Unit 3 Greedy Algorithms

Prof. Fenil Khatiwala
Department of Computer Engineering
CGPIT, UTU

Outline

- → General Characteristics of greedy algorithms
- → Elements of Greedy Strategy
- → Make change Problem
- → Minimum Spanning trees (Kruskal's algorithm, Prim's algorithm)
- → The Knapsack Problem
- → Job Scheduling Problem

Characteristics of Greedy Algorithms

Characteristics of Greedy Algorithms

- → Greedy algorithms are characterized by the following features.
 - 1. Greedy approach forms a set or list of candidates *C*.
 - 2. Once a candidate is **selected in the solution**, it is there forever: once a candidate is **excluded from the solution**, it is never reconsidered.
 - 3. To construct the solution in an optimal way, Greedy Algorithm maintains **two sets.**
 - 4. One set contains candidates that have already been **considered and chosen**, while the other set contains candidates that have been **considered but rejected**.

Elements of Greedy Strategy

The greedy algorithm consists of **four functions**.

- **1. Solution Function:-** A function that checks whether chosen set of items provides a solution.
- **2. Feasible Function**:- A function that checks the feasibility of a set.
- **3. Selection Function:-** The selection function tells which of the candidates is the most promising.
- **4. Objective Function:-** An objective function, which does not appear explicitly, but gives the value of a solution.

- → Suppose following coins are available with unlimited quantity:
 - 1. ₹10
 - 2. ₹5
 - 3. ₹2
 - 4. ₹1
 - 5. 50 paisa
- →Our problem is to devise an algorithm for paying a given amount to a customer using the smallest possible number of coins.

- → If suppose, we need to pay an amount of $\frac{3}{28}$ /- using the available coins.
- \rightarrow Here we have a candidate (coins) set $C = \{10, 5, 2, 1, .5\}$
- →The greedy solution is,

Amount

28

Total required coins = 5

Selected coins = $\{10, 5, 2, 1\}$

```
# Input: C = \{10, 5, 2, 1, 0.5\} //C is a candidate set
# Output: S: set of selected coins
Function make-change(n): set of coins
S ← Ø {S is a set that will hold the solution}
sum ← 0 {sum of the items in solution set S}
while sum \neq n do
   x \leftarrow the largest item in C such that sum + x \leq n
   if there is no such item then
       return "no solution found"
   S \leftarrow S \cup \{a \text{ coin of value } x\}
   sum \leftarrow sum + x
return S
```

Making Change – The Greedy Property

- →The algorithm is **greedy** because,
 - At every step it chooses **the largest available coin**, without worrying whether this will prove to be a **correct** decision later.
 - It **never changes** the decision, i.e., once a coin has been included in the solution, it is there **forever**.
- \rightarrow Examples: Some coin denominations 50, 20, 10, 5, 1 are available.
 - 1. How many minimum coins required to make change for 37 cents?

 5
 - 2. How many minimum coins required to make change for 91 cents?
 - 3. Denominations: $d_1=6$, $d_2=4$, $d_3=1$. Make a change of $\frac{3}{2}$ 8.

The minimum coins required are 2

Fractional Knapsack Problem

Fractional Knapsack Problem

- \rightarrow We are given n objects and a knapsack.
- Object i has a positive weight w_i and a positive value v_i for $i = 1, 2 \dots n$.
- The knapsack can carry a weight not exceeding W.
- Our aim is to fill the knapsack in a way that **maximizes** the value of the included objects, while respecting the capacity constraint.

Fractional Knapsack Problem

- →In a fractional knapsack problem, we assume that the objects can be broken into smaller pieces.
- \rightarrow So we may decide to carry only a fraction x_i of object i, where $0 \le x_i \le 1$.
- →In this case, object i contribute $x_i w_i$ to the total weight in the knapsack, and $x_i v_i$ to the value of the load.
- →Symbolic Representation of the problem can be given as follows:

maximize
$$\sum_{i=1}^{n} x_i v_i$$
 subject to $\sum_{i=1}^{n} x_i w_i \le W$
Where, $v_i > 0$, $w_i > 0$ and $0 \le x_i \le 1$ for $1 \le i \le n$.

Fractional Knapsack Problem – Example

- \rightarrow Example: We are given 5 objects and the weight carrying capacity of knapsack is W = 100.
- \rightarrow For each object, weight w_i and value v_i are given in the following table.

