Aprendizagem 2023 Homework III – Group 28

Gonçalo Bárias (ist1103124) & Raquel Braunschweig (ist1102624)

Part I: Pen and Paper

For questions in this group, show your numerical results with 5 decimals or scientific notation. Hint: we highly recommend the use of numpy (e.g., linalg.pinv for inverse) or other programmatic facilities to support the calculus involved in both questions (1) and (2).

1. Consider the problem of learning a regression model from 4 bivariate observations

$$\left\{ \begin{pmatrix} 0.7 \\ -0.3 \end{pmatrix}, \begin{pmatrix} 0.4 \\ 0.5 \end{pmatrix}, \begin{pmatrix} -0.2 \\ 0.8 \end{pmatrix}, \begin{pmatrix} -0.4 \\ 0.3 \end{pmatrix} \right\}$$
 with targets $(0.8, 0.6, 0.3, 0.3)$.

(a) Given the radial basis function, $\phi_j(x) = \exp\left(-\frac{\|\mathbf{x}-\mathbf{c}_j\|^2}{2}\right)$ that transforms the original space onto a new space characterized by the similarity of the original observations to the following data points $\{c_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T, c_2 = \begin{bmatrix} 1 & -1 \end{bmatrix}^T, c_3 = \begin{bmatrix} -1 & 1 \end{bmatrix}^T \}$. Learn the Ridge regression (l_2 regularization) using the closed solution with $\lambda = 0.1$.

Considering the data points along with the 4 bivariate observations, we can calculate the values of $\phi_1(x), \phi_2(x)$ and $\phi_3(x)$ for each observation, with $\phi_0(x)$ always being equal to 1.

x	$\phi_0(x)$	$\phi_1(x)$	$\phi_2(x)$	$\phi_3(x)$
(0.7, -0.3)	1	0.74826	0.74826	0.10127
(0.4, 0.5)	1	0.81465	0.27117	0.33121
(-0.2, 0.8)	1	0.71177	0.09633	0.71177
(-0.4, 0.3)	1	0.88250	0.16122	0.65377

Table 1: Value of $\phi_i(x)$ for each observation, j = 0, ..., 3

Our goal is to perform a regression where the prediction is given by:

$$\hat{z}(x,w) = w_0 \phi_0(x) + w_1 \phi_1(x) + w_2 \phi_2(x) + w_3 \phi_3(x)$$
 (1)

We know the parameters in the Ridge regression are given by (2), where X is the matrix after applying $\phi_i(x)$ to the observations (Table 1) and z is the vector of targets for the observations, $z = \begin{bmatrix} 0.8 & 0.6 & 0.3 & 0.3 \end{bmatrix}^T$.

$$w = \left(X^T X + \lambda I\right)^{-1} \cdot X^T z \tag{2}$$

$$X = \begin{bmatrix} 1.00000 & 0.74826 & 0.74826 & 0.10127 \\ 1.00000 & 0.81465 & 0.27117 & 0.33121 \\ 1.00000 & 0.71177 & 0.09633 & 0.71177 \\ 1.00000 & 0.88250 & 0.16122 & 0.65377 \end{bmatrix} \qquad X^T = \begin{bmatrix} 1.00000 & 1.00000 & 1.00000 & 1.00000 \\ 0.74826 & 0.81465 & 0.71177 & 0.88250 \\ 0.74826 & 0.27117 & 0.09633 & 0.16122 \\ 0.10127 & 0.33121 & 0.71177 & 0.65377 \end{bmatrix}$$

Therefore, we can then calculate the remaining values, until we get the vector w:

Note: The intermediate values and matrices, in both items of this exercise, show values rounded to 5 decimal places, but all intermediate calculations have been carried out without rounding.

