Každé svoje tvrzení odůvodněte. Konstatování bez odůvodnění nebude počítáno jako odpověď. Pokud si nejste jisti zadáním, není vám jasné, co se v úkolu chce nebo vám to přijde podezřele těžké (či lehké) vzhledem k bodovému ohodnocení, zeptejte se.

Úloha 1. Mějme dva grafy G_1, G_2 , které mají barevnosti $\chi(G_1), \chi(G_2)$. Jakou bude mít barevnost graf H, který vznikne slepením G_1 a G_2 za libovolný vrchol?

[4 body]

Definice 1. Nechť π je permutace na množině [n]. Rozkladem π na cykly rozumíme graf orientovaný graf G_{π} , jehož množina vrcholů je [n] a hrana vede z i do j, právě když $\pi(i) = j$. Snadno nahlédneme, že G_{π} je skutečně sjednocení cyklů (to zahrnuje smyčky i dvojcykly).

Úloha 2. Vybereme náhodnou permutaci π na množině [n], graf G_{π} je její rozklad na cykly.

- a) Jaká je pravděpodobnost, že na vrcholu 1 je smyčka? [1 bod]
- b) Jaká je pravděpodobnost, že vrcholy 1, 2, 3 tvoří cyklus? [1 bod]
- c) Rozhodněte, zda jsou jevy $\pi(1) = 1$ a $\pi(2) = 2$ nezávislé. [2 body]
- d) Jaká je pravděpodobnost, že π má právě dva cykly (tj. G_{π} má právě dvě komponenty)? [4 body]
- e) Jaká je pravděpodobnost, že vrcholy 1 a 2 leží ve stejném cyklu? [4 body]