Transizione di deconfinamento in 3D Yang-Mills con gruppo di gauge Sp(2) e studio degli effetti di stringa

Studente: **Pini Nicholas** Relatore: prof. **Giusti Leonardo** Correlatore: prof. **Pepe Michele**

Facoltà di Fisica Magistrale Università degli Studi di Milano Bicocca

Anno Accademico 2021/2022

Introduzione

- teorie di Yang-Mills presentano confinamento di colore:
 - potenziale fra cariche di colore cresce linearmente a grandi distanze
 - molte prove numeriche
 - ancora nessuna dimostrazione analitica
- a temperature finite, transizione da fase confinata a fase deconfinata
- congettura di Svetisky e Yaffe
- ► EST: modello effettivo che descrive il potenziale in modo molto efficace

Obiettivo: studio della transizione di deconfinamento con gruppo di gauge Sp(2) usando simulazioni su reticolo.

Teorie di gauge non abeliane

Gruppi non abeliani

Gruppo G non abeliano: esiste almeno una coppia $g,h\in G$ tali che

$$[g,h] = gh - hg \neq 0$$

Yang-Mills definita per gruppi unitari non abeliani: SU(N).

$$U \in \mathsf{SU}(N) \implies UU^\dagger = \mathbb{1} \quad \mathsf{e} \quad \mathsf{det} \ U = 1.$$

Elementi U parametrizzati da θ_a , con $a=1,\ldots,N^2-1$. I generatori dell'algebra T_a sono

$$iT_a \equiv \left. \frac{\partial U}{\partial \theta_a} \right|_{\theta_i = 0 \, \forall i} \implies U = 1 + i\theta_a T^a.$$

I generatori sono Hermitiani:

$$T_a = T_a^{\dagger}$$

Teorie di gauge non abeliane

Azione di pura gauge in Minkowski

$$S_M = -rac{1}{2g^2}\int \mathrm{d}^D x_M \, \mathrm{Tr} \Big[F_{\mu
u}^M F_M^{\mu
u} \Big]$$

x_M coordinate in spazio di Minkowski:

$$ds_{M}^{2} = (dx_{M}^{0})^{2} - \sum_{i=1}^{D} (dx_{M}^{i})^{2}$$

- ► Trasformazione di gauge: $G(x) = e^{i\Lambda_a(x)T^a}$, $\Lambda_a(x) \in \mathbb{R}$
- Campo vettoriale reale

$$A_{\mu}^{M}(x)
ightarrow G(x)A_{\mu}^{M}(x)G^{\dagger}(x) + iG(x)\partial_{\mu}G^{\dagger}(x)$$

 $ightharpoonup F_{\mu\nu}^M = \partial_\mu A_
u^M - \partial_
u A_
u^M + i \left[A_
u^M, A_
u^M \right]$ tale che

$$F^{M}_{\mu\nu} \rightarrow G(x)F^{M}_{\mu\nu}G(x)^{\dagger}$$

Teorie di gauge non abeliane

Rotazione di Wick e azione nell'Euclideo

Rotazione di Wick \rightarrow coordinata temporale complessa:

$$x^0 = ix_M^0, \quad x_i = x_M^i$$

Siamo ora nello spazio Euclideo:

$$ds^{2} = -(dx_{0})^{2} - \sum_{i=1}^{D} (dx_{i})^{2}$$

L'azione diventa

$$S_E = -iS_M = \frac{1}{2g^2} \int \mathrm{d}^D x \, \mathrm{Tr}[F_{\mu\nu}F_{\mu\nu}]$$

con

$$\partial_0 = -i\partial_0^M, \quad \partial_i = \partial_i^M, \quad A_0 = -iA_M^0, \quad A_i = -A_M^i$$

Definiamo il path integral della teoria:

$$\mathcal{Z} = \int \, \mathcal{D} A_M \, e^{iS_M[A_M]} \xrightarrow{\text{rotazione di Wick}} \mathcal{Z} = \int \, \mathcal{D} A \, e^{-S_E[A]}$$

con

Path integral

$$\mathcal{D}A = \prod_{x,\mu} \delta A_{\mu}(x)$$

 \mathcal{Z} si interpreta come la funzione di partizione di un sistema statistico con fattore di Boltzmann $e^{-S_E[A]}$.

