Meeting Update

Gaussian Process Covariance Function Selection Using Minimum Energy Designs

Kristyn Pantoja

Department of Statistics Texas AM University

21 March 2019

Outline

Last Time

Why Fast SMED and One-At-a-Time SMED Aren't Similar

Last Time

Last Meeting Recap

What happened last time

- 1. Posterior probabilities & Bayes factors for linear models given by H_0 , H_1 and fast SMED algorithm for linear model selection (i.e. algorithm inspired by 2nd paper, Joseph et. al. 2018).
- Large k in One-At-a-Time SMED algorithm

 computational issues, gets stuck near edge with greatest distance between the two lines (as expected).
- 3. Issue: Fast SMED and One-At-a-Time SMED algorithms for linear model selection aren't similar in distribution of design points, perhaps optimization issue with fast SMED algorithm.
- Started looking at asymptotic properties of SMED algorithms for linear model selection and semi-thinking about criterion for evaluating the design.
- 5. Started thinking about GP model selection.

Why Fast SMED and One-At-a-Time SMED Aren't Similar

The Issue, Potential Causes

The Fast SMED and One-At-a-Time SMED algorithms for linear model selection aren't similar in distribution of design points.

Potential Causes

- 1. Optimization issue with fast SMED algorithm.
- 2. Candidate sets are not defined correctly.

Compare Results, See Issue

Compare this to the one-at-a-time algorithm (as in Joseph et. al. 2015) with 11 sequentially picked design points, 1000 candidate points, and a power of k=4:

Fast Algorithm

Points are more concentrated at middle of support.

One-at-a-Time Greedy Algorithm

Compare Results, See Issue, continued

What about for higher N(=51)? Not quite the same...

Fast Algorithm

One-at-a-Time Greedy Algorithm

The Issue, Potential Solutions

Potential Solutions

- 1. For suspected optimization issue:
 - Try to do the design method in Fast Algorithm (Joseph et. al. 2018), but with optimization criterion from One-At-A-Time Algorithm (Joseph et. al. 2015): update each of the N design points in designs $k = 1, \ldots, K$ by selecting:

$$\mathbf{x}_{j}^{k} = \arg\min_{\mathbf{x} \in \mathbf{C}_{k}^{j}} \sum_{i=1}^{j-1} \left\{ \frac{1}{f^{\gamma_{k}}(\mathbf{x}_{i}) f^{\gamma_{k}}(\mathbf{x}) d(\mathbf{x}_{i}, \mathbf{x})} \right\}^{k}$$
(1)

instead of the usual

$$\mathbf{x}_{j}^{k} = \underset{\mathbf{x} \in \mathbf{C}_{i}^{j}}{\min} \max_{i=1:(j-1)} \frac{1}{f^{\gamma_{k}}(\mathbf{x}_{i})f^{\gamma_{k}}(\mathbf{x})d(\mathbf{x}_{i},\mathbf{x})}$$
(2)

- Try with *log* of criterion, like in Joseph et. al. 2018 (even though doesn't seem beneficial with $f = \{Wasserstein\}^{1/(2p)}$, and no NaN problem so far).
- Don't restrict L_{jk} to be between 0 and 1 in space-filling D_{k+1}^j

The Issue, Potential Solutions, continued...

Potential Solutions

- 1. For suspected candidate sets issue:
 - ▶ Look at Dr. Raymond Wong's lecture notes for C/C++, try to understand the algorithm in MinEd R package, written in Rccp.
 - Clarify candidate sets: Says KN evaluations of f, but we create N new candidate points for each point at each design k = 1, ..., K, so shouldn't it be KN^2 evaluations of f?

Trying Solution 2 to Potential Cause 2

Potential Solutions

- 1. For suspected candidate sets issue:
 - Clarify candidate sets: Says KN evaluations of f, but we create N new candidate points for each point at each design k = 1,..., K, so shouldn't it be KN² evaluations of f?

It turns out, I had a bug in my code that was causing the candidate sets for each \mathbf{x}_j^{k+1} to be wrong. This, combined with my horrendous attempt to re-index k, led to the whole algorithm being wrong.

Old (Wrong) Fast Algorithm vs. Fixed Fast Algorithm, N=51

We can definitely see a difference! Although the "fixed" version seems somewhat choppy.

Old (Wrong) Fast Algorithm

Fixed Fast Algorithm

Fixed Fast Algorithm vs. One-at-a-Time Algorithm, N = 11

The new fast algorithm seems to have less of a bisection pattern.

Fixed Fast Algorithm

Fixed Fast Algorithm vs. One-at-a-Time Algorithm, N = 51

Distribution of design points in the new fast algorithm is definitely closer to that of the one-at-a-time algorithm, compared to the wrong/old fast algorithm.

Fixed Fast Algorithm

Seeing Order of Design Points N = 67

It seems there is still the difference in order of design points, though.

Fixed Fast Algorithm

Seeing Order of Design Points N = 67

This is what happens when we draw the candidate points using a Uniform distribution (over L_{jk}), rather than using the Lattice function that was used in the 2nd paper (even though this is how candidates were picked in the 1st paper).

Fixed Fast Algorithm

