AMENDMENTS TO THE CLAIMS

1. (Previously Presented) A polymer comprising a phenolic monomeric unit of which the phenyl group is substituted by a group A, wherein group A comprises an imide or thioimide group with the exception that A is not

2. (Previously Presented) The polymer according to claim 1 wherein the group A has the following formula

wherein X and Y are independently selected from O and S, wherein L, L^1 and L^2 are independently a linking group, wherein n, r and s are independently 0 or 1, and wherein one of the groups R^1 , R^2 or R^3 represents the phenolic monomeric unit and the other two represent a terminal group.

3. (Previously Presented) The polymer according to claim 1 wherein the group A has the following formula

wherein X and Y are independently selected from O and S.

wherein G^1 and G^2 are independently selected from O, S, NR^4 and R^5 - $[L^3]_t$ -C- $[L^4]_u$ - R^6 , with the limitation that G^1 is not O or S when G^2 is O and that G^1 is not O or S when G^2 is NR^4 , wherein L, L^3 and L^4 are independently a linking group,

wherein n, t and u are independently 0 or 1,

Application No. 10/531,629

and wherein one of the groups selected from R¹, R⁴, R⁵ and R⁶ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

4. (Previously Presented) The polymer according to claim 1 wherein the group A has the following formula

wherein X and Y are independently selected from O and S,

wherein G^3 to G^5 are independently selected from O, S, NR^7 and R^8 - $[L^5]_v$ -C- $[L^6]_w$ - R^9 with the limitation that at least one group, selected from G^3 to G^5 , is R^8 - $[L^5]_v$ -C- $[L^6]_w$ - R^9 and that two neighboring groups, selected from G^3 to G^5 , are not represented by O and S, by O and NR^7 , by S and NR^7 or by O and O,

wherein L, L⁵ and L⁶ are independently a linking group,

wherein n, v and w are independently 0 or 1, and

wherein one of the groups selected from R¹, R⁷, R⁸ and R⁹ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

5. (Previously Presented) The polymer according to claim 1 wherein the group A has the following formula

$$B_{2} = \left\{ T \right\}^{\frac{1}{2}} = \left\{ T \right\}^{\frac{1}{2}$$

wherein X and Y are independently selected from O and S,

wherein G is a group selected from O, S, NR^{10} and R^{11} - $[L^9]_x$ -C- $[L^{10}]_y$ - R^{12} ,

wherein L, L^7 , L^8 , L^9 and L^{10} are independently a linking group,

wherein n, x, y, z and r are independently 0 or 1, and

wherein one of the groups selected from R¹, R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

6. (Previously Presented) The polymer according to claim 1 wherein the group A has the following formula

wherein X and Y are independently selected from O and S,

wherein E^1 and E^2 are independently selected from O, S, NR^{15} and R^{16} - $[L^{13}]_g$ -C- $[L^{14}]_h$ - R^{17} , wherein n, e, f, g, h, p and q are independently 0 or 1,

wherein e is 0 when E¹ is represented by O, S or NR¹⁵, wherein f is 0 when E² is represented by O, S or NR¹⁵,

wherein L, L¹¹, L¹², L¹³ and L¹⁴ are independently a linking group, and wherein one of the groups selected from R¹, R¹⁵, R¹⁶, R¹⁷, R¹⁸ and R¹⁹ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

7. (Previously Presented) The polymer according to claim 1 wherein the group A has one of the following formulae

