Learning objectives:

- 1. To differentiate an equation of the form f(x, y) = 0 with respect to x.
- 2. Apply this to find equations of tangents and/or normals.

What is implicit differentiation?

When we do not have an explicit dependence of y on x like y = f(x) for some function f but instead we have an equation involving both x and y. For example:

$$x^2 + y^2 + xy = 1$$
.

In such cases one can differentiate with respect to x to find dy/dx in terms of both x and y.

Example 1. Differentiate the following with respect to *x*:

- 1. *y*.
- 2. y^2 .
- 3. y^3 .
- 4. y^{n} .

Example 2. Differentiate the following with respect to *x*:

- 1. *xy*.
- 2. xy^2 .
- 3. xy^3 .
- 4. x^2y .
- 5. x^4y^6 .

Example 3.

- 1. If $x^2 + y^2 = 25$, find dy/dx.
- 2. Find an equation of the tangent to the circle $x^2 + y^2 = 25$ at the point (3, 4).

Example 4.

- 1. Find y' if $x^3 + y^3 = 6xy$.
- 2. Find the equation tangent to the given curve at the point (3,3).
- 3. At what point in the first quadrant is the tangent line horizontal?
- 4. Find the equation of normal to the given curve at (3,3).

Example 5.

- 1. Find y' if $\sin(x + y) = y^2 \cos x \pi^2$.
- 2. Find equation of tangent and normal lines to the given curve at $(0, \pi)$.

Example 6. Find y'' if $x^4 + y^4 = 16$.

Example 7. Find y'' if $\sin y + \cos x = 1$.