

Sample size calculation with GPower

Wilfried Cools (ICDS) & Sven Van Laere (BiSI) https://www.icds.be/

sample size calculation: demarcation

- how many observations are sufficient?
 - avoid too many: observations typically imply a cost
 - money / time → limited resources
 - risk / harm → ethical constraints
 - sufficient for what? depends on
 - the aim of the study → statistical inference
- linked to statistical inference (using standard error)
 - testing → power [probability to detect effect]
 - estimation → accuracy [size of confidence interval]

sample size calculation

- the program
 - understand the reasoning
 - introduce building blocks
 - implement on t-test
 - explore more complex situations
 - simple but common
- not one simple formula for all → GPower to the rescue
 - a few exercises

2/59

sample size calculation: a difficult design issue

- · before data collection, during design of study
 - requires understanding: future data, analysis, inference (effect size, focus, ...)
 - conditional on assumptions & decisions
- not always possible nor meaningful!
 - easier for experiments (control), less for observational studies
 - easier for confirmatory studies, much less for exploratory studies
 - not possible for predictive models, because no standard error
 - NO retrospective power analyses → OK for future study only

 Hoenig, J., & Heisey, D. (2001). The Abuse of Power: The Pervasive Fallacy of Power Calculations for Data Analysis.

 The American Statistician, 55, 19–24.
- alternative justifications:
 - common practice, feasibility → non-statistical (importance, low cost, ...)

simple example

- · experimental confirmatory
- · evaluation of radiotherapy to reduce a tumor in mice
- · comparing treatment group with control (=conditions)
- tumor induced, random assignment treatment or control (equal if no effect)
- · after 20 days, measurement of tumor size (=observations)
- · intended analysis: unpaired t-test to compare averages for treatment and control
- · SAMPLE SIZE CALCULATION:
 - IF average tumor size for treatment at least 20% less than control (4 vs. 5mm)
 - THEN how many observations, sufficient to detect that difference (significance)?

5/59

reference example

- · sample sizes easy and meaningful to calculate for well understood problems
- · apriori specifications
 - intend to perform a statistical test
 - comparing 2 equally sized groups
 - to detect difference of at least 2
 - assuming an uncertainty of 4 SD on each mean
 - which results in an effect size of .5
 - evaluated on a Student t-distribution
 - allowing for a <u>type I error</u> prob. of .05 (α)
 - allowing for a <u>type II error</u> prob. of .2 (β)
- $\cdot \;\; \underline{\text{sample size}}$ conditional on specifications being true

https://apps.icds.be/shinyt/

6/59

a formula you could use

- · for this particular case:
 - sample size $(n \rightarrow ?)$
 - difference (d=signal \rightarrow 2)
 - uncertainty (σ =noise ightarrow 4)
 - type I errors (lpha ightarrow .05, so $Z_{lpha/2}$ ightarrow -1.96)
 - type II errors (eta ightarrow .2, so Z_{eta} ightarrow -0.84)

- sample size = 2 groups x 63 observations = 126
- $\cdot\,\,$ note: formula's are test and statistic specific but logic remains same
- this and other formula's implemented in various tools, our focus: GPower

GPower: a useful tool

- · popular and well established
- free @ http://www.gpower.hhu.de/
- $\cdot\;$ implements wide variety of tests
- · implements various visualizations
- documented fairly well
- · note: not all tests are included!
- · note: not without flaws!
- · other tools exist (some paying)
- · alternative: simulation (generate and analyze)

7/59 8/59

GPower: the building blocks in action

- · sizes: effect size, sample size
- · errors:
 - type I (α) defined on distribution Ho
 - type II (β) evaluated on distribution Ha
- · calculate sample size based on effect size, and type I / II error

GPower input

- · ~ reference example
- · t-test : difference two indep. means
- · apriori: calculate sample size
- effect size = standardized difference [Determine]
 - Cohen's d
 - $d = |difference| / SD_pooled$
 - -d = |0-2|/4 = .5
- $\alpha = .05$, 2 tailed ($\alpha/2 \rightarrow .025 \& .975$)
- $power = 1 \beta = .8$
- allocation ratio = 1 (equally sized groups)

10/59

GPower output

- sample size $(n) = 64 \times 2 = (128)$
- · degrees of freedom (df) = 126 (128 2)
- plot showing null Ho and alternative Ha distribution
 - in GPower central and non-central distribution
 - Ho & critical value → decision boundaries
 - critical t = 1.979, qt(.975, 126)
 - Ha, shift with non-centrality parameter → truth
 - non centrality parameter (δ) = 2.8284 2/(4*sqrt(2))*sqrt(64)
- power \geq .80 (1- β) = 0.8015

