Notations et préliminaires

Tous les corps figurant dans le problème sont supposés commutatifs.

- N désigne l'ensemble des nombres entiers naturels
- $-\mathbf{N}^*$ désigne l'ensemble des nombres entiers naturels non nuls
- Pour tous entiers naturels a et b tels que $a \le b$, l'ensemble [a,b] désigne $[a,b] \cap \mathbf{N}$
- R désigne l'ensemble des nombres réels
- $-\mathbf{R}^*$ désigne l'ensemble des nombres réels non nuls
- R⁺ désigne l'ensemble des nombres réels positifs
- C désigne l'ensemble des nombres complexes
- \mathbb{C}^* désigne l'ensemble des nombres complexes non nuls
- **K** étant un corps, on note **K**[X] l'ensemble des polynômes à coefficients dans **K**, **K**_n[X] l'ensemble des polynômes de degré $\leq n$ à coefficients dans **K**, pour tout nombre entier naturel n
- $-M_n(\mathbf{K})$ désigne l'ensemble des matrices carrées de taille $n \ge 1$ à coefficients dans \mathbf{K}
- $GL_n(\mathbf{K})$ désigne l'ensemble des matrices inversibles de $M_n(\mathbf{K})$. Si $A \in GL_n(\mathbf{K})$, on note A^{-1} son inverse
- On dira que deux sous-espaces vectoriels V et W de l'espace vectoriel $M_n(\mathbf{K})$ sont **conjugués** s'il existe $P \in GL_n(\mathbf{K})$ telle que

$$W = P^{-1}VP = \{P^{-1}MP : M \in V\}.$$

- I_n désigne l'élément unité de $M_n(\mathbf{K})$.
- Pour A dans $M_n(\mathbf{K})$ on désigne par tA la transposée de A, trA la trace de A, detA le déterminant de A et P_A son polynôme caractéristique sur \mathbf{K} c'est-à-dire $P_A(X) = \det(A XI_n)$
- Pour E un K-espace vectoriel, on note $\mathcal{L}(E)$ l'algèbre des endomorphismes de E et Id_E l'application identité sur E.
- Si u est un endomorphisme diagonalisable d'un **K**-espace vectoriel E de dimension finie, on pose Sp(u) le spectre de u, c'est-à-dire l'ensemble des valeurs propres de u.
- Pour u un endomorphisme d'un **K**-espace vectoriel E de dimension finie et pour $\lambda \in Sp(u)$ on pose $E_{\lambda}(u) = \text{Ker }(u \lambda Id_{E})$ le sous-espace propre de u associé à λ .

Objet du problème

Dans ce problème, on se propose d'étudier les sous-espaces vectoriels de $M_n(\mathbf{K})$ constitués de matrices diagonalisables.

Plus précisément, si n est un entier ≥ 1 et K un corps, on note MT(n, K) l'affirmation suivante :

- Pour toutes matrices A et B diagonalisables dans $M_n(\mathbf{K})$, la propriété
 - (a) A et B commutent

est équivalente à la propriété

(b) Pour tout $\lambda \in \mathbf{K}$, $A + \lambda B$ est diagonalisable dans $M_n(\mathbf{K})$.

L'un des objectifs de ce problème est de montrer que cette affirmation est vraie dans le cas complexe c'est-à-dire que $\mathbf{MT}(n, \mathbf{C})$ est vraie pour tout $n \ge 1$, qui est un résultat dû à Motzkin-Taussky, 1952.

Dans toute la suite, lorsqu'il sera demandé d'étudier l'affirmation $\mathbf{MT}(n, \mathbf{K})$, il faudra examiner successivement si les implications $(a) \Rightarrow (b)$ et $(b) \Rightarrow (a)$ sont vraies.

Les parties I, II et III peuvent être traitées de manière indépendante.

Partie I

I-A: Le sens direct et le cas n=2

1. Soit ${\bf K}$ un corps et E un ${\bf K}$ -espace vectoriel de dimension finie.

On considère u et v deux endomorphismes diagonalisables de E qui commutent c'est-à-dire tels que $u \circ v = v \circ u$.

