GPU Programming

(in Cuda)

Julian Gutierrez

NUCAR

Session 2

Introduction to CUDA

C for CUDA

- The language that started the GPGPU excitement
- CUDA only runs on NVIDIA GPUs
- Highest performance programming framework for NVIDIA GPUs
- Learning curve similar to threaded C programming
 - Large performance gains require mapping program to specific underlying architecture

- CUDA general purpose parallel platform
- CUDA is a standard ANSI C-like language
- CUDA API:
 - Manages devices
 - Memory
 - Synchronization
 - Etc.

- CUDA API offers two levels:
 - CUDA Driver API. Low level API, offers better control over the GPU.
 - CUDA Runtime API. Higher level; implemented on top of the driver API.
 - We will use this API.

C Code

```
for (int i=0;i < MAXi;i++)
    for(int j=0;j< MAXj;j++){
        ...code that uses i and j....
}</pre>
```

CUDA Code

```
dim3 blocks(MAXj, 1);
dim3 grids(MAXi, 1);

kernel<<<grids, blocks, 1>>>()

__global___ kernel()
{
  int i = blockIdx.x;
  int j = threadIdx.x;
  ...code that uses i and j....
}
```

- Concepts
 - Host
 - · CPU.
 - Executes the main function, any other CPU related jobs.
 - Device
 - GPU
 - Executes the kernel functions.

- CUDA Kernels: data-parallel function
 - A kernel is a function callable from the host and executed on the CUDA device
 - It runs "simultaneously" by many threads in parallel.
- CUDA compiler: nvcc
 - Separates the device code from the host code during compilation process.

- We will learn:
 - Hierarchy structure of threads.
 - Hierarchy structure of memory.

Point of view:

- Domain point of view. How to solve the problem using parallel programming (structure).
- Logic point of view. How to use the threads and the calculation to obtain the correct result.
- Hardware point of view. How to use the hardware to deliver a high performance implementation.

Kernel Code

- key component
- · Runs on the GPU
- The sequential code executed by each thread

• Flow of a CUDA program:

- 1. Copy data from CPU to GPU (cudaMemcpyHostToDevice)
- 2. Invoke Kernels to operate over the GPU data (asynchronous call)
- 3. Copy data back from GPU to CPU (cudaMemcpyDeviceToHost)

- Copy data from CPU to GPU
 - Allocate space

```
cudaError t cudaMalloc ( void** devPtr, size t size )
```

Transfer data

```
cudaError_t cudaMemcpy ( void* dst, const void* src,
size t count, cudaMemcpyKind kind )
```

cudaMemcpyHostToDevice cudaMemcpyDeviceToHost

- Invoke Kernels to operate over the GPU data (asynchronous call)
- Think about adding 2 vectors together:
 - \cdot Ai + Bi = Ci
 - How do you divide the number of threads?
 - What changes if you have a 2D array instead?
 - What changes if the solution requires synchronization between certain threads?

- Invoke Kernels to operate over the GPU data (asynchronous call)
- Organizing threads
 - Threads Per Block (threadBlock)
 - threadIdx.x, threadIdx.y, threadIdx.z
 - blockDim.x, blockDim.y, blockDim.z (measured in threads)
 - Blocks in a Grid (grid)
 - blockIdx.x, blockIdx.y, blockIdx.z
 - gridDim.x, gridDim.y, gridDim.z (measured in blocks)

- How to define the threadBlocks and gridSize?
 - Consider the nature of the problem
 - Consider the nature of the GPU architecture
 - Use dim3

```
dim3 block(3);
dim3 grid((nElem+block.x-1)/block.x);
```


GridSize is rounded up of multiple of blocks, this based on the parallel architecture of the GPU

• Invocation of the CUDA kernel from host will have triple-angle-brackets:

```
kernel_name <<<grid, block>>>(argument list);
```

• grid*block is the total number of threads launched for the kernel.

```
kernel_name<<<4096, 256>>> (argument list);

gridDim.x = 4096

threadIdx.x threadIdx.x threadIdx.x
0 1 2 3 ... 255 0 1 2 3 ... 255 ... 0 1 2 3 ... 255

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 4095

index = blockIdx.x * blockDim.x + threadIdx.x
```

