Theory of Automata

Shakir Ullah Shah

Lecture 3

- Union, intersection and difference --same as on sets,
- Let $\Sigma = \{a,b\}$
- {a,ba,ab} ∩ {Λ, a, aa, aaa,...}=?

- Union, intersection and difference --same as on sets,
- Let $\Sigma = \{a,b\}$
- {a,ba,ab} ∩ {Λ, a, aa, aaa,...} = {a}

- Union, intersection and difference --same as on sets,
- Let $\Sigma = \{a,b\}$
- {a,ba,ab} ∩ {Λ, a, aa, aaa,...} = {a}
- Complement: Let L={Λ, a,aa,aaa,...}

- Union, intersection and difference ---same as on sets,
 - Let $\Sigma = \{a,b\}$
 - {a,ba,ab} ∩ {Λ, a, aa, aaa,...}={a}
 - Complement: Let L={Λ, a,aa,aaa,...}
 - \overline{L} ={w: w includes all b's}
 - Reverse: Let L={a,ba, abc}
 - L^R ={a,ab,cba}

- Alphabet of valid arithmetic expression
- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, *, /, (,)\}$

- Alphabet of valid arithmetic expression
- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, *, /, (,)\}$

•
$$(3 + 5) + 6)$$
 $2(/8 + 9)$ $(3 + (4-)8)$

- Alphabet of valid arithmetic expression
- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, *, /, (,)\}$
- (3 + 5) + 6) 2(/8 + 9) (3 + (4-)8)
- The first contains unbalanced parentheses; the second contains the forbidden substring /; the third

- Alphabet of valid arithmetic expression
- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, *, /, (,)\}$
- (3 + 5) + 6) 2(/8 + 9) (3 + (4-)8)
- The first contains unbalanced parentheses; the second contains the forbidden substring /; the third

Rule 1: Any number (positive, negative, or zero) is in AE.

- Rule 1: Any number (positive, negative, or zero) is in AE.
- Rule 2: If x is in AE, then so are
 (i) (x)
 (ii) -x (provided that x does not already start with a minus sign)

- **Rule 1:** Any number (positive, negative, or zero) is in AE.
- Rule 2: If x is in AE, then so are
 (i) (x)
 (ii) -x (provided that x does not already start with a minus sign)
- Rule 3: If x and y are in AE, then so are (i) x + y (if the first symbol in y is not + or -) (ii) x y (if the first symbol in y is not + or -) (iii) x * y (iv) x / y (v) x ** y (our notation for exponentiation)

- (2 + 4) * (7 * (9 3)/4)/4 * (2 + 8) 1
- We do not really scan over the string, looking for forbidden substrings or count the parentheses.
- We actually imagine the expression in our mind broken down into components:

- (2 + 4) * (7 * (9 3)/4)/4 * (2 + 8) 1
- We do not really scan over the string, looking for forbidden substrings or count the parentheses.
- We actually imagine the expression in our mind broken down into components:
- Is (2 + 4) OK?

- (2 + 4) * (7 * (9 3)/4)/4 * (2 + 8) 1
- We do not really scan over the string, looking for forbidden substrings or count the parentheses.
- We actually imagine the expression in our mind broken down into components:
- Is (2 + 4) OK? Yes

- (2 + 4) * (7 * (9 3)/4)/4 * (2 + 8) 1
- We do not really scan over the string, looking for forbidden substrings or count the parentheses.
- We actually imagine the expression in our mind broken down into components:
- Is (2 + 4) OK? Yes
- Is (9 3) OK?

- (2 + 4) * (7 * (9 3)/4)/4 * (2 + 8) 1
- We do not really scan over the string, looking for forbidden substrings or count the parentheses.
- We actually imagine the expression in our mind broken down into components:
- Is (2 + 4) OK? Yes
- Is (9 3) OK? Yes

- (2 + 4) * (7 * (9 3)/4)/4 * (2 + 8) 1
- We do not really scan over the string, looking for forbidden substrings or count the parentheses.
- We actually imagine the expression in our mind broken down into components:
- Is (2 + 4) OK? Yes
- Is (9 3) OK? Yes
- Is 7 * (9 3)/4 OK?

