1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura :

Carrera : Ingeniería Electrónica

Clave de la asignatura :

SATCA¹ 3-2-5

2.- PRESENTACIÓN

Caracterización de la asignatura.

Esta asignatur Esta asignatura aporta al perfil del Ingeniero Electrónico el decodificar e interpretar el lenguaje formal y simbólico, y entender su relación con el lenguaje natural. Desarrollar un método de trabajo y una metodología lógica de solución de problemas. Aplicar los métodos numéricos como una alternativa de solución a problemas reales de ingeniería. Aplicar técnicas de resolución de problemas por computadora.

Intención didáctica.

En la primera unidad se abordan los temas de aproximaciones y errores en sus diferentes variantes. Esto servirá para el manejo y control de los errores aplicados a los diferentes equipos y herramientas de medición analógicos y electrónicos.

En la segunda unidad se aplican diferentes métodos alternativos (numéricos) a la solución analítica para encontrar las raíces de ecuaciones polinomiales, con el objetivo de proporcionar una herramienta adicional a los métodos convencionales.

En la tercera unidad se aplican los sistemas de ecuaciones lineales, no lineales y sus valores característicos en la solución de problemas reales del área de Ingeniería Electrónica.

En la cuarta unidad se utilizan algunos de los métodos de ajustes de curvas para su aplicación a problemas propuestos al área de Ingeniería Electrónica.

En la quinta unidad se da una alternativa numérica de solución a la analítica sobre derivación e integración numérica y problemas propuestos de aplicación al área de Ingeniería

Por último, en la sexta unidad, se da solución a ecuaciones diferenciales ordinarias y parciales y su respectiva aplicación a problemas propuestos del área de Ingeniería Electrónica

¹ Sistema de Asignación y Transferencia de Créditos Académicos

3.- COMPETENCIAS A DESARROLLAR

Competencias específicas:

 Analizar problemas de ingeniería y dar solución a ellos aplicando el (los) método(s) numérico(s) apropiado(s)

Competencias genéricas:

Competencias instrumentales

- Comunicarse en el lenguaje matemático en forma oral y escrita.
- Reconocimiento de conceptos o principios integradores.
 - Manejo de programas computacionales para la resolución de problemas.

Competencias interpersonales

- Capacidad de trabajar en equipo para resolver los problemas planteados en los enunciados de las partes prácticas de las asignaturas.
- Capacidad y habilidad de presentar en público una solución a un problema planteado y mantener un debate con el resto de la clase sobre la solución planteada, para así buscar colaborativamente la mejor solución al problema.
- Adquirir un compromiso ético entre todos los componentes del grupo para el cumplimento de las tareas especificas.
 - Definir un plan de trabajo en el que el volumen del trabajo de todos sea equitativo.

Competencias sistémicas

- Modelar matemáticamente fenómenos y situaciones
- Optimizar soluciones.
- Procesar e interpretar datos.
- Representar e interpretar conceptos en diferentes formas: numérica, geométrica, algebraica, trascendente y verbal.
- Pensamiento lógico, algorítmico, heurístico, analítico y sintético.

 Potenciar las habilidades para el uso de tecnologías de información.
 Resolución de problemas.
 Analizar la factibilidad de las soluciones.
 Toma de decisiones. Argumentar con contundencia y precisión.

