Univers	idad de Buenos Aires	Facultad de Ingeniería					
2º Cuatrimestre 2011	75.12 - Análisis Numérico I. Curso 008	Parcial. Primera Oportunidad.	Tema 1	Nota			
Padrón	Apellido y Nombres						

Ejercicio 1. Con los siguientes datos se han realizado un Ajuste por Cuadrados Mínimos e Interpolaciones por Newton, Lagrange Baricéntrico y Spline; siempre eligiendo los puntos desde XO en adelante, en orden de índice *i* creciente.

i	0	1	2	3	4	5	6		1	0	0	0	0		7	nd	nd	
Xi	?	3	?	?	5	5	5		nd	nd	nd	0	0	A (CM) =	nd	nd	nd	
Yi	4	?	?	?	10	5.t	e ^t	A (Spline) =	0	1	nd	1	0		nd	nd	nd	
									0	0	nd	nd	1		•			
W	0 (XO,	X1, X2) =	-0,5	У		PLB (X3) = 6	0	0	0	0	1		53	,8383	47	
								·						B (CM) =		nd		
PN	PN(X) = 2 + C1.(X-X1) + C2.(X-X0)(X-X1) + C3.(X-X0)(X-X1)(X-X3) + C4.(X.X0)(X-X1)(X-X2)(X-X3)								nd									

- a) Sin realizar cálculo alguno, determinar el ordenamiento de los puntos Xi de la tabla.
- b) Utilizando la información de la matriz de Spline, hallar los puntos X2, X3 y X0.
- c) A partir de la información del Polinomio de Newton, hallar Y1.
- d) Aprovechando los cálculos hechos para Lagrange Baricéntrico, hallar X1 e Y2.
- e) Aplicando un método de refinamiento, encontrar el valor de t en el intervalo [2,3] con el que se han obtenido los datos correspondientes al Ajuste por Cuadrados Mínimos. (O resolver la ENL: 5.t + e^t = 23.85)
- f) Indicar para cada ajuste o interpolación los puntos usados, el grado y la cantidad de polinomios resultantes.
- g) ¿Hasta qué valor sería posible aumentar el grado del Ajuste por Cuadrados Mínimos?

Ejercicio 2. Se tiene el sistema A.X = B y un vector inicial X0 para su resolución por el método de Gauss-Seidel:

$$A = \begin{matrix} 2 & 1 & 0 \\ 1 & 2 & u \\ 0 & u & 1 \end{matrix} \qquad B = \begin{matrix} 2 \\ 1 \\ v \end{matrix} \qquad X0 = \begin{matrix} 0 \\ 0 \\ u \end{matrix}$$

- a) ¿Qué condiciones sería posible imponer sobre u o v para asegurar la convergencia del método? ¿Podría asegurarse además la convergencia del método del Gradiente Conjugado en alguno de esos casos?
- b) Realizar una iteración del método propuesto, para hallar el vector X1 correspondiente.
- c) Considerando la tercer componente del vector X1 como función de las variables (u, v) construir la gráfica de proceso correspondiente para hallar Cp y Te en forma teórica (O utilice: $v + u^3$)
- d) Estimar Cp por perturbaciones experimentales para u=v =1 adoptando una perturbación relativa r=5%

Firma

Univers	idad de Buenos Aires	Facultad de Ingeniería					
2º Cuatrimestre 2011	75.12 - Análisis Numérico I. Curso 008	Parcial. Primera Oportunidad.	Tema 2	Nota			
Padrón	Apellido y Nombres						

Ejercicio 1. Con los siguientes datos se han realizado un Ajuste por Cuadrados Mínimos e Interpolaciones por Newton, Lagrange Baricéntrico y Spline; siempre eligiendo los puntos desde XO en adelante, en orden de índice *i* creciente.

i	0	1	2	3	4	5	6		1	0	0	0	0		7	nd	nd		
Xi	?	?	?	?	6	6	6		nd	nd	nd	0	0	A (CM) =	nd	nd	nd		
Yi	6	?	?	?	12	5.t	e ^t	A (Spline) =	0	1	nd	1	0		nd	nd	nd		
									0	0	nd	nd	1						
W	'0 (X0,	X1, X2) =	-0,5	У		PLB (X3) = 8	0	0	0	0	1		63	3,8383	47		
								·						B (CM) =		nd			
PN	1 (X) =	4	+ C1.	.(X-X1)	+ C2.(X-X0)(X-X1) + C3	3.(X-X0)(X-X1)(X-X3) +	C4.(X.	X0)(X-	X1)(X->	(2)(X-X	(3)		nd				

- a) Sin realizar cálculo alguno, determinar el ordenamiento de los puntos Xi de la tabla.
- b) Utilizando la información de la matriz de Spline, hallar los puntos X2, X3 y X0.
- c) A partir de la información del Polinomio de Newton, hallar Y1.
- d) Aprovechando los cálculos hechos para Lagrange Baricéntrico, hallar X1 e Y2.
- e) Aplicando un método de refinamiento, encontrar el valor de t en el intervalo [2,3] con el que se han obtenido los datos correspondientes al Ajuste por Cuadrados Mínimos. (O resolver la ENL: 5.t + e^t = 23.83)
- f) Indicar para cada ajuste o interpolación los puntos usados, el grado y la cantidad de polinomios resultantes.
- g) ¿Hasta qué valor sería posible aumentar el grado del Ajuste por Cuadrados Mínimos?

Ejercicio 2. Se tiene el sistema A.X = B y un vector inicial X0 para su resolución por el método de Gauss-Seidel:

- a) ¿Qué condiciones sería posible imponer sobre u o v para asegurar la convergencia del método? ¿Podría asegurarse además la convergencia del método del Gradiente Conjugado en alguno de esos casos?
- b) Realizar una iteración del método propuesto, para hallar el vector X1 correspondiente.
- c) Considerando la tercer componente del vector X1 como función de las variables (u, v) construir la gráfica de proceso correspondiente para hallar Cp y Te en forma teórica (O utilice: $v + u^3$)
- d) Estimar Cp por perturbaciones experimentales para **u=v =1** adoptando una perturbación relativa r=5%

Firma