PATENT ABSTRACTS OF JAPAN

(11) Publication number:

08-328636

(43) Date of publication of application: 13.12.1996

(51)Int.CI.

G05B 19/414 G05B 15/02 G05B 19/05 H04Q 9/00 9/04 H04Q

(21)Application number: 07-128604

(71)Applicant: MITSUBISHI ELECTRIC CORP

(22)Date of filing:

26.05.1995

(72)Inventor: YAMASHITA AKIHIRO

MITO JUNICHI

(54) METHOD FOR CONTROLLING DISTRIBUTED TYPE REMOTE I/O TYPE CONTROL SYSTEM

(57)Abstract:

PURPOSE: To miniaturize a system, to improve raliability, reduce the cost and to improve safety by eliminating the number of the signal lines of a communication line, eliminating the MPU of a distributed type remote I/O and making a fail safe function into a hardware, in the system connecting a controller main body such as an NC device main body, etc., and plural distributed type remote I/O by a serial communication line.

CONSTITUTION: An NC device main body 1 and a distributed type remote I/O unit 2 perform time division transmission/receptions by a half-duplex serial communication line. The distributed type remote I/O unit 2 executes an output reset when the reception starting state of the reception frame from the NC device main body 1 can not be detected for fixed period and executes the confirmation of the classification of the distributed type remote I/O in the NC device main body 1, the recognition of set information, input/output tests

and a communication status by the header pattern of a communication frame.

LEGAL STATUS

[Date of request for examination]

23.02.2000

[Date of sending the examiner's decision of

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-328636

(43)公開日 平成8年(1996)12月13日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
	19/414			G 0 5 B	19/18		Q
	15/02			H04Q	9/00	3 0 1 B	
	19/05				9/04		
H04Q	9/00	- · · · · · · · · · · · · · · · · · · ·		G 0 5 B	15/02	1	A
	9/04				19/05	•	J
			·	審査請求	未請求	請求項の数22	OL (全 60 頁)
(21)出願番号		特願平7-128604	(71)出願人	. 0000060	13		
					三菱電標	幾株式会社	
(22)出願日		平成7年(1995) 5 月		東京都	F代田区丸の内 二	二丁目2番3号	
				(72)発明者	山下 明	召裕	
							「目1番14号 三菱
			•			式会社名古屋製作	İ 所内
•				(72)発明者		-	
				-			目1番14号 三菱
				(5.1) (5.7)		会社名古屋製作	所内
				(74)代理人	并理士	酒井 宏明	

(54) 【発明の名称】 分散型リモート I / O式制御システムの制御方法

(57)【要約】

【目的】 NC装置本体などの制御装置本体と複数の分散型リモートI/Oを直列通信線で接続するシステムにおいて通信線の信号線数の削除、分散型リモートI/OのMPUの削除、フェイルセーフ機能のハードウェア化によりシステムの小型化、信頼性向上、低価格化、安全性向上を図ること。

【構成】 NC装置本体1と分散型リモートI/Oユニット2とは半二重直列通信ラインにより時分割送受信を行い、分散型リモートI/O2はNC装置本体2からの受信フレームの受信開始状態が一定期間検知できない場合には、出力リセット実行すると共に、NC装置本体1での分散型リモートI/Oの種別、設定情報の認識、入出力試験、および通信状況の確認を通信フレームのヘッダパターンで実施する。

【特許請求の範囲】

制御装置本体と複数個の分散型リモート 【請求項1】 I/Oユニットとが直列通信方式により接続された分散 型リモートI/O式制御システムの制御方法において、

制御装置本体と各分散型リモートI/Oユニットとの 間の双方向の直列送信を時分割により実施し、システム 起動時には、制御装置本体側で分散型リモートI/Oユ ニットの種別および分散型リモートI/Oユニット上の 設定情報を判別するために通常入出力モードとは異なる オフラインステータス通信モードで自動的に通信開始す 10 ることを特徴とする分散型リモートI/O式制御システ ムの制御方法。

【請求項2】 オフラインステータス通信モードでは、 制御装置本体から各分散型リモートI/〇ユニットへ各 分散型リモートI/Oユニットに実装されたスイッチに 対応するヘッダパターンを含む送信フレームを順次送信 し、送信フレームに対応する各分散型リモートI/Oユ ニットが各々自ユニットの種別の情報を含んだ送信フレ ームを制御装置本体へ送信することにより、分散型リモ ートI/〇ユニットに実装されたスイッチ対応の分散型 20 リモートI/Oユニットの種別を制御装置本体で認識 し、当該オフラインステータス通信モードでは、分散型 リモートI/Oユニットの出力信号を前回と同一として 制御装置本体から新たに送信されたデータに更新しない ことを特徴とする請求項1に記載の分散型リモート1/ 〇式制御システムの制御方法。

【請求項3】 通常入出力モードであるオンライン通信 モードとオフラインステータス通信モードとの切り替え は制御装置本体から分散型リモートI/Oユニットに送 信するフレームのヘッダパターンの違いによるものと し、分散型リモートI/Oユニットの通信制御部は、へ ッダパターンの違いを検知し、これに基づくモード切替 信号によってオンライン通信モードの通常入力とオフラ インステータス通信モードのステータス入力を切り替え ることを特徴とする請求項1または2に記載の分散型リ モートI/O式制御システムの制御方法。

【請求項4】 システム電源投入時に自動的にオフライ ンステータス通信モードをセットし、オフラインステー タス通信モードからオンライン通信モードへの切り替え 及びオンライン通信モードからオフラインステータス通 40 信モードへの切り替えを制御装置本体のMPUが通信制 御部のモード切替ビットをセットすることにより実行 し、同期回路により複数個の分散型リモートI/Oユニ ットの第1局目への送信から同期して切り替え、モード 切替後に全ての分散型リモートI/Oユニットのステー タスを受信完了したことを示すステータスピットをセッ トし、制御装置本体のMPUがステータス受信完了を認 識することを特徴とする請求項1~3の何れかに記載の 分散型リモートI/O式制御システムの制御方法。

【請求項5】 制御装置本体の記憶手段に分散型リモー 50

トI/Oユニットの接続局数、局番に対応する分散型リ モートI/Oユニットの種別の情報を格納し、システム 起動後の分散型リモートI/Oユニットからの送信フレ ームに含まれるステータス情報と前記記憶手段に格納さ れた情報とに相違がある場合にはアラーム出力を行うこ とを特徴とする請求項1~4の何れかに記載の分散型リ モートI/O式制御システムの制御方法。

【請求項6】 制御装置本体の通信制御部は、オフライ ンステータス通信モード時の各分散型リモートI/〇ユ ニットからのステータス情報とオンライン通信モード時 の各分散型リモートI/Oユニットの入力情報を保持す る受信データ記憶手段を共用することを特徴とする請求 項1~5の何れかに記載の分散型リモート I/O式制御 システムの制御方法。

【請求項7】 制御装置本体と複数個の分散型リモート I/Oユニットとが直列通信方式により接続された分散 型リモートI/O式制御システムの制御方法において、

分散型リモートI/Oユニットにて制御装置本体から の送信フレームの受信開始状態を受信開始状態監視手段 により監視し、制御装置本体からの送信フレームの受信 開始状態を所定時間以上検知できない場合には分散型リ モート I / Oユニットが自己の出力リセットを自動的に 行うことを特徴とする分散型リモートI/O式制御シス テムの制御方法。

【請求項8】 制御装置本体の通信制御部は、制御装置 本体のMPUにより分散型リモートI/Oユニットへの 送信データの書き込みを行い、分散型リモートI/Oユ ニット側からの受信データの読み出しが所定時間以上に 亙って実施されない場合にはシステム異常と認識し、分 散型リモートI/Oユニットに対する送信を停止し、分 散型リモートI/Oユニットの出カリセット動作を誘起 させることを特徴とする請求項1~7の何れかに記載の 分散型リモートI/O式制御システムの制御方法。

【請求項9】 分散型リモートI/Oユニットは制御装 置本体からの送信フレーム中にあるヘッダパターンが各 分散型リモートI/Oユニット上の局番を設定するスイ ッチと対応するパターンである場合のみ自局あての送信 フレームと認識し、当該フレーム受信完了後、ハードウ ェアタイマにより計時された所定時間経過後に制御装置 本体あての送信フレームの送信を開始することを特徴と する請求項1~8の何れかに記載の分散型リモート I/ 〇式制御システムの制御方法。

【請求項10】 分散型リモートI/Oユニットは、制 御装置本体からの各分散型リモートI/Oユニットに対 するフレーム受信完了を検知した後に制御装置本体に対 してフレーム送信し、フレーム受信完了を検知しない場 合には制御装置本体に対してフレーム送信しないことを 特徴とする請求項1~9の何れかに記載の分散型リモー トI/O式制御システムの制御方法。

【請求項11】 分散型リモートI/Oユニットは、制

30

御装置本体からのフレーム受信時に、通信フレームの送受信の誤り制御を行い、誤り検出時には分散型リモート I / Oユニットの出力信号を更新せずに制御装置本体に対する送信フレームのヘッダパターンを切り替えて送信し、制御装置本体にて送信フレームのヘッダパターンよりの誤りを検知し、制御装置本体から分散型リモート I / Oユニットへのフレーム送信に誤りがあったことを認識することを特徴とする請求項1~10の何れかに記載の分散型リモート I / O式制御システムの制御方法。

【請求項12】 分散型リモート I / Oユニットからの 10 送信フレームのヘッダパターンが、制御装置本体からの 送信フレームの誤りを示す回数が所定値以上になれば、システムの異常としてシステム停止することを特徴とす る請求項11に記載の分散型リモート I / O式制御システムの制御方法。

【請求項13】 制御装置本体の通信制御部に分散型リモート I / Oユニットに送信するデータを保持する送信データ記憶手段と分散型リモート I / Oユニットより受信するデータを保持する受信データ記憶手段とを設け、制御装置本体と分散型リモート I / Oユニット間の通信 20 フレーム中のデータ配列は、制御装置本体のMPUのデータ配列に合わせて制御装置本体から分散型リモート I / Oユニットへの送信フレームと分散型リモート I / Oユニットから制御装置本体への送信フレームのいずれもデータ単位で送信データ記憶手段からの読み出し順序と受信データ記憶手段への書き込み順序の入れ換えにより切り替えられることを特徴とする請求項1~12の何れかに記載の分散型リモート I / O式制御システムの制御方法。

【請求項14】 制御装置本体から各分散型リモート I 30 / Oユニットへ送信したデータを分散型リモート I / O ユニットで出力し、出力データと同一のデータを制御装置本体へ送信するループバックモードを分散型リモート I / Oユニットの通信制御部に与え、ループバックモードの指示を分散型リモート I / Oユニットに実装されたスイッチまたは制御装置本体から送信される送信フレームのヘッダパターンにより行い、ヘッダパターンの変更を制御装置本体のMPUが通信制御部のモード切替ビットをセットすることにより行うことを特徴とする請求項1~13の何れかに記載の分散型リモート I / O式制御 40システムの制御方法。

【請求項15】 分散型リモート I / O ユニットの通信制御部にMPUを付加し、MPUによって制御装置本体から送信されるデータの読み出しと制御装置本体へ送信するためのデータ書き込みを行うことを特徴とする請求項1~14の何れかに記載の分散型リモート I / O 式制御システムの制御方法。

【請求項16】 分散型リモートI/Oユニットは、アナログ電圧の入出力を可能とし、制御装置本体側から一定周期毎にアナログ電圧出力、アナログ電圧入力するた。50

めのディジタルデータを分散型リモート I / O ユニット との間で送受信することを特徴とする請求項 $1\sim15$ の何れかに記載の分散型リモート I / O 式制御システムの制御方法。

【請求項17】 各分散型リモート I / Oユニットの出力部を別の分散型リモート I / Oユニットの入力部に接続し、制御装置本体が各分散型リモート I / Oユニットへ出力する出力データを異なるように設定し、制御装置本体が受信する各分散型リモート I / Oユニットの入力データが予め設定した各分散型リモート I / Oユニットの入出力接続状態と一致することを確認することを特徴とする請求項1~16の何れかに記載の分散型リモート I / O式制御システムの制御方法。

【請求項18】 オンライン通信モードにおいて、分散型リモート I / Oユニット上のスイッチのデータにより識別した分散型リモート I / Oユニットの種類に対応して、制御装置本体から分散型リモート I / Oユニットの局番を含むヘッダパターンとコマンドとパラメータから構成される送信データを周期的に送信し、各分散型リモート I / Oユニットでは個々の分散型リモート I / Oユニットでは個々の分散型リモート I / Oユニットでは個々の分散型リモート I / Oユニットの局番を設定スイッチと対応したヘッダパターンがある場合のみ自局宛の送信フレームと認識し、ハードウェア構成により送信データのコマンドデータとパラメータを処理することを特徴とする請求項1~17の何れかに記載の分散型リモート I / O式制御システムの制御方法。

【請求項19】 制御装置本体から一定周期ごとに表示器の局番を含むヘッダパターンと表示コマンドと表示データとを分散型リモートI/Oユニットに送信し、分散型リモートI/Oユニットに接続された表示器にデータ表示を行うことをことを特徴とする請求項1~18の何れかに記載の分散型リモートI/O式制御システムの制御方法。

【請求項20】 制御装置本体に分散型リモートI/Oユニットを経由して接続された同期エンコーダ、手動パルス発生器のデジタルデータの読み出しを可能とし、同期エンコーダ、手動パルス発生器から出力されるパルス列のパルス数をカウントするパルスカウンタを有する分散型リモートI/Oユニット上のハードウェア回路に対して、制御装置本体から一定周期毎に、分散型リモートI/Oユニットのヘッダパターンとパルスカウンタ値を保持して読み出すコマンドとを送信し、同期エンコーダ、手動パルス発生器のパルスカウンタ値を制御装置本体へ送信することを特徴とする請求項1~19の何れかに記載の分散型リモートI/O式制御システムの制御方法。

【請求項21】 制御装置本体よりMPU付きの分散型リモートI/Oユニットへヘッダパターンと共にサイクリックに変化するシーケンス番号部を含むコマンド部とパラメータ部から構成される送信データを送信し、分散

型リモート I / Oユニットでは受信したデータのコマンド部を解釈し、シーケンス番号順にパラメータ部のデータを並べることにより制御装置本体より分散型リモート I / Oにデータを転送することを特徴とする請求項1~20の何れかに記載の分散型リモート I / O式制御システムの制御方法。

【請求項22】 MPU付きの分散型リモートI/Oユニットでは受信したコマンドに対する応答データとしてコマンド部とパラメータ部から構成される応答データを生成し、コマンド部には受信したコマンドとシーケンス 10番号を付けることにより、制御装置本体側で受信したデータがどのコマンドに対する応答かを認識し、かつシーケンス番号順にパラメータ部のデータを並べることにより分散型リモートI/Oユニットから制御装置本体へデータ転送することを特徴とする請求項21に記載の分散型リモートI/O式制御システムの制御方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、分散型リモートI/〇ユニット式制御システムの制御方法およびデータ通信 20方法に関し、特に数値制御装置、プログラマブルコントローラ装置、その他の各種制御装置などによる制御システムにおいて、制御装置本体と複数個の分散型リモートI/〇ユニットとが直列通信方式で接続され、制御装置本体と各分散型リモートI/〇ユニットとの間で1対N通信を行う分散型リモートI/〇式制御システムの制御方法に関するものである。

[0002]

【従来の技術】数値制御(NC)装置やプログラマブルコントローラ(PC)装置、その他の各種制御装置など 30による制御システムにおいて、制御装置本体に対してデータ入出力用の複数個の分散型リモートI/Oユニットが分離配置され、制御装置本体と分散型リモートI/Oユニットとの間で、直列通信方式によって双方向にデータ通信を行う分散型リモートI/Oユニット式制御システムは、既に知られている。

【0003】図31は分散型リモートI/O式制御システムをNC装置に適用した従来例を示している。分散型リモートI/O式数値制御システムは、NC装置本体1と、NC装置本体1とは分離配置された複数個の分散型 40リモートI/Oユニット2とを有し、NC装置本体1と各分散型リモートI/Oユニット2とが二本の送信信号線121、122により直列通信方式で接続され、NC装置本体1と各分散型リモートI/Oユニット2との間で、双方向にデータ通信を行う。

【0004】互いに並列の関係にある送信信号線121 と122のうち、一方の送信信号線121はNC装置本 体1から分散型リモートI/Oユニット2へのデータ送 信に使用され、他方の信号線122は分散型リモートI /Oユニット2からNC装置本体1へのデータ送信に使 50

用される。なお、最終の分散型リモートI/Oユニット2には終端(ターミナル)モジュール4が接続される。【0005】NC装置本体1は、MPU101と、送信ドライバICと受信ドライバICとを有する通信制御部102と、制御プログラム、データなどを格納するメモ

102と、制御プログラム、データなどを格納するメモリ103とにより構成され、CRTなどによる表示器4 まは使されている。

を接続されている。

【0006】分散型リモート I / Oユニット 2 は各々、MPU111と、送信ドライバ I C と受信ドライバ I C とを有する通信制御部112と、制御プログラムなどを格納したメモリ113と、分散型リモート I / Oユニット 2 を各々個別に判別するためのスイッチ114と、図示されていない機械装置(制御対象機器)に対する出力 I / F部115および入力 I / F部116とを具備している。

【0007】上述の従来の分散型リモートI/O式数値制御システムでは、NC装置本体1と分散型リモートI/Oユニット2が直列通信方式で接続されており、分散型リモートI/Oユニット2は、NC装置本体1と同様にMPU111によりソフトウェア制御され、NC装置本体1と他の分散型リモートI/Oユニット2の各々に対して通信線が送信と受信とで別個になっている。

【0008】図32は分散型リモートI/O式制御システムをNC装置に適用した他の従来例を示している。この分散型リモートI/O式数値制御システムでは、NC装置本体1とが一本の信号線123により直列通信方式で接続され、一本の信号線123によってNC装置本体1と各分散型リモートI/Oユニット2との間のデータ通信を双方向に行う。

【0009】この分散型リモートI/O式数値制御システムは、信号線123が、NC装置本体1から分散型リモートI/Oユニット2へのデータ送信と、分散型リモートI/Oユニット2からNC装置本体1へのデータ送信の両方を行うこと以外は、図31に示されている分散型リモートI/O式数値制御装置と実質的に同一に構成されている。

【0010】上述のような分散型リモートI/O式数値制御システムにおけるNC装置本体1のMPU101のソフトウェア処理フローを図33を用いて説明する。システム起動時には、NC装置本体1のMPU101は、NC装置本体1にどのような分散型リモートI/Oユニット2が接続されているかを未確認であるため、先ず各分散型リモートI/Oユニット2にステータス要求するための送信フレームを作成し(ステップS1)、そのステータス要求フレームを各分散型リモートI/Oユニット2に対して送信する(ステップS2)。

【0011】次に各分散型リモートI/Oユニット2がステータス要求フレームを受信したことによる応答として、分散型リモートI/Oユニット2がステータス情報を含んだフレーム(ステータス情報フレーム)を受信し

(ステップS3)、これを受信したNC装置本体1は、受信したステータス情報を記憶する。以降、順次他の分散型リモートI/Oユニット2に対してステータス要求を繰り返し、全ての分散型リモートI/Oユニット2よりステータス情報フレームを受信すると(ステップS4肯定)、次にステータス情報より分散型リモートI/Oユニット2の接続状況を解析し、それをNC装置本体1の表示器3に表示する(ステップS5)。

【0012】次に、NC装置本体1のMPU101は、オンライン通信モードに切り替え、分散型リモートI/ 10 Oユニット2が出力するデータを含んだオンライン送信フレームを作成し(ステップS6)、このオンライン送信フレームを各分散型リモートI/Oユニット2へ順次送信すると共に(ステップS7)、各分散型リモートI/Oユニット2から通常入力データを含んだフレーム(オンライン受信フレーム)を受信し(ステップS8)、毎回の受信状況(受信完了、受信エラー)および受信データの解析を行う(ステップS9)。以降、ステップS6~ステップS9を繰り返す。

【0013】次に上述のような分散型リモートI/O式 20数値制御システムにおける分散型リモートI/Oユニット2のMPU111によるソフトウェア処理フローを図34を用いて説明する。

【0014】電源投入時には、分散型リモートI/Oユニット2のMPU111は、メモリ113に格納されている制御プログラムを実行することにより、通信制御部113の動作の初期化とスイッチステータス情報の読み込みを行い、自局が何番目の分散型リモートI/Oユニット2であるかを認識し(ステップS21)、この後にNC装置本体1からの自局あての送信フレームの受信待30ち状態に入る(ステップS22)。

【0015】 N C 装置本体 1 から自局あての送信フームを受信すると(ステップS 22 肯定)、そのフレームがオフライン通信モードまたはオンライン通信モードのものかをヘッダパターンより判別する(ステップS 23)。

【0016】オフライン通信モードにおいては、即ちステータス情報要求フレームの受信であれば、自局のステータス情報を読み込んで自局のステータス情報を含んだ送信フレーム、即ちオフライン送信フレーム(ステータ 40 ス情報フレーム)を作成し(ステップS24)、MPU 111による指令によって通信制御部112の送信ドライバICを有効にして(ステップS25)、オフライン送信フレームをNC装置本体1へ送信し(ステップS26)、送信完了後に通信制御部112の送信ドライバICを無効する(ステップS27)。そして再び受信待状態(ステップS22)に戻る。

【0017】これに対しオンライン通信モードにおいては、入力 I / F部116より取り込んだ入力情報を組み込んだオンライン送信フレームを作成し(ステップS2 50

8)、MPU111による指令によって通信制御部112の送信ドライバICを有効にして(ステップS29)、オフライン送信フレームをNC装置本体1へ送信し(ステップS30)、送信完了後に通信制御部112の送信ドライバICを無効する(ステップS31)。

