随机微分方程课程作业

郑贤

2025年5月16日

- 1. 可以将停时理解为这样的一个时刻: 当这个时刻发生时,我们可以及时地观测到它。(也就是 $[\tau \le t] \in \mathcal{F}_t$)
- **2.** 可以把马氏过程理解为它的未来状态只依赖于现在,与历史的状态无关。
- 3. 记 B_t 为从 B_0 出发的布朗运动。记

$$\psi = \begin{cases} B_t & B_0 \neq 0 \\ 0 & B_0 = 0 \end{cases}$$

则易知 ψ 为马氏过程, 其转移概率为

$$P(t, x, A) = \begin{cases} \int_{A} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x-y)^{2}}{2t}} dy & x \neq 0 \\ 1_{A}(0) & x = 0 \end{cases}.$$

但是 ψ 不是强马氏的,否则,给定 $x \neq 0$,记 $\tau = \inf\{t \geq 0 : \psi_t = 0\}$,一方面有 $\mathbb{E}_x[1_{[\psi_1 \neq 0, \tau < 1]}] = \mathbb{E}_x[\mathbb{E}_x[1_{[\psi_1 \neq 0, \tau < 1]}|\mathcal{F}_\tau]] = \mathbb{E}_x[P(1 - \tau, \psi_\tau, \{0\}^c)] = 0$. 另一方面,由于 $P_x(\psi_1 = 0) = 0$,故 $\mathbb{E}_x[1_{[\psi_1 \neq 0, \tau < 1]}] = P_x(\tau < 1) > 0$. 矛盾。因此 ψ 不是强马氏的。

=

- 1. W_t 为 \mathcal{F}_t -布朗运动当且仅当 W_t 满足以下条件:
 - (i) $W_0 = 0 \ P$ -a.s.;
 - (ii) 对任意 t > 0,都有 W_t 是 \mathcal{F}_t 可测的;
 - (iii) 对任意 $t \ge 0, s \ge 0$,都有 $W_{s+t} W_s$ 与 \mathcal{F}_t 独立,且 $W_{s+t} W_s \sim \mathcal{N}(0,t)$;
 - (iv) 对 *P-a.s.ω*, *W_t* 连续。
- **2.** W_t 是 \mathcal{F}_t 可测的,且 \mathbb{L}^1 可积。同时,对任意 $s \leq t$,有: $\mathbb{E}[W_t | \mathcal{F}_s] = W_s + \mathbb{E}[W_t W_s | \mathcal{F}_s] = W_s + \mathbb{E}[W_t W_s] = W_s$ 。故 W_t 为 \mathcal{F}_t -鞅。
- **3.** 显然 (B_t, \mathcal{G}_t) 满足第 1 小问中的条件 (i)(iv)。先验证 (ii)。由 τ 的有界性和 W_t 的连续性,有:

$$B_t = \lim_{n \to \infty} \sum_{k=0}^{\infty} (W_{t + \frac{k}{2^n}} - W_{\frac{k}{2^n}}) 1_{A_k^n}$$

其中 $A_{k^n} = \left[\frac{k}{2^n} \le \tau < \frac{k+1}{2^n}\right]$ 。 任取 Borel 可测集 A 和 $s \ge t$,有:

$$\begin{split} & [(W_{t+\frac{k}{2^n}} - W_{\frac{k}{2^n}}) 1_{A_k^n} \in A] \cap [t + \tau \leq s] \\ & = \left\{ \begin{array}{l} ([\tau \leq s - t] \cap [0 \in A]) & s - t < \frac{k}{2^n} \\ (([\tau < \frac{k}{2^n}] \cup [\frac{k+1}{2^n} \leq \tau \leq s - t]) \cap [0 \in A]) \cup (A_k^n \cap [(W_{t+\frac{k}{2^n}} - W_{\frac{k}{2^n}}) \in A]) \\ & s - t \geq \frac{k+1}{2^n} \end{array} \right. \\ & ([\tau < \frac{k}{2^n}] \cap [0 \in A]) \cup ([\frac{k}{2^n} \leq \tau \leq s - t] \cap [(W_{t+\frac{k}{2^n}} - W_{\frac{k}{2^n}}) \in A]) \\ & \frac{k}{2^n} \leq s - t < \frac{k+1}{2^n} \end{split} .$$

