### 1 Método de Chebyshev (15/11/2017)

Seja f(x) uma função limitada no intervalo (a,b). Podemos expandir f(x) da seguinte maneira:

$$f(x(t))_{(a \le x \le b)} = F(t) = \frac{1}{2}a_0 + a_1 T_1(t) + a_2 T_2(t) + \dots$$
 (1)

em que

$$T_r(t) = \cos(r\cos^{-1}(t))$$
$$t = \frac{2x - (b+a)}{b-a}$$

Integrando a Eq. 1, temos:

$$\frac{2}{b-a} \int_{a}^{x} f(x)dx = \int_{-1}^{t} F(t)dt = \frac{1}{2}b_0 + b_1 T_1(t) + b_2 T_2(t) + \dots$$
 (2)

em que

$$b_r = \frac{a_{r-1} - a_{r+1}}{2r}, \qquad r = 1, 2, 3, \dots$$

O valor de  $b_0$  é determinado pelo limite inferior de integração, então:

$$b_0 = 2b_1 - 2b_2 + 2b_3 - 2b_4 + \dots$$

A integral é definida por:

$$\frac{2}{b-a} \int_{a}^{b} f(x)dx = \int_{-1}^{1} F(t)dt = \frac{1}{2}b_0 + b_1 + b_2 + \dots = 2(b_1 + b_3 + b_5 + \dots)$$
 (3)

Os coeficientes da expansão 1 podem ser calculados usando a observação de que qualquer polinômio de grau N pode ser escrito na forma

$$f(x(t)) = F(t) = \frac{1}{2}a_0 + a_1T_1(t) + a_2T_2(t) + \dots + a_{N-1}T_{N-1}(t) + \frac{1}{2}a_NT_N(t) = \sum_{r=0}^{N} a_rT_r(t)$$
 (4)

Aqui,  $\sum''$  denota a soma finita sujo primeiro e último termos são multiplicados por  $\frac{1}{2}$ . Os coeficientes em 4 são dados por

$$a_r = \frac{2}{N} \sum_{s=0}^{N} F\left(\cos\frac{\pi s}{N}\right) \cos\left(\frac{\pi r s}{N}\right)$$

Isto é uma consequência da ortogonalidade da função cosseno com respeito aos pontos  $t_s = \cos \frac{\pi s}{N}$ , expressada pela equação:

$$\sum_{s=0}^{N} \cos\left(\frac{\pi i s}{N}\right) \cos\left(\frac{\pi j s}{N}\right) = \begin{cases} 0, & i \neq j \\ N, & i = j = 0 \text{ ou } N \\ \frac{1}{2}N, & i = j \neq 0 \text{ ou } N \end{cases}$$

# 2 Exercícios (16/11/2017)

Use o método de expansão de Chebyshev para calcular as integrais definidas abaixo com até 6 dígitos de precisão. As integrais são:

$$\int_{-1}^{1} \frac{1}{x^2 + x^2 + 0.9} dx$$
$$\int_{-1}^{1} \sqrt{\left| x + \frac{1}{2} \right|} dx$$

Para cada caso, construa uma tabela de valores para os coeficientes  $a_r$  e  $b_r$ . Obtenha, também, um gráfico da função aproximada pelo método e compare com o gráfico da função no integrando.

## 3 Resolução

O método de Chebyshev para cálculo de integrais definidas foi implementado em MATLAB

#### 3.1 Exercício 1

Os valores de  $a_r$  e  $b_r$  são dados na tabela abaixo com N=22. Temos a seguinte integral definida:

$$\int_{-1}^{1} \frac{1}{x^4 + x^2 + 0.9} dx.$$

Tabela 1: Resultados numéricos do primeiro exercício.

| r  | $a_r$               | $b_r$               |
|----|---------------------|---------------------|
| 0  | 1.336666674225290   | -                   |
| 1  | 0.00000000000000000 | 0.858441127690537   |
| 2  | -0.380215581155785  | 0.0000000000000000  |
| 3  | -0.0000000000000000 | -0.073545576067158  |
| 4  | 0.061057875247165   | -0.0000000000000000 |
| 5  | 0.00000000000000000 | 0.006451618504673   |
| 6  | -0.003458309799560  | 0.0000000000000000  |
| 7  | 0.00000000000000000 | -0.000152793299825  |
| 8  | -0.001319203602016  | -0.0000000000000000 |
| 9  | 0.00000000000000000 | -0.000102300550229  |
| 10 | 0.000522206302106   | 0.0000000000000000  |
| 11 | -0.0000000000000001 | 0.000028448694199   |
| 12 | -0.000103664970276  | -0.0000000000000000 |
| 13 | 0.0000000000000000  | -0.000004394783399  |
| 14 | 0.000010599398091   | 0.0000000000000000  |
| 15 | -0.0000000000000000 | 0.000000325208060   |
| 16 | 0.000000843156299   | 0.0000000000000000  |
| 17 | -0.0000000000000001 | 0.000000044054481   |
| 18 | -0.000000654696062  | -0.0000000000000000 |
| 19 | 0.0000000000000000  | -0.000000021484507  |
| 20 | 0.000000161715189   | -0.0000000000000000 |
| 21 | 0.00000000000000001 | 0.000000004921833   |
| 22 | -0.000000045001792  | -                   |

O valor da integral é dado por:

$$\int_{-1}^{1} \frac{1}{x^4 + x^2 + 0.9} dx = 2 \left( b_1 + b_3 + b_5 + \dots \right) = 1.582232965777331$$

Na aproximação da função do integrando, a raiz quadrada do erro quadrático médio foi de:

RMSE = 
$$\sqrt{\frac{\sum_{i=1}^{n} (\hat{y}_t - y_t)^2}{n}} = 1.902886989865449 \cdot 10^{-7}$$



Figura 1: Convergência dos valores de  $b_r$  no exercício 1.



