

The effect of speech rate on comprehension of degraded speech

Pratik Bhandari 1,2 , Vera Demberg 2,3 , Jutta Kray 1

1.Department of Psychology, Saarland University 2.Department of Language Science and Technology, Saarland University 3.Department of Computer Science, Saarland University, Germany

Motivation

- Semantic prediction facilitates language comprehension at a moderate level of speech degradation¹.
- ► But prediction is a time consuming process².
- ► The time available to process spoken language also moderates comprehension and prediction³.

Research Aim

► To investigate whether the increase (and decrease) in speech rate reduces (and amplifies) the facilitatory effect of semantic predictability that has been observed for moderately degraded speech.

Predictions

- ► Fast speech Contextual facilitation will be reduced compared to normal speech.
 - * Processing demand increases.
 - * A limited time available to process the context and form predictions.
- ► Slow speech Contextual facilitation will be increased compared to normal speech.
 - * More time available to process the degraded speech and the context.
 - Effortful processing of degraded speech is reduced.

Methods

EXPERIMENT 1

- To compare Fast speech and normal speech.
- * n = 101 (66 female)
- * Age range = 18-30 years (mean age = 23.1 years)

EXPERIMENT 2

- To compare Slow speech and normal speech.
- \star n = 101 (60 female)
- Age range = 18--30 years (mean age = 23.5 years)

Stimuli

- 240 Subject-Verb-Object German sentences e.g., Sie jongliert die Baelle. (She juggles the balls.)
- * 2 levels of predictability: High and Low
- Degradation: 4 channels noise vocoding
- Experiment 1: Compression factor of 0.65 to create fast speech
- Experiment 2: Expansion by a factor of 1.35 to create slow speech

Instruction

"Listen to the speech, and type in everything that you hear."

Results

Experiment 1 Estimated effects of the model accounting for the correct word recognition

	•			•	
Fixed effects	Estimate	Std. Erro	p value		
Intercept	1.34	.24	5.58	<.001	
Speech rate (Fast)	98	.24	-4.16	<.001	
Target word predictability	2.42	.28	8.55	<.001	
Speech rate × Target word predictability	1.06	.42	2.50	.012	

Experiment 2 Estimated effects of the model accounting for the correct word recognition

				O		
Fixed effects	Estimate	Std. Erro	p value	_		
Intercept	1.41	.23	6.20	<.001		
Speech rate (Slow)	08	.14	57	.568		
Target word predictability	2.58	.30	8.65	<.001		
Speech rate $ imes$ Target word predictability	.44	.27	1.65	.099		

Summary

- ► At a moderate level of degradation, fast speech is detrimental to understanding words that are not easily predictable from the sentence context.
- ► More time to process degraded speech does not amplify contextual facilitation.
 - * There might be an optimal trade-off between slowing down of the speech and it still remaining intelligible.
- ► Implications in the predictive language processing accounts (e.g., prediction by production⁴): to incorporate the boundary conditions (speech rate and degradation) in forming predictions.

References

- 1. Bhandari, P., Demberg, V., & Kray., J., Front. Psychol. 12:714485 (2021).
- 2. Pickering, M., & Gambi, C., *Psychol. Bull.* 144, 1002-1044 (2016).
- 3. Aydelott, B., & Bates, E., Lang. Cogn. Process. 19, 29-56 (2004).

4. Ito, A. et al. J Mem. Lang. 86, 157-171 (2016).

- pratikb@coli.uni-saarland.de * pratik-bhandari.github.io
- * @prbhx

IMPRS 2022 02 June 2022 Saarland University, Germany