Object i	1	2	3	4	5
v_i	20	30	66	40	60
w_i	10	20	30	40	50

→Fill the knapsack with given objects such that the total value of knapsack is **maximized.**

Greedy Solution

- →Three **selection functions** can be defined as,
 - 1. Sort the items in **descending order of their values** and select the items till weight criteria is satisfied.
 - 2. Sort the items in **ascending order of their weight** and select the items till weight criteria is satisfied.
 - 3. To calculate the **ratio value/weight** for each item and sort the item on basis of this ratio. Then take the item with the highest ratio and add it.

Fractional Knapsack Problem - Solution

Object i	1	2	3	4	5
v_i	20	30	66	40	60
w_i	10	20	30	40	(50)

Selection		Objects						
	1	2	3	4	5			
$Max v_i$								
Min w _i								
$\text{Max}^{v_i}/_{w_i}$								

Weight Capacity 100

30	50	20	
10	20	30	40
30	10	20	40

Profit =
$$66 + 20 + 30 + 48 = 164$$

Fractional Knapsack Problem – Example

- \rightarrow Example: We are given 7 objects and the weight carrying capacity of knapsack is W = 15.
- \rightarrow For each object, weight w_i and value v_i are given in the following table.

Object i	1	2	3	4	5	6	7
v_i	10	5	15	7	6	18	3
w_i	2	3	5	7	1	4	1

→Fill the knapsack with given objects such that the total value of knapsack is **maximized.**

Fractional Knapsack Problem - Solution

Object i	1	2	3	4	5	6	7
v_i	10	5	<u> 15</u>	_7	6	18	3
W_i	2	_3_	_5_	7	11	4	_1_

Selection		bject			Value			
	1	2	3	4	5	6	7	
$Max v_i$								
$Min w_i$								
Max^{v_i}/w_i								

Weight Capacity 15

4	5	2	4		
1	1	2	3	4	4
1	2	4	5	1	2

Profit =
$$6 + 10 + 18 + 15 + 3 + 3.3 = 55.3$$

Fractional Knapsack Problem - Algorithm

```
Algorithm: Greedy-Fractional-Knapsack (w[1..n], p[1..n], W)
for i = 1 to n do
      x[i] \leftarrow 0
      weight ← 0
While weight < W do
      i ← the best remaining object
      if weight + w[i] ≤ W then
             x[i] \leftarrow 1
                                          (100 - 60) / 50 =
             weight ← weight + w[i]
                                          8.0
      else
             x[i] \leftarrow (W - weight) / w[i]
             weight ← W
return x
```

Examples

- 1. Consider Knapsack capacity W = 50, w = (10, 20, 40) and v = (60, 80, 100) find the maximum profit using greedy approach.
- 2. Consider Knapsack capacity W = 10, w = (4, 8, 2, 6, 1) and v = (12, 32, 40, 30, 50). Find the maximum profit using greedy approach.

Minimum Spanning Tree

Minimum Spanning Tree – MST

- \rightarrow Let $G = \langle N, A \rangle$ be a **connected, undirected graph** where,
 - 1. N is the set of nodes and
 - *2. A* is the set of edges.
- → Each edge has a given **positive length or weight**.
- \rightarrow A spanning tree of a graph G is a sub-graph which is basically a tree and it contains all the vertices of G but does not contain cycle.
- \rightarrow A minimum spanning tree (MST) of a **weighted connected graph** G is a spanning tree with minimum or smallest weight of edges.
- →Two Algorithms for **constructing** minimum spanning tree are,
 - 1. Kruskal's Algorithm
 - 2. Prim's Algorithm

Spanning Tree

23

Step 2: Taking next min edge (B,C)

Step 4: Taking next min edge (A,B)

Step 1: Taking min edge (C,D)

B 3
2
C D
1

Step 3: Taking next

min edge (B,E)

So, we obtained a minimum spanning tree of cost: 4 + 2 + 1 + 3 = 10

Kruskal's Algorithm

```
Function Kruskal(G = (N, A))
Sort A by increasing length
n \leftarrow \text{the number of nodes in } N
T \leftarrow \emptyset {edges of the minimum spanning tree}
Define n sets, containing a different element of set N
repeat
   e ← {u, v} //e is the shortest edge not yet considered
   ucomp \leftarrow find(u) \leftarrow find(u) tells in which
                                                      connected
                          component a node oldsymbol{u} is found
   vcomp \leftarrow find(v)
   if ucomp ≠ vcomp then merge(ucomp, vcomp)
                                       merge(ucomp, vcomp) is used to merge
   T \leftarrow T \cup \{e\}
                                       two connected components.
until T contains n - 1 edges
return T
```

• Find the minimum spanning tree for the following graph using Kruskal's Algorithm.

