141, ДЗ 4, Неприводимые многочлены

Задачи

Задача 1. Доказать неприводимость в $\mathbb{Q}[x]$ многочлена

$$x^5 + 2x^3 + 3x^2 - 6x - 5$$

воспользовавшись редукцией по какому-то модулю.

Задача 2. Доказать неприводимость в $\mathbb{Q}[x]$ многочлена

$$x^5 - 6x^3 + 2x^2 - 4x + 5$$
.

Задача 3. Доказать неприводимость в $\mathbb{Q}[x]$ многочлена

$$x^5 - 12^4 + 36x - 12$$

Задача 4. Доказать неприводимость многочлена x^5-x+1 над полем \mathbb{F}_5

Но бывают и другие задачи:

Задача **5.** Покажите, что многочлен $(x-a_1)\dots(x-a_n)-1$ неприводим над $\mathbb Z$ при различных целых a_i .

Задача 6. Покажите, что многочлен $x^{105}-9$ неприводим над $\mathbb Z$

Многочлены

Обсудим, что происходит с кольцом целочисленных многочленов и кольцом от многих переменных.

Определение. Пусть f(x) – многочлен над факториальным кольцом R. Тогда содержанием f называется $\operatorname{cont}(f) = \operatorname{HOД}(a_i)$, где a_i коэффициенты f.

Тут есть некоторая вольность – надо помнить, что наибольший общий делитель определён с точностью до обратимых множителей. Следующее следствие тоже называют леммой Гаусса.

Лемма 1. Если f(x) = g(x)h(x), где $f, g, h \in R[x]$, то cont(f) = cont(g) cont(h)

Следующая лемма по существу показывает, что разложение в R[x] и Q(R)[x] по сути одно и тоже.

Лемма 2. Пусть для многочлена $f(x) \in R[x]$ имеет место разложение f(x) = g(x)h(x), где $g(x)h(x) \in Q(R)[x]$. Тогда существуют такая константа $c \in Q(R)$, что $cg \in R[x]$ и $c^{-1}h \in R[x]$, что означает, что $f(x) = cg(x)c^{-1}h(x)$ – есть произведение двух многочленов из R[x] пропорциональных исходным.

Теорема 1. Пусть R – факториальное кольцо. Тогда кольцо R[x] факториально. Более того, имеет место следующее описание простых элементов кольца R[x]:

- 1) cont(f) = 1 и f неприводим в Q(R)[x].
- (2) $f = p \in R$ простой в R.

Признаки неприводимости для многочленов

Теперь наша задача поговорить про неприводимость многочленов над целыми числами или над \mathbb{Q} . Прежде всего отметим, что обе задачи тесно связаны. А именно, если взять многочлен с рациональными коэффициентами, то домножив его на подходящую рациональную константу мы получим многочлен с целыми коэффициентами и содержанием 1, который по доказанному ранее неприводим тогда и только тогда, когда неприводим исходный. Обратно, неприводимость целочисленных многочленов интересна только в случае, когда содержание этих многочленов равно единице. А в этом случае это эквивалентно рациональной неприводимости. Однако все теоремы я буду формулировать в общем контексте.

Теорема 2 (Редукционный критерий). Пусть R факториальное кольцо, $f \in R[x]$ многочлен, а p – простой элемент. Тогда, если старший коэффициент f не делится на p и \overline{f} неприводим в кольце R/p[x], то он неприводим над Q(R).

Вот примеры о том, как пользоваться этим критерием и что не надо забывать про условие со старшим коэффициентом.

Примеры:

- 1) Многочлен x^3+x+1 неприводим над $\mathbb{F}_2=\mathbb{Z}/2$, потому что у него нет корней. Следовательно многочлены $3x^3+8x^2+5x+7$ и скажем, $5x^3-4x^2+x+15$ неприводимы над \mathbb{Q} .
- 2) Рассмотрим многочлен $px^2 + x$. Он приводим, но по модулю p неприводим.
- 3) Критерий из теоремы сформулирован не в самом сильном виде. А именно, представим себе, например, что по модулю 2 многочлен степени пять разложился в произведение двух неприводимых степени 2 и 3, а по модулю 3 – в виде произведения степени 4 и 1. Ясно, что он неприводим.
- 4) Не стоит забывать, что если многочлен неприводим над \mathbb{R} , то он так же неприводим над \mathbb{Q} . Это, правда, очень слабый критерий, но в комбинации с пунктом 3) может что-то дать.

