# Türev

# Türev ve Gradyan

Function: 
$$f(x)$$

Derivative: 
$$f'(x) = \frac{df}{dx}$$
, x is a scalar

Function: 
$$f(x_1, x_2, ..., x_n)$$

Gradient: 
$$\nabla f(x_1, x_2, ..., x_n) = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n})$$

#### 1D Türev

$$\frac{\partial f}{\partial x} = f'(x) = \frac{f(x) - f(x - \Delta x)}{\Delta x} = f(x) - f(x - 1)$$
  $\Delta x = 1$  seçilirse

Sol Fark

Sağ Fark

 $\frac{df}{dx} = f(x) - f(x-1) = f'(x)$ 

$$\frac{df}{dx} = f(x) - f(x+1) = f'(x)$$

İmgede tek piksellik kayma olur

Merkezi Fark

$$\frac{df}{dx} = f(x+1) - f(x-1) = f'(x)$$

$$-1 \quad 0 \quad 1$$
Kayma olmaz

### 1D Türev

| f(x) =   | 10 | 15 | 10  | 10 | ₽25 | 20 | 20 | 20 |
|----------|----|----|-----|----|-----|----|----|----|
| f'(x) =  | 0  | 5  | -5  | 0  | 15  | -5 | 0  | 0  |
| f''(x) = | 0  | 5  | -10 | 5  | 15  | 20 | 5  | 0  |

# 2b Gradyan



### 2b Gradyan















 $-I(r_0,c+1)$ 





## 2b Gradyan



□ 510□ 255□ 0■ -255















$$4I(r,c) - I(r-1,c) - I(r+1,c) - I(r,c-1) - I(r,c+1)$$



# Gradyan büyüklüğü (magnitude) ve yönü (direction)

Given function 
$$f(x,y)$$
 Gradient vector 
$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$
 Gradient magnitude 
$$|\nabla f(x,y)| = \sqrt{f_x^2 + f_y^2}$$
 Gradient direction 
$$\theta = \tan^{-1} \frac{f_x}{f_y}$$

# Gradyan büyüklüğü (M(x,y)) ve yönü $(\theta)$

$$M(x,y) = \sqrt{{f_x}^2 + {f_y}^2}$$

Sonuç isotropic yani yönden bağımsızdır (rotation invariant)

$$M(x, y) \approx |f_x| + |f_y|$$

Bu hesaplama üstekine göre daha hızlıdır.

$$\theta(x,y) = tan^{-1} \left[ \frac{f_y}{f_x} \right]$$

$$\theta = atan2(f_y, f_x)$$







# Yatay ve dikey gradyan hesapla

Derivative masks 
$$f_x \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
  $f_y \Rightarrow \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$ 

# Gradyan büyüklüğü ve açısını hesapla



- Gradient yönü kenara diktir.
- Bu nedenle gradient genellikle dik kenar vektörü olarak adlandırılır

Gri piksel değerlerini 0, beyazları 1 düşünerek ilgili pikselin kenar büyüklük ve yönünü hesaplarsak:

$$f_x = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} = 2$$

$$f_y = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} = -2$$

$$M(x, y) = 2\sqrt{2}$$
  
  $\theta = -45$  veya 135

#### Adım, rampa ve çatı kenar





#### Sonuç olarak;

- Birinci türev kenar büyüklüğünü, ikinci türev kenarın başladığı noktayı ifade eder.
- Birinci türev kalın kenar üretir.
- Birinci türev, rampa ve step kenarların ortaya
   çıkmasında, ikinci türev ise kenar lokasyonunun
   belirlenmesinde daha güçlüdür.
- İkinci türev, ince çizgiler, izole noktalar ve gürültüler gibi ince detayları daha net ortaya çıkartır.
- İkinci türev step kenarda çift kenar üretir.
- İkinci türevin işareti açıktan koyuluğa veya koyuluktan açıklığa geçişi tanımlamak için kullanılabilir.

### Gürültü ile türev ilişkisi



#### Bu uygulama türevlerin gürültü duyarlılığına iyi bir örnektir.

- Görüldüğü gibi ikinci türev, gürültüye karşı oldukça duyarlıdır. Yani gürültülü görüntüde ikinci türev bilgisini kullanmak mantıklı değildir.
- Bu uygulamalarda, türev hesabından önce gürültü eliminasyonuyla görüntülerin yumuşatılmasının büyük öneme sahip olduğu ortaya çıkmaktadır.

### Rampa kenarın türevleri



Sıfır geçişler rampa kenar noktasının konumunu belirtir.

# İkinci türev -> Laplacian

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial f'(x)}{\partial x} = f'(x+1) - f'(x)$$

$$= f(x+2) - f(x+1) - f(x+1) + f(x)$$

$$= f(x+2) - 2f(x+1) + f(x)$$

$$\frac{\partial^2 f}{\partial x^2} = f''(x) = f(x+1) + f(x-1) - 2f(x) \longrightarrow 1 -2 1$$

$$\frac{\partial^2 f}{\partial y^2} = f''(y) = f(y+1) + f(y-1) - 2f(y) \longrightarrow 1$$

$$\frac{\partial^2 f}{\partial y^2} = f''(y) = f(y+1) + f(y-1) - 2f(y) \longrightarrow 1$$

#### İkinci türev maskeleri

| 0    | 1  | 0  | 1  | 1  | 1  |  |
|------|----|----|----|----|----|--|
| 1    | -4 | 1  | 1  | -8 | 1  |  |
| 0    | 1  | 0  | 1  | 1  | 1  |  |
| 0    | -1 | 0  | -1 | -1 | -1 |  |
| -1   | 4  | -1 | -1 | 8  | -1 |  |
| 0 -1 |    | 0  | -1 | -1 | -1 |  |

#### Matlab

fspecial('laplacian', alpha) 
$$\frac{\alpha}{1+\alpha} \frac{1-\alpha}{1+\alpha} \frac{\alpha}{1+\alpha} \\ \frac{1-\alpha}{1+\alpha} \frac{-4}{1+\alpha} \frac{1-\alpha}{1+\alpha} \\ \frac{\alpha}{1+\alpha} \frac{1-\alpha}{1+\alpha} \frac{\alpha}{1+\alpha}$$

#### Örnek Uygulama



Orijinal Görüntü

Maskeden Sonra

Eşik Uygulanmış

#### Jakobian

m adet fonksiyon değerini içeren bir  ${m F}$  fonksiyonu düşünün.

$$F(x_1, x_2, ..., x_n) = (f_1(x_1, x_2, ..., x_n), f_2(x_1, x_2, ..., x_n), ..., f_m(x_1, x_2, ..., x_n))$$

Bu fonksiyonun türevi nedir?

$$J(F) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$