef.	0	undef.

i $\frac{1}{\sqrt{2}} \approx 0.707$ ii $\frac{\sqrt{3}}{2} \approx 0.866$ 3

θ (degrees)	30°	45°	60°	135°	150°	240°	315°
θ (radians)	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	$\frac{4\pi}{3}$	$\frac{7\pi}{4}$
sine	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{2}}$
cosine	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\frac{1}{\sqrt{2}}$
tangent	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	$\sqrt{3}$	-1

4	a	Quadrant	Degree measure	Radian measure	$\cos \theta$	$\sin \theta$	$\tan \theta$
		1	$0^{\circ} < \theta < 90^{\circ}$	$0 < \theta < \frac{\pi}{2}$	+ve	+ve	+ve
		2	$90^{\circ} < \theta < 180^{\circ}$	$\frac{\pi}{2} < \theta < \pi$	-ve	+ve	-ve
		3	$180^{\circ} < \theta < 270^{\circ}$	$\pi < \theta < \frac{3\pi}{2}$	-ve	-ve	+ve
		4	$270^{\circ} < \theta < 360^{\circ}$	$\frac{3\pi}{2} < \theta < 2\pi$	+ve	-ve	-ve

1 and 4 2 and 3 0.985

0.707

0.985

viii 0.707

0.866

iv 0.866

0.5

vi = 0.5

 $\sin(180^{\circ} - \theta) = \sin \theta$ as the points have the same y-coordinate.

C

The diagram shows P reflected in the y-axis to P', so $P'\widehat{OB} = P\widehat{OA} = \theta$, and P' has coordinates $(-\cos\theta, \sin\theta)$. But $\widehat{AOP'} = 180^{\circ} - \theta$ { $\widehat{AOP'} + \widehat{P'OB} = 180^{\circ}$ }, so P' has coordinates $(\cos(180^{\circ} - \theta), \sin(180^{\circ} - \theta))$.

 $\sin(180^{\circ} - \theta) = \sin \theta$ {equating y-coordinates of P'}

 $180^{\circ} - 45^{\circ} = 135^{\circ}$

ii $180^{\circ} - 51^{\circ} = 129^{\circ}$ iii $\pi - \frac{\pi}{3} = \frac{2\pi}{3}$

iv
$$\pi - \frac{\pi}{6} = \frac{5\pi}{6}$$
 {using $\sin(180^{\circ} - \theta) = \theta$ }

0.342

ii -0.342

iii 0.5 iv -0.5

v 0.906

-0.906

vii 0.174**viii** -0.174 $\mathbf{b} \quad \cos(180^{\circ} - \theta) = -\cos\theta$

C

The diagram shows P reflected in the y-axis to P', so $P'\widehat{OB} = P\widehat{OA} = \theta$, and P' has coordinates $(-\cos\theta, \sin\theta)$. But $\widehat{AOP'} = 180^{\circ} - \theta$ { $\widehat{AOP'} + \widehat{P'OB} = 180^{\circ}$ }, so P' has coordinates $(\cos(180^{\circ} - \theta), \sin(180^{\circ} - \theta))$. $\cos(180^{\circ} - \theta) = -\cos\theta$ {equating x-coordinates of P'}

i $180^{\circ} - 40^{\circ} = 140^{\circ}$

 $180^{\circ} - 19^{\circ} = 161^{\circ}$

iv $\pi - \frac{2\pi}{5} = \frac{3\pi}{5}$ {using $\cos(180^{\circ} - \theta) = -\cos\theta$ }

7

For $0 < \theta < \frac{\pi}{2}$:

The diagram shows P rotated through π to P', so OP' makes an angle of $\pi + \theta$ with the positive x-axis,

and $P'\widehat{OB} = P\widehat{OA} = \theta$ {vertically opposite angles}.

In \triangle s P'OB and POA:

 \bullet OP' = OP

• $P'\widehat{O}B = P\widehat{O}A$

• $P'\widehat{B}O = P\widehat{A}O$

△s P'OB and POA are congruent {AAcorS}

$$\therefore OB = OA = \cos \theta$$

and $BP' = AP = \sin \theta$

 \therefore P' has coordinates $(-\cos\theta, -\sin\theta)$

But P' has coordinates $(\cos(\pi + \theta), \sin(\pi + \theta))$

 $\therefore \cos(\pi + \theta) = -\cos\theta \quad \text{and} \quad \sin(\pi + \theta) = -\sin\theta$

For $0 < \theta < \frac{\pi}{2}$:

The diagram shows P rotated through $\frac{3\pi}{2}$ to P',

so OP' makes an angle of $\frac{3\pi}{2} + \theta$ with the positive x-axis.

reflex
$$\widehat{AOB} = \frac{3\pi}{2}$$
 : $\widehat{BOP}' = \text{reflex } \widehat{AOP}' - \text{reflex } \widehat{AOB}$
= $\frac{3\pi}{2} + \theta - \frac{3\pi}{2}$

In \triangle s P'OB and POA:

 \bullet OP' = OP

•
$$\widehat{BOP}' = \widehat{AOP}$$

•
$$P'\widehat{B}O = P\widehat{A}O$$

∴ △s P'OB and POA are congruent {AAcorS}

$$\therefore P'B = PA = \sin \theta$$

and
$$OB = OA = \cos \theta$$

 \therefore P' has coordinates $(\sin \theta, -\cos \theta)$

But P' has coordinates $(\cos(\frac{3\pi}{2} + \theta), \sin(\frac{3\pi}{2} + \theta))$

$$\cos(\frac{3\pi}{2} + \theta) = \sin\theta$$
 and $\sin(\frac{3\pi}{2} + \theta) = -\cos\theta$

