Introduction to the Theory of Computation 2020 — Final exam

Solutions (may be updated)

Problem 1 (15 pts). Let $\Sigma = \{0\}$. Consider

$$EQ_{\mathrm{DFA}} = \{\langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}.$$

Recall that to prove EQ_{DFA} is decidable, we construct DFA C such that

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right),$$

and then run T on C where T decides $E_{DFA} = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset\}$. Now consider

 $- \underbrace{1}_{0} 0 \qquad - \underbrace{a}_{0} \underbrace{b}_{0} 0$

Construct a DFA C with the above A and B, and see if T accepts or rejects $\langle C \rangle$ by running the algorithm in Theorem 4.4 of the textbook. For \cap , use a procedure similar to the one for \cup in Theorem 1.25 of the textbook.

Solution.

DFA C recognizing $\left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$

Now we test T on C as follows: mark $1\bar{a}\bar{1}a$; mark $1\bar{b}\bar{1}b$; no new states can be marked. Because no accept state is marked, accept.

Common mistake: For some unknown reason, some get the following diagram

But remember that we have a DFA!

Problem 2 (30 pts). Let $\Sigma = \{0, 1, \#\}$. In the previous exam we consider the language

$$D = \{ w \# w^R \mid w \in \{0, 1\}^* \}.$$

(a) (20 pts) In Problem 5(b) of the previous exam, we design the following TM that decides D.

Assume the input is $w \# w^R$ with

$$|w| = n$$
.

Count the number of steps needed as a function of n. You must explain the calculation instead of just giving a function of n. Note that we want the exact number instead of just an estimation. Verify your solution by simulating on 01#10.

(b) (10 pts) Redo (a) by considering the following two-tape TM designed in Problem 5(c) of the previous exam.

Verify your solution by simulating on 01#10.

Solution.

- (a) If n = 0, then it takes 2 steps to go from q_1 to q_6 and then to q_{accept} . Otherwise $n \ge 1$, and the steps are counted as follows.
 - 1 step from q_1 to q_2
 - n-1 steps when looping on q_2

- 1 step from q_2 to q_3
- consider one iteration of the loop from

$$\cdots \# q_3 \underbrace{\times \cdots \times}_k 0 \cdots$$

to

$$\cdots \# q_3 \underbrace{\times \cdots \times}_{k+1} 0 \cdots$$

(Note that we can assume the next digit is 0 by symmetry between 0 and 1.) We need

$$k ext{ steps to}$$
 $\cdots # \underbrace{\times \cdots \times}_{k} q_{3} 0 \cdots$

1 step to $\cdots # \underbrace{\times \cdots \times}_{k-1} q_{4} \times \times \cdots$
 $k ext{ steps to}$ $\cdots \underbrace{0 \times \cdots \times}_{k} q_{4} # \underbrace{\times \cdots \times}_{k} \times \cdots$
 $k + 1 ext{ steps to}$ $\cdots \underbrace{q_{4} 0 \times \cdots \times}_{k} # \underbrace{\times \cdots \times}_{k} \times \cdots$

1 step to $\cdots \times q_{3} \underbrace{\times \cdots \times}_{k} # \underbrace{q_{3} \times \cdots \times}_{k} \times \cdots$
 $k + 1 ext{ steps to}$ $\cdots \times \underbrace{\times \cdots \times}_{k} # \underbrace{q_{3} \times \cdots \times}_{k} \times \cdots$

Therefore, before the last iteration for handling $\$_0$ or $\$_1$, the number of steps is

$$\sum_{k=0}^{n-2} (4k+4).$$

Now consider the last iteration from

$$\$_0 \underbrace{\times \cdots \times}_{n-1} \# q_3 \underbrace{\times \cdots \times}_{n-1} 0$$

to

$$q_4 \$_0 \underbrace{\times \cdots \times}_{n-1} \# \underbrace{\times \cdots \times}_n$$

Similar to the above discussion, we need

$$(n-1) + 1 + (n-1) + n = 3n - 1$$

steps.

- 1 step from q_4/q_5 back to q_1
- n-1 steps when looping on q_1
- 1 step from q_1 to q_6
- n steps when looping on q_6
- 1 step from q_6 to q_{accept}

The number of steps is thus

$$n+1+\sum_{k=0}^{n-2}(4k+4)+3n-1+2n+2=2n^2+4n+2=2(n+1)^2.$$

Simulation on 01#10 takes $2(2+1)^2 = 18$ steps:

- (b) The steps are counted as follows:
 - n steps when looping on q_1
 - 1 step from q_1 to q_2
 - n steps when looping on q_2
 - 1 step from q_2 to q_{accept}

The number of steps is thus 2n + 2 = 2(n + 1).

Simulation on 01#10 takes 2(2+1)=6 steps:

Problem 3 (20 pts). Consider positive functions $f, g: \mathbb{N} \to \mathbb{R}^+$. In our slides we respectively define

$$f(n) = O(g(n))$$

and

$$f(n) = o(g(n))$$

by

$$\exists c > 0, \exists n_0, \forall n \ge n_0, f(n) \le cg(n)$$

$$\forall c > 0, \exists n_0, \forall n \ge n_0, f(n) \le cg(n).$$
 (1)

We also define

$$f(n) = 2^{O(g(n))}$$

if

$$\exists c > 0, \exists n_0, \forall n \ge n_0, f(n) \le 2^{cg(n)}$$

(a) (10 pts) We would like to define $f(n) = 2^{o(g(n))}$ by following the setting in (1):

$$\forall c > 0, \exists n_0, \forall n \ge n_0, f(n) \le 2^{cg(n)} \tag{2}$$

We know that from (1), f(n) = o(g(n)) is the same as

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

Can you write the definition in (2) similarly by using limit?