How many threads in total?

```
kernel_name<<<4096, 256>>> (argument list);

gridDim.x = 4096

threadIdx.x threadIdx.x threadIdx.x
0 1 2 3 ... 255 0 1 2 3 ... 255 ... 0 1 2 3 ... 255

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 4095

index = blockIdx.x * blockDim.x + threadIdx.x
```

```
kernel name < < < 4096, 256 >>> (argument list);
                          gridDim.x = 4096
    threadIdx.x
                  threadIdx.x
                                 threadIdx.x
                                                    threadIdx.x
                                                           ... 255
  blockIdx.x = 0
                blockIdx.x = 1
                                blockIdx.x = 2
                                                  blockIdx.x = 4095
         index = blockIdx.x * blockDim.x + threadIdx.x
         index = (2) * (256) + (3)
                                                  = 515
```

- Writing kernels:
 - Global qualifier (Executed on the device, Callable from the host only)

```
__global__ void kernel_name(argument list);
```

• Device qualifier (Executed on the device Callable from the device only)

```
device called from the device.
```

- Some restrictions:
 - Use only device memory (pointers to GPU RAM)
 - return void
 - no support for variable number of parameters
 - It has asynchronous behavior.

Matrix Multiply

```
int main(int argC, char** argV)
     float *a, *b, *c, *test;
    //Setting matrix parameters.
    int row = ROW;
     int col = COL;
    int k = COL;
    //Setting host memory space.
    a = (float *) malloc(row*k*sizeof(float));
    b = (float *) malloc(k*col*sizeof(float));
    c = (float *) malloc(row*col*sizeof(float));
    test = (float *) malloc(row*col*sizeof(float));
   //Initializing [A] and [B] with random values from 1 to 10.
    for(int i=0; i<row; i++){
          for(int j=0; j<k; j++){
               a[i*k+j] = rand()%10;
    for(int i=0; i<k; i++){
          for(int j=0; j<col; j++){
               b[i*col+j] = rand()%10;
    //Performing sequential job.
    wallS0 = getWallTime();
    for(int i=0; i<row; i++){
          for(int j=0; j<col; j++){
               sum = 0;
               for(int w=0; w<k; w++){
                    sum += a[i*k+w]*b[w*col+i];
               test[i*col+j]=sum;
    wallS1 = getWallTime();
    printf("Sequential Job Time: %f ms\n", (wallS1-wallS0)*1000);
```

• GridSize roundup based on the elements on C

```
void matrixMultiplication(float *a, float *b, float *c, int row, int col, int k)
    int sizeA = row*k*sizeof(float);
    int sizeB = k*col*sizeof(float);
    int sizeC = row*col*sizeof(float);
    float *devA, *devB, *devC;
    cudaMalloc((void**)&devA, sizeA);
                                      Allocation on the GPU
    cudaMalloc((void**)&devB, sizeB);
    cudaMalloc((void**)&devC, sizeC);
    cudaMemcpy(devA, a, sizeA, cudaMemcpyHostToDevice);
                                                            Transfer Data CPU to GPU
    cudaMemcpy(devB, b, sizeB, cudaMemcpyHostToDevice);
    dim3 dimBlock(16, 16, 1);
    dim3 dimGrid((COL+dimBlock.x-1)/dimBlock.x, (ROW+dimBlock.y-1)/dimBlock.y, 1);
    matrixMulKernel<<<dimGrid, dimBlock>>>(devA, devB, devC, row, col, k); Kernel\ Call
    cudaMemcpy(c, devC, sizeC, cudaMemcpyDeviceToHost); Transfer back to CPU
    //Freeing device matrices.
    cudaFree(devA); cudaFree(devB); cudaFree(devC);
```

```
__global__ void matrixMulKernel( float *devA, float *devB, float *devC, int row, int col, int k){

int txID = blockIdx.x * blockDim.x + threadIdx.x;
int tyID = blockIdx.y * blockDim.y + threadIdx.y;

if ((txID < col) && (tyID < row))
{

float Pvalue = 0;
for(int w=0; w<k; w++)
{
    Pvalue += devA[tyID*k+w] * devB[w*k+txID];
}
devC[tyID*k+txID] = Pvalue;
}
}
```

Compilation process

all:

nvcc matrixMul.cu -o matrixMul

Execution

./matrixMul

Sequential Job Time: 588.227987 ms

Parallel Job Time: 108.647108 ms

GPU Architecture Basics

Why Do we need to learn about the GPU architecture and the CUDA execution model?

