Theorem

SAT ist NP-vollständig.

SAT 14: aussagenlogische Fornel () Q: JBdagna Bunker der & zu 1 (wahr) ausgewerkt wird

Theorem

SAT ist NP-vollständig.

Beweis (Skizze: SAT ist NP-schwer)

zu zeigen: $\forall_{L \in NP} \ L \leq_m^p SAT$.

Sei $L \in \mathbb{NP}$. Dann existiert NTM M mit L = T(M) & Polynom p beschränkt Laufzeit von M.

the Eingabe x medit of Epixi) Shritle

Theorem

SAT ist NP-vollständig.

Beweis (Skizze: SAT ist NP-schwer)

P.LETY

zu zeigen: $\forall_{L \in \mathbb{NP}} L \leq_m^p SAT$.

Sei $L \in NP$. Dann existiert NTM M mit L = T(M) & Polynom p beschränkt Laufzeit von M.

Sei $M = (Z, \Sigma, \Gamma, \delta, z_1, \square, E)$ mit $\Gamma = \{a_1 = \square, \dots, a_\ell\}$ und $Z = \{\underline{z_1}, \dots, z_k\}$.

Theorem

SAT ist NP-vollständig.

Beweis (Skizze: SAT ist NP-schwer)

zu zeigen: $\forall_{L \in NP} L \leq SAT$.

Sei $L \in NP$. Dann existiert NTM M mit L = T(M) & Polynom p beschränkt Laufzeit von M.

Sei $M = (Z, \Sigma, \Gamma, \delta, z_1, \square, E)$ mit $\Gamma = \{a_1 = \square, \dots, a_\ell\}$ und $Z = \{z_1, \dots, z_k\}$.

Annahme: M hält bei Eingabe $x = \underbrace{x_1 x_2 \dots x_n} \in \Sigma^n$ nach genau $\underline{p(n)}$ Schritten.

Wir konstruieren eine Polynomzeitreduktion f, sodass gilt $x \in L \Leftrightarrow f(x) := F_M(x) \in SAT$.

Zu konstruierende Formel $F_M(x)$ besitzt folgende boolesche Variablen:

beschnist Arbeitsweise von MGR)

Theorem

SAT ist NP-vollständig.

Beweis (Skizze: SAT ist NP-schwer)

zu zeigen: $\forall_{L \in \mathbb{NP}} L \leq_m^p SAT$.

Sei $L \in NP$. Dann existiert NTM M mit L = T(M) & Polynom p beschränkt Laufzeit von M.

Sei $M = (Z, \Sigma, \Gamma, \delta, z_1, \square, E)$ mit $\Gamma = \{a_1 = \square, \dots, a_\ell\}$ und $Z = \{z_1, \dots, z_k\}$.

Annahme: M hält bei Eingabe $\underline{x} = x_1 x_2 \dots x_n \in \Sigma^n$ nach genau p(n) Schritten.

Wir konstruieren eine Polynomzeitreduktion f, sodass gilt $\underline{x} \in \underline{L} \Leftrightarrow f(x) := F_M(x) \in SAT$.

Zu konstruierende Formel $F_M(x)$ besitzt folgende boolesche Variablen:

	Var.	Indizes	Bedeutung
ļ	₹ Z },j	$0 \le t \le p(n)$ $1 \le j \le k$	$z_{t,j} = 1 \Leftrightarrow nach\ t\ Schritten\ ist\ M\ im\ Zustand\ z_j$
			$p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten ist Kopf auf Pos. } i$
7	b t ,i,a	$0 \le \underline{t} \le p(n) - p(n) \le \underline{i} \le p(n)$	$b_{t,i,a} = 1 \Leftrightarrow nach\ t$ Schritten befindet sich auf
		$a \in \Gamma$	Bandposition i das Zeichen a

Theorem

SAT ist NP-vollständig.

