## **Data-Centric Systems and Applications**

### Series Editors

M.J. Carey S. Ceri

### Editorial Board

P. Bernstein
U. Dayal
C. Faloutsos
J.C. Freytag
G. Gardarin
W. Jonker
V. Krishnamurthy
M.-A. Neimat
P. Valduriez
G. Weikum
K.-Y. Whang
J. Widom

# Bing Liu

# Web Data Mining

Exploring Hyperlinks, Contents, and Usage Data

With 177 Figures



### Bing Liu

Department of Computer Science University of Illinois at Chicago 851 S. Morgan Street Chicago, IL 60607-7053 USA liub@cs.uic.edu

Library of Congress Control Number: 2006937132

ACM Computing Classification (1998): H.2, H.3, I.2, I.5, E.5

Corrected 2nd printing 2008

ISBN-10 3-540-37881-2 Springer Berlin Heidelberg New York ISBN-13 978-3-540-37881-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover Design: KünkelLopka, Heidelberg Typesetting: by the Author Production: le-tex publishing services oHG, Leipzig

Printed on acid-free paper 45/3180/YL 5 4 3 2 1 0



## **Preface**

The rapid growth of the Web in the last decade makes it the largest publicly accessible data source in the world. Web mining aims to discover useful information or knowledge from Web hyperlinks, page contents, and usage logs. Based on the primary kinds of data used in the mining process, Web mining tasks can be categorized into three main types: Web structure mining, Web content mining and Web usage mining. Web structure mining discovers knowledge from hyperlinks, which represent the structure of the Web. Web content mining extracts useful information/knowledge from Web page contents. Web usage mining mines user access patterns from usage logs, which record clicks made by every user.

The goal of this book is to present these tasks, and their core mining algorithms. The book is intended to be a text with a comprehensive coverage, and yet, for each topic, sufficient details are given so that readers can gain a reasonably complete knowledge of its algorithms or techniques without referring to any external materials. Four of the chapters, structured data extraction, information integration, opinion mining, and Web usage mining, make this book unique. These topics are not covered by existing books, but yet they are essential to Web data mining. Traditional Web mining topics such as search, crawling and resource discovery, and link analysis are also covered in detail in this book.

Although the book is entitled *Web Data Mining*, it also includes the main topics of data mining and information retrieval since Web mining uses their algorithms and techniques extensively. The data mining part mainly consists of chapters on association rules and sequential patterns, supervised learning (or classification), and unsupervised learning (or clustering), which are the three most important data mining tasks. The advanced topic of partially (semi-) supervised learning is included as well. For information retrieval, its core topics that are crucial to Web mining are described. This book is thus naturally divided into two parts. The first part, which consists of Chaps. 2–5, covers data mining foundations. The second part, which contains Chaps. 6–12, covers Web specific mining.

Two main principles have guided the writing of this book. First, the basic content of the book should be accessible to undergraduate students, and yet there are sufficient in-depth materials for graduate students who plan to

pursue Ph.D. degrees in Web data mining or related areas. Few assumptions are made in the book regarding the prerequisite knowledge of readers. One with a basic understanding of algorithms and probability concepts should have no problem with this book. Second, the book should examine the Web mining technology from a practical point of view. This is important because most Web mining tasks have immediate real-world applications. In the past few years, I was fortunate to have worked directly or indirectly with many researchers and engineers in several search engine and e-commerce companies, and also traditional companies that are interested in exploiting the information on the Web in their businesses. During the process. I gained practical experiences and first-hand knowledge of realworld problems. I try to pass those non-confidential pieces of information and knowledge along in the book. The book, thus, should have a good balance of theory and practice. I hope that it will not only be a learning text for students, but also a valuable source of information/knowledge and even ideas for Web mining researchers and practitioners.

## Acknowledgements

Many researchers have assisted me technically in writing this book. Without their help, this book might never have become reality. My deepest thanks goes to Filippo Menczer and Bamshad Mobasher, who were so kind to have helped write two essential chapters of the book. They are both experts in their respective fields. Filippo wrote the chapter on Web crawling and Bamshad wrote the chapter on Web usage mining. I am also very grateful to Wee Sun Lee, who helped a great deal in the writing of Chap. 5 on partially supervised learning.

Jian Pei helped with the writing of the PrefixSpan algorithm in Chap. 2, and checked the MS-PS algorithm. Eduard Dragut assisted with the writing of the last section of Chap. 10 and also read the chapter many times. Yuanlin Zhang gave many great suggestions on Chap. 9. I am indebted to all of them.

