ON TOPOLOGICAL PROPERTIES OF FAMILIES OF FINITE SETS

CLARIBET PIÑA AND CARLOS UZCÁTEGUI

ABSTRACT. We present results about the Cantor-Bendixson index of some subspaces of a uniform family $\mathcal F$ of finite subsets of natural numbers with respect to the lexicographic order topology. As a corollary of our results we get that for any ω -uniform family $\mathcal F$ the restriction $\mathcal F \upharpoonright M$ is homeomorphic to $\mathcal F$ iff M contains intervals of arbitrary length of consecutive integers. We show the connection of these results with a topological partition problem of uniform families.

1. Introduction

A partition problem for topological spaces is as follows: Given spaces X and Y and a partition of X into two pieces, is there a topological copy of Y inside one of the pieces? When the answer is positive, it is denoted by $X \to (Y)_2^1$ (see [4] for more information about this type of problems). We will be mainly interested in the case X = Y. A well studied case is when X is a countable ordinal endowed with its natural order topology. A result of Baumgartner [2] solves this partition problem for a countable ordinal space α . Namely, he showed that for a countable ordinal α , $\alpha \to (\alpha)_2^1$ iff α is of the form $\omega^{\omega^{\beta}}$.

Any countable ordinal is the order type of a uniform family \mathcal{F} of finite subsets of natural numbers lexicographically ordered. A typical uniform family of order type ω^k is the collection of k-elements subsets of \mathbb{N} . Thus a partition of a countable ordinal space can be regarded as a partition of a uniform family endowed with the lexicographic order topology (the relevant definitions are given on section 2).

Families of finite sets has been the focus of Ramsey theory for a long time [3]. A well known result of Nash-Williams says that for any uniform family \mathcal{F} on \mathbb{N} and any subset \mathcal{B} of \mathcal{F} there is an infinite set $A \subseteq \mathbb{N}$ such that either $\mathcal{F} \upharpoonright A \subseteq \mathcal{B}$ or $\mathcal{F} \upharpoonright A \cap \mathcal{B} = \emptyset$ (see [3]) where $\mathcal{F} \upharpoonright A$ is the collection of elements of \mathcal{F} that are subsets of A. This theorem solves the topological partition problem for \mathcal{F} , if the topological type of $\mathcal{F} \upharpoonright A$ and \mathcal{F} are the same. This was the starting point for this research. We soon realized that $\mathcal{F} \upharpoonright A$ could be a discrete subspace of \mathcal{F} and hence Baumgartner's theorem is not a corollary of the Nash-Williams's theorem. In fact, given a uniform family \mathcal{F} , there is $\mathcal{B} \subset \mathcal{F}$ such that $\mathcal{F} \upharpoonright A$ is a discrete subset of \mathcal{F} for every set A homogeneous for the partition given by \mathcal{B} (i.e. for any A satisfying the conclusion of Nash-Williams's theorem applied to \mathcal{F} and \mathcal{B}) (see example 3.13). Nevertheless, it is natural to wonder about the topological type of $\mathcal{F} \upharpoonright A$. The objective of this paper is to present an analysis of the Cantor-Bendixson index of $\mathcal{F} \upharpoonright A$ as a subspace of a uniform family \mathcal{F} . Notice that $\mathcal{F} \upharpoonright A$ has the same order type of \mathcal{F} , but the topological type varies considerably depending on the set A. Hence the difficulty lies on the fact that we are using on $\mathcal{F} \upharpoonright A$ the subspace topology.

²⁰⁰⁰ Mathematics Subject Classification. Primary 03E02; Secondary 05D10.

Key words and phrases. Uniform families, Cantor-Bendixson derivative, partition of topological spaces.

To give an example of the results presented in this paper, we recall a typical ω -uniform family, the so called *Schreier barrier*:

$$\mathcal{S} = \{ t \in \mathbb{N}^{[<\infty]} : |t| = \min(t) + 1 \}.$$

It is known that S is homeomorphic to ω^{ω} . We will show that $S \upharpoonright M$ contains a topological copy of S iff M contains intervals of consecutive integers of arbitrary length. Finally, we mention that besides the important role played by uniform families in Ramsey theory [3], they have also appeared in the theory of Banach spaces as tools for the construction of Tsirelson-like spaces [1].

The paper is organized as follows. In section 2 we introduce the terminology and some preliminary facts. In section 3 we study the Cantor-Bendixson derivatives of uniform families. In section 4 we introduce the type of sets M such that the restriction $\mathcal{F} \upharpoonright M$ has the same Cantor-Bendixson index as \mathcal{F} . Finally, in section 5 we present the main results about when $\mathcal{F} \upharpoonright M$ contains a topological copy of \mathcal{F} .

2. Preliminaries

We denote by $\mathbb{N}^{[<\infty]}$ the collection of all finite subsets of \mathbb{N} . If M is a set, $M^{[k]}$ denotes the collection of all k-elements subsets of M. By $M^{[\infty]}$ we denote the collection of all infinite subsets of M.

The lexicographic order $<_{lex}$ over $\mathbb{N}^{[<\infty]}$ is defined as follows: Given $s, t \in \mathbb{N}^{[<\infty]}$ we put $s <_{lex} t$ iff $min(s \triangle t) \in s$.

We write $s \sqsubseteq t$ when there is $n \in \mathbb{N}$ such that $s = t \cap \{0, 1, \dots, n\}$ and we say that s is an initial segment of t. A collection \mathcal{F} of finite subsets of \mathbb{N} is a *front* on M if satisfies the following conditions: (i) Every two elements of \mathcal{F} are \sqsubseteq -incomparable. (ii) Every infinite subset N of M has an initial segment in \mathcal{F} .

Given $\mathcal{F} \subset \mathbb{N}^{[<\infty]}$ and $u \in \mathbb{N}^{[<\infty]}$, let

$$\mathcal{F}_u = \{ s \in \mathbb{N}^{[<\infty]} : \ u \cup s \in \mathcal{F}, \ max(u) < min(s) \}.$$

For convenience, we set $max(\emptyset) = -1$; in particular, $\mathcal{F}_{\emptyset} = \mathcal{F}$.

For M an infinite subset of \mathbb{N} , let

$$\mathcal{F} \upharpoonright M = \{ s \in \mathcal{F} : s \subset M \}.$$

We put $M/k = \{n \in M : k < n\}$. If u is a finite set and n = max(u), we put M/u = M/n. The notion of an α -uniform family on an infinite set M is defined by recursion.

- (i) $\{\emptyset\}$ is the unique 0-uniform family on M.
- (ii) $\mathcal{F} \subseteq \mathbb{N}^{[<\infty]}$ is said to be $(\alpha + 1)$ -uniform on M, if $\mathcal{F}_{\{n\}}$ is α -uniform on M/n for all $n \in M$.
- (iii) If α is a limit ordinal, we say that \mathcal{F} is α -uniform on M, if there is an increasing sequence $(\alpha_k)_{k\in M}$ converging to α such that $\mathcal{F}_{\{k\}}$ is α_k -uniform on M/k for all $k\in M$.

