

Flu Scenario Modeling Hub Report

29 September, 2022 Scenario Modeling Hub Team¹

Executive Summary

This report presents the results of the first round from the Flu Scenario Modeling Hub. A consortium of ten modeling groups convened to generate long-term scenario projections of hospitalizations and deaths that cover the period of 10 months from Aug 14, 2022 to June 3, 2023, across four scenarios. In this first round of influenza projections, we assessed the impact of reduced prior population immunity coming into the 2022-2023 influenza season as a result of decreased influenza circulation during the COVID-19 pandemic. We also assess the impact of low versus high vaccine-induced immunity (vaccine effectiveness combined with vaccination coverage). A full list of contributors is included at the end of the report. See the table on the next page for an overview of the scenarios included in this round. Detailed scenario descriptions and setting assumptions are provided here.

Key Takeaways from the First Round

- There is large variability in the projected burden of the 2022-23 epidemic depending on vaccine and prior immunity assumptions; yet the 50% projection intervals of all scenarios support a larger cumulative burden this season compared to the 2021-22 winter and the lowest previous pre-pandemic season (2015-2016 season).
- In the worst case scenario D, weekly hospitalizations are projected to peak at or above the highest pre-COVID-19 season (2017-2018), with an ensemble median of 35,800 nationally (50% PI, 17,300-53,400). In the best case scenario A, this is significantly reduced to 7,500 (50% PI, 4,900-17,800), which is still 2.1-fold higher than in the 2021-22 season.
- With a large immunity gap due to COVID-19 (pessimistic immunity scenarios), hospitalizations are projected to be 27%-89% higher than with a typical level of immunity in the pre-COVID-19 period (optimistic immunity scenarios; range of ensemble medians across vaccine assumptions).
- Increased vaccine effectiveness and coverage is expected to substantially decrease peak and cumulative hospitalizations regardless of existing population immunity, reducing hospitalizations by 45% in low prior immunity scenarios (representing around 165,000 hospitalizations averted) and 67% in high prior immunity scenarios (representing around 187,000 hospitalizations averted). Cumulative deaths would be reduced by around 67% and 76%, or 32,000 and 17,000 deaths averted, respectively.
- In scenario D, where immunity from prior seasons and 2022-23 vaccination is at its lowest, ensemble hospitalizations are projected to peak in the week of December 17 (50% PI, November 26-January 7). In scenario A, where immunity is the highest of all scenarios considered, the ensemble peaks in the week of January 14 (50% PI, December 3-January 28).
- A few caveats are worth noting:
 - There is substantial uncertainty in this first round of influenza projections due to lack of complete historical surveillance data from prior seasons. Further, the transmissibility of influenza strain(s)

¹Compiled by Sara Loo, Shaun Truelove, Cecile Viboud, Lucie Contamin, Emily Howerton.

- circulating in the 2022-23 season in the US is still unknown. As the season starts this uncertainty should reduce.
- There is also uncertainty in the amount of influenza reporting in the coming months as testing practices for respiratory viruses have changed during the COVID-19 pandemic.
- The trajectories of individual models are asynchronous, likely due to differences in seasonality assumptions, among others. This flattens the ensemble median and 50% PI for incident hospitalizations and deaths. Ensemble estimates of the peak size and cumulative burden are less affected by differences in the timing of individual models and are considered a more reliable indicator of the potential impact of the 2022-23 season than the trajectory ensembles.
- Scenarios did not consider immunological interactions with SARS-CoV-2 or reactive behavior changes and interventions in response to a new SARS-CoV-2 variant that may arise in the 2022-23 respiratory virus season, either of which could affect the transmission and disease burden of influenza.
- These hospitalization projections represent the expected number of influenza hospitalizations reported to the HHS system. These are not meant to reflect the final CDC estimates from the pyramid approach, which takes into account underreporting and various delays.
- The most pessimistic assumed vaccine effectiveness in these scenarios was VE=30% against hospitalization. It should be noted that recent seasons have had substantially lower estimated seasonal VE (e.g., 2014-15 with VE=19% overall), thus a substantial mis-match of the vaccine to circulating influenza strains could drive higher transmission than these scenarios.
- These projections were made with a data cutoff of August 14, 2022; no data after that day was to be used to calibrate or otherwise inform the model.

