Instructor: Dušan Djukić Date: 27.11.2021.

- 1. Denote by $d_k(n)$ the number of divisors of n that are not less than k. Evaluate $d_1(2021) + d_2(2022) + \cdots + d_{2020}(4040)$.
- 2. Find all positive integers n for which $2^n + 5n$ is a perfect square.
- 3. Find all primes p for which $p^2 + 11$ has less than 12 divisors.
- 4. Find all positive integers x for which $3x^4 + 10x^2 + 3$ is a square.
- 5. Find all integer solutions (a, b, c, d) of the equation $6(6a^2 + 3b^2 + c^2) = 5d^2$.
- 6. Find all triples of positive integers (x, y, z) such that each of the numbers $x^2 1$, $y^2 2$, $z^2 4$ is divisible by x + y + z.
- 7. Given n positive integers, denote by d_k the greatest common divisor of all product of k of these integers. Prove that $d_k^2 \mid d_{k-1}d_{k+1}$ for $2 \leq k \leq n-1$. (HW)
- 8. If x, y, z are rational numbers such that xyz = 1 and x + y + z and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ are both integers, prove that |x| = |y| = |z| = 1. (HW)
- 9. For a positive integer n, define $f(n) = \left[\frac{n}{1}\right] + \left[\frac{n}{2}\right] + \cdots + \left[\frac{n}{n}\right]$. Prove that there are infinitely many n for which $\frac{f(n+1)}{n+1} < \frac{f(n)}{n}$. (HW)
- 10. By $\tau(x)$ we denote the number of divisors of a positive integer x. Prove that there are infinitely many positive integers k for which the equation $\frac{x}{\tau(x)} = k$ has no solutions $x \in \mathbb{N}$. (HW)

Instructor: Dušan Djukić Date: 28.11.2021.

- 7. Given n positive integers, denote by d_k the greatest common divisor of all product of k of these integers. Prove that $d_k^2 \mid d_{k-1}d_{k+1}$ for $2 \leq k \leq n-1$.
- 8. If x, y, z are rational numbers such that xyz = 1 and x + y + z and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ are both integers, prove that |x| = |y| = |z| = 1.
- 9. For a positive integer n, define $f(n) = \left[\frac{n}{1}\right] + \left[\frac{n}{2}\right] + \cdots + \left[\frac{n}{n}\right]$. Prove that there are infinitely many n for which $\frac{f(n+1)}{n+1} < \frac{f(n)}{n}$.
- 10. By $\tau(x)$ we denote the number of divisors of $x \in \mathbb{N}$. Prove that there are infinitely many positive integers k for which the equation $\frac{x}{\tau(x)} = k$ has no solutions $x \in \mathbb{N}$.
- 11. Solve the equation $x! + 76 = y^2$ in positive integers.
- 12. Let p be a prime. If the equation $x^3 + px^2 = y^3$ has a solution in integers, prove that $3 \mid p-1$.
- 13. Find all positive integers k for which the equation x(x+k) = y(y+1) has a solution in positive integers.
- 14. Given a positive integer n, does there always exist a positive integer divisible by n that has exactly n divisors?
- 15. Let $1 = d_1 < d_2 < d_3 < \cdots < d_k = 4n$ be all divisors of 4n, where $n \in \mathbb{N}$. Prove that there is an index i for which $d_{i+1} d_i = 2$.
- 16. Can n(n+1)(n+2)(n+3) be a perfect cube for any $n \in \mathbb{N}$?
- 17. Positive integers x, y greater than 1 are such that $x^2 + xy y$ is a perfect square. Prove that x + y + 1 is a composite number.
- 18. Suppose that all divisors of n have been divided into pairs so that the sum in each pair is a prime. Prove that all these sums are distinct. (HW)
- 19. Determine all prime numbers p > 2 such that both $\frac{p+1}{2}$ and $\frac{p^2+1}{2}$ are perfect squares. (HW)
- 20. Can all integers greater than 10^{100} be written as a sum of a prime and a perfect square? (HW)
- 21. If $n \in \mathbb{N}$, prove that $\sum_{i=1}^{n} \left[\frac{n}{i}\right]^2 = \sum_{i=1}^{n} (2i-1)\left[\frac{n}{i}\right]$. (HW)

Instructor: Dušan Djukić Date: 30.11.2021.