Many other researchers also assisted in various ways. Yang Dai and Rudy Setiono helped with Support Vector Machines (SVM). Chris Ding helped with link analysis. Clement Yu and ChengXiang Zhai read Chap. 6, and Amy Langville read Chap. 7. Kevin C.-C. Chang, Ji-Rong Wen and Clement Yu helped with many aspects of Chap 10. Justin Zobel helped clarify some issues related to index compression, and Ion Muslea helped clarify some issues on wrapper induction. Divy Agrawal, Yunbo Cao, Edward Fox, Hang Li, Xiaoli Li, Zhaohui Tan, Dell Zhang and Zijian Zheng helped check various chapters or sections. I am very grateful.

Discussions with many researchers helped shape the book as well: Amir Ashkenazi, Imran Aziz, Roberto Bayardo, Wendell Baker, Ling Bao, Jeffrey Benkler, AnHai Doan, Byron Dom, Michael Gamon, Robert Grossman, Jiawei Han, Wynne Hsu, Ronny Kohavi, David D. Lewis, Ian McAllister, Wei-Ying Ma, Marco Maggini, Llew Mason, Kamel Nigan, Julian Qian, Yan Qu, Thomas M. Tirpak, Andrew Tomkins, Alexander Tuzhilin, Weimin Xiao, Gu Xu, Philip S. Yu, and Mohammed Zaki.

My former and current students, Gao Cong, Minqing Hu, Nitin Jindal, Xin Li, Yiming Ma, Yanhong Zhai and Kaidi Zhao checked many algorithms and made numerous corrections. Some chapters of the book have been used in my graduate classes at the University of Illinois at Chicago. I thank the students in these classes for implementing several algorithms. Their questions helped me improve and, in some cases, correct the algorithms. It is not possible to list all their names. Here, I would particularly like to thank John Castano, Xiaowen Ding, Murthy Ganapathibhotla, Cynthia Kersey, Hari Prasad Divyakotti, Ravikanth Turlapati, Srikanth Tadikonda, Makio Tamura, Haisheng Wang, and Chad Williams for pointing out errors in texts, examples or algorithms. Michael Bombyk from DePaul University also found several typing errors.

It was a pleasure working with the helpful staff at Springer. I thank my editor Ralf Gerstner who asked me in early 2005 whether I was interested in writing a book on Web mining. It has been a wonderful experience working with him since. I also thank my copyeditor Mike Nugent for helping me improve the presentation, and my production editor Michael Reinfarth for guiding me through the final production process. Two anonymous reviewers also gave me many insightful comments.

The Department of Computer Science at the University of Illinois at Chicago provided computing resources and a supportive environment for this project.

Finally, I thank my parents, brother and sister for their constant supports and encouragements. My greatest gratitude goes to my own family: Yue, Shelley and Kate. They have helped me in so many ways. Despite their young ages, Shelley and Kate actually read many parts of the book and caught numerous typing errors. My wife has taken care of almost everything at home and put up with me and the long hours that I have spent on this book. I dedicate this book to them.

# **Table of Contents**

| 1. | Introduction 1 |                                              |                    |  |  |
|----|----------------|----------------------------------------------|--------------------|--|--|
|    | 1.1.           | What is the World Wide Web?                  | 1                  |  |  |
|    | 1.2.           | A Brief History of the Web and the Internet  | 2                  |  |  |
|    | 1.3.           | Web Data Mining                              | ····· 4<br>····· 6 |  |  |
|    | 1.4.           | Summary of Chapters ·····                    | 8                  |  |  |
|    | 1.5.           | How to Read this Book ······                 |                    |  |  |
|    | Bibli          | ographic Notes ·····                         | ··· 12             |  |  |
| P: | art I:         | Data Mining Foundations                      |                    |  |  |
|    |                |                                              |                    |  |  |
| 2. |                | ociation Rules and Sequential Patterns       |                    |  |  |
|    | 2.1.           | Basic Concepts of Association Rules ·····    | ··· 13             |  |  |
|    | 2.2.           | Apriori Algorithm ······                     | ··· 16             |  |  |
|    |                | 2.2.1. Frequent Itemset Generation           | 16                 |  |  |
|    | 2.2            |                                              |                    |  |  |
|    |                | Data Formats for Association Rule Mining     |                    |  |  |
|    | 2.4.           | Mining with Multiple Minimum Supports        | ···· 24<br>···· 26 |  |  |
|    | 2.5.           | Mining Class Association Rules               | 32                 |  |  |
|    |                | 2.5.2. Mining Algorithm                      |                    |  |  |
|    |                | 2.5.3. Mining with Multiple Minimum Supports |                    |  |  |

