3. (1pkt) Danych jest n odcinków $I_j = \langle p_j, k_j \rangle$, leżących na osi OX, $j = 1, \ldots, n$. Ułóż algorytm znajdujący zbiór $S \subseteq \{I_1, \ldots, I_n\}$, nieprzecinających się odcinków, o największej mocy.

procedure largest_compatible (I[1.-n]):

- 1. sortujemy I[1. n] rosnow względem końców odcinków
- 2. S[1_n] ← lista zowierająca
 początki przedziatów w kolejności z posortowanego
 I[1.n] 3. $A \leftarrow \phi$
- 4. indeks $\leftarrow 1$
- 5. dopóki indeks ∈ n rób: [pi, ki] ← I [indeks] A ← Aud[pi,ki]s
 dopoki indeks ≤ n oraz 5[indeks] < ki rob:
 indeks ← indeks + 1.

 6. zwróć A

ztozoność: O(nlogn)

· dowód poprawności Niech A= { [a,b,],..., [ak,bk]'y oznacza zbiór wyprodukowany prez algorytm i niech 0= {[a], b], ..., [am, bm]} oznacza
optymalne rozwiązanie. Chcemy pokazać, że

Lemat

ATEN P! = P! 1° i=1, oczywiste, bo $b_1 = \min\{k_j : [P_j, k_j] \in I\}$ 2° zaktadamy, że $b_{i-1} \leq b_{i-1}$ pokażemy, że

wieny, ze bin < ai, zatem bin < ai.

wiemy, ze bi, < ai, zatem bi, < ai, odcinek [ai, bi] jest zatem wśród "dobrych" odcinków. Wiemy jednak, że algorytm w pierwszej kolejności wybiera spośród "dobrych" odcinków ten, o najmniej szej wartości konca. zatem bi ≤ bi.

dalej, zakładamy nie wprost, że m>k.

z lematu wiemy że $b_k \leq b_k$. Skoro m>k, to mamy odcinek $[a_{k+1}, b_{k+1}] \in O$. $a_{k+1} > b_k$, zatem jednocześnie $a_{k+1} > b_k$. Widac zatem, że algorytm olołożyłby również $[a_{k+1}, b_{k+1}]$.

sprecznośu, zatem k=m