$r_{\text{EAR}} = \left(1 + \frac{r_S}{m}\right)^m - 1$

Effective Annual Rate (EAR)

$$(r_s)^m$$

$$r_c = m \cdot \ln \left(1 + \frac{r_S}{m}\right)$$

m: number of compounding periods

Bond Equivalent Yield (BEY): semi-annual basis

$$r_{
m BEY} = \left[\left(1 + rac{r_S}{m}
ight)^{rac{m}{2}} - 1
ight] \cdot 2$$

 r_S :annual interest rate (nominal)

Long 1 unit of USD bond by shorting some SGD bond to get SGD 1.36888 (0.964 \times

Bond Price

$$B = \sum_{i=1}^{n} \frac{C}{(1+r_i)^i} + \frac{r}{(1+r_n)^n}$$

(=zero rate. A bond trades at par when its price is equal to the face value. B = F)

Derive expression for continuously compounded par yield(y). c_i is the a fixed value c for all time, the last payment is $c_N = c+100$

$$B = \sum_{i=1}^{n} c_i e^{-s}$$

Let $T_{i+1} - T_i = \Delta T$, then:

$$B = ce^{-y\Delta T} + \dots + ce^{-Ny\Delta T} + 100e^{-Ny\Delta T}$$

= $ce^{-y\Delta T} \left[1 + \dots + e^{-(N-1)y\Delta T} \right] + 100e^{-Ny\Delta T}$

Geometric series sum:
$$B=c\cdot\frac{1-e^{-Ny\Delta T}}{e^{y\Delta T}-1}+100e^{-Ny\Delta T}$$
 Set $B=100$:

$$c = 100(e^{y\Delta T} - 1) \quad \Rightarrow \quad y = \frac{1}{\Delta T} \log \left(\frac{c}{100} + 1 \right)$$

5-year bond with 11% continuous yield(y), 8% annual coupon(c)

$$B = \sum_{i=1}^{5} c_i e^{-yt_i} + F e^{-yT} = 8(e^{-0.11} + \dots + e^{-0.55}) + 100e^{-0.55} = 86.801$$

$$D = -\frac{1}{B} \cdot \frac{\partial B}{\partial y} = \frac{1}{B} \left(\sum_{i=1}^{n} t_i c_i e^{-yt_i} + TFe^{-yT} \right) = 4.256$$

$$\frac{\Delta B}{R} \approx -D \cdot \Delta y, \quad \Delta B \approx -D \cdot \Delta y \cdot B = 0.73885$$

$$C = \frac{1}{B} \cdot \frac{\partial^2 B}{\partial y^2} = \frac{1}{B} \left(\sum_{i=1}^n t_i^2 c_i e^{-yt_i} + T^2 F e^{-yT} \right) = 19.871$$

Price at 10.8% yield

$$B = \sum c_i e^{-0.108t_i} + 100e^{-0.108 \cdot 5} = 87.5434$$

Duration + convexity approximation

$$\Delta B \approx -D \cdot \Delta y \cdot B + \tfrac{1}{2}C(\Delta y)^2 \cdot B = 0.7423, \quad \text{Actual: } 87.5434 - 86.801 = 0.7424$$

Duration and convexity neutral portfolio and adding bonds

Bond	Position	Mod. Duration	Convexi
A	1.5M	3.4	20
В	2.0M	2.8	18

Market Bond	Mod. Duration	Convexity
C	2.9	18
D	1.4	10

$$D_{\$}(V) = 1.5 \cdot 3.4 + 2.0 \cdot 2.8 = 10.7$$
 $C_{\$}(V) = 1.5 \cdot 20 + 2.0 \cdot 18 = 66$

Solve

$$\begin{cases} 10.7 + 2.9B_C + 1.4B_D = 0 \\ 66 + 18B_C + 10B_D = 0 \end{cases} \Rightarrow B_C = -3.8421, \quad B_D = 0.31579$$

Given: LIBOR RATE

The forward LIBOR rate F(2m, 9m).

$$(1 + \Delta_{2m}L_{2m})(1 + \Delta_{7m}F(2m, 9m)) = 1 + \Delta_{9m}L_{9m}$$

 $F(2m, 9m) = \frac{11}{300} \left[\frac{1 + \frac{20}{300} \times 0.0155}{1 + \frac{2}{300} \times 0.012} - 1 \right] \approx 1.6467\%.$

(d) What rate would you show for a 2 × 12 FRA (no arbitrage)?

$$(1 + \Delta_{2m}L_{2m})(1 + \Delta_{10m}F(2m, 12m)) = 1 + \Delta_{12m}L_{12m}$$

 $F(2m, 12m) = \frac{1}{300} \left[\frac{1 + \frac{360}{360} \times 0.0175}{1000} - 1 \right] \approx 1.85629\%.$

short the 1×2 FRA, since F(1m, 2m) > 1.15%, we can borrow at 1.15% to deposit (lend) at F(1m, 2m) if we were right.

Continuously Compounded Zero Rates Given: Zero Rates Table

$$\begin{split} e^{F(0y,1y)\cdot 1} \cdot e^{F(1y,2y)\cdot 1} &= e^{0.045\cdot 2} \Rightarrow F(1y,2y) = 5\% \\ e^{F(0y,1y)\cdot 1} \cdot e^{F(1y,2y)\cdot 1} \cdot e^{F(2y,3y)\cdot 1} &= e^{0.0475\cdot 3} \Rightarrow F(2y,3y) = 5.25\% \end{split}$$

(b) Show that the continuously compounded zero rate can be expressed as an arithmetic

 $e^{F(0,1)} \cdot e^{F(1,2)} \cdot \cdot \cdot \cdot \cdot e^{F(n-1,n)} = e^{r_n \cdot n} \Rightarrow r_n = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdot \cdot \cdot + F(n-1,n)}{r_n \cdot r_n} = \frac{F(0,1) + F(1,2) + \cdots +$

(a) Spot Exchange rate for USD/SGD is $FX_0=1.42.$ $D_{\rm SGD}(0,T)=0.98,$ $D_{\rm USD}(0,T)=0.98,$

$$_{\mathrm{SD}}(0,T)=$$

(b) If we see that $FX_T = FX_0 = 1.42$, state an arbitrage

1.42) today. When USD bond matures, convert \$1 USD \rightarrow 1.42 SGD. Short SGD bond matures at 1.3968 SGD (1.36888/0.98). Arbitrage profit is 1.42 - 1.3968.

