Fast evaluation and root finding for polynomials with floating-point coefficients

ISSAC 2023

Rémi Imbach¹ and Guillaume Moroz¹

¹ Université de Lorraine, CNRS, Inria, LORIA

Approximation

Root finding

Results 1/14

Light-year (L) in basis 2 (in meters): 100 001 100 111 000 111 101 111 110 111 001 000 100 100 011 011 000 000

Floating point representation: $m \in \mathbb{N}, \log \tau \in \mathbb{N}$

$$\mathbb{R}_{m,\tau}(L) = \underbrace{100\ 001\ 100\ 111}_{000\ 111\ 101\ 111} \times 10^{\underbrace{00\ 101\ 010}_{001\ 101\ 010}}$$

mantissa: m bits

exponent: $\log \tau$ bits

Notation: $log := log_2$

Light-year (L) in basis 2 (in meters):

100 001 100 111 000 111 101 111 110 111 001 000 100 100 011 011 000 000

Floating point representation: $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$

$$\mathbb{R}_{m,\tau}(L) = 100\ 001\ 100\ 111\ 000\ 111\ 101\ 111\ \times 10^{00\ 101\ 010}$$

mantissa: m bits

exponent: $\log \tau$ bits

Relative error:

$$\frac{|L-\mathbb{R}_{m,\tau}(L)|}{|\mathbb{R}_{m,\tau}(L)|} \leq 2^{-m}$$

Size of representation: $O(m + \log \tau)$ Cost of \times : $\widetilde{O}(m + \log \tau)$ bit operations

Light-year (L) in basis 2 (in meters):

100 001 100 111 000 111 101 111 110 111 001 000 100 100 011 011 000 000

Floating point representation: $m \in \mathbb{N}, \log \tau \in \mathbb{N}$

$$\mathbb{R}_{m,\tau}(L) = 100\ 001\ 100\ 111\ 000\ 111\ 101\ 111\ \times 10^{00\ 101\ 010}$$

mantissa: m bits

exponent: $\log \tau$ bits

Relative error: $\frac{|L - \mathbb{R}_{m,\tau}(L)|}{|\mathbb{R}_{m,\tau}(L)|} \le 2^{-m}$

Size of representation: $O(m + \log \tau)$ Cost of \times : $O(m + \log \tau)$ bit operations

Polynomials in $\mathbb{R}_{m,\tau}[z]$: $F(z) = f_0 + f_1 z + \ldots + f_d z^d$

Size of (dense) representation: $O(d(m + \log \tau))$

Goal: find relative *m*-bit approximations of all/some of the roots of $F \in \mathbb{R}_{m,\tau}[z]$ with $\widetilde{O}(d(m + \log \tau))$ bit operations?

Notation: $\log := \log_2$

Relative condition number

$$F(z) = f_0 + f_1 z + \ldots + f_d z^d$$

Relative condition number of a root ζ of F: "Relatively to $|\zeta|$, measures the displacement of $|\zeta|$ under an relative infinitesimal perturbation applied to F"

Example: $F(z) = (z^{200} - 2^{200})(z^{200} - 1)$

Relative condition number

$$F(z) = f_0 + f_1 z + \ldots + f_d z^d f_0(1 + \varepsilon_0) + f_1(1 + \varepsilon_1)z + \ldots + f_d(1 + \varepsilon_d)z^d$$

Relative condition number of a root ζ of F: "Relatively to $|\zeta|$, measures the displacement of $|\zeta|$ under an relative infinitesimal perturbation applied to F"

Example:
$$F(z) = (z^{200} - 2^{200})(z^{200} - 1)$$

R. Imbach and G. Moroz

Relative condition number

$$F(z) = f_0 + f_1 z + ... + f_d z^d$$

 $\widetilde{F}(z) = |f_0| + |f_1|z + ... + |f_d|z^d$

Relative condition number of a root ζ **of** F: "Relatively to $|\zeta|$, measures the displacement of $|\zeta|$ under an relative infinitesimal perturbation applied to F"

$$cond(\zeta, F) := \frac{\widetilde{F}(|\zeta|)}{|\zeta||F'(\zeta)|}$$

Relative condition number of F:

$$cond(F) := \max_{\zeta \text{ root of } F} cond(\zeta, F)$$

Relative condition number

$$F(z) = f_0 + f_1 z + ... + f_d z^d$$

 $\widetilde{F}(z) = |f_0| + |f_1|z + ... + |f_d|z^d$

Relative condition number of a root ζ **of** F: "Relatively to $|\zeta|$, measures the displacement of $|\zeta|$ under an relative infinitesimal perturbation applied to F"