- (2 + 4) * (7 * (9 3)/4)/4 * (2 + 8) 1
- We do not really scan over the string, looking for forbidden substrings or count the parentheses.
- We actually imagine the expression in our mind broken down into components:
- Is (2 + 4) OK? Yes
- Is (9 3) OK? Yes
- Is 7 * (9 3)/4 OK? Yes, and so on.

Defining Languages by Another New Method Regular Expression (RE)

Recursive definition of Regular

- Step I: Every letter of Σ including
 Λ is a regular expression.
- Step 2: If R1 and R2 are regular expressions then
 - 1. (R1)
 - 2. R1 R2
 - 3. R1 + R2 and
 - 4. R1*

are also regular expressions.

Step 3: Nothing else is a regular

• a*=

a*={∧,a,aa,aaa,aaaa,...}

a*={∧,a,aa,aaa,aaaa,...} =a⁰,a¹,a²,a³,
 ...

- a*={∧,a,aa,aaa,aaaa,...} =a⁰,a¹,a²,a³,
 ...
- $a^+ = \{a,aa,aaa,aaaa,...\} = a^1,a^2,a^3,...$

- a*={∧,a,aa,aaa,aaaa,...} =a⁰,a¹,a²,a³,
 ...
- $a^+ = \{a,aa,aaa,aaaa,...\} = a^1,a^2,a^3,...$
- b⁺={b,bb,bbb,bbb,...}

- $a^* = \{ \land, a, aa, aaa, aaaa, ... \} = a^0, a^1, a^2, a^3, ... \}$
- $a^+ = \{a,aa,aaa,aaaa,...\} = a^1,a^2,a^3,...$
- b⁺={b,bb,bbb,bbb,...}
- L = {a, ab, abb, abbb, abbbb, ...}

- a*={∧,a,aa,aaa,aaa,...} =a⁰,a¹,a²,a³,
 ...
- $a^+ = \{a,aa,aaa,aaaa,...\} = a^1,a^2,a^3,...$
- b⁺={b,bb,bbb,bbb,...}
- L = {a, ab, abb, abbb, abbbb, ...}
- L = language (ab*)
- L is the language in which the words are the concatenation of an initial a with some or no b's.

- We can apply the Kleene star to the whole string ab if we want:

 (ab)* = Λ or ab or abab or ababab...
- Observe that

```
(ab)^* ? a*b*
```

- We can apply the Kleene star to the whole string ab if we want:

 (ab)* = Λ or ab or abab or ababab...
- Observe that

```
(ab)^* \neq a^*b^*
```

- We can apply the Kleene star to the whole string ab if we want:

 (ab)* = Λ or ab or abab or ababab...
- Observe that

 (ab)* ≠ a*b*
- because the language defined by the expression on the left contains the word abab, whereas the language defined by the expression on the

a*+ b* ? (a+b)*

• $a^* + b^* \neq (a+b)^*$

- $a^* + b^* \neq (a+b)^*$
- Here a*+b* does not generate any string of concatenation of a and b, while (a+b)* generates such strings.
- $(a + b^*)^*$? $(a + b)^*$

- $a^* + b^* \neq (a+b)^*$
- Here a*+b* does not generate any string of concatenation of a and b, while (a+b)* generates such strings.
- (a + b*)* = (a + b)*
 since the internal * adds nothing to the language.

- Plus sign:
- Let us introduce another use of the plus sign. Let Σ={a,b}. By the expression
 - a + b
 - means

- Plus sign:
- Let us introduce another use of the plus sign. Let Σ={a,b}. By the expression
 - a + b
 - means either a or b.

- Plus sign:
- Let us introduce another use of the plus sign. Let Σ={a,b}. By the expression
 - a + b
 - means either a or b.
- Care should be taken so as not to confuse this notation with the notation + (as an exponent).

