ImpactDataViz 241 Final Project

```
# load packages
library(data.table)
library(foreign)
library(sandwich)
library(stargazer)
##
## Please cite as:
   Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(lmtest)
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.6.2
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
library(tidyr)
## Warning: package 'tidyr' was built under R version 3.6.2
library(knitr)
library('ggplot2')
library(fastDummies)
```

Common functions

```
# function to return confidence intervals with bust se
get_confint_robust = function(model, vcovCL) {
  t<-qt(.975, model$df.residual)
  ct<-coeftest(model, vcovCL)</pre>
  est<-cbind(ct[,1], ct[,1]-t*ct[,2], ct[,1]+t*ct[,2], ct[,4])
  colnames(est)<-c("Estimate","LowerCI","UpperCI","pValue")</pre>
 return(est)
}
# parse out the regression results using robust standard errors
get_regression_results_robust_se = function(model, df, variable_names, showAsTibble) {
  model$vcovHC = vcovHC(model,type="HC1")
 robust_se_all
                  <- sqrt(diag(model$vcovHC))
  est = get_confint_robust(model,model$vcovHC)
  robust_se = c(rep(0, length(variable_names)))
  i = 1
  for (variable_name in variable_names) {
   robust_se_single <- sqrt(diag( model$vcovHC))[variable_name]</pre>
   robust se[i] = robust se single
   i = i + 1
  }
  coef = est[variable_names, 'Estimate']
  ci_lower_robust = est[variable_names, 'LowerCI']
  ci_lower_robust = est[variable_names, 'LowerCI']
  ci_upper_robust = est[variable_names, 'UpperCI']
  p_value = est[variable_names, 'pValue']
  results = data.table(id = variable_names)
  results[, coef := round(coef,4)]
  results[, ci_lower := round(ci_lower_robust,4)]
  results[, ci_upper := round(ci_upper_robust,4)]
  results[, p_value := signif(p_value, 5)]
  results[, robust_se := round(robust_se,4)]
  if (showAsTibble) {
   print(as tibble(results))
 return( list('estimates'=results, 'robust_se_all'=robust_se_all))
}
# Multiple plot function
# ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects)
# - cols: Number of columns in layout
# - layout: A matrix specifying the layout. If present, 'cols' is ignored.
# If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE),
# then plot 1 will go in the upper left, 2 will go in the upper right, and
# 3 will go all the way across the bottom.
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {</pre>
```

```
library(grid)
  # Make a list from the ... arguments and plotlist
  plots <- c(list(...), plotlist)</pre>
  numPlots = length(plots)
  # If layout is NULL, then use 'cols' to determine layout
  if (is.null(layout)) {
    # Make the panel
    # ncol: Number of columns of plots
    # nrow: Number of rows needed, calculated from # of cols
    layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),</pre>
                    ncol = cols, nrow = ceiling(numPlots/cols))
 }
 if (numPlots==1) {
    print(plots[[1]])
  } else {
    # Set up the page
    grid.newpage()
    pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
    # Make each plot, in the correct location
    for (i in 1:numPlots) {
      # Get the i,j matrix positions of the regions that contain this subplot
      matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))</pre>
      print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
                                       layout.pos.col = matchidx$col))
    }
 }
}
```

1. Parse the survey data into a data.table

```
parse_survey_data = function(filename, treatment_only=FALSE) {
  cat(filename, "\n")
  raw <- fread(filename)

# covariates
setnames(raw, 'Q3', 'state')
setnames(raw, 'Q4', 'gender')
setnames(raw, 'Q5', 'age')
setnames(raw, 'Q6', 'ethnicity_multi')
setnames(raw, 'Q7', 'political_party')
setnames(raw, 'Q8', 'education')
setnames(raw, 'Q9', 'covid_sick')
setnames(raw, 'Q10', 'covid_hospitalized')
setnames(raw, 'Q11', 'covid_died')</pre>
```

```
# duration of survey time
  setnames(raw, 'Duration (in seconds)', 'duration_of_survey')
  # which block was active? (did the user see the treatment or
  # control data viz)
  setnames(raw, 'Q15', 'treatment_viz_is_accurate')
  if (!treatment_only) {
    setnames(raw, 'Q17', 'control viz is accurate')
  }
  # outcome questions about COVID attitudes
  setnames(raw, 'Q18', 'outcome_spread')
  setnames(raw, 'Q19', 'outcome_death')
  # which block was active determines if
  # subject received treatment data viz or control
  # data viz
  cat(" number of responses", nrow(raw), '\n')
  raw[, treatment := ifelse(is.na(treatment_viz_is_accurate), 0, 1)]
  cleaned = raw[!is.na(outcome_spread) & !is.na(outcome_death),]
  cat(" number of responses after dropping na", nrow(cleaned), '\n')
  # ethnicity allows for multiple choice
  # for covariates, just grab the first one
  ethnicity_single = rep(0,nrow(cleaned))
  i = 1
  for (eth_entry in cleaned[,ethnicity_multi]) {
   eth_tokens = unlist(strsplit(eth_entry, ","))
   ethnicity_single[i] = as.numeric(eth_tokens[1])
    i = i + 1
  cleaned[, ethnicity := ethnicity_single ]
  # counts in control vs treatment
  n_control = nrow(cleaned[treatment == 0, ])
  n treatment = nrow(cleaned[treatment == 1, ])
  cat(" number in treatment", n_treatment, "\n")
  cat(" number in control", n control, "\n\n")
 return(cleaned)
}
# A large run of 260 subjects run on 7/21
run1 <- parse_survey_data("data/run1.2020.07.21.csv")</pre>
## data/run1.2020.07.21.csv
## number of responses 265
## number of responses after dropping na 259
## number in treatment 131
## number in control 128
```

```
run1 = run1[, run := 0]
run1[, condition := treatment]
# One small run was done in evening 7/24 treatment only
run2_small <- parse_survey_data("data/run2.small.2020.07.24.csv", TRUE)
## data/run2.small.2020.07.24.csv
## number of responses 33
## number of responses after dropping na 30
## number in treatment 30
## number in control 0
run2_small[, run := 1]
run2_small[, condition := treatment]
run2_small[, control_viz_is_accurate := ""]
# A large run of 270 run on 7/25 treatment and control
run2_large <- parse_survey_data("data/run2.2020.07.25.csv")</pre>
## data/run2.2020.07.25.csv
## number of responses 270
## number of responses after dropping na 262
## number in treatment 130
## number in control 132
run2_large = run2_large[, run :=1]
run2_large[, condition := treatment]
run2 = rbind(run2_small, run2_large)
# Combine the runs on 7/21 and 7/25
combined = rbind(run1, run2)
```

2. EDA

2.1 Check Duration of Survey

```
show_duration = function(d) {
  cat('duration for control ', mean(d[condition == 0,duration_of_survey]), '\n')
  cat('duration for treatment', mean(d[condition == 1,duration_of_survey]), '\n\n')
}
show_duration(run1)

## duration for control 153.1875
## duration for treatment 172.2061
```

```
## duration for control 136.7955
## duration for treatment 205.5813

show_duration(combined)

## duration for control 144.8654
## duration for treatment 190.5567
```