$$X^{T}X = \begin{bmatrix} 4.00000 & 3.15718 & 1.27698 & 1.79802 \\ 3.15718 & 2.50897 & 0.99165 & 1.42916 \\ 1.27698 & 0.99164 & 0.66870 & 0.33955 \\ 1.79802 & 1.42917 & 0.33956 & 1.05399 \end{bmatrix}$$

$$X^{T}X + \mathbf{0.1}I = \begin{bmatrix} 4.10000 & 3.15718 & 1.27698 & 1.79802 \\ 3.15718 & 2.60897 & 0.99164 & 1.42917 \\ 1.27698 & 0.99164 & 0.76870 & 0.33956 \\ 1.79802 & 1.42917 & 0.33956 & 1.15399 \end{bmatrix}$$

$$\left(X^{T}X + 0.1I\right)^{-1} = \begin{bmatrix} 4.54826 & -3.77682 & -1.86117 & -1.86155 \\ -3.77682 & 5.98285 & -0.88543 & -1.26432 \\ -1.86117 & -0.88543 & 4.33276 & 2.72156 \\ -1.86155 & -1.26432 & 2.72156 & 4.53204 \end{bmatrix}$$

$$\left(X^{T}X + 0.1I\right)^{-1} \cdot X^{T} = \begin{bmatrix} 0.14105 & 0.35022 & 0.35575 & -0.30185 \\ -0.09064 & 0.43823 & -0.50361 & 0.53370 \\ 0.99394 & -0.50615 & -0.13690 & -0.16477 \\ -0.31222 & -0.65246 & 0.72647 & 0.42436 \end{bmatrix}^{T}$$

$$w = \left(X^{T}X + 0.1I\right)^{-1} \cdot X^{T}z = \begin{bmatrix} 0.33914 & 0.19945 & 0.40096 & -0.29600 \end{bmatrix}^{T}$$

Having calculated the vector w, we now know the values of each weight in the regression:

$$w_0 = 0.33914$$
 $w_1 = 0.19945$ $w_2 = 0.40096$ $w_3 = -0.29600$

Finally, replacing them in (1) gives us the regression expression:

$$\hat{z}(x, w) = 0.33914 + 0.19945 \,\phi_1(x) + 0.40096 \,\phi_2(x) - 0.29600 \,\phi_3(x) \tag{3}$$

(b) Compute the training RMSE for the learnt regression.

The RMSE (Root Mean Square Error) is given by:

RMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (z_i - \hat{z}_i)^2}$$
 (4)

N = 4, because we have 4 observations.

Using (3) from the previous exercise, we can determine \hat{z} for the 4 observations:

$$X = \begin{bmatrix} 1.00000 & 0.74826 & 0.74826 & 0.10127 \\ 1.00000 & 0.81465 & 0.27117 & 0.33121 \\ 1.00000 & 0.71177 & 0.09633 & 0.71177 \\ 1.00000 & 0.88250 & 0.16122 & 0.65377 \end{bmatrix} \land w = \begin{bmatrix} \mathbf{0.33914} \\ \mathbf{0.19945} \\ \mathbf{0.40096} \\ -\mathbf{0.29600} \end{bmatrix} \Rightarrow \hat{z} = Xw = \begin{bmatrix} 0.75844 \\ 0.51232 \\ 0.30905 \\ 0.38629 \end{bmatrix}$$

Finally, we can take $z = \begin{bmatrix} 0.8 & 0.6 & 0.3 & 0.3 \end{bmatrix}^T$ along with \hat{z} and calculate RMSE, using (4):

RMSE =
$$\sqrt{\frac{1}{4} \times \sum_{i=1}^{4} (z_i - \hat{z}_i)^2} = \sqrt{\frac{1}{4} \times 0.01694} = \mathbf{0.06508}$$

2. Consider a MLP classifier of three outcomes - A, B and C - characterized by the following weights and activation function for every unit:

$$W^{[1]} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}, b^{[1]} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, W^{[2]} = \begin{pmatrix} 1 & 4 & 1 \\ 1 & 1 & 1 \end{pmatrix}, b^{[2]} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, W^{[3]} = \begin{pmatrix} 1 & 1 \\ 3 & 1 \\ 1 & 1 \end{pmatrix}, b^{[3]} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$f(x) = \frac{e^{0.5x - 2} - e^{-0.5x + 2}}{e^{0.5x - 2} + e^{-0.5x + 2}} = \tanh(0.5x - 2)$$

We also have the squared error loss $\frac{1}{2}\|\mathbf{z} - \hat{\mathbf{z}}\|_2^2$. Perform one back gradient descent update (with learning rate $\eta = 0.1$) for training observations $x_1 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ and $x_2 = \begin{bmatrix} 1 & 0 & 0 & -1 \end{bmatrix}^T$ with targets B and A, respectively.

