## 几何拓扑自驾游

熊锐

#### 2021年4月11日

#### Contents 上同调速成 1 上同调速成 1 本节介绍如何理解和使用奇异 (singular) 上同调 (co-homology) 群. 对于拓扑空间 X, 上同调群 $H^*(X)$ 是 . 1.3 抛物子群 7 就像即使并不懂电脑的运行原理, 但是却可以使用电脑. 1.4 双旗流形 . . . . . . . . . . . . . . . . . . . . 但是, 每多理解一点原理, 能做的事儿就多一点. 2 纤维丛速成 11 本节大部分内容成立都是需要条件的, 通常会在提及 之后的评注中给出. 实际上, 代数拓扑的使用原则是 2.4 Grassmannian 流形....... 绝不使用定义直接计算 3 向量丛速成 19 我们永远是发展足够多的理论,再用刻画让计算成功. 19 代数拓扑在组合中的相当于提供另一种计数工具. 其 有行之有效原因在于,相当一部分计算其实可以约化成计 算集合. 如果我们相信不同计数方法计算数目给出相同结 4 K 理论速成 果, 那我们也应该相信不同拓扑方法计算同调群会给出相 同结果. 4.3 Grothendieck-Riemann-Roch 定理 . . . . . 33 1.1 胞腔 35 我们在本小节需要下同调 $H_*(X)$ 和相对下同调 5 等变理论速成 (未完成) $H_*(X,Y)$ , 其中 $Y \subseteq X$ 是一个子集 37 记 n 维球面 (sphere) 和 n 维圆盘 (disk) 为 37 $S^n = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : x_1^2 + \dots + x_{n+1}^2 = 1\};$ 37 5.4 局部化定理 ...... 37 $D^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1^2 + \dots + x_n^2 \le 1\}.$ 注意 $S^{n-1} \subseteq D^n$ (上标是维数). 6 等变 K 理论 (未完成) **37** 37 需要知道的基本事实是 7 更多计算 (未完成) 39 7.1 射影丛定理 ...... 39 $\mathbb{Z} \quad 0 \quad \cdots$ $H_*(S^n)$ $H_*(D^{n+1})$ 0 0 0 无穷 $\mathcal{F}\ell$ 和 $\mathcal{G}r$ ........... $H_*(D^{n+1}, S^n) \mid 0 \quad 0 \quad \cdots$

 $D^{n+1}$  相对  $S^n = D^{n+1}/S^n$  相对于缩点 =  $S^{n+1}$  相对于一个点.

最后一行来自于长正合序列. 可以这样记:

这里  $D^{n+1}/S^n$  表示把  $D^{n+1}$  上的  $S^n$  粘成一点 (缩点).

上同调其实是一样的

|                           |              |   | n-1   |              |              |  |
|---------------------------|--------------|---|-------|--------------|--------------|--|
| $H^*(S^n)$ $H^*(D^{n+1})$ | $\mathbb{Z}$ | 0 | <br>0 | $\mathbb{Z}$ | 0            |  |
| $H^*(D^{n+1})$            | $\mathbb{Z}$ | 0 | <br>0 | 0            | 0            |  |
| $H^*(D^{n+1}, S^n)$       | 0            | 0 | <br>0 | 0            | $\mathbb{Z}$ |  |

我们说一个拓扑空间  $X \in \mathbb{CW}$  复形 (CW complex), 如果  $X \in \mathbb{CW}$  是由圆盘  $D^n$  按照维数顺序粘结而成.

准确一点:  $X^0$  是一些离散的点;  $X^1$  是往  $X^0$  上粘  $D^1 = \boxtimes \Pi[0,1]$ , 使得 0,1 粘到  $X^0$  上;  $X^2$  是往  $X^1$  上粘  $D^2$ , 使得  $D^2$  的边界  $S^1$  粘到  $X^1$  上; 以此类推.

这样依次得到的  $X^n$  叫作 X 的 **骨架** (skeleton), 每 个黏上去的  $D^n$  叫作一个 n 维胞腔.

 $oxed{注意 1}D^n$  的边界  $S^{n-1}$  必须落在低一维的"骨架" $X^{n-1}$ 上. (不能不粘)

注意  $2 D^n$  的内部到 X 是单射. (不能粘)

注意 3 严格来说,CW 的复形的拓扑是弱拓扑,即使得每个胞腔的粘结映射连续的最弱拓扑。(C=cellular, W=weak) 其实 CW 复形的拓扑有很多点集拓扑的良好性质,请见 [Bredon].

如果 X 有 CW 复形的结构, 记  $X^n$  是 n 维的骨架. 那么  $X^0 \subseteq X^1 \subseteq X^2 \subseteq \cdots$ . 我们可以考虑相对同调  $H_*(X^i, X^{i-1})$  和相对上同调  $H^*(X^i, X^{i-1})$ .

有下面这个重要事实

这里  $X^{-1} = \varnothing$ . 下同调结果是一样的. 请对比  $H_*(D^n, S^{n-1})$ . 这是切除定理 (excision)的一个应用.

证明如下



(图中全是三角形, 但是 CW 复形不一定要求是三角形)

例如  $S^n$  是一个 CW 复形. 因为我们可以把  $D^n$  的边界  $S^{n-1}$  整个粘到一个点上得到  $S^n$ . 最简单的胞腔取法是

| 维数                  | 0            | 1 | <br>n-1 | n            |
|---------------------|--------------|---|---------|--------------|
| 胞腔数量                | 1            | 0 | <br>0   | 1            |
| 骨架                  | l            | 点 | <br>点   | $S^n$        |
| $H_n(X^n, X^{n-1})$ | $\mathbb{Z}$ | 0 | <br>0   | $\mathbb{Z}$ |

例如  $D^n$  本身也是一个 CW 复形. 最简单的胞腔取法 是

| 维数                  | 0            | 1 | <br>n-2 | n-1          | n              |
|---------------------|--------------|---|---------|--------------|----------------|
| 胞腔数量                | 1            | 0 | <br>1   | 1            | 1              |
| 骨架                  | 点            | 点 | <br>点   | $S^{n-1}$    | $\mathbb{D}^n$ |
| $H_n(X^n, X^{n-1})$ | $\mathbb{Z}$ | 0 | <br>0   | $\mathbb{Z}$ | $\mathbb{Z}$   |

下面假设 X 是 CW 复形, 记  $C_n = H_n(X^n, X^{n-1})$ . 那么存在一条复形

$$\cdots \longrightarrow C_n \longrightarrow \cdots \longrightarrow C_1 \longrightarrow C_0 \longrightarrow 0$$

使得其同调群同构于  $H_*(X)$ . 记  $C^n = H^n(X^n, X^{n-1})$ . 那么存在一条复形

$$0 \longrightarrow C^0 \longrightarrow C^1 \longrightarrow \cdots \longrightarrow C^n \longrightarrow \cdots$$

使得其上同调群同构于  $H^*(X)$ . 这被称为 **胞腔 (cellular)** 同调.

这个定理本质上只是同调代数的追图, 见 [姜].

注意 1 在一些"正则"的情况,这个复形之间的微分  $\partial$  是可以"看出来"的. 例如,当 X 是多面体的情况,n 维 抱歉就是一个 n 维面. 那么

$$\partial(\mbox{\ensuremath{\mbox{$\chi$}}} n \mbox{\ensuremath{\mbox{$\psi$}}} n) = \sum \mbox{\ensuremath{\mbox{$\chi$}}} \mbox{\ensuremath{\mbox{$\chi$}}} \mbox{\ensuremath{\mbox{$\chi$}}} n \mbox{\ensuremath{\mbox{$\psi$}}} n \mbox{\ensuremath{\mbox{$\psi$}}}.$$

这里的"和"需要根据预先指定的定向决定正负.

注意 2 有一些书喜爱使用单纯复形 (simplicial complex),此时要任何一个单纯形 (三角形) 每条边都不黏在一起不相交,因此往往简单的图形需要多次重分才能做到.但是这样的好处是可以计算乘法结构.

[注意 3] 在 [Hatcher] 中,他还定义了  $\Delta$  复形,这时全部都是单纯形 (三角形),但是允许一个单纯形内部的边相交. 但是实际上三角形,四边形,五边形,甚至二边形都是可以的.

如果对于紧致的 Hausdorff 空间 X(例如流形), 如果有一个分层 (stratification)

$$X_0 \subseteq X_1 \subseteq \cdots \subseteq X$$

使得每个  $X_k$  都是闭的, 且  $X_k \setminus X_{k-1} \cong \mathbb{R}^{a_k}$  对某个  $a_k$ . 那么利用打洞的技巧 (见 [Fulton]), 可以得到 我们称这个分层给出一个胞腔结构. 我们也称  $X_k \setminus X_{k-1}$ 是一个  $a_k$  维胞腔.

记  $X^k = \bigcup_{\dim X_i < k}$ , 那么同样也有

$$H^*(X^n, X^{n-1}) = egin{cases} \operatorname{UMFf} & \operatorname{n-4thme} \\ \operatorname{bset} & \operatorname{Abel} & \operatorname{\#i}. \\ 0 & * \neq n. \end{cases}$$

所以一切照旧.

对于线性空间  $V = \mathbb{C}^n$ , 一个旗 (flag) 是一串子线性 空间

$$V^0 \subset V^1 \subset \dots \subset V^n$$

使得  $\dim V^i = i$ . 此时为了区别也叫完全 (complete) 旗. 考虑  $\mathcal{F}\ell(n)$  为 n 维复向量的所有旗 (flag) 组成的 集合, 这可以被赋予流形和代数簇的结构. 我们称  $F\ell(n)$ 为旗流形 (flag manifold) 或旗簇 (flag variety).

记  $G = GL_n$ , B 是全体上三角矩阵. 将每一个  $x \in$  $GL_n$  视作 n 个线性无关的列向量  $(x_1, \ldots, x_n)$ , 我们得到 一个其 张成的旗  $\operatorname{span} x$ 

$$0 \subseteq \operatorname{span}(x_1) \subseteq \operatorname{span}(x_1, x_2) \subseteq \cdots \subseteq \operatorname{span}(x_1, \dots, x_n).$$

这定义了一个 (连续) 映射 span :  $GL_n \to \mathcal{F}\ell(n)$ . 通过线性代数,不难发现 span 是满射,且

 $\operatorname{span} x = \operatorname{span} y \iff x = yb$ 对某个  $b \in B$ .

换言之,  $G/B \rightarrow \mathcal{F}\ell(n)$  是双射 (同胚).

对于置换  $w \in \mathfrak{S}_n$ , 记 w 是对应的置换矩阵, 即使得  $w(e_i) = e_{w(i)}$ , 其中  $e_i$  是标准基. 也就是在 i = 1, ..., n 位 置 (w(i),i) 上是 1, 其他位置是 0 的矩阵.

利用 Gauss 消元法, 可以得到 Bruhat 分解

$$G = \bigcup_{w \in \mathfrak{S}_n} BwB \qquad (\mathbb{X} \not \Sigma \mathring{\mathcal{H}}).$$

其实就是打洞. 实际上这是 G 的双陪集分解. 等价地, 这 说明 B 在 G/B 上作用的轨道与对称群元素——对应. 其 中 BwB/B 被称为 **Schubert** 胞腔.

按下图表定义  $U_w$ 



$$U_w = \begin{bmatrix} \mathbb{C} & \mathbb{C} & \mathbb{C} & 1 & 0 & 0 \\ \mathbb{C} & 1 & 0 & 0 & 0 & 0 \\ \mathbb{C} & 0 & \mathbb{C} & 0 & \mathbb{C} & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

自然映射: 
$$U_w \to BwB/B$$

是双射 (同胚).

用  $\ell$  表示逆序数. 于是  $BwB/B \cong \mathbb{C}^{\ell(w)}$ , 换句话说拓 扑维数是  $2\ell(w)$ . 因为  $U_w$  中 "C" 的数目是 Rothe 图中 ₩ 的的数目.

现在我们考虑  $X^i = \bigcup_{2\ell(w) \le i} BwB/B$ . 这给出  $\mathcal{F}\ell(n)$ 的一个胞腔结构. 但是因为我们没有奇数维的胞腔, 所以 胞腔复形将形如

$$0 \rightarrow C_0 \rightarrow 0 \rightarrow C_2 \rightarrow 0 \rightarrow C_4 \rightarrow \cdots$$
;

$$\cdots \to C_4 \to 0 \to C_2 \to 0 \to C_0 \to 0.$$

所以  $H^i(\mathcal{F}\ell(n)) = C^i$ ,  $H_i(\mathcal{F}\ell(n)) = C_i$ .

回忆  $C_{2i}($ 和  $C^{2i})$  是维数为 2i 的胞腔生成的自由 Abel 群. 我们用 [BwB/B] 记对应的基. 注意:  $\dim[BwB/B] =$  $2\ell(w)$ .

于是我们得到了

$$H^*(G/B)=$$
以  $\{[BwB/B]\}_{w\in\mathfrak{S}_n}$  为基的自由 Abel 群  $H_*(G/B)=$ 以  $\{[BwB/B]\}_{w\in\mathfrak{S}_n}$  为基的自由 Abel 群

注意 1 我们需要一则事实,  $F\ell(n)$  是紧致的 (完备的). 这是因为紧 Lie 群  $U_n \subseteq GL_n$  到  $F\ell(n)$  是满射 (线性代 数).

注意 2 我们还需要一则事实, 每一个 BwB/B 的闭包都 是一些 BuB/B 的并. 这是因为 B 作用, 所以轨道的闭包 还是轨道的并.

实际上  $BuB/B \subseteq \overline{BwB/B}$  当且仅当在 Bruhat or- $\operatorname{der} \operatorname{\mathcal{T}} u \leq w$ .

注意 3 实际上 Schubert 胞腔也给出 CW 复形意义上的 胞腔. 这可以用 Morse 理论的类比 Bialynicki--Birula 定 理得到,请看 [CG] 第二章某一节.

**习题 1.** 验证  $G/B \rightarrow \mathcal{F}\ell(n)$  是双射. [提示: 利用基的延 拓定理证明满射,再证明正文中提到的  $\operatorname{span} x = \operatorname{span} y$  的等

习题 2. 验证  $U_w \to BwB/B$  是双射. [提示: 首先证明  $U_w$  在  $G \rightarrow G/B$  下的像落在 BwB/B 内; 对于每个  $x \in G$ , 证明 xB/B 一定等于某个 yB/B 对某个  $y \in U_w$ , 这需要从 最后一行开始打洞; 最后证明这是单射, 这需要从最后一行开 始比起.]

习题 3. 证明  $\dim G/B = 2 \max_{w \in \mathfrak{S}_w} \ell(w)$ . 利用 G/B 光 滑的事实说明只有唯一的元素取到最大值.

习题 4. 记  $[n] = \frac{\mathbf{q}^n - 1}{\mathbf{q} - 1}$ ,  $[n]! = [n] \cdot [n - 1] \cdot \dots \cdot [1]$ . 经典 1.2 推出与拉回 的计数表明 [n]! 是有限域  $\mathbb{F}_{\mathbf{q}}$  上 n 维线性空间中旗的数 量. 证明这还是  $H^*(G/B)$  的 Poincaré 多项式

$$[n]! = \sum_{k} \operatorname{rank} H^{2k}(G/B) \mathbf{q}^{k}.$$

[提示: 在有限域上也有 Schubert 胞腔, 这时  $BwB/B \cong$  $\mathbb{F}_{\mathbf{q}}^{\ell(w)}$ , 这贡献  $\mathbf{q}^{\ell(w)}$  这么多元素, 而在  $\mathbb{C}$  上的情况, 这时  $BwB/B\cong \mathbb{C}^{\ell(w)}$  在 Poincaré 多项式中贡献  $\mathbf{q}^{\ell(w)}$ .]

习题 5. 考虑复射影空间 $\mathbb{C}P^n$  为 n+1 维空间所有 的 1 维子空间. 将  $\mathbb{C}P^n$  写成一些  $\mathbb{C}^{2i}$  的并, 并且证明  $H^{2k+1}(\mathbb{C}P^n)=0, \mathbb{A}$ 

[提示: 对非零向量  $(x_0,\ldots,x_n)\in\mathbb{C}^{n+1}$ , 记  $[x_0:\cdots:x_n]$  为 对应的 1 维子空间. 换言之  $[x_0:\cdots:x_n]=[y_0:\cdots:y_n]$ 当且仅当  $(x_0,\ldots,x_n)=\lambda(y_0,\ldots,y_n)$  对某个  $\lambda\in\mathbb{C}^{\times}$ . 对  $i=0,\ldots,n$ ,  $\mbox{il}\ A^i=\{[\cdots 0:1:\underline{\mathbb{C}:\cdots:\mathbb{C}}]\}$ .

 $\diamondsuit X \xrightarrow{f} Y$  是一个连续映射, 那么诱导了**拉回 (pull** back)

$$H^*(X) \stackrel{f^*}{\longleftarrow} H^*(Y).$$

注意 1 这是一个齐次映射.

$$\alpha \in H^n(Y) \implies f^*(\alpha) \in H^n(X).$$

注意 2 这是一个代数同态.

$$f^*(\alpha \smile \beta) = f^*(\alpha) \smile f^*(\beta).$$

令 X 是紧致光滑定向流形. 那么有 Poincaré 对偶

$$H^*(X) \xrightarrow{\sim} H_{\bullet}(X) \qquad *+\bullet = \dim X.$$

|注意 1 | 这个最经典的, 也最容易理解的是组合的解释, 见 [姜]. 现代通行的做法是用 cap 积 个 给出具体的映射. 更进一步还可以用层的语言改写 (与对偶层对偶).

注意 2 这个同构需要选定一个定向, 所以区分"可定向 (orientable)"和"定向 (oriented)".

假设 X 和 Y 都是紧致光滑定向流形. 令  $X \xrightarrow{f} Y$  是 一个连续映射, 那么可以定义推出 (push forward)

$$H^*(X) \xrightarrow{f_*} H^{\dagger}(Y),$$

其中  $\dim X - * = \dim Y - \dagger$ , 使得下图交换

$$H^*(X) \longrightarrow H^{\dagger}(Y)$$
  
对偶  $\downarrow$  对偶  $H_{\bullet}(X) \longrightarrow H_{\bullet}(Y)$ 

即, 先对偶到下同调, 推出, 再对偶回上同调.

注意 1 这不是一个齐次映射.

但是如果我们对  $\alpha \in H^*(X)$ , 记  $\operatorname{codim} \alpha = \dim X - *$ , 那么  $f_*$  保持 codim.

|注意 2|这不是一个代数同态. 但是对于  $\alpha \in H^*(X), \beta \in$  $H^*(Y)$ , f projective formula

$$f_*(\alpha \smile f^*(\beta)) = f_*(\alpha) \smile \beta.$$

这是一个"模同态", 因为通过  $f^*$ ,  $H^*(X)$  是  $H^*(Y)$ -代 数, 从而是  $H^*(Y)$ -模.

|注意 3|其实我们不需要 X 和 Y 都紧致, 只需要 f 是  $\mathcal{L}$ 紧的 (proper) 即可定义; 实际上最需要的是当 f 是一个 纤维丛, 且纤维是紧致光滑定向流形.

#### 注意 4 对于一个"拉回方阵"

令 X 是一个紧致流形, 设 [X] 使得

单位元 
$$1 \in H^0(X) \stackrel{\text{対偶}}{\longleftrightarrow} [X] \in H_n(X)$$

我们称 [X] 是 X 的基本类 (fundamental class).

注意 1 如果给 X 一个三角剖分, 即把 X 分割成一些单 纯形, 那么  $H_n(X)$  是这些单纯形的和 (事先选好定向) 的 类. 换句话说,

$$[X] =$$
 "同调意义下"的  $X$  本身.

 $\Diamond Y$  是一个紧致流形, X 是一个嵌入 $\overline{I}$  子流形.  $\Diamond$  $i: X \to Y$  是包含映射. 定义 X 在 Y 中的 fundamental class(滥用记号)

$$[X] = i_*(1) \in H^*(Y),$$

特别地, 1 = [Y].

请注意!

$$deg[X] = codim X = dim Y - dim X 是 X 的余维数.$$

另外,  $[X] \stackrel{\text{有可能}}{=\!=\!=} 0$ .

#### 注意 1 请看

$$1 \in H^0(X) \longrightarrow H^{\operatorname{codim} X}(Y) \ni [X]$$

対偶  $\downarrow$  対偶

 $X \in H_{\dim X}(X) \longrightarrow H_{\dim X}(Y) \ni (\cdots)$ 

所以

$$[X] = "Y$$
 的同调意义下"的  $X$  本身.

注意 1 对于代数簇, 即使子簇 X 不是光滑的, 我们也可 以在  $H^*(Y)$  中定义代数闭链 (algebraic cycles) [X]. 但 是至少需要是闭的. 使用的方法是 Borel-Moore 同调, 请 见 [Fulton].

|注意 2 | 直接把代数闭链拿出来商掉"代数"同伦, 这就 是周环 (Chow ring)的定义. 只有 X 是光滑的时候, X的周"环"才是环.

这个是被 well-studied, 更广的配边理论也对此有研究.

#### —下面我们用 fundamental classes 重新理解上同调 —

 $\square \longrightarrow Y$   $F \downarrow \qquad \qquad \downarrow f$  以下内容不尽严格. 严格地, 要加何种条件应该看 [Ful- $Z \longrightarrow X$  ton], 周环的版本应该看 [3264]. 但是拿来用基本是没问题 的,而且实际上用式性类等工具能很大程度上避免这类问

#### 1. Cup 积

假设 dim A = a, dim B = b. 那么  $A \cap B$  的期待维数 是 n - [(n-a) + (n-b)]. 此时

$$[A] \smile [B] = \begin{cases} [A \cap B] & A \text{ an } B \text{ 直交} \\ 0 & \text{比期待维数小} \end{cases}$$
不知道 比期待维数大

在 A 和 B **直交** (transversal) 时, 一定取到期待维数.

注意 1 所谓直交是说局部上上看是线性空间的交, 也就 是说没有 🔀.

注意 2 微分几何中需要计算定向, 但是如果是代数簇, 定 向是复结构一定选定的, 所以没有问题.

2. 拉回  $(f: X \to Y)$ 

对于  $B \subset Y$ , dim B = b, 那么  $f^{-1}(B)$  的期待维数是 x-(y-b).

在  $f^{-1}(B)$  **横截 (transversal)** 时, 一定取到期待维数. 注意 1 所谓横截是说局部上上看是线性映射, 例如对应 的 Jacobi 矩阵秩取到期待的秩.

(这不严格)

所以

$$\begin{bmatrix} f^*(\alpha \smile \beta) \\ = f^*(\alpha) \smile f^*(\beta) \end{bmatrix} = \begin{bmatrix} & \text{問调版本的} \\ & f^{-1}(A \cap B) \\ = f^{-1}(A) \cap f^{-1}(B) \end{bmatrix}$$

3. 推出  $(f: X \to Y)$ 

对于  $A \subseteq X$ , dim A = a, 那么 f(A) 的期待维数是 a.

$$f_*[A] = \begin{cases} d \cdot [f(A)] & \text{取到期待维数} \\ 0 & \text{比期待维数小} \end{cases}$$

注意  $3 \mid -$  的根来说上同调不一定总是由代数闭链生成的, 这里 d 是映射度, 即 f(A) 中几乎所有点的原像都是 d 个 A 中的点.

(这也不严格)

所以

对于 i = 1, ..., n - 1. 考虑

$$P_i = \begin{pmatrix} * \cdots * * \cdots * \\ \vdots \vdots \vdots \vdots \\ * * \cdots * \\ * \vdots \end{cases}$$

这比上三角矩阵群 B 在 (i+1,i) 位置多一个自由度.

齐次流形 G/B 和  $F\ell(n)$  同胚. 那么 G/P 呢?

$$G/B \cong \left\{ V^0 \subseteq \dots \subseteq V^{i-1} \subseteq V^i \subseteq V^{i+1} \subseteq \dots \subseteq V^n \right\}$$

$$G/P \cong \left\{ V^0 \subseteq \dots \subseteq V^{i-1} \qquad \subseteq V^{i+1} \subseteq \dots \subseteq V^n \right\}$$

且自然映射

$$G/B \longrightarrow G/P$$

就是 "把 complete flags 中维数为 i 的子空间去掉".

考虑

$$P_i/B = \begin{pmatrix} * \cdots * * \cdots * \\ \vdots \vdots \vdots \vdots \\ * * \cdots * \\ * * \cdots * \\ \vdots \end{pmatrix} / \begin{pmatrix} * \cdots * * \cdots * \\ \vdots \vdots \vdots \vdots \\ * * \cdots * \\ * \cdots * \\ \vdots \\ * * \end{pmatrix}$$
$$= \binom{* *}{*} / \binom{* *}{*} = \mathcal{F}\ell(2) = \mathbb{C}P^1$$

最后  $\mathcal{F}\ell(2)=\mathbb{C}P^1$  是因为  $\mathbb{C}^2$  中的旗实际上由维数为 1 的子空间决定.

另外注意到  $\mathbb{C}P^1 = \mathbb{C} \cup \{\infty\} \cong S^2$  是 Riemann 球.

让我们考虑自然映射  $G/B \xrightarrow{\pi} G/P_i$ . 我们定义 **Demazure operator**为

这里的  $2 = \dim G/B - \dim G/P = \dim P/B$ . 用旗的语言,

令  $B^-=w_0Bw_0$  为下三角矩阵群, 其中  $w_0$  是最长元  $\binom{1\cdots n}{n\cdots 1}\in\mathfrak{S}_n$ . 那么我们记  $\Sigma_w$  为

[BwB/B]作为上同调胞腔 =  $[\overline{B-wB/B}]$ 作为基本类.

