

QCM DE MATHÉMATIQUES - LILLE

Répondre en cochant la ou les cases correspondant à des assertions vraies (et seulement celles-ci).

Ces questions ont été écrites par Arnaud Bodin, Barnabé Croizat et Christine Sacré de l'université de Lille. Relecture de Abdelkader Necer.

Ce travail a été effectué en 2021-2022 dans le cadre d'un projet Hilisit porté par Unisciel.

Ce document est diffusé sous la licence *Creative Commons – BY-NC-SA – 4.0 FR*. Sur le site Exo7 vous pouvez récupérer les fichiers sources.

Logique

Arnaud Bodin, Barnabé Croizat, Christine Sacré

1 Logique, ensembles et raisonnements

1.1 Logique | Facile

Ouestion	1
Uniestian	•

Ouelles sont les assertions vraies?

- ☐ Il existe des triangles rectangles.
- $\hfill\Box$ Tout triangle est un triangle rectangle.
- ☐ Tout triangle équilatéral est isocèle.
- ☐ Il existe un triangle équilatéral qui est rectangle.

Question 2

Quelles sont les assertions vraies?

- \Box Si cos $\theta = 0$ alors $\theta = \frac{\pi}{2}$.
- \square Si $\theta \in [0, \pi]$ alors $0 \le \cos \theta \le 1$.
- \Box Si $\theta = 0$ alors $\sin \theta = 0$.
- \square Si $\theta \in [0, \pi]$ et sin $\theta = 0$ alors ($\theta = 0$ ou $\theta = \pi$).

Question 3

Quelles sont les assertions vraies?

- ☐ Le chiffre des unités de tout entier pair est 0, 2, 4, 6 ou 8.
- ☐ Le chiffre des unités de tout entier multiple de 3 est 3, 6 ou 9.
- ☐ Le chiffre des unités de tout entier multiple de 4 est 4 ou 8.
- ☐ Le chiffre des unités de tout entier multiple de 5 est 0 ou 5.

Question 4

Soient x, y des nombres réels. Quelles sont les assertions vraies?

- \square Si x = -5 alors $x^2 = 25$.
- \square Si $x^2 = 25$ alors x = 5.
- \square Si xy = 0 alors x = 0 ou y = 0.
- \square Si xy = 0 alors x = 0 et y = 0.

1.2 Logique | Moyen

\sim	. •	_
Οı	ıestion	5

Soit $\mathcal P$ une assertion vraie et $\mathcal Q$ une assertion fausse. Quelles sont les assertions vraies?

- □ *P* ou *2*
- □ 2 et 9
- $\square \mathscr{P}$ ou non(\mathscr{Q})
- $\square \ \mathcal{Q} \text{ ou non}(\mathcal{P})$

Question 6

On considère l'assertion "non(\mathscr{P}) et \mathscr{Q} ". Quand est-ce que cette assertion est vraie?

- \square Si \mathscr{P} vraie et \mathscr{Q} vraie.
- \square Si \mathscr{P} vraie et \mathscr{Q} fausse.
- \square Si \mathscr{P} fausse et \mathscr{Q} vraie.
- \square Si \mathscr{P} fausse et \mathscr{Q} fausse.

Question 7

Soit $n \ge 3$ un entier. On considère l'implication :

"*n* nombre premier \implies *n* est impair".

Quelles sont les affirmations vraies?

- \square L'implication réciproque est "n est pair \implies n est un nombre premier".
- \square La contraposée est "n est pair \implies n n'est pas nombre premier".
- ☐ Si l'implication est vraie alors l'implication réciproque l'est aussi.
- ☐ Si l'implication est vraie alors sa contraposée l'est aussi.

Question 8

Soit *x* un réel. On considère l'implication :

$$|x^2| > 0 \implies x > 0$$
.

Quelles sont les affirmations vraies?