- Plus sign:
- {ab,bc}=ab+bc

- Plus sign:
- {ab,bc}=ab+bc
- {abb,bcb}=

- Plus sign:
- {ab,bc}=ab+bc
- {abb,bcb}=(ab+bc).b
- $\{a,b\}*=$

- Plus sign:
- {ab,bc}=ab+bc
- {abb,bcb} = (ab+bc).b
- $\{a,b\}*=(a+b)*$
- {ac,c}=

- Plus sign:
- {ab,bc}=ab+bc
- {abb,bcb} = (ab+bc).b
- $\{a,b\}*=(a+b)*$
- $\{ac,c\} = (a + \Lambda).c$
- $\{\Lambda, a, b, ab\} =$

- Plus sign:
- {ab,bc}=ab+bc
- {abb,bcb} = (ab+bc).b
- $\{a,b\}*=(a+b)*$
- $\{ac,c\} = (a + \Lambda).c$
- $\{\Lambda,a,b,ab\}=(a+\Lambda)(b+\Lambda)$

- Let $\Sigma = \{a, b\}$
- (a+b)(a+b)

- Let $\Sigma = \{a, b\}$
- (a+b)(a+b)
- language of 2 length

- Let $\Sigma = \{a, b\}$
- (a+b)(a+b)
- language of 2 length
- (a+b) (a+b)(a+b):

- Let $\Sigma = \{a, b\}$
- (a+b)(a+b)
- language of 2 length
- (a+b) (a+b)(a+b):
- language of 3 length

- Let $\Sigma = \{a, b\}$
- (a+b)(a+b)
- language of 2 length
- (a+b) (a+b)(a+b):
- language of 3 length
- (a+b) (a+b) (a+b):

- Let $\Sigma = \{a, b\}$
- (a+b)(a+b)
- language of 2 length
- (a+b) (a+b)(a+b):
- language of 3 length
- (a+b) (a+b) (a+b):
- language of 4 length

- Let $\Sigma = \{a, b\}$
- (a+b)(a+b)
- language of 2 length
- (a+b) (a+b)(a+b):
- language of 3 length
- (a+b) (a+b) (a+b):
- language of 4 length
- (a+b)*:

- Let $\Sigma = \{a, b\}$
- (a+b)(a+b)
- language of 2 length
- (a+b) (a+b)(a+b):
- language of 3 length
- (a+b) (a+b) (a+b):
- language of 4 length
- (a+b)*: all strings including null

- Let $\Sigma = \{a, b\}$
- (a+b)(a+b)
- language of 2 length
- (a+b) (a+b)(a+b):
- language of 3 length
- (a+b) (a+b) (a+b):
- language of 4 length
- (a+b)*: all strings including null
- (a+b) +:

- Let $\Sigma = \{a, b\}$
- (a+b)(a+b)
- language of 2 length
- (a+b) (a+b)(a+b):
- language of 3 length
- (a+b) (a+b) (a+b):
- language of 4 length
- (a+b)*: all strings including null
- (a+b) + : all strings without null

• a(a+b)*:

 a(a+b)*: begin with a followed by anything

- a(a+b)*: begin with a followed by anything
- b(a+b)*:

- a(a+b)*: begin with a followed by anything
- b(a+b)*: begin with b followed by anything

- a(a+b)*: begin with a followed by anything
- b(a+b)*: begin with b followed by anything
- (a+b)*b:

- a(a+b)*: begin with a followed by anything
- b(a+b)*: begin with b followed by anything
- (a+b)*b: end with b

- a(a+b)*: begin with a followed by anything
- b(a+b)*: begin with b followed by anything
- (a+b)*b: end with b
- (a+b)*a(a+b)*:

- a(a+b)*: begin with a followed by anything
- b(a+b)*: begin with b followed by anything
- (a+b)*b: end with b
- (a+b)*a(a+b)*: having at least one

- a(a+b)*: begin with a followed by anything
- b(a+b)*: begin with b followed by anything
- (a+b)*b: end with b
- (a+b)*a(a+b)*: having at least one
- (a+b)*aa(a+b)*:

- a(a+b)*: begin with a followed by anything
- b(a+b)*: begin with b followed by anything
- (a+b)*b: end with b
- (a+b)*a(a+b)*: having at least one
- (a+b)*aa(a+b)*: having double a

