Лабораторная работа 2 «Численное решение задачи Коши для обыкновенных дифференциальных уравнений 1-го порядка методами Рунге-Кутта», **Задача 1 и 2.**

(1) В. В. Корзунина, З. А. Шабунина. Численное решение задачи Коши для обыкновенных дифференциальных уравнений методами типа Рунге-Кутта. Часть 1.

срок исполнения – 24.04.2022г.

Задача 1. Найти численное решение задачи Коши для ОДУ 1-ого порядка вида (*)

$$\begin{cases} y'(x) = f(x, y(x)), \\ y(a) = y_0 \end{cases}$$
 (*)

методом типа Рунге-Кутта указанного порядка p с требуемой точностью ε .

Структура входных данных:

- f(x, y(x)) функция правой части ОДУ задачи (*)
- [a,b] интервал интегрирования, в левой границе которого поставлено начальное условие задачи (*); // т.е. точка a задана в начальном условии, точку b необходимо задать самостоятельно //
- y_0 значение, определяющее начальное условие задачи (*);
- n_0 начальное количество подотрезков разбиения интервала [a, b];
- ε_0 заданная точность метода.

Метод

- **1.** Построить равномерную сетку на отрезке [a, b] с учетом значения стартового значения n_0 ;
- **2.** При зафиксированном значении n найти численное решение задачи Коши (*) методом Рунге-Кутта порядка p (*уточните формулу по номеру вашего варианта !*). Затем удвоить количество подотрезков разбиения до 2n, и повторно реализовать численный метод Рунге-Кутта.
- **3.** Найти погрешность численного решения по формуле $\varepsilon_{(n, 2n)} = \frac{|y_n y_{2n}|}{2^p 1}$, где

 y_n — численное решение в крайнем правом узле, найденное на сетке из n узлов;

 y_{2n} — численное решение в крайнем правом узле, найденное на сетке из 2n узлов;

4. Процесс продолжать, пока не будет выполнено условие $\varepsilon_{(n,2n)} \leq \varepsilon_0$.

Структура выходных данных:

• значение индикатора ошибки Error:

Error=0 – завершение в соответствии с назначенным условием о достижении заданной точности;

Error=1 – процесс решения прекращен, т.к. с уменьшением шага погрешность не уменьшается;

Error=2 - процесс решения прекращен, т.к. значение шага стало недопустимо малым;

Error=3 - процесс решения прекращен, т.к. дальнейшее применение метода невозможно (в случае, когда реализуется расчетная схема 2 или 3);

Error=4 – решение не получено, двухсторонний метод Рунге-Кутта с данным начальным шагом не применим.

• x-координата конца отрезка интегрирования; полученное в конце отрезка интегрирования значение решения.

Графическая интерпретация: построить

- график аналитического (точного) решения задачи Коши (*), если таковое удается отыскать;
- график численного решения задачи Коши (*), соответствующего сетке с количеством подотрезков разбиения n_0 ;
- график численного решения задачи Коши (*), полученное в последних двух итерациях алгоритма решения.

Задача 2. Найти численное решение задачи Коши для системы ОДУ 1-ого порядка вида (**)

$$\begin{cases} y_1'(x) = f_1(x, y_1(x), y_2(x)), \\ y_2'(x) = f_2(x, y_1(x), y_2(x)), \\ y_1(a) = y_1^0, \quad y_2(a) = y_2^0 \end{cases}$$
 (**)

методом типа Рунге-Кутта указанного порядка p с требуемой точностью ε .

Структура входных данных:

- $f_1(x, y_1(x), y_2(x))$ и $f_2(x, y_1(x), y_2(x))$ функция правой части ОДУ задачи (**)
- [a,b] интервал интегрирования, в левой границе которого поставлено начальное условие задачи (**); // т.е. точка a задана в начальном условии, точку b необходимо задать самостоятельно //
- y_1^0 и y_2^0 значение, определяющее начальное условие задачи (**);
- n_0 начальное количество подотрезков разбиения интервала [a, b];
- ε_0 заданная точность метода.

<u>Замечание:</u> Метод решения, структура выходных данных и графическая интерпретация аналогичны постановке задачи 1.

Выбор формулы, реализуемой в численном методе типа Рунге-Кутта, а также вид функций f(x, y(x)), $f_1(x, y_1(x), y_2(x))$ и $f_2(x, y_1(x), y_2(x))$ правой части ОДУ определяется согласно вашему индивидуальному варианту:

тип формулы - пособие (1) «В. В. Корзунина, З. А. Шабунина. Численное решение задачи Коши для обыкновенных дифференциальных уравнений методами типа Рунге-Кутта. Часть 1»

функции f, f_1, f_2 - приложение к лр 2.