Teori Bilangan (Bagian 2)

Bahan Kuliah IF2120 Matematika Diskrit

Oleh: Rinaldi Munir

Program Studi Teknik Informatika STEI-ITB

Sistem Kekongruenan Linier

 Sistem kekongruenan linier terdiri dari lebih dari satu kekongruenan, yaitu:

```
x \equiv a_1 \pmod{m_1}

x \equiv a_2 \pmod{m_2}

...

x \equiv a_n \pmod{m_n}
```

Contoh: Sebuah bilangan bulat jika dibagi dengan 3 bersisa 2 dan jika ia dibagi dengan 5 bersisa 3. Berapakah bilangan bulat tersebut?

Penyelesaian:

Sebuah bilangan bulat jika dibagi dengan 3 bersisa 2 dan jika ia dibagi dengan 5 bersisa 3. Berapakah bilangan bulat tersebut?

```
Misal bilangan bulat = x
```

$$x \mod 3 = 2 \rightarrow x \equiv 2 \pmod 3$$

$$x \mod 5 = 3 \rightarrow x \equiv 3 \pmod 5$$

Jadi, terdapat sistem kekongruenan:

$$x \equiv 2 \pmod{3}$$
 (i)

$$x \equiv 3 \pmod{5}$$
 (ii)

Untuk kekongruenan pertama:

$$x = 2 + 3k_1$$
 (iii)

Substitusikan (iii) ke dalam (ii):

$$2 + 3k_1 \equiv 3 \pmod{5} \rightarrow 3k_1 \equiv 1 \pmod{5}$$

diperoleh

$$k_1 \equiv 2 \pmod{5}$$
 atau $k_1 = 2 + 5k_2$

Sebuah bilangan bulat jika dibagi dengan 3 bersisa 2 dan jika ia dibagi dengan 5 bersisa 3. Berapakah bilangan bulat tersebut?

Substitusikan $k_1 = 2 + 5k_2$ ke dalam persamaan (iii):

$$x = 2 + 3k_1$$

= 2 + 3 (2 + 5 k_2)
= 2 + 6 + 15 k_2
= 8 + 15 k_2
atau

 $x \equiv 8 \pmod{15}$ (periksa bahwa 8 mod 3 = 2 dan 8 mod 5 = 3)

Semua nilai x yang kongruen dengan 8 (mod 15) juga adalah solusinya, yaitu x = 8, x = 23, x = 38, ..., x = -7, dst

 Pada abad pertama Masehi, seorang matematikawan China yang bernama Sun Tse mengajukan pertanyaan sebagai berikut:

Tentukan sebuah bilangan bulat yang bila dibagi dengan 5 menyisakan 3, bila dibagi 7 menyisakan 5, dan bila dibagi 11 menyisakan 7.

• Misakan bilangan bulat tersebut = x. Formulasikan kedalam sistem kekongruenan linier:

```
x \equiv 3 \pmod{5}

x \equiv 5 \pmod{7}

x \equiv 7 \pmod{11}
```

Teorema 5. (Chinese Remainder Theorem) Misalkan m_1 , m_2 , ..., m_n adalah bilangan bulat positif sedemikian sehingga PBB(m_i , m_j) = 1 untuk $i \neq j$. Maka sistem kekongruenan linier

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
...
 $x \equiv a_n \pmod{m_n}$

mempunyai sebuah solusi unik dalam modulus $m = m_1 \cdot m_2 \cdot ... \cdot m_n$. (yaitu, terdapat solusi x dengan $0 \le x < m$ dan semua solusi lain yang kongruen dalam modulus m dengan solusi ini)

Contoh 15. Tentukan solusi dari pertanyaan Sun Tse tersebut

 $x \equiv 3 \pmod{5}$ $x \equiv 5 \pmod{7}$ $x \equiv 7 \pmod{11}$

Penyelesaian:

$$x \equiv 3 \pmod{5} \rightarrow x = 3 + 5k_1 \quad (i)$$

Sulihkan (i) ke dalam kongruen kedua (yaitu $x \equiv 5 \pmod{7}$) menjadi:

$$3 + 5k_1 \equiv 5 \pmod{7} \rightarrow 5k_1 \equiv 2 \pmod{7} \rightarrow k_1 \equiv 6 \pmod{7}$$
, atau $k_1 = 6 + 7k_2$ (ii)

Sulihkan (ii) ke dalam (i):

$$x = 3 + 5k_1 = 3 + 5(6 + 7k_2) = 33 + 35k_2$$
 (iii)

Sulihkan (iii) ke dalam kongruen ketiga (yaitu $x \equiv 7 \pmod{11}$) menjadi:

$$33 + 35k_2 \equiv 7 \pmod{11} \rightarrow 35k_2 \equiv -26 \pmod{11} \rightarrow k_2 \equiv 9 \pmod{11}$$
 atau $k_2 = 9 + 11k_3$

Sulihkan k_2 ini ke dalam (iii) menghasilkan:

$$x = 33 + 35(9 + 11k_3) = 348 + 385k_3$$
 atau $x = 348 \pmod{385}$. Ini adalah solusinya.

