

System Dependability Lab Exercises on Safety Assessment of Static Systems

Guohao DAI

Friday 28th October, 2022

1. Introduction

I have studied and compared three Computing Platform Designs that should support three applications $(A_1, A_2 \text{ and } A_3)$. Each application A_i is implemented by two tasks A_{iL} and A_{iR} . The application A_i fails if both tasks A_{iL} and A_{iR} fail. A task fails if all the computers that can host it fail. We are interested in the following Failure Conditions:

 FC_{A_i} loss of application A_i , with $i \in \{1,2,3\}$.

FC_One_Appli loss of at least one application.

All the FC are classified CATASTROPHIC for an operation time of $T = 10^3 h$.

Question 1. What are the qualitative and quantitative safety requirements associated to the FCs? Response: The reason of all the FC are classified CATASTROPHIC, the qualitative and quantitative safety requirements associated to the FCs are:

Criticality	Qualitative requirement	Quantitative requirement
CATASTROPHIC	$order \geq 2$	$\overline{\Lambda} \le 10^{-9}$ / flight hour

2. Computing Platform Design – solution 1

Figure 1 presents the first solution for the computer platform design. In this solution the **application fails** if its computer fails. We assume that the loss of a computer is modelled by an exponential distribution of failure rate $\lambda = 10^{-5}$. h^{-1} .

Figure 1: Solution 1 - one computer per task

Question 2

1. Create a new file and build the fault-tree for the failure conditions FC_{A_i} and FC_One_Appli .

2. Compute the *Minimal Cut Sets* for FC_{A_i} and FC_One_Appli .

(1) The *Minimal Cut Sets* for FC_One_Appli:

No.	Quantity	Probability	Percent	Eve	ents
1	2	9.90058e-05	0.333333	C3L	C3R
2	2	9.90058e-05	0.333333	C2L	C2R
3	2	9.90058e-05	0.333333	C1L	C1R

(2) The *Minimal Cut Sets* for FC_{A_1} :

No.	Quantity	Probability	Percent	Eve	ents
1	2	9.90058e-05	1	C1L	C1R

(3) The *Minimal Cut Sets* for FC_{A_2} :

No.	Quantity	Probability	Percent	Events	
1	2	9.90058e-05	1	C2L	C2R

(4) The *Minimal Cut Sets* for FC_{A_3} :

No.	Quantity	Probability	Percent	Eve	ents
1	2	9.90058e-05	1	C3L	C3R

- 3. Compute the $\it mean\ failure\ rate$ of $\it FC_{A_i}$ and $\it FC_One_Appli$.
 - (1) The $mean\ failure\ rate$ of FC_One_Appli is:

$$\overline{\Lambda}_{One_Appli} = \frac{P\big(FC_{A_1}\big) + P\big(FC_{A_2}\big) + P\big(FC_{A_3}\big)}{T} = 3 \times \frac{9.90 \times 10^{-5}}{10^3} \approx 3 \times 10^{-7}$$

(2) The *mean failure rate* of FC_{A_i} is:

$$\begin{split} \overline{\Lambda}_{FC_{A_1}} &= \frac{P(FC_{A_1})}{T} \approx \frac{9.90 \times 10^{-5}}{10^3} = 9.90 \times 10^{-8} \approx 10^{-7} \\ \overline{\Lambda}_{FC_{A_2}} &= \frac{P(FC_{A_2})}{T} \approx \frac{9.90 \times 10^{-5}}{10^3} = 9.90 \times 10^{-8} \approx 10^{-7} \\ \overline{\Lambda}_{FC_{A_3}} &= \frac{P(FC_{A_3})}{T} \approx \frac{9.90 \times 10^{-5}}{10^3} = 9.90 \times 10^{-8} \approx 10^{-7} \end{split}$$

4. Are the Qualitative and Quantitative requirements enforced for failure conditions FC_{A_i} and FC_One_Appli ? Justify the answer.

Response:

The Qualitative and Quantitative requirements are not enforced for failure conditions FC_{A_i} and $FC_{-}One_{-}Appli$. Because the order of each FC equals 2 (= 2) and mean failure rate $\overline{\Lambda}$ is more than $10^{-9} (\geq 10^{-9})$.

