Signály a informace

Přednáška č.10

Číslicové systémy z pohledu frekvenční analýzy

Připomenutí předchozích přednášek

- Analýza LTI systémů v časové oblasti
- Popis systémů pomocí impulzní odezvy
- Konvoluce, její princip a výpočet
- Analýza vybraných systémů typu FIR zesilovač, derivátor, průměrovací filtr
- Z-transformace
- Přenosová funkce systému a její vztah k impulzní odezvě

Frekvenční analýza systémů (1)

Příklady z praxe

- 1. Zjišťování frekvenční charakteristiky zesilovače
- 2. Frekvenční charakteristiky snímačů (např. mikrofonu, CCD čipu, atd.) a výstupních členů (např. reproduktor)
- 3. Analýza přenosových vlastností vedení (kovový vodič, optický kabel)
- 4. Návrh filtrů, které mají posílit či zeslabit určitou část frekvenčního spektra

Frekvenční charakteristika systému

Závislost přenosových vlastností systému (amplitudy a fáze, příp. výkonu) na frekvenci

Frekvenční analýza systémů (2)

Vlastnosti LTI systémů

 Je-li na vstup přiveden harmonický (kosinusový) signál, na <u>výstupu bude opět harmonický signál o téže</u> <u>frekvenci</u>, změněna může být pouze amplituda či fáze.

$$A\cos(2\pi f t + \phi) \rightarrow k.A\cos(2\pi f t + \phi + \psi)$$

 $Ae^{j(2\pi f t + \phi)} \rightarrow Ae^{j(2\pi f t + \phi)} \cdot ke^{j\psi}$

- Je-li na vstup přiveden periodický signál, lze ho rozložit na jednotlivé harmonické složky (díky Fourierovu rozvoji). Pro každou složku pak platí ad 1.
- 3. Je-li na vstup přiveden **neperiodický** signál, lze ho Fourierovou transformací převést na spojité spektrum, Pro dílčí frekvence pak opět platí ad 1.

Frekvenční analýza systémů (3)

Měření frekvenční charakteristiky v praxi

- 1. Po jednotlivých frekvencích: Na vstup systému (např. zesilovače) se postupně přivádí sinusový signál o různých frekvencích (měnících se po určitých krocích). Na výstupu se vždy změří amplituda (a případně též fáze). Poměr výstupní a vstupní amplitudy (příp. výkonu) určuje parametr zesílení (zeslabení) na dané frekvenci.
- 2. <u>Pomocí impulzní odezvy:</u> Vygeneruje se krátký impulz (blížící se Diracově pulzu) a změří se odezva na něj. Frekvenční charakteristika se určí pomocí Fourierovy transformace aplikované na získanou impulzní odezvu.

Frekvenční analýza systémů (4)

Obě metody na předchozí stránce jsou ekvivalentní.

Diracův pulz si totiž lze představit jako součet nekonečně mnoha kosinusovek o různých frekvencích.

- a) 1 kosinusovka
- b) 10 kosinusovek
- c) Jejich součet
- d) Součet 100 kosinusovek
- e) Součet 1000 kosinusovek

Frekvenční charakteristiky (1)

U LTI systémů je lze snadno určit výpočtem

Vyjdeme z diferenční rovnice:

$$A_0 y(n) + A_1 y(n-1) \cdot \cdot \cdot A_N y(n-N) = B_0 x(n) + B_1 x(n-1) \cdot \cdot \cdot B_M x(n-M)$$

určíme přenos:
$$H(z) = \frac{B_0 + B_1 z^{-1} \cdots B_M z^{-M}}{A_0 + A_1 z^{-1} \cdots A_N z^{-N}}$$

a z něj komplexní frekv. charakteristiku: dosazením $z = e^{j2\pi F}$

$$H(F) = \frac{B_0 + B_1 e^{-j2\pi F} \cdots B_M e^{-j2\pi FM}}{A_0 + A_1 e^{-j2\pi F} \cdots A_N e^{-j2\pi FN}}$$

kde F je normalizovaná (digitální) frekvence $F=f/f_s$

Frekvenční charakteristiky (2)

Z komplexní charakteristiky určíme modul a fázi

$$H(F) = H(F) | e^{j\varphi(F)}$$

a dostaneme **modulovou** (amplitudovou) a **fázovou** charakteristiku.

Pozn. Někdy se terminologicky rozlišuje mezi *amplitudovou* char. (může nabývat i záporných hodnot) a *modulovou* (pouze kladné hodnoty).