4. Swap Valuation Using Continuous Rates:

3m	1.10%
6m	1.40%
12m	1.75%
18m	1.90%
24m	2.00%

Maturity Zero Rate

 $FX_T = FX_0 e^{(r^D - r^F)T}$

 $FX_T = FX_0 \cdot \frac{D_{\text{USD}}(0, T)}{D_{\text{SGD}}(0, T)} = 1.42 \cdot \frac{0.964}{0.98} = 1.3968$

$$D(0, t) = e^{-rt}$$

(a) A 2y fixed leg pays 1.75% semi-annually. What is the PV of this fixed leg? General formula:

$$PV_{0x} = \sum_{i=1}^{n} D(0, T_i) \cdot \Delta \cdot K$$
 where $K =$ fixed rate
$$PV_{0x} = 0.5 \cdot (D(0, 6m) + D(0, 12m) + D(0, 18m) + D(0, 24m)) \cdot 1.75\% = 0.0342$$

(b) A 2y floating leg pays 6m LIBOR rate semi-annually. What is the PV of this floating

 $PV_{\text{float}} = \sum_{i=1}^{n} \Delta_i \cdot D(0, T_i) \cdot L(T_{i-1}, T_i) = N \cdot (1 - D(0, T_n)), \text{ where } n = \text{number of periods}$

$$PV_{\text{fit}} = 1 - D(0, 24m) = 0.03921$$

(c) par swap rate for 2y interest rate swap with semi annual payment?

 $S_{\alpha,\beta} = \frac{D(0,T_{\alpha}) - D(0,T_{\beta})}{\sum_{i=\alpha+1}^{\beta} \Delta_i \cdot D(0,T_i)}$

$$\sum_{i=\alpha+1}^{0} \Delta_i \cdot D(0, T_{\alpha})$$

$$(\alpha = 0), D(0, T_{\alpha})is1$$

$$S = \frac{1 - D(0, 24m)}{0.5 \cdot (D(0, 6m) + D(0, 12m) + D(0, 18m) + D(0, 24m))} = 2\%$$
 Long a receiver at par swap rate above, and 3 months later, we observed:

Maturity	Zero Rate	
3m	1.20%	
6m	1.50%	
12m	1.85%	
18m	1.95%	
24m	2.05%	

General formulas:

Linear interpolation of zero rates:

$$R_t = rac{T_2 - t}{T_2 - T_1} \cdot R_{T_1} + rac{t - T_1}{T_2 - T_1} \cdot R_{T_2}$$

From arbitrage-free pricing, the relationship between zero-coupon bonds and forward LI-BOR is(to get L(3m,9m)):

$$e^{R_{t_1} \cdot t_1} \cdot (1 + \Delta \cdot L(t_1, t_2)) = e^{R_{t_2} \cdot t_2}$$

Interpolated zero rates:

$$R_{9m} = \frac{R_{6m} + R_{12m}}{2} = 1.675\%, \quad R_{15m} = \frac{R_{12m} + R_{18m}}{2} = 1.90\%, \quad R_{21m} = \frac{R_{18m} + R_{24m}}{2} = 2.00\%$$

Floating leg PV: using current 6m libor rate for the first 3 month pv

 $PV_{9t} = \Delta \cdot [D(0, 3m) \cdot 1.4\% + L(3m, 9m) \cdot D(0, 9m) + L(9m, 15m) \cdot D(0, 15m) + L(15m, 21m)$

$$PV_{\text{fix}} = 0.5 \cdot [D(0, 3m) + D(0, 9m) + D(0, 15m) + D(0, 21m)] \cdot 2\% = 0.0393$$

$$V_{\rm rec} = PV_{\rm fix} - PV_{\rm fit} = 0.001 \quad ({\rm per~\$1~notional})$$

1. We observe the following instruments in the swap market. All three interest rate

Instrument	Quote
6m LIBOR	2%
1y IRS	2.25%
2y IRS	2.40%
3y IRS	2.50%

(a) Determine the par swap rate for a 1.5y tenor interest rate swap with semi-annual (d) PV of floating leg (3m LIBOR)

We need the discount factors D(0,6m), D(0,1y), and D(0,1.5y)

$$D(0,6m) = \frac{1}{1 + 0.5 \times 2.0\%} = 0.99$$

Using the 1v IRS quote

$$PV_{\text{fixed}} = \sum_{i=1}^{n} \Delta_i \cdot S \cdot D(0, T_i) = 0.5 \cdot 2.25\% \cdot [D(0, 6m) + D(0, 1y)]$$

$$PV_{\text{float}} = \sum_{i=1}^{n} \Delta_i \cdot L(T_{i-1}, T_i) \cdot D(0, T_i)$$

$$=D(0,6m)\cdot 0.5\cdot 2.0\%+D(0,1y)\cdot 0.5\cdot L(6m,12m)=1-D(0,1y)$$
 As ${\rm PV}_{fix}=PV_{flox}:$ D(0,1y) = 0.9779

Now use the 2v IRS quote(fix=float):

0.5 ·
$$[D(0,6m)+D(0,1y)+D(0,1.5y)+D(0,2y)]$$
 · 2.4% = 1 $-D(0,2y)$ olate:
$$D(0,1.5y)=\frac{D(0,1y)+D(0,2y)}{2}$$

Interpolate

Finally:
$$S = \frac{1 - D(0, 1.5y)}{0.5 \cdot [D(0, 6m) + D(0, 1y) + D(0, 1.5y)]} = 2.335\%$$

(b) A forward starting swap with a 2y tenor starting at t=1y has the following cashflows

	Time (y)	Pay	Rec		
	1.5	Par Swap Rate	6m LIBOR		
	2.0	Par Swap Rate	6m LIBOR		
	2.5	Par Swap Rate	6m LIBOR		
	3.0	Par Swap Rate	6m LIBOR		
Calculate the par swap rate for this forward starting swap.					

We need: D(0, 1y), D(0, 1.5y), D(0, 2y), D(0, 2.5y), D(0, 3y) Interpolate:

$$D(0, 2.5y) = \frac{D(0, 2y) + D(0, 3y)}{2} = 0.4768 + 0.5D(0, 3y)$$
 Using 3v IRS quote:

$$\begin{split} PV_{\text{fix}} &= 0.5 \cdot \left[D(0,6m) + D(0,1y) + D(0,1.5y) + D(0,2y) + D(0,2.5y) + D(0,3y) \right] \cdot 2.5\% \\ &\qquad \qquad PV_{\text{fit}} &= 1 - D(0,3y) \end{split}$$

Solving:

$$D(0,3y) = 0.928$$
, $D(0,2.5y) = 0.941$
Now, compute forward swap rate starting at $t = 1y$, i.e., from 1.5y to 3y:

D(0, 1y) - D(0, 3y)

$$S = \frac{D(0, 1y) - D(0, 3y)}{0.5 \cdot [D(0, 1.5y) + D(0, 2y) + D(0, 2.5y) + D(0, 3y)]} = 2.63\%$$
6. Bond Portfolio Immunization

(a) Dollar duration and convexity

 $D_{\$}(V) = B_1 \times D_1 + B_2 \times D2$

$$C_8(V) = B_1 \times C_1 + B_2 C_2$$
 (b) Portfolio value change from 10bp rise (Δy) :

$$\Delta V \approx -D_{\$}(V) \cdot \Delta y + \frac{1}{2}C_{\$}(V) \cdot (\Delta y)^2 = -13,162,$$