其中 $[(W_{t+\frac{k}{2^n}}-W_{\frac{k}{2^n}})\in A]\in \mathcal{F}_{t+\frac{k}{2^n}},$

$$[0 \in A] = \begin{cases} \emptyset & 0 \notin A \\ \Omega & 0 \in A \end{cases}.$$

故 $[(W_{t+\frac{k}{2^n}} - W_{\frac{k}{2^n}})1_{A_k^n} \in A] \cap [t + \tau \leq s] \in \mathcal{F}_s$,于是 $(W_{t+\frac{k}{2^n}} - W_{\frac{k}{2^n}})1_{A_k^n}$ 是 \mathcal{G}_t 可测的,故 B_t 是 \mathcal{G}_t 可测的。

再验证 (iii)。任取 $0 \le t_0 \le t_1 \le \cdots \le t_m$, $f \in C_b(\mathbb{R}^m)$ 和 \mathcal{G}_{t_0} 可测集 A,由 τ 的有界性, W_t 的连续性和控制收敛定理以及 W_t 的增量独立性,有

$$\mathbb{E}[1_{A}f(B_{t_{m}} - B_{t_{m-1}}, \cdots, B_{t_{1}} - B_{t_{0}})]$$

$$= \mathbb{E}[1_{A} \lim_{n \to \infty} \sum_{k=1}^{\infty} f(W_{t_{m} + \frac{k}{2^{n}}} - W_{t_{m-1} + \frac{k}{2^{n}}}, \cdots, W_{t_{1} + \frac{k}{2^{n}}} - W_{t_{0} + \frac{k}{2^{n}}})1_{\left[\frac{k-1}{2^{n}} \le \tau < \frac{k}{2^{n}}\right]}]$$

$$= \lim_{n \to \infty} \sum_{k=1}^{\infty} \mathbb{E}[1_{A \cap \left[\frac{k-1}{2^{n}} \le \tau < \frac{k}{2^{n}}\right]} f(W_{t_{m} + \frac{k}{2^{n}}} - W_{t_{m-1} + \frac{k}{2^{n}}}, \cdots, W_{t_{1} + \frac{k}{2^{n}}} - W_{t_{0} + \frac{k}{2^{n}}})]$$

$$= \lim_{n \to \infty} \sum_{k=1}^{\infty} \mathbb{E}\left[1_{A \cap \left[\frac{k-1}{2^n} \le \tau < \frac{k}{2^n}\right]}\right] \mathbb{E}\left[f(W_{t_m} - W_{t_{m-1}}, \cdots, W_{t_1} - W_{t_0})\right]$$

$$=P(A)\mathbb{E}[f(W_{t_m}-W_{t_{m-1}},\cdots,W_{t_1}-W_{t_0})].$$

取 $m = 1, t_0 = t, t_1 = s + t$,则 $B_{s+t} - B_t \sim \mathcal{N}(0, s)$,且 $B_{s+t} - B_t \vdash \mathcal{G}_t$ 独立。综上, $B_t \vdash \mathcal{G}_t$ 一种朗运动。

最后证明 $(B_t)_{t\geq 0}$ 与 \mathcal{G}_0 独立。从先前的证明中,我们已经得到,任取 $0=t_0\leq t_1\leq \cdots \leq t_m$ 有 $(B_{t_m}-B_{t_{m-1}},\cdots,B_{t_1}-B_{t_0})$ 与 \mathcal{G}_0 独立。故 $(B_t)_{t\geq 0}$ 与 \mathcal{G}_0 独立。

三、

- 1. W_t 为鞅, $f(x) = e^{\lambda |x|}$ 为凸函数, 故 $f(W_t) = e^{\lambda |W_t|}$ 为下鞅。
- 2. 由鞅不等式可得:

$$P(\sup_{0 \le s \le t} |W_s| > x) = P(\sup_{0 \le s \le t} e^{\lambda |W_s|} > e^{\lambda x}) \le e^{-\lambda x} \mathbb{E}[e^{\lambda |W_t|}]$$
$$\le 2e^{-\lambda x} \mathbb{E}[e^{\lambda W_t}] = 2e^{-\lambda x} e^{\frac{\lambda^2 t}{2}}.$$

