

INFORME ACR DESMONTE Y CORTE DE CADENA DE ARRASTRE DEL REDLER DE EVACUACIÓN DE **ESCORIA LAUTARO 2(L2) COMASA SPA**

LAUTARO – CHILE

Rev.

Febrero 2024

	Elaborado Por:	Revisado por;	Aprobado por:
Nombre	Landerson Laborit		
Fecha	13/02/2024		
Firma			
Control de Rev./Versión.			

CÓDIGO: INF-I&P-MAN-2403-00

NUMERO DE PAGINA 2 de 29

INGENIERÍA Y PROYECTO

CONTENIDO

1.	ANTEC	CENTES	3
2.	DESCR	RIPCIÓN DEL PROCESO	4
	2.1.	Principios de funcionamiento	4
	2.2.	Fallos de funcionamiento, causas y soluciones	5
	2.3.	Especificaciones técnicas (contexto operacional)	6
3.	DESCR	RIPCIÓN DE LOS HECHOS	11
4.	AFECT	ACIÓN	11
5.	EQUIP	O NATURAL DE TRABAJO (ENT)	11
6.	DOCU	MENTOS RECABADOS	13
7.	ANÁLI	SIS CAUSA RAÍZ	14
	7.1.	Árbol lógico de falla	16
	7.2.	Determinación causa raíz	17
	7.3.	Validación de hipótesis	20
	7.4.	Causa raíz determinada	21
8.	CONC	LUSIONES	21
9.	RECO	MENDACIONES	23
	9.1.	Instalación de bomba en la zona de succión de Redler	24
	9.2.	Limpieza del precalentador aire – vapor	24
	9.3.	Inspecciones visuales del redler	25
	9.4.	Análisis de actividades diarias para determinar matrices de riesgo	26
	9.5.	Supervisión directa de un operador líder	26
10.	JERAR	QUIZACIÓN DE RECOMENDACIONES	26
11.	TIEMP	O DE EJECUCIÓN	28
12	ANEV	OC DEL EVENTO	20

	CÓDIGO:
ANÁLISIS CAUSA - RAÍZ	INF-I&P-MAN-2403-00
	NUMERO DE PAGINA
INICENIEDÍA V DDOVECTO	3 do 20

1. ANTECEDENTES

El Redler de evacuación de escoria se encuentra ubicado en la salida de la unidad generadora 2, lado galpón de cascarilla, debajo de la boca de salida de las parrillas.

Durante los meses de enero y febrero del año 2024 se han presentado seis (6) eventos de prioridad P1 (Emergencia):

Evento 538 (08/01/2024) "cadena de arrastre desmontada, redler evacuación de escoria L2", mecánico aborda el evento montando la cadena de arrastre, se observó guía de deslizamiento levantada en el lado conducido, operaciones bajó la generación a 7.5 MW, esto tratando de generar condiciones seguras para el trabajo.

Evento 676 (19/01/2024) "se corta cadena, redler de evacuación de escoria L2", mecánico repara cadena, cambian dos (2) eslabones quebrados, reparan guía de salida, se cambian paletas torcidas y se sueldan soporte de paletas que se habían quebrado, esto se debe a que ingresó un tubo de 2" desde el desmenuzador al redler y afectó la operatividad del activo, sacándolo de sincronismo.

Evento 616 (21/01/2024) "Cadena desmontada y rotura de brazo tensor, redler evacuación de escoria", departamento mecánico realiza trabajos para montar cadena de arrastre, se desmonta brazo tensor de sprocket conducido para reparación en maestranza. Durante el mantenimiento la unidad generadora salió de sincronismo.

Evento 636 (23/01/2024) "Cadena desmontada lado conducido, redler evacuación de escoria", departamento mecánico monta cadena en sprocket tensor. Durante el mantenimiento hubo limitación de carga.

Evento 662 (28/01/2024) "Cadena de arrastre desmontada, redler evacuación de escoria L2", departamento mecánico monta cadena de arrastre informando que el exceso de material se acumula en los sprocket conducido y motriz, esto hace que se desmonte la cadena. Durante el mantenimiento se disminuyó la generación de mw.

ANÁLISIS CAUSA - RAÍZ

CÓDIGO: INF-I&P-MAN-2403-00 NUMERO DE PAGINA

INGENIERÍA Y PROYECTO

4 de 29

Evento 714 (02/02/2024) "Se corta cadena del redler, redler evacuación escoria L2", se desmontan las dos cadenas del redler por acumulamiento de material, departamento mecánico procede a montar las cadenas rompiéndose un eslabón, se procedió a cambiar dos eslabones y se montan ambas cadenas. Durante el mantenimiento la unidad generadora salió de sincronismo.

2. DESCRIPCIÓN DEL PROCESO

2.1 PRINCIPIOS DE FUNCIONAMIENTO

El transportador de cadena modelo TC – 135/80-2-I, se compone de una cadena de dos ramales, cuya forma y material depende de las características físicas del material que se desea transportar, que se deslizan dentro de una carcasa metálica.

