Deep Learning em Imagens: aplicando CNNs com Keras e TensorFlow

Luis Vogado¹, Maíla Claro¹, Justino Santos^{1,2}, Rodrigo Veras¹

Programa de Pós-Graduação em Ciência da Computação - PPGCC ¹UFPI, ²IFPI

14 de novembro de 2019.

Introdução

- A Inteligência Artificial (IA) é um ramo de pesquisa da ciência da computação;
- A IA se preocupa em desenvolver sistemas computacionais inteligentes, isto é, sistemas que exibem características, as quais nós associamos com a inteligência no comportamento humano.
 - Exemplo: Compreensão da linguagem, aprendizado, raciocínio, resolução de problemas, entre outros.
- Em outras palavras, são tarefas executadas de modo fáceis por pessoas, porém difíceis de serem descritas formalmente, tais como o reconhecimento da fala, padrões e imagens.

Introdução

- O principal objetivo dos sistemas de inteligência artificial é executar tarefas como se um humano fosse executá-las.
 - Capacidade de raciocínio: aplicar regras lógicas a um conjunto de dados disponíveis para encontrar uma resposta.
 - Aprendizagem: aprender com um conjunto de dados disponíveis, atualizando o sistemas de erros e acertos, para no futuro agir de forma eficaz.
 - Reconhecer padrões: tanto padrões visuais, sensoriais como também de comportamento

Introdução

- Uma subárea da IA, que utiliza métodos computacionais para emular esse processo de intuição humana é o aprendizado de máquina (em inglês *Machine Learning* - ML);
- Em ML, a aprendizagem é feita por meio de treinamentos em banco de dados, que representam eventos e experiências passadas, possibilitando a construção de sistemas capazes de aprender de forma automática;

Redes Neurais Artificiais (RNAs)

- As RNAs são modelos matemáticos que tentam simular algumas das estruturas neurais biológicas, possuindo capacidade computacional adquirida através do aprendizado e generalização.
- Pode-se dizer então que as RNAs são capazes de reconhecer e classificar padrões e posteriormente generalizar o conhecimento adquirido.
- Deep Learning ou aprendizagem profunda é uma técnica de aprendizado de máquina desenvolvida a partir das Redes Neurais Artificiais (RNAs).

Redes Neurais Artificiais (RNAs)

Figura 1. Rede Neural Simples e Rede Neural Profunda (Deep Learning)

Redes Neurais Artificiais (RNAs)

Função de Ativação

- As funções de ativação servem para trazer a não-linearidades ao sistema, para que a rede consiga aprender qualquer tipo de funcionalidade.
- Há muitas funções, como Linear, Slgmoid, Tanh, Relu e Softmax.
- A mais indicada para redes convolucionais é a Relu por ser mais eficiente computacionalmente sem grandes diferenças de acurácia quando comparada a outras funções.
- Essa função zera todos os valores negativos da saída da camada anterior.

- Uma imagem pode ser definida como sendo a representação visual de um objeto.
- Do ponto de vista matemático, uma imagem é considerada uma função bidimensional f (x;y) onde x e y são coordenadas planas, e a amplitude de f em qualquer par de coordenadas (x;y) é chamada de intensidade ou nível de cinza da imagem no referido ponto.

- Pixel: abreviatura de Picture Element.
- Menor elemento de uma imagem.
- Permite a representação pontual de uma cor
 - Combinação de três cores (Red, Green, Blue)
 - Em representações padrões, cada cor tem 256 tonalidades

Figura 2. Imagem digital (a) com área de zoom de grupo de pixels em valores de cinza (b) e correspondentes valores digitais em (c)

Redes Neurais Convolucionais

- As CNNs fazem parte do conjunto de técnicas de Deep Learning. Essas redes convolucionais são uma classe de RNAs que modelam abstrações em alto nível através de imagens e camadas convolucionais dispostas de forma sequencial ou não.
- O conceito de CNN foi apresentado por Yann LeCun [Lecun et al. 1998] e Fukushima [Fukushima 1988] na década de 90. No entanto, apenas no século XXI essa tecnologia foi desenvolvida com eficácia.

Redes Neurais Convolucionais

Figura 3. As CNN modernas possuem milhares ou até milhões de parâmetros para serem otimizados

Camadas Convolucionais

Entrada

Filtro

 4
 2
 3

 3
 4
 2

 5
 4
 3

Saída

Figura 4: Operação realizada nas camadas convolucionais.