Why Do we need to learn about the GPU architecture and the CUDA execution model?

- Understand why the selected configuration outperforms others.
- Find a guideline to choose grid/block configuration

NVIDIA GPUs Roadmap

- Streaming Multiprocessor
- Kepler
 Architecture –
 Streaming
 Multiprocessor
 Extreme (SMX)

- Scalable array of Streaming Multiprocessors
 - CUDA Cores
 - · Shared Memory
 - Register File
 - Load/Store Units
 - Special Function Units
 - · Warp Scheduler

- Each SM is designed to support the execution of hundreds of threads.
- Multiple SMs per GPU
- Kepler K40
 - 15 Multiprocessors
 - 192 CUDA cores per SM
 - Number of Cores of processors: 2880

- CUDA deviceQuery in sample Utilities:
 - cp /shared/apps/cuda7.0/samples/1_Utilities/deviceQuery

/home/<user>/ -r

- · cd deviceQuery
- make
- ./deviceQuery

```
Device 0: "Tesla K40c"
 CUDA Driver Version / Runtime Version
                                                 7.5 / 7.5
 CUDA Capability Major/Minor version number:
                                                 12288 MBytes (12884705280 bytes)
 Total amount of global memory:
 (15) Multiprocessors, (192) CUDA Cores/MP:
                                                 2880 CUDA Cores
 GPU Max Clock rate:
                                                 876 MHz (0.88 GHz)
 Memory Clock rate:
                                                 3004 Mhz
 Memory Bus Width:
                                                 384-bit
 L2 Cache Size:
                                                 1572864 bytes
 Maximum Texture Dimension Size (x,y,z)
                                                 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
 Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
 Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
 Total amount of constant memory:
                                                 65536 bytes
 Total amount of shared memory per block:
                                                 49152 bytes
 Total number of registers available per block: 65536
 Warp size:
 Maximum number of threads per multiprocessor:
                                                2048
 Maximum number of threads per block:
                                                 1024
 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
                                    (x,y,z): (2147483647, 65535, 65535)
 Max dimension size of a grid size
 Maximum memory pitch:
                                                 2147483647 bytes
 Texture alignment:
                                                 512 bytes
 Concurrent copy and kernel execution:
                                                 Yes with 2 copy engine(s)
 Run time limit on kernels:
 Integrated GPU sharing Host Memory:
                                                No
 Support host page-locked memory mapping:
                                                 Yes
                                                 Yes
 Alignment requirement for Surfaces:
 Device has ECC support:
                                                 Disabled
 Device supports Unified Addressing (UVA):
 Device PCI Domain ID / Bus ID / location ID:
                                                0 / 2 / 0
 Compute Mode:
    < Default (multiple host threads can use ::cudaSetDevice() with device simultaneouslv) >
```

- Kepler K20
 - 13 SMX
 - Enhanced SM (SMX)
 - Dynamic Parallelism
 - Hyper-Q
 - Faster atomic operations than previous generation

Tesla K40/K20

Click to open expanded view

NVIDIA Tesla K20 Graphic Card - 706 MHz Core - 5 GB GDDR5 SDRAM - PCI Express 2.0 x16 900-22081-2220-000

by NVIDIA

↑ 1 customer review

Price: \$2,500.00 + \$11.99 shipping

Note: Not eligible for Amazon Prime.

Only 3 left in stock.

Estimated Delivery Date: Sept. 19 - 22 when you choose Expedited Shipping at checkout.

Ships from and sold by Compeve.

Estimate: \$59.00

What's included

- Removal of existing graphics card from desktop
- Installation of one customer-supplied graphics card
- Installing new drivers

See more

- Bus_Width 320 bit
- Chipset_Manufacturer NVIDIA
- Chipset Model K20
- · Chipset Line Tesla

• Dynamic Parallelism: We will talk about this in a future session.