故
$$P(\sup_{0 \le s \le t} |W_s| > x) \le \inf_{\lambda > 0} 2e^{-\lambda x} e^{\frac{\lambda^2 t}{2}} = 2e^{-\frac{x^2}{2t}}$$
。

3. 同上:

$$P(\sup_{0 \le s \le t} |x_s| > x) \le e^{-\lambda x} \mathbb{E}[e^{\lambda |x_t|}] \le 2e^{-\lambda x} \mathbb{E}[e^{\lambda x_t}] = 2e^{-\lambda x} \mathbb{E}[e^{\frac{\lambda^2}{2} \int_0^t \sigma_s^2 ds}]$$
$$< 2e^{-\lambda x} e^{2\lambda^2 t}.$$

故
$$P(\sup_{0 \le s \le t} |x_s| > x) \le \inf_{\lambda > 0} 2e^{-\lambda x} e^{2\lambda^2 t} = 2e^{-\frac{x^2}{8t}}$$
。 $c = \frac{1}{8}$ 。

4. 对任意 $\lambda \in \mathbb{R}$, $\mathcal{E}_t^{\lambda} = e^{i\lambda x_{t\wedge\tau_1} + \frac{\lambda^2}{2}\langle x \rangle_{t\wedge\tau_1}}$ 是 \mathbb{L}^1 -可积的。容易验证 $(\mathcal{E}_t^{\lambda})_{t\geq 0}$ 是鞅。取 $\lambda \in (0, \frac{\pi}{2})$,由于 $|x_{t\wedge\tau_1}| \leq 1$,所以有

$$1 = \mathbb{E}[\Re(\mathcal{E}_t^{\lambda})] = \mathbb{E}[\cos(\lambda x_{t \wedge \tau_1}) e^{\frac{\lambda^2}{2} \langle x \rangle_{t \wedge \tau_1}}] \ge \cos(\lambda) \mathbb{E}[e^{\frac{\lambda^2 (t \wedge \tau_1)}{8}}].$$

记 $\mu=\frac{\lambda^2}{8}$,令 $t\to\infty$,由控制收敛定理可得: $\mathbb{E}[e^{\mu\tau_1}]\leq (\cos(\sqrt{8\mu}))^{-1}<\infty$,得证。

5. (假设 $\sigma\sigma^T \in S_4^d$ 。) 可以,因为 x_t 的模第一次超过 1 的时刻是小于等于 x_t 的第一个分量 x_t^1 的绝对值第一次超过 1 的时刻的。具体来说,定义 $\nu = \inf\{t \geq 0 : |x_t^1| \geq 1\}$,则 $\tau_1 \leq \nu$ 。

同上: 取 $\lambda \in (0, \frac{\pi}{2})$, 有:

$$1 = \mathbb{E}\left[\Re\left(e^{i\lambda x_{t\wedge\nu}^1 + \frac{\lambda^2}{2}\langle x\rangle_{t\wedge\nu}^1}\right)\right] \ge \cos(\lambda)\mathbb{E}\left[e^{\frac{\lambda^2}{2}\int_0^{t\wedge\nu}\sum_{i=1}^d \sigma_{1,i,s}^2 \mathrm{d}s}\right]$$
$$\ge \cos(\lambda)\mathbb{E}\left[e^{\frac{\lambda^2(t\wedge\nu)}{8}}\right].$$

记 $\mu=\frac{\lambda^2}{8}$,令 $t\to\infty$,由控制收敛定理可得: $\mathbb{E}[e^{\mu\tau_1}]\leq (\cos(\sqrt{8\mu}))^{-1}<\infty$ 。

