

Forelesning nr.8 IN 1080 Elektroniske systemer

Dioder og felteffekt-transistorer

Dagens temaer

- Impedanstilpasning
- Dioder
- Likerettere og strømforsyninger
- Spesialdioder
- Dagens temaer er hentet fra kapittel 15.1-15.6

Impedanstilpasning

- Når man kobler sammen ulike kretser må man ta hensyn til en rekke faktorer
 - Hvilket spenningsnivå opererer de ulike kretsene på?
 - Hvilke strømstyrker trenger de/leverer de?
 - Hva slags inngangs- og utgangsimpedans er de laget for å fungere med?
 - Hva slags frekvensområder er de laget for?

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Eksempel

Supply Voltage: 5.0V, Ambient Temperature: 25°C (unless otherwise specified)

PARAMETERS	, MIN	TYP	MAX	UNITS
Recommended Excitation	Part of the same o	5		V
Full Scale Output Span	16	20	24	mV/V
Full Scale Output Span (200lbf)	34.2	36	37.8	mV/V
Zero Offset	-15		15	mV/V
Non-Linearity	-1		1	%FSO
Hysteresis	-0.80		0.80	%Span
Thermal Zero Shift	-0.05		0.05	%FSO / °C
Thermal Sensitivity Shift	-0.05		0.05	%FSO / °C
Insulation Resistance	50			ΜΩ
Maximum Overload		250		%FSO
Maximum Overload (200lbf)		150		%FSO
Operating Temperature	0		50	°C
Storage Temperature	-40		+85	°C
Creeping			0.5	%FSO
Zero Drift			0.5	%FSO
Zero Return	-0.8		8.0	%FSO
Span Repeat	-0.8		0.8	%FSO
Humidity	0	5	90	%R.H.
Deflection		0.05		mm
Span Compensation Resistor (10, 25, 50 100lbf)	The second second	464		Ω
Input Resistance	2.4	3	3.6	ΚΩ
Output Resistance	1.76	2.2	2.64	ΚΩ

FX1901 Compression Load Cell

At Rated Load

Halvledere

- Halvledere er ledere som under visse betingelser leder strøm, og under andre ikke
- Transistorer er halvledere som kan styres med en strøm eller spenning
- Dioder er halvledere som ikke kan styres
- For å forklare virkemåten til halvledere må man forstå begreper som
 - Ladingsbærere
 - Energibånd og valens
 - Majoritets- og minoritetsbærere

Halvmetaller og Halvledere?

- Halvmetaller kan brukes i halvledere
 - Kan finnes i flere former med forskjellige egenskaper
 - Eks Karbon...
 - Hvilke former kjenner vi?
 - I all hovedsak så brukes Silisium (Silicon) til chip'er, mens dioder gjerne kan bestå av flere typer.
 - Dette kan endre seg i fremtiden...
- Halvledere kan også være forbindelser av flere stoffer (også utenfor tabellen til høyre)

	Elements recognized as metalloids V·T·E								
	13	14	15	16	17				
2	В	С	N	О	F				
	Boron	Carbon	Nitrogen	Oxygen	Fluorine				
3	Al	Si	Р	S	CI				
	Aluminium	Silicon	Phosphorus	Sulfur	Chlorine				
4	Ga	Ge	As	Se	Br				
	Gallium	Germanium	Arsenic	Selenium	Bromine				
5	In	Sn	Sb	Te	1				
	Indium	Tin	Antimony	Tellurium	lodine				
6	TI	Pb	Bi	Po	At				
•	Thallium	Lead	Bismuth	Polonium	Astatine				
Commonly recognized (93%): B, Si, Ge, As, Sb, Te									
Irregularly recognized (44%): Po, At									
Less commonly recognized (24%): Se									
Rarely recognized (9%): C, Al									
Arbitrary metal-nonmetal dividing line: between									
Be and B, Al and Si, Ge and As, Sb and Te, Po and At									

Halvmetaller

kilde: Wikipedia 2018-03-05

https://en.wikipedia.org/wiki/Metalloid

Halvlederes oppbygging

- Halvledere er krystallinske materialer med spesielle energibånd for elektronene
- Krystaller består av grunnstoff hvor atomene knytter seg til hverandre og danner faste strukturer
- Silisium danner krystallstruktur med fem atomer, og hvert atom deler ett valenselektron med naboatomene

(a) The center silicon atom shares an electron with each of the four surrounding silicon atoms, creating a covalent bond with each. The surrounding atoms are in turn bonded to other atoms, and so on.

