

Trust&Go Step by Step Guide - Loading Manifest & Connect to AWS-IoT

Table of Contents

1 Introduction	3
1.1 Getting started with Jupyter Notebook Tutorials	3
1.1.1 Starting Jupyter Notebook	3
1.2 Jupyter Notebook Basics	4
1.2.1 The Notebook dashboard	4
1.3 Introduction to Jupyter Notebook GUI	4
2 Jupyter Notebook Tutorials	6
3 Manifest Generation Notebook	
3 Manifest Generation Notebook	
	12
4 Use Case Prototyping	12
4 Use Case Prototyping	

1 Introduction

This document explains step by step process involved in uploading a manifest file to AWS cloud. If you are already familiar with Jupyter Notebook you can skip this section and move to Section 2.

1.1 Getting started with Jupyter Notebook Tutorials

Jupyter Notebook is open source web application which allows you to create documents that contain code that you can execute in place as well as narrative text. It provides GUI elements, ability to execute code in place, ability to add images and gives it the look and feel that normal code files lack.

Jupyter notebooks are mainly used to explain/evaluate code in an interactive way.

1.1.1 Starting Jupyter Notebook

Jupyter notebook can be launched from Trust Platform GUI Main window. Run START -> Trust Platform x.x.x icon. Click on 'Start Jupyter' button to launch Jupyter local server.

Clicking on Start Jupyter should be web browser tab like below,

1.2 Jupyter Notebook Basics

It is recommended to become familiar with Jupyter basic concepts with the online documentation, https://jupyter-

notebook.readthedocs.io/en/stable/examples/Notebook/Notebook%20Basics.html

Some of the content is duplicated here for convenience. The online documentation should always be used as a reference.

1.2.1 The Notebook dashboard

When you first start the notebook server, your browser will open Notebook dashboard. The dashboard serves as a home page for the notebook. Its main purpose is to display the Notebooks and files in the current directory.

For example, here is a screenshot of the Jupyter dashboard. The top of the notebook list displays clickable breadcrumbs of the current directory. By clicking on these breadcrumbs or on sub-directories in the notebook list, you can navigate your file system.

1.3 Introduction to Jupyter Notebook GUI.

Jupyter Notebooks contain cells where you can either write code or markdown text. Notebooks contain multiple cells, some set as code and others markdown. Code cells contain code that can be executed live, and markdown contains text and images to explain the code.

Below image shows some options in a typical Jupyter Notebook. Individual cells can be executed by pressing on the RUN button as shown in the below image.

All cells in the Notebook can be executed in order by Kernel->Restart & Run All.

To run all cells in sequence.

2 Jupyter Notebook Tutorials
The TrustPlatform Design Suite comes with a Notebook Tutorials to easily prototype popular use cases for Trust&GO devices. Here are the available Jupyter Notebook Tutorials.

Jupyter Notebook Tutorials	Relative Path			
Manifest Generation	TrustnGO\00_resource_generation\TNGTLS_manifest_file_generation.ipynbon			
GCP Connect	TrustnGO\05_cloud_connect\notebook\gcp\TNGTLS_GCP_connect.ipynb			
AWS Connect	TrustnGO\05_cloud_connect\notebook\aws\TNGTLS_aws_connect.ipynb			
Azure Connect	TrustnGO\05_cloud_connect\notebook\azure\ TNGTLS_azure_connect.ipynb	Trust&GO		
Resource Generation	TrustFLEX\00_resource_generation\TFLXTLS_resource_generator.ipynb	TrustFLEX		
Accessory Authentication	TrustFLEX\01_accessory_authentication\notebook\ TFLXTLS_accessory_authentication.ipynb	TrustFLEX		
Firmware Validation	TrustFLEX\02_firmware_validation\notebook\ TFLXTLS_firmware_validation.ipynb	TrustFLEX		
IP Protection	TrustFLEX\04_ip_protection\notebook\ TFLXTLS_IP_protection.ipynb	TrustFLEX		
Secure Public Key Rotation	TrustFLEX\05_public_key_rotation\notebook\ TFLXTLS_public_key_rotation.ipynb	TrustFLEX		
Asymmetric authentication	08_asymmetric_authentication\notebook\ TFLXTLS_asymmetric_authentication.ipynb	TrustFLEX		
GCP Connect	TrustFLEX\10_cloud_connect\notebook\gcp\TFLXTLS_GCP_connect.ipynb	TrustFLEX		
AWS Custom PKI	TrustFLEX\10_cloud_connect\notebook\aws\ TFLXTLS_aws_connect.ipynb	TrustFLEX		
Azure Connect	TrustFLEX\10_cloud_connect\notebook\azure\ TLFXTLS_azure_connect.ipynb	TrustFLEX		