$z_{t,j} = 1 \Leftrightarrow \mathsf{nach}\ t\ \mathsf{Schritten} \colon \mathsf{Zustand}\ z_j$ $p_{t,i} = 1 \Leftrightarrow \mathsf{nach}\ t\ \mathsf{Schritten} \colon \mathsf{Kopfpos} = i$ $b_{t,i,a} = 1 \Leftrightarrow \mathsf{nach}\ t\ \mathsf{Schritten} \colon \mathsf{Band}[i] = a$

Beweis (Skizze: SAT ist NP-schwer)

zu zeigen: $\forall_{L \in \mathbb{NP}} L \leq_m^p SAT$.

Sei $L \in NP$. Dann existiert NTM M mit L = T(M) & Polynom p beschränkt Laufzeit von M.

Sei $M = (Z, \Sigma, \Gamma, \delta, z_1, \square, E)$ mit $\Gamma = \{a_1 = \square, \dots, a_\ell\}$ und $Z = \{z_1, \dots, z_k\}$.

Annahme: M hält bei Eingabe $x = x_1 x_2 \dots x_n \in \Sigma^n$ nach genau p(n) Schritten.

Wir konstruieren eine Polynomzeitreduktion f, sodass gilt $x \in L \Leftrightarrow f(x) := \underline{F_M(x)} \in SAT$.

Zu konstruierende Formel $F_M(x)$ besitzt folgende boolesche Variablen:

Var.	Indizes	Bedeutung
	$0 \le t \le p(n)$ $1 \le j \le k$	$z_{t,j} = 1 \Leftrightarrow nach\ t\ Schritten\ ist\ M\ im\ Zustand\ z_j$
$p_{t,i}$	$0 \le t \le p(n) - p(n) \le i \le p(n)$	$p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten ist Kopf auf Pos. } i$
$b_{t,i,a}$	$0 \le t \le p(n) - p(n) \le i \le p(n)$	$b_{t,i,a} = 1 \Leftrightarrow nach\ t$ Schritten befindet sich auf
	$a \in \Gamma$	Bandposition i das Zeichen a
1		

Theorem

SAT ist NP-vollständig.

 $egin{align*} & z_{t,j} = 1 \Leftrightarrow \mathsf{nach}\ t\ \mathsf{Schritten:}\ \mathsf{Zustand}\ z_j \ & p_{t,i} = 1 \Leftrightarrow \mathsf{nach}\ t\ \mathsf{Schritten:}\ \mathsf{Kopfpos}{=}i \ & b_{t,i,a} = 1 \Leftrightarrow \mathsf{nach}\ t\ \mathsf{Schritten:}\ \mathsf{Band}[i]{=}a \ & \mathsf{and}[i]$

Beweis (Skizze: SAT ist NP-schwer)

Theorem

SAT ist NP-vollständig.

 $z_{t,j} = 1 \Leftrightarrow \text{nach } \underline{t} \text{ Schritten: Zustand } \underline{z_i}$ $p_{t,i} = 1 \Leftrightarrow \text{nach } \underline{t} \text{ Schritten: Kopfpos} = i$ $b_{t,i,a} = 1 \Leftrightarrow \text{nach } \underline{t} \text{ Schritten: Band}[i] = a$

Beweis (Skizze: SAT ist NP-schwer)

$$\overline{F_M(x)} := A \wedge T_1 \wedge T_2 \wedge F \wedge R$$

Anfang
$$A := \underline{z_{0,1}} \land \underline{p_{0,0}} \land \bigwedge_{0 \le i \le n} b_{0,i,\underbrace{x_i}} \land \bigwedge_{-p(n) \le i \le 0} b_{0,i,\square} \land \bigwedge_{n \le i \le p(n)} b_{0,i,\square}$$

Theorem

SAT ist NP-vollständig.

