Some Generalizations of the MacMahon Master Theorem

Michael P. Tuite
School of Mathematics, Statistics and Applied Mathematics,
National University of Ireland Galway
University Road, Galway, Ireland.

October 28, 2018

Abstract

We consider a number of generalizations of the β -extended MacMahon Master Theorem for a matrix. The generalizations are based on replacing permutations on multisets formed from matrix indices by partial permutations or derangements over matrix or submatrix indices.

1 Introduction

The Master Theorem due to Percy MacMahon first appeared in 1915 in his classic text Combinatory Analysis [MM]. A generalization known as the β -extended MacMahon Master Theorem was discovered in more recent times by Foata and Zeilberger [FZ]. This present paper is concerned with several further generalizations of the β -extension informed by recent results in the theory of vertex operator algebras concerning the partition and correlation functions on a genus zero and higher Riemann surface [MT1, MT2, TZ1, HT, TZ2, TZ3].

One formulation of the MacMahon Master Theorem (MMT) is the identity of $\det(I-A)^{-1}$, for a given matrix A, to an infinite weighted sum over all permanents for matrices indexed by multisets formed from the indices of A [W, KP]. The β -extended MMT relates $\det(I-A)^{-\beta}$ to a similar sum

over so-called β -extended permanents [FZ, KP]. We consider the following generalizations:

- (i) The Submatrix MMT. Here the infinite sum runs over multisets formed from the indices of a given submatrix of A.
- (ii) The Partial Permutation MMT. In this case the β -extended permanent is replaced by what we refer to as a (β, θ, ϕ) -extended partial permanent defined in terms of a sum over all partial permutations of the A-indices.
- (iii) The Derangement MMT. We replace the β -extended permanent by what we refer to as a β -extended deranged partial permanent defined in terms of a sum over the derangements of the A-indices.

We begin in Section 2 with a review of the β -extended MMT [FZ]. We provide a graph theoretic proof based on an enumeration of appropriate weights of non-isomorphic permutation graphs labelled by multisets of the indexing set for A. In particular, the connected subgraphs are cycles corresponding to permutation cycles. Section 3 describes our first generalization, the Submatrix MMT (Theorem 3.1), where the set of permutation graphs is modified to account for multisets formed from the indices of an A submatrix. In Section 4 we introduce the (β, θ, ϕ) -extended partial permanent of a matrix, a variation on the β -extended permanent involving a sum over the partial permutations of the matrix indices. The corresponding Partial Permutation MMT (Theorem 4.1) is proved by a consideration of partial permutation graphs whose connected subgraphs are cycles and open necklaces. Section 5 combines both of the previous generalizations into one general result in Theorem 5.1. Finally, in Section 6 we introduce another variation, the β -extended deranged permanent of a matrix, where we sum over the derangements (fixed point free permutations) of the matrix indices. We conclude with a Derangement MMT (Theorem 6.1) and a corresponding Submatrix Derangement MMT (Theorem 6.2) which are proved by applying the graph theory description of Sections 2 and 3 respectively, but where no 1-cycle graphs occur.

2 The β -Extended MacMahon Master Theorem

Let $A = (A_{ij})$ be an $n \times n$ matrix indexed by $i, j \in \{1, ..., n\}$. The β -extended Permanent of A is defined by [FZ], [KP]

$$\operatorname{perm}_{\beta} A = \sum_{\pi \in \Sigma_n} \beta^{C(\pi)} \prod_{i=1}^n A_{i\pi(i)}, \tag{1}$$

where $C(\pi)$ is the number of cycles in $\pi \in \Sigma_n$, the symmetric group. The permanent and determinant are the special cases:

$$\operatorname{perm} A = \operatorname{perm}_{+1} A, \qquad \det(-A) = \operatorname{perm}_{-1} A. \tag{2}$$

Let $\mathbf{r} = (r_1, \dots, r_n)$ denote an *n*-tuple of non-negative integers. Define

$$\mathbf{r}! = r_1! \dots r_n!,\tag{3}$$

and let

$$n^{\mathbf{r}} = \{1^{r_1}2^{r_2}\dots n^{r_n}\} = \{1_1,\dots,1_{r_1},\dots,n_1,\dots,n_{r_n}\},\tag{4}$$

denote the multiset of size $N = \sum_{i=1}^{n} r_i$ formed from the original index set $\{1,\ldots,n\}$ where the index i is repeated r_i times. We sometimes notate a repeated index by i_a for label $a=1,\ldots,r_i$. For an $n\times n$ matrix A, we let $A(n^{\mathbf{r}},n^{\mathbf{r}})$ denote the $N\times N$ matrix indexed by the elements of $n^{\mathbf{r}}$ and define $A(n^{\mathbf{r}},n^{\mathbf{r}})=1$ for $\mathbf{r}=(0,0,\ldots,0)$.

We now describe a generalization, due to Foata and Zeilberger [FZ], of the MacMahon Master Theorem (MMT) of classical combinatorics [MM]. We give a detailed proof based on a graph theory method which is extensively employed throughout this paper. This proof is very similar to that of Theorem 5 of [MT1] where the MMT was essentially rediscovered.