For $k \in \mathbb{N}$, $M^{[k]}$ is the unique k-uniform family on M. The following collection is an ω -uniform family on \mathbb{N} , called *Schreier barrier*:

$$\mathcal{S} = \{ t \in \mathbb{N}^{[<\infty]} : |t| = \min(t) + 1 \}.$$

We say that \mathcal{F} is uniform on M when it is α -uniform on M for some α . Notice that if \mathcal{F} is uniform on M, then \mathcal{F}_u es uniform on M/u.

The following result is well known [1].

Theorem 2.1. Let \mathcal{F} be an α -uniform family over M. Then \mathcal{F} is a front over M and $\mathcal{F} \upharpoonright N$ is α -uniform over N for all infinite $N \subseteq M$.

Given a front \mathcal{F} on a final segment S of \mathbb{N} . For $n \in S$, we denote by $t_n^{\mathcal{F}}$ the unique element of \mathcal{F} verifying

$$t_n^{\mathcal{F}} \sqsubseteq \{n, n+1, n+2, \dots\}.$$

In the sequel, the sets $t_n^{\mathcal{F}_u}$ will be very useful. In particular, we remark that given a finite set $u \subset S$ and $n \in S/u$, there is a unique m such that

$$u \cup t_n^{\mathcal{F}_u} = u \cup \{n, n+1, \cdots, n+m\} \in \mathcal{F}.$$

Notice that if $s \in \mathcal{F}$ and $n = \min(s)$, then

$$t_n^{\mathcal{F}} \leq_{lex} s <_{lex} t_{n+1}^{\mathcal{F}}.$$

Given two families \mathcal{F} and \mathcal{G} of finite sets, define $\mathcal{F} \oplus \mathcal{G}$ as follows:

$$\mathcal{F} \oplus \mathcal{G} = \{ s \cup t : s \in \mathcal{G}, t \in \mathcal{F} \text{ and } max(s) < min(t) \}.$$

If \mathcal{F} is α -uniform and \mathcal{G} is β -uniform, then $\mathcal{F} \oplus \mathcal{G}$ is $(\alpha + \beta)$ -uniform. Notice that if \mathcal{F} is a front over a final segment S of \mathbb{N} , then $t_n^{\mathcal{F}} = \min(\mathcal{F}_{\{n\}} \oplus \{\{n\}\}\}, <_{lex})$ for all $n \in S$. The following result is well known (see for instance [1]).

Theorem 2.2. Let \mathcal{F} be an α -uniform family over a set M. Then \mathcal{F} is lexicographically well ordered and its order type is ω^{α} .

In what follows, we consider an uniform family \mathcal{F} on \mathbb{N} (or a final segment of \mathbb{N}) as topological space by giving \mathcal{F} the order topology respect to the lexicographic order $<_{lex}$.

Now we recall some known facts about the Cantor-Bendixson derivative (CB derivative in short). Given a topological space X and $A \subseteq X$, we let A' be the set of all limit points $x \in A$. Recursively, $A^{(0)} = A$, $A^{(\alpha+1)}$ is $(A^{(\alpha)})'$ and for α a limit ordinal, $A^{(\alpha)}$ is $\bigcap_{\beta < \alpha} A^{(\beta)}$. The least α such that $A^{(\alpha)} = A^{(\alpha+1)}$ is called the CB index of A. It is well know that ω^{α} with the order topology has CB index equal to α .

An ordinal is said to be *indecomposable* if there are not $\beta, \gamma < \alpha$ such that $\alpha = \beta + \gamma$. It is known that α is indecomposable iff $\alpha = \omega^{\beta}$ for some β .

To get copies of uniform families we will use the following theorem which follows from the results in [2].

Theorem 2.3. Let $\alpha < \omega_1$ be an indecomposable ordinal and $X \subseteq \omega^{\alpha}$. If $X^{(\gamma)} \neq \emptyset$ for all $\gamma < \alpha$, then X has a subspace homeomorphic to ω^{α} .

3. CB derivatives of uniform families

In this section we study the behavior of the CB derivative on $\mathcal{F} \uparrow M$, for $M \in \mathbb{N}^{[\infty]}$, as a subspace of \mathcal{F} . In particular, we will characterize the limit points in $\mathcal{F} \upharpoonright M$.

Lemma 3.1. Let \mathcal{F} be an α -uniform family on a final segment of \mathbb{N} with $\alpha \geq \omega$ and $t \in \mathcal{F}$.

- (i) If $\alpha = \omega$, then $|t| > \min(t) + 1$.
- (ii) If $\alpha > \omega$, then $|t| > \min(t) + 2$.

In particular, $|t| \geq 2$ for all t in an α -uniform family with $\alpha > 1$ and $\min(t) \geq 1$.

Proof. Let \mathcal{F} be an ω -uniform family and $t \in \mathcal{F}$. Let n = min(t), then $t/n \in \mathcal{F}_{\{n\}}$ and $\mathcal{F}_{\{n\}}$ is k-uniform with $k \geq n$, therefore the size of t is at least n + 1. The rest of the claim follows by induction on α .

Lemma 3.2. Let \mathcal{F} be an uniform family on a final segment of \mathbb{N} .

- (i) Suppose $(s_i)_i$ is a sequence in \mathcal{F} such that $s_i \to s$ with $s \in \mathcal{F}$, then there exists $k \in \mathbb{N}$ such that $min(s) 1 \le min(s_i) \le min(s)$ for all $i \ge k$. In particular, $s_i \le_{lex} s$ for all $i \ge k$.
- (ii) Suppose $(s_i)_i$ is a sequence in \mathcal{F} of the form $s_i = u \cup \{p-1\} \cup v_i$ where $u \in \mathbb{N}^{[<\infty]}$, $p \ge 1$, $max(u) < p-1 < min(v_i)$ and $min(v_i) \to \infty$. Then there is $m \in \mathbb{N}$ such that $s_i \to u \cup \{p, p+1, \ldots, p+m\} = u \cup t_n^{\mathcal{F}_u}$.
- (iii) Suppose $(s_i)_i$ is a sequence in \mathcal{F} such that $s_i \to s \in \mathcal{F}$ and $min(s_i) = min(s) 1 = p-1$ for all i. Then $s = t_p^{\mathcal{F}}$ and $s_i = \{p-1\} \cup v_i$ for some v_i such that $p-1 < min(v_i)$ and $min(v_i) \to \infty$. Conversely, if $s_i \to_i t_p^{\mathcal{F}}$ and $s_i \neq t_p^{\mathcal{F}}$ for all i, then eventually $min(s_i) = p-1$.
- (iv) Suppose $s_i \to s$ and $min(s_i) = min(s) = n$ for all i. Then $s_i/n \to s/n$.
- (v) Suppose $s, s_i \in \mathcal{F}$ with $s \neq s_i$ for all i and $s_i \to s$. Then there are $u, v_i \in \mathbb{N}^{[<\infty]}$ and $p \in \mathbb{N}$ such that

$$s = u \cup t_p^{\mathcal{F}_u}$$

and eventually

$$s_i = u \cup \{p-1\} \cup v_i$$

where $max(u) and <math>min(v_i) \to \infty$.

