Algebra a diskrétna matematika Príklady na precvičenie 12. týždeň

Príklad 1: Overte, či sú izomorfné nasledujúce dvojice grúp

- a) \mathbb{Z}_8 a $\mathbb{Z}_2 \times \mathbb{Z}_4$,
- b) \mathbb{Z}_{10} a $\mathbb{Z}_2 \times \mathbb{Z}_5$,
- c) D_5 a $\mathbb{Z}_2 \times \mathbb{Z}_5$,
- d) A_4 a $\mathbb{Z}_3 \times \mathbb{Z}_4$.

Príklad 2: Ukážte, že množina $\{e, (12), (345), (354), (12)(345), (12)(354)\}$ tvorí grupu vzhľadom na operáciu skladania permutácií. Je táto grupa komutatívna?

Príklad 3: Vypíšte všetky prvky permutačnej grupy S_4 a zistite, ktoré z nich sú navzájom inverzné.

Príklad 4: Pre a=(12345678) z grupy S_8 vypočítajte mocniny a^i , pričom $2 \le i \le 10$.

Príklad 5: K daným prvkom z grupy S_9 nájdite inverzné prvky.

$$a=(13476)(259),\ b=(2364)(78),\ c=(134)(2697),\ d=(145)(26)(79)$$

Príklad 6: Pre prvky a=(236)(57) a b=(147) z grupy S_7 vypočítajte:

- a) *ab*
- b) $(ab)^{-1}$
- c) $(ab)^{-2}$
- d) $a^{-1}b^{-1}$
- e) $b^{-1}a^{-1}$

Príklad 7: Ukážte, že grupa A_5 je generovaná prvkami (123), (124) a (125).

Príklad 8: Ukážte, že grupa S_7 je generovaná všetkými 6 transpozíciami (ab), kde ab je hrana ohodnoteného stromu z obrázku.

Príklad 9: Nech i, j, k, ℓ, m sú rôzne prvky v S_n , kde $n \geq 5$. Vypočítajte permutácie

- a) (ij)(jk)(kj)
- b) $(ij)(jk\ell m)(ij)$

Príklad 10: V každom z prípadov ukážte, že grupa S_n je generovaná danými prvkami.

- a) $(12), (123 \dots n)$
- b) $(12), (23), (34), \dots, (n-1 n)$
- c) $(12), (13), (14), \dots, (1n)$

Príklad 11: Zistite, ktoré prvky v poli \mathbb{Z}_{17} nemajú druhé odmocniny.

Príklad 12: Vyriešte dané kvadratické rovnice.

- a) $x^2 + 2x \equiv 10 \pmod{11}$
- b) $x^2 + 3x + 2 \equiv 0 \pmod{7}$
- c) $x^2 + 2x + 5 \equiv 0 \pmod{13}$

Príklad 12: V poli \mathbb{Z}_{11} riešte danú sústavu rovníc

$$4x + y = 6$$

$$3x + 7y = 0$$

Príklad 13: V poli \mathbb{Z}_5 riešte sústavu rovníc

$$3x + 2y + z = 2$$
$$x + 3y + z = 3$$
$$2x + y + z = 3$$

Príklad 14: V poli \mathbb{Z}_7 riešte sústavu rovníc

$$x + y + 2z = 1$$
$$2x + y + 3z = 1$$
$$4x + 2y + 5z = 4$$