PROGRAMOZÁS tantárgy

Gregorics Tibor
egyetemi docens
ELTE Informatikai Kar

Követelmények

	A,C,E szakirány	B szakirány
Előfeltétel	Prog. alapismeret	Prog. alapismeret Diszkrét matematika I.
Óraszám	2 ea + 2 táblás gy. + 2 labor gy. + 1 konz	2 ea + 2 táblás gy. + 1 konz
Számonkérés	A,C,E szakirány	B szakirány
Plusz-mínusz röpdolgozat	minden héten összege nem lehet negatív	minden héten összege nem lehet negatív
Zárthelyi	3 db + 1 javító 3. zh évfolyam szintű két utolsó zh <i>legalább elégséges</i>	3 db (duplán számít) + 1 javító 3. zh évfolyam szintű két utolsó zh legalább elégséges
Házi feladat	2 db, határidőre, de még a szorgalmi időszakban	3 db, határidőre, de még a szorgalmi időszakban,
Géptermi zárthelyi	2 db (+ 1 javító) 1. zh 5 fokozatú 2. évfolyam zh 3 fokozatú, legalább megfelelt	1 db (+ 1 javító) évfolyam zh három fokozatú, <i>legalább</i> <i>megfelelt</i>

Segédanyagok

Gregorics Tibor: Programozás – 1.kötet – Tervezés. ELTE Eötvös Kiadó, 2013.

Gregorics Tibor: Programozás – 2.kötet – Megvalósítás. ELTE Eötvös Kiadó, 2013.

http://people.inf.elte.hu/gt/prog

PROGRAMOZÁS

Programozási szabványok

Gregorics Tibor

http://people.inf.elte.hu/gt/prog

Egyszerű programozási feladat megoldásának fázisai

Feladat Elemzés Specifikáció **Tervezés** Algoritmus Megvalósítás Konkrét program **Tesztelés** Megoldó program

Néhány programozási szabvány

Specifikálás

- adat központú elő-, utófeltételes leírás
- állapot központú elő-, utófeltételes leírás
- "végrehajtható" leírás

Tervezés

- 。 algoritmikus gondolkodás
- analóg módon (programozási tétellel)
 - analóg algoritmikus gondolkodás ✓
 - visszavezetés
- formális program-szintézis (levezetés)

Megvalósítás

- ∘ hármas tagozódás ✓
- o top-down kódolás ✓
- ₀ beolvasás, kiírás kódolása ✓
- o adatellenőrzés beépítése ✓
- adattípusok kiválasztása
- 。 modulokra bontás
- o objektum orientált elemek:
 - class
 - öröklés
 - dinamikus kötés

Tesztelés

- ∘ fekete/fehér doboz ✓
- ∘ érvényes/ érvénytelen ✓
- határ esetek, adat-csoportok szerint ✓
- megvalósított művelet tulajdonságai
- o terheléses teszt
- programozási tételekre jellemző teszt

Dokumentálás

- ∘ Felhasználói és fejlesztői ✓
- o ..

Egy szabványokat sértő megoldás

Számoljuk ki két természetes szám szorzatát szorzás nélkül!

Adatokra felírt specifikáció:

Amikor egy rosszul megírt program jól működik

Túlcsordulás:

$$[-2^{31}-1]_{32} = [-2147483649]_{32} = [2147483647]_{32} = 2^{31}-1$$

Ha kezdetben x=a<0, akkor a sorozatos x:=x-1 hatására 2^{32} -|a| lépés múlva lesz x=0.