Proof. (i) follows from the fact that \mathcal{F} is a front and the topology of \mathcal{F} is the order topology given by $<_{lex}$ which is a well-order on \mathcal{F} . In particular, convergence in \mathcal{F} is from below.

To see (ii), let $s = u \cup t_p^{\mathcal{F}_u}$ and $w \in \mathcal{F}$ such that $w <_{lex} s$. It is clear that $s_i <_{lex} s$ for all i. We will show that eventually $w <_{lex} s_i$. The only interesting case is when $w = u \cup v$ with max(u) < min(v). If $min(v) , then clearly <math>w <_{lex} s_i$ for all i. Suppose then that min(v) = p - 1. As $s_i \in \mathcal{F}$ and \mathcal{F} is a \sqsubseteq -antichain, then $u \cup \{p - 1\} \notin \mathcal{F}$ and thus $|v| \geq 2$. Therefore, $w <_{lex} s_i$ for all large enough i.

For (iii), notice that $s_i <_{lex} t_p^{\mathcal{F}} \leq_{lex} s$ for all i. Thus $s = t_p^{\mathcal{F}}$. Suppose m is such that $min(v_i) < m$. Since \mathcal{F} is a front, pick $w_m \in \mathcal{F}$ such that $\{p-1, m\} \sqsubseteq w_m$. Then $s_i <_{lex} w_m <_{lex} s$. Hence there are only finitely many such v_i and thus $min(v_i) \to \infty$.

To see (v). By (i) we assume that $s_i \leq_{lex} s$ for all i. If $min(s_i) = min(s) - 1$ eventually, then apply (iii) to get the conclusion with $u = \emptyset$. If $min(s_i) = min(s) = n$, then by (iv), $s_i/n \to s/n$; by repeating this finitely many times we get that $s = u \cup w$, $s_i = u \cup w_i$ with max(u) < w, $max(u) < min(w_i)$, $min(w_i) = min(w) - 1$ and $w_i \to w$. Since $w, w_i \in \mathcal{F}_u$ and \mathcal{F}_u is uniform on \mathbb{N}/u , then we apply (iii) to finish the proof.

Remark 3.3. Let \mathcal{F} be an uniform family on \mathbb{N} . If $\mathcal{F} \upharpoonright M$ is a closed subset of \mathcal{F} , then M is a final segment of \mathbb{N} . In fact, let $n \in M$, we show that $n+1 \in M$. Since $\mathcal{F} \upharpoonright M$ is a front on M, let $v_i \in \mathcal{F} \upharpoonright M$ such that $\{n, i\} \sqsubseteq v_i$ for $i \in M/n$. Then $v_i \to t_{n+1}^{\mathcal{F}}$, in particular $n+1 \in M$.

Using the previous results, we are ready to characterize limit points in uniform families.

Proposition 3.4. Let \mathcal{F} be an α -uniform family on a final segment S of \mathbb{N} with $1 < \alpha < \omega_1$, $M \in S^{[\infty]}$ and $t \in \mathcal{F} \upharpoonright M$ with min(t) > 1. Then, $t \in (\mathcal{F} \upharpoonright M)'$ if, and only if, there is $u \in S^{[<\infty]}$ and $p \in \mathbb{N}$ such that

$$t = u \cup \{p, p+1, \cdots, p+m\}$$

where $max(u) < p-1, p-1 \in M$ and $m \ge 1$. Notice that $t = u \cup t_n^{\mathcal{F}_u}$.

Proof. (\Rightarrow) Let $t \in (\mathcal{F} \upharpoonright M)'$, by lemma 3.2 we know that there is $u \in \mathbb{N}^{[<\infty]}$ and $p, m \in \mathbb{N}$ such that

$$t = u \cup \{p, p+1, \cdots, p+m\} = u \cup t_p^{\mathcal{F}_u}$$

and max(u) < p-1. Moreover, any sequence in $\mathcal{F} \upharpoonright M$ converging to t is eventually of the form $s_i = u \cup \{p-1\} \cup v_i$ where $max(u) < p-1 < min(v_i)$ and $min(v_i) \to \infty$. In particular, $p-1 \in M$. It remains only to show that $m \geq 1$. Since $\{p-1\} \cup v_i \in \mathcal{F}_u$, then \mathcal{F}_u is not 1-uniform, thus by lemma 3.1, $t_p^{\mathcal{F}_u}$ has size at least 2, hence $m \geq 1$.

 (\Leftarrow) Reciprocally, suppose $t = u \cup t_p^{\mathcal{F}_u} \subseteq M$ for some $p \in M$ with max(u) .Notice that $\mathcal{F}_u \upharpoonright M$ is a β -uniform family on M/u for some $\beta < \alpha$. Since $t_p^{\mathcal{F}_u}$ has size at least 2, then $\beta \geq 2$. As $\mathcal{F}_u \upharpoonright M$ is a front on M/u, there is $w_i \in \mathcal{F}_u \upharpoonright M$ such that $\{p-1,i\} \sqsubseteq w_i$ for each $i \in M/(p-1)$. Then by lemma 3.2 we know that $u \cup w_i \to u \cup t_n^{\mathcal{F}_u}$.

Proposition 3.4 gives a tool to determine the topological type of a subspace $\mathcal{F} \upharpoonright M$. Also, it allows to construct subspaces $\mathcal{F} \upharpoonright M$ without copies of \mathcal{F} . The following example shows that $\mathcal{F} \upharpoonright M$ can be a discrete subspace of \mathcal{F} .

Examples 3.5. For the following examples we shall consider the Schreier barrier S (defined in $\S 2$).

- (i) Let $M \in \mathbb{N}^{[\infty]}$ be the collection of even numbers. Since in M there are not consecutive numbers, then $S \upharpoonright M$ is a discrete subspace of S.
- (ii) Let $M = \{3k : k \in \mathbb{N}\}$ and $N = \mathbb{N}\backslash M$. In this case, N has consecutive numbers but $S \upharpoonright N$ is also discrete, because $3q \notin N$ for all q.