Amplitudová charakteristika se často uvádí v decibelech $10\log|H(F)|$

Někdy se používá výkonová charakteristika (přenos), pak $20\log |H(F)|$

Příklady výpočtů charakteristik (1)

1. Ideální zesilovač y[n] = k.x[n]

$$H(z) = k$$
 $H(F) = k$ $IH(F) \models k$ $\varphi(F) = 0$

ideální zesilovač je frekvenčně nezávislý, neovlivňuje fázi

2. Ideální zpožďovač $y[n] = x[n-n_0]$

$$H(z) = z^{-n_0}$$
 $H(F) = e^{-j2\pi F n_0}$ $|H(F)| = 1$ $\varphi(F) = -2\pi F n_0$

fázová charakteristika zpožďovače pro n0=2

ideální zpožďovač ovlivňuje (lineárně) pouze fázi

Příklady výpočtů charakteristik (2)

3. Derivátor (diferenciátor) y[n] = x[n] - x[n-1]

$$H(F) = 1 - e^{-j2\pi F} =$$

$$= e^{-j\pi F} (e^{j\pi F} - e^{-j\pi F}) = 2j\sin(\pi F).e^{-j\pi F} = 2\sin(\pi F).e^{-j(\pi F - \pi/2)}$$

$$|H(F)| = |2\sin(\pi F)| \qquad \varphi(F) = -(\pi F - \pi/2)$$

Amplitudová charakteristika

(uvádí se pouze v rozmezí 0 až fs/2)

- úplně je potlačena ss složka,
- nižší frekvence jsou zeslabovány
- vyšší naopak zesilovány
- Jde o HP (horní propust)

Fázová charakteristika

- je opět lineární

Příklady výpočtů charakteristik (3)

4. Trojúhelníkový filtr řádu **3**: y[n] = x[n] + 2x[n-1] + x[n-2]

$$H(F) = 1 + 2e^{-j2\pi F} + e^{-j4\pi F} =$$

$$= e^{-j2\pi F} (e^{j2\pi F} + 2 + e^{-j2\pi F}) = (2 + 2\cos(2\pi F)) \cdot e^{-j2\pi F}$$

$$|H(F)| = |2 + 2\cos(2\pi F)| \qquad \varphi(F) = -2\pi F$$

Amplitudová charakteristika

(uvádí se pouze v rozmezí 0 až fs/2)

- nižší frekvence jsou zesilovány
- vyšší naopak zeslabovány
- úplně je potlačena frekvence fs/2,
- jde o DP (dolní propust)

Fázová charakteristika

- je opět lineární (se zlomy)

Příklady výpočtů charakteristik (4)

4. Průměrovací filtr (od délce L) $y[n] = \frac{1}{L} \sum_{k=0}^{L-1} x[n-k]$

$$H(F) = \frac{1}{L}(1 + e^{-j2\pi F} + e^{-j4\pi F}... + e^{-j2L\pi F}) = \frac{\sin(\pi F L)}{L\sin(\pi F)}.e^{-j\pi F(L-1)}$$

$$|H(F)| = \frac{\sin(\pi F L)}{L\sin(\pi F)}|$$
 $\varphi(F) = -\pi F(L-1)$

Amplitudová char. (pro L=11)

- beze změny přenesena ss složka,
- nižší frekvence jsou méně potlačeny
- vyšší naopak více potlačeny
- charakteristika má "laloky"
- Jde o DP (dolní propust)

Fázová charakteristika

- je opět lineární

Příklady výpočtů charakteristik (5)

Vysvětlení zlomů ve fázové charakteristice

změny ve znaménku u "amplitudy" se projeví jako zlomy ve fázové charakteristice

Výpočty charakteristik v Matlabu (1)

Je-li systém popsán přenosovou funkcí

$$H(z) = \frac{B_0 + B_1 z^{-1} \cdots B_M z^{-M}}{A_0 + A_1 z^{-1} \cdots A_N z^{-N}}$$

MATLAB snadno umožní výpočet frekvenčních charakteristik

freqz (B, A, N, Fs)

B vektor koeficientů v čitateli

A vektor koeficientů ve jmenovateli

N počet bodů, v nichž se spočítají hodnoty

Fs ... vzorkovací frekvence

Funkce dále nakreslí grafy amplitudové a fázové charakteristiky, v decibelové stupnici pro frekvenční rozsah 0 až Fs/2.

