Homework 1 Advanced Machine Learning For the deadline see Canvas Version: Mon 19th Nov, 2018 at 10:35.

Introduction

- 1. Each group has to submit a **pdf** with their answers and explanation. **Please put your** names and group number at the top of the hand in.
- 2. For questions about this homework assignment use the Discussion Board on Canvas.
- 3. Of course you may use a calculator or a programming environment such as Matlab or Python. But your report should not contain any code. Explain your computations and results in English!
- 4. It is allowed to incorporate handwritten notes or derivations or drawings in your submission as long as these are readable!
- 5. Explain your answers!

Exercise 1: Bayesian networks

Consider the Bayesian Network in Figure 2

Figure 1: Bayesian network of exercise 1.

The conditional probability distributions (CPDs) for the Bayesian Network are given below.

	C	C_0	C_1	
		0.4	0.6	
	_	-		_
	$\mid D$	d_0	$\mid d_1$	
	c_0	0.2	0.8	
	c_1	0.4	0.6	
	т	т.	т.	\neg
	I	i_0	i_1	
	d_0	0.5	0.5	
	d_1	0.6	0.4	
$C \perp$		a _o	<i>a</i>	
G		g_0	g_1	[
		0.1	0.4	1 0

G	g_0	g_1	g_2
d_0, i_0	0.1	0.4	0.5
d_0, i_1	0.4	0.4	0.2
d_1, i_0	0.3	0.4	0.3
d_1, i_1	0.7	0.2	0.1

S	s_0	s_1
i_0	0.3	0.7
i_1	0.8	0.2

Part a

Compute the probability distribution P(S).

Part b

Compute the conditional probability distribution $P(G, I = i_0)$ and $P(G|I = i_0)$

Part c

Compute the conditional probability distribution $P(S,G=g_0)$ and $P(S|G=g_0)$

Exercise 2: Markov networks

Now we model the above Bayesian Network as a Markov model. With the different factors

Figure 2: Markov network of exercise 2.

given by

C	C_0	C_1	
	3	7	
D	d_0	d_1	
c_0	2	8	
c_1	3	7	
I	$\frac{i_0}{2}$	i_1	
d_0	2	2	
d_1	6	2	

G	g_0	g_1	g_2
d_0, i_0	1	4	5
d_0, i_1	4	4	2
d_1, i_0	3	4	3
d_1, i_1	7	2	1

S	s_0	s_1
i_0	2	8
i_1	8	2

Part a

Compute the factor $\Phi(S)$ and corresponding probability distribution P(S).

Part b

Compute the factor $\Phi(G, I = i_0)$ and corresponding probability distribution $P(G|I = i_0)$.

Part c

Compute the factor $\Phi(S, G = g_0)$ and corresponding probability distribution $P(S|G = g_0)$.

Message passing

Now we want to answer the questions of Exercise 2 using message passing. But before we can do this we need to combine the factors $\Phi(I,D)$ and $\Phi(I,D,G)$ into one factor using factor multiplication.

Part a

Explain why we need to do this in order to apply message passing. Moreover compute the factor product of $\Phi(I, D)$ and $\Phi(I, D, G)$.

Part b

Solve Part a of the previous question using message passing.

Part c

Solve Part b of the previous question using message passing.