As we can see, given an uniform family \mathcal{F} on \mathbb{N} , its restrictions $\mathcal{F} \upharpoonright M$ can change considerably its topological type. Nevertheless, for some sets M the restriction conserves the topological type of \mathcal{F} . The simplest example is when M is a final segment of \mathbb{N} , then $\mathcal{F} \upharpoonright M$ corresponds also to final segment of \mathcal{F} , therefore $\mathcal{F} \upharpoonright M$ is closed in \mathcal{F} and the subspace topology of $\mathcal{F} \upharpoonright M$ is homeomorphic \mathcal{F} . But, as we shall show in following sections, there are also non trivial sets M such that $\mathcal{F} \upharpoonright M$ contains a topological copy of \mathcal{F} . To do this, we need to analyze the CB derivatives of an uniform family.

Using the definition of $\mathcal{F}_{\{n\}}$, \oplus , and $<_{lex}$, it is easy to verify the following result which we shall use continuously to make proofs by induction.

Lemma 3.6. Let $\mathcal{F} \subseteq \mathbb{N}^{[<\infty]}$ and $M \in \mathbb{N}^{[\infty]}$. The following hold:

- (i) $\mathcal{F}_{\{n\}} \upharpoonright M = (\mathcal{F} \upharpoonright M)_{\{n\}}, \text{ for } n \in M,$
- $(ii) \ \mathcal{F}_{\{n\}} = \bigcup_{m>n} (\mathcal{F}_{\{n\}})_{\{m\}} \oplus \{\{m\}\}, \ for \ n \in \mathbb{N}, \\ (iii) \ \mathcal{F} \upharpoonright M = \bigcup_{n \in M} (\mathcal{F} \upharpoonright M)_{\{n\}} \oplus \{\{n\}\}.$

Lemma 3.7. Let \mathcal{F} be an α -uniform family on a final segment S of \mathbb{N} , M an infinite subset of S, u a finite set and $0 < \beta < \alpha$, then

$$\left[(\mathcal{F} \upharpoonright M)_u \oplus \{u\} \right]^{(\beta)} = \left[(\mathcal{F} \upharpoonright M)_u \right]^{(\beta)} \oplus \{u\}.$$

In particular, for $n \in \mathbb{N}$ we have

$$\left[(\mathcal{F} \upharpoonright M)_{\{n\}} \oplus \{\{n\}\} \right]^{(\beta)} = \left[(\mathcal{F} \upharpoonright M)_{\{n\}} \right]^{(\beta)} \oplus \{\{n\}\}.$$

Proof. By induction on β . The result its true for $\beta = 1$ by Lemma 3.2. Let us consider $\beta < \alpha$ and let us suppose that the lemma is true for all $\gamma < \beta$.

(i) Suppose $\beta = \gamma + 1$ and let $t \in \left[(\mathcal{F} \upharpoonright M)_u \oplus \{u\} \right]^{(\gamma+1)}$. Then there exists $(t_i)_i$ in $\left[(\mathcal{F} \upharpoonright M)_u \oplus \{u\} \right]^{(\gamma)}$ such that $t_i \to t$. By the inductive hypothesis, $(t_i)_i \in \left[(\mathcal{F} \upharpoonright M)_u \right]^{(\gamma)} \oplus \{u\}$. Thus applying Lemma 3.2 we get that $t/u \in \left[(\mathcal{F} \upharpoonright M)_u \right]^{(\gamma+1)}$. Hence $t = u \cup t/u \in \left[(\mathcal{F} \upharpoonright M)_u \right]^{(\gamma+1)} \oplus \{u\}$.

Reciprocally, let $t \in \left[(\mathcal{F} \upharpoonright M)_u \right]^{(\gamma+1)} \oplus \{u\}$. Then $t/u \in \left[(\mathcal{F} \upharpoonright M)_u \right]^{(\gamma+1)}$. Thus there is $(t_i)_i \in \left[(\mathcal{F} \upharpoonright M)_u \right]^{(\gamma)}$ such that $t_i \to t/u$. Hence $t \in \left[(\mathcal{F} \upharpoonright M)_{\{n\}} \oplus \{u\} \right]^{(\gamma+1)}$, because

$$u \cup t_i \in \left[(\mathcal{F} \upharpoonright M)_u \right]^{(\gamma)} \oplus \{u\} = \left[(\mathcal{F} \upharpoonright M)_u \oplus \{u\} \right]^{(\gamma)}$$
.

(ii) If β is an ordinal limit, then

$$\begin{split} \left[(\mathcal{F} \upharpoonright M)_u \oplus \{u\} \right]^{^{(\beta)}} &= \bigcap_{\lambda < \beta} \left[(\mathcal{F} \upharpoonright M)_u \oplus \{u\} \right]^{^{(\lambda)}} \\ &= \bigcap_{\lambda < \beta} \left(\left[(\mathcal{F} \upharpoonright M)_u \right]^{^{(\lambda)}} \oplus \{u\} \right) \\ &= \left(\bigcap_{\lambda < \beta} \left[(\mathcal{F} \upharpoonright M)_u \right]^{^{(\lambda)}} \right) \oplus \{u\} \\ &= \left[(\mathcal{F} \upharpoonright M)_u \right]^{^{(\beta)}} \oplus \{u\}. \end{split}$$

Proposition 3.8. Let \mathcal{F} be an α -uniform family on a final segment of \mathbb{N} with $2 < \alpha < \omega_1$, $M \in \mathbb{N}^{[\infty]}$ and $0 < \beta < \alpha$. If $t \in (\mathcal{F} \upharpoonright M)^{(\beta)}$ then one of the following holds:

- (i) $t/k \in ((\mathcal{F} \upharpoonright M)_{\{k\}})^{(\beta)}$, where $k = \min(t)$, or
- (ii) $t = t_p^{\mathcal{F}}$, for some $p \in \mathbb{N}$ with $p 1 \in M$.

Therefore

$$(\mathcal{F} \upharpoonright M)^{(\beta)} \subseteq \bigcup_{k \in M} \left[(\mathcal{F} \upharpoonright M)_{\{k\}} \oplus \{\{k\}\}\right]^{(\beta)} \cup \{t_p^{\mathcal{F}} : t_p^{\mathcal{F}} \subseteq M \text{ and } p-1 \in M\}.$$

Proof. Note that the last equation is consequence of (i), (ii) and Lemma 3.7. On the other hand, let $t \in (\mathcal{F} \upharpoonright M)^{(\beta)}$ and $k = \min(t)$. Then $t_k^{\mathcal{F}} \leq_{lex} t <_{lex} t_{k+1}^{\mathcal{F}}$. There are two cases to consider: (a) Suppose $t = t_k^{\mathcal{F}}$. Since t is a limit point, then by lemma 3.4, $k - 1 \in M$ and (ii) holds.

(b) Suppose $t_k^{\mathcal{F}} <_{lex} t$. Let

$$U_k = \{ s \in \mathcal{F} | M : t_k^{\mathcal{F}} <_{lex} s <_{lex} t_{k+1}^{\mathcal{F}} \}.$$

Then $t \in U_k$ and U_k is an open subset of $\mathcal{F} \upharpoonright M$. Thus $t \in (U_k)^{(\beta)} \subseteq ((\mathcal{F} \upharpoonright M)_{\{k\}} \oplus \{\{k\}\})^{(\beta)}$ $= ((\mathcal{F} \upharpoonright M)_{\{k\}})^{(\beta)} \oplus \{\{k\}\}\$. Thus (i) holds.

