

STAT 641/543 Group Project : GROUP 5

By Ethan Scott,

Pricing wine batches from new wine vendor of Hotel X, using classification

What is classification?

- It's a predictive modeling method, where a class label (qualitative category) is predicted for a given input data X
- A classification model will use the training dataset and will determine how to best map input data into specific class labels or predict probability of class membership
- Binary, Multi-Class, Multi-Label & Imbalanced classification are the main 4 categories of classification algorithms discussed in Machine Learning
- k-Nearest Neighbors, Decision Trees, Naive Bayes, Random Forest, Gradient Boosting
 & Support Vector Machines are some commonly used classification algorithms
- Some popular diagnostic for evaluating predicted class or class probabilities are confusion matric, Precision, Recall, F-Measure & ROC curve
- A few real-world applications of classification algorithms are, pattern recognition, fraud detection, credit scoring, anomaly detection

Overview: Classification methods

1. Support Vector Machine:

Determine the best hyperplane which linearly separate the classes

2. Random Forest Model:
Determine the best class
suited, through a series of
decision trees and majority
voting system

3. K-NN Model: An object is classified by a majority vote of its neighbors, with the object being assigned to the class most common among its k nearest neighbors

Overview: Evaluating classification methods

Accuracy: The fraction of correct

classifications

Precision: fraction of relevant classes among

the retrieved classes

Recall: the fraction of the correctly classified

classes, out of retrieved classes

F-measure: Harmonic mean of precision and

recall

False positive rate

ROC Curve

Overview of Data & the goal of analysis

Data Set: Wine Quality Data Set

•No of data : 1599

No of features/predictors :11 quantitative variables

•Response Variable : Quality of the wine (Class 3, 4, 5, 6, 7, 8)

The Hotel X, has recently changed their wine vendor and the management wants to price each batch of wine bottles delivered to them based on their own wine quality control process. For example, the wine batch which falls into class 8 (best quality) will be priced at \$ 1000 per bottle and so on

Key Takeaways from the Descriptive Analysis

 When grouped by the quality of wine, the data set seems to have significant number of both mild and extreme outliers with respective to several features such as, residual sugar content, sulphate content, no of calories etc.

Key Takeaways from the Descriptive Analysis cont.

- The predictors total sulfur dioxide content and free sulfur content seems to have a noticeable correlation (r=0.6) as expected
- Remaining predictors are not significantly correlated

SVM Model

Best Hyperparameters: {'C': 1, 'gamma': 1, 'kernel': 'linear'}

	precision	recall	f1-score	support	
3	0.00	0.00	0.00	1	Confusion Matrix:
4	0.00	0.00	0.00	12	[[0 0 1 0 0 0]
5	0.63	0.75	0.69	140	
6	0.49	0.64	0.55	135	[009300]
7	0.00	0.00	0.00	51	[0 0 105 35 0 0]
8	0.00	0.00	0.00	4	
					[0 0 49 86 0 0]
accuracy			0.56	343	[0 0 2 49 0 0]
macro avg	0.19	0.23	0.21	343	= = = = = = = = = = = = = = = = = = = =
weighted avg	0.45	0.56	0.50	343	[0 0 0 4 0 0]]

KNN Model

Best Hyperparameters: {'algorithm': 'auto', 'n_neighbors': 19, 'weights': 'distance'}

support	f1-score	recall	precision	
1	0.00	0.00	0.00	3
12	0.00	0.00	0.00	4
140	0.69	0.79	0.62	5
135	0.57	0.59	0.56	6
51	0.42	0.29	0.71	7
4	0.40	0.25	1.00	8
343	0.60			accuracy
343	0.35	0.32	0.48	macro avg
343	0.58	0.60	0.59	weighted avg

Best Hyperparameters: {'criterion': 'entropy', 'max_features': 'sqrt', 'n_estimators': 100}

					support	†1-score	recall	precision	
					1	0.00	0.00	0.00	3
Matrix:	Ma	sion	ıfus	Con	12	0.00	0.00	0.00	4
1 0 0 0]	İ	0	0	ГГ	140	0.77	0.81	0.73	5
			0	LL	135	0.64	0.69	0.60	6
7 4 0 0]	1	0	1	L	51	0.53	0.41	0.72	7
113 27 0 0]	11	0	0	[4	0.29	0.25	0.33	8
32 93 8 0]	. 3	2	0	[2.42	0.66			
1 27 21 2]	i	0	0	Г	343	0.66			accuracy
1 2/ 21 2]		U	O	L	343	0.37	0.36	0.40	macro avg
0 3 0 1]]	1	0	0	[343	0.65	0.66	0.65	weighted avg

