Multi. Stat. HW1

赵浩宇 2016012390

1 Problem 1

If we let the distribution to be N(0,1), the percentage the the data that lies outside the outside bars is about to be 0.7%.

Proof.

$$Q_3 = \Phi^{-1}(0.75) \approx 0.6745$$

 $Q_1 = -Q_3 \approx -0.6745$
 $IQR = Q_3 - Q_1 \approx 1.349$
 $upper_outlier = Q_3 + 1.5 \cdot IQR$
 $= 0.6745 + 1.5 \times 1.349$
 $= 2.698$

So the portion that is bigger than the upper outside bar is about

$$1 - \Phi^{-1}(2.7) \approx 0.0035$$

 ≈ 2.7

So the portion that lie outside the outside bars should be about $0.007 \approx 0.7\%$.

If the data follow the distribution $N(0, \sigma^2)$, then the portion should also be about 0.7%. We can get the data following the distribution $N(0, \sigma^2)$ by multiplying the standard normal distribution by σ , and the quantiles, IQR, and the value of the outside bars are also multiplied by σ after doing the transformation. The data follows $N(0, \sigma^2)$ that lies outside the outside bars also lies outside the outside bars (of the dist. N(0,1)) when it is devided by σ , so the percentage of data that lies outside the outside bars in this problem is the same as the previous problem.

2 Problem 2

b.

The figure above is the matrix scatter plots for the first five variables.

c. The correlation matrix with 4 digits is showned below.

> round	(cor(data	1),4)												
	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	lstat	medv
crim	1.0000	-0.2005	0.4066	-0.0559	0.4210	-0.2192	0.3527	-0.3797	0.6255	0.5828	0.2899	-0.3851	0.4556	-0.3883
zn	-0.2005	1.0000	-0.5338	-0.0427	-0.5166	0.3120	-0.5695	0.6644	-0.3119	-0.3146	-0.3917	0.1755	-0.4130	0.3604
indus	0.4066	-0.5338	1.0000	0.0629	0.7637	-0.3917	0.6448	-0.7080	0.5951	0.7208	0.3832	-0.3570	0.6038	-0.4837
chas	-0.0559	-0.0427	0.0629	1.0000	0.0912	0.0913	0.0865	-0.0992	-0.0074	-0.0356	-0.1215	0.0488	-0.0539	0.1753
nox	0.4210	-0.5166	0.7637	0.0912	1.0000	-0.3022	0.7315	-0.7692	0.6114	0.6680	0.1889	-0.3801	0.5909	-0.4273
ГM	-0.2192	0.3120	-0.3917	0.0913	-0.3022	1.0000	-0.2403	0.2052	-0.2098	-0.2920	-0.3555	0.1281	-0.6138	0.6954
age	0.3527	-0.5695	0.6448	0.0865	0.7315	-0.2403	1.0000	-0.7479	0.4560	0.5065	0.2615	-0.2735	0.6023	-0.3770
dis	-0.3797	0.6644	-0.7080	-0.0992	-0.7692	0.2052	-0.7479	1.0000	-0.4946	-0.5344	-0.2325	0.2915	-0.4970	0.2499
rad	0.6255	-0.3119	0.5951	-0.0074	0.6114	-0.2098	0.4560	-0.4946	1.0000	0.9102	0.4647	-0.4444	0.4887	-0.3816
tax	0.5828	-0.3146	0.7208	-0.0356	0.6680	-0.2920	0.5065	-0.5344	0.9102	1.0000	0.4609	-0.4418	0.5440	-0.4685
ptratio	0.2899	-0.3917	0.3832	-0.1215	0.1889	-0.3555	0.2615	-0.2325	0.4647	0.4609	1.0000	-0.1774	0.3740	-0.5078
black	-0.3851	0.1755	-0.3570	0.0488	-0.3801	0.1281	-0.2735	0.2915	-0.4444	-0.4418	-0.1774	1.0000	-0.3661	0.3335
lstat	0.4556	-0.4130	0.6038	-0.0539	0.5909	-0.6138	0.6023	-0.4970	0.4887	0.5440	0.3740	-0.3661	1.0000	-0.7377
medv >	-0.3883	0.3604	-0.4837	0.1753	-0.4273	0.6954	-0.3770	0.2499	-0.3816	-0.4685	-0.5078	0.3335	-0.7377	1.0000