- \square L'implication réciproque est " $x > 0 \implies x^2 > 0$ ".
- \square La contraposée est " $x > 0 \implies x^2 > 0$ ".
- ☐ Si l'implication est fausse alors l'implication réciproque l'est aussi.
- ☐ Si l'implication est fausse alors sa contraposée l'est aussi.

Question 9

On considère l'implication:

"tu prépares un repas ⇒ je viens chez toi".

Quelles sont les affirmations vraies?

 \square L'implication réciproque est "je viens chez toi \implies tu ne prépares pas de repas".

☐ La contraposée est "je ne viens pas chez toi ⇒ tu ne prépares pas de repas".

☐ Si l'implication est vraie alors l'implication réciproque l'est aussi.

☐ Si l'implication est vraie alors sa contraposée l'est aussi.

Question 10

Quelles sont les assertions vraies, quel que soit x > 0, un réel strictement positif?

 $\Box \exists y > 0 \quad \ln(x) = y$

 $\Box \exists y > 0 \quad e^x = y$

 $\exists y > 0 \quad \ln(y) = x$

 $\Box \exists y > 0 \quad e^y = x$

1.3 Logique | Difficile

Question 11

Pour quelles phrases, l'assertion est vraie si on remplace "??" par " \exists ", mais est fausse si on remplace "??" par " \forall "?

 \square ?? $n \in \mathbb{N}^*$ n est pair

 \square ?? $n \in \mathbb{N}^*$ n(n+1) est pair

 \square ?? $n \in \mathbb{N}^*$ n et n + 2 sont des nombres premiers

 \square ?? $n \in \mathbb{N}^*$ si n n'est pas premier alors n admet au moins deux facteurs premiers distincts

Question 12

Soit $x \in \mathbb{R}$. Quelles sont les assertions vraies si on remplace "....." par " \iff "?

 $\square x^2 = 0 \qquad \dots \qquad x = 0$

 $\square x^2 = 1 \qquad \dots \qquad x = 1$

 $\Box 0 < x < 1 \qquad \dots \qquad \frac{1}{r} > 1$

Question 13

 $f: \mathbb{R} \to \mathbb{R}$ désigne une fonction. Pour les phrases suivantes dire si la négation proposée est correcte.

 \square La négation de "Il existe $x \in \mathbb{R}$ tel que f(x) = 0" est "Pour tout $x \in \mathbb{R}$ on a $f(x) \neq 0$ ".

 \square La négation de "Pour tout $x \in \mathbb{R}$ on a f(x) = 0" est "Il existe $x \in \mathbb{R}$ tel que $f(x) \neq 0$ ".

 \square La négation de "Il existe $x \in \mathbb{R}$ tel que $f(x) \ge 0$ " est "Pour tout $x \in \mathbb{R}$ on a f(x) < 0".

□ La négation de "Pour tout $x \in \mathbb{R}$ on a f(x) > 0" est "Pour tout $x \in \mathbb{R}$ on a $f(x) \le 0$ ".

Question 14

Soit $x \in \mathbb{R}$. Pour quelles phrases, l'assertion est vraie si on remplace "??" par " \exists ", mais est fausse si on remplace "??" par " \forall "?

 \square ?? $x \in \mathbb{R}$ $x^2 > 0$

 $\square ?? x \in \mathbb{R} \quad x^2 - 2x + 1 \ge 0$

 $\square ?? x \in \mathbb{R} \quad x^2 - 2x + 1 = 0$

 \square ?? $x \in \mathbb{R}$ $x^2 \leq 0$

Question 15

Soit \mathscr{P} et \mathscr{Q} deux assertions telles que " $\mathscr{P} \implies \mathscr{Q}$ " soit vraie, et " $\operatorname{non}(\mathscr{P}) \implies \operatorname{non}(\mathscr{Q})$ " soit aussi vraie. On a alors :

 \square " $\mathscr{Q} \Longrightarrow \mathscr{P}$ " est vraie.

 \square " $\mathscr{P} \iff \mathscr{Q}$ " est vraie.

