Grafika komputerowa Laboratorium

Stanislau Antanovich & Mykola Sharonov

Spis treści

1	Buc	lowa obiektu sterowanego	2
	1.1	Opis zadania	2
	1.2	Wymagania	2
	1.3	Realizaja zadania	2
		1.3.1 class $Wheel$	3
		1.3.1.1 Opis działania	3
		1.3.1.2 Plik $Wheel.cpp$	3
		1.3.2 class $SideSciana$	3
		1.3.2.1 Opis działania	3
		1.3.3 class <i>Front</i>	3
		1.3.3.1 Opis działania	3
		1.3.4 class $Back$	3
		1.3.4.1 Opis działania	3
2	Buo	lowa otoczenia	4
	2.1	Opis zadania	4
	2.2		4
	2.3	Realizaja zadania	4
3	Tek	sturowanie	5
_	3.1		5
	3.2	Wymagania	5
	3.3	Realizacja zadania	5
4	Ste	rowanie obiektem głównym	6
_	4.1		_
	4.2		6
		Realizacia zadania	

Budowa obiektu sterowanego

1.1 Opis zadania

Należy zbudować "robot rolniczy (łazik)" wykorzystując wyłącznie prymitywy bazujące na trójkącie. Obiekt ten będzie wykorzystywany na kolejnych zajęciach. W tworzonej grze komputerowej użytkownik będzie miał możliwość sterowania tym łazikiem.

1.2 Wymagania

Wymagania dotyczące budowy głósnego obiektu:

- Na ocenę 3: Obiekt złożony z co najmniej 10 brył elementarnych (walec, prostopadłościan, itp.) zbudowanych przy użyciu prymitywów bazujących na trójkącie.
- Na ocenę 4: Obiekt złożony z co najmniej 20 brył elementarnych (walec, prostopadłościan, itp.) zbudowanych przy użyciu prymitywów bazujących na trójkącie.
- Na ocenę 5: Obiekt złożony z co najmniej 25 brył elementarnych (walec, prostopadłościan, itp.) zbudowanych przy użyciu prymitywów bazujących na trójkącie oraz projekt napisany obiektowo w C++.
 - Możliwość zaimportowania łazika z programu graficznego (np. Blender) o budowie odpowiadającej co najmniej 25 bryłom elementarnym.

1.3 Realizaja zadania

Naszym "łazikiem" będzie występował zwykły samochód.

1.3.1 class Wheel

1.3.1.1 Opis działania

Klasa Wheel odpowiada za rysowanie koła.

- $1.3.1.2 \quad \text{Plik} \ \textit{Wheel.cpp}$
- $1.3.1.3 \quad {\rm Plik} \ {\rm nagł\'owkowy} \ Wheel.h$
- 1.3.2 class SideSciana
- 1.3.2.1 Opis działania
- 1.3.3 class Front
- 1.3.3.1 Opis działania
- 1.3.4 class Back
- 1.3.4.1 Opis działania

Budowa otoczenia

2.1 Opis zadania

Należy zbudować elementy otoczenia, w którym będzie poruszał się robot rolniczy wykorzystując wyłącznie prymitywy bazujące na trójkącie. Elementy te będą wykorzystywane na kolejnych zajęciach i będą powiązanie z fabułą gry.

2.2 Wymagania

Wymagania dotyczące budowy otoczenia:

- Na ocenę 3: Przygotowanie otoczenia o podłożu płaskim oraz utworzenie dwóch obiektów dodatkowych (drzewo, bramka, budynek).
- Na ocenę 4: Przygotowanie otoczenia o podłożu nieregularnym (góra, stadion, wyboista ziemia) oraz utworzenie jednego obiektu dodatkowego.
- Na ocenę 5: Import otoczenia z programu graficznego (otoczenie o podłożu nieregularnym i minimum 1 obiekt dodatkowy).

2.3 Realizaja zadania

Teksturowanie

3.1 Opis zadania

Należy dokonać teksturowania według przedstawionych poniżej kryteriów.

3.2 Wymagania

Wymagania dotyczące dodania teksurowania.

- Na ocenę 3: Teksturowanie obiektów otoczenia oraz utworzenie autorskiego rozwiązania sterowaniem kamerą.
- Na ocenę 4: Jak na ocenę 3 oraz teksturowanie powierzchni.
- Na ocenę 5: Jak na ocenę 4 oraz teksturowanie obiektu, który będzie sterowany (minimum 3 bryły).

3.3 Realizacja zadania

Sterowanie obiektem głównym

4.1 Opis zadania

Należy dokonać sterowanie obiektem głównym.

4.2 Wymagania

Wymagania dotyczące sterowania obiektem głównym.

- Na ocenę 3: Realizacja prostego sterowanie przód-tył i obrót wokół własnej osi.
- Na ocenę 4: Implementacja prostej fizyki sterowania (w przypadku łazika różnica prędkości na gasienicach lub oś skrętna).
- Na ocenę 5: Jak na ocenę 4 oraz implementacja podstawowych zagadnień fizycznych np. pęd ciała.

4.3 Realizacja zadania