3. Covariate balance

3.1 Compare distributions using violin plote

```
check_covariate_balance = function(d) {
  options(repr.plot.width = 14, repr.plot.height = 8)
  p1 = ggplot(d, aes(x=as.factor(condition), y=gender, fill=as.factor(condition))) +
   geom_violin() + scale_fill_manual(values=c("#a69da0", "#f95b3a"))
  p2 = ggplot(d, aes(x=as.factor(condition), y=age, fill=as.factor(condition))) +
   geom_violin() + scale_fill_manual(values=c("#a69da0", "#f95b3a"))
  p3 = ggplot(d, aes(x=as.factor(condition), y=as.numeric(ethnicity), fill=as.factor(condition))) +
   geom violin() + scale fill manual(values=c("#a69da0", "#f95b3a"))
  p4 = ggplot(d, aes(x=as.factor(condition), y=political_party, fill=as.factor(condition))) +
   geom_violin() + scale_fill_manual(values=c("#a69da0", "#f95b3a"))
  p5 = ggplot(d, aes(x=as.factor(condition), y=education, fill=as.factor(condition))) +
   geom_violin() + scale_fill_manual(values=c("#a69da0", "#f95b3a"))
  p6 = ggplot(d, aes(x=as.factor(condition), y=covid_sick, fill=as.factor(condition))) +
   geom_violin() + scale_fill_manual(values=c("#a69da0", "#f95b3a"))
  p7 = ggplot(d, aes(x=as.factor(condition), y=covid_hospitalized, fill=as.factor(condition))) +
   geom_violin() + scale_fill_manual(values=c("#a69da0", "#f95b3a"))
  p8 = ggplot(d, aes(x=as.factor(condition), y=covid_died, fill=as.factor(condition))) +
   geom_violin() + scale_fill_manual(values=c("#a69da0", "#f95b3a"))
  p9 = ggplot(d, aes(x=as.factor(condition), y=state, fill=as.factor(condition))) +
   geom_violin() + scale_fill_manual(values=c("#a69da0", "#f95b3a"))
  multiplot(p1, p2, p3, p4, p5, p6, p7, p8, p9, cols=3)
check_covariate_balance(run1)
```


check_covariate_balance(run2)

check_covariate_balance(combined)

4. Estimate ATE

4.1 Estimate the ATE for both outcomes

```
estimate ate = function(d, outcome field) {
 g <- d[ , .(group_mean = mean(get(outcome_field))), keyby = .(condition)]</pre>
 ate <- g[ , diff(group_mean)]
 res <- NA
  for (i in 1:10000) {
     res[i] <- d[ , .(group_mean = mean(get(outcome_field))), keyby = .(sample(condition))][ , diff(gr</pre>
 dist_sharp_null <- res
  #hist(dist_sharp_null)
  #abline(v=ate, lwd=3, col='blue')
  #abline(v=abs(ate), lwd=3, col='blue')
  p_value_one_tailed <- mean(dist_sharp_null >= ate)
  p_value_two_tailed <- mean(abs(dist_sharp_null) >= abs(ate))
  cat(outcome_field, '\n')
  cat(' mean control ', g[condition == '0', group_mean], '\n')
  cat(' mean treatement ', g[condition == '1', group_mean], '\n')
                      ', ate, '\n')
  cat(' ATE
 cat(' p_value 1-tailed', p_value_one_tailed, '\n')
 cat(' p_value 2-tailed', p_value_two_tailed, '\n\n')
cat('run1', '\n')
## run1
cat('***************, '\n')
## **********
estimate_ate(run1, 'outcome_spread')
## outcome_spread
## mean control
                     3.132812
## mean treatement 3.473282
## ATE
                     0.3404699
## p_value 1-tailed 0.0013
## p_value 2-tailed 0.0022
```

```
estimate_ate(run1, 'outcome_death')
## outcome_death
## mean control
                    2.398438
## mean treatement 2.656489
                    0.258051
## p_value 1-tailed 0.0013
## p_value 2-tailed 0.0021
cat('run2', '\n')
## run2
cat('****************, '\n')
## *********
estimate_ate(run2, 'outcome_spread')
## outcome_spread
## mean control 3.151515
## mean treatement 3.30625
                    0.1547348
## p_value 1-tailed 0.0876
## p_value 2-tailed 0.1659
estimate_ate(run2, 'outcome_death')
## outcome_death
## mean control
                    2.5
## mean treatement 2.60625
## ATE
                    0.10625
## p_value 1-tailed 0.1059
## p_value 2-tailed 0.1922
cat('combined', '\n')
## combined
cat('******************, '\n')
## ********
estimate_ate(combined, 'outcome_spread')
## outcome_spread
## mean control
                   3.142308
## mean treatement 3.381443
## ATE
                    0.2391356
## p_value 1-tailed 0.0022
## p_value 2-tailed 0.0034
```

```
estimate_ate(combined, 'outcome_death')
## outcome_death
## mean control
                     2.45
## mean treatement 2.628866
                     0.178866
## p_value 1-tailed 0.0016
## p_value 2-tailed 0.0024
meanFunction <- function(x){</pre>
return(data.frame(y=round(mean(x),2),label=round(mean(x,na.rm=T),2)))
show_box_plot_spread = function(df, title) {
 df$treatment group <- as.factor(df$condition)</pre>
  p = ggplot(df, aes(x=treatment_group, y=outcome_spread, fill=treatment_group)) + geom_boxplot() +
    scale_fill_manual(values=c("#a69da0", "#f95b3a")) + labs(title=title, x="Control vs. Treatment", y
                 width = 1, linetype = "dashed") + stat_summary(fun.data = meanFunction, geom="text", s
 p + geom_jitter(shape=16, alpha=.3, position=position_jitter(0.2))
show_box_plot_death= function(df, title) {
  df$treatment_group <- as.factor(df$condition)</pre>
  p = ggplot(df, aes(x=treatment_group, y=outcome_death, fill=treatment_group)) + geom_boxplot() +
    scale_fill_manual(values=c("#a69da0", "#f95b3a")) + labs(title=title, x="Control vs. Treatment", y =
                 width = 1, linetype = "dashed") + stat_summary(fun.data = meanFunction, geom="text", s
    #stat_summary(fun.y=mean, geom="line", shape=10, size=14, color="black", fill="red")
 p + geom_jitter(shape=16, size=2, alpha=.3, position=position_jitter(0.2) )
meanFunction1 <- function(x){</pre>
return(data.frame(y=round(mean(x),0),label=round(mean(x,na.rm=T),0)))
}
show_box_plot_duration= function(df, title) {
 df$treatment_group <- as.factor(df$condition)</pre>
  p = ggplot(df, aes(x=treatment_group, y=duration_of_survey, fill=treatment_group)) + geom_boxplot()
    scale_fill_manual(values=c("#a69da0", "#f95b3a")) + labs(title=title, x="Control vs. Treatment", y =
                 width = 1, linetype = "dashed") + stat_summary(fun.data = meanFunction1, geom="text",
 p + geom_jitter(shape=16, size=2, alpha=.3, position=position_jitter(0.2) )
show_box_plot_spread(run1, "Concern over spread of COVID-19 in U.S. - Run 1")
```