8 a
$$\sin 137^{\circ}$$

= $\sin(180 - 137)^{\circ}$
= $\sin 43^{\circ}$
 ≈ 0.6820

$$\sin 59^{\circ}$$
 $= \sin(180 - 59)^{\circ}$
 $= \sin 121^{\circ}$
 ≈ 0.8572

$$\cos 143^{\circ}$$
 $= -\cos(180 - 143)^{\circ}$
 $= -\cos 37^{\circ}$
 ≈ -0.7986

d
$$\cos 24^{\circ}$$

 $= -\cos(180 - 24)^{\circ}$
 $= -\cos 156^{\circ}$
 ≈ 0.9135

$$\sin 115^{\circ}$$

= $\sin(180 - 115)^{\circ}$
= $\sin 65^{\circ}$
 ≈ 0.9063

f
$$\cos 132^{\circ}$$

= $-\cos(180 - 132)^{\circ}$
= $-\cos 48^{\circ}$
≈ -0.6691

9 a
$$\widehat{AOQ} = 180^{\circ} - \theta$$
 or $\pi - \theta$ radians

b [OQ] is a reflection of [OP] in the y-axis and so Q has coordinates $(-\cos\theta, \sin\theta)$.

$$\cos(180^{\circ} - \theta) = -\cos\theta, \sin(180^{\circ} - \theta) = \sin\theta$$

10	a
----	---

θ^c	$\sin \theta$	$\sin(-\theta)$	$\cos \theta$	$\cos(-\theta)$
0.75	0.682	-0.682	0.732	0.732
1.772	0.980	-0.980	-0.200	-0.200
3.414	-0.269	0.269	-0.963	-0.963
6.25	-0.0332	0.0332	0.999	0.999
-1.17	-0.921	0.921	0.390	0.390

- **b** Suspect that $\sin(-\theta) = -\sin\theta$ and $\cos(-\theta) = \cos\theta$.
- P is reflected in the x-axis to Q, so Q has coordinates $(\cos \theta, -\sin \theta)$. But Q has coordinates $(\cos(-\theta), \sin(-\theta))$. $\therefore Q(\cos(-\theta), \sin(-\theta)) = Q(\cos \theta, -\sin \theta)$.
 - ii The point Q on the unit circle corresponds to the angle $(2\pi \theta)$ and the angle $(-\theta)$. $\therefore \cos(2\pi - \theta) = \cos(-\theta)$ But $\cos(-\theta) = \cos\theta$ {from \mathbf{c} i}

$$\cos(2\pi - \theta) = \cos\theta$$

So the suspicion is correct.

EXERCISE 10D.1

1 a
$$\cos^2\theta + \sin^2\theta = 1$$
 b $\cos^2\theta + \sin^2\theta = 1$ c $\cos^2\theta + \sin^2\theta = 1$ $\cos^2\theta + (\frac{1}{2})^2 = 1$ $\cos^2\theta + (-\frac{1}{3})^2 = 1$ $\cos^2\theta + (0)^2 = 1$ $\cos^2\theta + (0)^2 = 1$ $\cos^2\theta = \frac{3}{4}$ $\cos^2\theta = \frac{8}{9}$ $\cos^2\theta = \frac{8}{9}$ $\cos^2\theta = \frac{1}{2}$ $\cos^2\theta =$

d
$$\cos^2 \theta + \sin^2 \theta = 1$$

$$\therefore \cos^2 \theta + (-1)^2 = 1$$

$$\therefore \cos \theta = 0$$

2 a
$$\cos^2 \theta + \sin^2 \theta = 1$$

$$\therefore \left(\frac{4}{5}\right)^2 + \sin^2 \theta = 1$$

$$\therefore \sin^2 \theta = \frac{9}{25}$$

$$\therefore \sin \theta = \pm \frac{3}{5}$$

d
$$\cos^2 \theta + \sin^2 \theta = 1$$

 $\therefore 0^2 + \sin^2 \theta = 1$
 $\therefore \sin \theta = \pm 1$

d
$$\cos^2 \theta + \sin^2 \theta = 1$$

 $\therefore 0^2 + \sin^2 \theta = 1$
 $\therefore \sin \theta = \pm 1$

3 a
$$\cos^2\theta + \sin^2\theta = 1$$

 $\therefore \frac{4}{9} + \sin^2\theta = 1$
 $\therefore \sin^2\theta = \frac{5}{9}$
 $\therefore \sin\theta = \pm \frac{\sqrt{5}}{3}$
But θ is in quadrant 1
where $\sin\theta > 0$
 $\therefore \sin\theta = \frac{\sqrt{5}}{3}$
d $\cos^2\theta + \sin^2\theta = 1$
 $\therefore \frac{25}{169} + \sin^2\theta = 1$
 $\therefore \sin^2\theta = \frac{144}{169}$
 $\therefore \sin\theta = \pm \frac{12}{13}$

But θ is in quadrant 3 where $\sin \theta < 0$ $\sin \theta = -\frac{12}{13}$

$$\cos^2 \theta + \sin^2 \theta = 1$$

$$\therefore (-\frac{3}{4})^2 + \sin^2 \theta = 1$$

$$\therefore \sin^2 \theta = \frac{7}{16}$$

$$\therefore \sin \theta = \pm \frac{\sqrt{7}}{4}$$

$$\cos^2 \theta + \sin^2 \theta = 1$$

$$\therefore 1^2 + \sin^2 \theta = 1$$

$$\therefore \sin^2 \theta = 0$$

$$\therefore \sin \theta = 0$$

b
$$\cos^2 \theta + \sin^2 \theta = 1$$

 $\therefore \cos^2 \theta + \frac{4}{25} = 1$
 $\therefore \cos^2 \theta = \frac{21}{25}$
 $\therefore \cos \theta = \pm \frac{\sqrt{21}}{5}$
But θ is in quadrant 2
where $\cos \theta < 0$
 $\therefore \cos \theta = -\frac{\sqrt{21}}{5}$

$$\cos^2 \theta + \sin^2 \theta = 1$$

$$\cos^2 \theta + \frac{9}{25} = 1$$

$$\cos^2 \theta = \frac{16}{25}$$

$$\cos \theta = \pm \frac{4}{5}$$
But θ is in quadrant 4
where $\cos \theta > 0$

 $\therefore \cos \theta = \frac{4}{5}$

 $\cos^2 x + \sin^2 x = 1$ $\therefore \cos^2 x + \frac{1}{9} = 1$ $\therefore \cos^2 x = \frac{8}{9}$ $\therefore \cos x = \pm \frac{2\sqrt{2}}{2}$ But x is in quadrant 2where $\cos x < 0$ $\therefore \cos x = -\frac{2\sqrt{2}}{3}$ and so $\tan x = \frac{\sin x}{\cos x} = \frac{\frac{1}{3}}{-\frac{2\sqrt{2}}{3}} = -\frac{1}{2\sqrt{2}}$

and so
$$\tan x = \frac{\sin x}{\cos x} = \frac{\frac{1}{3}}{-\frac{2\sqrt{2}}{3}} = -\frac{1}{3}$$

