

Continuïtat

Àlex Arenas, Sergio Gómez

Universitat Rovira i Virgili, Tarragona

Continuïtat

- Definicions
 - □ Funció contínua, discontinuïtats
- Propietats
 - Aritmètiques, composició, monotonia, funció inversa
- Teoremes
 - □ Bolzano, valor mig, Weierstrass (valors extrems)

- Definició
 - Sigui $f: A \subseteq \mathbb{R} \to \mathbb{R}$ una funció real de variable real definida en un domini A
 - f és una funció contínua en un punt $a \in A$ si es compleix

$$\lim_{x \to a} f(x) = f(a)$$

■ Equivalentment, f és una funció contínua en un punt $a \in A$ si es compleix

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x \in A \text{ amb } |x - a| < \delta \Longrightarrow |f(x) - f(a)| < \varepsilon$$

- Definició
 - Sigui $f: A \subseteq \mathbb{R} \to \mathbb{R}$ una funció real de variable real definida en un domini A
 - f és una funció contínua en un punt $a \in A$ si es compleix

$$\lim_{x \to a} f(x) = f(a)$$

■ Equivalentment, f és una funció contínua en un punt $a \in A$ si es compleix

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x \in A \text{ amb } |x - a| < \delta \Longrightarrow |f(x) - f(a)| < \varepsilon$$

També es pot escriure com

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x \in A \cap (a - \delta, a + \delta) \Longrightarrow |f(x) - f(a)| < \varepsilon$$

□ Definició

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \in A \cap (a - \delta, a + \delta) \Longrightarrow |f(x) - f(a)| < \varepsilon$$

- □ Observació
 - La diferència entre la definició de límit i la de continuïtat en un punt està en què, per a la definició de límit es demana

$$0 < |x - a| < \delta$$

mentre que per la definició de continuïtat en un punt és

$$|x-a|<\delta$$

L'única diferència és que en la primera el punt a està exclòs

Definicions

- f és funció contínua en A si és contínua $\forall a \in A$
- f és contínua per la dreta en $a \in A$ si es compleix

$$\lim_{x \to a^+} f(x) = f(a)$$

• f és contínua per l'esquerra en $a \in A$ si es compleix

$$\lim_{x \to a^{-}} f(x) = f(a)$$

□ Tipus de discontinuïtats

- Evitable: existeix el límit L però f(a) no existeix o $f(a) \neq L$
- De salt: els límits laterals existeixen però són diferents
- Essencial: almenys un límit lateral no existeix o és infinit

$$f(x) = \left\{ egin{array}{ll} x^2 & ext{for } x < 1 \ 0 & ext{for } x = 1 \ 2 - x & ext{for } x > 1 \end{array}
ight.$$

$$f(x) = egin{cases} x^2 & ext{for } x < 1 \ 0 & ext{for } x = 1 \ 2 - x & ext{for } x > 1 \end{cases} \qquad f(x) = egin{cases} x^2 & ext{for } x < 1 \ 0 & ext{for } x = 1 \ 2 - (x - 1)^2 & ext{for } x > 1 \end{cases} \qquad f(x) = egin{cases} rac{\sin rac{5}{x - 1}}{x - 1} & ext{for } x < 1 \ 0 & ext{for } x = 1 \ rac{1}{x - 1} & ext{for } x > 1 \end{cases}$$

$$f(x) = egin{cases} \sinrac{5}{x-1} & ext{ for } x < 1 \ 0 & ext{ for } x = 1 \ rac{1}{x-1} & ext{ for } x > 1 \end{cases}$$

- □ Propietats aritmètiques
 - Si $a \in A$ és un punt aïllat, aleshores f és contínua en a
 - Si $f, g: A \subseteq \mathbb{R} \to \mathbb{R}$ són funcions contínues en $a \in A$, aleshores les funcions
 - $\square \lambda f$, amb $\lambda \in \mathbb{R}$
 - $\Box f + g$
 - $\Box f g$

són també contínues en a.

