Indian Institute of Technology Patna

Department of Physics

Mid-semester Examination Optics & Lasers (PH 201)

Full Marks: 30 Answer all questions.

Date:	Feb.	22,	2018

- 1. Derive the expressions for reflectivity and transmissivity of the Fabry-Perot etalon. Explain why the etalon produces better resolution as compared to two-beam interference method.

 [2+2+2]
- 2. Define holography and explain the difference between photography and holography. Also, mention some of the applications of holography. [3]
- 3. What do you mean by missing diffraction orders? What causes the missing orders in a diffraction pattern? [2]
- 4. Describe the state of polarization (type and handedness) of the following waves.
 - (a) $\vec{E} = \hat{e}_x E_0 \sin(\omega t kz) + \hat{e}_y E_0 \sin(\omega t kz + \pi/4)$
 - (b) $\vec{E} = \hat{e}_x E_0 \sin(\omega t kz) + \hat{e}_y E_0 \cos(\omega t kz \pi/2)$ [2]
- 5. Horizontally polarized light passes through two ideal linear polarizers with transmission directions making angles of θ and $-\theta$ with the horizontal direction. Find polarization state of the emergent light and its intensity as a function of θ . For what values of θ , no light comes from the second polarizer? [4]
- 6. Calculate the Brewster angle for air-glass interface, $n_1 = 1 \& n_2 \approx 1.33$. [1]
- 7. Assuming amplitudes of two plane polarized lights as $a_1 = a_2$ and $\theta = 2\pi/3$. Plot the values of E_x and E_y for different values of time and also describe the state of polarization. [5]

$$E_x = a\cos\omega t$$
 and $E_y = a\cos(\omega t - \theta)$

- 8. Explain the methods of production of linearly polarized light waves. [3]
- Consider a circular aperture of diameter 2 mm illuminated by a plane wave. The
 most intense point on the axis is at a distance of 200 cm from the aperture.

 Calculate the wavelength.
 [4]