3.1. Finite CB derivative. In this section we present some results about the finite derivatives $(\mathcal{F} \upharpoonright M)^{(l)}$, with $l < \omega$.

Lemma 3.9. Let \mathcal{F} be an α -uniform family on M with $\alpha \geq \omega$. There is a sequence $(w_j)_j$ of finite sets with $(min(w_i))_i$ increasing and an increasing sequence of integers $(k_i)_i$ such that \mathcal{F}_{w_i} is k_i -uniform on M/w_i .

Proof. By induction on α . For $\alpha = \omega$ the result follows from the definition of a ω -uniform family. If $\alpha > \omega$, then $\mathcal{F}_{\{j\}}$ is β_j -uniform on M/j with $\omega \leq \beta_j < \alpha$ for (eventually) all $j \in M$. Using the inductive hypothesis, define recursively k_j and v_j for $j \in M$ such that $\mathcal{F}_{\{j\}\cup v_j}$ is k_j -uniform on M/v_j , $j < min(v_j)$ and $(k_j)_j$ increasing. Take $w_j = \{j\} \cup v_j$ with $j \in M$.

Proposition 3.10. Let \mathcal{F} be an α -uniform family on a final segment S of \mathbb{N} with $\alpha \geq 3$ and $M \in S^{[\infty]}$. Suppose there is $l \in \mathbb{N}$ with $1 \leq l$ and $N \in \mathbb{N}^{[\infty]}$ such that $\{i, i+1, i+2, \dots, i+l\} \subseteq \mathbb{N}$ M for all $i \in N$. Let $u \in \mathbb{N}^{[<\infty]}$ and p > max(u) + 1 be such that $\mathcal{F}_{u \cup \{p-1\}}$ is β -uniform with $l < \beta$. If $t \in \mathcal{F}$ is of the form

$$t = u \cup \{p, p+1, \dots, p+m\}$$

with l < m, then $t \in (\mathcal{F} \upharpoonright M)^{(l)}$.

Proof. When l=1, the result follows from 3.4, thus we assume $l\geq 2$. Let t,M and N as in the hypothesis. We will define a sequence $(s_i)_i$ in $(\mathcal{F} \upharpoonright M)^{(l-1)}$ converging to t.

We treat first the case $\beta < \omega$. When $l = \beta$, take $s_i = u \cup \{p-1\} \cup \{i+1, \dots, i+l\}$ for $i \in N/p$. If $l < \beta$, then for infinite many $i \in N$ there is a nonempty finite set w_i such that

$$s_i = u \cup \{p-1\} \cup w_i \cup \{i+1, \cdots, i+l\} \in \mathcal{F} \upharpoonright M,$$

 $p-1 < min(w_i), max(w_i) < i \text{ and } min(w_i) \to \infty$. This finishes the definition of the sequence $(s_i)_i$. By a straightforward inductive argument, we conclude that $s_i \in (\mathcal{F} \upharpoonright M)^{(l-1)}$. By lemma 3.2, $s_i \to t$ and thus $t \in (\mathcal{F} \upharpoonright M)^{(i)}$.

Now suppose $\beta \geq \omega$. By lemma 3.9, there are sequences $(w_i)_i$ and $(k_i)_i$ such that $p < \infty$ $min(w_i) \to \infty$, $k_i > m$ and $\mathcal{F}_{u \cup \{p-1\} \cup w_i}$ is k_i -uniform. Then we construct the sequence $(s_i)_i$ as before.

For k-uniform families with $k \in \omega$ we have the following proposition.

Proposition 3.11. Let \mathcal{F} be a k-uniform family on a final segment of \mathbb{N} with $3 \leq k$. Let $l \in \mathbb{N}$ with $2 \leq l < k$, $M \in \mathbb{N}^{[\infty]}$ and $t \subseteq M$. If $t \in (\mathcal{F} \upharpoonright M)^{(l)}$, then there exist $N \in \mathbb{N}^{[\infty]}$ such that $\{i, i+1, i+2, \dots, i+l\} \subseteq M$ for all $i \in N$ and

$$t = u \cup \{p, p+1, \dots, p+m\}$$

for some $u \in \mathbb{N}^{[<\infty]}$ with $max(u) < p-1 \in M$ and $l \le m \le k-1$.

Proof. Let $t \in (\mathcal{F} \upharpoonright M)^{(l)}$, then by lemma 3.4

$$t = u \cup \{p, p+1, \dots, p+m\}$$

for some $u \in \mathbb{N}^{[<\infty]}$ with $max(u) < p-1 \in M$. Let $(s_i)_i$ in $(\mathcal{F} \upharpoonright M)^{(l-1)}$ converging to t. By lemma 3.2 we assume that each s_i is of the form

$$s_i = u \cup \{p-1\} \cup v_i$$

with $p-1 < min(v_i)$.

The proof is by induction on l. By the inductive hypothesis when $l \geq 3$ and by lemma 3.4 when l = 2, we conclude that there is an increasing sequence $(p_i)_i$ such that $p_i - 1 \in M$, $\{p_i, p_i + 1, \dots, p_i + m_i\} \subseteq v_i$ and $l - 1 \leq m_i$. In particular, this says that $\{p_i - 1, p_i, p_i + 1, \dots, p_i + l - 1\} \subset M$ for all i.

Now we show that $l \leq m < |t| - 1$. In fact, $m = |t| - |u| - 1 = |v_i| \geq m_i + 1 \geq l$.

From the previous results we immediately get the following:

Theorem 3.12. Let $M \in \mathbb{N}^{[\infty]}$ and k > 2. Then $M^{[k]}$, as a subspace of $\mathbb{N}^{[k]}$, has CB index k if, and only if, there exists $p \in \mathbb{N}$ and $N \in \mathbb{N}^{[\infty]}$ such that $\{p-1, p, p+1, p+2, \dots, p+k-1\} \subseteq M$ and $\{i, i+1, i+2, \dots, i+k-1\} \subseteq M$ for all $i \in N$.

The previous Theorem gives a characterization of those $M \in \mathbb{N}^{[\infty]}$ such that the CB index of $\mathcal{F} = \mathbb{N}^{[k]}$ and $\mathcal{F}|M$ are the same. However, this does not guarantee that $\mathcal{F}|M$ contains a topological copy of \mathcal{F} . To get this, we need that $\{p-1,p,p+1,p+2,\ldots,p+k-1\}\subseteq M$ for infinite many p.

The following example shows what we have said in the introduction about Nash-Williams theorem.

