

RATAN TATA LIBRARY

DELHI SCHOOL OF ECONOMICS

THE RATAN TATA LIBRARY

Cl. No.; B H9 Ac. No. 17135

Date of release for loan

This book should be returned on or before the date last stamped 'below. An overdue charge of twelve nP. will be levied for each day the book is kept beyond that date.

17 3-58 mg 1 8 JUL 1962 -4 NOV 1962	PINAS F	70.	9791
1 8 SEP 1965 2 5 SEP 1965	1 5 JUL 2 8 AUG 1971 5 1 0 SEF	_	
1 0 KA. 1966		1374	
11 DEC 1966			

FRESHMAN MATHEMATICS

C. V. NEWSOM

Consulting Editor

ALICE AMBROSE and MORRIS LAZEROWITZ

Fundamentals of Symbolic Logic

JACK R. BRITTON and L. CLIFTON SNIVELY

Intermediate Algebra Algebra for College Students

HAROLD D. LARSEN

Rinehart Mathematical Tables

WILLIAM K. MORRILL

Plane Trigonometry, Revised

H. L. SLOBIN, W. E. WILBUR, and C. V. NEWSOM

Freshman Mathematics,

Third Edition

JOHN A. NORTHCOTT

Mathematics of Finance

LEWIS M. REGAN, ELLIS R. OTT, and DANIEL T. SIGLEY

College Algebra, Revised

SLOBIN and WILBUR'S

FRESHMAN MATHEMATICS

THIRD EDITION

REVISED BY

C. V. NEWSOM

Assistant Commissioner for Higher Education, The State of New York · Formerly Professor of Mathematics, Oberlin College

RINEHART & COMPANY, INC.

PUBLISHERS · NEW YORK

Copyright 1932, 1938, by Hermon L. Slobin and Walter E. Wilbur
Copyright, 1949, by C. V. Newsom
Printed in the United States of America
All Rights Reserved

Preface

This new edition is a second revision of Freshman Mathematics by H. L. Slobin and W. E. Wilbur. The original plan of presenting algebra, trigonometry, and analytical geometry as a tandem course—to permit adequate preparation in each subject, to permit the use of arithmetic and algebra in trigonometry, and of arithmetic, algebra, and trigonometry in analytical geometry—is maintained in this revision. Further, the general aim is still to present these subjects so that the student may have a real understanding of the fundamental principles and processes involved and of the values of these subjects vocationally and culturally. It is hoped that the book will give the student an adequate foundation in mathematics, irrespective of his educational objectives, and that it will prove even more useful as a teaching instrument than previous editions.

The second edition of *Freshman Mathematics* has been almost entirely rewritten in this revision. Special attention has been given to the readability of the material, and many expositions have been revised to make them more lucid. Although the tradition of content and treatment of the earlier editions has been maintained, new trends and emphases have been recognized.

In Book I, Algebra, the chapter on infinite series appearing in the previous edition has been deleted, and a brief chapter on inequalities has been added. Book I contains nearly 1,200 exercises for the student.

Book II, Trigonometry, has been revised in line with the growing trend toward analytic trigonometry. Book II contains about 500 exercises for the student.

Book III, Analytic Geometry, continues to treat more than the conic sections. The general equation of the second degree and curve fitting are covered extensively. Book III contains about 800 exercises for the student.

The reviser and publishers express their appreciation of the many helpful suggestions that have come to them from the users of the previous edition. Especial recognition is due Professor J. S. Taylor of the University of Pittsburgh and Mrs. Ruth Smyth of Wooster College, who have made noteworthy contributions to the present revision.

Tables I to IV are taken from the Rinehart Mathematical Tables by Harold D. Larsen.

C. V. NEWSOM

Albany, New York January, 1949

Table of Contents

Preface	\mathbf{v}
BOOK I · ALGEBRA	
Chapter 1 · MEASUREMENT AND NUMBER	
1. Measurement	i
2. Units of Measurement	1
3. Direct Measurement	1
4. Indirect Measurement	1
5. Measurement and Number	1
6. Rational Numbers	2
7. Irrational Numbers	3
8. The Decimal Number Notation	4
9. Approximate Numbers	5
10. Negative Numbers	6
11. Real Numbers	6
12. Magnitude of Real Numbers	6
Chapter 2 · THE FUNDAMENTAL OPERATIONS APPLI LITERAL NUMBER SYMBOLS	ED TO
13. Literal Number Symbols	7
14. Division by Zero	7
15. Abstract Numbers, Denominate Numbers, Dimensions	8
16. Transformation of Simple Formulas	10
17. Theorems and Formulas from Geometry	13
Chapter 3 · REVIEW TOPICS OF ELEMENTARY ALG	EBRA
18. Factors	16
19. Special Products	16
20. Expansions of the Form $(a \pm b)^2$	18
21. Factors of Expressions in the Form $a^2 \pm 2ab + b^2$	18
22. Expressions Reducible to the Form $a^2 - b^2$	19
23. Factors of Expressions of the Form $x^2 + (a + b)x + ab$	19
	20
24. Factors of Expressions of the Form $ax^2 + bx + c$	
 24. Factors of Expressions of the Form ax² + bx + c 25. Factors of Expressions of the Form ax + ay + bx + by 26. Special Case of Binomial Theorem 	20

	` ===	
TADIC	OF CONTENTS	۰
IABLE	UTSELVA I EN 13	3

viii	TABLE OF CONTENTS	
27.	Degree of a Polynomial	23
28.	Highest Common Factor and Lowest Common Multiple	24
29.	Algebraic Fractions	2 5
	Chapter 4 · CONSTANTS, VARIABLES, AND GRAPHICAL REPRESENTATION	
30.	Constants, Variables, and Functions	2 9
	Graphical Representation	31
	First-Degree Functions	35
33.	Equations of the Form $Ax + By + C = 0$	36
C	chapter 5 · FIRST-DEGREE EQUATIONS IN ONE UNKNOWN	
	Roots of an Equation	39
	Equivalent Equations	39
36.	Problems Involving Equations of the First Degree	42
	Chapter 6 · VARIATION	
37.	Variation	46
	Chapter 7 · SYSTEMS OF FIRST-DEGREE EQUATIONS	
38.	Systems of First-Degree Equations	50
39.	Graphical Representation of a System of Two Linear Equations	5 5
	Consistent Systems of Linear Equations	5 6
41.	Inconsistent Systems of Linear Equations	5 6
	Chapter 8 · DETERMINANTS	
42 .	Determinants of the Second Order	5 9
	Determinants of the Third Order	62
44.	Solution of Systems of Three First-Degree Equations by Use of	
	Determinants	63
45.	Some Properties of Determinants	65
	Chapter 9 · EXPONENTS AND RADICALS	
46.	The Fundamental Laws of Positive Integral Exponents	71
	Zero Exponents	71
	Negative Exponents	72
	Fractional Exponents	72
	▼	75
	Simplification of Radicals	75
	Addition and Subtraction of Radicals	76
	Multiplication of Radicals Rationalizing the Denominator	77 77
	Complex Numbers	79
UU.	COMPTON 11 MILLOUD	

(Chapter 10 · QUADRATIC FUNCTIONS AND EQUATIONS	5
56.	The Standard Form of a Quadratic Function	81
	Graphical Representation of the Function $y = ax^2 + bx + c$	81
58.	Vertex of a Quadratic Function	82
5 9.	Maximum or Minimum Values of a Quadratic Function	83
60.	Quadratic Equations	85
	Solution of Quadratic Equations by Factoring	86
	General Solution of Quadratic Equations	87
	Irrational Equations	89
	Discussion of the Roots of the Quadratic Equation	93
65.	Sum and Product of Roots	95
CI	napter 11 · SYSTEMS INVOLVING QUADRATIC EQUATION	IS
	One Linear and One Quadratic Equation	97
	Two Quadratic Equations Reducible to the Previous Case	98
	Equations Homogeneous with Respect to the Unknowns	99
	Equations Symmetrical with Respect to Unknowns	101
	Special Systems of Quadratics	102
	Graphical Representation of Certain Quadratic Equations	105
72.	Graphical Solution of Systems	115
	Chapter 12 · INTEGRAL RATIONAL FUNCTIONS	
73.	Calculating the Values of an Integral Rational Function	117
	Synthetic Division	118
	The Remainder Theorem	119
	The Factor Theorem	119
	The Fundamental Theorem of Algebra	120
	Factors of a Polynomial	121
	Number of Roots	121
	A Transformation of $A_0x^n + \cdots + A_n = 0 \ (A_0 \neq 0)$	122
	Rational Roots of the Standard Integral Rational Equation	122
	Descartes's Rule of Signs	123
83.	Rational Approximation of the Irrational Roots of $A_0x^n + \cdots$	
	$+A_n=0$	126
	Horner's Method	129
85.	Summary for Finding Roots	132
	Chapter 13 · LOGARITHMS	
86.	Logarithms as an Aid to Computation	135
	Definition of Logarithms	135
88.	Laws of Logarithms	136
89.	Scientific Notation	137
90.	Characteristic and Mantissa of Common Logarithms	137

TABLE OF CONTENTS

91.	Logarithm Tables	139
	Several Ways of Writing the Characteristic	140
93.	Interpolation	141
94.	Computations by Means of Logarithms	143
	Computation with Negative Numbers	146
	Solution of Exponential and Logarithmic Equations	147
97.	Natural Logarithms	149
	Chapter 14 · PROGRESSIONS	
98.	Progressions	151
	Arithmetical Progression	152
	Formulas for the Arithmetical Progression	152
	Geometrical Progression	155
	Formulas for the Geometrical Progression	156
103.	Infinite Geometrical Progressions	158
	Chapter 15 · MATHEMATICAL INDUCTION	
	Mathematical Induction	162
105.	Proof of the Binomial Theorem for a Positive Integer	165
	Chapter 16 · PERMUTATIONS, COMBINATIONS, AND PROBABILITY	
106.	Permutations	167
107.	Fundamental Theorem	167
	The Formula for ${}_{n}P_{r}$, $r \leq n$	169
	Permutations of n Things, q of Which Are Alike	169
	Combinations	170
	Probability	172
	Exclusive Events	173
	Independent Events	174
	Dependent Events	175
110.	Value of an Expectation	176
	Chapter 17 · PARTIAL FRACTIONS	
116.	Partial Fractions	178
	Chapter 18 · INEQUALITIES	
	General Principles	183
	Operations upon Inequalities	183
	Absolute Inequalities	184
120.	Conditional Inequalities	186
	Chapter 19 · REVIEW OF ALGEBRA	
121.	Review of Algebra	188

TABLE OF CONTENTS

×i

BOOK II · TRIGONOMETRY

Chapter 1 ·	TRIGONOMETRIC	FUNCTIONS
-------------	---------------	------------------

1.	Trigonometry	195
2.	Directed Line Segments	195
3.	Definition of an Angle	195
4.	Magnitude of an Angle	196
5.	Important Facts and Definitions from Geometry	198
6.	Trigonometric Functions	199
7.	Additional Discussion of Trigonometric Functions	202
8.	Trigonometric Functions of Special Angles	202
9.	The Trigonometric Functions of 0°, 90°, 180°, and 270°	2 04
10.	The Trigonometric Functions of Any Angle	2 06
11.	To Compute the Trigonometric Functions if the Value of Any	
	One Function is Given	209
	Line Values of the Trigonometric Functions	2 11
	Graphs of Trigonometric Functions	213
	The Graph of $\sin b\theta$	215
	The Graph of $a \sin (b\theta + c)$	2 16
16.	Inverse Trigonometric Functions	2 18
	Chapter 2 · TRIGONOMETRIC IDENTITIES AND CONDITIONAL EQUATIONS	
17.	Fundamental Trigonometric Identities	222
18.	Trigonometric Conditional Equations	227
19.	The Use of Table 2	23 0
20.	The Accuracy of Tables	232
21.	$\sin (A + B)$ and $\cos (A + B)$	234
22 .	$\sin (A - B)$ and $\cos (A - B)$	235
23.	$\tan (A + B)$ and $\tan (A - B)$	2 36
	$\sin 2A$ and $\cos 2A$	237
2 5.	$\sin \frac{A}{2}$ and $\cos \frac{A}{2}$	237
2 6.	Sum of Sines or Cosines	2 38
27.	Trigonometric Equations	240
2 8.	Equations Involving Inverse Functions	242
	Chapter 3 · SOLUTION OF TRIANGLES	
2 9.	Solution of Triangles	245
	Graphical Method	245
	Logarithms of Trigonometric Functions	246
	Solution of Right Triangles	247
	The Solution of the General Triangle	251

34.	Cases 1 and 2. The Law of Sines	251
	Mollweide's Formulas	253
36.	Illustration. Case 1	254
37.	Illustration. Case 2	255
38.	Cases 3 and 4. Law of Cosines	257
39.	Illustration. Case 3	259
	Illustration. Case 4	259
	Law of Tangents	260
42 .	Law of the Tangent of Half Angles	2 61
	Illustrations of Logarithmic Solutions	263
	Area of a Triangle	2 69
45.	The Radius of the Inscribed Circle	270
	Chapter 4 · COMPLEX NUMBERS	
46.	Complex Numbers	276
47.	Conjugate Complex Numbers	277
48.	Fundamental Theorems on Complex Numbers	277
49.	Products, Quotients, Powers, Roots	279
50 .	De Moivre's Theorem	279
	Roots of a Complex Number	280
52.	Graphical Representation of $z = z_1 + z_2$, $z = z_1 - z_2$, $z = z_1 z_2$, and $z = z_1/z_2$	282
	BOOK III · ANALYTIC GEOMETRY	
	Chapter 1 · POINTS; LINE SEGMENTS	
	Analytic Geometry	291
	Projection of a Line Segment	291
	Length of a Line Segment	291
4.	Coordinates of a Point Which Divides a Line Segment in a Given Ratio	293
5.	Area of a Triangle in Terms of the Coordinates of Its Vertices	2 94
6.	Polar Coordinates	2 96
7.	Relation between Rectangular and Polar Coordinates	2 96
8.	Distance between Two Points in Polar Coordinates	297
	Chapter 2 · GRAPHS OF CERTAIN EQUATIONS	
9.	Graphs	2 99
10.	Equations of the Form $f(x, y) \phi(x, y) = 0$	304
11.	Symmetry	304
	Intercepts	305
	Graphs of Polar Coordinate Equations	306
	Sketching Polar Equations	308
15.	Intersections of Curves	309

	TABLE OF CONTENTS	xiii
	Chapter 3 · EQUATIONS OF LOCI	
16.	Equations of Loci	312
	Chapter 4 · THE STRAIGHT LINE	
	The Straight Line	316
	The General Equation of the First Degree	319
	The Distance between a Line and a Point	321
	Parallel Lines	324
	Perpendicular Lines	325
22.	Angle between Two Lines	325
	Chapter 5 - THE CIRCLE	
	The Circle	328
24.	The Equation of a Circle in Polar Coordinates	331
	Chapter 6 · THE ELLIPSE	
	The Ellipse	334
2 6.	The Ellipse and the General Quadratic Equation	340
	Chapter 7 · THE HYPERBOLA	
	The Hyperbola	343
28.	The Hyperbola and the General Quadratic Equation	347
	Chapter 8 · THE PARABOLA	
	The Parabola	352
	Construction of the Parabola	353
31.	The Parabola and the Quadratic Equation	353
	Chapter 9 · THE GENERAL EQUATION OF THE SECOND DEGREE	
32.	Rotation of Axes	358
3 3.	The Effect of Rotation of Axes on Degree of Equation	361
34 .	The General Equation of the Second Degree	361
	Degenerate Loci	363
	Tangent to a Curve	366
	Equation of the Tangent Line to Any Second-Degree Curve	369
	Normal to a Curve	371
39.	Equations of the Tangents with a Given Slope to a Curve of the Second Degree	373
	Chapter 10 · CURVE FITTING	
40.	The Problem of Curve Fitting	375
	Types of Equations Commonly Used in Curve Fitting	375

TABLE OF CONTENTS

xiv

42 .	Equations of Graphs through Given Points	378
43 .	Experimental Data on a Line	381
44.	Fitting a Parabola to Empirical Data	386
45.	Fitting a Curve of the Form $y = A + B/x$	389
46.	Fitting a Curve of the Form $y = A \cdot B^z(B > 0)$	391
47.	Semilogarithmic Paper	392
48.	Fitting a Curve of the Form $y = Ax^n$	395
4 9.	Logarithmic Paper	3 96
50 .	Fitting a Curve of the Type $y = A + Bx + Cx^2$	3 99
5 1	Fitting a Curve of the Type $y = \frac{A + Bx}{C + Dx}$	401
01.	Fitting a curve of the Type $y = \frac{1}{C + Dx}$	401
	Chapter 11 - PARAMETRIC EQUATIONS	
52 .	Parametric Representation	406
53 .	Elimination of the Parameter	408
54.	Involute of a Circle	410
	Chapter 12 · SOLID ANALYTIC GEOMETRY	
55.	Rectangular Coordinates	412
56.	Equations of Certain Planes	412
57.	Equations of Certain Lines	413
58.	Equation of a Surface	413
59.	Distance between Two Points \smile	415
60.	Direction Cosines of a Line	416
61.	Angle between Two Lines	417
62.	The Plane	419
63.	Distance From a Plane to a Point	420
64.	The Angle between Two Planes	420
65.	The Equation of a Plane in Terms of its Intercepts	421
66.	The Straight Line	422
67.	Surfaces of Revolution	425
68.	Certain Conicoids	427
69.	Drawing Surfaces and Intersections of Surfaces	427
70.	Spherical Coordinates and Cylindrical Coordinates	431
	TABLES	
1.	Five-Place Common Logarithms of Numbers	435
	Natural Trigonometric Functions	453
	Common Logarithms of Trigonometric Functions	476
	Powers, Roots, and Reciprocals	527
	Answers to Odd-Numbered Problems	529
	Index	555

Book I · ALGEBRA

1

Measurement and Number

1. MEASUREMENT

The concept of measurement is most important in the life of every person and especially in the career of the scientist. Quantities which are measurable are frequently called *magnitudes*; among them are lengths, areas, volumes, speeds, pressures, and temperatures. Obviously not all lengths are the same, nor all areas, nor all pressures. In order to be precise in our description of the extent or size of such magnitudes, it is important that we devise ways of measuring them.

2. UNITS OF MEASUREMENT

To measure a magnitude, it is essential first to select an appropriate amount of the quantity as a unit of measurement. Thus, a length may be expressed in terms of the foot as a unit; an age may be expressed in terms of the year as a unit; and a person's wealth may be expressed in terms of the dollar as a unit.

3. DIRECT MEASUREMENT

When a magnitude is measured by direct comparison with the amount adopted as the unit, the method of measurement is described as a *direct* measurement.

4. INDIRECT MEASUREMENT

To measure the area of a rectangle, it is convenient to make direct measurements to determine the length and width and then find the area by a simple computation. So the measure of the area is determined indirectly and is spoken of as an *indirect measurement*. Obviously, such measurements as the radius of the earth, or the weight of the earth, or our distance from the sun are obtained as indirect measurements. Indeed, most measurements are of this kind. Indirect measurements always depend upon direct measurements.

5. MEASUREMENT AND NUMBER

The measure of a quantity is expressed by means of a number. Thus, the age of a person is designated by a number of years and the weight of a person by a number of pounds.

If a chosen unit is contained an integral number of times in some quantity under consideration, the desired measurement is obtained by merely counting the number of times that the unit is contained in the magnitude being measured. In such a case, the measure is given by a whole number, which we shall call a positive integer. The positive integers may be represented consecutively by points equally spaced on a straight line, beginning with some arbitrary starting point denoted by zero, as shown in Figure 1. The distance between any two points corresponding

to consecutive integers is the unit of measurement upon the line.

It often happens that a specified unit is not contained an integral number of times in a quantity being measured. For example, let us assume that we are measuring the length of a line AB in terms of a unit CD (Figure 2), and it happens that CD is contained seven times in AB up to the

point X and that the segment XB is less than CD. Obviously, the length of AB is more than 7 units and less than 8 units.

If XB is less than one half of the unit CD, then 7 is said to be the length of AB to the nearest integer. If, on the other hand, XB is greater than one half of the unit CD, then 8 is said to be the length of AB to the nearest integer. If XB is just one half of the unit CD, then 8 is usually considered to be the length of AB to the nearest integer; the number 8 is selected instead of 7 because, in case of a choice between an odd or even integer, the number that is even is usually chosen.

If we wish to get a closer approximation to the length of AB, we may divide the unit CD into any number of equal parts and proceed to measure the segment XB. For illustrative purposes, let CE be one of the 5 equal parts of CD. If the part CE is contained in XB an exact number of times, say three times, then the total length of AB is $7\frac{3}{5}$ units, or $\frac{38}{5}$ units. If it happens that CE is not contained exactly in XB, but is contained twice and the remainder is less than one half of CE, we say that the length of AB is $7\frac{3}{5}$ or $3\frac{7}{5}$, to the nearest fifth of the unit. It is apparent that this process may be continued to any desired precision.

6. RATIONAL NUMBERS

It is evident that the length of a line segment, measured in terms of any linear unit, may always be expressed, either exactly or approximately, as

the quotient of two integers. Of course, each integer may be regarded as a quotient in which the divisor, or denominator, is 1. A quotient of two integers is called a rational number.

7. IRRATIONAL NUMBERS

We must not assume that ultimately it is possible to express exactly the measurement of any quantity in terms of a given unit by means of a retional number. For instance, the length of the hypote

rational number. For instance, the length of the hypotenuse AB of the right triangle given in Figure 3 cannot be measured in terms of the unit AL by writing down a rational number; that is, the ratio AB/AL cannot be expressed as a rational number.

This may be proved as follows: Assume that the length of AB can be expressed by a rational number p/q, where p and q are integers that have no common integral

divisor other than 1. Hence, at least one of the numbers p and q must be odd. Since $\overline{AB^2} = \overline{AL^2} + \overline{LB^2} = 1 + 1 = 2$, it follows that

$$\frac{p^2}{q^2}=2,$$

 \mathbf{or}

$$p^2 = 2q^2.$$

The last equation shows that p^2 is an even number since it is equal to the product of 2 and an integer. It is demonstrable that if p^2 is even, p must be even; so p may be written in the form 2m, where m is an integer. After replacing p by 2m, it follows that

$$4m^2 = 2q^2,$$
$$q^2 = 2m^2.$$

and

The last equation shows that q^2 is an even number; hence, q is an even number. Thus, p and q are both even numbers, which is contrary to the hypothesis which implied that at least one of the numbers p or q is odd.

Since the assumption that the length AB can be expressed by a rational number p/q leads to a contradiction, it follows that the assumption is false.*

In order to have a number that corresponds to the length AB when measured in terms of AL, a special symbol must be created. The length is designated by $\sqrt{2}$. When we assign the symbol $\sqrt{2}$ to AB, we merely mean that its length x satisfies the equation $x^2 = 2$.

The number $\sqrt{2}$ is an irrational number. By definition, an irrational number is any number of arithmetic which is not a rational number. It can be shown that the *n*th root of any number which is not a perfect *n*th

* This type of argument is described as "reduction to an absurdity." It is used frequently in mathematical analysis.

power of a rational number is an irrational number. Also, the number π and many other numbers met in mathematical analysis are irrational.

In elementary geometry it is shown that the segment AB, corresponding to $\sqrt{2}$, may be constructed exactly with the aid of ruler and compasses and, hence, may be laid off on the line AF (Figure 4). In general, however,

the segments corresponding to irrational numbers cannot be constructed by using a ruler and the compasses. Although we are unable to construct exactly the segments corresponding to most irrational numbers, we shall assume that to every line segment measured from A on AF there corresponds a positive number (rational or irrational), and, conversely, to every positive number there corresponds a line segment measured from A on AF.

EXERCISES 1

- 1. The number π is sometimes given as 34. If it is known that π is irrational, can this value be correct?
 - 2. Is 16.3 rational or irrational? Justify your reply.
 - 3. Show that $3\sqrt{2}$ is irrational.

SUGGESTION: Assume that $3\sqrt{2}$ is rational, and then show that this assumption leads to a contradiction of the statement that $\sqrt{2}$ is irrational.

4. Show that $\sqrt{2} + 5$ is irrational.

Note the suggestion in Exercise 3.

5. Designate the numbers in the following list which are irrational:

3;
$$1/\sqrt{2}$$
; $31/47$; $\sqrt[3]{27}$; $\sqrt{18}$; $\pi + 7$; 5.16; $\sqrt{5}$

6. If the radius of a circle is a rational number, is the area rational?

8. THE DECIMAL NUMBER NOTATION

The student is already familiar with the common number notation that employs a base of 10; since the base is 10, the notation is called the *decimal* notation. Thus, the numeral 325 denotes 3(100) + 2(10) + 5(1). In fact, the 3 is said to be the *hundreds'* digit; 2 is the *tens'* digit; and 5 is the *units'* digit. Similarly, 243.652 denotes $2(100) + 4(10) + 3(1) + 6(\frac{1}{100}) + 5(\frac{1}{1000}) + 2(\frac{1}{1000})$.

Scientists and businessmen, in solving problems resulting in either rational or irrational numbers, frequently find it convenient to express the answers in the decimal notation. The student will recall that the decimal equivalent of a common fraction may be obtained, at least approximately,

by dividing the numerator by the denominator. Thus, the numbers $\frac{1}{3}$, $\frac{1}{7}$, $\frac{3}{11}$, $\frac{4}{5}$, and $\frac{1}{8}$, when converted into the decimal notation to the nearest thousandths, are, respectively, 0.333, 0.143, 0.273, 0.800, and 1.875. It will be noted that $\frac{1}{7}$ expressed as a decimal to the nearest thousandth is 0.143 rather than 0.142. Conversely, the numbers 0.125, 0.346, and 0.028 in the decimal notation may be expressed, respectively, as $\frac{125}{1000}$, $\frac{346}{1000}$, and $\frac{28}{1000}$; upon simplification these fractions become $\frac{1}{8}$, $\frac{17}{500}$, and $\frac{1}{260}$.

Irrational numbers may be expressed in the decimal notation to any desired degree of approximation. Frequently this requires the use of various tables. More will be said about these tables when they are needed.

9. APPROXIMATE NUMBERS

It is usually assumed by the scientist that any measurement can be made only approximately. Thus, he does not regard a weight of 27.2 lb as having been determined exactly; rather, he thinks of the measurement 27.2 lb as being closer to the true weight than 27.1 lb or 27.3 lb. If the weight could be measured to a greater degree of precision, the result might be 27.1836 lb or 27.1836275 lb.

Rational numbers that represent measurements belong to the class of approximate numbers. Frequently, it is important to be able to round off such numbers to some desired degree of precision. When the number 27.1836275 is rounded off to tenths, it is 27.2; when rounded off to four decimal places, it is 27.1836. In general, when rounding off a number to some desired precision, the last digit retained is unchanged if the portion of the number to be dropped is less than one half a unit in the last position retained; the last digit retained is increased by 1 if the portion of the number dropped is more than one half a unit in the last position retained. In the special case when the part of a number to be dropped is exactly one half a unit in the last position retained, the last retained digit is unchanged or increased by 1, whichever will make it even. It is apparent, therefore, that 27.1836275 rounded off to three decimal places is 27.184 since the part to be dropped, namely, 0.0006275, is more than one half a unit in the third decimal place. When rounded off to six decimal places, the result is 27.183628; the last digit is increased by 1 to make it even since the part discarded is exactly one half a unit in the sixth place.

In dealing with numbers representing measurements, or with approximate numbers generally, it is frequently necessary to speak of significant digits. The digits 1, 2, 3, 4, 5, 6, 7, 8, 9 are always significant. All zero digits are significant, except for any consecutive zeros immediately adjacent to the decimal point in the case of a decimal fraction less than 1 and probably in the case of an integer. Thus, all digits in the numbers 23.06 ft, 1.008 in., and 0.860 lb are significant. On the other hand, the first two zeros in 0.0060 ft are not significant. Also, the last two digits in the number 80,600 miles would usually not be regarded as significant. Any zeros involved in the writing of an integer are significant if they are the

result of accurate determination; they are not significant if they are used merely to locate the decimal point.

10. NEGATIVE NUMBERS

We often have occasion to measure a quantity in a definite direction. For example, temperatures are measured above and below the starting point, zero. The temperatures above zero are distinguished from those below zero by designating the former by positive numbers and the latter by negative numbers. In general, if positive numbers designate the measurement of a quantity in a certain direction, then negative numbers are used to designate the measurement of the quantity in the opposite direction.

11. REAL NUMBERS

The positive and negative, rational and irrational, numbers and zero constitute the real numbers, and they may be represented graphically by points on a line as typified by the integers in Figure 5. Those to the right of the origin O are usually designated as positive and are marked + (or are unmarked), and those to the left of the origin are usually designated as negative and are marked -.

12. MAGNITUDE OF REAL NUMBERS

Of two numbers indicated on a horizontal scale with positive direction to the right, that one which lies to the right of the other is said to be the greater, and the one which lies to the left is said to be the less. Thus, by reference to Figure 5, 4 is greater than 1; also -3 is greater than -4.

EXERCISES 2

1. Arrange the following numbers in ascending order of magnitude.

2:
$$\pi^*$$
: $-\sqrt{2}$: 0: -1: $5\frac{1}{2}$: -3π : $\sqrt{3}$

- 2. Round off the approximate number 62.630255 (a) to four decimal places; (b) to five decimal places; (c) to thousandths; (d) tenths; (e) units.
- 3. List the significant digits in each of the following: (a) 93,000,000 miles; (b) 620.6 ft; (c) 0.01 in.; (d) 20.004 kg; (e) 500 lb.
 - 4. Arrange the following numbers in descending order of magnitude:

$$4\pi$$
; $3\frac{1}{4}$; -3.1 ; $\frac{37}{3}$; $-\frac{23}{8}$; 12.3741 ; $-\frac{311}{101}$

- 5. (a) When rounded off to two decimal places, which of the following approximate numbers can be written in the form 15.64? 15.641? 15.638? 15.6349? 15.645? 15.635? 15.6465?
 - (b) Describe the permissible range to the measurement denoted by 15.64 ft.
- 6. Round off each of the following approximate numbers to two decimal places, and list the significant digits originally appearing in each number:
 - 3.00625 kg; 0.0051 ft; 32.075 mi; 1.004 yd; 0.0150 m; 0.0219 g
 - * The number π is approximately 3.14159265.

The Fundamental Operations Applied to Literal Number Symbols

13. LITERAL NUMBER SYMBOLS

The student already knows from his knowledge of elementary algebra that it often is convenient to use letters in addition to the numerical symbols of arithmetic to designate numbers. We shall assume that he already has some knowledge of the operations of addition, subtraction, multiplication, division, and the finding of powers and roots as they apply to literal number symbols. However, some very fundamental topics involving the use of algebraic symbols are reviewed in the sections which follow in this chapter.

14. DIVISION BY ZERO

When we consider the division of a by b, where $b \neq 0$, we seek the number x such that bx = a; that is, division is the inverse of multiplication.

However, if b = 0 and $a \neq 0$, it is impossible to find a number x such that bx = a, since the product of any number multiplied by 0 is 0. Consequently, division by zero when the dividend is not zero is impossible.

If, when b = 0, a is also 0, then we have bx = a for all values of x. In this case, x is said to be indeterminate. In general, therefore, division by zero is excluded.

EXERCISES 3

The Substitution of Numbers in Literal Expressions

Find the values of the following expressions:

1.
$$\left(\frac{a-b}{a+b}+2b\right)^2-2ab$$
, if $a=6, b=2$

Solution: After substituting the given values for a and b in the original expression, we have

$$\left(\frac{6-2}{6+2}+2\cdot 2\right)^2-2\cdot 6\cdot 2=\left(\frac{4}{8}+4\right)^2-24=\frac{81}{4}-24=-\frac{15}{4}$$

2.
$$\frac{a^2+b^2-2b}{a+b}$$
, if $a=3, b=1$

3.
$$\left(\frac{a}{b} + \frac{b}{a}\right)^2 - \left(\frac{a^3}{b^3} + \frac{b^3}{a^3}\right)$$
, if $a = 3, b = 2$

4.
$$(a-2)(a+2)(a-1)(a+1)$$
, if $a=3$

5.
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$
, if $a = 2$, $b = 3$, $c = 4$

6.
$$\frac{1}{a} + \frac{1}{bc} - \frac{3}{2a}$$
, if $a = 1$, $b = \frac{1}{2}$, $c = \frac{1}{3}$

7.
$$\sqrt{a^2+2ab+b^2}$$
, if $a=5, b=7$

8.
$$\sqrt{a^2+b^2}$$
, if $a=12$, $b=5$

9.
$$\sqrt[3]{a^3 + 3a^2b + 3ab^2 + b^3}$$
, if $a = 3$, $b = 2$

10.
$$\sqrt[3]{a^3 + 2ab}$$
, if $a = 2$, $b = 14$

11.
$$\frac{\frac{2a}{3b}}{c} + \frac{\frac{3b}{2a}}{2c} + \frac{b}{2c}$$
, if $a = 1, b = 2, c = 3$

12.
$$\frac{a-b}{\sqrt{a^2+b^2}} + \frac{a+b}{\sqrt{a^2-2ab+b^2}}$$
, if $a=4, b=3$

13.
$$\frac{\frac{a}{b}}{\frac{c}{d}} + \frac{\frac{3a}{2b}}{\frac{4c}{3d}}$$
, if $a = 5, b = 2, c = -2, d = 3$

14. Find the value of V if
$$V = \frac{4\pi r^3}{3}$$
, if $\pi = 3.1416$, $r = 3$.

15. Find the value of S if
$$S = 4\pi r^2$$
, if $\pi = 3.1416$, $r = 5$.

16. Find the value of C if
$$C = 2\pi r$$
, if $\pi = 3.1416$, $r = 6$.

In the problems which follow, obtain any required roots by referring to Table 4 in the Appendix.

17.
$$\sqrt{a^2+b^2}$$
, if $a=12$, $b=4$

18.
$$\sqrt[3]{a^3+b^3}$$
, if $a=3, b=2$

18.
$$\sqrt[3]{a^3 + b^3}$$
, if $a = 3$, $b = 2$
19. $\sqrt{s(s-a)(s-b)(s-c)}$, if $a = 3$, $b = 5$, $c = 6$; and $s = \frac{a+b+c}{2}$

20.
$$\sqrt{\frac{2s}{a}}$$
, if $s = 71$, $g = 32$

15. ABSTRACT NUMBERS, DENOMINATE NUMBERS, DIMENSIONS

We have already observed that in making a measurement a number n is employed to express the ratio of a quantity q and some chosen unit u of that quantity. This fact may be expressed by

$$n=\frac{q}{u}$$
.

The number n is referred to as an abstract number, while nu, the number of units of the quantity under consideration, is referred to as a denominate number. Thus, 2 is an abstract number, but 2 ft is a denominate number. As already indicated, the measurement implied by a denominate number is usually to be regarded as approximate.

If a length d contains n units of length L, we may write

§ 15]

$$d = nL$$

In this relation, n is an abstract number, and nL is a denominate number (a length) by virtue of the factor L.

If an area A contains n square units, we may write

$$A = nL^2,$$

where L^2 represents a square unit. In this relation n is an abstract number, and nL^2 is a denominate number (an area) by virtue of the factor L^2 .

If a volume V contains n cubic units, we may write

$$V = nL^3.$$

where L^3 represents a cubic unit. In this equality, n is an abstract number and nL^3 is a denominate number (a volume) by virtue of the factor L^3 .

If a time t contains n units of time T, we may write

$$t = nT$$
.

Thus, n is an abstract number, and nT is a denominate number (a time) by virtue of the factor T.

If a body of mass m contains n units of mass M, we may write

$$m = nM$$
.

In this relation, n is an abstract number, and nM is a denominate number (a number of units of mass) because of the factor M.

The symbols L, L^2 , L^3 , T, and M, as employed above, are referred to as the dimensions (dimensional symbols) of length, area, volume, time, and mass, respectively. Similar symbols have been introduced for dealing with virtually all the magnitudes with which man is concerned.

By means of the dimensional symbols associated with magnitudes that are measured directly, it is possible to construct dimensional symbols to be associated with magnitudes measured indirectly. Thus, if the sides of a rectangle are 2 ft and 3 ft, the area is $(2 \text{ ft})(3 \text{ ft}) = 6 \text{ ft}^2$, that is, 6 sq ft.

Similarly, if we designate s/t by v, where s represents a distance and t a time, we note that since s is of dimension L and t is of dimension T, then the dimensional symbol to be associated with v is L/T (unit of length per unit of time).

If we designate m/V by ρ , where m represents a mass and V a volume, we observe that since m is of dimension M and V is of dimension L^3 , then the dimensional symbol for ρ is M/L^3 (unit of mass per unit of volume).

If a body of weight 6 lb is lifted through the distance 4 ft, the work involved is (6 lb)(4 ft) = 24 ft-lb.

Dimensional symbols are employed to considerable advantage by the physical scientist in converting denominate numbers from one system of units to another. Thus, the denominate number 5 yd may be converted to feet or to inches as follows:

$$5(yd) = 5(3 ft) = 15 ft = 15(12 in.) = 180 in.$$

Similarly, the denominate number 5 sq yd, or 5 (yd)², may be converted to square feet or to square inches as follows:

$$5(yd)^2 = 5(3 ft)^2 = 5(9)(ft)^2 = 45(ft)^2 = 45(12 in.)^2$$

= $45(144)(in.)^2 = 6480(in.)^2$.

The denominate number 5 days may be converted to hours, minutes, or seconds as follows:

$$5 \text{ days} = 5(24 \text{ hr}) = 120 \text{ hr} = 120(60 \text{ min}) = 7200 \text{ min}$$

= $7200(60 \text{ sec}) = 432,000 \text{ sec}$.

It is important to note that formulas or equations involving denominate numbers cannot have any valid significance unless each term is expressed in the same units and has the same dimensions. Thus, a formula such as $V = 5h + 3h^2$, where V is a volume and h a length, has no significance, since the terms V, 5h, and $3h^2$ are of dimensions L^3 , L, L^2 , respectively. The volume V of a frustum of a pyramid is

$$V = \frac{1}{2}h(B + b + \sqrt{Bb}).$$

where h is the altitude and B and b are the areas of the two bases. The terms V, $\frac{1}{3}hB$, $\frac{1}{3}hb$, $\frac{1}{3}h\sqrt{Bb}$ are each of dimension L^3 , but the formula has significance only when each term is expressed in the same cubic units.

16. TRANSFORMATION OF SIMPLE FORMULAS

The simple formula (1) A = LH may be written in the forms (2) L = A/H and (3) H = A/L. If we are given the numerical values of L and L to obtain L, the form (1) is most useful. If we are given the numerical values of L and L to obtain L, the form (2) is most serviceable; and if we are given the numerical values of L and L to obtain L, the form (3) is most useful. It is evident that the ability to transform a given formula into various other forms is important for the scientist's needs. Furthermore, practice in making the transformations provides excellent drill in the use of the fundamental operations of algebra.

A particular transformation of a formula may be impossible or may involve more advanced mathematics than is at the command of the student. So at this time we shall confine ourselves to those simple transformations that depend upon the following six axioms:

- (1) If equal numbers are added to equal numbers, the sums are equal.
- (2) If equal numbers are subtracted from equal numbers, the remainders are equal.

- (3) If equal numbers are multiplied by equal numbers, the products are equal.
- (4) If equal numbers are divided by equal numbers (exclusive of zero), the quotients are equal.
 - (5) The same powers of equal numbers are equal.
 - (6) The same roots of equal numbers are equal.

Axiom 6 means that in the case of the extraction of the square root, for example, the positive numbers that are the roots of equal numbers are equal, and the negative numbers that are the roots of equal numbers are equal.

In later chapters we treat the general theory of exponents, radicals, and the solution of equations. We shall assume at this point, however, that the student is already familiar with enough algebra to apply the six axioms to the exercises that follow in this chapter.

Illustration 1: Let us obtain an explicit formula for each of the letters if

$$L = \frac{Mt - g}{t}.$$

$$L = \frac{Mt - g}{t}.$$
(1)

Given:

Hence, multiplying each member of (1) by t (Axiom 3),

$$Lt = Mt - g. (2)$$

Also, subtracting Mt from each member of (2) (Axiom 2),

$$Lt - Mt = -g. (3)$$

Therefore,

$$t(L-M)=-g,$$

and dividing each member of (3) by L - M (Axiom 4),

$$t = \frac{-g}{L - M}. (4)$$

From (3), $-Mt = -g - Lt \quad \text{(Why?)}.$

So,
$$M = \frac{g + Lt}{t}$$
 (Why?).

Also,
$$g = Mt - Lt$$
 (Why?).

Illustration 2: Let us obtain a formula for each of the letters involved in the equation,

$$I=\sqrt{r^2+P^2+L^2},$$

where all the quantities designated by the various letters are positive. Squaring each member of the given equation (Axiom 5), we have

$$I^2 = r^2 + P^2 + L^2,$$

from which the student can readily obtain the following:

$$r = \sqrt{I^2 - P^2 - L^2}$$
 (Axioms 2 and 6); (1)

$$P = \sqrt{I^2 - r^2 - L^2}$$
 (Why?); (2)

$$L = \sqrt{I^2 - r^2 - P^2}$$
 (Why?). (3)

Illustration 3: Let us obtain a formula for each of the letters appearing in the relation

$$\frac{1}{R}=\frac{1}{r_1}+\frac{1}{r_2}.$$

After multiplying each member of the given equation by Rr_1r_2 (Axiom 3), we have

$$r_1r_2=Rr_2+Rr_1,$$

from which the student can readily obtain

$$R = \frac{r_1 r_2}{r_1 + r_2}; (1)$$

$$r_1 = \frac{Rr_2}{r_2 - R} \; ; \tag{2}$$

$$r_2 = \frac{Rr_1}{r_1 - R}$$
 (3)

Illustration 4: If $x^3 + 3x^2y = 5$, it is comparatively simple to show that $y = \frac{5 - x^3}{3x^2}$, but it requires a considerable mastery of algebraic processes to obtain a formula for x. This illustration is cited as an example which requires knowledge of mathematics beyond elementary algebra.

EXERCISES 4

Obtain an explicit formula for each of the letters involved in the following relations. The symbols > and < appearing in several problems are the symbols of inequality; the symbol always points toward the smaller quantity; thus, a > 0 is read "a is greater than zero," and a < 0 means "a is less than zero."

1.
$$x + y = u + v$$

2. $xy = wv$
3. $x^2y = n^2z$; $x > 0$, $n > 0$
4. $V = \frac{4\pi r^3}{3}$
5. $A = 4\pi r^2$; $r > 0$
6. $K = \frac{Wv^2}{64.4}$; $v > 0$
7. $V = \frac{2d}{d_1 - d_2}$
8. $S = \frac{n}{2}(a + l)$
9. $P = \frac{E^2}{D}$; $E > 0$
10. $F = \frac{M_1 M_2}{2}$; $d > 0$

11.
$$t = 6.28 \sqrt{\frac{L}{32.2}}$$
; $L > 0$

12. $v = c \sqrt{2gh}$; $g > 0, h > 0$

13. $\sqrt[4]{x} + y = d^2 + 4$; $d > 0$

14. $C = \frac{mv^2}{r}$; $v > 0$

15. $\frac{M}{EI} = \frac{1}{R}$

16. $T = \frac{EJ\theta}{l}$

17. $P = \frac{\pi^2 EI}{l^2}$; $l > 0$

18. $S = \frac{3wx^2}{bd^2}$; $x > 0, d > 0$

19. $p = \left(m\frac{S_c}{S_l} + 1\right)d$

20. $E = \frac{\phi PNm}{(p)10^8}$

21. $R_t = R_1 + R_2\left(\frac{N_1}{N_2}\right)^2$; $N_1 > 0$

22. $v = v_0 \sqrt{1 + at}$; $t > 0, a > 0$
 $N_2 > 0$

23. $\frac{P}{A} = \frac{S}{l + q\left(\frac{l}{2}\right)^2}$; $l > 0, d > 0$

24. $r_1 = \frac{r_2}{n - (n-1)r_2}$

25. If $S = P(1+i)^n$, where n is a positive integer, obtain formulas for P and i.

17. THEOREMS AND FORMULAS FROM GEOMETRY

For purpose of reference we give the following formulas and theorems from geometry:

(1) If the sides and the hypotenuse of a right triangle are a, b, c, respectively, then,

$$a^2+b^2=c^2.$$

This is known as the Pythagorean theorem.

(2) The area of a parallelogram (including a rectangle or a square) is the product of the base by the altitude; that is,

$$A = bh$$
.

(3) (a) The area of a triangle is half the product of the base by the altitude; thus,

$$A = \frac{1}{2}bh.$$

- (b) The area of a triangle is $\sqrt{s(s-a)(s-b)(s-c)}$, where a, b, and c are the three sides and s is half the perimeter.
- (4) The area of a trapezoid is equal to the product of the altitude by half the sum of the parallel sides. So, if the parallel sides are designated by b and B, and the altitude by h,

$$A=\frac{h(B+b)}{2}.$$

- (5) The area of a circle of radius r is πr^2 , and its circumference is $2\pi r$.
- (6) The area of a sector of a circle is equal to half the product of its

radius by the arc length of the sector; that is, where s is the arc length,

$$A = \frac{1}{2}rs.$$

- (7) The volume of a rectangular parallelopiped is equal to the product of its three dimensions.
- (8) The volume of a prism (or a cylinder) is equal to the product of its base by its altitude; that is,

$$V = Bh.$$

- (9) The volume of a pyramid (or a cone) is equal to one third the product of its base by its altitude; that is, $V = \frac{1}{3}Bh$.
- (10) The lateral area of a regular pyramid (or a cone) is equal to one half the product of its slant height by the perimeter of its base.
 - (11) The volume V of a frustum of a pyramid (or a cone) is

$$V = \frac{1}{3}h(B + b + \sqrt{Bb}),$$

where h is the altitude, and B and b are the areas of the two bases.

(12) If r is the radius and h is the altitude of a right circular cylinder, then,

Lateral area =
$$2\pi rh$$
,
Total area = $2\pi r(h + r)$,
Volume = $\pi r^2 h$.

(13) If r is the radius, h is the altitude, and s is the slant height of a right circular cone, then,

Lateral area = πrs , Total area = $\pi r(s + r)$, Volume = $\frac{1}{3}\pi r^2 h$.

(14) If r is the radius of a sphere, then,

Surface area =
$$4\pi r^2$$
,
Volume = $\frac{4}{3}\pi r^3$.

EXERCISES 5

(Any square roots needed in the solution of the following problems may be obtained by reference to Table 4 in the Appendix.)

- 1. From the statement of the Pythagorean theorem, obtain a formula for one side of a right triangle in terms of the hypotenuse and the other side.
- 2. Find the length of one of the equal sides of an isosceles triangle whose base is 10 cm and whose area is 76 sq cm.
 - 3. Determine the area of an equilateral triangle whose sides are each 8 in.
- 4. The area of an isosceles triangle is 96 sq in. Its height is 8 in. Find the length of the equal sides.
- 5. A square and an equilateral triangle have the same perimeter. How do their areas compare?

EXERCISES 15

- 6. (a) Obtain a formula for the radius of a sphere in terms of its surface area.
 - (b) Obtain a formula for the radius of a sphere in terms of its volume.
- 7. The length of the hypotenuse of a right triangle is 74 ft. One leg is 31 ft. Find the other leg.
- 8. A box (rectangular parallelopiped) has the inside dimensions 3 ft, 4 ft, and 6 ft. What is the longest steel rod that can be placed inside the box?
- 9. In an isosceles triangle the equal sides are each 16 ft. The base is 10 ft. Find the height.
- 10. The diameter of a circular opening is 50 in. Find its circumference in feet and its area in square feet.
- 11. Find the area of a sector of a circle if the central angle of the sector is 72° and the radius of the circle is 6 in.
- 12. Determine the area of the largest square that can be inscribed in a circle of area 225π sq ft.
- 13. Find the volume of a right prism whose base is a regular hexagon (six sides) if the altitude of the prism is 3 ft and one side of the base is 8 in.
- 14. A conical pile of sand is 300 ft in circumference at the base and is 40 ft high. Find the number of cubic yards of sand that it contains.
- 15. Find the number of cubic yards of concrete required for a concrete pier in the form of a frustum of a pyramid if the bases are squares 30 in. and 20 in. on a side, respectively, and the pier has an altitude of 12 ft.
- 16. Show that the formula for the area of a sector of a circle gives the area of the complete circle when the arc length of the sector is taken as the circumference of the circle.
- 17. A water tank consists of a cylinder with a hemispherical base. Find the volume of the tank in cubic feet if the altitude of the cylinder is 25 ft and the diameter of the base of the cylinder is 12 ft.
- 18. The tank in Exercise 17 is covered with a conical roof whose altitude is 6 ft. Find the total surface of the tank.

3

Review Topics of Elementary Algebra

18. FACTORS

When two or more quantities are multiplied together to form a product, each of the quantities is called a factor of the product. Any factor is called a coefficient of the product of the remaining factors. Thus, the factors of 2ab are 2, a, and b; moreover, 2 is the coefficient of ab. Also, (a - b) and (a + b) may be described as the factors of $a^2 - b^2$, since the product of (a - b) and (a + b) is $a^2 - b^2$.

In elementary arithmetic, when we speak of the factors of a positive integer, we refer to the positive integers which are its exact divisors. It is evident that a restricted definition of the term *factor* is being employed. In accord with this restricted definition, a positive integer which has no factors other than itself and the number 1 is called a *prime number*.

19. SPECIAL PRODUCTS

Certain combinations of algebraic factors are met so frequently in practice that it is a convenience to know the forms of their products. Likewise, if a given algebraic expression is in a form identified as a special product, it is frequently desirable to know its factors. In anticipation of either case, the student will find it advantageous to memorize the following equalities. Every algebraist should be able to write immediately the right member of each of the following relations if the left member is given. Conversely, he should be able to write immediately the left member if the right member is given.

$$(a+b)(a-b) = a^2 - b^2 (1)$$

$$(a+b)^2 = a^2 + 2ab + b^2 (2)$$

$$(a-b)^2 = a^2 - 2ab + b^2 (3)$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
 (4)

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$
 (5)

$$(a-b)(a^2+ab+b^2)=a^3-b^3$$
 (6)

$$(a+b)(a^2-ab+b)=a^3+b^3 (7)$$

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$$
 (8)

$$(x+a)(x+b) = x^2 + (a+b)x + ab$$
 (9)

The previous products may all be verified by actual multiplication. Moreover, it is evident that the left member of each equality will reduce to the same numerical value as the corresponding right member for any set of numbers that may be assigned to the literal symbols; such equalities are known as algebraic identities.

In the previous identities, each of the various letters may symbolize any expression. Thus, in

$$(3x+2y)(3x-2y),$$

we may consider

$$3x = a$$
 and $2y = b$.

Hence,
$$(3x + 2y)(3x - 2y) = (3x)^2 - (2y)^2$$
 [by identity (1)];

that is,
$$(3x + 2y)(3x - 2y) = 9x^2 - 4y^2$$
.

Also in

$$(3x+5y)^3,$$

we may consider

$$3x = a$$
 and $5y = b$.

Hence, by identity (4),

$$(3x + 5y)^3 = (3x)^3 + 3(3x)^2(5y) + 3(3x)(5y)^2 + (5y)^3;$$

that is,
$$(3x + 5y)^3 = 27x^3 + 135x^2y + 225xy^2 + 125y^3$$
.

In considering the product

$$(2x + 3y + 5z)(2x + 3y - 5z).$$

we may take

$$2x + 3y = a \quad \text{and} \quad 5z = b.$$

Therefore, by identity (1)

$$(2x + 3y + 5z)(2x + 3y - 5z) = (2x + 3y)^2 - (5z)^2.$$

But by identity (2)

$$(2x+3y)^2 = 4x^2 + 12xy + 9y^2.$$

So, in conclusion,

$$(2x + 3y + 5z)(2x + 3y - 5z) = 4x^2 + 12xy + 9y^2 - 25z^2.$$

EXERCISES 6

Special Products of the Form (a + b)(a - b)

Obtain each of the following products directly by reference to identity (1), listed in Section 19:

1.
$$(x + 2y)(x - 2y)$$

2.
$$(16 - 8)(16 + 8)$$

3.
$$(3x + 7y)(3x - 7y)$$

4.
$$(a - b - c)(a - b + c)$$

SUGGESTION: First write the product of Exercise 4 in the form

$$[(a-b)-c][(a-b)+c].$$

5.
$$\left(x-\frac{4}{y}\right)\left(x+\frac{4}{y}\right)$$

6.
$$\left(\frac{1}{x} - \frac{1}{y}\right)\left(\frac{1}{x} + \frac{1}{y}\right)$$

7.
$$(a + b + c)(a - b - c)$$

Suggestion: Note that -b - c may be written as -(b + c).

8.
$$(x + 2y + z)(x + z - 2y)$$

9.
$$(x-y-z)(x-y+z)$$

10.
$$\left(\frac{x}{3} + \frac{y}{4} + z\right)\left(\frac{x}{3} + \frac{y}{4} - z\right)$$

11. Verify the identities obtained in the exercises above by multiplication.

EXERCISES 7

Factors of Expressions of the Form $a^2 - b^2$

The algebraic expressions listed in this section may all be regarded as resulting from the multiplication of two factors in the form (a + b) and (a - b). In each case, what are the factors?

1.
$$x^2 - 4$$

3.
$$16b^2 - 4a^2$$

5.
$$(x + y)^2 - 16(x - y)^2$$

7.
$$a^2 - b^2 - 2bc - c^2$$

9.
$$16x^2 + 24xy + 9y^2 - 144z^2$$

2.
$$a^2 - 4x^2y^2$$

4.
$$49x^4 - 36y^4$$

6.
$$(x+3)^2 - (y-3)^2$$

8.
$$x^2 - 2xy + y^2 - z^2$$

10.
$$81 - 4x^4$$

20. EXPANSIONS OF THE FORM $(a \pm b)^2$

As already observed, the square of an algebraic expression of two terms, called a binomial, follows the law $(a \pm b)^2 = a^2 \pm 2ab + b^2$. Thus,

$$(2x + 3y)^2 = (2x)^2 + 2(2x)(3y) + (3y)^2$$

$$= 4x^2 + 12xy + 9y^2.$$

$$(w - 2v)^2 = w^2 - 2(w)(2v) + (2v)^2$$

$$= w^2 - 4wv + 4v^2.$$

Also,

EXERCISES 8

Expand each of the following:

1.
$$(2x - 3y)^2$$

2.
$$(2w + v)^2$$

3.
$$(2s - 5t)^2$$

$$4. \left(\frac{x}{2} + \frac{y}{3}\right)^2$$

5.
$$\left(a-\frac{b}{2}\right)^2$$

6.
$$(6-x)^2$$

7.
$$\left(4t+\frac{s}{2}\right)^2$$

8.
$$(98)^2 = (100 - 2)^2$$

21. FACTORS OF EXPRESSIONS IN THE FORM $a^2 \pm 2ab + b^2$

From our experience with the previous section, it is apparent that a *trinomial*, an algebraic expression of three terms, is a perfect square when it appears in the form $a^2 + 2ab + b^2$ or $a^2 - 2ab + b^2$; the factors of the

former are $(a + b)^2$ and of the latter are $(a - b)^2$. Thus, $x^2 - 6xy + 9y^2$ is a perfect square, since -6xy is in the form -2ab, where a is the positive square root of x^2 and b is the positive square root of y^2 ; consequently, its factors are $(x - 3y)^2$. The following exercises may be factored in the same manner.

EXERCISES 9

1.
$$x^4 + 2x^2y^2 + y^4$$
 2. $1 - 4xy + 4x^2y^2$

 3. $16 - 24x + 9x^2$
 4. $4 - 4x + x^2$

 5. $9 + 12x + 4x^2$
 6. $\frac{1}{9} + \frac{2x}{3} + x^2$

 7. $\frac{x^2}{9} - \frac{xy}{6} + \frac{y^2}{16}$
 8. $4x^2 - 6xy + \frac{9y^2}{4}$

 9. $x^2 + 4xy + 4y^2$
 10. $a^2x^2 + 2abx + b^2$

22. EXPRESSIONS REDUCIBLE TO THE FORM a^2-b^2

Many expressions to be factored may first be reduced to a difference of two squares. The following illustrations represent some typical situations.

Illustration 1: Factor $a^4 + a^2b^2 + b^4$.

By adding and then subtracting a^2b^2 , there results

$$a^{4} + a^{2}b^{2} + b^{4} = (a^{4} + 2a^{2}b^{2} + b^{4}) - a^{2}b^{2}$$
$$= (a^{2} + b^{2})^{2} - (ab)^{2}$$
$$= (a^{2} + b^{2} - ab)(a^{2} + b^{2} + ab).$$

Illustration 2: Factor $a^4 - a^2b^2 + 16b^4$.

By adding and then subtracting $9a^2b^2$, we have

$$a^{4} - a^{2}b^{2} + 16b^{4} = (a^{4} + 8a^{2}b^{2} + 16b^{4}) - 9a^{2}b^{2}$$
$$= (a^{2} + 4b^{2})^{2} - (3ab)^{2}$$
$$= (a^{2} + 4b^{2} - 3ab)(a^{2} + 4b^{2} + 3ab).$$

Illustration 3: Factor $a^4 + 4b^4$.

$$a^{4} + 4b^{4} = a^{4} + 4a^{2}b^{2} + 4b^{4} - 4a^{2}b^{2}$$

$$= (a^{2} + 2b^{2})^{2} - (2ab)^{2}$$

$$= (a^{2} + 2b^{2} - 2ab)(a^{2} + 2b^{2} + 2ab).$$

EXERCISES 10

Factor the following expressions:

1.
$$x^4 + 4x^2 + 16$$
 2. $1 + a^2 + a^4$

 3. $x^4 + 4x^2y^2 + 16y^4$
 4. $x^4 + 4x^2y^2 - 12y^4$

 5. $81 + 9x^2 + x^4$
 6. $x^4 - 7x^2 + 81$

 7. $x^4 - 17x^2y^2 + 16y^4$
 8. $25x^4 + 24x^2y^2 + 36y^4$

 9. $9t^4 + 21t^2s^2 + 25s^4$
 10. $x^4 + 64y^4$

11. Verify by multiplication the factors obtained in the previous exercises.

EXERCISES 11

Expansions of the Form (a \pm b)8

Make the following expansions by reference to the appropriate standard forms in Section 19:

1.
$$(x + 2y)^3$$

2. $(3x - y)^3$
3. $\left(y + \frac{x}{2}\right)^3$
4. $(2y - 3x)^3$
5. $\left(\frac{y}{2} + \frac{x}{3}\right)^3$
6. $\left(y - \frac{3x}{2}\right)^3$
7. $(4 - x)^3$
8. $(3x - 2y)^3$
9. $\left(a + \frac{3b}{2}\right)^3$

11. Verify by multiplication the identities obtained in the exercises above.

EXERCISES 12

Factors of Expressions in the Form as ± bs

Factor the following expressions by reference to the forms in Section 19 for the sum or the difference of two cubes:

1.
$$(2x)^3 + y^3$$
2. $27 + 8x^3$ 3. $1 - 27x^3y^3$ 4. $8x^3 + a^3b^3$ 5. $a^6 + 8$ 6. $z^3 - 8$ 7. $x^6y^3 - 1$ 8. $125 - c^6$ 9. $x^3 - a^6y^6$ 10. $1 - 27x^6$

EXERCISES 13

Expansions of the Form $(a + b + c)^2$

Expand the following squares of trinomials after reviewing standard form 8, Section 19:

1.
$$(x + 2y + z)^2$$

2. $(x - y - z)^2$
3. $(x + 2y + 3z)^2$
4. $(2x - 3y + z)^2$
5. $(4 - x + y)^2$
6. $\left(x + \frac{y}{2} + \frac{z}{2}\right)^2$
7. $(3x - y - 2z)^2$
8. $\left(\frac{x}{2} + \frac{y}{3} + \frac{z}{4}\right)^2$

23. FACTORS OF EXPRESSIONS OF THE FORM $x^2 + (a + b)x + ab$

The trinomial $x^2 + (a + b)x + ab$ has the factors (x + a) and (x + b). Thus, to factor $x^2 - 7x + 12$, we may consider ab = 12 and a + b = -7. It is then necessary to determine two numbers a and b whose product is 12 and whose sum is -7. If this can be done by inspection, the factors are readily found. In the particular problem under consideration, the two numbers are evidently -3 and -4. Hence, $x^2 - 7x + 12$ possesses the factors (x - 3) and (x - 4).

EXERCISES 14

Factor each of the following expressions:

1.
$$x^2 - 3x - 10$$

3.
$$x^2 + (3 + \sqrt{3})x + 3\sqrt{3}$$

5.
$$x^2 - 7x - 30$$

7.
$$x^2 + ax - 2a^2$$

9.
$$x^2 - (a + b)x + ab$$

11.
$$x^2 - 6x + 9$$

2.
$$x^2 - \frac{1}{2}x - \frac{1}{2}$$

4.
$$x^2 + (\sqrt{2} - 1)x - \sqrt{2}$$

6.
$$x^2 - \frac{9}{2}x - \frac{5}{2}$$

8.
$$x^2 + \frac{3a}{2}x + \frac{a^2}{2}$$

10.
$$x^2 - 6x - 7$$

24. FACTORS OF EXPRESSIONS OF THE FORM $ax^2 + bx + c$

Expressions of this general type, when $a \neq 1$, may frequently be factored by trial.

For example, to factor $2x^2 + x - 15$, let us attempt to find two x coefficients whose product is 2, and two other numbers whose product is -15, which may then be arranged within two factors so that the sum of their cross product is 1. Thus, the above trinomial factors into (2x - 5)(x + 3).

EXERCISES 15

Factor the following trinomials:

1.
$$10x^2 - 13x - 3$$

3.
$$15x^2 + 73x - 10$$

5.
$$15x^2 + x - 2$$

7.
$$10 + 3x - x^2$$

9.
$$3x^2 - 17xy + 20y^2$$

2.
$$3x^2 - 10x + 3$$

4.
$$15x^2 - 7x - 2$$

6.
$$x^2 - 7x + 10$$

8.
$$10 + z - 2z^2$$

10.
$$12x^2 - 13xy - 4y^2$$

25. FACTORS OF EXPRESSIONS OF THE FORM ax + ay + bx + by

Such expressions are readily factored by grouping the terms in such a manner as to show a common binomial factor; thus,

$$ax + ay + bx + by = a(x + y) + b(x + y).$$

Since each of the two terms now appearing contains the factor (x + y), the given expression factors into (x + y)(a + b).

EXERCISES 16

Factor the following expressions:

1.
$$a^2x + a^2y - b^2x - b^2y$$

3.
$$x^3 - 3x^2y + 3y - x$$

5.
$$1-x+x^2-x^3$$

2.
$$xyz - abz + cxy - abc$$

4.
$$cd^2 + cb^2 - c^2b^2 - c^2d^2$$

6.
$$2\sqrt{3} - 20x + \frac{\sqrt{3}}{2}y - 5xy$$

MISCELLANEOUS EXERCISES 17

Factor the following expressions:

1.
$$x^2 - 7x + 12$$

3.
$$x^2 - 3xy + 2y^2$$

5.
$$x^2 + 4x - 21$$

7.
$$x^2 - 4x - 12$$

9.
$$4y^2 + 40y + 36$$

11.
$$5y^2 + 14y + 8$$

13.
$$9x^2 - 6x - 8$$

15.
$$9x^2 + 12xy + 4y^2$$

17.
$$6y^2 + 22y + 12$$

19.
$$16x^4 + 8x^2 - 3$$

21.
$$2cd - c^2 - d^2$$

23.
$$a^5 - a^4 - a^3 + a^2$$

25.
$$x^4 - 17x^2u^2 + 16u^4$$

27.
$$2a^2x^2 - 6xy - 3by^2 + a^2bxy$$

29.
$$4x^2 + 6yz - y^2 - 9z^2$$

31.
$$128 + 54x^3$$

33.
$$39x^2y^2 - 9x^4 - 25y^4$$

35.
$$x^2 - 4xy + 4y^2 - 3xz + 6yz$$

2.
$$x^4 + 2x^2 - 8$$

4.
$$10x^2 - 40x + 30$$

6.
$$x^2y + 23xy - 50y$$

8.
$$a^6 - 17a^3 + 70$$

10.
$$6x^2 + 17x + 12$$

12.
$$9x^2 + 6x - 8$$

14.
$$\frac{3x^2}{2} + \frac{3xy}{2} - 3y^2$$

16.
$$9y^2 + 37xy + 4x^2$$

18.
$$9x^2 + 18xy - 27y^2$$

20.
$$x^4 - 3x^3 + 4x^2 - 12x$$

22.
$$18a^2x^2 - 24a^2x - 10a^2$$

24.
$$5d^2 - 5cd - 10c^2$$

26.
$$x^4 - 28x^2y^2 + 16y^4$$

28.
$$24a^3 - 81b^3$$

30.
$$x^4 - 8x^2y^2 + 16y^4$$

32.
$$27a^3 - 54a^2b + 36ab^2 - 8b^3$$

34.
$$a^6 - 26a^3 - 27$$

26. SPECIAL CASE OF BINOMIAL THEOREM

We have seen that

$$(a + b)^2 = a^2 + 2ab + b^2,$$

 $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.$

and

Similarly, we can show by actual multiplication that

$$(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

and

$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5.$$

The previous identity for $(a + b)^5$ may be written

$$(a+b)^5 = a^5 + \frac{5}{1}a^4b + \frac{5\cdot 4}{1\cdot 2}a^3b^2 + \frac{5\cdot 4\cdot 3}{1\cdot 2\cdot 3}a^2b^3 + \frac{5\cdot 4\cdot 3\cdot 2}{1\cdot 2\cdot 3\cdot 4}ab^4 + \frac{5\cdot 4\cdot 3\cdot 2\cdot 1}{1\cdot 2\cdot 3\cdot 4\cdot 5}b^5.$$

A product of consecutive positive integers, starting with 1, is known as a factorial product; for instance, $1 \cdot 2 \cdot 3 \cdot 4$ is known as factorial 4 and is written 4 or 4!. (We shall not use the exclamation sign, however.) Similarly, $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$ is called factorial 5 and is written 5. Of course,

1 may also be written as |1. Consequently, we may write

$$(a+b)^5 = a^5 + \frac{5}{\boxed{1}}a^4b + \frac{5\cdot 4}{\boxed{2}}a^3b^2 + \frac{5\cdot 4\cdot 3}{\boxed{3}}a^2b^3 + \frac{5\cdot 4\cdot 3\cdot 2}{\boxed{4}}ab^4 + \frac{5\cdot 4\cdot 3\cdot 2\cdot 1}{\boxed{5}}b^5.$$

A general formula similar to this expansion for $(a + b)^n$ may be found for $(a + b)^n$, if n is a positive integer. In fact,

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^{2} + \frac{n(n-1)(n-2)}{3}a^{n-3}b^{3} + \dots + \frac{n(n-1)(n-2)\cdots 2}{[n-1]}ab^{n-1} + \frac{n(n-1)(n-2)\cdots 1}{[n]}b^{n}.$$

This formula, known as the binomial theorem for positive integral powers, will be accepted at this point without proof. The student should test the formula for n = 2, 3, 4.

Illustration: Expand $(2x - 3y)^6$ by the binomial theorem.

$$(2x - 3y)^{6} = (2x)^{6} + \frac{6}{\underline{|1|}} (2x)^{5} (-3y)^{1} + \frac{6 \cdot 5}{\underline{|2|}} (2x)^{4} (-3y)^{2}$$

$$+ \frac{6 \cdot 5 \cdot 4}{\underline{|3|}} (2x)^{3} (-3y)^{3} + \frac{6 \cdot 5 \cdot 4 \cdot 3}{\underline{|4|}} (2x)^{2} (-3y)^{4}$$

$$+ \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{\underline{|5|}} (2x)^{1} (-3y)^{5} + \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{\underline{|6|}} (-3y)^{6}$$

$$= 64x^{6} - 576x^{5}y + 2160x^{4}y^{2} - 4320x^{3}y^{3}$$

$$+ 4860x^{2}y^{1} - 2916xy^{5} + 729y^{6}.$$

EXERCISES 18

Obtain each of the following expansions by the binomial theorem:

1. $(x + 2y)^4$	2. $(a + 1)^5$
3. $(3a + 5b)^4$	4. $(a + b)^7$
5. $\left(\frac{3}{2} + \frac{x}{3}\right)^6$	6. $(x + y)^9$
7. $(y + 2x)^8$	8. $(10-1)^3$
9. $(1 + 0.04)^5$	10. $(1 + 0.02)^6$

27. DEGREE OF A POLYNOMIAL

Although the terms binomial and trinomial have been employed in previous discussions, a definition has not yet been given of the more general term, polynomial. A polynomial in certain variables, for example, x, y, z is a sum of terms of the type $kx^ay^bz^c$, in which k is a constant and

a, b, and c are positive integers. A monomial is a polynomial of one term; a binomial is a polynomial of two terms; and a trinomial is a polynomial of three terms.

The degree with respect to certain variables of a single term of a polynomial is the sum of the exponents of the designated variables occurring in the term. The degree of a polynomial with respect to certain variables is the maximum degree associated with any single term of the polynomial. Thus,

$$3x^2y + 7xy^5 + 4y^3$$

is a polynomial of three terms, that is, a trinomial. The first term is of third degree with respect to the variables x and y, the second is of sixth degree, and the third is of third degree; so the polynomial is of sixth degree with respect to x and y. Similarly, the same polynomial is of second degree with respect to x, and is of fifth degree with respect to y.

28. HIGHEST COMMON FACTOR AND LOWEST COMMON MULTIPLE

The highest common factor (HCF) of two or more polynomials with integral coefficients is the polynomial of highest degree with integral coefficients that can be divided into all of them without a remainder. In practice, an HCF of two or more polynomials with integral coefficients can be determined by resolving each expression into its polynomial factors of lowest degree that have integral coefficients and then writing the product of all common factors. If a common factor is repeated two or more times in all the given polynomials, it should appear in the HCF to the lowest power to which it appears in any expression.

A lowest common multiple (LCM) of two or more polynomials is the polynomial of lowest degree which contains each of the given expressions as a factor. In practice, an LCM of two or more polynomials may be found by factoring each expression completely, as explained in the case of the HCF, and then taking the product of all of their different factors, using each factor the greatest number of times that it occurs in any of the polynomials.

EXERCISES 19

Find an HCF and an LCM for each of the following collections of polynomials:

1.
$$x^2 + xy$$
, $x^3 + y^3$, and $x^2 - 3xy - 4y^2$

Suggestion: The factors of the three given polynomials are

$$x^{2} + xy = x(x + y),$$

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2}),$$

$$x^{2} - 3xy - 4y^{2} = (x + y)(x - 4y).$$

and

Therefore, the HCF is (x + y), and the LCM is $x(x + y)(x^2 - xy + y^2)(x - 4y)$.

2. $6m^2n$, $-4mnx^3$, and $12mn^2x$

3.
$$ax - ay + bx - by$$
, $a^2 + ab + b^2$, and $a^2 + ab$

4.
$$a^3 + 8$$
, $3a^2 + 5a - 2$, and $a^2 - 4$

5.
$$1-x$$
, $x-1$, x^2-1 , x^4-1 , and x^8-1

6.
$$a^2 + 2ab + b^2 - c^2$$
 and $a^2 - b^2 - 2bc - c^2$

7.
$$6x^2 - 54$$
, $7(x - 3)^2$, and $3x^2 - 6x - 9$

29. ALGEBRAIC FRACTIONS

An algebraic fraction is the indicated quotient of two algebraic expressions. Thus, a/b implies that a is divided by b, where a and b may denote any algebraic expressions.

Throughout this text, in all expressions involving denominators, no denominator is permitted to be zero. Thus, in dealing with each of the following fractions there are restrictions on x as indicated: $(1)\frac{3}{x}$, $x \neq 0$;

(2)
$$\frac{1}{x-2}$$
, $x \neq 2$; (3) $\frac{1}{x^2-9}$, $x \neq \pm 3$; (4) $\frac{1}{a-b}$, $a \neq b$.

In simplifying and combining fractions we make use of the following principles which should already be familiar to the student.

I. The value of a fraction is not changed by multiplying or dividing both the numerator and the denominator by the same number, excluding zero. Such an operation upon a fraction is equivalent to multiplying it by 1.

II. Changing the sign of either the numerator or the denominator of a fraction is equivalent to changing the sign of the fraction. Thus,

$$\frac{-a}{b} = -\frac{a}{b} = \frac{a}{-b}.$$

Exercise: Justify that $\frac{-a}{b} = \frac{a}{-b}$ by employing Principle I, given above.

III. The algebraic sum of two fractions with a common denominator is a fraction whose numerator is the algebraic sum of the numerators of the given fractions and whose denominator is the common denominator.

IV. Two fractions that do not have a common denominator may be changed to equivalent fractions having a common denominator through the use of Principle I, and their sum may then be found as in III. The lowest common denominator of two or more fractions is the LCM of their denominators.

V. The product of two fractions is a fraction whose numerator is the product of the numerators and whose denominator is the product of the denominators.

VI. To divide one fraction by another, invert the divisor and multiply. This is equivalent to the multiplication of numerator and denominator by the reciprocal of the denominator.

VII. The expression a/b is in its lowest terms if a and b do not contain any common factors. To reduce a/b to its lowest terms, we divide both numerator and denominator by their highest common factor.

Illustration 1: Perform the following indicated operations and reduce the result to the simplest form:

$$\frac{2}{x^2-3x+2}+\frac{2}{x^2-x-2}-\frac{1}{x^2-1}$$

Solution: After factoring the denominators, we have

$$\frac{2}{(x-1)(x-2)} + \frac{2}{(x-2)(x+1)} - \frac{1}{(x-1)(x+1)}$$

Since the last fraction may be regarded as

$$+\frac{-1}{(x-1)(x+1)}$$
,

the desired sum becomes

$$\frac{2(x+1)}{(x-1)(x-2)(x+1)} + \frac{2(x-1)}{(x-1)(x-2)(x+1)} + \frac{-(x-2)}{(x-1)(x-2)(x+1)}$$

$$= \frac{2(x+1) + 2(x-1) - (x-2)}{(x-1)(x-2)(x+1)}$$

$$= \frac{3x+2}{(x-1)(x-2)(x+1)}.$$

Illustration 2: Perform the following indicated operations and reduce the result to the simplest form:

$$\frac{6x^2 - ax - 2a^2}{ax - a^2} \cdot \frac{x - a}{9x^2 - 4a^2} \div \frac{2x + a}{3ax + 2a^2}$$

In accordance with the principles previously stated, we have

$$\frac{6x^{2} - ax - 2a^{2}}{ax - a^{2}} \cdot \frac{x - a}{9x^{2} - 4a^{2}} \cdot \frac{3ax + 2a^{2}}{2x + a}$$

$$= \frac{(3x - 2a)(2x + a)}{a(x - a)} \cdot \frac{(x - a)}{(3x - 2a)(3x + 2a)} \cdot \frac{a(3x + 2a)}{(2x + a)}$$

Since the factors in the numerator are the same as the factors in the denominator, the product is 1.

Illustration 3: Perform the following indicated operations and reduce the result to the simplest form:

$$\frac{16x^2 - 9a^2}{x^2 - 4} \div \left(\frac{4x - 3a}{x - 2} \cdot \frac{x + 2}{4x + 3a}\right)$$

After inverting the fraction appearing within the parentheses, we have

$$\frac{16x^{2} - 9a^{2}}{x^{2} - 4} \cdot \frac{(x - 2)(4x + 3a)}{(4x - 3a)(x + 2)}$$

$$= \frac{(4x - 3a)(4x + 3a)}{(x - 2)(x + 2)} \cdot \frac{(x - 2)(4x + 3a)}{(4x - 3a)(x + 2)}$$

$$= \frac{(4x + 3a)^{2}}{(x + 2)^{2}}.$$

Illustration 4: Perform the following indicated operations and reduce the result to the simplest form:

$$\left(\frac{16x^2-9a^2}{x^2-4} \div \frac{4x-3a}{x-2}\right) \cdot \frac{x+2}{4x+3a}$$

In this case we have

$$\left(\frac{16x^2 - 9a^2}{x^2 - 4} \cdot \frac{x - 2}{4x - 3a}\right) \frac{x + 2}{4x + 3a} = \frac{4x + 3a}{x + 2} \cdot \frac{x + 2}{4x + 3a} = 1.$$

In Illustrations 3 and 4 the use of parentheses determines the sequence of operations to be performed. Unless parentheses are used, some arbitrary rule is required to define the sequence of operations.

EXERCISES 20

Reduce each of the following expressions to lowest terms:

1.
$$\frac{2a^2x^3}{12ax^7}$$

2.
$$\frac{x+1}{x+1+(x+1)^2}$$

3.
$$\frac{x^3+y^3}{x^2-xy+y^2}$$

4.
$$\frac{x^4-1}{x^3+1}$$

5.
$$\frac{2a^2x^2-a^3x-6a^4}{x^3-3ax^2+2a^2x}$$

Perform the following indicated operations and reduce to lowest terms:

6.
$$\frac{3}{a^2+2a+1}-\frac{4a}{a^2-1}$$

7.
$$\frac{2}{x+1} - \frac{3}{x-1} + \frac{4}{x+3}$$

8.
$$x-2-\frac{x+1}{x^2-2}$$

9.
$$\frac{3}{x+y} - \frac{2}{(x+y)^2} + \frac{x-y}{(x+y)^3}$$

10.
$$\frac{5}{3x-3} - \frac{8}{5x-15}$$

11.
$$\frac{5x-4}{x-2} + \frac{x^2-2x-17}{x^2-5x+6}$$

12.
$$\frac{3a}{3a-2} \cdot \frac{9a^2-4}{9a^2}$$

13.
$$\frac{(a-b)^2}{a+b} \cdot \frac{a^2-b^2}{a^2+b^2}$$

14.
$$\frac{1}{x^2}\left(\frac{x}{y} - \frac{y}{x}\right)\left(\frac{x^3}{x - y}\right)^2 \div \left(1 - \frac{y}{x}\right)$$

15.
$$\left(\frac{1}{x} - \frac{1}{y}\right)\left(1 - \frac{2y}{x} + \frac{y^2}{x^2}\right) \div (x - y)^2$$

16.
$$\left(\frac{1}{r_1} + \frac{1}{r_2}\right) \cdot \frac{1}{{r_1}^2 - {r_2}^2}$$

17.
$$\frac{\frac{x^2}{y^2} - \frac{y^2}{x^2}}{x + \frac{y^2}{x^2}}$$

18.
$$\frac{\frac{x}{x-1}-1}{1+\frac{x}{1-x}}$$

19.
$$\left(1 - \frac{ab}{a^2 - ab + b^2}\right) \left(1 - \frac{ab}{a^2 + 2ab + b^2}\right) \div \frac{a^3 - b^3}{a^3 + b^3}$$

20.
$$\left(\frac{a^2 + ax}{2x}\right) \left(\frac{(a+x)^2}{4ax}\right) - 1$$

21.
$$\left(1 - \frac{1-a}{1+a} + \frac{1+2a^2}{1-a^2}\right) \left(\frac{a+1}{2a+1}\right)$$

22.
$$\frac{\frac{a+b}{ab}\left(\frac{1}{a}-\frac{1}{b}\right)-\frac{b+c}{bc}\left(\frac{1}{c}-\frac{1}{b}\right)}{\frac{a+c}{ac}\left(\frac{1}{c}-\frac{1}{c}\right)}$$

23.
$$\left(a-3+\frac{-5}{y+1}\right) \div \left(2-\frac{7y+2}{y^2-1}\right)$$

24.
$$\frac{x}{x-y} + \frac{y}{x+y} + \frac{x^2+y^2}{y^2-x^2}$$

25.
$$\frac{1}{a-x} - \frac{3}{a+x} + \frac{2a}{x^2-a^2}$$

26.
$$\left(\frac{2x^2-3x+1}{\frac{1}{x}-1}\right)\left(\frac{1}{x^2}-\frac{2}{x}\right)$$

27.
$$\frac{(y-5x)\left(\frac{24y}{y-5x}\right)-(5y-x)\left(\frac{24x}{y-5x}\right)}{(y-5x)^2}$$

28.
$$\frac{(x-2)(2x-x^2)}{(x-2)^2} \div \frac{2x^2}{x-2}$$

29.
$$\frac{2x(x-2)-(x-4)[2x+2(x-2)]}{4x^2(x-2)^2}$$

30.
$$\frac{(2x-a)^2[2a^2(x-a)+2a^2x]-8a^2x(x-a)(2x-a)}{(2x-a)^4}$$

31.
$$\frac{-2a^3(a-3x)}{(2x-a)^3} + \frac{2a^2(x-a)}{(2x-a)^2}$$

32.
$$\left(\frac{a-2}{a-1}\right)\left(\frac{a-1}{a-2}-\frac{4a}{a-5}\right)\left(\frac{a+2}{3a-5}-\frac{a-4}{a+1}\right)$$

4

Constants, Variables, and Graphical Representation

30. CONSTANTS, VARIABLES, AND FUNCTIONS

A variable is a symbol which may represent any one of a collection of numbers. Thus, r, the radius of a circle, is a variable, for it may stand for any positive number. A symbol which denotes only one number is given the special name constant. Thus, t, the temperature of the air throughout an experiment, is a constant if the air temperature is maintained at 72°. Also, π is a constant when it is employed in the usual sense as the ratio of the circumference to the diameter of a circle. It is important to note, therefore, that since letters may be either constants or variables, it is frequently necessary to know just what they are in any particular formula or equation.

When we assign different values to the variable r, the radius of a sphere, we see that V, the volume, assumes different corresponding values. Thus, V is a variable; it is a variable related to r by means of the particular formula $V = \frac{4}{3}\pi r^3$. When two variables are so related that the choice of a particular number to be assigned to the first variable determines the value or values of the second variable, the second variable is said to be a function of the first variable. By means of the formula $V = \frac{4}{3}\pi r^3$, we may assign a value to r and thereby determine V; so, V is said to be a function of r. This fact may be denoted symbolically by V = f(r). Of course, in the special formula under consideration, we may first assign values to V and determine r; then r would be a function of V. Symbolically, this could be written r = f(V).

The variable to which we assign numerical values is said to be the *independent variable*; the other variable is said to be the *dependent variable*, or function of the independent variable.

The symbols, f(x), F(x), $\phi(x)$, are commonly used to represent functions of the variable x. Hence, if y is a function of x, we may write

$$y=f(x).$$

Similarly, if w is so intimately related to u that w is a function of u, we may write w = f(u), or perhaps w = F(u).

$$y=\frac{x^3-3}{x+1},$$

y has a value corresponding to each number that may be assigned to x, except x = -1; so we write

$$y = f(x) = \frac{x^3 - 3}{x + 1}; \quad x \neq -1.$$

When x = 1, we say

$$f(1)=\frac{1^3-3}{1+1}=-1;$$

when x = 2, we write

$$f(2) = \frac{2^3 - 3}{2 + 1} = \frac{5}{3};$$

and when x = a, the value of the function is

$$f(a) = \frac{a^3 - 3}{a + 1}$$

Definitions: (1) A function of x of the form

$$Ax^{n} + Bx^{n-1} + Cx^{n-2} + \cdots + Kx + L$$

where n is a positive integer and A, B, C, \cdots , K, L are any real numbers, is defined as a rational integral function of x, or as a polynomial in x.

(2) Every function which can be expressed either as a rational integral function, or as a quotient of two rational integral functions, is called a rational function.

EXERCISES 21

- **1.** Given $f(x) = x^2 + 3x + 5$, find f(0), f(1), f(-1), f(a + b).
- 2. Given $\phi(x) = \frac{x}{(x-1)(x-2)}$, find $\phi(0)$, $\phi(3)$, $\phi(-3)$, $\phi(y+2)$. Why can you not find $\phi(1)$ or $\phi(2)$?
 - 3. Given $F(x) = x^3 + 2x + 1$, find F(1), F(2), F(a), F(w 1).
 - 4. Given $f(x) = \frac{x + \frac{1}{x}}{2}$, find f(1), f(-1), f(3). Why can you not find f(0)?

For this function show that f(x) = f(1/x).

- 5. Given $f(x) = x^3 + 3x$, show that $f(x + h) f(x) = 3(x^2 + 1)h + 3xh^2 + h^3$.
- **6.** If $F(x) = x^2$, show that $\frac{F(b) F(a)}{b a} = b + a$.
- 7. Any value of x for which f(x) = 0 is defined as a zero of the function f(x). Show that x = 1, x = 2, and x = 3 are zeros of the function

$$y = f(x) = (x - 1)(x - 2)(x - 3).$$

8. Assuming that every rational integral function of x of nth degree may be resolved into a constant times n factors of the type (x-c), how many zeros does the function possess?

31. GRAPHICAL REPRESENTATION

We have already observed that a functional relationship involving two variables may be given through the medium of a formula. Another important method of displaying a relationship between a variable x and the variable y, where y = f(x), is through the use of a graph.

The type of graphical representation treated in this book is based on two perpendicular lines X'X and Y'Y, intersecting at O (Figure 6). The lines are called the *axes of reference*, or, if the variables under consideration are x and y, they may be designated as the x axis and y axis, repectively. The point of intersection O is called the *origin*. We adopt a convenient

scale of measurement upon the horizontal axis. Then, corresponding to positive numerical values of a variable x, we locate points on X'X measured from O in the direction OX, and, corresponding to negative numerical values of x, we locate points on X'X measured from O in the direction OX'.

Similarly, we adopt a convenient scale of measurement upon the vertical axis, and, corresponding to the positive numerical values of the function (dependent variable) y, we locate points on Y'Y measured from O in the direction OY, and, corresponding to negative numerical values of y, we locate points on Y'Y measured from O in the direction OY'.

Thus, relative to such a system of axes and the scale of measurement adopted upon each axis, the two numbers assigned respectively to the independent variable and the corresponding value of the function may be employed to locate a point in the plane. To be more specific, if the value of an independent variable x is represented by the segment OA_1 , and the corresponding value of the function y is denoted by OB_1 , the point P_1 is determined as shown. That is, through the point B_1 on the y axis we draw a line parallel to the x axis, and through the point A_1 on the x axis we draw a line parallel to the y axis, then the intersection of the pair of lines determines the desired point in the plane. The lengths OA_1 and OB_1 (or A_1P_1) are called the coordinates of the point P_1 , and P_1 may be designated

by the ordered pair of numbers (OA_1, A_1P_1) . Similarly, the lengths of OA_2 and A_2P_2 are called the *coordinates* of the point P_2 , and P_2 may be denoted by (OA_2, A_2P_2) . The value of the independent variable is called the *abscissa* of the point, and the corresponding value of the function is called the *ordinate* of the point. In designating a point by its coordinates, the abscissa is *always* written first, and the ordinate appears second.

This system of representing points by coordinates is called the *rectangular*, or *Cartesian*, *system*. For purposes of illustration, four points possessing the indicated coordinates have been located in Figure 7.

Fig. 7

EXERCISES 22

- 1. Draw two perpendicular axes and locate the following points: (0, 0), (1, 0), (0, 5), (-1, -2), (-10, 2), (5, -3), (-7, -1), (-3, 0), (2.5, -4.5).
- 2. Determine the numerical distance between the two points designated by (3, -2) and (7, 1).
- **3.** Show that the following points are all located upon the same circle: $(-3, 4), (4, -3), (-5, 0), (1, \sqrt{24}), (0, -5)$. What is the center, and what is the radius of the circle?
- **4.** Determine the length of a diagonal of the rectangle having the vertices (5, 1), (-5, 1), (-5, -2), (5, -2).

The following examples should indicate to the student further important uses of the type of graphical representation now under consideration.

EXAMPLE 1: The statistics in the following table pertain to the number of students (y) who study a certain course in the various years (x).

x (Year)	y (Students)	x (Year)	y (Students)
1913	3	1922	14
1914	7	1923	15
1915	5	1924	16
1916	6	1925	18
1917	0	1926	22
1918	0	1927	26
1919	5	1928	32
1920	7	1929	50
1921	6		

If we represent these data graphically, we obtain Figure 8.

For purposes of visualization, the points corresponding to the given data have been connected by the dotted straight lines. By referring to the graph, it may be observed that there was an uninterrupted annual increase in the enrollment from 1921 to 1929; that there was an increase during the period from 1918 to 1920; that there was a period of fluctuation from 1913 to 1917; that there was no enrollment during the period of the First World War; and that there was a slight loss from 1920 to 1921.

Example 2: If in a vacuum a body falls from rest, the distance s (ft) covered in the corresponding time t (sec) is given approximately by the following table:

t (Sec)	s (Ft)
1	16
2	64
3	144
4	256
5	400
6	576

'A consideration of the numbers designating the distances indicates that they may be written as $16(1)^2$, $16(2)^2$, $16(3)^2$, $16(4)^2$, and so on. Consequently, the scientist observes that the relationship between s and t, as indicated by these particular measurements, may be indicated algebraically by $s = 16t^2$. We may therefore assume this law as a hypothesis and then

subject it to further verification at various heights and for various other distances and also for bodies of various sizes. In general, it is found that close to the surface of the earth this law holds true, regardless of the size of the body.

If we now graph the data given in the previous table and any additional pairs of values (t, s), where t is positive, that satisfy the equation $s = 16t^2$, we have the continuous curve given

in Figure 9. If a sufficiently large number of points corresponding to values of t and s that satisfy the equation $s=16t^2$ are determined, an accurate curve corresponding to the equation $s=16t^2$ may be drawn; then the curve may be used to determine s corresponding to any given t or to determine t corresponding to any given s.

Example 3: Graph the function given by the algebraic formula y = 2x - 3.

If we assign arbitrary numerical values to x, such as 1, 2, 3, 4, \cdots , we may tabulate the number pairs, corresponding in each case to the independent variable and the associ-

ated value of the function, as shown below:

Independent Variable x	Function $y = 2x - 3$
1	-1
2	1
3	3
4	5
•	•
•	•
•	•

Y 5 D(4,5)

-4 C(3,3)

-2 B(2,1)

0 1 2 3 4 X

-1 A(1,-1)

The points A(1, -1), B(2, 1), C(3, 3), D(4, 5) corresponding to

Fig. 10

associated values of the variable x and the function 2x-3 are represented in Figure 10. The points A, B, C, D, \cdots , are joined consecutively by line segments. The totality of all points whose coordinates satisfy the equation is called the *graphical representation of the function*.

32. FIRST-DEGREE FUNCTIONS

A function which is of the form

$$y = mx + b$$

where m and b are constants and $m \neq 0$, is defined as a general function of the first degree in x.

If y = 0, x = -b/m; so x = -b/m, $m \neq 0$, is described as the zero of the function y = mx + b. It is apparent that the coordinates (-b/m, 0) represent the point of intersection of the curve y = mx + b and the x axis.

EXERCISES 23

Locate carefully a few points upon the curve that is the graphical representation of each of the following first-degree functions, and determine the zero of each function. In your arbitrary selection of numbers for x, choose positive and negative integers and fractions.

1.
$$y = 3x - 6$$
2. $y = 5x - 1$ 3. $y = 6x$ 4. $y = \frac{x}{2}$ 5. $y = -3x$ 6. $y = -3x - 6$ 7. $y = \frac{3x}{4} - 8$ 8. $y = \frac{3x}{4} - 6$ 9. $y = 4x - 6$ 10. $y = 5x - 4$

11.
$$2y = 3x - 1$$

If the student has performed the previous exercises carefully, he must have noticed that for every given function the points seem to lie on some straight line. We shall now show that if we graph the general function

Fig. 11

y = mx + b, the points will always lie on a straight line. Hence, we shall have shown that any function of the first degree has a definite straight line as its graph. It is for this reason that the function y = mx + b is frequently referred to as a linear function.

Let us consider the function y = mx + b. Let us assign to x the values 0 and x_1 . Then, the corresponding values of the function are b and

 $mx_1 + b$, respectively. If we indicate the number pairs (0, b) and $(x_1, mx_1 + b)$ as the points P_0 and P_1 , respectively, and pass a straight line through the two points, we have the line in Figure 11.

We shall now show that any other pair of corresponding values of the variable x and the function y = mx + b determines a point on the same straight line.

Thus, let us assign to x any value x_2 , then the corresponding value of the function is $mx_2 + b$. Let $(x_2, mx_2 + b)$ be the point P_2 in Figure 12; it

Fig. 12

is not known at the present moment that P_2 is necessarily on the line P_0P_1 . Draw the straight lines P_0P_1 and P_1P_2 .

From the figure we see that

$$\frac{QP_1}{P_0Q} = \frac{mx_1 + b - b}{x_1} = m,$$

$$\frac{RP_2}{P_1R} = \frac{mx_2 + b - (mx_1 + b)}{x_2 - x_1} = \frac{m(x_2 - x_1)}{x_2 - x_1} = m.$$

$$\frac{QP_1}{P_0Q} = \frac{RP_2}{P_0R},$$

Consequently,

and

and the triangles P_0P_1Q and P_1P_2R are similar. Therefore, angle QP_0P_1 = angle RP_1P_2 . Since P_0Q is parallel to P_1R , it follows that line $P_0P_1P_2$ is straight; that is, the point P_2 lies on the straight line through P_0 and P_1 .

The number m is called the *slope* of the line y = mx + b and the number b, which is the ordinate of the point where the line cuts the y axis, is called the y intercept.

33. EQUATIONS OF THE FORM Ax + By + C = 0

Equations in the form Ax + By + C = 0, such as 3x - 4y + 6 = 0, 6x + 2y - 3 = 0, 3x - 4y = 0, may be rewritten in the form y = mx + b.

Thus, the equation

$$3x - 4y + 6 = 0$$

may be written

$$-4y = -3x - 6$$
 (subtracting $3x + 6$ from both members).

This may be transformed further into

$$y = \frac{3x}{4} + \frac{3}{2}$$
 (Dividing each member by -4)

Similarly, 6x + 2y - 3 = 0 may be written as $y = -3x + \frac{3}{2}$, and 3x - 4y = 0 may be written y = 3x/4.

If A=0 in the equation Ax + By + C = 0, and $B \neq 0$, then y = -C/B, irrespective of the value chosen for x; thus, the graph of the equation is a line parallel to the x axis and at a distance -C/B from that axis. The slope of this line is 0, since m=0 when the equation is put in the form y = mx + b.

If B=0, $A\neq 0$, then x=-C/A, for any value of y. The graph of the equation x=-C/A is a straight line parallel to the y axis and cutting the x axis in (-C/A, 0).

We have thus shown that the graphical representation of any equation of the first degree is a straight line; so, any equation of the form Ax + By + C = 0 is called a *linear equation*.

It is evident that the lines representing equations of the form $x = K_1$ and $x = K_2$, $K_1 \neq K_2$, are each parallel to the y axis and, hence, are parallel to each other. The lines representing y = mx + b and y = mx + c, where $b \neq c$, may be shown to be parallel to each other as follows:

If we draw the lines y = mx + b and y = mx + c, $b \neq c$ (note Figure 13), the distance $OA_1 = b$ and $OA_2 = c$. If distance A_1B_1 is chosen equal

Fig. 13

to A_2B_2 and designated by x_1 , then C_1 has the y coordinate $mx_1 + b$, and C_2 has the y coordinate $mx_1 + c$. Consequently, $B_1C_1 = B_2C_2 = mx_1$. There-

fore, the right triangles $A_1B_1C_1$ and $A_2B_2C_2$ are congruent; hence, the two lines are parallel. If b = c in the equations y = mx + b and y = mx + c, the lines are identical.

EXERCISES 24

Write each of the following equations in the form y = mx + b, and graph each equation. Which lines of the set are parallel?

1.
$$3x - 4y + 6 = 0$$
2. $3x - 4y + 8 = 0$ 3. $5x + 2y - 7 = 0$ 4. $5x + 2y - 15 = 0$ 5. $3y = 4x$ 6. $3y = 4x + 10$ 7. $y = x$ 8. $y = x + 5$ 9. $y = -2x + 7$ 10. $3y + 6x + 14 = 0$

- 11. Find the area of the parallelogram determined by y = 2x 4, y = 2x 12, y = 1, and y = 8.
- 12. Determine the equation of a line passing through the point (0, 3) and having the slope $\frac{3}{2}$.
- 13. Show that the line representing y = x + 3 is inclined at an angle of 45 degrees with the horizontal.

5

First-Degree Equations in One Unknown

34. ROOTS OF AN EQUATION

An equation of the form f(x) = 0 is called a conditional equation if f(x) does not equal zero for all values of x. If f(x) = 0 for all values of x, the equation is called an *identity*. By definition, the values of x which cause f(x) to become zero are the zeros of the function f(x). These values of x are also said to satisfy the equation f(x) = 0 and are described as the roots of f(x) = 0. Thus, the roots of $x^2 - 7x + 12 = 0$ are x = 3 and x = 4, since x = 3 and x = 4 cause the function $x^2 - 7x + 12$ to have the value zero.

The equation mx + b = 0, $m \neq 0$, is an equation of the first degree. The function mx + b, $m \neq 0$, has the value zero when x = -b/m; hence, -b/m is a root of mx + b = 0.

Theorem. An equation of the first degree mx + b = 0, $m \neq 0$, has only one root, namely, x = -b/m. This may be proved as follows:

Assume that x_1 and x_2 are two roots of mx + b = 0, $m \neq 0$; then

$$mx_1 + b = 0 \quad \text{and} \quad mx_2 + b = 0.$$

Hence,
$$(mx_1 + b) - (mx_2 + b) = 0$$
 or $m(x_1 - x_2) = 0$.

Since $m \neq 0$, it follows that $x_1 - x_2 = 0$ and $x_1 = x_2$. Thus, the assumption of two different roots is impossible, and the only root of the equation is the one already described.

35. EQUIVALENT EQUATIONS

The functions y = x - 3 and y = 5x - 15 are different functions. Moreover, they have different graphs (Figure 14). However, x = 3 is the only root of each of the equations x - 3 = 0 and 5x - 15 = 0. Consequently, the two equations are said to be equivalent.

The functions y = x - 3 and $y = x^2 - 4x + 3$ are different functions. They have as their corresponding graphs the straight line and the parabolic curve, as shown in Figure 15.

The only root of x-3=0 is x=3. There are two roots of $x^2-4x+3=0$, namely, x=3 and x=1. These two equations are said to be nonequivalent, even though they have one root, x=3, in

common. In general, two equations that have all their roots in common are said to be *equivalent*; otherwise, they are said to be nonequivalent.

If we consider the equation,

$$x = 2x + 3, \tag{1}$$

and square both members, we have

$$x^2 = 4x^2 + 12x + 9. (2)$$

It can readily be verified that the root of Equation (1) is x = -3, while the roots of Equation (2) are x = -3 and x = -1.

Fig. 14

Fig. 15

Hence, Equations (1) and (2) are not equivalent even though Equation (2) was obtained by squaring the members of (1).

Again, if we square both members of the equation

$$\sqrt{x+1} = x - 1,\tag{3}$$

we have
$$x + 1 = x^2 - 2x + 1$$
. (4)

It can readily be verified that x = 0 and x = 3 are roots of Equation (4), but (3) has only the root x = 3, since x = 0 does not satisfy (3).

Similarly, if we consider the equation

$$x^2 - 7x + 12 = 0 ag{5}$$

and divide each member by x - 3, we have

$$x-4=0. (6)$$

It can readily be confirmed that the roots of Equation (5) are x = 3 and x = 4, while the only root of (6) is x = 4. Thus, Equations (5) and (6) are not equivalent.

The purpose of the above considerations is to direct attention to the fact that when an equation is derived from another equation by algebraic

means the derived equation is not necessarily equivalent to the original equation. A general answer to the question as to the permissible operations that may be performed upon the members of an equation f(x) = 0 to transform it into an equivalent equation F(x) = 0 will not be given in this course. It is important to note, however, that we do not divide both members of an equation in x by a polynomial in x, lest we lose possible roots of the original equation. As a general safeguard, all roots of a derived equation should be checked in the original equation, and the values of x that do not satisfy the original equation must be discarded.

Illustration: The equation

$$\frac{8x+23}{20} - \frac{5x+2}{3x+4} = \frac{2x+3}{5} - 1$$

reduces to 7x - 84 = 0 after multiplying each member by 20(3x + 4); hence, x = 12 is a root. This root checks in the original equation.

EXERCISES 25

Solve the following equations and check the roots.

1.
$$0.05x + 0.02(x - 20) = 28.40$$

Note: The decimal point may be eliminated by multiplying each member by 100.

2.
$$0.03(x-10)-0.04(50-x)=17$$

$$3. \ \frac{10}{x} + \frac{15}{2x} = \frac{2}{3}$$

Suggestion: First, multiply each member by the LCM of the denominators.

4.
$$21 + \frac{3x - 11}{16} = \frac{5x - 5}{8} + \frac{97 - 7x}{2}$$

5.
$$x + \frac{3x-5}{2} = 12 - \frac{2x-4}{3}$$

6.
$$9x - \frac{x-1}{2} + \frac{2x-2}{3} = 12x - \frac{5x-7}{4}$$

7.
$$\frac{a}{x} = b + c$$
 8. $a + \frac{1}{x} = b + c + \frac{d}{x}$

9.
$$x - \frac{3x-3}{5} + 4 = \frac{20-x}{2} - \frac{6x-8}{7} + \frac{4x-4}{5}$$

10.
$$\frac{a-x}{b} - \frac{4a-x}{c} = a-b$$
 11. $\frac{3x}{b} - \frac{x}{c} = m-c$

12.
$$\frac{6x+7}{9} + \frac{7x+13}{6x+3} = \frac{2x+4}{3}$$

13.
$$\frac{2x+8}{9} - \frac{13x-2}{17x-3} + \frac{x}{3} = \frac{7x}{12} - \frac{x+6}{36}$$

14.
$$\frac{x-1}{x+1} - \frac{x}{x-2} + \frac{4}{x} = 0$$

15.
$$\frac{1}{a^2-2ax+x^2}-\frac{x}{x^2-a^2}+\frac{1}{a+x}=0$$

16.
$$(a + x)(c - x) - (a - x)(c + x) = 2$$

17.
$$\frac{x-1}{x-\frac{4}{3}} = \frac{x+\frac{1}{3}}{x-\frac{2}{3}}$$

18.
$$\frac{2x+5}{x^2+9x+14} = \frac{x-1}{x^2-x-6} - \frac{5-x}{x^2+4x-21}$$

19.
$$\frac{4}{x+3} - \frac{8x+3}{9-x^2} = \frac{-3}{3-x}$$

20. If $\frac{1}{R} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$, solve for each letter in terms of the other letters.

36. PROBLEMS INVOLVING EQUATIONS OF THE FIRST DEGREE

The scientist is primarily concerned with mathematics as a tool by means of which he may solve problems arising in his profession. Many practical problems may be expressed mathematically as equations, whereupon the roots may be obtained and properly interpreted. In this chapter we shall consider problems of a practical type which may be expressed mathematically by equations of the first degree.

Illustration 1: How many gallons of a mixture containing 95 per cent alcohol must be added to 50 gal of a solution which is 15 per cent alcohol in order that the resulting mixture shall contain 25 per cent alcohol?

In this type of problem it is first desirable to observe the equality that will become the basis for the equation which is to be solved. It is apparent in this particular problem that one important equality which is involved and which may be symbolized is

Amount of alcohol
in the tank at the
start + amount of
alcohol added = total amount of alcohol finally in the tank.

The first term of this equality is obviously 0.15(50). The second term is not known immediately, since the number of gallons of mixture added to the tank is not known.

Let x = number of gallons of mixture added to the tank.

Then, 0.95x = number of gallons of pure alcohol added to that in the tank.

Since there must be (50 + x) gal of final mixture, it follows that

0.25(50 + x) = number of gallons of pure alcohol in final mixture.

Hence, it is now possible to symbolize completely the equality under

80

consideration, thereby obtaining

$$0.95x + 0.15(50) = 0.25(50 + x),$$

$$0.95x + 7.5 = 12.5 + 0.25x,$$

$$0.7x = 5.0;$$

$$x = 7\frac{1}{7} \text{ gal.}$$

This result checks with the conditions of the problem as originally given.

The following procedure will be helpful to the student in deriving an equation essential to the solution of a stated problem.

- (1) Read the problem carefully and reflect upon it.
- (2) Write down in words the fundamental equality that will form the basis for the construction of the equation which is to be solved.
- (3) Represent an essential unknown, usually the required quantity, by some letter, such as x.
- (4) Express other unknown but necessary quantities only in terms of x and the given quantities.
 - (5) Completely symbolize the fundamental equality.

Illustration 2: A water tank can be filled by an intake pipe in 3 hr and can be emptied by a drain pipe in 4 hr. How long would it take to fill the tank with both pipes open?

In this problem the basic equality may be chosen as the statement

The surplus of water to be piped into the tank over that drained out in the same time = one tank of water.

It is apparent that the intake pipe can fill one third of the tank in 1 hr, and the drain pipe empties one fourth of the tank in 1 hr. Consequently, the intake pipe gains $(\frac{1}{3} - \frac{1}{4})$ of a tank over the drain pipe in 1 hr.

Let x = time to fill the tank under the conditions of the problem.Then,

$$x(\frac{1}{3} - \frac{1}{4}) = 1,$$

 $\frac{x}{12} = 1,$
 $x = 12.$

and

EXERCISES 26

Solve the following problems:

- 1. A number consists of two digits, the sum of the digits being 11. If the digits are reversed, the new number is 45 less than the given number. What is the given number?
- 2. The second digit of a number of two digits is one third the first; and if the number is divided by the difference of its digits, the quotient is 15 and the remainder is 3. Find the number.

- 3. A train leaves a station and travels at 50 mph. Three hours later another train follows it, traveling at 80 mph. How long before the faster train will overtake the slower train?
- 4. An airplane travels from A to B at the rate of 180 mph. After it has been gone for 30 min, a second airplane leaves A for B, traveling at the rate of 240 mph, and reaches B 1 hr and 5 min ahead of the first plane. Find the distance from A to B and the time taken by the first plane.
- 5. A man invests part of a principle of \$2300 at $3\frac{1}{3}\%$ and the balance at $5\frac{1}{4}\%$ and obtains the same income as if he had invested the entire principle at $4\frac{1}{2}\%$. How much does he invest at each rate?
- **6.** A has \$1250 and B has \$500. A spends twice as much money as B and then has three times as much left as B. How much does each spend?
- 7. An estate of \$1872 is to be divided among a mother, three sons, and two daughters. The mother is to receive three times as much as each daughter, and each son receives one half as much as each daughter. What sum will each receive?
- 8. If two thirds of a given number is added to one half of it, the sum is 98. Find the number.
- 9. A beam 28 ft long weighing 500 lb is balanced on a fulcrum by a weight of 200 lb suspended from one end. How far must the fulcrum be placed from this end?

Note: The weight of the beam may be assumed concentrated at its center. According to a principle of physics, the weight on one side of the fulcrum multiplied by its distance to the fulcrum must equal the corresponding product obtained on the other side, if there is equilibrium.

- 10. A beam 20 ft long is balanced on a fulcrum by a weight of 400 lb placed at one end. If the fulcrum is $6\frac{2}{3}$ ft from this end when the beam is balanced, determine the weight of the beam. (See the note in Problem 9.)
- 11. A crew has bread for a voyage of 50 days if each man eats only 1½ lb a day. After 20 days, 7 men are lost in a storm; this makes it possible for the remainder of the crew to have a daily allowance of 1½ lb for the balance of the voyage. Find the original number of the crew.
- 12. Oil of two grades is to be mixed; one grade is worth 22 cents a quart, and the other is worth 30 cents a quart. The mixture is to be worth 25 cents a quart. How many gallons of each grade are required to make 500 gal of mixture?
- 13. A vessel contains 10 gal of an 8 per cent solution of salt. How many gallons of water must be boiled off to make it a 12 per cent solution?
- 14. A mass of tin and lead weighing 200 lb loses 18 lb when weighed in water. It is known that 50 lb of tin loses 4 lb, and 25 lb of lead loses 3 lb in water. Find the weight of tin and lead in the mass.
- 15. A reservoir can be filled by one pipe in 30 min and by another pipe in 45 min. A waste pipe empties it in 20 min. If both the filling pipes and the waste pipe are open, how long will it take to fill it?
- 16. A man can harvest a field of grain in 10 days. He and his son can do it in 8 days. How long would it take the son to harvest the field if he were working alone?
- 17. A man has three eighths of his money invested at 5% and the remainder at 6%. The total interest amounts to \$180 for the year. What sums are invested at each rate of interest?

EXERCISES 45

- 18. A transcontinental airline finds that a trip across the country from west to east requires 12 hr, whereas a trip in the other direction requires 13 hr, because of the prevailing winds. If the normal speed of one of the planes in still air is 240 mph, what is the average wind velocity?
- 19. A man shoots at a metal target, and he hears his rifle bullet strike the target 3½ sec after it was fired. If the bullet travels 2600 fps and sound travels at the rate of 1100 fps, how far away is the target?

6

Variation

37. VARIATION

When two variables y and x are so related that their ratio is a constant, y is said to vary directly as x. Of course, this statement is equivalent to the law

$$y = mx$$

whe e m is a constant. When y varies directly as x, the word directly is often implied and not stated. The same relationship between y and x may be expressed by saying that y is proportional to x, since for any two pairs of values (x_1, y_1) and (x_2, y_2) obeying the law y = mx,

$$y_1 = mx_1 \quad \text{and} \quad y_2 = mx_2;$$

hence we have the proportion

$$\frac{y_1}{y_2} = \frac{mx_1}{mx_2} = \frac{x_1}{x_2}$$
.

When the variables y and x are so related that their product is a constant, y is said to vary *inversely* as x. From the algebraic statement

$$yx = m$$

where m is a constant, we may obtain

$$y = m \frac{1}{x}$$
.

Hence, we see that if y varies inversely as x, it varies directly as the variable 1/x. Also, any two pairs of values (x_1, y_1) and (x_2, y_2) obeying the law yx = m satisfy the relation

$$y_1x_1=y_2x_2,$$

or

$$\frac{y_1}{y_2} = \frac{x_2}{x_1}.$$

Consequently, the same relationship between y and x may be described by saying that y is inversely proportional to x.

A variable z is said to vary jointly as the variables x and y if

$$\frac{z}{xy} = m,$$

$$z = mx$$

or

z = mxy

where m is a constant.

A variable z is said to vary directly as the variable x and inversely as the variable u if

$$\frac{zy}{x}=m,$$

or

$$z=m\frac{x}{y}$$

where m is a constant.

The concept of variation has practical value in many problems in both social and physical science. In practical situations it is frequently possible to discover the nature of the law of variation, if such a law is actually present, by the use of experimental methods. It is then possible to determine the constant m by obtaining a single set of related values of the variables involved in the formula.

Illustration 1: It is determined experimentally that within certain limits the amount of elongation of a coiled spring produced by a force acting on one end varies as the amount of the force. If a force of 10 lb produces an elongation of 0.25 in., find m. How much elongation would be produced by a force of 43 lb?

Solution: Let e = amount of elongation in inches,

and

P = the number of pounds of force.

Then, since the variation is direct, it follows that

$$\frac{e}{P} = m.$$

After substituting the given values of the variables, we have

$$\frac{0.25}{10}=m,$$

or

$$m = 0.025.$$

Therefore,

$$\frac{e}{R}=0.025,$$

for all values of e and P when e is measured in inches and P in pounds.

The amount of elongation produced by a force of 43 lb is determined

by substituting 43 for P in the formula just obtained. Hence,

$$e = (0.025)(43)$$
 in.
= 1.075 in.

Illustration 2: The time required to fill a tank with water through a number of pipes of the same diameter, if there is no variation in the supply of water, varies inversely as the product of the number of pipes and the square of the diameter of the pipes. If three pipes 2 in. in diameter can fill this tank in 20 min, how long would it require five pipes, 3 in. in diameter to fill it?

Solution: Let t = time in minutes required to fill the tank,

n =the number of pipes,

and d = diameter in inches.

Then from the nature of the variation as described,

$$tnd^2 = m.$$

After substituting the given values of the variables, we have

$$(20)(3)(2^2) = m,$$

 $m = 240.$

Therefore,

or

$$tnd^2=240.$$

Of course, the constant 240 is only appropriate when t is measured in minutes and d in inches.

The time required for five 3-in. pipes to fill the tank is readily determined by substituting n = 5 and d = 3 in the formula just obtained. Hence,

$$t = \frac{240}{5(3)^2} = \frac{240}{45} = 5\frac{1}{3}$$
 min.

EXERCISES 27

- 1. The variable u varies directly as v. Moreover, u = 10 when v = 4. Determine u when v = 7.
- 2. The variable z varies directly as x and inversely as y. If z = 3, x = 9, and y = 8 are related values of the variables, determine y when z = 1 and x = 12.
- 3. The distance that a body falls from rest varies as the square of the time during which it falls. If a body falls 402 ft in 5 sec, how long will it take it to fall 1000 ft?
- 4. The horsepower required to propel a ship in still water varies as the cube of the speed. If the horsepower is 1000 when the speed is 10 knots, what horsepower will be required to produce a speed of 25 knots?
- 5. When electricity flows through a wire at constant temperature, the wire offers a resistance to the flow of the current which varies directly as the length of wire and inversely as the square of the diameter of its cross section. If a wire 100 ft long and 0.1 in. in diameter has a resistance of 1 ohm, what will be the resistance of a wire 300 ft long and $\frac{1}{4}$ in. in diameter?

- 6. It is approximately correct that for an observer in an airplane the distance to the horizon varies directly as the square root of the distance of the observer above the ground. If, at a height of 100 ft, the horizon is 12.3 miles distant, what would be the distance to the horizon from a height of 5000 ft?
- 7. If the temperature of a perfect gas is kept constant, its volume varies inversely as the pressure to which it is subjected (Boyle's law). If 2 cu ft of gas under a pressure of 20 lb per sq in. is forced into a vacuum tank that holds 5 cu ft and is allowed to expand to fill the tank, what will be its pressure?
- 8. The period of vibration of a pendulum is found to vary directly as the square root of its length. If a pendulum 1 m long ticks seconds, what will be the period of vibration of a pendulum 40 cm long?
- 9. The strength of a beam having a rectangular cross section varies inversely as its length and directly as its breadth and the square of its depth. If a spruce beam 16 ft long, 6 in. wide, and 8 in. deep will carry safely 1000 lb at the middle, how much will a similar piece of spruce 10 ft long, 4 in. wide, and 6 in. deep carry at the middle when used in the same way?
- 10. The force with which the earth pulls on a body outside of its surface is found to vary inversely as the square of the distance from its center. If the surface of the earth is 3960 miles from its center, and if a rocket weighing 1 ton at the surface is shot to a height of 100 miles above the surface, what would be its weight at that height?
- 11. The illumination from a source of light varies inversely as the square of the distance from the source. A book held 20 in. from the source is moved closer. How far must it be moved so that it will receive twice as much illumination?
- 12. The volume of a cube varies as the cube of the edge. Find the edge of a cube whose volume is double the volume of a cube with a 2-in. edge.
- 13. The lateral surface of a right circular cylinder varies jointly as the height and radius of the base. Find the ratio of the lateral surface of a cylinder with altitude 10 in. and radius of base 10 in. to the lateral surface of a cylinder with altitude 15 in. and base 5 in.
- 14. If two right circular cylinders of radius r and equal height are melted and cast into a new right circular cylinder with the same height as each of the original cylinders, show that the radius of the new cylinder is $\sqrt{2}r$.
- 15. If the radius of a sphere is increased by 10 per cent, by what per cent will its volume be increased?
- 16. If a plate is mounted in a wind tunnel with its surface at right angles to the direction of the air flow, the pressure varies jointly as the area of the plate and the square of the wind velocity for a given air density. If the pressure on a plate 500 sq in. in area is 4.56 lb when the wind velocity is 30 ft per sec, how much pressure will be exerted on an area of 5 sq ft with a wind velocity of 50 mph?

7

Systems of First-Degree Equations

38. SYSTEMS OF FIRST-DEGREE EQUATIONS

Many practical problems require the determination of a set of two or more unknowns that satisfy a system of equations of the first degree. The following are illustrations of typical problems which may be solved in each case by setting up a system of first-degree equations; also, some well-known methods for the solution of such systems are presented.

Illustration 1: A jeweler wishes to mix 10-carat gold with 18-carat gold to make 30 oz of 12-carat gold. How many ounces of each must be taken?

Solution: Let x = number of ounces of 10-carat gold, and y = number of ounces of 18-carat gold.

There are two fundamental equalities relating x and y; these are

Number of ounces
of 10-carat gold +
number of ounces
of 18-carat gold = 30 oz. (1)

Number of carats in required amount of 10-carat gold + number of carats in required amount of 18carat gold

= total number of carats. (2)

Since

10x = number of carats in xounces of 10-carat gold,

and

18y = number of carats in y ounces of 18-carat gold,

the two basic equalities just given may be symbolized as follows:

$$x+y=30, (1)$$

$$10x + 18y = (30)(12) = 360. (2)$$

We must now seek the pair of values of x and y that satisfy both equations.

Equations (1) and (2) may be solved in several ways. The first method given is frequently described as the addition or subtraction method.

$$10x + 10y = 300$$
 Multiplying the members of (1) by 10 (3)

$$\frac{10x + 18y}{8y} = \frac{360}{60}$$
 Subtracting the members of (3) from those of (2)

Hence,

$$y = 7\frac{1}{2} \text{ oz.}$$

After substituting $7\frac{1}{2}$ for y in Equation (1), we have

$$x = 22\frac{1}{2}$$
 oz.

By multiplying the members of Equation (1) by 10 and then subtracting them from the corresponding members of Equation (2), we were able to eliminate the x, leaving a simple equation in y to be solved.

Similarly, we could have multiplied the members of (1) by 18 and have eliminated the y by subtracting the members of (2) from the corresponding members of 18x + 18y = 540.

A second method for the solution of the system is to solve one of the equations for either unknown in terms of the other, and to substitute the resulting expression in the second equation. This is usually known as the method of substitution.

Thus, from (1), namely, x + y = 30, we obtain

$$y = 30 - x. (4)$$

After substituting this value for y in Equation (2), there results:

$$10x + 18(30 - x) = 360. (5)$$

Equation (5) may be simplified to

$$-8x = -180. (6)$$

Hence,

$$x = 22\frac{1}{2} \text{ oz,}$$

and, consequently,

$$y = 7\frac{1}{2} \text{ oz.}$$

The next chapter presents a third method for the solution of such a system as we have just considered.

Illustration 2: Solve the following system of equations:

$$4x + 3y + 9z = 53, (1)$$

$$11x - 2y + 8z = 75, (2)$$

$$6x + y + 5z = 47. (3)$$

Since the coefficients of y are small in each equation, it appears desir-

able to eliminate y first; hence, we have

$$8x + 6y + 18z = 106$$
 Multiplying (1) by 2 (4)

$$33x - 6y + 24z = 225$$
 Multiplying (2) by 3 (5)

$$41x + 42z = 331$$
 Adding (4) and (5) (6)

$$11x - 2y + 8z = 75 \tag{2}$$

$$12x + 2y + 10z = 94$$
 Multiplying (3) by 2 (7)

$$23x + 18z = 169$$
 Adding (2) and (7) (8)

Equations (6) and (8) may now be solved as a system for x and z, and then y may be found by substituting the values for x and z in any one of the original equations.

This is left as an exercise for the student. The solution is x = 5, y = 2, z = 3.

Illustration 3: Certain equations that are not of the first degree in the given variables may be converted into equations of the first degree. The following problem results in such a system of equations.

A cistern is filled by three pipes. The first and second will fill it in 72 min, the second and third in 120 min, and the first and third in 90 min. How long will it take each of the pipes to fill it?

Solution: Let x = number of minutes it will take first pipe to fill cistern,

y = number of minutes it will take second pipe to fill cistern.

z = number of minutes it will take third pipe to fill cistern.

Then, $\frac{1}{x}$ = fractional part of cistern filled by first pipe in 1 min,

 $\frac{1}{y}$ = fractional part of eistern filled by second pipe in 1 min,

 $\frac{1}{x}$ = fractional part of cistern filled by third pipe in 1 min.

Hence, from the given conditions,

$$\frac{72}{x} + \frac{72}{y} = 1,\tag{1}$$

$$\frac{120}{y} + \frac{120}{z} = 1,\tag{2}$$

and
$$\frac{90}{x} + \frac{90}{z} = 1.$$
 (3)

These equations are not of first degree. However, if we substitute u for 1/x, w for 1/z, and v for 1/y, we have the following equivalent linear system in u, v, and w:

$$72u + 72v = 1, (1')$$

$$120v + 120w = 1, (2')$$

$$90u + 90w = 1. (3')$$

We may now solve this system for u, v, and w and, hence, know x, y, and z.

$$720u + 720v = 10$$
. Multiplying (1') by 10. (4')

$$720v + 720w = 6$$
. Multiplying (2') by 6. (5')

$$720u - 720w = 4$$
. Subtracting (5') from (4'). (6')

$$\frac{720u + 720w}{2} = 8. \text{ Multiplying (3') by 8.}$$
(7')

$$1440u = 12$$
. Adding (6') and (7').

Hence, $u = \frac{1}{120}$; therefore, x = 120 min. Similarly, v and w can be found, and then we can determine y and z.

Obviously, the given system, though not linear, can readily be solved by treating the equations as linear in 1/x, 1/y, and 1/z. Thus,

$$\frac{720}{x} + \frac{720}{y} = 10$$
. Multiplying (1) by 10. (4)

$$\frac{720}{y} + \frac{720}{z} = 6$$
. Multiplying (2) by 6. (5)

$$\frac{720}{r} - \frac{720}{z} = 4$$
. Subtracting (5) from (4).

$$\frac{720}{x} + \frac{720}{z} = 8$$
. Multiplying (3) by 8. (7)

$$\frac{1440}{x} = 12$$
. Adding (6) and (7).

Hence, as before, x = 120 min.

After substituting x = 120 in Equation (1), we have

$$\frac{72}{y} = 1 - \frac{72}{120}$$
.

The solution of this equation provides the result

$$y = 180 \text{ min.}$$

After substituting y = 180 in Equation (2), we have

$$\frac{120}{z} = 1 - \frac{120}{180},$$

or

$$z = 360 \text{ min.}$$

Note: The student should check the solution in each equation of the original system.

EXERCISES 28

Solve the following systems of equations, and check your solutions:

1.
$$39x - 8y = 99$$

 $52x - 15y = 80$

3.
$$2x + y = 17$$

 $x - 2y = 1$

$$\begin{array}{r}
 8x - 5y = 0 \\
 13x - 8y = 1
 \end{array}$$

4.
$$3x - \frac{y-5}{7} = \frac{4x-3}{2}$$

 $\frac{3y+4}{5} - \frac{1}{2}(2x-5) = y$

5.
$$\frac{x+1}{y} = \frac{1}{3}$$

$$\frac{x}{y+1} = \frac{1}{4}$$

7.
$$k^2x + m^2y = 0$$

 $kx + my = k + m$

7.
$$k^2x + m^2y = 0$$
$$kx + my = k + m$$

9.
$$\frac{x}{2} - 12 = \frac{y}{4} + 8$$

 $\frac{x+y}{5} + \frac{x}{8} - 8 = \frac{2y-x}{4} + 27$

11.
$$\frac{5}{x} - \frac{7}{y} = 6$$

 $\frac{13}{x} + \frac{5}{y} = 4$

13.
$$2x - 5y - 7z = 19$$

 $5x + 2y - 3z = 33$
 $3x - 7y + 4z = -14$

8.
$$\frac{x+3}{2} + 5y = 9$$

 $\frac{y+9}{10} - \frac{x-2}{2} = 0$

6. 0.8x + 0.1y = 0.19

0.6x + 0.9y = 0.39

10.
$$\frac{4x + 5y}{40} = x - y$$

 $\frac{1}{2} - \frac{2x - y}{2} = 2y$

12.
$$\frac{2}{3x} + \frac{9}{2y} = 9\frac{2}{3}$$

 $\frac{11}{5x} - \frac{1}{3y} = 1\frac{8}{15}$

14.
$$-x - 13y + 5z = 3$$

 $6x + 2y + 3z = -9$
 $3x - 5y - 2z = 15$

15.
$$\frac{2}{x} - \frac{3}{y} + \frac{4}{z} = -2$$

 $\frac{5}{x} + \frac{6}{y} - \frac{2}{z} = 6$
 $\frac{3}{x} - \frac{5}{y} + \frac{2}{z} = \frac{1}{3}$

Solve the following problems:

- 16. Find the rational fraction such that if we add 2 to the numerator, the fraction equals $\frac{1}{2}$, but if we add 3 to the denominator, the fraction equals $\frac{1}{3}$.
- 17. A man rows 30 miles and back in 12 hr. He can row 5 miles with the stream in the same time that he can row 3 miles against the stream. Find the time required to row up the 30 miles and down, respectively.
- 18. A power boat whose speed is 30 mph in still water makes a trip of unknown length downstream in 45 min; another boat whose speed is 20 mph in still water makes the same trip in 65 min. Find the length of the trip and the rate of the stream.
- 19. A and B together received \$346 wages for working 25 and 16 days, respectively. If A had worked 20 days and B had worked 18 days, they would have received \$308. What were the daily wages of each?
- 20. A grocer offered to sell 50 lb of coffee and 100 lb of sugar for \$23, or 10 lb of coffee and 5 lb of sugar for \$2.95. Find the price per pound of each.
- 21. A man receives \$3000 yearly interest on his money. If he had loaned the same amount of money at ½ per cent higher interest, he would receive \$300 more interest. Find the amount of money which was invested and the rate of interest.
- 22. The sum of the three angles of any triangle is 180 degrees. If one angle of a triangle exceeds half the sum of the other two angles by 21 degrees and half their difference by 56 degrees, what are the angles?

39. GRAPHICAL REPRESENTATION OF A SYSTEM OF TWO LINEAR **EQUATIONS**

If we graph on the same set of axes the two straight lines which represent, respectively, the two equations of the following system

$$x + y = 30$$
$$10x + 18y = 360,$$

we obtain Figure 16.

Obviously, the associated values of x and y which satisfy both equations are the coordinates of the point common to both lines. A careful construction would show the coordinates of this common point to be $x = 22\frac{1}{2}$ and $y = 7\frac{1}{2}$. This same system of equations was solved previously in Illustration 1 of Section 38, and the same results were obtained.

The method employed in this problem is general in its application;

that is, the coordinates of the point of intersection of two straight lines representing a system of two linear equations in two unknowns are the values of x and y which satisfy both equations.

EXERCISES 29

Solve graphically the first six problems of Exercises 28.

40. CONSISTENT SYSTEMS OF LINEAR EQUATIONS

We have just seen that the equations of Section 39 are satisfied by a single pair of values of x and y, and that the lines of the equations are a pair of intersecting lines.

If we attempt to solve the system of equations

$$3x + 4y = 8 \tag{1}$$

$$6x + 8y = 16, (2)$$

we find that both x and y are eliminated, and the result is merely a statement that two equal numbers are equal. It is apparent that Equation (2) furnishes no information about x and y that is not given by Equation (1); for Equation (2) may be obtained from (1) by multiplying each member by 2. The actual equivalence of the two equations is made even more obvious by the fact that their graphs are the same straight line; thus, a pair of values satisfying Equation (1) will also satisfy (2).

Whenever a pair of linear equations are satisfied simultaneously by one or more pairs of values of x and y, they are said to be *consistent*. If they are satisfied simultaneously by only a single pair of values of x and y, they are called *consistent and independent*. If they are both satisfied for all values of x and y that satisfy one of them, they are called consistent, but are dependent. In other words, whenever the lines representing a pair of linear equations intersect in one point or are identical, the equations are consistent. If the lines intersect in only one point the equations are consistent and independent. If the lines are identical, the equations are consistent and dependent.

41. INCONSISTENT SYSTEMS OF LINEAR EQUATIONS

If we attempt to solve the following system of equations:

$$3x + 4y = 7 \tag{1}$$

$$6x + 8y = 15, (2)$$

we meet an unusual situation.

After multiplying the members of (1) by 2, we have Equation (3) which is:

$$6x + 8y = 14. (3)$$

Equations (3) and (2) cannot be true simultaneously, for that would require 14 to equal 15, which is impossible. Hence, we say the pair of Equations (1) and (2), or the equivalent pair of Equations (3) and (2), is an inconsistent pair of equations.

If we attempt to solve an inconsistent pair of equations we always find,

as in the previous example, that both x and y are eliminated and the resulting equation requires the equality of two unequal numbers, which is impossible. Hence, there is no common pair of values of x and y that will satisfy both equations.

The slope of each of the lines (1) and (2) is $-\frac{3}{4}$, but the *y* intercepts are, respectively, $\frac{7}{4}$ and $\frac{15}{8}$. Hence, it is apparent that the lines are distinct and parallel. Whenever two lines are distinct and parallel, the two equations corresponding to the lines are said to be *inconsistent*.

EXERCISES 30

Solve each of the following systems of equations. In each case, state if the system is consistent and independent, consistent and dependent, or inconsistent.

1.
$$5x - 3y = 7$$

 $10x + 6y = 9$
2. $5x - 3y = 7$
 $10x - 6y = 18$
3. $4x - 7y = 9$
 $10x - 14y = 18$
4. $8x + 3y = 5$
 $7x - 2y = 5$
5. $y = 2x + 7$
 $y = 3x - 5$
6. $y = 2x + 7$
 $y = 2x + 8$
7. $y = 3x - 7$
 $3y = 9x - 21$
8. $\frac{x}{5} + \frac{y}{4} = 1$
 $\frac{x}{10} + \frac{y}{8} = 1$
10. $7x + 8y = 6$
 $8x - 3y = 5$
11. $x + y = 0$
 $3x - 8 = 0$
12. $5y + 6 = 0$
 $3y - 11 = 0$

- 13. The perimeter of a triangle is 39 in. One side is 13 in. less than the sum of the other two; and one of these two is three times as large as the difference of the remaining two. Find the length of each side.
- 14. A and B together can do a piece of work in 20 days; at the end of 12 days, B is called off and A finishes it in 20 days. Find the time in which each could have done the work alone.
- 15. A and B do a piece of work in 12 days; B and C do the same piece of work in 20 days; A and C do the same piece of work in 15 days. How long will it take each to do the work alone?
- 16. A gunner fires at a target 500 yd away and hears the bullet strike $2\frac{3}{10}$ sec after he fires. An observer stationed 400 yd from the target and 300 yd from the gunner hears the bullet strike $1\frac{1}{5}$ sec after he hears the report of the rifle. Find the velocity of sound in feet per second and the velocity of the bullet in feet per second.
- 17. A and B run two quarter-mile races. In the first race A gives B 20 yd start and wins by 5 yd. In the second race A gives B a start of 5 sec and loses by 5 yd. Find the rates of A and B in yards per second.

