	doc_1		doc_2		decision	id
cases		Apoorva Sharma	authors	Marco Pavone Navid Azizan Apoorva Sharma		
	authors	Navid Azizan RuhiMarco Pavone	title	Sketching Curvature for Efficient Out-of-Distribution Detection for Deep Neural Networks		
			publication_date	2021-02-24 00:00:00		
	title	Sketching Curvature for Efficient Out-of- Distribution Detection for Deep Neural Networks	source	SupportedSources.PAPERS_WITH_CODE		
			journal			
			volume			
	publication_date 2021-07-27 00:00:00		doi			
	source	SupportedSources.OPENALEX	urls	• https://arxiv.org/pdf/2102.12567v1.pdf	DUPLICATES	TES 111
	journal	Uncertainty in Artificial Intelligence		https://github.com/StanfordASL/SCOD		
	volume					
	doi	None	id	id2100165434279377660		
	urls	https://openalex.org/W3186504155	abstract	In order to safely deploy Deep Neural Networks (DNNs) within the perception pipelines of real-time decision making systems, there is a need for safeguards that can detect out-of-training-distribution (OoD) inputs both efficiently and accurately. Building on recent work leveraging the local curvature of DNNs to reason about epistemic		
	id	id4320951299594195266		uncertainty, we propose Sketching Curvature of OoD Detection (SCOD), an architecture-agnostic framework for equipping any trained DNN with a task-relevant epistemic uncertainty estimate. Offline, given a trained model and its training data, SCOD employs tools from matrix sketching to tractably compute a low-rank approximation of the		
	abstract			Fisher information matrix, which characterizes which directions in the weight space are most influential on the predictions over the training data. Online, we estimate		
	versions			uncertainty by measuring how much perturbations orthogonal to these directions can alter predictions at a new test input. We apply SCOD to pre-trained networks of varying architectures on several tasks, ranging from regression to classification. We demonstrate that SCOD achieves comparable or better OoD detection performance with lower computational burden relative to existing baselines.		
			versions			