1) Which of the following typing statement is true / false, explain why?

a) $\{f: [T2 \rightarrow T3], g: [T1 \rightarrow T2], a: Number\} \vdash (f(ga)): T3$

answer: false, because g get a T1 type and T1 not necessary to be type of number (t1 can be a Boolean or string or ...) because that it not true (or it not a legal type function)

*note:(we can assume that 1 is true if and only if T1 was type of number)

b) $\{x : T1, y : T2, f : [T2 \rightarrow T1]\} \vdash (f x) : T1$

Answer: false, because function f get a T2 and x is a type T1 because that we gets an error for that (f x):T1 is not true (if we put y instead of x the (f x):T1 was true)

c) $\{f : [T1 \rightarrow T2], x : T1\} \vdash ((lambda () (f x))) : T2\}$

Answer: it is false ,the body of the lambda is true because x is a T1 type and f get a T1 and return a T2 for that (f x) is true but the lambda it is a function that get something and return something (in another words lambda look like this [T1->T2]) but in the Question lambda it is a T2 type (that the type of what it returned),but it has to be a any->T2 type for that Folse

d) $\{f: [T1 \times T2 \rightarrow T3], y: T2\} \vdash (lambda(x)(fxy)): [T1 \rightarrow T3]$

Answer: true ,because if lambda is called with T1 it will return T3 (we don't need to have any assumption about the type of x in the TEnv on the left side because x is not a free variable type of the bound variable can be inferred through type inference)

2) Perform type inference manually on the following expressions, using the Type Equations method. List all the steps of the procedure:

• ((lambda (f x1) (f 1 x1)) + #t)

Stage I: Rename bound variables

((lambda (f x1)(f 1 x1)) + #t) turn to ((lambda (f x)(f 1 x)) + #t)

Stage II: Assign type variables for every sub expression:

Expression	Variable
((lambda (f x)(f 1 x)) + #t)	T_0
(lambda(f x)(f 1 x))	T_1
(f 1 x)	T_2
f	T_f
1	T_{1-num}
x	T_{x}
+	T_{+}
#t	$T_{\#t}$

Stage III: Construct type equations.

The equations for the sub-expressions are:

Expression	Equation
((lambda (f x)(f 1 x)) + #t)	$T_1 \coloneqq [T_+ * T_{\#t} \to T_0]$
(lambda(f x)(f 1 x))	$T_1 \coloneqq [T_f * T_{\mathcal{X}} \to T_2]$
(f 1 x)	$T_f \coloneqq [T_{1-num} * T_x \to T_2]$

The equations for the primitives are:

Expression	Equation
+	$T_{+} \coloneqq [Number * Number \\ \rightarrow Number]$
#t	Boolean
1	Number

Stage IV: Solve the equations:

Equation	Substitution	
$T_1 := [T_+ * T_{\#t} \to T_0]$	{}	
$T_1 \coloneqq [T_f * T_x \to T_2]$		
$T_f \coloneqq [T_{1-num} * T_x \to T_2]$		
$T_{+} \coloneqq [Number * Number]$		
$\rightarrow Number$]		
$T_{\#t} = Boolean$		
$T_{1-num} = Number$		

Step 1:

$$T_1 := [T_+ * T_{\#t} \to T_0]$$
°Substitution = $(T_1 := [T_+ * T_{\#t} \to T_0])$

1 [1+ 1+1 10] Substituti	
Equation	Substitution
$T_1 \coloneqq [T_f * T_x \to T_2]$	$T_1 \coloneqq [T_+ * T_{\#t} \to T_0]$
$T_f \coloneqq [T_{1-num} * T_x \to T_2]$	
$T_{+} \coloneqq [Number * Number]$	
$\rightarrow Number$	
$T_{\#t} = Boolean$	
$T_{1-num} = Number$	

Step 2:

T1 = $[T_f * T_x \to T_2]$ O Substitution = $([T_+ * T_{\#t} \to T_0] = [T_f * T_x \to T_2])$ There is not type-sub since both sides of the equation are composite we split it into three equations and remove equation $T_1 := [T_f * T_{1-num} * T_x \to T_1]$.