- 18. Suppose that all divisors of n have been divided into pairs so that the sum in each pair is a prime. Prove that all these sums are distinct.
- 19. Determine all prime numbers p > 2 such that both $\frac{p+1}{2}$ and $\frac{p^2+1}{2}$ are perfect squares.
- 20. Can all integers greater than 10^{100} be written as a sum of a prime and a perfect square?
- 21. If $n \in \mathbb{N}$, prove that $\sum_{i=1}^{n} \left[\frac{n}{i}\right]^2 = \sum_{i=1}^{n} (2i-1) \left[\frac{n}{i}\right]$.
- 22. Prove that $2^{58} + 1$ has at least three distinct prime divisors.

Chinese Remainder Theorem. Let a_1, a_2, \ldots, a_k be integers and let n_1, n_2, \ldots, n_k be pairwise coprime positive integers. Then the system of congruences

$$x \equiv a_i \pmod{n_i}$$
 for $i = 1, 2, \dots, k$

has a unique solution x modulo $n_1 n_2 \cdots n_k$. \square

- 23. Prove that there exist 201 consecutive positive integers, each of which has a prime divisor not exceeding 103.
- 24. Suppose a and b are positive integers such that gcd(an + 2, bn + 3) > 1 for every positive integer n. Prove that $b = \frac{3}{2}a$.
- 25. Solve the equation $x^2 + x = y^4 + y^3 + y^2 + y$ in positive integers,

The sum of divisors of a positive integer $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ equals

$$\sigma(n) = \frac{p_1^{\alpha_1 + 1} - 1}{p_1 - 1} \cdots \frac{p_k^{\alpha_k + 1} - 1}{p_k - 1}. \quad \Box$$

- 26. By $\sigma(n)$ we denote the sum of divisors of $n \in \mathbb{N}$. Find all n that satisfy $\sigma(n) + \sigma(2n) = \sigma(3n)$.
- 27. If a, b, c are positive integers, prove that $gcd(a, b 1) \cdot gcd(b, c 1) \cdot gcd(c, a 1) \le a(b-1) + b(c-1) + c(a-1) + 1$. Show that equality occurs for infinitely many triples (a, b, c).

Instructor: Dušan Djukić Date: 1.12.2021.

22. Prove that $2^{58} + 1$ has at least three distinct prime divisors.

Chinese Remainder Theorem. Let a_1, a_2, \ldots, a_k be integers and let n_1, n_2, \ldots, n_k be pairwise coprime positive integers. Then the system of congruences

$$x \equiv a_i \pmod{n_i}$$
 for $i = 1, 2, \dots, k$

has a unique solution x modulo $n_1 n_2 \cdots n_k$. \square

- 23. Prove that there exist 201 consecutive positive integers, each of which has a prime divisor not exceeding 103.
- 24. Suppose a and b are positive integers such that gcd(an + 2, bn + 3) > 1 for every positive integer n. Prove that $b = \frac{3}{2}a$.
- 25. Solve the equation $x^2 + x = y^4 + y^3 + y^2 + y$ in positive integers,

The sum of divisors of a positive integer $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ equals

$$\sigma(n) = \frac{p_1^{\alpha_1 + 1} - 1}{p_1 - 1} \cdots \frac{p_k^{\alpha_k + 1} - 1}{p_k - 1}. \quad \Box$$

- 26. By $\sigma(n)$ we denote the sum of divisors of $n \in \mathbb{N}$. Find all n that satisfy $\sigma(n) + \sigma(2n) = \sigma(3n)$.
- 27. If a, b, c are positive integers, prove that $gcd(a, b 1) \cdot gcd(b, c 1) \cdot gcd(c, a 1) \le a(b-1) + b(c-1) + c(a-1) + 1$. Show that equality occurs for infinitely many triples (a, b, c). (HW)
- 28. If a, b > 2 are integers, prove that $2^a + 1$ is never divisible by $2^b 1$. (HW)
- 29. Find all positive integers n for which the sum of digits of n! equals 9. (HW)
- 30. Let a, b, c, d be positive integers such that b < c and a + b + c + d = ab cd. Prove that a + c is a composite number. (HW)
- 31. Find all pairs (k, n) of positive integers k, n such that $(2^n 1)(2^n 2)(2^n 2^2) \cdots (2^n 2^{n-1}) = k!$. (HW)

Instructor: Dušan Djukić Date: 2.12.2021.