La cadena es movida mediante una corona dentada que es accionada por un motor – reductor eléctrico situado fuera de la caja y en uno de sus extremos. Este módulo se denomina módulo motriz.

El material es empujado hacia delante con dirección a la descarga siguiendo la dirección del ramal de arrastre de cadena. Una vez realizada la descarga del material, la cadena se desliza hasta el extremo opuesto de la cadena, denominado modulo tensor. En el módulo tensor se encuentra el sistema de engrase centralizado del dispositivo tensor. Este dispositivo es programable.

El transportador está dotado de sensores que controlan la rectitud de las palas arrastradores, dando una señal de aviso en caso necesario para detener el equipo.

	CÓDIGO:
ANÁLISIS CAUSA - RAÍZ	INF-I&P-MAN-2403-00
	NUMERO DE PAGINA
INGENIERÍA Y PROYECTO	5 de 29

2.2 FALLOS DE FUNCIONAMIENTO, CAUSAS Y SOLUCIONES

En la tabla siguiente, se indican una serie de problemas, razonablemente previsibles, que puede obstaculizar el funcionamiento correcto de la maquinaria suministrada.

Para cada problema se supone, se suponen las causas y se sugieren para cada una de ellas las intervenciones para su solución.

PROBLEMA	CAUSA	SOLUCIÓN	
El material no descarga uniformemente	No se trasmite movimiento a la cadena	Comprobar el motor - reductor y los componentes de transmisión	
E material no desealiga dimonnemente	Palas de arrastre deterioradas o inexistentes	Comprobar las palas de arrastre	
Defecto en el arrastre de material	Perdida de tensión de la cadena de arrastre	Revisar circuito neumático. Revisar presión y caudal de suministro	
	Acumulación no deseada de material	Limpieza interior de la carcaza	
	Excesiva tensión de la cadena de arrastre	Controlar la tensión de la cadena de arrastre y la	
Calentamiento anormal de rodamientos de trasmisión	Desalineación de las coronas dentadas	alineación de las coronas dentadas	
de trasmision	Excesiva resistencia de la cadena a la traslación	Controlar alineación de las coronas dentadas, desplazamiento y engrane de la cadena de arrastre.	
El térmico del motor eléctrico salta	El material está obstruyendo la cadena	Despejar la carcasa y restaurar la tensión	
	Desgaste de la pletina de rodadura del carril guía	Sustituir la pletina	
	Desgaste de los eslabones de la cadena de arrastre	Sustituir los eslabones deteriorados o según sea el caso la cadena completa	
Ruidos anormales durante el arrastre	Desalineación de los módulos de transporte	Controlar la alineación de los módulos	
	Perdida de tensión de la cadena de arrastre	Revisar circuito neumático del brazo tensor. Revisar presión y caudal de suministro.	
	Fallo en el sistema de engrase del eje de reenvío	Comprobar el sistema de engrase del casquillo de bronce y el estado del mismo	
	Los tornillos de unión de los módulos están flojos	Controlar apriete de los tornillos de unión de los módulos	
Vibraciones anormales	Defectos de soportación de los módulos	Verificar los puntos de soportación del redler y el terreno	

CÓDIGO: INF-I&P-MAN-2403-00

NUMERO DE PAGINA 6 de 29

INGENIERÍA Y PROYECTO

2.3 ESPECIFICACIONES TÉCNICAS (CONTEXTO OPERACIONAL)

En este ítem se informará sobre las características operacionales del activo y sus parámetros de funcionamiento adecuado.

CÓDIGO: INF-I&P-MAN-2403-00 NUMERO DE PAGINA

INGENIERÍA Y PROYECTO

7 de 29

CARACTERÍSTICAS DEL EMPLAZAMIENTO	O.F.: 12288-01-01-01
Presión absoluta:	0,8 1 bar
Temperatura:	-10°C 40°C
Humedad:	
Clasificación de zonas s/Directiva ATEX: Observaciones:	No clasificada. (Zona NO ATEX)
Atención!!!, este equipo no puede ser emplazado en zonas poten	cialmente explosivas.
CARACTERÍSTICAS DEL MATERIAL TRANSPORTADO	
Descripción:	Cenizas y escorias húmedas.
Densidad:	
Humedad:	
Temperatura:	
Tamaño del grano:	
Combustibilidad (BZ)	
Límite inferior de explosividad (LIE)	
Limite superior de explosividad (LSE)	
Presión máxima de explosión (Pmáx)	
Constante Kst	
Clase	
Energía mínima de ignición (EMI)	
Temperatura mínima de ignición en nube de polvo (TMI _{nube})	
Temperatura mínima de Ignición en capa de polvo de 5 mm(TM mm)	Als
Resistividad	
Observaciones: Atención!!!, las sustancias cuyos parámetros se encuentren fuera manejadas por la máquina. 1: Fracción de gruesos.	de los límites establecidos no podrán ser
CARACTERÍSTICAS TÉCNICAS	
Capacidad máxima¹(coef. llenado 100%):	5000 Kg/h.
Velocidad de transporte:	1,8 m/min.
Potencia instalada:	4 CV/ 3 kW.
Suministro eléctrico:	400 V/ 50 Hz.
Nivel de presión acústica ponderado¹ A:	<70 db (A).
Clasificación de zonas s/Directiva ATEX:	Interior: no clasificado. Exterior: no clasificado.
Observaciones: (1): consultar apartado 5.1 de Manual de instrucciones.	

