

T.C.

TÜRK PATENT ENSTİTÜSÜ

İNCELEMELİ PATENT

No: TR 2001 01551 B

Bu patent, 551 sayılı Patent Haklarının Korunması Hakkında Kanun Hükmünde Kararname uyarınca 03/12/1999 tarihinden itibaren 20 yıl süre ile yenilik ve teknığın bilinen durumunun aşılması konusunda yapılan inceleme sonucunda incelemeli olarak verilmiştir.

Selim Mustafa SENGÜN
Enstitü Başkanı &
Mustafa BAYAN
Patent Dairesi Başkanı

TÜRK PATENT [] ENSTİTÜSÜ
BEST AVAILABLE COPY

NZAS-0236770

93

(12) İncelemeli Patent

(21) Başvuru No.
a 2001/01551

(22) Başvuru Tarihi
1999/12/03

(43) Başvuru Yayın Tarihi
2001/10/22

(11) Başvuru Yayın No.
TR 2001 01551 T2

(45) Patentin Veqiliş Tarihi
2002/06/21

(30) Rüçhan Bilgileri (32) (33) (31)
1998/12/04 DK PA1998 01604
1999/03/09 DK PA1999 00330

(71) Patent Sahibi
NOVOZYMES A/S
Kroghoejvej 36, DK-2880 Bagsvaerd DK

(72) Buluş Yapanlar
MASANOBU ABO
2-5-3, Kouyadai, Funabashi-shi, Chiba-ken 274 JP
ALLAN SVENDSEN
Bakkeledet 28, DK-3460 Birkerod DK

(54) Buluş Başlığı
Farklı kütinaz şekilleri.

(57) Özет
Fungal kutinaz varyatları ısiya karşı artmış dayanıklılığa sahiptir.
Varyantlar, kütunazın üç boyutlu yapısında veya amino asit
dizilimindeki N ucuna yakın biryada daha fazla amino asit
bakiyesinin ikame edilmesini kapsar.

(51) Buluşun tasnif sınıf(ları)
C12N 9/18

(74) Vekil
DERİŞ PATENT VE MARKA ACENTALIĞI LTD. ŞTİ.
İnebolu Sk., Derya Han, No-3, Kat:5, Setüstü, Kabataş,
İSTANBUL

SHIRO FUKUYAMA
Ariyoshi-cho 166-2, Midori-ku, Chiba-shi Chiba 211-0012 JP
TOMOKO MATSUI
Higashi-Ohwada 1-6-9-A303, Ichikawa, Chiba 272-0026 JP

TR 2001 01551 B

(2001/1551)

5

5405

FARKLI KÜTİNAZ ŞEKİLLERİ

BULUŞUN İLGİLİ OLDUĞU TEKNİK ALAN

10 Mevcut buluş, bir kütinaz varyantı ile, daha da
özel olarak ısiya karşı arttırlılmış dayanıklılığa sahip
olan bir kütinaz varyantı ile ilgiliidir. Buluş, aynı
zamanda varyantı deşifre eden bir DNA dizilimi ile, DNA
dizilimini kapsayan bir vektör ile, DNA dizilimini ya
15 da vektörü barındıran transformasyona uğramış bir konak
hücre ile, varyantı meydana getirmek için bir yöntem
ile ve varyantın kullanımı ile de ilgiliidir.

BULUŞUN GEÇMİŞİ

20 Kütinazlar, kütin substratını hidrolize edebilen
lipolitik enzimlerdir. Kütinazlar, çeşitli mantarlardan
bilinirler ("Lipases"da, P. E. Kolattukudy, Ed. B.
Borgström ve H.L. Brockman, Elsevier 1984, 471-504).
● *Fusarium solani pisi*'nin kütinazının kristal yapısı ve
25 amino asit dizilimi tarif edilmiştir (S. Longhi ve
arkadaşları, Journal of Molecular Biology, 268 (4),
779-799 (1997)). *Humicola insolens*'ten bir kütinazın
amino asit dizilimi de yayımlanmıştır (ABD 5,827,719).

30 *Fusarium solani pisi*'nin bir dizi varyantı yayımlanmıştır: WO 94/14963; WO 94/14964; Appl. Environm.
Microbiol. 64, 2794-2799, 1998; Proteins: Structure,
Function and Genetics 26, 442-458, 1996; J. of
Computational Chemistry 17, 1783-1803, 1996; Protein
35 Engineering 6, 157-165, 1993; Proteins: Structure,

5 Function and Genetics 33: 253-264, 1998; J. of
 Biotechnology 66, 11-26, 1998; Biochemistry 35, 398-
 410, 1996.

Fungal (mantar kökenli) kütinazlar, poli(etilen
 10 tereftalat)'ın halkalı oligomerlerinin enzimatik hidrolizinde; örnek olarak poli(etilen tereftalat) liflerinden kumaş veya ipliklerin finisajında (WO 97/27237) kullanılabilir. Ancak, daha yüksek işleme 15 ıslarına izin vermek üzere, bilinen fungal kütinaz-
 ların ısıya karşı dayanıklılığını arttırmak istenir.

BULUŞUN ÖZETİ

Buluşun sahipleri, ısıya karşı artmış dayanıklılığa sahip olan fungal kütinazların belirli 20 varyantlarını bulmuşlardır.

Buna uygun olarak, buluş a) N ucu amino asidinin lokasyonundan 17 Å içinde (kristal bir yapı içinde amino asit bakiyelerinden hesaplandığı üzere), ve/veya 25 b) N ucu amino asidinden 20 pozisyonu içinde yer alan bir ya da daha fazla amino asit bakiyesinin ikame edilmesini kapsayan ebeveyn fungal kütinazın bir varyantını temin eder.

30 Buluş, aynı zamanda varyantı deşifre eden bir DNA dizilimi, DNA dizilimini kapsayan bir ekspresyon vektörünü, DNA dizilimini ya da ekspresyon vektörünü barındıran transformasyona uğramış bir konak hücreyi, varyantı meydana getirmek için bir yöntemi, varyantı 35 kullanan işlemleri ve varyantı kapsayan bir deterjan bileşimini de temin eder.

5 ÇİZİMLERİN ÖZET TARİFİ

Şekil 1, *H. insolens*'in kütinazının üç boyutlu yapısı için koordinatları vermektedir.

Şekil 2, *F. solani pisi* (solda) ve *H. insolens*'den 10 (sağda) kütinazların üç boyutlu yapılarını gösteren bir bilgisayar modelidir. N ucu amino asidini ve bunun çevresindeki 12 Å ve 17 Å çapındaki alanları təshis için farklı renkler kullanılmıştır.

15 Şekiller 3-6, c3ET'nin hidrolizini açıklamaktadır. Ayrıntılar Örneklerde verilmektedir.

BULUŞUN AYRINTILI TARİFİ

20 Fungal kütinaz

Ebeveyn kütinaz, kamçılı fungal kütinaz gibi bir fungal kütinazdır; örnek olarak, *Humicola* veya *Fusarium*'un suşu, özellikle de *H. insolens* ya da *F. solani pisi*'nin suşu, daha da özel olarak *H. insolens*'in DSM 1800 suşu için doğaldır.

H. insolens'in DSM 1800 suşunun kütinazının amino asit diziliimi ve bunu deşifre eden DNA diziliimi, ABD 30 5,827,719'un SEQ ID NO: 2 ve SEQ ID NO:1 olarak gösterilir. *H. insolens* kütinaz için burada kullanılan numaralandırma sistemi, sözü edilen SEQ ID NO: 2'de gösterildiği gibi, olgun peptide dayanır.

35 *F. solani pisi*'nin kütinazının amino asit diziliimi, WO 94/14964'ün Şekil 1D'sinde olgun peptit olarak gösterilir. *F. solani pisi* kütinazı için burada

5 kullanılan numaralandırma sistemi, WO 94/14964'te
 kullanılır; sözü edilen Şekil 1D'de gösterilen ön
 diziliimi içine alır; bu nedenle, olgun kütinaz 16-214
 pozisyonlarındadır.

10 Ebeveyn kütinaz, *H. insolens*'in DSM 1800 suşunun
 kütinazınıninkine en az %50 homolog olan (özellikle de en
 az %70 ya da en az %80) bir amino asit dizilimine sahip
 olabilir. Ebeveyn kütinaz özellikle *H. insolens*'in DSM
 1800 suşunun kütinazı ile sıraya dizilebilen biri
 15 olabilir.

Amino asitler ve alterasyonlar için isimlendirme

Spesifikasyon ve istemler, tek harfli kodları ile
 20 amino asitleri işaret eder. Bir dizilimdeki özel bir
 amino asit, tek harfli kodu ve pozisyonu ile teşhis
 edilir; örnek olarak Q1 Gln belirtir (1. pozisyondaki;
 yani N ucundaki Glutamin).

25 İkame işlemlerini tarif etmek için burada
 kullanılan isimlendirme, temel olarak WO 92/05249'da
 tarif edildiği gibidir. Bu nedenle, R51P P (Pro) ile 51
 pozisyonundaki R'nin (Arg) ikame edilmesini belirtir.

30 Homologluk ve Sıralama

Mevcut buluşun amaçları için, homoloğluğun
 derecesi Needleman, S.B. ve Wunsch, C.D. tarafından
 (1970), Journal of Molecular Biology, 48, 443-45'te
 35 tarif edilen yönteme göre, polipeptit dizilimi
 mukayesesи için aşağıdaki ayarlamalar ile, uygun bir
 biçimde tayin edilebilir: GAP 3.0'lık meydana gelme

5 şartı ve GAP 0.1'lik uzama şartı. Tayin GCG program paketinde (Wisconsin Package için Program Kılavuzu, 8. Versiyon, Ağustos 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, ABD 53711) temin edilen GAP gibi bilinen bir bilgisayar programı
10 aracılığı ile yapılabilir.

Ele alınan iki dizilim, aynı parametreler kullanılarak, Needleman (aynı referans)'da tarif edilen yönteme göre sıralanabilir. Bu, GAP programı (aynı
15 referans) aracılığı ile yapılabilir.

Kütinazın üç boyutlu yapısı

H. insolens'in kütinazının yapısı, açıklandığı
20 gibi X ışını kristalografisi yöntemi için; örnek olarak X-Işını Yapısı Tayini, Stout, G.K. ve Jensen, L.H., John Wiley & Sons, Inc., NY, 1989 için prensibe uygun olarak çözüldü. 2.2 Å resolüsyonda, izomorf değiştirmeye yöntemi kullanılarak çözülen kristal yapısı için
25 yapısal koordinatlar, standart PDB formatı (Protein Data Bank -Protein Veri Bankası, Brookhaven National Laboratory, Brookhaven, CT.) içinde Şekil 1'de verilmektedir.

30 F. solani pisi kütinazının yapısı, Martinez ve arkadaşları (1992), Nature 356, 615-618'de tarif edilmektedir. F. solani pisi ve H. insolens kütinazlarının üç boyutlu yapıları, Şekil 2'de bilgisayar modeli şeklinde mukayese edilmektedir.

35

Fungal kütinazların üç boyutlu genel yapılarının çok benzer olduğu ve X ışını kristalografisi yolu ile

5 oldukça yüksek oranda homolog olduğunun gösterildiği kaydedilmelidir. *F. solani pisi* ve *H. insolens*'den kütinazlar arasındaki benzerlikler, Şekil 2'deki bilgisayar modelinden açıklıkla görülmektedir. Bu nedenle, bir fungal kütinaz için belirtilen bu tip 10 modifikasyonlar, diğer fungal kütinazlar için de fonksiyonel olacaktır.

N ucu yakınında ikame işlemi

15 Buluşun varyantı, N ucuna yakın bir ya da ~~daha~~ fazla amino asit ikame işlemine sahiptir. İkame işlemi, 17 Å mesafesi içinde (örnek olarak 12 Å) ve/veya N ucunun 20 pozisyonu içindedir (örnek olarak 15 pozisyonu). N ucundan olan mesafe, amino asitlerin C_α 20 atomu arasında hesaplanacaktır ve kristal bir yapı içindeki amino asitten (diğer bir deyişle; X ışını yapısında görünen) hesaplanır.

25 *H. insolens* DSM 1800 suşunun kütinazında, iki N ucu amino asidi (Q1 ve L2; diğer bir deyişle; 1 ve 2 pozisyonlarındaki Gln ve Leu), X ışını yapısında görünür değildir, böylelikle mesafe G3 amino asidinden hesaplanacaktır. 17 Å içindeki amino asitler, 3-12, 18, 20-60, 62-64, 82, 85-86, 100-108, 110-111, 130-132, 30 174, 176-182, 184-185, 188 ve 192 pozisyonlarını içine alır. 12 Å içindeler, 3-8, 22-27, 30-47, 53-59, 102, 177 ve 180-181 pozisyonlarını içine alır.

35 *F. solani pisi*'nin kütinazında, N ucu amino asidi G17, X ışını yapısında görünürdür. 17 Å içindeki amino asitler, 17-26, 34-75, 77-79, 101, 115, 117-119, 147, 191-197, 199-200 ve 203'ü içine alır. 12 Å içindeki

5 amino asitler, 17-22, 38, 40, 45-58, 60, 65 ve 70-72 pozisyonlarını içine alır.

Buluşun varyantları, ebeveyn enzime kıyasla ısiya karşı artmış dayanıklılığa sahiptir. İsiya karşı 10 dayanıklılık denatürasyon ısısından DSC yolu ile (differential scanning calorimetry -ayırt edici tarama kalorimetresi); örnek olarak bir örnekte; örneğin pH 8.5'te, 90 K/saat tarama hızı ile tarif edildiği gibi 15 tayin edilebilir. Varyantlar, ebeveyn enzimden en az 5°C daha yüksek olan bir denatürasyon (parçalanma) ısısına sahiptir.

Yukarıdaki alanlardaki ikame işlemlerinin toplam sayısı, tipik bir şekilde 1-10'dur; örnek olarak 20 yukarıdaki alanlarda 1-5 ikame işlemidir. Ek olarak, buluşun kütinaz varyantı isteğe bağlı olarak ebeveyn enzimin diğer modifikasyonlarını içine alabilir; yukarıdaki alanların dışında tipik bir şekilde 10 ya da daha az, örneğin; 5 ya da daha az alterasyon (ikame 25 işlemleri, eksiltmeler veya yerleştirmeler) içerebilir. Bundan ötürü, varyantın amino asit dizilimi, tipik bir biçimde 1-20 arasındadır; örneğin ebeveyn kütinaza kıyasla 1-10 alterasyon arasındadır.

30 Çözücünün erişebildiği yüzey

Maruz bırakılan amino asit bakiyesinde bir ya da daha fazla ikame işlemi yapılabilir; diğer bir deyişle, çözücünün erişebildiği bir yüzeye sahip olan bir amino 35 asit bakiyesi. Bu, W. Kabsch ve C. Sander tarafından Biopolymers, 22 (1983), s. 2577-2637'de tarif edilen

5 "dssp" programı (versiyon Ekim 1988) ile hesaplanabilir.

H. insolens DSM 1800 suşunun kütinazında, aşağıdaki amino asitler N ucundaki G3'ün 17 Å içinde yer 10 alır ve 0'dan daha büyük olan: 3-12, 18, 26-33, 36-38, 40-45, 47-56, 59-60, 62-64, 82, 85-86, 104-105, 174, 176-179, 181-182, 192 olan çözücüün ulaşabildiği bir yüzeye sahiptir.

15 Özel ikame işlemleri

N ucu yakınındaki ikame işlemi, özel olarak elektrik yükünü artıran; diğer bir deyişle, negatif yüklü amino asidin nötr ya da pozitif olarak yüklü bir 20 amino asit ile ikame edildiği ya da nötr amino asidin pozitif yüklü bir amino asit ile ikame edildiği biri olabilir. Bundan ötürü, Humicola insolens DSM 1800 suşunun kütinazındaki E6, E10, E30, E47, D63, E82 ve/ veya E179 pozisyonlarına karşılık gelen bir 25 pozisyondaki negatif amino asit bakiyesi, nötr ya da pozitif bir amino asit ile; örnek olarak R, K, Y, H, Q veya N ile ikame edilebilir. Bazı spesifik ikame işlemleri, E6Q/N, E10Q/N, E47K/R ya da E179Q/N'ye karşılık gelenlerdir. Aynı zamanda, H. insolens 30 kütinazındaki N7, S11, N44 ya da N52'ye karşılık gelen bir pozisyondaki nötr bir amino asit bakiyesi, pozitif bir amino asit ile (R, K ya da H) ikame edilebilir.

N ucu yakınındaki ikame işleminin diğer bir 35 örneği, bir Pro bakiyesi ile ikame işlemidir; örnek olarak Humicola insolens DSM 1800 suşunun kütinazındaki A14P ya da R51P'ye karşılık gelen bir ikame işlemidir.

5 **Özel varyantlar**

Aşağıdakiler, *Humicola insolens* kütinaz varyantlarının bazı örnekleridir. Karşılık gelen varyantlar, diğer ebeveyn kütinazlar temel alınarak yapılabılır.

- 10 R51P
- E6N/Q+ L138I
- A14P+E47K
- 15 E47K
- E179N/Q
- E6N/Q+ E47K+ R51P
- A14P+ E47K+ E179N/Q
- E47K+ E179N/Q
- 20 E47K+ D63N
- E6N/Q+ E10N/Q+ A14P+ E47K+ R51P+ E179N/Q
- E6N/Q+ A14P+ E47K+ R51P+ E179N/Q
- Q1P+ L2V+ S11C+ N15T+ F24Y+ L46I+ E47K

25 **Kütinaz varyantının kullanımı**

c3Et olarak kısaltılan halkalı tri(etilen tereftalat) gibi poli(etilen tereftalat)'ın halkalı oligomerlerinin örneğin enzimatik hidrolizi için, buluşun kütinaz varyantı kullanılabilir.

- 30 Özellikle de kütinaz varyantlı iplik veya kumaşın muamele edilmesi yolu ile, istege bağlı olarak kumaş ya da iplığın, pH'sı yaklaşık olarak 7 ila yaklaşık olarak 11 aralığındaki bir pH'ya sahip olan sulu bir çözelti ile çalkalanması yolu ile polyester içeren kumaş ya da iplikten bu tip halkalı oligomerleri uzaklaştırmak için kullanılabilir. Polyesterin muamelesi, uygun bir

5 biçimde c3ET (yaklaşık olarak 55°C) camdan geçiş ısisının üzerinde ve polyesterin camdan geçiş ısisinin altında (yaklaşık olarak 70°C) yürütülür. Bundan dolayı, muamele uygun bir biçimde 50-80°C'de; örneğin 10 60-75°C'de gerçekleştirilebilir. İşlem WO 97/27237'deki ile aynı şekilde gerçekleştirilebilir.

Kütinaz varyantı, polyester içeren kumaşları; örnek olarak, PET (etilenglikol ve tereftalik asidin polimeri), P3GT (1,3-propandiol ve tereftalik asidin 15 polimeri) ya da polyester/pamuk karışımını muamele etmek için kullanılabilir. İşlem polyester kumaşlar için giyinme ve konforda iyileşme, su geçirgenliğinde artış, antistatik davranışta azalma, tutum ve yumuşaklıktaki iyileşme, redepozisyon özelliklerinde ve/veya 20 renk berraklılığında değişiklik gibi faydalar temin edebilir.

Kütinaz varyantı, kütinaz varyantı ile muamele, bunun ardından kırıksız, kalıcı prese ütüyle ateşe 25 dayanıklılık etkilerini iyileştirmek için, bir yumusatıcı, bir kırışmaya karşı reçine, bir antistatik ajan, bir kirlenmeye karşı ajan ya da ajanlar gibi bir finisaj ajanı ile muamele yolu ile, PET içeren iplik ya da kumasın fonksiyonel finisajını iyileştirmek üzere 30 kullanılır. Kütinaz varyantı ile muamele, yüzeydeki fonksiyonel gruplarının sayısını artıracaktır ve bu fonksiyonel finisajı eklemek üzere kullanılabilir. Finisaj ajanlarının örnekleri, 1998-10-15'te "SENSHOKU 35 SIAGEKAKO BENRAN"'da Nihon Seni Sentaa KK tarafından tarif edilmektedir.

5 Buluşun kütinaz varyantı, WO 94/03578 ve WO
 94/14964'te tarif edildiği gibi, yağlı kirliliklerin
 uzaklaştırılmasını iyileştirmek üzere dahil edilebil-
 diği deterjanlarda da faydalıdır. Kütinaz varyantının
 çamaşır deterjanlarına ilavesi, çok sayıda yıkama/giyme
 10 çevrimi sırasında birikme yapan, giysiden kötü kokuyu
 azaltabilir.

Kütinaz varyantı aynı zamanda polikaprolakton
 (PCL), poli-etilenglikol-tereftalat(PET), poliaktik asit,
 15 polibutilensüksinat ve poli(hidroksibutirik asit)-ko-
 (hidroksivalerik asit) gibi polyesterlerin parçalanması
 ve yeniden işlemen geçirilmesi için; örneğin JP-A 5-
 344897'de tarif edildiği gibi, örneğin film ve şişeler
 için de kullanılabilir.

20 Kütinaz varyantı, lipazlar ve kütinazların bilinen
 diğer uygulamaları için; örneğin fırıncılık sanayiinde
 (örnek olarak WO 94/04035 ve EP 585988'de tarif
 edildiği gibi), kağıt yapımı sanayiinde (örnek olarak
 25 dişlerin uzaklaştırılması, bakınız EP 374700) ve deri,
 yün ve ilişkili sanayilerde (örnek olarak hayvan
 derilerinin, koyun postlarının veya yünlerinin yağıla-
 rından arındırılması) ve yağıdan arındırmayı/ yağısızlaş-
 tırmayı içine alan diğer uygulamalarda da kullanıla-
 30 bilir. Yağ sanayiinde, organik sentezde katalizör
 olarak (örnek olarak; esterleştirme, transesterifi-
 kasyon ya da ester hidroliz reaksiyonları) immobilize
 şekilde kullanılabilir.

5

Polyester boyama

Bulus, polyester kumaş veya ipliğin boyanması için bir işlem temin eder. Bu işlemde, kumaş ya da iplik ilk olarak bir kütinaz ile muamele edilir; örneğin 12-48 saat süre ile, 50-70°C ya da 65-70°C'de, pH 7-10'da muamele edilir, ardından bir boyaya ile örneğin; reaktif bir boyaya, disperse bir boyaya ya da katyonik bir boyaya ile boyanır. Reaktif boyaya, OH ya da COOH grupları ile reaksiyona giren bir boyaya olabilir; örnek olarak Kromofor-NHPh-SO₂CH₂CH₂OSO₃Na yapısına sahip olan bir boyaya olabilir. Boyama 40-80°C'de, örneğin 20-60 dakika süre ile gerçekleştirilebilir.

Kütinaz, ebeveyn kütinazından en az 5°C daha yüksek olan, örneğin 7-10°C daha yüksek olan; örneğin 65°C ya da daha yüksek bir derecede olan bir ısı ile parçalanma ısısına T_{d1} pH 8.5'e sahip olan ısuya dayanıklı bir kütinaz olabilir. Ölçüm DSC yolu ile, bu spesifikasyonun örneğinde tarif edildiği gibi yapılabılır.

Yüzey Aktif Madde (Sürfaktan)

Kumaş ya da ipliğin işlenmesinde, enzim ile teması iyileştirmek için geleneksel bir ıslatıcı ajan ve/veya bir dispersan ajan kullanılabilir. Islatıcı ajan iyonik olmayan bir sürfaktan olabilir; örneğin etoksillenmiş bir yağ alkolü olabilir. Çok faydalı bir ıslatıcı ajan etoksillenmiş ve Berol 087 (Akzo Nobel, İsveç'in ürünü) gibi propoksillenmiş yağ asidi esteridir.

5 Dispersan ajan, iyonik olmayan, anyonik, katyonik, amfolitik ya da dengesiz iyonik sürfaktanlar arasından uygun bir şekilde seçilebilir. Daha özel olarak, dispersan ajan karboksimetilselüloz, hidroksipropil-selüloz, alkil aril sülfonatlar, uzun zincirli alkol 10 sülfatlar (primer ve sekonder alkil sülfatlar), sülfonlanmış olefinler, sülfatlanmış monogliseritler, sülfatlanmış eterler, sülfosüksinatlar, sülfonlanmış metil eterler, alkan sülfonatlar, fosfat esterleri, alkil izotiyonatlar, açılı-sarkozitler, alkiltauritler, 15 floro sürfaktanlar, yağ alkoller ve alkilfenol kondensatları, yağ asidi kondensatları, etilen oksidin bir amin ile kondensatları, etilen oksidin bir amid ile kondensatları, sükroz esterleri, sorbitan esterleri, alkiloamidler, yağ amidi oksitleri, etoksillenmiş 20 monoaminler, etoksillenmiş diaminler, alkol etoksilat ve bunların karışımılarından seçilebilir. Çok kullanışlı bir dispersan ajan Berol 08 (Akzo Nobel, İsveç'in ürünü) gibi bir alkol etoksilattır.

25 Kütinaz varyantlarının hazırlanması için yöntemler

Buluşun kütinaz varyantı, örneğin; WO 94/14963 ya da WO 94/14964'te (Unilever) tarif edildiği gibi bu dalda bilinen yöntemler ile hazırlanabilir. Aşağı-30 dakiler kütinaz deşifre eden DNA dizilimlerinin klonlanması için yöntemleri, ardından kütinaz deşifre eden dizilik içinde özel bölgelerde mutasyonları meydana getirmek için yöntemleri tarif eder.

5 Bir kütinazı deşifre eden bir DNA diziliminin
klonlanması

Ebeveyn kütinazı deşifre eden DNA dizilimi, sorgulanın kütinazı meydana getiren herhangi bir mikroorganizmadan ya da hücreden, bu dalda iyi bilinen çeşitli yöntemler kullanılarak izole edilebilir. İlk olarak, kromozomal DNA ya da taşıyıcı RNA kullanılarak, araştırılacak olan kütinazı meydana getiren organizmadan, genomik bir DNA ve/veya cDNA kitabılığı inşa edilmelidir. Daha sonra, eğer kütinazın amino asit dizilimi biliniyorsa, işaretlenmiş oligonükleotit problemleri sentezlenebilir ve sorgulanın organizmadan hazırlanan genomik kitaplıktan kütinaz deşifre eden klonları teşhis etmek üzere kullanılır. Alternatif olarak, bilinen diğer bir kütinaz genine homolog olan dizilimleri içeren işaretli bir oligonükleotit probu, hibritleme ve düşük sıklıkta yıkama koşulları kullanılarak kütinaz deşifre eden klonları teşhis etmek üzere kullanılabilir.

25

Kütinazı deşifre eden klonları teşhis etmek için yine diğer bir yöntem, genomik DNA'nın parçalarını plazmid gibi bir ekspresyon vektörü içine yerlesitmeyi, kütinaz negatif bakterilerin sonucta meydana gelen genomik DNA kitabılığı ile transformasyona uğratılmasını ve daha sonra, transformasyona uğratılmış bakterileri, kütinaz için bir substrati içeren agar (jeloz) üzerine ekmeyi içine alacaktır (örn. maltoz), böylelikle kütinazı eksprese eden klonların teşhis edilmesine izin verecektir.

5 Alternatif olarak, DNA dizilimini deşifre eden
 enzim, bu dalda yerleşmiş olan standart yöntemler ile;
 örnek olarak, S.L. Beaucage ve M.H. Caruthers
 tarafından (1981), Tetrahedron Letters 22, s. 1859-
 1869'da tarif edilen fosforoamidit yöntemi ile ya da
 10 Matthes ve arkadaşları tarafından (1984), EMBO J. 3, s.
 801-805'te tarif edilen yöntem ile sentetik olarak
 hazırlanabilir. Fosforoamidit yönteminde, oligonükleo-
 titler örneğin otomatik bir DNA sentezleyici içinde
 sentezlenir, saflaştırılır, işlenir, bağlanır ve uygun
 15 vektörler içinde klonlanır.

Son olarak, DNA dizilimi, standart tekniklere
 uygun olarak, sentetik, genomik ya da cDNA kökenli
 parçaların birleştirilmesi yolu ile hazırlanan (uygun
 20 olduğu üzere, bütün DNA diziliminin çeşitli kısımlarına
 karşılık gelen parçalar) karışık genomik ve sentetik
 kökenli, karışık sentetik ve cDNA kökenli ya da karışık
 genomik ve cDNA kökenli olabilir. DNA dizilimi aynı
 zamanda özel primerler kullanılarak, örneğin ABD
 25 4,683,202 ya da R.K. Saiki ve arkadaşları (1988),
 Science 239, 1988, s. 487-491'de tarif edildiği gibi
 polimeraz zincir reaksiyonu (PCR=polymerase chain
 reaction) yolu ile de hazırlanabilir.