这个等号实际上是通过计算下同调的相交证明的, 请见 [Fulton]. 于是

$$H^*(G/B) = 以 \{\Sigma_w\}_{w \in \mathfrak{S}_n}$$
 为基的自由 Abel 群

令  $s_i=(i,i+1)\in\mathfrak{S}_n$  是 i 和 i+1 的对换. 注意到  $P_i=B\cup Bs_iB$ .

下面我们可以计算 Demazure operator 在  $\Sigma_w$  上的作用. 根据定义

$$\begin{split} \partial_{i}(\Sigma_{w}) &= \pi^{*}(\pi_{*}(\Sigma_{w})) = \pi^{*}(\pi_{*}([\overline{B^{-}wB/B}])) \\ &= \delta_{\# \underline{w} \underline{\pi} \underline{m}} \cdot [\pi^{-1}(\pi(\overline{B^{-}wB/B})] \\ &= \delta_{\# \underline{w} \underline{\pi} \underline{m}} \cdot [\pi^{-1}(\overline{B^{-}wP/P})] \\ &= \delta_{\# \underline{w} \underline{\pi} \underline{m}} \cdot [\overline{B^{-}wB/B} \cup \overline{B^{-}ws_{i}B/B}] \\ &= \begin{cases} [\overline{B^{-}ws_{i}B/B}], & \ell(ws_{i}) = \ell(w) - 1, \\ 0, & \ell(ws_{i}) = \ell(w) + 1. \end{cases} \\ &= \begin{cases} \Sigma_{ws_{i}}, & \ell(ws_{i}) = \ell(w) - 1, \\ 0, & \ell(ws_{i}) = \ell(w) + 1. \end{cases} \end{split}$$

这里实际上用到了Tits system.

Tits system 是说

$$BwB \cdot Bs_iB = \begin{cases} Bws_iB, & \ell(ws_i) = \ell(w) + 1; \\ Bws_iB \cup BwB, & \ell(ws_i) = \ell(w) - 1. \end{cases}$$

注意 1 实际上我们已经可以证明在任何系数下 Demazure operator 满足幂零辫子关系 (braid relation). 但是之后我们会建立多项式版本的联系, 那时将可以直接证明.

习题 1. 哪条集合论的事实的上同调版本是  $g^* \circ f_* = F_* \circ G^*$ ? [提示:  $F(G^{-1}(A)) = g^{-1}(f(A))$ . ] 习题 2. 根据 Poincaré 对偶,

$$H^*(\mathbb{C}P^n) \otimes H^{2n-*}(\mathbb{C}P^n) \xrightarrow{\smile} H^{2n}(\mathbb{C}P^n) \cong \mathbb{Z}$$

构成完美配对. 取 H 是  $\mathbb{C}P^n$  中任意一个超平面,记  $x=[H]\in H^*(\mathbb{C}P^n)$ . 证明  $H^*(\mathbb{C}P^n)$  作为环同构于  $\mathbb{Z}[x]/(x^{n+1})$ ,其中  $\deg x=2$ . [提示:显然 H 的 (实) 余维数是 2. 注意到不同超平面给出相同的基本类,所以我们直接计算相交知道  $x^n=1\cdot [k]\neq 0$ . 要说明  $H^*(\mathbb{C}P^n)$  是由 x 生成的,我们将 H 视为  $\mathbb{C}P^{n-1}$ ,用  $i^*$  结合完美配对的事实归纳证明.]

习题 3. 对于一般的 d 次超平面  $D \subseteq \mathbb{C}P^n$ ,证明 1.3 [D] = dx,其中 x 是超平面类. [提示: 注意到因为  $H^2(\mathbb{C}P^n) = \mathbb{Z}x$ ,所以一定有一个整数 d' 使得 [D] = d'x. 注意到 D 与一条一般位置的直线交 d 个点,而直线又可以写成 n-1 个超平面的交, $d'x \cdot x^{n-1} = [D] \cup [H]^{n-1} = [D \cap H_1 \cap \cdots] = d \cdot [\triangle] = dx^n$ ,所以 d = d'. ]

习题 4. 请说明

$$\Sigma_w = [\overline{w_0 B w_0 w B / B}] = [\overline{B w_0 w B / B}]$$

[提示: 因为可以在  $\mathrm{GL}_n$  中找到一条从 1 通往  $w_0$  的道路,从而构造一个同伦.]

习题 5. 在 [Fulton] 中,为了计算 Demazure operators,  $\square$   $\rightarrow G/B$  他用了拉回方阵  $\downarrow$  , 证明这时  $\square$  和下面的集合是  $G/B \rightarrow G/P$  双射.

$$\square = \left\{ \cdots \subseteq V^{i-1} \ \ \ \ \ \ \ \ \ \ \ V^{i} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ V^{i+1} \subseteq \cdots \right\}.$$

#### 1.3 抛物子群

对于  $\mathrm{GL}_n$ , 对于  $\lambda_1+\ldots+\lambda_k$ , 我们记 **抛物 (parabolic)** 子群

$$P_{\lambda} = \begin{pmatrix} \operatorname{GL}_{\lambda_1} & * & \cdots & * \\ & \operatorname{GL}_{\lambda_2} & \cdots & * \\ & & \ddots & \vdots \\ & & \operatorname{GL}_{\lambda_k} \end{pmatrix}$$

我们考虑 G/P.

实际上 (集合论意义上可以直接验证)

$$G/P_{\lambda} = \left\{ 0 \subseteq V^{\lambda_1} \subseteq V^{\lambda_1 + \lambda_2} \subseteq \dots \subseteq \mathbb{C}^n \right\}$$

且如果  $P_1$  分的块都是  $P_2$  的子块, 那么

$$G/P_1 \rightarrow G/P_2$$

就是"把多余维数的子空间去掉".

让我们用分成 k 组的 n 个标上 1 到 n 的 • 来记  $\lambda_i$ 

$$(\lambda_1 \uparrow \bullet) (\lambda_2 \uparrow \bullet) \cdots (\lambda_k \uparrow \bullet)$$

如果  $\lambda_i = 1$ , 则省略括号.

那么  $\lambda_1 + \ldots + \lambda_j$  是第 j 组最后一个 • 的编号.

第一个例子

$$\begin{array}{cccc}
\bullet & \cdots & \bullet & (\bullet & \bullet & \bullet \\
1 & i-1 & i & i+1 & i+2 & n
\end{array}$$

对应上一节的

$$P_i = \begin{pmatrix} * \cdots * * \cdots * \\ \ddots \vdots \vdots \ddots \vdots \\ * * \cdots * \\ \vdots & \vdots \end{pmatrix}$$

第二个例子

$$\begin{pmatrix} \bullet & \cdots & \bullet \\ 1 & \cdots & k \end{pmatrix} \begin{pmatrix} \bullet & \cdots & \bullet \\ k+1 & \cdots & n \end{pmatrix}$$

对应 Grassmaniann 流形/簇

$$G/P_{\lambda} = \mathcal{G}r(k,n) = \{0 \subseteq V^k \subseteq \mathbb{C}^n\}.$$

令

$$\mathfrak{S}_{\lambda} = \mathfrak{S}_{\lambda_1} \times \cdots \times \mathfrak{S}_{\lambda_k}$$

是"组内置换"构成的群.

注意到

$$P = \bigcup_{u \in \mathfrak{S}_{\lambda}} BuB.$$

(严格说还是用了 Tits system).

对于  $\sigma \in \mathfrak{S}_{\lambda}$ , 我们有

 $Bw\sigma P/P = BwP/P$ .

所以

$$G = \bigcup_{w \in \mathfrak{S}_w/\mathfrak{S}_{\lambda}} BwP \qquad (无交并)$$

称  $\{BwP/P : w \in \mathfrak{S}_w/\mathfrak{S}_{\lambda}\}$  为  $G/P_{\lambda}$  上的 **Schubert 胞** 腔.

注意 1 一般没有 dim  $BwP/P = 2\ell(w)$ .

但是, 如果 w 是陪集  $wS_{\lambda}$  中长度最小者, 则

自然映射:  $BwB/B \longrightarrow BwP/P$ 

是双射 (同胚). 记

 $\mathfrak{S}^{\lambda} = \{ \text{每个陪集 } \mathfrak{S}_n/\mathfrak{S}_{\lambda} \text{ 选出的唯一的长度最小者} \}$ 

那么  $\{BwP_{\lambda}/P_{\lambda}:w\in\mathfrak{S}^{\lambda}\}$  给出  $G/P_{\lambda}$  的胞腔结构. 注意 1 这是因为作用 P 等于作用  $\bigcup_{u\in\mathfrak{S}_{\lambda}}BuB$ ,而  $BwB\cdot BuB=BwuB$  如果  $\ell(wu)=\ell(w)+\ell(u)$  (Tits system). 换句话说如果 P 内 B 以外的元素作用在 BwB上一定无法回到 BwB.

我们证明对于 Grassmaniann 的情况

$$\binom{\bullet}{1} \cdots \binom{\bullet}{k} \binom{\bullet}{k+1} \cdots \binom{\bullet}{n}$$

 $\mathfrak{S}^{\lambda}$  和  $k \times (n-k)$  的 Young 图 (保持  $\ell$ ) 一一对应. 请看





我们曾经提到  $\mathcal{F}\ell(n)$  是紧致的, 是因为  $\mathcal{F}\ell(n)$  是酉群  $U_n$  的商.

具体来说, 记  $K = U_n$ ,  $T_K$  是  $U_n$  中的对角矩阵. 那么

$$U_n/T_K \xrightarrow{\sim} G/B \cong \mathcal{F}\ell(n)$$

是同胚. 这实际上是如下一则线性代数的转述

任何旗都 admits 一个酉正交基.

但是  $U_n/T_K$  上面没有显然的代数簇结构 (酉群不是代数群!), 所以**无法刻画 Schubert 胞腔**. 但是当我们不用胞腔的时候, 复结构 (代数簇结构) 反而显得累赘.

注意  $\mathfrak{S}_n$  通过共轭, 作用在如下群上

 $U_n$ ,  $U_n$  中的对角矩阵群 =  $T_K$ ,

 $GL_n$ ,  $GL_n$  中的对角矩阵群.

但是唯独不作用在上三角矩阵群 B 上.

前两者诱导了  $\mathfrak{S}_n$  在

$$U_n/T_K \xrightarrow{\sim} G/B \cong \mathcal{F}\ell(n)$$

上的作用.

但是  $GL_n/B$  上面没有显然的  $\mathfrak{S}_n$  作用.

上面的事实也有紧致版本. 记

$$U_{\lambda} = \begin{pmatrix} U_{\lambda_1} & & & \\ & U_{\lambda_2} & & \\ & & \ddots & \\ & & & U_{\lambda_k} \end{pmatrix}$$

那么

$$G/P_{\lambda} = U_n/U_{\lambda}$$
.

但是同样 Schubert 胞腔也无法刻画.

习题 1. 证明  $G_n/G_\lambda$  每个陪集中都有唯一的一个长度最小者, 他们是那些组内单调递增的置换.

**习题 2.** 请验证  $G/P_{\lambda} = U_n/U_{\lambda}$ . [提示: 因为我们已经给出过  $G/P_{\lambda}$  对应的旗的刻画,所以可以直接验证;另一方面,还可以说明  $U_{\lambda} = U_n \cap P_{\lambda}$ .]

习题 3 (极大紧子群). 证明  $\mathrm{GL}_n(\mathbb{C})$  中任何一个紧致子群都共轭到  $U_n$  的子群. [提示:需要用到一则事实,紧致子群有 Haar 测度  $\mu$ . 任意取一个酉内积,将这个酉内积对这个子群作用取平均,如此得到一个新的酉内积,而这个子群作用保持. 再利用事实 --- $\mathbb{C}^n$  上的所有酉内积都相同. ]

**习题 4.** 证明  $\mathrm{GL}_n/U_n$  是一个欧式空间. [提示: 回忆正交化算法给出的所谓  $\mathrm{QR}$  分解;对西群也是类似的,任何一个矩阵 x 都可以写成一个酉矩阵和一个上三角矩阵的乘积,如果我们要求上三角矩阵的对角线上排列着 1,那么这个分解是唯一的. 所以  $\mathrm{GL}_n/U_n$  和对角线全为 1 的上三角矩阵同胚.]

#### 1.4 双旗流形

Bruhat 分解

$$G = \bigcup_{w \in \mathfrak{S}_n} BwB \qquad (无交并)$$

有一个几何解释. 即

任何两个 Flags 都 admit 一组公共基.

而上面的解释可以用线性代数延拓定理解决.

对于一系列线性空间 V 的子空间  $\{V_i\}$ , 称基 B 是他们的基如果  $V_i \cap B$  是  $V_i$  的基.

回忆映射

$$G/B \longrightarrow \mathcal{F}\ell(n)$$

假设 xB 对应到旗

$$V^{\bullet} = \{V^i = \operatorname{span}(x_1, \dots, x_i)\}.$$

那么  $V^{\bullet}$  的基的所有选择就是 xB 的列向量 (忽略列向量的顺序).

因此

任意 $x, y \in G$ , 存在 $w \in \mathfrak{S}_n$ ,  $x' \in xB, y' \in yB$ , 使得x'w = y'这等价到 Bruhat 分解.

回忆

$$G \curvearrowright_{\chi f f f} G/B \times G/B$$
 
$$\downarrow (xB, yB) \mapsto x \times x^{-1}yB$$
  $G \curvearrowright_{\chi f f f f} G \times_B G/B$  比较  $G \curvearrowright_{\chi f f f f f} G/B$ 

因此

对角 
$$G$$
-轨道 $(G/B \times G/B)$  = 左乘  $G$ -轨道 $(G \times_B G/B)$   
=  $\operatorname{pt} \times_G G \times_B G/B$   
=  $\operatorname{pt} \times_B G/B$   
=  $B$ -轨道 $(G/B)$ .

于是我们发现

$$B$$
-轨道 $(G/B) \longleftrightarrow$  对角  $G$ -轨道 $(G/B \times G/B)$ 

其中 BwB/B 对应于  $G/B \times G/B$  中的

$$\{(xB, yB): x^{-1}y \in BwB\}.$$

此时我们称 xB 和 yB 对应的 flags 具有 **相对位置** w (和标准记号 up to left and right).

对于两个 flags  $F_1^{\bullet}$ ,  $F_2^{\bullet}$  具有相对位置 w. 根据条件, 我们可以找到一个矩阵 y, 使得

$$\operatorname{span} yw^{-1} = U^{\bullet}, \quad \operatorname{span} y = V^{\bullet}$$

 $\mathbb{P} y = (y_1, \dots, y_n)$ 

$$F_1^i = \text{span}(y_{w(1)}, \dots, y_{w(i)}), \qquad F_2^i = \text{span}(y_1, \dots, y_i).$$

考虑

$$\begin{split} &\dim \frac{F_1^{i-1} + F_2^j \cap F_1^i}{F_1^{i-1} + F_2^{j-1} \cap F_1^i} \\ &= \dim \frac{\operatorname{span} \left\{ (y_w(1), \dots, y_{w(i-1)}) \cup (y_1, \dots, y_j) \cap (y_{w(1)}, \dots, y_{w(i)}) \right\}}{\operatorname{span} \left\{ (y_1, \dots, y_{w(i-1)}) \cup (y_1, \dots, y_{j-1}) \cap (y_{w(1)}, \dots, y_{w(i)}) \right\}} \\ &= \# \big( \{ w(1), \dots, w(i-1) \} \cup \{ 1, \dots, j \} \cap \{ w(1), \dots, w(i) \} \big) \\ &- \# \big( \{ w(1), \dots, w(i-1) \} \cup \{ 1, \dots, j \} \cap \{ w(1), \dots, w(i) \} \big) \\ &= \begin{cases} 1 & w(i) = j \\ 0 & \text{ if the } \end{cases} \end{split}$$

所以这个恰好来自置换矩阵.

注意 1 这给出一个相对位置的内蕴刻画. 这样  $F\ell(n)$  上的 Schubert 胞腔也可以内蕴刻画. 对于  $F\ell(n)$ , 选定一个 旗  $V_1^{ullet}$ , 所有和这个  $V_1^{ullet}$  相对位置为 w 的旗  $V_2^{ullet}$  恰好对应 Schubert 胞腔 BwB/B.



回忆 Zassenhaus' Butterfly Lemma

$$\begin{array}{ccc} \frac{F_1^{i-1} + F_2^j & \cap F_1^i}{F_1^{i-1} + F_2^{j-1} \cap F_1^i} & \cong & \frac{F_2^{j-1} + F_1^i & \cap F_2^j}{F_2^{j-1} + F_1^{i-1} \cap F_2^j} \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$$

所以

$$\dim(F_1^i \cap F_2^j) = \#\{\bullet \le i : w(\bullet) \le j\}$$

$$\updownarrow$$

$$\dim(F_1^i + F_2^j) = i + j - \#\{\bullet \le i : w(\bullet) \le j\}$$

习题 1. 注意我这个蝴蝶定理比 Serge Lang 等书上多断言了一个同构,请证明之.

习题 2. 对于三个子空间,举例说明我们不能找到公共  $0 \subseteq \langle e_1 \rangle \subseteq \mathbb{C}^2$ ,

基. [提示: 例如  $0 \subseteq \langle e_2 \rangle \subseteq \mathbb{C}^2$  .]  $0 \subseteq \langle e_1 + e_2 \rangle \subseteq \mathbb{C}^2$ 

**习题 3.** 证明对于任意两条线性子空间的链,一定可以找到他们的一组基. [提示: 线性代数中学的  $\dim(U+V) = \dim(U) + \dim(V) - \dim(U \cap V)$  的证明过程.]

习题 4. 对于线性空间 V 中的三个线性子空间  $V_1,V_2,V_3$ ,证明一定存在这样一组基 B,使得  $V_i$  由  $(B+B)\cap V_i$  张 成. 其中 B+B 为可以写成两个基之和的向量. [提示:我非常确定这是对的,但是我证明用了表示论. 我还没有想到简单证明. 原因如下,每个子空间的指定给出  $D_4$  的一个quiver表示,而其表示已经分类,一定是以下 12 种可能性的直和

前面九种对应单射 (包含),满足条件.]

注意 1 实际上能有类似结论的情况很少, 他们分别是



每个箭头  $\rightarrow$  代表一个包含  $\subseteq$ . 注意 A 型是上上题,  $D_4$  的情况是上题.

### 参考文献

- Hatcher. Algebraic Topology.
- Bredon. Geometry and Topology. GTM139.

- 姜伯驹. 代数拓扑.
- Fulton. Young Tableaux.
- Chriss, Ginzburg. Representation Theory and Complex Geometry.
- Eisenbud, Harris. 3264 and all that.

关于 Lie 群有不少书, 推荐

- Bump. Lie Group. GTM 225. 里面也有很多相关的组合.
- Knapp. Lie groups beyond an introduction.
- Humphreys. Linear Algebraic Groups. GTM21. 请 看 29. Tits system.
- Springer. Linear Algebraic Groups. 请看 8.5, Bruhat order 的几何解释.

### ~~ ★★ 菜谱 ★

—如何计算上同调?

1. 计算群结构.

找胞腔结构, 计算他们的维数. 胞腔复形, 计算上同调. 没有奇数 ⇒ 复形平凡

2. 计算相交配对

取两个维数相补的基本类 移动到直交位置 计算相交点的数目

- 3. 计算推出拉回 计算像和原像 比维数
- 4. 计算环结构

取两个基本类, 求第三个基本类前系数 通过完美配对, 变成计算三个基本类相交 移动到直交位置, 计算相交点的数目

本节的上同调 ≈ 集合论 + 算开闭 + 算维数

### 2 纤维从速成

上节我们提到关于计算环结构的方法只是理论上的, 但是实际并不能广泛地用于计算.

#### 4. 计算环结构

取两个基本类, 求第三个基本类前系数 通过完美配对, 变成计算三个基本类相交 移动到直交位置, 计算相交点的数目

#### 2.1 纤维丛

为了真的能够计算, 并更好地理解上同调, 我们需要理解纤维丛.

对于连续映射 
$$E \xrightarrow{\pi} B$$
, 对于  $E \xrightarrow{\pi} B$   $b \in B$ , 称  $\pi^{-1}(b) \subseteq E \not = b \not = b$  的 纤维 (fibre), 也记作  $E_b$ .  $E_b \longleftrightarrow_{\mathbb{R}^{(k)}} b$ 

B 和 F 是拓扑空间,

$$E = B \times F$$

$$\uparrow^{\pi_1}$$

$$B$$

$$F$$

那么投射  $E \xrightarrow{\pi_1} B$  每一点的纤维 (= 原像) 都是一个 F 的拷贝. 此时  $E \to B$  被称为以 F 为纤维的 **平凡丛**.

令  $E \stackrel{\pi}{\to} B$  是一个连续映射, 我们说这是一个以 F 为 纤维的 **纤维丛** (fibre bundle), 如果局部上是平凡丛.

任意一个点 
$$U \times F \cong \pi^{-1}(U) \subseteq E$$
 邻域  $U$  使得  $\pi^{-1}(U) \to U$  同构于平凡丛.

其中 B 叫底空间(base space), E 叫全空间 (total space).

例子: Möbius 带, 将下列纸带



卷成 Möbius 带时, 中间的轴线会粘成一个圆圈  $S^1$ . 而垂直方向则是一个区间 I. 所以 Möbius 带  $\to S^1$  是以 I 为纤维的纤维丛.

不是所有纤维丛都平凡

例子: 任何一个流形 M, 在点  $x \in M$  有切空间  $T_xM$ . 定义切丛

$$TM = \bigcup_{x \in M} T_x M$$

为所有点处切空间的形式并. 实际上可以找到 TM 的流形结构使得

 $TM \to M$  来自  $T_xM$  的切向量  $\mapsto x$ 

是一个纤维从.

注意 1 请注意

#### 不是所有切丛都平凡

例如著名的毛球 (hairy ball) 定理. 点 x 处切空间  $T_xM$  可以看出这一点处的无穷小移动组成的向量空间. 这可以用线素 (毛) 画出.

对于纤维丛  $\pi = \stackrel{E}{\underset{B}{\downarrow}}$ , 我们称  $s : \stackrel{E}{\underset{B}{\uparrow}}$  是一个**截面 (section)** 如果  $\pi \circ s = \mathrm{id}_B$ .

换句话说,  $\forall x \in B, s(x) \in E_x$ ,

连续截面 = 每条纤维上连续地选一个点

对于平凡丛  $E = B \times F$ ,截面就是一个函数  $B \rightarrow F$ . 而纤维丛局部上是平凡丛,所以截面局部上是函数.

一般而言对于纤维丛, 截面并没有一个典范地选择 (有时甚至不存在, 例如 Möbius 带的边界), 即: 我们不能 认为  $B \subset E$ .

因为我们总遇到大量的纤维丛,如何计算他们的上同调呢?对于平凡丛,  $E = B \times F$ ,可以用**万有系数定理**,例如在  $H^*(B)$  或  $H^*(F)$  其中一个自由的时候,

$$H^*(E) = H^*(B) \otimes H^*(F)$$
 (作为环).

一般地我们也希望这个成立. 但是一般不能作为环同构,也不典范.

取纤维丛  $\downarrow_B^E$ , 任意选择一个点 b, 纤维为 F. 由如下两个映射

我们称  $\overset{E}{\underset{B}{\downarrow}}$  是 **形式的 (formal)** (非广泛术语) 如果满足下面的条件.

存在  $H^*(F)$  在  $H^*(E)$  的提升 A

即子群  $A \subseteq H^*(E)$  使得下面复合是同构

$$H^*(F) \stackrel{\mathbb{R}^{\oplus}}{\longleftarrow} H^*(E) \stackrel{\supseteq}{\longleftarrow} A$$

假设  $\tilde{\alpha} \in A$  对应到  $\alpha \in H^*(F)$ 

使得

$$H^*(B)\otimes H^*(F)\longrightarrow H^*(E)$$
  $\beta\otimes\alpha\mapsto\pi^*(\beta)\smile\tilde{\alpha},$  是群同构.

注意 1 此时

$$\begin{array}{ccccc} H^*(F) & \stackrel{\mathbb{R}^{\oplus l}}{\longleftarrow} & H^*(E) \\ & & & \uparrow \\ H^*(F) & \longleftarrow & H^*(B) \otimes H^*(F) \\ & \alpha & \hookleftarrow & 1 \otimes \alpha \\ & 0 & \hookleftarrow & \beta \otimes \alpha & \deg \beta \geq 1 \end{array}$$

注意 2 此时

$$\begin{array}{cccc} H^*(E) & \xleftarrow{\pi^*} & H^*(B) \\ & \uparrow & & \parallel \\ H^*(B) \otimes H^*(F) & \longleftarrow & H^*(B) \\ \beta \otimes 1 & \longleftrightarrow & \beta \end{array}$$

有两个非平凡情况能得到 formality.

- 1. **Leray–Hirsch 定理** 如果  $H^*(F)$  是自由模 (wrt 系数), 且存在一个  $H^*(E)$  上的一些元素  $\{\alpha_i\}$  使得  $\{\alpha_i\}$  限制在**每一点**处的纤维  $H^*(E_x)$  都构成一组基.
- 2. **Serre–Leray 谱序列退化情况** 如果  $H^*(B)$  和  $H^*(F)$  都只有偶数次的自由模 (wrt 系数).

前者请看 [Hatcher], 内含大量应用, 包括一个计算  $H^*(\mathcal{F}\ell(n))$  的命题 (但是没有算出环结构, 所以我们不采用). 后者也推荐 [Hatcher].

假设纤维丛  $\underset{B}{\downarrow}$  是 formal 的. 假设纤维 F 是紧致可定向的光滑流形, 我们能刻画推出  $H^*(E) \xrightarrow{\text{推出}} H^{*-\dim F}(B)$ 吗?