 \square " $\mathscr{Q} \Longrightarrow \text{non}(\mathscr{P})$ " est vraie.

 \square " $\mathscr{P} \Longrightarrow non(\mathscr{Q})$ " est vraie.

Question 16

En 1761, le mathématicien suisse Lambert, ami d'Euler, démontre l'implication $\mathscr{I}: "x \in \mathbb{Q} \implies \tan(x) \notin \mathbb{Q}"$. Il remarque ensuite que $1 = \tan(\frac{\pi}{4})$. Qu'en conclut-il?

 \square D'après \mathscr{I} , $\tan(\frac{\pi}{4}) \notin \mathbb{Q}$.

 \square D'après la contraposée de \mathscr{I} , $\tan(\frac{\pi}{4}) \notin \mathbb{Q}$.

 \square D'après la contraposée de \mathscr{I} , $\frac{\pi}{4} \in \mathbb{Q}$.

 \square D'après la contraposée de \mathscr{I} , $\frac{\pi}{4} \notin \mathbb{Q}$.

Question 17

Quelles sont les assertions vraies?

 $\square \ \forall x \in \mathbb{R} \ \exists \ y \in \mathbb{R} \ \ y = e^x$

 $\square \ \forall y \in \mathbb{R} \ \exists x \in \mathbb{R} \ y = e^x$

 $\square \ \forall y \in \mathbb{R} \ \exists \, x > 0 \quad y = e^x$

 $\square \ \forall y > 0 \ \exists x \in \mathbb{R} \ y = e^x$

1.4 Ensembles | Facile

Question 18

Quels sont les ensembles ayant au moins 4 éléments?

 \square \varnothing

 \Box [0,2] \cap [1,3]

 \Box {0,3} \cap {1,3}

 \square $\mathbb{N} \setminus \{0, 1, 2, 3\}$

Question 19

Quels sont les ensembles qui contiennent l'intervalle [0,2]?

 \Box [-3,3] \cap]-1,5]

 \square $\mathbb{R} \setminus]1,3[$

 $\Box \]0,1[\ \cup\]1,2]$

 $\Box \{0,1,2\}$

Question 20

Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2 + 2$. Quelles sont les affirmations vraies?

 \square L'image de -2 est 6.

□ Un antécédent de 18 est −5.

☐ La valeur 2 admet plusieurs images.

☐ La valeur 18 admet plusieurs antécédents.

Question 21

Soient $A = \{1, 2, 3, 4\}$ et $B = \{0, 1, 2\}$. Quelles sont les affirmations vraies?

 \square $A \cup B$ a 7 éléments.

 \square $A \cap B = \{1, 2\}$

 $\square A \setminus B = \{0, 3, 4\}$

 $\Box B \setminus A = \{0\}$

Question 22

Quels sont les ensembles qui contiennent l'intervalle [-1,1]?

 $\Box [-3,1] \cap]-2,5]$

 \square $\mathbb{R} \setminus]1,3[$

 \Box [-1,0[\cup]0,2]

 $\Box \{-1,0,1\}$

Question 23

Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2 - 2$. Quelles sont les affirmations vraies?

 \square L'image de -2 est -6.

□ Un antécédent de 7 est −3.

 \square La valeur -2 admet plusieurs images.

☐ La valeur 7 admet plusieurs antécédents.

Question 24

Soit la fonction réelle définie par f(x) = 2x. Soit $x \in \mathbb{R}$. On a :

 \Box $(f \circ f)(x) = 4x^2$

 \Box $(f \circ f)(x) = 4x$

 \Box $(f \circ f) \circ f(x) = 6x$

 $\Box (f \circ f \circ f)(x) = 8x^3$

Soient les ensembles A = [1,3] et $B = \{0,1,2,3\}$. Quelles sont les assertions vraies?