30 Bölgeye yönelik mutajenez

Bir kütinaz deşifre eden DNA dizilimi izole
 edildiği ve istenen mutasyon bölgeleri teşhis edildiği
 zaman, mutasyonlar sentetik oligonükleotitler kullanı-
 35 larak sokulabilir. Bu oligonükleotitler, istenen mutas-
 yon bölgelerini yan tarafından bulunduran nükleotit
 dizilimlerini içerir. Özel bir yöntemde, DNA'nın tek

5 iplikli boşluğu, kütinaz deşifre eden dizilim, kütinaz
genini taşıyan bir vektör içinde meydana getirilir.
Daha sonra, istenen mutasyonu taşıyan sentetik
nükleotit, tek iplikli DNA'nın homolog kısmına işlenir.
Kalan boşluk daha sonra DNA polimeraz I (Klenow
10 parçası) ile doldurulur ve yapı, T4 ligaz kullanılarak
bağlanır. Bu yöntemin özel bir örneği, Morigana ve
arkadaşları tarafından (1984), Biotechnology 2, s. 646-
639'da tarif edilmektedir. ABD 4,760,025, kasetin küçük
alterasyonlarını gerçekleştirmeye yolu ile, çoklu mutas-
15 yonları deşifre eden oligonükleotitlerin sokulmasını
açıklamaktadır. Ancak, daha çok çeşit mutasyon bile
Morinaga yöntemi yolu ile herhangi bir zamanda
sokulabilir, çünkü çok sayıda, çeşitli uzunluklarda
oligonükleotitler sokulabilir.

20

Mutasyonların kütinaz deşifre eden DNA dizilimleri
içine sokulması için diğer bir yöntem, Nelson ve Long
(1989), Analytical Biochemistry 180, s. 147-151'de
tarif edilir. PCR reaksiyonlarında primerlerden biri
25 olarak, kimyasal olarak sentezlenen DNA iplığının
kullanılması yolu ile sokulan istenen mutasyonu içeren
bir PCR parçasının 3 aşamalı meydana getirilmesini
içine alır. PCR ile meydana getirilen parçadan,
mutasyonu taşıyan bir DNA parçası, kısıtlayıcı
30 endonükleazlar ile bölünme yolu ile izole edilebilir ve
bir ekspresyon plazmidi içine yeniden yerleştiri-
rilebilir.

5 Kütinaz varyantlarının ekspresyonu

Buluşa uygun olarak, yukarıda tarif edilen yöntemler yolu ile ya da bu dalda bilinen herhangi bir alternatif yöntem yolu ile meydana getirilen varyantı 10 deşifre eden bir DNA dizilimi, tipik bir biçimde bir promotörü, operatörü, ribozom bağlama bölgesini, translasyon başlatma sinyalini ve istege bağlı olarak represör bir geni ya da çeşitli aktivatör genleri deşifre eden dizilimleri kontrol eden bir ekspresyon 15 vektörü kullanılarak enzim şeklinde, eksprese edilebilir.

Ekspresyon vektörü

20 Buluşun bir kütinaz varyantını deşifre eden DNA dizilimini taşıyan rekombinan ekspresyon vektörü, uygun bir biçimde rekombinan DNA prosedürlerine tabi tutulabilen herhangi bir vektör olabilir ve vektör seçimi sıkılıkla sokulacağı konak hücreye bağlı 25 olacaktır. Vektör, bir konak hücre içine sokulduğu zaman, konak hücre genomuna entegre olan ve bütünleştiği kromozom(lar) ile birlikte kopyalanan bir vektör olabilir. Uygun ekspresyon vektörlerinin örnekleri, pMT838'i içine alır.

30

Promotör

Vektör içinde DNA dizilimi, işler bir biçimde, uygun bir promotör dizilimine bağlanmalıdır. Promotör, 35 seçilen konak hücrede transkripsiyonel aktivite gösteren ve konak hücreye göre gerek homolog gerekse

5 heterolog proteinleri deşifre eden genlerden türevlenen
herhangi bir DNA dizilimi olabilir.

Buluşun bir kütinaz varyantını deşifre eden DNA
diziliminin transkripsiyonunun yönlendirilmesi için
10 uygun olan promotör örnekleri, özellikle de bakteriyel
bir konak içinde, *E. coli*'nin *lac* operonunun promotörü,
Streptomyces coelicolor agaraz geni *dagA* promotörleri,
Bacillus licheniformis α -amilaz geni (*amyL*) promotör-
leri, *Bacillus stearothermophilus* maltojenik amilaz
15 geni (*amyM*) promotörleri, *Bacillus amyloliquefaciens* α -
amilaz geni (*amyQ*) promotörleri, *Bacillus subtilis* *xylA*
ve *xylB* genlerinin promotörleri, vb. dir. Fungal bir
konak içinde transkripsyon için kullanışlı olan
promotör örnekleri, *A. oryzae* TAKA amilazı deşifre eden
20 genden türevlenenler, *S. cerevisiae*'den TPI (trioz
fosfat izomeraz) promotörü (Alber ve arkadaşları,
(1982), J. Mol. Appl. Genet 1, s. 419-434), *Rhizomucor*
miehei aspartik proteinaz, *A. niger* nötral α -amilaz, *A.*
niger aside dayanıklı α -amilaz, *A. niger* glukoamilaz,
25 *Rhizomucor miehei* lipaz, *A. oryzae* alcalin proteaz, *A.*
oryzae trioz fosfat izomeraz ya da *A. nidulans*
asetamidazdır.

Ekspresyon vektörü

30

Buluşun ekspresyon vektörü, aynı zamanda uygun bir
transkripsiyon terminatörünü ve ökaryotlarda, buluşun
 α -amilaz varyantını deşifre eden DNA dizilimine işler
biçimde bağlı olan poliadenilleme dizilimlerini de
35 kapsayabilir. Terminasyon ve poliadenilleme dizilim-

5 leri, uygun bir şekilde promotör olarak aynı kaynaklardan türevidenebilir.

Vektör ayrıca, vektörün sorgulanan konak hücresi içinde kopyalanabilmesini mümkün kıلان bir DNA 10 dizilimini kapsayabilir. Bu tip dizilimlerin örnekleri, pUC19, pACYC117, pUB110, pE194, pAMB1 ve pIJ702 plazmidlerinin replikasyon kökenleridir.

Vektör aynı zamanda, seçilebilir bir markörü de 15 kapsar; örneğin ürünü *B. subtilis* ya da *B. licheniformis*'ten dal genleri gibi konak hücresindeki bir eksigi tamamlayan gen ya da ampisilin, kanamisin, kloramfenikol ya da tetrasiklin direnci gibi antibiyotik direnci kazandıran birini kapsar. Dahası, 20 vektör higromisin direncini arttıran bir markör olan amdS, argB, niaD ve sC gibi *Aspergillus* seleksiyon markörlerini kapsayabilir ya da seçim birlikte transformasyon yolu ile örneğin; WO 91/17243'te tarif edildiği gibi tamamlanabilir.

25

Kütinaz varyantını, promotörü, terminatörü ve diğer elemanları sırası ile deşifre eden buluşun DNA yapısını bağlamak için ve bunları replikasyon için gerekli olan bilgileri içeren uygun vektörlerin içine 30 yerleştirmek için kullanılan prosedürler, bu dalda uzmanlaşmış kimseler tarafından iyi bilinmektedir (örneğin; Sambrook ve arkadaşları, Molecular Cloning: Bir Laboratuar Kılavuzu, 2. Baskı, Cold Spring Harbor, 1989).

35

5 Konak Hücreler

Gerek DNA yapısını gerekse yukarıda tarif edildiği gibi buluşun ekspresyon vektörünü kapsayan buluşun hücresi, avantajlı bir biçimde buluşun kütinaz 10 varyantının rekombinan üretimeinde, konak hücre olarak avantajlı bir biçimde kullanılır. Hücre, varyanti deşifre eden buluşun DNA yapısı ile, konak kromozom içinde DNA yapısının (bir ya da daha fazla kopya halinde) entegre edilmesi ile uygun bir şekilde 15 transformasyona uğrayabilir. Bu entegrasyon, DNA dizilimi hücre içinde daha stabil olarak sürdürüldükçe, genellikle bir avantaj olarak kabul edilir. DNA yapılarının konak kromozom içine entegrasyonu, gele- 20 neksel yöntemlere göre; örneğin, homolog ya da heterolog rekombinasyon yolu ile yapılabilir. Alternatif olarak, hücre yukarıda tarif edildiği gibi, farklı tipte konak hücreleri ile bağlantılı olarak yukarıda tarif edildiği gibi transforme edilebilir.

25 Buluşun hücresi, bir memeli ya da bir böcek gibi yüksek bir organizmanın bir hücresi olabilir, ancak tercihen mikrobiyal bir hücredir; örneğin bakteriyel ya da fungal (maya dahil olmak üzere) bir hücredir.

30 Uygun bakteri örnekleri, *Bacillus subtilis*, *Bacillus licheniformis*, *Bacillus lentus*, *Bacillus brevis*, *Bacillus stearothermophilus*, *Bacillus alkalophilus*, *Bacillus amyloliquefaciens*, *Bacillus coagulans*, *Bacillus circulans*, *Bacillus lautus*, 35 *Bacillus megaterium*, *Bacillus thuringiensis*, veya *Streptomyces lividans* ya da *Streptomyces murinus* gibi Gram pozitif bakteriler ya da *E. coli* gibi gram negatif

5 bakterilerdir. Bakterilerin transformasyonu, örneğin protoplast transformasyonu yolu ile ya da bu dalda doğal olarak bilinen şekilde uzman hücreler kullanılarak gerçekleştirilebilir.

10 Maya organizması, lehte olacak şekilde *Saccharomyces* ya da *Schizosaccharomyces* türlerinden; örneğin *Saccharomyces cerevisiae*'den seçilebilir.

Konak hücre, kamçılı bir mantar da örneğin;
 15 *Aspergillus* türüne ait olan bir suş, en çok tercih edildiği üzere *Aspergillus oryzae* ya da *Aspergillus niger*, ya da *Fusarium oxysporum*, *Fusarium graminearum* (mükemmel halde *Gibberella zae* olarak adlandırılır, daha önceleri *Sphaeria zae* olarak adlandırılıyordu,
 20 *Gibberella roseum* ve *Gibberella roseum* f. sp. *Cerealis* ile eş anlamlı) ya da *Fusarium sulphureum* (mükemmel halde *Gibberella puricaris* olarak adlandırılır, *Fusarium trichotheciooides*, *Fusarium bactridiooides*,
 25 *Fusarium sambucium*, *Fusarium roseum* ve *Fusarium roseum* var. *graminearum* ile eş anlamlı), *Fusarium cerealis* (*Fusarium crookwellense* ile eş anlamlı) ya da *Fusarium venenatum* gibi *Fusarium*'un bir suşu olabilir.

Tercih edilen bir düzenlemede, konak hücre proteaz eksikliği olan ya da proteaz eksik bir suştur.
 30

Bu örneğin, "alp" isimli proteaz geni eksiltilmiş alkalin proteaza sahip olan, *Aspergillus oryzae* JaL 125 proteaz eksik suş olabilir. Bu suş WO 97/35956'da (Novo
 35 Nordisk) tarif edilmektedir.

5 Kamçılı mantar hücreleri, protoplast oluşumunu ve protoplastların transformasyonunu içine alan, takiben hücre duvarının bu dalda doğal olarak bilinen bir şekilde rejenerere edildiği bir işlem yolu ile transforme edilebilir. Konak mikroorganizma olarak *Aspergillus*'un 10 kullanımı, içeriği buraya referans olarak dahil edilen EP 238 023'te (Novo Nordisk A/S) tarif edilir.

Transformantın kültive edilmesi ile, kütinaz varyantının meydana getirilmesi

15 Buluş, diğerleri arasında, buluşun kütinaz varyantını meydana getirme yöntemi ile ilgili olup, bu yöntem varyantın üretilmesine yardımcı olan koşullar altında, konak hücrenin kültive edilmesini ve hücrelerden 20 ve/veya kültür vasatından varyantın kazanılmasını kapsar.

Hücreleri kültive etmek için kullanılan vasat, araştırılan konak hücreyi üretmek için ve buluşun 25 kütinaz varyantının ekspresyonunun elde edilmesine uygun olan herhangi bir geleneksel vasat olabilir. Uygun vasatlar, ticari kaynaklardan temin edilir ya da yayımlanmış yöntemlere göre hazırlanabilir (örnek olarak; Amerikan Tipi Kültür Kolleksiyonu katalog- 30 larında tarif edildiği gibi).

Konak hücrelerden salgılanan kütinaz varyantı, iyi bilinen prosedürler yolu ile, hücrelerin santrifüje edilerek ya da filtre edilerek vasattan ayrılması ve 35 amonyum sülfat gibi bir tuz aracılığı ile vasatın proteinli bileşenlerinin çöktürülmesi, takiben iyon değişimi kromatografisi, affine kromatografisi ve

5 benzerleri gibi kromatografik prosedürlerin kullanılması da dahil olmak üzere, uygun bir şekilde kültür vasatından geri kazanılabilir.

Bitkilerde varyantın eksprese edilmesi

10

Mevcut buluş aynı zamanda, bu enzimi geri kazanılabilir miktarlarda eksprese etmek ve meydana getirmek üzere, buluşun varyantını deşifre eden DNA dizilimi ile transforme edilen transjenik bir bitki, 15 bitki parçası ya da bitki hücresi ile de ilgilidir. Enzim bitkiden ya da bitki parçasından geri kazanılabilir. Alternatif olarak, rekombinan enzimi içeren bitki veya bitki parçası bu şekilde kullanılabilir.

20

Transjenik bitki dikotiledon ya da monokotiledon; kısaca dikot ya da monokot olabilir. Monokot bitkilerin örnekleri, çimen (çayır otu; Poa) gibi otlar, Agrostis gibi ılıman bölge tahilları, delice, yumak otu gibi hayvan yemleri ve tahillardır; örneğin buğday, yulaf, 25 çavdar, arpa, pirinç, dari ve misirdir.

Dikot bitkilerin örnekleri tütün, acı bakla gibi baklagiller, patates, şeker pancarı, nohut, fasulye ve soya fasulyesi ve karnabahar gibi turpgiller 30 (Brassicaceae familyası), kolza yağ tohumu ve yakından ilişkili model organizma *Arabidopsis thaliana*'dır.

Bitki parçalarının örnekleri, gövde, kallus, yapraklar, kök, meyveler, tohumlar ve tuberlerdir 35 (=yumrular). Bu bağlamda, kloroplast, apoplast, mitokondri, vaküol, peroksizomlar ve sitoplazma gibi spesifik bitki dokuları da bitki parçası olarak kabul

5 edilir. Dahası, hangi doku kökeninden olursa olsun, herhangi bir bitki hücresi, bitkinin bir parçası olarak kabul edilir.

Buluşun bakış açısı içine dahil edilenler, bu tip
10 bitkilerin, bitki parçalarının ve bitki hücrelerinin soylarıdır.

Buluşun varyantını eksprese eden transjenik bitki ya da bitki hücresi, bu dalda bilinen yöntemlere uygun
15 olarak inşa edilebilir. Kisacası, bitki veya bitki hücresi, buluşun enzimini deşifre eden bir ya da daha fazla ekspresyon yapısının bitki konak genomu içine dahil edilmesi ve sonuçta meydana gelen modifiye edilmiş bitki ya da bitki hücresinin transjenik bir
20 bitki veya bitki hücresi içine çoğaltıltması yolu ile inşa edilir.

Uygun şekilde, ekspresyon yapısı bitki ya da
25 seçilen bitki parçasındaki genin ekspresyonu için gereken uygun düzenleyici dizilikler ile işler biçimde ilişkili olarak, buluşun enzimini deşifre eden bir geni kapsayan bir DNA yapısıdır. Ayrıca ekspresyon yapısı, ekspresyon yapısının entegre edildiği konak hücrelerinin ve araştırılan bitkiye yapının sokulması için
30 gereken DNA diziliklerinin təshisi için seçilebilir bir markörü kapsayabilir (sonucusu kullanılan DNA sokulma yöntemine bağlıdır).

Promotör ve terminatör dizilikleri gibi düzenleyici diziliklerinin ve istege bağlı olarak, sinyal veya transit diziliklerinin seçimi örneğin; istenen enzimin ne zaman, nerede ve nasıl eksprese edilmesi

5 temel alınarak tayin edilir. Örnek olarak; buluşun
 enzimini deşifre eden genin ekspresyonu yapıcı ya da
 indükleyici olabilir ya da geliştirici olabilir, aşama
 ya da dokuya özel olabilir ve gen ürünü, özel olarak
 tohumlar veya yapraklar gibi bir bitki parçasını ya da
 10 dokuyu hedef alabilir. Düzenleyici dizimler, örneğin
 Tague ve arkadaşları tarafından Plant, Phys., 86, 506,
 1988'de tarif edilmektedir.

Yapıcı ekspresyon için 35S-CaMV promotörü kullanı-
 15 labilir (Franck ve arkadaşları, 1980, Cell 21: 285-
 294). Organa özel promotörler, örneğin tohumlar, patates
 yumruları ve meyveler gibi saklama depo dokularından
 bir promotör olabilir (Edwards & Coruzzi, 1990, Annu.
 Rev. Genet. 24: 275-303) ya da meristemler gibi
 20 metabolik depo dokularından (Ito ve arkadaşları, 1994,
 Plant Mol. Biol. 24: 863-878) bir promotör olabilir,
 pirinçten glutelin, prolamin, globulin veya albümin
 promotörü gibi tohumda özel bir promotör (Wu ve
 arkadaşları, Plant and Cell Physiology Vol. 39, No. 8,
 25 s. 885-889 (1998)), legümین B4'ten bir Vicia faba
 promotörü ve Conrad U. ve arkadaşları tarafından
 Journal of Plant Physiology Vol. 152, No. 6, s. 708-711
 (1998)'de tarif edilen Vicia faba'dan bilinmeyen tohum
 proteinini geni, tohum yağı gövde proteininden bir
 30 promotör (Chen ve arkadaşları, Plant and cell
 physiology vol 39, No. 9, s. 935-941 (1998), Brassica
 napus'tan saklama proteinini napA promotörü ya da bu
 dalda bilinen herhangi bir diğer özel promotör
 olabilir; örnek olarak WO 91/14772'de tarif edildiği
 35 gibi olabilir. Ayrıca, promotör pirinç ya da domatesten
 rbcS promotörü gibi yaprağa özel bir promotör olabilir
 (Kyozuka ve arkadaşları, Plant Physiology Vol. 102, No.

5 3 s. 991-1000 (1993), klorella virüsü adenin
metiltransferaz geni promotörü olabilir (Mitra, A. ve
Higgins, DW, Plant Molecular Biology Vol. 26, No. 1 s.
85-93 (1994), ya da pirinçten aldP gen promotörü
olabilir (Kagaya ve arkadaşları, Molecular and General
10 Genetics Vol. 248, No. 6, s. 668-674 (1995), ya da
patates pin2 promotörü gibi yara ile induklenebilir bir
promotör olabilir (Xu ve arkadaşları, Plant Molecular
Biology Vol. 22, No. 4, s. 573-588 (1993)).

15 Promotör artırmacı bir eleman, bitkideki enzimin
daha yüksek ekspresyonuna ulaşmak üzere kullanılabilir.
Örneğin, promotör artırmacı eleman, enzimi deşifre eden
nukleotit dizilimi ve promotör arasına yerleştirilen
bir intron olabilir. Örnek olarak, Xu ve arkadaşları -
20 yukarıda yer verilen literatür- ekspresyonu artırmak
üzere, pirinç aktin 1 geninin birinci intronunun
kullanımını açıklamaktadır.

Seçilebilir markör geni ve ekspresyon yapısının
25 diğer parçaları, bu dalda mevcut bulunanlar arasından
seçilebilir.

DNA yapısı, Agrobacterium aracılı transformasyon,
virüs aracılı transformasyon, mikro enjeksiyon,
30 parçacık bombardımanı, biyolistik transformasyon ve
elektroporasyon da dahil olmak üzere (Gasser ve
arkadaşları, Science, 244, 1293; Potrykus, Bio/Techn.
8, 535, 1990; Shimamoto ve arkadaşları, Nature, 338,
274, 1989), bu dalda bilinen geleneksel tekniklere göre
35 bitki genomu içine dahil edilir.

5 Günümüzde, *Agrobacterium tumefaciens* aracılı gen transferi, transjenik dikotillerin meydana getirilmesi için seçilen yöntemdir (genel değerlendirme için Hooykas & Schilperoort, 1992 Plant Mol. Biol. 19: 15-38), ancak bu bitkiler için genellikle başka 10 transformasyon yöntemlerinin tercih edilmesine rağmen, monokotilleri transforme etmek için de kullanılabilir. Günümüzde, transjenik monokotillerin meydana getirilmesi için seçilen yöntem, embriyonik kalluslar ya da gelişen embriyoların partikül bombardımanıdır (transforme eden DNA ile kaplı mikroskopik altın veya tungsten parçacıkları) (Christou, 1992. Plant J. 2: 275-281; Shimamoto, 1994. Curr. Opin. Biotechnol. 5: 158-162; Vasil ve arkadaşları, 1992. Bio/Technology 10: 667-674). Monokotillerin transformasyonu için 15 alternatif bir yöntem, Omirulleh S. ve arkadaşları tarafından, Plant Molecular Biology Vol. 21, No. 3, s. 415-428'de (1993) tarif edildiği gibi protoplast transformasyonunu temel alır.

25 Transformasyonun ardından, ekspresyon yapılarının dahil edilmiş olduğu transforme ediciler (transformantlar) seçilir ve bu dalda iyi bilinen yöntemlere göre bütün bitkiler içine rejenere edilir.

30 MATERİYAL VE YÖNTEM

Plazmidler

PJSO026

35 Bu plazmid, WO 97/07205'te ve J.S. Okkels (1996) "Bir pYES vektöründe bir "A URA3-promotörünün eksiltmesi, *Saccharomyces cerevisiae*'deki fungal lipazın

5 ekspresyon düzeyini artırmaktadır. Rekombinan DNA Biyoteknolojisi III: Biyolojik ve Mühendislik Bilimlerinin Entegrasyonu, Annals of New York Academy of Sciences Vol. 782'de tarif edilen *S. cerevisiae* ekspresyon plazmididir.

10

PFuku83

Bu bir mayadır ve pJS0026'dan inşa edilen bir TPI promotörünün kontrolü altında *H. insolens* kütinazın ekspresyonu için *E. coli* mekik vektörüdür.

15

Substrat

BETEB

Tereftalik asit bis(2-hidroksietil)ester
20 dibenzoat, burada BETEB (benzoil-etilen-tereftalik-
etelen-benzoat) olarak kısaltılmıştır. Tereftalik asit
bis (2-hidroksietil) ester ve benzoik asitten hazırlandı.

25

Lipaz aktivitesi (LU)

Lipaz için bir substrat, emülsifiyan olarak Arap zamkı kullanılarak tributirinin (gliserin tributirat) emülsifiye edilmesi yolu ile hazırlanır. Tributirinin 30 30°C'de pH 7'de hidrolizini, dengeli pH'da titrasyon deneyi takip eder. Bir ünite lipaz aktivitesi (1 LU), standart koşullarda 1 μ mol butirik asit/dakika serbestleyebilen enzim miktarına eşittir.

35

5 Ayırt edici tarama kalorimetresi (DSC)

Numune ve referans çözeltileri, kalorimetreye numunelerin yüklenmesinden hemen önce, dikkatli bir biçimde gazlarından arındırılır (referans: enzimsiz tampon). Numune ve referans çözeltileri (yaklaşık olarak 0.5 ml), 5°C'de, 20 dakika süre ile termal olarak önceden ekilibre edilir. DSC taraması, yaklaşık olarak 90K/saat tarama hızında, 5°C ila 95°C'de yapılır. Denatürasyon ısları, yaklaşık olarak +/- 1°C doğrulukta tayin edilir. MicroCal Inc.'dan VP-DSC deneyler için uygundur.

Yöntemler

20 PCR Koşulları

1. aşama: 94°C, 120 saniye
2. aşama: 94°C, 60 saniye
3. aşama: 50°C, 60 saniye
4. aşama: 72°C, 150 saniye
- 25 2. aşamaya geri fön, 35 çevrim
5. aşama: 72°C, 480 saniye
6. aşama: 4°C, sürekli

ÖRNEKLER

30 Örnek 1: Kütinaz varyantlarının hazırlanması

H. insolens kütinazı deşifre eden bir DNA dizilimi, ABD 5.827.719'da (Novo Nordisk) tarif 35 edildiği gibi elde edildi ve buradaki SEQ ID No: 1'de gösterilen DNA dizilimine sahip oldukları bulundu.

5 Varyantlar, lokalize tesadüfi mutajenez ve BETEB plakları üzerinde 1 gün süre ile, 60°C'de inkübasyon ile pozitif klonların seçilmesi yolu ile hazırlandı. BETEB plakları, 200 ml/l 500 mM glisin tamponu (pH 8.5), 1.25 g/l BETEB (sıcak etanol içinde çözündürüldü) 10 ve 20 g/l agar içeriyordu.

Üç pozitif varyant izole edildi ve bunların amino asit dizilimi tayin edildi. Ebeveyn *H. insolens* kütinaza kıyasla, aşağıdaki modifikasyonlara sahip 15 oldukları bulundu.

A14P + E47K

E47K

E179Q

20

Örnek 2: Bölgeye yönelik mutasyon

E6Q + E47K+ R51P ikame işlemlerine sahip olan *H. insolens* kütinazın bir varyantı, aşağıdaki şekilde 25 hazırlandı:

Bir çift PCR primeri, amino asit ikame işlemlerini yapacak şekilde, ortaya çıkan yakındaki enzim bölgelerinin aşağıdaki şekilde (yıldız işaretleri yapılan 30 mutasyonu gösterir) kullanımını sağlayarak tasarlandı:

Üst primer: E6Q F

cgg cag ctg gga gcc atc c*ag aac

Pvu II

Alt primer: E47K, R51P

35 cgc cct gga tcc aga tgt tcg* gga tgt ggg act t*aa
ggc

5

BamH I

PCR, yukarıda tarif edilen PCR koşulları altında şablon olarak pFukuNL83 ve bu primerler kullanılarak yürütüldü.

10

Elde edilen PCR parçası Clontech Spincolumn ile saflaştırıldı ve *Pvu II* ve *BamH I* ile dijeste edildi (enzimle kesildi).

15

Sonuçta meydana gelen parça jel ile saflaştırıldı ve aynı kısıtlayıcı enzim bölgeleri ile dijeste edilmiş olan pFukuNL83'e bağlandı.

20

Örnek 3: Kütinaz varyantlarının ısıya karşı dayanıklılığı

Varyantlar

İsya karşı dayanıklılık (termo stabilite), *H. insolens* kütinaz ve bunun aşağıdaki varyantları için, aşağıda tarif edildiği gibi test edildi:

A14P+ E47K

E47K

30

E179Q

E6Q+ E47K+ R51P

A14P+ E47K+ E179Q

E6Q+ A14P+ E47K+ R51P+ E179Q

E6Q+ E10Q+ A14P+ E47K+ R51P+ E179Q

35

5

Ayırt edici Tarama Kalorimetresi (DSC)

Kütinaz varyantlarının ısıya karşı dayanıklılıkları, pH 4.5'te (50 mM asetat tamponu) ve pH 8.5'te (50 mM glisil -glisin tamponu) DSC yolu ile araştırıldı. 10 Isı ile denatürasyon ısısı, T_d , sabit programlanmış ısıtma hızında enzim çözeltilerinin ısıtilmasından sonra elde edilen termogram olarak (T karşı C_p), denatürasyon pikinin (majör endotermik pik) en üst noktası olarak alındı.

15

Ebeveyn kütinazın, pH 8.5'te 63°C'lik T_d sahip olduğu bulundu. Yukarıdaki varyantların altısının, 70-73°C'lik T_d sahip oldukları; diğer bir deyişle, 7-10° düzelleme olduğu bulundu.

20

Ebeveyn kütinazın pH 4.5'te 61°C'lik T_d sahip olduğu bulundu. Yukarıdaki varyantların beşinin, 64-66°C'lik T_d sahip oldukları; diğer bir deyişle, 3-5° düzelleme olduğu bulundu.