 $z_{t,j} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Zustand } z_j$ $p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Kopfpos} = i$ $b_{t,i,a} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Band}[i] = a$

Beweis (Skizze: SAT ist NP-schwer)

$$\overline{F_M(x)} := A \wedge T_1 \wedge T_2 \wedge F \wedge R$$

Anfang
$$A := z_{0,1} \land p_{0,0} \land \bigwedge_{0 \le i < n} b_{0,i,x_i} \land \bigwedge_{-p(n) \le i < 0} b_{0,i,\square} \land \bigwedge_{n \le i \le p(n)} b_{0,i,\square}$$

Ende $F := \bigvee_{z_j \in E} z_{\underline{p(n)},\underline{j}}$

Theorem

SAT ist NP-vollständig.

 $z_{t,j} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Zustand } z_j$ $p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Kopfpos} = i$ $b_{t,i,a} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Band}[i] = a$

Beweis (Skizze: SAT ist NP-schwer)

Anfang
$$A := z_{0,1} \land p_{0,0} \land \bigwedge_{0 \le i < n} b_{0,i,x_i} \land \bigwedge_{0 \le i < n} b_{0,i,\square} \land \bigwedge_{0 \le i \le p(n)} b_{0,i,\square}$$
 Ende $F := \bigvee_{z_j \in E} z_{p(n),j}$ Übergänge $T_1 := \bigwedge_{\substack{0 \le i < n \\ z_{t,j} \land p_{t,i} \land b_{t,i,a}}} \bigvee_{\substack{(z_{t+1,j} * \land p_{t+1,i+\gamma} \land b_{t+1,i,a^*} \\ a \in \Gamma}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j,a}) \\ a \in \Gamma}}} \bigvee_{\substack{(z_{j*}, a^*, \gamma) \in \delta(z_{j$

 $F_M(x) := A \wedge T_1 \wedge T_2 \wedge F \wedge R$

Theorem

SAT ist NP-vollständig.

Beweis (Skizze: SAT ist NP-schwer)

$$F_{M}(x) := A \wedge T_{1} \wedge T_{2} \wedge F \wedge R$$

$$O(1)$$
Anfang $A := z_{0,1} \wedge p_{0,0} \wedge \bigwedge_{0 \leq i < n} b_{0,i,x_{i}} \wedge \bigwedge_{0 \leq i < n} b_{0,i,\Box} \wedge \bigwedge_{0 \leq i \leq p(n)} b_{0,i,\Box}$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$Ubergänge T_{1} := \bigwedge_{0 \leq i < n} (z_{t,j} \wedge p_{t,i} \wedge b_{t,i,a}) \rightarrow \bigvee_{0 \leq t < p(n)} (z_{t+1,j^{*}} \wedge p_{t+1,i+\gamma} \wedge b_{t+1,i,a^{*}})$$

$$O(1)$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u)) \quad \text{Ende } F := \bigvee_{z_{j} \in E} z_{p(n),j}$$

$$O(p(u$$

 $-p(n) \le i \le p(n)$ Mathias Weller (TU Berlin) $a \in \Gamma$ Berechenbarkeit und Komplexität

 $\longrightarrow 0 < t < p(n)$

Beweis Satz von Cook und Levin

 $z_{t,j} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Zustand } z_j$ $p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Kopfpos} = i$

 $b_{t,i,a} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Band}[i] = a$

Theorem

SAT ist NP-vollständig.

 $egin{align*} & z_{t,j} = 1 &\Leftrightarrow \mbox{ nach } t \mbox{ Schritten: Zustand } z_j \ & p_{t,i} = 1 &\Leftrightarrow \mbox{ nach } t \mbox{ Schritten: Kopfpos}{=}i \ & b_{t,i,a} = 1 &\Leftrightarrow \mbox{ nach } t \mbox{ Schritten: Band}[i]{=}a \ & \end{array}$

Beweis (Skizze: SAT ist NP-schwer)

$$\overline{F_M(x)} := A \wedge T_1 \wedge T_2 \wedge F \wedge R$$

Randbedingungen $R := R_z \wedge R_p \wedge R_b$:

Theorem

SAT ist NP-vollständig.

