

Métodos Numéricos - MAT 1105

EGR. EDDY CAEL MAMANI CANAVIRI

Oruro - 2020

|METODO DE LA BISECCION

Sea la ecuación: $\frac{x \cdot \sqrt{2.1 - 0.5 \cdot x}}{(1 - x) \cdot \sqrt{1.1 - 0.5 \cdot x}}$ DATOS INICIALES

$$a_0 = -0.25$$

$$b_0 = 0.2$$

$$f(a_0) = f(-0.25) = \frac{(-0.25) \cdot \sqrt{2.1 - 0.5 \cdot (-0.25)}}{(1 - (-0.25)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.25)}} = -0.269542318$$

$$f(b_0) = f(0.2) = \frac{0.2 \cdot \sqrt{2.1 - 0.5 \cdot 0.2}}{(1 - 0.2) \cdot \sqrt{1.1 - 0.5 \cdot 0.2}} = 0.353553391$$

GRAFICANDO:

Ambos extremos tienen signo distinto, entonces podemos aplicar el metodo de la biseccion. HAREMOS 4 ITERACIONES MANUALES 1 ITERACION:

$$a_1 = -0.25$$

$$b_1 = 0.2$$

$$f(a_1) = f(-0.25) = \frac{(-0.25) \cdot \sqrt{2.1 - 0.5 \cdot (-0.25)}}{(1 - (-0.25)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.25)}} = -0.269542318$$

$$f(b_1) = f(0.2) = \frac{0.2 \cdot \sqrt{2.1 - 0.5 \cdot 0.2}}{(1 - 0.2) \cdot \sqrt{1.1 - 0.5 \cdot 0.2}} = 0.353553391$$

Calculamos el punto medio entre a_1 y b_1 :

$$p_1 = \frac{a_1 + b_1}{2} = \frac{-0.25 + 0.2}{2} = -0.025$$

Ahora comparemos los valores de $f(a_1)$ y $f(p_1)$.

$$f(a_1) = f(-0.25) = \frac{(-0.25) \cdot \sqrt{2.1 - 0.5 \cdot (-0.25)}}{(1 - (-0.25)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.25)}} = -0.269542318$$

$$f(p_1) = f(-0.025) = \frac{(-0.025) \cdot \sqrt{2.1 - 0.5 \cdot (-0.025)}}{(1 - (-0.025)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.025)}} = -0.033609689$$

GRAFICANDO:

Esos valores tienen signos iguales. Entonces el valor de a_2 sera el valor de p_1 . El valor de b_2 se mantiene igual que b_1 .

2 ITERACION:

$$a_2 = -0.025$$

$$b_2 = 0.2$$

$$f(a_2) = f(-0.025) = \frac{(-0.025) \cdot \sqrt{2.1 - 0.5 \cdot (-0.025)}}{(1 - (-0.025)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.025)}} = -0.033609689$$

$$f(b_2) = f(0.2) = \frac{0.2 \cdot \sqrt{2.1 - 0.5 \cdot 0.2}}{(1 - 0.2) \cdot \sqrt{1.1 - 0.5 \cdot 0.2}} = 0.353553391$$
 Calculamos el punto medio entre a_2 y b_2 :

$$p_2 = \frac{a_2 + b_2}{2} = \frac{-0.025 + 0.2}{2} = 0.0875$$

Ahora comparemos los valores de $f(a_2)$ y $f(p_2)$.

$$f(a_2) = f(-0.025) = \frac{(-0.025) \cdot \sqrt{2.1 - 0.5 \cdot (-0.025)}}{(1 - (-0.025)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.025)}} = -0.033609689$$
$$f(p_2) = f(0.0875) = \frac{0.0875 \cdot \sqrt{2.1 - 0.5 \cdot 0.0875}}{(1 - 0.0875) \cdot \sqrt{1.1 - 0.5 \cdot 0.0875}} = 0.133791886$$

GRAFICANDO:

Esos valores tienen signos opuestos. Entonces el valor de b_3 sera el valor de p_2 . El valor de a_3 se mantiene igual que a_2 .