- 27. If a, b, c are positive integers, prove that $gcd(a, b 1) \cdot gcd(b, c 1) \cdot gcd(c, a 1) \le a(b 1) + b(c 1) + c(a 1) + 1$. Show that equality occurs for infinitely many triples (a, b, c).
- 28. If a, b > 2 are integers, prove that $2^a + 1$ is never divisible by $2^b 1$.
- 29. Find all positive integers n for which the sum of digits of n! equals 9.
- 30. Let a, b, c, d be positive integers such that b < c and a + b + c + d = ab cd. Prove that a + c is a composite number.
- 31. Find all pairs (k, n) of positive integers k, n such that $(2^n 1)(2^n 2)(2^n 2^2) \cdots (2^n 2^{n-1}) = k!$.
- 32. We are given $n \ge 3$ consecutive odd three-digit numbers. Prove that these n numbers can be ordered in a sequence b_1, b_2, \ldots, b_n so that the number $\overline{b_1 b_2 \ldots b_n}$, obtained by writing these numbers one after another in the decimal system, be composite.
- 33. Find all pairs of positive integers (a, b) for which a is odd, b is a power of 2, and $a^2 ab + b^2$ is a perfect square.
- 34. Denote by b_n the number of binary unit digits of a positive integer n. We call n lively if $b_n \mid n$. Prove that (a) there are no 5 consecutive positive integers that are all lively; (b) there are infinitely many instances of 4 consecutive positive integers that are all lively. (HW)
- 35. Prove that for every positive integer n there exists a positive integer x such that $\varphi(x) = n!$. (HW)
- 36. Call an integer an *almost-square* if it is a product of two consecutive integers. Prove that every almost-square can be written as a quotient of two other almost-squares. (HW)

Instructor: Dušan Djukić Date: 3.12.2021.

- 34. Denote by b_n the number of binary unit digits of a positive integer n. We call n lively if $b_n \mid n$. Prove that (a) there are no 5 consecutive positive integers that are all lively; (b) there are infinitely many instances of 4 consecutive positive integers that are all lively.
- 35. Prove that for every positive integer n there exists a positive integer x such that $\varphi(x) = n!$.
- 36. Call an integer an *almost-square* if it is a product of two consecutive integers. Prove that every almost-square can be written as a quotient of two other almost-squares.
- 37. Find all values of n for which there are positive integers a, b, c, d for which a+b+c+d=n and abc+abd+acd+bcd is divisible by n.
- 38. Find all triples of positive integers a, b, c such that $a^2 + b^2 = c^2$ and $a^3 + b^3 = (c-1)^3 1$.
- 39. Denote by $\omega(x)$ the number of distinct prime divisors of a positive integer x. Let a, b and c be arbitrary positive integers. Prove that there is a positive integer n such that $\omega(an+c) \geqslant \omega(bn+c)$.
- 40. Suppose that positive integers a_1, a_2, \ldots, a_n have the property that each of the quotients $k_i = \frac{a_{i-1} + a_{i+1}}{a_i}$ for $i = 1, 2, \ldots, n$ is an integer (here $a_0 = a_n$ and $a_{n+1} = a_1$). Prove that $2n \leqslant k_1 + k_2 + \cdots + k_n \leqslant 3n$.
- 41. Is there a function $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ such that $f(xf(y)) = \frac{f(x)}{y}$ for all rational x, y > 0?

