Análisis II – Análisis matemático II – Matemática 3

Segundo Cuatrimestre 2022

Práctica 4: Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.

Ejercicio 1. Verificar el teorema de Stokes para el hemisferio superior $z = \sqrt{1 - x^2 - y^2}$, $z \ge 0$, y el campo vectorial $\mathbf{F}(x, y, z) = (x, y, z)$.

Ejercicio 2. Sea S la superficie cilíndrica con tapa, que es unión de dos superficies S_1 y S_2 , donde S_1 es el conjunto de (x,y,z) con $x^2+y^2=1,\ 0\leq z\leq 1$ y S_2 es el conjunto de (x,y,z) con $x^2+y^2+(z-1)^2=1,\ z\geq 1$, orientadas con la normal que apunta hacia afuera del cilindro y de la esfera, respectivamente. Sea $\mathbf{F}(x,y,z)=(zx+z^2y+x,z^3yx+y,z^4x^2)$. Calcular $\int_S(\nabla\times\mathbf{F})\cdot d\mathbf{S}$.

Ejercicio 3.

(a) Considerar dos superficies S_1 y S_2 con la misma frontera ∂S . Describir, mediante dibujos, como deben orientarse S_1 y S_2 para asegurar que

$$\iint_{S_1} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \iint_{S_2} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$$

(b) Deducir que si S es una superficie cerrada, entonces

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = 0$$

(una superficie cerrada es aquella que constituye la frontera de una región en el espacio; así, por ejemplo, una esfera es una superficie cerrada).

(c) Calcular $\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$, donde S es el elipsoide $x^2 + y^2 + 2z^2 = 10$, y $\mathbf{F} = (\sin xy, e^x, -yz)$.

Ejercicio 4. Estudiar la aplicabilidad del teorema de Stokes al campo $\mathbf{F} = (-\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2}, 0)$ y la superficie S, en cada uno de los siguientes casos:

- (a) S = círculo de radio a > 0 centrado en el origen en el plano z = 0.
- (b) $S = \text{región del plano } z = 0 \text{ entre } x^2 + y^2 = 1 \text{ y } x + y = 1.$

Ejercicio 5.

- (a) Hallar el trabajo realizado por el campo de fuerzas gravitacional $\mathbf{F} = -GmM\frac{\mathbf{X}}{||\mathbf{X}||^3}, \mathbf{X} \in \mathbb{R}^3$, cuando el punto de aplicación de \mathbf{F} se desplaza de (1,1,1) a (2,2,2) a lo largo de
 - (i) el segmento que une los dos puntos
 - (ii) una poligonal formada por aristas paralelas a los ejes del cubo del cual (1,1,1) y (2,2,2) son vértices opuestos diagonalmente.
- (b) Comprobar que la integral curvilínea sólo depende de los puntos inicial y final. Calcular $\nabla \times \mathbf{F}$ y hallar una función potencial $f : \mathbb{R}^3 \{0\} \to \mathbb{R}$ para \mathbf{F} .

Ejercicio 6. Determinar cuál de los siguientes campos vectoriales \mathbf{F} en el plano es el gradiente de una función escalar f. Si existe dicha f, hallarla.

- (a) $\mathbf{F}(x,y) = (x,y)$
- (b) $\mathbf{F}(x,y) = (x^2 + y^2, 2xy)$
- (c) $\mathbf{F}(x,y) = (\cos xy xy \sin xy, x^2 \sin xy)$

Ejercicio 7. Evaluar $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s}$, donde

- (a) $\mathbf{F} = (2xyz + \sin x, x^2z, x^2y)$, y \mathcal{C} es la curva que está parametrizada por $(\cos^5 t, \sin^3 t, t^4)$, $0 \le t \le \pi$
- (b) $\mathbf{F} = (\cos xy^2 xy^2 \sin xy^2, -2x^2y \sin xy^2, 0)$, y \mathcal{C} es la curva parametrizada por $(e^t, e^{t+1}, 0)$, -1 < t < 0.

Ejercicio 8. Calcular

$$\int_{\mathcal{C}} \left(y + \sin x \right) dx + \left(\frac{3}{2} z^2 + \cos y \right) dy + 2x^3 dz,$$

donde C es la curva orientada parametrizada por $\sigma(t) = (\operatorname{sen} t, \cos t, \operatorname{sen} 2t), 0 \le t \le 2\pi$.

Sugerencia: Observar que \mathcal{C} se encuentra en la superficie z=2xy.

Ejercicio 9. Sea $f \in C^1(B)$ donde B es una bola en \mathbb{R}^3 . Deducir que si $\nabla f = 0$ en B se sigue que f es constante en B.

