CS 205 Homework 1

Keith Lehman, kpl56@scarletmail.rutgers.edu

February 7, 2021

1. Express propositions as English sentences:

- (a) You miss the final exam unless you don't have the flu.
- (b) You will not pass the course if you have the flu or miss the final.
- (c) You have the flu and miss the final exam or you pass the course and attend the final exam.

2. State the converse, imverse, and contrapositive of English sentences:

(a) Converse: If I stay home, it will snow tonight.

Inverse: If it doesn't snow tonight, I won't stay home.

Contrapositive: If I don't stay home, it won't snow tonight.

(b) Converse: If I go the beach, then it is a sunny summer day.

Inverse: If it isn't a sunny summer day, then I won't go the beach.

Contrapositive: If I don't go to the beach, then it isn't a sunny summer day.

(c) Converse: When I sleep until noon, I absolutely must have stayed up late the previous night.

Inverse: When I don't stay up late, I don't sleep until noon.

Contrapositive: When I don't sleep until noon, then I must have not stayed up late the previous night.

3. Prove some statements:

(a) $p \iff q$ is equivalent to $(p \land q) \lor (\neg p \land \neg q)$:

p	q	$p \wedge q$	$\neg p \land \neg q$	$(p \land q) \lor (\neg p \land \neg q)$	$p \iff q$
T	Т	Т	F	T	T
T	F	F	F	F	F
F	Т	F	F	F	F
F	F	F	Т	Т	Т

(b) $(p \to r) \land (q \to r)$ is equivalent to $(p \lor q) \to r$:

	,			(/
p	q	r	$(p \to r) \land (q \to r)$	$(p \lor q) \to r$
Т	T	T	T	Т
T	T	F	F	F
Т	F	Т	Т	Т
Т	F	F	F	F
F	Т	Т	Т	T
F	T	F	F	F
F	F	Т	Т	Т
F	F	F	Т	T

4. Find an expression equivalent to $p \lor q$ using only \neg and \land :

(a) Answer: $\neg(\neg p \land \neg q)$. Proof:

p	q	$p \lor q$	$\neg(\neg p \land \neg q)$
Т	Т	Т	T
Т	F	Т	Т
F	Т	Т	Т
F	F	F	F

5. Prove that $p \vee (\neg p \wedge q) \vee (\neg p \wedge \neg q)$ is a tautology.

(a)	p	q	$p \lor (\neg p \land q) \lor (\neg p \land \neg q)$
	Т	Т	T
	Т	F	T
	F	Т	T
	F	F	T

6. Find a satisfying assignment if one exists for the following, or if not, prove that it's a contradiction:

$$(p \vee \neg q) \wedge (q \vee \neg r) \wedge (\neg r \vee \neg p) \wedge (p \vee q \vee \neg r) \wedge (\neg p \vee \neg q \vee r).$$

Starting from the left, either p is true, q is false, or both.

Test: If p is true, r must be false to make the third expression true. If r is false, then q must be false in order for the fifth expression to be true. Therefore, p = T, q = F, r = F.

7. What is the negation of the statement "if you take every quiz, you get a cookie"?

Answer: "Despite taking every quiz, you did not receive a cookie".

8. (a)
$$\exists x \ C(x) \land D(x) \land F(x)$$

(b)
$$\forall x \ C(x) \lor D(x) \lor F(x)$$

(c)
$$\exists x \ C(x) \land -D(x) \land F(x)$$

(d)
$$\forall x \ C(x) \oplus D(x) \oplus F(x)$$

(e)
$$\exists xyz \ C(x) \land D(y) \land F(z)$$

9. Determine truth values of expressions:

(a) True,
$$x = -1$$

(b) True,
$$x = \frac{1}{2}$$

10. (a)
$$\exists x (\neg \forall y (P(x) \rightarrow Q(y)))$$

(b)
$$\neg \forall y (P(y) \lor \neg \forall x (R(x) \land R(y)))$$