- \square $B \subset A$
- \square $A \subset B$
- \square $A \setminus B =]1,3[$
- $\Box A \cap B = \{1, 2, 3\}$

Ensembles | Moyen

Question 26

Soient A, B deux parties d'un ensemble E. Quelles sont les affirmations vraies (quel que soit le choix de A et B)?

- $\square A \cup B \subset A \cap B$
- $\square A \cap B \subset A \cup B$
- $\square A \setminus B \subset A$
- $\square A \setminus B \subset B$

Question 27

Les fonctions suivantes sont-elles définies sur l'ensemble associé?

- $\square x \mapsto \ln(|x-3|) \operatorname{sur} \mathbb{R}$
- $\square x \mapsto \sqrt{1-x^2} \operatorname{sur} [-1,1]$
- $\Box x \mapsto \frac{1}{x^2-4} \operatorname{sur} \mathbb{R} \setminus \{2\}$
- $\Box x \mapsto \frac{1}{\sin(\pi x)} \operatorname{sur} \mathbb{R}^*$

Question 28

Soient f, g, h des fonctions définies par

$$f(x) = x^2 - 3x$$

$$g(x) = 2x + 1$$

$$f(x) = x^2 - 3x$$
 $g(x) = 2x + 1$ $h(x) = \frac{x}{x - 1}$.

Quelles sont les affirmations vraies?

- $\Box (f \circ g)(x) = 4x^2 2x + 4$
- $\Box (g \circ f)(x) = 2x^2 + 5$
- $\Box (h \circ f)(x) = \left(\frac{x}{x-1}\right)^2 \frac{3x}{x-1}$
- $\Box (g \circ h)(x) = \frac{3x-1}{x-1}$

Question 29

Les fonctions suivantes sont-elles définies sur l'ensemble associé?

- $\square x \mapsto \ln(|x+1|) \operatorname{sur} \mathbb{R}$
- $\Box x \mapsto \sqrt{1+x^2} \operatorname{sur} \mathbb{R}$
- $\Box x \mapsto \frac{x}{1-x^2} \operatorname{sur} \mathbb{R} \setminus \{0\}$
- $\Box x \mapsto \tan(x) \operatorname{sur} \left[\frac{\pi}{2}, \pi\right[$

Soient f, g, h des fonctions définies par

$$f(x) = x^2 + x$$
 $g(x) = 2x - 1$ $h(x) = \frac{1}{x+1}$.

Ouelles sont les affirmations vraies?

- $\Box (f \circ g)(x) = 4x^2 2x$
- $\Box (g \circ f)(x) = 2x^2 + 2x$
- $\Box (h \circ f)(x) = \frac{1}{x^2 + x + 1}$
- $\Box (g \circ h)(x) = \frac{1}{2x}$

Question 31

Parmi ces ensembles, quels sont ceux qui sont inclus dans $\{0, 1, 2\}$?

- $\square \{x \in \mathbb{R} \mid x(x-2) = 0\}$
- $\square \{x \in \mathbb{R} \mid e^x = 1\}$
- $\Box \{x > 0 \mid \ln(x) = 1\}$
- $\Box [0,3] \cap \{x \in \mathbb{R} \mid (x+2)^2 = 4\}$

Question 32

Soit l'ensemble $A = \{-1,0,1\}$ et la fonction réelle donnée par $f(x) = x^2 - 1$. Quelles sont les assertions vraies?

- $\Box \forall x \in A \quad f(x) = 0$
- $\square \exists x \in A \ f(x) = 0$
- \Box f est bijective de A dans son image f(A).
- $\square \ \forall x \in A \ f(x) \in A$

Question 33

Soient les fonctions réelle définies par f(x) = 3x + 2 et g(x) = ax + b. Pour quelle(s) valeur(s) des réels a et b a-t-on $g \circ f(x) = 6x + 7$?

- \Box a = 1 et b = 3
- \Box a = 1 et b = 5
- \Box a=2 et b=3
- \Box a=2 et b=5

1.6 Ensembles | Difficile

Question 34

Soit *E* un ensemble. Pour *A* et *B* deux parties de *E*, on définit l'ensemble

$$\Delta(A,B) = (A \cup B) \setminus (A \cap B).$$

Quelles sont les affirmations vraies?