 $z_{t,j} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Zustand } z_j$ $p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Kopfpos} = i$ $b_{t,i,a} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Band}[i] = a$

Beweis (Skizze: SAT ist NP-schwer)

$$\overline{F_M(x)} := A \wedge T_1 \wedge T_2 \wedge F \wedge R$$

Randbedingungen $R := R_z \wedge R_p \wedge R_b$:

Zustände
$$R_z := \bigwedge \underline{\text{genau_eins}}(\underline{z_{t,1}}, \dots, \underline{z_{t,k}})$$

Theorem

SAT ist NP-vollständig.

 $egin{aligned} z_{t,j} &= 1 \Leftrightarrow \mathsf{nach}\ t\ \mathsf{Schritten:}\ \mathsf{Zustand}\ z_j \ p_{t,i} &= 1 \Leftrightarrow \mathsf{nach}\ t\ \mathsf{Schritten:}\ \mathsf{Kopfpos} {=} i \ b_{t,i,a} &= 1 \Leftrightarrow \mathsf{nach}\ t\ \mathsf{Schritten:}\ \mathsf{Band}[i] {=} a \end{aligned}$

Beweis (Skizze: SAT ist NP-schwer)

$$\overline{F_M(x)} := A \wedge T_1 \wedge T_2 \wedge F \wedge R$$

Randbedingungen $R := R_z \wedge R_p \wedge R_b$:

Zustände
$$R_z := \bigwedge_{0 \le t \le p(n)} \text{genau_eins}(z_{t,1}, \dots, z_{t,k})$$

Kopfpositionen
$$R_p := \bigwedge_{0 \le t \le p(n)} \operatorname{genau_eins}(\underline{p_{t,-p(n)}}, \dots, \underline{p_{t,p(n)}})$$

Theorem

SAT ist NP-vollständig.

 $z_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Zustand } z_i$ $p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Kopfpos} = i$ $b_{t,i,a} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Band}[i] = a$

Beweis (Skizze: SAT ist NP-schwer)

Randbedingungen
$$R := R_z \wedge R_p \wedge R_b$$
:

$$Zustände \ R_z := \bigwedge_{0 \le t \le p(n)} genau_eins(z_{t,1}, \dots, z_{t,k})$$

$$0 \le t \le p(n)$$

Kopfpositionen $R_p := \bigwedge_{0 \le t \le p(n)} genau_eins(p_{t,-p(n)}, \dots, p_{t,p(n)})$

$$0 \le t \le p(n)$$

Bandinhalte $R_b := \bigwedge_{-p(n) \le i \le p(n)} genau_eins(b_{t,i,a_1}, \dots, b_{t,i,a_k})$

$$0 \le t \le p(n)$$

$$0 \le t \le p(n)$$

Theorem

SAT ist NP-vollständig.

Beweis (Skizze: SAT ist NP-schwer)

Randbedingungen
$$R := R_z \wedge R_p \wedge R_b$$
:

Zustände $R_z := \bigwedge_{\substack{0 \le t \le p(n) \\ 0 \le t \le p(n)}} O(p^{(w)^2})$

Kopfpositionen $R_p := \bigwedge_{\substack{0 \le t \le p(n) \\ 0 \le t \le p(n)}} O(p^{(w)^2})$

Bandinhalte $R_b := \bigwedge_{\substack{0 \le t \le p(n) \\ 0 \le t \le p(n)}} O(p^{(w)^2})$
 $O(p^{(w)^2})$
 $O(p^{(w)^3})$
 $O(p^{(w)^3})$
 $O(p^{(w)^3})$
 $O(p^{(w)^3})$
 $O(p^{(w)^3})$
 $O(p^{(w)^3})$
 $O(p^{(w)^3})$
 $O(p^{(w)^3})$
 $O(p^{(w)^3})$
 $O(p^{(w)^3})$

Mathias Weller (TU Berlin)

 $z_{t,j} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Zustand } z_j$ $p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Kopfpos} = i$

 $b_{t,i,a} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Band}[i] = a$

Seweis Satz von Cook und Levin

Theorem

SAT ist NP-vollständig.