- 18. An alloy of metal which weighs 50 lb loses 7 lb when weighed in water. If this alloy is composed of two metals, which we may call A and B; and if it is found that a 50-lb piece of A loses 5 lb when weighed in water, and a 50-lb piece of B loses 10 lb when weighed in water, how much of each metal is there in the alloy?
- 19. A bar of metal contains 18.22 per cent pure silver, and a second bar contains 10.57 per cent. How many ounces of each bar must be used if, when the parts are melted together, a new bar weighing 100 oz is obtained, of which 15 per cent is pure silver?
- 20. A power boat whose speed in still water is unknown makes a trip of unknown distance in 75 min and the return trip in 1 hr and 40 min. The rate of the stream is 5 mph. Find the rate of the boat in still water and the distance.
- **21.** One half the distance from A to B is level; the other half is part uphill and part downhill. A messenger can travel 6 mph uphill, 12 mph on the level, and 18 mph downhill. If it takes him 2 hr and 40 min to go from A to B and 2 hr to return, what is the distance from A to B, and how much of it is uphill?

8

Determinants

42. DETERMINANTS OF THE SECOND ORDER

The square array of quantities enclosed within two vertical bars

$$\left|\begin{array}{cc} A_1 & B_1 \\ A_2 & B_2 \end{array}\right|$$

is called a determinant of the second order and means, by definition, $A_1B_2 - A_2B_1$.

Thus, the symbolic form

$$\begin{vmatrix} 8 & 5 \\ -7 & -6 \end{vmatrix}$$

means 8(-6) - (-7)5 = -13.

Similarly, the symbolic form

$$\begin{array}{c|c} (a+b) & c \\ \hline & 1 & 5 \end{array}$$

means 5a + 5b - c.

The solution of the system of equations

$$A_1x + B_1y = C_1 \tag{1}$$

$$A_2x + B_2y = C_2, (2)$$

when $A_1B_2 - A_2B_1 \neq 0$, leads to the system

$$A_1B_2x + B_1B_2y = C_1B_2 (3)$$

$$A_2B_1x + B_1B_2y = C_2B_1, (4)$$

if each member of (1) is multiplied by B_2 and each member of (2) is multiplied by B_1 . When the members of (4) are subtracted from the corresponding members of (3), the value of x is found to be

$$x = \frac{C_1B_2 - C_2B_1}{A_1B_2 - A_2B_1}$$

It also may be determined that

$$y = \frac{A_1C_2 - A_2C_1}{A_1B_2 - A_2B_1}$$

These two results may be displayed in convenient form through the use of determinants; in fact, they may be written

$$x = egin{array}{c|ccc} C_1 & B_1 \ C_2 & B_2 \ \hline A_1 & B_1 \ A_2 & B_2 \ \hline \end{array} \quad ext{and} \quad y = egin{array}{c|ccc} A_1 & C_1 \ A_2 & C_2 \ \hline A_1 & B_1 \ A_2 & B_2 \ \hline \end{array}.$$

This method for the solution of a system of two linear equations may be applied in almost mechanical fashion. For instance, let us consider the system

$$5x - 3y = 5,$$

 $8x + 9y = 11.$

The desired values of x and y may be written down immediately in symbolic form as follows:

$$x = \begin{vmatrix} 5 & -3 \\ 11 & 9 \\ 5 & -3 \\ 8 & 9 \end{vmatrix} \quad \text{and} \quad y = \begin{vmatrix} 5 & 5 \\ 8 & 11 \\ 5 & -3 \\ 8 & 9 \end{vmatrix}.$$

The evaluation of these forms leads to

$$x = \frac{(5)(9) - (11)(-3)}{(5)(9) - (8)(-3)} = \frac{26}{23},$$

$$y = \frac{(5)(11) - (8)(5)}{(5)(9) - (8)(-3)} = \frac{5}{23}.$$

Attention is directed to the form of the general solution involving the determinants. It may be seen that the expressions for x and y have the same determinant as a denominator, namely, the determinant

$$\left|\begin{array}{cc} A_1 & B_1 \\ A_2 & B_2 \end{array}\right|,$$

which is made up of the coefficients of x and y in their natural order as they appear in the given equations. It is also seen that the numerator of the expression for x is obtained from the determinant of the denominator by replacing A_1 , A_2 (the coefficients of x) by C_1 , C_2 . Similarly, the numerator of y is obtained from the determinant of the denominator by replacing B_1 , B_2 (the coefficients of y) by C_1 , C_2 . These observations should assist in setting up the desired determinants.

We note that when the denominator determinant equals zero, the system of equations can not be independent. In this case one should consider the numerators of the expressions for x and y. If neither or only one of these determinants is zero, the pair of equations is inconsistent;

but if both of these determinants are zero, the pair of equations is consistent and dependent.

Thus, for the equations

$$3x + 5y = 4$$
$$3x + 5y = 11$$

the required denominator is

$$\left|\begin{array}{cc} 3 & 5 \\ 3 & 5 \end{array}\right| = 0.$$

The numerator of the value of x is

$$\left| \begin{array}{cc} 4 & 5 \\ 11 & 5 \end{array} \right| = 20 - 55 = -35 \neq 0,$$

and the numerator of the value of y is

$$\left| \begin{array}{cc} 3 & 4 \\ 3 & 11 \end{array} \right| = 33 - 12 = 21 \neq 0.$$

Hence, the equations are inconsistent.

For the equations

$$3x + 0 \cdot y = 4$$

$$5x + 0 \cdot y = 11$$

the required denominator is

$$\left|\begin{array}{cc} 3 & 0 \\ 5 & 0 \end{array}\right| = 0.$$

The numerator of the value of x is

$$\left|\begin{array}{cc} 4 & 0 \\ 11 & 0 \end{array}\right| = 0,$$

but the numerator of the value of y is

$$\left|\begin{array}{cc} 3 & 4 \\ 5 & 11 \end{array}\right| = 13 \neq 0.$$

So these equations are also inconsistent.

For the system,

$$3x + 6y = 10$$

$$6x + 12y = 20$$

both the numerator and denominator in the value of x and of y are zero. It follows that the equations are consistent, but dependent.

EXERCISES 31

Solve the first twelve problems of Exercises 28 by the determinant method.

43. DETERMINANTS OF THE THIRD ORDER

The square array

$$\begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix}$$

is called a determinant of the third order and means, by definition,

$$A_1B_2C_3 + A_2B_3C_1 + A_3B_1C_2 - A_3B_2C_1 - A_2B_1C_3 - A_1B_3C_2$$

Thus, in the determinant

$$\begin{bmatrix}
 8 & 5 & 6 \\
 7 & 9 & 5 \\
 6 & 4 & 2
 \end{bmatrix}$$

we have

$$A_1 = 8$$
 $B_1 = 5$ $C_1 = 6$
 $A_2 = 7$ $B_2 = 9$ $C_2 = 5$
 $A_3 = 6$ $B_3 = 4$ $C_3 = 2$

Hence, the value of the determinant is

$$(8)(9)(2) + (7)(4)(6) + (6)(5)(5) - (6)(9)(6) - (7)(5)(2) - (8)(4)(5) = -92.$$

However, it is easier to remember the evaluation of

$$\begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix}$$

as the sum of the first, second, and third products in the following diagram minus the sum of the fourth, fifth, and sixth product of the next diagram; that is,

$$(A_1B_2C_3 + A_2B_3C_1 + A_3B_1C_2) - (A_3B_2C_1 + A_2B_1C_3 + A_1B_3C_2).$$

Thus, the determinant involving the following array of numbers,

has the value

$$[(8)(5)(-3) + (5)(9)(-1) + (4)(2)(0)]$$

$$-[(4)(5)(-1) + (5)(0)(-3) + (8)(2)(9)]$$

$$= (-120 - 45 + 0) - (-20 + 0 + 144) = -289.$$

44. SOLUTION OF SYSTEMS OF THREE FIRST-DEGREE EQUATIONS BY USE OF DETERMINANTS

By using methods that have already been discussed, the solution of the system of equations

$$A_1 x + B_1 y + C_1 z = D_1 (1)$$

$$A_2x + B_2y + C_2z = D_2 (2)$$

$$A_3 x + B_3 y + C_3 z = D_3 (3)$$

is found to be

$$x = \frac{D_1B_2C_3 + D_2B_3C_1 + D_3B_1C_2 - D_3B_2C_1 - D_2B_1C_3 - D_1B_3C_2}{A_1B_2C_3 + A_2B_3C_1 + A_3B_1C_2 - A_3B_2C_1 - A_2B_1C_3 - A_1B_3C_2},$$

$$y = \frac{A_1D_2C_3 + A_2D_3C_1 + A_3D_1C_2 - A_3D_2C_1 - A_2D_1C_3 - A_1D_3C_2}{A_1B_2C_3 + A_2B_3C_1 + A_3B_1C_2 - A_3B_2C_1 - A_2B_1C_3 - A_1B_3C_2},$$

$$z = \frac{A_1B_2D_3 + A_2B_3D_1 + A_3B_1D_2 - A_3B_2D_1 - A_2B_1D_3 - A_1B_3D_2}{A_1B_2C_3 + A_2B_3C_1 + A_3B_1C_2 - A_3B_2C_1 - A_2B_1C_3 - A_1B_3C_2}.$$

If we compare the numerator and denominator of these values of x, y, and z with the development of a determinant of the third order, and if we designate

$$\begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix}$$
 by Δ and assume $\Delta \neq 0$,

the solution may be written

$$x = \frac{\begin{vmatrix} D_1 & B_1 & C_1 \\ D_2 & B_2 & C_2 \\ D_3 & B_3 & C_3 \end{vmatrix}}{\Delta}; y = \frac{\begin{vmatrix} A_1 & D_1 & C_1 \\ A_2 & D_2 & C_2 \\ A_3 & D_3 & C_3 \end{vmatrix}}{\Delta}; z = \frac{\begin{vmatrix} A_1 & B_1 & D_1 \\ A_2 & B_2 & D_2 \\ A_3 & B_3 & D_3 \end{vmatrix}}{\Delta}.$$

The rules for the formation of the determinants for the common denominator of the solution for x, y, z, and the different numerators of the solution are exactly as given previously for the solution of two equations in two unknowns.

This same method applies to the solution of n first-degree equations in the same n unknowns, when the determinant of the common denominator of the solution is not equal to zero. It should be emphasized at this point, however, that no general method of expanding a determinant of any order has yet been discussed.

Illustration: Solve the following system:

$$x - 3y = 7$$

$$2x + y - 3z = 8$$

$$5x - y + 9z = 14$$

It should be noted that in the first equation the unknown z does not occur; hence, the coefficient of z in that equation is 0. The required solution is

$$x = \begin{vmatrix} 7 & -3 & 0 \\ 8 & 1 & -3 \\ 14 & -1 & 9 \\ \hline 1 & -3 & 0 \\ 2 & 1 & -3 \\ 5 & -1 & 9 \end{vmatrix} = \frac{384}{105} = \frac{128}{35};$$

$$y = \begin{vmatrix} 1 & 7 & 0 \\ 2 & 8 & -3 \\ 5 & 14 & 9 \\ \hline 1 & -3 & 0 \\ 2 & 1 & -3 \\ 5 & -1 & 9 \end{vmatrix} = \frac{-117}{105} = -\frac{39}{35};$$

$$z = \begin{vmatrix} 1 & -3 & 7 \\ 2 & 1 & 8 \\ 5 & -1 & 14 \\ \hline 1 & -3 & 0 \\ 2 & 1 & -3 \\ 5 & -1 & 9 \end{vmatrix} = \frac{-63}{105} = -\frac{21}{35}.$$

EXERCISES 32

Solve the following systems of equations by determinants, and evaluate the determinants.

1.
$$3x + 2y - 4z = 15$$

 $5x - 3y + 2z = 28$
 $-x + 3y + 4z = 24$
3. $4x - 7y + z = 16$
 $3x + y - 2z = 10$
 $5x - 6y - 3z = 10$
5. $3x - z = 0$
 $x + 5y = 6$
 $y + z = 7$

2.
$$4x + 6y - 3z = 17$$

 $x + 7y + z = 35$
 $5x + 13y + 4z = 82$
4. $x + y = 4$
 $y + z = 5$
 $x + z = 7$
6. $\frac{2}{x} + \frac{3}{y} - \frac{4}{z} = 20$
 $\frac{1}{x} - \frac{2}{y} + \frac{3}{z} = 30$
 $\frac{3}{x} - \frac{4}{y} - \frac{5}{z} = 5$

7.
$$\frac{5}{x} - \frac{7}{y} + \frac{1}{z} = \frac{1}{2}$$

 $\frac{3}{x} + \frac{2}{y} = \frac{2}{5}$
 $\frac{4}{y} - \frac{5}{z} = \frac{1}{3}$

- 8. Three men, A, B, and C, were solicited to give money for a certain charity. A agreed to give half as much as B and C combined. B said he would give \$1000 more than A and C combined. The solicitor finally raised \$9000 from the three men. How much did each give?
- **9.** In the theory of electricity it is a fundamental principle that the reciprocal of the total resistance of any number of conductors connected in parallel is the sum of the reciprocals of the individual resistances. The total resistance of three resistances connected in parallel is 4 ohms. Moreover, the greatest resistance is twice as many ohms as the smallest resistance and is $1\frac{1}{2}$ times as many ohms as the third resistance. What is the magnitude of each resistance in ohms?

45. SOME PROPERTIES OF DETERMINANTS

A general analysis of the meaning and significance of determinants cannot be undertaken in an elementary text. Suffice it to say, the general subject of determinants has been the object of much research, and many interesting properties have been discovered. For convenience in calculation we shall record in the following paragraphs a few elementary properties of determinants.

Property 1. The value of a determinant is not changed when corresponding rows and columns are interchanged. Thus,

$$\begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix} = \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix}.$$

Property 2. Interchanging any two rows (or columns) of a determinant changes the sign of the determinant. Thus,

$$\begin{vmatrix} A_1 & B_1 & C_1 & D_1 \\ A_2 & B_2 & C_2 & D_2 \\ A_3 & B_3 & C_3 & D_3 \\ A_4 & B_4 & C_4 & D_4 \end{vmatrix} = - \begin{vmatrix} C_1 & B_1 & A_1 & D_1 \\ C_2 & B_2 & A_2 & D_2 \\ C_3 & B_3 & A_3 & D_3 \\ C_4 & B_4 & A_4 & D_4 \end{vmatrix}.$$

Property 3. If two rows (or columns) of a determinant are identical, the determinant is equal to zero.

This may be proved as follows: An interchange of two identical columns (or rows) obviously does not change the value of the determinant. But according to Property (2), if the value of the original determinant is Δ , then the interchange of the two identical columns (or rows) yields

$$\Delta = -\Delta$$
 or $2\Delta = 0$;
 $\Delta = 0$.

Property 4. If each element in any row (or column) is multiplied by the same factor, the determinant is multiplied by that factor. Thus,

$$\begin{vmatrix} MA_1 & MB_1 & MC_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix} = M \begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix}.$$

Property 5. The value of any determinant is not changed if each element of any row (or column) multiplied by any factor M is added to the corresponding element of any other row (or column). Thus,

$$\begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix} = \begin{vmatrix} A_1 + MB_1 & B_1 & C_1 \\ A_2 + MB_2 & B_2 & C_2 \\ A_3 + MB_3 & B_3 & C_3 \end{vmatrix}.$$

This property follows from the fact that

so

$$\begin{vmatrix} A_1 + MB_1 & B_1 & C_1 \\ A_2 + MB_2 & B_2 & C_2 \\ A_3 + MB_3 & B_3 & C_3 \end{vmatrix} = \begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix} + M \begin{vmatrix} B_1 & B_1 & C_1 \\ B_2 & B_2 & C_2 \\ B_3 & B_3 & C_3 \end{vmatrix}.$$

The last determinant is zero by Property (3); hence, Property (5) is true.

If we select the proper value for M, the application of this property enables us to replace the original determinant by another determinant in which one or more of the elements are zeros. The expert in the use of determinants may use this device repeatedly for the purpose of simplifying a determinant before obtaining its evaluation.

Property 6. If in a determinant of any order n, such as

$$\begin{vmatrix} A_1 & B_1 \cdots L_1 \\ A_2 & B_2 \cdots L_2 \\ \cdots & \cdots \\ A_n & B_n \cdots L_n \end{vmatrix},$$

we exclude the row and the column containing A_1 , the determinant of order (n-1), which remains, is called the minor of A_1 and may be designated by $M(A_1)$. If we exclude the row and the column containing L_1 , the determinant of order (n-1) which remains is called the minor of L_1 and is designated by $M(L_1)$. Similarly a determinant of order (n-1) may be designated as the minor for each element of the determinant. We now state, without proof, that

$$\Delta = A_1[M(A_1)] - A_2[M(A_2)] + \dots + (-1)^{n+1}A_n[M(A_n)],$$
or
$$\Delta = A_1[M(A_1)] - B_1[M(B_1)] + \dots + (-1)^{n+1}L_1[M(L_1)].$$

It is observed that, as these products are written in order with respect to the elements down the left column or across the top row, the signs preceding the products alternate.

Similarly, we may expand the determinant by minors relative to the elements of any column (or row) by multiplying the elements of any column (or row) by their corresponding minors and prefixing a plus or minus sign according as the sum of the number of the column and the number of the row of the element is even or odd. Thus, for example,

$$\Delta = -B_1[M(B_1)] + B_2[M(B_2)] - \cdots \pm B_n[M(B_n)],$$

$$\Delta = +C_1[M(C_1)] - C_2[M(C_2)] + \cdots \pm C_n[M(C_n)].$$

If, as an illustration, the determinant under consideration is

$$\Delta = \begin{vmatrix} A_1 & B_1 & C_1 & D_1 \\ A_2 & B_2 & C_2 & D_2 \\ A_3 & B_3 & C_3 & D_3 \\ A_4 & B_4 & C_4 & D_4 \end{vmatrix};$$

then

$$\Delta = A_{1} \begin{vmatrix} B_{2} & C_{2} & D_{2} \\ B_{3} & C_{3} & D_{3} \\ B_{4} & C_{4} & D_{4} \end{vmatrix} - B_{1} \begin{vmatrix} A_{2} & C_{2} & D_{2} \\ A_{3} & C_{3} & D_{3} \\ A_{4} & C_{4} & D_{4} \end{vmatrix} + C_{1} \begin{vmatrix} A_{2} & B_{2} & D_{2} \\ A_{3} & B_{3} & D_{3} \\ A_{4} & B_{4} & D_{4} \end{vmatrix} - D_{1} \begin{vmatrix} A_{2} & B_{2} & C_{2} \\ A_{3} & B_{3} & C_{3} \\ A_{4} & B_{4} & C_{4} \end{vmatrix}.$$

By virtue of this very important property, a determinant of the nth order may be replaced by the algebraic sum of n determinants of order (n-1); each of these latter determinants may be replaced by the sum of (n-1) determinants of order (n-2); and so on. This operation provides us with a general method for the evaluation of a determinant of any order.

Illustration: Evaluate the determinant

$$\begin{bmatrix} 2 & 3 & -4 & 6 \\ 3 & 5 & -1 & 7 \\ 2 & 1 & 0 & 3 \\ -1 & 0 & 4 & 2 \end{bmatrix}.$$

The evaluation of this determinant by the use of minors would involve the expansion of four determinants of the third order. However, if we apply Property (5), we may select various values for M so that a row or a column of the derived determinant may have as many as three zeros as elements.

Thus, if we replace column 1 (numbered from left to right) by elements obtained by adding -2 times the elements of column 2 to the respective elements of column 1, we have

$$\begin{bmatrix} -4 & 3 & -4 & 6 \\ -7 & 5 & -1 & 7 \\ 0 & 1 & 0 & 3 \\ -1 & 0 & 4 & 2 \end{bmatrix}.$$

If we then replace column 4 by elements obtained by adding -3 times the elements of column 2 to the respective elements of column 4, we obtain

$$\left| \begin{array}{ccccc}
 -4 & 3 & -4 & -3 \\
 -7 & 5 & -1 & -8 \\
 0 & 1 & 0 & 0 \\
 -1 & 0 & 4 & 2
 \end{array} \right|.$$

Developing this determinant by the use of minors with respect to the third row, we have in this case only the one determinant

$$\begin{vmatrix} -4 & -4 & -3 \\ -7 & -1 & -8 \\ -1 & 4 & 2 \end{vmatrix} = -1(8 + 84 - 32 + 3 - 56 - 128)$$

$$= 121.$$

As an alternate method, starting with the original determinant, we can obtain a new determinant containing three zeros in column 1 by adding 2 times the elements in row 4 (numbered from top to bottom) to the elements in row 1; 3 times the elements in row 4 to the elements in row 2; and 2 times the elements in row 4 to the elements in row 3. This gives

$$\left|\begin{array}{ccccc} 0 & 3 & 4 & 10 \\ 0 & 5 & 11 & 13 \\ 0 & 1 & 8 & 7 \\ -1 & 0 & 4 & 2 \end{array}\right|.$$

Writing the minors of this determinant with respect to column 1, we

have in this case only the one determinant

$$\begin{vmatrix} 3 & 4 & 10 \\ 5 & 11 & 13 \\ 1 & 8 & 7 \end{vmatrix} = 231 + 400 + 52 - 110 - 312 - 140,$$

$$= 121.$$

This method serves as a check upon the solution obtained by the previous method.

EXERCISES 33

1. Show that
$$\begin{vmatrix} 4 & 3 & 2 & 1 \\ 8 & 8 & 7 & 2 \\ 16 & 2 & 8 & 4 \\ 12 & 6 & 3 & 3 \end{vmatrix} = 0.$$

HINT: Use Properties 3 and 4.

2. Show that
$$\begin{vmatrix} 2 & 6 & 10 & 2 \\ 3 & 6 & 15 & 3 \\ 8 & 7 & 7 & 1 \\ 9 & 1 & 3 & 2 \end{vmatrix} = 6 \begin{vmatrix} 1 & 3 & 5 & 1 \\ 1 & 2 & 5 & 1 \\ 8 & 7 & 7 & 1 \\ 9 & 1 & 3 & 2 \end{vmatrix}.$$

3. Show that
$$\begin{vmatrix} 1 & 1 & 1 & 4 \\ 0 & 2 & -1 & 0 \\ 2 & -3 & 0 & 2 \\ 2 & 4 & 2 & 11 \end{vmatrix} = -15.$$

4. By use of Property (5), obtain an equivalent determinant in which some of the elements of a row, or column, are zero. Evaluate the resulting determinant by the method of minors:

$$\begin{bmatrix}
2 & 3 & 4 & 5 \\
-3 & 4 & -2 & -1 \\
6 & 3 & 9 & -12 \\
5 & 2 & -3 & -10
\end{bmatrix}$$

5. Evaluate the following determinant:

$$\begin{bmatrix} 5 & 2 & -3 & 4 \\ 2 & -3 & 5 & 5 \\ 4 & 2 & -7 & -3 \\ -2 & 8 & 0 & 2 \end{bmatrix}$$

6. Evaluate the following determinant:

$$\begin{vmatrix}
3 & 2 & 6 & 0 \\
-3 & 1 & -3 & 2 \\
2 & 7 & 4 & 8 \\
5 & 10 & -15 & 25
\end{vmatrix}$$

7. Evaluate the following determinant:

$$\begin{vmatrix}
0 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
1 & 2 & 3 & 4 \\
\frac{5}{6} & -3 & -2 & -1 \\
2 & -\frac{1}{2} & 0 & -\frac{1}{2}
\end{vmatrix}$$

8. Expand the determinant that follows and solve the resulting equation for x; check your result:

$$\begin{vmatrix} 2 & x & 3 & 1 \\ 1 & x & 2 & 3 \\ 2 & 4 & 7 & 6 \\ 3 & 0 & 1 & -1 \end{vmatrix} = 0$$

9. Expand the determinant and solve the resulting equation for x; check your solution.

$$\begin{vmatrix} x & -1 & 1 & 0 \\ 3 & -2x & 2 & 2 \\ 4 & 0 & -1 & 3 \\ 0 & x - 1 & 2 & -1 \end{vmatrix} = 6$$

Solve each of the following systems of four equations by the use of determinants.

10.
$$2x - 3y - 5z + w = 17$$

 $3x - 4y + 2z - 2w = 8$
 $x + y - 2z + 3w = 15$
 $-5x + 6w = -40$
11. $x + y - 2z = -6$
 $y - 3z + w = -17$
 $2x - 5w = 20$
 $3x - 2y = 21$
12. $13x - 7y - 2z = 15$
 $2x + 5z - 2w = 8$
 $6x - 4z + 5w = 6$
 $3y - 7w = -5$

9

Exponents and Radicals

46. THE FUNDAMENTAL LAWS OF POSITIVE INTEGRAL EXPONENTS

When n is a positive integer, a^n is defined as the product of n factors, each equal to a. Thus, a^3 is an abbreviation for the product $a \cdot a \cdot a$. By definition, $a^1 = a$. The number a is called the *base* and the number n the *exponent*.

Since $a^2 = a \cdot a$ and $a^3 = a \cdot a \cdot a$, it follows that $a^2 \cdot a^3 = (a \cdot a)(a \cdot a \cdot a) = a \cdot a \cdot a \cdot a \cdot a = a^5$. In general, $a^m \cdot a^n + a^{m+n}$, if the exponents are positive and integral. In a somewhat similar manner, by returning to the definition of a positive integral exponent, it is easy to demonstrate all the following fundamental laws involving the use of positive integral exponents.

I
$$a^{m} \cdot a^{n} = a^{m+n}.$$
II
$$a^{m} \div a^{n} = a^{m-n} \quad \text{(when } n \text{ is less than } m\text{)}$$

$$= \frac{1}{a^{n-m}} \quad \text{(when } n \text{ is greater than } m\text{)}.$$
III
$$(a^{m})^{n} = a^{mn}.$$
IV
$$(ab)^{m} = a^{m}b^{m}.$$
V
$$\left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}} \quad (b \neq 0).$$

47. ZERO EXPONENTS

In order that we may have a meaning for a^0 , we shall require that Law I of Section 46 shall hold for all exponents. Consequently,

$$a^n a^0 = a^{n+0} = a^n$$
.

If $a \neq 0$, we may solve the previous equation for a^0 and obtain

$$a^0=\frac{a^n}{a^n}=1.$$

It appears, therefore, that a^0 must be defined as 1.

48. NEGATIVE EXPONENTS

Again requiring that Law I of Section 46 shall hold, whatever a^{-n} may mean, it follows that

$$a^n a^{-n} = a^0 = 1.$$

Hence, if $a \neq 0$,

$$a^{-n}=\frac{1}{a^n}$$
.

49. FRACTIONAL EXPONENTS

The meaning to be associated with a fractional exponent may be determined by means similar to those employed in finding meanings for zero or negative exponents. Assuming that Law I of Section 46 holds, we would have, for example,

$$a^{\frac{1}{2}}a^{\frac{1}{2}} = a^{\frac{1}{2} + \frac{1}{2}} = a^{1} = a,$$

 $a^{\frac{1}{2}}a^{\frac{1}{2}}a^{\frac{1}{2}} = a^{\frac{1}{2} + \frac{1}{2} + \frac{1}{2}} = a^{1} = a.$

and

From this it is seen that $a^{\frac{1}{2}}$ may be regarded as one of two equal factors of a, and $a^{\frac{1}{2}}$ is one of three equal factors of a. Thus, $a^{\frac{1}{2}}$ is defined as a square root of a, and $a^{\frac{1}{2}}$ is a cube root of a.

If a is positive, we know that it has two square roots, one positive and one negative. Therefore, $a^{\frac{1}{2}}$ is still ambiguous in meaning; hence, we shall limit $a^{\frac{1}{2}}$ to mean the positive square root of a and write $a^{\frac{1}{2}} = \sqrt{a}$, where the plus sign before the radical denoting square root is always implied. If we wish to express the negative square root of a, where a is positive, we must write $-a^{\frac{1}{2}}$ or $-\sqrt{a}$.

If a is negative, its square roots are not real numbers, since the product of two equal real numbers is always positive. We shall consider this case later in the text.

If a is positive, it has one real cube root and that is positive; hence, we write

$$a^{\frac{1}{3}} = \sqrt[3]{a}.$$

If a is negative, it has one real cube root and that is negative; but we still write

$$a^{\frac{1}{3}} = \sqrt[3]{a}$$
.

Similarly, $a^{1/n}$ where a is positive and n is an even positive integer means the real positive nth root of a. We write $a^{1/n} = \sqrt[n]{a}$, where the plus sign before the radical is implied. If we wish to express the real negative nth root of a, we write $-\sqrt[n]{a}$. If in $a^{1/n}$, n is an odd positive integer, then $a^{1/n} = \sqrt[n]{a}$ is positive if a is positive, but $a^{1/n} = \sqrt[n]{a}$ is negative if a is negative.

In general, the real positive nth root of a, where a is positive and n is even, is called the *principal* nth root of a.

Thus, $(3^{1/2})^4 = 3^2 = 9$; but, on the other hand, $(3^4)^{1/2} = 9$ only if we restrict the left member to being the principal square root of 3^4 .

The exponential form $a^{m/n}$, where m and n are positive integers, is defined to mean $\sqrt[n]{a^m}$. Moreover, under the restrictions implied in this treatment, $\sqrt[n]{a^m} = (\sqrt[n]{a})^m$. Thus,

and
$$(-8)^{\frac{3}{4}} = (\sqrt[3]{-8})^2 = 4,$$

$$(-8)^{\frac{2}{4}} = \sqrt[3]{(-8)^2} - \sqrt[3]{64} = 4.$$
Also,
$$(-8)^{\frac{5}{4}} = (\sqrt[3]{-8})^5 = -32,$$
and
$$(-8)^{\frac{5}{4}} = \sqrt[3]{(-8)^5} = -32.$$

Meanings have thus been associated with zero, negative, and fractional exponents by assuming that the first of the five fundamental laws for positive integral exponents holds. If only positive bases are considered, it is now possible to prove that all powers with rational exponents follow the remaining four laws. It is even possible to use irrational exponents in a way consistent with these laws. However, because of the difficulty involved in some of these demonstrations, we shall assume without proof the following fundamental principle.

Positive bases with zero, negative, and fractional exponents obey the five fundamental laws for positive bases with positive integral exponents.

The student should be careful to note that the meanings for zero and fractional exponents are essentially definitions, since they are based upon the requirement that Law I of Section 46 holds.

The following illustrations demonstrate the application of the laws of exponents to numerical examples.

Illustration 1: Simplify $4^{\frac{1}{2}} \cdot 16^{-\frac{3}{4}} \cdot 64^{-\frac{1}{2}}$.

After recalling the meaning of a negative exponent, we have

$$4^{\frac{1}{2}} \cdot \frac{1}{16^{\frac{3}{4}}} \cdot \frac{1}{64^{\frac{1}{4}}}$$

Since, however, $4^{\frac{1}{2}} = \sqrt{4} = 2$, $16^{\frac{1}{4}} = (\sqrt[4]{16})^3 = 8$, and $64^{\frac{1}{4}} = \sqrt[3]{64} = 4$, we may further simplify the product to

$$2 \cdot \frac{1}{8} \cdot \frac{1}{4} = \frac{1}{16}.$$

Illustration 2: Write the following algebraic expression without negative exponents and in a simple form:

$$\frac{3a^{-1}b^2c^{-5}}{7a^{-2}b^{-1}c^3}.$$

We have

$$\frac{3 \cdot \frac{1}{a} \cdot b^2 \cdot \frac{1}{c^5}}{7 \cdot \frac{1}{a^2} \cdot \frac{1}{b} \cdot c^3} = \frac{\frac{3b^2}{ac^5}}{\frac{7c^3}{a^2b}} = \frac{3ab^3}{7c^3}.$$

Illustration 3: Write the following expression without negative exponents and in a simple form:

$$5x^{-2} - (3x)^{-1}$$
.

We have

$$\frac{5}{x^2} - \frac{1}{3x}$$
 or $\frac{15 - x}{3x^2}$

EXERCISES 34

Write each of the following expressions without the use of fractional or negative exponents, and reduce the result to a simple form:

1.
$$\frac{3}{2^{-\frac{1}{2}}}$$

5.
$$(-32)^{\frac{1}{6}}$$
7. $5^{\frac{1}{6}}x^{\frac{1}{6}}y^{\frac{1}{6}}z^{-\frac{1}{6}}$

9.
$$(\frac{1}{37})^{\frac{3}{2}}$$

11.
$$7x^{-4}$$

2.
$$x^{3/2}y^{-1/2}$$

4.
$$(-\frac{4}{5})^{-\frac{1}{5}}$$
6. $(\frac{125}{27})^{-\frac{2}{5}}$

10.
$$\frac{2x^{-3}y^2z^{-4}}{5x^4y^{-5}z^{-5}}$$

12.
$$a^2 \cdot b^3 \cdot c^3 \cdot b^{-1}$$

Perform the indicated operations and express your results in a simple form without the use of negative exponents.

13.
$$\frac{2+3}{2^{-1}+5^{-1}}$$

15.
$$5x^{-2} - 10x^{-3}$$

17.
$$a^{-1} + 2a^{-2} + 3a^{-3}$$

19.
$$(64a^{-9}b^6c^{12})^{-36}$$

21.
$$\frac{1}{2} - \frac{3^{-1}}{2^{-1}}$$

23.
$$(a^{-\frac{3}{6}} \cdot b^{-3}a \cdot b^{\frac{1}{2}})^{-2}$$

25.
$$(9a^{34} \cdot b^{-56})^{-32}$$

27.
$$(a^0 - b^{-1})^{-2}$$

29.
$$\frac{1}{a^{-1}+b^{-2}}\div(a-b^2)$$

14.
$$\frac{2-2^{-2}}{2+2^2}$$

16.
$$\frac{1}{x^{-3}+y^{-3}}$$

18.
$$\frac{1}{a^{-1} - 2a^{-2} - 3a^{-3}}$$

20.
$$\frac{a^{-1}b^2x^{-2}-2a^{-1}b^2y^3}{a^{-5}x^{-3}-2a^{-5}y^3}$$

22.
$$a^{\frac{1}{2}} \cdot b^{-2} \cdot a \cdot b^{\frac{5}{2}}$$

24.
$$\left(\frac{ab^{-3}}{a^{-2}h^2}\right)^{-3}$$

26.
$$(-27a^{-\frac{1}{2}} \cdot b \cdot c^{-\frac{1}{2}})^{-\frac{1}{2}}$$

28.
$$(a^{-\frac{1}{2}} - b^{-\frac{1}{2}})(a^{-\frac{1}{2}} + b^{-\frac{1}{2}})$$

30.
$$\frac{4a^{-2}-9b^{-2}}{3a+2b}$$

Multiply the following:

31.
$$a^{\frac{1}{4}} + a^{\frac{1}{4}} + b^{\frac{1}{2}}$$
 by $a^{\frac{1}{4}} - b^{\frac{1}{4}}$

32.
$$x^5 + y^5$$
 by $x^{5/2} - y^{5/2}$

33.
$$m^{\frac{5}{2}} + m^{\frac{5}{2}} + n^{\frac{5}{2}} + n^{\frac{5}{2}}$$
 by $m^{\frac{5}{2}} - n^{\frac{5}{2}}$

50. RADICALS

We have assumed that the student is familiar with the fact that the symbol $\sqrt[n]{n}$ (n, a positive integer) is called a radical sign. A bar is usually written over the number affected by the radical sign; this bar is a vinculum, a sign of aggregation.

We reserve the name of radical for $\sqrt[n]{a}$ (when n is a positive integer and a is a real number) if $\sqrt[n]{a}$ cannot be reduced to a rational real number. Thus, from our definition, $\sqrt{4}$ and $\sqrt[n]{\frac{3}{8}}$ are not radicals.

Special attention is called to the fact that since the radical sign denoting square root calls for the positive square root of a positive number,

$$\sqrt{(x-1)^2} = x - 1, \text{ if } x > 1,$$

$$= 1 - x, \text{ if } x < 1;$$

$$\sqrt{\frac{(x-2)^2}{x^4}} = \frac{x-2}{x^2}, \text{ if } x > 2,$$

$$= \frac{2-x}{x^2}, \text{ if } x < 2.$$

and

In such an expression as $b\sqrt[n]{a}$, where $\sqrt[n]{a}$ is a radical and b is any constant, a is called the radicand; n the index; and b the coefficient of the radical.

A radical is said to be in its simplest form when

- (1) The radicand is an integer;
- (2) The radicand contains no factors raised to powers equal to, or greater than, the index of the radical;
- (3) The radicand is not a power whose index has a factor in common with the index of the radical.

Thus, the radicals $\sqrt{\frac{2}{3}}$, $\sqrt[3]{a^4}$, and $\sqrt[6]{a^4}$ are not in their simplest form because they do not meet the requirements (1), (2), and (3), respectively.

51. SIMPLIFICATION OF RADICALS

Certain radicals can be simplified by means of one or more of the following reductions:

(1) Reduction of a Fractional Radicand to the Integral Form. This reduction can always be performed as follows: If the radicand is not a single fraction in its lowest terms, put it into that form. Then, if the radical is of index p, make the denominator of the radicand a perfect pth power by multiplying the numerator and the denominator of the fraction by a properly chosen number. The original radical is equal to the pth

root of the resulting numerator divided by the pth root of the resulting denominator, which is rational. Thus, for example,

$$\sqrt{\frac{2}{3}} = \sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{3}.$$

(2) The Removal of Factors from the Radicand. This reduction can be made only when the radicand contains factors to powers equal to, or greater than, the index of the radical. The following examples illustrate the usual procedure.

Examples.
$$\sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2\sqrt{2}.$$

$$\sqrt[3]{108} = \sqrt[3]{27 \cdot 4} = \sqrt[3]{27} \cdot \sqrt[3]{4} = 3\sqrt[3]{4}.$$

$$\sqrt[3]{(a-b)^4} = \sqrt[3]{(a-b)^3} \cdot \sqrt[3]{a-b} = (a-b)\sqrt[3]{(a-b)}.$$

(3) The Lowering of the Index of the Radical. When the radicand is a power whose index has a factor in common with the index of the radical, the radical is equal to another radical of lower index.

EXAMPLE:
$$\sqrt[6]{a^4} = a^{46} = a^{26} = \sqrt[3]{a^2}$$
.

In some problems it is desirable to introduce factors into the radicand or to increase the index of the radical.

Examples:
$$4\sqrt[3]{2} = \sqrt[3]{64} \cdot \sqrt[3]{2} = \sqrt[3]{128}$$
. $\sqrt{5} = 5^{1/2} = 5^{3/6} = \sqrt[6]{125}$.

52. ADDITION AND SUBTRACTION OF RADICALS

Definition: Two or more radicals are said to be similar if, when simplified, according to the meaning of this term as given in Section 50, they have the same index and the same radicand.

For example, $2\sqrt[3]{5}$ and $3\sqrt[3]{5}$ are similar, as are also $\sqrt{a^3b}$ and $3\sqrt{ab}$.

An expression involving two or more radicals can sometimes be simplified by first simplifying each radical and then combining the similar radicals in the way illustrated in the following examples:

EXAMPLES:

$$2\sqrt{98} - 3\sqrt{50} + \sqrt{72} = 14\sqrt{2} - 15\sqrt{2} + 6\sqrt{2} = 5\sqrt{2}.$$

$$2\sqrt{98} - 50\sqrt{3} + \sqrt{32} - \sqrt{108} = 14\sqrt{2} - 50\sqrt{3} + 4\sqrt{2} - 6\sqrt{3}$$

$$= 18\sqrt{2} - 56\sqrt{3}.$$

It should be observed that the sum or difference of two dissimilar radicals cannot be expressed as a single radical.

53. MULTIPLICATION OF RADICALS

The product of two radicals with a common index is a radical with the same index whose coefficient and radicand are equal, respectively, to the products of the coefficients and of the radicands of the factors. This follows directly from Law IV of Section 46. Thus,

$$a\sqrt[n]{b} \cdot c\sqrt[n]{d} = ac\sqrt[n]{bd}$$

If n is even, it is assumed here that b and d are both positive. This law does not hold when both b and d are negative.

If the radicals do not have the same index, they should first be changed to equal radicals with a common index. Thus,

$$\sqrt[3]{5} \cdot \sqrt{6} = \sqrt[6]{5^2} \cdot \sqrt[6]{6^3} = \sqrt[6]{25} \cdot \sqrt[6]{216} = \sqrt[6]{5400}$$

The product of such expressions as $\sqrt{a} + \sqrt{b} - \sqrt{c}$ and $\sqrt{a} - \sqrt{b} + \sqrt{c}$ can be found by applying the usual rules for the multiplication of polynomials in connection with the principles just stated in case a, b, and c are positive. Thus,

$$(\sqrt{a} + \sqrt{b} - \sqrt{c})(\sqrt{a} - \sqrt{b} + \sqrt{c})$$

$$= [\sqrt{a} + (\sqrt{b} - \sqrt{c})][\sqrt{a} - (\sqrt{b} - \sqrt{c})]$$

$$= a - (\sqrt{b} - \sqrt{c})^2 = a - (b - 2\sqrt{bc} + c)$$

$$= a - b - c + 2\sqrt{bc}.$$

It is best, in general, to simplify all the radicals in a problem before attempting to perform any operations upon them.

54. RATIONALIZING THE DENOMINATOR

Certain fractions whose denominators are irrational can be changed into equivalent fractions with rational denominators.

Examples:
$$\frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{3\sqrt{2}}{2}.$$

$$\frac{a}{\sqrt{a} + \sqrt{b}} = \frac{a}{\sqrt{a} + \sqrt{b}} \cdot \frac{\sqrt{a} - \sqrt{b}}{\sqrt{a} - \sqrt{b}} = \frac{a(\sqrt{a} - \sqrt{b})}{a - b}.$$

Such a change can always be made when the denominator of the fraction is a single radical or is the sum of two terms, one of which is a square root and the other either a square root or rational.

In computing the numerical value of a fraction with an irrational denominator, it is best to rationalize the denominator whenever it is possible to do so.

į.

EXERCISES 35

Simplify the following:

1.
$$\sqrt{18}$$

5.
$$\sqrt[3]{16}$$

9.
$$\sqrt[4]{64}$$

11.
$$\sqrt{2x^2-12x+18}$$

2.
$$\sqrt{45}$$

4.
$$\sqrt[4]{\frac{5}{8}}$$

6.
$$\sqrt{\frac{1}{8}+16}$$

8.
$$\frac{2}{\sqrt{3}}$$

10.
$$\sqrt[3]{8(a+b)}$$

10.
$$\sqrt[3]{8(a+b)^6}$$

12. $\sqrt{\frac{x-1}{x^8}}$

13.
$$\sqrt{(a^2-b^2)^3}$$

14. Which is the greater, $\sqrt[3]{9}$ or $\sqrt{5}$?

Solution:

$$\sqrt[3]{9} = 9\% = \sqrt[4]{81}$$
.
 $\sqrt{5} = 5\% = \sqrt[4]{125}$.
 $\sqrt[4]{125} > \sqrt[4]{81}$:

But,

15. Which is the greater, $\sqrt{10}$ or $\sqrt[3]{28}$? $\sqrt{3}$ or $\sqrt[3]{67}$? $\sqrt{19}$ or $\sqrt[3]{657}$ Simplify the following:

 $\sqrt{5} > \sqrt[4]{9}$

16.
$$\sqrt{2} + \sqrt{8} + 3\sqrt{18} - \sqrt{50} + \sqrt[4]{4}$$

17.
$$\sqrt{\frac{1}{7}} + \sqrt{\frac{9}{7}} - 3\sqrt{\frac{81}{7}} - \sqrt{\frac{16}{7}}$$
 18. $b\sqrt{a} + c\sqrt{a} - d\sqrt{a^3}$

18.
$$b\sqrt{a} + c\sqrt{a} - d\sqrt{a^8}$$

19.
$$3\sqrt{a-b} + \sqrt{9a-9b} - \sqrt{c^2a-c^2b} - \frac{\sqrt{a-b}}{2}$$

20.
$$3\sqrt[3]{16} - 2\sqrt[3]{\frac{1}{4}} + \sqrt[3]{250} - \sqrt[4]{4}$$

21.
$$\sqrt{10} \cdot \sqrt{2}$$

22.
$$\sqrt{2} \cdot \sqrt[3]{2}$$

23.
$$\sqrt{5}(\sqrt{2}-\sqrt{5})$$

24.
$$(\sqrt[3]{2} - 2\sqrt[3]{3} - \sqrt[3]{9})\sqrt[3]{3}$$

25.
$$(\sqrt{3} - \sqrt{2})^2$$

26.
$$(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})$$

27.
$$(3\sqrt{3}-2)(\sqrt{3}+\sqrt{5})$$

28.
$$(\sqrt{x-y} - 3\sqrt{x+y})(\sqrt{x-y} + 2\sqrt{x+y})$$

29.
$$(\sqrt[3]{2} - \sqrt[3]{5})^2$$

30. Is
$$1 - \sqrt{3}$$
 a root of the equation $x^2 - x - 1 = 0$?

31. Is
$$\frac{-3 + \sqrt{5}}{2}$$
 a root of the equation $x^2 + 3x + 1 = 0$?

Reduce each of the following fractions to an equivalent fraction with a rational denominator:

32.
$$\frac{x}{\sqrt{a-x}-\sqrt{a+x}}$$

33.
$$\frac{4}{\sqrt{5}-2}$$

34.
$$\frac{\sqrt{a} - \sqrt{b}}{\sqrt{a} + \sqrt{b}}$$

36. $\frac{\sqrt[4]{9} - \sqrt{\frac{8}{5}}}{\sqrt{5}}$
37. $\frac{\sqrt{a+x} - \sqrt{a-x}}{\sqrt{a+x} + \sqrt{a-x}}$
38. $\frac{x}{x + \sqrt{x^2 - 1}}$

- 39. Change $\frac{bx b\sqrt{x^2 + a^2}}{a}$ to an equivalent fraction free of radicals in the numerator.
 - **40.** Find the value of $\frac{5-4\sqrt{5}}{\sqrt{5}+2}$ with a precision of three decimal places.
 - **41.** Find the value of $\frac{2\sqrt{3}-5}{\sqrt{3}-\sqrt{2}}$ with a precision of three decimal places.

55. COMPLEX NUMBERS

So far in our discussion of radicals we have confined ourselves to the real-number system. Since all real numbers have positive squares, it is evident that the conditional equation $x^2 = -3$ does not have solutions in terms of real numbers. In other words, if we confine ourselves to real numbers, the equation $x^2 = -3$ cannot be solved. However, if we define a new number symbolized by $\sqrt{-3}$ as a number whose square is -3, the equation has the two solutions $+\sqrt{-3}$ and $-\sqrt{-3}$. Similarly, we define $\sqrt{-a}$, where a > 0, as a number whose square is -a.

If a > 0, $\sqrt{-a}$ may be written $\sqrt{a}\sqrt{-1}$. Thus,

$$\sqrt{-32} = \sqrt{32}\sqrt{-1} = 4\sqrt{2}\sqrt{-1}$$
.

The positive square root of -1, that is, $+\sqrt{-1}$, is usually denoted by the symbol i. Thus,

$$2 + \sqrt{-4} = 2 + 2i,$$

$$a + \sqrt{-(a^2 + x^2)} = a + i\sqrt{a^2 + x^2},$$

where a and x are real numbers.

and

The square roots of negative numbers are called pure imaginary numbers. Thus, $\sqrt{-9}$, $\sqrt{-5}$, \sqrt{a} , where a < 0, are pure imaginary numbers.

A binomial a + bi, where a and b are real numbers, is called a *complex number*. If b = 0, the complex number is a real number. If a = 0 and $b \neq 0$, the complex number is a pure imaginary.

For the symbol $i = \sqrt{-1}$ we note the following fundamental relationships: $i^2 = -1$; $i^3 = i \cdot i^2 = -i$; $i^4 = i^2 \cdot i^2 = +1$.

With these relationships in mind, the operations on pure imaginary

numbers or complex numbers in general are performed like the operations on real numbers.

Thus, $\sqrt{-4} \cdot \sqrt{-9} = 2i \cdot 3i = 6i^2 = -6$. We thus note that $\sqrt[n]{b} \cdot \sqrt[n]{d}$. where n is even and b and d are both negative, does not equal $\sqrt[n]{bd}$. It is desirable to introduce the symbol i as soon as possible in dealing with imaginary numbers; this facilitates the use of the algebraic operations in an acceptable manner.

Illustration 1: Add
$$3 + \sqrt{-4}$$
, $5 - \sqrt{-25}$, $1 + \sqrt{-64}$.

By employing the symbol i these numbers may be written 3 + 2i, 5-5i, and 1+8i. Hence, the sum is 9+5i.

Illustration 2:
$$\sqrt{-2} \cdot \sqrt{-5} = \sqrt{2}i \cdot \sqrt{5}i = \sqrt{10}i^2 = -\sqrt{10}i$$

Illustration 3: Change $\frac{2-\sqrt{-3}}{5-1}$ to the form a+bi.

$$\begin{aligned} \frac{2-\sqrt{-3}}{5+\sqrt{-3}} &= \frac{2-\sqrt{3}i}{5+\sqrt{3}i} = \frac{(2-\sqrt{3}i)(5-\sqrt{3}i)}{(5+\sqrt{3}i)(5-\sqrt{3}i)} \\ &= \frac{10-7\sqrt{3}i+3i^2}{25-3i^2} = \frac{7-7\sqrt{3}i}{28} \\ &= \frac{1-\sqrt{3}i}{4} = \frac{1}{4} - \frac{\sqrt{3}}{4}i. \end{aligned}$$

EXERCISES 36

Perform the indicated operations and write each result in the form a + bi:

1.
$$(2+\sqrt{-12})+(3-\sqrt{-32})$$
 2. $(5-\sqrt{-27})-(7-\sqrt{-12})$

2.
$$(5-\sqrt{-27})-(7-\sqrt{-12})$$

3.
$$(5-\sqrt{-12}+7\sqrt{-18})\sqrt{-3}$$
 4. $(5-3i)(2+i)$

4.
$$(5-3i)(2+i)$$

.5.
$$(2-\sqrt{-5})(7-\sqrt{-15})$$

6.
$$(a + \sqrt{-b})(a - \sqrt{-b})$$
, where a and b are positive real numbers

7.
$$\frac{6+10i-\sqrt{-3}}{\sqrt{-3}}$$

8. Express
$$\frac{2-i}{3+2i}$$
 in the form $a+bi$.

9. Express
$$\frac{a-\sqrt{-c}}{a+\sqrt{-b}}$$
 in the form $a+bi$.

10. Expand $(1-\sqrt{-3})^8$ by the binomial theorem; simplify and express the result in the form a + bi.

10

Quadratic Functions and Equations

56. THE STANDARD FORM OF A QUADRATIC FUNCTION

Any expression of the form

$$ax^2 + bx + c$$
, $a \neq 0$,

where a, b, and c are constants and x is a variable, is called a *quadratic* function in the standard form.

Thus, the function

$$7 - 3x^2 + 5x + 7x^2$$

may be reduced to the standard form

$$4x^2 + 5x - 7$$

where

$$a = 4$$
, $b = 5$, $c = -7$.

Similarly, the function

$$2qx - 3 + 5x^2 - px$$

may be written

$$5x^2 + (2q - p)x - 3$$
,

where

$$a = 5$$
, $b = 2q - p$, $c = -3$.

57. GRAPHICAL REPRESENTATION OF THE FUNCTION $y = ax^2 + bx + c$

We may obtain a value of the function $y = ax^2 + bx + c$ corresponding to any given value of the variable x. As in the case of linear functions, we may tabulate the corresponding pairs of values of x and y and locate the associated points relative to a set of axes in the plane.

Illustration 1: Given $y = 3x^2 - 2x + 5$. Let us assign to x the values -3, -2, -1, 0, 1, 2, 3 and tabulate corresponding values of variable and function and locate the points in the plane (note Figure 17).

x	y
-3	38
- 2	21
-1	10
0	5
1	6
2	13
3	26

It is apparent that these points do not lie on a straight line. The curve of the quadratic function, on which these points lie, is called a parabola. In general, if we plot points sufficiently near each other, the smooth curve through these successive points is the required graph.

Illustration 2: Given $y = -3x^2 + 8x - 1$. We may tabulate corresponding values of x and y and locate the associated points (note Figure 18).

$y = -3x^2 + 8x - 1$	
x	y
-3	-52
-2	-29
-1	-12
0	-1
1	4
2	3
3	-4
4	-17
5	-36

The points corresponding to the pairs of numbers, the variable and its associated quadratic function $ax^2 + bx + c$, will always lie on a curve similar to either Figure 17 or Figure 18.

58. VERTEX OF A QUADRATIC FUNCTION

The function

$$y=3x^2-2x+5$$

may be written

$$y-5=3(x^2-\tfrac{2}{3}x).$$

or

The expression within parentheses may be made a perfect square by adding the square of one half the coefficient of x; this number is $\frac{1}{6}$. The addition of $\frac{1}{6}$ to the quantity within the parentheses is equivalent to the addition of $\frac{1}{3}$ to the right member, in view of the factor 3 that precedes the parentheses. Thus, it is also necessary to add $\frac{1}{3}$ to the left member, thereby giving

$$y - \frac{14}{3} = 3(x^2 - \frac{2}{3}x + \frac{1}{8}),$$

$$y - \frac{14}{3} = 3(x - \frac{1}{3})^2.$$

Since $3(x-\frac{1}{3})^2$ is positive or zero, it is seen that $y=\frac{14}{3}$ is the smallest possible value of y and that $y=\frac{14}{3}$ when $3(x-\frac{1}{3})^2=0$, that is, when $x=\frac{1}{3}$.

The point corresponding to $x = \frac{1}{3}$ and $y = \frac{14}{3}$ is called the *vertex of the parabola*.

59. MAXIMUM OR MINIMUM VALUES OF A QUADRATIC FUNCTION

The ordinate that corresponds to $x = \frac{1}{3}$, in considering the function of Section 58, is smaller than that of any neighboring points. The value of y corresponding to $x = \frac{1}{3}$ is defined, therefore, as a minimum value of the function, and the curve is said to have a minimum for $x = \frac{1}{3}$.

The function

$$y = -3x^2 + 8x - 1$$
$$y + 1 = -3(x^2 - \frac{8}{2}x).$$

may be written

or

If the quantity within the parentheses is increased by $\frac{16}{9}$, which may be accomplished by adding $-\frac{16}{3}$ to each member, we have

$$y - \frac{13}{3} = -3(x^2 - \frac{8}{3}x + \frac{16}{9}),$$

$$y - \frac{13}{3} = -3(x - \frac{4}{3})^2.$$

Since $-3(x-\frac{4}{3})^2$ is negative or zero, it is seen that $y=\frac{13}{3}$ is the largest value of y and that $y=\frac{1}{3}$ when $-3(x-\frac{4}{3})^2=0$, that is, when $x=\frac{4}{3}$.

The point corresponding to $x = \frac{4}{3}$ and $y = \frac{13}{3}$ is the vertex of the parabola. The ordinate which corresponds to $x = \frac{13}{3}$ is greater than that of any neighboring points. Consequently, the value of y corresponding to $x = \frac{13}{3}$ is defined as a maximum value of the function, and the curve is said to have a maximum for $x = \frac{4}{3}$.

For the standard quadratic form we have

$$y = ax^{2} + bx + c, \quad a \neq 0,$$

$$y - c = a\left(x^{2} + \frac{b}{a}x\right).$$

and, hence,

If we add $b^2/4a$ to both members of the equation, the right member becomes

$$a\left(x + \frac{b}{2a}\right)^{2} \cdot$$

$$y - c + \frac{b^{2}}{4a} = a\left(x + \frac{b}{2a}\right)^{2} \cdot$$

Thus,

If a > 0, it is seen that $y = c - \frac{b^2}{4a}$ is the smallest value of y, and that

$$y = c - \frac{b^2}{4a}$$
 when $x = -\frac{b}{2a}$.

The point corresponding to $x=-\frac{b}{2a}$ and $y=c-\frac{b^2}{4a}$ is the vertex of the parabola representing the quadratic function. Moreover, under the condition that a>0, the curve of $y=ax^2+bx+c$ is said to have a minimum at the vertex. In this case the entire curve lies above the line $y=c-\frac{b^2}{4a}$.

If a < 0, it is seen that $y = c - \frac{b^2}{4a}$ is the greatest value of y and that $y = c - \frac{b^2}{4a}$ when $x = -\frac{b}{2a}$. This time, when a < 0, the curve $y = ax^2 + bx + c$ is said to have a maximum at the vertex. In this case the entire curve lies below the line $y = c - \frac{b^2}{4a}$.

EXERCISES 37

1. Graph a few points of each of the following functions and connect the points by a smooth curve:

(a)
$$y = x^2 - 6x + 5$$
 (b) $y = -x^2 + 6x + 1$ (c) $y = 3x^2 + x + 2$

2. Draw the graph of each of the following equations and determine the coordinates of the vertex of each curve:

nates of the vertex of each curve:
(a)
$$y = x^2 - 2x - 5$$
 (b) $y = -3x^2 - 2x + 2$
(c) $y = 5x^2 - 8x + 2$

3. Find the coordinates of the vertex and the maximum or minimum value of each of the following functions. Determine the coordinates of a few points for each curve and sketch the curve.

(a)
$$y = 3x^2 - 8x - 3$$

(b) $y = 3x^2 - 8x$
(c) $y = -2x^2 + 3x - 5$
(d) $y = 7 - 3x - 2x^2$
(e) $y = 2x^2 - 3$
(f) $y = 2x^2 - 10x + 12$

4. Find the coordinates of the vertex and draw the curve of each of the following equations:

(a)
$$x = 12 - 5y^2$$
 (b) $x = 2y^2 - 3y - 5$ (c) $x = 3 - 3y - 5y^2$

5. Find the dimensions of the rectangle of largest area, whose perimeter is 60 ft.

HINT: Let x = number of feet in each of the two equal sides, and let A = area of rectangle, which is to be a maximum. Therefore, 60 - 2x is the sum of the lengths of the other two sides. So $\frac{60 - 2x}{2}$ or 30 - x is the length of each of the other sides. Hence, A = x(30 - x).

We must now answer the question: For what value of x will A have the greatest value?

6. A rope of 60 ft is to be used to fence three sides of a rectangle of which the fourth side is a fence. Find the dimensions of the largest rectangle.

HINT: The area A is to be a maximum. Let x = number of feet in each of the equal sides formed by the rope. Therefore, 60 - 2x equals the length of the third side. So A = x(60 - 2x).

- 7. What is the least value of the function $y = 2x^2 7x + 3$?
- 8. Divide a into two parts such that their product is a maximum.
- 9. Find the number that exceeds its square by the greatest possible quantity.

60. QUADRATIC EQUATIONS

An equation of the form

$$ax^2 + bx + c = 0$$
, $a \neq 0$ and a, b, c constants

is called a quadratic equation in one unknown. Many important problems may be solved through the use of quadratic equations in one unknown.

Illustration 1: A and B start on a journey of 36 miles. A travels 2 mph faster than B and arrives 3 hr before him. Find the rate of each.

An equation based upon an equality in terms of time may be derived as follows:

Let x = number of miles per hour traveled by A.

Then, x-2 = number of miles per hour traveled by B,

 $\frac{36}{r}$ = number of hours traveled by A,

 $\frac{36}{r-2}$ = number of hours traveled by B.

But since A's time is 3 hr less than B's, we have

$$\frac{36}{x} + 3 = \frac{36}{x - 2}$$

which may be simplified to

$$36(x-2) + 3x(x-2) = 36x,$$

or $x^2 - 2x - 24 = 0$.

This equation is of the form $ax^2 + bx + c = 0$.

Illustration 2: A cistern can be filled by two pipes in 36 min. If the smaller pipe takes 15 min more than the larger pipe to fill the cistern, in what time will it be filled by the larger pipe?

An equation may be derived as follows:

Let x = time in minutes required for the big pipe to fill the cistern.Then, x + 15 = time in minutes required for the smaller pipe to fill the cistern.

$$\frac{1}{x}$$
 = amount of cistern filled in 1 min by large pipe,

$$\frac{1}{x+15}$$
 = amount of cistern filled in 1 min by smaller pipe.

But, $\frac{1}{36}$ = amount of cistern filled in 1 min by both pipes.

Therefore,

$$\frac{1}{x} + \frac{1}{x+15} = \frac{1}{36},$$

or

$$x^2 - 57x - 540 = 0.$$

This equation is also of the form $ax^2 + bx + c = 0$.

We shall now consider how to solve such equations.

61. SOLUTION OF QUADRATIC EQUATIONS BY FACTORING

Quadratic equations may always be solved either by a method known as completing the square or by the formula which is derived by completing the square of

$$ax^2 + bx + c = 0.$$

However, the nonzero members of certain special quadratic equations are readily factorable, and hence their solution may be obtained in a simple manner by the solution of two linear equations. Such a special case is considered in the illustration that follows.

Illustration: Solve the equation $x^2 - 7x + 12 = 0$.

The function $x^2 - 7x + 12$ is factorable into (x - 3)(x - 4). Hence (x - 3)(x - 4) = 0.

This product is zero if and only if one of the factors is zero. But the roots thus obtained are values of x which cause (x-3)(x-4) or $x^2-7x+12$ to be equal to zero. Hence, x-3=0 gives the root

We may check these roots in the given equation. Thus,

$$3^2 - 7(3) + 12 = 9 - 21 + 12 = 0$$

and
$$4^2 - 7(4) + 12 = 16 - 28 + 12 = 0$$
.

x = 3, and x - 4 = 0 gives the root x = 4.

62. GENERAL SOLUTION OF QUADRATIC EQUATIONS

The general quadratic equation may be solved as follows:

Given
$$ax^2 + bx + c = 0. ag{1}$$

Hence,
$$x^2 + \frac{b}{a}x = -\frac{c}{a}, \qquad (2)$$

and
$$x^2 + \frac{b}{a}x + \frac{b^2}{4a^2} = \frac{b^2}{4a^2} - \frac{c}{a}, \tag{3}$$

or
$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$$
 (4)

Consequently,
$$x + \frac{b}{2a} = \frac{\pm \sqrt{b^2 - 4ac}}{2a}$$
, (5)

or $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$ (6)

The last form is equivalent to the two solutions

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a},$$

$$x = \frac{-b - \sqrt{b^2 - 4ac}}{2c}.$$

Any quadratic equation may now be solved either by "completing the square," as illustrated by the derivation just completed, or by the use of Formula (6).

Illustration 1: Solve the equation $3x^2 + 4x - 7 = 0$.

Solution by Factoring: The equation is of the simple type which may be solved by factoring, since $3x^2 + 4x - 7$ is factorable into (x - 1)(3x + 7). Hence, we have

$$(x-1)(3x+7) = 0,$$

and x = 1, $x = -\frac{7}{3}$ are the required roots.

Solution by "Completing the Square": The equation

$$3x^2 + 4x - 7 = 0 ag{1}$$

may be written
$$x^2 + \frac{4}{3}x = \frac{7}{3}, \tag{2}$$

or
$$x^2 + \frac{4}{3}x + \frac{4}{9} = \frac{4}{9} + \frac{7}{3}$$
. (3)

Consequently,
$$(x + \frac{2}{3})^2 = \frac{25}{9},$$
 (4)

or
$$x + \frac{2}{3} = \pm \frac{5}{3}$$
. (5)

So,
$$x = -\frac{2}{3} + \frac{5}{3} = 1$$
, (6)

and $x = -\frac{2}{3} - \frac{5}{3} = -\frac{7}{3}$.

Solution by Formula: If we compare the coefficients of $3x^2+4x-7=0$ with those of $ax^2 + bx + c = 0$, we see that a = 3, b = 4, c = -7. Hence, the roots by the direct application of the formula are

$$x = \frac{-4 \pm \sqrt{4^2 - 4(3)(-7)}}{(2)(3)},$$

$$-4 \pm \sqrt{100}$$

or

$$x = \frac{-4 \pm \sqrt{100}}{6}.$$

Hence,

$$x = 1, \quad x = -\frac{7}{3}.$$

Illustration 2: Solve the equation $x^2 - x - 3 = 0$. This equation is not readily factorable. Solving by completing the square, we have

$$x^2 - x - 3 = 0, (1)$$

$$x^2 - x = 3, \tag{2}$$

$$x^2 - x + \frac{1}{4} = \frac{1}{4} + 3, \tag{3}$$

$$(x-\frac{1}{2})^2 = \frac{13}{4},\tag{4}$$

$$(x-\frac{1}{2})=\pm\sqrt{\frac{13}{4}}=\pm\frac{\sqrt{13}}{2}.$$
 (5)

Therefore,

$$x = \frac{1 + \sqrt{13}}{2} \quad \text{and} \quad x = \frac{1 - \sqrt{13}}{2}.$$

These solutions, correct to the nearest ten-thousandth, are

$$x = 2.3028$$
 and $x = -1.3028$.

EXERCISES 38

Solve the following equations by factoring the left members.

1.
$$x^2 - 7x + 12 = 0$$
 2. $3x^2 - 7x + 2 = 0$

 3. $8x^2 - 6x + 1 = 0$
 4. $21x^2 - 41x + 10 = 0$

 5. $21x^2 + 29x - 10 = 0$
 6. $24x^2 + 33x - 30 = 0$

 7. $6x^2 + 17x + 5 = 0$
 8. $6x^2 + 11x - 35 = 0$

 9. $8x^2 + 14x - 15 = 0$
 10. $6x^2 - x - 15 = 0$

 11. $2x^2 - 5ax + 2a^2 = 0$
 12. $a^2x^2 + (c - b)ax - bc = 0$

 13. $2p^2x^2 - 5apx + 2a^2 = 0$
 14. $c^2x^2 - 2cdx + d^2 = 0$

 15. $a^2x^2 - 4abx + 4b^2 = 0$

16. Solve the preceding 15 exercises by completing the square.

Solve the following equations by completing the square:

17.
$$x^2 - 2x - 1 = 0$$
 18. $3x^2 - 5x - 1 = 0$

 19. $4x^2 - 7x + 1 = 0$
 20. $5x^2 + 7x + 1 = 0$

 21. $6x^2 - 7x + 1 = 0$
 22. $3x^2 - 7x - 2 = 0$

23.
$$8x^2$$
 -

$$23. 8x^2 - 10x + 1 = 0$$

24.
$$5x^2 - 11x + 5 = 0$$

25.
$$p^2x^2 - 2px - 5 = 0$$

$$26. \ px^2 + qx + r = 0$$

27.
$$x^2 + px + q = 0$$

28. Solve Exercises 17 to 24, inclusive, by use of the quadratic formula.

Solve each of the following equations:

29.
$$(2x-3)^2-(x+2)^2+7=0$$
 30. $\frac{x}{x+2}-\frac{x-1}{x-2}=5$

30.
$$\frac{x}{x+2} - \frac{x-1}{x-2} = 8$$

 $34. \ \frac{6}{x} - 2 = \frac{5}{x - 3}$

31.
$$\frac{1}{x} - \frac{3}{x-2} + \frac{1}{4}$$

32.
$$\frac{2x(x-1)}{5} - \frac{x(x+4)}{3} - \frac{x^2-1}{2} = 0$$

33.
$$\frac{1}{\frac{x}{2}-1} + \frac{2}{\frac{x}{2}-2} + \frac{3}{\frac{x}{2}-3} = 0$$

35.
$$\frac{1}{2(x-1)} - \frac{2}{(x-1)^2} - \frac{3}{5} = 0$$

36.
$$0.02(x-1) - 0.05(x-2)x + 0.06(x-3)(x-2) = 0$$

37.
$$\frac{x}{x-5} - \frac{2x-3}{x} = \frac{9}{2}$$

38.
$$\frac{x^2-3}{x}-\frac{7x-5}{2}=6(5-2x)$$

$$39. \ \frac{2}{2-x} - \frac{x-5}{2+x} = \frac{16\frac{3}{4}}{4-x^2}$$

40.
$$\frac{5}{2x^2 - 7x + 6} + \frac{3(1-x)}{9 - 9x + 2x^2} = \frac{7}{x^2 - 5x + 6}$$

41.
$$\frac{3}{4}(x-\frac{1}{2})-\frac{2}{3}\cdot\frac{1}{x+\frac{2}{3}}=7\frac{7}{8}x$$

63. IRRATIONAL EQUATIONS

Such equations as

$$\sqrt{x} + \sqrt{x+6} = 3$$
, $\sqrt{1-x} = 2-x$, and $27x^{3/2} - 4 = 26x^{3/4}$

are frequently called irrational equations. An equation of this type may usually be solved by the method employed in the following illustrations.

Illustration 1: Solve the equation

$$\sqrt{x} + \sqrt{x+6} = 3.$$

This may be rewritten in the form

$$\sqrt{x+6} = 3 - \sqrt{x},$$

the radical \sqrt{x} being subtracted from each member of the given equation in order to have one radical upon each side. Let us now square each member, thereby obtaining

$$x+6=9-6\sqrt{x}+x,$$

or
$$\sqrt{x} = \frac{1}{2}$$
.

After squaring both sides again, we have

$$x=\frac{1}{4}$$
.

It is readily observed that this root satisfies the given equation.

The original equation and the equation obtained after squaring each member may not be equivalent. It is demonstrable that squaring each member of an equation does not cause a loss of roots; unfortunately, however, the new equation thus obtained may have roots that are not solutions of the original equation. Consequently, it is always necessary to check all suspected roots obtained by such a process; those that do not satisfy the given equation are frequently characterized as extraneous.

Illustration 2: Solve the equation

$$\sqrt{x+9}=5\sqrt{x}-3.$$

After squaring each member, we have

$$x + 9 = 25x - 30\sqrt{x} + 9,$$

 $5\sqrt{x} = 4x.$

or

After squaring a second time, there results

$$16x^2-25x=0,$$

or

$$x(16x-25)=0.$$

Hence, the suspected roots of the given equation are

$$x=0 \qquad \text{and} \qquad x=\frac{25}{16}.$$

However, x = 0 does not satisfy the original equation and is not a solution of that equation. The only root is $\frac{25}{16}$.

Illustration 3: If we consider the equation

$$\frac{29}{16}-x=\sqrt{x-2},$$

we see from the right member that, for real values of $\sqrt{x-2}$, x must be greater than 2; moreover, since $\sqrt{x-2}$ is positive, the left member must be positive and, hence, x must be less than $\frac{29}{16}$. It is impossible to reconcile these two conditions upon x; thus, it is seen that the equation has no real roots.

However, if we square both members and simplify, we obtain

$$256x^2 - 1{,}184x + 1{,}353 = 0,$$

whose roots are

$$x = \frac{41}{16}$$
 and $x = \frac{83}{16}$.

From the previous considerations, however, we know that these values are not roots of the original equation. This fact is also discovered when we substitute the suspected roots. Hence, the original equation has no roots whatsoever.

It is readily observed by substitution that $x = \frac{41}{16}$ and $x = \frac{33}{16}$ are roots of the equation

$$\frac{29}{18} - x = -\sqrt{x-2}.$$

It is due to the fact that squaring the members of

$$\frac{29}{16} - x = -\sqrt{x-2}$$

and

$$\frac{29}{16} - x = \sqrt{x-2}$$

produces the same equation, namely,

$$256x^2 - 1{,}184x + 1{,}353 = 0$$

that we obtained the suspected roots $x = \frac{41}{16}$ and $x = \frac{33}{16}$.

Illustration 4: Let us consider the irrational equation

$$x^2 - 5x - 2\sqrt{x^2 - 5x + 3} = 12. ag{1}$$

If we add 3 to each member of the equation, we have

$$(x^2 - 5x + 3) - 2\sqrt{x^2 - 5x + 3} - 15 = 0.$$
 (2)

An equation of this type is said to be in quadratic form, since the substitution of y for $\sqrt{x^2 - 5x + 3}$ results in the quadratic equation $y^2 - 2y - 15 = 0$, or (y - 5)(y + 3) = 0. Hence, y = 5 and y = -3.

We note, however, that y = -3 cannot equal $\sqrt{x^2 - 5x + 3}$, in view of the fact that the radical sign implies a positive value.

Since the only possibility is y = 5, it follows that

$$x^2 - 5x + 3 = 25,$$

or $x^2 - 5x - 22 = 0$,

and

$$x=\frac{5\pm\sqrt{113}}{2}.$$

The values $x = \frac{5 \pm \sqrt{113}}{2}$ are the roots of the original equation.

These illustrations are sufficient to show that an equation resulting from squaring the members of a given irrational equation is not necessarily equivalent to the given equation. Consequently, we must test all suspected roots of an irrational equation and must retain as solutions only those which satisfy the original irrational equation. All other suspected roots are said to be extraneous.

EXERCISES 39

Solve the following equations:

1.
$$\sqrt{x} - \sqrt{x-5} = \sqrt{5}$$

3.
$$\frac{\sqrt{x} + \sqrt{x-3}}{\sqrt{x} + \sqrt{x-3}} = \frac{3}{x-3}$$

5.
$$2\sqrt{x} = \frac{12 - 6\sqrt{x}}{2\sqrt{x} - 3}$$

$$2\sqrt{x-3}$$

7. $\sqrt{x-a} = \sqrt{x} - \frac{1}{2}\sqrt{a}$; $a \neq 0$

8.
$$2\sqrt{x-a} + 3\sqrt{2x} = \frac{7a+5x}{\sqrt{x-a}}$$
 9. $\frac{x-a}{\sqrt{x}} = \frac{\sqrt{x}}{a}$; $a \neq 0$

10.
$$x = \sqrt{a^2 + x\sqrt{b^2 + x^2}} - a$$
; $a \neq 0$

10.
$$x = \sqrt{a^2 + x\sqrt{b^2 + x^2} - a}$$
; $a \neq 0$

11.
$$x + 16 - 7\sqrt{x + 16} = 10 - 4\sqrt{x + 16}$$

12. $\frac{\sqrt{4x + 2}}{\sqrt{x}} = \frac{4 - \sqrt{x}}{\sqrt{x}}$
13. $\frac{6\sqrt{x} - 21}{2\sqrt{x} - 14} = \frac{8\sqrt{x} - 11}{4\sqrt{x} - 12}$

12.
$$\frac{\sqrt{4x}+2}{4+\sqrt{x}} = \frac{4-\sqrt{x}}{\sqrt{x}}$$

14.
$$\sqrt{x+16} + \sqrt{x} = 1$$

15. $\sqrt{x+12} + 2\sqrt{x-12} = \sqrt{8x-7}$

16.
$$x + \sqrt{9 + 2x\sqrt{x - 7}} = 3$$

17.
$$\sqrt{5x-4}-3\sqrt{5x}+6=0$$

2. $\sqrt{2x+1} + \sqrt{x-3} = 2\sqrt{x}$

4. $\sqrt{x+5} + \sqrt{x} = \frac{10}{4\sqrt{x}}$

6. $\sqrt[3]{2x+3}+4=7$

18.
$$2\sqrt{x+2} + \frac{2}{\sqrt{x+2}} = \sqrt{x+3}$$

19.
$$\sqrt{x^2-x+1}+\sqrt{x^2+x+1}=3$$

20.
$$\frac{5}{\sqrt{x-5}} + \sqrt{x-5} = 9$$

21.
$$2x^2 - 10x + 12 - 2\sqrt{x^2 - 5x + 8} = 0$$

22.
$$\sqrt{10-x^2-x}=8-x^2-x$$

23.
$$3x^2 - 4x + \sqrt{3x^2 - 4x - 6} = 18$$

24.
$$27x^{\frac{3}{2}} - 4 = 26x^{\frac{3}{4}}$$

HINT: Let
$$x^{3/4} = y$$
.

25.
$$2x^{-\frac{1}{2}} - 9x^{-\frac{1}{4}} = -4$$

$$26. 8x^{3/2^n} - 8x^{-3/2^n} = 63$$

27.
$$3x^{1/2n} - x^{1/n} - 2 = 0$$

$$28. \ 20x^{-3/6} - x^{-1/6} = 64$$

29.
$$3x^{34} - 4x^{36} = 160$$

MISCELLANEOUS EXERCISES 40

1. A man bought two farms for \$2500 each. The larger contained 3 acres more than the smaller, but he paid \$5 more per acre for the smaller than for the larger. How many acres were there in each farm?

2. The combined area of two squares is 980 sq ft, and a side of one square is 18 ft longer than the side of the other. What is the size of each square?

3. A and B start together on a 40-mile trip. A travels 2 mph faster than B and arrives 3 hr earlier. Find the rate of each.

4. A cistern can be filled by two pipes in 1 hr. The smaller pipe takes

 $\frac{1}{2}$ hr more than the larger one to fill the cistern. Find the time it takes each to fill the cistern.

- 5. Find two numbers whose difference is 9 and whose sum multiplied by the greater is 266.
- 6. A certain farm is in the shape of a rectangle with its length twice its width. If it is enlarged two rods on each side its area is increased by 496 sq rods. Find the area of the farm in acres.
- 7. A square is surrounded by a border whose width lacks 1 ft of being one fourth the length of a side of the square. The area of the border is $\frac{24}{25}$ of the area of the square. Find the width of the border and the length of a side of the square.
- 8. The corners of a square, the length of whose side is S, are cut off in such a way that a regular octagon (eight sides) remains. What is the length of a leg of the triangle cut off?
- 9. In 1938, a man traveled 400 miles by train, and after a 3-hr visit, he returned by airplane. The airplane traveled 80 mph faster than the train, and the total elapsed time for the entire journey was 16 hr and 20 min. Find the rate of the train and of the airplane.
- 10. A man drove his car 60 miles in a certain interval of time. Had the time been $\frac{1}{2}$ hr less, the rate would have been 20 mph greater. Find the time and rate.
- 11. Members of an automobile party in the mountains 90 miles from a rail-road wished to make a certain train. They traveled the first 60 miles at a certain average rate; then they realized that they must increase their average speed 2½ mph to make the train. If they had continued to drive at the rate they were going during the first part of their journey, they would have been 10 min late. Assuming that the party reached the station just at train time, find the total time that it took to drive the 90 miles.
- 12. If, from a height of a ft, a body is thrown vertically downward with an initial velocity of b ft per sec, its height at the end of t sec is given by the formula $h = a bt 16t^2$.
 - (a) If a body is thrown vertically downward from a height of 400 ft with an initial velocity of 32 ft per sec, when will it be at a height of 16 ft from the ground?
 - (b) When will it reach the ground?

64. DISCUSSION OF THE ROOTS OF THE QUADRATIC EQUATION

We have observed that the roots of the general quadratic equation $ax^2 + bx + c = 0$ are

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \quad \text{and} \quad x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}.$$

The expression $b^2 - 4ac$ is called the *discriminant* of the quadratic function and is designated by D.

- (a) If for given values of a, b, and c, D is a negative number, the roots involve imaginary numbers.
- (b) If for given numerical values of a, b, and c, D is zero, the two roots are equal. The value of the two equal roots is, of course, $-\frac{b}{2a}$.

The converse of this statement is also true; that is, if the two values of x are equal, D must equal zero.

This may readily be shown as follows:

By hypothesis,
$$\frac{-b+\sqrt{b^2-4ac}}{2a}=\frac{-b-\sqrt{b^2-4ac}}{2a}$$
.

Therefore, $\sqrt{b^2-4ac}=-\sqrt{b^2-4ac}$, and $b^2-4ac=0$.

(c) If for given numerical values of a, b, and c, D is a positive number, not zero, it is evident that the roots are real, and, because of the demonstration under (b), it follows that in this case the roots are not equal.

The conclusions of (a), (b), and (c) may be restated in mathematical symbols as follows:

For

and

- (a) D < 0, both roots involve imaginary numbers;
- (b) D = 0, both roots have the same real value;
- (c) D > 0, both roots are real but have different values.

If D is a perfect square of some rational number, both roots will be real and rational.

Obviously, whenever the curve of a quadratic function does not cut the x axis, there are no real roots of the equation. This situation, therefore, corresponds to case (a) just discussed.

If the graph of the quadratic function under consideration merely touches (is tangent to) the x axis, the two points of intersection between the x axis and the curve become identical, and we have case (b).

Case (c) is obviously of greatest interest in the graphical solution of the quadratic equation; then the graph of the quadratic function intersects the x axis in two distinct points. If we consider, for example, the equation $-3x^2 + 8x - 1 = 0$, we know that since D > 0, that is, 64 - 12 is positive, the roots are real and unequal.

Solving the equation by formula, we find that

$$x = \frac{-8 + \sqrt{52}}{-6} = \frac{-8 + 7.2111}{-6} = 0.13, \text{ approximately,}$$

$$x = \frac{-8 - \sqrt{52}}{-6} = \frac{-8 - 7.2111}{-6} = 2.53, \text{ approximately.}$$

Hence, these are the x coordinates of the points on the x axis where the curve cuts the x axis.

Graphical methods for the solution of quadratics are not necessary, since these equations are so readily solvable by algebraic methods. However, we call the student's attention to the desirability of graphical methods,

to be studied later, for the solution of equations which may not be solved readily by algebraic methods.

65. SUM AND PRODUCT OF ROOTS

It is often inconvenient to check roots by substituting them for x in the given equation. Hence, a knowledge of what the sum and product of the roots should be in terms of a, b, and c is of great aid as a check.

If we designate one root by x_1 and the other root by x_2 , we have

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

Therefore,

$$x_1+x_2=\frac{-2b}{2a}=\frac{-b}{a}.$$

$$(x_1)(x_2) = \frac{(-b + \sqrt{b^2 - 4ac})(-b - \sqrt{b^2 - 4ac})}{4a^2}$$
$$= \frac{b^2 - (b^2 - 4ac)}{4a^2} = \frac{4ac}{4a^2} = \frac{c}{a}.$$

Thus, it is known immediately that the sum of the two roots of the equation

$$2x^2 - 3x + 7 = 0$$

is

$$x_1+x_2=\frac{-b}{a}=\frac{3}{2},$$

and that their product is

$$(x_1)(x_2) = \frac{c}{a} = \frac{7}{2}$$
.

EXERCISES 41

Show from an examination of the discriminant that the roots of

- 1. $x^2 + x + 5 = 0$ are not real;
- 2. $9x^2 12x + 4 = 0$ are real and equal;
- 3. $5x^2 8x + 1 = 0$ are real and unequal.
- 4. Solve each of the above equations, and check the roots by use of the formulas for the sum and the product of the roots.
- 5. What must be the value of q in order that $qx^2 3x + 6 = 0$ shall have real and equal roots?
- 6. What must be the value of q in order that $5x^2 6x + q = 0$ shall have real and equal roots? For what values of q will the roots be real and unequal?
- 7. What must be the values of q in order that $3x^2 2qx + 12 = 0$ shall have real and equal roots? For what values of q will the roots not be real?
 - 8. For what values of q will the roots of $3x^2 qx + 10$ be real? Not real?

- **9.** Write the sum and product of the roots of $5x^2 x 1 = 0$ without solving the equation.
- 10. By use of the formulas in Section 65 determine whether or not $\frac{1+\sqrt{14}}{3}$ and $\frac{1-\sqrt{14}}{3}$ are roots of the equation $3x^2-2x+5=0$.

11

Systems Involving Quadratic Equations

66. ONE LINEAR AND ONE QUADRATIC EQUATION

This section is concerned with systems of equations consisting of one linear equation and one equation which involves at least one second-degree term, and no term higher than the second degree. We recall that such terms as $3x^2$, $5y^2$, 7xy are second-degree terms, the degree being the sum of the exponents of the unknowns in the term.

Thus, the pairs of equations

$$\begin{cases}
3x - 5y = 1 \\
xy + y = 3
\end{cases}$$
(1)

$$\begin{cases}
 2x + 3y = 5 \\
 x^2 + 3y^2 = 6
 \end{cases}
 \tag{2}$$

$$\begin{cases}
8x - y = 5 \\
7x^2 + 3xy - 5y^2 = 6
\end{cases}$$
(3)

are examples of the systems to be considered.

Such pairs of equations may always be solved by solving the linear equation for one of the unknowns in terms of the other and substituting the result in the second-degree equation.

Illustration 1: From the first equation of system (1), we have

$$x=\frac{5y+1}{3},$$

and, hence,

$$\frac{(5y+1)y}{3} + y = 3,$$

or

$$5y^2 + 4y - 9 = 0.$$

The roots of this latter equation are

$$y = \frac{-4 \pm \sqrt{16 + 180}}{10} = 1$$
 and $-\frac{9}{5}$.

By substituting these values of y in $x = \frac{5y+1}{3}$, we find the corre-

sponding values of x to be 2 and $-\frac{8}{3}$. So the solutions properly paired are (2, 1) and $(-\frac{9}{3}, -\frac{9}{5})$.

Note on Pairing Solutions. Whenever a system of two equations is solved, it is essential that the values of x and y that satisfy both equations be indicated as corresponding pairs. A corresponding pair of x and y values constitutes a solution of the system of equations.

EXERCISES 42

Solve the following systems of equations, and check:

Solve the following systems of equations, and check:

1.
$$2x^2 + y^2 = 33$$
 $x - y = -3$

2. $3x + 4y = 24$
 $x^2 + y^2 = 25$

3. $x^2 - xy + y^2 = 3$
 $2x + 3y = 8$

4. $x - y = b$
 $2x + 3y = a^2$

5. $\frac{6}{x} + \frac{4}{y} = 1$
 $4x - 3y + 16 = 0$

3. $\frac{2}{x} - \frac{1}{y} = \frac{4}{3}$
 $\frac{3}{x^2} + \frac{2}{y^2} = \frac{35}{36}$

HINT: Let $\frac{1}{x} = u$, $\frac{1}{y} = v$.

7. $3x^2 - 3xy - y^2 - 4x - 8y + 3 = 0$
 $3x - y - 8 = 0$

8. $\frac{1}{y} - \frac{3}{x} = 1$
 $\frac{7}{xy} - \frac{1}{y^2} = 12$

9. $x^2 + 5x = 4y^2$
 $3x - 4y = 24$

10. $x^2 + xy + 2 = 0$
 $2x + y - 1 = 0$

67. TWO QUADRATIC EQUATIONS REDUCIBLE TO THE PREVIOUS CASE

If we consider the two second-degree equations

3x - 4y = 24

or

$$xy + x = 20 \tag{1}$$

$$xy - y = 12, (2)$$

we note that each equation is of the second degree. Yet the solution of these equations is reducible to the solution of a system of the type already considered.

Thus, subtracting the members of Equation (2) from those of (1), we have

$$x+y=8. (3)$$

Thus, from (3), y = 8 - x. If we substitute 8 - x for y in (1), we have

$$x(8-x) + x = 20,$$
or
$$x^2 - 9x + 20 = 0.$$
Consequently,
$$x = 5 \quad \text{and} \quad x = 4.$$

From the equation y = 8 - x we find that the values of y corresponding to x = 5 and x = 4, respectively, are y = 3 and y = 4. Thus, the values properly paired are (5, 3) and (4, 4).

If the solutions of the system composed of (3) and (1) satisfy (2), they are solutions of the system comprising (1) and (2). Moreover, it is demonstrable that the two systems are equivalent.

68. EQUATIONS HOMOGENEOUS WITH RESPECT TO THE UNKNOWNS

If the terms containing the unknowns in an equation are all of the same degree, the equation is said to be homogeneous with respect to the unknowns.

Illustration: Solve the following system of homogeneous equations:

$$x^2 + y^2 = 25 \tag{1}$$

$$xy - y^2 = -4. ag{2}$$

FIRST METHOD: We shall make the homogeneous substitution

$$y = vx$$
.

Therefore, we obtain the equations

$$x^2 + v^2 x^2 = 25 (3)$$

and

$$vx^2 - v^2x^2 = -4. (4)$$

But from (3) we have

$$x^2=\frac{25}{v^2+1},$$

and from (4) we have

$$x^2=\frac{-4}{v-v^2};$$

and, hence,

$$\frac{25}{v^2+1} = \frac{-4}{v-v^2}.$$

Upon simplification, this becomes

$$21v^2-25v-4=0.$$

Hence,

$$v = \frac{4}{3} \quad \text{and} \quad -\frac{1}{7}.$$

Substituting $v = \frac{4}{3}$ in

$$x^2=\frac{25}{v^2+1},$$

we have

$$x = \pm 3$$
.

Since $v = \frac{4}{3}$, then corresponding to x = +3 the value of y obtained from the homogeneous substitution is +4, and corresponding to x = -3 the value of y is -4.

Substituting $v = -\frac{1}{7}$ in

$$x^2=\frac{25}{v^2+1},$$

we have

$$x=\pm\frac{7}{\sqrt{2}}=\pm\frac{7}{2}\sqrt{2}.$$

Consequently, the value of y corresponding to $x = \frac{7\sqrt{2}}{2}$ is $-\frac{\sqrt{2}}{2}$, and the value of y corresponding to $x = -\frac{7\sqrt{2}}{2}$ is $+\frac{\sqrt{2}}{2}$. The solutions, therefore, are

$$(3, 4), \quad (-3, -4), \quad \left(7\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right), \quad \text{and} \quad \left(-7\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right).$$

SECOND METHOD: If we multiply the members of Equation (1) by 4, and those of (2) by 25, and add, we have

$$4x^2 + 25xy - 21y^2 = 0, (5)$$

or

$$(4x - 3y)(x + 7y) = 0. (6)$$

This last equation is equivalent to the two linear equations, 4x - 3y = 0 and x + 7y = 0.

The given system (1) and (2) may be replaced by either of the two sets of systems that follow:

$$x^{2} + y^{2} = 25$$

 $x + 7y = 0$ and $x^{2} + y^{2} = 25$
 $4x - 3y = 0$

or

$$xy - y^2 = -4$$

 $x + 7y = 0$ and $xy - y^2 = -4$
 $4x - 3y = 0$.

Each of the systems in the first set, for example, is of the type previously discussed, and the solutions are, respectively, $\left(7\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$, $\left(-7\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$, and (3, 4), (-3, -4).

EXERCISES 43

Solve the following systems of equations:

1.
$$x^2 + 3xy = 28$$

 $x^2 + y^2 = 20$
2. $x^2 + xy + y^2 = 6$
 $x^2 + y^2 = 12$
3. $x^2 - xy + y^2 = 21$
 $y^2 - 2xy + 15 = 0$
2. $x^2 + xy + y^2 = 6$
 $x^2 + y^2 = 12$
4. $x^2 + xy + 2y^2 = 74$
 $2x^2 + 2xy + y^2 = 73$

5.
$$x^2 - 4y^2 = 20$$

 $xy = 12$
6. $x^2 - 12xy + 119 = 0$
 $y^2 - 2xy + 24 = 0$
7. $x^2 - 3xy + 4y^2 = 58$
 $2x^2 - 7xy = 50$
8. $3xy - 9y^2 + 2 = 0$
 $4x^2 + 5xy + 6y^2 = 3$
9. $x^2 - 4xy = 15$
 $x^2 - 10xy + 8y^2 = 2$
10. $2x^2 - 3xy + y^2 = 2$
 $3x^2 - 2y^2 + 15 = 0$

69. EQUATIONS SYMMETRICAL WITH RESPECT TO UNKNOWNS

If an interchange of x and y in all the terms of an equation does not alter the equation, the equation is said to be symmetrical with respect to x and y.

Illustration: Solve the system

$$4(x+y) + 3xy = 0 (1)$$

$$x^2 + x + y + y^2 = 20. (2)$$

Let us make the *symmetric* substitution, namely,

$$x=u+v,$$

and

and

$$y = u - v$$
.

Therefore, Equation (1) becomes

$$8u + 3u^2 - 3v^2 = 0, (3)$$

and Equation (2) becomes

$$u^2 + v^2 + u = 10. (4)$$

After multiplying the members of (4) by 3, we have

$$3u^2 + 3v^2 + 3u = 30. (5)$$

Adding the corresponding members of (3) and (5), we have

$$6u^2 + 11u - 30 = 0.$$

Hence,
$$u = \frac{-11 \pm \sqrt{121 + 720}}{12};$$

that is,
$$u = \frac{3}{2}$$
 and $-\frac{10}{3}$.

Substituting $u = \frac{3}{2}$ in Equation (3), we have $v^2 = \frac{25}{4}$, and, hence,

Therefore,
$$v = \frac{5}{2} \quad \text{and} \quad -\frac{5}{2}.$$

$$x = \frac{3}{2} + \frac{5}{2} = 4,$$

$$y = \frac{3}{2} - \frac{5}{2} = -1.$$
Also
$$x = \frac{3}{2} - \frac{5}{2} = -1,$$

$$y = \frac{3}{2} + \frac{5}{2} = 4.$$

As would be expected, since the equations are symmetrical, the x and y values are interchangeable. Substituting $u = -\frac{10}{3}$ in (3), we have $v^2 = \frac{20}{3}$; hence,

$$v = \pm \frac{2}{3}\sqrt{5}.$$
Therefore,
$$x = \frac{-10}{3} + \frac{2}{3}\sqrt{5},$$

$$y = \frac{-10}{3} - \frac{2}{3}\sqrt{5};$$
and
$$x = \frac{-10}{3} - \frac{2}{3}\sqrt{5},$$

$$y = \frac{-10}{3} + \frac{2}{3}\sqrt{5}.$$

It is left as an exercise for the student to check these values.

EXERCISES 44

Solve the following systems of equations:

1.
$$x^{2} + y^{2} - x - y = 78$$

 $xy + x + y = 39$

2. $xy - (x + y) - 1 = 0$
 $xy = 2$

3. $\frac{x}{y} + \frac{y}{x} = \frac{5}{2}$
4. $x^{2} - xy + y^{2} = 12$
 $x^{2} + xy + y^{2} = 4$

5. $xy = 3(x + y)$
 $x^{2} + xy + y^{2} = 28$
6. $6(x + y) = 5xy$
 $x + y + x^{2} + y^{2} = 18$
7. $45(x + y) + 4xy = 0$
 $x^{2} + y^{2} - 2x - 2y = 98$
8. $x^{2} + y^{2} + x + y = 26$
 $xy + 10 = 3(x + y)$
10. $2(x^{2} + y^{2}) - 5(x + y) = 1$
 $x^{2} + y^{2} - xy = 7$

70. SPECIAL SYSTEMS OF QUADRATICS

Illustration 1: Let us consider the solution of the following system of two equations of the second degree:

$$x^2-2y=3 (1)$$

$$y^2 + xy = 5. (2)$$

If we solve Equation (1) for y, we have

$$y=\frac{x^2-3}{2}.$$

Substituting this expression for y in Equation (2), we have

$$\left(\frac{x^2-3}{2}\right)^2+\frac{x(x^2-3)}{2}=5,$$

which, upon simplification, becomes

$$x^4 + 2x^3 - 6x^2 - 11 = 0. (3)$$

Equation (3) is of the fourth degree in one unknown. Methods for solving equations higher than the second degree have not yet been considered in this course, and hence, a system of simultaneous quadratics requiring for their solution methods not yet presented will not be considered at this time.

Illustration 2: Solve the system

$$x^2 + y^2 = 25 (1)$$

$$xy = 12. (2)$$

This system involves equations that are homogeneous and symmetric; so they may be solved by methods given previously.

We may, however, solve this system as follows: Multiplying the members of Equation (2) by 2, we have

$$2xy=24. (3)$$

Therefore, adding (3) and (1),

$$x^2 + 2xy + y^2 = 49. (4)$$

Hence, after extracting the square roots of each member of (4), we obtain

$$x+y=7, (5)$$

and

$$x + y = -7. ag{6}$$

Subtracting the members of (3) from those of (1), we have

$$x^2 - 2xy + y^2 = 1, (7)$$

which yields the two equations,

$$x-y=1, (8)$$

and

$$x - y = -1. (9)$$

Thus, the given pair of quadratic equations may be replaced by the four linear pairs:

$$x + y = 7$$
 $x + y = -7$
 $x - y = 1$ $x - y = -1$
 $x + y = -7$ $x + y = 7$
 $x - y = 1$ $x - y = -1$

The respective solutions are (4, 3), (-4, -3), (-3, -4), (3, 4).

Illustration 3: Solve the system

$$x^3 + y^3 = 152 \tag{1}$$

$$x^2 - xy + y^2 = 19. (2)$$

These equations may be solved by methods already discussed. However, if we divide the members of (1) by the corresponding members of (2), we obtain

$$x + y = 8, (3)$$

which is linear.

The given system may now be replaced by the equivalent system

$$x + y = 8$$
$$x^2 - xy + y^2 = 19.$$

The solutions are (3, 5) and (5, 3).

It is highly desirable that the student use his ingenuity in devising special methods for the solution of the various special systems that may come up for consideration.

EXERCISES 45

Solve the following systems of equations:

1.
$$xy - (x + y - 1) = 0$$

 $xy = 2$

$$xy - 2$$

3. $x^2 - xy = 54$

$$xy - y^2 = 18$$

5.
$$x^3 - 8y^3 = 224$$

 $x - 2y = 8$

7.
$$x^2 - 2xy - 3y^2 = 0$$

 $x^2 + 2y^2 = 12$

9.
$$x^2y + xy^2 = 6$$

 $x^2y - xy^2 = 5$

11.
$$x^3 + 8y^3 = 72$$

 $x + 2y = 6$

13.
$$x^2 + 4xy + 3y^2 = -2$$

 $x^2 + 2xy - 3y^2 = 32$

2.
$$x^2 - xy + y^2 = 19$$

 $xy = 15$

4.
$$x^2 + y^2 = 5$$

 $x^2 - xy + y^2 = 3$

6.
$$3(x^3 - y^3) = 13xy$$

 $x - y = 1$

8.
$$6x^2 + 5xy + y^2 = 0$$

 $y^2 - x - y = 32$

10.
$$x^2 + 3xy + 2y^2 - (x + y) = 0$$

 $2x^2 - 3xy = 5$

12.
$$x^2 + xy - 6y^2 = 12y$$

 $2x^2 - 5xy + 2y^2 = 18x$

14.
$$x^2 - 3xy + 2y^2 = 6x$$

 $x^2 - y^2 = -5y$

MISCELLANEOUS EXERCISES 46

Solve the following systems of equations:

1.
$$x^2 + 3xy - 2y^2 = 26$$

 $x^2 + 3xy - y^2 = 51$

3.
$$xy^2 + x - 10y = 0$$

 $xy^2 - x - 6y = 0$

5.
$$xy - x^2 + y^2 = -91$$

 $x^2 + y^2 + xy = 225$

7.
$$x^2 + xy - y^2 = 5$$

 $3x^2 - 2xy - 2y^2 = 6$

2.
$$x^2 - y^2 = 27$$

 $xy = 18$

4.
$$x^2 + y^2 = 36$$

 $xy = 12$

6.
$$x^2 + y^2 = 20$$

 $x^2 - y^2 = 12$

8.
$$x^2 + y^2 - xy = 7$$

 $x^2 - y^2 - xy = -1$

9.
$$x^{2} + y^{2} - 6x - 8y = 56$$
 $x^{2} + y^{2} = 25$ 10. $y^{2} = 8x$ $x^{2} + y^{2} = 64$
11. $9x^{2} + 4y^{2} = 36$ 12. $y = \frac{3}{x^{2} + 2}$ $y = x^{2}$
13. $y = \frac{8a^{3}}{x^{2} + 4a^{2}}$ 14. $y = x^{3}$ $y = 2x - x^{2}$ 15. $x^{2} + y^{2} = 25$ $y - 7x + 25 = 0$
17. $\frac{1}{x^{2}} - \frac{1}{y^{2}} = \frac{5}{36}$ $\frac{1}{x} + \frac{1}{y} = \frac{5}{6}$

- 18. Find the legs of a right triangle whose hypotenuse is 64 in. and whose area is 50 sq in.
- 19. The perimeter of a rectangle is 64 in. and the area is 50 sq in. Find the length of the sides.
- 20. Two men start at the same time to meet each other from towns which are 25 miles apart. One takes 18 min longer than the other to walk a mile, and they meet in 5 hr. How fast does each walk?
- 21. In 1938, two airplanes left New York simultaneously for St. Louis, which is 1170 miles distant; one went 20 mph faster than the other and arrived 2 hr and 15 min sooner. Find the rate of each airplane.
- 22. What pairs of numbers have the same number for their sum, their product, and the difference of their squares?
- 23. A man divides a tract of land into city lots. He sells the lots all at the same price and realizes \$4800. If the number of lots had been one less and the price per lot \$8 more, he would have received the same amount of money. How many lots were there, and what was the price per lot?
- 24. Psychologists assert that the rectangle most pleasing to the human eye is that in which the sum of the two dimensions is to the longer as the longer is to the shorter. If the area of a page of this book remains unchanged, what should be its dimensions?

71. GRAPHICAL REPRESENTATION OF CERTAIN QUADRATIC EQUATIONS

It is desirable that the student familiarize himself with the curves corresponding to certain quadratic equations that are often needed in practice.

The Parabola. It has already been indicated that curves corresponding to the equation $y = ax^2 + bx + c$ will be of a form similar to that of Figure 19 if a is negative or of Figure 20 if a is positive.

The equation $y = ax^2$ is but a special case of $y = ax^2 + bx + c$; its corresponding curve, however, will be symmetric with respect to the y axis, taking the form of Figure 21 if a has a positive numerical value or that of Figure 22 if a has a negative numerical value.

As one might expect, the equation $y^2 = ax$ will have as its correspond-

ing graph the form of Figure 23 if a has a positive numerical value, and it will have as its corresponding graph the form of Figure 24 if a has a negative value.

The Circle. If we consider a point (x, y) moving so that it is always r units from a fixed point (a, b), it will trace a circle with (a, b) as center and with r as radius.

By the use of the Pythagorean theorem and by reference to Figure 25,

the relation between x and y is readily found to be

$$(x-a)^2 + (y-b)^2 = r^2. (1)$$

Fig. 25

Thus, as an example, the equation of the circle with its center at (2, -5) and having a radius of 7 is

$$(x-2)^2 + (y+5)^2 = 7^2$$

If, in Equation (1), a = 0 and b = 0, the circle has its center at the origin, and its equation is

$$x^2 + y^2 = r^2. (2)$$

Equations that can be put in the forms (1) or (2) can readily be graphed by drawing the corresponding circle. Thus,

$$x^2 + y^2 - 6x + 8y = 24$$

may be written

$$(x^2-6x)+(y^2+8y)=24.$$

After completing the squares in the parentheses, we obtain

$$(x^2 - 6x + 9) + (y^2 + 8y + 16)$$

= 24 + 9 + 16,
or $(x - 3)^2 + (y + 4)^2 = 7^2$.

Comparing the form of this equation with (1), we see that it represents a circle with center at (3, -4) and radius 7. Its

Frg. 26

with center at (3, -4) and radius 7. Its graph appears as Figure 26.

EXERCISES 47

Sketch the curves corresponding to the following equations:

1.
$$y^2 = 8x$$

3.
$$y = 4x^2$$

5.
$$3x^2 = 7y$$

7.
$$x^2 + y^2 = 25$$

9.
$$x^2 + y^2 - 6x - 9y = 61$$

11.
$$4x^2 + 4x + 4y^2 - 12y - 15 = 0$$

13.
$$x^2 + y^2 - 7y - 13 = 0$$

2.
$$y^2 = -8x$$

4. $y = -4x^2$

$$y = -4x^{-1}$$

6.
$$y = x^2 - 5x + 6$$

$$8. \ 3x^2 + 3y^2 = 18$$

10.
$$x^2 + y^2 - 2x + 14y = 50$$

12.
$$x^2 + 5x + y^2 = 14$$

14. $x^2 + y^2 + 4x - 9y = 0$

The Ellipse. An equation that can be put in the form

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \tag{3}$$

has as its corresponding graph an ellipse whose center is at (0,0) and whose axes of symmetry* coincide with the x and y axes. If a = b, the curve is a circle. The general form of the ellipse with center at the origin and with axes of symmetry that coincide with the x and y axes is shown in Figure 27.

Fig. 27

If the values of a and b are known, the graph of

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

may be sketched with little trouble.

Illustration: Study the graphical representation of the following equation:

$$\frac{x^2}{9} + \frac{y^2}{16} = 1.$$

If we solve the given equation for x, we have

$$x = \pm \frac{3}{4} \sqrt{16 - y^2},\tag{4}$$

^{*} The concept of symmetry will be discussed in detail in the third part of the text.

and if we solve for y, we have

$$y = \pm \frac{4}{3}\sqrt{9 - x^2}. (5)$$

Equation (4) shows that we cannot substitute any numerical value for y greater than 4 or less than -4 if x is to be a real number. This is important since our attention in this text is restricted to real graphs. Similarly, Equation (5) shows that we cannot substitute any numerical value for x greater than 3 or less than -3 if y is to be a real number.

We may form a table of values from either (4) or (5) from which a smooth curve is graphed. The resulting curve is shown in Figure 28. As implied in Figure 27, the graph intersects the x axis when $x = \pm a$ and intersects the y axis when $y = \pm b$.

Fig. 28

The equation of the form

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \tag{6}$$

represents an ellipse with its center at (h, k) and with its axes of symmetry parallel to the x and y axes.

This can be seen as follows: If we let

$$x-h=x'$$
 and $y-k=y'$,

Equation (6) becomes

$$\frac{x'^2}{a^2} + \frac{y'^2}{b^2} = 1,$$

which represents an ellipse, relative to new axes x' and y' that are parallel to and at a distance of h and k, respectively, from the x and y axes.

Illustration: The equation

$$4x^2 + 9y^2 - 8x + 36y + 4 = 0$$

may be written

$$4(x^2-2x)+9(y^2+4y)=-4.$$

or

After completing the squares within the parentheses, we have

$$4(x^2 - 2x + 1) + 9(y^2 + 4y + 4) = -4 + 4 + 36,$$

$$4(x - 1)^2 + 9(y + 2)^2 = 36,$$

which may be written

$$\frac{(x-1)^2}{9} + \frac{(y+2)^2}{4} = 1.$$

Comparing this equation with the form of (6), we see that it represents an ellipse with its center at (1, -2) and its axes of symmetry parallel to the x and y axes.

The Hyperbola. The equation

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \tag{7}$$

has a graph of the general form shown in Figure 29.

Fig. 29

The equation

$$-\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$$

has as its graph the form displayed in Figure 30.

Fig. 30

The guide lines for drawing these curves, as will be noted from a study of the two figures, are the diagonals through (a, b) and (-a, -b) and through (-a, +b) and (a, -b).

If the values of a and b are known, the graph of

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

may be constructed.

Illustration: Graph the equation

$$\frac{x^2}{9} - \frac{y^2}{16} = 1.$$

If we solve the given equation for x, we have

$$x = \pm \frac{3}{4} \sqrt{y^2 + 16}; \tag{8}$$

and if we solve the given equation for y, we have

$$y = \pm \frac{4}{3} \sqrt{x^2 - 9}. (9)$$

Equation (8) shows that we may substitute any numerical value, positive or negative, for y. Equation (9) shows that we cannot substitute any value for x between -3 and 3 if y is to be a real number.

We may form a table of values from either (8) or (9) from which the curve can be graphed. The resulting curve is shown in Figure 31.

x	y
±3	0
± 4	± 3.52
± 5	± 5.33
± 6	± 6.92
±7	± 8.42
±8	±9.88
±9	± 11.31
±10	± 12.72

Fig. 31

Similarly the graph of the equation

$$\frac{-x^2}{9} + \frac{y^2}{16} = 1$$

is shown in Figure 32.

If we solve the given equation for x, we have

$$x = \pm \frac{3}{4} \sqrt{y^2 - 16}; \tag{10}$$

and if we solve the given equation for y, we have

$$y = \pm \frac{4}{3}\sqrt{x^2 + 9}. (11)$$

Equation (10) shows that we cannot substitute any numerical value for y between -4 and 4 if x is to be a real number. Equation (11) shows that we may substitute for x any numerical value, positive or negative. We may form a table from either (10) or (11) from which the curve is to be graphed.

x	y
0	±4
± 2.25	±5
± 3.35	±6
± 4.31	±7
± 5.19	±8
± 6.09	±9
± 6.87	±10

ria. o

Equations of the form

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \tag{12}$$

$$-\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 {(13)}$$

also represent hyperbolas. The center of each hyperbola is at (h, k), and the axes of symmetry are parallel to the x and y axes.

The student should explain the above statement by the method used in the investigation of the corresponding equation of the ellipse.

Illustration: The equation

$$9x^2 - 16y^2 + 36x + 96y = 252$$

may be written

$$9(x^2+4x)-16(y^2-6y)=252.$$

Completing the squares within the parentheses, we have

$$9(x^2 + 4x + 4) - 16(y^2 - 6y + 9) = 252 + 36 - 144,$$

$$9(x + 2)^2 - 16(y - 3)^2 = 144.$$

§ **7**1]

which may be written in the form

$$\frac{(x+2)^2}{16} - \frac{(y-3)^2}{9} = 1.$$

Comparing this equation with the form of (12), we see that it represents a hyperbola with center at the point (-2, 3).

The Hyperbola: xy = c. The equation

$$xy = c \tag{14}$$

will have as its graph a curve of the form displayed in Figure 33 if c has a positive value and a curve of the form shown in Figure 34 if c has a negative value.

An equation of the form

$$(x-h)(y-k) = c (15)$$

represents a hyperbola similar to that of xy = c, but with its center at the point (h, k).

Illustration: The equation

$$4xy - 8x + 6y = 9$$

becomes

$$xy - 2x + \frac{3}{2}y = \frac{9}{4}$$

when we divide by 4.

After subtracting 3 from each member, we may write

$$(x+\frac{3}{2})(y-2)=\frac{9}{4}-3,$$

and, consequently,

$$(x+\frac{3}{2})(y-2)=-\frac{3}{4}.$$

This represents a hyperbola similar to that shown in Figure 34, but with its center at $(-\frac{3}{2}, 2)$. Note Figure 35, in which auxiliary axes have been drawn through the point $(-\frac{3}{2}, 2)$.

A detailed investigation of these various curves is undertaken in the third part of this text. Many statements just given without proof will be justified at that point in the book.

EXERCISES 48

Identify the type of each of the following curves, and draw a rough sketch of each one:

1.
$$\frac{x^2}{16} + \frac{y^2}{4} = 1$$

2. $\frac{(x-3)^2}{25} + \frac{(y+1)^2}{9} = 1$
3. $x^2 - 4x + 4y^2 = 0$
4. $9x^2 + 16y^2 = 144$
5. $\frac{x^2}{9} - \frac{y^2}{4} = 1$
6. $-\frac{x^2}{9} + \frac{y^2}{4} = 1$
7. $\frac{(x-5)^2}{9} - \frac{(y-1)^2}{4} = 1$
8. $x^2 - 4x - y^2 = 0$
9. $xy + 4 = 0$
10. $3xy = 10$
11. $3x^2 + 25y^2 + 12x - 50y = 38$
12. $16x^2 + 9y^2 - 96x + 18y + 9 = 0$
13. $16x^2 - 9y^2 + 32x + 36y = 164$
14. $9x^2 - 25y^2 + 54x + 50y = 369$
15. $3xy + 5x - 6y = 10$

- 16. A right triangle of legs x and y is inscribed in a circle of diameter 6. Draw the graphical representation of the equation which must exist relating x and y.
- 17. If the temperature of a given amount of gas remains constant, Boyle's law states that the volume of the gas varies inversely as the pressure. Display graphically this relation between pressure and volume.
- 18. A point (x, y) moves so that its distance from the point (2, 0) equals its distance to the line x = -2. Obtain the equation of the curve generated by such a moving point; graph it.

72. GRAPHICAL SOLUTION OF SYSTEMS

If we have a system of two equations in two unknowns x and y, we may draw their corresponding curves relative to the same axes. The values of the coordinates (x, y) corresponding to the points of intersection of the two curves are the real and finite solutions of the given system of equations.

It is thus evident that an acquaintance with the curves corresponding to given equations is quite helpful. However, it is not easy to know, by means of a few points on the curve, the general appearance of many curves corresponding to equations of higher degree. It requires a knowledge of the calculus to get the necessary information relative to a careful graphing of curves corresponding to higher-degree equations. For the present we therefore limit ourselves to such curves as have been discussed in the previous sections.

Illustration 1: Solve graphically the following system:

$$x^2 - 6x + y^2 - 8y = 24 \tag{1}$$

$$y = 3x. (2)$$

It is readily determined that Equation (1) may be graphed as a circle with its center at (3, 4) and with r = 7. Equation (2) leads to a straight line passing through the origin. The two curves have been drawn upon the same axis system in Figure 36.

The student should draw this figure to scale and obtain the solutions from the graph by noting the coordinates of the points of intersection of the two curves. These solutions may be checked by solving algebraically.

Illustration 2: Solve graphically the following system:

$$9x^2 + 16y^2 = 144\tag{1}$$

$$x^2 + y^2 = 9. (2)$$

Figure 37 shows the graphs of Equations (1) and (2).

The student should solve the system graphically by noting the points of intersection of the two curves, then check by an algebraic solution.

EXERCISES 49

Solve the following systems graphically, and then check by solving algebraically:

1.
$$x^2 + y^2 = 25$$

 $y = 4x$

3.
$$4x^2 + 9y^2 = 36$$

 $3x + 2y = 6$

5.
$$y = 4x^2$$

 $x = 4y^2$

7.
$$y^2 - x^2 = 5$$

 $4x^2 + 9y^2 = 36$

9.
$$y = 3x^2 + 6x$$

 $x = 3y^2 - 5$

2.
$$x^2 + y^2 + 6x = 0$$

 $y = 5x$

4.
$$4x^2 - 9y^2 = 36$$

 $x + y = 1$

6.
$$x^2 - y^2 = 1$$

 $x^2 + y^2 = 25$

8.
$$x^2 + y^2 - 8x - 6y = 24$$

 $2y + 3x - 7 = 0$

10.
$$4x^2 + 9y^2 = 36$$

 $y^2 = 4x$

12

Integral Rational Functions

73. CALCULATING THE VALUES OF AN INTEGRAL RATIONAL FUNCTION

The value of the integral rational function

$$f(x) = A_0 x^n + A_1 x^{n-1} + A_2 x^{n-2} + \cdots + A_{n-1} x + A_n$$

 $A_0 \neq 0$, when x = a, is evidently

$$f(a) = A_0 a^n + A_1 a^{n-1} + A_2 a^{n-2} + \dots + A_{n-1} a + A_n. \tag{1}$$

If we let

it is readily seen that

$$B_{1} = A_{0}a + A_{1}$$

$$B_{2} = A_{0}a^{2} + A_{1}a + A_{2}$$

$$B_{3} = A_{0}a^{3} + A_{1}a^{2} + A_{2}a + A_{3}$$

$$B_{4} = A_{0}a^{4} + A_{1}a^{3} + A_{2}a^{2} + A_{3}a + A_{4}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$B_{n-1} = A_{0}a^{n-1} + A_{1}a^{n-2} + A_{2}a^{n-3} + \cdots + A_{n-2}a + A_{n-1}$$

$$B_{n} = A_{0}a^{n} + A_{1}a^{n-1} + A_{2}a^{n-2} + \cdots + A_{n-1}a + A_{n}$$

Thus,

$$B_n = f(a). (3)$$

The Equations (2) therefore give us the following method of calculating f(a):

We write a to the right of the coefficients of the terms of f(x) as follows:

$$A_0 + A_1 + A_2 + \cdots + A_{n-1} + A_n \mid a$$
.

We multiply A_0 by a and add to A_1 . This gives B_1 . We multiply B_1 by a

and add to A_2 . This gives B_2 . We multiply B_2 by a and add to A_3 . This gives B_3 . We continue this process until we multiply B_{n-1} by a and add to A_n . This gives $B_n = f(a)$. The entire process can be arranged conveniently in the following manner:

Illustration 1: The method of this article for finding f(a) is often, but not always, much briefer than the actual substitution of a for x in f(x).

Thus, to find f(2) when

$$f(x) = 8x^5 + 9x^4 - 3x^3 + 2x^2 + 7x + 1,$$

we proceed by the method of this section as follows:

Hence,

$$f(2)=399.$$

By the method of substitution, we have

$$8(2)^5 + 9(2)^4 - 3(2)^3 + 2(2)^2 + 7(2) + 1$$

= 256 + 144 - 24 + 8 + 14 + 1 = 399

Illustration 2: Find f(-3) if $f(x) = 5x^4 + 7x^2 - 9$.

To find f(-3), we write -3 to the right of the coefficients of the terms of f(x), inserting zeros for the coefficients of the missing powers of x; then we proceed as before.

Hence,

$$f(-3)=459.$$

EXERCISES 50

- 1. Given $f(x) = x^4 5x^3 + 7x^2 + x 1$, find f(1), f(2), f(3), f(-1), f(0).
- **2.** Given $f(x) = 7x^4 8x^2 + x 5$, find f(2), f(3), f(-2), f(-4).
- 3. Given $f(x) = 5x^2 4x^4 + 3x^3 2x^2 + x$, find f(-1), f(2), f(5), f(10).
- **4.** Given $f(x) = 2x^8 3x^4 + 5x 6$, find f(2), f(-1), f(-2).
- 5. Given $f(x) = x^5 2x^4 + 5x^3 x^2 + 7x + 3$, find f(2), f(-1), f(3), f(-3).

74. SYNTHETIC DIVISION

If we let

$$Q(x) = A_0x^{n-1} + B_1x^{n-1} + B_2x^{n-2} + \cdots + B_{n-1},$$

and multiply both members by x - a, we have

$$(x-a)Q(x) = A_0x^n + (B_1 - A_0a)x^{n-1} + (B_2 - B_1a)x^{n-2} + \dots + (B_{n-1} - B_{n-2}a)x - B_{n-1}a.$$

After referring to relations (2) of Section 73, we note that

$$(x-a)Q(x) = A_0x^n + A_1x^{n-1} + A_2x^{n-2} + \cdots + A_{n-1}x + A_n - B_n,$$

and by (1) and (3) (Section 73),

$$(x-a)Q(x) = f(x) - f(a).$$

Hence,

$$f(x) = (x - a)Q(x) + f(a).$$

The last equation states specifically that if f(x) is divided by (x - a), we obtain Q(x) as the quotient and f(a) as the remainder.

Since the method of Section 73 determines B_1, B_2, \dots, B_{n-1} , as well as $B_n = f(a)$, we have a short method of finding the quotient as well as the remainder when f(x) is divided by x - a. This method is known as *synthetic division*. It is to be noted that synthetic division can be used only if the divisor is a linear expression of the form x - a.

Illustration: Find the quotient and the remainder when

$$f(x) = 3x^3 - 5x^2 + 7x - 6$$

is divided by x-2.

Solution:

$$3 - 5 + 7 - 6 2
+ 6 + 2 + 18
3 + 1 + 9 + 12$$

The numbers 3, 1, and 9 are the coefficients of the powers of x in the quotient Q(x), and 12 = f(2) is the remainder R. Hence,

$$Q(x) = 3x^2 + x + 9$$
 and $R = 12$.

75. THE REMAINDER THEOREM

If a rational integral function of x is divided by x - a, the remainder is f(a). This is a restatement of a fact established in the previous section.

76. THE FACTOR THEOREM

If a is a root of the equation

$$A_0x^n + A_1x^{n-1} + \cdots + A_{n-1}x + A_n = 0$$
 $(A_0 \neq 0),$

then x - a is a factor of the polynomial

$$A_0x^n + A_1x^{n-1} + \cdots + A_{n-1}x + A_n;$$

and, conversely, if x - a is a factor of the polynomial, then a is a root of the equation formed by equating the polynomial to zero.

This may be proved by means of the remainder theorem. Thus, let

$$f(x) = A_0x^n + A_1x^{n-1} + \cdots + A_{n-1}x + A_n,$$

and recall that

$$f(x) = f(a) + (x - a)Q(x).$$

Since a is a root of f(x) = 0, it is a zero of f(x); that is, f(a) = 0. Hence, f(x) = (x - a)Q(x), which shows that (x - a) is a factor of f(x).

Conversely, since x - a is a factor of f(x), this means that the remainder, when f(x) is divided by x - a, is zero. But since f(a) equals the remainder, f(a) = 0, which implies that a is a root of f(x) = 0.

EXERCISES 51

- 1. Is 2 a zero of $x^3 + 6x^2 + 11x 6$?
- 2. Is (x-1) a factor of $x^{99}-1$?
- 3. What is the constant remainder when $2x^{17} 3$ is divided by x 1?
- **4.** What is the constant remainder when $2x^{33} 3x^{17} + 1$ is divided by x + 1?
 - 5. Without actual division, show that x-4 is a factor of x^3-6x^2+6x+8 .
 - **6.** By synthetic division find f(4) when $f(x) = x^3 7x^2 + 3x + 14$.
 - 7. Find f(-2) by synthetic division when $f(x) = x^3 7x^2 + 3x + 14$.
 - 8. Find the quotient and the constant remainder
 - (a) if $x^3 + 7x^2 8x + 3$ is divided by x 3;
 - (b) if $x^3 + 2x^2 + 13x 1$ is divided by x 4;
 - (c) if $2x^3 + 3x^2 7x + 6$ is divided by x + 2;
 - (d) if $x^4 + 5x^2 9x 7$ is divided by x + 5;
 - (e) if $2x^3 9x^2 + 10x 3$ is divided by $x \frac{1}{2}$.

By the use of synthetic division determine the linear factors of the following five polynomials:

9.
$$x^3 - 2x^2 - 5x + 6$$

Solution: By trial it is discovered that f(-2), f(1), and f(3) are all zero. Thus, the factors are (x + 2), (x - 1), and (x - 3).

10.
$$x^3 + 4x^2 - 4x - 16$$

11.
$$x^3 + 2x^2 - x - 2$$

12.
$$x^3 + x^2 - 14x - 24$$

13.
$$x^4 - 10x^3 + 35x^2 - 50x + 24$$

14. Determine the roots of the equations formed by equating each of the previous five polynomials to zero.

77. THE FUNDAMENTAL THEOREM OF ALGEBRA

Every integral rational function f(x) has at least one zero. This theorem will be assumed in view of the fact that the various proofs that are available are all too difficult for an elementary text.

78. FACTORS OF A POLYNOMIAL

The polynominal

$$f(x) = A_0 x^n + A_1 x^{n-1} + \cdots + A_{n-1} x + A_n$$

may be written as

$$f(x) = A_0(x - r_1)(x - r_2) \cdot \cdot \cdot (x - r_n),$$

where r_1, r_2, \dots, r_n , are the zeros of f(x). This may be proved as follows:

By the preceding theorem f(x) has at least one zero, say r_1 and, hence, by the factor theorem $x - r_1$ is a factor of f(x).

Hence, $f(x) = (x - r_1) F(x)$, where F(x) is the polynomial of degree n-1 obtained on dividing f(x) by $x-r_1$. Similarly, by the theorem of Section 77, F(x) has at least one zero, say r_2 (where r_2 need not necessarily differ from r_1), and, hence, $x-r_2$ is a factor of F(x), so that f(x) may be written as

$$f(x) = (x - r_1)(x - r_2)G(x),$$

where G(x) is the polynomial of degree n-2, obtained on dividing F(x) by $x-r_2$. But upon dividing f(x) by $x-r_1$, and then the quotient by $x-r_2$, and then the next quotient by $x-r_3$, where r_3 is a zero of G(x), this reasoning may be continued until the final quotient becomes a constant. This final constant must be A_0 , since for every division the first term of the quotient has A_0 as its coefficient. Hence,

$$f(x) = A_0(x - r_1)(x - r_2) \cdot \cdot \cdot (x - r_n).$$

It is evident from this form of f(x) that $x = r_1, x = r_2, \dots, x = r_n$ are all zeros of f(x), since they cause f(x) to reduce to zero.

79. NUMBER OF ROOTS

Theorem: The integral rational equation f(x) = 0, of degree n, has n, and only n, roots. These n roots are not necessarily all distinct.

It has been shown that

$$f(x) = A_0(x - r_1)(x - r_2) \cdot \cdot \cdot (x - r_n),$$

where r_1, r_2, \dots, r_n are the zeros of f(x). Clearly f(x) becomes zero when x is put equal to any one of the r's. If k of the linear factors x - r are equal, we say that the equation f(x) = 0 has k equal roots. With this understanding there are at least n zeros of the function; that is, there are at least n roots of the equation f(x) = 0.

Moreover, if s is any number different from every one of the r's, then

$$f(s) = A_0(s - r_1)(s - r_2) \cdot \cdot \cdot (s - r_n).$$

A product cannot be zero unless at least one of the factors is zero. Since no one of the factors can be zero, f(s) cannot be zero. Therefore, f(x) has only n zeros; that is to say, f(x) = 0 has only n roots.

As an illustration, there are three, and only three, zeros of the function

$$F(x) = x^3 - 3x^2 - 4x + 12 = (x-2)(x+2)(x-3).$$

They are 2, -2, and 3. Thus, these values are the roots of F(x) = 0.

80. A TRANSFORMATION OF $A_0x^n + \cdots + A_n = 0$ $(A_0 \neq 0)$

The equation of nth degree, namely,

$$A_0x^n + A_1x^{n-1} + A_2x^{n-2} + \dots + A_n = 0 \qquad (A_0 \neq 0), \tag{1}$$

where the coefficients are rational numbers, may be divided by A_0 , since $A_0 \neq 0$, and we have the equivalent equation,

$$x^{n} + \frac{A_{1}}{A_{0}}x^{n-1} + \frac{A_{2}}{A_{0}}x^{n-2} + \cdots + \frac{A_{n}}{A_{0}} = 0.$$

The coefficients of this equation are rational but not necessarily integers. If we let y = kx, then we have

$$\frac{y^n}{k^n} + \frac{A_1}{A_0} \frac{y^{n-1}}{k^{n-1}} + \frac{A_2}{A_0} \frac{y^{n-2}}{k^{n-2}} + \cdots + \frac{A_n}{A_0} = 0,$$

or

$$y^{n} + k \frac{A_{1}}{A_{0}} y^{n-1} + k^{2} \frac{A_{2}}{A_{0}} y^{n-2} + \cdots + k^{n} \frac{A_{n}}{A_{0}} = 0.$$

We may choose k so that all the coefficients of the last equation are integers. Of course, there is an endless number of such values of k; however, the smallest integral value of k that will convert the coefficients to integers will be preferable for purposes of later calculations.

We then have the equation

$$y^{n} + C_{1}y^{n-1} + C_{2}y^{n-2} + \cdots + C_{n} = 0, \tag{2}$$

wherein the coefficient of the highest power is 1, and the other coefficients are integers. We have thus transformed equation (1) to this new and equivalent form by means of the transformation y = kx, the k being properly chosen.

The equation of form (2) will be referred to as the standard integral rational equation. If the roots of (2) are r_1, \dots, r_n , the roots of (1) are $\frac{r_1}{k}, \frac{r_2}{k}, \dots, \frac{r_n}{k}$. Thus, the roots of (1) may be found by finding the roots of (2) and dividing each root by k.

81. RATIONAL ROOTS OF THE STANDARD INTEGRAL RATIONAL EQUATION

Theorem 1. The equation

$$y^{n} + C_{1}y^{n-1} + C_{2}y^{n-2} + \cdots + C_{n-1}y + C_{n} = 0, \qquad (1)$$

where C_1, C_2, \dots, C_n are integers, cannot have a rational fraction other than an integer as a root.

Let us assume that y = p/q is a root of (1), where p and q are integers without a common divisor, and $q \neq 1$. Thus,

$$\frac{p^n}{q^n} + C_1 \frac{p^{n-1}}{q^{n-1}} + \cdots + C_n = 0.$$

If we multiply each member by q^{n-1} , we have

$$\frac{p^n}{q} + C_1 p^{n-1} + \dots + C_n q^{n-1} = 0,$$

$$\frac{p^n}{q} = -(C_1 p^{n-1} + \dots + C_n q^{n-1}).$$
(2)

or

Since p is not divisible by q, p^n is not divisible by q; hence, p^n/q is a fraction. Therefore, the left member of the equation cannot equal the right member, which is an integer.

Hence, the original assumption is impossible, and Equation (1) cannot have a rational root other than an integer.

Theorem 2. Any integral root of (1) is a divisor of C_n . Since

$$C_n = -y(y^{n-1} + C_1y^{n-2} + \cdots + C_{n-1}),$$

we see that any integer y_1 which satisfies Equation (1) satisfies the relation

$$C_n = -y(y^{n-1} + C_1y^{n-2} + \cdots + C_{n-1}).$$

Consequently, C_n is an integer that has y_1 as a factor.

Hence, to find the integral roots of an equation in the standard form, we need try only the positive and negative integers that are factors of C_n .

The rational roots of $A_0x^n + A_1x^{n-1} + \cdots + A_n = 0$ may be found by transforming the equation to the standard form, finding the integral roots of the standard equation, and then dividing each root by k.

82. DESCARTES'S RULE OF SIGNS

In the equation

$$A_0x^n + A_1x^{n-1} + A_2x^{n-2} + \cdots + A_{n-1}x + A_n = 0 \quad (A_0 \neq 0),$$

the coefficients other than A_0 may be either positive, negative, or zero. In any given equation the sign of each coefficient is known. Thus, in the equation $x^5 - 4x^4 + 3x^2 + 7x - 8 = 0$, the signs of the terms in their proper order are + - + + -. If two successive terms differ in sign, there is said to be a change of sign. It follows that the function

$$x^5 - 4x^4 + 3x^2 + 7x - 8$$

has a change of sign between the first and second terms, between the second and third terms, and between the fourth and fifth terms. Hence, this function is said to have three changes of sign.

If we consider the given polynomial f(x), wherein x is replaced by -x,

we have $f(-x) = -x^5 - 4x^4 + 3x^2 - 7x - 8$; the signs of the terms of f(-x) are -x - + -x - 1. This function f(-x) has a change of sign between the second and third terms and between the third and fourth terms. Hence, f(-x) is said to have two changes of sign.