Si, a més, $g(a) \neq 0$, també és contínua en a la funció

$$\Box \frac{f}{g}$$

- □ Propietats de composició
 - Siguin $f: A \subseteq \mathbb{R} \to \mathbb{R}$ i $g: B \subseteq \mathbb{R} \to \mathbb{R}$ dues funcions tals que $f(A) \subseteq B$
 - Si f és contínua en $a \in A$ i g és contínua en $f(a) \in B$, aleshores la composició $g \circ f$ és contínua en a
 - Si f és contínua en A i g és contínua en $f(A) \subseteq B$, aleshores la composició $g \circ f$ és contínua en A

Demostracions

- Les demostracions de continuïtat per a les propietats aritmètiques són directes gràcies a les propietats equivalents dels límits
- Per a la composició de funcions
 - □ Com g continua en b = f(a), donat un $\epsilon > 0$ existeix $\delta' > 0$ tal que $\forall y$: $|y b| < \delta' \Rightarrow |g(y) g(b)| < \epsilon$
 - □ Com f contínua en a, donat $\delta' > 0$ existeix $\delta > 0$ tal que $\forall x$: $|x a| < \delta \Longrightarrow |f(x) f(a)| < \delta'$
 - □ Prenent y = f(x) queda $|x a| < \delta \Rightarrow |f(x) f(a)| < \delta' \Rightarrow |g(f(x)) g(f(a))| < \epsilon$
 - \square Per tant el límit existeix, i com f i g són contínues, el límit coincideix amb g(f(a))

□ Teorema de Bolzano

■ Sigui $f: I \subset \mathbb{R} \to \mathbb{R}$ una funció contínua en un interval I. Siguin $a, b \in I$, a < b, dos punts tals que f(a)f(b) < 0. Aleshores $\exists \alpha \in (a, b)$ tal que $f(\alpha) = 0$

□ Teorema de Bolzano

■ Sigui $f: I \subset \mathbb{R} \to \mathbb{R}$ una funció contínua en un interval I. Siguin $a, b \in I$, a < b, dos punts tals que f(a)f(b) < 0. Aleshores $\exists \alpha \in (a, b)$ tal que $f(\alpha) = 0$

□ Demostració del teorema de Bolzano

- Sense pèrdua de generalitat suposem f(a) < 0 i f(b) > 0
- Sigui $S = \{x \in [a, b]: f(x) < 0\} \subset [a, b]$
- Aquest conjunt conté a i està fitat per b
- Per tant, $\exists \alpha \in [a, b]$ tal que $\alpha = \sup S$
- Demostrem que $f(\alpha) = 0$
 - \square Suposem que $f(\alpha) < 0$ i $\alpha < b$
 - □ Com f és contínua, $\exists \delta$ tal que $f(x) < 0 \ \forall x \in (\alpha \delta, \alpha + \delta) \cap [a, b]$
 - \Box Per tant, $\exists x \in (\alpha, b)$ amb f(x) < 0, en contradicció amb α suprem
 - \square Suposem ara que $f(\alpha) > 0$ i $\alpha > a$
 - \square Com abans, $\exists \delta$ tal que $f(x) > 0 \ \forall x \in (\alpha \delta, \alpha + \delta) \cap [a, b]$
 - □ Per tant, $\exists x \in (\alpha \delta, \alpha]$, amb f(x) > 0, i.e., $x \notin S$, en contradicció amb la hipòtesi que α és suprem
 - □ Com hem descartat tant $f(\alpha) < 0$ com $f(\alpha) > 0$ queda demostrat que $f(\alpha) = 0$

□ Teorema del valor mig

■ Sigui $f: I \subset \mathbb{R} \to \mathbb{R}$ una funció contínua en un interval I. Siguin $a, b \in I$, a < b, dos punts tals que $f(a) \neq f(b)$. Suposem sense pèrdua de generalitat que f(a) < f(b). Aleshores, $\forall y \in (f(a), f(b)) \Rightarrow \exists \alpha \in I: f(\alpha) = y$