Mindeközben a z := z + y (y=b) is 2^{32} -|a|-szor hajtódik végre, így a z értéke többször is túlcsordulhat.

```
z = 0;
while(x!=0) {
   z = z + y;
   x = x - 1;
}
```

Az algoritmus a < 0 esetén a $(2^{32}-|a|) \cdot b$ értéket számolja ki, és tárolja el a z változóban 32 biten:

$$z = [(2^{32} - |a|) \cdot b]_{32} = [a \cdot b + b \cdot 2^{32}]_{32} = [a \cdot b]_{32}$$

Specifikáció másképp

$$x = x_0 \land y = y_0$$

$$x = x' \wedge y = y'$$

Előfeltétel (Ef) : $x = a \land y = b \land x \ge 0 \land y \ge 0$

 $Ut\acute{o}felt\acute{e}tel~(Uf):~z = a \cdot b$

x,y,z egész típusú változók

Kezdetben

x és y input változók kezdő értéke nem negatív

Végezetül a z output változó az x és y kezdő értékeinek szorzatát tartalmazza

 $A: \quad x: \mathbb{Z}, \quad y: \mathbb{Z}, \quad z: \mathbb{Z}$

Ef: $x = a \land y = b \land x \ge 0 \land y \ge 0$

Uf: $y = b \wedge z = a \cdot b$ $z = a \cdot y$ Uf:

 $A: \quad x: \mathbb{Z}, \ y: \mathbb{Z}$

Ef: $x = a \land y = b \land x \ge 0 \land y \ge 0$

Uf: $x = a \land y = a \cdot b$

Végrehajtható specifikáció:

 $A: \quad x: \mathbb{Z}, \ y: \mathbb{Z}, \ z: \mathbb{Z}$

Ef: $x = a \land y = b \land x \ge 0 \land y \ge 0$

Uf: $x = a \land y = b \land z = \sum_{i=1}^{x} \hat{y}$

input és output változó egyben

$$y + y + \dots + y$$

x-szer

Összegzés programozási tétele

Összegezzük az f : [m..n]→H függvénynek az m..n egész-intervallumon felvett értékeit!

A H halmazon legyen értelmezett a + : $H \times H \rightarrow H$ művelet, amely asszociatív és van baloldali nulla eleme ($0 \in H$).

 $A: m:\mathbb{Z}, n:\mathbb{Z}, s:H$

 $Ef: m=m_0 \land n=n_0$

 $Uf: Ef \wedge s = \sum_{i=m_{i}}^{n} f(i)$

$$s, i := 0, m$$

$$i \le n$$

$$s := s + f(i)$$

$$i := i + 1$$

$$\sum_{i=m}^{n} f(i) = 0 \text{ ha n} < m$$

$$s := 0$$

$$i = m .. n$$

$$s := s+f(i)$$

i: Z

Visszavezetés módszere

$$A: m: \mathbb{Z}, n: \mathbb{Z}, s: H$$

Ef:
$$m = m_0 \wedge n = n_0$$

Uf:
$$Ef \wedge s = \sum_{i=m}^{n} f(i)$$

$$A: x: \mathbb{Z}, y: \mathbb{Z}, z: \mathbb{Z}$$

Ef:
$$x = a \land y = b \land x \ge 0 \land y \ge 0$$

Uf:
$$x = a \land y = b \land z = \sum_{i=1}^{n} y$$

$$s = \sum_{i=m}^{n} f(i) \qquad z = \sum_{i=1}^{x} y$$

$$z:\mathbb{Z}$$

$$z = \sum_{i=1}^{x} y$$

De hiszen ez egy ÖSSZEGZÉS!!!

$$z := 0$$

$$i = 1 ... x$$

$$z := z + y$$

Megvalósítás

Szabványok, amire figyelni kell:

- hármas tagozódás, struktogram top-down kódolása
- o adatellenőrzés a specifikáció előfeltétele alapján
- o konkrét adattípusok kiválasztása C++-ban: natural →int (bool, char, int, double, string, vector<>)
- kódolási konvenciók C++-ban
 - programozási tételek (számlálós ciklus for utasítással, ++i,)
 - csak korlátozottan használjuk a do-while ciklust
 - globális változót ne használjunk
 - kerüljük a kódismétlődést (pl. alprogramok használatával)
- nem funkcionális követelmények:
 - barátságos
 - öndokumentáló (kiírás, komment)
 - bolond-biztos

Tesztelés

- □ Specifikáció alapján (fekete doboz)
 - Érvényes tesztesetek
 - Alkalmazott programozási tétel alapján
 - intervallum: ~hossza (0, 1, sok) ,~ eleje, ~vége
 - tétel specifikus: összegzés esetén a skálázhatóság
 - Értékhalmazok adat-csoportjai és határesetei
 - Speciális műveleti tulajdonságok
 - Érvénytelen tesztesetek
- □ Program (algoritmus+kód) alapján (fehér doboz)
 - Beolvasás tesztelése (bolond-biztos, öndokumentáló)
 - Kiírás tesztelése (öndokumentáló)
 - Minden utasítás, és minden egymás után végrehajtható utasítás-pár kipróbálása. (egyszerű programok esetén a korábbi esetek lefedik)

A példa fekete doboz tesztesetei 1.

