Mid-Term Exam 2021 Fall

Name: TAN SIN HONG (202050817)

1. Depict the following training set in 3D space, and suggest whether linear separability is possible and why.

$$x_{1} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, x_{2} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, x_{3} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, x_{4} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, x_{5} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, x_{6} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
$$y_{1} = 1, y_{2} = 1, y_{3} = 1, y_{4} = -1, y_{5} = -1, y_{6} = -1$$

Figure 1 Training set in 3D space

Single layer percepton with 3 input modes.

- In the case of an elementary perceptron, the n-dimensional space is divided by a hyperplane into two decision regions. The hyperplane is defined by linearly separable function.

- The hyperplane equation is as defined below

WIX + WEXZ+ WIX3 = b

- If this is generalized the following equation can be the linear separable function $\frac{3}{2}$ wix: -b=0

In this case, wixit wax + w. X3 - b = 0

If we express the hyporplane aquation as matrix

$$(\omega_1, \omega_2, \omega_3) \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = b$$

- The normal vector perpendicular to the hyperplane is (w, wx, ws) - and the distance from origin to the hyperplane is 161 1/wllx

- If $(\omega_1, \omega_2, \omega_3)(X_1) = b$, then the data is in hyperplane,

- If $(w_1w_2, w_3) \times (x_2) > b$, then the data is located in the direction of upper part of the hyperplane.

- If $(\omega_1, \omega_2, \omega_3) (x_1 \ x_2) < b$, then the data is located in the direction of below part of the hyperplane.

- For a given doctoret, if we can find the (w., wz, wz) that can satisfy the formula below, then we can say the given data is linear separable, if not, we can say the given data is non-linear separable.

(1) For $X_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (2) For $X_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (3) For $X_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (4) For $X_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (5) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (6) For $X_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (7) For $X_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (8) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (9) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (1) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (2) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (3) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (4) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (5) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (6) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (7) Form the answer of (9) 2(8)

(8) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (9) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (10) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (11) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (12) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (13) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (14) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (15) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (16) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (17) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (18) For $X_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (19) For X_4

Since the equation of $W_1>0$ & $W_1<0$ is contradictory to each other, the given dataset cannot form linearly reparable hyperplans. Therefore, we can say that the given data is non-linear-separable.

2. Solve the exercise problem 7 of Chapter 2 in textbook.

(The picture in the problem shows that the plane determined by the x1 and x3 axes. Present the corresponding perceptron as in Figure 2-4(a).)

- Since the hyperplane (in the figure) is parallel to X1 & X2, W1, W2 will be equal to 0.

- Also, since the distance of hyperplane from origin is 0, we can know the value of 5 will be 0.

The linear separation between perreption and hyporplane

3. Depict the following training set in 3D space. Present a perceptron that classifies this data with the least error rate.

$$x_{1} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, x_{2} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, x_{3} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, x_{4} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, x_{5} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, x_{6} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
$$y_{1} = 1, y_{2} = -1, y_{3} = 1, y_{4} = -1, y_{5} = 1, y_{6} = -1$$

Figure 2: Training set in 3D space

The dataset is be transformed as shown in table below.

k 12	7	72	- Z	: J ZiZ		2223	Z.Z3.	Z,	2,2	. £3	V	
4,	0	1	. 0	0		0	o	0	0	0	1,	-
2	1	,	į.			11	6	0		1	-1	
0	1	- 183 - 184 - 184	. (1		1	1	1		1	1	
Ky 1	1	0	1	0		0	1	١.,	6		-12	. (
5 1	U	0	1	0	2	D		(V.T.		1	0.2
	U	,	0	0			0	0	0	1	1	.,-,
6 1	U	(0	1		0	0	0	1	0	-1	357
Z=1.		doute	from z	riginal	3 pa	u h	feature -	Acco	rding .	to the	gradie	
Z = 1. Z = 1. Z = 2.		dot	from a	riginal	300		y .	Accordences Thon Wifn After update	time, we = w + the :	to the initialization update Lr. (notialization)	gradice with the (Y-F) attan	erf Wag.

The rest of answer of the question 3 can be found in the ipynb file.

4. The objective function of the perceptron can be defined differently as follows. Show the process of differentiating this expression, and using the differentiation result, present the weight update rule as the following delta rule.

Delta Rule:
$$\underset{X \in Y}{\text{det}} = X = W + \rho \sum_{x_i \in Y} y_i X_i$$

Objective function $J(w) = \sum_{i=1}^n (y_i - \tau(w^T x_i)^2)$

(G.4): Objective function $J(w) = \sum_{i=1}^n (y_i - \tau(w^T x_i)^2)$

(bit funds)

$$\frac{\Delta J(w)}{\Delta w_i} = \Delta \left\{ \frac{y_k - \tau(w_i X_{k_1} + w_k X_{k_2} + \dots w_i X_{k_k} + w_k X_{k_k}) \right\}^2$$

Owing the second of the second of

5. Answer to the following classification problem

- (1) Present each multi-layered perceptron that solves this classification problem.
- (2) Answer whether the right situation can be solved with a perceptron with only two hidden nodes.
- (1) The answer of (1) is in ipynb file of attached file.
- (2) The right situation cannot be solved with a perceptron with a perceptron with only two hidden nodes, But, it can be solved by 3 hidden nodes. This can be explained as the Neural Network with 3 hidden layers can construct higher dimensions model that can represent the classifier to solve the difficult classification problem.

Figure 2: Classification of the left situation using 1 hidden layer with 2 hidden nodes

Figure 3: Classification of right situation using 1 hidden layer with 2 hidden nodes

Figure 4: Classification of right situation using 1 hidden layer with 3 hidden nodes