Lab 10, Day 2: An exploration and discussion of Natural Frequency and Resonance, 3/28/2023,

Partners: Maite Valentin-Lugo, Seth Waln

Station 1: Elastic Band

1.

Driving Frequency: 50Hz

Tension	Antinodes
0.8	7
1.0	6
1.2	5
1.4	5
1.6	4
1.8	4

2.

Tension: 1N

Driving Frequency	Antinodes	
23	3	
31	4	
39	5	
44	6	
51	6	
59	6	

3.

$$v = \sqrt{\frac{T}{\mu}}$$

$$\lambda = \frac{v}{f}$$

$$\lambda \propto \frac{1}{\#A}$$

$$\frac{v}{f} \propto \frac{1}{\#A}$$

$$\sqrt{\frac{T_s}{\mu}} \propto \frac{1}{\#A}$$

$$\sqrt{\frac{T_s}{\mu}} \propto \frac{f}{\#A}$$

Kaleb Burris PHYS 211X

Lab 10, Day 2: An exploration and discussion of Natural Frequency and Resonance, 3/28/2023, Partners: Maite Valentin-Lugo, Seth Waln

4.

Our data closely matches the predicted result of following a linear relationship, although it started to deviate past 40 Hz.

5.

1/#A vs. sqrt N

0.05

0.00

1.0

Our data very closely matched a linear regression, which tracks with the $\frac{1}{\#A}$ formula.

sqrt N

1.1

1.2

1.3

Lab 10, Day 2: An exploration and discussion of Natural Frequency and Resonance, 3/28/2023, Partners: Maite Valentin-Lugo, Seth Waln

6.

	Tube 1	Tube 2	Tube 3
Resonant frequency	20 KHz	16 KHz	13 KHz
2nd Harmonic	39 KHz	32 KHz	25 KHz
3rd Harmonic	60 KHz	48 KHz	38 KHz

9.

$$\lambda = \frac{2L}{\#A} = \frac{v}{f}$$

$$f = \frac{\#Av}{2L} = \frac{1(343m/s)}{2(1.265m)} = 135.57hz$$

$$\to \{13.5KHz, 27KHz, 40.5Khz\}$$

10.

Our prediction was relatively close, at worst it was $1 - \frac{38}{40.5} = 6.2\%$ off of the expected value, and at best was $1 - \frac{13}{13.5} = 3.7\%$ off of the expected value. This error is pretty acceptable given the rough nature of the materials we used.

11.

	Attached Mass	Resonant Frequency	Natural Frequency	% Difference
Stiff Spring	0.002	2.56	3.106	17.6%
Medium Spring	0.002	1.84	1.873	1.8%
Soft Spring	0.002	1.19	1.259	5.5%

12.

$$\sqrt{\frac{70g}{50g}} = 1.18$$
$$1.18 \cdot 2.56Hz = 3.02Hz$$

Real: 1.49 Hz, which is half of the predicted. We must have missed the first harmonic and got the second when we recorded.

- 13. Our prediction was relatively good, but we missed the first harmonic. Scaling the prediction down, we would expect 1.56Hz, which is $1 \frac{1.49}{1.56} = 4.5\%$ off of our prediction, which is pretty good and on track with the differences we've found experimentally thus far.
- 14. The resonant frequency and natural frequencies we encountered seemed to be highly related in a 1:1 relationship with one another.

15.

	Natural Frequency Depends on:	How we drive the system:	At resonance observed, an increase in:
Elastic band	tension	Variable frequency mechanical oscillator	antinodes
Air column	length	Variable frequency speaker	amplitude
Mass on a Spring	Spring constant and mass	Variable frequency mechanical oscillator	amplitude