Repairing the Universality Theorem for 4-polytopes

Emil Verkama

10.1.2023

1 Introduction

Polytopes

A *d-polytope* **P** is the *convex hull* of a *d*-dimensional point configuration $\{\mathbf{p}_1, \dots, \mathbf{p}_n\} \subseteq \mathbb{R}^d$.

Polytopes

A polytope **P** has a *combinatorial type* encoded by the relationships between its faces.

The *realization space* $\mathcal{R}(\mathbf{P})$ contains all polytopes of the same combinatorial type as \mathbf{P} , modulo affine transformations.

History

Theorem (Steinitz, 1922 [1])

An undirected simple graph G is the edge graph of some 3-polytope if and only if G is planar and three-connected.

Corollary

Let P be a 3-polytope.

- 1. $\mathcal{R}(\mathbf{P})$ is contractible;
- 2. P can be realized with rational coordinates.

History

- ▶ Perles, 1967: There exists an 8-polytope which is not realizable over Q. [2]
- ▶ Bokowski, Ewald, Kleinschmidt, 1984: There exists a 4-polytope with a disconnected realization space. [3]

History

- ▶ Perles, 1967: There exists an 8-polytope which is not realizable over Q. [2]
- Bokowski, Ewald, Kleinschmidt, 1984: There exists a 4-polytope with a disconnected realization space. [3]

Theorem (Mnëv's Universality Theorem, 1986 [4])

Let $V \subseteq \mathbb{R}^n$ be primary basic semialgebraic.

- There exists an oriented matroid whose realization space is stably equivalent to V;
- 2. There exists a polytope whose realization space is stably equivalent to *V*.

Universality Theorem for 4-polytopes

Theorem (Richter-Gebert, 1996 [5])

For every primary basic semialgebraic set $V \subseteq \mathbb{R}^n$ there exists a 4-polytope **P** such that:

- 1. V and the realization space $\mathcal{R}(\mathbf{P}) \subseteq \mathbb{R}^m$ are homotopy equivalent;
- 2. If A is a subfield of the real algebraic numbers, then

$$V \cap A^n = \emptyset \iff \mathcal{R}(\mathbf{P}) \cap A^m = \emptyset;$$

3. The face lattice of \mathbf{P} can be computed in polynomial time from the defining equations and inequalities of V.

Universality Theorem for 4-polytopes

Theorem (Richter-Gebert, 1996 [5])

For every primary basic semialgebraic set $V \subseteq \mathbb{R}^n$ there exists a 4-polytope **P** such that:

- 1. V and $\mathcal{R}(\mathbf{P})$ are stably equivalent.
- 2. The face lattice of **P** can be computed in polynomial time from the defining equations and inequalities of V.

Universality Theorem for 4-polytopes

Theorem (Richter-Gebert, 1996 [5])

For every primary basic semialgebraic set $V \subseteq \mathbb{R}^n$ there exists a 4-polytope **P** such that:

- 1. V and $\mathcal{R}(\mathbf{P})$ are stably equivalent.
- 2. The face lattice of \mathbf{P} can be computed in polynomial time from the defining equations and inequalities of V.
- Idea: stably equivalent sets differ only by "trivial fibration."
- ▶ Boege, 2022: Richter-Gebert's stable equivalence does not preserve homotopy type! [6]

Consequences

- ► The realizability problem for 4-polytopes is polynomial-time equivalent to the *existential theory of the reals*.
- ▶ There exists a nonrational 4-polytope, resolving a question in [7].
- The Universal Partition Theorem for 4-polytopes. [5, 8]

Goals

- Provide a satisfactory definition for stable equivalence.
- Verify that Richter-Gebert's proof works with the new definition.
- Review and clarify the existing literature on stable equivalence.

