MAT168 HW2

Andrew Jowe

November 3, 2022

(1)

Original Problem

$$\zeta = 2x_1 - 6x_2 + 0x_3$$
$$x_4 = -2 + x_1 + x_2 + x_3$$
$$x_5 = 1 - 2x_1 + x_2 - x_3$$

Setup

$$N = \begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = [NB] = \begin{bmatrix} -1 & -1 & -1 & 1 & 0 \\ 2 & -1 & 1 & 0 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} -2\\1 \end{bmatrix}$$

$$c = \begin{bmatrix} 2 \\ -6 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_B^* = \begin{bmatrix} x_4^* \\ x_5^* \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Iteration 1

Step 1

$$x_B^* \ngeq 0$$

Step 2

$$z_N^* = -c_N = \begin{bmatrix} 2 \\ -6 \\ 0 \end{bmatrix}$$

$$j=2$$

Step 3

$$\Delta x_B = B^{-1} N e_j$$

$$\Delta x_B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\Delta x_B = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

Step 4

$$t = \left(max_{i \in B} \frac{\Delta x_i}{x_i^*}\right)^{-1}$$

$$t = \left(\max_{i \in B} \left\{ \frac{-2}{-1}, \frac{-1}{1} \right\} \right)^{-1}$$

$$t = \frac{-1}{1},$$

Step 5

$$i = 5$$

Step 6

$$\Delta z_N = -\left(B^{-1}N\right)^T e_i$$

$$\Delta z_N = -\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix} \right)^T \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\Delta z_N = -\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}^T \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\Delta z_N = \begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\Delta z_N = \begin{bmatrix} -2\\1\\-1 \end{bmatrix}$$

Step 7

$$s = \frac{z_j^*}{\Delta z_j} = \frac{-6}{1} = -6$$

Step 8

$$x_2^* =$$

(2)

(3)

Optimal Dictionary

$$\zeta = 13 - 3x_2 - x_4 - x_6$$

$$x_3 = 1 + x_2 + 3x_4 - 2x_6$$

$$x_1 = 2 - 2x_2 - 2x_4 + x_6$$

$$x_5 = 1 + 5x_2 + 2x_4$$

Given

$$B = \{3, 1, 5\}, \ N = \{2, 4, 6\}$$

$$c = [5, 4, 3, 0, 0, 0]$$

$$z_N^* = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 3 & -2 \\ -2 & -2 & 1 \\ 5 & 2 & 0 \end{bmatrix}$$

Calculations

$$-B^{-1}N = \begin{bmatrix} 1 & 3 & -2 \\ -2 & -2 & 1 \\ 5 & 2 & 0 \end{bmatrix}$$

Range for c_2

$$\Delta c = [0, 1, 0, 0, 0, 0]$$
$$\Delta c_B^T = [0, 0, 0]$$
$$\Delta c_N^T = [0, 1, 0]$$

Then:

$$\Delta z_N = (B^{-1}N)^T \Delta c_B - \Delta c_N$$

$$\Delta z_N = \begin{bmatrix} 1 & 3 & -2 \\ -2 & -2 & 1 \\ 5 & 2 & 0 \end{bmatrix}^T \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Since $z_N^* + t\Delta z_N \ge 0$:

$$\begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Range for c_3

$$\Delta c = [0, 0, 1, 0, 0, 0]$$

(4)

Constraints

The production facilities can produce 11k units per month. Let $\{x\}_1^3$ be the packages shipped from San Francisco and $\{x\}_4^6$ be the packages shipped from Sacramento.

$$x_1 + x_2 + x_3 \le 11$$
$$x_4 + x_5 + x_6 \le 11$$

We have to meet the demand at the destinations which is 10k at Davis, 8k at Winters, and 4k at Woodland. Let x_1, x_4 be the packages shipped to Davis. Let x_2, x_5 be the packages shipped to Winters. Let x_3, x_6 be the packages shipped to Woodland.

$$x_1 + x_4 \ge 10$$

$$x_2 + x_5 \ge 8 \\ x_3 + x_6 \ge 4$$

Objective Function

We want to minimize cost of both facilities. Let vector c be the cost to ship.

 $min c^T x$

$$min\ 10x_1 + 8x_2 + 12x_3 + 4x_4 + 11x_5 + 6x_6$$

Online Solver

We used this online solver: https://online-optimizer.appspot.com

Input

var x1 >= 0;

var x2 >= 0;

var x3 >= 0;

var x4 >= 0;

var x5 >= 0;

var x6 >= 0;

```
minimize z: 10*x1 + 8*x2 + 12*x3 + 4*x4 + 11*x5 + 6*x6;

subject to c11: x1 + x2 + x3 <= 11;

subject to c12: x4 + x5 + x6 <= 11;

subject to c13: x1 + x4 >= 10;

subject to c14: x2 + x5 >= 8;

subject to c15: x3 + x6 >= 4;

end;
```

Output Model Overview

Label	Value
Problem type	Linear optimization
Objective	Minimize z
Optimal objective value	146
Solver Status	Optimal
Total number of variables	6
Continuous variables	6
Number of constraints	6
Non-binary nonzero coefficients	18

Output Model Variables

Variable ×	Туре	Value ~	Value bounds	Status v	Reduced obj coef ~	Obj coef tol interval
x1	Real	3	[0, Inf]	Basic	0	[-1, Inf]
x2	Real	8	[0, Inf]	Basic	0	[-6, Inf]
x3	Real	0	[0, Inf]	At lower bound	0	
x4	Real	7	[0, Inf]	Basic	0	
x5	Real	0	[0, Inf]	At lower bound	9	
x6	Real	4	[0, Inf]	Basic	0	

Output Model Constraints

Name	Lhs value V	Rhs bounds ~	Slack ×	Status v	Dual value V	Rhs tol interval
c11	11	[-Inf, 11]	0	Basic	0	
c12	11	[-Inf, 11]	0	At upper bound	-6	[11, 14]
c13	10	[10, Inf]	0	At lower bound	10	[7, 10]
c14	8	[8, Inf]	0	At lower bound	8	[0, 8]
c15	4	[4, Inf]	0	At lower bound	12	[1, 4]

Output Model Log Messages

Reading model section from editor.mod ... 16 lines were read

```
Generating z...
```

Generating c11...

Generating c12...

Generating c13...

Generating c14...

Generating c15...

Model has been successfully generated

Scaling...

A: min—aij— = 1 max—aij— = 12 ratio = 12

GM: min—aij— = 0.7681450856702011 max—aij— = 1.3018373985007101 ratio = 1.6947806121350972

EQ: min—aij— = 0.6030226891555273 max—aij— = 1 ratio = 1.6583123951777

Solving the model using the simplex optimizer

GLPK Simplex Optimizer, v4.49

6 rows, 6 columns, 18 non-zeros

Preprocessing...

5 rows, 6 columns, 12 non-zeros

Scaling...

A: min—aij— = 1 max—aij— = 1 ratio = 1

Problem data seem to be well scaled

Constructing initial basis...

Size of triangular part = 5

0: obj = 0 infeas = 22 (0)

*4: obj = 209 infeas = 0 (0)

*6: obj = 146 infeas = 0 (0)

OPTIMAL SOLUTION FOUND

Collaboration

All collaborators are listed (in alphabetical order) below:

- Anne
- Jack
- Dhruv
- Fengqin
- Zhongning
- Sterling

Academic Integrity

On my personal integrity as a student and member of the UCD community, I have not given, nor received and unauthorized assistance on this assignment.

Signature: Andrew Jowe