记  $d = \dim F$ . 那么

$$H^n(E) \cong \bigoplus_{p+q=n} H^p(F) \otimes H^q(B)$$
 
$$= H^d(F) \otimes H^{n-d}(B) \oplus (剩下的)$$
 
$$= \mathbb{Z} \cdot [ \pounds ] \otimes H^{n-d}(B) \oplus \cdots$$

实际上推出正是取 [点] 前的系数.

等价地, 如果点的基本类

$$[A] \in H^d(F)$$
 提升到  $\omega \in H^d(E)$ .

那么上述复合等于

推出 = 取 
$$\omega$$
 前系数.

想要证明并不困难. 假设  $\alpha \in H^*(F)$  提升为  $\tilde{\alpha} \in H^*(E)$ . 那么根据 projective formula,

$$\pi_*(\pi^*(\beta) \smile \tilde{\alpha}) = \beta \smile \pi_*\tilde{\alpha}.$$

而  $\pi_*$  降低 d 次,所以  $\deg \alpha < d$  时, $\pi_*(\pi^*(\beta) \smile \tilde{\alpha}) = 0$ . 当  $\deg \alpha = d$  时, $\pi_*\alpha \in H^0(E) \cong \mathbb{Z}$  是一个数.我们可以用下面的拉回方阵计算 ↓ ↓.



请看我们上节提到的

$$G/B \xrightarrow{\pi} G/P_i$$
.

这是一个以  $P_i/B \cong \mathbb{C}P^1$  为纤维的向量丛. 一切都只有偶数维的同调, 所以我们可以放心地得到

$$H^*(G/B) = H^*(G/P_i) \otimes H^*(\mathbb{C}P^1).$$

等价地, 存在一个  $\omega_i \in H^2(G/B)$ , 使得

$$\begin{array}{cccc} H^2(\mathbb{C}P^1) = H^2(P/B) & \longleftarrow & H^2(G/B) \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ &$$

以及, 任何一个  $H^*(G/B)$  的元素都可以唯一地写成

$$\omega_i \smile \pi^* \alpha + \pi^* \beta, \qquad \alpha, \beta \in H^*(G/P_i).$$

回忆 Demazure operator 是拉回和推出的复合, 所以 对于  $f = \omega_i \smile \pi^* \alpha + \pi^* \beta \in H^*(G/B)$ ,

$$\partial_i f = \pi^* \pi_* (\omega_i \smile \pi^* \alpha + \pi^* \beta) = \pi^* (\alpha).$$

另一方面我们可以证明  $H^*(G/P_i) \xrightarrow{\pi^*} H^*(G/B)$  的像在  $s_i$  下不变.

$$\begin{array}{ccc} U_n/T & \xrightarrow{s_i} & U_n/T \\ \downarrow & & \downarrow \\ U_n/\binom{*}{*} & \underset{s_i}{\longrightarrow} & U_n/\binom{*}{*} & \underset{*}{*} & \end{array}$$

但是下方的  $s_i$  作用是平凡的.

注意 1 我们会在后面看到  $\omega_i$  可以取作 (某种意义下的) $x_i$ , 于是  $s_i(\pi^*\alpha \cdot x_i + \pi^*\beta) = \pi^*\alpha \cdot x_{i+1} + \pi^*\beta$ . 那么此时 Demazure operator 就可以写成

$$\partial_i(\pi^*\alpha \cdot x_i + \pi^*\beta) = \pi^*\alpha = \frac{(\pi^*\alpha \cdot x_i + \pi^*\beta) - s_i(\pi^*\alpha \cdot x_i + \pi^*\beta)}{x_i - x_{i+1}}.$$

习题 1. 考虑紧致的版本  $U_n$  为酉群,  $T_K$  为其对角矩阵. 注意到  $U_n/V = \mathcal{G}r(k,n)$ , 其中  $V = \begin{pmatrix} U_k & U_n & k \end{pmatrix}$ . 由此说明

$$H^*(\mathcal{F}\ell(n)) = H^*(\mathcal{F}\ell(k)) \otimes H^*(\mathcal{F}\ell(n-k)) \otimes H^*(\mathcal{G}r(k,n-k)).$$

[提示: 利用  $U_n/T_K \to U_n/V$ . 需要证明  $V/T_K = \mathcal{F}\ell(k) \times \mathcal{F}\ell(n-k)$ .]

习题 2. 回忆我们之前定义的  $[n] = \frac{\mathbf{q}^n-1}{\mathbf{q}-1}, [n]! = [n] \cdots [1]$ . 我们可以定义 q-二项式系数  $\begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]!}{[k]![n-k]!}$ . 证明这是  $\mathbb{F}_{\mathbf{q}}$  中 n 维空间 k 维子空间的数目. [提示:我们之前将 [n]! 解释成 Poincaré 多项式. 注意到张量的Poincaré 多项式是 Poincaré 多项式相乘. 所以根据上题我们得到  $H^*(\mathcal{G}r(k,n))$  的 Poincaré 多项式. 而  $\mathcal{G}r(k,n)$  也有胞腔结构,所以前面某道旗流形的问题是一样的. ]

#### 2.2 一些无穷空间

记  $G=\mathrm{GL}_n$ ,记  $T={*\cdots}_*$ )为全体  $\mathrm{GL}_n$  的对角矩阵, $B={*\cdots}_*$ )为全体  $\mathrm{GL}_n$  的上三角矩阵.那么

$$H^*(G/B) \cong H^*(G/T).$$

这是因为  $\underset{G/B}{\overset{G/T}{\downarrow}}$  是以 B/T 为纤维的纤维丛, 而

$$B/T \cong \begin{pmatrix} 1 & \cdots & * \\ \vdots & \vdots & \vdots \end{pmatrix} \cong \mathbb{C}^{n(n-1)/2} \overline{\eta}$$
  $\widehat{\mathfrak{m}}$ .

注意, 虽然二者同调群一样, 但是 G/T 不是紧致的.

我们也可以赋予 G/T 一个几何意义, 为全体线性无 关的一维子空间构成的集合

$$\widetilde{\mathcal{F}}\ell(n) = \{(\ell_1, \dots, \ell_n) \in \mathbb{C}P^{n-1} : \underset{\ell_1, \dots, \ell_n}{\dim \ell_i = 1} \ \text{$\sharp$ the $\sharp$}\}.$$

且  $G/T \rightarrow G/B$  的映射是  $(\ell_i) \mapsto F$ , 其中

$$F$$
 的第  $i$  个子空间  $=$  前  $i$  个  $\ell_*$  张成的  $i$  维子空间

我们已经介绍了几套语言之间的互相转化

$$G/B \longleftrightarrow \{\text{所有旗}\} \longleftrightarrow U_n/T.$$

我们下面还要在一些无穷空间上用,对应法则也是完全一样的.

定义无穷旗流形

$$\mathcal{F}\ell(\infty) = \left\{ V^0 \subseteq V^1 \subseteq \cdots : \text{ 线性子空间}; \text{ 当 } n \text{ 充分} \right\}$$

$$\text{大时}, V^n \cong \mathbb{C}^n.$$

定义长度为 k 的旗流形

$$\mathcal{F}\ell(k,\infty) = \left\{ V^1 \subseteq \cdots V^k : \begin{array}{l} \text{$\oplus$$} \uparrow V_i \not\in \mathbb{C}^\infty \text{ in } i \not\in \mathbb{C}^\infty \\ \text{$\sharp$$} \notin \text{$\sharp$} \uparrow \text{$\sharp$} \end{pmatrix} \right\}$$

为了方便,也记

$$\widetilde{\mathcal{F}\ell}(k,\infty) = \left\{ \begin{aligned} & \text{每个 } \ell_i \text{ 是 } \mathbb{C}^{\infty} \text{ 的 1 } \text{ 维} \\ (\ell_i)_{i=1}^k : \text{ 线性子空间; } \text{ 全体 } \{\ell_i\} \\ & \text{ 线性无关;} \end{aligned} \right\}$$

定义无穷 Grassmannian

作为特例, 无穷维射影空间

定义

$$\mathbb{C}^{\infty} = \bigoplus_{i=1}^{n} \mathbb{C}e_{i} = \{(x_{i})_{i=1}^{\infty} : 几乎所有 i 都有 x_{i} = 0\}$$

$$\mathrm{GL}_{\infty} = \left\{ \begin{aligned} & \mathrm{可} \dot{\mathbb{D}}, \ \mathrm{Lth} \ n \gg 0 \ \mathrm{bt}, \ \mathrm{kr} \mathrm{cth} \\ & (x_{ij})_{1 \leq i,j} : \mathrm{Lth} \ n \times n \ \mathrm{cth} \mathrm{cth}, \ \mathrm{nh} \dot{\mathbb{D}} \mathrm{cth} \\ & \mathrm{pth} \mathrm{ch}. \end{aligned} \right\}$$

那么

$$\mathcal{F}\ell(\infty) = \operatorname{GL}_{\infty}/B_{\infty}.$$

$$\mathcal{F}\ell(k,\infty) = \operatorname{GL}_{\infty}/\binom{B_k}{\operatorname{GL}_{\infty}}^*.$$

$$\widetilde{\mathcal{F}}\ell(k,\infty) = \operatorname{GL}_{\infty}/\binom{T_k}{\operatorname{GL}_{\infty}}^*.$$

$$\mathcal{G}r(k,\infty) = \operatorname{GL}_{\infty}/\binom{\operatorname{GL}_k}{\operatorname{GL}_{\infty}}^*.$$

$$\mathbb{C}P^{\infty} = (\mathbb{C}^{\infty} \setminus 0) / \mathbb{C}^{\times}.$$

注意, 他们都不是流形, 也不紧致. 不过好在胞腔结构 总是良好, 所以

H\*(以上) 都是自由 Abel 群, 且只有偶数维上同调

#### 具体请看下表

| $H^*(\mathcal{F}\ell(\infty)) = \bigoplus \mathbb{Z}[\Sigma_w]$   | $w \in \mathfrak{S}_{\infty}$ .                                           |
|-------------------------------------------------------------------|---------------------------------------------------------------------------|
| $U*(T\ell(l_{k-20})) = \bigcap \mathbb{Z}[\nabla ]$               | $w \in \mathfrak{S}_{\infty}/\mathfrak{S}_{k+\infty}$                     |
| $H^*(\mathcal{F}\ell(k,\infty)) = \bigoplus \mathbb{Z}[\Sigma_w]$ | $= \{k \land T \in \mathbb{Z}\}.$                                         |
| $\mathcal{G}r(k,\infty) = \bigoplus \mathbb{Z}[\Sigma_w]$         | $w \in \mathfrak{S}_{\infty}/\mathfrak{S}_k \times \mathfrak{S}_{\infty}$ |
|                                                                   | $= \{k $ 个严格递增的数 $\}$ .                                                   |
|                                                                   | $n \in \mathbb{Z}_{\geq 0}$                                               |

习题 1. 计算  $H^*(\mathcal{F}\ell(k,\infty))$  的 Poincaré 多项式. 示: 我们可以直接根据下一小节上同调环得到其 Poincaré 多 项式是  $\frac{1}{(1-n)^k}$ . 我们也可以先算有限的情况再取极限, 计算  $\mathfrak{S}_{n+k}/\mathfrak{S}_n$ 

$$\prod_{i=1}^{n+k} \frac{\mathbf{q}^i - 1}{\mathbf{q} - 1} / \prod_{i=1}^{n} \frac{\mathbf{q}^i - 1}{\mathbf{q} - 1} = \prod_{i=n+1}^{n+k} \frac{\mathbf{q}^i - 1}{\mathbf{q} - 1} = \prod_{i=1}^{k} \frac{\mathbf{q}^{i+n} - 1}{\mathbf{q} - 1}$$

取幂级数意义下的极限  $\mathbf{q}^n \to 0$ , 所以最终结果是  $\frac{1}{(1-\mathbf{q})^k}$ .]

#### 2.3 计算

#### 计算 I

$$\widetilde{\mathcal{F}\ell}(k,\infty) = \begin{cases} &\text{ 每个 } \ell_i \text{ 是 } \mathbb{C}^\infty \text{ 的 } 1 \text{ 维} \\ (\ell_i)_{i=1}^k : \text{ 线性子空间; } \text{ 全体 } \{\ell_i\} \\ &\text{ 线性无关;} \end{cases} \rightarrow (\ell_i)_{i=1}^k : \mathbb{C}P^\infty = \begin{cases} V \subseteq \mathbb{C}^\infty : V \text{ 是 } \mathbb{C}^\infty \text{ 的 } 1 \text{ 维线性} \\ &\text{ 子空间.} \end{cases} \rightarrow \ell_i$$

其在  $\ell_i$  处的纤维是

此时纤维和底空间都只有偶数维的上同调, 所以

$$\begin{split} &H^*(\mathcal{F}\ell(k,\infty)) = H^*(\widetilde{\mathcal{F}\ell}(k,\infty)) \\ &= H^*(\mathbb{C}P^\infty) \otimes H^*(\widetilde{\mathcal{F}\ell}(k-1,\infty)) \\ &= H^*(\mathbb{C}P^\infty) \otimes H^*(\mathbb{C}P^\infty) \otimes H^*(\widetilde{\mathcal{F}\ell}(k-2,\infty)) \\ &= H^*(\mathbb{C}P^\infty) \otimes \overset{k}{\cdots} \otimes H^*(\mathbb{C}P^\infty) \end{split}$$

注意 1 虽然我们已经知道

$$H^*(\mathbb{C}P^\infty) = \mathbb{Z}[t]$$

\_\_且乘法是多项式乘法. 但是目前为止从上面的计算我们不 能对  $H^*(F\ell(k,\infty))$  的环结构说些什么.

但是上面的  $f_i$  不止一个,





由此可以得到一个

$$H^*(\mathbb{C}P^{\infty}) \otimes \stackrel{k}{\cdots} \otimes H^*(\mathbb{C}P^{\infty}) \longrightarrow H^*(\mathcal{F}\ell(k,\infty))$$

生成元恰好打到我们上面计算同构中的生成元 (根据归纳 法), 因此这是一个环同构.

记  $x_i$  是  $H^*(\mathbb{C}P^{\infty})$  的 (典范) 生成元在

$$f_i^*: H^*(\mathbb{C}P^\infty) \to H^*(\widetilde{\mathcal{F}\ell}(k,\infty))$$

下的像. 于是我们证明了环同构

$$H^*(\mathcal{F}\ell(k,\infty)) = \mathbb{Z}[x_1,\ldots,x_k].$$

上面的过程有一个有限版本. 考虑"取第一个子空间"

$$\mathcal{F}\ell(n) \longrightarrow \mathbb{C}P^{n-1}$$

是一个以  $F\ell(n-1)$  为纤维的纤维丛, 所以

$$H^*(\mathcal{F}\ell(n)) = H^*(\mathbb{C}P^{n-1}) \otimes H * (\mathcal{F}\ell(n-1))$$

$$= H^*(\mathbb{C}P^{n-1}) \otimes H^*(\mathbb{C}P^{n-2}) \otimes H * (\mathcal{F}\ell(n-2))$$

$$= H^*(\mathbb{C}P^{n-1}) \otimes \cdots \otimes H^*(\mathbb{C}P^1)$$

我们已经知道

$$H^*(\mathbb{C}P^k) = \mathbb{Z}[t]/(t^{k+1}) = \bigoplus_{i=0}^k \mathbb{Z} \cdot t^i.$$

所以

$$H^*(\mathcal{F}\ell(n)) = \bigoplus_{\lambda < \rho} \mathbb{Z} \cdot x^{\lambda}$$

其中  $\rho = (n-1, n-2, ...), \lambda \le \rho$  表示对每个 i = 1, ..., n都有  $\lambda_i \leq n - i, x^{\lambda} = x_1^{\lambda_1} \cdots x_n^{\lambda_n}$ .

但是我们不知道这是否是环同构 (实际上不是环同 态).

回忆 formality, 上面同构同出现的  $x_i$  实际上依赖于 选取. 考虑自然的嵌入

$$\mathcal{F}\ell(n) \longrightarrow \mathcal{F}\ell(n,\infty)$$

通过归纳我们会发现我们可以选择  $x_i \in H^*(\mathcal{F}\ell(n))$  使得

$$H^*(\mathcal{F}\ell(n,\infty)) \longrightarrow H^*(\mathcal{F}\ell(n))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}[x_1,\ldots,x_n] \longrightarrow \bigoplus_{\lambda \leq \varrho} \mathbb{Z} \cdot x^{\lambda}.$$

将  $x_i$  映成  $x_i$ .

#### 计算 II

考虑

$$\widetilde{\mathcal{F}\ell}(k,\infty) = \begin{cases} & \text{每个 $\ell_i$ 是 $\mathbb{C}^\infty$ 的 1 维} \\ (\ell_i)_{i=1}^k : \text{线性子空间; } \text{全体 } \{\ell_i\} \\ \text{线性无关;} \end{cases} \Rightarrow (\ell_i)_{i=1}^k \\ & \text{标(G/B)} = \mathbb{Z}[x_1,\ldots,x_n]/\langle \text{常数项为 0 的对称多项式} \rangle \\ \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \mathcal{G}r(k,\infty) = \begin{cases} V \subseteq \mathbb{C}^\infty : V \text{ 是 $\mathbb{C}^\infty$ 的 $k$ 维线性} \\ \text{子空间.} \end{cases} \Rightarrow \sup_{i=1}^k \left\{ (\ell_i)_{i=1}^k \right\} \Rightarrow \sup_{i=1}^k \left\{ (\ell$$

且这个映射的纤维是  $GL_k/T_k = \widetilde{\mathcal{F}\ell}(k)$ .

注意到,  $\widetilde{F\ell}$  上有一个显然的  $\mathfrak{S}_k$  作用, 即置换这些 一维子空间的指标. 因为这反映在上同调上恰好对应  $\mathbb{Z}[x_1,\ldots,x_k]$  上的置换作用. 而不论怎么换,

$$\widetilde{\mathcal{F}\ell}(k,\infty) \longrightarrow \mathcal{G}r(k,\infty)$$

的像不变.

所以综上所述诱导的映射

$$H^*(\mathcal{G}r(k,\infty)) \longrightarrow H^*(\widetilde{\mathcal{F}\ell}(k,\infty))$$

factor through

$$H^*(\mathcal{G}r(k,\infty)) \longrightarrow H^*(\widetilde{\mathcal{F}\ell}(k,\infty))^{\mathfrak{S}_k} =$$
 对称多项式环.

这实际上是一个同构.

注意到在任何下属下,上面的映射都是单射因为

 $[\Sigma_w] \mapsto 0$  除非 w 是陪集中长度最小者.

满射是因为在任何系数下 (有理数  $\mathbb{Q}$  或有限域  $\mathbb{F}_p$ ), 两边 恰好有相同的 Poincaré 多项式.

此时因为  $Gr(k,\infty)$  只有偶数维上同调, 所以

$$H^*(\widetilde{\mathcal{F}\ell}(k,\infty)) = H^*(\widetilde{\mathcal{F}\ell}(k)) \otimes H^*(\mathcal{G}r(k,\infty)).$$

不过这个同构只是作为  $H^*(\mathcal{G}r(k,\infty))$  模.

但是我们已经可以观察到

映射  $H^*(\widetilde{\mathcal{F}\ell}(k,\infty)) \to H^*(\widetilde{\mathcal{F}\ell}(k))$  是满 射, 且 kernel 是  $H^{\geq 1}(\mathcal{G}r(k,\infty))$  生成的 理想.

于是一石二鸟,

$$H^*(\mathcal{G}r(k,\infty)) = \mathbb{Z}[x_1,\ldots,x_k]^{\mathfrak{S}_k} =$$
对称多项式环.

 $H^*(\mathcal{F}\ell(k)) = \mathbb{Z}[x_1,\ldots,x_k]/\langle$ 常数项为 0 的对称多项式 $\rangle$ . 前者被称为invariant algebra, 后者被称为coinvariant algebra.

我们现在其实已经可以说明 Demazure operator 的表 达式

$$\partial_i f = \frac{f(x) - f(s_i x)}{x_i - x_{i+1}}.$$

而  $\alpha, \beta$  关于  $s_i$  的作用对称, 所以对于  $\phi = \omega_i \smile \pi^* \alpha + \pi^* \beta$ 

$$\partial_i \phi = \pi^* \alpha = \frac{\phi - s_i \phi}{x_i - x_{i-1}}.$$

注意 1 之后有了式性类作为工具这个可以看得更清楚.

习题 1. 计算对称多项式的 Poincaré 多项式. 计算 Grassmannian 的 Poincaré 多项式.

习题 2. 证明作为  $\mathfrak{S}_n$  的表示,  $H^*(\mathcal{F}\ell(n);\mathbb{C})$  同构于群环. [提示: 我们断言同构

$$H^*(\mathcal{F}\ell(n,\infty)) = H^*(\mathcal{F}\ell(n)) \otimes H^*(\mathcal{G}r(n,\infty)),$$

是表示的同构. 所以  $H^*(\mathcal{F}\ell(n))$  的 graded 特征是

$$\chi(g) = \frac{1}{\det(1 - \mathbf{q}\pi(g))} / \frac{1}{(1 - \mathbf{q})(1 - \mathbf{q}^2) \cdots (1 - \mathbf{q}^n)}$$

其中  $\pi:\mathfrak{S}_n\to \mathrm{GL}_n$  是自然表示. 注意只有在  $\pi(g)=\mathrm{id}$ , 带入  $\mathbf{q}=1$  才不是  $\mathbf{0}$ , 这恰好是群环的特征. ]

习题 3. 找一个下列命题的代数证明.

$$\mathbb{Z}[x_1,\ldots,x_n]/\langle$$
常数项为  $0$  的对称多项式 $\rangle$ 

是自由 Abel 群, 且以那些支配序下小于  $x_1^{n-1}\cdots x_{n-1}$  的单项式

$$\{x_1^{\lambda_1}\cdots x_n^{\lambda_n}:(\lambda_1,\ldots,\lambda_n)\underset{\tilde{\mu}\to \tilde{\eta}}{\leq} (n-1,n-2,\cdots,1,0)\}$$

作为一组基. [提示: 反正我没找到过,  $\otimes \mathbb{Q}$  的版本反而见的很多.]

习题 4. 计算

的上同调群. [提示: 考虑  $\widetilde{F}\ell(n,\infty) \to \widetilde{F}\ell(n-k,\infty)$  将  $(\ell_i)$  后 n-k 个选出. 另一方面也可以考虑纤维丛  $F\ell(k,n) \to \mathbb{C}P^{n-1}$ , 这以  $F\ell(k-1,n-1)$  为纤维.]

习题 5. 考虑

$$B = \left\{ \begin{aligned} & V \not\in \mathbb{C}^{\infty} & \text{ in } k \text{ uniform} \\ & V \not\in \mathbb{C}^{\infty} & \text{ in } k \text{ uniform} \\ & (V, V') : \\ & n - k \text{ uniform} \\ & n - k \text{ uniform} \\ & V \cap V' = 0. \end{aligned} \right\}$$

说明

$$H^*(B) = H^*(\mathcal{G}r(k,\infty)) \otimes H^*(\mathcal{G}r(n-k,\infty)).$$

并且说明自然的嵌入  $Gr(k,n)\to Gr(k,\infty)$  诱导了满射. [提示: 第一条考虑  $B\to Gr(k,\infty)$  和  $B\to Gr(n-k,\infty)$ . 第二条考虑  $B\to Gr(n,\infty)$  为二者张成的空间. 因为这是胞腔映射,所以是满射. 组合地, $Gr(k,n)\to Gr(k,\infty)$  将  $x_1,\ldots,x_k$  映为  $x_1,\ldots,x_k$ . 这可以用一些组合恒等式证明. 即任何  $x_{k+1},\ldots,x_n$  的对称多项式可以整理成  $x_1,\ldots,x_k$  的对称多项式. ]

注意 1 更一般, 对于分拆  $\lambda_1 + \ldots + \lambda_r = n$ ,

$$H^*(G/P_{\lambda}) = \frac{\mathbb{Z}[x_1, \dots, x_n]^{\mathfrak{S}_{\lambda}}}{\left\langle 常数项为 \ 0 \ \text{的对称多项式} \right\rangle}.$$

#### Schubert 多项式

不论怎么算  $F\ell(n)$  的上同调, 结果都是一样的

(这是一句废话吗?)

我们用两种方式

计算了  $\mathcal{F}\ell(n)$  的上同调. 那么任何一个 Schubert 胞腔 [BwB/B] 一定对应一个  $\mathbb{Z}[x_1,\ldots,x_n]/(\cdots)$  中的元素.

根据我们之前的计算, 可以选择唯一的一个多项式  $\mathfrak{S}_w(x)$  使得每个单项式都小于  $x_1^{n-1}\cdots x_{n-1}$ . 这被称为 Schubert 多项式.

Demazure operator 用胞腔去写

$$\partial_i [\bar{\Sigma}_w] = \begin{cases} [\bar{\Sigma}_{ws_i}] & \ell(ws_i) = \ell(w) - 1\\ 0 & \ell(ws_i) = \ell(w) + 1 \end{cases}$$

在纤维去写

$$\partial_i f = \frac{f(x) - f(s_i x)}{x_i - x_{i+1}}.$$

所以计算出  $w_0$  对应的多项式这就得到了 Schubert 多项式  $\mathfrak{S}_w(x)$  的递推公式.