Example 3.13. Let \mathcal{F} be a α -uniform family on \mathbb{N} with $\alpha \geq 2$. Let $\mathcal{B} = \mathcal{F}^{(1)}$ and M be an infinite set. We will show that $(\mathcal{F} \upharpoonright M) \setminus \mathcal{B} \neq \emptyset$. In particular, this says that if M is homogeneous for the partition given by \mathcal{B} , then $(\mathcal{F} \upharpoonright M)$ is a discrete subset of \mathcal{F} .

Suppose first that $\alpha \geq \omega$. By lemma 3.9, applied to $\mathcal{F} \upharpoonright M$, there is $u \subset M$ finite such that $\mathcal{F}_u \upharpoonright M$ is k-uniform for some $2 \leq k < \omega$. Let $w \subset M$ and $p,q \in M$ such that $max(w) and <math>|w \cup \{p,q\}| = k$. Then $t = u \cup w \cup \{p,q\} \in \mathcal{F} \upharpoonright M$ and $t \notin \mathcal{B}$ (by lemma 3.4). If $\alpha < \omega$, we can argue analogously to find t.

4. \mathcal{F} -ADEQUATE SETS

Let \mathcal{F} be an α -uniform family on a final segment S of \mathbb{N} with $\alpha \geq 2$. In this section we introduce the notion of a \mathcal{F} -adequate set M and later we will show that for those sets $\mathcal{F} \upharpoonright M$ has the same CB index as \mathcal{F} .

Let $M \in S^{[\infty]}$, we define by recursion a subset $M(\mathcal{F})$ of M and the notion of a \mathcal{F} -adequate set.

(i) If $\alpha = 2$, then $M(\mathcal{F})$ is the set of all $n \in M$ such that $t_{n+1}^{\mathcal{F}} \subset M$. And M is said to be \mathcal{F} -adequate, if $M(\mathcal{F})$ is not empty.

- (ii) If $\alpha = \beta + 1$, then
 - $M(\mathcal{F}) = \{ n \in M : t_{n+1}^{\mathcal{F}} \subset M, M/n \text{ is } \mathcal{F}_{\{n\}}\text{-adequate and } (M/n)(\mathcal{F}_{\{n\}}) \text{ is infinite} \}.$

And M is said to be \mathcal{F} -adequate, if $M(\mathcal{F})$ is not empty.

(iii) If α is limit, then $M(\mathcal{F}) = M$. Let $(\alpha_n)_n$ be the increasing sequence of ordinals as in the definition of a α -uniform family. We say that M is \mathcal{F} -adequate, if for all n there is a non empty finite set $v \subset M$ such that \mathcal{F}_v is γ -uniform for some $\gamma \geq \alpha_n$ and M/v is \mathcal{F}_v -adequate.

Example 4.1. If $\mathcal{F} = \mathbb{N}^{[2]}$, then an infinite set is \mathcal{F} -adequate when it contains three consecutive integers. In general, for $\mathcal{F} = \mathbb{N}^{[k+1]}$, a set is \mathcal{F} -adequate if it contains $\{n, n+1, \dots, n+k\}$ for some n and infinite many intervals of length k.

Let us say that an infinite set M is ω -adequate, if it contains arbitrarily long intervals of consecutive integers. Suppose \mathcal{F} is ω -uniform on \mathbb{N} . Then M is \mathcal{F} -adequate iff M is ω -adequate.

Now suppose that \mathcal{F} is $(\omega + 1)$ -uniform on \mathbb{N} . Let P be a ω -adequate set. For a fixed $k \in \mathbb{N}$, let $M = P \cup \{k\} \cup t_{k+1}^{\mathcal{F}}$. Then M is \mathcal{F} -adequate. In fact, notice that $k \in M(\mathcal{F})$ because M/k is ω -adequate and $\mathcal{F}_{\{k\}}$ is ω -uniform.

The next lemma says that, in the definition of a \mathcal{F} -adequate set for α limit, we could have required that the ordinals γ are successor.

Lemma 4.2. Let \mathcal{F} be an α -uniform family on a final segment of \mathbb{N} with α a limit ordinal. If M is an \mathcal{F} -adequate set, then there is a sequence of ordinals $\beta_n < \alpha$ and finite sets $u_n \subset M$ such that M/u_n is \mathcal{F}_{u_n} -adequate, \mathcal{F}_{u_n} is $(\beta_n + 1)$ -uniform on M/u_n , $\alpha = \sup\{\beta_n : n \in \mathbb{N}\}$.

Proof. By induction. The result holds for $\alpha = \omega$ by the definition of an ω -uniform family. Let $\alpha > \omega$ be a limit ordinal. Let $(\alpha_n)_n$ converging to α as in the definition of an α -uniform family. Fix sequences $(\gamma_n)_n$ and $(v_n)_n$ as in the definition of \mathcal{F} -adequate set. Since $(\alpha_n)_n$ is increasing, we assume that $\gamma_n > \alpha_n$. If there are infinitely many n such that γ_n is a successor ordinal, then we are done. Otherwise, assume that γ_n is a limit ordinal for all n. Apply the inductive hypothesis to \mathcal{F}_{v_n} and M/v_n to get sequences of ordinals β_k^n converging to γ_n and finite sets $v_k^n \subset M$ such that $v_n \subset v_k^n$, M/v_k^n is $\mathcal{F}_{v_k^n}$ -adequate and $\mathcal{F}_{v_k^n}$ is $(\beta_k^n + 1)$ -uniform. Now pick for each n an integer k_n such that $\beta_{k_n}^n > \alpha_n$. Take $u_n = v_{k_n}^n$ and $\beta_n = \beta_{k_n}^n$.

We going to present a method to construct \mathcal{F} -adequate sets. It is easy to show by induction on α that if \mathcal{F} is α -uniform with $\alpha \geq \omega$, then there exist $s \in \mathbb{N}^{[<\infty]}$ such that \mathcal{F}_s is ω -uniform on \mathbb{N}/s . Thus the following definition is non trivial.

Definition 4.3. Let \mathcal{F} be an α -uniform family with $\alpha \geq \omega$, we define the set $\mathcal{A}_{\mathcal{F}}$ as

$$\mathcal{A}_{\mathcal{F}} = \{ s \in \overline{\mathcal{F}}^{\sqsubseteq} : \mathcal{F}_s \text{ is } \omega\text{-uniform on } \mathbb{N}/s \}.$$

The set $\mathcal{A}_{\mathcal{F}}$ has the following properties:

- (1) $\mathcal{A}_{\mathcal{F}}$ is infinite, if $\alpha \neq \omega$,
- (2) $\mathcal{A}_{\mathcal{F}}$ is a front on M (If \mathcal{F} is uniform on $M \in \mathbb{N}^{[\infty]}$),
- (3) $\overline{\mathcal{A}_{\mathcal{F}}}^{\sqsubseteq}$ is a well founded tree.

From $\mathcal{A}_{\mathcal{F}}$ we define a \mathcal{F} -adequate tree and then a \mathcal{F} -adequate set of natural numbers.

