CLAIMS

Listing of Claims:

1. (Currently Amended) A circuit for a memory module address bus comprising:

a transmission line comprising a <u>series</u> dampening impedance between a driver

and a branch point of said transmission line; and

a parallel termination impedance having one end coupled to said transmission line

between said series dampening impedance and said branch point, wherein said parallel

termination impedance is on [[the]] a same side of any memory module as said driver;

said transmission line having branches from said branch point, wherein ones of

said branches are coupled to at least one memory module interface.

2. (Original) The circuit of Claim 1, wherein said transmission line is uni-

directional.

3. (Original) The circuit of Claim 1, wherein said ones of said branches are coupled

to two memory module interfaces.

4. (Original) The circuit of Claim 1, wherein said ones of said branches are coupled

to three memory module interfaces.

200207753-1

Application No: 10/655,964

Art Unit: 2819

5. (Original) The circuit of Claim 1, wherein said ones of said branches are coupled

to four memory module interfaces.

6. (Previously Presented) The circuit of Claim 1, wherein the distance from said

branch point to said one end of said parallel termination impedance is greater than the

length of said branches.

7. (Previously Presented) The circuit of Claim 1, wherein said one end of said

parallel termination impedance is connected to said series dampening impedance.

8. (Currently Amended) A circuit for reducing skew when addressing a memory

module comprising:

a plurality of memory modules;

an address line coupling said memory modules;

a transmission line having a series dampening impedance and a parallel

termination impedance in a stub configuration, wherein said parallel termination

impedance is on [[the]] a same side of any memory module as a driver; and

200207753-1 Application No: 10/655,964 said transmission line having a first end coupled to a said driver and a second end

connected at a point on said address line to reduce skew when addressing a memory

module.

9. (Original) The circuit of Claim 8, wherein said second end of said transmission

line is connected at substantially the midpoint of said address line.

10. (Original) The circuit of Claim 8, wherein said transmission line is uni-

directional.

11. (Previously Presented) The circuit of Claim 8, wherein said parallel termination

impedance is connected to said series dampening impedance.

(Original) The circuit of Claim 8, wherein said plurality of memory modules is 12.

an odd number and wherein said second end of said transmission line is connected to said

address line at the middle memory module.

13. (Original) The circuit of Claim 8, wherein said plurality of memory modules is

an even number and wherein said second end of said transmission line is connected to

said address line at a point substantially midway between two memory modules closest to

the mid-point of said address line.

200207753-1

Art Unit: 2819

Application No: 10/655,964

4

14. (Currently Amended) A system for addressing memory modules comprising:

a bus controller;

a transmission line comprising a series dampening impedance between a driver

and a branch point of said transmission line; and

a parallel termination impedance having a first end coupled to said transmission

line between said series dampening impedance and said branch point and a second end

coupled to a termination voltage terminal, wherein said parallel termination impedance is

[[one]] on [[the]] a same side of any memory module as a driver;

said transmission line having branches from said branch point, wherein ones of

said branches are coupled to at least one memory module interface.

15. (Original) The system of Claim 14, wherein two branches of said branches from

said branch point have substantially the same length.

16. (Original) The system of Claim 14, wherein said transmission line is uni-

directional.

17. (Original) The circuit of Claim 14, wherein said ones of said branches are

coupled to two memory module interfaces.

18. (Original) The system of Claim 14, wherein said ones of said branches are

coupled to three memory module interfaces.

19. (Original) The system of Claim 14, wherein said ones of said branches are

coupled to four memory module interfaces.

20. (Previously Presented) The system of Claim 14, wherein the distance from said

branch point to said first end of said parallel termination impedance is greater than the

length of said branches.

21. (Previously Presented) The system of Claim 14, wherein said first end of said

parallel termination impedance is connected to said series dampening impedance.

22. (Previously Presented) The system of Claim 14, wherein said parallel termination

Art Unit: 2819

impedance and said series dampening resistance are mounted on opposite sides of a

printed circuit board.

200207753-1 6