

DPP - 8 (Geometrical Optics & Dispersion)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/31

Video Solution on YouTube:-

https://youtu.be/PA4Quk5HBvM

Written Solution on YouTube:-

https://physicsaholics.com/note/notesDetalis/58

- Q 1. A biconvex lens has a focal length 2/3 times the radius of curvature of either surface. The refractive index of the lens material is:
 - (a) 1.57

(b) 1.23

(c) 1.75

- (d) 2.13
- Q 2. In figure the points C_1 and C_2 denote the centers of curvatures then the focal length of the thin lens (μ =1.5) is

20 cm

- (a) 40 cm
- (c) 20 cm

- (b) 10 cm
- (d) 30 cm
- Q 3. A tree is 18.0 m away and 2.0 m high from a concave lens. How high is the image formed by the given lens of focal length 6 m?
 - (a) 1 m
- (b) 0.5 m
- (c) 2 m
- (d) 1.5 m
- Q 4. The focal length of a symmetric bi-convex lens is 20cm. If the refractive index of the material of the prism is 1.5, the radius of curvature of one of two surfaces is
 - (a) 10 cm

(b) 20 cm

(c) 30 cm

- (d) 40 cm
- Q 5. A biconvex lens behaves as a converging lens in air and a diverging lens in water $(\mu=1.33)$. The refractive index (μ_0) of the material is
 - (a) $\mu_0 = 1$

(b) $\mu_0 = 1.33$

(c) $1 < \mu_0 < 1.33$

(d) $\mu_0 > 1.33$

hysicsaholics

Q 6.	A convex lens is immersed in a liquid of refractive index greater than that of
	glass. It will behave as a

- (a) Converging lens
- (b) diverging lens

(c) Plane glass

(d) homogeneous liquid

Q 7. A thin lens made of glass of refractive index $\mu = 1.5$ has a focal length equal to 12 cm in air. It is now immersed in water $(\mu = \frac{4}{3})$. Its new focal

(a) 26 cm

(b) 12 cm

(c) 56 cm

(d) 48 cm

Q 8. The radius of curvature for a convex lens is 40 cm, for each surface. Its refractive index is 1.5. The focal length will be

(a) 10 cm

(b) 40 cm

(c) 15 cm

(d) 25 cm

A concavo-convex lens is made of glass of refractive index 1.5. The radii of curvature Q 9. of its two surfaces are 30cm and 50cm. Its magnitude focal length when placed in a liquid of refractive index 1.4 is

- (a) 1150 cm
- (b) 85 cm

(c) 150 cm

(d) 1050 cm

Q 10. When an object is at a distance u_1 and u_2 from a lens, real image and a virtual image formed by the same lens are real and virtual, respectively, and of same size. Then, the focal length of the lens is:

(c) $\sqrt{u_1u_2}$

(b) $\frac{1}{2}(u_1 + u_2)$ (d) $2(u_1 + u_2)$

An object is placed at a distance of 20 cm from a convex lens of focal length 10 cm. The image is formed on the other side of the lens at a distance

(a) 5 cm

(b) 15 cm

(c) 20 cm

(d) 35 cm

Q 12. A diverging meniscus lens has a focal length of -20 cm. If the lens is held 10 cm from the object, the magnification is:

(a) + 0.67

(b) -0.67

(c) -2

(d) + 2

Q 13. The magnification of an object placed in front of a convex lens is +2. The focal length of the lens is 2.0 meters. Find the distance by which object has to be moved to obtain a magnification of -2 (in meters)

- (a) 1
- (b) 2
- (c) 3
- (d) 4

Q 14. An object is placed at a distance of 4 cm from a concave lens of focal length 12 cm. Find the position and nature of the image.

(a) real, 3cm, smaller then object

- (b) virtual, 3cm, Larger then object
- (c) real, 1cm , smaller then object
- (d) virtual, 3cm, Smaller then object

Q.1 c	Q.2 a	Q.3 b	Q.4 b	Q.5 c
Q.6 b	Q.7 d	Q.8 b	Q.9 d	Q.10 b
Q.11 c	Q.12 a	Q.13 b	Q.14 d	