3 ITERACION:

$$a_3 = -0.025$$

$$b_3 = 0.0875$$

$$f(a_3) = f(-0.025) = \frac{(-0.025) \cdot \sqrt{2.1 - 0.5 \cdot (-0.025)}}{(1 - (-0.025)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.025)}} = -0.033609689$$

$$f(b_3) = f(0.0875) = \frac{0.0875 \cdot \sqrt{2.1 - 0.5 \cdot 0.0875}}{(1 - 0.0875) \cdot \sqrt{1.1 - 0.5 \cdot 0.0875}} = 0.133791886$$

Calculamos el punto medio entre a_3 y b_3 :

$$p_3 = \frac{a_3 + b_3}{2} = \frac{-0.025 + 0.0875}{2} = 0.03125$$

Ahora comparemos los valores de $f(a_3)$ y $f(p_3)$.

$$f(a_3) = f(-0.025) = \frac{(-0.025) \cdot \sqrt{2.1 - 0.5 \cdot (-0.025)}}{(1 - (-0.025)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.025)}} = -0.033609689$$
$$f(p_3) = f(0.03125) = \frac{0.03125 \cdot \sqrt{2.1 - 0.5 \cdot 0.03125}}{(1 - 0.03125) \cdot \sqrt{1.1 - 0.5 \cdot 0.03125}} = 0.044723572$$

Esos valores tienen signos opuestos. Entonces el valor de b_4 sera el valor de p_3 . El valor de a_4 se mantiene igual que a_3 .

4 ITERACION:

$$a_4 = -0.025$$

$$b_4 = 0.03125$$

$$f(a_4) = f(-0.025) = \frac{(-0.025) \cdot \sqrt{2.1 - 0.5 \cdot (-0.025)}}{(1 - (-0.025)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.025)}} = -0.033609689$$

$$f(b_4) = f(0.03125) = \frac{0.03125 \cdot \sqrt{2.1 - 0.5 \cdot 0.03125}}{(1 - 0.03125) \cdot \sqrt{1.1 - 0.5 \cdot 0.03125}} = 0.044723572$$

Calculamos el punto medio entre a_4 y b_4 :

$$p_4 = \frac{a_4 + b_4}{2} = \frac{-0.025 + 0.03125}{2} = 0.003125$$

Ahora comparemos los valores de $f(a_4)$ y $f(p_4)$.

$$f(a_4) = f(-0.025) = \frac{(-0.025) \cdot \sqrt{2.1 - 0.5 \cdot (-0.025)}}{(1 - (-0.025)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.025)}} = -0.033609689$$
$$f(p_4) = f(0.003125) = \frac{0.003125 \cdot \sqrt{2.1 - 0.5 \cdot 0.003125}}{(1 - 0.003125) \cdot \sqrt{1.1 - 0.5 \cdot 0.003125}} = 0.00433281$$

Esos valores tienen signos opuestos. Entonces el valor de b_5 sera el valor de p_4 . El valor de a_5 se mantiene igual que a_4 .

FIN DE ITERACIONES MANUALES

Se encontro la solucion en 13 iteraciones

Raiz = -0.000006104, y la funcion evaluada en ese punto es:

$$\frac{(-0.000006104)\cdot\sqrt{2.1-0.5\cdot(-0.000006104)}}{(1-(-0.000006104))\cdot\sqrt{1.1-0.5\cdot(-0.000006104)}} = -0.000008433$$

Tabulando estos resultados se tiene la siguiente tabla TABLA DE ITERACIONES

i	a_i	b_i	p_i	$f(p_i)$
1	-0.25	0.2	-0.025	-0.033609689
2	-0.025	0.2	0.0875	0.133791886
3	-0.025	0.0875	0.03125	0.044723572
4	-0.025	0.03125	0.003125	0.00433281
5	-0.025	0.003125	-0.0109375	-0.014931207
6	-0.0109375	0.003125	-0.00390625	-0.00537399
7	-0.00390625	0.003125	-0.000390625	-0.000539492
8	-0.000390625	0.003125	0.001367188	0.001891907
9	-0.000390625	0.001367188	0.000488281	0.000675023
10	-0.000390625	0.000488281	0.000048828	0.000067469
11	-0.000390625	0.000048828	-0.000170898	-0.000236085
12	-0.000170898	0.000048828	-0.000061035	-0.000084326
13	-0.000061035	0.000048828	-0.000006104	-0.000008433