Concern over spread of COVID-19 in U.S. - Run 1

show_box_plot_spread(run2, "Concern over spread of COVID-19 in U.S. - Run 2")

Concern over spread of COVID-19 in U.S. - Run 2

show_box_plot_spread(combined, "Concern over spread of COVID-19 in U.S. - Both Runs")

Concern over spread of COVID-19 in U.S. - Both Runs

show_box_plot_death(run1, "Distress over COVID-19 deaths in U.S. - Run 1")

Distress over COVID-19 deaths in U.S. - Run 1

show_box_plot_death(run2, "Distress over COVID-19 deaths in U.S. - Run 2")

show_box_plot_death(combined, "Distress over COVID-19 deaths in U.S. - Both runs")

Distress over COVID-19 deaths in U.S. - Both runs

show_box_plot_duration(combined, "Survey Duration - Both runs")

Survey Duration - Both runs


```
cat(combined[treatment == 0, mean(duration_of_survey)], '\n')
## 144.8654
cat(combined[treatment == 1, mean(duration_of_survey)], '\n')
```

5. Linear Regression

190.5567

5.1 Perform linear regression the two outcomens (concern about COVID-19 spread, concern about COVID-19 deaths)

```
+ as.factor(education)
                       + as.factor(covid_sick)
                       + as.factor(covid_hospitalized)
                       + as.factor(covid_died), d)
  } else {
    model_spread_adv = lm(outcome_spread ~ condition
                       + as.factor(gender)
                       + as.factor(age)
                       + as.factor(ethnicity)
                       + as.factor(political_party)
                       + as.factor(education)
                       + as.factor(covid_sick)
                       + as.factor(covid_hospitalized)
                       + as.factor(covid_died), d)
  }
                 = get_regression_results_robust_se(model_spread, d, c('condition'), FALSE)
  est_spread
  est_spread_adv = get_regression_results_robust_se(model_spread_adv, d, c('condition'), FALSE)
  return ( list('model' = model_spread,
                'model_adv'=model_spread_adv,
                'est'=est_spread,
                'est_adv'=est_spread_adv))
}
run_regression_outcome2 = function(d, control_for_run) {
  model_spread = lm(outcome_spread ~ condition, d)
  if (control_for_run) {
    model_spread_adv = lm(outcome_death ~ condition
                       + run
                       + as.factor(gender)
                       + as.factor(age)
                       + as.factor(ethnicity)
                       + as.factor(political_party)
                       + as.factor(education)
                       + as.factor(covid_sick)
                       + as.factor(covid_hospitalized)
                       + as.factor(covid_died), d)
  } else {
    model_spread_adv = lm(outcome_death ~ condition
                       + as.factor(gender)
                       + as.factor(age)
                       + as.factor(ethnicity)
                       + as.factor(political_party)
                       + as.factor(education)
                       + as.factor(covid_sick)
                       + as.factor(covid_hospitalized)
                       + as.factor(covid_died), d)
  }
```

```
est_spread = get_regression_results_robust_se(model_spread, d, c('condition'), FALSE)
  est_spread_adv = get_regression_results_robust_se(model_spread_adv, d, c('condition'), FALSE)
  return ( list('model' = model_spread,
                'model_adv'=model_spread_adv,
                'est'=est_spread,
                'est_adv'=est_spread_adv))
}
aggregate_covariates = function(df) {
  df[, college_educated := ifelse(education > 4, 1, 0)]
  df[, caucasian := ifelse(ethnicity == 3, 1, 0)]
  df[, age_under_40 := ifelse(age < 4, 1, 0)]</pre>
  df[, age_40_60 := ifelse(age > 4 & age <= 6, 1, 0)]
  df[, age_over_60 := ifelse(age >= 7, 1, 0)]
}
regression_labels_run = c('Treatment',
      'Run',
      'Female', 'Non-binary', 'Gender not answered',
      '20-29', '30-39', '40-49', '50-59', '60-69', '70-79', 'Over 80',
      'Black/African American', 'Caucasian', 'Hispanic/Latinx',
       'Native American', 'Pacific Islander', 'Ethnicity not answered',
      'Democrat', 'Independent', 'Party other',
      'High school', 'Some college', 'Associates', 'Bachelors', 'Masters', 'Doctoral', 'JD/MD',
      'Sick from COVID-19',
      'Hospitalized from COVID-19',
      'Died COVID-19')
mi_spread_run1 = run_regression_outcome1(run1, TRUE)
mi_spread_run2 = run_regression_outcome1(run2, TRUE)
mi_spread_combined_run = run_regression_outcome1(combined, TRUE)
stargazer(mi_spread_run1$model, mi_spread_run1$model_adv,
          mi_spread_run2$model_adv,
          mi spread combined run$model adv,
          type="text",
          se = list(mi spread run1\$est\$robust se all, mi spread run1\$est adv\$robust se all,
                    mi_spread_run2$est_adv$robust_se_all,
                    mi_spread_combined_run$est_adv$robust_se_all),
          title=paste('Response to COVID-19 Spread'),
          dep.var.caption = "Response to COVID-19 Spread",
          dep.var.labels.include = FALSE, model.numbers=FALSE,
          column.labels = c("July 21, 2020", "July 21, 2020", "July 25, 2020", "Both dates"),
          align=TRUE,
          covariate.labels = regression_labels_run)
##
## Response to COVID-19 Spread
```

##		Response to COVID-19 Spread		
##		July 21, 2020	July 21, 2020	July 25, 2020
## ## ## ##		0.340*** (0.107)	0.339*** (0.106)	0.172* (0.095)
	Run			
## ##			-0.063 (0.105)	0.187* (0.107)
## ##			0.886** (0.420)	1.742*** (0.409)
## ##			0.646*** (0.192)	0.629** (0.292)
## ##			0.323 (0.380)	-0.454* (0.234)
## ##			0.295 (0.381) 0.181	-0.209 (0.264) -0.460*
## ##			0.402)	(0.272)
## ##			(0.412)	(0.255)
## ## ##			(0.441) 1.156***	(0.267) -0.458
## ## ##			(0.437)	(0.336) 1.121**
	Black/African American		0.195	(0.463)
	Caucasian		(0.201)	0.060
## ## ## ##	Hispanic/Latinx		(0.165) 0.230 (0.205)	(0.187) 0.184 (0.252)
##	Native American		-0.471 (0.513)	0.482 (0.316)
## ## ##	Pacific Islander		-2.519*** (0.232)	