另一方面, 对于最长元  $w_0$ .

$$\partial_{w_0} f = \frac{\sum_{w \in \mathfrak{S}_n} (-1)^{\ell(w)} w f}{\prod_{i < j} (x_i - x_j)}.$$

不难证明

$$\partial_{w_0}(x_1^{n-1}\cdots x_{n-1})=1.$$

但是  $H^*(G/B)$  最高次只有一维, 所以  $x_1^{n-1} \cdots x_{n-1} = [\Sigma_{w_0}]$ .

巧合地是,  $x_1^{n-1} \cdots x_{n-1}$  是  $H^*(\mathcal{F}\ell(n))$  的一个 stable choice. 记  $w_0^n$  是  $\mathfrak{S}_n$  中的最长元. 那么  $Bw_0^n B/B$  作为  $\mathcal{F}\ell(n+1)$  的胞腔经过计算还是  $x_1^{n-1} \cdots x_{n-1}$ . 即,

$$\partial_{w_0^n w_0^{n+1}} x_1^n \cdots x_n = x_1^{n-1} \cdots x_{n-1}.$$

这一事实的无穷版本是, 胞腔 BwB/B 在  $H^*(\mathcal{F}\ell(\infty))$  中也表作  $\mathfrak{S}_w(x)$ . 这是一个  $H^*(\mathcal{F}\ell(\infty))$  是无穷元的多项式的证明.

#### 2.4 Grassmannian 流形

对于 Grassmannian 流形, 还有一些其他的构造方法, Schubert 胞腔也有其他的刻画方式.

我们已经知道

$$\operatorname{GL}_n / \left( {\operatorname{GL}_k} { * \atop \operatorname{GL}_{n-k}} \right) \xrightarrow{\sim} \mathcal{G}r(k,n)$$

即,将  $x \in G$ 的前 k个向量张成一个 k 维子空间.

$$U_n/\binom{U_k}{U_{n-k}} \xrightarrow{\sim} \mathcal{G}r(k,n)$$

即, 将  $x \in U_n$  的前 k 个向量张成一个 k 维子空间.

#### 一则基本变形如下.

考虑  $n \times k$  阶矩阵  $\mathbb{M}_{n \times k}$ , 考虑其中满秩的那些  $\mathbb{M}_{n \times k}^{\circ}$ , 那么

$$\mathbb{M}_{n\times k}^{\circ}/\operatorname{GL}_k \xrightarrow{\sim} \mathcal{G}r(k,n)$$

即, 将  $x \in M_{n \times k}$  的前 k 个向量张成一个 k 维子空间.

对于  $V \in \mathcal{G}r(k,n)$ , 选取 V 的一组基  $v_1,\ldots,v_k \in \mathbb{C}^n$ , 考虑

$$\mathbf{v} = v_1 \wedge \cdots \wedge v_k \in \Lambda^k \mathbb{C}^n$$
.

不同基的选取会导致上面的选择差一个常数. 所以我们良定义了

$$Gr(k,n) \longrightarrow \mathbb{P}(\Lambda^k \mathbb{C}^n).$$

被称为Plücker 嵌入.

注意

$$V = \{ x \in \mathbb{C}^n : x \wedge \mathbf{v} = 0 \}.$$

所以 Plücker 嵌入是单射.

令  $\binom{[n]}{k}$  为  $\{1,\ldots,n\}$  中的 k 元子集. 取  $A \in \binom{[n]}{k}$ , 记

$$\mathbf{e}_A = \mathbf{e}_{a_1} \wedge \cdots \wedge \mathbf{e}_{a_k} \qquad A = \{a_1 < a_2 < \cdots < a_k\}$$

其中  $\mathbf{e}_1, \dots, \mathbf{e}_n$  是  $\mathbb{C}^n$  的标准基.

那么  $\Lambda^k \mathbb{C}^n$  以  $\{\mathbf{e}_A : A \in \binom{[n]}{k}\}$  为基.

对于  $v_1, \ldots, v_k \in \mathbb{C}^n$ , 假设

$$v_j = \sum_{i} x_{ij} \mathbf{e}_i = \begin{pmatrix} x_{1j} \\ x_{2j} \\ \vdots \\ x_{nj} \end{pmatrix}$$

那么

$$v_1 \wedge \cdots \wedge v_k = \sum ??_A \cdot \mathbf{e}_A$$

其中

$$??_A = \det(x_{ij})_{i \in A, 1 < j < k}.$$

因此我们也可以纯代数地描述 Plücker 嵌入. 对于  $A \in \binom{[n]}{k}$ ,

$$\Delta_A : \mathbb{M}_{n \times k} \longrightarrow \mathbb{C} \qquad \Delta_A(x) = \det(x_{ij})_{i \in A, 1 \le j \le k}.$$

那么

$$\mathcal{G}r(k,n) = \mathbb{M}_{n \times k}^{\circ} / \operatorname{GL}_k \longrightarrow \mathbb{C}P^{\binom{n}{k}-1}$$

是

$$x \longmapsto (\Delta_A)_{A \in \binom{[n]}{h}} \in \mathbb{C}P^{\binom{n}{k}-1}$$
 中的像.

|注意 1 | 实际上  $Pl\ddot{u}cker$  嵌入的像可以由  $Pl\ddot{u}cker$  关系给出,实际上 Gr(k,n) 是  $\mathbb{C}P^{\binom{n}{k}-1}$  中的一些二次函数族的公共零点.

下面我们来刻画 Schubert 胞腔, 用上面三种语言. 考虑

$$\Lambda = \left\{ w \in \mathfrak{S}_n : \frac{w \quad \text{在} \quad \{1, \dots, k\} \quad \text{和} \quad \{k + k\}}{1, \dots, n} \right\}$$
 分别单调递增

那么 Gr(k,n) = G/P 的 Schubert 胞腔是

$$\{BwP/P: w \in \Lambda\}.$$

记

$$\mathbb{Y}_{k\times(n-k)} = \{k\times(n-k) \text{ 内的 Young } \mathbb{Z}\}.$$

对于  $w \in \Lambda$ , 对应的 Young 图

$$\lambda : \lambda_{k+1-i} = \{j > k : w(j) < w(i)\}$$

反之, 对于 Young 图  $\lambda = \lambda_1 \ge \cdots \ge \lambda_k$ , 对应的置换

$$w: w(i) = \lambda_{k-i+1} + i$$
  $i = 1, ..., k$ 

请看下图



对应的置换矩阵



对于  $\lambda \in \mathbb{Y}$ , 记矩阵

$$U_{\lambda} = \left\{ (x_{ij}) : (\lambda_{k+j-1} + j, j) \text{ 为 } 1, \text{ 这个位} \right\} \subseteq \mathbb{M}_{n \times k}^{\circ}.$$
 置右方和下方都是 0.

那么  $\mathcal{G}r(k,n) = \mathbb{M}_{n \times k} / \operatorname{GL}_k$  的 Schubert 胞腔是

$$\{U_{\lambda}$$
的像:  $\lambda \in \mathbb{Y}_{k \times (n-k)}\}$ .

记标准旗

$$F_0 = (F_0^i): F_0^i = \text{span}(\mathbf{e}_1, \dots, \mathbf{e}_i).$$

如果  $V \in \mathcal{G}r(k,n)$  在对应的  $\lambda \in \mathbb{Y}$  的 Schubert 胞腔里



那么对任意 i,

$$\dim(F_0^{\lambda_{k-i+1}+i}\cap V)=i.$$

记  $\Sigma_{\lambda}$  为满足上述条件的所有 V.

所以 Gr(k,n) 的 Schubert 胞腔是

$$\{\Sigma_{\lambda} : \lambda \in \mathbb{Y}_{k \times (n-k)}\}.$$

对每个 Young 图  $\lambda$  都对应一个  $\binom{[n]}{k}$  的元素即

$$\{\lambda_1+k,\cdots,\lambda_k+1\}.$$

如果置换是w,对应



对于  $A, B \in \binom{[n]}{k}$ , 定义

 $A \leq B$ , "从最小元开始比起 B 更大".

可以定义

$$\Sigma_A = \{V : \Delta_A(V) \neq 0, \forall B > A, \Delta_B(V) = 0\}$$

所以 Gr(k,n) 的 Schubert 胞腔是

$$\{\Sigma_A : A \in \binom{[n]}{k}\}.$$

#### 下面可以总结如下

| Gr(k,n)                                                | Schubert 胞腔                                                                   |
|--------------------------------------------------------|-------------------------------------------------------------------------------|
| 子空间                                                    | $\left\{ \Sigma_{\lambda} : \lambda \in \mathbb{Y}_{k \times (n-k)} \right\}$ |
| G/P                                                    | $\{BwP/P:w\in\Lambda\}$                                                       |
| $\mathbb{M}_{n\times k}^{\circ}/\operatorname{GL}_{k}$ | $\{U_{\lambda}$ 的像: $\lambda \in \mathbb{Y}_{k \times (n-k)}\}$               |
| Plücker 嵌入                                             | $\left\{ \Sigma_A : A \in \binom{[n]}{k} \right\}$                            |

在  $\mathcal{G}r(k,\infty)$  上也有类似的刻画.

| 注意 1 同样,如果用基本类的语言,我们应该改用  $Bw_0wP/P$ ,上面的刻画得对应 Young 图在  $k \times (n-k)$  中的补.

习题 1. 验证两个 Young 图  $\lambda_1, \lambda_2$  对应的置换  $\sigma_1, \sigma_2$ ,

$$\sigma_1 \leq \sigma_2 \iff \lambda_1 \subseteq \lambda_2.$$

Bruhat  $\not\vdash$ 

从而  $\Sigma_{\lambda}$  的闭包是

$$\{V: \dim(F_0^{\lambda_{k-i+1}+i} \cap V) \le i\}.$$

习题 2. 对于 Young 图  $\lambda$ , 对应的置换是  $\sigma$ , 证明  $w_0\sigma$  在  $\mathfrak{S}_n/\mathfrak{S}_k \times \mathfrak{S}_{n-k}$  最小长度的陪集代表元对应的 Young 图 恰好是  $\lambda$  在  $k \times (n-k)$  中的补.

习题 3. 对于 Young 图  $\lambda$ , 假设对应置换  $\sigma$ , 证明  $\mathfrak{S}_{\sigma}(x)$  是  $\lambda$  对应的 Schur 多项式.

#### 参考文献

- Hatcher. Algebraic Topology.
- Hatcher. Spectral Sequences.
- 時枝正. Topology in Four Days [翻译: 拓扑四日谈].
- Hiller. Geometry of Coxeter Groups.

### 3 向量从速成

本节关于向量丛的内容非常重要,有助于进一步理解上同调.在此之前,理解上同调的方法是将其理解成"基本类".现在我们可以理解为向量丛的"示性类".这两个概念某种意义上是对偶的.

#### 3.1 向量丛的定义

令  $E \stackrel{\sim}{\to} B$  是一个连续映射, 我们说这是一个以 F 为 纤维的 **纤维丛** (fibre bundle), 如果局部上是平凡丛.

任意一个点
$$b \in B$$
,都存在邻域 $U$ 使得 $\pi^{-1}(U) \rightarrow U$ 同构于平凡丛. 
$$U \times F \cong \pi^{-1}(U) \subseteq E$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

其中 B 叫底空间(base space), E 叫全空间 (total space).

我们可以修改成下面的坐标卡的定义. 令  $E \stackrel{\pi}{\rightarrow} B$  是一个连续映射, 我们说这是一个以 F 为纤维的**纤维丛** (fibre bundle). 如果存在 "坐标卡" $\{(U, \varphi_U)\}$  使得

此时有一个问题, 在  $U\cap V$  上,  $\varphi_U$  和  $\varphi_V$  可能不同, 因此会相差一个

$$g_{UV} \in \operatorname{Aut} \left( \begin{array}{c} (U \cap V) \times F \\ \downarrow \\ U \cap V \end{array} \right).$$

请看下图



当然还要满足  $g_{UV} \circ g_{VU} = \mathrm{id}$ ,  $g_{UV}g_{VW} = g_{UW}$  这些相容条件.

注意,

$$\operatorname{Aut}\left(\mathop{\downarrow}_{U}^{U\times F}\right) = \operatorname{Map}(U, \operatorname{Aut}(F))$$

因为  $\bigcup_{U}^{U \times F}$  的自同构指的是每点指定一个该点纤维的自同构.

现在假设 F 是线性空间, 我们把上面的  $\mathrm{Aut}(F)$  改为  $\mathrm{GL}(F)$ . 这就是 **向量丛** 的定义.

粗略地说,向量丛就是每点的纤维是线性空间, (rather than underlying 拓扑空间). 因为一个线性空间作为拓扑空间有很多线性结构,向量丛是说我们指定了其中的一个线性结构.

注意 1 首先, 对于任何拓扑空间 X, 线性空间 F. 平凡 丛  $F \times X$  是一个向量丛. 每点的线性结构和 F 相同.

注意 2  $M\ddot{o}bius$  带也是一个向量丛, 其 zero section 是中轴线. 因为在粘的时候"翻转" $x \mapsto -x$  是一个线性映射.

|注意 3| 对于流形 M, 切丛

$$\bigcup_{x \in M} T_x M \longrightarrow M$$

是一个向量丛, 每点的线性结构就是切空间的线性结构.

之后,给出向量丛通常都有自明的线性结构,我们就 不再声明.

注意 1 我们可按照线性空间对向量丛进行操作. 例如对于向量丛  $\xi$ , 我们可以把每一点的纤维换成其对偶空间, 这称为  $\xi$  的对偶, 类似地可以定义对称积, 外积. 对于向量丛  $\xi$  和  $\tau$ , 我们可以定义  $\xi \otimes \tau$ ,  $Hom(\xi,\tau)$ , 以此类推.

对于纤维丛  $\pi = \begin{subarray}{c} E \\ \downarrow B \end{subarray}$ ,我们称  $s: \begin{subarray}{c} E \\ \uparrow B \end{subarray}$  是一个**截面 (section)** 如果  $\pi \circ s = \mathrm{id}_B$ .

换句话说,  $\forall x \in B, s(x) \in E_x$ ,

连续截面 = 每条纤维上连续地选一个点

对于平凡丛  $E = B \times F$ ,截面就是一个函数  $B \rightarrow F$ . 而纤维丛局部上是平凡丛,所以截面局部上是函数.

我们曾经说过对于纤维丛, 不是所有纤维都有截面 (例如 Möbius 带的边界). 但是向量丛  $\downarrow B$  一定有, 即每点选则零向量.

$$B \longrightarrow E$$
  $x \longmapsto \mathbf{the} \ 0 \in E_x$ 

这被叫作 "零截面 (zero section)". 通过零截面我们还可以 认为  $B\subseteq E$ .

我们可以把零点的概念推广到向量丛的截面. 对于向量丛  $\xi: \stackrel{E}{\downarrow}$ , 一个截面  $s: B \rightarrow E$ , 定义其零点是

$$Z(s) = \{x \in B : s(x) =$$
**the**  $0 \in E_x\}.$ 

等价地,

$$\{s(x): x \in B\} \cap$$
 零截面,

是 s 的图像和零截面的交.

这提示我们在上面两个集合横截时, 定义

$$[Z(s)] \in H^*(B).$$

是零点的基本类 (按照正负重数).

事实证明我们总可以选 s 让他们横截, 且和 s 的选取 无关. 所以定义了 **Euler 类** 

$$e(\xi) \in H^*(B)$$
.

换句话说,一个一般的 section 的零点的基本类是向量丛  $\xi$  的一个不变量 (这就是 Hopf-Poincaré 论断).

注意 1 因为 E 不是紧致的, 要作相交理论需要有一些手段, 例如考虑 Thom 空间. 但是这终归是可以定义的.

注意 2 如果 E 不可定向, 只能 mod 2 了, 横截相交必须 e mod 2 后才成立.

<u>例 A.</u> 考虑  $S^1$  上的平凡丛, 即一个圆柱面. 任何一个 section(即一个周期函数), 的 + 零点和 - 零点一定相抵消.

<u>例 B.</u> 考虑 Möbius 带, 不论怎么 "移动"section, 那个零点 总是无法消除.

例 C. 对于紧致光滑流形 M 的切丛  $\tau$ , 此时

$$e(\tau) \in H^{\dim M}(M) \cong \mathbb{Z}$$

经典的 Hopf-Poincaré 定理说明这正是 M 的 Euler 式性数 (这是 Euler 类名称的由来).

下面我们考虑复向量丛 (即纤维是  $\mathbb C$  线性空间). 对于向量丛  $\xi$ , 定义

 $\operatorname{rank} \xi = \dim(任何一点的纤维).$ 

那么,一个 X 上向量丛 E 的 Euler 类的次数

$$e(\xi) \in H^{2 \cdot \operatorname{rank} \xi}(X).$$

如果向量丛的秩 (即,纤维的维数) 是 1,则称为线丛.

线丛比较好理解.

对于函数 f,g,  $\{fg \text{ 的零点}\}=$   $\{f \text{ 的零点}\} \cup \{g \text{ 的零点}\}$   $\{s \otimes t \text{ 的零点}\} \cup \{t \text{ 的零点}\}$ .

所以对于线丛  $\tau$  和  $\xi$ ,

$$e(\tau \otimes \xi) = e(\tau) + e(\xi), \qquad e(\tau^*) = -e(\tau).$$

于是这定义了一个同态

$$\left((\text{所有 }X\text{ 上的线丛})\bigg/ \text{同构},\otimes\right) \longrightarrow (H^2(X),+)$$

实际上这是同构!

[注意 1] 对于高维一般没有  $e(\tau \otimes \xi) = e(\tau) + e(\xi)$ . 这是因为  $s \otimes t$  不是一个一般位置的 section(看维数就知道了).

考虑 n 维射影空间  $\mathbb{C}P^n$ . 我们用射影坐标

$$[x_0:x_1:\cdots:x_n]\in\mathbb{C}P^n$$

表示.

一个齐次 d 次多项式 f 定义了一个 d 次超曲面  $\{f=0\}$ . 显然这个超曲面是 f 的零点, 但是

f 并不是  $\mathbb{C}P^n$  上的函数.

问题 |: f 是哪个向量丛的截面?

回忆  $\mathbb{C}P^n$  是  $\mathbb{C}^{n+1}$  中所有的一维子空间. 我们考虑

$$E = \{(x, \ell) \in \mathbb{C}^{n+1} \times \mathbb{C}P^n : x \in \ell\}$$

那么  $\underset{\mathbb{C}P^n}{\overset{E}{\downarrow}}$  是一个向量丛, 这被称为 tautological 丛或万有 (universal) 丛.

在点  $\ell \in \mathbb{C}P^n$  处的纤维正是  $\ell$  自身.

tautological

adj. 重复的;同义反复的

注意对于线性空间 V,

$$S^dV^* = \{ \varphi : \varphi \in V \text{ 上的 } d \text{ 次多项式函数} \}$$

illet 记  $\tau$  是上面定义的重言层, 那么

回到最开始的问题, 对于 d 次齐次多项式 f, 实际上定义了一个  $S^d\tau^*$  的 section

$$\ell \mapsto f \in \ell \perp \text{bolkh}.$$

所以  $S^d\tau^*$  的 Euler 类是

$$[d$$
次超曲面 $] = d[超平面] \in H^2(\mathbb{C}P^n).$ 

习题 1. 证明对于一维空间  $\ell$ , 对称积等于张量积,  $S^d\ell\cong\ell^{\otimes d}$ . 于是  $S^d\tau=\tau^{\otimes d}$ .

习题 2. 利用事实  $H^2(\mathbb{C}P^n)=\mathbb{Z}$  分类了线丛, 找出他们的同构类. [提示: 他们是  $\mathcal{O}(d):d\in\mathbb{Z}$ ,  $\mathcal{O}(-d)=S^d\tau=\tau^{\otimes d}$ ,  $\mathcal{O}(d)=S^d\tau^*=(\tau^*)^{\otimes d}$ .]

习题 3. 对于  $\mathbb{C}P^1$ , 其切空间是线丛, 这对应哪一个  $\mathcal{O}(d)$ ? [提示: 我们知道  $\mathrm{div}(\mathrm{U}\Delta)$  恰是 Euler 示性数 2, 所以 d=2.]

习题 4. 对于任何向量丛  $\xi, \eta$ , 证明

$$e(\xi \oplus \eta) = e(\xi) \smile e(\eta).$$

[提示: 对于函数 f,q,

$$\{(f,g) \text{ bvsh}\} = \{f \text{ bvsh}\} \cap \{g \text{ bvsh}\}$$

对于 s,t 是线丛  $\xi$  和  $\eta$  的 section,

$$\{(s,t) \text{ bvsh}\} = \{s \text{ bvsh}\} \cap \{t \text{ bvsh}\}$$

所以线丛  $\xi, \eta$ ,  $e(\xi \oplus \eta) = e(\xi) \smile e(\eta)$ . ]

#### 3.2 Chern 类

我们从上面一节看到基本类的计算问题可以转化成纤维丛的 Euler 类的计算. 我们目前尚不知道如何计算任意向量丛张量的 Euler 类.

为了解决这个问题, 我们需要提更一般的问题. 对于 X 上秩为 r 的复向量丛  $\xi$ , 考虑

$$\operatorname{Hom}(\mathbb{1}^{\oplus r}, \xi) = \operatorname{Hom}(\mathbb{1}, \xi)^{\oplus r} = \xi^{\oplus r}$$

其中 1 是平凡丛. 这局部上是一个  $r \times r$  矩阵. 对于一个 sections, 我们可以考虑 d **降秩区域 (degeneracy locus)** 

$$\{ rank \, s \le r - d \} = \{ x \in X : s(x) \, \text{in } \mathfrak{R} \le r - d \}.$$

对于矩阵 X, 可以定义

$$\chi(X) = \det(I + X \cdot t) = 1 + \operatorname{tr} X \cdot t + \dots + \det X \cdot t^{n}.$$

注意到  $\operatorname{rank} X = \operatorname{deg} \chi(X)$ . 所以  $\operatorname{rank} X \leq r - d$  可以由 d 个方程定义, 所以对于一般位置的 section s, 我们可以定义 **Chern 类** 

$$c_{2d}(\xi) = [\{ \operatorname{rank} s \le r - d \}] \in H^{2d}(X).$$

这同样可以证明这只和 ¿ 有关. 记全 Chern 类

$$c(\xi) = 1 + c_2(\xi) + \dots \in H^*(X).$$

例如当  $\xi$  是线丛时, 降秩区域 (degeneracy locus) 即零点. 即

$$c(\xi) = 1 + e(\xi). \tag{1}$$

对于向量丛  $\xi, \eta$ , 此时  $\mathrm{Hom}(\mathbf{1}^{\oplus r}, \xi \oplus \eta)$  可以取成分块矩阵, 因此.

$$c(\xi \oplus \eta) = c(\xi) \cdot c(\eta). \tag{2}$$

即

$$\bigg\{ \operatorname{rank} \left(\begin{smallmatrix} A \\ B \end{smallmatrix}\right) \leq r \bigg\} = \bigcup_{p+q=r} \{\operatorname{rank} A \leq p\} \cap \{\operatorname{rank} B \leq q\}.$$

对于连续映射  $X \stackrel{f}{\rightarrow} Y$ , 如果 Y 上有向量丛  $\xi : \stackrel{E}{\downarrow}$ . 考虑拉回

$$\begin{array}{cccc} E_f & \to & E \\ \downarrow & & \downarrow & \\ X & \to & Y \end{array}$$
 
$$E_f = \{(x,v) \in X \times E : f(x) = \xi(v)\}.$$

于是  $f^*\xi: \mathop{\downarrow}_X^{E_f}$  是 X 上的向量丛. 即  $f^*\xi$  在 x 处的纤维是  $\xi$  在 f(x) 处的纤维的拷贝.

于是任何一个  $\xi$  的 section  $Y \to E$  都自动给出  $f^*\xi$  的 section, 即复合 f. 形式地,  $x \mapsto (x, s(f(x))) \in E_f$ .

于是我们有

$$c(f^*\xi) = f^*c(\xi) \tag{2}$$

第二个  $f^*$  是上同调的拉回. 这是因为上同调的拉回的几何意义是原像, 所以

$$f^{-1}{y : \operatorname{rank} A(y) \le r} = {y : \operatorname{rank} A(f(x)) \le r}.$$

|注意 1 | 实际上上面三条性质 (1), (2), (3) 唯一决定了 Chern 类.

假设向量丛  $\xi = \xi_1 \oplus \cdots \oplus \xi_r$ , 分解成线丛的直和. 那么

$$c(\xi) = (1 + e(\xi_1)) \cdots (1 + e(\xi_r)).$$

所以

$$c_r(\xi) = e(\xi_1) \cdots e(\xi_r) \in H^{2r}(X)$$

恰好是  $\xi$  的 Euler 类. 这一般也正确, 因为有下面的 **分裂 原理** (splitting principle)

如果一个关于 Chern 类的恒等式对分裂成线丛的向量丛对那么对所有向量丛都对.

注意 1 注意到上面的定义只对光滑紧致流形定义了 Chern 类,有没有办法对任意好的拓扑空间定义呢? 实际上 Chern 类是万有的,即任意一个向量丛  $\eta$ ,都有在同伦意义下典范地写成  $f^*(\xi)$ ,其中  $\xi$  是 Gr 上面一个固定的向量丛. 所以只需要指定  $\xi$  的 Chern 类,其拉回就可以定义成  $\eta$  的 Chern 类.

实际上,

$$\frac{\operatorname{Map}(X,\mathcal{G}r(r,\infty))}{\operatorname{同伦}} = \frac{\operatorname{X} \ \bot \operatorname{所有秩} \ r \ \operatorname{的向量丛}}{\operatorname{同构}}$$

下面我们来描述这个映射.

