Bölüm 3

Çarpıklık ve Basıklık Katsayıları

Tanımlayıcı İstatistikler

- Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını sayısal olarak özetleyen değerlere **tanımlayıcı istatistikler** denir.
- Analizlerde kullanılan veri tiplerine (*basit*, *gruplanmış*, *sınıflanmış*) göre hesaplamalarda kullanılacak formüller değişmektedir.

Tanımlayıcı İstatistikler

Değişkenlik Ölçüleri Çarpıklık Ölçüleri Merkezi Eğilim

1)Aritmetik ort.

1) Range

2)Geometrik ort.

(Değişim Aralığı)

3) Harmonik ort. 2) Ort. Mutlak sapma

4)Mod

3) Varyans

5)Medyan

- 4) Standart Sapma
- 5) Değişkenlik(Varyasyon)

Katsayısı

6)Kartiller

Basıklık

Ölçüleri

Çarpıklık

(b) Symmetric

(a) Skewed to the Left (Negatively)

(c) Skewed to the Right (Positively)

Çarpıklık (Asimetri) Ölçüleri

• Anakütleleri birbirinden ayırmak için her zaman yalnızca yer ve yayılım ölçüleri yeterli olmayabilir. Aşağıda iki farklı anakütleden alınmış örnekler için oluşturulan histogramlar verilmiştir.

13) Asimetri Ölçüleri

PEARSON ÇARPIKLIK ÖLÇÜSÜ

$$Sk_{p} = \frac{\overline{x} - \text{mod}}{s} \quad \text{veya}$$

$$Sk_{p} = \frac{3(\overline{X} - \text{med})}{s}$$

$$Sk_p = \frac{3(X - med)}{S}$$

$$Sk_P < 0 \rightarrow Negatif çarpık(Sola)$$

$$Sk_P > 0 \rightarrow Pozitif Çarpık(Sağa)$$

$$Sk_P = 0$$
 ise dağılış simetrik

BOWLEY ÇARPIKLIK ÖLÇÜSÜ

$$Sk_b = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{Q_3 - Q_1}$$

$$Sk_b < 0 \rightarrow Negatif çarpık(Sola)$$

$$Sk_b > 0 \rightarrow Pozitif Çarpık(Sağa)$$

$$Sk_b = 0$$
 ise dağılış simetrik

Ornek: Aşağıdaki tabloda 30 günlük süre içinde bir restoranın kullandığı et miktarının dağılımından elde edilen bazı tanımlayıcı istatistikler verilmiştir. Buna göre pearson ve bowley asimetri ölçülerini hesaplayıp yorumlayınız.

Aritmetik Ort.	Mod	Medyan	\mathbf{Q}_1	${f Q}_3$	s²
46,6	45,4	46,2	41,5	51,9	54,46

$$Sk_p = \frac{3(\overline{X} - med)}{s} = \frac{3(46,6 - 46,2)}{\sqrt{54,46}} \approx 0,16 > 0$$

Sağa Çarpık, **Pozitif Asimetri**

$$Sk_p = \frac{\overline{x} - \text{mod}}{s} = \frac{46,6 - 45,4}{\sqrt{54,46}} \approx 0,16 > 0$$

Sağa Çarpık, **Pozitif Asimetri**

$$\begin{split} Sk_b &= \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{Q_3 - Q_1} = \frac{(51,\!9 - \!46,\!2) - (46,\!2 - \!41,\!5)}{51,\!9 - \!41,\!5} \\ &= \frac{1}{10,\!4} \approx 0,\!10 > 0 \qquad \text{Sa\~ga Çarpık ,} \\ &\text{Pozitif Asimetri} \end{split}$$

Simetrik Dağılım

A.O = Med = Mod

Sağa çarpık dağılım Sola çarpık dağılım

A.O > Med > Mod A.O < Med < Mod

İki modlu simetrik dağılım

Modu olmayan dağılım Tekdüzen dağılım

Ortalama, Medyan ve Modun karşılaştırılması

Ortalama > Medyan > Mod

Ortalama, Medyan ve Modun karşılaştırılması

Sola Eğik

Ortalama < Medyan < Mod

14) Sapan Gözlemler

- Sapan gözlem, diğer bütün gözlemlerden uzakta bulunan gözlemdir.
- ❖ Sapan gözlem ortalama üzerinde önemli bir etkiye sahip olabilir.

❖ Sapan gözlem standart sapma üzerinde önemli bir etkiye sahip olabilir.