2 Polytopes

Hulls

The affine, convex, linear and positive hulls of a set $S \subseteq \mathbb{R}^n$ are, respectively,

$$\operatorname{aff}(S) = \left\{ \sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i} \mid n \in \mathbb{N}, \ \lambda_{i} \in \mathbb{R}, \ \mathbf{x}_{i} \in S, \ \sum_{i=1}^{n} \lambda_{i} = 1 \right\},$$

$$\operatorname{conv}(S) = \left\{ \sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i} \mid n \in \mathbb{N}, \ \lambda_{i} \geqslant 0, \ \mathbf{x}_{i} \in S, \ \sum_{i=1}^{n} \lambda_{i} = 1 \right\},$$

$$\operatorname{lin}(S) = \left\{ \sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i} \mid n \in \mathbb{N}, \ \lambda_{i} \in \mathbb{R}, \ \mathbf{x}_{i} \in S \right\} \text{ and }$$

$$\operatorname{pos}(S) = \left\{ \sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i} \mid n \in \mathbb{N}, \ \lambda_{i} \geqslant 0, \ \mathbf{x}_{i} \in S \right\}.$$

Polytopes and cones

Definition

Let $\mathbf{P} = (\mathbf{p}_i)_{i \in X} \in \mathbb{R}^{d \times |X|}$ be a finite point configuration in \mathbb{R}^d .

- ▶ If **P** has affine dimension d and $conv(P|_{X\setminus\{i\}}) \neq conv(P)$ for all $i \in X$, then **P** is called a d-polytope.
- ▶ If **P** has linear dimension d and $pos(P|_{X\setminus\{i\}}) \neq pos(P)$ for all $i \in X$, then **P** is called a d-cone.
- ► The associated cone of a *d*-polytope $P \in \mathbb{R}^{d \times n}$ is the (d+1)-cone

$$\mathbf{P}^{\text{hom}} = \left(\mathbf{p}_{i}^{\text{hom}}\right)_{i \in X} = \mathbf{P} \times \{1\} \in \mathbb{R}^{(d+1) \times n}.$$

Faces

Definition

- ▶ The *faces* of a *d*-cone $P = (p_i)_{i \in X}$ are sets of the form $\{i \in X \mid h(p_i) = 0\}$, where h is a linear form nonnegative on all points of P.
- ► The *faces* of a polytope are the faces of its associated cone.

Faces

Definition

- ▶ The *faces* of a *d*-cone $P = (p_i)_{i \in X}$ are sets of the form $\{i \in X \mid h(p_i) = 0\}$, where *h* is a linear form nonnegative on all points of P.
- ► The *faces* of a polytope are the faces of its associated cone.
- ► Idea: The faces of a polytope P are the intersections of P with affine hyperplanes external to P.
- ▶ 0, 1 and (d-1)-dimensional faces are called vertices, edges and facets, respectively.

Example: Faces

Example: Faces

Example: Faces

Face lattice

Definition

The face lattice $FL(\mathbf{P})$ of a d-polytope \mathbf{P} is given by

$$\mathsf{FL}(\mathbf{P}) = (\mathsf{faces}(\mathbf{P}), \subseteq),$$

i.e. the set of faces partially ordered by inclusion.

- ► Idea: FL(P) gives the combinatorial type of P.
- FL(P) is uniquely determined by the facets of P.

Example: Face lattice

Realizations

Let **P** and **Q** be *d*-polytopes.

Definition

 \boldsymbol{Q} is a *realization* of \boldsymbol{P} if $FL(\boldsymbol{Q}) = FL(\boldsymbol{P})$. Equivalently, we say that \boldsymbol{Q} *realizes* \boldsymbol{P} or $FL(\boldsymbol{P})$.

Realizations

Let **P** and **Q** be *d*-polytopes.

Definition

 \boldsymbol{Q} is a *realization* of \boldsymbol{P} if $FL(\boldsymbol{Q}) = FL(\boldsymbol{P})$. Equivalently, we say that \boldsymbol{Q} *realizes* \boldsymbol{P} or $FL(\boldsymbol{P})$.

- ▶ Bijective affine transformations of **P** are realizations of **P**.
- Which lattices are realizable?

Realization space

Definition

An *affine basis* of a *d*-polytope $P = (p_i)_{i \in X}$ is a set $B = \{b_1, \dots, b_{d+1}\} \subseteq X$ such that the vertices corresponding to B are affinely independent in any realization of P.

