ICT이노베이션스퀘어 AI복합교육 고급 언어과정

자연어처리를 위한 Attention

현청천

2021.04.19

· google all 3/2 2/8/4

Encoder Input 정보를 하나의 벡터로 저장

한거(1)긴 문장을 하나의 벡터로 변환하기 어려움 (Information bottleneck) 의 상에 정보육성이 생기지》

Encoder Input 정보를 하나의 벡터로 저장

- 두가지 주요 문제 해결
 - 긴 문장을 하나의 벡터로 변환하면서 발생하는 Information bottleneck
 - 과거의 정보가 점점 사라지는 vanishing gradient

Encoderal 트윙地

Source의 특정 부분을 집중하기 위해 Decoder가 Encoder의 정보를 직접 접근함

ashapeol Zedet-2/12/3/L.

Dot-product

attention output

Encoder hidden state:
$$h_1, \ldots, h_n \in \mathbb{R}^h$$

$$h_1,\ldots,h_n\in\mathbb{R}^n$$

Decoder hidden state on timestamp
$$t$$
: $s_t \in \mathbb{R}^h$

$$s_t \in \mathbb{R}^h$$

Attention score:
$$e^t = [s_t^T h_1, \dots, s_t^T h_n] \in \mathbb{R}^n$$

Attention probability distribution:
$$\alpha^t = softmax(e^t) \in \mathbb{R}^n$$

$$\alpha^t = softmax(e^t) \in \mathbb{R}^n$$

Weighted sum of encoder hidden state:
$$a_t = \sum_{i=1}^n \alpha_i^t h_i \in \mathbb{R}^h$$

Concatenate attention output and decoder hidden state: $[a_t; s_t] \in \mathbb{R}^2 h$

$$[a_t; s_t] \in \mathbb{R}^2 h$$

Attention Model (Advantage)

• Attention을 이용해 NMT의 성능이 많이 좋아짐 → 기술程 전세.

Information bottleneck 문제를 해결 함

• Decoder가 source에 직접 접근하도록 함

Vanishing gradient 문제를 해결 함

• 거리가 먼 source의 정보를 접근 할 수 있음

• Attention이 alignment를 학습함

feature maps by that of the off

	Education	is	most	powerful	weapon
교육은					
가장					
강력한					
무기					
입니다					

Attention Model (Variants)

Attention Model (Variants)

$$e_t = [e_{t1}, \dots, e_{tn}] \in \mathbb{R}^n$$

- Dot-product attention
 - $e_i^t = \underline{s_t^T h_i} \in \mathbb{R}$
- Multiplicative attention

rueight shapeof chief

- $e_i^t = s_t^T W h \in \mathbb{R}$
- where $W \in \mathbb{R}^{d_s \times d_h}$ where $W \in \mathbb{R}^{d_s \times d_h}$
- Additive attention
 - $e_i^t = v^T \tanh(W_h h_i + W_s s_t) \in \mathbb{R}$
 - where $W_h \in \mathbb{R}^{d_v \times d_h}$, $W_s \in \mathbb{R}^{d_v \times d_s}$, $v \in \mathbb{R}^{d_v}$

Attention Tutorial

Attention Tutorial (inputs)

 $\begin{array}{cccc}
N \times N & h \cdot M \\
(n \times h) & \times (h \cdot m) \\
= (n \cdot m)
\end{array}$

Encoder hidden state: $h \in \mathbb{R}^{h \times n}$

Decoder hidden state: $s \in \mathbb{R}^{h \times m}$

$$(N \times m) \times (N \times h)$$

Attention Tutorial (score)

Decoder hidden state: $s^T \in \mathbb{R}^{m \times h}$

Attention score: $e \in \mathbb{R}^{m \times n}$ $e_i^i = s_i^T h_j \in \mathbb{R}$

Attention Tutorial (score)

$$e = s^T h \in \mathbb{R}^{m \times n}$$

Encoder hidden state: $h \in \mathbb{R}^{h \times n}$

_	h_1	h_2	h_3		h_n
s_1^T	$s_1^T h_1$	$s_1^T h_2$	$s_1^T h_3$	•••	$s_1^T h_n$
s_2^T	$s_2^T h_1$	$s_2^T h_2$	$s_2^T h_3$	•••	$s_2^T h_n$
s_3^T	$s_3^T h_1$	$s_3^T h_2$	$s_3^T h_3$		$s_3^T h_n$
• • •					
S_m^T	$s_m^T h_1$	$s_m^T h_2$	$s_m^T h_3$	•••	$s_m^T h_n$

Attention score: $e \in \mathbb{R}^{m \times n}$

$$e_i^i = s_i^T h_j \in \mathbb{R}$$

Decoder hidden state: $s^T \in \mathbb{R}^{m \times h}$

Attention Tutorial (prob)

$$\alpha = softmax(e) \in \mathbb{R}^{m \times n}$$

Attention score: $e \in \mathbb{R}^{m \times n}$

행 단위 softmax

Attention prob: $\alpha \in \mathbb{R}^{m \times n}$

$$(A.13)^T = B^T.A^T$$

Attention Tutorial (output)

 $\frac{\sqrt{2}}{\sqrt{2}} \left[\frac{\sqrt{2}}{\sqrt{2}} \right] + \frac{\sqrt{2}}{\sqrt{2}} \left[\frac{\sqrt{2}}{\sqrt{2$

ncm)

 gattention? weight? =2141 ofth. 24125 =21701

a right to bluct with

extraction, + Square

AHASATS 11-t

감사합니다.