Solutions – group L2

Instructor: Dušan Djukić Nov.26–Dec.4, 2021

- 1. The summand $d_i(2020+i)$ counts the divisors not less than i, so a possible divisor $k \leq 2020$ would be counted only through the summands $d_1(2021), \ldots, d_k(2020+k)$. Since k divides exactly one of the numbers $2021, 2022, \ldots, 2020+k$, it follows that it has been counted exactly once. Thus the divisors from 1 to 2020 have been counted 2020 times in total.
 - Additionally, the divisors from 2021 to 4040 have been counted once each. This gives the sum of 4040.
- 2. Note that n cannot be odd, as then $2^n + 5n \equiv \pm 2 \pmod{5}$ cannot be a square. So n = 2k, but then $(2^k)^2 < 2^n + 5n < (2^k + 1)^2$ for $n \ge 10$. It remains to check the small cases n = 2, 4, 6, 8. Only n = 4 is a solution.
- 3. If $p \geqslant 5$, then $p^2 + 11$ is divisible by 12. Thus for $p \geqslant 13$ it already has 12 divisors: 1, 2, 3, 4, 6, 12 and $\frac{p^2 + 11}{1}, \frac{p^2 + 11}{2}, \frac{p^2 + 11}{3}, \frac{p^2 + 11}{4}, \frac{p^2 + 11}{6}, \frac{p^2 + 11}{12}$. For $5 \leqslant p \leqslant 11$ some of these divisors may overlap, so we check them manually. The solutions are $p \in \{2, 3, 5\}$.
- 4. We have $3x^4 + 10x^2 + 3 = (3x^2 + 1)(x^2 + 3)$. The GCD of $3x^2 + 1$ and $x^2 + 3$ divides $3(x^2 + 3) (3x^2 + 1) = 8$, so it is 1, 2, 4 or 8. Therefore $3x^2 + 1$ and $x^2 + 3$ are either squares, or squares multiplied by 2. However, $x^2 + 3 = 2a^2$ is impossible modulo 3, so both factors must be squares. Then $x^2 + 3 = a^2$, which is only possible for x = 1. This is a solution indeed.
- 5. Hint: check the equation modulo 2 (or 4 or 8) and divide by two whatever is even. Be persistent. The only solution will be (0,0,0,0).
- 6. Denote s=a+b+c. Modulo s we have $x^2\equiv 1,\ y^2\equiv 2$ and $(x+y)^2\equiv z^2\equiv 4$. It follows that $2xy=(x+y)^2-x^2-y^2\equiv 1\pmod s$, so $4\cdot 1\cdot 2\equiv 4x^2y^2=(2xy)^2\equiv 1\pmod s$. Therefore $s\mid 7$, and for s=7 we have a unique solution (x,y,z)=(1,4,2).
- 7. We will prove that $v_p(d_{k-1}d_{k+1}) \geqslant v_p(d_k^2)$ for every prime p. Let the exponents at p in the given numbers be $r_1 \leqslant r_2 \leqslant \cdots \leqslant r_n$. Then $v_p(d_i) = r_1 + \cdots + r_i$, so $v_p(d_{k-1}d_{k+1}) = 2(r_1 + \cdots + r_{k-1}) + r_k + r_{k+1}$ and $v_p(d_k^2) = 2(r_1 + \cdots + r_k) \leqslant v_p(d_{k-1}d_{k+1})$.
- 8. Suppose that e.g. $v_p(x) = -k < 0$. Since $v_p(x+y+z) \ge 0$, one of $v_p(y), v_p(z)$ is -k, so the other one (since xyz = 1) is 2k. Thus two of $v_p(x), v_p(y), v_p(z)$ are negative and one is positive. But then among $v_p(\frac{1}{x}), v_p(\frac{1}{y}), v_p(\frac{1}{z})$ only one is negative, so $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ cannot be an integer.

- 9. Hint: Prove (e.g. by induction) that $f(n) = \tau(1) + \tau(2) + \cdots + \tau(n)$. Thus f(n) is the average number of divisors of the numbers $1, 2, \ldots, n$. Now prove that every prime n works.
- 10. We will prove that if $k=p^{p-1}$, where $p\geqslant 5$ is a prime, the given equation has no solutions. Suppose that $x=p^{p-1}\tau(x)$ for some $x\in\mathbb{N}$. Clearly, $r=v_p(x)\geqslant p-1$. Moreover, $p^{p-1}=\frac{x}{\tau(x)}=\frac{p^r}{\tau(p^r)}\cdot\frac{x/p^r}{\tau(x/p^r)}$, which implies $\frac{x/p^r}{\tau(x/p^r)}=\frac{r+1}{p^{r+1-p}}$. If r=p-1, then $\frac{x/p^r}{\tau(x/p^r)}=p$, which is impossible because $p\nmid x/p^r$. On the other hand, if $r\geqslant p+1$, then $\frac{x/p^r}{\tau(x/p^r)}\leqslant \frac{p+2}{p^2}<1$, which is also impossible. Finally, we have a contradiction for r=p as well: $\frac{x/p^r}{\tau(x/p^r)}=\frac{p+1}{p}$ indeed, note that $\tau(y)\leqslant \frac{y}{2}+1<\frac{p}{p+1}y$ for $y\geqslant p+1$.
- 11. If $x \ge 7$, then x! + 76 gives remainder 6 modulo 7 and cannot be a square. For smaller n we find the solutions x = 4 and x = 5.
- 12. If $p \mid x = pz$, then $x^3 + px^2 = p^3(z^3 + z^2)$, so $z^3 + z^2$ must be a cube as well, but this cannot happen because $z^3 < z^3 + z^2 < (z+1)^3$.