 $\cos^2 x + \sin^2 x = 1$
 $\therefore \cos^2 x + \frac{1}{3} = 1$
 $\therefore \cos^2 x = \frac{2}{3}$
 $\therefore \cos x = \pm \frac{\sqrt{2}}{\sqrt{3}}$
But x is in quadrant 3
where $\cos x < 0$
 $\therefore \cos x = -\frac{\sqrt{2}}{\sqrt{3}}$
and so $\tan x = \frac{\sin x}{\cos x} = \frac{-\frac{1}{\sqrt{3}}}{-\frac{\sqrt{2}}{\sqrt{3}}} = \frac{1}{\sqrt{2}}$

b $\cos^2 x + \sin^2 x = 1$ $\therefore \frac{1}{25} + \sin^2 x = 1$ $\sin^2 x = \frac{24}{25}$ $\sin x = \pm \frac{2\sqrt{6}}{5}$ But x is in quadrant 4 where $\sin x < 0$ $\therefore \sin x = -\frac{2\sqrt{6}}{5}$ and so $\tan x = \frac{\sin x}{\cos x} = \frac{-\frac{2\sqrt{6}}{5}}{\frac{1}{5}} = -2\sqrt{6}$

d $\cos^2 x + \sin^2 x = 1$ $\therefore \frac{9}{16} + \sin^2 x = 1$ $\therefore \sin^2 x = \frac{7}{16}$ $\sin x = \pm \frac{\sqrt{7}}{4}$ But x is in quadrant 2 $\sin x > 0$ where $\therefore \sin x = \frac{\sqrt{7}}{4}$ and so $\tan x = \frac{\sin x}{\cos x} = \frac{\frac{\sqrt{7}}{4}}{-\frac{3}{2}} = -\frac{\sqrt{7}}{3}$ 298

Now
$$\cos^2 x + \sin^2 x = 1$$

$$\therefore \sin x = -\frac{4}{3}\cos x$$

Now $\cos^2 x + \sin^2 x = 1$

 $\cos^2 x + \frac{16}{9} \cos^2 x = 1$

 $\cos x = -\frac{3}{5}, \quad \sin x = \frac{4}{5}$

But x is in quadrant 2

 $\therefore \frac{25}{9}\cos^2 x = 1$

 $\therefore \cos x = \pm \frac{3}{5}$

 $\cos x$ is negative and $\sin x$ is positive.

 $\frac{\sin x}{\cos x} = -\frac{4}{3}$

Now
$$\cos^2 x + \sin^2 x = 1$$

$$\therefore \cos^2 x + \frac{4}{9}\cos^2 x = 1$$
$$\therefore \frac{13}{9}\cos^2 x = 1$$

$$\therefore \cos x = \pm \frac{3}{\sqrt{13}}$$

But x is in quadrant 1

 $\therefore \cos x$ and $\sin x$ are positive.

$$\cos x = \frac{3}{\sqrt{13}}, \quad \sin x = \frac{2}{\sqrt{13}}$$

$$\frac{\sin x}{\cos x} = \frac{\sqrt{5}}{3}$$

$$\therefore \sin x = \frac{\sqrt{5}}{3} \cos x$$

Now
$$\cos^2 x + \sin^2 x = 1$$

$$\therefore \cos^2 x + \frac{5}{9}\cos^2 x = 1$$
$$\therefore \frac{14}{9}\cos^2 x = 1$$

$$\therefore \cos x = \pm \frac{3}{2}$$

 \therefore $\cos x = \pm \frac{3}{\sqrt{14}}$

But x is in quadrant 3

 $\cos x$ and $\sin x$ are both negative.

$$\cos x = -\frac{3}{\sqrt{14}}, \quad \sin x = -\frac{\sqrt{5}}{\sqrt{14}}$$

$$\cos x$$
 and $\sin x$ are both negat

$$\cos x = -\frac{3}{\sqrt{14}}, \quad \sin x = -\frac{\sqrt{5}}{\sqrt{14}}$$

But
$$x$$
 is in quadrant 4

 \therefore cos x is positive and sin x is negative.

 $\therefore \cos x = \pm \frac{5}{13}$

$$\therefore \cos x = \frac{5}{13}, \quad \sin x = -\frac{12}{13}$$

 $\sin x = k \cos x$

Now
$$\cos^2 x + \sin^2 x = 1$$

Now
$$\cos^2 x + \sin^2 x = 1$$

$$\therefore \cos^2 x + k^2 \cos^2 x = 1$$

$$(k^2 + 1)\cos^2 x = 1$$

$$\therefore \cos x = \frac{\pm 1}{\sqrt{k^2 + 1}}$$

But x is in quadrant 3, $\therefore \cos x$ and $\sin x$ are both negative.

$$\therefore \ \, \cos x = \frac{-1}{\sqrt{k^2 + 1}}, \ \, \sin x = \frac{-k}{\sqrt{k^2 + 1}}$$

EXERCISE 10D.2

 $\tan \theta = 4$ 1 Using technology, $\tan^{-1}(4) \approx 1.33$

 $\theta \approx 1.33$ or $\pi + 1.33$

 $\theta \approx 1.33$ or 4.47

 $\mathbf{b} \quad \cos \theta = 0.83$

Using technology, $\cos^{-1}(0.83) \approx 0.592$

A

C

 $\theta \approx 0.592$ or

$$2\pi - 0.592$$

 $\theta \approx 0.592$ or 5.69

 $\sin \theta = \frac{3}{5}$

Using technology,

$$\sin^{-1}(\frac{3}{5}) \approx 0.644$$

 $\theta \approx 0.644$ or

$$\pi - 0.644$$

 $\theta \approx 0.644$ or 2.50

d

$$\cos \theta = 0$$

$$\cos^{-1}(0) = \frac{\pi}{2}$$

$$\therefore \ \theta = \frac{\pi}{2} \ \text{or} \ 2\pi - \frac{\pi}{2}$$

$$\theta = \frac{\pi}{2}$$
 or $\frac{3\pi}{2}$

 $\mathbf{g} \quad \sin \theta = \frac{1}{11}$

Using technology, $\sin^{-1}(\frac{1}{11}) \approx 0.0910$

$$\therefore \quad \theta \approx 0.0910 \quad \text{or} \\ \pi - 0.0910$$

$$\theta \approx 0.0910$$
 or 3.05

e $\tan \theta = 1.2$

Using technology,

 $\tan^{-1}(1.2) \approx 0.876$

$$\therefore \quad \theta \approx 0.876 \quad \text{or} \\ \qquad \qquad \pi + 0.876$$