4.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Evento
Instituto Tecnológico Superior de Irapuato del 24 al 28 de agosto de 2009.	Representantes de los Institutos Tecnológicos de: Aguascalientes, Apizaco, Cajeme, Celaya, Chapala, Chihuahua, Ciudad Guzmán, Ciudad Juárez, Cosamaloapan, Cuautla, Culiacan, Durango, Ecatepec, Ensenada, Hermosillo, Irapuato, La Laguna, Lázaro Cárdenas, Lerdo, Lerma, Los Mochis, Matamoros, Mérida, Mexicali, Minatitlán, Nuevo Laredo, Orizaba, Piedras Negras, Reynosa, Salina Cruz, Saltillo, Sur De Guanajuato, Tantoyuca, Tijuana, Toluca, Tuxtepec, Veracruz y Xalapa	Reunión Nacional de Diseño e Innovación Curricular para el Desarrollo y Formación de Competencias Profesionales de la Carrera de Ingeniería en Electrónica.
Desarrollo de Programas en Competencias Profesionales por los Institutos Tecnológicos del 1 de septiembre al 15 de diciembre.	Academias de Ingeniería Electrónica de los Institutos Tecnológicos de: Salina Cruz	Elaboración del programa de Estudio propuesto en la Reunión Nacional de Diseño Curricular de la Carrera de Ingeniería Electrónica.
Reunión Nacional de Consolidación del Diseño e Innovación Curricular para la Formación y Desarrollo de Competencias Profesionales del 25 al 29 de enero del 2010 en el Instituto Tecnológico de Mexicali.	Representantes de los Institutos Tecnológicos de: Aguascalientes, Apizaco, Cajeme, Celaya, Chapala, Chihuahua, Ciudad Guzmán, Ciudad Juárez, Cosamaloapan, Cuautla, Durango, Ecatepec, Ensenada, Hermosillo, Irapuato, La Laguna, Lázaro Cárdenas, Lerdo, Lerma, Los Mochis, Matamoros, Mérida, Mexicali, Minatitlán, Nuevo Laredo, Orizaba, Piedras Negras, Reynosa, Salina Cruz, Saltillo, Sur De Guanajuato, Tantoyuca, Toluca, Tuxtepec, Veracruz y Xalapa	Reunión Nacional de Consolidación de los Programas en Competencias Profesionales de la Carrera de Ingeniería Electrónica

5.- OBJETIVO GENERAL DEL CURSO

Analizar problemas de ingeniería y dar solución a ellos aplicando el (los) método(s) numérico(s) apropiado(s)

6.- COMPETENCIAS PREVIAS

- Usar la calculadora de forma óptima
- Realizar análisis y resolución mediante una metodología lógica a la solución de problemas de ingeniería
- Aplicar un lenguaje de programación para la solución de problemas.
- Dominar las disciplinas de cálculo infinitesimal, álgebra lineal, ecuaciones diferenciales y regresión lineal.
- Coordinar, participar y/o dirigir grupos de estudio e investigación

7.- TEMARIO

Unidad	Temas		Subtemas
1.	Análisis de error	1.1.	Aproximaciones
		1.2.	Errores
		1.3.	Aplicaciones a la ingeniería
2.	Solución de ecuaciones	2.1.	Método de intervalos
	algebraicas	2.2.	Métodos Abiertos
		2.3.	Raíz de polinomios
		2.4.	Aplicaciones a la ingeniería
3.	Solución de ecuaciones	3.1.	Sistemas de ecuaciones lineales
	lineales y no lineales y valores característicos	3.2.	Sistemas de ecuaciones no lineales
		3.3.	Valores característicos
		3.4.	Aplicaciones a la ingeniería
4.	Ajuste de funciones	4.1.	Interpolación
		4.2.	Aproximación polinomial y multilineal
		4.3.	Ajuste por interpolación segmentaria
		4.4.	Aplicaciones a la ingeniería
5.	5. Diferenciación e integración numérica	5.1.	Integración numérica
		5.2.	Diferenciación numérica
		5.3.	Aplicaciones a la ingeniería

6.	ecuaciones diferenciales	6.1. Solución numérica de ecuaciones diferenciales ordinarias
	ordinarias y parciales	6.2. Solución numérica de ecuaciones diferenciales parciales
		6.3. Aplicaciones al área de ingeniería