3 Manifest Generation Notebook

Trust&GO device is one of the three devices available in the Crypto Auth Trust Platform Board.

Trust&GO devices come with pre-programmed certificates in slots 10, 11 and 12, also slots 0-4 have pre-generated private keys, other than the previously mentioned slots all the other slots are locked.

The secure element manifest format is designed to convey the unique information about a device including its unique ID (e.g. serial number), public keys, and certificates. The manifest file generated can be used to register the device to cloud providers.

Within the Jupyter Dashboard, navigate **TrustnGO\00_resource_generation** folder to open **TNGTLS_manifest_file_generation.ipynb**

Run all cells of the TNGTLS_manifest_file_generation Notebook: Kernel->Restart & Run All

Note: Before executing the cells on Crypto Trust Platform, its required to have factory default program running on SAMD21 of Trust Platform. Refer to <u>Crypto Auth Trust Platform Factory reset</u> section for reloading default program.

If all the steps ran without errors, you will see result as shown below.

```
Root Certificate loading from Device...OK
----BEGIN CERTIFICATE----
MIIB8TCCAZegAwIBAgIQd9NtlW7IrmIF5Y46y5hagTAKBggqhkjOPQQDAjBPMSEw
HwYDVQQKDBhNaWNyb2NoaXAqVGVjaG5vbG9neSBJbmMxKjAoBqNVBAMMIUNyeXB0
byBBdXRoZW50aWNhdGlvbiBSb290IENBIDAwMjAgFw0xODExMDgxOTEyMTlaGA8y
MDU4MTEwODE5MTIxOVowTzEhMB8GA1UECqwYTWljcm9jaGlwIFRlY2hub2xvZ3kq
SW5jMSowKAYDVQQDDCFDcnlwdG8qQXV0aGVudGljYXRpb24qUm9vdCBDQSAwMDIw
WTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAS9VOZt44dUhABru64VgNUKoGnnit9V
eNhc4tVN1bgwKWv/3W5vclb72Z7xoRaxHTOtSRA6oYWHOdz65DfhnWNOo1MwUTAd
BgNVHQ4EFgQUeu19bca3eJ2yOAG16EqMsKQOKowwHwYDVR0jBBgwFoAUeu19bca3
eJ2yOAG16EqMsKQOKowwDwYDVROTAQH/BAUwAwEB/zAKBqqqhkjOPQQDAqNIADBF
AiEAodxjRZDsgZ7h3luBEmVRrdTCxPjllSgu4EvnaOx8AnMCID5rp06eTArWjCSw
+y7nk9LmvpRlvhXO6lvIf1V5mVvt
----END CERTIFICATE----
Certificate:
    Data:
       Version: 3(0x2)
       Serial Number:
            77:d3:6d:95:6e:c8:ae:62:05:e5:8e:3a:cb:98:5a:81
       Signature Algorithm: ecdsa-with-SHA256
        Issuer: O=Microchip Technology Inc, CN=Crypto Authentication Root CA 002
       Validity
            Not Before: Nov 8 19:12:19 2018 GMT
            Not After: Nov 8 19:12:19 2058 GMT
       Subject: O=Microchip Technology Inc, CN=Crypto Authentication Root CA 002
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
                Public-Key: (256 bit)
                pub:
                    04:bd:54:e6:6d:e3:87:54:84:00:6b:53:ae:15:80:
                    d5:0a:a0:69:e7:8a:df:55:78:d8:5c:e2:d5:4d:d5:
                    b8:30:29:6b:ff:dd:6e:6f:72:56:fb:d9:9e:f1:a1:
                    16:b1:1d:33:ad:49:10:3a:a1:85:87:39:dc:fa:e4:
                    37:e1:9d:63:4e
```

```
ASN1 OID: prime256v1
