Problem 1.

Give an example of a complete metric space which is homeomorphic to an incomplete metric space.

Solution

Define the mapping $f: \mathbb{R} \to (-1, 1)$ as

$$f(x) = \frac{x}{1 + |x|}$$

f is a continuous bijection (note f(0) = 0), where the inverse $f^{-1}: (-1,1) \to \mathbb{R}$ is

$$f^{-1}(y) = \frac{y}{1 - |y|}$$

which is also continuous at all -1 < y < 1 (again note $f^{-1}(0) = 0$). Thus f is a homeomorphism. With the usual metric, \mathbb{R} is complete but (-1,1) is incomplete.

Problem 2.

Let (E,d) be a metric space and $S \subset E$ a subset. Show that $A \subset S$ is open relative to S if and only if $A = S \cap U$ for some $U \subset E$ open.¹

Solution

(⇒) Suppose $A \subset S$ is open relative to S. This means that $\forall x \in A, \exists r_x > 0$ such that $B_{r_x}(x) \cap S \subset A$. Define $U = \bigcup_{x \in A} B_{r_x}(x)$. Since U is the union of open balls, it is open.

Note that $A \subset U$ and $A \subset S$. Then, $A \subset S \cap U$. Also, $S \cap U = \bigcup_{x \in A} B_{r_x}(x) \cap S$. And since A is open relative to S, $B_{r_x}(x) \cap S \subset A$, so is the union. Then, $S \cap U \subset A$. Then, $A = S \cap U$.

 (\Leftarrow) If $A = S \cap U$ for an open subset $U \subset E$, then $\forall x \in A, \exists r_x > 0$ such that $B_{r_x}(x) \subset U$. This implies that $(B_{r_x}(x) \cap S) \subset (U \cap S) = A$. Then, A is open relative to S.

 $^{{}^{1}}A \subset S$ is open relative to S if $\forall x \in A \ \exists r_{x} > 0$ such that $B_{r_{x}}(x) \cap S \subset A$.

Problem 3.

Let (X,d) be a metric space. Assume $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ are uniformly continuous on (X,d) and $(\mathbb{R},|\cdot|)$, with $|\cdot|$ the absolute-value norm.

- (a) Show that $f + g : X \to \mathbb{R}$ is uniformly continuous, where (f + g)(x) = f(x) + g(x).
- (b) Show that $\max\{f,g\}: X \to \mathbb{R}$ is uniformly continuous, where $\max\{f,g\}(x) = \max\{f(x),g(x)\}$.
- (c) Give a counterexample to the following statement: $f \cdot g : X \to \mathbb{R}$ is uniformly continuous on (X, d) and $(\mathbb{R}, |\cdot|)$, where $f \cdot g = f(x) \cdot g(x)$.

Solution

(a) Since f and g are uniformly continuous, we know that $\forall \epsilon' > 0$ and $\forall x_0 \in X$, $\exists \delta' > 0$ such that if $d(x, x_0) < \delta'$, then $|f(x) - f(x_0)| < \epsilon'$ and $|g(x) - g(x_0)| < \epsilon'$. Given ϵ' , let $\epsilon = 2\epsilon'$ and $\delta = \delta'$. Assume $d(x, x_0) < \delta$. Then

$$|(f+g)(x) - (f+g)(x_0)| = |(f(x) + g(x)) - (f(x_0) + g(x_0))|,$$

$$= |(f(x) - f(x_0)) + (g(x) - g(x_0))|,$$

$$\leq |f(x) - f(x_0)| + |g(x) - g(x_0)|,$$

$$< \epsilon' + \epsilon',$$

$$= \epsilon$$

Then, f + g is uniformly continuous.

(b) Let $x, y \in X$. Without loss of generality, suppose $\max(f(x), g(x)) \ge \max(f(y), g(y))$ (otherwise switch the roles of x and y here). Then

$$f(x) - \max(f(y), g(y)) \le f(x) - f(y)$$

and

$$g(x) - \max(f(y), g(y)) \le g(x) - g(y)$$

So

$$0 \leq \max(f(x), g(x)) - \max(f(y), g(y))$$

$$= \max(f(x) - \max(f(y), g(y)), g(x) - \max(f(y), g(y)))$$

$$\leq \max(f(x) - f(y), g(x) - g(y))$$

$$\leq \max(|f(x) - f(y)|, |g(x) - g(y)|)$$

From here, the argument can be finished using the uniform continuity of f and g.

