DOC 01

Dérivation

I. Variations d'une fonction

I.1. Introduction

Étudier, sans la courbe, les variations d'une fonction est fastidieux, mais grâce à un nouvel outil, la dérivation, on peut le faire « assez facilement ».

i Idée

L'idée est de « remplacer » (localement) la courbe par sa tangente.

On peut donc constater que:

- les « tangentes bleues montent » et que la courbe « suit la même direction » ;
- les « tangentes vertes descendent » et que la courbe « suit la même direction » ;
- la « tangente grise est horizontale » et que la courbe « change de direction ».

La tangente et la courbe vont donc dans la « même direction »!

Rappels 1 - Idée

Une tangente est une **droite**, et savoir si une droite « monte ou descend » est simple : il suffit de connaître sa pente (ou son coefficient directeur).

On rappelle que l'équation (réduite) d'une droite est de la forme y = mx + p avec $\begin{cases} m \text{ la pente} \\ p \text{ l'ordonnée à l'origine} \end{cases}$

- si m > 0, la droite est croissante;
- si m < 0, la droite est décroissante;
- si m = 0, la droite est horizontale.

Il ne reste donc « plus qu'à » trouver un moyen de déterminer la pente des tangentes!

I.2. Nombre dérivé

Définition 1 - Propriété

Soit f une fonction définie sur un intervalle I, et soit $a \in I$.

On appelle nombre dérivé de f en a, la pente (si elle existe!) de la tangente à la courbe \mathcal{C}_f en a. Dans le cas où la tangente existe, on dit que f est dérivable en a et on note f'(a) ce nombre dérivé.

Propriété 1

Si f est dérivable en a, une équation de la tangente Γ_a à la courbe \mathcal{C}_f au point d'abscisse a est : $\Gamma_a: y=f'(a)\times (x-a)+f(a).$

Remarques 1

On va utiliser des formules qui donnent tous les f'(a)!

Pour déterminer l'équation de la tangente, on **remplace** les a, et on calcule f'(a) puis f(a)!

I.3. Fonction dérivée

Propriétés 2

On a les fonctions dérivées suivantes (les ensembles de définition et dérivabilité ne sont pas indiqués) :

$f(x) = \dots$	$f'(x) = \dots$
k	0
X	1
x^2	2x
$ \begin{array}{c c} x \\ x^2 \\ \hline x^3 \end{array} $	$3x^2$
$x^n \qquad (n \ge 1)$	$ \begin{array}{c} 2x \\ 3x^2 \\ nx^{n-1} \end{array} $
$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{1}{x^2}$	$-\frac{1}{x^2}$ $-\frac{2}{x^3}$
$\frac{1}{x^n} \qquad (n \ge 1)$	$-\frac{n}{x^{n+1}}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$

Théorème 1

On a les formules de dérivations suivantes (u et v sont des fonctions):

Fonction	Dérivée		
u + v	u' + v'		
ku (k cstte)	ku'		
$u \times v$	u'v+v'u		
$\frac{u}{v}$	$\frac{u'v-v'u}{v^2}$		
$\frac{1}{\nu}$	$\frac{-v'}{v^2}$		
u^n	$nu'u^{n-1}$		
\sqrt{u}	$\frac{u'}{2\sqrt{u}}$		

> Exemples 1, de base

Pour dériver une fonction, on repère la ou les formules à utiliser, puis on raisonne éventuellement sur les composées!

$$g(x) = \frac{x+2}{x^2+5}$$

on va utiliser
$$u/v$$
 avec
$$\begin{cases} u(x) = x + 2 \\ v(x) = x^2 + 5 \end{cases}$$
 et donc
$$\begin{cases} u'(x) = 1 \\ v'(x) = 2x \end{cases}$$
;

$$\Rightarrow g' = \frac{u'v - v'u}{v^2} \text{ donc } g'(x) = \frac{1 \times (x^2 + 5) - 2x \times (x + 2)}{(x^2 + 5)^2} = \frac{x^2 + 5 - 2x^2 - 4x}{(x^2 + 5)^2} = \frac{-x^2 - 4x + 5}{(x^2 + 5)^2}.$$

Remarques 2

Pour la dérivée d'un **quotient**, on ne développe pas le dénominateur, on le laisse sous forme d'un carré! Si des choses sont simplifiables, on n'hésite pas à les **simplifier**!

II. Étude générale

II.1. Méthode

★ Théorème 2

Pour étudier une fonction f sur un intervalle I :

- on calcule sa dérivée f'(x) sur I;
- on étudie, si besoin en « transformant », le signe de f'(x) sur I;
- on dresse le **tds** de f'(x) sur et on en déduit le **tdv** de f sur I grâce à $f' \oplus \Rightarrow f \nearrow$ et $f' \ominus \Rightarrow f \searrow$;
- on complète le tdv de f avec les images (ou les limites).

II.2. Exemple

Illustration 1

Soit f la fonction définie que [0;7] par $f(x) = x^3 - 11x^2 + 39x - 20$.

- f est dérivable et $f'(x) = 3x^2 22x + 39$;
- on utilise Δ pour déterminer le signe de f'(x);

x	0		3		<u>13</u> 3		7
f'(z)		+	0	_	0	+	

— le théorème fondamental permet de dresser le tableau de variations de f;

x	0		3		13 3		7
f'(x)		+	0	_	0	+	
f	-20		_ 25 _				57

avec $m \approx 23.8$.

— on peut proposer la courbe suivante pour terminer.