【0018】またNC装置本体1からのオンライン送信フレームにCRCエラーがない正常受信であるか否かを判別し(ステップS32)、正常受信であれば、そのオンライン送信フレームが含んでいるデータを出力I/F部115へ出力すべく出力信号をセットする(ステップS33)。そして、送信完了すると再び受信待状態(ステップS22)に戻り、以降、NC装置本体1から自局あてのフレーム受信があれば、上述の動作を繰り返す。【0019】

【発明が解決しようとする課題】図31に示されているような従来の数値制御システムにおいては、半二重通信であるにも拘らず、NC装置本体1と分散型リモートI/Oユニット2との間の双方向の通信が、NC装置本体1より分散型リモートI/Oユニット2への送信専用線である送信信号線121と、分散型リモートI/Oユニット2よりNC装置本体1への送信専用線である送信信号線122の並列二本の信号線を使用してるため、システムにおける信号線数が多く、NC装置本体1および分散型リモートI/Oユニット2における信号線の接続コネクタ実装スペースが大きくなり、また断線、コネクタ抜けなど障害に対する信頼性が低下すると云う問題点がある。

【0020】これに対し図32に示されているような従 来の数値制御システムにおいては、一本の信号線123 によってNC装置本体1と分散型リモートI/Oユニッ ト2との間のデータ通信を双方向に行っているから、信 号線数が削減され、信頼性に関しては図31に示されて いるようなシステムに比して改善されるが、しかし従来 の数値制御システムでは、何れの場合も、NC装置本体 1のMPU101は、分散型リモートI/Oユニット2 とのデータ通信以外のタスクを実行することにより、受 信フレームに含まれている受信データの解析、送信フレ ームの作成や送信処理に要する時間がそのときどきにお いて変動するのに対し、送信フレームが作成され次第、 NC装置本体1と分散型リモートI/Oユニット2との 間で、送信フレームの送信が開始されるため、分散型リ モート I / 〇ユニット 2 の各局に対する一回の送受信サ イクルタイムおよび分散型リモートI/Oユニット全局 分の送受信サイクルタイムが変動し、予め定義された所 定時間毎にサイクリック通信を行うことができないと云 う問題点がある。

【0021】また従来のシステムでは、分散型リモート I/Oユニット2において、周期的にNC装置本体1と の間でデータの送受信を実行するシステム機能は、NC 装置本体1と同様に、MPU111が制御プログラムを

実行することによるソフトウェア制御によって実現しているため、ハードウェアコストが高くなると共に、MPU111を制御するソフトウェアの開発が必要になり、ソフトウェア開発コストも必要となる。このため、分散型リモート I/Oユニット 2 が高価なものになる。

【0022】また分散型リモートI/Oユニット2のシステム機能がMPU111によるソフトウェア制御によって実現するため、通信データフォーマットが複雑となり、一本の信号線(通信線)上に、分散型リモートI/Oユニット2に機能の異なる機器を接続する場合、小量 10のデータしか取り扱わない機器のための分散型リモートI/Oユニット2にもMPU111を付加しなければならず、コストパフォマンスが悪いものになる。

【0023】また周期的にNC装置本体1と分散型リモートI/Oユニット2との間でデータの送受信を実行するシステムにおいて、大きなデータを複数回に分割して転送する場合には、転送周期より遅い周期で受信データを読み出うとすると、データの連続性が保証できないと云う問題が生じる。

【0024】また従来のシステムにおいては、分散型リモート I / Oユニット 2 は、通常時にはデータ入出力を繰り返すが、MPU111がNC装置本体1からの受信フレームのエラーチェック、出力制御部への動作指令の出力、外部機器からのデータ入力、送信フレームへの組み込み処理を実行しなければならないため、MPU111の負荷が大きく、高性能のMPU111を必要とし、コスト高になる。

【0025】また上述のような従来のシステムでは、何らかの異常が発生した場合には、NC装置本体1が分散型リモートI/Oユニット2の出力をリセットするため30の送信フレームを分散型リモートI/Oユニット2へ送信するが、突発的な異常時には、出力をリセットするための送信処理時間が不足して出力リセットできない場合や、ケーブルコネクタ抜け、信号断線などによるケーブル障害により出力リセットできない場合があるため、別のリセット手段を併用する必要がある。

【0026】この発明は、上述のようなな問題点を解決するためになされたものあり、分散型リモート I/O式制御システムの小型化、信頼性向上、低価格化、安全性向上を図る分散型リモート I/O式制御システムの制御 40方法を提供することを目的としている。

[0027]

【課題を解決するための手段】上述の目的を達成するために、この発明に係る分散型リモート I / O 式制御システムの制御方法は、制御装置本体と複数個の分散型リモート I / O ユニットとが直列通信方式により接続された分散型リモート I / O 式制御システムの制御方法において、制御装置本体と各分散型リモート I / O ユニットとの間の双方向の直列送信を時分割により実施し、システム起動時には、制御装置本体側で分散型リモート I / O 50

ユニットの種別および分散型リモート I / Oユニット上の設定情報を判別するために通常入出力モードとは異なるオフラインステータス通信モードで自動的に通信開始するものである。

【0028】次の発明に係る分散型リモート I / O式制御システムの制御方法は、オフラインステータス通信モードでは、制御装置本体から各分散型リモート I / Oユニットに実装されたスイッチに対応するヘッダパターンを含む送信フレームを順次送信し、送信フレームに対応する各分散型リモート I / Oユニットの種別の情報を含んだ送信フレームを制御装置本体へ送信することにより、分散型リモート I / Oユニットに実装されたスイッチ対応の分散型リモート I / Oユニットの種別を制御装置本体で認識し、当該オフラインステータス通信モードでは、分散型リモート I / Oユニットの出力信号を前回と同一として制御装置本体から新たに送信されたデータに更新しないものである。

【0029】次の発明に係る分散型リモート I / O式制御システムの制御方法は、通常入出力モードであるオンライン通信モードとオフラインステータス通信モードとの切り替えは制御装置本体から分散型リモート I / Oユニットに送信するフレームのヘッダパターンの違いによるものとし、分散型リモート I / Oユニットの通信制御部は、ヘッダパターンの違いを検知し、これに基づくモード切替信号によってオンライン通信モードの通常入力とオフラインステータス通信モードのステータス入力を切り替えるものである。

【0030】次の発明に係る分散型リモートI/O式制御システムの制御方法は、システム電源投入時に自動的にオフラインステータス通信モードをセットし、オフラインステータス通信モードからオンライン通信モードへの切り替え及びオンライン通信モードからオフラインステータス通信モードへの切り替えを制御装置本体のMPUが通信制御部のモード切替ピットをセットすることにより実行し、同期回路により複数個の分散型リモートI/Oユニットの第1局目への送信から同期して切り替え、モード切替後に全ての分散型リモートI/Oユニットのステータスを受信完了したことを示すステータスピットをセットし、制御装置本体のMPUがステータス受信完了を認識するものである。

【0031】次の発明に係る分散型リモートI/〇式制御システムの制御方法は、制御装置本体の記憶手段に分散型リモートI/〇ユニットの接続局数、局番に対応する分散型リモートI/〇ユニットの種別の情報を格納し、システム起動後の分散型リモートI/〇ユニットからの送信フレームに含まれるステータス情報と前記記憶手段に格納された情報とに相違がある場合にはアラーム出力を行うものである。

【0032】次の発明に係る分散型リモート 1/〇式制

御システムの制御方法は、制御装置本体の通信制御部は、オフラインステータス通信モード時の各分散型リモート I / 〇ユニットからのステータス情報とオンライン 通信モード時の各分散型リモート I / 〇ユニットの入力情報を保持する受信データ記憶手段を共用するものである。

【0033】次の発明に係る分散型リモートI/O式制御システムの制御方法は、制御装置本体と複数個の分散型リモートI/Oユニットとが直列通信方式により接続された分散型リモートI/O式制御システムの制御方法において、分散型リモートI/Oユニットにて制御装置本体からの送信フレームの受信開始状態を受信開始状態監視手段により監視し、制御装置本体からの送信フレームの受信開始状態を所定時間以上検知できない場合には分散型リモートI/Oユニットが自己の出力リセットを自動的に行うものである。

【0034】次の発明に係る分散型リモートI/O式制御システムの制御方法は、制御装置本体の通信制御部は、制御装置本体のMPUにより分散型リモートI/Oユニットへの送信データの書き込みを行い、分散型リモ 20ートI/Oユニット側からの受信データの読み出しが所定時間以上に亙って実施されない場合にはシステム異常と認識し、分散型リモートI/Oユニットに対する送信を停止し、分散型リモートI/Oユニットの出カリセット動作を誘起させるものである。

【0035】次の発明に係る分散型リモートI/O式制御システムの制御方法は、分散型リモートI/Oユニットは制御装置本体からの送信フレーム中にあるヘッダパターンが各分散型リモートI/Oユニット上の局番を設定するスイッチと対応するパターンである場合のみ自局 30 あての送信フレームと認識し、当該フレーム受信完了後、ハードウェアタイマにより計時された所定時間経過後に制御装置本体あての送信フレームの送信を開始するものである。

【0036】次の発明に係る分散型リモートI/O式制御システムの制御方法は、分散型リモートI/Oユニットは、制御装置本体からの各分散型リモートI/Oユニットに対するフレーム受信完了を検知した後に制御装置本体に対してフレーム送信し、フレーム受信完了を検知しない場合には制御装置本体に対してフレーム送信しな40いものである。

【0037】次の発明に係る分散型リモートI/O式制御システムの制御方法は、分散型リモートI/Oユニットは、制御装置本体からのフレーム受信時に、通信フレームの送受信の誤り制御を行い、誤り検出時には分散型リモートI/Oユニットの出力信号を更新せずに制御装置本体に対する送信フレームのヘッダパターンを切り替えて送信し、制御装置本体にで送信フレームのヘッダパターンよりの誤りを検知し、制御装置本体から分散型リモートI/Oユニットへのフレーム送信に誤りがあった 50

ことを認識するものである。

【0038】次の発明に係る分散型リモートI/O式制御システムの制御方法は、分散型リモートI/Oユニットからの送信フレームのヘッダパターンが、制御装置本体からの送信フレームの誤りを示す回数が所定値以上になれば、システムの異常としてシステム停止する。

【0039】次の発明に係る分散型リモートI/O式制御システムの制御方法は、制御装置本体の通信制御部に分散型リモートI/Oユニットに送信するデータを保持する送信データ記憶手段と分散型リモートI/Oユニットより受信するデータを保持する受信データ記憶手段とを設け、制御装置本体と分散型リモートI/Oユニット間の通信フレーム中のデータ配列は、制御装置本体のMPUのデータ配列に合わせて制御装置本体から分散型リモートI/Oユニットへの送信フレームと分散型リモートI/Oユニットから制御装置本体への送信フレームのいずれもデータ単位で送信データ記憶手段からの読み出し順序と受信データ記憶手段への書き込み順序の入れ換えにより切り替えられるものである。

【0040】次の発明に係る分散型リモートI/O式制御システムの制御方法は、制御装置本体から各分散型リモートI/Oユニットへ送信したデータを分散型リモートI/Oユニットで出力し、出力データと同一のデータを制御装置本体へ送信するループバックモードを分散型リモートI/Oユニットの通信制御部に与え、ループバックモードの指示を分散型リモートI/Oユニットに実装されたスイッチまたは制御装置本体から送信される送信フレームのヘッダパターンにより行い、ヘッダパターンの変更を制御装置本体のMPUが通信制御部のモード切替ビットをセットすることにより行うものである。

【0041】次の発明に係る分散型リモートI/〇式制御システムの制御方法は、分散型リモートI/〇ユニットの通信制御部にMPUを付加し、MPUによって制御装置本体から送信されるデータの読み出しと制御装置本体へ送信するためのデータ書き込みを行うものである。

【0042】次の発明に係る分散型リモートI/O式制御システムの制御方法は、分散型リモートI/Oユニットは、アナログ電圧の入出力を可能とし、制御装置本体側から一定周期毎にアナログ電圧出力、アナログ電圧入力するためのディジタルデータを分散型リモートI/Oユニットとの間で送受信するものである。

【0043】次の発明に係る分散型リモートI/O式制御システムの制御方法は、各分散型リモートI/Oユニットの出力部を別の分散型リモートI/Oユニットの入力部に接続し、制御装置本体が各分散型リモートI/Oユニットへ出力する出力データを異なるように設定し、制御装置本体が受信する各分散型リモートI/Oユニットの入力データが予め設定した各分散型リモートI/Oユニットの入出力接続状態と一致することを確認するものである。

30

13

【0044】次の発明に係る分散型リモートI/O式制 御システムの制御方法は、オンライン通信モードにおい て、分散型リモートI/Oユニット上のスイッチのデー タにより識別した分散型リモートI/Oユニットの種類 に対応して、制御装置本体から分散型リモートI/Oユ ニットの局番を含むヘッダパターンとコマンドとパラメ ータから構成される送信データを周期的に送信し、各分 散型リモートI/Oユニットでは個々の分散型リモート I/Oユニットの局番を設定スイッチと対応したヘッダ パターンがある場合のみ自局宛の送信フレームと認識 し、ハードウェア構成により送信データのコマンドデー タとパラメータを処理するものである。

【0045】次の発明に係る分散型リモートI/O式制 御システムの制御方法は、制御装置本体から一定周期ご とに表示器の局番を含むヘッダパターンと表示コマンド と表示データとを分散型リモートI/Oユニットに送信 し、分散型リモートI/Oユニットに接続された表示器 にデータ表示を行うものである。

【0046】次の発明に係る分散型リモートI/O式制 御システムの制御方法は、制御装置本体に分散型リモー 20 トI/Oユニットを経由して接続された同期エンコー ダ、手動パルス発生器のデジタルデータの読み出しを可 能とし、同期エンコーダ、手動パルス発生器から出力さ れるパルス列のパルス数をカウントするパルスカウンタ を有する分散型リモートI/Oユニット上のハードウェ ア回路に対して、制御装置本体から一定周期毎に、分散 型リモートI/Oユニットのヘッダパターンとパルスカ ウンタ値を保持して読み出すコマンドとを送信し、同期 エンコーダ、手動パルス発生器のパルスカウンタ値を制 御装置本体へ送信するものである。

【0047】次の発明に係る分散型リモートI/O式制 御システムの制御方法は、制御装置本体よりMPU付き の分散型リモートI/Oユニットへヘッダパターンと共 にサイクリックに変化するシーケンス番号部を含むコマ ンド部とパラメータ部から構成される送信データを送信 し、分散型リモート I / Oユニットでは受信したデータ のコマンド部を解釈し、シーケンス番号順にパラメータ 部のデータを並べることにより制御装置本体より分散型 リモートI/〇にデータを転送するものである。

【0048】次の発明に係る分散型リモートI/O式制 40 御システムの制御方法は、MPU付きの分散型リモート I/Oユニットでは受信したコマンドに対する応答デー タとしてコマンド部とパラメータ部から構成される応答 データを生成し、コマンド部には受信したコマンドとシ ーケンス番号を付けることにより、制御装置本体側で受 信したデータがどのコマンドに対する応答かを認識し、 かつシーケンス番号順にパラメータ部のデータを並べる ことにより分散型リモートI/Oユニットから制御装置 本体へデータ転送するものである。

[0049]

【作用】この発明に係る分散型リモート I / O 式制御シ ステムの制御方法においては、制御装置本体と各分散型 リモートI/Oユニットとの間の双方向の直列送信を時 分割により実施し、システム起動時には、制御装置本体 側で分散型リモートI/〇ユニットの種別および分散型 リモートI/Oユニット上の設定情報を判別するために 通常入出力モードとは異なるオフラインステータス通信 モードで自動的に通信開始する。これにより、システム 起動時には必ずオフラインステータス通信モードで動作 するため、システムの異常動作を防止でき、その後のオ ンライン通信モード時に制御装置本体が分散型リモート I /Oユニットの種別を認識できるようになり、制御装 置本体が分散型リモートI/Oユニットの種別に合った 入出力制御が可能となる。

14

【0050】次の発明に係る分散型リモート I / O式制 御システムの制御方法においては、オフラインステータ ス通信モードでは、制御装置本体から各分散型リモート I/Oユニットへ送信フレームを順次送信し、送信フレ ームに対応する各分散型リモートI/Oユニットが各々 自ユニットの種別の情報を含んだ送信フレームを制御装 置本体へ送信することにより、分散型リモートI/Oユ ニットに実装されたスイッチ対応の分散型リモートI/ 〇ユニットの種別を制御装置本体で認識する。またオフ ラインステータス通信モードでは、分散型リモートI/ 〇ユニットの出力信号を前回と同一として制御装置本体 から新たに送信されたデータに更新しない。これにより システム起動時に制御装置本体のオペレータは、分散型 リモートI/Oユニットの接続状況、接続されている分 散型リモートI/〇ユニットの種別の確認を容易に行え るようになる。またオフラインステータス通信モードで は、制御装置本体から送信されたデータを分散型リモー トI/Oユニット側では使用されず、通信開始時にMP Uが誤って出力データを送っても分散型リモートI/O ユニット側では出力されないため、安全性の高いシステ ムを構築することができる。

【0051】次の発明に係る分散型リモートI/O式制 御システムの制御方法においては、オンライン通信モー ドとオフラインステータス通信モードとの切り替えは制 御装置本体から分散型リモートI/Oユニットに送信す るフレームのヘッダパターンの違いによるものとし、分 散型リモートI/Oユニットの通信制御部は、ヘッダパ ターンの違いを検知し、これに基づくモード切替信号に よってオンライン通信モードの通常入力とオフラインス テータス通信モードのステータス入力を切り替えられ る。これにより制御装置本体と分散型リモートI/〇ユ ニットの回路構成が簡単になると共に、オフライン通信 モード時にも分散型リモートI/Oユニット出力に関し ては、オンライン通信モード時と同様に出力可能とな

【0052】次の発明に係る分散型リモートⅠ/〇式制 50

御システムの制御方法においては、システム電源投入時 に自動的にオフラインステータス通信モードをセット し、オフラインステータス通信モードとオンライン通信 モードとの間の切り替えを制御装置本体のMPUが通信 制御部のモード切替ビットをセットすることにより実行 し、同期回路により複数個の分散型リモート I / Oユニ ットの第1局目への送信から同期して切り替え、モード 切替後に全ての分散型リモートI/Oユニットのステー タスを受信完了したことを示すステータスピットをセッ トし、制御装置本体のMPUがステータス受信完了を認 10 識する。これにより電源投入後には自動的にオフライン ステータス通信モードとなり、自動的に分散型リモート I/Oユニットへ順次ステータス要求のための送信フレ ームを送出するため、制御装置本体側のソウトフェア処 理が簡単になる。また分散型リモートI/Oユニットの 第1局目への送信から同期してステータス要求のための 送信フレームに切り替わるため、制御装置本体側で通常 入力とステータスを間違えて認識することがない。

【0053】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、制御装置本体の記憶 20 手段に分散型リモートI/Oユニットの接続局数、局番に対応する分散型リモートI/Oユニットの種別の情報を格納し、システム起動後の分散型リモートI/Oユニットからの送信フレームに含まれるステータス情報と前記1億手段に格納された情報とに相違がある場合にはアラーム出力を行う。これにより安全性の高い分散型リモートI/Oユニットシステムを構築することができる。

【0054】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、制御装置本体の通信制御部は、オフラインステータス通信モード時とオンラ 30イン通信モード時とで受信データ記憶手段を共用する。これにより通信制御部の構成を簡略化できる。

【0055】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、分散型リモートI/Oユニットにて制御装置本体からの送信フレームの受信開始状態を受信開始状態監視手段により監視し、制御装置本体からの送信フレームの受信開始状態を所定時間以上検知できない場合には分散型リモートI/Oユニットが自己の出カリセットを自動的に行う。これにより制御装置本体が異常状態となり、システム停止した際に機械40制御信号をリセットすることができ、安全性が高いシステムを構築することができる。

【0056】また、受信開始状態検知方式とすることにより、制御装置本体が送信状態でシステム停止した場合、及びケーブル抜け、断線等の状態が発生しても分散型リモートI/Oユニット側の出力は確実にリセットされる。

【0057】次の発明に係る分散型リモート I / O式制御システムの制御方法においては、制御装置本体の通信制御部は、制御装置本体のMPUにより分散型リモート 50

I/〇ユニットへの送信データの書き込みを行い、分散型リモートI/〇ユニット側からの受信データの読み出しが所定時間以上に亙って実施されない場合にはシステム異常と認識し、分散型リモートI/〇ユニットに対する送信を停止し、分散型リモートI/〇ユニットの出力リセット動作を誘起させる。これにより制御装置本体のシステムソウトウェアが正常に動作しないことを検知して確実に分散型リモートI/〇ユニットの出力をリセットできる。

【0058】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、分散型リモートI/Oユニットは制御装置本体からの送信フレーム中にあるヘッダパターンが各分散型リモートI/Oユニット上の局番を設定するスイッチと対応するパターンである場合のみ自局あての送信フレームと認識し、当該フレーム受信完了後、ハードウェアタイマにより計時された所定時間経過後に制御装置本体あての送信フレームの送信を開始する。これにより従来のような分散型リモートI/Oユニット側のMPUが制御装置本体からのフレーム受信完了を確認して制御装置本体へ送信するソウトウェア手順が不要になる。

【0059】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、分散型リモートI/Oユニットは、制御装置本体からの各分散型リモートI/Oユニットに対するフレーム受信完了を検知した後に制御装置本体に対してフレーム送信し、フレーム受信完了を検知しない場合には制御装置本体に対してフレーム送信しない。これにより各分散型リモートI/Oユニットの実装有無の判別ができる。