(c) Take f(x) = g(x) = x, so $(f \cdot g)(x) = x^2$, which is not uniformly continuous. To see this, consider the following example. Let $\varepsilon = 1$. Fix $\delta > 0$; without loss of generality take $\delta \leq 1$. Then let $x = 2/\delta$ and $y = 2/\delta - \delta$. So

$$|x-y| = \delta$$
 and $x+y = \frac{4}{\delta} - \delta = \frac{4-\delta^2}{\delta}$

So

$$|x^2-y^2|=|x+y||x-y|=4-\delta^2>1=\varepsilon$$

Problem 4.

A function $f: X \to Y$ is open if $\forall A \subset X$ such that A is open, f(A) is open. Show that any continuous open function from \mathbb{R} into \mathbb{R} is strictly monotonic.

Solution

Towards a contradiction, assume f is not strictly monotonic. This means that for some $a < c < b \in \mathbb{R}$, either (i) $f(a) \le f(c) \ge f(b)$ or (ii) $f(a) \ge f(c) \le f(b)$, is true.

Consider case (i). Since [a,b] is compact and f is continuous, then f([a,b]) is compact. Because of the extreme value theorem, $M \equiv \sup f([a,b]) \in f([a,b])$. Since $f(a) \leq f(c) \geq f(b)$, there are two options

- f(a) = M or f(b) = M, so f(c) = M.
- f(a) < M and f(b) < M.

Both cases imply that $M \in f((a,b))$. This means that f((a,b)) is not open, since open sets do not contain their supremum. This is a contradiction with f being open.

A similar argument can be made in case (ii) using the infimum instead of the supremum. We conclude that f is strictly monotonic.

Problem 5.

Prove that a metric space (X, d) is discrete if and only if every function on X into any other metric space (Y, ρ) , where Y has at least two distinct elements, is continuous.²

Solution

 (\Longrightarrow) : every set in a discrete metric space is open. So for any function f and any set $A\subset Y,\ f^{-1}(A)$ is open. In particular this holds for all open subsets of Y and hence f is continuous.

 (\Leftarrow) : Let $A \subseteq X$. Fix $y, y' \in Y$ with $y \neq y'$. Let $f: X \to Y$ be given by

$$f(x) = \begin{cases} y & \text{if } x \in A \\ y' & \text{if } x \in A^c \end{cases}$$

Then f is continuous, since every function from X to Y is continuous. Since $\{y\}$ is a closed set, $A = f^{-1}(\{y\})$ is closed. Similarly, $\{y'\}$ is closed, so $A^c = f^{-1}(\{y'\})$ is closed, which implies that A is also open. Since $A \subseteq X$ was arbitrary, X is discrete.

²A metric space (X, d) is discrete if every subset $A \subset X$ is open. Notice that any set equipped with the discrete metric forms a discrete metric space, but not every discrete metric space necessarily has the discrete metric.

Problem 6.

Suppose T is an operator on a complete metric space (X, d). Prove that the condition

$$d(T(x), T(y)) < d(x, y) \ \forall x, y \in X \ (x \neq y)$$

does not guarantee the existence of a fixed point of T.

Solution

Take \mathbb{R}_+ (the non-negative reals) with the usual metric. Define $T:\mathbb{R}_+\to\mathbb{R}_+$ as

$$T(x) = x + \frac{1}{1+x}$$

Note that $\frac{1}{1+x}$ is non-zero for any number, so clearly T has no fixed point. To see that T satisfies the condition: take d as the usual metric. Without loss of generality, let $0 \le x < y$. Then since T is an increasing function, we have

$$d(x,y) - d(T(x), T(y)) = (y - x) - \left(y + \frac{1}{1+y} - x - \frac{1}{1+x}\right)$$
$$= \frac{1}{1+x} - \frac{1}{1+y}$$
$$> 0$$