Data un'osservabile \mathcal{O} :

$$\langle \mathcal{O} \rangle = rac{1}{\mathcal{Z}} \int \, \mathcal{D} A \, \mathrm{e}^{-S_E[A]} \mathcal{O}$$

Lattice gauge theory

Lattice gauge theory (LGT): discretizziamo lo spaziotempo Euclideo con passo reticolare *a*. In questo modo, il momento *p* riceve naturalmente un cutoff:

$$p \in \left(-\frac{\pi}{a}, \frac{\pi}{a}\right)$$

Primo tentativo di discretizzazione dell'azione S_E : sostituiamo le derivate con la versione discretizzata su reticolo. Si ottiene:

$$\widetilde{S} = \frac{1}{2g^2} a^4 \sum_{x} \sum_{\mu,\nu} (\text{Tr}[F_{\mu\nu}F_{\mu\nu}] + O(a))$$

 $\widetilde{S} \to S_E$ nel limite al continuo $a \to 0$, ma se $a \neq 0$, \widetilde{S} non è gauge invariante.

Lattice gauge theory

Link e placchetta

Cambiamo errori di discretizzazione in modo che l'azione rimanga gauge invariante anche se $a \neq 0 \longrightarrow$ azione di Wilson.

Definiamo i link:

$$U_{\mu}(x) = e^{-iaA_{\mu}(x)}$$

Sono elementi del gruppo di gauge SU(N) e collegano due siti del reticolo adiacenti. Trasformazione di gauge è

$$U_{\mu}(x) \rightarrow G(x)U_{\mu}(x)G^{\dagger}(x+\hat{\mu})$$

Definiamo la placchetta:

$$U_{\mu
u}(x) = U_{\mu}(x)U_{
u}(x+\hat{\mu})U_{\mu}^{\dagger}(x+\hat{
u})U_{
u}^{\dagger}(x)$$

È il prodotto ordinato di link attorno al più piccolo cammino possibile.

Dato che $U_{\mu}(x) \to G(x)U_{\mu}(x)G^{\dagger}(x+\hat{\mu})$, la traccia di prodotti ordinati di link su cammini chiusi è gauge invariante.

Definiamo quindi l'azione di Wilson:

$$S_W = rac{eta}{N} \sum_{\mathsf{x}} \sum_{\mu <
u} \mathsf{Re} \, \mathsf{Tr} (\mathbb{1} - U_{\mu
u} (\mathsf{x})), \quad eta = rac{2N}{g^2}$$

- ▶ nel limite al continuo $a \rightarrow 0$, abbiamo che $S_W \rightarrow S_E$
- ightharpoonup è gauge invariante anche se a > 0

Lattice gauge theory

Libertà asintotica

Nel limite al continuo, le osservabili misurate devono riprodurre le osservabili fisiche \implies dipendenza delle quantità "bare" dell'azione dal passo reticolare a (regolatore della teoria):

$$\lim_{a\to 0}\mathcal{O}(g(a),a)=\mathcal{O}_{\mathsf{phys}}$$

In Yang-Mills, l'equazione del gruppo di rinormalizzazione ha β -function negativa ed è risolvibile:

$$a \rightarrow 0 \implies g(a) \rightarrow 0 \implies \text{libertà asintotica}$$

Potenziale d'interazione

Wilson loop

Consideriamo due cariche di colore statiche in rappresentazione fondamentale:

- create istantaneamente a distanza R
- lacktriangle evolvono per un tempo au
- vengono annichilate

Su reticolo formano un rettangolo $\tau \times R$ di link, detto Wilson loop.

$$W(\mathcal{C}) = \operatorname{Tr} \left[\prod_{(\mu, x) \in \mathcal{C}} U_{\mu}(x)
ight] \ \langle W(\mathcal{C})
angle \sim e^{- au V(R)} \sim e^{-\sigma_0 au R}$$

 σ_0 è detta tensione di stringa a temperatura zero

Figura: Gattringer, Christof, Lang, Quantum chromodynamics on the lattice

Potenziale d'interazione

Temperatura finita e Polyakov loop

Transizione di deconfinamento dipende dalla temperatura. Data una LGT su reticolo con N_t lunghezza temporale, si impongono condizioni periodiche sul tempo per i campi bosonici; la temperatura T del sistema allora è $T = 1/(aN_t)$.