Equation	Substitution
$T_f \coloneqq [T_{1-num} * T_x \to T_2]$	$T_1 \coloneqq [T_+ * T_{\#t} \to T_0]$
$T_{+} \coloneqq [Number * Number]$	
\rightarrow Number]	
$T_{\#t} = Boolean$	
$T_{1-num} = Number$	
$T_f = T_+$	
$T_x = T_{\#t}$	
$T_2 = T_0$	

Step 3:

 $(T_f = [T_{1-num} * T_x \to T_2])$ o Substitution = $(T_f = [T_{1-num} * T_x \to T_2])$. Substitution = Substitution o $(T_f = [T_{1-num} * T_x \to T_2])$.

Equation	Substitution
$T_+ \coloneqq [Number * Number]$	$T_1 \coloneqq [T_+ * T_{\#t} \to T_0]$
$\rightarrow Number$	
$T_{\#t} = Boolean$	$T_f \coloneqq [T_{1-num} * T_x \to T_2]$
$T_x = Number$	
$T_f = T_+$	
$T_{1-num} = T_{\#t}$	
$T_2 = T_0$	

Step 4:

(

 $T_+ \coloneqq [Number * Number \rightarrow Number]) \circ Substitution = ($

 $T_+ \coloneqq [Number * Number \to Number]$). Substitution = Substitution \circ (

 $T_{+} \coloneqq [Number * Number \rightarrow Number])$

Equation	Substitution
$T_{\#t} = Boolean$	$ T_1 \coloneqq [[Number * Number \rightarrow Number] * T_{\#t} $ $ \rightarrow T_0] $
$T_{1-num} = Number$	$T_f \coloneqq [T_{1-num} * T_x \to T_2]$
$T_f = T_+$	$T_+ \coloneqq [Number * Number \rightarrow Number]$
$T_{x} = T_{\#t}$	
$T_2 = T_0$	

Step 5:

 $(T_{\#t} = Boolean) \circ Substitution = (T_{\#t} = Boolean)$, is a type-sub. Substitution = Substitution \circ $(T_{\#t} = Boolean)$.

Equation	Substitution
$T_{1-num} = Number$	$T_1 \coloneqq [[Number * Number \to Number] * Boolean \to T_0]$
$T_f = T_+$	$T_f \coloneqq [T_{1-num} * T_x \to T_2]$
$T_x = T_{\#t}$	$T_+ \coloneqq [Number * Number \rightarrow Number]$
$T_2 = T_0$	$T_{\#t} = Boolean$

Step 6:

 $(T_{1-num} = Number) \circ \text{Substitution} = (T_{1-num} = Number)$, is a type-sub. Substitution = Substitution $\circ (T_{1-num} = Number)$.

Equation	Substitution
$T_f = T_+$	$T_1 \coloneqq [[Number * Number \to Number] * Boolean \to T_0]$
$T_{x} = T_{\#t}$	$T_f \coloneqq [Number * T_x \to T_2]$
$T_2 = T_0$	$T_{+} \coloneqq [Number * Number \rightarrow Number]$
	$T_{\#t} = Boolean$
	$T_{1-num} = Number$

Step 7

 $(T_f = T_+) \circ \text{Substitution} = ([Number * T_x \to T_2] = [Number * Number \to Number])$ There is no a sub-type. We split the equation into three equations Tx = Number T2 = Number and

Number=Number(and there is from the same type for that we don't put it in the equation) , we remove the $T_f=T_\pm$

Equation	Substitution
$T_{x} = T_{\#t}$	$T_1 \coloneqq [[Number * Number \to Number] * Boolean \to T_0]$
$T_2 = T_0$	$T_f \coloneqq [Number * T_x \to T_2]$
$T_x = Number$	$T_{+} \coloneqq [Number * Number \rightarrow Number]$
$T_2 = Number$	$T_{\#t} = Boolean$
	$T_{1-num} = Number$

Step 8:

 $(T_x = T_{\#t}) \circ \text{Substitution} = T_x = Boolean$, is a is a type-sub. Substitution = Substitution $\circ (T_x = Boolean)$.