【0060】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、分散型リモートI/Oユニットは、制御装置本体からのフレーム受信時に、通信フレームの送受信の誤り制御を行い、誤り検出時には分散型リモートI/Oユニットの出力信号を更新せずに制御装置本体に対する送信フレームのヘッダパターンを切り替えて送信し、制御装置本体にて送信フレームのヘッダパターンよりの誤りを検知し、制御装置本体から分散型リモートI/Oユニットへのフレーム送信に誤りがあったことを認識する。分散型リモートI/Oユニットは、制御装置本体からのフレーム受信時に誤りが検知された場合には出力信号を更新しないことにより、通信路のノイズ環境に対する信頼性が向上する。

【0061】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、分散型リモートI/Oユニットからの送信フレームのヘッダパターンが、制御装置本体からの送信フレームの誤りを示す回数が所定値以上になると、システムの異常としてシステム停止する。これによりシステムの信頼性が向上する。

【0062】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、制御装置本体と分散

型リモートI/Oユニット間の通信フレーム中のデータ配列が、制御装置本体のMPUのデータ配列に合わせて制御装置本体から分散型リモートI/Oユニットへの送信フレームと分散型リモートI/Oユニットから制御装置本体への送信フレームのいずれもデータ単位で送信データ記憶手段からの読み出し順序と受信データ記憶手段への書き込み順序の入れ換えにより切り替えられる。これにより各種の機械に対応しやすくなる。

【0063】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、制御装置本体から各10分散型リモートI/Oユニットへ送信したデータを分散型リモートI/Oユニットで出力し、出力データと同一のデータを制御装置本体へ送信するループバックモードを分散型リモートI/Oユニットの通信制御部に与え、ループバックモードの指示を分散型リモートI/Oユニットに実装されたスイッチまたは制御装置本体から送信される送信フレームのヘッダパターンにより行い、ヘッダパターンの変更を制御装置本体のMPUが通信制御部のモード切替ビットをセットすることにより行う。これにより制御装置本体側で分散型リモートI/Oユニットない送信した出力データが正常に送信され、また同時に分散型リモートI/Oユニットから制御装置本体への送信も正常にできることが容易に確認できる。

【0064】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、MPUによって制御装置本体から送信されるデータの読み出しと制御装置本体へ送信するためのデータ書き込みを行う。これにより、他のアプリケーションに流用可能となり、用途が拡大する。

【0065】次の発明に係る分散型リモートI/O式制 30 御システムの制御方法においては、分散型リモートI/Oユニットは、アナログ電圧の入出力を可能とし、制御装置本体側から一定周期毎にアナログ電圧出力、アナログ電圧入力するためのディジタルデータを分散型リモートI/Oユニットとの間で送受信する。これによりシステムとしての用途が拡大する。

【0066】次の発明に係る分散型リモート I / 〇式制御システムの制御方法においては、各分散型リモート I / 〇ユニットの出力部を別の分散型リモート I / 〇ユニットの出力部を別の分散型リモート I / 〇ユニットへ出力する出力データを異なるように設定し、制御装置本体が受信する各分散型リモート I / 〇ユニットの入力データが予め設定した各分散型リモート I / 〇ユニットの入出力接続状態と一致することを確認する。これにより制御装置本体と複数の分散型リモート I / 〇ユニットにより構成されるシステムの試験を簡単に実施できる。

【0067】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、オンライン通信モードにおいて、分散型リモートI/Oユニット上のスイッ 50

チのデータにより識別した分散型リモート I / 〇ユニットの種類に対応して、制御装置本体から分散型リモート I / 〇ユニットの局番を含むヘッダパターンとコマンドとパラメータから構成される送信データを周期的に送信し、各分散型リモート I / 〇ユニットでは個々の分散型リモート I / 〇ユニットでは個々の分散型リモート I / 〇ユニットの局番を設定スイッチと対応したヘッダパターンがある場合のみ自局宛の送信フレームと認識し、ハードウェア構成により送信データのコマンドデータとパラメータを処理する。これにより1本の通信ライン上に異なる種類の I / 〇を接続できる。

【0068】次の発明に係る分散型リモートI/O式制 御システムの制御方法においては、制御装置本体から一 定周期ごとに表示器の局番を含むヘッダパターンと表示 コマンドと表示データとを分散型リモートI/Oユニッ トに送信し、分散型リモートI/Oユニットに接続され た表示器にデータ表示を行う。これにより制御装置本体 におけるソフトウェア処理は直列通信で表示データを送 信すると云う操作を意識することなくMPUのデータバ スに表示器が直接接続されている場合と同様に、制御コ マンドと表示データを制御装置側の分散型リモートI/ 〇ユニットの送信バッファに書き込むだけでよい。送信 バッファに書き込まれた表示データはハードウェア処理 により直列通信で分散型リモート I / Oユニットに送信 され、分散型リモートI/Oユニットの出力データとし て表示器にセットされる。このため制御装置本体のソフ トウェアは、分散型リモートI/Oユニットを用いてデ ータを出力すると云う特別の処理が不要になる。

【0069】次の発明に係る分散型リモートI/O式制 御システムの制御方法においては、同期エンコーダ、手 動パルス発生器が出力するパルス列のパルス数をカウン トするパルスカウンタを有する分散型リモートI/Oユ ニット上のハードウェア回路に対して、制御装置本体か ら一定周期毎に、分散型リモートI/Oユニットのヘッ ダパターンとパルスカウンタ値を保持して読み出すコマ ンドとを送信し、同期エンコーダ、手動パルス発生器の パルスカウンタ値を制御装置本体へ送信する。これによ りパルスカウンタの情報は周期的に制御装置本体へ送信 され、制御装置本体のソフトウェアは制御装置本体の分 散型リモートI/Oユニットの受信パッファのデータを 読み出すことにより、直列通信でデータを受信すると云 う動作を意識することなく、MPUのデータバスにパル スカウンタインタフェースが直接接続されている場合と 同様に、周期的に更新されるデータを読み出すことがで

【0070】次の発明に係る分散型リモートI/O式制御システムの制御方法では、制御装置本体よりMPU付きの分散型リモートI/Oユニットへヘッダパターンと共にサイクリックに変化するシーケンス番号部を含むコマンド部とパラメータ部から構成される送信データを送信し、分散型リモートI/Oユニットでは受信したデー

タのコマンド部を解釈し、シーケンス番号順にパラメータ部のデータを並べる。これにより連続したデータを高い信頼性をもって制御装置本体よりMPU付きの分散型リモートI/Oユニットへ送信することができる。

【0071】次の発明に係る分散型リモートI/O式制御システムの制御方法では、MPU付きの分散型リモートI/Oユニットが受信したコマンドに対する応答データとしてコマンド部とパラメータ部から構成される応答データを生成し、コマンド部に受信したコマンドとシーケンス番号を付けることにより、制御装置本体側で受信10したデータがどのコマンドに対する応答かを認識し、かつシーケンス番号順にパラメータ部のデータを並べることにより分散型リモートI/Oユニットから制御装置本体へデータを送信する。これによりMPU付きの分散型リモートI/Oユニットから制御装置本体へ連続したデータを高い信頼性をもって送信することができる。

[0072]

【実施例】以下に添付の図を参照してこの発明を実施例について詳細に説明する。なお、この発明の実施例において上述の従来例と同一部分は、上述の従来例に付した 20符号と同一の符号を付してその説明を省略することがある。

【0073】 [実施例1]

(システム全体構成)図1はこの発明による制御方法を 実施する分散型リモートI/O式制御システムの一例を 示している。

【0074】分散型リモートI/Oユニット2は、通信制御部130と、出力制御部131と、入力制御部132よりのデータの通常入力とオフライン通信モードにおける30ステータス情報(ID CODE)の入力とを通信制御部130よりの通信モード選択信号MODEにより切り替えるマルチプレクサ133と、各分散型リモートI/Oユニットの種別を個別に設定するスイッチ134とを有している。

【0075】ステータス情報は、分散型リモートI/Oユニット2の種別、設定情報等であり、分散型リモートI/Oユニット2がどのような種類(例えばディジタル信号、アナログ信号、電圧信号、電流信号、AC/DCなど)の入出力信号を取り扱うなどの情報を含んでいる。

【0076】この分散型リモートI/Oユニット2はMPUとMPUを動作させるソフトウェア格納ROMを含んでいない。

【0077】通信制御部130は受信開始状態監視手段としてキャリヤセンサ135を有している。キャリヤセンサ135は、NC装置本体1からの送信フレームが受信開始状態であるか否かを検知する論理部であり、NC装置本体1からのシリアル受信信号RXDの有無を監視する。

【0078】なお、図1において、TXDは分散型リモートI/Oユニット2からのシリアル送信信号、RTSは送信ドライバICオン信号である。

【0079】図2は上述のような分散型リモートI/O式制御システムにおいて、単純な入出力制御のみを行うパラレルモード(PARARLLEL MODE)と、入力制御部にMPU(REMOTE CPU)を有する分散型リモートI/Oユニットを使用して行うCPUパスモード(CPU BUS MODE)の違いを示している。パラレルモードでは、通信制御部(REMOTE – IO COMM.)130が8ピットの出力ボートDOと入力ボートDIを直接制御する。CPUバスモードについては、図8を参照して後に詳細に説明する。

【0080】なお、図2において、DO $0\sim1$ Fは出力データ、DI $0\sim1$ Fは入力データである。またPO $0\sim1$ Fは後述する図8のレジスタ535にセットされるデータを示しており、またPI $00\sim0$ Fは図8におけるPI $00\sim0$ Fと同等の意味のパラレル入力信号であることを示している。

0 【0081】信号の名称をDO0~1FとDI0~1F と異なるようにしているのは、信号の取扱いが異なることを示している。

【0082】(NC装置本体の通信制御部の送信部ハードウェア構成)図3はこの発明による分散型リモートI/O式制御システムの制御方法の実施に使用するNC装置本体1の通信制御部102の送信部のハードウェア構成を示している。

【0083】この送信部は、MPU101よりの分散型リモートI/Oユニット2に送信するデータD0~D15を一時記憶するライトバッファ300と、ライトバッファ300より与えられるデータD0~D15を保持するラッチ回路(送信データ記憶手段)301と、ラッチ回路301を選択するマルチブレクサ302と、選択されたラッチ回路301の送信データをシリアルにシフトするためのシストレジスタ303と、送信フレームの誤り検知用に付加するCRCデータを生成するCRCジェネレータ304と、送信フレームの先頭と終了を示すために付加されるフラグパターンを生成するフラグパターンジェネレータ305とを有している。

【0084】加えて、送信フレームがどの分散型リモート I / Oユニット 2 へ送信するものかを示すためのヘッダパターンを生成するアドレスジェネレータ 3 0 6 と、シストレジスタ 3 0 3 と C R C ジェネレータ 3 0 4 とフラグパターンジェネレータ 3 0 5 とアドレスジェネレータ 3 0 6 の個々の出力を論理和する O R ゲート 3 0 7 と、送信データとフラグパターンを識別するために送信データにゼロインサーションするゼロインサーション回路 3 0 8 と、送信フレームのパターンに N R Z I 変調を実施する N R Z I 変調回路 3 0 9 とを有している。

50 【0085】さらに、加えて、送信フレームをタイミン

グを取って生成するための送信HDLCシーケンサ310と、NC装置本体1から分散型リモート I / 〇ユニット2への送信開始タイミングを所定時間間隔で決める送信HDLCタイマ311と、通信制御部102の全てのクロックを制御するためのクロック信号制御部312と、通信制御部102でウォッチドッグが検出された時に送信を止めるためのANDゲート313と、送信HDLCシーケンサ310による送信タイミングに合わせてマルチプレクサ302を切り替えるマルチプレクサ切替回路314と、通信制御部102に対してMPU10110が送信データ書き込み、受信データ読み出しを一定時間以上実施しない場合を検知して送信出力をオフするためのウォッチドッグ検出回路315と、MPU101よりの送信データの書み込み先のラッチ回路301を選択するラッチセレクタ316とを有している。

【0086】ウォッチドッグ検出回路315は、図では、ANDゲート313とラッチ回路301の双方に結線されているが、この結線はその何れか一方のみが行われていればよい。ウォッチドッグ検出回路315がANDゲート313と結線されていれば、ウォッチドッグ検出回路315が送信オフ指令信号を発生すると、RTS信号がオフになり、送信信号TXDが即時に応答性よく遮断される。これに対しウォッチドッグ検出回路315がラッチ回路301と結線されていると、ウォッチドッグ検出回路315の送信オフ指令信号によってラッチ回路301がリセットされ、リセットされたデータが送信される。この場合には送信信号を遮断せずに分散型リモートI/Oユニット2の出力を実質的にオフでき、信号ケーブル遮断と区別することが可能になる。

【0087】このNC装置本体1における送信タイミン 30 グは送信HDLCタイマ311により設定され、送信サ イクルタイムが一定になる。

【0088】なお、図3にて、A0-4、CS、RD、WR、BUS8は各々MPU101より入力されるアドルス信号、CLOCKはクロック信号、CHANGEは送受信ボーレートを切り替えるためのクロック切替信号、IN-XMITは送信期間中であることを示すしED用出力信号、XMIT ENDはMPU101へ出力する送信フレームの送信完了信号、XSD0~7は分散型リモートI/Oユニット2への送信データのモニタ信40号、XFCS0~7はCRCデータ信号、TXMCは送信データ選択用アルチプレクサ切替信号である。

【0089】図4(a)はNC装置本体1のロースピードモード時の送受信タイミングを、(b)はハイスピードモード時の送受信タイミングを各々示している。なお、図4にて、XMITは送信タイミングを、RECVは受信タイミングを各々示している。

【0090】図4に示されている送信タイミングの場合、送信HDLCタイマ311は送信起動信号XMITを1送信サイクルについて8回発生する。送信HDLC 50

ダイマ311が送信起動信号XMITを発生すると、送信HDLCシーケンサ310が、その送信起動信号XMITを受け、送信データ保持用のラッチ回路301を選択するために、マルチブレクサ切替回路314に選択信号を出力する。マルチブレクサ切替回路314は、マルチブレクサ302をセレクト動作させ、データ送信対象のラッチ回路301を選択設定する。

【0091】具体的には、先ず、1送信サイクルの最初の送信起動信号 XMITでは、番号が0~3の4つのラッチ回路301が選択され、次回の送信起動信号 XMITでは、番号が4~7の4つのラッチ回路301が選択される。このようにして、送信起動信号 XMIT 毎にラッチ回路301が順に選択され、1送信サイクルの最後の送信起動信号 XMIT では、番号が1C~1F04つのラッチ回路301が選択され、1送信サイクル内に全てのラッチ回路301が選択され、その全てのラッチ回路301のデータが送信されることになる。

【0092】(NC装置本体の通信制御部の受信部のハードウェア構成)図5はこの発明による分散型リモートI/O式制御システムの制御方法の実施に使用するNC装置本体1の通信制御部102の受信部のハードウェア構成を示している。

【0093】この受信部は、受信したデータ $D0\sim D15$ 、各種ステータス情報(XMITEND、RECVEND、CRCERR、CONNECTION STATUS)を一時記憶するリードバッファ400と、リードバッファ400よりの受信データ $D0\sim D15$ を保持するラッチ回路(受信データ記憶手段)401と、各分散型リモートI/Oユニット2からの受信に合わせてラッチ回路401を切り替え選択するためのデマルチブレクサ402と、受信フレームのシリアルデータをシフトするためのシフトレジスタ403と、ゼロインサーションされた受信ビット列からゼロデリーションを行うゼロデリーション回路404と、NRZI変調された受信フレームを復調するNRZI復調回路405とを有している。

【0094】加えて、受信フレーム開始と終了を検知するためのフラグパターン比較器406と、受信フレームのヘッダパターンが正常か否かを判別するためのアドレスパターン比較器407と、受信フレームが誤りがないか否かを判別するためのCRC比較器408と、受信処理のタイミング制御を実施する受信HDLCシーケンサ409と、受信HDLCシーケンサ409の受信HDLCシーケンサの受信完了タイミングに合わせてCRC比較器408の結果が正常受信の場合にのみ受信データ保持用のラッチ回路401にデータの書き込みを行う受信ラッチ制御部410とを有している。

【0095】なお、図5にて、IN-RECVは受信期 間中であることを示すLED用出力信号、CRC-ER Rは受信エラー検出信号を、RECV ENDは受信完

了信号、CRC ERRはCRCエラーで終了したことを示すステータス信号、SWAPはMPU101のデータビット数によりデータ出力を切り替えられたデータ信号、CONNECTION STAUSは分散型リモートI/Oユニット2が接続されているか否かを示すステータス信号、RFCS0~7はCRC比較器408の比較結果を示す信号、DMCはデマルチプレクサ402の切替信号、RSTはラッチ回路401のラッチストローブ信号である。

【0096】 ここでは、受信ラッチ制御回路410が受 10 信順にデマルチプレクサ切替信号DMCによってデマルチプレクサ402を切り替え、選択されたラッチ回路401に対してラッチストローブ信号を与え、ラッチを行う。

【0097】(NC装置本体の通信制御部の動作)NC装置本体1の通信制御部102の詳細な動作については、一般的なHDLCプロトコルをサポートするものと同一であるので省略するが、この発明による制御方法では、通信制御部102にアクセスが無い状態が所定時間に亙って続いたことをウォッチドッグ検知回路315が20検知すると、送信データのラッチ回路301をリセットし、初期状態の送信データを分散型リモートI/Oユニット2へ送信すると共に、送信ドライバのゲート信号をANDゲート313により遮断する。分散型リモートI/Oユニット2は受信フレームがなくなったことにより出力リセットを実施する。

【0098】このシステムでは、NC装置本体1と分散型リモートI/Oユニット2との間の通信は、NC装置本体1から分散型リモートI/Oユニット2への送信線とリモートI/Oユニット2からNC装置本体1への送30信線とを兼用した一本の通信線だけで行われるから、ケーブル抜け、ケーブル断線、NC装置本体1のMPU101の異常などに対して分散型リモートI/Oユニット2の出力をオフする手段として、新たな信号線を用いて対策する必要がない。

【0099】NC装置本体1では、分散型リモートI/Oユニット2への送信データの書き込みと受信データの読み出しを周期的に実施しているので、ウォッチドッグ検知回路315により設定する前記所定時間はその周期の2倍以上に設定すればよい。また、前記所定時間は、分散型リモートI/Oユニット2が使用されている状態、例えばデータI/Oの対象となる工作機械が必要とする制御特性などによるが、数百ミリ秒以内には収まっている必要がある。

【0100】また、NC装置本体1の送信タイミングは MPUI01に依存することなく送信HDLCタイマ311により設定されることにより、送信サイクルタイム が一定になる。

【0101】(分散型リモートI/Oユニットの通信制 御部のハードウェア構成)図6は、この発明による分散 50

型リモート I /〇式制御システムの制御方法の実施に使用する分散型リモート I /〇ユニット 2 の通信制御部 1 3 0 のハードウェア構成を示している。

【0102】通信制御部130は、通常入出力モードとバス動作モードとループバックモードモードの何れかーつを選択的に設定するモード設定デコーダ500と、入力データDI0~31を与えられるフィルタ回路501と、フィルタ回路501を選択するマルチプレクサ502と、選択されたフィルタ回路501の入力データ(送信データ)をシリアルに変換するためのシストレジスタ503と、送信フレームの誤り検知用に付加するCRCデータを生成するCRCジェネレータ504と、送信フレームの先頭と終了を示すために付加されるフラグパターンを生成するフラグパターンジェネレータ506とを有している。

【0103】通信制御部130は、加えて、シストレジスタ503とCRCジェネレータ504とフラグパターンジェネレータ505とアドレスジェネレータ506の個々の出力を論理和するORゲート507と、送信データとフラグパターンを識別するために送信データにゼロインサーションするゼロインサーション回路508と、送信フレームのパターンにNRZI変調を実施するNRZI変調回路509と、送信フレームをタイミングを取って生成するための送信HDLCシーケンサ510による送信タイミングに合わせてマルチプレクサ502を切り替える送信データ選択用のマルチプレクサ切替回路511と、出力データDO0~DO31を保持するラッチ回路521とを有している。

【0104】送信HDLCシーケンサ510は、後述のCRC比較器527が出力するRECV END信号により起動されるハードウェアタイマを含み、ハードウェアタイマにより計時された時間をもって送信フレームの送信開始タイミングを設定する。

【0105】通信制御部130は、さらに、加えて、受信フレームのシリアルデータをシフトするためのシフトレジスタ522と、ゼロインサーションされた受信ビット列からゼロデリーションを行うゼロデリーションを行うゼロデリーションを復調すると、NRZI変調された受信フレームを復調するNRZI復調回路524と、受信フレーム開始と終信フレームのヘッダパターンが正常か否かを判別するためのアドレスパターン比較器525と、受信フレームがないか否かを判別するためのCRC比較器527と、受信処理のタイミング制御を実施する受信HDLCシーケンサ528と、受信中信号の開始時に微分信号を出する微分器529と、微分信号が一定時間検知できないことを検出するためのアラームカウンタ530と、クロック信号制御回路517と、分散型リモートI/Oユニ

ットの局番信号ADDの設定とループバックモード/通 常入出力モード切替を行うロータリスイッチ518とを 有している。

25

【0106】フィルタ回路501は分散型リモートI/ 〇ユニット2に入力されるノイズ成分を含んだ信号入力 をフィルタリングしてノイズ成分の無い信号を得る機能 を持つ。