$$cond(\zeta, F) := \frac{\widetilde{F}(|\zeta|)}{|\zeta||F'(\zeta)|}$$

Relative condition number of F:

$$cond(F) := \max_{\zeta \text{ root of } F} cond(\zeta, F)$$

Result: find relative *m*-bit approximations of all the roots of $F \in \mathbb{R}_{m,\tau}[z]$ with $\widetilde{O}(d(m + \log \tau + \log cond(F)))$ bit operations

$$F(z) = f_0 + f_1 z + ... + f_d z^d$$

 $\widetilde{F}(z) = |f_0| + |f_1|z + ... + |f_d|z^d$

$$F(z) = f_0 + f_1 z + ... + f_d z^d$$

 $\widetilde{F}(z) = |f_0| + |f_1|z + ... + |f_d|z^d$

N Annuli: \ldots, A_n, \ldots

$$F(z) = f_0 + f_1 z + \dots + f_d z^d$$

$$\widetilde{F}(z) = |f_0| + |f_1|z + \dots + |f_d|z^d$$

N Annuli: ..., A_n , ... *K* Sectors: ..., $S_{n,k}$, ...

Piecewise polynomial approximation

$$F(z) = f_0 + f_1 z + \dots + f_d z^d$$

$$\widetilde{F}(z) = |f_0| + |f_1|z + \dots + |f_d|z^d$$

Example:
$$F(z) = (z^{200} - 2^{200})(z^{200} - 1)$$

N Annuli: ..., A_n , ...

K Sectors: ..., $S_{n,k}$, ...

K Approximations:

In sector $S_{n,k}$, we approximate F with:

$$z^{\ell_n}G_{n,k}(z)=z^{\ell_n}\left(g_0+\ldots+g_{d_n}z^{d_n}\right)$$

$$F(z) = f_0 + f_1 z + \dots + f_d z^d$$

$$\widetilde{F}(z) = |f_0| + |f_1|z + \dots + |f_d|z^d$$

Example:
$$F(z) = (z^{200} - 2^{200})(z^{200} - 1)$$

N Annuli: ..., A_n , ...

K Sectors: $\ldots, S_{n,k}, \ldots$

K Approximations:

In sector $S_{n,k}$, we approximate F with:

$$z^{\ell_n}G_{n,k}(z)=z^{\ell_n}\left(g_0+\ldots+g_{d_n}z^{d_n}\right)$$

satisfying: $\forall z \in S_{n,k}$,

$$|F(z)-z^{\ell_n}G_{n,k}(z)|\leq 2^{-m}\widetilde{F}(|z|)$$

$$F(z) = f_0 + f_1 z + \dots + f_d z^d$$

$$\widetilde{F}(z) = |f_0| + |f_1|z + \dots + |f_d|z^d$$

Example:
$$F(z) = (z^{200} - 2^{200})(z^{200} - 1)$$

N Annuli: ..., A_n , ...

K Sectors: ..., $S_{n,k}$, ...

K Approximations:

In sector $S_{n,k}$, we approximate F with:

$$z^{\ell_n}G_{n,k}(z)=z^{\ell_n}\left(g_0+\ldots+g_{d_n}z^{d_n}\right)$$

satisfying: $\forall z \in S_{n,k}$,

$$|F(z)-z^{\ell_n}G_{n,k}(z)|\leq 2^{-m}\widetilde{F}(|z|)$$

and: $d_n \in O(m + \log d)$

 Introduction
 Approximation
 Root finding
 Results

 4/14

Contributions

Given: $m \in \mathbb{N}, \log \tau \in \mathbb{N}, F \in \mathbb{R}_{m,\tau}[z]$ of degree d

We compute:

 Introduction
 Approximation
 Root finding
 Results

 4/14

Contributions

Given: $m \in \mathbb{N}, \log \tau \in \mathbb{N}, F \in \mathbb{R}_{m,\tau}[z]$ of degree d

We compute:

• a piecewise polynomial approximation satisfying:

$$\forall S_{n,k} \subset \mathbb{C}, \ \forall z \in S_{n,k}, \ |F(z) - z^{\ell_n} G_{n,k}(z)| \leq 2^{-m} \widetilde{F}(|z|)$$

in $\widetilde{O}(d(m + \log \tau))$ bit operations

Contributions

Given: $m \in \mathbb{N}, \log \tau \in \mathbb{N}, F \in \mathbb{R}_{m,\tau}[z]$ of degree d

We compute:

• a piecewise polynomial approximation satisfying:

$$\forall S_{n,k} \subset \mathbb{C}, \ \forall z \in S_{n,k}, \ |F(z) - z^{\ell_n} G_{n,k}(z)| \leq 2^{-m} \widetilde{F}(|z|)$$

in
$$\widetilde{O}(d(m+\log au))$$
 bit operations

• relative *m*-bits approximations of all the roots ζ of F s.t. $cond(\zeta, F) \leq 2^m$ in $O(d(m + \log \tau))$ bit operations

Contributions

Given: $m \in \mathbb{N}, \log \tau \in \mathbb{N}, F \in \mathbb{R}_{m,\tau}[z]$ of degree d

We compute:

• a piecewise polynomial approximation satisfying:

$$\forall S_{n,k} \subset \mathbb{C}, \ \forall z \in S_{n,k}, \ |F(z) - z^{\ell_n} G_{n,k}(z)| \leq 2^{-m} \widetilde{F}(|z|)$$

in
$$\widetilde{O}(d(m + \log \tau))$$
 bit operations

- relative *m*-bits approximations of all the roots ζ of F s.t. $cond(\zeta, F) \leq 2^m$ in $\widetilde{O}(d(m + \log \tau))$ bit operations
- if $\kappa = cond(F)$, relative *m*-bits approximations of all the roots of *F* in $\widetilde{O}(d(m + \log \tau + \log \kappa))$ bit operations

 Introduction
 Approximation
 Root finding
 Results

 5/14

Root finding: best state-of-the-art approaches

Given: $F \in \mathbb{R}[z]$ of degree d, $b \in \mathbb{N}_{>}$

Root approximation problem:

Compute: b-bit approximations of all the roots ζ of F

Theoretical record: Pan's algorithm (when $b \ge d \log d$):

 $ightarrow \widetilde{\it O}(d^2b)$ bit operations for root approximation

Introduction Approximation Root finding

Given: $F \in \mathbb{R}[z]$ of degree $d, b \in \mathbb{N}_{>}$

Root approximation problem:

Compute: b-bit approximations of all the roots ζ of F

Approximate factorization problem:

Compute: *d* linear factors H_i s.t. $||F - \prod_i H_i||_1 \le 2^{-b} ||F||_1$

Theoretical record: Pan's algorithm (when $b \ge d \log d$):

- $\rightarrow O(db)$ bit operations for approximate fact.[Pan2002]
- $ightarrow \widetilde{O}(d^2b)$ bit operations for root approximation

[Pan2002] Victor Y. Pan. Univariate Polynomials: Nearly Optimal Algorithms for Numerical Factorization and Root-finding Journal of Symbolic Computation, 2002

Root finding: best state-of-the-art approaches

Given: $F \in \mathbb{R}[z]$ of degree $d, b \in \mathbb{N}_{>}$

Root approximation problem:

Compute: b-bit approximations of all the roots ζ of F

Theoretical record: Pan's algorithm (when $b \ge d \log d$):

 $ightarrow \widetilde{\it O}(d^2b)$ bit operations for root approximation

User's choice:

MPSolve [BR2014] (simultaneous Newton-like iterations)

- ightarrow each iteration in $O(d^2)$ arithmetic operations
- ightarrow no known bound on the number of iterations

[BR2014] Dario A. Bini and Leonardo Robol. Solving secular and polynomial equations: A multiprecision algorithm Journal of Computational and Applied Mathematics, 2014

Piecewise polynomial approximation algorithm: overview

nput: $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Output:

Piecewise polynomial approximation algorithm: overview

Input: $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Output: N annulii ..., A_n , ...

N polynomials ..., F_n , ...

 $\begin{matrix} & & \mathsf{Step} \ 1 \\ \hline \mathcal{F} & & \longrightarrow \end{matrix}$

Piecewise polynomial approximation algorithm: overview

Input: $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Output: N annulii ..., A_n , ...

N polynomials ..., F_n , ...

K sectors ..., $S_{n,0}, \ldots, S_{n,k}, \ldots, S_{n,K_n}, \ldots$

K polynomials ..., $G_{n,k}$, ...

Step 2

R. Imbach and G. Moroz

Piecewise polynomial approximation algorithm: overview

Input: $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Output: N annulii ..., A_n , ... N polynomials ..., F_n , ...

Step 1:

$$egin{array}{ccc} \mathsf{Step} \ \mathbf{1} & \longrightarrow \end{array}$$

R. Imbach and G. Moroz

Piecewise polynomial approximation algorithm: overview

Input: $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Output: N annulii ..., A_n , ... N polynomials ..., F_n , ...

Step 1: choose reals $r_0 < r_{max}$

Piecewise polynomial approximation algorithm: overview

Input: $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Output: N annulii ..., A_n , ...