9/59

reference example protocol

- · Protocol: summary for future reference or communication
- File/Edit save or print file (copy-paste)

t tests - Means: Difference between two independent means (two groups) Analysis: A priori: Compute required sample size

Tail(s) = Two

Effect size d = 0.5000000 α err prob = 0.05Power $(1-\beta \text{ err prob}) = .8$ Allocation ratio N2/N1 = 1

Input:

utput:

Noncentrality parameter δ = 2.8284271

Critical t = 1.9789706

Df = 126

Sample size group 1 = 64

Sample size group 2 = 64

Total sample size = 128

Actual power = 0.8014596

11/59 12/59

building blocks

<u>distributions</u>: Ho & Ha, test dependent shape <u>sizes</u>: sample size and effect size in relation to distance between Ho & Ha <u>errors</u>: type I error and type II error as cut-off on Ho & Ha

13/59

GPower distributions

- test family statistical tests [in window]
 - Exact Tests (8)
 - t-tests (11) \rightarrow reference
 - z-tests (2)
 - χ^2 -tests (7)
 - *F*-tests (16)
- · focus on the density functions

- · tests [in menu]
 - correlation & regression (15)
 - means (19) → reference
 - proportions (8)
 - variances (2)
- · focus on the type of parameters

central Ho and non-central Ha distributions

- Ho acts as $benchmark \rightarrow eg.$, no difference
 - Ho ~ t(0,df) cutoff using lpha,
 - reject Ho if test returns implausible value
- + Ha acts as truth ightarrow eg., difference of .5 SD
 - Ha ~ t(ncp,df)
 - $\mbox{\bf ncp}$ as violation of $\mbox{\bf Ho} \rightarrow \mbox{\bf shift}$ (location/shape)
- ncp: non-centrality parameter combines
 - assumed effect size (target or signal)
 - conditional on sample size (information)
- · ncp: determines overlap \rightarrow power \leftrightarrow sample size

https://apps.icds.be/shinyt/

divide by n perspective on distributions

- · non-centrality parameter, sample size translates Ha
- $\cdot\,\,$ alternative: sample size changes standard deviation
- https://apps.icds.be/shinyt/

· remember:

$$n=rac{(Z_{lpha/2}+Z_{eta})^2*2*\sigma^2}{d^2}
onumber \ n=rac{(-1.96-0.84)^2*2*4^2}{2^2}
onumber \ n=62.79$$

divide by n, for statistical estimation (no Ha)

- focus on estimation, plausible values of effect (no testing)
- · sample size without type II error β , power, Ho or Ha
- · distribution on the estimate (not the null)
- $\cdot \ \ \text{precision analysis} \rightarrow \text{set maximum width confidence interval}$
 - let E = maximum half width of confidence interval to accept
 - for confidence level $1-\alpha$
 - $n=z_{lpha/2}^2*\sigma^2*2/\,E^2$ (for 2 groups)
- · equivalence with statistical testing
 - if 0 (or other reference) outside confidence bounds \rightarrow significant
- · NOT GPower

17/59

Ho and Ha: a statistical note

- Ha is NOT interchangeable with Ho
 - α for cut-off at Ho \rightarrow observe test statistics (Ha unknown)
 - fail to reject \rightarrow remain in doubt
 - absence of evidence \neq evidence of absence
 - p-value → P(statistic | Ho) != P(Ho | statistic)
 - η not significantly different from 0 ightarrow not from η * 2 either
 - equivalence testing
 - reject Ho that smaller than 0 $|\delta|$
 - reject **Ho** that bigger than $0 + |\delta|$
 - Ha for 'no effect'

18/59

type I/II error probability

- · inference, statistical testing
 - cut-off's → infer effect (+) vs. insufficient evidence (-)
 - distribution \rightarrow true vs. false (density \rightarrow AUC=1)
- $\cdot\;$ type I error: incorrectly reject ${\bf Ho}$ (false positive):
 - cut-off at ${\rm Ho},$ error prob. α controlled
 - one/two tailed \rightarrow one/both sides informative ?
- type II error: incorrectly fail to reject Ho (false -):
 - cut-off at Ho , error prob. β depends on Ha
 - Ha assumed known in a power analyses
 - power = 1 β = probability correct rejection (true +)

	infer=Ha	infer=Ho	sum
truth=Ho	α	1- α	1
truth=Ha	1-β	β	1
			19/59

error exercise : create plot

- · ~ reference example
- create plot (X-Y plot for range of values)
- · plot sample size by type I error
- set plot to 4 curves
 - for power .8 in steps of .05
- \cdot set lpha on x-axis
 - from .01 to .2 in steps of .01
- · use effect size .5

notice Table option

error exercise : interpret plot

- where on the red curve (right) type II error = 4 * type I error?
- when smaller effect size (.25), what changes?
- switch power and sample size (32 in step of 32)
 what is relation type I and II error?

where on the yellow curve (left) type II error = 4 * type I error ?