 If $p \nmid x$, then $x^3 + px^2 = x^2(x+p)$ and $\gcd(x^2, x+p) = 1$, so both x+p and x^2 (and also x) must be perfect cubes. But if $x = a^3$ and $x + p = b^3$, then b a divides $b^3 a^3 = p$, so b a = 1 (clearly, it cannot be p). Thus $p = (a+1)^3 a^3 = 3(a^2 + a) + 1$.
- 13. Multiply by 4 and complete squares to get $(2x + k)^2 (2y + 1)^2 = k^2 1$. Now find suitable representations of $k^2 1$ as a difference of squares. You will get that all k except 2 and 3 work.
- 14. If $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$, then take the number $p_1^{p_1^{r_1} 1} \cdots p_k^{p_k^{r_k} 1}$. Why is it divisible by n?
- 15. Suppose the statement is false. Consider the largest pair of even divisors (a, a + 2) of 4n (there is one such pair: (2, 4)). Then a + 1 must also be a divisor and it is odd, so 2a + 2 is a divisor. Moreover, either 2a or 2a + 4 is not divisible by 8 and hence is a divisor of 4n. Thus we find a larger pair, namely (2a, 2a + 2) or (2a + 2, 2a + 4).
- 16. One of the factors n+1 or n+2 is coprime to all other factors and hence be a cube. Elminiating it, we find that n(n+1)(n+3) or n(n+2)(n+3) is a cube, but it lies between $(n+1)^3$ and $(n+3)^3$ if n>2, which is impossible. The cases n=1,2 do not give a cube either.
- 17. If x + y + 1 = p is a prime, then y = p 1 x and $a^2 = x^2 + xy y = p(x 1) + 1$, so $p \mid a^2 1 = (a + 1)(a 1)$, but 1 < a < p 1, which is impossible.
- 18. Hint: prove that if (a, b) is one such pair, then ab cannot exceed n, Deduce that in fact ab = n in all such pairs. Now all pars look like $(a, \frac{n}{a})$, but these sums are distinct for all pairs.
- 19. Let $p + 1 = 2a^2$ and $p^2 + 1 = 2b^2$. Then $p \mid p^2 p = 2(b^2 a^2) = 2(b a)(b + a)$, but 0 < a, b < p, so we must have a + b = p; hence $b a = \frac{p-1}{2}$, so $a = \frac{p+1}{4}$. Solving the equation in p yields p = 7.