3. Computing Platform Design – solution 2

Figure 2 describes the solution 2 for the computing platform design. In this solution the application fails if its computer fails **except** for task A_{1L} (resp. A_{3R}) that fails **if both the computers** C_{1L} and C_{1Lb} (resp. C_{3R} and C_{3Rb}) fail.

Figure 2: Solution 2 - backup computers for tasks A_{1L} and A_{3R}

Question 3

1. Create a new file and build the fault-tree for the failure conditions FC_{A_i} and FC_One_Appli .

2. Compute the *Minimal Cut Sets* for FC_{A_i} and FC_One_Appli .

(1) The $Minimal\ Cut\ Sets$ for FC_One_Appli :

No.	Quantity	Probability	Percent	Events		
1	2	9.90058e-05	0.980488	C2L	C2R	
2	3	9.85124e-07	0.00975602	C3L	C3R_a	C3R_b
3	3	9.85124e-07	0.00975602	C1L_a	C1L_b	C1R

(2) The *Minimal Cut Sets* for FC_{A_1} :

No.	Quantity	Probability	Percent		Events	
1	3	9.85124e-07	1	C1L_a	C1L_b	C1R

(3) The *Minimal Cut Sets* for FC_{A_2} :

No.	Quantity	Probability	Percent		Events	
1	2	9.90058e-05	1	C2L	C2R	

(4) The *Minimal Cut Sets* for FC_{A_3} :

No.	Quantity	Probability	Percent		Events	
1	3	9.85124e-07	1	C3L	C3R_a	C3R_b

3. Compute the *mean failure rate* of FC_{A_i} and FC_One_Appli .

(1) The $mean\ failure\ rate$ of FC_One_Appli is:

$$\overline{\Lambda}_{One_Appli} = \frac{P\left(FC_{A_1}\right) + P\left(FC_{A_2}\right) + P\left(FC_{A_3}\right)}{T} \approx \frac{P\left(FC_{A_2}\right)}{T} \approx 10^{-7}$$

(2) The *mean failure rate* of FC_{A_i} is:

$$\begin{split} \overline{\Lambda}_{FC_{A_1}} &= \frac{P(FC_{A_1})}{T} \approx \frac{9.85 \times 10^{-7}}{10^3} = 9.85 \times 10^{-10} \approx 10^{-9} \\ \overline{\Lambda}_{FC_{A_2}} &= \frac{P(FC_{A_2})}{T} \approx \frac{9.90 \times 10^{-5}}{10^3} = 9.90 \times 10^{-8} \approx 10^{-7} \\ \overline{\Lambda}_{FC_{A_3}} &= \frac{P(FC_{A_3})}{T} \approx \frac{9.85 \times 10^{-7}}{10^3} = 9.85 \times 10^{-10} \approx 10^{-9} \end{split}$$

4. Are the Qualitative and Quantitative requirements enforced for failure conditions FC_{Ai} and FC_One_Appli ? Justify the answer.

Response:

- The Qualitative and Quantitative requirements are not enforced for failure conditions FC_{A_2} and FC_{Dne_Appli} . Because the **order of** FC_{A_2} and FC_{Dne_Appli} are both equal 2, moreover, their mean failure rate $\overline{\Lambda}$ is more than 10^{-9} .
- The Qualitative and Quantitative requirements are enforced for failure conditions FC_{A_1} and FC_{A_3} . Because the order of each FC equals $3 (\geq 2)$ and mean failure rate $\overline{\Lambda}$ is less than $10^{-9} (\leq 10^{-9})$.

4. Computing Platform Design – solution 3

The solution 3 of the computing platform design is described by the figure 3. In this solution the application fails if its computer fails and if the spare computer S_{pL} (resp. S_{pR}) cannot be used as a backup. The spare S_{pL} (resp. S_{pR}) can be used by:

- A_{1L} (resp. A_{1R}) if C_{1L} (resp. C_{1R}) fails,
- A_{2L} (resp. A_{2R}) if C_{2L} (resp. C_{2R}) fails and not used by A_{1L} (resp. A_{1R}),
- A_{3L} (resp. A_{3R}) if C_{3L} (resp. C_{3R}) fails and not used by A_{1L} , or A_{2L} (resp. A_{1R} , or A_{2R}).

