Opcode	Description	Pseudo - Implementation
ONNN	Calls RCA 1802 program at address NNN. Not necessary for most ROMs.	
00E0	Clears the screen.	Set's all pixels from to 0
00EE	Returns from a subroutine.	Return to address stored in stack
1NNN	Jumps to address NNN.	Load NNN into PC
2NNN	Calls subroutine at NNN.	Store PC in stack then load NNN into PC
3XNN	Skips the next instruction if VX equals NN.	If V[X] == NN then increment PC by 4 (this instruction + next)
4XNN	Skips the next instruction if VX doesn't equal NN.	If V[X] != NN then increment PC by 4 (this instruction + next)
5XY0	Skips the next instruction if VX equals VY.	If V[X] == V[Y] then increment PC by 4 (this instruction + next)
6XNN	Sets VX to NN.	Set V[X] = NN
7XNN	Adds NN to VX.	V[X] += NN
8XY0	Sets VX to the value of VY.	V[X] = V[Y]
8XY1	Sets VX to VX or VY.	V[X] = V[X] V[Y]
8XY2	Sets VX to VX and VY.	V[X] = V[X] & V[Y]
8XY3	Sets VX to VX xor VY.	V[X] = V[X] ^ V[Y]
8XY4	Adds VY to VX. VF is set to 1 when there's a carry, and to 0 when there isn't.	if((V[X] + V[Y]) > 255){ V[F] = 1; V[X] += V[Y]; } Else{ V[X] += V[Y]; }
8XY5	VY is subtracted from VX. VF is set to 0 when there's a borrow, and 1 when there isn't.	if(V[X] - V[Y] < 0){ V[X] -= V[Y] V[F] = 0 } Else{ V[X] -= V[Y]; }
8XY6	Shifts VX right by one. VF is set to the value of the least significant bit of VX before the shift.	V[F] = V[X] & 1; //AND rightmost bit V[X] >> 1;
8XY7	Sets VX to VY minus VX. VF is set to 0 when there's a borrow, and 1 when there isn't.	if(V[Y] - V[X] < 0){ V[F] = 0; V[X] = V[Y] - V[X]; } Else{

		V[X] = V[Y] - V[X]; }
8XYE	Shifts VX left by one. VF is set to the value of the most significant bit of VX before the shift.	V[F] = V[X] & 10000000 V[X] << 1
9XY0	Skips the next instruction if VX doesn't equal VY.	V[X] != V[Y]
ANNN	Sets I to the address NNN.	I = NNN
BNNN	Jumps to the address NNN plus V0.	Pc = NNN + v[0]
CXNN	Sets VX to the result of a bitwise and operation on a random number and NN.	V[X] = NN & (rand() % 0xFF)
DXYN	Draws a sprite at coordinate (VX, VY) that has a width of 8 pixels and a height of N pixels. Each row of 8 pixels is read as bit-coded starting from memory location I; I value doesn't change after the execution of this instruction. As described above, VF is set to 1 if any screen pixels are flipped from set to unset when the sprite is drawn, and to 0 if that doesn't happen	<pre>//http://www.multigesture.net/articles/how-to -write-an-emulator-chip-8-interpreter/ unsigned short x = V[(opcode & 0x00F00) >> 8]; unsigned short y = V[(opcode & 0x00F0) >> 4]; unsigned short height = opcode & 0x000F; unsigned short pixel; V[0xF] = 0; for (int yline = 0; yline < height; yline++) { pixel = memory[I + yline]; for(int xline = 0; xline < 8; xline++) { if((pixel & (0x80 >> xline)) != 0) { if(gfx[(x + xline + ((y + yline) * 64))] == 1)</pre>
EX9E	Skips the next instruction if the key stored in VX is pressed.	If Key == V[X] PC += 4
EXA1	Skips the next instruction if the key stored in VX isn't pressed.	If key != V[X] PC += 4
FX07	Sets VX to the value of the delay timer.	V[X] = delay_timer
FX0A	A key press is awaited, and then stored in VX.	V[X] = key
FX15	Sets the delay timer to VX.	Delay_timer = V[X]
FX18	Sets the sound timer to VX.	Sound_timer = V[X]
FX1E	Adds VX to I.	I += V[X]

FX29	Sets I to the location in memory of the sprite for the character in VX. Characters 0-F (in hexadecimal) are represented by a 4x5 font.	//http://laurencescotford.co.uk/?p=440 I = 0x8100 (memory[0x8100 (V[X] & 0x0F)])
FX33	Stores the binary-coded decimal representation of VX, with the most significant of three digits at the address in I, the middle digit at I plus 1, and the least significant digit at I plus 2. (In other words, take the decimal representation of VX, place the hundreds digit in memory at location in I, the tens digit at location I+1, and the ones digit at location I+2.)	memory[I] = V[(opcode & 0x0F00) >> 8] / 100; memory[I + 1] = (V[(opcode & 0x0F00) >> 8] / 10) % 10; memory[I + 2] = (V[(opcode & 0x0F00) >> 8] % 100) % 10; pc += 2;
FX55	Stores V0 to VX (including VX) in memory starting at address I.	For n = 0; n < F; n++ memory [l + n] = V[n]
FX65	Fills V0 to VX (including VX) with values from memory starting at address I.	For n = 0; n < F; n++ V[n] = memory[I + n]