MYSTERIES IN OUR LIVES

Diploma thesis

Autor: dingo_d Mentor: Professor Saul Croaker
The Department of Mysteries,
Level 9, Ministry of Magic, London, Whitehall, England, Great Britain

October 2015.

FOR YOUR EYES ONLY!

Table of contents

1. Uvod

2. Recent history

3. Conclusion

1.ABOUT DoM

A short hystory of Department of Mysteries

Introduction

- Founded in 1672 or before
- Carries out confidential research
- Essential mysteries like: love, space, thought, time, death
- Non-essential: the function of the rubber duck

- Founded around 1672 (its actual date of foundation is a mistery)
- 1830 Minister Ottaline Gambol established commitees for the study of Muggle brainpower
- 1835. 1841 Minister Radolphus Lestrange wanted to close it down but was ignored
 - 1890s Department of Mysteries conducted first time-travel experiments
- 1899 Time travel experiments are discontinued because Unspeakable Eloise Mintumble traveled back in time and interfered with the past
- Catastrophic results

2.RECENT HISTORY

Department of Mysteries after and during major wizarding wars

First Wizarding War

• 1970-1981 ...

- Ok, enough of mysteries
- You can put an equation if you wish

$$Q_{\xi}[g,\bar{g}] = \int_{\partial \Sigma} k_{\xi}[h,\bar{g}]$$

$$k_{\xi}[h,\bar{g}] = k_{\xi}^{[\nu\mu]}[h,\bar{g}](d^{n-2}x)_{\nu\mu}$$

$$(d^{n-p}x)_{\mu_1...\mu_p} := \frac{1}{n!(n-p)!} \epsilon_{\mu_1...\mu_n} dx^{\mu_p+1} \wedge ... \wedge dx^{\mu_n}$$

$$k_{\xi}^{[\nu\mu]}[h,\bar{g}] = -\frac{\sqrt{-\bar{g}}}{16\pi} \left[\bar{D}^{\nu}(h\xi^{\mu}) + \bar{D}_{\sigma}(h^{\mu\sigma}\xi^{\nu}) + \bar{D}^{\mu}(h^{\nu\sigma}\xi_{\sigma}) + \frac{3}{16\pi} \left[\bar{D}^{\nu}(h\xi^{\mu}) + \bar{D}_{\sigma}(h^{\mu\sigma}\xi^{\nu}) + \bar{D}^{\mu}(h^{\nu\sigma}\xi_{\sigma}) + \frac{3}{16\pi} \left[\bar{D}^{\nu}(h\xi^{\mu}) + \bar{D}_{\sigma}(h^{\mu\sigma}\xi^{\nu}) + \bar{D}^{\mu}(h^{\nu\sigma}\xi_{\sigma}) + \bar{D}^{\mu}(h^{\nu\sigma}\xi_{\sigma})$$

$$+\frac{3}{2}h\bar{D}^{\mu}\xi^{\nu}+\frac{3}{2}h^{\sigma\mu}\bar{D}^{\nu}\xi_{\sigma}+\frac{3}{2}h^{\nu\sigma}\bar{D}_{\sigma}\xi^{\mu}-(\mu\leftrightarrow\nu)]$$

3.CONCLUSION

Afterword

Conclusion

- You can use this as you wish
- If you want to improve it, I would be glad if you did that and suggest the edit
- Hope you find it useful as I did

Random Name Random name. First Bibliograpyh Item.

Bla., 123564:12, 2015.

THANK YOU FOR LISTENING