3 Problem 3

Proof.

$$r_{xy} = \frac{1}{n} \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{s_x \cdot s_y}$$

According to the conditions, the data was changed linearly, and the standard deviation is multiplied by a coefficient, we can get:

$$s_i = ax_i + b$$

$$t_i = cy_i + d$$

$$\overline{s} = a\overline{x} + b$$

$$\overline{t} = c\overline{y} + d$$

$$s_s = as_x$$

$$s_t = cs_y$$

Then we can get:

$$r_{st} = \frac{\sum_{i=1}^{n} (s_i - \overline{s}) (t_i - \overline{t})}{n \cdot s_s \cdot s_t}$$

$$= \frac{\sum_{i=1}^{n} (ax_i + b - a\overline{x} - b) (cy_i + d - c\overline{y} - d)}{n \cdot a \cdot s_x \cdot c \cdot s_y}$$

$$= \frac{1}{n} \frac{\sum_{i=1}^{n} a \cdot (x_i - \overline{x}) \cdot c \cdot (y_i - \overline{y})}{a \cdot s_x \cdot c \cdot s_y}$$

$$= \frac{1}{n} \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{s_x \cdot s_y}$$

$$= r_{xy}$$

So the linear transformation does not change the sample correlation.

Problem 4

2.8

The characteristic polynomial of the matrix is

$$f(\lambda) = (1 - \lambda)(-2 - \lambda) - 2^2$$
.

Set $f(\lambda) = 0$ and we can get the root of $f(\lambda)$,

$$\lambda_1 = 2, \lambda_2 = -3.$$

Let

$$\mathbf{e}_1 = \begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} \frac{1}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} \end{bmatrix}$$

We can see that

$$Ae_1 = \lambda_1 e_1, Ae_2 = \lambda_2 e_2, ||e_1|| = ||e_2|| = 1,$$

So \mathbf{e}_1 and \mathbf{e}_2 are 2 normalized eigenvectors of \mathbf{A} . And according to the sqectual theorem,

$$A = \lambda_1 \mathbf{e}_1 \mathbf{e}_1^T + \lambda_2 \mathbf{e}_2 \mathbf{e}_2^T = 2 \begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \end{bmatrix} - 3 \begin{bmatrix} \frac{1}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}} \end{bmatrix}.$$

2.9

a.

$$B = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{6} \end{bmatrix}$$

Then we can find that AB = BA = I, so $A^{-1} = B$.

$$S = \begin{bmatrix} \mathbf{e}_1, \mathbf{e}_2 \end{bmatrix}, \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}, \Sigma^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} \end{bmatrix}.$$

Then we have $A = S\Sigma S^{-1}$. Because $S\Sigma S^{-1}S\Sigma^{-1}S^{-1} = S\Sigma\Sigma^{-1}S^{-1} = I$, we can know that $A^{-1} = S\Sigma^{-1}S^{-1}$, so the eigenvalues of A^{-1} is,

$$\mu_1 = \frac{1}{2}, \mu_2 = -\frac{1}{3}.$$

And the normalized eigenvectors remain the same as the eigenvectors of A, so

$$v_1 = e_1, v_2 = e_2.$$

C.

Write the matrix A^{-1} by spectral theorem,

$$A^{-1} = \mu_1 \mathbf{v}_1 \mathbf{v}_1^T + \mu_2 \mathbf{v}_2 \mathbf{v}_2^T = \frac{1}{2} \begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \end{bmatrix} - \frac{1}{3} \begin{bmatrix} \frac{1}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}} \end{bmatrix}.$$

2.15

The quadratic form

$$\mathbf{Q} = \mathbf{x}^T \mathbf{A} \mathbf{x}, \mathbf{x}^T = \begin{bmatrix} x_1, x_2 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$

We can compute the eigenvalues of \mathbf{A} ,

$$\lambda_1 = 4, \lambda_2 = 2.$$

The eigenvalues of the matrix is all positive, so it's positive definite.