$$\theta \approx 0.876$$
 or 4.02

 $h \quad \tan \theta = 20.2$

Using technology,

 $\tan^{-1}(20.2) \approx 1.52$

$$\theta \approx 1.52$$
 or $\pi + 1.52$

$$\theta \approx 1.52$$
 or 4.66

f $\cos\theta=0.7816$ Using technology, $\cos^{-1}(0.7816)\approx0.674$

$$\therefore \ \theta \approx 0.674 \ \text{or} \\ 2\pi - 0.674$$

$$\theta \approx 0.674$$
 or 5.61

 $\mathbf{i} \quad \sin \theta = \frac{39}{40}$

Using technology,

$$\sin^{-1}(\frac{39}{40}) \approx 1.35$$

$$\theta \approx 1.35$$
 or $\pi - 1.35$

$$\theta \approx 1.35$$
 or 1.79

2 a $\cos \theta = -\frac{1}{4}$

Using technology,

$$\cos^{-1}(-\frac{1}{4}) \approx 1.82$$

$$\therefore \quad \theta \approx 1.82 \quad \text{or} \quad 2\pi - 1.82$$

$$\theta \approx 1.82$$
 or 4.46

 $\sin \theta = 0$

$$\sin^{-1}(0) = 0$$

$$\therefore \quad \theta = 0 \quad \text{or} \quad \pi - 0$$
or 2π

$$\theta = 0, \pi, \text{ or } 2\pi$$

 $\tan \theta = -3.1$

Using technology,
$$\tan^{-1}(-3.1) \approx -1.26$$

But
$$0 \leqslant \theta \leqslant 2\pi$$

$$\therefore \quad \theta \approx \pi - 1.26 \quad \text{or} \quad 2\pi - 1.26$$

$$\theta \approx 1.88$$
 or 5.02

$$\tan \theta = -6.67$$
Using technology,
 $\tan^{-1}(-6.67) \approx -1.42$

f
$$\cos \theta = -\frac{2}{17}$$

Using technology,
 $\cos^{-1}(-\frac{2}{17}) \approx 1.69$

But
$$0 \le \theta \le 2\pi$$

 $\therefore \theta \approx \pi + 0.435$ or $2\pi - 0.435$

$$\theta \approx 3.58$$
 or 5.85

But
$$0 \le \theta \le 2\pi$$

 $\therefore \theta \approx \pi - 1.42$ or $2\pi - 1.42$
 $\therefore \theta \approx 1.72$ or 4.86

$$\theta \approx 1.69$$
 or $2\pi - 1.69$
 $\theta \approx 1.69$ or $\theta \approx 1.69$ or $\theta \approx 1.69$

g
$$\tan \theta = -\sqrt{5}$$

Using technology, $\tan^{-1}(-\sqrt{5}) \approx -1.15$

h
$$\cos \theta = -\frac{1}{\sqrt{3}}$$

Using technology,
 $\cos^{-1}(-\frac{1}{\sqrt{3}}) \approx 2.19$

i
$$\sin \theta = -\frac{\sqrt{2}}{\sqrt{5}}$$

Using technology,
 $\sin^{-1}(-\frac{\sqrt{2}}{\sqrt{5}}) \approx -0.685$

But
$$0 \leqslant \theta \leqslant 2\pi$$

 $\therefore \theta \approx \pi - 1.15$ or $2\pi - 1.15$

$$\theta \approx 1.99$$
 or 5.13

$$\therefore \quad \theta \approx 2.19 \quad \text{or} \quad \\ 2\pi - 2.19$$

$$\therefore \quad \theta \approx 2.19 \quad \text{or} \quad 4.10$$

But
$$0 \le \theta \le 2\pi$$

 $\therefore \theta \approx \pi + 0.685$ or $2\pi - 0.685$
 $\therefore \theta \approx 3.83$ or 5.60

EXERCISE 10E

1 a
$$\sin \theta + \sin(-\theta)$$

= $\sin \theta - \sin \theta$
= 0

$$3\sin\theta - \sin(-\theta)$$

$$= 3\sin\theta - -\sin\theta$$

$$= 3\sin\theta + \sin\theta$$

$$= 4\sin\theta$$

$$\begin{array}{ll}
\mathbf{b} & \tan(-\theta) - \tan \theta \\
&= -\tan \theta - \tan \theta \\
&= -2 \tan \theta
\end{array}$$

$$cos^{2}(-\alpha)$$

$$= cos(-\alpha) \times cos(-\alpha)$$

$$= cos \alpha \times cos \alpha$$

$$= cos^{2} \alpha$$

$$2\cos\theta + \cos(-\theta)$$

$$= 2\cos\theta + \cos\theta$$

$$= 3\cos\theta$$

$$\begin{array}{ll} \mathbf{f} & \sin^2(-\alpha) \\ & = \sin(-\alpha) \times \sin(-\alpha) \\ & = -\sin\alpha \times -\sin\alpha \\ & = \sin^2\alpha \end{array}$$

$$\mathbf{g} \qquad \cos(-\alpha)\cos\alpha - \sin(-\alpha)\sin\alpha$$

$$= \cos\alpha\cos\alpha - -\sin\alpha\sin\alpha$$

$$= \cos^2\alpha + \sin^2\alpha$$

$$= 1$$

2 a
$$2\sin\theta - \cos(90^{\circ} - \theta)$$

= $2\sin\theta - \sin\theta$
= $\sin\theta$

$$\sin(-\theta) - \cos(90^{\circ} - \theta)
= -\sin\theta - \sin\theta
= -2\sin\theta$$

