Kozen, Automata and Computability

Danny Nygård Hansen 3rd October 2022

Miscellaneous Exercises

Finite Automata and Regular Sets

REMARK 1: The Pumping Lemma.

We prove the pumping lemma:

Let A be a regular set over an alphabet Σ . Then there exists a $k \in \mathbb{N}$ such that for any $x, y, z \in \Sigma^*$ with $xyz \in A$ and $|y| \ge k$, there exist $u, v, w \in \Sigma^*$ such that y = uvw, $v \ne \varepsilon$, and $xuv^nwz \in A$ for all $n \in \mathbb{N}$.

Let $M = (Q, \Sigma, \delta, s, F)$ be a DNF accepting A, let k = |Q|, and let x, y, z be given as above. Write $y = y_1 \cdots y_k$ with $y_i \in \Sigma$. Let $p_0 = \hat{\delta}(s, x)$ and define $p_i = \delta(p_{i-1}, y_i)$ for $i = 1, \ldots, k$. Then since k + 1 > |Q|, there exist i < j such that $p_i = p_j$. Let $u = y_1 \cdots y_i$, $v = y_{i+1} \cdots y_j$ and $w = y_{j+1} \cdots y_k$, and notice that $v \neq \varepsilon$ since i < j. Furthermore, clearly $\hat{\delta}(p_i, v) = p_j = p_i$, so by induction we have

$$\hat{\delta}(p_i,v^n) = \hat{\delta}(\hat{\delta}(p_i,v^{n-1}),v) = \hat{\delta}(p_i,v) = p_i.$$

Since $\hat{\delta}(s, xu) = p_i$, it follows that

$$\hat{\delta}(s, xuv^n wz) = \hat{\delta}(\hat{\delta}(p_i, v^n), wz) = \hat{\delta}(p_i, vwz) = \hat{\delta}(s, xyz) \in F.$$

EXERCISE 7

If Σ is an alphabet, consider the triple $(2^{\Sigma^*}, \cup, \cdot)$, where \cdot denotes concatenation. Since contatenation distributes over unions, this is a semiring 1 with addition \cup and multiplication \cdot . In particular, the set of matrices with entries in 2^{Σ^*} inherits an addition and multiplication, making it into a semiring itself.

Given a DFA $M = (Q, \Sigma, \delta, s, F)$ with n states, define its *transition matrix G* as the $n \times n$ matrix given by

$$G_{uv} = \{a \in \Sigma \mid \delta(u,a) = v\}$$

for $u, v \in Q$.

(a) Prove that

$$(G^n)_{uv} = \{x \in \Sigma^* \mid |x| = n, \text{ and } \hat{\delta}(u, x) = v\}.$$

(b) Define the Kleene closure A^* of the matrix A to be the componentwise union of all the powers of A:

$$(A^*)_{uv} = \bigcup_{n \in \mathbb{N}} (A^n)_{uv}.$$

Prove that

$$\mathcal{L}(M) = \bigcup_{t \in F} (G^*)_{st}.$$

SOLUTION. (a) For n = 0 we have $x = \varepsilon$, so $\hat{\delta}(u, \varepsilon) = v$ if and only if u = v, and so the right-hand side above equals I_{uv} .

Assume that the claim holds for some $n \in \mathbb{N}$. Then

$$(G^{n+1})_{uv} = (G^n G)_{uv} = \bigcup_{w \in Q} (G^n)_{uw} G_{wv}.$$

Now notice that, by induction,

$$(G^{n})_{uw}G_{wv} = \{x \in \Sigma^{*} \mid |x| = n, \text{ and } \hat{\delta}(u,x) = w\}G_{wv}$$

$$= \{xa \in \Sigma^{*} \mid |x| = n, \, \hat{\delta}(u,x) = w, \text{ and } \delta(w,a) = v\}$$

$$= \{xa \in \Sigma^{*} \mid |x| = n, \, \hat{\delta}(u,x) = w, \text{ and } \delta(\hat{\delta}(u,x),a) = v\}$$

$$= \{xa \in \Sigma^{*} \mid |x| = n, \, \hat{\delta}(u,x) = w, \text{ and } \hat{\delta}(u,xa) = v\}.$$

Since the condition $\hat{\delta}(u,x) = w$ is always satisfied for some $w \in Q$, it follows that

$$\bigcup_{w \in Q} (G^n)_{uw} G_{wv} = \bigcup_{w \in Q} \{ xa \in \Sigma^* \mid |x| = n, \, \hat{\delta}(u, x) = w, \, \text{and} \, \hat{\delta}(u, xa) = v \}$$

$$= \{ xa \in \Sigma^* \mid |xa| = n + 1, \, \text{and} \, \hat{\delta}(u, xa) = v \}$$

$$= (G^{n+1})_{uv}$$

as desired.

(b) A string $x \in \Sigma^*$ lies in $\mathcal{L}(M)$ if and only if there is a $t \in F$ such that $\hat{\delta}(s,x) = t$, iff $x \in (G^{|x|})_{st}$. The claim follows easily.

