Computer Vision: Understanding, Interpreting and Learning from Visual Data

DAY FOUR

July 25, 2019 July 30, 2019 July 31, 2019 August 2, 2019

Ryan Farrell

Visualization, Deep Learning, Other Topics

Kullback-Leibler Divergence

Definition: Kullback-Leibler Divergence

For two probability distributions f(x) and g(x) for a random variable X, the Kullback-Leibler divergence or relative entropy is given as:

$$D(f||g) = \sum_{x \in X} f(x) \log \frac{f(x)}{g(x)}$$

The KL divergence compares the entropy of two distributions over the same random variable.

Intuitively, the KL divergence number of additional bits required when encoding a random variable with a distribution f(x) using the alternative distribution g(x).

Kullback-Leibler Divergence

Theorem: Properties of the Kullback-Leibler Divergence

- **1** $D(f||g) \geq 0$;
- 2 D(f||g) = 0 iff f(x) = g(x) for all $x \in X$;
- **3** $D(f||g) \neq D(g||f)$;
- I(X;Y) = D(f(x,y)||f(x)f(y)).

So the mutual information is the KL divergence between f(x,y) and f(x)f(y). It measures how far a distribution is from independence.

Kullback-Leibler Divergence

Example

For a random variable $X = \{0, 1\}$ assume two distributions f(x) and g(x) with f(0) = 1 - r, f(1) = r and g(0) = 1 - s, g(1) = s:

$$D(f||g) = (1-r)\log\frac{1-r}{1-s} + r\log\frac{r}{s}$$

$$D(g||f) = (1-s)\log\frac{1-s}{1-r} + s\log\frac{s}{r}$$

If
$$r = s$$
 then $D(f||g) = D(g||f) = 0$. If $r = \frac{1}{2}$ and $r = \frac{1}{4}$:

$$D(f||g) = \frac{1}{2} \log \frac{\frac{1}{2}}{\frac{3}{4}} + \frac{1}{2} \log \frac{\frac{1}{2}}{\frac{1}{4}} = 0.2075$$

$$D(g||f) = \frac{3}{4} \log \frac{\frac{3}{4}}{\frac{1}{2}} + \frac{1}{4} \log \frac{\frac{1}{4}}{\frac{1}{2}} = 0.1887$$

(WHITEBOARD)

KL-Div as a LOSS

KL-Div as a LOSS

2 SIMILOX CLASSIC):

REPORT CHONS

REPORT CH

CNNs and Class Activation Map (CAM)

- Tensorflow Playground
- Fred Hohman Blog Post
- Saurabh Pal Blog Post (CAM near bottom)

Image Search, Example, and How-to-with-Tensorflow

Image Source and Additional Details (Open Al Blog)

(WHITEBOARD)

EXPLAINABLE AT = "Ex AT"
VISION + LANGUAGE

HO6 6 2005

DPM = DEFORMOBLE PROT MODEL

HOG Features (Example)

Image <u>Source</u>

HOGGLES

Hoggles slides from Carl Vondrick (Columbia)

Currently 18 "articles" including:

- Open Questions about GANs
- Visualizing Memorization in RNNs
- Attention and Augmented RNNs
- A Visual Exploration of Gaussian Processes
- Exploring Neural Networks with Activation Atlases
- How to Use t-SNE Effectively

PCA (linear) vs. t-SNE (nonlinear)

Recommended Books

Peak by *Anders Ericcson*

Atomic Habits by *James Clear*

Deep Work by Cal Newport

Give and Take by *Adam Grant*

Digital Minimalism by *Cal Newport*

Originals by *Adam Grant*

Essentialism by *Greg McKeown*