MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2012 ROUND 7 TEAM QUESTIONS ANSWERS

A) Given: a, b are relatively prime integers, a > b. Compute the <u>minimum</u> perimeter of $\triangle ABC$ in which $(\cos \angle A) < \frac{1}{10}$.

B) In the 8 x 8 grid at the right there are squares of three different sizes that do not contain the "X".

Consider all possible squares on this grid from 1×1 through 8×8 inclusive. How many of these squares do not contain the "X"?

C) Let R denote the radius of circle O which is circumscribed about square ABCD. Let (r_1, r_2, r_3) be the radii of the circles centered at

Let (r_1, r_2, r_3) be the radii of the circles centered at P, Q and S respectively.

Circle Q and S are tangent at O.

Circle Q is also tangent to two sides of the square.

Circle *P* is externally tangent to square *ABCD* and internally tangent to circle *O*.

If $r_1 + r_2 + r_3 = kR$, compute k as a simplified fraction.

D) Given:
$$f(x) = \begin{cases} 2 \cdot 4^x + A + 3 & \text{if } x \ge 2 \\ A \log_4 x + B & \text{if } 0 < x < 2 \end{cases}$$
 is a piecewise function and $A + B = 17$.

Compute the ordered pair of integers (A, B) for which this function is continuous at x = 2.

E) Given:
$$x = 2$$
, $y < 0$, $z > 0$ and $\frac{x+y}{z} = \frac{y+z}{x} = \frac{x+z}{y}$

Compute the <u>largest</u> possible value of y.

F) Compute the <u>maximum</u> number of sides in a regular polygon in which the number of diagonals is less than the degree measure of an interior angle.