- (a) Montrer que les sous-espaces propres de v sont stables par u c'est-à-dire que si F est un sous-espace propre de v, on a $u(F) \subset F$.
- (b) Montrer que u induit sur chaque sous-espace propre de v un endomorphisme diagonalisable.
- (c) En déduire l'existence d'une base commune de réduction dans E pour les endomorphismes u et v, c'est-à-dire qu'il existe une base \mathcal{B} de E telle que celle ci soit une base de vecteurs propres à la fois de u et de v.
- 2. Plus généralement, on considère $(u_i)_{i\in I}$ une famille d'endomorphismes diagonalisables de E. On suppose en outre que ces endomorphismes commutent deux à deux :

$$(\forall (i,j) \in I^2), \quad u_i \circ u_j = u_j \circ u_i.$$

Montrer l'existence d'une base commune de réduction dans E pour la famille $(u_i)_{i\in I}$ c'est-à-dire une base \mathcal{B} de E qui est une base de vecteurs propres pour chaque endomorphisme u_i , $i\in I$. (Indication: on pourra raisonner par récurrence sur la dimension de E, en étudiant à part le cas où $(u_i)_{i\in I}$ est une famille d'homothéties.)

- 3. Montrer que l'implication $(a) \Rightarrow (b)$ est vraie dans l'affirmation $\mathbf{MT}(n, \mathbf{K})$, pour tout entier $n \ge 1$ et tout corps \mathbf{K} .
- 4. Étudier l'implication $(b) \Rightarrow (a)$ dans l'affirmation $\mathbf{MT}(2, \mathbf{R})$.
- 5. On étudie l'implication $(b) \Rightarrow (a)$ dans l'affirmation $\mathbf{MT}(2, \mathbf{C})$. Soit A et B deux matrices diagonalisables de $M_2(\mathbf{C})$ satisfaisant à la propriété (b) de $\mathbf{MT}(2, \mathbf{C})$.
 - (a) Montrer que l'on peut se ramener au cas où B est une matrice diagonale de $M_2(\mathbb{C})$ avec au moins une valeur propre nulle.
 - (b) En supposant que B est une matrice diagonale non nulle avec une valeur propre nulle, démontrer l'existence d'un nombre complexe λ_0 tel que $A + \lambda_0 B$ ait une valeur propre double.
 - (c) En déduire que l'implication $(b) \Rightarrow (a)$ dans $\mathbf{MT}(2, \mathbf{C})$ est vraie.
- 6. On suppose ici $\mathbf{K} = \mathbf{F}_p = \mathbf{Z}/p\mathbf{Z}$, où p est un nombre premier et n un nombre entier ≥ 1 .
 - (a) Montrer que $A \in M_n(\mathbf{F}_p)$ est diagonalisable si et seulement si $A^p = A$.
 - (b) Démontrer l'affirmation $\mathbf{MT}(n, \mathbf{F}_2)$.
 - (c) Démontrer l'affirmation $\mathbf{MT}(2, \mathbf{F}_p)$, dans le cas $p \geqslant 3$. (Indication : on pourra suivre le même plan que dans le cas complexe rencontré à la question $\mathbf{I-A-5}$)

I-B : Application de la réduction simultanée

1. (a) On suppose ici que \mathbf{K} est un corps de caractéristique différente de 2. On considère un sous-groupe multiplicatif fini G de $GL_n(\mathbf{K})$ où n est un entier ≥ 1 .

On suppose que:

$$(\forall M \in G), \quad M^2 = I_n.$$

Montrer que G est abélien de cardinal inférieur ou égal à 2^n .

(b) En déduire que pour tout $(n,m) \in (\mathbf{N}^*)^2$ les groupes multiplicatifs $GL_n(\mathbf{K})$ et $GL_m(\mathbf{K})$ sont isomorphes si et seulement si n=m.

2. Dans cette question, $\mathbf{K} = \mathbf{C}$ et n est un nombre entier ≥ 1 . On considère A et B deux matrices de $M_n(\mathbf{C})$ et on introduit l'endomorphisme de $M_n(\mathbf{C})$

$$\Phi_{A,B}: M \mapsto AM + MB$$
.

