Basic methods for setting up models: Difference Equations

Richard White

Centre for the Mathematical Modelling of Infectious Diseases & TB Modelling Group LSHTM

Objectives

- By the end of this lecture you should
 - understand model development steps
 - be aware of the common model structures and types used for modelling infectious diseases
 - understand how deterministic models are set up using difference equations
 - be able to write equations for a simple model
 - be able to define key input parameters

Identify the question Identify existing knowledge Choose model structure Choose modelling method Model quantification Model validation Prediction and optimisation Decision making Model transfer (after Habberna et al. 1996)

Identify existing knowledge Collate existing knowledge Research papers, grey literature, lab reports, existing modelling exercises... Organise quantitatively by Transmission Epidemiology Natural history Control options Discuss review with experts

Model quantification Main problem is usually lack of data, estimate using: Primary data collection Data analysis (statistical modelling) Other modelling exercises Expert opinion (?)

Seedly respective. Others make theretae. Others make theretae. Others make theretae. Under experiment. Finding mile apparent. Finding mile apparent. Others make apparent. And control.

Decision making

- Make predictions understandable
- Purely technical descriptions are not likely to be sufficient for policy makers and programme managers

Best reading contains Come more distant Come more distant Come more distant End on the distant Franchism or grammat Franchism or grammat Source contains

Model transfer

 Once model stable, if desired, a user friendly version can be transferred to policy makers and programme managers

Summary

- Hopefully you now
 - understand model development steps
 - are aware of the common model structures and types used for modelling infectious diseases
 - understand how deterministic models are set up using difference equations
 - could write equations for a simple model
 - could define key input parameters
- But if you only take one thing away...

If you only take one thing away...

$$\begin{array}{ccc} \Lambda_t & f & r \\ \hline \text{Susceptible S,} & \text{Pre-infEctious E,} & \text{Infectious I,} & \text{Recovered R,} \end{array}$$

$$\begin{array}{lll} S_{t+1} &= S_t & -\lambda_t * S_t \\ E_{t+1} &= E_t & +\lambda_t * S_t & -f * E \\ I_{t+1} &= I_t & +f * E_t & -r * I_t \\ R_{t+1} &= R_t & +r * I_t \end{array}$$

Where, $\lambda_t = \beta * I_t$

Basic methods for setting up models: Difference Equations

Richard White

Centre for the Mathematical Modelling of Infectious Diseases & TB Modelling Group LSHTM