N polynomials ..., F_n , ...

Step 1: compute $r_0 < r_1 < ... < r_n < ... < r_N = r_{max}$

Piecewise polynomial approximation algorithm: overview

Input: $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Output: N annulii ..., A_n , ...

N polynomials ..., F_n , ...

Step 1: compute $r_0 < r_1 < ... < r_n < ... < r_N = r_{max}$

Piecewise polynomial approximation algorithm: overview

Input: $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Output: N annulii ..., A_n , ... N polynomials ..., F_n , ...

Step 1: compute $r_0 < r_1 < \ldots < r_n < \ldots < r_N = r_{max}$ together with, for each n: $\ell_n \in \mathbb{N}_>, F_n \in \mathbb{R}_{m,\tau}[z] \text{ of degree } \delta_n$

Piecewise polynomial approximation algorithm: overview

Input: $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Output: N annulii ..., A_n , ... N polynomials ..., F_n , ...

Step 1: compute $r_0 < r_1 < \ldots < r_n < \ldots < r_N = r_{max}$ together with, for each n:

 $\ell_n \in \mathbb{N}_>$, $F_n \in \mathbb{R}_{m,\tau}[z]$ of degree δ_n satisfying:

$$|r_n| < |z| < r_{n+1} \Rightarrow |F(z) - z^{\ell_n} F_n(z)| < d2^{-m} \widetilde{F}(|z|)$$

Approximation Root finding Results 6/14

Piecewise polynomial approximation algorithm: overview

 $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Output: N annulii ..., $A_n, ...$ N polynomials ..., F_n , ...

Step 1: compute $r_0 < r_1 < ... < r_n < ... < r_N = r_{max}$ together with, for each *n*: $\ell_n \in \mathbb{N}_{>}, F_n \in \mathbb{R}_{m,\tau}[z]$ of degree δ_n

satisfying:

$$r_n \le |z| \le r_{n+1} \Rightarrow |F(z) - z^{\ell_n} F_n(z)| \le d2^{-m} \widetilde{F}(|z|)$$
 and

$$r_{n+1}=2^{m/\delta_n}r_n$$

INRIA. LORIA R. Imbach and G. Moroz

Piecewise polynomial approximation algorithm: overview

 $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Output: N annulii ..., A_n , ... and N integers ..., ℓ_n , ... N polynomials ..., F_n ,... of degrees ..., δ_n ,...

Step 1: compute $r_0 < r_1 < ... < r_n < ... < r_N = r_{max}$ together with, for each *n*: $\ell_n \in \mathbb{N}_{>}$, $F_n \in \mathbb{R}_{m,\tau}[z]$ of degree δ_n satisfying: $|r_n| \le |z| \le r_{n+1} \Rightarrow |F(z) - z^{\ell_n} F_n(z)| \le d2^{-m} \widetilde{F}(|z|)$ and $r_{n+1}=2^{m/\delta_n}r_n$ let $A_n = D(0, r_{n+1}) \setminus D(0, r_n)$

Newton Polygon

Notations:

$$P_i := (i, -\log |f_i|)$$

Newton Polygon

$$P_j$$
 above $s_n \Leftrightarrow |f_j||r_n|^j < |f_i||r_n|^i$
thus $|f_i||r_n|^i = \max_k |f_k||r_n|^k$
 $\leq \widetilde{F}(|r_n|)$

Notations:

$$P_i := (i, -\log |f_i|)$$

 s_n : line of slope r_n tangent to H

Newton Polygon

Notations:

$$P_i := (i, -\log |f_i|)$$

$$\widetilde{P}_i := (i, -\log |f_i| - m)$$

 s_n : line of slope r_n tangent to H

$$\begin{array}{ll} P_j \text{ above } s_n \Leftrightarrow |f_j||r_n|^j < |f_i||r_n|^i \\ \text{thus } |f_i||r_n|^i = \max_k |f_k||r_n|^k \\ < \widetilde{F}(|r_n|) \end{array} \qquad \begin{array}{ll} \widetilde{P_j} \text{ above } s_n \Leftrightarrow |f_j||r_n|^j < 2^{-m}\widetilde{F}(|r_n|) \end{array}$$

