1 Compacité

1.1 Définitions clés

Definition 1.1 (Recouvrement ouvert). Soit $F \subset E$. Un recouvrement ouvert de F est une collection $(U_i)_{i \in I}$ où U_i sont des ouverts de E et $F \subset \bigcup_{i \in I} U_i$.

Definition 1.2 (Ensemble compact). $K \subset E$ est compact si de tout recouvrement ouvert $(U_i)_{i \in I}$ de K, on peut extraire un sous-recouvrement fini, c'est-à-dire qu'il existe un sous-ensemble fini $J \subset I$ tel que $K \subset \bigcup_{i \in J} U_i$.

Theorem 1.3 (Caractérisation séquentielle de la compacité). $K \subset E$ est compact si et seulement si toute suite d'éléments de K admet une sous-suite qui converge vers un élément de K.

1.2 Exemples et contre-exemples

Example 1.4. $F = \mathbb{R}^2$ n'est pas compact. Considérons le recouvrement ouvert $U_x = B(x, 1/2)$ pour $x \in \mathbb{R}^2$. Alors $\mathbb{R}^2 = \bigcup_{x \in \mathbb{R}^2} U_x$. Cependant, on ne peut pas extraire un sous-recouvrement fini.

Example 1.5. Soit $F = \{(x,y) \in \mathbb{R}^2 \mid x > 0, 0 \le -\frac{1}{x} \le y \le \frac{1}{x}\}$. F n'est pas compact. Considérons la suite $u_n = (n,0) \in F$. Toute sous-suite de (u_n) est non bornée, donc sans sous-suite convergente dans F.

2 Propriétés des ensembles compacts

Proposition 2.1. Tout compact $K \subset E$ est borné et fermé.

Proposition 2.2. Si K est compact et F est fermé, alors $K \cap F$ est compact.

Proposition 2.3. Si K est compact, toute suite de Cauchy dans K converge dans K.

2.1 Preuves des propriétés

Preuve (Preuve qu'un compact est borné). Soit K compact. Pour $x \in K$, considérons $U_x = B(x,1)$. Alors $(U_x)_{x \in K}$ est un recouvrement ouvert de K. Puisque K est compact, il existe un sous-recouvrement fini U_{x_1}, \ldots, U_{x_n} tel que $K \subset \bigcup_{i=1}^n U_{x_i}$. Soit $R = \max_{1 \le i \le n} \|x_i\| + 1$. Alors pour tout $x \in K$, il existe i tel que $x \in U_{x_i} = B(x_i,1)$, donc $d(x,x_i) < 1$. Par l'inégalité triangulaire, $\|x\| \le \|x - x_i\| + \|x_i\| < 1 + \|x_i\| \le R$. Ainsi, $K \subset B(0,R)$, et K est borné.

Preuve (Preuve qu'un compact est fermé). Soit K compact et montrons que K est fermé. Montrons que $E \setminus K$ est ouvert. Soit $x \notin K$. Pour tout $y \in K$, il existe $r_y > 0$ tel que $B(x, r_y) \cap B(y, r_y) = \emptyset$. Considérons le recouvrement ouvert de K donné par $(B(y, r_y))_{y \in K}$. Il existe un sous-recouvrement fini $B(y_1, r_{y_1}), \ldots, B(y_n, r_{y_n})$ tel que $K \subset \bigcup_{i=1}^n B(y_i, r_{y_i})$. Soit $r = \min_{1 \le i \le n} r_{y_i} > 0$. Considérons B(x, r). Pour tout $z \in B(x, r)$, et pour tout $i, B(z, r) \cap B(y_i, r_{y_i}) = \emptyset$. Donc $B(x, r) \cap K = \emptyset$, et $B(x, r) \subset E \setminus K$. Ainsi $E \setminus K$ est ouvert, et K est fermé.

Preuve (Preuve que si K est compact, toute suite de Cauchy dans K converge dans K). Soit (u_n) une suite de Cauchy dans K compact. Puisque K est compact, il existe une sous-suite $(u_{\phi(n)})$ qui converge vers une limite $l \in K$. Puisque (u_n) est de Cauchy et qu'une sous-suite converge vers l, la suite (u_n) converge vers l. Donc toute suite de Cauchy dans K converge dans K.