$$\sin(90^{\circ} - \theta) - \cos\theta$$
$$= \cos\theta - \cos\theta$$
$$= 0$$

$$\begin{array}{lll} \mathbf{d} & 3\cos(-\theta) - 4\sin(\frac{\pi}{2} - \theta) & \mathbf{e} & 3\cos\theta + \sin(\frac{\pi}{2} - \theta) \\ & = 3\cos\theta - 4\cos\theta & = 3\cos\theta + \cos\theta \\ & = -\cos\theta & = 4\cos\theta & = 5\sin\theta \end{array}$$

$$(\frac{\pi}{2} - \theta)$$
 e $3\cos\theta + \sin(\frac{\pi}{2} - \theta)$
= $3\cos\theta + \cos\theta$
= $4\cos\theta$

f
$$\cos(\frac{\pi}{2} - \theta) + 4\sin\theta$$

= $\sin\theta + 4\sin\theta$
= $5\sin\theta$

3
$$\sin(\theta - \phi) = \sin(-(\phi - \theta))$$
 and $\cos(\theta - \phi) = \cos(-(\phi - \theta))$
= $-\sin(\phi - \theta)$ = $\cos(\phi - \theta)$

$$\cos(\theta - \phi) = \cos(-(\phi - \theta))$$
$$= \cos(\phi - \theta)$$

4 a
$$\frac{\sin \theta}{\cos \theta} = \tan \theta$$

b
$$\frac{\sin(-\theta)}{\cos(-\theta)} = \frac{-\sin\theta}{\cos\theta}$$
 c $\frac{\sin(\frac{\pi}{2} - \theta)}{\cos\theta} = \frac{\cos\theta}{\cos\theta}$ $= -\tan\theta$

$$\frac{\sin(\frac{\pi}{2} - \theta)}{\cos \theta} = \frac{\cos \theta}{\cos \theta}$$
$$= 1$$

$$\frac{-\sin(-\theta)}{\cos \theta} = \frac{\sin \theta}{\cos \theta}$$
$$= \tan \theta$$

$$e \frac{\cos(\frac{\pi}{2} - \theta)}{\sin(\frac{\pi}{2} - \theta)} = \frac{\sin \theta}{\cos \theta}$$
$$= \tan \theta$$

$$\mathbf{f} \quad \frac{\cos(\frac{\pi}{2} - \theta)}{\cos \theta} = \frac{\sin \theta}{\cos \theta}$$
$$= \tan \theta$$

EXERCISE 10F

So,
$$\cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}$$

$$\sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}$$

$$\tan(\frac{\pi}{4}) = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} = 1$$

You should draw separate unit circle diagrams for each case.

	а	٥	C	d	e
$\sin \theta$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	0	$-\frac{1}{\sqrt{2}}$
$\cos \theta$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	-1	$-\frac{1}{\sqrt{2}}$
$\tan \theta$	1	-1	-1	0	1

So,
$$\cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}$$

$$\sin(\frac{\pi}{6}) = \frac{1}{2}$$

$$\tan(\frac{\pi}{6}) = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}$$

You should draw separate unit circle diagrams for each case.

	а	Ь	c	d	e
$\sin \beta$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$
$\cos \beta$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\tan \beta$	$\frac{1}{\sqrt{3}}$	$-\sqrt{3}$	$\frac{1}{\sqrt{3}}$	$-\sqrt{3}$	$-\frac{1}{\sqrt{3}}$

 $120^{\circ} = \frac{2\pi}{3}$ which is a multiple of $\frac{\pi}{6}$

So,
$$\cos 120^{\circ} = -\frac{1}{2}$$

 $\sin 120^{\circ} = \frac{\sqrt{3}}{2}$
 $\tan 120^{\circ} = -\sqrt{3}$

b $-45^{\circ} = -\frac{\pi}{4}$ which is a multiple of $\frac{\pi}{4}$

So,
$$\cos(-45^{\circ}) = \frac{1}{\sqrt{2}}$$

 $\sin(-45^{\circ}) = -\frac{1}{\sqrt{2}}$
 $\tan(-45^{\circ}) = -1$

b
$$\tan 90^\circ = \frac{\sin 90^\circ}{\cos 90^\circ} = \frac{1}{0}$$
 $\tan 90^\circ$ is undefined

$$\cos 90^{\circ} = 0$$
, $\sin 90^{\circ} = 1$

5 a
$$\sin^2 60^\circ$$

 $= \sin 60^\circ \times \sin 60^\circ$
 $= \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}$
 $= \frac{3}{2}$

$$\begin{array}{ll} \mathbf{b} & \sin 30^{\circ} \cos 60^{\circ} \\ & = \frac{1}{2} \times \frac{1}{2} \\ & = \frac{1}{4} \end{array}$$

$$4\sin 60^{\circ} \cos 30^{\circ}$$
$$= 4\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)$$
$$= 3$$

$$\mathbf{d} \qquad 1 - \cos^2(\frac{\pi}{6})$$

$$= 1 - \left(\frac{\sqrt{3}}{2}\right)^2$$

$$= 1 - \frac{3}{4}$$

$$= \frac{1}{4}$$

$$\begin{aligned} &\mathbf{i} & \cos^2(\frac{5\pi}{6}) - \sin^2(\frac{5\pi}{6}) \\ &= \left(-\frac{\sqrt{3}}{2}\right)^2 - (\frac{1}{2})^2 & \left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \\ &= \frac{3}{4} - \frac{1}{4} \\ &= \frac{1}{2} \end{aligned}$$

$$k 2\tan(-\frac{5\pi}{4}) - \sin(\frac{3\pi}{2})$$

$$= 2(-1) - (-1)$$

$$= -1$$

$$(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$$

$$\frac{3\pi}{2}$$

$$\theta = 30^{\circ}, 150^{\circ}$$

b

$$\theta = 60^{\circ}, 120^{\circ}$$

$$\theta = 45^{\circ}, 315^{\circ}$$

$$\theta = \frac{\pi}{4}, \, \frac{5\pi}{4}$$

$$\theta=0,\,\pi,\,2\pi$$

b

$$\theta = \frac{3\pi}{4}, \, \frac{7\pi}{4}$$

$$\theta = \frac{\pi}{3}, \frac{4\pi}{3}$$

9 a
$$\cos \theta = \frac{1}{2}$$

$$\therefore \quad \theta = \frac{\pi}{3}, \, \frac{5\pi}{3}$$

$$\therefore \quad \theta = \frac{\pi}{3}, \, \frac{2\pi}{3}$$

 $\mathbf{c} \quad \cos\theta = -1$

$$\therefore \ \theta = \pi$$

$$\therefore \quad \theta = \frac{\pi}{2}$$

g
$$\cos^2 \theta = 1$$

$$\cos \theta = \pm 1$$

$$\therefore \quad \theta = 0, \, \pi, \, 2\pi$$

$$\cos \theta = -\frac{1}{\sqrt{2}}$$

$$\therefore \quad \theta = \frac{3\pi}{4}, \, \frac{5\pi}{4}$$

$$\mathbf{h} \quad \cos^2 \theta = \frac{1}{2}$$

$$\therefore \quad \cos \theta = \pm \frac{1}{\sqrt{2}}$$

$$\therefore \ \theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \qquad \qquad \therefore \ \theta = \frac{5\pi}{6}, \frac{11\pi}{6}$$