8.- SUGERENCIAS DIDÁCTICAS

- Propiciar actividades de búsqueda, selección y análisis de información en distintas fuentes.
- Propiciar el uso de las nuevas tecnologías en el desarrollo de los contenidos de la asignatura.
- Fomentar actividades grupales que propicien la comunicación, el intercambio argumentado de ideas, la reflexión, la integración y la colaboración de y entre los estudiantes.
- Propiciar, en el estudiante, el desarrollo de actividades intelectuales de inducción-deducción y análisis-síntesis, las cuales lo encaminan hacia la investigación, la aplicación de conocimientos y la solución de problemas.
- Llevar a cabo actividades prácticas que promuevan el desarrollo de habilidades para la experimentación, tales como: observación, identificación manejo y control de de variables y datos relevantes, planteamiento de hipótesis, de trabajo en equipo.
- Desarrollar actividades de aprendizaje que propicien la aplicación de los conceptos, modelos y metodologías que se van aprendiendo en el desarrollo de la asignatura.
- Propiciar el uso adecuado de conceptos, y de terminología científicotecnológica
- Proponer problemas que permitan al estudiante la integración de contenidos de la asignatura y entre distintas asignaturas, para su análisis y solución.
- Relacionar los contenidos de la asignatura con el cuidado del medio ambiente; así como con las prácticas de una ingeniería con enfoque sustentable.
- Observar y analizar fenómenos y problemáticas propias del campo ocupacional.
- Relacionar los contenidos de esta asignatura con las demás del plan de estudios para desarrollar una visión interdisciplinaria en el estudiante.

9.- SUGERENCIAS DE EVALUACIÓN

La evaluación de la asignatura se podrá realizar con base en los siguientes desempeños:

- Deducir, modelar y resolver problemas reales del área de ingeniería utilizando métodos numéricos y programar algunos métodos representativos.
- Diagnóstica
- Temática
- Ejercicios planteados en clase
- Portafolios de evidencia

10.- UNIDADES DE APRENDIZAJE

Unidad 1: Análisis de error

Competencia específica a desarrollar	Actividades de Aprendizaje
Conocer, comprender la importancia de la aplicación de métodos numéricos a la ingeniería, analizar y calcular el error y su	 Investigar los antecedentes históricos del análisis numérico, así como su relación con la computación y exponerlo de manera grupal
efecto en aplicaciones de la ingeniería electrónica	 Identificar los conceptos de aproximaciones
	 Identificar los tipos de errores
	 Resolver problemas que impliquen el cálculo de diferentes tipos de errores.
	 Investigar el efecto de los diferentes tipos de errores en aplicaciones de ingeniería. Presentar en forma grupal los resultados.
	 Utilizar algún lenguaje de programación para realizar programas que faciliten los cálculos de error, ó alguna herramienta computacional

Unidad 2: Solución de ecuaciones algebraicas

Competencia específica a desarrollar	Actividades de Aprendizaje
Conocer, modelar y aplicar los métodos numéricos en la solución de ecuaciones algebraicas	 Identificar las características de los métodos de intervalos, y aplicarlos a problemas propuestos de ingeniería electrónica. Identificar las características de los

	métodos abiertos, y aplicarlos a problemas propuestos de la ingeniería electrónica.
•	Identificar las características de los métodos de obtención de raíces de polinomios y aplicarlos a la solución de problemas propuestos de la ingeniería electrónica
•	Utilizar algún lenguaje de programación para realizar programas que den la solución numérica a
	·

ecuaciones algebraicas, ó alguna

herramienta computacional

Unidad 3: Solución de sistemas de ecuaciones lineales y no lineales y valores característicos

Competencia específica a desarrollar	Actividades de Aprendizaje
Conocer, modelar y aplicar los	 Identificar los sistemas de ecuaciones
métodos numéricos en la solución de sistemas de ecuaciones lineales y no lineales	lineales y aplicar los métodos básicos para la solución de problemas, comparar los resultados analítico y computacional
	 Comparar las ventajas y desventajas de cada método
	 Investigar problemas de ingeniería que se resuelven por medio de sistemas de ecuaciones lineales.
	 Identificar los sistemas de ecuaciones no lineales y aplicar el método de Newton-Raphson para sistemas no lineales en la solución de problemas
	 Identificar, analizar y aplicar los valores característicos
	 Analizar, modelar y resolver problemas reales del área de ingeniería electrónica aplicando el método de solución numérico.
	 Utilizar algún lenguaje de programación para realizar programas que den la solución numérica a sistemas de ecuaciones lineales, no

lineales y valores característicos, ó
alguna herramienta computacional

Unidad 4: Ajuste de funciones

Competencia específica a desarrollar	Actividades de Aprendizaje
Conocer, modelar y aplicar los métodos numéricos en la solución de problemas que involucren ajuste de funciones	 Investigar y analizar el concepto de interpolación y sus aplicaciones en ingeniería electrónica y discutir los resultados en forma grupal.
	 Identificar y aplicar los métodos de ajuste e interpolación en la solución de problemas comunes del área de ingeniería electrónica
	 Utilizar algún lenguaje de programación para realizar programas que den la solución numérica a interpolación y métodos de ajuste, ó alguna herramienta computacional