METODO DE LA FALSA POSICIO

Sea la ecuación:
$$\frac{x \cdot \sqrt{2.1 - 0.5 \cdot x}}{(1 - x) \cdot \sqrt{1.1 - 0.5 \cdot x}}$$
 DATOS INICIALES

$$a_0 = -0.25$$

$$.25) \cdot \sqrt{2.1 - 0.5 \cdot (-0.25)}$$

$$f(a_0) = f(-0.25) = \frac{(-0.25) \cdot \sqrt{2.1 - 0.5 \cdot (-0.25)}}{(1 - (-0.25)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.25)}} = -0.269542318$$

$$f(b_0) = f(0.25) = \frac{0.25 \cdot \sqrt{2.1 - 0.5 \cdot 0.25}}{(1 - 0.25) \cdot \sqrt{1.1 - 0.5 \cdot 0.25}} = 0.474416721$$

$$tol = 0.00001$$

GRAFICANDO:

Ambos extremos tienen signo distinto, entonces podemos aplicar el metodo de la falsa posicion. HAREMOS 4 ITERACIONES MANUALES 1 ITERACION:

$$a_1 = -0.25$$

$$b_1 = 0.25$$

$$f(a_1) = f(-0.25) = \frac{(-0.25) \cdot \sqrt{2.1 - 0.5 \cdot (-0.25)}}{(1 - (-0.25)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.25)}} = -0.269542318$$

$$f(b_1) = f(0.25) = \frac{0.25 \cdot \sqrt{2.1 - 0.5 \cdot 0.25}}{(1 - 0.25) \cdot \sqrt{1.1 - 0.5 \cdot 0.25}} = 0.474416721$$
 Calculamos el punto entre a_1 y b_1 :

$$p_1 = \frac{f(a_1) * b_1 - f(b_1) * a_1}{f(a_1) - f(b_1) *} = \frac{-0.269542318 * 0.25 + 0.474416721 * -0.25}{-0.269542318 - 0.474416721} = -0.068845996$$

GRAFICANDO:

Ahora comparemos los valores de $f(a_1)$ y $f(p_1)$.

$$f(a_1) = f(-0.25) = \frac{(-0.25) \cdot \sqrt{2.1 - 0.5 \cdot (-0.25)}}{(1 - (-0.25)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.25)}} = -0.269542318$$

$$f(p_1) = f(-0.068845996) = \frac{(-0.068845996) \cdot \sqrt{2.1 - 0.5 \cdot (-0.068845996)}}{(1 - (-0.068845996)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.068845996)}} = -0.08835198$$

Esos valores tienen signos iguales. Entonces el valor de a_2 sera el valor de p_1 . El valor de b_2 se mantiene igual que b_1 .

2 ITERACION:

$$a_2 = -0.068845996$$

$$b_2 = 0.25$$

$$f(a_2) = f(-0.068845996) = \frac{(-0.068845996) \cdot \sqrt{2.1 - 0.5 \cdot (-0.068845996)}}{(1 - (-0.068845996)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.068845996)}} = -0.08835198$$

$$f(b_2) = f(0.25) = \frac{0.25 \cdot \sqrt{2.1 - 0.5 \cdot 0.25}}{(1 - 0.25) \cdot \sqrt{1.1 - 0.5 \cdot 0.25}} = 0.474416721$$

Calculamos el punto entre a_2 y b_2 :

$$p_2 = \frac{f(a_2) * b_2 - f(b_2) * a_2}{f(a_2) - f(b_2) *} = \frac{-0.08835198 * 0.25 + 0.474416721 * -0.068845996}{-0.08835198 - 0.474416721} = -0.018788708$$

Ahora comparemos los valores de $f(a_2)$ y $f(p_2)$.

$$f(a_2) = f(-0.068845996) = \frac{(-0.068845996) \cdot \sqrt{2.1 - 0.5 \cdot (-0.068845996)}}{(1 - (-0.068845996)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.068845996)}} = -0.08835198$$

$$f(p_2) = f(-0.018788708) = \frac{(-0.018788708) \cdot \sqrt{2.1 - 0.5 \cdot (-0.018788708)}}{(1 - (-0.018788708)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.018788708)}} = -0.025430137$$

Esos valores tienen signos iguales. Entonces el valor de a_3 sera el valor de p_2 . El valor de b_3 se mantiene igual que b_2 .