(b) Bonding diagram. The red negative signs represent the shared valence electrons.

7

Halvlederes oppbygging (forts)

- Elektronene i de ytterste banene har større energi enn de i indre baner, og kan lettere forlate atomet
- Hvis et elektron i et krystall forlater krystallet, oppstår en ledig plass som kalles for et hull
- Hullet kan senere fylles av et nytt elektron

Halvlederes oppbygging (forts)

 For å forlate valensbåndet kreves energi, mens det frigjøres energi hvis et elektron fanges inn av et ledig hull

Elektronstrøm og hullstrøm

 Hvis man setter på en spenning over et stykke silisium, vil elektronene bevege seg mot den positive polen og danner en elektronstrøm

 Hvis elektronene beveger seg mot høyre, vil hullene bevege seg mot venstre, og dette kalles for en hullstrøm

When a valence electron moves left to right to fill a hole while leaving another hole behind, the hole has effectively moved from right to left. Gray arrows indicate effective movement of a hole.

N- og P-type halvledere

- Ren silisium leder strøm dårlig på grunn av få frie elektroner
- Ved å tilsette urenheter
 (doping) bedres ledningsevnen
 ved at det blir flere frie
 elektroner eller hull
- Doping kan enten være av ntype eller p-type, avhengig av om man øker antall frie elektroner eller hull

a free electron.

N- og P-type halvledere (forts)

- Hvis det er mange flere frie elektroner enn hull, kalles elektronene for majoritetsbærere i N-type halvledere, og hullene er minoritetsbærere
- I P-type halvledere er det langt flere hull enn elektroner, og *hullene* er da *majoritetsbærere*, mens elektronene er *minoritetsbærere*

Dioder

- En diode leder strøm i bare én retning
- En diode består av en p-type og n-type halvleder som er festet til hverandre; i snittflaten oppstår det en pn-overgang
- Siden det ene området har overskudd av frie elektroner og det andre av hull, vil elektroner i overgangsområdet «vandre» over til den andre siden
 - n-siden får et lite overskudd av positiv ladning, mens psiden får overskudd av negativ ladning

Dioder (forts)

- Området hvor det er opphopning av elektron-hull kalles for et deplesjonsområde (tømt for frie elektroner)
- Deplesjonsområdet har en spenningsforskjell (potensialbarriere) på ca 0.7 volt (avhengig av dopingmaterialet)
- Animasjon deplesjonsområdet

Biasing (forspenning) av dioder

 Avhengig av polariteten til p-regionen i forhold til n-regionen vil dioden enten lede eller sperre for strøm

• Hvis p er mer positiv enn n-regionen (forover-modus), vil dioden lede strøm forutsatt at V_{bias} er større enn potensialbarrieren

Biasing (forspenning) av dioder (forts)

 Når dioden opererer i forover-modus, kan den modelleres som to motstander i serie med et batteri

Diode i revers-modus (sperre)

 Hvis p-regionen er mer negativ enn n-regionen, vil dioden være sperret (reverse bias)

 Animasjon av diodeforspenninger

(c) Majority current ceases when barrier potential equals bias voltage. There is an extremely small reverse current due to minority carriers.

Sammenbrudd

- Hvis dioden opererer i revers (sperre)-modus og spenningen øker til et visst nivå, vil noen elektroner i p-regionen få nok energi til å bryte deplesjons-barrieren
- Dette kan forårsake kollisjoner med andre elektroner i valensbånd, disse slås løs og kollidererer med andre elektroner
- Til slutt bryter strukturen sammen i en såkalt snøskredeffekt («avalanche»), og dioden leder strøm
- Vanlige dioder blir permanent ødelagt av dette, mens andre dioder (Zener-dioder) tåler å bryte sammen og sperrer på nytt når spenningen blir lavere enn breakdown-spenningen

Diodekarakteristikker

 Diodekarakteristikken beskriver strømmen gjennom dioden som funksjon av spenningen over den

. I forover-retningen går det nesten ikke strøm hvis spenningen er lavere enn $V_{\rm B}$

. I revers-retningen går det ikke strøm før V_{BR} nås

. $|V_{BR}|$ er typisk mye større enn $|V_{B}|$

Diodemodell

 En diode kan modelleres på flere måter, avhengig av hvor nøyaktig man trenger den

Den enkleste modellen antar at dioden er en bryter av/på ved 0 volt

En mer realistisk modell inkluderer barrierespenningen i foroverretningen

En enda mer komplett modell inkluderer motstand i forover-retningen, eventuelt også i reversretningen