##			
## Ethnicity not answered		0.715**	-0.121
##		(0.304)	(0.585)
##		0. 075	4.440
## Democrat ##		0.675*** (0.141)	1.118*** (0.134)
##		(0.141)	(0.134)
## Independent		0.357**	0.602***
##		(0.171)	(0.162)
##			
## Party other		-0.222 (0.370)	-0.318 (0.376)
## ##		(0.370)	(0.376)
## High school		-0.050	
##		(0.800)	
##			
## Some college		0.194	0.135
## ##		(0.791)	(0.191)
## Associates		0.017	-0.020
##		(0.795)	(0.207)
##			
## Bachelors		0.188	0.125
## ##		(0.781)	(0.174)
## Masters		0.337	0.223
##		(0.786)	(0.195)
##			
## Doctoral		-0.166	0.029
## ##		(0.780)	(0.337)
## ## JD/MD		0.502	0.842**
##		(0.778)	(0.339)
##			
## Sick from COVID-19		-0.200*	-0.162
## ##		(0.119)	(0.117)
<pre>## ## Hospitalized from COVID-1</pre>	9	-0.166	-0.056
##		(0.165)	(0.161)
##			
## Died COVID-19		0.092	-0.110
##		(0.158)	(0.157)
## Constant	3.133***	2.450***	2.660***
##	(0.085)	(0.896)	(0.321)
##	· · · · ·		· •
##			
## Observations	259	259	292
## R2 ## Adjusted R2	0.038 0.034	0.314 0.227	0.351 0.282
## Residual Std. Error			
## F Statistic			5.084*** (df = 28; 263)
## ========			

Note:

*p<0.

```
mi_death_run1 = run_regression_outcome2(run1, TRUE)
mi_death_run2 = run_regression_outcome2(run2, TRUE)
mi_death_combined_run = run_regression_outcome2(combined, TRUE)
stargazer(mi_death_run1$model, mi_death_run1$model_adv,
         mi_death_run2$model_adv,
         mi_death_combined_run$model_adv,
          type="text",
          se = list(mi_death_run1$est$robust_se_all, mi_death_run1$est_adv$robust_se_all,
                    mi_death_run2$est_adv$robust_se_all,
                    mi_death_combined_run$est_adv$robust_se_all),
          title=paste('Response to COVID-19 Death'),
          dep.var.caption = "Response to COVID-19 Death",
          dep.var.labels.include = FALSE, model.numbers=FALSE,
          column.labels = c("July 21, 2020", "July 21, 2020", "July 25, 2020", "Both dates"),
          align=TRUE,
          covariate.labels = regression_labels_run)
```

##

# #	Response to COVID-19 Dear		
#		July 21, 2020	July 25, 2020
# # Treatment	0.340***	0.250***	0.109
#	(0.107)	(0.090)	(0.072)
#			
# Run			
#			
#			
# Female		0.050	0.082
#		(0.085)	(0.079)
# # Non-binary		0.573*	0.899***
# Non-binary		(0.308)	(0.308)
#		(0.300)	(0.300)
# Gender not answered		0.437***	0.454**
#		(0.159)	(0.207)
 #		(0.120)	(**=**/
# 20-29		-0.371*	-0.083
#		(0.191)	(0.175)
#			
# 30-39		-0.323*	0.071
#		(0.186)	(0.190)
#			
# 40-49		-0.345*	0.142
#		(0.209)	(0.195)
# 50 50		0.050	0.456
:# 50-59 		-0.258	0.153
# #		(0.211)	(0.195)

## ## ##	60-69	-0.279 (0.260)	0.370* (0.213)
	70-79	0.170 (0.254)	-0.288 (0.295)
	Over 80		0.873*** (0.256)
	Black/African American	0.041 (0.168)	-0.022 (0.147)
	Caucasian	-0.103 (0.134)	-0.016 (0.118)
	Hispanic/Latinx	-0.019 (0.212)	0.193 (0.160)
	Native American	-0.261 (0.289)	-0.020 (0.218)
## ## ##	Pacific Islander	-1.667*** (0.176)	
## ## ##	Ethnicity not answered	0.374 (0.239)	-0.169 (0.291)
## ## ##	Democrat	0.543*** (0.117)	0.811*** (0.108)
## ## ##	Independent	0.340** (0.134)	0.414*** (0.132)
## ## ##	Party other	-0.107 (0.302)	0.141 (0.291)
## ##	High school	0.233 (0.530)	
## ## ##	Some college	0.216 (0.516)	0.040 (0.137)
## ##	Associates	0.135 (0.524)	-0.095 (0.166)
## ## ##	Bachelors	0.088 (0.512)	-0.071 (0.133)
## ##	Masters	0.263 (0.517)	-0.036 (0.142)
## ## ##	Doctoral	-0.475 (0.512)	0.041 (0.141)

```
## JD/MD
                                                                                                                                     0.290
                                                                                                                                                                                      0.469*
##
                                                                                                                                   (0.513)
                                                                                                                                                                                      (0.239)
##
                                                                                                                                                                                      -0.097
## Sick from COVID-19
                                                                                                                                   -0.102
                                                                                                                                   (0.098)
                                                                                                                                                                                      (0.084)
##
## Hospitalized from COVID-19
                                                                                                                                   -0.084
                                                                                                                                                                                       0.003
##
                                                                                                                                   (0.125)
                                                                                                                                                                                      (0.116)
##
## Died COVID-19
                                                                                                                                     0.067
                                                                                                                                                                                      -0.090
##
                                                                                                                                   (0.128)
                                                                                                                                                                                      (0.118)
##
                                                                             3.133***
                                                                                                                                                                                    2.017***
## Constant
                                                                                                                                 2.327***
                                                                                (0.085)
                                                                                                                                                                                      (0.239)
##
                                                                                                                                   (0.570)
##
## Observations
                                                                                    259
                                                                                                                                       259
                                                                                                                                                                                          292
## R2
                                                                                  0.038
                                                                                                                                    0.252
                                                                                                                                                                                       0.325
## Adjusted R2
                                                                                 0.034
                                                                                                                                    0.157
                                                                                                                                                                                      0.254
                                                                  0.858 (df = 257)
                                                                                                                    0.628 (df = 229)
## Residual Std. Error
                                                                                                                                                                       0.591 (df = 263)
## F Statistic
                                                           10.183*** (df = 1; 257) 2.657*** (df = 29; 229) 4.533*** (df = 28; 263) 5
## Note:
                                                                                                                                                                                                               *p<0.
state_ordinals <- fread('data/state_ordinals.csv')</pre>
states_northeast = c('Connecticut', 'Maine', 'Massachusetts', 'New Hampshire', 'Rhode Island', 'Vermont', 'New Hampshire', 'Rhode Island', 'New Hampshire', 'New Hamps
states_midwest = c('Illinois','Indiana','Michigan','Ohio','Wisconsin', 'Iowa', 'Kansas', 'Minnesota',
states_south = c('Delaware', 'Florida', 'Georgia', 'Maryland', 'North Carolina', 'South Carolina', 'Vir
states_west = c('Arizona', 'Colorado', 'Idaho', 'Montana', 'Nevada', 'New Mexico', 'Utah', 'Wyoming', '.
states_other = c('Puerto Rico')
get_region_for_state = function(ordinal) {
    state_name = state_ordinals[ordinal, V1]
    if (is.element(state_name, states_northeast)) {
       return("northeast")
    } else if (is.element(state_name, states_midwest)) {
          return("midwest")
    } else if (is.element(state_name, states_south)) {
       return("south")
    } else if (is.element(state_name, states_west)) {
      return("west")
   } else if (is.element(state_name, states_other)) {
       return ("other")
    } else {
        return("other")
    }
}
get_region_for_state(5)
```