- (a) En supposant que A est diagonalisable et que B=0, établir que $\Phi_{A,B}$ est diagonalisable.
- (b) En supposant A et B diagonalisables, établir que $\Phi_{A,B}$ est diagonalisable.
- (c) Démontrer la réciproque, c'est-à-dire que si $\Phi_{A,B}$ est diagonalisable, A et B le sont. (Indication : On pourra utiliser la décomposition de Jordan-Dunford de A et B)
- (d) Lorsque A et B sont diagonalisables, déterminer les éléments propres de $\Phi_{A,B}$ en fonction de ceux de A et de tB .
- 3. Dans cette question, $\mathbf{K} = \mathbf{R}$ et on note $S_2(\mathbf{R})$ l'ensemble des matrices symétriques réelles de $M_2(\mathbf{R})$. Soit V un hyperplan vectoriel de $M_2(\mathbf{R})$ constitué de matrices diagonalisables sur \mathbf{R} . On se propose de montrer que V est conjugué à $S_2(\mathbf{R})$.
 - (a) Montrer que V contient la matrice I_2 .
 - (b) Montrer que V est conjugué au sous-espace vectoriel engendré par (I_2, A, B) avec

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & \omega^2 \\ 1 & 0 \end{pmatrix}$,

où ω est un nombre réel non nul.

- (c) En déduire le résultat.
- 4. Montrer que tout espace vectoriel formé de matrices diagonalisables de $M_2(\mathbf{R})$ est conjugué à un sous-espace vectoriel de $S_2(\mathbf{R})$.

Partie II : Le cas n=3

On suppose que \mathbf{K} est un corps de caractéristique nulle. On **rappelle** les définitions suivantes : - Pour les polynômes de $\mathbf{K}[X]$

$$P = \sum_{k=0}^{m} a_k X^k \quad \text{ et } \quad Q = \sum_{k=0}^{n} b_k X^k$$

où m et n sont deux entiers ≥ 1 , on définit le **résultant** de P et Q par le déterminant de taille m+n.

$$R(P,Q) = \begin{bmatrix} a_{m} & 0 & \cdots & 0 & b_{n} & 0 & \cdots & 0 \\ a_{m-1} & \ddots & \ddots & \vdots & b_{n-1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots & \ddots & \ddots & 0 \\ \vdots & & \ddots & a_{m} & \vdots & & \ddots & b_{n} \\ \vdots & & & a_{m-1} & \vdots & & & b_{n-1} \\ \vdots & & & \vdots & & \vdots & & \vdots \\ a_{0} & & \vdots & b_{0} & & \vdots & & \vdots \\ a_{0} & & \vdots & b_{0} & & \vdots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{0} & 0 & \cdots & 0 & b_{0} \end{bmatrix}$$

$$n \text{ colonnes}$$

- Pour tout $P \in \mathbf{K}[X]$ de degré $n \ge 1$ de coefficient dominant a_n , on définit le **discriminant** de P par

$$\Delta(P) = \frac{(-1)^{\frac{n(n-1)}{2}}}{a_n} R(P, P').$$

1. On considère α, β et γ trois scalaires de **K**. Montrer que le discriminant du polynôme

$$P = -X^3 + \alpha X^2 + \beta X + \gamma$$

est

$$-27 \gamma^2 - 18 \gamma \alpha \beta + \alpha^2 \beta^2 - 4 \alpha^3 \gamma + 4 \beta^3$$
.

2. On pose dans $M_3(\mathbf{K})$

$$M = \begin{pmatrix} m_1 & m_2 & m_3 \\ m_4 & m_5 & m_6 \\ m_7 & m_8 & m_9 \end{pmatrix} \quad \text{et} \quad N = \begin{pmatrix} s & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

On suppose s distinct de 0 et 1. Montrer que le discriminant du polynôme caractéristique de $M + \lambda N$ est un polynôme de degré six en λ dont le coefficient dominant est $(s(1-s))^2$.