【0 1 0 7】なお、図 6 において、MOD 0 - 3 は通常 入出カモードとバス動作モードとループバックモードと の切替のためにモード設定部500に与えるモード切替 10 信号、RECV ENDは受信完了信号、CRC ER RはNC装置本体1からの受信フレームにCRCエラー があった場合を示すCRCエラー信号、L-RECVは 受信データラッチ信号、DO RESETはアラームカ ウンタ530が出力するアラーム信号であり、このアラ ーム信号によって分散型リモート I / Oユニット 2 の出 カ用のラッチ回路521をリセットする。

【0108】MPU付加時には、出力データDI0-7、DI8-15は、DATA0-7、A0-A3、C S、RD、WRの各信号として使用される。

【0109】図7は分散型リモートI/Oユニット2に おける1回の送受信サイクルを示している。

【O110】(分散型リモートI/Oユニットの入出力 部の構成)図8はこの発明による分散型リモートI/O 式制御システムの制御方法の実施に使用する分散型リモ ートI/Oユニット2の入出力部を示している。分散型 リモートI/〇ユニット2にMPUを付加した場合にN C装置本体1へ送信するデータを分散型リモートI/O ユニット2側のMPUが書き込みためのレジスタ512 (図6参照) と、通信制御部130に入力される入力信 30 号の極性を変換する極性変換器513と、分散型リモー トIノ〇ユニット2にMPUを接続して使用した場合の デコーダ514と、通信制御部130への入力信号の入 カパッファ515と、分散型リモートI/Oユニット2 にMPUを接続した場合のNC装置本体1からの受信デ ータなどを読み出すための出力パッファ516と、通信 制御部130のモード設定により分散型リモートI/〇 ユニット2の出力信号を切り替えるためのマルチプレク サ532と、出力信号の極性を切り替える極性変換器5 33と、出力信号の出力バッフ534と、分散型リモー 40 トI/Oユニット2にMPUを付加した場合に分散型リ モートI/〇ユニット2に付加されたMPUが出カデー 夕を書き込むためのレジスタ535とを有している。

【0111】極性変換器513、533の機能として は、分散型リモートI/〇ユニット2の入出力が利用さ れる対象機器に合わせて信号極性を変える機能を果た し、その機能は通信制御部130の外部信号入力により 設定される。

【0112】なお、図8において、LOOPBACK、

へ直接送信する送信データ信号、RECEIVE DA TA#0~#3は図6のシフトレジスタ522の出力デ ータ信号、TRANSMITDATA#0~#3は図6 におけるXSD0-7信号に相当するNC装置本体1に 対する送信データ信号、BUS MODE READは バス動作モード時にデコーダ514で分散型リモートI /Oユニット2のMPUがデータを読み出している時に オンとなるパスモードリード信号、FILTER-CL OCKはフィルタ501のフィルタ定数選択信号であ

26

【0113】分散型リモートI/Oユニット2は、モー ド設定レコーダ500に入力する外部モード入力信号 (モード切替信号) MOD0-3によって、動作モード として、MPUを付加しない通常入出力モードと、MP Uを付加するバス動作モードと、試験時にNC装置本体 1からの送信データを分散型リモートI/Oユニット2 で折り返して送信するループバックモードの何れか一つ が外部モード入力信号MOD0-3によって選択設定さ

【0114】(通常入出力モード)通常入出力モードで は、ラッチ回路521に保持されたNC装置本体1から の送信データがマルチプレクサ532よって選択され、 極性変換器533を経由して出力信号(DO00-0 7, DO08-0F, DO10-17, DO18-1F) として利用され、入力信号 (DI00-07, DI 08-0F, DI10-17, DI18-1F) が極性 変換器513を経由してフィルタ回路501を通ってマ ルチプレクサ502で選択されてNC装置本体1へ送信 される。

【0115】(バス動作モード)バス動作モードでは、 ラッチ回路521に保持されたNC装置本体1からの送 信データがDOL00~1Fとして出力バッファ516 を経由して通信制御部130の外部に付加されたMPU に読み出され、MPUは読み出したデータを必要に応じ て変換して入力バッファ515を通して書き込みレジス タ535に書き込む。マルチプレクサ532では、書き 込みレジスタ535からのデータパスが選択されて送信 データDOL00~1Fが出力信号DO00~DO1F として出力される。

【0116】NC装置本体1へのデータ送信は、MPU が入力パッファ515を通して送信用書き込みレジスタ 512に書き込むことで、マルチプレクサ502がレジ スタ512からのデータパスを選択して送信される。

【0117】バス動作モードでは、入力データDI08 -0Fは通信制御部内部のデコーダ514の制御入力と して使用され、DI01-1FはMPUがその信号状態 をPI00-0F信号として出力パッファ516を経由 して読み出せる。

【0118】以上のように、バス動作モードにおいて DOL00~1Fはループアップ試験にNC装置本体1 50 は、通信制御部130が入力データと出力データの振り 分けるのではなく、一度、MPUが通信制御部130よりNC装置本体1からの受信データを読み出して解析し、出力ボートに出力データをセットする。

【0119】この場合の信号の流れは、(RECEIVE DATA#0~#3)→ラッチ回路521→ (DOL00~1F) →バッファ516よりデータリード→MPUがデータ解析→入力バッファ515を通してレジスタ535 (PO00~1F) にデータを書き込む→DO0~1Fへ出力となる。

【0120】入力データとしては、DI10~1Fのみ 10が使用可能であり、DI00~07はリモートCPUのデータ信号として使用され、DI08~0FはリモートCPUからの制御信号入力として使用されるため、MPUを付加した場合には、DI00~0Fは使用不可になる。DI10~1Fの信号の流れは、(DI10~1F)→ (PI00~0F) → 出力バッファ516よりデータリード→MPUがデータ解析→入力バッファ515を通してレジスタ512(WR00~03)にデータを書き込む→マルチプレクサ502を通して(TRNSMIT DATA#0~#3)に変換→NC装置本体1~20送信となる。

【0121】このバス動作モードの実施ために分散型リモートI/Oユニット2にMPUを付加すると、制御装置本体のI/Oユニット機器、制御装置本体の操作パネル信号の入出力、紙テープリーダー、紙テープパンチャー等の他のアプリケーションに流用可能となり、用途が拡大する。分散型リモートI/Oユニット2にMPUを付加しても、NC装置本体1との間の通信は、MPUに依存することなく、自動的に実行されるから、そのMPUのソウトウェア処理が複雑になることはない。

【0122】 (ループバックモード) ループバックモードでは、ラッチ回路521に保持されたNC装置本体1からの送信データ(DOL00-1F)をマルチプレクサ502で選択してNC装置本体へ送信する。

【0123】ルーブバックモードにおいて、正常にNC装置本体1で送信したデータと受信したデータが一致していることを折り返しチェックするためには、ラッチ回路521にデータ保持が完了した後で、ルーブバックモードで送信するデータ(LOOPBACK DOL00-1F)を送信フレームに生成する必要があるが、NC装置本体1からのデータ受信と分散型リモートI/Oユニット25からの送信は時分割で実施されているため問題を生じることはない。

【0124】このループバックモードにより、NC装置本体1で分散型リモートI/Oユニット2へ送信した出力データが正常に送信され、また分散型リモートI/Oユニット2からNC装置本体1への送信も正常にできることが容易に確認できる。

【0125】 (NC装置本体と分散型リモートI/Oユニットの間の送受信データの流れ)図9はこの発明によ 50

る制御方法におけるNC装置本体1と分散型リモートI/Oユニット2との間の送受信データの流れを示すタイミング図である。図9において、N#0~N#7はNC装置本体1から分散型リモートI/Oユニット2への送信フレームのタイミング、R#0~R#7は分散型リモートI/Oユニット2からNC装置本体1への送信フレームのタイミング、N#0-RTSA~N#3-RTSAはNC装置本体1から各分散型リモートI/Oユニット(第1局目から第4局目まで)へ送信する際のドライバーICイネーブル信号RTSAのタイミング、R#0~N#3の送信フレームに対応して分散型リモートI/Oユニット2がNC装置本体1へ送信する際のドライバーICイネーブル信号RTSAのタイミイングを示す。

【0126】N#0~N#7、R#0~R#7の各フレームFのフレームフォーマットは、FLAG、ADR1、ADR2、DATA#0~DATA#3、CRC、FLAGを有している。FLAGはフレームの境界を示すパターン、ADR1、ADR2はヘッダパターン、DATA#0~DATA#3はNC装置本体1及び分散型リモートI/Oユニット2が送信するデータを含んだ情報領域、CRCはフレームの誤りを検知するために付加さたチェックコードである。

【0127】ADR1、ADR2はこの発明に必要となる各分散型リモートI/Oユニットの識別、オンライン通信モード・オンラインステータス通信モードの識別、NC装置本体1からのループバックモードの指定、NC装置本体1から各分散型リモートI/Oユニット2への送信におけるCRCエラーの有無の識別に利用される。【0128】DATA#0~DATA#3は、オンライン通信モードでは入力データ、出力データを与えられ、オンラインステータス通信モードではIDステータスを

【0129】(分散型リモートI/〇ユニット側通信制御部の動作)図10は分散型リモートI/〇ユニット側通信制御部の動作を示している。図10において、Aは受信フレームF中のヘッダパターンが自局宛のフレームと認識された際の受信中信号(IN-REVE)、Bは受信中信号Aの開始を検知するための受信中微分信号(IN-REVED)、Cは受信フレームのヘッダパタ

与えられる。

(IN-REVED)、Cは受信フレームのヘッダパターンがオンライン通信モード、オンラインステータス通信モード、ルーブバックモードのいずれかを示すことを判別して通信制御部でモード切り替えを実施するためのモード認識信号、Dはオンライン通信モードにおいてCRCエラーを検知せずに正常受信された場合の通信制御部の出力信号更新タイミングを示している。

【0130】(分散型リモートI/Oユニットにおける出力リセット動作)図11は分散型リモートI/Oユニット2において、ウォッチドック検出回路315による

送信出力停止動作によってNC装置本体1からの受信が 消滅したことを検知して出力信号をリセットするアラー ム信号を発生する仕組みを示す回路構成図である。この 回路は、受信HDLCシーケンサ528 (図6参照)の 内部構成により与えられ、受信中信号Aを生成する受信 状態検知回路801と、受信中信号Aを受けて受信中微 分信号Bを生成する微分回路(微分器)529(図6参 照)と、カウンタクロック信号を与えられてアップカウ ントし、受信中微分信号Bによりカウンタリセットされ るアラームカウンタ530 (図6参照) とにより具現さ 10 れ、アラームカウンタ530のカウント値がオーバーフ ローした場合の出力をアラーム信号DO RESETと し、このアラーム信号DO RESETにより分散型リ モート I / 〇ユニット2の出力信号保持レジスタをリセ ットする。

【0131】これにより受信HDLCシーケンサ528 の受信状態検知回路801が図1におけるキャリアセン サ135をなすことになる。

【0132】したがって分散型リモートI/Oユニット 2が受信開始状態をアラームカウンタ530のカウント 20 値により決まる所定時間に亙って検知しないと、分散型 リモート I /Oユニット 2 は出カリセットを行う。

【0133】これによりNC装置本体1が何らかの要因 でシステム停止したことにより、NC装置本体1がウォ ッチドック検出回路315によって送信出力停止状態に なり、分散型リモートI/Oユニット2側ではNC装置 本体1からの送信フレームの受信開始状態が一定時間な いことを検知して出力をリセットするから、NC装置本 体1が異常状態となってシステム停止した際に機械制御 信号をリセットすることができ、安全性が高いシステム 30 を構築することができる。この場合、NC装置本体1の システムプログラムが正常に動作しないことが検知され た場合も分散型リモートI/Oユニット2の出力がリセ ットされ、このことによってもシステムの安全性が向上

【0134】また、受信開始状態検知方式であることか ら、NC装置本体1が送信状態でシステム停止した場 合、及びケーブル抜け、断線等の状態が発生しても、分 散型リモートI/Oユニット2の出力はリセットされる ことになり、安全性が高いシステムが構築される。

【0135】(各モードにおける送受信フレームのフォ ーマット)図12は各モードにおける送受信フレームの 示している。(a)はオンライン通信モード時のNC装 置本体1から分散型リモートI/〇ユニット2への送信 フレームを、(b)はオンライン通信モード時の分散型 リモート I / Oユニット 2 からN C装置本体 1 への送信 フレームを、(c)はオンラインステータス通信モード 時のNC装置本体1からの分散型リモートI/〇ユニッ ト2への送信フレームを、(d)はオンラインステータ ス通信モード時の分散型リモートI/Oユニット2から 50 へ受信データを書き込み時に順番を入れ換えてビックエ

NC装置本体1への送信フレームを、(e)はルーブバ ックモード時のNC装置本体1から分散型リモートI/ 〇ユニット2への送信フレームを、(f)はループバッ クモード時の分散型リモート I / Oユニット 2 からNC 装置本体1への送信フレームを各々示している。

【0136】また各フレームにおいて、Do#0~3は 分散型リモート I / Oユニット 2 への送信データ(出力 データ)、Di#0~3はNC装置本体1への送信デー タ(入力データ)、 ID00は分散型リモート I/Oユ ニット2の種別IDコード、ID01分散型リモートI /Oユニット2の設定情報、ID02とID03は分散 型リモートI/Oユニット2のその他のステータ情報の ための予約領域である。

【0137】これら各フレームは、フレーム内のデータ 構成については全て同一であるが、ヘッダパターンのみ 異なり、NC装置本体1及び分散型リモートI/Oユニ ット2の通信制御部のタイミング制御を容易にしてい る。

【0138】ヘッダパターンは、例えば16ピットで構 成され、FF00~FF0FまでをNC装置本体1から 分散型リモート I / Oユニットへの通常送信時、490 0~490FまでをNC装置本体1から分散型リモート I/Oユニットへのオフラインステータス送信時、4C 00~4C0FまでをNC装置本体1から分散型リモー ト I / Oユニットへのループバックモード送信時、52 00を各分散型リモートI/OユニットからNC装置本 体1への分散型リモート I/Oユニット正常受信の応答 ヘッダパターン、4500を各分散型リモートI/Oユ ニットからNC装置本体1への分散型リモートI/Oユ ニット受信エラー発生時の応答ヘッダパターンに割り当 てている。

【0139】ここで、各分散型リモートI/〇ユニット からNC装置本体1への送信については、NC装置本体 1から特定の分散型リモート I/Oユニット 2へ送信 後、NC装置本体1が受信する受信フレームは特定の分 散型リモート I / Oユニット 2 からの受信と自動的に認 識されるため、ヘッダパターンは全ての分散型リモート I/Oユニットで共通にしている。

【0140】(データ配列の切り替え方式)図13はデ 40 一夕配列の切り替え方式を示している。NC装置本体1 から送信する場合には、(a)、(b)に示されている ように、NC装置本体1の通信制御部内の送信データ記 憶部(ラッチ回路301)から送信フレームを構成する 時の順番を入れ換えて最上位ビットを先頭とするビック エンディアン方式と最下位ビットを先頭とするリトルエ ンディアン方式とを選択的に実現する。

【0141】またNC装置本体1が受信する場合には、 (c)、(d)に示されているようにNC装置本体1の 通信制御部内の受信データ記憶部(ラッチ回路401)

ンディアン方式と最下位ビットを先頭とするリトルエン ディアン方式とを選択的に実現する。

【0142】上述のデータ配列の選択は、NC装置本体 1の通信制御部103への入力信号により決定され、実際の動作としては、図3のマルチブレクサセレクタ31 4及び図4の受信データラッチ制御部410により実施される。

【0143】NC装置本体1の分散型リモートI/Oユニット2の入出力は、最終的には機械側強電盤とケーブル接続され、この場合には分散型リモートI/Oユニッ 10ト2のケーブル接続用のコネクタのピン対応で信号の意味が決められている場合があるが、このような場合に、データ配列をピックエンディアン方式とリトルエンディアン方式との切り替えることで、様々な機械に対応し易くなり、また、このことによりNC装置本体1のMPUのエンディアン方式に拘束されることなく分散型リモートI/Oユニット2をNC装置本体1に接続することが可能になる。

【0144】(分散型リモートI/Oユニットの接続状態検知)図14は分散型リモートI/Oユニットの接続20有無をNC装置本体1のMPUが確認するためのタイムチャートを示している。図14において、XADR0~XADR2は送信フレームのヘッダパターン生成用カウンタの状態を示す信号、XMIT-DATAは送信データ信号、TXST*は送信中信号、REVE-DATAは受信データ信号、RXST*は受信中信号である。なお、TXST*は図3におけるIN-XMIT信号と同意であり、またRXST*は図5のIN-RECVと同意である。

【0145】分散型リモートI/Oユニットのの接続有 30 無確認は、具体的にはNC装置本体1から分散型リモートI/Oユニット2への送信が図3の送信HDLC起動タイマ311により一定時間間隔で行われることから、NC装置本体1が送信後に該当する分散型リモートI/Oユニット2からの受信フレームの有無をステータスとして保持する回路により行われる。

【0146】即ち、NC装置本体1の通信制御部102では各送信毎にアドレスパターンジェネレータ306 (図3参照)が生成する送信フレームのヘッダパターン生成用カウンタの状態を示す信号XADR0~XADR 402をインクリメントして送信フレームのヘッダパターンを生成するが、この信号XADR0~XADR2を図15に示されている送信アドレスデコーダ回路811に入力してあるタイミングにおける送信完了を図16示されているフリップフロップ回路812にセットする。

【0147】そして、分散型リモートI/Oユニット2からの受信があった場合のみ、フリップフロップ回路812をリセットし、次の分散型リモートI/Oユニット2への送信完了時にフリップフロップ回路812の状態を次段のフリップフロップ回路813に保持する。この50

ようにすることにより、各送信に対する分散型リモート I/Oユニット2からの受信の有無が保持され、NC装置本体1のMPU101は分散型リモートI/Oユニット2の接続状態を確認できる。

【0148】これによりNC御装置本体1側で各分散型リモートI/Oユニット2の実装有無の判別が確実にできる。

【0149】なお、図15、図16において、RSTL * は分散型リモート I / ○通信制御部の内部リセット信号であり、この信号によってフリップフロップ回路 812、813のプリセットが行われる。また XADR # i は局番が # i 番目の分散型リモート I / ○ユニット 2 へ送信中であることを示す信号、XADR # i + 1 相目の分散型リモート I / ○ユニット 2 へ送信中であることを示す信号、LINE CONNECT # i は各分散型リモート I / ○ユニット 2 の有無を検知したステータス信号であり、これは図5 のCONNECTION STATUSと同意である。

【0150】(オフラインステータス通信モードとオン ライン通信モードとの切替)図17はオフラインステー タス通信モードとオンライン通信モードとの切り替えを 行うハードウェア構成を示している。このモード切替部 は、MPU101よりアドレス、制御信号を与えられる デコーダ901と、モード切替ビット保持用フリップフ ロップ回路902と、モード同期切替信号保持用フリッ プフロップ回路903と、モード同期切替信号変化微分 用フリップフロップ回路904、905と、ステータス ビット保持用フリップフロップ回路907と、全リモー トI/O受信完了信号と全リモートI/O受信CRC正 常信号との論理積を行うANDゲート908と、EX-OR909と、インパータ910とにより構成される。 【0151】モード切替ビットのセット/リセットは、 MPU101がある特定のアドレスにデータを書き込む ことにより実現される。即ちMPU101が特定アドレー スにデータ書き込み (NC装置MPUデータ信号=1) を実行すると、その特定アドレスがデコーダ901によ りデコードされる。これがモード切替ビット保持用フリ ップフロップ回路902のCLKとして入力され、MP

【0152】逆にMPU-MODE信号がハイレベルの 状態で、MPU101が特定アドレスにデータ書き込み (NC装置MPUデータ信号=0)を実行すると、MP U-MODEとして、MPU-MODE信号がハイレベ ルよりローレベルへ遷移する。

U-MODEとして、MPU-MODE信号がローレベ

ルよりハイレベルへ遷移する。

【0153】る。MPU-MODE信号が図18に示されているようなタイミングをもってセットされると、基準サイクルクロック信号の立ち下がりエッジでMPU-MODE信号がモード同期切替信号変化微分用フリップフロップ回路904に取り込まれ、SYNC-MODE

信号がローレベルよりハイレベルへ遷移する。このSY NC-MODE信号はサイクルタイムの切れ目で変化す るから、丁度、NC装置本体1より分散型リモートI/ 〇ユニット2への送信の第1局目に同期している。

【0154】SYNC-MODE信号がアドレスパター ンジェネレータ306(図3参照)に入力されると、オ フライン/オンライン通信時のヘッダパターンの切り替 えが行われる。

【0155】ステータスピットのセットは、SYNC-MODE信号が切り替わったのち、全ての分散型リモー 10 トI/Oユニット2から正常受信完了の応答を得ること で行われる。

【0156】SYNC-MODE信号がローレベルから ハイレベルへ遷移した後に、最初のサイクルタイムで、 どれかの分散型リモート I / Oユニット 2 からの受信で CRCエラーが発生したとして、次のサイクルタイムで 全て正常に受信できたとすると、SYCN-MODE信 号とSTS-FIN信号は、2倍のサイクルタイムC時 間だけ間隔が離れることになる。

【0157】上述の動作によりNC装置本体1のMPU 101は、確実にオフライン/オンライン通信モードが 切り替わり、全て分散型リモートI/Oユニット2から の受信データが切り替わったことをステータスピットの みで判別可能となる。これによりMPU処理時間が短く なると云う効果がある。

【0158】また分散型リモート I/Oユニット2の第 1局目への送信から同期してステータス要求のための送 信フレームに切り替わるため、NC装置本体1側で通常 入力とステータスを間違えて認識することを防止でき