Realization space

Definition

An *affine basis* of a *d*-polytope $P = (p_i)_{i \in X}$ is a set $B = \{b_1, \dots, b_{d+1}\} \subseteq X$ such that the vertices corresponding to B are affinely independent in any realization of P.

Definition

Let P be a d-polytope with a basis $B = \{b_1, \ldots, b_{d+1}\}$. The realization space $\mathcal{R}(P, B)$ of P with respect to B is the set of all realizations Q of P such that $p_i = q_i$ for all $i \in B$.

Idea: Fixing d + 1 affinely independent points factors out affine transformations.

Example: Realizations

Definition

Let $V \subseteq \mathbb{R}^n$.

▶ *V* is *semialgebraic* if there are polynomials $f_{i,j} \in \mathbb{R}[x_1, ..., x_n]$ such that

$$V = \bigcup_{i=1}^{s} \bigcap_{i=1}^{r_i} \{ \boldsymbol{v} \in \mathbb{R}^n \mid f_{i,j}(\boldsymbol{v}) \sim_{i,j} 0 \},$$

where $\sim_{i,j}$ is either = or >.

▶ *V* is *primary basic semialgebraic* if there are polynomials $f_1, \ldots, f_s, g_1, \ldots, g_r \in \mathbb{Z}[x_1, \ldots, x_n]$ such that

$$V = \{ \mathbf{v} \in \mathbb{R}^n \mid f_i(\mathbf{v}) = 0, \ g_j(\mathbf{v}) > 0 \}.$$

Lemma

Realization spaces of polytopes are primary basic semialgebraic.

Lemma

Realization spaces of polytopes are primary basic semialgebraic.

Proof (sketch). Let $\mathbf{P} = (\mathbf{p}_i)_{i=1}^n$ be a d-polytope. Choose an affine basis B for \mathbf{P} , and an affine basis B_F for each facet F of \mathbf{P} .

For point configurations $\mathbf{Q} = (\mathbf{q}_i)_{i=1}^n \in \mathbb{R}^{d \times n}$ and $F \in \text{facets}(\mathbf{P})$ we define $\varphi_{\mathbf{Q},F} \in (\mathbb{R}^{d+1})^*$ by

$$\varphi_{\mathbf{Q},F}(\mathbf{x}) = \det \left[\mathbf{Q}^{\text{hom}}|_{B_F}, \mathbf{x} \right].$$

 $Q \in \mathcal{R}(P, B)$ if and only if the following conditions hold:

- 1. $\boldsymbol{p}_i = \boldsymbol{q}_i$ for all $i \in B$;
- 2. If $F \in \text{facets}(\mathbf{P})$ and $i \in F$, then $\varphi_{\mathbf{Q},F}(\mathbf{q}_i^{\text{hom}}) = 0$;
- 3. If $F \in \text{facets}(\mathbf{P})$ and $i, j \in \{1, ..., n\} \setminus F$ are two (not necessarily distinct) labels, then

$$\varphi_{\mathbf{Q},F}\left(\mathbf{q}_{i}^{\mathsf{hom}}\right)\cdot\varphi_{\mathbf{Q},F}\left(\mathbf{q}_{j}^{\mathsf{hom}}\right)>0.$$

The determinant is a polynomial in the entries of the matrix.

Idea. If $V \subseteq \mathbb{R}^n$ and $W \subseteq \mathbb{R}^m$ are stably equivalent primary basic semialgebraic sets, then:

- 1. *V* and *W* are homotopy equivalent;
- 2. If A is a subfield of the real algebraic numbers, then

$$V \cap A^n = \emptyset \iff W \cap A^m = \emptyset.$$

Idea. If $V \subseteq \mathbb{R}^n$ and $W \subseteq \mathbb{R}^m$ are stably equivalent primary basic semialgebraic sets, then:

- 1. V and W are homotopy equivalent;
- 2. If A is a subfield of the real algebraic numbers, then

$$V \cap A^n = \emptyset \iff W \cap A^m = \emptyset$$
.

