Mapping schmes of PSK and APSK

Prasanna Kumar K, G V V Sharma*

CONTENTS

1	1 917		1
	1.1	QPSK	1
	1.2	8PSK	1
2	APSK		1
	2.1	16-APSK	1
	2.2	32-APSK	1

References

PSK

Abstract—A brief description about the mapping schemes and constallation of PSK and APSK according to DVBS2 standard [1].

1. PSK

$$Y = X + N \tag{1.1}$$

$$X_n = e^{j\frac{2\pi n}{M}}$$
 $n = 0, 1, \dots, M-1$ (1.2)

Where *M* is mapping order.

A. QPSK

Fig. 1: Constellation diagram of QPSK

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in.

Fig. 1 Shows the Constellation mapping for QPSK symbols.

B. 8PSK

Fig. 2: Constellation diagram of 8PSK

Fig. 2 Shows the Constellation mapping for 8-PSK symbols.

2. APSK

$$Y = X + N \tag{2.1}$$

A. 16-APSK

$$X_n = \begin{cases} r_1 e^{j(\phi_1 + \frac{2\pi}{4}n)} & n = 0, 1, 2, 3\\ r_2 e^{j(\phi_2 + \frac{2\pi}{12}n)} & n = 0, 1, \dots, 11 \end{cases}$$
 (2.2)

Where $\frac{r_2}{r_1} = 2.6$, $\phi_1 = 45$, $\phi_2 = 15$ Fig. 3 Shows the Constellation mapping for 16-APSK symbols.

B. 32-APSK

$$X_n = \begin{cases} r_1 e^{j(\phi_1 + \frac{2\pi}{4}n)} & n = 0, 1, 2, 3\\ r_2 e^{j(\phi_2 + \frac{2\pi}{12}n)} & n = 0, 1, \dots, 11\\ r_3 e^{j(\phi_3 + \frac{2\pi}{16}n)} & n = 0, 1, \dots, 16 \end{cases}$$
 (2.3)

Fig. 3: Constellation diagram of 16APSK

Where $\frac{r_2}{r_1} = 2.54, \frac{r_3}{r_2} = 4.33, \phi_1 = 45, \phi_2 = 15, \phi_3 = 0$. Fig. 4 Shows the Constellation mapping for 32-APSK symbols.

Fig. 4: Constellation diagram of 32APSK

References

[1] A. Morello and V. Mignone, "DVB-S2X: The New Extensions to the Second Generation DVB Satellite Standard DVB-S2," *Int. J. Satell. Commun. Netw.*, vol. 34, no. 3, pp. 323–325, May 2016. [Online]. Available: https://doi.org/10.1002/sat.1167