四、 $\mathcal{E}_t = e^{\int_0^t \dot{h}_s dW_t - \frac{1}{2} \int_0^t \dot{h}_s^2 ds}$, $(\mathcal{E}_t)_{0 \leq t < \infty}$ 是鞅。由 $\dot{h}_s \in \mathbb{L}^2$ 可得,对于任意 p > 1, $\mathbb{E}[\mathcal{E}_t^p] \leq e^{\frac{p^2 - p}{2} \int_0^\infty \dot{h}_s^2 ds}$ 。所以 \mathcal{E}_t 是一致可积的,定义 $\mathcal{E}_\infty = e^{\int_0^\infty \dot{h}_s dW_t - \frac{1}{2} \int_0^\infty \dot{h}_s^2 ds}$,则 $(\mathcal{E}_t)_{0 \leq t \leq \infty}$ 是鞅。

定义概率测度 \tilde{Q} 满足 $\frac{\mathrm{d} \tilde{Q}}{\mathrm{d} \mathbb{P}} = \mathcal{E}_{\infty}$,由于 W_t 是布朗运动,由 Girsanov 定理可得, $\tilde{Q}_X \stackrel{d}{=} \mathbb{P}$ 。 $\frac{\mathrm{d} \mathbb{Q}}{\mathrm{d} \mathbb{P}} = \frac{\mathrm{d} \mathbb{P}_X}{\mathrm{d} \tilde{Q}_X} = \frac{\mathrm{d} \mathbb{P}}{\mathrm{d} \tilde{Q}} \circ X^{-1} = \mathcal{E}_{\infty}^{-1} \circ X^{-1}$,于是可得

$$H(\mathbb{Q}|\mathbb{P}) = \mathbb{E}_{\mathbb{Q}}[\log \frac{d\mathbb{Q}}{d\mathbb{P}}] = \mathbb{E}_{\mathbb{P}_X}[\log(\mathcal{E}_{\infty}^{-1} \circ X^{-1})]$$

$$= \mathbb{E}_{\mathbb{P}_X}[(\log \mathcal{E}_{\infty}^{-1}) \circ X^{-1}] = \mathbb{E}_{\mathbb{P}}[(\log \mathcal{E}_{\infty}^{-1})]$$

$$= \mathbb{E}_{\mathbb{P}}[-\int_0^{\infty} \dot{h}_s dW_t + \frac{1}{2} \int_0^{\infty} \dot{h}_s^2 ds]$$

$$= \frac{1}{2} \int_0^{\infty} \dot{h}_s^2 ds$$

五、 任取一个光滑函数 ϕ ,考虑 Dirichlet 问题:

$$\begin{cases} \Delta u = 0 & x \in D, \\ u = \phi & x \in \partial D. \end{cases}$$

任取 $x \in D$,记 B_t^x 为从 x 出发的 2 维布朗运动,记 $\tau = \inf\{t \geq 0: B_t^x \in \partial D\}$ 。由椭圆方程的 Feynman-Kac 公式可得, $u(x) = \mathbb{E}[\phi(B_\tau^x)]$ 。且 $u \in C^2(D) \cap C(\bar{D})$ 。

假设存在题设中的 u,由于对任意 $x \in \partial D$,有 u(x) = 0,因此 $\phi = 0$,于是 $u(x) = \mathbb{E}[\phi(B^x_{\tau})] = 0$ 对任意 $x \in D$ 成立。这与 u(0) = 1 矛盾。故满足题意的 u 不存在。

六、 由题可知,以下随机微分方程有强解:

$$\begin{cases} dX_t = \sqrt{2a(X_t)}dW_t + b(X_t)dt, \\ X_0 = 0. \end{cases}$$

记 $\tau = \inf\{t \ge 0 : x_0 + X_t \in \partial D\}$,由 $Lu(x) \ge 0, x \in D$ 和Ito公式,有:

$$\mathbb{E}[u(x_0 + X_{t \wedge \tau})] = u(x_0) + \mathbb{E}\left[\int_0^{t \wedge \tau} Lu(x_0 + X_s) ds\right] \ge u(x_0).$$

又因为 x_0 是最大值点,所以 $u(x_0 + X_{t \wedge \tau}) = u(x_0)$ P-a.s.