Many different versions: Mnëv [4], Günzel [9, 8], Richter-Gebert [10, 5], Boege [11], Wikipedia [12]...

Mnëv's original idea [4]:

Definition

Two primary basic semialgebraic sets V and W are stably equivalent if there exists a locally biregular homeomorphism f such that $W = f(V \times \mathbb{R}^k)$ for some k.

- $V \times \mathbb{R}^k$ deformation retracts onto V, so homotopy equivalence is implied.
- ► Local biregularity of *f* implies equivalence of algebraic number type.

Richter-Gebert's idea: move within one dimension with "nice" homeomorphisms, jump between dimensions with "nice" projections.

Stable equivalence

Richter-Gebert's idea: move within one dimension with "nice" homeomorphisms, jump between dimensions with "nice" projections.

Definition

Two primary basic semialgebraic sets V and W are rationally equivalent if there exists a homeomorphism $f:V\to W$ such that f and f^{-1} are rational functions with rational coefficients.

Rational equivalence preserves homotopy type and algebraic number type.

Stable projections

Let $V \subseteq \mathbb{R}^n$ and $W \subseteq \mathbb{R}^{n+m}$ be primary basic semialgebraic such that $V = \pi(W)$.

Definition (preliminary)

The projection π is *stable* if we obtain

$$W = \left\{ (\boldsymbol{v}, \boldsymbol{u}) \in \mathbb{R}^{n+m} \mid \boldsymbol{v} \in V, \ \varphi_i^{\boldsymbol{v}}(\boldsymbol{u}) > 0, \ \psi_j^{\boldsymbol{v}}(\boldsymbol{u}) = 0 \right\}$$

for affine forms $\varphi_1^{\boldsymbol{v}}, \dots, \varphi_r^{\boldsymbol{v}}, \psi_1^{\boldsymbol{v}}, \dots, \psi_s^{\boldsymbol{v}}$ whose coefficients depend polynomially on \boldsymbol{v} .

The fibers are relative interiors of polyhedral sets: looks nice!

Stable equivalence

Definition

Stable equivalence is the equivalence relation generated by rational equivalence and stable projections. We denote stable equivalence between sets V and W by $V \approx W$.

- If rational equivalence and stable projections preserve the desired properties, so does stable equivalence.
- Seemingly stricter than Mnëv's version.

Counterexample

Boege, 2022 [6]: Let $V = \mathbb{R}$ and

$$W = \{(v, u) \in \mathbb{R}^2 \mid v \in V, \ v(vu - 1) = 0\}.$$

Then $V = \pi(W)$ is a stable projection, but W is disconnected!

Repairing stable projections

Suppose $V = \pi(W)$ and that each fiber is convex.

Idea. If there exists a continuous map $\sigma: V \to W$ with $\pi \circ \sigma = \mathrm{id}$ then W deformation retracts onto $\sigma(V)$, so V and W are homotopy equivalent.

Local sections

Suppose for each $\mathbf{v} \in V$ there exists a neighborhood $U_{\mathbf{v}} \subseteq V$ of \mathbf{v} and a continuous map $\sigma_{\mathbf{v}} : U_{\mathbf{v}} \to W$ such that $\pi \circ \sigma_{\mathbf{v}} = \mathrm{id}$.

By paracompactness of V, this is sufficient to construct a global section $\sigma: V \to W$.

Constructing local sections

Suppose $V = \pi(W)$ is a stable projection. Strict inequalities are fine locally, so focus on equations.

We represent the equations $\psi_1^{\mathbf{v}}(\mathbf{u}) = \ldots = \psi_s^{\mathbf{v}}(\mathbf{u}) = 0$ as a linear system $A_{\mathbf{v}}\mathbf{u} = \mathbf{b}_{\mathbf{v}}$.

Constructing local sections

Suppose $V = \pi(W)$ is a stable projection. Strict inequalities are fine locally, so focus on equations.

We represent the equations $\psi_1^{\mathbf{v}}(\mathbf{u}) = \ldots = \psi_s^{\mathbf{v}}(\mathbf{u}) = 0$ as a linear system $A_{\mathbf{v}}\mathbf{u} = \mathbf{b}_{\mathbf{v}}$.