Výpočty charakteristik v Matlabu (2)

Příklad 1 (diferenciátor) pracující se vzork. frekvencí 8 kHz

dosadíme do volání funkce freqz (B, A, N, Fs)

freqz ([1-1], 1, 1024, 8000)

Výsledkem je uvedený diagram amplitudové a fázové charakteristiky

Výpočty charakteristik v Matlabu (3)

Příklad 2 – průměrovací filtry (pro L=3 a L= 11, 8 kHz)

freqz ([1 1 1]/3, 1, 1024, 8000)

freqz (ones(11,1)/11, 1, 1024, 8000)

Komentář:

První filtr má širší propustné pásmo, jeden nulový bod (frekvence s úplným potlačením signálu), v nepropustném pásmu je poměrně malý útlum (cca 5 dB).

Druhý filtr má užší propustné pásmo, 5 nulových bodů (celkem 6 laloků), potlačení vyšších frekvencí kolem 20 dB. Fázová charakteristika u obou je lineární se zlomy.

Výpočty charakteristik v Matlabu (4)

Příklad 3 – trojúhelníkový filtr (pro L=3 L=7, 8 kHz)

freqz ([1 2 1]/4, 1, 1024, 8000)

freqz ([1 2 3 4 3 2 1]/16, 1, 1024, 8000)

Komentář:

Oba filtry představují rovněž dolní propusti. Oproti prům. filtrům mají větší útlum v nepropustném pásmu. Vzájemně se liší šířkou propustného pásma a útlumem v nepropustném pásmu. Druhý filtr úplně potlačí signály o frekvenci 2 a 4 kHz.

Výpočty charakteristik v Matlabu (5)

Příklad 4 – filtry IIR (DP a PP, 8 kHz)

DP: freqz (0.0798*[1 1 1 1], [1 -1.556 1.272 -0.398], 1024, 8000)

PP: freqz (0.1* [1 0 -1], [1 -1.25 0.78125], 1024, 1000)

Komentář: Oba filtry jsou typu IIR – tj. filtry s nekonečnou impulzní odezvou, obsahují tedy zpětnou vazbu mezi výstupem a vstupem, jmenovatel přenos. funkce je různý od 1. První filtr představuje DP s poměrně strmým přechodem mezi propustným a nepropustným pásmem a velkým útlumem. Druhý filtr je PP s centrální frekvencí kolem 1 KHz.

Výpočty charakteristik - ručně

Příklad – filtr s rovnicí y[n] = x[n] + 2x[n-1] + x[n-2]

chceme aplikovat na signály vzorkované 8 kHz

Jaký bude přenos na frekvencích 1 kHz, 2 kHz, atd?

Řešení: Přenosová funkce $H(z) = 1 + 2z^{-1} + z^{-2}$

Systém má frekv. charakteristiku $H(F) = 1 + 2e^{-j2\pi F} + e^{-j4\pi F}$

Abychom zjistili modul a fázi upravíme:

$$H(F) = 1 + 2\cos(2\pi F) - j2\sin(2\pi F) + \cos(4\pi F) - j\sin(4\pi F)$$

$$H(F) = (1 + 2\cos(2\pi F) + \cos(4\pi F)) - j(2\sin(2\pi F) + \sin(4\pi F)) =$$

$$= \text{Re}[H(F)] + j\text{Im}[H(F)]$$

Modul: $|H(F)| = \sqrt{\text{Re}[H(F)]^2 + \text{Im}[H(F)]^2}$ fáze: $\varphi(F) = \arctan \frac{\text{Im}[H(F)]}{\text{Re}[H(F)]}$

Pro 1 khz dosadíme za F = 1/8, pro 2 kHz F = 1/4 a spočítáme hodnoty modulu a fáze.

Shrnutí

- Frekvenční charakteristiky jsou důležité pro popis činnosti mnoha číslicových systémů.
- Udávají závislost modulu a fáze přenosové funkce na frekvenci.
- Lze je zjistit buď postupným měřením na jednotlivých frekvencích nebo odvodit z popisu systému.
- Výpočet spočívá v dosazení konkrétních hodnot frekvencí do vztahu odvozeného z přenosové funkce zvlášť pro modul a fázi.
- V MATLABU lze tento výpočet získat spolu s grafem prostřednictvím funkce freqz.

Konec přednášky

Děkuji za pozornost.