To help with the calculations and as suggested in the prompt, we used numpy to facilitate the calculus of this question. You can find the code in the Jupyter notebook G028.ipynb.

To begin, we initiate the process with the **forward pass**. Below are the key equations for this step:

$$\mathbf{z}^{[n]} = \mathbf{W}^{[n]} \cdot \mathbf{X}^{n-1} + \mathbf{b}^{[n]} \tag{5}$$

$$\mathbf{x}^{[n]} = f\left(\mathbf{z}^{[n]}\right) \tag{6}$$

We will start with x_1 :

$$\begin{split} z_1^{[1]} &= W^{[1]} \cdot X_1^0 + b^{[1]} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \\ 5 \end{pmatrix} \\ x_1^{[1]} &= f \left(z_1^{[1]} \right) \approx \begin{pmatrix} 0.46212 \\ 0.76159 \\ 0.46212 \end{pmatrix} \\ z_1^{[2]} &= W^{[2]} \cdot X_1^1 + b^{[2]} = \begin{pmatrix} 1 & 4 & 1 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0.46212 \\ 0.76159 \\ 0.46212 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \approx \begin{pmatrix} 4.97061 \\ 2.68583 \end{pmatrix} \\ x_1^{[2]} &= f \left(z_1^{[2]} \right) \approx \begin{pmatrix} 0.45048 \\ -0.57642 \end{pmatrix} \\ z_1^{[3]} &= W^{[3]} \cdot X_1^2 + b^{[3]} = \begin{pmatrix} 1 & 1 \\ 3 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0.45048 \\ -0.57642 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \approx \begin{pmatrix} 0.87406 \\ 1.77503 \\ 0.87406 \end{pmatrix} \end{split}$$

$$x_1^{[3]} = f\left(z_1^{[3]}\right) \approx \begin{pmatrix} -0.9159 \\ -0.80494 \\ -0.9159 \end{pmatrix}$$

Next in line is x_2 :

$$\begin{split} z_2^{[1]} &= W^{[1]} \cdot X_2^0 + b^{[1]} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \\ x_2^{[1]} &= f \left(z_2^{[1]} \right) \approx \begin{pmatrix} -0.90515 \\ -0.90515 \\ -0.90515 \end{pmatrix} \\ z_2^{[2]} &= W^{[2]} \cdot X_2^1 + b^{[2]} = \begin{pmatrix} 1 & 4 & 1 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -0.90515 \\ -0.90515 \\ -0.90515 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \approx \begin{pmatrix} -4.43089 \\ -1.71544 \end{pmatrix} \\ x_2^{[2]} &= f \left(z_2^{[2]} \right) \approx \begin{pmatrix} -0.99956 \\ -0.99343 \end{pmatrix} \\ z_2^{[3]} &= W^{[3]} \cdot X_2^2 + b^{[3]} = \begin{pmatrix} 1 & 1 \\ 3 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -0.99956 \\ -0.99343 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \approx \begin{pmatrix} -0.993 \\ -2.99212 \\ -0.993 \end{pmatrix} \\ x_2^{[3]} &= f \left(z_2^{[3]} \right) \approx \begin{pmatrix} -0.98652 \\ -0.99816 \\ -0.98652 \end{pmatrix} \end{split}$$

Let's initiate the **backpropagation** process. To do this, we first need to take into account the loss function, which, as per the prompt, is defined as follows:

$$\mathcal{L} = \frac{1}{2} \|\mathbf{z} - \hat{\mathbf{z}}\|_2^2 = \frac{1}{2} (\mathbf{t} - \mathbf{o})^2$$
 (7)

The next step involves computing its derivative:

$$\frac{d\mathcal{L}}{dW^{[p]}} = \sum_{i=1}^{2} \left(\frac{d\mathcal{L}}{dx_{i}^{[p]}} \circ \frac{dx_{i}^{[p]}}{dz_{i}^{[p]}} \cdot \frac{dz_{i}^{[p]}}{dW^{[p]}} \right)$$
(8)