Theorem 2.1 (The β -Extended MMT)

$$\sum_{r_i \ge 0} \frac{1}{\mathbf{r}!} \operatorname{perm}_{\beta} A(n^{\mathbf{r}}, n^{\mathbf{r}}) = \frac{1}{\det(I - A)^{\beta}}.$$
 (5)

Remark 2.2 For $\beta = 1$, Theorem 2.1 reduces to the MMT. For $\beta = -1$ we use (2) to find that only proper subsets of $\{1, \ldots, n\}$ contribute resulting in the determinant identity for B = -A e.g. [TZ1]

$$\sum_{r_i \in \{0,1\}} \det B(n^{\mathbf{r}}, n^{\mathbf{r}}) = \det(I + B).$$

Proof of Theorem 2.1. Let $\Sigma(n^{\mathbf{r}})$ denote the symmetric group of the multiset $n^{\mathbf{r}}$. For $\pi \in \Sigma(n^{\mathbf{r}})$ we define a permutation graph γ_{π} with N vertices labelled by $i \in \{1, \ldots, n\}$, and with directed edges

$$e_{ij} = i \bullet \longrightarrow \bullet j$$
,

provided $j = \pi(i)$. The connected subgraphs of $\gamma_{\pi} \in \Gamma$ are cycles arising from the cycles of π . For example, for n = 4 with $\mathbf{r} = (3, 2, 0, 1)$ and permutation $\pi = (1_1 2_1 1_2 2_2)(1_3 4_1)$ the corresponding graph has two cycles as shown in Fig. 1

$$\begin{array}{c|c}
1 & 2 \\
2 & 1 & 4
\end{array}$$

Fig. 1 γ_{π} for $\pi = (1_1 2_1 1_2 2_2)(1_3 4_1)$.

Define a weight for each edge of γ_{π} by

$$w(e_{ij}) = A_{ij},$$

and a weight for γ_{π} by

$$w(\gamma_{\pi}) = \beta^{C(\pi)} \prod_{e_{ij} \in \gamma_{\pi}} w(e_{ij}). \tag{6}$$

where $C(\pi)$ is the number of cycles in π . Note that the weight is multiplicative with respect to the cycle decomposition of π . (6) also implies

$$\operatorname{perm}_{\beta} A(n^{\mathbf{r}}, n^{\mathbf{r}}) = \sum_{\pi \in \Sigma(n^{\mathbf{r}})} w(\gamma_{\pi}). \tag{7}$$

Let $\Lambda(\mathbf{r}) = \Sigma_{r_1} \times \ldots \times \Sigma_{r_n} \subseteq \Sigma(n^{\mathbf{r}})$ denote the label group of order $|\Lambda(\mathbf{r})| = \mathbf{r}!$ which permutes the identical elements of $n^{\mathbf{r}}$. $\Lambda(\mathbf{r})$ generates

isomorphic graphs with $\gamma_{\pi} \sim \gamma_{\lambda\pi\lambda^{-1}}$ for $\lambda \in \Lambda(\mathbf{r})$ and the automorphism group of γ_{π} is the π stabilizer $\operatorname{Aut}(\gamma_{\pi}) = \{\lambda \in \Lambda(\mathbf{r}) | \lambda\pi = \pi\lambda\} \subseteq \Lambda(\mathbf{r})$. Using the Orbit-Stabilizer theorem it follows that the number of isomorphic graphs generated by the action of $\Lambda(\mathbf{r})$ on γ_{π} is given by

$$|\Lambda(\mathbf{r})\gamma_{\pi}| = \frac{|\Lambda(\mathbf{r})|}{|\operatorname{Aut}(\gamma_{\pi})|}.$$
 (8)

(e.g. in Fig. 1, $\Lambda(\mathbf{r}) = \Sigma_2 \times \Sigma_3$ and $\operatorname{Aut}(\gamma_{\pi}) = \Sigma_2$ so that there are 6 permutations in $\Sigma(n^{\mathbf{r}})$ with graph γ_{π}). Combining (7) and (8) we find that

$$\sum_{\mathbf{r}} \frac{1}{\mathbf{r}!} \operatorname{perm}_{\beta} A(n^{\mathbf{r}}, n^{\mathbf{r}}) = \sum_{\gamma \in \Gamma} \frac{w(\gamma)}{|\operatorname{Aut}(\gamma)|}, \tag{9}$$

where Γ denotes the set of non-isomorphic graphs.