- □ Összegzés tételéből adódó tesztesetek:
 - [1..x] elejének, végének vizsgálata (egyben) :

feltéve, hogy kezdetben z=0

$$x = 0$$
 $\longrightarrow z = 0$

$$x = 1$$
, $y = 5$ $\longrightarrow z = 5$

$$x = 2$$
, $y = 7$ $\longrightarrow z = 14$

hibaüzenet pontosítása

- [1..x] hosszának tesztje:
- Eredmény skálázása:

Az int-tel ábrázolható legnagyobb egész szám: $2^{31}-1=2147483647$

lásd előbbi tesztadatok

input:
$$1, 2^{31}-1$$

<u>→ z túlcsordul</u>

 $\Rightarrow \mathbf{z} = 2^{31} - 1$

kell ilyen hibaüzenet is

végtelen ciklus javítása

helyett

input:
$$2, 2^{31}-2$$

input:
$$1, 2^{31}-2$$

input:
$$2, 2^{30}$$

$$\rightarrow z = 2^{31} - 2$$

→ z túlcsordul

$$\rightarrow$$
 z = 2^{30}

A példa fekete doboz tesztesetei 2.

- □ Adattípusok értékeinek jellegzetes csoportjai (egész számoknál a nulla, negatívok és pozitívok), határ-elemei (természetes számoknál a nulla)
 - mindkettő input (x és y) nulla:

 $0 \cdot 0$

 \rightarrow z = 0

• csak az egyik input (x vagy y) nulla: 12 · 0, 0 · 12

 \rightarrow z = 0

• egyik input sem nulla:

12 · 7

 \rightarrow z = 84

□ A megvalósított műveletek tulajdonságai (szorzás):

• kommutatív:

 $12 \cdot 7 = 7 \cdot 12$

 \rightarrow z = 84

asszociatív:

 $(12 \cdot 7) \cdot 5 = 12 \cdot (7 \cdot 5)$

 \rightarrow z = 420

• null elem:

 $12 \cdot 0 = 0 \cdot 12$

 \rightarrow z = 0

• egység elem:

 $12 \cdot 1 = 1 \cdot 12$

 \rightarrow z = 12

□ Érvénytelen input:

futási idő eltér

• előfeltétel sérül: x<0 vagy y<0

→ hibás input

 $(x<0, y\ge 0 / x \ge 0, y<0 / x<0, y<0)$

• számábrázolási korlátok: $x \ge 2^{31}$ vagy $y \ge 2^{31}$

→ hibás input

 $(x<2^{31}, y \ge 2^{31} / x \ge 2^{31}, y<2^{31} / x<2^{31}, y<2^{31})$

A félév során használt minták, ökölszabályok (szabványok)

- □ Specifikációs minták
 - · A specifikáció formája, és a végrehajtható utófeltétel.
- □ Tervezési minták
 - Algoritmus tervezéshez programozási tételek, és azok felhasználása visszavezetéssel
 - Objektum-orientált tervezési minták
- □ Implementációs minták
 - Implementációs stratégiák (hármas tagozódás, kívülről befele)
 - Kódminták (beolvasás, programozási tételek kódjai), kódolási ajánlások (konvenciók) alkalmazása
- □ Tesztelési stratégiák
 - Általános szempontok (fekete-fehér, érvényes-érvénytelen)
 - Programozási tételek tesztesetei (intervallum, tétel sajátossága)
 - Adat-csoportok (határ esetek, műveletek tulajdonságai)
- □ Dokumentálási minták