Package 'manifold'

October 13, 2022

Title Operations for Riemannian Manifolds
Version 0.1.1
Description Implements operations for Riemannian manifolds, e.g., geodesic distance, Riemannian metric, exponential and logarithm maps, etc. Also incorporates random object generator on the manifolds. See Dai, Lin, and Müller (2021) <doi:10.1111 biom.13385="">.</doi:10.1111>
Depends R (>= 3.2.1)
Imports Rcpp, Matrix
LinkingTo Rcpp, RcppArmadillo
SystemRequirements C++11
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.2.1
Suggests testthat (>= 3.0.0)
Config/testthat/edition 2
NeedsCompilation yes
Author Xiongtao Dai [aut, cre, cph], Zhenhua Lin [aut]
Maintainer Xiongtao Dai <xdai@berkeley.edu></xdai@berkeley.edu>
Repository CRAN
Date/Publication 2022-10-04 10:20:05 UTC
R topics documented:
axisAngleRep basisTan.Euclidean coordToTanV createM dimensions distance.Euclidean ExpM

2 axisAngleRep

axis	AngleRep	<i>Retu</i> wiki				_	•															ht	tp	ıs:	://	en/	۱.
Index																											27
			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	_0
	tanVToCoord																										
	runifSphere																										
	rmfd																										
	rieLog.Euclidean .																										
	rieExp.Euclidean .																										
	projectTangent.Eucl																										
	project.Euclidean .																										
	origin.Euclidean																										
	Normalize																										17
	norm.Euclidean																										15
	metric.Euclidean .																										14
	manifold																										
	MakeSym																										
	LogMSPD																										
	LogM																										
	listAvailMfd																										
	is.finiteDim																										
	GetSettingName																										
	geodesicCurve																										
	frechetMedian																										
	frechetMean																										8

Description

Returns the angle representation of SO(3) matrices c.f. https://en.wikipedia.org/wiki/Axis-angle_representation

Usage

```
axisAngleRep(mfd, X)
```

Arguments

mfd A manifold object created by createM

X A matrix holding a vectorized SO(3) matrix in each column

Value

A matrix with 4 rows and the same number of columns as X. The first row contains the angles in rads (theta), and the last three rows correspond to the the axes with respect to which the rotations are performed.

basisTan.Euclidean 3

basisTan.Euclidean

Obtain an orthonormal basis on the tangent space

Description

Parametrize the tangent space at location p, so that the parameterized version contains an open neighborhood around the origin. (The dimension of v is potentially reduced).

Usage

```
## S3 method for class 'Euclidean'
basisTan(mfd, p)

## S3 method for class 'SO'
basisTan(mfd, p)

## S3 method for class 'SPD'
basisTan(mfd, p)

## S3 method for class 'Sphere'
basisTan(mfd, p)

## S3 method for class 'FlatTorus'
basisTan(mfd, p)
```

Arguments

mfd A manifold object created by createM

p A vector for a base point on the manifold

Value

An orthonormal basis matrix D, whose columns contain the basis vectors, so that 'D^T v' give the coordinates 'v0' for a tangent vector 'v', and 'D

Methods (by class)

- basisTan(Euclidean): An identity matrix
- basisTan(S0): An identity matrix
- basisTan(SPD): The basis is obtained from enumerating the (non-strict) lower-triangle of a square matrix. If i != j, the (i, j)th entry is mapped into a matrix with 1/sqrt(2) in the (i,j) and (j,i) entries and 0 in other entries; if (i == j), it is mapped to a matrix with 1 in the ith diagonal element and 0 otherwise. The mapped matrix is then vectorized to obtain the basis vector.

4 coordToTanV

• basisTan(Sphere): The basis at the north pole is [0, ..., 1, ..., 0] where the 1 is at the j = 2, ..., dAmbth location. The basis at a point p is obtained through rotating the basis from the north pole to p along the shortest geodesic.

• basisTan(FlatTorus): An identity matrix

coordToTanV

Transform the coordinates for the tangent space into a tangent vector

Description

Transform the coordinates w.r.t. a basis returned by [basisTan()] to tangent vectors

Usage

```
coordToTanV(mfd, p, V0, ...)
## Default S3 method:
coordToTanV(mfd, p, V0, ...)
```

Arguments

mfd	A manifold object created by createM
р	A vector for the base point
V0	A matrix or a vector containing the coordinates
	Passed into specific methods

Value

A matrix in which each column correspond to a different tangent vector

Methods (by class)

• coordToTanV(default): Method

createM 5

createM

Create an object to symbolize the manifold.