f
$$\sin^2 \theta = 1$$

$$\sin \theta = \pm 1$$

$$\therefore \quad \theta = \frac{\pi}{2}, \, \frac{3\pi}{2}$$

i
$$\tan \theta = -\frac{1}{\sqrt{3}}$$

$$\therefore \quad \theta = \frac{5\pi}{6}, \, \frac{11\pi}{6}$$

$$\therefore \tan \theta = \pm \sqrt{3}$$

$$\theta = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$$

- $\frac{\sin \theta}{\cos \theta} = \frac{0}{\cos \theta}$ **a** $\tan \theta$ is zero when 10
 - \therefore when $\sin \theta = 0$

- $\theta =, -\pi, 0, \pi, 2\pi,$
- $\theta = k\pi$, for $k \in \mathbb{Z}$

- **b** $\tan \theta$ is undefined when $\cos \theta$
 - \therefore when $\cos \theta = 0$

- $\theta = ..., -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, ...$
- $\theta = \frac{\pi}{2} + k\pi$, for $k \in \mathbb{Z}$

REVIEW SET 10A

- $120^{\circ} \qquad \qquad \mathbf{b} \qquad 225^{\circ} \\ = \left(120 \times \frac{\pi}{180}\right)^{c} \qquad \qquad = 5 \times 45^{\circ} \\ = 5 \times \frac{\pi}{4}^{c}$ 1 $=\frac{2\pi}{3}^c$
 - $=\frac{5\pi}{4}^c$
- 150° 540° $=5\times30^{\circ}$ $= 3 \times 180^{\circ}$ $=5\times\frac{\pi}{6}^c$ $=3\pi^c$ $=\frac{5\pi}{6}^c$
- a $\sin \frac{2\pi}{3} = \sin(\pi \frac{2\pi}{3}) = \sin \frac{\pi}{3}$ $\theta = \frac{\pi}{3}$
 - $\cos 276^{\circ} = \cos(360 276)^{\circ} = \cos 84^{\circ}$ $\theta = 84^{\circ}$
- **b** $\sin 165^{\circ} = \sin(180 165)^{\circ} = \sin 15^{\circ}$ $\therefore \quad \theta = 15^{\circ}$

3 a
$$\sin 159^{\circ}$$

 $= \sin(180 - 159)^{\circ}$
 $= \sin 21^{\circ}$
 ≈ 0.358

d
$$\sin(-133^\circ) = \sin(-47)^\circ$$

= $-\sin 47^\circ$
 ≈ -0.731

b
$$\cos 92^{\circ}$$

 $= -\cos(180 - 92)^{\circ}$
 $= -\cos 88^{\circ}$
 ≈ -0.035

a
$$\cos 360^{\circ} = 1$$
, $\sin 360^{\circ} = 0$
b $\cos(-\pi) = -1$, $\sin(-\pi) = 0$

$$(0,1)$$
 y
 $(1,0)$
 x
 $(0,-1)$

$$(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$$

$$(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$$

When $\cos \theta = -\sin \theta$, $\frac{\sin \theta}{\cos \theta} = -1$ and this only occurs at the two points shown. $\therefore \tan \theta = -1$ So, $\theta = \frac{3\pi}{4}, \frac{7\pi}{4}$

$$\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

$$\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$$

$$\tan\left(\frac{2\pi}{3}\right) = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}$$

$$= -\sqrt{3}$$

 $\sin\left(\frac{8\pi}{3}\right) = \frac{\sqrt{3}}{2}$ $\cos\left(\frac{8\pi}{3}\right) = -\frac{1}{2}$ $\tan\left(\frac{8\pi}{3}\right) = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}$ $= -\sqrt{3}$

7
$$\cos^2 x + \sin^2 x = 1$$

 $\therefore \cos^2 x + \frac{1}{16} = 1$
 $\therefore \cos^2 x = \frac{15}{16}$
 $\therefore \cos x = \pm \frac{\sqrt{15}}{4}$

8
$$\cos^2 \theta + \sin^2 \theta = 1$$

$$\therefore \quad \frac{9}{16} + \sin^2 \theta = 1$$

But x is in quadrant 3 where $\cos x < 0$ $\therefore \cos x = -\frac{\sqrt{15}}{4}$ and so $\tan x = \frac{\sin x}{\cos x} = \frac{-\frac{1}{4}}{-\frac{\sqrt{15}}{4}} = \frac{1}{\sqrt{15}}$ $\therefore \sin^2 \theta = \frac{7}{16}$

 $\therefore \sin \theta = \pm \frac{\sqrt{7}}{4}$

10
$$\frac{\sin x}{\cos x} = -\frac{3}{2}$$

$$\therefore \sin x = -\frac{3}{2}\cos x$$
Now
$$\cos^2 x + \sin^2 x = 1$$

$$\therefore \cos^2 x + \frac{9}{4}\cos^2 x = 1$$

$$\therefore \frac{13}{4}\cos^2 x = 1$$

$$\therefore \cos x = \pm \frac{2}{\sqrt{13}}$$

But x is in quadrant 4, so $\cos x$ is positive and $\sin x$ is negative.

