$[CII]_{158\mu m}$ and $[NII]_{205\mu m}$ emission in IC 342

M. Röllig, R. Simon, R. Güsten, J. Stutzki, F. Israel, and K. Jacobs

Universität zu Köln, Germany

Introduction

- Barred spiral obscured by the plane of the MW
- D=3.3 Mpc
- Starburst activity in the center
- Sometimes considered a "close relative" to the MW

Downes et al. 1992

The Nucleus of IC 342

IC 342 – Geometry of the inner 300pc

Meier & Turner 2005

- Bar-potential leads to mini-spiral configuration in the nucleus
- The spiral arms end at an inner molecular ring
- The center of the ring is dominated by an evolved (60 Myr) massive star cluster
- The inner rim of the ring is illuminated by FUV → PDR emission
- Expanding bubbles of HII gas

SOFIA/GREAT observations 2013/14

- 10 positions (spacing 7") in dual-beam switch mode observed during 3 flights
- L1/L2 GREAT configuration

L1: [NII] ${}^{3}P_{1} - {}^{3}P_{0}$ 205µm

L2: [CII] ³P_{3/2}-³P_{1/2} 158μm

- $t_{ON} = 2.5 \text{min} 7.5 \text{min}$
- T_{sys}=2000-5500 K
- 8192 channel FFTS with 1.5 GHz bandwidth and 212 kHz spectral resolution

SOFIA/GREAT observations 2013/14

- 10 positions (spacing 7") in dual-beam switch mode observed during 3 flights
- L1/L2 GREAT configuration

L1: [NII] ${}^{3}P_{1} - {}^{3}P_{0}$ 205µm

L2: [CII] ³P_{3/2}-³P_{1/2} 158μm

- $t_{ON} = 2.5 \text{min} 7.5 \text{min}$
- T_{sys}=2000-5500 K
- 8192 channel FFTS with 1.5 GHz bandwidth and 212 kHz spectral resolution
- RMS_[NII]<100mK RMS_[CII]<60mK

SOFIA/GREAT observations 2013/14

average spectrum over central 3x3

- 10 positions (spacing 7") in dual-beam switch mode observed during 3 flights
- L1/L2 GREAT configuration

L1: [NII] ${}^{3}P_{1} - {}^{3}P_{0}$ 205µm

L2: [CII] ${}^{3}P_{3/2} - {}^{3}P_{1/2}$ 158µm

- $t_{ON} = 2.5 \text{min} 7.5 \text{min}$
- T_{sys}=2000-5500 K
- 8192 channel FFTS with 1.5 GHz bandwidth and 212 kHz spectral resolution
- RMS_[NII]<100mK RMS_[CII]<60mK

[CII] - [NII] correlation

- IP(N) = 14.53 eV
- FUV energy in PDRs 6eV<hv<13.6 eV
- [NII] is always emitted from HII regions
- IP(C) = 11.3 eV
- Carbon in HII regions is in the form C⁺ and C²⁺
- Carbon in PDRs is layered C+/C/CO
- [CII] is emitted from PDRs and HII regions

What fraction of [CII] is from which phase?

Abel 2006

[CII] - [NII] correlation

- IP(N) = 14.53 eV
- FUV energy in PDRs 6eV<hv<13.6 eV
- [NII] is always emitted from HII regions
- IP(C) = 11.3 eV
- Carbon in HII regions is in the form C⁺ and C²⁺
- Carbon in PDRs is layered C+/C/CO
- [CII] is emitted from PDRs and HII regions

What fraction of [CII] is from which phase?

Abel 2006

[CII] - [NII] correlation in IC 342

- 3 positions: only [CII]_{HII}
- 7 positions: [CII]_{HII}~ 35-90% [CII]_{tot}
- Quite high values:
 MW average [CII]_{HII}~ 20%, [CII]_{PDR}~30%

Röllig et al. 2015

[CII] - [NII] correlation in IC 342

- 3 positions: only [CII]_{HII}
- 7 positions: [CII]_{HII}~ 35-90% [CII]_{tot}
- Quite high values:
 MW average [CII]_{HII}~ 20%, [CII]_{PDR}~30%
- But: inner kpc of the MW also shows
 [CII]_{HII} > [CII]_{PDR}
- Both, IC 342 and MW show a strong contribution of [CII]_{HII} to [CII]_{tot} in their center.

Pineda et al. 2014

line center velocities

• Gaussian line center velocities show spatial differences between CO, C⁺ and N⁺

CO shows a clear velocity gradient from

N-E to S-W

line center velocities

• Gaussian line center velocities show spatial differences between CO, C⁺ and N⁺

CO shows a clear velocity gradient from

N-E to S-W

line center velocities

line center velocities

- Gaussian line center velocities are show spatial differences between CO, C⁺ and N⁺
- CO shows a clear velocity gradient from

N-E to S-W

 BUT: This N⁺ gas should be blueshifted!

Doppler-shift of ionized gas challenges the geometrical model of the nucleus of IC 342.

Super-resolution simulation

- The 15" SOFIA [CII] beam corresponds to D>240pc
- The unresolved GMCs, PDRs, etc. in the beam pass their kinematic signature on to the observed, beam convolved [CII] spectrum.
- If we had access to kinematic information with higher angular resolution, we could analyze how the unresolved structures need to be distributed to result in the observed spectral line shape.
- There is no [CII] data with higher angular resolution.
- But there is interferometric CO data available with resolution ≤ 5"

- CO data with higher angular resolution than [CII] is available.
- We assume a [CII]-CO correlation also on very small scales.