wherein X and Y are independently selected from O and S,

wherein each R¹ and R²⁰ to R²³ is a terminal group independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, -SO₂-NH-R²⁴, -NH-SO₂-R²⁷, -CO-NR²⁴-R²⁵,

```
-NR<sup>24</sup>-CO-R<sup>27</sup>, -NR<sup>24</sup>-CO-NR<sup>25</sup>-R<sup>26</sup>, -NR<sup>24</sup>-CS-NR<sup>25</sup>-R<sup>26</sup>, -NR<sup>24</sup>-CO-O-R<sup>25</sup>
-O-CO-NR<sup>24</sup>-R<sup>25</sup>, -O-CO-R<sup>27</sup>, -CO-O-R<sup>24</sup>, -CO-R<sup>24</sup>, -SO<sub>3</sub>-R<sup>24</sup>, -O-SO<sub>2</sub>-R<sup>27</sup>, -SO<sub>2</sub>-R<sup>24</sup>
-SO-R^{27}, -P(=O)(-O-R^{24})(-O-R^{25}), -O-P(=O)(-O-R^{24})(-O-R^{25}), -NR^{24}-R^{25}, -O-R^{24}, -S-R^{24}.
-CN, -NO<sub>2</sub>, -N(-CO-R<sup>24</sup>)(-CO-R<sup>25</sup>), -N-phthalimidyl, -M-N-phthalimidyl, and -M-R<sup>24</sup>
wherein M represents a divalent linking group containing 1 to 8 carbon atoms,
wherein R<sup>24</sup> to R<sup>26</sup> are independently selected from hydrogen and an optionally substituted
alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl
group,
wherein R<sup>27</sup> is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl,
heterocyclic, aryl, heteroaryl, aralkyl and heteroaralkyl group,
wherein a and d are independently 0, 1, 2, 3 or 4,
wherein b and c are independently 0, 1, 2 or 3,
wherein E<sup>3</sup> is selected from O, S, NR<sup>28</sup> and R<sup>29</sup>-[L<sup>15</sup>]<sub>i</sub>-C-[L<sup>16</sup>]<sub>i</sub>-R<sup>30</sup>,
wherein L. L<sup>15</sup> and L<sup>16</sup> are independently a linking group, wherein n, i and i independently
are 0 or 1.
and wherein one of the groups selected from R<sup>1</sup>, R<sup>20</sup>, R<sup>21</sup>, R<sup>22</sup>, R<sup>23</sup>, R<sup>28</sup>, R<sup>29</sup> and R<sup>30</sup>
represents the phenolic monomeric unit and the remaining groups represent a terminal group.
```

- 8. (Previously Presented) The polymer according to claim 1, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.
- 9. (Previously Presented) A heat-sensitive lithographic printing plate precursor comprising a support having a hydrophilic surface and an oleophilic coating provided on the hydrophilic surface, said coating comprising an infrared light absorbing agent and a polymer according to claim 1.
- 10. (Previously Presented) The lithographic printing plate precursor according to claim 9, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 11. (Previously Presented) The lithographic printing plate precursor according to claim 10, wherein said dissolution inhibitor is selected from the group consisting of

Application No. 10/531,629

an organic compound which comprises at least one aromatic group and a hydrogen bonding site,

a polymer or surfactant comprising siloxane or perfluoroalkyl units, and mixtures thereof.

12. (Canceled)

13. (Previously Presented) The heat-sensitive lithographic printing plate precursor according to claim 9, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.

14. (Canceled)

15. (Previously Presented) The heat-sensitive lithographic printing plate precursor according to claim 9 wherein the group A has the following formula

wherein X and Y are independently selected from O and S,

wherein G^1 and G^2 are independently selected from O, S, NR^4 and R^5 - $[L^3]_t$ -C- $[L^4]_u$ - R^6 , with the limitation that G^1 is not O or S when G^2 is O and that G^1 is not O or S when G^2 is NR^4 , wherein L, L^3 and L^4 are independently a linking group,

wherein n, t and u are independently 0 or 1,

and wherein one of the groups selected from R¹, R⁴, R⁵ and R⁶ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

16. (Previously Presented) The heat-sensitive lithographic printing plate precursor according to claim 9 wherein the group A has the following formula

wherein X and Y are independently selected from O and S,

wherein G^3 to G^5 are independently selected from O, S, NR^7 and R^8 - $[L^5]_v$ -C- $[L^6]_w$ - R^9 with the limitation that at least one group, selected from G^3 to G^5 , is R^8 - $[L^5]_v$ -C- $[L^6]_w$ - R^9 and that two neighbouring groups, selected from G^3 to G^5 , are not represented by O and S, by O and NR^7 , by S and NR^7 or by O and O,

wherein L, L^5 and L^6 are independently a linking group, wherein n, v and w are independently 0 or 1,

and wherein one of the groups selected from R¹, R⁷, R⁸ and R⁹ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

17. (Previously Presented) The heat-sensitive lithographic printing plate precursor according to claim 9 wherein the group A has the following formula

$$\mathbb{E}_{\mathbb{P}}\left\{\Gamma\right\}^{M}\mathbb{E}\left\{\Gamma\right\}$$

wherein X and Y are independently selected from O and S, wherein G is a group selected from O, S, NR^{10} and R^{11} - $[L^9]_x$ -C- $[L^{10}]_y$ - R^{12} , wherein L, L^7 , L^8 , L^9 and L^{10} are independently a linking group, wherein n, x, y, z and r are independently 0 or 1, and wherein one of the groups selected from R^1 , R^{10} , R^{11} , R^{12} , R^{13} and R^{14} represents the phenolic monomeric unit and the remaining groups represent a terminal group.