$$\cos x = \frac{2}{\sqrt{13}}, \quad \sin x = -\frac{3}{\sqrt{13}}$$

So, **a**
$$\sin x = -\frac{3}{\sqrt{13}}$$
 b $\cos x = \frac{2}{\sqrt{13}}$

b
$$\cos x = \frac{2}{\sqrt{13}}$$

11 arc length =
$$\theta r$$

= 1×4
= 4 units
 \therefore perimeter = $2 \times 4 + 4$
= 12 units
area = $\frac{1}{2}\theta r^2$
= $\frac{1}{2} \times 1 \times 4^2$
= 8 units²

12
$$\cos^2 \theta + \sin^2 \theta = 1$$

$$\therefore \left(\frac{\sqrt{11}}{\sqrt{17}}\right)^2 + \sin^2 \theta = 1$$

$$\therefore \sin^2 \theta = \frac{6}{17}$$

$$\therefore \sin \theta = \pm \frac{\sqrt{6}}{\sqrt{17}}$$
But θ is acute,
$$\therefore \sin \theta = \frac{\sqrt{6}}{\sqrt{17}}$$

$$\tan \theta = \frac{\sqrt{6}}{\sqrt{17}} = \frac{\sqrt{6}}{\sqrt{11}}$$

13 a
$$\cos(\frac{\pi}{2} - \theta) - \sin \theta$$
 b $\cos(-\theta) \tan \theta$ $= \sin \theta - \sin \theta$ {complementary angle formula} $= \cos \theta \frac{\sin \theta}{\cos \theta}$ {negative angle formula} $= \sin \theta$ c $\sin(-\alpha)\cos(\alpha - \frac{\pi}{2})$

$$= -\sin \alpha \cos(\alpha - \frac{\pi}{2})$$

$$= -\sin \alpha \cos(-(\frac{\pi}{2} - \alpha))$$
 {negative angle formula}
$$= -\sin \alpha \cos(\frac{\pi}{2} - \alpha)$$
 {negative angle formula}
$$= -\sin \alpha \sin \alpha$$
 {complementary angle formula}
$$= -\sin^2 \alpha$$

REVIEW SET 10B

- The point is $(\cos 320^{\circ}, \sin 320^{\circ}) \approx (0.766, -0.643)$. 1
 - The point is $(\cos 163^{\circ}, \sin 163^{\circ}) \approx (-0.956, 0.292)$.

3 a
$$3^c$$
 b 1.46^c c 0.435^c d -5.271^c
$$= \left(3 \times \frac{180}{\pi}\right)^{\circ} \qquad = \left(1.46 \times \frac{180}{\pi}\right)^{\circ} \qquad = \left(0.435 \times \frac{180}{\pi}\right)^{\circ} \qquad = \left(-5.271 \times \frac{180}{\pi}\right)^{\circ} \\ \approx 171.89^{\circ} \qquad \approx 83.65^{\circ} \qquad \approx 24.92^{\circ} \qquad \approx -302.01^{\circ}$$

4 area =
$$\frac{1}{2} \times \frac{5\pi}{12} \times 13^2$$
 5 $M(\cos 73^\circ, \sin 73^\circ) \approx (0.292, 0.956),$ $\approx 111 \text{ cm}^2$ $N(\cos 190^\circ, \sin 190^\circ) \approx (-0.985, -0.174),$ $P(\cos(-53^\circ), \sin(-53^\circ)) = P(\cos 307^\circ, \sin 307^\circ) \approx (0.602, -0.799)$

The x-coordinate of A = -0.222

$$\therefore \quad \cos \theta = -0.222$$

$$\theta = \cos^{-1}(-0.222)$$

$$\theta \approx 102.8^{\circ}, 257.2^{\circ}$$

$$\theta \approx 103^{\circ}$$
 {taking angle to positive x-axis}

7

$$\theta = 150^{\circ} \text{ or } 210^{\circ}$$

$$\theta = 45^{\circ} \text{ or } 135^{\circ}$$

$$\theta = 120^{\circ} \text{ or } 300^{\circ}$$

 $\therefore \ \theta = \pi$

 $\sin^2 \theta = \frac{3}{4}$ $\sin \theta = \pm \frac{\sqrt{3}}{2}$

$$\theta = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$$

 $\sin 47^{\circ} = \sin(180 - 47)^{\circ}$ $=\sin 133^{\circ}$

$$\therefore \ \theta = 133^{\circ}$$

$$=\sin(\frac{14\pi}{15})$$

$$\therefore \quad \theta = \frac{14\pi}{15}$$

b $\sin(\frac{\pi}{15}) = \sin(\pi - \frac{\pi}{15})$ **c** $\cos 186^{\circ} = \cos(360 - 186)^{\circ}$ $= \cos 174^{\circ}$ $\theta = 174^{\circ}$

10

perimeter = $2 \times 11 + \left(\frac{63}{360}\right) \times 2\pi \times 11$ area = $\left(\frac{63}{360}\right) \times \pi \times 11^2$ $\approx 34.1~\mathrm{cm}$

 $\approx 66.5 \text{ cm}^2$

11

12

 $\cos \theta = \frac{2}{3}$ Using technology,

$$\cos^{-1}(\frac{2}{3}) \approx 0.841$$

 $\theta \approx 0.841$ or $2\pi - 0.841$

 $\theta \approx 0.841$ or 5.44

$$\therefore 36 = r \left(2 + \frac{2\pi}{3}\right)$$

$$\therefore \quad r = \frac{36}{2 + \frac{2\pi}{3}} \text{ cm}$$

 $\therefore r \approx 8.79 \text{ cm}$

perimeter = $2r + (\frac{2\pi}{3})r$ area $\approx \frac{1}{2}(\frac{2\pi}{3}) \times (8.7925)^2$

$$\approx 81.0 \text{ cm}^2$$

 $\sin \theta = -\frac{1}{4}$

Using technology,

$$\sin^{-1}(-\frac{1}{4}) \approx -0.253$$

But $0 \leqslant \theta \leqslant 2\pi$

$$\theta \approx \pi + 0.253$$
 or $2\pi + (-0.253)$

 $\theta \approx 3.39$ or 6.03

 $\tan \theta = 3$ Using technology, $\tan^{-1}(3) \approx 1.25$

 \therefore $\theta \approx 1.25$ or

$$\pi + 1.25$$

 $\theta \approx 1.25$ or 4.39

REVIEW SET 10C

1 a
$$\frac{2\pi}{5} = \frac{2 \times 180^{\circ}}{5}$$

= 72°

b
$$\frac{5\pi}{4} = \frac{5 \times 180^{\circ}}{4}$$
 = 225°

$$\frac{7\pi}{9} = \frac{7 \times 180^{\circ}}{9}$$
 $= 140^{\circ}$

a
$$\frac{2\pi}{5} = \frac{2 \times 180^{\circ}}{5}$$
 b $\frac{5\pi}{4} = \frac{5 \times 180^{\circ}}{4}$ c $\frac{7\pi}{9} = \frac{7 \times 180^{\circ}}{9}$ d $\frac{11\pi}{6} = \frac{11 \times 180^{\circ}}{6}$ $= 72^{\circ}$ $= 225^{\circ}$ $= 140^{\circ}$ $= 330^{\circ}$