Step:1

Sort the edges in increasing order of their weight.

Weight	
1	

18-09-2020

CGPIT, Bardoli

Step:2

Select the minimum weight edge but no cycle.

		_
Edges	Weight	
{1, 2}	1	
{2, 3}	2	
{4, 5}	3	
{6, 7}	3	
{1, 4}	4	
{2, 5}	4	
{4, 7}	4	
{3, 5)	5	
{2, 4}	6	
{3, 6}	6	
{5, 7}	7	
{5, 6}	8	

18-09-2020

Step:3

The minimum spanning tree for the given graph

Total Cost = 17

18-09-2020 CGPIT, Bardoli 29

Step	Edges considered - {u, v}	Connected Components

Edges	Weight
{1, 2}	1
{2, 3}	2
{4, 5}	3
{6, 7}	3
{1, 4}	4
{2, 5}	4
{4, 7}	4

Total Cost = 17

Exercises – Home Work

→Write the kruskal's Algorithm to find out Minimum Spanning Tree. Apply the same and find MST for the graph given below.

→The complexity for the Kruskal's algorithm is in $\theta(a \log n)$ where a is total number of edges and n is the total number of nodes in the graph G.

Prim's Algorithm

- →In Prim's algorithm, the minimum spanning tree grows in a natural way, starting from an arbitrary root.
- →At each stage we add a new branch to the tree already constructed; the algorithm stops when all the nodes have been reached.
- → The complexity for the Prim's algorithm is $\theta(n^2)$ where n is the total number of nodes in the graph G.

• Find the minimum spanning tree for the following graph using Prim's Algorithm.

18-09-2020

34

The minimum spanning tree for the given graph

Node	Edges
1	{1, 2}
1, 2	{2, 3}
1, 2, 3	{1, 4}
1, 2, 3, 4	{4, 5}
1, 2, 3, 4, 5	{4, 7}
1, 2, 3, 4, 5, 6	{6, 7}

Total Cost = 17

Step	Edge Selecte d {u, v}	Set B	Edges Considered
Init.	_	{1}	
1	{1, 2}	{1,2}	{1,2} {1,4}
2	{2, 3}	{1,2,3}	{1,4} {2,3 } {2,4} {2,5}
3	{1, 4}	{1,2,3,4}	{1,4} {2,4} {2,5} {3,5} {3,6}
4	{4, 5}	{1,2,3,4,5}	{2,4} {2,5} {3,5} {3,6} {4,5 } {4,7}
5	{4, 7}	{1,2,3,4,5,7}	{2,4} {2,5} {3,5} {3,6} {4,7 } {5,6} {5,7}
6	{6,7}	{1,2,3,4,5,6,7}	{2,4} {2,5} {3,5} {3,6} {5,6} {5,7} {6,7 }

Prim's Algorithm

```
Function Prim(G = (N, A): graph; length: A - R+): set of
edges
T \leftarrow \emptyset
B ← {an arbitrary member of N}
while B \neq N do
       find e = \{u, v\} of minimum length such that
              u \in B and v \in N \setminus B
       T \leftarrow T \cup \{e\}
       B \leftarrow B \cup \{v\}
return T
```

Exercises – Home Work

• Write the Prim's Algorithm to find out Minimum Spanning Tree. Apply the same and find MST for the graph given below.

2. 3 1 C 5 D E F G

Single Source Shortest Path – Dijkstra's Algorithm

Dijkstra's Algorithm

- → Consider now a directed graph G = (N, A) where N is the set of nodes and A is the set of directed edges of graph G.
- → Each edge has a **positive length**.
- →One of the nodes is designated as the **source node**.
- →The problem is **to determine the length of the shortest path** from the source to each of the other nodes of the graph.
- → The **algorithm maintains a matrix** *L* which gives the length of each directed edge:

$$L[i,j] \ge 0$$
 if the edge $(i,j) \in A$, and $L[i,j] = \infty$ otherwise.