18. (Previously Presented) The heat-sensitive lithographic printing plate precursor according to claim 9 wherein the group A has the following formula

wherein X and Y are independently selected from O and S, wherein E¹ and E² are independently selected from O, S, NR¹⁵ and R¹⁶-[L¹³]_g-C-[L¹⁴]_h-R¹⁷, wherein n, e, f, g, h, p and q are independently 0 or 1, wherein e is 0 when E¹ is represented by O, S or NR¹⁵, wherein f is 0 when E² is represented by O, S or NR¹⁵, wherein L, L¹¹, L¹², L¹³ and L¹⁴ are independently a linking group, and wherein one of the groups selected from R¹, R¹⁵, R¹⁶, R¹⁷, R¹⁸ and R¹⁹ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

19. (Previously Presented) The heat-sensitive lithographic printing plate precursor according to claim 9 wherein the group A has one of the following formulae

wherein X and Y are independently selected from O and S,

wherein each R^1 and R^{20} to R^{23} is a terminal group independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, $-SO_2$ -NH- R^{24} , -NH- SO_2 - R^{27} , -CO- NR^{24} - R^{25} , $-NR^{24}$ -CO- R^{27} , $-NR^{24}$ - R^{25} , $-NR^{24}$ - R^{25} , $-R^{26}$

wherein R²⁴ to R²⁶ are independently selected from hydrogen and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R²⁷ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl and heteroaralkyl group,

wherein a and d are independently 0, 1, 2, 3 or 4,

wherein b and c are independently 0, 1, 2 or 3,

wherein E^3 is selected from O, S, NR^{28} or R^{29} – $[L^{15}]_i$ -C- $[L^{16}]_j$ – R^{30} , wherein L, L^{15} and L^{16} are independently a linking group,

wherein n, i and j independently are 0 or 1,

and wherein one of the groups selected from R¹, R²⁰, R²¹, R²², R²³, R²⁸, R²⁹ and R³⁰ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

- 20. (Previously Presented) The heat-sensitive lithographic printing plate precursor according to claim 15, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 21. (Previously Presented) The heat-sensitive lithographic printing plate precursor according to claim 16, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 22. (Previously Presented) The heat-sensitive lithographic printing plate precursor according to claim 17, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 23. (Previously Presented) The heat-sensitive lithographic printing plate precursor according to claim 18, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 24. (Previously Presented) The heat-sensitive lithographic printing plate precursor according to claim 19, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.

Application No. 10/531,629

- 25. (Previously Presented) The heat-sensitive lithographic printing plate precursor according to claim 15, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 26. (Previously Presented) The heat-sensitive lithographic printing plate precursor according to claim 16, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 27. (Previously Presented) The heat-sensitive lithographic printing plate precursor according to claim 17, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 28. (Previously Presented) The heat-sensitive lithographic printing plate precursor according to claim 18, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 29. (Previously Presented) The heat-sensitive lithographic printing plate precursor according to claim 19, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 30. (Previously Presented) The polymer according to claim 2, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.
- 31. (Previously Presented) The polymer according to claim 3, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.
- 32. (Previously Presented) The polymer according to claim 4, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.

- 33. (Previously Presented) The polymer according to claim 5, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.
- 34. (Previously Presented) The polymer according to claim 6, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.
- 35. (Previously Presented) The polymer according to claim 7, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.
- 36. (Previously Presented) A method for increasing the chemical resistance of a coating of a positive working heat-sensitive lithographic printing plate precursor against printing liquids and press chemicals, the method comprising providing a coating comprising:

a polymer according to claim 1, an infrared absorbing agent, and a dissolution inhibitor.

37. (Previously Presented) A method for increasing the chemical resistance of a coating of a negative working heat-sensitive lithographic printing plate precursor against printing liquids and press chemicals, the method comprising providing a coating comprising:

a polymer according to claim 1, a latent Brönsted acid, and an acid-crosslinkable compound.

This listing of claims replaces all prior versions, and listings, of claims in the application.