Figure 13: Solution 3 - one computer per task and one spare per side

Question 4.

1. Create a new file and build the fault-tree for the failure conditions FC_{A_i} and FC_One_Appli .

2. Compute the $Minimal\ Cut\ Sets$ for $\ FC_{A_i}$ and $\ FC_One_Appli$.

(1) The *Minimal Cut Sets* for FC_One_Appli:

. ,			- 11				1
No.	Quantity	Probability	Percent		Even	ts	
1	4	9.80215e-09	0.0714286	C2L	C2R	SPL	SPR
2	4	9.80215e-09	0.0714286	C1R	C2L	C2R	SPL
3	4	9.80215e-09	0.0714286	C1L	C2L	C2R	SPR
4	4	9.80215e-09	0.0714286	C1L	C1R	C2L	C2R
5	4	9.80215e-09	0.0714286	C2L	C2R	C3L	C3R_a
6	4	9.80215e-09	0.0714286	C2R	C3L	C3R_a	SPL
7	4	9.80215e-09	0.0714286	C1L	C2R	C3L	C3R_a
8	4	9.80215e-09	0.0714286	C1L	C1R	SPL	SPR
9	4	9.80215e-09	0.0714286	C1L	C3L	C3R_a	SPR
10	4	9.80215e-09	0.0714286	C1L	C1R	C3L	C3R_a
11	4	9.80215e-09	0.0714286	C3L	C3R_a	SPL	SPR
12	4	9.80215e-09	0.0714286	C1R	C3L	C3R_a	SPL
13	4	9.80215e-09	0.0714286	C2L	C3L	C3R_a	SPR
14	4	9.80215e-09	0.0714286	C1R	C2L	C3L	C3R_a

(2) The *Minimal Cut Sets* for FC_{A_1} :

No.	Quantity	Probability	Percent		Even	ts	
1	4	9.80215e-09	1	C1L	C1R	SPL	SPR

(3) The	Minimal	Cut Sets for	FC_{A_2} :
---------	---------	--------------	--------------

No.	Quantity	Probability	Percent	Events				
1	4	9.80215e-09	0.25	C2L	C2R	SPL	SPR	
2	4	9.80215e-09	0.25	C1L	C2L	C2R	SPR	
3	4	9.80215e-09	0.25	C1R	C2L	C2R	SPL	
4	4	9.80215e-09	0.25	C1L	C1R	C2L	C2R	

(4) The *Minimal Cut Sets* for FC_{A_2} :

No.	Quantity	Probability	Percent	Events				
1	4	9.80215e-09	0.1111111	C2L	C2R	C3L	C3R_a	
2	4	9.80215e-09	0.1111111	C2R	C3L	C3R_a	SPL	
3	4	9.80215e-09	0.1111111	C1L	C2R	C3L	C3R_a	
4	4	9.80215e-09	0.1111111	C1L	C3L	C3R_a	SPR	
5	4	9.80215e-09	0.1111111	C1L	C1R	C3L	C3R_a	
6	4	9.80215e-09	0.1111111	C3L	C3R_a	SPL	SPR	
7	4	9.80215e-09	0.1111111	C1R	C3L	C3R_a	SPL	
8	4	9.80215e-09	0.1111111	C2L	C3L	C3R_a	SPR	
9	4	9.80215e-09	0.1111111	C1R	C2L	C3L	C3R_a	

- 3. Compute the *mean failure rate* of FC_{A_i} and FC_One_Appli .
 - (1) The *mean failure rate* of FC_One_Appli is:

$$\overline{\Lambda}_{One_Appli} = \frac{P\left(FC_{A_1}\right) + P\left(FC_{A_2}\right) + P(FC_{A_3})}{T} \approx 14 \times \frac{9.80 \times 10^{-9}}{T} \approx 1.4 \times 10^{-10}$$

(2) The *mean failure rate* of FC_{A_i} is:

$$\begin{split} \overline{\Lambda}_{FC_{A_1}} &= \frac{P\left(FC_{A_1}\right)}{T} \approx \frac{9.80 \times 10^{-9}}{10^3} = 9.80 \times 10^{-12} \\ \overline{\Lambda}_{FC_{A_2}} &= \frac{P\left(FC_{A_2}\right)}{T} \approx 4 \times \frac{9.80 \times 10^{-9}}{10^3} = 3.92 \times 10^{-11} \\ \overline{\Lambda}_{FC_{A_3}} &= \frac{P\left(FC_{A_3}\right)}{T} \approx 9 \times \frac{9.80 \times 10^{-9}}{10^3} = 8.82 \times 10^{-11} \end{split}$$

4. Are the Qualitative and Quantitative requirements enforced for failure conditions FC_{Ai} and FC_One_Appli ? Justify the answer.

