Type Inference Rules For Container Types in CCL

*The paper is written under the guidance of Dr. Alan K. Zaring (akzaring@luther.edu).

David Oniani Luther College oniada01@luther.edu

Last Updated: November 24, 2019

Abstract

We present the type inference rules introducing the notion of container types in the CCL programming language. This redesign required a number of substantial changes to the major aspects of the language, including the type system, the syntax, and the definitional semantics.

The <:: Relation

$$\frac{\mathcal{B}_{\mathcal{O}\chi}(\mathit{Triv}) < :: \mathcal{B}_{\mathcal{O}\chi}(\mathit{Triv})}{\mathcal{B}_{\mathcal{O}\chi}(\mathit{Triv})} \tag{1}$$

$$\frac{}{\mathcal{B}o\chi(Int) < :: \mathcal{B}o\chi(Int)} \tag{2}$$

$$\frac{\mathcal{T} < :: \mathcal{B}o\chi(\mathcal{U})}{\mathcal{T} < :: \mathcal{B}o\chi(\mathcal{U})} \tag{3}$$

$$\frac{\mathcal{B}o\chi(\mathcal{T})<:: I\mathcal{B}o\chi(\mathcal{U})}{I\mathcal{B}o\chi(\mathcal{T})<:: I\mathcal{B}o\chi(\mathcal{U})} \tag{4}$$

$$\frac{\mathcal{T} < :: \mathcal{U}}{\text{Ref } \mathcal{T} <: \text{Ref } \mathcal{U}} \tag{5}$$

<:: operator specifies the subtype relationship between two container types.

 $\mathcal{T}<::\mathcal{U}$ is read as "container type \mathcal{T} is a subtype of the container type $\mathcal{U}.$ "

The: and:: Relations

$$\frac{\text{triv } x}{x: \textit{Triv}} \tag{6}$$

$$\frac{\text{triv } \times}{\times :: \mathcal{B}ox(\mathcal{T}riv)} \tag{7}$$

$$\frac{\text{int } x}{x: Int} \tag{8}$$

$$\frac{\text{int } \times}{\times :: \mathcal{B}o\chi(Int)} \tag{9}$$

$$\frac{\mathbf{x} :: \mathcal{B}o\chi(\mathcal{T})}{\mathsf{immut} \; \mathbf{x} :: \mathcal{B}o\chi(\mathcal{T})} \tag{10}$$

$$\frac{\mathsf{x} :: \mathcal{T}}{\mathsf{ref} \; \mathsf{x} :: \; \mathcal{Box}(\mathcal{Ref}(\mathcal{T}))} \tag{11}$$

$$\frac{\mathsf{x} :: \mathcal{T}}{\mathsf{\&} \; \mathsf{x} : \mathcal{R}ef(\mathcal{T})} \tag{12}$$

$$\frac{\mathsf{x}: \mathsf{Ref}(\mathcal{B}\mathit{ox}(\mathcal{T}))}{\mathsf{x} \ \mathfrak{Q}: \mathcal{T}} \tag{13}$$

$$\frac{\mathsf{x}: \operatorname{Ref}(\operatorname{IBox}(\mathcal{T}))}{\mathsf{x} \ \mathfrak{G}: \mathcal{T}} \tag{14}$$

$$\frac{\mathsf{x}: \mathcal{R}\!\mathit{ef}\left(\mathcal{T}\right)}{\mathsf{x} \ \mathfrak{G}:: \mathcal{T}} \tag{15}$$

$$\frac{\mathsf{x} :: \mathcal{T} \qquad \mathsf{y} :: \mathcal{U} \qquad \mathcal{T} <:: \mathcal{U} \qquad \mathsf{x} : \mathcal{V}}{\mathsf{x} := \mathsf{y} : \mathcal{V}} \tag{16}$$

x: T is read as "expression x is of type T and is in an r-context."

x :: T is read as "variable x is of type T and is in an *l-context*."