¹ Recall that, in a semiring, we require that multiplication by the additive identity annihilate any element in the semiring. In a ring this follows from additive cancellation. The set 2^{Σ^*} is in fact a Kleene algebra, but we do not need this fact below.

EXERCISE 10

Recall from Lecture 10 that an ε -NFA is a structure

$$M = (Q, \Sigma, \varepsilon, \Delta, S, F)$$

such that ε is a special symbol not in Σ and

$$M_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$$

is an ordinary NFA.

Define the ε -closure $C_{\varepsilon}(A)$ of a set $A \subseteq Q$ to be the set of all states reachable from some state in A under a sequence of zero or more ε -transitions:

$$C_{\varepsilon}(A) = \bigcup_{x \in \{\varepsilon\}^*} \hat{\Delta}(A, x) = \bigcup_{k \in \mathbb{N}} \hat{\Delta}(A, \varepsilon^k).$$

- (a) Using ε -closure, define formally acceptance for ε -NFAs in a way that captures the intuitive description given in Lecture 6.
- (b) Prove that under your definition, ε -NFAs accept only regular sets.
- (c) Prove that the two definitions of acceptance the one given in part (a) involving ε -closure and the one given in Lecture 10 involving homomorphisms are equivalent.

SOLUTION. (a) Notice that ε -closure is a map $C_{\varepsilon} \colon 2^Q \to 2^Q$, and that since M_{ε} is an NFA, Δ is a map $Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$. We define a modified transition function

$$\Delta_{\varepsilon} \colon Q \times (\Sigma \cup {\varepsilon}) \to 2^Q$$

by $\Delta_{\varepsilon} = C_{\varepsilon} \circ \Delta$. We then say that M accepts $x \in \Sigma^*$ if the NFA

$$(Q, \Sigma \cup \{\varepsilon\}, \Delta_{\varepsilon}, C_{\varepsilon}(S), F)$$

accepts x. Denoting the corresponding extended transition function by $\hat{\Delta}_{\varepsilon}$, this means that M accepts x if $\hat{\Delta}_{\varepsilon}(C_{\varepsilon}(S), x) \cap F \neq \emptyset$.

- (b) This is obvious from (a), since NFAs only accept regular sets by Theorem 6.4.
- (c) First define

$$\mathcal{L}(M) = h(\mathcal{L}(M_{\varepsilon}))$$

$$\mathcal{L}'(M) = \{ x \in \Sigma^* \mid \hat{\Delta}_{\varepsilon}(C_{\varepsilon}(S), x) \cap F \neq \emptyset \},$$

where $h: (\Sigma \cup \{\varepsilon\})^* \to \Sigma^*$ is given by $h(\varepsilon) = \varepsilon$ and h(a) = a for $a \in \Sigma$. We prove the following claim:

For every $A \subseteq Q$ and $x \in \Sigma^*$ we have

$$\bigcup_{y\in h^{-1}(x)} \hat{\Delta}(A,y) = \hat{\Delta}_{\varepsilon}(C_{\varepsilon}(A),x).$$

The equality $\mathcal{L}(M) = \mathcal{L}'(M)$ follows easily by letting A = S. We prove the claim by induction on the length of x. If $x = \varepsilon$, then

$$\hat{\Delta}_{\varepsilon}(C_{\varepsilon}(A),\varepsilon) = C_{\varepsilon}(A) = \bigcup_{k \in \mathbb{N}} \hat{\Delta}(A,\varepsilon^k) = \bigcup_{y \in h^{-1}(\varepsilon)} \hat{\Delta}(A,y),$$

where the last equality follows since h sends precisely strings on the form ε^k to ε . Now assume that the claim holds for some string $x \in \Sigma^*$, and let $a \in \Sigma$. Then

$$\begin{split} \hat{\Delta}_{\varepsilon}(C_{\varepsilon}(A),xa) &= \hat{\Delta}_{\varepsilon} \Big(\hat{\Delta}_{\varepsilon}(C_{\varepsilon}(A),x),a \Big) \\ &= \hat{\Delta}_{\varepsilon} \Big(C_{\varepsilon} \circ \hat{\Delta}_{\varepsilon}(C_{\varepsilon}(A),x),a \Big) \\ &= \hat{\Delta}_{\varepsilon} \Big(C_{\varepsilon} \Big(\bigcup_{y \in h^{-1}(x)} \hat{\Delta}(A,y) \Big),a \Big) \\ &= \bigcup_{b \in h^{-1}(a)} \hat{\Delta} \Big(\bigcup_{y \in h^{-1}(x)} \hat{\Delta}(A,y),b \Big) \\ &= \bigcup_{b \in h^{-1}(a)} \bigcup_{y \in h^{-1}(x)} \hat{\Delta}(\hat{\Delta}(A,y),b \Big) \\ &= \bigcup_{b \in h^{-1}(a)} \bigcup_{y \in h^{-1}(x)} \hat{\Delta}(A,yb) \\ &= \bigcup_{z \in h^{-1}(xa)} \hat{\Delta}(A,z), \end{split}$$

proving the claim.