## Simulating a Braitenberg Vehicle

Consider the braitenberg vehicle, a vehicle with wheels that spin in proportion to their respective sensor reading.



Figure 1: Braitenberg vehicle.

The state of the robot consists of its position and orientation and can be modeled as  $q = \begin{bmatrix} x & y & \theta \end{bmatrix}^T$ . Let v be the speed of the robot. We can model the state of the robot as it evolves over time as:

$$\dot{\boldsymbol{q}} = \begin{bmatrix} v \cos \theta \\ v \sin \theta \\ \dot{\theta} \end{bmatrix} \tag{1}$$

The flow of information through our system is modeled as follows:



Figure 2: Braitenburg System.

The system input is  $\pmb{u} = \left[v, \dot{\theta}\right]^T$ . The robot dynamics can be simulated using the following functions:

- robot\_dynamics: simulate system dynamics,  $\dot{q}$ .
- environment: compute the distance from a light source to the robot's sensors.
- light\_response: compute wheel velocities from light sensor readings.

Three versions, coward, aggresive, and instincts, of light\_response, have been implemented below.