 $z_{t,j} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Zustand } z_j$ $p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Kopfpos} = i$ $b_{t,i,a} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Band}[i] = a$

Beweis (Skizze: SAT ist NP-schwer)

$$\overline{F_M(x)} := A \wedge T_1 \wedge T_2 \wedge F \wedge R$$

Theorem

SAT ist NP-vollständig.

 $z_{t,j} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Zustand } z_j$ $p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Kopfpos} = i$ $b_{t,i,a} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Band}[i] = a$

Beweis (Skizze: SAT ist NP-schwer)

$$\overline{F_M(x)} := A \wedge T_1 \wedge T_2 \wedge F \wedge R$$

$$|A| \in O(p(n))$$

$$|F| \in O(1)$$

Theorem

SAT ist NP-vollständig.

 $z_{t,j} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Zustand } z_j$ $p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Kopfpos} = i$ $b_{t,i,a} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Band}[i] = a$

Beweis (Skizze: SAT ist NP-schwer)

$$\overline{F_M(x)} := A \wedge T_1 \wedge T_2 \wedge F \wedge R$$

$$|A| \in O(p(n))$$
 $|F| \in O(1)$
 $|T_1| \in O((\underline{p(n)})^2)$ $|T_2| \in O((\underline{p(n)})^2)$

Theorem

SAT ist NP-vollständig.

 $z_{t,j} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Zustand } z_j$ $p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Kopfpos} = i$ $b_{t,i,a} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Band}[i] = a$

Beweis (Skizze: SAT ist NP-schwer)

$$\overline{F_M(x)} := A \wedge T_1 \wedge T_2 \wedge F \wedge R$$

$$|A| \in O(p(n))$$
 $|F| \in O(1)$ $|T_1| \in O((p(n))^2)$ $|T_2| \in O((p(n))^2)$ $|R| \in O((p(n))^3)$

Theorem

SAT ist NP-vollständig.

 $z_{t,j} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Zustand } z_j$ $p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Kopfpos} = i$ $b_{t,i,a} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Band}[i] = a$

Beweis (Skizze: SAT ist NP-schwer)

$$F_M(x) := \underline{A} \wedge \underline{T_1 \wedge T_2} \wedge \underline{F} \wedge R$$

$$|A| \in O(p(n))$$
 $|F| \in O(1)$
 $|T_1| \in O((p(n))^2)$ $|T_2| \in O((p(n))^2)$

$$|\operatorname{genau_eins}(y_1,\ldots,y_q)| \in O(q^2)$$
 $|R| \in O((p(n))^3)$

Korrektheit:

Beobachtung: $F_M(x)$ modelliert akzeptierenden Berechnungspfad im Zustandsgraphen von M(x)

Mathias Weller (TU Berlin)

Theorem

SAT ist NP-vollständig.

 $z_{t,j} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Zustand } z_j$ $p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Kopfpos} = i$ $b_{t,i,a} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Band}[i] = a$

Beweis (Skizze: SAT ist NP-schwer)

$$\overline{F_M(x)} := A \wedge T_1 \wedge T_2 \wedge F \wedge R$$

Formelgröße:

$$|A| \in O(p(n))$$
 $|F| \in O(1)$ $|T_1| \in O((p(n))^2)$ $|T_2| \in O((p(n))^2)$ $|R| \in O((p(n))^3)$

Korrektheit:

Beobachtung: $F_M(x)$ modelliert akzeptierenden Berechnungspfad im Zustandsgraphen von M(x)

 $x \in L \Leftrightarrow$ es gibt akzeptierenden Berechnungspfad im Zustandsgraphen von M(x)

Theorem

SAT ist NP-vollständig.