CÓDIGO: INF-I&P-MAN-2403-00

NUMERO DE PAGINA 8 de 29

INGENIERÍA Y PROYECTO

ELEMENTOS INCORPORADOS			O.F.: 12288-01-01-01		
N.º	Uds.	. Denominación	Fabricante/ modelo	Se recomienda repuesto	
1	1	MOTOR-REDUCTOR-PLANETARIO 4 CV/ 3 kW; 1455/41/1 rpm; 230/400 V; 50 Hz.	SEW EURODRIVE PFH012/TKF77DRP112M4/C/ N.º 01.1888076401.0001.13	×	
2	2	SOPORTE-RODAMIENTO Ø=150 mm	ISB SD 3034	Х	
	1+1	SOPORTE	ISB UCF-216	X	
3	1+1	RODAMIENTO	ISB 23034 KC3 CA W33	X	
	1+1	MANGUITO	ISB H-3034	X	
	1+1	OBTURACIÓN DE FIELTRO	ISB TF-3034	X	
	11	ANILLO	ISB SR 260x10	X	
4	2+2	RUEDA DENTADA MCV 14226/13CS S/P. 16.023.0000197	OÑAZ art. 1011-160230000197	×	
5	2	CADENA DE ESLABON FORJADO TIPO 14226/142263 MN; L= 36,016 metros. S/P. A0001.16.023.000004	OÑAZ art. 0401CADENA-14226		
6	51	PALA DE ARRASTRE S/P. A0001.16.023.000004	OÑAZ art.	×	
17	3	DETECTOR INDUCTIVO	IFM IIC219 X		

Observaciones: Lado motor.

CÓDIGO: INF-I&P-MAN-2403-00 NUMERO DE PAGINA

INGENIERÍA Y PROYECTO

9 de 29

N.º	Uds.	Denominación	O.F.: 12288-01-01-01 Fabricante/ modelo	Se recomienda repuesto
7	2	CASQUILLO DE BRONCE S/P. 16.023.0000133	OÑAZ art. 1002-160230000133	х
8	1	BOMBA CON PROGRAMADOR. ENGRASE AUTOMÁTICO	WOERNER W-GMG- B.B/4P/C/0/A/16/0/C2/3/0	х
9	1	DISTRIBUIDOR PROGRESIVO. ENGRASE AUTOMÁTICO	INTZA VP33/B-1/4-55/L2020-R0202	х
10	1+1	CILINDRO ISO/VDMA Ø125x320 mm.	SMC CP96 SDB125-320	X
11	1+1	SILENCIADOR tamaño 40	SMC AN40-04	X
12	1	FILTRO/ REGULADOR 5µ a ¼* C/MANÓMETRO	SMC AW20-F02E	х
13	1	VÁLVULA DE 3 VÍAS tamaño 20 a 1/4"	SMC VHS20-F02	X
14	1	SILENCIADOR tamaño 10	SMC AN10-01	X
15	1	NIVEL DE AGUA	JOLA NVM/PP/B	X
16	3	INTERRUPTOR MAGNÉTICO 24 VDC	JOLA HMW/3/32	X
		MÔDULO TENSO SECCIÓN A-A		

Observaciones:

CÓDIGO: INF-I&P-MAN-2403-00

NUMERO DE PAGINA

10 de 29

INGENIERÍA Y PROYECTO

REGISTROS DE INSPECCIÓN Y ENSAYO				O.F.: 12288-01-01-01		
Registro	Especificación	Resultado	Decisión		Firma y fecha:	
Registro	Lapecinicación		Aceptar	Rechazar	I lillia y locila.	
Dimensiones ¹ : (1) Autoverificación en construcción mediante flexómetro Clase II.	S/P A0001.16.023.0000000 EN 13920 B		ок		16-10-13	
Giro cadena:	Comprobar que gira sin agarrotamiento.		ок		6-16-10-13	
Consumo del motor en vacío:	Nominal ± (-Y ₁ 2A)	218. A	ок	-	17-17-10-B	

Observaciones:

Cotas [mm].

CUADRO DE TOLERANCIAS. Clase EN 13920 B

2 a 30	>30 a 120	>120 a 400	>400 a 1000	>1000 a 2000	>2000 a 4000	>4000 a 8000
+1	+2	±2	±3	±4	±6	±8

	CÓDIGO:
ANÁLISIS CAUSA - RAÍZ	INF-I&P-MAN-2403-00
	NUMERO DE PAGINA
INGENIERÍA Y PROYECTO	11 de 29

3. DESCRIPCIÓN DE LOS HECHOS

El día 02/02/2024 a las 14:05 se informa redler de evacuación de escoria en secuencia de desatasco, informándose a mecánico.

