

Interprétation : fonctions, prédicats et connecteurs

L'interprétation des symboles de constante, fonction et prédicat d'un langage logique s'obtient à partir d'une structure $\mathbf{M} = (|\mathbf{M}|, (f^{\mathbf{M}})_{f \in \mathcal{F}}, (p^{\mathbf{M}})_{p \in \mathcal{P}})$ définie par :

- d'un ensemble $|\mathbf{M}|$ non vide, appelé le domaine d'interprétation de \mathbf{M}
- d'une application qui associe à toute constante $k \in \mathcal{F}_0$ un élément $k^{\mathbf{M}} \in |\mathbf{M}|$
- d'une application qui associe à tout $f \in \mathcal{F}_n$ une application $f^{\mathbf{M}} : |\mathbf{M}|^n \to |\mathbf{M}|$
- d'une application qui associe à tout $p \in \mathcal{P}_0$ un booléen $p^{\mathbf{M}} \in \mathbb{B}$
- d'une application qui associe à tout $p \in \mathcal{P}_n$ une relation $p^{\mathbf{M}} \subseteq |\mathbf{M}|^n$

Expressions booléennes

L'ensemble des expressions booléennes est défini inductivement à partir de $\mathbb{B} = \{0, 1\}$ par :

- les booléens 0 et 1 sont des expressions booléennes.
- si e_1 et e_2 sont des expressions booléennes alors $\overline{e_1}$, $e_1 + e_2$ et $e_1 \cdot e_2$ sont des expressions booléennes

Interprétation des formules d'un langage logique sans variable

L'interprétation des termes est définie par :

$$[]^{\mathbf{M}}: \mathcal{T}_0(\mathcal{F}) \to |\mathbf{M}| \qquad \qquad [t]^{\mathbf{M}} = \begin{cases} k^{\mathbf{M}} & \text{si } t = k \in \mathcal{F}_0 \\ f^{\mathbf{M}}\left([t_1]^{\mathbf{M}}, \cdots, [t_n]^{\mathbf{M}}\right) & \text{si } t = f(t_1, \cdots, t_n) \end{cases}$$

L'interprétation des formules atomiques est définie par :

$$\mathbf{I}_{\mathbf{M}}: \mathcal{L}_{0}(\mathcal{F}, \mathcal{P}) \to \mathbb{B} \qquad \begin{array}{c} (p \in \mathcal{P}_{0}) & \mathbf{I}_{\mathbf{M}}(p) = p^{\mathbf{M}} \\ (p \in \mathcal{P}_{n}) & \mathbf{I}_{\mathbf{M}}(p(t_{1}, \cdots, t_{n})) = \begin{cases} 1 & \text{si } ([t_{1}]^{\mathbf{M}}, \cdots, [t_{n}]^{\mathbf{M}}) \in p^{\mathbf{M}} \\ 0 & \text{sinon} \end{cases}$$

L'expression booléenne permettant d'interpréter une formule est définie par :

$$\begin{split} [\mathsf{true}]^{\mathbf{M}} &= 1 & [\neg F]^{\mathbf{M}} = \overline{[F]^{\mathbf{M}}} \\ [\mathsf{false}]^{\mathbf{M}} &= 0 & [F_1 \wedge F_2]^{\mathbf{M}} = [F_1]^{\mathbf{M}} \cdot [F_2]^{\mathbf{M}} \\ [F]^{\mathbf{M}} &= \mathbf{I}_{\mathbf{M}}(F) \text{ si } F \in \mathcal{L}_0(\mathcal{F}, \mathcal{P}) & [F_1 \vee F_2]^{\mathbf{M}} = [F_1]^{\mathbf{M}} + [F_2]^{\mathbf{M}} \\ & [F_1 \Rightarrow F_2]^{\mathbf{M}} = \overline{[F_1]^{\mathbf{M}}} + [F_2]^{\mathbf{M}} \end{split}$$

Deux formules $F_1, F_2 \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$, sont **logiquement équivalentes**, ce que l'on note $F_1 \models F_2$, si et seulement si, pour toute structure $\mathbf{M}, [F_1]^{\mathbf{M}} = [F_2]^{\mathbf{M}}$.

Une formule $F \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$ est **satisfiable** si et seulement si il existe une structure **M** telle que $[F]^{\mathbf{M}} = 1$ (**M** est alors un **modèle** de F).

Une formule $F \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$ est valide (c'est une tautologie), ce qui se note $\models F$, si et seulement si $[F]^{\mathbf{M}} = 1$ pour toute structure \mathbf{M} .

Une formule $F \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$ est **insatisfiable** si et seulement si $[F]^{\mathbf{M}} = 0$ pour toute structure \mathbf{M} .

Une formule $F_1 \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$ est une **conséquence sémantique** d'une formule $F_2 \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$, ce que l'on note $F_2 \models F_1$, si et seulement si pour toute structure \mathbf{M} , si $[F_2]^{\mathbf{M}} = 1$, alors $[F_1]^{\mathbf{M}} = 1$. Lorsque Γ est un ensemble de formules on étend cette définition par : $\Gamma \models F_1$ si et seulement si pour toute structure \mathbf{M} , si $[F]^{\mathbf{M}} = 1$ pour toute formule $F \in \Gamma$, alors $[F_1]^{\mathbf{M}} = 1$.

Proposition. $F_1 \models F_2$ si et seulement si $F_1 \Rightarrow F_2$ est valide.

Proposition. $F_1 \models F_2$ si et seulement si $F_1 \models F_2$ et $F_2 \models F_1$.