 $z_{t,j} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Zustand } z_j$ $p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Kopfpos} = i$ $b_{t,i,a} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Band}[i] = a$

Beweis (Skizze: SAT ist NP-schwer)

$$F_M(x) := A \wedge T_1 \wedge T_2 \wedge F \wedge R$$

Formelgröße:

$$|A| \in O(p(n))$$
 $|F| \in O(1)$ $|T_1| \in O((p(n))^2)$ $|T_2| \in O((p(n))^2)$ $|R| \in O((p(n))^3)$

Korrektheit:

Beobachtung: $F_M(x)$ modelliert akzeptierenden Berechnungspfad im Zustandsgraphen von M(x)

 $x \in L \Leftrightarrow$ es gibt akzeptierenden Berechnungspfad im Zustandsgraphen von M(x)

 $\Leftrightarrow F_M(x)$ erfüllbar

$\substack{ \mathrm{TQBF} \ \& \ \mathsf{PSPACE} \\ \mathsf{Theorem} }$

 TQBF ist PSPACE-vollständig.

Satz v. Savitch Satz v. Cool

TQBF & PSPACE = UDSPACE(nt) Theorem

TQBF ist PSPACE-vollständig.

Beweis (Skizze: TQBF ist PSPACE-schwer)

zu zeigen: $\forall_{L \in PSPACE} L \leq_m^p TQBF$.

Sei $L \in PSPACE$. Dann existiert DTM M mit L = T(M), platzbeschränkt durch Polynom p.

TQBF & PSPACE Theorem

TQBF ist PSPACE-vollständig.

Beweis (Skizze: TQBF ist PSPACE-schwer)

zu zeigen: $\forall_{L \in PSPACE} \ L \leq_m^p TQBF$.

Sei $L \in PSPACE$. Dann existiert DTM M mit L = T(M), platzbeschränkt durch Polynom p.

Sei
$$M = (Z, \Sigma, \Gamma, \delta, z_1, \square, E)$$
 mit $\Gamma = \{a_1 = \square, \dots, a_\ell\}$ und $Z = \{z_1, \dots, z_k\}$.

TQBF & PSPACE Theorem

TQBF ist PSPACE-vollständig.

Beweis (Skizze: TQBF ist PSPACE-schwer)

zu zeigen:
$$\forall_{L \in PSPACE} \ L \leq_m^p TQBF$$
.

Sei
$$L \in PSPACE$$
. Dann existiert $\mathfrak{D}TM$ M mit $L = T(M)$, platzbeschränkt durch Polynom p .

Sei
$$M = (Z, \Sigma, \Gamma, \delta, z_1, \square, E)$$
 mit $\Gamma = \{a_1 = \square, \dots, a_\ell\}$ und $Z = \{z_1, \dots, z_k\}$.

Sei \mathcal{K}_x die Menge aller möglichen Konfigurationen von M bei Eingabe x

Sei $S \in \mathcal{K}_x$ die Startkonfiguration von M bei Eingabe x. Argument ähnlich zu Satz v. Savitch:

TQBF & PSPACE

TQBF ist PSPACE-vollständig.

Beweis (Skizze: TQBF ist PSPACE-schwer)

zu zeigen: $\forall_{L \in PSPACE} L \leq_m^p TQBF$.

Sei $L \in \mathsf{PSPACE}$. Dann existiert DTM M mit L = T(M), platzbeschränkt durch Polynom p. Sei $M = (Z, \Sigma, \Gamma, \delta, z_1, \square, E)$ mit $\Gamma = \{a_1 = \square, \dots, a_\ell\}$ und $Z = \{z_1, \dots, z_k\}$.