Consider the decomposition of a graph γ into cycle graphs

$$\gamma = \gamma_{\sigma_1}^{m_1} \dots \gamma_{\sigma_K}^{m_K},$$

where $\{\gamma_{\sigma_i}\}$ are non-isomorphic and γ_{σ_i} occurs m_i times. The automorphism group is

$$\operatorname{Aut}(\gamma) = \prod_{i=1}^{M} \operatorname{Aut}(\gamma_{\sigma_i}^{m_i}),$$

where $\operatorname{Aut}(\gamma_{\sigma}^{m}) = \Sigma_{m} \rtimes \operatorname{Aut}(\gamma_{\sigma})^{m}$ of order $m! |\operatorname{Aut}(\gamma_{\sigma})|^{m}$. Furthermore, since the weight is multiplicative, $w(\gamma) = \prod_{i=1}^{M} w(\gamma_{\sigma_{i}})^{m_{i}}$. Thus we find

$$\sum_{\gamma \in \Gamma} \frac{w(\gamma)}{|\operatorname{Aut}(\gamma)|} = \prod_{\gamma_{\sigma} \in \Gamma_{\sigma}} \sum_{m \geq 0} \frac{1}{m!} \left(\frac{w(\gamma_{\sigma})}{|\operatorname{Aut}(\gamma_{\sigma})|} \right)^{m}$$

$$= \exp \left(\sum_{\gamma_{\sigma} \in \Gamma_{\sigma}} \frac{w(\gamma_{\sigma})}{|\operatorname{Aut}(\gamma_{\sigma})|} \right), \tag{10}$$

where Γ_{σ} denotes the set of non-isomorphic cycle graphs. For a cycle σ of order $|\sigma| = t$ we have $\operatorname{Aut}(\gamma_{\sigma}) = \langle \sigma^s \rangle$ for some s|t with $|\operatorname{Aut}(\gamma_{\sigma})| = \frac{t}{s}$. Using the trace identity

$$\sum_{\gamma_{\sigma}, |\sigma| = t} s \ w(\gamma_{\sigma}) = \beta \operatorname{Tr}(A^{t}),$$

we find

$$\sum_{\gamma_{\sigma} \in \Gamma_{\sigma}} \frac{w(\gamma_{\sigma})}{|\operatorname{Aut}(\gamma_{\sigma})|} = \beta \sum_{t \geq 1} \frac{1}{t} \operatorname{Tr}(A^{t})$$
$$= -\beta \operatorname{Tr} \log(I - A)$$
$$= -\beta \log \det(I - A).$$

Thus

$$\sum_{\mathbf{r}} \frac{1}{\mathbf{r}!} \operatorname{perm}_{\beta} A(n^{\mathbf{r}}, n^{\mathbf{r}}) = \det(I - A)^{-\beta}. \qquad \Box$$

Let $w_1(\gamma)$ denote the weight for γ with $\beta = 1$ in (6). Define a cycle to be primitive (or rotationless) if $|\operatorname{Aut}(\gamma_{\sigma})| = 1$. For a general cycle σ with $|\operatorname{Aut}(\gamma_{\sigma})| = k$ we have $\gamma_{\sigma} = \gamma_{\rho}^{k}$ for a primitive cycle ρ . Let Γ_{ρ} denote the set of all primitive cycles. Then

$$\sum_{\gamma_{\sigma} \in \Gamma_{\sigma}} \frac{w_{1}(\gamma_{\sigma})}{|\operatorname{Aut}(\gamma_{\sigma})|} = \sum_{\gamma_{\rho} \in \Gamma_{\rho}} \sum_{k \geq 1} \frac{1}{k} w_{1}(\gamma_{\rho})^{k}$$
$$= -\sum_{\gamma_{\rho} \in \Gamma_{\rho}} \log \det(1 - w_{1}(\gamma_{\rho})).$$

Combining this with (10) implies [MT1]

Proposition 2.3

$$\det(I - A) = \prod_{\gamma_{\rho} \in \Gamma_{\rho}} (1 - w_1(\gamma_{\rho})).$$

3 The Submatrix MMT

Our first generalization of Theorem 2.1 concerns submatrices. Consider an $(n'+n)\times(n'+n)$ matrix with block structure

$$\left[\begin{array}{cc} B & U \\ V & A \end{array}\right],\tag{11}$$

where $A = (A_{ij})$ is an $n \times n$ matrix indexed by $i, j, B = (B_{i'j'})$ is an $n' \times n'$ matrix indexed by $i', j', U = (U_{i'j})$ is an $n' \times n$ matrix and $V = (V_{ij'})$ is an $n \times n'$ matrix. For a multiset $n^{\mathbf{r}}$ of size N define the $(n' + N) \times (n' + N)$ matrix

$$\begin{bmatrix} B & U(n^{\mathbf{r}}) \\ V(n^{\mathbf{r}}) & A(n^{\mathbf{r}}, n^{\mathbf{r}}) \end{bmatrix}, \tag{12}$$

where, as before, $A(n^{\mathbf{r}}, n^{\mathbf{r}})$ denotes the $N \times N$ matrix indexed by $n^{\mathbf{r}}$, $U(n^{\mathbf{r}})$ is an $n' \times N$ matrix and $V(n^{\mathbf{r}})$ is an $N \times n'$ matrix. We then find

Theorem 3.1

$$\sum_{\mathbf{r}} \frac{1}{\mathbf{r}!} \operatorname{perm}_{\beta} \begin{bmatrix} B & U(n^{\mathbf{r}}) \\ V(n^{\mathbf{r}}) & A(n^{\mathbf{r}}, n^{\mathbf{r}}) \end{bmatrix} = \frac{\operatorname{perm}_{\beta} \widetilde{B}}{\det(I - A)^{\beta}}, \quad (13)$$

for $n' \times n'$ matrix

$$\widetilde{B} = B + U(I - A)^{-1}V,$$

where $(I - A)^{-1} = \sum_{k>0} A^k$.

