```
In [1]: #Name : Ashwini V Kayande
         #Roll No : 60
         #Section : 3A
         #Date :05/10/2024
 In [3]: #Aim : To perform operation on logistic regression algorithm
 In [5]: import pandas as pd
         import matplotlib.pyplot as plt
         import numpy as np
         import seaborn as sns
         from sklearn.model selection import train test split
         import warnings
         warnings.filterwarnings('ignore')
 In [7]: import os
 In [9]: os.getcwd()
 Out[9]: 'C:\\Users\\user'
In [11]: os.chdir("C:\\Users\\user\\Desktop")
In [13]: df=pd.read csv("framingham.csv")
In [17]: df.head()
            male age education currentSmoker cigsPerDay BPMeds prevalentStrok
Out[17]:
         0
                1
                    39
                               4.0
                                                0
                                                           0.0
                                                                    0.0
         1
                0
                    46
                               2.0
                                                0
                                                           0.0
                                                                    0.0
         2
                1
                    48
                               1.0
                                                1
                                                          20.0
                                                                    0.0
         3
                0
                               3.0
                                                1
                                                          30.0
                                                                    0.0
                    61
                0
                    46
                               3.0
                                                1
                                                          23.0
                                                                    0.0
In [19]: df.describe()
```

Out[19]:	male		age	education	currentSmoker	cigsPerDay	
	count	4238.000000	4238.000000	4133.000000	4238.000000	4209.000000	41
	mean	0.429212	49.584946	1.978950	0.494101	9.003089	
	std	0.495022	8.572160	1.019791	0.500024	11.920094	
	min	0.000000	32.000000	1.000000	0.000000	0.000000	
	25%	0.000000	42.000000	1.000000	0.000000	0.000000	
	50 %	0.000000	49.000000	2.000000	0.000000	0.000000	
	75 %	1.000000	56.000000	3.000000	1.000000	20.000000	
	max	1.000000	70.000000	4.000000	1.000000	70.000000	

In [21]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4238 entries, 0 to 4237
Data columns (total 16 columns):

- 0 0.	0010		
#	Column	Non-Null Count	Dtype
0	male	4238 non-null	int64
1	age	4238 non-null	int64
2	education	4133 non-null	float64
3	currentSmoker	4238 non-null	int64
4	cigsPerDay	4209 non-null	float64
5	BPMeds	4185 non-null	float64
6	prevalentStroke	4238 non-null	int64
7	prevalentHyp	4238 non-null	int64
8	diabetes	4238 non-null	int64
9	totChol	4188 non-null	float64
10	sysBP	4238 non-null	float64
11	diaBP	4238 non-null	float64
12	BMI	4219 non-null	float64
13	heartRate	4237 non-null	float64
14	glucose	3850 non-null	float64
15	TenYearCHD	4238 non-null	int64
	63 . 64 (6)		

dtypes: float64(9), int64(7)

memory usage: 529.9 KB

In [23]: df.isna().sum()

Out[23]:	male	0
	age	0
	education	105
	currentSmoker	0
	cigsPerDay	29
	BPMeds	53
	prevalentStroke	0
	prevalentHyp	0
	diabetes	0
	totChol	50
	sysBP	0
	diaBP	0
	BMI	19
	heartRate	1
	glucose	388
	TenYearCHD	0
	dtype: int64	

In [25]: **df**

Out[25]:		male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentS
	0	1	39	4.0	0	0.0	0.0	
	1	0	46	2.0	0	0.0	0.0	
	2	1	48	1.0	1	20.0	0.0	
	3	0	61	3.0	1	30.0	0.0	
	4	0	46	3.0	1	23.0	0.0	
	4233	1	50	1.0	1	1.0	0.0	
	4234	1	51	3.0	1	43.0	0.0	
	4235	0	48	2.0	1	20.0	NaN	
	4236	0	44	1.0	1	15.0	0.0	
	4237	0	52	2.0	0	0.0	0.0	

4238 rows × 16 columns

```
In [27]: df['glucose'].fillna(value = df['glucose'].mean(),inplace=True)
In [29]: df['education'].fillna(value = df['education'].mean(),inplace=True)
In [31]: df['heartRate'].fillna(value = df['heartRate'].mean(),inplace=True)
In [33]: df['BMI'].fillna(value = df['BMI'].mean(),inplace=True)
In [35]: df['cigsPerDay'].fillna(value = df['cigsPerDay'].mean(),inplace=True)
```

```
In [37]: df['totChol'].fillna(value = df['totChol'].mean(),inplace=True)
In [39]: df['BPMeds'].fillna(value = df['BPMeds'].mean(),inplace=True)
In [41]: df.isna().sum()
                              0
Out[41]: male
                              0
          age
          education
                              0
          currentSmoker
                              0
          cigsPerDay
                              0
          BPMeds
                              0
          prevalentStroke
                              0
                              0
          prevalentHyp
          diabetes
                              0
          totChol
                              0
                              0
          svsBP
          diaBP
                              0
          BMI
                              0
          heartRate
                              0
          glucose
                              0
          TenYearCHD
                              0
          dtype: int64
In [43]: #Splitting the dependent and independent variables.
         x = df.drop("TenYearCHD",axis=1)
         y = df['TenYearCHD']
In [45]: x #checking the features
                male age education currentSmoker cigsPerDay BPMeds prevalentS
Out[45]:
             0
                    1
                        39
                                   4.0
                                                     0
                                                                0.0
                                                                     0.00000
             1
                    0
                        46
                                   2.0
                                                     0
                                                                0.0
                                                                     0.00000
             2
                    1
                        48
                                   1.0
                                                     1
                                                               20.0 0.00000
             3
                                                     1
                    0
                        61
                                   3.0
                                                               30.0
                                                                     0.00000
                                   3.0
                                                     1
             4
                    0
                        46
                                                               23.0 0.00000
             ...
                        ...
                                    ...
                   ...
          4233
                                   1.0
                                                     1
                                                                     0.00000
                    1
                        50
                                                                1.0
          4234
                    1
                        51
                                   3.0
                                                     1
                                                               43.0
                                                                     0.00000
          4235
                    0
                        48
                                   2.0
                                                     1
                                                               20.0 0.02963
          4236
                    0
                        44
                                   1.0
                                                     1
                                                               15.0 0.00000
          4237
                                   2.0
                    0
                        52
                                                     0
                                                                0.0 0.00000
```

4238 rows \times 15 columns

```
In [59]:
         y_train
Out[59]: 3252
                  0
          3946
                  0
          1261
                  0
          2536
                  0
          4089
                  0
          3444
                  0
          466
                  0
          3092
                  0
          3772
                  0
          860
                  0
         Name: TenYearCHD, Length: 3390, dtype: int64
In [61]: from sklearn.linear_model import LogisticRegression
         model = LogisticRegression().fit(x_train,y_train)
         model.score(x_train, y_train)
Out[61]: 0.8492625368731563
 In [ ]:
```