EEB 464 Macroevolution Fall 2018 Instructor: Dr. Brian C. O'Meara

Office hrs: 11-12 M and by appointment; 446 Hesler Meeting time: 10:10-11:00 MWF, 412 Buehler

Description:

The course is a lecture format course with classroom discussion and participation. Students are introduced to fundamental concepts in macroevolution including current areas of debate (drivers of evolutionary rates, modes of speciation, etc.) and taught to think critically. Computer-based exercises, especially simulations, will allow students to learn how processes acting on short to medium time scales affect long term patterns. 3 credits

To understand macroevolution, it is important to learn about who, what, where, when, how, and why.

Who: Organisms

What: Non-living context (rocks from space, environmental conditions)

Where: Biogeography (on Pangaea or Bermuda?)

When: Geological time scale How: Pattern of evolution Why: Process of evolution

The course will cover all these areas. The ones that are most interesting, of course, are the how and especially the why. These are also the best to cover in class, where there can be discussion and other interaction. Rote learning (word meanings and the like) is something that you should be able to do on your own at this point in your education, with occasional guidance. We're not going to use much class time on this, but you will have to learn this info. I will clearly describe what you do have to learn (and if it's not clear, ASK), and quizzes and tests will be ways to evaluate your progress and provide further incentive to learn.

Biology program learning objectives:

I include how this course addresses these in *italics*.

Explain and provide examples of each the five big ideas in Biology, using their knowledge of biological concepts gained from their course of study:

- Evolution: Populations of organisms and their cellular components have changed over time through both selective and non-selective evolutionary processes. *This is the main point of the course, and will be covered in every lecture and activity.*
- Structure and Function: All living systems (organisms, ecosystems, etc.) are made of structural components whose arrangement determines the function of the systems. *This will be highlighted especially in the discussions of morphological evolution (flight, insects, etc.)*
- Information Flow and Storage: Information (DNA, for example) and signals are used and exchanged within and among organisms to direct their functioning. *Origin of life will cover this extensively*.
- Transformations of Energy and Matter: All living things acquire, use, and release and

- cycle matter and energy for cellular / organismal functioning. The discussion of escalation focuses on this, and it comes up in background on the focal organisms.
- Systems: Living systems are interconnected, and they interact and influence each other on multiple levels. *Speciation, extinction, discussion, and history of life all cover this.*

Demonstrate the ability to perform the following scientific practices:

- Formulate empirically-testable hypotheses. This is the point of the final presentation.
- Interpret visual representations (figures and diagrams). These will come up throughout the class, especially in the context of phylogenetic trees.
- Evaluate data and come to a conclusion (with evidence) (formulate an argument). Much of class discussion emphasizes this skill: I'll present information and have you elaborate on this and provide potential explanations.

Course learning objectives:

By the end of this course, students will be able to:

- Formulate, defend, and critically evaluate hypotheses about evolutionary mechanisms
- Understand the context and reason for evolutionary patterns
- Interpret information from fossils, phylogenies, and other data sources
- Generate ideas for feasible, compelling scientific projects

To really understand evolution and converse with other scientists, you have to know the names of some groups (imagine trying to talk about the history of some musical genre without knowing the names of any musicians or songs in that genre). Thus, most days, you will be responsible for learning about a particular taxon (on the syllabus, below). This could be a single species or a clade of many species. You should learn very basic info: what is it, what is it related to (i.e., where it attaches to the tree of life we will grow over the class), why it is important to know. For example: "Angiosperms: all flowering plants, lots of species, became common in the Cretaceous but may have originated earlier, sister to Gnetales." Working together on the website forum to get this info is encouraged (you can decide to rotate the job, let whoever gets the info first post it, etc.). What I really care about is that you learn it. Note that some of the taxa may be subsets of the other taxa (elephants are a kind of vertebrate).

Writing and presentations will be graded on a variety of levels, such as grammar, structure, and substance. The purpose of grading and comments is to improve your writing. Remember that your writing is being graded, not you.

Word count sets a minimum length (and references are not counted) but you may go a bit longer if needed (try to keep below 125% of required length). Since length is judged by words, not page length, please don't do any odd formatting of your paper (huge or tiny margins, font sizes of 8 or 18, etc.) to try to meet some page limits.

