Example 1 (from Duan & Yu: LMIs in control systems)

problem

4.5 Time-Delay Systems

The problem of stability analysis for a time-delay system can be stated as follows.

Problem 4.3 Given matrices $A,A_d \in \mathbb{R}^{n \times n}$, check the stability of the following linear time-delay system

$$\begin{cases} \dot{x}(t) = Ax(t) + A_d x(t - d) \\ x(t) = \phi(t), \ t \in [-d, 0], \ 0 < d \le \bar{d}, \end{cases}$$
(4.47)

where

 $\phi(t)$ is the initial condition

d represents the time-delay

 \bar{d} is a known upper bound of d

4.5.1 Delay-Independent Condition

The following theorem gives a sufficient condition for the stability problem in terms of an LMI.

Theorem 4.8 The system (4.47) is asymptotically stable if there exist two symmetric matrices $P, S \in \mathbb{S}^n$, such that

$$\begin{cases} P > 0 \\ \begin{bmatrix} A^{\mathsf{T}}P + PA + S & PA_d \\ A_d^{\mathsf{T}}P & -S \end{bmatrix} < 0. \end{cases}$$
 (4.48)

Example 4.15

The following time-delay linear system has been considered in Fu et al. (2004):

$$\dot{x}(t) = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} x(t) + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} x(t-d(t)) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t) + \begin{bmatrix} 1 \\ 2 \end{bmatrix} w(t).$$

Proving the stability using LMI-optimization

Matlab code	Code output
%% BEFORE RUNNING THE CODE ADD "YALMIP" AND "SDPT3" libraries	>> P0
<pre>%% yalmip param robust ness anlaysis clear all,close all,clc;yalmip('clear');</pre>	P0 =
A=diag([-1,-2]); Ad=eye(2);	1.0e+03 *
nx=2;	2.2427 0
eps1=1e-5;	0 4.6712
<pre>% P=sdpvar(nx,nx,'symmetric'); % S=sdpvar(nx,nx,'symmetric'); P=sdpvar(nx,nx,'diagonal'); S=sdpvar(nx,nx,'diagonal');</pre>	>> s0
	S0 =
F=[]; F=[F;P>=eps1*eye(nx)]; F=[F;[[P*A]+A'*P+S,[P*Ad];Ad'*P,- S]<=0*eye(2*nx)];	1.0e+03 *
F=[F;0<=vec(P)<=10000];	
F=[F;0<=vec(S)<=10000];	2.2427 0
<pre>ops = sdpsettings('solver','sdpt3'); sol = optimize(F,[],ops); sol.info</pre>	0 4.8618
P0=value(P) eig(P0) S0=value(S) eig(S0)	
<pre>max(eig([[P0*A]+[P0*A]'+S0,[P0*Ad];[P0*Ad]',- S0]))</pre>	

Simulating the system using dde23 Function Phase Plane

Simulating the system using dde23 Function State Signals

Example 2 (from Duan & Yu: LMIs in control systems)

problem

4.5 Time-Delay Systems

The problem of stability analysis for a time-delay system can be stated as follows.

Problem 4.3 Given matrices $A, A_d \in \mathbb{R}^{n \times n}$, check the stability of the following linear time-delay system

$$\begin{cases} \dot{x}(t) = Ax(t) + A_d x(t - d) \\ x(t) = \phi(t), \ t \in [-d, 0], \ 0 < d \le \bar{d}, \end{cases}$$
(4.47)

where

 $\phi(t)$ is the initial condition

d represents the time-delay

 \overline{d} is a known upper bound of d

$$\Phi(X) = X(A + A_d)^{T} + (A + A_d)X + \bar{d}A_dA_d^{T}.$$

Theorem 4.9 The time-delay system (4.47) is uniformly asymptotically stable if there exist a symmetric positive definite matrix X and a scalar $0 < \beta < 1$, such that

$$\begin{bmatrix} \Phi(X) & \bar{d}XA^{\mathrm{T}} & \bar{d}XA_{d}^{\mathrm{T}} \\ \bar{d}AX & -\bar{d}\beta I & 0 \\ \bar{d}A_{d}X & 0 & -\bar{d}(1-\beta)I \end{bmatrix} < 0, \tag{4.52}$$