【0159】(システムの動作説明)まず、NC装置本 体1の通信制御部102は、システム電源投入、または システムリセット後には、自動的にオフラインステータ ス通信モードが設定され、分散型リモートI/Oユニッ ト2へオフラインステータスを要求する送信フレームを 各分散型リモートI/Oユニット2に対応するようにへ ッダパターンを変更しながら時分割制御により順次送信

【0160】オフラインステータス通信モードが正常に が設定される。

【0161】何れの通信モードにおいても、フレーム送 信の間隔は予め分散型リモート I / Oユニット 2 からの 受信フレームの時間を考慮して送信HDLCタイマ31 1によって一定値に決められているから、通信制御部1 02へのクロック信号入力により、一定周期で各分散型 リモートI/Oユニット2への送信が繰り返される。

【0162】ここで、送信フレームのヘッダパターンに 対応する分散型リモートI/Oユニット2の通信制御部 130は自局のヘッダパターンを検出すると、受信完了 50

後に自動的に分散型リモートI/Oユニット2のID情 報を送信フレームに組み込み、送信HDLCシーケンサ 510によりハードウェアタイマによって所定時間マー ジンをとり、NC装置本体1に対して送信する。ここで の所定時間は送受信フレームにおける数バイト長の送出 時間程度であってよい。

【0163】分散型リモートI/Oユニット2のハード ウェアタイマにより、NC装置本体1へのフレーム送信 が制御さることにより、従来のような分散型リモートI /Oユニット側のMPUが制御装置本体からのフレーム 受信完了を確認して制御装置本体へ送信するソフトウェ ア手順が不要となり、システム構築が容易となる。

【0164】 NC装置本体1のソフトウェアは分散型リ モート I / 〇ユニット 2 を介して外部機器の情報を読み 出すことができるから、NC装置本体1側のソフトウェ アは、分散型リモート I / Oユニット 2 のラッチ回路 3 01に制御コマンドとパラメータを書き込み、ハードウ ェアタイマによって計時された一定時間後にラッチ回路 401のデータを読み出すことにより、直列通信でデー タを受信すると云う動作を意識することなく、MPU1 0 1 のデータバスに外部機器が直接接続されている場合 と同様にデータを読み出すことができる。

【0165】このことから、NC装置本体1のソフトウ ェアは、分散型リモートI/Oユニット2を用いてデー タを入力すると云う特別の処理が不要となり、NC装置 本体1におけるソフトウェア処理が簡単になる。

【0166】NC装置本体1の通信制御部102は、送 信フレームを送出していないタイミング期間は受信可能 状態になっており、分散型リモートI/Oユニット2か らの送信フレームがある場合には受信を実行する。

【0167】NC装置本体1の通信制御部102には分 散型リモートI/Oユニット2の局数分に対応する容量 の送信データ保持メモリ(ラッチ回路301)と受信デ ータ保持メモリ(ラッチ回路401)があり、ヘッダパ ターンに合わせて該当する送信データ保持メモリのデー 夕を送信フレームに構成して送信すると共に、送信後、 受信フレームを受信すると、該当するヘッダパターンに 対応する受信データ保持メモリに格納する。

【0168】ここで、分散型リモート I/Oユニット2 完了すると、通常の入出力を行うオンライン通信モード 40 からNC装置本体1に送信される送信フレームのヘッダ パターンは、NC装置本体1から分散型リモートI/O ユニット2への送信にCRCエラーが発生したことを示 すヘッダパターンと、正常に分散型リモートI/Oユニ ット2が受信したことを示すヘッダパターンの2種類の みであり、NC装置本体1の通信制御部102は受信し たタイミングより自動的に何局目の分散型リモートI/ 〇ユニット2からの送信フレームであるかを判断し、該 当する受信データ保持メモリに格納する。

> 【0169】分散型リモート I/Oユニット 2 によるデ ータ受信時にCRCエラーが発生した場合には、分散型

リモート I / Oユニット2の通信制御部130は受信したデータを出力部にセットせず、受信データを自動的に破棄する。これにより通信路におけるノズル環境に対して信頼性が向上する。

【0170】また、分散型リモートI/Oユニット2の通信制御部130は受信時にCRCエラーが発生したことを示すヘッダパターンを持った送信フレームをNC装置本体1へ送信することにより、そのフレームを受信したNC装置本体1の通信制御部102は各分散型リモートI/Oユニット2に対応したCRCエラーステータス 10をセットして、そのステータスをNC装置本体1のMPU101が読み出し、ある所定の回数以上にCRCエラー発生を示すステータスが検知された場合には、システムに異常があると判断し、NC装置本体1に付属している表示器3にシステム異常を表示すると共にシステム運転を停止する。これによりシステムの信頼性が向上する。

【0171】分散型リモートI/Oユニット2は、NC装置本体1から正常フレームを受信すると、受信データのコマンド部のデータをハードウェアの制御信号として、またパラメータ部のデータをデータ信号として出力制御部に出力し、分散型リモートI/Oユニット2に付加されたハードウェアを動作させる。また、ハードゥエアの動作結果を送信バッファに入力し、所定のタイミングでNC装置本体1へ送信する。

【0172】(NC装置本体の動作説明)図19はこの発明の制御方法によるNC装置本体1の動作フローを示している。システム起動時には、上述のように、NC装置本体1の通信制御部102と分散型リモートI/Oユニット2の通信制御部130とがオフラインステータス30通信を自動実行し、NC装置本体1の通信制御部102にステータス情報を格納する(ステップS50)。

【0173】オフラインステータス通信モードでは、N C装置本体1から各分散型リモートI/Oユニット2へ各分散型リモートI/Oユニット2に実装されたスイッチ134に対応するヘッダパターンを含むオフラインステータス通信モード用の送信フレーム(図12(c)参照)を順次送信し、送信フレームに対応する各分散型リモートI/Oユニット2が各々自ユニットの種別の情報を含んだ送信フレーム(図12(d)参照)をNC装置 40本体1へ送信することにより、分散型リモートI/Oユニット2に実装されたスイッチ対応の分散型リモートI/Oユニット2の種別をNC装置本体1で認識する。

【0174】このようなオフラインステタース通信により、NC装置本体1が分散型リモートI/Oユニット2の種別を認識できるようになり、システム起動時には必ずオフラインステータス通信モードで動作するため、システムの異常動作を確実に防止できる。

【0175】また、NC装置本体1のMPU動作に関係なく自動的にオフラインステータス通信モードで分散型 50

リモート I / Oユニット 2 の種別をN C 装置本体 1 の通信制御部に蓄積することができるから、システムの接続形態が速く認識でき、システムに対応する制御が速く実行できる。

【0176】またNC装置本体1のソウフウェアに依存することなく自動的にオフラインステータス通信モードでシステムが起動されるため、誤接続時には誤って分散型リモートI/Oユニット2に誤出力が行われることが未然に回避され、安全性が高いシステムが構築されるようになる。

【0177】また電源投入後、NC装置本体1の通信制御部102は自動的にオフラインステータス通信モードとなり、自動的に分散型リモートI/Oユニット2側へ順次ステータス要求のための送信フレームを送出するから、NC装置本体1のMPU101は通信制御部102に取り込まれた各分散型リモートI/Oユニット2のステータスを確認する処理を行うのみでよく、NC装置本体1のソフトウェア処理が簡単になる。

【0178】このオフラインステータス通信モードでは、分散型リモートI/Oユニット2の出力信号を前回と同一としてNC装置本体1から新たに送信されたデータに更新せず、NC装置本体1から送信されたデータを分散型リモートI/Oユニット2側では使用しないしない。これにより通信開始時にNC装置本体1のMPU101が誤って出力データを送っても、分散型リモートI/Oユニット2側でそのデータの出力は行われず、安全性の高いシステムを構築できる。

【0179】NC装置本体1のメモリ103は分散型リモートI/Oユニット2の接続局数、局番に対応する分散型リモートI/Oユニットの種別の情報を格納しており、システム起動後のオフラインステータス通信モードにおいて、NC装置本体1のMPU101は分散型リモートI/Oユニット2からの送信フレームに含まれるステータス情報とメモリ103に格納された情報とを比較し、その情報に相違がある場合にはアラーム出力を行う。このアラーム出力は表示器3に対するアラーム表示とシステム停止出力であってよい。

【0180】種別の情報とは、分散型リモートI/Oユニットの入力点数、出力点数の違い、特殊機能(A/D、D/A、パルスカウントI/F、パルス出力I/F、シリアル信号入出力等)の有無、入出力信号仕様の違い(DC、AC、電圧、電流等)のことである。

【0181】種別情報の相違には、例えばNC装置本体 1が分散型リモートI/O2の入出力を制御して実際の工作機械の動作制御をする場合に、工作機械が必要とする入出力点数と分散型リモートI/Oユニット2の入出力点数が不一致であるとか、機械側のDC電圧、電流スペックと分散型リモートI/Oユニットの入出力点数が不一致の場合などである。

【0182】種別情報が相違したまま、オンラインシス

テム動作を実行すると、前者の場合には工作機械が正常 に制御されない可能性があり、後者の場合にはNC装置 本体1、工作機械の回路が損害を受ける可能性があり、 システム上、好ましくない。

【0183】したがって、種別情報が相違した場合には、アラーム表示としてオペレータに通知すると共に、オンラインシステムとしての動作を実行しない。

【0184】このアラーム表示によりオペレータは、何が問題でシステムが動作しないかを時間をかけることなく的確に認識、把握できる。

【0185】上述のように分散型リモートI/Oユニット2の種別が認識できるから、この後のオンライン通信モードでは、NC装置本体1が分散型リモートI/Oユニット2の種別に合った入出力制御が可能となり、分散型リモートI/Oの種類を増やすことができ、制御対象となる機械に対応するシステム構成が柔軟に構築可能となる。

【0186】上述のようにして分散型リモートI/Oユニット2の接続状況を解析し、その結果を表示器3に表示する(ステップS51)。

【0187】次に、NC装置本体1のMPU101は、オンライン通信モードに切り替え、オンライン送信フレーム(図12(a)参照)を作成し(ステップS52)、このオンライン送信フレームを各分散型リモートI/Oユニット2へ順次送信すると共に(ステップS53)、各分散型リモートI/Oユニット2からオンライン受信フレーム(図12(b)参照)を受信し(ステップS54)、毎回の受信状況(受信完了、受信エラー)および受信データの解析を行う(ステップS55)。以降、ステップS52~ステップS55を繰り返す。

【0188】オンライン通信モードとオフラインステータス通信モードとの切り替えはNC装置本体1から分散型リモートI/Oユニット2に送信するフレームのヘッダパターンの変更により行われ、分散型リモートI/Oユニット2の通信制御部130は、ヘッダパターンの違いを検知し、これに基づくモード切替信号によってオンライン通信モードの通常入力とオフラインステータス通信モードのステータス入力を切り替える。

【0189】NC装置本体1の通信制御部103は、上述のオフラインステータス通信モード時の各分散型リモ 40 ートI/Oユニット2からのステータス情報とオンライン通信モード時の各分散型リモートI/Oユニット2の入力情報を共にラッチ回路401で保持する。

【0190】ラッチ回路401、即ちNC装置本体1の通信制御部103の受信データ記憶部をオフラインステータス通信モードとオンライン通信モードで共用して使用することにより、NC装置本体1の通信制御部103のハードウェア構成を小型化でき、安価なハードウェアとすることができる。

【0191】オフライン通信モードとオンライン通信モ 50

ードは同時に動作することはなく、システム動作開始時には、NC装置本体1にどのような分散型リモートI/Oユニット2が接続されているか未知であるため、分散型リモートI/Oユニット2から送信されたステータス情報の保持手段としてラッチ回路401を使用し、ステータスが正常に認識できた後にオンライン通信モードへ切り替えられると、ラッチ回路401は通常の分散型リモートI/Oユニット2の入力信号データ保持手段として使用される。

10 【0192】オフラインステータス通信モードとオンライン通信モードとでNC装置本体1から分散型リモートI/Oユニット2へ送信する送信フレームの構成が同一であり、ヘッダパターンの違いによりオフラインステータス通信モードとオンライン通信モードとを切り替えるから、NC装置本体1と分散型リモートI/Oユニット2の回路構成が簡単になる。

【0193】またオフラインステータス通信モード時にも分散型リモートI/Oユニット出力に関しては、オンライン通信モード時と同様に出力可能となるから、シス20 テム稼働中でも一次的にオフラインステータス通信モードに変更し、分散型リモートI/Oユニットの接続状況、種別をモニターし、制御装置本体付属の表示器に表示することが可能になる。

【0194】また、ヘッダパターンの違いを検知し、外部にオフラインステータス通信モードとオンライン通信モードの切替信号を出力するから、通常入力とステータス入力の切り替えをモード切替信号で実施でき、分散型リモートI/Oユニットの回路構成が簡単になる。

【0195】(システム試験)図19は分散型リモート I/O式制御システムの試験方式を示している。この試験方式では、各分散型リモートI/Oユニット2の出力部を入出力信号線9691により他の分散型リモートI/Oユニット2の入力部に接続し、分散型リモートI/Oユニット2を相互に閉ループ状に接続する。

【0196】図22において、REMOTE-IO#0は#1234と云う出力信号を出すようにNC装置本体1から送信フレームを送り、以下同様にREMOTE-IO#1は#2345を出力させるようにする。

【0197】各分散型リモートI/Oユニット2を図19のように接続すると、REMOTE-IO#0からNC装置本体1が受信するデータは#89ABになり、REMOTE-IO#1からNC装置本体1が受信するデータは#1234となる。以上のように、特定の局番の分散型リモートI/Oユニット2の出力を別の分散型リモートI/Oユニット2に入力してNC装置本体1のMPUで期待されるデータと照合することによりシステム試験を実施する。これによりシステムの試験が、簡単に、しかも確実に行われる。

【0198】分散型リモートI/Oユニット2の全ての 入出力が正常かどうかを確認するためには、各局番の出

40

力信号を変えることにより試験できる。

【0199】(アナログ電圧入出力対応ハードウェア構成)図21はアナログ電圧出力のハードウェア構成を示している。アナログ電圧出力部は、分散型リモートI/Oユニット2の通信制御部130の出力信号DO0~31を入力するD/Aコンバータ952と、アナログ電圧出力を行うオペアンプ953とを有している。

【0200】図22はアナログ電圧入力のハードウェア構成を示している。アナログ電圧入力部は、アナログ電圧入力部は、アナログ電圧を入力するサンブルホールド回路953と、サンブル 10ホールド回路953に接続されたA/Dコンバータ954が分散型リモート 1/Oユニット2の通信制御部130に入力信号DI0~31を入力する。

【0201】アナログ電圧出力に対しては、ディジタルデータと同様にNC装置本体1から送信されたディジタルデータが分散型リモートI/Oユニット2の通信制御部130より出力し、その出力をD/Aコンバータ951に入力すると、D/Aコンバータ951よりアナログ出力が得られる。更に通常は、D/Aコンバータ951の出力はオペアンプ952に入力されて増幅ゲインを調整されて外部機器に出力される。

【0202】アナログ電圧入力に関しては、アナログ電圧入力をサンプルホールド回路953によってサンプルし、A/Dコンバータ954によりディジタルデータに変換した後に、そのディジタルデータを分散型リモートI/Oユニット130の通信制御部130に入力し、これによりNC装置本体1へ送信する。

【0203】このように、アナログ電圧の入出力の場合でも基本的にディジタルデータを取り扱うため、命令、トリガと云うものはない。

【0204】アナログ電圧出力、アナログ電圧入力が分散型リモート I / Oユニット2で取り扱えることにより、工作機械とのインターフェースが全て分散型リモート I / Oユニット2を経由して行われ、N C装置本体1にアナログインターフェースを備える必要がなくなり、N C装置本体1を小型化できる。

【0205】また、外来ノイズに対して影響を受けやすいアナログ信号をNC装置本体1からの長い信号線で伸ばさなくても、アナログ入力、アナログ出力インターフ 40ェースを必要とする機器の近傍に分散型リモートI/Oユニット2を設置して短い信号線で接続すればよく、外来ノイズに影響されにくいシステムを構成できる。

D#0, #1として、WRITE信号#0, #1はWRITE#0, #1として、リセット信号#0, #1をRESET#0, #1信号として、アドレス信号#0, #1をADDRESS#0, #1の信号セットとして、パラメータ信号#0, #1をDO0~DO7、DO10~DO17の信号セットとして出力する。

【0207】通信制御部201には、タイミング制御回路202と、論理回路部203と、マルチブレックス回路204と、出力データバッファ205と、入力データラッチ回路206とが各々接続されている。

【0208】タイミング制御回路202は、分散型リモートI/Oユニット2の通信タイミングに同期してT00、T1、T2、T3、T4のタイミング信号を発生し、これらタイミング信号を論理回路部203へ出力する。

【0209】論理回路部203は、NANDゲートにより構成され、通信制御部201が出力するREAD#0,#1、WRITE#0,#1と、タイミング制御回路203が出力するタイミング信号T00、T1、T2、T3、T4から、読み出しと書き込みの制御信号(RD0,1、WR0,1)を生成する。

【0210】マルチプレックス回路204は、通信制御部201が出力するアドレス#0, #1をタイミング信号T00によって時分割に選択し、アドレス#0と#1の何れかを択一的にアドレスパスライン208へ出力する。

【0211】出力データバッファ205は、通信制御部201が出力する出力データDO0~DO7、DO10~DO17を入力し、これを書き込み制御信号WR0,1に応じてデータバス209へ出力する。

【0212】入力データラッチ回路206は制御回路210が出力するデータを読み出し制御信号RD0,1の入力に応じてデータバス209より入力する。

【0213】制御回路210は、特定機能を実行するハードウェアの制御回路であり、上述のような制御信号、データ信号によって制御される。この制御回路210にはアドレスデコーダ211が接続されており、アドレスデコーダ211はアドレス信号#0あるいは#1から回路選択用のSEL0,1,2,3の信号を生成する。

【0214】図24に示されている送信データが通信制御部201に受信データRXDとして入力されると、コマンド部のデータが前述の制御信号として出力される。パラメータ部のデータはDO0~7、DO10~17から出力され、出力データバッファ205を経由して時分割でアドレス信号により指定された制御回路210に書き込まれる。制御回路210は書き込まれたデータに対して処理を行い、必要があれば、その処理結果を読み出し信号RD0、1のタイミングもって16ビットのデータパス209に出力する。このデータは入力データラッチ回路206に時分割でラッチされる

【0215】通信制御部201は、DIO~F、DI10~1Fの信号を入力データラッチ回路206より入力し、図23(b)に示されているような受信データ(応答)のデータ#0~3を生成し、通信タイミングに従ってNC装置本体1へ送信する。

【0216】制御回路210を初期化する場合には、送信データ(要求)のリセット#0, 1をセットすることで、RESET#0, #1信号が通信制御部201から制御回路210へ出力され、制御回路210が初期化される。

【0217】この回路では、通信制御部201の機能により、NC装置本体1から送信データ(要求)を入力されると、前述のようにコマンド、パラメータのデータがハードウェアの制御回路に出力され、さらにその処理結果が受信データ(応答)として周期的にNC装置本体1へ送信される。

【0218】NC装置本体1より送信される送信データは、図23(a)に示されているように、コマンド部のデータがハードウェアの選択信号とREAD信号、WRITE信号、リセット信号、4ビットで構成されている20アドレス信号となり、パラメータ部の8ビットのデータが出力データ信号となる。図23(a)では、二つの制御回路用にコマンド、パラメータが各々#0、#1の信号セットとなる。

【0219】図25(a)~(f)は各々分散型リモート I / Oユニット2 の情報領域のデータフォーマットを示している。

【0220】図25 (a) は通常 I / O時のデータフォーマットであり、N C装置本体 1 から I / Oの出力データが分散型リモート I / Oユニット 2 に送信される。送 30 信データは図23に示されている通信制御部201で受信され、DO0~DO1Fの信号として出力される。 I / Oの入力データに関しては、通信制御部201のD I 0~D I / Fの信号を通信タイミングに同期して入力し、N C装置本体1へ入力データとして送信される。

【0221】通常のI/O入出力モードの場合には、N C装置本体1からの送信データの情報領域はすべて1ビット毎に独立な出力信号であり、N C装置本体1への送信データの情報領域もすべて1ビット毎に独立な入力信号の集まりである。

【0222】外部位置表示モードの場合には、図25

(b) に示されているように、NC装置本体1からの送信データはコマンド部とパラメータ部とに分けられ、パラメータ部は表示データを、コマンド部はハードウェア回路に対するリセット信号と書き込み信号と表示データのシーケンス番号を示す。

【0223】シーケンス番号と表示データを組み合わせることにより、表示データを1回の通信で送信できない場合でも、分散型リモートI/Oユニット2側で連続したデータとして外部位置表示器に表示することができ

る。分散型リモート I / O ユニット 2 からの送信データは外部位置表示器のステータスであり、リセット入力信号をN C 装置本体 1 へ送信する。

【0224】手動パルス発生器インターフェイスモードと同期パルスエンコーダインターフェイスの場合は、NC装置本体1からの送信データはコマンド部とパラメータ部から構成される。

【0225】手動パルス発生器インターフェイスでは、図25(c)に示されているように、コマンド部はカウンタリセット信号とパルスカウンタの値をラッチして保持するリード信号、ラッチされた値を分散型リモートI/Oユニット2の入力部に入力するためのリード信号から構成される。パラメータ部は、カウンタのラッチを指示するアドレスとパルスカウンタのバッファアドレスから構成される。

【0226】同期パルスエンコーダインターフェイスの場合も、手動パルス発生器インターフェイスと同様であるが、こ場合には、図25(d)に示されているように、さらに1回転の識別用信号としてZ相カウンタの同様な制御信号を付加する。