Description

Create an object to symbolize the manifold. Supports the Euclidean, the unit sphere, special orthogonal group, and symmetric positive definite (SPD) matrices with either the affine invariant or the log-Euclidean metric.

Usage

```
createM(mfdName)
```

Arguments

mfdName

One of 'Euclidean', 'Sphere', 'SO', 'AffInv', or 'LogEu'. The name is case sensitive.

Details

Overall, most of the arguments in the manifold functions respect recycling rules. If the input arguments are matrices with n rows corresponding to n points, then the manifold function will be applied to each of the n pairs; the returned value will be a matrix. If one input corresponds to n points and the other just one point, then the one point will be recycled. If each component corresponds to one point, the returned value will correspond to just one point.

Value

A structure 1 with class being 'mfdName'

dimensions

Dimensions in this package

Description

'calcGeomPar' calculates geometric parameter. 'calcIntDim' calculates the intrinsic dimensions. 'calcAmbDim' calculates the ambient dimensions. 'calcTanDim' calculates the number of tuples used to represent a tangent vector.

Usage

```
calcGeomPar(mfd, dimAmbient, dimIntrinsic, dimTangent)
calcIntDim(mfd, geomPar, dimAmbient, dimTangent)
calcAmbDim(mfd, geomPar, dimIntrinsic, dimTangent)
calcTanDim(mfd, geomPar, dimAmbient, dimIntrinsic)
```

6 distance.Euclidean

Arguments

mfd A manifold object created by createM
dimAmbient Dimension of the ambient space.
dimIntrinsic Intrinsic dimension of the manifold.
dimTangent The length of a tangent vector

geomPar The geometric parameter (e.g., SO(*))

Value

A scalar value for the geometric parameter

A scalar value for the intrinsic dimension

A scalar value for the ambient dimension

A scalar value for the number of components in the (implementation of the) tangent vector

distance.Euclidean Geo

Geodesic distance

Description

Geodesic distance

Usage

```
## S3 method for class 'Euclidean'
distance(mfd, X, Y, ...)

distance(mfd, X, Y, ...)

## S3 method for class 'L2'
distance(mfd, X, Y, ...)

## S3 method for class 'HS'
distance(mfd, X, Y, ...)

## S3 method for class 'Dens'
distance(mfd, X, Y, ...)

## S3 method for class 'S0'
distance(mfd, X, Y, ...)

## S3 method for class 'LogEu'
distance(mfd, X, Y, assumeLogRep = FALSE, ...)

## S3 method for class 'AffInv'
distance(mfd, X, Y, ...)
```

ExpM 7

```
## S3 method for class 'Sphere'
distance(mfd, X, Y, ...)
```

Arguments

mfd A manifold object created by createM

X, Y Matrices with n columns. The distance between each pair of columns is calcu-

lated. If either X or Y is a vector then it is recycled.

... Passed into specific methods

assumeLogRep Whether to assume the input are already the representations under the logarithm

man

Value

A vector with n entries containing the distances between pairs of points

Methods (by class)

• distance(Euclidean): Method

• distance(L2): Method

• distance(HS): Method

• distance(Dens): Method

• distance(S0): Method

 $\bullet \ \, \text{distance(LogEu): Method}$

• distance(AffInv): Method

• distance(Sphere): Method

ExpM

Matrix exponential

Description

ExpM(X) computes the matrix exponential using Armardillo.

Usage

ExpM(X)

Arguments

X A square matrix

Value

A matrix having the same size as the input

8 frechetMean

frechetMean

Calculate the Fréchet mean

Description

Calculate the Fréchet mean

Usage

```
frechetMean(mfd, X, ...)
## Default S3 method:
frechetMean(
    mfd,
    X,
    mu0,
    weight = NULL,
    tol = 1e-09,
    maxit = 1000,
    lam = 0.99,
    ...
)
```

Arguments

mfd	A manifold object created by createM
Χ	A matrix with each column being a point on the manifold.
	Passed into specific methods
mu0	A matrix of starting points. Each column corresponds to a starting point. If there are multiple columns, then a multistart algorithm is used.
weight	A vector of weights for the observations
tol	The threshold for determining convergence
maxit	Maximum iteration
lam	The step length

Value

A matrix with 1 column containing the Fréchet mean

Methods (by class)