[1] "west"

```
regions = c(rep(',',53))
i = 1
for (ordinal in state_ordinals$V2) {
  the_region = get_region_for_state(ordinal)
  cat(the_region, i, '\n')
 regions[i] = the_region
  i = i + 1
}
## south 1
## west 2
## west 3
## south 4
## west 5
## west 6
## northeast 7
## south 8
## south 9
## south 10
## south 11
## west 12
## west 13
## midwest 14
## midwest 15
## midwest 16
## midwest 17
## south 18
## south 19
## northeast 20
## south 21
## northeast 22
## midwest 23
## midwest 24
## south 25
## midwest 26
## west 27
## midwest 28
## west 29
## northeast 30
## northeast 31
## west 32
## northeast 33
## south 34
## midwest 35
## midwest 36
## south 37
## west 38
## northeast 39
## other 40
## northeast 41
## south 42
## midwest 43
```

south 44

```
## south 45
## west 46
## northeast 47
## south 48
## west 49
## south 50
## midwest 51
## west 52
## other 53

state_ordinals[, region:= regions]

state_ordinals
```

```
##
                          V1 V2
                                    region
##
    1:
                     Alabama
                                     south
                              1
##
                      Alaska
                                      west
##
    3:
                     Arizona
                                      west
                    Arkansas
                                     south
##
    5:
                  California
                                      west
##
    6:
                    Colorado
                              6
                                      west
##
                 Connecticut
                              7 northeast
    8: District of Columbia 8
                                     south
##
    9:
                    Delaware
                                     south
## 10:
                     Florida 10
                                     south
## 11:
                     Georgia 11
                                     south
                                      west
## 12:
                      Hawaii 12
## 13:
                       Idaho 13
                                      west
## 14:
                    Illinois 14
                                   midwest
## 15:
                     Indiana 15
                                   midwest
## 16:
                        Iowa 16
                                   midwest
## 17:
                      Kansas 17
                                   midwest
## 18:
                    Kentucky 18
                                     south
## 19:
                   Louisiana 19
                                     south
## 20:
                       Maine 20 northeast
## 21:
                    Maryland 21
                                     south
## 22:
              Massachusetts 22 northeast
## 23:
                    Michigan 23
                                   midwest
## 24:
                   Minnesota 24
                                   midwest
## 25:
                 Mississippi 25
                                     south
## 26:
                    Missouri 26
                                   midwest
## 27:
                     Montana 27
                                      west
## 28:
                    Nebraska 28
                                   midwest
## 29:
                      Nevada 29
                                      west
## 30:
               New Hampshire 30 northeast
## 31:
                  New Jersey 31 northeast
## 32:
                  New Mexico 32
## 33:
                    New York 33 northeast
## 34:
             North Carolina 34
                                     south
                                   midwest
## 35:
               North Dakota 35
## 36:
                        Ohio 36
                                   midwest
## 37:
                    Oklahoma 37
                                     south
## 38:
                      Oregon 38
                                      west
## 39:
                Pennsylvania 39 northeast
```

```
## 41:
               Rhode Island 41 northeast
## 42:
             South Carolina 42
                                    south
               South Dakota 43
## 43:
                                 midwest
## 44:
                  Tennessee 44
                                    south
## 45:
                      Texas 45
                                    south
## 46:
                       Utah 46
                                    west
## 47:
                    Vermont 47 northeast
## 48:
                   Virginia 48
                                    south
## 49:
                 Washington 49
                                    west
## 50:
              West Virginia 50
                                    south
## 51:
                  Wisconsin 51
                                 midwest
## 52:
                    Wyoming 52
                                    west
## 53:
                  Not in US 53
                                    other
##
                         V1 V2
                                   region
aggregate_covariates = function(df) {
  df[, gender_male := ifelse(gender == 1, 1, 0)]
  df[, gender_female := ifelse(gender == 2, 1, 0)]
  df[, gender_other := ifelse(gender == 3 | gender == 4, 1, 0)]
  df[, college_educated := ifelse(education > 4, 1, 0)]
  df[, not_caucasian := ifelse(ethnicity != 3, 1, 0)]
  df[, age_under_40 := ifelse(age < 4, 1, 0)]
  df[, age_40_60 := ifelse(age > 4 & age <= 6, 1, 0)]
  df[, age_over_60 := ifelse(age >= 7, 1, 0)]
  df[, party_republican := ifelse(political_party == 1, 1, 0)]
  df[, party_democrat := ifelse(political_party == 2, 1, 0)]
  df[, party_other := ifelse(political_party == 3 | political_party == 4, 1, 0)]
  df[, party_non_republican := ifelse( political_party == 1, 0, 1)]
  df[, treatment_assignment := condition]
  df[, state_name := state_ordinals[state, V1]]
  df[, region:= state_ordinals[state, region]]
  df[, region_northeast := ifelse(region == 'northeast', 1,0)]
  df[, region_midwest := ifelse(region == 'midwest', 1,0)]
  df[, region_south
                        := ifelse(region == 'south', 1,0)]
                        := ifelse(region == 'west', 1,0)]
  df[, region_west
                        := ifelse(region == 'other', 1,0)]
  df[, region_other
}
aggregate_covariates(run1)
aggregate_covariates(run2)
aggregate_covariates(combined)
head(combined[, c('state', 'state_name', 'region', 'region_northeast', 'region_midwest')])
##
      state
              state_name
                            region region_northeast region_midwest
## 1:
                    Ohio
                           midwest
                                                   0
                                                                   1
                                                                   0
## 2:
         39 Pennsylvania northeast
                                                   1
## 3:
         38
                  Oregon
                                                   0
                                                                   0
                              west
## 4:
                   Texas
                                                   0
                                                                  0
         45
                             south
## 5:
                   Idaho
                                                                  0
         13
                              west
                                                   0
## 6:
         36
                    Ohio midwest
                                                   0
                                                                   1
```

40:

Puerto Rico 40

other

```
## [1] 80
run_regression_outcome1_simplified = function(d, control_for_run=FALSE) {
  model_spread = lm(outcome_spread ~ treatment_assignment, d)
  if (control_for_run) {
   model_spread_adv = lm(outcome_spread ~ treatment_assignment
                       + run
                       + gender_female
                       + gender_other
                       + age_40_60
                       + age_over_60
                       + party_democrat
                       + party_other
                       + not_caucasian
                       + college educated
                       + region_south
                       + region_midwest
                       + region_west
                       + covid_sick
                       + covid_hospitalized
                       + covid_died, d)
  } else {
    model_spread_adv = lm(outcome_spread ~ treatment_assignment
                       + gender_female
                       + gender_other
                       + age_under_40
                       + age_40_60
                       + age_over_60
                       + party_democrat
                       + party_other
                       + not caucasian
                       + college_educated
                       + region_south
                       + region_midwest
                       + region_west
                       + covid_sick
                       + covid_hospitalized
                       + covid_died, d)
                 = get_regression_results_robust_se(model_spread, d, c('treatment_assignment'), FALSE)
  est_spread
  est_spread_adv = get_regression_results_robust_se(model_spread_adv, d, c('treatment_assignment'), FAL
  return ( list('model' = model_spread,
                'model_adv'=model_spread_adv,
                'est'=est_spread,
                'est_adv'=est_spread_adv))
}
run_regression_outcome2_simplified = function(d, control_for_run=FALSE) {
 model_spread = lm(outcome_spread ~ treatment_assignment, d)
 if (control_for_run) {
```

nrow(combined[covid_died == 1,])

```
model_spread_adv = lm(outcome_death ~ treatment_assignment
                       + gender_female
                       + gender_other
                       + age_40_60
                       + age_over_60
                       + party_democrat
                       + party_other
                       + not_caucasian
                       + college_educated
                       + region_south
                       + region_midwest
                       + region_west
                       + covid_sick
                       + covid_hospitalized
                       + covid_died, d)
  } else {
    model_spread_adv = lm(outcome_death ~ treatment_assignment
                       + gender_female
                       + gender_other
                       + age_40_60
                       + age_over_60
                       + party_democrat
                       + party_other
                       + not_caucasian
                       + college_educated
                       + region_south
                       + region_midwest
                       + region_west
                       + covid_sick
                       + covid_hospitalized
                       + covid_died, d)
  }
                 = get_regression_results_robust_se(model_spread, d, c('treatment_assignment'), FALSE)
  est_spread
  est_spread_adv = get_regression_results_robust_se(model_spread_adv, d, c('treatment_assignment'), FAL
  return ( list('model' = model_spread,
                'model_adv'=model_spread_adv,
                'est'=est_spread,
                'est_adv'=est_spread_adv))
}
mi_spread_run1 = run_regression_outcome1_simplified(run1, TRUE)
mi_spread_run2 = run_regression_outcome1_simplified(run2, TRUE)
mi_spread_combined_run = run_regression_outcome1_simplified(combined, TRUE)
stargazer(mi_spread_run1$model, mi_spread_run1$model_adv,
          mi_spread_run2$model_adv,
          mi_spread_combined_run$model_adv,
          type="text", out="output/model1_regression.html", report="vcsp*",
          se = list(mi_spread_run1$est$robust_se_all, mi_spread_run1$est_adv$robust_se_all,
                    mi_spread_run2$est_adv$robust_se_all,
```

```
mi_spread_combined_run$est_adv$robust_se_all),
title=paste('Concerned over COVID-19 Spread in U.S.'),
dep.var.caption = "Concerned over COVID-19 Spread in U.S.",
dep.var.labels.include = FALSE, model.numbers=FALSE,
column.labels = c("July 21, 2020", "July 21, 2020", "July 25, 2020", "Both dates"),
align=TRUE)
```

		Concerned over COVID-19 Spread in U.S.		
	July 21, 2020	July 21, 2020		
treatment_assignment	0.340	0.334	0.146	
	(0.107)	(0.104)	(0.096)	
	p = 0.002***	p = 0.002***	p = 0.128	I
run				
gender_female		-0.091	0.166	
		(0.105)	(0.106)	
		p = 0.388	p = 0.117	
gender_other		0.645	0.930	
		(0.214)	(0.248)	
		p = 0.003***	p = 0.0002***	р
age_40_60		0.143	0.232	
		(0.125)	(0.112)	
		p = 0.254	p = 0.040**	P
age_over_60		0.940	0.017	
		(0.221)	(0.259)	
		p = 0.00003***	p = 0.947	
party_democrat		0.681	1.053	
		(0.133)	(0.132)	
		p = 0.00000***	p = 0.000***	ŗ
party_other		0.261	0.438	
		(0.167)	(0.156)	
		p = 0.118	p = 0.006***	F
not_caucasian		0.171	-0.052	
		(0.104)	(0.109)	
		p = 0.099*	p = 0.635	
college_educated		0.153	0.071	
		(0.102)	(0.102)	
		p = 0.134	p = 0.491	

```
##
                                                    0.054
                                                                          0.044
## region_south
                                                   (0.137)
                                                                         (0.141)
##
##
                                                  p = 0.695
                                                                        p = 0.755
##
## region_midwest
                                                    0.098
                                                                         -0.206
                                                    (0.147)
                                                                         (0.175)
                                                                        p = 0.239
##
                                                  p = 0.509
##
## region_west
                                                    0.280
                                                                          0.077
                                                    (0.139)
                                                                          (0.166)
##
                                                 p = 0.045**
                                                                        p = 0.643
##
## covid_sick
                                                   -0.225
                                                                         -0.176
##
                                                   (0.120)
                                                                         (0.118)
##
                                                 p = 0.062*
                                                                       p = 0.137
##
## covid_hospitalized
                                                   -0.186
                                                                         -0.070
##
                                                   (0.155)
                                                                         (0.156)
##
                                                  p = 0.231
                                                                        p = 0.657
##
## covid_died
                                                    0.051
                                                                         -0.117
##
                                                   (0.153)
                                                                         (0.160)
                                                  p = 0.741
##
                                                                       p = 0.465
##
## Constant
                              3.133
                                                    3.057
                                                                          2.922
##
                             (0.085)
                                                   (0.283)
                                                                          (0.306)
                         p = 0.000***
                                               p = 0.000***
                                                                     p = 0.000***
##
## Observations
## R2
                              0.038
                                                    0.263
                                                                          0.291
## Adjusted R2
                             0.034
                                                   0.218
                                                                          0.252
## Residual Std. Error 0.858 (df = 257) 0.773 (df = 243) 0.812 (df = 276)
## F Statistic 10.183*** (df = 1; 257) 5.782*** (df = 15; 243) 7.541*** (df = 15; 276) 11.367*
## Note:
                                                                                      *p<0.1; **
mi_spread_run1 = run_regression_outcome2_simplified(run1, TRUE)
mi_spread_run2 = run_regression_outcome2_simplified(run2, TRUE)
mi_spread_combined_run = run_regression_outcome2_simplified(combined, TRUE)
stargazer(mi_spread_run1$model, mi_spread_run1$model_adv,
         mi_spread_run2$model_adv,
         mi_spread_combined_run$model_adv,
         type="html", out="output/model2_regression.html", report="vcsp*",
         se = list(mi_spread_run1$est$robust_se_all, mi_spread_run1$est_adv$robust_se_all,
                  mi_spread_run2$est_adv$robust_se_all,
                  mi_spread_combined_run$est_adv$robust_se_all),
         title=paste('Distressed by COVID-19 Deaths in U.S.'),
         dep.var.caption = "Distressed by COVID-19 Deaths in U.S.",
         dep.var.labels.include = FALSE, model.numbers=FALSE,
         column.labels = c("July 21, 2020", "July 21, 2020", "July 25, 2020", "Both dates"),
```

0.7

align=TRUE)