【0227】分散型リモートI/Oユニット2は、NC 装置本体1から送信データを受信すると、上記制御信号を発生してパルスカウンタのデータを読み出し、分散型リモートI/Oユニット2の出力データバッファに入力する。分散型リモートI/Oユニット2の送信データは、手動パルス発生器インターフェイスの場合は、パルスカウンタの値であり、同期パルスエンコーダインターフェイスの場合は、パルスカウンタ値と2相カウンタ値をNC装置本体1へ送信する。

【0228】一般的なハードウェアを持つ分散型リモート I / Oユニット2の場合には、NC装置本体1からの送信データは、図25(e)に示されているように、コマンド部とパラメータ部から構成される。パラメータ部はNC装置本体1からの出力データであり、コマンド部はハードウェア回路のリセット信号、リード信号、ライト信号およびアドレス信号としても使用できるシーケンス番号である。

【0229】NC装置本体1からの送信データをハードウェア回路に出力し、その動作結果をステータス部とパラメータ部から構成されるデータ通信フォーマットでNC装置本体1へ送信する。

【0230】分散型リモートI/Oユニット2がMPUを有する装置に組み込まれている場合には、図25

(f)に示されているように、NC装置本体1からの送信データはコマンド部とパラメータ部から構成される。パラメータ部はNC装置本体1から分散型リモートI/Oユニット2に対する出力情報であり、コマンド部は分散型リモートI/Oユニット2に対するリセット指令、読み出し・書き込み指令およびシーケンス番号である。

【0231】分散型リモートI/Oユニット2側のMP

50

40

UはNC装置本体1からの送信データを読み出し、その 応答データをコマンド部とパラメータ部から構成される データ通信フォーマットに組み込み、送信パッファに出力することで、分散型リモート I/Oユニット2がNC 装置本体1へデータを送信する。

【0232】図26 (a)、(b)はMPU付き分散型 リモート I / Oユニット 2 のデータフォーマットとその 詳細を示している。図26(a)はNC装置本体1から の送信データ(要求)のフォーマットを、図26(b) はNC装置本体1への受信データ(応答)のフォーマッ 10 トを各々示している。これらデータフォーマットは、コ マンドとシーケンス番号およびパラメータから構成され る。コマンドは4ビットで最大16まで指定可能であ る。連続データの転送に関しては、先頭アドレス指定コ マンド (コマンド1) を送信して先頭アドレスを指定 し、その後、読み出しコマンド(コマンド2)または書 き込みコマンド(コマンド4)を連続して送信すると、 分散型リモート I / Oユニット2のMPUが指定アドレ スを自動的にインクリメントし、該当アドレスのデータ を読み出しまたは書き込みを実行することにより、複数 20 のデータを読み出したり、または書き込むことができ る。

【0233】連続した読み出しコマンドまたは書き込みコマンドが出ているか、否かは、4ビットのシーケンス番号#1または#2の連続性をチェックして判断する。このシーケンス番号は、0~Fをサイクリックに変化し、データ転送時に+1される。書き込みコマンドでは、分散型リモートI/Oユニット2が周期的にデータを受信するため、このコマンドとシーケンス番号の連続性をチェックし、シーケンス番号がインクリメントされ 30ていれば、新規のデータを受信したと判断し、データをメモリの指定のアドレスに書き込む。

【0234】シーケンス番号が前回と同一であれば、データを読み捨てる。その後、書き込み応答コマンドと受信したシーケンス番号とステータスをNC装置本体1へ送信する。シーケンス番号の連続性に異常があれば、リセット応答コマンドとシーケンス番号とエラーステータスをNC装置本体1へ送信する。

【0235】読み出しコマンドでは、読み出し応答コマンドと受信したシーケンス番号とともにデータをNC装 40置本体1へ送信する。書き込みコマンドの場合と同様に、シーケンス番号に連続性があれば、正常であり、異常があれば、リセット応答コマンドとシーケンス番号とエラーステータスを送信する。

【0236】これにより周期的にデータを出力する場合において、連続したデータを高い信頼性で送信することができる。

【0237】なお、この分散型リモートI/Oユニット アト2の通信では、受信フレームが無くなった場合、出力が とにリセットされるが、これに対応して0をリセットコマン 50 る。

ド、リセット応答コマンドに割り付ける。

【0238】またNC装置本体1から分散型リモートI/Oユニット2に対して命令がない場合には、無為命令(コマンドF)を送信し、分散型リモートI/Oユニット2は無為命令応答をNC装置本体1へ送信する。

【0239】上述の読み出しコマンド、書き込みコマンドを使用してNC装置本体 1とMPU付き分散型リモートI/Oユニット2の間で1回の通信で、2バイトのデータ通信ができ、またコマンドを連続して送信することにより、連続データの送受信ができる。

【0240】上述のような動作により、NC装置本体1が分散型リモートI/Oユニット2の種類をIDコードで判別し、分散型リモートI/Oユニット2の種類に対応したコマンドを送信して分散型リモートI/Oユニット2に付加されるハードウェア回路を制御することができる。これにより1本の通信ライン上に異なる種類のI/Oを接続でき、分散型リモートI/Oユニット2を有するNC装置本体1システムを安価に構築することができる。

【0241】 [実施例3] 図27は分散型リモートI/Oユニット2に接続される表示器のための表示データ出力回路の実施例を示している。表示データ出力回路は、表示データをラッチする書き込み信号を生成する論理回路213と、表示アドレスを選択するマルチプレクサ214と、表示器215を選択するアドレスデコーダ216とを有している。表示器215は、ラッチ回路217と、論理部218と、セグメント表示部219とを有している。

【0242】図25 (b) に示されている表示データ出力のフォーマットをもってNC装置本体1から送信される送信データ (要求) は通信制御部201で受信され、表示データは通信制御部201のDO0~DO7およびDO10~DO17の信号に出力される。

【0243】コマンドデータの中のアドレスは、DO8~DOCおよびDO18~DO1Cの信号に出力され、タイミング制御部202から出力されるT00信号により時分割でマルチブレックサ214を通り、アドレスデコーダ216に入力される。アドレスデコーダ216は表示セグメントの選択信号SEL0~SEL3Fを生成される。

【0244】各表示器 215 は表示セグメントの選択信号 SEL 0 ~ SEL 3 F と論理回路 213 で生成された 書込み信号 WR 0 、 WR 1 を論理部 218 に入力することより、表示データをラッチ回路 217 にラッチし、セグメント表示部 219 を表示動作させる。

【0245】この実施例では、1回の送信データで4文字まで表示データの書換えができ、NC装置本体1からアドレスを指定して一定周期で順次データを更新することにより、最大64文字のデータ表示を行うことができる。

46

【0246】表示をリセットする場合には、送信データのコマンド部のリセットピットをセットすることにより、通信制御部201のDOF、DO1Fからリセット信号RESET0,1を出力し、表示をリセットすることができる。

【0247】また表示器215にリセットスイッチが付加されている場合は、リセット要求信号(RESET)により、通信制御部201のD0F, D01Fから出力されたリセット信号(RESET#0, #1)と同様に表示器の表示をリセットすることができる。さらにリセ10ットスイッチによって表示がリセットされたことは、このリセット要求信号(RESET)を通信制御部201のD10より入力し、ステータスとしてNC装置本体1へ送信データ(応答)として送信することができる。

【0248】上述のような動作により、NC装置本体1側のソフトウェアは直列通信で表示データを送信すると云う操作を意識することなくMPUのデータバスに表示器が直接接続されている場合と同様に、制御コマンドと表示データをNC装置本体1のラッチ回路301に書き込むだけでよく、後はハードウェア処理により直列通信20で分散型リモートI/Oユニット2に送信され、さらに分散型リモートI/Oユニット2の出力データが表示器215に表示されるから、NC置本体1のソフトウェアは、分散型リモートI/Oユニット2を用いてデータを出力すると云う特別の処理が不要となり、ソフトウェア処理が簡単になる。

【0249】また、表示のリセットに関しては、表示器に付加されたリセットスイッチによりリセットすることができると共に、NC装置本体1のソフトウェアは直列通信でデータを受信するという操作を意識することなく、表示リセットが入力されたことを表示器のステータスとして読み出すことができ、ソフトウェア処理が簡単となる。

【0250】 [実施例4] 図28は分散型リモート I / Oユニット2に接続される手動パルス発生器のインターフェイス回路を示している。このインターフェイス回路は、書き込み信号パルスを生成する論理部231と、パルスカウンタ230のパルスカウンタ230のラッチアドレス(DO0~DO3またはDO10~DO4013)とデータバッファ233のアドレス(DO4~DO7またはDO14~DO17)の切り替えを行うマルチプレクサ234と、パルスカウンタ#0のアドレス

(DO0~DO7) パルスカウンタ#1のアドレス(DO10~DO17) の切り替えを行うマルチプレクサ235よりのアドレス信号から選択信号を作成するアドレスデコーダ236と、選択信号とリードパルスからデータバッファ233の制御信号を生成する論理部237と、パルスカウンタ230のデータをラッチするラッチ回路238とを有している。

【0251】パルスカウンタ230は、手動パルス発生器239が出力する位相の異なるA相、B相の二つのパルス列から手動パルス発生器239の回転数をパルス数でカウントする。このカウントはデータバッファ233に読み出される。

【0252】このインターフェイス回路では、図25 (c)に示されている手動パルス発生器 I / FのフォーマットをもってNC装置本体 1 から送信されるデータを通信制御部 2 0 1 がアドレス# 1 0、# 1 1、# 2 0、# 2 1のデータをアドレス信号としてDO0~3、DO4~7、DO10~13、DO14~17から出力する。また通信制御部 2 0 1 はコマンド部のデータとしてREAD# 1、# 2 信号、RESET# 0、# 1 信号を出力する。

【0253】パルスカウンタ230は手動パルス発生器239が出力する位相の異なるA相、B相の二つのパルス列から手動パルス発生器239の回転数をパルス数でカウントする。このカウント値はA相、B相の変化に従って常時カウントされる。例えば、パルスカウンタ#0の値はタイミング制御部201のT0のタイミングでラッチされ、T1のタイミングでデータバッファ233を通して8ピットのDATA BUSに出力され、さらにラッチ回路238でラッチされるパルスカウンタ#1の値は同様にT2、T3のタイミングで処理される。

【0254】 ラッチ回路 238にラッチされたパルスカウンタ 230のデータは、タイミング制御部 202のタイミングに合わせて通信制御部 201のD I0~D IF、D I10~D I1Gから入力され、図 25(c)に示されているデータフォーマットをもってN C 装置本体1へ送信される。

【0255】NC装置本体1から一定周期で、分散型リモートI/Oユニット2のパルスカウンタの値を読み出し、前回のデータとの差分を計算することにより、NC装置本体1は手動パルス発生器239から入力された指令値(パルス数)を検知することができる。

【0256】また、パルスカウンタ230を初期化する場合には、コマンド部のリセットビットをセットすることにより、通信制御部201のDOF、DO1Fからリセット信号RESETO、1を出力し、パルスカウンタ#0、1を各々リセットすることができる。

【0257】このインターフェイス回路では、通信データフォーマットに二つの手動パルス発生器239からのデータが含まれるので、1つの分散型リモートI/Oユニットで2台の手動パルス発生器が接続できる。

【0258】上述のように、パルスカウンタの情報は周期的にNC装置本体1へ送信され、NC装置本体1側のソフトウェアはNC装置本体1のラッチ回路401のデータを読み出すことにより、直列通信でデータを受信すると云う動作を意識することなく、MPU101のデータバスにパルスカウンタインターフェイスが直接接続さ

れている場合と同様に、周期的に更新されるデータを読 み出すことができる。

【0259】これによりNC装置本体1のソフトウェア は、分散型リモートI/Oユニット2を用いてデータを 入力すると云う特別の処理が不要となり、ソフトウェア 処理を簡単にすることができる。

【0260】 [実施例5] 図29は分散型リモートI/ 〇ユニット2に接続される同期エンコーダのインターフ ェイス回路を示している。インターフェイス回路では、 同期エンコーダ240が出力する位相の異なるA相、B 10 相の二つのパルス列をカウントするパルスカウンタ24 1と、同期エンコーダ240が出力する1回転を示すパ ルスをカウントする2相カウンタ242とが設けられて いる。換言すれば、2パルスカウンタ242は同期エン コーダ240が1回転毎に出力する2相パルスをカウン トするカウンタである。

【0261】これらカウンタ241、242は図28に 示されているインターフェイス回路における二つのパル スカウンタ230と同等のものであり、このこと以外は 図28に示されているものと同様に構成されている。

【0262】このインターフェイス回路では、図25

(d) に示されている同期エンコーダ I / F のフォーマ ットをもってNC装置本体1から送信されるデータを通 信制御部201で受信し、通信制御部201はアドレス #10、#11、#21、#22のデータをアドレス信 号としてDO0~3、DO4~7、DO10~13、D ○14~17から出力する。また通信制御部201はコ マンド部のデータとして、READ#1、#2信号、R ESET#0、#1の信号を出力し、回路動作は前述の 手動パルス発生器I/Fと同一である。

【0263】同期エンコーダI/Fのパルスカウンタ値 の読み出しでは、A/B相のパルスカウンタ241と2 相のパルスカウンタ242の値を同時に読み出す必要が ある。この回路ではA/B相カウンタ値とZ相カウンタ 値を図25(d)に示されている送信データ(応答)フ ォーマットをもってNC装置本体1へ送信する。

【0264】NC装置本体1は、一定周期で上述の二つ のカウンタ値を読み出し、前回データとの差分を計算す ることにより、同期エンコーダ240から入力された移 動量(パルス数)を検知することができる。

【0265】 [実施例6] 図30はMPU付き分散型リ モート I / Oユニットのインターフェイス回路を示して いる。インターフェイス回路では、MPU250と、M PU250によって制御される制御回路251と、MP U250のシステムプログラムを格納するメモリ(RO M)とMPU250の演算結果を格納するメモリ(RA

M) とで構成されるメモリ252とを有している。 【0266】このインターフェイス回路では、MPU2 50のデータパス253に通信制御部201のDI8~

0~A3)によって内部レジスタを選択し、通信制御部 201が受信データを受信データバッファ254から読 み出し、また送信データの書き込みレジスタ255にデ ータを書き込むことによりそのデータを図25 (f) に 示されている送信データ(応答)フォーマットをもって NC装置本体1に送信することができる。

48

[0267] MPU250は、メモリ252のシステム プログラムに従って動作し、周期的に受信データバッフ ァ254にアクセスすることにより、NC装置本体1か ら図25 (f) に示されている送信データ(要求)フォ ーマットをもって送信されたコマンドとパラメータで構 成されるデータを読み出す。

【0268】MPU250は、コマンドに対応してメモ リ252に対してデータの読み出し・書き込みと、制御 回路251の制御を実行し、その実行結果を図25

(f) に示されている送信データ(応答)フォーマット をもって通信制御部201の書き込みレジスタ255に 書き込む。通信制御部201は通信タイミングに同期し て、書き込みレジスタ255のデータをNC装置本体1 20 へ送信する。

【0269】上述の手順によりNC装置本体1と分散型 リモートI/Oユニット2のMPU250は、通信制御 部201を経由してコマンド、パラメータによる命令の 要求、応答の処理を実行する。

【0270】またMPU付き分散型リモートI/Oユニ ット2がNC装置本体1であった場合、分散型リモート I/Oユニット2の通信制御方式により複数台のNC装 置本体1同士を相互に接続することができる。MPU付 き分散型リモート I / Oユニット2では、MPUによる プログラム実行により分散型リモート I/Oユニット2 自体をソフトウェアによる子局のNC装置とすることが でき、これにより分散型のNCシステムを構築すること ができる。

[0271] (この発明による制御方法の特徴の要約) 電源投入時にNC装置本体1は、各分散型リモートI/ Oユニット2のステータスを監視するモードに自動的に なり、ある一定期間、オフラインステータス通信モード であることを通知する情報を持った通信フレームを各分 散型リモートI/Oユニット2に対してNC装置本体1 のMPU101が関与せずに自動的に送信する。この通 信フレームは、オンライン通信モードでの通信フレーム とヘッダパターン以外は同一である。このヘッダパター ン以外は同一と云うことがN C装置本体1と分散型リモ ートI/Oユニット2の通信制御部を簡単な構成で実現 することを可能にしている。

【0272】各分散型リモートI/Oユニット1では、 NC装置本体1から送信された通信フレームのヘッダパ ターンがオフライン通信モードを示している限り、各分 散型リモートI/Oユニット局毎のID情報をNC装置 DI1Fが接続され、MPU250がアドレス信号(A 50 本体1へ送信する。ID情報には分散型リモートI/O

40

【0280】分散型リモートI/Oユニット2の通信制御部では、NC装置本体1からの受信開始状態をモニターし、上述の同様に受信開始状態が一定期間ない状態が継続すると、障害発生と認識して分散型リモートI/Oユニット2の出力リセットを行う。

50

ユニットの種別を示すステータスコードが含まれており、NC装置本体1の通信制御部は分散型リモートI/Oユニット2より送られるステータスコードを保持し、NC装置本体1のMPUがその内容を読み出すことにより、分散型リモートI/Oユニット2の種別の情報を得てNC装置本体1に付属している表示器4にその情報を表示する。

[0281]

【0273】NC装置本体1では、特定の分散型リモート I / Oユニット2へ送信フレームを送信した後、次の分散型リモート I / Oユニット2へ送信する前に、特定 10フォーマットの受信フローチャートを受信すると、対応する分散型リモート I / Oユニットの受信とは、対応する分散型リモート I / Oユニット2が装備されていないと判断し、そのことをNC装置本体1の表示器4に表示する。

【発明の効果】以上説明したように、この発明に係る分散型リモートI/O式制御システムの制御方法においては、制御装置本体と分散型リモートI/Oユニット間の通信フレームをオンライン通信モード時とオフラインステータス通信時とで個別のものとし、オフラインステタース通信時に制御装置本体が分散型リモートI/Oユニットの種別を認識できるようになり、システム起動時には必ずオフラインステータス通信モードで動作するため、システムの異常動作を確実に防止できる。またその後のオンライン通信モード時に制御装置本体が分散型リモートI/Oユニットの種別に合った入出力制御が可能となり、分散型リモートI/Oの種類を増やすことができ、制御対象となる機械に対応するシステム構成が柔軟に構築可能となる効果が得られる。

【0274】NC装置本体1は、予め別の記憶部に設定された分散型リモートI/Oユニット2の接続情報と各分散型リモートI/Oユニット2より応答フレームを照合した結果が異なる場合、システムとして動作不可能と判断し、NC装置本体1の表示器4にアラームを表示す20ると共にオンライン通信モードには移行しない。

【0282】また、制御装置本体のMPU動作に関係なく自動的にオフラインステータス通信モードで分散型リモートI/Oユニットの種別を制御装置本体の通信制御部に蓄積することができるから、システムの接続形態が速く認識でき、システムに対応する制御が速く実行できると云う効果が得られる。

【0275】NC装置本体1は、予め別の記憶部に設定された分散型リモートI/Oユニット2の接続情報と各分散型リモートI/Oユニット2より応答フレームを照合した結果が合致した場合、オンライン通信モードに移行し、各分散型リモートI/Oユニット2に対して、そのリモートI/Oユニットの種別に対応した制御データを所定の通信データフォーマットをもって送信する。

【0283】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、システム起動時に制御装置本体のオペレータが、分散型リモートI/Oユニットの接続状況、接続されている分散型リモートI/Oユニットの種別の確認を容易に行えるようになり、また制御装置本体のソウフウェアに依存することなく自動的にオフラインステータス通信モードでシステムが起動されるため、誤接続時には誤って分散型リモートI/Oユニットに誤出力が行われることが未然に回避され、安全性が高いシステムを構築できると云う効果が得られる。

【0276】各分散型リモートI/Oユニット2はNC 装置本体1から送信されたコマンドとパラメータから構 30 成される送信データを出力制御ハードウェア回路に出力 し、所定の動作を実行する。また、NC装置本体1に送 信する情報を送信バッファに書き込む。

【0284】オフラインステータス通信モードでは、制御装置本体から送信されたデータを分散型リモートI/Oユニット側では使用しないようにすることにより、通信開始時にMPUが誤って出力データを送っても、分散型リモートI/Oユニット側で出力されないため、安全性の高いシステムを構築できると云う効果が得られる。

【0277】MPUを有する分散型リモートI/Oにおいて、複数回の通信で連続したデータを送受信する場合、そのデータの内容が識別できるようにコマンドとサイクリックに加算されて変化するシーケンス番号とから構成されるコマンド部をデータとともに送信する。

【0285】次の発明に係る分散型リモート I / O式制御システムの制御方法においては、オフラインステータス通信モードとオンライン通信モードとで制御装置本体から分散型リモート I / Oユニットへ送信する送信フレームの構成を同一とし、ヘッダパターンの違いによりオフラインステータス通信モードとオンライン通信モードとを切り替えるから、制御装置本体と分散型リモート I

【0278】各分散型リモートI/Oユニット2の通信制御部は、NC装置本体1が自局に対して送信したフレームの受信完了タイミングに同期して、所定のタイミングマージンをおいて送信ドライバICを有効にした後、またタイミングマージンをおいてNC装置本体1へ送信を行い、送信終了後にタイミングマージンをおいて送信ドライバICを無効にして受信待状態に戻る。

【0279】NC装置本体1の通信制御部は、NC装置本体1のMPU101からの送信データ書き込み、受信データ読み出しが一定期間ない状態が継続すると、NC装置本体の異常と認識して分散型リモートI/Oユニット2への送信ドライバICをオフして送信を止める。

50 / Oユニットの回路構成が簡単になる。

高いシステムを構築することができる。

【0286】またオフラインステータス通信モード時にも分散型リモートI/Oユニット出力に関しては、オンライン通信モード時と同様に出力可能となるので、システム稼働中でも一時的にオフラインステータス通信モードに変更し、分散型リモートI/Oユニットの接続状況、種別をモニターし、制御装置本体付属の表示器に表示することが可能になる。