• frechetMean(default): Default method

frechetMedian 9

frechetMedian

Calculate the Fréchet median

Description

Calculate the Fréchet median

Usage

```
frechetMedian(mfd, X, ...)
## Default S3 method:
frechetMedian(
    mfd,
    X,
    mu0,
    weight = NULL,
    tol = 1e-09,
    maxit = 1000,
    alpha = 1,
    ...
)
```

Arguments

mfd	A manifold object created by createM
Χ	A matrix with each column being a point on the manifold.
	Passed into specific methods
mu0	A matrix of starting points. Each column corresponds to a starting point. If there are multiple columns, then a multistart algorithm is used.
weight	A vector of weights for the observations
tol	The threshold for determining convergence
maxit	Maximum iteration
alpha	The step size parameter. See Fletcher et al. (2008) CVPR

Value

A matrix with 1 column containing the Fréchet median

Methods (by class)

• frechetMedian(default): Default method

10 geodesicCurve

		_	
geode	2510	rCu.	rve

Obtain the geodesic curve

Description

Obtain the geodesic curve

Usage

```
geodesicCurve(mfd, p, h, t)
## S3 method for class 'HS'
geodesicCurve(mfd, p, h, t)
## S3 method for class 'Sphere'
geodesicCurve(mfd, p, h, t)
```

Arguments

mfd	A class instance that represents the Riemannian manifold
p	The starting point of the geodesic curve
h	A matrix with each column representing a tangent vector. If there is only one tangent vector is supplied, then it is replicated to match the length of t
t	A vector, the time points where the curve is evaluated.

Details

```
The curve is \gamma(t) = \operatorname{Exp}_p(th)
```

Value

A matrix of points lying on a geodesic. Different columns correspond to different time points A matrix with each column representing a point on the manifold

Methods (by class)

- geodesicCurve(HS): Method
- geodesicCurve(Sphere): Geodesic curve stating at a point

GetSettingName 11

GetSettingName	Helper function for simulations	

Description

Get the name of the settings from a named list good for saving into a data frame or use as file name

Usage

```
GetSettingName(settings, digits = 3, display = c("short", "pretty", "tiny"))
```

Arguments

settings A named list. The names corresponding to the setting parameter names, and the

values are the parameter values

digits How many digits to use to format the numerical values

display Which version of the setting name to produce

Value

A character vector of setting names

is.finiteDim	Tell whether a manifold is a finite-dimensional one	
13.11111 CEDIIII	Teti whether a manifold is a finite-aimensional one	

Description

Tell whether a manifold is a finite-dimensional one

Usage

```
is.finiteDim(mfd)
```

Arguments

mfd

A manifold object created by createM

Value

A logical scalar indicating whether the manifold is finite-dimensional

LogM

listAvailMfd

List all available manifold names

Description

List all available manifold names

Usage

listAvailMfd()

Value

A character vector of the names of available manifolds

LogM

Matrix logarithm

Description

LogM(X) computes the matrix logarithm of a general matrix using Armardillo. The returned value is a complex matrix but converted into a real one.

Usage

LogM(X)

Arguments

Χ

A square matrix

Value

A matrix having the same size as the input

LogMSPD 13

LogMSPD	Matrix logarithm of a symmetric positive definite

Description

LogMSPD(X) computes the matrix logarithm of an SPD matrix using Armardillo. The returned value is a real matrix.

Usage

LogMSPD(X)

Arguments

X An SPD matrix

Value

A symmetric matrix

MakeSym	Make a symmetric matrix by specifying a near-symmetric matrix M, or the lower triangular elements lowerTri with diagonal.

Description

Make a symmetric matrix by specifying a near-symmetric matrix M, or the lower triangular elements lowerTri with diagonal.

Usage

```
MakeSym(M, lowerTri, doubleDiag = FALSE)
```

Arguments

M A near-symmetric matrix

lowerTri A vector containing the lower triangular elements of the matrix. This is an

alternative way to specify the matrix.

doubleDiag Only meaningful for lowerTri is not missing. Whether the diagonal elements

should be multiplied by sqrt(2) for doubling the squared norm of the lower tri-

angle

Value

A symmetric matrix

14 metric.Euclidean

manifold

manifold: Operations for Riemannian manifolds

Description

Implements operations for Riemannian manifolds, e.g., geodesic distance, Riemannian metric, exponential and logarithm maps, etc. Also incorporates random object generator on the manifolds

Details

References: Dai X, Lin Z, Müller HG. Modeling sparse longitudinal data on Riemannian manifolds. Biometrics. 2021;77(4):1328–41. Dai X, Lopez-Pintado S. Tukey's depth for object data. Journal of the American Statistical Association. 2021;In press.