 $V' = 3,500,000 - 13,162 = 3,486,838$

(c) Immunizing using two more bonds (3 and 4):

$$D_{\S}(\Pi) = 13.2 + 1.6B_3 + 3.2B_4, \quad C_{\S}(\Pi) = 76 + 12B_3 + 20B_4,$$

 $B_3 = 3.25 \,\text{mil}, \quad B_4 = -5.75 \,\text{mil}$

 $D_3 = 0.50 \text{ mm}, \quad D_4 = -0.73 \text{ mm}$ Market Quotes (Uncollateralised). Given Maturity, Instrument (CD, IRS) Rate

Forward LIBOR from zero-coupon discount factors:

Use LIBOR discounting since uncollater- $\,$ 2y IRS (annual payment): alised.

$$D(0,T) = \frac{1}{1 + \Delta_T \cdot L_T} \qquad \qquad 0.025 = \frac{1 - D(0,2y)}{D(0,1y) + D(0,2y)} \Rightarrow D(0,2y)$$

$$Iy \ IRS \ (annual \ payment): \qquad \qquad Interpolation:$$

 $D(0, 1y6m) = \frac{1}{2} [D(0, 1y) + D(0, 2y)]$

 $IRS(1y) = \frac{1 - D(0, 1y)}{D(0, 1y)}$

 \Rightarrow D(0, 1y)

$$L(6m, 1y) = \frac{1}{\Delta_{6m}} \cdot \frac{D(0, 6m) - D(0, 1y)}{D(0, 1y)}$$
 Forward LIBOR:
$$L(1y, 1y6m) = \frac{1}{0.5} \cdot \frac{D(0, 1y) - D(0, 1y6m)}{D(0, 1y6m)}$$

Spot LIBOR Rates and OIS Info: Fed-Fund OIS rate = 0.70% flat (30/360), zero basi swap spread. Given: Tenor and Libor Rate

(a) Discount factors for LIBOR and OIS at 3m:

$$D_0(0, t_i) = (\frac{1}{1 + \Delta S_0})^{-N} (N = \text{day}), \ \Delta S_0 = \frac{0.007}{360}$$

(b) Forward discount factors(3m to 6m):

$$D(t_1, t_2) = \frac{D(0, t_2)}{D(0, t_1)}$$

(c) PV of fixed leg (1y, quarterly, 1.75% fixed):

$$PV_{fixed} = \sum_{i=1}^{4} \Delta_i \cdot \widetilde{D}(0, T_i) \cdot 1.75\%$$

(ii) With collateral (discount using OIS):

$$PV_{fixed} = \sum_{i=1}^{4} \Delta_i \cdot D_o(0, T_i) \cdot 1.75\%$$

(i) No collateral:
$$\mathrm{PV}_{\mathrm{float}} = \widetilde{D}(0,T_0) - \widetilde{D}(0,T_n)$$

(ii) With collateral: discount each forward rate cash flow:

$$L(T_i, T_{i+1}) = \frac{1}{\Delta} \cdot \frac{D(0, T_i) - D(0, T_{i+1})}{D(0, T_{i+1})}$$

Derive the valuation formula for a receiver swaption: Sinceit's quarterly, FindL(3m, 6m L(6m, 9m), L(9m, 12m)

$$PV_{float} = \sum_{i=1}^{n} \Delta_i \cdot L(T_{i-1}, T_i) \cdot D_o(0, T_i)$$

Forward FRA Valuation (3y LIBOR, notional = \$1M). Given: Maturity, Instrument (Spot Libor, Swap), Rate)

(a) Collateralised FRA PV at 3y using OIS Step 1: Discount factors from OIS at 0.25%:

 $D_o(0, 1y)$ $D_o(0, 2y)$ $D_o(0, 3y)$

Step 3: PV of Collateralised FRA at pay L(2y,3y) at year 3:

 $PV = D_o(0, 3y) \cdot L(2y, 3y) \cdot 1,000,000 \approx 31,263.75$

(b) Uncollateralised FRA PV using LIBOR

From swap rate:

$$0.0225 = \frac{1 - \tilde{D}(0, 2y)}{\tilde{D}(0, 1y) + \tilde{D}(0, 2y)} \Rightarrow \tilde{D}(0, 2y) = 0.9563$$

$$0.0255 = \frac{1 - \tilde{D}(0,3y)}{\tilde{D}(0,1y) + \tilde{D}(0,2y) + \tilde{D}(0,3y)} \Rightarrow \tilde{D}(0,3y) = 0.927$$
 Forward rates:

$$L(1\mathrm{y},2\mathrm{y})=3.00\%,\quad L(2\mathrm{y},3\mathrm{y})=3.16\%$$
 PV of Uncollateralised FRA at pay L(2y,3y) at year 3:

 $PV = \tilde{D}(0, 3y) \cdot L(2y, 3y) \cdot 1,000,000 \approx 29,223$

 $StockpriceProcess: dS_t = \mu S_t dt + \sigma S_t dW_t$. The price of a risk-free bond:

P: real-world probability. W. : P-Brownian motion.

Q: risk-neutral measure, risk-free bond; numeraire

(a) Evaluate $\mathbb{E}^{\mathbb{P}}[S_T]$

By applying Itô's formula: Let $X_t = \log S_t = f(S_t)$

$$df(X_t) = f'(X_t) \, dX_t + \frac{1}{2} f''(X_t) \, (dX_t)^2$$

$$dX_t = \left(\mu - \frac{1}{2}\sigma^2\right)dt + \sigma dW_t$$

Integrating both sides over [0, T]:

Exponentiating both sides:
$$S_T = S_0 \exp\left[\left(\mu - \frac{1}{2}\sigma^2\right)T + \sigma W_T\right]$$

Taking expectation under \mathbb{P} :

(b) Evaluate $\mathbb{E}^{\mathbb{Q}}[S_T]$

Under \mathbb{Q} , the process $\frac{S_t}{B_t}$ is a martingale. The Radon-Nikodym derivative is:

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = \exp\left(-\kappa W_T - \frac{1}{2}\kappa^2 T\right), \text{ where } \kappa = \frac{\mu - r}{\sigma}$$
Under \mathbb{Q} , define $dW_t^B = dW_t + \kappa dt$. The SDE becomes:

 $dS_t = \mu S_t \, dt + \sigma S_t \, dW_t$

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

$$= \mu S_t dt + \sigma S_t \left(dW_t^B - \frac{\mu - r}{\sigma} dt \right)$$

$$= r S_t dt + \sigma S_t dW_t^B$$

Applying Itô's Formula to $X_t = \log(S_t)$

$$S_T = S_0 \exp \left[\left(r - \frac{1}{2} \sigma^2 \right) T + \sigma W_T^B \right]$$

Taking expectation under \mathbb{Q} :

$$\mathbb{E}^{Q}[S_T] = S_0 e^{r_T}$$

LIBOR rate follows:

 $dL_i(t) = \sigma_i L_i(t) dW^{i+1}$ \mathbb{Q}^{i+1} : risk-neutral measure, W^{i+1} : a standard BM, $D_{i+1}(t)$: numeraire. Derive the value

$$F_i(0) = D_{i+1}(0)\Delta_i \mathbb{E}^{i+1}[(K - L_i(T_i))^+]$$

Let $f(L_i(t)) = \log L_i(i)$ and apply Ito's lemma:

$$L_i(t) = L_i(0) \exp\left(-\frac{1}{2}\sigma_i^2 t + \sigma_i W_t^{i+1}\right).$$

Evaluating the expectation, we obtain:

$$\begin{split} F_i(0) &= D_{i+1}(0) \cdot \Delta_i \cdot \mathbb{E}^{i+1}[(K - L_i(T_i))^+] \\ &= D_{i+1}(0) \cdot \Delta_i \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (K - L_i(0)e^{-\frac{1}{2}\sigma_i^2t + \sigma_i\sqrt{T}x})^+ e^{-\frac{s^2}{2}} dx \\ &= D_{i+1}(0) \cdot \Delta_i \cdot [K\Phi(-d_2) - L_i(0)\Phi(-d_1)] \,, \end{split}$$

where

where
$$d_1 = \frac{\log\left(\frac{L_0(0)}{\sigma_i\sqrt{T}}\right) + \frac{1}{2}\sigma_i^2T}{\sigma_i\sqrt{T}}, \quad d_2 = d_1 - \sigma_i\sqrt{T}.$$
 Suppose the swap rate follows (risk-neutral measure: $\mathbb{Q}^{n+1,N}$, numeraire: $P_{n+1,N}(t)$):

 $dS_{n,N}(t) = \sigma_{n,N}S_{n,N}(t)dW^{n+1,N}.$

$$V_{n,N}^{\text{rec}}(0) = P_{n+1,N}(0)\mathbb{E}^{n+1,N}[(K - S_{n,N}(T))^+]$$

$$W^{n+1,N}$$
 is a Brownian motion under $\mathbb{Q}^{n+1,N}$. Therefore:

 $S_{n,N}(T) = S_{n,N}(0) \exp \left(-\frac{1}{2}\sigma_{n,N}^2T + \sigma_{n,N}W_T^{n+1,N}\right)$

$$S_{n,N}(I) = S_{n,N}(0) \exp\left(-\frac{1}{2} \sigma_{n,N} I + \sigma_{n,N} m_T\right).$$
 Evaluating the expectation, we obtain:

 $V_{n.N}^{rec}(0) = P_{n+1,N}(0) \cdot \mathbb{E}^{n+1,N} [(K - S_{n,N}(T))^+]$

$$\begin{split} &= P_{n+1,N}(0) \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(K - S_{n,N}(0) e^{-\frac{1}{2}\sigma_{n,N}^2 T + \sigma_{n,N}\sqrt{T}x}\right)^+ e^{-\frac{x^2}{2}} dx \\ &= P_{n+1,N}(0) \cdot \left[K\Phi(-d_2) - S_{n,N}(0)\Phi(-d_1)\right], \end{split}$$

 $d_1 = \frac{\log \left(\frac{S_{n,N}(0)}{K}\right) + \frac{1}{2}\sigma_{n,N}^2T}{\sigma_{n,N}\sqrt{T}}, \quad d_2 = d_1 - \sigma_{n,N}\sqrt{T}.$

$$F(2m, 12m) = \frac{1}{300} \left[\frac{1 + \frac{300}{300} \times 0.0175}{1 + \frac{90}{300} \times 0.012} - 1 \right] \approx 1.85629\%.$$

If we think that the 1m spot rate will remain unchanged a month later, we should

(a) Calculate the continuously compounded forward rates $F(0y,1y),\,F(1y,2y)$ and F(2y,3y)

F(0y, 1y) = 4% (same as observed zero rate) $e^{F(0y,1y)\cdot 1}\cdot e^{F(1y,2y)\cdot 1}=e^{0.045\cdot 2}\Rightarrow F(1y,2y)=5\%$

FX Forward Arbitrage:

 $PV_{fixed} = PV_{floating} \implies \text{solve for } L(1y, 2y), L(2y, 3y)$

Given the stochastic differential equation:

 $dL_i(t) = \sigma_i L_i(t) dW_t^{i+1}$

where W^{i+1} is a Brownian motion under the risk-neutral measure associated to the zer coupon discount bond $D(t, T_{i+1}) = D_{i+1}(t)$.

 $L_i(T) = L_i(0)e^{-\frac{1}{2}\sigma_i^2T + \sigma_iW_T^{i+1}}$.

A contract paying $L_i(T_i) + L_i^2(T_i)$ at time T_{i+1} has present value:

 $V_0 = D_{i+1}(0)\mathbb{E}^{i+1}[L_i(T_i) + L_i^2(T_i)]$

 $= D_{i+1}(0)(L_i(0) \mathbb{E} \left[\exp \left(-\frac{1}{2} \sigma_i^2 T_i + \sigma_i W_{T_i}^{i+1} \right) \right] + L_i(0)^2 \mathbb{E} \left[\exp \left(-\sigma_i^2 T_i + 2\sigma_i W_{T_i}^{i+1} \right) \right]$ $= D_{i+1}(0) \left[L_i(0) + L_i^2(0) e^{\sigma_i^2 T_i} \right].$

Given the SDE:

$$dS_{n,N}(t) = \sigma_{n,N} S_{n,N}(t) dW_t^{n+1,N},$$

a digital swaption pays:

$$\begin{split} V_{\text{dig}}(T) &= P_{n+1,N}(T) \cdot \mathbf{1}_{\{S_{n,N}(T) > K\}} \cdot \\ \frac{V_{\text{dig}}(O)}{P_{n+1,N}(0)} &= \mathbb{E}^{n+1,N} \left[\frac{V_{\text{dig}}(T)}{P_{n+1,N}(T)} \right] \\ V_{\text{dig}}(0) &= P_{n+1,N}(0) \cdot \mathbb{E}^{n+1,N} \left[\mathbf{1}_{\{S_{n,N}(T) > K\}} \right] \\ &= P_{n+1,N}(0) \cdot \Phi \left[\log \left(\frac{S_{n,N}^{(N)}(T) - 1}{\sigma_{n,N}(T)} \right) \right] \end{split}$$
 The IRR-settled payer and receiver swaptions are

$$V_{pay}(t) = D(t, T) \int_{K}^{\infty} IRR(S)(S - K) f(S) dS,$$

 $V_{rec}(t) = D(t, T) \int_{0}^{K} IRR(S)(K - S) f(S) dS.$

Using Breeden-Litzenberger on payer swaption V(K) first: $\frac{\partial V}{\partial K} = -D(t, T) \int_{K}^{\infty} IRR(S) f(S) dS$

$$\frac{\partial^{2} V}{\partial K^{2}} = D(t, T) \operatorname{IRR}(K) f(K)$$

$$\Rightarrow f(K) = \frac{1}{D(t, T) \operatorname{IRR}(K)} \cdot \frac{\partial^{2} V(K)}{\partial K^{2}}. \quad \triangleleft$$