A note on empirical data

To compare projections to previous flu seasons, we present values for prior peak incident and cumulative hospitalizations. These values are in reference to all pre-COVID seasons from 2012-13 to 2019-20. The minimum and maximum peaks across these seasons are taken from FluSurv-NET (which is used as a proxy for hospitalizations). Nationally, the highest value is from the 2017-18 season, and the lowest from 2015-16. The 2021-22 flu season based on HHS data is also included to mark a small season.

Round 1 Scenario Specifications

	Optimistic flu prior immunity	Pessimistic flu prior immunity
	No impact of missed flu seasons due to the COVID-19 pandemic on prior immunity.* Same amount of prior immunity as in a typical, pre-COVID19 pandemic prior season	Substantial impact of missed flu seasons due to the COVID-19 pandemic and/or new variants on prior immunity.* 50% lower immunity than a typical, pre-COVID19 pandemic season
High Vaccination Protection • Vaccination coverage is 10% higher than 2020-21 for each age group [p(vacc) = 60% for adults)] • VE = 60% against medically attended influenza illnesses and hospitalizations (comparable to 2010-11 season)	Scenario A	Scenario B
Vaccination Protection Vaccination coverage is 10% lower than 2020-21 for each age group [p(vacc) = 40% for adults)] VE = 30% against medically attended influenza illnesses and hospitalizations (comparable to 2018-19 season)	Scenario C	Scenario D

Ensemble projection intervals

National ensemble projection intervals - Hospitalizations

National ensemble projection intervals - Cumulative Hospitalizations

National ensemble projection intervals – Deaths

National ensemble projection intervals - Cumulative Deaths

Horizontal lines are given for prior peak incident and cumulative hospitalizations, from seasons from 2012-13 to 2019-20. The minimum and maximum peaks across these seasons are taken from FluSurv-NET (which is used as a proxy for hospitalizations). Nationally, the highest value is from the 2017-18 season, and the lowest from 2015-16. The 2021-22 flu season based on HHS data is also included to mark a small season.

National ensemble projections

Ensemble projections for national incident and cumulative hospitalizations and deaths separated by scenario.

US ensemble projections & 95% projection intervals

National individual model projections

Individual model projections and ensemble by scenario for national hospitalizations, deaths and cumulative hospitalizations. For visualization we set axes limits; full confidence intervals are shown as supplemental plots on pages 16-17.

Individual model projections & 95% projection intervals – Deaths

Individual model projections & 95% projection intervals - Cumulative Deaths

Risk maps

Peak incident reported hospitalizations per 10,000 population in scenario with low vaccination, and pessimistic immunity: August 14, 2022 to June 03, 2023

Peak incident hosps per 10,000 pop

map-1.pdf

Cumulative reported hospitalizations per 10,000 population in scenario with low vaccination, and pessimistic immunity: August 14, 2022 to June 03, 2023

State variability in peak timing

Ensembles projections for state-level timing of peak hospitalization incidence.

Peak hospitalizations timing

Individual model probabilities for national timing of peak hospitalizations.

State-level deviation in hospitalization incidence

Individual model and ensembles projections for state-level peak hospitalization incidence.

12

Model Variation in National Peak Hospitalizations

Cumulative incidence over season by model

Model variation - Cumulative incidence over season

Difference between model and ensemble distributions

Supplemental Plots

National individual model projections - full confidence intervals

Individual model projections & 95% projection intervals - Hospitalizations

Individual model projections & 95% projection intervals – Cumulative Hospitalizations

Individual model projections & 95% projection intervals – Deaths

Individual model projections & 95% projection intervals – Cumulative Deaths

State-level deviation in hospitalization incidence

Optimistic prior immunity

Individual model and ensembles projections for state-level peak hospitalization incidence.

