Recent Progress:

- 1. Rework tgov1 model to account for Pref completed.
- 2. MiniWECC step test results re-validated using different time steps.
- 3. Code flowchart being compiled to aid in further development (timing).
- 4. GitHub updated: https://github.com/thadhaines/PSLTDSim/

Current Tasks:

- 1. Work to incorporate Matt's Suggested Use Cases into simulation.
- 2. Add logging to Shunt and Branch Agents
- 3. Add perturbance Agents for Generator/Slack, Shunt, Branch, ...
- 4. Define Agent actions for AGC/LFC (i.e. ACE calculations)
- 5. Think about Shunt Control / Generic Agent control based on system state(s)
- 6. Formulate feasible plan of action for casting all WECC governors to LTD governors (tgov1). Something like:
 - (a) Parse models of interest from dyd.
 - (b) Automate one machine infinite bus test in PSDS.
 - (c) Generate/Calculate LTD equivalent model parameters from results
 - (d) Export custom dyd for LTD simulation. (PSDS would still use original the dyd, though *could* use modified dyd)

Future Tasks: (Little to No Progress since last time / Things coming down the pipe)

- 1. Formulate an experiment utilizing a multi-area model that can be validated with PSDS.
- 2. Identify System Slack bus programmatically (currently assumes first slack == global slack if > 1 slack found)

AND/OR calculate system slack error differently \rightarrow An average of slack errors?

- 3. Create an agent for every object: SVD, Transformer, ...
- 4. Add import mirror / bypass mirror init sequence option. Will prevent repeated WECC mirror creations.
- 5. Matt request: Enable multiple dyd files to overwrite / replace previously defined agents/parameters
- 6. Matt request: Allow for variable time steps.

Current Questions:

1. Does
$$\Delta \omega = 1 - \omega$$
 in
$$\dot{\omega} = \frac{1}{2H_{sus}} \left(\frac{P_{acc}}{\omega} - D_{sys} \Delta \omega \right) ?$$

- 2. Overview of planned PSLF scenarios?

 → Similar to Heredia paper but on Wecc/MiniWecc Scale?
- 3. Is there more available/relevant event data that may help us to verify simulations of specific instances (wind ramps or other behavior) that novel research will focus on?
- 4. Any progress / continued interest in miniWecc Area definitions?

Goals:

1. Speed \longrightarrow Order of Magnitude faster than PSDS (not met — only $\approx 3x$ faster)

7. Time step resolution: NOTE: Code changed after all previously listed test were ran.

Changing the time step affects accuracy, size of data collected, and simulation run time. The following data was collected from a 90 second simulation. LTD uses rk45 integration and 0.5 MW slack tolerance — it is also run from the command line. The PSDS system has exciters and PSS included in dyd file. Theoretical steady state frequency was calculated as

$$f = 1 + \Delta f = 1 + \frac{\Delta P}{S_{base}\beta} = 1 + \frac{-1200M\mathring{W}}{100 \times 15,555} = 0.999228543876567 = 59.953712632594019 Hz$$

	Time step	Simulation Time [sec]	Data File Size [KB]	Real time Speed up	PSDS Speed up	Reduction of file size	Steady State f error [Hz]
PSDS	$4.167~\mathrm{ms}$	56.12	35,070.00	1.60	1.00	1.00	0.0034
LTD	$2 \sec$	9.41	300.00	9.56	5.96	116.90	0.0017
LTD	$1 \sec$	17.39	496.00	5.18	3.23	70.71	0.0017
LTD	$0.5 \sec$	33.05	888.00	2.72	1.70	39.49	0.0017
LTD	$0.25~{ m sec}$	63.67	1,672.00	1.41	0.88	20.97	0.0017

Figure 1: Updated tgov1 model.

Figure 2: Frequency response to a 1,200 MW load step.

Figure 3: Average frequency of different time steps during a 1,200 MW load step.

Figure 4: Relative Hz difference of PSDS - LTD (i.e. $|f_{PSDS}(t) - f_{LTD}(t)| \times 60$ Hz).