Newton Polygon

Notations:

$$P_i := (i, -\log |f_i|)$$

$$\widetilde{P}_i := (i, -\log |f_i| - m)$$

 s_n : line of slope r_n tangent to H

$$P_j$$
 above $s_n \Leftrightarrow |f_j||r_n|^j < |f_i||r_n|^i$ thus $|f_i||r_n|^i = \max_k |f_k||r_n|^k$ \widetilde{P}_j above $s_n \Leftrightarrow |f_j||r_n|^j < 2^{-m}\widetilde{F}(|r_n|)$

let ℓ_n be the leftmost index s.t. P_{ℓ_n} is below s_n :

$$\forall r_n < r, \ \forall j < \ell_n, \ |f_j||r|^j < 2^{-m}\widetilde{F}(|r|)$$

Approximation on an annulus $A_n = D(0, r_{n+1}) \setminus D(0, r_n)$

Notations:

$$P_i := (i, -\log |f_i|)$$

$$\widetilde{P}_i := (i, -\log |f_i| - m)$$

8/14

tangent to H s_{n+1} : line of slope r_{n+1}

 s_n : line of slope r_n

 s_{n+1} : line of slope r_{n+1} tangent to H

let ℓ_n be the leftmost index s.t. $\widetilde{P_{\ell_n}}$ is below s_n :

$$\forall r_n < r, \ \forall j < \ell_n, \ |f_j||r|^j < 2^{-m}\widetilde{F}(|r|)$$

Approximation on an annulus $A_n = D(0, r_{n+1}) \setminus D(0, r_n)$

Notations:

$$P_i := (i, -\log |f_i|)$$

$$\widetilde{P}_i := (i, -\log |f_i| - m)$$

 s_n : line of slope r_n tangent to H s_{n+1} : line of slope r_{n+1}

tangent to H

let u_n be the rightmost index s.t. \widetilde{P}_{u_n} is below s_{n+1} :

$$\forall r \leq r_{n+1}, \forall j > u_n, |f_j||r|^j < 2^{-m}\widetilde{F}(|r|)$$

let ℓ_n be the leftmost index s.t. P_{ℓ_n} is below s_n :

$$\forall r_n < r, \ \forall j < \ell_n, \ |f_j||r|^j < 2^{-m}\widetilde{F}(|r|)$$

Approximation on an annulus $A_n = D(0, r_{n+1}) \setminus D(0, r_n)$

let
$$F_n(z) := f_{\ell_n} + \ldots + f_{u_n} z^{u_n - \ell_n}$$
 and $\delta_n := u_n - \ell_n$,

troduction Approximation Root finding Results 8 / 14

Approximation on an annulus $A_n = D(0, r_{n+1}) \setminus D(0, r_n)$

let $F_n(z) := f_{\ell_n} + \ldots + f_{u_n} z^{u_n - \ell_n}$ and $\delta_n := u_n - \ell_n$, then

$$\forall r_n < |z| < r_{n+1}, |F(z) - z^{\ell_n} F_n(z)| < d2^{-m} \widetilde{F}(|z|)$$

Piecewise polynomial approximation algorithm: overview

Input: $m \in \mathbb{N}, \log \tau \in \mathbb{N}, F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Output: N annulii ..., A_n ,... and N integers ..., ℓ_n ,... N polynomials ..., F_n ,... of degrees ..., δ_n ,...

Step 1: compute $r_0 < r_1 < \ldots < r_n < \ldots < r_N = r_{max}$ together with, for each n: $\ell_n \in \mathbb{N}_>, \ F_n \in \mathbb{R}_{m,\tau}[z] \text{ of degree } \delta_n$ satisfying: $r_n \leq |z| \leq r_{n+1} \Rightarrow |F(z) - z^{\ell_n} F_n(z)| \leq d2^{-m} \widetilde{F}(|z|)$ and $r_{n+1} = 2^{m/\delta_n} r_n$

Piecewise polynomial approximation algorithm: overview

Input: $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Output: N annulii ..., A_n , ... and N integers ..., ℓ_n , ... N polynomials ..., F_n , ... of degrees ..., δ_n ...

Lemma 1: Bounding the number of terms

If, for all n, $r_{n+1} = 2^{m/\delta_n} r_n$ then $\sum \delta_n \in O(d)$

Step 1: compute $r_0 < r_1 < \ldots < r_n < \ldots < r_N = r_{max}$ together with, for each n:

 $\ell_n \in \mathbb{N}_>$, $F_n \in \mathbb{R}_{m,\tau}[z]$ of degree δ_n satisfying:

$$r_n \le |z| \le r_{n+1} \Rightarrow |F(z) - z^{\ell_n} F_n(z)| \le d2^{-m} \widetilde{F}(|z|)$$
 and

nd .

$$r_{n+1} = 2^{m/\delta_n} r_n$$

oduction Approximation Root finding Results
9/14

Piecewise polynomial approximation algorithm: overview

Input: $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Output: N annulii ..., A_n , ...