This result is related to Theorem 10 of [MT1] when $\beta = 1$ and Theorem 2 of [TZ1] for $\beta = -1$.

Proof. Let $\mathbf{n} = \{1, \ldots, n\}$ and $\mathbf{n}' = \{1', \ldots, n'\}$ and let $\mathbf{n}' \cup n^{\mathbf{r}}$ denote the multiset indexing the block matrix (12). Define a permutation graph γ_{π} with weight $w(\gamma_{\pi})$ for each $\pi \in \Sigma(\mathbf{n}' \cup n^{\mathbf{r}})$ as follows. Each vertex is labelled by an element of \mathbf{n} or \mathbf{n}' which we refer to as \mathbf{n} -vertex or \mathbf{n}' -vertex respectively. For $l = \pi(k)$ with $k, l \in \mathbf{n}' \cup n^{\mathbf{r}}$ we define an edge $e_{kl} = k \bullet \longrightarrow \bullet l$ with weight

$$w(e_{kl}) = \begin{bmatrix} B & U(n^{\mathbf{r}}) \\ V(n^{\mathbf{r}}) & A(n^{\mathbf{r}}, n^{\mathbf{r}}) \end{bmatrix}_{kl}.$$

Define a weight for γ_{π} by

$$w(\gamma_{\pi}) = \beta^{C(\pi)} \prod_{e_{kl} \in \gamma_{\pi}} w(e_{kl}),$$

where $C(\pi)$ is the number of cycles in π . As before, we find

$$\sum_{\mathbf{r}} \frac{1}{\mathbf{r}!} \operatorname{perm}_{\beta} \begin{bmatrix} B & U(\mathbf{k}) \\ V(\mathbf{k}) & A(\mathbf{k}, \mathbf{k}) \end{bmatrix} = \sum_{\gamma \in \widehat{\Gamma}} \frac{w(\gamma)}{|\operatorname{Aut}(\gamma)|},$$

where $\widehat{\Gamma}$ denotes the set of non-isomorphic graphs. Each $\gamma \in \widehat{\Gamma}$ has a decomposition into cycles γ_{σ_a} which contain **n**-vertices only and cycles $\gamma_{\sigma'_b}$ which contain at least one **n**'-vertex:

$$\gamma = \gamma_{\sigma_1}^{m_1} \dots \gamma_{\sigma_K}^{m_K} \gamma_{\sigma_1'} \dots \gamma_{\sigma_L'},$$

with weight

$$w(\gamma) = \prod_{a} w(\gamma_{\sigma_a})^{m_a} \prod_{b} w(\gamma_{\sigma'_b}).$$

The set of non-isomorphic γ_{σ_a} cycle graphs labelled by **n** is equivalent to Γ_{σ} introduced in the proof of Theorem 2.1. Since each **n**'-vertex occurs exactly once in γ , each $\gamma_{\sigma'_b}$ cycle occurs at most once and has trivial automorphism group. Hence

$$|\operatorname{Aut}(\gamma)| = \prod_{a} |\operatorname{Aut}(\gamma_{\sigma_a})|^{m_a} m_a!,$$

as before. Thus the sum over weights of all graphs decomposes into the product

$$\sum_{\gamma \in \widehat{\Gamma}} \frac{w(\gamma)}{|\operatorname{Aut}(\gamma)|} = \sum_{\gamma_{\sigma'}} w(\gamma_{\sigma'}) \prod_{\gamma_{\sigma} \in \Gamma_{\sigma}} \sum_{m \geq 0} \frac{w(\gamma_{\sigma})^m}{|\operatorname{Aut}(\gamma_{\sigma})|^m m!}$$

$$= \frac{\sum_{\gamma_{\sigma'}} w(\gamma_{\sigma'})}{\det(I - A)^{\beta}},$$

using Theorem 2.1 and where $\gamma_{\sigma'}$ ranges over non-isomorphic cycles in $\widehat{\Gamma}$ containing at least one \mathbf{n}' -vertex.

It remains to compute $\sum_{\gamma_{\sigma'}} w(\gamma_{\sigma'})$. Let $\sigma' \in \Sigma_{n'}$ denote the permutation cycle corresponding to the cyclic sequence of \mathbf{n}' -vertices in a $\gamma_{\sigma'}$ -cycle (for arbitrary intermediate \mathbf{n} -vertices). The total edge weight coming from all subgraphs, illustrated in Fig. 2, joining two \mathbf{n}' -vertices, i' and j', summed over all intermediate \mathbf{n} -vertices is

$$B_{i'j'} + (UV)_{i'j'} + (UAV)_{i'j'} + (UA^{2}V)_{i'j'} + \dots$$

$$= (B + U(I - A)^{-1}V)_{i'j'} = \widetilde{B}_{i'j'}.$$

$$i'$$
 j' , i' k j' , ...

