

Types of Errors

Types of Predicted Values

- Categorical like Yes/No, Purchased/Not Purchased and also other type of categorical values, not necessarily only binary. We use Classification Confusion Matrix for evaluation
- Numeric like Sales, Cost, Profit, Scores
 - We use RMSE, RMSPE, MAPE for evaluation

Categorical: Example

- Suppose that we have predicted a categorical variable named defaulter which has values as Y (Defaulter) and N (Not a Defaulter) on the validation dataset using a model built on training dataset
- Here, we term defaulter(Y) as positive class and non-defaulter(N) as negative class
- Say, the validation set has got some 30 values as

YNYNNNYYNNNYNNNNNYYNNNNNYY

Diagnosis

- In the following cases, we won't have errors:
 - We predict a defaulter as defaulter
 - We predict a non-defaulter as non-defaulter
- In the following cases we have errors:
 - We predict a defaulter as non-defaulter
 - We predict a non-defaulter as defaulter

Indicators Tabulated

	Actually a Defaulter (+ve class)	Actually a Non-Defaulter (-ve class)
Predicted as Defaulter	True +ve	False +ve
Predicted as Non- Defaulter	False –ve	True -ve

The Matrix shown above is called **Classification Confusion Matrix**

- TP True Positive: Correctly assigned observations to the positive class.
- TN True Negative: Correctly assigned observations to the negative class.
- **FP False Positive**: Wrongly assigned observations to the positive class. (Which actually belong to the negative class)
- **FN False Negative**: Wrongly assigned observations to the negative class. (Which actually belong to the positive class)

Classification Confusion Matrix

Sensitivity = TP / (TP + FN)

False Positive Rate = FP / (TN + FP)

	Actually a Defaulter (+ve class)	Actually a Non- Defaulter (-ve class)
Predicted as Defaulter	TP (Defaulter diagnosed as Defaulter)	FP (Non-Defaulter diagnosed as Defaulter)
Predicted as Non- Defaulter	FN (Defaulter diagnosed as Non-Defaulter)	TN (Non-Defaulter diagnosed as Non- Defaulter)

False Negative Rate = FN / (TP + FN)

Specificity= TN / (TN + FP)

Overall Prediction Correctness

ACC (Total Accuracy)

= P(correct prediction)

= number of correct decision/ total number of decisions

$$ACC = (TP + TN) / (TP + TN + FP + FN)$$

	Actually a Defaulter (+ve class)	Actually a Non- Defaulter (-ve class)
Predicted as Defaulter	TP (Defaulter diagnosed as Defaulter)	FP (Non-Defaulter diagnosed as Defaulter)
Predicted as Non- Defaulter	FN (Defaulter diagnosed as Non- Defaulter)	TN (Non-Defaulter diagnosed as Non-Defaulter)

Example

$$Accuracy = \frac{(7+16)}{(7+4+3+16)}$$

$$Sensitivity = \frac{7}{7+3}$$

$$Specificity = \frac{16}{16 + 4}$$

False Negative Rate =
$$\frac{3}{7+3}$$

False Positive Rate =
$$\frac{4}{4+16}$$

Receiver Operating Characteristic Curve

ROC Curve

What is ROC curve?

- Receiver operating characteristic (ROC), or ROC curve, is a graphical plot that illustrates the performance of a binary classifier algorithm.
- The curve is created by plotting the Sensitivity(Y axis) or true positive rate (TPR) against the (1 – Specificity) (X axis) or false positive rate (FPR) at various threshold settings.

ROC Curve

0 <= AUC <= 1
AUC = 0.5 for Random Guessing
= 1 for perfect classification
Usually,
AUC > 0.8 is considered as good

- The area is measured of lower right portion of the curve.
- That area is termed as AUC or area under the curve
- The area to be considered has been indicated by the coloured portion
- Bigger the AUC better is the model

From where did the ROC come from?

- The ROC curve was first developed by electrical engineers and radar engineers during World War II for detecting enemy objects in battlefields.
- They were building the "Chain Home" series of radar detectors to identify incoming German planes. But the radar detectors would also detect flocks of birds and other "false positive" signals.

6/5/2018

Origin of ROC

- The term "receiver operating characteristic" came from tests of the ability of World War II radar operators to determine whether a blip on the radar screen represented an object (signal) or noise.
- The science of "signal detection theory" was later applied to diagnostic medicine and later in the other branches of research and analysis.

6/5/2018

For Numeric / Continuous Response

- For numeric or continuous response variables we use the function postResample() which we will be covering in the subsequent sessions
- postResample() calculates Root Mean Square Error (RMSE)
- Other measures we calculate are
 - RMSPE (Root Mean Square Percentage Error)
 - MAPE (Mean Absolute Percentage Error)

Model Evaluation: RMSE

• RMSE : Root Mean Square Error

$$RMSE = \sqrt{\frac{\sum (y_i - \widehat{y}_i)^2}{n}}$$

where

 y_i = Observed Values

 \hat{y}_i = Predicted Values

n = No. of observations

Model Evaluation: MAPE

MAPE: Mean Absolute Percentage Error

$$MAPE = \frac{\sum \left| \frac{y_i - \widehat{y_i}}{y_i} \right|}{n}$$

Where

 y_i = Observed Values

 \widehat{y}_i = Predicted Values

n = No. of observations

Model Evaluation: RMSPE

- RMSPE: Root Mean Square Percentage Error
 - Often used at Kaggle competitions

RMSPE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{y_i} \right)^2}$$

Where

 y_i = Observed Values

 \widehat{y}_i = Predicted Values

n = No. of observations

Example

 Suppose that we have response variable from validation dataset with length 162 as validation\$price and we predict it based on a regression model built on a training dataset as pred.RT.

```
> RMSE <- function(y, yhat) {</pre>
    sqrt(mean((y - yhat)^2))
> RMSE(validation$price, pred.RT)
[1] 18090.74
> MAPE <- function(y, yhat) {
    mean(abs((y - yhat)/y))
+ }
> MAPE(validation$price , pred.RT)
[1] 0.2036191
 RMSPE<- function(y, yhat) {
    sqrt(mean((y-yhat)/y)^2)
+ }
> RMSPE(validation$price , pred.RT)
[1] 0.04037694
```

6/5/2018

Model Evaluation

 About MAPE, RMSE and RMPSE, only one criterion holds: Smaller their value, Better is the model prediction