□ Teorema del valor mig

■ Sigui $f: I \subset \mathbb{R} \to \mathbb{R}$ una funció contínua en un interval I. Siguin $a, b \in I$, a < b, dos punts tals que $f(a) \neq f(b)$. Suposem sense pèrdua de generalitat que f(a) < f(b). Aleshores, $\forall y \in (f(a), f(b)) \Rightarrow \exists \alpha \in I: f(\alpha) = y$

□ Teorema del valor mig

- Sigui $f: I \subset \mathbb{R} \to \mathbb{R}$ una funció contínua en un interval I. Siguin $a, b \in I$, a < b, dos punts tals que $f(a) \neq f(b)$. Suposem sense pèrdua de generalitat que f(a) < f(b). Aleshores, $\forall y \in (f(a), f(b)) \Rightarrow \exists \alpha \in I: f(\alpha) = y$
- Es pot considerar un corol-lari del teorema de Bolzano
- També es pot considerar el teorema de Bolzano com un cas particular del teorema del valor mig

□ Demostració

Només cal aplicar el teorema de Bolzano a la funció $g(x) \equiv f(x) - y$

□ Corol-lari

■ Sigui $f: I \subset \mathbb{R} \to \mathbb{R}$ una funció contínua en un interval I. El recorregut de f, R = f(I), també és un interval.

Demostració

□ Siguin $y_1, y_2 \in R$, amb $y_1 < y_2$. Sigui $y \in (y_1, y_2)$. Per teorema del valor mig, $\exists \alpha \in I : f(\alpha) = y$. Per tant, $y \in R$, i això significa que R és un interval

- □ Propietat de monotonia
 - Sigui $f: I \subseteq \mathbb{R} \to J \subseteq \mathbb{R}$ una funció contínua i bijectiva. Aleshores f és estrictament monòtona
 - Intuïtivament, si no fos estrictament monòtona, dos punts diferents podrien tenir la mateixa imatge, i per tant la funció ja no podria ser bijectiva

□ Propietat de monotonia

- Demostració 1
 - \square Es prenen $a_0, b_0 \in I$, $a_0 < b_0$
 - \square Com és bijectiva, $f(a_0) < f(b_0)$ o $f(a_0) > f(b_0)$ (suposem <)
 - □ Sigui qualsevol parella $a_1, b_1 \in I$, $a_1 < b_1$
 - □ Definim $x: [0,1] \to \mathbb{R}$ continua tal que $x(t) = (1-t)a_0 + t a_1$
 - □ Definim $y: [0,1] \to \mathbb{R}$ contínua tal que $y(t) = (1-t)b_0 + t b_1$
 - \square Tenim $x(0) = a_0$, $x(1) = a_1$, x(t) està entre a_0 i $a_1 \forall t \in [0,1]$
 - \square Tenim $y(0) = b_0$, $y(1) = b_1$, y(t) està entre b_0 i $b_1 \forall t \in [0,1]$
 - □ Resulta que $x(t) < y(t) \ \forall t \in [0,1]$
 - □ Sigui $g: [0,1] \rightarrow \mathbb{R}$ tal que g(t) = f(y(t)) f(x(t))
 - □ Resulta $g(0) = f(b_0) f(a_0) > 0$
 - □ Com f bijectiva, $g(t) \neq 0 \ \forall t \in [0,1]$
 - \square Pel teorema de Bolzano, $g(t) > 0 \ \forall t \in [0,1]$
 - □ Per tant $g(1) = f(b_1) f(a_1) > 0$, i així f és estrictament creixent (suposant > sortiria f estrictament decreixent)