对于 X 上的向量丛  $\xi$ , 如果 X 不太差 (例如, Hausdorff, 第二可数), 那么总可以嵌入无穷维的平凡丛

$$E(\xi) \hookrightarrow \mathbb{C}^{\infty} \times X$$
  

$$\xi : \downarrow \qquad \qquad \downarrow$$
  

$$X = X$$

局部上可以嵌入有限维, 再找一个可数覆盖 + 单位分拆直和起来即可证明这一嵌入定理. 于是  $\xi$  在任何一点  $x \in X$  处的纤维是  $\mathbb{C}^{\infty}$  的一个 r 维子空间. 那么定义  $X \to \mathcal{G}r(r,\infty)$  映  $x \in X$  为这个子空间.

回忆  $\mathcal{G}r(r,\infty)$  是  $\mathbb{C}P^{\infty}$  的所有 r 维子空间. 所以也有 **重言丛** 

$$\{(x,V) \in \mathbb{C}^{\infty} \times \mathcal{G}r(r,\infty) : x \in V\}$$

$$\tau : \qquad \qquad \downarrow$$

$$\mathcal{G}r(r,\infty)$$

对于一个连续映射  $X \to \mathcal{G}r(r,\infty)$ , 定义对应的 X 上的向量从是重言丛的拉回.

最后验证二者在同伦/同构意义下互逆则是点集拓扑.

所以我们只需要对  $\mathcal{G}r(r,\infty)$  上的重言层  $\tau$  定义 Chern 类即可. 我们计算过

$$H^*(\mathcal{G}r(r,\infty)) = \mathbb{Z}[x_1,\ldots,x_r]^{\mathfrak{S}_n}.$$

我们定义其 Chern 类是

$$c(\tau) = (1 - x_1) \cdots (1 - x_r) = 1 - e_1(x) + \cdots \pm e_r(x).$$

其中  $e_i$  是初等对称多项式. 当然需要仔细绕一圈才能说明这个和原本的定义相容.

习题 1. 对于向量丛  $\xi$ , 如果有子丛  $\eta$ , 可以定义商丛  $\xi/\eta$ , 证明

$$c(\xi) = c(\eta) \cdot c(\xi/\eta).$$

注意这是 (2) 的推广. [提示: 其中只是把对角变成了上三角

$$\left\{\operatorname{rank}\left(\begin{smallmatrix}A&C\\ B\end{smallmatrix}\right)\leq r\right\}=\bigcup_{p+q=r}\left\{\operatorname{rank}A\leq p\right\}\cap\left\{\operatorname{rank}B\leq q\right\}.$$

还有一个办法是选一个酉内积,此时自动分裂.]

#### 3.3 Chern 类的计算

■ 计算 I

对于  $\mathbb{C}P^{\infty}$ , 我们计算过

$$H^*(\mathbb{C}P^\infty) = \mathbb{Z}[t].$$

其上的重言层  $\tau$ ,

$$c(\tau) = 1 - t.$$

这样才符合 (1).

[注意 1] 记  $T = \mathbb{C}^{\times}$ ,记  $ET = \mathbb{C}^{\infty} \setminus 0$ , $BT = \mathbb{C}P^{\infty} = ET/T$ .

这是一个向量丛, 且和重言丛同构

$$ET \underset{T}{\times} \mathbb{C} \xrightarrow{(v,z) \mapsto (vz,v\mathbb{C})} \{(x,\ell) : x \in \ell\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$ET/T \qquad = \qquad \mathbb{C}P^{\infty}$$

■ 计算 II

回顾

$$\widetilde{\mathcal{F}\ell}(k,\infty) = \left\{ \begin{aligned} & \text{每个 } \ell_i \ \mathbb{E} \ \mathbb{C}^{\infty} \ \text{的 1 4t} \\ (\ell_i)_{i=1}^k : 线性子空间; 全体 \left\{ \ell_i \right\} \\ & \text{线性无关;} \end{aligned} \right\}$$

我们可以定义第 i 个重言丛  $\tau_i$ , 在  $(\ell_i)_{i=1}^k$  处的纤维是  $\ell_i$ . 且显然有如下的拉回 显然

$$\tau_i = f_i^* \tau$$

其中  $f_i: \widetilde{\mathcal{F}\ell}(k,\infty) \to \mathbb{C}P^{\infty}$  映  $(\ell_i)_{i=1}^k$  到  $\ell_i$ . 那么

$$c(\tau_i) = f^*(1 - t) = 1 - x_i.$$

注意 1 记  $T_n$  是  $GL_n$  的对角矩阵. 考虑

$$x_i: T \to \mathbb{C}^{\times}$$
 diag $(x_1, \dots, x_n) \mapsto x_i$ .

这定义了一个表示  $\mathbb{C}x_i$ . 这可以延拓成一个 T= $\binom{T_n}{GL_{\infty}}^*$  的表示, 即令  $\binom{1}{GL_{\infty}}$  作用平凡. 这定义了

$$\begin{array}{ccc} \operatorname{GL}_{\infty} \underset{T}{\times} \mathbb{C} x_{i} \\ & \downarrow \\ & \operatorname{GL}_{\infty} / T \cong \widetilde{\mathcal{F}} \ell(n, \infty) \end{array}$$

不难追图得到  $\mathbb{C}x_i \cong \tau_i$ .

#### ■ 计算 III

回顾

$$\mathcal{F}\ell(k,\infty) = \left\{ V^0 \subseteq \dots \subseteq V^k : \begin{array}{l} \text{每个 $\dim V^i$ } \not\in \mathbb{C}^\infty$ $\mathfrak{O}$} \\ i \ \text{维线性子空间}. \end{array} \right\}$$

上面有重言层  $\phi_i$ , 在  $(V^i)$  处的纤维是  $V^i$ . 那么

$$p^*\phi_i^* = \tau_1 \oplus \cdots \oplus \tau_i$$

其中  $p:\widetilde{\mathcal{F}\ell}(k,\infty)\to\mathcal{F}\ell(k,\infty)$ . 因为  $p^*\phi^*$  在  $(\ell_i)_{i=1}^k$  处的 纤维是  $V \cong \ell_1 \oplus \cdots \oplus \ell_i$ . 所以

$$c(\phi_i) = (1 - x_1) \cdots (1 - x_i).$$
  
 $c(\phi_i/\phi_{i-1}) = 1 - x_i.$ 

注意 1 记  $T = \begin{pmatrix} B_n & * \\ GL_{co} \end{pmatrix}$ . 此时  $\phi_i/\phi_{i-1}$  和下面的丛同 用向量丛理解就方便多了. 构

$$GL_{\infty} \underset{B}{\times} \mathbb{C}x_{i}$$

$$\subseteq x_{i} \qquad \downarrow$$

$$GL_{\infty} / B \cong \mathcal{F}\ell(n, \infty)$$

因为  $x_i$  也可以延拓到 B 上, 即要求  $\begin{pmatrix} 1 & \dots & * \\ & \ddots & \ddots \end{pmatrix}$  作用平凡.

$$\begin{array}{cccc} \operatorname{GL}_{\infty} \times \mathbb{C} x_i & \xrightarrow{(X,z) \mapsto (X_i z, \operatorname{span}(X))} & E(\phi_i/\phi_{i-1}) \\ \downarrow & & \downarrow \\ \operatorname{GL}_{\infty}/B & \to & \mathcal{F}\ell(n,\infty) \end{array}$$

$$GL_{\infty} \underset{T}{\times} \mathbb{C} x_{i} \rightarrow GL_{\infty} \underset{B}{\times} \mathbb{C} x_{i}$$

$$\downarrow \qquad \qquad \downarrow$$

$$GL_{\infty} / T \rightarrow GL_{\infty} / B \cong \mathcal{F} \ell(n, \infty)$$

■ 计算 IV

回顾

$$\mathcal{F}\ell(n) = \left\{ V^0 \subseteq \dots \subseteq V^n : \frac{\text{每个 dim } V^i \neq \mathbb{C}^n \text{ in } i}{\text{维线性子空间.}} \right\}$$

而  $\mathcal{F}\ell(n)$  上面有重言层  $\phi_i$ , 在  $(V^i)$  处的纤维是  $V^i$ . 我们 对  $\mathcal{F}\ell(n)$  上同调的计算是用  $\mathcal{F}\ell(n,\infty)$  拉回. 所以

$$c(\phi_i) = (1 - x_1) \cdots (1 - x_i).$$
  
 $c(\phi_i/\phi_{i-1}) = 1 - x_i.$ 

特别地, 此时  $\phi_n$  是平凡丛, 所以这进一步解释了为何  $x_i$ 的对称多项式为何在  $H^*(\mathcal{F}\ell(n))$  中消失.

|注意 1 | 令 
$$G = \operatorname{GL}_n$$
,  $B = \begin{pmatrix} * & \cdots & * \\ & \ddots & * \\ & & * \end{pmatrix}$ , 那么
$$G \times \mathbb{C}x_i \xrightarrow{(X,z) \mapsto (X_i z, \operatorname{span}(X))} E(\phi_i/\phi_{i-1})$$

$$\downarrow \qquad \qquad \downarrow$$

$$G/B \longrightarrow \mathcal{F}\ell(n)$$

综上, 我们计算过的上同调中出现的  $x_i$  都可以用 Chern 类写. 曾经  $x_i \in H^*(G/B)$  是

$$t\in\mathbb{Z}[t]\cong H^*(\mathbb{C}P^\infty)\to H^*(\widetilde{\mathcal{F}\ell}(n,\infty))\to H^*(G/T)\overset{\sim}{\leftarrow}H^*(G/B)\ni x$$
下  $t$  的像. 现在  $x_i$  是

$$x_i = -c_2 \begin{pmatrix} G \times \mathbb{C}x_i \\ \downarrow \\ G/B \end{pmatrix}$$

■ 计算 V

如果  $c(\xi) = 1 + c_2 + \cdots$ ,  $c(\eta) = 1 + d_2 + \cdots$ , 如何计

$$c(\xi^*)$$
  $c(\xi \otimes \eta)$ 

假设  $\xi \cong \xi_1 \oplus \cdots \oplus \xi_r$ , 假设  $x_i = c_2(\xi_i)$ , 即

$$(1+x_1)\cdots(1+x_r)=1+c_2+\ldots$$

类似地

$$(1+y_1)\cdots(1+y_s)=1+d_2+\ldots$$

那么

$$\xi^* \cong \xi_1^* \oplus \cdots \xi_r^*$$
$$\xi \otimes \eta \cong \bigoplus_{\substack{1 \le i \le r \\ 1 \le j \le s}} \xi_i \otimes \eta_j$$

所以

$$c(\xi^*) = (1 - x_1) \cdots (1 - x_n) = 1 - c_2 + c_4 - \cdots$$
$$c(\xi \otimes \eta) = \prod_{\substack{1 \le i \le r \\ 1 \le j \le s}} (1 + x_i + y_j)$$

注意到根据对称函数理论  $c(\xi \otimes \eta)$  是  $c_2, \dots$  以及  $d_2, \dots$  的函数.

■ 计算 VI

如果 
$$c(\xi) = 1 + c_2 + \cdots$$
, 如何计算 
$$c(\Lambda^d \xi) \qquad c(S^d \xi)$$

我们可以假设  $\xi \cong \xi_1 \oplus \cdots \oplus \xi_r$ , 假设

$$(1+x_1)\cdots(1+x_r)=1+c_2+\ldots$$

那么注意到

$$\Lambda^d \xi = \Lambda^d (\xi_1 \oplus \cdots \xi_r) = \bigoplus_{i_1 < \cdots < i_d} \xi_{i_1} \otimes \cdots \otimes \xi_{i_d}.$$

$$S^{d}\xi = S^{d}(\xi_{1} \oplus \cdots \xi_{r}) = \bigoplus_{i_{1} \leq \cdots \leq i_{d}} \xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{d}}.$$

这里用了线性代数

$$\Lambda^d(U \oplus V) = \bigoplus_{a+b=d} \Lambda^a U \otimes \Lambda^b V.$$

$$S^d(U \oplus V) = \bigoplus_{a+b=d} S^a U \otimes S^b V.$$

(上述同构是自然的, 或者说作为  $\mathrm{GL}(U) \times \mathrm{GL}(V)$ -表示同构. ) 因此

$$c(\Lambda^d \xi) = \bigoplus_{i_1 < \dots < i_d} (1 + x_{i_1} + \dots + x_{i_d})$$

$$c(S^d \xi) = \bigoplus_{i_1 \le \dots \le i_d} (1 + x_{i_1} + \dots + x_{i_d})$$

对称函数的定理告诉我们, 这是关于  $c_2, \ldots$  的函数.

习题 1. 对于有限  $Grassmannian \ Gr(k,n)$  的重言层  $\tau$ , 即  $V \in Gr(k,n)$  处的纤维是 V 自身. 证明

$$c(\tau) = (1 - x_1) \cdots (1 - x_k).$$

[提示: 因为  $\tau = f^* \phi_k$ , 其中  $f: \mathcal{F}\ell(n) \to \mathcal{G}r(k,n)$ , 这是  $x_i$  的由来.]

习题 2. 一条  $\mathbb{C}P^3$  中的三次超曲面上有多少条直线? [提示: 27 条. 我们需要考虑  $\mathbb{C}P^3$  的所有直线,即  $\mathbb{C}^4$ 

的所有二维子空间  $\mathcal{G}r(2,4)$ . 令  $\tau$  是重言层. 一个三次齐 次函数定义了  $S^3\tau^*$  的一个 section,我们要计算  $S^3\tau^*$  的 Euler 类. 因为  $c(\tau)=(1-x_1)(1-x_2)$ ,所以  $c(S^3\tau^*)=(1+3x_1)(1+2x_1+x_2)(1+x_1+2x_2)(1+3x_2)$ ,故 Euler 类是  $3x_1(2x_1+x_2)(x_1+2x_2)(3x_2)$ . 我们需要计算这个对应多少多少  $[A]\in H^4(\mathcal{G}r(2,4))$ . 而好在我们知道  $H^4(\mathcal{G}r(2,4))$  对应 (2,2) 的 Schur 多项式  $\frac{\det\begin{pmatrix} x_1^3 & x_2^3 \\ x_1^2 & x_2^2 \end{pmatrix}}{x_1-x_2}$ ,所以最终答案是  $(3x_1(2x_1+x_2)(x_1+2x_2)(3x_2))(x_1-x_2)=18x_1^4x_2+27x_1^3x_2^2-27x_1^2x_2^3-18x_1x_2^4$  里  $x_1^3x_2^2$  的系数. ]

习题 3. 对于右 G 集 X, 假设 X 被 G 作用自由 (即每一点轨道都是 G 的拷贝) 以及 G 的表示 V, 那么

$$\begin{array}{c} X \underset{G}{\times} V \\ \underline{V}: \qquad \qquad X \underset{G}{\times} V = \frac{\{(x,v) \in x \times V\}}{(xg,v) = (x,gv) \quad \forall g \in G}. \end{array}$$

是向量丛. 对于两个表示 V, W, 证明

$$\underline{V^*} \cong \underline{V}^* \qquad \underline{V} \otimes \underline{W} = V \otimes W.$$

[提示: 实际上构造是把每一条同胚于 G 的轨道换成 V. 当 然具体构造映射是点集拓扑.]

习题 4. 对于环面  $T(\mathbb{P} \cap \mathbb{P} \cap \mathbb{P})$ ,记特征 X(T) 为所有  $T \to \mathbb{C}^{\times}$  的代数群同态. 注意到  $X(\mathbb{C}^{\times}) \cong \mathbb{Z}$ ,生成元是  $\mathrm{id}: C^{\times} \to \mathbb{C}^{\times}$ .

对于 
$$\chi, \varphi \in X(T)$$
, 记

$$\chi + \varphi \in X(T)$$
  $(\chi + \varphi)(t) = \chi(t)\varphi(t).$ 

记  $V_{\chi}, V_{\varphi}$  为对应的表示, 那么

$$V_{\gamma} \otimes V_{\varphi} = V_{\gamma+\varphi}.$$

习题 5. 用 Chern 类说明  $x_i$  可以作为的提升

$$H^2(G/B) \rightarrow H^2(P_i/B) \ni [\pounds]$$

并且说明  $x_1 + \cdots + x_i$  也可. [提示: 下列是拉回方阵

$$GL_{2} \times_{\binom{* *}{*}} \mathbb{C}x_{1} \to P \times_{B} \mathbb{C}x_{i} \longrightarrow G \times_{B} \mathbb{C}x_{i}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$GL_{2} / \binom{* *}{*} \longrightarrow P_{i} / B \longrightarrow G / B$$

考虑

$$\mathbb{C}x_1 \otimes \cdots \otimes \mathbb{C}x_i = \mathbb{C}x_1 \cdots x_i.$$

限制到 P/B 上, 只需要  $GL_2$  位置上的情况, 所以实际上只和  $diag(1,\ldots,x_i,x_{i+1},\cdots,1)$  有关. ]

习题 6. 证明: 对于 B 的表示  $V_1,V_2$ , 如果作为 T 的表示是同构的,  $G \times_B V_1$  和  $G \times_B V_2$  具有相同的 Chern 类.  $G \times_T V_i \rightarrow G \times_B V_i$ 

[提示:注意到 
$$\downarrow$$
 是拉回方阵.]  $G/T \rightarrow G/B$ 

#### 3.4 切空间的计算

对于 Lie 群 G, 子群 H, 对应的 Lie 代数  $\mathfrak{g}$  和  $\mathfrak{h}$ , 考虑同构的向量丛,



对于左边, 注意因为 H 通过共轭 ad 作用在  $\mathfrak{g}$  和  $\mathfrak{h}$  上, 所以也作用在  $\mathfrak{g}/\mathfrak{h}$  上. 对于右边, 注意到 xH = yH 时,  $\operatorname{ad}_x \mathfrak{h} = \operatorname{ad}_y \mathfrak{h}.$ 

上述向量丛就是 G/H 切空间.

注意 1 要严格说明,请看下图. 利用右平移,



得到 G 上诱导的 TG 作用可以重新写成

$$G$$
  $($ 左乘 $\times$ 共轭 $)$   $G$   $\times$   $\mathfrak{g}$   $($ 右乘 $\times$ 平凡 $)$   $G$ 

而在 x 处的 H 轨道等于把 H 这个子群从单位元处移过 根据线性代数这是同构, 且 来, 所以 (切片定理)

xH 在 G/H 的切空间 =  $\frac{x \in G \perp$  的切空间  $x \in G \perp$  的切空间 =  $\mathfrak{g}/\operatorname{ad}_x \mathfrak{h}$ .

下面假设  $G = GL_n$ ,  $B = \begin{pmatrix} * \cdots * \\ \ddots & \vdots \end{pmatrix}$ . 那么  $\mathfrak{g} = \mathbb{M}_n(\mathbb{C})$ , **b** = 上三角代数(\*:::).

那么我们只需要看 g/b 作为 T 的表示如何分解 (请 看上小节习题), 显然

$$\mathfrak{g} \cong \bigoplus E_{ij} \cdots \mathbb{C} \cong \bigoplus \mathbb{C}(x_i - x_j)$$

$$\mathfrak{b} \cong \bigoplus_{i \leq j} E_{ij} \cdots \mathbb{C} \cong \bigoplus_{i \leq j} \mathbb{C}(x_i - x_j)$$

所以

$$\mathfrak{g}/\mathfrak{b} \cong \bigoplus_{i>j} \mathbb{C}(x_i - x_j)$$

$$c(T(G/B)) = \prod_{i>j} (1 - (x_i - x_j)) = \prod_{i< j} (1 + (x_i - x_j)).$$

特别地, Euler 类是  $\prod_{i < j} (x_i - x_j)$ . 在  $H^*(G/B)$  中,

$$\prod_{i < j} (x_i - x_j) = n! \cdot [\overline{Bw_0B/B}].$$

这可以通过作用 Demazure operator  $\partial_{w_0}$  看出.

考虑同构的向量丛,

上述向量丛就是 G/H 余切空间.

注意 1 我们考虑 g 上的二次型

$$\mathfrak{gl}_n \times \mathfrak{gl}_n : (A, B) \mapsto \operatorname{tr}(AB).$$

(注意: 这不是 Killing form) 不难验证这是完美配对, 且

$$\langle \operatorname{ad}_x A, B \rangle = \langle A, \operatorname{ad}_{x^{-1}} B \rangle$$

上三角代数
$$\binom{*...*}{...*}^{\perp} = \binom{0...*}{...}$$
严格上三角代数

考虑 6 在 g 中所有的共轭类

$$\mathcal{B} = \{ x \mathfrak{b} x^{-1} \subseteq G : x \in G \}.$$

考虑

$$G/B \to \mathcal{B}$$
  $x \mapsto x\mathfrak{b}x^{-1}$ 

$$G \xrightarrow{\curvearrowright} G/B \qquad xB$$

$$\downarrow \qquad \qquad \downarrow$$

$$G \xrightarrow{\hookrightarrow} B \qquad xhx^{-1}$$

我们考虑 B 的共轭类也有类似的结果.

所以 G/B 有很多解释.



$$(V^i) \longmapsto \{x \in \mathfrak{g} : xV^i = V^i\}$$

在一个 flag $\{V^i\} \in \mathcal{F}\ell(n)$  处的余切空间是

$$\{x \in \mathfrak{g}: x \ \mathbb{R}^{\mathfrak{F}}, xV^i = V^i\}.$$

在一个  $\mathfrak{b}' \in \mathcal{B}$  处的切空间是  $\mathfrak{g}/\mathfrak{b}'$ . 余切空间是

$$\{x \in \mathfrak{b}' : x \ \mathbb{F}_{\mathfrak{F}}\}.$$

注意 1 上面的操作对 G/P 也由类似的故事.

下面假设  $G = GL_n$ ,  $P = \begin{pmatrix} GL_r & * \\ \mathcal{G}r_{n-r} \end{pmatrix}$ . 那么  $\mathfrak{p} = \begin{pmatrix} * & * \\ * & * \end{pmatrix}$ . 于是有下列的拉回

$$\begin{array}{ccc} G \times_B V_i & \to & G \times_P V_i \\ \downarrow & & \downarrow \\ G/B & \to & G/P \end{array}$$

而拉回  $H^*(G/P) \to H^*(G/B)$  是单射, 所以我们还是变成计算  $\mathfrak{g}/\mathfrak{p}$  作为 T 的表示如何分解. 所以

$$c(T(G/P)) = \prod_{i=1}^{r} \prod_{j=1}^{n-r} (1 + x_i - x_j).$$

在  $H^*(G/P)$  中可以整理成  $x_1, \ldots, x_r$  的函数 (因为任何常数项为 0 的对称函数 = 0).

我们考虑 **重言商丛**  $\rho$ , 在  $V \in \mathcal{G}r(k,n)$  处是  $\mathbb{C}^n/V$ . 那 么  $\rho = \mathbb{1}^n/\tau$ , 故

$$c(\rho) = \frac{1}{c(\tau)} = \frac{1}{(1-x_1)\cdots(1-x_k)}$$
  
=  $(1+x_1+x_1^2+\cdots)\cdots(1+x_k+x_k^2+\cdots)$ 

(这是不是应该叫  $\omega$ -involution?)

实际上 Gr(k,n) 的切丛同构于

$$\operatorname{Hom}(\tau, \rho)$$
.

考虑

$$\bigcup_{x \in G/P} \operatorname{ad}_x \mathfrak{g}/\mathfrak{p} \longrightarrow \operatorname{Hom}(\tau, \rho).$$

将  $x \in G/P$  处

$$A \bmod \operatorname{ad}_x \mathfrak{p} \in \operatorname{ad}_x \mathfrak{g}/\mathfrak{p}$$

映射到

$$V \to \mathbb{C}^n \stackrel{A}{\to} \mathbb{C}^n \to \mathbb{C}^n/V \in \operatorname{Hom}(\tau, \rho)_V$$

其中  $V \in \mathcal{G}r(k,n)$  对应  $x \in G/P$ . 注意到如果  $A \in \operatorname{ad}_x \mathfrak{p}$ , 那么  $A(V) \subseteq V$ , 故良定义, 从而不难发现是同构.

注意 1 这有一个直观的解释, 在  $V \in Gr(k,n)$  处每一个 切方向都是 V 的一个无穷小移动, 所以

V 处的切空间 = V 出发向外的线性映射 =  $\operatorname{Hom}(V, \mathbb{C}^n/V)$ .

本节的附录内有这件事的一个进一步解释.

特别地, 对于射影空间,  $\mathbb{C}P^n$ ,

$$\begin{cases} c(\tau) = 1 - x \\ c(\rho) = \frac{1}{1 - x} = 1 + x + \dots + x^n \end{cases}$$

所以

$$c(\tau^*) = 1 + x$$

假设

$$c(\rho) = 1 + x + \dots + x^n = (1 + \zeta_1) \dots (1 + \zeta_n)$$

$$\mathbb{P}(z+\zeta_1)\cdots(z+\zeta_n)=\frac{z^{n+1}-x^{n+1}}{z-x}.$$

$$c(\operatorname{Hom}(\tau, \rho)) = c(\tau^* \otimes \rho)$$

$$= (1 + \zeta_1 + x) \cdots (1 + \zeta_n + x)$$

$$= (1 + x)^{n+1} - x^{n+1}$$

所以 Euler 类是  $(n+1) \cdot x^n$ .

习题 1. 验证

$$\{g \in G : g\mathfrak{b}g^{-1} = \mathfrak{b}\} \stackrel{\text{identity}}{=\!=\!=} B.$$

习题 2. 验证  $F\ell(n) \to \mathcal{B}$  的映射是

$$(V^i) \longmapsto \{x \in \mathfrak{g} : xV^i = V^i\}.$$

[提示: 因为这在  $V^i$  是标准的时候是正确的,其余可以此类推平移.]