El día 02/02/2024 a las 14:26 mecánico informa que están desmontadas las cadenas, se inician trabajos para reparar.

El día 02/02/2024 a las 15:51 departamento mecánico inicia con el montaje de la cadena rompiéndose un eslabón de la cadena derecha.

El día 02/02/2024 a las 20:00 departamento mecánico normaliza el redler de evacuación de escoria quedando operativo.

4. AFECTACIÓN

El desmontaje de las dos cadenas del redler producto de la acumulación excesiva de material inquemado y el rompimiento de un eslabón al momento de montar la cadena trajo como consecuencia la salida de sincronismo de la unidad. Durante este proceso la operación se detuvo aproximadamente seis (6) horas.

5. EQUIPO NATURAL DE TRABAJO (ENT)

El equipo de trabajo encargado de analizar este evento en particular estuvo compuesto por personal del departamento de operaciones, departamento eléctrico, departamento mecánico, planificación, proyecto, confiabilidad y Gerente de O&M.

CÓDIGO: INF-I&P-MAN-2403-00 NUMERO DE PAGINA

INGENIERÍA Y PROYECTO

JMERO DE PAG 12 de 29

No.	Nombre	Cargo	Firma
1	M. ESCOMAN ON	Sub Generit	
2	DANINO CONTREDAS A.	JEFE ELEGIRO CONTROL	Shorts
3	Wortin Fromow M.	planificados	1
4	Angel Martinez Q.	Planifica Cor	Addition
5	Velsan Feerunse 27	Ing Manten nieu	
6	Landerson A Laborit	Ing de Confiabilidad	fob. It
7	Evans Meneing.	Jore Montenimiento	
8			
9			A
10			
11	hanis Quiz A	PROJECTOS DE JENDO.	

	CODIGO:
ANÁLISIS CAUSA - RAÍZ	INF-I&P-MAN-2403-00
	NUMERO DE PAGINA
INGENIERÍA Y PROYECTO	13 de 29
·	·

6. DOCUMENTOS RECABADOS

RESUMEN TURNO DE OPERACIONES 02/02/2024

RESUMEN TURNO OPERACIONES CENTRAL COMASA UNIDAD 1 y 2 Rev. 1

Página 2 de 4

				•	
PERMISO DE TRABAJO SEGURO					
TIPO PERMISO	Nº PERMISO	UNIDAD	NOMBRE (TRABAJO A REALIZAR)	AREA EJECUTORA	ESTADO
Sin información					

NOVEDADES

		LAUTARO 1	
02/02/2024	08:15	Se agrega 1/2 de cloro a torres de enfriamiento.	
02/02/2024	09:00	En servicio patio biomasa, mezcla lado norte: 2 cascarilla, 2 astilla, 2 aserrí	
		mezcla lado sur : 2 cascarilla 2 aserrín, 2 corteza de pino más triturado de bandit.	
02/02/2024	09:29	Llamado de CEN para pruebas de comunicación línea principal y respaldo sin	
		novedad.	
02/02/2024	10:09	Se deja fuera de servicio 50-BO-11.	
02/02/2024	13:10	CEN solicita bloque No 2.	
02/02/2024	16:27	Bombas pozos en modo automático.	
02/02/2024	16:52	CEN solicita Lautaro 1 a mínimo técnico, Sergio Briceño.	
02/02/2024	19:46	CEN solicita bloque Nº 2.	
02/02/2024	20:00	Se recibe central en 20,2 MW despachada en bloque N° 2.	
02/02/2024	21:00	Se agrega 1/2 kg de cloro a torres.	
02/02/2024	22:00	Se detiene patio biomasa, silo lleno.	
03/02/2024	00:20	Mecánico reaprieta sellos accionamiento de parrillas.	
03/02/2024	01:34	Se aprecia en terreno parrilla Nº 2 detenida, se solicita apoyo a mecánico.	
03/02/2024	01:40	En servicio parrilla Nº 2, conector de electroválvula en unidad hidráulica se	
		encontraba suelto.	
03/02/2024	04:50	Mecánico repone paleta suelta en 30-RD-01.	
		LAUTARO 2	
02/02/2024	08:00	Se recibe central en 19,9 MW despachada en mínimo técnico.	
02/02/2024	08:08	Se agrega 1/2 kg de cloro a piscina torres.	
02/02/2024	10:00	Se detiene y se bloquea soplador 25-VE-48 para reparación de rotura.	
02/02/2024	12:37	Matias Sandoval entrega trabajos en 25-VE-48.	
02/02/2024	13:10	CEN solicita bloque No 1.	
02/02/2024	14:05	Redler en secuencia de desatascos, se avisa a mecánico.	
02/02/2024	14:26	Mecánico indica que está desmontada la cadena, se inician trabajos para reparar.	
02/02/2024	14:42	CEN solicita bloque No 2.	
02/02/2024	15:51	Mecánico indica que se corta cadena de redler.	
02/02/2024	16:02	Filtro de mangas a modo by pass.	
02/02/2024	16:37	Se llama al despacho para pronta salida de central.	
02/02/2024	17:36	Se descarga generador.	
02/02/2024	19:15	Se envía curso forzoso.	
02/02/2024	20:00	Se recibe central detenida por curso forzoso Nº 2024011604, reparación cadena	
		transporte inquemados 35-RD-01, caldera en 10 bar.	
02/02/2024	20:20	En servicio línea central.	

