Asia-Pacific Informatics Olympiad 2021 22 - 23 May 2021

Indonesia

hexagon APIO 2021 Tasks Korean (KOR)

육각형 영역

육각형 타일로 이루어진 칸들이 무한하게 놓여 있고, 재현이는 이 중 "시작 칸"이라고 부르는 칸 위에 서 있다. 두 칸은 모서리를 공유하면 이웃하고 있다고 하자. 재현이는 매번 다음 그림과 같이, 1부터 6까지 번호가 붙은 방향을 따라서 이웃한 칸 중 하나로 이동할 수 있다.

재현이가 총 N번 움직였을 때 만드는 칸들로 이루어지는 경로는 영역을 형성한다. i 번째 움직일 때는 D[i] 방향으로 L[i] 칸을 이동한다. 이 경로는 다음과 같은 특징이 있다.

- 이 경로는 *닫혀있는데*, 마지막에 도착하는 칸은 시작 칸과 동일하다는 뜻이다.
- 이 경로는 *단순한데*, 맨 처음 시작한 칸만 빼고 모든 칸은 최대 한 번 방문한다는 뜻이다. 맨 처음 시작한 칸은 맨 마지막까지 합쳐서 정확하게 두 번 방문한다.
- 이 경로는 *드러나 있는데*, 경로에 포함되는 모든 칸은 최소한 한 개의 경로에 포함되지 않으면서 *내부*에 있지 않는 칸과 이웃한다.
 - 만약 어떤 칸이 경로에 포함되지 않으면서, 경로에 포함되는 칸을 지나지 않고 방문할 수 있는 칸의 개수가 유한하다면 이 칸은 *내부*에 있다고 한다.

다음은 재현이가 갈 수 있는 경로 중 하나의 예이다.

- 1번 칸 (핑크색)이 시작 (그리고 마지막) 칸이다.
- 옅은 파란색 칸들은 경로에 포함되는 칸들이며, 방문 순서가 칸 안에 쓰여 있다.
- x표시가 되어 있는 짙은 파란색 칸들은 내부에 있는 칸들이다.

형성된 영역은 경로에 포함되거나, 내부에 있는 모든 칸들로 이루어진다. 영역 안의 칸 c의 거리는 영역 안의 칸들만 방문해서 시작 칸부터 칸 c에 도착할 때까지 필요한 움직임의 최소값이다. 영역 안의 칸에 대한 점수는 $A+d\times B$ 인데, A와 B는 재현이가 미리 정한 상수값이며, d는 이 칸의 거리이다. 다음은 위 예제의 경로에 의해 형성된 영역 안의 각 칸들의 거리를 보여준다.

재현이가 N번 움직일 때 만드는 칸들로 이루어진 경로에 의해 형성된 영역의 모든 칸의 점수의 총합을 구하는 프로그램을 작성하시오. 점수의 총합은 매우 큰 값일 수 있으므로, 이 값을 10^9+7 으로 나눈 나머지를 구하시오.

상세 구현

다음 함수를 구현해야 한다.

int draw_territory(int N, int A, int B, int[] D, int[] L)

- *N*: 움직임의 수.
- *A*, *B*: 점수 계산에 필요한 상수
- D: 길이 N인 배열로, D[i]는 i 번째 움직임의 방향
- ullet L:길이 N인 배열로, L[i]는 i 번째 움직임에서 이동한 칸 수
- ullet 이 함수는 경로에 의해 형성된 영역의 모든 칸의 점수의 총합을 10^9+7 로 나눈 나머지를 리턴한다.
- 이 함수는 정확하게 한 번 호출된다.

예제

다음 호출을 생각해보자.

이는 위 예제에서 설명한 것과 동일하다. 다음 표는 영역에서 가능한 거리마다 각 칸의 점수를 보여준다.

거리	칸 수	각 칸의 점수	총 점수
0	1	2+0 imes 3=2	1 imes 2 = 2
1	4	2+1 imes 3=5	4 imes5=20
2	5	2+2 imes 3=8	5 imes 8 = 40
3	6	2+3 imes 3=11	$6 \times 11 = 66$
4	4	2+4 imes 3=14	$4 \times 14 = 56$
5	3	2+5 imes 3=17	3 imes 17 = 51
6	4	2+6 imes 3=20	$4 \times 20 = 80$
7	4	2+7 imes 3=23	4 imes23=92
8	5	2+8 imes 3=26	5 imes 26 = 130
9	3	2+9 imes 3=29	3 imes 29 = 87
10	4	2+10 imes 3=32	4 imes 32 = 128
11	5	2+11 imes 3=35	5 imes 35 = 175
12	2	2+12 imes 3=38	2 imes 38 = 76

점수의 총합은 2+20+40+66+56+51+80+92+130+87+128+175+76=1003이다. 따라서, draw_territory 함수의 리턴값은 1003이어야 한다.

제약 조건

- $3 \le N \le 200000$
- $0 \le A, B \le 10^9$
- $1 \le D[i] \le 6$ (모든 $0 \le i \le N-1$)
- $1 \le L[i]$ (모든 $0 \le i \le N-1$)
- L의 모든 원소의 합은 10^9 을 넘지 않는다.

_

부분 문제

- 1. (3 점) N=3, B=0
- 2. (6 점) N=3
- 3. (11 점) L의 모든 원소의 합은 2000을 넘지 않는다.

- 4. (12 점) B=0이고 L의 모든 원소의 합은 $200\,000$ 을 넘지 않는다.
- 5. (15 점) B=0
- 6. (19 점) L의 모든 원소의 합은 $200\,000$ 을 넘지 않는다.
- 7. (18 점) L[i] = L[i+1] (for all $0 \leq i \leq N-2$)
- 8. (16 점) 추가적인 제약 조건이 없다.

샘플 그레이더

샘플 그레이더는 다음 양식으로 입력을 읽는다.

- line 1: *N A B*
- line 2+i ($0 \le i \le N-1$): D[i] L[i]

샘플 그레이더는 다음 양식으로 답을 출력한다.

• line 1: draw_territory의 리턴값