- (b) (10 pts) Give an example of f(n) and g(n) such that $f(n) = 2^{O(g(n))}$ but $f(n) \neq 2^{o(g(n))}$. Solution.
- (a) Noting that $f(n) \leq 2^{cg(n)} \iff \log_2 f(n) \leq cg(n)$, we can rewrite as

$$\lim_{n \to \infty} \frac{\log_2 f(n)}{g(n)} = 0.$$

Common mistake:

$$\lim_{n \to \infty} \frac{f(n)}{2^{g(n)}} = 0.$$

Example: $f(n) = 2^n, g(n) = 2n$. Then

$$\lim_{n \to \infty} \frac{\log_2 f(n)}{g(n)} = \lim_{n \to \infty} \frac{n}{2n} = \frac{1}{2} \neq 0,$$

$$\lim_{n \to \infty} \frac{f(n)}{2g(n)} = \lim_{n \to \infty} \frac{2^n}{2^{2n}} = 0.$$

(b) $f(n) = 2^n, g(n) = n$. By taking $c = n_0 = 1$, we see that $f(n) = 2^{O(g(n))}$. To prove that $f(n) \neq 2^{O(g(n))}$, it is sufficient to calculate $\lim_{n\to\infty} \frac{\log_2 f(n)}{g(n)} = 1 \neq 0$. If you would like to use the definition in (2), you need to prove the opposite statement:

$$\exists c > 0, \forall n_0, \exists n \geq n_0, f(n) > 2^{cg(n)}$$

Common mistake: Many failed to correctly prove this statement.

Problem 4 (10 pts). Consider $f(n) = e^{-n}$, $g(n) = \sin n + 2$. Check whether f(n) = o(g(n)) or not by the definition in (1). Thus to prove it you must find n_0 for every c, and to disprove it you must find one c such that no n_0 satisfies the condition.

Solution. Yes. Given any c > 0, by letting $n_0 = \max(1, \lceil -\ln c \rceil)$, we have

$$e^{n_0} \ge e^{-\ln c} = \frac{1}{c},$$

where the inequality is from the monotonicity of exp and the fact $x \leq \lceil x \rceil$ for any real x. Therefore

$$e^{-n} \le e^{-n_0} \le c \le c(\sin n + 2), \ \forall n \ge n_0,$$

where the last inequality follows from $\sin n \ge -1$.

Problem 5 (25 pts). Let $\Sigma = \{0, 1\}$. Recall that the concatenation of two languages is defined by

$$A \circ B = \{ xy \mid x \in A, y \in B \}.$$

- (a) (5 pts) Prove that the class of context-free languages is closed under concatenation. In other words, show that if A, B are CFLs, then $A \circ B$ is also a CFL.
- (b) (10 pts) Let

$$L_{conc} = \{ \langle G_1, G_2, w \rangle \mid G_1, G_2 \text{ are CFGs, } w \in \Sigma^*, \text{ and } w \in L(G_1) \circ L(G_2) \}$$

Prove that L_{conc} is decidable by using the result of (a) and the property that A_{CFG} is decidable. Basically what you need to do is to construct a TM that decides L_{conc} .

(c) (10 pts) Now suppose we do not know (a). Can you prove L_{conc} is decidable in another way without using the result of (a)? You may still use the property that A_{CFG} is decidable. That is, here you need a different TM from that in (b). *Hint: Split w*.

Solution.

- (a) Suppose G_1, G_2 are CFGs that generate A, B, respectively. Let $G_1 = (V_1, \Sigma, R_1, S_1), G_2 = (V_2, \Sigma, R_2, S_2)$. We assume $V_1 \cap V_2 = \emptyset$; otherwise rename the variables and modify R_1, R_2, S_1, S_2 accordingly. Then $G = (V, \Sigma, R, S)$ generates $A \circ B$, where $V = V_1 \cup V_2 \cup \{S\}$, and $R = R_1 \cup R_2 \cup \{S \to S_1S_2\}$. To prove that $L(G) = A \circ B$, on one hand, for any $w = w_1w_2 \in A \circ B$, $S_1 \stackrel{*}{\Rightarrow} w_1$ and $S_2 \stackrel{*}{\Rightarrow} w_2$ imply that $S \stackrel{*}{\Rightarrow} w_1w_2$. Thus $A \circ B \subseteq L(G)$. On the other hand, for any $w \in L(G)$, the only rule from $S \to S_1S_2$ means that $S \to S_1S_2 \stackrel{*}{\Rightarrow} w$. Thus w can be split into w_1w_2 with $S_1 \stackrel{*}{\Rightarrow} w_1$ and $S_2 \stackrel{*}{\Rightarrow} w_2$. Then $w \in A \circ B$, and thus $L(G) \subseteq A \circ B$. Finally we have $L(G) = A \circ B$.
- (b) The TM described by the following procedure decides L_{conc} .
 - On input $\langle G_1, G_2, w \rangle$, check the format is correct.
 - Construct CFG G that generates $L(G_1) \circ L(G_2)$ by the procedure in (a).
 - Run the decider S of A_{CFG} on input $\langle G, w \rangle$.
 - If S accepts, accept; otherwise, reject.
- (c) The TM described by the following procedure decides L_{conc} .
 - On input $\langle G_1, G_2, w \rangle$, check the format is correct.
 - Let n = |w|. For i = 0, 1, ..., n,
 - Split w = xy, where |x| = i, |y| = n i.
 - Run the decider S of A_{CFG} on inputs $\langle G_1, x \rangle$ and $\langle G_2, y \rangle$.
 - If S accept both inputs, accept.
 - Reject.