- $\square \ \Delta(A,B) = \Delta(B,A)$
- \square Si $B = \emptyset$ alors $\Delta(A, B) = \emptyset$.
- \square Si *A* et *B* sont disjoints alors $\Delta(A, B) = A \cup B$.
- \square Si $B \subset A$ alors $\Delta(A, B) = A \setminus B$.

Les fonctions f et g définies par les expressions suivantes sont-elles bijections réciproques l'une de l'autre? (On ne se préoccupera pas des ensembles de départ et d'arrivée.)

- $\Box f(x) = \exp(2x) \text{ et } g(x) = \ln(\frac{1}{2}x)$
- $\Box f(x) = \cos(x-1) \text{ et } g(x) = \sin(x+1)$
- $\Box f(x) = \frac{1}{1+x} \text{ et } g(x) = \frac{1-x}{x}$
- $\Box f(x) = \sqrt{2x+1} \text{ et } g(x) = \frac{1}{2}x^2 1$

Question 36

Soient A et B deux parties d'un ensemble E. Quelles sont les affirmations vraies (quel que soit le choix de A et B)?

- $\Box (A \cap B) \cup (A \setminus B) = A$
- $\Box (A \cap B) \cup (A \setminus B) = B$
- $\Box (A \cap B) \cup (A \setminus B) = A \cup B$
- $\Box (A \cap B) \cup (A \setminus B) \cup (B \setminus A) = A \cup B$

Question 37

Soit *E* un ensemble. Pour deux parties *A* et *B* de *E*, on définit $\Delta(A, B) = (A \cup B) \setminus (A \cap B)$. Quelles sont les affirmations vraies (quel que soit le choix de *A* et *B*)?

- \square Si A = B, $\Delta(A, B) = \emptyset$.
- $\Box A \cup B \subset \Delta(A, B)$
- \square $A \cap B \subset \Delta(A, B)$
- $\Box \Delta(A,B) = (A \setminus B) \cup (B \setminus A)$

Question 38

Les fonctions f et g définies par les expressions suivantes sont-elles bijections réciproques l'une de l'autre? (On ne se préoccupera pas des ensembles de départ et d'arrivée.)

- $\Box f(x) = \exp(-3x) \text{ et } g(x) = -\frac{1}{3}\ln(x)$
- $f(x) = \cos(x+1)$ et $g(x) = \frac{1}{\cos(x)} 1$
- $\Box f(x) = \frac{x}{1+x}$ et $g(x) = \frac{x}{1-x}$
- $\Box f(x) = \sqrt{x+1} \text{ et } g(x) = x^2 + 1$

Question 39

Soit la fonction réelle définie par $f(x) = x^2 - x - 2$. Pour quelle fonction u a-t-on $f \circ u(x) = 9(x^2 + x)$?