Camadas Convolucionais

0	0	0	0	0	0	•
0	167	166	167	169	169	
o	164	165	168	170	170	
0	160	162	166	169	170	
0	156	156	159	163	168	
0	155	153	153	158	168	
		75				

0	0	0	0	0	0	1
0	163	162	163	165	165	
0	160	161	164	166	166	
0	156	158	162	165	166	
0	155	155	158	162	167	
0	154	152	152	157	167	
	7722					

Input Channel #1 (Red)

-1	-1	1
0	1	-1
0	1	1

1	0	0
1	-1	-1
1	0	-1

Kernel Channel #2

0	1	1
0	1	0
1	-1	1

Kernel Channel #3

Output					
-25					
				:::::	

Camadas de Pooling

Figura 5: Operação de *maxpooling* realizada em um mapa de características aleatório.

Camadas Totalmente Conectadas

- As camadas densas ou totalmente conectadas (Fully-Connected layers -FCs) foram apresentadas inicialmente nas RNAs.
- São constituídas de neurônios que representam pesos e guardam o aprendizado da rede neural.
- Nas CNN's elas apresentam a mesma função e geralmente aparecem ao final da arquitetura, após inúmeras camadas convolucionais.
- A camada de classificação presente nas CNNs é do tipo densa, no entanto, apresenta uma função de ativação do tipo softmax, enquanto as FCs contam com ativação por meio da ReLu.

Rede Genérica

Arquiteturas e ImageNet

- A popularidade das CNNs cresceu durante o ImageNet *Large Scale Visual Recognition Challenge* (ILSVRC) [Russakovsky et al. 2015].
- Essa competição ocorreu a partir de 2010 por 7 anos ininterruptos e teve como principais desafios a classificação de imagens e detecção de objetos em larga escala.
- Durante essa competição foram propostas várias arquiteturas, dentre elas temos a AlexNet [Krizhevsky et al. 2012], Inception ou GoogLeNet [Szegedy et al. 2015], VGGNet [Simonyan and Zisserman 2014] e ResNet [He et al. 2016].

AlexNet [Krizhevsky et al. 2012]

Figura 6: Ilustração da AlexNet. Fonte: Krizhevsky et al. 2012

GoogLeNet [Szegedy et al. 2015]

Figura 7: Ilustração da GoogLeNet. Fonte: Szegedy et al. 2015

ResNet [He et al. 2016]

Figura 8: Residual Network com 34 camadas treináveis. Fonte: He et al. 2016

VGGNet [Simonyan and Zisserman 2014]

Figura 9: Ilustração da arquitetura VGGNet. Fonte: Simonyan and Zisserman 2014

Por dentro da VGG-16

- Visualização:
 - Sumário
 - Filtros
 - Mapas de características

Keras

Keras.io

Keras é uma API de alto nível para Redes Neurais Artificiais, escrita em python. capaz de executar sobre o **TensorFlow**, CNTK ou Theano.

TensorFlow

tensorflow.org

O TensorFlow é uma plataforma de código aberto para aprendizado de máquina. Possui um ecossistema flexível e abrangente que permite que os desenvolvedores construam e implantem facilmente aplicativos com ML.

Colaboratory

https://colab.research.google.com/

- Criando novo Python notebook.
- Configurar runtime
- Explorar o ambiente

Um pouco de prática

- Prática I
 - Criar CNN genérica
 - Visualização da rede (summary)
 - Carregar base de imagens (dataset interno)
 - Treinar o modelo
 - Avaliação dos resultados

 O que foi aprendido em um cenário é explorado para facilitar a aprendizagem em outro.

- Vantagens
 - Volume de dados de treinamento
 - Tempo
 - Hardware

Aprendizagem de máquina tradicional:

Ocorre isoladamente. O conhecimento/aprendizado adquirido em uma tarefa não é reaproveitado em outra.

Transferência de aprendizado:

A aprendizagem em novas tarefas utiliza o conhecimento adquirido em sistema anteriormente definidos.

Extração de características

Um pouco de prática

- Prática II (Transferência de Aprendizado)
 - Importar modelo pré treinado
 - Carregar base de imagens externa (google drive)
 - Extração de características
 - Visualização da rede
 - Análise do vetor de saída
 - Treino e teste de classificador

Ajuste Fino

Um pouco de prática

- Prática III (Transferência de Aprendizado)
 - Ajuste fino
 - Visualização da rede
 - Freeze de camadas específicas
 - Re-treino e teste

Aplicação em Pesquisa Científica

Título: Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification.

Deep Learning em Imagens: aplicando CNNs com Keras e TensorFlow

Luis Vogado¹, Maíla Claro¹, Justino Santos^{1,2}, Rodrigo Veras¹

Programa de Pós-Graduação em Ciência da Computação - PPGCC ¹UFPI, ²IFPI

14 de novembro de 2019.