##

```
## <caption><strong>Distressed by COVID-19 Deaths in U.S.</strong></ca
## <td style="text-align:left"
## 
## July 21, 2020July 21, 2020July 25, 2020
## <td style="text-align:left"
## p = 0.002<sup>***</sup>p = 0.006<sup>***</sup></td
## 
## gender female0.0230.1050.067
##  d style = text-align:left" >  d >  d > p = 0.784 < / d > p = 0.155  < d > p = 0.227  < d > p = 0.227  < d > p = 0.155  < d > p = 0.227  < d > p = 0.227 < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  < d > p = 0.227  > < d > p = 0.227 < / 
## gender_other0.4860.5860.526
##  d style = text-align:left" >  d >  d > p = 0.0004 < sup > *** </sup >  d > p = 0.001 < sup > *** </sup >  d > p = 0.001 < sup > ***
## age_40_600.1100.2000.161
## p = 0.227p = 0.022<sup>**</sup>p>/td>p= 0.022<sup>**</sup>
## age_over_60<.570</td>-0.2680.011
## > = 0.002<sup>***</sup>> = 0.289> > > = 0.289
## party_democrat0.559.7690.663
## > = 0.00000<sup>***</sup>p = 0.000<sup>***
##  d style = "text-align:left" >  d >  p = 0.035 < sup > ** < / sup >  = 0.007 < sup > ** < / sup > ** < / sup >   p = 0.007 < sup > ** < / sup > ** < / sup >   p = 0.007 < sup > ** < / sup > ** < / sup > < / sup > ** < / 
\#\#  d style = text-align:left" >  d >  d > p = 0.192  = 0.660   p = 0.318  = 0.660   p = 0.660  > > p = 
## college_educated-0.082-0.013-0.0
##  d style = text-align:left" >  d >  d > p = 0.311  c = 0.856   p = 0.310  c = 0.856  c = 0.310  c = 0.856  c = 0.856  c = 0.310  c = 0.856  
## region_south0.0060.1020.051
##  d style = text-align:left" > (/td > td > (/td > td > p = 0.957  td > p = 0.302  td > p = 0.478  td > p = 0.478 
## region_midwest>.052-0.174-0.068<
```

```
##  d style = text-align:left" >  d >  d > p = 0.644 < / d > p = 0.204 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.204 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d > p = 0.437 < / d > < d > p = 0.437 < / d > < d > p = 0.437 < d
## region_west0.0300.0760.049
##  d style = text-align:left" >  d >  d > p = 0.806  = 0.536   p = 0.536   p = 0.568   p = 0.536   p = 0.536   p = 0.536   p = 0.548   p = 0.548  > p = 0.548 < /d>> > p = 0.548 < 
## covid_sick-0.093-0.110-0.111</td
##  d style = text-align:left" >  d >  = 0.330 < / d > d > = 0.181 < / d > = 0.075 < sup > 0.181 < d > = 0.075 < sup > 0.0
## covid_hospitalized-0.1110.031-0.
\#\#  td \ style = "text-align:left" >   (0.114)   (0.112)   (0.077)   
\#\#  d style = text-align:left" >  d >  d > p = 0.332   p = 0.783   p = 0.752   p = 0.752  > p = 0.752  > p = 0.752   p = 0.752  > < 
\#\#  d style = text-align:left" >  d >  p = 0.664  = 0.371  < d > p = 0.497  = 0.497  < d > p = 0.497  = 0.497  = 0.497 < d > p = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497  = 0.497 
## 
## Constant3.1332.2552.1922.310
## (0.085)(0.242)(0.225)(0.165)
## p = 0.000<sup>***</sup>p = 0.000<sup>***</sup></td
## style="text-align:left"
## R<sup>2</sup>0.0380.1980.2950.295
## Adjusted R<sup>2</sup>0.0340.1490.257
## Residual Std. Error0.858 (df = 257)0.631 (df = 243)
## F Statistic10.183<sup>***</sup> (df = 1; 257)4.004
## tr><td style="text-align:left".
##
```

```
run_regression_outcome1_hte = function(d) {
    model_spread_adv = lm(outcome_spread ~ treatment_assignment
                       + gender female
                       + gender_other
                       + age 40 60
                       + age_over_60
                       + party_democrat
                       + party_other
                       + party_other:treatment_assignment
                       + not_caucasian
                       + college_educated
                       + region_south
                       + region_midwest
                       + region_west
                       + covid_sick
                       + covid_hospitalized
                       + covid_died, d)
  est_spread_adv = get_regression_results_robust_se(model_spread_adv, d, c('treatment_assignment'), FAL
  return ( list('model adv'=model spread adv,
                'est_adv'=est_spread_adv))
}
```

```
run_regression_outcome2_hte = function(d) {
  model_spread_adv = lm(outcome_death ~ treatment_assignment
             + gender_female
             + gender_other
             + age_40_60
             + age_over_60
             + party_democrat
             + party_other
             + party_other:treatment_assignment
             + not_caucasian
             + college_educated
             + region_south
             + region_midwest
             + region_west
             + covid_sick
             + covid_hospitalized
             + covid_died, d)
 est_spread_adv = get_regression_results_robust_se(model_spread_adv, d, c('treatment_assignment'), FAL
 return ( list('model_adv'=model_spread_adv,
         'est_adv'=est_spread_adv))
mi_spread_combined_run = run_regression_outcome1_hte(combined)
mi_death_combined_run = run_regression_outcome2_hte(combined)
stargazer(mi_spread_combined_run$model_adv,
      #type = "text",
      type="html", out="output/model_combined_spread_hte_regression.html", report="vcsp*",
     se = list(mi_spread_combined_run$est_adv$robust_se_all),
     dep.var.caption = "Concerned over COVID-19 Spread in U.S. - HTE",
     dep.var.labels.include = FALSE, model.numbers=FALSE,
      column.labels = c("Both dates"),
     align=TRUE)
## 
## 
## Both dates
## style="text-align:left"
## (0.078)
## p = 0.053<sup>*</sup>
## 
## gender_female0.043
## (0.072)
##    = 0.555  
## 
## gender_other0.802
## (0.149)
## p = 0.00000<sup>***</sup>
##
```

```
## age_40_600.188
## (0.084)
## p = 0.025<sup>**</sup>
## 
## age_over_600.297
## (0.204)
## <tr>p = 0.147
## 
## party_democrat0.881
## (0.094)
## p = 0.000<sup>***</sup>
## 
## party_other0.244
## (0.153)
## <tr>p = 0.110
## 
## not_caucasian0.048
## (0.075)
## \t^ = 0.521 < \t^> < \t^> 
## 
## college_educated0.093
## (0.073)
## <tr>p = 0.202
## 
## region_south0.032
## (0.097)
## <tr>p = 0.744
## 
## region_midwest-0.059
## (0.113)
## < = 0.606</td>
## 
## region_west0.148
## \t^ (0.110) < \t^< tr>
## 
## 
## covid sick-0.185
## <tr>(0.085)
## p = 0.030<sup>**</sup>
## 
## covid hospitalized-0.127
## \t^
## <tr>p = 0.233
## 
## covid_died-0.067
## (0.103)
## < = 0.520</td>
## 
## treatment_assignment:party_other0.172
## (0.166)
## <tr>p = 0.302
## 
## Constant3.104
## (0.205)
```

```
## p = 0.000<sup>***</sup>
## 
## <td style="text-align:left"
## R<sup>2</sup>0.251
\label{lem:left} $$\# Adjusted R< sup>2</sup>
