k prototypes Clustering

for Mixed-Type Data

Gero Szepannek

Scope

- Gold standard for clustering in industry:
 - K-means
 - Hierarchical Clustering (x-Linkage & Ward)
 - SOMs
- ...originally designed for numeric data.
- For factors only...
 - ... latent class analysis can be used (e.g. using {poLCA}; Linzer and Lewis, 2014)
 - The k modes algorithm extends k means to factors (cf. {klaR}; Roever et al., 2014)
- But for most BI applications both are of interest: numerics and factors.
- Common practice:
 - Hierarchical Clustering using Gower distance (e.g. using {cluster}; Maechler et al., 2016)
 - Pre-Transform of factors into dummies (cf. Weihs and Szepannek, 2010, e.g. using {caret}; Kuhn, 2016)
- An alternative approach: k prototypes (Huang, 1998) generalizes k modes for mixed type data ({clustMixType}; Szepannek, 2016).

Basic k Means Algorithm

- Initialize k centers.
- 2. Assignment of each observation to its closest center.
- 3. Cluster update of center as means according to the new assignment.
- 4. Repeat 2. and 3. until convergence or maximum number of iterations.

From k Means to k Prototypes

- For **numeric** variables the cluster mean is the prototype with minimal euclidean distance to all objects (cf. e.g. Hastie et al., 2009).
- Likewise for factor variables the mode minimizes simple matching distances, it is:

$$\sum_{i=1}^{n_k} I(x_i \neq x_{mode}) = min$$

(number of objects different from x_{mode})

Both means and modes are calculated for each variable separately!

This allows do define a prototype update step in the mixed type setting.

Cluster Assignment

 According to the former considerations a mixed-type distance is defined by:

$$d_{mix}(x,y) = \sum_{j=1}^{p} (x^{j} - y^{j})^{2} + \lambda \sum_{j=p+1}^{q} I(x^{j} \neq y^{j})$$

- ...where the upper index j denotes the variable (p numerics and (q-p) factors)
- The parameter λ allows to control the trade-off between numeric and factor variables in distance computation.

According to d_{mix} in each step clusters will be re-assigned.

The Package clustMixType

- The R package clustMixType (Szepannek, 2016) offers access to:
 - ...a function kproto() to perform k prototype clustering
 - ...a predict () method for application to new data,
 - ...a function clprofiles () to visualize cluster profiles.
- Basic call: kproto(x, k, lambda = NULL, iter.max = 100, nstart = 1)
 creates an object of class kproto where
 - x is a data frame
 - k the number of clusters and (note that alternatively a vector of prototype indices can be passed)
 - lambda the control parameter (cf. last slide)
 - iter.max and nstart control termination of the algorithm and multiple calls (as the algorithm only locally converges it depends on initialization. The best solution of repetitve calls will be returned.)

Example

Design:

- 4 clusters
- 4 variables (2 numeric, 2 factor)
- 100 observations | cluster

Cluster	Num1	Num2	Factor1	Factor2
1	+	+	+	+
2	-	-	+	+
3	+	+	-	-
4	-	-	-	-

Result: kmeans like object of class kproto

: int [1:7] 400 77 33 17 7 2 0

- attr(*, "class")= chr "kproto"

```
List of 9
$ cluster
              : int [1:400] 2 2 2 2 2 2 3 2 2 2 ...
                                                                Numeric predictors: 2
                                                                Categorical predictors: 2
              :'data.frame': 4 obs. of 4 variables:
 ..$ x1: Factor w/ 2 levels "A", "B": 1 1 2 2
                                                                Lambda: 6.768405
 ..$ x2: Factor w/ 2 levels "A", "B": 1 1 2 2
 ..$ x3: num [1:4] 1.65 -1.57 -1.67 1.19
                                                                Number of Clusters: 4
 ..$ x4: num [1:4] 1.76 -1.27 -1.8 1.37
                                                                Cluster sizes: 101 93 106 100
 $ lambda
              : num 6.77
                                                                Within cluster error: 374.4996 266.4945 332.0333 336.3587
              : 'table' int [1:4(1d)] 101 93 106 100
 $ size
  ..- attr(*, "dimnames")=List of 1
                                                                Cluster prototypes:
 .. ..$ clusters: chr [1:4] "1" "2" "3" "4"
                                                                    x1 x2
                                                                                           x4
            : num [1:4] 374 266 332 336
                                                                92 A A 1.646250 1.758957
 $ tot.withinss: num 1309
                                                                54 A A -1.567456 -1.269453
              : num [1:400, 1:4] 16.7 29.3 18.8 21.6 35.3 ... 205 B B -1.666238 -1.796813
 $ dists
 $ iter
              : num 7
                                                                272 B B 1.189727 1.365156
 $ trace
              :List of 2
 ..$ tot.dists: num [1:7] 3720 1612 1350 1313 1310 ...
```


Profiling the Cluster Result...

• Call: clprofiles (object, x, vars)

(where object is the result of kproto and x the data. ... By vars a subset of variables can be specified for profiling.)

References

- Huang, Z. (1998): Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values, Data Mining and KDD 2, 283–304.
- Hastie, T., Tibshirani, R. and Friedman, J. (2009): The Elements of Statistical Learning. Springer.
- Kuhn, M. (2016): caret: Classification and Regression Training, R package version 6.0-71, https://CRAN.R-project.org/package=caret.
- Linzer, D. and Lewis, J.. (2014): poLCA: Polytomous variable Latent Class Analysis, R package version 1.4-1, https://CRAN.R-project.org/package=poLCA.
- Maechler, M., Rousseeuw, P., Struyf, A. Hubert, M. (2016): cluster: "Finding Groups in Data": Cluster Analysis Extended Rousseeuw et al, R package version 2.1-4, https://CRAN.R-project.org/package=cluster.
- Roever, C., Raabe, N., Luebke, K., Ligges, U., Szepannek, G. and Zentgraf, M. (2014): klaR: Classification and visualization, R package version 0.6-12, https://CRAN.R-project.org/package=klaR.
- Szepannek, G. (2016): clustMixType: k-Prototypes Clustering for Mixed Variable-Type Data, R package version 0.1-16, https://CRAN.R-project.org/package= clustMixType.
- Weihs, C. and Szepannek, G. (2009); Distances in Classification, *Transactions in Case-Based Reasoning 2*, 3-14.

Thank you!