Sei \mathcal{K}_{\times} die Menge aller möglichen Konfigurationen von M bei Eingabe x

Sei $S \in \mathcal{K}_x$ die Startkonfiguration von M bei Eingabe x. Argument ähnlich zu Satz v. Savitch:

M akzeptiert $x \Leftrightarrow \exists_{T \in \mathcal{K}_x} T$ akzeptierend $\land \underbrace{\text{reach}_x(S, T, k \cdot p(n) \cdot |\Gamma|^{p(n)})}_{\bullet}$

reach_x $(\underline{Q}, \underline{R}, \underline{j})$ $\hat{=}$ es gibt einen \underline{Q} - \underline{R} -Pfad der Länge $\underline{\leq j}$ im Konfigurationsgraph von M(x)

TQBF ist PSPACE-vollständig.

Beweis (Skizze: TQBF ist PSPACE-schwer)

zu zeigen: ∀_{L∈PSPACE} L< TQBF.

Sei
$$L \in PSPACE$$
. Dann existiert DTM M mit $L = T(M)$, platzbeschränkt durch Polynom p .

Sei $M = (Z, \Sigma, \Gamma, \delta, z_1, \square, E)$ mit $\Gamma = \{a_1 = \square, \dots, a_\ell\}$ und $Z = \{z_1, \dots, z_k\}$.

$$,\Box,E)$$
 mit $\Gamma=\{a,c,C\}$

Sei \mathcal{K}_{\times} die Menge aller möglichen Konfigurationen von M bei Eingabe \times

 $S(j) = 2 \cdot s(j/z)$

--> s(i)=j

und
$$Z = \{z_1, \dots, z_k\}$$
.

M bei Fingabe x

Sei
$$S \in \mathcal{K}_x$$
 die Nienge aller Möglichen Könnigurationen von M bei Eingabe x .
Sei $S \in \mathcal{K}_x$ die Startkonfiguration von M bei Eingabe x . Argument ähnlich zu Satz v . Savitch: M akzeptiert $x \Leftrightarrow \exists_{T \in \mathcal{K}_x} T$ akzeptierend $\land \underline{\text{reach}}_x(S, T, \underline{k \cdot p(n) \cdot |\Gamma|^{p(n)}})$ expone scall in n reach $_x(Q, R, j)$ es gibt einen Q - R -Pfad der Länge $\leq j$ im Konfigurationsgraph von $M(x)$

 $\operatorname{reach}_{x}(Q,R,j)$ es gibt einen Q-R-Pfad der Länge $\leq j$ im Konfigurationsgraph von M(x)falls i=1falls i > 1

$$\operatorname{reach}_{x}(Q,R,j) := \begin{cases} R \text{ ist Folgekonfiguration von } Q & \checkmark & (R = Q) \\ \exists_{C \in \mathcal{K}_{x}} & \operatorname{reach}_{x}(Q,\underline{C},\lfloor j/2 \rfloor) \wedge \operatorname{reach}_{x}(\underline{C},\underline{R},\lceil j/2 \rceil) \\ & \nearrow \operatorname{preach}_{x}(Q,R,j)| \approx 2 \cdot |\operatorname{reach}_{x}(Q,R,\lceil j/2 \rceil)| \approx j \rightsquigarrow X \end{cases}$$

Mathias Weller (TU Berlin)

Berechenbarkeit und Komplexität

Beweis Satz von Cook und Levin

TQBF & PSPACE Theorem

TQBF ist PSPACE-vollständig.

Beweis (Skizze: TQBF ist PSPACE-schwer)

zu zeigen: $\forall_{L \in PSPACE} L \leq_m^p TQBF$.

Sei $L \in PSPACE$. Dann existiert DTM M mit L = T(M), platzbeschränkt durch Polynom p.

Sei $M = (Z, \Sigma, \Gamma, \delta, z_1, \square, E)$ mit $\Gamma = \{a_1 = \square, \dots, a_\ell\}$ und $Z = \{z_1, \dots, z_k\}$.

