## Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

# Dampfdruck von Wasser Protokoll:

Praktikant: Felix Kurtz

Michael Lohmann

E-Mail: felix.kurtz@stud.uni-goettingen.de

m.lohmann@stud.uni-goettingen.de

Betreuer: Martin Ochmann

Versuchsdatum: 23.06.2014

| Testat: |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |

#### In halts verzeichn is

## Inhaltsverzeichnis

| 6 | Anhang                    | 6      |
|---|---------------------------|--------|
| 5 | Diskussion                |        |
| 4 | Auswertung4.1 Druckkurven | 3<br>5 |
| 3 | Durchführung              | 3      |
| 2 | Theorie                   | 3      |
| 1 | Einleitung                | 3      |

| $R_0$ | 1000 Ω                                          |
|-------|-------------------------------------------------|
| A     | $3.9083 \cdot 10^{-3}  ^{\circ}\text{C}^{-1}$   |
| В     | $-5.775 \cdot 10^{-7}  ^{\circ}\mathrm{C}^{-2}$ |

**Tabelle 1:** Kennwerte des Widerstandsthermometers

## 1 Einleitung

#### 2 Theorie

## 3 Durchführung

### 4 Auswertung

#### 4.1 Druckkurven

$$R(\vartheta) = R_0 \cdot \left(1 + A\vartheta + B\vartheta^2\right) \tag{1}$$

$$R(\vartheta) = R_0 \cdot \left(1 + A\vartheta + B\vartheta^2\right)$$

$$\Rightarrow \vartheta = -\frac{A}{2B} - \sqrt{\frac{A^2}{4B^2} - \frac{1}{B} + \frac{R}{R_0 B}}$$

$$\tag{2}$$

$$\Delta \vartheta = \pm (0.3 \text{ }^{\circ}\text{C} + 0.005\vartheta) \tag{3}$$

Nun muss  $\vartheta$  noch in Kelvin umgerechnet werden. Außerdem wird für  $p_0$  der gemessene Umgebungsdruck von 1017 hPa verwendet.

| Größe | Erwärmen                   | Abkühlen                   |
|-------|----------------------------|----------------------------|
| m     | $(-4326 \pm 13) \text{ K}$ | $(-4618 \pm 21) \text{ K}$ |
| b     | $12.0672 \pm 0.02819$      | $12.5427 \pm 0.04496$      |

Gewichtete Mittelwerte

$$m = (-4407 \pm 11) \text{ K}$$
  $b = 12.201 \pm 0.024$ 

$$\begin{split} & \Lambda_V = -m \cdot R \\ & \sigma_{\Lambda_V} = \sigma_m \cdot R \\ & \Lambda_V = (36640 \pm 100) \text{ J/mol} \end{split}$$



Abbildung 1: Arrheniusplot für das Erwärmen



Abbildung 2: Arrheniusplot für das Abkühlen

$$T_0 = -\frac{m}{b}$$

$$\sigma_{T_0} = \sqrt{\left(\frac{\sigma_m}{b}\right)^2 + \left(\frac{m \cdot \sigma_b}{b^2}\right)^2}$$

$$T_0 = (361.2 \pm 1.3) \text{K} = (88.0 \pm 1.3)^{\circ} \text{C}$$

Dampfdruck vun Wasser bei  $T=0^{\circ}\mathrm{C}=273.15\mathrm{K}$ 

$$p = p_0 \exp\left(m\frac{1}{T} + b\right)$$
$$\sigma_p = p \sqrt{\frac{\sigma_m^2}{T^2} + \sigma_b^2}$$
$$p = (1990 \pm 100) \text{Pa}$$

### 4.2 Siedetemperatur auf der Zugspitze

barometrische Höhenformel

$$p(h) = p_0 \exp\left(\frac{-\rho g h}{p_0}\right)$$

$$\frac{\Lambda_V}{R} \left(\frac{1}{T_0} - \frac{1}{T}\right)$$
(4)

| Größe       | Wert                   |
|-------------|------------------------|
| $T_0$       | 373.15 K               |
| $\rho$      | $1.29~\mathrm{kg/m^3}$ |
| g           | $9.81 \text{ m/s}^2$   |
| R           | 8.31  J/(mol K)        |
| $p_0$       | 1013.25 hPa            |
| $\Lambda_V$ | 40642  J/mol           |

**Tabelle 2:** Literaturwerte

Höhe der Zugspitze h = 2962 m

$$T = \left(\frac{1}{T_0} + \frac{\rho g h R}{p_0 \Lambda_V}\right)^{-1}$$
$$T = 362.9 \text{ K} = 89.8^{\circ}\text{C}$$

- 5 Diskussion
- 6 Anhang