AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions of claims in the application.

1. (Currently amended): [[A]] A semiconductor optical element formed on a group IIInitride semiconductor substrate comprising:

a ZrB₂ single crystal base having a defect density of 10⁷ cm⁻² or less;

a low-temperature buffer layer consisting of a $B_xAl_yGa_zIn_{1-x-y-z}N$ ($0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$, $0 \le l-x-y-z \le 1$) single crystal which is grown or deposited on said ZrB_2 single crystal base substantially without creation of any Zr-B-N amorphous nitrided layer caused by the reaction between a nitrogen atom and said ZrB_2 single crystal base wherein said low-temperature buffer layer has a thickness in the range of 10 nm to 1 μ m; and

a semiconductor layer consisting of a $B_aAl_bGa_cIn_{1-a-b-c}N$ ($0 \le a \le 1$, $0 \le b \le 1$, $0 \le c \le 1$, $0 \le 1-a-b-c \le 1$) single crystal grown on said low-temperature buffer layer, said semiconductor layer having an element-forming surface with a dislocation density of 10^7 cm⁻² or less in its entirely entirety.

- 2. (Cancelled).
- 3. (Currently amended): The semiconductor optical element as defined in claim [[2]] 1, which includes an electrode formed on the side of said base.

Amendment under 37 CFR §1.111 Application No. 10/500,002

Attorney Docket No. 042398

4. (Currently amended): A method of producing a group III-nitride semiconductor

substrate, essentially consisting of:

a first step of forming a low-temperature buffer layer consisting of B_xAl_yGa_zIn_{1-x}

-y-zN $(0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1, 0 \le 1-x-y-z \le 1)$, on a ZrB₂ single crystal base having a

defect density of 10⁷ cm⁻² or less, at a base temperature allowing said low-temperature buffer

layer to be grown or deposited on said ZrB2 single crystal base substantially without creation of

any Zr - B - N amorphous nitrided layer, wherein said low-temperature buffer layer has a

thickness in the range of 10 nm to 1 µm, and said low-temperature buffer layer is formed as a

single crystal at the time said first step is completed; and

a second step of successively to said first step, growing a single crystal film

consisting of $B_aAl_bGa_cIn_{1-a-b-c}N$ ($0 \le a \le 1$, $0 \le b \le 1$, $0 \le c \le 1$, $0 \le 1-a-b-c \le 1$), directly

on said low-temperature buffer layer, to form a semiconductor layer consisting of AlaGa 1-a-

 $_b In_b N$ (0 \le a \le 1, 0 \le b \le 1, 0 \le 1- a - b \le 1) which has an element-forming surface with a

dislocation density of 10⁷ cm⁻² or less in its entirely entirety.

5. (Cancelled)

6. (Original): The method as defined in claim-4 A method of producing a group III-

nitride semiconductor substrate, essentially consisting of:

Page 3

Attorney Docket No. 042398

a first step of forming a low-temperature buffer layer consisting of B_xAl_yGa_zIn_{1-x}

-y-zN ($0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$, $0 \le 1-x-y-z \le 1$) wherein said low-temperature buffer

layer has a thickness in the range of 10 nm to 1 µm, on a ZrB₂ single crystal base having a defect

density of 10⁷ cm⁻² or less, at a base temperature allowing said low-temperature buffer layer to be

grown or deposited on said ZrB2 single crystal base substantially without creation of any Zr - B -

N amorphous nitrided layer, wherein said low-temperature buffer layer has a thickness in the

range of 10 nm to 1 µm; and

a second step of successively to said first step, growing a single crystal film

consisting of $B_aAl_bGa_cIn_{1-a-b-c}N$ ($0 \le a \le 1$, $0 \le b \le 1$, $0 \le c \le 1$, $0 \le 1-a-b-c \le 1$), directly

on said low-temperature buffer layer, to form a semiconductor layer consisting of AlaGa 1- a-

 $b\ln_b N$ $(0 \le a \le 1, 0 \le b \le 1, 0 \le 1 - a - b \le 1)$ which has an element-forming surface with a

dislocation density of 10⁷ cm⁻² or less in its entirety, wherein said low-temperature buffer layer is

polycrystalline or amorphous at the time said first step is completed, and formed as a single-

crystal at the time said second step is completed.

7. (Cancelled).

Page 4