25

BETEB hidrolizi

H. insolens kütinaz ve yukarıdaki varyantlarının ısıya karşı dayanıklılığı, yükseltilmiş ıslarda, BETEB hidrolizi yolu ile ölçüldü. Her bir kütinaz için, aşağıdaki karışım, 55-70°C aralığındaki çeşitli ıslarda, 17 saat süre ile inkübe edildi:

35

0.1 ml 0.5 M glisil- glisin tamponu (pH 8.5)

0.1 ml etanol içinde çözündürülmüş % 0.5 BETEB

0.1 ml enzim çözeltisi (yaklaşık 25 LU/ml

5 0.7 ml Milli Q su

Hidrolizin derecesi, inkübasyondan sonra ölçüldü.
Sonuçlar, aşağıdaki tabloda gösterilmektedir.

	Varyant	Varyant	Ebeveyn
	27 LU/ml	25 LU/ml	24 LU/ml
55°C	% 98	% 99	% 72
60°C	% 91	% 83	% 33
65°C	% 66	% 13	% 7

10

Bu sonuçlar, varyantların ısiya karşı dayanıklılığının ebeveyn kütinaza kıyasla arttığını açıkça göstermektedir.

15 BETEB hidrolizi

H. insolens kütinaz ve yukarıdaki varyantların üçünün ısiya karşı dayanıklılığı, 2 saat süre ile, 60°C'de BETEB hidrolizi yolü ile ölçüldü. Hidroliz, ısının 60°C'ye sabitlenmesi ve kütinaz dozunun 20 degistirilmesi dışında yukarıdaki koşullarda yürütüldü. Sonuçlar aşağıdaki tabloda gösterilmektedir.

LU/ml	Varyant	Varyant	Varyant	Ebeveyn
0	% 0	% 0	% 0	% 0
10	% 97	% 99	% 9	% 6
20	% 98	% 99	% 74	
50	% 98	% 94	% 93	% 15
100	% 88	% 69	% 92	% 34
300				% 41
600				% 63
1200				% 82

5 Bu sonuçlar, 60°C'de hidrolizin, varyantlarla ebeveyn kütinazdan çok daha hızlı olduğunu göstermektedir.

Örnek 4: c3ET Hidrolizi

10

H. insolens kütinaz ve yukarıdaki varyantların beşinin ısiya karşı dayanıklılığı, yükseltilmiş ıslarda, c3ET'nin hidrolizinde ölçüldü. Her bir kütinaz için, aşağıdaki karışım, çeşitli ıslarda 2 saat süre 15 ile inkübe edildi.

0.115 mg c3ET (0.1 ml HFIP içinde çözündürülmüş 2 mM c3ET, reaksiyon kabına alındı. Çözücü basınç altında uzaklaştırıldı, daha sonra gece boyunca 70°C'de kurutuldu.)

0.1 ml 0.5 M glisil-glisin tamponu (pH 8.5)
0.1 ml enzim çözeltisi (yaklaşık 600 LU/ml)
0.8 ml Milli Q su

25

İnkübasyondan sonra, 2 ml 1,1,1,3,3,3-Hekzafloro-2-propanol (HFIP), her bir reaksiyon karışımına ilave edildi, daha sonra hidroliz oranı HPLC yolu ile ölçüldü. Şekil 3'te gösterilen sonuçlar, varyantların, 30 ebeveyn kütinaza kıyasla ısiya karşı artmış dayanıklılığa sahip olduğunu açıkça göstermektedir.

Örnek 5: İplik üzerinde c3ET Hidrolizi

35 H. insolens kütinaz ve yukarıdaki varyantların beşinin ısiya karşı dayanıklılığı, yan ürün olarak c3ET içeren polyester iplik kullanılarak test edildi.

5 Aşağıdaki substrat karışımı, 60°C ya da 65°C'de önceden
inkübe edildi:

0.1 g polyester iplik
0.2 ml 0.5 M glisil- glisin tamponu (pH 8.5)
10 1.7 ml Milli Q su

Ön inkübasyondan sonra, 0.1 ml enzim çözeltisi
(yaklaşık olarak 1000 LU/ml), her bir reaksiyon kabına
ilave edildi ve 17 saat süre ile inkübe edildi. Daha
15 sonra 2 ml HFIP ilave edildi ve 30 dakika süre ile
ekstre olmaya ve polyester ipliği yüzeyinde bulunan
c3ET hidrolize etmeye bırakıldı; daha sonra hidroliz
orani ölçüldü. Sonuçlar Şekil 4'te gösterilmektedir.

20 Varyantların, polyester iplik üzerinde c3ET'nin
hidrolize edilmesi için ebeveyn kütinazdan daha etkin
olduğu görülmektedir. Bir varyant, 65°C'de 60°C'dekinden
daha yüksek hidroliz oranı vermektedir.

25 Örnek 6: İplığın kütinaz varyantı ile muamelesi

Farklı ıslarda veya dozajlarda, polyester
iplığın c3ET hidrolizinin süreleri incelendi. Farklı
ıslardaki süre, Şekil 5'te gösterilmektedir. Optimum
30 ısının 65°C'de olduğu görülmektedir. 70°C'de, aktivite
tenin hala yaklaşık yarısı kalmıştır. Artmış enzim
dozajı ile süre, Şekil 6'da gösterilmektedir. 275 ve
550 LU/ml'deki eğriler aynı gibi görülmekte olup, bu
hidroliz oranının 100 ila 275 LU/ml dozaj arasında bir
35 düzeye ulaştığını göstermektedir. 200 LU/ml'nin yeterli
olduğu varsayılmaktadır.

5 **Örnek 7: Polyesterin reaktif boyası ile boyanması**

Aşağıdaki polyester kumaşlar muamele edildi:

Dokuma kumaş; yaklaşık 2 x 2 cm, 34 mg

Triko -örgü- kumaş; yaklaşık 1.5 x 1.5 cm, 50 mg

10

Her bir kumaş parçası, 0.9 ml 50 mM GlyGly (glisil- glisin) tamponu (pH 8.5) ve H. insolens kütinaz (1100 LU/ml) varyantının 0.1 ml çözeltisi içine batırıldı ve 65°C ya da 70°C'de inkübe edildi. Bir gün 15 sonra, 0.1 ml diğer bir enzim çözeltisi ilave edildi, inkübasyona iki gün daha devam edildi, kumaşlar dışarı çıkarıldı ve su içinde çalkalandı. Ebeveyn kütinaz ile bir mukayese deneyi yapıldı veenzimsiz olacak şekilde, aynı yolla bir boş deneme yapıldı.

20

Kumaşlar, 3 litre deiyonize su içinde, 60°C'de 30 dakika süre ile, 9 g 120 g Na₂SO₄ ve 60 g Na₂CO₃ karışımı içinde karıştırıldı ve daha sonra, akan ılık su ile çalkalandı. Reaktif boyası Kromofor-NHPh-SO₂CH₂CH₂OSO₃Na yapısına sahip olan Celmazol Brilliant Blue B -Celmazol Parlak Mavi B- (Mitsui Chemical Co., Japonya'nın üründür) idi.

Dört deneyin hepsinde (dokuma ve triko, 65° ve 30 70°C) kumaşlar homojen bir biçimde boyandılar.

Örnek 8: Triko kumastan polyester parçalarının çözünür hale getirilmesi

35 Triko polyester kumastan (PET, etilenglikol ve tereftalik asidin bir polimeri) 1 x 1 cm'lik bir

5 numune, 1 saat süre ile, 1 ml tampon içinde, pH 10'da, 60°C'de 0.01 mg *H. insolens* kütinaz varyantı ile inkübe edildi. Reaksiyon karışımı ayrıldı ve tereftalik asidin serbestlenmesi, 250 nm'de OD ölçülmlesi ($OD_{250}/\text{mg PET}$ olarak ifade edilir) yolu ile bulundu. Enzimsiz olarak 10 ya da ebeveyn kütinaz ile mukayese testleri yapıldı.

Sonuçlar:

	Enzim	OD_{250}
Buluş	Kütinaz varyantı	4.5
Referans	Ebeveyn kütinaz	0.3
	Yok	0.1

15 Sonuçlar, varyantın polyesteri çözündürmede etkili olduğunu göstermektedir.

Diğer bir deneyde, kütinaz varyantı 2 saat süre ile, 65°C'de, iyonik olmayan bir sürfaktan (alkol etoksilat, ürün ismi Softanol 50) ilavesi ile ya da bu 20 ilave yapılmaksızın, 0.5 ila 200 LU/ml çeşitli miktarlarda varyant kullanılarak test edildi. Sonuçlar, iyonik olmayan bir sürfaktan varlığında, daha fazla çözünürlük gösterdi.

25 Örnek 9: Polikaprolakton ve polyester film hidrolizi

Yaklaşık olarak 0.1 g polikaprolakton veya polyester film tüpler içine kondu. *H. insolens* kütinaz (450 LU) ile veya bu olmaksızın 5 ml 50 mM GlyGly 30 tamponu (pH 8.5) içine batırıldı. 70°C'de 5 saat süre ile inkübe edildi. Reaksiyondan sonra, hem polikaprolakton hem de polyester film ile, enzimli tüplerin

5 yüzeyinde ince bir hidrolizat tabakası gözledik. Diğer yandan, enzimsiz kontrollerde hiçbir değişiklik gözlenmedi. Polikaprolaktonda ise, %10 ağırlık kaybı vardı. Polyesterin ağırlığında değişiklik görmedi.

10 **Örnek 10: cPET hidrolizi**

Kütinaz varyantının performansı, ebeveyn enzim (*H. insolens* kütinaz) ile mukayese edildi. Deneyler aşağıdaki şekilde yapıldı:

15 Oligomer iplikli bir PET kumaştan (yaklaşık 4 cm x 13 cm) örnek kumaş parçası (siyah), mini tergitometre aleti olarak adlandırılan cihaz içinde, göreceli olarak düşük çalkalamada enzim ile muameleye tabi tutuldu. PET 20 kumaş, eksenin etrafında dönen silindirik, delikli bir ayak (çapı yaklaşık 2 cm, yüksekliği yaklaşık 6 cm) üzerine, PET kumaşın oligomer lekeli tarafı silindirin dışına bakacak şekilde monte edilir.

25 Kumaş, incelenen ısında (burada 65°C), muamele çözeltisinin 100 ml'sini içeren 150 ml'lik cam beher içine daldırılır. Araştırılan işlem süresinin (burada 90 dakika) ardından, PET kumaş örneği banyodan çıkarılır ve deiyonize su içinde çalkalanır ve açık 30 havada kurutulur.

35 İşlemeden sonra, kumaşlar oligomer lekesi olan taraflarına göre görsel olarak sıralanır (oligomer lekelerinin çıkışmasına göre). Sıralama aşağıdaki şekilde:

5 -2: Numune boş numuneden (enzimsiz) belirgin bir biçimde daha kötüdür

-1: Numune boş numuneden (enzimsiz) hafifçe daha kötüdür

0: Numune boş numuneden ayırt edilemez

10 1: Numune boş numuneye göre hafifçe daha iyidir

2: Numune boş numuneye göre belirgin bir biçimde daha iyidir.

Aynı zamanda, numune kumaş parçaları renk 15 kuvvetini (600 nm'deki K/S değeri) kantifiye etmek için spektrofotometrik olarak da okunur (cihaz: Hunterlab Reflektometresi).

Aşağıdaki tablo, benzer koşullar altında 20 enzimlerin performansını mukayese eden bir deney için test koşullarını özetlemektedir:

Isı : 65°C

Tampon/pH : 50 mM glisin tamponu, pH

25 10.3

Muamele süresi (dakika): 90

Enzim dozajı (LU/g) : 30000

Deney sonuçları, aşağıda özetlenmektedir.

30

Enzim	Görsel sıralama (ortalama)	K/S Fark @ 600 nm
Yok	0 (tanımlanmış)	2.33
Ebeveyn kütinaz	0	2.38
Kütinaz varyant	1.5-2.0	2.89

5 Bu deney dizisinden, araştırılan test koşullarında
 kütinaz varyantı PET kumaştan oligomer lekelerinde
 önemli bir temizleme temin ederken, ebeveyn enzimin
 sadece çok sınırlı etki temin ettiği ya da hiç etki
 sağlamadığı (muhtemelen enzimin aktivitesini sürdürmesi
 10 için ısının çok yüksek olması nedeniyle) görülmektedir.

Örnek 11: cPET hidrolizi

H. insolens kütinazın varyantının pH ve ısısı,
 15 model disperse boyama deneyinde test edildi. Deneyler
 aşağıdaki şekilde yapıldılar:

Oligomer ile lekelenmiş bir PET numune kumaş
 parçası (siyah), Werner Mathis Labomat içinde tipik
 20 disperse boyama sıralaması koşullarına tabi tutulur.
 İşlemin genel olarak gözden geçirilmesinden sonra,
 numune kumaş parçası tampon çözeltisine ilave edilir,
 130°C'ye ısıtılır, işleme ısısına soğutulur. Enzim ya
 da tampon ilave edilir ve daha sonra, 30 dakika süre
 25 ile istenen ısında tutulur. Çözelti oda sıcaklığına
 kadar soğutulur ve yıkama çözeltisi içindeki bulanıklık
 ölçülür. Bulanıklıkta azalma, hidrolize olan cPET
 oligomerlerine karşılık gelen kütinaz aktivitesinin
 doğrudan ölçülmüdür.

30

Deneyin ayrıntılı tarifi:

Siyah renkli PET numune kumaş parçası (yaklaşık
 olarak 4 cm x 13 cm), 0.2 g/l Lutensol AT11 (BASF)
 35 içeren 140 ml 100 mM Britton-Robinson tamponuna ilave
 edilir ve Labomat (dakikada 32 dönüş) içine yüklenir.

5 Labomat, 9°C/dakikalık gradyanda, 130°C'de ısıtı-
lır ve 10 dakika süre ile tutulur.

Beherler, 9°C/dakikalık gradyanda çalışma ısısına
(aşağıdaki tabloya göre) soğutulur ve 1 dakika süre ile
10 tutulur.

10 mL enzim çözeltisi (varyanttan 100 LU/ml) ya da
uygun pH'daki tampon çözeltisi (0 LU/ml) beherlere
enjekte edilir.

15 Labomat, 2°C/dakikalık gradyanda kullanılan sıvuya
yeniden ısıtılır ve 30 dakika süre ile tutulur.

Kumaş numunesi parçaları çıkartılır ve yıkama
20 sıvısı oda sıcaklığına kadar soğutulur.

Yıkama sıvılarının bulanıklığı ölçülür.

Değerlendirme: Bulanıklık Hach 18900 Oranlı
25 Türbidimetresi içinde (1.8, 18 ve 180 NTU Bulanıklık -
türbidite- Standardı ile standardize edilmiştir)
ölçülür. Enzim performansı, boş sıvının (enzimsiz
sıvının) bulanıklığı ve enzimle muamele edilmiş sıvının
bulanıklığı arasındaki fark olarak, boş sıvuya göre
30 hesaplanır.

Kütinaz varyantının göreceli performansı (bu-
nanıklıkta azalma) hesaplanır ve sonuçlar, aşağıdaki
tabloda gösterilmektedir. Negatif bir sayı elde
35 edildiği zaman, sonuç "negatif" olarak verilir. Negatif

5 bir sayı, düzenlemenin bir varyasyonunun neden olduğu suni bir oluşum olarak varsayıılır.

İsi	pH 7	pH 8	pH 9	pH 10
60°C	39	57	37	14
65°C	39	16	60	30
70°C	25	12	54	33
75°C	22	50	114	58
85°C	Negatif	Negatif	15	Negatif

Sonuçlar, kütinaz varyantının optimum oligomer 10 uzaklaştırmasının pH 9 ve 75°C civarında olduğu, geniş bir pH ve ısı aralığında aktif olduğunu göstermektedir. İnaktivasyon 85°C'de veya daha yüksek ıslarda meydana gelir gibi görülmektedir.

15 Örnek 12: cPET hidrolizi

Muamele süresinin etkisi, *H. insolens* kütinazının varyantı için bir model disperse boyama deneyinde araştırılmıştır. Araştırmalar aşağıdaki şekilde gerçekleştirilmişmiştir:

Oligomer ile lekelenmiş bir PET numune kumaş parçası (siyah), Werner Mathis Labomat içinde tipik disperse boyama sıralaması koşullarına tabi tutulur. 25 İşlemin genel olarak gözden geçirilmesinden sonra, numune kumaş parçası 130°C'ye ısıtılan tampon çözeltisine ilave edilir, işleme ısısına geri soğutulur. Enzim ya da tampon (100 mM Britton-Robinson pH 9) ilave edilir ve daha sonra, 0-40 dakika süre ile 75°C'de 30 tutulur. Çözelti oda sıcaklığına kadar soğutulur ve

5 yıkama çözeltisi içindeki bulanıklık ölçülür. Bulanıklıktaki azalma, hidrolize olan cPET oligomerlerine karşılık gelen kütinaz aktivitesinin doğrudan ölçü-
müdür.

Denevin ayrıntılı tarifi:

10

Siyah renkli PET numune kumaş parçası (yaklaşık olarak 4 cm x 13 cm), 0.2 g/l Lutensol AT11 (BASF) içeren 140 ml 100 mM Britton-Robinson tamponuna ilave edilir ve Labomat (dakikada 32 dönüş) içine yüklenir.

15

Labomat, 9°C/dakikalık gradyanda, 130°C'de ısıtı-
lır ve ısı 10 dakika süre ile bu şekilde tutulur.

20

Beherler, 9°C/dakikalık gradyanda 75°C'ye soğutu-
lur ve 1 dakika süre ile bu şekilde tutulur.

10 mL enzim çözeltisi (varyanttan 100 LU/ml) ya da
pH 9.0 100 mM Britton-Robinson tamponu (0 LU/ml)
beherlere enjekte edilir.

25

Labomat, 2°C/dakikalık gradyanda kullanılan ısuya
yeniden 75°C'ye ısıtilir ve uygun olacak kadar süre ile
(0-40 dakika, aşağıdaki tabloya bakınız) tutulur.

30

Kumaş numunesi parçaları çıkartılır ve yıkama
sıvısı oda sıcaklığına kadar soğutulur.

Yıkama sıvılarının bulanıklığı ölçülür.

35

Değerlendirme: Bulanıklık Hach 18900 Oranlı
Turbidimetresi içinde (1.8, 18 ve 180 NTU Bulanıklık -

5 türbidite- Standardı ile standardize edilmıştır) ölçü-
lür. Enzim performansı, sıfır zamanına eşit olan
zamanda, boş sıvıya göre hesaplanır: Sıfır zamanındaki
boş sıvının (enzimsiz sıvının) bulanıklığı eksi enzimle
muamele edilmiş sıvının bulanıklığı (araştırılan
10 sürede).

Kütinaz varyantının göreceli performansı (bulanık-
lıkta azalma) hesaplandı ve sonuçlar aşağıdaki tabloda
gösterilmektedir.

15

Süre (dakika)	Göreceli performans (Bulanıklıkta azalma)
0	0
5	42
10	48
15	62
20	69
25	85
30	72
40	78

Sonuçlar, enzimin etkilerinin zamanla arttığını
göstermektedir. Mevcut enzim dozunda ve oligomer
konsantrasyonunda, yukarıdakileri yaklaşık olarak 20
20 dakika yükseltmek gerekliliği gibi görülmektedir.

Örnek 13: Lif modifikasyonu

Disperse boyamalı polyester bir kumaşın ıslanma
25 özelliklerini üzerindeki etkileri, boyamadan önce H.
insolens kütinazının bir varyantı ile kumaşın muamele

5 edilmesi yolu ile araştırıldı. Deney, bu nedenle iki fazdan meydana gelmektedir; aktüel lif modifikasyonu ve disperse boyama prosedürü.

Faz 1- Lif Modifikasyonu

10

Cihaz: Atlas Launder-O-metre LP2

Kumaş: Test kumaşlarından %100 kazınmış polyester örgü

pH: 50 mM potasyum fosfat tamponu, pH 7

15

Aşındırıcılar: 5 büyük çelik top

Beher hacmi: 120 mL

Muamele: 65°C'de 2 saat, daha sonra 90°C'ye kadar yükseltilir ve 1 saat süre ile burada tutulur.

Numune kumaş parçası Hazırlanması: 3 * 1.5 g numune
20 kumaş parçası kesiniz, her bir beher için 3 = 4.5 g

Çalkalama:

Deiyonize su içinde çalkalayınız.

25

Faz 2 - Boyama - disperse boyama:

Boya Çözeltisi:

Deiyonize su ile birlikte, 1:20 - %0.4 Dianix Kırmızısı /DyStar) SE-CB (owf) oranında bir sıvı yapmak
30 üzere ilave ediniz.

pH 4.5-5 arasında

Boyama Prosedürü:

35 1. Lif modifikasyonundan her bir işlem için bir numune kumaş parçası boyama için kullanılır

- 5 (sıvı oranı hesaplanması için 1.5 g/kumaş parçası numunesi kullanılır).
2. Yukarıdaki reçeteye göre boyabanyosunu hazırlayınız. Soğuk boyabözeltilisini, Labomat beherlerine ilave ediniz ve $3.5^{\circ}\text{C}/\text{dakika}$ gradyanda, $55^{\circ}\text{C}'ye$ ısitınız. Isıya bir kez ulaşıldığında, 5 dakika süre ile çalışınız.
- 10 3. Kumaşı behere ilave ediniz.
4. Isıyı $1.5^{\circ}\text{C}/\text{dakika}$ gradyanda, $130^{\circ}\text{C}'ye$ yükseltiniz. 30 dakika süre ile boyama yapınız.
- 15 5. $5^{\circ}\text{C}/\text{dakika}$ gradyanda, $70^{\circ}\text{C}'ye$ soğutunuz. Banyoya bırakınız, ancak toplayınız ve kumaşı 10 dakika süre ile sıcak olarak (60°C) çalkalayınız. Sıcak çalkalamayı, oda sıcaklığında aşırı akış çalkalaması ile bütün akma durana kadar takip ediniz.
- 20 6. Gece boyunca, açık havada kurumaya bırakınız.

Testler/Analizler:

25 AATCC Test Yöntemi 61 - Yıkamaya karşı renk haslığı

Boya banyosu atık yüzdesi - Spektrofotometre

K/S ve L* - Reflektometre

AATCC TM-79 Damlama Testi

30

Sonuçlar:

Lif modifikasyonundan sonuçlar, aşağıdaki tabloda gösterilmektedir.

35

Varyant dozajı	Lekeleme (AATCC TM-61)	Renk Değişimi (K/S @ 530, TM-61 öncesi veya sonrası)	Damlama Testi (AATCC TM-79)
Boş	4.5	5	53 saniye
50 LU/mL	4.5	5	18 saniye
100 LU/mL	4.5	5	15 saniye

5

Sonuçlar, polyesterin varyant ile muamelesinin ıslanmayı önemli bir şekilde artttirdığını göstermektedir. Mevcut düzenlemede disperse boyası ile, boyanabilirlik üzerinde hiçbir ters etki fark edilmedi.

10

Örnek 14: İnsan teri/yağı ile kirlenen kumaşlarda, çamaşırda kütinaz varyantının kullanılması yolu ile kötü kokunun azalması

15

Kütinazın, kötü kokunun azalmasına ilişkin performansı, bir Terg-O-tometresinde gerçekleştirilen bir çevrim yıkamada test edilebilir.

Deneysel Koşullar:

20

Yıkama sıvısı: her bir beher için 1000 ml

Numune kumaş parçaları: %100 polyester (interlok örgülü, daha önce Soxhlet ekstraksiyonu ile 25 temizlenmiş). Her bir beher için 24 numune kumaş parçası (3.3 x 3.5 cm).

Kir: Kol altlarının egzersiz yapılmasıından sonra silinmesi ile tatbik edilen erkeklerin koltuk altı ter 30 ve yağı.

5 Deterjan: 5 g/L standart renkliler için deterjan.
pH ayarlaması yok.

Su sertliği: 3.2 mM Ca²⁺/Mg²⁺ (5:1 oranında)

10 Yıkama Isısı: 30°C

Yıkama Süresi: 30 dakika

Çalkalama: Musluktan akan su altında 15 dakika
15 süre ile.

Değerlendirme:

Yıkamadan sonra, ıslak numune kumaş parçaları,
20 kapalı, boyalı 200 ml'lik cam kaplar içine yerleş-
tirilir. Eğitimli algılama grubu (9-11 karar), ıslak
numuneleri koklayarak kokuyu değerlendirirler ve toplam
koku yoğunluğunu değerlendirirler. Koku yoğunluğu, her
bir uçta sözcük bağlantıları ile (skalanın başlan-
25 gıcında "hiçbir şey" ve sonunda "çok kuvvetli") 15 cm
boyunda, çizgili skala üzerine bir işaret konarak not
edilir. Bütün değerlendirmeler iki kere yapılır. Numune
kumaş parçaları yıkamadan sonraki 1, 2 ve 3. günde
değerlendirilir (numune kumaş parçaları, her zaman cam
30 kaplar içinde saklanır).

31 Mayıs 2009

D E R S
Patent ve Marka Acentüsü
Lis. Çi. No. 1000
AYŞE ÖNAL

AYŞE ÖNAL

NZAS-0236819

5

İSTEMLER

1. Varyantın

- a) i) N ucu amino asidinin lokasyonundan 17 Å içinde (kristal yapıdaki amino asit bakiyelerinden hesaplandığı üzere) ve/veya
 10 ii) N ucu amino asidinden 20 pozisyon içinde yer aldığı bir pozisyonda yer alan bir ya da daha fazla amino asit bakiyesinin ikame edilmesini, ve
 b) ısiya karşı ebeveyn kütinazdan daha fazla
 15 dayanıklı olmasını
 kapsadığı, ebeveyn fungal kütinazın bir varyantı.

2. i) N ucu amino asidinin lokasyonundan 12 Å içinde (kristal yapıdaki amino asit bakiyelerinden hesaplan-
 20 diağı üzere) ve/veya
 ii) N ucu amino asidinden 15 pozisyon içinde

yer alan bir pozisyondaki bir ya da daha fazla amino asit bakiyesinin ikame edilmesini kapsayan, önceki
 25 istemin varyantı.

3. Ebeveyn kütinazın kamçılı bir mantara özgü olduğu, tercihen *Humicola* veya *Fusarium*'un bir suşu olduğu, tercihen *H. insolens* ya da *F. solani* pisi olduğu, en 30 çok tercih edildiği üzere *H. insolens* DSM 1800 suşu olduğu, önceki istemlerden birinin varyantı.

4. Ebeveyn kütinazın, *H. insolens* DSM 1800 suşuna sıralanabildiği bir amino asit dizilimine sahip olan, 35 önceki istemlerden herhangi birinin varyantı.

**YENİDEN DÜZENLENEN
SAYFA**

AYŞE ERAL

- 5 5. Ebeveyn kütinazın, *H. insolens* DSM 1800 suşunun kütinazına en az %50 homolog olan, tercihen en az % 70 homolog olan, daha fazla tercih edildiği üzere en az % 80 homolog olan bir amino asit dizilimine sahip olduğu, önceki istemlerden herhangi birinin varyantı.
- 10 6. Çözücünün erişebilir bir yüzeye sahip olan bir ya da daha fazla amino asidin ikame edilmesini kapsayan, önceki istemlerden herhangi birinin varyantı.
- 15 7. Bir veya daha fazla ikame işleminin, negatif yüklü amino asidin nötr veya pozitif yüklü amino asit ile ikame edilmesi olduğu ya da nötr amino asidin pozitif yüklü bir amino asit ile ikame edilmesi olduğu, önceki istemlerden herhangi birinin varyantı.
- 20 8. Bir ya da daha fazla ikame işleminin *Humicola insolens* DSM 1800 suşunun kütinazındaki E6, E10, E30, E47, D63, E82 ve/veya E179 pozisyonlarına karşılık gelen bir pozisyonda, tercihen R/K/Y/H/Q/N ile ikame işleminin olduğu, daha fazla tercih edildiği üzere E6N/Q, E10N/Q, E47K/R ve/ veya E179N/Q'ya karşılık gelen bir ikame işleminin olduğu (*H. insolens* kütinaz numaralandırılması), önceki istemin varyantı.
- 25 9. Bir veya daha fazla ikame işleminin, bir Pro bakiyesi ile ikame edildiği, tercihen A14 ve/veya R51 pozisyonuna karşılık gelen bir pozisyonda ikame edildiği, önceki istemlerden herhangi birinin varyantı.
- 30 10. Sözü edilen ikame işlemlerinin bir, iki, üç, dört, beş veya altısına sahip olan, önceki istemlerden herhangi birinin varyantı.
- 35

**YENİDEN DÜZENLENEN
SAYFA**

5 11. *Humicola insolens* DSM 1800 suşunun kütinazında
aşağıdakilerden birine karşılık gelen ikame işlemlerine
sahip olan, önceki istemlerden herhangi birinin
varyantı.