Now suppose that the equation

$$f(x) = A_0(x - r_1)(x - r_2) \cdot \cdot \cdot (x - r_n) = 0,$$

has the roots, $x = r_1$, $x = r_2$, \cdots , $x = r_n$. Then,

$$f(-x) = A_0(-x - r_1)(-x - r_2) \cdot \cdot \cdot (-x - r_n) = 0$$

has the roots, $x = -r_1$, $x = -r_2$, \cdots , $x = -r_n$. Hence, it is evident that the roots of f(x) = 0 are the roots of f(-x) = 0 with their signs changed.

It is demonstrated in advanced algebra that the number of positive roots of f(x) = 0 does not exceed the number of changes of sign in f(x). We thus have the following rule:

Descartes's Rule. The number of positive roots of the equation

$$f(x) = A_0x^n + A_1x^{n-1} + A_2x^{n-2} + \cdots + A_n = 0 \quad (A_0 \neq 0),$$

does not exceed the number of changes of sign in f(x); and the number of negative roots does not exceed the number of changes of sign in f(-x).

We shall now give two illustrations of the common procedure for finding the rational roots of equations with rational coefficients.

Illustration 1: Find the rational roots of

$$x^3 - 9x^2 + 23x - 15 = 0.$$

By Section 81 if this equation has any rational roots, they are integral factors of 15. The direct application of Descartes's rule of signs to the polynomial on the left tells us that the equation has at most three positive roots. Of course, since the equation is of third degree, there are only three roots of any kind.

Since $f(-x) = -x^3 - 9x^2 - 23x - 15$, there are no changes of sign, and, by Descartes's rule, the given equation has no negative roots. Consequently, to obtain the rational roots, we need try only the positive factors of 15, that is, 1, 3, 5, 15. This trial will be accomplished by the use of synthetic division.

Since f(1) = 0, 1 is a root of the given equation and (x - 1) is a factor of the polynomial member.

Since $Q(x) = x^2 - 8x + 15$, the polynomial also has the factors (x-5) and (x-3).

Hence, 5 and 3 are the remaining roots. In this case all the roots are integers.

Illustration 2: Find the rational roots of

$$6x^4 - x^3 - 13x^2 + 2x + 2 = 0.$$

After dividing the members of the given equation by 6, we have

$$x^4 - \frac{1}{6}x^3 - \frac{1}{6}x^2 + \frac{2}{6}x + \frac{2}{6} = 0.$$

Let y = kx, then we have

$$\frac{y^4}{k^4} - \frac{1}{6} \frac{y^3}{k^3} - \frac{13}{6} \frac{y^2}{k^2} + \frac{1}{3} \frac{y}{k} + \frac{1}{3} = 0,$$

or

$$y^4 - \frac{k}{6}y^3 - k^2 \frac{13}{6}y^2 + \frac{k^3}{3}y + \frac{k^4}{3} = 0.$$

If we choose k = 6, we have

$$y^4 - y^3 - 78y^2 + 72y + 432 = 0.$$

The rational roots of this equation in y, if there are any, are factors of 432. The factors that may be tried are ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 8 , ± 9 , ± 12 , \cdots .

By Descartes's rule we know that the given equation can have at most two positive roots and at most two negative roots.

Let us try -2.

$$\begin{array}{r}
1 - 1 - 78 + 72 + 432 \boxed{-2} \\
-2 + 6 + 144 - 432 \\
\hline
1 - 3 - 72 + 216 + 0
\end{array}$$

Hence,

$$y=-2$$
.

The remaining roots of $y^4 - y^3 - 78y^2 + 72y + 432 = 0$ are the zeros of the quotient $y^3 - 3y^2 - 72y + 216$.

Of course, -2 may be a zero of this quotient, and thus -2 would be a multiple root of the original equation in y. So let us try -2 again.

It is immediately evident that -2 is not a multiple root.

We shall now try some other integer that is a possible root; for instance, let us try 2.

Hence, 2 is not a root.

Let us next consider 3.

$$\begin{array}{r}
 1 - 3 - 72 + 216 \boxed{3} \\
 + 3 + 0 - 216 \\
 \hline
 1 + 0 - 72 + 0
 \end{array}$$

Hence, y = 3 is a root.

The quotient obtained in the last synthetic division, when equated to zero, gives the equation

$$y^2 - 72 = 0;$$

 $y = \pm 6\sqrt{2}.$

80,

Hence, the rational roots of the given equation in x are $-\frac{2}{6}$, $\frac{3}{6}$, that is, $x = -\frac{1}{3}$ and $x = \frac{1}{4}$.

The remaining roots are the irrational values $x = \pm \sqrt{2}$.

Since the given equation is of the fourth degree, we have found all the roots.

EXERCISES 52

Find the roots of the following equations:

1.
$$x^2 - x^2 - 14x + 24 = 0$$

3. $x^4 - 10x^3 + 20x^2 + 10x - 21 = 0$
4. $x^4 - 10x^3 + 24x^2 + 10x - 25 = 0$
5. $x^3 - 7x + 6 = 0$
6. $x^4 + 8x^3 + 23x^2 + 30x + 18 = 0$
7. $x^4 + x^3 - 9x^2 + 11x - 4 = 0$
8. $x^4 + x^3 - 4x^2 - 4x = 0$
9. $6x^3 + 13x^2 + 9x + 2 = 0$
10. $9x^3 - 27x^2 + 20x - 4 = 0$
11. $4x^3 - 8x^2 - x + 2 = 0$
12. $12x^3 - 23x^2 + 13x - 2 = 0$
13. $4x^3 - 4x^2 - 9x + 9 = 0$
14. $4x^3 + 8x^2 - 11x + 3 = 0$
15. $4x^4 + 8x^3 - 7x^2 - 21x - 9 = 0$
16. $14x^3 + 13x^2 - 4x - 3 = 0$
17. $5x^3 - 24x^2 - 9x + 20 = 0$
18. $6x^3 - 13x^2 + 4 = 0$
19. $3x^3 - 5x^2 - 6x + 10 = 0$
20. $9x^4 - 24x^3 - 25x^2 + 24x + 16 = 0$

21. The hypotenuse of a right triangle is 35 ft long, and its area is 294 sq ft. Determine the two legs.

22. The sum of the squares of the first n positive integers is given by the formula n(n+1)(2n+1)/6. How many terms would yield a sum of 2870?

83. RATIONAL APPROXIMATION OF THE IRRATIONAL ROOTS OF $A_0x^n+\cdots+A_n=0$

Theorem: If f(x) is a rational integral function, and if for any two real values of x, such as x = a and x = b, f(a) and f(b) have opposite signs, at least one real root of the equation f(x) = 0 lies between a and b.

To be specific, suppose that f(a) is negative and f(b) is positive. It is proved in higher mathematics that the graph of y = f(x) is a continuous

curve and that as x passes from x = a to x = b, f(x) passes through all real values between f(a) and f(b). Hence, at least one of the values of f(x) is zero. The corresponding value of x is therefore a root of the equation f(x) = 0.

From the geometric point of view the theorem states that if the graph is below the x-axis at x = a, and above it at x = b, it must cross the axis

at least once between x = a and x = b; the situation is displayed in Figure 38 where point P denotes the point of crossing.

If the real roots of an equation do not lie too close together, this theorem furnishes a convenient means of locating them, at least approximately, between two consecutive integers.

Illustration: Solve the equation $x^3 - 6x^2 + 6x + 5 = 0$.

Fig. 38

This equation has no rational roots, for by Section 81 the only possible rational roots are ± 1 and ± 5 . By trial it may be shown that ± 1 and ± 5 are not roots.

The following table of values may easily be computed either by direct substitution or by synthetic division. The graph indicated by the values thus obtained is shown in Figure 39.

Fig. 39

The table of values shows that the polynomial function changes sign between x = -1 and x = 0, between x = 2 and x = 3, and between x = 4 and x = 5. We have thus located the desired roots of the equation be-

tween consecutive integers. If the graph is drawn carefully, we may estimate the values of the roots to sufficient degree of precision for many purposes.

To obtain a closer approximation to an irrational root as, for example, the root between 2 and 3, we proceed as follows:

From the tabulated values we have

x	f(x)
2	1
3	-4

By the method of interpolation, we substitute a straight line for the given function between x = 2 and x = 3, as shown in Figure 40.

If (2+d,0) are the coordinates of the intersection of this line with the x axis, we have the following tabulation:

For the straight-line construction we are assuming that differences in values of x are proportional to differences in the corresponding values of the function; thus,

$$\frac{(2+d)-2}{3-2} = \frac{0-1}{-4-1},$$

$$d = \frac{1}{h} = 0.2.$$

or

The student may also show that d = 0.2 from the similar right triangles appearing in Figure 40.

Therefore, our first approximation to the root is 2.2, which is not necessarily a correct solution to the nearest first decimal.

By synthetic division we find that f(2.2) = -0.192; hence, x = 2.2 is larger than the required root. Similarly, we find that f(2.1) = +0.401; hence, x = 2.1 is smaller than the required root.

A second approximation may now be found by interpolation. Thus,

we have the tabulation

x	f(x)
$egin{array}{c} 2.1 \ 2.1 + d' \ 2.2 \end{array}$	$+0.401 \\ 0 \\ -0.192$

$$\frac{(2.1+d')-2.1}{2.2-2.1}=\frac{0-0.401}{-0.192-0.401}, \text{ or } d'=0.067.$$

Therefore, our second approximation to the root is 2.1 + 0.067 = 2.167 or, better, 2.17.

By synthetic division for x = 2.16, f(x) = 0.0441, and for x = 2.17, f(x) = -0.0151, which shows that our approximation is correct to three significant figures.

We may thus proceed to find the desired root to any degree of approximation.

EXERCISES 53

Find the irrational roots of each of the following equations to three significant figures:

1.
$$x^3 - 2x^2 - 7x - 10 = 0$$

2.
$$x^4 - 3x^3 + x^2 + 3 = 0$$

3.
$$x^3 - 3x + 7 = 0$$

7. $2x^4 - 9x - 3 = 0$

4.
$$x^3 + 4x^2 - 6 = 0$$

5.
$$2x^3 - 3x^2 - 4x + 2 = 0$$

6.
$$3x^3 + 5x^2 - 9 = 0$$

8. $x^3 - 5x^2 - 10x + 15 = 0$

9.
$$x^3 - 2.34x - 7.85 = 0$$

84. HORNER'S METHOD

Another method of approximation of the irrational roots is known as Horner's method. This method is based on the operation of transforming a given equation into another whose roots are less by a fixed number than the roots of the original equation.

Suppose it is required to diminish the roots of the equation $f(x) = a_0(x - r_1)(x - r_2)(x - r_3) \cdots (x - r_n) = 0$ by the fixed number h. If x is replaced by x' + h, the new equation is

$$f(x'+h) = a_0(x'+h-r_1)(x'+h-r_2)\cdots(x'+h-r_n) = 0.$$

The roots of this equation obtained by setting the separate linear factors equal to zero are

$$x'_1 = r_1 - h, x'_2 = r_2 - h, \dots, x'_n = r_n - h.$$

Thus, each root of the new equation is equal to the corresponding root of the old equation diminished by h. The required transformation is therefore accomplished by writing x' + h for x, or, as it is ordinarily expressed,

by making the substitution

$$x=x'+h.$$

If h is a negative number, the transformation will increase all the roots of the original equation by -h.

Illustration: Find the approximate value of one root of the equation

$$x^4 - x^3 - 2x^2 - 3x - 1 = 0.$$

First Transformation: By the use of methods already discussed, we find that a root lies between x = 2 and x = 3.

If, therefore, the equation is transformed by using the substitution x = x' + 2, the corresponding root of the new equation will lie between 0 and 1. If f(x) designates the polynomial of the given equation, we may write

$$f(x'+2) = (x'+2)^4 - (x'+2)^3 - 2(x'+2)^2 - 3(x'+2) - 1$$

$$f(x'+2) = A_0(x')^4 + A_1(x')^3 + A_2(x')^2 + A_3x' + A_4.$$

where the A's are constants to be determined. Since x = x' + 2, x' = x - 2. Hence, if x' is replaced by x - 2, the resulting function will be identical with the original $f(x) = x^4 - x^3 - 2x^2 - 3x - 1$. Thus,

$$f(x) = A_0(x-2)^4 + A_1(x-2)^3 + A_2(x-2)^2 + A_3(x-2) + A_4.$$

Clearly, the remainder obtained by dividing the right member of this identity by x - 2 is A_4 . But the remainder after dividing the left member of the identity, that is, of the original polynomial, by x - 2 is -7. Therefore, $A_4 = -7$.

Ignoring the remainder, the quotient obtained by dividing the left member by x-2 is

$$Q_1(x) = x^3 + x^2 + 0x - 3.$$

The quotient, ignoring the remainder, obtained by dividing the right member by x-2 is

$$Q_1(x) = A_0(x-2)^3 + A_1(x-2)^2 + A_2(x-2) + A_3.$$

The coefficient A_2 may be found in exactly the same way that A_4 was found, namely, by dividing both sides of the new identity by x-2. The process can be continued in this way until all the coefficients are found.

The successive quotients and remainders may be found by synthetic division, and the work may be arranged in almost mechanical fashion as follows:

The transformed equation is, therefore,

$$x^4 + 7x^3 + 16x^2 + 9x - 7 = 0.$$

The previous work may be condensed as follows:

Second Transformation: Since a root of the original equation

$$x^4 - x^3 - 2x^2 - 3x - 1 = 0$$

lies between 2 and 3, the corresponding root of

$$x^4 + 7x^3 + 16x^2 + 9x - 7 = 0$$

must lie 2 to the left of its original value, that is, between 0 and 1. Trial by synthetic division shows that the root lies between 0.4 and 0.5. If the roots of $x^4 + 7x^3 + 16x^2 + 9x - 7 = 0$ are diminished by 0.4, the corresponding root of the new equation will lie between 0 and 0.1.

The work is arranged as follows:

The new equation is, therefore,

$$x^4 + 8.6x^3 + 25.36x^2 + 25.416x - 0.3664 = 0$$
.

Third Transformation: Since the root of the last equation lies between 0 and 0.1, the sum of the first three terms will be very small when the value of the root is substituted into the equation; so the root may be found approximately by neglecting the higher powers of x and solving the linear equation

$$25.416x - 0.3664 = 0$$
.

Consequently,

$$x = \frac{0.3664}{25.416}$$
, approximately.

The value of this fraction is between 0.01 and 0.02.

After combining these results, it is apparent that the particular root under investigation in the given equation is 2 + 0.4 + 0.01 = 2.41, approximately. This value is probably accurate enough for most purposes.

Of course, the equation

$$x^4 + 8.6x^3 + 25.36x^2 + 25.416x - 0.3664 = 0$$

could be transformed again, and a third decimal place of our root could be found. In fact, the process may be continued to any degree of approximation that may be required.

Negative Irrational Solutions. In order to find approximations to the negative, irrational roots of f(x) = 0, we may use Horner's method to find approximations to the positive irrational roots of f(-x) = 0. These with their signs changed are the roots sought.

85. SUMMARY FOR FINDING ROOTS

In order to find all the real roots of an equation f(x) = 0, in which

f(x) is a polynomial with rational, numerical coefficients, proceed as follows:

(1) Find all the rational roots by the method described in Section 82. Each rational root of the given equation in x corresponds to an integral root of the transformed equation in y (Section 82). If $y = r_1, r_2, \dots, r_s$, where y = kx, are the integral roots of the equation in y, then the equation in y is of the form

$$f(y) = (y - r_1)(y - r_2) \cdot \cdot \cdot (y - r_s)\phi(y) = 0,$$

where the degree of $\phi(y)$ is s less than the degree of f(y). The polynomial $\phi(y)$ is the final quotient obtained after successively dividing the original polynomial in y by the factors $(y - r_1), (y - r_2), \dots, (y - r_s)$.

(2) Approximations to the irrational roots of the original equation may be found by solving $\phi(y)$ as follows:

See if $\phi(y)$ has any positive roots, and determine by synthetic division two consecutive integers between which such a root lies.

Form a new equation whose roots are the roots of this equation each diminished by the smaller of these two integers (Section 84). The resulting equation has a root between 0 and 1. Find by synthetic division the two consecutive tenths between which the root lies.

Form a new equation whose roots are the roots of this equation each diminished by the smaller of these tenths. The resulting equation has a root between 0 and 0.1. Find by synthetic division two consecutive hundredths between which this root lies.

If the root is required to r decimal places, continue this process until r+1 decimal places have been determined.

Add the amounts by which the root of the successive equations have been diminished. This sum is the root sought to the required degree of approximation.

After determining the irrational root to tenths or to hundredths, it is usually possible to determine the next decimal place by solving the linear equation resulting from ignoring all powers of y higher than the first in the last transformed equation.

If there are other positive, irrational roots, find each of them in the same way.

It may happen that more than one irrational root is contained between two consecutive integers. These roots may be located by means of the principle of Section 83, by choosing other values of y sufficiently close to each other between these two integers.

In order to find the negative irrational solutions, find the positive irrational roots of $\phi(-y) = 0$, and change the sign of each.

Since y = kx, the roots of f(x) = 0 are the roots just found for $\phi(y) = 0$, each divided by k.

EXERCISES 54

Find the values of the real roots of the following equations correct to two decimal places:

1.
$$2x^3 - 4x^2 - 10x + 3 = 0$$

2. $5x^3 - 3x^2 - 6x + 3 = 0$
3. $4x^3 = 3x - \frac{3}{4}$
4. $2x^3 - 3x + \frac{1}{4} = 0$

- 5. $x^3 2x 2 = 0$
- **6.** Find the cube root of 3 to three decimal places. Hint: Find the approximate value of the real root of the equation $x^3 = 3$.
- 7. A prism with a square base and with a volume equal to 250 cu in. is inscribed in a sphere of radius 10 in. Find the altitude of the prism.
- 8. The volume of a right circular cylinder is 200 cu in., and its total surface is 200 sq in. Find its height and the radius of its base.
- 9. A right circular cylinder is inscribed in a right circular cone. If the altitude of the cone is 10 in. and the radius of its base 8 in., find the dimensions of the cylinder whose volume is one third that of the cone.
- 10. The weight of a sphere 2 ft in diameter is 85 lb. To what depth will this sphere sink when floated in a tank of water weighing 62.5 lb per cu ft? [The weight of water displaced is equal to the weight of the floating body. The volume of a spherical segment of one base equals $\pi\left(rh^2 \frac{h^3}{3}\right)$, where r is the radius of the sphere and h is the height of the segment.]
- 11. A safe is to have the outside dimensions 4 ft by 4 ft by 6 ft. How thick may the metal walls be constructed if the inside capacity of the safe is to be at least 60 cu ft?
- 12. In trigonometry it is learned that the sine of a small angle x, where x is measured in radians, is given approximately by $x \frac{x^3}{6}$. What is the approximate value of x in radians if the sine is $\frac{1}{2}$?
- 13. Solve each of the equations given in Exercises 53 by the use of Horner's method.

13

Logarithms

86. LOGARITHMS AS AN AID TO COMPUTATION

Laborious numerical computations involving products, quotients, powers, or roots frequently arise in connection with many problems. Many of these calculations can be performed quite simply by the use of "logarithms"; in fact, many problems that are practically impossible without the use of "logarithms" may be solved easily and quickly by their aid.

87. DEFINITION OF LOGARITHMS

In the equation

$$10^2 = 100$$

the number 10 is known as the base and 2 is called the exponent. In the language of logarithms, 2 is also known as the logarithm of 100 when the base is 10. This latter statement is generally written

$$\log_{10} 100 = 2.$$

In general, if $b^p = n$, where b > 0 and $b \ne 1$, then $p = \log_b n$. We may then state the following definition:

Definition: The logarithm of a positive number n to the positive base b is the exponent p which must be applied to b to produce n.

EXERCISES 55

1. Change each one of the following exponential statements to its corresponding logarithmic form:

(a) $2^3 = 8$

(b) $5^2 = 25$

(c) $2^{-1} = \frac{1}{2}$

 $(d) \ 3^0 = 1$

(e) $8^{3/5} = 4$

- 2. Find the logarithm to the base 3 of each of the following numbers: $27; \frac{1}{8}; 1; \frac{1}{81}; 3$.
 - 3. $\log_2 64 = ?$; $\log_5 25 = ?$; $\log_2 \frac{1}{16} = ?$; $\log_{10} 0.1 = ?$
 - 4. Find x in each of the following: $\log_3 x = 4$; $\log_4 x = -4$; $\log_5 x = 3$.
 - 5. Show that $\log_3 243 = \log_3 9 + \log_3 27$.
 - 6. Show that $\log_{10} 1000 = \log_{10} 100,000 \log_{10} 100$.
- 7. Find x in each of the following: $\log_x 27 = 3$; $\log_x \frac{1}{81} = -4$; $\log_5 x = 4$; $\log_5 x = -3$.

- 8. Find x if $\log_2 x = \log_2 32 + \log_2 \frac{1}{8}$.
- 9. Show that $6 \log_{10} 2 3 \log_{10} 3 + \frac{1}{2} \log_{10} 4 = \log_{10} \frac{128}{27}$.
- 10. Show that $3 \log_b c 2 \log_b a \frac{2}{3} \log_b d = \log_b \frac{c^3}{a^2 \sqrt[3]{d^2}}$.
- 11. Show that $\frac{1}{2} (3 \log_b a + 5 \log_b c) 4 \log_b \sqrt{d} = \log_b \frac{ac^2 \sqrt{ac}}{d^2}$.

88. LAWS OF LOGARITHMS

In the following studies it is presumed that M > 0, N > 0, b > 0, and $b \ne 1$. These limitations are made in all our considerations of logarithms even though such restrictions are not essential to the analysis of all the properties of logarithms.

(I) Logarithm of 1

It is immediately apparent from the definition of logarithm that

$$log_b 1 = 0.$$

(II) Logarithm of the Base

From the definition

$$\log_b b = 1.$$

Thus, $\log_{10} 10 = 1$; $\log_3 3 = 1$; and so on.

(III) Logarithm of MN

The logarithm of a product of two numbers to the same base is the sum of their logarithms.

Proof: Let
$$\log_b M = x$$
, then $b^x = M$.

Let
$$\log_b N = y$$
, then $b^y = N$.

Hence,
$$b^{x+y} = MN$$
 or $\log_b MN = x + y = \log_b M + \log_b N$.

(IV) Logarithm of $\frac{M}{N}$

The logarithm of a fraction is the logarithm of the numerator minus the logarithm of the denominator.

Proof: Let
$$\log_{k} M = x$$
, then $b^{x} = M$.

Let
$$\log_b N = y$$
, then $b^y = N$.

Hence,
$$b^{z-y} = \frac{M}{N}$$
 or $\log_b \frac{M}{N} = x - y = \log_b M - \log_b N$.

(V) Logarithm of Mb

The logarithm of M^p equals p times the logarithm of M.

Proof: Let
$$\log_b M = x$$
, then $b^x = M$.

Hence,
$$(b^x)^p = M^p$$
 or $b^{px} = M^p$.

This latter equation may be rewritten in the form

$$\log_b M^p = px = p \log_b M.$$

EXERCISES 56

- 1. Repeat the preceding demonstrations, using 5 as a base.
- 2. Repeat the preceding demonstrations, using 10 as a base.
- 3. Give a rough demonstration of the theorem that if b > 1, $\log_b M < 0$ if 0 < M < 1, and $\log_b M > 0$ if M > 1. Explain what this theorem means if b = 10.
- **4.** Make a graph of the equation $y = \log_2 x$, using only values for x of the type $2^{\pm p}$, p being an integer.
- **5.** Given: $\log_{10} 2 = 0.3010$; $\log_{10} 3 = 0.4771$; $\log_{10} 7 = 0.8451$; $\log_{10} 11 = 1.0414$; $\log_{10} 13 = 1.1139$. Find $\log_{10} 12$.

Solution: $\log_{10} 12 = \log (2^2)(3) = \log 2^2 + \log 3$, by Law III. But, $\log 2^2 = 2 \log 2$, by Law V. Therefore,

$$\log_{10} 12 = 2 \log 2 + \log 3 = 1.0791.$$

Find $\log_{10} 4$; $\log_{10} 5$; $\log_{10} 6$; $\log_{10} 8$; $\log_{10} 39$; $\log_{10} 55$; $\log_{10} \frac{1}{3}$; $\log_{10} \frac{1}{32}$.

89. SCIENTIFIC NOTATION

Any given positive number may be expressed as a number between 1 and 10* multiplied by 10 to some integral exponent, positive or negative. The factor of 10 to an exponent contains all the significant digits involved in the given number (see Section 9). Thus,

$$8635 = 8.635 \times 10^3$$
,
 $86.35 = 8.635 \times 10^1$,
 $0.008635 = 8.635 \times 10^{-3}$.

The expression of any number in the above form is called the *scientific*, or *standard*, *notation*. It is readily observed that the exponent upon 10 is numerically equal to the number of places that the decimal point in the given number is displaced from the position after the first non-zero digit; the exponent is positive if the displacement is to the right; negative, if to the left.

EXERCISES 57

Express each of the following numbers in scientific notation:

7069; 1020.4; 0.7624; 0.003157; 0.0002756; 0.0082; 72.56; 0.0000007; 83000000

90. CHARACTERISTIC AND MANTISSA OF COMMON LOGARITHMS

In performing numerical computations, it is common to employ logarithms having the base 10. In fact, the collection of logarithms to the base

^{*} To be more specific, $1 \le N < 10$.

10 comprises the common system of logarithms. When 10 is used as a base, we propose to write merely log N, omitting the base. Thus, we have

$$\log 1 = 0$$
; $\log 10 = 1$; $\log 100 = 2$; $\log 1000 = 3$; $\log 0.1 = -1$; $\log 0.01 = -2$; $\log 0.001 = -3$; and so on.

To find the common logarithms of numbers that are not exact powers of 10, such as

we write these numbers in the scientific notation and then apply the laws of logarithms. Thus,

$$8635 = 8.635 \times 10^{3}$$
,
 $863.5 = 8.635 \times 10^{2}$,
 $86.35 = 8.635 \times 10^{1}$,
 $0.8635 = 8.635 \times 10^{-1}$,
 $0.08635 = 8.635 \times 10^{-2}$.

From a five-place table of logarithms, which will be explained in detail in the next section, we find that $\log 8.635 = 0.93626$, approximately. Combining this fact and the laws of logarithms, we have:

$$\log 8635 = \log 8.635 + 3 = 0.93626 + 3,$$

$$\log 863.5 = \log 8.635 + 2 = 0.93626 + 2,$$

$$\log 86.35 = \log 8.635 + 1 = 0.93626 + 1,$$

$$\log 0.8635 = \log 8.635 - 1 = 0.93626 - 1,$$

$$\log 0.08635 = \log 8.635 - 2 = 0.93626 - 2.$$

From these examples it will be noted (1) that the common logarithm of any number may be expressed as a positive decimal fraction plus or minus an integer, and (2) that the decimal portion of the logarithm will be independent of the position of the decimal point in any given sequence of digits in the number.

Definitions: The positive decimal portion of the common logarithm of a number is called the *mantissa*. The integral portion of the logarithm is called the *characteristic*.

If a number is written in the scientific notation, the integral exponent of 10 is the characteristic of the logarithm of the given number. Consequently, the characteristic of a logarithm may be obtained by the application of the rule previously explained for the determination of the exponent of 10 when writing a number in the scientific notation.

EXERCISES 58

- 1. Find the characteristic of the common logarithm of each of the following numbers:
 - 65; 532; 87.3; 5.032; 0.1234; 0.02314; 26987000
- **2.** If $\log 4.358 = 0.63929$, what is $\log 435.8$? $\log 0.4358$? $\log 435,800$? $\log 0.004358$? $\log 43.58$?

91. LOGARITHM TABLES

A table of common logarithms gives the approximate value of the logarithm of any number between 1 and 10. Consequently, the approximate mantissa of any number may be obtained by referring to a table of common logarithms. The numbers in these tables have been computed by the use of advanced methods. Every student should learn how to use a logarithm table accurately and rapidly.

Let us turn to the first page of the table entitled, "Five-Place Common Logarithms," given as Table I in the Appendix. First of all, it must be understood that the numbers in the table have not been completely written; many digits and all decimal points have been omitted. Thus, in the N column, the first number in the table is really 1.00; the second number down is 1.01; the next one is 1.02; and so on. The first numbers immediately under the next ten column headings in reality are 0.00000, 0.00043, 0.00087, 0.00130, and so on. In fact, 0.00 should be prefixed to all the readings in the upper part of the table until the asterisk is reached (the third number down in the 4 column); whereupon the prefix becomes 0.01 until the next asterisk is reached; and then 0.02 is prefixed until the next asterisk is reached, and so on. The sequence of prefixes started on the first page is continued to the other pages; so the reader should become well acquainted with the scheme employed.

Now we are ready to employ the table to obtain certain common logarithms. For example, let us obtain $\log 1.172$. The first three digits of this number are to be found in the N column, and the fourth digit appears as a column heading. The problem, then, is to obtain the tabular reading in the 2 column to the right of 1.17 in the N column; this number is 0.06893, after 0.06 is prefixed to the 893 actually listed. Thus,

$$log 1.172 = approximately 0.06893.$$

It is necessary to realize that virtually all the tabular readings are approximate, but the only approximation is in the fifth decimal place; in fact, all logarithms contained in a five-place table have been rounded off to the fifth decimal place. In the future, it will be our policy not to indicate the approximate nature of the readings. So, in looking up the logarithm of 2.623, we shall write

$$\log 2.623 = 0.41880;$$

likewise.

$$\log 3.77 = \log 3.770 = 0.57634.$$

To obtain log 328.5, the characteristic is +2. The mantissa, that is, log 3.285, is given in the table as 0.51654. Thus, log 328.5 = 0.51654 + 2, or 2.51654. Similarly, log 0.05404 = 0.73272 - 2.

EXERCISES 59

Determine the logarithm of each of the following numbers:

1. 4.643	2. 1.2000
3. 204.3	4. 9000
5. 88.98	6. 0.60600
7. 0.030830	8. 0.00067500
9. 1.0540	10 . 3296
11. 53.74	12. 831,900
13. 0.0099	14 . 247.6
15. 0.00006002	16. 86.09
17. 0.7	18. 0.06037
19. 6166	20. 7001

In the following examples, the given numbers are logarithms. By the use of the tables, find the numbers corresponding to the given logarithms.

We find from the table that $\log 8.03 = 0.90472$. Since the characteristic of the given logarithm is +1, the decimal point must be shifted one place to the right. Hence, the desired number is 80.3; that is, $\log 80.3 = 1.90472$.

21. 2.50799	22. 4. 31197
23. 3.98091	24. 1.59770
25. 0.77235	26. $0.84516 - 1$
27. $0.48144 - 3$	28. 0.00000
29. 0.99961	30. $0.96242 - 2$

92. SEVERAL WAYS OF WRITING THE CHARACTERISTIC

From the table of logarithms, we find $\log 256 = 0.40824 + 2$. This logarithm may be written in various ways; thus,

The advantages of the several forms will become apparent later.

As another illustration we have

$$\log 0.000256 = 0.40824 - 4.$$

The difference 0.40824 - 4 may be used without further change in form, or it may be written in various other ways. Thus,

$$0.40824 - 4 = -3.59176$$
 By actually carrying out the operation. (1)

$$0.40824 - 4 = 6.40824 - 10$$
 By adding and subtracting 6. (2)

$$0.40824 - 4 = 2.40824 - 6$$
 By adding and subtracting 2. (3)

$$0.40824 - 4 = \overline{4}.40824. \tag{4}$$

Each method has its advantages. The first expresses the difference of two numbers as a negative number. This form is generally avoided in logarithmic work, since the mantissas given in the tables are always positive numbers.

The second form is much used by computers.

The third form has its advantages at times, as when it is necessary to divide 0.40824 - 4 by 6.

The fourth form is used by some computers for compactness. Generally, this form is avoided and will not be used in this work.

93. INTERPOLATION

In the use of a five-place table of logarithms there are two fundamental problems that present themselves:

- 1. Given a number; to find its logarithm.
- 2. Given a logarithm; to find the corresponding number.

We have had illustrations of both problems. No difficulty arises if the given number has only four significant figures or if the logarithm is one that is listed in the table. When these conditions are not fulfilled, the desired values are obtained by interpolation. This will now be explained with the aid of two examples.

Example 1: Suppose we wish to find the logarithm of 1726.4. The characteristic is 3, but we cannot find the mantissa directly from the five-place table, since the number involves five significant digits. The logarithm of 1.7264, which is the desired mantissa, lies between the logarithm of 1.7260 and the logarithm of 1.7270. From the table, it is found that

$$\log 1.7260 = 0.23704$$
$$\log 1.7270 = 0.23729.$$

and

The problem of finding the logarithm of 1.7264 is based upon interpolation, which assumes that differences between logarithms are proportional to differences between the corresponding numbers. Let us write the numbers 1.7260, 1.7264, and 1.7270 in one column and the corresponding mantissas 0.23704, u (the unknown), and 0.23729 in another column.

N	$\operatorname{Log} N$
1.7260	0.23704
1.7264	<i>u</i>
1.7270	0.23729

A change of 10 fourth-place units in the number corresponds to a change of 25 fifth-place units in the logarithm. A change of 4 fourth-place units in the number corresponds to a certain change c in the logarithm. Then c is the correction to the mantissa 0.23704; that is, c is the number of fifth-place units that must be added to 0.23704 to give u.

Now assuming that the change in the logarithm is proportional to the change in the number, and temporarily ignoring the decimal points, we may write the following proportion:

$$\frac{4}{10}=\frac{c}{25}.$$

Thus, c = 10 fifth-place units.

Since c in terms of fifth-place units is the correction to be added to 0.23704, corresponding to the change of 4 in the number, we have $\log 1.7264 = 0.23714$. Thus, $\log 1726.4 = 3.23714$.

The value of c may also be found in the auxiliary table, headed by proportional parts, on the same page on which the mantissas are located. Opposite 4 in the small table headed by 25 is the correction 10, the same value as previously obtained for c.

It should be noted that the change in the logarithm is not exactly proportional to the change in the number, and hence the method of interpolation does not give the exact value. Nevertheless it gives in general a result accurate to the number of significant figures expected from the table.

Example 2: Suppose we need to find the number whose logarithm is 1.31720; or, to be more explicit, let us determine x if $\log x = 1.31720$.

The mantissa 0.31720 is not given in our table. However,

$$\log 2.0750 = 0.31702,$$

 $\log 2.0760 = 0.31723.$

and

Again, let us construct a table, placing the numbers involved in one column and the mantissas of their logarithms in another.

N	Log N
2.0750	0.31702
\boldsymbol{x}	0.31720
2.0760	0.31723

A change of 10 fourth-place units in the number corresponds to a change of 21 fifth-place units in the logarithm. The problem is to find how great a change in the number is demanded by a change of 18 fifth-place units in the mantissa. Let the change, or correction, in the number be represented by c fourth-place units.

Assuming that the change in the number is proportional to the change in the logarithm, and temporarily ignoring decimal points, we may write

$$\frac{c}{10} = \frac{18}{21}$$

so c = 9 fourth-place units. It is observed that c was rounded off to the nearest integral value; this is always done. Hence, the number having the logarithm 0.31720 will be taken as 2.0750 + 0.0009 = 2.0759. Since, however, the given logarithm 1.31720 has the characteristic 1, the desired number is 20.759.

In this case also the value of c may be found in the auxiliary table headed by proportional parts. Looking in the small table under 21, we note that the closest number to the difference 18 is 18.9; this latter difference corresponds to a fifth digit of 9 in the number, the same value as obtained previously.

EXERCISES 60

Find the logarithms of the following numbers:

1. 12.734	2. 38.953
3. 941.71	4. 10.382
5. 200.46	6. 30.957
7. 0.0013246	8. 0.23667

Having given the following logarithms, find the corresponding numbers to five figures:

9. 4.84602	10. 2.48633
11. 1.65804	12. $0.32705 - 3$
13. 1.78156	14. 2.87207
15. $8.46512 - 10$	16. 9.38213 - 10

94. COMPUTATIONS BY MEANS OF LOGARITHMS

We are now in a position to use logarithms in solving problems which involve multiplication, division, raising to powers, and extracting roots. The laws of logarithms explained in Section 88 will now have frequent use.

In computing with logarithms, the arrangement of the work is of great importance. We give several illustrations of a schematic device that is recommended.

Illustration 1: Find the value of $3.8^2 \times 54$. Let x represent the desired number; then,

$$x=3.8^2\times 54,$$

and $\log x = 2 \log 3.8 + \log 54.$

log 3.8	0.57978	2 log 3.8 (+) log 54	1.15956 1.73239
		$\log x$	2.89195

x = 779.74

Illustration 2: Find the value of $4.7^3 \times 0.0083^2$.

Let

$$x = 4.7^3 \times (0.0083)^2;$$

then,

$$\log x = 3 \log 4.7 + 2 \log 0.0083.$$

log 4.7	0.67210	3 log 4.7 (+)	2.01630
log 0.0083	7.91908 — 10	2 log 0.0083	5.83816 - 10
		$\log x$	7.85446 — 10

x = 0.0071525

Illustration 3: Find the value of $\sqrt[6]{705}$.

Let

$$x=\sqrt[6]{705};$$

then,

$$\log x = \frac{1}{6} \log 705.$$

|--|

$$x = 2.9833$$

Illustration 4: Find the value of $(0.031426)^{14}$.

Let

$$x = (0.031426)^{1/3};$$

then,

$$\log x = \frac{1}{3} \log 0.031426.$$

log 0.031426	28.49729 - 30*
$\log x = \frac{1}{3} \log 0.031426$	9.49910 - 10

$$x = 0.31557$$

Illustration 5: Find the value of $\frac{(6.2)^3}{(7.4)^4}$.

Let

$$x=\frac{(6.2)^3}{(7.4)^4};$$

^{*} Note that the characteristic -2 is not divisible by 3 and, hence, is witten as 28 - 30.

then,

$$\log x = 3 \log 6.2 - 4 \log 7.4.$$

log 6.2	0.70239	3 log 6.2	12.37717 - 10
log 7.4	0.86923	4 log 7.4	3.47692
		$\log x$	8.90025 - 10

x = 0.079479

In the above illustrations the given numbers were assumed to be accurate to at least five significant figures; hence, the answers were given to five significant figures, the limit of accuracy of a five-place table.

If the given numbers are approximate and any of them contain less than five significant digits, the answer should be rounded off to the number of significant figures equal to the number of significant figures in the number (among the given numbers) containing the least number of significant figures. Thus, answers to the above exercises would be 780; 0.0072; 2.98; 0.31557; and 0.079; respectively, if it is understood that all data are approximate.

EXERCISES 61

In the first 23 exercises that follow it is assumed that the given numbers are approximate and are correct only to the number of significant figures indicated. Find the value of each of the following:

1.
$$80.735 \times 0.0013876$$
2. $\frac{74273}{0.00030243}$ 3. $\sqrt[3]{54080}$ 4. $\sqrt[5]{0.046932}$

5. $(1.045)^{25}$

Find the value of x in each of the following:

6.
$$x = (27^8)(0.0045^4)$$
7. $x = \sqrt[3]{(50)(78.60)}$
8. $x = 65.30\sqrt{103}\sqrt[3]{2.68}$
9. $x = \sqrt[4]{0.0480}\sqrt[5]{403}$
10. $x = 137.20 \times \log 68893$
11. $x = \log 25 + \log 0.0042$
12. $x = \log 0.0083 - \log 36$
13. $x = \frac{\log 52172}{\log 47258}$
14. $x = \log\left(\frac{521}{472}\right)$
15. $x = \log(521 \cdot 472)$
16. $x = \log\sqrt[4]{72758}$
17. $x = (0.36944)^{34}(1.0346)^{34}$
18. $x = \frac{\sqrt[4]{(1624)(0.0471)}}{85.00}$
19. $x = \sqrt[3]{\frac{(110.57)^3(549.34)^{34}}{20045}}$

20.
$$x = \sqrt{\frac{(0.02691)^3(1.074)(9823)}{\sqrt{6800}(0.0005714)^{\frac{14}{5}}}}$$
 21. $x = \frac{(1.045)^{10} - 1}{0.0450}$

22.
$$x = (1.025) \frac{[(1.025)^{20} - 1]}{(1.025)^4 - 1}$$
 23. $x = 900 (0.85)^{20}$

- **24.** Given the formula $S = \frac{a(r^n 1)}{r 1}$. Find S to four significant digits if a = 32, r = 8, and n = 10. The data in this problem are not approximate.
 - 25. In the formula in Exercise 24, if S = 5000, r = 1.8, and n = 10, find a.
- **26.** The formula $S = P(1+i)^n$ gives the amount of a sum of money at compound interest for n periods at rate i. If P = \$2500, i = 5%, and n = 30, find S.
- 27. In the formula in Exercise 26, if S = \$5000, i = 0.035, and n = 20, find P.
- **28.** In the formula in Exercise 26, if S = \$5000, P = \$2000, $i = 5\frac{1}{2}\%$, find n.
- 29. The stretch of a brass wire when a weight is hung at its free end is given by the relation $S = \frac{mgL}{\pi r^2K}$, where m = the weight applied, g = 980, L = the length of the wire, r = its radius, and K = a constant. Find K if m = 932.5 gm, L = 305 cm, r = 0.290 cm, and S = 0.082.
- **30.** The weight P in pounds which will crush a solid cylindrical cast-iron column is given by the formula $P=98,900\frac{d^{3.55}}{L^{1.70}}$, where d is the diameter in inches and L the length in feet. What weight will crush a cast-iron column 8 ft long and $5\frac{1}{4}$ in. in diameter?
- 31. The weight W of 1 cu ft of saturated steam depends upon the pressure in the boiler, according to the formula $W = \frac{P^{0.94100}}{330.36}$, where P is the pressure in pounds per square inch. What is W if the pressure is 280 lb per sq in.?
- 32. Using the equation in Exercise 31, find the pressure required to make the steam weigh 0.75 lb per cu ft.
- 33. The diameter in inches of a connecting rod depends upon the diameter D of the engine cylinder, L the length of the connecting rod, and P the maximum steam pressure in pounds per square inch. According to Mark's formula, $d = 0.02758\sqrt{DL\sqrt{P}}$. What is d, when D = 30, L = 75, and P = 150?
- **34.** The work in foot-pounds done during the adiabatic expansion of a gas from pressure p_1 to pressure p_2 is

$$W = 144 \frac{p_1 V_1}{K - 1} \left[1 - \left(\frac{p_2}{p_1} \right)^{(K - 1)/K} \right],$$

where V_1 is the original volume of the gas and K is a constant. Find W when K = 1.41, $p_1 = 60$, $p_2 = 15$, and $V_1 = 3.5$.

95. COMPUTATION WITH NEGATIVE NUMBERS

Negative numbers have no real logarithms. This does not mean that logarithms cannot be used in computations involving negative numbers.

In such a problem, however, the sign of the result must be determined independently of the logarithmic work. In a problem involving negative numbers, except those involving even roots, the logarithmic work is carried out as though all the numbers were positive. The sign is prefixed at the conclusion of the computation after it has been determined according to algebraic principles.

Thus, to find the product of -62.5 and 83.2 by logarithms, we find the product of 62.5 and 83.2 by logarithms, and then give the result the negative sign. To find $\sqrt[3]{-2.96}$ we find $\sqrt[3]{2.96}$ by logarithms and then give the result the negative sign.

EXERCISES 62

Find the value of each of the following:

1.
$$\sqrt[3]{-7.4763}$$
2. $\frac{(-62.837)^2(-5.3460)^{\frac{1}{2}}}{-71}$
3. $\frac{(-89.262)^{-2}(6.4545)}{-32.492}$
4. $\sqrt{41.227}\sqrt[4]{6.8264}$
5. $\frac{\sqrt[3]{(-2.0748)(0.83567)^2}}{74.359}$
6. $(-52.061)^3\sqrt{\frac{0.47363}{2.0974}}$
7. $x = \frac{(10^{0.73514})(-25)^{\frac{1}{2}}}{(-28)^{\frac{1}{2}}}$

96. SOLUTION OF EXPONENTIAL AND LOGARITHMIC EQUATIONS

There are many equations in which the unknown appears in the exponent; there are other equations that involve $\log x$. We cannot solve all equations of this type, but there are a great many that can be solved, at least approximately. The general principles involved will be illustrated by means of a few examples. We shall assume that if two positive numbers are equal, their real logarithms are equal.

Illustration 1: Find the value of x if it is known that $3^x = 72.9$. By applying the fifth law of logarithms after taking the logarithm of each member, we may write

$$x \log 3 = \log 72.9,$$

$$x = \frac{\log 72.9}{\log 3} = \frac{1.86273}{0.47712} = 3.90.$$

Illustration 2: Find the value of x if $15^x = 27 \times (9.3)^{2x}$. After taking the logarithm of each member, we have

$$x \log 15 = \log 27 + 2x \log 9.3,$$

from which we obtain

$$x \log 15 - 2x \log 9.3 = \log 27,$$

$$x(\log 15 - 2 \log 9.3) = \log 27,$$

$$x = \frac{\log 27}{\log 15 - 2 \log 9.3}.$$

The value of x may be found by performing the operations indicated. The work may be arranged conveniently as follows:

After substituting these numbers in the expression for x, we have

$$x = \frac{1.43136}{1.17609 - 1.93696} = \frac{1.43136}{-0.76087} = -1.88.$$

Illustration 3: Find the value of x if it is given that

$$4 + \log x = 6.50000 - \log 2x.$$

This equation may be rewritten in the form

$$\log 2x + \log x = 2.50000.$$

According to the third law of logarithms, this equation becomes

$$\log (2x)(x) = \log 2x^2 = 2.50000,$$

$$2x^2 = 316.23,$$

$$x^2 = 158.12,$$

$$x = \pm 12.574.$$

Only the positive value satisfies the original equation.

The student should analyze carefully the solution just given and be able to justify every operation.

Illustration 4: Given $7 (\log x)^2 + 20 (\log x) - 3 = 0$. Find the value of x. We have an equation in the quadratic form in which the unknown is the logarithm of x. We may then solve for $\log x$, using the quadratic formula. This gives

$$\log x = \frac{-20 \pm \sqrt{400 + 84}}{14},$$

$$\log x = \frac{-20 \pm 22}{14}.$$

or

Hence,

$$\log x = \frac{1}{7} \text{ or } -3.$$

x = 1.3895

and

x = 0.001.

Illustration 5: Solve $3^{-2x} = 0.25$.

After taking the logarithm of each member, there results

$$-2x \log 3 = \log 0.25,$$

$$-2x = \frac{\log 0.25}{\log 3} = \frac{0.39794 - 1}{0.47712} = \frac{-0.60206}{0.47712}.$$

$$x = \frac{0.30103}{0.47712} = 0.63.$$

Consequently,

EXERCISES 63

The numbers in the following equations are to be treated as exact numbers; solve each equation for x:

1.
$$10^x = 24^2$$

2. $15^{2x} = 1.73$
3. $2^x = 9(4^x)$
4. $x \log 3 = \log 7$
5. $2 (\log x)^2 + \log x - 1 = 0$
6. $25 = (1.05)^x$
7. $9 \log x = \log 27$
8. $9 \log x = 30$
9. $(\log x)^2 + \log x - 6 = 0$
10. $(\log x)^5 = 100$
11. $465 = 20(1 + x)^{20}$
12. $2500 = 1200(1.045)^x$
13. $2700 = 200 \frac{[(1.0225)^x - 1]}{0.0225}$
14. $350 = 1800(1 - x)^{10}$
15. $350 = 1800(0.70)^x$
16. $3.2^{(1-2x)} = 39$
17. $3^{x^2} = 563.4$
18. $e^x = 29.7$, where e is approximately 2.71828
19. $7^x = 0.697$
20. $(2.2)^{-x^2} = 0.723$

Equations of the following type are encountered in finding the rate of interest in certain investment problems. Solve for i to three significant figures in each of the following:

21.
$$(1+i)^{10} = 1.6234$$
 22. $(1+i)^{-35} = 0.42796$ **23.** $(1+i)^{16} = 1.9372$

97. NATURAL LOGARITHMS

In most advanced mathematics and in much theoretical science the irrational number designated by *e*, approximately equal to 2.71828, is used as a base for a system of logarithms. We shall indicate how we may determine these logarithms, called *natural logarithms*, by means of a table of common logarithms.

To find log. 763, we first write

$$\log_{\bullet} 763 = x. \tag{1}$$

Therefore,
$$763 = e^x = 2.71828^x$$
. (2)

After taking the logarithm of each member to the base 10, we have

$$\log_{10} 763 = x \log_{10} 2.71828, \tag{3}$$

or

$$x = \frac{\log_{10} 763}{\log_{10} 2.71828},\tag{4}$$

$$x = \frac{2.88252}{0.43429} = 6.6373. \tag{5}$$

Since

$$\frac{1}{0.43429} = 2.30268,$$

the previous result could be obtained as the product (2.88252) (2.30268).

It is apparent that, in general, the natural logarithm of any number equals the common logarithm of the given number multiplied by 2.30268.

It is often desirable to obtain the common logarithm of a number when the natural logarithm is known. Thus, if

$$\log_e x = 1.7830$$
,

let us find

$$\log_{10}x$$
.

We have

$$x = e^{1.7830}$$

$$\log_{10} x = 1.7830 \log_{10} e,$$

Hence, or

$$\log_{10} x = 1.7830(0.43429) = 0.77433.$$

In general, the logarithm of any number to the base 10 equals the natural logarithm of the given number multiplied by 0.43429.

EXERCISES 64

- 1. Find the natural logarithms of the integers from 2 to 10.
- 2. Find log_e 25; log_e 250; log_e 2500; log_e (369)⁵.
- 3. Find the value of $e^{\log x}$, when x = 50. Generalize upon your result.
- 4. Find the value of 1010g10x.
- 5. Find the natural logarithms of the following numbers: 0.0036; \(\frac{2}{3}\); 10.3; 0.27; \(e_1\); 6.782; 384; 9.643.
 - 6. Evaluate each of the following:

(a)
$$\log_e e^3$$
; (b) $\log_e \frac{7}{4}$; (c) $\log_e (4.3)(2.7)$; (d) $\log_e 12 - \log_e 3$.

- 7. Many collections of mathematical tables contain tabulations of natural logarithms. However, many tables of natural logarithms only list numbers from 1 to 10, inclusive. Suppose such a table gives $\log_e 2.5 = 0.91629$ and $\log_e 10 = 2.30259$. Using only this numerical information, determine $\log_e 25$; $\log_e 250$; $\log_e 2$
- 8. The principles involved in obtaining logarithms to the base e, when a table of common logarithms is available, are likewise applicable to obtaining logarithms to any base.
 - (a) Determine log₂ 5.
 - (b) What is log₃ 13.5?
 - (c) Evaluate $\log_{7.4} 63.9$.
 - (d) Find x if $x = \log_3 0.86$.

14

Progressions

98. PROGRESSIONS

A sequence of numbers is a collection of numbers ordered in such a manner that there is a first number, a second number, and so on.

In general, we may symbolize a sequence whose terms have been written in some prescribed order by

$$a_1, a_2, a_3, \cdots, a_n,$$

where the subscript indicates the number of the term, and where the letter bearing the subscript indicates the numerical value of the term. Thus, a_k indicates the numerical value of the kth term.

In scientific work it is often necessary to consider special sequences of numbers in which there is a definite law for the determination of any particular term. Such sequences are typified by the following:

$$\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10}, \frac{1}{12}. \tag{2}$$

$$2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{8}{5}, \frac{7}{6}, \frac{8}{7}. \tag{4}$$

The law for the determination of the terms of each of the above sequences is made more apparent when they are written as follows:

$$1^3, 2^3, 3^3, 4^3, 5^3, 6^3.$$
 (1)

$$\frac{1}{2}$$
, $\frac{1}{(2)(2)}$, $\frac{1}{(2)(3)}$, $\frac{1}{(2)(4)}$, $\frac{1}{(2)(5)}$, $\frac{1}{(2)(6)}$. (2)

$$1^2, 2^2, 3^2, 4^2, 5^2, 6^2.$$
 (3)

$$1 + \frac{1}{1}, 1 + \frac{1}{2}, 1 + \frac{1}{3}, 1 + \frac{1}{4}, 1 + \frac{1}{5}, 1 + \frac{1}{6}, 1 + \frac{1}{7}.$$
 (4)

Thus, any particular term of one of the sequences (1), (2), (3), and (4) is determined by the use of the appropriate one of the following rules:

(1)
$$a_n = n^3;$$
 (2) $a_n = \frac{1}{2n};$

(3)
$$a_n = n^2;$$
 (4) $a_n = 1 + \frac{1}{n};$

where in each case n designates the number of the desired term.

In the consideration of such special sequences it is often desirable to evaluate a_n when n is given, or to find n if a_n is given. Also, it is desirable for many applications to find a formula which will give the sum of any number of consecutive terms of a given sequence.

A great variety of laws are employed in the construction of various kinds of sequences. The simplest types of such laws result in sequences that are often met in practice and will now be studied.

99. ARITHMETICAL PROGRESSION

Definition: An arithmetical progression is a sequence of numbers in which the difference between any term and the preceding term is a constant, which is called the *common difference*. The first term of the progression must be specified independently.

Thus, 5, 7, 9, 11 is an arithmetical progression whose common difference is 2, and whose first term is 5.

Similarly, 5, 4, 3, 2 is an arithmetical progression whose common difference is -1, and whose first term is 5.

EXERCISES 65

Determine which of the following sequences are arithmetical progressions:

1. 2, 4, 6, 8
2. 2, 0, -2, -4
3.
$$\frac{1}{2}$$
, $\frac{3}{4}$, 1, $\frac{5}{4}$
4. 2, 4, 8, 16
5. 1, 4, 9, 16
6. a , $a + d$, $a + 2d$, $a + 3d$
7. x , $2x - 2y$, $3x - 4y$, $4x - 6y$
8. 1, $\sqrt{2}$, $2\sqrt{2}$, $3\sqrt{2}$, $4\sqrt{2}$
9. $1 - \sqrt{3}$, 1, $1 + \sqrt{3}$, $1 + 2\sqrt{3}$
10. $a - d$, a , $a + d$
11. x , $\frac{x + y}{2}$, y

100. FORMULAS FOR THE ARITHMETICAL PROGRESSION

If we consider the sequence $a_1, a_2, a_3, \dots, a_n$ with the understanding that it is an arithmetical progression whose common difference is d, we note that

$$a_{1} = a_{1};$$

$$a_{2} = a_{1} + d;$$

$$a_{3} = a_{2} + d = a_{1} + 2d;$$

$$a_{4} = a_{3} + d = a_{1} + 3d;$$

$$a_{n} = a_{1} + (n - 1)d.$$
(1)

The factor (n-1) in Formula (1) is obtained from observation of the fact that the coefficient of d is always 1 less than the number of the term. Equation (1) expresses a relationship between the four quantities a_n , n, a_1 , and d. If we are given any three of these four quantities, the fourth may readily be found. In fact, Equation (1) may be solved for any one of the

quantities involved in terms of the others. Thus, three other useful formulas may be obtained.

Since n must be a positive integer, we should note that if we assign numerical values to a_n , a_1 , and d, in order to find n, it is necessary that the assigned values shall actually be elements of an arithmetical progression; otherwise, n will not result in a positive integer.

If we let S_n denote the sum of the first n terms, that is, $a_1 + a_2 + a_3 + \cdots + a_n$, we may derive a formula for S_n as follows:

(A)
$$S_n = a_1 + (a_1 + d) + (a_1 + 2d) + (a_1 + 3d) + \cdots + [a_1 + (n-1)d].$$

If we consider the same progression, but with its terms written in the reverse order, we have

$$(B) S_n = a_n + (a_n - d) + (a_n - 2d) + \cdots + [a_n - (n-1)d].$$

After adding the corresponding members of Equations (A) and (B), we have

$$2S_n = (a_1 + a_n) + (a_1 + a_n) + (a_1 + a_n) + \cdots + (a_1 + a_n),$$

there being n terms upon the right. Consequently,

$$2S_n = n(a_1 + a_n),$$

$$S_n = \frac{n}{2} (a_1 + a_n).$$
 (2)

or

From this Formula (2), we may obtain three additional formulas by solving for each quantity in terms of the others.

We thus have shown that it is possible to have eight formulas for use in the consideration of arithmetical progressions, although we may solve all problems met in practice by using only Formulas (1) and (2).

The quantities a_1 , d, a_n , n, and S_n are referred to as the elements of an arithmetical progression; if any three elements of an arithmetical progression are given, the remaining two elements may be found.

Illustration 1. The arithmetical progression 20, 18, 16, \cdots is given. Find the 20th term and the sum of the first 20 terms.

Here,
$$a_1 = 20, d = -2, n = 20.$$

From Equation (1)
$$a_{20} = 20 + (19)(-2) = -18$$
.

From Equation (2)
$$S_{20} = \frac{20}{2} (20 - 18) = 20.$$

Illustration 2. Given $a_1 = 15$, d = 3, $a_n = 30$, find n and S_n .

We have, from Equation (1),
$$30 = 15 + (n - 1)3$$

= $12 + 3n$.
 $\therefore 3n = 18$,
 $n = 6$.
From Equation (2), $S_n = \frac{6}{2}(15 + 30)$
= 135 .

Illustration 3. Given $a_1 = 7$, $S_n = 7$, and d = -2 Find a_n and n.

From Equation (1),
$$a_n = 7 + (n-1)(-2)$$

 $a_n = 9 - 2n$.

From Equation (2),
$$7 = \frac{n}{2} (7 + a_n)$$
.

After substituting in this latter equation the value of a_n previously found, we have

$$7 = \frac{n}{2} (16 - 2n),$$

or

or

$$7=8n-n^2.$$

This quadratic equation may be simplified to

$$n^2 - 8n + 7 = 0,$$

 $(n-1)(n-7) = 0.$
 $n = 1 \text{ and } 7.$

Thus,

or

EXERCISES 66

- 1. Solve Formula (1) (Section 100) for each element in terms of the others.
- 2. Solve Formula (2) (Section 100) for each element in terms of the others.
- 3. Given the arithmetical progression -1, 3, 7, \cdots , find the tenth term and the sum of 20 terms.
- **4.** Given the arithmetical progression -1, -3, -5, \cdots , find the twentieth term and the sum of 20 terms.
 - **5.** Given the arithmetical progression $\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$, \cdots , find the sum of 15 terms.
- **6.** Given the arithmetical progression $\sqrt{2}$, $3\sqrt{2}$, $5\sqrt{2}$, \cdots , find the sixteenth term and the sum of 16 terms.
 - 7. Given $a_1 = \sqrt{2}$, d = 2, n = 12. Find a_n and S_n .
 - **8.** Given $d = \sqrt{2}$, n = 20, and $a_n = 5\sqrt{2}$. Find a_1 and a_2 .
 - **9.** Given $a_1 = 39$, $a_n = 67$, $d = \frac{7}{2}$. Find n and S_n .
 - **10.** Given $a_1 = 2\frac{1}{2}$, $d = 2\frac{1}{2}$, $S_n = 165$. Find n and a_n .
- 11. If the first and third terms of an arithmetical progression are, respectively, 25 and 4, what is the second term?

- 12. The sum of three terms in an arithmetical progression is 9, and the sum of their squares is 135. Find the numbers. Hint: Let the three terms be a-d, a, and a+d.
- 13. A drilling company charges the following rates for drilling wells: 40 cents for the first foot and an increase of 2 cents for each additional foot. What would be the charge for drilling a well 100 ft deep?
- 14. Suppose that two positions are available, one at an annual salary of \$1300 with a yearly increase of \$100, the other at a fixed annual salary of \$2000. In how many years would the total income from the two positions be the same?
- 15. Twenty potatoes are placed in a straight line on the ground at intervals of 5 ft. A basket is placed on this same line and 10 ft from the first potato. A runner starts from the basket, picks up the first potato, and carries it to the basket; he then continues to the second potato and carries it to the basket; and so on.

How far must he run before all the potatoes are deposited in the basket?

- 16. A student in need of money decided to raise it by raffling off his watch. He decided to sell tickets numbered consecutively and charge for each ticket as many cents as the number on the ticket. How many tickets must be sell to raise at least \$40?
- 17. A body falling freely in a vacuum falls $\frac{1}{2}g$ ft the first second, and each second after the first the distance fallen increases g ft. Find a formula for the distance S fallen in t sec.
- 18. A term b of the proper magnitude is introduced between a and c so that the three terms form an arithmetical progression. Show that b is the ordinary average of a and c.
 - 19. Prove that the sum of the first n odd numbers is equal to n^2 .
- 20. A flywheel 5 ft in diameter is revolving at a speed of 50 rps just as the power is shut off. If the speed then decreases 2 rps, how far will a point on the rim travel before the wheel stops?
- 21. A harmonic progression, by definition, is a sequence of numbers whose reciprocals form an arithmetical progression. The first term of a harmonic progression is $\frac{1}{2}$ and the fourth term is $\frac{3}{16}$; find the second term and the seventh term.

101. GEOMETRICAL PROGRESSION

Definition: A geometrical progression is a sequence of numbers in which the ratio of any term divided by the preceding term is a constant, called the common ratio. The first term is given independently.

Thus, the sequence 3, 6, 12, 24 is a geometrical progression whose common ratio is 2. The first term is 3.

Similarly, 4, 2, 1, $\frac{1}{2}$, $\frac{1}{4}$ is a geometrical progression whose common ratio is $\frac{1}{2}$ and whose first term is 4.

EXERCISES 67

Determine which of the following sequences are geometrical progressions:

1. 2, 4, 8, 16

2. 2, 3, 4, 5

3. 2, 3, $\frac{9}{3}$, $\frac{27}{4}$

4. 10, -5, $+\frac{5}{4}$, $-\frac{5}{4}$

5. 1,
$$-\frac{1}{2}$$
, $-\frac{1}{4}$, $-\frac{1}{8}$

6.
$$\sqrt{2}$$
, 2, $2\sqrt{2}$, 4

7. 1, 0,
$$-1$$
, -2

8.
$$ax$$
, $ax^{\frac{5}{2}}$, ax^2 , $ax^{\frac{5}{2}}$

9. 1,
$$a + b$$
, $(a + b)^2$, $(a + b)^3$

10.
$$1 + \sqrt{2}$$
, -1 , $\sqrt{2} - 1$

102. FORMULAS FOR THE GEOMETRICAL PROGRESSION

If we consider the sequence

$$a_1, a_2, a_3, \cdots, a_n$$

with the understanding that it is a geometrical progression whose common ratio is r, we note that

$$a_1 = a_1.$$
 $a_2 = a_1 r.$
 $a_3 = a_2 r = a_1 r^2.$
 $a_4 = a_3 r = a_1 r^3.$
 $a_4 = a_1 r^{n-1}.$ (1)

Hence,

The nth term is obtained from observation of the fact that the exponent of each term is 1 less than the number of the term.

Equation (1) expresses a relationship between the four quantities a_n , n, a_1 , and r. If we are given any three of these four quantities, the fourth may be found.

We should note that if we assign numerical values to a_n , a_1 , and r in order to find n, it is necessary that the assigned values shall be actual elements of a geometrical progression; otherwise, n will not be a positive whole number.

Let S_n denote the sum of the first n terms, namely,

$$S_n = a_1 + a_1r + a_1r^2 + a_1r^3 + \cdots + a_1r^{n-1}.$$

After multiplying each member of the preceding expression for S_n by r, we have

$$rS_n = a_1r + a_1r^2 + a_1r^3 + a_1r^4 + \cdots + a_1r^{n-1} + a_1r^n$$

After subtracting the members of the equation for S_n from the corresponding members of the equation just obtained, there results

$$rS_n - S_n = a_1 r^n - a_1,$$

 $S_n(r-1) = a_1(r^n-1),$
 $S_n = \frac{a_1(r^n-1)}{r-1}.$ (2)

or

This formula fails if r = 1. In that case,

$$S_n = a_1 + a_1 + \cdots + a_1 = na_1$$
.

Illustration 1: Given the geometrical progression 2, 3, $\frac{9}{2}$, $\frac{27}{4}$, ..., find the tenth term and the sum of 10 terms. Here,

$$a_{1} = 2, \quad r = \frac{3}{2}, \quad n = 10.$$
From Equation (1),
$$a_{10} = 2\left(\frac{3}{2}\right)^{9} = \frac{3^{9}}{2^{8}}.$$
From Equation (2),
$$S_{10} = \frac{2\left[\left(\frac{3}{2}\right)^{10} - 1\right]}{\frac{3}{2} - 1}$$

$$= 4\left[\left(\frac{3}{2}\right)^{10} - 1\right] = 4\left[\frac{59,049}{1,024} - 1\right]$$

$$= \frac{59,049}{256} - 4 = 226.66, \text{ approximately.}$$

Illustration 2: Given $a_1 = 50$, $r = \frac{1}{2}$, $a_n = \frac{25}{64}$. Find n and S_n .

From Equation (1),

$$\tfrac{25}{64} = 50(\tfrac{1}{2})^{n-1}.$$

Therefore,

$$\frac{1}{128} = (\frac{1}{2})^{n-1},$$

or

$$128 = 2^{n-1}$$

Since $128 = 2^7$, it follows that

$$n-1=7,$$

or

$$n = 8$$
.

From Equation (2),
$$S_8 = 50 \frac{\left[\left(\frac{1}{2}\right)^8 - 1\right]}{\frac{1}{2} - 1} = -100 \left[\frac{1}{256} - 1\right]$$
$$= \frac{25,500}{256} = \frac{6375}{64}.$$

EXERCISES 68

- 1. Solve Formula (1) (Section 102) for each of the elements a_1 , r, and n in terms of the other elements.
- 2. Solve Formula (2) (Section 102) for each of the elements a_1 and n in terms of the other elements.
- 3. Given the geometrical progression $-1, \frac{1}{2}, -\frac{1}{4}, \cdots$, find the ninth term and the sum of nine terms.
- **4.** Given the geometrical progression $5\sqrt{2}$, 10, $10\sqrt{2}$, \cdots , find the eighth term and the sum of eight terms.
 - **5.** Given $a_1 = 21$, $r = \frac{1}{3}$, and n = 8. Find a_n and S_n .
 - 6. Given $a_1 = \frac{\sqrt{3}}{12}$, $a_n = 864$, and n = 8. Find r and S_n .
- 7. A man invested \$1000 on January 1, 1930, at $4\frac{1}{2}$ per cent compounded annually. If no withdrawals are made, what will be the value of his investment at the end of 20 years?

- 8. If the enrollment of a school is 1500 and has been increasing at the rate of 10 per cent per year, what was the enrollment 10 years ago? What will it be 10 years from now?
- 9. If a student invests \$100 on each anniversary of the date of his graduation from college, and these investments earn 5 per cent compounded annually, how much will he have to his credit on the twentieth reunion of his class after making his regular investment upon that date?
- 10. A painter agreed to paint a flag pole at the following rate: \$5 for the first 20 ft, \$10 for the second 20 ft, \$20 for the third ft, and so on. What would be his total bill if the flag pole is 120 ft high?
- 11. An air pump used for removing the air from a tank removes with each stroke one tenth of the weight of the air remaining in the tank.
 - (a) What fractional part of the original air, by weight, will remain in the tank after 10 strokes? Assume the original weight of air in the tank to be w lb.
 - (b) How many strokes would be necessary to remove 98 per cent of the air from the tank?
- 12. A number b is inserted between the two numbers a and c so that the three form a geometrical progression. Show that b must be the mean proportional between a and c.
- 13. According to legend, an Indian prince once agreed to pay a wiseman 1 grain of wheat for the first square of a chess board, 2 for the next, 4 for the next, 8 for the next, and so on. Recalling that a chess board contains 64 squares, compute the approximate number of grains of wheat involved in the transaction.

103. INFINITE GEOMETRICAL PROGRESSIONS

A sequence with an unlimited number of terms is said to be an infinite sequence. Such a sequence may be displayed symbolically as follows:

$$a_1, a_2, a_3, a_4, \cdots, a_n, \cdots$$

wherein the three dots at the end indicate that no last term may be specified.

As an illustration, the sequence $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots$ possesses the property that every term is followed by another term, that is, there is no last term; it is an infinite sequence. Moreover, this sequence possesses the characteristic property of a geometrical progression, for each term after the first is one half its predecessor; so it is called an *infinite geometrical progression*. The fraction $\frac{1}{3}$, expressed as a decimal, results in another infinite geometrical progression, namely,

$$0.33333 \cdot \cdot \cdot = 0.3 + 0.03 + 0.003 + 0.0003 + \cdot \cdot \cdot$$

in which the r is equal to 0.1.

A fundamental problem in the study of an infinite geometrical progression pertains to the behavior of the sum of the first n terms as n becomes large. In general, let the infinite geometrical progression be denoted by

$$a + ar + ar^2 + ar^3 + \cdots + ar^{n-1} + \cdots$$

The sum of the first n terms, of course, is

$$S_n = \frac{a_1(r^n-1)}{r-1}.$$

This formula may be rewritten in the form

$$S_n = \frac{a_1}{1-r} - \frac{a_1 r^n}{1-r}$$

If r is numerically less than 1, and if n increases, then r^n decreases, becoming, in fact, arbitrarily small as n becomes sufficiently large. This may be indicated symbolically by $r^n \to 0$, as $n \to \infty$, which is read " r^n approaches zero (that is, becomes and remains numerically smaller than any quantity specified in advance) as n increases without limit."

Since as $n \to \infty$, $r^n \to 0$, then $\frac{a_1 r^n}{1-r}$ also tends to 0; consequently,

 S_n tends to $\frac{a_1}{1-r}$. We indicate these facts by writing

$$\lim_{n\to\infty} S_n = \frac{a_1}{1-r},$$

where the symbol $\lim_{n\to\infty} S_n$ is read "limit of S_n as n increases without limit."

We define the "sum" of an infinite geometrical progression whose common ratio is numerically less than 1 by $\lim S_n$.

If r is numerically greater than 1, r^n increases numerically without limit as n increases without limit; thus, the infinite geometrical progression does not have a definite finite sum.

If r = +1, the progression is

$$a_1 + a_1 + a_1 + a_1 + \cdots$$

and since a_1 is a finite number, the infinite geometrical progression does not have a finite sum.

If r = -1, the progression is

$$a_1 - a_1 + a_1 - a_1 + \cdots;$$

evidentally, the sum oscillates between a_1 and 0; so the progression does not have a definite sum.

Hence, an infinite geometrical progression has a sum only when r is numerically less than 1. In practice, therefore, the study of the infinite geometrical progression is restricted to this case.

It is important to note the significance of $\lim_{n\to\infty} S_n = \frac{a_1}{1-r}$. This

means that as n increases, the difference between S_n and $\frac{a_1}{1-r}$, in absolute

value, becomes smaller and smaller and may be made arbitrarily small by selecting n large enough.

Illustration: A rubber ball falls from a height of 50 ft and rebounds two thirds of that distance. As the process continues, each rebound is two thirds of the distance of fall. Let us find the total distance traversed by the ball.

The distance traversed may be obtained by adding the two sums that follow:

Total drops =
$$50 + \frac{2}{3}(50) + \frac{4}{3}(50) + \frac{8}{27}(50) + \cdots$$
;
Total rises = $\frac{2}{3}(50) + \frac{4}{3}(50) + \frac{8}{37}(50) + \cdots$.

Each sequence is an infinite geometrical progression in which $r = \frac{2}{3}$; hence they may be summed by the formula just derived. The results obtained are as follows:

Total drops =
$$\frac{50}{1 - \frac{2}{3}} = 150$$
;

Total rises =
$$\frac{\frac{2}{3}(50)}{1-\frac{2}{3}}$$
 = 100.

Hence, the limiting value of the distance covered by the ball is 100 + 150 = 250 ft.

EXERCISES 69

Find the value of the sum of each of the following infinite geometrical progressions:

1.
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots$$

2. $1 + \frac{1}{3} + \frac{1}{9} + \cdots$
3. $2 - \frac{2}{5} + \frac{2}{25} - \cdots$
4. $3 + 1 + \frac{1}{3} + \cdots$
5. $(0.9) + (0.9)^2 + (0.9)^3 + \cdots$

Find the rational fraction that represents the limiting value of each of the following repeating decimals:

- 11. When an electric circuit containing a galvanometer is closed, the needle of the galvanometer vibrates back and forth across the point where it finally comes to rest. If on the first swing to the right it turns through an angle of 30 degrees from the point of rest, and on the swing to the left it turns through an angle only one half as great as the previous swing to the right, what is the limiting value of the total number of degrees through which the needle turns? Assume that the successive swings right, left, right, and so on, are in geometrical progression.
- 12. If a weight is suspended from the end of a coiled spring and allowed to drop suddenly, the spring will be elongated and then contracted so that the weight vibrates up and down above and below a certain point. If, when the weight is

EXERCISES 161

dropped, the spring is elongated 2 in. longer than its final length, what is the limiting value of the total distance the weight will travel? Assume that the successive distances below, above, below, and so on, are in a geometrical progression of common ratio $\frac{2}{3}$.

13. Determine the limit of the sum of the geometrical progression

$$\frac{1}{x+1} + \frac{1}{(x+1)^2} + \frac{1}{(x+1)^3} + \cdots, \text{ where } x > 0.$$

14. In adding successively the terms of the following geometrical progression

$$1 + \frac{2}{3} + \left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^3 + \cdots$$

what is the least number the sum will never exceed?

15

Mathematical Induction

104. MATHEMATICAL INDUCTION

Mathematical induction is a method frequently employed to investigate the validity of certain assumed formulas or laws in one variable, whose range is restricted to an infinite collection of consecutive integers. The general method will be analyzed by considering its application to particular examples.

Illustration 1: We note that

$$1 = 1^{2},$$

$$1 + 3 = 2^{2},$$

$$1 + 3 + 5 = 3^{2}.$$

It appears that the sum of the n consecutive, positive odd integers beginning with 1 is n^2 . Let us examine the validity of this conjecture in general; that is, let us investigate whether

$$1+3+5+7+\cdots+(2n-1)=n^2$$
,

where n is any positive integer.

The method of mathematical induction is as follows:

First, we test the assumed law for at least one permissible value of n. This test has been applied to the formula under consideration for n = 1, n = 2, n = 3. If the formula is valid for the particular choice of n, we move to the next step. Of course, if the formula is invalid for that value of n, there is no need to go further.

Second, we assume that the formula is valid for an arbitrary value of n, such as n = k. Thus, for the formula at hand, we assume that

$$1+3+5+7+\cdots+(2k-1)=k^2.$$
 (1)

Using this assumption as a basis, we obtain a formula for the case where n = k + 1. Here, we add 2k + 1, the next term of the progression, to both sides of (1), thereby obtaining

$$1+3+5+7+\cdots+(2k-1)+(2k+1)=k^2+2k+1.$$
 (2)

But the right member of Equation (2) is evidently $(k+1)^2$, the original formula with n replaced by k+1. Hence, the method shows that if

the assumed law is true for the arbitrary positive integer k, it is true for the next higher integer k + 1.

We have, however, verified that the law is true for n = 1, 2, and 3; hence, the induction just completed shows that the assumed law is true for the next value, n = 4; but, if the formula is valid for n = 4, the induction shows that the assumed law is true for n = 5, and thus, by a continuation of the process, we have established the law,

$$1+3+5+7+\cdots+(2n-1)=n^2$$

as a general law for every positive integer n.

Illustration 2: We can readily verify by division that $a^n - b^n$ is divisible by a - b, when n = 1, 2, 3, and we now wish to investigate whether $a^n - b^n$ is divisible by a - b when n is any positive integer.

To apply mathematical induction, we assume that the law is applicable when n is some arbitrary positive integer k; thus, we are assuming that $a^k - b^k$ is divisible by a - b. Basing our analysis upon this assumption, we ask the question whether $a^{k+1} - b^{k+1}$ is divisible by a - b. We write $a^{k+1} - b^{k+1}$ in the form

$$a^{k+1} - ab^k + ab^k - b^{k+1}$$
.

But this expression may be written as

$$a(a^k-b^k)+b^k(a-b). (3)$$

Thus, it is apparent that if $a^k - b^k$ is divisible by a - b for the positive integer k, then $a^{k+1} - b^{k+1}$ is divisible by a - b. Since we know that $a^3 - b^3$ is divisible by a - b, this latter step demonstrates that $a^4 - b^4$ must be divisible by a - b and so on. We have therefore established that $a^n - b^n$ is divisible by a - b when n is any positive integer.

In summary, we note that mathematical induction involves

- (A) Testing an assumed law, expressed as a function of n, for a numerical integral value of n, say n = 1, 2, 3;
- (B) Investigating the assumed law for an arbitrary value of n, such as n = k, to determine whether the assumption of the law for n = k results in the law holding when n = k + 1.
- If (A) and (B) hold, then the reasoning shows that the law is true for all integral values of n higher than the lowest value used under (A).

The student must note that both parts (A) and (B) are essential in the establishment of an assumed law by mathematical induction. In fact, we shall now illustrate that the application of either (A) or (B), but not both (A) and (B), is not sufficient in mathematical induction.

Illustration 3: Let us investigate the validity of the formula

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1} + (n-1)(n-2)(n-3),$$

when n is any positive integer.

We first apply step (A) and readily verify that the assumed law is true when n = 1, 2, 3.

If, however, we proceed to step (B) and assume for an arbitrary n = k that

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{k(k+1)} = \frac{k}{k+1} + (k-1)(k-2)(k-3), \quad (1)$$

and then add $\frac{1}{(k+1)(k+2)}$ to both members, we have

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)}$$

$$= \frac{k}{k+1} + (k-1)(k-2)(k-3) + \frac{1}{(k+1)(k+2)}. \quad (2)$$

It is not difficult to see that the right member of (2) is not identical with the assumed formula when n = k + 1, that is, with

$$\frac{k+1}{k+2} + k(k-1)(k-2).$$

Hence, we see that although part (A) applies for the values of n tried, part (B) does not apply, and the law is not established. In fact, the proposed formula ceases to be valid when n = 4.

Illustration 4: Let us investigate whether the following formula is valid when n is any positive integer:

$$1^{3} + 2^{3} + 3^{3} + \cdots + n^{5} = \frac{n^{2}(n+1)^{2}}{4} + 5.$$

Without applying step (A), that is, without verifying the proposed formula for any value of n, let us apply (B). Thus, we assume that

$$1^{3} + 2^{3} + \dots + k^{3} = \frac{k^{2}(k+1)^{2}}{4} + 5.$$
 (1)

After adding $(k+1)^3$ to both members, we have

$$1^{3} + 2^{3} + \cdots + k^{5} + (k+1)^{3} = \frac{k^{2}(k+1)^{2}}{4} + 5 + (k+1)^{3}.$$
 (2)

The student can readily show that the right member of (2) is identical with the proposed formula when n=k+1, that is, with $\frac{(k+1)^2(k+2)^2}{4}+5$.

Hence, the assumed law holds for n = k + 1 if it holds for n = k. If, however, we now apply step (A), that is, if we try the assumed law for n = 1, 2, 3, we find that it is not true for any of these cases. Therefore, we see that although step (B) applies, step (A) does not apply, and the law is not established.

105. PROOF OF THE BINOMIAL THEOREM FOR A POSITIVE INTEGER

In Section 26 we stated the binomial theorem for positive integral exponents. It is

$$(a+b)^{n} = a^{n} + na^{n-1}b' + \frac{n(n-1)}{2}a^{n-2}b^{2} + \frac{n(n-1)(n-2)}{3}a^{n-3}b^{3} + \cdots + nab^{n-1} + b^{n}.$$

This formula was accepted at that time without proof, although it was confirmed for such values as n = 2, 3, 4.

If, in this binomial expansion, we designate
$$\frac{n(n-1)}{2}$$
 by ${}_{n}C_{2}$, $\frac{n(n-1)(n-2)}{3}$ by ${}_{n}C_{3}$, and $\frac{n(n-1)\cdots(n-r+1)}{r}$ by ${}_{n}C_{r}$,

where r is any positive integer equal to or less than n, we note that the expansion may be written as

$$(a+b)^n = a^n + {}_{n}C_1a^{n-1}b + {}_{n}C_2a^{n-2}b^2 + \cdots + {}_{n}C_ra^{n-r}b^r + \cdots + {}_{n}C_nb^n,$$

where the (r+1)th term is ${}_{n}C_{r}a^{(n-r)}b^{r}$.

This formula is readily proved when n is a positive integer by the use of mathematical induction.

As already stated, we know the formula is true for n = 1, 2, 3.

Hence, we assume the validity of the expansion for n = k. Then we multiply the left and right members of

$$(a+b)^k = a^k + {}_kC_1a^{k-1}b + {}_kC_2a^{k-2}b^2 + \cdots + {}_kC_ra^{k-r}b^r + \cdots + b^k$$

by $a+b$, and obtain

$$(a+b)^{k+1} = [a^{k+1} + {}_{k}C_{1}a^{k}b + {}_{k}C_{2}a^{k-1}b^{2} + \cdots + {}_{k}C_{r}a^{k-r+1}b^{r} + \cdots + ab^{k}] + [a^{k}b + {}_{k}C_{1}a^{k-1}b^{2} + \cdots + {}_{k}C_{r-1}a^{k-r+1}b^{r} + \cdots + b^{k+1}].$$

After collecting terms, this equation becomes

$$(a+b)^{k+1} = a^{k+1} + ({}_{k}C_{1} + 1)a^{k}b + ({}_{k}C_{2} + {}_{k}C_{1})a^{k-1}b^{2} + \cdots + ({}_{k}C_{r} + {}_{k}C_{r-1})a^{k-r+1}b^{r} + \cdots + b^{k+1}.$$

We now show that

$${}_{k}C_{r} + {}_{k}C_{r-1} = {}_{k+1}C_{r}.$$

$${}_{k}C_{r} = \frac{k(k-1)(k-2)\cdots[k-(r-1)]}{\lfloor r \rfloor},$$

$${}_{k}C_{r-1} = \frac{k(k-1)(k-2)\cdots[k-(r-2)]}{\lfloor r-1}.$$

and

Hence, after multiplying numerator and denominator of the expression

for ${}_{k}C_{r-1}$ by r, we obtain

$${}_{k}C_{r} + {}_{k}C_{r-1} = \frac{k(k-1)(k-2)\cdots[k-(r-2)][k-(r-1)+r]}{\lfloor r \rfloor}$$

$$= \frac{k(k-1)(k-2)\cdots[k-(r-2)](k+1)}{\lfloor r \rfloor}$$

$$= \frac{(k+1)(k)(k-1)\cdots[(k+1)-(r-1)]}{\lfloor r \rfloor}$$

$$= {}_{k+1}C_{r}.$$

Hence,
$$(a + b)^{k+1} = a^{k+1} + {}_{k+1}C_1a^kb + {}_{k+1}C_2a^{k-1}b^2 + {}_{k+1}C_3a^{k-2}b^3 + \cdots + b^{k+1}$$
.

From this equation we see that if the proposed expansion is true for n = k, it is true for n = k + 1. Hence, we have established by mathematical induction that the binomial theorem is true for all positive integral values of n.

EXERCISES 70

Prove by mathematical induction that

1.
$$2+4+6+\cdots+2n=n(n+1)$$

2.
$$3+5+7+\cdots+(2n+1)=n(n+2)$$

3.
$$4+4^2+4^3+\cdots+4^n=\frac{4}{2}(4^n-1)$$

4.
$$1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$

5.
$$\frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots + \frac{1}{(n+1)(n+2)} = \frac{n}{2(n+2)}$$

6.
$$\frac{1}{5 \cdot 6} + \frac{1}{6 \cdot 7} + \cdots + \frac{1}{(n+4)(n+5)} = \frac{n}{5(n+5)}$$

7.
$$1^3 + 2^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4}$$

8. $a^n - 1$ is divisible by a - 1 when n is a positive integer.

9. $a^{2n} - 1$ is divisible by a + 1 when n is a positive integer.

10. Prove the formula for the nth term of an arithmetical progression by mathematical induction.

11. Prove the formula for the nth term of a geometrical progression by mathematical induction.

12. Show that step (A) of the process of mathematical induction applies to $2+4+6+\cdots+2n=n(n+1)+(n-1)(n-2)(n-3)$,

but that step (B) fails.

13. Show that step (B) of mathematical induction applies to

$$2+4+6+\cdots+2n=n(n+1)+3$$

but that step (A) fails.

14. Evaluate ${}_{6}C_{2}$; ${}_{8}C_{3}$; ${}_{11}C_{4}$; ${}_{5}C_{5}$.

15. Show by numerical analysis that

$$_{7}C_{4} + _{7}C_{2} = _{8}C_{4}$$

16

Permutations, Combinations, and Probability

106. PERMUTATIONS

Definition: Each of the arrangements which can be made by taking some or all of a number of things is called a permutation. Thus, if we are considering the three letters a, b, c, the different arrangements of these three letters, taking them two at a time, are ab, ac, ba, bc, ca, cb; in general, there are six arrangements or permutations of three things taken two at a time. We symbolize this as $_3P_2 = 6$. The permutations of the three letters taking them three at a time are abc, acb, bac, bca, cab, cba. Thus, $_3P_3 = 6$.

107. FUNDAMENTAL THEOREM

If a first act can be performed in m ways and a second act can be performed in n ways, and if it is assumed that the doing of the first act in m ways does not exclude the doing of the second in n ways, then the two can be done, in that order, in mn ways.

Thus, if we can cross a river in 10 different boats and return in 5 other different boats, the journey can be performed in (5)(10) = 50 different round trips, assuming that the round trips are different when at least one different boat is used in each round trip.

It is immediately apparent that the fundamental theorem as it pertains to two acts can be generalized to the case of n acts. Thus, if one act can be performed in a_1 ways, and, if after it has been done in some one of these a_1 ways, a second act can be performed in a_2 ways, and, if after this has been done, a third act can be performed in a_3 ways, and so on for n acts, then the n acts can be performed together, in that order, in $(a_1)(a_2)(a_3)\cdots(a_n)$ ways.

Illustration 1: In how many ways can individual portraits of five people be arranged in groups of three?

Figure 41 displays a group of three portraits. In this problem, in contrast with many problems, any one of the five portraits can be hung in any one of the three positions. Thus, starting with the first position to the left, there are five possible choices. After one portrait has been hung, there are four choices for the second position. After a selection has been made for the second position, there are only three choices for the

third position. Thus, the portraits may be arranged in (5)(4)(3) = 60 different ways.

Illustration 2: In how many ways may a collection of family portraits be arranged by threes if each collection shows a parent in the middle and one child on each side, there being three children in the family?

Figure 42 depicts the situation this time. In the middle there are two definite choices. On the left there are three possible choices, but, after a selection has been made, there are two choices on the right. Thus, the portraits may be arranged in (3)(2)(2) = 12 different ways.

FXFRCISES 71

- 1. If there are five paths up one side of a mountain and three down the opposite side, in how many different ways may a person go over the mountain?
- 2. If there are two different railroads, three different bus lines, and three different air routes joining A and B, in how many ways may a traveler make the round trip from A to B and back to A if he decides to go by rail or by bus and return by air?
- 3. In how many ways may three positions be filled if there are five applicants for the first position, three for the second, and ten for the third? It is to be understood that no applicant is eligible for a position other than the one for which he has applied.
- 4. There are five pitchers and three catchers on a certain baseball squad. In how many ways may the coach choose a battery for a game?
- 5. If there are 23 men on the squad of Exercise 4, and each of the other 15 can play any one of the remaining seven positions equally well, in how many ways may the coach choose a team?
- 6. In how many different ways may a man dress if he has five suits, two hats, and three pairs of shoes?
- 7. In how many ways may a program consisting of four musical numbers and three speeches be arranged if the first number must be music and the other numbers alternate?
- 8. (a) How many even three-digit numbers can be made from the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 if no repetition of digits is allowed?
 - (b) Answer part (a) when the number must be between 300 and 400.
 - (c) Answer part (a) when repetition of digits is allowed.
- **9.** How many three-letter words may be formed with the four letters a, b, c, d, if it is understood that any arrangement of three of the letters with a vowel in the middle is a word. Repetition of letters is permitted.
- 10. In how many ways may the seven speakers at a banquet be seated at the seven places along one side of the head table?

108. THE FORMULA FOR nP_r , $r \leq n$

We shall now derive a formula for ${}_{n}P_{r}$, where $r \leq n$; that is, we shall construct a formula for the total number of permutations of n things, taking them r at a time.

Consider n different things, $a_1, a_2, a_3, \dots, a_n$. Evidently a first a can be chosen in n ways. Once a first a is selected, a second may be chosen in n-1 ways [one out of the (n-1)a's left]. Once the second a has been selected, a third may be chosen in (n-2) ways, and so on. Hence, by the fundamental theorem, the r a's can be selected in $n(n-1) \times (n-2) \cdots [n-(r-1)]$ ways.

Hence,
$${}_{n}P_{r}=n(n-1)\cdots[n-(r-1)].$$

When r = n, we have

$$_{n}P_{n}=|n|.$$

109. PERMUTATIONS OF n THINGS, q OF WHICH ARE ALIKE

If of the n things to be permuted n at a time q are alike, we would not have so many distinguishably different permutations as when all things are different, for the permutation of the q alike things among themselves would not give distinguishably different arrangements. But the q things may be permuted among themselves ${}_qP_q = \lfloor q \rfloor$ ways. Hence, if x is the number of distinguishably different permutations possible, we have a total of $x \mid q$ permutations. But, the total number of permutations of n things, if they are all different, is

Hence,
$$x | \underline{q} = \underline{n}$$
, or $x = \frac{\underline{n}}{\underline{q}}$,

this result representing the number of permutations of n things, n at a time, q of which are alike.

This result may be generalized immediately for the case where we desire the total number of permutations of n things, of which there are q alike of one kind, r alike of a second kind, s alike of a third kind, and so on, it being understood that

$$n=q+r+s+t+\cdots.$$

If x is the required number, we now have $x \mid q \mid r \mid s \mid t \cdots = \mid n$; hence,

$$x = \frac{n!}{|q| r |s| t \cdots}.$$

EXERCISES 72

- 1. How many odd numbers of four figures each could be formed from the nine digits 1, 2, 3, 4, 5, 6, 7, 8, 9 without repeating a digit in the same number?
 - 2. In how many ways can a rowing crew of eight men be arranged?
- 3. In how many different orders can six debutantes be introduced at a "coming-out party"?
- 4. How many different signals may be formed from five different colored flags arranged horizontally, using any number at a time?
- 5. In how many ways can a party of four seat themselves in a seven-passenger car?
- 6. How many different permutations can be formed from the letters of the word different, using all the letters each time?
- 7. In how many ways can a football team of 11 men be arranged if the quarterback, fullback, and center must always play the same positions, the ends may be interchanged but can play in no other position, and the halfbacks may be interchanged but play in no other position?
- 8. How many different signals using a vertical array of flags can be formed from five red flags, three white flags, and three blue flags, using all eleven flags in each signal?
- 9. Five red squares and four green squares of the same size are to be put together to form one large square. How many different designs are possible?
- 10. In how many ways may six men and five women be arranged in a chorus if men and women must alternate?

110. COMBINATIONS

Definition: Each of the group selections, ignoring order, which can be made by taking some or all of a number of things is called a combination. That is, the word combination refers to the variety of groups and not to the arrangement within each group; the arrangement of the objects within the group does not alter the combination. If we have the five different things, a_1 , a_2 , a_3 , a_4 , a_5 , and we desire the number of combinations of them in groups of three, we write this symbolically as ${}_5C_3$. These combinations are $a_1a_2a_3$, $a_1a_2a_4$, $a_1a_2a_5$, $a_1a_3a_4$, $a_1a_3a_5$, $a_2a_3a_4$, $a_2a_3a_5$, $a_2a_4a_5$, $a_3a_4a_5$; hence, ${}_5C_3 = 10$.

To analyze this particular illustration further, we note that if we were to permute the five things three at a time, we would have ${}_{5}P_{3} = 5 \cdot 4 \cdot 3 = 60$ permutations, but since a permutation involves a rearrangement of the three things within each possible group, we note that the number of permutations is ${}_{3}P_{3}$ times the number of combinations. That is, such a combination as $a_{1}a_{2}a_{3}$ is actually counted in the number of permutations six different times, for $a_{1}a_{2}a_{3}$, $a_{1}a_{3}a_{2}$, $a_{2}a_{3}a_{1}$, $a_{2}a_{1}a_{2}$, $a_{3}a_{1}a_{2}$, $a_{3}a_{2}a_{1}$ are different permutations, even if they designate the same combination. Consequently,

$$[3]_{(5C_3)} = {}_{5}P_{3}$$
 or ${}_{5}C_3 = \frac{{}_{5}P_{3}}{[3]}$.

Similarly, if we require ${}_{n}C_{r}$, we first find

$$_{n}P_{r} = n(n-1)(n-2)\cdots[n-(r-1)],$$

and then note that this result includes all the possible rearrangements within each group of r things, which may be done in $P_r = |r|$ ways; hence,

$$\underline{r} ({}_{n}C_{r}) = {}_{n}P_{r}$$
 or ${}_{n}C_{r} = \frac{{}_{n}P_{r}}{\underline{r}}$.

Illustration: How many different committees of three men may be formed from six men?

Since order within each committee is not significant, we simply require

$$_{6}C_{3}=\frac{6\cdot 5\cdot 4}{1\cdot 2\cdot 3}=20.$$

EXERCISES 73

- 1. How many committees of three each could be formed from a group of ten people?
- 2. How many different baseball nines can be formed from a squad of 30 players, assuming that each one can play any position?
- 3. If only 3 of the 30 players in Exercise 2 can pitch and these three can play in no other position, how many nines can be formed?
- 4. If of the 30 players of Exercise 2, only 3 can pitch and only 3 others can catch, and if these men cannot play in any other position, how many nines could be formed? Suppose these 6 men can also play the outfield, how many nines could be formed?
- 5. In how many ways can a person make up a dinner party consisting of from 1 to 5 invited guests from a list of 10 friends?
- 6. How many committees consisting of 3 men and 2 women can be formed from 20 men and 15 women?
- 7. How many straight lines can be drawn through pairs of points selected from eight points if no three of the points are in the same straight line?
 - 8. Prove that ${}_{n}C_{r} = {}_{n}C_{n-r}$.
 - 9. By use of the formula of Exercise 8, find the value of $_{100}C_{95}$.
- 10. If we draw 5 balls at random from a bag containing 10 red and 15 white balls, in how many ways may we get 3 red and 2 white balls?
- 11. How many different bridge hands (13 cards) can be made from a complete pack of cards (52 cards)?
- 12. How many different collections of five cards are possible from the cards in a complete pack if it is specified that exactly three of the cards are to be aces?

EXERCISES 74

Miscellaneous Problems Involving Permutations and Combinations

- 1. A basket of fruit contains 1 doz oranges, 10 apples, and 5 pears. In how many ways may a selection of 3 be made that shall contain 1 orange, 1 apple, and 1 pear?
- 2. From the basket in Exercise 1, in how many ways may a selection of three be made that shall contain at least one orange?

- 3. From the basket in Exercise 1, in how many ways may a selection of three be made that shall contain no oranges?
- 4. Fifteen examination papers are to be distributed among 15 students, 1 paper to each student. In how many ways may it be done?
- 5. Three students are to be chosen from a group of 15 students for a special assignment. How many different groups of 3 may be selected?
- 6. A true-false test of 10 questions is such that each question may be answered by the words "true" or "false." In how many different ways may the set of questions be answered by students who guess?
- 7. If a cable contains 50 wires, in how many ways may they be connected in pairs?
- 8. There are seven subjects that a student desires to study, but he is allowed to register for only five. In how many ways may he select the five subjects?
- 9. Three points determine a plane. How many different planes are determined by 10 points, no 4 of which are in the same plane?
- 10. If there are 30 divisions on the dial of a "combination" lock and 3 settings must be made to operate the lock, how many settings are possible? Ignore the direction and number of turns between settings.
- 11. There are 20 people at a party and each person must shake hands with each of the others. How many handshakes are there?
- 12. Ten hockey players decide to choose two teams of five each for a game. In how many ways could this be done?
- 13. A roominghouse has 10 rooms, and there are 6 applicants for the rooms. In how many ways may the rooms be assigned if no 2 people are assigned to the same room?
- 14. In how many ways may the eight men in a squad be arranged in military formation if the same man must always act as corporal?
- 15. Twelve men and twelve women attend a contract-bridge party. In how many ways may teams consisting of a man and a woman be formed?
- 16. A mixed-doubles team (man and woman) from Club A is to compete against a mixed-doubles team from Club B. In how many ways may the tennis match be staged if Club A is composed of 10 men and 10 women and Club B has 12 men and 8 women?
- 17. In how many ways can 12 books be arranged on a shelf if one set of 3 volumes is kept together?

111, PROBABILITY

Let us assume that some event, if given a "trial," must happen or fail to happen in one of a limited number of ways, each of which is equally likely. By trial we mean any operation which gives an event an opportunity to happen. Thus, if we have a bag containing m white and n black tickets, a single ticket of a designated color withdrawn from the bag is such an event. Also, the turning of a particular face uppermost when a die is thrown is such an event. In our illustrations the actual drawing of a ticket and the tossing of a die are called *trials*. It is an important part of our consideration that any one of the m + n tickets is equally likely to be drawn or that any one of the faces of the die is equally likely to fall uppermost. Under such assumptions, we define the probability

that an event occurs under trial as the ratio of the number of favorable cases to the entire number of possible cases, favorable and unfavorable.

Thus, if the problem is to determine the probability of drawing a white ticket under the conditions described in the previous paragraph, we note that we have a total of m + n tickets (all the possible cases), of which m are white (the favorable cases); and so, according to the definition, the probability p of drawing one of the white tickets is given by the ratio

$$p=\frac{m}{m+n}.$$

By similar reasoning, the probability q of drawing one of the black tickets is

$$q = \frac{n}{m+n}$$
.

It may also be said that m/(m+n) is the probability of drawing a white ticket and n/(m+n) is the probability of failing to draw a white ticket; or that n/(m+n) is the probability of drawing a black ticket and m/(m+n) is the probability of failing to draw a black ticket.

112. EXCLUSIVE EVENTS

If two or more events are so related that but one of them can occur, they are said to be mutually exclusive.

Theorem. The probability that some one of a set of mutually exclusive events will occur is the sum of the probabilities of the single events.

This theorem follows immediately from the definition of probability and the fact that the events are mutually exclusive.

Illustration 1: In throwing a die, the probability of throwing an ace is $\frac{1}{6}$, since there is only one ace out of six faces. Likewise, the probability of throwing a deuce is $\frac{1}{6}$. Hence, the probability of throwing an ace or a deuce is evidently

$$\frac{1}{8} + \frac{1}{8} = \frac{1}{3}$$
.

Illustration 2: We may note as a consequence of the above theorem that the probability of drawing either a black or a white ticket in the example of Section 111 is

$$\frac{m}{m+n}+\frac{n}{m+n}=1.$$

In general, a probability of 1 indicates a certainty. By contrast, if an event is certain not to happen, the probability of its occurrence is zero.

Illustration 3: If four coins are tossed simultaneously, find the probability that there will be two heads and two tails.

The total number of ways in which these coins can fall is evidently $2^4 = 16$. The total number of ways of obtaining two heads is ${}_{4}C_{2} = 6$.

Therefore, the probability of obtaining two heads (and, of course, two tails) is $\frac{e}{18} = \frac{3}{8}$.

Illustration 4: What is the probability of drawing two kings from a pack of cards if only one draw of two cards is made?

Two kings may be drawn from the four kings in the pack in ${}_{4}C_{2}$ ways, or six ways. The total number of pairs of every variety that may be drawn from the pack is ${}_{52}C_{2} = \frac{(52)(51)}{(1)(2)} = 1326$. Hence, the required

probability is
$$\frac{6}{1326} = \frac{1}{221}$$
.

EXERCISES 75

- 1. A single cubical die with its faces marked from 1 to 6 is thrown once. What is the probability that the face marked 6 will come up?
- 2. Three balls are drawn simultaneously from a bag containing six red and nine white balls. (a) What is the probability that all will be white? (b) That two will be white and one red?
- 3. The American Experience Mortality Table shows that of 92,637 people living at age twenty, 723 will die within a year. What is the probability that a person aged twenty will die before his next birthday? What is the probability that he will live?

This problem is typical of those problems in the field of probability that can be studied only after the gathering of data. Such considerations are frequently treated under the heading *empirical probability*.

- 4. Of the 92,637 people alive at age twenty (Exercise 3), 69,804 will be alive at fifty, according to the mortality table. What is the probability that a person aged twenty will live to be fifty? Will die before he is fifty?
- 5. A man has a flock of 20 hens, 7 of which are layers. If he selects 1 of the hens at random, what is the probability that the one selected will be a laying hen?
- 6. In drawing four cards from a pack, what is the probability that all will be aces?
- 7. In naming a date at random, what is the probability that it will fall on Sunday?
- 8. If 5 balls are drawn at random from a bag containing 10 red and 15 white balls, what is the probability that 3 will be red and 2 white?
 - 9. Find the probability of throwing exactly 7 in a single throw of two dice.
- 10. Tickets numbered from 1 to 100 are placed in a box. If a ticket is drawn, what is the chance that it will be a predesignated number? What is the probability that it will be an even number? What is the probability that it will be less than 10?

113. INDEPENDENT EVENTS

Definition: Events are said to be independent or dependent according as the occurrence of any one of them does not or does affect the occurrence of others in the set.

Theorem. The probability that all of a set of independent events will occur is the product of the probabilities that each of the single events will occur.

Thus, if an event can happen in a_1 ways and fail in b_1 ways, and if another event independent of the first can happen in a_2 ways and fail in b_2 ways, the probability that both events will happen is

$$\frac{a_1 \cdot a_2}{(a_1 + b_1)(a_2 + b_2)}.$$

The proof for this is a direct result of the fundamental theorem (Section 107).

Illustration: What is the probability of throwing a 3 on the first throw of a single die and then throwing a 5 on the second throw?

These events are obviously independent, and the probability in each case is $\frac{1}{6}$. So the desired probability is $(\frac{1}{6})(\frac{1}{6}) = \frac{1}{36}$.

114. DEPENDENT EVENTS

If the probability of a first event is p_1 , and if after this event has happened the probability of a second event is p_2 , the probability that both events will occur in the order stated is $p_1 \cdot p_2$, and in general for a series of events the probability for the order stated is $p_1p_2p_3 \cdot \cdot \cdot$.

Illustration: A box contains three white tickets and four black tickets. What is the probability that successive draws of single tickets from the box will yield white tickets if the ticket drawn first is not returned to the box?

The probability of obtaining a white ticket upon the first draw is $\frac{3}{7}$. After a white ticket is drawn, the box contains two white tickets and four black tickets, so the probability of drawing a white ticket the second time is $\frac{2}{6}$, or $\frac{1}{3}$. Consequently, the probability that these dependent events will occur as stated is $(\frac{3}{7})(\frac{1}{3}) = \frac{1}{7}$.

EXERCISES 76

- 1. Four cards are drawn from a pack one at a time. (a) What is the probability of drawing four aces, if each card drawn is returned before the next is drawn? (b) If the card drawn is not returned?
- 2. If two dates are named at random, what is the probability (a) that both will fall on Sundays? (b) that the first will fall on Sunday and the second on Saturday?
- 3. In a certain locality 80 per cent of the days in June are clear. If four successive days are named in advance, what is the probability (a) that all will be clear? (b) that the first two will be clear and the next two not?
- 4. A traveler has three railroad connections to make. If the probability that he will make any one of them, taken alone, is 0.6, what is the probability that he will make all his connections?
- 5. If a man and woman are married when each is twenty years of age, what is the probability that both will be living at fifty years of age? (Use the data of Exercise 4 in the previous list.) What is the probability that the man will be living but the woman will not?
- 6. A man has a flock of 20 hens, 7 of which are layers. If he selects two hens at random, what is the probability that both are layers? Check your

result by also finding the probability that neither is a layer and that one is a layer and the other not, and adding all three probabilities.

- 7. If from the flock in Exercise 6 the man selects three hens at random, what is the probability that all are layers? Check your result by finding the probability that all are nonlayers, that one is a layer and two are not, and that two are layers and one is not.
- 8. Tickets numbered from 1 to 100 are placed in a box. If two tickets are drawn in succession, what is the probability that both are even? That both are less than 10? That the two numbers drawn will be 75 and 62 in that order?
- 9. A man holds five tickets in a lottery in which there is a single prize. If there are 100 tickets, what is his probability of winning?
- 10. If there are two prizes in the lottery of Exercise 9, what is the probability that he will win both?
- 11. (a) If a single card is drawn from a pack of cards, what is the probability that the ace of spades will be drawn at least once in four tries? (b) What is the probability that at least one ace will be drawn in four tries?
- 12. If a bag contains five white balls, seven black balls, and three red balls, and one ball is drawn at random, what is the probability (a) that it is either red or white? (b) that it is neither red nor white?
- 13. If the probability that A will live 10 years is $\frac{5}{6}$, and that B will live 10 years is $\frac{9}{10}$, what is the probability that one or the other but not both will be alive in 10 years? What is the probability that both will be dead?

115. VALUE OF AN EXPECTATION

If p denotes the probability that a person will win a sum of money S, the product pS is called the value of his expectation.

Illustration: What is the value of the expectation of a person who is to have any two coins that he may draw at random from a purse that contains five \$1 pieces and seven 50-cent pieces?

The probability of drawing two \$1 pieces is

$$\frac{{}_{5}C_{2}}{{}_{12}C_{2}} = \frac{5 \cdot 4}{12 \cdot 11} = \frac{5}{33}.$$

So, the value of the expectation of drawing two \$1 pieces, that is, winning \$2, is

 $2 \cdot \frac{5}{33} = 0.30.$

Of course, there is also the possibility of drawing two 50-cent pieces. The value of the expectation of drawing two 50-cent pieces is

$$\$1\left(\frac{{}_{7}C_{2}}{{}_{12}C_{2}}\right) = \$0.32.$$

Likewise, a draw of a \$1 piece and a 50-cent piece is a possibility. The value of the expectation of drawing one \$1 piece and one 50-cent piece is

$$(\$1.50)\left(\frac{5\cdot7}{{}_{12}C_2}\right) = \$0.80.$$

The total value of the expectation will be the sum of the individual expectations, or \$1.42.

EXERCISES 77

- 1. A gambler holds 4 numbers in a game of chance in which there are 60 numbers around the rim of a wheel. Since the winner is to receive a prize of \$1 if the wheel stops at one of his numbers, what is the value of his expectation?
- 2. A man buys a ticket in a lottery for which there are 200 tickets. If there are one \$500 prize, three \$100 prizes, ten \$50 prizes, and twenty \$5 prizes, what is the value of his expectation?
- 3. A box contains 5 packages valued at 25 cents each, 10 packages valued at 50 cents each, and 20 packages valued at \$1 each. If a person is allowed to draw one package at random, what is the value of his expectation? If he draws two packages, what is the value of his expectation? If he draws five packages?
- 4. What is the value of a ticket in a lottery of 100 tickets if there are one \$10 prize, two \$5 prizes, five \$2 prizes, and ten \$1 prizes?
- 5. A man aged twenty is to receive \$5000 if he is living at age twenty-five. According to the American Experience Mortality Table, of 92,637 persons alive at age twenty, 89,032 of them will be alive at age twenty-five. What is the value of the man's expectation?

MISCELLANEOUS EXERCISES 78

- 1. A bag contains five red, four black, and six white balls. If three balls are drawn at random, what is the probability (a) that all are red? (b) that all are black? (c) that either all are black or all are red? (d) that one is red, one is black, one is white? (e) that at least one is white?
- 2. What is the probability of throwing either an ace or a deuce in two throws of a die?
- 3. A drawer contains 12 black socks and 8 brown socks. If a student reaches in the drawer and pulls out a pair at random, what is the probability that the socks match?
- 4. If three pieces of fruit are drawn at random from a basket of four oranges, five apples, and six pears, what is the probability (a) that all will be oranges? (b) that one apple, one orange, and one pear will be drawn? (c) that two pears and one orange will be drawn?
- 5. If the probabilities that A and B will survive 20 years are 0.7 and 0.8, respectively, what is the probability (a) that one or the other will live 20 years? (b) that one will be dead in 20 years? (c) that both will be dead in 20 years? (d) that A will be alive and B will be dead?
- 6. If the probability is $\frac{1}{2}$ that an ear of corn selected at random from a field is between 8 and 9 in. long, and the probability is $\frac{1}{3}$ that it is between 7 and 8 in. long, what is the probability that an ear selected is between 7 and 9 in. long?
- 7. Two cards are drawn at random from a pack. What is the probability (a) that they are both of one suit? (b) that they are the ace and king of spades?
- (c) that they are aces?
- 8. Seven couples attended a dance, and the men drew lots for their partners. Each man drew his own wife. What is the probability that this will occur?
- 9. A woman is to win a \$10 prize if each of two consecutive draws from a pack of cards produces an ace. The first card is to be replaced in the pack after it is drawn. What is the value of her expectation?
- 10. Two women have tickets for the same row at a concert. If the row has 26 seats, what is the probability that they will be seated side by side?

17

Partial Fractions

116. PARTIAL FRACTIONS

The process of changing a fraction of the form $\frac{f(x)}{\phi(x)}$, where f(x) and $\phi(x)$ are rational integral functions, into an equivalent algebraic sum of simpler fractions is called *reducing to partial fractions*.

Thus, the student can readily verify that $\frac{1}{x(x+1)}$ may be written in the form $\frac{1}{x} - \frac{1}{x+1}$; and that $\frac{x}{(x+1)(x+2)}$ may be written in the form $\frac{2}{x+2} - \frac{1}{x+1}$.

In scientific work, and especially in the calculus, it is frequently necessary to reduce a given fraction $\frac{f(x)}{\phi(x)}$ to its partial fractions. We shall assume that the degree of f(x) is lower than that of $\phi(x)$; otherwise, we must first divide and write

$$\frac{f(x)}{\phi(x)} = Q(x) + \frac{f_1(x)}{\phi(x)},$$

where Q(x) is the rational integral function obtained as the quotient after division and where $f_1(x)$ is a rational integral function of a lower degree than $\phi(x)$. We may then apply the method of partial fractions to $\frac{f_1(x)}{\phi(x)}$.

It is desirable to distinguish between several cases, depending on the nature of the zeros of $\phi(x)$. These various cases will be studied through the use of specific examples.

Case 1. The zeros of $\phi(x)$ are all real and distinct. Thus, as an illustration, let us consider

$$\frac{f(x)}{\phi(x)} = \frac{x-1}{(x+1)(x+2)(x+3)}$$

Assume that

$$\frac{x-1}{(x+1)(x+2)(x+3)} = \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{x+3},$$

where A, B, and C are constants to be determined.

Clearing of fractions, we have

$$x-1 = A(x+2)(x+3) + B(x+1)(x+3) + C(x+1)(x+2).$$
 (1)

The two members of Equation (1) are to be equal for all values of x, except possibly for x = -1, x = -2, x = -3, since the two members of the assumed equation are not defined for these special values of x. However, it is demonstrable that if two polynomials of degree n are equal for more than n distinct values of the variable, they are equal for all values. Hence, the two members of Equation (1) are equal for all values of x.

For the purposes of this discussion, we look upon (1) as an equation from which we may determine A, B, C so that the right member of (1) will reduce to x-1. We may determine A, B, C in two distinct ways.

As a first process, we may substitute any three numerical values for x, and obtain three equations from which A, B, and C may be determined. However, the work of determining A, B, C is easier if we select the specific values x = -1, -2, and -3, and obtain the respective equations

$$-2 = 2A$$
 or $A = -1$,
 $-3 = -B$ or $B = 3$,
 $-4 = 2C$ or $C = -2$.

Hence, the fraction

$$\frac{x-1}{(x+1)(x+2)(x+3)}$$

may be reduced to the partial fractions

$$-\frac{1}{(x+1)}+\frac{3}{(x+2)}-\frac{2}{(x+3)}$$

This result may easily be checked by observing that the three fractions may be combined to obtain the given fraction.

As a second method, we may equate the coefficients of the same power of x in the left and right members of Equation (1); this operation leads to three equations from which A, B, and C may be determined.

Thus, Equation (1), namely,

$$x-1 = (A+B+C)x^2 + (5A+4B+3C)x + (6A+3B+2C),$$

may be written in the form

$$0 \cdot x^2 + x - 1 = (A + B + C)x^2 + (5A + 4B + 3C)x + (6A + 3B + 2C).$$

Hence, after equating the coefficients of like powers of x, we have

$$A + B + C = 0,$$

 $5A + 4B + 3C = 1,$
 $6A + 3B + 2C = -1.$

After solving this system, we have A = -1, B = 3, C = -2. Thus, the previous result is again obtained.

Case 2. $\phi(x)$ contains real, multiple zeros, and others that are real and distinct.

For the consideration of this case let us take as an illustration

$$\frac{f(x)}{\phi(x)} = \frac{x^2}{(x+1)^2(x+2)(x+3)}$$

Assume this time that

$$\frac{x^2}{(x+1)^2(x+2)(x+3)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x+2} + \frac{D}{x+3}$$

It should be observed in this partial-fraction development that the repeated factor (x+1) is employed as a denominator to both the first power and the second power. In general, if $(x-k)^n$ appears as a factor of $\phi(x)$, separate partial fractions employing the denominators $(x-k)^n$, $(x-k)^{n-1}$, $(x-k)^{n-2}$, \cdots , (x-k) should be set up.

If we use the first method employed in treating Case 1, the values for B, C, and D are found at once upon putting x = -1, x = -2, x = -3. The use of any other value for x and the values found for B, C, and D will determine A. The values are $A = -\frac{7}{4}$, $B = \frac{1}{2}$, C = 4, $D = -\frac{9}{4}$.

The second method employed in treating Case 1 results in four linear equations in A, B, C, and D from which the values of A, B, C, and D may be found. It is left as an exercise for the student to determine the values of A, B, C, and D by the second method.

Case 3. $\phi(x)$ contains imaginary zeros, and thus $\phi(x)$ contains an irreducible quadratic factor.

Note: A quadratic expression

$$ax^2 + bx + c$$
, where $b^2 - 4ac < 0$,

is called an *irreducible quadratic expression*. This simply means that $ax^2 + bx + c$ has for its zeros imaginary numbers.

Thus, as an illustration, let

$$\frac{f(x)}{\phi(x)} = \frac{x}{(x^2+1)(x+2)^2(x+3)},$$

wherein $(x^2 + 1)$ is irreducible. Assume that

$$\frac{x}{(x^2+1)(x+2)^2(x+3)} = \frac{Ax+B}{x^2+1} + \frac{C}{x+2} + \frac{D}{(x+2)^2} + \frac{E}{x+3}.$$

In the development upon the right, it is observed that the general linear expression Ax + B is employed as the numerator that corresponds to the quadratic denominator. Hence,

$$x = (Ax + B)(x + 2)^{2}(x + 3) + C(x^{2} + 1)(x + 2)(x + 3) + D(x^{2} + 1)(x + 3) + E(x^{2} + 1)(x + 2)^{2}.$$

If we let x = -2 and x = -3, we obtain

$$-2 = 5D$$

and

$$-3 = 10E.$$

If we now choose any other three values for x, we obtain equations from which we may determine A, B, C. Thus, if we choose x = 0, x = 1, x = 2, we obtain, respectively.

$$0 = 12B + 6C + 3D + 4E,$$

$$1 = 36A + 36B + 24C + 8D + 18E,$$

$$2 = 160A + 80B + 100C + 25D + 80E.$$

and

From the five equations we may determine the values of the five constants. The solutions of these equations gives

$$A = \frac{1}{50}$$
, $B = \frac{3}{50}$, $C = \frac{7}{25}$, $D = -\frac{2}{5}$, $E = -\frac{3}{50}$

The determination of these constants by the second method discussed in connection with Case 1 is left as an exercise for the student.

SUMMARY. It can be proved that in an integral rational function the imaginary zeros occur in pairs and that for every such pair we have a factor of the form $x^2 + px + q$; hence, the denominator of the fraction $\frac{f(x)}{\phi(x)}$ can always be written as the product of quadratic factors and linear factors in the form

$$(x^2 + p_1x + q_1)^r(x^2 + p_2x + q_2)^s \cdots (x - a)^t(x - b) \cdots$$

For every irreducible factor $x^2 + px + q$ repeated k times, we assume k partial fractions of the form

$$\frac{A_1x + B_1}{x^2 + px + q}$$
, $\frac{A_2x + B_2}{(x^2 + px + q)^2}$, ..., $\frac{A_kx + B_k}{(x^2 + px + q)^n}$,

and for every factor of the form (x - l) repeated n times, we assume n partial fractions of the form

$$\frac{L_1}{x-l}$$
, $\frac{L_2}{(x-l)^2}$, ..., $\frac{L_n}{(x-l)^n}$.

Then we proceed to determine the constants as illustrated above.

EXERCISES 79

Reduce each of the following to partial fractions:

1.
$$\frac{5x-1}{(x-1)(x^2-5x+6)}$$

3.
$$\frac{5}{(x-1)^2(x+2)}$$

$$5. \ \frac{6x^2+5}{(x^2+1)(x+2)}$$

7.
$$\frac{8x^3 + 5x^2 + 7}{(x-1)(x-2)}$$

9.
$$\frac{1-2x}{2-x-3x^2}$$

11.
$$\frac{3x^2+8}{x^2-5x+6}$$

13.
$$\frac{x^3+3}{x^4+4x^2}$$

15.
$$\frac{7x^2}{(x-1)^2(x^2+x+2)}$$

17.
$$\frac{w^2}{(w-1)^3}$$

19.
$$\frac{x^3+3x}{(x^2+1)^2}$$

2.
$$\frac{7x+2}{(x+1)(x+3)x}$$

4.
$$\frac{3x}{(x-1)^2(x+2)^2}$$

6.
$$\frac{3x^2+7}{(x^2+1)(x+1)^2}$$

8.
$$\frac{1}{(x^2+1)(x^2+2)^2}$$

10.
$$\frac{3x+4}{x^3-x}$$

12.
$$\frac{x^3 + 6x^2 - 2x - 41}{x^3 + 4x^2 + x - 6}$$

14.
$$\frac{6}{x^3-3x+2}$$

16.
$$\frac{5x^2-3}{x^3-x}$$

18.
$$\frac{3-x}{x^3+4x^2+3x}$$

20.
$$\frac{8}{x^4-1}$$

18

Inequalities

117. GENERAL PRINCIPLES

It is frequently necessary to consider the truth of an assertion that one number is greater than another, or the conditions under which one variable is greater than another variable. Such studies are classified under the heading *inequalities*. If the symbol > designates "is greater than," the symbol < denotes "is less than" (this symbol always points toward the smaller quantity), and \neq means "is not equal to," the following statements are typical inequalities:

$$3 > -2;$$

 $7 < 13;$
 $a \neq b.$

The type of inequality considered in this chapter applies only to real numbers, that is, those numbers which possess the property of order upon the usual number scale. The student should bear this restriction in mind.

Two inequalities in which the inequality signs point in the same direction are said to have the same sense. If the signs point in opposite directions, the inequalities are said to be opposite in sense. Thus, the statements 4>3 and -1>-5 have the same sense; whereas 1>0 and 3<7 are opposite in sense. In some studies based upon inequalities it is desirable to use the combination symbol \geq to mean "is greater than or equal to" and \leq to denote "is less than or equal to."

As in the study of equalities, there are two kinds of inequalities involving variables, namely, absolute inequalities and conditional inequalities. An absolute inequality is an inequality that is valid for all permissible values of any variables which may be involved. The statement $x^2 + 1 > 0$ is a typical absolute inequality, for it is true for any real value of x. A conditional inequality in one variable is an inequality that is valid for only a specific set of the permissible values of the variable. Thus, the inequality 2x + 1 > 3 is only valid when x > 1.

118. OPERATIONS UPON INEQUALITIES

Many of the permissible operations upon inequalities resemble the corresponding principles employed in dealing with equalities; yet there are some striking differences. The rules employed in operating upon

inequalities are stated below without proof; they will probably seem quite reasonable, however.

- (1) The addition of the same real number to, or the subtraction of the same real number from, the two members of an inequality leaves the sense of the inequality unchanged.
- (2) The multiplication or division of the two members of an inequality by the same positive number, leaves the sense of the inequality unchanged.
- (3) The multiplication or division of the two members of an inequality by the same negative number changes the sense of the inequality.
- (4) If both members of two inequalities of the same sense are **positive**, and if the corresponding members of the inequalities are multiplied, an inequality of the same sense is obtained.

An interesting consequence of this rule is the proposition that if both members of an inequality are positive, any positive power of both members yields an inequality having the same sense.

119. ABSOLUTE INEQUALITIES

The discussion of this section will be introduced by means of an example.

Confirm the fact that for any positive number x, $x + \frac{1}{x} \ge 2$. This

of course, is an interesting theorem and is typical of the absolute inequalities frequently met in practice.

Let us start the demonstration of the validity of this inequality for all x > 0 by considering the known inequality

$$(x-1)^2 \ge 0.$$

Since the square of any real number is greater than or equal to zero, this statement is true without the restriction that x > 0. After expanding the left member, we have

$$x^2-2x+1\geq 0.$$

The addition of 2x to each member yields

$$x^2 + 1 \ge 2x \qquad \text{(by Rule 1)}.$$

We may now divide each member by x. Now, if x > 0, we may write

$$x + \frac{1}{x} \ge 2$$
 (by Rule 2).

This completes the demonstration.

The student undoubtedly wonders how we knew to start our demonstration with the known inequality $(x-1)^2 \ge 0$. To know what to start with, it is common to assume the validity of the inequality that was proposed, whereupon any of the four laws are applied in an attempt to obtain an inequality that is known to be valid. The process is then reversed, making certain that each step is justified.

As a second illustration let us show that

$$a+b>\frac{4ab}{a+b}$$
, if $a>0$, $b>0$, and $a\neq b$.

Since we are in doubt how to proceed, let us attempt to go backward, using the four basic laws, in an attempt to obtain a valid inequality.

Let us multiply each member of the given inequality by the positive quantity a + b; of course, the sense will remain the same, so we have

$$a^2 + 2ab + b^2 > 4ab$$
.

Then, after subtracting 4ab from each member, the inequality becomes

$$a^2 - 2ab + b^2 > 0,$$

 $(a - b)^2 > 0.$

or

This inequality is known to be true since $a \neq b$.

The desired confirmation of the proposed inequality is readily accomplished by starting with the latter inequality and reversing the steps as follows:

$$(a-b)^2 > 0.$$
 Known since $a \neq b$.
 $a^2 - 2ab + b^2 > 0.$ Expanding the square.
 $a^2 + 2ab + b^2 > 4ab.$ Adding $4ab$ to each member.
 $(a+b)^2 > 4ab.$ Dividing each member by the positive quantity, $a+b$.

EXERCISES 80

- 1. If a > 1, prove that $a^2 > a$.
- 2. If a > b, prove that $a^2 > b^2$.
- 3. Show that $\frac{a}{2b} + \frac{2b}{a} > 2$, if a > 0, b > 0, and $a \neq 2b$.
- 4. Show that the arithmetic average of two unequal positive numbers a and b (that is, $\frac{a+b}{2}$) is greater than their geometric average (that is, \sqrt{ab}).
 - 5. Show that $x^2 + y^2 + z^2 > xy + xz + yz$, if $x \neq y \neq z$.
 - 6. Show that $\frac{a+b}{2a} > \frac{b}{a+b}$, if a > 0 and b > 0.
 - 7. Show that $\frac{a+b}{4a} > \frac{b}{a+b}$, if a > 0, b > 0, and $a \neq b$.
 - 8. If x and y are positive and x > y, prove that

$$x^3 + x^2 + x + 1 > y^3 + y^2 + y$$
.

9. If a and b are positive and a > b, show that

$$a^2+b^2>ab.$$

10. Show that $\frac{1}{x^3} + \frac{1}{y^3} > \frac{1}{x^2y} + \frac{1}{xy^2}$, if x > 0, y > 0, and $x \neq y$.

120. CONDITIONAL INEQUALITIES

The discussion of this section is confined to conditional inequalities involving only one variable. Unlike a conditional equation, the solution of such an inequality usually comprises a range of values of the variable rather than a finite number of specific values. For example, in considering the inequality

$$3x-2>x+7$$
,

we may add 2 - x to each member to obtain

$$2x > 9$$
,

which, after dividing each member by 2, becomes

$$x > \frac{9}{2}$$
.

Thus, the given inequality is satisfied by any value of x in the range $x > \frac{9}{2}$. The consideration of inequalities with members that are polynomials of degree higher than the first presents a somewhat more interesting situation. For instance, let us solve the inequality

$$3x^2 - 4x + 7 > 2x^2 + x + 1$$
.

It is desirable to obtain an equivalent inequality in which the right member is zero. This is accomplished by subtracting the right member from each member, thereby giving

$$x^2 - 5x + 6 > 0$$
.

In the consideration of an inequality f(x) > 0, where f(x) is a polynomial, we usually find first the roots of f(x) = 0. Since f(x) cannot change sign except at the points where f(x) = 0, the solution of the inequality f(x) > 0 can readily be obtained by an examination of the sign of f(x) on each side of a root of f(x) = 0. The roots of the equation

$$x^2 - 5x + 6 = 0$$

are 2 and 3; so we must examine the sign of $f(x) = x^2 - 5x + 6$ on each side of these roots. After selecting a value such as x = 1 to the left of 2, we observe that the function is positive. For the value $x = 2\frac{1}{2}$, to the right of 2 but to the left of 3, the function is negative. To the right of 3 the function is positive. This may all be seen very clearly by an examination of the graph of $y = f(x) = x^2 - 5x + 6$; it appears as Figure 43. Consequently, the solution of the given inequality comprises the ranges x < 2 and x > 3.

Although a more elaborate discussion of conditional inequalities in one variable might be presented, the procedure just discussed is adequate for the solution of most inequalities met in practice.

Fig. 43

EXERCISES 81

Solve each of the following inequalities:

1.
$$3x + 8 > x + 10$$

2.
$$7x - 3 > 8x + 5$$

3.
$$5v + 6 > 9v$$

4.
$$(x+3)(x-1) < (x+2)(x-3)$$

5.
$$x^2 - 4x + 3 > 0$$

6.
$$2x^2 - 6x + 10 > x^2 + x$$

7.
$$x^2 + x < 3 - x^2$$

8.
$$x^2 + x + 1 > 0$$

9.
$$(x+3)(x-2)(x-7) > 0$$

10.
$$(x-3)(x-1)(x)(x+4) < 0$$

11.
$$x^2 + 3x \ge 0$$

12.
$$2x^2 + 7x + 2 > 0$$

For what range of values of x will each of the following expressions be imaginary?

13.
$$\sqrt{2x-3}$$

14.
$$\sqrt{x^2+11x+10}$$

15.
$$\sqrt{-x^2+3x+1}$$

Use your ingenuity in solving each of the following inequalities:

16.
$$\frac{1}{r^2} > 1$$

17.
$$\frac{x}{x-1} > 0$$

Note: x = 1 is not a permissible value.

18.
$$\frac{x(x+3)}{x-1} > 0$$

HINT: x = 1 is not a permissible value of x, so $(x - 1)^2$ is positive for all permissible values. Consequently, the sense of the inequality is unaltered for all permissible values of x if each member is multiplied by $(x - 1)^2$.

19.
$$\frac{(x+2)^2}{x} < 0$$

20.
$$\frac{(x-1)(x+2)}{x} < 0$$

Review of Algebra

EXERCISES 82

- 1. Given $r_1 = \frac{Nr}{1 + (N-1)r}$. If $r = \frac{1}{2}$ and N = 90, find the value of r_1 to three significant figures.
 - 2. If $P = 2c 0.01c^2$, solve for c in terms of P.
- 3. If $C = \frac{nE}{nr + r}$, solve for n, E, and r each in terms of the other letters in the formula.
 - 4. Factor each of the following expressions:

$$a^{2} + b^{2} + c^{2} - 2ab - 2bc + 2ac$$
 $m^{6} - n^{6}$
 $9x^{4} + 6x^{2}y^{2} + 49y^{4}$
 $2x^{3} - 11x^{2} - 21x$
 $84 + 5a - a^{2}$
 $24ab - 18ay - 20bx + 15xy$

- 5. Find the first four terms and the ninth term of the expansion of $\left(x^{\frac{1}{2}} \frac{y}{3}\right)^{13}$.
 - 6. Simplify

$$\frac{\frac{2x}{x^2-1} - \frac{2x(x^2+1)}{(x^2-1)^2}}{\frac{x^2+1}{x^2-1}\sqrt{\frac{(x^2+1)^2}{(x^2-1)^2}-1}} \cdot \frac{1}{1}$$

7. Simplify

$$\left(\frac{2a^8x^{7\!4}}{3b^4} \cdot \frac{5a^4b^{5\!4}}{6c^8x^3}\right) \div \left(\frac{bc^{5\!4}}{a^{5\!4}x} \cdot \frac{25a^{5\!4}x}{18abc^{5\!4}}\right) \cdot$$

- 8. Two men walk in opposite directions at the rates, respectively, of $3\frac{1}{2}$ and $4\frac{1}{2}$ mph, starting at the same time from the same place. In how many hours will they be 20 miles apart?
- 9. The denominator of a certain fraction exceeds the numerator by 13. If 5 is subtracted from each term of the fraction, the resulting fraction has the value \\
 \ddash. What is the fraction?