This can be broken down into:

$$\frac{d\mathcal{L}}{dx_i^{[p]}} \circ \frac{dx_i^{[p]}}{dz_i^{[p]}} = \delta_i^{[p]}$$

$$\frac{dz_i^{[p]}}{dW^{[p]}} = \left(x_i^{[p-1]}\right)^T$$

After computing δ , we can split it into two separate cases: if it is in the last layer (9), or in non-external layers (10):

$$\delta_i^{[p]} = \left(x_i^{[p]} - z_i \right) \circ \operatorname{sech}^2 \left(0.5 \times z_i^{[p]} - 2 \right) \times 0.5 \tag{9}$$

$$\delta_i^{[p]} = \left(W^{[p+1]^T} \cdot \delta_i^{[p+1]} \right) \circ \operatorname{sech}^2 \left(0.5 \times z_i^{[p]} - 2 \right) \times 0.5 \tag{10}$$

Therefore, the derivitave of the loss fuction is given by:

$$\frac{d\mathcal{L}}{dW^{[p]}} = \sum_{i=1}^{2} \left(\delta_i^{[p]} \cdot \left(x_i^{[p-1]} \right)^T \right) \tag{11}$$

Since, the tanh function variates from -1 to 1 and since the targets for x_1 and x_2 are B and A, respectively, we can conclude that:

$$z_1 = \begin{bmatrix} -1 & 1 & -1 \end{bmatrix}^T$$
 $z_2 = \begin{bmatrix} 1 & -1 & -1 \end{bmatrix}^T$

Now, we have all we need to compute the values for the deltas, δ , by replacing the equation on (9) for p = 3, and (10) for any $p \neq 3$:

$$\begin{split} \delta_{1}^{[3]} &= \left(x_{1}^{[3]} - z_{1}\right) \circ \operatorname{sech}^{2}\left(0.5 \times z_{1}^{[3]} - 2\right) \times 0.5 = \\ &= \left(\begin{pmatrix} -0.9159 \\ -0.80494 \\ -0.9159 \end{pmatrix} - \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}\right) \circ \operatorname{sech}^{2}\left(0.5 \times \begin{pmatrix} 0.87406 \\ 1.77503 \\ 0.87406 \end{pmatrix} \times 0.5\right) = \\ &= \begin{pmatrix} 0.00678 \\ -0.31773 \\ 0.00678 \end{pmatrix} \\ \delta_{2}^{[3]} &= \left(x_{2}^{[3]} - z_{2}\right) \circ \operatorname{sech}^{2}\left(0.5 \times z_{2}^{[3]} - 2\right) \times 0.5 = \\ &= \left(\begin{pmatrix} -0.98652 \\ -0.99816 \\ -0.98652 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}\right) \circ \operatorname{sech}^{2}\left(0.5 \times \begin{pmatrix} -0.993 \\ -2.99212 \\ -0.993 \end{pmatrix} \times 0.5\right) = \\ &= \begin{pmatrix} -0.0266 \\ 0 \\ 0.00018 \end{pmatrix} \end{split}$$

$$\begin{split} \delta_{1}^{[2]} &= \left(W^{[3]^{T}} \cdot \delta_{1}^{[3]}\right) \circ \operatorname{sech}^{2}\left(0.5 \times z_{1}^{[2]} - 2\right) \times 0.5 = \\ &= \left(\begin{pmatrix} 11 \\ 31 \\ 11 \end{pmatrix}^{T} \cdot \begin{pmatrix} 0.00678 \\ -0.31773 \\ 0.00678 \end{pmatrix}\right) \circ \operatorname{sech}^{2}\left(0.5 \times \begin{pmatrix} 4.97061 \\ 2.68583 \end{pmatrix} - 2\right) \times 0.5 = \\ &= \begin{pmatrix} -0.37448 \\ -0.10156 \end{pmatrix} \\ \delta_{2}^{[2]} &= \left(W^{[3]^{T}} \cdot \delta_{2}^{[3]}\right) \circ \operatorname{sech}^{2}\left(0.5 \times z_{2}^{[2]} - 2\right) \times 0.5 = \end{split}$$