CÓDIGO: INF-I&P-MAN-2403-00

NUMERO DE PAGINA 14 de 29

INGENIERÍA Y PROYECTO

RESUMEN TURNO OPERACIONES CENTRAL COMASA UNIDAD 1 y 2 Rev. 1

Página 3 de 4

		1 agina 5 de 4	
02/02/2024	22:10	Caldera en 60 bar, se mantendrá por 30 minutos según curva de partida.	
02/02/2024 22:40 Se continúa con curva de partida caldera.			
02/02/2024 23:00 Se comienza con preparativos equipos turbina.			
02/02/2024	23:48	Reset turbina.	
02/02/2024	23:51	Start turbina.	
02/02/2024	23:53	Se informa a CEN próxima sincronización, Ariel Alegría.	
03/02/2024	00:12	Turbina a velocidad nomial.	
03/02/2024	00:23	Se realiza sincronismo, se informa a CEN, Juan Monardez.	
03/02/2024	01:38	Filtro de mangas en línea, central a plena carga, se informa a CEN, Cristian	
I		Ulloa.	
03/02/2024	01:20	Se agrega 1/2 kg de cloro a torres.	
		Se cancela curso forzoso Nº 2024011604, central queda despachada en bloque	
I		N° 2, Cristian Ulloa.	
03/02/2024	05:10	Se desarma fardo en línea derecha, normalizado.	
03/02/2024	06:50	Nota: En total se adicionan 12 lts de ácido a riles por falla en redler de escoria.	
03/02/2024 06:58 Falla corta cordel línea derecha, operador informa que sello de cilindro se		Falla corta cordel línea derecha, operador informa que sello de cilindro se	
		encuentra dañado, coordinar reparación.	
03/02/2024	07:00	Nota: valor de material particulado en CEMS se mantiene en promedio durante	
I		turno en 35 mg/Nm3, se informa a Srta Daniela Reyes.	
		GENERAL	
		Sin información	
		SERVICIOS	
		Sin información	

7. ANÁLISIS CAUSA RAÍZ

Durante el análisis de este evento, se utilizó la técnica de lluvias o tormentas de ideas y árbol lógico de falla, donde el personal involucrado (Departamento de Operaciones y Mecánica), abordaron la situación y en conjunto se determinó los parámetros establecidos para realizar un análisis de causa raíz.

¿Dónde Ocurrió?

El evento ocurrió en el Redler de evacuación de escoria de la Unidad Generadora Lautaro 2 (L2).

INGENIERÍA Y PROYECTO

CÓDIGO: INF-I&P-MAN-2403-00 NUMERO DE PAGINA 15 de 29

¿Cómo Ocurrió?

El sistema de accionamiento del Redler es de manera automática, esto significa que al superar el porcentaje de torque el motor tiende a dar giro inverso de la cadena para desatascarla, cuando el departamento mecánico fue a abordar la eventualidad se percató que las dos cadenas de arrastre del redler se encontraban desmontada por el exceso de material acumulado, al iniciar el proceso de montaje de la cadena se rompe un eslabón, esto trajo como consecuencia la detención de la unidad y su salida de sincronismo.

¿Cuándo Ocurrió?

Esta eventualidad ocurrió el 02/02/2024 a las 14:05.

¿Es Frecuente?

Revisando el histórico de eventos durante los primeros días del año (Un (1) mes y dos (2) días), se ha presentado seis (6) eventos donde se desmonta la cadena de los cuales en dos oportunidades se ha cortado la cadena, siendo una frecuencia bastante elevada.

	CODIGO:
ANÁLISIS CAUSA - RAÍZ	INF-I&P-MAN-2403-00
	NUMERO DE PAGINA
INGENIERÍA Y PROYECTO	16 de 29

7.1 ARBOL LÓGICO DE DECISIÓN

	CÓDIGO:
ANÁLISIS CAUSA - RAÍZ	INF-I&P-MAN-2403-00
_	NUMERO DE PAGINA
INGENIERÍA Y PROYECTO	17 de 29

7.2 DETERMINACIÓN CAUSAS RAÍZ

DEFINICIÓN DEL PROBLEMA

Se desmonta y se corta cadena de Redler evacuación de escoria de la Unidad Generadora 2 (UG2), el exceso de material inquemado se acumula en los sprocket y al iniciar el proceso de desatasco hace que se desmonten las cadenas.