Cariche statiche a T > 0 ora descritte dal loop di Polyakov:

$$\phi(\vec{\mathbf{x}}) = \operatorname{Tr} \left[\prod_{j=0}^{N_t - 1} U_0(j, \vec{\mathbf{x}}) \right]$$
$$\left\langle \phi(\vec{\mathbf{x}}) \phi(\vec{\mathbf{y}})^{\dagger} \right\rangle \sim e^{-\frac{1}{T}V(R, T)}$$
$$\sim e^{-\frac{1}{T}\sigma(T)R}$$

 $\sigma(T)$ è detta tensione di stringa a temperatura finita

 $F_q
ightarrow$ free energy di una singola carica: $\langle \phi
angle \sim e^{-F_q/T}$

Simmetria di centro

Centro del gruppo di gauge Z(G): sottogruppo di G che commuta col resto del gruppo.

Trasformazione di centro: moltiplichiamo per $z \in Z(G)$ tutti i link su uno stesso time-slice a $t=t_0$ fissato \to cammini chiusi su reticolo sono invarianti \to azione di Wilson e Wilson loop sono invarianti \to simmetria di centro.

I Polyakov loop sono cammini chiusi solo grazie alle condizioni periodiche del tempo \to non sono invarianti sotto trasformazione di centro.

- Se $\langle \phi \rangle = 0$, la simmetria di centro è mantenuta
- Se $\langle \phi \rangle \neq 0$, la simmetria di centro è rotta spontaneamente

Congettura di Svetisky e Yaffe

Parametro d'ordine

Il Polyakov loop è quindi il parametro d'ordine della transizione di deconfinamento, la quale è associata alla rottura spontanea di simmetria del centro del gruppo di gauge.

Congettura di Svetisky e Yaffe: una teoria di gauge (d+1) dimensionale che ha transizione di deconfinamento del secondo ordine è nella stessa classe di universalità del modello di spin d dimensionale:

- ▶ correlatore di Polyakov loop ←⇒ correlatore fra spin
- ▶ fase deconfinata, $T > T_c \iff$ fase ordinata, $T^{\text{spin}} < T_c^{\text{spin}}$

Congettura di Svetisky e Yaffe

Classi di universalità

Stessa classe di universalità \implies stessi esponenti critici nell'intorno del punto critico:

$$\langle \phi \rangle \sim \left(1 - \frac{T}{T_c}\right)^{\beta}, \quad \chi \sim \left(1 - \frac{T}{T_c}\right)^{-\gamma}, \quad \xi \sim \left(1 - \frac{T}{T_c}\right)^{-\nu}$$

Nelle vicinanze del punto critico, i dettagli fini delle interazioni possono essere ignorati $(\xi \to \infty) \to \text{sistemi molto diversi fra loro sono descritti dagli stessi esponenti critici. Devono però avere la stessa simmetria e dimensionalità.$

Problema: fuori dal limite termodinamico (volume finito), $\langle \phi \rangle = 0$ sempre \to useremo $\langle |\phi| \rangle$ come parametro d'ordine.

Effective string theory

Tubo di flusso fra cariche di colore interagenti \rightarrow stringa vibrante \rightarrow EST, modello effettivo a basse temperature e lunghe distanze. EST più semplice: azione di Nambu-Goto

$$S_{\mathsf{NG}} = \sigma_0 \int_{\Sigma} \mathrm{d}^2 \xi \sqrt{g}$$

Primo termine dell'espansione a lunghe distanze è

$$S_{\mathsf{G}}[X] = \frac{\sigma_0}{2} \int \mathrm{d}^2 \xi \, \partial_{\mathsf{a}} X^{\mu} \partial^{\mathsf{a}} X_{\mu}$$

Prevede correzione al potenziale \rightarrow termine di Lüscher

$$V(R) \sim \sigma_0 R - \frac{\pi(D-2)}{24R}$$

Ha moltissimo riscontro in simulazioni ightarrow EST è molto predittiva.

Effective string theory

Nel regime a basse energie, il modello EST di Nambu-Goto permette di calcolare esattamente la funzione a due punti del loop di Polyakov. In 3D:

$$\langle \phi(0)\phi(R)\rangle \sim K_0(E_0R) \rightarrow$$

ightarrow stesso andamento a lunghe distanze del correlatore fra spin

C'è discrepanza fra EST e congettura nelle vicinanze del punto critico:

- ▶ EST prevede $\nu = 1/2$
- la congettura prevede u=1 (esponente del modello di Ising 2D)

EST non è più predittiva quando il sistema approccia la transizione di fase \rightarrow stringa dissolta da fluttuazioni e potenziale schermato.