Random Forest Predicted Vs Actual Values

Classification Method	Predicted no of classes	Prediction accuracy	Confusion matrix	F- measure (Weighted Average)	Precision (Weighted Average)	Recall (Weighted Av erage)
SVM	2	0.56	Confusion Matrix: [[0 0 1 0 0 0] [0 0 9 3 0 0] [0 0 105 35 0 0] [0 0 49 86 0 0] [0 0 2 49 0 0] [0 0 0 4 0 0]	0.50	0.45	0.56
KNN	4	0.60	Confusion Matrix: [[0 0 1 0 0 0] [0 0 7 5 0 0] [0 0 110 28 2 0] [0 0 51 80 4 0] [0 0 8 28 15 0] [0 0 0 3 0 1]]	0.58	0.59	0.60
Random Forest	6	0.66	Confusion Matrix: [[0 0 1 0 0 0] [1 0 7 4 0 0] [0 0 113 27 0 0] [0 2 32 93 8 0] [0 0 1 27 21 2] [0 0 0 3 0 1]]	0.65	0.65	0.66

Conclusion

 The Random Forest Model outperformed the other models in all methods of evaluation and is the best model to classify the wine quality

The Maximum Allowable Mortgage Loan for the Prospective Customer in Melbourne, using Ridge Regression, Lasso and Random Forest

- Prior approach when lending a mortgage loan is, to request employment information with last six months' pay stubs.
- Due to the economic crisis default risk increased
- Implemented a new plan to estimate the house price according debtor's requirements.
- Maximum allowable mortgage plan is 70% of the predicted house price

To answer the previous question according to the below criterias

• Identify the important features effecting the house price using an exploratory data analysis.

Predict the house prices using statistical learning techniques

About the dataset

Data source: www.kaggle.com

34,857 Observations

21 variables

Categorical - 14

Quantitative - 7

Vector**Stock**®

VectorStock.com/23961472

Descriptive analysis

- Response variable : Price
- Predictor variables :

Location Based

- 1. Type
- 2. Address
- 3. Suburb
- 4. Post code
- **5. Property Count**
- 6. Distance
- 7. Council Area
- 8. Region Name
- 9. Latitude
- 10.Longitude

House Related

- 1. Rooms
- 2.Bedroom2
- 3. Bathroom
- 4.Car
- **5. Building Area**
- 6. Landsize
- 7. Year Built

Seller Related

- 1.SellerG
- 2. Method
- 3. Date

Distribution of response variable

Correlation Plots

Pearson's correlation plot

Goodman – Kruskal plot

Distance vs Price

Region name vs price

Type vs Price

Number of Rooms vs Price

Number of Bathrooms vs Price

Number of car spots vs Price

Landsize vs Price Method vs Price

Summary of the Descriptive analysis

Following variables are chosen for the Advanced analysis

- Type
- Distance
- Region Name
- Rooms

- Bathroom
- Car
- Land Size
- Method

- Due to the multicollinearity present among the explanatory variables, following statistical methods have used to develop the model
- Ridge
- Lasso
- Random Forest

Advanced Analysis

(1) Data cleaning process

- > Since "Price" is the response variable, records that are having missing values in the price column were removed. (7,610 records)
- Log e value of the Price variable was considered.
- There was one duplicate record removed
- Distance, Bathroom, and Car variables had missing values imputed with the mode.
- Landsize variable imputed using MICE package.

✓ Finally ended up with 8 predictor variables and 27,246 observations

Advanced Analysis continued....

(2) Introduction to model fitting

Ridge Regression

 A method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated.

Lasso Regression

 Regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the resulting statistical model.

Random Forest

A random forest, selects observations and specific variables to build multiple decision trees from the input and then averages the results.

Results of Advanced analysis

1. Ridge Regression

Best Lambda	Test MSE		
0.02713538	0.088802527		

Best Lambda	Test MSE		
0.00148221	0.08747227		

3. Random Forest

Test MSE

0.1309824

Model	Test MSE	
Ridge	0.088802527	
Lasso	0.08747227	Best model
Random Forest	0.1309824	

Final Lasso model

Variable	Co-efficient		
Intercept	13.61600		
Type(t)	-0.1868281		
Type(u)	-0.5147224		
Method(S)	0.05931903		
Method(SA)	0.0145875		
Method(SP)	0.01066759		
Method(VB)	-		
Distance	-0.03789760		
Region(EV)	0.2111078		
Region(NM)	-0.2989450		
Region(NV)	-		
Region(SEM)	0.1586974		

Variable	Co-efficient
Region(SM)	0.1264151
Region(WM)	-0.3568105
Region(WV)	-0.3200066
Region(EM)	-
Landsize	0.00000334
Rooms	0.1934605
Bathroom	0.07375295
Car	0.02961863

Conclusion

There are 8 variables that are most associated

- Type
- Distance
- Region Name
- Rooms

- Bathroom
- Car
- Land Size
- Method

Lasso model outperformed the other models and identified as the best model when predicting the house prices

Thank You