               NIST CURVE: P-256
       X509v3 extensions:
           X509v3 Subject Key Identifier:
               7A:ED:7D:6D:C6:B7:78:9D:B2:38:01:A5:E8:4A:8C:B0:A4:0E:2A:8C
           X509v3 Authority Key Identifier:
               keyid:7A:ED:7D:6D:C6:B7:78:9D:B2:38:01:A5:E8:4A:8C:B0:A4:0E:2A:8C
           X509v3 Basic Constraints: critical
               CA:TRUE
    Signature Algorithm: ecdsa-with-SHA256
         30:45:02:21:00:a1:dc:63:45:90:ec:81:9e:e1:de:5b:81:12:
         65:51:ad:d4:c2:c4:f8:e5:95:28:2e:e0:4b:e7:68:ec:7c:02:
         73:02:20:3e:6b:a7:4e:9e:4c:0a:d6:8c:24:b0:fb:2e:e7:93:
         d2:e6:be:94:65:ca:15:d0:ea:5b:c8:7f:55:79:99:5c:ad
Validate Root Certificate...OK
______
Signer Certificate loading from Device...OK
----BEGIN CERTIFICATE----
MIICBTCCAaqqAwIBAqIQfDEW4DQGWyXqU7+wniYaZjAKBqqqhkjOPQQDAjBPMSEw
HwYDVQQKDBhNaWNyb2NoaXAqVGVjaG5vbG9neSBJbmMxKjAoBqNVBAMMIUNyeXB0
byBBdXRoZW50aWNhdGlvbiBSb290IENBIDAwMjAgFw0xODEyMTQxOTAwMDBaGA8y
MDQ5MTIxNDE5MDAwMFowTzEhMB8GA1UECqwYTWljcm9jaGlwIFRlY2hub2xvZ3kq
SW5jMSowKAYDVQQDDCFDcnlwdG8qQXV0aGVudGljYXRpb24qU2lnbmVyIEY2NDAw
WTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAQOfzKV8utGQPSqOUz15SDX2bULuVT1
w/i7bz8sGFpNuZCRvK9J6gb8S8xcKifI0AIrGpvwG/RG3ZrFYjBMejh2o2YwZDAO
BqNVHQ8BAf8EBAMCAYYWEqYDVR0TAQH/BAqwBqEB/wIBADAdBqNVHQ4EFqQU62ID
K4yBWBZCmhyr8b6MIh63pskwHwYDVR0jBBqwFoAUeu19bca3eJ2yOAG16EqMsKQO
KowwCqYIKoZIzj0EAwIDSQAwRqIhAOB47QYnFfAxMvDvMZcipUni4YYoc7Xyt18o
PuN9E268AiEA32h2vqUirn/pFYSC+qhFjdqc8wqXL9ZqdPwRkHowR3s=
----END CERTIFICATE----
Certificate:
   Data:
        Version: 3(0x2)
       Serial Number:
           7c:31:16:e0:34:06:5b:25:e0:53:bf:b0:9e:26:1a:66
        Signature Algorithm: ecdsa-with-SHA256
        Issuer: O=Microchip Technology Inc, CN=Crypto Authentication Root CA 002
        Validity
           Not Before: Dec 14 19:00:00 2018 GMT
           Not After: Dec 14 19:00:00 2049 GMT
        Subject: O=Microchip Technology Inc, CN=Crypto Authentication Signer F640
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
               Public-Key: (256 bit)
               pub:
                   04:0e:7f:32:95:f2:eb:46:40:f4:aa:39:4c:e5:e5:
                   20:d7:d9:b5:0b:b9:54:f5:c3:f8:bb:6f:3f:2c:18:
                    5a:4d:b9:90:91:bc:af:49:ea:06:fc:4b:cc:5c:2a:
                   27:c8:d0:02:2b:1a:9b:f0:1b:f4:46:dd:9a:c5:62:
                   30:4c:7a:38:76
               ASN1 OID: prime256v1
               NIST CURVE: P-256
       X509v3 extensions:
           X509v3 Key Usage: critical
               Digital Signature, Certificate Sign, CRL Sign
            X509v3 Basic Constraints: critical
               CA:TRUE, pathlen:0
           X509v3 Subject Key Identifier:
               EB:62:03:2B:8C:81:58:16:42:9A:1C:AB:F1:BE:8C:22:1E:B7:A6:C9
```

```
X509v3 Authority Key Identifier:
                keyid:7A:ED:7D:6D:C6:B7:78:9D:B2:38:01:A5:E8:4A:8C:B0:A4:0E:2A:8C
    Signature Algorithm: ecdsa-with-SHA256
         30:46:02:21:00:e0:78:ed:06:27:15:f0:31:32:f0:ef:31:97:
         22:a5:49:e2:e1:86:28:73:b5:f2:b7:5f:28:3e:e3:7d:13:6e:
         bc:02:21:00:df:68:76:be:05:22:ae:7f:e9:15:84:82:fa:08:
         45:8d:da:9c:f3:08:17:2f:d6:60:74:fc:11:90:7a:30:47:7b
Validate Signer Certificate...OK
Device Certificate loading from Device...OK
----BEGIN CERTIFICATE----
MIIB9TCCAZuqAwIBAqIQc0PaLGk8Q6DyF0sMb9xx7TAKBqqqhkjOPQQDAjBPMSEw
HwYDVQQKDBhNaWNyb2NoaXAqVGVjaG5vbG9neSBJbmMxKjAoBqNVBAMMIUNyeXB0
byBBdXRoZW50aWNhdGlvbiBTaWduZXIgRjY0MDAgFw0xOTA3MzEyMzAwMDBaGA8y
MDQ3MDczMTIzMDAwMFowRjEhMB8GA1UECqwYTWljcm9jaGlwIFRlY2hub2xvZ3kq
SW5jMSEwHwYDVQQDDBqwMTIzOUE2REYyRUNFQ0RDMDEqQVRFQ0MwWTATBqcqhkjO
PQIBBggqhkjOPQMBBwNCAAQYjmZv6hNvOGfiXtqRPqKJr7hnhOHf6AI68KjrRy8/
93zhXWIzlG2VexKLeER97Y6wU2fysMJ4rWQjUgQ54iX5o2AwXjAMBgNVHRMBAf8E
AjAAMA4GA1UdDwEB/wQEAwIDiDAdBgNVHQ4EFgQUnbEcKNb3ZxBz/s1zs0GfTC95
UfEwHwYDVR0jBBqwFoAU62IDK4yBWBZCmhyr8b6MIh63pskwCqYIKoZIzj0EAwID
SAAwRQIhAMG40+JnJdJ+4qwq6HEyZu/sHkqSUqnbmW5jfSCsSQjSAiB3rimVHLb9
bIheMqsIbK2tXTjtLhCs5s15WvpNvKev1Q==
----END CERTIFICATE----
Certificate:
    Data:
        Version: 3(0x2)
        Serial Number:
            73:43:da:2c:69:3c:43:a0:f2:17:4b:0c:6f:dc:71:ed
        Signature Algorithm: ecdsa-with-SHA256
        Issuer: O=Microchip Technology Inc, CN=Crypto Authentication Signer F640
        Validity
            Not Before: Jul 31 23:00:00 2019 GMT
            Not After : Jul 31 23:00:00 2047 GMT
        Subject: O=Microchip Technology Inc, CN=01239A6DF2ECECDC01 ATECC
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
                Public-Key: (256 bit)
                pub:
                    04:18:8e:66:6f:ea:13:6f:38:67:e2:5e:da:91:3e:
                    a2:89:af:b8:67:87:41:df:e8:02:3a:f0:a8:eb:47:
                    2f:3f:f7:7c:e1:5d:62:33:94:6d:95:7b:12:8b:78:
                    44:7d:ed:8e:b0:53:67:f2:b0:c2:78:ad:64:23:52:
                    04:39:e2:25:f9
                ASN1 OID: prime256v1
                NIST CURVE: P-256
        X509v3 extensions:
            X509v3 Basic Constraints: critical
                CA: FALSE
            X509v3 Key Usage: critical
                Digital Signature, Key Agreement
            X509v3 Subject Key Identifier:
                9D:B1:1C:28:D6:F7:67:10:73:FE:CD:73:B3:41:9F:4C:2F:79:51:F1
            X509v3 Authority Key Identifier:
                keyid:EB:62:03:2B:8C:81:58:16:42:9A:1C:AB:F1:BE:8C:22:1E:B7:A6:C9
    Signature Algorithm: ecdsa-with-SHA256
         30:45:02:21:00:c1:b8:3b:e2:67:25:d2:7e:e2:ac:20:e8:71:
         32:66:ef:ec:1e:4a:92:52:a9:db:99:6e:63:7d:20:ac:49:08:
         d2:02:20:77:ae:29:95:1c:b6:fd:6c:88:5e:32:ab:08:6c:ad:
```

