ERRATA — Teoria do risco atuarial fundamentos e conceitos

*Parágrafo iniciado na página anterior será número como 0.

Capítulo 5: Modelos de risco

Capitulo 5: Modelos		[~
Página / parágrafo / linha	Texto atual	Texto alterado	Observação
Página 132/parágrafo1/linha 6	é a variável aleatória associada ao sinistro da	é a variável aleatória associada ao	Suprimir "em 1 ano"
	apólice i em 1 ano, também	sinistro da apólice <i>i</i> , também	
Página 132/parágrafo2/linha 1	Novamente, pela independência	Pela independência	Suprimir "Novamente,"
Página 132/Última linha	como a seguir.	como:	Substituir "a seguir. " por ":"
Página 135/parágrafo1/ linha 2	Bernoullis de parâmetros q fixos., tendo como resultado $E(N) = nq$,	Bernoulli's de parâmetros q fixos, tendo como resultado $E(N) = nq$ e	Refeito (pontuação corrigida)
Página 135/ linha 9	$N \sim Binomial(10000; 0.01),$	$N \sim Binomial(10000; 0,01),$	Substituir o ponto(.) por
Página 138/ penúltima linha	$P(X_i = 10000) = 0.001$. Assim, a função	p(y = 10000) = 0.001	virgula(,) Separar em parágrafo
ragina 136/ ренинина пина	$P(X_i = 10000) = 0,001.$ Assim, a Tunção acumulada $F_{X_i}(x_i)$ é dada por	$P(X_i = 10000) = 0,001.$ Assim, a função acumulada $F_{X_i}(x_i)$ é dada por	Separat em paragrato
Página 139/ enunciado do exemplo 5.5 linha 6	Obtenha também o modelo probabilístico	Obtenha também os modelos probabilísticos	Faltou plural
Página 139/ solução do exemplo 5.5/ linha 1	$P(X_i = 0) = P(I = 0) = 0,99.$	probabilísticos $P(X_i = 0) = P(I_i = 0) = 0,99.$	Corrigir I_i
Página 139/ solução do exemplo 5.5/ linha 3	No caso em que $I = 1, X_i \dots$	No caso em que $I_i = 1, X_i \dots$	Corrigir I_i
Página 142/ linhas 9 e 10	$f_S(s) = \frac{\partial F_S(s)}{\partial S} = \frac{\partial}{\partial x} \left[\int_{-\infty}^{\infty} F_Y(s - x) f_X(x) dx \right]$ $f_S(s) = \frac{\partial F_S(s)}{\partial x} = \int_{-\infty}^{\infty} \frac{\partial}{\partial S} F_Y(s - x) f_X(x) dx$	$f_S(s) = \frac{\partial F_S(s)}{\partial S} = \frac{\partial}{\partial s} \left[\int_{-\infty}^{\infty} F_Y(s) - x f_X(x) dx \right]$ $f_S(s) = \frac{\partial F_S(s)}{\partial s} = \int_{-\infty}^{\infty} \frac{\partial}{\partial S} F_Y(s)$ $-x f_X(x) dx$	Trocar $\frac{\partial}{\partial x}$ por $\frac{\partial}{\partial s}$ na primeira linha e $\frac{\partial F_S(s)}{\partial x}$ por $\frac{\partial F_S(s)}{\partial s}$ na segunda
Página144/parágrafo1/linha 3	que X e Y são variáeis	que X e Y são variáveis	Corrigir a palavra "variáveis"
Página 144/ parágrafo1/ linha 8	$F_X * F_Y(s) = \int_0^s F_Y(s-x) f_X(x) dx.$		Suprimir a linha 8 pois está repetido com a 7
Página 144/ parágrafo2/ linha 3	em que X _{is} são variáveis	em que X _{is} são variáveis	Trocar "X _{i's} ' por 'X _{i's} '
Página 148/ parágrafo4/linha 2	assumidos por S, obtendo	assumidos por S_1 , obtendo	Trocar "S" por "S ₁ " Trocar "." Por "×"
Página 148/ parágrafo4/linha 3	$P_{S_1}(0) = P_{X_1} * P_{X_2}(0) = \sum_{\substack{X_1 = 0 \\ = P_{X_2}(0)P_{X_1}(0) \\ = 0, 5.0, 7 \dots}}^{0} P_{X_2}(0 - x_1)P_{X_1}(x_1)$	$\begin{split} P_{S_1}(0) &= P_{X_1} * P_{X_2}(0) = \sum_{X_1=0}^{0} P_{X_2}(0 \\ &- x_1) P_{X_1}(x_1) \\ &= P_{X_2}(0) P_{X_1}(0) \\ &= 0.5 \times 0.7 \dots \end{split}$	Trocar "." Por "× "