Thus

$$f(K) = \begin{cases} \frac{1}{D(0,T) \cdot \text{IRR}(K)}, & \frac{\partial^{2}V_{\text{psy}}(K)}{\partial K^{2}} & \text{if } K > S_{n,K}(0), \\ \frac{1}{D(0,T) \cdot \text{IRR}(K)}, & \frac{\partial^{2}V_{\text{psy}}(K)}{\partial K^{2}} & \text{if } K < S_{n,K}(0). \end{cases}$$

Use Carr-Madan to integrate by parts twice and derive a static replication formula for a European payoff g(S) on the CMS rate, and apply it to the case g(S)=S. Suppose we wish to pay a generic function g of the forward swap rate S, i.e., g(S). Based on the static replication approach, let $F = S_{n,N}(0)$, and let $h(K) = \frac{g(K)}{\text{IRB}(K)}$,

table replication approach, let
$$F = S_{m,N}(t)$$
, and let $R(K) = \frac{1}{16R(K)}$, $V_0 = D(0, T) \int_0^K g(K) f(K) dK$

$$= D(0, T) \int_0^K g(K) \cdot \frac{1}{D(0, T)} \cdot \frac{1}{1R(K)} \cdot \frac{\partial^2 V(K)}{\partial K^2} dK$$

$$= \int_0^K h(K) \frac{\partial^2 V'''(K)}{\partial K^2} dK + \int_F^\infty h(K) \frac{\partial^2 V''''(K)}{\partial K} dK$$

$$= \left[h(K) \frac{\partial^2 V''''(K)}{\partial K}\right]^p - \int_0^K h'(K) \frac{\partial^2 V''''(K)}{\partial K} dK$$

$$+ \left[h(K) \frac{\partial^2 V''''(K)}{\partial K}\right]^\infty_F - \int_F^\infty h'(K) \frac{\partial^2 V''''(K)}{\partial K} dK$$

$$= h(F) \frac{\partial^2 V''''(F)}{\partial K} - h'(F)V''''(F) + \int_F^K h''(K)V''''(K) dK$$

$$- h(F) \frac{\partial^2 V'''(F)}{\partial K} - h'(F)V''''(F) + \int_F^K h''(K)V''''(K) dK$$

$$= -h(F) \frac{\partial^2 V'''(F)}{\partial K} - \frac{\partial^2 V'''(F)}{\partial K} + h'(F)V''''(F) - V''''(F)$$

$$+ \int_0^K h(K)V''''(K) dK + \int_0^K h''(K)V''''(K) dK$$

$$= -h(F) \frac{\partial^2 V'''(F)}{\partial K} - \frac{\partial^2 V'''(F)}{\partial K} + h''(F)V''''(K) dK$$

Integration by parts rule for second derivatives

$$\int_a^b u(K) \frac{d^2v(K)}{dK^2} \, dK = \left[u(K) \frac{dv(K)}{dK} \right]_a^b - \int_a^b u'(K) \frac{dv(K)}{dK} \, dK$$

The Put-Call Parity for IRR-Settled Swaptions is given by

$$V^{\text{pay}}(K) - V^{\text{rec}}(K) = D(0, T) \text{IRR}(S)(S - K)$$

 $\Rightarrow \frac{\partial V^{\text{pay}}(K)}{\partial U} - \frac{\partial V^{\text{rec}}(K)}{\partial U} = -D(0, T) \text{IRR}(S)$

Substituting this back:

 $V_0 = D(0, T)g(F) + h'(F)[V^{pay}(F) - V^{rec}(F)] + \int_{F}^{F} h''(K)V^{rec}(K)dK + \int_{F}^{\infty} h''(K)V^{pay}(K)dK$

For CMS rate payoff g(F) = F and $V^{pay}(F) = V^{rec}(F)$:

$$V_0 = D(0, T)F + \int_0^F h''(K)V^{rec}(K)dK + \int_0^\infty h''(K)V^{pay}(K)dK$$

An FX process observed by the domestic investors

$$dX_t = (r_D - r_F)X_t dt + \sigma X_t dW_t^D$$

$$E_D[X_T] = X_0 e^{(r_D - r_F)T}$$
.

$$DD[M] = M$$

Let $f(X_t) = \ln(X_t)$. Applying Itô's lemma:

$$d\ln(X_t) = f'(X_t) dX_t + \frac{1}{2} f''(X_t) (dX_t)^2 = \left(r_D - r_F - \frac{1}{2} \sigma^2\right) dt + \sigma dW_t$$

After integrating:

grating:
$$X_T = X_0 \cdot \exp \left[\left(r_D - r_F - \frac{1}{2} \sigma^2 \right) T + \sigma W_T^D \right]$$

 $E[e^{\sigma W_T^D}] = e^{\frac{1}{2}\sigma^2T} \Rightarrow E_D[X_T] = X_0 e^{(r_D - r_F)T}$

Show that the foreign investor will see the following SDEs:

$$\begin{split} d\left(\frac{1}{X_t}\right) &= \left(r_F - r_D + \sigma^2\right) \frac{1}{X_t} dt - \sigma \frac{1}{X_t} dW_t^D, \\ d\left(\frac{1}{X_t}\right) &= \left(r_F - r_D\right) \frac{1}{X_t} dt - \sigma \frac{1}{X_t} dW_t^F. \end{split}$$

Let $Y_t = \frac{1}{X_t}$. Applying Itô's lemma

$$\begin{split} dY_t &= -\frac{1}{X_t^2} dX_t + \frac{1}{2} \cdot \frac{2}{X_t^3} (dX_t)^2 \\ d\left(\frac{1}{X_t}\right) &= \left(r_F - r_D + \frac{1}{2}\sigma^2\right) \frac{1}{X_t} dt - \sigma \frac{1}{X_t} dW_t^D. \quad \triangleleft \end{split}$$

$$dW_t = dW_t^F + \frac{r^D - r^F + \sigma^2 - \mu}{\sigma} \, dt$$

into

$$dX_t = \mu X_t dt + \sigma X_t dW_t$$

Substituting

$$dX_t = (r^D - r^F + \sigma^2)X_t dt + \sigma X_t dW_t^F$$

Now let $f(X_t) = \frac{1}{X_t}$, and using Itô's formula:

$$d\left(\frac{1}{X_t}\right) = (r^D - r^F)\frac{1}{X_t}dt + \sigma \frac{1}{X_t}dW_t^F$$

Derive the FX forward price from the foreign investor's perspective and show that its Discussion: Siegel's Exchange Rate Paradox

$$\begin{split} d\log\left(\frac{1}{X_{\ell}}\right) &= (r_F - r_D)dt - \sigma dW_\ell^F \\ \frac{1}{X_T} &= \frac{1}{X_0} \exp\left[\left(r_F - r_D - \frac{1}{2}\sigma^2\right)T - \sigma W_T^F\right] \\ E_F\left[\frac{1}{X_T}\right] &= \frac{1}{X_0}e^{(r_F - r_D)T} \quad \text{and} \quad E_F[X_T] = X_0 e^{(r_D - r_F)T} \end{split}$$

In a LIBOR-in-arrear contract, the L_i is observed and paid at T_i . Using the LIBOR market and a LipOrt-in-arried conflict, the Z_1 so observed an plant at I_1 . Using the LipOrt instance model, evaluate $E_1[L/I_1]$ (father performing the single-currency convexity correction.)