ad:5d:38:ed:2e:10:ac:e6:cd:79:5a:fa:4d:bc:a7:af:d5

By default, TNGTLS_devices_manifest.json, manifest_ca.key and manifest_ca.crt files will be created. manifest_ca.crt to be used as cert to verify the content while providing manifest file.

The Notebook will be used to generate a manifest file which can be uploaded into the public cloud provider of your choice (Google GCP, AWS IoT and Microsoft Azure). TNGTLS Manifest Generation notebook needs to be run for all Trust&Go example Notebooks that require a Manifest file.

4 Use Case Prototyping

This hands-on lab is intended to demonstrate the usage of Trust&GO to secure an AWS IoT connection.

Here are the steps that will be required to complete this Tutorial:

- Configure AWS CLI
- Upload Manifest File
- Build the AWS IoT device source code and flash it to Crypto Auth Trust Platform Board

4.1 Running AWS IoT example on Jupyter Notebook

By running following step, we can configure AWS CLI and able to upload manifest file. To upload manifest file, we would be using the manifest file and logger file generated in the previous section 3. TNGTLS Manifest File generation notebook. The Manifest file contains information about the device including serial number, public keys and certificates.

 From the Jupyter Home page, navigate to TrustnGO\05_cloud_connect\notebook\aws\TNGTLS_aws_connect.ipynb notebook file and open it.

Opening the notebook from Jupyter home page should load the following on the browser.

2. Run All cells by using Kernel -> Restart & Run all

- 3. After running all cells in notebook, it will create four button 1. "Config AWS-CLI", 2. "Load Manifest JSON File", 3. "Load Validation CERT File" and 4. "AWS GUI".
- 4. Press "Config AWS-CLI" button to configure AWS command line interface with AWS account credentials.

Once you press the button, it will ask AWS User Region: where region name has to be mentioned as shown in below image.

After enter your region press 'enter'. On successful AWS CLI configuration, you will get the aws endpoint address as shown in below image. Note this endpoint address is needed for the embedded c project.