Fig. 2

Thus the total weight of all $\gamma_{\sigma'}$ cycles for a given \mathbf{n}' -vertex cycle $\sigma' = (i'_1 \dots i'_p)$ is $\beta \prod_l \widetilde{B}_{i'_l \sigma'(i'_l)}$. Altogether, it follows that

$$\sum_{\gamma_{\sigma'}} w(\gamma_{\sigma'}) = \sum_{\pi' \in \Sigma_{n'}} \beta^{C(\pi')} \prod_{i'} \widetilde{B}_{i'\pi'(i')}$$
$$= \operatorname{perm}_{\beta} \widetilde{B}. \quad \Box$$

Lemma 3.2 For $\beta = -1$ Theorem 3.1 implies

$$\sum_{r_i \in \{0,1\}} \det \left[\begin{array}{cc} B & U(n^{\mathbf{r}}) \\ V(n^{\mathbf{r}}) & A(n^{\mathbf{r}}, n^{\mathbf{r}}) \end{array} \right] = \det \left[\begin{array}{cc} B & -U \\ -V & I+A \end{array} \right].$$

Proof. For $\beta = -1$ the right hand side of (13) gives

$$\operatorname{perm}_{-1} \widetilde{B} \det(I - A) = (-1)^{n'} \det(B + U(I - A)^{-1}V) \det(I - A)$$
$$= \det \begin{bmatrix} -B & U \\ V & I - A \end{bmatrix},$$

by means of the matrix identity

$$\left[\begin{array}{cc} -B & U \\ V & I-A \end{array} \right] = \left[\begin{array}{cc} -I' & U(I-A)^{-1} \\ 0 & I \end{array} \right] \left[\begin{array}{cc} B+U(I-A)^{-1}V & 0 \\ V & I \end{array} \right] \left[\begin{array}{cc} I' & 0 \\ 0 & I-A \end{array} \right],$$

where I and I' are respectively $n \times n$ and $n' \times n'$ identity matrices. The result follows on replacing A, B, U, V by -A, -B, -U, -V. \square

4 The Partial Permutation MMT

The next generalization of Theorem 2.1 is concerned with replacing permutations by partial permutations with a suitable generalization of the notions of permanent and β -extended permanent. Let Ψ denote the set of partial permutations of the set $\{1,\ldots,n\}$ i.e. injective partial mappings from $\{1,\ldots,n\}$ to itself. For $\psi \in \Psi$ we let $\operatorname{dom} \psi$ and $\operatorname{im} \psi$ denote the domain and image respectively and let π_{ψ} denote the (possibly empty) permutation of $\operatorname{dom} \psi \cap \operatorname{im} \psi$ determined by ψ .

We introduce the Partial Permanent of an $n \times n$ matrix $A = (A_{ij})$ indexed by $i, j \in \{1, ..., n\}$ as follows

$$pperm A = \sum_{\psi \in \Psi} \prod_{i \in \text{dom } \psi} A_{i\psi(i)}, \tag{14}$$

with unit contribution for the empty map. Let $\theta = (\theta_i)$, $\phi = (\phi_i)$ be *n*-vectors and define the (β, θ, ϕ) -extended Partial Permanent by

$$\operatorname{pperm}_{\beta\theta\phi} A = \sum_{\psi \in \Psi} \beta^{C(\pi_{\psi})} \prod_{i \in \operatorname{dom} \psi} A_{i\psi(i)} \prod_{j \notin \operatorname{im} \psi} \theta_j \prod_{k \notin \operatorname{dom} \psi} \phi_k, \tag{15}$$

where $C(\pi_{\psi})$ is the number of cycles in π_{ψ} e.g.

$$\operatorname{pperm}_{\beta\theta\phi} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \theta_1\phi_1\theta_2\phi_2 + \beta(A_{11}\theta_2\phi_2 + A_{22}\theta_1\phi_1) + A_{12}\theta_1\phi_2 + A_{21}\theta_2\phi_1 + \beta^2A_{11}A_{22} + \beta A_{12}A_{21}.$$

A recent application of an extended partial permanent appears in [HT].

Let $A(n^{\mathbf{r}}, n^{\mathbf{r}})$ denote the $N \times N$ matrix indexed by a multiset $n^{\mathbf{r}}$ as before. We also let $\operatorname{pperm}_{\beta\theta\phi}A(n^{\mathbf{r}}, n^{\mathbf{r}})$ denote the corresponding partial permanent with N-vectors $(\theta_{1_1}, \ldots, \theta_{n_{r_n}})$ and $(\phi_{1_1}, \ldots, \phi_{n_{r_n}})$. We then find

Theorem 4.1

$$\sum_{\mathbf{r}} \frac{1}{\mathbf{r}!} \operatorname{pperm}_{\beta\theta\phi} A(n^{\mathbf{r}}, n^{\mathbf{r}}) = \frac{e^{\theta(I-A)^{-1}\phi^{T}}}{\det(I-A)^{\beta}}, \tag{16}$$

where ϕ^T denotes the transpose of the row vector ϕ .

This result is related to Theorem 11 of [MT1] for $\beta = 1$.