- 10 a) R51P
- b) E6N/Q+ L138I
- c) A14P+E47K
- d) E47K
- e) E179N/Q
- 15 f) E6N/Q+ E47K+ R51P
- g) A14P+ E47K+ E179N/Q
- h) E47K+ E179N/Q
- i) E47K+ D63N
- j) E6N/Q+ A14P+ E47K+ R51P+ E179N/Q
- 20 k) E6N/Q+ E10N/Q+ A14P+ E47K+ R51P+ E179N/Q veya
- l) Q1P+ L2V+ S11C+ N15T+ F24Y+ L46I+ E47K

12. Tereftalik asit esterlere karşı, özellikle de
halkalı tri(etilen tereftalat) ve/veya Tereftalik asit
25 bis(2-hidroksietil)ester dibenzoata (BETEB) karşı
hidrolitik aktiviteye sahip olan, önceki herhangi bir
isteme göre varyant.

13. Tercihen pH 8.5'te ölçülen, ebeveyn kütinazdan en
30 az 5°C daha yüksek olan denatürasyon ısısına sahip
olan, önceki herhangi bir isteme göre varyant.

14. Önceki herhangi bir istemin varyantını deşifre eden
bir DNA dizilimi.

35

15. Önceki istemin DNA dizilimini kapsayan bir vektör.

**YENİDEN DÜZENLENEN
SAYFA**

5 16. İstem 14'ün DNA dizilimini ya da İstem 15'in
vektörünü barındıran, transformasyona uğramış bir konak
hücre.

10 17. a) İstem 16'nın hücresinin, varyantı eksprese
edelek ve tercihen salgılamayacak şekilde kültive
edilmesini, ve

b) varyantın geri kazanılmasını
kapsayan, istemler 1-13'ün herhangi birinin varyantını
meydana getirmek için bir yöntem.

15

18. Yöntemin,

a) ebeveyn fungal kütinazın seçilmesini,

20 b) i) N ucu amino asidinin lokasyonundan 17 Å
içinde (kristal yapıdaki amino asit bakiyelerinden
hesaplandığı üzere) ve/veya

ii) N ucu amino asidinden 20 pozisyon içinde
yer alan bir pozisyonlardaki ebeveyn kütinazdaki bir ya
da daha fazla amino asit bakiyesinin teşhis edilmesini,
ve

25 c) her biri amino asit bakiyesinin yerleştirilme,
eksiltilme veya ikame edilme olan alterasyonların
(değiştirmelerin) yapılmasını,

30 d) istege bağlı olarak, b) dışında bir ya da daha
fazla pozisyonda bir amino asit bakiyesinin yerleş-
tirilmesi, eksiltilmesi ya da ikame edilmesi olan
alterasyonların yapılmasını,

e) b-d aşamalarının sonucu olan varyantın
hazırlanmasını,

35 f) varyantın ısiya karşı dayanıklılığının test
edilmesini,

g) istege bağlı olarak b-f aşamalarının tekrar
edilmesini ve

**YENİDEN DÜZENLENEN
SAYFA**

- 5 h) ısiya karşı dayanıklılığı ebeveyn kütinazdan daha yüksek olduğu bir varyantın seçilmesini kapsadığı, bir kütinaz varyantının inşa edilmesi için bir yöntem.
- 10 19. Yöntemin,
- a) ebeveyn fungal kütinazın seçilmesini,
 - b) i) N ucu amino asidinin lokasyonundan 17 Å içinde (kristal yapıdaki amino asit bakiyelerinden hesaplandığı üzere) ve/veya
 - 15 ii) N ucu amino asidinden 20 pozisyon içinde yer alan bir pozisyonlardaki ebeveyn kütinazdaki bir ya da daha fazla amino asit bakiyesinin teşhis edilmesini, ve
 - c) her biri amino asit bakiyesinin yerleştirilme,
 - 20 eksiltılma veya ikame edilme olan alterasyonların (değiştirmelerin) yapılmasını,
 - d) isteğe bağlı olarak, b) dışında bir ya da daha fazla pozisyonda bir amino asit bakiyesinin yerleştirilmesi, eksiltilmesi ya da ikame edilmesi olan
 - 25 alterasyonların yapılmasını,
 - e) b-d aşamalarının sonucu olan varyantın hazırlanmasını,
 - f) varyantın ısiya karşı dayanıklılığının test edilmesini,
 - 30 g) isteğe bağlı olarak b-f aşamalarının tekrar edilmesini ve
 - h) ısiya karşı dayanıklılığı ebeveyn kütinazdan daha yüksek olduğu bir varyantın seçilmesini, ve
 - i) kütinaz varyantının elde edilmesi için,
 - 35 varyantın meydana getirilmesini kapsadığı, bir kütinaz varyantının meydana getirilmesi için bir yöntem.

**YENİDEN DÜZENLENEN
SAYFA**

5 20. İşlemin, halkalı oligomerin istemler 1-13'ün herhangi birinin fungal kütinaz varyantı ile muamele edilmesini kapsadığı, poli(etilen tereftalat)'ın halkalı bir oligomerinin enzimatik hidrolizi için bir işlem.

10

21. Halkalı oligomerin, halkalı tri(etilen tereftalat) olduğu, önceki istemin işlemi.

15

22. İşlemin 60-80°C'de, tercihen 65-75°C'de yapıldığı, istem 20 ya da 21'in işlemi.

23. Halkalı oligomerin, kumaş ya da iplik içeren polyester lifleri üzerinde ve içinde mevcut olduğu, istemler 20-22'nin herhangi birinin işlemi.

20

24. Ayrıca kumaş ya da ipligin takiben çalkalanmasını, tercihen yaklaşık pH 7 ila yaklaşık pH 11 aralığındaki bir pH'ya sahip olan sulu bir çözelti ile çalkalanmasını kapsayan, istemler 20-23'ün herhangi birinin işlemi.

25

25. a) istemler 1-13'ün herhangi birinin fungal kütinaz varyantı ile kumaş ya da ipligin muamele edilmesini; ve b) muamele edilen kumasın, reaktif boyaya ya da disperse boyaya ile boyanmasını kapsayan, polyester kumaş ya da ipligin boyanması için bir işlem.

30

26. Yüzey aktif bir madde ve istemler 1-13'ün herhangi birinin varyantını kapsayan bir deterjan bileşimi.

35

**YENİDEN DÜZENLENEN
SAYFA**

27. a) iplik ya da kumaşın, istemler 1-13'ün herhangi birinin varyantı ile muamele edilmesini, ve
 b) takiben yumuşatıcılar, karışmaya karşı reçineler, antistatik ajanlar, kirlenmeye karşı ajanlardan meydana gelen gruptan seçilen bir finisaj ajanı
 10 ile muamele edilmesini kapsayan, PET içeren iplik ya da kumaşın fonksiyonel finisajının iyileştirilmesi için bir işlem.

- 5 Şubat 2002

15

D.E.R.I.S
 Patent ve Marka Ajansı
 Ltd. Şti. İst. No: 07
 AYŞE GÜNAL

20

25

30

35

YENİDEN DÜZENLENEN
 SAYFA

ŞEKİL 1

(A)

ATOM	1	N	GLY A	3	24.424	-7.935	18.390	1.00	46.73
ATOM	2	CA	GLY A	3	23.848	-8.994	17.546	1.00	42.29
ATOM	3	C	GLY A	3	24.396	-10.112	16.727	1.00	37.35
ATOM	4	O	GLY A	3	25.347	-10.913	16.728	1.00	35.38
ATOM	5	N	ALA A	4	23.664	-10.625	15.797	1.00	34.53
ATOM	6	CA	ALA A	4	23.051	-10.874	14.555	1.00	30.95
ATOM	7	C	ALA A	4	21.574	-11.246	14.920	1.00	28.33
ATOM	8	O	ALA A	4	20.677	-10.499	14.446	1.00	22.94
ATOM	9	CB	ALA A	4	23.574	-11.780	13.556	1.00	26.92
ATOM	10	N	ILE A	5	21.583	-12.058	16.043	1.00	26.48
ATOM	11	CA	ILE A	5	20.281	-12.289	16.637	1.00	25.65
ATOM	12	C	ILE A	5	20.316	-12.151	18.118	1.00	22.40
ATOM	13	O	ILE A	5	21.060	-12.888	18.717	1.00	24.74
ATOM	14	CB	ILE A	5	19.724	-13.683	16.524	1.00	26.04
ATOM	15	CG1	ILE A	5	19.852	-13.927	15.050	1.00	29.85
ATOM	16	CG2	ILE A	5	18.374	-13.558	17.159	1.00	20.48
ATOM	17	CD1	ILE A	5	19.066	-15.133	14.709	1.00	27.96
ATOM	18	N	GLU A	6	19.461	-11.377	18.668	1.00	20.52
ATOM	19	CA	GLU A	6	19.207	-11.015	20.040	1.00	17.94
ATOM	20	C	GLU A	6	17.711	-11.027	20.432	1.00	17.76
ATOM	21	O	GLU A	6	16.931	-10.165	19.990	1.00	17.60
ATOM	22	CB	GLU A	6	19.809	-9.614	20.199	1.00	14.22
ATOM	23	CG	GLU A	6	21.232	-9.374	20.385	1.00	16.71
ATOM	24	CD	GLU A	6	22.148	-10.387	21.030	1.00	34.47
ATOM	25	OE1	GLU A	6	21.634	-11.347	21.693	1.00	49.57
ATOM	26	OE2	GLU A	6	23.410	-10.310	20.975	1.00	37.43
ATOM	27	N	ASN A	7	17.375	-11.895	21.333	1.00	21.67
ATOM	28	CA	ASN A	7	16.070	-11.854	21.846	1.00	24.04
ATOM	29	C	ASN A	7	15.927	-11.488	23.238	1.00	22.08
ATOM	30	O	ASN A	7	15.098	-12.179	23.820	1.00	24.00
ATOM	31	CB	ASN A	7	15.468	-13.307	21.820	1.00	25.06
ATOM	32	CG	ASN A	7	15.039	-13.160	20.341	1.00	38.52
ATOM	33	OD1	ASN A	7	15.519	-14.147	19.759	1.00	48.45
ATOM	34	ND2	ASN A	7	14.318	-12.081	19.968	1.00	36.89
ATOM	35	N	GLY A	8	16.671	-10.813	23.926	1.00	23.56
ATOM	36	CA	GLY A	8	16.654	-10.628	25.363	1.00	23.69
ATOM	37	C	GLY A	8	15.366	-10.247	25.984	1.00	22.72
ATOM	38	O	GLY A	8	14.967	-10.939	26.867	1.00	32.25
ATOM	39	N	LEU A	9	14.785	-9.144	25.755	1.00	23.61
ATOM	40	CA	LEU A	9	13.470	-8.753	26.033	1.00	23.73
ATOM	41	C	LEU A	9	12.559	-9.961	25.782	1.00	25.93
ATOM	42	O	LEU A	9	11.494	-10.054	26.480	1.00	30.47
ATOM	43	CB	LEU A	9	12.971	-7.621	25.105	1.00	5.84
ATOM	44	CG	LEU A	9	11.556	-7.227	25.470	1.00	23.25
ATOM	45	CD1	LEU A	9	11.422	-6.765	26.968	1.00	20.21
ATOM	46	CD2	LEU A	9	11.009	-6.071	24.714	1.00	17.64
ATOM	47	N	GLU A	10	12.775	-10.786	24.773	1.00	29.56

31 Mayıs 2001

D E R I S
Patent ve Marka Ajansı Başkanlığı
Lütfi ŞILMAZ
AYŞE DURAK

ATOM	48	CA	GLU	A	10	11.635	-11.681	24.484	1.00	33.93
ATOM	49	C	GLU	A	10	11.640	-12.872	25.412	1.00	32.18
ATOM	50	O	GLU	A	10	10.600	-13.159	25.996	1.00	36.67
ATOM	51	CB	GLU	A	10	11.513	-11.996	23.012	1.00	40.97
ATOM	52	CG	GLU	A	10	10.054	-12.303	22.745	1.00	51.96
ATOM	53	CD	GLU	A	10	9.570	-11.711	21.437	1.00	54.08
ATOM	54	OE1	GLU	A	10	10.488	-11.440	20.635	1.00	48.22
ATOM	55	OE2	GLU	A	10	8.323	-11.643	21.471	1.00	52.39
ATOM	56	N	SER	A	11	12.822	-13.334	25.688	1.00	29.58
ATOM	57	CA	SER	A	11	12.993	-14.455	26.645	1.00	35.25
ATOM	58	C	SER	A	11	13.403	-14.012	28.047	1.00	39.86
ATOM	59	O	SER	A	11	13.688	-14.790	28.919	1.00	43.72
ATOM	60	CB	SER	A	11	14.053	-15.364	25.983	1.00	33.73
ATOM	61	OG	SER	A	11	15.275	-14.620	25.928	1.00	46.98
ATOM	62	N	GLY	A	12	13.467	-12.802	28.456	1.00	41.40
ATOM	63	CA	GLY	A	12	13.841	-12.332	29.752	1.00	45.34
ATOM	64	C	GLY	A	12	12.673	-12.562	30.694	1.00	47.62
ATOM	65	O	GLY	A	12	11.485	-12.335	30.335	1.00	50.76
ATOM	66	N	SER	A	13	12.969	-12.900	31.936	1.00	48.09
ATOM	67	CA	SER	A	13	11.974	-13.158	32.995	1.00	45.26
ATOM	68	C	SER	A	13	11.509	-11.933	33.772	1.00	39.53
ATOM	69	O	SER	A	13	12.563	-11.204	33.992	1.00	36.30
ATOM	70	CB	SER	A	13	12.708	-14.006	34.101	1.00	51.20
ATOM	71	OG	SER	A	13	12.006	-13.947	35.338	1.00	57.14
ATOM	72	N	ALA	A	14	10.256	-11.785	34.214	1.00	35.22
ATOM	73	CA	ALA	A	14	10.068	-10.530	34.964	1.00	34.78
ATOM	74	C	ALA	A	14	10.574	-10.620	36.417	1.00	37.51
ATOM	75	O	ALA	A	14	10.809	-9.584	37.113	1.00	38.41
ATOM	76	CB	ALA	A	14	8.714	-9.915	34.903	1.00	32.71
ATOM	77	N	ASN	A	15	11.039	-11.834	36.737	1.00	38.85
ATOM	78	CA	ASN	A	15	11.715	-12.086	37.963	1.00	43.49
ATOM	79	C	ASN	A	15	13.073	-11.411	37.953	1.00	46.45
ATOM	80	O	ASN	A	15	13.453	-11.022	39.022	1.00	52.50
ATOM	81	CB	ASN	A	15	12.088	-13.533	38.207	1.00	53.08
ATOM	82	CG	ASN	A	15	10.772	-14.226	38.553	1.00	71.86
ATOM	83	OD1	ASN	A	15	9.837	-13.535	38.998	1.00	71.73
ATOM	84	ND2	ASN	A	15	10.866	-15.523	38.267	1.00	77.71
ATOM	85	N	ALA	A	16	13.712	-11.305	36.812	1.00	46.73
ATOM	86	CA	ALA	A	16	14.915	-10.470	36.743	1.00	41.22
ATOM	87	C	ALA	A	16	15.031	-9.286	35.798	1.00	36.70
ATOM	88	O	ALA	A	16	16.027	-9.254	35.075	1.00	37.67
ATOM	89	CB	ALA	A	16	15.903	-11.545	36.301	1.00	41.80
ATOM	90	N	CYS	A	17	14.300	-8.227	35.843	1.00	30.62
ATOM	91	CA	CYS	A	17	14.614	-7.093	34.997	1.00	31.78
ATOM	92	C	CYS	A	17	16.024	-6.579	35.149	1.00	32.94
ATOM	93	O	CYS	A	17	16.744	-6.850	36.113	1.00	39.10
ATOM	94	CB	CYS	A	17	13.679	-5.881	35.138	1.00	28.00
ATOM	95	SG	CYS	A	17	12.048	-6.583	34.858	1.00	24.72

31 May 2001

D E R S
 Patent vs Marks Aghamali
 Ltd. Sri Lanka
 AYSE BHAL

FOUND TO TRADE
 LTD. SRI LANKA
 AYSE BHAL

ATOM	96	N	PRO A	18	16.529	-5.910	34.092	1.00	30.49
ATOM	97	CA	PRO A	18	17.994	-5.626	33.971	1.00	22.04
ATOM	98	C	PRO A	18	18.178	-4.138	34.241	1.00	20.15
ATOM	99	O	PRO A	18	17.085	-3.459	34.370	1.00	17.83
ATOM	100	CB	PRO A	18	18.353	-6.003	32.559	1.00	19.20
ATOM	101	CG	PRO A	18	17.044	-6.595	32.101	1.00	20.16
ATOM	102	CD	PRO A	18	15.903	-5.936	32.792	1.00	24.35
ATOM	103	N	ASP A	19	19.428	-3.652	34.011	1.00	14.85
ATOM	104	CA	ASP A	19	19.451	-2.168	34.226	1.00	16.59
ATOM	105	C	ASP A	19	18.739	-1.367	33.156	1.00	20.42
ATOM	106	O	ASP A	19	18.311	-0.242	33.430	1.00	23.84
ATOM	107	CB	ASP A	19	20.896	-1.818	34.485	1.00	27.25
ATOM	108	CG	ASP A	19	21.433	-2.389	35.793	1.00	42.30
ATOM	109	OD1	ASP A	19	21.162	-3.549	36.297	1.00	53.52
ATOM	110	OD2	ASP A	19	22.251	-1.719	36.543	1.00	54.02
ATOM	111	N	ALA A	20	18.646	-1.780	31.895	1.00	20.18
ATOM	112	CA	ALA A	20	18.066	-1.036	30.809	1.00	17.43
ATOM	113	C	ALA A	20	17.713	-2.087	29.703	1.00	16.06
ATOM	114	O	ALA A	20	18.334	-3.172	29.860	1.00	9.45
ATOM	115	CB	ALA A	20	18.975	-0.048	30.100	1.00	12.07
ATOM	116	N	ILE A	21	16.814	-1.602	28.829	1.00	8.47
ATOM	117	CA	ILE A	21	16.657	-2.583	27.753	1.00	9.23
ATOM	118	C	ILE A	21	16.952	-1.745	26.486	1.00	14.77
ATOM	119	O	ILE A	21	16.681	-0.473	26.403	1.00	12.01
ATOM	120	CB	ILE A	21	15.208	-2.984	27.837	1.00	16.28
ATOM	121	CG1	ILE A	21	14.851	-3.898	28.956	1.00	15.55
ATOM	122	CG2	ILE A	21	14.689	-3.671	26.514	1.00	13.71
ATOM	123	CD1	ILE A	21	13.401	-3.879	29.372	1.00	6.12
ATOM	124	N	LEU A	22	17.432	-2.451	25.391	1.00	12.24
ATOM	125	CA	LEU A	22	17.665	-1.774	24.087	1.00	11.27
ATOM	126	C	LEU A	22	16.849	-2.517	23.038	1.00	14.60
ATOM	127	O	LEU A	22	16.908	-3.781	22.850	1.00	9.78
ATOM	128	CB	LEU A	22	19.087	-1.865	23.693	1.00	10.96
ATOM	129	CG	LEU A	22	19.493	-1.543	22.257	1.00	10.32
ATOM	130	CD1	LEU A	22	19.311	-0.081	21.900	1.00	4.72
ATOM	131	CD2	LEU A	22	20.990	-1.842	22.156	1.00	7.42
ATOM	132	N	ILE A	23	16.038	-1.815	22.242	1.00	15.13
ATOM	133	CA	ILE A	23	15.298	-2.459	21.115	1.00	18.06
ATOM	134	C	ILE A	23	15.916	-1.771	19.901	1.00	17.42
ATOM	135	O	ILE A	23	16.117	-0.519	19.795	1.00	19.31
ATOM	136	CB	ILE A	23	13.820	-2.194	21.392	1.00	18.16
ATOM	137	CG1	ILE A	23	13.208	-3.076	22.447	1.00	14.23
ATOM	138	CG2	ILE A	23	12.787	-2.167	20.247	1.00	13.19
ATOM	139	CD1	ILE A	23	12.142	-2.065	22.976	1.00	20.41
ATOM	140	N	PHE A	24	16.218	-2.548	18.940	1.00	14.59
ATOM	141	CA	PHE A	24	16.859	-2.159	17.671	1.00	11.72
ATOM	142	C	PHE A	24	16.347	-2.719	16.353	1.00	7.25
ATOM	143	O	PHE A	24	16.095	-3.998	16.161	1.00	3.47

3.1 Mayıs 2001

D E R I S
 Patent ve Marka Ajansı Başkanlığı
 Lider Stil
 APSE-DNAL

ATOM	144	CB	PHE	A	24	18.195	-2.855	17.658	1.00	12.61
ATOM	145	CG	PHE	A	24	19.015	-2.150	16.716	1.00	10.72
ATOM	146	CD1	PHE	A	24	19.457	-0.844	16.913	1.00	13.08
ATOM	147	CD2	PHE	A	24	19.325	-2.852	15.558	1.00	6.61
ATOM	148	CE1	PHE	A	24	20.232	-0.187	15.983	1.00	4.86
ATOM	149	CE2	PHE	A	24	20.061	-2.218	14.545	1.00	7.61
ATOM	150	CZ	PHE	A	24	20.550	-0.823	14.804	1.00	8.78
ATOM	151	N	ALA	A	25	16.037	-1.700	15.449	1.00	6.32
ATOM	152	CA	ALA	A	25	15.662	-2.158	14.068	1.00	7.18
ATOM	153	C	ALA	A	25	16.851	-1.976	13.055	1.00	8.59
ATOM	154	O	ALA	A	25	17.518	-1.000	13.133	1.00	5.95
ATOM	155	CB	ALA	A	25	14.488	-1.402	13.562	1.00	8.27
ATOM	156	N	ARG	A	26	17.174	-3.032	12.325	1.00	8.84
ATOM	157	CA	ARG	A	26	18.134	-3.278	11.277	1.00	4.04
ATOM	158	C	ARG	A	26	17.691	-2.694	9.894	1.00	7.67
ATOM	159	O	ARG	A	26	16.527	-2.361	9.525	1.00	9.36
ATOM	160	CB	ARG	A	26	18.581	-4.659	10.756	1.00	6.06
ATOM	161	CG	ARG	A	26	17.705	-5.741	10.439	1.00	5.08
ATOM	162	CD	ARG	A	26	18.069	-7.224	10.382	1.00	6.73
ATOM	163	NE	ARG	A	26	17.000	-8.053	9.708	1.00	9.04
ATOM	164	CZ	ARG	A	26	15.724	-8.206	9.912	1.00	7.06
ATOM	165	NH1	ARG	A	26	15.085	-7.535	10.895	1.00	22.93
ATOM	166	NH2	ARG	A	26	14.809	-8.825	9.346	1.00	7.89
ATOM	167	N	GLY	A	27	18.761	-2.539	9.092	1.00	7.71
ATOM	168	CA	GLY	A	27	18.537	-1.888	7.782	1.00	5.34
ATOM	169	C	GLY	A	27	18.063	-2.896	6.862	1.00	4.70
ATOM	170	O	GLY	A	27	18.155	-4.139	7.075	1.00	13.14
ATOM	171	N	SER	A	28	17.562	-2.612	5.765	1.00	11.82
ATOM	172	CA	SER	A	28	17.108	-3.325	4.615	1.00	14.72
ATOM	173	C	SER	A	28	18.214	-4.327	4.142	1.00	7.74
ATOM	174	O	SER	A	28	19.286	-3.973	4.083	1.00	6.71
ATOM	175	CB	SER	A	28	16.460	-2.352	3.538	1.00	6.38
ATOM	176	OG	SER	A	28	16.819	-0.978	3.833	1.00	28.10
ATOM	177	N	THR	A	29	17.942	-5.634	4.241	1.00	4.79
ATOM	178	CA	THR	A	29	18.562	-6.763	3.914	1.00	8.71
ATOM	179	C	THR	A	29	19.500	-7.271	4.985	1.00	14.00
ATOM	180	O	THR	A	29	20.162	-8.326	4.713	1.00	17.68
ATOM	181	CB	THR	A	29	19.454	-6.680	2.617	1.00	14.90
ATOM	182	OG1	THR	A	29	20.736	-6.066	2.595	1.00	14.00
ATOM	183	CG2	THR	A	29	18.785	-5.888	1.561	1.00	15.59
ATOM	184	N	GLU	A	30	19.740	-6.599	6.105	1.00	14.52
ATOM	185	CA	GLU	A	30	20.677	-7.266	7.056	1.00	14.10
ATOM	186	C	GLU	A	30	20.092	-8.513	7.647	1.00	13.07
ATOM	187	O	GLU	A	30	18.916	-8.726	7.705	1.00	19.98
ATOM	188	CB	GLU	A	30	21.228	-6.371	8.072	1.00	15.45
ATOM	189	CG	GLU	A	30	21.166	-4.945	7.709	1.00	8.37
ATOM	190	CD	GLU	A	30	22.073	-4.143	8.637	1.00	23.08
ATOM	191	OE1	GLU	A	30	21.395	-3.328	9.284	1.00	19.26

31 Mayıs 2001

DERİS
 Patent ve Marka Ajansı
 Ltd. Şti.
 AYŞE ÜNAL

5/34

ATOM	192	OE2	GLU A	30	23.317	-4.327	8.712	1.00	19.71
ATOM	193	N	PRO A	31	20.875	-9.479	7.918	1.00	13.09
ATOM	194	CA	PRO A	31	20.477	-10.818	8.402	1.00	14.56
ATOM	195	C	PRO A	31	20.167	-10.698	9.895	1.00	18.27
ATOM	196	O	PRO A	31	20.148	-9.636	10.392	1.00	20.45
ATOM	197	CB	PRO A	31	21.690	-11.692	8.215	1.00	10.95
ATOM	198	CG	PRO A	31	22.790	-10.664	8.455	1.00	11.24
ATOM	199	CD	PRO A	31	22.350	-9.316	7.864	1.00	13.71
ATOM	200	N	GLY A	32	19.612	-11.689	10.472	1.00	18.99
ATOM	201	CA	GLY A	32	19.205	-11.774	11.816	1.00	13.53
ATOM	202	C	GLY A	32	18.133	-10.808	12.188	1.00	16.62
ATOM	203	O	GLY A	32	17.345	-10.294	11.411	1.00	17.01
ATOM	204	N	ASN A	33	18.055	-10.528	13.468	1.00	16.15
ATOM	205	CA	ASN A	33	17.290	-9.346	13.823	1.00	14.74
ATOM	206	C	ASN A	33	18.294	-8.273	14.230	1.00	15.46
ATOM	207	O	ASN A	33	17.774	-7.184	14.575	1.00	15.90
ATOM	208	CB	ASN A	33	16.241	-9.663	14.867	1.00	17.42
ATOM	209	CG	ASN A	33	16.827	-10.201	16.127	1.00	17.97
ATOM	210	OD1	ASN A	33	16.112	-10.395	17.089	1.00	19.05
ATOM	211	ND2	ASN A	33	18.074	-10.460	16.112	1.00	13.29
ATOM	212	N	MET A	34	19.633	-8.378	14.282	1.00	14.22
ATOM	213	CA	MET A	34	20.282	-7.171	14.751	1.00	12.97
ATOM	214	C	MET A	34	21.142	-6.663	13.611	1.00	19.02
ATOM	215	O	MET A	34	21.654	-5.512	13.713	1.00	26.04
ATOM	216	CB	MET A	34	21.202	-7.329	15.859	1.00	13.39
ATOM	217	CG	MET A	34	20.579	-7.713	17.163	1.00	9.02
ATOM	218	SD	MET A	34	20.175	-6.316	18.069	1.00	9.13
ATOM	219	CE	MET A	34	21.481	-5.121	18.095	1.00	4.11
ATOM	220	N	GLY A	35	21.259	-7.446	12.550	1.00	19.99
ATOM	221	CA	GLY A	35	22.071	-7.135	11.418	1.00	14.30
ATOM	222	C	GLY A	35	23.511	-7.340	11.764	1.00	17.58
ATOM	223	O	GLY A	35	23.965	-7.724	12.842	1.00	12.78
ATOM	224	N	ILE A	36	24.450	-6.839	10.950	1.00	20.63
ATOM	225	CA	ILE A	36	25.833	-7.029	11.277	1.00	17.71
ATOM	226	C	ILE A	36	26.609	-5.714	11.280	1.00	16.15
ATOM	227	O	ILE A	36	27.865	-5.618	11.662	1.00	20.30
ATOM	228	CB	ILE A	36	26.412	-8.070	10.327	1.00	30.19
ATOM	229	CG1	ILE A	36	26.088	-7.448	8.959	1.00	31.16
ATOM	230	CG2	ILE A	36	25.944	-9.490	10.543	1.00	15.68
ATOM	231	CD1	ILE A	36	26.922	-8.149	7.958	1.00	34.10
ATOM	232	N	THR A	37	25.905	-4.589	11.040	1.00	13.00
ATOM	233	CA	THR A	37	26.825	-3.396	11.141	1.00	9.67
ATOM	234	C	THR A	37	26.587	-2.513	12.350	1.00	15.44
ATOM	235	O	THR A	37	27.040	-3.055	13.410	1.00	20.20
ATOM	236	CB	THR A	37	26.592	-2.679	9.818	1.00	14.13
ATOM	237	OG1	THR A	37	25.241	-2.212	9.503	1.00	22.62
ATOM	238	CG2	THR A	37	26.949	-3.739	8.800	1.00	2.29
ATOM	239	N	VAL A	38	25.733	-1.493	12.249	1.00	11.92