Maintainer: Xiongtao Dai <xdai@berkeley.edu>

Author(s)

Xiongtao Dai <xdai@berkeley.edu> Zhenhua Lin

metric.Euclidean

Returns the Riemannian metric

Description

Returns the Riemannian metric

Usage

```
## S3 method for class 'Euclidean'
metric(mfd, p, U, V)

metric(mfd, p, U, V)

## Default S3 method:
metric(mfd, p = NULL, U, V)

## S3 method for class 'HS'
metric(mfd, p, U, V)

## S3 method for class 'Dens'
metric(mfd, p, U, V)

## S3 method for class 'S0'
metric(mfd, p, U, V)
```

norm.Euclidean 15

```
## S3 method for class 'LogEu'
metric(mfd, p, U, V)

## S3 method for class 'AffInv'
metric(mfd, p, U, V)

## S3 method for class 'Sphere'
metric(mfd, p, U, V)
```

Arguments

mfd	A manifold object created by createM
р	A vector containing the (single) base point on the manifold.
U, V	Matrices with n columns each containing a tangent vector. The metric of each pair of n columns is calculated.

Value

A vector with n entries containing the metric values

Methods (by class)

```
metric(Euclidean): Method
metric(default): Method
metric(HS): Method
metric(Dens): Method
metric(SO): Method
metric(LogEu): Method
metric(AffInv): Method
```

• metric(Sphere): Method

norm.Euclidean

Norm on the tangent space induced by the Riemannian metric

Description

Norm on the tangent space induced by the Riemannian metric

16 norm.Euclidean

Usage

```
## S3 method for class 'Euclidean'
norm(mfd, p, U)
norm(mfd, p, U)
## Default S3 method:
norm(mfd, p = NULL, U)
## S3 method for class 'L2'
norm(mfd, p, U)
## S3 method for class 'HS'
norm(mfd, p, U)
## S3 method for class 'Dens'
norm(mfd, p, U)
## S3 method for class 'S0'
norm(mfd, p, U)
## S3 method for class 'LogEu'
norm(mfd, p, U)
## S3 method for class 'AffInv'
norm(mfd, p, U)
## S3 method for class 'Sphere'
norm(mfd, p, U)
```

Arguments

mfd A manifold object created by createM

p, U Matrices with n columns. p stands for the base point(s) and U the tangent vec-

tor(s). The norm of each column in U is calculated w.r.t. the corresponding

column in p.

Value

A vector with n entries containing the norms of the tangent vectors

Methods (by class)

• norm(Euclidean): Method

• norm(default): Method

• norm(L2): Method

• norm(HS): Method

Normalize 17

norm(Dens): Methodnorm(S0): Method

norm(LogEu): Methodnorm(AffInv): Method

• norm(Sphere): Method

Normalize

Normalize a vector

Description

Normalize a vector

Usage

```
Normalize(v, tol = 1e-10)
```

Arguments

v A vector to be normalized to have a unit norm

tol The tolerance value for deciding the v is actually 0, cannot be normalized, and

thus return just the 0 vector

Value

A vector with the same length as 'v' but having unit Euclidean norm

origin.Euclidean

Returns the origin of the manifold

Description

Each manifold defined in this package has been designated a more or less reasonable choice of origin.

18 origin.Euclidean

Usage

```
## S3 method for class 'Euclidean'
origin(mfd, dimIntrinsic, ...)

origin(mfd, dimIntrinsic, ...)

## S3 method for class 'L2'
origin(mfd, dimIntrinsic, ...)

## S3 method for class 'HS'
origin(mfd, dimIntrinsic, ...)

## S3 method for class 'Dens'
origin(mfd, dimIntrinsic, ...)

## S3 method for class 'S0'
origin(mfd, dimIntrinsic, ...)

## S3 method for class 'SPD'
origin(mfd, dimIntrinsic, ...)

## S3 method for class 'SPD'
origin(mfd, dimIntrinsic, ...)
```

Arguments

mfd A manifold object created by createM dimIntrinsic An integer for the intrinsic dimension

... Passed into specific methods

Value

A matrix with 1 column, a designation of the origin on the manifold

Methods (by class)

- origin(Euclidean): Method
- origin(L2): Method
- origin(HS): Method
- origin(Dens): The uniform density
- origin(S0): The origin has 1 in the first ambient coordinate and 0 otherwise.
- \bullet origin(SPD): The origin is the identity matrix but vectorized.
- origin(Sphere): The origin has 1 in the first ambient coordinate and 0 otherwise.