21/59

decide type I/II error probability

- · frequent choices
 - α often in range .01 .05 ightarrow 1/100 1/20
 - β often in range .1 to .2 \rightarrow power = 80% to 90%
- $\cdot \ \alpha \& \beta$ inversely related
 - if $\alpha=0$ \rightarrow never reject, no power
 - α & β often selected in 1/4 ratio type I error is 4 times worse !!
 - which error you want to avoid most?
 - cheap aids test ? → avoid type II
 - heavy cancer treatment ? \rightarrow avoid type I

22/59

control type I error

- multiple tests
 - inflates type I error α
 - family of tests: $1 (1 \alpha)^k$
 - correct, eg., Bonferroni (lpha/k)
 - interim analysis (analyze and proceed)
 - correct, eg., alpha spending
- $\cdot\;$ suggested technique interim analysis: alpha spending
 - plan in advance
 - use O'Brien Flemming bounds, more efficient than Bonferroni
 - NOT GPower
 - determine with simulation tool: https://apps.icds.be/aspending/
 - commercial packages eg., PASS and other software (eg., Idbounds in R)

for fun: P(effect exists | test says so)

- \cdot power \rightarrow P(test says there is effect | effect exists)
- $P(infer = Ha|truth = Ho) = \alpha$
- $P(infer = Ho|truth = Ha) = \beta$
- P(infer = Ha|truth = Ha) = power
- $P(\underbrace{truth} = Ha | \underbrace{infer} = Ha) = \frac{P(infer = Ha|truth = Ha) * P(truth = Ha)}{P(infer = Ha)} \rightarrow \mathsf{Bayes} \ \mathsf{Theorem}$
- $\qquad \qquad P(truth = Ha|infer = Ha) = \frac{P(infer = Ha|truth = Ha) * P(truth = Ha)}{P(infer = Ha|truth = Ha) * P(truth = Ha) + P(infer = Ha|truth = Ho) * P(truth = Ha)}$
- $\cdot \ \ P(truth = Ha|infer = Ha) = \frac{power*P(truth = Ha)}{power*P(truth = Ha) + \alpha * P(truth = Ha)} \ \ \rightarrow \ \ \text{depends on prior probabilities}$
- IF very low probability model is true, eg., .01 ? $\rightarrow P(truth = Ha) = .01$
- $\cdot\,$ THEN probability effect exists if test says so is low, in this case only 14% !!
- $P(truth = Ha|infer = Ha) = \frac{.8*.01}{.8*.01+.05*.99} = .14$

effect sizes

- · estimate/guestimate of magnitude or practical significance
- typically standardized: signal to noise ratio (noise provides scale)
 - eg., difference on scale of pooled standard deviation
- · part of non-centrality (as is sample size) → shift in GPower
 - bigger effect → more easy to detect (pushing away Ha)
- · 2 main families of effect sizes (test specific)
 - d-family (differences) and r-family (associations)
 - transform one into other, eg., $d = .5 \rightarrow r = .243$

$$d = \frac{2r}{\sqrt{1-r^2}}$$

$$r = \frac{d}{\sqrt{d^2+4}}$$

$$d=rac{2r}{\sqrt{1-r^2}} \qquad \qquad r=rac{d}{\sqrt{d^2+4}} \qquad \qquad d=ln(OR)*rac{\sqrt{3}}{\pi}$$

• NOT p-value ~ partly effect size, but also partly sample size

25/59

effect sizes in GPower (Determine)

- · often very difficult to specify
 - test specific, depends on various statistics
- · GPower offers help with Determine
 - t-test → group means and sd's
 - one-way anova → variance explained & error
 - regression → again other parameters

effect sizes in literature

Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155-159.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed).

Table 1
ES Indexes and Their Values for Small, Medium, and Large Effects

Cohen conventions beware, just rules of thumb

Ellis, P. D. (2010). The essential guide to effect sizes: statistical power, meta-analysis, and the interpretation of research results.