3 ITERACION:

$$a_3 = -0.018788708$$

$$b_3 = 0.25$$

$$f(a_3) = f(-0.018788708) = \frac{(-0.018788708) \cdot \sqrt{2.1 - 0.5 \cdot (-0.018788708)}}{(1 - (-0.018788708)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.018788708)}} = -0.025430137$$

$$f(b_3) = f(0.25) = \frac{0.25 \cdot \sqrt{2.1 - 0.5 \cdot 0.25}}{(1 - 0.25) \cdot \sqrt{1.1 - 0.5 \cdot 0.25}} = 0.474416721$$

Calculamos el punto entre a_3 y b_3 :

$$p_3 = \frac{f(a_3) * b_3 - f(b_3) * a_3}{f(a_3) - f(b_3) *} = \frac{-0.025430137 * 0.25 + 0.474416721 * -0.018788708}{-0.025430137 - 0.474416721} = -0.005113852$$

Ahora comparemos los valores de $f(a_3)$ y $f(p_3)$.

$$f(a_3) = f(-0.018788708) = \frac{(-0.018788708) \cdot \sqrt{2.1 - 0.5 \cdot (-0.018788708)}}{(1 - (-0.018788708)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.018788708)}} = -0.025430137$$

$$f(p_3) = f(-0.005113852) = \frac{(-0.005113852) \cdot \sqrt{2.1 - 0.5 \cdot (-0.005113852)}}{(1 - (-0.005113852)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.005113852)}} = -0.007025969$$

Esos valores tienen signos iguales. Entonces el valor de a_4 sera el valor de p_3 . El valor de b_4 se mantiene igual que b_3 .

4 ITERACION:

$$a_4 = -0.005113852$$

$$b_4 = 0.25$$

$$f(a_4) = f(-0.005113852) = \frac{(-0.005113852) \cdot \sqrt{2.1 - 0.5 \cdot (-0.005113852)}}{(1 - (-0.005113852)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.005113852)}} = -0.007025969$$

$$f(b_4) = f(0.25) = \frac{0.25 \cdot \sqrt{2.1 - 0.5 \cdot 0.25}}{(1 - 0.25) \cdot \sqrt{1.1 - 0.5 \cdot 0.25}} = 0.474416721$$

Calculamos el punto entre a_4 y b_4 :

$$p_4 = \frac{f(a_4) * b_4 - f(b_4) * a_4}{f(a_4) - f(b_4) *} = \frac{-0.007025969 * 0.25 + 0.474416721 * -0.005113852}{-0.007025969 - 0.474416721} = -0.001390829$$

Ahora comparemos los valores de $f(a_4)$ y $f(p_4)$.

$$f(a_4) = f(-0.005113852) = \frac{(-0.005113852) \cdot \sqrt{2.1 - 0.5 \cdot (-0.005113852)}}{(1 - (-0.005113852)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.005113852)}} = -0.007025969$$

$$f(p_4) = f(-0.001390829) = \frac{(-0.001390829) \cdot \sqrt{2.1 - 0.5 \cdot (-0.001390829)}}{(1 - (-0.001390829)) \cdot \sqrt{1.1 - 0.5 \cdot (-0.001390829)}} = -0.001918749$$

Esos valores tienen signos iguales. Entonces el valor de a_5 sera el valor de p_4 . El valor de b_5 se mantiene igual que b_4 .

FIN DE ITERACIONES MANUALES

Se encontro la solucion en 9 iteraciones

Raiz = -0.000002067, y la funcion evaluada en ese punto es:

$$\frac{(-0.000002067)\cdot\sqrt{2.1-0.5\cdot(-0.000002067)}}{(1-(-0.000002067))\cdot\sqrt{1.1-0.5\cdot(-0.000002067)}} = -0.000002856$$

Tabulando estos resultados se tiene la siguiente tabla

TABLA DE ITERACIONES

i	a_i	b_i	p_i	$f(p_i)$
1	-0.25	0.25	-0.068845996	-0.08835198
2	-0.068845996	0.25	-0.018788708	-0.025430137
3	-0.018788708	0.25	-0.005113852	-0.007025969
4	-0.005113852	0.25	-0.001390829	-0.001918749
5	-0.001390829	0.25	-0.00037819	-0.000522326
6	-0.00037819	0.25	-0.000102831	-0.000142065
7	-0.000102831	0.25	-0.000027959	-0.00003863
8	-0.000027959	0.25	-0.000007602	-0.000010504
9	-0.000007602	0.25	-0.000002067	-0.000002856