

A Low-cost RGB-D/thermal platform for monitoring fruit temperature with spatial resolution

G. Bortolotti¹, M. Piani¹, D. Mengoli², C Franceschini¹, N. Omodei², S. Rossi², L. Manfrini¹,

¹Dept. Of Ag. Sciences -University of Bologna, Italy 2Dept. Of Elect. And Info. Eng. -University of Bologna, Italy

SECTION 1

INTRODUCTION

Fruit Sunburn

- Fruit Sunburn (SB) is an abiotic disease affecting fruit quality, with varying damage levels
- Damages are related to an excessive energy load, on external fruit tissues, that is not properly dissipated
- Main Factors inducing fruit sunburn are:
 - excessive **temperature**
 - excessive solar radiation
 - * combination of both

Berry shrivel

Bleaching, Browning, Necrosis

(Ranjan et al., 2020; Felicetti and Schrader, 2008)

upto **50-60% unmarketable** production (in <u>hot seasons</u>)
Protection operations (**Indirect Costs**)

Hotter Season and SB risk

Increasing trends in regional heatwaves

S. E. Perkins-Kirkpatrick [™] & S. C. Lewis

Risk of Fruit SB occurrence increases

Forecasting fruit SB damage occurrence (based on weather data) would be helpful to operate defensive strategies

Reducing SB incidence and related costs

Forecast SB occurrence

ISHS

Investigation of Fruit SB occurrence dynamics in relation to weather data

Wide Range of data:

- Weather & microclimatic
- Global Positioning
- Orchard surrounding (e.g. pedological)
- Crop info (specie, management, etc)
- Fruit info (Temp., Position, SB occurrence)

Not easy (Manually collected)

* Automation

Wide amount of data

Computers and Electronics in Agriculture

In-field crop physiology sensing aided realtime apple fruit surface temperature monitoring for sunburn prediction

Goal

Develop and test a low-cost scanning platform for in-field fruit temperature and position data collection.

platform objective is to facilitate (automate) data collection in the context of the SHEET EU project which goal is to develop a ML/Al based early warning system for SB occurrence, to support growers in operate defensive action


```
import numpy as np
import pandas as pd
import INPUTS as c
camera trunk dist = c.TRUNK DIST
def positioning_occurrence(depth, row, trunk_coords):
   trunk_tree_dist_mm = camera_trunk_dist * 1000
   depth = np.array(depth)
   im_np = np.array(depth).astype('float64')
   x c = int(row['x_c'] * 1920)
   y_c = int(row['y_c'] * 1080)
   w = int(row['w'] * 1920)
   h = int(row['h'] * 1080)
   x1 = x_c - w // 2
   x2 = x_c + w // 2
   y1 = y_c - h // 2
   y^2 = y_c + h // 2
   im trunk = im np.copy()
   im_np = im_np[y1:y2, x1:x2]
                                            Bbox clipping
                                                                        Temp extraction
                                 coord extraction
                                                                          °C ← Raw temp.
                                                         Temp.*Dist.
                                                          correction
                                                            Corr
                                     System conversion
                                                    XYZ coord (mm)
                                                    Corr. Temp(°C)
 YOLOv5 – Aligned images
           z = im np[v, x]
```


SECTION 2

MATERIALS AND METHODS

Sensors and Platform

Seek compactPRO (Android OS) **Thermal Camera** FoV 32° x 32°

320*240

FoV 69° x 42°

1920*1080

848*480

Software

ISHS

Intel RealSense SDK 2.0

3° party SEEK Thermal SDK

1 Sensors synchronization

15 fps

MIMINIAN IN THE

15* →9 fps

- ROS2 timestamp matching
- *Th. Camera not working as declared
- Synch @ 1/3 sec

Thermal to color alignment

2 Thermal to color alignment

Frame Shifting

Whole Process

Dynamic correction, to account for distance variation (RGB-D) *not needed for depth

3 Temp. estimation & correction

Thermal Calibration (ROSraw → °C)

Temp in °C was not available

→ ROS_{Raw} to °C regression

Distance Correction (0.5 - 3.5m)

Linear equation for distance correction was developed

3 Fruit Temp & Position extraction

Temp extraction

SECTION 3

RESULTS

*no 2023 field test

Sensors Sync. & Image Alignment

Sensors Synch

15 fps

- Synch @ 1/3 sec
- Errors of 0.02-0.1s (3rd party SDK?)
 - → Acceptable for low speed (1Km/h max)
 - → Problematic >1Kmh

(RGB-to-Th. Mismatch when moving)

Thermal Image Alignment

Whole Process RMSE

± 6.2 pix

(8.7 - 15.4 mm)

[N=52 @ 2.0-3.5m]

→ Acceptable for target object

(apples >40mm)

*Dynamic -Realtime

Temp & Position . Estimation

Fruit Temp extraction

Raw -to- $^{\circ}$ C (R² = 0.99)

*15°C - 60°C range only

Fruit Pos extraction

Actual vs Estimated

 $X RMSE = \pm 0.87 cm$

 $Y RMSE = \pm 5.73 cm$

 $Z RMSE = \pm 2.13 cm$

Mapping in field – previous version

2022 version performances:

No field test 2023!

Temp. Estimation RMSE: ± 4.05°C RMSE

Pos. Estimation RMSE: ±15cm

*image alignment not accounting for distance shifting (SC)

SECTION 4

CONCLUSIONS

Mapping in field – previous version

Scanning platform was developed and improved from previous version

Despite no field test, the lab test for systems' improvement shown:

0.02-0.1s desynchronization

<1Km/h

- 40% RMSE (+ dynamic shift*dist.) for Image Alignment

± 6.2 pix

- 60% RMSE in temperature estimation

± 1.23 °C

- 400% RMSE in position estimation

± 2.91 cm (XYZ mean)

Improvement margins are present but

Platform shown encouraging results for field application

Acknowledgement

Mirko Piani PhD Student

Coding Speed-up

This work was supported by the **SHEET (Sunburn and heat prediction in canopies for evolving a warning tech solution)** European project. https://ictagrifood.eu/node/44656

The project is part of the ERA-NET co-funded ICT-AGRI-FOOD, with funding provided by national sources (Italian Ministry of the University and Research) and co-funding by the European Union's Horizon 2020 research and innovation program, Grant Agreement number 862665.

IMPACT FACTOR 4.5

Indexed in:
PubMed

CITESCORE 5.4

an Open Access Journal by MDPI

Smart Sensing, Artificial Intelligence and Robotic Solutions for Precision Horticulture, Tree Ecophysiology and Phenotyping

Guest Editor

Dr. Gianmarco BortolottiUnivesity of Bologna, Italy

Dr. Luigi ManfriniUnivesity of Bologna, Italy

Dr. Nikos TsouliasGeisenheim University, Germany

Special Issue Information

Smart sensors, artificial intelligence (**AI**), and **robotics** have witnessed remarkable advancements in the agricultural sector. This Special Issue aims to **explore the intersection of smart sensing, artificial intelligence, and robotics** within the context of **precision horticulture, tree ecophysiology and phenotyping**.

Deadline for manuscript submissions:

31 March 2024

Author Benefits

Open Access Unlimited and free access for readers **Indexed by** SCIE(Web of Science), PubMed and Scopus **Rapid Publication** First decision provided to authors approximately 15.3 days after submission; acceptance to publication is undertaken in 3.1 days (median values for papers published in this journal in the first half of 2023)

Thanks for the attention!

Plants Editorial Office St. Alban-Anlage 66 4052, Basel, Switzerland