习题 3 (Springer 理论). 考虑矩阵

$$x = \begin{pmatrix} 0 & 1 \\ & 0 \\ & & 0 \end{pmatrix}.$$

记

$$\mathcal{F}\ell_x = \{V^i \in \mathcal{F}\ell(n) : xV^i = V^i\}.$$

求  $\dim F\ell_x$ ,以及  $F\ell_x$  有多少不可约分支? [提示: 其实,这是 x 的不变子空间组成的旗. 只要分两种情况, $V^2$  是特征子空间时,有  $\dim \mathbb{C}P^1$  多种选择. 当  $V^2$  不是特征子空间时, $V_2$  必须选为  $x^{-1}(V^1)$ . 而  $V^1$  的选择也有  $\dim \mathbb{C}P^1\setminus \infty$  多种选择, 维数是 2,不可约分支数目是 2. 这分别对应  $\boxed{1\ 3}$  和  $\boxed{1\ 2}$  . ]

注意 1 这个可以推广到任意的幂零矩阵上. 注意 Jordan 标准型告诉我们幂零矩阵也由 Young 图标定. 对应的连通分支的数目恰好是 hook length.

#### 附录: 计算切空间的"作弊方法"

对于  $\mathbb{C}$ -代数簇 X, 那么 Zariski 零点定理

$$\operatorname{Hom}_{\mathbb{C}\operatorname{\mathsf{-Scheme}}}(\operatorname{Spec}\mathbb{C},X)=X.$$

拓扑地,  $Spec \mathbb{C} = 点$ .

令  $\Lambda=\mathbb{C}[\epsilon]=\mathbb{C}[\epsilon]/\epsilon^2$  是 algebra of dual numbers . 令代数映射  $\Lambda\to\mathbb{C}$  诱导了  $\mathrm{Spec}\,\mathbb{C}\to\mathrm{Spec}\,\Lambda$ . 那么对于  $\mathbb{C}$ -代数簇 X 切丛等于

$$\operatorname{Hom}_{\mathbb{C}\operatorname{-Scheme}}(\operatorname{Spec}\Lambda,X) =: X(\Lambda)$$

$$\downarrow$$

$$\operatorname{Hom}_{\mathbb{C}\operatorname{-Scheme}}(\operatorname{Spec}\mathbb{C},X)$$

拓扑地,  $Spec \Lambda$  也是一个点, 但是蕴含着附近的一阶信息. 反方向  $\mathbb{C} \to \Lambda$ , 诱导的则是 zero section. 这些是"切空间是曲线等价类"的代数几何类比.

例 1 我们计算  $GL_n$  的 Lie 代数, 根据上面的讨论, 这是

$$\operatorname{GL}_n(\mathbb{C}[t]) \to \operatorname{GL}_n(\mathbb{C}) \qquad X(\epsilon) \mapsto X(0)$$

在 1 处的纤维. 注意到

$$X(0) = 1 \iff X(\epsilon) = \begin{pmatrix} 1 + \epsilon x_{11} & \cdots & \epsilon x_{1n} \\ \vdots & \ddots & \vdots \\ \epsilon x_{n1} & \cdots & 1 + \epsilon x_{nn} \end{pmatrix}.$$

所以

$$\mathfrak{gl}_n = \mathbb{M}_{n \times n}$$
.

且

$$\mathfrak{gl}_n \to \mathrm{GL}_n(\mathbb{C}[t]) \qquad A \mapsto \exp \epsilon A = 1 + \epsilon A.$$

例 2 我们计算  $SL_n$  的 Lie 代数, 根据上面的讨论, 这是

$$\operatorname{SL}_n(\mathbb{C}[t]) \to \operatorname{SL}_n(\mathbb{C}) \qquad X(\epsilon) \mapsto X(0)$$

在 1 处的纤维. 注意到

$$X(0) = 1 \iff X(\epsilon) = \begin{pmatrix} 1 + \epsilon x_{11} & \cdots & \epsilon x_{1n} \\ \vdots & \ddots & \vdots \\ \epsilon x_{n1} & \cdots & 1 + \epsilon x_{nn} \end{pmatrix}.$$

我们还需要

$$\det X(\epsilon) = 1 + \epsilon(x_{11} + \dots + x_{nn}) = 1$$

所以  $\mathfrak{gl}_n$  是那些  $\mathfrak{gl}_n$  中迹为 0 的那些. 以上两个例子都可以改写成指数映射.

注意到对任何仿射代数群

$$G(\Lambda) = G(\mathbb{C}) \times \mathfrak{g}$$

通过  $g(1+\epsilon X) \mapsto (g,X)$ , 此时

$$\begin{cases} (g, X)(1, Y) = (g, X + Y). \\ (gh, X)(h, 0) = (g, \operatorname{ad}_{h}^{-1} X). \end{cases}$$

|例 3 |我们计算 Flag manifold 的切丛.

$$G(\mathbb{C}[\epsilon])/B(\mathbb{C}[\epsilon]) \to G/B$$
.

故

$$\frac{G(\Lambda)}{B(\Lambda)} = \frac{G \times \mathfrak{g}}{B \times \mathfrak{b}} = \frac{G \times \mathfrak{g}/\mathfrak{b}}{B} = G \times_B \mathfrak{g}/\mathfrak{b}.$$

另一方面, 不难计算  $g \cdot B/B$  处的纤维是

$$\frac{gB + \epsilon \mathfrak{g}}{B + \epsilon \mathfrak{b}} \cong \frac{1 + \epsilon \mathfrak{g}}{q(1 + \epsilon \mathfrak{b})q^{-1}} \cong \frac{\mathfrak{gl}_n}{\operatorname{ad}_q \mathfrak{b}}$$

诱导自  $g + \epsilon A g \leftarrow 1 + \epsilon A \leftarrow A$ .

例 4 我们计算 Grassmannian 的切空间. 此时

 $\mathcal{G}r(k,n)(\Lambda)=\{\Lambda^{\oplus n}\$ 中的所有分裂的秩 k 的自由  $\Lambda$  模}

对于  $V \in \mathcal{G}r(k,n)$ . 如果  $\hat{V} \in \mathcal{G}r(k,n)(\Lambda)$  使得  $\hat{V}_{\epsilon=0} = V$ , 我们可以认为  $V \subseteq \mathbb{C}^n \subseteq \Lambda^n$ , 可以证明

$$\hat{V} = \{v + \epsilon f(v) : v \in V\} \oplus \epsilon V$$

对某个  $f \in \text{Hom}(V,\mathbb{C})$ . 所以这样的  $\hat{V}$  和  $\text{Hom}(V,\mathbb{C}/V)$  一一对应.

例 5 我们计算 Hilbert of *n*-points over  $\mathbb{C}^2$  的切空间. 记

$$X = \operatorname{Hil}^n \mathbb{C}^2 = \{ \mathfrak{a} \leq_{\text{\pi del}} \mathbb{C}[x, y] : \dim \mathbb{C}[x, y] / \mathfrak{a} = n \}.$$

此时

$$X(\Lambda) = \{ \mathfrak{A} \leq_{\operatorname{\tiny \it H}} \Lambda[x,y] : \Lambda[x,y]/\mathfrak{A} \cong \Lambda^n \}.$$

对于理想  $\mathfrak{a}$ . 如果理想  $\mathfrak{A}$  使得  $\mathfrak{A}|_{\epsilon=0}=\mathfrak{a}$ . 那么同样也有

$$\mathfrak{A} = \{a + \epsilon f(a) : a \in \mathfrak{a}\} \oplus \epsilon \mathfrak{a}$$

对某个  $f \in \operatorname{Hom}_{\mathbb{C}[x,y]}(\mathfrak{a},\mathbb{C}[x,y])$ . 所以这样的  $\mathfrak{A}$  和  $\operatorname{Hom}_{\mathbb{C}[x,y]}(\mathfrak{a},\mathbb{C}[x,y]/\mathfrak{a})$  ——对应.

例 6 我们计算 Flag manidolds 的切空间. 此时

$$\mathcal{F}\ell(n)(\Lambda) = \{ 分裂模的旗 \}.$$

对于  $(V^i)$ , 那么任何  $(\widehat{V^i})$  使得  $(\widehat{V^i})_{t=0} = (V^i)$  都形如

$$\left(\left\{v+\epsilon f(v):v\in V^i\right\}\oplus \epsilon V^i\right)$$

对某个  $f \in \text{Hom}(\mathbb{C}^n, \mathbb{C}^n)$ . 所以这点的切空间和

$$\operatorname{End}(\mathbb{C}^n) / \{A \in \operatorname{End}(\mathbb{C}^n) : \operatorname{\mathfrak{Sh}} V^i \text{ if } A \operatorname{\mathfrak{TS}}\}$$

一一对应. 这和  $\mathfrak{g}/\operatorname{ad}_x\mathfrak{b}$  没有差别.

### 例 7 对于线性空间 $V = \mathbb{C}^n$ , 那么

$$T_xV = \{v + \epsilon u : u \in \mathbb{C}^n\} \cong \mathbb{C}^n.$$

令  $G = \operatorname{GL}_n$ , 考虑  $G \times V \rightarrow V$ , 那么诱导的  $T_1G \times T_vX \rightarrow T_vX$ , 写作

$$(1 + \epsilon X)(v + \epsilon u) = v + \epsilon (Xv + u).$$

例 8 对于  $v \in \mathbb{C}^n$ , 我们计算 v 的  $\mathrm{GL}_n$  轨道的切空间. 此时

$$G(\Lambda) \cdot v \rightarrow G \cdot \iota$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Lambda^n \rightarrow \mathbb{C}^n$$

所以

$$T_x(Gv) = \{(g + \epsilon X)v : gv = v, X \in \mathfrak{g}\} \cong \mathfrak{g}/\{X : Xv = 0\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$T_xX = \{v + \epsilon u : u \in \mathbb{C}^n\}$$

因此法空间

$$T_x X/T_x(Gv) = \mathbb{C}^n/\mathfrak{g} \cdot v.$$

习题 4. 对于非退化二次型  $B(\cdot,\cdot): V \otimes V \to \mathbb{C}$ , 记

$$\mathcal{O}(V) = \{g \in \operatorname{GL}(V) : \begin{smallmatrix} \forall u,v \in V, \\ B(gu,gv) = B(u,v) \end{smallmatrix} \}$$

证明其 Lie 代数是

$$\mathfrak{o}(V) = \{X \in \operatorname{End}(V) : \begin{smallmatrix} \forall u, v \in V, \\ B(Xu, v) + B(u, Xv) = 0 \end{smallmatrix}\}.$$

[提示: 因为  $X \in \mathfrak{o}(V)$  当且仅当  $B((1+\epsilon X)u,(1+\epsilon X)v) = B(u,v)$ . 而  $B((1+\epsilon X)u,(1+\epsilon X)v) = B(u,v) + \epsilon(B(Xu,v) + B(u,Xv))$ . ]

#### 参考文献

- Fulton. Young Tableaux.
   最后有关于 Chern 类的介绍.
- Eisenbud, Harris. 3264 and all that.
   实际上, 这三节看下来, 这本书大概可以看懂一半以上
- Benson. Cohomology and Representation theory volume II.
   这本书含有写得很清楚的代数拓扑常识, 还有式性类, K-理论的介绍.
- Shintaro Kuroki. Introduction to Torus Equivariant Cohomology

### 4 K 理论速成

前面谈论了很多上同调, 下面我们要讨论 K 理论.

注意 1 向量丛这个范畴不够好 —没有 kernel 和 cokernel 所以向量丛范畴不是 Abel 范畴. kernel 和 cokernel 只有在常秩的时候才可以定义. 例如在  $\mathbb{C}P^n$  上, 如果有一个一次齐次多项式 f

在  $\ell \in \mathbb{C}P^n$  处,  $\ell \to \mathbb{1}$  定义作  $x \mapsto f(x)$ . 此时这个映射在  $\{\ell \in \mathbb{P}^n : f(\ell) = 0\}$  处为 0, 其他点则是同构.

在代数几何中, 我们考虑代数向量丛 (即定义中出现的所有空间都是代数颜, 映射都是多项式映射). 我们要考虑包含他们 kernel 和 cokernel 的最小 Abel 范畴. 即凝聚层范畴.

#### 4.1 K 理论

对于**光滑**代数簇, K 群

$$K(X) = \frac{\bigoplus_{\xi \in X \text{ Lin代数向量丛 } \mathbb{Z} \cdot [\xi]}}{\left\langle \begin{array}{c} [\xi] = [\xi_1] + [\xi_2] : \\ \text{有短正合列} 0 \to \xi_1 \to \xi \to \xi_2 \to 0 \end{array} \right\rangle}$$

等于 Grothendieck 群

这两个用作定义时会交替使用.

具体来说, 任何一个凝聚层  $\mathcal{F}$  都有一个有限长度向量 丛预解 (Hilbert's syzygy 定理)

$$\cdots \rightarrow \mathcal{E}_1 \rightarrow \mathcal{E}_0 \rightarrow 0$$

那么这定义了一个  $\sum (-1)^i [\mathcal{E}_i] \in K(X)$ . 然后验证这是两定义的, 且和  $K(X) \to G(X)$  互逆.

注意到  $K(点) = \mathbb{Z}$ , 因为此时不论凝聚层还是向量丛都都和线性空间无异. 那么

$$K(\triangle) \longrightarrow \mathbb{Z}$$
  $[V] \mapsto \dim V$ 

给出了同构.

同样名为 Hilbert's syzygy 定理说明 K 理论有代数同伦不变性,

$$K(X \times \mathbb{C}) \cong K(X)$$
.

注意 K(X) 上有显然的乘法, 即

$$[\xi] \otimes [\eta] = [\xi \otimes \eta],$$

这个乘法以平凡从 1 为单位元.

对于代数映射  $X \rightarrow Y$ , 向量丛的拉回定义了

$$K(X) \longleftarrow K(Y)$$
.

因此 K 理论此时被理解为上同调理论.

但是定义推出就非常困难了. 作为层有推出, 但是向量丛的推出不是向量丛, 因为

 $R_1 \rightarrow R_2$  P 作为  $R_2$  投射  $\Rightarrow$  P 作为  $R_1$  投射.

但是对于 proper 的映射  $X \rightarrow Y$ , 确实可以定义

$$f: K(X) \longrightarrow K(Y).$$

而且还满足我们之前上同调里面出现的几则性质.

- 0. 函子性  $f_*g_* = (fg)_*$ .
- 1. projective formula,  $\forall \alpha \in K(X), \beta \in K(Y)$ ,

$$f_*(\alpha \otimes f^*(\beta)) = f_*(\alpha) \otimes \beta.$$

2. 拉回推出方阵

|情形 1 |如果  $X \rightarrow$  点, 那么

$$K(X) \longrightarrow K(Y)$$

将向量丛  $\mathcal{E}$  映到

$$\sum (-1)^i [H^i(X)] \in K(\triangle).$$

其中  $H^i(X)$  是是凝聚层的上同调.

|情形 2|如果  $X \rightarrow Y$  是纤维丛, 那么

$$K(X) \longrightarrow K(Y)$$

将向量丛  $\mathcal{E}$  映到  $\sum (-1)^i [R^i f_* \mathcal{E}] \in K(Y)$ , 其中  $R^i f_* \mathcal{E}$  是向量丛, 每点  $y \in Y$  的纤维是

$$H^i\bigg(\mathcal{E}\big|\big\{x\in X: f(x)=y\big\}\bigg).$$

粗略地说, 即推出就是顺着纤维取推出.

情形 3 如果  $X \rightarrow Y$  的光滑闭子簇, 那么

$$K(X) \longrightarrow K(Y)$$

将向量丛  $\mathcal{E}$  映到凝聚层  $[\mathcal{E}] \in G(Y) \cong K(Y)$ , 即

$$\mathcal{E}(U) = \mathcal{E}(X \cap U).$$

根据之前的讨论, 可以找到一个这个层的向量丛预解.

特别地, 对于平凡丛  $\mathcal{O}_X$ , 我们记  $[\mathcal{O}_X] \in K(Y)$ , 这是上同调中 基本类 的类比.

下面我们要看基本类在乘法, 推出和拉回下的变化.

#### 1. 张量积

对于 A, B,

$$[\mathcal{O}_A] \otimes [\mathcal{O}_B] = \begin{cases} [\mathcal{O}_{A \cap B}], & \text{如果 } A \text{ 和 } B \text{ 直交} \\ \\ \text{不知道} & \text{不直交} \end{cases}$$

注意, 比期待维数小不一定直交.

|注意 1 | 这是因为如果  $\mathfrak{a}$  定义了 A,  $\mathfrak{b}$  定义了 B, 那么  $\mathfrak{a}+\mathfrak{b}$  定义了  $A\cap B$ . 而

$$R/\mathfrak{a}\otimes R/\mathfrak{b}\cong R/(\mathfrak{a}+\mathfrak{b})$$

直交确保  $a+b=\sqrt{a+b}$ .

2. 拉回

 $f: X \to Y$ 

对于  $B \subseteq Y$ ,

$$f^*[\mathcal{O}_B] = \begin{cases} [\mathcal{O}_{f^{-1}(B)}], & 横截 \\$$
不知道, 不横截

[注意 1] 这是因为如果  $\mathfrak{b}$  定义了 B, 那么  $\mathfrak{b}$  在 X 对应环的生成理想定义了  $f^{-1}(B)$ . 横截确保是根理想.

#### 3. 推出

 $(f:X\to Y)$ 

对于  $A \subseteq X$ ,

$$f^*[\mathcal{O}_A] = \begin{cases} [\mathcal{O}_{f(A)}], & \text{如果 } A \to f(A)$$
是同构 不知道, 否则

注意 1 这是因为如果推出的函子性.

注意 2 粗略地说, K 理论和上同调在基本类上的不同之处在于 K 理论会保留低维数.

实际上 K 理论也有胞腔分解, 但是证明必须用到高阶 K 理论, 这里按下不表. 结论是,

$$K(G/B) = \bigoplus_{w \in \mathfrak{S}_n} \mathbb{Z} \cdot [\mathcal{O}_w].$$

其中  $[\mathcal{O}_w] = [\mathcal{O}_{\overline{B^-wB/B}}]$ ,回忆  $B^- = w_0 B w_0$  是全体下三角矩阵.

回忆 + 对比

$$H^*(G/B) = \bigoplus_{w \in \mathfrak{S}_n} \mathbb{Z} \cdot [\overline{B^- w B/B}].$$

再度回忆

$$P = \begin{pmatrix} * \cdots * * \cdots * \\ \vdots \vdots \vdots \vdots \\ * * \cdots * \\ * * \cdots * \\ \vdots \\ S/B \longrightarrow G/P_i \end{pmatrix}$$

我们定义 isobaric Demazure operator.

那么,和上同调的计算一样,唯一的差别是我们不忽 略低维数的,即

$$\begin{split} \pi_i([\mathcal{O}_w]) &= \pi^* \pi_* [\mathcal{O}_{\overline{B^-wB/B}}] \\ &= \pi^* [\mathcal{O}_{\overline{B^-wP/P}}] \qquad (*) \\ &= [\mathcal{O}_{\overline{B^-ws_iB/B}} \cup \overline{B^-wB/B}] \\ &= \begin{cases} [\mathcal{O}_{\overline{B^-ws_iB/B}}] & \ell(ws_i) = \ell(w) - 1 \\ [\mathcal{O}_{\overline{B^-wB/B}}] & \ell(ws_i) = \ell(w) + 1 \end{cases} \\ &= \begin{cases} [\mathcal{O}_{ws_i}] & \ell(ws_i) = \ell(w) - 1 \\ [\mathcal{O}_w] & \ell(ws_i) = \ell(w) + 1 \end{cases} \end{split}$$

上面的 (\*) 的正确性不容易, 这也是 Demazure 文章的主要 gap. 实际上, 得到第一行的  $\ell(ws_i) = \ell(w) - 1$  是严格的, 第二行也可以说来自于 Demazure operator 的表达式.

习题 1. 对于闭集 A, B, 如果  $\mathfrak{a} = \{f : f(A) = 0\},$   $\mathfrak{b} = \{f : f(B) = 0\},$  那么  $\{x \in X : \forall f \in \mathfrak{a} + \mathfrak{b}, f(x) = 0\} = A \cap B.$ 习题 2. 如果有凝聚层的复形

$$\cdots \to \mathcal{F}^{i-1} \to \mathcal{F}^i \to \mathcal{F}^{i+1} \to \cdots$$
 (有限长度)

证明, 在 G(X) 中:

$$\sum (-1)^i [\mathcal{F}^i] = \sum (-1)^i [h^i(\mathcal{F}^i)]$$

其中  $h^i = \frac{\ker}{\mathrm{im}}$ . [提示: 因为有  $0 \to \ker \to \mathcal{F} \to \mathrm{im} \to 0$  和  $0 \to \mathrm{im} \to \ker \to h \to 0$ .]

#### 4.2 Chern 特征

Chern 性类对直和性质很好,

$$c(\xi \oplus \eta) = c(\xi)c(\eta)$$

但是对张量表现不好,为此我们定义 Chern 特征.

对于向量丛  $\xi$ , 假设  $\xi = \xi_1 \oplus \cdots \oplus \xi_n$  是线丛的直和

$$c(\xi) = 1 + c_1(\xi) + \dots = (1 + x_1) \cdots (1 + x_n)$$

其中  $c_i \in H^{2i}($  ) 是 Chern 类. 定义 Chern 特征

$$ch(\xi) = e^{x_1} + \dots + e^{x_n}$$

$$= \sum_{k \ge 0} \frac{x_1^k + \dots + x_n^k}{n!}$$

$$= 1 + c_1(\xi) + \frac{c_1(\xi)^2 - 2c_2(\xi)}{2} + \dots$$

$$\in H^*(X; \mathbb{Q}).$$

这些是 Chern 类的多项式 (正是幂和写成初等对称多项式 表达式). 所以即使不分裂成线丛也可以定义.

那么分裂原理告诉我们

$$\begin{cases} \operatorname{ch}(\xi \oplus \eta) = \operatorname{ch}(\xi) + \operatorname{ch}(\eta) \\ \operatorname{ch}(\xi \otimes \eta) = \operatorname{ch}(\xi) \operatorname{ch}(\eta) \end{cases}$$

于是这定义了一个代数同态

$$\operatorname{ch}: K(X) \to H^*(X; \mathbb{Q}).$$

且保持拉回

$$\begin{array}{cccc} X & \longrightarrow & Y \\ K(X) & \longleftarrow & K(Y) \\ \text{ch} & & \downarrow \text{ch} \\ H^*(X;\mathbb{O}) & \longleftarrow & H^*(Y;\mathbb{O}) \end{array}$$

注意: Chern 特征不保持推出!!!

如果是拓扑 K 理论, 当 X 是有限 CW 复形时

$$\operatorname{ch}: K(X) \otimes \mathbb{Q} \longrightarrow H^*(X; \mathbb{Q})$$

是同构.

而 Grothendieck 证明了代数版本, 当 X 光滑射影 (即可以嵌入射影空间) 的时候

$$\operatorname{ch}: K(X) \otimes \mathbb{Q} \longrightarrow \operatorname{CH}(X) \otimes \mathbb{Q}$$

是同构.

为了讨论方便, 下面计算的都是  $\mathbb Q$  系数的  $\mathbb K$  理论  $K_{\mathbb Q}$ .

对于纤维丛  $\xi \downarrow_B^E$ , 我们也可以对 K 理论谈 formal. 既然是同构, 且和拉回交换, 那么

ξ 关于 ℚ-系数上同调 formal

 $\iff \xi$  关于  $\mathbb{Q}$ -系数拓扑 K-理论 formal

 $\xi$  关于  $\mathbb{Q}$ -系数 Chow 环 formal

 $\iff \xi$  关于  $\mathbb{Q}$ -系数代数 K-理论 formal

在上同调情况中, 我们直接刻画了 formal 时的推出, 但是在 K 理论中, 即使 formal, 还是不容易描述.

下面我们计算  $\mathbb{C}P^n$  的 K 群  $K(\mathbb{C}P^n)\otimes\mathbb{Q}$ . 回忆  $H^*(\mathbb{C}P^n;\mathbb{Q})\cong\mathbb{Q}[x]/x^{n+1}$ , 其中 x=[超平面]. 考虑重言 丛  $\tau$ ,其 Chern 类是 1-x,因此 Chern 特征是  $e^{-x}=1-x+x^2-\cdots$ . 因此我们得到

$$K_{\mathbb{Q}}(\mathbb{C}P^n) = \mathbb{Q}[e^x]/(e^x - 1)^{n+1}$$

其中  $e^x = [\mathcal{O}(1)]$  即  $\tau$  的对偶.

我们尤其关心  $\mathbb{C}P^1$  的情况 (因为这是  $P_i/B$  的情况). 此时  $K_{\mathbb{Q}}(\mathbb{C}P^1)=\mathbb{Q}\oplus\mathbb{Q}e^x$ . 例如

$$[\mathcal{O}(2)] = e^{2x} = 2e^x - 1 \qquad \text{mod } (e^x - 1)^2$$
$$[\mathcal{O}(3)] = e^x (2e^x - 1) = 3e^x - 2 \qquad \text{mod } (e^x - 1)^2$$

$$[\mathcal{O}(n)] = ne^x - (n-1)$$
 mod  $(e^x - 1)^2$ 

我们要用到下列事实

$$\begin{cases} H^0(\mathcal{O}(0)) = \Gamma(\mathcal{O}(0)) = 常函数\mathbb{C}. \\ H^0(\mathcal{O}(1)) = \Gamma(\mathcal{O}(1)) = -次多项式\mathbb{C}x_1 \oplus \mathbb{C}x_2. \end{cases}$$

其中  $\{[x_1:x_2]\}=\mathbb{C}P^1$  是射影坐标.