- 20. Can n^2 with $n > 10^{50}$ always be written in that form? If $n^2 = a^2 + p$, then p = (n+a)(n-a), so a = n-1 and p = 2n-1, so it is possible only when 2n-1 is a prime, which is not always the case.
- 21. Use induction on n (base n = 1). For the inductive step, when n 1 increases to n, only the summands corresponding to $i \mid n$ change, as then $\left[\frac{n}{i}\right] = \left[\frac{n-1}{i}\right] + 1$. Verify that both sides of the equality get exactly the same increment.
- 22. $2^{58} + 1 = 4a^4 + 1 = (2a^2 2a + 1)(2a^2 + 2a + 1)$, where $a = 2^{14}$. The two factors are coprime and greater than 5. Also, $2a^2 + 2a + 1$ is divisible by 5 but not by 25. Thus $2a^2 + 2a + 1$ gives two distinct prime factors and $2a^2 2a + 1$ gives a third one.
- 23. Take n to be divisible by 100!. Then each of the numbers $n-100, n-99, \ldots, n+100$ has a prime divisor not exceeding 100, except for $n\pm 1$. We cover these two by setting n so that $101\mid n+1$ and $103\mid n-1$ (and $100!\mid n$). Such an n exists by the Chinese Remainder Theorem.
 - By the way, 100! + 1 is divisible by 101.
- 24. Note that gcd(an + 2, bn + 3) divides a(bn + 3) b(an + 2) = 3a 2b. Now set n = |3a 2b| if it is nonzero. Then gcd(an + 2, bn + 3) divides 2 and 3, so it is 1, contrary to the assumption. Therefore |3a 2b| = 0.
- 25. Complete the square: $4y^4 + 4y^3 + 4y^2 + 4y + 1 = (2x+1)^2$ is a square, but it lies between $(2y^2 + y)^2$ and $(2y^2 + y + 1)^2$ for $y \ge 2$. The small cases give the unique solution (x, y) = (5, 2).
- 26. Write $n=2^a3^bm$, where $\gcd(m,6)=1$. Then $\sigma(2n)=\frac{2^{a+2}-1}{2^{a+1}-1}\sigma(n)$ and $\sigma(3n)=\frac{3^{b+2}-1}{3^{b+1}-1}\sigma(n)$, so the given equation becomes $\frac{2\cdot 3^{b+1}}{3^{b+1}-1}=\frac{2^{a+2}-1}{2^{a+1}-1}$. This simplifies to $3^{b+1}=2^{a+2}-1$. Now prove this is only possible when a=b=0, so the answer is all n not divisible by 2 or 3.
- 27. The given product of GCD's divides both abc and (b-1)(c-1)(a-1), so it divides the difference, which is a(b-1)+b(c-1)+c(a-1)+1. We find an equality case by setting (a,b,c)=(n,n=1,n+2), with $3\mid n-1$.
- 28. Suppose a = br + q, where $q \ge 0$ and $0 \le r < b$ are integers. If $2^b 1 \mid 2^a + 1 = 2^r + 1 + 2^r (2^{qb} 1)$, then also $2^b 1 \mid 2^r + 1 \le 2^{b-1} + 1 < 2^b 1$, which is impossible.
- 29. Hint: Can a number whose sum of digits is 9 be divisible by 11?
- 30. We have (a-1)(b-1) = (c+1)(d+1) = n for some n, so a-1 and c+1 are divisors of n whose product is greater than n; hence gcd(a-1,c+1) > 1, so a+c = (a-1)+(c+1) cannot be prime.
- 31. Take v_2 of both sides: $v_2(LHS) = \frac{n(n-1)}{2}$ and $v_2(RHS) < k$, so $k > \frac{n(n-1)}{2}$, but then k! will be too big: prove that $\frac{n(n-1)}{2}! > 2^{n^2} > LHS$ if $n \ge 5$. Check the small cases manually.

- 32. If n = 5, one of b_1, \ldots, b_n is divisible by 5, so put it on the last place. If n = 4, order them as b_1, b_2, b_4, b_3 to get a number divisible by 11. And if n = 3, they will always yield a multiple of 3.
- 33. Let $b = 2^n$ and $a^2 ab + b^2 = c^2$. We can rewrite this as $3 \cdot 2^{2n-2} = \frac{3}{4}b^2 = c^2 (a \frac{b}{2})^2 = (c + a 2^{n-1})(c a + 2^{n-1})$.

We easily check the cases $n \le 2$ and find no solutions. Assume that $n \ge 3$. Then the factors $c+a-2^{n-1}$ and $c-a+2^{n-1}$ are even and not both multiples of 4, so one of them equals ± 2 or ± 6 . Assuming c is positive, both factors are positive as well. Checking all four possibilities we find only two possibilities for $n \ge 3$: $a = 2^{2n-4} + 2^{n-1} - 3$ or $a = 3 \cdot 2^{2n-4} + 2^{n-1} - 1$, and in addition, a = 3 for n = 3.

34. (a) The numbers 4k + 1 and 4k + 2 have the same number of binary unit digits, so they cannot both be lively. However, in every five consecutive numbers one can find 4k + 1 and 4k + 2.

For (b), set n so that $b_n = 6$, $b_{n+1} = 7$, $b_{n+2} = 4$ and $b_{n+3} = 5$. We can take e.g. $n = 2^a + 2^b + 2^c + 14$ with a > b > c > 4. Then see how to make n, n + 1, n + 2, n + 3 all lively.

- 35. Take $x = n \prod_{p} \frac{p}{p-1}$, where the product is over the primes $p \leq n+1$. Prove that it works.
- 36. Note that $(x-1)x = \frac{(x^2-1)x^2}{x(x+1)}$.