$$\Box u(x) = 9x$$

$\Box u(x) = 3x + 2$ $\Box u(x) = -3x$ $\Box u(x) = 9x + 2$
1.7 Raisonnements Facile
Question 40 Pour montrer que √2 est un nombre irrationnel une preuve classique utilise : □ Un raisonnement par contraposition. □ Un raisonnement par disjonction. □ Un raisonnement par l'absurde. □ Un raisonnement par récurrence.
<i>Question 41</i> Pour montrer que pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}$ on a $(1+x)^n \ge 1+nx$, quelle est la démarche la plus adaptée? ☐ On fixe x , on fait une récurrence sur n . ☐ On fixe n , on fait une récurrence sur x . ☐ Par l'absurde on suppose $(1+x)^n < 1+nx$.
□ Par disjonction des cas n pair/ n impair. Question 42 On voudrait montrer que pour tout $n \in \mathbb{N}^*$ on a $2^{n-1} \le n^n$. Quel type de raisonnement vous parait
adapté ? ☐ Un raisonnement par contraposition.
\square Un raisonnement par disjonction : n pair/ n impair.
☐ Un raisonnement par l'absurde. ☐ Un raisonnement par récurrence.
Question 43 Soit x un réel. On définit une suite par $u_0 = x$ et, pour tout entier $n \in \mathbb{N}$, $u_{n+1} = xu_n$. □ On montre par récurrence sur n que $u_n = x^n$ pour tout entier n . □ On montre par récurrence sur x que $u_n = x^n$ pour tout entier n . □ On montre par récurrence sur n que $u_n = x^{n+1}$ pour tout entier n . □ On montre par récurrence sur x que $u_n = x^{n+1}$ pour tout entier n .
Question 44 On commence une démonstration par l'absurde avec la rédaction suivante : "Supposons que $\log_{10}(3) \in \mathbb{Q}$. Alors on peut écrire $\log_{10}(3) = \frac{p}{q}$ avec". Que cherche-t-on à démontrer?

 $\square \ \log_{10}(3) \in \mathbb{Q}$

$\square \log_{10}(3) \notin \mathbb{Q}$
$\square \log_{10}(3) \in \mathbb{R}$
$\square \log_{10}(3) \notin \mathbb{R}$
1.8 Raisonnements Moyen
Question 45
On souhaite prouver par récurrence, pour tout $n \ge 0$, une proposition \mathcal{P}_n . Après avoir prouvé \mathcal{P}_0 , quelle rédaction du démarrage de l'étape d'hérédité convient?
□ Soit $n \ge 0$. Je prouve \mathcal{P}_1 .
\square Soit $n \ge 0$. Je suppose \mathscr{P}_n vraie et je montre \mathscr{P}_{n+1} .
\square Soit $n \ge 0$. Je suppose \mathscr{P}_n vraie pour tout n et je montre \mathscr{P}_{n+1} .
□ Soit $n \ge 0$. Je suppose \mathscr{P}_{n+1} vraie et je montre \mathscr{P}_n .
Question 46
Pour montrer que $\sqrt{3}$ est un nombre irrationnel, je commence une démonstration par l'absurde en écrivant :
□ Je suppose $\sqrt{3} \in \mathbb{Q}$ et je cherche une contradiction.
□ Je suppose $\sqrt{3} \notin \mathbb{Q}$ et je cherche une contradiction.
\square Je suppose $\sqrt{3} \notin \mathbb{R}$ et je cherche une contradiction.
\square Je suppose que $\sqrt{3}$ n'existe pas et je cherche une contradiction.
Question 47
Quel type de raisonnement est adapté pour montrer qu'il existe une infinité de nombres premiers?
\square Au cas par cas : on étudie $n = 2$, $n = 3$, $n = 5$,
\square Par récurrence sur n parcourant l'ensemble des nombres premiers.
☐ Par l'absurde en supposant qu'il n'existe qu'un nombre fini de nombres premiers.
☐ C'est une propriété que l'on ne sait pas démontrer.
Question 48
Pour montrer que les solutions réelles de l'équation $ x + 1 = 2$ sont 1 et -3 , on peut utiliser :
☐ Un raisonnement par contraposition.
☐ Un raisonnement par disjonction des cas.
☐ Un raisonnement par l'absurde.
☐ Un raisonnement par récurrence.
Question 49
Soient a et b deux nombres réels. On considère la proposition suivante : "si $a + b$ est irrationnel, alors
a est irrationnel ou b est irrationnel". Comment puis-je montrer cette affirmation par contraposée?
\Box Je prends deux rationnels a et b et je montre que $a+b$ est rationnel.

