Roll No.	

SHAMBHUNATH INSTITUTE OF ENGINEERING AND TECHNOLOGY, PRAYAGRAJ

Subject Code: BEE-101 Course: B.Tech.

Subject: Fundamentals of Electrical Engineering

FIRST SESSIONAL EXAMINATION, ODD SEMESTER, (2024-2025)

SEMESTER: I

Time -1hr 30 min

Branch: CS

Maximum Marks - 30

NOTE: (Attempt all questions) 1. Attempt any FIVE questions.

Q. N.	QUESTION			,
	Explain the followings.	Marks	CO	BL
a.	(i) Active element (ii) Passive element	2	CO1	BL2
b.	State and explain Kirchhoff's voltage law.	2	CO1	
c.	Distinguish between mesh and loop of network.	2		BL2
d,	Distinguish between node and junction of network.	2	CO1	BL4
	Explain the followings.	2	CO1	BL4
е.	(i) Unilateral element (ii) Bilateral element Explain the followings.	2	CO1	BL2
f.	(i) Ideal voltage source (ii) Ideal current source	2	CO1	BL2

2. Attempt any <u>ONE</u> of the following.

Q. N.	QUESTION	Marks	CO	BL
a.	Using mesh current method, find the current in, and voltage across the 2Ω resistance in the following figure.	5	CO1	BL3
b.	Determine the current by Nodal method, through 2 ohm resistor for the network shown below. $V_A = 0.5 \Omega$ $V_B = 0.5 \Omega$ $V_$	5	CO1	BL3
c.	In the network, find the power delivered by the source using the nodal analysis. TO DC 60V 120 60V 120	5	CO1	BL3

3. Attempt any FIVE questions.

Q. N.	QUESTION	Marks	CO	BL
a.	What is the real power consumed by a pure capacitor?	2	CO2	BL1
b.	Define form factor and peak factor.	2	CO2	BL1
c.	What do you mean by alternation of sinusoidal quantity?	2	CO2	BL1
d.	Define average value of sinusoidal wave.	2	CO2	BL1
e.	Write the equation of voltage and current for pure inductive circuit.	2	CO2	BL1
f.	Draw and define impedance triangle of R-L series circuit.	2	CO2	BL1

4. Attempt any <u>ONE</u> of the following.

QN	QUESTION	Marks	CO	BL
a.	Determine the mathematical relationship between phase and line quantities in a 3-phase star configuration with the help of phasor diagram.	5	CO2	BL5
b.	Determine the mathematical expression for instantaneous power and average power in the case of R and L elements connected in series across a single phase Ac supply of voltage $v = V_m \sin \omega t$.	5	CO2	BL5
c.	A coil of resistance 40 Ω and inductance 0.75 H forms part of a series circuit for which resonant frequency is 55 Hz. If the supply is 250 V, 50 Hz, find- (i) Line current (ii) Power factor (iii) Power consumed	5	CO2	BL3

Bloom's Taxonomy L Remember (L1),	evel (BL) :- Understanding (L2),	Apply (L3),	Analyze (L4),	Evaluating (L5),	Creating (L6)