5. Press "Load Manifest JSON File" button, it will open file explorer window, there you need to navigate TrustnGO\00_resource_generation and choose the manifest file generated using TNG Manifest Generation Notebook.

Press "Load Validation CERT File" button, it will open file explorer window, there
you need to navigate TrustnGO\00_resource_generation and choose the
validation certificate file generated using TNG Manifest Generation Notebook.

7. Press "Upload Manifest File" button to upload manifest file to aws cloud.

Once it is successfully uploaded, the result will be as shown below.

Note down your unique id from the manifest upload log which is the **Thing name** of your device and is needed for AWS GUI step.

Once this step is completed, manifest file is successfully uploaded to AWS IoT. Continue to next steps when connecting to AWS using TNGTLS device.

NOTE: Make sure that you executed C project successfully before executing the next step in the Jupyter notebook. To execute C project, refer "Running AWS IoT example on Embedded platform" next section.

AWS GUI:

Code block of this step generates "AWS GUI" button.

Clicking the button asks for the Thing name. Enter the number which we noted from the previous step and press enter.

it will create a very basic graphical interface that will display the device ID and will allow to switch the board LED status.

Below screenshot display the graphical interface

Using this interface, Notebook can communite with Crypto Auth Trust Platform through AWS IoT. Upon successful communication, you have now a device connected to AWS IoT through a secure TLS session using a Crypto Trust Platform.

4.2 Running AWS IoT example on Embedded platform

Once the resources are generated, MPLAB projects provided can be used to run the use case on Crypto Auth Trust Platform.

This project can configure the Wi-Fi credentials, establish a TLS connection, subscribe to MQTT topic and establish communication but not upload manifest file to AWS IoT. It is required to use the AWS IoT Jupyter notebook to upload manifest file.

Once the manifest file uploaded to AWS IoT then these embedded projects can be executed.

Prerequisite: It is required that WINC firmware is updated to latest version / version that is available in this package. Update the WINC firmware using package available in cloned repository at **assets\winc_firmware_upgrade**

4.2.1 MPLAB:

 Open Trust_platform_cloud.X project by navigating to MPLAB -> File -> Open Project -> TrustnGO\05_cloud_connect\firmware

1. Select the Build configuration as AWS_Connect

Open cloud_wifi_config.h file by navigating to Trust_patform_cloud-> Source Files ->common

update the following constants before building the project:

- MAIN WLAN SSID
- MAIN_WLAN_PSK

CLOUD_ENDPOINT for CLOUD_CONFIG_AWS

Program the CryptoAuth Trust platform by navigating to Trust_patform_cloud -> Make and Program Device

This step may take some time, wait for MPLAB to program the device. Once it is done programming you will see "**Programming complete**" message in Output Window.

Once the programming is done, reset the hardware (press the reset button) and view the Console messages by using applications like 'Tera Term'. Open the application with the COM related to CryptoAuth Trust Platform with 115200-8-N-1 settings.

```
File Edit Setup Control Window Help

WINC1500 WIFI: Connected to the WIFI access point.
WINC1500 WIFI: Device IP Address: 192.168.23.192

WINC1500 WIFI: DNS lookup:
Host: alpikhoe6clulf.iot.us-west-2.amazonaws.
IP Address: 52.39.48.93

(APP)(INFO)Socket 1 session ID = 2

SUCCESS: AWS Zero Touch Demo: Connected to AWS IoT.

SUCCESS: Subscribed to the MQTT update topic subscrisuccess: $aws/things/d59d14667ea43eb026ca3b624df3dc3

ta

Publishing MQTT Shadow Update Message:
00000000 7B 22 73 74 61 74 65 22 3A 7B 22 72 65 70
00000010 74 65 64 22 3A 7B 22 6C 65 64 31 22 3A 22
00000020 22 7D 7D 7D
```

Once successfully programmed the CryptoAuth Trust Platform, now we can run the last step in the Jupyter Notebook. Just navigate to previous section 4.1 to run the last step (AWS GUI) in the Jupyter Notebook

4.3 Crypto Auth Trust Platform Factory reset

Once any of the embedded project is loaded to Crypto Auth Trust Platform, the default program that enables interaction with Trust Platform tools will be erased.