Under the LiBOR market model, the forward LiBOR $L_1(t)$ is a martingale under the room the perspective of a US-based investor, we have:

From the perspective of a US-based investor, we have: $I_1 = I_2 = I_3 = I_4 = I_4$

$$L_i(T_i) = L_i(0) \exp \left(-\frac{1}{2}\sigma_i^2 T_i + \sigma_i W_{T_i}^{(i+1)}\right)$$

Using Radon-Nikodym derivative to change the measure,

$$\begin{split} \mathbb{E}^{i}\left[L_{i}(T)\right] &= \mathbb{E}^{i+1}\left[\frac{dQ}{dQ^{i+1}}L_{i}(T)\right] \\ &= \mathbb{E}^{i+1}\left[\frac{D_{i}(T)/D_{i+1}(0)}{D_{i+1}(T)/D_{i+1}(0)}L_{i}(T)\right] \\ &= \frac{1}{1+\Delta_{i}L_{i}(0)}\mathbb{E}^{i+1}\left[(1+\Delta_{i}L_{i}(T))\cdot L_{i}(T)\right] \\ &= \frac{1}{1+\Delta_{i}L_{i}(0)}\left[L_{i}(0)+\Delta_{i}L_{i}(0)^{2}e^{d_{i}^{2}T}\right] \\ &= L_{i}(0)\cdot\frac{1+\Delta_{i}L_{i}(0)e^{d_{i}^{2}T}}{1+\Delta_{i}L_{i}(0)} \end{split}$$

Derive V_0 for a LIBOR-in-arrear caplet paying $(L_i(T_i) - K)^+$, observed and paid at T_i :

$$\begin{split} V_0 &= D_i(0)\mathbb{E}^i[(L_i(T) - K)^+] \\ &= D_i(0)\mathbb{E}^{i+1} \left[\frac{dQ^i}{dQ^{i+1}}(L_i(T) - K)^+ \right] \\ &= D_i(0)\mathbb{E}^{i+1} \left[\frac{dQ^i}{dQ^{i+1}}(L_i(T) - K)^+ \right] \\ &= D_i(0)\mathbb{E}^{i+1} \left[\frac{1}{D_{i+1}(T)}(L_i(T) - K)^+ \right] \\ &= D_{i+1}(0)\mathbb{E}^{i+1} \left[(L_i(T) - K)^+ \right] + \Delta_i \mathbb{E}^{i+1} \left[L_i(T)(L_i(T) - K)^+ \right] \right] \\ &= D_{i+1}(0) \left[\mathbb{E}^{i+1} \left[(L_i(T) - K)^+ \right] + \Delta_i \mathbb{E}^{i+1} \left[L_i(T)(L_i(T) - K)^+ \right] \right] \\ &= D_{i+1}(0) \left[L_i(0) \Phi \left(\frac{L_i(0)}{\sigma_i \sqrt{T}} \right) + \frac{1}{\sigma_i^2 T} \right] - K \Phi \left(\frac{L_i(0)}{\sigma_i \sqrt{T}} \right) - \frac{1}{\sigma_i^2 T} \right] \\ &+ \Delta_i D_{i+1}(0) \left[L_i(0)^2 e^{iT} \Phi \left(\frac{L_i(0)}{\sigma_i \sqrt{T}} \right) + \frac{1}{\sigma_i^2 T} \right] - L_i(0) K \Phi \left(\frac{L_i(0)}{\kappa} \right) + \frac{1}{\sigma_i^2 T} \right) \right] \\ &= \mathbb{E} \left[L_i(T)^2 \cdot 1_{L_i(T) > K} \right] \Rightarrow \Phi \left(-x^* + 2\sigma_i \sqrt{T} \right) \end{split}$$

where $L_i(T)^2 \sim e^{2\sigma_i W_T}$ and exponent shift = $+2\sigma_i \sqrt{T}$

A contract pays $\Delta_i \times L_i(T)$ at $T = T_{i+1}$. Derive using LIBOR market model.

$$dL_i(t) = \sigma_i L_i(t) \, dW^{i+1}(t)$$

where $W^{i+1}(t)$ is a Brownian motion under \mathbb{Q}^{i+1} , with numeraire $D_{i+1}(t)$

$$L_i(T) = L_i(0)e^{-\frac{1}{2}\sigma_i^2T + \sigma_iW_T^{i+1}}$$

Let V_0 be the contract value at time 0:

$$\begin{split} \frac{V_0}{D_{i+1}(0)} &= \mathbb{E}^{i+1} \left[\frac{V_\Gamma}{D_{i+1}(T)} \right] \Rightarrow V_0 = D(0, T_{i+1}) \mathbb{E}^{i+1} [\Delta_i L_i(T)] \\ &= D(0, T_{i+1}) \Delta_i \mathbb{E}^{i+1} \left[L_i(0) e^{-\frac{1}{2} e^2 T + \sigma_i W_2^{i+1}} \right] \\ &= D(0, T_{i+1}) \Delta_i L_i(0) e^{-\frac{1}{2} e^2 T} \cdot \mathbb{E}^{i+1} \left[e^{\sigma_i W_2^{i+1}} \right] \\ &= D(0, T_{i+1}) \Delta_i L_i(0) e^{-\frac{1}{2} e^2 T} \cdot e^{\frac{1}{2} e^2 T} = D(0, T_{i+1}) \Delta_i L_i(0) \blacktriangleleft \end{split}$$

A contract pays $\Delta_i \times L_i(T)$ at $T = T_i$. Derive using LIBOR market model

$$\begin{split} V_0 &= D(0,T_i) \mathbb{E}^i \left[\Delta_i \times L_i(T_i) \right] \\ &= D(0,T_i) \mathbb{E}^{i+1} \left[\frac{d\rho_i^2 i^2}{dQ^{i+1}} \cdot \Delta_i L_i(T_i) \right] \\ &= D(0,T_i) \Delta_i \mathbb{E}^{i+1} \left[\frac{L_i(T_i) + \Delta_i L_i(T_i)^2}{1 + \Delta_i L_i(0)} \right] \\ &= D(0,T_i) \frac{\Delta_i}{1 + \Delta_i L_i(0)} \mathbb{E}^{i+1} \left[L_i(0) e^{-\frac{1}{2} n_i^2 T + \rho_i W_{t_i}^{r+1}} + \Delta_i L_i(0)^2 e^{-\sigma_i^2 T + 2\rho_i W_{t_i}^{r+1}} \right] \\ &= D(0,T_i) \frac{\Delta_i}{1 + \Delta_i L_i(0)} \left[L_i(0) + \Delta_i L_i(0)^2 e^{\sigma_i^2 T} \right] \end{split}$$

