DEEP LEARNING – PART 1

Verena Kaynig-Fittkau Ray (Thouis) Jones

ComputeFest 2016

Check This (Repository) Out

 https://github.com/vkaynig/IACS_ComputeFest_DeepLear ning

Or go to github and search for IACS_ComputeFest

What We Cover Today:

- Basic theory of deep neural networks (DNN)
- Introduction to Theano
- Training deep neural networks with Theano
- Some useful tips and tricks for training DNNs

Workshop Goal

- Flatten the learning curve for the Theano tutorials
- http://deeplearning.net/tutorial/

Deep Learning

Why do you want to know about deep learning?

Motivation

- It works!
- State of the art in machine learning
- Google, Facebook, Twitter, Microsoft are all using it.
- It is fun!
- Need to know what you are doing to do it well.

Google Trends

Google Brain - 2012

What it learned

http://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-computers-evidence-of-machine-learning.html?pagewanted=all

Manual Feature Design

input image patch

Learned Feature Hierarchy

[Honglak Lee]

Deep Learning Techniques

- Artifical neural network
 - Introduced in the 60s
 - Perceptron in the old days
- Convolutional neural network
 - Introduced in the 80s
- Recurrent neural network
 - Introduced in the 80s

What Changed -Computational Power

What Changed – Data Size

Scaling with Data Size

I don't Have a Cluster at Home

Deep Learning

What is deep learning?

What – Neural Network Architecture

output layer

hidden layer

input layer

Artificial Neuron

Artificial Neuron

Step vs Sigmoid Activation

$$s(x) = \frac{1}{1 + e^{-cx}}$$

Multi-Layer Perceptron

output layer

hidden layer

input layer

$$s(b^{(1)} + W^{(1)}x)$$

Multi-Layer Perceptron

output layer

hidden layer

input layer

$$f(x) = G(b^{(2)} + W^{(2)} \left(s \left(b^{(1)} + W^{(1)} x \right) \right))$$

G: logistic function, softmax for multiclass

Logistic Regression (Multiclass)

Probabilistic classifier

$$P(Y = i|x, W, b) = softmax_i(Wx + b)$$
$$= \frac{e^{W_i x + b_i}}{\sum_j e^{W_j x + b_j}}$$

$$y_{pred} = \operatorname{argmax}_{i} P(Y = i | x, W, b)$$

How - Optimization

 As so many machine learning methods, also DNNs are about optimizing a loss function:

$$\underset{\text{model parameter}}{\operatorname{arg\,min}} \frac{1}{T} \sum_{t}^{t} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) + \lambda \Omega(\boldsymbol{\theta})$$

Loss Function

- Classification error would be good, but it's not smooth
- Need to find smooth proxy
- Last layer is logistic regression
- The whole network estimates class probabilities

$$P(Y = i|x, W, b) = softmax_i(Wx + b)$$

Maximize the correct class assignment probabilities in the training set

Minimize Negative Log Likelihood

- Maximize the likelihood of the data set given the model parameters
- Take the log to simplify for numerical stability and math simplicity
- Take negative log likelihood to cast into minimization

training data
$$\bigvee_{I \in \mathcal{D}} \frac{|\mathcal{D}|}{\mathcal{L}(\theta,\mathcal{D})} = \sum_{i=0}^{|\mathcal{D}|} \log P(Y=y^{(i)}|x^{(i)},\theta)$$
 Parameter W, b

Stochastic Gradient Decent (SGD)

Take small steps downward on the surface of the loss function

- For each training sample:
 - Estimate gradient
 - Update Parameters

$$\Delta = -\nabla_{\boldsymbol{\theta}} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$$

$$m{ heta} \leftarrow m{ heta} + lpha \Delta$$

learning rate

- We minimize negative log likelihood
- Need to compute gradient Ugh
- Theano does it for us!!

Stochastic Gradient Decent

Libraries

- Theano
- Torch
- Caffe
- TensorFlow
- . . .