3. On pose dans $M_3(\mathbf{K})$

$$B = \begin{pmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \\ b_7 & b_8 & b_9 \end{pmatrix} \quad \text{et} \quad Q = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

et on note

$$P_B = -X^3 + aX^2 + bX + c.$$

(a) Montrer que si $\begin{vmatrix} b_1 & b_2 \\ b_4 & b_5 \end{vmatrix} = 0$, on a :

$$(\forall \lambda \in \mathbf{K}), \quad P_{B+\lambda Q} = -X^3 + (a+\lambda)X^2 + (b-(b_1+b_5)\lambda)X + c.$$

- (b) Montrer alors que si en plus $b_1 + b_5 \neq 0$, le discriminant de $P_{B+\lambda Q}$ est un polynôme de degré quatre en λ et déterminer son coefficient dominant.
- 4. Ici $\mathbf{K} = \mathbf{C}$; on se propose de démontrer l'implication $(b) \Rightarrow (a)$ de l'affirmation $\mathbf{MT}(3, \mathbf{C})$. Soit A et B deux matrices diagonalisables de $M_3(\mathbf{C})$ satisfaisant à la propriété (b) de $\mathbf{MT}(3, \mathbf{C})$; on note \mathscr{F} le \mathbf{C} -espace vectoriel engendré dans $M_3(\mathbf{C})$ par I_3 , A et B.
 - (a) Montrer que \mathscr{F} est un sous-espace vectoriel de matrices diagonalisables de $M_3(\mathbb{C})$ et que si la dimension de \mathscr{F} est strictement inférieure à 3, les matrices A et B commutent.
 - (b) On suppose que la dimension de \mathscr{F} est égale à 3. Montrer que l'on peut se ramener par conjugaison au cas où $A=\operatorname{Diag}(0,0,1)$ et B est un projecteur de rang 1.
 - (c) En déduire que l'implication $(b) \Rightarrow (a)$ de l'affirmation $\mathbf{MT}(3, \mathbf{C})$ est vraie.

Partie III : Le cas général dans C

III-A: Bases holomorphes

1. Soit Ω_0 un disque ouvert de \mathbf{C} contenant l'origine; on considère une application holomorphe M de Ω_0 dans $M_n(\mathbf{C})$, c'est-à-dire telle que chaque coefficient m_{ij} de M définisse une fonction holomorphe de Ω_0 dans \mathbf{C} , pour $(i,j) \in [1,n]^2$.

Pour tout $z \in \Omega_0 \setminus \{0\}$, on note V(z) le noyau de la matrice M(z).

Démontrer l'existence d'un réel $\rho > 0$ et d'un entier $m \ge 0$ tels que

$$(\forall z \in \Omega_0), \quad (0 < |z| < \rho) \Longrightarrow (\dim V(z) = m).$$

(Indication : on pourra considérer les mineurs de <math>M(z).)

On suppose $m \ge 1$ dans la suite.

- 2. Sous les hypothèses ci-dessus et avec les mêmes notations, démontrer l'existence d'un nombre réel r>0 et de m fonctions ψ_1, \dots, ψ_m , holomorphes sur $D_r=\{z\in\Omega_0 ; |z|< r\}$, à valeurs dans \mathbb{C}^n , telles que pour tout $z\in D_r\setminus\{0\}$, les vecteurs $\psi_1(z),\dots,\psi_m(z)$ engendrent V(z) et $\psi_1(0),\dots,\psi_m(0)$ sont tous non nuls. (Indication: on pourra commencer par trouver des vecteurs $\tilde{\psi}_1(z),\dots,\tilde{\psi}_m(z)$ méromorphes en z, qui engendrent V(z).)
- 3. Toujours avec les mêmes notations, notons Z^* l'ensemble des couples $(z, \psi) \in \Omega_0 \times \mathbb{C}^n$ tels que $z \neq 0$ et $\psi \in V(z)$, Z l'adhérence de Z^* dans $\Omega_0 \times \mathbb{C}^n$ et V(0) (qui n'a pas encore été défini) le sous-ensemble de \mathbb{C}^n tel que