 $d\ln(X_t) = f'(X_t) dX_t + \frac{1}{2} f''(X_t) (dX_t)^2 = \left(r_D - r_F - \frac{1}{2} \sigma^2\right) dt + \sigma dW_t^D$ Let L_t^D be a forward LIBOR rate in the domestic economy (observed at T_i , paid at T_{i+1}), following the LMM with volatility σ_i . Suppose the FX rate satisfies

$$dF_t = \sigma_X F_t dW_t^D$$

and is correlated with $W_t^{(i+1)}$ by ρ . Evaluate the expectation from the foreign investor's

$$E_{i+1,F}[L_i^D(T)]$$

$$\begin{aligned} &\text{tr} & dF_t = \sigma_X F_t dW_t^D & \Rightarrow & F_T = F_0 e^{-\left[\sigma_X^2 T + \sigma_X W_t^D\right]} \\ & dL_t^D(t) = \sigma_t L_t^D(t) dW_t^{t+1} & \Rightarrow & L_t^D(T) = L_t^D(0) e^{-\left[\sigma_X^2 T + \sigma_X W_t^D\right]} \\ & \mathbb{E}^{t+1, F} \left[L_t^D(T)\right] = \mathbb{E}^{t+1, D} \left[L_t^D(T) \cdot \frac{dQ^{t+1, F}}{dQ^{t+1, D}}\right] \\ & = \mathbb{E}^{t+1, D} \left[L_t^D(T) \cdot \frac{X_T D_{t+1}^T(T)}{X_N D_{t+1}^T(0)} \cdot \frac{D_{t+1}^D(0)}{D_{t+1}^D(T)}\right] \\ & = \mathbb{E}^{t+1, D} \left[L_t^D(T) \cdot \frac{T_T}{F_0}\right] \\ & = L_t^D(0) e^{-\left[\sigma_t^2 T - J \sigma_X^2 T \cdot E\right]} \left[e^{(\sigma_t + \rho_T \rho_T Z_t \sqrt{T} + \sigma_T \sqrt{1 - \rho^2} Z_t \sqrt{T}}\right] \\ & = L_t^D(0) e^{-\sigma_T \rho_T T} & \text{of} \end{aligned}$$

Given three correlated Brownian motions W_t^f , W_t^g and W_t^h with correlations

$$dW_t^I dW_t^g = \rho_{Ig} dt, \quad dW_t^I dW_t^h = \rho_{gh} dt, \quad dW_t^I dW_t^h = \rho_{Ih} dt,$$
determine the coefficients $\alpha_{11}, \alpha_{12}, \alpha_{22}, \alpha_{13}, \alpha_{23}$ and α_{33} for the Cholesky decomposition

 $dW_t^f = \alpha_{11} dZ_t^1, \quad dW_t^g = \alpha_{12} dZ_t^1 + \alpha_{22} dZ_t^2, \quad dW_t^h = \alpha_{13} dZ_t^1 + \alpha_{23} dZ_t^2 + \alpha_{33} dZ_t^3$

where Z_t^1 , Z_t^2 and Z_t^3 are three mutually independent Brownian motions.

$$\begin{split} &\alpha_{11}=1, &\alpha_{12}=\rho_{fg}, &\alpha_{13}=\rho_{fh}\\ &\alpha_{22}=\sqrt{1-\alpha_{12}^2}, &\alpha_{23}=\frac{\rho_{gh}-\alpha_{12}\alpha_{13}}{\alpha_{22}}, &\alpha_{33}=\sqrt{1-\alpha_{13}^2-\alpha_{23}^2} \end{split}$$

Consider a simplified discrete FX market involving the SGD and USD economies, with a spot FX rate approximately $FX_0 \approx 1.25$. Using a one-step binomial model with param-

$$u=\frac{6}{5},\quad d=\frac{5}{6},\quad p^*=q^*=0.5,$$
 determine the expected forward exchange rate.

From the perspective of a Singapore-based investor, we have

$$E[FX_T] = \frac{1}{2} \times \frac{6}{5} \times 1.25 + \frac{1}{2} \times \frac{5}{6} \times 1.25 \approx 1.423.$$

$$E\left[\frac{1}{FX_T}\right] = \frac{1}{2} \times \frac{5}{6} \times \frac{1}{1.25} + \frac{1}{2} \times \frac{6}{5} \times \frac{1}{1.25} \approx 0.726.$$

Since 1/0.726 \approx 1.377 \neq 1.423, the same binomial FX model gives rise to two different expectations depending on the denomination. In the continuous time framework, if the Singapore-based investor observes

$$dX_t = (r_D - r_F)X_t dt + \sigma X_t dW_t^D$$

a naive change of numeraire might suggest that the US-based investor sees

$$d\left(\frac{1}{X_t}\right) = (r_F - r_D)\frac{1}{X_t}dt - \sigma \frac{1}{X_t}dW_t^F$$

However, this is incorrect because the SGD money market account is not tradable for the US investor. Instead, applying Itô's formula correctly under the USD numeraire gives

$$d\Big(\frac{1}{X_t}\Big) = \Big(r_F - r_D + \sigma^2\Big)\frac{1}{X_t}\,dt - \sigma\frac{1}{X_t}\,dW_t^D,$$

and then, using the USD money market account as the numeraire

$$d\left(\frac{1}{Y_c}\right) = (r_F - r_D)\frac{1}{Y_c}dt - \sigma \frac{1}{Y_c}dW_t^F.$$

This resolves the paradox

$$dr_t = \mu \, dt + \sigma \, dW_t, \quad W_t$$
 : Brownian motion under $\mathbb Q$

Find the mean and variance of $\int_{-T}^{T} r_u du$.

$$r_s = r_t + \mu(s - t) + \int_t^s \sigma dW_u$$

$$\int_t^T r_s ds = r_t(T - t) + \mu \int_t^T (s - t) ds + \int_t^T \int_t^s \sigma dW_u ds$$

$$\int_t^T (s - t) ds = \frac{1}{a}(T - t)^2$$

Fubini:

$$\int_{t}^{T} \int_{t}^{s} \sigma dW_{u} ds = \int_{t}^{T} \sigma(T - u) dW_{u}$$

$$\int_{t}^{T} r_{s} ds = r_{t}(T - t) + \frac{\mu}{2}(T - t)^{2} + \int_{t}^{T} \sigma(T - u) dW_{u}$$

Final Form:

$$\mathbb{E}^{\mathbb{Q}}\left[\int_{t}^{T} r_{s} ds\right] = r_{t}(T - t) + \frac{\mu}{2}(T - t)^{2}$$

Variance

$$\operatorname{Var}\left[\int_{t}^{T} r_{s} ds\right] = \frac{\sigma^{2}}{3} (T - t)^{3}$$

Find $A(t,T),\,B(t,T)$ in $D(t,T)=\mathbb{E}^{\mathbb{Q}}\left[e^{-\int_t^T r_u\,du}\right]=e^{A(t,T)-r_tB(t,T)}$

$$D(t,T)=\exp\left(-r_t(T-t)-\frac{\mu}{2}(T-t)^2+\frac{\sigma^2}{6}(T-t)^3\right)$$

$$A(t,T) = -\frac{\mu}{2}(T-t)^2 + \frac{\sigma^2}{6}(T-t)^3$$
, $B(t,T) = T-t$

Is this an affine model? Yes. Since:

$$D(t,T) = e^{A(t,T)-\tau_t B(t,T)}$$
 \Rightarrow $R(t,T) = \frac{-A(t,T)+\tau_t B(t,T)}{T-t}$

and R(t,T) is affine in r_t .