Gruppo Sp(2)

Useremo Sp(2) come gruppo di gauge: $U \in Sp(2) \subset SU(4)$ tali che

$$U^* = JUJ^{\dagger}, \quad J \equiv i\sigma_2 \otimes \mathbb{1}_{4\times4}$$

Perché usare Sp(2)? Sp(2) \subset SU(4), ma ha \mathbb{Z}_2 come centro del gruppo \Longrightarrow classe di universalità del modello di Ising 2D \to esponenti critici ben conosciuti.

Per Sp(2), abbiamo che $\beta = 8/g^2$.

Studio della congettura è indipendente dalla dimensionalità del gruppo di gauge. Obiettivi:

- ▶ simulare la teoria con gruppo di gauge Sp(2) su reticolo (2+1) dimensionale
- misurare il correlatore di Polyakov loop a T appena inferiore a T_c (fase confinata)
- ▶ verificare che sia ben descritto dal correlatore fra spin a corte e lunghe distanze del modello di Ising 2D ⇒ la congettura è valida

Metodi Monte Carlo

Importance sampling

Path integral \mathcal{Z} interpretato come funzione di partizione \rightarrow usiamo importance sampling per calcolare le osservabili. Data osservabile \mathcal{O} , consideriamo i link U come variabili casuali distribuite come

$$\mathrm{d}P(U) = \frac{1}{\mathcal{Z}} e^{-S_W[U]} \, \mathcal{D}U$$

e calcoliamo $\langle \mathcal{O} \rangle$ come

$$\langle \mathcal{O} \rangle = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathcal{O}_n(U)$$

L'incertezza di $\langle \mathcal{O} \rangle$ ha andamento $O\Big(1\Big/\sqrt{N}\Big)$. Non possiamo estrarre direttamente configurazioni di link distribuite come $\mathrm{d}P(U) \to \mathrm{usiamo}$ algoritmi basati su catene di Markov

Algoritmo di Creutz

Heat-Bath è basato su idea di Creutz \rightarrow algoritmo che genera nuove configurazioni per gruppo di gauge SU(2). Dato $u \in SU(2)$, si basa sul fatto che per SU(2) vale la proprietà:

$$\sum_{i} \tilde{u}_{i} = c \bar{u}, \quad c = \det \left(u \sum_{i} \tilde{u}_{i} \right)^{1/2}, \quad \bar{u} \in \mathsf{SU}(2)$$

 \tilde{u}_i sono le *staple* attorno al link da aggiornare: in (2+1) dimensioni $\implies i = 1, \dots, 4$.

$$dP(u) \sim \exp\left[\frac{\beta}{4}\operatorname{Tr}\left(u\sum_{i}\tilde{u}_{i}\right)\right]du = \exp\left[\frac{\beta}{4}\operatorname{Tr}(cu\bar{u})\right]du \implies$$

$$\implies dP(u\bar{u}^{-1}) \sim \exp\left[\frac{\beta}{4}c\operatorname{Tr}(u)\right]du$$

Con $u = \alpha_0 \mathbb{1} + \vec{\alpha} \cdot \vec{\sigma} \rightarrow \text{basta generare quadrivettore } \alpha_{\mu}$.

Algoritmo di Cabibbo e Marinari

Heat-Bath di Cabibbo e Marinari:

- consideriamo gruppo di gauge Sp(2) (vale per SU(N) in generale)
- ▶ consideriamo set F di sottogruppi $SU(2)_k \subset Sp(2)$
- ▶ dato il link da aggiornare $U \in Sp(2)$, si estrae elemento $u_k \in SU(2)_k$ da U
- ightharpoonup si applica algoritmo di Creutz per u_k , ottenendo u'_k
- ightharpoonup si moltiplica il link originale U per u'_k
- ▶ si ripete quanto fatto per ogni k

Nel nostro caso, $k=1,\ldots,4 \implies U'=u_4'u_3'u_2'u_1'U$. Si applica questo procedimento per ogni link U del reticolo.

F tale che algoritmo sia ergodico: nessun sottogruppo di Sp(2) dev'essere invariante sotto moltiplicazioni di elementi di $SU(2)_k$.

Overrelaxation

Vicino al punto critico, ξ diverge \rightarrow aggiornamenti del reticolo dell'ordine del passo reticolare a sono piccoli rispetto a $\xi \rightarrow$ critical slowing down.