Ejercicio 10. Calcular la integral de línea $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s}$ donde \mathbf{F} es el campo vectorial definido por:

$$\mathbf{F}(x, y, z) = (2xy + z^2, x^2 - 2yz, 2xz - y^2)$$

y \mathcal{C} es la curva que está contenida en la esfera $x^2+y^2+z^2=1$ y el plano de ecuación y=x recorrida desde el punto $(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0)$ al polo norte.

Ejercicio 11. Rehacer el ejercicio 16) de la Práctica 2, usando el Teorema de Gauss.

Ejercicio 12. Calcular $\int_S (x+y+z) \, dS$ donde S es el borde de la bola unitaria, es decir

$$S = \{(x, y, z)/x^2 + y^2 + z^2 = 1\}$$

Ejercicio 13. Analizar la aplicabilidad del Teorema de Gauss para el campo gravitatorio $\mathbf{F} = -GMm\frac{\mathbf{r}}{r^3}$ donde \mathbf{r} es el vector que apunta de la posición de la masa m a la M, r es su longitud y G es la constante gravitatoria, considerando como región Ω la bola unitaria en \mathbb{R}^3 .

Ejercicio 14. Calcular $\iint_S \mathbf{F} \cdot d\mathbf{S}$, siendo $\mathbf{F} = (x^3, y^3, z^3)$ y S la esfera de radio R con la normal que apunta hacia adentro.

Ejercicio 15. Sea \mathcal{C} la curva en el plano xz dada en polares por:

$$r(\varphi) = \frac{4\sqrt{3}}{9} (2 - \cos(2\varphi))$$
 para $\frac{\pi}{6} \le \varphi \le \frac{5\pi}{6}$,

donde φ es el ángulo que forma el radio vector con el semieje positivo de las z. Sea S la superficie que se obtiene por **revolución** de esta curva alrededor del eje z.

Figura 1

En el primer dibujo se muestra la superficie S, en el segundo se realizó un corte de la misma para que se aprecie mejor su forma.

Calcular el flujo a través de S en el sentido "externo" del campo

$$F(x, y, z) = (x, y, -2z).$$

Ejercicio 16. Calcular el flujo del campo $F(x,y,z)=(0,0,a^2-x^2-y^2)$ a través de las siguientes secciones oblicuas del cilindro $x^2+y^2\leq a^2$:

(a) Sección oblicua determinada por la intersección del cilindro con el plano de ecuación y + z = 1, de modo que la normal en el punto (0,0,1) apunte en la dirección (0,1,1).

(b) Sección oblicua determinada por la intersección del cilindro con el plano de ecuación z=0, de modo que la normal en el punto (0,0,0) apunte en la dirección (0,0,1).

¿Depende el flujo del área de la sección?. Justifique.

Ejercicio 17. Dada la función $f(x) = \frac{1}{2}xe^{2-2x}$ podemos describir la superficie de la calabaza de un mate como la superficie de rotación alrededor del eje z de la curva $x = f(z), 0 \le z \le 1$. Para una idea gráfica ver la figura.

FIGURA 2

Cuando el mate se encuetra cargado de yerba y de agua caliente, el calor es un campo dado por

$$F(x, y, z) = \left(x, y, z - \frac{1}{2}\right)$$

Calcular el flujo térmico saliente que atraviesa la superficie de la calabaza del mate.

Ejercicio 18. Sea S la superficie dada por el gráfico de la función $f(x,y) = \frac{1}{1+x^2+y^2}$ con $\|(x,y)\| \leq 1$ y sea $\mathbf{F}(x,y,z) = \Big(\frac{zx}{x^2+y^2} \;,\; \frac{zy}{x^2+y^2} \;,\; 0\Big).$ Hallar

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}.$$

Piense antes de actuar.

Ejercicio 19. Se sabe que div rot G = 0 para todo campo vectorial $G \in C^1$. Además, si $F \in C^1(\mathbb{R}^3)$ es tal que div $\mathbf{F} = 0$ en \mathbb{R}^3 , existe $\mathbf{G} \in C^2(\mathbb{R}^3)$ tal que $\mathbf{F} = \mathbf{rot} \, \mathbf{G}$. Por ejemplo, tomar

$$G_1(x, y, z) = \int_0^z F_2(x, y, t) dt - \int_0^y F_3(x, t, 0) dt,$$

$$G_2(x, y, z) = -\int_0^z F_1(x, y, t) dt,$$

$$G_3(x, y, z) = 0.$$

Considerar el campo gravitatorio ${f F}=-GmM{{r}\over r^3}.$ Verificar que div ${f F}=0.$ ¿Existe un campo ${f G}\in$ $C^2(\mathbb{R}^3 \setminus \{0\})$ tal que $\mathbf{F} = \mathbf{rot} \, \mathbf{G}$?

Sugerencia: Ver Ejercicio 12.

Ejercicio 20. ¿Es cada uno de los siguientes campos vectoriales el rotor de algún otro campo vectorial? De ser así, hallar el campo vectorial.