$$\{0\} \times V(0) = Z \cap (\{0\} \times \mathbf{C}^n).$$

- (a) On suppose que la famille $(\psi_1(0), \dots, \psi_m(0))$ est libre. Démontrer que V(0) est un sous-espace vectoriel de \mathbb{C}^n de dimension m.
- (b) Montrer qu'il existe une famille (ψ_1, \dots, ψ_m) , comme à la question **III-A-2** telle que la famille $(\psi_1(0), \dots, \psi_m(0))$ soit libre et en déduire que V(0) est un sous-espace vectoriel de \mathbb{C}^n de dimension m. (Indication: partant d'une famille quelconque (ϕ_1, \dots, ϕ_m) vérifiant **III-A-2**, on pourra
- construire des familles $(\psi_1, \dots, \psi_k, \phi_{k+1}, \dots, \phi_m)$ par récurrence sur k.)

 1. On considère une application holomorphe N d'un ouvert U de \mathbf{C} dans $M_{\mathbf{r}}(\mathbf{C})$ un point u_0 de
- 4. On considère une application holomorphe N d'un ouvert U de \mathbb{C} dans $M_n(\mathbb{C})$, un point μ_0 de \mathbb{C} et un cercle Γ centré en μ_0 , orienté dans le sens direct.

On suppose que pour tout $\lambda \in U$, la matrice $N(\lambda)$ est diagonalisable, que :

$$(\forall \lambda \in U), (\forall \mu \in \Gamma), \quad N(\lambda) - \mu I_n \in GL_n(\mathbf{C}),$$

et on note $R(\lambda, \mu) = (N(\lambda) - \mu I_n)^{-1}$.

(a) Démontrer que la formule suivante

$$\Pi(\lambda) = -\frac{1}{2i\pi} \oint_{\Gamma} R(\lambda, \mu) \ d\mu$$

définit une application holomorphe Π de U dans $M_n(\mathbf{C})$.

- (b) Soit λ_0 un point de U; on suppose que μ_0 est l'unique valeur propre de $N(\lambda_0)$ entourée par le cercle Γ . Démontrer que $\Pi(\lambda_0)$ est la projection sur $E_{\mu_0}(N(\lambda_0))$, le sous-espace propre de $N(\lambda_0)$ associé à μ_0 , parallèlement à la somme des autres sous espaces propres de $N(\lambda_0)$.
- 5. Démontrer que pour tout $\lambda \in U$, la matrice $\Pi(\lambda)$ est un projecteur, somme de projecteurs sur des sous-espaces propres de $N(\lambda)$ associés à des valeurs propres entourées par Γ .

Partie III-B: Courbes spectrales

Dans cette partie le corps de base est $\mathbf{K} = \mathbf{C}$ et \mathbf{D} désigne le disque ouvert unité $\mathbf{D} = \{z \in \mathbf{C} ; |z| < 1\}$. Soit A et B deux matrices dans $M_n(\mathbf{C})$, pour $n \in \mathbf{N}^*$; on pose :

$$(\forall (\lambda, \mu) \in \mathbf{C}^2), \quad P(\lambda, \mu) = P_{A+\lambda B}(\mu) = \det(A + \lambda B - \mu I_n).$$

Pour $\lambda \in \mathbf{C}$, le polynôme caractéristique de $A + \lambda B$ sera noté P_{λ} . On définit l'ensemble

$$\mathcal{C} = \{(\lambda, \mu) \in \mathbf{C}^2 ; P(\lambda, \mu) = 0\}.$$

On appelle **multiplicité** (dans \mathcal{C}) d'un point $x = (\lambda, \mu)$ de \mathcal{C} , la multiplicité de la racine μ du polynôme P_{λ} , notée d(x).