348 adalah bilangan bulat positif terkecil yang merupakan solusi sistem kekongruenan di atas. Periksa bahwa bahwa 348 mod 5 = 3, 348 mod 7 = 5, dan 348 mod 11 = 7.

Perhatikan juga bahwa $385 = 5 \cdot 7 \cdot 11$.

• Solusi unik ini, yaitu $x \equiv 348 \pmod{385}$, modulus 385 merupakan

$$m = m_1 \cdot m_2 \cdot m_3 = 5 \cdot 7 \cdot 11 = 385$$

• Secara umum, solusi sistem kekongruenan linier adalah berbentuk

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + ... + a_n M_n y_n$$

yang dalam hal ini

 M_k adalah perkalian semua modulus kecuali m_k . y_k adalah balikan M_k dalam modulus m_k

• Tinjau kembali persoalan *Chinese remainder problem*:

$$x \equiv 3 \pmod{5}$$

 $x \equiv 5 \pmod{7}$
 $x \equiv 7 \pmod{11}$

• Hitung:
$$m = 5 \cdot 7 \cdot 11 = 385$$

 $M_1 = 7 \cdot 11 = 77$, $M_2 = 5 \cdot 11 = 55$, $M_3 = 5 \cdot 7 = 35$
 $y_1 = 3$ karena $77 \cdot 3 \equiv 1 \pmod{5}$
 $y_2 = 6$ karena $55 \cdot 6 \equiv 1 \pmod{7}$
 $y_3 = 6$ karena $35 \cdot 6 \equiv 1 \pmod{11}$

maka solusi unik dari sistem kekongruenan tersebut adalah

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + a_3 M_3 y_3$$

$$= 3 \cdot 77 \cdot 3 + 5 \cdot 55 \cdot 6 + 7 \cdot 35 \cdot 6$$

$$= 3813$$

$$\equiv 348 \pmod{385}$$

Bilangan Prima

• Bilangan bulat positif p (p > 1) disebut bilangan prima jika pembaginya hanya 1 dan p.

 Contoh: 23 adalah bilangan prima karena ia hanya habis dibagi oleh 1 dan 23. • Karena bilangan prima harus lebih besar dari 1, maka barisan bilangan prima dimulai dari 2, yaitu 2, 3, 5, 7, 11, 13,

• Seluruh bilangan prima adalah bilangan ganjil, kecuali 2 yang merupakan bilangan genap.

• Bilangan selain prima disebut bilangan **komposit** (*composite*). Misalnya 20 adalah bilangan komposit karena 20 dapat dibagi oleh 2, 4, 5, dan 10, selain 1 dan 20 sendiri.

Teorema 6. (*The Fundamental Theorem of Arithmetic*). Setiap bilangan bulat positif yang lebih besar atau sama dengan 2 dapat dinyatakan sebagai perkalian satu atau lebih bilangan prima.

Contoh 16.

$$9 = 3 \times 3$$

 $100 = 2 \times 2 \times 5 \times 5$
 $13 = 13$ (atau 1 × 13)

- Tes apakah *n* bilangan prima atau komposit:
 - (i) bagi n dengan sejumlah bilangan prima, mulai dari 2, 3, ..., bilangan prima $\leq \sqrt{n}$.

(ii) Jika *n* habis dibagi dengan salah satu dari bilangan prima tersebut, maka *n* adalah bilangan komposit,

(ii) tetapi jika *n* tidak habis dibagi oleh semua bilangan prima tersebut, maka *n* adalah bilangan prima.

• Contoh 17. Tes apakah (i) 171 dan (ii) 199 merupakan bilangan prima atau komposit.

Penyelesaian:

- (i) $\sqrt{171} = 13.077$. Bilangan prima yang $\leq \sqrt{171}$ adalah 2, 3, 5, 7, 11, 13. Karena 171 habis dibagi 3, maka 171 adalah bilangan komposit.
- (ii) $\sqrt{199}$ = 14.107. Bilangan prima yang $\leq \sqrt{199}$ adalah 2, 3, 5, 7, 11, 13. Karena 199 tidak habis dibagi 2, 3, 5, 7, 11, dan 13, maka 199 adalah bilangan prima.

• **Teorema 6** (**Teorema Fermat**). Jika p adalah bilangan prima dan a adalah bilangan bulat yang tidak habis dibagi dengan p, yaitu PBB(a, p) = 1, maka:

Fermat dibaca Fairma

$$a^{p-1} \equiv 1 \pmod{p}$$

• Menurut teorema Fermat di atas, jika p adalah bilangan prima, maka $a^{p-1} \equiv 1 \pmod{p}$

• Tetapi, jika p bukan bilangan prima, maka $a^{p-1} \not\equiv 1 \pmod{p}$

$$a^{p-1} \equiv 1 \pmod{p}$$

Contoh 18. Tes apakah 17 dan 21 bilangan prima atau bukan dengan Teorema Fermat

Ambil a = 2 karena PBB(17, 2) = 1 dan PBB(21, 2) = 1.