Before using the Platform with any other notebook or tools on PC, its required to reprogram the default .hex file. Default hex file is available in cloned repository at assets\Factory_Program.X\CryptoAuth_Trust_Platform.hex

If Trust Platform GUI is provided with MPLAB X IDE installation location, notebooks can program the Factory reset hex file if its not available by default.

This can also be done manually by MPLAB

To reprogram using MPLAB:

- 1. Open assets\Factory_Program.X project in MPLAB IDE
- 2. Program the Crypto Trust platform by navigating to CryptoAuth_Trust_Platform_Factory_Program -> Make and Program Device

Now, Crypto Auth Trust Platform contains factory programmed application that enables interactions with Notebooks and/or PC tools

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as

a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.

Local sales offices are also available to help customers. A listing of sales offices and locations is included

in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

- There are dishonest and possibly illegal methods used to breach the code protection feature. All of
 these methods, to our knowledge, require using the Microchip products in a manner outside the
 operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is
 engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be

violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

а

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLog.

Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,

OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST.

SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology

Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight

Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,

dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming,

ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient

Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE.

Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN:

Quality Management System Certified by DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California

and India. The Company's quality system processes and procedures are for its PIC_® MCUs and dsPIC_® DSCs, KEELOQ_® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX

Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis

Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Tel: 951-273-7800 Raleigh, NC

Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA

Tel: 408-735-9110

Tel: 408-436-4270

Canada - Toronto

Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing

Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511

China - Chongqing

Tel: 86-23-8980-9588

China - Dongguan

Tel: 86-769-8702-9880 China - Guangzhou

Tel: 86-20-8755-8029

China - Hangzhou

Tel: 86-571-8792-8115

China - Hong Kong SAR

Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qinadao

Tel: 86-532-8502-7355

China - Shanghai

Tel: 86-21-3326-8000

China - Shenyang

Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou

Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300

China - Xian

Tel: 86-29-8833-7252

China - Xiamen

Tel: 86-592-2388138

China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi

Tel: 91-11-4160-8631

India - Pune

Tel: 91-20-4121-0141

Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur

Tel: 60-3-7651-7906

Malaysia - Penang

Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore

Tel: 65-6334-8870

Taiwan - Hsin Chu

Tel: 886-3-577-8366

Taiwan - Kaohsiung

Tel: 886-7-213-7830

Taiwan - Taipei

Tel: 886-2-2508-8600 Thailand - Bangkok

Tel: 66-2-694-1351

Vietnam - Ho Chi Minh

Tel: 84-28-5448-2100

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828

Fax: 45-4485-2829

Finland - Espoo

Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

France - Saint Cloud

Tel: 33-1-30-60-70-00

Germany - Garching

Tel: 49-8931-9700

Germany - Haan

Tel: 49-2129-3766400

Germany - Heilbronn

Tel: 49-7131-67-3636

Germany - Karlsruhe

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Tel: 972-9-744-7705

Italy - Milan

Tel: 39-0331-742611

Fax: 39-0331-466781

Italy - Padova

Tel: 39-049-7625286 Netherlands - Drunen

Tel: 31-416-690399

Fax: 31-416-690340

Norway - Trondheim

Tel: 47-7289-7561

Poland - Warsaw

Tel: 48-22-3325737 Romania - Bucharest

Tel: 40-21-407-87-50

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg

Tel: 46-31-704-60-40

Sweden - Stockholm

Tel: 46-8-5090-4654 UK - Wokingham

Tel: 44-118-921-5800 Fax: 44-118-921-5820