31 Mayıs 2001

DERİS
Patent ve Marka Ajansı
Ltd. Sti.
AYŞE OZAL

NZAS-0236831

6/34

ATOM	240	CA	VAL A	38	25.237	-0.800	13.411	1.00	15.22
ATOM	241	C	VAL A	38	24.588	-1.455	14.612	1.00	14.68
ATOM	242	O	VAL A	38	24.906	-1.185	15.733	1.00	15.89
ATOM	243	CB	VAL A	38	24.124	0.180	12.855	1.00	14.13
ATOM	244	CG1	VAL A	38	23.663	0.897	14.167	1.00	13.55
ATOM	245	CG2	VAL A	38	24.570	1.025	11.670	1.00	6.75
ATOM	246	N	GLY A	39	23.745	-2.410	14.677	1.00	14.24
ATOM	247	CA	GLY A	39	23.135	-3.151	15.746	1.00	11.03
ATOM	248	C	GLY A	39	24.096	-3.586	16.791	1.00	13.34
ATOM	249	O	GLY A	39	24.131	-3.181	17.934	1.00	15.13
ATOM	250	N	PRO A	40	25.067	-4.340	16.352	1.00	14.70
ATOM	251	CA	PRO A	40	26.094	-5.025	17.171	1.00	13.44
ATOM	252	C	PRO A	40	27.010	-3.909	17.589	1.00	11.81
ATOM	253	O	PRO A	40	27.346	-3.871	18.764	1.00	12.79
ATOM	254	CB	PRO A	40	26.723	-6.111	16.279	1.00	8.43
ATOM	255	CG	PRO A	40	25.873	-6.243	14.950	1.00	4.84
ATOM	256	CD	PRO A	40	25.198	-4.902	14.995	1.00	12.36
ATOM	257	N	ALA A	41	27.226	-2.979	16.695	1.00	7.41
ATOM	258	CA	ALA A	41	28.066	-1.962	17.278	1.00	11.03
ATOM	259	C	ALA A	41	27.378	-1.206	18.439	1.00	14.87
ATOM	260	O	ALA A	41	28.028	-0.503	19.274	1.00	14.26
ATOM	261	CB	ALA A	41	28.579	-0.905	16.313	1.00	7.17
ATOM	262	N	LEU A	42	26.135	-0.811	18.237	1.00	11.87
ATOM	263	CA	LEU A	42	25.487	-0.048	19.300	1.00	12.36
ATOM	264	C	LEU A	42	25.337	-0.856	20.624	1.00	11.94
ATOM	265	O	LEU A	42	25.423	-0.397	21.730	1.00	8.33
ATOM	266	CB	LEU A	42	24.036	0.168	18.811	1.00	13.24
ATOM	267	CG	LEU A	42	23.272	1.160	19.676	1.00	6.90
ATOM	268	CD1	LEU A	42	24.108	2.419	19.962	1.00	6.62
ATOM	269	CD2	LEU A	42	21.991	1.580	18.943	1.00	7.11
ATOM	270	N	ALA A	43	24.905	-2.095	20.482	1.00	10.88
ATOM	271	CA	ALA A	43	24.761	-3.027	21.553	1.00	12.37
ATOM	272	C	ALA A	43	26.106	-3.136	22.252	1.00	15.45
ATOM	273	O	ALA A	43	25.958	-2.743	23.433	1.00	20.80
ATOM	274	CB	ALA A	43	24.148	-4.324	21.002	1.00	9.60
ATOM	275	N	ASN A	44	27.263	-3.440	21.636	1.00	16.91
ATOM	276	CA	ASN A	44	28.454	-3.434	22.439	1.00	20.33
ATOM	277	C	ASN A	44	28.717	-2.044	23.113	1.00	17.66
ATOM	278	O	ASN A	44	29.019	-1.991	24.301	1.00	17.06
ATOM	279	CB	ASN A	44	29.756	-3.695	21.625	1.00	35.48
ATOM	280	CG	ASN A	44	29.564	-5.115	21.138	1.00	58.23
ATOM	281	OD1	ASN A	44	30.013	-5.403	20.034	1.00	79.77
ATOM	282	ND2	ASN A	44	28.908	-5.945	21.921	1.00	70.10
ATOM	283	N	GLY A	45	28.682	-0.988	22.297	1.00	14.39
ATOM	284	CA	GLY A	45	29.015	0.221	22.976	1.00	11.65
ATOM	285	C	GLY A	45	28.175	0.255	24.234	1.00	14.30
ATOM	286	O	GLY A	45	28.529	0.582	25.385	1.00	10.77
ATOM	287	N	LEU A	46	26.861	0.099	24.065	1.00	16.88

31 Mayıs 2001

DERİS
Patent ve Marka Ajansı
Ltd. Şti. Döküntü
AYŞE ÜNAL

NZAS-0236832

ATOM	288	CA	LEU	A	46	25.968	0.248	25.207	1.00	16.29
ATOM	289	C	LEU	A	46	26.395	-0.651	26.346	1.00	13.48
ATOM	290	O	LEU	A	46	26.579	-0.325	27.462	1.00	7.75
ATOM	291	CB	LEU	A	46	24.608	-0.243	24.847	1.00	19.46
ATOM	292	CG	LEU	A	46	23.642	0.551	25.664	1.00	13.97
ATOM	293	CD1	LEU	A	46	24.089	1.994	25.563	1.00	13.99
ATOM	294	CD2	LEU	A	46	22.275	0.465	25.038	1.00	32.18
ATOM	295	N	GLU	A	47	26.523	-1.890	25.882	1.00	15.90
ATOM	296	CA	GLU	A	47	26.910	-2.886	26.909	1.00	24.03
ATOM	297	C	GLU	A	47	28.140	-2.500	27.702	1.00	24.14
ATOM	298	O	GLU	A	47	28.722	-3.203	28.500	1.00	27.24
ATOM	299	CB	GLU	A	47	27.147	-4.206	26.204	1.00	33.33
ATOM	300	CG	GLU	A	47	27.386	-5.254	27.245	1.00	51.29
ATOM	301	CD	GLU	A	47	27.661	-6.560	26.524	1.00	68.40
ATOM	302	OE1	GLU	A	47	26.741	-7.007	25.777	1.00	66.37
ATOM	303	OE2	GLU	A	47	28.856	-6.921	26.830	1.00	78.70
ATOM	304	N	SER	A	48	28.992	-1.626	27.215	1.00	27.50
ATOM	305	CA	SER	A	48	30.331	-1.518	27.789	1.00	25.23
ATOM	306	C	SER	A	48	30.108	-0.555	28.926	1.00	26.91
ATOM	307	O	SER	A	48	31.124	-0.058	29.462	1.00	33.39
ATOM	308	CB	SER	A	48	31.116	-0.990	26.621	1.00	21.90
ATOM	309	OG	SER	A	48	31.294	0.422	26.483	1.00	27.87
ATOM	310	N	HIS	A	49	28.826	-0.101	28.995	1.00	25.04
ATOM	311	CA	HIS	A	49	28.542	0.955	29.956	1.00	19.72
ATOM	312	C	HIS	A	49	27.480	0.461	30.950	1.00	22.55
ATOM	313	O	HIS	A	49	27.186	1.089	31.898	1.00	27.93
ATOM	314	CB	HIS	A	49	28.094	2.197	29.463	1.00	16.13
ATOM	315	CG	HIS	A	49	28.806	3.036	28.520	1.00	39.79
ATOM	316	ND1	HIS	A	49	29.564	4.058	28.953	1.00	45.66
ATOM	317	CD2	HIS	A	49	28.776	3.070	27.197	1.00	46.91
ATOM	318	CE1	HIS	A	49	30.028	4.750	27.979	1.00	45.87
ATOM	319	NE2	HIS	A	49	29.544	4.139	26.934	1.00	50.84
ATOM	320	N	ILE	A	50	27.009	-0.703	30.715	1.00	18.34
ATOM	321	CA	ILE	A	50	25.874	-1.129	31.415	1.00	19.89
ATOM	322	C	ILE	A	50	25.917	-2.629	31.146	1.00	26.29
ATOM	323	O	ILE	A	50	25.322	-3.023	30.168	1.00	25.33
ATOM	324	CB	ILE	A	50	24.527	-0.535	31.008	1.00	10.50
ATOM	325	CG1	ILE	A	50	24.340	0.906	31.292	1.00	4.97
ATOM	326	CG2	ILE	A	50	23.466	-1.298	31.697	1.00	12.96
ATOM	327	CD1	ILE	A	50	23.413	1.845	30.602	1.00	16.65
ATOM	328	N	ARG	A	51	26.707	-3.256	32.066	1.00	31.77
ATOM	329	CA	ARG	A	51	26.887	-4.714	32.107	1.00	29.06
ATOM	330	C	ARG	A	51	25.457	-5.331	32.170	1.00	32.68
ATOM	331	O	ARG	A	51	25.396	-6.363	31.512	1.00	37.16
ATOM	332	N	ASN	A	52	24.380	-4.817	32.788	1.00	28.48
ATOM	333	CA	ASN	A	52	23.284	-5.767	32.832	1.00	26.39
ATOM	334	C	ASN	A	52	22.176	-5.178	31.993	1.00	27.75
ATOM	335	O	ASN	A	52	21.333	-4.488	32.636	1.00	26.68

31 Mayıs 2001

DERİS
 Patent ve Marka Ajansı
 İd. St. A. v.
 ASİKLİ

NZAS-0236833

ATOM	336	CB	ASN A	52	22.750	-5.884	34.232	1.00	34.86
ATOM	337	CG	ASN A	52	21.637	-6.879	34.271	1.00	39.54
ATOM	338	OD1	ASN A	52	20.781	-6.541	35.095	1.00	54.31
ATOM	339	ND2	ASN A	52	21.611	-7.954	33.503	1.00	48.82
ATOM	340	N	ILE A	53	22.127	-5.699	30.800	1.00	24.42
ATOM	341	CA	ILE A	53	21.261	-5.092	29.772	1.00	20.15
ATOM	342	C	ILE A	53	20.585	-6.151	28.912	1.00	17.63
ATOM	343	O	ILE A	53	21.020	-7.349	28.917	1.00	18.01
ATOM	344	CB	ILE A	53	22.245	-4.297	28.880	1.00	14.09
ATOM	345	CG1	ILE A	53	21.682	-3.257	27.936	1.00	22.91
ATOM	346	CG2	ILE A	53	22.907	-5.321	27.946	1.00	16.37
ATOM	347	CD1	ILE A	53	22.877	-2.315	27.622	1.00	38.17
ATOM	348	N	TRP A	54	19.447	-5.880	28.383	1.00	15.19
ATOM	349	CA	TRP A	54	18.804	-6.889	27.567	1.00	17.96
ATOM	350	C	TRP A	54	18.803	-6.230	26.151	1.00	19.82
ATOM	351	O	TRP A	54	18.340	-5.059	25.985	1.00	18.37
ATOM	352	CB	TRP A	54	17.364	-7.046	27.998	1.00	23.18
ATOM	353	CG	TRP A	54	16.949	-7.932	29.100	1.00	24.57
ATOM	354	CD1	TRP A	54	17.757	-8.727	29.895	1.00	24.46
ATOM	355	CD2	TRP A	54	15.595	-8.164	29.603	1.00	30.21
ATOM	356	NE1	TRP A	54	17.004	-9.372	30.858	1.00	25.87
ATOM	357	CE2	TRP A	54	15.692	-9.039	30.700	1.00	24.92
ATOM	358	CE3	TRP A	54	14.358	-7.633	29.243	1.00	36.26
ATOM	359	C22	TRP A	54	14.611	-9.442	31.432	1.00	19.75
ATOM	360	C23	TRP A	54	13.316	-8.042	30.009	1.00	32.94
ATOM	361	CH2	TRP A	54	13.451	-8.916	31.068	1.00	23.02
ATOM	362	N	ILE A	55	19.063	-7.152	25.204	1.00	15.21
ATOM	363	CA	ILE A	55	19.178	-6.655	23.838	1.00	12.41
ATOM	364	C	ILE A	55	18.091	-7.215	22.962	1.00	11.40
ATOM	365	O	ILE A	55	17.955	-8.378	22.680	1.00	7.34
ATOM	366	CB	ILE A	55	20.546	-6.962	23.201	1.00	16.44
ATOM	367	CG1	ILE A	55	21.939	-6.409	23.702	1.00	8.75
ATOM	368	CG2	ILE A	55	20.384	-6.460	21.750	1.00	21.77
ATOM	369	CD1	ILE A	55	21.767	-5.582	24.863	1.00	16.23
ATOM	370	N	GLN A	56	17.226	-6.412	22.390	1.00	9.67
ATOM	371	CA	GLN A	56	16.161	-7.016	21.619	1.00	10.90
ATOM	372	C	GLN A	56	16.432	-6.621	20.143	1.00	13.08
ATOM	373	O	GLN A	56	16.402	-5.393	19.953	1.00	10.32
ATOM	374	CB	GLN A	56	14.786	-6.542	22.014	1.00	11.49
ATOM	375	CG	GLN A	56	13.653	-7.256	21.316	1.00	23.47
ATOM	376	CD	GLN A	56	13.789	-8.741	21.351	1.00	24.88
ATOM	377	OE1	GLN A	56	13.610	-9.379	20.324	1.00	9.56
ATOM	378	NE2	GLN A	56	14.119	-9.221	22.544	1.00	17.94
ATOM	379	N	GLY A	57	16.288	-7.645	19.216	1.00	6.84
ATOM	380	CA	GLY A	57	16.174	-7.019	17.841	1.00	16.15
ATOM	381	C	GLY A	57	14.740	-7.085	17.267	1.00	13.72
ATOM	382	O	GLY A	57	14.124	-8.016	17.752	1.00	12.70
ATOM	383	N	VAL A	58	14.068	-6.264	16.525	1.00	12.73

31 Mayıs 2001

 D.E.R.I.S.
 Patent ve Marka Ajansı
 Lis. St. No. 100
 ATTB. TIRALI

NZAS-0236834

9/34

ATOM	384	CA	VAL A	58	12.739	-6.308	16.070	1.00	11.16
ATOM	385	C	VAL A	58	12.715	-7.246	14.893	1.00	14.85
ATOM	386	O	VAL A	58	13.234	-6.891	13.849	1.00	18.64
ATOM	387	CB	VAL A	58	12.262	-4.984	15.352	1.00	6.54
ATOM	388	CG1	VAL A	58	10.894	-4.974	14.731	1.00	5.89
ATOM	389	CG2	VAL A	58	12.650	-3.840	16.331	1.00	5.86
ATOM	390	N	GLY A	59	12.209	-8.465	15.008	1.00	21.96
ATOM	391	CA	GLY A	59	12.120	-9.385	13.874	1.00	17.81
ATOM	392	C	GLY A	59	10.645	-9.561	13.550	1.00	23.35
ATOM	393	O	GLY A	59	9.919	-8.579	13.249	1.00	27.99
ATOM	394	N	GLY A	60	10.166	-10.805	13.623	1.00	18.75
ATOM	395	CA	GLY A	60	8.841	-11.142	13.285	1.00	11.46
ATOM	396	C	GLY A	60	8.550	-10.833	11.851	1.00	14.56
ATOM	397	O	GLY A	60	9.160	-11.439	11.003	1.00	16.32
ATOM	398	N	PRO A	61	7.505	-10.103	11.612	1.00	12.10
ATOM	399	CA	PRO A	61	7.123	-9.774	10.250	1.00	14.70
ATOM	400	C	PRO A	61	8.230	-8.941	9.570	1.00	22.17
ATOM	401	O	PRO A	61	8.143	-8.758	8.344	1.00	25.74
ATOM	402	CB	PRO A	61	5.911	-8.860	10.332	1.00	14.30
ATOM	403	CG	PRO A	61	5.880	-8.514	11.784	1.00	13.62
ATOM	404	CD	PRO A	61	6.723	-9.417	12.576	1.00	12.29
ATOM	405	N	TYR A	62	9.162	-8.257	10.292	1.00	21.56
ATOM	406	CA	TYR A	62	9.973	-7.242	9.674	1.00	17.07
ATOM	407	C	TYR A	62	11.133	-7.907	9.047	1.00	18.73
ATOM	408	O	TYR A	62	12.132	-8.213	9.691	1.00	22.39
ATOM	409	CB	TYR A	62	10.504	-6.401	10.803	1.00	17.51
ATOM	410	CG	TYR A	62	11.461	-5.421	10.236	1.00	15.23
ATOM	411	CD1	TYR A	62	11.343	-4.920	9.032	1.00	17.79
ATOM	412	CD2	TYR A	62	12.465	-4.971	10.969	1.00	19.09
ATOM	413	CE1	TYR A	62	12.206	-3.997	8.506	1.00	19.28
ATOM	414	CE2	TYR A	62	13.438	-4.101	10.490	1.00	25.40
ATOM	415	CZ	TYR A	62	13.327	-3.571	9.186	1.00	20.95
ATOM	416	OH	TYR A	62	14.320	-2.649	8.791	1.00	14.70
ATOM	417	N	ASP A	63	10.998	-8.419	7.816	1.00	19.47
ATOM	418	CA	ASP A	63	12.137	-9.011	7.081	1.00	17.52
ATOM	419	C	ASP A	63	13.027	-7.973	6.453	1.00	17.97
ATOM	420	O	ASP A	63	13.628	-8.442	5.512	1.00	14.94
ATOM	421	CB	ASP A	63	11.474	-9.873	6.015	1.00	17.16
ATOM	422	CG	ASP A	63	10.563	-9.136	5.096	1.00	27.75
ATOM	423	OD1	ASP A	63	10.049	-8.030	5.281	1.00	34.11
ATOM	424	OD2	ASP A	63	10.300	-9.635	4.002	1.00	44.13
ATOM	425	N	ALA A	64	13.089	-6.685	6.584	1.00	15.36
ATOM	426	CA	ALA A	64	14.054	-5.725	6.098	1.00	17.14
ATOM	427	C	ALA A	64	14.118	-5.780	4.589	1.00	21.10
ATOM	428	O	ALA A	64	15.193	-5.861	3.968	1.00	23.12
ATOM	429	CB	ALA A	64	15.458	-5.861	6.646	1.00	20.45
ATOM	430	N	ALA A	65	12.946	-6.009	4.006	1.00	22.21
ATOM	431	CA	ALA A	65	12.817	-6.072	2.565	1.00	21.81

31 Mayıs 2001

D E R I S
Patent ve Marka Ajansı
Ltd. Şti. Ankara
AYŞE YILMAZ

NZAS-0236835

10/34

ATOM	432	C	ALA A	65	13.143	-4.857	1.745	1.00	21.76
ATOM	433	O	ALA A	65	12.855	-3.801	2.229	1.00	23.60
ATOM	434	CB	ALA A	65	11.384	-6.390	2.364	1.00	17.31
ATOM	435	N	LEU A	66	13.401	-4.866	0.402	1.00	21.48
ATOM	436	CA	LEU A	66	13.763	-3.581	-0.216	1.00	13.20
ATOM	437	C	LEU A	66	12.469	-2.913	-0.452	1.00	13.90
ATOM	438	O	LEU A	66	12.548	-1.767	-0.197	1.00	11.85
ATOM	439	CB	LEU A	66	14.593	-3.602	-1.470	1.00	3.92
ATOM	440	CG	LEU A	66	15.891	-4.308	-1.191	1.00	9.05
ATOM	441	CD1	LEU A	66	16.509	-4.725	-2.438	1.00	12.78
ATOM	442	CD2	LEU A	66	16.569	-3.119	-0.580	1.00	13.44
ATOM	443	N	ALA A	67	11.413	-3.625	-0.801	1.00	14.94
ATOM	444	CA	ALA A	67	10.253	-2.759	-1.277	1.00	12.42
ATOM	445	C	ALA A	67	9.626	-1.879	-0.224	1.00	14.21
ATOM	446	O	ALA A	67	9.218	-0.818	-0.643	1.00	14.29
ATOM	447	CB	ALA A	67	9.089	-3.588	-1.781	1.00	3.90
ATOM	448	N	THR A	68	9.494	-2.409	1.006	1.00	12.11
ATOM	449	CA	THR A	68	8.780	-1.647	1.997	1.00	11.77
ATOM	450	C	THR A	68	9.242	-0.214	2.219	1.00	13.05
ATOM	451	O	THR A	68	8.597	0.683	2.766	1.00	11.13
ATOM	452	CB	THR A	68	8.892	-2.488	3.241	1.00	13.93
ATOM	453	OG1	THR A	68	10.145	-3.150	3.224	1.00	27.44
ATOM	454	CG2	THR A	68	7.783	-3.459	3.087	1.00	13.39
ATOM	455	N	ASN A	69	10.450	-0.057	1.808	1.00	7.59
ATOM	456	CA	ASN A	69	11.020	1.236	1.791	1.00	8.76
ATOM	457	C	ASN A	69	10.095	2.165	1.047	1.00	10.28
ATOM	458	O	ASN A	69	9.950	3.345	1.305	1.00	5.30
ATOM	459	CB	ASN A	69	12.461	1.251	1.231	1.00	5.54
ATOM	460	CG	ASN A	69	13.374	1.207	2.398	1.00	15.08
ATOM	461	OD1	ASN A	69	13.307	2.124	3.275	1.00	31.90
ATOM	462	ND2	ASN A	69	14.048	0.099	2.360	1.00	4.51
ATOM	463	N	PHE A	70	9.390	1.656	0.079	1.00	19.09
ATOM	464	CA	PHE A	70	8.552	2.619	-0.631	1.00	21.80
ATOM	465	C	PHE A	70	7.157	2.836	-0.123	1.00	23.36
ATOM	466	O	PHE A	70	6.509	3.717	-0.724	1.00	25.74
ATOM	467	CB	PHE A	70	8.547	2.386	-2.082	1.00	17.38
ATOM	468	CG	PHE A	70	9.870	2.360	-2.770	1.00	15.72
ATOM	469	CD1	PHE A	70	10.080	3.430	-3.576	1.00	5.15
ATOM	470	CD2	PHE A	70	10.702	1.245	-2.497	1.00	7.61
ATOM	471	CE1	PHE A	70	11.268	3.330	-4.191	1.00	16.05
ATOM	472	CE2	PHE A	70	11.913	1.267	-3.168	1.00	22.23
ATOM	473	CZ	PHE A	70	12.199	2.314	-4.016	1.00	9.57
ATOM	474	N	LEU A	71	6.765	2.246	1.034	1.00	25.53
ATOM	475	CA	LEU A	71	5.506	2.725	1.599	1.00	24.24
ATOM	476	C	LEU A	71	5.649	4.037	2.343	1.00	27.91
ATOM	477	O	LEU A	71	6.694	4.521	2.750	1.00	28.85
ATOM	478	CB	LEU A	71	5.150	1.635	2.535	1.00	19.99
ATOM	479	CG	LEU A	71	5.003	0.342	1.873	1.00	16.09

31 Mayıs 2001

DERİS
Patent ve Marka Ajansı
Ltd. Şti. J. N.
AYŞE DİNÇ

NZAS-0236836

11/34

ATOM	480	CD1	LEU	A	71	4.879	-0.764	2.885	1.00	18.12
ATOM	481	CD2	LEU	A	71	3.786	0.546	1.000	1.00	18.24
ATOM	482	N	PRO	A	72	4.535	4.663	2.529	1.00	33.01
ATOM	483	CA	PRO	A	72	4.389	5.888	3.311	1.00	34.96
ATOM	484	C	PRO	A	72	4.865	5.590	4.778	1.00	32.90
ATOM	485	O	PRO	A	72	4.619	4.512	5.331	1.00	28.55
ATOM	486	CB	PRO	A	72	2.983	6.453	3.095	1.00	32.98
ATOM	487	CG	PRO	A	72	2.224	5.189	2.827	1.00	30.36
ATOM	488	CD	PRO	A	72	3.188	4.093	2.380	1.00	33.56
ATOM	489	N	ARG	A	73	5.601	6.610	5.221	1.00	27.54
ATOM	490	CA	ARG	A	73	6.325	6.547	6.408	1.00	25.42
ATOM	491	C	ARG	A	73	7.613	5.755	6.321	1.00	21.78
ATOM	492	O	ARG	A	73	8.360	5.950	7.304	1.00	29.61
ATOM	493	CB	ARG	A	73	5.469	5.978	7.549	1.00	24.29
ATOM	494	CG	ARG	A	73	4.575	6.998	8.155	1.00	23.47
ATOM	495	CD	ARG	A	73	3.818	6.793	9.360	1.00	29.73
ATOM	496	NE	ARG	A	73	3.222	5.460	9.392	1.00	36.30
ATOM	497	CZ	ARG	A	73	2.891	5.312	10.713	1.00	42.26
ATOM	498	NH1	ARG	A	73	3.145	6.288	11.555	1.00	26.57
ATOM	499	NH2	ARG	A	73	2.320	4.144	10.883	1.00	39.03
ATOM	500	N	GLY	A	74	7.868	4.909	5.326	1.00	8.42
ATOM	501	CA	GLY	A	74	9.120	4.291	5.332	1.00	5.06
ATOM	502	C	GLY	A	74	9.243	2.858	5.508	1.00	12.74
ATOM	503	O	GLY	A	74	10.256	2.286	5.317	1.00	16.46
ATOM	504	N	THR	A	75	8.145	2.321	5.906	1.00	12.82
ATOM	505	CA	THR	A	75	8.036	0.869	6.008	1.00	11.14
ATOM	506	C	THR	A	75	6.625	0.428	6.134	1.00	10.64
ATOM	507	O	THR	A	75	5.757	1.231	5.949	1.00	9.36
ATOM	508	CB	THR	A	75	8.843	0.398	7.219	1.00	6.97
ATOM	509	OG1	THR	A	75	8.938	-0.950	7.125	1.00	5.64
ATOM	510	CG2	THR	A	75	8.108	0.865	8.603	1.00	6.30
ATOM	511	N	SER	A	76	6.409	-0.858	6.259	1.00	10.07
ATOM	512	CA	SER	A	76	5.061	-1.384	6.354	1.00	13.33
ATOM	513	C	SER	A	76	4.405	-1.163	7.747	1.00	21.87
ATOM	514	O	SER	A	76	5.228	-1.102	8.679	1.00	24.22
ATOM	515	CB	SER	A	76	5.030	-2.832	6.083	1.00	4.81
ATOM	516	OG	SER	A	76	5.327	-3.664	7.107	1.00	16.98
ATOM	517	N	GLN	A	77	3.082	-1.100	7.911	1.00	24.90
ATOM	518	CA	GLN	A	77	2.454	-1.020	9.166	1.00	23.85
ATOM	519	C	GLN	A	77	2.643	-2.236	10.015	1.00	19.58
ATOM	520	O	GLN	A	77	2.908	-2.140	11.203	1.00	15.15
ATOM	521	CB	GLN	A	77	0.983	-0.703	9.217	1.00	32.64
ATOM	522	CG	GLN	A	77	0.567	-0.580	10.642	1.00	49.56
ATOM	523	CD	GLN	A	77	0.689	0.785	11.194	1.00	65.91
ATOM	524	OE1	GLN	A	77	0.956	0.869	12.356	1.00	66.06
ATOM	525	NE2	GLN	A	77	0.481	1.750	10.350	1.00	68.91
ATOM	526	N	ALA	A	78	2.754	-3.376	9.402	1.00	15.90
ATOM	527	CA	ALA	A	78	3.071	-4.577	10.073	1.00	19.47