EXERCISES 189

- 10. A milk distributor buys raw milk containing $4\frac{1}{4}$ per cent butter fat. He wishes to standardize this milk by adding skim milk so that it will contain only $3\frac{3}{4}$ per cent butter fat. How many pounds of skim milk must he add to each 100 lb of raw milk?
 - 11. Solve for x:

$$\frac{7x}{x+3} - \frac{5x}{1-x} = \frac{12(x^2-1)}{x^2+2x-3}.$$

12. Solve for x:

$$\frac{a}{x+b} - \frac{b}{x+a} = \frac{a-b}{x+a+b}.$$

13. Solve the following system of equations:

$$2x - y + 2z = -16$$
$$x + 3y + z = 41$$
$$2x + y + 4z = 22$$

- 14. Find the first four terms and the ninth term of the expansion of $\left(\frac{x^{\frac{1}{2}}}{2} \sqrt{3}y\right)^{13}$.
- 15. An hour after starting, a train meets with an accident, after which it proceeds at three fifths of its former speed and arrives 2 hr and 40 min late. If the accident had happened 50 miles farther on the line, the train would have been only $1\frac{1}{2}$ hr late. Find the length of the journey.
- 16. From the general equation $px^2 + 2qx + r = 0$, derive a formula for solving any quadratic equation.
 - 17. Find the values of x which give $x + \frac{1}{x}$ twice the value it has for x = 3.
- 18. The diameter d of the rivet holes for a certain type of riveted joint is determined from the equation $p = 0.56 \frac{d^2}{t} + d$. If p = 1.50 and t = 0.25, find d correct to two decimal places.
 - 19. (a) Find the values of K for which the equation $3x^2 2Kx + 1 = 0$ will have equal roots.
 - (b) What values of K will give this equation roots that are not equal?
- 20. Show graphically that the function $-2 + x x^2$ cannot be equal to any positive value for a real value of x.
 - 21. Solve

$$\sqrt{x+1} + \sqrt{3x+1} = 2$$

22. Solve

$$x^2 + 3x - 1 - \sqrt{2x^2 + 6x + 1} = 0$$

- **23.** Divide $18xy^{-2} 23 + x^{-1/2}y + 6x^{-1}y^2$ by $3x^{3/4}y^{-1} + x^{3/4} 2x^{-1/4}y$.
- 24. Simplify and express with positive exponents

$$\frac{\left(\frac{y}{27} + \frac{y^{-2}}{8}\right)^{-\frac{34}{6}} - x^2}{\frac{3y^{-1} + 2x^{-1}}{2}}$$

25. Solve

$$2x^2 - 21 > 11x$$

26. Find the numerical value of $16^{-36} + 16x^0 - 16^0 - \left(\frac{8}{31}\right)^{-2}$ to the nearest thousandth.

27. Simplify
$$7\sqrt{\frac{A}{3}} - \frac{5}{3}\sqrt{27A} + 7\sqrt{\frac{225A}{3}}$$
.

28. Simplify the expression $\frac{2-\sqrt{3}}{2+\sqrt{3}}$ (1 + 2 $\sqrt{3}$), expressing your result without radicals in the denominator.

29. Solve

$$\frac{\sqrt{5x-4} + \sqrt{5-x}}{\sqrt{5x-4} - \sqrt{5-x}} = \frac{2\sqrt{x} + 1}{2\sqrt{x} - 1}.$$

30. Solve the system

$$2x^2 - xy = 6y$$
$$x + 2y = 7$$

31. Solve the system

$$x^2 - xy = 3$$
$$y^2 + xy = 10$$

32. Two travelers, A and B, set out at the same time on a trip; A is to go from the first town to the second, and B is to go from the second to the first. Both travel at uniform rates. When they meet, A has traveled 25 miles farther than B. A finishes his journey in 4 days and B in $6\frac{1}{4}$ days after they meet. Find the distance between the towns and the number of miles each travels per day.

33. Is 1 a root of $x^{10} - 1 = 0$? Is -1 a root of $x^{10} - 1 = 0$?

34. Show by two methods that 3 is a root of $x^3 - x^2 - 7x + 3 = 0$.

35. Find all the roots of $x^4 + 5x^3 - 3x^2 - 31x - 12 = 0$.

36. Find all the roots of $6x^4 - 13x^3 - 6x^2 + 5x + 2 = 0$.

37. Form the equation whose roots are 0, 7, $-2, \frac{1}{2}$.

38. Write the equation whose roots will be 3 less respectively than the roots of $2x^3 - 5x - 3 = 0$.

39. Draw the graph of $y = x^3 - 6x^2 - x + 27$, and find the value of each real root of $x^3 - 6x^2 - x + 27 = 0$ to the nearest thousandth.

40. Find the value of $\log_3 27 + \log_{10} \sqrt[5]{0.01}$.

41. Find the value of $\log_7 49 - \frac{1}{3} \log_2 64 + \log_6 216 + \log_{81} 3 - \log_8 2^{34}$.

42. Find the value of $\frac{(0.07536)^2 \sqrt[3]{1.0573}}{(0.89304)^{\frac{3}{2}}}$.

43. If $2.3713 = (1.045)^n$, find the value of n.

44. If $S = R \left[\frac{(1+i)^n - 1}{i} \right]$, find n when S = 1000, R = 200, and i = 0.045.

EXERCISES 191

- **45.** Draw the graph of $y = \frac{e^{2z} e^{-2z}}{2}$.
- 46. A body moves 20 ft the first minute, three times 20 ft in the second minute, five times 20 ft in the third minute, and so on. How far does it move in a half-hour?
- 47. Find to the nearest thousandth the positive geometric mean between 25 and 41.
- **48.** The geometric mean of several values a_1 , a_2 , a_3 , a_4 , \cdots , a_n is defined by the following formula:

$$G = \sqrt[n]{a_1 \cdot a_2 \cdot a_3 \cdot a_4 \cdot \cdots \cdot a_n}.$$

Find the geometric mean of 25, 31, 28, 34, 36, and 27.

- 49. A young man just graduating from college arranged to invest \$100 at the end of each year for 12 yr, the money to earn compound interest at 5%. Find the amount to his credit at the end of the 12 yr, provided that he made all his payments as agreed.
- **50.** What is the least number that the sum of the terms of the infinite geometric progression $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{2^{1}7} + \cdots$, will never exceed?
- **51.** In how many ways may a committee of 5, consisting of a college president, a dean, and 3 professors, be chosen from a faculty consisting of a president, five deans, and 70 professors?
- 52. In forming the committee in Exercise 51, what is the probability that a particular dean will be chosen? A particular professor? Assume that the committee is chosen by chance.

Book II · TRIGONOMETRY

1

1. TRIGONOMETRY

Trigonometry is a word of Greek origin which means the measurement of triangles.

While the measurement or solution of triangles still forms an essential part of the study of trigonometry, the subject in its modern sense includes the study of the properties of certain "functions of the angles" and their applications in pure and applied mathematics.

In our use of the word *triangle*, or rectilinear figures having three angles, we assume that the student is already somewhat familiar with the idea of an angle and, possibly, its measurement. For our purposes, however, it is desirable to define carefully what is meant by an angle and its measurement.

2. DIRECTED LINE SEGMENTS

A portion of a line between two of its points A, B is called a *line segment*. We distinguish between two possible directions of the segment. The line segment AB means the line segment from A to B; while the line segment BA means the line segment from B to A. Hence, the line segment AB is opposite in direction to the line segment BA; this fact is denoted by the symbolic statement AB = -BA. A directed line segment, therefore, is a line segment measured in a definite direction by designating one of the end points as the initial point and the other end point as the terminal point.

3. DEFINITION OF AN ANGLE

An angle is a geometric figure formed when two line segments have an end point in common. The common end point is called the vertex of the angle. To define what is meant by the magnitude of an angle, it is desirable to think of an angle as having been "generated" by the rotation of one line segment about the vertex into coincidence with the other segment. Thus, line-segment AB rotating in the same plane about A as a pivot from the position AB to the position AB' (Figure 1), or from AB to AB'' (Figure 2), is said to generate the angles α and β , respectively. The original position, that is, AB, is referred to as the initial line and the other position as the terminal line.

It is evident from the figures that the line segment AB rotating about the vertex A may generate an angle either in a counterclockwise manner, as in Figure 1, or clockwise, as in Figure 2. It is customary to designate

the rotation in Figure 1 as giving a positive measure, and the rotation in Figure 2 as providing a negative measure. As a consequence of this statement, it is apparent that any angle may be measured positively or negatively.

4. MAGNITUDE OF AN ANGLE

The magnitude of an angle is the amount of rotation about the vertex required to bring the line segment occupying the initial position to the terminal position. The magnitude, or measure, of an angle, therefore, depends upon the position of the initial side, the position of the terminal side, and the extent of the rotation.

Fig. 3

Obviously, it is necessary to have a unit of measurement in terms of which we may measure magnitudes and compare angles.

If AB (Figure 3) rotates about Ain the same plane and in the direction

indicated by the circular arrow, from its initial position completely around to that position, it is said to generate an angle of one positive revolution.

For many purposes of measurement the revolution is not a suitable unit, so other systems of units have been invented. One of the oldest is the sexagesimal system characterized as follows:

1 positive revolution = 360 degrees, written 360°.

1 degree = 60 minutes, written 60'.

1 minute = 60 seconds, written 60".

Hence, 1 degree = $\frac{1}{380}$ of a revolution.

Fig. 4

Another unit frequently used in measuring angles is called a radian. A radian is defined as the measure of a central angle subtended by an arc equal in length to the radius of the arc (Figure 4).

From plane geometry we have the formula $C = 2\pi r$, where C is the circumference and r the radius of the same circle. This formula means that the ratio of the circumference to the radius of any circle is 2π , where $\pi = 3.14159$, approximately.

From the above definition of a radian we note that

$$2\pi \text{ radians} = 360^{\circ},$$

Hereafter, whenever we express a magnitude of an angle by a number symbol and with no unit indicated, it is to be understood that the radian is the unit of measurement. Thus, we write

$$2\pi = 360^{\circ},$$
 $\pi = 180^{\circ}.$
Hence,
 $1 = \frac{180^{\circ}}{\pi} = 57^{\circ}17'45'',$ approximately,
or
 $1^{\circ} = \frac{\pi}{180} = 0.01745,$ approximately.

From the definition of a radian we also note that in a circle of radius r, a central angle θ , subtended by an arc of length a, contains a/r radians. This follows from the fact that arcs of the same circle are proportional to their subtended angles. Therefore,

$$a=r\theta$$
,

where θ is expressed in radians, and a and r are expressed in the same units of length.

Hence, if we are given any two elements of the equation $a = r\theta$, we may determine the third.

Illustration 1: Given a = 16 ft and r = 10 ft, find θ . From the relation $a = r\theta$,

$$\theta = \frac{a}{r}$$
.

After substituting the given values for a and r, we obtain $\theta = \frac{16}{16} = 1.6$ radians.

Since 1 radian = $57^{\circ}17'45''$, θ may now be calculated in degrees, minutes, and seconds.

Illustration 2: Given a = 112 ft and $\theta = 32^{\circ}$, find r. Since θ in the formula $a = r\theta$ is expressed in radians, it is necessary to change 32° to its equivalent value in radians. Since $1^{\circ} = \pi/180$ radians, it follows that

$$32^{\circ} = \frac{32\pi}{180} \text{ radians.}$$

$$r = \frac{a}{\theta} = \frac{112}{32\pi} = 112 \times \frac{180}{32\pi}$$
 ft = 200.5 ft.

EXERCISES 1

- 1. How many degrees are equivalent to $\pi/2$ radians? $\pi/3$ radians? $\pi/12$ radians? $\frac{\pi}{3}$ radians? 1.5 radians?
- 2. Express 30°, 45°, 120°, 300° in radian measure. In each case the result may be written as a multiple of π .

- 3. Express each of the following in radians: 38°23'; 72°16'; 126°32'18"; 86.7°: 142°17.3': 47°22'46".
- 4. Express each of the following in degrees and minutes: 3.2 radians; 1.62 radians; 2.74 radians; 2.86 radians.
 - **5.** Given r = 10 ft and $\theta = 72^{\circ}$, find a.
- 6. If the spoke of a wheel is 3 ft long, find the central angle subtended by a portion of the rim 2 ft long.
- 7. A pendulum 18 in. long swings through an angle of 16°13'. Through how great an arc does the bob at the end swing?
- 8. A railroad curve is an arc of a circle of radius 927 ft. What is the length of the arc if it subtends an angle of 20°18′ at the center?
- 9. The minute hand of a clock is 4.3 in. long. Through how great a distance does its end move in 22 min?
- 10. A point on a rotating wheel of radius 23 ft moves through a distance of 9.2 ft in 1 sec. What is the angular velocity of the wheel in radians per sec? in degrees per sec?

5. IMPORTANT FACTS AND DEFINITIONS FROM GEOMETRY

- (1) A positive right angle = $\frac{1}{4}$ revolution = 90°.
- (2) A positive straight angle = $\frac{1}{2}$ revolution = 180°.
- (3) If α and β are two angles such that $\alpha + \beta$ equals 90°, one is said to be the complement of the other; for example, $\alpha = 30^{\circ}$ and $\beta = 60^{\circ}$ are complementary angles.
- (4) If α and β are two angles such that $\alpha + \beta = 180^{\circ}$, then one is said to be the supplement of the other; for example, $\alpha = 50^{\circ}$ and $\beta = 130^{\circ}$ are supplementary angles.
 - (5) The sum of the interior angles of any triangle equals 180°.
- (6) Any exterior angle of a triangle is equal to the sum of the two opposite interior angles.
 - (7) In a right triangle one acute angle is the complement of the other.
 - (8) In two similar triangles the corresponding sides are proportional.
- (9) In a right triangle the sum of the squares of the two legs equals the square of the hypotenuse.
- (10) In a right triangle, if one acute angle is 30°, the leg opposite it is equal to one half the hypotenuse.

EXERCISES 2

1. Find y and r from the data in Figure 5.

2. Find x and r from the data in Figure 6.

- 3. In a certain right triangle one of the acute angles is 30° and the hypotenuse is a ft; find the legs in terms of a.
 - **4.** Find x and y from the data of Figure 7.
- 5. A pole 6 ft high casts a shadow 11.2 ft long at the same time that a taller pole casts a shadow 23.7 ft long. Find the height of the taller pole.

6. TRIGONOMETRIC FUNCTIONS

If we consider the angle A in any of the figures of this article, where OX represents the initial position and OP the terminal position, and where P, whose coordinates are (x, y), is any point on the line OP except O, and if we let OM = x, MP = y, and $OP = r = \sqrt{x^2 + y^2}$, it is possible to construct exactly six ratios of the lengths x, y, and r; namely, y/r, x/r, y/x, x/y, r/x, and r/y. These ratios are defined as the sine of $\angle A$, cosine of $\angle A$, tangent of $\angle A$, cotangent of $\angle A$, secant of $\angle A$, and cosecant of $\angle A$, respectively. In these definitions r is always considered positive when measured from O in the direction OP, and x and y possess signs following the conventions usually associated with the coordinates of a point.

The important definitions just given should be memorized by the student; the names of the various ratios, which are called *trigonometric* functions, may be abbreviated as follows:

$$\sin A = \frac{y}{r} = \frac{\text{ordinate}}{\text{distance}},$$
 $\csc A = \frac{r}{y} = \frac{\text{distance}}{\text{ordinate}},$ $\cos A = \frac{x}{r} = \frac{\text{abscissa}}{\text{distance}},$ $\sec A = \frac{r}{x} = \frac{\text{distance}}{\text{abscissa}},$ $\cot A = \frac{x}{y} = \frac{\text{abscissa}}{\text{ordinate}}.$

We note that the coordinate axes divide the entire plane into four parts called *quadrants*. For convenience of reference these are numbered I, II, III, IV, as in Figure 14, the order being that given by the positive direction of rotation about the origin.

Fig. 8

Fig. 9

F1G. 10

Fig. 11

Fig. 12

F1G. 13

When an angle is drawn with reference to a set of rectangular axes, as described at the start of Section 6, the signs of the ordinate and abscissa of point P may be positive or negative, depending upon the quadrant in which the $\angle A$ terminates. It is evident, then, that the signs of the trigonometric functions may be positive or negative also, depending upon the quadrant in which the $\angle A$ terminates.

Thus, it is possible to construct a table such as the following:

	First Quadrant	Second Quadrant	Third Quadrant	Fourth Quadrant
sin A		+		
$\cos A$			į	
an A		_		1 .
$\operatorname{\mathbf{cot}} A$				
$\sec A$				1
$\operatorname{csc} A$		+		

It is left as an exercise for the student to complete this table from a study of Figures 8 to 13. The table should not be memorized, however.

It is to be observed that the ratios y/x and r/x are not defined when x = 0, and the ratios x/y and r/y are not defined when y = 0. These special cases are considered later.

In Figure 8, where $\angle A$ is an acute angle, we note that y is opposite $\angle A$, x is described as adjacent to $\angle A$, and r is the hypotenuse of the right triangle containing $\angle A$. Hence, in the particular case of a right triangle it is often convenient to use the following special definitions for the trigonometric functions:

$$\sin A = \frac{\text{side opposite}}{\text{hypotenuse}}$$
, $\csc A = \frac{\text{hypotenuse}}{\text{side opposite}}$, $\cot A = \frac{\text{side adjacent}}{\text{hypotenuse}}$, $\cot A = \frac{\text{side adjacent}}{\text{side adjacent}}$, $\cot A = \frac{\text{side adjacent}}{\text{side opposite}}$.

The student must learn these definitions thoroughly, as the study of the trigonometry of the right triangle is based upon them.

In $\triangle OMP$, in Figure 8, we denoted the positive acute angle complementary to $\angle A$ as $\angle B$, then the side opposite $\angle A$ is adjacent to $\angle B$, and the side adjacent to $\angle A$ is opposite $\angle B$. Hence, if we use the special

definitions of the functions just given, we obtain the following relations:

$$\sin A = \cos B = \cos (90^{\circ} - A),$$

 $\cos A = \sin B = \sin (90^{\circ} - A),$
 $\tan A = \cot B = \cot (90^{\circ} - A),$
 $\cot A = \tan B = \tan (90^{\circ} - A),$
 $\sec A = \csc B = \csc (90^{\circ} - A),$
 $\csc A = \sec B = \sec (90^{\circ} - A).$

Hence, any function of a positive acute angle is the cofunction of its complementary angle.

7. ADDITIONAL DISCUSSION OF TRIGONOMETRIC FUNCTIONS

The student must note that when the angle is given it determines, in general, the six numerical values which we have defined as the trigonometric functions of that angle. It is obvious that if the angle is constructed as in Section 6, and if from any point except the origin on the terminal side a perpendicular is dropped to the initial line, we may measure the ordinate (y), abscissa (x), and distance (r), and calculate the six required ratios, except for y/x, r/x, when x = 0, and x/y, r/y, when y = 0.

To describe the situation still more completely, we note that the trig-

Frg. 15

onometric functions depend solely upon the position of the terminal line. They are independent of the direction of rotation and of the point on the terminal line from which the perpendicular is dropped.

8. TRIGONOMETRIC FUNCTIONS OF SPECIAL ANGLES

If the numerical measure of an angle is given, there are methods by means of which the values of the trigonometric ratios may be obtained. In general,

this requires more mathematics than the student has at his command at this time. However, for certain special angles, such as integral multiples of 45° and 30°, we can readily calculate the trigonometric functions.

Illustration 1: Let us find the functions of 30°. Refer to Figure 15.

If we take any point P on the terminal line a distance r from the origin and drop a perpendicular to the initial line, we know from

elementary geometry that y = r/2. Consequently, by the Pythagorean theorem,

$$x = \sqrt{r^2 - \frac{r^2}{4}} = \frac{r}{2}\sqrt{3}.$$

Thus.

$$\sin 30^{\circ} = \frac{\frac{r}{2}}{r} = \frac{1}{2} = 0.50000;$$

$$\cos 30^{\circ} = \frac{\frac{r}{2}\sqrt{3}}{r} = \frac{\sqrt{3}}{2} = 0.86603, \text{ approximately;}$$

$$\tan 30^{\circ} = \frac{\frac{r}{2}}{\frac{r}{2}\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} = 0.57735, \text{ approximately;}$$

$$\csc 30^{\circ} = \frac{r}{\frac{r}{2}\sqrt{3}} = 2;$$

$$\sec 30^{\circ} = \frac{r}{\frac{r}{2}\sqrt{3}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3} = 1.15470, \text{ approximately;}$$

$$\cot 30^{\circ} = \frac{\frac{r}{2}\sqrt{3}}{\frac{r}{2}} = \sqrt{3} = 1.73205, \text{ approximately.}$$

Of course, the last three values are the reciprocals, respectively, of the first three.

It is apparent that we might assign to any one of the three variables r, x, or y some convenient numerical value and calculate the numerical values of the other two corresponding variables and thus obtain the same values of the trigonometric functions as obtained above. Thus, when the angle is 30° , if we let r=2, then y=1 and $x=\sqrt{3}$; when the angle is 45° , if we let y=1, then x=1 and $r=\sqrt{2}$.

EXERCISES 3

1. Find the six trigonometric functions of the angles described in Figures 16, 17, and 18. Recall that x is negative in Figure 17.

Fig. 18

2. Draw appropriate figures and find the six trigonometric functions of the angles listed in the following table:

Angle	sin	cos	tan	csc	sec	cot
120°						
-60°						
-240°						
150°						
225°						
315°						•
-135°						

- 3. Find the trigonometric functions of 30° by taking r=2; of 45° by taking y=1; of 60° by taking x=1.
 - 4. Find the six trigonometric functions of $\frac{4}{3}\pi$, $\frac{3}{4}\pi$, $\frac{7}{3}\pi$.

9. THE TRIGONOMETRIC FUNCTIONS OF 0°, 90°, 180°, AND 270°

The evaluation of the trigonometric functions of 0°, 90°, 180°, and 270° requires special consideration. The angle corresponding to 0° ter-

minates on the initial line. Hence, in our attempt to satisfy the previous definitions of the trigonometric functions for such an angle, we may take any point P on the x axis (see Figure 19) as r units from the origin and define our reference triangle to be such that x = r and y = 0.

Thus, the six functions of 0° may be written down as follows:

It is observed that cot 0° and csc 0° involve division by zero, which is not permitted in mathematics; consequently, they are said not to exist.

However, let us consider the ratios x/y and r/y, where r is held fixed in length, if y is made to decrease and approach the value zero.

Frg. 20

Thus, in Figure 20, let

$$r=1 \qquad \text{and} \qquad y=\tfrac{1}{100};$$

then.

$$x = \sqrt{1 - (\frac{1}{100})^2}$$
 = approximately 1.

Therefore, if the angle under consideration is designated by A, cot A = x/y is approximately equal to 100.

Similarly, let $y = \frac{1}{1000}$, then cot A = 1000, approximately.

In fact, as y remains positive, but becomes smaller and smaller, the numerical value of cot A increases without limit. Of course, $\angle A$ is approaching 0° . This entire situation is frequently described symbolically as follows:

$$\lim_{A\to 0} \cot A = \infty.$$

The symbol ∞ is the sign for infinity; it does not represent a number.

The previous symbolic statement is read, "cot A approaches infinity as a limit when A approaches 0." This is a convenient way to express the fact that cot 0° does not exist, but that as $\angle A$ tends to decrease to zero, cot A tends to increase beyond any given positive value.

In the previous discussion it is assumed that the $\angle A$ approaches zero through positive values. Similar considerations will show that $\csc A$ increases without limit as $\angle A$ approaches zero, and one may write $\limsup_{A\to 0} \sec A = \infty$ with a similar significance.

If the angle A approaches zero through negative values, then y approaches zero through negative values, and $\cot A$ and $\csc A$ are both negative, although numerically they become and remain larger than any given quantity. The situation may be described symbolically

$$\lim_{A\to 0} \cot A = -\infty \quad \text{and} \quad \lim_{A\to 0} \csc A = -\infty.$$

EXERCISES 4

- 1. In a manner similar to that of the previous illustrations, assign values to the functions of 90°, 180°, and 270°.
- 2. Fill in the appropriate number under the radical in each numerator of the following table:

x	0°	30°	45°	60°	90°
$\sin x$	$\frac{\sqrt{}}{2}$	$\frac{\sqrt{}}{2}$	$\frac{\sqrt{}}{2}$	$\frac{\sqrt{}}{2}$	$\frac{\sqrt{}}{2}$
cos x	$\frac{\sqrt{}}{2}$	$\frac{\sqrt{}}{2}$	$\frac{\sqrt{}}{2}$	$\frac{\sqrt{}}{2}$	$\frac{\sqrt{}}{2}$

- 3. Find the numerical value of $\sin 60^{\circ} + 2 \cos 45^{\circ}$.
- 4. Find the numerical value of cos 0° sin 45° + sin 90° sec² 30°.

Note: sec² 30°, by definition, means (sec 30°)².

- **5.** Find the value of x if $x \cot^3 45^{\circ} \sec^2 60^{\circ} = 11 \sin^2 90^{\circ}$.
- 6. Find the value of x if $x(\cos 30^{\circ} + 2\sin 90^{\circ} + 3\cos 45^{\circ}) = 2\sec 180^{\circ} 5\sin 90^{\circ}$.
- 7. Draw an angle of 163°, and find the values of the functions by measurement.

 Note: The approximate values of the trigonometric functions of any angle may be found graphically. We construct the angle by use of a protractor, select a point on the terminal side of the angle, and draw a perpendicular to the initial

a point on the terminal side of the angle, and draw a perpendicular to the initial side. We then measure the lengths of the sides of the triangle formed and write the values of the trigonometric functions by use of the definitions.

- 8. Draw an angle of 320°, and find the values of the functions. (See the note in Exercise 7.)
 - 9. Which trigonometric functions of 90°, 180°, and 270° do not exist?

10. THE TRIGONOMETRIC FUNCTIONS OF ANY ANGLE

Tables of trigonometric functions give the functions of angles from 0° to 90°. Frequently in solving practical problems it is necessary to

know the functions of an angle larger than 90° and sometimes of a negative angle. The functions of such angles may be found through the use of the limited tables, however, by a comparatively simple process.

To illustrate the process that we shall employ, let us consider the functions of 310°. This angle appears in Figure 21, wherein the vertical dotted line has been drawn to the horizontal axis from any point P(x, y) on the terminal side of the angle. By definition, $\sin 310^\circ = y/r$; since the angle terminates in the fourth quadrant, y is negative, thereby causing the ratio to be negative. Numerically, except for sign, the value of the ratio is obviously the same as

sin 50°, the angle 50° being the acute angle at O within the right triangle having the dotted line as one leg. Thus, it follows at once that

$$\sin 310^{\circ} = -\sin 50^{\circ}$$
.

If sin 50° is obtained by reference to a table of trigonometric functions, sin 310° is completely determined.

Similarly,

$$\cos 310^{\circ} = \frac{x}{r} = \cos 50^{\circ};$$

$$\tan 310^{\circ} = \frac{y}{x} = -\tan 50^{\circ};$$

$$\csc 310^{\circ} = \frac{r}{y} = -\csc 50^{\circ};$$

$$\sec 310^{\circ} = \frac{r}{x} = \sec 50^{\circ};$$

$$\cot 310^{\circ} = \frac{x}{y} = \cot 50^{\circ}.$$

The method employed in the case of 310° may be generalized to obtain the functions of any angle not listed in a standard table. Specifically, any function of an angle θ is numerically equal to the same function of α , where α is the acute angle between the terminal side of θ and the horizontal axis, but the sign of the function must be determined from the quadrant in which the angle θ terminates. The idea is illustrated further for the trigonometric functions of -167° and 737° (note Figures 22 and 23). The angle of measure -167° terminates in the third quadrant, with the terminal side forming an acute angle of 13° with the horizontal axis. The angle of measure 737° terminates in the first quadrant, with the terminal

side forming an acute angle of 17° with the horizontal axis. Consequently,

$$\sin (-167^{\circ}) = \frac{y}{r} = -\sin 13^{\circ};$$

$$\cos (-167^{\circ}) = \frac{x}{r} = -\cos 13^{\circ};$$

$$\tan (-167^{\circ}) = \frac{y}{x} = \tan 13^{\circ};$$

$$\csc (-167^{\circ}) = \frac{r}{y} = -\csc 13^{\circ};$$

$$\sec (-167^{\circ}) = \frac{r}{x} = -\sec 13^{\circ};$$

$$\cot (-167^{\circ}) = \frac{x}{y} = \cot 13^{\circ}.$$

Also,

$$\sin 737^{\circ} = \frac{y}{r} = \sin 17^{\circ};$$
 $\cos 737^{\circ} = \frac{x}{r} = \cos 17^{\circ};$
 $\tan 737^{\circ} = \frac{y}{x} = \tan 17^{\circ};$
 $\csc 737^{\circ} = \frac{r}{y} = \csc 17^{\circ};$
 $\sec 737^{\circ} = \frac{r}{x} = \sec 17^{\circ};$
 $\cot 737^{\circ} = \frac{x}{y} = \cot 17^{\circ}.$

EXERCISES 5

1. Draw a figure and express the trigonometric functions of each of the following angles in terms of functions of a positive acute angle:

(a)	119	(e)	-37°	(i)	372°	(m)	-690°
(b)	213°	(f)	-165°	(j)	544°	(n)	800°
(c)	296°	(g)	-215°	(k)	-544°	(0)	-800°

(d) 400° (h) -340° (l) 690° (p) 540°

2. Draw a diagram and find the functions of the angle $180^{\circ} - A$ in terms of the functions of $\angle A$, where $\angle A$ is some positive acute angle.

3. Draw a diagram and find the functions of the angle $180^{\circ} + A$ in terms of the functions of $\angle A$, where $\angle A$ is an acute angle.

4. Draw a diagram and find the functions of the angle -A in terms of the functions of $\angle A$, where $\angle A$ is an acute angle.

5. Draw a diagram and find the functions of the angle $90^{\circ} + A$ in terms of functions of $\angle A$, where $\angle A$ is some positive acute angle.

6. Consider the answer to Exercise 4 if $\angle A$ is any angle.

11. TO COMPUTE THE TRIGONOMETRIC FUNCTIONS IF THE VALUE OF ANY ONE FUNCTION IS GIVEN

Suppose we know that $\sin A = \frac{3}{5}$. Since $\sin A = y/r$, and since r is always positive, y must be positive. Moreover, as a practical expedient in drawing a figure to represent the situation, we may choose any two

Fig. 24

positive numbers for y and r in the ratio $\frac{3}{5}$. If we choose y=3 and r=5, we may construct the two possible cases displayed in Figure 24, thereby determining where the possible angles must terminate.

It is evident that the given value for $\sin A$ determines an unlimited number of angles, but they must all terminate on OP or on OP'. We have then, by calculation, if we take y=3 and r=5, OM=4 and OM'=-4. Hence, for the angles terminating on OP, we have $\cos A=\frac{1}{5}$, $\tan A=\frac{3}{4}$, $\cot A=\frac{4}{3}$, $\sec A=\frac{5}{4}$, $\csc A=\frac{5}{3}$; and for the angles terminating on OP', $\cos A'=-\frac{1}{5}$, $\tan A'=-\frac{3}{4}$, $\cot A'=-\frac{4}{5}$, $\sec A'=-\frac{5}{4}$, $\csc A'=\frac{5}{3}$.

We note that of the unlimited number of angles whose sine is \{\frac{1}{2}}\) there are two positive angles less than 360°. These two angles are called the

principal angles, determined by $\sin A = \frac{3}{5}$. In general, we are in a position to construct the principal angles, if the value of any one function is given, and we may then compute the remaining functions.

If either $\sin A$, $\cos A$, $\sec A$, or $\csc A$ is given, and we are required to construct the principal angles it is best to draw a circle with a chosen r as a radius, then determine y or x from the given function. It is then com-

paratively simple to determine where the required angles must terminate.

If we are given either $\tan A$ or $\cot A$, to construct the principal angles, we measure the required values of y and x and thus determine the angles without the construction of a circle.

Illustration: If $\cos A = \frac{3}{7}$ and the problem is to construct the principal angles, we may choose r = 7; then x = 3. Of course, one may select any other two positive numbers for r and x in the ratio $\frac{3}{7}$. Next, construct

a circle with r=7 as a radius, and draw a line parallel to the y axis and three units to the right of it, as in Figure 25. We have thus determined the required angles A and A'. We may now readily compute the other functions of A and A' if desired.

EXERCISES 6

- 1. Given csc $A = \frac{13}{6}$; construct the principal angles, and find the values of the remaining functions.
- 2. Given sec $A = \frac{17}{18}$; construct the principal angles, and compute the values of the other functions.
- 3. Given $\sin A = -\frac{3}{5}$ and $\cos A$ is a positive number; construct the one principal angle determined by these two conditions, and find the value of the remaining functions.
- **4.** Given $\cos A = -\frac{5}{8}$ and $\tan A$ is a negative number; construct the principal angle, and find the remaining functions.
- 5. Given $\tan A = \frac{5}{7}$; construct the principal angles, and find the remaining functions.

Note: Here we have

$$\frac{y}{x} = \frac{+5}{+7} \quad \text{or} \quad \frac{-5}{-7}.$$

- **6.** Given cot $A = \frac{9}{5}$ and sin A is negative; construct the principal angle, and find the remaining functions.
 - 7. Given $\sin A = \frac{5}{18}$ and $\cos A$ is positive; find the value of

(a)
$$(\operatorname{sec} A)(\operatorname{tan} A) + (\operatorname{cos} A)(\operatorname{cot}^2 A);$$

(b)
$$\frac{\cos A}{\tan A} - \frac{\sec A}{\csc A}$$
.

8. Given $\tan A = -\frac{8}{15}$ and $\sin A$ positive; find the value of

$$\frac{\cos A - 3\cot A}{\csc^2 A}.$$

9. Given $\cos A = \frac{12}{13}$ and $\tan A$ negative; find the value of

(a)
$$\frac{[(\sin A)^{-1}-(\cot A)^{-1}]^2}{(\sec A)^0};$$

(b)
$$\left(\frac{\sin^2 A}{\cos^2 A} + 1\right) \left(\frac{1}{\csc^2 A - \cot^2 A}\right)$$
.

10. Given $\sec A = -\frac{5}{4}$ and $\sin A$ negative; find the value of

$$\frac{(1-\sin^2 A)^{1/2}}{\tan A}\left(\frac{1}{\cos A}-\cot A\right).$$

12. LINE VALUES OF THE TRIGONOMETRIC FUNCTIONS

It is evident from Figure 26 that if we construct any angle θ terminating in the first quadrant, and take OP = r = 1, then $\sin \theta = y/r = y/1 = y = MP$. Likewise, $\cos \theta = x/r = x/1 = OM$. If we draw ST and QV tangent to the circle at S and Q, respectively, then $\tan \theta = ST/OS = ST/1 = ST$, and $\sec \theta = OT/OS = OT/1 = OT$.

Since $\angle OVQ = \angle \theta$ (why?), it is also seen that

$$\csc \theta = \frac{OV}{OQ} = \frac{OV}{1} = OV$$
, and $\cot \theta = \frac{QV}{OQ} = \frac{QV}{1} = QV$.

Fig. 26

Hence, we speak of y, x, ST, OT, OV, and QV as the line values of $\sin \theta$, $\cos \theta$, $\tan \theta$, $\sec \theta$, $\csc \theta$, and $\cot \theta$, respectively, since the lengths of these lines in terms of the length of OP as a unit are the values of these functions of θ .

If $\angle \theta$ terminates in the second quadrant, as in Figure 27, the line values of the functions $\sin \theta$, $\cos \theta$, $\tan \theta$, $\sec \theta$, $\csc \theta$, and $\cot \theta$ are still numerically equal to the lengths of the lines y, x, ST, OT, OV, and QV, respectively. Irrespective of the quadrant in which the angle terminates, S is taken as the point (1,0) and Q as (0,1). It is important to note this

time, however, that for an angle terminating in the second quadrant, x, ST, OT, and QV are to be regarded as negative magnitudes. The fact that the vertical or horizontal distances x, ST, and QV are to be taken as negative is readily called to our attention because of the conventional

scheme of signs associated with our axis system. A negative sign is associated with OT, since its direction is opposite to that of the terminal side OP.

If $\angle \theta$ terminates in the third quadrant or fourth quadrant, the line values of the functions $\sin \theta$, $\cos \theta$, $\tan \theta$, $\sec \theta$, $\csc \theta$, and $\cot \theta$ are y, x, ST, OT, OV, and QV, respectively, of the corresponding Figures 28 and 29. But it is to be noted that in Figure 28, y, x, OT, and OV are negative magnitudes and that in Figure 29, y, ST, OV, and QV are negative magnitudes.

The student should be able to reproduce these figures for any angle terminating in any quadrant.

In each figure it is also possible to describe the line value of $\angle \theta$ in radians as the measure of the arc subtended by θ , in the direction of θ .

From an examination of the line values of the functions it may be seen that $\sin \theta$ and $\cos \theta$ cannot equal any number greater than 1 or less than -1; that $\sec \theta$ and $\csc \theta$ may equal any finite number less than or equal to -1, or any finite number equal to or greater than 1; and that $\tan \theta$ and $\cot \theta$ may equal any finite number.

13. GRAPHS OF TRIGONOMETRIC FUNCTIONS

We now have a convenient method of graphing the trigonometric functions, namely, by laying off the line values of the angles as abscissas and the line values of the corresponding functions as ordinates.

Fig. 30

Thus, to graph $\sin \theta$, draw a circle of unit radius and various arbitrary angles θ_1 , θ_2 , θ_3 , and so on, whose terminal lines intersect the circle in such points as a, b, c etc., as shown in Figure 30.

Next choose some convenient point O as an origin, located on a straight line through the center of the circle, and lay off the line values of the various angles as abscissas and the corresponding sines of the angles as ordinates. A smooth curve drawn through these points, as in Figure 30, is a portion of the graph of $\sin \theta$. Figure 31 shows the graph and its mechanical

Frg. 31

construction when θ ranges from 0 to 2π . When constructing the curve, it should be noted that in terms of the radius of the circle as the unit, π is approximately $3\frac{1}{7}$ times the unit.

The graph for $\cos \theta$, when θ ranges from 0 radians to 2π radians, appears as Figure 32.

$$SA = OA' = \cos 0 = 1;$$

 $SA_1 = BA_1' = \cos \theta_1;$
 $SA_2 = CA_2' = \cos \theta_2;$

From the graph of $\sin \theta$ we see that as θ increases from 0 to $\pi/2$, $\sin \theta$ increases from 0 to 1; as θ increases from $\pi/2$ to π , $\sin \theta$ decreases from 1 to 0; as θ increases from π to $3\pi/2$, $\sin \theta$ decreases from 0 to -1; and as θ increases from $3\pi/2$ to 2π , $\sin \theta$ increases from -1 to 0. Moreover, this segment of the curve repeats itself from 2π to 4π , from 4π to 6π , and so on. In general, for any value of θ ,

$$\sin\theta = \sin\left(\theta + 2n\pi\right),\,$$

when $n = 0, 1, 2, 3, \cdots$. We therefore describe $\sin \theta$ as a periodic function with a period 2π .

Similarly, for any value of θ ,

$$\cos\theta = \cos\left(\theta + 2n\pi\right),$$

when $n = 0, 1, 2, 3, \dots$; thus, $\cos \theta$ is also a periodic function with a period of 2π .

14. THE GRAPH OF SIN 60

If we consider the graph of the function $\sin 2\theta$, it is observed, for any value of θ , that

$$\sin 2\theta = \sin (2\theta + 2n\pi) = \sin 2(\theta + n\pi),$$

Fig. 33

when $n = 0, 1, 2, 3, \cdots$ Hence, $\sin 2\theta$ is a periodic function with a period π ; that is, the curve representing $\sin 2\theta$ between 0 and π is repeated between π and 2π , between 2π and 3π , and so on (note Figure 33).

In the same way it can be shown that

$$\sin 3\theta = \sin 3\left(\theta + \frac{2n\pi}{3}\right)$$

when $n = 0, 1, 2, 3, \cdots$. Thus, the values of $\sin 3\theta$ corresponding to θ in the range from 0 to $2\pi/3$ will be repeated over and over again; so $\sin 3\theta$ is a periodic function with a period $2\pi/3$.

Fig. 34

If we graph the functions $\sin \theta$, $\sin 2\theta$, and $\sin 3\theta$ relative to the same axes and to the same scale, we have the situation depicted in Figure 34.

The figure shows $\sin \theta$ for one period, $\sin 2\theta$ for two periods, and $\sin 3\theta$ for three periods. This pictorial representation makes clear the difference that exists between the various curves and emphasizes the fact that $\sin \theta$ is a periodic function whose period is 2π , that $\sin 2\theta$ is a periodic function whose period is $2\pi/3$.

In general, the function $\sin b\theta$ is a periodic function whose period is $2\pi/|b|$. As an illustration of this general conclusion, the graph of $\sin \theta/2$ is given in Figure 35, from which it is readily seen that $\sin \theta/2$ is a periodic function whose period is $2\pi/\frac{1}{2}$ or 4π .

EXERCISES 7

1. Construct the graph of $3 \sin \theta$ for $0 \le \theta \le 2\pi$.

Note: The ordinate of the graph of $3 \sin \theta$, for each value of θ , is three times the corresponding ordinate of the graph of $\sin \theta$. The period of $3 \sin \theta$ is the same as the period of $\sin \theta$.

- 2. Construct the graph of $\frac{1}{2}\sin\theta$ for $0 \le \theta \le 2\pi$. (See the note after Problem 1.)
 - 3. Construct the graph of $2 \sin 3\theta$ for one period of the function.
 - **4.** Construct the graph of 3 sin $(2\theta/3)$ for one period of the function.
 - **5.** Construct the graph of $\cos 2\theta$ for $0 \le \theta \le 2\pi$.
 - 6. Construct the graph of $\cos 3\theta$ for one period of the function.
 - 7. Construct the graph of $\cos (\theta/2)$ for one period of the function.
 - 8. Construct the graph of each of the following for one period:
 - (a) $2 \cos 3\theta$; (b) $\frac{1}{2} \cos 2\theta$; (c) $\frac{1}{2} \cos 3\theta$
 - **9.** (a) By use of a construction similar to that used in drawing the graph of $\sin \theta$, and by employing the line values for $\tan \theta$, draw a graph for $\tan \theta$ as θ increases from $\theta = 0^{\circ}$ to $\theta = 360^{\circ}$.
 - (b) From your graph discuss the variation in the value of $\tan \theta$ as θ increases from 0° to 180°.
- 10. Construct the graph of $\cot \theta$ from $\theta = 0^{\circ}$ to $\theta = 360^{\circ}$. From your graph discuss the variation in the value of $\cot \theta$ as θ increases from $\theta = 0^{\circ}$ to $\theta = 180^{\circ}$.
 - 11. (a) By use of line values for $\sec \theta$, construct the graph of $\sec \theta$ from $\theta = 0^{\circ}$ to $\theta = 360^{\circ}$.
 - (b) From your graph discuss the variation of $\sec \theta$ as θ increases from 0° to 180°.
 - 12. (a) Construct the graph of $\csc \theta$ from $\theta = 0^{\circ}$ to $\theta = 360^{\circ}$.
 - (b) Discuss the variation of $\csc \theta$ as θ increases from 0° to 180°.

15. THE GRAPH OF a sin $b(\theta + c)$

If we graph $\sin \theta$, $\sin (\theta + \pi/3)$, and $\sin (\theta - \pi/3)$, either by use of line values or by use of a table of sines, we have Figure 36.

These curves show that the three given functions are periodic, each with a period of 2π . In fact, if every point of $\sin \theta$ is moved to the left parallel to the axis of θ a distance $\pi/3$ units, we obtain the graph of $\sin (\theta + \pi/3)$; if every point of $\sin \theta$ is moved to the right parallel to the

Fig. 36

axis of θ a distance of $\pi/3$ units, we obtain the graph of $\sin (\theta - \pi/3)$. The graph of $\sin (\theta + \pi/3)$ is said to have a lead of $\pi/3$ relative to the graph of $\sin \theta$; whereas the graph of $\sin (\theta - \pi/3)$ is said to have a lag of $\pi/3$ relative to the graph of $\sin \theta$. In general, the graph of $\sin (\theta + c)$ has a lead of c relative to $\sin \theta$ if c is positive, or it has a lag of c relative to $\sin \theta$ if c is negative.

Fig. 37

Let us now consider the function $y = a \sin(b\theta + c)$. The graph of this function is constructed in Figure 37. It is evident from the figure that the greatest value of y is a, and the smallest value of y is -a. This value a is designated as the amplitude of the function. We have seen

that the function $y = \sin b\theta$ is zero when $\theta = 0$, but in the case of the function $y = a \sin (b\theta + c)$, $y = a \sin c$ when $\theta = 0$, and y = 0 when $\theta = -c/b$. Hence the graph $y = a \sin (b\theta + c)$ is said to be in the lead of $y = \sin b\theta$ by the angular value c/b. If c and b are of opposite sign, the graph of $y = a \sin (b\theta + c)$ is said to lag in reference to $y = \sin b\theta$ by the angular value -c/b. It is not expected that c will be numerically greater than π ; if such be the case, however, the lag or lead will be $(c - 2n\pi)/b$, where n is an integer large enough to make $|c - 2n\pi| \le \pi$.

We note that since $\sin (b\theta + c) = \sin [b(\theta + 2n\pi/b) + c]$, the values of y corresponding to θ from 0 to $2\pi/b$ will be repeated over and over. Hence $2\pi/|b|$ is said to be the period of the function $y = a \sin (b\theta + c)$, and the function is said to be a periodic function of period $2\pi/|b|$.

EXERCISES 8

- **1.** What is the amplitude, lag or lead, and period of $5 \sin (3x 5)$?
- 2. What is the amplitude, lag or lead, and period of $\frac{1}{2}\cos(4x + \pi/2)$?
- 3. In the function $y=a\sin{(b\theta+c)}$, assign values to a, b, and c so that the amplitude is 10 and the period is $\pi/3$ radians.
 - 4. Is the value of c in Exercise 3 fixed by the given conditions?
- 5. Fix the value of c in Exercise 3 so that the function will have a lag of $\pi/4$ radians.
- 6. Show that $y = \cos \theta$ has the same period as $y = \sin \theta$, but has a lead of $\pi/2$ relative to $y = \sin \theta$. Note that $y = \sin (\theta \pi/2)$.

Sketch the graphs of each of the following functions and state the amplitude, lag or lead, and period for each function.

7. $y = 2 \sin (2x + 2)$	8. $y = \sin (3x - \pi/3)$
9. $y = 3 \sin (x/2 + \pi)$	10. $y = 10 \sin (10x - 5)$
11. $y = 2 \sin (2x - 7)$	12. $y = \cos(x + \pi/3)$
13. $y = \cos(x - \pi/3)$	14. $y = \cos(2x + \pi/2)$
15. $y = \cos(3x - \pi/6)$	16. $y = 5 \cos(x/2 + \pi)$
17. $y = \frac{1}{2}\cos(3x - 2)$	18. $y = 10 \cos (20x - 5)$

19. The graph of the function $y = F_1(x) + F_2(x) + F_3(x)$ may be sketched by graphing $y_1 = F_1(x)$, $y_2 = F_2(x)$, $y_3 = F_3(x)$ on the same axes and noting that for any value of x, $y = y_1 + y_2 + y_3$. Hence, any ordinate y on the desired graph may be obtained by adding graphically through the use of a ruler the corresponding ordinates of y_1 , y_2 , and y_3 . By this device, sketch the graphs of each of the following:

```
(a) y = \sin \theta + 2 \sin 2\theta + 3 \sin 3\theta
```

- (b) $y = 2 \sin \theta \cos 2\theta$
- (c) $y = x + \sin x$
- $(d) \ y = 3 + \sin x$
- (e) $y = 2x 3 + 2\sin x$
- $(f) \quad y = 3x \sin 3x$

16. INVERSE TRIGONOMETRIC FUNCTIONS

In the previous sections we have graphed the trigonometric functions by designating the values of a given function as the ordinates and the corresponding angles as the abscissas. It was assumed that the angle was the independent variable and the function was the dependent variable. The study was obviously facilitated by the fact that the trigonometric functions are single-valued; that is, by assigning a value to the angle, one and only one value of the function is determined.

In many applications of trigonometry we meet an inverse problem; that is, we are required to find the angle or angles when the value of the function is assigned. In this case the independent variable, chosen as the abscissa, denotes values of the function while the angle or angles corresponding to a particular function are designated as ordinates. To be more specific, if x denotes values of $\sin y$, then y is said to be the inverse sine of x; the fact is represented symbolically by $y = \sin^{-1} x$. This is read, as just implied, y is the angle (or angles) whose sine is x. We must note that the -1 is not used as an exponent in this case; rather $\sin^{-1} x$ is merely a new symbol for the angle or angles y. This particular example may be generalized to apply to the inverse cosine, the inverse tangent, and so on.

Illustration 1: Let us graph $y = \sin^{-1} x$.

Since the statement

$$y = \sin^{-1} x$$

means

$$x = \sin y$$

we note that as y increases from 0 to $\pi/2$, x increases from 0 to 1; as y increases from $\pi/2$ to π , x decreases from 1 to 0; as y increases from π to $3\pi/2$, x decreases from 0 to -1; and as y increases from $3\pi/2$ to 2π , x increases from -1 to 0. Hence, the graph of $y = \sin^{-1} x$ is merely the sine curve as previously studied, but drawn relative to the y axis. Since the sine of an angle varies between -1 and +1, we can only assign values to x between -1 and +1.

This now brings us to an important feature of such a curve as $y = \sin^{-1} x$; namely, any value assigned to x will determine an unlimited number of values for y. Thus, if x = 0,

$$y = 0, \pm \pi, \pm 2\pi, \pm 3\pi, \text{ etc.};$$

if $x=\frac{1}{2}$,

$$y = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6}, \text{ etc.}$$

For this reason, the inverse sine is said to be multivalued.

If in Figure 38 we restrict ourselves to the portion AB of the graph of $y = \sin^{-1} x$, where $-\pi/2 \le y \le \pi/2$, the function becomes single-valued, and the values of the function along AB are called the *principal values* of the $\sin^{-1} x$.

In Section 13 we graphed $y = \sin x$ by employing the line values of the angles as abscissas. But if r = 1, as in Section 13, the line value of the angle equals the arc that intercepts the angle. Hence, the angle is

sometimes indicated by $\arcsin x$ and the relation $y = \sin^{-1} x$ is written as $y = \arcsin x$.

Illustration 2: Let us graph $y = \cos^{-1} x$ (note Figure 39).

Since the cosine of an angle varies between -1 and +1, we can assign values to x only between -1 and +1. As in Illustration 1, however, the assignment of any value to x between -1 and +1 will determine an infinite number of values for y. Thus, if x = 0,

$$y = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \pm \frac{7\pi}{2}, \text{ etc.,}$$

if $x=\frac{1}{2}$,

$$y = \pm \frac{\pi}{3}, \pm \frac{5\pi}{3}, \pm \frac{7\pi}{3}, \pm \frac{11\pi}{3}, \text{ etc.}$$

Hence, we note that the function $y = \cos^{-1} x$ is also a multivalued function, but if we restrict ourselves in Figure 39 to the portion AB, where $0 \le y \le \pi$, the function $y = \cos^{-1} x$ becomes single-valued, and the values of the function along AB are called the *principal values* of $\cos^{-1} x$.

Similarly, $\csc^{-1} x$ and $\tan^{-1} x$ are frequently restricted to values between $-\pi/2$ and $+\pi/2$, and $\cot^{-1} x$ and $\sec^{-1} x$ are restricted to values between 0 and π in order to make the functions single-valued.

EXERCISES 9

Sketch the graph of each of the following functions:

1.
$$y = \arcsin x$$

3.
$$y = \tan^{-1} x$$

5.
$$y = \sin^{-1} 2x$$

7.
$$y = \cos^{-1} 3x$$

9.
$$y = \sin^{-1} 2x - \pi/4$$

2.
$$y = \arccos x$$

4.
$$y = 2 \sin^{-1} x$$

6.
$$y = 2 \sin^{-1} 2x$$

8.
$$y = 2 \cos^{-1} 3x$$

10.
$$y = \cos^{-1} 3x - \pi/3$$

2

Trigonometric Identities and Conditional Equations

17. FUNDAMENTAL TRIGONOMETRIC IDENTITIES

In Book I, we defined an algebraic identity as an equation that is valid for any permissible value of the unknown. Thus,

$$(x+1)^3 = x^3 + 3x^2 + 3x + 1$$

is an algebraic identity. Likewise, the equation

$$\frac{1}{x^2-1}=\frac{1}{2(x-1)}-\frac{1}{2(x+1)}$$

is an identity, but in this case x = 1 and x = -1 are not permissible values of the unknown. When x = 1 or -1, $1/(x^2 - 1)$ does not exist. Similarly, the first fraction on the right does not exist when x = 1, and the second fraction on the right does not exist when x = -1. A definition of an identity, equivalent to the meaning just expressed, is

An identity is an equation that is true for all values of the unknowns for which both members are defined.

In this chapter, we shall study trigonometric identities. Just as in algebra, a few trigonometric identities are of sufficient importance to be developed and memorized.

The simplest identities follow immediately from the definitions of the trigonometric functions. These are

$$(1) \sin A = \frac{1}{\csc A};$$

$$(2) \cos A = \frac{1}{\sin A};$$

$$(3) \tan A = \frac{1}{\cot A};$$

$$(4) \cot A = \frac{1}{\tan A};$$

$$(5) \cos A = \frac{1}{\sec A};$$

(6)
$$\sec A = \frac{1}{\cos A}$$
.

Since $\sin A = \frac{y}{r}$ and $\cos A = \frac{x}{r}$, it follows that

(7)
$$\frac{\sin A}{\cos A} = \frac{\frac{y}{r}}{\frac{x}{r}} = \frac{y}{x} = \tan A.$$

Similarly,

(8)
$$\frac{\cos A}{\sin A} = \cot A.$$

By referring to the figures of Section 6, we see that $x^2 + y^2 = r^2$. After dividing each member of this equation by x^2 , y^2 , and r^2 , respectively, we have

$$1 + \frac{y^2}{x^2} = \frac{r^2}{x^2};$$
$$\frac{x^2}{y^2} + 1 = \frac{r^2}{y^2};$$
$$\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1.$$

The various ratios appearing in these equations may be replaced by the appropriate trigonometric functions, thereby giving

$$(9) 1 + \tan^2 A = \sec^2 A;$$

(10)
$$\cot^2 A + 1 = \csc^2 A;$$

(11)
$$\cos^2 A + \sin^2 A = 1.$$

These three latter identities may appear in various forms; thus, from $1 + \tan^2 A = \sec^2 A$, we obtain

$$\cdot \tan A = \pm \sqrt{\sec^2 A - 1}, \quad \text{and} \quad \sec A = \pm \sqrt{1 + \tan^2 A}.$$

From $\cot^2 A + 1 = \csc^2 A$, we obtain

$$\cot A = \pm \sqrt{\csc^2 A - 1}$$
 and $\csc A = \pm \sqrt{1 + \cot^2 A}$.

Also, from $\cos^2 A + \sin^2 A = 1$, we obtain

$$\sin A = \pm \sqrt{1 - \cos^2 A}$$
 and $\cos A = \pm \sqrt{1 - \sin^2 A}$.

The identities involving radicals are ambiguous since they involve two signs before the radicals. The sign to be chosen in each case depends on the quadrant in which $\angle A$ terminates. Thus, if $\angle A$ terminates in the first or fourth quadrant,

$$\cos A = \sqrt{1 - \sin^2 A},$$

$$\sec A = \sqrt{1 + \tan^2 A}.$$

but if $\angle A$ terminates in the second or third quadrant,

$$\cos A = -\sqrt{1 - \sin^2 A},$$

$$\sec A = -\sqrt{1 + \tan^2 A}.$$

These fundamental identities which have been proved may now be employed to establish an unlimited number of other trigonometric identities.

Illustration 1: Find various expressions that are identical to $\tan \phi + \cot \phi$.

From the Fundamental Identities (7) and (8), we obtain

$$\tan \phi + \cot \phi = \frac{\sin \phi}{\cos \phi} + \frac{\cos \phi}{\sin \phi}$$

The right member may be written

$$\frac{\sin^2 \phi + \cos^2 \phi}{\sin \phi \cos \phi} \quad \text{or} \quad \frac{1}{\sin \phi \cos \phi},$$

since $\sin^2 \phi + \cos^2 \phi = 1$. The fraction

$$\frac{1}{\sin\phi\cos\phi} = \frac{1}{\sin\phi} \cdot \frac{1}{\cos\phi},$$

and

$$\frac{1}{\sin\phi}\cdot\frac{1}{\cos\phi}=\csc\phi\cdot\sec\phi,$$

by Fundamental Identities (2) and (6). Thus,

$$\tan \phi + \cot \phi = \frac{\sin \phi}{\cos \phi} + \frac{\cos \phi}{\sin \phi} = \frac{1}{\sin \phi \cos \phi} = \csc \phi \sec \phi.$$

As it appears from this illustration, we could obtain an unlimited number of expressions identical to a given expression.

Illustration 2: Express $\tan \phi + \cot \phi$ by an expression identical to it involving only $\tan \phi$.

From Identity (4),

$$\tan \phi + \cot \phi = \tan \phi + \frac{1}{\tan \phi}.$$

Similarly, if it had been requested, we could express the given sum as an expression involving only $\cot \phi$. Thus, by Identity (3),

$$\tan \phi + \cot \phi = \frac{1}{\cot \phi} + \cot \phi.$$

In later mathematical work it is often necessary to find various expressions that are identical to certain given expressions. It will also be necessary in many cases to state a given expression in terms of one trigonometric function.

Illustration 3: Determine whether or not

$$\tan \phi + \cot \phi$$

is identical to

$$\frac{\sec^2\phi}{\tan\phi}$$
.

This may be done in various ways. In general, an attempt is made to transform the left member into the right member by the use of fundamental identities; or an attempt is made to transform the right member into the left member; or an effort is made to transform both members into the same expression.

Since $\sec^2 \phi = 1 + \tan^2 \phi$, it follows that

$$\frac{\sec^2\phi}{\tan\phi} = \frac{1+\tan^2\phi}{\tan\phi} = \frac{1}{\tan\phi} + \frac{\tan^2\phi}{\tan\phi}.$$

But, knowing that $\cot \phi$ is the reciprocal of $\tan \phi$, we have

$$\frac{\sec^2\phi}{\tan\phi}=\cot\phi+\tan\phi,$$

which establishes the identity by virtue of the fact that we have succeeded in transforming one member into the other.

Since the left member of the last equation is not defined for $\tan \phi = 0$, we shall understand that $\tan \phi \neq 0$.

Illustration 4: Prove that

$$\tan \phi + \cot \phi \equiv \frac{\sec^2 \phi}{\tan \phi},$$

by showing that both members are identical to some other expression. We may proceed as follows: In Illustration 1 we showed that $\tan \phi + \cot \phi$ is identical to $\csc \phi$ sec ϕ .

Also, since

$$\sec^2 \phi = \frac{1}{\cos^2 \phi}$$
 [Identity (6)],

and

$$\tan \phi = \frac{\sin \phi}{\cos \phi}$$
 [Identity (7)],

$$\frac{\sec^2\phi}{\tan\phi} = \frac{\frac{1}{\cos^2\phi}}{\frac{\sin\phi}{\cos\phi}} = \frac{1}{\cos\phi\sin\phi} = \sec\phi\csc\phi,$$

by Identities (5) and (6). So both members are identical to the same expression, namely, $\csc \phi \sec \phi$.

[•] The symbol = may be read "is identical to."

ICh. 2

Caution: The student is cautioned to avoid a common type of error in working with identities. For example, it is true that $\sqrt{a^2 - 2ab + b^2} = \sqrt{b^2 - 2ab + a^2}$. But either radical may be simplified only to a - b if a - b > 0, or to b - a if b - a > 0. In other words, it must be kept in mind that the radical sign denotes the positive square root.

Thus, we cannot write

226

$$\sqrt{1-2\tan x + \tan^2 x} = 1 - \tan x,$$

unless it is known that $1 - \tan x > 0$. If $1 - \tan x$ is negative, the value of the radical is $\tan x - 1$.

EXERCISES 10

Transform the left member of each of the following identities into the form of the right member:

1.
$$\cos x \tan x + \sin x \cot x = \sin x + \cos x$$

$$2. \frac{\cos x}{\sin x \cot^2 x} = \tan x$$

3.
$$(\tan x + \cot x) \sin x \cos x = 1$$

4.
$$(\sin x + \cos x)(\tan x + \cot x) = \sec x + \csc x$$

$$5. \cot x + \frac{\sin x}{1 + \cos x} = \csc x$$

$$6. \frac{\tan x - \cot x}{\tan x + \cot x} = \frac{2}{\csc^2 x} - 1$$

7.
$$\frac{\sec^3 x - (\tan x - 1)\sec x \tan x}{\sec^2 x} = \sin x + \cos x$$

8.
$$\cos^2 x (1 + \tan^2 x) = 1$$

9.
$$\cot^2 A - \cos^2 A = \cos^2 A \cot^2 A$$

10.
$$\frac{\tan \theta}{1 + \sec \theta} \left[\frac{\tan^2 \theta}{(1 + \sec \theta)^2} + 3 \right] = \frac{2 \sin \theta (\cos \theta + 2)}{(1 + \cos \theta)^2}$$

Establish each of the following identities by any method.

11.
$$(\tan A + \cot A)^2 = \sec^2 A + \csc^2 A$$

12.
$$\frac{\sec A}{\cos A} - \frac{\tan A}{\cot A} = 1$$

13.
$$(\csc A - \cot A)^2 = \frac{1 - \cos A}{1 + \cos A}$$

14.
$$\frac{\tan A - 1}{\tan A + 1} = \frac{1 - \cot A}{1 + \cot A}$$

15.
$$\frac{1 + \cot^2 A}{1 + \tan^2 A} = \cot^2 A$$

16.
$$\frac{\sqrt{1 + \tan^2 \theta} \sec^2 \theta}{\tan^4 \theta} = \frac{\cos \theta}{\sin^4 \theta}$$

17.
$$\frac{\tan^2\theta}{\sec^3\theta}=\cos\theta\sin^2\theta$$

18.
$$\sec x (\sec x + \tan x)^2 = \sec^3 x (1 + \sin x)^2$$

$$19. \ \frac{\tan x \cos x - \sin x \sec^2 x}{\tan^2 x} = -\sin x$$

20.
$$\sec^2 x \tan x + \sec^3 x = \frac{\tan x + \sec x}{\cos^2 x}$$

21.
$$\frac{\tan \theta}{\cos \theta} (1 + \cos^2 \theta) = \sin \theta (\sec^2 \theta + 1)$$

22.
$$\cos^8 x - \sin^2 x \cos x - 4 \sin x \cos x = \cos x (1 - 4 \sin x - 2 \sin^2 x)$$

23.
$$\tan^5 x = \sec^2 x (\tan^3 x - \tan x) + \tan x$$

24.
$$\frac{(1-\cos x)^2\sin x\cos x-\sin^3 x(1-\cos x)}{(1-\cos x)^4}=\frac{-\sin x}{(1-\cos x)^2}$$

25.
$$\frac{\csc \theta [\tan \theta \sec \theta + 2 \sec^3 \theta \tan \theta] - \tan^2 \theta \sec \theta \csc \theta \cot \theta}{\csc^2 \theta}$$

$$= \tan^2 \theta (3 \tan^2 \theta + 1)$$

26.
$$\frac{(\sec x - \tan x)(\sec x \tan x + \sec^2 x) - (\sec x + \tan x)(\sec x \tan x - \sec^2 x)}{(\sec x - \tan x)^2}$$

$$= 2\sec^3 x(1+\sin x)^2$$

- 27. Express $\sin \theta \cos^2 \theta \frac{\cot \theta}{\cos \theta \sin \theta} + \frac{\tan \theta}{\cos \theta}$ in terms of $\sin \theta$ only.
- 28. Express in terms of tan A the expression $\cot A + \sec A \csc A$.
- **29.** Express in terms of $\cos A$, $\frac{\sin^2 A}{\cos A} + \frac{\tan A}{\cot A}$.

18. TRIGONOMETRIC CONDITIONAL EQUATIONS

In trigonometry, as in algebra, an equation that is not true for all values of the unknown for which both members are defined is called a *conditional equation*. As in algebra, the determination of the values of the unknown for which the equation is true is called *solving the equation*.

Illustration 1: Solve the equation

$$(2\sin\phi - 1)(\tan\phi + 1) = 0.$$

Since the right member of this equation is zero, and since the left member is already factored, the desired solution may be obtained by solving the two equations

$$2\sin\phi - 1 = 0$$
 and $\tan\phi + 1 = 0$.

From the first equation we have

$$\sin \phi = \frac{1}{4}$$
.

We wish, therefore, to determine all the values of ϕ that satisfy this equation. The two positive angles less than 360° are $\phi = 30^\circ$ and $\phi = 150^\circ$. Hence, all the roots of $2 \sin \phi - 1 = 0$ are given by the formulas

$$\phi = 30^{\circ} \pm n \cdot 360^{\circ}, \ n = 0, 1, 2, 3, \cdots$$
 (1)

and
$$\phi = 150^{\circ} \pm n \cdot 360^{\circ}, n = 0, 1, 2, 3, \cdots$$
 (2)

or

or

From the second equation, we have

$$\tan \phi = -1$$
.

Hence,
$$\phi = 135^{\circ} \pm n \cdot 360^{\circ}, n = 0, 1, 2, 3, \cdots$$
 (3)

and
$$\phi = 315^{\circ} \pm n \cdot 360^{\circ}, n = 0, 1, 2, 3, \cdots$$
 (4)

Thus, the roots of the original equation are given by (1), (2), (3), and (4).

The positive angles between 0° and 360° satisfying a conditional equation are the principal roots. The general or complete solution is obtained by adding $n(\pm 360^{\circ})$, $n=0,1,2,3,\cdots$, to the principal roots.

Illustration 2: Solve the equation $\sin^2 \phi + 3 \cos \phi - 3 = 0$.

First, we replace $\sin^2 \phi$ by $1 - \cos^2 \phi$, so that the equation involves only one function. Thus, we have

$$1 - \cos^2 \phi + 3 \cos \phi - 3 = 0,$$

$$\cos^2 \phi - 3 \cos \phi + 2 = 0,$$

$$(\cos \phi - 2)(\cos \phi - 1) = 0.$$

The roots of this equation are obviously obtained by solving the two equations,

$$\cos \phi = 2$$
 and $\cos \phi = 1$.

The first equation has no roots. (Why?)

From $\cos \phi = 1$, the principal root is $\phi = 0$, and the general solution is $0^{\circ} \pm n \cdot 360^{\circ}$, $n = 0, 1, 2, 3, \cdots$.

Illustration 3: Solve the equation

$$\sin\phi + \cos\phi = \frac{1}{2}.$$

It is desirable to obtain an equivalent equation involving only one function. Since $\sin^2 \phi + \cos^2 \phi = 1$, we have

$$\cos\phi = \pm\sqrt{1-\sin^2\phi}.$$

After substituting this value for $\cos \phi$ into the given equation, we have

$$\sin \phi \pm \sqrt{1 - \sin^2 \phi} = \frac{1}{2},$$

$$\pm \sqrt{1 - \sin^2 \phi} = \frac{1}{2} - \sin \phi.$$

or

or

After squaring each member, this equation becomes

$$1-\sin^2\phi=\tfrac{1}{4}-\sin\phi+\sin^2\phi,$$

 $2\sin^2\phi-\sin\phi-\tfrac{3}{4}=0.$

By means of the quadratic formula, it is determined that

$$\sin \phi = \frac{1 \pm \sqrt{7}}{4} = 0.91144$$
 and -0.41144 .

The principal values of ϕ , when $\sin \phi = 0.91144$, are represented in Figure 40 by ϕ_1 and ϕ_2 .

Obviously, since $\sin \phi_1 = 0.91144$ and $\cos \phi_1$ is positive, we cannot have $\sin \phi_1 + \cos \phi_1 = \frac{1}{2}$. Hence, ϕ_1 is not a root of the original equation. It is not uncommon in trigonometry, as in algebra, to have an extraneous root when it has been necessary to square both members of an equation in order to solve it.

From Figure 40 we note that $\phi_2 = 180^\circ - \phi_1$ and from Table 2 in the Appendix we find that $\phi_1 = 65^\circ 42' 20''$. Hence, $\phi_2 = 114^\circ 17' 40''$.

The principal angles ϕ_3 and ϕ_4 , when $\sin \phi = -0.41144$, are represented in Figure 41. Since $\sin \phi + \cos \phi = \frac{1}{2}$, both sine and cosine cannot

be negative; hence, ϕ can terminate only in the fourth quadrant. It follows, then, that ϕ_3 is not a solution of the original equation.

From Figure 41 and by use of Table 2, which is explained in the next section, we have

$$\phi_4 = 360^{\circ} - 24^{\circ}17'44''$$

= 335°42'16''.

Hence, the two principal angles satisfying the equation are ϕ_2 and ϕ_4 . The complete solution of the given equation is therefore

$$114^{\circ}17'40'' \pm n(360^{\circ})$$

and $335^{\circ}42'16'' \pm n(360^{\circ})$, where $n = 0, 1, 2, 3, \cdots$.

We may summarize the method of solving a trigonometric equation as follows:

- (1) Transform the given equation into one containing only a single function, or, when possible, express the equation in the form $\phi(x) = 0$, where $\phi(x)$ is factorable into factors, each of which contains only a single trigonometric function.
- (2) Solve the equation, algebraically, for these functions as the unknown quantities.
- (3) Find the value of the angles from the table or, in special cases, from a triangle.
 - (4) Test all solutions by substituting in the given equation.

19. THE USE OF TABLE 2

It is apparent from the previous discussion that Table 2 in the Appendix will be used frequently in the material that follows. Consequently, a brief explanation of it may be desirable. Two problems connected with its use will be considered.

Problem I. To find the value of a specified trigonometric function of an angle when the measure of the angle is given.

- (1) Find the value of $\sin 32^{\circ}20'$. In the particular part of Table 2 headed 32°, look in the marginal column on the left for the number 20'. In the same row with this latter number and in the column headed \sin , we find the value, .53484. This is the desired reading. Also in the same row we find $\tan 32^{\circ}20' = .63299$; $\cot 32^{\circ}20' = 1.5798$; and $\cos 32^{\circ}20' = .84495$.
- (2) Find the value of sin 62°20′. At the top of the various parts of Table 2 the headings only go as far as 44°. But it will be observed that the various parts are marked at the bottom also; these listings start at 45° and continue to 89°. When using the tabular headings that appear at the bottom, it is also necessary to use the column designations given at the bottom; this comment is most important, for it is noted that the designations at the bottom are different from those at the top. The corresponding marginal entries will now be found upon the right. This extension of the table to angles between 45° and 90° is made possible by the identities involving functions of complementary angles.

In the row corresponding to $62^{\circ}20'$, we find $\sin 62^{\circ}20' = .88566$. Also, $\cos 62^{\circ}20' = .46433$; $\cot 62^{\circ}20' = .52427$; $\tan 62^{\circ}20' = 1.9074$.

(3) Find the value of sin 28°13′15″. The desired reading obviously lies between the values of sin 28°13′ and sin 28°14′.

$$\sin 28^{\circ}14' = .47306,$$

and $\sin 28^{\circ}13' = .47281$.

Thus, a difference of 1', or 60", makes a difference of .00025 in the tabulated values.

At this point we shall use simple interpolation, which is based on the assumption that a small change in the value of a function is proportional

to the change in the angle. Hence, the change x in the value of the sine corresponding to an increment of 15" in the angle is given by

$$\frac{x}{.00025} = \frac{15''}{60''}.$$

Thus,

x = .00006, approximately.

So it follows that

$$\sin 28^{\circ}13'15'' = .47281 + .00006$$

= .47287.

With a little experience, interpolation can be performed mentally.

(4) As a second problem involving interpolation, let us obtain cos 52°18′10″.

$$\cos 52^{\circ}18' = .61153,$$

 $\cos 52^{\circ}19' = .61130.$

and

Thus, a difference of 60" represents a change of .00023 in the tabulated values, or 10" corresponds to an increment of .00004 in the tabulated values.

Therefore,
$$\cos 52^{\circ}18'10'' = .61153 - .00004$$

= .61149.

Notice that the difference .00004 was subtracted this time. (Why?) **Problem II.** To find the angle when the value of one of its trigonometric functions is given.

(1) Determine the acute angle θ if $\sin \theta = .60761$.

This time we investigate the columns headed sin until the proper angle is identified. The desired angle is 37°25′.

(2) Determine the acute angle θ if $\sin \theta = .34540$.

It is apparent from an examination of the tables that the desired angle is between 20°12′ and 20°13′. In fact,

$$\sin 20^{\circ}13' = .34557,$$

and

$$\sin 20^{\circ}12' = .34530.$$

The increment x, to be added to $20^{\circ}12'$ to obtain an angle corresponding to the value .34540, may be obtained through interpolation by solving the equation

$$\frac{x}{60^{\prime\prime}} = \frac{.00010}{.00027},$$

wherein .00027 is the difference between the two readings displayed above, and .00010 is the difference between the value of sin 20°12′ and the given value .34540. The solution of this equation provides

$$x = 22''$$
.

Thus, the desired angle is 20°12′22″.

20. THE ACCURACY OF TABLES

In general (exceptions are discussed below) for values of functions correct to two, three, four, and five significant figures, respectively, the corresponding angles may be determined from tables and through the use of interpolation correct to 1°, 10′, 1′, and 0.1′, respectively. Conversely, in general (exceptions are discussed below), for angles correct to 1°, 10′, 1′, and 0.1′, respectively, the corresponding function values can be determined from tables and through the use of interpolation correct to two, three, four, and five significant figures, respectively. We note that though an angle cannot be determined more accurately than to the nearest 0.1′ when a function is given correct to five significant figures, it will be our practice to interpolate to the second in giving an angle, with the understanding that the angle may be in error as much as 3″ in either direction.

The exceptions noted above in parentheses refer to the determination of angles from 0° to 4° by reference to a table of values of the cosine and the determination of angles from 86° to 90° by reference to a table of values of the sine. The exceptions also refer to the determination of the cotangent to five significant figures from a five-place table for angles from 0° to 4°, and the determination of the tangent to five significant figures from a five-place table for angles from 86° to 90°.

A reference to the graph of the cosine near 0° and to the graph of the sine near 90° shows that the cosine is changing very slowly near 0°, and the sine is changing very slowly near 90°. Thus, a five-place table of values for the cosine gives 1 as the cosine of all angles from 0° to 10′. The table gives .99999 for all angles from 10′ to 18′. In fact, the table shows that the cosine varies only from 1.00000 to .99995 as the angle varies from 0° to 35′. Hence, a small angle cannot be determined to the accuracy of 0.1′ from its cosine. Similarly, an angle near 90° cannot be determined to an accuracy of 0.1′ from its sine.

A reference to the graph of the cotangent near 0° and to the graph of the tangent near 90° shows that the cotangent is changing very rapidly near 0°, and the tangent is changing very rapidly near 90°. Thus, a fiveplace table of values for the cotangent gives 3437.7 for 2' and 1718.9 for 3'.

The determination of the cotangent of 2'12'', for example, from such a table gives 1603.9. If, however, we determine $\cot 2'12''$ from the formula $\log \cot x = -\log \tan x$ and the calculated value of the $\log \tan x$ tables for $\log x$ functions for small angles, we have

$$\log \cot 2'12'' = -\log \tan 2'12'' = -(6.80615 - 10) = 3.19385.$$

Hence,
$$\cot 2'12'' = 1562.6$$
.

Thus, the value 1603.9 for cot 2'12" is correct to only two significant figures. This illustrates the fact that the cotangent cannot be determined correct to five significant figures from a five-place table for angles from 0°

to 4°. Similarly, the tangent cannot be determined correct to five significant figures for angles from 86° to 90°.

In practical calculations the possible inaccuracies due to the exceptions discussed above may be avoided by a choice of formulas that will not involve these inaccuracies.

EXERCISES 11

Find the value of each of the following functions by using Table 2.

1. sin 27°18′	2. $\cos 47^{\circ}37'$
3. tan 36°8′	4. cot 69°42′
5. tan 29°32′18″	6. sin 74°18′49″
7. cos 82°7′13″	8. sin 53°46′14″
9. tan 47°19.2'	10. cos 64°34.6′

Find the acute angle θ corresponding to each of the following:

	_			_
11.	$\sin\theta=0.41072$	12.	$\cos \theta =$	0.79300
13.	$\tan\theta=1.2726$	14.	$\cot \theta =$	1.1731
15.	$\sin\theta=0.63729$	16.	$\cos \theta =$	0.23726
17.	$\sin\theta=0.63827$	18.	$\tan \theta =$	0.93824
19.	$\cos\theta = 0.83005$	20.	$\sin \theta =$	0.32116

EXERCISES 12

Find the principal roots for each of the following equations, and construct the angle in each case. Look up the value of the angle in the table when necessary; also express the complete solution in each case.

```
1. (a) \sin \theta = \frac{1}{2}; (b) \cos \theta = -\sqrt{\frac{3}{2}}; (c) \tan \theta = 6
 2. (a) \sin \theta = -\frac{2}{3}; (b) \cos \theta = 0.26037; (c) \cot \theta = 0.55555
 3. \tan \phi = 2 - \sin \phi \sec \phi
                                                        4. \tan^2 \phi + 1 = 2 \sec \phi
 5. \tan \phi - \cos^2 \phi = \sin^2 \phi + 5
                                                           6. \tan \theta + \cot \theta = 2
 7. \sec \theta + \tan \theta = 2
                                                          8. \sin \theta + \csc \theta = -\frac{5}{2}
 9. \sec x \tan x = 2\sqrt{3}
                                                         10. \cos x \cot x = -\frac{5}{4}
11. \sec^2 \phi - \tan \phi - 1 = 0
                                                         12. 3 \sin^2 \phi + \cos^2 \phi + \sin \phi = 0
13. 10\cos^2\theta - 10\tan^2\theta - 3 = 0
14. \sin^2 \theta - \tan \theta + \frac{3}{4} = 0
HINT: Use Horner's method, if necessary.
15. \cos^2 x - \sin^2 x + \cos x = 0
                                                            16. 27 \csc x \cot x = 8 \sec x \tan x
```

15.
$$\cos^2 x - \sin^2 x + \cos x = 0$$
 16. 27 $\csc x \cot x = 8 \sec x \tan x$

17.
$$2 \csc^2 \theta - \frac{\cos \theta}{\sin^2 \theta} - 2 = 0$$

18.
$$\sin \theta \tan \theta - 7 \cos \theta + 5 \sec \theta = 0$$
 19. $2 \sin \theta - 3 \cos \theta = 1$

Solve the following systems of trigonometric equations for r and θ , and properly pair your roots.

20.
$$r \sin \theta = 5$$

 $r \cos \theta = 5$

HINT: Divide the members of the first equation by the corresponding members of the second to eliminate r. After determining θ , substitute to find r.

21.
$$r \cos \theta + r \sin \theta = 5$$
 $r \cos \theta = 3$ **22.** $r = 10 \cos \theta$ $r = 5(1 + \cos \theta)$
23. $r = \frac{8}{1 + \cos \theta}$ $r = 5(2 + \cos \theta)$

Solve the following systems of three trigonometric equations to determine the related sets of values of r, θ , ϕ .

24.
$$r \cos \theta \cos \phi = 3$$

 $r \cos \theta \sin \phi = 4$
 $r \sin \theta = 5$

25. $r \cos \theta \cos \phi = -1$
 $r \cos \theta \sin \phi = 2$
 $r \sin \theta = \sqrt{5}$

21. SIN (A+B) AND COS (A+B)

We shall next establish certain fundamental identities involving two different angles and, as special cases, relations involving the double angle and the half angle. We start with the sum of two angles and establish the important identities

$$\sin (A + B) = \sin A \cos B + \cos A \sin B$$
,
 $\cos (A + B) = \cos A \cos B - \sin A \sin B$.

and

Fig. 42

F1G. 43

These two identities will be proved when A and B are positive acute angles.

There are three cases: (a) when $(A + B) < 90^{\circ}$ (Figure 42): (b) when $90^{\circ} < (A + B) < 180^{\circ}$ (Figure 43); and (c) when $A + B = 90^{\circ}$.

We shall establish the identity for the first two cases. The third case is left as an exercise for the student.

In either Figure 42 or Figure 43, if we let OP = 1 and make the constructions $QP \perp OS$, $QN \perp OX$, $RQ \parallel OX$, $MP \perp OX$; then

(1)

$$QP = \sin B$$
,

and

$$OQ = \cos B$$
.

Also,

$$MR = NQ = OQ \sin A = \cos B \sin A,$$

and

$$ON = OQ \cos A = \cos B \cos A.$$

Since $\angle RPQ = \angle A$, it follows that

$$RP = QP \cos A$$
$$= \sin B \cos A,$$

and

$$MN = QP \sin A$$

= $\sin B \sin A$.

Hence,
$$\sin (A + B) = \frac{MP}{OP} = MP = MR + RP$$

= $\cos B \sin A + \sin B \cos A$
= $\sin A \cos B + \cos A \sin B$.

Likewise,
$$\cos (A + B) = \frac{OM}{OP} = OM = ON - MN$$

= $\cos B \cos A - \sin B \sin A$. (2)

These two identities hold when A and B are of any magnitude, positive or negative, although they have been established only under the conditions stated above.

22. SIN (A - B) AND COS (A - B)

If we accept the universal nature of Identities (1) and (2), we may substitute -B for B and write

$$\sin (A - B) = \sin [A + (-B)] = \sin A \cos (-B) + \cos A \sin (-B).$$

It has already been noted that $\cos (-B) = \cos B$ and $\sin (-B) = -\sin B$; hence,

$$\sin (A - B) = \sin A \cos B - \cos A \sin B. \tag{3}$$

Similarly,

$$\cos (A - B) = \cos [A + (-B)]$$

$$= \cos A \cos (-B) - \sin A \sin (-B)$$

$$= \cos A \cos B + \sin A \sin B.$$
 (4)

These four identities are very important in the development of the formulas for the solution of oblique triangles to be used in the next chapter. They are also fundamental in the development of many important identities that are of value in simplifying formulas found in practice.

23. TAN (A + B) AND TAN (A - B)

To obtain an identity for $\tan (A + B)$ in terms of the tangents of A and B, we may write

$$\tan (A + B) = \frac{\sin (A + B)}{\cos (A + B)} = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$$

After dividing both the numerator and the denominator of the second member by $\cos A \cos B$, we have

$$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}.$$
 (5)

Since

$$\tan (-B) = -\tan B,$$

we may substitute -B for B in Identity (5) and obtain

$$\tan (A - B) = \frac{\tan A + \tan (-B)}{1 - \tan A \tan (-B)}$$
$$= \frac{\tan A - \tan B}{1 + \tan A \tan B}.$$
 (6)

Illustration: Given $\sin A = \frac{1}{3}$, where A terminates in the first quadrant, and $\sin B = \frac{3}{7}$, where B terminates in the second quadrant. Find the trigonometric functions of (A + B) and (A - B).

Since $\sin A = \frac{1}{3}$ and $\sin B = \frac{3}{7}$, it is readily determined that

$$\cos A = \frac{2\sqrt{2}}{3}$$
 and $\cos B = -\frac{2\sqrt{10}}{7}$.

Therefore,

$$\sin (A + B) = \left(\frac{1}{3}\right) \left(\frac{-2\sqrt{10}}{7}\right) + \left(\frac{2\sqrt{2}}{3}\right) \left(\frac{3}{7}\right) = \frac{-2\sqrt{10} + 6\sqrt{2}}{21}$$
$$= \frac{-2(3.1623) + 6(1.4142)}{21} = \frac{2.1606}{21} = 0.1029.$$

It is left as an exercise for the student to obtain the remaining functions of A + B and A - B.

EXERCISES 13

- 1. Given $\tan A = \frac{1}{2}$, where A terminates in the third quadrant, and $\sin B = \frac{2}{3}$, where B terminates in the first quadrant. Find the functions of (A + B) and (A B).
 - 2. Evaluate sin 75°.

Hint:
$$75^{\circ} = 45^{\circ} + 30^{\circ}$$
. Hence,
 $\sin 75^{\circ} = \sin (45^{\circ} + 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ} = ?$

- 3. Evaluate cos 75°.
- 4. Evaluate sin 15°.
- 5. Evaluate $\sin (90^{\circ} B)$ in terms of functions of B.

- 6. If $\sin A = \frac{3}{5}$ and $\sin B = \frac{5}{13}$, find all possible values of $\tan (A + B)$.
- 7. If $\tan A = 1$ and $\cot B = -1$, find all possible values of $\tan (A B)$.
- **8.** Substitute A = B in Formula (5) (Section 23) and thus obtain a formula for tan 2B.
 - 9. Show that $\sin (30^{\circ} + A) \sin (30^{\circ} A) = \sqrt{3} \sin A$.
 - 10. Show that $\frac{\sin (A + B)}{\cos A \cos B} = \tan A + \tan B$.
 - 11. Show that $\cos (A + 45^{\circ}) + \sin (A 45^{\circ}) = 0$.
 - 12. Show that $\tan (x + 45^{\circ}) = \frac{1 + \tan x}{1 \tan x}$.
 - 13. Show that $\cos n\theta \cos \theta + \sin n\theta \sin \theta = \cos (n-1)\theta$.
- 14. By the use of Formulas (1) and (2) (Section 21), find the sine and cosine of $90^{\circ} + A$ in terms of functions of A. From your results find other functions of $90^{\circ} + A$ in terms of functions of A.
 - 15. By a method similar to that used in Section 23, establish the identity

$$\cot (A + B) = \frac{\cot A \cot B - 1}{\cot A + \cot B}$$

24. SIN 2A AND COS 2A

If in Formula (1) (Section 21) we let B = A, we have

$$\sin (A + A) = \sin A \cos A + \cos A \sin A$$

or

$$\sin 2A = 2\sin A\cos A. \tag{7}$$

Similarly, if we let B = A in Formula (2) (Section 21), we have

$$\cos (A + A) = \cos A \cos A - \sin A \sin A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$
 (8)
= $\cos^2 A - (1 - \cos^2 A)$

$$=2\cos^2 A-1\tag{9}$$

$$= 1 - 2\sin^2 A. (10)$$

Hence, if we know the functions of any given angle, Formulas (7) to (10) enable us to obtain the functions of an angle twice as large as the given angle. These identities are very useful in simplifying complicated formulas and in solving trigonometric equations.

25. SIN $\frac{A}{2}$ AND COS $\frac{A}{2}$

If in (10) (Section 24) we replace A by A/2, we have

$$\cos A = 1 - 2\sin^2\frac{A}{2},$$

or

$$\sin\frac{A}{2} = \pm\sqrt{\frac{1-\cos A}{2}}.$$
 (11)

Similarly, when we employ (9) (Section 24), we have

$$\cos A = 2\cos^2\frac{A}{2} - 1,$$

or

238

$$\cos\frac{A}{2} = \pm\sqrt{\frac{1+\cos A}{2}}. (12)$$

[Ch. 2

The sign before the radical in both (11) and (12) is determined by the quadrant in which A/2 terminates.

EXERCISES 14

- 1. If $\cos A = \frac{1}{2}$, where $0 < A < 90^{\circ}$, find the functions of 2A.
- 2. If $\sin A = -\frac{2}{3}$, where $180^{\circ} < A < 270^{\circ}$, find the functions of 2A.
- 3. Derive a formula for $\tan 2A$ in terms of $\tan A$.
- **4.** Express $\sin 3A$ in terms of $\sin A$.

HINT: Let $\sin 3A = \sin (2A + A)$. Then use Formulas (1) and (10).

- 5. Express $\cos 3A$ in terms of $\cos A$.
- 6. Express cos 6A in terms of functions of 3A.
- 7. If $\cos A = -\frac{2}{3}$, where A is a positive angle less than 360° terminating in the second quadrant, find the functions of A/2.

8. Show that
$$\tan \frac{x}{2} = \pm \sqrt{\frac{1-\cos x}{1+\cos x}}$$
.

9. Show that
$$\tan \frac{x}{2} = \frac{1-\cos x}{\sin x} = \frac{\sin x}{1+\cos x}$$
.

10. Verify each of Formulas (7) and (8) (Section 24) and (11) and (12) (Section 25) for $A=60^{\circ}$ and for $A=90^{\circ}$.

11. Show that
$$\frac{\sin 2x}{1+\cos 2x}=\tan x=\frac{\tan 2x}{1+\sec 2x}$$

12. Show that
$$\frac{1-\sin 2x}{\cos 2x} = \frac{1-\tan x}{1+\tan x}$$
.

- 13. Show that $\csc x \cot x = \tan \frac{1}{2}x$.
- **14.** Show that $\sin 4A = \cos A (4 \sin A 8 \sin^3 A)$.
- 15. Show that $\cos 4A = 8 \cos^4 A 8 \cos^2 A + 1$.
- 16. Express $\sin 2\theta \cos 2\theta$ in terms of functions of θ .

17. Show that
$$\cos^4\theta = \frac{3+4\cos 2\theta + \cos 4\theta}{8}$$
.

18. Show that
$$\sin^4 \theta = \frac{3-4\cos 2\theta - \cos 4\theta}{8}$$
.

26. SUM OF SINES OR COSINES

From Formulas (1) (Section 21) and (3) (Section 22), we have

$$\sin (A + B) = \sin A \cos B + \cos A \sin B,$$

and
$$\sin (A - B) = \sin A \cos B - \cos A \sin B$$
.

If we first add the corresponding members of these equations and then

subtract them, we obtain the two following relations:

$$\sin (A + B) + \sin (A - B) = 2 \sin A \cos B$$

and

$$\sin (A + B) - \sin (A - B) = 2 \cos A \sin B.$$

Now let

$$A + B = x$$
 and $A - B = y$

so that

$$A = \frac{x+y}{2}$$
 and $B = \frac{x-y}{2}$.

After substituting these values in the two preceding relations, we obtain

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2},\tag{13}$$

and

$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}.$$
 (14)

Similarly, from the formulas

$$\cos (A + B) = \cos A \cos B - \sin A \sin B,$$

and

$$\cos (A - B) = \cos A \cos B + \sin A \sin B,$$

we may obtain

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2},\tag{15}$$

and

$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}.$$
 (16)

MISCELLANEOUS EXERCISES 15

The following identities may be established by making use of the fundamental identities derived in the preceding sections.

Establish the following identities:

1.
$$2\sin\theta + \sin 2\theta = \frac{2\sin^3\theta}{1-\cos\theta}$$

2.
$$\tan \theta \cot \theta = 2 \csc 2\theta$$

$$3. \frac{\sin 3x}{\sin x} = 1 + 2\cos 2x$$

4.
$$\tan \frac{x}{2} = \frac{1 + \sin x - \cos x}{1 + \sin x + \cos x}$$

5.
$$\frac{\sin 2x + \sin 2y}{\sin 2x - \sin 2y} = \frac{\tan (x + y)}{\tan (x - y)}$$

6.
$$\frac{\sin x + \sin y}{\cos x + \cos y} = \tan \frac{x + y}{2}$$

7.
$$\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \cos x$$

8.
$$\frac{\cos^3 x + \sin^3 x}{\cos x + \sin x} = \frac{2 - \sin 2x}{2}$$

HINT: Use Problem 8 in Exercises 14.

9.
$$\frac{\sin 5x - \sin 2x}{\cos 2x - \cos 5x} = \cot \frac{7x}{2}$$

10.
$$\cos^2\theta\sin^2\theta=\frac{1-\cos 4\theta}{8}$$

11.
$$\sin x = \frac{2 \tan \frac{1}{2}x}{1 + \tan^2 \frac{1}{2}x}$$

12. $\sec \theta + \tan \theta = \tan \left(\frac{\theta}{2} + \frac{\pi}{4}\right)$

13. $\frac{\sin x}{\tan \frac{\pi}{2}} = \frac{2}{\sec^2 \frac{x}{2}}$

14. $\tan 3x = \frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x}$

15.
$$\sin^2 \theta - \sin^2 \phi = \sin (\theta + \phi) \sin (\theta - \phi)$$

16.
$$\cos^2 \theta - \sin^2 \phi = \cos (\theta + \phi) \cos (\theta - \phi)$$

17.
$$\sin 30^{\circ} + \sin 60^{\circ} = \sqrt{2} \cos 15^{\circ}$$

18.
$$\cos 3x \sin x = \frac{1}{2} \sin 4x - \frac{1}{2} \sin 2x$$

19.
$$\cos 5x \cos x = \frac{1}{2} \cos 6x + \frac{1}{2} \cos 4x$$

20.
$$\cos 5x - \cos 3x = -8 \sin^2 x \cos x \cos 2x$$

21.
$$\frac{\sin (x+y)}{\sin x \cos y} = \cot x \tan y + 1$$
 22.
$$\frac{\sin (x-y)}{\cos x \cos y} = \tan x - \tan y$$

23. If
$$A + B + C = 180^{\circ}$$
, $\sin A + \sin B + \sin C = 4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$

24. If
$$A + B + C = 180^{\circ}$$
, $\cos A + \cos B + \cos C = 4 \sin \frac{1}{2} A \sin \frac{1}{2} B \sin \frac{1}{2} C + 1$

27. TRIGONOMETRIC EQUATIONS

We have previously outlined a method for solving certain trigonometric equations. The equations given below differ from those considered earlier, however, in that they involve functions of multiple angles. Of course, it is possible to express an equation involving multiple angles in terms of functions of the single angle.

Illustration 1. Solve

$$\cos 2x + \sin x = 1. \tag{1}$$

From Formula (8) (Section 24),

$$\cos 2x = 1 - 2\sin^2 x. \tag{2}$$

After substituting this value for $\cos 2x$ in Equation (1), we have

$$1 - 2\sin^2 x + \sin x = 1,$$

-2 \sin^2 x + \sin x = 0.

or

The left member may be factored to provide

$$\sin x \left(-2\sin x + 1\right) = 0.$$

Therefore,

$$\sin x = 0 \text{ and } \frac{1}{2}.$$

Hence, the principal angles are x = 0, $x = \pi$, $x = \pi/6$, $x = 5\pi/6$.

Illustration 2. Solve

$$\sin 3x + \sin 2x + \sin x = 0. \tag{1}$$

After applying Formula (13) (Section 26) to the first and third terms

of this equation, we have

$$2\sin 2x\cos x + \sin 2x = 0. \tag{2}$$

This equation may be rewritten in the form

$$\sin 2x(2\cos x + 1) = 0. (3)$$

Therefore,

$$\sin 2x = 0 \quad \text{and} \quad \cos x = -\frac{1}{2}.$$

From $\sin 2x = 0$, we obtain

$$2x = 0 \pm 2n\pi$$
, or $x = 0 \pm n\pi$, $n = 0, 1, 2, 3, \cdots$

and

$$2x = \pi \pm 2n\pi$$
, or $x = \frac{\pi}{2} \pm n\pi$, $n = 0, 1, 2, 3, \dots$.

Hence, the principal angles are

$$x=0, \quad \frac{\pi}{2}, \quad \pi, \quad \frac{3\pi}{2}.$$

From $\cos x = -\frac{1}{2}$, the principal angles are $x = \frac{2\pi}{3}, \frac{4\pi}{3}$.

Illustration 3. Solve

$$\sin mx = 0.$$

We have $mx = 0 \pm 2n\pi$

and
$$\pi \pm 2n\pi$$
, $n = 0, 1, 2, 3, \cdots$;

hence,

$$x = 0 \pm \frac{2n\pi}{m}$$
 and $\frac{\pi \pm 2n\pi}{m}$.

EXERCISES 16

Solve each of the following equations and check the results:

$$1. \cos 2x = 2\sin^2 x$$

2.
$$2\cos 2x = 1 - 4\cos x$$

3.
$$\tan^2 x - \cot^2 x = 4 \cot 2x$$

$$4. \tan 2x = 5 \cot x$$

$$5. \cos 2x = \sin 3x$$

6.
$$\sin\left(2x+\frac{\pi}{3}\right)=\sin\left(x-\frac{\pi}{3}\right)$$

7.
$$\cos\left(2x-\frac{\pi}{3}\right)=\sin\left(3x+\frac{\pi}{3}\right)$$

$$8. \sin\left(x - \frac{\pi}{3}\right) + \sin\left(x + \frac{\pi}{3}\right) = 1$$

9.
$$\cos 2x + \sin x + 2 = 0$$

$$10. \ 2\sin x = \sin 2x$$

$$11. \sin x + \sin 3x = \cos x - \cos 3x$$

12.
$$\cos 2x - \tan 2x = 0$$

13.
$$\cos 2x + 2\cos^2\frac{x}{2} = 1$$

$$14. \sin 3x + \sin x = \sin 2x$$

15.
$$\tan x + \tan 2x = \tan 3x$$

$$16. \cot 2x = \tan x - 1$$

17.
$$2 \sin x \sin 3x - \sin^2 2x = 0$$

18.
$$3 \tan^2 3x + 8 \cos^2 3x = 7$$

Solve the following systems of trigonometric equations for r and θ :

19.
$$r \sin 2\theta = 3$$

 $r \cos \theta = 4$

20.
$$r \sin 3\theta = 1$$

 $r(1 + 2 \cos 2\theta) = 2$

Eliminate θ from each of the following systems of equations:

$$21. x = 2 \sin \theta$$
$$y = 3 \cos \theta$$

 $y = 2\sin^2\theta$

HINT: $\sin^2 \theta + \cos^2 \theta = 1$.

22.
$$x = a \cos^{3} \theta$$

 $y = b \sin^{3} \theta$
24. $x = a\theta \cos \theta$
 $y = a\theta \sin \theta$
25. $x = a \sin \theta$
26. $x = a \tan \theta$
 $y = a \cos^{2} \theta$
27. $x = a \cos 2\theta$
 $y = 2a \sin \theta$
28. $x = 3 \sin 2\theta$

- **29.** If the angle at the vertex of a cone is represented by θ , find θ for the cone which has a volume of 1500π cu in., and which has a base of radius 20 in.
- **30.** It can be shown that in a reciprocating engine the crank angles for maximum velocity of the piston are represented by the solutions of the equation $\cos \theta + \frac{1}{8} \cos 2\theta = 0$. Find θ .
- **31.** In studying the problem of balancing one sphere upon another, there arises the equation $m\cos^3\theta = (M+m)(3\cos\theta-2)$, where M and m are the masses of the lower and upper spheres, respectively, and θ is the angle that the straight line joining the centers makes with the vertical. Find θ when M=50 and m=30.

28. EQUATIONS INVOLVING INVERSE FUNCTIONS

It is occasionally necessary to solve equations involving inverse functions. We shall confine ourselves to the principal values of the inverse functions (Section 16).

Illustration 1: Find x, if

$$\tan^{-1} x + \tan^{-1} (1 - x) = \tan^{-1} \frac{4}{3}.$$
 (1)

Solution: Let

$$\alpha = \tan^{-1} x, \tag{2}$$

and

$$\beta = \tan^{-1}(1-x). \tag{3}$$

Hence, we have from (1), (2), and (3),

$$\alpha + \beta = \tan^{-1}\frac{4}{3}, \qquad (4)$$

or

$$\tan (\alpha + \beta) = \frac{4}{3}. \tag{5}$$

After expanding the left member, there results

$$\frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta} = \frac{4}{3}.$$
 (6)

But from (2) and (3), we have

$$\tan \alpha = x$$
 and $\tan \beta = 1 - x$. (7)

Hence, after substituting the values from (7) in Equation (6), we obtain

$$\frac{x+1-x}{1-x(1-x)}=\frac{4}{3},$$

or

$$4x^2 - 4x + 1 = 0. ag{8}$$

Therefore,

$$x = \frac{1}{2}.\tag{9}$$

Illustration 2. Find x if

$$\sin^{-1} x + \sin^{-1} 2x = \frac{\pi}{3}.$$
 (1)

Solution: Let

$$\alpha = \sin^{-1} x, \tag{2}$$

and

$$\beta = \sin^{-1} 2x. \tag{3}$$

Hence, from (1), (2), and (3), we have

$$\alpha + \beta = \frac{\pi}{3}$$
 (4)

So it follows that

$$\cos\left(\alpha+\beta\right) = \cos\frac{\pi}{3} = \frac{1}{2},\tag{5}$$

 \mathbf{or}

$$\cos \alpha \cos \beta - \sin \alpha \sin \beta = \frac{1}{2}.$$
 (6)

From (2) and (3) we have

$$x = \sin \alpha$$
 and $2x = \sin \beta$. (7)

Since $x = \sin \alpha$, it follows that

$$\cos \alpha = \pm \sqrt{1 - x^2},\tag{8}$$

and since $2x = \sin \beta$, we have

$$\cos \beta = \pm \sqrt{1 - 4x^2}. (9)$$

Therefore, from (6), (7), (8), and (9), there results

$$(\pm\sqrt{1-x^2})(\pm\sqrt{1-4x^2})-2x^2=\frac{1}{2},$$
 (10)

or

$$\pm \sqrt{1-x^2} \sqrt{1-4x^2} = 2x^2 + \frac{1}{2}.$$

After squaring each member, we obtain

$$(1-x^2)(1-4x^2)=4x^4+2x^2+\frac{1}{4},$$

or

$$1 - 5x^2 + 4x^4 = 4x^4 + 2x^2 + \frac{1}{4}.$$

The solution of this last equation yields

$$x=\pm\frac{\sqrt{21}}{14}.$$

ICh. 2

The positive value, $x = \frac{\sqrt{21}}{14}$, is the only value that satisfies equa-

tion (1). The remaining possible root $x = -\frac{\sqrt{21}}{14}$ is extraneous; it was introduced when the members of the equation were squared.

Illustration 3: Prove that

$$\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{8}{17} = \sin^{-1}\frac{77}{85}.$$
 (1)

Solution: Let

$$\alpha = \sin^{-1} \frac{3}{5}$$
 and $\beta = \sin^{-1} \frac{8}{17}$. (2)

Hence, the given relation is equivalent to

$$\sin\left(\alpha+\beta\right)=\tfrac{77}{88},\tag{3}$$

or

$$\sin \alpha \cos \beta + \cos \alpha \sin \beta = \frac{77}{85}.$$
 (4)

But
$$\sin \alpha = \frac{3}{5}$$
; so $\cos \alpha = \pm \frac{4}{5}$. (5)

Also, since
$$\sin \beta = \frac{8}{17}$$
, $\cos \beta = \pm \frac{15}{17}$. (6)

It is now necessary to establish that the left member of (4) is equal to the right member. The value of the left member is

$$\frac{3}{5}(\pm\frac{15}{17})+(\pm\frac{4}{5})(\frac{8}{17}).$$

If we confine ourselves to the principal values of the functions, $\cos \alpha$ and $\cos \beta$ must be positive, and we have $\frac{45}{85} + \frac{32}{85} = \frac{77}{85}$. Statement (1), therefore, is correct.

EXERCISES 17

Solve the following equations, restricting the functions to principal values:

- 1. $\sin^{-1} x \cos^{-1} x = \pi/6$
- 3. $\sin^{-1} x + \sin^{-1} 2x = \pi/3$
- 5. 5in w | 5in 2w -
- $5. \sin^{-1} x = 2 \cot^{-1} x$
- 7. $\sin^{-1} x = 2 \tan^{-1} x$ 9. $\tan^{-1} 3x + \tan^{-1} 2x = \pi/4$

Justify each of the following:

- 10. $2 \tan^{-1} \frac{2}{3} = \tan^{-1} \frac{1}{3}$
- 12. $\tan^{-1} 2 + \cos^{-1} \frac{2}{\pi} \sqrt{5} = \pi/2$
- 14. $\sin^{-1}\frac{3}{8} + \sin^{-1}\frac{4}{8} = \pi/2$
- 15. $\cos^{-1}\frac{3}{5} + \tan^{-1}\frac{8}{15} + \sin^{-1}\frac{13}{85} = \pi/2$

2.
$$\sin^{-1} 2x - \cos^{-1} x = \pi/6$$

4.
$$\tan^{-1} x + 2 \cot^{-1} x = 2\pi/3$$

11. $\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{5} = \cos^{-1}\frac{32}{5}$

13. $\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{2} = \pi/4$

6.
$$\sin^{-1} 3x - \sin^{-1} x = \frac{1}{3}\pi$$

8.
$$2\sin^{-1}x = \cos^{-1}x$$

3

Solution of Triangles

29. SOLUTION OF TRIANGLES

A triangle has six elements, namely, three sides and three angles. If three elements, including at least one side, are given, it is possible, in general, to find the other three elements and the area of the triangle. The process of computing the unknown elements from those which are known is called solving the triangle.

A triangle may be solved by graphical methods or by formulas involving the trigonometric functions. A graphical method may be used when considerable approximation is permitted; whereas the second method may be employed to obtain a solution that is restricted in accuracy only by the accuracy of the given data and the accuracy of the tables.

The graphical method is used frequently as a check upon the solution obtained by the second method; moreover, it is also desirable that the solution be checked analytically by formulas that are independent of the formulas used in obtaining the solution.

30. GRAPHICAL METHOD

To solve a triangle graphically, merely construct the triangle to some convenient scale by means of a ruler and protractor so that it contains the given elements; then measure the unknown sides and angles.

The student should review the construction of a triangle as given in plane geometry. Also, it is recalled that a triangle is uniquely determined when two sides and an included angle, two angles and an included side, or three sides are given. On the other hand, when two sides and an angle opposite one of the sides are given, there may be one triangle, two triangles, or no triangle satisfying the given data. This latter case will be studied in greater detail later in this chapter.

In the following data the small letters indicate the sides of a triangle, and the capital letters indicate the angles opposite the sides designated by the corresponding small letter.

EXERCISES 18

Solve the following triangles graphically:

- **1.** Given $A = 35^{\circ}$, $B = 67^{\circ}$, a = 18 ft
- 2. Given $A = 35^{\circ}$, c = 72 ft, b = 55 ft

- 3. Given $C = 90^{\circ}$, c = 15 ft, b = 10 ft
- 4. Given $B = 27^{\circ}$, a = 25 ft, b = 20 ft (Two solutions)
- **5.** Given a = 16 ft, b = 20 ft, c = 25 ft
- **6.** Given a = 9.3 ft, b = 12.4 ft, c = 15.5 ft
- 7. Given $A = 42^{\circ}$, $B = 37^{\circ}$, c = 11 ft
- **8.** Given $A = 62^{\circ}$, $C = 62^{\circ}$, b = 17 ft
- **9.** What happens if a = 16 ft, b = 20 ft, and c = 38 ft?
- **10.** What happens if $A = 30^{\circ}$, c = 20 ft, $a = 9\frac{1}{2}$ ft?

\$1. LOGARITHMS OF TRIGONOMETRIC FUNCTIONS

The numerical solution of triangles through the use of trigonometric formulas frequently involves considerable labor, which may be minimized by employing logarithms. Attention has already been called to the availability of Table 1, which gives the common logarithms of numbers. Now we desire to direct attention to Table 3 where the common logarithms of the trigonometric functions are listed.

The general organization of Table 3 is the same as that of Table 2. Certain special features of Table 3, however, should be noted. First, all sines and cosines of angles between 0° and 90° are less than 1, so their logarithms have negative characteristics; hence, part of the characteristic, namely, -10 has been omitted from the listed values of these two functions. For instance, $\log \sin 22^{\circ}10' = 9.57669 - 10$. In the tangent column the quantity -10 is to be understood after all listed values until 45° is reached, after which the entire characteristic is written in the table, since $\tan \theta > 1$ when $45^{\circ} < \theta < 90^{\circ}$. To facilitate the process of interpolation when it is necessary to obtain the logarithm of a function of an angle involving a fractional part of a minute, columns have been introduced headed by d and cd that provide the differences between consecutive logarithms listed in the major columns.

As an illustration of interpolation as applied to the logarithms of the trigonometric functions, let us obtain log cos 67°25′20″.

$$\begin{cases}
 \log \cos 67^{\circ}25' = 9.58436 - 10 \\
 \log \cos 67^{\circ}25'20'' = ? \\
 \log \cos 67^{\circ}26' = 9.58406 - 10
 \end{cases}
 30$$

The difference 30 (ignoring decimal points) between the two readings is conveniently written down in the d column. Since $67^{\circ}25'20''$ is one third of the way from $67^{\circ}25'$ to $67^{\circ}26'$, it is an assumption employed in interpolation that $\log\cos 67^{\circ}25'20''$ is one third of the way from $\log\cos 67^{\circ}25'$ to $\log\cos 67^{\circ}26'$. Thus,

$$\log \cos 67^{\circ}25'20'' = 9.58436 - 10 - \frac{1}{3}(0.00030)$$
$$= 9.58426 - 10.$$

EXERCISES 19

From Table 3 find the value of the following:

1. log sin 19°32'	2. log cos 49°8′
3. log tan 72°28′	4. log sin 32°17′20″
5. log cot 22°18′24″	6. log sin 72°25′42″
7. log tan 37°14.6′	8. log cos 11°7′36″
9. log tan 64°37′19″	10. log sin 40°6.7′
-	_

Determine the acute angle x that satisfies each of the following:

11. $\log \sin x = 9.58253 - 10$	12. $\log \tan x = 9.78618 - 10$
13. $\log \cos x = 9.76712 - 10$	14. $\log \cot x = 0.01946$
15. $\log \sin x = 9.76546 - 10$	16. $\log \cos x = 9.72283 - 10$
17. $\log \tan x = 9.93342 - 10$	18. $\log \cos x = 9.94447 - 10$
19. $\log \cot x = 0.37726$	20. $\log \sin x = 9.36367 - 10$

32. SOLUTION OF RIGHT TRIANGLES

We shall now consider the solution of right triangles. The discussion will involve the treatment of two possible cases, namely, Case 1. Given two sides.

CASE 2. Given one side and one acute angle.

Illustration: Case 1. Given $C = 90^{\circ}$, c = 15 ft, b = 10 ft. Determine a, B, A.

First construct the triangle approximately to scale, as in Figure 44. From the figure we have $\cos A = \frac{19}{15} = \frac{2}{3} = 0.66667$. Consequently, by reference to Table 2,

$$A = 48^{\circ}11'22''$$
.

Therefore,
$$B = 90^{\circ} - A = 41^{\circ}48'38''$$
.

- 101 - 11

Side a can be determined by use of the Pythagorean theorem as follows:

$$a = \sqrt{15^2 - 10^2} = \sqrt{125} = 5\sqrt{5} = 11.180.$$

As a check upon a and B, observe that

$$a = 10 \cot B$$

= 10 cot 41°48'38"
= 10(1.1180)
= 11.180.

These values of the unknown data have been determined much more accurately than the given measurements really justify. Side a, for instance, would probably be listed as 11.2.

Illustration: Case 2. Given $C = 90^{\circ}$, $A = 27^{\circ}$, c = 169. Determine B, a, b.

Construct an appropriate triangle as in Figure 45.

$$B = 90^{\circ} - 27^{\circ} = 63^{\circ},$$

 $b = 169 \cos 27^{\circ} = 169(0.89101) = 150.58,$
 $a = 169 \sin 27^{\circ} = 169(0.45399) = 76.724.$

Check:

$$\cot B = \frac{a}{b} = \frac{76.724}{150.58} = 0.50953.$$

So $B=63^{\circ}$, thereby checking the value previously obtained. Also, $c^2=28561$, $a^2=22674$, and $b^2=5886.6$, thereby satisfying the Pythagorean relation, namely,

$$c^2=a^2+b^2.$$

Let us now consider a solution employing logarithms.

Illustration: Given $C = 90^{\circ}$, a = 176.32, c = 283.14. Determine A, B, b.

Figure 46 has been drawn employing the given data.

The three unknown parts may be found as follows:

$$\sin A = \frac{176.32}{283.14}, \tag{1}$$

$$B = 90 - A, \tag{2}$$

$$b = 176.32 \cot A$$
. (3)

Check Formulas:

$$\sin B = \frac{b}{c},$$

$$b^2 = (c-a)(c+a).$$
 (5)

Applying logarithms to Formula (1), we have

$$\log \sin A = \log 176.32 - \log 283.14.$$

$$\log 176.32 = 12.24630 - 10$$

$$(-)$$

$$\log 283.14 = 2.45200$$

$$\log \sin A = 9.79430 - 10$$

$$\therefore A = 38^{\circ}30'57''.$$

By referring to relation (3),

$$\log b = \log 176.32 + \log \cot A.$$

$$\log 176.32 = 2.24630$$
(+)
$$\log \cot 38^{\circ}30'57'' = 0.09915$$

$$\log b = 2.34545$$

$$\therefore b = 221.54.$$

From relation (2), $B = 90 - A = 51^{\circ}29'3''$. By reference to Check Formula (4),

log sin
$$B = \log 221.54 - \log 283.14$$
.
log $221.54 = 12.34545 - 10$
(-)
log $283.14 = 2.45200$
log sin $B = 9.89345 - 10$
 $\therefore B = 51^{\circ}29'6''$.

From Check Formula (5),

$$2 \log b$$
 must equal $\log (c - a) + \log (c + a)$, 4.69090 must equal $2.02865 + 2.66225$,

or

which is true. Thus, the values of A and b are correct.

EXERCISES 20

For each of the following exercises the student should construct the figure, solve for the unknown parts, and check the solution:

- **1.** Given a = 268, b = 142, $C = 90^{\circ}$; find c, A, B.
- **2.** Given a = 268, c = 342, $C = 90^{\circ}$; find b, A, B.
- 3. Given c = 361.52, b = 179.42, $C = 90^{\circ}$; find a, A, B.
- **4.** Given $A = 68^{\circ}27'35''$, a = 269.12, $C = 90^{\circ}$; find b, c, B.
- 5. Given $B = 19^{\circ}16'38''$, a = 461.37, $C = 90^{\circ}$; find b, c, A.
- **6.** Given $B = 29^{\circ}18'45''$, c = 23.614, $C = 90^{\circ}$; find a, b, A.
- 7. Find the side and area of a regular octagon (eight sides) inscribed in a circle of radius 10 in.
- 8. Find the side of a regular pentagon (five sides) circumscribed about a circle of radius 10 in.
- 9. Find the length of a chord which subtends an arc of 105° in a circle with radius 10 in.
- 10. Find the area of a sector of a circle with radius 10 in. if the sector is bounded by two radii and an arc which subtends an angle of 105°.
- 11. A segment of a circle is bounded by an arc which subtends an angle of 105° and its chord. Find the area of the segment if the radius of the circle is 10 in.
- 12. Derive a formula for the area of a sector of a circle in terms of its angle θ , measured in radians, and the radius r of the circle.

- 13. Consider a cylindrical tank 10 ft long and 5 ft in diameter placed in a horizontal position. Make a table showing the number of gallons of liquid the tank would contain at various depths. Compute volumes for depths varying at 6-in. intervals from an empty tank to a full tank.
- $_{A}$ 14. To find the distance AB across a pond, a distance AC is measured 200 ft long at right angles to AB, and the angle ACB is found by measurement to be 82°50′23″. Find AB.

15. To find the height of a vertical cliff AB (note Figure 47), the following measurements were taken: CA = 233.16 ft, $\angle DCA = 22^{\circ}17'33''$, $\angle DCB = 48^{\circ}19'52''$. Find AB.

16. Given $A = 68^{\circ}27'35''$, $B = 45^{\circ}16'27''$, c = 292.13 (note Figure 48). Find a, b, C.

HINT: Form right triangles by drawing a perpendicular from A to side BC.

17. Given $A = 41^{\circ}37'25''$, b = 476.18, and a = 372.96 (note Figure 49). Find c, B, C (two possible solutions).

HINT: Form right triangles by drawing a perpendicular from C to AB.

18. Given $A = 82^{\circ}27'$, b = 271.4, c = 385.5 (refer to Figure 50). Find B, C, a. Give values of the angles to the nearest minute and a to four significant figures.

HINT: Form right triangles by drawing a perpendicular from C to AB.

- **19.** Given $A = 68^{\circ}27'35''$, a = 965.12, b = 837.92; find B, C, c.
- **20.** Given $B = 38^{\circ}16'27''$, a = 277.19, c = 362.28; find b, A, C.
- **21.** Given $B = 138^{\circ}27'52''$, a = 277.19, c = 402.19; find b, A, C.
- **22.** Given $A = 68^{\circ}27'35''$, $B = 42^{\circ}16'27''$, a = 350.52; find C, b, c.

33. THE SOLUTION OF THE GENERAL TRIANGLE

The general triangle may be solved by means of special formulas involving the sides and functions of the angles. There are various formulas to be used, depending on the given elements of the triangle to be solved.

There are four cases to be considered, namely:

CASE 1. Given two angles and any side.

CASE 2. Given two sides and an angle opposite one of them.

Problems under Cases 1 and 2 may be solved by a formula known as the *law of sines* (Section 34).

CASE 3. Given two sides and the included angle.

CASE 4. Given three sides.

Problems under Cases 3 and 4 may be solved by a formula known as the *law of cosines* (Section 35).

34. CASES 1 AND 2: THE LAW OF SINES

We shall now develop the special formula known as the law of sines, which may be employed for the solution of triangles under Cases 1 and 2.

In either Figure 51 or Figure 52, we have,

$$p = a \sin B$$
,

and

$$p=b\sin A.$$

Hence,

$$a\sin B = b\sin A$$
,

or

$$\frac{a}{\sin A} = \frac{b}{\sin B}.$$

Since ABC is any triangle, we may also write

$$\frac{a}{\sin A} = \frac{c}{\sin C}.$$

Therefore,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
 (1)

Equations (1) constitute the law of sines, which states that any two sides of a triangle are in the same ratio as the sines of the corresponding angles opposite them.

Equations (1) give us the three different equations

$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
, $\frac{a}{\sin A} = \frac{c}{\sin C}$, and $\frac{b}{\sin B} = \frac{c}{\sin C}$

Each involves four elements of the triangle, so that if we are given any three elements in any one of these equations, we may solve for the fourth element.

An interesting situation is encountered if we are given two sides and the angle opposite one of them, such as a, b, A. Then, from the law of sines,

$$\sin B = \frac{b \sin A}{a}.$$

If $\frac{b \sin A}{a} > 1$, no angle B is possible; hence, there is no solution.

If $\frac{b \sin A}{a} = 1$, angle $B = 90^{\circ}$; hence, there is one solution. Moreover, the triangle is a right triangle.

If $\frac{b \sin A}{a} < 1$, there are two possible values for B. If $A \ge 90^{\circ}$, however, B must be acute and only one solution is possible. If $A < 90^{\circ}$, there may be two solutions.

We shall consider in detail the case when $A < 90^{\circ}$, and a < b.

The perpendicular p dropped from angle C upon side c equals $b \sin A$; hence, our condition $\frac{b \sin A}{a} < 1$, means that $\frac{p}{a} < 1$, or a > p.

The added condition a < b gives Figure 53, from which it is apparent there are two solutions, namely, triangles ABC and AB'C.

If $A < 90^{\circ}$ and a = b, there will be only one solution, since in this case B' will coincide with A.

If $A < 90^{\circ}$ and a > b, we have the situation depicted in Figure 54, which shows that there is one solution, the triangle ABC. The triangle $B^{*}AC$ is not a solution since it does not contain the given $\angle A$.

35. MOLLWEIDE'S FORMULAS

It seems appropriate at this point to stop and develop formulas that are useful in checking the solution of any triangle. The formulas that we shall obtain are particularly serviceable because they contain all six elements of the triangle.

From the law of sines,

$$\frac{a}{c} = \frac{\sin A}{\sin C} \tag{1}$$

$$\frac{b}{c} = \frac{\sin B}{\sin C}$$
 (2)

If we add the corresponding members of Equations (1) and (2), we have

$$\frac{a+b}{c} = \frac{\sin A + \sin B}{\sin C}$$

$$= \frac{2\sin \frac{A+B}{2}\cos \frac{A-B}{2}}{2\sin \frac{C}{2}\cos \frac{C}{2}},$$

after employing Formulas 13 (Section 26) and 7 (Section 24).

Since
$$\frac{A+B}{2} = 90^{\circ} - \frac{C}{2}$$
, and $\sin \frac{A+B}{2} = \cos \frac{C}{2}$, it follows that
$$\frac{a+b}{c} = \frac{\cos \frac{A-B}{2}}{\sin \frac{C}{2}}.$$
 (3)

If we subtract the members of Equation (2) from the corresponding

members of (1), we have

$$\frac{a-b}{c}=\frac{\sin A-\sin B}{\sin C},$$

from which we finally obtain, by an analysis quite similar to that which preceded,

$$\frac{a-b}{c} = \frac{\sin\frac{A-B}{2}}{\cos\frac{C}{2}}.$$
 (4)

Formulas (3) and (4) are known as *Mollweide's formulas*; they are important check formulas, since either one contains all the elements of the triangle and may be used irrespective of what elements are given.

36. ILLUSTRATION: CASE 1

Solve the triangle ABC, where a = 60 ft, $A = 35^{\circ}$, and $B = 85^{\circ}$ (note Figure 55).

Frg. 55

By the law of sines, we have

$$b = \frac{a \sin B}{\sin A}$$
$$= \frac{60 \sin 85^{\circ}}{\sin 35^{\circ}} = 104.21.$$

Also,
$$C = 180^{\circ} - (A + B)$$

= $180^{\circ} - (120^{\circ}) = 60^{\circ}$.

Again, we may employ the law of sines to obtain

$$c = \frac{a \sin C}{\sin A}$$
$$= \frac{60 \sin 60^{\circ}}{\sin 35^{\circ}} = 90.592.$$

We shall use one of Mollweide's formulas for a check; namely,

$$\frac{b-a}{c} = \frac{\sin\frac{B-A}{2}}{\cos\frac{C}{2}}.$$

$$\frac{b = 104.21}{a = 60.}$$

$$\frac{b - a = 44.21}{b - a} = 44.21$$

$$\frac{b - a}{c} = \frac{44.21}{90.592} = 0.48801$$

$$B = 85^{\circ}
A = 35^{\circ}
B - A = 50^{\circ}$$

$$\sin \frac{B - A}{2} = 0.42262$$

$$\cos \frac{C}{2} = 0.86603$$

$$\frac{\sin \frac{B - A}{2}}{\cos \frac{C}{2}} = 0.48800$$

The data as given do not justify carrying out the lengths of the sides to five significant figures. In practice, we would probably say that b is about 104 ft and c about 90.6 ft.

37. ILLUSTRATION: CASE 2

(1) Solve the triangle ABC, if a=35 ft, b=45 ft, and $A=65^{\circ}$. It is advisable, first, to consider a triangle under Case 2 by the graphical method. This is attempted in Figure 56.

We find when the figure is drawn to scale that the side a is too short to reach the side c. Hence, there is no possible solution for a triangle possessing the given data. In fact, we have no triangle.

If we attempt to solve the same triangle by the law of sines, we have

$$\sin B = \frac{b \sin A}{a} = \frac{45 \sin 65^{\circ}}{35} = 1.165.$$

Fra 58

Since sin B results in a number that is greater than 1, no triangle exists having parts as given.

This illustration indicates that if $\frac{b \sin A}{a} > 1$, there is no solution.

(2) Solve the triangle ABC if a=30 ft, b=60 ft, and $A=30^{\circ}$. A sketch of this triangle indicates that it is a right triangle. By using the law of sines, we have

$$\sin B = \frac{b \sin A}{a} = \frac{60(0.5)}{30} = 1.$$

$$B = 90^{\circ}$$

Hence.

as we previously suspected.

Therefore, by the Pythagorean theorem, we obtain

$$c = \sqrt{3600 - 900} = 30\sqrt{3} = 51.963.$$

Check:
$$c = 60 \cos 30^{\circ} = 60(0.86603) = 51.962$$
.

(3) Solve the triangle ABC if a = 40 ft, b = 60 ft, and $A = 30^{\circ}$.

If we attempt a graphical solution, we find two possible triangles ABC and AB'C, as shown in Figure 57; therefore, there are two solutions.

Upon applying the law of sines, we have

$$\sin B = \frac{b \sin A}{a}$$

$$= \frac{60(0.5)}{40} = 0.75.$$

Note that $\frac{b \sin A}{a} < 1$, and since it is also true that a < b, there are two solutions as predicted by the graphical consideration.

From a table of trigonometric functions, we find

$$B = 48^{\circ}35'25''$$
 or $180^{\circ} - (48^{\circ}35'25'')$.

This second value of B is $\angle AB'C$ in Figure 57. Hence,

$$\angle AB'C = 131^{\circ}24'35''$$

To complete the solution we must find AB' in $\triangle AB'C$, and AB in $\triangle ABC$. It is readily determined that

$$\angle ACB' = 18^{\circ}35'25''$$
 and $\angle ACB = 101^{\circ}24'35''$.

Thus,

$$AB' = \frac{a \sin \angle ACB'}{\sin 30^{\circ}} = 25.504,$$

and

$$AB = \frac{a \sin \angle ACB}{\sin 30^{\circ}} = 78.418.$$

Check of the solution of $\triangle AB'C$ by Mollweide's formula:

$$\frac{b-a}{c} = \frac{\sin\frac{B'-A}{2}}{\cos\frac{C}{2}}.$$

$$\frac{b = 60}{a = 40}$$

$$\frac{b - a = 20}{b - a = 20}$$

$$\frac{B' = 131^{\circ}24'35''}{A = 30^{\circ}}$$

$$\frac{B' - A}{2} = 50^{\circ}42'17''$$

$$\frac{B' - A}{2} = \frac{C}{2} = 9^{\circ}17'42''$$

$$\frac{b - a}{c} = 0.78419$$

$$\frac{b - a}{c} = 0.78418$$

To apply Mollweide's formula to $\triangle ABC$, we have

$$\frac{b = 60}{a = 40}$$

$$\frac{a = 40}{b - a = 20}$$

$$\frac{B = 48°35'25''}{B - A = 18°35'25''}$$

$$\frac{B - A}{2} = 9°17'42''$$

$$\frac{AB = c = 78.418}{2} = \frac{C}{2} = 50°42'17''$$

$$\frac{\sin \frac{B - A}{2}}{\cos \frac{C}{2}} = 0.25504$$

. EXERCISES 21
Solve the following triangles and check each solution by Mollweide's formula:

	A	В	C	a	b	c
1		65°13′	58°28′ 70°31′	768		000.0
2 3	29°16′	52°19′	70-31	385	413	396.3
4 5		55°16′	23°16′	308	 165	273 220
6		55°16′			180.8	220

38. CASES 3 AND 4: LAW OF COSINES

Another law, known as the law of cosines, will now be developed for the solution of triangles under Cases 3 and 4.

In either Figure 58 or Figure 59, AB = c. Let AD = x, and of course, DA = -x. We then have DB = c - x. By reference to $\triangle ADC$, we have

$$b^2 = x^2 + p^2. (1)$$

From $\triangle DCB$, we obtain

$$p = a \sin B, \tag{2}$$

and

$$c-x=a\cos B$$
, or $x=c-a\cos B$. (3)

After substituting the values for p and x from (2) and (3) into the right member of (1), we have

$$b^{2} = a^{2} \sin^{2} B + (c - a \cos B)^{2}$$

$$= a^{2} \sin^{2} B + c^{2} - 2ac \cos B + a^{2} \cos^{2} B$$

$$= a^{2} (\sin^{2} B + \cos^{2} B) + c^{2} - 2ac \cos B.$$

Hence,

$$b^2 = a^2 + c^2 - 2ac \cos B. (4)$$

Similarly, we may derive

$$c^2 = a^2 + b^2 - 2ab \cos C, (5)$$

and

$$a^2 = b^2 + c^2 - 2bc \cos A. (6)$$

Equations (4), (5), and (6) constitute the law of cosines, which may be stated as follows:

The square of any side of a triangle is equal to the sum of the squares of the other two sides diminished by twice the product of these two sides and the cosine of their included angle.

Under Case 4, where the three sides are given to determine the angles, we write from (5), (4), and (6), respectively,

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab},\tag{7}$$

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac},\tag{8}$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}. (9)$$

39. ILLUSTRATION: CASE 3

Solve the triangle ABC if a = 50, b = 60, and $C = 40^{\circ}$.

Figure 60 contains the data for the problem. By the law of cosines,

$$c^2 = a^2 + b^2 - 2ab \cos C.$$

Therefore,

$$c^{2} = (50)^{2} + (60)^{2} - 2(50)(60) \cos 40^{\circ}$$

$$= 2500 + 3600 - 6000(0.7660)$$

$$= 6100 - 4596$$

$$= 1504.$$

Hence,

$$c = 38.8$$
, approximately.

We now have three sides and one angle. Each of the remaining two angles may be found by the law of sines, and the angles can be checked by the formula $A + B + C = 180^{\circ}$. As an alternate method, one of the remaining angles may be found by the law of sines and the other by subtracting the sum of the two determined angles from 180°; the solution may then be checked by Mollweide's formula.

c = 70Fig. 61

40. ILLUSTRATION: CASE 41

Solve for the remaining parts of the triangle in which a = 50, b = 60, and c = 70 (note Figure 61).

Since

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac},$$

we have

$$\cos B = \frac{(50)^2 + (70)^2 - (60)^2}{2(50)(70)}$$
$$= \frac{3800}{7000} = 0.54285.$$

Therefore,

$$B = 57^{\circ}7'19''$$

Similarly, we may find A and C. However, it is often more convenient to find the angles A and C by means of the law of sines.

EXERCISES 22

In each of the following exercises it is advisable to solve the triangle graphically before attempting a solution by formula. Check all solutions.

- **1.** In $\triangle ABC$, a = 360, b = 460, $C = 39^{\circ}17'$. Find the other parts.
- **2.** In $\triangle ABC$, b = 92, c = 84, $A = 110^{\circ}20'$. Find the other parts.
- 3. In $\triangle ABC$, c = 55, a = 35, $B = 90^{\circ}$. Find the other parts.
- **4.** In $\triangle ABC$, a = 320, b = 410, c = 380. Find the other parts.
- 5. Two straight roads intersect at an angle of 63.4°. Town A is located on one of the roads 86.4 miles from the intersection whereas town B is located on the other road 47.6 miles from the intersection. How far apart are the two towns? How far is town B from the other road?
- 6. Upon a baseball diamond, it is 60.5 ft from home plate to the pitcher's box and 90 ft from home plate to first base. If the angle is 45° at the home plate between the lines to the pitcher's box and to first base, how far is it from the pitcher's box to first base?
- 7. An airplane flies due south at a speed of 320 mph. Another plane flies at a speed of 284 mph in the direction 52° west of north. How far apart are the planes at the end of 15 min?
- 8. The two arms of a derrick are 10.2 ft and 15.6 ft, respectively. They are tied at the end by a chain so that the angle between them cannot exceed 26°30′. How long is the chain?
 - 9. Determine the angle between the diagonal of a cube and an edge.

41. LAW OF TANGENTS

Up to this point there has been no mention of the use of logarithms in the treatment of the four cases just considered. Presumably, however, the student may have found it desirable to use logarithms in connection with solutions involving the law of sines. The law of cosines, on the other hand, involving as it does additions and subtractions, does not lend itself readily to logarithmic computation. A special formula known as the law of tangents, to be used under Case 3 when two sides and the included angle are given, will now be derived.