Dijkstra's Algorithm

```
Function Dijkstra(L[1 .. n, 1 .. n]): array [2...n]
array D[2.. n]
C \leftarrow \{2,3,..., n\}
{S = N \ C exists only implicitly}
for i \leftarrow 2 to n do
   D[i] \leftarrow L[1, i]
repeat n - 2 times
   v \leftarrow some element of C minimizing D[v]
   C \leftarrow C \setminus \{v\}  {and implicitly S \leftarrow S \cup \{v\}\}
   for each w \in C do
       D[w] \leftarrow min(D[w], D[v] + L[v, w])
return D
```

Dijkstra's Algorithm – Example

Single source shortest path algorithm

Source node = 1

Step	V	С	2	3	4	5
Init.	-	{2, 3, 4, 5}	50	30	100	10
1	5	{2, 3, 4}	50	30	20	10

Is there path from 1 - 5 - 4

No

Yes

Compare cost of 1-5-4 and 1-4

Dijkstra's Algorithm – Example

Is there path from 1 - 4 - 5

No Yes

Compare cost of 1-4-3 and 1-3

Single source shortest path algorithm

Source node = 1

Step	V	С	2	3	4	5
Init.	-	{2, 3, 4, 5}	50	30	100	10
1	5	{2, 3, 4}	50	30	20	10
2	4	{2, 3}	40	30	20	10
3	3	{2}	35	30	20	10

Exercises

→Write Dijkstra's Algorithm for shortest path. Use the algorithm to find the shortest path from the following graph.

Job Scheduling Problem

Job Scheduling with Deadlines

- \rightarrow We have set of n jobs to execute, each of which takes unit time.
- → At any point of time we can **execute only one job.**
- →Job *i* earns profit $g_i > 0$ if and only if it is executed **no later than** time d_i .
- →We have to find an optimal sequence of jobs such that our total **profit is** maximized.
- → Feasible jobs: A set of job is feasible if there exits **at least one sequence** that allows all the jobs in the set to be executed no later than their respective deadlines.

Job Scheduling with Deadlines - Algorithm

```
Algorithm:
let total position P = min(n, max(d_i))
for i=1 to n do (for total P slots)
      set k = min(dmax, deadline[i])
      while k \ge 1 do
            if timeslot[k] is empty then
                  timeslot[k] = job[i]
            break
            endif
                  set k = k-1
      end while
end for
```

→Using greedy algorithm find an optimal schedule for following jobs with n = 6.

→Profits:
$$(P_1, P_2, P_3, P_4, P_5, P_6) = (15,20,10,7,5,3) &$$

→ Deadline:
$$(d_1, d_2, d_3, d_4, d_5, d_6) = (1/3, 1, 3, 1, 3)$$

Solution:

Step 1: Sort the jobs in **decreasing order** of their profit.

Job i	1	2	3	4	5	6
Profit g_i	20	15	10	7	5	3
Deadline d_i .	3	1	1	3	1	3

Job i	1	2	3	4	5	6
Profit g_i	20	15	10	7	5	3
Deadline d_i .	3	1	1	3	1	3

Step 2: Find total position $P = \min(n, \max(di))$

Here, $P = \min(6, 3) = 3$

Р	1	2	3
Job selected	0	0	0

Step 3: $d_1 = 3$: assign job 1 to position 3

Р	1	2	3
Job selected	0	0	J1

Job i	1	2	3	4	5	6
Profit g_i	20	15	10	7	5	3
Deadline d_i .	3	1	1	3	1	3

Step 4: $d_2 = 1$: assign job 2 to position 1

Р	1	2	3
Job selected	J2	0	J1

Step 5: $d_3 = 1$: assign job 3 to position 1

Position 1 is already occupied, so reject job 3

Job i	1	2	3	4	5	6
Profit g_i	20	15	10	7	5	3
Deadline d_i .	3	1	1	3	1	3

Step 6: $d_4 = 3$: assign job 4 to position 2 as, position 3 is not free but position 2 is free.

P	1	2	3
Job selected	J2	J4	J1

- → Now **no more free position** is left so no more jobs can be scheduled.
- → The final optimal sequence:

Execute the job in order 2, 4, 1 with total profit value 42.

Exercises

 \rightarrow Using greedy algorithm find an optimal schedule for following jobs with n=4.

Profits: (a, b, c, d) = (20,10,40,30) &

Deadline: $(d_1, d_2, d_3, d_4) = (4, 1, 1, 1)$

 \rightarrow Using greedy algorithm find an optimal schedule for following jobs with n=5.

Profits: (a, b, c, d, e) = (100,19,27,25,15) &

Deadline: $(d_1, d_2, d_3, d_4, d_5) = (2, 1, 2, 1, 3)$

Thank You!