N polynomials ..., F_n , ...

K sectors ..., $S_{n,0}, \ldots, S_{n,k}, \ldots, S_{n,K_n}, \ldots$

K polynomials ..., $G_{n,k}$, ...

Step 2

oduction Approximation Root finding Results
9/ 14

Piecewise polynomial approximation algorithm: overview

```
Input: m \in \mathbb{N}, \log \tau \in \mathbb{N}, F \in \mathbb{R}_{m,\tau}[z] of degree d
```

```
Output: N annulii ..., A_n, ... and N integers ..., \ell_n, ... N polynomials ..., F_n, ... of degrees ..., \delta_n, ... K sectors ..., S_{n,0}, ..., S_{n,k}, ..., S_{n,K_n}, ... with K \in O(d/m)
```

Step 2: for
$$n = 0, ..., N - 1$$
:

Introduction Approximation Root finding Results
9/14

Piecewise polynomial approximation algorithm: overview

```
Input: m \in \mathbb{N}, \log \tau \in \mathbb{N}, F \in \mathbb{R}_{m,\tau}[z] of degree d
```

```
Output: N annulii ..., A_n, ... and N integers ..., \ell_n, ... N polynomials ..., F_n, ... of degrees ..., \delta_n, ... K sectors ..., S_{n,0}, ..., S_{n,k}, ..., S_{n,K_n}, ... with K \in O(d/m)
```

```
Step 2: for n = 0, ..., N-1:
2.1 cover A_n with K_n disks D(\gamma_{n,k}, \rho_n)
```


Introduction Approximation Root finding Results
9 / 14

Piecewise polynomial approximation algorithm: overview

```
Input: m \in \mathbb{N}, \log \tau \in \mathbb{N}, F \in \mathbb{R}_{m,\tau}[z] of degree d
```

Output: N annulii ..., A_n ,... and N integers ..., ℓ_n ,... N polynomials ..., F_n ,... of degrees ..., δ_n ,... K sectors ..., $S_{n,0}$,..., $S_{n,k}$,..., S_{n,K_n} ,... with $K \in O(d/m)$

Step 2: for
$$n = 0, ..., N - 1$$
:
2.1 cover A_n with K_n disks $D(\gamma_{n,k}, \rho_n) \longrightarrow K_n$ sectors $S_{n,0}, ..., S_{n,K_n}$

Lemma 2: If $r_{n+1} = 2^{m/\delta_n} r_n$ then $K_n \in O(\delta_n/m)$

Piecewise polynomial approximation algorithm: overview

```
nput: m \in \mathbb{N}, \log \tau \in \mathbb{N}, F \in \mathbb{R}_{m,\tau}[z] of degree d
```

Output: N annulii ..., A_n ,... and N integers ..., ℓ_n ,... N polynomials ..., F_n ,... of degrees ..., δ_n ,... K sectors ..., $S_{n,0}$,..., $S_{n,K}$,..., S_{n,K_n} ,... with $K \in O(d/m)$

Lemma 1: Bounding the number of terms

If, for all
$$n$$
, $r_{n+1} = 2^{m/\delta_n} r_n$ then $\sum \delta_n \in O(d)$

Step 2: for
$$n = 0, ..., N - 1$$
:

2.1 cover A_n with K_n disks $D(\gamma_{n,k}, \rho_n) \longrightarrow K_n$ sectors $S_{n,0}, \ldots, S_{n,K_n}$

Lemma 2: If $r_{n+1} = 2^{m/\delta_n} r_n$ then $K_n \in O(\delta_n/m)$

Introduction Approximation Root finding Results
9/ 14

Piecewise polynomial approximation algorithm: overview

```
Input: m \in \mathbb{N}, \log \tau \in \mathbb{N}, F \in \mathbb{R}_{m,\tau}[z] of degree d
```

Output: N annulii ..., A_n , ... and N integers ..., ℓ_n , ... N polynomials ..., F_n , ... of degrees ..., δ_n , ... K sectors ..., $S_{n,0}$, ..., $S_{n,k}$, ..., S_{n,K_n} , ... with $K \in O(d/m)$ K polynomials ..., $G_{n,k}$, ... of degree $\in O(m)$

Step 2: for
$$n = 0, ..., N-1$$
:
2.1 cover A_n with K_n disks $D(\gamma_{n,k}, \rho_n)$

2.2 compute the first
$$4m$$
 coeffs of $F_n(\gamma_{n,k} + \rho_n z)$, for $k = 0, ..., K_n - 1$