Есть, однако, такие многочлены, которые неприводимы, но раскладываются по модулю любого простого. Например,

$$x^4 + 1 = (x - e^{\frac{i\pi}{8}})(x - e^{\frac{3i\pi}{8}})(x - e^{\frac{5i\pi}{8}})(x - e^{\frac{7i\pi}{8}}) = (x^2 + i)(x^2 - i) = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1) = (x^2 + \sqrt{-2}x + 1)(x^2 - \sqrt{-2}x + 1).$$

Он не имеет корней, а любые множители степени 2 имеют нерациональный коэффициент. С другой стороны по любому простому модулю либо из -1, либо из 2 либо из -2 извлекается корень.

Покажем теперь некоторый критерий неприводимости, который применим в случае, если разложение по модулю p получилось неудачное. А именно, представим себе, что $f(x) \equiv x^n \mod p$. То есть развалился в произведение максимально возможного числа одинаковых множителей. Оказывается, что в этом случае неприводимость многочлена f зависит от его класса по модулю p^2 . Точнее:

Теорема 3 (Признак Эйзенштейна). Пусть R – факториальное кольцо и $f(x) = a_0 + \cdots + a_n x^n$. Если $a_n \not / p$, все $a_i \not : p$ i < n, но $a_0 \not / p^2$, то многочлен f(x) неприводим.

Всё, что мы пока обсуждали не говорит ничего о том, как же разложить многочлен на неприводимые множители. Обсудим, почему эта задача в принципе разрешима.

Итак, пусть есть целочисленный многочлен f(x) и мы хотим разложить его на множители. Мы будем искать разложение на целочисленые многочлены, заметим, что хотя бы один из них имеет степень меньшую, чем $\left[\frac{n}{2}\right]$. Вспомним о задаче интерполяции. Если g – искомый делитель f, то g определяется своими значениями в $\left[\frac{n}{2}\right]+1$ точке, например в точках $0,1,\ldots,\left[\frac{n}{2}\right]$. Более того, f(i) : g(i). Таким образом набор $g(0),\ldots,g(\left[\frac{n}{2}\right])$ состоит из делителей $f(0),\ldots,f(\left[\frac{n}{2}\right])$. Найти все такие наборы – конечный перебор. По каждому набору значений многочлен g восстанавливается однозначно.

Это очень неэффективный алгоритм разложения многочлена на множители. Он был предложен Кронекером ещё в 19-ом веке. В настоящее время известен полиномиальный алгоритм решения этой задачи.

Прежде чем продвинуться дальше в исследовании разложения многочленов от одной переменной на множители стоит немного поговорить о задаче разложения многочленов от нескольких переменных. Сейчас мы увидим ещё один не трюк от Кронекера, который позволит свести эту задачу к предыдущей.

Теорема 4. Пусть R – кольцо. Тогда различным разложениям $f(x_1,\ldots,x_n)\in R[x_1,\ldots,x_n]$ соответствуют различные разложения $\hat{f}=f(x,x^d,x^{d^2},\ldots,x^{d^{n-1}})$ для d больших $\max_{i=1}^n \{\deg_{x_i} f\}$.

Доказательство. Пусть $f = g_1h_1 = g_2h_2$ и пусть $g_1 \neq g_2$. Покажем, что $\hat{g_1} \neq \hat{g_2}$. Для этого посмотрим что происходит с мономом x^{α} при указанном преобразовании. Он переходит в многочлен $x^{\alpha_1 + \alpha_2 d + \dots + \alpha_n d^{n-1}}$. По условию все $\alpha_i < d$ как степени при переменных x_i . Тогда моном $x^{\alpha_1 + \alpha_2 d + \dots + \alpha_n d^{n-1}}$ может быть получен только из монома x^{α} . Заметим теперь, что $\deg_{x_i} g_j \leq \deg f < d$. Следовательно мономы многочленов $g_j(x)$ так же однозначно восстанавливаются по мономам $\hat{g_j}$.

К сожалению, не стоит ожидать взаимооднозначного соответствия между разложениями многочленов f и \hat{f} . Например, многочлен x_2^2 раскладывается на два множителя одним способом. При d=3 его образ есть x^6 у которого 3 различных разложения.