

710193M Arquitectura de computadores

II Carlos Andrés

Microoperaciones

Control de procesador

Implementació cableada

710193M Arquitectura de computadores II

Unidad de control carlos.andres.delgado@correounivalle.edu.co

Carlos Andrés Delgado S.

Facultad de Ingeniería. Universidad del Valle

Mayo de 2016

710193M Arquitectura de

computadores

Carlos Andre

Microoperaciones

Control del procesador

Implementación

1 Microoperaciones

2 Control del procesador

Contenido

710193M Arquitectura de

computadores ||

Carlos Andr Delgado S

Microoperacione

Control del procesador

Implementación

1 Microoperaciones

2 Control del procesador

710193M Arquitectura de computadores

Carlos André Delgado S.

Microoperacion

Control de procesador

Implementació

Conceptos

Cuando se ejecuta un programa se tienen una secuencia de ciclos de captación y ejecución para cada instrucción. Sin embargo, estas operaciones pueden descomponerse en operaciones más pequeñas.

710193M Arquitectura de computadores II

Microoperacion

Control de procesado

Implementació cableada

Ciclo de captación

Se examina el ciclo de captación, que tiene lugar al principio de cada instrucción, el cual involucra los siguientes registros del procesador

- 1. Registro de dirección de memoria (MAR) Está conectado a las líneas de dirección del bus
- 2. Registro intermedio de memoria (MBR) Está conectado a las líneas de datos del bus
- 3. **Contador de programa (PC)** Contiene la dirección a la siguiente instrucción a captar
- 4. Registro de instrucción (IR) Contiene la última instrucción captada

710193M Arquitectura de computadores II

Carlos Andre Delgado S.

Microoperacione

Control de procesador

Implementación cableada

Ciclo de captación

El proceso puede ser estudiado en las siguientes unidades de tiempo

- 1. Primera unidad de tiempo: Transferir PC a MAR
- 2. **Segunda unidad de tiempo:** Direccionar en la memoria (MAR) y almacenar en MBR e incrementar PC
- 3. **Tercer unidad de tiempo:** Transferir de MBR a IR (Instrucción a ejecutar)

710193M Arquitectura de computadores II

Carlos Andre Delgado S.

Microoperacion

Control de procesador

Implementación cableada

Ciclo indirecto

Una vez se capta una instrucción, el siguiente paso es captar los operandos fuente. Las microperaciones requeridas son.

- Primera unidad de tiempo: Transferir a MAR la dirección del operando
- 2. **Segunda unidad de tiempo:** Direccionar en la memoria (MAR) y almacenar en MBR e incrementar PC
- 3. **Tercer unidad de tiempo:** Transferir de MBR a IR (Instrucción a ejecutar)

710193M Arquitectura de computadores II

Carlos André Delgado S.

Microoperacione

Control del procesador

Implementación cableada

Ciclo de interrupción

Este se presenta cuando hemos tenido una señal de interrupción durante la ejecución de la instrucción.

- Primera unidad de tiempo: Transferir a MBR el valor de PC
- Segunda unidad de tiempo: Transferir a MAR la dirección donde quedamos al momento de llegar la interrupción. PC ahora tiene la dirección de la instrucción de la interrupción
- 3. **Tercer unidad de tiempo:** Tranferir a memoria el valor de MBR (Guardar el contexto)

710193M Arquitectura de computadores II

Carlos André Delgado S.

Microoperacion

Control de procesador

Implementación

Ciclo de ejecución

Es más complejo ya que depende de las operaciones se requieran hacer en el procesador. Las microoperaciones dependen de:

- 1. Número de operadores se requieren en la instrucción
- 2. Si se requiere almacenamiento temporal durante la ejecución
- 3. Donde se almacena el resultado de la operación

Contenido

710193M Arquitectura de computadores

Carlos André

Microoperaciones

Control del procesador

Implementación

1 Microoperaciones

2 Control del procesador

710193M Arquitectura de computadores II

Carlos Andrés Delgado S.

Microoperaciones

Control del procesador

Implementación cableada

Requisitos funcionales

De acuerdo a lo visto anteriormente, se han descompuesto las instrucciones en microperaciones o operaciones elementales. Por ello se deben definir los requisitos funcionales de la unidad de control del procesador y por ello, se debe realizar la caracterización del procesador:

- 1. Definir elementos básicos del procesador
- 2. Describir las microoperaciones del procesador
- 3. ¿Que debe hacer la unidad de control para que el procesador haga las microoperaciones?

710193M Arquitectura de computadores II

Carlos Andre Delgado S.

Microoperaciones

Control del procesador

Implementació

Requisitos funcionales

Las microperaciones de un procesador se pueden clasificar de la siguiente forma:

- 1. Transferir datos en un registro a otro
- 2. Transferir datos de un registro a un E/S
- 3. Transferir datos de E/S a un registro
- 4. Realizar alguna operación (arimética o lógica)

710193M Arquitectura de computadores II

Carlos Andre Delgado S.

Microoperaciones

Control del procesador

Implementació cableada

Requisitos funcionales

La unidad de control realiza dos tareas básicas:

- 1. **Secuenciamiento:** Hace que el procesador avance a través de una serie de microoperaciones para realizar alguna tarea
- 2. Ejecución: Hace que ejecute cada micropoperación

710193M Arquitectura de computadores II

Carlos André Delgado S.

Microoperaciones

Control del procesador

Implementación cableada

Señales de control

Son aquellas señales para controlar los elementos en el procesador

- 1. Reloj: Para sincronizar los elementos del procesador
- 2. Registro de instrucción: Código de la operación a realizar
- 3. Indicadores: Banderas de estado del procesador
- Señales del bus de control: Manejar las señales de interrupción
- Señales de control internas del procesador: Registros y ALU
- 6. Señales de control hacia el bus de control: Memoria y E/S

710193M Arquitectura de computadores II

Carlos Andrés Delgado S.

Microoperaciones

Control del procesador

Implementación cableada

Señales de control

Esquema de señales de control:

Contenido

710193M Arquitectura de

computadores

Carlos Andr Delgado S

Microoperaciones

Control de procesador

Implementación cableada

1 Microoperaciones

2 Control del procesado

Implementación cableada

710193M Arquitectura de computadores

Carlos Andre Delgado S.

Microoperaciones

Control de procesado

Implementación cableada

Organización interna del procesador

Para que la unidad de control sea funcional, deben conectarse todas las señales hacia los elementos de la CPU y el bus de control. Existen dos tipos de implementación:

- 1. Implementación cableada
- 2. Implementación microprogramada

Implementación cableada

710193M Arquitectura de computadores II

Carlos André Delgado S.

Microoperaciones

Control de procesado

Implementación cableada

Entradas de la unidad de control

Las entradas de la unidad de control son el reloj, los indicadores, el registro de instrucción y las líneas de control del bus. Estas pueden ser vistas como una secuencia de bits y estas pueden ser codificadas como una línea de n bits. Por ello, es util utilizar un decodificador de n entradas y 2^n salidas. Con ello se garantiza:

- 1. Sólo se activa una línea en la salida ante un estimulo de entrada
- 2. Se pueden identificar las instrucciones claramente

Implementación cableada

710193M Arquitectura de computadores II

Carlos André Delgado S.

Microoperaciones

Control de procesado

Implementación cableada

Entradas de la unidad de control

Esquema de cableado de señales de control:

Preguntas

710193M Arquitectura

de computadores II

Carlos André Delgado S.

Microoperaciones

Control de procesador

Implementación cableada

¿Preguntas?

Siguiente tema: Control microprogramado