▶ A_v has some rank r, and hence a submatrix $B_v \in \mathbb{R}^{r \times r}$ with $det(B_v) \neq 0$.

Constructing local sections

Suppose $V = \pi(W)$ is a stable projection. Strict inequalities are fine locally, so focus on equations.

We represent the equations $\psi_1^{\mathbf{v}}(\mathbf{u}) = \ldots = \psi_s^{\mathbf{v}}(\mathbf{u}) = 0$ as a linear system $A_{\mathbf{v}}\mathbf{u} = \mathbf{b}_{\mathbf{v}}$.

- ▶ $A_{\mathbf{v}}$ has some rank r, and hence a submatrix $B_{\mathbf{v}} \in \mathbb{R}^{r \times r}$ with $\det(B_{\mathbf{v}}) \neq 0$.
- If the rank is constant locally around \mathbf{v} , we can extend the solution (\mathbf{v}, \mathbf{u}) uniquely to that neighborhood using Cramer's rule for $B_{\mathbf{v}}$.

New stable projections

Let $V \subseteq \mathbb{R}^n$ and $W \subseteq \mathbb{R}^{n+m}$ be primary basic semialgebraic such that $V = \pi(W)$.

Definition (Boege, 2022 [6])

The projection π is *stable* if we obtain

$$W = \left\{ (\boldsymbol{v}, \boldsymbol{u}) \in \mathbb{R}^{n+m} \mid \boldsymbol{v} \in V, \ \varphi_i^{\boldsymbol{v}}(\boldsymbol{u}) > 0, \ \psi_j^{\boldsymbol{v}}(\boldsymbol{u}) = 0 \right\}$$

for affine forms $\varphi_1^{\mathbf{v}}, \dots, \varphi_r^{\mathbf{v}}, \psi_1^{\mathbf{v}}, \dots, \psi_s^{\mathbf{v}}$ whose coefficients depend polynomially on \mathbf{v} , and the fibers of π are locally constant dimensional.

4 Universality

Shor's normal form

Shor, 1991: Mnëv's universality theorem is easier if we simplify the semigalebraic set. [13]

Let *V* be primary basic semialgebraic.

Theorem

There exists a primary basic semialgebraic set $W \subseteq \mathbb{R}^n$ defined by

$$1 < x_1 < \ldots < x_n$$

and equations of the form

$$X_i + X_j = X_k, \qquad X_i \cdot X_j = X_k,$$

such that $V \approx W$.

The universality theorem

Theorem

For every primary basic semialgebraic set V there exists a 4-polytope P such that $V \approx \mathcal{R}(P)$.

Idea. Assume V is in Shor's normal form. We construct a 4-polytope P with a 2-face G with line slopes (s_1, \ldots, s_n) such that:

- ▶ $(s_1, ..., s_n) \in V$ in any realization of P;
- For any $\mathbf{v} \in V$ there exists a realization of \mathbf{P} with $\mathbf{v} = (s_1, \dots, s_n)$.

The heart

We need to add "structure" to $\mathcal{R}(\textbf{\textit{P}})$ in a controlled way. In the $\textbf{\textit{X}}$ -polytope, 1 \wedge 4, 2 \wedge 3 and 5 \wedge 6 are always collinear:

Building

To combine "structure" we use the connected sum:

If **P** and **Q** impose conditions on *F* and *F* is "necessarily flat," then **P** \heartsuit_F **Q** imposes both sets of conditions.

5 Future work

Richter-Gebert: Stable equivalence preserves "singularity structure." [10, 14] (not claimed in [5].)

Richter-Gebert: Stable equivalence preserves "singularity structure." [10, 14] (not claimed in [5].)

- What are singularities of primary basic semialgebraic set V?
- What is the singularity structure of V?
- Does stable equivalence preserve said structure?

Richter-Gebert: Stable equivalence preserves "singularity structure." [10, 14] (not claimed in [5].)

- ▶ What are singularities of primary basic semialgebraic set V?
- What is the singularity structure of V?
- Does stable equivalence preserve said structure?