Preuve (Preuve par contradiction qu'un compact est borné). Supposons que K n'est pas borné. On fixe $a \in E$. Pour tout $n \in \mathbb{N}$, comme K n'est pas borné, il existe $x_n \in K$ tel que $d(a, x_n) > n$. La suite (x_n) n'est pas bornée (car $d(a, x_n) \to +\infty$), donc (x_n) ne possède pas de sous-suite convergente. Ceci contredit le fait que K est compact (par caractérisation séquentielle). Donc K est borné.

3 Compacts de \mathbb{R}^n

3.1 Théorème de Borel-Lebesgue

Theorem 3.1 (Théorème de Borel-Lebesgue). Dans \mathbb{R}^n avec la distance usuelle, $K \subset \mathbb{R}^n$ est compact si et seulement si K est fermé et borné.

3.2 Compacité des boules fermées

Proposition 3.2. Dans \mathbb{R}^n avec la distance usuelle, les boules fermées $B_f(x_0, r)$ sont compactes.

3.3 Preuve de la compacité des boules fermées

Preuve. Pour n=1, montrons que [a,b] est compact. Soit $(U_i)_{i\in I}$ un recouvrement ouvert de [a,b]. Soit $\mathcal{U}=(U_i)_{i\in I}$. Soit $E=\{x\in [a,b]\mid [a,x] \text{ est recouvert par un nombre fini de }U_i\}$. E est non vide car $a\in E$. Montrons que E est borné. Soit $c=\sup E$. Supposons que c< b. Puisque $c\in [a,b]$, il existe $U_{i_0}\in \mathcal{U}$ tel que $c\in U_{i_0}$. Comme U_{i_0} est ouvert, il existe $\delta>0$ tel que $|c-\delta|$, $c+\delta|\subset U_{i_0}$. Puisque $c=\sup E$, il existe $x\in E$ tel que $c-\delta< x\leq c$. Par définition de E, [a,x] est recouvert par un nombre fini de U_i . Donc $[a,x]\cup [x,c+\delta/2]=[a,c+\delta/2]$ est recouvert par un nombre fini de U_i (en ajoutant U_{i_0}). Donc $c+\delta/2\in E$, ce qui contredit $c=\sup E$. Donc c=b. Montrons que $b\in E$. On choisit U_{i_1} tel que $b\in U_{i_1}$ et $\delta>0$ tel que $b\in U_{i_1}$ et $b\in U_{i_1}$ et $b\in U_{i_1}$ est recouvert par un nombre fini de $b\in U_i$. Donc $b\in U_i$ est recouvert par un nombre fini de $b\in U_i$. Donc $b\in U_i$ est recouvert par un nombre fini de $b\in U_i$ est recouvert par un nombre fini de $b\in U_i$ en ajoutant $b\in U_i$. Donc $b\in U_i$ est compact.

4 Limites et continuité

4.1 Définition des limites dans les espaces métriques

Definition 4.1 (Limite). Soient (E_1, d_1) et (E_2, d_2) deux espaces métriques, $x_0 \in E_1, l \in E_2$ et $F: E_1 \to E_2$

 E_2 une application. On dit que $\lim_{x\to x_0} F(x) = l$ si pour tout $\epsilon > 0$, il existe $\delta > 0$ tel que pour tout $x \in E_1$ tel que $d_1(x, x_0) < \delta$, on a $d_2(F(x), l) < \epsilon$.

4.2 Définition de la continuité

Definition 4.2 (Continuité en un point). On dit que F est continue en x_0 si $\lim_{x\to x_0} F(x) = F(x_0)$.

Definition 4.3 (Continuité sur un ensemble). On dit que F est continue (sur E_1) si F est continue en tout point $x_0 \in E_1$.

Proposition 4.4. F est continue sur E_1 si et seulement si elle est continue en tout point de E_1 .

5 Propriétés équivalentes de la continuité

Proposition 5.1 (Propriétés équivalentes de la continuité). Soient (E_1, d_1) et (E_2, d_2) deux espaces métriques et $F: E_1 \to E_2$ une application. Les propriétés suivantes sont équivalentes :

- 1. F est continue.
- 2. Pour tout ouvert $U \subset E_2$, $F^{-1}(U)$ est ouvert dans E_1 .
- 3. Pour tout fermé $F \subset E_2$, $F^{-1}(F)$ est fermé dans E_1 .
- 4. Pour toute suite $(x_n)_{n\in\mathbb{N}}$ de E_1 avec $\lim_{n\to\infty} x_n = x \in E_1$, on a $\lim_{n\to\infty} F(x_n) = F(x)$.