2

308

3

$$\therefore \quad \cos\left(\frac{3\pi}{2}\right) = 0$$

$$\sin\left(\frac{3\pi}{2}\right) = -1$$

 $\therefore \quad \cos\left(-\frac{\pi}{2}\right) = 0$

$$\sin\left(-\frac{\pi}{2}\right) = -1$$

 $\sin(\pi - \theta) = \sin\theta$ $\sin(\pi - p) = \sin p$

= m

 $\cos^2 p + \sin^2 p = 1$ $\therefore \cos^2 p + m^2 = 1$ $\cos^2 p = 1 - m^2$ $\therefore \cos p = \pm \sqrt{1 - m^2}$

But p is acute, $\therefore \cos p = \sqrt{1 - m^2}$

 $\sin(\theta + 2\pi) = \sin\theta$ b

$$\therefore \sin(p+2\pi) = \sin p$$
$$= m$$

 $\sin p$ **d** $\tan p = -\frac{1}{2}$

i $\theta = 60^{\circ}$ {equilateral triangle} 5

ii $\theta = \frac{\pi}{3}$ radians

sector area $=\frac{1}{2}\theta r^2 = \frac{\pi}{6}$ units²

6

$$\tan^2(\frac{2\pi}{3}) \qquad \mathbf{7}$$

$$= (-\sqrt{3})^2$$

$$= 3$$

 $\cos(\frac{3\pi}{4}) - \sin(\frac{3\pi}{4})$

 $=-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}$

a $\cos^2 \theta + \sin^2 \theta = 1$ 8

$$\therefore \frac{9}{16} + \sin^2 \theta = 1$$

$$\therefore \sin^2 \theta = \frac{7}{16}$$

$$\therefore \sin \theta = \pm \frac{\sqrt{7}}{4}$$

But θ is in quadrant 2 where

$$\therefore \sin \theta = \frac{\sqrt{7}}{4}$$

b $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{\sqrt{7}}{4}}{-\frac{3}{4}} = -\frac{\sqrt{7}}{3}$ $\sin(\theta + \pi)$

) a

$$\tan^2 60^\circ - \sin^2 45^\circ$$

$$= (\sqrt{3})^2 - \left(\frac{1}{\sqrt{2}}\right)^2$$

$$= 3 - \frac{1}{2}$$

$$= 2\frac{1}{2}$$

b

$$\cos^2(\frac{\pi}{4}) + \sin(\frac{\pi}{2})$$

$$= \left(\frac{1}{\sqrt{2}}\right)^2 + 1$$

$$= \frac{1}{2} + 1$$

$$= 1\frac{1}{2}$$

$$\cos(\frac{5\pi}{3}) - \tan(\frac{5\pi}{4})$$

$$= \frac{1}{2} - 1$$

$$= -\frac{1}{2}$$

10 a
$$\sin(\pi - \theta) - \sin \theta = \sin \theta - \sin \theta$$

= 0

b
$$\sin(\frac{\pi}{2} - \theta) - 2\cos\theta = \cos\theta - 2\cos\theta$$

= $-\cos\theta$

11

For $\frac{\pi}{2} < \theta < \pi$:

The diagram shows P rotated through $\frac{\pi}{2}$ to P', so OP' makes an angle of $\frac{\pi}{2} + \theta$ with the positive x-axis.

$$P\widehat{O}A = \pi - \theta$$
 and $P'\widehat{O}B = \text{reflex } C\widehat{O}B - \text{reflex } C\widehat{O}P'$
= $\frac{3\pi}{2} - (\frac{\pi}{2} + \theta)$
= $\pi - \theta$

In \triangle s P'OB and POA:

•
$$OP' = OP$$

•
$$P'\widehat{O}B = P\widehat{O}A$$

•
$$P'\widehat{B}O = P\widehat{A}O$$

∴ △s P'OB and POA are congruent {AAcorS}

$$P'B = PA = \sin \theta$$

So P' has x-coordinate $-\sin\theta$

But P' has x-coordinate $\cos(\frac{\pi}{2} + \theta)$

$$\therefore \cos(\frac{\pi}{2} + \theta) = -\sin\theta$$

12 [AB], [AC], and [BC] are all radii, so AB = AC = BC = r. Hence \triangle ABC is equilateral and so $\widehat{CAB} = 60^{\circ}$.

$$\therefore \sin 60^{\circ} = \frac{\text{CD}}{\text{AC}}$$

$$\therefore$$
 CD = $\sin 60^{\circ} \times AC = \frac{\sqrt{3}}{2}r$

$$\therefore \text{ area of } \triangle = \frac{1}{2}(r)(\frac{\sqrt{3}}{2}r)$$
$$= \frac{\sqrt{3}}{4}r^2$$

shaded area of sector $= \text{area of sector} - \text{area of } \triangle$ $= \frac{60}{360}\pi r^2 - \frac{\sqrt{3}}{4}r^2$ $= \frac{\pi}{6}r^2 - \frac{\sqrt{3}}{4}r^2$

 $\therefore \text{ shaded area of figure} = 3\left[\frac{\pi}{6}r^2 - \frac{\sqrt{3}}{4}r^2\right] + \frac{\sqrt{3}}{4}r^2$ $= \frac{\pi}{2}r^2 - \frac{3\sqrt{3}}{4}r^2 + \frac{\sqrt{3}}{4}r^2$ $= \frac{\pi}{2}r^2 - \frac{2}{4}\sqrt{3}r^2$ $= \frac{r^2}{2}\left(\pi - \sqrt{3}\right)$