It is recalled that Mollweide's formulas are

$$\frac{a-b}{c} = \frac{\sin\frac{A-B}{2}}{\cos\frac{C}{2}},$$

$$\frac{a+b}{c} = \frac{\cos\frac{A-B}{2}}{\sin\frac{C}{2}}.$$

and

If the members of the first equality are divided by the corresponding members of the second, it follows that

$$\frac{a-b}{a+b} = \frac{\sin\frac{A-B}{2}\sin\frac{C}{2}}{\cos\frac{A-B}{2}\cos\frac{C}{2}}$$

$$= \tan\frac{A-B}{2}\tan\frac{C}{2}.$$

$$\frac{a-b}{a+b} = \frac{\tan\frac{(A-B)}{2}}{\tan\frac{(A+B)}{2}}.$$
 (Why?)

Therefore,

Similarly, we may derive

$$\frac{a-c}{a+c} = \frac{\tan\frac{(A-C)}{2}}{\tan\frac{(A+C)}{2}}.$$
 (2)

$$\frac{b-c}{b+c} = \frac{\tan\frac{(B-C)}{2}}{\tan\frac{(B+C)}{2}}.$$
 (3)

This formula, in the various forms (1), (2), and (3), is the law of tangents.

42. LAW OF THE TANGENT OF HALF ANGLES

We have observed that the law of cosines may be used for the solution of triangles when the three sides are given (Case 4). But, as before noted, the law of cosines does not readily lend itself to logarithmic computation. Hence, we shall develop a special formula adaptable to logarithmic computation and useful for determining the angles of a triangle when the three sides are given. We shall designate this law as the law of the tangent of half angles.

From the law of cosines.

$$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc} \cdot \\ \cos A = 2\cos^{2}\frac{A}{2} - 1 \\ = 1 - 2\sin^{2}\frac{A}{2} \cdot$$

But,

Hence,
$$1-2\sin^2\frac{A}{2}=\frac{b^2+c^2-a^2}{2bc}$$
,

or

$$2\sin^2\frac{A}{2} = 1 - \frac{b^2 + c^2 - a^2}{2bc} = \frac{2bc - b^2 - c^2 + a^2}{2bc}$$
$$= \frac{a^2 - (b - c)^2}{2bc} = \frac{(a - b + c)(a + b - c)}{2bc}.$$
 (1)

Similarly,

$$2\cos^{2}\frac{A}{2} = \frac{b^{2} + c^{2} - a^{2}}{2bc} + 1 = \frac{b^{2} + c^{2} - a^{2} + 2bc}{2bc}$$

$$= \frac{(b+c)^{2} - a^{2}}{2bc} = \frac{(b+c-a)(b+c+a)}{2bc}.$$
(2)

After dividing the members of relation (1) by the corresponding members of relation (2), we obtain

$$\frac{\sin^2 \frac{A}{2}}{\cos^2 \frac{A}{2}} = \frac{(a-b+c)(a+b-c)}{(b+c-a)(b+c+a)},$$

$$\tan \frac{A}{2} = \sqrt{\frac{(a-b+c)(a+b-c)}{(b+c-a)(b+a+a)}}.$$
(3)

or

If we let a + b + c = 2s (that is, s is one half the perimeter of the triangle), there results

$$a-b+c=2s-2b=2(s-b),$$

 $a+b-c=2s-2c=2(s-c),$
 $b+c-a=2s-2a=2(s-a).$

Formula (1) may now be written

$$\sin\frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}},$$

and Formula (2) may be written

$$\cos\frac{A}{2} = \sqrt{\frac{(s-a)s}{bc}}.$$

Also, Formula (3) becomes

$$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{(s-a)(s)}}$$
$$= \sqrt{\frac{(s-a)(s-b)(s-c)}{(s-a)^2s}}.$$

If we let

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}},\tag{4}$$

then,
$$\tan\frac{A}{2} = \frac{r}{s-a}.$$
 (5)

Similarly,
$$\tan \frac{B}{2} = \frac{r}{s-b}$$
, (6)

and $\tan \frac{C}{2} = \frac{r}{s-c}$ (7)

Formulas (4), (5), (6), and (7) lend themselves to logarithmic computation for determining the angles of a triangle when the sides are given. After the three angles are calculated, the solution may be checked by the formula

$$A + B + C = 180^{\circ}$$
.

43. ILLUSTRATIONS OF LOGARITHMIC SOLUTIONS

The logarithmic solution of triangles is illustrated by the consideration of the following examples.

Illustration: Case 1. To illustrate the use of logarithms in the solution of triangles when it is possible to use the law of sines, let us solve the following triangle.

Given c = 268, $B = 23^{\circ}16'32''$, $A = 35^{\circ}29'38''$; find the remaining parts. Figure 62 illustrates the shape of the triangle.

Since

$$C=180^{\circ}-(A+B),$$

it follows that

$$C = 180^{\circ} - (35^{\circ}29'38'' + 23^{\circ}16'32'') = 121^{\circ}13'50''.$$

Moreover, since

$$\frac{a}{c} = \frac{\sin A}{\sin C},$$

we have

$$a = \frac{c \sin A}{\sin C}$$

$$= \frac{268 (\sin 35^{\circ}29'38'')}{\sin 121^{\circ}13'50''}.$$

In solving a triangle by logarithms it is important that the work be arranged systematically. The work for the solution of side a may be arranged as follows:

$$\log 268 = 2.42813$$

$$(-)$$

$$\log \sin 121^{\circ}13'50'' = \log \sin 58^{\circ}46'10'' = 9.93201 - 10$$

$$\log \frac{c}{\sin C} = 2.49612$$

$$(+)$$

$$\log \sin 35^{\circ}29'38'' = 9.76389 - 10$$

$$\log a = 2.26001$$

$$a = 181.97.$$

Side b may be obtained by the law of sines as follows:

$$b = \frac{c \sin B}{\sin C} = \frac{268 \sin 23^{\circ}16'32''}{\sin 121^{\circ}13'50''}.$$

After taking advantage of the computation of $\log \frac{c}{\sin C}$ above, we have

$$\log \frac{c}{\sin C} = 2.49612$$
(+)
$$\log \sin 23^{\circ}16'32'' = 9.59677 - 10$$

$$\log b = 2.09289$$

$$b = 123.85.$$

In practice, of course, these values for a and b would probably be rounded off to 182 and 124, respectively.

Check: Let us use the formula

$$\frac{a+b}{c} = \frac{\cos\frac{A-B}{2}}{\sin\frac{C}{2}}.$$

$$a + b = 305.82$$

$$c = 268$$

$$\begin{vmatrix} \log 305.82 = 2.48547 \\ (-) \\ \log 268 = 2.42813 \end{vmatrix}$$

$$\log \frac{a + b}{c} = 0.05734$$

$$A = 35^{\circ}29'38''$$

$$B = 23^{\circ}16'32''$$

$$A - B = 12^{\circ}13'6''$$

$$\frac{A - B}{2} = 6^{\circ}6'33''$$

$$\frac{\cos \frac{A - B}{2}}{\sin \frac{C}{2}} = 0.05735$$

$$\frac{C}{2} = 60^{\circ}36'55''$$

Since the logarithms of $\frac{a+b}{c}$ and $\frac{\cos\frac{A-B}{2}}{\sin\frac{C}{2}}$ agree to four significant

figures, the solutions are correct within the precision of five-place tables. Illustration: Case 2. Given a = 704, b = 302, and $B = 25^{\circ}14'13''$; obtain the remaining parts of the triangle.

From the given data we see that b < a. Since

$$\sin A = \frac{a \sin B}{b} = \frac{704 \sin 25^{\circ}14'13''}{302},$$

we have the following tabulated results:

$$\log 704 = 2.84757$$
(+)
$$\log \sin 25^{\circ}14'13'' = 9.62978 - 10$$

$$\log a \sin B = 12.47735 - 10$$
(-)
$$\log 302 \qquad 2.48001$$

$$\log \sin A = 9.99734 - 10.$$

From the fact that $\log a \sin_a B = 2.47735$, and $\log b = 2.48001$, we observe that $b > a \sin B$. Since $a \sin B < b < a$, there are two solutions (Section 43). Hence, by reference to a table, we have

$$A = 83^{\circ}40'$$
 and $A' = 180^{\circ} - A = 96^{\circ}20'$.
From $C = 180^{\circ} - (A + B)$, $C = 71^{\circ}5'47''$; and from $C' = 180^{\circ} - (A' + B)$, $C' = 58^{\circ}25'47''$.

Fig. 63

As in the previous illustration, c may now be obtained by using the law of sines and employing the data for a, b, B, A, and C. Likewise, c' can be obtained from the data for a, b, B, A', and C'.

Illustration: Case 3. Given b = 276, c = 318, and $A = 51^{\circ}17'$; find the remaining parts of the triangle. Note Figure 63.

Since we expect to use the law of tangents, we determine

$$\frac{B+C}{2} = \frac{180^{\circ} - A}{2} = \frac{180^{\circ} - 51^{\circ}17'}{2}$$
$$= \frac{128^{\circ}43'}{2} = 64^{\circ}21'30''.$$

Since c is larger than b, to avoid negative numbers in the logarithmic computation, we will write the law of tangents in the form

$$\tan \frac{C-B}{2} = \frac{c-b}{c+b} \tan \frac{C+B}{2}$$

$$c = 318$$

$$\frac{b = 276}{c-b = 42}$$

$$c+b = 594$$

$$\frac{C+B}{2} = 64^{\circ}21'30''$$

$$\log \tan \frac{c-b}{c+b} = 8.84946 - 10$$

$$(+)$$

$$\log \tan \frac{C-B}{2} = 9.16820 - 10$$

$$\frac{C-B}{2} = 8^{\circ}22'46''$$

To complete the solution, we must solve the following system of equations in C and B:

$$\frac{C+B}{2} = 64^{\circ}21'30''$$

$$\frac{C-B}{2} = 8^{\circ}22'46''$$

$$C = 72^{\circ}44'16''$$

$$B = 55^{\circ}58'44''$$

To find a, we shall use the law of sines. Thus,

$$a = \frac{b \sin A}{\sin B}$$
 and $a = \frac{c \sin A}{\sin C}$.

By using both formulas, we not only obtain the value of a but have a check on our work. The logarithmic computation for the first formula follows:

$$\log 276 = 2.44091$$

$$(+)$$

$$\log \sin 51^{\circ}17' = 9.89223 - 10$$

$$\log b \sin A = 12.33314 - 10$$

$$(-)$$

$$\log \sin 55^{\circ}58'44'' = 9.91846 - 10$$

$$\log a = 2.41468$$

$$a = 259.82$$

The logarithmic computation for the second formula will now be written down.

$$\log 318 = 2.50243$$
(+)
$$\log \sin 51^{\circ}17' = 9.89223 - 10$$

$$\log c \sin A = 12.39466 - 10$$
(-)
$$\sin 72^{\circ}44'16'' = 9.97998 - 10$$

$$\log a = 2.41468$$

$$a = 259.82.$$

Illustration: Case 4. In triangle ABC, a = 324.1, b = 395.7, c = 409.8. Find the angles of the triangle by using the half-angle formulas.

The formulas in order of use are

$$2s = a + b + c,$$

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}},$$

$$\tan \frac{A}{2} = \frac{r}{s-a},$$

$$\tan \frac{B}{2} = \frac{r}{s-b},$$

$$\tan \frac{C}{2} = \frac{r}{s-c}.$$

Check Formula: $A + B + C = 180^{\circ}$.

Solution:

EXERCISES 23

Solve the following triangles by the use of logarithms, and check the solutions:

 $B = 64^{\circ}0'44''$ $C = 68^{\circ}34'40''$

Check: $A + B + C = 180^{\circ}0'6''$

1.
$$a = 438.30$$
, $A = 43^{\circ}50'24''$, $B = 69^{\circ}30'12''$
2. $A = 64^{\circ}35'$, $C = 73^{\circ}49'$, $a = 213.47$
3. $B = 51^{\circ}41'48''$, $C = 93^{\circ}46'6''$, $b = 0.19740$
4. $a = 374$, $b = 412$, $C = 58^{\circ}28'$
5. $a = 238.5$, $b = 197.3$, $c = 205.0$
6. $B = 65^{\circ}13'$, $C = 58^{\circ}28'$, $a = 768.0$
7. $a = 732.5$, $b = 968.3$, $C = 80^{\circ}25'$
8. $a = 10.05$, $b = 19.03$, $c = 15.98$
9. $a = 695$, $b = 345$, $B = 21^{\circ}14'25''$

10.
$$b = 113.07$$
, $c = 120.55$, $A = 100°50′48″$

11.
$$a = 103.21$$
, $b = 152.37$, $A = 15^{\circ}32'42''$

12.
$$a = 148.60, b = 121.78, A = 69^{\circ}20'10''$$

- **13.** a = 0.9686, c = 1.0073, B = 41°17′18″
- **14.** a = 1.4595, b = 1.6072, c = 1.8278
- 15. Two planes leave an airport at the same time. One flies a course of 46°35' measured east of north, and the other a course of 72°18' measured in the same manner. If the planes fly 250 and 300 mph, respectively, how far apart are they at the end of 2 hr?
- 16. A triangular lot ABC has AB = 130 rd, BC = 165 rd, and AC = 172 rd in length. How far is it from A to the mid-point of BC?
- 17. In order to find the distance AB across a pond, the distances from A and B to a third point C were measured and found to be 327 rd and 247 rd, respectively. It was also found that $\angle ABC = 57.3^{\circ}$. Find the distance AB.
- 18. From a boat which is 4.2 miles from one end of an island and 6.3 miles from the other end, the island subtends an angle of 36°45′. How long is the island?
- 19. The longer base of an isosceles trapezoid is 11.2 in., while the nonparallel sides are 6.4 in. long. If each base angle is 68°36′, how long is each diagonal?
- 20. From a cliff 316 ft high, a boat is observed to be sailing toward the cliff. If the angle of depression of the boat is 7.3°, and 2 min later is 13.4°, how fast is the boat sailing?

Note: The angle of depression is the angle between the horizontal and the line of sight from the observer to the boat.

44. AREA OF A TRIANGLE

There are two cases to consider when finding the area of a triangle; namely, when two sides and the included angle are given, and when three sides are given.

Case 1. Given b, c, and A; find the area.

In plane geometry we learn that the area K is given by the formula $K = \frac{1}{2}pc$, where p is the perpendicular from

C to AB (note Figure 64). Since

$$p = b \sin A$$
,

it follows that

$$K = \frac{1}{2}bc\sin A.$$

Similarly,

$$K = \frac{1}{2}ac\sin B,$$

and

$$K = \frac{1}{2}ab\sin C.$$

The law just derived may be stated as follows: The area of a triangle is equal to one half the product of any two sides and the sine of their included angle.

CASE 2. Given the three sides a, b, c; find the area.

It has already been shown that

$$\sin\frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$

and

$$\cos \frac{A}{2} = \sqrt{\frac{(s-a)s}{bc}}, \quad \text{where } s = \frac{a+b+c}{2}.$$

Since

$$\sin A = 2\sin\frac{A}{2}\cos\frac{A}{2},$$

it follows that

$$K = \frac{1}{2}bc \sin A$$

$$= \frac{1}{2}bc (2) \sqrt{\frac{(s-b)(s-c)}{bc}} \cdot \sqrt{\frac{(s-a)s}{bc}}$$

$$= \sqrt{s(s-a)(s-b)(s-c)}.$$
(2)

It is recalled that r has already been defined by the relation

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}.$$

$$K = rs.$$
(3)

Hence,

In the next section it is shown that r is actually the radius of the circle inscribed in the given triangle. Thus, Formula (3) may be stated as

F1G. 65

follows: The area of a triangle is equal to the product of half the perimeter and the radius of the inscribed circle.

45. THE RADIUS OF THE INSCRIBED CIRCLE

Let Figure 65 represent a triangle ABC with inscribed circle of radius r. From plane geometry it is known that the center of the inscribed circle is the intersection of the bisectors of the angles of the triangle. Let OQ,

OP, and OR be radii of the circle that have been drawn to the points of tangency Q, P, and R, respectively. Then from plane geometry $OQ \perp AB$, $OP \perp AC$, and $OR \perp BC$.

It is apparent that the area K of triangle ABC is given by

$$K = \frac{1}{2}\overline{OQ} \cdot \overline{AB} + \frac{1}{2}\overline{OP} \cdot \overline{AC} + \frac{1}{2}\overline{OR} \cdot \overline{BC}$$
$$= \frac{r}{2} (a + b + c) = rs.$$

By comparing this result with Formula (3) of the previous section, it is

1

observed that the radius of the inscribed circle is the same r that was defined by

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}.$$

In fact, it was for this very reason that the right member of the preceding formula was designated by r.

EXERCISES 24

Definitions: An angle in a vertical plane between a horizontal line and the line from the eye to some object is defined as the angle of elevation of the object if the object is above the eye, and as the angle of depression if the object is below the eye.

Solve each of the six triangles that follow; check your solution; and find the area.

- **1.** Given $A = 82^{\circ}17'23''$, b = 384.23, c = 416.52
- **2.** Given $C = 97^{\circ}28'45''$, a = 36.244, b = 21.765
- 3. Given $C = 50^{\circ}20'38''$, $B = 42^{\circ}54'7''$, a = 1027.6
- **4.** Given a = 0.1027, b = 0.1562, c = 0.1398
- **5.** Given $C = 62^{\circ}15'35''$, c = 816.51, a = 458.19
- **6.** Given a = 3, b = 4, c = 6
- 7. Find the radius of the circle inscribed in the triangle of Exercise 6.
- 8. Find the radius of the circle circumscribed about the triangle of Exercise 6.
- **9.** In the triangle ABC, a=352.4, $B=36^{\circ}17'$, and $C=65^{\circ}20'$. Find the radii of the inscribed and the circumscribed circles.
- 10. A triangular lot is 230 ft on one side; the angles of the lot at the extremities of this side are 38°27′ and 47°42′, respectively. Find the value of the lot at \$2 per sq ft.
- 11. The diagonals of a parallelogram are 13.5 ft and 20.4 ft, and one side is 12 ft. Find the angles of the parallelogram and its area.
- 12. The bases of a trapezoid are 58.25 and 94.75 ft. The angles at the ends of the longer base are 68°52′ and 55°27′. Find the lengths of the other two sides.
- 13. Two sides of a parallelogram are 180 and 255 ft, and the included angle is 40°17′. Find the length of the diagonals and the area.
- 14. One diagonal of a parallelogram is 6291.3 ft, and the sides of the parallelogram make angles of 25°10′30″ and 35°14′50″ with the diagonal. Find the length of the sides of the parallelogram.
- 15. Observations to find the height of a mountain are taken at two points A and B on the same side of the mountain. The points are 3521.0 ft apart, at the same level, and in the same vertical plane with the top. The angle of elevation of the top at A is $54^{\circ}50'35''$ and at B is $37^{\circ}19'43''$. Find the height of the mountain.

16. Figure 66 represents a tower AB on the side of a hill CDA. At point C the angle of elevation of the top of the tower is $51^{\circ}16'$. At point D, in the same vertical plane as C and the tower, the elevation of the top is $73^{\circ}15'$. The hill from C through D to A is inclined 20° with the horizontal, and the distance CD = 54 ft. Find the height of the tower.

- 17. In order to find the distance AB across a river, certain measurements were made. The straight line AC along one bank was found to be 500 ft, and the angles BAC and BCA were found to be 88°33′0″ and 73°48′30″, respectively. Find the distance AB.
- 18. In a survey it is required to continue a straight line AB past an obstacle. A line BD, 100 yd long, is measured at right angles to AB. From D the line DP is established at an angle of 46° with the line BD. Find the length DP and angle DPQ so that the points P and Q will fall on the extension of AB, Q being the greater distance from B.
- 19. A surveyor measured a triangular piece of land which we shall designate as ABC. His notes gave AB = 538 ft, BC = 237 ft, and the angle $CAB = 31^{\circ}27'$. Show that there must have been some error in the notes.
- 20. An engineer wanted to build a horizontal bridge across a valley from A to B, as shown in Figure 67. The bridge was to be supported by a pier at C. From A the angle of depression of C is $28^{\circ}20'15''$, and from B the angle of depression of C is $47^{\circ}11'45''$. The distance AB is 250 ft. Find the height of the pier.

Fig. 67

21. To find the distance between two points A and B not visible from each other, a third point C is selected from which A and B are visible (note Figure 68). The distance CA = 444.38 ft, CB = 322.76 ft, and the angle $ACB = 87^{\circ}17'36''$. Compute AB.

EXERCISES 273

22. To find the distance from a point A to another point B as shown in Figure 69, point B being inaccessible and invisible from A, two points C and D are selected so that C, A, and D will be in the same straight line. A and B are both visible from C and from D. By measurement it is found that CA = 456.72 ft, AD = 490.74 ft, $\angle BCD = 71^{\circ}22'35''$, and $\angle BDC = 36^{\circ}19'24''$. Find AB.

Frg. 69

23. To find the distance between two inaccessible points A and B (Figure 70), two points C and D are selected from which both A and B can be seen. The following measurements were made: CD = 456.32 ft, $\gamma = 35^{\circ}16'24''$, $\alpha = 30^{\circ}40'30''$, $\delta = 56^{\circ}47'30''$, $\beta = 40^{\circ}14'50''$. Compute AB.

Fig. 70

24. In measuring the line from A to B (Figure 71) whose direction was known, it was necessary to pass an obstacle at F. A distance CD = 144.31 ft was measured, making an angle $\alpha = 39^{\circ}35'24''$ with AB, and the angle $\beta = 102^{\circ}10'20''$ was laid off. Compute DE, CE, and angle DEB in order that AC may be continued.

Fig. 71

25. In a survey of the field portrayed in Figure 72, a thick wood prevented the measurement of the angle ABD and of the distance BD. The angle $ABC = 70^{\circ}14'30''$ was measured, a line BC was run 700 ft, the angle BCD was found to be 65°18'23", and the distance CD was found to be 925.2 ft. Compute $\angle ABD$ and the distance BD.

Fig. 72

- 26. From one corner of a triangular lot the other corners are found to be, respectively, 122 ft in a direction 78°45' east of north and 157 ft in the direction 11°15' west of south. Find the area of the lot.
- 27. From the top of a lighthouse 100 ft high, standing on a cliff, the angle of depression of a ship was 3°10′, and at the bottom of the lighthouse the angle of depression for the same ship was 2°20′. Find the horizontal distance to the ship and the height of the cliff.
- 28. A surveyor observed two inaccessible headlands, A and B. A was north $48^{\circ}20'$ west, and B was north $35^{\circ}25'$ east. He went 20 miles north, where he noted that the headlands were south $62^{\circ}30'$ west and south $11^{\circ}15'$ east, respectively. How far is A from B?
- 29. From an airplane 4 miles above the earth, the dip of the horizon is 2°33′. Compute the approximate radius of the earth and the distance from the airplane to the horizon.

30. A barn 50 ft wide has a gambrel roof. Note Figure 73. The lower rafter a makes an angle of 60° with the horizontal, and the upper rafter b makes an angle of 60° with the vertical. If the lower and upper rafters are equal in length, find their length and the height b of the ridge.

- 31. Find the number of square feet in a conical tent with a circular base if an element of the cone is inclined 50° with the horizontal, and the center pole is 14 ft high.
 - 32. Given $M = \sin i / \sin i'$. Find i' when $M = 1\frac{1}{8}$ and $i = 23^{\circ}15'$.

33. Figure 74 represents a machine dovetail for guiding sliding parts. In order to make one of these dovetails, B, C, and the angle θ are given, and A must be computed. If B=8 in., C=3 in., and $\theta=70^\circ$, find the length of A.

- 34. An airplane is flying a straight, horizontal course at the rate of 280 mph. A person directly below the path of the plane observes it just after it has passed overhead. Its angle of elevation is 84°30′. Twenty seconds later its angle of elevation is 35°40′. At what height is it flying?
- 35. The pilot of an airplane flying over an island observes one extremity of the island, which is behind him, to have an angle of depression equal to 46°42′. The extremity of the island in front of him has an angle of depression equal to 62°37′. The plane's altimeter reads 8270 ft. How long is the island?
- 36. A ladder leaning against a building makes an angle of 47°30′ with the horizontal. When its foot is moved 18 ft nearer the building, the ladder makes an angle of 68°20′ with the horizontal. How much higher does it reach in the second position than it did in the first?

EXERCISES 275

- 37. The area of a triangular lot is 7248 sq ft. One side of the lot is 123 ft, and an angle adjacent to that side is 74°18.6′. Find the remaining sides and angles.
- 38. In the measurement of a distance between two points with a 100-ft steel tape, one end was held 3 ft out of line. What error would this produce in the measurement per 100 ft?
- 39. The curb lines of two streets that cross would make an angle of 101°27′ with each other if they were extended to a point of intersection. A rounded curb line with a radius of 18 ft is built in at the corner. How far from the point of intersection will the curve start?
- **40.** A tapering hole is to be drilled into a piece of steel 3 in. thick (note Figure 75). The small diameter of the hole must be 1 in. and the taper $\theta = 5^{\circ}55'$. To test the size of the hole, a ball is frequently used, and the distance C is measured. If the diameter D of the ball is 1.3 in., find C.

Frg. 75

4

Complex Numbers

46. COMPLEX NUMBERS

Complex numbers have already been considered briefly. Now, by means of the trigonometric functions and their properties, we are in a position to make a more thorough study of this important kind of number.

Fig. 76

Every real number corresponds to a unique point on a straight line; similarly, every complex number may be represented by a definite point in a plane. In Figure 76 the point P, designated by the coordinates (a, b), represents the complex number a + bi in the plane. It is noted that the point P(a, b) is located by means of the two real numbers a and b, where a is the abscissa and b is the ordinate relative to two axes. Since a denotes the real part of the given

complex number, the horizontal axis is usually designated as the axis of reals; since b is the coefficient of the imaginary unit i, the vertical axis is known as the axis of imaginaries.

The distance OP = r is called the absolute value, or modulus, of the complex number and is always considered positive. The angle $\theta =$

 $\tan^{-1}\frac{b}{a}$ is called the *amplitude*, or *argument*, of a + bi.

From a consideration of Figure 76, it is apparent that

$$a = r \cos \theta, \tag{1}$$

$$b = r \sin \theta, \tag{2}$$

$$r = \sqrt{a^2 + b^2}. (3)$$

The complex number of which a + ib is the rectangular, or algebraic, form may, by the use of relations (1) and (2), be expressed in the polar, or trigonometric, form:

$$r(\cos\theta+i\sin\theta). \tag{4}$$

47. CONJUGATE COMPLEX NUMBERS

The complex numbers

$$a+ib$$
 and $a-ib$

are called conjugate complex numbers. In their polar forms, these two conjugate complex numbers would be written

$$r(\cos\theta + i\sin\theta)$$

and

$$r(\cos\theta - i\sin\theta)$$
.

48. FUNDAMENTAL THEOREMS ON COMPLEX NUMBERS

The derivations of the theorems that follow are based on the definition that $i^2 = -1$ and on the assumption that the operations of addition, subtraction, multiplication, and division, as employed in the algebra of real numbers, are likewise applicable to complex numbers. Moreover, we shall assume the fundamental principle

If
$$a+ib=0$$
, then $a=0$ and $b=0$.

The desirability of this latter assumption is seen from the fact that if a and b were not zero, we would have

$$a = -ib$$
:

that is, a real number would equal an imaginary number, which is contrary to our purpose.

Theorem 1. If $a_1 + ib_1 = a_2 + ib_2$, then $a_1 = a_2$ and $b_1 = b_2$. Proof: If

$$a_1 + ib_1 = a_2 + ib_2,$$

then

$$(a_1 - a_2') + i(b_1 - b_2) = 0.$$

Hence, by the fundamental principle stated above,

$$a_1 - a_2 = 0$$
 or $a_1 = a_2$,

and

$$b_1 - b_2 = 0$$
 or $b_1 = b_2$.

Theorem 2. The sum, difference, product, and quotient of two complex numbers is a complex number.

Proof: For the sum,

$$(a_1+ib_1)+(a_2+ib_2)=(a_1+a_2)+i(b_1+b_2),$$

which is obviously another complex number.

For the difference,

$$(a_1+ib_1)-(a_2+ib_2)=(a_1-a_2)+i(b_1-b_2),$$

which is also a complex number.

For the product,

$$(a_1+ib_1)(a_2+ib_2)=[a_1a_2+i(a_1b_2+a_2b_1)+i^2b_1b_2].$$

Since $i^2 = -1$, this result may be written

$$(a_1a_2-b_1b_2)+i(a_1b_2+a_2b_1),$$

which is a complex number.

For the quotient, we consider

$$\frac{a_1+ib_1}{a_2+ib_2}.$$

After multiplying the numerator and the denominator by the conjugate of the denominator, we have

$$\begin{split} \frac{a_1 + ib_1}{a_2 + ib_2} &= \frac{(a_1 + ib_1)(a_2 - ib_2)}{(a_2 + ib_2)(a_2 - ib_2)} \cdot \\ &= \frac{[a_1a_2 + i(b_1a_2 - a_1b_2) - i^2b_1b_2]}{a_2^2 - i^2b_2^2} \cdot \end{split}$$

Again, since $i^2 = -1$, we have

$$\frac{a_1 + ib_1}{a_2 + ib_2} = \left(\frac{a_1a_2 + b_1b_2}{a_2 + b_2^2}\right) + i\left(\frac{b_1a_2 - a_1b_2}{a_2^2 + b_2^2}\right),$$

which is a complex number.

EXERCISES 25

1. Write each of the following complex numbers in polar form. Restrict each angle to less than 360°.

- 2. Change each of the following complex numbers to the equivalent rectangular form:
 - (a) $5(\cos 60^{\circ} + i \sin 60^{\circ})$ (b) $4(\cos 45^{\circ} i \sin 45^{\circ})$

 (c) $2(\cos 90^{\circ} + i \sin 90^{\circ})$ (d) $(\cos 42^{\circ}17' + i \sin 42^{\circ}17')$

 (e) $4(\cos 225^{\circ} + i \sin 225^{\circ})$ (f) $5(\cos 90^{\circ} + i \sin 90^{\circ})$
 - 3. (a) Find the algebraic sum of 2 3i and 1 + 4i.
 - (b) Subtract 1 + 4i from 2 3i.
 - (c) Find the product of 2-3i and 1+4i, and express the result in the form a+bi.
 - (d) Divide 2-3i by 1+4i, and express the quotient in the form a+bi.
 - **4.** Find the sum and product of a + bi and its conjugate.
- 5. Prove that if the number i multiplies a complex number a + bi, it rotates the line joining the point a + bi to the origin through an angle of 90° , but does not alter the absolute value of the complex number.

49. PRODUCTS, QUOTIENTS, POWERS, ROOTS

We have just found that the product or the quotient of two complex numbers is itself a complex number. The actual process of multiplication and division of complex numbers is considerably simplified if the numbers are written in polar form. This will be seen from the discussion that follows.

Product of Complex Numbers. The product of the two numbers

$$\alpha_1 = r_1(\cos \theta_1 + i \sin \theta_1)$$

$$\alpha_2 = r_2(\cos \theta_2 + i \sin \theta_2)$$

and is

$$\alpha_1 \alpha_2 = r_1 r_2 [(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i(\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2)],$$
or
$$\alpha_1 \alpha_2 = r_1 r_2 [\cos (\theta_1 + \theta_2) + i \sin (\theta_1 + \theta_2)]. \tag{1}$$

From relation (1) we note that the absolute value of the product of two complex numbers is the product of their absolute values, and the argument of the product is the sum of their arguments.

Quotient of Complex Numbers. We shall now find the quotient of the same two complex numbers.

We have

$$\frac{\alpha_1}{\alpha_2} = \frac{r_1(\cos\theta_1 + i\sin\theta_1)}{r_2(\cos\theta_2 + i\sin\theta_2)}.$$

After multiplying the numerator and the denominator of the right member by $(\cos \theta_2 - i \sin \theta_2)$, the conjugate of $\cos \theta_2 + i \sin \theta_2$, we have

$$\frac{\alpha_1}{\alpha_2} = \frac{r_1(\cos\theta_1 + i\sin\theta_1)(\cos\theta_2 - i\sin\theta_2)}{r_2(\cos^2\theta_2 - i^2\sin^2\theta_2)}$$

$$= \frac{r_1}{r_2} \frac{\left[(\cos\theta_1\cos\theta_2 + \sin\theta_1\sin\theta_2) + i(\sin\theta_1\cos\theta_2 - \cos\theta_1\sin\theta_2)\right]}{\cos^2\theta_2 + \sin^2\theta_2}$$

$$= \frac{r_1}{r_2} \left[\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)\right]. \tag{2}$$

From relation (2) we note that the absolute value of the quotient of two complex numbers is equal to the absolute value of the numerator divided by the absolute value of the denominator, and the argument of the quotient is equal to the argument of the numerator minus the argument of the denominator.

50. DE MOIVRE'S THEOREM

This important theorem is as follows:

The absolute value of the nth power of a number is equal to the nth power of its absolute value, and the argument of the nth power of a number is equal to n times the argument of the number.

In symbolic form, the theorem is

$$[r(\cos\theta+i\sin\theta)]^n=r^n(\cos n\theta+i\sin n\theta),$$

where n is a positive integer.

We shall prove this theorem, when n is a positive integer, by induction (Book I, Chapter XV).

When n = 1, the theorem is obviously true. When n = 2, by employing relation (1) in the previous section, we have

$$[r(\cos\theta + i\sin\theta)]^2 = r^2[\cos(\theta + \theta) + i\sin(\theta + \theta)]$$

= $r^2(\cos 2\theta + i\sin 2\theta)$.

Hence, the theorem is true when n = 2.

We now assume that

$$[r(\cos\theta+i\sin\theta)]^k=r^k(\cos k\theta+i\sin k\theta),$$

where k is an arbitrary positive integer. After multiplying both members by $r(\cos \theta + i \sin \theta)$, we have as a result

$$r^{k+1}[\cos(k\theta+\theta)+i\sin(k\theta+\theta)]$$

 $r^{k+1}(\cos\overline{k+1}\theta+i\sin\overline{k+1}\theta).$

or

Since the law has been verified for k = 2, the above demonstration shows that it is true for k = 3, and by continuing the application of this reasoning, it is true for any positive integer.

It may be shown that De Moivre's theorem holds also for any real value of n. We shall assume this generalization without proof.

De Moivre's theorem has many important applications. As an illustration of its use, we shall consider the determination of the roots of a complex number: this includes any real number.

51. ROOTS OF A COMPLEX NUMBER

To find the *n*th roots of a *real* number a, we solve the equation $x^n = a$ for x. Similarly, to find the *n*th roots of a complex number α , we solve the equation $z^n = \alpha$ for z; that is, we are to determine

$$z = \sqrt[n]{\alpha}.\tag{1}$$

Let
$$z = r_1(\cos\phi + i\sin\phi),$$
 (2)

and let
$$\alpha = r_2(\cos\theta + i\sin\theta)$$
. (3)

Then, by De Moivre's theorem,

$$z^n = r_1^n(\cos n\phi + i\sin n\phi), \qquad (4)$$

and hence, since $z^n = \alpha$, it follows that

$$r_1^{n}(\cos n\phi + i\sin n\phi) = r_2(\cos \theta + i\sin \theta). \tag{5}$$

To satisfy equality (5),

$$r_1^n = r_2 \quad \text{or} \quad r_1 = \sqrt[n]{r_2},$$

and

$$n\phi = \theta + 2k\pi$$
 or $\phi = \frac{\theta + 2k\pi}{n}$,

where k is zero or any real integer.

Hence, substituting $\sqrt[n]{r_2}$ for r_1 and $\frac{\theta + 2k\pi}{n}$ for ϕ , relation (2) becomes

$$z = \sqrt[n]{r_2} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right)$$
 (6)

If we use the values $k=0, 1, 2, 3, \dots, (n-1)$, we shall obtain all the *n* nth roots of α . If further values of k are used, the values for z are repeated.

The geometrical arrangement of these roots in the plane is interesting. Since the absolute values of all the roots are equal, they will lie on a circle of radius $\sqrt[n]{r_2}$. The *n* values will be equally spaced around this circle, the first or principal root z_0 being on the line $\phi = \frac{\theta}{n}$.

To illustrate the use of result (6), we shall find the three cube roots of $8(\cos 30^{\circ} + i \sin 30^{\circ})$. In this case n = 3.

If
$$k = 0$$
,

$$z_0 = \sqrt[3]{8} \left(\cos \frac{30^\circ + 0^\circ}{3} + i \sin \frac{30^\circ + 0^\circ}{3} \right) = 2(\cos 10^\circ + i \sin 10^\circ).$$

If
$$k=1$$
.

$$z_1 = \sqrt[3]{8} \left(\cos \frac{30^\circ + 360^\circ}{3} + i \sin \frac{30^\circ + 360^\circ}{3} \right) = 2(\cos 130^\circ + i \sin 130^\circ).$$

If
$$k=2$$
,

$$z_2 = \sqrt[3]{8} \left(\cos \frac{30^\circ + 720^\circ}{3} + i \sin \frac{30^\circ + 720^\circ}{3} \right) = 2(\cos 250^\circ + i \sin 250^\circ).$$

Fig. 77

The three cube roots z_0 , z_1 , and z_2 are displayed in Figure 77.

EXERCISES 26

- 1. Find the product of $2(\cos 20^{\circ} + i \sin 20^{\circ})$ and $3(\cos 40^{\circ} + i \sin 40^{\circ})$.
- 2. Find the product of $3(\cos 50^{\circ} + i \sin 50^{\circ})$ and $5(\cos 70^{\circ} + i \sin 70^{\circ})$.
- 3. Show that $\frac{1}{r(\cos\theta + i\sin\theta)} = \frac{1}{r}(\cos\theta i\sin\theta)$.
- **4.** Divide $6(\cos 120^{\circ} + i \sin 120^{\circ})$ by $3(\cos 30^{\circ} + i \sin 30^{\circ})$.
- 5. Express the quotient $\frac{3(\cos 120^\circ + i \sin 120^\circ)}{5(\cos 30^\circ + i \sin 30^\circ)}$ in the form a + ib.
- **6.** Find $[5(\cos 45^{\circ} + i \sin 45^{\circ})]^2$. Write the result in the form a + ib.
- 7. Find $[2(\cos 20^{\circ} + i \sin 20^{\circ})]^3$. Write the result in the form a + ib.
- 8. Find the value of

$$\frac{[3(\cos 30^{\circ} + i \sin 30^{\circ})][5(\cos 60^{\circ} + i \sin 60^{\circ})]}{6(\cos 120^{\circ} + i \sin 120^{\circ})}.$$

- **9.** Change each complex number to polar form and find the product of $1 \sqrt{3}i$ and 1 + i.
- 10. Change each complex number to polar form and divide 3-5i by 2-i. Check your result by finding the quotient of the numbers in the form as given and then changing the result to polar form.
 - 11. (a) Find the two square roots of 1.

Suggestion: First change 1 to its equivalent polar form, $1(\cos 0^{\circ} + i \sin 0^{\circ})$.

- (b) Determine the three cube roots of 1.
- (c) Find the four fourth roots of 1.
- 12. Write i in the polar form. Show that $i^4 = 1$ by using the polar form of i.

52. GRAPHICAL REPRESENTATION OF $z=z_1+z_2$, $z=z_1-z_2$, $z=z_1z_2$, and $z=z_1/z_2$

In this discussion, the letter z is used to denote a complex number; that is common in advanced mathematics. The rectangular forms for the complex numbers z_1 and z_2 are well adapted to the study of the graphical representation of $z = z_1 + z_2$ and $z = z_1 - z_2$, while the polar forms for the complex numbers are better adapted to the consideration of the graphical

representation of
$$z = z_1 z_2$$
 and $z = \frac{z_1}{z_2}$.

The point that corresponds to the complex number z, where $z = z_1 + z_2$, and where

$$z_1 = a_1 + ib_1$$
 and $z_2 = a_2 + ib_2$,

is P, as located in Figure 78. This fact is easily established after the triangles OAP_2 and P_1BP are proved congruent. It is then readily shown that the line OP is the diagonal of the parallelogram determined by drawing P_1P both equal and parallel to OP_2 .

To locate a point P corresponding to $z = z_1 - z_2$, Figure 79 is appropriate. The line OP is the diagonal of the parallelogram determined by

drawing P_1P equal and parallel to OP'_2 , where OP'_2 is equal but having a direction opposite to that of OP_2 .

To locate the point corresponding to z, where $z = z_1 z_2$ and where $z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$, we may refer to

Figure 80. The desired point P is the representation of $r(\cos \theta + i \sin \theta)$, where $r = r_1 r_2$ and $\theta = \theta_1 + \theta_2$.

The magnitude $OP = r_1r_2$ may be constructed graphically as follows: Draw any two intersecting lines L_1 and L_2 , as in Figure 81. On line L_1 let $r_1 = OP_1$ and OM = 1 unit. On L_2 let $r_2 = OP_2$. Draw MP_2 , and construct $P_1P \parallel MP_2$. Then, $OP = r_1r_2$. The proof is left as an exercise for the student.

To locate the point corresponding to z, where $z=\frac{z_1}{z_2}$ and where $z_1=r_1(\cos\theta_1+i\sin\theta_1)$ and $z_2=r_2(\cos\theta_2+i\sin\theta_2)$, we may refer to Figure 82. The desired point P is the representation of the quotient $r(\cos\theta+i\sin\theta)$, where $r=\frac{r_1}{r_2}$ and $\theta=\theta_1-\theta_2$.

The magnitude $OP = \frac{r_1}{r_2}$ may be constructed graphically as follows: Draw any two intersecting lines L_1 and L_2 , as in Figure 83. On L_2 let $r_2 = OP_2$ and OM = 1. On L_1 let $r_1 = OP_1$. Draw P_1P_2 , and construct $MP \parallel P_1P_2$. Then $OP = \frac{r_1}{r_2}$. The proof is left as an exercise for the student.

It may be noted that if k is a positive real number other than 1 and $z = r(\cos \theta + i \sin \theta)$, then $kz = kr(\cos \theta + i \sin \theta)$. Hence the positive real number k, as a multiplier of the complex number $r(\cos \theta + i \sin \theta)$, changes the absolute value r to kr, leaving the argument θ unchanged.

If k is a negative real number other than -1, then k as a multiplier of $r(\cos\theta+i\sin\theta)$ changes the absolute value of r to |k|r and rotates through 180° the line joining the origin to the point representing the given complex number. This fact is readily seen to be true when it is realized that the negative number k may be written in the polar form |k| (cos 180° + i sin 180°). Of course, the argument may be -180° as well as 180°.

It may also be noted that if $z = r(\cos \theta + i \sin \theta)$, and since $i = 1(\cos 90^{\circ} + i \sin 90^{\circ})$ and $-i = 1[\cos (-90^{\circ}) + i \sin (-90^{\circ})]$, then $iz = r[\cos(\theta + 90^{\circ}) + i \sin (\theta + 90^{\circ})]$ and $-iz = r[\cos(\theta - 90^{\circ}) + i \sin(\theta - 90^{\circ})]$. Thus, the imaginary number i as a multiplier leaves the absolute value of a complex number unchanged, but causes rotation through 90° , while the imaginary number -i as a multiplier leaves the absolute value unchanged and causes a rotation through -90° .

EXERCISES 27

- 1. By algebraic addition find the sum of 3 + 2i and 1 3i. Graph the two numbers and their sum.
- 2. Find $z_1 z_2$, where $z_1 = 3 + 2i$ and $z_2 = 1 3i$. Graph the two numbers and the difference.
- 3. Find algebraically the product (3-2i)(1-3i). Construct the diagram for obtaining their product.
- **4.** Find the reciprocal of (1-3i), and express the result in the form a+ib by rationalizing the denominator.

- 5. Find the quotient $(3+2i) \div (1-3i)$, and express the result in the form a+ib. Draw the diagram for obtaining the quotient.
- **6.** Locate the points representing the complex numbers $z_1 = 5$, $z_2 = -4 i$, and their sum z. Find the absolute values of the three numbers, and note that the absolute value of a sum of two complex numbers may be less than the absolute value of either one.
- 7. Solve the quadratic equation $z^2 z + 4 = 0$. Using one of the roots, locate the points z^2 , -z, and +4, and find the sum graphically of these three complex numbers. Do the same for the other root.
- 8. Solve the quadratic equation $z^2 + bz + c = 0$ for z. What is the absolute value of z^2 ?
- 9. Find the product of the roots of the equation in Exercise 7, and locate the point representing the product. Note that it coincides with the point representing the coefficient of the last term. Do the same for the equation of Exercise 8.
- 10. Plot the following complex numbers: $3(\cos 60^{\circ} + i \sin 60^{\circ})$, $2(\cos 90^{\circ} + i \sin 90^{\circ})$, $4(\cos 30^{\circ} + i \sin 30^{\circ})$, $5(\cos 120^{\circ} + i \sin 120^{\circ})$.
 - (a) Find their sum graphically.
 - (b) Find their product graphically.
 - (c) Subtract the sum of the first two from the sum of the last two and locate
 - the point representing the difference.
 - (d) Divide the product of the first two by the product of the last two.
 - (e) Divide the sum of the first two by the sum of the last two.
- 11. Write the numbers -2 + 3i and 3 4i in the polar form, and write their product; also locate the points representing the numbers, and find their product graphically.
- 12. Find the product of 1.336 2.550i and 2.774 + 0.550i, and express the result in the polar form.
 - 13. Find the quotient $(-2 + 3i) \div (3 4i)$ graphically.
- 14. Find the quotient $100(\cos 90^{\circ} + i \sin 90^{\circ}) \div 5(\cos 30^{\circ} + i \sin 30^{\circ})$. Write the result in the form a + ib.
- 15. Express the reciprocal of each of the following numbers in the same form in which it is given: $5(\cos 30^{\circ} + i \sin 30^{\circ})$, 3 + 4i, $10(\cos 45^{\circ} i \sin 45^{\circ})$.
- 16. Express the square of each of the complex numbers of Exercise 15 in the same form in which it is given.
- 17. Express the square root of each of the complex numbers of Exercise 15 in the same form in which it is given.
- 18. Express the product of the three complex numbers of Exercise 15 in the polar form.
 - 19. Find all the square roots of -4. Show them graphically.
 - **20.** Find all the square roots of 3-4i. Show them graphically.
 - 21. Find the two square roots of 1.336 2.550i.
 - 22. Find the three cube roots of 8. Show them graphically.
 - 23. Find the three cube roots of -8. Show them graphically.
 - 24. Find all the cube roots of 1.336 2.550i.
 - **25.** Find the cube roots of -4 + 3i.
 - **26.** Given $x^5 + 1 = 0$; find all the roots.
 - 27. Given $x^5 32 = 0$; find all the roots.
 - 28. Given $x^6 27 = 0$; find all the roots.
 - 29. In an electric circuit, two a-c impedances may be represented by the

- complex quantities $Z_1 = R_1 + iX_1$ and $Z_2 = R_2 + iX_2$. The combined impedance of the two in series is the sum $Z = Z_1 + Z_2$. Draw the diagram showing Z_1 , Z_2 , and Z.
- **30.** Two impedances $Z_1 = 3 + 5i$ ohms and $Z_2 = 2 3i$ ohms are combined in series. Find the impedance Z of the combination (note Exercise 29).
 - 31. Express the impedances Z_1 , Z_2 , and Z of Exercise 30 in polar form.
- **32.** Two impedances $Z_1 = R_1 + iX_1$ and $Z_2 = R_2 + iX_2$, when connected in parallel, give a joint impedance of $Z = Z_1Z_2/(Z_1 + Z_2)$, where the products and sum are taken in the complex sense. Draw a diagram displaying Z_1 , Z_2 , and Z, when $R_1 = 1$, $X_1 = 2$, $R_2 = 3$, $X_2 = 4$.
- 33. Find the joint impedance of the combination 3 + 2i ohms and 1 3i ohms connected in parallel (see Exercise 32).
- **34.** Find the joint impedance of 3 + 5i ohms and 2 3i ohms when connected in series. Find the joint impedance if these impedances are connected in parallel (see Exercise 29 and Exercise 32).
- 35. The two complex numbers of Exercise 12 represent two impedances. Find their joint impedance when connected in series. Find their joint impedance when connected in parallel. Express the results in the polar form.
- **36.** An alternator producing an emf of E = 100 vector volts has in its circuit an impedance of 3 + 4i vector ohms. How much current (I vector amperes) will flow? (I = E/Z) Express in the polar form.

REVIEW EXERCISES 28

- 1. Draw diagrams and write the six trigonometric functions of 150°, 225°, 330°, $+\frac{7\pi}{4}$, $-\frac{2\pi}{3}$.
- 2. Given $\cos x = \frac{8}{17}$; construct all possible values of x less than 360°, and find the other functions of x.
- 3. Given $\tan x = -\frac{3}{4}$ and $\cos x$ positive; construct x and find the other functions.
- 4. Given a circle with radius 6 ft; find the length of the arc of the circle and the chord intercepted by the sides of a central angle of 105°32'.
 - 5. Find the side of a regular octagon inscribed in a circle of radius 6 ft.
 - 6. Find the area of the segment bounded by the arc and chord in Exercise 4.
- 7. From the top of a lighthouse 150 ft above sea level, the angle of depression of a buoy was 12°10′ and that of the distant shore measured in the same vertical plane with the buoy was 62°14′. Find the distance of the buoy from the shore in feet.
- 8. Find the radius and the length of an arc of 1° of a parallel of latitude at a place whose latitude is 43°20′, the earth being regarded as a sphere whose radius is 3963 miles.
- 9. Write the functions of the following angles in terms of some positive acute angle: $101^{\circ}16'$, $194^{\circ}7'$, $265^{\circ}5'$, $328^{\circ}16'$, $-27^{\circ}10'$, $-137^{\circ}21'$.
- 10. A pendulum 12 in. long is displaced through an angle of 43°15' with the vertical. In the vertical position, the pendulum bob is 42 in. from the floor. How high is it from the floor at the point of maximum displacement?
 - 11. Transform the first member into the second in each of the following:
 - (a) $\sec x \csc x (\cos^2 x \sin^2 x) = \cot x \tan x$.

(b)
$$\sin^2 x(\tan^2 x - 1) + \cos^2 x(\cot^2 x - 1) = \frac{(1 - 2\cos^2 x)^2 \sec^4 x}{\tan^2 x}$$
.

(c)
$$\tan^2 x - \sin^2 x \cos^2 x = \frac{(\sec^2 x + 1)(\sec^2 x - 1)}{\sec^4 x}$$
.

(d)
$$\frac{\cos x \cot x - \sin x \tan x}{\csc x - \sec x} = 1 + \sin x \cos x.$$

(e)
$$\frac{\sec x + \csc x}{\sec x - \csc x} = \frac{\tan x + 1}{\tan x - 1} = \frac{1 + \cot x}{1 - \cot x}$$

- 12. Find the value of $\frac{\sec x + \tan x}{\csc x \cos x}$ when $\cot x = -\frac{1}{2}$, if x is in the second quadrant.
 - 13. Solve the following equations for all values of θ less than 360°:
 - (a) $2 \sin \theta \tan \theta + 2 \sin \theta \tan \theta 1 = 0$.
 - (b) $16\cos^2\theta + 8\sin\theta 13 = 0$.
 - 14. Determine the angle between the diagonal of a cube and an adjacent edge.
- **15.** If $\sin A = \frac{5}{13}$ and $\cos B = \frac{8}{17}$, where $A < 90^{\circ}$ and $B < 90^{\circ}$, find $\sin (A + B)$, $\cos (A B)$, $\cos 2A$, and $\sin \frac{A}{2}$.
 - 16. By inspection find one value of x satisfying each equation that follows:
 - (a) $\sin (n-1) A \cos A + \cos (n-1) A \sin A = \sin x$.
 - (b) $\cos 45^{\circ} \cos (90^{\circ} \theta) \sin 45^{\circ} \sin (90^{\circ} \theta) = \cos x$.
 - 17. Transform the first member into the second:
 - (a) $\sin (x + y) \sin (x y) = \sin^2 x \sin^2 y$.
 - (b) $\cos^2 x + \cos^2 y 2 \cos x \cos y \cos w = \sin^2 w$, when w = x + y.
 - (c) $\tan \theta + \frac{\tan \phi \sec \theta}{\cos \theta \tan \phi \sin \theta} = \tan (\theta + \phi).$
 - (d) $\frac{1-\tan x}{1+\tan x} = \tan (45^{\circ} x)$.
 - (e) Express $\cos^4 \theta$ in terms of cosines of multiple angles but with no power higher than the first.
 - 18. If $y = \tan^{-1} m + \tan^{-1} n$, find $\tan y$ in terms of m and n.
 - 19. If $y = \sin^{-1} \frac{1}{2} + \tan^{-1} \frac{3}{4}$, find $\tan y$.
 - **20.** If $m = \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3}$, find m in degrees.
 - 21. Show that $\tan^{-1} m = \frac{1}{2} \tan^{-1} \frac{2m}{1 m^2}$.
 - **22.** Show that $\cos^{-1} m = \frac{1}{2} \cos^{-1} (2m^2 1)$.
 - 23. Find all values of θ less than 360° satisfying each of the following:
 - (a) $\cot 2\theta + \tan \theta = -\frac{2}{3}\sqrt{3}$.
 - (b) $\sin 4\theta 2\sin 2\theta = 0$.
 - 24. Given

$$x = a \cos \theta$$

$$y = b \sin \theta$$
;

eliminate θ .

25. Given

$$x = \cos \theta,$$
$$y = \sin 2\theta;$$

eliminate θ .

26. Given

$$x = a(2\cos t - \cos 2t),$$

$$y = a(2\sin t - \sin 2t);$$

eliminate t.

27. Draw the graph of each of the following:

- (a) $y = \sin x + \sin 2x + \sin 3x.$
- $(b) y = 2\sin x + \sin 2x.$
- (c) $y = \sin x + \sin \left(2x + \frac{\pi}{3}\right)$.
- (d) $y = \sin^{-1} 3x$.
- (e) $y = 2\sin^{-1} 2x \frac{\pi}{4}$.
- (f) $y = \cos^{-1}(3x 2)$.
- (g) $y = \frac{1}{2}\cos^{-1}\left(x \frac{\pi}{6}\right)$.

28. Find the sum, the difference, the product, and the quotient of 3-5i and -4+i.

29. Express the number 8 - 15i in polar form, and find its cube roots.

30. Solve the equation $x^6 + 1 = 0$ for all six values of x.

Book III : ANALYTIC GEOMETRY

1. ANALYTIC GEOMETRY

In general, there are two broad approaches to the study of geometry, namely, with or without the use of an axis system. The geometry of high school, which is in the Euclidean tradition, did not use an axis system; geometry considered in such a manner is described as *synthetic*. In this book, our study of geometry will be facilitated by using an axis system; such an approach is said to be *analytic*.

2. PROJECTION OF A LINE SEGMENT

The projection of the directed line segment AB upon a line L, by definition, is the line segment of L from the foot C of the perpendicular from A to L to the foot D of the perpendicular from B to L (see Figure 1). Thus, CD is the projection of AB upon L, whereas DC is said to be the projection of BA upon L.

In Figure 2, where P_1 has the coordinates (x_1, y_1) and P_2 has the coordinates (x_2, y_2) , the projections of P_1P_2 upon the x axis and y axis, respectively, are $x_2 - x_1$ and $y_2 - y_1$, respectively.

3. LENGTH OF A LINE SEGMENT

If in Figure 2 we designate the distance between P_1 and P_2 by d, and note that we are now speaking of the magnitude of the segment P_1P_2

irrespective of direction, we have from elementary geometry

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

This is known as the distance formula for plane analytic geometry, and it has many applications in the work that follows. Since $(x_2 - x_1)^2 = (x_1 - x_2)^2$ and $(y_2 - y_1)^2 = (y_1 - y_2)^2$, it is apparent that the order in which the two points are chosen is immaterial insofar as the application of the distance formula is concerned.

If $y_1 = y_2$, then $d = |x_2 - x_1|$, where the bars denote the absolute value; that is, if $x_2 - x_1$ is negative, d must be taken equal to the positive value $x_1 - x_2$. Similarly, if $x_1 = x_2$, $d = |y_2 - y_1|$.

Illustration: Show that the points $P_1(1, -2)$, $P_2(4, 2)$, and $P_3(-3, -5)$ are the vertices of an isosceles triangle.

From the distance formula,

$$P_1 P_2 = \sqrt{(4-1)^2 + (2+2)^2} = 5$$

$$P_1 P_3 = \sqrt{(-3-1)^2 + (-5+2)^2} = 5.$$

and

Since two sides of the triangle are equal, the triangle is isosceles.

EXERCISES 1

- 1. Take a point $A(x_1, y_1)$ in the second quadrant and the point $B(x_2, y_2)$ in the third quadrant. Draw the figure and derive the formula for the length of AB.
 - 2. Find the length of the line segment joining (1, -6) and (-4, -3).
- 3. Find the length of the sides, the altitude upon AB, and the area of the triangle having the vertices A(1, 0), B(10, 0), C(3, 9).
 - **4.** Show that the triangle of vertices A(10, 2), B(20, 6), C(6, 12) is isosceles.
- 5. Show that the triangle whose vertices are the points (-1, -6), (7, 0), and (1, 8) is an isosceles triangle.
- **6.** Prove that the points (-2, -1), (1, 0), (4, 3), and (1, 2) are the vertices of a parallelogram.
 - 7. Prove analytically that the diagonals of a rectangle are equal.

Suggestion: Any rectangle may be located on an axis system so that it has the coordinates (a, 0), (a, b), (0, b) and (0, 0).

- 8. Write an equation expressing the fact that the point (x, y) is 5 units from the point (2, -3).
- **9.** Write an equation expressing the fact that the point (x, y) is equidistant from the points (2, 3) and (-1, 5).
- 10. Find the area of the quadrilateral formed by connecting the points (3, 4), (-2, 6), (-4, -5), (4, -9),and (3, 4) in the order given.

HINT: Draw lines through the vertices parallel to the axes, thereby forming parallelograms and right triangles: then make use of projections to find areas.

4. COORDINATES OF A POINT WHICH DIVIDES A LINE SEGMENT IN A GIVEN RATIO

If P is a point which divides the line segment P_1P_2 in a given ratio r, we mean that $P_1P/P_1P_2 = r$ (note Figures 3, 4, and 5). In view of our

Fig. 3

definition that $r = P_1P/P_1P_2$, it follows that r is positive in Figures 3 and 4, since P_1P and P_1P_2 have the same direction; whereas r is negative in Figure 5, since in this figure P_1P and P_1P_2 have opposite directions.

In each of the three figures,

$$\frac{x-x_1}{x_2-x_1}=r$$
 or $x=x_1+r(x_2-x_1),$

and

$$\frac{y-y_1}{y_2-y_1}=r$$
 or $y=y_1+r(y_2-y_1)$.

In the particular case where P is the mid-point of P_1P_2 , $r=\frac{1}{2}$. Hence,

$$x = x_1 + \frac{1}{2}(x_2 - x_1) = \frac{x_1 + x_2}{2},$$

and
$$y = y_1 + \frac{1}{2}(y_2 - y_1) = \frac{y_1 + y_2}{2}$$
.

EXERCISES 2

- 1. Find the coordinates of the point that bisects the line segment joining the point (-2, -7) to (3, 4).
- 2. How far is it from the origin to the mid-point of the segment from (2, 3) to (6, 9)?
- 3. Find the coordinates of the two points which trisect the segment joining (1, -6) and (-4, -3).
 - **4.** Given the points A(-3, 5) and B(6, -2):
 - (a) Find the coordinates of the mid-point of AB.
 - (b) Find the coordinates of the points that trisect AB.
 - (c) Find the coordinates of the points that divide AB into four equal parts.
 - (d) Find the coordinates of the point that divides AB in the ratio $-\frac{2}{3}$.
- 5. Given a triangle with vertices at the points A(-2, -10), B(3, 5), and C(1, -8):
 - (a) Find the length of each side.
 - (b) Find the length of each median.
 - (c) Find the length of the line joining the mid-points of sides AB and BC.
 - (d) Find the coordinates of the points that are two thirds of the distance from each vertex to the mid-point of the opposite side of the triangle.
- **6.** Prove that the quadrilateral whose vertices are (6, 3), (16, -3), (-9, -12), and (-19, -6) is a parallelogram, and that the quadrilateral formed by joining the mid-points of the sides is also a parallelogram.
- 7. Prove analytically that the mid-point of the hypotenuse of a right triangle is equidistant from the three vertices.

HINT: The triangle may be placed in some convenient position with respect to the axis system. For instance, the vertices might be chosen as (0, a), (0, 0), and (b, 0).

- 8. Show analytically that the line joining the mid-points of two sides of a triangle is equal to one half the third side.
- 9. Prove analytically that the figure formed by joining the mid-points of any quadrilateral is a parallelogram.
- 10. Determine the area of the isosceles triangle having the vertices (10, 2), (20, 6), and (6, 12).

Fig. 6

5. AREA OF A TRIANGLE IN TERMS OF THE COORDINATES OF ITS VERTICES

Let P_1 , P_2 , P_3 be the vertices of a triangle such as the one shown in Figure 6.

By reference to the figure, we observe that

Area of triangle
$$P_1P_2P_3$$
 = area of trapezoid MNP_3P_1
+ area of trapezoid NRP_2P_3
- area of trapezoid MRP_2P_1
= $\frac{(y_1 + y_3)(x_3 - x_1)}{2} + \frac{(y_2 + y_3)(x_2 - x_3)}{2} - \frac{(y_2 + y_1)(x_2 - x_1)}{2}$

 $= \frac{1}{2}(x_1y_2 + x_2y_3 + x_3y_1 - x_3y_2 - x_2y_1 - x_1y_3).$ This result can be written in the form of a determinant as follows:

Area of triangle
$$P_1P_2P_3 = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$
.

It is readily confirmed that this result is entirely general, irrespective of the location of the points in the various quadrants.

EXERCISES 3

- 1. Find the area of the triangle whose vertices are the points (2, 3), (-1, 4) and (2, -5).
- 2. By using the formula for the area of a triangle, show that the points (2, 4), (0, -5), and (-2, -14) are on a straight line.
 - 3. Show that the area of the quadrilateral $P_1P_4P_3P_2$ in Figure 7 is given by

Fig. 7

- **4.** Find the area of the quadrilateral whose vertices are (1, 0), (5, 7), (-2, 3), and (-1, -4).
- 5. Find the altitude upon AB of the triangle whose vertices are the points A(1, 2), B(9, -4), and C(4, 7).
- 6. Show analytically that a line connecting the mid-points of two sides of a triangle forms with those sides a new triangle whose area is one fourth the area of the given triangle.

- 7. (a) Show that the quadrilateral whose vertices are A(-6, 1), B(4, -3), C(9, 1), and D(-1, 5) is a parallelogram.
 - (b) Find the area of the quadrilateral.
 - (c) Find the length of each diagonal.
 - (d) Find the length of AB.
 - (e) Find the length of the altitude from D to the side AB.
- 8. A triangle has vertices at the points (a, b), (c, d), and (0, 0). Show that its area is

$$\frac{1}{2} \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$
.

6. POLAR COORDINATES

Instead of locating a point by means of its distances from two fixed lines, as in Cartesian coordinates, we may locate a point by a method

illustrated in Figure 8. Point P in this figure is determined by means of two coordinates, which are the measures, respectively, of the distance OP = r and the angle θ . The line OX is called the *initial line* and the point O is called the *pole*. The coordinates of P are given as (r, θ) . The measure of angle θ may be given in degrees or in radians.

The distance r is positive in the direction of the terminal line of the angle under consideration. Thus, relative to the angle θ , OP is positive and OP' is negative. Similarly, relative to the angle θ_1 , OP' is positive and OP is negative.

When using polar coordinates, the same point P may be designated by pairs of coordinates in many ways. Thus, the same point P may be given by $(2,30^{\circ})$, $(-2,-150^{\circ})$, $(-2,210^{\circ})$, $(2,-330^{\circ})$, and so on. In spite of this fact, the system of polar coordinates is much more serviceable in certain kinds of problems than the system of rectangular coordinates.

7. RELATION BETWEEN RECTANGULAR AND POLAR COORDINATES

It is possible to establish a relation between polar and rectangular coordinates. Thus, if (x, y) are the rectangular coordinates of P, and (r, θ) are the polar coordinates of the same point, we have, by reference to

Figure 9,
$$x = r \cos \theta$$
, $y = r \sin \theta$, $\theta = \tan^{-1} \frac{y}{x}$, and $r = \pm \sqrt{x^2 + y^2}$. An

examination of these formulas reveals that they are valid irrespective of the quadrant in which θ terminates and of the sign of r; of course the sign of r depends upon the choice of θ .

By means of these relations we may translate equations involving polar coordinates into corresponding equations involving rectangular coordinates, and conversely. Thus, the equation $x^2 - y^2 = 36$ in rectangular coordinates becomes

$$r^2\cos^2\theta-r^2\sin^2\theta=36$$

or
$$r^2\cos 2\theta = 36$$

in polar coordinates. Conversely, the equation $r = \sin 2\theta$ in polar coordinates, which may be written $r = 2 \sin \theta \cos \theta$, becomes

$$\sqrt{x^2 + y^2} = 2\left(\frac{y}{\sqrt{x^2 + y^2}}\right)\left(\frac{x}{\sqrt{x^2 + y^2}}\right)$$

or
$$(x^2 + y^2)^3 = 4x^2y^2$$
.

or

8. DISTANCE BETWEEN TWO POINTS IN POLAR COORDINATES

The distance d between the two points $P_1(r_1, \theta_1)$ and $P_2(r_2, \theta_2)$, as displayed in Figure 10, is determined by the law of cosines from trigonometry. Thus,

$$d^{2} = r_{1}^{2} + r_{2}^{2} - 2r_{1}r_{2}\cos(\theta_{2} - \theta_{1}),$$

$$d = \sqrt{r_{1}^{2} + r_{2}^{2} - 2r_{1}r_{2}\cos(\theta_{2} - \theta_{1})}.$$

EXERCISES 4

- 1. Plot the following points given in polar coordinates: $(2, 30^{\circ}), (-2, 30^{\circ}), (5, \frac{\pi}{2}), (5, -\frac{3\pi}{4}).$
- 2. Express the coordinates of the points in Exercise 1 in the Cartesian system.
- 3. Plot the following points given in rectangular coordinates: $(1, \sqrt{8})$, (1, 1), (-5, -7). Express these points in polar coordinates; in each case, use the smallest positive value for θ .
- **4.** Find the equation for the line y = 3x + 5 in polar coordinates; for the line x = 5.
 - **5.** Express the equation $x^2 + y^2 = 25$ in polar coordinates.
 - 6. Express $y^2 = 8x$ in polar coordinates.
- 7. Express the equation $r = \sin \theta$ in rectangular coordinates. Construct the curve.

- 8. Express the equation $r = \sin 2\theta$ in rectangular coordinates.
- **9.** Express $r = \frac{2}{1 \cos \theta}$ in rectangular coordinates.
- 10. Express $r = 2 \sin \left(\frac{\pi}{4} \theta\right)$ in rectangular coordinates.
- 11. Find the distance between the two points $P_1(5, 30^\circ)$ and $P_2(10, 45^\circ)$.
- 12. Find the distance between the two points $P_1(5, 0^\circ)$ and $P_2\left(10, \frac{3\pi}{4}\right)$.

2

Graphs of Certain Equations

9. GRAPHS

In Book I, we considered the graphs of first-degree equations in x and y, which are straight lines, as well as the graphs of certain second-degree equations, which led to a brief consideration of the circle, the ellipse, the parabola, and the hyperbola. In Book II, we considered the graphs of certain transcendental equations in x and y, that is, the graphs of such equations as $y = \sin x$ and $y = \sin^{-1} x$.

In general, the curve consisting of all the points corresponding to every pair of values of x and y that satisfy a given equation in x and y, and those

points only, is said to be the *locus*, or *graph*, of the equation. The term *curve* is a general word that is applied to any locus, including a straight line.

In practice, we usually draw a sketch of a desired graph by obtaining a sufficient number of points close enough to each other so that we may draw a smooth approximate curve through these points. As an illustration of an equation that de-

termines a curve that may be constructed without employing such an approximation device, note the equation $x^2 + y^2 = 36$. Obviously, each pair of numbers (x, y) that satisfies the equation $x^2 + y^2 = 36$ determines a point that is 6 units from the origin. In other words, the equation $x^2 + y^2 = 36$ has for its graph a circle of radius 6, with its center at the origin (see Figure 11). Furthermore, the coordinates of any point not on the circle do not satisfy the equation $x^2 + y^2 = 36$. Hence, the circle is the complete graph of the equation.

It is evident that the line corresponding to any first-degree equation in x and y is completely determined by two points which satisfy the equation, although a line, being unlimited in extent, cannot be drawn in its entirety.

The usual sketching process may be illustrated by considering in some detail the construction of the graph of the equation $x^2 - y^2 = 36$. In Book I, the graph of an equation of the form $x^2 - y^2 = 36$ has been designated as a hyperbola.

If we solve the equation $x^2 - y^2 = 36$ for y, we obtain

$$y=\pm\sqrt{x^2-36}.$$

From this equation we see that y is imaginary for -6 < x < 6. Hence, the graph exists only for $x \ge 6$ and $x \le -6$. Below are tabulated a few pairs of values of (x, y) which satisfy the equation.

x	y
6	0
6.5	± 2.5
7	$\pm\sqrt{13}=\pm3.60$
8	$\pm\sqrt{28}=\pm5.29$
9	$\pm \sqrt{45} = \pm 6.71$
10	±8

x	y
-6	0
-6.5	± 2.5
-7	$\pm\sqrt{13}=\pm3.60$
-8	$\pm\sqrt{28}=\pm5.29$
-9	$\pm\sqrt{45}=\pm6.71$
-10	±8

The points corresponding to these tabulated values are shown in Figure 12.

Since y is real for any value of x greater than 6 or any value of x less than -6, the curve is not limited in extent when we move to the right of x = 6 and to the left of x = -6. We also see that y increases without limit as x increases without limit. Hence, the curve is not limited in extent above and below the x axis.

Another interesting property of the behavior of the points may also be

observed. From the equation $y = \sqrt{x^2 - 36}$, we obtain

$$y - x = \sqrt{x^2 - 36} - x$$

$$= \frac{(\sqrt{x^2 - 36} - x)(\sqrt{x^2 - 36} + x)}{\sqrt{x^2 - 36} + x}$$

$$= \frac{(x^2 - 36 - x^2)}{\sqrt{x^2 - 36} + x} = -\frac{36}{\sqrt{x^2 - 36} + x}$$

From this result it is seen that y is less than x, and as x becomes larger and larger the right member of the equation becomes smaller and smaller. Hence, y-x approaches zero; that is, y approaches x. Similarly y approaches -x when $y=-\sqrt{x^2-36}$.

Thus, it is seen that the curve approaches nearer and nearer to the lines y = x and y = -x, but the curve is confined within these lines. In Figure 13 we have drawn a curve through the points determined by the

Frg. 13

tabulated values of x and y, and as guide lines we have also drawn the lines y = x and y = -x. Obviously, the lines y = x and y = -x are not part of the locus of the equation. The curve consists of two separated branches, the one on the right and the one on the left; they are not connected.

The guide lines y = x and y = -x are designated as the asymptotes of the curve. It will be discovered later that the existence of asymptotes is part of the characterization of the behavior of any hyperbola. Of course, other curves also have asymptotes.

In higher mathematics asymptotes are given an analytical and geometrical definition. We shall, however, limit ourselves to a few additional illustrations to convey a conception of a line which we designate as an

asymptote. Let us consider an equation of the form

$$y=\frac{f(x)}{\phi(x)},$$

such as

$$y=\frac{2+x}{x-3}.$$

From the form of the latter equation we see that y cannot have a value if x = 3, since division by zero is impossible. Furthermore, if x > 3, y is positive, and as x gets nearer and nearer to 3, but is always greater than 3, y becomes larger and larger.

On the other hand, as x gets nearer and nearer to 3, but is always less than 3, y becomes larger and larger numerically but is negative.

Thus, the line having the equation x = 3, that is, the line parallel to the y axis and 3 units to the right of that axis, separates the curve into two branches. This line x = 3 is designated as an asymptote of the curve.

If we solve the equation

$$y = \frac{2+x}{x-3}$$

for x, we obtain

$$x=\frac{2+3y}{y-1}.$$

From the form of this equation we see that x cannot have a value if y = 1. Furthermore, if y > 1, x is positive, and as y gets nearer and nearer to 1, but is always greater than 1, x becomes larger and larger.

On the other hand, as y gets nearer and nearer to 1, but is always less than 1, x becomes larger and larger numerically but is negative.

Thus, the line having the equation y = 1, that is, the line parallel to the x axis and 1 unit above it, separates the curve into two branches. So the line y = 1 is also designated as an asymptote.

If we now tabulate a few values of x and y that satisfy the equation, locate the corresponding points, and draw a smooth curve through these points, employing the asymptotes as guide lines, we shall have a fairly good sketch of the locus of the equation. Such a sketch is shown in Figure 14.

In general, if an algebraic equation can be put in the form $y = f(x)/\phi(x)$, and if the real roots of $\phi(x) = 0$ are r_1, r_2, \dots, r_n , then the lines parallel to the y axis, of which the respective equations are $x = r_1, x = r_2, \dots, x = r_n$, are designated as *vertical asymptotes*.

Similarly, if an algebraic equation can be put in the form $x = f(y)/\phi(y)$, and if the real roots of $\phi(y) = 0$ are r_1, r_2, \dots, r_n , then the lines parallel

x	y
-20 ·	0.8
-10	0.6
-5	0.37
-2	0
0	-0.67
1	-1.5
2	-4
2.5	-9
2.6	-11.5
2.9	-49
3.1	51
3.4	13.5
4	6
5	3.5
6	2.7
10	1.7

to the x axis, of which the respective equations are $y = r_1$, $y = r_2$, \cdots , $y = r_n$, are designated as horizontal asymptotes.

As an illustration, the curve representing the equation $y = 1/x^2$ has the line x = 0 as a vertical asymptote. Since we may transform this equation into the form $x = \pm 1/\sqrt{y}$, we see that y = 0 is a horizontal asymptote. The curve of this equation is drawn in Figure 15.

EXERCISES 5

Determine any vertical and horizontal asymptotes that each of the following curves possess; then make a rough sketch of each curve:

1.
$$y^2x = 2$$

2.
$$(x-2)y=3$$

3.
$$x(y^2-4)=6$$

4.
$$y = 5 - \frac{2}{x-1}$$

5.
$$y = \frac{x+3}{2x-3}$$

6. $(x^2-1)(y+3) = 5$
7. $x = \frac{y-2}{2y+1}$
8. $x = 6 + \frac{y-1}{y+3}$
9. $(x+3)(2y-5) = 6$
10. $xy = x+1$

10. EQUATIONS OF THE FORM $f(x, y)\phi(x, y) = 0$

From the relation between an equation and its curve, it follows that if f(x, y) and $\phi(x, y)$ are functions of x and y, then the equation $f(x, y)\phi(x, y) = 0$ has for its graph the graphs of both f(x, y) = 0 and $\phi(x, y) = 0$. This follows readily from the fact that the coordinates of any point (x_1, y_1) satisfying the equation f(x, y) = 0, if $\phi(x_1, y_1)$ exists, must also satisfy $f(x, y)\phi(x, y) = 0$. A similar statement may also be made about $\phi(x, y) = 0$. Thus, the equation $x^2 - y^2 = 0$ has for its locus the two lines x - y = 0 and x + y = 0.

Similarly, the equation $y^3 - x^3 + x^2y - xy^2 - x^2 - y^2 = 0$ may be written $(x^2 + y^2)(y - x - 1) = 0$; hence, its graph consists of the graph of $x^2 + y^2 = 0$ and the graph of y - x - 1 = 0. The graph of $x^2 + y^2 = 0$ is merely the point (0, 0), and the graph of y - x - 1 = 0 is a straight line.

11. SYMMETRY

A curve is said to be symmetrical with respect to a certain line if the line bisects every chord of the curve that is perpendicular to the line.

As an illustration, the curve $x^2 - y^2 = 36$ is symmetrical with respect to both the x and y axes. To examine the curve for symmetry with respect to the x axis, we may write the equation in the form

$$y=\pm\sqrt{x^2-36},$$

whereupon we see that for each value of x there are two values of y, numerically equal, but opposite in sign.

If we transform the equation to the form

$$x=\pm\sqrt{y^2+36},$$

we see in a similar manner that the curve is symmetrical with respect to the y axis.

From a popular point of view, we may also express the concept of symmetry with respect to a line as follows: A curve is symmetrical with respect to a certain line if the curve on one side of the line coincides with the curve on the other side of the line when the paper on which the curve is drawn is folded along the line.

A little reflection shows that for a general equation in x and y, symbolized by f(x, y) = 0, the x axis is a line of symmetry if f(x, y) = 0 is identical with f(x, -y) = 0, since the same values of x are determined for a negative y as for a numerically equal but positive y. Hence, if an algebraic equation

contains no odd powers of y, the curve is symmetrical with respect to the x axis.

Similarly, if f(-x, y) = 0 is identical with f(x, y) = 0, the curve of f(x, y) = 0 is symmetrical with respect to the y axis. So, if an algebraic equation contains no odd powers of x, the curve is symmetrical with respect to the y axis.

A curve is said to be symmetrical with respect to a certain point if the point bisects every chord drawn through it. If f(-x, -y) = 0 is identical with f(x, y) = 0, the curve of f(x, y) = 0 is symmetrical with respect to the origin; for, if a pair of numbers (x_1, y_1) satisfies f(x, y) = 0, the pair of numbers $(-x_1, -y_1)$ will also satisfy f(x, y) = 0. Hence, the points of the curve are located on a chord through the origin and are equidistant from the origin. It is apparent that symmetry with respect to both the x and y axes implies symmetry with respect to the origin.

12. INTERCEPTS

If we have a curve defined by the equation f(x, y) = 0, then the values of x satisfying the equation f(x, 0) = 0 give the points of intersection of the curve with the x axis, and these values of x are defined as the x intercepts.

Similarly, the values of y satisfying the equation f(0, y) = 0 give the points of intersection of the curve with the y axis, and these values of y are defined as y intercepts.

Thus, the x intercepts of the curve $4x^2 + 9y^2 = 36$ are $x = \pm 3$, and y intercepts are $y = \pm 2$.

EXERCISES 6

Discuss the curves defined by the following equations. Specify any x and y intercepts, any obvious properties of symmetry, and any limitations upon the extent of the curve. Determine which of the equations have graphs with asymptotes parallel to the x and y axes; find the equations of the asymptotes; and draw the asymptotes as guide lines for the curves. Determine several points on each curve, and sketch it.

1.	3x - 5y = 15	2. $y = 8x^2$
3.	$y=2x^2-3x+1$	4. $x = 10y^2$
	$25x^2 + 9y^2 = 225$	6. $y = 2x^3 - 5x + 3$
	$y=2-\frac{3}{x}$	8. $y = \frac{2-3x}{4+x}$
9.	$y = \frac{x-4}{2x-1}$	10. $x = 5 - \frac{3}{y}$
11.	$y = 2 - \frac{3}{x} + \frac{5}{x^2}$	12. $y = 5x^3$
13.	$y=2\cdot 3^x$	14. $y = 3 \cdot 5^{-x}$
15.	$x^3+y^3=1$	16. $(x-2)(y-3)=12$
17.	(x-2)(y-3) = -12	18. $x(y^2-4)=4$

ł

19.
$$y(x^2-4)=4$$

20.
$$x(y^2-4)=y$$

21.
$$y(x^2-1)=x$$

22.
$$y = \frac{5x}{x^2 + 1}$$

23.
$$y^2 = \frac{x^3}{4-x}$$

24.
$$y^2 = x(x-2)^2$$

13. GRAPHS OF POLAR COORDINATE EQUATIONS

A graph that represents an equation involving polar coordinates is sketched by drawing a smooth curve through the points corresponding to the various pairs of values of r and θ that satisfy the equation. It is necessary to draw the curve through the points in order of the magnitude of θ , and it is desirable to have points located for small intervals of θ .

Illustration 1: Thus if $r = \sin \theta$, we tabulate related pairs of values of r and θ , as shown in the following table, and plot the corresponding points.

θ	0	30°	45°	60°	90°	120°	135°
r	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$

θ	150°	180°	210°	240°	270°	300°	330°	360°
r	$\frac{1}{2}$	0	$-rac{1}{2}$	$\frac{-\sqrt{3}}{2}$	-1	$\frac{-\sqrt{3}}{2}$	$-\frac{1}{2}$	0

Frg. 16

Then, if we draw a smooth curve through the points corresponding to these pairs of values, we obtain the curve shown in Figure 16. It is not necessary in this case to go beyond $\theta = 180^{\circ}$, as additional pairs of values merely duplicate points already located on the curve.

The curve representing the relation $r = \sin \theta$ is a circle with its center at ($\frac{1}{2}$, 90°); its

radius is $\frac{1}{2}$. The correctness of this conclusion may be shown by finding the distance between $(\frac{1}{2}, 90^{\circ})$ and (r, θ) , where (r, θ) is any point on the circle. Thus,

$$d^2 = r^2 + \frac{1}{4} - 2(\frac{1}{2})r\cos(90^\circ - \theta),$$

 $d^2=r^2+\frac{1}{4}-r\sin\theta.$

But since $r = \sin \theta$, it follows that

$$d^2 = r^2 + \frac{1}{4} - r^2 = \frac{1}{4},$$

or

or

$$d=\frac{1}{2}.$$

Thus, the distance from the point $(\frac{1}{2}, 90^{\circ})$ to any point on the curve is a constant $\frac{1}{2}$.

Illustration 2: Obtain the graphical representation of $r = \sin 2\theta$.

Although it is possible to examine this equation for various properties that will assist in determining the nature of the curve, we shall still use the point-by-point method employed in the previous illustration. We first assign values to θ , then find 2θ ; after that, r is determined from the given relation. We tabulate the results as in the following table. The curve that is obtained appears as Figure 17.

θ	2θ	r
0	0	0
15	30	$\frac{1}{2}$
30	60	$\sqrt{3/2}$
45	90	1
60	120	$\sqrt{3}/2$
75	150	$\frac{1}{2}$
90	180	0
105	210	$-\frac{1}{2}$
120	240	$-\sqrt{3/2}$
135	270	-1
150	300	$-\sqrt{3/2}$
165	330	$-\frac{1}{2}$
180	360	0

θ	2θ	r
195	390	1/2
210	420	$\sqrt{3/2}$
225	450	1
240	480	$\sqrt{3/2}$
255	510	1/2
270	540	0
285	570	$-\frac{1}{2}$
300	600	$-\sqrt{3/2}$
315	630	-1
330	660	$-\sqrt{3/2}$
345	690	$-\frac{1}{2}$
360	720	0

Fig. 17

In the case of this curve it is necessary to take values of θ from 0° to 360° in order to complete the entire curve. Values of θ beyond 360° will merely duplicate points already obtained.

The Cartesian equation for this curve is

$$(x^2+y^2)^3=4x^2y^2.$$

This is an equation of the sixth degree. It would be quite a task to graph the curve from its Cartesian equation.

14. SKETCHING POLAR EQUATIONS

The following suggestions will be found helpful in tracing polar equations.

(1) Intercepts: Let us consider the equation

$$f(r,\theta)=0.$$

If we let $\theta = 0$, we have f(r, 0) = 0. Sometimes it is possible to solve this latter equation for r. The values of r thus found are intercepts on the polar axis.

If we let $\theta = \pi$, we have $f(r, \pi) = 0$. After solving this equation for r, if possible, we have other intercepts on the polar axis.

(2) Symmetry: If $f(r, \theta)$ is identical with $f(r, -\theta)$ or with $f(-r, \pi - \theta)$, it is apparent that the polar axis is a line of symmetry. If $f(r, \theta)$ is identical with $f(r, \pi - \theta)$ or with $f(-r, -\theta)$, the line perpendicular to the polar axis at the pole is a line of symmetry.

If $f(r, \theta)$ is identical with $f(-r, \theta)$, or with $f(r, \pi + \theta)$, the curve is symmetrical with respect to the pole.

(3) Extent: In studying the extent of polar curves, the problem is essentially that of finding the extent of r; in particular, finding whether r becomes infinite for certain values of θ .

Illustration 1: Consider the properties of the curve

$$r-\sin\theta=0.$$

The function $r - \sin \theta$ is identical with $r - \sin (\pi - \theta)$; hence, the line perpendicular to the polar axis at the pole is a line of symmetry.

Since $-1 \le \sin \theta \le 1$, then $-1 \le r \le 1$.

Also, since $\sin (-\theta) = -\sin \theta = -r$, we see that the curve is always above the polar axis.

When $\hat{\theta} = 0$ and when $\theta = \pi$, r = 0.

When $\theta = \pi/2$, r = 1.

After locating a very few points, then, it is possible to sketch the curve of Figure 16.

Illustration 2: Study the properties of the curve,

$$r = \sin 2\theta$$
.

For both $\theta = 0$ and $\theta = \pi$, we have r = 0. Hence, the curve passes through the pole.

Since the maximum value of $\sin 2\theta = 1$ and the minimum value of $\sin 2\theta = -1$, the curve must lie within a circle of radius 1 having its center at the pole.

Maximum values of r occur when $\sin 2\theta = 1$, that is, when $2\theta = 90^{\circ}$ and 450°, or when $\theta = 45^{\circ}$ and 225°.

Minimum values of r occur when sin $2\theta = -1$, that is, when $2\theta = 270^{\circ}$ and 630°, or when $\theta = 135^{\circ}$ and 315°.

In this illustration $f(r, \theta)$ is not identical with $f(r, -\theta)$; however, $f(r, \theta)$ is identical with $f(-r, \pi - \theta)$. Hence, the curve is symmetrical with respect to the polar axis.

Also, $f(r, \theta)$ is identical with $f(-r, -\theta)$. Hence, the curve is symmetrical with respect to the line perpendicular to the axis at the pole.

Moreover, $f(r, \theta)$ is identical with $f(r, \pi + \theta)$; hence, the curve is symmetrical with respect to the pole.

EXERCISES 7

Each of the following curves is to be graphed. The student will find it desirable to obtain polar graphing paper.

1. $r = 5 \cos \theta$	$2. r = 5 \cos 2\theta$
$3. r = 5(1-\cos\theta)$	$4. r = \frac{6}{1 - \cos \theta}$
5. $r\cos\theta=5$	6. $r \sin \theta = -5$
7. $r = 5(1 + \cos \theta)$	8. $r = 5(1 + \sin \theta)$
$9. r = \frac{8}{1 + \cos \theta}$	10. $r = 5(2 + \cos \theta)$
11. $r = 4(1 - 2 \cos \theta)$	12. $r = 3(3 - 2\cos\theta)$
$13. r = \sin^2\frac{\theta}{2}$	$14. r^2 = a^2 \cos 2\theta$
$15. r^2 = a^2 \sin 2\theta$	$16. \ r = \frac{8}{1 + 2\cos\theta}$
$17. \ r = \frac{8}{2 + \cos \theta}$	$18. \ r = \frac{8}{2 - \cos \theta}$
19. $r = \theta$	20. $r = 2^{\theta}$
21. $r\theta = k$	22. $r = a \sin 3\theta$
$23. r = 10 \cos 3\theta$	$24. r = k \sin 4\theta$
$25. r = k \cos 4\theta$	26. $r = a (\cos \theta + \sin \theta)$
$27. r = a (\cos 2\theta + \sin 2\theta)$	$28. \ r = a \sec \left(\theta - \frac{\pi}{4}\right)$
29. $r = a \sec^2 \frac{\theta}{2}$	30. $r = a - \cos \theta$; $ a < 1$

15. INTERSECTIONS OF CURVES

In Cartesian coordinates a point lies on two curves if, and only if, the coordinates of the point satisfy the equations of both curves. Hence, the coordinates of the points of intersection of two curves are found by solving the system composed of the two equations. If there are no real solutions, the curves do not intersect.

The situation is not so simple when dealing with polar coordinates, owing to the fact that the same point may be expressed in the form (r, θ)

in many different ways. In polar coordinates a point is said to be the intersection of two curves if the coordinates of the point in some mode of representation (r, θ) satisfy the equations of both curves; but it does not follow that the coordinates of the point in every mode of representation, or that the same coordinates in any mode of representation, will necessarily satisfy both equations.

Thus the points of intersection of the curves represented by the equations $r = \sin \theta$ and $r = 2 \cos \theta + 1$ are given by those values of θ and r satisfying the relations, $\cos \theta = 0$, r = 1; and $\cos \theta = -\frac{1}{5}$, $\sin \theta = -\frac{3}{5}$, $r = -\frac{3}{5}$.

But an actual examination of the two curves reveals that they also intersect at the pole, since $(0,0^{\circ})$ satisfies $r=\sin\theta$, and $(0,120^{\circ})$ satisfies $r=2\cos\theta+1$; but neither $(0,0^{\circ})$ nor $(0,120^{\circ})$ satisfies both equations. Of course, $(0,0^{\circ})$ and $(0,120^{\circ})$ denote the same point, but in different modes of representation.

It is therefore evident that the algebraic solution of systems of polar equations may not give all the intersections. Careful graphs may be drawn to assist in determining the intersections not given by the algebraic solution of equations in polar coordinates.

Illustration: Let us find the intersections of the following curves:

$$y = x^2 - 3x + 4, (1)$$

$$2x - 3y = -4. (2)$$

Solving this system, we have

$$x^2 - 3x + 4 = \frac{2x + 4}{3},$$

or
$$3x^2 - 11x + 8 = 0$$
,
 $(x - 1)(3x - 8) = 0$,
 $x = 1$ or $\frac{8}{3}$.

Hence, the coordinates of the points of intersection are (1, 2) and $(\frac{8}{3}, \frac{28}{9})$. The situation is displayed in Figure 18.

If u = 0 and v = 0 are both functions of x and y, then the equation u + kv = 0, where k is a constant, represents a curve through the intersections of the curves of u = 0 and v = 0. This is evident from the fact that the coordinates of the intersections of the loci of u = 0 and v = 0 satisfy

the equation u + kv = 0. Hence, the points of intersection lie on the curve of u + kv = 0.

Thus, as an illustration, if we consider the two curves represented by the equations x - y + 1 = 0 and $x^2 + y^2 - 25 = 0$, then

$$(x-y+1)+k(x^2+y^2-25)=0$$
,

where k is a constant, represents a curve through the intersections of the line of x - y + 1 = 0 and the circle of $x^2 + y^2 = 25$.

EXERCISES 8

Draw the graphs of each of the following pairs of equations, and find the coordinates of the points of intersection by solving algebraically.

1.
$$3x - 2y = 6$$

 $y = 3$
3. $x + 2y = 10$

5.
$$x + 2y - 10$$

 $y^2 = 8x$
5. $y^2 = 8x$

5.
$$y^2 = 8x$$

 $3y + 2x + 9 = 0$
7. $y^2 = 6x$

7.
$$y^2 = 6x$$

 $x^2 + y^2 = 16$
9. $xy = 20$

9.
$$xy = 20$$

 $x + y = 12$
1. $y^2 = 4x + 4$

11.
$$y^2 = 4x + 4$$

 $y^2 = -2x + 4$

13.
$$y = x^3 - x^2$$

 $y = x^2$

15.
$$y = \sin\left(2x - \frac{\pi}{3}\right)$$

 $y = \sin\left(2x + \frac{\pi}{3}\right)$

2.
$$3x - 2y = 6$$

 $5x - y = 4$

4.
$$6x - 2y - 3 = 0$$

 $y^2 = 8x - 3$

6.
$$y^2 = x(x+5)^2$$

 $x-y+5=0$

8.
$$x^2 + y^2 = 4$$

 $9x^2 + 16y^2 = 144$

10.
$$y = 4x - x^2$$

 $2x + y = 5$

12.
$$y = x^3$$

 $y = 2x - x^2$

$$y = 2x - 2x - 2x$$

$$14. y = \sin x$$

$$y = \cos x$$

16. The equation
$$x^2 + y^2 - 16 + k(y^2 - 6x) = 0$$
 represents a system of curves through the intersections of $x^2 + y^2 - 16 = 0$ and $y^2 - 6x = 0$. Draw the graphs $x^2 + y^2 - 16 = 0$ and $y^2 - 6x = 0$, and also $x^2 + y^2 - 16 + k(y^2 - 6x) = 0$, for $k = 1$, $k = -1$, $k = 2$, and $k = -2$.

The following equations are expressed in terms of polar coordinates. Draw the graphs of each pair, and find the coordinates of the points of intersection.

17.
$$r \sin \theta = 10$$

 $r \cos \theta = 10$

19.
$$r = 1 - \sin \theta$$
$$r = \frac{1}{1 - \sin \theta}$$

21.
$$r^2 = \cos 2\theta$$

 $r = \cos \theta$

18.
$$r \sin \theta = 5$$

 $r = 10 \sin \theta$

20.
$$r = \frac{4}{2 + \cos \theta}$$

22.
$$r = 2 \cos \theta$$

 $r = 2 \sin \theta \tan \theta$

23.
$$r = a \cos 2\theta$$
 where a is a constant $2r = a$

3

Equations of Loci

16. EQUATIONS OF LOCI

In Chapter 2 we considered briefly some fundamental topics pertaining to curves that represent given equations. In this chapter we shall consider the determination of the equations of the loci of points satisfying certain given conditions. The equation that is satisfied by those coordinates

Frg. 19

which correspond to all points on the locus, but not by coordinates of any points not on the locus, is the equation of the locus determined by the given conditions.

In thinking of the locus of all points satisfying certain given conditions it is frequently convenient to speak of the locus as generated by a moving point which satisfies the given conditions in every position.

Illustration 1: Find the equation of the locus of points that are 6 units from the point (2, 3).

Solution: Let P(x, y) be any point on the locus, as shown in Figure 19; then we have CP = 6. It is evident that the locus must be a circle with C(2, 3) as its center.

From the distance formula, we have

$$\sqrt{(x-2)^2 + (y-3)^2} = 6. ag{1}$$

Hence, relation (1) is the required equation of the locus, namely, the circle of radius 6 and center at (2, 3).

Though by squaring the two members the equation may be expressed in the form

$$x^2 + y^2 - 4x - 6y - 23 = 0,$$

it is frequently regarded as preferable to leave the result in the first form, from which we may recognize that the center is at (2, 3) and the radius is 6.

We shall now show that every point whose coordinates satisfy the equation $x^2 + y^2 - 4x - 6y - 23 = 0$ will satisfy

$$\sqrt{(x-2)^2 + (y-3)^2} = 6.$$

or

The equation $x^2 + y^2 - 4x - 6y - 23 = 0$ is obtained by squaring either of the two equations

$$\sqrt{(x-2)^2 + (y-3)^2} = +6$$
$$\sqrt{(x-2)^2 + (y-3)^2} = -6.$$

This last equation, however, states that a positive quantity, or zero, equals a negative quantity, which is impossible. Hence, every pair of real coordinates which satisfies the equation

$$x^2 + y^2 - 4x - 6y - 23 = 0$$

will satisfy

$$\sqrt{(x-2)^2+(y-3)^2}=6.$$

Illustration 2: Find the equation of the locus generated by a point subject to the condition that in every position the sum of the squares of its distances from (-5,0) and (5,0) is 100.

Solution: Let P(x, y) be any point on the locus shown in Figure 20.

If we designate the points whose coordinates are (-5,0) and (5,0) by P_1 and P_2 , respectively, and if we designate P_1P by d_1 and P_2P by d_2 , then by the distance formula

$$d_1^2 = (x+5)^2 + y^2$$
$$d_2^2 = (x-5)^2 + y^2.$$

and

Hence, the equation of the locus determined by the given conditions is

$$(x+5)^2 + y^2 + (x-5)^2 + y^2 = 100$$

which may be simplified to

$$x^2+y^2=25.$$

Evidently the locus is a circle.

Illustration 3: Determine the equation of the locus generated by a point moving in such a manner that in every position the sum of its distances from (-3, 0) and (3, 0) is 10.

Solution: Let P(x, y) be any point on the locus (note Figure 21).

If we designate the points whose coordinates are (-3, 0) and (3, 0) by F_1 and F_2 , respectively, and if we designate F_1P by d_1 and F_2P by d_2 , then by the distance formula,

$$d_1 = \sqrt{(x+3)^2 + y^2}$$
 and $d_2 = \sqrt{(x-3)^2 + y^2}$.

Hence, the equation of the locus determined by the given condition is

$$\sqrt{(x+3)^2+y^2}+\sqrt{(x-3)^2+y^2}=10,$$

which may be simplified to

$$16x^2 + 25y^2 = 400.$$

We shall now show that every point whose coordinates satisfy $16x^2 + 25y^2 = 400$ will satisfy

$$\sqrt{(x+3)^2+y^2}+\sqrt{(x-3)^2+y^2}=10.$$

The equation $16x^2 + 25y^2 = 400$ is obtained by rationalizing any one of the four equations

$$\sqrt{(x+3)^2+y^2}+\sqrt{(x-3)^2+y^2}=10, \qquad (1)$$

$$-\sqrt{(x+3)^2+y^2}+\sqrt{(x-3)^2+y^2}=10,$$
 (2)

$$\sqrt{(x+3)^2+y^2}-\sqrt{(x-3)^2+y^2}=10,$$
 (3)

$$-\sqrt{(x+3)^2+y^2}-\sqrt{(x-3)^2+y^2}=10.$$
 (4)

Obviously (4) cannot be satisfied by any real values of x and y. Equation (2) or (3) requires the difference of the distances d_1 and d_2 to equal 10; but 10 is greater than F_1F_2 . Thus, (2) or (3) requires that the difference of two sides of a triangle be greater than the third side, which is impossible.

Hence, every pair of real coordinates that satisfies the equation

$$16x^2 + 25y^2 = 400$$

will satisfy

$$\sqrt{(x+3)^2+y^2}+\sqrt{(x-3)^2+y^2}=10.$$

If the rationalized form of the equation is transformed to

$$\frac{x^2}{5^2} + \frac{y^2}{4^2} = 1,$$

we have the typical equation of an ellipse.

EXERCISES 9

- 1. Find the equation of the perpendicular bisector of the line joining the points (2, 1) and (3, -5).
- 2. A point moves so that in every position the sum of the squares of its distances from the points (-5,0) and (5,0) is 75. Find the equation of its path.

EXERCISES 315

- 3. A point moves so that in every position the sum of the squares of its distances from the points (3, 4) and (-1, 1) is 77. Find the equation of its path.
- 4. A point moves so that in every position its distance from the x axis is equal to its distance from the y axis. Find the equation of its path.
- 5. A point moves so that in every position it is as far from the y axis as from the point (4,0). Find the equation of its path.
- **6.** A point moves so that in every position it is as far from the y axis as from the point (2,3). Find the equation of its path.
- 7. A point moves so that in every position it is as far from the x axis as from the point (2,3). Find the equation of its path.
- 8. A point moves so that in every position the square of its abscissa is always eight times its ordinate. Find the equation of its path.
- **9.** Find the equation of the path of a point that moves so that in every position the sum of its distances from the points (7,3) and (-2,2) is 10.
- 10. A point moves so that it is equidistant from the point (3, 0) and the line 3 units to the left of and parallel to the y axis. Find the equation of its locus.
- 11. Find the equation of the path of a point that moves so that in every position the difference of its distances from the points (-3,0) and (3,0) is equal to 5.
- 12. Find the equation of the path of a point that moves so that in every position it is twice as far from the point (5,0) as it is from the y axis.
- 13. Find the equation of the path of a point that moves so that in every position it is twice as far from the y axis as it is from the point (5,0).
- 14. Find the equation of the path of a point that moves so that in every position it is as far from the line x = -1 as it is from the point (1, 0).
- 15. A point moves so that in every position it is 5 units from the point $(5,0^{\circ})$. Find its equation in polar coordinates.
- 16. A point moves so that in every position it is 5 units from the point $(5, \pi/2)$. Find the equation of its path in polar coordinates.
- 17. A point moves so that in every position it is 10 units from the point (4, 30°). Find the equation of its path in polar coordinates.
- 18. A point moves so that in every position it is as far from the point (3,0) as it is from the point $(2,2\pi/3)$. Find the polar equation of its path.

The Straight Line

17. THE STRAIGHT LINE

Although we have considered the straight line in Chapter 4, Book I, we shall now give a more systematic treatment of the subject. In our study, we may consider three cases:

- (1) A straight line parallel to the y axis;
- (2) A straight line parallel to the x axis;
- (3) A straight line not parallel to either axis.

Case 1. As an illustration, let the line be parallel to the y axis and 5 units to the right. The corresponding equation is readily seen to be x=5 for all values of y. Since the x coordinate of every point on the line is 5 and any point not on the line will have an x coordinate other than 5, we merely say x=5 is the equation of the given line, the phrase "for all values of y" being implied. By analogy, any line parallel to the y axis will have the equation x=a, where a is some constant, positive or negative.

Case 2. As an illustration, let the line be parallel to the x axis and 3 units above it. The corresponding equation is y = 3. In general, any line parallel to the x axis will have the equation y = b, where b is some constant, positive or negative.

CASE 3. If the line is not parallel to either axis, it may be determined by various given conditions. The more common cases are considered in the paragraphs that follow.

Line Determined by Two Given Points. It is learned in elementary geometry that two points determine a straight line. To examine the implications of this statement in analytic geometry, let a straight line be determined by the two points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$, where $x_1 \neq x_2$, and let P(x, y) be any point on the line P_1P_2 . From a study of the similar triangles appearing in Figure 22, we have

$$\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1}.$$
 (1)

This form of the equation of a straight line, determined as it is by two points, is known as the two-point form.

It is left as an exercise for the student to show that Equation (1) may

be written in the form of an equation involving a determinant; namely,

If θ is a positive angle less than 180°, measured from the positive x axis to the given line, then the ratio

$$\tan\theta = \frac{y_2 - y_1}{x_2 - x_1}$$

is defined as the slope of the line through (x_1, y_1) and (x_2, y_2) . The slope is usually designated by m.

Line Determined by a Given Point and a Given Slope. Let a straight line be determined by the given point $P_1(x_1, y_1)$ and the given slope m_1 and let P(x, y) be any point on this line; then, from Figure 23,

$$\frac{y-y_1}{x-x_1}=\tan\theta=m,$$

or

$$y - y_1 = m(x - x_1). (2)$$

This form of the equation of a straight line, determined as it is by one point and the slope, is known as the point-slope form.

The equation of a line parallel to the y axis cannot be written in form (2), since $\tan \theta$ does not exist for $\theta = 90^{\circ}$.

Line Determined by a Given Slope and a Given y Intercept. Let us next consider a line determined by the y intercept b and the slope m. Since we are given the y intercept b, we actually know the coordinates of one point on the line, namely, (0, b). Hence, employing Equation (2), we have

$$y - b = m(x - 0)$$
 or $y = mx + b$. (3)

This equation is known as the slope-intercept form.

or

The equation of a line parallel to the y axis cannot be written in Form (3), since tan 90° does not exist.

Line Determined by a Given x Intercept and a Given y Intercept. Let the line now under consideration be determined by the x intercept a, $a \neq 0$, and the y intercept b, $b \neq 0$. In other words, the line is determined

by the points (0, b) and (a, 0). Hence, employing Equation (1), we have

Fig. 24

$$\frac{y-b}{x-0}=\frac{0-b}{a-0},$$

which may be written

$$ay - ab = -bx$$

$$\frac{x}{a} + \frac{y}{b} = 1. \tag{4}$$

This equation is known as the intercept form. The equation of a line through the origin cannot be written in Form (4).

Line Determined by Its Perpendicular Distance from the Origin and the Positive Angle from the x Axis to the Perpendicular. If we designate the perpendicular distance from the origin to the given line by p and the given angle by ϕ , we have, by reference to Figure 24,

$$a = \frac{p}{\cos \phi}$$
 and $b = \frac{p}{\sin \phi}$.

Since we now know the intercepts, we may apply Equation (4) and obtain

$$\frac{x}{\frac{p}{\cos\phi}} + \frac{y}{\frac{p}{\sin\phi}} = 1,$$

$$\mathbf{or}$$

$$x\cos\phi + y\sin\phi - p = 0. \tag{5}$$

This equation is known as the *normal form*. In general, ϕ may vary from 0° to 360°. However, if p = 0, we may limit ϕ from 0° to 180°.

EXERCISES 10

Find the equations of the lines satisfying the following conditions:

- 1. Parallel to the x axis and 3 units below it.
- 2. Parallel to the y axis and 10 units to the right of it.
- 3. Through the points (2, 5) and (-1, 7).

HINT: Use Formula (1). Note that it is immaterial which point is called P_1 and which is called P_2 .

- **4.** Through the points (-2, -5) and (3, -1).
- **5.** Through the points (0, 2) and (5, 0).
- **6.** Through the point (3, 1) and with $\theta = 30^{\circ}$.
- 7. Through the point (2, -3) and making an angle of 60° with the positive direction of the x axis.
- 8. Making an angle of 45° with the positive direction of the x axis and cutting the y axis 2 units above the origin.
- **9.** Making an angle of 135° with the positive direction of the x axis and passing through the point (0, 2).
- 10. Cutting the x axis 4 units to the right of the origin and the y axis 6 units below the origin.
- 11. Intersecting the x axis 5 units to the right of the origin and making an angle of 150° with the positive direction of the x axis.
- 12. Six units from the origin and cutting the x axis and the y axis at equal distances from the origin. Find all solutions.
 - 13. Sketch the lines determined by each of the following pairs of conditions:
 - (a) Having the slope 2 and passing through the point (3, 4).
 - (b) Having the slope -2 and passing through the point (3, 4).
 - (c) Having the slope $\frac{1}{3}$ and passing through the point (2, 1).
 - (d) Having the slope $-\frac{1}{3}$ and passing through the point (0, 4).
 - (e) Three units from the origin and with $\phi = 30^{\circ}$.
 - 14. Write the equation of each of the lines in Exercise 13.
- 15. The vertices of a triangle are the points A(2, 1), B(4, -3), and C(-1, -4).
 - (a) Find the equation of each side.
 - (b) Find the equation of each median.
 - (c) Find the length of BC.
 - (d) Find the area of the triangle.

18. THE GENERAL EQUATION OF THE FIRST DEGREE

The general equation of the first degree may be written in the form

$$Ax + By + C = 0, (1)$$

where A, B, and C are constants; that is, every equation of first degree may be obtained from this form by properly choosing A, B, and C.

If A = 0, Equation (1) becomes By + C = 0 or

$$y = -\frac{C}{R},\tag{2}$$

which represents a line parallel to the x axis.

. If B = 0, Equation (1) becomes Ax + C = 0 or

$$x = -\frac{C}{A}, \tag{3}$$

which represents a line parallel to the y axis.

It is impossible for A and B to be zero simultaneously in Equation (1) unless C = 0, and in that case the equation reduces to 0 = 0.

If neither A nor B is zero, Equation (1) may be written

$$By = -Ax - C$$

$$y = -\frac{A}{D}x - \frac{C}{D}.$$
(4)

or

A comparison of Equation (4) with the slope-intercept form shows that Equation (1) represents a straight line with the slope -A/B, and with a y intercept -C/B.

If neither A, B, nor C is zero, Equation (1) may also be written in the form

$$\frac{Ax}{-C} + \frac{By}{-C} = 1$$

or

$$\frac{\frac{x}{-C} + \frac{y}{-C}}{\frac{1}{B}} = 1. ag{5}$$

A comparison of Equation (5) with the intercept form of the straight line shows that Equation (1) represents a straight line whose x intercept is -C/A and whose y intercept is -C/B.

If neither A nor B is zero, Equation (1) may also be written in the form

$$KAx + KBy + KC = 0, (6)$$

where K is to be determined in such a way that the coefficients of Equation (6) may be equated to the corresponding coefficients of the equation

$$x\cos\phi+y\sin\phi-p=0.$$

Hence, $KA = \cos \phi$, $KB = \sin \phi$, and KC = -p. From these equations we have

$$K^2A^2=\cos^2\phi,$$

and

$$K^2B^2 = \sin^2\phi.$$

or

After adding, we obtain

$$K^{2}(A^{2} + B^{2}) = \sin^{2}\phi + \cos^{2}\phi = 1$$

$$K = \frac{1}{+\sqrt{A^{2} + B^{2}}}.$$

It is desirable for p to be positive. Hence, from KC = -p, it is seen that if C is positive, K must be chosen negative; and if C is negative, K must be chosen positive.

If it should happen that C=0, then p=0, and if ϕ is considered only from 0° to 180°, the sign of K is determined from $KB=\sin \phi$. Since $\sin \phi$ is always positive, K must have the same sign as B.

Thus, Equation (1) may be written as

$$\frac{Ax}{\pm\sqrt{A^2+B^2}} + \frac{By}{\pm\sqrt{A^2+B^2}} + \frac{C}{\pm\sqrt{A^2+B^2}} = 0,$$
 (7)

where

$$\cos \phi = \frac{A}{\pm \sqrt{A^2 + B^2}},$$

$$\sin \phi = \frac{B}{\pm \sqrt{A^2 + B^2}},$$

$$p = -\frac{C}{\pm \sqrt{A^2 + B^2}},$$

and where only one sign of the radical is selected in accordance with the rules given above.

19. THE DISTANCE BETWEEN A LINE AND A POINT

In case a given line is parallel to either axis of reference, the distance between the line and a given point may be obtained by inspection. Thus, if the equation of the line is x = 5 and the given point is (7, 2), the distance between the line and the point is obviously 2 units. If the equation of the given line is x = -3 and the point is (5, 7), the distance between the line and point is 8 units. Similarly, if the given line is y = 6, and the point is (3, 1), the distance between the line and the point is 5 units.

In each of these cases, it is observed, we have determined the absolute value of the distance between the line and the point.

If the given line is not parallel to either axis, the problem is to find the numerical value of the distance d between the line Ax + By + C = 0 and some point (h, k) (note Figure 25).

If we write the given equation

$$Ax + By + C = 0 ag{1}$$

in the form

$$x\cos\phi + y\sin\phi - p = 0. \tag{2}$$

we may write the equation of a line through (h, k), parallel to (1), in the form

$$x\cos\phi + y\sin\phi - (p+d) = 0, (3)$$

where it is apparent that we are considering d to be positive or negative, according as the given point is on the opposite

side or on the same side of the line with respect to the origin.

From Relation (3), we obtain

$$d = x\cos\phi + y\sin\phi - p. \tag{4}$$

Now, since (h, k) satisfies (4), we have

$$d = h\cos\phi + k\sin\phi - p. \tag{5}$$

By reference to the previous section, we note that

$$\cos \phi = \frac{A}{\pm \sqrt{A^2 + B^2}},$$

$$\sin \phi = \frac{B}{\pm \sqrt{A^2 + B^2}},$$

$$p = \frac{-C}{\pm \sqrt{A^2 + B^2}}.$$

and

Hence, Relation (5) may be written as

$$d = \frac{hA + kB + C}{\pm \sqrt{A^2 + B^2}}$$
 (6)

A consideration of Formula (6) reveals that the distance between a line Ax + By + C = 0 and the point (h, k) is found by substituting h and k for x and y, respectively, in the expression

$$\frac{Ax+By+C}{\pm\sqrt{A^2+B^2}}.$$

This expression is the left member of Equation (1) written in the normal form. If the sign of the radical is determined in accordance with the principles of the previous section, d may be either positive or negative. However, the result obtained is consistent with the statement of signs previously given; that is, if the origin and the given point are on the same side of the line, d will be negative; otherwise d will be positive.

Illustration 1: Find the distance from the line 3x + 4y - 7 = 0 to the point (5, 1) (note Figure 26).

By Formula (6) above, we have

$$d = \frac{3(5) + 4(1) - 7}{+\sqrt{9 + 16}}$$
$$= +\frac{12}{5}.$$

Illustration 2: Find the distance from the line 3x + 4y - 7 = 0 to the point (1, -4) (note Figure 26). This time

$$d=\frac{3(1)+4(-4)-7}{5}=-4.$$

The negative sign merely indicates, of course, that the origin and the given point are on the same side of the line.

Illustration 3: Find the distance from the line 5x - 12y + 10 = 0 to the point (5, 1) (see Figure 27).

In this case,

$$d = \frac{5(5) - 12(1) + 10}{-13} = -\frac{23}{13}$$

EXERCISES 11

- 1. Write the equation 3x 4y = 10 in the slope-intercept form and indicate its y intercept.
- 2. Write the equation 3x 4y = 10 in the intercept form and indicate both the x and y intercepts.
- 3. Write 3x 4y = 10 in the normal form, and find its distance from the origin.
- **4.** Find the distance from the line 3x + 5y = 15 (a) to the point (2, 7); (b) to the point (-1, 2).

- 5. The vertices of a triangle are A(0,0), B(5,0), and C(2,7). Find the three altitudes of the triangle and the area of the triangle.
- 6. Find the area of the triangle A(0, 0), B(5, 2), and C(1, 6) by two methods. (Hint: Draw the figure and find the length of AB and the altitude from C to AB.)
- 7. Draw the line y-3=2(x-1), and find the angle that the line makes with the positive direction of the x axis.

(HINT: Let θ equal the positive angle from the x axis to the line. Therefore, $\tan \theta = 2$. From a trigonometric table find θ .)

- 8. Given the equation 2x 3y = 6; sketch the line and find θ .
- **9.** Given the line through the two points (-1, 4) and (3, -2); find angle θ .
- 10. If the line AB cuts the x axis and the y axis, respectively, at the points (3,0) and (0,7), find the equation of the line and angle θ . Find also the distance from the line to the origin.
- 11. Find the equation of a line through the point (3, 7) and having the same slope as the line 3x + 2y = 10.
 - 12. Find the distance from the line 3x + 2y = 10 to the point (3, 7).
- 13. Find the distance from the intersection of the lines x y = 7 and 2x + 5y = 21 to the line 5x .13y = 20.
- 14. The equations of the sides of a triangle are 2x y + 2 = 0, 5x + 4y 21 = 0, and x + 6y + 1 = 0.
 - (a) Find the coordinates of the vertices.
 - (b) Find the length of each altitude.
 - (c) Find the slope of each side.
 - (d) Find the length of each side.
 - (e) Find the mid-point of each side.
 - (f) Find the lengths of the medians.
 - (g) Find the coordinates of a point $\frac{2}{3}$ of the distance from each vertex of the triangle to the mid-point of the opposite side.
 - (h) Find the area of the triangle by two methods.

20. PARALLEL LINES

If two lines are parallel, and if θ_1 and θ_2 are the positive angles from the x axis to the lines, respectively, then $\theta_1 = \theta_2$ (note Figure 28).

Frg. 28

Hence, $\tan \theta_1 = \tan \theta_2$, and the slopes m_1 and m_2 of the lines are equal.

Conversely, if the slopes of the lines are equal, the lines are parallel; for, if $\tan \theta_1 = \tan \theta_2$, then for angles between 0° and 180°, $\theta_1 = \theta_2$. Hence, the lines are parallel.

If two lines are each written in the slopeintercept form, namely, y = mx + b, it is immediately possible to compare their slopes and decide whether the lines are parallel. Thus, it is apparent that the lines y = 3x + 2 and If the equations of the lines are written in the

y = 3x - 5 are parallel. If the equations of the lines are written in the more general form Ax + By + C = 0, the slopes are readily compared by realizing that the general form of the equation may be re-

written as

$$y=-\frac{A}{B}x-\frac{C}{B},$$

if $B \neq 0$; that is, the slope of the line is -A/B.

Thus, the slope of the line 3x + 2y - 7 = 0 is $-\frac{3}{2}$, and the slope of 6x + 4y + 10 = 0 is $-\frac{3}{4}$ or $-\frac{3}{2}$. So the slopes are equal, and the lines are parallel.

21. PERPENDICULAR LINES

If two lines are perpendicular, as in Figure 29, it follows that $\theta_2 = \theta_1 + 90^{\circ}$, or that

$$\tan \theta_2 = \tan (\theta_1 + 90^\circ) = -\cot \theta_1 = -\frac{1}{\tan \theta_1},$$

which means that

$$m_2=-\frac{1}{m_1}.$$

Conversely, if $m_2 = -\frac{1}{m_1}$, the lines are perpendicular. The proof is left as an exercise for the student.

Hence, by determining the slopes of two given lines and comparing them, it is possible to ascertain whether the lines are perpendicular. For example, the slope of 5x + 7y - 8 = 0 is $-\frac{5}{7}$, and the slope of 14x - 10y + 9 = 0 is $\frac{14}{5}$ or $\frac{7}{5}$. Therefore, one slope is the negative reciprocal of the other, which shows that the lines are perpendicular.

22. ANGLE BETWEEN TWO LINES

To find the angle that the line L_1 makes with the line L_2 , let ϕ be the angle from line L_2 to line L_1 measured counterclockwise. Then, by reference to Figure 30, we have

$$\theta_1 = \theta_2 + \phi$$

$$\phi = \theta_1 - \theta_2.$$

Consequently,

$$\tan \phi = \frac{\tan \theta_1 - \tan \theta_2}{1 + \tan \theta_1 \tan \theta_2}.$$
 (1)

If we represent the slope of L_1 by m_1 and the slope of L_2 by m_2 , then

$$\tan \phi = \frac{m_1 - m_2}{1 + m_1 m_2}.$$
 (2)

Thus, to find the angle from the line 3x - 5y = 10 to the line 2x + y = 4, we have $m_2 = \frac{3}{5}$ and $m_1 = -2$. Hence,

$$\tan\phi = \frac{-2 - \frac{3}{5}}{1 - \frac{6}{5}} = 13,$$

or

$$\phi = \tan^{-1} 13.$$

EXERCISES 12

- **1.** Take a point $A(x_1, y_1)$ in the second quadrant and a point $B(x_2, y_2)$ in the third quadrant. Draw the figure and derive the formula for the length of AB.
 - 2. Find the length of the line segment joining (1, -6) and (-4, -3).
- 3. Find the coordinates of the points that trisect the line segment joining (1, -6) and (-4, -3).
 - 4. Which of the following lines are parallel, and which are perpendicular?
 - (a) 2x 3y 10 = 0.
 - (b) 4x 6y 6 = 0.
 - (c) 3x 2y + 10 = 0.
 - (d) 6x + 4y 20 = 0. (e) $x - \frac{2}{3}y + 8 = 0$.
- 5. Find the angle that the line x y 7 = 0 makes with the line x + y + 1 = 0.
- **6.** Find the angle that the line x + y + 1 = 0 makes with the line 3x 4y 5 = 0.
 - 7. The vertices of a triangle ABC are A(0, 0), B(5, 0), and C(1, 3).
 - (a) Find the lengths of the sides.
 - (b) Find the equations of the sides.
 - (c) Find the three altitudes.
 - (d) Find the three angles.
 - (e) Find the equations of the altitudes.
 - (f) Find the common intersection of the altitudes.
 - (g) Find the equations of the medians.
 - (h) Find the area of the triangle.
- 8. Find the equation of the perpendicular bisector of the line that joins the points (-2, -5) and (6, 7).
- **9.** Find the equation of the line through the intersection of the lines 3x y = 10 and 2x + 3y + 8 = 0 and whose slope is $-\frac{1}{3}$.
- 10. Find the distance from the intersection of the lines 3x y = 10 and x + y = 2 to the line x 7y = 28.

EXERCISES 327

- 11. Prove that the points (-2, -1), (1, 0), (4, 3), and (1, 2) are the vertices of a parallelogram. Employ two methods.
- 12. Show analytically that the line joining the mid-points of two sides of a triangle is parallel to the third side and equal to one half the third side.
- 13. Prove analytically that the diagonals of a rhombus bisect each other at right angles.
- 14. Write an equation expressing the fact that the point (x, y) is 5 units from the point (2, -3).
- 15. Prove analytically that the medians of a triangle intersect in a point one third of the distance from a side to the opposite vertex.
 - 16. Suppose that the sides of a triangle are as follows:
- $AB: 2x 3y = 12; \quad AC: x + y = 10; \quad BC: 15x + 3y = 10.$
 - (a) Find the number of degrees in angle A.
 - (b) Find the coordinates of A.
- 17. Find the altitudes of the triangle whose vertices are (1, 1), (5, 2), and (3, 7).
 - 18. Find the area of the triangle of Exercise 17.
- 19. Determine the equations of two straight lines perpendicular to the line x-2y=3 and at a distance of 5 from the origin.
 - 20. How far apart are the two lines 2x + 3y = 7 and 4x + 6y = 9?

23. THE CIRCLE

Although we have considered briefly the circle, the ellipse, the parabola, and the hyperbola in Book I, we shall now treat these curves in more detail.

The circle is a curve possessing the property that every point of the curve is equidistant from a fixed point called the *center*.

Let C(h, k) be the center of a circle, and let its radius be r; then, if P(x, y) is any point on the circle, we have by use of the distance formula

$$r = \sqrt{(x-h)^2 + (y-k)^2},$$

$$(x-h)^2 + (y-k)^2 = r^2.$$
 (1)

or

In particular, if h = 0 and k = 0, then the equation of a circle of radius r is

$$x^2 + y^2 = r^2. (2)$$

The general equation

$$Ax^2 + Ay^2 + 2Dx + 2Ey + F = 0$$
 $(A > 0),$ (3)

may be transformed to

$$\left(x^{2} + \frac{2D}{A}x + \frac{D^{2}}{A^{2}}\right) + \left(y^{2} + \frac{2E}{A}y + \frac{E^{2}}{A^{2}}\right) = -\frac{F}{A} + \frac{D^{2}}{A^{2}} + \frac{E^{2}}{A^{2}}$$

$$\left(x + \frac{D}{A}\right)^{2} + \left(y + \frac{E}{A}\right)^{2} = \frac{D^{2} + E^{2} - AF}{A^{2}}.$$
 (4)

or

If $D^2 + E^2 - AF > 0$, we may compare Equations (1) and (4), and note that the form is that of a circle. In fact,

$$h = -\frac{D}{A}$$
, $k = -\frac{E}{A}$, and $r = \frac{\sqrt{D^2 + E^2 - AF}}{A}$.

Hence, if $D^2 + E^2 - AF > 0$, Equation (3) is the equation of a circle with its center at (-D/A, -E/A) and its radius equal to

$$\frac{\sqrt{D^2+E^2-AF}}{A}.$$

If $D^2 + E^2 - AF = 0$, the locus of Equation (3) is merely the point (-D/A, -E/A).

If $D^2 + E^2 - AF < 0$, Equation (3) does not represent a real locus. Equation (3) may always be transformed to the form

$$x^2 + y^2 + ax + by + c = 0, (5)$$

where
$$a = \frac{2D}{A}$$
, $b = \frac{2E}{A}$, and $c = \frac{F}{A}$.

From this equation we see that if we are given sufficient conditions to determine a, b, and c, the equation of the circle is determined.

Illustration 1: Suppose we are given three points $P_1(0,0)$, $P_2(0,3)$, and $P_3(2,1)$, which are not all on the same straight line. To determine the equation of a circle through the given points, we proceed as follows:

After substituting the coordinates of P_1 , that is, x = 0 and y = 0, in (5), we obtain

$$c=0.$$

After substituting the coordinates of P_2 , that is, x = 0 and y = 3, in (5), we obtain

$$9 + 3b + c = 0$$

After substituting the coordinates of P_3 , that is, x = 2, y = 1, in (5), we obtain

$$4+1+2a+b+c=0.$$

If we solve this system of three equations involving a, b, and c, we obtain

$$c = 0, \quad b = -3, \quad a = -1.$$

Hence, the required equation is

$$x^2 + y^2 - x - 3y = 0,$$

which may be written in the form

$$(x^2-x+\frac{1}{4})+(y^2-3y+\frac{9}{4})=\frac{10}{4},$$

or

$$\left(x-\frac{1}{2}\right)^2+\left(y-\frac{3}{2}\right)^2=\left(\frac{\sqrt{10}}{2}\right)^2.$$

Thus, we note that $h = \frac{1}{2}$, $k = \frac{3}{2}$, $r = \frac{\sqrt{10}}{2}$. So the circle has its center at $(\frac{1}{2}, \frac{3}{2})$, and its radius is $\frac{\sqrt{10}}{2}$.

In the case of this problem it would have been equally satisfactory to substitute the coordinates of the given points in Equation (1) and obtain the three equations

$$h^{2} + k^{2} = r^{2},$$

$$h^{2} + (3 - k)^{2} = r^{2},$$

$$(2 - h)^{2} + (1 - k)^{2} = r^{2}.$$

and

The solution of this system of equations also gives, of course, $k=\frac{3}{2}$

$$h=\frac{1}{2}$$
, and $r=\frac{\sqrt{10}}{2}$.

Illustration 2: The equation

$$3x^2 + 3y^2 - 7x - 8 = 0$$

is of the form (3), where A = 3, 2D = -7, E = 0, and F = -8. Since

$$D^2 + E^2 - AF = \frac{49}{4} + 24 = \frac{145}{4},$$

the curve represents a circle with

$$r = \frac{\sqrt{D^2 + E^2 - AF}}{A} = \frac{1}{3}\sqrt{\frac{145}{4}} = \frac{1}{6}\sqrt{145},$$

 $h = -\frac{D}{A} = \frac{7}{6},$ and $k = -\frac{E}{A} = 0.$

It is usually regarded as preferable, however, to proceed as follows:

$$3x^{2} + 3y^{2} - 7x - 8 = 0,$$

$$x^{2} - \frac{7}{3}x + y^{2} = \frac{8}{3},$$

$$\left(x^{2} - \frac{7}{3}x + \frac{49}{36}\right) + y^{2} = \frac{8}{3} + \frac{49}{36} = \frac{145}{36},$$

$$\left(x - \frac{7}{6}\right)^{2} + y^{2} = \left(\frac{\sqrt{145}}{6}\right)^{2}.$$

OL

Comparing this equation with (1), we observe that it is the equation of a circle with its center at $(\frac{7}{6}, 0)$ and having the radius $\sqrt{145}/6$.

EXERCISES 13

- 1. Find the equation of a circle with its center at (2, -3) and having the radius 6.
- 2. Find the equation of a circle with its center at (-2, -5) and having the radius 7.
- 3. Find the equation of a circle with its center at (-3, 4) and having the radius 5.

- 4. Find the equation of a circle with its center at (5, 0) and passing through the origin.
- 5. Find the equation of a circle with its center at (0, 5) and passing through the origin.
- 6. Show that the equation $x^2 + y^2 + 6x 8y = 11$ is the equation of a circle, and find its radius and the coordinates of the center.
- 7. Find the equation of a circle through the points (1,0), (2,4), and (-1,3). Find its radius and the coordinates of the center.
- 8. Find the equation of a circle with its center at the point (2, 1) and passing through the point (5, -3).
- **9.** Find the equation of a circle with its center at the point (9, -3) and tangent to the y axis.
- 10. Find the equation of a circle with its center at the y intercept of the line 3x + 7y = 14 and tangent to the x axis.
- 11. Find the equation of a circle with its center at the point (-7, 2) and tangent to the line 5x 8y = 20.
- 12. Find the radius and the coordinates of the center of each of the following circles; sketch the circle:
 - (a) $x^2 + y^2 + 6x = 0$;
 - (b) $x^2 + y^2 4y = 0$;
 - (c) $x^2 + y^2 8x + 6y = 0$;
 - (d) $x^2 + y^2 2ax = 0$;
 - (e) $x^2 + y^2 2ax 2by = 0$.
- 13. Find the equation of the locus of a point that moves so that the sum of the squares of its distances from the points (-4, 0) and (4, 0) is equal to 64.
- 14. Find the equation of the locus of a point that moves so that the sum of the squares of its distances from the points A(-3, 5) and B(5, -2) is 74. Show that this locus is a circle with its center at the mid-point of AB.
- 15. Find the equation of the locus of a point that moves so that the sum of the squares of its distances from the points A(a, b) and B(c, d) is equal to k. Show that if the locus is real, it is a circle with its center at the mid-point of AB.
- 16. Find the equation of a circle with its center at the intersection of 5x y = 17 and 3x + 2y = 5 and passing through the point (-1, 1).
- 17. Find the equation of the circle circumscribed about the triangle having the following equations as sides: 8x + 7y 12 = 0, x + 2y 6 = 0, and 3x 2y 27 = 0.
- 18. Find the equation of the circle that passes through the points (2, 3) and (7, -5) and has its center on the line 2x + 3y + 6 = 0.
- 19. Find the distance between the centers of the two circles $x^2 + y^2 + 4x = 17$ and $x^2 + y^2 8x + 32y = 5$.
- 20. Find the equation of the circle that is tangent to both axes and passes through the point (6, 6).

24. THE EQUATION OF A CIRCLE IN POLAR COORDINATES

In Figure 31, let (r_1, θ_1) be the center of a circle and (r, θ) be any point on the circle, and let a be the radius.

From the law of cosines in trigonometry, we have

$$a^2 = r_1^2 + r^2 - 2r_1r\cos(\theta_1 - \theta),$$

which is the required equation.

If, as a particular case, $r_1 = 0$, the equation merely becomes

$$r^2 = a^2$$
 or $r = a$

If the circle should pass through the pole, it follows that $r_1 = a$. Consequently, the equation becomes

$$a^2 = a^2 + r^2 - 2ar\cos(\theta_1 - \theta),$$

 $r = 2a\cos(\theta_1 - \theta).$

or r

Fig. 31

Thus, the equation r=3 represents a circle with center at the pole and radius equal to 3. The equation $r=8\cos\theta$ represents a circle passing through the pole; its radius is 4, and its center is at $(4,0^{\circ})$.

The equation $r=4\sin\theta$ may be written $r=4\cos(\pi/2-\theta)$; hence, the equation represents a circle of radius 2 and with its center at $(2, \pi/2)$.

The equation $r = \cos \theta + \sin \theta$ may be written

$$r = 2\cos\frac{\pi}{4}\cos\left(\theta - \frac{\pi}{4}\right)$$

$$r = \sqrt{2}\cos\left(\theta - \frac{\pi}{4}\right) = \sqrt{2}\cos\left(\frac{\pi}{4} - \theta\right)$$

or

Hence, the equation represents a circle of radius $\frac{\sqrt{2}}{2}$ and with its center at

$$\left(\frac{\sqrt{2}}{2},\frac{\pi}{4}\right)$$

EXERCISES 14

- 1. Find the equation in polar coordinates of the circle with its center at $(5,0^{\circ})$ and with a radius of 5.
- 2. Find the equation in polar coordinates of the circle with its center at $(5, \pi/2)$ and with a radius of 5.
- 3. Find the equation in polar coordinates of the circle with its center at $(5, -\pi/2)$ and with a radius of 10.
 - 4. Write in polar coordinates the equation of the circle $x^2 + y^2 6x = 0$.

