교육 제목	데이터 기반 인공지능 시스템 엔지니어 양성 과정			
교육 일시	2021년 11월02일			
교육 장소	YGL C-6 학과장 & 자택(디스코드 이용한 온라인)			
교육 내용				

중요내용 Review

1. 모델별 특징

Model	Example	[Output] Activation Fun.	Loss Fun.	Metric
Simple Linear Regression	이자율을 이용해서 집값을 예상하기	Identity Activation	Mean Squared Error	Mean Absolute Error
Multivariate Linear Regression	이자율 외 여러 변수를 이용해서 집값을 예상하기	Identity Activation	Mean Squared Error	Mean Absolute Error
Binary Classification	해당 이미지는 고양이일까요? 아닐까요?	Sigmoid / Logistic	Binary Cross Entropy	Binary Accuracy
Multi-Class Classification	해당 이미지는, 강아지일까요? 고양이일까요? 자동차일까요??	Softmax	Categorical Cross Entropy	Categorical Accuracy

2. AlexNet

- o activation function : Relu
- Data augmentation 을 활용한 학습데이터 증가
- o Dropout을 통한 과적합 방지
- 3. VGG Net
 - o 3X3 Filter : 학습 속도 및 Relu 증가
- 4. Google Net
 - o Inception module
 - o auxiliary classifier
- 5. ResNet

오전

6. Densnet

7. Transfer Learning

시계열 데이터 분석 모델

1. 시계열 데이터

■ 시계열 데이터 (Sequential data) 란?

- 시간 별로 구성된 값의 집합 (음성, 자연 언어, 센서 데이터, 주가 등)
- 기록 추세, 실시간 경고, 예측 모델링 분석

오후

2. RNN의 기본 구조

■ RNN 기본 구조

- f(x)는 보통 tanh(x)를 사용한다.
- 어떤 t에 대해서도 같은 U, W, V, b, c를 사용한다 (weight 와 bias 값이 공유)

직관적인 표현

* x(t) : 현재 입력 (자극) * h(t-1) : 과거 기억

* h(t) : 현재 기억

3. RNN 모델 정리

- 시계열 데이터의 시간 속성을 충분히 이용하기 위해 RNN 을 사용한다
- RNN은 다양한 구조로 사용이 가능하다
 - One-to-Many / Many-to-One / Many-to-Many 등
- RNN 학습은 Back-Propagation Through Time (BPTT) 으로한다
- 깊은 RNN은 Vanishing Gradient Problem이 발생한다
 - RNN with ReLU (생각보다 좋지 않다)
 - LSTM (단기기억 +장기기억)
 - GRU (LSTM과 비슷한 성능이지만 파라미터가 적다)
 - 그렇다고 GRU가 LSTM 보다 성능이 마냥 좋은 것은 아니다.
 - RNN, LSTM, GRU, 모두 학습하기 쉽지 않다. (* 병렬 처리가 안 된다.)