Experiment No. 4

Aim: Apply the concept of recursion to solve a given problem.

Common:

1. Write a recursive function to find the factorial of a number and test it.

2. Write a recursive function which returns the nth term of the fibonacci series. Call it from main() to find the 1st n numbers of the fibonacci series.

3. Given a number n, print following a pattern without using any loop.

Example: Input: n = 16

Output: 16, 11, 6, 1, -4, 1, 6, 11, 16

Input: n = 10

Output: 10, 5, 0, 5, 10

4. Ackerman's function is defined by:

A(m,n)=n+1 if m=0

=A(m-1,1) if $m\neq 0$ and n=0

=A(m-1, A(m,n-1)) if $m\neq 0$ and $n\neq 0$

Write a function which given m and n returns A(m,n). Tabulate the values of A(m,n) for all m in the range 1 to 3 and all n in the range 1 to 6.

Batchwise Programs:

Batch 1: Given a room of area L x B. You have infinite number of tiles of size 2^n x 2^n , where n = 0, 1, 2, ... so on. The task is to find the minimum number of square tiles required to fill the given area with tiles.

Examples:

Input : L = 5, B = 6.

Output: 9

Area of 5 X 6 can be covered with minimum 9 tiles.

6 tiles of 1 \times 1, 2 tiles of 2 \times 2, 1 tile of 4 \times 4.

1x1		
1x1	4X4	
1x1		
1x1		
1x1	2x2	22
1x1		2x2

Input : L = 10, B = 5.

Output: 14

Batch 2: There are at least two sequences attributed to B. Recamán. One is the sequence a_n formed by taking $a_i=1$ and letting

 $a_n = a_{n-1}$ -n if a_{n-1} -n>0 and is new

 $=a_{n-1}+n$ otherwise

which can be succinctly defined as "subtract if you can, otherwise add."

The first few terms are

1, 3, 6, 2, 7, 13, 20, 12, 21, 11, ..so on.

Batch 3: Write a recursive function to return the minimum number of coins of given set of coin values that are required to produce a given amount. For example if you are given set of values {1,4,5}(indicating you had a supply of 1-cent,4-cent and 5-cent coins), and the amount 8, you should return 2, since the value 8 cents can be made with two 4-cent coins.

Batch 4: Write a program to find the value of y using recursive function, where $y=x^n$