- Each SMX contains:
 - 192 CUDA cores
 - 64 double-precision units
 - 32 special function units (SFU)
 - 32 Load/Store (LD/ST)

Kepler Architecture - SMX

- 4 warp schedulers
 - Enabling 4 warps to be issued and execute at the same time
- Each SM can issue a maximum of 64 warps (e.g. a total threads = 64 * 32 = 2048 threads resident at the same time)

- When a kernel Grid is launched:
 - Thread-blocks are divided among the SMs for execution.
 - Threads on the same blocks will be executed simultaneously (logically speaking).
 - Multiple blocks could be assigned to the same SM but that doesn't mean they will be executed simultaneously, it will depend on the available resources.

• Instruction on the single thread are pipelined to leverage Instruction Level Parallelism (ILP). In addition to the thread level parallelism

Sequential Execution	Instruction-Level Parallelism
1. a = 10 + 5	1.A. a = 10 + 5
2. b = 12 + 7	1.B. b = 12 + 7
3. c = a + b	2. c = a + b
Instructions: 3	Instructions: 3
Cycles: 3	Cycles: 2 (-33%)

- CUDA uses Single Instruction Multiple Thread (SIMT)
 - · Threads will be grouped into **Warp** sizes (32 threads per warp)
 - · All threads in a warp execute the same instruction at the same time
- Each SM will partition the blocks into warps and then schedule them for execution depending on available hardware resources.
- It is possible that threads on the same warp could have different behavior.

- SIMT (Single Instruction Multiple Thread) offers:
 - Each thread has its own instruction address counter.
 - Each thread has it own register state.
 - Each thread can have an independent execution path.

Logical and Physical View:

- Logically all thread in a block run simultaneously, physically they **MIGHT NOT!**
- We have the ability to synchronize threads inside the block to ensure consistent access to shared resources (such as shared memory).
- THERE IS NO explicit inter-block synchronization

- Number of active warps will be limited by physical resources.
- if a warp is idle for any reason, SM is free to schedule another warp (from any thread-block that exist already on the SM).

- Warp → it's the basic unit of execution
- Each thread in a warp must executed the same instruction.

- Blocks can be 3D (x, y, and z dimension). However from the hardware point of view, we can see the threads as one dimension.
- Threads are grouped into warps based on the built-in variable threadIdx
 - E.g. blocks of 128 threads will be partition on 4 warps as follow:

```
Warp 0: thread 0, thread 1, thread 2, ... thread 31 Warp 1: thread 32, thread 33, thread 34, ... thread 63 Warp 3: thread 64, thread 65, thread 66, ... thread 95 Warp 4: thread 96, thread 97, thread 98, ... thread 127
```

- Not taking warp size into account can lead to misuse
 - If your block has a certain number of threads which is not a multiple of the warp size, then threads on a warp will be wasted.
 - E. g. a threadBlock of 80 threads.

3 warps: 32 x 3 hardware threads

Warp Divergence

- All threads on a warp MUST execute the same instruction.
- What happen when there is a branch behavior?

CPU

It has complex hardware to specifically handle branch prediction

```
if (cond) {
    ...
} else {
    ...
}
```

GPU

No complex branch prediction. Stalling of threads in a warp

Warp Divergence

- Avoid branch divergence!
- Stalling threads is never a good thing
- Only threads on the same warp can decrease performance by divergence

- Resources on a local context:
 - Program Counters
 - Registers
 - · Shared Memory

NOTE: If there is not enough resources for at least one block then the launch of the kernel will fail

Registers per SM

Kepler: 64K

Fermi: 32K

More threads with fewer registers per thread

Fewer threads with more registers per thread

- <u>Active block</u>: when resources such as registers and shared memory have been allocated to it.
- <u>Active warp</u>: warps that belong to the active blocks
 - Selected warp. Warp that is actively executing
 - Eligible warp. Warp that is ready for execution but is not currently executing.
 - Stalled warp. Warp that is not ready for execution.

Profiling Tools

• Why do we use GPUs?

- Why do we use GPUs?
 - Performance

- Why do we use GPUs?
 - Performance
- How do we measure performance?