Introduction Approximation Root finding Results
9/ 14

Piecewise polynomial approximation algorithm: overview

```
Input: m \in \mathbb{N}, \log \tau \in \mathbb{N}, F \in \mathbb{R}_{m,\tau}[z] of degree d
```

```
Output: N annulii ..., A_n, ... and N integers ..., \ell_n, ... N polynomials ..., F_n, ... of degrees ..., \delta_n, ... K sectors ..., S_{n,0}, ..., S_{n,k}, ..., S_{n,K_n}, ... with K \in O(d/m) K polynomials ..., G_{n,k}, ... of degree E(M) s.t. E(M) = \sum_{n=1}^{\infty} |F(n)| < \sum
```

Step 2: for
$$n = 0, ..., N - 1$$
:

- **2.1** cover A_n with K_n disks $D(\gamma_{n,k}, \rho_n)$
- **2.2** compute the first 4m coeffs of $F_n(\gamma_{n,k} + \rho_n z)$, for $k = 0, ..., K_n 1 \longrightarrow K_n$ polynomials $G_{n,k}$

Introduction Results

Piecewise polynomial approximation algorithm: overview

```
m \in \mathbb{N}, \log \tau \in \mathbb{N}, F \in \mathbb{R}_{m,\tau}[z] of degree d
```

Output: N annulii ..., A_n , ... and N integers ..., ℓ_n , ... N polynomials ..., F_n ,... of degrees ..., δ_n ,...

K sectors ..., $S_{n,0}, \ldots, S_{n,k}, \ldots, S_{n,K_n}, \ldots$ with $K \in O(d/m)$

K polynomials ..., $G_{n,k}$,... of degree $\in O(m)$ s.t.

$$z \in S_{n,k} \Rightarrow |F(z) - z^{\ell_n} G_{n,k}(z)| \le d2^{-m} \widetilde{F}(|z|)$$

Step 2: for
$$n = 0, ..., N - 1$$
:

- **2.1** cover A_n with K_n disks $D(\gamma_{n,k}, \rho_n)$
- **2.2** compute the first 4*m* coeffs of $F_n(\gamma_{n,k}+\rho_n z)$, for $k=0,\ldots,K_n-1$
- **Lemma 3:** using 4m FFTs of length K_n , step **2.2** is addressed with $O(\delta_n(m + \log \tau))$ bit ops.

R. Imbach and G. Moroz

9/14

Piecewise polynomial approximation algorithm: overview

Input: $m \in \mathbb{N}, \log \tau \in \mathbb{N}, F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Output: N annulii ..., A_n , ... and N integers ..., ℓ_n , ...

N polynomials ..., F_n ,... of degrees ..., δ_n ,...

K sectors ..., $S_{n,0},...,S_{n,k},...,S_{n,K_n},...$ with $K \in O(d/m)$

K polynomials ..., $G_{n,k}$, ... of degree $\in O(m)$ s.t.

$$z \in S_{n,k} \Rightarrow |F(z) - z^{\ell_n} G_{n,k}(z)| \le d2^{-m} \widetilde{F}(|z|)$$

Cost:
$$O(d(m + \log \tau))$$
 bit operations

Lemma 3: using 4m FFTs of length K_n , step **2.2** is addressed with $\widetilde{O}(\delta_n(m + \log \tau))$ bit ops.

Piecewise polynomial approximation algorithm: overview

```
Input: m \in \mathbb{N}, \log \tau \in \mathbb{N}, F \in \mathbb{R}_{m,\tau}[z] of degree d

Output: N annulii ..., A_n, \ldots and N integers ..., \ell_n, \ldots N polynomials ..., F_n, \ldots of degrees ..., \delta_n, \ldots K sectors ..., S_{n,0}, \ldots, S_{n,k}, \ldots, S_{n,K_n}, \ldots with K \in O(d/m) K polynomials ..., G_{n,k}, \ldots of degree E(M) s.t. E(M) E(M)
```

Cost: $\widetilde{O}(d(m + \log \tau))$ bit operations

Introduction Approximation Root finding Results
9/ 14

Piecewise polynomial approximation algorithm: overview

Cost: $\widetilde{O}(d(m + \log \tau))$ bit operations

roduction Approximation Root finding Results
10/14

Root-finding algorithm: overview

Input: $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

oduction Approximation Root finding Results
10/ 14

Root-finding algorithm: overview

Input: $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Step 0: take $m' \in O(m + \log d)$

Step 1: compute a P.P.A
$$F_{pw}$$
 s.t. $|F(z) - F_{pw}(z)| \le 2^{-m}\widetilde{F}(|z|)$ with: K sectors ..., $S_{n,k}$,... with $K \in O(d/m')$ K polynomials ..., $G_{n,k}$,... with degree in $O(m')$