5. Determine the center and the radius of each of the following circles:

(a)
$$r = 7$$
.

(b)
$$r = 6 \cos \theta$$
.

(c)
$$r = 10 \sin \theta$$
.

(d)
$$r = 4\cos\left(\frac{\pi}{4} - \theta\right)$$
.

(e)
$$r = \cos\left(\theta - \frac{\pi}{6}\right)$$

(e)
$$r = \cos\left(\theta - \frac{\pi}{6}\right)$$
. (f) $r = 12\sin\left(\frac{\pi}{2} + \theta\right)$. (g) $r = 3\cos\theta + 4\sin\theta$.

(g)
$$r = 3\cos\theta + 4\sin\theta$$
.

25. THE ELLIPSE

In Book I, we defined the curve that represents the equation

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

as an ellipse with its center at (h, k).

We shall now define an ellipse as the locus of a point that moves so that in every position the ratio of its distance from a fixed point, called the *focus*, to its distance from a fixed line, called the *directrix*, is a constant that is less than 1. The constant is called the *eccentricity* of the ellipse and is designated by e. Other important varieties of curves result when the eccentricity e, defined in the same manner, is equal to 1 or is greater than 1. These latter cases will be treated in succeeding chapters.

Fig. 32

In Figure 32, we have chosen F_1 as the focus and AB as the directrix. As a convenience, the focus F_1 has been located on the x axis, and the directrix AB has been taken parallel to the y axis; this does not destroy the generality of the approach, for, irrespective of the given positions of the directrix and focus, an axis system may be inserted so that we have the conditions involved in the figure.

Let P(x, y) be any point on the locus. Moreover, if V_1 is a point that divides D_1F_1 so that $V_1F_1/D_1V_1 = e$, then V_1 is a point on the locus. Point V_2 is also on the locus, for it has been located so that $F_1V_2/D_1V_2 = e$.

Let $V_1V_2 = 2a$, and let C be the mid-point of V_1V_2 ; in other words,

the y axis has been inserted so that it bisects V_1V_2 . From the previous ratios, we have

$$V_1F_1 = eD_1V_1 \tag{1}$$

and

$$F_1V_2 = eD_1V_2. (2)$$

After adding the members of Equations (1) and (2), we obtain

$$V_1F_1 + F_1V_2 = e(D_1V_1 + D_1V_2). (3)$$

From the figure,

$$V_1F_1 + F_1V_2 = 2a,$$

 $D_1V_1 = D_1C - a,$
 $D_1V_2 = D_1C + a.$

Substituting these values in Equation (3), we have

$$2a = e(D_1C - a + D_1C + a) = 2eD_1C.$$

$$D_1C = a/e.$$
(4)

Hence,

After subtracting the members of Equation (1) from those of (2), we obtain

$$F_1V_2 - V_1F_1 = e(D_1V_2 - D_1V_1). (5)$$

From the figure.

$$F_1V_2 = F_1C + a,$$

 $V_1F_1 = a - F_1C,$
 $D_1V_2 - D_1V_1 = 2a.$

Substituting these values in Equation (5), we obtain

$$2F_1C = 2ae,$$

$$F_1C = ae.$$
(6)

or

As a result of these considerations, it is apparent that the coordinates of F_1 are (-ae, 0), and the directrix AB has the equation x = -a/e. Hence, by using the distance formula,

$$d_1 = F_1 P = \sqrt{(x + ae)^2 + y^2}$$
, and $d_2 = LP = x + \frac{a}{e}$.

Since $d_1/d_2 = e$, we have

$$d_1 = ed_2$$

or

$$\sqrt{(x+ae)^2+y^2}=e\left(x+\frac{a}{e}\right)=ex+a.$$

The square of each member of this equation yields

$$x^{2} + 2aex + a^{2}e^{2} + y^{2} = e^{2}x^{2} + 2aex + a^{2},$$

 $x^{2}(1 - e^{2}) + y^{2} = a^{2}(1 - e^{2}).$

or

After dividing each member by the right member, we obtain

$$\frac{x^2}{a^2} + \frac{y^2}{a^2(1-e^2)} = 1. ag{7}$$

If y = 0, $x = \pm a$, the x intercepts; and if x = 0, $y = \pm a\sqrt{1 - e^2}$, the y intercepts.

Let us designate the y intercepts by $\pm b$; that is, we shall let

$$b^2 = a^2(1 - e^2). (8)$$

An immediate consequence of this relation is that b < a. With this change, Equation (7) takes the form

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. {9}$$

This is said to be the standard form of the equation of an ellipse.

From Equation (9), we see that the curve is symmetrical with respect to both axes and to the origin. Moreover, if we write the equation in the forms

$$y = \pm \frac{b}{a} \sqrt{a^2 - x^2} \tag{10}$$

and

$$x = \pm \frac{a}{b} \sqrt{b^2 - y^2},\tag{11}$$

we observe that the curve is within $-a \le x \le a$, $-b \le y \le b$. The shape of the curve is displayed in Figure 33.

Fig. 33

From the symmetry of the curve, we note that the same graph is obtained when the focus is located at (ae, 0) and its corresponding directrix is taken as the line x = a/e. The possible second focus (ae, 0) will be designated as F_2 .

Definitions: The chord V_1V_2 through the foci is called the major axis. The chord through the center, perpendicular to the major axis, is called the minor axis. The lines F_1P and F_2P , when P is any point on the ellipse,

are called *focal radii*. The chord through a focus, perpendicular to the major axis, is called a *latus rectum*.

The presumption throughout the analysis has been that the major axis is the longer of the two axes. If, however, the major axis is on the y axis, we shall still represent our curve by the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1;$$

but in this case the semimajor axis is b, and the semiminor axis is a. Hence, under this circumstance, equation (8) is replaced by

$$a^2 = b^2(1 - e^2).$$

Moreover, the equations of the directrices are $y = \pm b/e$, and the coordinates of the foci are (0, -be) and (0, be).

Properties of the Ellipse: (1) The length of the latus rectum is $2b^2/a$, if a > b.

If we let x = ae in Equation (7), we have

$$\frac{a^2e^2}{a^2} + \frac{y^2}{a^2(1-e^2)} = 1,$$

from which we obtain

$$y^2 = a^2(1 - e^2)^2 = \frac{b^4}{a^2}$$

or

$$y=\pm\frac{b^2}{a}.$$

Hence, |2y|, the actual length of the latus rectum, is $2b^2/a$.

If a < b, the length of the latus rectum is $2a^2/b$.

(2) The sum of the two focal radii to any point on the ellipse is 2a, if a > b.

From the definition of an ellipse,

$$\frac{F_1P}{D_1P}=e \qquad \text{and} \qquad \frac{F_2P}{PD_2}=e.$$

Therefore.

$$F_1P = eD_1P$$
 and $F_2P = ePD_2$.

Adding, we have

$$F_1P + F_2P = e(D_1P + PD_2) = eD_1D_2 = e\left(\frac{2a}{e}\right) = 2a.$$

If a < b, the sum of the two focal radii is 2b.

Illustration 1: Consider the equation

$$\frac{x^2}{25} + \frac{y^2}{16} = 1.$$

It is observed immediately that a=5 and b=4. So the equation represents an ellipse of major axis 10 and minor axis 8. Since $b^2=a^2(1-e^2)$, it follows that $16=25(1-e^2)$, and $e=\frac{3}{5}$. Thus, ae=3, and F_1 is located at (-3,0) and F_2 is at (3,0). The directrices have the equations $x=\pm\frac{25}{5}$. The curve is shown in Figure 34.

Fig. 34

Illustration 2: Study the equation

$$\frac{x^2}{16} + \frac{y^2}{25} = 1.$$

This equation represents an ellipse with its major axis on the y axis; in fact, a=4 and b=5. Hence, $a^2=b^2(1-e^2)$, which becomes $16=25(1-e^2)$; so, $e=\frac{3}{5}$.

Frg. 35

The foci are at (0, 3) and (0, -3), and the equations of the directrices are $y = \pm \frac{25}{3}$ (note Figure 35).

Illustration 3: If $e = \frac{1}{3}$, the major axis (located on the x axis) is 12, and the center is at (0,0), it follows that

$$b^2 = 36(1 - \frac{1}{9}) = 32.$$

Hence, the desired equation is

$$\frac{x^2}{36} + \frac{y^2}{32} = 1.$$

Illustration 4: If $e = \frac{1}{3}$, and the major axis (located on the y axis) is 12, and the

center is at (0,0), the desired equation is

$$\frac{x^2}{32} + \frac{y^2}{36} = 1.$$

EXERCISES

339

EXERCISES 15

Find the equation of the ellipse, with center at the origin, that satisfies each of the following sets of conditions. Sketch each curve.

- 1. $e = \frac{1}{2}$, and the equations of the directrices are $x = \pm 8$.
- 2. $e = \frac{3}{4}$, foci on the y axis, and the ellipse passes through the point (3.4).
- 3. One vertex is at (-6, 0) and the corresponding focus is at (-4, 0).
- 4. One focus is at (4, 0), and length of the latus rectum through this focus is 3.6.
 - 5. Major axis is 16 units, and the coordinates of one focus are (5, 0).
 - 6. Major axis is 20 units, and the coordinates of one focus are (0, -8).
 - 7. Minor axis is $2\sqrt{5}$, and the coordinates of one focus are $(0, \sqrt{3})$.
- 8. One focus is at $(0, 2\sqrt{2})$, and the equations of the directrices are $v = \pm 6\sqrt{6}$.
- 9. Find the eccentricity, the equations of the directrices, and the coordinates of the foci for each of the following ellipses:

(a)
$$\frac{x^2}{36} + \frac{y^2}{16} = 1$$
; (b) $\frac{x^2}{9} + \frac{y^2}{25} = 1$; (c) $5x^2 + y^2 = 25$.

- 10. The vertical dimension of a rectangle inscribed in the ellipse $x^2/25 + y^2/9 = 1$ is $2\sqrt{5}$. Determine the area of the rectangle.
 - 11. How large a square can be inscribed in the ellipse $x^2/9 + y^2/25 = 1$?
- 12. If, as in Figure 36, we take a line AP = a and a point B a distance b from P and then revolve the line in the plane so that A slides on the y axis and B slides on the x axis, P will describe a curve. Prove that the locus of P is the ellipse $x^2/a^2 + y^2/b^2 = 1$.

Note: An ellipse may be constructed mechanically by this method.

Fig. 36

Fig. 37

- 13. If we have a rectangle whose base is 2a and whose altitude is 2b, and if we divide the sides into the same number of equal parts, as in Figure 37, prove that the intersections of lines through corresponding points of division lie on the ellipse $x^2/a^2 + y^2/b^2 = 1$. The axes are to be taken as shown in Figure 37.
- 14. Describe a method of drawing an ellipse by use of Property (2), using a string 2a units long and two thumb tacks. Use your method to construct an ellipse with major axis 10 and minor axis 6.
- 15. Show that if a = b in the equation $x^2/a^2 + y^2/b^2 = 1$, the locus is a circle. By employing the formula $b^2 = a^2(1 - e^2)$, show that the eccentricity of the circle is zero.

- 16. Find the equation of the ellipse $x^2/a^2 + y^2/b^2 = 1$ in polar coordinates.
- 17. The area of an ellipse is given by the formula πab . Determine the area of the ellipse having the major axis 10 and the eccentricity $\frac{1}{3}$.
- 18. A sound emanating from one focus within an ellipsoidal chamber is reflected from the wall in such a manner that it passes through the other focus. If an ellipsoidal chamber is generated by revolving the ellipse $x^2/625 + y^2/144 = 1$ about the x axis, and if a sound ray emanates from one focus, how far will it travel before it returns to the same focus?

26. THE ELLIPSE AND THE GENERAL QUADRATIC EQUATION

The equation

$$Ax^2 + Cy^2 + 2Dx + 2Ey + F = 0$$
 $(A > 0, C > 0),$

may be written in the form

$$A\left(x^{2} + \frac{2D}{A}x + \frac{D^{2}}{A^{2}}\right) + C\left(y^{2} + \frac{2E}{C}y + \frac{E^{2}}{C^{2}}\right) = -F + \frac{D^{2}}{A} + \frac{E^{2}}{C}.$$
If
$$-F + \frac{D^{2}}{A} + \frac{E^{2}}{C} = \frac{D^{2}C + E^{2}A - FAC}{AC} = G \neq 0,$$

the equation may be written in the form

$$\frac{\left(x + \frac{D}{A}\right)^2}{\frac{G}{A}} + \frac{\left(y + \frac{E}{C}\right)^2}{\frac{G}{C}} = 1. \tag{1}$$

If we make the transformations

$$x' = x + \frac{D}{A}$$
 and $y' = y + \frac{E}{C}$,

it is equivalent to setting up a new axis system in terms of x' and y'. In fact, the origin in the new system has the coordinates (-D/a, -E/C) relative to the old axes. With respect to the new axis system, Equation (1) becomes

$$\frac{x'^2}{\frac{G}{A}} + \frac{y'^2}{\frac{G}{C}} = 1. \tag{2}$$

Therefore, if the numerator of G, namely, $D^2C + E^2A - FAC > 0$, Equation (1) represents an ellipse with center at (-D/A, -E/C).

If $D^2C + E^2A - FAC = 0$, Equation (1) merely represents the point (-D/A, -E/C).

If $D^2C + E^2A - FAC < 0$, Equation (1) does not represent a real locus.

If $D^2C + E^2A - FAC > 0$, we may let

$$\frac{G}{A} = a^2,$$

$$\frac{G}{G} = b^2,$$

and

$$-\frac{D}{A} = h$$
 and $-\frac{E}{C} = k$.

Then Equation (1) may be written

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1. ag{3}$$

This equation, then, is the typical form of the equation of an ellipse with semiaxes a and b and with its center at (h, k).

Illustration: The equation

$$x^2 + 2x + 4y^2 + 8y - 31 = 0$$

may be written

$$(x^2 + 2x + 1) + 4(y^2 + 2y + 1) = 36$$
$$(x + 1)^2 + 4(y + 1)^2 = 36.$$

or

After dividing each member of this equation by 36, there results

$$\frac{(x+1)^2}{36} + \frac{(y+1)^2}{9} = 1.$$

So we see that the curve of $x^2 + 2x + 4y^2 + 8y - 31 = 0$ is an ellipse, with its center 0' at (-1, -1). The major axis is 12 units long and is parallel to the x axis; the minor axis is 6 units long and is parallel to the y axis A sketch of the curve appears as Figure 38.

Frg. 38

Obviously, the eccentricity of the ellipse is independent of the location of the axes. Since $9 = 36(1 - e^2)$, it follows that

$$e=\frac{\sqrt{3}}{2}.$$

The foci F_1 and F_2 are on the major axis a distance $ae = 6(\sqrt{3}/2) = 3\sqrt{3}$ to the left and to the right of 0'. So the coordinates of F_1 are $(-3\sqrt{3}-1, -1)$ and the coordinates of F_2 are $(3\sqrt{3}-1, -1)$. The directrices are $x = \pm 4\sqrt{3} - 1$.

EXERCISES 16

Find the equation of the ellipse determined by each of the following sets of conditions. Sketch each curve.

- 1. Center is at (5, -3), one focus is at (8, -3), and the eccentricity is $\frac{1}{2}$.
- **2.** Center is at (5, -3), one vertex is at (5, 2), and the eccentricity is $\frac{3}{5}$.
- 3. Foci are at (2, 12) and (2, 6), and one vertex is at (2, 4).
- **4.** Eccentricity is $\frac{1}{2}$, center is at (3, 4), and major axis is parallel to the x axis and equal to 10.
- 5. Eccentricity is $\frac{1}{2}$, center is (3, 4), and major axis is parallel to the y axis and equal to 10.
- **6.** One focus is at the origin, the equation of the corresponding directrix is x = 9, and the eccentricity is $\frac{1}{2}$.
- 7. Center is at (5,0), the origin is at a vertex, and the curve passes through the point (2,1). Find e, the coordinates of the foci, and the length of the latus rectum.

Show that each of the following equations represents an ellipse. For each curve, find the center, the semimajor and semiminor axes, the coordinates of the foci, and the equations of the directrices.

8.
$$4x^2 + y^2 - 8x + 4y + 7 = 0$$
.

9.
$$x^2 + 5y^2 - 10y = 20$$
.

10.
$$16x^2 + y^2 - 64x + 4y + 19 = 0$$
.

11.
$$2x^2 - 12x + 4y^2 + 8y - 78 = 0$$
.

12.
$$4x^2 + 16x + y^2 - 2y = 83$$
.

13.
$$6x^2 + 2y^2 - 12y - 270 = 0$$
.

- 14. Find the locus of a point that moves so that in every position the ratio of its distance from the point (-1,0) to its distance from the line x=5 is $\frac{3}{5}$. Show that the locus is an ellipse, and find its center and semiaxes.
 - 15. (a) Derive the equation of an ellipse in polar coordinates if one focus is at the pole $e = \frac{1}{2}$ and the directrix is 6 units to the right of the pole.
 - (b) Derive the equation of an ellipse in polar coordinates if one focus is at the pole $e = \frac{1}{2}$ and the directrix is 6 units to the left of the pole.
 - (c) Derive the equation of an ellipse in polar coordinates if one focus is at the pole $e = \frac{1}{2}$ and the directrix is 6 units above the pole.
 - 16. Change the equation obtained in Exercise 15a to rectangular coordinates.
- 17. Find the equation of an ellipse in polar coordinates if one focus is at the pole, the eccentricity is e, and the directrix is perpendicular to the horizontal axis and at a distance k to the left of the focus.
- 18. Determine the distance from the point (0, b) to either focus of the ellipse $x^2/a^2 + y^2/b^2 = 1$, where a is the semimajor axis.

7

The Hyperbola

27. THE HYPERBOLA

In Book I, we described the curves representing the equations

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \quad \text{and} \quad -\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

as hyperbolas; in each case the center is located at (h, k).

To be more thorough in our study, we shall define a hyperbola as the locus of a point that moves so that in every position the ratio of its distance from a fixed point, called the *focus*, to its distance from a fixed line, called the *directrix*, is a constant greater than 1. As in the case of the ellipse, the constant is called the *eccentricity* and is designated by e.

The derivation of the equation of the hyperbola, based on the definition just given, closely resembles the derivation of the equation of the ellipse. Our study will be based on Figure 39. Let the line AB be the directrix, F_1 the focus, and P(x, y) any point on the locus. An x axis will be inserted through F_1 and perpendicular to AB at the point K_1 . Then it is evident that there are two points V_1 and V_2 on the x axis such that $F_1V_1/V_1K_1 = e$ and $F_1V_2/K_1V_2 = e$; that is, V_1 and V_2 are on the locus of the hyperbola. Let us designate V_1V_2 by 2a and the mid-point of V_1V_2 by C; then, $V_1C = a$, and $CV_2 = a$. Through the point C we construct the y axis perpendicular to the x axis.

From the discussion of the previous paragraph, we have

$$F_1V_1 = eV_1K_1 \tag{1}$$

and

$$F_1 V_2 = e K_1 V_2. (2)$$

After subtracting the members of Equation (1) from those of (2), we have

$$F_1V_2 - F_1V_1 = e(K_1V_2 - V_1K_1). (3)$$

By reference to Figure 39,

$$F_1V_2 - F_1V_1 = 2a,$$

 $K_1V_2 = a + K_1C,$
 $V_1K_1 = a - K_1C.$

and

Substituting these values in Equation (3), we have

$$2a = e[a + K_1C - (a - K_1C)],$$

or

$$K_1C = \frac{a}{e}. (4)$$

After adding the corresponding members of Equations (1) and (2), we have

$$F_1V_1 + F_1V_2 = e(V_1K_1 + K_1V_2). (5)$$

Again, by reference to Figure 39, we observe

$$F_1V_1 = F_1C - a,$$

$$F_1V_2 = F_1C + a,$$

$$V_1K_1 + K_1V_2 = 2a.$$

and

Substituting these values in Equation (5), we have

$$F_1C - a + F_1C + a = 2ae,$$

 $F_1C = ae.$ (6)

or

Results (4) and (6) indicate, as in the case of the ellipse, that the focus F_1 is at (-ae, 0) and the directrix AB has the equation x = -a/e. Of course, since e > 1, the relative positions of the focus and the directrix with respect to the origin have been changed. This was anticipated when Figure 39 was drawn.

From the definition of the hyperbola,

$$\frac{F_1P}{PB}=e.$$

This relation leads to the following succession of equations:

$$\frac{\sqrt{(x+ae)^2+y^2}}{x+\frac{a}{e}} = e,$$

$$x^2 + 2aex + a^2e^2 + y^2 = e^2x^2 + 2aex + a^2,$$

$$x^2(e^2-1) - y^2 = a^2(e^2-1).$$

and, finally,

$$\frac{x^2}{a^2} - \frac{y^2}{a^2(e^2 - 1)} = 1. ag{7}$$

If $a^2(e^2-1)$ is denoted by b^2 , Equation (7) becomes

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. ag{8}$$

Equation (8) is symmetrical with respect to both axes and to the origin. If we solve the equation for y, we have

$$y = \pm \frac{b}{a} \sqrt{x^2 - a^2}.\tag{9}$$

Equation (9) shows that there is no locus when -a < x < a, for within that range y becomes imaginary. Moreover, as x increases indefinitely in numerical value, so does y. The nature of the curve is de-

Fig. 40

picted in Figure 40. It may be observed that the graph consists of two distinct branches. From the symmetry we see, as in the case of the ellipse, that the curve has another focus at (ae, 0) and another directrix x = a/e.

If we write Equation (9) in the form

$$y = \pm \frac{b}{a} x \sqrt{1 - \frac{a^2}{x^2}}, \tag{10}$$

we observe that the radical expression approaches the value 1 as x becomes numerically large. Thus, the straight line:

$$y = \frac{bx}{a}$$
 and $y = -\frac{bx}{a}$

become an excellent approximation to the form of the curve a long way from the origin. These two straight lines are called the asymptotes of the curve and serve as guide lines in its construction, as shown in Figure 40. It can be shown that the ordinates of $y = \pm (b/a)x$ are numerically larger than the ordinates given by (10), but they differ less and less as x continues to increase.

Definitions: The chord V_1V_2 through the foci is called the axis of the hyperbola. The lines F_1P and F_2P , when P is any point on the hyperbola, are called focal radii. The chord through a focus perpendicular to the axis is called a latus rectum.

If the axis is on the y axis, we shall represent our curve by the equation

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1,$$

but the semiaxis is b, and in this case $a^2 = b^2(e^2 - 1)$. Also, in this case, the equations of the directrices are $x = \pm b/e$, and the coordinates of the foci are (0, -be) and (0, be).

Properties of the Hyperbola: (1) The length of the latus rectum of the hyperbola $x^2/a^2 - y^2/b^2 = 1$ is $2(b^2/a)$, and the length of the latus

rectum of $y^2/b^2 - x^2/a^2 = 1$ is $2(a^2/b)$. The student should prove this as an exercise.

(2) The difference between the two focal radii to any point on the hyperbola $x^2/a^2 - y^2/b^2 = 1$ is 2a, and the difference between the two

focal radii to any point on the hyperbola $y^2/b^2 - x^2/a^2 = 1$ is 2b. It is left as an exercise for the student to establish this property.

Property (2) forms a basis for the mechanical construction of the hyperbola. The procedure follows: Take a straightedge F_1B , where $F_1B > 2a$ (note Figure 41). Fasten one end of a string of length $F_1B - 2a$ at B and the other end at the focus F_2 . A pencil P held against the string and straightedge so as to keep the string taut will trace the hyperbola $x^2/a^2 - y^2/b^2 = 1$ as the straightedge is revolved about F_1 . If we reverse the position of the straightedge and string with respect to the foci, the other branch of the hyperbola may be drawn. The student should demonstrate that this result follows from Property (2).

EXERCISES 17

Find the eccentricity, the coordinates of the foci, and the equations of the asymptotes of the following hyperbolas, and sketch each curve.

1.
$$\frac{x^2}{25} - \frac{y^2}{9} = 1$$

2. $\frac{y^2}{16} - \frac{x^2}{9} = 1$
3. $x^2 - 2y^2 = 8$
4. $y^2 - x^2 = 1$
5. $2x^2 - 4y^2 = 16$
6. $24x^2 - y^2 = 144$

Find the equation of each of the following hyperbolas. The center is at the origin in each case.

- 7. One focus is at (5, 0), and the axis is 6.
- 8. One focus is at (0, 5), and the axis is 8.
- **9.** One focus is at (5,0), and the equation of the directrix is x=1.
- 10. The latus rectum is $\frac{32}{3}$, and the equation of the directrix is $x = \frac{9}{5}$.
- 11. Determine the eccentricity of the hyperbola $x^2 y^2 = k$, where k is any positive or negative constant.
- 12. The equations of the asymptotes $t\sigma$ a hyperbola are $y=\pm \frac{5}{3}x$. Find the eccentricity.
- 13. A point (x, y) is joined by straight lines to the points (-3, 0) and (3, 0). The product of the slopes of the two lines is 2. Describe in detail the curve which the point (x, y) has for its locus.
- 14. Show that the curve representing the equation $x^2/a^2 y^2/b^2 = 0$ is composed of two straight lines, which are the asymptotes of $x^2/a^2 y^2/b^2 = 1$.
- 15. If a and b are given, determine the location of the asymptotes by a geometrical construction.
 - 16. Use a straightedge and string to construct the hyperbola $x^2/25 y^2/9 = 1$.
 - 17. Use a straightedge and string to construct the hyperbola $y^2/9 x^2/16 = 1$.

28. THE HYPERBOLA AND THE GENERAL QUADRATIC EQUATION

Let us consider the equation

$$Ax^2 + Cy^2 + 2Dx + 2Ey + F = 0$$
 $(A > 0, C < 0).$

This equation may be written in the form

$$A\left(x^{2} + \frac{2D}{A}x + \frac{D^{2}}{A^{2}}\right) + C\left(y^{2} + \frac{2E}{C}y + \frac{E^{2}}{C^{2}}\right) = -F + \frac{D^{2}}{A} + \frac{E^{2}}{C},$$
or
$$A\left(x + \frac{D}{A}\right)^{2} + C\left(y + \frac{E}{C}\right)^{2} = \frac{D^{2}C + E^{2}A - FAC}{AC}.$$

If the member on the right is designated by G, and if $G \neq 0$, the equation may be written in the form

$$\frac{\left(x + \frac{D}{A}\right)^2}{\frac{G}{A}} + \frac{\left(y + \frac{E}{C}\right)^2}{\frac{G}{C}} = 1. \tag{1}$$

If the numerator of C, that is, $D^2C + E^2A - FAC = 0$, the equation becomes $A(x + D/A)^2 + C(y + E/C)^2 = 0$. Since C is negative, the left member may be regarded as the difference of two squares and factored accordingly. So the equation represents the real lines

$$\sqrt{A}\left(x+\frac{D}{A}\right) = \pm\sqrt{-C}\left(y+\frac{E}{C}\right).$$

Of course, $\sqrt{-C}$ is real, since C is negative.

If $D^2C + E^2A - FAC > 0$, then G < 0, and G/A < 0 and G/C > 0. If we make the transformations x' = x + D/A and y' = y + E/C, the equation takes the form

$$\frac{y'^2}{b^2} - \frac{x'^2}{a^2} = 1,$$

where

$$b^2 = \frac{G}{C}$$
 and $a^2 = -\frac{G}{A}$.

This is the equation of a hyperbola with its center at the origin of the new x', y' axis system, which means that the center is located at (-D/A, -E/C) with respect to the old axis system. Moreover, the axis of the hyperbola is located on the y' axis, which is parallel to the y axis.

If $D^2C + E^2A - FAC < 0$, the equation takes the form

$$\frac{x'^2}{a^2} - \frac{y'^2}{b^2} = 1,$$

which is a hyperbola with its axis on the x' axis, parallel to the x axis; in this equation,

$$a^2 = \frac{G}{A}$$
 and $b^2 = -\frac{G}{C}$.

We thus note that the equation

$$Ax^2 + Cy^2 + 2Dx + 2Ey + F = 0$$
 $(A > 0, C < 0)$

represents a hyperbola with its axis parallel to the x axis, a hyperbola with its axis parallel to the y axis, or two straight lines, according as $D^2C + E^2A - FAC$ is negative, positive, or zero, respectively.

If $D^2C + E^2A - FAC < 0$, Equation (1) may be written in the form

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1,$$

where a^2 and b^2 are defined as before, and

$$h = -\frac{D}{A}$$
 and $k = -\frac{E}{C}$.

If $D^2C + E^2A - FAC > 0$, Equation (1) may be written in the form

$$\frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1,$$

where a^2 , b^2 , h, and k have the meanings already described.

In practice, this algebraic manipulation may be carried out rather simply, as indicated by the following illustrations.

Illustration 1: Consider the curve that represents the equation

$$3x^2 - 5y^2 + 6x + 3 = 0.$$

This equation may be written

$$3(x^2 + 2x + 1) - 5y^2 = 0,$$

$$3(x + 1)^2 - 5y^2 = 0.$$

Since the left member may be factored into

$$[\sqrt{3}(x+1) - \sqrt{5}y][\sqrt{3}(x+1) + \sqrt{5}y],$$

the equation represents the two straight lines,

$$\sqrt{3}(x+1) = \pm \sqrt{5}y.$$

Illustration 2: Consider the graphical representation of the equation

$$3x^2 - 5y^2 + 6x + 18 = 0.$$

This equation may be written

$$3(x^2 + 2x + 1) - 5y^2 = -15,$$

$$3(x + 1)^2 - 5y^2 = -15.$$

or

or

After dividing each member by -15, we obtain

$$\frac{y^2}{3} - \frac{(x+1)^2}{5} = 1.$$

This equation represents a hyperbola with its axis parallel to the y axis and its center at (-1,0).

Illustration 3: Consider the graphical representation of the equation

$$3x^2 - 5y^2 + 12x + 10y - 53 = 0.$$

The equation may be written

or

$$3(x^{2} + 4x + 4) - 5(y^{2} - 2y + 1) = 60,$$
$$3(x + 2)^{2} - 5(y - 1)^{2} = 60,$$
$$\frac{(x + 2)^{2}}{20} - \frac{(y - 1)^{2}}{12} = 1.$$

This equation represents a hyperbola with its axis parallel to the x axis and with its center at (-2, 1). A sketch of the curve appears as Figure 42.

In examining Figure 42, it is observed how easily the hyperbola may be sketched after constructing a rectangle of dimensions 2a and 2b, with the center of the rectangle located at the center of the curve. When extended, the diagonals of the rectangle become the asymptotes of the desired hyperbola.

Of course, we could have compared the equations of the illustrations with the results previously obtained in our analysis of the general equation

$$Ax^2 + Cy^2 + 2Dx + 2Ey + F = 0.$$

Thus, in Illustration 1,

80

$$A = 3$$
, $C = -5$, $D = 3$, $E = 0$, $F = 3$; $D^2C + E^2A - FAC = 0$.

As a consequence, the curve degenerates into two intersecting straight lines.

In Illustration 2,

80

80

$$A = 3$$
, $C = -5$, $D = 3$, $E = 0$, $F = 18$; $D^2C + E^2A - FAC = 24$.

This positive result anticipates the fact that the axis of the curve is parallel to the y axis.

In Illustration 3.

$$A = 3$$
, $C = -5$, $D = 6$, $E = 5$, $F = -53$; $D^2C + E^2A - FAC = -930$.

Consequently, the axis of the curve is parallel to the x axis.

EXERCISES 18

- 1. Reduce each of the following equations to standard form, and find the coordinates of the center, the coordinates of the foci, and the equations of directrices and asymptotes, all with reference to the x and y axes. Sketch the curves.

 - (a) $25x^2 9y^2 100x 54y = 206$ (b) $25x^2 9y^2 50x 108y = 74$ (c) $25x^2 9y^2 50x + 108y = 299$ (d) $4x^2 24x y^2 + 6y 75 = 0$
 - (e) $2x^2 + 12y 2y^2 + 4x 29 = 0$
- 2. Find the equation of the hyperbola whose foci are at (2, 2) and (2, 12) and one of whose vertices is the point (2, 5).
- 3. The eccentricity of a hyperbola is 2, its center is at the point (2, 4), and the equation of one directrix is $x = \frac{7}{3}$. Find the equation of the hyperbola, and draw the curve.
- 4. A point moves so that in every position the ratio of its distance from the point (2, -1) to its distance from the line y = 3 is $\frac{5}{2}$. Find the equation of the locus, and sketch the curve.
- 5. Find the equation of a hyperbola, in polar coordinates, if its focus is at the pole and its directrix is perpendicular to the horizontal axis at the distance kto the left of the focus.
- 6. Find the equation of the locus of a point that moves so that the difference of its distances from $(\pm 12, 0)$ is 8.
- 7. A point moves so that its distance from (6, 0) is 5 units more than its distance from (-3, 0). Find the equation of its locus.
- 8. A point moves so that its distance from the origin is always twice its distance from the line x = -10. Determine the equation of its locus. What are the equations of its asymptotes?
- **9.** Find the equation of the hyperbola that has vertices at (-3, -2) and (5, -2) and has one focus at (-5, -2).
- 10. The hyperbolas described by the equations $x^2/a^2 y^2/b^2 = 1$ and $y^2/b^2 - x^2/a^2 = 1$ are said to be conjugate hyperbolas. Show that they have the same asymptotes.
- 11. Express the two asymptotes of the hyperbola $(x-h)^2/a^2-(y-k)^2/b^2=1$ as a single quadratic equation in the variables x and y.
- 12. Determine the eccentricity of the curve $Ax^2 Ay^2 + 2Dx + 2Ey + F = 0$. if $E^2 - D^2 + FA \neq 0$.

8

The Parabola

29. THE PARABOLA

If a point moves so that in every position the ratio of its distance from a fixed point, called the *focus*, to its distance from a fixed line, called the *directrix*, is equal to 1, the locus of the point is called a *parabola*. Thus, the eccentricity e of a parabola is always 1.

If, in Figure 43, the line AB is taken as the directrix and F as the focus,

and if we insert the x axis through F perpendicular to AB at K, it is evident that there is a point V on KF, which is on the locus. From the definition of the parabola VF/KV=1; that is, V is the mid-point of KF. If we let KF=2p and draw the y axis perpendicular to KF at V, and if we let P(x, y) be any point on the locus, we have

$$\frac{\sqrt{(x-p)^2 + y^2}}{x+p} = 1,$$

$$x^2 - 2px + p^2 + y^2 = x^2 + 2px + p^2,$$
or
$$y^2 = 4px.$$
(1)

From this equation we see that the curve of $y^2 = 4px$ is symmetrical with respect to the x axis.

It is evident that the curve of the equation

$$x^2 = 4py$$

is also a parabola, but with its focus at (0, p). The directrix of this latter curve has the equation y = -p (note Figure 44).

Definitions: The point V, where the line through the focus perpendicular to the directrix cuts the parabola, is called the *vertex* of the parabola. The line through the vertex and the focus of the parabola is known as the *axis* of the parabola. The chord through the focus perpendicular to the axis is called the *latus rectum*. The line joining any point of the parabola and the focus is called a *focal radius*.

30. CONSTRUCTION OF THE PARABOLA

The definition of the parabola leads to a simple method for its construction. Thus, to construct the parabola $y^2 = 4x$, draw the axes, and locate the focus at (1,0) and the directrix along x = -1. Then draw a collection of lines parallel to the directrix, cutting the x axis in points A, B, C, D, etc., respectively. Now with F as a center and MA as a

Fig. 45

radius, draw arcs cutting the line through A above and below the x axis; this gives two points of the parabola. Similarly, with F as a center and MB, MC, MD, etc., as radii, draw arcs cutting the lines through B, C, D, etc., respectively, above and below the axis, in each case obtaining two points of the parabola. The y axis is one of the set of parallel lines that is cut by the corresponding arc at only one point—the origin. We may thus locate as many points on the parabola as we wish and draw the parabola as shown in Figure 45. The above principle may also be used to trace the parabola mechanically by a continuously moving point, as follows: Place a straightedge along the directrix and a triangle against the straightedge as shown in Figure 46. Fasten one end of a string of length AB at B and the other end at the focus F. Now, if a pencil point is held against the string, keeping it taut and against AB, while the triangle is moved along the directrix, the pencil will trace a parabola. Why?

31. THE PARABOLA AND THE QUADRATIC EQUATION

Let us consider the equation $Cy^2 + 2Dx + 2Ey + F = 0$, $C \neq 0$. This may be rewritten in the form

$$C\left(y^{2} + \frac{2E}{C}y + \frac{E^{2}}{C^{2}}\right) = -2Dx - F + \frac{E^{2}}{C},$$

$$\left(y + \frac{E}{C}\right)^{2} = -\frac{2D}{C}\left(x + \frac{FC - E^{2}}{2DC}\right).$$
(1)

or

If $D \neq 0$ and we make the transformations

$$y' = y + \frac{E}{C}$$
 and $x' = x + \frac{FC - E^2}{2DC}$

the equation takes the form

$$y'^2 = 4px'.$$

This equation represents a parabola with its axis on the x' axis, which is parallel to the x axis. The vertex of the parabola is at the origin of the x', y' axis system, which corresponds to the point $[-E/C, -(FC-E^2)/2DC]$ relative to the original axes. These coordinates of the vertex are readily detected if the original equation is reduced to the form

$$(y-k)^2=4p(x-h),$$

Frg. 46

where, of course,

$$k=-\frac{E}{C}$$
, $h=-\frac{FC-E^2}{2DC}$, and $p=-\frac{D}{2C}$.

If D = 0, the original equation becomes

$$Cy^2 + 2Ey + F = 0.$$

The solution of this quadratic equation in y yields

$$y = \frac{-2E \pm \sqrt{4E^2 - 4CF}}{2C},$$

$$y = \frac{-E \pm \sqrt{E^2 - FC}}{C}.$$

or

If $E^2 - FC = 0$, this result represents the line

$$y=-\frac{E}{C},$$

usually referred to as two coincident lines.

If $E^2 - FC < 0$, the locus is imaginary.

If $E^2 - FC > 0$, we have two lines parallel to the x axis.

Following a similar analysis, the equation

$$Ax^2 + 2Dx + 2Ey + F = 0$$
 $(A \neq 0),$

may be written

$$A\left(x^2 + \frac{2D}{A}x + \frac{D^2}{A^2}\right) = -2Ey - F + \frac{D^2}{A},$$

$$\left(x + \frac{D}{A}\right)^2 = -\frac{2E}{A}\left(y + \frac{FA - D^2}{2EA}\right). \tag{2}$$

or

If $E \neq 0$, it is apparent that the equation has been expressed in the

form

$$(x-h)^2=4p(y-k),$$

where
$$h = -\frac{D}{A}$$
, $k = -\frac{FA - D^2}{2EA}$, and $p = -\frac{E}{2A}$.

The point (h, k) is the vertex of the parabola, and the axis of the parabola is parallel to the y axis.

If E = 0 and $D^2 - FA = 0$, the original equation represents two coincident lines.

If E = 0 and $D^2 - FA > 0$, the original equation represents two lines parallel to the y axis.

If E = 0 and $D^2 - FA < 0$, the original equation represents an imaginary locus.

We thus note that the quadratic equation

$$Cy^2 + 2Dx + 2Ey + F = 0,$$

or
$$Ax^2 + 2Dx + 2Ey + F = 0,$$

represents a parabola, two parallel lines, two coincident lines, or an imaginary locus, depending on the conditions above. In practice, the actual examination of the curve representing the given equation can be carried out through the application of simple algebraic procedures. The following illustration typifies the method.

Illustration: Consider the equation

$$y^2 + 4x + 4y - 8 = 0.$$

This equation may be written

$$y^2 + 4y + 4 = -4x + 12,$$

 $(y+2)^2 = -4(x-3).$

or

Hence, the equation represents a parabola with its vertex at (3, -2). The axis is the line passing through this vertex, parallel to the x axis; so it is the line y = -2. Since 4p = -4, it follows that p = -1, which means that the focus is 1 to the left of the vertex; this gives the point (2, -2). The directrix is perpendicular to the axis of the parabola and, in this case, must be 1 to the right of the vertex, so it is the line x = 4.

EXERCISES 19

- 1. Construct the parabola $y^2 = 8x$ by the method of Section 30.
- 2. Construct the parabola $x^2 = 6y$ by the method of Section 30.
- 3. Find the length of the latus rectum of the parabola $y^2 = 4px$.
- 4. Find the equation of a parabola of vertical axis with its vertex at (2, 3) whose latus rectum is 4 units. Note the result of Exercise 3.
- 5. Write the equation of a parabola whose focus is at the point (6,0) and whose directrix is the line x=-6.

6. Determine the coordinates of the focus and the equation of the directrix for each of the following parabolas:

(a)
$$y^2 = 8x$$
 (b) $y^2 = 12x$ (c) $x^2 = 10y$ (d) $y^2 = 9x$ (e) $x^2 = 12y$ (f) $y^2 = 5x$

7. Determine the coordinates of the vertex, the coordinates of the focus, and the equation of the directrix for each of the following parabolas:

(a)
$$y^2 = 8(x-3)$$
 (b) $(y+2)^2 = 12(x-5)$ (c) $(x-1)^2 = 6y$

8. Write the equation of a parabola whose focus is at (6,0) and whose directrix is the line x=3.

Note: The vertex is midway between the directrix and focus.

9. Write the equation of a parabola whose focus is at the point (0, 5) and whose directrix is the line y = -5.

10. Find the equation of a parabola whose focus is the point (2, 3) and whose directrix is the line x = 9.

11. Find the equation of a parabola whose axis is parallel to the x axis, whose vertex is at the point (2, 3), and which passes through the point (6, -3).

12. Find the equation of a parabola whose axis is parallel to the x axis and which passes through the three points (1, 1), (2, 3) and (3, -5).

13. Find the equation of the parabola whose focus is the point (7,0) and whose directrix is the line x=2.

14. Find the equation of the parabola whose focus is the point (7,0) and whose directrix is the line x = 10.

15. Construct the parabola whose equation is $x^2 = 9y$.

16. It is desired to construct a parabolic searchlight which will be 36 in. across the front and 18 in. deep. Determine the equation of a cross section that contains the axis of the parabolic surface if this axis is made to coincide with the x axis and the vertex is located at the origin.

Fig. 47

17. A concrete arch for a bridge to span a distance of 40 ft is to be constructed in the form of a parabola. The highest point of the arch is 15 ft above the piers. Construct a form for the arch, using a scale 1 in. = 4 ft. Find the height, above the level of the piers, of a point on the arch which is horizontally 5 ft from one pier.

18. (a) As in Figure 47, draw a rectangle with base p and altitude 2p, and divide the upper base and altitude into the same number of equal parts. Then through the points of division of the altitude draw lines parallel to the base. Also draw radial lines connecting V with points of division of the upper base, as shown in Figure 47. Prove that the intersections of the horizontal lines and radial lines through corresponding points of divisions lie on the parabola $y^2 = 4px$.

EXERCISES

357

(b) Extend FB through B, and lay off any number of units each equal to V1; also extend AB and lay off the same number of units each equal to A1. Show that the intersections of horizontal lines through the new division points on FB with the corresponding radial lines through the new division points on AB lie on the parabola $y^2 = 4px$.

19. Use the method of Exercise 18 to draw the parabola $y^2 = 4x$ from x = 0 to x = 6.

20. Simplify each of the following equations by translating the axes, and determine the locus of each:

(a) $2y^2 - 3x + 14y + 44 = 0$

(b) $3x^2 - 6x + 5y - 7 = 0$

(c) $5y^2 + 10y - 14x = 0$ (e) $3y^2 + 2x - 7y = 13$ (d) $4x^2 - 16x + 5y = 2$ (f) $2x^2 - 3x + 4y - 9 = 0$

 $(g) 3x^2 - 6x - 7 = 0$

 $(h) 4y^2 - 6y + 9 = 0$

The General Equation of the Second Degree

32. ROTATION OF AXES

If a curve is given relative to a set of rectangular axes OX and OY, it is sometimes desirable to know the equation of the curve with respect to a set of rectangular axes OX' and OY', where the angle from OX to OX' is θ (see Figure 48).

Fig. 48

Let P be any point whose coordinates are (x, y) relative to the original axes and (x', y') relative to the new axes. We draw AP perpendicular to OX, DP perpendicular to OX', and CD parallel to OX. Then, as indicated in the figure, OA = x, AP = y, OD = x', and DP = y'. It is easily shown by elementary geometry that $\angle CPD = \theta$.

It follows that $OB = x' \cos \theta$, $CP = y' \cos \theta$, $CD = y' \sin \theta$, $BD = x' \sin \theta$. Hence, we observe that

$$x = x' \cos \theta - y' \sin \theta \tag{1}$$

and $y = x' \sin \theta + y' \cos \theta$. (2)

Equations (1) and (2) are known as the transformations for rotating the axis.

We note that if we rotate the OX' and OY' axes back to the OX and OY positions, we should have

$$x' = x \cos(-\theta) - y \sin(-\theta) = x \cos\theta' + y \sin\theta \tag{3}$$

and

$$y' = x \sin(-\theta) + y \cos(-\theta) = -x \sin\theta + y \cos\theta. \tag{4}$$

Equations (3) and (4) may also be obtained by solving (1) and (2) for x and y. Thus, if we multiply the members of Equation (1) by $\cos \theta$ and those of (2) by $\sin \theta$, we have

$$x\cos\theta = x'\cos^2\theta - y'\sin\theta\cos\theta$$

and

$$y \sin \theta = x' \sin^2 \theta + y' \sin \theta \cos \theta.$$

After adding the corresponding members, we have

$$x\cos\theta + y\sin\theta = x'(\cos^2\theta + \sin^2\theta) = x'.$$

This is Equation (3).

If we multiply the members of Equation (1) by $\sin \theta$ and those of (2) by $\cos \theta$, we have

$$x \sin \theta = x' \sin \theta \cos \theta - y' \sin^2 \theta$$

and

$$y\cos\theta = x'\sin\theta\cos\theta + y'\cos^2\theta.$$

After combining these equations by subtraction, we obtain

$$y\cos\theta-x\sin\theta=y'(\cos^2\theta+\sin^2\theta)=y'.$$

This is Equation (4).

The utility of these transformation relations is immediately apparent. If the equation of a curve is f(x, y) = 0, relative to the axes OX and OY, then the equation of the curve relative to OX' and OY' is obtained by substituting $x' \cos \theta - y' \sin \theta$ for x, and $x' \sin \theta + y' \cos \theta$ for y in the equation f(x, y) = 0. It is frequently desirable to "rotate the axes" through 45°. If $\theta = 45$ °, the transformation relations become

$$x = x' \cos 45^{\circ} - y' \sin 45^{\circ} = \frac{x' - y'}{\sqrt{2}}$$

$$y = x' \sin 45^{\circ} + y' \cos 45^{\circ} = \frac{x' + y'}{\sqrt{2}}$$
.

Illustration: If the equation of a curve is

$$3x^2 + 2xy + 3y^2 = 1,$$

the equation of the curve relative to OX' and OY', where the angle from OX to OX' is 45°, is

$$3\left(\frac{x'-y'}{\sqrt{2}}\right)^2 + 2\left(\frac{x'-y'}{\sqrt{2}}\right)\left(\frac{x'+y'}{\sqrt{2}}\right) + 3\left(\frac{x'+y'}{\sqrt{2}}\right)^2 = 1,$$

or
$$3\left(\frac{x'^2-2x'y'+y'^2}{2}\right)+2\left(\frac{x'^2-y'^2}{2}\right)+3\left(\frac{x'^2+2x'y'+y'^2}{2}\right)=1$$
,

which may be simplified to

$$4x'^{2} + 2y'^{2} = 1,$$

$$\frac{x'^{2}}{1} + \frac{y'^{2}}{1} = 1.$$

or

We now see that the curve is an ellipse with its major axis on OY' and its minor axis on OX', as displayed in Figure 49.

It is now a simple matter to determine all the characteristics of the ellipse in terms of x' and y' and, by (1) and (2), or (3) and (4), express them in terms of x and y.

Thus, $a^2 = b^2(1 - e^2)$, where $a^2 = \frac{1}{4}$ and $b^2 = \frac{1}{2}$. Hence,

$$e=\frac{1}{\sqrt{2}}$$
.

Frg. 49

The foci are at $(0, \pm be)$, that is, $(0, \pm \frac{1}{2})$, relative to the x', y' axes. From Relations (1) and

(2), the corresponding x and y coordinates are readily obtained. Thus, if x' = 0 and $y' = \frac{1}{2}$, it follows that

$$x = (0)\left(\frac{1}{\sqrt{2}}\right) - \left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right) = -\frac{1}{2\sqrt{2}} = -\frac{\sqrt{2}}{4},$$

$$y = (0)\left(\frac{1}{\sqrt{2}}\right) + \left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}.$$
(2)

and

A similar computation may be made when x'=0 and $y'=\frac{1}{2}$. Hence, the foci are at $(-\sqrt{2}/4, \sqrt{2}/4)$ and at $(\sqrt{2}/4, -\sqrt{2}/4)$, relative to the old axes.

The equations of the directrices relative to OX' and OY' are

$$y' = \pm \frac{b}{e} = \pm \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} = \pm 1.$$

Hence, if y' = 1, we have from relation (4):

$$1 = \frac{-x+y}{\sqrt{2}} \quad \text{or} \quad y = x + \sqrt{2}.$$

If y' = -1, we have

$$-1 = \frac{-x+y}{\sqrt{2}} \quad \text{or} \quad y = x - \sqrt{2}.$$

These are the equations of the directrices relative to the OX and OY axes.

EXERCISES 20

Determine the equation of each of the following curves when the axis system is rotated through the angle specified:

1.
$$2x - 5y + 6 = 0$$
; $\theta = 45^{\circ}$

2.
$$7x + 2y - 3 = 0$$
; $\theta = 30^{\circ}$

3.
$$3x - 5y = 7$$
; $\theta = 60^{\circ}$

4.
$$y^2 = 4x$$
; $\theta = 90^\circ$

5.
$$x^2 + y^2 = 36$$
; $\theta = 30^{\circ}$ (Explain your result)

6.
$$x^2 - y^2 = 5$$
; $\theta = 45^\circ$

7.
$$xy = 6$$
; $\theta = 45^{\circ}$ (Determine the eccentricity of the curve)

8.
$$(3x + 4y)^2 + 7x = 0$$
; $\theta = \tan^{-1} \frac{4}{3}$. What is the eccentricity of the curve?

9.
$$4x^2 + 2\sqrt{3}xy + 2y^2 = 9$$
; $\theta = 30^\circ$. Determine the eccentricity of the curve.

10.
$$2x^2 + 2xy + 2y^2 = 5$$
; $\theta = 45^\circ$. Determine the length of the major axis of the curve.

11.
$$x^2 - 2xy + y^2 + 6x = 0$$
; $\theta = 45^\circ$

12.
$$x^2 - y^2 = 0$$
: $\theta = 45^\circ$

33. THE EFFECT OF ROTATION OF AXES ON DEGREE OF EQUATION

The degree of an equation is not altered by the rotation of the axes. This may be seen from the fact that the transformation equations (1) and (2) are of first degree, and, hence, the equation of the curve in terms of x' and y' will not be higher than the degree of the original equation. The degree of the equation of the curve cannot be lowered, for if it were lowered, then by returning to the original equation through the transformation equations (3) and (4) the degree of the equation would have to be raised, which is impossible.

34. THE GENERAL EQUATION OF THE SECOND DEGREE

The general equation of the second degree may be written in the form

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0.$$

If B=0, the equation reduces to some form already considered in the previous chapters, and the nature of the locus may be determined from previous considerations.

We therefore assume in the following discussion that $B \neq 0$. If we

rotate the axes through an angle θ , the equation relative to OX' and OY' is $A(x' \cos \theta - y' \sin \theta)^2 + 2B(x' \cos \theta - y' \sin \theta)$

$$(x' \sin \theta + y' \cos \theta) + C(x' \sin \theta + y' \cos \theta)^2 + 2D(x' \cos \theta - y' \sin \theta) + 2E(x' \sin \theta + y' \cos \theta) + F = 0.$$
 (1)

If (1) is expanded, the coefficient of x'y' is

$$2B(\cos^2\theta - \sin^2\theta) + 2(C - A)\sin\theta\cos\theta.$$

As a consequence of well-known trigonometric relations, this coefficient may be written

$$2B\cos 2\theta - (A-C)\sin 2\theta$$
.

Hence, if we choose θ so that

$$2B\cos 2\theta - (A - C)\sin 2\theta = 0, \tag{2}$$

which means that

$$\tan 2\theta = \frac{2B}{A - C}, \qquad A \neq C, \tag{2a}$$

Equation (1) will result in an equation of the second degree without an x'y' term. In other words, the rotation of the axes through θ determined by Equation (2) transforms the general equation of the second degree involving an xy term, and where $A \neq C$, to a new second-degree equation in x' and y' which does not involve an x'y' term. Under this new form, the equation may be classified under the cases already considered in previous chapters, and the nature of the locus may be determined from previous considerations.

If A = C, Equation (2) yields the result

$$2B\,\cos\,2\theta\,=\,0,$$

or

$$2\theta = 90^{\circ}, \quad \theta = 45^{\circ}.$$

In the illustration of Section 32 we considered the equation.

$$3x^2 + 2xy + 3y^2 = 1.$$

Here A = C; so by the result just obtained, $\theta = 45^{\circ}$, and the rotation of the axes through 45° will result in a new equation without the x'y' term. This is precisely the angle that we chose for the illustration.

To consider a case when $A \neq C$, let us analyze the equation

$$9x^2 - 24xy + 16y^2 + 10x = 0.$$

Here, A = 9, B = -12, and C = 16. Thus, the angle through which the axes may be rotated to eliminate the x'y' term is given by Relation (2a). In fact,

$$\tan 2\theta = \frac{-24}{9-16} = \frac{24}{7}.$$

We have from trigonometry

$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}.$$
 (3)

Consequently,

$$\frac{2\tan\theta}{1-\tan^2\theta}=\frac{24}{7},$$

$$12 \tan^2 \theta + 7 \tan \theta - 12 = 0$$

and tan $\theta = \frac{3}{4}$ or $-\frac{4}{3}$.

If the first value is chosen, $\sin \theta = \frac{3}{5}$ and $\cos \theta = \frac{4}{5}$. For these values of $\sin \theta$ and $\cos \theta$, by transformation equations (1) and (2) of Section 32,

$$x=\frac{4x'-3y'}{5},$$

$$y=\frac{3x'+4y'}{5}.$$

After substituting for x and y in the given equation, we obtain

$$25y'^2 - 6y' + 8x' = 0.$$

This is the equation of a parabola, which may be studied by methods already outlined.

EXERCISES 21

Simplify each of the following equations by rotating the axes so as to eliminate the x'y' term. Draw the various axes and the curve corresponding to each equation.

1.
$$xy = 7$$

2.
$$x^2 - 2xy + y^2 + 3x = 0$$

$$3. \ 5x^2 - 2xy + 5y^2 = 12$$

$$4. \ 5x^2 - 26xy + 5y^2 + 72 = 0$$

5.
$$9x^2 + 24xy + 16y^2 - 80x + 60y = 0^{-1}$$

6.
$$7x^2 + 48xy - 7y^2 - 6x + 138y + 137 = 0$$

7.
$$9x^2 - 12xy + 4y^2 - 18x + 12y + 34 = 0$$

8.
$$15x^2 + 24xy + 8y^2 + 30x + 20y = 915/2$$

9.
$$15x^2 - 24xy + 8y^2 + 30x - 20y = 35.5$$

10. $5x^2 + 4xy + 2y^2 + 6\sqrt{5}x = 22.2$

11.
$$3x^2 - 4xy + 6y^2 + 20x + 10y = 7.5$$

35. DEGENERATE LOCI

By referring to previous chapters and the considerations of this chapter, we see that the general equation of the second degree represents either an ellipse (the circle may be regarded as a particular case of an ellipse), a hyperbola, a parabola, or the possible degenerate cases of two intersecting lines, two parallel or two identical lines, only a single point, or an imaginary locus. It is possible to find criteria that may be used to determine the

nature of the locus without removing the xy term from the equation by the rotation of the axes through the required angle; these criteria are not treated in this book. In general, it is preferable in practice to remove the xy term by rotation, if such a term is present, and then determine the nature of the locus and its characteristics. However, the degenerate cases mentioned above may be detected in advance by the use of special considerations, and such detection may save time in making the desired analysis.

Suppose, in the general quadratic equation, that

$$A = C = 0$$
 and $B \neq 0$;

then we have

$$2Bxy + 2Dx + 2Ey + F = 0,$$

$$xy + \frac{D}{R}x + \frac{E}{R}y + \frac{F}{2R} = 0.$$

or

This may be rewritten in the form

$$\left(x + \frac{E}{B}\right)\left(y + \frac{D}{B}\right) = \frac{DE}{B^2} - \frac{F}{2B} = \frac{2DE - BF}{2B^2}.$$

If $2DE - BF \neq 0$, the equation represents a hyperbola with the lines x = -E/B and y = -D/B as asymptotes. In fact, the curve may be subjected to the type of study already outlined.

However, if 2DE - BF = 0, the locus consists of two straight lines, namely, x = -E/B and y = -D/B. For example, the equation xy - 2y - 3x + 6 = 0 can be written (x - 2)(y - 3) = 0; so the desired locus is merely the pair of intersecting lines x = 2 and y = 3.

Let us now, as a more common case, consider the factorability of the general quadratic equation where $C \neq 0$, $B \neq 0$. We shall write the general equation, namely,

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0 (1)$$

in the form

$$Cy^2 + (2Bx + 2E)y + Ax^2 + 2Dx + F = 0 (2)$$

and solve for y, thereby obtaining

$$y = -\frac{2Bx + 2E \pm 2\sqrt{(Bx + E)^2 - C(Ax^2 + 2Dx + F)}}{2C}.$$
 (3)

The expression under the radical may be written

$$(B^2 - AC)x^2 + 2(EB - CD)x + (E^2 - CF). (4)$$

This quadratic in x is a perfect square if

$$4(EB-CD)^2-4(B^2-AC)(E^2-CF)=0.$$

This may be simplified and rewritten as

$$AE^{2} + CD^{2} + FB^{2} - 2EBD - ACF = 0$$
 (5)

or, in determinant form,

$$\begin{vmatrix} A & B & D \\ B & C & E \\ D & E & F \end{vmatrix} = \mathbf{0}. \tag{6}$$

If the coefficients of the given equation satisfy condition (6), it is possible for the expression under the radical in (3) to be in the form $(Lx + M)^2$ or $-(Lx + M)^2$; the second possibility follows from the fact that a change in sign of all the coefficients of quadratic (4) would still yield the same equality (5).

If the radicand in (3) is of the form $(Lx + M)^2$, then (3) is of the form

$$y = \frac{Bx + E \pm (Lx + M)}{C}; \tag{7}$$

and then (7) may represent two intersecting lines, two distinct parallel lines, or two identical lines, depending on the values of L and M.

If, however, the radicand in (3) is of the form $-(Lx + M)^2$, then (3) may be written

$$y = \frac{Bx + E \pm (Lx + M) i}{C}; \qquad (8)$$

and then (8) may represent two identical lines, a single point, or an imaginary locus, depending on the values of L and M.

In each of the following equations condition (6) is satisfied:

$$x^2 - 2xy + y^2 + 2x - 2y + 5 = 0. (a)$$

$$6x^2 - 2xy + y^2 + 2x - 2y + 1 = 0. (b)$$

$$x^2 - 2xy + y^2 - 3x + 3y + 2 = 0. (c)$$

$$2x^2 - 3xy + y^2 - 3x + 2y + 1 = 0. (d)$$

$$x^2 - 2xy + y^2 - 2x + 2y + 1 = 0. (e)$$

But, Equation (a) represents an imaginary locus; (b) represents the point (0,1); (c) represents the parallel lines x-y-1=0 and x-y-2=0; (d) represents the two intersecting lines x-y-1=0 and 2x-y-1=0; and (e) represents the identical lines x-y-1=0.

If C = 0 and $A \neq 0$, $B \neq 0$, we may solve Equation (1) for x instead of y. The condition that the expression under the radical shall be a perfect square in this case is exactly the same as (6).

In summary, if we have no information relative to the locus of an equation of the second degree which contains the xy term, and if A and C

are not both zero, it is desirable to apply condition (6) to determine if perchance the locus is one of the degenerate forms considered above. If condition (6) is not fulfilled, then rotation of the axes for the elimination of the xy term is desirable.

EXERCISES 22

Examine each of the following equations to discover which represent degenerate conics, and discuss the nature of those that are degenerate.

1.
$$2x^2 - 3xy + y^2 + 7x - 5y + 6 = 0$$

2.
$$x^2 - 6xy + 9y^2 + 10x - 30y + 25 = 0$$

$$3. \ 5x^2 - 4xy + 3y^2 + 2x - y = 0$$

4.
$$6x^2 + 7xy - 3y^2 - 3x + y = 0$$

5.
$$x^2 - xy + 8x - 7y + 7 = 0$$

6.
$$xy + 2y^2 + 5x + 7y - 15 = 0$$

7.
$$x^2 - 2xy + y^2 + 4x - 4y + 4 = 0$$

8.
$$xy - 2y^2 - 10x + 5y - 12 = 0$$

9.
$$2x^2 + xy - 14x - 7y = 0$$

10.
$$3x^2 - 5xy + 9y^2 = 0$$

36. TANGENT TO A CURVE

Let f(x, y) = 0 be the equation of a curve, as shown in Figure 50. Moreover, let $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ be two points on the curve, and the

Fig. 50

secant line P_1S through these points is drawn. As P_2 moves along the curve to P_1 , the secant line rotates in the plane about P_1 , approaching, under common circumstances, the position designated in the figure by P_1T . The line P_1T is defined to be the tangent line to the curve at P_1 .

The equation of the secant line P_1P_2

$$\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1}.$$

The right member is the slope of the line. As P_2 approaches P_1 along the curve, both numerator and denominator of the right member approach zero; yet the fraction can, and usually does, approach a definite limit. This limit is the slope of the tangent line P_1T , that is, $\tan \theta$, and is defined as the slope of the curve at (x_1, y_1) .

Thus, in Figure 50, the slope, $\tan \theta$, of the tangent line P_1T is determined by

$$\lim_{P_2\to P_1}\frac{y_2-y_1}{x_2-x_1}.$$

This important symbolic expression is read, "The limit of the fraction $(y_2 - y_1)/(x_2 - x_1)$ as P_2 approaches P_1 ." It is one of the fundamental problems of the calculus to determine this limit, if it has a value.

We shall illustrate the method of determining this limiting value for a few particular equations and then for the general equation of the second degree.

Illustration 1: Determine the slope and the equation of the tangent line at some point $P_1(x_1, y_1)$ for the curve of $y^2 = 4x$.

Let $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ be two points on the given curve. Hence both points must satisfy the equation of the curve; that is,

$$y_2^2 = 4x_2, (2)$$

$$y_1^2 = 4x_1, (3)$$

and

$$y_2^2-y_1^2=4(x_2-x_1).$$

From this relation we desire to obtain an expression for

$$\frac{y_2-y_1}{x_2-x_1}$$
;

this may be done by dividing the two members by $(y_2 + y_1)(x_2 - x_1)$, thereby obtaining

$$\frac{y_2-y_1}{x_2-x_1}=\frac{4}{y_2+y_1}.$$

As P_2 approaches P_1 , y_2 must approach y_1 . So,

$$\tan \theta = \lim_{P_1 \to P_1} \frac{y_2 - y_1}{x_2 - x_1} = \lim_{y_2 \to y_1} \frac{4}{y_2 + y_1} = \frac{2}{y_1}. \tag{4}$$

Consequently, the equation of the tangent line at $P_1(x_1, y_1)$, given by the point-slope form of the straight line, is

$$\frac{y-y_1}{x-x_1} = \frac{2}{y_1} \tag{5}$$

This equation completes the solution of the exercise, but some additional algebraic manipulation yields interesting results.

Equation (5) may be transformed to

$$yy_1 - y_1^2 = 2x - 2x_1. (6)$$

From Equations (3) and (6), we have

$$yy_1 - 4x_1 = 2x - 2x_1,$$

$$yy_1 = 2(x + x_1).$$
 (7)

This form, Equation (7), may be obtained in a mechanical way from $y^2 = 4x$ by writing the variable of the second degree as yy and the variable

of the first degree as (x + x)/2. Then we write $y^2 = 4x$ as

$$yy=4\left(\frac{x+x}{2}\right).$$

If we now apply the subscript to one of the y's and to one of the x's, we have

$$yy_1 = 4\left(\frac{x+x_1}{2}\right),$$

$$yy_1 = 2(x+x_1).$$

or

This interesting mechanical device receives justification in the next section.

Of course, to obtain the equation of the tangent line to the curve at some particular point, x_1 and y_1 should be given their appropriate values.

Illustration 2: Determine the slope and equation of the tangent line at the point $P_1(x_1, y_1)$ for the curve,

$$\frac{x^2}{25} + \frac{y^2}{16} = 1.$$

Let $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ be two points on the curve. Since their coordinates must satisfy the equation, we have

$$\frac{x_2^2}{25} + \frac{y_2^2}{16} = 1$$
$$\frac{x_1^2}{25} + \frac{y_1^2}{16} = 1.$$

and

Consequently,

$$\frac{x_2^2-x_1^2}{25}+\frac{y_2^2-y_1^2}{16}=0,$$

or

$$\frac{y_2-y_1}{x_2-x_1}=-\frac{16(x_2+x_1)}{25(y_2+y_1)}.$$

The limit of this ratio, as P_2 approaches P_1 , is the desired slope of the tangent at the point (x_1, y_1) . Therefore,

$$\tan \theta = \lim_{P_1 \to P_1} \frac{y_2 - y_1}{x_2 - x_1} = \lim_{P_2 \to P_2} -\frac{16}{25} \frac{(x_2 + x_1)}{(y_2 + y_1)} = -\frac{16}{25} \frac{(2x_1)}{(2y_1)} = -\frac{16x_1}{25y_1},$$

and the equation of the tangent line at $P_1(x_1, y_1)$ is

$$\frac{y - y_1}{x - x_1} = -\frac{16x_1}{25y_1}.$$

The last equation may be transformed to

$$25yy_1 - 25y_1^2 = -16xx_1 + 16x_1^2,$$

$$16xx_1 + 25yy_1 = 16x_1^2 + 25y_1^2,$$
$$\frac{xx_1}{25} + \frac{yy_1}{16} = \frac{x_1^2}{25} + \frac{y_1^2}{16}.$$

or

The right member of this equation equals 1, since the point $P_1(x_1, y_1)$ is on the curve $x^2/25 + y^2/16 = 1$. Hence, the equation of the tangent line is

$$\frac{xx_1}{25} + \frac{yy_1}{16} = 1.$$

We note that the mechanical device for obtaining this equation from the given equation, as explained in Illustration 1, may also be applied this time; that is, we write the given equation in the form

$$\frac{xx}{25} + \frac{yy}{16} = 1,$$

and attach the subscript to one of the x's and to one of the y's; then we have

$$\frac{xx_1}{25} + \frac{yy_1}{16} = 1.$$

37. EQUATION OF THE TANGENT LINE TO ANY SECOND-DEGREE CURVE

Take the points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ on the curve of

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0. (1)$$

Since the coordinates of the points satisfy the equation, we have

$$Ax_2^2 + 2Bx_2y_2 + Cy_2^2 + 2Dx_2 + 2Ey_2 + F = 0 (2)$$

and

$$Ax_1^2 + 2Bx_1y_1 + Cy_1^2 + 2Dx_1 + 2Ey_1 + F = 0. (3)$$

After subtracting the members of Equation (3) from the corresponding members of (2), we have

$$A(x_2^2 - x_1^2) + 2B(x_2y_2 - x_1y_1) + C(y_2^2 - y_1^2) + 2D(x_2 - x_1) + 2E(y_2 - y_1) = 0.$$
 (4)

The term $2B(x_2y_2-x_1y_1)$ may be written in the form

$$2B(x_2y_2-x_1y_2+x_1y_2-x_1y_1)=2By_2(x_2-x_1)+2Bx_1(y_2-y_1).$$

Hence, (4) may be written

$$A(x_2 - x_1)(x_2 + x_1) + 2By_2(x_2 - x_1) + 2Bx_1(y_2 - y_1) + C(y_2 - y_1)(y_2 + y_1) + 2D(x_2 - x_1) + 2E(y_2 - y_1) = 0.$$
 (5)

After dividing the two members by $x_2 - x_1$, we have

$$A(x_2 + x_1) + 2By_2 + 2Bx_1 \frac{(y_2 - y_1)}{(x_2 - x_1)} + C \frac{(y_2 - y_1)}{(x_2 - x_1)} (y_2 + y_1) + 2D + 2E \frac{(y_2 - y_1)}{(x_2 - x_1)} = 0.$$
 (6)

The solution of this equation for $(y_2 - y_1)/(x_2 - x_1)$ yields

$$\frac{y_2 - y_1}{x_2 - x_1} = -\frac{A(x_2 + x_1) + 2By_2 + 2D}{2Bx_1 + C(y_2 + y_1) + 2E}$$
 (7)

If the limit of the right member exists as P_2 approaches P_1 , the limit is the desired value of tan θ .

When x_2 approaches x_1 , y_2 approaches y_1 , and the right member of (7) has the limiting value

$$-\frac{2Ax_1+2By_1+2D}{2Bx_1+2Cy_1+2E}$$
;

that is.

$$\tan \theta = -\frac{Ax_1 + By_1 + D}{Bx_1 + Cy_1 + E}.$$
 (8)

Hence, the equation of the tangent to the curve at $P_1(x_1, y_1)$ is

$$\frac{y - y_1}{x - x_1} = -\frac{Ax_1 + By_1 + D}{Bx_1 + Cy_1 + E}$$
 (9)

After clearing of fractions, we have

$$Byx_1 - Bx_1y_1 + Cyy_1 - Cy_1^2 + Ey - Ey_1 = -Axx_1 + Ax_1^2$$
$$-Bxy_1 + Bx_1y_1 - Dx + Dx_1$$

or

$$Axx_1 + Byx_1 + Bxy_1 + Cyy_1 + Ey + Ey_1 + Dx + Dx_1 + F$$

= $Ax_1^2 + 2Bx_1y_1 + Cy_1^2 + 2Dx_1 + 2Ey_1 + F$.

Since, from Equation (3), the right member is zero, we obtain as the equation of the tangent line

$$Axx_1 + B(x_1y + xy_1) + Cyy_1 + D(x + x_1) + E(y + y_1) + F = 0.$$
 (10)

A comparison of the original Equation (1) with Equation (10) shows how (10) may be obtained from (1); that is, we write the given Equation (1) as

$$Axx + B(xy + xy) + Cyy + D(x + x) + E(y + y) + F = 0,$$

and then replace one of the x's in each term by x_1 and one of the y's in each term by y_1 . It should be especially noted that in the term B(xy + xy) we replace the x by x_1 in one of the xy's and the y by y_1 in the other xy. Of

course, this mechanical procedure is the one already employed in connection with the two previous illustrations.

Illustration 1: The equation of the tangent line at the point (5, 6) on the circle $(x-1)^2 + (y-3)^2 = 25$ is found by writing the equation in the form

$$x^2 - 2x + y^2 - 6y = 15$$

or

or

$$xx - (x + x) + yy - 3(y + y) = 15.$$

After replacing one of the x's in each term by 5 and one of the y's in each term by 6, we have

$$5x - (x + 5) + 6y - 3(y + 6) = 15$$
$$4x + 3y - 38 = 0.$$

Illustration 2: The equation of the tangent line at the point (1, 2) on the hyperbola xy + 2x + y = 6 is found by writing the equation in the form

$$\frac{1}{2}(xy + xy) + (x + x) + \left(\frac{y + y}{2}\right) = 6.$$

After replacing one of the x's by 1 and one of the y's by 2, noting that in $\frac{1}{2}(xy + xy)$ we replace x by 1 in one of the xy's and y by 2 in the other xy, we have

$$\frac{1}{2}(y+2x) + (x+1) + \left(\frac{y+2}{2}\right) = 6$$

$$y + 2x - 4 = 0.$$

or

38. NORMAL TO A CURVE

The line perpendicular to the tangent to a curve at the point of tangency is called a *normal to the curve*. Since the normal is perpendicular to the tangent line, the slope of the normal is the negative reciprocal of the slope of the tangent line. Hence, in the special case of a curve of second degree, the slope m of the normal is the negative reciprocal of the value of $\tan \theta$ obtained in Equation (8) of the previous section; that is,

$$m = \frac{Bx_1 + Cy_1 + E}{Ax_1 + By_1 + D}.$$

Consequently, the equation of the normal to a curve of second degree at the point (x_1, y_1) is

$$\frac{y - y_1}{x - x_1} = \frac{Bx_1 + Cy_1 + E}{Ax_1 + By_1 + D}.$$

As an illustration, the equation of the normal to the curve

$$x^2 + xy + 2x + 2y + 12 = 0$$

at the point (2, -5) is

$$\frac{y+5}{x-2} = \frac{\frac{1}{2}(2)+1}{1(2)+\frac{1}{2}(-5)+1} = \frac{2}{\frac{1}{2}} = 4$$
$$4x-y-13=0.$$

or

EXERCISES 23

- 1. Determine the slope of the tangent to each of the following curves at the point specified:
 - '(a) $y^2 = 5x$; (5, 5)

(b) $x^2 + y^2 = 25$; (3, 4) (d) $xy + x^2 = 1$; (1, 0)

(c) $x^2 = 4y$; (2, 1)

- 2. (a) Find the equation of the tangent to the parabola $y^2 = 8x$ at the point (2, 4).
 - (b) Find the equation of the normal to $y^2 = 8x$ at (2, 4).
- **3.** (a) Find the equation of the tangent to $x^2 = 4y$ at the point (2, 1).
 - (b) Find the equation of the normal to $x^2 = 4y$ at the point (2, 1).
- **4.** Show that the x intercept of the tangent to the parabola $y^2 = 4px$ at (x_1, y_1) is $-x_1$.
- 5. From the result of Exercise 4 explain how a tangent may be accurately drawn to a parabola at any point.
- 6. Prove that a line from the focus of a parabola to any point P on the curve and a line through P, parallel to the axis, make equal angles with the tangent at P.
 - 7. (a) Write the equation of the tangent to the ellipse $x^2/25 + y^2/16 = 1$ at the point $(3, 3\frac{1}{8})$.
 - (b) Find the equation of the normal to the ellipse $x^2/25 + y^2/16 = 1$ at the point $(3, 3\frac{1}{6})$.
- 8. Find the equations of the tangents to the ellipse $9x^2 + 36x + 16y^2 48y$ = 72 at the points on the curve whose abscissa is zero.
- 9. The tangent to the ellipse $x^2/a^2 + y^2/b^2 = 1$ at a point P meets the tangent at the vertex (a, 0) in the point Q. Show that the line joining Q to the center is parallel to the line joining P to the other vertex.
- 10. Prove: The lines from the foci of an ellipse to any point on the curve make equal angles with the line that is tangent to the ellipse at that point.
- 11. Find the equations of the tangents to the hyperbola $x^2/36 y^2/16 = 1$ at the point where x = 7.5.
 - 12. Write the equation of the tangent to xy = 10 at the point (2, 5).
- 13. Find the equations of the tangents to the curve $u^2 = 16x 32$ at the extremities of the latus rectum. Show that they are perpendicular and meet on the directrix.
- 14. Find the equation of the tangent and of the normal to the curve $x^2 + y^2 - 6x + 4y = 0$ at (1, 1).
- 15. Prove that the tangents at the extremities of a latus rectum of the ellipse $x^2/a^2 + y^2/b^2 = 1$ intersect on the corresponding directrix.
- 16. Prove that the tangent at one end of the latus rectum of the parabola $y^2 = 4px$ is parallel to the normal at the other end.

39. EQUATIONS OF THE TANGENTS WITH A GIVEN SLOPE TO A CURVE OF THE SECOND DEGREE

If we assume the equation of the tangent line to be y = mx + k, where m is known, we may consider the system of equations composed of the equation of the curve and y = mx + k. If we substitute mx + k for y in the equation of the curve, we obtain a quadratic equation in x involving m and k. Since the line is to be tangent to the curve, the two solutions for x must be identical. Hence, the discriminant of the quadratic in x must be zero. This fact enables us to determine k in terms of the known m, and the desired equation of the tangent is completely determined.

As an illustration, suppose that the line given by y = mx + k, where m is regarded as known, is to be tangent to $y^2 = 4px$. We consider the system

$$y = mx + k$$
$$y^2 = 4px.$$

If, in the second equation, y is replaced by its value from the first equation, we have

$$(mx+k)^2=4px$$

or

$$m^2x^2 + (2mk - 4p)x + k^2 = 0.$$

Now, if the discriminant, that is, the part under the radical in the quadratic equation, is equated to zero, we have

$$(2mk - 4p)^2 - 4m^2k^2 = 0,$$

$$4m^2k^2 - 16mkp + 16p^2 - 4m^2k^2 = 0,$$

$$k = \frac{p}{m}.$$

or

Hence, the equation of the tangent of given slope m to the curve $y^2 = 4px$ is

$$y = mx + \frac{p}{m}. (1)$$

Similarly, the tangents, with a given slope m, to the ellipse $x^2/a^2 + y^2/b^2 = 1$ and to the hyperbola $x^2/a^2 - y^2/b^2 = 1$ may be found to be, respectively,

$$y = mx \pm \sqrt{a^2m^2 + b^2} \tag{2}$$

and
$$y = mx \pm \sqrt{a^2m^2 - b^2}.$$
 (3)

The determination of these latter equations is left as an exercise for the student.

EXERCISES 24

- 1. Find the equation of the line whose slope is 2 and which is tangent to the parabola $y^2 = 8x$.
- 2. Derive a formula for the tangent to the parabola $x^2 = 4py$ in terms of its slope m.
- 3. Use the formula derived in Exercise 2 to find the equation of the line tangent to $x^2 = 6y$ and having the slope 2.
- **4.** Find the equations of the lines through the point (2, 6) and tangent to the parabola $y^2 = 8x$.

HINT: Use the equation of the tangent to the parabola in terms of slope, and determine the slope so that the line will pass through the point (2, 6).

- 5. Find the coordinates of the points of tangency for the tangents determined in Exercise 3.
- 6. Write the equations of the lines tangent to the ellipse $16x^2 + 25y^2 = 400$, and which have the slope $\frac{1}{2}$.
- 7. Find the equations of the lines tangent to the ellipse $x^2/25 + y^2/9 = 1$ and which pass through the point (4, 5).
- 8. Find the equations of the lines tangent to the hyperbola $x^2/36 y^2/16 = 1$ which have the slope 2.
 - **9.** Find the equation of a line tangent to xy = k and having the slope m.
- 10. Find the equations of the lines through the point (-1, 5) and tangent to the curve xy = 10.
- 11. Find the equations of the lines that are tangent to the hyperbola $x^2 4y^2 = 36$ and parallel to the line 4x + 6y = 15.
- 12. Find the equations of the lines that are tangent to the circle $x^2 + y^2 6x = 0$ and perpendicular to the line 2x + 3y = 5.
- 13. Show that the circle tangent to the x axis and to each of the circles $x^2 2x + y^2 2y + 1 = 0$ and $x^2 + 2x + y^2 + 2y + 1 = 0$ has the radius $\frac{1}{4}$.

10

Curve Fitting

40. THE PROBLEM OF CURVE FITTING

The experimenter collects data indicating how certain variables appear to be related. Thus, in the case of two variables, if one variable is taken as x and another as y, a set of experiments merely provides a table of pairs of related values of x and y. Of course, these pairs of corresponding values may be displayed relative to a coordinate system, thereby portraying to better advantage any trends which may be present.

Collections of data in tabular form are usually inconvenient to handle, especially if a mathematical analysis of the data is desired. So, it is common "to fit a formula to the data," or, to state it in equivalent fashion, "to fit a curve to the points representing the data." The human element is very strong in this latter process, for it is first necessary for the mathematical scientist to select a general type of curve that possesses the same general behavior as the trend indicated by the points. There is no unique curve to be found, and the ultimate choice will involve, to a certain extent, the scientist's prejudices.

After the type of curve has been selected, it is necessary to determine the arbitrary constants in the equation of the curve so that the curve follows the points in an acceptable manner. For large collections of data it is usually impossible to determine values for the constants that will permit the curve to pass through all the points. Thus, we speak of obtaining the curve that best fits the points or data; of course, a definition must be given of the word "best."

41. TYPES OF EQUATIONS COMMONLY USED IN CURVE FITTING

The following types of equations are frequently considered in fitting a curve to experimental data:

$$(a) y = A + Bx.$$

$$(d) y = \frac{A + Bx}{C + Dx}.$$

$$(b) y = A + Bx + Cx^2.$$

(e)
$$y = AB^x, B > 0.$$

$$(c) y = A + \frac{B}{x}.$$

$$(f) y = Ax^n.$$

Equation (a) is the equation of a straight line with slope B and y intercept A.

Equation (b) is the equation of a parabola with its axis parallel to the y axis.

Equation (c) is the equation of a hyperbola with asymptotes y = A and x = 0.

Equation (d) is the equation of a hyperbola with asymptotes x = -C/D and y = B/D.

Equation (e) provides an exponential curve. If $B = e^r$, where e is the base of the natural logarithm system, then the equation may be written $y = Ae^{rx}$. Written this way, the formula is known as the compound-interest law. The graph of $y = AB^x$ takes one of the forms represented in Figure 51.

Equation (f) is called the *power law*. If n = 1, then we have y = Ax, and the graph of the function is a straight line. If n = -1, we have a

F1G. 51

special case of the type (c). If n = 2, we have a special case of the curve of type (b). If n > 2, and if n is an even integer, we have curves somewhat

similar to the parabolic type obtained when n = 2, but rising more and more rapidly with larger values of n. If n = 3, we have the cubical

parabola displayed in Figure 52 if A > 0, and that of Figure 53 if A < 0. If n > 3, and if n is an odd integer, we obtain curves somewhat similar to those in Figures 52 and 53.

If in type (f) n is a rational fraction, that is, in the form p/q, we may have q odd or even. If q is odd, there is no ambiguity since $x^{p/q}$ will have only one real value for each value of x. But, if q is even, $x^{p/q}$ equals $\pm \sqrt[q]{x^p}$. Frequently, however, we restrict our consideration to the function $+\sqrt[q]{x^p}$. If n is irrational, we shall, by definition, restrict our consideration to the function $+\sqrt[q]{x^p}$, where p/q is a rational approximation to n, and limit ourselves to positive values of x.

Thus, the graph $y = 3x^{\sqrt{2}}$ is approximately that of $y = 3x^{1.4}$, or perhaps $y = 3x^{707/500}$, and the approximate graph is given in Figure 54. In obtaining points on such a curve, the values of y are calculated by the use of logarithms.

x	y
0	0
0.2	0.32
0.5	1.13
1.0	3
2.0	7.99
3.0	14.19
4.0	21.30

Fig. 54

EXERCISES 25

1. Draw the graph of $y = A + Bx + Cx^2$, for each set of values of A, B, and C given below:

(a)
$$A = 1$$
, $B = 2$, $C = 3$

(b)
$$A = 1, B = 2, C = -3$$

(c)
$$A = 0$$
, $B = 2$, $C = 3$
(e) $A = 5$, $B = 2$, $C = 0.3$

(d)
$$A = 0$$
, $B = 0$, $C = -3$
(f) $A = 5$, $B = 2$, $C = 0.03$

(g)
$$A = 5$$
, $B = 2$, $C = 0.003$

$$()$$
 $N = 0$, $D = 2$, $0 = 0.00$

$$(g) A = 5, B = 2, C = 0.003$$

2. Draw the graph of y = A + B/x for the following values of A and B:

(a)
$$A = 2$$
, $B = 3$

(b)
$$A = -2$$
, $B = 3$

(c)
$$A = -2$$
, $B = -3$

(d)
$$A = 2, B = -3$$

(e)
$$A = 0, B = 3$$

3. Draw the graph of y = (A + Bx)/(C + Dx) for the following values of A, B, C, and D. Also draw the asymptotes in each case.

(a)
$$A = 2$$
, $B = -3$, $C = 3$, $D = 5$

(b)
$$A = -7$$
, $B = 5$, $C = 2$, $D = 7$

(c)
$$A = 3$$
, $B = -15$, $C = -4$, $D = 6$

- **4.** Draw the graph of $y = AB^x$ for the following values of A and B:
- (a) A = 2, B = 10

(b)
$$A = 2$$
, $B = \frac{1}{10}$

- (c) A = 2, B = 1
- (d) What is the graphical significance of the constant A in the equation $y = AB^{x}$?
- (e) If A is negative, what effect will it have on the graph?
- (f) Draw the graph for A = -3 and B = 5.
- **5.** Let A=1 in the equation $y=Ax^n$, and draw the graph of this function for each of the following values of n: 0, 1, 2, 3, 4, -1, -2, -3, -4. Draw all these curves on the same set of axes, and note the graphical significance as n increases or decreases. Draw a similar set of curves for A=2. What is the graphical significance of the constant A?
 - **6.** Draw the graph of $y = Ax^n$ for each of the following values of A and n:

(a)
$$A=2, n=\frac{1}{2}$$

(b)
$$A = 2$$
, $n = \frac{1}{3}$

(c)
$$A = 3$$
, $n = \frac{2}{3}$

(d)
$$A = 3$$
, $n = 3$.

7. (a) Rewrite the function $y = (2.3)^x$ in the form $y = 10^{7x}$.

HINT: By the use of a table of common logarithms, write 2.3 in the form 10'.

- (b) Draw the curve representing the function of part (a). Do you see any advantage in using the second form of the function?
- **8.** Rewrite the function $y = (3.6)^x$ in the form $y = e^{rx}$. Do you see any advantage in using the second form of the function?
- **9.** Compare the graphs of the curves, $y = 10^x$ and $y = \log x$, where it is understood that the logarithm is in the common system.
 - 10. Write the function, $x = \log y 2$, in the form $y = A \cdot 10^x$.

42. EQUATIONS OF GRAPHS THROUGH GIVEN POINTS

In Chapter IV we derived a formula for finding the equation of a straight line through two points. It is often more convenient to use the method illustrated by the following example.

Illustration 1: Let us find the equation of a straight line through the points (2,3) and (5,-1).

Assume that the straight line given by the equation y = A + Bx passes through these two points. Then the coordinates of each of the points must satisfy the equation, and we have, by substituting the coordinates,

$$3 = A + 2B \tag{1}$$

and

$$-1 = A + 5B. \tag{2}$$

After solving these equations for A and B, we obtain

$$A = \frac{17}{3} \quad \text{and} \quad B = -\frac{4}{3}.$$

When these values are substituted in the equation y = A + Bx and the result simplified, we have 4x + 3y = 17, which is the required equation.

Illustration 2: The same method may be used to find the equations of other types of curves through two points. For example, find the equation of a curve of type y = A + B/x through the two points (2, 3) and (5, -1).

After substituting, we have

$$3 = A + \frac{B}{2} \tag{1}$$

and

$$-1 = A + \frac{B}{5}. (2)$$

The solution of this system for A and B yields $B = \frac{40}{3}$ and $A = -\frac{11}{3}$.

Hence, the required equation is

$$y=-\frac{11}{3}+\frac{40}{3x}.$$

In general, this method may be used to find the equation of any curve through two or more points if the number of given points is equal to the number of arbitrary constants in the standard equation of the curve. Thus, to find the equation of a curve of the type,

$$y = A + Bx + Cx^2,$$

we must have three points given. If the number of points is less than the number of arbitrary constants in the formula assumed, an unlimited number of such functions may be obtained.

Illustration 3: Find a curve of the form $y = A + Bx + Cx^2$ passing through the points (1, 3) and (2, 7).

We have, then,

$$3 = A + B + C \tag{1}$$

and

$$7 = A + 2B + 4C. (2)$$

These two equations are not sufficient to determine A, B, and C. However, we may eliminate C from these two equations as follows:

$$12 = 4A + 4B + 4C, (1)$$

$$7 = A + 2B + 4C. (2)$$

Therefore,

$$5=3A+2B,$$

or

$$B=\frac{5-3A}{2}.$$

In a similar manner we may eliminate B from (1) and (2) as follows:

$$6 = 2A + 2B + 2C (1)$$

and

$$7 = A + 2B + 4C. (2)$$

Therefore,

$$-1=A-2C,$$

or

$$C=\frac{A+1}{2}.$$

Hence, the original equation may be written

$$y = A + \left(\frac{5-3A}{2}\right)x + \left(\frac{A+1}{2}\right)x^2.$$

We may now assign any value to A except A = -1, and thus, through the given points, an unlimited number of such parabolas may be determined.

Illustration 4: On the other hand, let the given points be (0,0), (1,1), and (1,7), apparently a sufficient number of points to determine A, B, and C of the formula

$$y = A + Bx + Cx^2.$$

We now have

$$0=A, (1)$$

$$1 = B + C, \tag{2}$$

$$7 = B + C. (3)$$

Equations (2) and (3) are inconsistent. Hence, we cannot determine a curve of the required form through the given points. Thus, we see that it is not always possible to find the equation of a given type through points chosen at random. Further illustrations will be found in some of the problems of the following exercises.

EXERCISES 26

By use of the method explained in the previous section, find the equations of the following curves:

- 1. Find the equation of a straight line through the points (-1, 3) and (2, -7).
- 2. Find the equation of a curve of the type y = A + B/x through the two points in Exercise 1. Draw the graph.
- 3. Find the equation of a curve of the type $y = AB^x$ through the points (-1, 10) and (3, 160).
- **4.** Find the equation of a curve of the type $y = Ax^n$ through the points (1, 5) and (2, 20). Draw the graph.
- 5. Find the equation of a curve of the type $y = A + Bx + Cx^2$ through the points (1, 0), (0, 0), and (3, 5). Draw the graph.
- 6. Attempt to find the equation of a curve of type $y = A + \frac{B}{x} + \frac{C}{x^2}$ through the points (1, 2), (1, 0), and (1, 5).

7. Given the points (1, 3) and (3, 0). Determine which of the following types of curves may be made to pass through these points, and find the equation of each type that is possible.

(a)
$$y = A + Bx$$

(b) $y = A + \frac{B}{x}$
(c) $y = A + Bx + Cx^2$
(d) $y = Ax^n$

8. Given the points (0,3) and (1,2). Can you find an equation of the type y = A + B/x through them? Explain. Can you find an equation of the type $y = Ax^n$ through them? Explain.

9. Find the equation of a curve of the type $y = AB^x$ through the points (-2, 10) and $(\frac{1}{2}, 1)$. Draw the curve.

10. Find the equation of a curve of the type $y = A + Bx + Cx^2$ through the points (-1, -7), (1, 3), and (6, 0). Draw the curve.

43. EXPERIMENTAL DATA ON A LINE

We shall now consider problems in which the points representing the experimental data are exactly on a straight line or approximately on a straight line.

If we graph the following data obtained in measuring the amount of heat h of a pound of steam at various temperatures θ °C, the graph of the data indicates that the points lie exactly on a straight line (note Figure 55). The fact that these points are all on the same straight line is quickly confirmed by noting that if (θ_1, h_1) , (θ_2, h_2) , (θ_3, h_3) denote any three points on the curve; it is always true that

$$\frac{h_3-h_2}{\theta_3-\theta_2}=\frac{h_2-h_1}{\theta_2-\theta_1}.$$

h	624.8	626.3	627.8	629.3	630.8	632.3	633.8	636.8	639.8
θ	60	65	70	75	80	85	90	100	110

Frg. 55

In order to find the proper linear relation between h and θ , we employ the formula (1) $h = A + B\theta$ and determine A and B from any two equations obtained by substituting corresponding values of h and θ from the

given table. Thus, we might take

$$629.3 = A + 75B \tag{2}$$

and
$$636.8 = A + 100B$$
. (3)

After solving these equations for A and B, we have A = 606.8 and B = 0.3. Hence, the required linear relation between h and θ is $h = 606.8 + 0.3\theta$.

Obviously this process is merely one of the methods of finding the equation of a straight line through two given points, a familiar problem.

In the above data all the points were exactly on a straight line. However, this may not always be the case, although the graphed data may indicate that the trend is essentially that of a straight line. In such a case it is evidently desirable to determine the equation of a straight line that will be approximately representative of the observed data.

If we plot the points corresponding to the pairs of values of x and y given in the following table, we find that they lie approximately on a straight line. To obtain an equation of a straight line that they will satisfy approximately, we may use a transparent straightedge and by trial draw a straight line that will appear to divide the points into two groups, so that half of them will be on each side of the line, as shown in Figure 56. Then, if we observe the coordinates of two points on the line, we can find the desired equation.

1											5.5
y	.4	.8	1.0	1.5	2.5	2.7	3.3	3.0	4.2	4.5	6.0

Fig. 56

From the figure we note that the points (0.2, 0) and (5.5, 6) appear to be on the line. After substituting these values in the equation y = A + Bx, we have

$$0 = A + 0.2B \tag{1}$$

and
$$6 = A + 5.5B$$
. (2)

The solution of this system yields A = -0.23, B = 1.13; so the required equation is

$$y = -0.23 + 1.13x. (3)$$

It is of interest to note how the observed data compares with the calculated data obtained from the resulting equation. These values are obtained by substituting the original values of x in Equation (3) and solving for y. The values are called y_c in the accompanying table; $y_c - y$ has also been calculated. If we add the negative values of $y_c - y$, we get -1.30, and the sum of the positive values gives 0.95, showing a numerical difference of only 0.35. This indicates that for many purposes the line is "sufficiently" representative of the given data.

x	y_c	$y_c - y$		
0.7	0.56	0.16		
0.7	0.56	-0.24		
1.0	0.90	-0.10		
1.6	1.58	0.08		
2.0	2.03	-0.47		
2.5	2.60	-0.10		
3.0	3.16	-0.14		
3.2	3.39	0.39		
3.8	4.06	-0.14		
4.5	4.82	0.32		
5.5	5.89	-0.11		

The method just given of "fitting a straight line" to the given data depends too much on whim to be satisfying to most scientists. Of course,

Fig. 57

any interpretation of "the line that best fits the data" must be arbitrary, but the line determined by the method of least squares is commonly accepted as furnishing quite a satisfactory solution to the problem. The theory underlying the method of least squares is too advanced to be treated

here. Suffice it to say, however, that a line so determined is such that the sum of the squares of the vertical discrepancies d_1 , d_2 , d_3 , and so on, between the given points and the proposed line, as indicated in Figure 57, must be a minimum.

The actual mechanical method of applying the principle of least squares in the case of a straight line will be explained by considering the particular data already treated above.

If corresponding values of x and y are substituted into the equation y = A + Bx, we obtain the following set of eleven equations:

$$A + 0.7B = 0.4,$$

 $A + 0.7B = 0.8,$
 $A + 1.0B = 1.0,$
 $A + 1.6B = 1.5,$
 $A + 2.0B = 2.5,$
 $A + 2.5B = 2.7,$
 $A + 3.0B = 3.3,$
 $A + 3.2B = 3.0,$
 $A + 3.8B = 4.2,$
 $A + 4.5B = 4.5,$
 $A + 5.5B = 6.0.$

The first normal equation is obtained by multiplying each equation by its respective coefficient of A and then adding all the left members and all the right members. Since the coefficient of A is 1 in each case, the first normal equation is merely the sum of the eleven equations; the result is

$$11A + 28.5B = 29.9. (1)$$

(2)

The second normal equation is obtained in the same manner after first multiplying each member of each equation by its respective coefficient of B. We obtain

The solution of the system of Equations (1) and (2) yields the desired values of A and B that are to be substituted into the equation y = A + Bx. The equation finally determined is

$$y = -0.8 + 1.08x$$
.

It is observed that this line approximates quite closely the one obtained by the rough method.

EXERCISES 27

Obtain a linear relationship satisfying the data, at least approximately, in each of the following exercises by both the first and the second method:

1. S is the weight of sodium nitrate dissolved in 100 gm of water at temperature $t^{\circ}C$. Find a law for S as a linear function of t.

S	69.3	72.9	80.2	87.5	94.7
t	-5	. 0	10	20	30

2. S is the specific heat of mercury at temperature $t^{\circ}C$. Find a law for S as a linear function of t.

t	75	88	100	120	130	
S	0.03258	0.03246	0.03235	0.03216	0.03207	

3. P is the pull required to lift a weight W by means of a differential pulley block. Find a law for P as a linear function of W.

W	145	230	273	315	358	400
P	20	30	35	40	45	50

4. The theoretical horsepower-hours per acre-foot of storage area of water for different heads is given by the following table. H is the head in feet and E is the energy in horsepower-hours. Find a law for E as a linear function of H.

H	5	10	20	35	50	75	100	150	200
E	6.88	13.75	27.50	48.12	68.75	103.12	137.50	206.25	275.00

5. The horsepower required by standard boring mills using one cutting tool of water-hardened steel at a cutting speed of about 20 fpm is found by experiment to be about as given in the following table. P is the horsepower required and R is the swing of the mill in inches. Find a law for P as a linear function of R.

P	5	7.4	9.7	12	14.4	18.7
R	30	40	50	60	70	80

6. In measuring the elongation E of a spring due to different forces F applied to it, the following observations were made in the laboratory. Find a law for E as a linear function of F.

F	100	200	300	400	500	
E	0.7	1.3	2.0	2.6	3.2	l

7. The following data show the relation between torque T and the armature current I in a shunt motor. Find a formula for T as a linear function of I.

I	5.5	12.5	33.5	42.5	48.7	61.0
T	3.15	36.8	126	167	194	246

44. FITTING A PARABOLA TO EMPIRICAL DATA

Much of the time a collection of points, obtained empirically, does not even suggest a straight line. Note the points in Figure 58, for example. Of course, even in such a case, it is possible to "fit a straight line to the data," but there would not be much correspondence between the linear function thus obtained and the data under consideration; in fact, the law would not have much value. It is much better to attempt to fit another type of curve to the data. The curves commonly employed were discussed in the first part of this chapter.

The parabola is used frequently in practice. In fact, the points of Figure 58 immediately suggest a parabola. The data for these points are given immediately above the figure.

\boldsymbol{x}	0	1	2	3	4	5
\boldsymbol{y}	8	3	2	5	12	23

Three points are sufficient to determine the constants in the equation

of the parabola when it is in the form $y = A + Bx + Cx^2$. If the six given points determine a perfect parabola, the remaining three points will satisfy the equation thus determined. Usually a given set of points does not determine a perfect parabola, and such a method as that of least squares must be employed. This time, however, let us see what parabola in the form $y = A + Bx + Cx^2$ is determined by three of the points.

The coordinates of any three points given in the table may be substituted in the equation $y = A + Bx + Cx^2$, and A, B, and C may then be determined.

Thus.

for
$$x = 0$$
, $y = 8$, we have $8 = A$; (1)

for
$$x = 3$$
, $y = 5$, we have $5 = A + 3B + 9C$; (2)

for
$$x = 5$$
, $y = 23$, we have $23 = A + 5B + 25C$. (3)

Since A = 8, Equations (2) and (3) may be written

$$3B + 9C = -3 \tag{4}$$

and

$$5B + 25C = 15. (5)$$

The solution of this system yields C = 2 and B = -7.

Hence, the equation of the parabola through these three points is

$$y=8-7x+2x^2.$$

When we test the other three values in the table, we find that they also satisfy the equation. Thus, all six points were exactly on a parabola of the desired form.

When we change the data only slightly as in the following table, the trend still suggests a parabola, but no equation of the form $y = A + Bx + Cx^2$ can be found which the coordinates of all the points will satisfy. Thus, we shall apply the method of least squares to obtain the parabola of "best fit."

x	0.5	1	2	3	4	5
y	6	3	2.5	4.5	` 12	23

First, as in our previous study of least squares, we substitute each pair of coordinates in the assumed equation of the form $A + Bx + Cx^2 = y$. We obtain the following set of six equations:

$$A + 0.5B + 0.25C = 6,$$

 $A + B + C = 3,$
 $A + 2B + 4C = 2.5,$
 $A + 3B + 9C = 4.5,$
 $A + 4B + 16C = 12,$
 $A + 5B + 25C = 23.$

As before, the first normal equation is found by multiplying the members of each equation by the coefficient of A and adding the resulting equations; the second normal equation is found by multiplying the members of each equation by the coefficient of B and adding the resulting equations; and the third normal equation is found by multiplying the members of each equation by the coefficient of C and adding the resulting equations. The three normal equations, thus obtained, form a system in A, B, and C. After solving for these three unknowns, the desired equation $y = A + Bx + Cx^2$ is determined. It is suggested that the student complete the illustration as an exercise.

EXERCISES 28

- 1. Fit a parabola of the form $y = A + Bx + Cx^2$ to the data (0, 3), (2, -1), (4, 2).
- 2. Determine the constants in the equation $y = A + Bx + Cx^2$ so that the coordinates of the following points will satisfy it: (1, 2.2), (3, 6.7), (5, 4.3).
- 3. Fit a curve of the form $y = A + Bx + Cx^2$ to the following data: (-1, 0), (0, 1), (1, 6), (2, 15), (3, 28).
- **4.** Find the parabola $y = A + Bx + Cx^2$ that fits the following data the best: (1,0), (2,2), (3,2), (4,-1).
- 5. By the method of least squares, fit a curve of the form $y = A + Bx + Cx^2$ to the coordinates: (-1, 2), (1, 1), (3, 1), (5, 3), (6, 5).
- 6. The following data were taken from a test on a 500-kw Curtis steam turbine:

Approx. load	Steam used per hour lb per kw
0.252	25.9
0.500	22.4
0.785	20.9
1.023	20.5
1.227	20.9
	0.252 0.500 0.785 1.023

The values in the second column of the above table were found by dividing each of the values in the first column by 500. Find the equation of a parabola that will be satisfied approximately by these data, using values in the second column as values of x and number of pounds of steam used per kilowatt as values of y.

7. The following data were taken from a test made on a 500-hp Rateau turbine:

Electrical hp at brushes	Approx. load	Steam consumption, lb per electrical hp-hr at brushes		
135	0.27	21.3		
259	0.52	18.0		
525	1.05	15.8		
627	1.25	15.39		

Using the approximate loads as values of x and the steam consumption as values of y, find the equation of a parabolic curve that will express approximately the relation between x and y.

45. FITTING A CURVE OF THE FORM $y = A + \frac{B}{x}$

For a set of values (x_1, y_1) , (x_2, y_2) , \cdots , (x_n, y_n) to satisfy an equation of the form

$$y=A+\frac{B}{x},$$

the points determined by the set of coordinates $(u_1, y_1), \dots, (u_n, y_n)$, where $u_i = 1/x_i$, $i = 1, 2, \dots, n$, should be on a straight line, for the substitution of u for 1/x results in the linear equation

$$y = A + Bu$$
.

Hence, if the graph of (u_1, y_1) , \cdots , (u_n, y_n) , where $u_i = 1/x_i$, i = 1, $2, \dots, n$, is practically linear, we may find the equation of the straight line that best fits the data involving u and y by either of the methods previously discussed and thus have an equation of the form y = A + Bu, where A and B are now determined. After substituting 1/x for u, we have the desired equation

$$y = A + \frac{B}{x}$$

in terms of x and y.

Illustration: Fit some convenient curve to the following data:

x	1/3	1/2	1	2	3	4	5
y	5	4	3	2.5	2.33	2.25	2.20

When these coordinates are graphed, they have the trend indicated by the curve of Figure 59. The curve of Figure 59 resembles a hyperbola.

Let us, then, adjust the given data as shown in the following table:

u = 1/x	3	2	1	$\frac{1}{2}$	1/3	1/4	1/5
y	5	4	3	2.5	2.33		2.20

Evidently these points lie exactly on a straight line, as shown in Figure 60; this fact is readily confirmed. Hence, we have by substituting, for example, u = 2, y = 4, and $u = \frac{1}{4}$, y = 2.25 in the equation y = A + Bu, the system of equations

$$4 = A + 2B$$
$$2.25 = A + \frac{B}{4}.$$

Fig. 60

The solution of this system yields A = 2,

B = 1, and we have the linear relation

$$y=2+u$$
.

Hence, the required function $y = 2 + \frac{1}{x}$ is satisfied by all the given data.

If the (u, y) coordinates had been located only approximately upon a straight line, but if a linear relation between them seems to provide a generally satisfactory law, the equation y = A + Bu may be obtained by the method of selected points or that of least squares.

EXERCISES 29

- 1. Determine a curve of the form y = A + B/x that passes through the points (2, 3) and (5, 8).
- 2. What hyperbola of the form y = A + B/x passes through the points (-1, -1), (1, 5), and (3, 1)?
 - **3.** Fit some convenient curve to the points (1, 1), (2, -1), (4, -2), (8, -2.5).
 - 4. Fit a curve to the points (1, 8.8), (3, 5.1), (6. 3.9), (8, 3.8), (10, 3.6).
- 5. Determine y as a function of x that appears to be compatible with the following data:

x	1	3	5	10	15	20	30
y	7.7	2.7	1.7	1.0	0.8	0.6	0.5

6. A relation between x and y is indicated by the following pairs of values. Find an appropriate formula.

x	1.	5,	10	20	30
y	73.7	62.7	61.4	60.7	60.4

7. The following data were obtained experimentally by measuring the relation between the voltage v and current i in a circuit containing a copper carbon arc of 1 mm length in an illuminating-gas atmosphere with a magnetic field. Find the formula for v as a function of i.

	v, volts	49.0	39.8	30.0	22.0	20.8	18.0	16.3
ľ	i, amperes	1.3	1.6	2.0	2.65	3.0	4.0	5.0

46. FITTING A CURVE OF THE FORM $y = A \cdot B^x$, B > 0

For a set of values $(x_1, y_1), \dots, (x_n, y_n)$ to satisfy an equation of the form

$$y = A \cdot B^x, \quad B > 0,$$

the graph determined by $(x_1, v_1), \dots, (x_n, v_n)$, where $v_i = \log y_i$, i = 1, $2, 3, \dots, n$, should be linear. This follows from the fact that

$$\log y = \log A + (\log B)x.$$

So, if $\log y$ is denoted by v, and if the constant $\log A$ is designated by A_1 and $\log B$ by B_1 , we have the linear function $v = A_1 + B_1 x$.

As a result, if the graph of $(x_1, v_1), \dots, (x_n, v_n)$, where $v_i = \log y_i$, $i = 1, 2, \dots, n$, is practically linear, we may find the best line for the relation between x and v, by either of the methods already discussed and then have an equation of the form

$$v = A_1 + B_1 x.$$

Since $A_1 = \log A$ and $B_1 = \log B$, A and B may now be determined, and we have a satisfactory equation of the form

$$y = A \cdot B^x, \qquad B > 0,$$

for the relation between x and y.

Illustration: Find the functional relation between x and y for the following data:

<i>x</i> .	0	1	2	3	4	5	6
y	3	6	12	24	48	96	192

The graph sketched through the points determined by the data is displayed in Figure 61, and it shows some resemblance to the exponential function $y = A \cdot B^z$, where B > 1.

To examine the situation more carefully, let us study the behavior of the points determined by the data that follows:

x -	0	1	2	3	4	5	6
$v = \log y$	0.477	0.778	1.079	1.380	1.681	1.982	2.283

It is quickly confirmed that these points lie on the straight line that appears in Figure 62. Hence, we have confirmed the fact that the function for the given data must be of the form $y = A \cdot B^s$.

The equation $v = A_1 + B_1 x$ of the straight line in Figure 62 is found to be v = 0.477 + 0.301x; that is, $A_1 = \log A = 0.477$ and $B_1 = \log B = 0.301$.

Hence, B = 2 and A = 3; so the required function is $y = 3(2^z)$.

47. SEMILOGARITHMIC PAPER

In testing a function of the type

$$y = A \cdot B^{s}$$

to determine whether it is satisfied by the given data, the substitution $v = \log y$ requires the looking up of the logarithms corresponding to the values of y. Note the illustration of the previous section. In order to avoid the necessity of looking up logarithms and preparing the data of the second table, special paper for graphing has been devised (see Figure 63). This special paper, called *semilogarithmic paper*, is constructed by laying off on the horizontal scale the actual values of x and on the vertical scale the logarithms of the values of y.

The paper of Figure 63 is divided into four cycles, all marked from 1 to 10. We may choose any one of these 1's as any multiple of 10, and mark the other points accordingly. Thus, the first 1 may be called 0.1; and the next 1 will then be 1; the next 1 will be 10; and so on. In each cycle the number designations, such as 1, 2, 3, 4, really indicate the corresponding logarithms of these numbers on the vertical scale. In Figure 63 we have graphed the original data of the illustration in Section 46, and we have obtained a straight line, as expected. Thus, we have avoided the looking up of logarithms.

From Figure 63 we may note that the y intercept equals the A of the

function $A \cdot B^x$. The value of B may then be found by substituting from the table a pair of corresponding values of x and y in the equation $y = A \cdot B^x$, where A is now known.

Of course, once it is known that the given data satisfy a function of the exponential form, A and B may be found by several methods.

By substituting two pairs of corresponding values of x and y, such as (x_1, y_1) and (x_2, y_2) , in $y = A \cdot B^x$, we obtain the system of equations

$$y_1 = A \cdot B^{z_1}, \tag{1}$$

and

$$y_2 = A \cdot B^{z_2}. \tag{2}$$

The division of equals by equals yields

$$\frac{y_1}{y_2}=B^{z_1-z_2}$$

Hence,

$$\log B = \frac{\log y_1 - \log y_2}{x_1 - x_2},$$

from which B is found. The value of A may then be found from either Equation (1) or (2) above.

Quite often the points corresponding to (x, v) may not lie exactly on a straight line but sufficiently near a straight line for practical purposes. By the method of least squares or some other method, we may determine a line for this set of points and then find A and B as above.

EXERCISES 30

- 1. Determine a curve of the form $y = A \cdot B^x$ that passes through the points (0,3), (0.5,6), (1.5,24).
- 2. If x denotes the number of a term of a certain geometric progression, and if y is the value of that term, show that the pairs of values thus obtained satisfy a function of the type $y = A \cdot B^x$.
- 3. The number N of bacteria in a culture t hr after they were first counted is shown in the following table. Find a formula that will express approximately the value of N as a function of t.

t	0	1	2	3	4	5	6	7
N	100	165	272	450	742	1222	2010	3305

4. The area A of a healing wound decreased in size, after t days, as shown in the following table. Find a formula that will express approximately the value of A as a function of t.

	t	0	2	4	6	8	10	12
T	A	6.2	4.8	3.4	2.6	1.8	1.3	1.0

5. The temperature T possessed by a cooling body after t min is shown in the following table. Find the formula for T in terms of t.

t	0	5	10	15	20	30	40	60
T	18	16.5	15.3	14.1	13.2	12.0	10.5	8

6. To obtain core loss in an induction motor, the input (in watts) and the voltage are measured, and the core loss is computed from the results. The following table gives the results of such a test on a 1-hp 550-v three-phase motor. Determine the equation of the curve which gives approximately the relation between voltage v and watts w.

v (volts)	280	360	395	495	545	595	640	710	740
w (watts)	42	60	64	97	104	125	140	164	190

7. The production of petroleum in Argentina from 1919 to 1926 in thousands of barrels was as shown in the table. Find a formula that expresses the relation of number of barrels to years.

Year	1919	1920	1921	1922	1923	1924	1925	1926
Number of barrels, in thousands	1331	1651	2036	2866	3400	4639	5997	6500

8. The following table gives the production of rayon products in the United States. Plot these data, and note that there was an increase each year from 1912 to 1916 and also from 1918 to 1926. Find an approximate formula for the amount P, in terms of t (years), for each of these periods.

Year	Pounds	Year	Pounds
1912	1,100,000	1920	10,250,000
1913	1,560,000	1921	15,000,000
1914	2,400,000	1922	23,500,000
1915	4,100,000	1923	35,400,000
1916	5,750,000	1924	37,719,600
1917	6,700,000	1925	51,792,000
1918	5,800,000	1926	65,750,000
1919	8,180,000		

48. FITTING A CURVE OF THE FORM $y = Ax^n$

For a set of values $(x_1, y_1), \dots, (x_k, y_k)$ to satisfy an equation of the form

$$y = Ax^n,$$

the graph determined by $(u_1, v_1), \dots, (u_k, v_k)$, where $u_i = \log x_i$, i = 1, $2, \dots, k$, and $v_i = \log y_i$, $i = 1, 2, \dots, k$, should be linear. This follows from the fact that

$$\log y = \log A + n \log x.$$

So, if the constant $\log A$ is designated by A_1 and $\log y$ is replaced by σ and $\log x$ by u, we have the linear equation

$$v = A_1 + nu$$
.

If the graph of $(u_1, v_1), \dots, (u_k, v_k)$, where $u_i = \log x_i$, $i = 1, 2, \dots, k$, and $v_i = \log y_i$, $i = 1, 2, \dots, k$, is practically linear, we may find the best line for the relation between u and v, by either of the methods previously discussed, thereby obtaining an equation of the form

$$v=A_1+nu.$$

It is then a simple step to obtain the desired function

$$u = Ax^n$$
.

Illustration: Examine the possibility of fitting an equation of the form $y = Ax^n$, to the following data:

x	20	40	60	80	100
y	28.69	87	166.6	263.7	376.6

Recalling the relations

$$\log y = v$$
, and $\log x = u$,

we obtain the following table of values:

u	1.301	1.602	1.778	1.903	2
v	1.458	1.939	2.222	2.421	2.576

The points corresponding to this table of values are essentially on a line, as shown in Figure 64.

An equation for the straight line in Figure 64 is determined to be

$$v = -0.623 + 1.6u$$
.

So, in the equation $y = Ax^n$, n, which is the coefficient of u, is 1.6. Moreover,

$$A_1 = \log A = -0.623$$
, or $0.377 - 1$.

Hence,

$$A = 0.238$$
.

Consequently, the required function is

$$y = 0.238x^{1.5}$$
.

49. LOGARITHMIC PAPER

In attempting to fit the function $y = Ax^n$ to the given data, the substitution $u = \log x$ and $v = \log y$ required the looking up of two sets of

logarithms corresponding to the values of x and y. In order to avoid the necessity of looking up these logarithms and preparing the data of the second table, another kind of special paper has been devised, called logarithmic paper. In this paper, on both the horizontal and vertical scales, the logarithms of x and y are measured and designated as on the vertical scale of the semilogarithmic paper. The name "semilogarithmic"

refers to the fact that only one scale is logarithmic, whereas in this second type of paper both scales are logarithmic. The graph of the original data of the illustration in 48 is shown on logarithmic paper in Figure 65. It is a straight line, as one would anticipate.

By substituting from the first table in Section 48, two pairs of corresponding values of x and y in $y = Ax^n$, A and n may be found.

Thus, after substituting (20, 28.69) and (60, 166.6), we have

$$28.69 = A(20)^n \tag{1}$$

and

$$166.6 = A(60)^n. (2)$$

By dividing the members of Equation (2) by the corresponding members of Equation (1), we have

$$\frac{166.6}{28.69} = \frac{(60)^n}{(20)^n} = (3)^n.$$

Consequently, after taking the logarithm of each member, there results

$$\log 166.6 - \log 28.69 = n \log 3,$$

$$n = \frac{\log 166.6 - \log 28.69}{\log 3}.$$

The completion of the computation is left as an exercise.

The value of A may be found by substituting this value of n in either Equation (1) or (2).

EXERCISES 31

1. The distances of the planets from the sun and their periods of revolution are given below. Determine a formula for T as a function of D. (Note: the distance from the earth to the sun is taken as the unit of distance.)

	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune
D (distance)	0.387	0.723	1.00	1.52	5.20	9.54	19.2	30.1
T (years)	0.24	0.615	1.00	1.88	11.9	29.5	84	165

2. The following data show the relation between the voltage v and the alternating current i flowing across a copper-carbon arc in air. Find the formula for v as a function of i.

v	36	32.5	30	28	25	23.2	20.1	19.2
i	1.2	1.4	2.0	2.5	3.5	4.6	7.0	9.5

3. The following data were obtained under the same conditions as in Exercise 2, except that a shorter arc was used. Find the formula for v as a function of i.

-	v	46	40.8	37	32.8	30	26.8	23.2
	i	1.1	1.55	2.05	3.0	4.05	6.0	9.0

4. In a test to determine the impedance of a 1-hp 550-v three-phase motor, the following values of watts input and volts between terminals were observed. Find a formula expressing w as a function of v.

w	50	120	300	550	1150	1360	1860
v	60	98	150	200	290	320	370

50. FITTING A CURVE OF THE TYPE $y = A + Bx + Cx^2$

For a set of values $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ to satisfy an equation of the form

$$y = A + Bx + Cx^2,$$

the graph satisfied by $(u_1, v_1), \dots, (u_n, v_n)$, where

$$u_i = x_i + x', \quad v_i = \frac{y_i - y'}{x_i - x'}, \quad i = 1, 2, 3, \dots, n,$$

and (x', y') is a point on the curve $y = A + Bx + Cx^2$, should be linear. This follows from the fact that the substitution of u for x + x' and of v for $\frac{y - y'}{x - x'}$ results in a linear equation in u and v. This is easily demonstrated. If we take

$$y = A + Bx + Cx^2,$$

$$y' = A + Bx' + C(x')^2.$$

then

since (x', y') is on the curve.

Hence,

$$y - y' = B(x - x') + C[x^2 - (x')^2],$$

 $\frac{y - y'}{x - x'} = B + C(x + x').$

 \mathbf{or}

Consequently, after making the substitutions already indicated for u and v, we have

$$v = B + Cu$$
.

If the graph of $(u_1, v_1), \dots, (u_n, v_n)$ is approximately linear, we may find the equation of the best line in u and v. Then we know the desired values of B and C. Since (x', y') is on the curve, we may obtain A from the equation

$$y' = A + Bx' + C(x')^2,$$

and hence all the constants are determined. There is, however, a lack of mathematical precision in this method, inasmuch as it requires an element of guesswork to determine (x', y'). To determine a choice for (x', y'), it is advisable to graph the given values, and draw a freehand curve that

fits the values more or less closely. Any point that lies on this curve and is within the range of the given values will be sufficiently accurate for the test.

Illustration: Fit a curve to the following data:

x	0	0.5	1.0	1.5	2.0	3.0	3.5	4
y	1	1.7	2.0	1.4	-1.0	-8.0	-15.0	-19.0

If the points of the tabulated data are graphed, they seem to lie on a curve of the form

$$y = A + Bx + Cx^2.$$

A sketch appears as Figure 66.

We first make our selection of the point (x', y') and tabulate the data for u and v. Let us choose x' = 1 and y' = 2. We then construct the following table:

x	y	u=x+x'	y - y'	x-x'	$v = \frac{y - y'}{x - x'}$
0	1.0	1.0	-1.0	-1.0	1.0
0.5	1.7	1.5	-0.3	-0.5	0.6
1.0	2.0	2.0	0	0	
1.5	1.4	2.5	-0.6	0.5	-1.2
2.0	-1.0	8.0	-3.0	1.0	-3.0
3.0	-8.0	4.0	-10.0	2.0	-5.0
3.5	-15.0	4.5	-17.0	2.5	-6.8
4.0	-19.0	5.0	-21.0	3.0	-7.0

The graph in u and v is practically linear, as shown in Figure 67, so the

graph in x and y may be expressed to a close degree of approximation by $y = A + Bx + Cx^2$. From Figure 67 we note that the points (3, -3) and (1.5, 0.4) are approximately on the line. Hence, after substituting these values in the equation v = B + Cu, we obtain

$$-3 = B + 3C$$

and

$$0.4 = B + 1.5C,$$

from which C = -2.3 and B = 3.9.

To find A we substitute x' = 1 and y' = 2 in the equation,

$$y = A + Bx + Cx^2,$$

thereby giving

$$2 = A + 3.9(1) - 2.3(1)^2$$

or

Hence, the desired relation is

$$y = 0.4 + 3.9x - 2.3x^2$$

51. FITTING A CURVE OF THE TYPE $y = \frac{A + Bx}{C + Dx}$

A = 0.4.

For a set of values $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ to satisfy an equation of the form

$$y = \frac{A + Bx}{C + Dx},$$

the graph satisfied by $(v_1, y_1), \dots, (v_n, y_n)$, where

$$v_i = \frac{y_i - y'}{v_i - x'}, \qquad i = 1, 2, 3, \cdots, n,$$

and where (x', y') is a point on the curve $y = \frac{A + Bx}{C + Dx}$, should be linear.

The derivation of this fact is as follows:

The original equation

$$y = \frac{A + Bx}{C + Dx}$$

may be written

$$y = \frac{\frac{A}{D} + \frac{B}{D}x}{\frac{C}{D} + x}$$

OL

$$y=\frac{A_1+B_1x}{C_1+x},$$

which becomes

$$C_1 y + x y = A_1 + B_1 x. (1)$$

Then, if (x', y') is a point on the curve, it follows that

$$C_1y' + x'y' = A_1 + B_1x'. (2)$$

1

After subtracting the members of (2) from the corresponding members of (1), we obtain the following equalities:

$$C_{1}(y - y') + xy - x'y' = B_{1}(x - x'),$$

$$C_{1}(y - y') + xy - yx' + yx' - x'y' = B_{1}(x - x'),$$

$$C_{1}(y - y') + y(x - x') + x'(y - y') = B_{1}(x - x'),$$

$$\frac{y - y'}{x - x'} = \frac{B_{1} - y}{C_{1} + x'}.$$
(3)

If we let

$$v = \frac{y - y'}{x - x'} \quad \text{and} \quad K = C_1 + x', \tag{4}$$

then

$$v = \frac{B_1 - y}{K} \quad \text{or} \quad y = B_1 - Kv, \tag{5}$$

which is linear in v and y.

After determining the linear relation in v and y, the coefficients B_1 and K are known. Then C_1 may be found from (4) and A_1 from (2). These values substituted in (1) give the desired relation between x and y.

Illustration: Let us find the functional relation between x and y for the following data:

1	x	0	1	2	3	4	5	6
ľ	\boldsymbol{y}	4.00	2.43	1.56	1.00	0.62	0.33	0.12

The points representing these values have been located in Figure 68, and a curve indicating the trend of the data has been sketched.

Frg. 68

From the graph one might suppose the points to lie on a curve either of type $y = AB^x$ or of type y $=\frac{A+Bx}{C+Dx}$. Plotting the data on semilogarithmic paper shows that the curve is not of type $y = AB^{x}$. Hence, we shall try the test for y $=\frac{A+Bx}{C+Dx}$

Let $v = \frac{y - y'}{x - x'}$. Assume the point (0, 4) as the point (x', y'). Then calculate the values of the following table:

x	y	x-x'	y-y'	v
0	4.00	0	0	
1	2.43	1	-1.57	-1.57
2	1.56	2	-2.44	-1.22
3	1.00	3	-3	-1
4	0.62	4	-3.38	-0.84
5	0.33	5	-3.67	-0.73
6	0.12	6	-3.88	-0.65

Since the points of coordinates (v, y) are essentially on a straight line, as shown in Figure 69, the original points must lie on a curve of type $y = \frac{A + Bx}{C + Dx}$.

After substituting points (-1.57, 2.43) and (-0.73, 0.33) in Equation (5), we have

$$2.43 = B_1 + 1.57K$$

and

$$0.33 = B_1 + 0.73K.$$

Fig. 69

The solution of this system yields K = 2.5 and $B_1 = -1.5$. From Equation (4),

$$C_1 = 2.5 - 0 = 2.5,$$

and from Equation (2),

$$2.5(4) + (0)(4) = A_1 + (-1.5)(0).$$

Therefore, $A_1 = 10$. Hence, by employing Equation (1), the required equation is

$$y=\frac{10-1.5x}{2.5+x}.$$

EXERCISES 32

1. The temperature T of water as it cooled in a calorimeter was observed at frequent time intervals t, and the results were recorded in the following table:

t	0	5	10	15	20	25	30	35	40	45
T	79	68.4	61.5	56.1	52.1	48.7	45.9	43.5	41.2	39.6

Show that these data satisfy approximately an equation of type $T = \frac{A + Bt}{C + Dt}$.

Find the equation that is consistent with the given data, obtaining the values of A, B, C, and D correct to three significant figures.

2. The densities d of cerous chloride solution at 25°, in terms of molality m, are given in the following table:

m	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5
d	0.99707	1.1079	1.2124	1.3107	1.4029	1.4902	1.5726	1.6506

Find a formula for d in terms of m, obtaining values of the constants accurate to five significant figures.

MISCELLANEOUS EXERCISES 33

1. The following data show the relation of length L and the corresponding weight W of the trout in Bearcamp River:

<i>L</i> , cm	10	12.6	16	18.6	20.5	21.6	22.7
W, gr	10	20	40	60	80	100	120

Find a formula expressing the weight as a function of the length for the trout in this river.

2. In an experiment to study the deflection d of the needle of a ballistic galvanometer caused by varying charges of electricity C through a capacitor, the following data were obtained:

C, μf										
d, cm	10.50	9.51	8.50	7.50	6.34	5.34	4.31	3.22	2.14	1.06

Find a formula for d in terms of C.

3. The following table shows the horsepower H transmitted per inch of width of a double leather belt running at various speeds S:

H	0.6	1.2	1.75	2.6	2.8	3.2	3.4	3.38	3.15	2.7	2.4
S, fpm	500	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500

Determine a formula for H as a function of S.

4. The following table shows the relation between the unit cost of production of a certain manufactured article and the number of pieces per lot:

C, cost per piece in dollars	5	3	1.80	1.40	1.20	1.13	1.08
n, number of pieces manufactured	1	2	5	10	20	30	50

Find a formula for C in terms of n.

5. Gas was allowed to expand adiabatically in a cylinder and the following corresponding values of pressure p and volume v were measured:

p, lb	1.10	0.70	0.46	0.31	0.21
v, cu ft	0.47	0.71	1.10	1.65	2.29

Find p as a function of v.

11

Parametric Equations

52. PARAMETRIC REPRESENTATION

The coordinates x and y of a point on a curve are often related through the medium of a third variable, or parameter, by expressing both x and y as functions of the parameter. If t is the parameter, and

$$\begin{cases} x = f(t) \\ y = \phi(t) \end{cases}, \tag{1}$$

each choice of t within its permissible range gives a value of x and a value of y, it being assumed that the functions exist for some range of t. The points (x, y) determined in this manner constitute a curve, and Equations (1) are called the parametric equations of the curve.

Such parametric equations may arise in many ways. For example, the parametric equations for the circle of radius a and center at (0, 0) may be found by reference to Figure 70 as follows:

If we let the angle XOP be t, and choose t as our parameter, we have the two equations

$$x = a\cos t \tag{2}$$

and
$$y = a \sin t$$
. (3)

By giving t various values from 0 to

 2π , we may find the corresponding values for x and y and thus graph the curve.

In the case of the circle, it is not necessary, nor particularly desirable for most purposes, to use parametric representation. On the other hand, let us now derive the parametric equations of the curve traced by a point on the circumference of a circle that rolls upon a straight line. This curve is called a *cycloid* and is shown in Figure 71.

Let the circle C roll upon the straight line OX. We wish to find the

(4)

parametric equations of the curve traced by the point P. Let a be the radius of the rolling circle, and assume that the circle has rolled from its position tangent to OX at O to the position tangent to OX at A, and that

Fig. 71

in so doing the point P has traced the arc of the cycloid OP. Then, arc AP = at, where t is measured in radians, but arc AP = OA = at. It follows that

$$x = OD = OA - DA = at - BC = at - a \cos(t - \pi/2).$$

But, since $\cos (-\alpha) = \cos \alpha$, we have

$$x = at - a \cos (\pi/2 - t),$$

$$x = at - a \sin t = a(t - \sin t).$$

or Also

$$y = DP = DB + BP = a + a \sin (t - \pi/2).$$

But, since $\sin (-\alpha) = -\sin \alpha$, we have

$$y = a - a \sin (\pi/2 - t)$$

or

$$y = a - a \cos t = a(1 - \cos t). \tag{5}$$

Equations (4) and (5) are the required parametric equations for this curve, the cycloid.

In this case it would have been quite inconvenient to derive the Cartesian equation directly. Moreover, the properties of the curve are much easier to study by reference to its parametric representation.

The actual mechanics of graphing a pair of parametric equations is illustrated by the following example.

Illustration: Graph the parametric equations

$$\begin{cases}
x = 2t \\
y = 3t - 1
\end{cases}.$$

In the following table the values of t are chosen arbitrarily, after which the corresponding values of x and y are determined. Of course, only the

x and y values are used in locating points on the curve, which is a straight line (note Figure 72).

t	-2	-1	0	1	2	3	4
x	-4	-2	0	2	4	6	8
y	-7	-4	-1	2	5	8	11

53. ELIMINATION OF THE PARAMETER

Frequently it is possible to eliminate the parameter from two parametric equations, thereby obtaining a single equation in x and y. For example, if we square each member of Equations (2) and (3), we have

$$x^2 = a^2 \cos^2 t$$
 and $y^2 = a^2 \sin^2 t$.