|    | 2.6.   | Basic Conce                                                             | epts of Sequential Patterns                                                                                      | 37             |
|----|--------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------|
|    | 2.7.   | 2.7.1. GSP                                                              | ential Patterns Based on GSP······<br>Algorithm ······<br>g with Multiple Minimum Supports ······                | 39             |
|    | 2.8.   | 2.8.1. Prefix                                                           | ential Patterns Based on PrefixSpan ·······<br>Span Algorithm ·······<br>g with Multiple Minimum Supports ······ | 46             |
|    | 2.9.   | 2.9.1. Sequ<br>2.9.2. Label                                             | Rules from Sequential Patterns ential Rules Sequential Rules Sequential Rules                                    | 50<br>50       |
|    | Biblio | graphic Note                                                            | 98                                                                                                               | 52             |
| 3. | Sup    | ervised Lea                                                             | rning ·····                                                                                                      | 55             |
|    | 3.1.   | Basic Conce                                                             | epts ·····                                                                                                       | 55             |
|    | 3.2.   | <ul><li>3.2.1. Learn</li><li>3.2.2. Impui</li><li>3.2.3. Hand</li></ul> | ee Induction  ing Algorithm  rity Function  ling of Continuous Attributes  e Other Issues                        | 62<br>63<br>67 |
|    | 3.3.   | 3.3.1. Evalu                                                            | raluation<br>lation Methodssion, Recall, F-score and Breakeven Point                                             | 71             |
|    | 3.4.   | 3.4.1. Sequ<br>3.4.2. Rule                                              | onential Covering<br>Learning: Learn-One-Rule Function<br>Ission                                                 | 75<br>78       |
|    | 3.5.   | 3.5.1. Class 3.5.2. Class                                               | n Based on Associations                                                                                          | 82<br>86       |
|    | 3.6.   | Naïve Bayes                                                             | sian Classification                                                                                              | 87             |
|    | 3.7.   | 3.7.1. Proba<br>3.7.2. Naïve                                            | sian Text Classification  abilistic Framework  Bayesian Model  ssion                                             | 92<br>93       |
|    | 3.8.   |                                                                         | tor Machines ·······r SVM: Separable Case ·······                                                                |                |

Partially Supervised Learning ...... 151

5.1. Learning from Labeled and Unlabeled Examples ····· 1515.1.1. EM Algorithm with Naïve Bayesian Classification · 153

5.

|          |                             | 5.1.2.<br>5.1.3.<br>5.1.4.<br>5.1.5.<br>5.1.6.           | Co-Training Self-Training Transductive Support Vector Machines Graph-Based Methods Siscussion                                                                                        | ··· 158<br>··· 159<br>··· 160                       |
|----------|-----------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|          | 5.2.                        | Learni<br>5.2.1.<br>5.2.2.<br>5.2.3.<br>5.2.4.<br>5.2.5. | ing from Positive and Unlabeled Examples Applications of PU Learning Theoretical Foundation Building Classifiers: Two-Step Approach Building Classifiers: Direct Approach Discussion | ··· 165<br>··· 168<br>··· 169<br>··· 175            |
|          | Арре                        | endix: D                                                 | Derivation of EM for Naïve Bayesian Classification                                                                                                                                   | ·· 179                                              |
|          |                             |                                                          | ic Notes ·····                                                                                                                                                                       |                                                     |
| Pa       | 4. 6                        | . •••                                                    | eb Mining                                                                                                                                                                            |                                                     |
| Pá<br>6. |                             | rmatio<br>Basic                                          | on Retrieval and Web Search                                                                                                                                                          | ··· 184                                             |
|          | Info                        | rmation Basic Inform 6.2.1. 6.2.2.                       | Concepts of Information Retrieval  Boolean Model  Vector Space Model                                                                                                                 | ··· 184<br>··· 187<br>··· 188<br>··· 188            |
|          | <b>Info</b><br>6.1.<br>6.2. | rmation Basic Inform 6.2.1. 6.2.2. 6.2.3.                | Concepts of Information Retrieval                                                                                                                                                    | ··· 184<br>··· 187<br>··· 188<br>··· 188<br>··· 191 |
|          | Info<br>6.1.<br>6.2.        | rmation Basic Inform 6.2.1. 6.2.2. 6.2.3. Releva         | Concepts of Information Retrieval  attion Retrieval Models  Boolean Model  Vector Space Model  Statistical Language Model  ance Feedback                                             | ··· 184 ··· 187 ··· 188 ··· 188 ··· 191 ··· 192     |
|          | <b>Info</b><br>6.1.<br>6.2. | rmation Basic Inform 6.2.1. 6.2.2. 6.2.3. Releva         | Concepts of Information Retrieval                                                                                                                                                    | 184 187 188 191 192 195 199 199 200 200 201         |