Nous **admettrons** le théorème suivant qui permet de paramétrer localement l'ensemble \mathcal{C} par des injections holomorphes de \mathbf{D} dans \mathbf{C}^2 :

Quelque soit $x_0 = (\lambda_0, \mu_0) \in \mathcal{C}$, il existe $l \in \mathbf{N}^*$ et deux familles finies d'applications holomorphes de \mathbf{D} dans \mathbf{C} , $(f_{\alpha})_{1 \leqslant \alpha \leqslant l}$ et $(g_{\alpha})_{1 \leqslant \alpha \leqslant l}$, qui vérifient les conditions suivantes :

- (i) $(\forall \alpha \in [1, l]), f_{\alpha}(0) = \lambda_0 \text{ et } g_{\alpha}(0) = \mu_0$
- (ii) $(\forall z \in \mathbf{D}), (\forall \alpha \in [1, l]), (f_{\alpha}(z), g_{\alpha}(z)) \in \mathcal{C}$
- (iii) $(\exists \eta > 0), (\forall (\lambda, \mu) \in \mathcal{C}),$ $(|\lambda - \lambda_0| \leq \eta, |\mu - \mu_0| \leq \eta) \Longrightarrow ((\exists \alpha \in [1, l]), (\exists z \in \mathbf{D}), \lambda = f_{\alpha}(z) \text{ et } \mu = g_{\alpha}(z))$
- (iv) $(\forall \alpha \in [1, l]), (\forall (z, w) \in \mathbf{D}^2), \quad (f_{\alpha}(z) = f_{\alpha}(w), g_{\alpha}(z) = g_{\alpha}(w)) \Longrightarrow (z = w)$
- (v) $(\forall (\alpha, \beta) \in [1, l]^2), (\alpha \neq \beta), (\forall (z, w) \in (\mathbf{D} \setminus \{0\})^2), (f_{\alpha}(z), g_{\alpha}(z)) \neq (f_{\beta}(w), g_{\beta}(w))$
- (vi) $(\forall z \in \mathbf{D} \setminus \{0\}), (\forall \alpha \in [1, l]), f'_{\alpha}(z) \neq 0.$

Nous noterons $F_{\alpha} = (f_{\alpha}, g_{\alpha})$ les applications associées de **D** dans \mathbb{C}^2 , pour tout $\alpha \in [1, l]$.

Remarque : la condition (ii) signifie que $F_{\alpha}(\mathbf{D}) \subset \mathcal{C}$, (iii) que l'ensemble $\bigcup_{1 \leqslant \alpha \leqslant l} F_{\alpha}(\mathbf{D})$ contient un

voisinage de x_0 dans C, (iv) que chaque F_α est injective et (v) que $(F_\alpha(\mathbf{D}\setminus\{0\}))_{1\leqslant \alpha\leqslant l}$ est une famille d'ensembles deux à deux disjoints. La condition (vi) est particulière à notre situation où chaque polynôme P_λ est de degré n en μ , pour tout $\lambda \in \mathbf{C}$.

Pour $\alpha \in [1, l]$, l'ensemble $F_{\alpha}(\mathbf{D})$ s'appelle une **branche locale** de \mathcal{C} en x_0 .

Nous **admettrons** que la multiplicité dans \mathcal{C} est constante dans une branche épointée, c'est-à-dire que d(x) ne dépend pas de x si $x \neq x_0$ et $x \in F_{\alpha}(\mathbf{D})$; on la notera d_{α} , pour tout $\alpha \in [1, l]$.

On appellera **ramification** e_{α} d'une branche $F_{\alpha}(\mathbf{D})$ en x_0 l'ordre du zéro 0 de $f_{\alpha} - \lambda_0$, qui existe puisque f_{α} est non constante; nous **admettrons** alors que pour tout $\lambda \in \mathbf{C} \setminus \{\lambda_0\}$ suffisamment proche de λ_0 , le nombre de points $x = (\lambda, \mu) \in F_{\alpha}(\mathbf{D})$ est exactement e_{α} , pour tout $\alpha \in [1, l]$.

Enfin, nous **supposerons** que pour $\lambda_0 \in \mathbf{C}$ fixé, si μ_0 et μ'_0 sont deux racines distinctes de P_{λ_0} , les branches locales de \mathcal{C} en $x_0 = (\lambda_0, \mu_0)$ sont disjointes des branches locales de \mathcal{C} en $x'_0 = (\lambda_0, \mu'_0)$.