- (i) $2^{17-1} = 65536 \equiv 1 \pmod{17}$ karena 17 habis membagi 65536 - 1 = 65535Jadi, 17 prima.
- (ii) $2^{21-1} = 1048576 \not\equiv 1 \pmod{21}$ karena 21 tidak habis membagi 1048576 - 1 = 1048575. Jadi, 21 bukan prima

• Kelemahan Teorema Fermat: terdapat bilangan komposit n sedemikian sehingga $2^{n-1} \equiv 1 \pmod{n}$. Bilangan bulat seperti itu disebut bilangan **prima semu** (pseudoprimes).

• Contoh: 341 adalah komposit (karena 341 = $11 \cdot 31$) sekaligus bilangan prima semu, karena menurut teorema Fermat,

$$2^{340} \equiv 1 \pmod{341}$$

- Untunglah bilangan prima semu relatif jarang terdapat.
- Untuk bilangan bulat yang lebih kecil dari 10¹⁰ terdapat 455.052.512 bilangan prima, tapi hanya 14.884 buah yang merupakan bilangan prima semu terhadap basis 2.

Contoh 19: Hitunglah sisa pembagian 2²⁰²⁰ dibagi dengan 73

<u>Penyelesaian</u>: Dengan menggunakan teorema Fermat kita dapat mengetahui bahwa $2^{73-1} = 2^{72} \equiv 1 \pmod{73}$.

$$2^{2020} \equiv (2^{72 \cdot 28 + 4}) \pmod{73}$$

 $\equiv (2^{72})^{28} \cdot 2^4 \pmod{73}$
 $\equiv (1)^{28} \cdot 2^4 \pmod{73}$
 $\equiv 2^4 \pmod{73}$
 $\equiv 16 \pmod{73} = 16$

Jadi sisa pembagiannya adalah 16

Contoh 20: Tiga kemunculan terakhir komet Halley adalah pada tahun 1835, 1910, dan 1986. Kemunculan berikutnya diprediksi akan terjadi pada tahun 2061. Dengan bantuan Teorema Fermat buktikan bahwa

$$1835^{1910} + 1986^{2061} \equiv 0 \pmod{7}$$

<u>Jawaban</u>: Karena PBB(7, 1835) = 1 dan PBB(7, 1986) = 1, maka memenuhi syarat Teorema Fermat.

Selanjutnya, berdasarkan Teorema Fermat, $a^{p-1} \equiv 1 \pmod{p}$

```
1835^{7-1} = 1835^6 \equiv 1 \pmod{7}
1835^{1910} \pmod{7} \equiv 1835^{6 \cdot 318 + 2} \equiv (1835^6)^{318} \cdot 1835^2 \pmod{7} \equiv (1)^{318} \cdot 1835^2 \pmod{7}
\equiv 1835^2 \pmod{7} \equiv 1^2 \pmod{7} \equiv 1 \pmod{7}
1986^{7-1} = 1986^6 \equiv 1 \pmod{7}
1986^{2061} \pmod{7} \equiv 1986^{6 \cdot 343 + 3} \equiv (1986^6)^{343} \cdot 1986^3 \pmod{7} \equiv (1)^{343} \cdot 1986^3 \pmod{7}
\equiv 1986^3 \pmod{7} \equiv 5^3 \pmod{7} \equiv 125 \pmod{7} \equiv 6 \pmod{7}
Jadi,
1835^{1910} + 1986^{2061} \pmod{7} \equiv 1 \pmod{7} \equiv 1 \pmod{7} + 6 \pmod{7} \equiv 0 \pmod{7}
```

Latihan soal (diambil dari soal kuis dan UAS)

- 1. Hartono memiliki banyak permen. Dia akan membagi permen kepada teman-temannya. Jika dia membagi kepada 7 orang temannya secara merata, maka akan tersisa 5permen. Jika dia membagi seluruhnya secara merata kepada 8 teman, tersisa 3. Jika ia membagi seluruhnya secara merata kepada 9 orang, akan tersisa 7 permen. Berapa paling sedikit jumlah permen yang dimiliki Hartono?
- Hitunglah nilai dari 5²⁰¹⁷ mod 7 dan 5²⁰¹⁷ mod 11 dengan menggunakan Teorema Fermat.
- 3. (a) Gunakan Teorema Fermat untuk menghitung 3³⁰² mod 5, 3³⁰² mod 7, dan 3³⁰² mod 11
 - (b) Gunakan hasil dari (a) dan *Chinese Remainder Theorem* untuk menghitung nilai 3^{302} mod 385 (Petunjuk: 385 = 5.7.11