State variation in peak hospitalizations

Model Variation in National Peak Hospitalizations - rates per 100,000 population

Cumulative incidence over season - rates per 100,000 population

State-level ensemble plots

AL ensemble projections & 95% projection intervals

AZ ensemble projections & 95% projection intervals

AR ensemble projections & 95% projection intervals

CA ensemble projections & 95% projection intervals

CO ensemble projections & 95% projection intervals

CT ensemble projections & 95% projection intervals

DE ensemble projections & 95% projection intervals

DC ensemble projections & 95% projection intervals

FL ensemble projections & 95% projection intervals

GA ensemble projections & 95% projection intervals

HI ensemble projections & 95% projection intervals

ID ensemble projections & 95% projection intervals

IL ensemble projections & 95% projection intervals

IN ensemble projections & 95% projection intervals

IA ensemble projections & 95% projection intervals

KS ensemble projections & 95% projection intervals

KY ensemble projections & 95% projection intervals

LA ensemble projections & 95% projection intervals

ME ensemble projections & 95% projection intervals

MD ensemble projections & 95% projection intervals

MA ensemble projections & 95% projection intervals

MI ensemble projections & 95% projection intervals

MN ensemble projections & 95% projection intervals

MS ensemble projections & 95% projection intervals

MO ensemble projections & 95% projection intervals

MT ensemble projections & 95% projection intervals

NE ensemble projections & 95% projection intervals

NV ensemble projections & 95% projection intervals

NH ensemble projections & 95% projection intervals

NJ ensemble projections & 95% projection intervals

NM ensemble projections & 95% projection intervals

NY ensemble projections & 95% projection intervals

NC ensemble projections & 95% projection intervals

ND ensemble projections & 95% projection intervals

OH ensemble projections & 95% projection intervals

OK ensemble projections & 95% projection intervals

OR ensemble projections & 95% projection intervals

PA ensemble projections & 95% projection intervals

RI ensemble projections & 95% projection intervals

SC ensemble projections & 95% projection intervals

SD ensemble projections & 95% projection intervals

TN ensemble projections & 95% projection intervals

TX ensemble projections & 95% projection intervals

UT ensemble projections & 95% projection intervals

VT ensemble projections & 95% projection intervals

VA ensemble projections & 95% projection intervals

WA ensemble projections & 95% projection intervals

WV ensemble projections & 95% projection intervals

WI ensemble projections & 95% projection intervals

WY ensemble projections & 95% projection intervals

PR ensemble projections & 95% projection intervals

State-level model variation

National model variation for all scenarios.