\Box Je prends deux irrationnels a et b et je montre que $a+b$ est irrationnel.	
\Box Je prends un irrationnel et j'essaie de l'écrire sous la forme $a+b$ avec a et b irrationnels.	
\square Je prends deux rationnels a et b et je montre que $a+b$ est irrationnel.	
Question 50 Téo et Théa jouent à un jeu de société. Téo est proche de la victoire; il doit lancer un dé et Tl remarque avec raison que : "si Téo fait 4, alors il gagne le jeu". Quelles sont les affirmations certaine	
☐ Si Téo fait 3, alors il n'aura pas gagné.	
☐ Si Téo gagne, c'est qu'il a fait 4.	
☐ Si Téo ne gagne pas, c'est qu'il n'a pas fait 4.	
☐ Si Téo gagne fait 5, il perd.	
1.9 Raisonnements Difficile	
Question 51 Pour montrer que $3^n > 3n$ pour des entiers n naturels suffisamment grands, je fais une preuve récurrence. Je peux commencer l'initialisation avec :	par
$\Box n = 0$	
$ \Box n = 2 $ $ \Box n = 3 $	
$\square \ n-3$	
Question 52 Pour montrer une implication $\mathscr{P} \implies \mathscr{Q}$ par contraposition :	
\square Je suppose \mathscr{P} et je montre \mathscr{Q} .	
\square Je suppose $\mathscr Q$ et je montre $\mathscr P$.	
\square Je suppose non(\mathscr{P}) et je montre non(\mathscr{Q}).	
\square Je suppose $non(\mathcal{Q})$ et je montre $non(\mathcal{P})$.	
Question 53	
Pour démontrer que, pour tout $x \in \mathbb{R}$, on a $ x-2 \le x^2 - x + 2$.	
☐ Je distingue les cas $x \ge 0$ et $x < 0$.	
☐ Je distingue les cas $x \ge 2$ et $x < 2$. ☐ Je suis amené à vérifier $x^2 - x + 2 \ge 0$.	
☐ Je suis amené à vérifier $x^2 - 2x + 4 \ge 0$.	
Question 54 Pour montrer que $4^n > 20n$ pour des entiers n naturles suffisamment grands je fais une preuve	par

récurrence. Je peux commencer l'initialisation avec :

n = 1
n = 2
n = 3

Pour démontrer que, pour tout $x \in \mathbb{R}$, on a $|x+1| \le x^2 + 2$. \square Je distingue les cas $x \ge 0$ et x < 0. \square Je distingue les cas $x \ge -1$ et x < -1. \square Je suis amené à vérifier $x^2 - x + 1 \ge 0$. \square Je suis amené à vérifier $x^2 + x + 3 \ge 0$.

Question 56

Soit $n \ge 2$ un entier. Que pensez-vous du raisonnement par récurrence suivant : on note \mathcal{P}_n la propriété "n points distincts quelconques dans le plan sont toujours alignés".

Initialisation : pour n = 2, la propriété est vraie. En effet, deux points distincts du plan sont toujours alignés.

Hérédité : soit n un entier naturel quelconque supérieur ou égal à deux. Supposons la propriété \mathcal{P}_n vraie. Soient n+1 points quelconques du plan, $A_1, A_2, \ldots, A_n, A_{n+1}$, tous distincts. D'après l'hypothèse de récurrence, les n points A_1, A_2, \ldots, A_n sont alignés. Ils le sont donc sur la droite (A_2A_n) . De même, les n points $A_2, \ldots, A_n, A_{n+1}$ sont alignés. Ils le sont donc également sur la droite (A_2A_n) . On en déduit donc que les n+1 points sont tous sur la droite (A_2A_n) , donc ils sont alignés. La propriété \mathcal{P}_{n+1} est donc vraie, d'où la propriété est héréditaire.

En conclusion, on a montré par récurrence que \mathcal{P}_n est vraie pour tout entier $n \ge 2$: n points distincts du plan sont toujours alignés.

Le raisonnement par récurrence est juste donc le résultat est juste.
Le raisonnement par récurrence est juste mais le résultat est faux.
Il y a une erreur dans l'étape d'hérédité.
Il y a une erreur dans l'étape d'initialisation.