31 Mayıs 2001

DERIS
Patent ve Marka Ajansı
Lis. No. A.Y.
AYŞE DURAL

NZAS-0236837

12/34

ATOM	528	C	ALA	A	78	4.381	-4.332	10.819	1.00	24.48
ATOM	529	O	ALA	A	78	4.389	-4.729	11.983	1.00	26.91
ATOM	530	CB	ALA	A	78	3.390	-5.808	9.336	1.00	17.23
ATOM	531	N	ASN	A	79	5.350	-3.863	10.093	1.00	21.58
ATOM	532	CA	ASN	A	79	6.602	-3.576	10.774	1.00	20.62
ATOM	533	C	ASN	A	79	6.480	-2.673	11.969	1.00	20.93
ATOM	534	O	ASN	A	79	6.975	-2.944	13.053	1.00	15.52
ATOM	535	CB	ASN	A	79	7.474	-3.069	9.670	1.00	24.79
ATOM	536	CG	ASN	A	79	7.933	-4.238	8.824	1.00	28.76
ATOM	537	OD1	ASN	A	79	7.867	-5.439	9.091	1.00	25.30
ATOM	538	ND2	ASN	A	79	8.488	-3.891	7.660	1.00	24.90
ATOM	539	N	ILE	A	80	5.731	-1.611	11.936	1.00	15.93
ATOM	540	CA	ILE	A	80	5.586	-0.574	12.924	1.00	17.00
ATOM	541	C	ILE	A	80	4.925	-1.187	14.118	1.00	20.53
ATOM	542	O	ILE	A	80	5.234	-0.939	15.264	1.00	18.79
ATOM	543	CB	ILE	A	80	4.756	0.629	12.436	1.00	11.98
ATOM	544	CG1	ILE	A	80	5.627	1.124	11.297	1.00	9.50
ATOM	545	CG2	ILE	A	80	4.379	1.728	13.354	1.00	16.27
ATOM	546	CD1	ILE	A	80	5.007	2.071	10.424	1.00	8.15
ATOM	547	N	ASP	A	81	4.017	-2.019	13.708	1.00	19.21
ATOM	548	CA	ASP	A	81	3.304	-2.778	14.728	1.00	15.15
ATOM	549	C	ASP	A	81	4.147	-3.711	15.510	1.00	15.77
ATOM	550	O	ASP	A	81	4.084	-3.697	16.695	1.00	15.82
ATOM	551	CB	ASP	A	81	2.291	-3.438	13.868	1.00	26.36
ATOM	552	CG	ASP	A	81	1.065	-2.530	13.790	1.00	23.71
ATOM	553	OD1	ASP	A	81	1.105	-1.355	14.226	1.00	14.33
ATOM	554	OD2	ASP	A	81	0.061	-3.125	13.222	1.00	33.05
ATOM	555	N	GLU	A	82	5.148	-4.447	15.096	1.00	16.07
ATOM	556	CA	GLU	A	82	5.984	-5.318	15.882	1.00	14.77
ATOM	557	C	GLU	A	82	6.839	-4.355	16.667	1.00	19.33
ATOM	558	O	GLU	A	82	7.315	-4.708	17.752	1.00	23.58
ATOM	559	CB	GLU	A	82	6.998	-6.031	15.064	1.00	13.20
ATOM	560	CG	GLU	A	82	7.792	-7.239	15.476	1.00	23.09
ATOM	561	CD	GLU	A	82	6.767	-8.114	16.185	1.00	29.68
ATOM	562	OE1	GLU	A	82	5.666	-7.670	16.403	1.00	26.63
ATOM	563	OE2	GLU	A	82	7.273	-9.181	16.411	1.00	33.08
ATOM	564	N	GLY	A	83	7.228	-3.227	16.199	1.00	16.79
ATOM	565	CA	GLY	A	83	8.033	-2.428	17.140	1.00	17.32
ATOM	566	C	GLY	A	83	7.238	-2.018	18.366	1.00	17.54
ATOM	567	O	GLY	A	83	7.561	-2.103	19.528	1.00	15.06
ATOM	568	N	LYS	A	84	6.093	-1.408	18.114	1.00	18.72
ATOM	569	CA	LYS	A	84	5.050	-1.146	19.096	1.00	16.90
ATOM	570	C	LYS	A	84	4.893	-2.337	20.057	1.00	17.74
ATOM	571	O	LYS	A	84	4.962	-2.265	21.295	1.00	14.31
ATOM	572	CB	LYS	A	84	3.799	-0.872	18.307	1.00	14.62
ATOM	573	CG	LYS	A	84	3.535	0.565	18.291	1.00	19.30
ATOM	574	CD	LYS	A	84	2.787	1.013	17.044	1.00	34.24
ATOM	575	CE	LYS	A	84	1.568	1.902	17.337	1.00	37.70

31 Mayıs 2001

DERİS
Patent ve Marka Ajansı
Lid. Sist. Fexx
AYŞE ERAL

NZAS-0236838

ATOM	576	NZ	LYS	A	84	0.346	1.226	16.827	1.00	48.42
ATOM	577	N	ARG	A	85	4.617	-3.506	19.519	1.00	18.50
ATOM	578	CA	ARG	A	85	4.583	-4.705	20.280	1.00	19.04
ATOM	579	C	ARG	A	85	5.677	-4.733	21.308	1.00	19.63
ATOM	580	O	ARG	A	85	5.442	-5.192	22.383	1.00	19.24
ATOM	581	CB	ARG	A	85	4.740	-5.979	19.464	1.00	14.74
ATOM	582	CG	ARG	A	85	3.843	-7.094	19.887	1.00	8.85
ATOM	583	CD	ARG	A	85	4.146	-8.554	19.705	1.00	7.20
ATOM	584	NE	ARG	A	85	5.483	-8.898	19.194	1.00	20.30
ATOM	585	CZ	ARG	A	85	6.170	-9.705	19.899	1.00	18.19
ATOM	586	NH1	ARG	A	85	5.627	-10.161	21.040	1.00	34.03
ATOM	587	NH2	ARG	A	85	7.345	-9.979	19.555	1.00	15.36
ATOM	588	N	LEU	A	86	6.901	-4.586	20.956	1.00	22.21
ATOM	589	CA	LEU	A	86	8.006	-4.792	21.873	1.00	20.94
ATOM	590	C	LEU	A	86	8.044	-3.637	22.803	1.00	20.73
ATOM	591	O	LEU	A	86	8.155	-3.970	23.925	1.00	22.18
ATOM	592	CB	LEU	A	86	9.333	-4.932	21.168	1.00	6.67
ATOM	593	CG	LEU	A	86	9.358	-6.241	20.282	1.00	11.45
ATOM	594	CD1	LEU	A	86	10.546	-6.054	19.287	1.00	18.60
ATOM	595	CD2	LEU	A	86	9.362	-7.516	21.020	1.00	5.17
ATOM	596	N	PHE	A	87	7.700	-2.446	22.529	1.00	16.79
ATOM	597	CA	PHE	A	87	7.850	-1.416	23.492	1.00	18.21
ATOM	598	C	PHE	A	87	6.939	-1.805	24.618	1.00	26.51
ATOM	599	O	PHE	A	87	7.082	-1.565	25.839	1.00	30.36
ATOM	600	CB	PHE	A	87	7.498	-0.118	22.846	1.00	15.81
ATOM	601	CG	PHE	A	87	8.661	0.503	22.128	1.00	22.72
ATOM	602	CD1	PHE	A	87	9.625	1.163	22.795	1.00	25.90
ATOM	603	CD2	PHE	A	87	8.800	0.446	20.774	1.00	24.19
ATOM	604	CE1	PHE	A	87	10.699	1.781	22.220	1.00	26.46
ATOM	605	CE2	PHE	A	87	9.871	0.991	20.153	1.00	29.24
ATOM	606	CZ	PHE	A	87	10.827	1.669	20.849	1.00	20.81
ATOM	607	N	ALA	A	88	5.862	-2.422	24.266	1.00	29.15
ATOM	608	CA	ALA	A	88	4.772	-2.699	25.195	1.00	22.92
ATOM	609	C	ALA	A	88	5.186	-3.837	26.068	1.00	22.03
ATOM	610	O	ALA	A	88	4.974	-3.879	27.284	1.00	27.02
ATOM	611	CB	ALA	A	88	3.551	-2.803	24.299	1.00	22.13
ATOM	612	N	LEU	A	89	5.649	-4.897	25.531	1.00	19.16
ATOM	613	CA	LEU	A	89	6.188	-6.032	26.208	1.00	19.29
ATOM	614	C	LEU	A	89	7.250	-5.507	27.133	1.00	22.06
ATOM	615	O	LEU	A	89	7.449	-6.050	28.177	1.00	20.49
ATOM	616	CB	LEU	A	89	7.021	-6.863	25.221	1.00	18.41
ATOM	617	CG	LEU	A	89	7.477	-8.167	25.834	1.00	20.45
ATOM	618	CD1	LEU	A	89	6.326	-8.707	26.627	1.00	17.22
ATOM	619	CD2	LEU	A	89	8.060	-9.057	24.769	1.00	18.83
ATOM	620	N	ALA	A	90	8.124	-4.644	26.722	1.00	22.80
ATOM	621	CA	ALA	A	90	9.027	-4.137	27.701	1.00	24.14
ATOM	622	C	ALA	A	90	8.237	-3.488	28.849	1.00	23.63
ATOM	623	O	ALA	A	90	8.414	-3.835	30.071	1.00	22.73

31 Mayıs 2001
 DERS
 Patent ve Marka Ajansı
 Lis. No. 551.555
 AYSE UNAL

14/34

ATOM	624	CB	ALA A	90	10.080	-3.253	27.139	1.00	7.74
ATOM	625	N	ASN A	91	7.457	-2.445	28.732	1.00	25.45
ATOM	626	CA	ASN A	91	6.665	-1.979	29.870	1.00	27.25
ATOM	627	C	ASN A	91	5.847	-2.996	30.656	1.00	30.97
ATOM	628	O	ASN A	91	5.346	-2.884	31.768	1.00	27.64
ATOM	629	CB	ASN A	91	5.560	-1.206	29.125	1.00	29.14
ATOM	630	CG	ASN A	91	4.946	-0.345	30.216	1.00	31.73
ATOM	631	OD1	ASN A	91	3.845	-0.692	30.645	1.00	46.76
ATOM	632	ND2	ASN A	91	5.641	0.629	30.643	1.00	29.03
ATOM	633	N	GLN A	92	5.369	-4.008	29.969	1.00	35.37
ATOM	634	CA	GLN A	92	4.702	-5.141	30.591	1.00	35.55
ATOM	635	C	GLN A	92	5.619	-6.072	31.352	1.00	34.28
ATOM	636	O	GLN A	92	5.227	-6.519	32.440	1.00	39.47
ATOM	637	CB	GLN A	92	3.866	-5.903	29.573	1.00	54.94
ATOM	638	CG	GLN A	92	2.689	-6.698	30.142	1.00	78.63
ATOM	639	CD	GLN A	92	2.806	-8.167	29.805	1.00	93.87
ATOM	640	OE1	GLN A	92	3.597	-8.840	30.475	1.00	96.99
ATOM	641	NE2	GLN A	92	2.083	-8.696	28.824	1.00	97.81
ATOM	642	N	LYS A	93	6.859	-6.403	31.050	1.00	31.97
ATOM	643	CA	LYS A	93	7.675	-7.204	31.972	1.00	25.22
ATOM	644	C	LYS A	93	8.381	-6.298	33.015	1.00	24.68
ATOM	645	O	LYS A	93	8.716	-6.793	34.075	1.00	32.13
ATOM	646	CB	LYS A	93	8.673	-7.980	31.148	1.00	10.86
ATOM	647	CG	LYS A	93	8.225	-8.963	30.159	1.00	24.26
ATOM	648	CD	LYS A	93	9.362	-9.966	29.986	1.00	21.96
ATOM	649	CE	LYS A	93	9.093	-10.718	28.658	1.00	23.78
ATOM	650	NZ	LYS A	93	10.084	-11.805	28.300	1.00	25.87
ATOM	651	N	CYS A	94	8.752	-5.096	32.774	1.00	16.62
ATOM	652	CA	CYS A	94	9.752	-4.412	33.480	1.00	18.95
ATOM	653	C	CYS A	94	9.512	-2.936	33.537	1.00	24.83
ATOM	654	O	CYS A	94	10.184	-2.017	33.150	1.00	26.80
ATOM	655	CB	CYS A	94	11.147	-4.691	32.911	1.00	3.14
ATOM	656	SG	CYS A	94	11.618	-6.437	32.882	1.00	25.28
ATOM	657	N	PRO A	95	8.403	-2.561	34.086	1.00	26.08
ATOM	658	CA	PRO A	95	7.891	-1.202	33.878	1.00	26.11
ATOM	659	C	PRO A	95	8.960	-0.259	34.299	1.00	27.32
ATOM	660	O	PRO A	95	8.776	0.966	34.108	1.00	29.08
ATOM	661	CB	PRO A	95	6.609	-1.090	34.747	1.00	20.75
ATOM	662	CG	PRO A	95	6.587	-2.421	35.322	1.00	19.04
ATOM	663	CD	PRO A	95	7.363	-3.461	34.509	1.00	22.55
ATOM	664	N	ASN A	96	9.836	-0.776	35.193	1.00	31.44
ATOM	665	CA	ASN A	96	10.559	0.274	35.966	1.00	35.38
ATOM	666	C	ASN A	96	11.891	0.476	35.353	1.00	33.83
ATOM	667	O	ASN A	96	12.599	1.359	35.684	1.00	33.31
ATOM	668	CB	ASN A	96	10.558	-0.099	37.429	1.00	53.70
ATOM	669	CG	ASN A	96	9.238	0.342	38.026	1.00	61.69
ATOM	670	OD1	ASN A	96	8.758	1.432	37.706	1.00	64.33
ATOM	671	ND2	ASN A	96	8.676	-0.526	38.861	1.00	67.25

31 Mayıs 2001

DERİS
Patent ve Marka Akademisi
Lis. Süleyman
ATSE ORAL

NZAS-0236840

15/34

ATOM	672	N	THR	A	97	12.287	-0.409	34.507	1.00	30.32
ATOM	673	CA	THR	A	97	13.519	-0.367	33.794	1.00	22.83
ATOM	674	C	THR	A	97	13.404	0.493	32.534	1.00	22.44
ATOM	675	O	THR	A	97	12.446	0.779	31.816	1.00	21.14
ATOM	676	CB	THR	A	97	13.835	-1.851	33.705	1.00	25.87
ATOM	677	OG1	THR	A	97	14.602	-1.915	32.528	1.00	38.91
ATOM	678	CG2	THR	A	97	12.769	-2.901	33.621	1.00	24.22
ATOM	679	N	PRO	A	98	14.393	1.415	32.408	1.00	20.59
ATOM	680	CA	PRO	A	98	14.513	2.292	31.254	1.00	18.15
ATOM	681	C	PRO	A	98	14.882	1.494	29.978	1.00	16.07
ATOM	682	O	PRO	A	98	15.622	0.462	29.934	1.00	17.19
ATOM	683	CB	PRO	A	98	15.563	3.339	31.676	1.00	14.55
ATOM	684	CG	PRO	A	98	16.270	2.646	32.699	1.00	12.29
ATOM	685	CD	PRO	A	98	15.735	1.331	33.046	1.00	12.02
ATOM	686	N	VAL	A	99	14.322	2.107	28.940	1.00	13.81
ATOM	687	CA	VAL	A	99	14.225	1.544	27.632	1.00	14.02
ATOM	688	C	VAL	A	99	14.956	2.407	26.663	1.00	10.66
ATOM	689	O	VAL	A	99	14.716	3.679	26.712	1.00	6.90
ATOM	690	CB	VAL	A	99	12.673	1.343	27.335	1.00	2.87
ATOM	691	CG1	VAL	A	99	12.666	1.272	25.872	1.00	17.40
ATOM	692	CG2	VAL	A	99	12.442	-0.111	27.744	1.00	5.75
ATOM	693	N	VAL	A	100	15.885	1.776	25.861	1.00	6.45
ATOM	694	CA	VAL	A	100	16.525	2.755	24.900	1.00	9.61
ATOM	695	C	VAL	A	100	16.389	2.159	23.561	1.00	10.79
ATOM	696	O	VAL	A	100	16.256	0.973	23.477	1.00	9.11
ATOM	697	CB	VAL	A	100	17.877	3.260	25.197	1.00	8.05
ATOM	698	CG1	VAL	A	100	17.824	4.252	26.336	1.00	6.05
ATOM	699	CG2	VAL	A	100	18.853	2.053	25.591	1.00	6.68
ATOM	700	N	ALA	A	101	16.277	2.928	22.511	1.00	13.14
ATOM	701	CA	ALA	A	101	16.127	2.266	21.183	1.00	15.67
ATOM	702	C	ALA	A	101	17.065	2.747	20.053	1.00	12.08
ATOM	703	O	ALA	A	101	17.261	4.042	19.907	1.00	11.16
ATOM	704	CB	ALA	A	101	14.685	2.609	20.812	1.00	6.57
ATOM	705	N	GLY	A	102	17.218	1.787	19.099	1.00	7.53
ATOM	706	CA	GLY	A	102	17.949	2.415	17.939	1.00	7.10
ATOM	707	C	GLY	A	102	17.477	1.803	16.744	1.00	7.27
ATOM	708	O	GLY	A	102	17.102	0.621	16.878	1.00	10.83
ATOM	709	N	GLY	A	103	17.706	2.407	15.648	1.00	7.80
ATOM	710	CA	GLY	A	103	17.446	1.745	14.356	1.00	5.33
ATOM	711	C	GLY	A	103	18.303	2.211	13.180	1.00	7.56
ATOM	712	O	GLY	A	103	18.785	3.340	13.227	1.00	6.88
ATOM	713	N	TYR	A	104	18.490	1.387	12.139	1.00	7.09
ATOM	714	CA	TYR	A	104	19.392	1.682	11.069	1.00	5.99
ATOM	715	C	TYR	A	104	18.705	1.614	9.705	1.00	9.47
ATOM	716	O	TYR	A	104	18.115	0.638	9.441	1.00	6.46
ATOM	717	CB	TYR	A	104	20.592	0.797	11.079	1.00	5.40
ATOM	718	CG	TYR	A	104	21.436	1.078	9.876	1.00	8.05
ATOM	719	CD1	TYR	A	104	21.708	2.302	9.352	1.00	5.91

31 Mayıs 2001

D E R I S
Petrolet ve Mekâne Açıklama İhali
Ltd. Şti.
AYŞE ÜNAL

NZAS-0236841

ATOM	720	CD2	TYR A 104	21.961	-0.044	9.172	1.00	6.85
ATOM	721	CE1	TYR A 104	22.447	2.513	8.186	1.00	5.61
ATOM	722	CE2	TYR A 104	22.751	0.052	8.072	1.00	7.49
ATOM	723	CZ	TYR A 104	22.972	1.377	7.608	1.00	11.08
ATOM	724	OH	TYR A 104	23.795	1.509	6.479	1.00	14.32
ATOM	725	N	SER A 105	18.939	2.975	8.852	1.00	18.39
ATOM	726	CA	SER A 105	18.190	2.854	7.601	1.00	9.66
ATOM	727	C	SER A 105	16.763	2.370	7.722	1.00	6.10
ATOM	728	O	SER A 105	16.090	3.304	8.077	1.00	5.63
ATOM	729	CB	SER A 105	19.124	2.159	6.607	1.00	8.55
ATOM	730	OG	SER A 105	18.553	1.685	5.463	1.00	24.30
ATOM	731	N	GLN A 106	16.241	1.405	7.079	1.00	9.93
ATOM	732	CA	GLN A 106	14.759	1.316	7.002	1.00	8.25
ATOM	733	C	GLN A 106	14.453	1.089	8.473	1.00	8.51
ATOM	734	O	GLN A 106	13.470	1.683	8.862	1.00	6.31
ATOM	735	CB	GLN A 106	14.239	0.393	5.940	1.00	7.45
ATOM	736	CG	GLN A 106	13.184	-0.528	6.465	1.00	18.04
ATOM	737	CD	GLN A 106	12.228	-1.220	5.581	1.00	16.87
ATOM	738	OE1	GLN A 106	11.024	-1.180	5.492	1.00	17.59
ATOM	739	NE2	GLN A 106	12.643	-2.032	4.713	1.00	8.32
ATOM	740	N	GLY A 107	15.269	0.310	9.172	1.00	7.13
ATOM	741	CA	GLY A 107	15.190	0.159	10.606	1.00	4.61
ATOM	742	C	GLY A 107	15.048	1.472	11.356	1.00	8.27
ATOM	743	O	GLY A 107	14.219	1.511	12.290	1.00	6.52
ATOM	744	N	ALA A 108	15.653	2.637	11.033	1.00	6.44
ATOM	745	CA	ALA A 108	15.266	3.864	11.641	1.00	7.41
ATOM	746	C	ALA A 108	13.813	4.346	11.471	1.00	11.76
ATOM	747	O	ALA A 108	13.150	4.914	12.298	1.00	12.64
ATOM	748	CB	ALA A 108	16.121	5.006	11.170	1.00	13.93
ATOM	749	N	ALA A 109	13.321	4.312	10.267	1.00	9.78
ATOM	750	CA	ALA A 109	12.056	4.685	9.861	1.00	10.47
ATOM	751	C	ALA A 109	11.093	3.858	10.727	1.00	12.32
ATOM	752	O	ALA A 109	10.016	4.391	11.035	1.00	14.67
ATOM	753	CB	ALA A 109	12.035	4.173	8.456	1.00	10.24
ATOM	754	N	LEU A 110	11.259	2.690	11.077	1.00	4.34
ATOM	755	CA	LEU A 110	10.458	1.760	11.783	1.00	11.71
ATOM	756	C	LEU A 110	10.305	2.253	13.203	1.00	15.26
ATOM	757	O	LEU A 110	9.298	2.672	13.685	1.00	18.07
ATOM	758	CB	LEU A 110	11.031	0.319	11.634	1.00	7.52
ATOM	759	CG	LEU A 110	10.247	-0.801	12.258	1.00	8.41
ATOM	760	CD1	LEU A 110	10.685	-2.233	11.862	1.00	7.17
ATOM	761	CD2	LEU A 110	10.278	-0.659	13.783	1.00	5.25
ATOM	762	N	ILE A 111	11.397	2.373	13.907	1.00	15.77
ATOM	763	CA	ILE A 111	11.510	2.860	15.246	1.00	12.22
ATOM	764	C	ILE A 111	11.027	4.255	15.234	1.00	9.39
ATOM	765	O	ILE A 111	10.404	4.636	16.241	1.00	12.54
ATOM	766	CB	ILE A 111	12.977	2.814	15.685	1.00	15.55
ATOM	767	CG1	ILE A 111	13.222	1.279	15.805	1.00	14.19

31 Mayıs 2001

DERİS
 Patent ve Marka Ajansı
 Ltd. Şti.
 AYŞE ÜNAL

17/34

ATOM	768	CG2	ILE A 111	13.195	3.465	17.005	1.00	4.64
ATOM	769	CD1	ILE A 111	12.410	0.887	17.002	1.00	14.88
ATOM	770	N	ALA A 112	11.309	5.170	14.341	1.00	11.00
ATOM	771	CA	ALA A 112	10.792	6.528	14.427	1.00	12.45
ATOM	772	C	ALA A 112	9.266	6.455	14.308	1.00	15.59
ATOM	773	O	ALA A 112	8.728	7.131	15.154	1.00	18.13
ATOM	774	CB	ALA A 112	11.334	7.505	13.486	1.00	5.70
ATOM	775	N	ALA A 113	8.575	5.572	13.587	1.00	12.85
ATOM	776	CA	ALA A 113	7.167	5.512	13.557	1.00	15.39
ATOM	777	C	ALA A 113	6.475	5.093	14.861	1.00	18.21
ATOM	778	O	ALA A 113	5.498	5.750	15.226	1.00	14.59
ATOM	779	CB	ALA A 113	6.678	4.562	12.500	1.00	17.63
ATOM	780	N	ALA A 114	6.937	3.948	15.303	1.00	16.02
ATOM	781	CA	ALA A 114	6.483	3.218	16.412	1.00	16.43
ATOM	782	C	ALA A 114	6.578	4.114	17.643	1.00	22.20
ATOM	783	O	ALA A 114	5.673	4.321	18.426	1.00	18.94
ATOM	784	CB	ALA A 114	7.474	2.084	16.565	1.00	4.69
ATOM	785	N	VAL A 115	7.722	4.836	17.744	1.00	22.46
ATOM	786	CA	VAL A 115	7.855	5.499	19.064	1.00	20.88
ATOM	787	C	VAL A 115	6.670	6.469	19.007	1.00	22.71
ATOM	788	O	VAL A 115	6.136	6.761	20.057	1.00	22.05
ATOM	789	CB	VAL A 115	9.279	6.090	19.137	1.00	19.61
ATOM	790	CG1	VAL A 115	9.396	7.259	20.122	1.00	8.35
ATOM	791	CG2	VAL A 115	10.245	5.016	19.562	1.00	13.91
ATOM	792	N	SER A 116	6.467	7.085	17.828	1.00	23.59
ATOM	793	CA	SER A 116	5.539	8.172	17.736	1.00	23.68
ATOM	794	C	SER A 116	4.169	7.647	18.120	1.00	23.77
ATOM	795	O	SER A 116	3.333	8.523	18.399	1.00	27.35
ATOM	796	CB	SER A 116	5.522	8.865	16.376	1.00	25.21
ATOM	797	OG	SER A 116	5.168	8.043	15.277	1.00	28.05
ATOM	798	N	GLU A 117	3.859	6.397	18.004	1.00	18.83
ATOM	799	CA	GLU A 117	2.491	6.020	18.238	1.00	22.21
ATOM	800	C	GLU A 117	2.461	5.474	19.653	1.00	30.46
ATOM	801	O	GLU A 117	1.487	4.773	19.863	1.00	35.72
ATOM	802	CB	GLU A 117	1.977	4.902	17.343	1.00	21.63
ATOM	803	CG	GLU A 117	2.167	5.219	15.897	1.00	26.41
ATOM	804	CD	GLU A 117	1.560	4.424	14.814	1.00	34.01
ATOM	805	OE1	GLU A 117	0.912	3.440	15.046	1.00	32.59
ATOM	806	OE2	GLU A 117	1.750	4.833	13.659	1.00	44.62
ATOM	807	N	LEU A 118	3.438	5.570	20.512	1.00	34.45
ATOM	808	CA	LEU A 118	3.326	5.006	21.812	1.00	33.64
ATOM	809	C	LEU A 118	2.681	6.110	22.633	1.00	41.75
ATOM	810	O	LEU A 118	2.594	7.267	22.370	1.00	39.90
ATOM	811	CB	LEU A 118	4.600	4.668	22.392	1.00	29.44
ATOM	812	CG	LEU A 118	5.628	3.891	21.645	1.00	26.36
ATOM	813	CD1	LEU A 118	6.921	3.840	22.379	1.00	27.53
ATOM	814	CD2	LEU A 118	5.110	2.520	21.536	1.00	20.69
ATOM	815	N	SER A 119	2.076	5.794	23.726	1.00	48.86