Página 153 / rodapé	Consiste em uma variável aleatória cuja probabilidade é mistura entre	Consiste em uma variável aleatória resultante da "mistura" entre	
Página 154/ linha 12	$\int_0^\infty e^{st} (3e^{-3s}(e^s-1)^2) ds$	$\int_0^\infty e^{st} [3e^{-3s}(e^s - 1)^2] ds$ $3e^{-3s}(e^{2s} - 2e^s + 1)$	O uso correto dos colchetes e parênteses
Página 154/ linha 13	$\int_{0}^{\infty} e^{st} (3e^{-3s}(e^{s} - 1)^{2}) ds$ $\int_{0}^{\infty} e^{st} (3e^{-3s}(e^{2s} - 2e^{s} + 1)) ds$	$3e^{-3s}(e^{2s} - 2e^s + 1)$	O uso correto dos colchetes e parênteses
Página 154/ linha 14	$3e^{-3s}(e^{2s}-2e^s+1)$		Suprimir essa linha
Página 156/ linhas 11 e 12	,consequentemente $\sum_{x} x^{2} P(x I=0) = 0$. Dessa forma verifica-se que	,consequentemente $\sum_{x} x^{2} P(x I=0) = 0$. Dessa forma verifica-se que	Unir os parágrafos
Página 158/ parágrafo 1/ linhas {7,8,9,10}	Note que $var[E(X_i I_i)]$ também pode ser calculado por: $var[E(X_i I_i)] = E\left[\left(E(X_i I_i)\right)^2\right] - \left[E\left(E(X_i I_i)\right)\right]^2,$ $var[E(X_i I_i)] = \left[0^2(1-q_i) + \left(E(X_i I_i=1)\right)^2q_i\right] - E(X_i)^2,$ $var[E(X_i I_i)] = E(B_i)^2q_i - \left[E(B_i)q_i\right]^2$ $= E(B_i)^2(q_i - q_i^2).$	·	Retirar todo esse trecho
Página 159/ enunciado do exemplo 5.12 linha 3	$f_{B_1}(b) = \begin{cases} \frac{1}{2000} & \text{se } 0 < b \le 2000\\ 0 & \text{cc} \end{cases}$ Dado que $\mathbf{S}_{ind} = X_1 \dots$	$f_{B_1}(b) = \begin{cases} \frac{1}{2000} & \text{se } 0 < b \le 2000 \\ 0 & \text{caso contrário.} \end{cases}$ Dado que $S_{ind} = X_1 \dots$	Trocar "ce" por "caso contrário".
Página 159/ solução do exemplo 5.12 linha 1	Dado que $S_{ind} = X_1 \dots$	Dado que $S_{ind} = X_1 \dots$	Tirar o negrito
Página160/ parágrafo2/ linha 1	Seja S uma variável aleatória	Seja S_n uma variável aleatória	corrigir S_n
Página 160/ última linha	$Z_n = \frac{S_n n \mu}{\sigma \sqrt{n}}$	$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$	
Página 162/ linha 4	$E(e^{tx}) = 1 + E(X)t + \cdots$	$E(e^{tX}) = 1 + E(X)t + \cdots$	Mudar $E(e^{tx})$ por $E(e^{tX})$
Página 162/ linha 11	$Z_n = \frac{S_n n \mu}{\sigma \sqrt{n}}$ $E(e^{tx}) = 1 + E(X)t + \cdots$ $M_{\left(\frac{X-\mu}{\sigma}\right)}\left(\frac{t}{\sqrt{n}}\right) = 1 + a(t)$	$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$ $E(e^{tX}) = 1 + E(X)t + \cdots$ $M_{\left(\frac{X-\mu}{\sigma}\right)}\left(\frac{t}{\sqrt{n}}\right) = 1 + a(t)$	Colocar itálico em " $a(t)$ "

Página 162/ linha 12	$a(t) = \cdots$	$a(t) = \cdots$	Colocar itálico em " $a(t)$ "
Página 163/ linha 3	. n	r , t \ 1 ⁿ	Trocar X_i por X
Página 163/ linha 6	$M_{Z_n}(t) = \left[M_{\left(\frac{X_i - \mu}{\sigma}\right)} \left(\frac{t}{\sqrt{n}} \right) \right]^n$	$M_{Z_n}(t) = \left[M_{\left(\frac{X-\mu}{\sigma}\right)} \left(\frac{t}{\sqrt{n}} \right) \right]$	
	$n \ln \left[M_{\left(\frac{X_i - \mu}{\sigma} \right)} \left(\frac{t}{\sqrt{n}} \right) \right].$	$n \ln \left[M_{\left(\frac{X-\mu}{\sigma} \right)} \left(\frac{t}{\sqrt{n}} \right) \right].$	
Página 163/ linha 12	sufficientemente grande tal que $ a(t) < 1$, tem-se	sufficientemente grande tal que $ a(t) < 1$, tem-se	Colocar itálico em " $a(t)'$
Página 163/ linha 14	Observando a(t) nota-se que	Observando $a(t)$ nota-se que:	Colocar itálico em " $a(t)$ "
Página 164/ linha 6	com média 0 e variância.	com média 0 e variância 1.	Acrescentar 1.