Mean	sures of group differences (the d family)	Measures	of association (the r family)	Measure	s of association (the r family)
(a) Groups compared on dichotomous outcomes		(a) Correlation indexes		(b) Proportion of variance indexes	
RD	The risk difference in probabilities: the difference between the probability of an event or outcome occurring in two groups	,	The Pearson product moment correlation coefficient used when both variables are measured on an interval or ratio (metric) scale	r ² R ³	The coefficient of determination used in bountate regression analysis R squared, or the (unconnected) coefficient of multiple
RR	The risk or rate ratio or relative risk: compares the probability of an event or outcome occurring in one group with the probability of it occurring in another	ρ (or r _e)	Spearman's the or the rank correlation coefficient: used when both variables are measured on an ordinal or smaked (non-metric) scale	$_{\rm sig}R^2$	determination: commonly used in multiple regression analysis Adjusted R squared, or the coefficient of multiple
OR	The odds ratio: compares the odds of an event or outcome occurring in one group with the odds of it occurring in another	ř	Kendall's tru: like tho, used when both variables are measured on an ordinal or snaked scale; tru-b is used for square-shaped tables; tru-c is	,	determination adjusted for sample size and the number of predictor variables Cohen's f. quantifies the dispersion of means in three o
(b) C d	orougo compared on continuous outcomes Cohen's d: the uncorrected standardized mean difference between two groups based on the pooled standard deviation Glass's delta (or d): the	rps	used for rectangular tables. The point-biserial correlation coefficient: used when one unriable (the predictor) is measured on a binary scale and the other variable is continuous.	p	more groups; commonly used in ANOVA. Cohen's f squared: an alternative to R ² in multiple regression analysis and \(\Delta R^2 \) in hierarchical regression analysis.
4	uncorrected standardized mean difference between two groups based on the standard deviation of the control moun	v	The phi coefficient used when variables and effects can be arranged in a 2×2 contingency table	4 ²	En squared or the (uncorrected) correlation ratio: commonly used in ANOVA Epsilon sowered in unbiased
2	Hedges' g: the corrected standardized mean difference between two groups based on the pooled, weighted standard deviation	c	Pearson's contingency coefficient used when variables and effects can be arranged in a contingency table of any size	o² R³c	alternative to η ² Omega squared: an unbiased alternative to η ² The squared canonical correlation onefficient used
PS	Probability of superiority: the probability that a standom value from one group will be menter	ν	Cramér's V. like C, V is an adjusted version of phi that car be used for tables of any size		for canonical correlation analysis
	than a random value drawn from mother	λ	Goodman and Kruskal's lambda: used when both variables are measured on nominal (or		

· more than 70 different effect sizes... most of them related to each other

effect size exercise: ingredients cohen d

For the reference example:

- · change mean values from 0 and 2 to 4 and 6, what changes?
- · change sd values to 2 for each, what changes?
 - effect size?
 - total sample size?
 - non-centrality?
 - critical t?
- · change sd values to 6 for each, what changes?

27/59 28/59

effect size exercise: plot

- · plot power by effect size
- · set plot to 6 curves
 - for sample sizes, 34 in steps of 34
- · set effect sizes on x-axis
 - from .2 to 1.2 in steps of .05
- · use α equal to .05

- · determine (approximately) the three situations from previous slide on the plot
- how does power change when doubling the effect size, eg., from .5 to 1?

29/59

effect size exercise: imbalance

For the reference example:

- · change allocation ratio from 1
 - to 2, .5, 3 and 4, what to conclude?
 - ratio 2 and .5?
 - imbalance + 1 or * 2?

30/59

effect sizes, how to determine them in theory

- choice of effect size matters → justify choice
- · choice of effect size dependent on aim of the study
 - realistic (eg., previously observed effect) \rightarrow replicate
 - important (eg., minimally relevant effect)
 - NOT significant \rightarrow meaningless, dependent on sample size
- · choice of effect size dependent on test of interest
 - for independent t-test \rightarrow means and standard deviations
 - possible alternative is to use variance explained, eg., 1 versus 16
 - with one-way ANOVA (f=.25 instead of d=.5)
 - with linear regression (f^2 =.0625 instead of d=.5)
 - https://www.psychometrica.de/effect_size.html#transform

effect sizes, how to determine them in practice

- experts / patients \rightarrow use if possible \rightarrow importance
- · literature (earlier study / systematic review) → beware of publication bias → realistic
- · pilot \rightarrow guestimate dispersion estimate (not effect size \rightarrow small sample)
- internal pilot → conditional power (sequential)
- $\cdot\,\,$ guestimate the input parameters, what can you do ?
 - sd from assumed range / 6 assuming normal distribution
 - sd for proportions at conservative .5
 - sd from control, assume treatment the same
 - ...
- $\cdot~$ turn to Cohen \rightarrow use if everything else fails (rules of thumb)
 - eg., .2 .5 .8 for Cohen's d