Typical approach: the singularities of V are the singularities of the Zariski closure of V [15, 16].

Let $V = \mathbb{R}$ and $W = \{(v, u) \in \mathbb{R}^2 \mid v \in V, vu = 0\}.$

By Richter-Gebert's definition (not by ours!) $V \approx W$, but W has a singularity at (0,0). [17]

Simplicial polytopes

A polytope is *simplicial* if all of its faces are simplices. Simplicial polytopes are universal by [18].

How about in dimension 4?

Conjecture [5]

For every open primary basic semialgebraic set V there exists a simplicial 4-polytope \mathbf{P} such that $V \approx \mathcal{R}(\mathbf{P})$.

References I

- [1] Ernst Steinitz. "Über isoperimetrische Probleme bei konvexen Polyedern". In: J. Reine Angew. Math. 159 (1928), pp. 133–143.
- [2] Branko Grünbaum. Convex polytopes. Second. Vol. 221. Graduate Texts in Mathematics. Springer-Verlag, New York, 2003.
- [3] Jürgen Bokowski, Günter Ewald, and Peter Kleinschmidt. "On combinatorial and affine automorphisms of polytopes". In: *Israel J. Math.* 47.2-3 (1984), pp. 123–130.
- [4] Nikolai E. Mnëv. "The universality theorems on the classification problem of configuration varieties and convex polytopes varieties". In: *Topology and geometry — Rohlin* Seminar. Vol. 1346. Lecture Notes in Mathematics. Springer, Berlin, 1988.

References II

- [5] Jürgen Richter-Gebert. Realization spaces of polytopes. Vol. 1643. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1996.
- [6] Tobias Boege. *On stable equivalence of semialgebraic sets*. url. [Online; accessed 10-October-2022]. 2022.
- [7] Günter M. Ziegler. "Three problems about 4-polytopes". In: Polytopes: abstract, convex and computational (Scarborough, ON, 1993). Vol. 440. NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. Kluwer Acad. Publ., Dordrecht, 1994, pp. 499–502.
- [8] Harald Günzel. "On the universal partition theorem for 4-polytopes". In: *Discrete Comput. Geom.* 19.4 (1998), pp. 521–551.

References III

- [9] Harald Günzel. "The universal partition theorem for oriented matroids". In: *Discrete Comput. Geom.* 15.2 (1996), pp. 121–145.
- [10] Jürgen Richter-Gebert and Günter M. Ziegler. "Realization spaces of 4-polytopes are universal". In: *Bull. Amer. Math. Soc.* (N.S.) 32.4 (1995), pp. 403–412.
- [11] Tobias Boege. "The Gaussian conditional independence inference problem". PhD thesis. Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, 2022.
- [12] Wikipedia contributors. *Mnëv's universality theorem Wikipedia, The Free Encyclopedia*. url. [Online; accessed 11-August-2022]. 2022.

References IV

- [13] Peter W. Shor. "Stretchability of pseudolines is NP-hard". In: Applied geometry and discrete mathematics. Vol. 4. DIMACS Ser. Discrete Math. Theoret. Comput. Sci. Amer. Math. Soc., Providence, RI, 1991, pp. 531–554.
- [14] Jürgen Richter-Gebert. "The universality theorems for oriented matroids and polytopes". In: Advances in discrete and computational geometry (South Hadley, MA, 1996). Vol. 223. Contemp. Math. Amer. Math. Soc., Providence, RI, 1999, pp. 269–292.
- [15] Tobias Boege et al. "The geometry of Gaussian double Markovian distributions". In: Scandinavian Journal of Statistics (2022).
- [16] Mathias Drton. "Likelihood ratio tests and singularities". In: *The Annals of Statistics* 37.2 (2009), pp. 979–1012.

References V

- [17] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real algebraic geometry. Translated from the 1987 French original, Revised by the authors. Springer-Verlag, Berlin, 1998.
- [18] Karim A. Adiprasito and Arnau Padrol. "The universality theorem for neighborly polytopes". In: *Combinatorica* 37.2 (2017), pp. 129–136.