

SERIAL-IN PARALLEL-OUT SHIFT REGISTER

The SN54/74LS164 is a high speed 8-Bit Serial-In Parallel-Out Shift Register. Serial data is entered through a 2-Input AND gate synchronous with the LOW to HIGH transition of the clock. The device features an asynchronous Master Reset which clears the register setting all outputs LOW independent of the clock. It utilizes the Schottky diode clamped process to achieve high speeds and is fully compatible with all Motorola TTL products.

- Typical Shift Frequency of 35 MHz
- Asynchronous Master Reset
- · Gated Serial Data Input
- Fully Synchronous Data Transfers
- Input Clamp Diodes Limit High Speed Termination Effects
- ESD > 3500 Volts

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

LOADING (Note a)

PIN NAMES

A, B Data Inputs 0.5 U.L. 0.25 U.L. CP Clock (Active HIGH Going Edge) Input 0.5 U.L. 0.25 U.L. MR Master Reset (Active LOW) Input 0.5 U.L. 0.25 U.L.			HIGH	LOW
	A, B	Data Inputs	0.5 U.L.	0.25 U.L.
MR Master Reset (Active LOW) Input 0.5 U.L. 0.25 U.L.	<u>CP</u>	Clock (Active HIGH Going Edge) Input	0.5 U.L.	0.25 U.L.
	MR	Master Reset (Active LOW) Input	0.5 U.L.	0.25 U.L.
Q_0-Q_7 Outputs (Note b) 10 U.L. 5 (2.5) U.L.	Q_0-Q_7	Outputs (Note b)	10 U.L.	5 (2.5) U.L.

NOTES

- a) 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.
- b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

SN54/74LS164

SERIAL-IN PARALLEL-OUT SHIFT REGISTER

LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 632-08

N SUFFIX PLASTIC CASE 646-06

D SUFFIX SOIC CASE 751A-02

ORDERING INFORMATION

SN54LSXXXJ Ceramic SN74LSXXXN Plastic SN74LSXXXD SOIC

LOGIC SYMBOL

SN54/74LS164

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The LS164 is an edge-triggered 8-bit shift register with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs (A or B); either of these inputs can be used as an active HIGH Enable for data entry through the other input. An unused input must be tied HIGH, or both inputs connected together.

Each LOW-to-HIGH transition on the Clock (CP) input shifts data one place to the right and enters into Q_0 the logical AND of the two data inputs (A•B) that existed before the rising clock edge. A LOW level on the Master Reset (MR) input overrides all other inputs and clears the register asynchronously, forcing all Q outputs LOW.

MODE SELECT — TRUTH TABLE

OPERATING		INPUTS		OUTPUTS		
MODE	MR	Α	В	Q ₀	Q ₁ –Q ₇	
Reset (Clear)	L	Х	Х	L	L-L	
Shift	I I I I	l h h	 h h	L L L I	q ₀ - q ₆ q ₀ - q ₆ q ₀ - q ₆ q ₀ - q ₆	

L (I) = LOW Voltage Levels

H (h) = HIGH Voltage Levels

X = Don't Care

 q_{N} = Lower case letters indicate the state of the referenced input or output one set-up time prior to the LOW to HIGH clock transition.

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ЮН	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

SN54/74LS164

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Test C	onditions
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
\/··	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs	
VIL	Input LOW Voltage	74			0.8			
VIK	Input Clamp Diode Voltage)		-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$	
\/a	Output HIGH Voltage	54	2.5	3.5		V	$V_{CC} = MIN$, $I_{OH} = MAX$, $V_{IN} = V_{IH}$ or V_{IL} per Truth Table	
VOH	Output HIGH Voltage	74	2.7	3.5		V		
Voi	Output LOW Voltage	54, 74		0.25	0.4	V	$I_{OL} = 4.0 \text{ mA}$ $V_{CC} = V_{CC} \text{ MIN},$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table
1	Input HIGH Current				20	μΑ	V _{CC} = MAX, V _{IN}	= 2.7 V
Iн					0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
Iլլ	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V	
los	Short Circuit Current (Note	e 1)	-20		-100	mA	VCC = MAX	
Icc	Power Supply Current				27	mA	V _{CC} = MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $(T_A = 25^{\circ}C)$

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
fMAX	Maximum Clock Frequency	25	36		MHz	
^t PHL	Propagation Delay MR to Output Q		24	36	ns	V _{CC} = 5.0 V C _L = 15 pF
tPLH tPHL	Propagation Delay Clock to Output Q		17 21	27 32	ns	-

AC SETUP REQUIREMENTS $(T_A = 25^{\circ}C)$

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
t _W	CP, MR Pulse Width	20			ns		
t _S	Data Setup Time	15			ns	V 50V	
th	Data Hold Time	5.0			ns	V _{CC} = 5.0 V	
t _{rec}	MR to Clock Recovery Time	20			ns		

SN54/74LS164

AC WAVEFORMS

*The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 1. Clock to Output Delays and Clock Pulse Width

Figure 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time

Figure 3. Data Setup and Hold Times