Problem 3.3 Formally Modeling a Search Problem

Answer:

Deterministic: Yes, it is deterministic, because the next state of the environment is completely determined by the current state and the action executed by the Tower of Hanoi solving agent.

Fully Observable: Yes, it is fully observable, because Tower of Hanoi solving agent has access to the complete state of the environment at each point in time.

Formally modelling the Tower of Hanoi as a Search Problem:

- States: For N disks, it will take 2^N-1 moves to solve puzzle. Therefore, states set, $S(N) = \{(a,b,c): a \in D, b \in D, c \in D, a+b+c=N\} \text{ where, } D = \{0,1,2,3,...,7\}, n(S) = 2^N$
- Initial State: Initially all disks will be at source peg A. So, $I = S_0 = \langle 7, 0, 0 \rangle$
- Goal State: Finally, all disks will be at destination peg B. So, $G = S_g = \langle 0, 7, 0 \rangle$
- Actions: Action will be moving a disk from one peg to another peg, so that no larger disk may
 be placed on top of a smaller disk. Therefore, actions set,

$$A = \{move(x, y) : x \in P, y \in P\} \text{ where } P = \{peg \ A, peg \ B, peg \ C\}$$

• Transition model: Given a state, $s = \langle a, b, c \rangle$, an action a = move(x, y), Transition model $T(a, s) = S_a(s)$, where $S_a = successor$ function for a, and $S_a(s) = successor$ state of s