

Rede Neural Convolucional para Classificação de Semáforos de Pedestres

Greice Pinho e Marcelo Cabral Ghilardi Disciplina de Redes Neurais Convolucionais

Dataset

3788 imagens

- classe 0: Sinal está verde (1039 imagens)
- classe 1: Sinal está vermelho (2229 imagens)
- classe 2: Sinal está desligado (520 imagens)

Dataset

Separação

• **Treino**: 70% (2651 imagens)

Validação: 15% (569 imagens)

Teste: 15% (568 imagens)

Resize

Tamanho médio: 80x48 pixels

Desvio padrão: 30x17 pixels

Ferramentas e Equipamento

- Python
- Keras
- TensorFlow
- TensorBoard

PyImageRoi

https://github.com/kabrau/PyImageRoi

Equipamento

- Processador I7 (6^ag)
- 32 Gb ram
- SSD
- GTX 1060
- Windows 10

Arquiteturas

CAMADAS E PARÂMETROS DA ARQUITETURA 01

Layer (type)	Output Shape		
conv2d_9 (Conv2D)	(None, 48, 80, 32)		
activation_13 (Activation)	(None, 48, 80, 32)		
conv2d_10 (Conv2D)	(None, 46, 78, 32)		
activation_14 (Activation)	(None, 46, 78, 32)		
max_pooling2d_5 (MaxPooling2	(None, 23, 39, 32)		
dropout_8 (Dropout)	(None, 23, 39, 32)		
flatten_3 (Flatten)	(None, 28704)		
dense_5 (Dense)	(None, 512)		
activation_17 (Activation)	(None, 512)		
dropout_9 (Dropout)	(None, 512)		
dense_6 (Dense)	(None, 3)		

activation_18 (Activation)

Layer (type)	Output Shape	Param #	
conv2d_9 (Conv2D)	(None, 48, 80, 32)	896	
activation_13 (Activation)	(None, 48, 80, 32)	0	
conv2d_10 (Conv2D)	(None, 46, 78, 32)	9248	
activation_14 (Activation)	(None, 46, 78, 32)	0	
max_pooling2d_5 (MaxPooling2	(None, 23, 39, 32)	0	
dropout_7 (Dropout)	(None, 23, 39, 32)	0	
conv2d_11 (Conv2D)	(None, 23, 39, 64)	18496	
activation_15 (Activation)	(None, 23, 39, 64)	0	
conv2d_12 (Conv2D)	(None, 21, 37, 64)	36928	
activation_16 (Activation)	(None, 21, 37, 64)	0	
max_pooling2d_6 (MaxPooling2	(None, 10, 18, 64)	0	
dropout_8 (Dropout)	(None, 10, 18, 64)	0	
flatten_3 (Flatten)	(None, 11520)	0	
dense_5 (Dense)	(None, 512)	5898752	
activation_17 (Activation)	(None, 512)	0	
dropout_9 (Dropout)	(None, 512)	0	
dense_6 (Dense)	(None, 3)	1539	
activation_18 (Activation)	(None, 3)	0	
	Total params:	5,965,859	

CAMADAS E PARÂMETROS DA ARQUITETURA 02

- As layers Conv2D são com kernel 3X3
- As layers MaxPooling são com Pool de 2X

(None, 3)

Total params:

14696960

14,708,643

0 0 1539

0

Arquiteturas

As redes foram treinadas com as seguintes variações

- As variações de ativação são referentes as layers intermediárias.
- Foram mantidos os parâmetros default dos otimizadores (Keras).
- Apenas 5 graus de rotação e 10% de deslocamento foram utilizado no aumento de dados.
- Todos os treinamentos ocorreram em 50 épocas e com batch de 32 imagens.

Experimentos

	Arquitetura	Ativação	Otimizador	Aumento de Dados	Loss	Acurácia
1	01	Tanh	Adadelta	Sim	0,01806	0,99297
2	01	Tanh	RMSprop	Sim	0,02139	0,99121
3	02	Tanh	AdaMax	Sim	0,02833	0,99297
4	01	Tanh	Adadelta	Não	0,03168	0,98770
5	01	Tanh	AdaMax	Sim	0,03240	0,99649
6	02	Tanh	AdaMax	Não	0,03615	0,98770
7	01	Tanh	RMSprop	Não	0,03681	0,98770
8	01	Tanh	AdaMax	Não	0,03961	0,99121
9	02	ReLU	RMSprop	Sim	0,04005	0,99649
10	02	Tanh	RMSprop	Sim	0,04041	0,99473
11	01	ReLU	RMSprop	Sim	0,04094	0,99297
12	02	ReLU	AdaMax	Sim	0,04192	0,99473
13	01	ReLU	Adadelta	Sim	0,04304	0,99121
14	01	ReLU	AdaMax	Não	0,04450	0,99297
15	02	ReLU	Adadelta	Sim	0,04555	0,99473
16	01	ReLU	Adadelta	Não	0,04751	0,99121

	Arquitetura	Ativação	Otimizador	Aumento de Dados	Loss	Acurácia
17	01	ReLU	RMSprop	Não	0,04797	0,99121
18	01	ReLU	AdaMax	Sim	0,04939	0,99121
19	02	Tanh	Adadelta	Sim	0,05060	0,99297
20	01	ReLU	Adagrad	Sim	0,05171	0,99297
21	02	ReLU	RMSprop	Não	0,05653	0,99121
22	02	Tanh	RMSprop	Não	0,05751	0,98594
23	02	ReLU	Adadelta	Não	0,05752	0,98946
24	02	ReLU	Adagrad	Não	0,06135	0,98946
25	02	ReLU	AdaMax	Não	0,06248	0,98770
26	02	Tanh	Adadelta	Não	0,06536	0,97891
27	01	ReLU	Adagrad	Não	6,51522	0,59578
28	01	Tanh	Adagrad	Sim	6,51522	0,59578
29	02	ReLU	Adagrad	Sim	6,51522	0,59578
30	02	Tanh	Adagrad	Não	6,51522	0,59578
31	02	Tanh	Adagrad	Sim	9,85337	0,27944
32	01	Tanh	Adagrad	Não	9,85380	0,27944

Visão geral do gráficos

Ativação (melhor ReLU vs Tanh)

Otimizadores (Melhores Loss)

Aumento de dados (Melhor Loss)

Acurácia e Loss

Conclusão

Para este dataset, a arquitetura de rede 01, utilizando aumento de dados, Ativação Tanh, Otimizador Adadelta, foi obtido o melhor Loss em imagens de testes.

Loss = 0,01806Acc = 0,99297