Equation	Substitution
$T_2 = T_0$	$T_1 := [[Number * Number \rightarrow Number] * Boolean \rightarrow T_0]$
$T_x = Number$	$T_f \coloneqq [Number * T_x \to T_2]$
$T_2 = Number$	$T_{+} \coloneqq [Number * Number \rightarrow Number]$
$T_{x} = Boolean$	$T_{\#t} = Boolean$
	$T_{1-num} = Number$

Step 9:

 $T_2 = T_0 \circ \text{Substitution} = (T_2 = T_0)$, type-sub. Substitution = Substitution $\circ (T_2 = T_0)$.

Equation	Substitution
$T_x = Number$	$T_1 := [[Number * Number \rightarrow Number] * Boolean \rightarrow T_0]$
$T_2 = Number$	$T_f \coloneqq [Number * T_x \to T_0]$
$T_x = Boolean$	$T_{+} \coloneqq [Number * Number \rightarrow Number]$
	$T_{\#t} \coloneqq Boolean$
	$T_{1-num} \coloneqq Number$
	$T_2 \coloneqq T_0$

Step 10:

 $(T_x = \text{Number}) \circ \text{Substitution} = (\text{Number} = \text{Number})$ always true.

Equation	Substitution
$T_2 = Number$	$T_1 := [[Number * Number \rightarrow Number] * Boolean \rightarrow T_0]$
$T_x = Boolean$	$T_f \coloneqq [Number * Number \rightarrow T_0]$
	$T_+ \coloneqq [Number * Number \rightarrow Number]$
	$T_{\#t} \coloneqq Boolean$
	$T_{1-num} \coloneqq Number$
	$T_2 \coloneqq T_0$
	$T_x = Number$

Step 11

 $(T_2 = \text{Number}) \circ \text{Substitution} = (T_0 = \text{Number})$, type-sub. Substitution = Substitution $\circ (T_0 = \text{Number})$.

Equation	Substitution
$T_x = Boolean$	$T_1 \coloneqq [[Number*Number \to Number]*Boolean \\ \to Number]$
	$T_f \coloneqq [Number * Number \rightarrow Number]$
	$T_{+} \coloneqq [Number * Number \rightarrow Number]$
	$T_{\#t} \coloneqq Boolean$
	$T_{1-num} \coloneqq Number$
	$T_2 \coloneqq Number$
	$T_x \coloneqq Number$
	$T_0 \coloneqq Numebr$

Step 12:

 $T_x = Boolean$ O Substitution=(we know that T_x is Number)Number=Boolean we get an error becouse we say a number equals boolean and they are different types for that we can say the expression not well type(on another words this is wrong)

• ((lambda (f1 x1) (f1 x1 1)) + *)

Stage I: Rename bound variables ((lambda (f x 1)(f x 1)) + *) turn to ((lambda (f x)(f x 1)) + *)

Stage II: Assign type variables for every sub expression:

Expression	Variable	
((lambda (f x)(f x 1)) + *)	T_0	
(lambda(f x)(f x 1))	T_1	
(f x 1)	T_2	
f	T_f	
1	T_{1-num}	
х	T_x	
+	T_{+}	
*	T_*	

Stage III: Construct type equations.

The equations for the sub-expressions are:

Expression	Equation
((lambda (f x)(f x 1)) + *)	$T_1 \coloneqq [T_+ * T_* \to T_0]$
(lambda(f x)(f x 1))	$T_1 \coloneqq [T_f * T_x \to T_2]$
(f x 1)	$T_f \coloneqq [T_x * T_{1-num} \to T_2]$

The equations for the primitives are:

Expression	Equation
+	$T_{+} \coloneqq [Number * Number \rightarrow Number]$
*	$T_* \coloneqq [Number * Number \rightarrow Number]$
1	Number

Stage IV: Solve the equations:

Equation	Substitution
$T_1 \coloneqq [T_+ * T_* \to T_0]$	{}
$T_1 \coloneqq [T_f * T_x \to T_2]$	
$T_f \coloneqq [T_x * T_{1-num} \to T_2]$	
$T_{+} \coloneqq [Number * Number \rightarrow Number]$	
$T_* = [Number * Number \rightarrow Number]$	

$T_{1-num} = Number$	

Step 1:

 $T_1 := [T_+ * T_* \to T_0]$ °Substitution = $(T_1 := [T_+ * T_* \to T_0])$

Equation	Substitution
$T_1 \coloneqq [T_f * T_x \to T_2]$	$T_1 \coloneqq [T_+ * T_* \to T_0]$
$T_f \coloneqq [T_x * T_{1-num} \to T_2]$	
$T_{+} \coloneqq [Number * Number \rightarrow Number]$	
$T_* = [Number * Number \rightarrow Number]$	
$T_{1-num} = Number$	

Step 2:

T1 = $[T_f * T_x \to T_2]$ \circ Substitution = $([T_+ * T_* \to T_0] = [T_f * T_x \to T_2])$ There is not type-sub since both sides of the equation are composite we split it into three equations and remove equation $T_1 := [T_f * T_x \to T_1]$.

Equation	Substitution
$T_f \coloneqq [T_x * T_{1-num} \to T_2]$	$T_1 \coloneqq [T_+ * T_* \to T_0]$
$T_{+} \coloneqq [Number * Number \rightarrow Number]$	
$T_* = [Number * Number \rightarrow Number]$	
$T_{1-num} = Number$	
$T_f = T_+$	
$T_{\chi} = T_{*}$	
$T_2 = T_0$	

Step 3:

 $(T_f = [T_x * T_{1-num} \rightarrow T_2]) \circ \text{Substitution} = (T_f = [T_x * T_{1-num} \rightarrow T_2]).$ Substitution = Substitution $\circ (T_f = [T_x * T_{1-num} \rightarrow T_2]).$

Equation	Substitution
$T_{+} \coloneqq [Number * Number \rightarrow Number]$	$T_1 \coloneqq [T_+ * T_* \to T_0]$
$T_* = [Number * Number \rightarrow Number]$	$T_f \coloneqq [T_x * T_{1-num} \to T_2]$
$T_{1-num} = Number$	
$T_f = T_+$	
$T_x = T_*$	
$T_2 = T_0$	

Step 4:

(

$$T_{+} := [Number * Number \rightarrow Number]) \circ Substitution = ($$

 $T_+ \coloneqq [Number * Number \rightarrow Number]$). Substitution = Substitution \circ (

 $T_+ \coloneqq [Number * Number \rightarrow Number])$

Equation	Substitution
$T_* = [Number * Number \rightarrow Number]$	$T_1 \coloneqq [[Number * Number \to Number] * T_* \to T_0]$
$T_{1-num} = Number$	$T_f \coloneqq [T_x * T_{1-num} \to T_2]$
$T_f = T_+$	$T_+ \coloneqq [Number * Number \to Number]$
$T_x = T_*$	

T = T	
$I_2 = I_0$	
- Z - 1 ()	

Step 5:

 $T_* \coloneqq [Number * Number \rightarrow Number]) \circ Substitution = ($

 $T_* := [Number * Number \rightarrow Number]$). Substitution = Substitution \circ (

 $T_* \coloneqq [Number * Number \rightarrow Number])$

Equation	Substitution
$T_{1-num} = Number$	$T_1 \coloneqq [[Number * Number \rightarrow Number] * [Number * Number]$
	$\rightarrow Number]) \rightarrow T_0]$
$T_f = T_+$	$T_f \coloneqq [T_x * T_{1-num} \to T_2]$
$T_{\chi} = T_{*}$	$T_{+} \coloneqq [Number * Number \to Number]$
$T_2 = T_0$	$T_* \coloneqq [Number * Number \rightarrow Number])$

Step 6:

 $(T_{1-num} = Number) \circ \text{Substitution} = (T_{1-num} = Number)$, is a type-sub. Substitution = Substitution $\circ (T_{1-num} = Number)$.

