MATH 161, SHEET 3: THE TOPOLOGY OF THE CONTINUUM

Jeffrey Zhang IBL Journal 3 11/15/2013

In this sheet we give the continuum C a topology. Roughly speaking, this is a way to describe how the points of C are 'glued together'.

Definition 3.1. A subset of the continuum is *closed* if it contains all of its limit points.

Theorem 3.2. The sets \emptyset and C are closed.

Proof. We know that the set \emptyset is a finite subset of C, so by Theorem 2.25 it has no limit points. The set \emptyset then vacuously satisfies Definition 3.1, so it is closed. We know that by Definition 2.8, for all regions R, $R \subset C$. It follows then that if p is a limit point of C, then for all regions S such that $p \in S$, $p \in C$ as well, so C contains all of its limit points.

Theorem 3.3. A subset of C containing a finite number of points is closed.

Proof. We know that a finite subset $A \subset C$ has no limit points by Theorem 2.25. Therefore A vacuously satisfies Definition 3.1, as it has no limit points, so A is closed.

Definition 3.4. Let X be a subset of C. The *closure* of X is the subset \overline{X} of C defined by:

$$\overline{X} = X \cup \{x \in C \mid x \text{ is a limit point of } X\}.$$

Theorem 3.5. $X \subset C$ is closed if and only if $X = \overline{X}$.

Proof. We let $X \subset C$. Assume that X is closed. Then we know that X contains all of its limit points, so $\{x \in C \mid x \text{ is a limit point of } X\} \subset X$, so $X \cup \{x \in C \mid x \text{ is a limit point of } X\} = X$. Then it follows by Definition 3.4 that $\overline{X} = X$. We now assume $X = \overline{X}$. Then it follows that $X = X \cup \{x \in C \mid x \text{ is a limit point of } X\}$. By properties of sets, we know then that $\{x \in C \mid x \text{ is a limit point of } X\} \subset X$, so X contains all of its limit points. Then by Definition 3.1, X is closed. We have now shown both directions, so we know that $X \subset C$ is closed if and only if $X = \overline{X}$.

Theorem 3.6. The closure of $X \subset C$ satisfies $\overline{X} = \overline{\overline{X}}$.

Proof. We know that $\overline{X} = X \cup \{x \in C \mid x \text{ is a limit point of } X\}$ and that if $x \in \overline{X}$, then $x \in \overline{X}$ because by Definition 3.4 $\overline{X} \subset \overline{X}$. We now assume that $x \in \overline{X}$, so $\overline{X} = \overline{X} \cup \{x \in C \mid x \text{ is a limit point of } \overline{X}\}$. If $x \in \overline{X}$, then it follows that $\overline{X} \subset \overline{X}$. So we let x be a limit point of \overline{X} such that $x \notin \overline{X}$. Then we know that for a region R, $\forall R, x \in R, R \cap \overline{X} \neq \emptyset$. So $\exists y$ such that $y \in R \cap \overline{X}$. It follows from the definition of \overline{X} that for a region S, $\overline{X} = \{x \mid \forall S, x \in S, S \cap X \neq \emptyset\}$ because if $x \in X$ then $x \in S \cap X$, and if $x \notin X$ and x is a limit point of X then $S \cap X \neq \emptyset$. Because $y \in \overline{X}, \forall S, y \in S, S \cap X \neq \emptyset$. So we know that $\exists z$ such that $z \in S \cap X$. Because $y \in R$, we choose R as S, so we know that $z \in R \cap X$. So $\forall R, x \in R, R \cap X \neq \emptyset$. This means that x is a limit point of X, so it follows that $x \in \overline{X}$. Thus, we have shown that $\overline{X} \subset \overline{X}$ and that $\overline{X} \subset \overline{X}$, so $\overline{X} = \overline{X}$.