project.Euclidean 19

project.Euclidean

Project data points in the ambient space onto the manifold

Description

Project data points in the ambient space onto the manifold

Usage

```
## S3 method for class 'Euclidean'
project(mfd, p)
project(mfd, p)
## S3 method for class 'L2'
project(mfd, p)
## S3 method for class 'HS'
project(mfd, p)
## S3 method for class 'Dens'
project(mfd, p)
## S3 method for class 'S0'
project(mfd, p)
## S3 method for class 'AffInv'
project(mfd, p)
## S3 method for class 'LogEu'
project(mfd, p)
## S3 method for class 'SPD'
project(mfd, p)
## S3 method for class 'Sphere'
project(mfd, p)
```

Arguments

mfd A manifold object created by createM

p A matrix of points to be projected to the manifold.

Value

A matrix in which columns correspond to points on the manifold

Methods (by class)

```
project(Euclidean): Method
project(L2): Method
project(HS): Method
project(Dens): Method
project(S0): Method
project(AffInv): Method
project(LogEu): Method
project(SPD): Method
project(Sphere): Method
```

projectTangent.Euclidean

Project data points in the ambient space onto the tangent space

Description

Project data points in the ambient space onto the tangent space

Usage

```
## S3 method for class 'Euclidean'
projectTangent(mfd, p, X, projMatOnly = FALSE, ...)

projectTangent(mfd, p, X, projMatOnly, ...)

## S3 method for class 'L2'
projectTangent(mfd, p, X, projMatOnly = FALSE, ...)

## S3 method for class 'HS'
projectTangent(mfd, p, X, projMatOnly = FALSE, ...)

## S3 method for class 'Dens'
projectTangent(mfd, p, X, projMatOnly, ...)

## S3 method for class 'SO'
projectTangent(mfd, p, X, projMatOnly = FALSE, ...)

## S3 method for class 'SPD'
projectTangent(mfd, p, X, projMatOnly = FALSE, ...)

## S3 method for class 'SPD'
projectTangent(mfd, p, X, projMatOnly = FALSE, ...)
```

rieExp.Euclidean 21

Arguments

mfd	A manifold object created by createM
p	A vector containing the base point on the manifold. Data X will be projected onto the tangent space of p.
X	A vector or a matrix containing the data points in terms of the coordinates in the ambient space.
projMatOnly	Whether to only return the projection matrix (FALSE) or the projected data points (TRUE, the default)
	Passed into specific methods

Value

A matrix in which columns correspond to points on the tangent spaces

Methods (by class)

```
projectTangent(Euclidean): MethodprojectTangent(L2): Method
```

• projectTangent(HS): Method

 $\bullet \ \mathsf{projectTangent}(\mathsf{Dens}) \colon Method$

 $\bullet \ \mathsf{projectTangent}(\mathsf{SO}) \colon Method$

• projectTangent(SPD): Method

• projectTangent(Sphere): Method

rieExp.Euclidean

Riemannian exponential map

Description

Riemannian exponential map

Usage

```
## S3 method for class 'Euclidean'
rieExp(mfd, p, V, ...)

rieExp(mfd, p, V, ...)

## S3 method for class 'L2'
rieExp(mfd, p, V, ...)

## S3 method for class 'HS'
rieExp(mfd, p, V, ...)
```

22 rieExp.Euclidean

```
## S3 method for class 'Dens'
rieExp(mfd, p, V, ...)

## S3 method for class 'S0'
rieExp(mfd, p, V, tol = 1e-10, ...)

## S3 method for class 'LogEu'
rieExp(mfd, p, V, ...)

## S3 method for class 'AffInv'
rieExp(mfd, p, V, ...)

## S3 method for class 'Sphere'
rieExp(mfd, p, V, ...)
```

Arguments

mfd	A manifold object created by createM
p, V	Matrices with n columns. The exponential map of each column in V is calculated w.r.t. the corresponding column in p.
	Passed into specific methods
tol	Tolerance for 'rieExp.SO'