6.6.4. Index Compression ------ 209

|            | 6.7.   |                  | Semantic Indexing                                         | 215 |
|------------|--------|------------------|-----------------------------------------------------------|-----|
|            |        | 6.7.1.           | Singular Value Decomposition                              | 215 |
|            |        | 6.7.2.           | Query and Retrieval                                       |     |
|            |        | 6.7.3.<br>6.7.4. | Discussion                                                |     |
|            | 6.0    | -                | earch                                                     |     |
|            |        |                  |                                                           |     |
|            | 6.9.   |                  | Search: Combining Multiple Rankings                       |     |
|            |        |                  | Combination Using Similarity Scores                       | 226 |
|            | 0.40   | 6.9.2.           | Combination Using Rank Positions                          |     |
|            | 6.10.  |                  | pamming                                                   |     |
|            |        | 6.10.1.          | Content Spamming  Link Spamming                           | 230 |
|            |        | 6.10.2.          | Hiding Techniques ·····                                   | 233 |
|            |        |                  | Combating Spam ······                                     |     |
|            | Riblia |                  | ic Notes ·····                                            |     |
|            | יווטוט | ograpin          | ic Notes                                                  | 233 |
| <b>7</b> . | Link   | Analy            | sis                                                       | 237 |
|            | 7.1.   | Social           | Network Analysis                                          | 238 |
|            |        | 7.1.1            | Centrality ·····                                          |     |
|            |        | 7.1.2            | Prestige                                                  | 241 |
|            | 7.2.   | Co-Cita          | ation and Bibliographic Coupling                          | 243 |
|            |        | 7.2.1.           | Co-Citation ·····                                         | 244 |
|            |        | 7.2.2.           | Bibliographic Coupling                                    |     |
|            | 7.3.   | PageR            | ank ·····                                                 | 245 |
|            |        | 7.3.1.           | PageRank Algorithm ·····                                  |     |
|            |        | 7.3.2.           | Strengths and Weaknesses of PageRank                      |     |
|            |        | 7.3.3.           | Timed PageRank ······                                     |     |
|            | 7.4.   |                  |                                                           |     |
|            |        | 7.4.1.           | HITS Algorithm                                            |     |
|            |        | 7.4.2.           | Finding Other Eigenvectors                                | 259 |
|            |        | 7.4.3.           | Relationships with Co-Citation and Bibliographic Coupling | 250 |
|            |        | 7.4.4.           | Strengths and Weaknesses of HITS                          |     |
|            | 7 5    |                  | -                                                         |     |
|            | 1.5.   | 7.5.1.           | unity DiscoveryProblem Definition                         |     |
|            |        | 7.5.1.<br>7.5.2. | Bipartite Core Communities                                |     |
|            |        | 7.5.3.           | Maximum Flow Communities                                  |     |
|            |        | 7.5.4.           | Email Communities Based on Betweenness                    |     |
|            |        | 7.5.5.           | Overlapping Communities of Named Entities                 |     |