Diodemodell (fortsatt)

 Modellering av strømmen i sperre-modus (returretningen)

Spesialdioder

 En Zener-diode tåler høy revers-spenning uten å ødelegges og er konstruert for å jobbe i break-down

Zener-dioden brukes ofte for å lage en spenningsreferanse

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Spesialdioder (forts)

- En LED gir fra seg synlig lys når den opererer i foroverretningen
- Avhengig av halvledermaterialet og doping kan man produsere lysdioder i mange ulike farger

LED begynner å lyse når spenningen over den er > V_d V_B (kalt V_d for LED) er typisk >2v

Fotodioder

 En fotodiode opererer i revers-modus og vil lede en strøm som er proporsjonal med lyset som treffer den: Lyset tilfører energi som øker reversstrømmen

Bruk av dioder: Likerettere

- Ofte trenger man å konvertere en vekselspenning/strøm til en likespenning/strøm, f.eks i strømforsyningerer
- Dioder er essensielle i alle former for likerettere
- Den enkleste formen for likeretter er en halvbølgelikeretter

(a) Half-wave rectifier circuit

(b) Operation during positive alternation of the input voltage

(c) Operation during negative alternation of the input voltage

(d) Half-wave output voltage for three input cycles

Halvbølgelikeretter

 Den gjennomsnittlige utspenningen fra en halvbølgelikeretter er

$$V_{AVG} = \frac{V_{P(OUT)}}{\pi}$$

- Den maksimale utspenningen er gitt av $V_{AVG} = \frac{V_{P(IN)} 0.7v}{\pi}$
- Tar man hensyn til spenningsfallet over dioden blir utspenningen $V_{p(out)} = V_{P(IN)} 0.7v$

Fullbølgelikeretter

- Halvbølgelikeretteren er lite anvendelig siden den fjerner halve signalperioden – kun halvparten av signalet benyttes
- Fullbølgelikeretteren «snur» den negative halvperioden og gjør den positiv, og den gjennomsnittlige utspenningen er det dobbelte av halvbølgelikeretterens

$$V_{AVG} = \frac{2V_{P(OUT)}}{\pi}$$

Fullbølgelikeretter (forts)

 Fullbølgelikerettere konstrueres enkelt hvis man har en transformator med to utganger som er forskjøvet 180 grader i forhold til hverandre

Fullbølgelikeretter (forts)

- I den ene halvperioden leder den ene dioden mens den andre sperrer
- Når polariteten snur sperrer den første mens den andre leder

(a) During positive half-cycles, D_1 is forward-biased and D_2 is reverse-biased.

(b) During negative half-cycles, D_2 is forward-biased and D_1 is reverse-biased.

Brolikeretter (forts)

 Hvis det ikke er praktisk å hente ut separate halvbølger med motsatt polaritet fra en strømforsyning, kan man bruke en brolikeretter

(a) During positive half-cycle of the input, D₁ and D₂ are forward-biased and conduct current. D₃ and D₄ are reverse-biased.

(b) During negative half-cycle of the input, D₃ and D₄ are forward-biased and conduct current. D₁ and D₂ are reverse-biased.

Strømforsyninger

- Selv om en fullbølgelikeretter er mer effektiv enn halvbølge-likeretter, kan den ikke alene brukes som DC-forsyningsspenning
- Ved å koble til et filter på utgangen av fullbølge-likeretteren får man en spenning med mindre variasjon

06.03.2018

Strømforsyninger (fortsatt)

 Fullbølgelikerettere er bedre enn halvbølgelikerettere fordi det er mindre spenningsvariasjon som skal glattes ut

Strømforsyninger (fortsatt)

- Ved å koble inn en kondensator kan man glatte ut variasjonen i utgangssignalet
- I tillegg kan man sette inn regulatorer som kompenserer for temperatur, last og variasjon i input-spenning
- Lysdimmere kan lages ved å kutte ut kortere eller lengre deler av sinussignalet på inngangen

(a) Initial charging of capacitor (diode is forward-biased) happens only once when power is turned on.

(b) The capacitor discharges through R_L after peak of positive alternation when the diode is reverse-biased. This discharging occurs during the portion of the input voltage indicated by the solid dark blue curve.

(c) The capacitor charges back to peak of input when the diode becomes forward-biased. This charging occurs during the portion of the input voltage indicated by the solid dark blue curve. Det matematisk-naturvitenskapelige fakultet

Nøtt til neste gang

Hvilke Boolske funksjoner utfører de to kretsene?

UiO Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Oppsummeringsspørsmål