Equation	Substitution
$T_f = T_+$	$T_1 := [[Number * Number \rightarrow Number] * [Number * Number]$
	$\rightarrow Number] \rightarrow T_0]$
$T_{\chi} = T_*$	$T_f \coloneqq [T_x * Number \rightarrow T_2]$
$T_2 = T_0$	$T_{+} \coloneqq [Number * Number \rightarrow Number]$
_	$T_* \coloneqq [Number * Number \rightarrow Number])$
	$T_{1-num} = Number$

Step 7:

 $(T_f=T_+)$ o Substitution = ([$Number*T_x \to T_2$]=[$Number*Number \to Number$]) There is no a sub-type. We split the equation into three equations Tx = Number T2 = Number and Number=Number (we pass it because it allows true), we remove the $T_f=T_+$

Equation	Substitution
$T_{\chi} = T_*$	$T_1 \coloneqq [[Number * Number \rightarrow Number] * [Number * Number] \rightarrow Number] \rightarrow T_0]$
$T_2 = T_0$	$T_f \coloneqq [T_x * Number \to T_2]$
$T_x = Number$	$T_{+} \coloneqq [Number * Number \rightarrow Number]$
$T_2 = Number$	$T_* \coloneqq [Number * Number \rightarrow Number])$
	$T_{1-num} = Number$

Step 8:

 $(T_x = T_*) \circ \text{Substitution} = (T_x = [Number * Number \rightarrow Number]) \circ \text{Substitution} = \text{Substitution} \circ (T_x = [Number * Number \rightarrow Number])$

Equation	Substitution
$T_2 = T_0$	$T_1 \coloneqq [[Number * Number \rightarrow Number] * [Number * Number]$
2 0	$\rightarrow Number] \rightarrow T_0$
$T_x = Number$	$T_f \coloneqq [Number * Number \rightarrow Number] * Number \rightarrow T_2]$
$T_2 = Number$	$T_{+} \coloneqq [Number * Number \rightarrow Number]$
	$T_* \coloneqq [Number * Number \rightarrow Number])$
	$T_{1-num} \coloneqq Number$
	$T_x \coloneqq [Number * Number \rightarrow Number]$

Step 9:

 $T_2 = T_0 \circ \text{Substitution} = (T_2 = T_0)$, type-sub. Substitution = Substitution $\circ (T_2 = T_0)$.

Equation	Substitution
$T_{x} = Number$	$T_1 \coloneqq [[Number * Number] * [Number * Number] \\ \rightarrow Number] \rightarrow T_0]$
$T_2 = Number$	$T_f := [Number * Number \rightarrow Number] * Number \rightarrow T_0]$
	$T_{+} \coloneqq [Number * Number \rightarrow Number]$
	$T_* \coloneqq [Number * Number \rightarrow Number])$
	$T_{1-num} \coloneqq Number$
	$T_x \coloneqq [Number * Number \rightarrow Number]$
	$T_2 \coloneqq T_0$

Step 10:

 $T_x = Number \circ Substitution = Number = [Number*Number-> Number]$ we get an error becouse we say a number equals a function T_x and they are different types for that we can say the expression not well type(on another words this is wrong)

Q3:

Write the Typing rule of:

3.1:

1. Typing rule set!:

2. Typing rule literal: I wrote the answer in to different ways one is specific and the other general

```
    For every: type environment _Tenv, symbol expression _symb1 compound sexp _sexp1 number expression _num boolean expression _bool string expression _str clouser expression _cluser
    _Tenv |- _symb1 : Symbol(_symb1) _Tenv |- _sexp1: Pair _Tenv |- _num: Number _Tenv |- _bool: Boolean _Tenv |- _str: String _Tenv |- _cluser: Cluser
```

2) For every environment _Tenv,
 Value _val1, and type expression _texp1
 If (_Tenv |- _val1:_texp1) then _Tenv |- (quote _val1) : _texp1

3.2.2:

1) Typing rule define-type:

2) Typing rule Type-case:

 $valD_i = > rt$]