31/59 32/59

relation sample & effect size, errors I & II

- · building blocks:
 - sample size (n)
 - effect size (Δ)
 - alpha (α)
 - power (1β)
- each parameter conditional on others

- GPower → type of power analysis
 - Apriori: $n \sim \alpha$, power, Δ
 - Post Hoc: power ~ α , n, Δ
 - Compromise: power, $\alpha \sim \beta / \alpha$, Δ , n
 - Criterion: $\alpha \sim \text{power}, \Delta, n$
 - Sensitivity: $\Delta \sim \alpha$, power, n

type of power analysis exercise

- · for given reference, step through consecutively ...
 - retrieve power given n, lpha and Δ
 - [1] for power .8, take half the sample size, how does Δ change ?
 - [2] set β/α ratio to 4, what is $\alpha \& \beta$? what is the critical value?
 - [3] keep β/α ratio to 4 for effect size .7, what is $\alpha \& \beta$? critical value?
- \cdot [1] .5 to .7115 = .2115, bigger effect compensates loss of sample size
- \cdot [2] α =.09 and β =.38, critical value 1.6994
- [3] α =.05 and β =.2, critical value 1.9990

33/59 34/59

getting your hands dirty

calculator
m1=0;m2=2;s1=4;s2=4
alpha=.025;N=128
var=.5*s1^2+.5*s2^2
d=abs(m1-m2)/sqrt(2*var)
d=d*sqrt(N/2)
tc=tinv(1-alpha,N-1)
power=1-nctcdf(tc,N-1,d)

- · in R, assuming normality
 - qt ightarrow get quantile on Ho ($Z_{1-lpha/2}$)
 - $pt \rightarrow get probability on Ha (non-central)$

```
.n <- 64
.df <- 2*.n-2
.ncp <- 2 / (4 * sqrt(2)) * sqrt(.n)
.power <- 1 -
    pt(
        qt(.975,df=.df),
        df=.df, ncp=.ncp
) -
    pt( qt(.025,df=.df), df=.df, ncp=.ncp)
round(.power,4)</pre>
```

[1] 0.8015

GPower beyond independent t-test

- · so far, comparing two independent means
- $\cdot\;$ selected topics with small exercises
 - dependent instead of independent
 - non-parametric instead of assuming normality
 - relations instead of groups (regression)
 - correlations
 - proportions, dependent and independent
 - more than 2 groups (compare jointly, pairwise, focused)
 - more than 1 predictor
 - repeated measures
- · GPower manual 27 tests: effect size, non-centrality parameter and example !!

35/59 36/59

dependence between groups

- · if 2 dependent groups (eg., before/after treatment) → account for correlations
- · matched pairs (t-test / means, difference 2 dependent means)
- · use reference example
 - [1] assume correlation .5 and compare (effect size, ncp, n)
 - [2] how many observations if no correlation exists (think then try)? effect size?
 - [3] difference sample size for corr = .875 (think: more or less, n/effect size)?
 - [4] set original sample size (n=64*2) and effect size (dz=.5), power?
- \cdot [1] Δ looks same, n much smaller = 34, BUT: 1 group and dz $\sim \sqrt{2*(1ho)}$
- [2] approx. independent means, here 65 (estimate the correlation), Δ =.3535 (not .5)
- [3] effect size * 2 \rightarrow sample size from 34 to 10
- \cdot [4] power > .975: for 64 subjects 2 measurements, ncp > 4

non-parametric distribution

- · expect non-normally distributed residuals, avoid normality assumption
- only considers ranks or uses permutations → price is efficiency
- · avoid when possible, eg., transformations
- two groups → Wilcoxon-Mann-Whitney (t-test / means, diff. 2 indep. means)
- · use reference example
 - [1] how about n? compared to parametric → what is % loss efficiency?
 - [2] change parent distribution to 'min ARE'? what now?
- [1] a few more observations (3 more per group), less than 5 % loss
- · [2] several more observations, less efficient, more than 13 % loss (min ARE)

