

"

Data Handling

Data Handling

Common Tasks

- Identifying types of data
- Data cleaning
- Standardization
- Data Augmentation
- Visualization

Data Types

- Numerical: Numbers (duh)
 - Discrete or continuous
- Ordinal: Different states with a defined order
 - T-Shirt size: S < M < L
 - Low, medium, high
- Nominal: Multiple states without order
 - T-Shirt color
 - Gender

Data cleaning

Missing values

- Strategies for handling missing values:
 - Ignore (☺)
 - Remove (losing statistical power)
 - Default values (e.g. 0)
 - Interpolate (e.g. mean, max)

BuildingArea	YearBuilt	CouncilArea
NaN	1981.0	NaN
133.0	1995.0	NaN
NaN	1997.0	NaN
157.0	1920.0	NaN
112.0	1920.0	NaN

Standardization

Problem:

- Features with a large scale are interpreted as having more weight (e.g. grams vs. kg).
- Features with a large variance are interpreted as more informative.
- Idea: Scale features to same mean and variance:

$$standard(x_i) = \frac{x_i - mean(x)}{stdev(x)}$$

Implemented by: sklearn.preprocessing.StandardScaler

Data Augmentation

Data Augmentation

- Idea: Modify data to augment the dataset
- Used to make a training set more robust by introducing more variation in the Dataset
- Improving model prediction accuracy by increasing generalizability and overall increasing the size of the training dataset.

How NOT to do it

How NOT to do it

LIMITED SCOPE

It looks like ...but maybe that's just what always happens, and it something happened less so during the selected time period. increased a lot...

TRUNCATED AXIS

- Visualizing your data should be the first and last thing you do!
- Communicating results is a difficult but important part of Data Science
- The more complex the data the more important good and accurate data visualization becomes

Hands-On

Part 2

Explore the Dataset "melb_data.csv" of the Melbourn Housing Market

- 1. Clean the dataset
- 2. Standardize the data
- 3. Think about how you would augment this dataset
- Visualize and present an aspect of the dataset you find interesting

"

Unsupervised Machine Learning

Unsupervised ML

- Idea: Find patterns & trends in the data, without any prior knowledge
- These patterns may give us new insights into our data
- Main Types:
 - Clustering
 - Dimensionality reduction

