MA 3251 – STATISTICS AND NUMERICAL METHODS

(Common to : All Branches (Except Marine Engineering))

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

(Statistical table need to be provided)

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- Define Type I error and Type II error in testing of hypothesis.
- State the uses of Chi-square test.
- Define the terms experimental and extraneous variables in design of experiments.

4. Complete the following ANOVA table

Sources of variation	Sum of squares	Degrees of freedom	Mean squares	F-ratio
Between brands	45,226	3		
Within brands		22	6,811	
	1,95,068			

- 5. What is need for pivoting in Gauss elimination method?
- State the advantage of Gauss Seidel method over Gauss Jacobi method while solving system of linear equations.
- List the merits and demerits of Lagrange interpolation method.
- Interpret geometrically Trapezoidal rule.

- 9. Why Euler method is known as point slope method?
- Give an example for single step and multi-step method for solving ordinary differential equations.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) The dynamic modulus of concrete is obtained for two different concrete mixes. For the first mix, $n_1 = 33$, $\overline{x}_1 = 115.1$, and $s_1 = 0.47$ psi. For the second mix, $n_2 = 31$, $\overline{x}_2 = 114.6$ and $s_2 = 0.38$. Test, with $\alpha = 0.05$, the null hypothesis of equality of mean dynamic modulus versus the two-sided alternative. (8)
 - (ii) In an air-pollution study performed at an experiment station, the following amount of suspended benzene soluble organic matter (in micrograms per cubic meter) was obtained for eight different samples of air: 2.2, 1.8, 3.1, 2.0, 2.4, 2.0. 2.1, 1.2. Assuming that the population sampled is normal. Test the null hypothesis μ = 2 against the alternative hypothesis μ > 2 at the 0.05 level of significance.

Or,

- (b) (i) A manufacturer of machine bearings claims that 90% of the heavy machine bearings have a work life of more than 5 years. You doubt this claim and want to refute it on the basis of a sample of 200 bearings where 170 did work for more than 5 years. Conduct a test of hypotheses using α = 0.10.
 - (ii) Mechanical engineers, testing a new arc-welding technique, classified welds both with respect to appearance and an X-ray inspection. (8)

	Appearance								
		Bad Normal							
	Bad	20	7	3					
X-ray	Normal	13	51	16					
A-ray	Good	7	12	21					

Using Chi-square statistic, test for independence using $\alpha = 0.05$.

2/6

(a) Four different, though supposedly equivalent, forms of a standardized reading achievement test were given to each of 5 students, and the

following are the scores which they obtained:

	Student 1	Student 2	Student 3	Student 4	Student 5
Form A	75	73	59	69	84
Form B	83	72	56	70	92
Form C	86	61	53	72	88
Form D	73	67	62	79	95

Treating students as blocks, perform an analysis of variance to test at the level of significance $\alpha = 0.01$ whether it is reasonable to treat the 4 forms as equivalent. (16)

Or

(b) Analyse the variance in the following Latin square of yields (in kgs) of paddy where A, B, C, D denote the different methods of cultivation:

D:122	A:121	C:123	B:122
B:124	C:123	A:122	D:125
A:120	B:119	D:120	C:121
C:122	D:123	B:121	A:122

Examine whether the different methods of cultivation have given significantly different yields at 5% L.O.S. (16)

- (a) (i) Using Newton-Raphson method, find a root of the equation $e^x x^3 \cos 25x = 0$ nearer to x = 4.5 (correct to three decimal places). (8)
 - (ii) Apply Gauss elimination method, to solve

$$2x - y + 3z = 9$$
; $x + y + z = 6$; $x - y + z = 2$.

Or

- (b) (i) Apply Gauss-Seidel method to solve equations 27x + 6y z = 85; x + y + 54z = 110; 6x + 15y + 2z = 72. (Perform 5 iterations) (8)
 - (ii) Using power method, find the largest eigenvalue and the corresponding eigenvector of the Matrix $\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$

Take
$$[1, 0, 0]^T$$
 as the initial eigenvector.

(8)

(8)

14. (a) (i) The following table gives the velocity v of a particle at time t. Find its velocities when t = 3, t = 11. Also determine the acceleration at t = 0.

t	0	2	4	6	8	10	12
v	4	6	16	34	60	9.4	136

(ii) Apply Lagrange's method, to find the value of f(x) at x = 9 from the given data. (8)

x	x 5		11	13	17	
f(x)	150	392	1452	2366	5202	

Or

(b) (i) The highway patrol uses a radar gun to clock the speed of a motorist. The gun is equipped with a device that records the speed at 4-second intervals as given in the table below.

Time	0	4	8	12	16	20	24	28	32	36	40
Speed	64	68	71	74	76	72	64	63	68	73	72

Apply both Trapezoidal and Simson's 1/3 rule, to find the total distance traveled by the car. (8)

- (ii) Evaluate $\int_0^1 \int_0^1 \frac{dxdy}{x+y+1}$, by using Trapezoidal rule and taking h = 0.5, k = 0.25. (8)
- 15. (a) (i) Given $\frac{dy}{dx} = x^2 + y^2$, y(1) = 2, find y(1.1) using Taylor's series method of the fourth order, y(1.2) using Euler's method. (8)
 - (ii) Solve $\frac{dy}{dx} = \frac{1}{x+y}$, y(0)=1, find y(0.1) using Runge-Kutta method of fourth order. (8)

Or

(b) Given $\frac{dy}{dx} = x - y^2$, y(0) = 0, find y(0.2), y(0.4), y(0.6) using Taylor's series method of the third order. Also find y(0.8) using Milne's method. (16)