## Residual Std. Error0.798 (df = 534)
## F Statistic11.194<sup>***</sup> (df = 16; 534)
## style="text-align:left"
## 
stargazer(mi_death_combined_run$model_adv,
   #type = "text",
   type="html", out="output/model_combined_death_hte_regression.html", report="vcsp*",
   se = list(mi_death_combined_run$est_adv$robust_se_all),
   dep.var.caption = "Distressed by COVID-19 Spread in U.S. - HTE",
   dep.var.labels.include = FALSE, model.numbers=FALSE,
   column.labels = c("Both dates"),
   align=TRUE)
##
## </t
## 
## Both dates
## <td style="text-align:left"
## (0.061)
## p = 0.227
## 
## gender_female0.064
## (0.055)
## p = 0.242
## 
## gender_other0.553
## (0.106)
## p = 0.00000<sup>***</sup>
## 
## age_40_600.154
## (0.063)
## p = 0.015<sup>**</sup>
## 
## age_over_600.011
## (0.188)
## <tr>p = 0.954
## 
## party_democrat0.671
## (0.076)
## 
## party_other0.153
## (0.123)
## <tr>p = 0.216
## 
## not_caucasian0.057
## (0.058)
## <tr>p = 0.326
```

```
## 
## college_educated-0.062
## (0.054)
## <tr>p = 0.253
## 
## region_south0.052
## (0.072)
## <tr>p = 0.472
## 
## region_midwest-0.065
## (0.087)
## p = 0.454
## 
## region_west0.046
## (0.086)
## <tr>p = 0.593
## 
## covid_sick-0.108
## (0.061)
## p = 0.080<sup>*</sup>
## 
## covid_hospitalized-0.025
## (0.076)
## <tr>p = 0.748
## 
## covid_died-0.048
## (0.081)
## <tr>p = 0.554
## 
## treatment_assignment:party_other0.247
## (0.130)
## p = 0.059<sup>*</sup>
## 
## Constant2.318
## (0.164)
## p = 0.000<sup>***</sup>
## 
## <td style="text-align:left"
## R<sup>2</sup>0.234
## Adjusted R<sup>2</sup>0.211
## Residual Std. Error0.607 (df = 534)
## F Statistic10.180<sup>***</sup> (df = 16; 534)
## <td style="text-align:left"
## 
t.test(gender ~ treatment_assignment, data = run2)
##
## Welch Two Sample t-test
## data: gender by treatment_assignment
## t = 0.48861, df = 286.52, p-value = 0.6255
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
```

```
## -0.09520922 0.15808801
## sample estimates:
## mean in group 0 mean in group 1
          1.643939
##
                         1.612500
t.test(age ~ treatment_assignment, data = run2)
##
## Welch Two Sample t-test
##
## data: age by treatment_assignment
## t = 1.3895, df = 270.08, p-value = 0.1658
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1019390 0.5909542
## sample estimates:
## mean in group 0 mean in group 1
##
         3.575758
                     3.331250
t.test(age_under_40 ~ treatment_assignment, data = run2)
##
## Welch Two Sample t-test
## data: age_under_40 by treatment_assignment
## t = -1.5912, df = 275.56, p-value = 0.1127
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.20591972 0.02182881
## sample estimates:
## mean in group 0 mean in group 1
##
         0.5454545
                         0.6375000
t.test(political_party ~ treatment_assignment, data = run2)
##
##
  Welch Two Sample t-test
## data: political_party by treatment_assignment
## t = -1.8651, df = 281.75, p-value = 0.06321
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.346847087 0.009347087
## sample estimates:
## mean in group 0 mean in group 1
           2.00000
                           2.16875
t.test(ethnicity ~ treatment_assignment, data = run2)
##
## Welch Two Sample t-test
```

```
##
## data: ethnicity by treatment_assignment
## t = 0.53453, df = 285.48, p-value = 0.5934
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1442760 0.2518517
## sample estimates:
## mean in group 0 mean in group 1
##
          2.878788
                          2.825000
t.test(state ~ treatment_assignment, data = run2)
##
## Welch Two Sample t-test
##
## data: state by treatment_assignment
## t = 0.91773, df = 274.56, p-value = 0.3596
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.992233 5.471778
## sample estimates:
## mean in group 0 mean in group 1
          25.47727
                          23.73750
t.test(college_educated ~ treatment_assignment, data = run2)
##
## Welch Two Sample t-test
## data: college_educated by treatment_assignment
## t = -0.24298, df = 278.83, p-value = 0.8082
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.12756046 0.09953016
## sample estimates:
## mean in group 0 mean in group 1
##
        0.5984848
                        0.6125000
t.test(covid_sick ~ treatment_assignment, data = run2)
##
## Welch Two Sample t-test
## data: covid_sick by treatment_assignment
## t = 0.33496, df = 279.15, p-value = 0.7379
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.09605997 0.13545391
## sample estimates:
## mean in group 0 mean in group 1
##
          1.469697
                          1.450000
```

```
t.test(covid_hospitalized ~ treatment_assignment, data = run2)
##
##
   Welch Two Sample t-test
## data: covid hospitalized by treatment assignment
## t = 0.51646, df = 283.29, p-value = 0.6059
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.07134676 0.12210434
## sample estimates:
## mean in group 0 mean in group 1
         1.787879
##
                        1.762500
t.test(covid_died ~ treatment_assignment, data = run2)
##
   Welch Two Sample t-test
##
## data: covid_died by treatment_assignment
## t = 0.37052, df = 283.8, p-value = 0.7113
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.06452216 0.09444640
## sample estimates:
## mean in group 0 mean in group 1
          1.871212
                         1.856250
t.test(party_republican ~ treatment_assignment, data = run2)
##
## Welch Two Sample t-test
##
## data: party_republican by treatment_assignment
## t = 1.4367, df = 265.7, p-value = 0.152
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.02644936 0.16925239
## sample estimates:
## mean in group 0 mean in group 1
##
        0.2651515
                     0.1937500
t.test(party_democrat ~ treatment_assignment, data = run2)
##
  Welch Two Sample t-test
## data: party_democrat by treatment_assignment
## t = 0.18947, df = 279.42, p-value = 0.8499
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
```

```
## -0.1049179 0.1272664
## sample estimates:
## mean in group 0 mean in group 1
##
        0.4924242
                        0.4812500
t.test(party_other ~ treatment_assignment, data = run2)
##
## Welch Two Sample t-test
##
## data: party_other by treatment_assignment
## t = -1.5657, df = 286.84, p-value = 0.1185
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.18638513 0.02123361
## sample estimates:
## mean in group 0 mean in group 1
       0.2424242
                    0.3250000
```