Unidad 5: Diferenciación e integración numérica

Unidad 5. Diferenciación e integral	zion numerica
Competencia específica a desarrollar	Actividades de Aprendizaje
Conocer, modelar y aplicar los métodos numéricos en la solución de problemas que involucren diferenciación e integración	desventajas de la derivación e
	 Identificar y calcular los métodos numéricos de integración y derivación.
	 Comparar y analizar los resultados de la derivación e integración numérica respecto a la forma analítica
	 Aplicar la derivación e integración numérica a problemas propuestos del área de ingeniería electrónica
	 Utilizar algún lenguaje de programación para realizar programas que den la solución numérica a diferenciación e integración, ó alguna herramienta computacional

Unidad 6: Solución numérica de ecuaciones diferenciales ordinarias y parciales

Competencia específica a desarrollar	Actividades de Aprendizaje
Conocer, modelar y aplicar los métodos numéricos para aproximar soluciones de ecuaciones diferenciales.	 Identificar la importancia de las ecuaciones diferenciales ordinarias y parciales en ingeniería. Comparar aplicaciones que utilicen ecuaciones diferenciales ordinarias. Discutir los resultados en forma grupal
	 Identificar los métodos de solución de ecuaciones diferenciales ordinarias y parciales.
	 Comparar y analizar los resultados de la solución numérica de ecuaciones diferenciales ordinarias y parciales respecto a la forma analítica
	 Aplicar la solución numérica de ecuaciones diferenciales ordinarias y parciales a problemas propuestos del área de ingeniería electrónica
	 Utilizar algún lenguaje de programación para realizar programas que den la solución numérica a las ecuaciones diferenciales ordinarias y parciales, ó alguna herramienta computacional

11.- FUENTES DE INFORMACIÓN

- 1. Chapra C. S. Y Canale R., Métodos Numéricos Para Ingenieros, Ed. Mc Graw-Hill, 2007
- 2. Luis Vázquez . Métodos Numéricos para la física y la ingeniería, Ed. Mc Graw-Hill, 2009
- 3. Shoichiro Nakamura . Métodos numéricos aplicación software, Ed. Pearson Education, 1992
- 4. Kincaid D. y Cheney W., Análisis Numérico, Ed. Addison-Wesley
- 5. Burden. Análisis Numérico, Ed. CECSA, 1996
- 6. Nakamura S., Análisis Numérico y Visualización Grafica Con Matlab, Ed. Pearson Education, 1997
- 7. John H. Mathews. Metodos numéricos con Matlab 3ED, Ed. Pearson Education, 1999
- 8. Akai. Métodos Numéricos Aplicados a la Ingeniería, Ed. CECSA, 1996

12.- PRÁCTICAS PROPUESTAS

- Observar, interpretar, deducir y resolver problemas reales de la sociedad con un enfoque sustentable.
- Plantear, discutir, modelar y solucionar problemas del área por cada una de las unidades de estudio
- Aplicar y programar en un lenguaje de alto nivel, el manejo de errores a problemas reales del área de ingeniería
- Aplicar y programar en un lenguaje de alto nivel, los métodos representativos de solución de ecuaciones algebraicas
- Aplicar y programar en un lenguaje de alto nivel, los métodos representativos de ecuaciones lineales, no lineales y valores característicos
- Aplicar y programar en un lenguaje de alto nivel, los métodos representativos de ajuste de curvas.
- Aplicar y programar en un lenguaje de alto nivel, los métodos representativos de diferenciación e integración.
- Aplicar y programar en un lenguaje de alto nivel, los métodos representativos para la solución numérica de ecuaciones diferenciales ordinarias, parciales y sistemas de ecuaciones diferenciales
- Solucionar problemas comunes con otras asignaturas del plan de estudio
- Usar un lenguaje de alto nivel para dar solución a ejercicios y problemas planteados