5.1 Preuves des équivalences

Preuve. 1. (1) \Longrightarrow (2): Soit $U \subset E_2$ ouvert et $x_0 \in F^{-1}(U)$. Alors $y_0 = F(x_0) \in U$. Comme U est ouvert, il existe $\epsilon > 0$ tel que $B(y_0, \epsilon) \subset U$. Comme F est continue en x_0 , il existe $\delta > 0$ tel que si $d_1(x, x_0) < \delta$, alors $d_2(F(x), y_0) < \epsilon$. Donc si $x \in B(x_0, \delta)$, alors $F(x) \in B(y_0, \epsilon) \subset U$, donc $x \in F^{-1}(U)$. Ainsi $B(x_0, \delta) \subset F^{-1}(U)$, et $F^{-1}(U)$ est ouvert.

- 2. $(2) \implies (3)$: Par passage aux complémentaires.
- 3. (3) \Longrightarrow (4): Soit (x_n) une suite dans E_1 avec $\lim_{n\to\infty} x_n = x \in E_1$. Supposons que $(F(x_n))$ ne converge pas vers F(x). Alors il existe $\epsilon_0 > 0$ tel que pour tout $n \in \mathbb{N}$, il existe p(n) > n avec $d_2(F(x_{p(n)}), F(x)) \ge \epsilon_0$. Soit $y_n = x_{p(n)}$ et $U = E_2 \setminus B(F(x), \epsilon_0)$. U est fermé, $F(y_n) \in U$, donc $y_n \in F^{-1}(U)$, qui est fermé par propriété (3). Comme (y_n) est une sous-suite de (x_n) qui converge vers x, on a $\lim_{n\to\infty} y_n = x$. Puisque $F^{-1}(U)$ est fermé, on a $x \in F^{-1}(U)$. Donc $F(x) \in U = E_2 \setminus B(F(x), \epsilon_0)$, ce qui signifie $d_2(F(x), F(x)) \ge \epsilon_0$, ce qui est faux.
- 4. (4) \Longrightarrow (1): Supposons que F n'est pas continue en $x_0 \in E_1$. Alors il existe $\epsilon_0 > 0$ tel que pour tout $\delta > 0$, il existe $x_\delta \in E_1$ avec $d_1(x_\delta, x_0) < \delta$ et $d_2(F(x_\delta), F(x_0)) \ge \epsilon_0$. En prenant $\delta = 1/n$, on obtient une suite $(x_n)_{n \ge 1}$ telle que $\lim_{n \to \infty} x_n = x_0$ et $d_2(F(x_n), F(x_0)) \ge \epsilon_0$ pour tout n. Ceci contredit (4).

5.2 Exemple de fonction continue

Example 5.2. Considérons $F: \mathbb{R}^2 \to \mathbb{R}$, $F(x,y) = x\sin(y) - e^x$. Les fonctions coordonnées x et y, et les

fonctions $\sin(y)$ et e^x sont continues. Par composition et opérations algébriques, $F(x,y) = x\sin(y) - e^x$ est continue.

6 Fonctions de plusieurs variables

6.1 Cadre $\mathbb{R}^n \to \mathbb{R}^p$

Considérons des fonctions de \mathbb{R}^n à valeurs dans \mathbb{R}^p . Le cadre est \mathbb{R}^n pour la variable et \mathbb{R}^p pour la valeur. Soit $D \subset \mathbb{R}^n$ le domaine de définition. On considère des applications $F: D \to \mathbb{R}^p$.

6.2 Continuité et composantes

Proposition 6.1. $F:D\to\mathbb{R}^p$ est continue si et seulement si chaque composante $F_i:D\to\mathbb{R}$ est continue, où $F(x_1,\ldots,x_n)=(F_1(x_1,\ldots,x_n),\ldots,F_p(x_1,\ldots,x_n))$.

6.3 Fonctions coordonnées

Les fonctions coordonnées (x_i) sont continues. Ce sont les F_i pour F(x) = x (l'identité).