【0287】また、ヘッダパターンの違いを検知し、外部にオフラインステータス通信モードとオンライン通信モードの切替信号を出力するようにしたので、データセ 10レクタICに入力される通常入力とステータス入力の切り替えをモード切替信号で実施でき、分散型リモートI/〇ユニットの回路構成が簡単に実現できると云う効果が得られる。

【0288】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、電源投入後、制御装置本体の通信制御部は自動的にオフラインステータス通信モードとなり、自動的に分散型リモートI/Oユニット側へ順次ステータス要求のための送信フレームを送出するため、制御装置本体のMPUは通信制御部に取り込20まれた各分散型リモートI/Oユニットのステータスを確認する処理を行うのみでよく、制御装置本体のソフトウェア処理が簡単になる。

【0289】また、分散型リモートI/Oユニットの第1局目への送信から同期してステータス要求のための送信フレームに切り替わるため、制御装置本体側で通常入力とステータスを間違えて認識することが防止できる。

【0290】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、実際の機械に合致した制御装置本体の制御プログラムと分散型リモートI/30 Oユニット接続状況との比較が行われ、比較した結果が異なる場合にはアラームとしてシステム動作しないため、より一層、安全性の高い分散型リモートI/Oユニットシステムを構築できると云う効果が得られる。

【0291】次の発明に係る分散型リモート I / O式制御システムの制御方法においては、オフラインステータス通信モードとオンライン通信モードでの制御装置本体の通信制御部の受信データ記憶手段を共用するため、通信制御部の構成を簡略化できる。

【0292】次の発明に係る分散型リモート I / O式制 40 御システムの制御方法においては、制御装置本体が何らかの要因でシステム停止した際には、制御装置本体はシステム停止を制御装置本体内部のタイマーによりウォッチドッグとして検出し、ウォッチドッグの状態信号で制御装置本体から分散型リモート I / Oユニット側では制御装置本体からの送信フレームの受信開始状態が一定時間ないことを検知して出力をリセットするから、制御装置本体が異常状態となりシステム停止した際に機械制御信号をリセットすることができ、安全性が 50

[0293] また、受信開始状態検知方式とすることにより、制御装置本体が送信状態でシステム停止した場合、及びケーブル抜け、断線等の状態が発生しても、分

合、及びケーブル抜け、断線等の状態が発生しても、分散型リモートI/Oユニット側の出力は確実にリセットされ、より一層安全性が高いシステムを構築できると云う効果が得られる。

[0294] 次の発明に係る分散型リモート I / O式制御システムの制御方法においては、制御装置本体のシステムプログラムが正常に動作しないことを検知して確実に分散型リモート I / Oユニットの出力をリセットできるため、この場合も安全性が高いシステムを構築できると云う効果が得られる。

【0295】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、分散型リモートI/Oユニットのハードウェアタイマにより、制御装置本体へのフレーム送信を制御するようにしたので、従来のような分散型リモートI/Oユニット側のMPUが制御装置本体からのフレーム受信完了を確認して制御装置本体へ送信するソフトウェア手順が不要となり、システム構築が容易となる効果が得られる。

【0296】制御装置本体のソフトウェアは分散型リモート I / Oユニットを介して外部機器の情報を読み出すことができるから、制御装置本体側のソフトウェアは、分散型リモート I / Oユニットの送信バッファに制御マンドとパラメータを書き込み、ハードウェアタイマによって計時された一定時間後に受信バッファのデータを表って計時された一定時間後に受信バッファのデータを表の出すことにより、直列通信でデータを受信するといる場合と同様にデータを読み出すことができる。このことから、制御装置本体のソフトウェアは、分散型リモート I / Oユニットを用いてデータを入力すると云う特別の処理が不要となり、制御装置本体におけるソフトウェア処理が簡単になると云う効果も得られる。

【0297】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、分散型リモートI/Oユニットの通信制御部は、制御装置本体からの送信フレームを受信しない場合には、制御装置本体への送信を実施しないので、制御装置本体側で各分散型リモートI/Oユニットの実装有無の判別が確実にできる。

【0298】次の発明に係る分散型リモート I / O式制御システムの制御方法においては、分散型リモート I / Oユニットは、制御装置本体からのフレーム受信時に誤りが検知された場合には出力信号を更新しないことにより、通信路のノイズ環境に対する信頼性が向上する。

【0299】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、分散型リモートI/Oユニットからの送信フレームのヘッダパターンが、制御装置本体からの送信フレームの誤りを示す回数が所定

値以上になると、システムの異常としてシステム停止す るから、システムの信頼性が向上する。

【0300】次の発明に係る分散型リモート I/O式制 御システムの制御方法においては、制御装置本体の分散 型リモートI/Oユニットの入出力は、最終的には機械 側強電盤とケーブル接続され、この場合には分散型リモ ートI/Oユニットのケーブル接続用のコネクタのピン 対応で信号の意味が決められている場合があるが、この ような場合に、データ配列をビックエンディアン方式と リトルエンディアン方式との切り替えることで、様々な 10 機械に対応し易くなる。また、このことにより制御装置 本体のMPUのエンディアン方式に拘束されることなく 分散型リモートI/Oユニットを制御装置本体に接続す ることが可能になる。

【0301】次の発明に係る分散型リモートI/O式制 御システムの制御方法においては、分散型リモートI/ Oユニットへ出力データが正常に送信されたこと、分散 型リモートI/Oユニットから制御装置本体への送信も 正常に行われたことが制御装置本体で容易に確認でき、 またシステム試験が容易になると云う効果が得られる。

【0302】次の発明に係る分散型リモートI/O式制 御システムの制御方法においては、分散型リモートI/ OユニットにMPUを付加可能としたことにより、他の アプリケーション、例えば制御装置本体のI/〇ユニッ ト機器、制御装置本体の操作パネル信号の入出力、紙テ ープリーダー、紙テープパンチャー等の入出力機器に流 用可能となり、用途が拡大する。

【0303】なお、分散型リモートI/OユニットにM PUを付加しても、従来と異なり、制御装置本体との間 の通信は自動的に実行されるから、そのMPUのソウト 30 ウェア処理が簡単になると云う効果が得られる。

【0304】次の発明に係る分散型リモートI/O式制 御システムの制御方法においては、アナログ入出力のイ ンタフェース機能を具備することにより、搬送ラインな どの簡易的な駆動制御装置に対するアナログ電圧出力や センサーなどのアナログ電圧計測が可能となり、システ ムとして用途を広げる効果が得られる。

【0305】次の発明に係る分散型リモート I'/O式制 御システムの制御方法においては、制御装置本体と複数 の分散型リモートI/Oユニットにより構成されるシス 40 テムの試験が、簡単に、しかも確実に行われる。

【0306】次の発明に係る分散型リモート I / O式制 御システムの制御方法においては、制御装置本体が分散 型リモートI/Oユニットの種類をIDコードで判別 し、分散型リモートI/Oユニットの種類に対応したコ マンドを送信して分散型リモートI/Oユニットに付加 されるハードウェア回路を制御することができるため、 1本の通信ライン上に異なる種類の I/Oを接続でき、 分散型リモートI/Oユニットを有する制御装置本体シ ステムを安価に構築することができると云う効果が得ら 50

れる。

【0307】次の発明に係る分散型リモート I / O 式制 御システムの制御方法においては、制御コマンドと表示 データを制御装置本体の送信バッファに書き込むだけ で、分散型リモートI/Oユニットの付属の表示器にデ ータ表示が行われるから、制御装置本体側のソフトウェ アは直列通信で分散型リモートI/Oユニットへ表示デ ータを送信すると云う操作を意識することなくMPUの データバスに表示器が直接接続されている場合と同様 に、分散型リモートI/Oユニットの付属の表示器にデ ータを表示することができる。

【0308】このため制御装置本体のソフトウェアは、 分散型リモートI/Oユニットを用いてデータを出力す ると云う特別の処理が不要であり、ソフトウェア処理を 簡単にすることができると云う効果が得られる。

【0309】次の発明に係る分散型リモート I/O式制 御システムの制御方法においては、制御装置本体のソフ トウェアは分散型リモートI/Oユニットを介して手動 パルス発生器や同期エンコーダが出力するパルス数の情 報を読み出すことができ、制御装置本体のソフトウェア は、制御装置本体の送信バッファに1回だけデータ読み 出しの要求コマンドとパラメータを書き込むと、このコ マンドはハードウェア処理により分散型リモートI/O ユニットの通信周期に従って周期的に出力され、分散型 リモートI/Oユニットでは、ハードウェア処理により 受信した制御信号データを手動パルス発生器や同期エン コーダのパルスカウンタ回路に出力し、受信の一定時間 後に制御装置本体側に送信するから、パルスカウンタの 情報は周期的に制御装置本体へ送信され、制御装置本体 側のソフトウェアは制御装置本体の受信バッファのデー 夕を読み出すことにより、直列通信でデータを受信する と云う動作を意識することなく、MPUのデータパスに パルスカウンタインタフェースが直接接続されている場 合と同様に、周期的に更新されるデータを読み出すこと ができる。これにより制御装置本体のソフトウェアは、 分散型リモートI/Oユニットを用いてデータを入力す ると云う特別の処理が不要となり、ソフトウェア処理を 簡単にすることができると云う効果が得られる。

【0310】次の発明に係る分散型リモートI/O式制 御システムの制御方法においては、制御装置本体よりM PU付きの分散型リモートI/Oユニットへヘッダパタ ーンと共にサイクリックに変化するシーケンス番号部を 含むコマンド部とパラメータ部から構成される送信デー 夕を送信し、分散型リモート I / Oユニットでは受信し たデータのコマンド部を解釈し、シーケンス番号順にパ ラメータ部のデータを並べるから、周期的にデータを出 カする分散型リモートI/Oユニットの通信方式を利用 して、親局の制御装置本体から子局の制御装置本体に対 して、連続したデータを高い信頼性で送信することがで きる。

55

【0311】次の発明に係る分散型リモートI/O式制御システムの制御方法においては、MPU付きの分散型リモートI/Oユニットが受信したコマンドに対する応答データとしてコマンド部とパラメータ部から構成される応答データを生成し、コマンド部に受信したコマンドとシーケンス番号を付けることにより、制御装置本体側で受信したデータがどのコマンドに対する応答かを認識し、かつシーケンス番号順にパラメータ部のデータを並べることにより分散型リモートI/Oユニットから制御装置本体へデータを送信するから、周期的にデータを入りから利用して、子局の制御装置本体から親局の制御装置本体へ連続したデータを高い信頼性で送信することができる。

【図面の簡単な説明】

【図1】 この発明による制御方法を実施する分散型リモート I / O式制御システムの一例を示す構成図である。

【図2】 この発明による制御方法を実施する分散型リモート I / O式制御システムにおける分散型リモート I / Oユニットの接続形態を示す系統図である。

【図3】 この発明による制御方法を実施する分散型リモート I / O式制御システムにおけるN C装置本体の通信制御部の送信部の内部構成図である。

【図4】 (a)、(b)は各々この発明による制御方法を実施する分散型リモート I / O式制御システムにおけるN C装置本体の送受信タイミングを示すタイムチャートである。

【図5】 この発明による制御方法を実施する分散型リモート I / O式制御システムにおける N C装置本体の通信制御部の受信部の内部構成図である。

【図6】 この発明による制御方法を実施する分散型リモート I / O式制御システムにおける分散型リモート I / Oユニットの通信制御部の内部構成図である。

【図7】 この発明による制御方法を実施する分散型リモート I / O式制御システムにおける分散型リモート I / Oユニットの1送受信サイクルを示すタイムチャートである。

【図8】 この発明による制御方法を実施する分散型リモート I / O式制御システムにおける分散型リモート I / Oユニットの通信制御部の入出力部の内部構成図であ 40 る。

【図9】 この発明による制御方法を実施する分散型リモート I / O式制御システムにおけるN C装置本体と複数の分散型リモート I / Oユニットとの間の通信フレームの転送タイミングを示すタイムチャートである。

【図10】 この発明による制御方法を実施する分散型リモートI/O式制御システムにおける分散型リモートI/Oユニットの通信制御部の動作を示すタイムチャートである。

【図11】 この発明による制御方法を実施する分散型 50

リモート I / O式制御システムにおけるアラーム信号発生回路の構成図である。

【図13】 (a)~(d)はこの発明による制御方法を実施する分散型リモート I/O式制御システムにおけるデータ配列切替方式を示す説明図である。

【図14】 この発明による制御方法を実施する分散型リモート I/O式制御システムにおける分散型リモート I/Oユニットの接続有無確認動作のタイムチャートである。

【図15】 分散型リモート I / Oユニットの接続有無確認動作用の送信アドレスデコーダ回路を示す構成図である。

【図16】 分散型リモート I / Oユニットの接続有無確認に使用されるフリップフロップ回路を示す構成図である。

【図17】 この発明による制御方法を実施する分散型 20 リモートI/O式制御システムにおけるオフラインステータス通信モード/オンライン通信モード切替用のハードウェア構成を示す構成図である。

【図18】 この発明による制御方法を実施する分散型リモート I / O式制御システムにおけるオフラインステータス通信モード/オンライン通信モード切替動作を示すタイムチャートである。

【図19】 この発明による分散型リモート I / O 式制 御システムの制御方法を実施するN C 装置本体の動作フローを示すフローチャートである。

[図20] この発明による制御方法を実施する分散型 リモート I / 〇式制御システムにおけるシステム試験方 式を示す構成図である。

【図21】 この発明による制御方法を実施する分散型 リモート I / O式制御システムにおけるアナログ電圧出 カのハードウェア構成を示す構成図である。

【図22】 この発明による制御方法を実施する分散型 リモート I / O式制御システムにおけるアナログ電圧入 カのハードウェア構成を示す構成図である。

[図23] この発明による制御方法を実施する分散型リモート I/O式制御システムにおける分散型リモート I/Oユニットの通信制御部とそれに接続された特定機能を実行するハードウェアの制御回路を示す構成図である。

【図24】 (a)、(b)はこの発明による制御方法を実施する分散型リモート I / O式制御システムにおけるデータフォーマットを示す説明図である。

【図25】 (a)~(f)はこの発明による制御方法を実施する分散型リモートI/O式制御システムにおける情報領域のデータフォーマットを示す説明図である。

【図 2.6】 (a)、(b)はこの発明による制御方法

57

を実施する分散型リモートI/O式制御システムにおけ るMPU付き分散型リモートI/Oユニットのデータフ ォーマットを示す説明図である。

【図27】 この発明による制御方法を実施する分散型 リモートI/O式制御システムにおける分散型リモート I/Oユニットに接続される表示器のための表示データ 出力回路を示す構成図である。

【図28】 この発明による制御方法を実施する分散型 リモートI/O式制御システムにおける分散型リモート I/Oユニットに接続される手動パルス発生器のインタ 10 ート,308 ゼロインサーション回路,309 NR ーフェイス回路を示す構成図である。

【図29】 この発明による制御方法を実施する分散型 リモートI/〇式制御システムにおける分散型リモート I/Oユニットに接続される同期エンコーダのインター フェイス回路を示す構成図である。

【図30】 この発明による制御方法を実施する分散型 リモートI/O式制御システムにおけるMPU付き分散 型リモートI/〇ユニットのインターフェイス回路を示 す構成図である。

【図31】 従来の分散型リモート I/O式制御システ 20 ムの一例を示す構成図である。

【図32】 従来の分散型リモート I / O式制御システ ムの他の例を示す構成図である。

【図33】 従来の分散型リモート I / O式制御システ ムにおけるNC装置本体の動作フローを示すフローチャ ートである。

【図34】 従来の分散型リモートI/O式制御システ ムにおける分散型リモートI/Oユニットの動作フロー を示すフローチャートである。

【符号の説明】

1 NC装置本体、2 分散型リモート I / Oユニッ ト, 3 表示器 4 終端モジュール, 101 MP U, 102 通信制御部, 103 メモリ, 111MP U, 112 通信制御部, 113 メモリ, 114 ス イッチ, 115出カI/F部, 116 入力I/F部, 121、122 送信信号線, 123信号線, 130 通信制御部, 131 出力制御部, 132 入力制御 部、133 マルチプレクサ、134 スイッチ、13 5 キャリヤセンサ, 201 通信制御部, 202 夕 イミング制御回路, 203 論理回路部, 204 マル 40 信アドレスデコーダ回路, 812、813 フリップフ チプレックス回路205 出力データパッファ、206 入力データラッチ回路、208 アドレスバスライ ン, 209 データバス, 210 制御回路, 211ア ドレスデコーダ, 213 論理回路, 214 マルチブ レクサ, 215 表示器, 216 アドレスデコーダ, 217 ラッチ回路, 218 論理部, 219 セグメ ント表示部219,230 パルスカウンタ,231、 232 論理部, 233 データバッファ, 234 マ ルチプレクサ, 235 マルチプレクサ, 236 アド

レスデコーダ、237 論理部、238 ラッチ回路、

239手動パルス発生器, 240 同期エンコーダ, 2 41 パルスカウンタ、242 Z相カウンタ、240 同期エンコーダ, 250 MPU, 251 制御回 路, 252 メモリ, 253 データバス, 254 受 信データバッファ, 255 書き込みレジスタ, 300 ライトパッファ, 301 ラッチ回路, 302マルチ プレクサ、303 シストレジスタ、304 CRCジ ェネレータ、305 フラグパターンジェネレータ、3 06 アドレスパターンジェネレータ, 307 ORゲ Z I 変調回路, 310 送信HDLCシーケンサ, 31 1 送信HDLC起動タイマ, 312 クロック信号制 御部, 313 ANDゲート, 314 マルチプレクサ 切替回路, 315 ウォックドッグ検出回路, 316 ラッチセレクタ, 400リードバッファ, 401 ラッ チ回路, 402 デマルチプレクサ, 403 データシ フトレジスタ, 404 ゼロデリーション回路, 405 NRZI復調回路、406 フラグパターン比較器, 407 アドレスパターン比較器, 408CRC比較 器, 409 受信HDLCシーケンサ, 410 受信ラ ッチ制御部, 500 動作モード選択デコーダ, 501 フィルタ回路, 502 マルチプレクサ, 503 シ フトレジスタ, 504 CRCジェネレータ, 505 フラグパターンジェネレータ, 506 アドレスパター ンジェネレータ, 507 ORゲート, 508 ゼロイ ンサーション回路、509 NRZI変調回路、510 送信HDLCシーケンサ、511・マルチプレクサ切 替回路, 512 レジスタ, 513 極性変換器, 51 4 MPU付加時のデコーダ回路, 515 入力パッフ 30 ァ, 516 出力パッファ, 517 クロック信号制御 回路, 518ロータリスイッチ, 521 ラッチ回路, 522 シフトレジスタ, 523 ゼロデリーション回 路, 524 NRZI復調回路, 525 フラグパター ン比較器,526 アドレスパターン比較器,527 CRR比較器, 528 受信HDLCシーケンサ, 52 9 受信中信号微分回路、530 アラームカウンタ、 531 マルチプレクサ, 532 極性変換器, 533 出力バッファ、534MPU付加時の出力信号データ 書き込みレジスタ, 801 受信検知回路, 811 送 ロップ回路, 901 デコーダ, 902 モード切替じ ット保持用フリップフロップ回路, 903 モード同期 切替信号保持用フリップフロップ回路, 905、906 モード同期切替信号変化微分用フリップフロップ回 路、907 ステータスピット保持用フリップフロップ 回路, 908 ANDゲート, 909 EX-OR, 9 10インパータ, 951 D/Aコンパータ, 952 オペアンブ, 953 サンブルホールド回路, 954

A/Dコンパータ, 961 入出力信号線

[図2]

【図3】

【図15】

【図7】

NC→RIO FLAG ADR DATA CRC FLAG X3 CCITT X3 RTS ON

【図11】

【図14】

【図5】

[図6]

[図8]

[図9]

【図12】

【図16】

[図13]

【図19】

[図24]

[図21]

【図20】

【図23】

【図25】

【図26】

コマンド	内容	パラメータ#1	パラメータ#2
0	リセット		
1	先頭アドレス指定	先頭アドレス(下位)	先頭アドレス(上位)
2	観み出し		
4	青笠込み	データ#1	デー9#2
F	無為命令		

コマンド(広告)	内容	パラメータ#1	パラメータ#2
0	りた小広答	エラーステータス	エラーステータス
	先頭アトレス指定応答	エラーステータス	エラーステータス
2	競み出し応答	データ#1	データ#2
4	書き込み応答	エラーステータス	エラーステータス
F	無為命令応答		

[図33]

【図27】

[図28]

•

【図29】

[図30]

【図32】

【図34】

【手続補正書】

【提出日】平成7年12月6日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】 0 0 0 5

【補正方法】変更

【補正内容】

【0005】NC装置本体1は、MPU101と、送信

ドライバICと受信ドライバICとを有する通信制御部102と、制御プログラム、データなどを格納するメモリ103とにより構成され、CRTなどによる表示器3を接続されている。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】 0 0 1 1

【補正方法】変更

【補正内容】

【0011】次に各分散型リモートI/Oユニット2がステータス要求フレームを受信したことによる応答として、分散型リモートI/Oユニット2がステータス情報を含んだフレーム(ステータス情報フレーム)を送信してステップS3)、これを受信したNC装置本体1は、受信したステータス情報を記憶する。以降、順次他の分散型リモートI/Oユニット2に対してステータス要求を繰り返し、全ての分散型リモートI/Oユニット2よりステータス情報フレームを受信すると(ステップS4 肯定)、次にステータス情報より分散型リモートI/Oユニット2の接続状況を解析し、それをNC装置本体1の表示器3に表示する(ステップS5)。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】 0083