AL model variance & 95% projection intervals

AK model variance & 95% projection intervals

AZ model variance & 95% projection intervals

AR model variance & 95% projection intervals

CA model variance & 95% projection intervals

CO model variance & 95% projection intervals

CT model variance & 95% projection intervals

DE model variance & 95% projection intervals

DC model variance & 95% projection intervals

FL model variance & 95% projection intervals

GA model variance & 95% projection intervals

HI model variance & 95% projection intervals

ID model variance & 95% projection intervals

IL model variance & 95% projection intervals

IN model variance & 95% projection intervals

IA model variance & 95% projection intervals

KS model variance & 95% projection intervals

KY model variance & 95% projection intervals

LA model variance & 95% projection intervals

ME model variance & 95% projection intervals

MD model variance & 95% projection intervals

MA model variance & 95% projection intervals

MI model variance & 95% projection intervals

MN model variance & 95% projection intervals

MS model variance & 95% projection intervals

MO model variance & 95% projection intervals

MT model variance & 95% projection intervals

NE model variance & 95% projection intervals

NV model variance & 95% projection intervals

NH model variance & 95% projection intervals

NJ model variance & 95% projection intervals

NM model variance & 95% projection intervals

NY model variance & 95% projection intervals

NC model variance & 95% projection intervals

ND model variance & 95% projection intervals

OH model variance & 95% projection intervals

OK model variance & 95% projection intervals

OR model variance & 95% projection intervals

PA model variance & 95% projection intervals

RI model variance & 95% projection intervals

SC model variance & 95% projection intervals

SD model variance & 95% projection intervals

TN model variance & 95% projection intervals

TX model variance & 95% projection intervals

UT model variance & 95% projection intervals

VT model variance & 95% projection intervals

VA model variance & 95% projection intervals

WA model variance & 95% projection intervals

WV model variance & 95% projection intervals

WI model variance & 95% projection intervals

WY model variance & 95% projection intervals

PR model variance & 95% projection intervals

Teams and models

- California Department of Public Health FluCAT
 - White, L.A. (CADPH), Murray, E. (CADPH), Leon, T.M. (CADPH)
- Center For Disease Dynamics, Economics & Policy FluCompModel
 - Fardad Haghpanah, Eili Klein
- Johns Hopkins ID Dynamics COVID Scenario Pipeline
 - Joseph C. Lemaitre (EPFL), Joshua Kaminsky (Johns Hopkins Infectious Disease Dynamics), Clif McKee (Johns Hopkins Infectious Disease Dynamics), Claire P. Smith (Johns Hopkins Infectious Disease Dynamics), Sung-mok Jung (University of North Carolina), Heramb Gupta (Johns Hopkins Infectious Disease Dynamics), Sara L. Loo (Johns Hopkins Infectious Disease Dynamics), Elizabeth C. Lee (Johns Hopkins Infectious Disease Dynamics), Alison Hill (Johns Hopkins Infectious Disease Dynamics), Justin Lessler (University of North Carolina), Shaun A. Truelove (Johns Hopkins Infectious Disease Dynamics)
- Northeastern University MOBS Lab GLEAM FLU
 - Matteo Chinazzi (Northeastern University, Boston, MA), Jessica T. Davis (Northeastern University, Boston, MA), Kunpeng Mu (Northeastern University, Boston, MA), Alessandro Vespignani (Northeastern University, Boston, MA)
- Fogarty International Center, National Institutes of Health (NIH) Flu TS
 - Amanda Perofsky (NIH), Cécile Viboud (NIH)
- University of Notre Dame FRED
 - Guido Espana, Sean Moore, Alex Perkins
- University of Southern California SIkJalpha
 - Ajitesh Srivastava, Majd Al Aawar
- University of Texas ImmunoSEIRS
 - Kaiming Bi (The University of Texas at Austin), Anass Bouchnita (The University of Texas at El Paso), Spencer J. Fox (The University of Georgia), Lauren Ancel Meyers (The University of Texas at Austin), UT COVID-19 Modeling Consortium.
- University of Virginia Biocomplexity Institute EpiHiper
 - Jiangzhuo Chen (UVA), Stefan Hoops (UVA), Parantapa Bhattacharya (UVA), Dustin Machi (UVA), Bryan Lewis (UVA), Madhav Marathe (UVA)
- University of Virginia Biocomplexity Institute FluXSim
 - Srini Venkatramanan, Aniruddha Adiga, Przemek Porebski, Brian Klahn, Benjamin Hurt, Bryan Lewis (UVA), Madhav Marathe (UVA)

The Flu Scenario Modeling Hub Coordination Team

- Shaun Truelove, Johns Hopkins University
- Cécile Viboud, NIH Fogarty
- Justin Lessler, University of North Carolina
- Sara Loo, Johns Hopkins University
- Lucie Contamin, University of Pittsburgh
- Emily Howerton, Penn State University
- Rebecca Borchering, Penn State University
- Claire Smith, Johns Hopkins University
- Harry Hochheiser, University of Pittsburgh
- Katriona Shea, Penn State University
- Michael Runge, USGS
- Erica Carcelen, Johns Hopkins University
- Sung-mok Jung, University of North Carolina,
- J Espino, University of Pittsburgh
- John Levander, University of Pittsburgh