Basefold: Efficient Polynomial Commitment Schemes from Foldable Codes

Hadas Zeilberger, Binyi Chen, Ben Fisch

Polynomial Commitment Schemes

Polynomial Commitment Schemes

Binding Commitment

With overwhelming probability, a commitment opens to at most one polynomial

Knowledge Sound Proof

If a proof is "good quality"
then there exists a
polynomial time algorithm
that can *extract* the correct
polynomial from the proof

Polynomial Commitment Schemes

Applications

- Verifiable Secret Sharing
- Proof-of-storage
- SNARKs

Succinct Non-Interactive Argument of Knowledge

Succinct Non-Interactive Argument of Knowledge

Security Properties:

- Completeness
- Knowledge Soundness

Efficiency Properties:

- Succinctness
- Sublinear Time Verifier
- Small proofs

Problems with Existing SNARKs

Solutions with Efficient Verifiers

- Elliptic Curve Based: Require expensive multi-scalar multiplications over elliptic curves
- Code-Based: Require FFT-Friendly fields, which have a very specific algebraic structure, which introduces significant overhead for many important applications

Other Solutions

- MPC-Based (e.g. ZkBoo, Ligero)
 Fast prover, but have large proofs)
- <u>Code-Based:</u> e.g. Brakedown, Fast prover but requires proof size and verifier time that is O(sqrt(n))

Can We Do Better?

Multivariate PIOP (DARK, Hyperplonk, Spartan)

Multilinear Polynomial Commitment Scheme

Low overhead over PCS, adopts field-choice of PCS - Faster PCS -> Faster Prover

- Efficient verifier,
- Efficient prover,
- Flexible over choice of field,
- Polylogarithmic proof size

Can We Obtain A More Efficient *multilinear* Polynomial Commitment Scheme?

- Flexible field choices
- Polylog verifier
- Fast as possible prover

Our Solution: Basefold

- Efficient Multilinear PCS from Sumcheck and Generalized FRI
- New efficiently encododable code over any finite field:
 - Elliptic Curve Operations Using Only Native Field Operations (i.e. never have to do modulo operator in the arithmetic circuit)
 - Mersenne Primes*

Our Solution: Basefold

- 3x faster than existing multilinear FRI constructions while maintaining polylogarithmic communication complexity
- >20x faster to prove signature verification circuits with no sacrifice in verifier costs
- In general, encoding elliptic curve operations into an arithmetic circuit using our code should be similarly efficient

Preliminaries: Error Correcting Codes

An [n,k] linear error-correcting code is equal to $\{v * G : v \in F^k\}$ and G is an k x n matrix, called a *generator matrix*.

Example: A Reed-Solomon code, which are evaluations of a univariate polynomial over a domain D have generator matrix equal to the Vanadermonde matrix

Example: A [4,1] repetition code, which maps a -> a a a, has generator matrix equal to [1, 1, 1, 1]

Our Solution: Basefold

Foldable Code

G _{i-1}	G _{i-1}
G _{i-1} * T1	G _{i-1} * T2

Our Solution: Basefold

G _{i-1}	G _{i-1}
G _{i-1} * T1	G _{i-1} * T2

We can construct an efficient multilinear PCS from any foldable code

If we sample the T1,T2 randomly, then we obtain a new field-agnostic new linear error-correcting code with good distance properties

Technical Roadmap

- Definition of Foldable Code
- Multilinear PCS
 - Construction
 - High-level sketch of proof of knowledge soundness
- New Error-Correcting Code:
 - Construction
 - Distance Proof
- Applications and Benchmarks
- Future Directions and Open Problems

Preliminaries: Error Correcting Codes

An [n,k] linear error-correcting code is equal to $\{v * G : v \in F^k\}$ and G is an k x n matrix, called a *generator matrix*.

Example: A Reed-Solomon code, which are evaluations of a univariate polynomial over a domain D have generator matrix equal to the Vanadermonde matrix

Example: A [4,1] repetition code, which maps a -> a a a, has generator matrix equal to [1, 1, 1, 1]

Recursive Generator Matrix

$$G_{0} = [1, 1]$$
 G_{i-1}
 G_{i-1}
 G_{i-1}
 G_{i-1}

T1_i, T2_i are diagonal matrices for all i

$$G_0,...,G_i \leftarrow (T1_1,T2_1),...,(T1_i,T2_i)$$

$$Enc(v) = v*G$$

$$Enc(v)[j] = \langle v,G[][j] \rangle$$

Recursive Encoding Algorithm

Inner Product Recap

$$Let c = Enc_{i}(v_{i}, v_{R})$$

$$\texttt{c[j]:=Enc}_{\text{\tiny i-1}}(\texttt{v}_{\texttt{L}})[\texttt{j}] + \textbf{T1[j]} \texttt{Enc}_{\text{\tiny i-1}}(\texttt{v}_{\texttt{R}})$$

$$c[j+n]{:=}{\mathsf{Enc}_{_{i-1}}}(\mathsf{v}_{_{\mathsf{L}}}) + \textbf{T2[j]} \mathsf{Enc}_{_{i-1}}(\mathsf{v}_{_{\mathsf{R}}})$$

Multilinear Polynomial Evaluation

$$\mathbf{c}[i] := \text{Enc}_{i-1}(v_L) + \mathbf{t1[j]} \text{Enc}_{i-1}(v_R)$$

$$\mathbf{c}[i] := \text{Enc}_{i-1}(v_L) + \mathbf{t2[j]} \text{Enc}_{i-1}(v_R)$$

Suppose
$$Enc_{i-1}(v_L) = P_L(\mathbf{x}),$$

$$Enc_{i-1}(v_R) = P_R(\mathbf{x})$$

$$\mathbf{c}[j] := P_L(\mathbf{x}) + t1[j] * P_R(\mathbf{x}) = \mathbf{P}(\mathbf{x}_1,...,\mathbf{x}_{i-1},t1[j])$$

$$P(X_1,...,X_i) = P_L(X_1,...,X_{i-1}) + X_i^* P_R(X_1,...,X_{i-1})$$

Multilinear Polynomial Evaluation

Let $v_1,...,v_n$ \in F^k be the evaluation domain of C_{i-1} .