Corollary 3.7. Given any subset $X \subset C$, the closure \overline{X} is closed. *Proof.* We know by Theorem 3.6 that for any subset $X \subset C$, $\overline{X} = \overline{\overline{X}}$. By Theorem 3.5 then it follows that \overline{X} is closed. **Definition 3.8.** A subset U of the continuum is open if its complement $C \setminus U$ is closed. **Theorem 3.9.** The sets \emptyset and C are open. *Proof.* By Theorem 3.2 we know that \emptyset and C are both closed. \emptyset is the complement of C, so C is open by Definition 3.8. C is the complement of \emptyset , so \emptyset is similarly open. The following is a very useful criterion to determine whether a set of points is open. **Theorem 3.10.** Let $U \subset C$. Then U is open if and only if for all $x \in U$, there exists a region R such that $x \in R \subset U$. *Proof.* Let $U^c = C \setminus U$. We first assume that U is open, and thus we know that U^c is closed. Because U^c is closed, it follows that $\forall x \in U, x$ is not a limit point of U^c . So we know that for a region $R, \forall x \in U, \exists R \text{ such that } x \in R, R \cap (U^c \setminus \{x\}) = \emptyset$. But we know that U and U^c are disjoint, so $x \notin U^c$. So $R \cap U^c = \emptyset$, and thus $R \subset U$. So if U is open, $\forall x$, there exists a region R such that $x \in R \subset U$. We now assume that $\forall x \in U$, there exists a region R such that $x \in R \subset U$ and thus $R \cap U^c = \emptyset$. This means that $\forall x \in U$, x is not a limit point of U^c , so U^c is closed. It follows then that U must be open. Corollary 3.11. Every region R is open. Every complement of a region $C \setminus R$ is closed. *Proof.* Let R be a region. Then it is clear that $\forall x \in R, x \in R \subset R$. Thus by Theorem 3.10 we know that R is open. **Corollary 3.12.** Let $a \in C$. Then the sets $\{x \mid x < a\}$ and $\{x \mid a < x\}$ are open. *Proof.* We first consider the set $\{x \mid x < a\}$. We know that $\forall x$ such that x < a, there exists b such that b < x by Axiom 3. Thus we know that $x \in ba$, so $\forall x \in \{x \mid x < a\}$, there exists a region <u>ba</u> such that $x \in \underline{ba}$. So by Theorem 3.10, $\{x \mid x < a\}$ is open. Similarly, for the set $\{x \mid a < x\}$, we know that $\forall x$ such that a < x there exists c such that x < c by Axiom 3. So it follows that $x \in ac$, so $\forall x \in \{x \mid a < x\}$, there exists a region ac such that $x \in ac$. So by Theorem 3.10, $\{x \mid a < x\}$ is open.

Theorem 3.13. Let U be a nonempty open set. Then U is the union of a collection of regions.

Proof. We know by Theorem 3.10 that for all x such that $x \in U$, there exists a region R_x such that $x \in R_x \subset U$. If $x \in U$, then $x \in \bigcup_{x \in U} R_x$ because there exists an R_x such that $x \in R_x \subset U$ for all x. If $x \in \bigcup_{x \in U} R_x$, then we know that $x \in U$ because for all R_x , $R_x \subset U$. So it follows that $U = \bigcup_{x \in U} R_x$, so U is the union of a collection of regions.

Exercise 3.14. Do there exist subsets $X \subset C$ that are neither open nor closed?

Proof. It depends on the realization of C, as all subsets on \mathbb{Z} are both open and closed, so on \mathbb{Z} there exist no $X \subset \mathbb{Z}$ such that X is neither open nor closed.

Theorem 3.15. Let $\{X_{\lambda}\}$ be an arbitrary collection of closed subsets of the continuum. Then the intersection $\bigcap_{\lambda} X_{\lambda}$ is closed.

Proof. We know by DeMorgan's Laws that $C \setminus \bigcap_{\lambda} X_{\lambda} = \bigcup_{\lambda} (C \setminus X_{\lambda})$. By Definition 3.8, we know that $C \setminus X_{\lambda}$ is open because X_{λ} is closed. We let $A_{\lambda} = (C \setminus X_{\lambda})$. So for $\{A_{\lambda}\}$, if $x \in \bigcup_{\lambda} A_{\lambda}$, $x \in A_{\lambda}$ for some λ . Since A_{λ} is open, $x \in A_{\lambda}$, by Theorem 3.10 there exists a region R such that $x \in R \subset A_{\lambda}$. So it follows that $R \subset \bigcup_{\lambda} A_{\lambda}$, so $\bigcup_{\lambda} A_{\lambda}$ is open. This means that $\bigcup_{\lambda} (C \setminus X_{\lambda})$ is open, so $C \setminus \bigcap_{\lambda} X_{\lambda}$ is open, so by Definition 3.8, $\bigcap_{\lambda} X_{\lambda}$ is closed. \square

Theorem 3.16. Let U_1, \ldots, U_n be a finite collection of open subsets of the continuum. Then the intersection $U_1 \cap \cdots \cap U_n$ is open.

Proof. If $U_1 \cap \cdots \cap U_n = \emptyset$ then we know that $U_1 \cap \cdots \cap U_n$ is open by Theorem 3.9. Assume $U_1 \cap \cdots \cap U_n \neq \emptyset$. Then we choose an arbitrary $x \in U_1 \cap \cdots \cap U_n$. It follows then by Theorem 3.10 that there exist regions R_1, \ldots, R_n such that $x \in R_1, \ldots, R_n$. So we know that $x \in R_1 \cap \cdots \cap R_n$. We let $S = R_1 \cap \cdots \cap R_n$. By Corollary 2.18, we know that S is a region, and we know that S is a region, and we know that S is a region, and the shown that S is a region, and the shown that S is a region, and S is a region, and the shown that S is a region, and S is a region, and the shown that S is a region, and S is a region, and the shown that S is a region, and we know that S is a region, and S is a region of S is a region.

Exercise 3.17. Is it necessarily the case that the intersection of an infinite number of open sets is open?