Response:

The Qualitative and Quantitative requirements are enforced for failure conditions FC_{A_i} and $FC_{-}One_{-}Appli$. Because **the order of each** FC **equals 4** (\geq **2**) and **mean failure rate** $\overline{\Lambda}$ **is less than** $\mathbf{10^{-9}}$ (\leq $\mathbf{10^{-9}}$).

5. Computing Platform Design - DAL Allocation

The group of Basic Computers is independent from Spare Computers:

$$\begin{split} BasicComputers &= \{C_{1L}, C_{2L}, C_{3L}, C_{1Lb}, C_{1R}, C_{2R}, C_{3R}, C_{3Rb}\} \\ SpareComputers &= \{S_{pL}, S_{pR}\} \end{split}$$

Within a group Basic or Spare, all computers are dependent.

Question 5 Knowing the independent group, for each solution complete the DAL allocation table 1 to allocate a DAL to the computers of the platform.

Samuelter (EC)	DAL(EC)	Acceptable Frequency
Severity (FC)	DAL(FC)	(Order of Magnitude)
CAT	A	10 ⁻⁹
HAZ	В	10^{-7}
MAL	С	10 ⁻⁵
MIN	D	10^{-3}
NSE	Е	-

Table - Link between severity and DAL

(1) The DAL allocation table of Solution 1:

EC	Initial	MCS	Components							
FC	DAL	MCS	C_{1L}	C_{2L}	C_{3L}	C_{1R}	C_{2R}	C_{3R}		
FC_{A_1}	A	$\{C_{1L},C_{1R}\}$	$\geq A$	-	-	$\geq A$	-	-		
FC_{A_2}	A	$\{C_{2L},C_{2R}\}$	-	$\geq A$	-	-	$\geq A$	-		
FC_{A_3}	A	$\{C_{3L},C_{3R}\}$	-	-	$\geq A$	-	-	$\geq A$		
		$\{C_{1L},C_{1R}\}$	$\geq A$	-	-	$\geq A$	-	-		
FC_One_Appli	A	$\{C_{2L},C_{2R}\}$	-	$\geq A$	-	-	$\geq A$	-		
		$\{C_{3L},C_{3R}\}$	-	-	$\geq A$	-	-	$\geq A$		
	Final		$\geq A$	$\geq A$	$\geq A$	$\geq A$	$\geq A$	$\geq A$		

(2) The DAL allocation table of Solution 2:

FC	Initial	MCS	Components							
FC	DAL	MCS	C_{1L}	C_{2L}	C_{3L}	C_{1L_b}	C_{1R}	C_{2R}	C_{3R}	C_{3R_b}
FC_{A_1}	A	$\{C_{1L}, C_{1R}, C_{1L_b}\}$	$\geq A$	-	-	$\geq A$	$\geq A$	-	ı	1
FC_{A_2}	A	$\{C_{2L},C_{2R}\}$	-	$\geq A$	-	-	1	$\geq A$	ı	1
FC_{A_3}	A	$\{C_{3L}, C_{3R}, C_{3R_b}\}$	-	-	$\geq A$	-	1	-	$\geq A$	$\geq A$
		$\{C_{1L},C_{1R},C_{1L_b}\}$	$\geq A$	-	-	$\geq A$	$\geq A$	-	1	1
FC_One_Appli	A	$\{C_{2L},C_{2R}\}$		$\geq A$	-	-	-	$\geq A$	1	-
		$\{C_{3L}, C_{3R}, C_{3R_b}\}$	-	-	$\geq A$	-	1	-	$\geq A$	$\geq A$
	$\geq A$	$\geq A$	$\geq A$	$\geq A$	$\geq A$	$\geq A$	$\geq A$	$\geq A$		