Vasicek Model:

$$dr_t = \kappa(\theta - r_t)dt + \sigma dW_t$$

Compute mean, variance, and $\mathbb{E} \left[\int_0^T r_u du \right]$

$$r_t = r_0 e^{-\kappa t} + \theta(1 - e^{-\kappa t}) + \sigma \int_0^t e^{-\kappa (t-u)} dW_u$$

$$\int_0^T r_t dt = \int_0^T \left[r_0 e^{-\kappa t} + \theta(1 - e^{-\kappa t}) \right] dt + \int_0^T \int_0^t \sigma e^{-\kappa (t-u)} dW_u dt$$

$$\int_0^T \int_0^t \sigma e^{-\kappa (t-u)} dW_u dt = \frac{\sigma}{\sigma} \int_0^T (1 - e^{-\kappa (T-u)}) dW_u$$

Final Expression

$$\begin{split} \int_0^T r_t dt &= \frac{r_0}{\kappa} (1 - e^{-\kappa T}) + \theta \left(T - \frac{1 - e^{-\kappa t}}{\kappa} \right) + \frac{\sigma}{\kappa} \int_0^T (1 - e^{-\kappa (T - v)}) dW_i \\ &\mathbb{E} \left[\int_0^T r_t dt \right] = \frac{r_0}{\kappa} (1 - e^{-\kappa T}) + \theta \left(T - \frac{1 - e^{-\kappa T}}{\kappa} \right) \end{split}$$

$$\operatorname{Var}\left[\int_{0}^{T} r_{t} dt\right] = \frac{\sigma^{2}}{r^{2}}\left[T - \frac{2}{r}(1 - e^{-\kappa T}) + \frac{1}{2r}(1 - e^{-2\kappa T})\right]$$

Compute
$$D(0, T) = \mathbb{E}^{\mathbb{Q}} \left[e^{-\int_0^T r_s du} \right]$$

$$D(0, T) = \exp \left(-\mathbb{E} \left[\int_0^T r_t dt \right] + \frac{1}{2} \operatorname{Var} \left[\int_0^T r_t dt \right] \right)$$

Ho-Lee model: derive $\theta(t)$ from D(0,t)

$$dr_t = \theta(t) dt + \sigma dW_t^*, \quad W_t^* \text{ under } \mathbb{Q}^*$$

$$r_t = r_0 + \int_0^t \theta(s) ds + \int_0^t \sigma dW_s^*$$

$$\int_{0}^{t} r_{u} du = r_{0}t + \int_{0}^{t} \theta(s)(t-s) ds + \int_{0}^{t} \sigma(t-s) dW_{s}^{*}$$

Mean: $\mathbb{E}\left[\int_{0}^{t} r_{u} du\right] = r_{0}t + \int_{0}^{t} \theta(s)(t-s) ds$

Variance:

$$\operatorname{Var}\left[\int_0^t r_u \, du\right] = \int_0^t \sigma^2 (t-s)^2 \, ds = \frac{1}{3} \sigma^2 t^3$$

Discount factor:

$$D(0,t) = \exp\left(-r_0 t - \int_0^t \theta(s)(t-s) \, ds + \frac{1}{6}\sigma^2 t^3\right)$$

Differentiate log D

$$\begin{split} \frac{\partial}{\partial t} \log D(0,t) &= -r_0 - \int_0^t \theta(s) \, ds + \frac{1}{2} \sigma^2 t^2 \\ \frac{\partial^2}{\partial t^2} \log D(0,t) &= -\theta(t) + \sigma^2 t \Rightarrow \theta(t) = -\frac{\partial^2}{\partial t^2} \log D(0,t) + \sigma^2 t \end{split}$$

Ho-Lee Tree: Find θ_0

Given: D(0, 1y) = 0.95, D(0, 2y) = 0.88

$$r = 6.129\% + \theta_0$$

 $r = 5.129\% \longrightarrow D(1, 2) = e^{-(6.129\% + \theta_0)}$
 $D(0, 2) = 0.88 \longrightarrow r = 4.129\% + \theta_0$

 $D(1,2) = e^{-(4.129\% + \theta_0)}$

 $r = -\log(0.95) = 5.129\%$

$$0.88 = 0.95 \times \frac{1}{2} \left(e^{-(6.129\% + \theta_0)} + e^{-(4.129\% + \theta_0)} \right) \implies \theta_0 = 0.0253$$

Ho-Lee Tree: Find θ_0 , θ_1

Given:
$$D(0, 1y) = 0.95123$$
, $D(0, 2y) = 0.86936$, $D(0, 3y) = 0.78663$

$$D(0, 1y) = e^{-R(0,1)} \Rightarrow R(0,1) = 5\% \Rightarrow r_0 = 0.05$$

$$r = 5.5\% + \theta_0$$

$$r = 5.5\% + \theta_0$$

$$r = 5\% + \theta_0 + \theta_1$$

$$r = 5\% + \theta_0 + \theta_1$$

$$r = 4.5\% + \theta_0$$

$$r = 4\% + \theta_0 + \theta_1$$

$$D(0, 2y) = D(0, 1y) \cdot \frac{1}{2} \left(e^{-(\theta_0 + 0.055)} + e^{-(\theta_0 + 0.045)} \right) \Rightarrow \theta_0 = 0.04$$

$$D_u(1,3) = e^{-(\theta_0+0.055)} \cdot \frac{1}{2} \left(e^{-(\theta_0+\theta_1+0.06)} + e^{-(\theta_0+\theta_1+0.05)} \right)$$

$$\begin{split} &D_d(1,3) = e^{-(\theta_0 + 0.045)} \cdot \frac{1}{2} \left(e^{-(\theta_0 + \theta_1 + 0.05)} + e^{-(\theta_0 + \theta_1 + 0.04)} \right) \\ &D(0,3y) = D(0,1y) \cdot \frac{1}{2} (D_u + D_d) \Rightarrow \theta_1 = 0.01 \end{split}$$