31 Mayıs 2001

DERİS
Patent ve Marka Ajansı
Lid. Şirin AYŞE İNAL

NZAS-0236843

ATOM	816	CA	SER A 119	0.910	5.647	24.476	1.00	52.44
ATOM	817	C	SER A 119	1.212	6.063	25.866	1.00	52.57
ATOM	818	O	SER A 119	1.485	5.258	26.735	1.00	55.54
ATOM	819	CB	SER A 119	0.550	4.132	24.488	1.00	70.55
ATOM	820	OG	SER A 119	1.393	3.091	23.908	1.00	66.80
ATOM	821	N	GLY A 120	1.532	7.307	26.024	1.00	52.95
ATOM	822	CA	GLY A 120	1.910	7.761	27.382	1.00	53.35
ATOM	823	C	GLY A 120	2.944	7.109	28.291	1.00	49.09
ATOM	824	O	GLY A 120	4.086	7.617	28.358	1.00	49.66
ATOM	825	N	ALA A 121	2.526	6.129	29.102	1.00	42.97
ATOM	826	CA	ALA A 121	3.477	5.574	30.022	1.00	40.72
ATOM	827	C	ALA A 121	4.587	4.772	29.326	1.00	44.20
ATOM	828	O	ALA A 121	5.749	4.803	29.711	1.00	45.42
ATOM	829	CB	ALA A 121	2.965	4.542	30.903	1.00	36.34
ATOM	830	N	VAL A 122	4.122	4.035	28.312	1.00	41.15
ATOM	831	CA	VAL A 122	5.090	3.269	27.548	1.00	33.41
ATOM	832	C	VAL A 122	5.870	4.168	26.652	1.00	28.48
ATOM	833	O	VAL A 122	7.084	4.019	26.872	1.00	27.69
ATOM	834	CB	VAL A 122	4.424	2.056	26.952	1.00	30.22
ATOM	835	CG1	VAL A 122	2.924	1.997	27.098	1.00	28.03
ATOM	836	CG2	VAL A 122	4.891	1.836	25.551	1.00	23.22
ATOM	837	N	LYS A 123	5.424	5.310	26.177	1.00	23.16
ATOM	838	CA	LYS A 123	6.354	6.314	25.661	1.00	23.11
ATOM	839	C	LYS A 123	7.403	6.783	26.661	1.00	25.28
ATOM	840	O	LYS A 123	8.524	7.224	26.449	1.00	29.01
ATOM	841	CB	LYS A 123	5.561	7.502	25.100	1.00	23.54
ATOM	842	CG	LYS A 123	6.171	8.573	24.277	1.00	26.71
ATOM	843	CD	LYS A 123	5.400	9.775	23.888	1.00	43.07
ATOM	844	CE	LYS A 123	4.953	9.783	22.461	1.00	59.59
ATOM	845	NZ	LYS A 123	3.518	9.637	22.099	1.00	67.50
ATOM	846	N	GLU A 124	6.977	6.991	27.918	1.00	27.95
ATOM	847	CA	GLU A 124	7.845	7.700	28.863	1.00	27.29
ATOM	848	C	GLU A 124	8.910	6.706	29.243	1.00	25.21
ATOM	849	O	GLU A 124	9.993	7.165	29.769	1.00	21.21
ATOM	850	CB	GLU A 124	6.986	8.351	29.927	1.00	40.13
ATOM	851	CG	GLU A 124	7.588	8.609	31.295	1.00	57.40
ATOM	852	CD	GLU A 124	8.530	9.814	31.247	1.00	66.99
ATOM	853	OE1	GLU A 124	9.619	9.751	31.902	1.00	70.44
ATOM	854	OE2	GLU A 124	7.949	10.652	30.502	1.00	73.84
ATOM	855	N	GLN A 125	8.656	5.393	29.058	1.00	19.93
ATOM	856	CA	GLN A 125	9.761	4.509	29.546	1.00	17.98
ATOM	857	C	GLN A 125	10.865	4.556	28.521	1.00	24.28
ATOM	858	O	GLN A 125	11.964	4.107	28.815	1.00	21.47
ATOM	859	CB	GLN A 125	9.225	3.178	29.844	1.00	9.13
ATOM	860	CG	GLN A 125	9.901	2.001	30.299	1.00	9.05
ATOM	861	CD	GLN A 125	9.211	0.719	30.129	1.00	19.33
ATOM	862	OE1	GLN A 125	8.190	0.703	29.466	1.00	28.52
ATOM	863	NE2	GLN A 125	9.662	-0.396	30.684	1.00	13.34

31 Mayıs 2001

DERİS
 Patent ve Marka Ajansı
 Ltd. Şti.
 AYŞE ÖNAL

NZAS-0236844

ATOM	864	N	VAL A	126	10.593	5.188	27.319	1.00	25.30
ATOM	865	CA	VAL A	126	11.738	5.124	26.361	1.00	22.55
ATOM	866	C	VAL A	126	12.546	6.334	26.614	1.00	17.55
ATOM	867	O	VAL A	126	12.109	7.408	26.329	1.00	12.79
ATOM	868	CB	VAL A	126	11.227	4.560	25.022	1.00	23.76
ATOM	869	CG1	VAL A	126	9.706	4.686	24.946	1.00	23.77
ATOM	870	CG2	VAL A	126	11.795	5.081	23.743	1.00	23.81
ATOM	871	N	LYS A	127	13.726	6.233	27.264	1.00	16.41
ATOM	872	CA	LYS A	127	14.462	7.494	27.639	1.00	18.18
ATOM	873	C	LYS A	127	15.239	8.063	26.488	1.00	18.49
ATOM	874	O	LYS A	127	15.812	9.103	26.680	1.00	18.99
ATOM	875	CB	LYS A	127	15.401	7.148	28.792	1.00	20.81
ATOM	876	CG	LYS A	127	14.770	6.110	29.713	1.00	21.99
ATOM	877	CD	LYS A	127	13.435	6.726	30.064	1.00	33.86
ATOM	878	CE	LYS A	127	12.779	6.612	31.399	1.00	32.17
ATOM	879	NZ	LYS A	127	12.279	7.863	31.993	1.00	45.34
ATOM	880	N	GLY A	128	15.522	7.281	25.416	1.00	20.56
ATOM	881	CA	GLY A	128	16.280	7.948	24.306	1.00	20.72
ATOM	882	C	GLY A	128	16.358	7.104	23.063	1.00	17.71
ATOM	883	O	GLY A	128	16.168	5.901	23.226	1.00	16.66
ATOM	884	N	VAL A	129	16.451	7.725	21.892	1.00	16.16
ATOM	885	CA	VAL A	129	16.497	6.872	20.691	1.00	13.82
ATOM	886	C	VAL A	129	17.519	7.371	19.719	1.00	8.35
ATOM	887	O	VAL A	129	17.602	8.553	19.556	1.00	3.85
ATOM	888	CB	VAL A	129	15.192	6.426	20.054	1.00	11.02
ATOM	889	CG1	VAL A	129	14.007	7.041	20.726	1.00	6.50
ATOM	890	CG2	VAL A	129	15.051	6.729	18.571	1.00	10.03
ATOM	891	N	ALA A	130	18.455	6.398	19.363	1.00	8.05
ATOM	892	CA	ALA A	130	19.430	6.845	18.344	1.00	7.55
ATOM	893	C	ALA A	130	19.078	6.293	16.958	1.00	11.17
ATOM	894	O	ALA A	130	18.755	5.145	16.849	1.00	15.74
ATOM	895	CB	ALA A	130	20.781	6.391	18.603	1.00	5.89
ATOM	896	N	LEU A	131	18.911	6.953	15.892	1.00	7.36
ATOM	897	CA	LEU A	131	18.635	6.625	14.553	1.00	7.70
ATOM	898	C	LEU A	131	19.876	6.908	13.661	1.00	12.02
ATOM	899	O	LEU A	131	20.436	8.033	13.604	1.00	6.80
ATOM	900	CB	LEU A	131	17.604	7.713	14.102	1.00	8.40
ATOM	901	CG	LEU A	131	16.160	7.830	14.575	1.00	6.67
ATOM	902	CD1	LEU A	131	15.391	8.957	13.981	1.00	4.49
ATOM	903	CD2	LEU A	131	15.481	6.488	14.324	1.00	5.12
ATOM	904	N	PHE A	132	20.271	6.009	12.802	1.00	11.56
ATOM	905	CA	PHE A	132	21.422	6.183	11.908	1.00	10.44
ATOM	906	C	PHE A	132	20.965	6.013	10.478	1.00	8.46
ATOM	907	O	PHE A	132	20.175	5.101	10.097	1.00	11.04
ATOM	908	CB	PHE A	132	22.217	4.931	12.282	1.00	10.56
ATOM	909	CG	PHE A	132	22.693	4.830	13.714	1.00	16.38
ATOM	910	CD1	PHE A	132	21.951	4.029	14.542	1.00	13.36
ATOM	911	CD2	PHE A	132	23.860	5.489	14.213	1.00	15.12

31 Mayıs 2001
 DERİS
 Patent ve Marka Ajansı
 Ltd. Şti. n. 11
 AYŞE ÖNAL

19/34

ATOM	864	N	VAL A	126	10.593	5.188	27.319	1.00	25.30
ATOM	865	CA	VAL A	126	11.738	5.124	26.361	1.00	22.55
ATOM	866	C	VAL A	126	12.546	6.334	26.614	1.00	17.55
ATOM	867	O	VAL A	126	12.109	7.408	26.329	1.00	12.79
ATOM	868	CB	VAL A	126	11.227	4.560	25.022	1.00	23.76
ATOM	869	CG1	VAL A	126	9.706	4.686	24.946	1.00	23.77
ATOM	870	CG2	VAL A	126	11.795	5.081	23.743	1.00	23.81
ATOM	871	N	LYS A	127	13.726	6.233	27.264	1.00	16.41
ATOM	872	CA	LYS A	127	14.462	7.494	27.639	1.00	18.18
ATOM	873	C	LYS A	127	15.239	8.063	26.488	1.00	18.49
ATOM	874	O	LYS A	127	15.812	9.103	26.680	1.00	18.99
ATOM	875	CB	LYS A	127	15.401	7.148	28.792	1.00	20.81
ATOM	876	CG	LYS A	127	14.770	6.110	29.713	1.00	21.99
ATOM	877	CD	LYS A	127	13.435	6.726	30.064	1.00	33.86
ATOM	878	CE	LYS A	127	12.779	6.612	31.399	1.00	32.17
ATOM	879	NZ	LYS A	127	12.279	7.863	31.993	1.00	45.34
ATOM	880	N	GLY A	128	15.522	7.281	25.416	1.00	20.56
ATOM	881	CA	GLY A	128	16.280	7.948	24.306	1.00	20.72
ATOM	882	C	GLY A	128	16.358	7.104	23.063	1.00	17.71
ATOM	883	O	GLY A	128	16.168	5.901	23.226	1.00	16.66
ATOM	884	N	VAL A	129	16.451	7.725	21.892	1.00	16.16
ATOM	885	CA	VAL A	129	16.497	6.872	20.691	1.00	13.82
ATOM	886	C	VAL A	129	17.519	7.371	19.719	1.00	8.35
ATOM	887	O	VAL A	129	17.602	8.553	19.556	1.00	3.85
ATOM	888	CB	VAL A	129	15.192	6.426	20.054	1.00	11.02
ATOM	889	CG1	VAL A	129	14.007	7.041	20.726	1.00	6.50
ATOM	890	CG2	VAL A	129	15.051	6.729	18.571	1.00	10.03
ATOM	891	N	ALA A	130	18.455	6.398	19.363	1.00	8.05
ATOM	892	CA	ALA A	130	19.430	6.845	18.344	1.00	7.55
ATOM	893	C	ALA A	130	19.078	6.293	16.958	1.00	11.17
ATOM	894	O	ALA A	130	18.755	5.145	16.849	1.00	15.74
ATOM	895	CB	ALA A	130	20.781	6.391	18.603	1.00	5.89
ATOM	896	N	LEU A	131	18.911	6.953	15.892	1.00	7.36
ATOM	897	CA	LEU A	131	18.635	6.625	14.553	1.00	7.70
ATOM	898	C	LEU A	131	19.876	6.908	13.661	1.00	12.02
ATOM	899	O	LEU A	131	20.436	8.033	13.604	1.00	6.80
ATOM	900	CB	LEU A	131	17.604	7.713	14.102	1.00	8.40
ATOM	901	CG	LEU A	131	16.160	7.830	14.575	1.00	6.67
ATOM	902	CD1	LEU A	131	15.391	8.957	13.981	1.00	4.49
ATOM	903	CD2	LEU A	131	15.481	6.488	14.324	1.00	5.12
ATOM	904	N	PHE A	132	20.271	6.009	12.802	1.00	11.56
ATOM	905	CA	PHE A	132	21.422	6.183	11.908	1.00	10.44
ATOM	906	C	PHE A	132	20.965	6.013	10.478	1.00	8.46
ATOM	907	O	PHE A	132	20.175	5.101	10.097	1.00	11.04
ATOM	908	CB	PHE A	132	22.217	4.931	12.282	1.00	10.56
ATOM	909	CG	PHE A	132	22.693	4.830	13.714	1.00	16.38
ATOM	910	CD1	PHE A	132	21.951	4.029	14.542	1.00	13.36
ATOM	911	CD2	PHE A	132	23.860	5.489	14.213	1.00	15.12

31 Mayıs 2001
 DERİS
 Patent ve Marka Ajansı
 Ltd. Şti. D. V.
 AYŞE ÖNAL

NZAS-0236846

ATOM	912	CE1	PHE A	132	22.342	3.911	15.889	1.00	14.91
ATOM	913	CE2	PHE A	132	24.176	5.323	15.513	1.00	18.02
ATOM	914	CZ	PHE A	132	23.426	4.530	16.403	1.00	15.09
ATOM	915	N	GLY A	133	21.431	6.876	9.580	1.00	7.35
ATOM	916	CA	GLY A	133	21.026	6.893	8.148	1.00	5.86
ATOM	917	C	GLY A	133	19.503	6.919	8.061	1.00	12.25
ATOM	918	O	GLY A	133	18.890	5.926	7.593	1.00	9.03
ATOM	919	N	TYR A	134	18.926	8.070	8.532	1.00	9.85
ATOM	920	CA	TYR A	134	17.455	8.022	8.838	1.00	7.40
ATOM	921	C	TYR A	134	16.647	8.365	7.584	1.00	10.61
ATOM	922	O	TYR A	134	16.785	9.513	7.131	1.00	5.85
ATOM	923	CB	TYR A	134	17.161	9.128	9.836	1.00	7.27
ATOM	924	CG	TYR A	134	15.842	9.393	10.391	1.00	7.89
ATOM	925	CD1	TYR A	134	14.889	8.437	10.312	1.00	6.65
ATOM	926	CD2	TYR A	134	15.661	10.651	10.948	1.00	11.44
ATOM	927	CE1	TYR A	134	13.657	8.690	10.821	1.00	9.05
ATOM	928	CE2	TYR A	134	14.408	10.928	11.467	1.00	12.89
ATOM	929	CZ	TYR A	134	13.428	9.923	11.423	1.00	14.22
ATOM	930	OH	TYR A	134	12.146	10.110	11.975	1.00	12.41
ATOM	931	N	THR A	135	15.811	7.398	7.139	1.00	11.51
ATOM	932	CA	THR A	135	15.229	7.581	5.789	1.00	7.71
ATOM	933	C	THR A	135	14.082	8.530	5.825	1.00	10.36
ATOM	934	O	THR A	135	13.845	8.878	4.727	1.00	11.26
ATOM	935	CB	THR A	135	14.772	6.394	4.967	1.00	12.02
ATOM	936	OG1	THR A	135	13.821	5.399	5.398	1.00	22.81
ATOM	937	CG2	THR A	135	15.828	5.332	4.712	1.00	14.88
ATOM	938	N	GLN A	136	13.632	9.105	6.928	1.00	15.28
ATOM	939	CA	GLN A	136	12.596	10.134	6.968	1.00	16.48
ATOM	940	C	GLN A	136	13.102	11.418	7.646	1.00	17.46
ATOM	941	O	GLN A	136	12.292	12.231	8.035	1.00	12.82
ATOM	942	CB	GLN A	136	11.336	9.671	7.701	1.00	5.71
ATOM	943	CG	GLN A	136	11.178	8.191	7.263	1.00	13.60
ATOM	944	CD	GLN A	136	10.504	8.264	5.932	1.00	14.65
ATOM	945	OE1	GLN A	136	9.587	9.102	5.986	1.00	23.99
ATOM	946	NE2	GLN A	136	10.852	7.529	4.914	1.00	14.68
ATOM	947	N	ASN A	137	14.421	11.532	7.566	1.00	18.52
ATOM	948	CA	ASN A	137	14.953	12.752	8.141	1.00	18.16
ATOM	949	C	ASN A	137	14.301	13.929	7.458	1.00	19.79
ATOM	950	O	ASN A	137	13.895	14.802	8.157	1.00	12.28
ATOM	951	CB	ASN A	137	16.481	12.573	8.239	1.00	14.17
ATOM	952	CG	ASN A	137	17.247	13.740	8.812	1.00	19.75
ATOM	953	OD1	ASN A	137	17.821	14.341	7.934	1.00	14.52
ATOM	954	ND2	ASN A	137	17.390	14.130	10.042	1.00	17.43
ATOM	955	N	LEU A	138	14.180	14.062	6.141	1.00	27.31
ATOM	956	CA	LEU A	138	13.640	15.270	5.553	1.00	25.53
ATOM	957	C	LEU A	138	12.190	15.332	5.971	1.00	22.45
ATOM	958	O	LEU A	138	11.710	16.281	6.549	1.00	25.13
ATOM	959	CB	LEU A	138	13.632	15.269	4.056	1.00	41.28

31 Mayıs 2001

DERİS

Patent ve Marka Ajansı

Ltd. Şti.

AYSE DIL

21/34

ATOM	960	CG	LEU A 138	13.713	16.582	3.303	1.00	31.76
ATOM	961	CD1	LEU A 138	14.641	17.503	4.012	1.00	51.09
ATOM	962	CD2	LEU A 138	14.207	16.573	1.958	1.00	46.20
ATOM	963	N	GLN A 139	11.378	14.403	5.569	1.00	20.48
ATOM	964	CA	GLN A 139	10.034	14.390	6.037	1.00	19.98
ATOM	965	C	GLN A 139	9.846	14.749	7.471	1.00	22.85
ATOM	966	O	GLN A 139	8.791	15.282	7.528	1.00	26.66
ATOM	967	CB	GLN A 139	9.517	12.969	5.899	1.00	18.37
ATOM	968	CG	GLN A 139	9.684	12.643	4.450	1.00	22.02
ATOM	969	CD	GLN A 139	10.984	11.983	4.110	1.00	22.69
ATOM	970	OE1	GLN A 139	10.674	10.980	3.477	1.00	35.62
ATOM	971	NE2	GLN A 139	12.195	12.405	4.410	1.00	31.70
ATOM	972	N	ASN A 140	10.454	14.072	8.427	1.00	26.14
ATOM	973	CA	ASN A 140	10.215	14.183	9.848	1.00	19.06
ATOM	974	C	ASN A 140	10.941	15.429	10.293	1.00	16.99
ATOM	975	O	ASN A 140	11.040	15.654	11.454	1.00	18.05
ATOM	976	CB	ASN A 140	10.581	12.910	10.541	1.00	17.20
ATOM	977	CG	ASN A 140	9.465	11.998	10.210	1.00	16.28
ATOM	978	OD1	ASN A 140	8.615	12.565	9.563	1.00	23.57
ATOM	979	ND2	ASN A 140	9.460	10.756	10.630	1.00	22.65
ATOM	980	N	ARG A 141	11.457	16.162	9.397	1.00	19.20
ATOM	981	CA	ARG A 141	12.170	17.350	9.790	1.00	26.25
ATOM	982	C	ARG A 141	13.219	17.090	10.818	1.00	25.06
ATOM	983	O	ARG A 141	13.365	17.928	11.649	1.00	27.60
ATOM	984	CB	ARG A 141	11.123	18.299	10.271	1.00	37.72
ATOM	985	CG	ARG A 141	10.083	18.974	9.372	1.00	49.61
ATOM	986	N	GLY A 142	14.110	16.165	10.920	1.00	19.42
ATOM	987	CA	GLY A 142	14.997	15.778	11.902	1.00	14.21
ATOM	988	C	GLY A 142	14.652	15.066	13.158	1.00	19.42
ATOM	989	O	GLY A 142	15.547	14.759	13.971	1.00	23.74
ATOM	990	N	GLY A 143	13.354	14.851	13.569	1.00	14.09
ATOM	991	CA	GLY A 143	13.210	14.075	14.757	1.00	11.80
ATOM	992	C	GLY A 143	12.203	12.972	14.555	1.00	16.69
ATOM	993	O	GLY A 143	11.760	12.787	13.481	1.00	19.57
ATOM	994	N	ILE A 144	11.668	12.386	15.590	1.00	19.71
ATOM	995	CA	ILE A 144	10.494	11.589	15.667	1.00	20.13
ATOM	996	C	ILE A 144	9.313	12.315	16.296	1.00	27.00
ATOM	997	O	ILE A 144	9.298	13.026	17.268	1.00	26.75
ATOM	998	CB	ILE A 144	10.973	10.583	16.692	1.00	16.84
ATOM	999	CG1	ILE A 144	12.363	9.956	16.348	1.00	5.60
ATOM	1000	CG2	ILE A 144	9.882	9.636	16.775	1.00	14.01
ATOM	1001	CD1	ILE A 144	12.437	9.156	17.562	1.00	2.75
ATOM	1002	N	PRO A 145	8.249	12.380	15.499	1.00	32.77
ATOM	1003	CA	PRO A 145	6.959	12.993	15.779	1.00	29.89
ATOM	1004	C	PRO A 145	6.484	12.588	17.180	1.00	27.78
ATOM	1005	O	PRO A 145	6.475	11.446	17.537	1.00	26.07
ATOM	1006	CB	PRO A 145	5.957	12.384	14.784	1.00	26.51
ATOM	1007	CG	PRO A 145	6.887	12.059	13.668	1.00	25.85

31 Mayıs 2001

D E R I S
Patent ve Marka Ajansı
Lis. No: 1000
AYŞE OVAL

NZAS-0236848

ATOM	1008	CD	PRO A 145	8.174	11.563	14.234	1.00	31.33
ATOM	1009	N	ASN A 146	5.796	13.462	17.878	1.00	27.07
ATOM	1010	CA	ASN A 146	5.454	13.274	19.230	1.00	28.59
ATOM	1011	C	ASN A 146	6.526	12.605	20.045	1.00	29.25
ATOM	1012	O	ASN A 146	6.087	11.995	20.996	1.00	35.51
ATOM	1013	CB	ASN A 146	4.285	12.364	19.230	1.00	41.13
ATOM	1014	CG	ASN A 146	3.300	12.568	18.120	1.00	48.43
ATOM	1015	OD1	ASN A 146	3.134	13.721	17.788	1.00	49.24
ATOM	1016	ND2	ASN A 146	2.763	11.437	17.695	1.00	47.79
ATOM	1017	N	TYR A 147	7.791	12.799	19.885	1.00	23.88
ATOM	1018	CA	TYR A 147	8.689	12.339	20.969	1.00	21.90
ATOM	1019	C	TYR A 147	9.583	13.495	21.285	1.00	22.57
ATOM	1020	O	TYR A 147	9.777	14.399	20.494	1.00	26.53
ATOM	1021	CB	TYR A 147	9.309	11.098	20.498	1.00	21.16
ATOM	1022	CG	TYR A 147	10.285	10.471	21.349	1.00	20.45
ATOM	1023	CD1	TYR A 147	9.882	9.720	22.384	1.00	24.28
ATOM	1024	CD2	TYR A 147	11.608	10.564	21.189	1.00	17.96
ATOM	1025	CE1	TYR A 147	10.681	9.029	23.273	1.00	24.55
ATOM	1026	CE2	TYR A 147	12.509	9.948	21.983	1.00	20.73
ATOM	1027	CZ	TYR A 147	12.022	9.184	23.030	1.00	24.61
ATOM	1028	OH	TYR A 147	12.891	8.536	23.887	1.00	24.80
ATOM	1029	N	PRO A 148	9.893	13.858	22.507	1.00	22.86
ATOM	1030	CA	PRO A 148	10.817	14.916	22.769	1.00	21.77
ATOM	1031	C	PRO A 148	12.127	14.882	21.957	1.00	22.49
ATOM	1032	O	PRO A 148	13.007	14.004	22.117	1.00	22.31
ATOM	1033	CB	PRO A 148	11.185	14.694	24.251	1.00	23.23
ATOM	1034	CG	PRO A 148	10.324	13.576	24.719	1.00	23.39
ATOM	1035	CD	PRO A 148	9.677	12.889	23.590	1.00	25.33
ATOM	1036	N	ARG A 149	12.432	15.980	21.250	1.00	25.45
ATOM	1037	CA	ARG A 149	13.735	16.138	20.567	1.00	22.54
ATOM	1038	C	ARG A 149	14.910	16.018	21.499	1.00	21.28
ATOM	1039	O	ARG A 149	15.860	15.477	21.015	1.00	16.61
ATOM	1040	CB	ARG A 149	13.829	17.346	19.727	1.00	31.02
ATOM	1041	CG	ARG A 149	12.837	17.750	18.719	1.00	58.26
ATOM	1042	CD	ARG A 149	13.452	18.605	17.658	1.00	80.58
ATOM	1043	NE	ARG A 149	13.769	17.798	16.491	1.00	92.05
ATOM	1044	CZ	ARG A 149	13.315	18.154	15.320	1.00	91.85
ATOM	1045	NH1	ARG A 149	12.586	19.213	15.165	1.00	86.98
ATOM	1046	NH2	ARG A 149	13.544	17.488	14.242	1.00	91.61
ATOM	1047	N	GLU A 150	14.813	16.282	22.825	1.00	28.09
ATOM	1048	CA	GLU A 150	15.950	16.171	23.735	1.00	25.55
ATOM	1049	C	GLU A 150	16.272	14.736	24.020	1.00	21.12
ATOM	1050	O	GLU A 150	17.372	14.443	24.371	1.00	24.39
ATOM	1051	CB	GLU A 150	15.753	17.040	24.917	1.00	38.73
ATOM	1052	CG	GLU A 150	14.328	17.370	25.359	1.00	67.27
ATOM	1053	CD	GLU A 150	14.252	17.185	26.899	1.00	85.05
ATOM	1054	OE1	GLU A 150	15.005	17.890	27.657	1.00	90.70
ATOM	1055	OE2	GLU A 150	13.454	16.321	27.373	1.00	91.68

31 Mayıs 2001
DENTS
Patent ve Marka Ajansı
Ltd. Sti. No: 11
AYŞE ORAL

ATOM	1056	N	ARG A 151	15.396	13.807	23.727	1.00	19.70
ATOM	1057	CA	ARG A 151	15.752	12.424	23.844	1.00	19.52
ATOM	1058	C	ARG A 151	16.163	11.779	22.531	1.00	19.28
ATOM	1059	O	ARG A 151	16.373	10.586	22.480	1.00	14.55
ATOM	1060	CB	ARG A 151	14.548	11.796	24.412	1.00	23.06
ATOM	1061	CG	ARG A 151	13.853	12.432	25.516	1.00	22.24
ATOM	1062	CD	ARG A 151	13.200	11.451	26.393	1.00	33.40
ATOM	1063	NE	ARG A 151	12.609	11.893	27.633	1.00	46.53
ATOM	1064	CZ	ARG A 151	11.796	11.028	28.275	1.00	52.87
ATOM	1065	NH1	ARG A 151	11.428	9.823	27.930	1.00	51.02
ATOM	1066	NH2	ARG A 151	11.203	11.278	29.416	1.00	59.98
ATOM	1067	N	THR A 152	16.360	12.526	21.505	1.00	14.12
ATOM	1068	CA	THR A 152	16.629	11.925	20.253	1.00	15.05
ATOM	1069	C	THR A 152	17.995	12.249	19.745	1.00	17.30
ATOM	1070	O	THR A 152	18.282	13.373	19.965	1.00	21.34
ATOM	1071	CB	THR A 152	15.680	12.408	19.158	1.00	13.91
ATOM	1072	OG1	THR A 152	14.423	12.256	19.858	1.00	23.92
ATOM	1073	CG2	THR A 152	15.737	11.934	17.759	1.00	6.77
ATOM	1074	N	LYS A 153	18.704	11.336	19.121	1.00	15.49
ATOM	1075	CA	LYS A 153	19.930	11.725	18.450	1.00	17.73
ATOM	1076	C	LYS A 153	19.893	11.035	17.073	1.00	18.41
ATOM	1077	O	LYS A 153	19.866	9.800	17.121	1.00	16.04
ATOM	1078	CB	LYS A 153	21.112	11.260	19.338	1.00	14.55
ATOM	1079	CG	LYS A 153	22.523	11.508	18.933	1.00	11.95
ATOM	1080	CD	LYS A 153	22.883	12.882	19.403	1.00	40.35
ATOM	1081	CE	LYS A 153	24.358	13.093	19.079	1.00	62.12
ATOM	1082	NZ	LYS A 153	24.930	14.235	19.863	1.00	73.03
ATOM	1083	N	VAL A 154	19.910	11.962	16.136	1.00	15.86
ATOM	1084	CA	VAL A 154	20.031	11.508	14.730	1.00	15.79
ATOM	1085	C	VAL A 154	21.406	11.481	14.040	1.00	13.11
ATOM	1086	O	VAL A 154	21.958	12.460	13.675	1.00	13.51
ATOM	1087	CB	VAL A 154	19.095	12.257	13.674	1.00	5.90
ATOM	1088	CG1	VAL A 154	19.276	11.765	12.247	1.00	8.45
ATOM	1089	CG2	VAL A 154	17.672	12.091	14.117	1.00	7.14
ATOM	1090	N	PHE A 155	22.039	10.448	13.605	1.00	13.75
ATOM	1091	CA	PHE A 155	23.263	10.473	12.843	1.00	10.67
ATOM	1092	C	PHE A 155	22.906	10.406	11.402	1.00	11.64
ATOM	1093	O	PHE A 155	22.505	9.367	10.893	1.00	15.09
ATOM	1094	CB	PHE A 155	23.955	9.120	13.304	1.00	5.38
ATOM	1095	CG	PHE A 155	24.396	9.266	14.739	1.00	16.52
ATOM	1096	CD1	PHE A 155	23.678	8.642	15.696	1.00	23.70
ATOM	1097	CD2	PHE A 155	25.503	9.950	15.107	1.00	11.27
ATOM	1098	CE1	PHE A 155	24.037	8.702	17.011	1.00	23.25
ATOM	1099	CE2	PHE A 155	25.888	9.994	16.372	1.00	7.37
ATOM	1100	CZ	PHE A 155	25.139	9.384	17.357	1.00	16.13
ATOM	1101	N	CYS A 156	23.205	11.255	10.511	1.00	12.38
ATOM	1102	CA	CYS A 156	22.847	11.443	9.114	1.00	11.64
ATOM	1103	C	CYS A 156	24.057	12.027	8.461	1.00	10.08

