HÁZI FELADAT

Erősítő tervezés, áramkör szimuláció

Név:.....

A feladat adatai:

$$U_{BE0} = 0.75 \text{ V}, U_T = 26 \text{ mV},$$

 $C_1 = C_2 = 10 \mu\text{F}, C_E = 100 \mu\text{F},$
 $R_t = 10 \text{ k}\Omega, R_g = 100 \Omega$

EREDMÉNYEK

Munkaponti adatok (számított):

kΩ

Munkaponti adatok (szimuláció):

$$I_{B0} = \mu A$$
 $I_{C0} = \mu A$
 $I_{E0} = \mu A$
 $U_{E0} = \nu V$
 $U_{B0} = \nu V$
 $U_{CE0} = \nu V$

Kisjelű adatok (számított):

 $R_C =$

Kisjelű adatok (szimuláció):

$$A_u =$$

$$f_a =$$

$$f_f =$$

$$f_k =$$

$$kHz$$

$$kHz$$

ELVÉGZENDŐ FELADATOK

Munkapontszámítás

- 1. Határozza meg az ábrán látható közös emitteres erősítő kapcsolás munkaponti adatait (I_{B0} , I_{C0} , I_{E0} , U_{E0} , U_{B0})! A munkapont számításnál hanyagolja el az I_{CB0} szivárgási áram hatását!
- 2. Számítsa ki az R_C kollektor ellenállás értékét az $U_{CE0} = (U_+ U_{E0})/2$ előírás szerint, majd kerekítse a legközelebbi szabványos értékre! Az E24-es szabványos értéksor: $\{10,11,12,13,15,16,18,20,22,24,27,30,33,36,39,43,47,51,56,62,68,75,82,91\} \cdot 10^n$.
- 3. Korrigálja U_{CE0} értékét, a módosított R_C értékhez!

Kisjelű paraméterek számítása

- 1. Számítsa ki a sávközépi frekvencián a feszültségerősítés maximális értékét (visszacsatolás nélküli eset: $R_{E1} = 0$, $R_{E2} = R_E$)! Ezen a frekvencián a C_1 és C_2 csatoló kondenzátort, valamint a C_E emitter kondenzátort tekintse rövidzárnak a C_3 kondenzátort pedig szakadásnak! A feszültségerősítést a teljes átviteli láncra értse, az u_g generátor feszültségtől az u_{ki} kimeneti feszültségig, terhelt állapotra.
- 2. Válassza meg R_{E1} és R_{E2} értékét ($R_E = R_{E1} + R_{E2}$) úgy, hogy a soros áramvisszacsatolás hatására a feszültségerősítés a teljes átviteli láncra nézve a megadott értékűre csökkenjen! Ha a megadott erősítés nem valósítható meg, válasszon egy olyan erősítés értéket, amire az erősítőt be lehet állítani.
- 3. Határozza meg az erősítő be- és kimeneti ellenállásait a visszacsatolt esetre!
- 4. Határozza meg az erősítő alsó határfrekvenciáját!
- 5. Válassza meg a C₃ kondenzátor értékét, hogy a felső határfrekvencia a megadott legyen!

Áramkör szimuláció

Az áramkör szimulációhoz építse fel az erősítő kapcsolást a QUCS áramkör szimulációs programmal. Használja az általános *npn* bipoláris tranzisztor modellt. Az áramerősítési tényezőt állítsa a megadott értékre. A DC, AC és tranziens szimulációkat, valamint az eredményeket bemutató diagramokat lehetőség szerint egyetlen fájlban készítse el.

- 1. Ellenőrizze a munkaponti számításait DC szimuláció segítségével!
- 2. A szinuszos generátor feszültségét 10 mV amplitúdójú feszültségre állítsa! AC szimuláció segítségével rajzoltassa fel a Bode amplitúdó- és fázisdiagramokat! Olvassa le a sávközépi erősítést, az alsó és felső határfrekvenciákat, és számítsa ki a sávközépi frekvenciát! Hasonlítsa össze a számított értékekkel!
- 3. Állítsa a bemeneti jelgenerátor frekvenciáját a sávközépi frekvenciára! Futtasson tranziens szimulációt, és ellenőrizze az üzemszerű működést!

Az eredmények ellenőrzése

A szimulációt használjuk a számítások ellenőrzésére. A számított és a szimulációból kapott eredmények 10%-nál nagyobb eltérést nem mutathatnak! DC szimulációval az összes feszültség és áram

adat összehasonlítható a munkaponti számítás eredményével, AC szimulációnál pedig a tervezett feszültségerősítés és a határfrekvenciák értékét ellenőrizhetjük.

A HÁZI FELADAT BEADÁSA

A házi feladat beadása elektronikusan történik a **zoltan.suto@aut.bme.hu** e-mail címre. Az e-mail tárgya a következő formátumú legyen: ANALOG HF NEPTUN-KÓD NÉV. Beadandó:

- 1. A számítások menetét, az alkalmazott helyettesítő kapcsolási rajzokat, részeredményeket tartalmazó feladatmegoldás. A számítások számítógépen szerkesztve, vagy kézzel írt, és szkennelt formában, fényképezve is beadhatók, de az utóbbi esetekben ügyeljünk az olvashatóságra.
- 2. A végeredményeket összefoglaló táblázat, a feladatlap első oldala kitöltve.
- 3. A QUCS program .sch kiterjesztésű szimulációs fájlja.

Határidő: 2018. április 22. 24:00 (10. oktatási hét, vasárnap)