a relations perspective

- · differences between groups \rightarrow relation observations & categorization
- example \rightarrow d = .5 \rightarrow r = .243 (note: slope $\beta = r * \sigma_v / \sigma_x$)
- · regression coefficient (t-test / regression, one group size of slope)
- sample size for comparing the slope Ha with 0 (=Ho)
 - [1] determine slope (eta, with SD = 4 and σ_x = .5) and σ_y , [2] calculate sample size
 - [3] determine σ_y for slope 6, σ_x = .5, and SD = 4
 - [4] what if σ_x (predictor values) or σ_y (effect and error) increase (think and try) ?
- : [1] $\sigma_x = \sqrt{.25} = .5$ (binary, 2 groups: 0 and 1) \rightarrow slope = 2, $\sigma_y = 4.12 = \sqrt{4^2 + 1^2}$
- [2] 128, same as for reference example, now with effect size slope H1
- [3] $\sigma_u = 5 = \sqrt{4^2 + 3^2}$
- $\cdot~$ [4] sample size decreases with σ_x (opposite σ_y ~ effect size), for same slope

a variance ratio perspective

- \cdot between and within group variance \rightarrow relation observations & categorization
- · regression coefficient (t-test / regression, fixed model single regression coef)
- · use reference example, regression style
 - variance within 4^2 and between 1^2 , totaling σ_y^2 = 17
 - [1] calculate sample size, compare effect sizes?
 - [2] what if also other predictors in the model?
 - [3] what if 3 predictors extra reduce residual variance to 50%?
- [1] 128, same as for reference example, now with f^2 = $.25^2$ = .0625.
- \cdot [2] loss of degree of freedom, very little impact BUT predictors explain variance
- [3] sample size much less (65) because less noise
- note: $f^2 = R^2/(1-R^2)$

38/59

a variance ratio perspective on multiple groups

F-test statistic & effect size f

• **f** is ratio of variances $\sigma_{between}^2/\sigma_{within}^2$

· example: one control and two treatments

- reference example + 1 group

- within group observations normally distributed

- means C=0. T1=2 and T2=4

- sd for all groups (C,T1,T2) = 4

41/59

43/59

multiple groups: contrasts

(1/7th explained = 1 between / 6 within)

gradually easier to detect

multiple groups: omnibus

• start from reference example, just 2 groups

• [3] same effect size (as 0-2-4), sample size 63, ncp 10.5

· for one control and two treatments → test that at least one differs

• effect size f, with numerator/denominator df (derived from n^2)

· one-way Anova (F-test / Means, ANOVA - fixed effects, omnibus, one way)

- [1] what is the sample size (ncp, critical F)? does size matter?

- [2] set extra group, either mean 1, 2 or 4, what are sample sizes (think and try)?

42/59

44/59

- [3] derive effect size with variance between 2.666667 and within 16?

• [1] different effect size (f), distribution, same sample size 128 (size ~ imbalance)

• [2] effect sizes f = .204, .236, .408; sample size n=237 (63x3), 177 (59*3), 63 (21*3)

- assume one control and two treatments
 - set up 2 contrasts for T1 C and T2 C
 - set up 1 contrast for average(T1,T2) C
- · each contrast requires 1 degree of freedom
- · each contrast combines a specific number of levels
- effect sizes for planned comparisons must be calculated!!
 - contrasts (linear combination)
 - standard deviation of contrasts

$$\sigma_{contrast} = rac{|\sum \mu_i * c_i|}{\sqrt{N \sum_i^k c_i^2/n}}$$

with group means μ_i , pre-specified coefficients c_i , sample sizes n_i and total sample size N

multiple groups: pairwise

- · assume one control, and two treatments
 - interested in all three pairwise comparisons → maybe Tukey
 - typically run aposteriori, after omnibus shows effect
 - use t-test with correction of α for multiple testing
- · apply Bonferroni correction for original 3 group example
 - [1] resulting sample size for three tests?
 - [2] what if biggest difference ignored (know that in between), sample size?
 - [3] with original 64 sized groups, what is the power (both situations above)?
- [1] divide α by 3 (86*2) \rightarrow overall 86*3 = 258
- [2] or divide by 2 (78*2) (biggest difference implied) \rightarrow overall 78*3 = 234
- [3] .6562 when /3 or .7118 when /2, power-loss (lower $\alpha \rightarrow \beta$)

multiple groups: contrasts exercise

- · one-way ANOVA (F-test / Means, ANOVA-fixed effects, special, main, interaction)
- · obtain effect sizes for contrasts (assume equally sized for convenience)

-
$$\sigma_{contrast}$$
 T1-C: $\frac{(-1*0+1*2+0*4)}{\sqrt{(2*((-1)^2+1^2+0^2))}}=1$; T2-C: $=2$; (T1+T2)/2-C: $=1.4142$