$$= \begin{pmatrix} \begin{pmatrix} 11\\31\\11 \end{pmatrix}^T \cdot \begin{pmatrix} -0.0266\\0\\-0.00018 \end{pmatrix} \circ \operatorname{sech}^2 \left(0.5 \times \begin{pmatrix} 4.97061\\2.68583 \end{pmatrix} - 2 \right) \times 0.5 = \\ = \begin{pmatrix} -1 \times 10^{-5}\\-1.7 \times 10^{-4} \end{pmatrix}$$

$$\begin{split} \delta_{1}^{[1]} &= \left(W^{[2]^{T}} \cdot \delta_{1}^{[2]}\right) \circ \operatorname{sech}^{2}\left(0.5 \times z_{1}^{[1]} - 2\right) \times 0.5 = \\ &= \left(\begin{pmatrix} 141 \\ 111 \end{pmatrix}^{T} \cdot \begin{pmatrix} -0.37448 \\ -0.10156 \end{pmatrix}\right) \circ \operatorname{sech}^{2}\left(0.5 \times \begin{pmatrix} 5 \\ 6 \\ 5 \end{pmatrix} - 2\right) \times 0.5 = \\ &= \begin{pmatrix} -0.18719 \\ -0.33587 \\ -0.18719 \end{pmatrix} \\ \delta_{2}^{[1]} &= \left(W^{[2]^{T}} \cdot \delta_{2}^{[2]}\right) \circ \operatorname{sech}^{2}\left(0.5 \times z_{2}^{[1]} - 2\right) \times 0.5 = \\ &= \left(\begin{pmatrix} 141 \\ 111 \end{pmatrix}^{T} \cdot \begin{pmatrix} -1 \times 10^{-5} \\ -1.7 \times 10^{-4} \end{pmatrix}\right) \circ \operatorname{sech}^{2}\left(0.5 \times \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - 2\right) \times 0.5 = \\ &= \begin{pmatrix} -2 \times 10^{-5} \\ -2 \times 10^{-5} \\ -2 \times 10^{-5} \end{pmatrix} \end{split}$$

Next, we will compute the derivatives of the loss function, employing the equation (11):

$$\begin{split} \frac{d\mathcal{L}}{dW^{[3]}} &= \sum_{i=1}^{2} \left(\delta_{i}^{[3]} \cdot (x_{i}^{[2]})^{T} \right) = \\ &= \left(\delta_{1}^{[3]} \cdot (x_{1}^{[2]})^{T} \right) + \left(\delta_{2}^{[3]} \cdot (x_{2}^{[2]})^{T} \right) = \\ &= \left(\begin{pmatrix} 0.00678 \\ -0.31773 \\ 0.00678 \end{pmatrix} \cdot \begin{pmatrix} 0.45048 \\ -0.57642 \end{pmatrix}^{T} \right) + \left(\begin{pmatrix} -0.0266 \\ 0 \\ 0.00018 \end{pmatrix} \cdot \begin{pmatrix} -0.99956 \\ -0.99343 \end{pmatrix}^{T} \right) = \\ &= \begin{pmatrix} 0.02964 & 0.02252 \\ -0.14314 & 0.18315 \\ 0.00287 & -0.00408 \end{pmatrix} \\ \frac{d\mathcal{L}}{dW^{[2]}} &= \sum_{i=1}^{2} \left(\delta_{i}^{[2]} \cdot (x_{i}^{[1]})^{T} \right) = \\ &= \left(\delta_{1}^{[2]} \cdot (x_{1}^{[1]})^{T} \right) + \left(\delta_{2}^{[2]} \cdot (x_{2}^{[1]})^{T} \right) = \\ &= \left(\begin{pmatrix} -0.37448 \\ 0.10156 \end{pmatrix} \cdot \begin{pmatrix} 0.46212 \\ 0.76159 \\ 0.46212 \end{pmatrix}^{T} \right) + \left(\begin{pmatrix} -1 \times 10^{-5} \\ -1.7 \times 10^{-4} \end{pmatrix} \cdot \begin{pmatrix} -0.90515 \\ -0.90515 \\ -0.90515 \end{pmatrix}^{T} \right) = \end{split}$$