Proof. It is not necessarily the case. We let R_n be defined as the region $\frac{-1}{n}\frac{1}{n}$ over \mathbb{R} for $n \in \mathbb{N}$. We know that R_n is open because it is a region (Corollary 3.11). It follows that $\bigcap R_n = \{0\}$. We know that $\{0\}$ is a closed set on \mathbb{R} because we cannot construct a region S around $\{0\}$ such that $S \subset \{0\}$ in \mathbb{R} .

Corollary 3.18. Let $\{U_{\lambda}\}$ be an arbitrary collection of open subsets of the continuum. Then the union $\bigcup_{\lambda} U_{\lambda}$ is open. Let X_1, \ldots, X_n be a finite collection of closed subsets of the continuum. Then the union $X_1 \cup \cdots \cup X_n$ is closed.

Proof. Let $x \in \bigcup_{\lambda} U_{\lambda}$, then $x \in U_{\lambda}$ for some U_{λ} . We know that U_{λ} is open, so by Theorem 3.10 there exists a region R such that $x \in R \subset U_{\lambda}$. So it follows that $R \subset \bigcup_{\lambda} U_{\lambda}$. Thus $\forall x \in \bigcup_{\lambda} U_{\lambda}$, there exists a region R such that $x \in R \subset \bigcup_{\lambda} U_{\lambda}$ so by Theorem 3.10 $\bigcup_{\lambda} U_{\lambda}$ is open. We let $X_1, ..., X_n$ be finite closed subsets of C. For each X_i , we define $U_i = C \setminus X_i$ is open by Definition 3.8. We know by DeMorgan's Laws that $C \setminus \bigcap_i U_i = \bigcup_i X_i$. By Theorem 3.16 we have that the intersection of a finite number of open sets is open, so $\bigcap_i U_i$ is open. By Definition 3.8, we know $C \setminus \bigcap_i U_i$ is closed so $\bigcup_i X_i$ is closed.

Theorem 3.9 and Corollary 3.18 say that the collection \mathcal{T} of open subsets of the continuum is a topology on C, in the following sense:

Definition 3.19. Let X be any set. A *topology* on X is a collection \mathscr{T} of subsets of X that satisfy the following properties:

- 1. X and \emptyset are elements of \mathscr{T} .
- 2. The union of an arbitrary collection of sets in \mathcal{T} is also in \mathcal{T} .
- 3. The intersection of a finite number of sets in \mathscr{T} is also in \mathscr{T} .

The elements of \mathscr{T} are called the *open sets* of X. The set X with the structure of the topology \mathscr{T} is called a *topological space*¹.

Theorem 3.13 says that every nonempty open set is the union of a collection of regions. This necessary condition for open sets is also sufficient:

Theorem 3.20. Let $U \subset C$ be nonempty. Then U is open if and only if U is the union of a collection of regions.

Proof. We first assume that $U \subset C$ is nonempty and open. We know then by Theorem 3.13 that U is the union of a collection of regions. We now assume that $U \subset C$ is the union of a collection of regions. By Corollary 3.11 we know that all regions are open, so by applying Theorem 3.18 we get that U is open.

Definition 3.21. A topological space X is discrete if every subset of X is open.

Exercise 3.22. Find a realization of the continuum that is discrete. Must every realization be discrete?

Proof. We know that every subset of \mathbb{Z} is both open and closed, so \mathbb{Z} is a discrete realization of the continuum. It is not a necessary condition that a realization of the continuum be discrete, as \mathbb{R} is a non-discrete realization of the continuum (the set $\{0\}$ on \mathbb{R} is not open because no region can be constructed such that the region is contained within the set $\{0\}$).

Definition 3.23. Let A and B be nonempty disjoint subsets of a topological space X. We say that A and B are *separated* if each contains no point of the closure of the other, i.e. $A \cap \overline{B} = \emptyset$ and $\overline{A} \cap B = \emptyset$.

Theorem 3.24. Let ab be a region in C. Then the sets ab and ext ab are separated.

Proof. We know that no limit points of \underline{ab} are in ext ab and that no limit points of ext ab are in \underline{ab} by Lemma 2.16. We also know that \underline{ab} and ext ab are disjoint, so it follows that \underline{ab} and ext ab are separated.

Definition 3.25. Let X be a topological space. X is disconnected if it may be written as the union $X = A \cup B$ of two separated sets. X is connected if it is not disconnected.

Exercise 3.26. Is the continuum connected?

¹The word topology comes from the Greek word topos $(\tau \acute{o}\pi o \zeta)$, which means "place".

Proof. As defined thus far, the continuum is not necessarily connected. We know that \mathbb{Z} is a realization of the continuum as defined thus far, and \mathbb{Z} can be written as $\mathbb{Z} = \{x \in \mathbb{Z} \mid x \text{ is even}\} \cup \{x \in \mathbb{Z} \mid x \text{ is odd}\}$. Any subset of \mathbb{Z} has no limit points, so we know that the set of even integers and the set of odd integers are separated.