Convolutional Neural Network

Deep learning par la pratique

I/ Introduction à la vision par ordinateur

▶ I/ Introduction à la vision par ordinateur

► II/ Convolution & pooling layer

► III / Exemples d'architectures

► IV/ Transfer learning

Computer vision

Classification d'images

→ Cat ? (0/1)

Détection d'objets

Transfert de style

Nombre de caractéristiques

12288 caractéristiques

1 000 neurones

Output layer

64 x 64

1000 x 1000

1000 x 1000 x 3

3 millions de caractéristiques

 $W^{[1]} = 3$ milliards de paramètres

Extraction de caractéristiques

II/ Convolution & pooling layer

► I/ Introduction à la vision par ordinateur

► II/ Convolution & pooling layer

► III / Exemples d'architectures

► IV/ Transfer learning

Convolution

 W_1

Padding

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

(6, 6)

(n, n)

(3, 3)

(f, f)

(4, 4)

(n - f + 1, n - f + 1)

*

Al For You

Padding

	5				_	
3	0	1	2	7	4	
1	5	8	9	3	1	
2	7	2	5	1	3	
0	1	3	1	7	8	
4	2	1	6	2	8	
2	4	5	2	3	9	

$$(6, 6)$$
 \longrightarrow $(8, 8)$ (n, n) $(n + 2p, n + 2p)$

Padding p = 1

Filtre

w_1	w_2	W_3
w_4	w_5	W_6
w_7	<i>w</i> ₈	W ₉

(3, 3)

(f, f)

(6, 6)

*

Champ réceptif

Si nous empilons N couches convolutionnelles avec le même filtre de taille 3x3 champ réceptif sur la Nième couche sera 2N + 1 x 2N + 1

It looks like we need to stack lot of layers!!

Al For You

(7, 7)

$$(n + 2p, n + 2p)$$

Stride s = 2

filter

91	100	83
69	91	127
44	72	74

(3, 3)

(f, f)

(3, 3)

$$\left(\frac{n+2p-f}{s}+1,\frac{n+2p-f}{s}+1\right)$$

*

Al For You

Plusieurs filtres*

(6, 6, 3)

(4, 4, 3)

Exemples de couches

Sommaire des notations

Si une couche *l* est une couche convolutionelle :

 $f^{[l]}$ = taille du filtre

Dimension d'entrée : $(n_H^{[l-1]}, n_w^{[l-1]}, n_c^{[l-1]})$

 $p^{[l]}$ = padding

Dimension de sortie : $(n_H^{[l]}, n_w^{[l]}, n_c^{[l]})$

 $s^{[l]}$ = stride

 $n_c^{[l]}$ = nombre de filtres

 $n_h^{[l]} = \left| \frac{n_h^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + 1 \right|$

 $n_w^{[l]} = \left| \frac{n_w^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + 1 \right|$

 $(f^{[l]}, f^{[l]}, n_c^{[l-1]})$ Chaque filtre:

L'activation:

 $a^{[l]} \to (n_H^{[l]}, n_w^{[l]}, n_c^{[l]})$ $A^{[l]} \to (m, n_H^{[l]}, n_w^{[l]}, n_c^{[l]})$

 $W^{[l]} \rightarrow (f^{[l]}, f^{[l]}, n_c^{[l-1]}, n_c^{[l]})$ Les poids :

 $b^{[l]} \rightarrow (n_c^{[l]})$ Le bias :

Exemple d'architecture simple

(39, 39, 3)

$$n_H^{[0]} = n_w^{[0]} = 39$$

$$n_c^{[0]} = 3$$

10 filtres

(37, 37, 10)

$$n_H^{[1]} = n_w^{[1]} = 37$$

 $n_c^{[1]} = 10$

20 filtres

 $A^{[2]}$

(17, 17, 20)

$$n_H^{[1]} = n_w^{[1]} = 17$$

 $n_c^{[1]} = 20$

Comment maintenir l'invariance en translation

0	0	0	0
0	0	0	0
0	0	1	0
0	0	0	1

Filtre

*

Sortie

0	0	0
0	1	0
0	0	2

Entrée

Filtre

Sortie

2	0	0
0	1	0
0	0	0

Pooling layer: Max pooling

1	<u>2</u>	•			
3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

(6, 6)

Hyperparameters:

$$f = 2$$

$$s = 2$$

5	9	7
7	5	8
4	6	9

(3, 3)

Pooling layer: Max pooling

(3)	3	(C	1	2	7	7	4	4	
1	1		5	8	9	177	3	·	1	
2	2	-	7	2	5				3	
()	,	1	3	1	7	7	8	3	B
	4	4	2	1	6	2	2	8	3	3
2	2	4	4	5	2	17	3	(9	

(6, 6, 2)

Hyperparameters:

$$f = 2$$

$$s = 2$$

		$\overline{}$		_		.
	5		9		7	
	7		5		8	
•	4		6		9	

(3, 3, 2)

Pooling layer: Average pooling

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

(6, 6)

Hyperparameters:

$$f = 2$$

$$s = 2$$

2.25	5	3.75
2.5	2.75	4.75
3	3.5	5.5

(3, 3)

Pooling layer: Average pooling

3	0	1	2	7	4	1
1	5	8	9	3	1	
2	7	2	5	1	3	
0	1	3	1	7	8	3
4	2	1	6	2	8	3
2	4	5	2	3	9	

(6, 6, 2)

Hyperparameters:

$$f = 2$$

$$s = 2$$

2	.25		5	3.75		
	2.5	2.	2.75 4.75		.75	
	3	3	.5 5		5.5	

(3, 3, 2)

Trois blocs d'un CNN

Convolutional bloc

Pooling bloc

Fully connected bloc

Pourquoi des convolutions?

f=5 $5 \times 5 = 25$ bias 25 + 1 = 266 filters $26 \times 6 = 156$

156 paramètres

 $3072 \times 4704 \approx 14000000$

14 millions de paramètres

Pourquoi des convolutions?

- Partage des paramètres: Un détecteur de caractéristiques qui est utile dans une partie de l'image l'est probablement dans une autre partie de l'image.
- > Sparsité des connexions : Dans chaque couche, chaque valeur de sortie ne dépend que d'un petit nombre d'entrées.
- Invariance de la traduction : Si vous translatez l'image, cela ne changera rien pour un réseau neuronal convolutif.

III/ Exemples d'architectures

► I/ Introduction à la vision par ordinateur

► II/ Convolution & pooling layer

► III/ Exemples d'architectures

► IV/ Transfer learning

LeNet-5 ≈ 60k paramètres

LeNet-5

	Activation shape	Activation size	# parameters
Input:	(32, 32, 3)	3 072	0
CONV1 (f=5, s=1)	(28,28, 8)	6 272	208
POOL1	(14, 14, 8)	1 568	0
CONV2 (f=5, s=1)	(10, 10, 46)	1 600	416
POOL2	(5, 5, 16)	400	0
FC3	(120, 1)	120	48 001
FC4	(84, 1)	84	10 081
Softmax	(10, 1)	10	841

AlexNet $\approx 60 \text{ millions de paramètres}$

VGG-16 ≈ 138 millions de paramètres

IV/ Transfer learning

► I/ Introduction à la vision par ordinateur

► II/ Convolution & pooling layer

► III / Exemples d'architectures

► IV/ Transfer learning

Transfer learning avec peu de données

Transfer learning avec plus de données

Transfer learning avec beaucoup de donnée

A retenir

	Domaine d'imagenet	Domaine différent d'imagenet
Petit dataset	Les dernières couches	Collecter plus de données
Grand dataset	Utiliser comme initialisation	Initialisation aléatoire