Soluzione: overrelaxation. Scegliamo un nuovo link U' "il più lontano possibile" da U, in modo che l'azione $S_W[U]$ rimanga invariata. Per gruppo di gauge SU(2):

$$u'=vu^{-1}v, \quad v=\det(R)^{1/2}R^{-1}, \quad R=\sum_{i=1}^4 \widetilde{u}_i o ext{somma staple}$$

Come per Heat-Bath, l'idea è di estrarre gruppi $SU(2)_k$ da Sp(2), applicare overrelaxation, e moltiplicare il link $U \in Sp(2)$ originale.

Overrelaxation non è ergodico. Nel nostro caso, viene applicato tre volte prima di applicare Heat-Bath.

Implementazione

Dettagli implementazione:

- reticolo 3D
- $N_s = 40, 60, 80, 100$: lunghezza dimensione spaziale
- $N_t = 5, 6, 7, 8$: lunghezza dimensione temporale
- reticolo con condizioni periodiche anche in direzioni spaziali
- $ightharpoonup a=1 \implies T=1/N_t$
- ► link aggiornati in parallelo
 - divisione in siti pari e siti dispari
 - problema quando N_t è dispari
- configurazione iniziale: hot start
- ightharpoonup numero iterazioni $\sim 10^6$
- termalizzazione raggiunta saltando le prime 200 iterazioni
- normalizzazione delle matrici ogni 100 iterazioni

Misura loop di Polyakov

Per ogni valore di N_s e N_t considerato, abbiamo misurato il valore del loop di Polyakov. Per esempio, con $N_t = 6$ e $N_s = 100$:

Comportamento tipico di transizione di fase di secondo ordine:

- fase confinata: $\langle |\phi| \rangle = 0$
- ► fase deconfinata: $\langle |\phi| \rangle \neq 0$ e eventi di tunneling

Misura temperatura critica

 $T=1/N_t$ con N_t fissato \rightarrow modifichiamo il valore di $\beta=8/g^2$ per modificare la temperatura critica del sistema.

- ightharpoonup cerchiamo $\beta_c(N_t)$ tale che il sistema sia nel punto critico
- ightharpoonup invertiamo $\beta_c(N_t) \implies N_{t,c}(\beta)$
- lacktriangle temperatura critica è infine $T_c=1/N_{t,c}(eta)$

Suscettività: osservabile che misura la larghezza della distribuzione del loop di Polyakov:

$$\chi = \sum_{\vec{\mathbf{x}}} \left\langle \phi(\vec{\mathbf{0}}) \phi(\vec{\mathbf{x}}) \right\rangle = N_s^2 \left\langle \phi^2 \right\rangle$$

 χ è massima nel punto critico della transizione di deconfinamento \to misuriamo χ per vari valori di β e fittiamo il picco per trovare β_c .

Figura: $N_t = 6$

Fit suscettività

0.009

Picchi suscettività fittati con
$$\chi(\beta) \sim a + b(\beta^{(0)} - \beta)^2 + c(\beta^{(0)} - \beta)^3 + d(\beta^{(0)} - \beta)^4$$

Figura: $N_t = 6$. Da sinistra a destra e dall'alto in basso: $N_s = 40, 60, 80, 100$.

Fit suscettività

Valori critici di β trovati:

N_t	N _s	β_c	χ^2	
5	40	23.312(14)	1.0933	
	60	23.2748(52)	1.2741	
	80	23.2886(64)	0.5137	
	100	23.2817(46)	1.4615	
6	40	27.589(30)	0.781	
	60	27.547(10)	0.7684	
	80	27.537(12)	0.559	
	100	27.566(13)	1.6649	

N_t	N_s	$eta_{m{c}}$	χ^2	
	40	32.103(31)	0.1255	
7	60	31.8149(92)	0.7616	
'	80	31.8190(97)	0.6526	
	100	31.8299(99)	1.328	
	40	36.275(68)	0.7747	
8	60	36.103(22)	0.8324	
0	80	36.065(19)	1.3907	
	100	36.065(14)	1.0921	

Finite size scaling

Simulazioni a volume finito, ma transizioni di fase valgono nel limite termodinamico \rightarrow dobbiamo tenere conto degli effetti di volume finito \rightarrow finite size scaling analysis.