The operators could also be referred to as the "r-type of" and "l-type of" operators.

l-context denotes everything that is *assignable* (indicated as a storable memory). r-context, on the other hand, denotes everything that is *expressible* (can be produced by an expression).

There is no r-value (e.g. expression) of the type $\mathcal{B}o\chi(\mathcal{T})$.

For now, we omit rules for *Con* types as they only operate on r-values.

For now, we omit rules for $\mathcal{F}un$ types as they only accept r-values. Any variable and/or primitive type has both r-value and l-value (when it comes to primitive types, only r-value). In all cases, the r-value part of the actual parameter is passed when the function is being called.

Resulting Relationships (A Short List)

int i	$\rightarrow i$	$ ightarrow {\it Box}({\it Int})$
immut int ii	$\rightarrow ii$	ightarrow IBox(Int)
ref int ri	$\rightarrow ri$	$\to \mathit{Box}(\mathit{Ref}(\mathit{Box}(\mathit{Int})))$
immut ref int iri	$\rightarrow iri$	$\to \mathit{IBox}(\mathit{Ref}(\mathit{Box}(\mathit{Int})))$
ref immut int rii	$\rightarrow rii$	$\rightarrow \mathit{Box}(\mathit{Ref}((\mathit{Immut}(\mathit{Box}(\mathit{Int})))))$
immut ref immut int irii	$\rightarrow irii$	o IBox(Ref((Immut(Box(Int)))))

Type $Immut\ \mathcal{B}o\chi(Immut\ \mathcal{B}o\chi(Int))$ cannot exist. Nested $\mathcal{B}o\chi$ types are only possible when there is at least one $\mathcal{R}ef$ type.

$$\mathcal{B}o\chi(\mathit{Triv}) <: \mathcal{B}o\chi(\mathit{Triv})$$
 $\mathcal{B}o\chi(\mathit{Int}) <: \mathcal{B}o\chi(\mathit{Int})$
 $\mathcal{B}o\chi(\mathit{Triv}) <: \mathit{IB}o\chi(\mathit{Triv})$
 $\mathcal{B}o\chi(\mathit{Int}) <: \mathit{IB}o\chi(\mathit{Int})$
 $\mathcal{B}o\chi(\mathit{Int}) <: \mathit{IB}o\chi(\mathit{Triv})$
 $\mathcal{B}o\chi(\mathit{Triv}) <: \mathit{IB}o\chi(\mathit{Triv})$
 $\mathcal{B}o\chi(\mathit{Int}) <: \mathit{IB}o\chi(\mathit{Int})$

All the rules above should work with Ref types in the similar manner:

$$\mathcal{R}ef(\mathcal{B}o\chi(\mathit{Triv})) <: \mathcal{R}ef(\mathcal{B}o\chi(\mathit{Triv}))$$
 $\mathcal{R}ef(\mathcal{B}o\chi(\mathit{Int})) <: \mathcal{R}ef(\mathcal{B}o\chi(\mathit{Int}))$
 $\mathcal{R}ef(\mathcal{B}o\chi(\mathit{Triv})) <: \mathcal{R}ef(\mathit{IB}o\chi(\mathit{Triv}))$
 $\mathcal{R}ef(\mathcal{B}o\chi(\mathit{Int})) <: \mathcal{R}ef(\mathit{IB}o\chi(\mathit{Int}))$
 $\mathcal{R}ef(\mathit{IB}o\chi(\mathit{Triv})) <: \mathcal{R}ef(\mathit{IB}o\chi(\mathit{Triv}))$
 $\mathcal{R}ef(\mathit{IB}o\chi(\mathit{Triv})) <: \mathcal{R}ef(\mathit{IB}o\chi(\mathit{Int}))$
 $\mathcal{R}ef(\mathit{IB}o\chi(\mathit{Int})) <: \mathcal{R}ef(\mathit{IB}o\chi(\mathit{Int}))$