□ Propietat de monotonia

Demostració 2

- Donats tres punts diferents $a,b,c \in I$, a < b < c, només pot ser f(a) < f(b) < f(c) o f(a) > f(b) > f(c) ja que, en qualsevol altra ordenació, e.g., f(b) < f(a) < f(c), el teorema del valor mig permetria trobar $x \in (b,c)$, $x \ne a$, amb f(a) = f(x), en contradicció amb que f és bijectiva
- □ Idem, si són quatre punts a < b < c < d, implica que ha de ser f(a) < f(b) < f(c) < f(d) o f(a) > f(b) > f(c) > f(d); només cal aplicar la propietat anterior als tres primers i als tres últims
- Per tant, seleccionem $a, b \in I$, a < b. Com f bijectiva, tindrem f(a) < f(b) o f(a) > f(b); suposem f(a) < f(b). Aleshores f és estrictament creixent, ja que, prenent qualsevol parella de punts de l'interval, $c, d \in I$, c < d, es pot aplicar la propietat anterior als quatre punts $\{a, b, c, d\}$ (després d'ordenar-los), i sortirà necessàriament f(c) < f(d); si s'hagués suposat f(a) > f(b), aleshores f seria estrictament decreixent

□ Propietat de funció inversa

■ Sigui $f: I \subseteq \mathbb{R} \to J \subseteq \mathbb{R}$ una funció contínua i bijectiva. Aleshores la funció inversa $f^{-1}: J \subseteq \mathbb{R} \to I \subseteq \mathbb{R}$ és contínua

Demostració

- \square Com f és bijectiva, és estrictament monòtona; suposem que f és creixent. Aleshores f^{-1} també és estrictament creixent
- □ Sigui $b \in J$, $f^{-1}(b) = a \in I$, f(a) = b
- □ Donat ϵ volem δ tal que $\forall y$: $|y b| < \delta \Rightarrow |f^{-1}(y) a| < \epsilon$

□ Propietat de funció inversa

■ Sigui $f: I \subseteq \mathbb{R} \to J \subseteq \mathbb{R}$ una funció contínua i bijectiva. Aleshores la funció inversa $f^{-1}: J \subseteq \mathbb{R} \to I \subseteq \mathbb{R}$ és contínua

Demostració

- \square Com f és bijectiva, és estrictament monòtona; suposem que f és creixent. Aleshores f^{-1} també és estrictament creixent
- □ Sigui $b \in J$, $f^{-1}(b) = a \in I$, f(a) = b
- □ Donat ϵ volem δ tal que $\forall y$: $|y b| < \delta \Rightarrow |f^{-1}(y) a| < \epsilon$
- □ Com $a \epsilon < f^{-1}(y) < a + \epsilon$ i la funció f és estrictament creixent, tenim $f(a \epsilon) < y < f(a + \epsilon)$
- \square Per tant, $f(a \epsilon) \le b \delta < y < b + \delta \le f(a + \epsilon)$
- \square Aleshores, per $|y-b|<\delta$, estem segurs que $\left|f^{-1}(y)-a\right|<\epsilon$
- \square Si suposem que f és decreixent el resultat és equivalent

- □ Teorema de Weierstrass (o dels valors extrems)
 - Sigui $f:[a,b] \subset \mathbb{R} \to \mathbb{R}$ una funció contínua en un interval tancat i fitat. Aleshores, $\exists \alpha, \beta \in [a,b]$ tals que $m=f(\alpha)$, $M=f(\beta)$ i f([a,b])=[m,M]. És dir, m i M són respectivament el mínim absolut i el màxim absolut de f en l'interval [a,b]
 - En altres paraules, per a una funció contínua en un interval tancat i fitat, el seu recorregut també és un interval tancat i fitat.

□ Teorema de Weierstrass (o dels valors extrems)

- □ Teorema de Weierstrass (o dels valors extrems)
 - Esquema de la demostració
 - \square Es demostra primer que f([a,b]) és un interval fitat
 - \square Es pren el suprem: $M = \sup f([a, b])$
 - \square Es defineix una successió dins de f([a,b]) que convergeix a M
 - □ S'agafa la successió d'antiimatges dins de [a, b]
 - Com aquesta successió és fitada, conté una subseqüència convergent
 - \square Es pren el límit d'aquesta subseqüència, que està en [a,b], i que és igual a β
 - \square Com f és contínua, la imatge de β és M, i per tant el suprem és un màxim
 - □ Anàlogament es faria amb l'ínfim, per a veure que és un mínim