Proof. Let $\Psi(n^{\mathbf{r}})$ denote the partial permutations of $n^{\mathbf{r}}$. Define a partial permutation graph γ_{ψ} labelled by $\{1, \ldots, n\}$ for each $\psi \in \Psi(\mathbf{k})$ with edges

$$e_{ij} = i \bullet \longrightarrow \bullet j$$
,

for $j = \psi(i)$ with $i \in \text{dom } \psi$ and $j \in \text{im } \psi$. Let v_i denote the vertex of γ_{ψ} with label i. If $i \notin \text{dom } \psi$ then either $\deg v_i = 0$ or $\deg v_i = \text{indeg } v_k = 1$ whereas if $i \notin \text{im } \psi$ then either $\deg v_i = 0$ or $\deg v_i = \text{outdeg } v_i = 1$. In all other cases

 $\deg v_i=2$ with indeg $v_i=0$ utdeg $v_i=1$. The connected subgraphs in this case consist of cycles and open necklaces i.e. graphs with two end points of degree one. We regard a graph consisting of a single degree zero vertex as a degenerate necklace. For example, for n=4, $\mathbf{r}=(3,2,0,1)$ and partial permutation $\psi=\begin{pmatrix} 1_1 & 1_2 & 1_3 & 2_1 & 2_2 & 4_1 \\ 2_1 & 4_1 & 1_2 & 1_3 \end{pmatrix}$ then γ_ψ is shown in Fig. 3. In this case dom $\psi=\{1_1,1_3,2_1,4_1\}$ and im $\psi=\{1_2,1_3,2_1,4_1\}$ and $\pi_\psi=(1_34_1)$.

Define an edge weight as before by $w(e_{ij}) = A_{ij}$ and introduce a vertex weight

$$w(v_k) = \begin{cases} 1, & \deg v_k = 2, \\ \theta_k, & \deg v_k = \text{outdeg } v_k = 1, \\ \phi_k, & \deg v_k = \text{indeg } v_k = 1, \\ \theta_k \phi_k, & \deg v_k = 0. \end{cases}$$

The weight of a graph γ_{ψ} is defined by

$$w(\gamma_{\psi}) = \beta^{C(\pi_{\psi})} \prod_{e_{ij}} w(e_{ij}) \prod_{v_k} w(v_k),$$

where $C(\pi_{\psi})$ is the number of cycles in π_{ψ} . The weight is multiplicative with respect to the cycle and necklace decomposition. We find again that

$$\sum_{\mathbf{r}} \frac{1}{\mathbf{r}!} \operatorname{pperm}_{\beta\theta\phi} A(n^{\mathbf{r}}, n^{\mathbf{r}}) = \sum_{\gamma \in \widetilde{\Gamma}} \frac{w(\gamma)}{|\operatorname{Aut}(\gamma)|},$$

where $\widetilde{\Gamma}$ denotes the set of non-isomorphic graphs. Each $\gamma \in \widetilde{\Gamma}$ has a decomposition into connected cycle graphs γ_{σ_a} and open necklaces ν_b :

$$\gamma = \nu_1^{l_1} \dots \nu_L^{l_1} \gamma_{\sigma_1}^{m_1} \dots \gamma_{\sigma_K}^{m_K},$$

with weight

$$w(\gamma) = \prod_b w(\nu_b)^{l_b} \cdot \prod_a w(\gamma_{\sigma_a})^{m_a}.$$

Each necklace has trivial automorphism group but can have multiple occurrences. Hence we find that

$$|\operatorname{Aut}(\gamma)| = \prod_{b} l_b! \cdot \prod_{a} |\operatorname{Aut}(\gamma_{\sigma_a})|^{m_a} m_a!.$$

Thus the sum over weights of all graphs decomposes into the product

$$\sum_{\gamma \in \widetilde{\Gamma}} \frac{w(\gamma)}{|\operatorname{Aut}(\gamma)|} = \prod_{\nu \in \Gamma_{\nu}} \sum_{l \ge 0} \frac{w(\nu)^{l}}{l!} \cdot \prod_{\gamma_{\sigma} \in \Gamma_{\sigma}} \sum_{m \ge 0} \frac{w(\gamma_{\sigma})^{m}}{|\operatorname{Aut}(\gamma_{\sigma})|^{m} m!}$$
$$= \exp\left(\sum_{\nu \in \Gamma_{\nu}} w(\nu)\right) \frac{1}{\det(I - A)^{\beta}},$$

where Γ_{ν} denotes the set of non-isomorphic open necklaces and using Theorem 2.1 again. Finally, the sum over the weights of connected necklaces, such as depicted in Fig. 4, is

$$\sum_{\nu \in \Gamma_{\nu}} w(\nu) = \theta \phi^{T} + \theta A \phi^{T} + \theta A^{2} \phi^{T} + \dots$$
$$= \theta (I - A)^{-1} \phi^{T}. \quad \Box$$

$$i$$
, i j , k , ...