31 Mayıs 2001

DERİS
 Patent ve Marka Ajansı
 Ltd. Şti.
 AYŞE ORAL

ATOM	1104	O	CYS A 156	24.385	13.174	8.378	1.00	13.73
ATOM	1105	CB	CYS A 156	21.575	12.391	8.917	1.00	6.30
ATOM	1106	SG	CYS A 156	20.137	11.470	8.287	1.00	10.60
ATOM	1107	N	ASN A 157	24.814	11.147	7.918	1.00	16.95
ATOM	1108	CA	ASN A 157	26.229	11.665	7.576	1.00	19.16
ATOM	1109	C	ASN A 157	26.197	12.367	6.310	1.00	17.70
ATOM	1110	O	ASN A 157	25.368	12.330	5.469	1.00	20.91
ATOM	1111	CB	ASN A 157	27.115	10.714	8.300	1.00	30.34
ATOM	1112	CG	ASN A 157	27.733	9.498	7.932	1.00	34.95
ATOM	1113	OD1	ASN A 157	28.011	8.573	8.606	1.00	44.28
ATOM	1114	ND2	ASN A 157	27.965	9.541	6.660	1.00	54.18
ATOM	1115	N	VAL A 158	26.849	13.501	6.313	1.00	25.65
ATOM	1116	CA	VAL A 158	26.825	14.483	5.192	1.00	28.21
ATOM	1117	C	VAL A 158	26.768	13.893	3.758	1.00	24.85
ATOM	1118	O	VAL A 158	25.732	14.266	3.111	1.00	30.96
ATOM	1119	CB	VAL A 158	27.954	15.512	5.217	1.00	27.87
ATOM	1120	CG1	VAL A 158	28.751	14.595	4.238	1.00	40.51
ATOM	1121	CG2	VAL A 158	27.791	16.704	4.399	1.00	34.39
ATOM	1122	N	GLY A 159	27.483	12.956	3.016	1.00	5.94
ATOM	1123	CA	GLY A 159	26.713	12.774	1.732	1.00	6.20
ATOM	1124	C	GLY A 159	25.734	11.797	1.487	1.00	4.00
ATOM	1125	O	GLY A 159	25.732	10.704	0.848	1.00	4.06
ATOM	1126	N	ASP A 160	25.052	11.441	2.643	1.00	8.53
ATOM	1127	CA	ASP A 160	24.106	10.302	2.828	1.00	11.97
ATOM	1128	C	ASP A 160	22.755	10.698	2.177	1.00	14.44
ATOM	1129	O	ASP A 160	21.928	11.398	2.692	1.00	10.21
ATOM	1130	CB	ASP A 160	24.037	9.829	4.277	1.00	12.43
ATOM	1131	CG	ASP A 160	23.126	8.629	4.261	1.00	20.99
ATOM	1132	OD1	ASP A 160	22.525	8.408	3.179	1.00	33.03
ATOM	1133	OD2	ASP A 160	22.956	7.840	5.216	1.00	10.13
ATOM	1134	N	ALA A 161	22.455	10.402	0.961	1.00	12.33
ATOM	1135	CA	ALA A 161	21.318	10.743	0.269	1.00	11.01
ATOM	1136	C	ALA A 161	19.961	10.317	0.848	1.00	15.22
ATOM	1137	O	ALA A 161	18.969	11.034	0.594	1.00	9.50
ATOM	1138	CB	ALA A 161	21.365	10.334	-1.172	1.00	13.68
ATOM	1139	N	VAL A 162	19.915	9.468	1.840	1.00	14.54
ATOM	1140	CA	VAL A 162	18.653	9.014	2.287	1.00	9.86
ATOM	1141	C	VAL A 162	18.235	10.063	3.258	1.00	13.50
ATOM	1142	O	VAL A 162	17.094	10.458	3.377	1.00	20.47
ATOM	1143	CB	VAL A 162	18.596	7.778	3.117	1.00	7.34
ATOM	1144	CG1	VAL A 162	18.931	6.592	2.259	1.00	6.50
ATOM	1145	CG2	VAL A 162	19.514	7.858	4.210	1.00	18.46
ATOM	1146	N	CYS A 163	19.198	10.733	3.719	1.00	13.44
ATOM	1147	CA	CYS A 163	18.864	11.811	4.720	1.00	11.26
ATOM	1148	C	CYS A 163	18.256	12.963	4.042	1.00	15.57
ATOM	1149	O	CYS A 163	18.219	13.857	4.880	1.00	14.09
ATOM	1150	CB	CYS A 163	20.144	12.145	5.570	1.00	18.70
ATOM	1151	SG	CYS A 163	20.748	10.705	6.581	1.00	13.38

31 Mayıs 2001

DERİS
 Patent ve Marka Ajansı
 Ltd. Şti.
 AYŞE DİMLİ

ATOM	1200	CG2	THR A 170	24.389	7.914	-0.452	1.00	41.10
ATOM	1201	N	PRO A 171	28.000	5.738	-0.469	1.00	10.12
ATOM	1202	CA	PRO A 171	29.012	5.066	0.339	1.00	11.88
ATOM	1203	C	PRO A 171	28.897	5.492	1.765	1.00	9.74
ATOM	1204	O	PRO A 171	28.904	4.682	2.646	1.00	9.54
ATOM	1205	CB	PRO A 171	30.414	5.207	-0.286	1.00	7.15
ATOM	1206	CG	PRO A 171	30.017	5.603	-1.654	1.00	7.18
ATOM	1207	CD	PRO A 171	28.667	6.233	-1.601	1.00	6.90
ATOM	1208	N	ALA A 172	28.725	6.718	1.980	1.00	6.71
ATOM	1209	CA	ALA A 172	28.247	7.315	3.169	1.00	8.62
ATOM	1210	C	ALA A 172	27.075	6.631	3.892	1.00	10.99
ATOM	1211	O	ALA A 172	27.037	6.755	5.165	1.00	16.49
ATOM	1212	CB	ALA A 172	27.904	8.812	3.040	1.00	2.86
ATOM	1213	N	HIS A 173	26.287	5.815	3.278	1.00	6.36
ATOM	1214	CA	HIS A 173	25.133	5.468	4.081	1.00	5.29
ATOM	1215	C	HIS A 173	25.685	4.314	4.888	1.00	10.58
ATOM	1216	O	HIS A 173	25.082	3.598	5.668	1.00	9.36
ATOM	1217	CB	HIS A 173	24.081	4.883	3.216	1.00	8.41
ATOM	1218	CG	HIS A 173	22.815	4.403	3.791	1.00	7.30
ATOM	1219	ND1	HIS A 173	22.066	5.327	4.565	1.00	8.48
ATOM	1220	CD2	HIS A 173	22.148	3.264	3.670	1.00	7.83
ATOM	1221	CE1	HIS A 173	20.932	4.657	4.861	1.00	17.36
ATOM	1222	NE2	HIS A 173	20.945	3.423	4.379	1.00	5.29
ATOM	1223	N	LEU A 174	26.823	3.947	4.326	1.00	8.03
ATOM	1224	CA	LEU A 174	27.344	2.623	4.682	1.00	8.06
ATOM	1225	C	LEU A 174	28.171	2.787	5.930	1.00	13.06
ATOM	1226	O	LEU A 174	28.609	1.648	6.151	1.00	19.88
ATOM	1227	CB	LEU A 174	28.078	2.118	3.488	1.00	2.76
ATOM	1228	CG	LEU A 174	27.560	0.902	2.847	1.00	13.35
ATOM	1229	CD1	LEU A 174	26.024	1.017	2.796	1.00	18.01
ATOM	1230	CD2	LEU A 174	27.913	0.740	1.421	1.00	21.70
ATOM	1231	N	SER A 175	28.290	3.989	6.447	1.00	12.43
ATOM	1232	CA	SER A 175	29.230	4.052	7.553	1.00	18.01
ATOM	1233	C	SER A 175	28.872	4.811	8.847	1.00	19.89
ATOM	1234	O	SER A 175	28.968	6.047	9.120	1.00	14.61
ATOM	1235	CB	SER A 175	30.516	4.606	6.847	1.00	20.11
ATOM	1236	OG	SER A 175	30.834	5.907	7.293	1.00	27.73
ATOM	1237	N	TYR A 176	28.479	3.978	9.815	1.00	17.89
ATOM	1238	CA	TYR A 176	28.092	4.530	11.133	1.00	12.54
ATOM	1239	C	TYR A 176	28.530	3.671	12.272	1.00	11.16
ATOM	1240	O	TYR A 176	27.949	3.770	13.257	1.00	7.63
ATOM	1241	CB	TYR A 176	26.511	4.283	11.053	1.00	9.13
ATOM	1242	CG	TYR A 176	25.831	5.525	10.029	1.00	5.03
ATOM	1243	CD1	TYR A 176	25.874	6.923	10.425	1.00	2.75
ATOM	1244	CD2	TYR A 176	25.152	5.022	8.980	1.00	2.18
ATOM	1245	CE1	TYR A 176	25.287	7.754	9.633	1.00	4.25
ATOM	1246	CE2	TYR A 176	24.649	5.981	8.085	1.00	6.77
ATOM	1247	CZ	TYR A 176	24.658	7.329	8.399	1.00	6.22

31 Mayıs 2001
 D E R I S
 Patent ve Marka Akademisi
 Lis. Sil. No. 11111
 AYŞE ÖNAL

ATOM	1152	N	THR A 164	18.100	13.014	2.696	1.00	21.82
ATOM	1153	CA	THR A 164	17.603	14.283	2.171	1.00	23.08
ATOM	1154	C	THR A 164	16.597	14.022	1.098	1.00	23.39
ATOM	1155	O	THR A 164	16.517	14.727	0.137	1.00	33.37
ATOM	1156	CB	THR A 164	18.463	15.341	1.454	1.00	23.25
ATOM	1157	OG1	THR A 164	19.486	14.707	0.674	1.00	23.21
ATOM	1158	CG2	THR A 164	18.958	16.261	2.491	1.00	37.71
ATOM	1159	N	GLY A 165	15.802	13.085	1.309	1.00	24.23
ATOM	1160	CA	GLY A 165	14.606	12.783	0.579	1.00	26.69
ATOM	1161	C	GLY A 165	14.699	11.814	-0.515	1.00	28.56
ATOM	1162	O	GLY A 165	13.680	11.775	-1.124	1.00	39.76
ATOM	1163	N	THR A 166	15.661	11.044	-0.736	1.00	25.80
ATOM	1164	CA	THR A 166	16.006	10.220	-1.774	1.00	25.53
ATOM	1165	C	THR A 166	16.195	8.866	-1.175	1.00	25.35
ATOM	1166	O	THR A 166	16.913	8.760	-0.206	1.00	30.91
ATOM	1167	CB	THR A 166	17.406	10.657	-2.230	1.00	31.57
ATOM	1168	OG1	THR A 166	17.105	11.788	-2.982	1.00	24.13
ATOM	1169	CG2	THR A 166	18.061	9.559	-2.983	1.00	34.67
ATOM	1170	N	LEU A 167	15.734	7.833	-1.817	1.00	19.63
ATOM	1171	CA	LEU A 167	16.219	6.552	-1.465	1.00	16.11
ATOM	1172	C	LEU A 167	17.395	6.044	-2.300	1.00	19.87
ATOM	1173	O	LEU A 167	17.265	4.869	-2.612	1.00	21.38
ATOM	1174	CB	LEU A 167	15.086	5.624	-1.555	1.00	23.45
ATOM	1175	CG	LEU A 167	14.123	5.773	-0.401	1.00	33.91
ATOM	1176	CD1	LEU A 167	12.969	4.908	-0.793	1.00	42.10
ATOM	1177	CD2	LEU A 167	14.776	5.385	0.903	1.00	25.86
ATOM	1178	N	ILE A 168	18.534	6.726	-2.507	1.00	21.67
ATOM	1179	CA	ILE A 168	19.608	6.051	-3.170	1.00	23.38
ATOM	1180	C	ILE A 168	20.675	5.585	-2.189	1.00	20.47
ATOM	1181	O	ILE A 168	21.139	6.541	-1.581	1.00	18.08
ATOM	1182	CB	ILE A 168	20.254	6.835	-4.297	1.00	23.50
ATOM	1183	CG1	ILE A 168	21.232	7.874	-3.800	1.00	13.71
ATOM	1184	CG2	ILE A 168	19.445	7.627	-5.276	1.00	18.16
ATOM	1185	CD1	ILE A 168	20.908	8.938	-4.804	1.00	26.95
ATOM	1186	N	ILE A 169	21.396	4.478	-2.394	1.00	18.32
ATOM	1187	CA	ILE A 169	22.554	4.448	-1.536	1.00	13.25
ATOM	1188	C	ILE A 169	23.924	4.662	-1.967	1.00	11.95
ATOM	1189	O	ILE A 169	24.615	3.942	-2.539	1.00	20.35
ATOM	1190	CB	ILE A 169	22.503	3.351	-0.499	1.00	21.07
ATOM	1191	CG1	ILE A 169	23.398	2.181	-0.655	1.00	11.06
ATOM	1192	CG2	ILE A 169	21.122	2.801	-0.533	1.00	7.02
ATOM	1193	CD1	ILE A 169	22.581	1.266	-1.587	1.00	32.83
ATOM	1194	N	THR A 170	24.570	5.586	-1.296	1.00	17.16
ATOM	1195	CA	THR A 170	25.883	6.217	-1.397	1.00	13.01
ATOM	1196	C	THR A 170	26.722	5.719	-0.240	1.00	10.14
ATOM	1197	O	THR A 170	26.334	5.036	0.758	1.00	9.98
ATOM	1198	CB	THR A 170	25.623	7.713	-1.344	1.00	15.02
ATOM	1199	OG1	THR A 170	26.466	7.947	-0.255	1.00	23.39

31 Mayıs 2001

DERS
 Patoz ve Mekanik Akademisi
 Lider Sti. no: 100
 AYSE DILAN

ATOM	1248	OH	TYR A 176	24.074	8.375	7.635	1.00	5.76
ATOM	1249	N	THR A 177	29.430	2.685	12.167	1.00	10.72
ATOM	1250	CA	THR A 177	29.797	1.854	13.284	1.00	13.31
ATOM	1251	C	THR A 177	30.516	2.659	14.320	1.00	12.46
ATOM	1252	O	THR A 177	30.311	2.436	15.475	1.00	13.12
ATOM	1253	CB	THR A 177	30.658	0.683	12.798	1.00	3.49
ATOM	1254	OG1	THR A 177	31.361	1.247	11.870	1.00	32.08
ATOM	1255	CG2	THR A 177	29.675	-0.149	12.083	1.00	6.42
ATOM	1256	N	ILE A 178	31.409	3.474	13.920	1.00	10.48
ATOM	1257	CA	ILE A 178	32.203	4.246	14.783	1.00	15.25
ATOM	1258	C	ILE A 178	31.180	5.045	15.632	1.00	16.95
ATOM	1259	O	ILE A 178	31.092	4.774	16.851	1.00	22.68
ATOM	1260	CB	ILE A 178	33.338	5.121	14.357	1.00	25.11
ATOM	1261	CG1	ILE A 178	34.701	4.496	14.056	1.00	25.05
ATOM	1262	CG2	ILE A 178	33.599	6.205	15.392	1.00	27.60
ATOM	1263	CD1	ILE A 178	34.553	3.006	14.071	1.00	55.86
ATOM	1264	N	GLU A 179	30.218	5.799	15.178	1.00	16.34
ATOM	1265	CA	GLU A 179	29.290	6.610	15.985	1.00	16.94
ATOM	1266	C	GLU A 179	28.324	5.713	16.692	1.00	14.79
ATOM	1267	O	GLU A 179	27.683	6.012	17.716	1.00	19.20
ATOM	1268	CB	GLU A 179	28.555	7.637	15.169	1.00	21.16
ATOM	1269	CG	GLU A 179	28.790	7.283	13.691	1.00	50.37
ATOM	1270	CD	GLU A 179	29.933	7.701	12.851	1.00	61.82
ATOM	1271	OE1	GLU A 179	30.163	8.890	12.697	1.00	77.56
ATOM	1272	OE2	GLU A 179	30.627	6.854	12.309	1.00	75.83
ATOM	1273	N	ALA A 180	28.240	4.418	16.412	1.00	8.00
ATOM	1274	CA	ALA A 180	27.353	3.520	17.042	1.00	14.34
ATOM	1275	C	ALA A 180	28.048	2.991	18.280	1.00	19.53
ATOM	1276	O	ALA A 180	27.397	3.142	19.265	1.00	21.17
ATOM	1277	CB	ALA A 180	26.843	2.437	16.128	1.00	11.97
ATOM	1278	N	ARG A 181	29.317	2.547	18.287	1.00	21.89
ATOM	1279	CA	ARG A 181	29.992	1.982	19.398	1.00	16.48
ATOM	1280	C	ARG A 181	30.296	3.106	20.367	1.00	19.44
ATOM	1281	O	ARG A 181	30.243	3.104	21.639	1.00	28.53
ATOM	1282	CB	ARG A 181	31.310	1.408	19.143	1.00	12.43
ATOM	1283	CG	ARG A 181	31.954	0.432	20.052	1.00	45.44
ATOM	1284	CD	ARG A 181	32.596	-0.688	19.242	1.00	66.21
ATOM	1285	NE	ARG A 181	33.333	-0.030	18.164	1.00	85.83
ATOM	1286	CZ	ARG A 181	33.306	-0.321	16.895	1.00	91.35
ATOM	1287	NH1	ARG A 181	32.551	-1.320	16.530	1.00	96.98
ATOM	1288	NH2	ARG A 181	34.023	0.400	16.095	1.00	92.83
ATOM	1289	N	GLY A 182	30.387	4.262	19.847	1.00	13.94
ATOM	1290	CA	GLY A 182	30.553	5.404	20.728	1.00	7.40
ATOM	1291	C	GLY A 182	29.741	6.574	20.960	1.00	7.95
ATOM	1292	O	GLY A 182	29.171	6.512	22.083	1.00	12.73
ATOM	1293	N	GLU A 183	29.725	7.622	20.138	1.00	6.42
ATOM	1294	CA	GLU A 183	28.816	8.775	20.405	1.00	10.04
ATOM	1295	C	GLU A 183	27.421	8.369	20.645	1.00	14.41

31 Mayıs 2001

D E R I S
 Patent ve Marka Ajansı
 Ltd. Şti. n.o. 111
 AYSE DILAY

NZAS-0236854

ATOM	1296	O	GLU A	183	26.846	8.530	21.749	1.00	15.43
ATOM	1297	CB	GLU A	183	29.053	9.791	19.402	1.00	21.24
ATOM	1298	CG	GLU A	183	28.079	10.638	18.725	1.00	62.21
ATOM	1299	CD	GLU A	183	28.248	12.103	19.141	1.00	81.34
ATOM	1300	OE1	GLU A	183	28.850	12.243	20.232	1.00	95.85
ATOM	1301	OE2	GLU A	183	27.791	13.027	18.430	1.00	90.85
ATOM	1302	N	ALA A	184	26.766	7.605	19.808	1.00	15.56
ATOM	1303	CA	ALA A	184	25.444	7.083	20.117	1.00	14.54
ATOM	1304	C	ALA A	184	25.549	6.382	21.464	1.00	13.62
ATOM	1305	O	ALA A	184	24.575	6.533	22.215	1.00	16.75
ATOM	1306	CB	ALA A	184	25.019	6.015	19.089	1.00	9.58
ATOM	1307	N	ALA A	185	26.428	5.396	21.774	1.00	9.42
ATOM	1308	CA	ALA A	185	26.219	4.677	23.031	1.00	7.48
ATOM	1309	C	ALA A	185	26.330	5.715	24.100	1.00	12.30
ATOM	1310	O	ALA A	185	25.761	5.503	25.179	1.00	9.50
ATOM	1311	CB	ALA A	185	27.138	3.475	23.260	1.00	4.60
ATOM	1312	N	ARG A	186	27.271	6.673	24.090	1.00	15.54
ATOM	1313	CA	ARG A	186	27.352	7.507	25.300	1.00	13.57
ATOM	1314	C	ARG A	186	26.085	8.286	25.561	1.00	11.49
ATOM	1315	O	ARG A	186	25.421	8.267	26.573	1.00	8.74
ATOM	1316	CB	ARG A	186	28.484	8.460	25.043	1.00	30.29
ATOM	1317	CG	ARG A	186	29.869	7.851	25.240	1.00	37.15
ATOM	1318	CD	ARG A	186	30.983	8.826	24.813	1.00	42.36
ATOM	1319	NE	ARG A	186	31.902	7.942	24.064	1.00	51.82
ATOM	1320	CZ	ARG A	186	32.324	8.346	22.870	1.00	50.20
ATOM	1321	NH1	ARG A	186	31.924	9.538	22.424	1.00	47.65
ATOM	1322	NH2	ARG A	186	33.115	7.476	22.318	1.00	39.90
ATOM	1323	N	PHE A	187	25.565	8.774	24.434	1.00	8.37
ATOM	1324	CA	PHE A	187	24.195	9.370	24.426	1.00	13.48
ATOM	1325	C	PHE A	187	23.187	8.476	25.182	1.00	15.92
ATOM	1326	O	PHE A	187	22.379	8.916	25.995	1.00	14.81
ATOM	1327	CB	PHE A	187	23.667	9.791	23.087	1.00	11.81
ATOM	1328	CG	PHE A	187	22.282	10.323	23.032	1.00	14.64
ATOM	1329	CD1	PHE A	187	21.984	11.586	23.391	1.00	8.47
ATOM	1330	CD2	PHE A	187	21.186	9.599	22.564	1.00	18.34
ATOM	1331	CE1	PHE A	187	20.698	12.134	23.353	1.00	12.89
ATOM	1332	CE2	PHE A	187	19.895	10.026	22.485	1.00	17.42
ATOM	1333	CZ	PHE A	187	19.661	11.322	22.924	1.00	3.70
ATOM	1334	N	LEU A	188	23.033	7.232	24.803	1.00	15.17
ATOM	1335	CA	LEU A	188	21.908	6.427	25.324	1.00	18.43
ATOM	1336	C	LEU A	188	22.207	6.221	26.775	1.00	19.67
ATOM	1337	O	LEU A	188	21.280	6.512	27.461	1.00	18.17
ATOM	1338	CB	LEU A	188	21.703	5.088	24.552	1.00	18.72
ATOM	1339	CG	LEU A	188	21.116	5.375	23.136	1.00	9.96
ATOM	1340	CD1	LEU A	188	20.950	4.066	22.601	1.00	7.86
ATOM	1341	CD2	LEU A	188	19.849	6.206	23.168	1.00	4.70
ATOM	1342	N	ARG A	189	23.333	5.805	27.230	1.00	17.48
ATOM	1343	CA	ARG A	189	23.798	5.812	28.547	1.00	18.41

31 Mayıs 2001

DERİS
 Patent ve Marka Ajansı
 Ltd. Şti.
 ATAK-İAL

29/34

ATOM	1344	C	ARG A 189	23.353	7.039	29.321	1.00	16.87
ATOM	1345	O	ARG A 189	22.852	7.164	30.389	1.00	13.64
ATOM	1346	CB	ARG A 189	25.325	6.017	28.529	1.00	21.93
ATOM	1347	CG	ARG A 189	25.882	5.624	29.894	1.00	19.95
ATOM	1348	CD	ARG A 189	27.239	6.140	30.235	1.00	21.42
ATOM	1349	NE	ARG A 189	27.257	7.545	29.926	1.00	25.62
ATOM	1350	CZ	ARG A 189	28.491	7.983	29.699	1.00	29.22
ATOM	1351	NH1	ARG A 189	29.315	6.960	29.840	1.00	26.71
ATOM	1352	NH2	ARG A 189	28.780	9.210	29.383	1.00	33.27
ATOM	1353	N	ASP A 189	23.837	8.150	28.796	1.00	13.76
ATOM'	1354	CA	ASP A 190	23.489	9.338	29.615	1.00	17.78
ATOM	1355	C	ASP A 190	22.008	9.364	29.711	1.00	16.79
ATOM	1356	O	ASP A 190	21.661	9.891	30.692	1.00	23.13
ATOM	1357	CB	ASP A 190	23.995	10.663	29.070	1.00	33.40
ATOM	1358	CG	ASP A 190	25.553	10.664	29.079	1.00	22.68
ATOM	1359	OD1	ASP A 190	26.250	9.836	29.761	1.00	30.24
ATOM	1360	OD2	ASP A 190	25.961	11.595	28.321	1.00	21.23
ATOM	1361	N	ARG A 191	21.156	9.128	28.781	1.00	20.99
ATOM	1362	CA	ARG A 191	19.707	9.265	28.849	1.00	21.61
ATOM	1363	C	ARG A 191	19.176	8.237	29.825	1.00	19.76
ATOM	1364	O	ARG A 191	18.327	8.515	30.651	1.00	20.99
ATOM	1365	CB	ARG A 191	19.014	9.214	27.450	1.00	20.98
ATOM	1366	CG	ARG A 191	19.605	10.282	26.521	1.00	36.68
ATOM	1367	CD	ARG A 191	18.848	11.594	26.689	1.00	27.49
ATOM	1368	NE	ARG A 191	17.559	11.023	27.144	1.00	60.89
ATOM	1369	CZ	ARG A 191	16.841	11.651	28.087	1.00	73.30
ATOM	1370	NH1	ARG A 191	17.404	12.780	28.496	1.00	76.65
ATOM	1371	NH2	ARG A 191	15.675	11.224	28.574	1.00	62.02
ATOM	1372	N	ILE A 192	19.734	7.037	29.885	1.00	24.23
ATOM	1373	CA	ILE A 192	19.500	6.080	30.913	1.00	21.92
ATOM	1374	C	ILE A 192	19.705	6.598	32.337	1.00	25.67
ATOM	1375	O	ILE A 192	19.145	6.053	33.263	1.00	28.72
ATOM	1376	CB	ILE A 192	20.289	4.775	30.750	1.00	33.95
ATOM	1377	CG1	ILE A 192	19.770	4.215	29.475	1.00	42.87
ATOM	1378	CG2	ILE A 192	19.923	3.983	31.951	1.00	48.19
ATOM	1379	CD1	ILE A 192	20.418	2.954	29.019	1.00	34.19
ATOM	1380	N	ARG A 193	20.535	7.574	32.629	1.00	21.07
ATOM	1381	CA	ARG A 193	20.800	8.068	33.963	1.00	28.72
ATOM	1382	C	ARG A 193	20.116	9.377	34.406	1.00	15.15
ATOM	1383	O	ARG A 193	20.479	9.267	35.618	1.00	39.38
ATOM	1384	CB	ARG A 193	22.298	8.179	34.167	1.00	65.92
ATOM	1385	CG	ARG A 193	23.096	6.896	34.100	1.00	81.05
ATOM	1386	CD	ARG A 193	24.590	7.213	34.133	1.00	81.52
ATOM	1387	NE	ARG A 193	25.339	5.973	34.003	1.00	80.92
ATOM	1388	CZ	ARG A 193	26.631	5.765	33.770	1.00	74.00
ATOM	1389	NH1	ARG A 193	27.441	6.816	33.647	1.00	38.80
ATOM	1390	NH2	ARG A 193	27.120	4.536	33.652	1.00	80.92
TER	1391	OT	ARG A 193	19.292	10.277	34.082	1.00	34.19

31 Mayis 2001

D E W S
Palomar de Merito Academico,
Lad. 511, 7. piso
Avda. 10 de Noviembre

NZAS-0236856

30/34

ŞEKİL 2

(B)

31 Mayıs 2001

D E R I S
Patent ve Marka Daire Başkanlığı
Ltd. Sti. A.Ş.
AYŞE ÜNAL

NZAS-0236857

ŞEKİL 3

(C)

31 Mayıs 2001

DÉRIS
Patent ve Marmara İletişim
Ltd. Silvan
AYŞE ORAL

ŞEKİL 4

(K)

31 Mayıs 2001

DERİS
Patent ve Marka Ajansı
Ltd. Şti. B.A.
AYŞE DEMAL

ŞEKİL 5

(L)

31 Mayıs 2001

DERIS
Patent ve Marka Ajansı
Lis. Sü. No: 1
AYŞE OĞUL

ŞEKİL 6

(L)

31 Mayıs 2001

DERIS
Patent ve Marka Ajansı
Ltd. Şti
AYŞE ÖNAL

NZAS-0236861

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.