|    | Bibliographic Notes 2 |                                                                    |                                                                                                                              |                                               |  |
|----|-----------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
| 8. | Web Crawling ·····    |                                                                    |                                                                                                                              |                                               |  |
|    | 8.1.                  | A Basic<br>8.1.1.<br>8.1.2.                                        | c Crawler Algorithm  Breadth-First Crawlers  Preferential Crawlers                                                           | 275                                           |  |
|    | 8.2.                  | 8.2.1.<br>8.2.2.<br>8.2.3.<br>8.2.4.<br>8.2.5.<br>8.2.6.<br>8.2.7. | Petching Parsing Stopword Removal and Stemming Link Extraction and Canonicalization Spider Traps Page Repository Concurrency | 277<br>278<br>280<br>280<br>282<br>283<br>284 |  |
|    | 8.3.                  | Univers<br>8.3.1.<br>8.3.2.                                        | sal Crawlers ····································                                                                            | 286                                           |  |
|    | 8.4.                  | Focuse                                                             | ed Crawlers ·····                                                                                                            | 289                                           |  |
|    | 8.5.                  | Topica<br>8.5.1.<br>8.5.2.<br>8.5.3.                               | I Crawlers Topical Locality and Cues Best-First Variations Adaptation                                                        | 294<br>300                                    |  |
|    | 8.6.                  | Evalua                                                             | tion ·····                                                                                                                   | 310                                           |  |
|    | 8.7.                  | Crawle                                                             | er Ethics and Conflicts ·····                                                                                                | 315                                           |  |
|    | 8.8.                  | Some                                                               | New Developments                                                                                                             | 318                                           |  |
|    | Biblio                | graphic                                                            | Notes ·····                                                                                                                  | 320                                           |  |
| 9. | Stru                  | ctured                                                             | Data Extraction: Wrapper Generation ·                                                                                        | 323                                           |  |
|    | 9.1                   | Prelimi<br>9.1.1.<br>9.1.2.<br>9.1.3.                              | naries  Two Types of Data Rich Pages  Data Model  HTML Mark-Up Encoding of Data Instances                                    | 324<br>326                                    |  |
|    | 9.2.                  | Wrapp<br>9.2.1.<br>9.2.2.<br>9.2.3.<br>9.2.4                       | er Induction  Extraction from a Page  Learning Extraction Rules  Identifying Informative Examples  Wrapper Maintenance       | 330<br>333<br>337                             |  |

10.2. Pre-Processing for Schema Matching ...... 384
10.3. Schema-Level Match ...... 385

|     |       | 10.3.1. Linguistic Approaches                                                                                                                                                 | 385<br>386               |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|     | 10.4. | Domain and Instance-Level Matching                                                                                                                                            | 387                      |
|     | 10.5. | Combining Similarities                                                                                                                                                        | 390                      |
|     | 10.6. | 1:m Match ·····                                                                                                                                                               | 391                      |
|     | 10.7. | Some Other Issues  10.7.1. Reuse of Previous Match Results  10.7.2. Matching a Large Number of Schemas  10.7.3 Schema Match Results  10.7.4 User Interactions                 | 392<br>393<br>393<br>394 |
|     | 10.8. | Integration of Web Query Interfaces                                                                                                                                           | 397<br>400               |
|     | 10.9. | Constructing a Unified Global Query Interface  10.9.1. Structural Appropriateness and the  Merge Algorithm  10.9.2. Lexical Appropriateness  10.9.3. Instance Appropriateness | 406<br>408               |
|     | •     | graphic Notes ·····                                                                                                                                                           | 410                      |
| 11. | Opin  | ion Mining ·····                                                                                                                                                              | 411                      |
|     | 11.1. | Sentiment Classification                                                                                                                                                      | 413<br>415               |
|     | 11.2. | Feature-Based Opinion Mining and Summarization ··· 11.2.1. Problem Definition ····································                                                            | 417<br>418<br>424        |
|     |       | of Format 1                                                                                                                                                                   |                          |
|     |       | 11.2.5. Opinion Orientation Classification                                                                                                                                    |                          |
|     | 11.3. | Comparative Sentence and Relation Mining                                                                                                                                      | 432                      |
|     |       | Sentences                                                                                                                                                                     |                          |

|     |        | 11.3.3. Extraction of Comparative Relations                                                                               | 437                             |
|-----|--------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|     | 11.4.  | Opinion Search ·····                                                                                                      | 439                             |
|     | 11.5.  | Opinion Spam ·······  11.5.1. Objectives and Actions of Opinion Spamming ·····  11.5.2. Types of Spam and Spammers ······ | 441                             |
|     |        | 11.5.3. Hiding Techniques                                                                                                 |                                 |
|     |        | 11.5.4. Spam Detection ·····                                                                                              |                                 |
|     | Biblio | graphic Notes ·····                                                                                                       | 446                             |
| 12. | Web    | Usage Mining                                                                                                              | 449                             |
|     | 12.1.  | Data Collection and Pre-Processing                                                                                        | 452                             |
|     | 12.2   | Data Modeling for Web Usage Mining                                                                                        | 462                             |
|     | 12.3   | Discovery and Analysis of Web Usage Patterns  12.3.1. Session and Visitor Analysis                                        | 466<br>467<br>471<br>475<br>479 |
|     | 12.4.  | Discussion and Outlook ······                                                                                             | 482                             |
|     | Biblio | graphic Notes ·····                                                                                                       | 482                             |
| Ref | erenc  | es                                                                                                                        | 485                             |
| Ind | ex     |                                                                                                                           | 517                             |