(3) The DAL allocation table of Solution 3:

	Initial	readile of Solution 5.				Comp	onent	s		
FC	DAL	MCS	C_{1L}	C_{2L}	C_{3L}	C_{1R}	C_{2R}	C_{3R_a}	S_{pL}	S_{pR}
FC_{A_1}	A	$\{C_{1L}, C_{1R}, S_{pL}, S_{pR}\}$	$\geq A$	-	-	$\geq A$	-	-	≥ C	≥ C
		$\{C_{2L},C_{2R},S_{pL},S_{pR}\}$	-	$\geq A$	-	1	$\geq A$	1	≥ C	≥ C
EC	A	$\{C_{1L}, C_{2L}, C_{2R}, S_{pR}\}$	$\geq A$	$\geq A$	-	1	$\geq A$	1	-	≥ C
FC_{A_2}	A	$\{C_{1R}, C_{2L}, C_{2R}, S_{pL}\}$	-	$\geq A$	-	$\geq A$	$\geq A$	-	≥ C	-
		$\{C_{1L}, C_{1R}, C_{2L}, C_{2R}\}$	$\geq A$	$\geq A$	-	$\geq A$	$\geq A$	-	-	-
		$\{C_{2L}, C_{2R}, C_{3L}, C_{3R_a}\}$	-	$\geq A$	$\geq A$	-	$\geq A$	$\geq A$	-	-
		$\{C_{2R}, C_{3L}, C_{3R_a}, S_{pL}\}$	-	-	$\geq A$	-	$\geq A$	$\geq A$	≥ C	-
		$\{C_{1L}, C_{2R}, C_{3L}, C_{3R_a}\}$	$\geq A$	-	$\geq A$	-	$\geq A$	$\geq A$	-	-
		$\{C_{1L}, C_{3L}, C_{3R_a}, S_{pR}\}$	$\geq A$	-	$\geq A$	-	-	$\geq A$	-	≥ C
FC_{A_3}	A	$\{C_{1L}, C_{1R}, C_{3L}, C_{3R_a}\}$	$\geq A$	-	$\geq A$	$\geq A$	-	$\geq A$	-	-
		$\{C_{3L}, C_{3R_a}, S_{pL}, S_{pR}\}$	-	-	$\geq A$	-	-	$\geq A$	≥ C	≥ C
		$\{C_{1R}, C_{3L}, C_{3R_a}, S_{pL}\}$	-	-	$\geq A$	$\geq A$	-	$\geq A$	≥ C	-
		$\{C_{2L},C_{3L},C_{3R_a},S_{pR}\}$	-	$\geq A$	$\geq A$	-	-	$\geq A$	-	≥ C
		$\{C_{1R}, C_{2L}, C_{3L}, C_{3R_a}\}$	-	$\geq A$	$\geq A$	$\geq A$	-	$\geq A$	-	-
		$\{C_{2L}, C_{2R}, S_{pL}, S_{pR}\}$	-	$\geq A$	-	-	$\geq A$	-	≥ C	≥ C
		$\{C_{1L}, C_{2L}, C_{2R}, S_{pR}\}$	$\geq A$	$\geq A$	-	-	$\geq A$	-	-	≥ C
		$\{C_{1R}, C_{2L}, C_{2R}, S_{pL}\}$	-	$\geq A$	-	$\geq A$	$\geq A$	-	≥ C	-
		$\{C_{1L}, C_{1R}, C_{2L}, C_{2R}\}$	$\geq A$	$\geq A$	-	$\geq A$	$\geq A$	-	-	-
		$\{C_{2L}, C_{2R}, C_{3L}, C_{3R_a}\}$	-	$\geq A$	$\geq A$	-	$\geq A$	$\geq A$	-	-
		$\{C_{2R}, C_{3L}, C_{3R_a}, S_{pL}\}$	-	-	$\geq A$	-	$\geq A$	$\geq A$	≥ C	-
FC_One_Appli	A	$\{C_{1L}, C_{2R}, C_{3L}, C_{3R_a}\}$	$\geq A$	-	$\geq A$	-	$\geq A$	$\geq A$	-	-
I C_Onc_Appit	11	$\{C_{1L}, C_{1R}, S_{pL}, S_{pR}\}$	$\geq A$	-	-	$\geq A$	-	-	≥ C	≥ C
		$\{C_{1L}, C_{3L}, C_{3R_a}, S_{pR}\}$	$\geq A$	-	$\geq A$	-	-	$\geq A$	-	≥ C
		$\{C_{1L}, C_{1R}, C_{3L}, C_{3R_a}\}$	$\geq A$	-	$\geq A$	$\geq A$	-	$\geq A$	-	-
		$\{C_{3L}, C_{3R_a}, S_{pL}, S_{pR}\}$	-	-	$\geq A$	-	-	$\geq A$	≥ C	≥ C
		$\{C_{1R}, C_{3L}, C_{3R_a}, S_{pL}\}$	-	-	$\geq A$	$\geq A$	-	$\geq A$	≥ C	-
		$\{C_{2L}, C_{3L}, C_{3R_a}, S_{pR}\}$	-	$\geq A$	$\geq A$	-	-	$\geq A$	-	≥ C
		$\{C_{1R}, C_{2L}, C_{3L}, C_{3R_a}\}$	-	$\geq A$	$\geq A$	$\geq A$	-	$\geq A$	-	-
	Final		$\geq A$	≥ C	≥ C					

