Worksheet 2

Kyle Chui

2021-1-13

Problem 1. Let $\{0,1\}^X$ denote the set of functions $X \to 2$ for some set X. Define a function F from $\mathcal{P}(X)$ to $\{0,1\}^X$ by for $A \in \mathcal{P}(X)$, F(A) is the function $X \to \{0,1\}^X$ defined by $F(A)(x) = \begin{cases} 0 & x \in A \\ 1 & x \notin A \end{cases}$.

- (a) List the elements of the set $\{0,1\}^{\{a,b\}}$.
- (b) Let $X = \{a, b, c\}$. Compute $F(\{b, c\})$, $F(\{a\})$, and $F(\{a, b, c\})$. (Remember all the outputs are functions $X \to \{0, 1\}$).
- (c) Again let $X = \{a, b, c\}$. Let $g: X \to \{0, 1\}$ be the function defined by g(a) = 1, g(b) = 1, g(c) = 1. Find a subset A of X so that F(A) = g.
- (d) Show that for any set X the function $F: \mathcal{P}(X) \to \{0,1\}^X$ is a bijection (is injective and surjective).
- (e) Use this bijection to give another proof that if X is a finite set then $|\mathcal{P}(X)| = 2^{|X|}$.
- (a) The elements of the set $\{0,1\}^{\{a,b\}}$ are:

$$\{(a,0),(b,0)\},\{(a,1),(b,0)\},\{(a,0),(b,1)\},\{(a,1),(b,1)\}.$$

(b)

$$F(\{b,c\}) = \{(a,1), (b,0), (c,0)\}$$
$$F(\{a\}) = \{(a,0), (b,1), (c,1)\}$$
$$F(\{a,b,c\}) = \{(a,0), (b,0), (c,0)\}$$

- (c) Because all elements of X map to 1, we know that none of the elements of X are in A. Thus $A = \emptyset$.
- (d) *Proof.* We will first show that F is injective. Let $A \neq B$. Without loss of generality, there exists some $x \in A$ such that $x \notin B$. Because F is a function, every element in the domain must get mapped to something, so either (x,0) or (x,1) is in F(A), but not in F(B). Therefore $F(A) \neq F(B)$ and F is injective.

We will now show that F is surjective. Observe that for every function $f \in \{0,1\}^X$, the set

$$S = \{ x \in X \mid (x, 0) \in f \}$$

maps to f. Thus F is a bijection.

(e) *Proof.* Observe that $\left|\{0,1\}^X\right| = 2^X$, because every element in X can map to one of two elements, 0 or 1. We will show that a bijection between finite sets implies that they are of the same cardinality. \square

Math 61
Worksheet 2
Kyle Chui
Page 2

Problem 2. Let $\mathbb{N}_{>1}$ be the set of natural numbers that are bigger than one. For $i \geq 2$, set $X_i = \{ik \mid k \in \mathbb{N}_{>1}\}$. Describe $\mathbb{N}_{>1} \setminus (\bigcup_{i=2}^{\infty} X_i)$.

Observe that X_2 is the set of all even numbers, X_3 the set of all multiples of three, et cetera. Thus the union of all such sets is $\{x \mid x \text{ is an integer larger than one}\}$. Therefore the indicated set is just the empty set.

Problem 3. Let $f: X \to Y$ be a function. Show that f is onto if and only if for every onto function $g: Y \to Z$ the function $g \circ f$ is onto.

Proof.