离散数学第十三次作业-偏序集与格

Problem 1

下面哪些是偏序集?

(a) $(\mathbb{Z}, =)$

(b) (\mathbb{Z}, \neq)

(c) (\mathbb{Z}, \geq)

(d) (\mathbb{Z}, \nmid)

答案:

(a) 是

(b) 不是

(c) 是

(d) 不是

Problem 2

对偏序集

 $(\{\{1\},\{2\},\{4\},\{1,2\},\{1,4\},\{2,4\},\{3,4\},\{1,3,4\},\{2,3,4\}\},\subseteq),$

回答下述问题.

- a) 求极大元素.
- b) 求极小元素.
- c) 存在最大元素吗? 如果存在请求出.
- d) 存在最小元素吗? 如果存在请求出.
- e) 求 {{2},{4}} 的所有上界.
- f) 如果存在的话, 求 {{2},{4}} 的最小上界.
- g) 求 {{1,3,4},{2,3,4}} 的所有下界.
- h) 如果存在的话, 求 {{1,3,4},{2,3,4}} 的最大下界.

答案:

a) $\{1,2\},\{1,3,4\},\{2,3,4\}$

- b) {1}, {2}, {4}
- c) 不存在
- d) 不存在
- e) $\{2,4\},\{2,3,4\}$
- f) $\{2,4\}$
- g) $\{3,4\},\{4\}$
- h) {3,4}

Problem 3

已知 A 是由 54 的所有因子组成的集合, 设 | 为 A 上的整除关系,

- (1) 画出偏序集 (A,|) 的哈斯图.
- (2) 确定 A 中最长链的长度, 并按字典序写出 A 中所有最长的链.
- (3) 试计算 A 中元素至少可以划分成多少个互不相交的反链, 并完整写出这些反链.

答案:

- 最长链长: 5.
- 最长链: {1,2,6,18,54}, {1,3,6,18,54}, {1,3,9,18,54}, {1,3,9,27,54}.
- 至少划分成 5 个互不相交的反链: {54}, {18,27}, {6,9}, {2,3}, {1}.

Problem 4

设 A 为集合, $B = \rho(A) \setminus \{\emptyset\} \setminus \{A\}$, 且 $B \neq \emptyset$. 求偏序集 (B, \subseteq) 的极大元, 极小元, 最小元.

答案: 因为 $B \neq \emptyset$, 所以 |A| > 1. 因此对任意 $x \in A$, $A \setminus \{x\}$ 都是极大元, $\{x\}$ 都是极小元, 无最小元.

Problem 5

证明: 长度为 mn+1 的偏序集存在大小为 m+1 的链或存在大小为 n+1 的反链.

答案: 若 X 的高度为 r, 宽度为 s. 根据 Dilworth 定理, X 可以划分为 r 个反链 C_1, C_2, \ldots, C_r . 并且有 $|C_1| + \cdots + |C_r| = |X|$. 因此 $|X| = |C_1| + \cdots + |C_r| \le sr$. 若 $s \le n$ 并且 $r \le m$, 则 $|X| \le mn < mn + 1$ 矛盾.

Problem 6

下图给出了6个偏序集的哈斯图. 判断其中哪些是格. 如果不是格, 请说明理由.

答案: 答案: (b),(d),(e) 不是格. 在 (b) 中 $\{d,e\}$ 没有最大下界. 在 (d) 中 $\{d,e\}$ 没有最大下界. 在 (e) 中 $\{a,b\}$ 没有最大下界.

Problem 7

针对 Problem 6 中的每个格, 如果格中的元素存在补元, 则求出这些补元.

答案:

- (a) a 与 d 互为补元, 其他元素没有补元;
- (c) a = f 互为补元, b 的补元是 c 和 d, c 的补元是 b 和 e, d 的补元是 b 和 e, e 的补元是 c 和 d.
- (f) a 与 f 互为补元, b 与 e 互为补元, c 与 d 没有补元.

Problem 8

说明 Problem 6 中的每个格是否为分配格、有补格和布尔格,并说明理由.

答案:

- (a) 是分配格, 因为任何链都是分配格. 不是有补格和布尔格, 因为 b 与 c 没有补元;
- (c) 不是分配格, 因为含有 5 元子格与五角格同构. 是有补格, 每个元素都有补元. 不是布尔格, 因为不是分配格.
- (f) 是分配格, 因为不含有与钻石格和五角格同构的子格. 不是有补格和布尔格, 因为 c 与 d 没有补元.

Problem 9

设 $\langle L, \wedge, \vee, 0, 1 \rangle$ 是有界格, 证明 $\forall a \in L$, 有

$$a \land 0 = 0, a \lor 0 = a, a \land 1 = a, a \lor 1 = 1$$

答案: $a \wedge 0 \leq 0, 0 \leq 0$, 且 $0 \leq a \Rightarrow 0 \leq a \wedge 0$, 根据反对称性 $a \wedge 0 = 0$. $a \leq a \vee 0, 0 \leq a$, 且 $a \leq a \Rightarrow a \vee 0 \leq a$, 根据反对称性 $a \vee 0 = a$. $a \wedge 1 \leq a, a \leq a$, 且 $a \leq 1 \Rightarrow a \leq a \wedge 1$, 根据反对称性 $a \wedge 1 = a$. $1 \leq a \vee 1, 1 \leq 1$, 且 $a \leq 1 \Rightarrow a \vee 1 \leq 1$, 根据反对称性 $a \vee 1 = 1$.

Problem 10

求证: 在格 $< L, \times, \oplus > \Phi$,若 $a \times (b \oplus c) = (a \times b) \oplus (a \times c)$,则 $a \oplus (b \times c) = (a \oplus b) \times (a \oplus c)$.

答案:证明:

$$(a \oplus b) \times (a \oplus c) = ((a \oplus b) \times a) \oplus ((a \oplus b) \times c)$$
$$= a \oplus (c \times (a \oplus b))$$
$$= a \oplus ((c \times a) \oplus (c \times b))$$
$$= (a \oplus (a \times c)) \oplus (b \times c)$$
$$= a \oplus (b \times c)$$