Papers/midterms will be turned in via the course website (Canvas). This eliminates issues with printers, odd file formats, and the like. The site will automatically check your work for possible plagiarism. I do this in all my classes with written work. Except where noted, assignments are to be done individually. You must cite and reference work properly. When in doubt about citation, plagiarism, or collaboration, ASK. Please turn in work as plain text or RDF. This

makes it easier for me to put them in one document so I can give you back grades with comments.

For help with submitting documents online, see http://online.utk.edu/students/assignment.shtml. There is a practice uploading assignment that will allow you to test to make sure you can upload files correctly before the pressure of a deadline. If there is a problem at the moment of a deadline, email me your work instead to verify it is done on time (but normally you should be using Canvas).

Communication is very important. I have set up a forum on the Canvas site for our course. If you post a question there, I will immediately be emailed about it and will respond on the forum (though perhaps not immediately). Emailing me directly will not be any faster (though do email me if the issue is better addressed one-on-one). The benefit of using the forum is that everyone can see the answers and there's a chance that one of the other students will answer the question first. Feel free to use the forum for other class-related discussions.

Though we have the main Canvas site, and notices will come through there, I will also be posting things (like slides) to http://brianomeara.info/category/macroevolution/. Why a second site? The Canvas site is only active during the course and only to students enrolled in the course. You might want to look at the materials in other semesters, show your friends/family what you were learning, etc., so I have the public site that will persist.

Attendance is expected at all classes, though missing a class or two due to illness, family problem, etc. might happen (and is strongly suggested in the case of flu: http://studenthealth.utk.edu/common_avoidflu.php)

We will have discussions in nearly all classes. You should participate in them. Sometimes, discussions in a class such as this consist of students trying to return the right answer to the instructor's question. To avoid this, sometimes I pursue a policy of not talking during a discussion for several minutes or longer so you have to talk to each other. This can result in complete silence. If you find this annoying, talk! Even if there is not a formal discussion, please ask questions at any point during class.

Late work is penalized at 10%/day (so something turned in 49 hours late is given a score 70% of what it would have received on the due date). Extensions are not normally granted, except under extraordinary circumstances (having too much work to do does not qualify, for example). Remember that even if you turn something in seven days late, it is still worth more points than not turning it in at all (and the grading for the class is just #points received / #points available, so something getting 20/100 points is still worth twice something getting 10/100 points, even though they are both an "F" individually).

My goal is to have you learn. If you are having trouble with something in the course, or if there is a topic you just have to learn more about, let me know (email, office hours, online forum, etc.). Faculty often use evaluations at the end of the semester to get info from students so we can improve before the next class, but this does not help you directly. To allow the class to improve while you are taking it, I have created a site for anonymous feedback at

http://brianomeara.info/teaching/feedback/ (and yes, it is really anonymous). Let me know things that are going well or poorly — both are important. I might not implement all your suggestions, but they will all be read and considered, generally the same day you submit them.

Any student who feels s/he may need an accommodation based on the impact of a disability should contact me privately to discuss specific needs. Please contact the Office of Disability Services at 865-974-6087 in Dunford Hall to coordinate reasonable accommodations for students with documented disabilities.

All relevant University policies (including, but not limited to, policies on academic integrity, attendance, etc.) apply to this course. In the case of any conflict between the policies in this syllabus and University policy, University policy applies. The instructor reserves the right to revise, alter, and/or amend this syllabus as necessary. Students will be notified by email of any such revisions, alterations, and/or amendments.