#### 注意 1 一般地, 用 Čech 上同调可计算

| $\mathbb{C}P^n$                | $H^0$ | $H^1$ |   | $H^{n-1}$ | $H^n$   | $H^{n+1}$ |   |
|--------------------------------|-------|-------|---|-----------|---------|-----------|---|
| :                              | :     | :     | : | :         | :       | 0         |   |
| $\mathcal{O}(-n-3)$            | 0     | 0     |   | 0         | $R_2^*$ | 0         |   |
| $\overline{\mathcal{O}(-n-2)}$ | 0     | 0     |   | 0         | $R_1^*$ | 0         |   |
| $\overline{\mathcal{O}(-n-1)}$ | 0     | 0     |   | 0         | $R_0^*$ | 0         |   |
| $\overline{\mathcal{O}(-n)}$   | 0     | 0     |   | 0         | 0       | 0         |   |
| :                              | :     | :     |   | :         | :       | :         | : |
| $\overline{\mathcal{O}(-1)}$   | 0     | 0     |   | 0         | 0       | 0         |   |
| $\mathcal{O}(0)$               | $R_0$ | 0     |   | 0         | 0       | 0         |   |
| $\overline{\mathcal{O}(1)}$    | $R_1$ | 0     |   | 0         | 0       | 0         |   |
| $\mathcal{O}(2)$               | $R_2$ | 0     |   | 0         | 0       | 0         |   |
| $\mathcal{O}(3)$               | $R_3$ | 0     |   | 0         | 0       | 0         |   |
| :                              | :     | :     | : | :         | :       | :         | : |

其中  $R_i$  是  $R = \mathbb{C}[x_0, \dots, x_n]$  的 i 次部分, 即 i 次齐次多 因为形式.

特别地, 对于  $\mathbb{C}P^1$ ,

|                   | $\dim H^0$ | $\dim H^1$ | $\dim H^0 - \dim H^1$ |
|-------------------|------------|------------|-----------------------|
| ÷                 | :          | :          | :                     |
| $\mathcal{O}(-3)$ | 0          | 2          | -2                    |
| $\mathcal{O}(-2)$ | 0          | 1          | -1                    |
| $\mathcal{O}(-1)$ | 0          | 0          | 0                     |
| $\mathcal{O}(0)$  | 1          | 0          | 1                     |
| $\mathcal{O}(1)$  | 2          | 0          | 2                     |
| $\mathcal{O}(2)$  | 3          | 0          | 3                     |
| - 1               | :          | :          | :                     |
|                   |            |            |                       |

回忆在 G/B 上的向量丛  $\mathbb{C}x_i=\overset{G\times_B\mathbb{C}x_i}{\downarrow}$ , 其 Chern 类是  $1-x_i\in H^*(G/B)$ , 故

$$\operatorname{ch}(\underline{\mathbb{C}}x_i) = \operatorname{ch}\left( \mathop{\downarrow}_{G/B}^{G \times_B \mathbb{C}x_i} \right) = e^{-x_i}.$$

更一般地,对于 B 的表示 V,

$$\operatorname{ch}(\underline{V}) = \operatorname{ch}\left(\mathop{\downarrow}_{G/B}^{G \times_B V}\right) = -\operatorname{ch}(V) = \operatorname{ch}(V^*),$$

右边是表示的特征, 即  $\operatorname{diag}(x_1,\ldots,x_n) \in B$  在 V 上作用的迹.

下面考虑  $G/B \xrightarrow{\pi} G/P_i$ , 根据 formal 条件,

$$K_{\mathbb{O}}(G/B) \cong K_{\mathbb{O}}(P_i/B) \otimes K_{\mathbb{O}}(G/P).$$

换句话说任何一个  $K_{\mathbb{O}}(G/B)$  的元素都可以写成

$$e^{x_i} \otimes p^*(\alpha) + p^*(\beta)$$

的形式.

注意 1 因为根据我们之前的讨论,

最后一个方块是拉回,

$$\{(x,\ell): x \in \ell\} \cong \operatorname{GL}_{2} \times \operatorname{\mathbb{C}}_{x_{1}} \cong P \times \operatorname{\mathbb{C}}_{x_{i}} \to G \times \operatorname{\mathbb{C}}_{x}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{\mathbb{C}}_{P^{1}} \cong \operatorname{GL}_{2} / \{ \begin{pmatrix} x_{1} * \\ x_{2} \end{pmatrix} \} \cong P_{i} / B \to G / B$$

根据推出的定义, 即纤维上取上同调, 和  $\mathbb{C}P^1$  的计算, 我们可以证明

$$\begin{cases} \pi_i(1) = 1 \\ \pi_i(e^{x_i}) = e^{x_i} + e^{x_{i+1}} \end{cases}$$

$$\pi_*(\pi^*\beta \otimes \alpha) = \beta \otimes \pi_*\alpha$$
  
$$\Rightarrow \pi^*\pi_*(\pi^*\beta \otimes \alpha) = \pi^*\beta \otimes \pi^*\pi_*\alpha$$

所以对于  $f = e^{x_i} \otimes \pi^* \alpha + \pi^* \beta \in K_{\mathbb{Q}}(G/B)$ ,

$$\pi_i f = (e^{x_i} + e^{x_{i+1}}) \otimes \pi^* \alpha + \pi^* \beta.$$

所以

$$\pi_i f = \frac{e^{x_i} f - s_i(e^{x_i} f)}{e^{x_i} - e^{x_{i+1}}}.$$

另一种写法是

$$\pi_i f = \frac{f - e^{-x_i + x_{i+1}} s_i f}{1 - e^{-x_i + x_{i+1}}}.$$

注意 1 要看出  $\pi_i(e^{x_i}) = e^{x_i} + e^{x_{i+1}}$  有些费劲. 在 xB 处, 我们定义

$$\underline{\mathbb{C}}x_1^* \oplus \underline{\mathbb{C}}x_2^* \longrightarrow \xi$$

其中向量丛  $\xi$  在  $xB \in G/B$  处的纤维是 xP/B 在  $Cx_1^*$  的 section.

对于  $(x, z_1, z_2)$  表示  $G \times_B (\mathbb{C}x_1 \oplus \mathbb{C}x_2)$  中的元素, 我们定义 xP/B 上  $\mathbb{C}x_1^*$  的 section

$$xpB \longmapsto (xp, z_1a + z_2c) \in G \times_B \underline{\mathbb{C}}x_1^*.$$

其中 
$$p = \begin{pmatrix} * \cdots ** \cdots * \\ \vdots \vdots \ddots \vdots \\ ab \cdots * \\ cd \cdots * \\ \vdots \end{pmatrix} \in P$$
. 这是良定义的.

不过之后我们有一个更统一的方法去计算向量丛类.

习题 1. 对于超平面  $H \subseteq \mathbb{C}P^n$ , 利用本节最开始提到的

$$0 \to \mathcal{O}(-1) \to \mathcal{O} \to \mathcal{O}_H \to 0$$

计算  $\operatorname{ch}([\mathcal{O}_H])$ . 并计算一个点 p 对应的  $\operatorname{ch}([\mathcal{O}_p])$ . [提示: 此时  $\operatorname{ch}(\mathcal{O}_H) = \operatorname{ch}(\mathcal{O}) - \operatorname{ch}(\mathcal{O}(-1)) = 1 - e^{-x}$ . 因为横截, 此时结果是  $(1 - e^{-x})^n$ .]

#### Grothendieck 多项式

类似 Schubert 多项式,为了定义 Grothendieck 多项式的几何含义,我们已经有了递推公式,只差计算初始值了. 即现在我们唯一没有证明的是对于单点  $p=B^-w_0B/B=1\cdot B/B$ ,  $[\mathcal{O}_p]=[\mathcal{O}_{w_0}]$  对应到哪个多项式.

在 K-理论中有一个**旋瓶盖 (dévissage)** 理论. 即我们可以在 K(X) 上定义一个

$$F^iK(X) = \{ [\mathcal{F}] : F \,$$
 是凝聚层, 支集 dim  $\leq i \}$ .

$$F^{n-i}K(X)\otimes F^{n-j}K(X)\subseteq F^{n-i-j}K(X).$$

例如对于线丛  $\xi$ ,  $[\xi] - 1 \in F^{n-1}K(X)$ , 因为每个线丛都存在一个开集 U 使得其同构于平凡丛. 例如对于点 p,  $\mathcal{O}_p$  如果非零, 那么包含在  $F^0K(X)$  中, 且  $F^0K(X)$  只由  $[\mathcal{O}_p]$  生成.

|注意 1 | 因为这是代数几何,不同的点可能代表不同的类. 但是这里因为有一个群作用,所以都一样.

根据  $\pi_i \pi_{w_0} = \pi_{w_0}$ , 纯组合地可得

$$\pi_{w_0} f = \frac{\sum_{w \in \mathfrak{S}_n} (-1)^w w (f \cdot e^{\rho})}{\prod_{i < j} (e^{x_i} - e^{x_j})},$$

其中  $\rho = (n-1, \ldots, 0) = nx_1 + \cdots + x_{n-1}$ . 且不难计算出

$$\pi_{w_0}(1-e^{-x_1})^n \cdots (1-e^{-x_{n-1}}) = 1.$$

因为 
$$(1-e^{-x_1})^n \cdots (1-e^{-x_{n-1}}) \in F^0K(X)$$
, 所以

$$(1 - e^{-x_1})^n \cdots (1 - e^{-x_{n-1}}) = [\mathcal{O}_{w_0}].$$

#### 4.3 Grothendieck-Riemann-Roch 定理

有一个方法去控制 Chern 特征 ch 拉回, 让一切计算变得非常容易,即 **Grothendieck-Riemann-Roch 定理**. 但是这是一个很深的定理, 三言两语很难无法解释成立的原因.

如果  $f: X \rightarrow Y$  是光滑射影簇之间的光滑映射, 那么下图交换

$$\begin{array}{cccc} X & & \longrightarrow & Y \\ K(X) & & \longrightarrow & K(Y) \\ \downarrow & & & \downarrow \\ \text{CH}(X) \otimes \mathbb{Q} & & \longrightarrow & \text{CH}(X) \otimes \mathbb{Q} \end{array}$$

纵向映射是  $\xi \mapsto \operatorname{ch}(\xi) \smile \operatorname{Todd}(切丛)$ .

 $\Theta_X$  表示 X 的切丛, 上面是说

$$\operatorname{ch}(f_*(\alpha)) \smile \operatorname{Todd}(\Theta_Y) = f_*(\operatorname{ch}(\alpha) \smile \operatorname{Todd}(\Theta_X)).$$

所谓 **Todd 类**定义如下, 对于向量丛  $\xi$ , 假设其分解成线丛  $\xi = \xi_1 \oplus \cdots \oplus \xi_n$ , 即

$$c(\xi) = 1 + c_1(\xi) + = (1 + x_1) \cdots (1 + x_n).$$

其中  $c_i \in CH^i()$  是 Chern 类. 那么

$$Todd(\xi) = \frac{x_1}{1 - e^{-x_1}} \cdots \frac{x_n}{1 - e^{-x_n}}$$
$$= 1 + \frac{c_2(\xi)}{2} + \frac{c_1(\xi)^2 + c_2(\xi)}{12} + \frac{c_1(\xi)c_2(\xi)}{24} + \cdots$$

所以对一般的向量从也定义了.

显然 Todd 类保持保持拉回, 所以

$$\operatorname{ch}(f_*(\alpha)) = f_*\left(\operatorname{ch}(\alpha) \frac{\operatorname{Todd}(\Theta_X)}{\operatorname{Todd}(f^*\Theta_Y)}\right).$$

实践中有几类情况比较常遇见.

情况 1 如果  $X \rightarrow Y$  是嵌入, 那么

$$\frac{\operatorname{Todd}(\Theta_X)}{\operatorname{Todd}(f^*\Theta_Y)} = \frac{1}{\operatorname{Todd}\mathcal{N}_X Y}.$$

其中  $\mathcal{N}_Y X$  是 X 在 Y 中的法丛, 即  $x \in X$  处是  $T_x Y/T_x X$ . 情况 2 如果  $X \to Y$  是纤维丛, 那么

$$\frac{\operatorname{Todd}(\Theta_X)}{\operatorname{Todd}(f^*\Theta_Y)} = \operatorname{Todd}\Theta_Y X.$$

其中  $\Theta_Y X$  是 X 相对 Y 的切丛, 即每个  $x \in X$  处是  $T_x X_{f(x)}$ .

#### 应用 1. 从 Grothendieck 到 Schubert

根据 GRR 第一种情况, 我们会发现对于光滑子簇 D,

$$ch([\mathcal{O}_D]) = [D] +$$
更低维的 cycle.

因为这来自于 CH(D) 一个首项是 1 的类的推出.

实际上, Grothendieck 多项式的最低项是 Schubert 多项式 (虽然 Schbert 胞腔不光滑, 但是也有不光滑版本的 GRR).

#### 应用 2. 秒得 Demazure operator

我们计算过 G/B 的切丛的 Chern 类是

$$\prod_{i < j} (1 + (x_i - x_j)).$$

而类似地, G/P 的切丛的 Chern 类可得是

$$\prod_{\substack{i < j, \\ i \neq j+1}} (1 + (x_i - x_j)).$$

所以  $\Theta_Y X$  的 Todd 类是  $\frac{x_i - x_{i+1}}{1 - e^{-x_i + x_{i+1}}}$ .

因此 isobaric Demazure operator 还可以这样计算

$$\begin{split} \pi_i f &= \partial_i \Big( \frac{x_i - x_{i+1}}{1 - e^{-x_i + x_{i+1}}} f \Big) \\ &= \frac{x_i - x_{i+1}}{1 - e^{-x_i + x_{i+1}}} f - \frac{x_{i+1} - x_i}{1 - e^{x_i - x_{i+1}}} s_i f \\ &= \frac{x_i - x_{i+1}}{1 - e^{-x_i + x_{i+1}}} s_i f \\ &= \frac{f - e^{-x_i + x_{i+1}} s_i f}{1 - e^{-x_i + x_{i+1}}}. \end{split}$$

[注意 1] 一般 Lie 群 
$$\partial_i = \frac{f - s_i f}{\alpha}$$
,  $\pi_i = \frac{f - e^{-\alpha} s_i f}{1 - e^{-\alpha}}$ .

注意到显然  $\operatorname{Todd}(\xi \oplus \eta) = \operatorname{Todd}(\xi) \operatorname{Todd}(\eta)$ . 对于射影空间  $\mathbb{C}P^n$ ,我们计算切丛的  $\operatorname{Todd}$  类. 考虑

$$0 \to \tau$$
  
重演丛  $\to 1$   $^{n+1} \to \rho$   
万有商丛

因为 切丛 =  $\operatorname{Hom}(\tau, \rho) = \tau^* \otimes \rho$ , 张量线丛  $\tau^*$  保持正合性,

$$0 \to 1$$
  $\to \tau^{n+1} \to \Theta \to 0$ 

故

$$\operatorname{Todd}(\Theta) = \operatorname{Todd}(\tau)^{n+1} / \operatorname{Todd}(\mathbb{1}) = \left(\frac{x}{1 - e^{-x}}\right)^{n+1}.$$

|注意 1 | 这里用 Chern 类分裂算就太麻烦了.

习题 1. 证明  $\left(\frac{x}{1-e^{-x}}\right)^{n+1}$  在  $x^n$  前系数是 1. [提示: 因为  $\mathbb{C}P^n$  的 Todd class 是  $\left(\frac{x}{1-e^{-x}}\right)^{n+1}$ , 而推出  $H^*(\mathbb{C}P^n) \to H^*(\mathbb{A})$  到一个点等于取  $x^n = [\mathbb{A}]$  前的系数,所以利用 GRR 可得  $\left(\frac{x}{1-e^{-x}}\right)^{n+1}$  的  $x^n$  系数是 1. 代数地,可以这么解. 对于全纯函数 f(z),  $z^{n-1}$  前的系数是  $f/z^n$ dz 在 0 处的留数. 所以我们要求  $\left(\frac{f}{z}\right)^n$ dz 在 0 处的留数是 1,换元  $\frac{z}{f(z)} = y$ ,假设 z = h(y),于是  $\frac{h'(y)}{y^n}$ dy 在 h(0) = 0 处的留数是 1/n,所以  $h(y) = y + \frac{1}{2}y^2 + \frac{1}{3}y^3 + \cdots = -\log(1-y)$ ,所以  $z = -\log(1-y)$ ,即  $y = 1 - e^{-z} = z/\frac{z}{1-e^{-z}}$ . ]

| 注意 1 | 当中用到的  $\frac{x}{1-e^{-x}}$  是非常著名的生成函数,

$$\frac{x}{1 - e^{-x}} = 1 + \frac{x}{2} + \sum_{k>2} B_k \frac{x^k}{k!} = 1 + \frac{x}{2} + \frac{1}{6} \frac{x^2}{2} - \frac{1}{30} \frac{x^4}{24} + \dots,$$

其中  $B_k$  是 Bernoulli 数.

这是为了计算幂和而提出的,

$$1 + 2 + \dots + n = n(n+1)/2$$

$$= \frac{1}{2}n^2 + \frac{1}{2}n$$

$$1^2 + 2^2 + \dots + n^2 = n(n+1)(2n+1)/6$$

$$= \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$$

$$1^3 + 2^3 + \dots + n^3 = (n(n+1))^2/4$$

$$= \frac{1}{4}n^4 + \frac{1}{2}n^2 + \frac{1}{2}n$$

更一般的公式是

$$\sum_{k=1}^{n} k^{p} = \frac{1}{p+1} \sum_{k=0}^{p} {p+1 \choose k} B_{k} (-1)^{p-k+1} n^{k}$$

另一则著名的事实是

$$\zeta(2n) = \frac{(2\pi)^{2n}}{(-1)^{n+1}2(2n)!} B_{2n}.$$

其中  $\zeta(s) = \sum_{n} \frac{1}{n^s}$  是 Riemann zeta 函数.

#### 4.4 连通 K 理论

我们注意到 Chow 环/上同调环, 和 K 理论都有推出 拉回, 只不过有不同的拉回结构. 在代数配边 (cobordism) 理论中, 我们可以将 Chow 环和上同调连接起来, 即连通 (connective)K 理论.

考虑

$$K(\ )[\beta,\beta^{-1}] = K(\ ) \otimes \mathbb{Z}[\beta,\beta^{-1}].$$

我们可以定义新的拉回和推出

$$K(X)[\beta, \beta^{-1}] \xrightarrow{f_{\beta}^*} K(Y)[\beta, \beta^{-1}] \qquad \alpha \longmapsto f^*\alpha$$

 $K(X)[\beta,\beta^{-1}] \xrightarrow{f_*^{\beta}} K(Y)[\beta,\beta^{-1}]$   $\alpha \longmapsto \beta^{\dim Y - \dim X} f_* \alpha.$  拉回是  $\mathbb{Z}[\beta,\beta^{-1}]$ -代数同态; 推出是  $\mathbb{Z}[\beta,\beta^{-1}]$ -模同态.

对于向量丛  $\xi$ , 假设其分解成线丛  $\xi=\xi_1\oplus\cdots\oplus\xi_n$ , 即

$$c(\xi) = 1 + c_1(\xi) + \dots = (1 + x_1) \cdot \dots \cdot (1 + x_n).$$

其中  $c_i \in CH^i$ ( ) 是 Chern 类. 那么

$$\operatorname{ch}_{\beta}(\xi) = e^{\beta x_1} \oplus_{\beta} \cdots \oplus_{\beta} e^{\beta x_n}$$

所以对一般的向量丛也定义了. 且和拉回交换

$$\begin{array}{ccccc} X & & \longrightarrow & Y \\ K(X)[\beta,\beta^{-1}] & \longleftarrow & K(Y)[\beta,\beta^{-1}] \\ \operatorname{ch}_{\beta} & & & \downarrow \operatorname{ch}_{\beta} \\ \operatorname{CH}(X) \otimes \mathbb{Q}[\beta,\beta^{-1}] & \longleftarrow & \operatorname{CH}(Y) \otimes \mathbb{Q}[\beta,\beta^{-1}] \end{array}$$

但是推出则不然,

$$\begin{array}{cccc} X & & \longrightarrow & Y \\ K(X)[\beta,\beta^{-1}] & & \longrightarrow & K(Y)[\beta,\beta^{-1}] \\ & \downarrow & & \downarrow \\ \mathrm{CH}(X) \otimes \mathbb{Q}[\beta,\beta^{-1}] & \longrightarrow & \mathrm{CH}(Y) \otimes \mathbb{Q}[\beta,\beta^{-1}] \end{array}$$

纵向映射是  $ch_{\beta} \cup Todd_{\beta}(切丛)$ .

所谓 **Todd 类**定义如下, 对于向量丛  $\xi$ , 假设其分解 成线丛  $\xi = \xi_1 \oplus \cdots \oplus \xi_n$ , 即

$$c(\xi) = 1 + c_1(\xi) + = (1 + x_1) \cdot \cdot \cdot (1 + x_n).$$

其中  $c_i \in CH^i()$  是 Chern 类. 那么

$$\operatorname{Todd}_{\beta}(\xi) = \frac{\beta x_1}{1 - e^{-\beta x_1}} \cdots \frac{\beta x_n}{1 - e^{-\beta x_n}}$$

所以对一般的向量丛也定义了.

于是在  $K(X)[\beta, \beta^{-1}]$  情况下的 Demazure operator

$$\begin{split} \pi_{i}^{\beta}f &= \partial_{i}\bigg(\frac{\beta x_{i} - \beta x_{i+1}}{1 - e^{-\beta x_{i} + \beta x_{i+1}}}f\bigg) \\ &= \beta \frac{f - e^{-\beta x_{i} + \beta x_{i+1}}s_{i}f}{1 - e^{-\beta x_{i} + \beta x_{i+1}}}, \\ &= \beta \frac{e^{\beta x_{i}}f - s_{i}(e^{\beta x_{i}}f)}{e^{\beta x_{i}} - e^{\beta x_{i+1}}} \end{split}$$

对线丛  $\xi$ , 如果  $c_1(\xi) = x$ , 记

$$c_1^\beta(\xi) = \frac{1 - e^{-\beta x}}{\beta} \in \mathrm{CH}(X)[\beta, \beta^{-1}].$$

那么对于线丛  $\xi, \eta$ ,

$$c_1^{\beta}(\xi \otimes \eta) = c_1^{\beta}(\xi) \oplus_{\beta} c_1^{\beta}(\eta)$$

其中  $\oplus_{\beta}$  是 formal group law

$$u \oplus_{\beta} v = u + v - \beta uv$$
.

在  $K(G/B)[\beta, \beta^{-1}]$  的情况, 记

$$X_i = \frac{1 - e^{-\beta x_i}}{\beta} = -c_1^{\beta}(\underline{\mathbb{C}}x_i).$$

此时最高次的 Demazure operator

$$\pi_{w_0}^{\beta} f = \frac{\sum_{w \in \mathfrak{S}_n} (-1)^w (f \cdot e^{\beta \rho})}{\prod_{i < i} (e^{\beta x_i} - e^{\beta x_{i+1}}/\beta)}$$

其中  $\rho = nx_1 + \cdots + x_{n-1}$ . 不难发现  $X_1^{n-1} \cdots X_{n-1}$  作用后是 1. 因此

$$\mathfrak{G}_{w_0}(x;\beta) = X_1^{n-1} \cdots X_{n-1}$$

这也是  $\beta$ -Grothendieck 多项式的定义.

习题 1. 验证对于 Formal group  $law \oplus_{\beta}$ , 有  $(u \oplus_{\beta} v)x = x(u \oplus_{\beta} v)$ . [提示: 因为  $u \oplus_{\beta} v = u + v - \beta uv$ , 显然.] 习题 2. 证明对于与  $\pi_i^{\beta}$  交换的不定元  $x,y \in \mathbb{Z}[\beta,\beta^{-1}]$ , 记算子  $h_i(x) = 1 - \beta x \pi_i^{\beta}$ , 证明

$$\begin{cases} h_i(x)h_j(y) = h_j(y)h_i(x) & |i - j| \ge 2\\ h_i(x)h_{i+1}(x \oplus_{\beta} y)h_i(y) = h_{i+1}(y)h_i(x \oplus_{\beta} y)h_{i+1}(x) \end{cases}$$

[提示: 第一条平凡. 对第二条展开我们只需要验证  $\pi_i^{\beta}$  和  $\pi_{i+1}^{\beta}$  项, 这来自事实  $-\beta x - \beta y + \beta^2 xy = -\beta x \oplus_{\beta} y$ .]

#### 附录: 凝聚层

局部上, 代数与几何有如下对应

| 几何   | 代数      | 对应                                                                                                                     |  |  |
|------|---------|------------------------------------------------------------------------------------------------------------------------|--|--|
| 空间   | €交换环    | $X \mapsto \mathcal{O}(X) = \{X \overset{\text{$\mathfrak{F}$\tiny{\scalebox{$\eta$}}}}{\longrightarrow} \mathbb{C}\}$ |  |  |
| 点    | 到 ℂ 的同态 | $p \mapsto \text{evaluate } p$                                                                                         |  |  |
|      | 素理想     | $\{f: f(p) = 0\}$                                                                                                      |  |  |
| 闭子空间 | 理想      | $K \leftrightarrow \{f : f(K) = 0\}$                                                                                   |  |  |
|      | 商环      | $C(X)/\{f:f(K)=0\}$                                                                                                    |  |  |
| 开子空间 | 乘性子集    | $U \leftrightarrow \{f: f(U) \neq 0\}$                                                                                 |  |  |
|      | 局部化     | $\{f/g:g(U)\neq 0\}$                                                                                                   |  |  |

那么向量丛, 对应代数的什么? 对于 X 上的 (代数) 向量 丛  $\xi: {\downarrow\atop V}^E$ , 考虑 X 上的 section, 即 global section

$$\{s: X \to E: \xi \circ s = \mathrm{id}_X\}.$$

这是一个  $\mathcal{O}(X)$  模, 通过逐点相乘  $f \cdot s(x) = f(x)s(x)$ . 这是一个有限生成投射模 (交换代数).