- with $\sigma = 4 \rightarrow$ ratio of variances for effect sizes f .25, .5, .3536
- · sample size for each contrast, each 1 df
 - [1] contrasts nrs. 1 OR 2
 - [2] contrasts nrs. 1 AND 2
 - [3] contrasts nr. 3
- \cdot [1] d=2f 128 (64 C 64 T1) or 34 (17 C 17 T2)
- [2] Bonferroni correction \rightarrow /2 each: 155 and 41 \rightarrow 177 (78 C, 78 T1, 21 T2)
- [3] total sample size $65 \rightarrow 22$ C, 22 T1, 22 T2

45/59

multiple factors: within group dependence

- · if repeated measures → correlations
- $\cdot\,\,$ repeated measures (F-test / Means, repeated measures...)
- · 3 main types
 - within: similar to dependent t-test for multiple measurements
 - between: use of multiple measurements per group
 - interaction: change between over within
- · correlation within subject (unit)
 - informative within subject (like paired t-test)
 - redundancy on information between subject
- · note: Options 'as in SPSS' if based on effect sizes that include correlation

multiple factors

- · multiway ANOVA (F-test / Means, ANOVA-fixed effects, special, main, interaction)
- · multiple main effects and interaction effects
 - interaction: group specific difference between groups
 - degrees of freedom (#A-1)*(#B-1)
 - main effects: if no interaction (#X-1)
 - get effect sizes for two way anova https://icds.shinyapps.io/effectsizes/
- · sample size for reference example, assume a second predictor is trivial
 - [1] what is partial η^2 ?
 - [2] sample size?
- : [1] .0588 (0-2, sd=4) \to $f^2 = \eta^2/(1-\eta^2)$ & d=2f \to d=.5
- · [2] 128 again, with 2 groups (158 with 3 groups, df=2)

46/59

repeated measures within

- · possible to have only 1 group (within subject comparison)
- use effect size f = .25 (1/16 explained versus unexplained)
 - [1] mimic dependent t-test, correlation .5
 - [2] mimic independent t-test
 - [3] double number of groups to 2, or 4 (cor = .5)
 - [4] double number of measurements to 4 (correlation 0 and .5), impact?
- number of groups = 1, number of measurements = 2, sample size = [1] 34 and [2] 65
- $\cdot\,\,$ [3] changed degrees of freedom, sample size could change little bit
- \cdot [4] impact nr measurements depend on correlation 0: (65x2)-45x4-30x8 / .5: (34x2)-24x4-16x8

47/59 48/59

repeated measures between

- use effect size f = .25 (1/16 for variance or 2/4 for means)
 - [1] mimic independent t-test
 - [2] use correlation 0 and .5 with 2 groups and 2 measurements, sample size?
 - [3] for correlation .5, compare 2, 4, 8 measures, sample size (think and try)?
 - [4] double number of groups to 4, 8 for 4 measures and corr .5
- [1] 128 (2 groups of 64, each 2 measurements, 256, but second uninformative)
- \cdot [2] more if higher corr., sample sizes up 66x2=132~128 for 0, 98x2=196 for .5
- \cdot [3] sample size lower when more measurements, unless correlation is 1 (82x2=164)
- [4] more groups require higher sample size (82-116-152) but effect size ignored

49/59

repeated measures interaction within x between

- issue effect sizes and correlation: https://www.youtube.com/watch?v=CEQUNYg80Y0
- get effect sizes for two way anova https://icds.shinyapps.io/effectsizes/
 - [1] if change 0-1-2 vs. 2-3-4 or 4-3-2, with cor=.5, what are effect sizes?
 - [2] compare effect sizes with correlation 0 and .5?
 - [3] sample size to detect the interaction with cor .5 or cor 0?
- [1] no interaction, or no main effect, f=.3535
- [2] f=.25, higher correlation higher effect size
- [3] beware: corr. 0, 82x2, each 3; corr. .5, 44x2, each 3

correlations

- · when comparing two independent correlations
- · z-tests / correlation & regressions: 2 indep. Pearson r's
- makes use of Fisher Z transformations \rightarrow z = .5 * $log(\frac{1+r}{1-r}) \rightarrow$ q = z1-z2
 - [1] assume correlation coefficients .7844 and .5 effect size & sample size ?
 - [2] assume .9844 and .7, effect size & sample size ?
 - [3] assume .1 and .3844 effect size & sample size ?
- [1] effect size q = 0.5074, sample size 64*2 = 128
- [2] effect size q = 1.5556, sample size 10*2 = 20, same difference, bigger effect
- [3] effect size q = 0.3048, sample size 172*2 = 344, negative and smaller effect
- $\cdot\,\,$ note that dependent correlations are more difficult, see manual