Página 165/ última linha	Para uma maior acuária	Para uma maior acurácia	Corrigir a palavra acurácia
Página 166/ parágrafo0/ linha 2	da carteria	da carteira	
Página 166/ parágrafo1/ linha 4	$P(S_{ind} \ge \Pi_S) = \alpha$	$P(S_{ind} > \Pi_S) = \alpha$	
Página 168/ parágrafo0/ linha 3	Calcular prêmio puro total anual de modo que a probabilidade do sinistro agregado não exceda a 5% utilizando a aproximação Normal para S _{ind} .	Calcular o prêmio puro total anual de modo que a probabilidade de que o sinistro agregado não o exceda seja de 5%, utilizando a aproximação Normal para S _{ind} .	Substituir o texto pela versão reformulada
Página 171/ solução do exemplo 5.16 linha 2 (da letra b)	como as variaveis	como as variáveis	Colocar acento em "variáveis"
Página 173/ parágrafo 1/ linha 3	Ao se lidar com o Risco mediante	Ao se lidar com o risco mediante	Tirar a letra maiúscula da palavra "Risco"
Página 173/ parágrafo 1/ linha 6	Uma vez que essas teorias lidam com a incerteza relacionada ao acaso.		Suprimir todo esse trecho
Página 174/parágrafo 2/ linha 3	o prêmio de Riscos.	o prêmio de risco.	
Página 174/ solução do exemplo 5.17 linha 1	À primeira vista supõem que o segurado	À primeira vista o segurado	Suprimir "supõem que"
Página 174/ solução do exemplo 5.17 linha 3	medidas descritivas é uma comparação ainda se mostra muito	medidas descritivas é uma comparação que se mostra muito	Trocar "ainda " por "que"
Página 176/ enunciados do exemplo 5.18 Linha 6	$P_B(s) = \begin{cases} 0,14 & s = 0 \\ 0,2279 & s = 1 \\ 0,2075 & s = 2 \\ 0,1625 & s = 3 \\ 0,1078 & s = 4 \\ 0,0627 & s = 5 \\ 0,0369 & s = 6 \\ 0,0265 & s = 7 \\ 0,0148 & s = 8 \\ 0,0072 & s = 9 \\ 0,0038 & s = 10 \\ 0,0011 & s = 11 \\ 0,0003 & s = 12 \\ 0,001 & s = 13 \end{cases}$	$P_B(s) = \begin{cases} 0.14; & s = 0 \\ 0.2279; & s = 1 \\ 0.2075; & s = 2 \\ 0.1625; & s = 3 \\ 0.1078; & s = 4 \\ 0.0627; & s = 5 \\ 0.0369; & s = 6 \\ 0.0265; & s = 7 \\ 0.0148; & s = 8 \\ 0.0072; & s = 9 \\ 0.0038; & s = 10 \\ 0.0011; & s = 11 \\ 0.0003; & s = 12 \\ 0.001; & s = 13 \end{cases}$	Colocar ponto e vírgula ou aumentar o espaço
Página 177/ último parágrafo linhas 1,2,3,4 e 5.	Em geral, uma medida de risco é uma função ρ mapeando um risco X em um número real não negativo $\rho(X)$, possivelmente infinito, representando o dinheiro extra que tem que ser adicional a L para torná-lo adequadamente seguro para manter as operações de uma companhia A medida de risco é um mapeamento funcional a um número real	Em geral, uma medida de risco é uma função que mapeia o risco X em um número real não negativo $\rho(X)$, ou seja, a medida de risco é um mapeamento funcional a um número real	refeito
Página 178/ parágrafo 1	Desde 1999, pelos trabalhos iniciais do matemático Philippe Artzner, a literatura atuarial elencou alguns axiomas que define uma medida de <i>risco coerente</i> . Em geral, uma medida de risco será coerente se satisfazer os axiomas.	Uso de medidas de risco vai além do ramo de seguros, ela é amplamente utilizada na teoria de portfólios, como forma de avaliar o risco de uma carteira de investimentos baseados no retorno esperado. Em 1999, o matemático Philippe Artzner, elencou alguns axiomas que definem uma medida de risco coerente. Em geral, uma medida será coerente se satisfazer os axiomas:	Refeito
Página 178/ parágrafo 2/linha 2	$\rho(X+c) = \rho(X) + c$	$\rho(X+c) = \rho(X) - c$	
Página 178/ parágrafo 3/ linhas 2 e 3	uma companhia de seguros não há a necessidade de capital extra para a cobertura de suas atividades.	há uma redução no rico , redução por alocação.	