【補正方法】変更

【補正内容】

【0083】この送信部は、MPU101よりの分散型リモートI/Oユニット2に送信するデータD0~D15を一時記憶するライトバッファ300と、ライトバッファ300より与えられるデータD0~D15を保持するラッチ回路(送信データ記憶手段)301と、ラッチ回路301を選択するマルチプレクサ302と、選択されたラッチ回路301の送信データをシリアルにシフトするためのシフトレジスタ303と、送信フレームの誤り検知用に付加するCRCデータを生成するCRCジェネレータ304と、送信フレームの先頭と終了を示すために付加されるフラグパターンを生成するフラグパターンジェネレータ305とを有している。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0084

【補正方法】変更

【補正内容】

【0084】加えて、送信フレームがどの分散型リモート I / Oユニット 2 へ送信するものかを示すためのヘッダパターンを生成するアドレスジェネレータ 3 0 6 と、シフトレジスタ 3 0 3 と C R C ジェネレータ 3 0 4 とフラグパターンジェネレータ 3 0 5 とアドレスジェネレータ 3 0 6 の個々の出力を論理和する O R ゲート 3 0 7 と、送信データとフラグパターンを識別するために送信データにゼロインサーションするゼロインサーション回路 3 0 8 と、送信フレームのパターンに N R Z I 変調を実施する N R Z I 変調回路 3 0 9 とを有している。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0095

【補正方法】変更

【補正内容】

【0095】なお、図5にて、IN-RECVは受信期間中であることを示すLED用出力信号、CRC-ERRは受信エラー検出信号を、RECV ENDは受信完了信号、CRC ERRはCRCエラーで終了したことを示すステータス信号、SWAPはMPU101のデータビット数によりデータ出力を切り替えられたデータ信号、CONNECTION STATUSは分散型リモートI/Oユニット2が接続されているか否かを示すステータス信号、RFCS0~7はCRC比較器408の比較結果を示す信号、DMCはデマルチプレクサ402の切替信号、RSTはラッチ回路401のラッチストローブ信号である。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0102

【補正方法】変更

【補正内容】

【0102】通信制御部130は、通常入出力モードとパス動作モードとループパックモードモードの何れかーつを選択的に設定するモード設定デコーダ500と、入力データDI0~31を与えられるフィルタ回路501と、フィルタ回路501を選択するマルチブレクサ502と、選択されたフィルタ回路501の入力データ(送信データ)をシリアルに変換するためのシフトレジスタ503と、送信フレームの誤り検知用に付加するCRCデータを生成するCRCジェネレータ504と、送信フレームの先頭と終了を示すために付加されるフラグパターンを生成するアドレスジェネレータ506とを有している。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】 0 1 0 3

【補正方法】変更

【補正内容】

【0103】通信制御部130は、加えて、シフトレジスタ503とCRCジェネレータ504とフラグパターンジェネレータ505とアドレスジェネレータ506の個々の出力を論理和するORゲート507と、送信データとフラグパターンを識別するために送信データにゼロインサーションするゼロインサーション回路508と、送信フレームのパターンにNRZI変調を実施するNRZI変調回路509と、送信フレームをタイミングを取って生成するための送信HDLCシーケンサ510と、送信HDLCシーケンサ510による送信タイミングに合わせてマルチプレクサ502を切り替える送信データ選択用のマルチプレクサ切替回路511と、出力データDO0~DO31を保持するラッチ回路521とを有している。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】0110

【補正方法】変更

【補正内容】

【0110】(分散型リモートI/Oユニットの入出力 部の構成)図8はこの発明による分散型リモート I/O 式制御システムの制御方法の実施に使用する分散型リモ ート I / 〇ユニット 2 の入出力部を示している。分散型 リモート I / Oユニット 2 にMP Uを付加した場合にN C装置本体1へ送信するデータを分散型リモートI/O ユニット2側のMPUが書き込みためのレジスタ512 (図6参照)と、通信制御部130に入力される入力信 号の極性を変換する極性変換器513と、分散型リモー トI/Oユニット2にMPUを接続して使用した場合の デコーダ514と、通信制御部130への入力信号の入 カバッファ515と、分散型リモートI/Oユニット2 にMPUを接続した場合のNC装置本体1からの受信デ ータなどを読み出すための出力バッファ516と、通信 制御部130のモード設定により分散型リモートI/O ユニット2の出力信号を切り替えるためのマルチプレク サ532と、出力信号の極性を切り替える極性変換器5 33と、出力信号の出力バッファ534と、分散型リモ ートI/〇ユニット2にMPUを付加した場合に分散型 リモートI/Oユニット2に付加されたMPUが出力デ ータを書き込むためのレジスタ535とを有している。

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】0112

【補正方法】変更

【補正内容】

【0112】なお、図8において、LOOPBACK、DOL00~1Fはループアップ試験にNC装置本体1へ直接送信する送信データ信号、RECEIVE DATA#0~#3は図6のシフトレジスタ522の出力データ信号、TRANSMITDATA#0~#3は図6におけるXSD0~7信号に相当するNC装置本体1に対する送信データ信号、BUS MODE READはバス動作モード時にデコーダ514で分散型リモートI/Oユニット2のMPUがデータを読み出している時にオンとなるバスモードリード信号、FILTER-CLOCKはフィルタ501のフィルタ定数選択信号である。

【手続補正10】

【補正対象書類名】明細書

【補正対象項目名】0113

【補正方法】変更

【補正内容】

【0113】分散型リモートI/Oユニット2は、モード設定レコーダ500に入力する外部モード入力信号

(モード切替信号) MOD0-3によって、動作モードとして、MPUを付加しない通常入出力モードと、MPUを付加するバス動作モードと、試験時にNC装置本体1からの送信データを分散型リモートI/Oユニット2で折り返して送信するルーブバックモードの何れか一つが選択設定される。

【手続補正11】

【補正対象書類名】明細書

【補正対象項目名】0118

【補正方法】変更

【補正内容】

【0118】以上のように、バス動作モードにおいては、通信制御部130が入力データと出力データに振り分けるのではなく、一度、MPUが通信制御部130よりNC装置本体1からの受信データを読み出して解析し、出力ボートに出力データをセットする。

【手続補正12】

【補正対象書類名】明細書

【補正対象項目名】0127

【補正方法】変更

【補正内容】

【0127】ADR1、ADR2はこの発明に必要となる各分散型リモートI/Oユニットの識別、オンライン通信モード・オフラインステータス通信モードの識別、NC装置本体1からのループバックモードの指定、NC装置本体1から各分散型リモートI/Oユニット2への送信におけるCRCエラーの有無の識別に利用される。

【手続補正13】

【補正対象書類名】明細書

【補正対象項目名】0128

【補正方法】変更

【補正内容】

【0128】 DATA# $0\sim$ DATA#3は、オンライン通信モードでは入力データ、出力データを与えられ、オクラインステータス通信モードではIDステータスを与えられる。

【手続補正14】

【補正対象書類名】明細書

【補正対象項目名】0129

【補正方法】変更

【補正内容】

【0129】(分散型リモートI/Oユニット側通信制御部の動作)図10は分散型リモートI/Oユニット側通信制御部の動作を示している。図10において、Aは受信フレームF中のヘッダパターンが自局宛のフレームと認識された際の受信中信号(IN-REVE)、Bは受信中信号Aの開始を検知するための受信中微分信号(IN-REVED)、Cは受信フレームのヘッダパターンがオンライン通信モード、オフラインステータス通信モード、ループバックモードのいずれかを示すことを

判別して通信制御部でモード切り替えを実施するためのモード認識信号、Dはオンライン通信モードにおいてCRCエラーを検知せずに正常受信された場合の通信制御部の出力信号更新タイミングを示している。

【手続補正15】

【補正対象書類名】明細書

【補正対象項目名】 0 1 3 5

【補正方法】変更

【補正内容】

【0135】(各モードにおける送受信フレームのフォーマット)図12は各モードにおける送受信フレームの 示している。(a)はオンライン通信モード時のNC装置本体1から分散型リモートI/Oユニット2への送信フレームを、(b)はオンライン通信モード時の分散型リモートI/Oユニット2からNC装置本体1への送信フレームを、(c)はオフラインステータス通信モード時のNC装置本体1からの分散型リモートI/Oユニット2からNC装置本体1への送信フレームを、(e)はルーブバックモード時の分散型リモートI/Oユニット2からNC装置本体1から分散型リモートI/Oユニット2からNC装置本体1から分散型リモートI/Oユニット2への送信フレームを、(f)はルーブバックモード時の分散型リモートI/Oユニット2からNC装置本体1への送信フレームを各々示している。

【手続補正16】

【補正対象書類名】明細書

【補正対象項目名】 0 1 4 5

【補正方法】変更

【補正内容】

【0145】分散型リモートI/Oユニットの接続有無確認は、具体的にはNC装置本体1から分散型リモートI/Oユニット2への送信が図3の送信HDLC起動タイマ311により一定時間間隔で行われることから、NC装置本体1が送信後に該当する分散型リモートI/Oユニット2からの受信フレームの有無をステータスとして保持する回路により行われる。

【手続補正17】

【補正対象書類名】明細書

【補正対象項目名】 0 1 5 3

【補正方法】変更

【補正内容】

【0153】MPU-MODE信号が図18に示されているようなタイミングをもってセットされると、基準サイクルクロック信号の立ち下がりエッジでMPU-MODE信号がモード同期切替信号変化微分用フリップフロップ回路904に取り込まれ、SYNC-MODE信号がローレベルよりハイレベルへ遷移する。このSYNC-MODE信号はサイクルタイムの切れ目で変化するから、丁度、NC装置本体1より分散型リモートI/Oユニット2への送信の第1局目に同期している。

【手続補正18】

【補正対象書類名】明細書

【補正対象項目名】 0 1 6 3

【補正方法】変更

【補正内容】

【0163】分散型リモートI/Oユニット2のハードウェアタイマにより、NC装置本体1へのフレーム送信が制御されることにより、従来のような分散型リモートI/Oユニット側のMPUが制御装置本体からのフレーム受信完了を確認して制御装置本体へ送信するソフトウェア手順が不要となり、システム構築が容易となる。

【手続補正19】

【補正対象書類名】明細書

【補正対象項目名】 0 1 8 1

【補正方法】変更

【補正内容】

【0181】種別情報の相違には、例えばNC装置本体 1が分散型リモートI/Oユニット2の入出力を制御して実際の工作機械の動作制御をする場合に、工作機械が必要とする入出力点数と分散型リモートI/Oユニット2の入出力点数が不一致であるとか、機械側のDC電圧、電流スペックと分散型リモートI/Oユニットの入出力点数が不一致の場合などである。

【手続補正20】

【補正対象書類名】明細書

【補正対象項目名】0191

【補正方法】変更

【補正内容】

【0191】オフラインステータス通信モードとオンライン通信モードは同時に動作することはなく、システム動作開始時には、NC装置本体1にどのような分散型リモートI/Oユニット2が接続されているか未知であるため、分散型リモートI/Oユニット2から送信されたステータス情報の保持手段としてラッチ回路401を使用し、ステータスが正常に認識できた後にオンライン通信モードへ切り替えられると、ラッチ回路401は通常の分散型リモートI/Oユニット2の入力信号データ保持手段として使用される。

【手続補正21】

【補正対象書類名】明細書

【補正対象項目名】 0 1 9 5

【補正方法】変更

【補正内容】

【0195】(システム試験)図<u>20</u>は分散型リモート I/O式制御システムの試験方式を示している。この試験方式では、各分散型リモートI/Oユニット2の出力部を入出力信号線9691により他の分散型リモートI/Oユニット2の入力部に接続し、分散型リモートI/Oユニット2を相互に閉ループ状に接続する。

【手続補正22】

【補正対象書類名】明細書

【補正対象項目名】0196

【補正方法】変更

【補正内容】

【0196】図<u>20</u>において、REMOTE-IO#0は#1234と云う出力信号を出すようにNC装置本体 1から送信フレームを送り、以下同様にREMOTE-IO#1は#2345を出力させるようにする。

【手続補正23】

【補正対象書類名】明細書

【補正対象項目名】0197

【補正方法】変更

【補正内容】

【0197】各分散型リモートI/〇ユニット2を図20のように接続すると、REMOTE-IO#0からN C装置本体1が受信するデータは#89ABになり、REMOTE-IO#1からNC装置本体1が受信するデータは#1234となる。以上のように、特定の局番の分散型リモートI/〇ユニット20の出力を別の分散型リモートI/〇ユニット21に入力してNC装置本体10MPUで期待されるデータと照合することによりシステム試験を実施する。これによりシステムの試験が、簡単に、しかも確実に行われる。

【手続補正24】

【補正対象書類名】明細書

【補正対象項目名】0206

【補正方法】変更

【補正内容】

【0206】 [実施例2] 図23は分散型リモートI/Oユニット2の通信制御部とそれに接続された特定機能を実行するハードウェアの制御回路を示している。分散型リモートI/Oユニット2の通信制御部201は、図24(a)に示されているような送信データをNC装置本体1より受信すると、選択信号#0,#1をCS#0,CS#1として、READ信号#0,#1をREAD#0,#1として、WRITE信号#0,#1はWRITE#0,#1として、リセット信号#0,#1をRESET#0,#1をRESET#0,#1をRESET#0,#1をRESET#0,#1をRESET#0,#1の信号セットとして、パラメータ信号#0,#1をDO0~DO7、DO10~DO17の信号セットとして出力する。

【手続補正25】

【補正対象書類名】明細書

【補正対象項目名】0215

【補正方法】変更

【補正内容】

【0215】通信制御部201は、DIO~F、DI10~1Fの信号を入力データラッチ回路206より入力し、図24(b)に示されているような受信データ(応答)のデータ#0~3を生成し、通信タイミングに従っ

てNC装置本体1へ送信する。

【手続補正26】

【補正対象書類名】明細書

【補正対象項目名】0218

【補正方法】変更

【補正内容】

【0218】NC装置本体1より送信される送信データは、図24 (a) に示されているように、コマンド部のデータがハードウェアの選択信号とREAD信号、WRITE信号、リセット信号、4ビットで構成されているアドレス信号となり、パラメータ部の8ビットのデータが出力データ信号となる。図24 (a) では、二つの制御回路用にコマンド、パラメータが各々#0、#1の信号セットとなる。

【手続補正27】

【補正対象書類名】明細書

【補正対象項目名】0226

【補正方法】変更

【補正内容】

【0226】同期パルスエンコーダインターフェイスの場合も、手動パルス発生器インターフェイスと同様であるが、この場合には、図25(d)に示されているように、さらに1回転の識別用信号としてZ相カウンタの同様な制御信号を付加する。

【手続補正28】

【補正対象書類名】明細書

【補正対象項目名】0250

【補正方法】変更

【補正内容】

【0250】 [実施例4] 図28は分散型リモート I / Oユニット2に接続される手動パルス発生器のインターフェイス回路を示している。このインターフェイス回路は、書き込み信号パルスを生成する論理部231と、パルスカウンタ230のパルスカウント値をラッチする信号を生成する論理部232と、パルスカウンタ230のラッチアドレス(DO0~DO3またはDO10~DO13)とデータバッファ233のアドレス(DO4~DO7またはDO14~DO17)の切り替えを行うマルチプレクサ234と、パルスカウンタ#1のアドレス(DO0~DO7) \underline{c} パルスカウンタ#1のアドレス

(DO10~DO17) の切り替えを行うマルチプレクサ235と、マルチプレクサ235よりのアドレス信号から選択信号を作成するアドレスデコーダ236と、選択信号とリードパルスからデータバッファ233の制御信号を生成する論理部237と、パルスカウンタ230のデータをラッチするラッチ回路238とを有している。

【手続補正29】

【補正対象書類名】明細書

【補正対象項目名】 0 2 7 2

【補正方法】変更

【補正内容】

【0272】各分散型リモート I / Oユニット2では、N C装置本体 1 から送信された通信フレームのヘッダパターンがオフライン通信モードを示している限り、各分散型リモート I / Oユニット局毎の I D情報をN C装置本体 1 へ送信する。 I D情報には分散型リモート I / Oユニットの種別を示すステータスコードが含まれており、N C装置本体 1 の通信制御部は分散型リモート I / Oユニット 2 より送られるステータスコードを保持し、N C装置本体 1 のM P Uがその内容を読み出すことにより、分散型リモート I / Oユニット 2 の種別の情報を得てN C装置本体 1 に付属している表示器 3 にその情報を表示する。

【手続補正30】

【補正対象書類名】明細書

【補正対象項目名】0273

【補正方法】変更

【補正内容】

【0273】NC装置本体1では、特定の分散型リモートI/Oユニット2へ送信フレームを送信した後、次の分散型リモートI/Oユニット2へ送信する前に、特定フォーマットの受信フローチャートを受信すると、対応する分散型リモートI/Oユニットの受信と識別する。受信しない場合には、対応する分散型リモートI/Oユニット2が装備されていないと判断し、そのことをNC装置本体1の表示器3に表示する。

【手続補正31】

【補正対象書類名】明細書

【補正対象項目名】0277

【補正方法】変更

【補正内容】

【0277】MPUを有する分散型リモートI/Oにおいて、複数回の通信で連続したデータを送受信する場合、そのデータの内容が識別できるようにコマンドとサイクリックに加算されて変化するシーケンス番号とから構成されるコマン<u>ドを</u>データとともに送信する。

【手続補正32】

【補正対象書類名】明細書

【補正対象項目名】符号の説明

【補正方法】変更

【補正内容】

【符号の説明】

1 NC装置本体, 2 分散型リモートI/Oユニット, 3 表示器 4 終端モジュール, 101 MPU, 102 通信制御部, 103 メモリ, 111MPU, 112 通信制御部, 113 メモリ, 114 スイッチ, 115出カI/F部, 116 入力I/F部, 121、122 送信信号線, 123信号線, 130通信制御部, 131 出力制御部, 132 入力制御

部,133 マルチプレクサ,134 スイッチ,13 5 キャリヤセンサ, 201 通信制御部, 202 タ イミング制御回路, 203 論理回路部, 204 マル チブレックス回路205 出力データバッファ,206 入力データラッチ回路、208 アドレスバスライ ン, 209 データバス, 210 制御回路, 211ア ドレスデコーダ、213 論理回路、214 マルチプ レクサ, 215 表示器, 216 アドレスデコーダ, 217 ラッチ回路, 218 論理部, 219 セグメ ント表示部219,230 パルスカウンタ,231、 232 論理部, 233 データバッファ, 234 マ ルチプレクサ, 235 マルチプレクサ, 236 アド レスデコーダ、237 論理部、238 ラッチ回路、 239手動パルス発生器, 240 同期エンコーダ, 2 41 パルスカウンタ, 242 2相カウンタ, 240 同期エンコーダ, 250 MPU, 251 制御回 路, 252 メモリ, 253 データバス, 254 受 信データバッファ、255 書き込みレジスタ、300 ライトバッファ, 301 ラッチ回路, 302マルチ プレクサ, 303 シフトレジスタ, 304 CRCジ エネレータ, 305 フラグパターンジェネレータ, 3 06 アドレスパターンジェネレータ, 307 ORゲ ート,308 ゼロインサーション回路,309 NR 2 I 変調回路, 310 送信HDLCシーケンサ, 31 1 送信HDLC起動タイマ、312 クロック信号制 御部, 313 ANDゲート, 314 マルチプレクサ 切替回路, 315 ウォックドッグ検出回路, 316 ラッチセレクタ、400リードバッファ、401 ラッ チ回路, 402 デマルチプレクサ, 403 データシ フトレジスタ, 404 ゼロデリーション回路, 405 NRZI復調回路、406 フラグパターン比較器、 407 アドレスパターン比較器、408CRC比較 器, 409 受信HDLCシーケンサ, 410 受信ラ ッチ制御部, 500 動作モード選択デコーダ, 501 フィルタ回路, 502 マルチブレクサ, 503 シ フトレジスタ, 504 CRCジェネレータ, 505 フラグパターンジェネレータ, 506 アドレスパター ンジェネレータ, 507 ORゲート, 508 ゼロイ ンサーション回路, 509 NRZI変調回路, 510 送信HDLCシーケンサ、511 マルチプレクサ切 替回路, 512 レジスタ, 513 極性変換器, 51 4 MPU付加時のデコーダ回路, 515 入力パッフ ァ, 516 出力パッファ, 517 クロック信号制御 回路、518ロータリスイッチ、521 ラッチ回路、 522 シフトレジスタ, 523 ゼロデリーション回 路, 524 NRZI復調回路, 525 フラグパター ン比較器, 526 アドレスパターン比較器, 527 CRR比較器, 528 受信HDLCシーケンサ, 52 9 受信中信号微分回路、530 アラームカウンタ、

531 マルチプレクサ, 532 極性変換器, 533

出力バッファ, 534MPU付加時の出力信号データ 書き込みレジスタ,801 受信検知回路,811 送 信アドレスデコーダ回路、812、813 フリップフ ロップ回路, 901 デコーダ, 902 モード切替ビ ット保持用フリップフロップ回路, 903 モード同期 切替信号保持用フリップフロップ回路、905、906 モード同期切替信号変化微分用フリップフロップ回 路, 907 ステータスピット保持用フリップフロップ 回路, 908 ANDゲート, 909 EX-OR, 9

10インバータ, 951 D/Aコンパータ, 952 オペアンプ, 953 サンブルホールド回路, 954 A/Dコンパータ, 961 入出力信号線

【手続補正33】

【補正対象書類名】図面

【補正対象項目名】図24

【補正方法】変更

【補正内容】

【図24】

【手続補正34】 【補正対象書類名】図面 【補正対象項目名】図33 【補正方法】変更 【補正内容】 【図33】