Value

A matrix in which columns correspond to points on the manifold

Methods (by class)

```
• rieExp(Euclidean): Method
```

• rieExp(L2): Method

• rieExp(HS): Method

• rieExp(Dens): Method

• rieExp(S0): Method

• rieExp(LogEu): Method

• rieExp(AffInv): Method

• rieExp(Sphere): Method

rieLog.Euclidean 23

rieLog.Euclidean

Riemannian logarithm map

Description

Riemannian logarithm map

Usage

```
## S3 method for class 'Euclidean'
rieLog(mfd, p, X, ...)
rieLog(mfd, p, X, ...)
## S3 method for class 'L2'
rieLog(mfd, p, X, ...)
## S3 method for class 'HS'
rieLog(mfd, p, X, tol = 1e-07, ...)
## S3 method for class 'Dens'
rieLog(mfd, p, X, ...)
## S3 method for class 'S0'
rieLog(mfd, p, X, tol = 1e-10, ...)
## S3 method for class 'LogEu'
rieLog(mfd, p, X, ...)
## S3 method for class 'AffInv'
rieLog(mfd, p, X, ...)
## S3 method for class 'Sphere'
rieLog(mfd, p, X, tol = 1e-10, ...)
```

Arguments

mfd	A manifold object created by createM
p, X	Matrices with n columns. The logarithm map of each column in X is calculated w.r.t. the corresponding column in p .
	Passed into specific methods
tol	Tolerance for 'rieLog.SO'

Value

A matrix in which columns correspond to points on the tangent spaces

24 rmfd

Methods (by class)

```
• rieLog(Euclidean): Method
```

rieLog(L2): MethodrieLog(HS): Method

rieLog(Dens): MethodrieLog(S0): Method

rieLog(LogEu): Method

• rieLog(AffInv): Method

• rieLog(Sphere): Method

rmfd

Generate random variables on the manifold

Description

By default, random variables are generated by mapping isotropic Gaussian distributions on the tangent space back to the manifold using the exponential map

Usage

```
rmfd(mfd, n, dimIntrinsic, ...)
## Default S3 method:
rmfd(
   mfd,
   n,
   dimIntrinsic,
   p,
   dist = c("norm", "unif", "exp"),
   totalVar = 1,
   ...
)
```

Arguments

mfd A manifold object created by createM

n Sample size

dimIntrinsic The intrinsic dimension of the target manifold

... Passed into specific methods

p Optionally, specify the base point of the tangent space, on which random tangent vectors will be generated. Default to the origin of 'mfd'.

runifSphere 25

dist Either a string or a function, describing the distributions. If it is character, then

independent univariate r.v. following that distribution with total variance 1 is generated on the tangent space. If it is a function, it should specify the generation of the samples on the tangent space _coordinates_ (with dimension dimIntrinsic), and it must return a matrix for which the columns are the coordinates. Then it will be mapped to the tangent space at the origin and then to the manifold.

totalVar Total variance (sum of diagonal of the covariance matrix) of the tangent random

vector

Value

A matrix with n columns, each containing a random sample on the manifold

Methods (by class)

• rmfd(default): Default method

runifSphere Generate uniform random variables on the unit sphere

Description

Generate uniform random variables on the unit sphere

Usage

```
runifSphere(n, dimAmbient)
```

Arguments

n Sample size

dimAmbient The dimension of the ambient space

Value

A 'dimAmbient' by 'n' matrix. Each column is a random observation

26 tanVToCoord

tanVToCoord

Transform tangent vectors to their coordinates on the tangent space

Description

Transform the tangent vectors to coordinates w.r.t. the basis returned by [basisTan()]

Usage

```
tanVToCoord(mfd, p, V, ...)
## Default S3 method:
tanVToCoord(mfd, p, V, ...)
```

Arguments

mfd A manifold object created by createM

p A vector for the base point

V A matrix or a vector containing the tangent vectors

... Passed into specific methods

Value

A matrix in which each column correspond to a coordinate

Methods (by class)

• tanVToCoord(default): Method

Index

```
axisAngleRep, 2
basisTan (basisTan.Euclidean), 3
basisTan.Euclidean, 3
calcAmbDim (dimensions), 5
calcGeomPar (dimensions), 5
calcIntDim(dimensions), 5
calcTanDim(dimensions), 5
coordToTanV, 4
createM, 2-4, 5, 6-9, 11, 15, 16, 18, 19,
        21–24, 26
dimensions, 5
distance (distance. Euclidean), 6
distance.Euclidean, 6
ExpM, 7
frechetMean, 8
frechetMedian, 9
geodesicCurve, 10
GetSettingName, 11
is.finiteDim, 11
listAvailMfd, 12
LogM, 12
LogMSPD, 13
MakeSym, 13
manifold, 14
metric (metric. Euclidean), 14
metric.Euclidean, 14
norm (norm. Euclidean), 15
norm.Euclidean, 15
Normalize, 17
origin (origin. Euclidean), 17
origin.Euclidean, 17
```