

Системи за дигитални и аналогни сигнали (комбинирани)

- Аналогниот и дигиталниот "свет" се поврзани преку A/D и D/A конверторите
- Централниот дел во дигиталните системи денес е редовно (микро)компјутер
- Интеракцијата на човекот со (микро)компјутерот се остварува преку
 - □ Влезна едниница (за поставување параметри)
 - □ Излезна единица (за следење на работата преку индикатори/дисплеи)

Магистрали

- "Снопови жици" по кои "патуваат" битовите во вид на импулси
- Податочна
 - □ Пренесува податоци (што се обработуваат и/или инструкции)
- Адресна
 - □ Пренесува податоци за тоа каде се наоѓаат податоците што треба да ги пренесе податочната магистрала (адреси)
- Управувачка (control)
 - □ Пренесува податоци за тоа што да се направи со податоците (запис, читање)
 - □ Прекин = "ѕвонче" за процесорот дека има податок за влез/излез

Епектроника ЗФЕИТ05301

Податоци

- Низи од битови (дигитални зборови) што имаат некакво значење за нас (носат информација)
 - □ Адреси = податоци за тоа каде се наоѓаат податоците
 - □ Програма = податоци за тоа што да се направи со податоците
- Кодирање на податоците
 - □ BCD
 - □ Бинарен
 - Без знак, со знак (2-комплемент)
 - Целобројни, со фиксна точка, со пловечка точка (FLOAT)
 - □ ASCII и UNICODE за кодирање азбуки и интерпункција

Електроника, 3ФЕИТ053018

Големина на збор (информативно)

- 4-бита = нибл (nibble)
- 8-бита = бајт (byte)
- 16-бита = збор (word)
- 32-бита = збор (word / doubleword)
- 64-бита = збор (word / doubleword / quadword)
- Внимание! word зависи од процесорот (16,32,64 битен) варијации: halfword =16, doubleword=64

Епектроника ЗФЕИТ053018

Броеви со знак (информативно)

- Знак и големина (SM) ...
- 2-комплемент (!)
 - □ Најзначајниот бит за знак (1 ⇒ знак минус)
 - Добивање спротивен знак = комплементирање на сите битови и додавање 1. Пример со 8 бита:
 - \Box 5=00000101₍₂₎, -5=11111010+1=11111011₍₂₎
 - -(-5)=00000100+1=00000101₍₂₎
 - Знакот при собирање автоматски се добива. Пример со 8 бита:
 - \Box 5+(-6)=00000101+111111010=111111111₍₂₎ = -1
 - Опсег на вредности: -2ⁿ⁻¹ до 2ⁿ⁻¹-1 (8 бита: -128 до 127)
- Фиксна точка само договор дека вредностите се сметаат поделени со 2^k (последните k-бита се "бинарни децимали")
 - □ Целобројни ⇔ со фиксна точка крајно десно

Електроника, 3ФЕИТ053018

• КОМПОНЕНТИ НА ДИГИТАЛНИТЕ СИСТЕМИ

Генерална структура на меморија (2D)

- За меморирање k-битни зборови потребни се k матрици од основни мемориски ќелии.
- Преку соодветните декодери, пониските адреси селектрираат колона, а повисоките селектираат редица од матрицата. Така адресираат една ќелија.
- За поврзување со податочната магистрала постојат трисостојбени бафери/засилувачи.
 - □ За читање тие пропуштаат/засилуваат од битската колона кон магистралата, а за запишување обратно.
 - □ Кога управувачката магистрала не ги селектира, баферите се во состојба на висока имеданса.

Епектроника ЗФЕИТО5301

ROM меморија (CMOS)

- Современите ROM мемории содржат декодер и кодер изработени со мосфети.
- Гејтовите на nmos транзисторите може да бидат поврзани или откачени од линиите на декодерот според битот што треба да го меморираат (0 или 1).
- Ртов транзисторите секогаш водат и ги држат излезните линии високо, но се "послаби" од nmos транзисторите.
- Декодерот го "прозива" зборот од одредена редица, а nmos транзисторите одредуваат која колона ќе биде 0.
- Мосфетите може да бидат "програмирани" фабрички (mask ROM) или од корисникот (PROM) – со посебен програматор.
 - □ Кај PROM-от врските се всушност мосфети во улога на т.н. антиосигурувачи (antifuse) со чие "горење" (пробив со пренапон низ посебно коло) се воспоставуваат споевите кон гејтовите.

Пример: ROM со капацитет 4 нибла

Електроника, 3ФЕИТ053018

ROM меморија (информативно) • Ако декодерот е направен од ожичени НИЛИкола (wired NOR) тогаш се нарекува NOR-меморија. ■ Принципот на работа е како кај кодерот (претходниот слајд) 4 □ Сега влезови се адресите, а излези линиите за редици Пример: NOR декодер 3-на-8

Процесор (принцип на работа - информативно)

- Основни операции со податоците:
 - □ преместување,
 - □ споредба.
 - □ артметички и логички операции.
- Под дејство на тактот програмскиот бројач генерира адреси за земање на програмските инструкции (кодот) од меморијата
- Инструкциската единица ги декодира и ги проследува до контролната единица
- Контролната единица:
 - $\hfill \square$ Преку мултиплексерите отвора пат од регистрите кон ALU и од ALU кон регистрите,
 - □ Избира операција што ќе ја изведе ALU.
 - □ Со помош на адресната единица чита податок од меморијата во регистер и/или запишува податок од регистер во меморијата.
- Основен циклус на процесорот: земи(инструкција)-декодирајизврши (fetch-decode-execute)

Електроника, 3ФЕИТ053018

Процесор (програмирање) (информативно)

- Машински јазик (machine language) = (бинарен) код со кој се кодирани инструкциите
- Асемблер (assembly language) = текстуален израз за (мнемоничко) претставување на бинарниот код
 - □ Погодно за човечко разбирање
- Асемблер (assembler) = програма за преведување од текстуален израз (асемблерски јазик) во бинарен код (машински јазик)
- Преведувач (compiler) = програма за преведување од повисок јазик (на пр. С) во асемблерски јазик

D/A конвертор со R-2R мрежа (информативно)

- Од секој јазел во R-2R отпорничката мрежа кон десно се гледа отпорност $2R \Rightarrow$ струите низ вертикалните гранки се удвојуваат од десно кон лево.
- Бидејќи е $I_{n-1} = V_R/2R$, за излезниот напон се добива:

$$V_O = -R_F \cdot \sum_{k=0}^{n-1} I_k b_k = -\frac{V_R R_F}{2^n R} \sum_{k=0}^{n-1} 2^k b_k = -\frac{V_R R_F}{2^n R} \overline{b_{n-1} b_{n-2} \cdots b_0} = K_1 \cdot B$$

Вгнездени (вградливи) системи (embedded systems - информативно)

- Системи кај кои микрокомпјутерот е "скриен" (вграден) во склопот и извршува наменска функција.
- Примери:
 - □ Телевизор, аудиозасилувач, машина за перење, клима уред, микробранова печка, фотоапарат, ...
 - □ Автомобил (содржи преку 50 микроконтролери)
 - □ Мерни инструменти
 - □ ...
 - □ ...
- Денес практично не постои електронски уред без микрокомпјутер