MODOS DE FALLO

Junto al equipo de trabajo, operadores y mantenedores quienes abordaron la eventualidad, analizamos ciertos modos de fallas:

- Palas de arrastre deterioradas.
- Perdida de tensión en la cadena de arrastre.
- Acumulación no deseada de material.
- Excesiva tensión de la cadena de arrastre.
- Desalineación de los módulos de transporte.
- El material está obstruyendo la cadena.
- Desgaste o fatiga de los sprocket.

Se llegó a la determinación a través de análisis visuales por parte de operaciones y mantenedores, que el modo de falla que está afectando directamente al redler de escoria y que produce el desmonte y posterior rotura de la cadena de arrastre es la acumulación no deseada de material inquemado.

	CODIGO:
ANÁLISIS CAUSA - RAÍZ	INF-I&P-MAN-2403-00
	NUMERO DE PAGINA
INGENIERÍA Y PROYECTO	18 de 29

HIPÓTESIS

A partir del modo de fallo anteriormente descrito, se establece la siguiente hipótesis:

Exceso de material inquemado

 Acumulación excesiva de material inquemado producto de la baja combustión en la caldera por falta de oxígeno.

RAÍCES FÍSICAS

Durante la intervención del activo se determinó las siguientes raíces físicas:

- Corte de eslabón al montarse la cadena de arrastre.
- Se rompe cadena de arrastre por exceso de material solidificado.

RAÍCES HUMANAS

Las raíces humanas suscitada durante esta intervención fueron las siguientes:

Corte de eslabón al montarse la cadena de arrastre

- Toma de decisión no efectiva por parte de mantención; los mantenedores no se percataron que había material acumulado en la parte delantera del redler y al dar marcha atrás y adelante se tensionó la cadena por la cantidad de material y al intentar acoplarla con el sprocket se rompió el eslabón.
- Inspecciones pocas efectivas (Falta de información); esta raíz se descartó ya que, en el redler de evacuación de escoria, se programan mantenciones preventivas semanales (inspección, engrase y apriete de pernos)

	CÓDIGO:
ANÁLISIS CAUSA - RAÍZ	INF-I&P-MAN-2403-00
_	NUMERO DE PAGINA
INGENIERÍA Y PROYECTO	19 de 29

Se rompe cadena de arrastre por exceso de material solidificado

Manejo inapropiado en el control operativo (operador en formación);
 operador por falta de impericia, no tenía claridad de la cantidad de material
 necesario dentro de la caldera en referencia a la combustión generada, esto
 trajo como consecuencia exceso de material inquemado dentro del Redler.

RAÍCES LATENTES

No hay procedimientos

 Debería existir un procedimiento adecuado o en su defecto se debe hacer un análisis de actividades o del tipo de intervención que se va a realizar, creando un ambiente seguro y evitar tomas de decisiones erróneas concientizando a todos los trabajadores que intervienen en trabajos en el redler.

- Rotación de personal sin experiencia

• Rotación de personal nuevo con falta de impericia en labores operativas.

ANÁLISIS CAUSA - RAÍZ INGENIERÍA Y PROYECTO

CÓDIGO: INF-I&P-MAN-2403-00 NUMERO DE PAGINA 20 de 29

7.3 VALIDACIÓN DE HIPÓTESIS

ANÁLISIS CAUSA - RAÍZ (ACR) VALIDACIÓN DE HIPÓTESIS

N°	Evidencia	Descripción de Hipótesis	Método de Validación	Fecha	Responsable del método de validación	Resultados
1	Acumulación no deseada de material	Exceso de material inquemado	Tormenta de ideas / Árbol lógico de falla	20-02-2024	Landerson Laborit	El departamento de Operaciones informó maniobras de desatasco en el Redler de evacuación de escoria por acumulamiento de material, se comunicó al Departamento mecánico quién informó que las dos cadenas estaban desmontadas y un refuerzo de la guía derecha levantado, cuando se procedió al montaje de la cadena se rompió un eslabón del lado derecho, se realizó el cambio de dos eslabones y se entregó el equipo a operaciones, durante el proceso de mantenimiento la unidad salió de sincronismo.

CÓDIGO: INF-I&P-MAN-2403-00 NUMERO DE PAGINA

21 de 29

INGENIERÍA Y PROYECTO

7.4 CAUSAS RAÍZ DETERMINADA

ANÁLISIS CAUSA - RAÍZ (ACR)

TIPO	CAUSA RAÍZ DETERMINADA	CANTIDAD
Físicas	Corte de Eslabón al montarse la cadena de arrastre	
1,5,533	Se rompe cadena de arrastre por exceso de material solidificado	2
Humanas	Toma de Decisión no efectiva	1
пинаназ	Manejo inapropiado en el control operativo (operador en formación)	2
Latentes	No hay procedimientos	1
Editerrites	Rotación de personal sin experiencia	2

8 CONCLUSIONES

Durante el análisis de este evento se determinó que la acumulación excesiva de material dentro del redler se debe a una baja combustión dentro de la caldera, que impide quemar completamente el material y este llega al redler, creando aglomeración en la cola del Redlder impidiendo su funcionamiento normal, adicional a esto contamos con personal con poca experiencia quienes toman decisiones operacionales y de mantenimiento pocas efectivas.