- Why do we use GPUs?
 - Performance
- How do we measure performance?
 - Best way: use event handlers provided by CUDA.

CUDA Events

- How do we measure time with CUDA?
- Variables:

```
//Time variables
    cudaEvent_t start, stop;
    float time;
    cudaEventCreate(&start);
    cudaEventCreate(&stop);
```

• Measure your time performance:

Second parameter associated to stream, usually stream 0

```
cudaEventRecord(start, 0);
// Put your code here.... (Kernel call)
    cudaEventRecord(stop, 0);
    cudaEventSynchronize(stop); // Wait for
event to happen
//Display time
    cudaEventElapsedTime(&time, start, stop);
    printf("Parallel Job time: %.2f ms", time);
```

Cuda Events Example

```
//create events
cudaEvent t event1, event2;
cudaEventCreate(&event1);
cudaEventCreate(&event2);
//record events around kernel launch
cudaEventRecord(event1, 0); //where 0 is the default stream
kernel<<<grid,block>>>(...); //also using the default stream
cudaEventRecord(event2, 0);
//synchronize
cudaEventSynchronize(event1); //optional
cudaEventSynchronize(event2); //wait for the event to be executed!
//calculate time
float dt_ms;
cudaEventElapsedTime(&dt ms, event1, event2);
```

• Now that we can measure performance, what if our code is taking too long?

- Now that we can measure performance, what if our code is taking too long?
- How can we improve our code?

- Now that we can measure performance, what if our code is taking too long?
- How can we improve our code?
- Any guideline?

- Now that we can measure performance, what if our code is taking too long?
- How can we improve our code?
- Any guideline?
 - Use profiling tools

- Command line profiler
 - Compute time in each kernel
 - Compute memory transfer time
 - Collect metrics and events
 - Support complex process hierarchy's
 - Collect profiles for NVIDIA Visual Profiler
 - No need to recompile

• Compile binary with some information so nvprof / nvvp can track line numbers

nvcc -lineinfo \${your flags and files, etc}

- Instructions:
- 1. Collect profile information for the program by running
 - 1. nvprof./exec
- 2. View available metrics
 - 1. nvprof --query-metrics
- 3. View global load/store efficiency
 - 1. nvprof -metrics gld_efficiency,gst_efficiency ./exec
- 4. Store a timeline to load in NVVP
 - 1. nvprof -o profile.timeline ./exec
- 5. Store analysis metrics to load in NVVP
 - 1. nvprof –o profile.metrics –analysis-metrics ./exec

- Instructions:
- 1. Collect profile information for the program by running
 - 1. nvprof./exec
- 2. View available metrics
 - 1. nvprof --query-metrics
- 3. View global load/store efficiency
 - 1. nvprof -metrics gld_efficiency,gst_efficiency ./exec
- 4. Store a timeline to load in NVVP
 - 1. nvprof -o profile.timeline ./exec
- 5. Store analysis metrics to load in NVVF
 - 1. nvprof –o profile.metrics –analysis-metrics ./exec

Timeline of CUDA runtime calls, kernel execution times, etc.

Basically no run time overhead

Detailed performance data from each kernel execution. Large run time overhead

NVVP

Example

NVVP

- Instructions
- Import nvprof profile into NVVP
 - · Launch nvvp
 - Click file/ import/ nvprof/ next/ single process/ next /browse
 - Select profile.timeline
 - Add metrics to timeline
 - · Click on 2nd browse
 - Select profile.metrics
 - Click finish
- Expore timeline
 - Control + mouse drag in timeline to zoom in
 - Control + mouse drag in measure bar (on top) to measure time

Takeaways

- How to get close to peak performance?
 - Potential for floating point performance on GPUs is huge
 - Integers less so
 - Difficult to achieve!
 - Use memories efficiently:
 - Avoid unnecessary data transfers
 - Keep data being accessed often close to the processing elements
 - Use registers and shared memory
 - Avoid control flow divergence
 - Very few if statements

Takeaways

- Writing a CUDA kernel is becoming easier, but getting good performance is not.
- Know the tools you have available. Profiling is key to performance
- Fitting your application to the GPU memory hierarchy is critical for performance
- Resources are not infinite, optimization without thinking about the available resources could adversely affect performance.