# Lecture: Energy Systems - 2

Instructor

Prof. B. G. Fernandes



#### **TRANSFORMERS**

An important device used in power transmission, electronic circuits & communication systems.

- ⇒ consists of a magnetic circuit in which a time varying 'φ' lines link two or more coils
- $\Rightarrow$  coupling can be air  $\rightarrow$  air core transformer Iron  $\rightarrow$  iron core transformer

core is made up of laminations to ↓ core loss

<u>Purpose</u>: Transfer electric energy from one circuit to another

Electrical Energy Magnetic Energy Electrical Energy



No electrical connection between two circuits.

⇒ Electrically isolated

#### Principle of Operation:

⇒ magnetic circuit in which time varying flux links two or more coils

winding connected to source  $\rightarrow$  Primary winding connected to load  $\rightarrow$  Secondary

Primary when connected to alternating source & secondary is open

 $\Rightarrow$  no current in secondary

 $\Rightarrow$  AT produced by secondary = 0







- $\Rightarrow$  AT supplied is just sufficient to establish ' $\phi$ ' in the core
- ⇒ If core is highly permeable, this AT is small (how small is this small?)
- $\Rightarrow$  since ' $\phi$ ' is alternating  $\Rightarrow$  core loss
- $\Rightarrow$  source has to supply some power
- ⇒ for the present we will neglect
- $\Rightarrow$  Time varying ' $\phi$ ' links  $N_1$  turns & voltage ( $e_1/E_1$ ) is induced

$$E_1 = 4.44 f \phi_m N_1$$
  $\phi_m \rightarrow$  peak value of ' $\phi$ '  $E_1 \approx V_1$ 

 $\Rightarrow$  same ' $\phi$ ' links the secondary



 $\Rightarrow e_2, E_2$  is the voltage induced in  $N_2$ 

$$E_2 = 4.44 f \phi_m N_2$$
$$E_2 \approx V_2$$

 $\Rightarrow$  E<sub>2</sub> & E<sub>1</sub> are in phase

$$\therefore \frac{\mathsf{E}_2}{\mathsf{E}_1} = \frac{\mathsf{N}_2}{\mathsf{N}_1}$$

If  $N_2 > N_1 \Rightarrow$  Step up transformer  $N_2 < N_1 \Rightarrow$  Step down transformer

Connect the load to secondary i<sub>2</sub> will flow

 $\Rightarrow$  which sets up its own flux,  $\phi_2$ 







- $\Rightarrow$  This  $\phi_2$  opposes the parent ' $\phi$ '
- $\Rightarrow$  flux in the core tends to  $\downarrow$
- $\Rightarrow$  E<sub>1</sub> tends to  $\downarrow$

But, V<sub>1</sub> is held constant

 $V_1 = E_1 \& : '\varphi'$  in the core should remain constant

 $\Rightarrow$  can happen when  $i_1 \uparrow$  such that

$$N_1I_1 - N_2I_2 = \Re \phi$$

 $\Rightarrow$  ' $\varphi$ ' in the core is determined by  $V_1$  alone



### Induction machine

- Consider 3 coils of 'N' turns, displaced in space by 120° 😺
- Let  $i_a$ ,  $i_b$  &  $i_c$  are given as

$$i_a = I_m \sin(\omega_s t)$$
  
 $i_b = I_m \sin(\omega_s t - \frac{2\pi}{3}),$   
 $i_c = I_m \sin(\omega_s t - \frac{4\pi}{3}),$  where  $\omega_s = 2\pi f$ 



- Current in each coil produces a pulsating magnetic field
- Amplitude & direction depend on the instantaneous value of 'I' flowing through it
- Each phase winding produces a similar magnetic field displaced by 120° in space from each other



#### Induction machine

Magnitude and position of the resultant field can be determined as follows

- Resolve the field produced by individual coil along x & y axes
- Determine  $\sum x \& \sum y$  components

• Resultant, 
$$R = \sqrt{(\sum x)^2 + (\sum y)^2}$$
 
$$\theta = \tan^{-1} \frac{\sum y}{\sum x}, \text{ w.r.t axis of coil 'A'}$$

$$\sum x = Ni_a + Ni_b \cos(-120)$$

$$+ Ni_c \cos(-240)$$

$$= Ni_a - \frac{1}{2}Ni_b - \frac{1}{2}Ni_c$$

$$\because i_a + i_b + i_c = 0, \Rightarrow \sum x = \frac{3}{2}Ni_a$$

$$\sum y = 0 + Ni_b \sin(-120) + Ni_c \sin(-240)$$

$$= -\frac{\sqrt{3}}{2} Ni_b + \frac{\sqrt{3}}{2} Ni_c$$

$$\Rightarrow \sum y = \frac{\sqrt{3}}{2} N(i_c - i_b)$$



## $i_a$ , $i_b$ & $i_c$ are sinusoidal varying quantities

| $\omega_{s}t$    | <b>i</b> a      | i <sub>b</sub>                 | i <sub>c</sub>                 | Σχ                  | Σγ                          | R                                   | θ                |
|------------------|-----------------|--------------------------------|--------------------------------|---------------------|-----------------------------|-------------------------------------|------------------|
| $\mathbf{O}_{0}$ | O               | $\frac{-\sqrt{3}}{2}I_{\rm m}$ | $\frac{\sqrt{3}}{2}I_{\rm m}$  | O                   | $\frac{3}{2}NI_{m}$         | $\frac{3}{2}NI_{m}$                 | $\frac{\pi}{2}$  |
| 30°              | $\frac{I_m}{2}$ | — <b>I</b> <sub>m</sub>        | $\frac{I_m}{2}$                | $\frac{3}{4}NI_{m}$ | $\frac{3\sqrt{3}}{4}NI_{m}$ | $\frac{3}{2}NI_{m}$                 | $\frac{\pi}{3}$  |
| 900              | <b>I</b> m      | $\frac{-\mathbf{I}_{m}}{2}$    | $\frac{-\mathbf{I}_{m}}{2}$    | $\frac{3}{2}NI_{m}$ | O                           | $\left  \frac{3}{2} NI_{m} \right $ | O                |
| 1800             | O               | $\frac{\sqrt{3}}{2}I_{\rm m}$  | $\frac{-\sqrt{3}}{2}I_{\rm m}$ | O                   | $\frac{3}{2}NI_{m}$         | $\frac{3}{2}NI_{m}$                 | $\frac{-\pi}{2}$ |



#### **Observations:**

- Magnitude of 'R' is constant and equal to  $\frac{3}{2}NI_m$  where  $I_m$  is the peak
- Input 'I' completes 1/4 cycle, 'R' rotates by 90°
- Input 'l' completes 1/2 cycle, 'R' rotates by 180°

#### **Conclusion:**

- The result of displacing 3 windings by 120° in space and displacing the winding 'I' by 120° in time phase is a single revolving field of constant magnitude
- For a given winding arrangements speed of rotation is determined by f' of input alone



#### Rotor construction

squirrel cage → aluminum/ copper bars are embedded in the rotor slots and permanently shorted at both ends by Al/Cu end rings

- ⇒ electrically closed circuit
- ⇒ no additional 'R' can be connected