La aglomeración del material tensa la cadena superando el nivel de torque establecido (70%), al ocurrir esto el sistema automático del motor gira en reversa, los cilindros hidráulicos (brazos tensores) del lado conducido pierden tensión y esto hace que la cadena se desmonte, al volver a su estado normal de torque, el sistema automático vuelve a su funcionamiento normal pero empieza a girar con la cadena desmontada desgastando partes internas del redler (guías, refuerzo de guías, doblando paletas, etc.)

	CÓDIGO:
ANÁLISIS CAUSA - RAÍZ	INF-I&P-MAN-2403-00
	NUMERO DE PAGINA
INGENIFRÍA Y PROYECTO	22 de 29

Se llegó a la determinación que el departamento de operaciones haría inspecciones visuales todo el día junto a trabajadores de contratista, adicional a esto se detendrá la unidad generadora durante seis (6) horas aproximadamente el día (20/02/2024) para proceder a la limpieza del precalentador aire - vapor, ya que no es capaz de llegar al setpoint (240), y esto impide una buena combustión. Con el Departamento Mecánico se determinó la instalación de una bomba en la zona de succión del redler con la finalidad de aumentar el caudal y el agua que recircula sea utilizada en las toberas del lado conducido del redler.

	CÓDIGO:	
ANÁLISIS CAUSA - RAÍZ	INF-I&P-MAN-2403-00	
	NUMERO DE PAGINA	
INGENIERÍA Y PROYECTO	23 de 29	

9 RECOMENDACIONES

ANÁLISIS CAUSA - RAÍZ (ACR)

PLAN DE RECOMENDACIONES

N°	Descripción de la Causa - Raíz	Acción Preventiva ¿Qué se puede hacer para prevenir la falla?	Responsable de la ejecución preventiva	Fecha de la ejecución de la acción preventiva
1	Corte de eslabón al montarse la cadena de arrastre	Instalación de bomba en la zona de succión del Redler	Departamento de Operaciones, Mecánico y Eléctrico	29-02-2024
2	Se rompe cadena de arrastre por	Limpieza del precalentador aire - vapor	Departamento de Operaciones, Mecánico y Eléctrico	20-02-2024
	exceso de material solidificado	Inspecciones visuales del Redler	Departamento de Operaciones y apoyo Contratista	Diaria
3	Toma de Decisión no efectiva	Análisis de Actividades diarias para determinar matrices de riesgo	Departamento de Operaciones, Mecánico y Eléctrico	Toda Actividad Operacional y de Mantenimiento
4	Manejo inapropiado en el control operativo (operador en formación)	Supervisión directa de un Operador Líder	Departamento de Operaciones	Diario

INGENIERÍA Y PROYECTO

CÓDIGO: INF-I&P-MAN-2403-00 NUMERO DE PAGINA

ERO DE PAGINA 24 de 29

9.1 INSTALACIÓN DE BOMBA EN LA ZONA DE SUCCIÓN DEL REDLER

Se determinó con el Departamento Mecánico, la instalación de una bomba de recirculación en la zona de succión (en la curva del redler), el agua que recirculará por la bomba servirá para activar las toberas que se encuentran en la zona conducida, esto ayudará a empujar el material inquemado a la zona de accionamiento y evitará la aglomeración de material inquemado.

Zona de succión (Instalación de Bomba)

Zona de succión (Instalación de Bomba)

9.2 LIMPIEZA PRECALENTADOR AIRE - VAPOR

El Departamento de Operaciones como alternativa solicitó la salida de sincronismo de la Unidad Generadora Lautaro 2 para realizar mantenimiento de limpieza al precalentador de aire — vapor, para esto se debe detener el ventilador de aire de combustión, sacar las tapas del ventilador e ingresar al interior a limpiarlo. Se tomó esta decisión ya que el precalentador no es capaz de llegar al setpoint (240), sin este flujo de aire no se llega a la combustión requerida para el quemado de fardos y por este motivo se genera mucho material inquemado que ingresa al redler de evacuación de escoria.

INGENIERÍA Y PROYECTO

CÓDIGO: INF-I&P-MAN-2403-00 NUMERO DE PAGINA

Retiro de tapas ventilador de aire combustión

Limpieza interior precalentador aire - vapor

9.3 INSPECCIONES VISUALES DEL REDLER

Se llegó a la determinación que el personal de operaciones junto a los contratista de SH harán rondas constantes al redler para verificar en qué estado se encuentra, en caso de tener exceso de material inquemado procederán a hacer el retiro del mismo de forma manual (palas y carretillas), de esta manera se impedirá la acumulación de material en la cola del redler.

