

# ESC201: Introduction to Electronics

## MODULE 5: AMPLIFIERS



Dr. Shubham Sahay,
Assistant Professor,
Department of Electrical Engineering,
IIT Kanpur

#### Two-Port Networks



- Port: A pair of terminals through which a signal can enter/leave the network
  - Constraints on analysis:
    - 1. Linear elements only (R,L,C, dependent sources,..)
    - 2. No independent sources or stored energy inside the network

No matter how complicated is the circuit inside the two-port network, it can be represented by only <u>four</u> elements!

#### Representation of Complex Elements Within Circuits



Two port network allows transistor representation in terms of familiar elements.



## Amplifier circuits



#### Voltage gain



$$V_o = -g_m V_i \times r_o \| R_L$$

$$A_{V} = \frac{V_{O}}{V_{S}} = -g_{m}r_{O} \times \frac{R_{L}}{r_{O} + R_{L}} \times \frac{R_{i}}{R_{i} + R_{S}}$$

**Necessary Condition for Voltage Amplification** 

$$|A_V| \le g_m \times r_0$$

$$g_m \times r_0 > 1$$

Large

 $g_m$ Large

 $r_{o}$ Large

## High voltage gain

$$g_m r_o >> 1$$

$$g_m >> \frac{1}{r_o} = g_o$$

Trans-conductance >> Output Conductance

Trans-resistance << Output resistance

i.e. current I<sub>O</sub> is much more sensitive to V<sub>IN</sub> than V<sub>O</sub>



## High voltage gain



i.e. current I<sub>O</sub> is much more sensitive to V<sub>IN</sub> than V<sub>O</sub>

- Can be used for voltage amplification
- Can be used as a switch
- Implement logic

• ...

#### Ideal transistor

$$A_V = \frac{V_o}{V_S} = -g_m r_o \times \frac{R_L}{r_o + R_L} \times \frac{R_i}{R_i + R_S}$$

• Ideally,  $r_o$  and  $R_i$  are infinite

$$A_V = -g_m R_L$$



Key device needed: voltage controlled current source

#### Ideal transistor characteristics





$$A_V = \frac{v_o}{v_s} = -g_m R_s$$





In practice there is no element which has the characteristics of ideal transistor!

#### Real transistors

Transfer Characteristic





metal-oxide-semiconductor fieldeffect transistor MOSFET



#### Real Devices to Amplifiers

#### **Ideal transistor**

Li. Siluuliaili Sallay LSC201



How do we use devices such as X, Y etc to make amplifiers?





## Simplified model X

Ideal transistor

Device X (non-linear)



$$I_o = \begin{cases} 0 & \text{for } V_i \leq V_{\alpha} \\ g_m(V_i - V_{\alpha}) & \text{for } V_i > V_{\alpha} \end{cases}$$





#### Amplifier circuit?











$$I_O = 0 \Rightarrow V_O = 0$$

No Amplification

#### Amplifier with biasing



$$V_{\alpha} = 1V; g_m = 0.01\Omega^{-1}$$
  
 $R_L = 1K;$ 



#### **Biasing**

When only a part of device characteristics is suitable for amplification, then we need to push the device into that region by applying suitable bias voltages.

$$V_o = -I_o R_L$$

Bias Voltage

 $V_B > V_\alpha$ 

# How to choose the bias voltage $V_B$ ?

- Choose  $V_B$  as the center point of desired operating range
- Otherwise: clipping!



 $V_B$ : Bias point or Quiescent point (Q-point)





Dr. Shubham Sahay ESC201



1.2m

1.6m

10.0m

8.0m

4.0m

2.0m

0.0m

0.4m

0.8m





Need to choose a

## No clipping





Unnecessary Power Dissipation

Dr. Shuonam Sanay ESC201



## Optimum biasing





## Removing the dc component





Capacitor is chosen large enough so that at the signal frequency,

$$\frac{1}{j\omega c} \sim 0$$



#### DC vs AC Components



# Large signal model: non linear

$$V_{\alpha} = 1V;$$
  

$$g_m = 0.01\Omega^{-1}$$









$$V_i = 1.5V I_o = g_m(V_i - V_\alpha) = 5 \text{mA}$$

Non-linear characteristics since superposition does not hold

## Small signal method

- Operate at some bias point  $V_D$ ,  $I_D$
- Superimpose small signal  $\boldsymbol{v}_d$  on top of  $\boldsymbol{V}_D$
- Response  $i_d$  to small signal  $v_d$  is approximately linear.

$$i_D = I_D + i_d$$
  $v_D = V_D + v_d$  signal Bias Additional small signal Signal

- Also known as
  - Incremental model
  - Linearized model
  - AC model

Linear  $i_d = k v_d$