Theano

- Full disclosure: My favorite
- Python
- Transparent GPU integration
- Symbolical Graphs
- Auto-gradient
- Low level in a good way!
- If you want high-level on top:
 - Pylearn2
 - Keras, Lasagne, Blocks

• ...

theano

Torch

- Lua (and no Python interface)
- Very fast convolutions
- Used by Google Deep Mind, Facebook AI, IBM
- Layer instead of graph based

https://en.wikipedia.org/wiki/Torch_(machine_learning)

Caffe

- C++ based
- Higher abstraction than Theano or Torch
- Good for training standard models
- Model zoo for pre-trained models

Tensorflow

- Symbolic graph and auto-gradient
- Python interface
- Visualization tools
- Some performance issues regarding speed and memory

We are going to use Theano today

- Python library for efficient evaluation of mathematical expressions
- tight integration with NumPy Use numpy.ndarray in Theano-compiled functions.
- transparent use of a GPU Perform data-intensive calculations up to 140x faster than with CPU.(float32 only)
- efficient symbolic differentiation Theano does your derivatives for function with one or many inputs.

Free and Open Source

- F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I.
 Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley and Y. Bengio
- Giving credit: http://deeplearning.net/software/theano/citation.html#citation

Exercise: clone github repository

 git clone --recursive <u>https://github.com/vkaynig/IACS_ComputeFest_DeepLear</u> <u>ning.git</u>

LET'S GET SOME EXPERIENCE

TIPS AND TRICKS

Number of Layers / Size of Layers

- If data is unlimited larger and deeper should be better
- Larger networks can over fit more easily
- Take computational cost into account

Learning Rate

- One of the most important parameters
- If network diverges most probably learning rate is too large
- Smaller works better
- Can slowly decay over time
- Can have one learning rate per layer

Other tips for SGD: http://leon.bottou.org/publications/pdf/tricks-2012.pdf

Momentum

- Helps to escape local minima
- Crucial to achieve high performance

$$v_{t+1} = \mu v_t - \varepsilon \nabla f(\theta_t)$$

$$\theta_{t+1} = \theta_t + v_{t+1}$$

More about Momentum:

http://www.jmlr.org/proceedings/papers/v28/sutskever13.pdf

Convergence

- Monitor validation error
- Stop when it doesn't improve within n iterations
- If learning rate decays you might want to adjust number of iterations

Initialization of W

- Need randomization to break symmetry
- Bad initializations are untrainable
- Most heuristics depend on the number of input (and output) units
- Sometimes W is rescaled during training
 - Weight decay (L2 regularization)
 - Normalization

Data Augmentation

- Exploit invariances of the data
- Rotation, translation
- Nonlinear transformation
- Adding Noise

Type \$	Classifier \$
Neural network	6-layer NN 784-2500-2000-1500-1000-500-10 (on GPU), with elastic distortions
Convolutional neural network	Committee of 35 conv. net, 1-20-P-40-P-150-10, with elastic distortions

Preprocessing +	Error rate (%) \$
None	0.35 ^[17]
Width normalizations	0.23 ^[8]

Data Normalization

We have seen std and mean normalization

- Whitening
 - Neighbored pixels often are redundant
 - Remove correlation between features

More about preprocessing: http://deeplearning.stanford.edu/wiki/index.php/Data_Preprocessing

Non-Linear Activation Function

- Sigmoid
 - Traditional choice
- Tanh
 - Symmetric around the origin
 - Better gradient propagation than Sigmoid
- Rectified Linear (discussed tomorrow)

L1 and L2 Regularization

- Most pictures of nice filters involve some regularization
- L2 regularization corresponds to weight decay
- L2 and early stopping have similar effects
- L1 leads to sparsity
- Might not be needed anymore (more data, dropout)

Monitoring Training

- Monitor training and validation performance
- Can monitor hidden units
- Good: Uncorrelated and high variance

Autoencoder

- This is what Google used for their Google brain
- Basically just a MLP
- Output size is equal to input size
- Popular for pre-training a network on unlabeled data

Autoencoder

Deep Autoencoder

- Each Layer trained by itself
- Higher layers build on top of lower layers
- Can do fine tuning in the end

Unrolling

Further Resources

- More about theory:
 - Yoshua Bengio's book:http://www.iro.umontreal.ca/~bengioy/dlbook/
 - Deep learning reading list: http://deeplearning.net/reading-list/
- More about Theano:
 - http://deeplearning.net/software/theano/
 - http://deeplearning.net/tutorial/