Definition 4.4. Let \mathcal{F} be an α -uniform family with $\alpha \geq \omega$. We will say that a non empty subset T of $\overline{\mathcal{A}_{\mathcal{F}}}^{\sqsubseteq}$ is a \mathcal{F} -tree, if the following conditions hold

- (i) If $t \in T$ and $s \sqsubseteq t$, then $s \in T$,
- (ii) $Ter(T) \subseteq \mathcal{A}_{\mathcal{F}}$,
- (iii) $\{n \in \mathbb{N} : n > t \text{ and } t \cup \{n\} \in T\}$ is infinite, for all $t \in T \setminus Ter(T)$, where Ter(T) denotes the set of terminal nodes of T.

We remark that for an α -uniform family \mathcal{F} on a set M with $\alpha > \omega$, $\mathcal{A}_{\mathcal{F}}$ is a front on M, and thus $\overline{\mathcal{A}_{\mathcal{F}}}^{\sqsubseteq}$ is well founded [1]. Thus each \mathcal{F} -tree is also well founded.

Definition 4.5. Given \mathcal{F} an α -uniform family with $\alpha > \omega$ and T a \mathcal{F} -tree, we define $E(T) \in \mathbb{N}^{[\infty]}$ as

$$E(T) = \bigcup_{ \begin{array}{c} s \cup \{n\} \in T \\ s < n \end{array}} \{n\} \cup t_{n+1}^{\mathcal{F}_s}.$$

In other words,

$$\emptyset \neq \{x_0, x_1, x_2, \dots x_{k-1}, x_k\} \in T \Leftrightarrow \{x_k\} \cup t_{x_k+1}^{\mathcal{F}_{\{x_0, x_1, x_2, \dots x_{k-1}\}}} \subseteq E(T).$$

Lemma 4.6. Let \mathcal{F} be an α -uniform family over a final segment of \mathbb{N} with $\alpha > \omega$ and $n \in \mathbb{N}$. Then,

- $(1) (\mathcal{A}_{\mathcal{F}})_{\{n\}} = \mathcal{A}_{\mathcal{F}_{\{n\}}},$
- (2) If T is a \mathcal{F} -tree, then $T_{\{n\}}$ is a $\mathcal{F}_{\{n\}}$ -tree for all n such that $\{n\} \in T$,
- (3) $E(T_{\{n\}}) \subseteq E(T)$ for all n such that $\{n\} \in T$.

Proof. It is straightforward.

Proposition 4.7. Let \mathcal{F} be an α -uniform family over a final segment of \mathbb{N} with $\alpha > \omega$. If T is a \mathcal{F} -tree, then E(T) is \mathcal{F} -adequate.

Proof. By induction on α . Let us fix a \mathcal{F} -tree T and let M = E(T). We will show that M is \mathcal{F} -adequate and moreover that it is infinite.

- (i) Suppose $\alpha = \omega + 1$. It is easy to verify that $n \in M$ for all n such that $\{n\} \in T$. Recall that by lemma 3.1, the size of $t_{n+1}^{\mathcal{F}}$ is increasing with n. Thus M contains arbitrarily long intervals of consecutive integers and by example 4.1, M is $\mathcal{F}_{\{n\}}$ adequate for all n.
- (ii) If $\alpha = \beta + 1$, we will show that $M(\mathcal{F})$ contains all n such that $\{n\} \in T$. Fix such an n. Then $t_{n+1}^{\mathcal{F}} \subset M$. Let M_n be $E(T_{\{n\}})$. Since $T_{\{n\}}$ is a $\mathcal{F}_{\{n\}}$ -tree, by the inductive hypothesis, M_n is $\mathcal{F}_{\{n\}}$ -adequate and $M_n(\mathcal{F}_{\{n\}})$ is infinite. As $M_n(\mathcal{F}_{\{n\}}) \subset M_n \subset M/n$, then M/n is $\mathcal{F}_{\{n\}}$ -adequate. Thus $n \in M(\mathcal{F})$.
- (iii) Finally, suppose α is a limit ordinal. Then $T_{\{n\}}$ is a $\mathcal{F}_{\{n\}}$ -tree for each n such that $\{n\} \in T$. Since $\mathcal{F}_{\{n\}}$ is α_n -uniform, then $E(T_{\{n\}})$ is $\mathcal{F}_{\{n\}}$ -adequate. Since $E(T_{\{n\}}) \subseteq E(T)$, then E(T) is also $\mathcal{F}_{\{n\}}$ -adequate. As this holds for infinite many n's, then E(T) is \mathcal{F} -adequate.

Example 4.8. Let \mathcal{F} be a $(\omega+1)$ -uniform family on \mathbb{N} . It is easy to construct an infinite set P containing arbitrarily long intervals of consecutive natural numbers and such that $t_n^{\mathcal{F}} \not\subset P$ for all n. As in example 4.1, fixed $k \in \mathbb{N}$ and let $M = P \cup \{k\} \cup t_{k+1}^{\mathcal{F}}$. Then M is \mathcal{F} -adequate and it is not of the form E(T) for any \mathcal{F} -tree T.

5. Topological copies of \mathcal{F} inside $\mathcal{F} \upharpoonright M$

The following theorem is one of the main results of this paper. It justifies the introduction of \mathcal{F} -adequate sets.

Theorem 5.1. Let \mathcal{F} be an α -uniform family on a final segment S of \mathbb{N} with $\alpha \geq 2$ and Ma \mathcal{F} -adequate set. Then the CB index of $\mathcal{F} \upharpoonright M$ is α .

Proof. Since \mathcal{F} is homeomorfic to ω^{α} , then the CB index of $\mathcal{F} \upharpoonright M$ is at most α .

We first show by induction on $\beta \geq 1$ that if \mathcal{F} is $(\beta + 1)$ -uniform, M is \mathcal{F} -adequate and $n \in M(\mathcal{F})$, then

$$t_{n+1}^{\mathcal{F}} \in (\mathcal{F} \upharpoonright M)^{(\beta)}.$$

- (i) If $\beta = 1$, then $t_{n+1}^{\mathcal{F}} = \{n+1, n+2\} \subset M$. From lemma 3.4, $t_{n+1}^{\mathcal{F}} \in (\mathcal{F} \upharpoonright M)^{(1)}$. (ii) Suppose $\beta = \gamma + 1$. Since M/n is $\mathcal{F}_{\{n\}}$ -adequate and $(M/n)(\mathcal{F}_{\{n\}})$ is infinite, there is an increasing sequence $k_i \in (M/n)(\mathcal{F}_{\{n\}})$. Then by the inductive hypothesis, $t_{k_i+1}^{\mathcal{F}_{\{n\}}} \in (\mathcal{F}_{\{n\}} \upharpoonright M)^{(\gamma)}$. By lemma 3.7 we have

$$s_i = \{n\} \cup t_{k_i+1}^{\mathcal{F}_{\{n\}}} \in (\mathcal{F} \upharpoonright M)^{(\gamma)}.$$

By lemma 3.2, $s_i \to t_{n+1}^{\mathcal{F}}$. Thus $t_{n+1}^{\mathcal{F}} \in (\mathcal{F} \upharpoonright M)^{(\gamma+1)}$ and we are done.