proportions

- · comparing two independent proportions \rightarrow bounded between 0 and 1
- $\cdot\;$ Fisher Exact Test (exact / proportions, difference 2 independent proportions)
- $\cdot\;$ effect sizes in odds ratio, relative risk, difference proportion
 - [1] for odds ratio 2, p2 = .60, what is p1?
 - [2] sample size for equal sized, and type I and II .05 and .2?
 - [3] sample size when .95 and .8 (difference of .15) and .05 and .2?
- [1] odds ratio 2 * (.6/.4) = 3 (odds), 3/3+1 = .75
- $\cdot~$ [2] total sample size 328, [3] total sample size 164, either at .05 or .95
- treat as if unbounded, ok within .2 .8, variance is p*(1-p) \rightarrow maximally .25 !!
 - [4] use t-test for difference of .15
- · [4] effect size .3, sample size 352 (> 328)

proportions exercise

Fisher Exact Test

- power over proportions .5 to 1
- 5 curves, sample sizes 328, 428, 528...
- type I error .05
- [1] generate plot: explain curve minimum, relation sample size?
- [2] repeat for one-tailed, difference?
- [1] power for proportion compared to reference .6, sample size determines impact
- · [2] one-tailed, increases power (both sides !?)

53/59

dependent proportions

- · when comparing two dependent proportions
- McNemar test (exact / proportions, difference 2 dependent proportions)
 - information from changes → discordant pairs
 - effect size as odds ratio → ratio of discordance ?!
- assume odds ratio equal to 2, equal sized, type I and II errors .05 and .2, two-way
 - [1] what is the sample size for .25 proportion discordant, .5, and 1
 - [2] odds ratio 4-.25, prop discordant .25, how about p12, p21 and sample sizes?
 - [3] repeat for third alpha option, and consider total sample size, what happens?
- [1] sample size 288-144-72 (limits), less with more info
- [2] 1 to 4 or 4 to 1 \rightarrow same sample size 80 (.25)
- · [3] sample size differs because side effects

54/59

56/59

not included

- · various statistical tests difficult to specify in gpower
 - various statistics that are difficult to guestimate
 - manual for more complex tests not always very elaborate
- · various statistical tests not included in gpower
 - eg., survival analysis
 - many tools online, not all with high quality
- · various statistical tests no closed form solution
 - simulation may be the only tool
 - iterate many times: generate and analyze \rightarrow proportion of rejections
 - generate: simulated outcome ← model and uncertainties
 - analyze: simulated outcome \rightarrow model

simulation example t-test

```
gr <- rep(c('T','C'),64)
y <- ifelse(gr=='C',0,2)</pre>
dta <- data.frame(y=y,X=gr)
cutoff <- qt(.025,nrow(dta))
sim1 <- function(){</pre>
    dta$y <- dta$y+rnorm(length(dta$X),0,4)</pre>
                                                  # generate (with uncertainty)
    res <- t.test(data=dta,y~X)
                                                  # analyze
    c(res$estimate %*% c(-1,1),res$statistic,res$p.value) # keep results
sims <- replicate(10000,sim1()) # large number of iterations</pre>
dimnames(sims)[[1]] <- c('diff', 't.stat', 'p.val')</pre>
mean(sims['p.val',] < .05) # p-values</pre>
mean(sims['t.stat',] < cutoff) # t-statistics</pre>
mean(sims['diff',] > sd(sims['diff',])*cutoff*(-1)) # estimated differences
[1] 0.8024
```

focus / simplify

- · complex statistical models
 - simulate BUT program and model well understood
 - focus on essential elements \rightarrow simplify the aim
- · sample size calculations (design) for simpler research aim
 - not necessarily equivalent to final statistical testing / estimation
 - requires justification to convince yourself and/or reviewers
 - successful already if simple aim is satisfied
 - ignored part is not too costly
- example:
 - statistics: group difference evolution 4 repeated measurements → mixed model
 - focus: difference treatment and control last time point \rightarrow t-test

- argument: first 3 measurements cheap, difference at end interesting

57/59

about us ...

- · statistical consultancy at VUB / UZ
 - for PhD students and researchers
 - for master students' thesis
- · collaboration on data analysis
- · website @ www.icds.be
- · book us @ www.icds.be/consulting/

conclusion:

- · sample size calculation is a design issue, not a statistical one
- · building blocks: sample & effect sizes, type I & II errors, each conditional on rest
- · effect sizes express the amount of signal compared to the background noise
- bigger effects require less information to detect them (smaller sample size)
- · complex models → complex sample size calculations, maybe only simulation
- · GPower deals with not too complex models
 - more complex complex models imply more complex specification
 - simplify using a focus, if justifiable → then GPower can get you a long way