Página179/parágrafo1/ linha 4	Esta propriedade pode ser interpretada de tal forma, por exemplo, quando	Esta propriedade pode ser interpretada de tal forma que quando	refeito
Página 180/ parágrafo 1/linha 2	por uma seguradora em sua carteira de seguro.	por uma seguradora em uma carteira de seguro.	Trocar "sua" por "sua"
Página 180/ parágrafo 1/linha 5	Nesse sentido, o modelo de risco coletivo se diferencia do modelo de risco individual por modelar	Nesse sentido, o modelo de risco coletivo se diferencia por modelar	Suprimir "do modelo de risco individual"

Página180/ parágrafo1/ linha 7	enquanto que o modelo de risco individual essa modelagem de perda da carteira é realizada de apólice por apólice.	enquanto que no modelo de risco individual essa modelagem é realizada de apólice por apólice.	
Página 181/ último parágrafo	Para efeito de comparação, denote a variável $S_{\rm col}$ como a variável aleatória que representa o custo total das indenizações da carteira em dado tempo.		Suprimir todo esse parágrafo
Página 182/Última linha	F _{Scol} (x)	$F_{S_{col}}(s)$	Colocar itálico. E colocar
Página 183/linha 5	$p(X_1 + X_2 + + X_k \le s) = P^{*k}(s)$	$p(X_1 + X_2 + + X_k \le s) = P^{*k}(s)$	Colocar três pontos ()
Página 183/ parágrafo4/ linha 4	convolução de $p_X(x)$.	convolução .	Suprimir "de $p_X(x)$."
Página 184/ linha 1	a convolução e dois riscos vezes a probabilidade de dois sinistros	a convolução de dois riscos vezes a probabilidade de dois sinistros	Trocar "e" por "de"
Página 184/ parágrafo 3/linha 2	$P^{*k}(s) = \cdots$	$P^{*k}(s) = \cdots$	Tirar negrito
Página 184/ parágrafo 3/linha 4	$P^{*k}(s) = \cdots$	$P^{*k}(s) = \cdots$	Tirar negrito
Página 184/ parágrafo 3/linha 5	$P^{*k}(s) = \cdots$	$P^{*k}(s) = \cdots$	Tirar negrito
Página 186/ linha 1	Logo através	Através	Suprimir "Logo" e tirar recuo de parágrafo
Página 187/ Legenda da figura 5.5	Figura 5.5 – Comportamento de $F_{scol}(s)$ com $\alpha=0,2$ e $\lambda=10$ para diferentes quantidades de apólices n .	Figura 5.5 – Comportamento de $F_{S_{col}}(s)$, para $\alpha = 0.2$ e $\lambda = 10$ considerando diferentes valores n .	Reformular a legenda e colocar o S maiúsculo em $F_{S_{col}}$
Página 187/parágrafo3/ linha 5	Logo através	Através	Suprimir "Logo" e tirar recuo de parágrafo
Página 187/parágrafo3/ linha 7	$\int_0^s (\alpha e^{-\alpha(s-h)}) \alpha e^{-\alpha h} dh = \alpha^2 s e^{-\alpha s}$	$\int_0^s \left[\alpha e^{-\alpha(s-h)}\right] \alpha e^{-\alpha h} dh = \alpha^2 s e^{-\alpha s}$	O uso correto dos colchetes e parênteses
Página 188 Legenda da figura 5.6	Figura 5.6 – Comportamento de $f_{s_{col}}(s)$ com $\alpha = 0.2$ e $\lambda = 10$ para diferentes quantidades	Figura 5.6 – Comportamento de $f_{S_{col}}(s)$, para $\alpha = 0.2$ e $\lambda = 10$ considerando	Reformular a legenda e colocar o S maiúsculo em $f_{S_{col}}$
Página 189/ Último parágrafo/ linha 2	de apólices nsinistros agregados e associados as probabilidades de ocorrência.	diferentes valores nsinistros agregados associados as probabilidades de ocorrência.	Suprimir "e"
Página 189 última linha	Por definição, $p^{*0}(s) = \begin{cases} 0 \text{ se } s \neq 0 \\ 1 \text{ se } s = 0 \end{cases}$	Por definição, $p^{*0}(s) = \begin{cases} 0 \text{ se } s \neq 0 \\ 1 \text{ se } s = 0 \end{cases}$, logo para $k = 0$, temos:	Unir a última linha da página 189 com a primeira da página 190.