(iii) Suppose β is a limit ordinal. Let $\beta_m \uparrow \beta$ as in the definition of a β -uniform family. Since M/n is $\mathcal{F}_{\{n\}}$ -adequate, then there is a sequence of finite sets $u_m \subset M/n$ and ordinals $\gamma_m \geq \beta_m$ such that $\mathcal{G}_m = \mathcal{F}_{\{n\} \cup u_m}$ is γ_m -uniform on M/u_m and M/u_m is \mathcal{G}_m -adequate. By lemma 4.2, we assume that each γ_n is a successor ordinal. Let $k_m \in M(\mathcal{G}_m)$. Then by the inductive hypothesis $t_{k_m+1}^{\mathcal{G}_m} \in (\mathcal{G}_m \upharpoonright M)^{(\beta_m)}$. By lemma 3.7 we have

$$s_m = \{n\} \cup u_m \cup t_{k_m+1}^{\mathcal{G}_m} \in (\mathcal{F} \upharpoonright M)^{(\beta_m)}.$$

By lemma 3.2, $s_m \to t_{n+1}^{\mathcal{F}}$. Thus $t_{n+1}^{\mathcal{F}} \in (\mathcal{F} \upharpoonright M)^{(\beta)}$ and we are done.

The proof of the theorem is by induction on α . It remains only to consider the case when α is a limit ordinal. Let $(\alpha_k)_k$ be an increasing sequence of ordinals converging to α as in the definition of a α -uniform family. Since M is \mathcal{F} -adequate, then for all k there is a finite set $v_k \subset M$ such that M/v_k is \mathcal{F}_{v_k} -adequate and \mathcal{F}_{v_k} is γ_k -uniform with $\gamma_k \geq \alpha_k$. By the inductive hypothesis, the CB index of $\mathcal{F}_{v_k} \upharpoonright M/v_k$ is γ_k and therefore (by lemma 3.7) the CB index of $\mathcal{F} \upharpoonright M$ is larger than γ_k for all k. Thus this last index is α .

For $\alpha = \omega$ we have a more precise result.

Theorem 5.2. Let \mathcal{F} be a ω -uniform family on a final segment of \mathbb{N} and $M \in \mathbb{N}^{[\infty]}$. Then, $\mathcal{F} \upharpoonright M$ has CB index ω if, and only if, M is \mathcal{F} -adequate.

Proof. The if part follows from 5.1. For the other direction we will use the characterization of \mathcal{F} -adequate sets given in example 4.1.

Let \mathcal{F} be a ω -uniform family on S and $(m_k)_k$ be an strictly increasing sequence in \mathbb{N} such that $\mathcal{F}_{\{k\}}$ is m_k -uniform on S/k for all $k \in \mathbb{N}$. Suppose $\mathcal{F} \upharpoonright M$ has CB index ω . Then, given $n \in \mathbb{N}$ there exists $t \in (\mathcal{F} \upharpoonright M)^{(n)}$ and a sequence $(t_i)_i$ in $(\mathcal{F} \upharpoonright M)^{(n-1)}$ such that $t_i \uparrow t$. Let $k_i = \min(t_i)$, by Proposition 3.8, for all $i \in \mathbb{N}$, $t_i/k_i \in ((M/k_i)^{[m_{k_i}]})^{(n-1)}$ or $t_i = t_{k_i}^{\mathcal{F}}$ with $k_i - 1 \in M$. Since $(t_i)_i$ is convergent, then eventually $t_i \neq t_{k_i}^{\mathcal{F}}$. Therefore, by Proposition 3.11, we can suppose that each t_i/k_i has the form $t_i/k_i = u_i \cup \{p_i, p_i + 1, \dots, p_i + n - 1\}$ with $p_i - 1 \in M$ for each $i \in \mathbb{N}$. Hence, $\{p_i - 1, p_i, p_i + 1, \dots, p_i + n - 1\} \subseteq M$ for all $i \in \mathbb{N}$, which implies M is \mathcal{F} -adequate.

Corollary 5.3. Let \mathcal{F} be a ω -uniform family and $M \in \mathbb{N}^{[\infty]}$. Then, $\mathcal{F} \upharpoonright M$ has a topological copy of \mathcal{F} if, and only if, M is \mathcal{F} -adequate.

Proof. Let \mathcal{F} be a ω -uniform family and $M \in \mathbb{N}^{[\infty]}$. If $\mathcal{F} \upharpoonright M$ contains a topological copy of \mathcal{F} , then $\mathcal{F} \upharpoonright M$ has CB index ω and therefore by Theorem 5.2 M is \mathcal{F} -adequate. Reciprocally, if M is an \mathcal{F} -adequate set, then by Theorem 5.2 $\mathcal{F} \upharpoonright M$ has CB index ω , and by Theorem 2.3 $\mathcal{F} \upharpoonright M$ has a topological copy of \mathcal{F} .

Finally, we present a result about the restriction to a set of the form E(T) for T a \mathcal{F} -tree.

Theorem 5.4. Let \mathcal{F} be an α -uniform family with $\alpha > \omega$ indecomposable. If T is a \mathcal{F} -tree, then $\mathcal{F} \upharpoonright E(T)$ contains a topological copy of \mathcal{F} .

Proof. Let \mathcal{F} , α and T be as in the hypothesis. Then by proposition 4.7, we know that E(T) is \mathcal{F} -adequate. Hence by Theorem 5.1, $\mathcal{F} \upharpoonright E(T)$ has CB index α , and by Theorem 2.3, $\mathcal{F} \upharpoonright E(T)$ has a topological copy of \mathcal{F} .

References

- [1] S. Argyros and S. Todorčević. *Ramsey methods in analysis*. Advanced courses in mathematics, CRM Barcelona. Birkhäuser, 2005.
- [2] J. Baumgartner. Partition relations for countable topological spaces. J. Combin. Theory Ser. A, 43:178–195, 1986.
- [3] S. Todorčević. *Introduction to Ramsey spaces*. Annals of Mathematical Studies 174. Princeton University Press, 2010.
- [4] W. Weiss. Partitioning topological spaces. In J. Nešetřil and V. Rödl, editors, *Mathematics of Ramsey Theory*, pages 154–171. Helderman Verlag, 1990.

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD DE LOS ANDES, MÉRIDA, 5101, VENEZUELA

E-mail address: claribet@ula.ve

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD DE LOS ANDES, MÉRIDA, 5101, VENEZUELA

E-mail address: uzca@ula.ve