Example 4.16

Consider the following time-delay linear system:

$$\dot{x}(t) = \begin{bmatrix} -2 & 0 & 1\\ 0 & -3 & 0\\ 1 & 0 & -2 \end{bmatrix} x(t) + \begin{bmatrix} -1 & 1 & 1\\ 2 & -1 & 1\\ 0 & 0 & -1 \end{bmatrix} x(t-d). \tag{4.50}$$

Proving the stability using LMI-optimization

Matlab code	Code output
%% BEFORE RUNNING THE CODE ADD "YALMIP" AND	ans =
"SDPT3" libraries	
<pre>%% yalmip analysis</pre>	I diverge a full or a level (dDDm2 4) I
%	'Successfully solved (SDPT3-4)'
<pre>set(findall(gcf,'type','line'),'linewidth',[1]);</pre>	
<pre>clear all,close all,clc;yalmip('clear');</pre>	
A=[-2,0,1;0,-3,0;1,0,-2];	X =
Ad=[-1,1,1;2,-1,1;0,0,-1];	
nx=3: % state-dimension	0.6726 0.0096 -0.2245
dmax=0.3; % max delay [max value 0.3	0.0096 0.8211 -0.0202
seconds]	-0.2245 -0.0202 0.5847
eps1=1e-3; % epsilon for numerical accuracy	-0.2243 -0.0202 0.3647
% define the decision variables	
<pre>X=sdpvar(nx,nx,'symmetric');</pre>	
<pre>beta=sdpvar(1,1,'symmetric');</pre>	P =
% enter the constraints	
F=[];	1.7051 -0.0039 0.6544
F=[F;X>=eps1*eye(nx)];	
M_11=[(A+Ad)*X]+[(A+Ad)*X]'+dmax*Ad*Ad';	-0.0039 1.2189 0.0407
M_12=dmax*X*A';	0.6544 0.0407 1.9627
M_13=dmax*X*Ad';	
M_21=dmax*A*X;	
M_22=-dmax*beta*eye(nx);	beta =
M_23=zeros(nx);	peta =
<pre>M_31=dmax*Ad*X; M 32=zeros(nx);</pre>	
M 33=-dmax*(1-beta)*eye(nx);	0.5931
M=[M_11,M_12,M_13;M_21,M_22,M_23;M_31,M_32,M_33];	
F=[F;M<=-eps1*eye(3*nx)];	
F=[F;-1e2<=vec(X)<=1e2];	
F=[F;eps1<=beta<=1-eps1];	
% solve the opt-problem	
<pre>ops = sdpsettings('solver','sdpt3');</pre>	
<pre>sol = optimize(F,[],ops);</pre>	
sol.info	
% get the decision variables	
<pre>X=value(X);P=inv(X);beta=value(beta)</pre>	

Additional check

Matlab code	Code output
<pre>%% check if there is any error X=value(X) P=inv(X) beta=value(beta)</pre>	>> eig(P)
eig(P) M_11=[(A+Ad)*X]+[(A+Ad)*X]'+dmax*Ad*Ad'; M_12=dmax*X*A'; M_13=dmax*X*Ad'; M_21=dmax*A*X; M_22=-dmax*beta*eye(nx); M_23=zeros(nx);	ans = \begin{array}{ccccc} -7.2064 \\ -4.7101 \\ -0.8968 \\ -0.0069 \\ 1.1540 \\ -0.0220 \\ 1.2312 \\ 2.5015 \end{array} \begin{array}{ccccc} -0.0613 \\ -0.1716 \\ 2.5015 \\ -0.1453 \end{array} \end{array}
<pre>M_31=dmax*Ad*X; M_32=zeros(nx); M_33=-dmax*(1-beta)*eye(nx); M=[M_11,M_12,M_13;M_21,M_22,M_23;M_31,M_32,M_33]; eig(P) eig(M)</pre>	All eigenvalues of P are positive therefore it is a pos-def-matrix All eigenvalues of M are negative therefore it is a neg-def-matrix

