Let $V = \mathbf{F}^{3,3}$ be the vector space of 3×3 matrices. Let U be the subset of V consisting of upper triangular matrices. Then U is a subspace of V.

Let $V = \mathbf{F}^{3,3}$ be the vector space of 3×3 matrices. Let U be the subset of V consisting of symmetric matrices. Then U is a subspace of V.

If U is a subset of a vector space V containing 0 and such that $\lambda u + u' \in U$ whenever $u, u' \in U$ and $\lambda \in \mathbf{F}$, then U is a subspace of V.

4. Let

$$U = \{(a, b, c) \in \mathbf{R}^3 : a^3 = b^3\}$$

and

$$V = \{(a, b, c) \in \mathbf{C}^3 : a^3 = b^3\}.$$

- (A) U is a subspace of \mathbb{R}^3 , and V is a subspace of \mathbb{C}^3 .
- (B) U is a subspace of \mathbb{R}^3 , but V is *not* a subspace of \mathbb{C}^3 .
- (C) U is not a subspace of \mathbb{R}^3 , but V is a subspace of \mathbb{C}^3 .
- (D) U is not a subspace of \mathbb{R}^3 and V is not a subspace of \mathbb{C}^3 .

If U_1 , U_2 and W are subspaces of V such that $U_1 + W = U_2 + W$, then $U_1 = U_2$.

If U_1 , U_2 and W are subspaces of V such that $V = U_1 \oplus W$ and $V = U_2 \oplus W$, then $U_1 = U_2$.

- 7. Let V be a vector space. The operation of addition on the set of all subspaces of V has...
- (A) No additive identity.
- (B) An additive identity, but no subspace has an additive inverse.
- (C) An additive identity, but not all subspaces necessarily have additive inverses.
- (D) An additive identity, and all subspaces have additive inverses.