Then the evaluation domain of C_i is: $(v_0 \parallel T1_i[0]),...,(v_n \parallel T1_i[n]), (v_0 \parallel T2_i[0],...,v_n \parallel T2_i[n])$

Multilinear Polynomial Evaluation

x ₁	x_1, y_1	x_{1}, y_{1}, z_{1}
x ₂	x_1, y_2	x_{1}, y_{1}, z_{2}
х ₃	x_2, y_3	x_1, y_2, z_3
х ₄	x_2, y_4	x_1, y_2, z_4
		${\bf x_2}$, ${\bf y_{3}}$, ${\bf z_{5}}$
		$X_2, Y_{4,} Z_7$

 X_{2}, Y_{4}, Z_{8}

Multilinear Polynomial Evaluation

Polynomial Commitment Scheme from Foldable Codes

Building Block: IOP for Random Evaluation Point

Building Block: IOP for Random Evaluation Point

Key Point: Doubles as Proximity Test

One field element repeated a constant number of times

Com is consistent with a polynomial in most places

Building Block: IOP for Random Evaluation Point

Key Point: Doubles as Proximity Test

One field element repeated a constant number of times

with a polynomial in most places

Building Block: IOP for Random Evaluation Point

Knowledge Soundness

IOP For Any Evaluation Point

Sumcheck for evaluation of Multilinear polynomial P reduces to checking random evaluation of P

Building Block: IOP for any Evaluation Point

Compile into SNARK via Fiat Shamir using Merkle Trees. In the end, we get:

- O(n) prover time (not including encoding time)
- $O(\log^2(n))$ verifier time and proof size ($\sim 2x$ bigger than FRI)
- 3x faster than existing Multilinear FRI PCS

Open Problem: Prove that last oracle is an evaluation of a polynomial within list-decoding radius of the original oracle

Minimum Relative Distance of a random foldable code				
k_0	k_d	c	$ \mathbb{F} $	Δ_{C_d}
2^5	2^{20}	16	2^{31}	.5044
1	2^{20}	16	2^{61}	.484
1	2^{25}	8	2^{128}	.557
1	2^{25}	8	2^{256}	.728

Reed-Solomon Code

С	Distance
2	0.5
4	~0.75
8	~0.875

Hamming distance is the number of non zero entries in a vector

Example: [1,1,0,3] has hamming distance 3

[1,0,0,3] has hamming distance 2

- Multilinear Polynomials evaluated over random domains have good distance
- Schwartz-Zippel Lemma says P is 0 at a random point with probability d/|F|
- CDF of a binomial distribution: $F(r) = \sum_{x=Z}^{r} \binom{n}{x} p^x q^{(n-x)}$

- Multilinear Polynomials evaluated over random domains have good distance
- Schwartz-Zippel Lemma says P is 0 at a random point with probability d/|F|
- CDF of a binomial distribution: $F(r) = \sum_{x=Z}^{r} \binom{n}{x} p^x q^{(n-x)}$

Union Bound

The probability of sampling one green ball from two trials is smaller than equal to $(\frac{1}{4} + \frac{1}{4}) = \frac{1}{2}$

- Let P be a polynomial that is 0 at every point associated with a column in the box
- Then for every column not in the box, P will be zero either on the left or the right with probability 1/F

$$F(r) = \sum_{x=Z}^{r} {n \choose x} p^{x} q^{(n-x)}$$

- If the box is small, the probability is small, but there are more polynomials that are 0 on the entire box
- If the box is big, the probability is larger (Z is smaller), but there are *fewer* polynomials that are 0 on the entire box

$$F(r) = \sum_{x=Z}^{r} {n \choose x} p^{x} q^{(n-x)}$$

- If a Polynomial is 0 on a set of points in C_{i-1} domain, then those points are automatically 0 in the new domain
- Otherwise, we use CDF of the binomial distribution to bound the number of *new* zeroes
- We take a careful union bound, polynomials from larger sets have smaller probability of having >T zeroes

Benchmarks

Benchmarks

ECDSA Circuit				
Protocol	Prover Time	Proof Size	Verifier Time	
	(ms)	(KB)	(ms)	
Hyperplonk[Basefold]	122	6258	24	
Hyperplonk[Brakedown]	168	32271	797	
Hyperplonk[ZeromorphFri]	2888	7739	47	
HyperPlonk[MKZG]	71027	7.74	107	

Open Problems and Future Directions

Applications and Implementation

- Wrapping Basefold-based
 SNARK such as
 plonky3+Basefold into Groth16
 - Store Proof on chain
 - Endless recursion
- Use Interleaving trick directly with the SNARK

Protocol Improvements

- Use list-decoding regime instead of unique decoding regime
- Find better distance bounds or use distance boosting techniques on the code
- Find more efficient foldable codes