- CO data with higher angular resolution than [CII] is available.
- We assume a [CII]-CO correlation also on very small scales.
- We model artificial [CII]^{hi} assuming $FWHM_{CO}$ and $v_{0,CO}$

- CO data with higher angular resolution than [CII] is available.
- We assume a [CII]-CO correlation also on very small scales.
- We model artificial [CII]^{hi} assuming FWHM_{co} and v_{0.co}
- Simulate observation by convolving with 15" beam [CII]^{hi} => [CII]^{lo}

- CO data with higher angular resolution than [CII] is available.
- We assume a [CII]-CO correlation also on very small scales.
- We model artificial [CII]^{hi} assuming FWHM_{co} and v_{0.co}
- Simulate observation by convolving with 15" beam [CII]^{hi} => [CII]^{lo}
- Compare beam convolved [CII]^{low} with [CII]_{obs}

- CO data with higher angular resolution than [CII] is available.
- We assume a [CII]-CO correlation also on very small scales.
- We model artificial [CII]^{hi-res} assuming FWHM_{co} and v_{0.co}
- Simulate observation by convolving with beam [CII]^{hi-res} => [CII]^{lo-res}
- Compare beam convolved [CII]^{lo-res} with [CII]_{obs}
- Modify [CII]^{hi-res}
- Rinse and repeat

T_{peak}([CII]) @ each position

[CII]^{hi} are already weighted with Gaussian kernel

residuum

- Numerical fitting with 25(+1) degrees of freedom of varying weight is challenging
- The weaker the velocity gradient across the CO-map is, the higher the degeneracy between the parameters
 - \rightarrow kinematic influence of one CO position can be substituted by other positions with matching line shape.
- Qualitative conclusions difficult \rightarrow the initial goal of a super-resolved map of numeric [CII]/CO ratios not yet reached.
- Quantitative conclusions already possible
 - → We find the same qualitative trends in the super-resolved [CII]/CO distribution with complementary methods

The kinematics of the observed [CII] emission is consistent with a scenario where
the lower-left quadrant of the spiral/ring structure is dominantly contributing to the
total [CII] emission. The gas along the northern arm is kinematically speaking of
much less influence.

[CII] and [NII] emission in IC342 - The 6th Zermatt ISM Symposium - 7. Sep. 2015

[CII] and [NII] emission in IC342 - The 6th Zermatt ISM Symposium - 7. Sep. 2015

Summary

- [CII]_{158µm} and [NII]_{205µm} detected in the nucleus of IC 342.
- The high angular and spectral resolution reveals a complex distribution of quiescent gas and PDR/starburst activity in the region.
- Strong starburst/PDR activity in the S-E consistent with complementary studies.
- The kinematic information of the emission from the ionized gas leads us to a refined geometrical concept of the center region of IC 342 (leading vs. trailing arms).
- Super-resolution method can be used to convolve the kinematic information from correlated data with very high-res. into a simulated observation in order to gain additional knowledge on the details of the assumed correlation.

Thank you!

[CII] to CO ratio

Röllig et al. 2015

Direct comparison of line integrated intensities (single-component):

- [CII] emission strongest in the S-E quadrant
- [CII]/CO ratio highest in the S-E of our 3x3 grid.
- Local variations in the [CII]/CO ratio indicate spatial variations of the PDR/star formation activity along the molecular ring and mini-spiral.

[CII]/CO as star formation tracer

- The intensity ratio [CII]/12CO(1-0) is often used as tracer of star formation/PDR/star burst activity
- [CII] emission scales with FUV illumination
- Stronger FUV illumination from massive stars leads to stronger [CII]

- CO forms in the cool, shielded parts of the ISM
- Stronger FUV illumination leads to a decrease in N(CO) together with a reduced area filling factor

[CII]/CO as star formation tracer

- I_[CII]/I_{CO}=4000-6000 is indicative of strong PDR activity/star bursts
- I_{co}=37.7±1.8 K km/s @ 65" beam (NRAO, Rickard & Blitz 1985)
- I_[CII]=3×10⁻⁴ erg/s/cm²/sr @ 55" beam (KAO, Crawford et al. 1985)

Compare with higher resolution data

I_{CO}=302 K km/s @ 15" (BIMA, smoothed)
 I_[CII]=4.1×10⁻⁴ erg/s/cm²/sr @ 15" (SOFIA)

KAO compared to SOFIA

Stacey et al. 1991: [CII]/CO=5000

	GMC C	GMC E
[C II]/ ¹² CO(1–0)	482	4236/692
$[C II]^{12}CO(2-1)$	142	1223/150
$[C I]^{12}CO(1-0)$	6.5	-/ 9.4
$[C I]^{12}CO(2-1)$	1.9	-/2.4
$^{12}CO(4-3)/^{12}CO(1-0)$	20.7	21.1(-)
$N_{\rm [CII]}/[10^{17} {\rm cm}^{-2}]^a$	1.4	0.9/1.6
PDR model results		
$\langle n \rangle$ [10 ³ cm ⁻³]	5.0	10/2.0
$M_{\rm tot} \ [10^6 \ M_{\odot}]$	20	2.0/15
χ [Draine]	7	300/5

As always: higher angular resolution leads to a more complex picture.

KAO compared to SOFIA

- [CII] and CO emission has a significantly different area filling factor
- C⁺ has wider distribution.
- CO is concentrated toward the cool, shielded portion of the ISM
- Diffuse clouds with very little CO and much C⁺ fill up the beam.
- With higher angular resolution we expect the [CII]/CO ratio to decrease.

T_{peak}([CII]) @ each position

[CII]^{hi} are already weighted with Gaussian kernel

residuum

T_{peak}([CII]) @ each position

[CII]^{hi} are already weighted with Gaussian kernel

residuum

The Nucleus of IC 342

Meier & Turner 2001