Lado conducido del Redler evacuación de escoria

Zona de succión del Redler evacuación de escoria

INGENIERÍA Y PROYECTO

CÓDIGO: INF-I&P-MAN-2403-00 NUMERO DE PAGINA

26 de 29

9.4 ANÁLISIS DE ACTIVIDADES DIARIAS PARA DETERMINAR MATRICES DE RIESGO

Antes de cualquier actividad de mantenimiento y operaciones no programada (emergencia), se debe realizar un análisis de los procedimientos que se van a efectuar durante la ejecución, esto con la finalidad de determinar las matrices de riesgos a las que se exponen los trabajadores y va a estar determinado por las fuentes de riesgo del activo, del entorno y del tipo de intervención que se va a realizar, adicional se deben cerciorar de contar con todos los equipos de protección personal (EPP), el propósito es disminuir todos los riesgos posibles en los trabajadores durante la práctica de mantenimiento.

9.5 SUPERVISIÓN DIRECTA DE UN OPERADOR LÍDER

Durante las actividades operacionales en donde se vea involucrado personal nuevo o de poca experiencia, siempre debe contar con la supervisión directa del operador líder quién debe autorizar las tomas de decisiones ejecutadas por el personal de Operaciones, así como también supervisar las tareas indicadas a personal externo (contratista).

10 JERARQUIZACIÓN DE RECOMENDACIONES

Durante este proceso utilizaremos criterios para darle ponderación a cada hipótesis, para determinar cuáles son las más urgente, los criterios para tener en cuenta son los siguientes:

- ESFUERZO PARA IMPLEMENTAR

- Requiere personal de la misma sección: 1
- Requiere personal de otras secciones dentro de la misma división o personal de otras divisiones: 2
- Requiere Personal fuera de la empresa: 3

	CODIGO:
ANÁLISIS CAUSA - RAÍZ	INF-I&P-MAN-2403-00
	NUMERO DE PAGINA
INGENIERÍA Y PROYECTO	27 de 29

- COSTO DE IMPLEMENTACIÓN

Menor a 1.000.000\$: 1

• Entre 1.000.000 y 2.000.000: **2**

• Mayor a 2.000.000: **3**

- TIEMPO DE EJECUCIÓN

Menor a quince (15) días: 1

• Entre quince (15) y treinta (30) días: 2

• Mayor a treinta (30) días: 3

Los valores obtenidos al jerarquizar las recomendaciones fueron los siguientes:

ACCIÓN PREVENTIVA	E. I	C.I	T. E	TOTAL
Instalación de bomba en la zona de succión del redler	2	2	2	6
Limpieza del precalentador aire - vapor	2	3	1	6
Inspecciones visuales del redler	1	1	1	3
Análisis de actividades diarias para determinar matrices de riesgo		1	1	3
Supervisión directa de un operador líder	1	1	1	3

	CODIGO:
ANÁLISIS CAUSA - RAÍZ	INF-I&P-MAN-2403-00
	NUMERO DE PAGINA
INGENIERÍA V PROVECTO	28 do 20

11. TIEMPO DE EJECUCIÓN

Se informa el tiempo de ejecución descrito en el plan de acción que debe llevarse a cabo durante el Análisis Causa Raíz.

	COMASA Bioenergia Loutaro	ANÁLISIS CAUSA - RAÍZ (ACR) TIEMPO DE EJECUCIÓN DEL PLAN DE ACCIÓN		
N°	Acción Preventiva ¿Qué se puede hacer para prevenir la falla?	Responsable de la ejecución preventiva	Fecha de la ejecución de la acción preventiva	
1	Instalación de bomba en la zona de succión del redler	Departamento de Operaciones, Mecánico y Eléctrico	29-02-2024	
2	Limpieza precalentador aire - vapor	Departamento de Operaciones, Mecánico y Eléctrico	20/02/2024 (Monitorear Flujo de Aire)	
3	Inspecciones visuales del Redler	Departamento de Operaciones y apoyo contratista	Diaria	
4	Análisis de actividades diarias para determinar matrices de riesgo	Departamento de Operaciones, Mecánico y Eléctrico	Toda actividad operacional y de mantenimiento no programado	
5	Supervisión directa de un Operador Líder	Departamento de Operaciones	Diario	

11. ANEXOS DEL EVENTO

Lado conducido del Redler evacuación de escoria

Instalación de eslabón derecho de cadena lado conducido del Redler

CÓDIGO: INF-I&P-MAN-2403-00

INGENIERÍA Y PROYECTO

NUMERO DE PAGINA 29 de 29

Limpieza e instalación de cadena de arrastre derecha, lado conducido del Redler

Refuerzo de guía, lado derecho levantado

Limpieza interior del redler (material solidificado)

Instalación de cadena izquierda, lado conducido del redler