Sapan gözlem, dağılımın gerçek histogramının ölçeği üzerinde önemli bir etkiye sahip olabilir.

15) 5 Sayı Özeti

❖ 5 sayı özeti, bir veri setinde minimum değer,
1.Kartil, 2.Kartil(medyan), 3.Kartil'i ve maksimum değeri içerir.

* Kutu grafiği(veya kutu ve bıyık grafiği) bir veri seti için, sınırları maksimum ve minimum değer olmak üzere, içinde 1.Kartil, 2.Kartil(medyan) ve 3.Kartil'i bulunduran kutu şeklindeki grafiktir.

Kutu Grafiği

Anatomi

Kutu grafikleri, verilerin dörtte birinin dağılımını görsel olarak göstermenin kolay bir yoludur.

Çeyreğin daha üstünde veya altında olan veriler arasındaki değişkenliği belirtmek için kullanılmaktadır.

Her ne kadar kutu grafikleri histogram grafiği ile karşılaştırıldığında daha basit görünse de daha az yer kaplama gibi bir avantajları vardır ve bu da birçok grup veya veri seti dağılımını karşılaştırırken oldukça kullanışlı bir özelliktir.

Kutu grafiği hazırlama

- Q1:Kutunun sol kenarı
- Q3:Kutunu sağ kenarı
- Q2:Kutunun ortasındaki çizgi
- Sapan hariç min.: Sol bıyık
- Sapan hariç max.: Sağ bıyık
- Sapan değer kontrolu

$$Q1 - 1.5(Q3 - Q1)$$

$$Q3 + 1.5(Q3 - Q1)$$

bu değerleri aşan veriler * ile gösterilir.

• Örnek:

Yazlık ürünler satan bir mağazada haftalık satılan t-shirt sayıları yandaki tabloda verilmiştir. Verilen tablodan beş sayı özetini bulunuz ve kutu grafiğini çiziniz.

27	22	20
17	18	18
22	21	29
20	32	17
30	19	28
25	20	31
22	23	21
28	22	24
18	18	32
25	18	44
		17

• Çözüm:	47	00	25
Öncelikle veriler yandaki gibi	17	20	25
sıralanırsa;	17	20	25
Q ₁ =(31+1)/4=8.sıraya karşılık gelen veri olur.	17	21	27
Q1=18	18	21	28
Q ₃ =3(31+1)/4=24. sıraya karşılık gelen veri olur.	18	22	28
$Q_3=28$	18	22	29
Minimum değer=17,	18	22	30
Maksimum değer=44 ve	18	22	31
$Medyan(Q_2)=22$ olur.	. •		
Sapan değerleri kontrol etmek için;	19	23	32
Q_1 -1,5(Q_3 - Q_1)=18-1,5(28-18)=3	20	24	32
$Q_3+1,5(Q_3-Q_1)=28+1,5(28-18)=43$ bulunur. Bu durumda elimizdeki			44
44 değeri sapan değerdir ve * ile			
gösterilir			

Kutu Grafiği

Cotinine Level of Smokers

Figure 2-16

Kutu Grafiği

Figure 2-17

1000 öğrencinin üstbiliş puanlarının box-plot grafiği

Simetrik Dağılım

Ortalama=Ortanca=Tepe Değeri

Sağa Çarpık Dağılım

Tepe Değeri<Ortanca<Ortalama

Sola Çarpık Dağılım

Ortalama<Ortanca<Tepe Değeri

16) Basıklık Ölçüsü

Aşağıdaki A ve B dağılımlarının ortalamaları, değişkenlik ölçülerinin aynı olmasından dolayı ve hatta ikisinin de simetrik olmalarından dolayı bu iki dağılışı ayırt etmek için Basıklık Ölçüsü kullanılır.

24

Herhangi bir olasılık fonksiyonunun şekli ile ilgili parametrelerden bir tanesi de basıklık ölçüsüdür. **Basıklık Ölçüsü** ortalamaya göre dördüncü momentten gidilerek hesaplanır ve α₄ olarak gösterilir.

$$lpha_4 = rac{\mu_4}{\sigma^4}$$
 Basit Seri İçin $\mu_4 = rac{\sum\limits_{i=1}^n (x_i - \mu)^4}{n}$

 α_4 = 3 ise Seri Normal

 α_4 < 3 ise Seri Basık

 α_4 > 3 ise Seri Sivri Ya da Yüksek

Dinlediğiniz İçin Teşekkür Ederim...