1. Soit $(F_{\alpha}(\mathbf{D}))_{\alpha \in [\![1,l]\!]}$ la famille de branches locales de \mathcal{C} en un point $x_0 = (\lambda_0, \mu_0)$ de \mathcal{C} . Démontrer que la multiplicité de x_0 dans \mathcal{C} vérifie

$$d(x_0) = \sum_{\alpha=1}^{l} e_{\alpha} d_{\alpha}.$$

2. On suppose jusqu'à la fin du problème que $A + \lambda B$ est diagonalisable, pour λ dans \mathbf{C} . Soit $(F_{\alpha}(\mathbf{D}))_{\alpha \in \llbracket 1, l \rrbracket}$ la famille de branches locales de \mathcal{C} en $x_0 = (\lambda_0, \mu_0)$ et z un point de $\mathbf{D} \setminus \{0\}$. On définit l'espace vectoriel, pour $\alpha \in \llbracket 1, l \rrbracket$

$$V_{\alpha}(z) = \{ \psi \in \mathbf{C}^n : (A + f_{\alpha}(z)B)\psi = g_{\alpha}(z)\psi \},$$

et l'espace vectoriel associé $V_{\alpha}(0)$ comme en III-A-3.

Nous admettons la relation suivante :

$$E_{\mu_0}(A + \lambda_0 B) = \sum_{\alpha=1}^{l} V_{\alpha}(0).$$

Montrer alors que la ramification e_{α} de $F_{\alpha}(\mathbf{D})$ est égale à 1, pour tout $\alpha \in [1, l]$.

- 3. (a) Établir l'existence de n fonctions entières $\mu_i : \mathbf{C} \longrightarrow \mathbf{C}$ telle que \mathcal{C} coïncide avec la réunion des graphes de $\mu_i, 1 \leq i \leq n$.
 - (b) Démontrer l'existence de nombres complexes $a_i, b_i, 1 \le i \le n$, tels que

$$(\forall i \in [1, n]), (\forall \lambda \in \mathbf{C}), \quad \mu_i(\lambda) = a_i + \lambda b_i.$$

- 4. Notation : pour $i \in [1, n]$, $\lambda \in \mathbf{C}$ et r > 0, $\Gamma_i(\lambda, r)$ désigne le cercle de centre $\mu_i(\lambda)$ et de rayon r.
 - (a) Démontrer l'existence de réels $\rho > 0$ et $\Lambda > 0$ tel que, pour tout $\lambda \in \mathbb{C}$ et tout r > 0

$$(0 < r < \rho)$$
 et $(|\lambda| > \Lambda) \Longrightarrow (\forall i \in [1, n]), (\forall \mu \in \Gamma_i(\lambda, r)), A + \lambda B - \mu I_n$ inversible.

(b) On note $R(\lambda, \mu)$ l'inverse de $A + \lambda B - \mu I_n$ lorsqu'il existe et on fixe $0 < r < \rho$. Démontrer que pour tout $j \in [1, n]$, la formule

$$\Pi_{j,r}(\lambda) = -\frac{1}{2i\pi} \oint_{\Gamma_j(\lambda,r)} R(\lambda,\mu) \ d\mu.$$

définit une fonction holomorphe de l'ouvert $U_{\Lambda} = \{\lambda \in \mathbb{C} : |\lambda| > \Lambda\}$ dans $M_n(\mathbb{C})$.

- (c) Démontrer que, si en plus B est diagonalisable, chaque $\Pi_{j,r}(\lambda)$ admet une limite dans $M_n(\mathbf{C})$ lorsque $|\lambda|$ tend vers l'infini, pour tout $j \in [1, n]$.
- 5. On considère A et B deux matrices diagonalisables de $M_n(\mathbf{C})$. On suppose que $A + \lambda B$ est diagonalisable, pour tout $\lambda \in \mathbf{C}$. Démontrer que A et B commutent.