Simulating the system using dde23 Function Phase Plane

```
Matlab code
                                                                                   Code output
%% matlab delayed-diff system simulation
clear all,close all,clc;yalmip('clear');
                                                                    0.3
lags=[0.2];
                                                                   0.25
t_vec=[0:1e-4:20]';
                                                                    0.2
fig1=figure(1);
                                                                   0.15
fig1.Color=[1,1,1];
                                                                    0.1
for ii=1:1:10
    sol1=dde23(@dde_func,lags,@x_history,t_vec);
                                                                   0.05
    x_vec = deval(sol1,t_vec);
    x1_trajectory=x_vec(1,:);
                                                                        0.3
    x2_trajectory=x_vec(2,:);
                                                                                                           0.3
    x3_trajectory=x_vec(3,:);
    plot3(x1_trajectory,x2_trajectory,x3_trajectory,...
         'LineStyle','-',...
'LineWidth',[1],...
         'Color','r'); hold on;
                                                                  Notice that all the states converge to the
       plot(t_vec,x1_trajectory,'LineStyle','-
                                                                  origin regardless of the initial
','LineWidth',[1],'Color','r'); hold on;
% plot(t_vec,x2_trajectory,'LineStyle','-
','LineWidth',[1],'Color','g');
                                                                  conditions.
% plot(t_vec,x3_trajecto.,,
','LineWidth',[1],'Color','b');
% legend('x1','x2','x3');
       plot(t_vec,x3_trajectory,'LineStyle','-
function xdot=dde_func(t,x,x_delayed)
x1=x(1);
x2=x(2);
x3=x(3);
xdot=zeros(3,1);
x1_delayed=x_delayed(1);
x2_delayed=x_delayed(2);
x3_delayed=x_delayed(3);
A=[-2,0,1;0,-3,0;1,0,-2];
Ad=[-1,1,1;2,-1,1;0,0,-1];
xdot=A*[x1;x2;x3]+Ad*[x1_delayed;x2_delayed;x3_delayed];
function x=x_history(t)
       x=ones(2,1);
    x=0.1*ones(3,1)+rand(3,1)*0.3;
end
```

Simulating the system using dde23 Function State Signals

```
Matlab code
                                                                                Code output
%% matlab delayed-diff system simulation
                                                                  0.4
clear all,close all,clc;yalmip('clear');
                                                                  0.35
lags=[0.2];
t_vec=[0:1e-4:20]';
                                                                  0.3
fig1=figure(1);
                                                                  0.25
fig1.Color=[1,1,1];
for ii=1:1:10
                                                                € 0.2
    sol1=dde23(@dde_func,lags,@x_history,t_vec);
    x_vec = deval(sol1,t_vec);
                                                                  0.15
    x1_trajectory=x_vec(1,:);
                                                                  0.1
    x2_trajectory=x_vec(2,:);
    x3_trajectory=x_vec(3,:);
                                                                  0.05
plot3(x1_trajectory,x2_trajectory,x3_trajectory,...
   'LineStyle','-',...
'LineWidth',[1],...
'Color','r'); hold on;
plot(t_vec,x1_trajectory,'LineStyle','-
                                                                                                     16
                                                                                                         18
%
                                                                                        time
%
%
                                                               Notice that all the states converge to the
  'LineWidth',[1],'Color','r'); hold on;
                                                               origin regardless of the initial conditions.
    plot(t_vec,x2_trajectory,'LineStyle','-
  'LineWidth',[1],'Color','g');
    plot(t_vec,x3_trajectory,'LineStyle','-
','LineWidth',[1],'Color','b');
legend('x1','x2','x3');xlabel('time');ylabel('x(t)');
function xdot=dde_func(t,x,x_delayed)
x1=x(1);
x2=x(2);
x3=x(3);
xdot=zeros(3,1);
x1_delayed=x_delayed(1);
x2_delayed=x_delayed(2);
x3_delayed=x_delayed(3);
A=[-2,0,1;0,-3,0;1,0,-2];
Ad=[-1,1,1;2,-1,1;0,0,-1];
xdot=A*[x1;x2;x3]+Ad*[x1_delayed;x2_delayed;x3_delayed]
end
function x=x_history(t)
      x=ones(2,1);
    x=0.1*ones(3,1)+rand(3,1)*0.3;
end
```