Root-finding algorithm: overview

Input: $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Step 0: take $m' \in O(m + \log d)$

Step 1: compute a P.P.A F_{pw} s.t. $|F(z) - F_{pw}(z)| \le 2^{-m}\widetilde{F}(|z|)$ with: K sectors ..., $S_{n,k}$,... with $K \in O(d/m')$ K polynomials ..., $G_{n,k}$,... with degree in O(m')

Step 2: find relative m-bit approximations of roots of F

roduction Approximation Root finding Results
10/14

Root finding: best state-of-the-art approaches

Given: $F \in \mathbb{R}[z]$ of degree d, $b \in \mathbb{N}_{>}$

Root approximation problem:

Compute: b-bit approximations of all the roots ζ of F

Approximate factorization problem:

Compute: *d* linear factors H_i s.t. $||F - \prod_i H_i||_1 \le 2^{-b} ||F||_1$

Theoretical record: Pan's algorithm (when $b \ge d \log d$):

 \rightarrow O(db) bit operations for approximate fact.[Pan2002]

User's choice: MPSolve [BR2014] (simultaneous Newton-like iterations)

roduction Approximation Root finding Results
10/ 14

Root-finding algorithm: overview

Input: $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Step 0: take $m' \in O(m + \log d)$

Step 1: compute a P.P.A F_{pw} s.t. $|F(z) - F_{pw}(z)| \le 2^{-m}\widetilde{F}(|z|)$ with: K sectors ..., $S_{n,k}$,... with $K \in O(d/m')$

K polynomials ..., $G_{n,k}$,... with degree in O(m')

Step 2: find relative *m*-bit approximations of roots of *F*

 \leftarrow can be done in $O(d(m + \log \tau))$ bit operations

troot mang agorttim. Overview

Input: $m \in \mathbb{N}$, $\log \tau \in \mathbb{N}$, $F \in \mathbb{R}_{m,\tau}[z]$ of degree d

Step 0: take $m' \in O(m + \log d)$

Step 1: compute a P.P.A F_{pw} s.t. $|F(z) - F_{pw}(z)| \le 2^{-m}\widetilde{F}(|z|)$ with: K sectors ..., $S_{n,k}$,... with $K \in O(d/m')$ K polynomials ..., $G_{n,k}$,... with degree in O(m')

Step 2: find relative *m*-bit approximations of roots of F \leftarrow can be done in $O(d(m + \log \tau))$ bit operations

Theorem:

For each root ζ of F with $cond(\zeta, F) \leq 2^m$, our algorithm output a disc $D(\dot{\zeta}, r_{\dot{\zeta}})$ s.t.:

- $r_{\dot{c}} \leq 2^{-m} |\dot{\zeta}|$
- the unique root of F in $D(\dot{\zeta}, r_{\dot{\zeta}})$ is ζ

roduction Approximation Root finding Results 11/14

Root finding: best state-of-the-art approaches

Given: $F \in \mathbb{R}[z]$ of degree d, $b \in \mathbb{N}_{>}$

Root approximation problem:

Compute: b-bit approximations of all the roots ζ of F

Approximate factorization problem:

Compute: *d* linear factors H_i s.t. $||F - \prod_i H_i||_1 \le 2^{-b} ||F||_1$

Theoretical record: Pan's algorithm (when $b \ge d \log d$):

 $\rightarrow O(db)$ bit operations for approximate fact. [Pan2002]

 $\leftarrow \text{ for complexity result}$

User's choice: MPSolve [BR2014] (simultaneous Newton-like iterations)

← for prototypal implementation

troduction Approximation Root finding Results 12/14

Three families of well-conditioned random polynomials

 c_i are i.i.d random Gaussian variables with mean 0

hyperbolic: $\sum c_i z^j$

roduction Approximation Root finding Results
12/14

Three families of well-conditioned random polynomials

 c_i are i.i.d random Gaussian variables with mean 0

roduction Approximation Root finding Results
12/14

Three families of well-conditioned random polynomials

 c_i are i.i.d random Gaussian variables with mean 0

roduction Approximation Root finding Results
13/ 14

Benchmarks: root-finding with input m = 30

roduction Approximation Root finding Results
14/ 14

Conclusion

- multipoint evaluation for the same bit complexity
- new data structure generalizing floating point representation to functions
- first release of PWRoots soon available¹:

C library based on $(\zeta(s))$ Arb with Python interface

Main perspective:

systems of two bivariate polynomials

Thank you!

¹https://gitlab.inria.fr/gamble/pwpoly