(a)
$$\mathbf{F} = (x, y, z)$$
.

(a)
$$\mathbf{F} = (x, y, z)$$
.
(b) $\mathbf{F} = (x^2 + 1, x - 2xy, y)$.

Ejercicio 21. Para cada R>0 sea $S_R=\left\{\left(x,y,z\right)/x^2+y^2+z^2=R^2\,,\,z\geq0\right\}$ orientada con la normal que apunta hacia arriba, y sea el campo

$$\mathbf{F}(x, y, z) = (xz - x\cos z, -yz + y\cos z, 4 - x^2 - y^2).$$

Determinar R de modo que el flujo del campo \mathbf{F} a través de S_R sea máximo.

Ejercicio 22. Sea V = (x, y, xy - z) el campo de velocidades de un fluido. Decidir si el fluido se está expandiendo.

Ejercicio 23. Calcular la cantidad de calor total que se pierde entre los tiempos t=0 y t=1 a través de las paredes, el techo y el suelo de una habitación que ocupa la región $[0,4] \times [0,5] \times [0,3]$ del espacio si la temperatura ambiente en el punto (x,y,z) en el instante t es $T=30-t-x^2-y^2-z^2$. (Suponemos que no hay fuentes ni pérdidas de calor dentro de la habitación y que la conductividad térmica del ambiente es 1).

Sugerencia: Utilizar la Ley de Fourier que dice que el flujo por unidad de tiempo de la densidad de calor es $-K\nabla T$ donde K es la conductividad térmica. Aquí, ∇T es el gradiente en las variables espaciales.

Ejercicio 24. Sea ρ la densidad de masa de un fluido que se mueve según un campo de velocidades **V**. Ver que la razón de variación en el tiempo de la densidad de masa ρ es $\rho_t = -\text{div}(\rho \mathbf{V})$.

Ejercicio 25. Usando el teorema de Gauss, probar las Identidades de Green:

$$\iint_{\partial\Omega} f \nabla g \cdot \mathbf{n} \, dS = \iiint_{\Omega} (f \Delta g + \nabla f \cdot \nabla g) \, dx \, dy \, dz,$$
$$\iint_{\partial\Omega} (f \nabla g - g \nabla f) \cdot \mathbf{n} \, dS = \iiint_{\Omega} (f \Delta g - g \Delta f) \, dx \, dy \, dz.$$

Aquí **n** es la normal exterior al dominio $\Omega \subset \mathbb{R}^3$, f, g son de clase $C^2(\Omega) \cap C^1(\overline{\Omega})$ y, para una función $u \in C^2(\Omega)$, $\Delta u = u_{xx} + u_{yy} + u_{zz}$.

Ejercicio 26. Decimos que $\lambda \in \mathbb{R}$ es un autovalor del operador Δ definido en el Ejercicio 25 en Ω si existe una función $f \in C^2(\Omega) \cap C^1(\overline{\Omega})$ con f = 0 en $\partial \Omega$, $f \not\equiv 0$ tal que $\Delta f = \lambda f$ en Ω . En ese caso decimos que f es una autofunción asociada a λ .

Utilizando las identidades de Green del Ejercicio 25, mostrar que si $\lambda \neq \mu$ son autovalores de Δ en Ω y f y g son autofunciones asociadas a λ y μ respectivamente se tiene

$$\iiint_{\Omega} f \, g \, dV = 0$$

Ejercicio 27. Sea B una bola en \mathbb{R}^3 . Ver que no puede haber una función $f \not\equiv 0, f \in C^2(B) \cap C^1(\overline{B})$ que satisfaga

$$\Delta f = 0$$
 en B , $f = 0$ en ∂B .

Sugerencia: Utilizar las identidades de Green del Ejercicio 25 para deducir que $\nabla f = 0$ en B. A continuación utilizar el Ejercicio 9 para deducir que f es constante.

Ejercicio 28. Se sabe que la circulación de un campo eléctrico genera una variación en el flujo del campo magnético de modo que se tiene la relación

$$\oint_{\mathcal{C}} \mathbf{E} \cdot d\mathbf{s} = -\frac{1}{c} \frac{d}{dt} \iint_{S} \mathbf{H} \cdot d\mathbf{S} \qquad (Ley \ de \ Faraday)$$

donde c es una constante positiva, S es una superficie orientada cuyo borde es C y la circulación se da en el sentido de recorrido de C inducido por la normal elegida sobre S.

Deducir que se tiene

$$\mathbf{H}_t + c \operatorname{\mathbf{rot}} \mathbf{E} = 0.$$

Sugerencia: Considerar un disco de radio ρ en un plano como superficie S. Aplicar el Teorema de Stokes, dividir por el área del disco, hacer ρ tender a 0 y posteriormente utilizar que el plano era arbitrario.