$$\begin{aligned} x &= \frac{\beta}{\beta_c} - 1 \\ y &= x N_s^{1/\nu} \sim \left(\frac{N_s}{\xi}\right)^{1/\nu} \\ \langle |\phi| \rangle \sim N_s^{-\beta/\nu} F_1(x N_s^{1/\nu}) \\ N_s^2 \left\langle \phi^2 \right\rangle \sim N_s^{\gamma/\nu} F_2(x N_s^{1/\nu}) \\ \nu &= 1, \quad \gamma = \frac{7}{4}, \quad \beta = \frac{1}{8} \rightarrow \text{Ising 2D} \end{aligned}$$

Figura: $N_t = 6$

Finite size scaling

Per $N_s=80,100$, effetti dovuti al volume finito sono piccoli \rightarrow usiamo i valori di β_c trovati a $N_s=100$ come valori effettivi validi nel limite termodinamico.

 β_c in funzione di N_t

Fissato $N_s=100$, fittiamo β_c al variare di N_t usando una retta.

$$\beta_c(N_t) \sim a + bN_t$$
$$\chi^2 = 2.5612$$

Correlatore del loop di Polyakov

Correlatore del loop di Polyakov:

$$\langle \phi(0)\phi(R)\rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}U \, e^{-S_W[U]} \frac{1}{2N_s^2} \sum_{\vec{\mathbf{x}},\vec{\mathbf{y}}} \phi(\vec{\mathbf{x}})\phi(\vec{\mathbf{y}}), \quad |\vec{\mathbf{x}} - \vec{\mathbf{y}}| = R$$

Se la congettura è vera, deve essere ben descritto a corte e lunghe distanze dal correlatore fra spin del modello di Ising 2D nell'intorno del punto critico:

$$\begin{split} \blacktriangleright & R < \xi \\ & \langle \phi(0)\phi(R) \rangle = \frac{k_{\rm s}}{R^{1/4}} \left[1 + \frac{R}{2\xi} \ln \left(\frac{e^{\gamma_e}R}{8\xi} \right) + \frac{R^2}{16\xi^2} \right. \\ & \left. + \frac{R^3}{32\xi^3} \ln \left(\frac{e^{\gamma_e}R}{8\xi} \right) + O\left(\frac{R^4}{\xi^4} \ln^2 \frac{R}{\xi} \right) \right] \end{split}$$

$$R > \xi$$

$$\langle \phi(0)\phi(R)\rangle = k_I \left(K_0 \left(\frac{R}{\xi} \right) - K_0 \left(\frac{N_s - R}{\xi} \right) \right),$$

Effetto specchio \implies massimo valore di $R \in N_s/2$.

Lunghezza di correlazione

Valori di ξ fittati dal correlatore di loop di Polyakov:

N_t	N_s	T/T_c	R	ξ	χ^2
5 100	0.95	(2, 13)	14.157(66)	1.433	
		(12, 50)	14.26(58)	1.4986	
6 100	0.95	(2, 17)	17.42(11)	0.8582	
	100	0.95	(14, 42)	16.86(12)	0.513
7 100	0.95	(2,20)	20.97(15)	0.5012	
	100	0.95	(17, 50)	20.66(17)	0.4379
8 10	100	0.95	(1, 24)	24.95(22)	2.9113
	100	0.95	(18, 50)	24.26(28)	0.4311

Misura complicata dalla scelta limita di valori di R se ξ è troppo grande o troppo piccolo.

Lunghezza di correlazione

Conclusioni

Riassunto risultati

Riassumendo:

- teoria di Yang-Mills 3D con gruppo di gauge Sp(2) presenta una transizione di deconfinamento del secondo ordine (come aspettato)
- ▶ andamento di $\langle \phi(0)\phi(R)\rangle$ per $R>\xi$ previsto da EST
- congettura di Svetisky e Yaffe verificata vicino al punto critico $(0.95T_c)$:
 - per $R > \xi$, in accordo con EST
 - ightharpoonup per $R < \xi$, dove EST non è più valida
 - → classe di universalità di modello di Ising 2D

Conclusioni

Ricerche future

Possibili ricerche future:

- sfruttare $\langle \phi(0)\phi(R)\rangle$ per
 - ightharpoonup studiare $\sigma(T)$ e trovare correzioni al potenziale
 - studiare come si passa da descrizione EST a descrizione della congettura
- ▶ gruppi Sp(N) con N > 2 in 3D
 - vale sempre modello di Ising 2D, ma gruppo di gauge diverso

Grazie per l'attenzione!