An Introduction to Radio Interferometry

1-4 Intensity and brightness temperature

Normal incidence

$$F_{\nu}A$$

Normal incidence

Energy passing a CCD pixel that has area A in a unit of time

$$F_{\nu}A$$

Inclined CCD pixel

$$F_{\nu}A(\vec{n}\cdot\vec{n'}) = F_{\nu}A\cos\theta$$

$$\vec{n} \cdot \vec{n'} = \cos \theta$$

Inclined incident photon streams

$$F_{\nu}A(\vec{n}\cdot\vec{n'}) = F_{\nu}A\cos\theta$$

$$\vec{n} \cdot \vec{n'} = \cos \theta$$

Inclined, discrete incident photon streams

$$-\sum_{i} F_{\nu}^{i} A\left(\overrightarrow{n^{i}} \cdot \overrightarrow{n'}\right) = -\sum_{i} F_{\nu}^{i} A \cos \theta^{i}$$

$$\overrightarrow{n^i} \cdot \overrightarrow{n'} = \cos \theta^i$$

Continuous incident light

Inclined, discrete incident photon streams

Energy passing a CCD pixel that has area A in a unit of time

$$-\sum_{i} F_{\nu}^{i} A\left(\overrightarrow{n^{i}} \cdot \overrightarrow{n'}\right) = -\sum_{i} F_{\nu}^{i} A \cos \theta^{i}$$

infinitesimal solid angle: $d\Omega \equiv \sin\theta \ d\theta d\phi$

Intensity $I(\theta,\phi)$: the amount of energy through a unit of area A in a unit of time t from a unit solid angle $d\Omega$ around the direction (θ,ϕ) [i.e., flux density per unit solid angle] SI Unit: Joul s⁻¹ m⁻² Hz⁻¹ Sr⁻¹

$$F_{\nu} = \int I_{\nu}(\theta, \phi) \cos \theta \, d\Omega$$

Planck function: intensity of a black body at temperature T and frequency ν

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1}$$
 h: Planck's constant (6.62607015 × 10⁻³⁴ m² kg s⁻¹)
k: Boltzmann constant (1.380649 × 10⁻²³ m² kg s⁻² K⁻¹)

infinitesimal solid angle: $d\Omega \equiv \sin\theta \ d\theta d\phi$

Intensity $I(\theta, \phi)$: the amount of energy through a unit of area A in a unit of time t from a unit solid angle $d\Omega$ around the direction (θ, ϕ) [i.e., flux density per unit solid angle] SI Unit: Joul s⁻¹ m⁻² Hz⁻¹ Sr⁻¹

$$F_{\nu} = \int I_{\nu}(\theta, \phi) \cos \theta \, d\Omega$$

Planck function: intensity of a black body at temperature T and frequency ν

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1}$$
 h: Planck's constant (6.62607015 × 10⁻³⁴ m² kg s⁻¹)
 k: Boltzmann constant (1.380649 × 10⁻²³ m² kg s⁻² K⁻¹)

$$(h\nu \ll kT) \sim \frac{2\nu^2}{c^2} \, kT$$

 $(h\nu \ll kT) \sim \frac{2\nu^2}{c^2} kT$ (Rayleigh-Jeans limit, i.e., high temperature or long wavelength limit)

Intensity $I(\theta, \phi)$: the amount of energy through a unit of area A in a unit of time t from a unit solid angle $d\Omega$ around the direction (θ, ϕ) [i.e., flux density per unit solid angle] SI Unit: Joul s⁻¹ m⁻² Hz⁻¹ Sr⁻¹

$$F_{\nu} = \int I_{\nu}(\theta, \phi) \cos \theta \ d\Omega$$

Planck function: intensity of a black body at temperature T and frequency ν

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1} \sim \frac{2h\nu^3}{c^2} \frac{1}{1 + \frac{h\nu}{kT} - 1} \sim \frac{2\nu^2}{c^2} kT$$

$$(h\nu \ll kT) \sim \frac{2\nu^2}{c^2} kT \qquad \text{(Rayleigh-Jeans limit, i.e., high temperature or leave represents the limit)}$$

$$(h\nu \ll kT) \sim \frac{2\nu^2}{c^2} \, kT$$
 (Rayleigh-Jeans limit, i.e., high temperature or long wavelength limit)

Intensity $I(\theta, \phi)$: the amount of energy through a unit of area A in a unit of time t from a unit solid angle $d\Omega$ around the direction (θ, ϕ) [i.e., flux density per unit solid angle] SI Unit: Joul s⁻¹ m⁻² Hz⁻¹ Sr⁻¹

$$F_{\nu} = \int I_{\nu}(\theta, \phi) \cos \theta \, d\Omega$$

Planck function: intensity of a black body at temperature T and frequency ν

$$B_{\nu}^{RJ}(T) \sim \frac{2h\nu^3}{c^2} \frac{1}{1 + \frac{h\nu}{kT} + \dots - 1} \sim \frac{2\nu^2}{c^2} kT = I_{\nu}(\theta, \phi)$$

$$(h \nu \ll kT) \sim \frac{2 \nu^2}{c^2} \, kT$$
 (Rayleigh-Jeans limit, i.e., high temperature or long wavelength limit)

We denote the temperature of the black body as T_B in this case and call it the corresponding brightness temperature of the observed in intensity $I_{\nu}(\theta, \phi)$.

Planck function: intensity of a black body at temperature T and frequency ν

$$B_{\nu}^{RJ}(T) \sim \frac{2h\nu^3}{c^2} \frac{1}{1 + \frac{h\nu}{kT} + \dots - 1} \sim \frac{2\nu^2}{c^2} kT = I_{\nu}(\theta, \phi)$$

$$(hv \ll kT) \sim \frac{2v^2}{c^2} \, kT$$
 (Rayleigh-Jeans limit, i.e., high temperature or long wavelength limit)

We denote the temperature of the black body as T_B in this case and call it the corresponding brightness temperature of the observed in intensity $I_{\nu}(\theta, \phi)$.

Example of the effect of dust scattering

Planck function: intensity of a black body at temperature T and frequency ν

$$B_{\nu}^{RJ}(T) \sim \frac{2h\nu^3}{c^2} \frac{1}{1 + \frac{h\nu}{kT} + \dots - 1} \sim \frac{2\nu^2}{c^2} kT = I_{\nu}(\theta, \phi)$$

$$(h\nu \ll kT) \sim \frac{2\nu^2}{c^2} \, kT$$
 (Rayleigh-Jeans limit, i.e., high temperature or long wavelength limit)

We denote the temperature of the black body as T_B in this case and call it the corresponding brightness temperature of the observed in intensity $I_{\nu}(\theta, \phi)$.

$$T_B = \frac{c^2}{2k\nu^2} I_{\nu} = \frac{\lambda^2}{2k} I_{\nu}$$
Important!

1. We defined intensity $I(\theta, \phi)$ to describe flux density in a unit solid angle.

2. The flux density $F_{\nu} = \int I_{\nu}(\theta, \phi) \cos \theta \ d\Omega$

3. We define brightness temperature $T_B = \frac{c^2}{2kv^2} I_v = \frac{\lambda^2}{2k} I_v$