Página 190/ linha 1	Logo para $k = 0$,		Suprimir
Página 192/ parágrafo 1/linha 2	e os mesmos já têm suas probabilidade	que já têm suas probabilidade	
Página 194 último parágrafo linhas 4 e 5 (penúltima e última	combinar todas as combinações que	combinar todas as probabilidades que	
linha)	resultam no mesmo valor de sinistros	resultam do mesmo valor de sinistros	
Página 196/ linha 11	$p_{Scol}(s) = \begin{cases} 0.36 & s = 0 \\ 0.0240 & s = 1000 \\ 0.0724 & s = 2000 \\ 0.3864 & s = 3000 \\ 0.0164 & s = 4000 \\ 0.0384 & s = 5000 \\ 0.1024 & s = 6000 \end{cases}$	$p_{Scol}(s) = \begin{cases} 0.36; & s = 0 \\ 0.0240; & s = 1000 \\ 0.0724; & s = 2000 \\ 0.3864; & s = 3000 \\ 0.0164; & s = 4000 \\ 0.0384; & s = 5000 \\ 0.1024; & s = 6000 \end{cases}$	Colocar ponto e vírgula ou aumentar o espaço
Página 196/ linha 13	seja de <i>R</i> \$4000,00 o valor do prêmio	seja de <i>R</i> \$4000,00. Então o valor do prêmio	Separar a frase e acrescentar "Então"
Página 197/ linha antes da Tabela 21.	resultados para P^{*k} .	resultados para $P^{*k}(s)$.	
Página 198/ linha 1	Logo utilizando $F_{S_{col}}(s)$	Utilizando $F_{S_{col}}(s)$	Suprimir "Logo"
Página 198/ linha 2	$F_{Scol}(s) = \begin{cases} 0 & s < 0 \\ 0.36 & 0 \le s < 1000 \\ 0.384 & 1000 \le s < 2000 \\ 0.4564 & 2000 \le s < 3000 \\ 0.8428 & 3000 \le s < 4000 \\ 0.8592 & 4000 \le s < 5000 \\ 0.8976 & 5000 \le s < 6000 \\ 1 & s \ge 6000 \end{cases}$	$F_{Scol}(s) = \begin{cases} 0; & s < 0 \\ 0.36; & 0 \le s < 1000 \\ 0.384; & 1000 \le s < 2000 \\ 0.4564; & 2000 \le s < 3000 \\ 0.8428; & 3000 \le s < 4000 \\ 0.8592; & 4000 \le s < 5000 \\ 0.8976; & 5000 \le s < 6000 \\ 1; & s \ge 6000 \end{cases}$	Colocar ponto e vírgula ou aumentar o espaço
Página 198/ linha 3.	Adicionalmente pode-se calcular por exemplo o valor de puro de modo que	Adicionalmente pode-se calcular, por exemplo, o valor do puro de modo que	Colocar vírgulas e mudar "de" para "do".
Página 199/ linha 2	apólice X _i definida como:	apólice X_i definida por:	Substituir 'como:' por 'por:'
Página 206/ enunciado do exemplo 5.25 linhas 3 e 4	a) $N_1 \sim \text{Poisson}(\lambda)$ e $X_1 \sim \text{Exp}(\alpha)$ b) $N_2 \sim \text{Binomial}(n, q)$ e $X_2 \sim \text{Gama}(r, \alpha)$	a) $N_1 \sim P(\lambda)$ e $X_1 \sim Exp(\alpha)$ b) $N_2 \sim B(n,q)$ e $X_2 \sim Gama(r,\alpha)$	Corrigir e coloca itálico.
Página 211/ linha 5	Como já mencionado a distribuição de Poisson é pode ser	Como já mencionado a distribuição de Poisson pode ser	Suprimir "é"