$$\hat{O}: \{Q_n\}_{n=1}^{+\infty} \in \ell^2(C) \mapsto \{\frac{Q_n}{\sqrt{n(n+1)}}\}_{n=1}^{+\infty} \ell^2(C)$$

$$\|\hat{O}\|_{ap}, \text{ etc.} ...$$

$$Chebytev: To(x)=1, T_1(x)=x$$

$$T_{n+1}(x)=2 \times T_n(x) - T_{n-1}(x)$$

$$d\alpha \geq \cos(n\theta) \cos\theta = \cos((n+1)\theta) + \cos((n-1)\theta)$$

$$\times u = \cos\left(\frac{\pi(u+1/2)}{n}\right), T_n(1) = 1$$

$$T_n(-1) = (-1)^n$$

$$h_0 = TT$$
, $h_{n>0} = \frac{TT}{2}$

Approx. Sin $\theta \in \cos(\theta)$ con pd di grado 3

im. $\cos(\theta)$ im $\theta \in [0, TT]$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{2}\theta - c \cos\theta - d \right)^{2} d\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{2}\theta - c \cos\theta - d \right)^{2} d\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{2}\theta - c \cos\theta - d \right)^{2} d\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{2}\theta - c \cos\theta - d \right)^{2} d\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{2}\theta - c \cos\theta - d \right)^{2} d\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{2}\theta - c \cos\theta - d \right)^{2} d\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{2}\theta - c \cos\theta - d \right)^{2} d\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{2}\theta - c \cos\theta - d \right)^{2} d\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{2}\theta - c \cos\theta - d \right)^{2} d\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{2}\theta - c \cos\theta - d \right)^{2} d\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{2}\theta - c \cos\theta - d \right)^{2} d\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{2}\theta - c \cos\theta - d \right)^{2} d\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{2}\theta - c \cos\theta - d \right)^{2} d\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{3}\theta - c \cos\theta - d \cos\theta - d \cos\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{3}\theta - c \cos\theta - d \cos\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{3}\theta - c \cos\theta - d \cos\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{3}\theta - c \cos\theta - d \cos\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{3}\theta - c \cos\theta - d \cos\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos^{3}\theta - b \cos^{3}\theta - c \cos\theta - d \cos\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos\theta - d \cos\theta - d \cos\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos\theta - d \cos\theta - d \cos\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos\theta - d \cos\theta - d \cos\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos\theta - d \cos\theta - d \cos\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos\theta - d \cos\theta - d \cos\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos\theta - d \cos\theta - d \cos\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos\theta - d \cos\theta - d \cos\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos\theta - d \cos\theta - d \cos\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos\theta - d \cos\theta - d \cos\theta$$

$$\int_{1}^{100} e^{\cos\theta} - a \cos\theta - d$$

	Co	-		e	2_	е		C_1		4						
	C_{λ}	=	2 Tre	1 6	11 C	9e)	(re -	2	8)	e =	. 58	e)	
			TTE			•			- 3		Tre	\			•	