Fig. 4

Example. Consider n = 1 with A = z and $\theta_1 = \phi_1 = \sqrt{\alpha z}$. Then we find

$$pperm_{\beta\theta\phi}A(1^r, 1^r) = p_r(\alpha, \beta)z^r,$$

where $p_r(\alpha, \beta) = \sum_{s,t} p_{rst} \alpha^s \beta^t$ is the generating polynomial for p_{rst} the number of graphs with r identically labelled vertices, s open necklaces and t cycles. Theorem 4.1 provides the exponential generating function for $p_r(\alpha, \beta)$ [HT]

$$\sum_{r>0} \frac{p_r(\alpha,\beta)}{r!} z^r = \frac{\exp\left(\frac{\alpha z}{1-z}\right)}{(1-z)^{\beta}}.$$

5 The Submatrix Partial Permutation MMT

We can combine the two generalizations above into one theorem concerning partial permutations of submatrices of the $(n'+n) \times (n'+n)$ block matrix (11). Let $\theta' = (\theta'_{i'})$ and $\phi' = (\phi'_{i'})$ be n'-vectors and $\theta = (\theta_i)$ and $\phi = (\phi_i)$ be n-vectors. For a multiset $n^{\mathbf{r}}$ of size N and block matrix (12) labelled by $\mathbf{n}' = \{1', \ldots, n'\}$ and $n^{\mathbf{r}}$, we let $\operatorname{pperm}_{\beta\theta\phi} \begin{bmatrix} B & U(n^{\mathbf{r}}) \\ V(n^{\mathbf{r}}) & A(n^{\mathbf{r}}, n^{\mathbf{r}}) \end{bmatrix}$ denote the (β, θ, ϕ) -extended partial permanent with (n'+N)-vectors $(\theta'_{1'}, \ldots, \theta'_{n'}, \theta_{1_1}, \ldots, \theta_{n_{r_n}})$ and $(\phi'_{1'}, \ldots, \phi'_{n'}, \phi_{1_1}, \ldots, \phi_{n_{r_n}})$ respectively. We then find

Theorem 5.1

$$\sum_{\mathbf{r}} \frac{1}{\mathbf{r}!} \operatorname{pperm}_{\beta\theta\phi} \begin{bmatrix} B & U(n^{\mathbf{r}}) \\ V(n^{\mathbf{r}}) & A(n^{\mathbf{r}}, n^{\mathbf{r}}) \end{bmatrix} = \frac{e^{\theta(I-A)^{-1}\phi^{T}} \cdot \operatorname{pperm}_{\beta\widetilde{\theta}\widetilde{\phi}}\widetilde{B}}{\det(I-A)^{\beta}}, (17)$$

for

$$\begin{split} \widetilde{B} &= B + U(I-A)^{-1}V, \\ \widetilde{\theta} &= \theta' + \theta(I-A)^{-1}V, \\ \widetilde{\phi}^T &= \phi'^T + U(I-A)^{-1}\phi^T. \end{split}$$

This result is related to Theorem 13 of [MT1] for $\beta = 1$.

Proof. We sketch the proof since it runs along very similar lines to the preceding ones. Define a partial permutation graph γ_{ψ} for each partial permutation ψ of $\mathbf{n}' \cup n^{\mathbf{r}}$. In this case, the connected subgraphs consist of cycle graphs Γ_{σ} and open necklaces Γ_{ν} containing only **n**-vertices, and cycles and open necklaces containing at least one \mathbf{n}' -vertex. Define a graph weight $w(\gamma_{\psi})$ as a product of edge weights, vertex weights and cycle factors as before. This results in

$$\sum_{\mathbf{r}} \frac{1}{\mathbf{r}!} \operatorname{pperm}_{\beta\theta\phi} \begin{bmatrix} B & U(n^{\mathbf{r}}) \\ V(n^{\mathbf{r}}) & A(n^{\mathbf{r}}, n^{\mathbf{r}}) \end{bmatrix} = \frac{e^{\theta(I-A)^{-1}\phi^{T}}}{\det(I-A)^{\beta}} \sum_{\gamma' \in \Gamma'} w(\gamma'),$$

where the sum is over all graphs Γ' containing at least one \mathbf{n}' -vertex. The remaining terms arise as before.

Each $\gamma' \in \Gamma'$ canonically determines a partial permutation $\psi' \in \Psi(\mathbf{n}')$ described by the corresponding ordered sequences of \mathbf{n}' -vertices (for any intermediate \mathbf{n} -vertices). As before, the total edge weight coming from all

subgraphs joining two \mathbf{n}' -vertices i' and j' with intermediate \mathbf{n} -vertices is $\widetilde{B}_{i'j'}$. The total weight arising from the subgraphs of all necklaces joining \mathbf{n} -vertices to an \mathbf{n}' -vertex i' with intermediate \mathbf{n} -vertices as depicted in Fig. 5 is

$$\theta'_{i'} + (\theta V)_{i'} + (\theta A V)_{i'} + \dots$$

= $(\theta' + \theta (I - A)^{-1} V)_{i'} = \widetilde{\theta}_{i'}.$

$$i'$$
, j i' , j k i' , ...