After adding the right and left members, we obtain

$$x^{2} + y^{2} = a^{2}(\cos^{2}t + \sin^{2}t)$$

 $x^{2} + y^{2} = a^{2}$.

or $x^2 + y^2 = a^2.$

This is the equation of a circle, as one would anticipate. We may eliminate the parameter t from Equations (4) and (5) as follows: From Equation (5) we have

$$\cos t = \frac{a-y}{a}$$
 or $t = \cos^{-1}\frac{a-y}{a}$,

whence

$$\sin t = \sqrt{1 - \left(\frac{a-y}{a}\right)^2} = \frac{\sqrt{2ay - y^2}}{a}.$$

After substituting the values for t and $\sin t$ in Equation (4), we have the Cartesian equation.

$$x = a \left(\cos^{-1} \frac{a-y}{a} - \frac{\sqrt{2ay-y^2}}{a} \right).$$

The student must not obtain the impression that the graph of a pair of parametric equations is necessarily identical with the graph of the equation resulting after the elimination of the parameter. The graph of the equation in x and y, after the parameter has been eliminated, will contain the graph of the parametric equations, but it may also contain additional points. This fact may be illustrated by considering the parametric equations

$$x = \sin t$$

$$y = \frac{1}{2} - \frac{1}{2} \cos 2t$$

Since $\cos 2t = 1 - 2 \sin^2 t$, the parameter is readily eliminated as follows:

$$y = \frac{1}{2} - \frac{1}{2}\cos 2t = \frac{1}{2} - \frac{1}{2}(1 - 2\sin^2 t)$$
$$= \sin^2 t = x^2.$$

The graph of $y = x^2$ is a parabola with its vertex at the origin: obviously, such points as (2, 4), (-2, 4), (3, 9), (-3, 9), and so on, are on the curve. In examining the original parametric equation, however, it is observed that x and y are narrowly restricted in magnitude; for instance, $x = \sin t$ is restricted to the range $-1 \le x \le 1$. In fact, the graph of the parametric equations is merely the portion of the parabola in the neighborhood of the origin from (-1,-1) to (1, 1). The student should actually construct these graphs as an exercise.

EXERCISES 34

1. Draw the graphs of the following pairs of parametric equations:

- (a) x = 2t, y = 4t 1

- (c) $x = \cos t$, $y = \sin t$
- (b) $x = t^2$, y = 2t + 1(d) $x = \sin t$, $y = \cos t$
- (e) $x = \cos^2 t$, $y = \sin^2 t$. (This curve is known as a hypocycloid of four
- (f) $x = 4 \cos t$, $y = 2 \sin t$.
- 2. Eliminate t from the parametric equations in Exercise 1(f), and show that the resulting equation is that of an ellipse.
 - 3. Graph the curve whose parametric equations are

$$x = \frac{3t}{1+t^2}, \quad y = \frac{3t^2}{1+t^2}.$$

This curve is known as the folium of Descartes.

4. Graph the curve $x = 10(t^3 - t)$; $y = 10t(t^3 - t)$. Find the Cartesian equation.

5. Show that the graph of $x = 2e^t$, $y = 4e^t - 1$ is only part of a straight line. What is the equation of the entire line in Cartesian coordinates?

6. Graph the curve $x = a \sin \theta$; $y = b \cos^3 \theta$. Find the Cartesian equation.

7. Graph the curve $x = a \tan \theta$; $y = a \cos^2 \theta$.

8. If a projectile starts with an initial velocity v_o in a direction which makes an angle α with the x axis, its position at any time t is given by the equations $x = v_o t \cos \alpha$, $y = v_o t \sin \alpha - \frac{1}{2}gt^2$. Find the Cartesian equation of the path of the projectile. What kind of a curve is it?

9. A gun stands on a cliff 1000 ft above the water. From the equations of Exercise 8, what elevation must be given to the gun so that a projectile may strike a point in the water 2 miles away from the base of the cliff? Given $v_o = 2000$ fps, g = 32.3

10. From the equations of Exercise 8, what elevation must be given to a gun to obtain a maximum range on a horizontal line passing through the muzzle?

11. Draw the graph of each of the following pairs of parametric equations, and find the corresponding Cartesian equation in (x, y) for each pair of parametric equations. In each case call attention to any difference between the graph of the parametric equations and that of its corresponding Cartesian equation.

(a)
$$x = t^2$$
; $y = \frac{12}{t^2}$

(c)
$$x = t^2$$
; $y = 4t - t^3$

(e)
$$x = \tan^2 t$$
; $y = \sec t$

(g)
$$x = 2(1 + \cos t)$$
; $y = 5 \cos t$

(b)
$$x = t - \frac{1}{t}$$
; $y = t + \frac{1}{t}$

(d)
$$x = \sin t$$
; $y = \cos 2t$

$$(f) \ x = 2t^2; \ y = 6t^2 + 7$$

$$(h) x = \sin t; \quad y = 1 - \cos 2t$$

54. INVOLUTE OF A CIRCLE

If a string kept taut is unwound from the circumference of a circle, the end describes a curve called the *involute* of a circle (note Figure 73).

To find the parametric equations of the involute of a circle, let O be the center of the circle and AP a portion of the involute traced by the point P. Let $\angle AOB = \phi$, $\angle POB = t$, and the radius of the circle = a. Then are AB = BP.

But arc $AB = a\phi$, if ϕ is measured in radians, and $BP = a \tan t$. Therefore,

$$a\phi = a \tan t$$
 or $\phi = \tan t$.

Also,
$$x = OP \cos (\phi - t) = a \sec t \cos (\phi - t)$$
$$= a \sec t (\cos \phi \cos t + \sin \phi \sin t)$$
$$= a(\cos \phi + \sin \phi \tan t),$$

which means that

$$x = a(\cos\phi + \phi\sin\phi).$$

Moreover,

$$y = OP \sin (\phi - t) = a \sec t \sin (\phi - t)$$

$$= a \sec t (\sin \phi \cos t - \cos \phi \sin t)$$

$$= a(\sin \phi - \cos \phi \tan t);$$

$$y = a(\sin \phi - \phi \cos \phi).$$

80

The two equations for x and y are the parametric equations for the involute of a circle. The involute is useful in gear design.

12

Solid Analytic Geometry

55. RECTANGULAR COORDINATES

In the rectangular coordinate system for solid analytic geometry a point is determined by its three distances from three intersecting planes, mutually perpendicular to one another. These planes divide space into eight portions called *octants*. The portion O-XYZ is sometimes called the *first octant*. The other octants are not usually numbered.

Thus, in Figure 74 the three reference planes are XOY, XOZ, and YOZ. For short these planes are designated respectively as the xy, xz, and the yz planes. The point P_1 is determined by x = 3, y = 2, z = 5. The point P_2 is determined by x = 3, y = -2, z = 2. The point P_3 is determined by x = 3, y = 2, z = -2. It is evident how a point is determined in any octant of Figure 74.

56. EQUATIONS OF CERTAIN PLANES

In Figure 75, x = 3 is the equation of the plane parallel to the yz plane and 3 units to the right of it. The equation states that any point in this plane has 3 for its x coordinate. The plane parallel to the yz plane and 3 units to the left of it has for its equation x = -3. Similarly, the plane

parallel to the xz plane and 3 units forward on the y axis has for its equation y = 3.

In general, a plane x = a is parallel to the yz plane, a plane y = b is parallel to the xz plane, and a plane z = c is parallel to the xy plane. In particular, the reference planes xy, xz, and yz have the equations z = 0, y = 0, and x = 0, respectively.

We may also note that when a point is determined by the coordinates x = a, y = b, z = c, this point may be considered as the intersection of the planes x = a, y = b, z = c.

57. EQUATIONS OF CERTAIN LINES

In Figure 75, the line AB is determined by the intersection of the plane x = 3 with the plane z = 0. Hence, we say that the line AB has for its equations x = 3, z = 0; similarly, the line CD has for its equations x = -3, z = 0; and the line EF has for its equations y = 3, z = 0. In particular, the x axis is given by y = 0, z = 0; the y axis is given by x = 0, z = 0; and the z axis is given by x = 0, y = 0.

We have noted so far that the *planes* considered are given by *one* equation of the first degree; that the *lines* considered are given by *two* equations of the first degree, and that a *point* is given by *three* equations of the first degree. We shall see later that this conclusion applies to any plane and any line.

58. EQUATION OF A SURFACE

We have noted that the equation of a plane, which of course is a special case of a surface, is given by *one* equation. In general, the equation of a surface is given by one equation involving x, y, and z. The form of the surface is determined from the form of the function in x, y, and z.

As in plane analytic geometry, we have the problems of determining the surface, having given the equation, and of finding the equation, having given the surface.

Thus, having the equation $x^2 + y^2 + z^2 = 25$, we may readily determine

the surface. It is seen from the equation that

$$-5 \leq x \leq 5$$

$$-5 \leq y \leq 5$$

$$-5 \le z \le 5$$
.

If we consider the intersection of the xy plane, that is, the plane of z = 0, and the surface of $x^2 + y^2 + z^2 = 25$, we are considering z = 0 and $x^2 + y^2 + z^2 = 25$ as a system of equations. Hence, we obtain $x^2 + y^2 = 25$,

the equation of a circle in the xy plane. In other words, the section of the surface obtained by passing the plane z=0 through it is a circle of radius 5. Similarly, the plane x=0 cuts the surface in the circle $y^2+z^2=25$, and the plane y=0 cuts the surface in the circle $x^2+z^2=25$. Moreover, any plane x=a, -5 < a < 5, cuts the surface in the circle $a^2+y^2+z^2=25$ or $y^2+z^2=25-a^2$. From the symmetry of the figure it is seen that the surface $x^2+y^2+z^2=25$ is a sphere and that one eighth of the surface is represented in Figure 76.

Conversely, we may now find the equation of the sphere whose center is (0, 0, 0) and whose radius is 5.

In Figure 77 let P be any point on the sphere of center (0, 0, 0) and radius 5. Hence, we have from right triangle OPP'

$$u^2 + z^2 = 25 (1)$$

and from right triangle OAP'

$$u^2 = x^2 + y^2. (2)$$

Hence, from (1) and (2) we have the equation of the sphere, namely, $x^2 + y^2 + z^2 = 25$.

In Section 59 and some of the following sections we shall present a more systematic study of points, lines, planes, and certain surfaces.

Fig. 77

EXERCISES 35

- 1. Plot the following points: A(2, 3, -5), B(7, -1, 3), C(-3, -2, -5), and D(-3, 3, 3).
 - 2. Draw the following planes: (a) x = 5, (b) y = -3, (c) x = 4.
- 3. Draw the straight lines represented by each of the following systems of equations: (a) x = 3, y = 2; (b) y = 5, z = 4; (c) x = 4, z = -3.
 - 4. Write the equation of a sphere with the center at the origin and radius 10.
- 5. What is the locus of all points 7 units below the xy plane? Write its equation.
- 6. Write the equations of the locus of all points 5 units above the xy plane and 3 units to the right of the yz plane.
 - 7. Write the equation of the locus of all points 13 units from the origin.

59. DISTANCE BETWEEN TWO POINTS

We shall now derive a formula for the distance between the points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$.

In Figure 78,

$$OB = x_1,$$
 $BD = y_1,$ $DP_1 = z_1,$ $OA = x_2,$ $AC = y_2,$ $CP_2 = z_2.$

 P_1F is drawn parallel to OX, and EF is drawn parallel to YO. The angle P_1EP_2 is a right angle, and the angle P_1FE is a right angle. Hence,

$$P_1P_2^2 = d^2 = \overline{P_1E}^2 + \overline{E}P_2^2.$$
But
$$P_1E^2 = P_1F^2 + \overline{E}F^2;$$
hence,
$$d^2 = \overline{P_1F}^2 + \overline{E}F^2 + \overline{E}P_2^2.$$

Now
$$P_1F = x_2 - x_1$$
, $EF = y_2 - y_1$, and $EP_2 = z_2 - z_2$,
so $d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$,
or $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$,

which is the formula for the distance between P_1 and P_2 .

Fig. 78

60. DIRECTION COSINES OF A LINE

In Figure 79 we reproduce a portion of Figure 78 and draw P_2R parallel to EP_1 . If angle $FP_1P_2 = \alpha$, where P_1F is parallel to OX, angle $MP_1P_2 = \beta$,

F1G. 79

where P_1M is parallel to OY, and angle $P_2P_1R = \gamma$, where P_1R is parallel to OZ, we refer to $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ as the direction cosines of the line

determined by P_1 and P_2 . Since

$$P_1F = x_2 - x_1$$
, we have $\cos \alpha = \frac{x_2 - x_1}{d}$;

and from
$$P_1E' = FE = y_2 - y_1$$
, we obtain $\cos \beta = \frac{y_2 - y_1}{d}$;

and from
$$P_1R = EP_2 = z_2 - z_1$$
, we have $\cos \gamma = \frac{z_2 - z_1}{d}$.

From these relations we have the following equation:

$$\frac{(x_2-x_1)^2}{d^2}+\frac{(y_2-y_1)^2}{d^2}+\frac{(z_2-z_1)^2}{d^2}=\cos^2\alpha+\cos^2\beta+\cos^2\gamma.$$

But from Section 59 we have seen that

$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2.$$

Hence, we have the important result

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1.$$

61. ANGLE BETWEEN TWO LINES

We shall define the angle between any two directed straight lines in space, whether or not they lie in the same plane, as the angle θ between the lines that pass through the origin parallel to the given lines.

We shall now develop a formula for $\cos \theta$ which serves as a means to determine θ , since between two directed lines there is but one angle θ such that $0 < \theta < 180^{\circ}$.

Let P_1P_2 be the line whose direction angles are α_1 , β_1 , γ_1 and let $P_1'P_2'$ be the line whose direction angles are α_2 , β_2 , γ_2 . We shall assume that the

lines are not parallel and shall draw through O lines respectively parallel to P_1P_2 and $P_1'P_2'$.

Let $R_2(x_1, y_1, z_1)$ and $R'_2(x_2, y_2, z_2)$ be any two points, except the origin, on the lines parallel to P_1P_2 and $P'_1P'_2$, respectively, and passing through the origin, and let $OR_2 = d_1$, $OR'_2 = d_2$, and $R_2R'_2 = d$ (note Figure 80). From the law of cosines in trigonometry we have

$$d^2 = d_1^2 + d_2^2 - 2d_1d_2\cos\theta$$
or
$$(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2 = x_1^2 + y_1^2 + z_1^2 + x_2^2 + y_2^2 + z_2^2 - 2d_1d_2\cos\theta,$$

from which we obtain $\cos \theta = \frac{(x_1x_2 + y_1y_2 + z_1z_2)}{d_1d_2}$.

Now
$$x_1 = d_1 \cos \alpha_1, y_1 = d_1 \cos \beta_1, z_1 = d_1 \cos \gamma_1,$$

and $x_2 = d_2 \cos \alpha_2, y_2 = d_2 \cos \beta_2, z_2 = d_2 \cos \gamma_2.$

Hence,

$$\cos\theta = \frac{d_1d_2(\cos\alpha_1\cos\alpha_2 + \cos\beta_1\cos\beta_2 + \cos\gamma_1\cos\gamma_2)}{d_1d_2},$$

or
$$\cos \theta = \cos \alpha_1 \cos \alpha_2 + \cos \beta_1 \cos \beta_2 + \cos \gamma_1 \cos \gamma_2$$
.

Since α_1 , β_1 , γ_1 , and α_2 , β_2 , γ_2 are supposed to be known, the formula determines $\cos \theta$, and hence θ .

EXERCISES 36

- 1. Find the length of each side of the triangle A(3, 2, 5), B(-1, 5, 2), and C(7, 3, -1).
 - 2. Find the direction cosines of each side of the triangle in Exercise 1.
- 3. Find the angle ABC; the angle BCA; the angle CAB, Exercise 1. Checks by showing that the sum of these three angles equals 180° .
- **4.** Show that the numbers $\frac{1}{2}$, $\frac{1}{3}$, and $\frac{1}{4}$ cannot be the direction cosines of a line.
- 5. If $\cos \alpha = \frac{1}{2}$, $\cos \beta = \frac{1}{3}$, find $\cos \gamma$, where $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ are the direction cosines of a line.
- 6. Find the direction cosines of a line that makes equal angles with the positive end of the x, y, and z axes. Find the angles.
- 7. Find the equation of a sphere with center at the point (2, 5, -1) and whose radius is 5.
- **8.** Find the equation of the locus of all points equidistant from the points (2, 1, 7) and (-3, -5, 1).
- 9. If $\cos \alpha = \frac{1}{\sqrt{2}}$, $\cos \beta = \frac{1}{\sqrt{2}}$, and $\cos \gamma = 0$ are the direction cosines of a line through the point (2, 3, 4), draw the line.
- 10. Find the equation of a sphere whose center is the point (2, 9, 6) and which is tangent to the xz plane.

62. THE PLANE

We know from solid geometry that three noncollinear points determine a plane. Let us consider a portion of a plane BCD, whose perpendicular distance from the origin is p.

Let P_1 be the foot of the perpendicular from O to the plane, P(x, y, z) any point in the plane other than P_1 , α , β , γ the direction angles of OP, α_1 , β_1 , γ_1 the direction angles of OP_1 , and the angle $POP_1 = \theta$. (Refer to Figure 81.) Then from Section 61,

Fig. 81

$$\cos \theta = \cos \alpha \cos \alpha_1 + \cos \beta \cos \beta_1 + \cos \gamma \cos \gamma_1$$
.

But
$$\cos \alpha = \frac{x}{QP}$$
, $\cos \beta = \frac{y}{QP}$, $\cos \gamma = \frac{z}{QP}$, and $\cos \theta = \frac{p}{QP}$.

Therefore,
$$\frac{p}{OP} = \frac{x}{OP} \cos \alpha_1 + \frac{y}{OP} \cos \beta_1 + \frac{z}{OP} \cos \gamma_1,$$

or
$$x\cos\alpha_1 + y\cos\beta_1 + z\cos\gamma_1 = p, \qquad (1)$$

which is the required equation of the first degree.

Conversely, the equation Ax + By + Cz + D = 0, $A \neq 0$, may be written in the form $x + \frac{By}{A} + \frac{Cz}{A} + \frac{D}{A} = 0$

or
$$x + k_1 y + k_2 z + k_3 = 0.$$
 (2)

This equation involves three undetermined constants k_1 , k_2 , and k_3 . If we have three noncollinear points (x_1, y_1, z_1) , (x_2, y_2, z_2) , and (x_3, y_3, z_3) , we may substitute them for x, y, and z of Equation (2) and thus obtain three linear equations, from which k_1 , k_2 , and k_3 may be determined.

If Ax + By + Cz + D = 0 is rewritten as

$$KAx + KBy + KCz + KD = 0$$

and compared with Equation (1), we note that $KA = \cos \alpha_1$, $KB = \cos \beta_1$, and $KC = \cos \gamma_1$,

or
$$K^2A^2 + K^2B^2 + K^2C^2 = \cos^2\alpha_1 + \cos^2\beta_1 + \cos^2\gamma_1$$

from which we obtain $K^2(A^2 + B^2 + C^2) = 1$.

Therefore, $K = \frac{1}{\pm \sqrt{A^2 + B^2 + C^2}}.$

Hence, the general equation of first degree

$$Ax + By + Cz + D = 0$$

are

may be written in the form

$$\frac{Ax}{\pm\sqrt{A^2 + B^2 + C^2}} + \frac{By}{\pm\sqrt{A^2 + B^2 + C^2}} + \frac{Cz}{+\sqrt{A^2 + B^2 + C^2}} = \frac{-D}{+\sqrt{A^2 + B^2 + C^2}}$$

which represents a plane whose perpendicular distance from the origin is $\frac{D}{\pm \sqrt{A^2 + B^2 + C^2}}$. The direction cosines of a perpendicular to this plane

$$\frac{A}{\pm\sqrt{A^2+B^2+C^2}}, \frac{B}{\pm\sqrt{A^2+B^2+C^2}}, \frac{C}{\pm\sqrt{A^2+B^2+C^2}}, \frac{C}{\pm\sqrt{A^2+B^2+C^2}$$

where the sign of the radical is taken opposite to that of D, if $D \neq 0$, to render the perpendicular distance always positive. If D = 0, then p = 0, and either sign may be used before the radical to determine the direction cosine of a perpendicular to this plane.

63. DISTANCE FROM A PLANE TO A POINT

Let $P_1(x_1, y_1, z_1)$ be a given point and $x \cos \alpha + y \cos \beta + z \cos \gamma = p$ be a given plane. Then a plane through P_1 parallel to the given plane has for its equation

$$x\cos\alpha+y\cos\beta+z\cos\gamma=q.$$

If d is the perpendicular distance from the given plane to the given point, then q = p + d. Hence, the equation of the plane through P_1 is

$$x\cos\alpha + y\cos\beta + z\cos\gamma = p + d.$$

But since (x_1, y_1, z_1) is a point on this plane,

$$d = x_1 \cos \alpha + y_1 \cos \beta + z_1 \cos \gamma - p.$$

It should be noted that d may be positive or negative.

64. THE ANGLE BETWEEN TWO PLANES

If

$$A_1x + B_1y + C_1z + D_1 = 0$$

and

$$A_2x + B_2y + C_2z + D_2 = 0$$

are two given planes, these two planes may be written as

$$\frac{A_1x + B_1y + C_1z + D_1}{\pm\sqrt{A_1^2 + B_1^2 + C_1^2}} = 0 \text{ and } \frac{A_2x + B_2y + C_2z + D_2}{\pm\sqrt{A_2^2 + B_2^2 + C_2^2}} = 0.$$

By definition the angle between two planes is the angle between the

normals to these planes. Let θ be this angle; then

$$\cos\theta = \frac{A_1A_2 + B_1B_2 + C_1C_2}{\pm\sqrt{(A_1^2 + B_1^2 + C_1^2)(A_2^2 + B_2^2 + C_2^2)}}$$
(1)

If the two planes are parallel, their perpendiculars are parallel. Hence, the two planes are parallel if

$$\frac{A_1}{\sqrt{A_1^2 + B_1^2 + C_1^2}} = \frac{A_2}{\sqrt{A_2^2 + B_2^2 + C_2^2}},$$

$$\frac{B_1}{\sqrt{A_1^2 + B_1^2 + C_1^2}} = \frac{B_2}{\sqrt{A_2^2 + B_2^2 + C_2^2}},$$

$$\frac{C_1}{\sqrt{A_1^2 + B_1^2 + C_1^2}} = \frac{C_2}{\sqrt{A_2^2 + B_2^2 + C_2^2}}.$$

and

In other words, the two planes are parallel if

$$A_{1} = A_{2}k,$$

$$B_{1} = B_{2}k,$$

$$C_{1} = C_{2}k,$$

$$k = \frac{\sqrt{A_{1}^{2} + B_{1}^{2} + C_{1}^{2}}}{\sqrt{A_{1}^{2} + B_{1}^{2} + C_{1}^{2}}} \neq 0.$$

where

If the two planes are perpendicular, $\cos \theta = 0$. Hence, by reference to Relation (1), the two planes are perpendicular if $A_1A_2 + B_1B_2 + C_1C_2 = 0$.

65. THE EQUATION OF A PLANE IN TERMS OF ITS INTERCEPTS

The equation of the plane Ax + By + Cz + D = 0, where $D \neq 0$, may be written

$$\frac{x}{-\frac{D}{A}} + \frac{y}{-\frac{D}{B}} + \frac{z}{-\frac{D}{C}} = 1.$$

From this equation we see that if y = 0, and z = 0, then $x = -\frac{D}{A}$;

if x = 0, and y = 0, then $z = -\frac{D}{C}$; and if x = 0, and z = 0, then $y = -\frac{D}{B}$. If we let $-\frac{D}{A} = a$, $-\frac{D}{B} = b$, and $-\frac{D}{C} = c$, we have $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$,

which is known as the intercept form of the equation of the plane, and a, b, and c are, respectively, the x, y, and z intercepts.

EXERCISES 37

- 1. Find the equation of the plane if the length of the perpendicular upon it from the origin is 7 units, and the direction cosines of this perpendicular with the x, y, and z axes, respectively, are $\frac{1}{2}$, $\frac{2}{3}$, and $\sqrt{11}/6$.
 - 2. (a) Find the equation of the plane through the three points A(3, 2, 5), B(-1, 5, 2), and C(7, 3, -1).
 - (b) Find the distance from the origin to this plane.
 - (c) Find the direction cosines of the perpendicular from the origin to the plane.
 - 3. Draw a portion of the plane represented by the equation 2x + 3y z = 6. Hint: Find the intercept on each axis and connect the points.

Definition: The intersection of a plane with a coordinate plane is called the *trace* of the plane on the coordinate plane. Thus, the trace of the plane in Exercise 3 on the xy plane is 2x + 3y = 6, since z = 0 for all points in the xy plane.

- **4.** Given the plane 3x 5y + 10z = 20. Find its trace on each coordinate plane.
 - 5. Change the equation of the plane in Exercise 4 to the intercept form.
- 6. Find the perpendicular distance from the plane 2x 3y + 6z = 12 to the point (10, 3, -1).
 - 7. Find the angle between the planes 2x 3y + 6z = 12 and x + y z = 4.
- 8. Find the equation of a plane parallel to 2x 6y + 3z = 14 and 10 units from the origin.
- 9. Find the equation of the plane tangent at P(4, 12, 6) to the sphere whose center is the origin.
- 10. Find the equation of the plane passing through the points (5, 5, 6) and (-1, 3, 0), and parallel to the z axis.
- 11. Find the equation of a plane through the point (6, 1, 5) parallel to the plane 3x 2y 6z = 5.
- 12. Find the equation of the plane perpendicular to the line joining (2, 1, 3) and (4, -3, -1) at its mid-point.
- 13. The equation 2x y + kz = 10 represents a system of planes. Draw three or four planes of this system. How are the planes of this system related? Find the equation of the particular plane of this system that passes through the point (1, 1, 1).
- 14. Describe the system of planes represented by the equation 3x + 6y 2z = k. Find the value of k so that one of these planes will pass through the point (2, 1, 3).
 - **15.** (a) Draw the plane 2x 3y = 6. (b) Draw the plane x - z = 3.

66. THE STRAIGHT LINE

In Section 57 we showed how certain lines are determined by two equations of the first degree. In general, every equation of the first degree represents a plane, and two nonparallel planes intersect in a straight line. Hence, in general, a straight line is determined by two equations of the

first degree. Thus, the system of equations

$$A_1x + B_1y + C_1z + D_1 = 0$$

$$A_2x + B_2y + C_2z + D_2 = 0$$

are the equations of a straight line if the planes are not parallel.

If the straight line is to be determined by its direction cosines, $\cos \alpha$, $\cos \beta$, $\cos \gamma$, and a point (x_1, y_1, z_1) , its equation may be found as follows: Let (x, y, z) be any point on the line other than (x_1, y_1, z_1) ; then from Section 60,

$$\cos \alpha = \frac{x - x_1}{d}, \quad \cos \beta = \frac{y - y_1}{d}, \quad \cos \gamma = \frac{z - z_1}{d},$$

$$d = \sqrt{(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2}.$$

$$\frac{x - x_1}{\cos \alpha} = \frac{y - y_1}{\cos \beta} = \frac{z - z_1}{\cos \gamma}.$$
(1)

where Hence,

If l, m, n are any three numbers proportional to the direction cosines of the line, they are called *direction numbers*.

Since $l = k \cos \alpha$, $m = k \cos \beta$, and $n = k \cos \gamma$, Equation (1) may be written

$$\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n} \tag{2}$$

If the straight line is to be determined by two points (x_1, y_1, z_1) and (x_2, y_2, z_2) , its equations may be found as follows: Let (x, y, z) be any point on the line other than (x_1, y_1, z_1) and (x_2, y_2, z_2) ; then,

$$\frac{x - x_1}{\cos \alpha} = \frac{y - y_1}{\cos \beta} = \frac{z - z_1}{\cos \gamma},$$
and
$$\frac{x_2 - x_1}{\cos \alpha} = \frac{y_2 - y_1}{\cos \beta} = \frac{z_2 - z_1}{\cos \gamma}.$$
Thus,
$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}.$$
(3)

The direction cosines of a line may be determined by finding the equations of the line in Form (2). Thus, if the equations of the line are

$$x + 2y - 3z = 6$$
, and $3x + 4y + z = 5$,

we may eliminate any variable, such as z, and obtain

$$10x + 14y = 21$$
 or $y = \frac{-10x + 21}{14}$.

If we now eliminate any other variable, such as x, we obtain

$$2y - 10z = 13 or y = \frac{10z + 13}{2}.$$

$$\frac{-10x + 21}{14} = y = \frac{10z + 13}{2},$$

$$\frac{x - \frac{21}{10}}{-2} = \frac{y}{1} = \frac{z + \frac{13}{10}}{2}.$$

or

Hence,

Comparing these equations with (2), we have

$$l=-\frac{7}{5}, \qquad m=1, \qquad \text{and} \qquad n=\frac{1}{5}$$

Since

$$\cos \alpha = \frac{l}{k}$$
, $\cos \beta = \frac{m}{k}$, and $\cos \gamma = \frac{n}{k}$,

and

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1,$$

we have

$$\frac{49}{25k^2} + \frac{1}{k^2} + \frac{1}{25k^2} = 1.$$

Restricting k to be positive, we find that $k = \sqrt{3}$.

Hence,
$$\cos \alpha = -\frac{7}{5\sqrt{3}}$$
, $\cos \beta = \frac{1}{\sqrt{3}}$, $\cos \gamma = \frac{1}{5\sqrt{3}}$

EXERCISES 38

1. Sketch the lines represented by each of the following pairs of equations:

(a)
$$z = 1, x = 2.$$

(b)
$$y + z = 3,$$

 $x + y = 3.$

(c)
$$x + 2y + z = 5$$
, $z = 3$.

(d)
$$x + 2y + z = 5$$
,
 $x + 2y = 6$.

(e)
$$2x - 3y + z = 6$$
,
 $x + y + 2z = 4$.

2. Find the coordinates of the points in which the line x + y - 2z = -10, 3x - y + 3z = 6, cuts each of the coordinate planes. Draw the line.

3. Find the coordinates of the point in which the line whose equations are x - 3y + 5z = 18, 2x + y - 3z = 3, meets the plane 5x + 4y + z = 23.

4. Find the equations of the straight lines through each of the following pairs of points:

(b)
$$(3, -1, 4), (-2, 3, 5)$$

(d) $(2, 0, -1), (0, 0, 5)$

$$(c)$$
 $(5, 0, -3), (0, -2, 5)$

(d)
$$(2, 0, -1)$$
, $(0, 0, 5)$

5. Find the equations of a line which passes through the point (1, 3, -5)and whose direction cosines are $\cos \alpha = \frac{1}{2}$, $\cos \beta = -\frac{2}{3}$, and $\cos \gamma = \sqrt{11}/6$.

6. Find the equations of a line through the point (2, -3, 4) and perpendicular to the plane x - 2y + 2z = 7. Draw a portion of the plane and the perpendicular. Find the coordinates of the point of intersection of the perpendicular and the plane.

7. Find the direction cosines of the lines represented by each of the following pairs of equations:

(a)
$$x - 2y + 3z = 12$$

 $2x + y - 2z = 8$
(b) $x + 2y = 10$
 $5x - 7y + z = 22$

8. Show that the following lines are parallel:

(a)
$$4x - y + z + 4 = 0$$

 $2x + y + 2z + 5 = 0$ and $2x - 2y - z - 9 = 0$
 $2x + y + 2z + 3 = 0$
(b) $x - 3y + 5z = 8$
 $5x + 4y - 7z = 20$ and $19x + 19y - 33z = 52$
 $16x + 9y - 16z = 11$

9. Find the angle between the two lines:

$$x - 2y + 2z = 10$$

 $2x + y - 2z = 15$ and $2x - 3y + 6z = 12$
 $6x + 2y - 3z = 30$

10. Show that the following lines are perpendicular:

(a)
$$\frac{x-1}{2} = \frac{y-2}{-5} = \frac{z+1}{2}$$
; $\frac{x+3}{1} = \frac{y}{2} = \frac{z-5}{4}$
(b) $x+z=1$ $5x-y-z=14$
 $2x-3y-3z+16=0$ $3x+5y-3z+6=0$

67. SURFACES OF REVOLUTION

Let z = f(x) be some curve in the xz plane. If we rotate a portion of the curve z = f(x) about the x axis, we generate a surface of revolution

Fig. 82

whose equation may be found as follows: Let P be any point on the curve z = f(x), as shown in Figure 82. Then, the rotation of f(x) causes P to generate the circle $y^2 + z^2 = r^2$, where r = z for the point P. Hence, r = f(x). Therefore, we have $y^2 + z^2 = [f(x)]^2$ as the required equation of the surface.

Thus, as an illustration, if we rotate a line z = a about the x axis, we obtain the cylinder of revolution displayed in Figure 83, whose equation is $y^2 + z^2 = a^2$.

Similarly, the equation of the cone generated by the line z = 2x rotated about the x axis is $y^2 + z^2 = 4x^2$ (Figure 84). The equation of the cone

Fig. 83

generated by rotating the line z = 2x about the z axis is $x^2 + y^2 = z^2/4$ (Figure 85).

The paraboloid of revolution generated by rotating $z^2 = 4x$ about the x axis has for its equation $y^2 + z^2 = 4x$ (Figure 86). If it is rotated about the z axis, the equation of the surface is $x^2 + y^2 = z^4/16$ (Figure 87). This surface is not designated a paraboloid.

Fig. 87

If we rotate the ellipse $\frac{x^2}{a^2} + \frac{z^2}{b^2} = 1$ about the x axis, we obtain a surface whose equation is

$$y^2 + z^2 = \frac{b^2}{a^2}(a^2 - x^2)$$

or

$$a^2y^2 + a^2z^2 + b^2x^2 = a^2b^2.$$

This may be written in the form

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{b^2} = 1.$$

This surface is called an ellipsoid of revolution.

If the ellipse is rotated about the z axis, we obtain the ellipsoid of revolution whose equation is

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{b^2} = 1.$$

EXERCISES 39

- 1. Write the equation of the surface generated by revolving the curve $y^2 = 6x$ about the x axis; about the y axis. Draw a figure representing the surface in each case.
- 2. Write the equation of the surface generated by revolving the curve $\frac{x^2}{9} + \frac{y^2}{4} = 1$ about the x axis. Draw a figure representing the surface.
- 3. Write the equation of the surface generated by revolving the curve $\frac{x^2}{9} \frac{y^2}{4} = 1$ about the x axis; about the y axis. Draw the diagrams in each case.
- **4.** Write the equation of the surface generated by revolving the curve $(x-5)^2 + (y-6)^2 = 16$ about the x axis. This surface is called a *torus*.

68. CERTAIN CONICOIDS

Any surface whose equation is of the second degree in three variables is called a *conicoid*, or a *quadric surface*. The general equation of a quadric surface is

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Kz + M = 0.$$

This equation, by translation and rotation of axes, is reducible to various standard forms. We list below the equations of a few important quadric surfaces. Compare each with the corresponding surface of revolution.

69. DRAWING SURFACES AND INTERSECTIONS OF SURFACES

In practice it is often necessary to find the area of certain surfaces, or certain portions of surfaces, as well as the volume bounded by a surface or surfaces. In general, these problems are solved by means of calculus. It is of great importance that the student be able to picture surfaces and the intersections of surfaces.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Fig. 88. Ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Fig. 89. Hyperboloid of One Sheet

Fig. 90. Hyperboloid of Two Sheets

Fig. 91. Elliptic Paraboloid

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$

Fig. 92. Hyperbolic Paraboloid

In drawing a surface, what we really do is to draw various sections of the surface or lines on the surface, which show its character. In drawing the intersections of surfaces, it is a good practice to cut the various surfaces by some plane or planes whose intersections with them can be recognized. These planes cut curves out of the surfaces. A curve drawn through common points of the surfaces is a curve in which the surfaces intersect.

The quadric surfaces of Section 68 were drawn by picturing the sections of the surfaces with the coordinate planes and planes parallel to the co-

Fig. 93

ordinate planes. As an example in the drawing of surfaces and their intersections, we consider the surfaces $x^{2r} + y^2 = az$ and $x^2 + y^2 = 2ax$ and their intersections. If the surface $x^2 + y^2 = az$ is cut by any plane parallel to the xy plane, such as the plane z = k, we have a circle $x^2 + y^2 = ak$. In particular, if k = 0, we have the point (0, 0, 0). If the surface is cut by the plane y = 0, we have the parabola $x^2 = az$. Consequently, the surface may be pictured as a circle parallel to the xy plane sliding along the parabola $x^2 = az$ (note Figure 93). The surface $x^2 + y^2 = 2ax$ is a cylinder. Since the equation of the surface $x^2 + y^2 = 2ax$ is independent of z, the intersection of this surface by any plane parallel to the xy plane, such as z = k, will always give the circle $x^2 + y^2 = 2ax$.

The intersection of the circle $x^2 + y^2 = ak$ in the plane z = k with the circle $x^2 + y^2 = 2ax$ in the plane z = k will give points on the intersection of the surfaces. Solving these equations, we have x = k/2, and $y = \pm \frac{1}{2}\sqrt{4ak - k^2}$. Thus we have two points on the intersection of the two surfaces, namely, $(k/2, \frac{1}{2}\sqrt{4ak - k^2}, k)$ and $(k/2, -\frac{1}{2}\sqrt{4ak - k^2}, k)$.

430

For every value of k, two points on the intersection are determined. If these points are joined, we obtain the curve of intersection of the surfaces. This is the curve OCABO in Figure 93.

As another example of drawing surfaces and their intersections, we consider the spherical surface $x^2 + y^2 + z^2 = a^2$ and the cylindrical surface $x^2 + y^2 = ax$.

Fig. 94

The plane y = kx will cut out of the cylindrical surface the line OA and the line CD, and out of the spherical surface a circle of which the arc AE is a quadrant. If we solve the system

$$y = kx, x^2 + y^2 = ax,$$

 $x^2 + y^2 + z^2 = a^2$

and

for x, y, and z, we will get points of intersection of the two given surfaces. Solving simultaneously $x^2 + y^2 = ax$ and y = kx, we have x = 0 and $x = \frac{a}{1+k^2}$. Substituting these values in y = kx, we have y = 0 and $y = \frac{ak}{1+k^2}$. Substituting x = 0, y = 0 and $x = \frac{a}{1+k^2}$, $y = \frac{ak}{1+k^2}$ in $x^2 + y^2 + z^2 = a^2$, we have $z = \pm a$ and $z = \pm \frac{ak}{\sqrt{1+k^2}}$. Hence, we

have obtained the points of intersection of the surfaces as $(0, 0, \pm a)$ and

$$\left(\frac{a}{1+k^2}, \frac{ak}{1+k^2}, \pm \frac{ak}{\sqrt{1+k^2}}\right)$$

For every value of k, four points on the intersection are determined. If

these points are joined, we obtain the curve of intersection of the surfaces. Figure 94 pictures the curve of intersection for the first octant only.

EXERCISES 40

1. Draw figures to represent each of the following surfaces:

(a)
$$\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{25} = 1$$
 (b) $\frac{x^2}{16} - \frac{y^2}{9} + \frac{z^2}{25} = 1$

(c)
$$y^2 + x^2 = 4x^2$$
 (d) y
(e) $\frac{y^2}{16} + \frac{z^2}{0} = 4x$

- 2. (a) Draw a diagram representing the surface $z = x^2 + 4y^2$, and its intersection with the plane z = 10.
 - (b) Draw the intersection of this surface with the plane x + y + z = 5.
- 3. Draw a diagram showing the volume bounded by the surfaces $z = x^2 + y^2$ and $z = 18 x^2 y^2$.
- **4.** Draw a diagram showing the intersection of the surfaces $x^2 + y^2 = 10x$ and $4x^2 + 4y^2 = z^2$.
- 5. Draw a figure showing the intersection of the surfaces $x^2 + y^2 = 100$ and $y^2 + z^2 = 100$, and the volume bounded by these surfaces.
- 6. Draw a diagram showing the intersection of the surface of the paraboloid $y^2 + z^2 = 2ax$ and the cylindrical surface $y^2 = ax$. Show also the volume bounded by these two surfaces and the planes x = a and z = 0.

70. SPHERICAL COORDINATES AND CYLINDRICAL COORDINATES

It is often convenient to use polar coordinates in space; these are usually referred to as spherical coordinates. The spherical coordinates of a point P are ρ , its distance from the origin; α , the angle made by the projection of OP on the xy plane with the x axis; and β , the angle made by OP with the z axis. Hence, if the Cartesian coordinates of P are x, y, z, we have from Figure 95 the equations

$$x = \rho \sin \beta \cos \alpha,$$

$$y = \rho \sin \beta \sin \alpha,$$

$$z = \rho \cos \beta.$$

and

Thus, the point (3, 4, 5) in Cartesian coordinates may be expressed in spherical coordinates as follows:

$$3 = \rho \sin \beta \cos \alpha, \tag{1}$$

$$4 = \rho \sin \beta \sin \alpha, \qquad (2)$$

and
$$5 = \rho \cos \beta$$
. (3)

Dividing (2) by (1) we have $\tan \alpha = \frac{4}{3}$ or $\alpha = \tan^{-1} \frac{4}{3}$, so $\sin \alpha = \frac{4}{5}$. Dividing (2) by (3), after substituting $\sin \alpha = \frac{4}{5}$, we have $\tan \beta = 1$, or $\beta = 45^{\circ}$. Substituting $\cos \beta = 1/\sqrt{2}$ in (3), we obtain $\rho = 5\sqrt{2}$. Consequently, the spherical coordinates of the point are $(5\sqrt{2}, \tan^{-1} \frac{4}{3}, 45^{\circ})$.

Another system of coordinates used quite often in scientific practice is known as cylindrical coordinates. In this system a point P is determined by coordinates α , r, and z, where α has the same significance as in spherical

Fig. 95

coordinates, r is the projection of OP on the xy plane, and z has the same significance as in Cartesian coordinates.

Hence, if the Cartesian coordinates of P are x, y, z, we have, from Figure 96,

$$x = r \cos \alpha,$$

$$y = r \sin \alpha,$$

$$z = z.$$

and

Thus, a point (3, 4, 5) may be expressed in cylindrical coordinates as follows:

$$3 = r \cos \alpha,$$

$$4 = r \sin \alpha,$$

$$z = 5.$$

and

Solving, we get $\alpha = \tan^{-1} \frac{4}{3}$, r = 5.

Hence, the cylindrical coordinates of P are $(5, \tan^{-1} \frac{4}{3}, 5)$.

EXERCISES 41

- 1. (a) Find the equation of the sphere $x^2 + y^2 + z^2 = 4$ in spherical coordinates.
 - (b) In cylindrical coordinates.
- 2. (a) Find the equation of $x^2 + y^2 = 2ax$ in spherical coordinates.
 - (b) In cylindrical coordinates.
- 3. (a) Find the equation of $x^2 + y^2 = 2az$ in spherical coordinates.
 - (b) In cylindrical coordinates.
- **4.** Transform $x^2 + y^2 = z^2$ into cylindrical coordinates; into spherical coordinates.
- 5. Transform $x^2 + y^2 + 2z^2 = 4$ into cylindrical coordinates; into spherical coordinates.
- 6. Transform the following from spherical to rectangular coordinates: (a) $\rho = 8$; (b) $\rho \sin \alpha \sin \beta = 8$; $\rho = 3 \cos \beta$

100 — Five-Place Common Logarithms — 150

N	0	1	2	8	4	5	в	7	8	9		Prop	. Par	:8
100 101 102 103	00 000 432 860 01 284	043 475 903 326	087 518 945 368	130 561 988 410	173 604 *030 452	217 647 *072 494	260 689 *115 536	303 732 *157 578	346 775 *199 620	389 817 *242 662		44	48	42
104 105 106	703 02 119 531	745 160 572	787 202 612	828 243 653	870 284 694	912 325 735	953 366 776	995 407 816	*036 449 857	*078 490 898	1 2 8 4 5	4.4 8.8 13.2 17.6	4.3 8.6 12.9 17.2 21.5	4.2 8.4 12.6
107 108 109	938 03 342 743	979 383 782	*019 423 822	*060 463 862	*100 503 902	*141 543 941	*181 583 981	*222 623 *021	*262 663 *060	*302 703 *100	6 7 8 9	26.4 30.8 35.2 39.6	25.8 30.1 34.4 38.7	21.0 25.2 29.4 33.6 37.8
110 111 112 113	04 139 532 922 05 308	179 571 961 346	218 610 999 385	258 650 *038 423	297 689 *077 461	336 727 *115 500	376 766 *154 538	415 805 *192 576	454 844 *231 614	493 883 *269 652		41	40	39
114 115 116	690 06 070 446	729 108 483	767 145 521	805 183 558	843 221 595	881 258 633	918 296 670	956 333 707	994 371 744	*032 408 781	12345	4.1 8.2 12.3 16.4 20.5	4.0 8.0 12.0 16.0 20.0	3.9 7.8 11.7 15.6 19.5
117 118 119	819 07 188 555	856 225 591	893 262 628	930 298 664	967 335 700	*004 372 737	*041 408 773	*078 445 809	*115 482 846	*151 518 882	6 7 8 9	20.5 24.6 28.7 32.8 36.9	24.0 28.0 32.0 36.0	23.4 27.3 31.2 35.1
120 121 122 123	918 08 279 636 991	954 314 672 *026	990 350 707 *061	*027 386 743 *096	*063 422 778 *132	*099 458 814 *167	*135 493 849 *202	*171 529 884 *237	*207 565 920 *272	*243 600 955 *307	,	38 3.8	87 3.7	36
124 125 126	09 342 691 10 037	377 726 072	412 760 106	447 795 140	482 830 175	517 864 209	552 899 243	587 934 278	621 968 312	656 *003 346	2 3 4 5 6	7.6 11.4 15.2 19.0	3.7 7.4 11.1 14.8 18.5	3.6 7.2 10.8 14.4 18.0
127 128 129	380 721 11 059	415 755 093	449 789 126	483 823 160	517 857 193	551 890 227	585 924 261	619 958 294	653 992 327	687 *025 361	7 8 9	22.8 26.6 30.4 34.2	22.2 25.9 29.6 33.3	21.6 25.2 28.8 32.4
130 131 132 133	394 727 12 057 385	428 760 090 418	461 793 123 450	494 826 156 483	528 860 189 516	561 893 222 548	594 926 254 581	628 959 287 613	661 992 320 646	694 *024 352 678	1 2	35 3.5 7.0	34 3.4 6.8	33
134 135 136	710 13 033 354	743 066 386	775 098 418	808 130 450	840 162 481	872 194 513	905 226 545	937 258 577	969 290 609	*001 322 640	3 4 5 6	10.5 14.0 17.5 21.0	10.2 13.6 17.0 20.4	3.3 6.6 9.9 13.2 16.5 19.8 23.1
137 138 139	672 988 14 301	704 *019 333	735 *051 364	767 *082 395	799 *114 426	830 *145 457	862 *176 489	893 *208 520	925 *239 551	956 *270 582	7 8 9	24.5 28.0 31.5	23.8 27.2 30.6	23.1 26.4 29.7
140 141 142 143	613 922 15 229 534	644 953 259 564	675 983 290 594	706 *014 320 625	737 *045 351 655	768 *076 381 685	799 *106 412 715	829 *137 442 746	860 *168 473 776	891 *198 503 806	1 2	32 3.2 6.4	31 3.1 6.2	30 3.0 6.0
144 145 146	836 16 137 435	866 167 465	897 197 495	927 227 524	957 256 554	987 286 584	*017 316 613	*047 346 643	*077 376 673	*107 406 702	3 4 5 6 7	9.6 12.8 16.0 19.2 22.4	6.2 9.3 12.4 15.5 18.6 21.7	9.0 12.0 15.0 18.0 21.0
147 148 149	732 17 026 319	761 05 6 348	791 085 377	820 114 406	850 143 435	879 173 464	909 202 493	938 231 522	967 260 551	997 289 580	8	25.6 28.8	24.8 27.9	24.0 27.0
150	609	638	667	696	725	754	782	811	840	869				
N	0	1	2	8	4	5	6	7	8	9	1	Pro	p. Par	ts

150 — Five-Place Common Logarithms — 200

N	0	1	2	8	4	5	6	7	8	9	Prop. Parts
150 151	17 609 898	638 926	667 955	696 984	725 *013	754 *041	782 *070	811 *099	840 *127	869 *156	
152 153	18 184 469	213 498	241 526	270 554	298 583	327 611	355 639	384 667	412 696	441 724	
											29 28
154 155	752 19 033	780 061	808 089	837 117	865 145	893 173	921 201	949 229	977 257	*005 285	1 2.9 2.8 2 5.8 5.6 3 8.7 8.4
156	312	340	368	396	424	451	479	507	53 5	562	8 8.7 8.4 4 11.6 11.2
157 158	590 866	618 893	645 921	673 948	700 976	728 *003	756 *030	783 *058	811 *085	838 *112	4 11.6 11.2 5 14.5 14.0 6 17.4 16.8 7 20.3 19.6 8 23.2 22.4
159	20 140	167	194	222	249	276	303	330	358	385	6 17.4 16.8 7 20.3 19.6 8 23.2 22.4 9 26.1 25.2
160 161	412 683	439 710	466 737	493 763	520 790	548 817	575 844	602 871	629 898	656 925	20.1 20.2
162 163	952 21 219	978 245	*005 272	*032 299	*059 325	*085 352	*112 378	*139 405	*165	*192 458	
						ļ		_	431		27 26
164 165	484 748	511 775	537 801	564 827	590 854	617 880	643 906	669 932	696 958	722 985	1 2.7 2.6 2 5.4 5.2 3 8.1 7.8
166	22 011	037	063	089	115	141	167	194	220	246	2 5.4 5.2 3 8.1 7.8 4 10.8 10.4 5 13.5 13.0 6 16.2 15.6 7 18.9 18.2 8 21.6 20.8
167 168	272 531	298 557	324 583	350 608	376 634	401 660	427 686	453 712	479 737	505 763	6 16.2 15.6 7 18.9 18.2
169	789	814	840	866	891	917	943	968	994	*019	7 18.9 18.2 8 21.6 20.8 9 24.3 23.4
170 171	23 045 300	070 325	096 350	121 376	147 401	172 426	198 452	223 477	249 502	274 528	0 2110 2111
172	553	578	603	629	654	679	704	729	754	779	
173	805	830	855	880	905	930	955	980	*005	*030	25 1 2.5
174 175	24 055 304	080 329	105 353	130 378	155 403	180 428	204 452	229 477	254 502	279 527	2 5.0 3 7.5
176	551	576	601	625	650	674	699	724	748	773	4 10.0
177 178	797 25 042	822 066	846 091	871 115	895 139	920 164	944 188	969 212	993 237	*018 261	6 15.0 7 17.5
179	285	310	334	358	382	406	431	455	479	503	8 20.0 9 22.5
180	527 768	551 792	575 816	600 840	624 864	648 888	672 912	696 935	720 959	744 983	
181 182	26 007	031	055	079	102	126	150	174	198	221	24 23
183	245	269	293	316	340	364	387	411	435	458	1 2.4 2.3
184 185	482 717	505 741	529 7 64	553 788	576 811	600 834	623 858	647 881	670 905	694 928	2 4.8 4.6 3 7.2 6.9 4 9.6 9.2
186	951	975	998	*021	*045	*068	*091	*114	*138	*161	5 12.0 11.5
187 188	27 184 416	207 439	231 462	254 485	277 508	300 531	323 554	346 577	370 600	393 623	6 14.4 13.8 7 16.8 16.1
189	646	669	692	715	738	761	784	807	830	852	8 19.2 18.4 9 21.6 20.7
190	875	898	921 149	944	967 194	989 217	*012 240	*035 262	*058 285	*081 307	
191 192	28 103 330	126 353	375	171 398	421	443	466	488	511	533	22 21
193	556	578	601	623	646	668	691	713	735	758	1 22 21
194 195	780 29 003	803 026	825 048	847 070	870 092	892 115	914 137	937 159	959 181	981 203	3 6.6 6.3 4 8.8 8.4
196	226	248	270	292	314	336	358	380	403	425	6 11.0 10.5 6 13.2 12.6
197 198	447 667	469 688	491 710	513 732	535 754	557 776	579 798	601 820	623 842	645 863	7 15.4 14.7 8 17.6 16.8 9 19.8 18.9
199	885	907	929	951	973	994	*016	*038	*060	*081	9 19.8 18.9
200	30 10 3	125	146	168	190	211	233	255	276	298	
N	0	1	2	8	4	5	6	7	8	9	Prop. Parts

150 — Five-Place Common Logarithms — 200

Table 1

200 — Five-Place Common Logarithms — 250

N	0	1	2	3	4	5	в	7	8	9	Prop. Parts
200 201 202 203	30 103 320 535 750	125 341 557 771	146 363 578 792	168 384 600 814	190 406 621 835	211 428 643 856	233 449 664 878	255 471 685 899	276 492 707 920	298 514 728 942	22 21 1 2.2 2.1
204 205 206	963 31 175 387	984 197 408	*006 218 429	*027 239 450	*048 260 471	*069 281 492	*091 302 513	*112 323 534	*133 345 555	*154 366 576	2 4.4 4.2 8 6.6 6.3 4 8.8 8.4
207 208 209	597 806 32 015	618 827 035	639 848 056	660 869 077	681 890 098	702 911 118	723 931 139	744 952 160	765 973 181	785 994 201	6 13.2 12.6 7 15.4 14.7 8 17.6 16.8 9 19.8 18.9
210 211 212 213	222 428 634 838	243 449 654 8 5 8	263 469 675 879	284 490 695 899	305 510 715 9 19	325 531 736 940	346 552 756 960	366 572 777 980	387 593 797 *001	408 613 818 *021	20 1 2.0
214 215 216	33 041 244 445	062 264 465	082 284 486	102 304 506	122 325 526	143 345 546	163 365 566	183 385 586	203 405 606	224 425 626	2 4.0 3 6.0 4 8.0 5 10.0
217 218 219	646 846 34 044	666 866 064	686 885 084	706 905 104	726 925 124	746 945 143	766 965 163	786 985 183	806 *005 203	826 *025 223	6 12.0 7 14.0 8 16.0 9 18.0
220 221 222 223	242 439 635 830	262 459 655 850	282 479 674 869	301 498 694 889	321 518 713 908	341 537 733 928	361 557 753 9 47	380 577 772 967	400 596 792 9 86	420 616 811 *005	19 1 1.9
224 225 226	35 025 218 411	044 238 430	064 257 449	083 276 468	102 295 488	122 315 507	141 334 526	160 353 545	180 372 564	199 392 583	2 3.8 3 5.7 4 7.6
227 228 229	603 793 984	622 813 *003	641 832 *021	660 851 *040	679 870 *059	698 889 *078	717 908 •097	736 927 •116	755 946 *135	774 965 *154	6 11.4 7 13.3 8 15.2 9 17.1
230 231 232 233	36 173 361 549 736	192 380 568 754	211 399 586 773	229 418 605 791	248 436 624 810	267 455 642 829	286 474 661 847	305 493 680 866	324 511 698 884	342 530 717 903	18 1 1.8
234 235 236	9 22 37 107 291	940 125 310	959 144 328	977 162 346	996 181 365	*014 199 383	*033 218 401	*051 236 420	*070 254 438	*088 273 457	2 3.6 3 5.4 4 7.2 5 9.0 6 10.8 7 12.6 8 14.4 9 16.2
237 238 239	475 658 840	493 676 858	511 694 876	530 712 894	548 731 912	566 749 931	585 767 949	603 785 967	621 803 985	639 822 *003	7 12.6 8 14.4 9 16.2
240 241 242 243	38 021 202 382 561	039 220 399 578	057 238 417 596	075 256 435 614	093 274 453 632	112 292 471 650	130 310 489 668	148 328 507 686	166 346 525 703	184 364 543 721	17 1 1.7
244 245 246	739 917 39 094	757 934 111	775 952 129	792 970 146	810 987 164	828 *005 182	846 *023 199	863 *041 217	881 *058 235	899 *076 252	2 3.4 3 5.1 4 6.8 5 8.5 6 10.2
247 248 249	270 445 620	287 463 637	305 480 655	322 498 672	340 515 690	358 533 707	375 550 724	393 568 742	410 585 759	428 602 777	7 11.9 8 13.6 9 15.3
250	794	811	829	846	863	881	898	915	933	950	Den Best
N	0	1	2	3	4	5	6	7	8	9	Prop. Parts

250 — Five-Place Common Logarithms — 300

N 250	_	1	2	8	4.	1 5	6	7	8	9	PTOU	. Parts
	39 794	811	829	846	863	881	898	915	933	950		
251	967	985	*002	*019	+037	+054	+071	*088	*106	*123	1	
252	40 140	157	175	192	209	226	243	261	278	295	١.	18
253	312	329	346	364	381	398	415	432	449	466	1 2	1.8 3.6
254	483	500	518	535	552	569	586	603	620	637	18	1.8 3.6 5.4 7.2 9.0 10.8 12.6 14.4 16.2
255	654	671	688	705	722	739	756	773	790	807	1 2	7.2 9.0
256	824	841	858	875	892	909	926	943	960	976	ĕ	10.8
257	993	*010	*027	*044	+061	*078	*095	*111	*128	*145	4 5 6 7 8	12.6
257 258	41 162	179	196	212	229	246	263	280	296	313	Ð	16.2
259	330	347	363	380	397	414	430	447	464	481	ı	
260	407	£1.4	571	E 47	564	201	507	614	671	617		
261	497 664	514 681	531 697	547 714	564 731	581 747	597 764	614 780	631 797	647 814	l	
262	830	847	863	880	896	913	929	946	963	979	l	17
263	996	*012	*029	*045	*062	*078	*095	*111	*127	*144	1	1.7
264	42 160	177	193	210	226	243	259	275	292	308	1 3	3.4 5.1
265	325	341	357	374	226 390	406	423	439	455	472	4	68
266	488	504	521	537	553	570	586	602	619	635	8	8.5 10.2
ا مر ا	cr:		601	700	716	770	740	705	701	707	2345678	8.5 10.2 11.9
267 268	651 813	667 830	684 846	700 862	716 878	732 894	749 911	765 927	781 943	797 959	8	13.6 15.3
269	975	991	*008	*024	+040	+056	*072	+088	*104	*120	_	20.0
											l	
270	43 136 297	152 313	169 329	185 345	201 361	217 377	233 393	249 409	265 425	281 441	1	
271 272	457	473	489	505	521	537	553	569	584	600	l	16
273	616	473 632	648	664	680	696	553 712	727	743	759	1	1.6
		-01	005	007	0.70	054	0.70	000	000	A1-	3	3.2 4.8
274 275	775 933	791 949	807 965	823 981	838 996	854 +012	870 *028	886 *044	902 +059	917 * 075	4	64
276	44 091	107	122	138	154	170	185	201	217	232	l å	8.0 9.6
											2 3 4 5 6 7 8	8.0 9.6 11.2 12.8
277	248 404	264 420	279 436	295 451	311 467	326 483	342 498	358 514	3 73 529	389		12.8
278 279	560	576	592	607	623	638	654	669	685	545 700	Ĭ	
280	716	731	747	762	778	793	809	824	840	855		
281 282	871 45 025	886 040	902 056	917 071	932 086	948 102	963 117	979 133	994 148	*010 163	l	15
283	179	194	209	225	240	255	271	286	301	317	1	1.5
								4-0			23 4 5 6 7 8	3.0 4.5 6.0
284	332	347 500	362 515	378 530	393 545	408 561	423 576	439 591	454 606	469 621	4	6.0
285 286	484 637	652	667	682	697	712	728	743	758	773	5	7.5
											7	10.5 12.0 13.5
287	788	803	818	834	849	864	879	894	909	924	8 9	12.0
288 289	939 46 090	954 105	969 120	984 135	*000 150	*015 165	*030 180	*045 195	*060 210	*075 225	١٣	13.0
209	40 050	100	120	100	100	100	100	170	210	223		
290	240	255	270	285	300	315	330	345	359	374	l	
291 292	389	404	419 568	434	449	464	479 627	494 642	509 657	523 673		
292	538 687	553 702	716	583 731	598 746	613 761	776	790	805	523 672 820	١.	14
											1 2	1.4 2.8 4.2 5.6 7.0 8.4 9.8
294 295	835	850	864	879	894	909	923	938	953	967	2 3 4 5 6 7 8	4.2
295 2 96	982 47 129	997 144	*012 159	*026 173	*041 188	*056 202	*070 217	*085 232	*100 246	*114 261	5	7.0
	Z/ 147	YAZ	109	1,3	100	202	~~,	202	270	201	ĕ	8.4
297	276	290	305	319	334	349	363	378	392	407	8	9.8 11.2
297 298	422	436	451	465	480	494	509	524	538	553	ğ	12.6
299	567	582	596	611	625	640	654	66 9	683	698		
800	712	727	741	756	770	784	799	813	828	842		
N	0	1	2	8	4	5	6	7	8	9	Prop.	Parts

250 — Five-Place Common Logarithms — 300

300 — Five-Place Common Logarithms — 350

N	0	1	2	3	4	8	в	7	8	9	Prop. Par	6
800	47 712	727	741	756	770	784	799	813	828	842		_
301	857 48 001	871 015	885 029	900 044	914 058	929 073	943 087	958	972 116	986 130		
302 303	144	159	173	187	202	216	230	101 244	259	273		
304	287	302	316	330	344	359	373	387	401	416		
305	430	444	458	473 615	487	501	515	530 671	544	558	15	
306	572	586	601	615	629	643	657	671	686	700	1 1.5 2 3.0	
307	714	728	742	756	770	785	799	813	827	841	2 3.0 8 4.5 4 6.0 5 7.5 6 9.0 7 10.5 8 12.0 9 13.6	
308	855 996	869 *010	883 *024	897 *038	911 *052	926	940 *080	954	968 *108	982 *122	5 7.5	
309	996	-010			7052		~080	*094	-108	122	7 10.5	
810	49 136	150	164	178	192	206	220	234	248	262	9 13.5	
311 312	276 415	290 429	304 443	318 457	332 471	346 485	360 499	374 513	388 527	402 541		
313	554	568	582	596	610	624	638	651	665	679		
314	693	707	721	734	748	762	776	790	803	817		
315	831	845	859	734 872 *010	886	വര	914	927	941 *079	955		ļ
316	969	982	996	*010	*024	*037	*051	*065	*079	*092	14	
317	50 106	120	133	147	161	174	188	202	215	229		
318	243	256	270	284	297	311	325	338	352	365	8 42	
319	379	3 93	406	420	433	447	461	474	488	501	1 1.4 22 2.8 8 4.2 4 5.6 5 7.0 6 8.4 7 9.8 8 11.2	
320	515	529	542	556	569	583	596	610	623 759	637	6 8.4	
321 322	651 786	664 799	678 813	691 826	705 840	718 853	732 866	745 880	759 893	772 907	7 9.8 8 11 2	
323	920	934	947	961	974	987	*001	*014	*028	*041	9 12.6	,
324	51 055	068	081	095	108	121	135	148	162	175		
325	188	202	215	228 362	242 375	255	268	282	295 428	308		
326	322	335	348	362	375	388	402	415	428	441		
327	455	468	481	495	508	521	534	548	561	574		
328 329	587 720	601 733	614 746	627 759	640 772	654 786	. 667 799	680 812	693 825	706 838	18	
											1 1.3 2 2.6	,
330 331	851 983	865 996	878 *009	891 *022	904 *035	917	930 *061	943 *075	957 *088	970 *101	8 3.9	
332	52 114	127	140	153	166	179	192	205	218	231	5 6.5	;
333	244	257	270	284	297	310	323	336	349	362	1 1.3 2 2.6 8 3.9 4 5.2 5 6.5 6 7.8 7 9.1 8 10.4	
334	375	388	401	414	427	440	453	466	479	492	8 10.4 9 11.7	,
335	504	517	530	543 673	556	569 699	582	595	479 608 737	621		
336	634	647	660	673	6 86	699	711	724	737	750	1	
337	763	776	789	802	815	827	840	853	866	879		
338	892 53 020	905 033	917 046	930 058	943 071	956 084	969 097	982 110	994 122	*007	ľ	
339	53 020							110	122	135		
340	148	161	173	186	199	212	224	237	250	263	12	,
341 342	275 403	288 415	301 428	314 441	326 453	339 466	352 479	364 491	504	390 517	1 1.2 2 2.4	,
343	529	542	555	567	580	593	605	618	377 504 631	643	3 3.6 4 4.8	
344	656	668	681	694	706	719	732	744		769	1 1.2 2 2.4 3 3.6 4 4.8 5 6.0 6 7.2 7 8.4 8 9.6 9 10.8	!
345	782	794	807	820	706 832	845	857	870	757 882	895	7 8.4	į
346	908	920	933	945	958	970	983	995	*008	* 020	8 9.6 9 10.8	í
347	54 033	045	058	070	083	095	108	120	133	145		
348	158	170	183	195	208	220	233	245	258	270	l	
349	283	295	307	320	332	345	357	370	382	394	1	
350	407	419	432	444	456	469	481	494	506	518		
N	0	1	2	8	4	5	6	7	8	9	Prop. Par	rts

350 — Five-Place Common Logarithms — 400

N	0	1	2	8	4	5	6	7	8	9	Pron	. Parts
350	54 407	419	432		456	469		494				
351	531	543	555	444 568	580	507	481 605	617	506 630	518 642	1	
352 353	654	667	679	691	704	716	605 728	741	753	765		
353	777	790	802	814	827	839	851	864	753 876	888	1	
354	900	913	925	937	949	962	974	986	998	*011	1	
355	55 023	035	047	060	072	084	096	108	121	133		18
356	145	157	169	182	194	206	218	230	121 242	255	1 2	1.3
	200	070	001	~~~	~1 <i>~</i>	700	~ 40	~-0			3 4 5 6 7	1.3 2.6 3.9 5.2 6.5 7.8 9.1
357 358	267 388	279 400	291 413	303 425	315 437	328 449	340 461	352 473	364 485	376 497	1 🛊	5.2 6.5
359	509	522	534	546	558	570	582	594	606	618	ĕ	7.8
امما			•								8	9.1
360	630	642 763	654	666	678	691	703	715	727	739	ğ	10.4 11.7
361 362	751 871	763 883	775 895	787 907	799 919	811 931	823 943	835 955	847 967	859 979		
363	991	*003	*015	*027	*038	*050	*062	*074	*086	*098		
											l	
364	56 110 229	122	134	146	158	170	182	194	205	217	l	
365 366	348	241 360	253 372	265 384	277 396	289 407	301 419	312 431	324 443	336 455		
					0,70		717	704	770	700	l	12
367	467	478	490	502	514	526	538	549	561	573	1	1.2
368	585	597	608	620	632	644	656	667	679	691	2 8	1.2 2.4 3.6
369	703	714	726	738	750	761	773	785	797	808	3 4 5 6 7 8	4.8
870	820	832	844	855	867	879	891	902	914	926	l a	6.0 7.2 8.4
371	937	949	961	972	984	996	*008	*019	*031	*043	7	8.4
372	57 054	066	078	089	101	113	124	136	148	159	8	9.6 10.8
373	171	183	194	206	217	229	241	252	264	276	ľ	20.3
374	287	299	310	322	334	345	357	368	380	392		
375	403	415	426	322 438	449	461	473	484	496	507		
376	519	<i>5</i> 30	542	553	565	576	588	600	611	623	I	
377	634	646	657	669	680	692	703	715	726	738		
378	749	761	772 887	784	795	807	818	830	841	852		11
379	864	875	887	898	910	921	933	944	955	967	1	
380	978	990	*001	*013	*024	*035	*047	*058	*070	*081	2	1.1 2.2 3.3
381	58 092	104	115	127	138	149	161	172	184	195	4	4.4
382	206	218	229	240	252	263	274	286	297	309	5	5.5
383	320	331	343	354	365	377	388	399	410	422	8 4 5 6 7 8	7.7
384	433	444	456	467	478	490	501	512	524	535	Ř	4.4 5.5 6.6 7.7 8.8 9.9
385	546	557	569	580	591	602	614	625	636	647		9.9
386	659	670	681	692	704	715	726	737	749	760	1	
	7 73	700	704	907	016	0.27	0.70	950	061			
387 388	771 883	782 894	794 906	805 917	816 928	827 939	838 950	850 961	861 973	872 984		
389	995	*006	*017	*028	*040	*051	*062	*073	*084	*095	l	
											l	10
390	59 106	118 229	129 240	140	151 262	162 273	173 284	184 295	195	207	1	
391 392	218 329	340	351	251 362	262 373	384	284 395	406	306 417	318 428		2.0
393	439	450	461	472	483	494	506	406 517	528	539	8	3.0 4.0
1 1											2845678	1.0 2.0 3.0 4.0 5.0 6.0
394	550 660	561 671	572 682	583 693	594 704	605 715	616 726	627 737	638 748	649 750	6 7	6.0 7.0
395 396	660 770	671 780	682 791	802	813	824	835	737 846	748 8 5 7	759 8 6 8	s	8.0
ا ۳۰۰	1		•								9	8.0 9.0
397	879	890	901	912 •021	923 •032	934	945	956	966 *076	977	Ī	
398	988	999	*010	*021 130	*032 141	*043 152	*054 163	*065 173	*076	*086	1	
399	60 097	108	119	130	141	152	103	1/3	184	195	1	
400	206	217	228	239	249	. 260	271	282	293	304		
N	0	1	2	8	4	5	6	7	8	9	Prop	Parts

350 — Five-Place Common Logarithms — 400

441

N	0	1	2	8	4	5	6	7	8	9	Prop	. Parts
400 401 402	60 206 314 423	217 325 433	228 336 444	239 347 455	249 358 466	260 369 477	271 379 487	282 390 498	293 401 509	304 412 520		
403	531	541	552	563	574	584	5 95	606	617	627		
404 405	638 746	649 756	660 767	670 778	681 788	692 799	703 810	713 821	724 831	735 842		
406	853	863	874	885	895	906	917	927	938	949		
407 408	959 61 066	970 077	981 087	991 098	*002 109	*013 119	*023 130	*034 140	*045 151	*055 162		11
409 410	172 278	183 289	194 300	204 310	215 321	225 331	236 342	247 352	257 363	268 374	1 2	1.1 2.2 3.3
411 412	384 490	395 500	405 511	416 521	426 532	437 542	448 553	458 563	469 574	479 584	4	4.4
413	595	606	616	627	637	648	658	669	679	690	2 3 4 5 6 7 8	5.5 6.6 7.7
414 415	700 805	711 815	721 826	731 836	742 847	752 857	763 868	773 878	784 888	794 899	9	8.8 9.9
416	909	920	930	941	951	962	972	982	993	*003		
417 418	62 014 118	024 128	034 138	045 149	055 159	066 170	076 180	086 190	097 201	107 211		
419	221	232	242	252	263	273	284	294	304	315		
420 421	325 428	335 439	346 449	356 459	366 469	377 480	387 490	397 500	408 511	418 521		
422 423	531 634	542 644	552 655	562 665	572 675	583 685	593 696	603 706	613 716	624 726	1	10 1.0
424 425	737 8 3 9	747 849	757 859	767 870	778 880	788 890	798 900	808 910	818 921	829 931	3	1.0 2.0 3.0 4.0
426	941	951	961	972	982	992	*002	*012	*022	*033	2 3 4 5 6 7 8	5.0 6.0
427 428	63 043 144	053 155	063 165	073 175	083 185	094 195	104 205	114 215	124 225	134 236	8	5.0 6.0 7.0 8.0 9.0
429	246	256	266	276	286	296	306	317	327	337	"	9.0
430 431 432	347 448	357 458	367 468	377 478	387 488	397 498	407 508	417 518	428 528	438 538		
432 433	548 649	558 659	568 669	579 679	589 689	599 69 9	609 709	619 719	629 729	639 739		
434 435	749 849	759 859	769 869	779 879	789 889	799 899	809 909	819 919	829 929	839		
436	949	959	969	979	988	998	*008	*018	*028	939 *038		9
437 438	64 048 147	058 157	068 167	078 177	088 187	098 197	108 207	118 217	128 227	137 237	1 2	0.9 1.8
439	246	256	266	276	286	296	306	316	326	335	1 2 3 4 5 6 7 8	1.8 2.7 3.6 4.5
440 441	345 444	355 454	365 464	375 473	385 483	395 493	404 503	414 513	424 523	434 ° 532	8	5.4 6.3 7.2
442 443	542 640	552 650	562 660	572 670	582 680	591 689	601 699	611 709	621 719	631 729	9	7.2 8.1
444	738	748	758	768	777	787	797	807	816	826		
445 446	836 933	846 943	856 953	865 963	875 972	885 982	895 992	904 *002	914 *011	924 •021		
447 448	65 031 128	040 137	050 147	060 157	070 167	079 176	089 186	099 196	108 205	118 215		
449	225	234	244	254	263	273	283	292	302	312		
450	321	331	341	350	360	369	379	389	398	408		
N	0	1	2	3	4	5	6	7	8	9	Prop	. Parts

										_	_	
М	0	1	2	8	4	5	6	7	8	9	Prop	. Parts
450 451	65 321 418	331 427	341 437	350 447	360 456	369 466	379 475	389 485	398 495	408 504		
452	514	523 619	533 629	543 639	552	562	571	581	591	600	l	
453	610	619	629	639	648	658	667	677	6 86	696	1	
454	706	715	725	734	744	753	763	772	782	792	1	
455 456	801 896	811 906	820 916	830 925	839 935	849 944	858 954	868 963	877 973	887 982	l	
											1	
457 458	992 66 087	*001 096	*011 106	*020 115	*030 124	*039 134	*049 143	*058 153	*068	*077 172	i	
459	181	191	200	210	219	229	238	247	162 257	266	١.	10
460	276	285	295	304	314	323	332	342	351	361	2	1.0 2.0 3.0
461	370	380	389	398	408	417	427	436	445	455	8	3.0 4.0
462 463	464 558	474 567	483 577	492 586	502 596	511 605	521 614	530 624	539 633	549 642	5	5.0
1 1						1					2 3 4 5 6 7 8	4.0 5.0 6.0 7.0 8.0
464 465	652 745	661 755	671 764	680 773	689 783	699 792	708 801	717 811	727 820	736 829	8	9.0 9.0
466	839	848	857	867	876	885	894	904	913	922	l	
467	932	941	950	960	969	978	987	997	*006	*015	Ì	
468	67 025	034	043	052	062	071	080	089	099	108	1	
469	117	127	136	145	154	164	173	182	191	201	1	
470	210	219	228	237	247	256	265	274	284	293	1	
471 472	302 394	311 403	321 413	330 422	339 431	348 440	357 449	367 459	376 468	385 477		
473	486	495	504	514	523	532	541	550	560	569	١.	9
474	578	E 9.7	596	605	614	624	633	642	651		1 2	0.9 1.8
475	669	587 679	688	697	706	715	724	733	742	660 752	8 4	1.8 2.7 3.6
476	761	770	779	788	797	806	815	825	834	843	2 8 4 5 6	4.5
477	852	861	870	879	888	897	906	916	925	934	8	5.4 6.3 7.2
478	943 68 034	952 043	961 052	970	979 070	988 079	997 088	*006 097	*015 106	*024	9	7.2 8.1
479			032	061		0/9		097		115	1	
480	124 215	133 224	142 233	151 242	160 251	169 260	178 269	187	196 287	205 296	i	
481 482	305	314	323	332	341	350	359	278 368	377	386		
483	395	404	413	422	431	440	449	458	467	476		
484	485	494	502	511	520	529	538	547	5 56	565		
485	574 664	583 673	592 681	601 690	610 699	619 708	628 717	637 726	646 735	655 744	l	
486											١.	8
487 488	753 842	762 851	771 860	780 869	7 89 878	797 886	806 895	815 904	824 913	833 922	2	0.8 1.6
489	842 931	940	949	958	966	975	984	993	*002	*011	8 4	2.4 3.2
490	69 .020	028	037	046	055	064	073	082	090	099	2 3 4 5 6 7 8	4.0 4.8
491	108	117	126	135	144	152	161	170	179 267	188	Įĭ	5.6
492 493	197 285	205 294	214 302	223 311	232 320	241 329	249 338	258 346	267 355	276	8	6.4 7.2
										364		
494 495	373 461	381 469	390 478	399 487	408 496	417 504	425 513	434	443 531	452		
496	548	5 57	566	574	496 583	592	601	522 609	618	539 627	l	
		-		_							ł	
497 498	636 723	644 732	653 740	662 749	671 758	679 767	688 775	697 784	705 793	714 801	İ	
499	810	819	827	836	845	854	862	871	880	888	1	
500	897	906	914	923	932	940	949	958	966	975		
N	0	1	2	8	4	5	6	7	8	9	Prop	. Parts

450 — Five-Place Common Logarithms — 500

500 — Five-Place Common Logarithms — 550

Table 1

N	0	1	2	8	4	5	6	7	8	9	Prop. Parts
500 501 502 503	69 897 984 70 070 157	906 992 079 165	914 *001 088 174	923 *010 096 183	932 *018 105 191	940 *027 114 200	949 *036 122 209	958 *044 131 217	966 *053 140 226	975 *062 148 234	
504 505 506	243 329 415	252 338 424	260 346 432	269 355 441	278 364 449	286 372 458	295 381 467	303 389 475	312 398 484	321 406 492	
507 508 509	501 586 672	509 595 680	518 603 689	526 612 697	535 621 706	544 629 714	552 638 723	561 646 731	569 655 740	578 663 749	9 1 0.9 2 1.8
510 511 512 513	757 842 927 71 012	766 851 935 020	774 859 944 029	783 868 952 037	791 876 961 046	800 885 969 054	808 893 978 063	817 902 986 071	825 910 995 079	834 919 *003 088	2 1.8 8 2.7 4 3.6 5 4.5 6 6.4 7 6.3 8 7.2 9 8.1
514 515 516	096 181 26 5	105 189 273	113 198 282	122 206 290	130 214 299	139 223 307	147 231 315	155 240 324	164 248 332	172 257 341	9 8.1
517 518 519	349 433 517	357 441 525	366 450 533	374 458 542	383 466 550	391 475 559	399 483 567	408 492 575	416 500 584	425 508 592	
520 521 522 523	600 684 767 850	609 692 775 858	617 700 784 867	625 709 792 875	634 717 800 883	642 725 809 892	650 734 817 900	659 742 825 908	667 750 834 917	675 759 842 925	8 1 0.8
524 525 526	933 72 016 099	941 024 107	950 032 115	958 041 123	966 049 132	975 057 140	983 066 148	991 074 156	999 082 165	*008 090 173	2 1.6 8 2.4 4 3.2 5 4.0 6 4.8 7 5.6 8 6,4
527 528 529	181 263 346	189 272 354	198 280 362	206 288 370	214 296 378	222 304 387	230 313 395	239 321 403	247 329 411	255 337 419	8 4.8 7 5.6 8 6.4 9 7.2
531 532 533	428 509 591 673	436 518 599 681	444 526 607 689	452 534 616 697	460 542 624 705	469 550 632 713	477 558 640 722	485 567 648 730	493 575 656 738	501 583 665 746	
534 535 536	754 835 916	762 843 925	770 852 933	779 860 941	787 868 949	795 876 967	803 884 965	811 892 973	819 900 981	827 908 989	7
537 538 539	997 73 078 159	*006 086 167	*014 094 175	*022 102 183	*030 111 191	*038 119 199	*046 127 207	*054 135 215	*062 143 223	*070 151 231	1 0.7 2 1.4 3 2.1 4 2.8
540 541 542 543	239 320 400 480	247 328 408 488	255 336 416 496	263 344 424 504	272 352 432 5 12	280 360 440 520	288 368 448 528	296 376 456 536	304 384 464 544	312 392 472 552	5 3.5 6 4.2 7 4.9 8 5.6 9 6.3
544 545 546	560 640 719	568 648 727	576 656 735	584 664 743	592 672 751	600 679 759	608 687 767	616 695 775	624 703 783	632 711 791	
547 548 549	799 878 957	807 886 965	815 894 973	823 902 981	830 910 989	838 918 997	846 926 *005	854 933 •013	862 941 •020	870 949 •028	
550 N	74 036	044	052 2	060 3	068 4	076 5	084 6	7	099 8	107	Prop. Parts
7/	0	1			<u> </u>	<u> </u>		•	-	-	Frop. Parts

550 — Five-Place Common Logarithms — 600

14	T	0	1	2	8	4	5	6	7	8	9	Prop. Parts
5544 351 369 367 374 382 390 398 406 414 421 555 555 429 437 445 463 461 468 476 484 492 500 556 567 616 523 531 539 547 564 662 670 678 565 558 663 671 679 687 695 702 710 718 726 733 5559 741 749 757 764 772 780 788 796 803 811 87 784 742 780 788 796 803 811 889 997 7005 7012 943 950 958 966 562 754 981 989 997 7005 7012 943 950 958 966 5043 181 189 997 9005 9012 943 950 958 966 5043 181 <t< td=""><td></td><td>115 194</td><td>123 202</td><td>131 210</td><td>139 218</td><td>147 225</td><td>155 233</td><td>162 241</td><td>170 249</td><td>178 257</td><td>186 265</td><td></td></t<>		115 194	123 202	131 210	139 218	147 225	155 233	162 241	170 249	178 257	186 265	
5589 663 671 679 687 695 702 710 718 726 733 811 827 834 842 850 888 865 873 881 889 904 912 920 927 935 943 950 958 966 966 974 981 989 997 *005 7012 *020 *028 *035 *043 865 803 819 899 997 *005 966 907 *012 *020 *028 *035 *043 865 803 *097 105 113 120 88 865 803 *097 105 113 120 88 865 803 *097 105 113 120 88 866 804 \$097 *097 105 113 120 80 808 806 \$097 \$097 \$097 \$096 \$092 \$097 \$090 \$092 \$092 \$092 \$092		351 429	359 437	367 445	374 453	382 461	390 468	398 476	406 484	414 492	421 500	
565 896 904 912 920 927 935 943 950 968 966 562 76 061 069 066 074 082 089 097 105 113 120 564 128 136 143 151 159 166 174 182 189 197 566 205 2213 220 228 236 243 251 259 266 274 34 351 32 2.4 4 4 2.4 4 4 2.4 4 5.2 4 4 5.2 4 4 5.2 4 4 5.2 4		663	671	679	687	695	702	710	718	726	733	
564 128 136 143 151 159 166 174 182 189 197 66 266 224 228 236 243 251 259 266 274 2 1.6 866 282 289 297 305 312 320 328 335 343 351 2 1.6 82,4 2 1.6 82,4 2 1.6 82,4 2 1.6 82,4 2 1.6 82,4 2 1.6 82,4 2 1.6 82,4 2 1.6 82,4 2 1.6 82,6 6 6 4 8 496 504 507 6 48,6 504 507 505 504 504 507 505 503 610 618 626 633 641 648 656 504 702 709 717 724 732 732 732 732 732 732 732 732 732 732 732 732 732 732 732 732 732 732		896 974	904 981	912 989	920 997	927 *005	935 *012	943 •020	950 *028	958 *035	966 *043	
567 358 366 374 381 389 397 404 412 420 427 48 486 568 435 442 450 458 465 473 481 488 496 504 67 665 572 580 86 611 619 526 534 542 557 565 572 580 86 694 702 709 717 724 732 75 75 762 700 778 785 793 800 808 86 64 702 709 717 724 732 73 818 823 831 838 846 853 861 868 876 884 574 891 899 906 914 921 929 937 944 952 959 957 760 702 703 100 100 100 100 100 100 100 100 100 <		205	213	220	228	236	243	251	259	266	274	1 0.8
570 587 595 603 610 618 626 633 641 648 656 571 664 671 679 686 694 702 709 717 724 732 740 747 755 762 770 778 785 793 800 808 573 815 823 831 838 846 853 861 868 876 884 574 967 974 982 989 997 905 902 937 944 952 959 576 76 042 050 057 065 072 080 087 095 103 110 577 118 125 133 140 148 155 163 170 178 185 578 193 200 208 215 223 230 238 345 253 260 5781 482 <t< td=""><td></td><td>435</td><td>442</td><td>450</td><td>458</td><td>465</td><td>473</td><td>481</td><td>488</td><td>496</td><td>504</td><td>5 4.0 6 4.8 7 5.6</td></t<>		435	442	450	458	465	473	481	488	496	504	5 4.0 6 4.8 7 5.6
576 967 974 982 989 997 *005 *012 *020 *027 *035 576 76 042 050 057 065 072 080 087 095 103 110 577 118 125 133 140 148 155 163 170 178 185 579 268 275 283 290 298 305 313 320 328 335 580 343 350 358 366 373 380 388 395 403 410 581 418 425 433 440 448 455 462 470 477 485 582 589 597 604 612 619 626 634 21.4 32.1 0.7 782 432 14.2 21.4 32.1 0.7 782 44.2 28.4 28.4 29.4 29.8 29.8 29		664 740	671 747	679 755	686 7 6 2	694 770	702 778	709 785	717 793	724 800	732 808	
578 193 200 208 216 223 230 238 245 253 260 579 268 275 283 290 298 306 313 320 328 335 580 343 350 358 366 373 380 388 395 403 410 581 418 425 433 440 448 455 462 470 477 485 589 587 566 567 574 582 589 597 604 612 619 626 634 21.4 584 641 649 656 664 671 678 686 693 701 708 21.4 2.8 2.1 4 2.8 2.8 2.8 2.1 4 2.8 2.1 4 2.8 2.1 4 2.8 2.1 4 2.8 2.8 2.1 4 2.8 2.8 2.1 4<		967	974	982	989	997	*005	*012	*020	*027	*035	
681 418 425 433 440 448 455 462 470 477 485 7 582 492 500 507 515 522 530 537 545 552 559 1 0,7 583 567 574 582 589 597 604 612 619 626 634 2 1,4 584 641 649 656 664 671 678 686 693 701 708 4 2.1 3 2.1 585 716 723 730 738 745 753 760 768 775 782 6 4.2 8 8 4 2.8 8 6 4.2 8 8 4 2.8 8 6 6.3 77 702 8 6 4.2 7 4.9 8 6 4.2 7 4.9 8 6.3 8 6		193	200	208	215	223 298	230	238 313	245	253	260	
587 864 871 879 886 893 901 908 916 923 930 8 5.6 9 6.3 588 868 893 901 908 916 923 930 8 5.6 9 6.3 589 77 012 019 026 034 041 048 056 063 070 078 590 085 093 100 107 115 122 129 137 144 151 591 159 166 173 181 188 195 203 210 217 225 592 232 240 247 254 262 269 276 283 291 298 593 305 313 320 327 335 342 349 357 364 371 594 452 459 466 474 481 488 495 503 510 517 <		418 492	425 500	433 507	440 515	448 522	455 530	462 537	470 545	477 552	485 559	1 0.7
588 589 938 77 945 610 953 960 967 967 960 975 975 982 989 997 997 907 900 907 907 908 987 907 908 997 907 908 989 997 907 908 997 907 908 907 907 908 989 997 907 908 997 907 908 907 908 907 907 908 989 997 907 908 997 907 908 907 907 908 989 997 997 997 998 997 907 908 997 907 908 997 907 908 989 997 907 908 997 907 908 997 907 908 997 907 908 997 907 908 989 997 907 908 997 907 908 997 907 908 997 907 908 997 908 998 909 908 997 908 998 909 908 998 908 997 908 998 908 998 908 <td></td> <td>716</td> <td>723</td> <td>730</td> <td>738</td> <td>745</td> <td>753</td> <td>760</td> <td>768</td> <td>775</td> <td>782</td> <td>4 2.8 5 3.5 6 4.2 7 4.9</td>		716	723	730	738	745	753	760	768	775	782	4 2.8 5 3.5 6 4.2 7 4.9
591 159 166 173 181 188 195 203 210 217 225 592 232 240 247 254 262 269 276 283 291 298 593 305 313 320 327 335 342 349 357 364 371 594 379 386 393 401 408 415 422 430 437 444 595 452 459 466 474 481 488 495 503 510 517 596 525 532 539 546 554 561 568 576 583 590 597 597 605 612 619 627 634 641 648 656 663 598 670 677 685 692 699 706 714 721 728 <t>735 599 743</t>	1	77 012	945 019	953 026	960	967	975 048	982 056	989 063	997	*004	9 6.3
596 452 459 466 474 481 488 495 503 510 517 596 525 532 539 546 554 561 568 576 583 590 597 597 605 612 619 627 634 641 648 656 663 598 670 677 685 692 699 706 714 721 728 735 599 743 750 757 764 772 779 786 793 801 808		159 232	166 240	173 247	181 254	188 262	195 269	203 276	210 283	217 291	225 298	
598 670 677 686 692 699 706 714 721 728 735 599 743 750 757 764 772 779 786 793 801 808		452	459	466	474	481	488	495	503	510	517	
600 815 822 830 837 844 851 859 866 873 880	١	670 743	677 7 50	685 757	692 764	699 772	706 779	714 786	721 793	728 801	735	
N 0 1 2 3 4 5 6 7 8 9 Prop. Parts	4.											Prop. Parts

550 — Five-Place Common Logarithms — 600

Table 1

600 — Five-Place Common Logarithms — 650

							_		-	_	D 1	N4-
М	0	1	2	3	4	5	6	7	8	9	Prop. 1	ATTS
600 601	77 815 887	822 895	830 902	837 909	844 916	851 924	859 931	866 938	873 945	880 952	l	
602	960	967	974	981	988	996	*003	*010	*017	*025	l	
603	78 032	039	046	053	061	068	075	082	089	097		
604	104	111	118	125	132	140	147	154	161	168	İ	
605 606	176 247	183 254	190 262	197 269	204 276	211 283	219 290	226 297	233 305	240 312	ì	
											•	_
607 608	319 39 0	326 398	333 405	340 412	347 419	355 4 26	362 433	369 440	376 447	383 455	1	8 0.8
609	462	469	476	483	490	497	504	512	519	526	2	1.6 2.4
610	533	540	547	554	561	569	576	583	590	597	2 3 4 5 6 7 8	3.2
611	604	611	618	625	633	640	647	654	661	668	8	4.0 4.8
612 613	675 746	682 753	689 760	696 767	704 774	711 781	718 789	725 796	732 803	739 810	7	3.2 4.0 4.8 5.6 6.4 7.2
											ğ	7.2
614	81 <i>7</i> 888	824 895	831 902	838 909	845 916	852 923	859 930	866 937	873 944	880 951	1	
615 61 6	958	965	972	979	986	993	*000	*007	*014	*021	1	
617	79 029	036	043	050	057	. 064	071	078	085	092	l	
618	099	106	113	120	127	134	141	148	155	162	1	
619	169	176	183	190	197	204	211	218	225	232	ł	
620	239	246	253	260	267	274	281	288	295	302	l	
621	309 379	316 386	323 393	330	337 407	344 414	351 421	358 428	365	372 442	1	
622 623	449	456	463	400 470	477	484	491	498	435 505	511	١	7
624	518	525	532	539	546	553	560	567	574	581	1 2	0.7 1.4
625	588	595	602	609	616	623	630	637	644	650	8	2.1 2.8
626	657	664	6 71	678	685	692	699	706	713	720	1 5	2.1 2.8 3.5 4.2
627	727	734	741	748	754	761	768	775	782	789	2 3 4 5 6 7 8	4.9 5.6 6.3
628 629	796 865	803 872	810 879	817 886	824 893	831 900	837 906	844 913	851 920	858 927	8	6.3
						l					l	
630 631	934 80 003	941 010	948 017	955 024	962 030	969 037	975 044	982 051	989 058	996 065	i	
632	072	079	085	092	099	106	113	120	127	134	l	
633	140	147	154	161	168	175	182	188	195	202	1	
634	209	216	223	229	236	243	250	257	264	271	l	
635 636	277 346	284 353	291 359	298 366	305 373	31 <u>2</u> 380	318 387	325 393	332 400	339	l	
030	340	303		300	3/3	380	207	393	400	407	l	
637 638	414 482	421 489	428 496	434 502	441 509	448 51 6	455	462 530	468	475		6
639	550	557	564	570	5 77	584	523 591	598	536 604	543 611	1 2	0.6 1.2
640	610	625	672	670	645	650	650	cer	C70		3	1.8
641	618 686	62 5 693	632 699	638 706	6 45 713	652 720	659 726	6 6 5 733	672 740	679 747	2 3 4 5 6 7 8	2.4 3.0
642	754	760	767	774	781	787	794	801	808	814	6	3.6
643	821	828	835	841	848	855	862	868	875	882	8 9	4.2 4.8 5.4
644	889	895 963	902 969	909	916	922	929 996	936 •003	943	949		J. 1
645 646	956 81 023	030	037	976 043	983 050	990 057	064	070	*010 077	*017 084	l	
647 648	090 158	097 164	104 171	111 178	117 184	124 191	131 198	137 204	144 211	151 218	l	
649	224	231	238	245	251	258	265	271	278	285	l	
650	291	298	305	311	318	325	331	338	345	351		
N	0	1	2	3	4	8	6	7	8	9	Prop.	Parts

650 — Five-Place Common Logarithms — 700

N	0	1	2	8	4	5	6	7	8	9	Prop. Parts
650	81 291	298	305	311	318	325	331	338	345	351	
651	358	365	371	378	385	391	398	405	411	418	
652	425	431	438	445	451	458	465	471	478	485	
653	491 558	498 564	505 571	511 578	518 584	525 591	531 598	538 604	544 611	551 617	
655	624	631	637	644	651	657	664	671	677	684	
656	690	697	704	710	717	723	730	737	743	750	
657	757	763	770	776	783	790	796	803	809	816	
658	823	829	836	842	849	856	862	869	875	882	
659	889	895	902	908	915	921	928	935	941	948	
661	954	961	968	974	981	987	994	*000	*007	*014	
662	82 020	027	033	040	046	053	060	066	073	079	
663	086 151	092 158	099 164	105 171	112 178	119	125 191	132 197	138 204	145 210	7 1 0.7
664 665 666	217 282 347	223 289 354	230 295 360	236 302 367	243 308 373	249 315 380	256 321 387	263 328 393	269 334 400	276 341 406	2 1.4 8 2.1 4 2.8 5 3.5 6 4.2 7 4.9 8 5.6
667	413	419	426	432	439	445	452	458	465	471	7 4.9
668	478	484	491	497	504	510	517	523	530	536	8 5.6
669	543	549	556	562	569	575	582	588	595	6 01	9 6.3
670	607	614	620	627	633	640	646	653	659	666	
671	672	679	685	692	698	705	711	718	724	730	
672	737	743	750	756	763	769	776	782	789	795	
673	802	808	814	821	827	834	840	847	853	860	
674	866	872	879	885	892	898	905	911	918	924	
675	930	937	943	950	956	963	969	975	982	988	
676	995	•001	*008	*014	•020	*027	*033	*040	*046	•052	
677	83 059	065	072	078	085	091	097	104	110	117	
678	123	129	136	142	149	155	161	168	174	181	
679	187	193	2 00	2 06	213	219	225	232	238	245	
680	251	257	264	270	276	283	289	296	302	308	6
681	315	321	327	334	340	347	353	359	366	372	
682	378	385	391	398	404	410	417	423	429	436	
683 684	442 506	448 512	455 518	461 525	467 531	474 537	480 544	487 550	493 556	499 563	1 0.6 2 1.2 3 1.8
685 686	569 632	575 639	582 645	588 651	594 658	601 664	607 670	613 677	620 683	626 689	2 1.2 3 1.8 4 2.4 5 3.6 7 4.2 8 4.8
687	696	702	708	715	721	727	734	740	746	753	7 4.2
688	759	765	771	778	784	790	797	803	809	816	8 4.8
689	822	828	835	841	847	853	860	866	872	879	9 5.4
690	885	891	897	904	910	916	923	929	935	942	
691	948	954	960	967	973	979	985	992	998	*004	
692	84 011	017	023	029	036	042	048	055	061	067	
693	073	080	086	092	098	105	111	117	123	130	
694 695 696	136 198 261	142 205	148 211 273	155 217 280	161 223 286	167 230 292	173 236 298	180 242 305	186 248 311	192 255	
697 698	323 386	267 330 392	336 398	342 404	348 410	354 417	361 423	367 429	373 435	317 379 442	
699	448	454	460	466	473	479	485	491	497	504	
700	510	516	522	528	535	541	547	553	559	566	
<u> </u>	0	1	2	8	4	5	6	7	8	9	Prop. Parts

Table 1

700 — Five-Place Common Logarithms — 750

-			9	•	4	-	_		_		Dans Banta
N	0	1	2	8	4	5	6	7	8	9	Prop. Parts
700 701	84 510 572	516	522 584	528 590	535 597	541 603	547	553 615	559	566 628	
702	634	578 640	646	652	658	665	609 671	677	621 683	689	ł
703	696	702	708	714	720	726	733	739	745	751	l .
704	757	763	770	776	782	788	794	800	807	813	I
705	819	825	831	837	844	850	856	862	868	874	l
706	880	887	893	899	905	911	917	924	930	936	
707	942	948	954	960	967	973	979	985	991	997	
708	85 003	009	016	022	028	034	040	046	052	058	7
709	065	071	077	083	089	095	101	107	114	120	1 0.7
710	126	132	138	144	150	156	163	169	175	181	2 1.4 3 2.1 4 2.8 5 3.5 6 4.2 7 4.9 8 5.6
711	187	193	199	205	211	217	224	230	236	242	5 3.5
712	248 309	254 315	260 321	266 327	272 333	278 339	285 345	291 352	297 358	303 364	6 4.2
713	309	310	321	321	333	339	340	382	300	304	2 1.4 8 2.1 4 2.8 5 3.5 6 4.2 7 4.9 8 5.6 9 6.3
714	370	376	382	388	394	400	406	412	418	425	9 6.3
715 716	431 491	437 497	443 503	449 509	455 516	461 522	467 528	473 534	479 540	485 546	ł
/16	491	437	803	509	310	522	526	004	010		į.
717	552	558	564	570	576	582	588	594	600	606 667	
718 719	612 673	618 679	625 685	631 691	637 697	643 703	649 709	655 715	661 721	667 727	
1 1											l
720	733	739	745	751	757	763	769	775	781	788	l
721 722	794 854	800 860	806 866	812 872	818 878	824 884	830 890	836 896	842 902	848 908	i _
723	914	920	926	932	938	944	950	956	962	968	6
724	974	980	986	992	998	*004	*010	*016	*022	*028	1 0.6 2 1.2
725	86 034	040	046	052	058	064	070	076	082	088	8 1.8
726	094	100	106	112	118	124	130	136	141	147	5 3.0
727	153	159	165	171	177	183	189	195	201	207	8 1.8 4 2.4 5 3.0 6 3.6 7 4.2 8 4.8
728	213	219	225	231 291	237	243	249	255	261	267	8 4.8 9 5.4
729	273	279	285	291	297	303	308	314	320	326	9 5.4
730	332	338	344	350	356	362	368	374	380	386	
731	392	398	404	410	415	421	427	433	439	445	j
732	451	457	463	469	475	481	487	493	499	504	1
733	510	516	522	528	534	540	546	552	558	564	l
734	570	576	581	587	593	599	605	611	617	623	Ī
735 736	629 688	635 694	641 700	646 705	652 711	658, 717	. 664 723	670 729	676 735	682 741	İ
/36	000	034	700	708	/11	'''	123	129	735	/41	5
737	747	753	759	764	770	776	782	788	794	800	1 0.5
738 739	806 864	812 870	817 876	823 882	829 888	835 894	841 900	847 906	853 911	859 917	2 1.0
	1										4 2.0
740	923	929	935 994	941 999	947	953	958 *017	964 *023	970	976	2 1.0 8 1.5 4 2.0 5 2.5 6 3.0 7 3.5 8 4.0
741 742	982 87 040	988 046	994 052	999 058	*005 064	*011 070	075	081	*029 087	*035 093	7 3.5
743	099	105	111	116	122	128	134	140	146	151	9 4.5
744	157	163	169	175	181	186	192	198	204	210	1
745	216	221	227	233	239	245	251	256	262	268	1
746	274	280	286	291	297	303	309	315	320	326	
747	332	338	344	349	355	361	367	373	379	384	l
748	390	396	402	408	413	419	425	431	437	442	1
749	448	454	460	466	471	477	483	489	495	500	I
750	506	512	518	523	529	535	541	547	552	558	
N	0	1	2	3	4	5	в	7	8	9	Prop. Parts
	1										

700 — Five-Place Common Logarithms — 750

750 — Five-Place Common Logarithms — 800

N	0	1	2	3	4	5	6	7	8	9	Prop. Pr	urts
750	87 506	512	518	523	529	535	541	547	552	558		
751 752	564 622	570 628	676 633 691	581 639	587 64 5	593 651	599 656	604 662	610 668	616 674	i	
753	679	685	691	697	703	708	714	720	726	731		
754	737	743	749	754	760	766	772	777	783	789		
755	795 852	800 858	806 864	812 869	818 875	823 881	829 887	835 892	841 898	846		
756										904	l	
757 758	910 967	915 973	921 978	927 984	933 990	938 996	944 *001	950 *007	955 *013	961 *018		
759	88 024	030	036	041	047	053	058	064	070	076		
760	081	087	093	098	104	110	116	121	127	133		
761	138	144	150 207	156 213	161	167 224	173 230	178	184	190		
762 763	195 252	201 258	264	213 270	218 275	281	287	235 292	241 298	247 304	6	
764	309	315	321	326	332	338	343	349	355	360	1 0.6 2 1.2	
765	366	372	377	383	389	395	400	406	412	417	3 1.8 4 2.4	. '
766	423	429	434	440	446	451	457	463	468	474	2 1.2 3 1.8 4 2.4 5 3.0 6 3.6 7 4.2 8 4.8	
767	480	485	491	497	502	508	513	519	525	530	7 4.2	
768 769	536 593	542 598	547 604	553 610	559 615	564 621	570 627	576 632	581 638	587 643	9 5.4	
770	649	655	660	666	672	677	683	689	694	700		
771	705	711	717	722 779	728	734	739	745	750	756		
772 773	762 818	767 824	773 829	779 835	784 840	790 846	795 852	801 857	807 863	812 868	ŀ	
					_	i						
774 775	874 930	880 936	885 941	891 947	897 953	902 958	908 964	913 969	919 975	925 981		
776	986	992	997	*003	+009	*014	*020	*025	*031	*037		
777	89 042	048	053	059	064	070	076	081	087	092		
778 779	098 154	104 159	109 165	115 170	120 176	126 182	131 187	137 193	143 198	148 204		
				_								
780 781	209 265	215 271	221 276	226 282	232 287	237 293	243 298	248 304	254 310	260 315		
782	321	326	332	337	343	348	354	360	365	371	5	
<i>7</i> 83	376	382	387	393	398	404	409	415	421	426	1 0.5 2 1.0	
784	432	437	443	448	454	459	465	470	476	481	4 2.0	
785 786	487 542	492 548	498 553	504 559	509 564	515 570	520 575	526 581	531 586	537 592	3 1.5 4 2.0 5 2.5 6 3.0 7 3.5 8 4.0	
787	597	603	609	614	620	625	631	636	642	647	7 3.5 8 4.0	
788	653	658	664	669	675	680	686	691	697	702	9 4.5	
789	708	713	719	724	730	735	741	746	752	757		
790	763	768	774	779	785	790	796	801	807	812		
791 792	818 873	823 878	829 883	834 889	840 894	845 900	851 905	856 911	862 916	867 922		
793	927	933	938	944	949	955	960	966	971	977		
794	982	988	993	998	*004	*009	*015	*020	*026	*031		
795 796	90 037 091	042 097	048 102	053 108	059 113	064 119	069 124	075 129	080 135	086 140		
		•				ł			_			
797 798	146 200	151 206	157 211	162 217	168 222	173 227	179 233	184 238	189 244	195 249		
799	255	260	266	271	276	282	287	293	298	304		
800	309	314	320	325	331	336	342	347	352	358		
N	0	1	2	8	4	5	6	7	8	9	Prop. Pa	rte
											Ziop. Pa	

750 — Five-Place Common Logarithms — 800

Table 1 800 — Five-Place Common Logarithms — 850

	110-1 loca Common Logarinas — 830											
77	0	1	2	8	4	5	в	7	8	9	Prop. 1	Parts
800 801 802 803	90 309 363 417 472	314 369 423 477	320 374 428 482	325 380 434 488	331 385 439 493	336 390 445 499	342 396 450 504	347 401 455 509	352 407 461 515	358 412 466 520		
804 805 806	526 580 634	531 585 639	536 590 644	542 596 650	547 601 655	553 607 660	558 612 666	563 617 671	569 623 677	574 628 682		
807 808 809	687 741 795	693 747 800	698 752 806	703 757 811	709 763 816	714 768 822	720 773 827	725 779 832	730 784 838	736 789 84 3		
810 811 812 813	849 902 956 91 009	854 907 961 014	859 913 966 020	865 918 972 025	870 924 977 030	875 929 982 036	881 934 988 041	886 940 993 046	891 945 998 052	897 950 *004 057		6
814 815 816	062 116 169	068 121 174	073 126 180	078 132 185	084 137 190	089 142 196	094 148 201	100 153 206	105 158 212	110 164 217	2 3 4 5 6 7	0.6 1.2 1.8 2.4 5.0 5.6 1.2 1.8
817 818 819	222 275 328	228 281 334	233 286 339	238 291 344	243 297 350	249 302 355	254 307 360	259 312 365	265 318 371	270 323 376	8 4	i.2 i.8 i.4
820 821 822 823	381 434 487 540	387 440 492 545	392 445 498 551	397 450 503 556	403 455 508 561	408 461 514 566	413 466 519 572	418 471 524 577	424 477 529 582	429 482 535 587		
824 825 826	593 645 698	598 651 703	603 656 709	609 661 714	614 666 719	619 672 724	624 677 730	630 682 735	635 687 740	640 693 745		
827 828 829	751 803 855	756 808 861	761 814 866	766 819 871	772 824 876	777 829 882	782 834 887	787 840 892	793 845 897	798 850 903		
830 831 832 833	908 960 92 012 065	913 965 018 070	918 971 023 075	924 976 028 080	929 981 033 085	934 986 038 091	939 991 044 096	944 997 049 101	950 *002 054 106	955 *007 059 111	1 0	5 0.5 1.0
834 835 836	117 169 221	122 174 226	127 179 231	132 184 236	137 189 241	143 195~ 247	148 200 252	153 205 257	158 210 262	163 215 267	2 3 4 5 6 7	l.0 l.5 2.0 2.5 3.0 5.5 4.0
837 838 839	273 324 376	278 330 381	283 335 387	288 340 392	293 345 397	298 350 402	304 355 407	309 361 412	314 366 418	319 371 423	9	4.0 4.5
840 841 842 843	428 480 531 583	433 485 536 588	438 490 542 593	443 495 547 598	449 500 552 603	454 505 557 609	459 511 562 614	464 516 567 619	469 521 572 624	474 526 578 629		
844 845 846	634 686 737	639 691 742	645 696 747	650 701 752	655 706 758	660 711 763	665 716 768	670 722 773	675 727 778	681 732 783		
847 848 849	788 840 891	793 845 896	799 850 901	804 855 906	809 860 911	814 865 916	819 870 921	824 875 927	829 881 932	834 886 937		
850	942	947	952	957	962	967	973	978	983	988		
M.	0	1	2	8	4	8	6	7	8	9	Prop.	Parts

850 — Five-Place Common Logarithms — 900

850 92 942 947 952 957 962 957 962 957 978 983 988 858 852 93 044 049 044 064 055 066 059 075 080 086 099 086 055 080 086 099 075 080 086 099 095 097 912 917 922 927 923 237 242 247 252 258 263 268 273 278 283 283 293 293 294 242 245 245 245 245 245 245 245 245 24	N	0	1	2	8	4	5	6	7	8	9	Prop. Parts
851 993 998 *003 *008 *013 *018 *024 *029 *034 *034 *034 *034 *034 *034 *034 *034												- rope rates
852				90Z 9003	90/ 9008	1013			*029			l
853	852	93 044	049	054					080	085		l
8666	853	095	100	105			120	125	131	136	141	
8666	854	146	151	156	161	166	171	176	181	186	102	l
857		197	202	207	212	217	222	227	232	237	242	
859 399 404 409 414 420 425 430 435 440 445 1 0.5 3.5 440 445 1 0.5 3.5 440 445 1 0.5 3.5 480 486 490 495 4.5 3.5 4.6 500 506 510 516 520 521 536 541 546 591 596 6 3.2 3.2 4.8 485 490 495 4.8 5.2 3.2 4.8 651 656 661 666 671 662 662 631 656 641 646 621 666 671 666 671 676 682 687 792 777	856	247	252	258	263	268	273	278	283	288	293	
859 399 404 409 414 420 425 430 435 440 445 1 0.5 3.5 440 445 1 0.5 3.5 440 445 1 0.5 3.5 480 486 490 495 4.5 3.5 4.6 500 506 510 516 520 521 536 541 546 591 596 6 3.2 3.2 4.8 485 490 495 4.8 5.2 3.2 4.8 651 656 661 666 671 662 662 631 656 641 646 621 666 671 666 671 676 682 687 792 777	057	208	303	308	313	710	323	328	334	330	744	
859 399 404 409 414 420 425 430 435 440 445 1 0.5 3.5 440 445 1 0.5 3.5 440 445 1 0.5 3.5 480 486 490 495 4.5 3.5 4.6 500 506 510 516 520 521 536 541 546 591 596 6 3.2 3.2 4.8 485 490 495 4.8 5.2 3.2 4.8 651 656 661 666 671 662 662 631 656 641 646 621 666 671 666 671 676 682 687 792 777			354		364		374	379	384	389	394	
860 450 455 460 465 470 575 480 485 490 495 3 1.8 2.4 861 861 550 505 510 515 520 521 526 531 536 541 546 5.3 683 601 606 611 616 621 626 631 536 641 646 645 5.3 686 661 666 661 666 661 666 661 666 661 666 661 666 661 666 661 7702 777 772 777 772 777 782 787 792 797 867 862 867 872 877 782 787 792 797 882 887 882 887 882 887 892 897 892 997 897 982 997 997 982 987 992 997 997 992 997							425		435	440		1 0.6
864 651 656 661 666 671 676 682 687 692 697 79 712 717 722 727 732 737 742 747 742 747 782 787 742 747 742 747 782 787 742 747 742 747 782 787 742 747 782 787 742 747 742 747 782 787 742 747 782 882 887 892 887 892 887 892 887 892 987 992 997 887 882 887 892 997 997 982 987 992 997 887 897 992 997 887 892 997 997 882 886 691 096 18 1 0.6 18 16 16 16 16 11 126 221 226 231 236	900	450	455	460	465	470	475	490	495	400	405	8 1.8
864 651 656 661 666 671 676 682 687 692 697 79 712 717 722 727 732 737 742 747 742 747 782 787 742 747 742 747 782 787 742 747 742 747 782 787 742 747 782 787 742 747 742 747 782 787 742 747 782 882 887 892 887 892 887 892 887 892 987 992 997 887 882 887 892 997 997 982 987 992 997 887 897 992 997 887 892 997 997 882 886 691 096 18 1 0.6 18 16 16 16 16 11 126 221 226 231 236		500										4 2.4
864 651 656 661 666 671 676 682 687 692 697 79 712 717 722 727 732 737 742 747 742 747 782 787 742 747 742 747 782 787 742 747 742 747 782 787 742 747 782 787 742 747 742 747 782 787 742 747 782 882 887 892 887 892 887 892 887 892 987 992 997 887 882 887 892 997 997 982 987 992 997 887 897 992 997 887 892 997 997 882 886 691 096 18 1 0.6 18 16 16 16 16 11 126 221 226 231 236		551		561	566	571	576	<i>5</i> 81	<i>5</i> 86	591		6 3.6
864 651 656 661 666 671 676 682 687 692 697 79 712 717 722 727 732 737 742 747 742 747 782 787 742 747 742 747 782 787 742 747 742 747 782 787 742 747 782 787 742 747 742 747 782 787 742 747 782 882 887 892 887 892 887 892 887 892 987 992 997 887 882 887 892 997 997 982 987 992 997 887 897 992 997 887 892 997 997 882 886 691 096 18 1 0.6 18 16 16 16 16 11 126 221 226 231 236	863	601	606	611	616	621	626	631	636	641	646	7 4.2
866 702 707 712 717 722 727 732 737 742 747 788 788 792 797 867 792 777 782 787 792 797 867 792 797 782 787 792 797 782 787 792 797 797 782 787 792 797 797 792 887 892 887 892 887 892 887 892 887 892 887 892 887 992 997 992 997 982 987 992 997 992 997 982 986 992 997 992 997 982 986 992 997 992 997 982 986 992 997 992 997 982 986 991 996 987 992 997 982 987 992 997 982 987 992 997 997 <th>864</th> <td>651</td> <td>656</td> <td>661</td> <td>666</td> <td>671</td> <td>676</td> <td>682</td> <td>687</td> <td>602</td> <td>697</td> <td>9 5.4</td>	864	651	656	661	666	671	676	682	687	602	697	9 5.4
866 752 757 762 767 772 777 782 787 792 797 867 852 857 812 817 822 827 832 837 842 847 869 902 907 912 917 922 927 932 937 942 947 870 94 002 007 012 017 022 027 032 037 042 047 871 872 868 806 807 962 967 972 077 982 987 992 997 872 873 101 106 111 116 121 126 131 136 141 146 145 874 151 156 161 166 171 176 181 186 191 196 31.5 876 250 255 266 266 267 270 276 280 285 290 295 52.5 6 3.0 3.1 31				712		722	727	732		742		
868 869 902 907 912 917 922 877 882 887 892 897 870 952 957 962 962 920					767	772				792	797	
868 869 902 907 912 917 922 877 882 887 892 897 870 952 957 962 962 920	067	902	907	012	017	622	927	972	977	949	047	
869 902 907 912 917 922 927 932 937 942 947 870 952 957 962 967 972 027 032 037 042 047 871 94 002 057 062 067 072 077 082 086 091 096 873 101 106 111 116 121 126 131 136 141 146 874 151 156 161 166 171 176 181 186 191 196 3 1.5 876 250 255 260 265 270 275 280 286 290 295 5 2.5 9.5 3.5 30 325 330 335 340 345 8 4.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0<	868					872	877	882		892	897	
871 880		902	907	912	917	922	927		937	942		
871 880	050	000	057	062	067	072	077	002	007	000	007	
872 062 067 062 067 072 077 082 086 091 096 098 098 098 098 098 096		952	967	012	017	022	027	032		042	997	
873	872		057	062	067	072	077	082		091	096	5
878	873	101	106	111	116	121	126	131	136	141		1 0.5
878	074	151	156	161	166	171	176	101	196	101	106	2 1.0
878								231				4 2.0
878						270		280		290		8 2.5 8 30
878	077	700	705	710	71.	720	725	770	275	740	745	7 3.5
880						369	374	379	384			8 4.0
881	879	399		409		419		429	433	438		00
881	اموما	440	457	450	467	460	477	470	497	400	407	
884 645 650 655 660 665 670 675 680 685 689 885 694 699 704 709 714 719 724 729 734 738 787 886 743 748 753 758 763 768 773 778 783 787 887 792 797 802 807 812 817 822 827 832 836 811 846 851 856 861 866 871 876 880 885 890 895 900 905 910 915 919 924 929 934 4 1.6 2 0.8 891 892 893 998 9022 907 907 9012 9017 9022 9027 9032 893 984 993 998 9002 907 9012 9017 9022 9027 9032 893 986 903 995 900 905 910 915 919 919 924 929 934 4 1.6 5 20 893 985 900 905 910 915 919 919 924 929 934 4 1.6 5 20 893 988 993 998 902 907 9012 9017 9022 9027 9032 893 985 903 998 903 908 908 903 908 908 908 908 908 908 908 908 908 908		498	503	507	512	517	522	527		537		
884 645 650 655 660 665 670 675 680 685 689 885 694 699 704 709 714 719 724 729 734 738 787 886 743 748 753 758 763 768 773 778 783 787 887 792 797 802 807 812 817 822 827 832 836 811 846 851 856 861 866 871 876 880 885 890 895 900 905 910 915 919 924 929 934 4 1.6 2 0.8 891 892 893 998 9022 907 907 9012 9017 9022 9027 9032 893 984 993 998 9002 907 9012 9017 9022 9027 9032 893 986 903 995 900 905 910 915 919 919 924 929 934 4 1.6 5 20 893 985 900 905 910 915 919 919 924 929 934 4 1.6 5 20 893 988 993 998 902 907 9012 9017 9022 9027 9032 893 985 903 998 903 908 908 903 908 908 908 908 908 908 908 908 908 908	882	547	552	557	562	567	571	576	581	<i>5</i> 86	591	
886 743 748 763 768 763 778 778 783 787 887 792 797 802 807 812 817 822 827 832 836 888 841 846 851 856 861 866 871 876 880 885 83 12 4 10 4 2 0.8 885 880 885 880 885 880 885 880 885 890 890 900 900 915 915 919 924 929 934 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 2.2 8 3.2	883	596	601	606	611	616	621	626	630	635	640	
886 743 748 763 768 763 778 778 783 787 887 792 797 802 807 812 817 822 827 832 836 888 841 846 851 856 861 866 871 876 880 885 83 12 4 10 4 2 0.8 885 880 885 880 885 880 885 880 885 890 890 900 900 915 915 919 924 929 934 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 2.2 8 3.2	884	645	650	655	660	665	670	675	680	685	680	
886 743 748 763 768 763 778 778 783 787 887 792 797 802 807 812 817 822 827 832 836 888 841 846 851 856 861 866 871 876 880 885 83 12 4 10 4 2 0.8 885 880 885 880 885 880 885 880 885 890 890 900 900 915 915 919 924 929 934 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 4 1.6 5 2.0 2.2 8 3.2		694	699		709			724		734		
893	886	743	748	753	758		768	773	778	783	787	4
893	997	702	707	802	207	212	817	822	827	832	836	1 0.4
893	888									880		2 0.8
893		890		900				919	924	929		4 1.6
893	900	070	044	040	054	050	067	069	077	070	007	5 2.0 6 2.4
893						*007	*012			*027		7 2.8
894 134 139 143 148 153 158 163 168 173 177 895 182 187 192 197 202 207 211 216 221 226 896 231 236 240 245 250 255 260 265 270 274 897 279 284 289 294 299 303 308 313 318 323 898 328 532 337 342 347 352 357 361 366 371 899 376 381 386 390 395 400 405 410 415 419 900 424 429 434 439 444 448 453 458 463 468	892	95 036	041	046	051	056	061	066	071	075	080	8 3.2
895 182 187 192 197 202 207 211 216 221 226 896 231 236 240 245 250 255 260 265 270 274 897 279 284 289 294 299 303 308 313 318 323 898 328 332 337 342 347 352 357 361 366 371 899 376 381 386 390 395 400 405 410 415 419 900 424 429 434 439 444 448 453 458 463 468	893	085	090	095	100		109	114	119	124	129	
895 182 187 192 197 202 207 211 216 221 226 896 231 236 240 245 250 255 260 265 270 274 897 279 284 289 294 299 303 308 313 318 323 898 328 332 337 342 347 352 357 361 366 371 899 376 381 386 390 395 400 405 410 415 419 900 424 429 434 439 444 448 453 458 463 468	804	134	139	143	148	153	158	163	168	173	177	1
896 231 236 240 245 250 255 260 265 270 274 897 279 284 289 294 299 303 308 313 318 323 898 328 532 337 342 347 352 357 361 366 371 899 376 381 386 390 395 400 405 410 415 419 900 424 429 434 439 444 448 453 458 463 468	895	182	187	192	197	202	207	211	216	221	226	1
899 376 381 386 390 395 400 405 410 415 419 900 424 429 434 439 444 448 453 458 463 468	896		236	240			255	260	265	270	274	
899 376 381 386 390 395 400 405 410 415 419 900 424 429 434 439 444 448 453 458 463 468	807	270	284	280	204	200	303	308	313	318	323	i
899 376 381 386 390 395 400 405 410 415 419 900 424 429 434 439 444 448 453 458 463 468	898	328	332				352	357	361	366	371	
	899			386	390	395	400				419	l
N 0 1 2 3 4 5 6 7 8 9 Prop. Parta	900	424	429	434	439	444	448	453	458	463	468	
	M	0	1	2	8	4	5	6	7	8	9	Prop. Parts

850 — Five-Place Common Logarithms — 900

900 — Five-Place Common Logarithms — 950

Table 1

N	0	1	2	8	4	5	6	7	8	9	Prop. Parts
		429									Flop. Faits
900 901	95 424 472	477	434 482	439 487	444 492	448 497	453 501	458 506	463 511	468 516	
902	521	525	530	535	540	545	550	554	559	564	l .
903	569	574	578	583	588	593	598	602	607	612	
		C00	coc	C=1	CTC			~~~			
904 905	617 665	622 670	626 674	631 679	636 684	641 689	646 694	650 698	655 703	660 708	
906	713	718	722	727	732	737	742	746	751	756	
	,	-									
907	761	766	770	775 823	780	785	789	794	799	804	
908	809	813 861	818 866	823 871	828	832 880	837 885	842 890	847 895	852	
909	856	901	000	0/1	875	000	000	090	696	899	
910	904	909	914	918	923	928	933	938	942	947	
911	952	957	961	966	971	976	980	985	990	995	ŀ
912	999	*004	*009	*014	*019	*023	*028	*033	*038	*042	5
913	96 047	052	057	061	066	071	076	080	085	090	1 0.5
914	095	099	104	109	114	118	123	128	133	137	2 1.0
915	142	147	152	156	161	166	171	175	180	185	8 1.5
916	190	194	199	204	209	213	218	223	227	232	5 2.5
		0.40	246	0.57	256	263	265	270	000	000	2 1.0 8 1.5 4 2.0 5 2.5 6 3.0 7 3.5 8 4.0
917 918	237 284	242 289	246 294	251 298	256 303	261 308	265 313	270 317	275 322	280 327	8 40
919	332	336	341	346	350	355	360	365	369	374	9 4.5
920	379	384	388	393	398	402	407	412	417	421	
921	426	431	435	440	445	450 497	454 501	459 506	464 511	468	•
922 923	473 520	478 525	483 530	487 534	492 539	544	548	553	558	515 562	
7	020	0.0		001	005		0-0		000	002	
924	567	572	577	581	586	591	595	600	605	609	
925	614	619	624	628	633	638	642	647	652	656	
926	661	666	670	675	680	685	689	694	699	703	
927	708	713	717	722	727	731	736	741	745	750	
928	755	759	764	769	774	778	783	788	792	797	
929	802	806	811	816	820	825	830	834	839	844	
930	040	853	858	969	867	872	876	881	886	890	
931	848 895	900	904	862 909	914	918	923	928	932	937	
932	942	946	951	956	960	965	970	974	979	984	4
933	988	993	997	*002	+007	*011	*016	*021	*025	*030	1 0.4
ا ۔۔۔ ا			044	040	^	000	067	000	050	077	2 0.8 3 1.2
934 935	97 035 081	039 086	044 090	049 095	053 100	058 104-	063 109	067 114	072 118	077 123	4 1.6
936	128	132	137	142	146	151	155	160	165	169	5 2.0
											8 1.2 4 1.6 5 2.0 6 2.4 7 2.8 8 3.2
937	174	179	183	188	192	197	202	206	211	216	8 3.2 9 3.6
938	220	225 271	230 276	234 280	239 285	243 290	248 294	253 299	257 304	262 308	9.0
939	267	2/1	2/0	200	200	290	474	479	304	300	
940	313	317	322	327	331	336	340	345	350	354	ŀ
941	359	364	368	327 373 419	377	382	387	391	396	400	l
942	405	410	414	419	424	428	433	437	442	447	1
943	451	456	460	465	470	474	479	483	488	493	
944	497	502	506	511	516	520	52 5	529	534	539	ł
945	543	548	552	557	562	566	571	575	580	585	ŀ
946	589	594	598	603	607	612	617	621	626	630	l
947	670	640	644	649	627	658	663	667	672	676	l
947	635 681	685	690	695	653 699	704	708	713	717	722	
949	727	731	736	740	745	749	754	759	763	768	
950	772	777	782	786	791	795	800	804	809	813	
<u>N</u>	0	1	2	8	4	5	6	7	8	9	Prop. Parts
_^*		-	~		-						

950 — Five-Place Common Logarithms — 1000

27 832 836 841 845 850 856 859 73 877 882 886 891 896 900 905 18 923 928 932 937 941 946 950 64 968 973 978 982 987 991 996 09 014 019 023 028 032 037 041 55 059 064 068 073 078 082 087 09 105 109 114 118 123 127 132 46 150 155 159 164 168 173 177 91 195 200 204 209 214 218 223 36 241 245 250 254 259 263 268	850 855 896 900 941 946 987 991 032 037 078 082 123 127 168 173	845 850 891 896 937 941 982 987 028 032 073 078	841 886 932 978 023	836 882	786 832 877	782 827	777	97 772	950
09 014 019 023 028 032 037 041 55 059 064 068 073 078 082 087 00 105 109 114 118 123 127 132 46 150 155 159 164 168 173 177 91 195 200 204 209 214 218 223 36 241 245 250 254 259 263 268	032 037 078 082 123 127 168 173	028 032 073 078	023		923	873 918	823 868 914	818 864 909	951 952 953
46 150 155 159 164 168 173 177 91 195 200 204 209 214 218 223 36 241 245 250 254 259 263 268	168 173	118 127	000	019	014	964 009 055	959 005 050	955 98 000 046	954 955 956
36 241 245 250 254 259 263 268		164 168	159	155	150	100 146 191	096 141 186	091 137 182	957 958 959
27 331 336 340 345 349 354 358 72 376 381 385 390 394 399 403 5	304 308 349 354	299 304 345 349	295 340	290 336	286 331	236 281 327 372	232 277 322 367	227 272 318 363	960 961 962 963
62 466 471 475 480 484 489 493 8 1.5	484 489	480 484	430 475 520	471	466	417 462 507	412 457 502	408 453 498	964 965 966
97 601 605 610 614 619 623 628 8 4.0 41 646 650 655 659 664 668 673 9 4.5	619 623	614 619 659 664	610 655	605 650	601	552 597 641	547 592 637	543 588 632	967 968 969
31 735 740 744 749 753 758 762 76 780 784 789 793 798 802 807	753 758 798 802	749 753 793 798	744 789	740 784	735 780	686 731 7 76 820	682 726 771 816	677 722 767 811	970 971 972 973
09 914 918 923 927 932 936 941	932 936	927 932	923	918	914	865 909 954	860 905 949	856 900 945	974 975 976
43 047 052 056 061 065 069 074	065 069	061 065	056	052	047	998 043 087	994 038 083	989 99 034 078	977 978 979
76 180 185 189 193 198 202 207 202 224 229 233 238 242 247 251 4	198 202 242 247	193 198 238 242	189 233	185 229	180 224	131 176 220 264	127 171 216 260	123 167 211 255	980 981 982 983
52 357 361 366 370 374 379 383 4 1.6	374 379	370 374	366	361	357	308 352 396	304 348 392	300 344 388	984 985 986
84 489 493 498 502 506 511 515 n 36	506 511	502 506	498		489	441 484 528	436 480 524	432 476 520	987 988 989
616 621 625 629 634 638 642 647 660 664 669 673 677 682 686 691	638 642 682 686	634 638 677 682	629 673	625 669	621 664	572 616 660 704	568 612 656 6 99	564 607 651 695	990 991 992 993
91 795 800 804 808 813 817 822 335 839 843 848 852 856 861 865	813 817 856 861	808 813 852 856	804 848	800 843	795 839	747 791 835	743 787 830	739 782 826	994 995 996
922 926 930 935 939 944 948 962 978 983 987 991 996	944 948 987 991	939 944 983 987	935 978	930 974	926 970	878 922 965	874 917 961	870 913 957	997 998 999
						2	004 1	00 000	1000 N

950 — Five-Place Common Logarithms — 1000

453

TABLE 2 **Natural Trigonometric Functions**

0°

′	Sin	Tan	Ctn	Cos	′
Ó	.00000	.00000		1.0000	60
1 2	.00029	.00029	3437.7 1718.9	1.0000	59 58
2 3	.00087	.00038	1145.9	1.0000	57
4	.00116	.00116	859.44	1.0000	56
5	.00145	.00145	687.55	1.0000	55
6	.00175	.00175	687.55 572.96	1.0000	54
1 7 I	.00204	.00204	491.11	1.0000	53
8	.00233	.00233	491.11 429.72 381.97	1.0000	52
9	.00262	.00262	381.97	1.0000	51
10	.00291	.00291	343.77	1.0000	50
11	.00320	.00320	312.52	.99999	49 48
12 13	.00349	.00349	286.48 264.44	.99999 .99999	47
14	.00407	.00378	245.55	.99999	46
15	.00436	.00436	229.18	.99999	45
16	.00465	.00465	214.86	.99999	44
17	.00495	.00495	202.22	.99999	43
18	.00524	.00524	190.98	.99999	42
19	.00553	.00553	180.93	.99998	41
20	.00582	.00582	171.89	.99998	40
21	.00611	.00611	163.70 156.26	.99998	39
22 23	.00640	.00640	156.26	.99998	38
23	.00669	.00669	149.47 143.24	.99998	37 36
24	.00698	.00698		.99998	
25	.00727	.00727	137.51	.99997	35
26	.00756	.00756	132.22 127.32	.99997 .99997	34 33
27 28	.00785	.00785	122.77	.99997	32
29	.00844	.00844	118.54	.99996	31
30	.00873	.00873	114.59	.99996	30
31	.00902	.00902	110.89	.99996	29
32	.00931	.00931	107.43	.99996	28
33	.00960	.00960	104.17	.99995	27
34	.00989	.00989	101.11	.99995	26
35	.01018	.01018	98.218	.99995	25
36 37	.01047	.01047	95.489	.99995	24
37	.01076	.01076	92.908	.99994	23 22
38 39	.01105	.01105	90.463 88.144	.99994	21
				.99993	20
40 41	.01164	.01164 .01193	85.940 83.844	.99993	19
42	.01222	.01222	81.847	.99993	18
43	.01251	.01251	79.943	.99992	17
44	.01280	.01280	78.126	.99992	16
45	.01309	.01309	76.390	.99991	15
46	.01338	.01338	74.729	.99991	14
47	.01367 .01396	.01367	73.139	.99991	13 12
48 49	.01396	.01396	71.615 70.153	.99990	12
50	.01454	.01455 .01484	68.750	.99989	10
51 52	.01483 .01513	.01464	67.402 66.105	.99989	8
53	.01542	.01542	64.858	.99988	7
54	.01571	.01571	63.657	.99988	6
55	.01600	01600	62,499	.99987	5
56	.01629	.01629	61.383	.99987	4
57	.01658	.01658	61.383 60.306 59.266	.99986	3
58	.01687	.01687	59.266	.99986	3 2 1
59 60	.01716 .01745	.01716 .01746	58.261 57.290	.99985 .99985	l o
-					1
Ľ	Cos	Ctn	Tan	Sin	Ľ