6. Computing Platform Design – Failed components

It is not possible to repair failed components in any airport so it should be possible to fly the aircraft safely with some components failed.

Question 6 Duplicate the table 2 in your report and complete:

• The first one considering the qualitative requirement (i.e. satisfy FC_One_appli i order bound); Response: if (number of components > 2) then ("OK") else ("KO")

					comp	onents				
Solution	C_{1L}	C_{2L}	C_{3L}	C_{1L_b}	C_{1R}	C_{2R}	C_{3R} / C_{3R_a}	C_{3R_b}	S_{pL}	S_{pR}
1	KO	KO	KO	-	KO	KO	KO	-	-	-
2	OK	KO	OK	OK	OK	KO	KO	OK	-	-
3	OK	OK	OK	-	OK	OK	OK	-	OK	OK

• The second one considering the qualitative requirement (i.e. satisfy FC_One_appli i mean failure rate bound).

Response: if (mean failure rate $\Lambda \le 10^{-9}$) then ("OK") else ("KO")

Sal	utio		components										
Solutio n		C_{1L}	C_{2L}	C_{3L}	C_{1L_b}	C_{1R}	C_{2R}	C_{3R} / C_{3R_a}	C_{3R_b}	S_{pL}	S_{pR}		
1	Λ	10^{-5}	10^{-5}	10^{-5}	ı	10^{-5}	10^{-5}	10^{-5}	i	-	ı		
1		KO	KO	KO	ı	KO	KO	KO	i	-	ı		
2	$\overline{\Lambda}$	10^{-7}	10^{-5}	10^{-7}	10^{-7}	10^{-7}	10^{-5}	10^{-7}	10^{-7}	-	-		
2		KO	KO	KO	KO	KO	KO	KO	KO	-	-		
3	Λ	> 10 ⁻⁹	> 10 ⁻⁹	> 10 ⁻⁹	ı	> 10 ⁻⁹	> 10 ⁻⁹	> 10 ⁻⁹	i	> 10 ⁻⁹	> 10 ⁻⁹		
3	sd	KO	KO	KO	-	KO	KO	KO	-	KO	KO		

7. Computing Platform Design – Comparison

We suppose that the cost of a solution mainly depends on the number of computers and their associated DAL (i.e. costs are: $DAL_A = 20$, $DAL_B = 15$, $DAL_C = 5$; $DAL_D = 4$; $DAL_E = 0$).

Question 7 Copy and complete the table 3 to compare the three solutions with respect to their cost, safety and its capability to fly with a faulty computer. What is your preferred solution? Can you imagine a better solution?

Response:

The table of solution comparison is shown as below:

Solution	Fulfilled safet	y requirement	Acceptable with	Cost	
Solution	Qualitative	Quantitative	failed component	Cost	
1	OK	KO	KO	120	
2	OK	KO	KO	160	
3	OK	OK	KO	130	

From a qualitative and quantitative point of view, it is beneficial to increase the spare node. But it also has a strong correlation with cost.