$$= \begin{pmatrix} -0.17304 & -0.28519 & -0.17304 \\ -0.04678 & -0.07719 & -0.04678 \end{pmatrix}$$

$$\frac{d\mathcal{L}}{dW^{[1]}} = \sum_{i=1}^{2} \left(\delta_{i}^{[1]} \cdot (x_{i}^{[0]})^{T} \right) =$$

$$= \left(\delta_{1}^{[1]} \cdot (x_{1}^{[0]})^{T} \right) + \left(\delta_{2}^{[1]} \cdot (x_{2}^{[0]})^{T} \right) =$$

$$= \left(\begin{pmatrix} -0.18719 \\ -0.33587 \\ -0.18719 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}^{T} \right) + \left(\begin{pmatrix} -2 \times 10^{-5} \\ -2 \times 10^{-5} \\ -2 \times 10^{-5} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}^{T} \right) =$$

$$= \begin{pmatrix} -0.18721 & -0.18719 & -0.18719 & -0.18717 \\ -0.33589 & -0.33587 & -0.33587 \\ -0.18721 & -0.18719 & -0.18719 & -0.18717 \end{pmatrix}$$

The final step is to calculate the final weights and bias, which shall be given by the following equations:

$$W_{new}^{[i]} = W_{old}^{[i]} - \eta \nabla \mathcal{L}$$
(12)

$$b_{new}^{[i]} = b_{old}^{[i]} - \eta \sum_{k=1}^{2} \left(\delta_k^i \right)$$
 (13)

Considering $\eta = 0.1$ we have all the values we need to start computing the results.

By substituting the values into (12), we obtain the following weights:

$$\begin{split} W_{new}^{[1]} &= \begin{pmatrix} 1.01872 & 1.01872 & 1.01872 & 1.01872 \\ 1.03359 & 1.03359 & 2.03359 & 1.03359 \\ 1.01872 & 1.01872 & 1.01872 & 1.01872 \end{pmatrix} \\ W_{new}^{[2]} &= \begin{pmatrix} 1.0173 & 4.02852 & 1.0173 \\ 1.00468 & 1.00772 & 1.00468 \end{pmatrix} \\ W_{new}^{[3]} &= \begin{pmatrix} 0.99704 & 0.99775 \\ 3.01431 & 0.98169 \\ 0.99971 & 1.00041 \end{pmatrix} \end{split}$$

Finally, by replacing the values into (13), we get the following bias:

$$b_{new}^{[1]} = \begin{pmatrix} 1.01872 \\ 1.03359 \\ 1.01872 \end{pmatrix} \quad b_{new}^{[2]} = \begin{pmatrix} 1.03745 \\ 1.01017 \end{pmatrix} \quad b_{new}^{[3]} = \begin{pmatrix} 1.00198 \\ 1.03177 \\ 0.9993 \end{pmatrix}$$

Part II: Programming and critical analysis

Considering the winequality-red.csv dataset (available at the webpage) where the goal is to estimate the quality (sensory appreciation) of a wine based on physicochemical inputs.

Using a 80-20 training-test split with a fixed seed (random_state=0), you are asked to learn MLP regressors to answer the following questions.

Given their stochastic behavior, average the performance of each MLP from 10 runs (for reproducibility consider seeding the MLPs with random_state $\in \{1..10\}$).

1. Learn a MLP regressor with 2 hidden layers of size 10, rectifier linear unit activation on all nodes, and early stopping with 20% of training data set aside for validation. All remaining parameters (e.g., loss, batch size, regularization term, solver) should be set as default. Plot the distribution of the residues (in absolute value) using a histogram.

Blah

2. Since we are in the presence of a *integer regression* task, a recommended trick is to round and bound estimates. Assess the impact of these operations on the MAE of the MLP learnt in the previous question.

Blah

3. Similarly assess the impact on RMSE from replacing early stopping by a well-defined number of iterations in {20, 50, 100, 200} (where one iteration corresponds to a batch).

Blah

4. Critically comment the results obtained in the previous question, hypothesizing at least one reason why early stopping favors and/or worsens performance.

Blah