- a(a+b)*: begin with a followed by anything
- b(a+b)*: begin with b followed by anything
- (a+b)*b: end with b
- (a+b)*a(a+b)*: having at least one
- (a+b)*aa(a+b)*: having double a
- (a+b)*a(a+b)*a(a+b)*:

- a(a+b)*: begin with a followed by anything
- b(a+b)*: begin with b followed by anything
- (a+b)*b: end with b
- (a+b)*a(a+b)*: having at least one
- (a+b)*aa(a+b)*: having double a
- (a+b)*a(a+b)*a(a+b)*: having at least two a's

- a(a+b)*: begin with a followed by anything
- b(a+b)*: begin with b followed by anything
- (a+b)*b: end with b
- (a+b)*a(a+b)*: having at least one
- (a+b)*aa(a+b)*: having double a
- (a+b)*a(a+b)*: having at least two a's

- a(a+b)*: begin with a followed by anything
- b(a+b)*: begin with b followed by anything
- (a+b)*b: end with b
- (a+b)*a(a+b)*: having at least one
- (a+b)*aa(a+b)*: having double a
- (a+b)*a(a+b)*: having at least two a's

FAST Nationa Puniversity of Computer and Emerging Sciences, Peshawar

• ((a+b)(a+b))*

- ((a+b)(a+b))*
- language L, of even length

- ((a+b)(a+b))*
- language L, of even length
- (a+b)((a+b))* or ((a+b)
 (a+b))*(a+b)

- ((a+b)(a+b))*
- language L, of even length
- (a+b)((a+b))* or ((a+b)(a+b))*(a+b)
- language L, of odd length

- ((a+b)(a+b))*
- language L, of even length
- (a+b)((a+b))* or ((a+b)(a+b))*(a+b)
- language L, of odd length
- a language may be expressed by more than one regular expressions, while given a regular expression there exist a unique language generated by

FAST-National University of Computer and Emerging Sciences, Peshawar

- starting with double a and ending in double b
- aa(a+b)*bb
- starting and ending with same letter
- a(a+b)*a + b(a+b)*b
- starting and ending with different letter
- a(a+b)*b+ b(a+b)*a
- ending with aa or bb

Consider the regular expression
 E = [aa + bb + (ab + ba)(aa + bb)*(ab + ba)]*

- Consider the regular expression
 E = [aa + bb + (ab + ba)(aa + bb)*(ab + ba)]*
- This expression represents all the words that are made up of syllables of three types:

```
type<sub>1</sub> = aa
  type<sub>2</sub> = bb
  type<sub>3</sub> = (ab + ba)(aa + bb)*(ab
  + ba)
FAST National University of Computer and Emerging Sciences, Peshawar
```

Algorithms for EVEN-EVEN

- We want to determine whether a long string of a's and b's has the property that the number of a's is even and the number of b's is even.
- Algorithm 1: Keep two binary flags, the a-flag and the b-flag. Every time an a is read, the a-flag is reversed (0 to 1, or 1 to 0); and every time a b is read, the b-flag is reversed. We start both flags at 0 and check to be sure they are both 0 at the end.

Algorithms for EVEN-EVEN

- If the input string is

 (aa)(ab)(bb)(ba)(ab)(bb)(bb)(ab)
 (ab)(bb)(ba)(aa) then, by Algorithm 2, the type₃-flag is reversed 6 times and ends at 0.
- We give this language the name EVEN-EV EN. so, EVEN-EV EN = {Λ, aa, bb, aaaa, aabb, abab, abba, baab, baba, bbaa, bbbb, aaaaaa,
 FAST National University of Computer and Emerging Sciences, Peshawar

• If $r_1 = (aa + bb)$ and $r_2 = (a + b)$ then 1. $r_1 + r_2 = (aa + bb) + (a + b)$ 2. $r_1 r_2 = (aa + bb) (a + b)$ = (aaa + aab + bba + bbb) 3. $(r_1)^* = (aa + bb)^*$