Fig. 5

Likewise, the total weight arising from all subgraphs joining an \mathbf{n}' -vertex j' to \mathbf{n} -vertices with intermediate \mathbf{n} -vertices is $\widetilde{\phi}_{j'}$. Combining these results we find that

$$\sum_{\gamma' \in \Gamma'} w(\gamma') = \operatorname{pperm}_{\beta \, \widetilde{\theta} \, \widetilde{\phi}} \widetilde{B}. \quad \Box$$

6 The Derangement MMT

Let $\Delta_n \subset \Sigma_n$ denote the derangements of the set $\{1, \ldots, n\}$ i.e. each $\pi \in \Delta_n$ contains no cycles of length 1. We introduce the β -extended Deranged Permanent of an $n \times n$ matrix A by

$$\operatorname{dperm}_{\beta} A = \sum_{\pi \in \Delta_n} \beta^{C(\pi)} \prod_i A_{i\pi(i)}. \tag{18}$$

Using the same multiset notation as before we find

Theorem 6.1

$$\sum_{\mathbf{r}} \frac{1}{\mathbf{r}!} \operatorname{dperm}_{\beta} A(n^{\mathbf{r}}, n^{\mathbf{r}}) = \frac{e^{-\beta \operatorname{Tr} A}}{\det(I - A)^{\beta}}.$$
 (19)

Proof. Following the proof of Theorem 2.1 we find

$$\sum_{\mathbf{r}} \frac{1}{\mathbf{r}!} \mathrm{dperm}_{\beta} A(n^{\mathbf{r}}, n^{\mathbf{r}}) = \exp \left(\sum_{\gamma_{\sigma} \in \Gamma_{\sigma}, |\sigma| \ge 2} \frac{w(\gamma_{\sigma})}{|\mathrm{Aut}(\gamma_{\sigma})|} \right),$$

where cycles of length one are excluded. Using

$$\sum_{\gamma_{\sigma} \in \Gamma_{\sigma}, |\sigma| \ge 2} \frac{w(\gamma_{\sigma})}{|\operatorname{Aut}(\gamma_{\sigma})|} = \beta \sum_{s \ge 1} \frac{1}{s} \operatorname{Tr}(A^{s}) - \beta \operatorname{Tr} A$$
$$= -\beta \operatorname{Tr} \log(I - A) - \beta \operatorname{Tr} A,$$

the result follows. \square

Example. Consider n=1 with A=z. Then for multisets $\{1^r\}$ we find

$$\mathrm{dperm}_{\beta} A(1^r, 1^r) = d_r(\beta) z^r,$$

where $d_r(\beta) = \sum_s d_{rs}\beta^s$ is the generating polynomial for d_{rs} the number of derangements of r labels with s cycles. From Theorem 6.1 the exponential generating function for $d_r(\beta)$ is [HT]

$$\sum_{r>0} \frac{1}{r!} z^r d_r(\beta) = \left(\frac{e^{-z}}{1-z}\right)^{\beta}.$$

Finally, we can further generalize Theorem 6.1 to deranged permanents of submatrices as in Theorem 3.1. Using the notation of (11) and (12) we find using similar techniques that

Theorem 6.2

$$\sum_{\mathbf{r}} \frac{1}{\mathbf{r}!} \operatorname{dperm}_{\beta} \begin{bmatrix} B & U(n^{\mathbf{r}}) \\ V(n^{\mathbf{r}}) & A(n^{\mathbf{r}}, n^{\mathbf{r}}) \end{bmatrix} = \frac{e^{-\beta \operatorname{Tr} A} \cdot \operatorname{perm}_{\beta} \widehat{B}}{\det(I - A)^{\beta}}, \quad (20)$$

for $n' \times n'$ matrix

$$\widehat{B} = B - \operatorname{diag} B + U(I - A)^{-1}V,$$

where diag $B_{i'j'} = B_{i'i'}\delta_{i'j'}$. \square

References

- [FZ] Foata, D. and Zeilberger, D.: Laguerre polynomials, weighted derangements and positivity, SIAM J.Disc.Math. 1 (1988) 425–433.
- [HT] Hurley, D. and Tuite, M.P.: Virasoro correlation functions for vertex operator algebras, arXiv:1111.2170.
- [KP] Konvalinka, M. and Pak, I.: Non-commutative extensions of the MacMahon master theorem, Adv.Math. **216** (2007) 29-61.
- [MM] MacMahon, P.A.: Combinatory Analysis, Vols. 1 and 2, Cambridge University Press, (Cambridge 1915); reprinted by Chelsea (New York, 1955).
- [MT1] Mason, G. and Tuite, M.P.: Free bosonic vertex operator algebras on genus two Riemann surfaces I, Commun.Math.Phys. **300** (2010) 673–713.
- [MT2] Mason, G. and Tuite, M.P.: Free bosonic vertex operator algebras on genus two Riemann surfaces II, arXiv:1111.2264.
- [TZ1] Tuite, M.P. and Zuevsky, A.: Genus two partition and correlation functions for fermionic vertex operator superalgebras I, Commun.Math.Phys. 306 (2011) 419–447.
- [TZ2] Tuite, M.P. and Zuevsky, A.: Genus two partition and correlation functions for fermionic vertex operator superalgebras II, to appear.
- [TZ3] Tuite, M.P. and Zuevsky, A.: The bosonic vertex operator algebra on a genus g Riemann surface, to appear.
- [W] Wenchang, C: Determinant, permanent, and MacMahon's Master Theorem, Lin.Alg.andAppl. **255** (1997) 171-183.