#		Topic	Taxon to have learned	Assignment
	Date 22-Aug	Pre-test, syllabus	-	rissignment
1	24-Aug	History of planet & life	Crinoid	
2	27-Aug	History of planet & life	Archaea	
3	29-Aug	Evidence	Bdelloid rotifers	
4	31-Aug	Taphonomy	Trilobite	
4	3-Sep	Labor Day	Tinoone	
5	5-Sep	Jargon	Acromyrmex	
6	7-Sep	Phylogenetics	Ammonite	
7	10-Sep	Empirical distributions	Ichthyornis dispar	
8	10-Sep 12-Sep	Biogeography	HIV	
9	12-Sep 14-Sep	Speciation	Wolbachia	
10	17-Sep	Speciation	Anomalocaris	
11	17-Sep 19-Sep	Extinction	Gasterosteus aculeatus	
12	21-Sep	Extinction	Geospizinae	Midterm 1 distributed
13	24-Sep	Diversification	Dionaea muscipula	Middenn i distributed
14	24-Sep 26-Sep	Diversification Diversification	Tribolium	
15	26-Sep 29-Sep	Natural selection & drift	bonobo	Midterm 1 due at 8 pr
16	29-Sep 1-Oct	Sex	Lichen	whatering due at 8 pr
17	3-Oct	Trends		
1 /	5-Oct	Fall break	Fig wasp	
18	8-Oct	Symbiosis	Anolis	
19	10-Oct	Game theory	Tunicates	
20	10-Oct	Inclusive fitness	Brachiopod	
21	15-Oct	Systematics	Spiny anteater	
22	17-Oct	Darwin	Eubacteria	Paper due at 8 pm
23	19-Oct	Flight	Maiasaura	Taper due at 8 pm
24	22-Oct	Invasive humans	Isopod	
25	24-Oct	Disease evolution	Ground sloth	
26	26-Oct	Origin of life	Thermus aquaticus	Midterm 2 distributed
27	29-Oct	Contemporary evolution	Lycophytes	Wildleriii 2 distributed
28	31-Oct	Insects	Strepsiptera	
29	2-Nov	Stephen Jay Gould	Diatom	Midterm 2 due at 8 pr
30	5-Nov	Language evolution	Dimetrodon	
31	7-Nov	Discoveries from past month	Buchnera	
32	9-Nov	Evolution of intelligence	Welwitschia	
33	12-Nov	Domestication	Solanum tuberosum	
34	14-Nov	Evolutionary medicine	Plasmodium	
35	16-Nov	Free topic 1	Ginkgo	
36	19-Nov	Free topic 2	silversword	
37	21-Nov	Free topic 3	orca	
	24-Nov	Thanksgiving break		
38	26-Nov	Presentations		Presentation
39	28-Nov	Presentations		Presentation
40	30-Nov	Presentations		Presentation
41	3-Dec	Review		
	10-Dec	Final exam 10:15 am - 12:15 p	ım	ı

Grading:

100 points: Topic review. 1000 words, including references. Cover a macroevolutionary question: what is known about it, what is the state of work on it, what work might be done in the future? Work should be individual.

100 points: Pair presentation. Imagine you are trying to get money to study a macroevolutionary question. You have to make a compelling case to a potential funder (i.e., the NSF will give you \$15K to study it, or a professor might offer you a place in her lab to work on this). You should include 1) why that question is interesting (this should include what is known about it), 2) how you plan to address it, 3) what potential outcomes of your work may be, and 4) the implications of these. 10 minute talk (PowerPoint, Keynote, PDF, etc.). Be sure to include references in your slides.

50 points: Class work. This includes quizzes, activities, and other in class assignments. In general, these will not be announced in advance. Note that 80 points will actually be assigned but the maximum score possible will be 50 points. The goal of this is to allow you to miss some classes (due to illness, death in the family, or other such reasons) without needing to bring a note justifying your absence.

100 points each: Take home midterms. You may NOT work with classmates or other humans, but you can use notes, books, papers, etc. (though do not plagiarize them, not that the questions will be ones you can typically plagiarize).

200 points: Final exam. Similar to the midterm, but with a bit more evaluation of rote knowledge.

In addition to these assignments, students will periodically be given articles to read for later discussion. Quizzes or other assignments will assess whether the articles have been read.

Final letter grades will be assigned at the end of the semester using an instructor-specified scale. I aim for grading consistency across years and with other courses at UTK. A typical scale for this class is:

Cutoff	Proportion of students
92%	36%
90%	14%
88%	0%
82%	41%
80%	0%
78%	5%
72%	0%
<72%	5%
	92% 90% 88% 82% 80% 78%