Seção 1.2. Curvas Parametrizadas

By Gabriela Silva

10 de fevereiro de 2020

Exercício 2. Seja $\alpha(t)$ uma curva parametrizada que não passa pela origem. Se $\alpha(t_0)$ é o ponto do traço de α mais próximo da origem e $\alpha'(t_0) \neq 0$, mostre que o vetor posição $\alpha(t_0)$ é ortogonal a $\alpha'(t_0)$.

Solução. Defina a função

$$g: \mathbb{R} \to \mathbb{R}$$

$$g(t) = \langle \alpha(t), \alpha(t) \rangle = ||\alpha(t)||^2$$

Se $\alpha(t_0)$ é ponto do traço de α mais próximo da origem isso significa que:

$$||\alpha(t_0)|| \le ||\alpha(t)||, t \in \mathbb{R}$$
$$||\alpha(t_0)||^2 \le ||\alpha(t)||^2$$
$$g(t_0) \le g(t)$$

concluimos assim que t_0 é um ponto de mínimo de g, logo $g'(t_0) = 0$. Ou seja,

$$g'(t_0) = 2\langle \alpha'(t), \alpha(t) \rangle = 0$$

Então,

$$\langle \alpha'(t), \alpha(t) \rangle = 0 \tag{1}$$

Como $\alpha(t)$ não passa pela origem, isto é, $\alpha(t) \neq 0$ e por hipótese $\alpha'(t) \neq 0$, segue de 1 que $\alpha(t)$ e $\alpha'(t)$ são ortogonais.