问题: 如何填补??

| 向量丛 | 有限生成投射模 | $E \leftrightarrow \{\text{global section}\}$ |
|-----|---------|-----------------------------------------------|
| ??  | 有限生成模   |                                               |

注意到包含所有有限生成投射模的 Abel 范畴就是所有有限生成模 (假设 Noether).

因为上面的对应总是要划到局部, 所以不妨抽象成所 有开集.

对于 X 的每个开基 U, 定义

$$\mathcal{O}(U) = \{U \to \mathbb{C} :$$
多项式映射 $\}.$ 

对于向量丛  $\xi: \underset{X}{\overset{E}{\downarrow}}$ , 对每个 X 的开集 U, 定义

 $\mathcal{E}(U) = U$  上的 section $\{s: U \to E: \xi \circ s = \mathrm{id}_U\}.$ 

那么  $\mathcal{E}(U)$  是  $\mathcal{O}(U)$ -投射模 (52 第二章一道习题).

凝聚层的严格定义可在代数几何书中找到. 粗略来说,一个 X 上的凝聚层就是对每个开集 U 指定一个  $\mathcal{O}(U)$  模.

| 向量丛的直和 | 层的直和 | $[\mathcal{E} \oplus \mathcal{F}](U) = \mathcal{E}(U) \oplus \mathcal{F}(U)$                    |
|--------|------|-------------------------------------------------------------------------------------------------|
| 向量丛的张量 | 层的张量 | $[\mathcal{E} \otimes \mathcal{F}](U) = \mathcal{E}(U) \otimes_{\mathcal{O}(U)} \mathcal{F}(U)$ |

 $\boxed{ extrm{注意 1} }$  需要注意, 向量丛并不是凝聚层范畴中的投射对象. 例如  $\operatorname{Hom}_{\mathcal{O}}(\mathcal{O},-) = \Gamma(-),$  这有高次上同调.

[注意 2] 对于 de Rham 复形中出现的微分  $d: \Omega^i \to \Omega^{i+1}$ , 这是层的映射, 但是不是凝聚层的映射 (= 对应向量丛的映射). 因为凝聚层映射是要求  $fd\omega = d(f\omega)$ .

注意 3 常数层不是凝聚层,局部常数层如何变成 Abel 范畴是另一个故事.

对于代数簇的态射  $f: X \longrightarrow Y$  我们可以定义拉回和推出.

对于 X 上的凝聚层  $\mathcal{F}$ , 定义推出

$$f_*\mathcal{F}(V_{\mathcal{H}\subset Y}) = \mathcal{F}(f^{-1}(V))$$

对于 Y 上的凝聚层 G, 定义拉回

$$f^*\mathcal{G}(U_{\mathcal{H}\subseteq X}) = \varinjlim_{f(U)\subseteq V} \mathcal{O}(U) \otimes_{\mathcal{O}(V)} \mathcal{F}(V)$$

这虽然看起来古怪, 但是可以验证这对应向量丛的拉回.

一种层的理解方式是用 stalk. 对于层  $\mathcal{F}$ , 点 x, 定义

$$\mathcal{F}_x = \varinjlim_{x \in U} \mathcal{F}(U) = \frac{\{s : s \ \text{定义在} \ p \ \text{附近}\}}{s = t \iff \text{在} \ p \ \text{附近}s = t}.$$

我们"可以"说 stalk 决定了层.

注意, stalk 通常不会是有限维线性空间, 即使  $\mathcal{F}$  是一个向量丛, 例如函数在 p 处取值相同, 但是在 p 附近行为可能不同.

一点仔细验证会发现如果 f(x) = y, 那么

$$f^*\mathcal{G}_x = \mathcal{G}_y$$
.

推出和拉回不保持正合性, 所以一个修正是利用导出 函子,

$$R^i f_* \qquad L_i f^*$$

对于推出, 为了确保  $R^i f_*$  把凝聚层映成凝聚层, 我们需要假设 f 是 proper.

对于拉回, 为了确保  $L_i f^*$  是无限和, 我们假设 f 是 smooth.

注意 1 光滑这里指的是非退化,不是任何一个微分流形 里面定义的光滑映射.

注意 1 实际上, Chow 环类比的并不严格是上同调, 而是 Borel-Moore(下) 同调. 这在光滑时是相同的. K-理论也是一样, 因此需要稍微注意. 实际上, 我们在建立基本类理\_论的时候做了一些不严格的类比 (主要原因是 Schubert 胞\_腔不光滑), 严格地还是应该建立 Borel-Moore type 的同U調理论 (不是上同调!).

注意 2 K 理论非常丰富,有拓扑的,代数 (几何) 的,解析的,光滑的.在我们的情况下, $K^0(G/B)$  都是相同的,因为有胞腔结构.但是  $K^1(G/B)$  乃至更高阶则完全不能期待,他们的计算也十分复杂.

其中最方便定义推出拉回的的是代数几何的 K 理论. 但是可能不够容易被理解.

# 5 等变理论速成 (未完成)

6 等变 K 理论 (未完成)

5.1 万有丛 BG

6.1 等变向量丛

我们已经铺垫了大量的例子足够谈论一般的分类丛 BG 了.

- 5.2 等变上同调
- 5.3 等变向量丛

5.4 局部化定理

Atiyah–Bott 局部化定理 GMK

### 6.2 Borel-Weil 定理

考虑 T 的一个表示 V, 通过要求  $\binom{1 \cdots *}{i}$  作用平凡延 拓到 B 上, 那么

$$G \underset{B}{\times} V$$
 
$$\underline{V} = \bigcup_{G/B}$$

是一个向量丛.

而且映射是 G-等变的, 即

于是 <u>V</u> 的 section

$$\Gamma(\underline{V}) = \left\{ G/B \overset{s}{\to} G \underset{B}{\times} V : \xi \circ s = \mathrm{id}_{G/B} \right\}$$

$$\parallel$$

$$\left\{ G \overset{f}{\to} V : f(xb) = b \cdot f(x) \right\}$$

上有G的线性作用,所以是一个表示.

这定义了一个映射

$$T$$
-Rep  $\longrightarrow$   $G$ -Rep.

问题是如何描述这个映射?

任何表示 V 定义最高权空间

$$V_{\text{highest}} = \left\{ x \in V : \begin{pmatrix} 1 & \cdots & * \\ \ddots & \ddots & 1 \end{pmatrix} x = x \right\}.$$

且

$$V \cong_{G\text{-Rep}} V' \iff V_{\text{highest}} \cong_{T\text{-Rep}} V'_{\text{highest}}$$

对于不可约表示 V, 最高权空间是 T 的一维表示.

对于分拆  $\lambda_1 > \cdots > \lambda_n$  是整数 (不必为正),

$$V = \mathbb{C}(\lambda_1 x_1 + \ldots + \lambda_n x_n) = \mathbb{C}\lambda$$

即 diag $(x_1,\ldots,x_n)$  的作用是数乘  $x_1^{\lambda_1}\cdots x_n^{\lambda_1}$ .

Lie 群表示论告诉我们存在唯一的一个 G 的不可约表示  $V(\lambda)$  使得

$$V(\lambda)_{\text{highest}} \cong \mathbb{C}\lambda.$$

注意,  $V(\lambda)^* \cong V(-w_0\lambda)^*$ .

对于代数群 G, 有代数版本的 Peter-Weyl 定理

$$\{G \mathop{\to}\limits^f \mathbb{C}\} \cong \bigoplus_{\overrightarrow{\mathsf{T}}, \overrightarrow{\mathsf{T}}, 0 \not = \overrightarrow{\mathsf{T}}, V} V \otimes V^*.$$

作为  $G \times G$  表示 (代表左乘和右乘).  $\square$ 

$$\{G \xrightarrow{f} \mathbb{C}\} \cong \bigoplus_{\lambda_1 \ge \dots \ge \lambda_n} V(\lambda)^* \otimes V(\lambda).$$

所以,  $\mathbb{C}\lambda$  的 global section

$$\Gamma(\underline{\mathbb{C}}\lambda) = \{G \xrightarrow{f} \mathbb{C}\lambda : f(xb) = b \cdot f(x)\} \cong V(\lambda)^*.$$

这就是Borel-Weil 定理.

另一方面考虑缩成一个点的映射

$$p: G/B \longrightarrow \triangle$$

我们要计算

$$p_*: H_G^*(G/B) \longrightarrow H_G^{*-\dim G/B}(A)$$

$$p_*: K_G(G/B) \longrightarrow K_G(A)$$

我们知道

$$H_G^*(G/B) \longrightarrow H_B^*(G/B)$$

$$K_G(G/B) \longrightarrow K_B(G/B)$$

是单射, 所以我们只需要求

$$p_*: H_B^*(G/B) \longrightarrow H_B^*(\triangle)$$

$$p_*: K_B(G/B) \longrightarrow K_B(\triangle)$$

这是  $H_B^*(点)$  模同态.

首先, 上同调中, 因为维数的原因

$$p_*[\Sigma_w] = \begin{cases} 1, & w = w_0, \\ 0, & w \neq w_0 \end{cases} \qquad \Sigma_w = \overline{B^- w B / B}.$$

因此恰好是

$$\partial_{w_0}: H^*(G/B) \longrightarrow H^*(A).$$

在 K 理论中是类似的.

$$p_*[\mathcal{O}_w] = \begin{cases} 1, & w = w_0, \\$$
还是1,  $w \neq w_0 \end{cases} \qquad \mathcal{O}_w = \mathcal{O}_{\overline{B^- wB/B}}.$ 

因此恰好是

$$\pi_{w_0}: K(G/B) \longrightarrow K(\triangle).$$

另一种语言, 对于 G/B 上的向量丛  $\xi$ ,

$$p_*[\xi] = \sum_{i>0} (-1)^i H^i(G/B;\xi).$$

另一方面 Borel-Weil 其实证明了, 当  $\lambda_1 \ge \cdots \ge \lambda_n$  时,

$$H^{i}(\underline{\mathbb{C}}\lambda) = \begin{cases} \Gamma(\underline{\mathbb{C}}\lambda) & i = 0\\ 0 & i \geq 0 \end{cases}$$

因为  $[\mathbb{C}\lambda^*] = e^{\lambda}$ , 我们得到了 Weyl 特征公式

$$\operatorname{ch}(V(\lambda)^*) = \partial_{w_0} e^{\lambda_1 x_1 + \dots + \lambda_n x_n}.$$

这是几何特征, 代数特征则可以直接计算得是

$$\chi(V(\lambda)) = \pi_{w_0} e^{\lambda_1 x_1 + \dots + \lambda_n x_n}.$$

这是著名的 Weyl 特征公式.

**Demazure 特征公式** 是 Weyl 特征公式的细化. 对于  $\lambda_1 \geq \cdots \geq \lambda_n$ , 考虑在  $\overline{B^-wB/B}$  上的 section

$$\Gamma(\overline{B^-wB/B};\underline{\mathbb{C}}\lambda^*).$$

即  $\mathbb{C}\lambda^*$  拉回  $\overline{B^-wB/B}$  取上同调, 类似上面的讨论,

$$K_B(\overline{B^-wB/B}) \longrightarrow K_B(\stackrel{.}{\bowtie})$$

恰好可由  $\pi_w$  担任. 因此, 假如没有高次上同调的话,

$$\operatorname{ch}(\Gamma(\overline{B^-wB/B})) = \pi_w e^{\lambda_1 x_1 + \dots + \lambda_n x_n}.$$

事实上, Demazure 证明了只要  $\lambda_1 \geq \cdots \geq \lambda_n$ , 确实没有.

习题 1. 对于  $P_{\lambda}$  其中  $\lambda = \lambda_1 \geq \cdots \geq \lambda_r$  是一个 n 的 分拆,那么  $G/B \rightarrow G/P$  的推出  $H^*_G(G/B) \longrightarrow H^*_G(G/P)$  是怎样的呢? [提示: 是  $\partial_{w_0^1 \times \cdots \times w_0^r}$ , 其中  $w_0^1 \times \cdots \times w_0^r$  是  $\mathfrak{S}_{\lambda_1} \times \cdots \times \mathfrak{S}_{\lambda_r} \subseteq \mathfrak{S}_n$  的最长元. 即提取  $H^*(G/B) = H^*(P_{\lambda}/B) \otimes H^*(G/P_{\lambda})$  在  $[\Sigma_{w_0^1 \times \cdots \times w_0^r}] \in H^*(P_{\lambda}/B)$  中的系数,而  $\partial_{w_0^1 \times \cdots \times w_0^r}$  恰好可以担此重任. 实际上 K 理论这件事也对.]

## 7 更多计算 (未完成)

#### 7.1 射影丛定理

associated Grassmannian bundle associated flag bundle

### 7.2 Bott-Samelson 流形

#### 7.3 无穷 $\mathcal{F}\ell$ 和 $\mathcal{G}r$

回顾

$$\mathcal{F}\ell(n)=\operatorname{GL}_n/B_n$$
  $\parallel$   $\left\{0\subseteq V_1\subseteq\cdots\subseteq\mathbb{C}^n:$ 是  $\mathbb{C}^n$  中的 flag,  $\dim V_i=i.$   $\right\}$ 

$$\operatorname{GL}_n/T_n$$
  $\parallel$   $\{(\ell_1,\ldots,\ell_n): \ell_1,\ldots,\ell_n \in \mathbb{C}^n \text{ 中线性无关}\}$  的 1 维子空间.

$$H^*(\mathcal{F}\ell(n)) = \mathbb{Z}[x_1,\ldots,x_n] / \langle e_1,\ldots,e_n \rangle.$$

回顾

$$\mathcal{G}r(k,n) = \operatorname{GL}_n / \left( {}^{\operatorname{GL}_k} {}^* {}_{\operatorname{GL}_{n-k}} \right)$$
 
$$\parallel$$
 
$$\left\{ V_k : V_k \ \mathbb{E} \ \mathbb{C}^n \ \text{中的} \ k \ \text{维子空间}. \right. \right\}$$

$$H^*(\mathcal{G}r(k,n)) = \mathbb{Z}[e_1^k,\ldots,e_k^k] / \langle e_1^n,\ldots,e_n^n \rangle.$$

我们可以

$$GL_n = \left\{ \text{invertible } \left( \begin{array}{c} * \cdots * \\ \vdots \cdots \vdots \\ * \cdots * \end{array} \right) \right\}$$

$$\mathrm{GL}_{\infty} = \left\{ \mathrm{invertible} \; \left( egin{array}{c} * \cdots \cdots \\ \vdots & \ddots \end{array} \right) : \pi \; I \; 只相差有限位置 
ight\}$$

回顾

$$\mathcal{F}\ell(n,\infty) = \operatorname{GL}_{\infty} / \binom{B_n}{\operatorname{GL}_{\infty}}$$

$$\parallel$$

$$\left\{ 0 \subseteq V_1 \subseteq V_2 \subseteq \cdots : \frac{\mathbb{E} \mathbb{C}^{\infty} \text{ 中的 flag, dim } V_i = i.}{\exists n \text{ 充分大时 } V_n = \mathbb{C}^n.} \right\}$$

$$H^*(\mathcal{F}\ell(n,\infty)) = \mathbb{Z}[x_1,\ldots,x_n].$$

回顾

 $H^*(-) = \mathbb{Z}[e_1, \dots, e_n].$ 

通过把  $A \in GL_n$  当做  $\binom{A \ 0}{1}$   $GL_{n+1}$ , 我们可以认为

$$\begin{aligned} \operatorname{GL}_{\infty} &= \bigcup_{n \geq 0} \operatorname{GL}_{n} \\ \operatorname{GL}_{\infty} / B_{\infty} &= \bigcup_{n \geq 0} \operatorname{GL}_{n} / B_{n} = \bigcup_{n \geq 0} \mathcal{F}\ell(n). \\ \operatorname{GL}_{\infty} / \begin{pmatrix} \operatorname{GL}_{k} & * \\ \operatorname{GL}_{\infty} \end{pmatrix} &= \bigcup_{n \geq k} \operatorname{GL}_{n} / \begin{pmatrix} \operatorname{GL}_{k} & * \\ \operatorname{GL}_{n-k} \end{pmatrix} = \bigcup_{n \geq k} \mathcal{G}r(k, n). \end{aligned}$$

这还保持胞腔. 根据 Schubert 多项式的理论,

$$\mathcal{F}\ell(\infty) = \operatorname{GL}_{\infty}/B_{\infty}$$

$$\parallel$$

$$\left\{0 \subseteq V_1 \subseteq V_2 \subseteq \cdots : \begin{array}{c} \mathcal{E} \ \mathbb{C}^{\infty} \ \text{ ph flag, dim } V_i = i. \\ \exists \ n \ \hat{\Sigma} \text{ 分大时 } V_n = \mathbb{C}^n. \end{array}\right\}$$

$$\operatorname{GL}_{\infty}/T$$

$$\parallel$$

$$\left\{ \begin{pmatrix} \ell_1, \ell_2, \dots & \mathcal{E} \ \mathbb{C}^{\infty} \ \text{ pt 性无关} \\ \{(\ell_1, \ell_2, \dots) : \text{ h } 1 \ \text{ 维子空间. } \exists \ n \ \hat{\Sigma} \text{ 分大} \\ \text{ 时 } \ell_n = e_n \ (\text{标准基}). \end{array}\right\}$$

$$H^*(\mathcal{F}\ell(\infty)) = \mathbb{Z}[x_1, \dots, x_n, \dots].$$

下面我们的目标是

定义

$$\operatorname{GL} = \left\{ \operatorname{invertible} \left( \begin{array}{c} \cdots & * \cdots \\ * & \cdots \end{array} \right) : \text{和} \ I \ \text{只相差有限位置} \right\}$$
  $\mathcal{F}\ell = \operatorname{GL} \left/ \left( \begin{array}{c} \cdots & * \cdots \\ * & \cdots \end{array} \right) \right.$   $\mathcal{G}r = \operatorname{GL} \left/ \left( \begin{array}{c} \operatorname{GL} & * \\ \operatorname{GL} \end{array} \right) \right.$ 

为了方便, 我们表示 GL 元素时, 用线把 0 和 1 的交界处割开.

通过把  $A\in \mathrm{GL}_{2n}$  当做  $\begin{pmatrix}1\\A\\1\end{pmatrix}\in \mathrm{GL}_{2n+2},$  具体来 说

$$\left(\begin{array}{c|c|c}
A_{11} & A_{12} \\
\hline
A_{21} & A_{22}
\end{array}\right) \longmapsto \left(\begin{array}{c|c|c}
1 & & & \\
& A_{11} & A_{12} \\
\hline
& A_{21} & A_{22} \\
& & & 1
\end{array}\right)$$

$$\operatorname{GL} = \bigcup_{n \geq 0} \operatorname{GL}_{2n}$$

$$\operatorname{GL}/B = \bigcup_{n\geq 0} \operatorname{GL}_{2n}/B_{2n} = \bigcup_{n\geq 0} \mathcal{F}\ell(2n).$$

 $\operatorname{GL}/B = \bigcup_{n\geq 0} \operatorname{GL}_{2n}/B_{2n} = \bigcup_{n\geq 0} \mathcal{F}\ell(2n).$  是以  $\{x_i\}_{i=-\infty}^0$  为不定元的对称多项式环. GL/ $\binom{\operatorname{GL}}{\operatorname{GL}} = \bigcup_{n\geq 0} \operatorname{GL}_{2n}/\binom{\operatorname{GL}_n}{\operatorname{GL}_n} = \bigcup_{n\geq 0} \mathcal{G}r(n,2n).$  对于  $\mathcal{F}\ell$ , 直接取极限得不到正确的结果, 但是注意到

 $H^*(\mathcal{G}r) = \lim_{n \to \infty} H^*(\mathcal{G}r(n,\infty)) = \Lambda$ 

他们都保持胞腔.

通过把 
$$A \in GL_{\infty}$$
 当做  $\begin{pmatrix} 1 & A \end{pmatrix} \in GL_{\infty}$ , 具体来说

$$\left(\begin{array}{c|c|c}
A_{11} & A_{12} \\
\hline
A_{21} & A_{22}
\end{array}\right) \longmapsto \left(\begin{array}{c|c|c}
1 & & \\
& A_{11} & A_{12} \\
\hline
& A_{21} & A_{22}
\end{array}\right)$$

我们可以认为

$$GL = \bigcup_{n \ge 0} GL_{\infty}$$

$$GL/B = \bigcup_{n > 0} GL_{\infty}/B_{\infty} = \bigcup_{n > 0} \mathcal{F}\ell(\infty).$$

$$\operatorname{GL}/({\operatorname{GL}}^*)$$
 =  $\bigcup_{n\geq 0}\operatorname{GL}_{\infty}/({\operatorname{GL}}^*)$  =  $\bigcup_{n\geq 0}\operatorname{GL}_{\infty}/({\operatorname{GL}}^*)$  =  $\bigcup_{n\geq 0}\operatorname{GL}_{\infty}/({\operatorname{GL}}^*)$  =  $\bigcup_{n\geq 0}\operatorname{Gr}(n,\infty)$ 为在  $n$  充分大时, 这个胞腔在

他们都保持胞腔.

为了方便起见, 我们约定

$$\begin{pmatrix}
1 & & & & & \\
& * & * & \cdots \\
& * & * & \ddots \\
& \vdots & \ddots & \ddots
\end{pmatrix} / \begin{pmatrix}
1 & & & & & \\
& B_n & * & \cdots \\
& & * & \ddots \\
& & & \ddots
\end{pmatrix} \cong \mathcal{F}\ell(\infty)$$

的上同调是

$$\mathbb{Z}[x_{-n+1}, x_{-n+2}, \dots, x_0].$$

因此

$$\begin{pmatrix} 1 & & & & \\ & * & * & \cdots \\ \hline & * & * & \ddots \\ & : & \ddots & \ddots \end{pmatrix} / \begin{pmatrix} 1 & & & & \\ & \operatorname{GL}_n & * & \cdots \\ & & * & \cdots \\ & & : & \ddots \end{pmatrix} \cong \mathcal{G}r(n, \infty)$$

的上同调是

$$\mathbb{Z}[x_{-n+1}, x_{-n+2}, \dots, x_0]^{\mathfrak{S}_n}$$

因此上同调层面上

$$H^*(\mathcal{F}\ell(\infty)) \longrightarrow H^*(\mathcal{F}\ell(\infty))$$
$$f(x_{-n}, x_{-n+1} \dots) \longmapsto f(0, x_{-n+1}, \dots).$$

$$H^*(\mathcal{G}r(n+1,\infty)) \longrightarrow H^*(\mathcal{G}r(n+1,\infty))$$
  
 $f(x_{-n},\ldots,x_0) \longmapsto f(0,x_{-n+1},\ldots,x_0).$ 

$$\operatorname{GL}/B = \mathcal{F}\ell \longrightarrow \mathcal{G}r = \operatorname{GL}/\left( \begin{smallmatrix} \operatorname{GL} & * \\ & \operatorname{GL} \end{smallmatrix} \right)$$

是一个以  $F\ell(\infty) \times F\ell(\infty)$  为纤维的纤维丛, 因此

$$H^*(\mathcal{F}\ell) = \Lambda \otimes \mathbb{Z}[\dots, x_{-1}, x_0, x_1, x_2, \dots].$$

即所谓的 Back stable symmetric polynomial ring.

此时也有 Schubert 胞腔  $[BwB/B] \in H^*(\mathcal{F}\ell)$ , 根据 定义, 这应该被表作 back stable Schubert polynomial

$$\lim_{n \to \infty} \mathfrak{S}_{1_n \boxtimes w}(x_{-n+1}, x_{-n+2}, \ldots).$$

$$n \to \infty$$
  $n \to \infty$   $n \to \infty$ 

$$\begin{pmatrix}
1 & & & & & \\
& * & * & \cdots & \\
& * & * & \ddots & \\
& \vdots & \ddots & \ddots
\end{pmatrix} / \begin{pmatrix}
1 & & & & & \\
& B_n & * & \cdots & \\
& & * & \ddots & \\
& & & \ddots & \\
& & & \ddots
\end{pmatrix} \cong \mathcal{F}\ell(\infty)$$

的像就是这个多项式.

此时自然投射

$$\operatorname{GL}/B = \mathcal{F}\ell \longrightarrow \mathcal{G}r = \operatorname{GL}/(\operatorname{GL}_{\operatorname{GL}}^*)$$

诱导的上同调拉回

$$H^*(\mathcal{G}r) \longrightarrow H^*(\mathcal{F}\ell)$$

就是包含

$$\Lambda \subseteq \Lambda \otimes \mathbb{Z}[\ldots, x_{-1}, x_0, x_1, x_2, \ldots].$$

但是比较出乎意料的地方是反方向也有一个自然的映 射, 所谓的 wrong way map.

$$\mathcal{G}r \longrightarrow \mathcal{F}\ell \stackrel{\mathfrak{F}}{\Longrightarrow} H^*(\mathcal{F}\ell) \longrightarrow H^*(\mathcal{G}r)$$

这个映射把  $x_i \mapsto 0$ .

同时

$$\mathcal{G}r(k,2k) \subset \mathcal{G}r \stackrel{\mathfrak{F}}{\Longrightarrow} H^*(\mathcal{G}r) \longrightarrow H^*(\mathcal{G}r(k,2k)).$$

最终证明对于 Schubert cells, 这个复合之后是一个对应的 positroid, 所以用 Knutson 的 IP pipe dream 可以计算.