ELL715 : Assignment 2

Deepali Gupta, 2013MT60079 February 13, 2017

1 Answer 1

 $({\rm Code~in~q1.m})$

(a) Complement and log operations

Original image

Negative image

Log image

(b) Gamma Correction:

Original Image

gamma=0.4

gamma=2.5

gamma=10

gamma=25

gamma=100

(c) Bit-plane Slicing

Image

Bit plane 3

Bit plane 6

Bit plane 1

Bit plane 4

Bit plane 7

Bit plane 2

Bit plane 5

Bit plane 8

(d) Modified images and their histograms:

Original Image

Image brightened by 0.5

Contrast reduced from 0-1 to 0.4-0.7

Image darkened by 0.5

(e) Histogram Equalisation

Original Image

Histogram

100

50

0 100 200

Histogram Equalised Image

(f) Highlighting

Original Image

Highlighted Image between 120-200

2 Answer 2

(Code in q2.m)

Original Image

(a) Laplacian filter (a) With diagonal terms

(b) Robert's operator (c) Sobel's operator (d) High boost filter

Edge estimation

Answer 3 3

(Code in q3.m)

First frame Second frame Interpolated image Difference at t=100

Changes in video frames over time

4 Answer 4

(Code in q4.m)

The algorithm for object detection in the paper can be summarised as follows:

- (i) Prepare color images
- (ii) Image RGB adjustment
- (iii) Detect the color of each pixel and determine whether required color or not
- (iv) Delete the unrelated region by replacing the color with all black color
- (v) Change image to grayscale
- (vi) Perform median filter to eliminate the small pixel and smoothen the image
- (vii) Change to binary image and go through another object elimination that eliminates binary objects which is lesser than 200 pixels in a group of objects
- (viii) Apply CHT to find the circular patterns within an image

For the purpose of the assignment, the above algorithm was applied to detect a tennis ball in various images of a tennis match. The conditions used for detecting the colors was:

• $Blue \leq Red \leq Green$, or

• $R \in (110, 255), G \in (170, 255), B \in (20, 130)$

The results are as follows:

Original image

Color detection

binary image with median filter

Ball detection

Original image

Color detection

binary image with median filter

Ball detection

Original image

Color detection

binary image with median filter

Ball detection

Thus, good accuracy levels were observed to detect the ball in various images.