Sei \mathcal{K}_{\times} die Menge aller möglichen Konfigurationen von M bei Eingabe \times Sei $S \in \mathcal{K}_{\times}$ die Startkonfiguration von M bei Eingabe x. Argument ähnlich zu Satz v. Savitch:

M akzeptiert $x \Leftrightarrow \exists_{T \in \mathcal{K}_x} T$ akzeptierend \land reach_x $(S, T, k \cdot p(n) \cdot |\Gamma|^{p(n)})$

 $\operatorname{reach}_{x}(Q,R,j)$ es gibt einen Q-R-Pfad der Länge $\leq j$ im Konfigurationsgraph von M(x)

$$\operatorname{reach}_{x}(Q,R,j) := \begin{cases} R \text{ ist Folgekonfiguration von } Q & \mathbf{v} & (\mathbf{R} = \mathbf{Q}) \\ \exists_{C \in \mathcal{K}_{x}} \forall_{\underline{D},\underline{D'} \in \mathcal{K}_{x}} \left((\underline{D} = Q \land \underline{D'} = C) \lor (\underline{D} = C \land \underline{D'} = R) \right) \\ (D,D) \in \{(Q,C), (C,R)\} & \to \operatorname{reach}_{x}(\underline{D},\underline{D'},\lceil j/2\rceil) \end{cases}$$
 falls $j > 1$

$$\rightarrow |\operatorname{reach}_{x}(Q,R,j)| \approx 2 \cdot |\operatorname{reach}_{x}(Q,R,\lceil j/2 \rceil)| \approx j \rightarrow X$$

Berechenbarkeit und Komplexität

TOBF & PSPACE Theorem

PH falls our boustant viele Quantonivelsela

TQBF ist PSPACE-vollständig.

Beweis (Skizze: TQBF ist PSPACE-schwer)

zu zeigen: $\forall_{L \in PSPACE} L \leq_m^p TOBF$.

Sei $L \in PSPACE$. Dann existiert DTM M mit L = T(M), platzbeschränkt durch Polynom p.

Sei $M = (Z, \Sigma, \Gamma, \delta, z_1, \square, E)$ mit $\Gamma = \{a_1 = \square, \dots, a_\ell\}$ und $Z = \{z_1, \dots, z_k\}$.

Sei \mathcal{K}_{x} die Menge aller möglichen Konfigurationen von M bei Eingabe x

Sei $S \in \mathcal{K}_x$ die Startkonfiguration von M bei Eingabe x. Argument ähnlich zu Satz v. Savitch: M akzeptiert $\underline{x} \Leftrightarrow \exists_{T \in \mathcal{K}_x} T$ akzeptierend $\land \underline{\operatorname{reach}_x(S, T, \underline{k \cdot p(n) \cdot |\Gamma|^{p(n)}}})$ $\operatorname{reach}_{x}(Q,R,j)$ es gibt einen Q-R-Pfad der Länge $\leq j$ im Konfigurationsgraph von M(x)

 $\underbrace{\left(\operatorname{reach}_{X}(Q,R,j) := \begin{cases} R \text{ ist Folgekonfiguration von } Q & \underbrace{\left(R = Q \right)} \\ \exists_{C \in \mathcal{K}_{X}} \forall_{D,D' \in \mathcal{K}_{X}} \left(\underbrace{\left(D = Q \land D' = C \right) \lor \left(D = C \land D' = R \right)} \right) \end{cases}}_{}$

falls i=1

falls j > 1

 $\rightarrow \operatorname{reach}_{\mathsf{x}}(D, D', \lceil j/2 \rceil)$ $\sim |\operatorname{reach}_X(Q,R,j)| \approx O(2) + |\operatorname{reach}_X(Q,R,\lceil j/2\rceil)| \in O(\log j) \rho_0(j) \checkmark$

Mathias Weller (TU Berlin) Berechenbarkeit und Komplexität

Beweis Satz von Cook und Levin

90/90