如果 $x_0 \in \partial D$,得证。否则,任取 $y \in D$,存在连续函数 $\phi: [0,1] \to D$,使得 $\phi(0) = x_0, \phi(1) = y$,且 $\phi([0,1]) \subset D$ 。由 support 定理,对任意 $\epsilon > 0$,记 $A_{\epsilon} = [\sup_{t \in [0,1]} |X_t - (\phi(t) - x_0)| \le \epsilon]$,有 $P(A_{\epsilon}) > 0$ 。

因此,在正概率集 A_{ϵ} 上,有 $u(\phi(1 \wedge \tau)) \geq u(x_0) - \epsilon$ 。又 $u(y) = u(\phi(1)) = u(\phi(1 \wedge \tau)) \geq u(x_0) - \epsilon$,由于 ϵ 的任意性,可得 $u(y) = u(x_0)$ 。由于 $y \in D$ 的任意性,可得 $u(x) = u(x_0), \forall x \in D$ 。得证。

对任意一个 [t,T] 上的控制 α_0 和对应的状态过程 $X_t^{\alpha_0}$ 以及任意 $h \in (0,T-t]$,有 $J(t,x,\alpha_0)=\mathbb{E}_{t,x}[J(t+h,X_{t+h}^{\alpha_0|_{[t,t+h]}},\alpha_0|_{(t+h,T]})]$ 。现在记 [t+h,T] 上的最优控制为 $\tilde{\alpha}^y$,也就是说,对任意 y,有 $u(t+h,y)=J(t+h,y,\tilde{\alpha}^y)$ 。记 $\alpha_1=\tilde{\alpha}^{X_{t+h}^{\alpha_0|_{[t,t+h]}}}$,记 $\alpha_2=\alpha_0\mathbf{1}_{[t,t+h]}+\alpha_1\mathbf{1}_{(t+h,T]}$,则有:

$$u(t,x) \leq J(t,x,\alpha_{2}) = \mathbb{E}_{t,x}[J(t+h,X_{t+h}^{\alpha_{2}|_{[t,t+h]}},\alpha_{2}|_{(t+h,T]})]$$

$$= \mathbb{E}_{t,x}[J(t+h,X_{t+h}^{\alpha_{0}|_{[t,t+h]}},\alpha_{1}|_{(t+h,T]})]$$

$$= \mathbb{E}_{t,x}[u(t+h,X_{t+h}^{\alpha_{0}})]$$

$$= u(t,x) + \mathbb{E}_{t,x}[\int_{t}^{t+h} (\partial_{t}u + L^{\alpha_{0}}u)(r,X_{r}^{\alpha_{0}})dr].$$

令 $h \to 0^+$, 则有 $\partial_t u + L^{\alpha_0} u \ge 0$ 。由 α_0 的任意性就能得到:

$$\partial_t u + \frac{1}{2} \inf_{\alpha \in A} \{ \sigma_{ik}(x, \alpha) \sigma_{jk}(x, \alpha) \partial_{ij} u(x) \} \ge 0.$$

上述证明中,令 h=0,则 $\tilde{\alpha}^x$ 为 [t,T] 上的最优控制,对任意 $\tilde{h}\in (0,T-t]$ 同理可得: $u(t,x)=\mathbb{E}_{t,x}[u(t+\tilde{h},X_{t+\tilde{h}}^{\tilde{\alpha}^x})]=u(t,x)+\mathbb{E}_{t,x}[\int_t^{t+\tilde{h}}(\partial_t u+L^{\tilde{\alpha}^x}u)(r,X_{t}^{\tilde{\alpha}^x})\mathrm{d}r]$ 。令 $\tilde{h}\to 0^+$,则有:

$$\partial_t u + \frac{1}{2} (\sigma_{ik}(x, \tilde{\alpha}^x) \sigma_{jk}(x, \tilde{\alpha}^x) \partial_{ij} u(x)) = 0.$$

综上, u 满足 HJB 方程:

$$\begin{cases} \partial_t u + \frac{1}{2} \inf_{\alpha \in A} \{ \sigma_{ik}(x, \alpha) \sigma_{jk}(x, \alpha) \partial_{ij} u(x) \} \ge 0, \\ u(T, x) = g(x). \end{cases}$$