Figura 2: Função do exercício 1 aproximada.

#### 3.2 Exercício 2

Os valores de  $a_r$  e  $b_r$  são dados na tabela abaixo com N=19. Temos a seguinte integral definida:

$$\int_{-1}^{1} \sqrt{\left|x + \frac{1}{2}\right|} dx.$$

Tabela 2: Resultados numéricos do segundo exercício.

| r   | $a_r$              | $b_r$              |
|-----|--------------------|--------------------|
| 0   | 1.579218322193437  | -                  |
| 1   | 0.366965847474833  | 0.706798543267637  |
| 2   | 0.165621235658162  | 0.127971400146460  |
| 3   | -0.144919753111006 | 0.020615630793443  |
| 4   | 0.041927450897503  | -0.022306267769967 |
| 5   | 0.033530389048728  | 0.008925014411228  |
| 6   | -0.047322693214777 | 0.001260725493651  |
| 7   | 0.018401683124920  | -0.004380237292847 |
| 8   | 0.014000628885079  | 0.002631724712030  |
| 9   | -0.023705912267560 | 0.000161211385072  |
| 10  | 0.011098823953786  | -0.001510158617662 |
| 11  | 0.006497260085674  | 0.001124821018122  |
| 12  | -0.013647238444891 | -0.000062835382376 |
| 13  | 0.008005309262690  | -0.000610000383275 |
| 14  | 0.002212771520264  | 0.000572724555622  |
| 15  | -0.008030978294732 | -0.000147278518457 |
| 16  | 0.006631127073971  | -0.000218432570725 |
| 17  | -0.001041136031548 | 0.000318722594433  |
| 18  | -0.004205441136746 | -0.000202050212572 |
| _19 | 0.006232671621041  | -                  |

O valor da integral é dado por:

$$\int_{-1}^{1} \sqrt{\left|x + \frac{1}{2}\right|} dx = 2\left(b_1 + b_3 + b_5 + \dots\right) = 1.465612854550713$$

Na aproximação da função do integrando, a raiz quadrada do erro quadrático médio foi de:

RMSE = 
$$\sqrt{\frac{\sum_{i=1}^{n} (\hat{y}_t - y_t)^2}{n}} = 0.033624284161012$$



Figura 3: Convergência dos valores de  $b_r$  no exercício 2.



Figura 4: Função do exercício 2 aproximada.

#### 3.3 Código em MATLAB

```
clear
   clc
  format long
  addpath('.../.../tools');
  % Definições iniciais
  F = @(x) 1./(x.^4+x.^2+0.9);
  %F = @(x) \ sqrt(abs(x+0.5));
  N = 22;
11
   [I, ar] = chebyshev(F, -1, 1, N);
12
  5% Plota a função real e a aproximada
14
  w = [.5 \text{ ones} (1, N-1) .5];
                                                 % Vetor de pesos
15
  x = -1:0.05:1;
                                                 % Intervalo
                                                 % Função verdadeira
   yr = F(x);
  yt = \cos((0:N)'*a\cos(x))' * (w' .* ar);
                                                 % Aproximação
   hold on;
19
   plot (x, yr, 'bx');
   plot (x, yt, 'ro');
^{21}
   grid on;
22
   hold off;
23
  legend ('Função', 'Aproximação');
  % Calcula o erro quadrático médio da aproximação
27
  rmse = sqrt(mean((yr-yt').^2))
        Função de Chebyshev
   3.4
  function [ I, ar, br ] = chebyshev(F, a, b, N)
  %CHEBYSHEV Calcula a integral numérica de uma função F no intervalo [a,b]
  % utilizando o método de Chebyshev.
  % A função F precisa conter apenas operações bitwise.
  Matriz de pesos da soma finita com primeiro e último pesos iguais a 0.5
  w = [.5 \text{ ones} (1, N-1) .5];
  % Cria iteradores de 0 a N
   [s,r] = meshgrid(0:N, 0:N);
11
12
  % Calcula os valores dos coeficientes a r
  t = \cos(s * pi / N) * (b - a)/2 + (b + a)/2;
   ar = F(t) .* cos(pi * s .* r / N);
   ar = (2/N) * ar*w';
16
17
  % Calcula os valores dos coeficientes b r
18
   r = 2:N;
19
   br = (ar(r-1) - ar(r+1))./(2*(r-1));
20
21
  % Calcula o valor da integral
  I = 2*sum(br(1:2:end)) * ((b-a)/2);
23
24
  end
25
```