Travel Insurance Claim Predictor

Problem Statement

To predict if the claim request of a travel insurance is genuine or fake

- **Potential Business Problem:** With so many claims on daily basis it is difficult to study the authenticity of claims manually . Thus a automated system is needed to predict If a claim should be approved or not

We have information of roughly 50k consumer claims. There are around 11 features and 1 target variable.

Feature Name	Туре	
Agency Type	Object	It is eithe
Distribution Channel	Object	It is eithe
Destination	Object	What was
Net Sales	float64	What was

Evaluation metric

- Since this is highly imbalanced data, accuracy is not the right measure for the performance of our model.
- In this case we are going to consider Precision and Recall as the best measure for the performance of the model.

Exploratory Data Analysis- Target variable

Claim
Boolean

Distinct count 2
Unique (%) 0.0%
Missing (%) 0.0%
Missing (n) 0

Mean 0.014658

0 49812 1 741

Toggle details

This is a boxplot for net sales vs various products

Since in this null check analysis, we can see that Gender has more than 50% null values. Thus it holds no relevance and can be dropped

ID	0
Agency	0
Agency Type	0
Distribution Channel	0
Product Name	0
Claim	0
Duration	0
Destination	0
Net Sales	0
Commision	0
Gender	35953
Age	0
age_category	0
dtype: int64	

 Since Age feature has so many values almost all unique do for better understanding we have divided age into categories.

Model Tuning

One Hot Encoding:

Since most of the features are categorial, we used one hot encoding to transform the data

PCA:

Since destination variable had high cardinality, the features size increased to 156. We used PCA for dimensionality reduction and chose 130 features.

Undersampling:

Since the data set is highly imbalanced, we did undersampling and made data with 50% positive claims data and 50% negative claims data.

Model	Precision	Recall
Logistic regression	0.82	0.75
Random Forest	0.74	0.69
SVM	0.79	0.74

Next Steps:

- 1. Using SMOTE on the data for data balanacing.
- 2. Hyper Parameter tuning.