`	Sin	Tan	Ctn	Cos	′
0	.01745	.01746	57.290	.99985	60
1	.01774	.01775	90.331	.99984	59
2 3	.01803	.01804 .01833	55.442 54.561	.99984	58 57
4	.01862	.01862	53.709	.99983	56
5	.01891	.01891	52.882	.99982	55
6	.01920	.01920	52.081	.99982	54
7 8	.01949	.01949	51.303	.99981	53 52
ိ	.02007	.02007	50.549 49.816	.99980	51
10	.02036	.02036	49.104	.99979	50
11	.02065	.02066	48.412	.99979	49
12	.02094	.02095 .02124	47.740 47.085	.99978	48
13 14	.02123	.02124	46.449	.99977	47 46
15	.02181	.02182	45.829	.99976	45
16	02211	.02211	45.226	.99976	44
17	.02240	.02240	44.639	.99975	43 42
18	.02269	.02269	44.066	.99974	42 41
19		.02298	43.508	.99974	
20 21	.02327 .02356	.02328	42.964 42.433	.99973 .99972	40 39
22	.02385	.02386	41.916	.99972	38
23	.02414	.02415	41.411	.99971	37
24	.02443	.02444	40.917	.99970	36
25	.02472	.02473 .02502	40.436	.99969	35
26 27	.02530	.02502	39.965 39.506	.99968	34
28	.02560	.02560	39.057	.99967	34 33 32
29	.02589	.02589	38.618	.99966	31
30	.02618	.02619	38.188	.99966	30
31 32	.02647 .02676	.02648 .02677	37.769 37.358	.99965	29 28
33	.02705	.02706	36.956	.99963	27
34	.02734	.02735	36.563	.99963	26
35	.02763	.02764	36.178	.99962	25
36 37	.02792	.02793	35.801	.99961 .99 9 60	24 23
38	.02850	.02822	35.431 35.070	.99959	22
39	.02879	.02881	34.715	.99959	21
40	.02908	.02910	34.368	.99958	20
41	.02938	.02939	34.027	.99957	19
42 43	.02967 .02996	.02968 .02997	33.694 33.366	.99956 .99955	18 17
44	.03025	.03026	33.045	.99954	16
45	.03054	.03055		.99953	15
46	.03083 .03112	.03084	32.730 32.421	.99952	14
47 48	.03112	.03114	32.118	.99952 .99951	13 12
49	.03141	.03143	31.821 31.528	.99950	11
50	.03199	.03201	31.242	.99949	10
51	.03228	.03230	30.960	.99948	9
52	.03257	.03259	30.683	.99947	8 7
53 54	.03286 .03316	.03288	30.412 30.145	.99946 .99945	6
55	.03345	.03346	29.882	.99944	5
56	.03374	.03376	29.624	.99943	4
57	.03403	.03405	29.371	.99942	3 2
58 59	.03432 .03461	.03434	29.122 28.877	.99941 .99940	2 1
60	.03490	.03492	28.636	.99939	ò
1	Cos	Ctn	Tan	Sin	,

88° 89°

2°

,	Sin	Tan	Ctn	Cos	'
Ō	.03490	.03492	28.636	.99939	60
1 2	.03519	.03521	28.399 28.166	.99938 .99937	59 58
3	.03577	.03579	27.937	.99936	57
4	.03606	.03609	27.712	.99935	56
6	.03635	.03638	27.490 27.271 27.057 26.845	.99934	55 54
7	.03693	.03667 .03696	27.057	.99932 .99931	53 52
8	.03723	.03725	26.845	.99931	52 51
9	.03752	.03754	26.637	.99930	20
10 11	.03781	.03783	26.432 26.230	.99929 .99927	49
12	.03839	.03842	26.031	.99926	48
13 14	.03868	.03871	25.835 25.642	.99925	47 46
15	.03926	.03929		.99923	45
16	.03955	.03958	25.452 25.264	.99922	44
17	.03984	.03987	25.080	.99921 .99919	43 42
18 19	.04013	.04016	24.898 24.719	.99919	41
20	.04071	.04075	24.542	.99917	40
21	04100	.04104	24.368	.99916	39
22	.04129	.04133 .04162	24.196 24.026	.99915 .99913	38 37
23 24	.04188	.04191	23.859	.99912	36
25	.04217	.04220	23.695	.99911	35
26	.04246	.04250	23.532 23.372 23.214	.99910	34
27 28	.04275	.04279 .04308	23.372	.99909 .99907	33 32
29	.04333	.04337	23.058	.99906	31
30	.04362	.04366	22.904	.99905	80
31 32	.04391	.04395 .04424	22.752 22.602	.99904	29 28
33	.04449	.04454	22.454	.99901	27
34	.04478	.04483	22.308	.99900	26
85	.04507	.04512	22.164	.99898	25
36 37	.04536 .04565	.04541 .04570	22.022 21.881	.99897 .99896	24 23
38	.04594	.04599	21.743	.99894	22
39	.04623	.04628	21.606	.99893	21
40 41	.04653 .04682	.04658 .04687	21.470 21.337 21.205	.99892 .99890	20
42	.04711	.04716	21.205	.99889	18
43	.04740	.04745	21.075	.99888	17
44	.04769	.04774	20.946	.99886	16
45 46	.04798 .04827	.04803 .04833	20.819 20.693	.99885 .99883	15 14
47	.04856	.04862	20.569	.99882	13
48 49	.04885	.04891 .04920	20.446 20.325	.99881	12 11
50	.04943	.04949	20.206	.99878	10
51	.04972	.04978	20.087	.99876	9
52	.05001	.05007	19.970	.99875	8
53 54	.05030 .05059	.05037	19.855 19.7 40	.99873 .99872	7
55	.05088	.05095	19.627	.99870	5
56 57	.05117	05124	19.516	.99869	4
57 58	.05146 .05175	.05153 .05182	19.405 19.296	.99867 .99866	3
59	.05205	.05212	19.188	.99864	1
60	,05234	.05241	19.081	.99863	0
	Cos	Ctn	Tan	Sin	,

		3	•		
,	Sin	Tan	Ctn	Cos	•
9	.05234	.05241 .05270	19.081	.99863 .99861	60 59
1 2	.05263 .05292	.05299	18.976 18.871	.99860	58
3	.05321	.05328 .05357	18.768 18.666	.99858 .99857	57 56
5	.05379	.05387	18.564	.99855	55
6	.05408	.05416 .05445	18.464	.99854 .99852	54 53
8	.05466	.05474	18.366 18.268 18.171	.99851	52 51
10	.05524	.05503	18 075	.99847	50
11	.05553	.05562	17.980	.99846 .99844	49 48
12 13	.05582 .05611	.05591 .05 620	17.980 17.886 17.793 17.702	.99842	47
14 15	.05640	.05649	17.702	.99841	46
16	.05669 .05698	.05678 .05708	17.611 17.521 17.431 17.343 17.256	99838	45 44
17	.05727 .05756	.05708 .05737 .05766	17.431	.99836 .99834	43 42
19	.05785	.05795		.99833	41
20 21	.05814 .05844	.05824 .05854	17.169 17.084	.99831 .99829	40
22	.05873	.05883	16.999	.99827	39 38
23 24	.05902	.05912	16.915 16.832	.99826 .99824	37 36
25	.05960	.05970	16.750	.99822	32
26 27	.05989	.05999	16.668 16.587	.99821 .99819	34 33
28 29	.06047	.06058	16.507	.99817 .99815	32 31
30	.06105	.06087	16.428 16.350	.99813	30
31	.06134	.06145	16.272	.99812	29
32 33	.06163	.06175 .06204	16.195 16.119	.99810 .99808	28 27
34	.06221	.06233	16.043	.99806	26
36	.06250 .06279	.06262 .06291	15.969 15.895	.99804 .99803	25 24
37 38	.06308	.06321 .06350 .06379	15.821 15.748	.99801 .99799	23 22
39	.06366	.06379	15.676	.99797	21
40 41	.06395 .06424	.06408 .06438	15.605 15.534	.99795 .99793	20
42	.06453	.06467	15.464	.99792	18
43 44	.06482	.06496	15.464 15.394 15.325	.99790 .99788	17 16
45	.06540	.06554	15.257	.99786	15
46 47	.06569 .06598	.06584	15.189 15.122	.99784 .99782	14 13
48	.06627	.06642	15.056	.99780	12
49 50	.06656	.06671	14.990 14.924	.99778 .99776	11 10
51	.06714	.06730	14.860	.99774	9
52 53	.06743	.06759 .06788	14.795 14.732	.99772	8 7
54	.06773 .06802	.06817	14.669	.99770 .99768	7
55 56	.06831	.06847 .06876	14.606 14.544	.99766 .99764	5
57	.06889	.06905	14 482	.99762	3 2
58 59	.06918 .06947 .06976	.06934	14.421 14.361 14.301	.99760 .99758	1
60		.06993	14.301	.99756	0
'	Cos	Ctn	Tan	Sin	,

4

							<u> </u>						
	Sin	Tan	Ctn	Cos	'		,	Sin	Tan	Ctn	Cos	,	
0 1 2 3 4	.06976 .07005 .07034 .07063 .07092	.06993 .07022 .07051 .07080 .07110	14.301 14.241 14.182 14.124 14.065	.99756 .99754 .99752 .99750 .99748	60 59 58 57 56		0 1 2 3 4	.08716 .08745 .08774 .08803 .08831	.08749 .08778 .08807 .08837 .08866	11.430 11.392 11.354 11.316 11.279	.99619 .99617 .99614 .99612 .99609	60 59 58 57 56	
6 7 8 9	.07121 .07150 .07179 .07208 .07237	.07139 .07168 .07197 .07227 .07256	14.008 13.951 13.894 13.838 13.782	.99746 .99744 .99742 .99740 .99738	55 54 53 52 51		5 6 7 8 9	.08860 .08889 .08918 .08947	.08895 .08925 .08954 .08983 .09013	11.242 11.205 11.168 11.132 11.095	.99607 .99604 .99602 .99599 .99596	55 54 53 52 51	
10 11 12 13 14	.07266 .07295 .07324 .07353 .07382	.07285 .07314 .07344 .07373	13.727 13.672 13.617 13.563 13.510	.99736 .99734 .99731 .99729	50 49 48 47 46		10 11 12 13 14	.09005 .09034 .09063 .09092 .09121	.09042 .09071 .09101 .09130 .09159	11.059 11.024 10.988 10.963 10.918	.99594 .99591 .99588 .99586 .99583	50 49 48 47 46	
15 16 17 18 19	.07411 .07440 .07469 .07498 .07527	.07431 .07461 .07490 .07519	13.467 13.404 13.352 13.300 13.248	.99725 .99723 .99721 .99719 .99716	45 44 43 42 41		15 16 17 18 19	.09150 .09179 .09208 .09237 .09266	.09189 .09218 .09247 .09277 .09306	10.883 10.848 10.814 10.780 10.746	.99580 .99578 .99575 .99572 .99570	45 44 43 42 41	
20 21 22 23 24	.07556 .07585 .07614 .07643 .07672	.07578 .07607 .07636 .07665 .07695	13.197 13.146 13.096 13.046 12.996	.99714 .99712 .99710 .99708 .99705	40 39 38 37 36		20 21 22 23 24	.09295 .09324 .09353 .09382 .09411	.09335 .09365 .09394 .09423 .09453	10.712 10.678 10.645 10.612 10.579	.99567 .99564 .99562 .99559 .99556	40 39 38 37 36	
25 26 27 28 29	.07701 .07730 .07759 .07788 .07817	.07724 .07753 .07782 .07812 .07841	12.947 12.898 12.850 12.801 12.754	.99703 .99701 .99699 .99696	35 34 33 32 31		25 26 27 28 29	.09440 .09469 .09498 .09527 .09556	.09482 .09511 .09541 .09570 .09600	10.546 10.514 10.481 10.449 10.417	.99553 .99551 .99548 .99545 .99542	35 34 33 32 31	
30 31 32 33 34	.07846 .07875 .07904 .07933 .07962	.07870 .07899 .07929 .07958 .07987	12.706 12.659 12.612 12.566 12.520	.99692 .99689 .99687 .99685 .99683	30 29 28 27 26		30 31 32 33 34	.09585 .09614 .09642 .09671 .09700	.09629 .09658 .09688 .09717 .09746	10.385 10.354 10.322 10.291 10.260	.99540 .99537 .99534 .99531 .99528	30 29 28 27 26	
36 36 37 38 39	.07991 .08020 .08049 .08078 .08107	.08017 .08046 .08075 .08104 .08134	12.474 12.429 12.384 12.339 12.295	.99680 .99678 .99676 .99673 .99671	25 24 23 22 21		35 36 37 38 39	.09729 .09758 .09787 .09816 .09845	.09776 .09805 .09834 .09864 .09893	10.229 10.199 10.168 10.138 10.108	.99526 .99523 .99520 .99517 .99514	25 24 23 22 21	
40 41 42 43 44	.08136 .08165 .08194 .08223 .08252	.08163 .08192 .08221 .08251 .08280	12.251 12.207 12.163 12.120 12.077	.99668 .99666 .99664 .99661 .99659	20 19 18 17 16		40 41 42 43 44	.09874 .09903 .09932 .09961 .09990	.09923 .09952 .09981 .10011 .10040	10.078 10.048 10.019 9.9893 9.9601	.99511 .99508 .99506 .99503 .99500	20 19 18 17 16	
46 47 48 49	.08281 .08310 .08339 .08368 .08397	.08309 .08339 .08368 .08397 .08427	12.035 11.992 11.950 11.909 11.867	.99657 .99654 .99652 .99649 .99647	15 14 13 12 11		45 46 47 48 49	.10019 .10048 .10077 .10106 .10135	.10069 .10099 .10128 .10158 .10187	9.9310 9.9021 9.8734 9.8448 9.8164	.99497 .99494 .99491 .99488 .99485	15 14 13 12 11	
50 51 52 53 54	.08426 .08455 .08484 .08513 .08542	.08456 .08485 .08514 .08544 .08573	11.826 11.785 11.745 11.705 11.664	.99644 .99642 .99639 .99637 .99635	10 9 8 7 6		50 51 52 53 54	.10164 .10192 .10221 .10250 .10279	.10216 .10246 .10275 .10305 .10334	9.7882 9.7601 9.7322 9.7044 9.6768	.99482 .99479 .99476 .99473 .99470	10 9 8 7 6	
56 57 58 59 60	.08571 .08600 .08629 .08658 .08687	.08602 .08632 .08661 .08690 .08720	11.625 11.585 11.546 11.507 11.468 11.430	.99632 .99630 .99627 .99625 .99622 .99619	5 4 3 2 1 0		56 57 58 59 60	.10308 .10337 .10366 .10395 .10424	.10363 .10393 .10422 .10452 .10481	9.6493 9.6220 9.5949 9.5679 9.5411	.99467 .99464 .99461 .99458	5 4 3 2 1	
100	.08716	.08749 Ctn	Tan	.99619 Sin	۱÷	ł	100	.10453	.10510 Ctn	9.5144 Tan	.99452 Sin	Ļ	
Ľ	COS	CEL	1411	2111	Ŀ	1	Ŀ	COR	CIE	TEIT	2117	Ĺ	

6°

7°

Table 2

1	Sin	Tan	Ctn	Cos	1	,	Sin	Tan	Ctn	Cos	,
0 1 2 3 4	.10453 .10482 .10511 .10540 .10569	.10510 .10540 .10569 .10599 .10628	9.5144 9.4878 9.4614 9.4352 9.4090	.99452 .99449 .99446 .99443	60 59 58 57 56	0 1 2 3 4	.12187 .12216 .12245 .12274 .12302	.12278 .12308 .12338 .12367 .12397	8.1443 8.1248 8.1054 8.0860 8.0667	.99255 .99251 .99248 .99244 .99240	60 59 58 57 56
5 6 7 8	.10597 .10626 .10655 .10684	.10657 .10687 .10716 .10746	9.3831 9.3572 9.3315 9.3060	.99437 .99434 .99431 .99428	55 54 53 52	5 6789	.12331 .12360 .12389 .12418	.12426 .12456 .12485 .12515	8.0476 8.0285 8.0095 7.9906	.99237 .99233 .99230 .99226	55 54 53 52
9 10 11 12 13	.10713 .10742 .10771 .10800 .10829	.10775 .10805 .10834 .10863 .10893	9.2806 9.2553 9.2302 9.2052 9.1803	.99424 .99421 .99418 .99415	51 50 49 48 47	10 11 12 13	.12447 .12476 .12504 .12533 .12562	.12544 .12574 .12603 .12633 .12662	7.9718 7.9530 7.9344 7.9158 7.8973	.99222 .99219 .99215 .99211 .99208	51 50 49 48 47
14 15 16 17 18	.10858 .10887 .10916 .10945 .10973	.10922 .10952 .10981 .11011 .11040	9.1555 9.1309 9.1065 9.0821 9.0579	.99409 .99406 .99402 .99399 .99396	46 45 44 43 42	14 15 16 17 18	.12591 .12620 .12649 .12678 .12706	.12692 .12722 .12751 .12781 .12810	7.8789 7.8606 7.8424 7.8243 7.8062	.99204 .99200 .99197 .99193 .99189	46 45 44 43 42
19 20 21 22 23	.11002 .11031 .11060 .11089 .11118	.11070 .11099 .11128 .11158 .11187	9.0338 9.0098 8.9860 8.9623 8.9387	.99393 .99390 .99386 .99383 .99380	41 40 39 38 37	19 20 21 22 23	.12735 .12764 .12793 .12822 .12851	.12840 .12869 .12899 .12929 .12958	7.7882 7.7704 7.7525 7.7348 7.7171	.99186 .99182 .99178 .99175 .99171	41 40 39 38 37
24 25 26 27 28	.11147 .11176 .11205 .11234 .11263	.11217 .11246 .11276 .11305	8.9152 8.8919 8.8686 8.8455	.99377 .99374 .99370 .99367	36 35 34 33 32	24 25 26 27 28	.12880 .12908 .12937 .12966 .12995	.12988 .13017 .13047 .13076	7.6996 7.6821 7.6647 7.6473 7.6301	.99167 .99163 .99160 .99156	36 35 34 33 32
29 30 31 32	.11291 .11320 .11349 .11378	.11335 .11364 .11394 .11423 .11452	8.8225 8.7996 8.7769 8.7542 8.7317	.99364 .99360 .99357 .99354 .99351	31 30 29 28	29 30 31 32	.13024 .13053 .13081 .13110	.13106 .13136 .13165 .13195 .13224	7.6129 7.5958 7.5787 7.5618	.99152 .99148 .99144 .99141 .99137	31 30 29 28
33 34 35 36 37	.11407 .11436 .11465 .11494 .11523	.11482 .11511 .11541 .11570 .11600	8.7093 8.6870 8.6648 8.6427 8.6208	.99347 .99344 .99341 .99337 .99334	27 26 25 24 23	33 34 35 36 37	.13139 .13168 .13197 .13226 .13254	.13254 .13284 .13313 .13343 .13372	7.5449 7.5281 7.5113 7.4947 7.4781	.99133 .99129 .99125 .99122 .99118	27 26 25 24 23
38 39 40 41	.11552 .11580 .11609 .11638	.11629 .11659 .11688 .11718	8.5989 8.5772 8.5555 8.5340	.99331 .99327 .99324 .99320	22 21 20 19	38 39 40 41	.13283 .13312 .13341 .13370	.13402 .13432 .13461 .13491	7.4615 7.4451 7.4287 7.4124	.99114 .99110 .99106 .99102	22 21 20 19
42 43 44 45 46	.11667 .11696 .11725 .11754 .11783	.11747 .11777 .11806 .11836 .11865	8.5126 8.4913 8.4701 8.4490 8.4280	.99317 .99314 .99310 .99307 .99303	18 17 16 15 14	42 43 44 45 46	.13399 .13427 .13456 .13485 .13514	.13521 .13550 .13580 .13609 .13639	7.3962 7.3800 7.3639 7.3479 7.3319	.99098 .99094 .99091 .99087 .99083	18 17 16 15 14
47 48 49 50	.11812 .11840 .11869 .11898	.11895 .11924 .11954 .11983	8.4071 8.3863 8.3656 8.3450	.99300 .99297 .99293 .99290	13 12 11 10	47 48 49 50	.13543 .13572 .13600 .13629	.13669 .13698 .13728	7.3160 7.3002 7.2844 7.2687	.99079 .99075 .99071	13 12 11 10
51 52 53 54	.11927 .11956 .11985 .12014	.12013 .12042 .12072 .12101	8.3245 8.3041 8.2838 8.2636	.99286 .99283 .99279 .99276	9 8 7 6 5	51 52 53 54 55	.13658 .13687 .13716 .13744 .13773	.13787 .13817 .13846 .13876	7.2531 7.2375 7.2220 7.2066 7.1912	.99063 .99059 .99055 .99051	9 8 7 6
56 57 58 59	.12043 .12071 .12100 .12129 .12158	.12131 .12160 .12190 .12219 .12249	8.2434 8.2234 8.2035 8.1837 8.1640	.99269 .99265 .99262 .99258	4 3 2 1	56 57 58 59	.13802 .13831 .13860 .13889	.13935 .13965 .13995 .14024	7.1759 7.1607 7.1455 7.1304	.99043 .99039 .99035 .99031	4 3 2 1
60	.12187 Cos	.12278 Ctn	8.1443 Tan	.99255 Sin	,	60	.13917 Cos	.14054 Ctn	7.1154 Tan	.99027 Sin	,

8°

1	'	Sin	Tan	Ctn	Cos	′	
1	0	.13917	.14054	7.1154	.99027	60	
ı	1	.13946	.14084	7.1004	.99023	59	
1	2 3	.13975	.14113 .14143	7.0855 7.07 06	.99019 .99015	58 57	
ı	4	.14033	.14173	7.0558	.99013	56	
I	5	.14061	.14202	7.0410	.99006	55	
ı	6	.14090	.14232	7.0264	.99002	54	
į	7	.14119	14262	7.0117	.98998	53 52	
1	. 8	.14148	.14291	6.9972	.98994		
1	9	.14177	.14321	6.9827	.98990	51	
1	10	.14205	.14351	6.9682	.98986	50	
1	11 12	.14234	.14381 .14410	6.9538	.98982 .98978	49 48	
ı	13	.14263	.14440	6.9395 6.9252	.98973	47	
1	14	.14320	.14470	6.9110	.98969	46	
1	15	.14349	.14499	6.8969	.98965	45	
1	16	.14378	.14529	6.8828	.98961	44	
ı	17	.14407	.14559	6.8687	.98957	43	
1	18	.14436	.14588	6.8548	.98953	42	
ı	19	.14464	.14618	6.8408	.98948	41	
	20	.14493	.14648	6.8269	.98944	40	l
1	21 22	.14522	.14678	6.8131	.98940 .98936	39 38 37	
1	23	.14551	.14707 .14737	6.7994 6.7856	.98931	37	
ı	24	.14608	.14767	6.7720	.98927	36	
1	25	.14637	.14796	6.7584	.98923	35	
	26	.14666	.14826	6.7448	.98919	34	
١	27	.14695	.14856	6.7313	.98914	33 32	١
1	28	.14723	.14886	6.7179	.98910		
	29	.14752	.14915	6.7045	.98906	31	١
1	30	.14781	.14945	6.6912	.98902	30	١
1	31	.14810	.14975	6.6779	.98897	29	ı
ı	32 33	.14838 .14867	.15005 .15034	6.6646 6.6514	.98893 .98889	28 27	ı
١	34	.14896	.15064	6.6383	.98884	26	l
١	35	.14925	.15094	6.6252	.98880	25	l
ı	36	.14954	.15124	6.6122	.98876	24	ı
ì	37	.14982	.15153	6.5992	.98871	23	ı
ĺ	38	.15011	.15183	6.5863	.98867	22	l
	39	.15040	.15213	6.5734	.98863	21	ı
	40	.15069	.15243	6.5606	.98858	20	l
	41	.15097	.15272	6.5478	.98854	19	ı
	42 43	.15126 .15155	.15302 .15332	6.5350 6.5223	.98849	18 17	ı
	44	.15184	.15362	6.5097	.98841	16	١
	45	.15212	.15391	6.4971	.98836	15	ı
	46	.15241	.15421	6.4846	.98832	14	ı
	47	.15270	.15451	6.4721	.98827	13	١
	48	.15299	.15481	6.4596	.98823	12	١
	49	.15327	.15511	6.4472	.98818	11	١
	20	.15356	.15540	6.4348	.98814 .98809	10	۱
	51 52	.15385	.15570 .15 6 00	6.4225 6.4103	.98805	8	۱
	53	.15442	.15630	6.3980	.98800	1 7	۱
	54	.15471	.15660	6.3980 6.3859	.98796	6	I
	55	.15500	.15689	6.3737	.98791	5	۱
	56	.15529	.15719	6.3617 6.3496 6.3376	.98787	4	۱
	57	.15557	.15749	6.3496	.98782	3 2	۱
	58	.15586	.15779	6.3376	.98778	2	۱
	59 60	.15615	.15809 .15838	6.3257 6.3138	.98773 .98769	10	ı
	۳					ŀř	1
	Ĺ	Cos	Ctn	Tan	Sin	Ľ	J

′	Sin	Tan	Ctn	Cos	1
0	.15643	.15838	6.3138	.98769	60
1	.15672	.15868	6.3019	.98764	59
2	.15701	.15898	6.2901	.98760	58
3	.15730	.15928	6.2783	.98755	57
4	.15758	.15958	6.2666	.98751	56
5 6 7 8 9	.15787	.15988	6.2549	.98746	55
	.15816	.16017	6.2432	.98741	54
	.15845	.16047	6.2316	.98737	53
	.15873	.16077	6.2200	.98732	52
	.15902	.16107	6.2085	.98728	51
10	.15931	.16137	6.1970	.98723	50
11	.15959	.16167	6.1856	.98718	49
12	.15988	.16196	6.1742	.98714	48
13	.16017	.16226	6.1628	.98709	47
14	.16046	.16256	6.1515	.98704	46
15	.16074	.16286	6.1402	.98700	45
16	.16103	.16316	6.1290	.98695	44
17	.16132	.16346	6.1178	.98690	43
18	.16160	.16376	6.1066	.98686	42
19	.16189	.16405	6.0955	.98681	41
20	.16218	.16435	6.0844	.98676	40
21	.16246	.16465	6.0734	.98671	39
22	.16275	.16495	6.0624	.98667	38
23	.16304	.16525	6.0514	.98662	37
24	.16333	.16555	6.0405	.98657	36
25	.16361	.16585	6.0296	.98652	35
26	.16390	.16615	6.0188	.98648	34
27	.16419	.16645	6.0080	.98643	33
28	.16447	.16674	5.9972	.98638	32
29	.16476	.16704	5.9865	.98633	31
30	.16505	.16734	5.9758	.98629	30
31	.16533	.16764	5.9651	.98624	29
32	.16562	.16794	5.9545	.98619	28
33	.16591	.16824	5.9439	.98614	27
34	.16620	.16854	5.9333	.98609	26
35	.16648	.16884	5.9228	.98604	25
36	.16677	.16914	5.9124	.98600	24
37	.16706	.16944	5.9019	.98595	23
38	.16734	.16974	5.8915	.98590	22
39	.16763	.17004	5.8811	.98585	21
40	.16792	.17033	5.8708	.98580	20
41	.16820	.17063	5.8605	.98575	19
42	.16849	.17093	5.8502	.98570	18
43	.16878	.17123	5.8400	.98565	17
44	.16906	.17153	5.8298	.98561	16
45	.16935	.17183	5.8197	.98556	15
46	.16964	.17213	5.8095	.98551	14
47	.16992	.17243	5.7994	.98546	13
48	.17021	.17273	5.7894	.98541	12
49	.17050	.17303	5.7794	.98536	11
50	.17078	.17333	5.7694	.98531	10
51	.17107	.17363	5.7594	.98526	9
52	.17136	.17393	5.7495	.98521	8
53	.17164	.17423	5.7396	.98516	7
54	.17193	.17453	5.7297	.98511	6
55 56 57 58 59 60	.17222 .17250 .17279 .17308 .17336	.17483 .17613 .17643 .17573 .17603 .17633	5.7199 5.7101 5.7004 5.6906 5.6809 5.6713	.98506 .98501 .98496 .98491 .98486 .98481	5 4 3 2 1 0
′	: Cos	Ctn	Tan	.96461 Sin	1,

10°

11 0

,	Sin	Tan	Ctn	Cos	,	·	Sin	Tan	Ctn	Cos	1
6	.17365	.17633	5.6713	.98481	60	0	.19081	.19438	5.1446	.98163	60
1 2	.17393	.17663 .17693	5.6617 5.6521	.98476 .98471	59 58	1 2	.19109 .19138	.19468 .19498	5.1366 5.1286	.98157	59
3	.17451	.17723	5.6425	.98466	57	3	.19167	.19529	5.1207	.98152 .98146	58 57
4	.17479	.17753	5.6329	.98461	56	4	.19195	.19559	5.1128	.98140	56
6	.17508 .17537	.17783 .17813	5.6234	.98455 .98450	55 54	6	.19224 .19252	.19589	5.1049 5.0970	.98135	22
7	.17565	.17843	5.6140 5.6045	.98445	53	7	.19281	.19619 .19649	5.0892	.98129 .98124	54 53
8 9	.17594	.17873 .17903	5.5951	.98440 .98435	52	8	.19309	.19680	5.0814	.98118	52
10	.17623	.17903	5.5857 5.5764	.98430	51 50	10	.19366	.19710	5.0736 5.0658	.98112	51 50
Īĭ	.17680	.17963	5.5671	.98425	49	īĭ	.19395	.19770	5.0581	.98101	49
12 13	.17708 .17737	.17993 .18023	5.5578 5.5485	.98420 .98414	48 47	12 13	.19423	.19801	5.0504 5.0427	.98096 .98090	48 47
14	.17766	.18053	5.5393	.98409	46	14	.19481	.19861	5.0350	.98084	46
15	.17794	.18083	5.5301	.98404	45	15	.19509	.19891	5.0273	.98079	45
16 17	.17823	.18113	5.5209 5.5118	.98399	44	16 17	.19538	.19921	5.0197	.98073 .98067	44
18	.17880	.18143 .18173	5.5026	.98389	42	18	.19595	.19982	5.0121 5.0045	.98061	42
19	.17909	.18203	5.4936	.98383	41	19	.19623	.20012	4.9969	.98056	41
20	.17937	.18233 .18263	5.4845	.98378	40	20 21	.19652 .19680	20042	4.9894	.98050	40
21 22	.17966 .17995	.18293	5.4755 5.4665	.98373 .98368	39 38	22	.19709	.20073 .20103	4.9819 4.9744	.98044	39 38
23	.18023	.18323	5.4575	.98362	37	23	.19737	.20133	4.9669	.98033	37
24 25	.18052	.18353	5.4486	.98357	36 85	24 25	.19766	.20164	4.9594	.98027	36
26	.18081	.18384	5.4397 5.4308	.98352 .98347	34	26	.19794 .19823	.20194	4.9520 4.9446	.98021 .98016	35 34
27	.18138	.18444	5.4219	.98341	33	27	.19851	.20254	4.9372	.98010	33
28 29	.18166	.18474	5.4131 5.4043	.98336 .98331	32 31	28 29	.19880	.20285	4.9298 4.9225	.98004 .97998	32 31
80	.18224	.18534	5.3955	.98325	30	30	.19937	.20345	4.9152	.97992	80
31	.18252	.18564	5.3868	.98320	29	31	.19965	.20376	4.9078	.97987	29
32 33	.18281	.18594 .18624	5.3781 5.3694	.98315 .98310	28 27	32 33	.19994	.20406 .20436	4.9006 4.8933	.97981 .97975	28
34	.18338	18654	5.3607	.98304	26	34	.20051	.20466	4.8860	.97969	27 26
85	.18367	.18684	5.3521	.98299	25	85	.20079	.20497	4.8788	.97963	25
36 37	.18395 .18424	.18714 .18745	5.3435 5.3349	.98294 .98288	24 23	36 37	.20108	.20527 .20557	4.8716 4.8644	.97958 .97952	24 23
38	.18452	.18775	5.3263	.98283	22	38	.20165	.20588	4.8573	.97946	22
39	.18481	.18805	5.3178	.98277	21	39	.20193	.20618	4.8501	.97940	21
40	.18509 .18538	.18835 .18865	5.3093 5.3008	.98272 .98267	20	40 41	.20222	.20648	4.8430 4.8359	.97934	20
42	.18567	.18895	5.2924	.98261	18	42	.20279	.20709	4.8288	.97922	18
43 44	.18595	.18925 .18955	5.2839 5.2755	.98256 .98250	17 16	43 44	.20307	.20739	4.8218 4.8147	.97916 .97910	17 16
45	.18652	.18986	5.2672	.98245	15	45	20364	.20800	4.8077	.97905	15
46	.18681	.19016	5.2588	.98240	14	46	.20393	.20830	4.8007	.97899	14
47 48	.18710 .18738	.19046	5.2505 5.2422	.98234 .98229	13 12	47 48	.20421	.20861	4.7937 4.7867	.97893 .97887	13 12
49	.18767	.19106	5.2339	.98223	ii	49	.20478	.20921	4.7798	.97881	ii
50	.18795	.19136	5.2257	.98218	10	50	.20507	.20952	4.7729	.97875	10
51 52	.18824 .18852	.19166 .19197	5.2174 5.2092	.98212 .98207	9 8	51 52	.20535	.20982 .21013	4.7659 4.7591	.97869 .97863	9
53	.18881	.19227	5.2011	.98201	7	53	.20592	.21043	4.7522	.97857	8 7
54	.18910	.19257	5.1929	.98196	6	54	.20620	.21073	4.7453	.97851	6
55 56	.18938	.19287 .19317	5.1848 5.1767	.98190 .98185	8	55	.20649	.21104	4.7385 4.7317	.97845 .97839	5
57	.18995	.19347	5.1686	.98179	3 2	57	.20706	.21164	4.7249	.97833	3
58	.19024	.19378	5.1606 5.1526	.98174	2	58	.20734	.21195	4.7181	.97827	3 2 1
59 60	.19082	.19408	5.1446	.98168 .98163	Ò	59 60	.20791	.21225 .21256	4.7114 4.7046	.97821 .97815	o
1	Cos	Ctn	Tan	Sin	,	,	Cos	Ctn	Tan	Sin	7

12°

1	Sin	Ten	Ctn	Cos	,		,	Sin	Ten	Ctn	Cos	,
6	.20791	.21256	4.7046	.97815	60		0	.22495	.23087	4.3315	97437	60
li	.20820	.21286	4.6979	.97809	59		ì	.22523	.23117	4.3257	.97430	59
2 3	.20848	.21316	4.6912	.97803	58 57		3	.22552	.23148	4.3200 4.3143	.97424 .97417	58 57
4	.20877	.21347 .21377	4.6845 4.6779	.97791	56		4	.22608	.23209	4.3086	.97411	56
5	.20933	.21408	4.6712	.97784	22		8	.22637	.23240	4.3029	.97404	55
6	.20962	.21438	4.6646	.97778	54		6	.22665	.23271	4.2972	.97398	54
7 8	.20990	.21469 .21499	4.6580 4.6514	.97772 .97766	53 52		7 8	.22693	.23301 .23332	4.2916 4.2859	.97391 .97384	53 52
ğ	.21047	.21529	4.6448	.97760	51		ğ	.22750	.23363	4.2803	.97378	51
10	.21076	.21560	4.6382	.97754	50		10	.22778	.23393	4.2747	.97371	50
11 12	.21104 .21132	.21590 .21621	4.6317 4.6252	.97748 .97742	49 48		11 12	.22807 .22835	.23424 .23455	4.2691 4.2635	.97365 .97358	49 48
13	.21161	.21651	4.6187	.97735	47	1	13	.22863	.23485	4.2580	.97351	47
14	.21189	.21682	4.6122	.97729	46		14	.22892	.23516	4.2524	.97345	46
15	.21218	.21712	4.6057	.97723	45		15	.22920	.23547	4.2468	.97338	45
16	.21246	.21743	4.5993 4.5928	.97717 .97711	44		16 17	.22948	.23578	4.2413 4.2358	.97331 .97325	44
18	.21303	.21804	4.5864	.97705	42		18	.23005	.23639	4.2303	.97318	42
19	.21331	.21834	4.5800	.97698	41		19	.23033	.23670	4.2248	.97311	41
20	.21360	.21864	4.5736	.97692	40 39		20 21	.23062	.23700 .23731	4.2193 4.2139	.97304 .97298	40
21 22	.21388	.21895 .21925	4.5673 4.5609	.97686 .97680	38		22	.23118	.23762	4.2139	.97298	39 38
23	.21445	.21956	4.5546	.97673	37		23	.23146	.23793	4.2030	.97284	37
24	.21474	.21986	4.5483	.97667	36		24	.23175	.23823	4.1976	.97278	36
25 26	.21502 .21530	.22017 .22047	4.5420 4.5357	.97661 .97655	35 34		25 26	.23203	.23854	4.1922 4.1868	.97271 .97264	35 34
27	.21559	.22078	4.5294	.97648	33		27	.23260	.23916	4.1814	.97257	33
28	.21587	.22108	4.5232	.97642	32		28	.23288	.23946	4.1760	.97251	32
29	.21616	.22139	4.5169	.97636	31	1	29 30	.23316	.23977	4.1706	.97244	31 30
30 31	.21644 .21672	.22169 .22200	4.5107 4.5045	.97630 .97623	30·		31	.23345	.24008 .24039	4.1653 4.1600	.97237 .97230	29
32	.21701	.22231	4.4983	.97617	28		32	.23401	.24069	4.1547	.97223	28
33 34	.21729 .21758	.22261	4.4922 4.4860	.97611 .97604	27 26		33 34	.23429	.24100	4.1493 4.1441	.97217 .97210	27 26
35	.21786	.22322	4.4799	.97598	25		35	.23486	.24162	4.1388	.97203	25
36	.21814	.22353	4.4737	.97592	24		36	.23514	.24193	4.1335	.97196	24
37	.21843	.22383	4.4676	.97585	23 22		37	.23542	.24223	4.1282 4.1230	.97189	23
38 39	.21871	.22414	4.4615 4.4555	.97579 .97573	21		38 39	.23571	.24285	4.1178	.97182 .97176	22 21
40	.21928	.22475	4.4494	.97566	20		40	.23627	.24316	4.1126	.97169	20
41	.21956	.22505	4.4434	.97560	19		41	.23656	.24347	4.1074	.97162	19
42 43	.21985	.22536 .22567	4.4373 4.4313	.97553 .97547	18 17		42 43	.23684	.24377 .24408	4.1022 4.0970	.97155 .97148	18 17
44	.22013	.22597	4.4253	.97541	16		44	.23740	.24439	4.0918	.97141	16
45	.22070	.22628	4.4194	.97534	15		45	.23769	.24470	4.0867	.97134	15
46	.22098	.22658	4.4134	.97528	14	1	46	.23797	.24501	4.0815	.97127	14
47 48	.22126 .22155	.22689 .22719	4.4075 4.4015	.97521 .97515	13 12		47 48	.23825 .23853	.24532 .24562	4.0764 4.0713	.97120 .97113	13 12
49	.22183	.22750	4.3956	.97508	iī		49	.23882	.24593	4.0662	.97106	îĩ
50	.22212	.22781	4.3897	.97502	10		20	.23910	.24624	4.0611	.97100	10
51 52	.22240 .22268	.22811 .22842	4.3838 4.3779	.97496 .97489	8		51 52	.23938 .23966	.24655 .24686	4.0560	.97093 .97086	8
53	.22297	.22872	4.3721	.97483	7		53	.23995	.24717	4.0459	.97079	7
54	.22325	.22903	4.3662	.97476	6		54	.24023	.24747	4.0408	.97072	6
22	.22353	.22934	4.3604	.97470	8		PP	.24051	.24778 .24809	4.0358 4.0308	.97065	1 2
56 57	.22382	.22964	4.3546 4.3488	.97463 .97457	3		56 57	.24079 .24108	.24840	4.0308	.97058 .97051	3
58	.22438	.23026	4.3430	.97450	3 2 1		58	.24136	.24871	4.0207	.97044	3 2 1
59 60	.22467	.23056	4.3372 4.3315	.97444 .97437			59 60	.24164 .24192	.24902 .24933	4.0158 4.0108	.97037 .97030	lò
7	Cos	Ctn	Tan	Sin	7		7	Cos	Ctn	Tan	Sin	 ,

14

1	01						_	01	-	C4 ::	0	,
	Sin	Tan	Ctn	Cos	<u></u>		<u>`</u>	Sin	Tan	Ctn	Cos	
P	.24192	.24933 .24964	4.0108 4.0058	.97030 .97023	60		0	.25882 .25910	.26795 .26826	3.7321 3.7277	.96593 .96585	60 59
1 2	.24249	.24995	4.0009	.97015	59 58		1 2	.25938	.26857	3.7234	.96578	58
3	.24277	.25026	3.9959	.97008	57		3	.25966	.26888	3.7191	.96570	57
4	.24305	.25056	3.9910	.97001	56	1	4	.25994	.26920	3.7148	.96562	56
5	.24333	.25087	3.9861	.96994	55	1	8	.26022	.26951	3.7105	.96555	55
7	.24362 .24390	.25118 .25149	3.9812 3.9763	.9 6 987	54 53		6	.26050	.26982 .27013	3.7062 3.7019	.96547 .96540	54 53
8	.24418	.25180	3.9714	.96973	52		8	.26107	.27044	3.6976	.96532	52
9	.24446	.25211	3.9665	.96966	51		9	.26135	.27076	3.6933	.96524	51
10 11	.24474	.25242 .25273	3.9617 3.9568	.96959 .96952	50 49		10 11	.26163 .26191	.27107 .27138	3.6891 3.6848	.96517 .96509	50
12	.24531	.25304	3.9520	.96945	48		12	.26219	.27169	3.6806	.96502	48
13	.24559	.25335	3.9471	.96937	47		13	.26247	.27201	3.6764	.96494	47
14	.24587	.25366	3.9423	.96930	46		14	.26275	.27232	3.6722	.96486	46
15	.24615 .24644	.25397 .25428	3.9375 3.9327	.96923	45 44		15 16	.26303	.27263 .27294	3.6680 3.6638	.96479 .96471	45 44
l iř	.24672	.25459	3.9279	.96909	43		17	.26359	.27326	3.6596	.96463	43
18	.24700	.25490	3.9232	.96902	42		18	.26387	.27357	3.6554	.96456	42
19 20	.24728	.25521	3.9184	.96894	41	1	19	.26415	.27388	3.6512	.96448	41
21	.24756 .24784	.25552 .25583	3.9136 3.9089	.96887 .96880	40 39		20 21	.26443	.27419	3.6470 3.6429	.96440 .96433	40 39
22	.24813	.25614	3.9042	.96873	38		22	.26500	.27482	3.6387	.96425	38
23 24	.24841 .24869	.25645 .25676	3.8995 3.8947	.96866 .96858	37 36		23 24	.26528	.27513 .27545	3.6346 3.6305	.96417 .96410	37 36
25	.24897	.25707	3.8900	.96851	35		25	.26584	.27576	3.6264	.96402	35
26	.24925	.25738	3.8854	.96844	34		26	.26612	.27607	3.6222	.96394	34
27	.24954	.25769	3.8807	.96837	33		27	.26640	.27638	3.6181	.96386	33
28 29	.24982 .25010	.25800 .25831	3.8760 3.8714	.96829 .96822	32 31		28 29	.26668 .26696	.27670 .27701	3.6140 3.6100	.96379 .96371	32 31
80	.25038	.25862	3.8667	.96815	30		30	.26724	.27732	3.6059	.96363	30
31	.25066	.25893	3.8621	.96807	29		31	.26752	.27764	3.6018	.96355	29
32 33	.25094 .25122	.25924 .25955	3.8575 3.8528	.96800 .96793	28 27		32 33	.26780 .26808	.27795 .27826	3.5978 3.5937	.96347 .96340	28
34	.25122	.25986	3.8482	.96786	26		34	.26836	.27858	3.5897	.96332	27 26
35	.25179	.26017	3.8436	.96778	25		35	.26864	.27889	3.5856	.96324	25
36	.25207	.26048	3.8391	.96771	24		36	.26892	.27921 .27952	3.5816	.96316	24
37 38	.25235 .25263	.26079 .26110	3.8345 3.8299	.96764 .96756	23 22		37 38	.26920 .26948	.27983	3.5776 3.5736	.96308 .96301	23 22
39	.25291	.26141	3.8254	.96749	21		39	.26976	.28015	3.5696	.96293	21
40	.25320	.26172	3.8208	.96742	20		40	.27004	.28046	3.5656	.96285	20
41 42	.25348 .25376	.26203 .26235	3.8163 3.8118	.96734 .96727	19 18		41 42	.27032 .27060	.28077 .28109	3.5616 3.5576	.96277 .96269	19 18
43	.25404	.26266	3.8073	.96719	17		43	.27088	.28140	3.5536	.96261	17
44	.25432	.26297	3.8028	.96712	16		44	.27116	.28172	3.5497	.96253	16
45	.25460	.26328	3.7983	.96705	15		45	.27144	.28203	3.5457	.96246	15
46 47	.25488	.26359 .26390	3.7938 3.7893	.96697 .96690	14 13		46 47	.27172 .27200	.28234 .28266	3.5418 3.5379	.96238 .96230	14 13
48	.25545	.26421	3.7848	.96682	12		48	.27228	.28297	3.5339	.96222	12
49	.25573	.26452	3.7804	.96675	11		49	.27256	.28329	3.5300	.96214	11
50 51	.25601 .25629	.26483 .26515	3.7760 3.7715	.96667 .96660	10		50 51	.27284 .27312	.28360 .28391	3.5261 3.5222	.96206 .96198	10
52	.25657	.26546	3.7671	.96653	8		52	.27340	.28423	3.5183	.96198	8 7
53	.25685	.26577	3.7627	.96645	7		53	.27368	.28454	3.5144	.96182	7
54	.25713	.26608	3.7583	.96638	6		54	.27396	.28486	3.5105	.96174	6
55 56	.25741 .25769	.26639 .26670	3.7539 3.7495	.96630 .96623	5		55	.27424	.28517 .28549	3.5067 3.5028	.96166 .96158	4
57	.25798	.26701	3.7451	.96615	3		57	.27480	.28580	3.4989	.96150	3
58 59	.25826 .25854	.26733 .26764	3.7408	.96608 .96600	3 2 1		58 59	.27508 .27536	.28612 .28643	3.4951	.96142	2
80	.25882	.26795	3.7364 3.7321	.96593	ó	•	60	.27564	.28675	3.4912 3.4874	.96134 .96126	3 2 1 0
1	Cos	Ctn	Tan	Sin	7		7	Cos	Ctn	Tan	Sin	7

16°

17°

′	Sin	Tan	Ctn	Сов	′
0	.27564	.28675	3.4874	.96126	60
1	.27592	.28706	3.4836	.96118	59
2	.27620	.28738	3.4798	.96110	58
3	.27648	.28769	3.4760	.96102	57
4	.27676	.28801	3.4722	.96094	56
5	.27704	.28832	3.4684	.96086	55
6	.27731	.28864	3.4646	.96078	54
7	.27759	.28895	3.4608	.96070	53
8	.27787	.28927	3.4570	.96062	52
9	.27815	.28958	3.4533	.96054	51
10	.27843	.28990	3.4495	.96046	50
11	.27871	.29021	3.4458	.96037	49
12	.27899	.29053	3.4420	.96029	48
13	.27927	.29084	3.4383	.96021	47
14	.27955	.29116	3.4346	.96013	46
15	.27983	.29147	3.4308	.96005	45
16	.28011	.29179	3.4271	.95997	44
17	.28039	.29210	3.4234	.95989	43
18	.28067	.29242	3.4197	.95981	42
19	.28095	.29274	3.4160	.95972	41
20 21 22 23 24	.28123 .28150 .28178 .28206 .28234	.29305 .29337 .29368 .29400 .29432	3.4124 3.4087 3.4050 3.4014 3.3977	.95964 .95956 .95948 .95940 .95931	39 38 37 36
25	.28262	.29463	3.3941	.95923	35
26	.28290	.29495	3.3904	.95915	34
27	.28318	.29526	3.3868	.95907	33
28	.28346	.29558	3.3832	.95898	32
29	.28374	.29590	3.3796	.95890	31
30	.28402	.29621	3.3759	.95882	30
31	.28429	.29653	3.3723	.95874	29
32	.28457	.29685	3.3687	.95865	28
33	.28485	.29716	3.3652	.95857	27
34	.28513	.29748	3.3616	.95849	26
35	.28541	.29780	3.3580	.95841	25
36	.28569	.29811	3.3544	.95832	24
37	.28597	.29843	3.3509	.95824	23
38	.28625	.29875	3.3473	.95816	22
39	.28652	.29906	3.3438	.95807	21
40	.28680	.29938	3.3402	.95799	20
41	.28708	.29970	3.3367	.95791	19
42	.28736	.30001	3.3332	.95782	18
43	.28764	.30033	3.3297	.95774	17
44	.28792	.30065	3.3261	.95766	16
45	.28820	.30097	3.3226	.95757	15
46	.28847	.30128	3.3191	.95749	14
47	.28875	.30160	3.3156	.95740	13
48	.28903	.30192	3.3122	.95732	12
49	.28931	.30224	3.3087	.95724	11
50	.28959	.30255	3.3052	.95715	10
51	.28987	.30287	3.3017	.95707	9
52	.29015	.30319	3.2983	.95698	8
53	.29042	.30351	3.2948	.95690	7
54	.29070	.30382	3.2914	.95681	6
55 56 57 58 59	.29098 .29126 .29154 .29182 .29209	.30414 .30446 .30478 .30509	3.2879 3.2845 3.2811 3.2777 3.2743	.95673 .95664 .95656 .95647 .95639	5 4 3 2 1 0
60	.29237 Cos	.30573 Ctn	3.2709 Tan	.95630 Sin	,

0 1 2 3 4	.29237 .29265 .29293 .29321	.30573 .30605	3.2709	05670	
1	.29348	.30637 .30669 .30700	3.2675 3.2641 3.2607 3.2573	.95630 .95622 .95613 .95605 .95596	60 59 58 57 56
5	.29376	.30732	3.2539	.95588	55
6	.29404	.30764	3.2506	.95579	54
7	.29432	.30796	3.2472	.95571	53
8	.29460	.30828	3.2438	.95562	52
9	.29487	.30860	3.2405	.95554	51
10	.29515	.30891	3.2371	.95545	50
11	.29543	.30923	3.2338	.95536	49
12	.29571	.30955	3.2305	.95528	48
13	.29599	.30987	3.2272	.95519	47
14	.29626	.31019	3.2238	.95511	46
15	.29654	.31051	3.2205	.95502	45
16	.29682	.31083	3.2172	.95493	44
17	.29710	.31115	3.2139	.95485	43
18	.29737	.31147	3.2106	.95476	42
19	.29765	.31178	3.2073	.95467	41
20	.29793	.31210	3.2041	.95459	40
21	.29821	.31242	3.2008	.95450	39
22	.29849	.31274	3.1975	.95441	38
23	.29876	.31306	3.1943	.95433	37
24	.29904	.31338	3.1910	.95424	36
25	.29932	.31370	3.1878	.95415	35
26	.29960	.31402	3.1845	.95407	34
27	.29987	.31434	3.1813	.95398	33
28	.30015	.31466	3.1780	.95389	32
29	.30043	.31498	3.1748	.95380	31
30	.30071	.31530	3.1716	.95372	30
31	.30098	.31562	3.1684	.95363	29
32	.30126	.31594	3.1652	.95354	28
33	.30154	.31626	3.1620	.95345	27
34	.30182	.31658	3.1588	.95337	26
35	.30209	.31690	3.1556	.95328	25
36	.30237	.31722	3.1524	.95319	24
37	.30265	.31754	3.1492	.95310	23
38	.30292	.31786	3.1460	.95301	22
39	.30320	.31818	3.1429	.95293	21
40	.30348	.31850	3.1397	.95284	20
41	.30376	.31882	3.1366	.95275	19
42	.30403	.31914	3.1334	.95266	18
43	.30431	.31946	3.1303	.95257	17
44	.30459	.31978	3.1271	.95248	16
45	.30486	.32010	3.1240	.95240	15
46	.30514	.32042	3.1209	.95231	14
47	.30542	.32074	3.1178	.95222	13
48	.30570	.32106	3.1146	.95213	12
49	.30597	.32139	3.1115	.95204	11
50	.30625	.32171	3.1084	.95195	10
51	.30653	.32203	3.1053	.95186	9
52	.30680	.32235	3.1022	.95177	8
53	.30708	.32267	3.0991	.95168	7
54	.30736	.32299	3.0961	.95159	6
55 56 57 58 59 60	.30763 .30791 .30819 .30846 .30874 .30902	.32331 .32363 .32396 .32428 .32460 .32492	3.0930 3.0899 3.0868 3.0838 3.0807 3.0777	.95150 .95142 .95133 .95124 .95115	5 4 3 2 1 0
′	.30902 Cos	.32492 Ctn	Tan	.95100 Sin	1

18°

·	Sin	Tan	Ctn	Cos	'	'	Sin	Tan	Ctn	Cos	'
0 1 2 3	.30902 .30929 .30957 .30985	.32492 .32524 .32556 .32588	3.0777 3.0746 3.0716 3.0686	.95106 .95097 .95088 .95079	60 59 58 57	0123	.32557 .32584 .32612 .32639	.34433 .34465 .34498 .34530	2.9042 2.9015 2.8987 2.8960	.94552 .94542 .94533 .94523	69 58 57 5
4	.31012	.32621	3.0655	.95070	56	4	.32667	.34563	2.8933	.94514	56
5	.31040	.32653	3.0625	.95061	55	5	.32694	.34596	2.8905	.94504	55
6	.31068	.32685	3.0595	.95052	54	6	.32722	.34628	2.8878	.94495	54
7	.31095	.32717	3.0565	.95043	53	7	.32749	.34661	2.8851	.94486	53
8	.31123	.32749	3.0535	.95033	52	8	.32777	.34693	2.8824	.94476	52
9	.31161	.32782	3.0505	.95024	51	9	.32804	.34726	2.8797	.94466	51
10	.31178	.32814	3.0475	.95015	50	10	.32832	.34758	2.8770	.94457	50
11	.31206	.32846	3.0445	.95006	49	11	.32859	.34791	2.8743	.94447	49
12	.31233	.32878	3.0415	.94997	48	12	.32887	.34824	2.8716	.94438	48
13	.31261	.32911	3.0385	.94988	47	13	.32914	.34856	2.8689	.94428	47
14	.31289	.32943	3.0356	.94979	46	14	.32942	.34889	2.8662	.94418	46
15	.31316	.32975	3.0326	.94970	45	15	.32969	.34922	2.8636	.94409	45
16	.31344	.33007	3.0296	.94961	44	16	.32997	.34954	2.8609	.94399	44
17	.31372	.33040	3.0267	.94952	43	17	.33024	.34987	2.8582	.94390	43
18	.31399	.33072	3.0237	.94943	42	18	.33051	.35020	2.8556	.94380	42
19	.31427	.33104	3.0208	.94933	41	19	.33079	.35052	2.8529	.94370	41
20	.31454	.33136	3.0178	.94924	40	20	.33106	.35085	2.8502	.94361	40
21	.31482	.33169	3.0149	.94915	39	21	.33134	.35118	2.8476	.94351	39
22	.31510	.33201	3.0120	.94906	38	22	.33161	.35150	2.8449	.94342	38
23	.31537	.33233	3.0090	.94897	37	23	.33189	.35183	2.8423	.94332	37
24 25 26 27 28	.31565 .31593 .31620 .31648 .31675	.33266 .33298 .33330 .33363 .33395	3.0061 3.0032 3.0003 2.9974 2.9945	.94888 .94869 .94860 .94851	36 85 34 33 32	24 25 26 27 28	.33216 .33244 .33271 .33298 .33326	.35216 .35248 .35281 .35314 .35346	2.8397 2.8370 2.8344 2.8318 2.8291	.94322 .94313 .94303 .94293 .94284	36 85 34 33 32
29 80 31 32 33	.31703 .31730 .31758 .31786 .31813	.33427 .33460 .33492 .33524 .33557	2.9916 2.9887 2.9858 2.9829 2.9800	.94842 .94832 .94823 .94814 .94805	31 30 29 28 27	30 31 32 33	.33363 .33381 .33408 .33436 .33463	.35379 .35412 .35445 .35477 .35510	2.8265 2.8239 2.8213 2.8187 2.8161	.94274 .94264 .94264 .94245 .94235	31 30 29 28 27 26
34	.31841	.33589	2.9772	.94795	26	34	.33490	.35543	2.8135	.94225	26
85	.31868	.33621	2.9743	.94786	25	35	.33518	.35576	2.8109	.94215	25
36	.31896	.33654	2.9714	.94777	24	36	.33545	.35608	2.8083	.94206	24
37	.31923	.33686	2.9686	.94768	23	37	.33573	.35641	2.8057	.94196	23
38	.31951	.33718	2.9657	.94758	22	38	.33600	.35674	2.8032	.94186	22
39	.31979	.33751	2.9629	.94749	21	39	.33627	.35707	2.8006	.94176	21
40	.32006	.33783	2.9600	.94740	20	40	.33655	.35740	2.7980	.94167	20
41	.32034	.33816	2.9572	.94730	19	41	.33682	.35772	2.7955	.94157	19
42	.32061	.33848	2.9544	.94721	18	42	.33710	.35805	2.7929	.94147	18
43	.32089	.33881	2.9515	.94712	17	43	.33737	.35838	2.7903	.94137	17
44	.32116	.33913	2.9487	.94702	16	44	.33764	.35871	2.7878	.94127	16
45	.32144	.33945	2.9459	.94693	15	45	.33792	.35904	2.7852	.94118	15
46	.32171	.33978	2.9431	.94684	14	46	.33819	.35937	2.7827	.94108	14
47	.32199	.34010	2.9403	.94674	13	47	.33846	.35969	2.7801	.94098	13
48	.32227	.34043	2.9375	.94665	12	48	.33874	.36002	2.7776	.94088	12
49 50 51 52 53	.32254 .32282 .32309 .32337 .32364	.34075 .34108 .34140 .34173 .34205	2.9347 2.9319 2.9291 2.9263 2.9235	.94656 .94646 .94637 .94627 .94618	11 10 9 8 7	49 50 51 52 53	.33901 33929 .33956 .33983 .34011	.36035 36068 .36101 .36134 .36167	2.7751 2.7725 2.7700 2.7675	.94078 .94068 .94058 .94049 .94039	11 10 9 8
54 55 56 57	.32392 .32419 .32447 .32474 .32502	.34238 .34270 .34303 .34335 .34368	2.9208 2.9180 2.9152 2.9125 2.9097	.94609 .94599 .94590 .94580 .94571	6 5 4 3 2 1	54 55 56 57	.34038 .34065 .34093 .34120	.36199 .36232 .36265 .36298	2.7650 2.7625 2.7600 2.7575 2.7550	.94029 .94019 .94009 .93999	7 6 5 4 3 2
58 59 60	.32529 .32527 Cos	.34400 .34433 Ctn	2.9097 2.9070 2.9042	.94561 .94552	1 0 ,	58 59 60	.34147 .34175 .34202 Cos	.36331 .36364 .36397 Ctn	2.7525 2.7500 2.7475 Tan	.93989 .93979 .93969	1 0 •

20°

1	Sin	Tan	Ctn	Cos	,	,	Sin	Ten	Ctn	Cos	77
0	.34202	.36397	2.7475	.93969	60	0	.35837	.38386	2.6051	.93358	60
1	.34229	.36430	2.7450	.93959	59	1	.35864	.38420	2.6028	.93348	59
2	.34257	.36463	2.7425	.93949	58	2	.35891	.38453	2.6006	.93337	58
3	.34284	.36496	2.7400	.93939	57	3	.35918	.38487	2.5983	.93327	57
4	.34311	.36529	2.7376	.93929	56	4	.35945	.38520	2.5961	.93316	56
5	.34339	.36562	2.7351	.93919	55	5	.35973	.38553	2.5938	.93306	55
6	.34366	.36595	2.7326	.93909	54	6	.36000	.38587	2.5916	.93295	54
7	.34393	.36628	2.7302	.93899	53	7	.36027	.38620	2.5893	.93285	53
8	.34421	.36661	2.7277	.93889	52	8	.36054	.38654	2.5871	.93274	52
9	.34448	.36694	2.7253	.93879	51	9	.36081	.38687	2.5848	.93264	51
10	.34475	.36727	2.7228	.93869	50	10	.36108	.38721	2.5826	.93253	50
11	.34503	.36760	2.7204	.93859	49	11	.36135	.38754	2.5804	.93243	49
12	.34530	.36793	2.7179	.93849	48	12	.36162	.38787	2.5782	.93232	48
13	.34557	.36826	2.7155	.93839	47	13	.36190	.38821	2.5759	.93222	47
14	.34584	.36859	2.7130	.93829	46	14	.36217	.38854	2.5737	.93211	46
15	.34612	.36892	2.7106	.93819	45	15	.36244	.38888	2.5715	.93201	45
16	.34639	.36925	2.7082	.93809	44	16	.36271	.38921	2.5693	.93190	44
17 18 19 20	.34666 .34694 .34721	.36958 .36991 .37024 .37057	2.7058 2.7034 2.7009 2.6985	.93799 .93789 .93779	43 42 41 40	17 18 19 20	.36298 .36325 .36352 .36379	.38955 .38988 .39022	2.5671 2.5649 2.5627 2.5605	.93180 .93169 .93159	43 42 41 40
21 22 23 24	.34775 .34803 .34830 .34857	.37090 .37123 .37157 .37190	2.6961 2.6937 2.6913 2.6889	.93759 .93748 .93738 .93728	39 38 37 36 35	21 22 23 24	.36406 .36434 .36461 .36488	.39089 .39122 .39156 .39190	2.5583 2.5561 2.5539 2.5517	.93137 .93127 .93116 .93106	39 38 37 36
26 26 27 28 29	.34884 .34912 .34939 .34966 .34993	.37223 .37256 .37289 .37322 .37355	2.6865 2.6841 2.6818 2.6794 2.6770	.93718 .93708 .93698 .93688 .93677	34 33 32 31	25 26 27 28 29	.36515 .36542 .36569 .36596 .36623	.39223 .39257 .39290 .39324 .39357	2.5495 2.5473 2.5452 2.5430 2.5408	.93095 .93084 .93074 .93063 .93052	35 34 33 32 31
30	.35021	.37388	2.6746	.93667	30	30	.36650	.39391	2.5386	.93042	30
31	.35048	.37422	2.6723	.93657	29	31	.36677	.39425	2.5365	.93031	29
32	.35075	.37455	2.6699	.93647	28	32	.36704	.39458	2.5343	.93020	28
33	.35102	.37488	2.6675	.93637	27	33	.36731	.39492	2.5322	.93010	27
34	.35130	.37521	2.6652	.93626	26	34	.36758	.39526	2.5300	.92999	26
35 36 37 38 39	.35157 .35184 .35211 .35239 .35266	.37554 .37588 .37621 .37654 .37687	2.6628 2.6605 2.6581 2.6558 2.6534	.93616 .93606 .93596 .93585 .93575	25 24 23 22 21	36 37 38 39	.36785 .36812 .36839 .36867 .36894	.39559 .39593 .39626 .39660 .39694	2.5279 2.5257 2.5236 2.5214 2.5193	.92988 .92978 .92967 .92956 .92945	25 24 23 22 21
40	.35293	.37720	2.6511	.93565	20	40	.36921	.39727	2.5172	.92935	20
41	.35320	.37754	2.6488	.93555	19	41	.36948	.39761	2.5150	.92924	19
42	.35347	.37787	2.6464	.93544	18	42	.36975	.39795	2.5129	.92913	18
43	.35375	.37820	2.6441	.93534	17	43	.37002	.39829	2.5108	.92902	17
44	.35402	.37853	2.6418	.93524	16	44	.37029	.39862	2.5086	.92892	16
46 47 48 49	.35429 .35456 .35484 .35511 .35538	.37887 .37920 .37953 .37986 .38020	2.6395 2.6371 2.6348 2.6325 2.6302	.93514 .93503 .93493 .93483 .93472	15 14 13 12 11	45 46 47 48 49	.37056 .37083 .37110 .37137 .37164	.39896 .39930 .39963 .39997 .40031	2.5065 2.5044 2.5023 2.5002 2.4981	.92881 .92870 .92859 .92849 .92838	15 14 13 12 11
50	.35565	.38053	2.6279	.93462	10	50	.37191	.40065	2.4960	.92827	10
51	.35592	.38086	2.6256	.93452	9	51	.37218	.40098	2.4939	.92816	9
52	.35619	.38120	2.6233	.93441	8	52	.37245	.40132	2.4918	.92806	8
53	.35647	.38153	2.6210	.93431	7	53	.37272	.40166	2.4897	.92794	7
54	.35674	.38186	2.6187	.93420	6	54	.37299	.40200	2.4876	.92784	6
55	.35701	.38220	2.6165	.93410	5	55	.37326	.40234	2.4855	.92773	5
56	.35728	.38253	2.6142	.93400	4	56	.37353	.40267	2.4834	.92762	4
57	.35755	.38286	2.6119	.93389	3	57	.37380	.40301	2.4813	.92761	3
58	.35782	.38320	2.6096	.93379	2	58	.37407	.40335	2.4792	.92740	2
59	.35810	.38353	2.6074	.93368	1	59	.37434	.40369	2.4772	.92729	1
60	.35837 Cos	.38386 Ctn	2.6051 Tan	.93358 Sin	ļ	60	.37461 Cos	.40403 Ctn	2.4751 Tan	.92718 Sin	 •

22° 23°

_												
Ľ	Sin	Tan	Ctn	Cos	<u>'</u>		Ľ	Sin	Tan	Ctn	Cos	
Ó	.37461	.40403	2.4751	.92718	60		ļ	.39073	.42447	2.3559	.92050	60
1 2	.37488 .37515	.40436 .40470	2.4730 2.4709	.92707 .92697	59 58	l	1 2	.39100 .39127	.42482 .42516	2.3539 2.3520	.92039 .92028	59 58
2 3	.37542	.40504	2.4689	.92686	57		3	.39153	.42551	2.3501	.92016	57
4	.37569	.40538	2.4668	.92675	56		4	.39180	.42585	2.3483	.92005	56
5	.37595	.40572	2.4648	.92664	55	l	5	.39207	.42619	2.3464	.91994	55
6	.37622 .37649	.40606 .40640	2.4627 2.4606	.92653 .92642	54 53		6 7	.39234 .39260	.42654 .42688	2.3445 2.3426	.91982 .91971	54 53
8	.37676	.40674	2.4586	.92631	52		8	.39287	.42722	2.3407	.91959	52
9	.37703	.40707	2.4566	.92620	51		9	.39314	.42757	2.3388	.91948	51
10	.37730	.40741	2.4545	.92609	50		10	.39341	.42791	2.3369	.91936	50
11 12	.37757 .37784	.40775 .40809	2.4525 2.4504	.92598 .92587	49 48		11 12	.39367 .39394	.42826 .42860	2.3351 2.3332	.91925 .91914	49 48
13	.37811	.40843	2.4484	.92576	47		13	.39421	.42894	2.3313	.91902	47
14	.37838	.40877	2.4464	.92565	46		14	.39448	.42929	2.3294	.91891	46
15	.37865	.40911	2.4443	.92554	45		15	.39474	.42963	2.3276	.91879	45
16 17	.37892 .37919	.40945 .40979	2.4423 2.4403	.92543 .92532	44 43		16 17	.39501 .39528	.42998 .43032	2.3257 2.3238	.91868 .91856	44 43
18	.37946	.41013	2.4383	.92521	42		18	.39555	.43067	2.3220	.91845	42
19	.37973	.41047	2.4362	.92510	41		19	.39581	.43101	2.3201	.91833	41
20	.37999	.41081	2.4342	.92499	40		20	.39608	.43136	2.3183	.91822	40
21 22	.38026 .38053	.41115 .41149	2.4322 2.4302	.92488 .92477	39 38		21 22	.39635 .39661	.43170 .43205	2.3164 2.3146	.91810 .91799	39
23	.38080	.41183	2.4282	.92466	37		23	.39688	.43239	2.3127	.91787	38 37
24	.38107	.41217	2.4262	.92455	36		24	.39715	.43274	2.3109	.91775	36
25	.38134	.41251	2.4242	.92444	35		25	.39741	.43308	2.3090	.91764	35
26 27	.38161 .38188•	.41285 .41319	2.4222 2.4202	.92432 .92421	34 33		26 27	.39768	.43343 .43378	2.3072 2.3053	.91752 .91741	34 33
28	.38215	.41353	2.4202	.92421	32		28	.39822	.43412	2.3035	.91729	32
29	.38241	.41387	2.4162	.92399	31		29	.39848	.43447	2.3017	.91718	31
30	.38268	.41421	2.4142	.92388	30		30	.39875	.43481	2.2998	.91706	30
31	.38295	.41455	2.4122	.92377	29		31	.39902	.43516	2.2980	.91694	29
32 33	.38322	.41490 .41524	2.4102 2.4083	.92366 .92355	28 27		32 33	.39928	.43550 .43585	2.2962 2.2944	.91683 .91671	28 27
34	.38376	.41558	2.4063	.92343	26		34	.39982	.43620	2.2925	.91660	26
35	.38403	.41592	2.4043	.92332	25		35	.40008	.43654	2.2907	.91648	25
36	.38430	.41626	2.4023	.92321	24		36	.40035	.43689	2.2889	.91636	24
37 38	.38456	.41660 .41694	2.4004 2.3984	.92310 .92299	23 22		37 38	.40062	.43724 .43758	2.2871 2.2853	.91625 .91613	23 22
39	.38510	.41728	2.3964	.92287	21		39	.40115	.43793	2.2835	.91601	21
40	.38537	.41763	2.3945	.92276	20		40	.40141	.43828	2.2817	.91590	20
41	.38564	.41797	2.3925	.92265	19		41	.40168	.43862	2.2799	.91578	19
42 43	.38591	.41831 .41865	2.3906 2.3886	.92254 .92243	18 17		42 43	.40195	.43897 .43932	2.2781 2.2763	.91566 .91555	18 17
44	.38644	.41899	2.3867	.92231	16		44	.40248	.43966	2.2745	.91543	16
45	.38671	.41933	2.3847	.92220	15		45	.40275	.44001	2.2727	.91531	15
46	.38698	.41968	2.3828	.92209	14		46	.40301	.44036	2.2709	.91519	14
47 48	.38725	.42002 .42036	2.3808 2.3789	.92198 .92186	13 12		47 48	.40328 .40355	.44071 .44105	2.2691 2.2673	.91508 .91496	13 12
49	.38778	.42070	2.3770	.92175	ii		49	.40381	.44140	2.2655	.91484	iĩ
50	.38805	.42105	2.3750	.92164	10		50	.40408	.44175	2.2637	.91472	10
51	.38832	.42139	2.3731	.92152	9		51	.40434	.44210	2.2620	.91461	9
52 53	.38859 .38886	.42173 .42207	2.3712 2.3693	.92141 .92130	8		52 53	.40461 .40488	.44244 .44279	2.2602 2.2584	.91449 .91437	8 7
54	.38912	.42242	2.3673	.92119	6		54	.40514	.44314	2.2566	.91425	6
55	.38939	.42276	2.3654	.92107	5		55	.40541	.44349	2.2549	.91414	5
56	.38966	.42310	2.3635	.92096	4		56	.40567	.44384	2.2531	.91402	
57 58	.38993 .39020	.42345 .42379	2.3616 2.3597	.92085 .92073	3 2 1		57 58	.40594	.44418 .44453	2.2513 2.2496	.91390 .91378	4 3 2 1
59	.39046	.42413	2.3578	.92062			59	.40647	.44488	2.2478	.91366	î
60	.39073	.42447	2.3559	.92050	0		60	.40674	.44523	2.2460	.91355	0
1	Cos	Ctn	Tan	Sin	,		`	Cos	Ctn	Tan	Sin	′

67° 66°

24°

_												
'	Sin	Tan	Ctrs	Cos	′		<u></u>	Sin	Tan	Ctn	Cos	13
Ó	.40674	.44523	2.2460	.91355	60		Q	.42262	.46631	2.1445	.90631	60
1 2	.40700 .40727	.44558 .44593	2.2443 2.2425	.91343 .91331	59 58	İ	1 2	.42288 .42315	.46666 .46702	2.1429 2.1413	.90618 .90606	59 58
3	.40753	.44627	2.2408	.91319	57	1	3	.42341	.46737	2.1396	.90594	57
4	.40780	.44662	2.2390	.91307	56		4	.42367	.46772	2.1380	.90582	56
6	.40806 .40833	.44697 .44732	2.2373 2.2355	.91295 .91283	55 54		6	.42394 .42420	.46808 .46843	2.1364 2.1348	.90569 .90557	55 54
7	.40860	.44767	2.2338	.91272	53		7	.42446	.46879	2.1332	.90545	53
8	.40886	.44802	2.2320	.91260	52		8	.42473	.46914	2.1315	.90532	52
9	.40913	.44837	2.2303	.91248	51		10	.42499	.46950	2.1299	.90520	51
10 11	.40939 .40966	.44872 .44907	2.2286 2.2268	.91236 .91224	50		liĭ	.42525	.46985 .47021	2.1283 2.1267	.90507 .90495	50
12	.40992	.44942	2.2251	.91212	48		12	.42578	.47056	2.1251	.90483	48
13 14	.41019 .41045	.44977 .45012	2.2234 2.2216	.91200 .91188	47 46		13 14	.42604 .42631	.47092 .47128	2.1235 2.1219	.90470 .90458	47 46
15	.41072	.45047	2.2199	.91176	45		15	.42657	.47163	2.1203	.90446	45
16	.41098	.45082	2.2182	.91164	44		16	.42683	.47199	2.1187	.90433	44
17	.41125	.45117	2.2165	.91152	43		17	.42709	.47234	2.1171	.90421	43
18 19	.41151	.45152 .45187	2.2148 2.2130	.91140 91128	42 41		18 19	.42736 .42762	.47270 .47305	2.1155 2.1139	.90408 .90396	42 41
20	.41204	.45222	2.2113	.91116	40		20	.42788	.47341	2.1123	.90383	40
21	.41231	.45257	2.2096	.91104	39		21	.42815	.47377	2.1107	.90371	39
22 23	.41257 .41284	.45292 .45327	2.2079 2.2062	.91092 .91 0 80	38 37		22 23	.42841 .42867	.47412 .47448	2.1092 2.1076	.90358 .90346	38 37
24	.41310	.45362	2.2045	.91068	36		24	.42894	.47483	2.1060	.90334	36
25	.41337	.45397	2.2028	.91056	35		25	.42920	.47519	2.1044	.90321	35
26	.41363	.45432	2.2011	.91044	34		26 27	.42946	.47555	2.1028	.90309	34
27 28	.41390 .41416	.45467 .45502	2.1994 2.1977	.91032 .91020	33 32		28	.42972 .42999	.47590 .47626	2.1013 2.0997	.90296 .90284	33 32
29	.41443	.45538	2.1960	.91008	31		29	.43025	.47662	2.0981	.90271	31
30	.41469	.45573	2.1943	.90996	30		30	.43051	.47698	2.0965	.90259	30
31 32	.41496 .41522	.45608 .45643	2.1926 2.1909	.90984 .90972	29 28		31 32	.43077 <u> </u> .43104	.47733 .47769	2.0950 2.0934	.90246 .90233	29 28
33	.41549	.45678	2.1892	.90960	27	i	33	.43130	.47805	2.0918	.90221	27
34	.41575	.45713	2.1876	.90948	26		34	.43156	.47840	2.0903	.90208	26
35	.41602	.45748	2.1859	.90936	25 24		35 36	.43182	.47876	2.0887	.90196	25
36 37	.41628	.45784 .45819	2.1842 2.1825	.90924 .90911	23	1	37	.43209 .43235	.47912 .47948	2.0872 2.0856	.90183 .90171	24 23
38	.41681	.45854	2.1808	.90899	22		38	.43261	.47984	2.0840	.90158	22
39	.41707	.45889	2.1792	.90887	21		39	.43287	.48019	2.0826	.90146	21
40 41	41734	.45924 .45960	2.1775 2.1758	.90875 .90863	20 19		40 41	.43313	.48055 .48091	2.0809 2.0794	.90133 .90120	20 19
42	.41760 .41787	.45995	2.1742	.90851	18		42	.43366	.48127	2.0778	.90108	18
43	.41813	.46030	2.1725	.90839	17 16		43 44	.43392 .43418	.48163 .48198	2.0763 2.0748	.90095	17
44	.41840	.46065	2.1708	.90826	15		45				.90082	16 15
45 46	.41866 .41892	.46101 .46136	2.1692 2.1675	.90814 .90802	14		46	.43445 .43471	.48234 .48270	2.0732 2.0717	.90070 .90057	14
47	.41919	.46171	2.1659	.90790	13		47	.43497	.48306	2.0701	.90045	13
48 49	.41945	.46206 .46242	2.1642 2.1625	.90778 .907 66	12 11		48 49	.43523 .43549	.48342 .48378	2.0686 2.0671	.90032 .90019	12 11
80	.41998	.46277	2.1609	.90753	10		50	.43575	.48414	2.0655	.90007	10
51	.42024	.46312	2.1592	.90741	9		51	.43602	.48450	2.0640	.89994	9
52	.42051	.46348	2.1576	.90729 .90717	8		52 53	.43628 .43654	.48486 .48521	2.0625 2.0609	.89981 .89968	8 7
53 54	.42077 .42104	.46383 .46418	2.1560 2.1543	.90717	6		54	.43680	.48557	2.0594	.89956	6
55	.42130	.46454	2.1527	.90692	5		55	.43706	.48593	2.0579	.89943	5
56	.42156	.46489	2.1510	.90680	4		56	.43733	.48629	2.0564	.89930	4
57 58	.42183 .42209	.46525 .46560	2.1494 2.1478	.90668 .90655	3 2 1		57 58	.43759 .43785	.48665 .48701	2.0549 2.0533	.89918 .89905	3 2
59	.42235	.46595	2.1461	.90643			59	.43811	.48737	2.0518	.89892	1
60	.42262	.46631	2.1445	.90631	•		60	.43837	.48773	2.0503	.89879	0
Ľ	Cos	Ctn	Tan	Sin	,		′	Cos	Ctn	Tan	Sin	'

26° 27°

11	,	Cos	Ctn	Tan	Sin	·
2 .43889 .48845 2.0473 .89854 .43916 .48881 2.0458 .89841 4.43942 .48917 2.0443 .89828 5.43968 .48953 2.0428 .89816 6 .43994 .48989 2.0413 .89803 7 .44020 .49026 2.0398 .89790 8 .44046 .49062 2.0398 .89760 1.4098 .49134 2.0353 .89777 9 .44072 .49098 2.0368 .89762 1.1 .44124 .49170 2.0353 .89752 1.1 .44124 .49170 2.0353 .89752 1.1 .44124 .49170 2.0353 .89752 1.3 .44177 .49242 2.0308 .89713 1.4 .44203 .49278 2.0293 .89700 1.5 .44229 .49315 2.0278 .89687 1.6 .44255 .49351 2.0263 .89674 1.7 .44281 .49387 2.0248 .89662 1.8 .44357 .49459 2.0219 .89636 2.0 .44359 .49459 2.0219 .89636 2.0 .44359 .49495 2.0204 .89623 2.1 .44385 .49632 2.0189 .89610 2.2 .44411 .49568 2.0174 .89597 2.3 .44457 .49604 2.0145 .89571 2.3 .44456 .49640 2.0145 .89571 2.3 .44456 .49640 2.0145 .89571 2.3 .44568 .49789 2.0019 .89538 2.4 .44564 .49849 2.0019 .89532 2.8 .44564 .49849 2.0019 .89532 2.8 .44564 .49849 2.0019 .89532 2.8 .44564 .49849 2.0019 .89532 2.8 .44564 .49849 2.0019 .89532 2.8 .44564 .49849 2.0019 .89532 2.8 .44564 .49849 2.0019 .89532 2.8 .44564 .49849 2.0019 .89532 2.8 .44564 .49849 2.0019 .89532 2.8 .44564 .49849 2.0019 .89532 2.8 .44564 .49849 2.0019 .89532 2.8 .44564 .49849 2.0019 .89532 2.8 .44564 .49849 2.0042 .89493 3.44672 .49931 2.0028 .89467 3.3 .44696 .49894 2.0042 .89480 3.2 .44672 .49931 2.0028 .89467 3.3 .44686 .49867 2.0013 .89454 3.44672 .49931 2.0028 .89467 3.3 .44686 .49867 2.0013 .89454 3.44672 .49931 2.0028 .89467 3.44802 .50113 1.9955 .89402 3.44802 .50113 1.9955 .89402 3.44802 .50113 1.9955 .89402 3.44802 .50113 1.9955 .89402 3.44804 .50368 1.9994 .893337 4.44984 .50368 1.9941 .89389 3.44854 .50185 1.9996 .89337 4.44984 .50368 1.9868 .89324 4.44984 .50366 1.9740 .89289 4.4514 .50064 1.9940 .89289 4.4514 .50064 1.9940 .89289 4.4514 .50064 1.9940 .89289 5.0467 .48808 .50614 1.9970 .89350 5.44514 .50060 1.9740 .89265 5.45192 .50060 1.9740 .89265 5.45192 .50060 1.9740 .89265 5.45192 .50060 1.9740 .89265 5.45192 .50060 1.9740 .89265 5.45192 .50060 1.9740 .89265 5.45192 .50060 1.9740 .89266 5.4518 .50060 1.9740 .8	60 59	.89879 89867		.48773 48800		
4 43942 48917 2.0443 89828 5 43968 48953 2.0428 89816 6 43994 48989 2.0413 89803 7 44020 49026 2.0338 89790 8 44046 49062 2.0338 89779 9 44072 49098 2.0368 89764 10 44098 49134 2.0353 89752 11 44124 49170 2.0338 89731 12 44151 49206 2.0323 89726 13 44177 49242 2.0308 89713 14 44203 49278 2.0203 89671 15 44229 49315 2.0278 89687 16 44253 49351 2.0263 89671 17 44281 49387 2.0248 89662 18 44307 49423 2.0233 89649 20 44359 49495<	58		2.0473			2
5 .43968 .48953 2.0428 .89816 6 .43994 .48989 2.0413 .89803 7 .44020 .49026 2.0388 .89790 8 .44046 .49062 2.0383 .89777 9 .44072 .49098 2.0368 .89764 10 .44098 .49134 2.0338 .89739 11 .44124 .49170 2.0338 .89739 12 .44161 .49206 2.0323 .89739 12 .44151 .49206 2.0323 .89739 13 .44177 .49242 2.0308 .89713 14 .44203 .49278 2.0293 .89760 15 .44229 .49315 2.0233 .89670 16 .44256 .49351 2.0248 .89662 17 .44281 .49387 2.0248 .89662 18 .44307 .49495 2.0204 .89623 21<	57 56					
7 44020 .49026 2.0388 .89796 8 .44046 .49062 2.0383 .89777 9 .44072 .49098 2.0368 .89764 10 .44098 .49134 2.0353 .89752 11 .44124 .49170 2.0323 .89726 12 .44151 .49206 2.0323 .89726 13 .44177 .49242 2.0308 .89713 14 .44203 .49278 2.0293 .89700 15 .44255 .49351 2.0263 .89674 16 .44255 .49351 2.0243 .89667 16 .44255 .49351 2.0243 .89667 17 .44281 .49387 2.0243 .89667 18 .44307 .49453 2.0233 .89649 20 .44359 .49459 2.0219 .89636 20 .44358 .49552 2.0189 .89610 22	55		2.0428	.48953	.43968	5
8 44046 .49062 2.0383 .89777 9 44072 .49098 2.0368 .89764 10 .44098 .49134 2.0353 .89752 11 .44124 .49170 2.0338 .89739 12 .44151 .49206 2.0323 .89726 13 .44177 .49242 2.0308 .89713 14 .44203 .49278 2.0293 .89700 15 .44229 .49315 2.0263 .89674 17 .44281 .49387 2.0248 .89662 18 .44357 .49453 2.0248 .89662 18 .44357 .49459 2.0219 .89636 19 .44333 .49459 2.0219 .89636 20 .44359 .49495 2.0204 .89623 21 .44385 .49632 2.0189 .89610 22 .44411 .49668 2.0174 .89597 23 .44457 .49604 2.0160 .89584 24 .44464 .49640 2.0145 .89571 25 .44490 .49677 2.0130 .89558 26 .44516 .49713 2.0115 .89565 27 .44542 .49749 2.0101 .89532 28 .44568 .49786 2.0086 .89519 29 .44594 .49822 2.0072 .89606 30 .44620 .49858 2.0067 .89493 31 .44664 .49894 2.0042 .89480 32 .44672 .49931 2.0028 .89467 33 .44698 .49967 2.0013 .89454 34 .44724 .50004 1.9994 .89428 35 .44760 .50040 1.9994 .89428 36 .44760 .50040 1.9998 .89441 36 .44760 .50040 1.9998 .89441 37 .44802 .50113 1.9955 .89402 38 .44882 .50149 1.9941 .89389 39 .44854 .50185 1.9965 .89376 40 .44880 .50222 1.9912 .89363 41 .44906 .50258 1.9965 .89376 40 .44880 .50222 1.9912 .89363 41 .44906 .50258 1.9968 .89324 44 .44932 .502295 1.9883 .89337 43 .44958 .50331 1.9868 .89324 44 .44984 .50368 1.9968 .89337 43 .44968 .50259 1.9988 .89337 43 .44968 .50259 1.9988 .89337 44 .44984 .50368 1.9968 .89337 45 .45006 .50441 1.9840 .89298 45 .50477 1.9811 .89272 48 .45088 .50614 1.9797 .89259 44514 .50060 1.9740 .89269 52 .45192 .50660 1.9740 .89265 53 .45218 .50696 1.9740 .89265 54 .45245 .50753 1.9711 .89180	54 53	.89803	2.0413	.48989	.43994	6
9	52	.89777	2.0398	.49026		
11	51	.89764		.49098		9
14	50 49	.89752	2.0353	.49134		10
14	48	.89726	2.0323	.49206		12
15	47	.89713	2.0308	.49242	.44177	13
16	46 45					
17	44		2.0276			
19	43	.89662	2.0248	.49387	.44281	17
20	42 41					
21	40					
23	39	.89610	2.0189	.49532	.44385	21
24 .44464 .49640 2.0146 .89571 25 .44490 .49677 2.0130 .89558 26 .44516 .49713 2.0115 .89545 27 .44542 .49749 2.0101 .89532 28 .44568 .49786 2.0086 .89519 29 .44594 .49822 2.0072 .89506 30 .44620 .49858 2.0057 .89493 31 .44646 .49894 2.0042 .89480 32 .44672 .49931 2.0028 .89467 33 .44698 .49967 2.0013 .89445 34 .44724 .50004 1.9999 .89441 35 .44760 .50040 1.9999 .89441 36 .44776 .50076 1.9970 .89415 37 .44802 .50113 1.9955 .89402 38 .44828 .50149 1.9941 .89389 39 .44854 .50185 1.9926 .89376 40 .44880 .50222 1.9912 .89363 41 .44906 .50258 1.9857 .89350 42 .44932 .50295 1.9883 .89337 43 .44958 .50331 1.9868 .89324 44 .44984 .50368 1.9864 .89311 45 .45010 .50404 1.9840 .89298 46 .45036 .50441 1.9825 .89285 47 .45062 .50477 1.9811 .89272 48 .45088 .50614 1.9797 .89259 49 .45140 .50687 1.9768 .89232 51 .45166 .50623 1.9768 .89232 51 .45166 .50623 1.9768 .89232 51 .45166 .50623 1.9768 .89232 51 .45166 .50623 1.9768 .89232 54 .45243 .50733 1.9711 .89180	38 37	.89597	2.0174			
25	36		2.0145			
27 .44542 .49749 2 0101 .89552 28 .44568 .49786 2.0086 .89519 29 .44594 .49822 2.0072 .89506 30 .44620 .49858 2.0067 .89493 31 .44646 .49894 2.0042 .89480 32 .44672 .49931 2.0028 .89467 33 .44678 .49951 2.0013 .89454 34 .44774 .50004 1.9999 .89441 35 .44750 .50040 1.9984 .89428 36 .44776 .50076 1.9970 .89415 37 .44802 .50113 1.9955 .89402 38 .44828 .50119 1.9941 .89389 39 .44854 .50185 1.9926 .89376 40 .44880 .50222 1.9912 .89363 41 .44906 .50258 1.9897 .89350 42 .44932 .50295 1.9883 .89337 43 .44958 .50331 1.9868 .89324 44 .44984 .50368 1.9854 .89311 45 .45010 .50404 1.9840 .89298 46 .45036 .50414 1.9825 .89285 47 .45062 .50477 1.9811 .89272 48 .45083 .505014 1.9797 .89259 49 .45114 .50550 1.9782 .89245 50 .45140 .50687 1.9768 .89232 51 .45166 .50623 1.9768 .89232 51 .45166 .50623 1.9768 .89232 51 .45166 .50623 1.9768 .89232 51 .45166 .50623 1.9768 .89232 54 .45243 .50733 1.9711 .89180	35		2.0130	.49677		
28	34	.89545	2.0115	49713	.44516	
29	33 32 31		2.0086		.44568	28
31 .44646 .49894 2.0042 .89480 32 .44672 .49931 2.0028 .89467 33 .44698 .49967 2.0013 .89454 34 .44724 .50004 1.9999 .89441 35 .44760 .50006 1.9990 .89415 37 .44802 .50113 1.9955 .89402 38 .44828 .50149 1.9941 .89389 39 .44854 .50185 1.9926 .89376 40 .44880 .50222 1.9912 .89363 41 .44906 .50258 1.9897 .89350 42 .44932 .50295 1.9833 .89374 43 .44984 .50368 1.9844 .89311 45 .45010 .50440 1.9840 .89298 44 .44984 .50368 1.9844 .89311 45 .45010 .50441 1.9825 .89285 <t< th=""><th></th><th></th><th>2.0072</th><th></th><th></th><th></th></t<>			2.0072			
32 44672 .49931 2.0028 .89467 33 .44698 .49967 2.0013 .89454 34 .44724 .50004 1.9999 .89441 36 .44760 .50040 1.9984 .89428 36 .44776 .50076 1.9970 .89415 37 .44802 .50113 1.9955 .89402 38 .44828 .50149 1.9941 .89389 39 .44854 .50185 1.9926 .89376 40 .44880 .50222 1.9912 .89363 41 .44906 .50228 1.9897 .89350 42 .44932 .50295 1.9883 .89337 43 .44958 .50331 1.9868 .89324 44 .44948 .50368 1.9864 .89311 45 .45010 .50404 1.9840 .89298 46 .45036 .50441 1.9825 .89285 <td< th=""><th>30 29</th><th></th><th></th><th></th><th></th><th></th></td<>	30 29					
34	28					32
85 .44750 .50040 1.9984 .89428 36 .44776 .50076 1.9970 .89415 37 .44802 .50113 1.9955 .89402 38 .44828 .50149 1.9941 .89389 39 .44854 .50185 1.9926 .89376 40 .44880 .50222 1.9912 .89356 41 .44906 .50258 1.9897 .89350 42 .44932 .50295 1.9883 .89337 43 .44958 .50331 1.9868 .89324 44 .44984 .50358 1.9854 .89311 45 .45010 .50404 1.9840 .89298 46 .45036 .50441 1.9840 .89298 47 .45062 .50441 1.9825 .89285 47 .45062 .50447 1.9811 .89272 48 .4514 .50550 1.9782 .89245 <th< th=""><th>27</th><th></th><th></th><th></th><th></th><th></th></th<>	27					
36 44776 .50076 1.9970 .89415 37 .44802 .50113 1.9956 .89402 38 .44828 .50149 1.9941 .89389 39 .44854 .50185 1.9926 .89376 40 .44880 .50222 1.9912 .89363 41 .44906 .50228 1.987 .89350 42 .44932 .50295 1.9883 .89337 43 .44958 .50331 1.9868 .89324 44 .44984 .50368 1.9864 .89311 45 .45010 .50440 1.9840 .89298 46 .45036 .50441 1.9826 .89285 47 .45062 .50477 1.9811 .89272 48 .45088 .50514 1.9797 .89259 49 .45140 .505601 1.9782 .89245 50 .45166 .50623 1.9768 .89232 <td< th=""><th>26 25</th><th></th><th></th><th></th><th></th><th></th></td<>	26 25					
38 .44828 .50149 1.9941 .89389 39 .44854 .50185 1.9926 .89376 40 .44880 .50222 1.9912 .89363 41 .44906 .50258 1.9897 .89350 42 .44932 .50295 1.9883 .89337 43 .44958 .50331 1.9864 .89324 44 .44984 .50368 1.9840 .89298 46 .45036 .50404 1.9840 .89298 46 .45036 .50441 1.9825 .89285 47 .45062 .50477 1.9811 .89272 48 .45088 .50514 1.9797 .89259 49 .4514 .50650 1.9782 .89245 50 .45140 .50687 1.9768 .89225 51 .45166 .50623 1.97764 .89219 52 .45192 .50660 1.9740 .89206 <t< th=""><th>24</th><th></th><th>1.9970</th><th>.50076</th><th>.44776</th><th>36</th></t<>	24		1.9970	.50076	.44776	36
39 .44854 .50185 1.9926 .89376 40 .44880 .50222 1.9912 .89363 41 .44906 .50258 1.9897 .89350 42 .44932 .50225 1.9883 .89337 43 .44958 .50331 1.9868 .89324 44 .44984 .50368 1.9840 .89298 46 .45036 .50441 1.9840 .89298 46 .45036 .50441 1.9826 .89285 47 .45062 .50477 1.9811 .89279 48 .46088 .50614 1.9797 .89259 49 .4514 .50550 1.9782 .89245 50 .45140 .50687 1.9768 .89232 51 .45166 .50623 1.9764 .89219 52 .45128 .50696 1.9740 .89206 53 .45243 .50733 1.9711 .89180 <td< th=""><th>23 22</th><th></th><th></th><th></th><th>.44802</th><th>37</th></td<>	23 22				.44802	37
41 44906 .50258 1.9897 .89350 42 44932 .50295 1.9883 .89337 43 44958 .50331 1.9868 .89324 44 .44984 .50358 1.9854 .89311 45 .45010 .50404 1.9840 .89298 46 .45036 .50441 1.9825 .89285 47 .45062 .50477 1.9811 .89272 48 .45088 .50514 1.9797 .89259 49 .45114 .50650 1.9782 .89245 50 .45140 .50587 1.9768 .89232 51 .45166 .50623 1.9764 .89219 52 .45192 .50660 1.9740 .89206 53 .45218 .50696 1.9725 .89193 54 .45245 .50733 1.9711 .89180 185 .45269 .50769 1.9697 .89167	21					39
42 44932 .50295 1.9883 .89337 43 44958 .50331 1.9868 .89324 44 .44984 .50368 1.9864 .89311 45 .45010 .50404 1.9840 .89298 46 .45036 .50441 1.9825 .89285 47 .45062 .50477 1.9811 .89272 48 .45088 .50514 1.9797 .89259 49 .45114 .50650 1.9782 .89245 50 .45140 .50687 1.9768 .89232 51 .45166 .50623 1.9764 .89219 52 .45192 .50660 1.9740 .89206 53 .45218 .50759 1.9765 .89193 54 .45243 .50733 1.9711 .89180 155 .45269 .50769 1.9697 .89167	20					
43	19 18					41
44	17			.50331		43
46 45036 .50441 1.9825 .89285 47 45062 .50477 1.9811 .89272 48 .45088 .50514 1.9797 .89259 49 .45114 .50550 1.9782 .89245 50 .45140 .50587 1.9768 .89232 51 .45166 .50623 1.9754 .89219 52 .45192 .50660 1.9740 .89206 53 .45218 .50696 1.9725 .89193 54 .45243 .50733 1.9711 .89180 185 .45269 .50769 1.9697 .89167	16	.89311		.50368		
47 45062 .50477 1.9811 .89272 48 45088 .50514 1.9797 .89259 49 45114 .50550 1.9782 .89245 50 .45140 .50587 1.9768 .89232 51 .45166 .50623 1.9754 .89219 52 .45192 .50660 1.9740 .89206 53 .45218 .50696 1.9740 .89206 54 .45269 .50733 1.9711 .89180 55 .45269 .50769 1.9697 .89167	15 14					
49 45114 .50550 1.9782 .89245 50 45140 .50587 1.9768 .89232 51 45166 .50623 1.9764 .89219 52 .45192 .50660 1.9740 .89206 53 .45218 .50696 1.9725 .89193 54 .45243 .50733 1.9711 .89180 55 .45269 .50769 1.9697 .89167	13 12	.89272	1.9811	.50477	.45062	47
50 45140 .50587 1.9768 .89232 51 45166 .50623 1.9754 .89219 52 45192 .50660 1.9740 .89206 53 .45218 .50696 1.9725 .89193 54 .45243 .50733 1.9711 .89180 55 .45269 .50769 1.9697 .89167	12 11					
51 .45166 .50623 1.9754 .89219 52 .45192 .50660 1.9740 .89206 53 .45218 .50696 1.9725 .89193 54 .45243 .50733 1.9711 .89180 55 .50769 1.9697 .89167	10					
53 .45218 .50696 1.9725 .89193 54 .45243 .50733 1.9711 .89180 55 .45269 .50769 1.9697 .89167	9	.89219	1.9754	.50623	.45166	51
BB .45269 .50769 1.9697 .89167	8		1.9740	.50696	.45192 .45218	52
55 .45269 .50769 1.9697 .89167 56 .45295 .50806 1.9683 .89153	6			.50733	.45243	
	5	.89167			.45269	
57 45321 .50843 1.9669 .89140	3				45321	57
58 .45347 .50879 1.9654 .89127	2	.89127			.45347	58
59 45373 .50916 1.9640 .89114 60 45399 .50953 1.9626 .89101	0			.50953	A53/3 A5399	
' Cos Ctn Tan Sin	,	Sin	Tan	Ctn	Cos	•

		Z	.		
′	Sin	Tan	Ctn	Cos	,
0	.45399	.50953	1.9626	.89101	60
1	.45425	.50989	1.9612	.89087	59
2	.45451	.51026	1.9598	.89074	58
3	.45477	.51063	1.9584	.89061	57
4	.45503	.51099	1.9570	.89048	56
5	.45529	.51136	1.9556	.89035	55
6	.45554	.51173	1.9542	.89021	54
7	.45580	.51209	1.9528	.89008	53
8	.45606	.51246	1.9514	.88995	52
9	.45632	.51283	1.9500	.88981	51
10	.45658	.51319	1.9486	.88968	50
11	.45684	.51356	1.9472	.88955	49
12	.45710	.51393	1.9458	.88942	48
13	.45736	.51430	1.9444	.88928	47
14	.45762	.51467	1.9430	.88915	46
15	.45787	.51503	1.9416	.88902	45
16	.45813	.51540	1.9402	.88888	44
17	.45839	.51577	1.9388	.88875	43
18	.45865	.51614	1.9375	.88862	42
19	.45891	.51651	1.9361	.88848	41
20	.45917	.51688	1.9347	.88835	40
21	.45942	.51724	1.9333	.88822	39
22	.45968	.51761	1.9319	.88808	38
23	.45994	.51798	1.9306	.88795	37
24	.46020	.51835	1.9292	.88782	36
25 26 27 28 29	.46046 .46072 .46097 .46123	.51872 .51909 .51946 .51983 .52020	1.9278 1.9265 1.9251 1.9237 1.9223	.88768 .88755 .88741 .88728 .88715	35 34 33 32 31
30	.46175	.52057	1.9210	.88701	30
31	.46201	.52094	1.9196	.88688	29
32	.46226	.52131	1.9183	.88674	28
33	.46252	.52168	1.9169	.88661	27
34	.46278	.52205	1.9155	.88647	26
35	.46304	.52242	1.9142	.88634	25
36	.46330	.52279	1.9128	.88620	24
37	.46355	.52316	1.9115	.88607	23
38	.46381	.52353	1.9101	.88593	22
39	.46407	.52390	1.9088	.88580	21
40	.46433	.52427	1.9074	.88566	20
41	.46458	.52464	1.9061	.88553	19
42	.46484	.52501	1.9047	.88539	18
43	.46510	.52538	1.9034	.88526	17
44	.46536	.52575	1.9020	.88512	16
45 46 47 48 49	.46561 .46587 .46613 .46639	.52613 .52650 .52687 .52724 .52761	1.9007 1.8993 1.8980 1.8967 1.8953	.88499 .88485 .88472 .88458 .88445	15 14 13 12 11
50 51 52 53 54	.46690 .46716 .46742 .46767 .46793	.52798 .52836 .52873 .52910 .52947	1.8940 1.8927	.88431 .88417 .88404 .88390 .88377	10 9 8 7 6
55	.46819	.52985	1.8873	.88363	5
56	.46844	.53022	1.8860	.88349	4
57	.46870	.53059	1.8847	.88336	3
58	.46896	.53096	1.8834	.88322	2
59	.46921	.53134	1.8820	.88308	1
,	.46947	.53171	1.8807	.88295	Ò
90	Cos	Ctn	Tan	Sin	
	-		* 4477	-	

28°

	Sin	Tan	Ctn	Cos	'
0	.46947	.53171	1.8807	.88295	60
1	.46973	.53208	1.8794	.88281	59
2	.46999	.53246	1.8781	.88267	58
3	.47024	.53283	1.8768	.88254	57
4	.47050	.53320	1.8755	.88240	56
5	.47076	.53358	1.8741	.88226	55
6	.47101	.53395	1.8728	.88213	54
7	.47127	.63432	1.8715	.88199	53
8	.47153	.53470	1.8702	.88185	52
9	.47178	.53507	1.8689	.88172	51
10	.47204	.53545	1.8676	.88158	50
11	.47229	.53582	1.8663	.88144	49
12	.47255	.53620	1.8650	.88130	48
13	.47281	.53657	1.8637	.88117	47
14	.47306	.53694	1.8624	.88103	46
15	.47332	.53732	1.8611	.88089	45
16	.47358	.53769	1.8698	.88075	44
17	.47383	.53807	1.8685	.88062	43
18	.47409	.53844	1.8672	.88048	42
19	.47434	.53882	1.8659	.88034	41
20	.47460	.53920	1.8546	.88020	40
21	.47486	.53957	1.8533	.88006	39
22	.47511	.53995	1.8520	.87993	38
23	.47537	.54032	1.8507	.87979	37
24	.47562	.54070	1.8495	.87965	36
25	.47588	.54107	1.8482	.87951	35
26	.47614	.54145	1.8469	.87937	34
27	.47639	.54183	1.8456	.87923	33
28	.47665	.54220	1.8443	.87909	32
29	.47690	.54258	1.8430	.87896	31
31 32 33 34	.47716 .47741 .47767 .47793 .47818	.54296 .54333 .54371 .54409 .54446	1.8418 1.8405 1.8392 1.8379 1.8367	.87882 .87868 .87854 .87840 .87826	30 29 28 27 26
36 37 38 39	.47844 .47869 .47895 .47920 .47946	.54484 .54522 .54560 .54597 .54635	1.8354 1.8341 1.8329 1.8316 1.8303	.87812 .87798 .87784 .87770 .87756	25 24 23 22 21
40	.47971	.54673	1.8291	.87743	20
41	.47997	.54711	1.8278	.87729	19
42	.48022	.54748	1.8265	.87715	18
43	.48048	.54786	1.8263	.87701	17
44	.48073	.54824	1.8240	.87687	16
45	.48099	.54862	1.8228	.87673	15
46	.48124	.54900	1.8215	.87659	14
47	.48150	.54938	1.8202	.87645	13
48	.48175	.54975	1.8190	.87631	12
49	.48201	.55013	1.8177	.87617	11
50	.48226	.55051	1.8165	.87603	10
51	.48252	.55089	1.8152	.87589	9
52	.48277	.55127	1.8140	.87575	8
53	.48303	.55165	1.8127	.87561	7
54	.48328	.55203	1.8115	.87546	6
55	.48354	.55241	1.8103	.87532	5
56	.48379	.55279	1.8090	.87518	4
57	.48405	.55317	1.8078	.87504	3
58	.48430	.56355	1.8065	.87490	2
59	.48456	.55393	1.8063	.87476	1
60	.48481	.55431	1.8040	.87462	,
	Cos	Ctn	Tan	Sin	,

′	Sin	Tan	Ctn	Cos	'
0	.48481 .48506	.55431 .55469	1.8040 1.8028	.87462 .87448	60 59
2	.48532	.55507	1.8016	.87434	58
3	.48557	.55545	1.8003	.87420	57
4	.48583	.55583	1.7991	.87406	56
6	.48608 .48634	.55621 .55659	1.7979 1.7966	.87391 .87377	55; 54
7	.48659	.55697	1.7954	.87363	53 52
8	.48684	.55736 .55774	1.7942	.87363 .87349 .87335	52
10	.48710 .48735	.55812	1.7930 1.7917		51 50
īĭ	.48761	.55850	1.7905	.87321 .87306	49
12	.48786	.55888	1.7893	.87306 .87292	48
13 14	.48811 .48837	.55926 .55964	1.7881	.87278 .87264	47 46
15	.48862	.56003	1.7856	.87250	45
	.48888	.56041	1.7844	.87235 .87221	44
16 17	.48913	.56079	1.7832 1.7820	.87221	43 42
18 19	.48938 .48964	.56117 .56156	1.7820	.87207 .87193	41
20	.48989	.56194	1.7796	.87178	40
21 22	.49014	.56232	1.7783 1.7771	.87164	39
22 23	.49040 .49065	.56270 .56309	1.7771 1.7759	.87150 .87136	38 37
24	.49090	.56347	1.7747	.87121	36
25	.49116	.56385	1.7735	.87107	35
26	.49141	.56424	1.7723	.87093	34
27 28	.49166 .49192	.56462 .56501	1.7711 1.7699	.87079 .87064	33 32
29	.49217	.56539	1.7687	.87050	31
30	.49242	.56577	1.7675	.87036	30
31 32	.49268 .49293	.56616 .56654	1.7663	.87021	29 28
33	.49318	.56693	1.7651 1.7639	.87007 .86993	27
34	.49344	.56731	1.7627	.86978	26
35	.49369	.56769	1.7615	.86964	25
36 37	.49394 .49419	.56808 .56846	1.7603 1.7591	.86949 .86935	24 23
38	.49445	.56885	1.7579	.86921	22
39	.49470	.56923	1.7567	.86906	21
40	.49495 .49521	.56962	1.7556	.86892	20
41 42	.49521	.57000 .57039	1.7544 1.7532	.86878 .86863	19 18
43	.49571	.57078	1.7520	.86849	17
44	.49596	.57116	1.7508	.86834	16
45 46	.49622 .49647	.57155 .57193	1.7496 1.7485	.86820 .86805	15 14
47	.49672	.57232	1.7473	.86791	13 12
48	.49697	.57271	1.7461	.86777	12
49	.49723	.57309	1.7449	.86762	11
50	.49748	.57348 .57386	1.7437 1.7426	.86748 .86733	10
52	.49798	.57425	1.7414	.86719	8
53 54	.49824	.57464 .57503	1.7402 1.7391	.86704 .86690	6
55	.49874	.57541	1.7379	.86675	5
56	.49899	.57580	1.7367 1.7365	.86661	4
57	.49924	.57619	1.7355	.86646 .86632	3 2
58 59	.49950 .49975	.57657 .57696	1.7344 1.7332 1.7321	.86617	1
59 60	.50000	.57735	1.7321	.86617 .86603	Ô
,	Cos	Ctn	Tan	Sin	1
			-		

468

30° 31°

•	Sin	Tan	Ctn	Cos	′	′	Sin	Tan	Ctn	Cos	′
01234	.50000 .50025 .50050 .50076 .50101	.57735 .57774 .57813 .57851 .57890	1.7321 1.7309 1.7297 1.7286 1.7274	.86603 .86588 .86573 .86559 .86544	60 59 58 57 56	0 1 2 3 4	.51504 .51529 .51554 .51579 .51604	.60086 .60126 .60165 .60205 .60245	1.6643 1.6632 1.6621 1.6610 1.6599	.85717 .85702 .85687 .85672 .85657	60 59 58 57 56
5 6789	.50126 .50151 .50176 .50201 .50227	.57929 .57968 .58007 .58046 .58085	1.7262 1.7251 1.7239 1.7228 1.7216	.86530 .86515 .86501 .86486 .86471	55 54 53 52 51	5 6 7 8 9	.51628 .51653 .51678 .51703 .51728	.60284 .60324 .60364 .60403 .60443	1.6588 1.6577 1.6566 1.6555 1.6545	.85642 .85627 .85612 .85597 .85582	55 54 53 52 51
10 11 12 13 14	.50252 .50277 .50302 .50327 .50352	.58124 .58162 .58201 .58240 .58279	1.7205 1.7193 1.7182 1.7170 1.7159	.86457 .86442 .86427 .86413 .86398	50 49 48 47 46	10 11 12 13 14	.51753 .51778 .51803 .51828 .51852	.60483 .60522 .60562 .60602 .60642	1.6534 1.6523 1.6512 1.6501 1.6490	.85567 .85551 .85536 .85521 .85506	50 49 48 47 46
15 16 17 18 19	.50377 .50403 .50428 .50453 .50478	.58318 .58357 .58396 .58435 .58474	1.7147 1.7136 1.7124 1.7113 1.7102	.86384 .86369 .86354 .86340	45 44 43 42 41	15 16 17 18 19	.51877 .51902 .51927 .51952 .51977	.60681 .60721 .60761 .60801 .60841	1.6479 1.6469 1.6458 1.6447 1.6436	.85491 .85476 .85461 .85446 .85431	45 44 43 42 41
20 21 22 23 24	.50503 .50528 .50553 .50578 .50603	.58513 .58552 .58591 .58631 .58670	1.7090 1.7079 1.7067 1.7056 1.7045	.86310 .86295 .86281 .86266 .86251	39 38 37 36	20 21 22 23 24	.52002 .52026 .52051 .52076 .52101	.60881 .60921 .60960 .61000 .61040	1.6426 1.6415 1.6404 1.6393 1.6383	.85416 .85401 .85385 .85370 .85355	39 38 37 36
25 26 27 28 29	.50628 .50654 .50679 .50704 .50729	.58709 .58748 .58787 .58826 .58865	1.7033 1.7022 1.7011 1.6999 1.6988	.86237 .86222 .86207 .86192 .86178	35 34 33 32 31	25 26 27 28 29	.52126 .52151 .52175 .52200 .52225	.61080 .61120 .61160 .61200 .61240	1.6372 1.6361 1.6351 1.6340 1.6329	.85340 .85325 .85310 .85294 .85279	35 34 33 32 31
30 31 32 33 34	.50754 .50779 .50804 .50829 .50854	.58905 .58944 .58983 .59022 .59061	1.6977 1.6965 1.6954 1.6943 1.6932	.86163 .86148 .86133 .86119	29 28 27 26	31 32 33 34	.52250 .52275 .52299 .52324 .52349	.61280 .61320 .61360 .61400 .61440	1.6319 1.6308 1.6297 1.6287 1.6276	.85264 .85249 .85234 .85218 .85203	29 28 27 26
36 37 38 39	.50879 .50904 .50929 .50954 .50979	.59101 .59140 .59179 .59218 .59258	1.6920 1.6909 1.6898 1.6887 1.6875	.86089 .86074 .86059 .86045 .86030	25 24 23 22 21	36 37 38 39	.52374 .52399 .52423 .52448 .52473	.61480 .61520 .61561 .61601 .61641	1.6265 1.6255 1.6244 1.6234 1.6223	.85188 .85173 .85157 .85142 .85127	25 24 23 22 21
40 41 42 43 44	.51004 .51029 .51054 .51079 .51104	.59297 .59336 .59376 .59415 .59454	1.6864 1.6853 1.6842 1.6831 1.6820	.86015 .86000 .85985 .85970 .85956	20 19 18 17 16	40 41 42 43 44	.52498 .52522 .52547 .52572 .52597	.61681 .61721 .61761 .61801 .61842	1.6212 1.6202 1.6191 1.6181 1.6170	.85112 .85096 .85081 .85066 .85051	20 19 18 17 16
45 46 47 48 49	.51129 .51154 .51179 .51204 .51229	.59494 .59533 .59573 .59612 .59651	1.6808 1.6797 1.6786 1.6775 1.6764	.85941 .85926 .85911 .85896 .85881	15 14 13 12 11	45 46 47 48 49	.52621 .52646 .52671 .52696 .52720	.61882 .61922 .61962 .62003 .62043	1.6160 1.6149 1.6139 1.6128 1.6118	.85035 .85020 .85005 .84989 .84974	15 14 13 12 11
50 51 52 53 54	.51254 .51279 .51304 .51329 .51354	.59691 .59730 .59770 .59809 .59849	1.6753 1.6742 1.6731 1.6720 1.6709	.85866 .85851 .85836 .85821 .85806	10 9 8 7 6	50 51 52 53 54	.52745 .52770 .52794 .52819 .52844	.62083 .62124 .62164 .62204 .62245	1.6107 1.6097 1.6087 1.6076 1.6066	.84959 .84943 .84928 .84913 .84897	10 9 8 7 6
55 56 57 58 59	.51379 .51404 .51429 .51454 .51479 .51504	.59888 .59928 .59967 .60007 .60046	1.6698 1.6687 1.6676 1.6665 1.6654 1.6643	.85792 .85777 .85762 .85747 .85732 .85717	5 4 3 2 1	55 56 57 58 59 60	.52869 .52893 .52918 .52943 .52967 .52992	.62285 .62325 .62366 .62406 .62446 .62487	1.6055 1.6045 1.6034 1.6024 1.6014 1.6003	.84882 .84866 .84851 .84836 .84820 .84805	5 4 3 2 1 0
3	¹ Cos	Ctn	Tan	Sin	7	1	Cos	Ctn	Tan	Sin	7

59° 58°

		32	0		
'	Sin	Tan	Ctn	Cos	′
0	.52992	.62487	1.6003	.84805	60
1	.53017	.62527 .62568	1.5993	.84789 .84774	59 58
2 3	.53041 .53066	.62608	1.5983 1.5972	.84759	57
4	.53091	.62649	1.5962	.84743	56
5	.53115	.62689	1.5952	.84728	55
6	.53140	.62730 .62770	1.5941	.84712	54
7	.53164 .53189	.62770	1.5931 1.5921	.84697 .84681	53 52
ğ	.53214	.62852	1.5911	.84666	51
10	.53238	.62892	1.5900	.84650	50
11 12 13	.53263 .53288	.62933	1.5890	.84635 .84619	49 48
12	.53312	.62973 .63014	1.5880 1.5869	.84604	47
14	.53337	.63055	1.5859	.84588	46
15	.53361	.63095	1.5849	.84573	45
16	.53386	.63136	1.5839	.84557	44
17 18	.53411 .53435	.63177 .63217	1.5829 1.5818	.84542 .84526	43 42
19	.53460	.63258	1.5808	.84511	41
20	.53484	.63299	1.5798	.84495	40
21	.53509	.63340	1.5788	.84480	39
22 23	.53534	.63380	1.5778	.84464 .84448	38 37
23 24	.53558 .53583	.63421 .63462	1.5768 1.5757	.84435	36
25	.53607	.63503	1.5747	.84417	35
26	.53632 .53656	.63544	1 5737	.84402	34 33
27	.53656	.63584 .63625	1.5727	.84386 .84370	33
28 29	.53681 .53705	.63666	1.5717	.84370	32 31
30	.53730	.63707	1.5697	.84339	30
31	.53754	.63748	1.5687	.84324	29
32	.53779	.63789	1.5677	.84308	28
33 34	.53804 .53828	.63830 .63871	1.5667 1.5657	.84292 .84277	27 26
35	.53853	.63912	1.5647	.84261	25
36	.53877	.63953	1.5637	.84245	24
36 37	.53902 .53926	.63994	1.5627	.84230	23
38 39	.53926	.64035 .64076	1.5617 1.5607	.84214 .84198	22 21
39 40	.53951	.64117	1.5597	.84182	20
40 41	.54000	.64158	1.5587	.84167	19
42	.54024	.64199	1.5577	.84151	18
43	.54049	.64240	1.5567	.84135 .84120	17 16
44 4 5	.54073	.64281	1.5557		15
46	.54097 .54122	.64322 .64363	1.5547 1.5537	.84104 .84088	14
47	.54146	.64404	1.5527	.84072	13 12
48	.54171	.64446	1.5517	.84057	
49	.54195	.64487	1.5507	.84041	11
50	.54220 .54244	.64528 .64569	1.5497 1.5487	.84025 .84009	10
51 52 53	.54269	.64610	1.5477	.83994	8
53	.54269 .54293	.64652	1.5468	.83978	7
54	.54317	.646 93	1.5458	.83962	6
22	.54342	.64734	1.5448	.83946	5
56 57	.54366 .54391	.64775 .64817	1.5438 1.5428	.83930 .83915	3
58	.54415	.64858	1.5418	.83899	2
59	.54440	.64899	1.5408	.83883	1
60	.54464	.64941	1.5399	.83867	0
	,				

Ctn

Cos

Tan

Sin

,	Sin	Tan	Ctn	Cos	7
\vdash					_
0	.54464 .54488	.64941 .64982	1.5399 1.5389	.83867 .83851	60 59
2 3	.54513	.65024	1.5379 1.5369	.83835	58
3 4	.54537 .54561	.65065 .65106	1.5359	.83819 .83804	57 56
5	.54586	.65148	1.5350	.83788	55
6	.54610 .54635	.65189 .65231	1.5340 1.5330 1.5320	.83772 .83756 .83740	54
8	.54659	.05272	1.5320	.83740	53 52
9	.54683	.65314	1.5311	.83724	51
10 11	.54708 .54732	.65355 .65397	1.5301 1.5291	.83708 .83692	50 49
12	.54756	.65438	1.5282	.83676	48
13 14	.54781	.65480	1.5272	.83660	47
15	.54805	.65521	1.5262	.83645 .83629	46 45
16	.54854	.65604	1.5243	.83613	44
17	.54878	.65646	1.5233	.83597	43
18 19	.54902 .54927	.65688 .65729	1.5224 1.5214	.83581 .83565	42 41
20	.54951	.65771	1.5204	.83549	40
21 22	.54975 .54999	.65813 .65854	1.5195 1.5185	.83533 .83517	39
23	.55024	.65896	1.5175	.83501	38 37
24	.55048	.65938	1.5166	.83485	36
25	.55072 .55097	.65980 .66021	1.5156 1.5147	.83469	35
26 27	.55121	.66063	1.5147 1.5137 1.5127	.83453 .83437	34 33
28	.55145	.66105	1.5127	.83421	33 32
29 30	.55169 .55194	.66147 .66189	1.5118 1.5108	.83405 .83389	31 30
31	.55218	.66230	1.5099	.83373	29
32	.55242	.66272 .66314	1.5089	83356 .83340	28
33 34	.55266 .55291	.66356	1.5080 1.5070	.83324	27 26
35	.55315	.66398	1.5061	.83308	25
36 37	.55339	.66440 .66482	1.5051 1.5042	.83292 .83276	24 23
38	.55363 .55388	.66524	1.5032	.83260	22
39	.55412	.66566	1.5023	.83244	21
40	.55436 .55460	.66608 .66650	1.5013 1.5004	.83228	20 19
42	.55484	.66692	1 4994	.83212 .83195	18
43 44	.55509 .55533	.66734 .66776	1.4985 1.4975	.83179 .83163	17 16
45	.55557	.66818	1.4966	.83147	15
46	55581	.66860	1.4957	.83131	14
47 48	.55605 .55630	.66902 .66944	1.4947 1.4938	.83115 .83098	13 12
49	.55654	.66986	1.4928	.83082	ii
50	.55678	.67028	1.4919	.83066	10
51	.55702 .55726	.67071 .67113	1.4910 1.4900	.83050 .83034	9
52 53	.55750	.67155	1.4891	.83017	8 7
54	.55775	.67197	1.4882	.83001	6
56	.55799 .55823	.67239 .67282	1.4872 1.4863	.82985 .82969	5 4
57	.55847	.67324	1.4854	.82953	3 2
58 59	.55871 .5589 5	.67366 .67409	1.4844 1.4835	.82936 .82920	2
60	.55919	.67451	1.4826	.82904	Ó
7	Cos	Ctn	Tan	Şin	7

33°

56° 57°

34°

•	Sin	Tan	Ctn	Cos	,		,	Sin	Tan	Ctn	Cos	,
0 1 2 3 4	.55919 .55943 .55968 .55992 .56016	.67451 .67493 .67536 .67578 .67620	1.4826 1.4816 1.4807 1.4798 1.4788	.82904 .82887 .82871 .82855 .82839	60 59 58 57 56		0 1 2 3 4	.57358 .57381 .57405 .57429 .57453	.70021 .70064 .70107 .70151 .70194	1.4281 1.4273 1.4264 1.4265 1.4246	.81915 .81899 .81882 .81865 .81848	60 59 58 57 56
567 89	.56040 .56064 .56088 .56112 .56136	.67663 .67705 .67748 .67790 .67832	1.4779 1.4770 1.4761 1.4751 1.4742	.82822 .82806 .82790 .82773 .82757	55 54 53 52 51		5 6789	.57477 .57501 .57524 .57548 .57572	.70238 .70281 .70325 .70368 .70412	1.4237 1.4229 1.4220 1.4211 1.4202	.81832 .81815 .81798 .81782 .81765	54 54 53 52 51
10 11 12 13 14	.56160 .56184 .56208 .56232 .56256	.67875 .67917 .67960 .68002 .68045	1.4733 1.4724 1.4715 1.4705 1.4696	.82741 .82724 .82708 .82692 .82675	50 49 48 47 46		10 11 12 13 14	.57596 .57619 .57643 .57667 .57691	.70455 .70499 .70542 .70586 .70629	1.4193 1.4185 1.4176 1.4167 1.4158	.81748 .81731 .81714 .81698 .81681	49 48 47 46
16 17 18 19	.56280 .56305 .56329 .56353 .56377	.68088 .68130 .68173 .68215 .68258	1.4687 1.4678 1.4669 1.4659 1.4650	.82659 .82643 .82626 .82610 .82593	44 43 42 41		15 16 17 18 19	.57715 .57738 .57762 .57786 .57810	.70673 .70717 .70760 .70804 .70848	1.4150 1.4141 1.4132 1.4124 1.4115	.81664 .81647 .81631 .81614 .81597	45 44 43 42 41
20 21 22 23 24	.56401 .56425 .56449 .56473 .56497	.68343 .68386 .68429 .68471	1.4641 1.4632 1.4623 1.4614 1.4605	.82577 .82561 .82544 .82528 .82511	40 39 38 37 36		20 21 22 23 24	.57833 .57857 .57881 .57904 .57928	.70891 .70935 .70979 .71023 .71066	1.4106 1.4097 1.4089 1.4080 1.4071	.81580 .81563 .81546 .81530 .81513	40 39 38 37 36
25 26 27 28 29	.56521 .56545 .56569 .56593 .56617	.68514 .68557 .68600 .68642 .68685	1.4596 1.4586 1.4577 1.4568 1.4559	.82495 .82478 .82462 .82446 .82429	34 33 32 31		26 27 28 29	.57952 .57976 .57999 .58023 .58047	.71110 .71154 .71198 .71242 .71285	1.4063 1.4054 1.4045 1.4037 1.4028	.81496 .81479 .81462 .81445 .81428	35 34 33 32 31
30 31 32 33 34	.56641 .56665 .56689 .56713 .56736	.68728 .68771 .68814 .68857 .68900	1.4550 1.4541 1.4532 1.4523 1.4514	.82413 .82396 .82380 .82363 .82347	29 28 27 26		31 32 33 34	.58070 .58094 .58118 .58141 .58165	.71329 .71373 .71417 .71461 .71505	1.4019 1.4011 1.4002 1.3994 1.3985	.81412 .81395 .81378 .81361 .81344	29 28 27 26
35 36 37 38 39	.56760 .56784 .56808 .56832 .56856	.68942 .68985 .69028 .69071 .69114	1.4505 1.4496 1.4487 1.4478 1.4469	.82330 .82314 .82297 .82281 .82264	25 24 23 22 21		36 37 38 39	.58189 .58212 .58236 .58260 .58283	.71549 .71593 .71637 .71681 .71725	1.3976 1.3968 1.3969 1.3961 1.3942	.81327 .81310 .81293 .81276 .81259	25 24 23 22 21
40 41 42 43 44	.56880 .56904 .56928 .56952 .56976	.69157 .69200 .69243 .69286 .69329	1.4460 1.4451 1.4442 1.4433 1.4424	.82248 .82231 .82214 .82198 .82181	20 19 18 17 16		40 41 42 43 44	.58307 .58330 .58354 .58378 .58401	.71769 .71813 .71857 .71901 .71946	1.3934 1.3925 1.3916 1.3908 1.3899	.81242 .81225 .81208 .81191 .81174	19 18 17 16
45 46 47 48 49	.57000 .57024 .57047 .57071 .57095	.69372 .69416 .69459 .69502 .69545	1.4415 1.4406 1.4397 1.4388 1.4379	.82165 .82148 .82132 .82115 .82098	15 14 13 12 11		46 47 48 49	.58425 .58449 .58472 .58496 .58519	.71990 .72034 .72078 .72122 .72167	1.3891 1.3882 1.3874 1.3865 1.3867	.81157 .81140 .81123 .81106 .81089	15 14 13 12 11
50 51 52 53 54	.57119 .57143 .57167 .57191 .57215	.69588 .69631 .69675 .69718 .69761	1.4370 1.4361 1.4352 1.4344 1.4335	.82082 .82065 .82048 .82032 .82015	10 9 8 7 6		50 51 52 53 54	.58543 .58567 .58590 .58614 .58637	.72211 .72255 .72299 .72344 .72388	1.3848 1.3840 1.3831 1.3823 1.3814	.81072 .81055 .81038 .81021 .81004	10 9 8 7 6
55 56 57 58 59	.57238 .57262 .57286 .57310 .57334	.69804 .69847 .69891 .69934	1.4326 1.4317 1.4308 1.4299 1.4290	.81999 .81982 .81965 .81949 .81932	5 4 3 2 1		56 57 58 59	.58661 .58684 .58708 .58731 .58755	.72432 .72477 .72521 .72565 .72610	1.3806 1.3798 1.3789 1.3781 1.3772	.80987 .80970 .80953 .80936 .80919	5 4 3 2 1
60	.57358 Cos	.70021 Ctn	1.4281 Tan	.81915 Sin	, ,	1	60	.58779 Cos	.72654 Ctn	1.3764 Tan	.80902 Sin	Ļ

Natural Trigonometric Functions

36°

37°

						 		31		
•	Sin	Tan	Ctn	Cos	,	,	Sin	Tan	Ctn	Cos
0 1 2 3	.58779 .58802 .58826 .58849	.72654 .72699 .72743 .72788	1.3764 1.3755 1.3747 1.3739	.80902 .80885 .80867 .80850	60 59 58 57	0 1 2 3	.60182 .60205 .60228 .60251	.75355 .75401 .75447 .75492	1.3270 1.3262 1.3254 1.3246	.79864 .79846 .79829 .79811
4 5 6 7 8	.58873 .58896 .58920 .58943 .58967	.72832 .72877 .72921 .72966 .73010	1.3730 1.3722 1.3713 1.3705 1.3697	.80833 .80816 .80799 .80782 .80765	56 55 54 53 52	4 5 6 7 8	.60274 .60298 .60321 .60344 .60367	.75538 .75584 .75629 .75675 .75721	1.3238 1.3230 1.3222 1.3214 1.3206	.79793 .79776 .79758 .79741 .79723
9 10 11 12 13	.58990 .59014 .59037 .59061 .59084	.73055 .73100 .73144 .73189 .73234	1.3688 1.3680 1.3672 1.3663 1.3655	.80748 .80730 .80713 .80696 .80679	51 50 49 48 47	9 10 11 12 13	.60390 .60414 .60437 .60460 .60483	.75767 .75812 .75858 .75904 .75950	1.3198 1.3190 1.3182 1.3175 1.3167	.79706 .79688 .79671 .79653 .79635
14 15 16 17 18	.59108 .59131 .59154 .59178 .59201	.73278 .73323 .73368 .73413 .73457	1.3647 1.3638 1.3630 1.3622 1.3613	.80662 .80644 .80627 .80610 .80593	46 45 44 43 42	14 15 16 17 18	.60506 .60529 .60553 .60576 .60599	.75996 .76042 .76088 .76134 .76180	1.3159 1.3151 1.3143 1.3135 1.3127	.79618 .79600 .79583 .79565 .79547
19 20 21 22 23	.59225 .59248 .59272 .59295 .59318	.73502 .73547 .73592 .73637 .73681	1.3605 1.3597 1.3588 1.3580 1.3572 1.3564	.80576 .80558 .80541 .80524 .80507 .80489	41 40 39 38 37 36	19 20 21 22 23 24	.60622 .60645 .60668 .60691 .60714	.76226 .76272 .76318 .76364 .76410 .76456	1.3119 1.3111 1.3103 1.3095 1.3087 1.3079	.79530 .79512 .79494 .79477 .79459
24. 25 26 27 28	.59342 .59365 .59389 .59412 .59436	.73726 .73771 .73816 .73861 .73906	1.3555 1.3547 1.3539 1.3531	.80472 .80455 .80438 .80420	35 34 33 32	25 26 27 28 29	.60761 .60784 .60807 .60830	.76502 .76548 .76594 .76640	1.3072 1.3064 1.3056 1.3048	.79441 .79424 .79406 .79388 .79371
29 80 31 32 33	.59459 .59482 .59506 .59529 .59552	.73951 .73996 .74041 .74086 .74131	1.3522 1.3514 1.3506 1.3498 1.3490	.80403 .80386 .80368 .80351 .80334	31 30 29 28 27	30 31 32 33	.60853 .60876 .60899 .60922 .60945	.76686 .76733 .76779 .76825 .76871	1.3040 1.3032 1.3024 1.3017 1.3009	.79353 .79335 .79318 .79300 .79282
34 85 36 37 38	.59576 .59599 .59622 .59646 .59669	.74176 .74221 .74267 .74312 .74357	1.3481 1.3473 1.3465 1.3457 1.3449	.80316 .80299 .80282 .80264 .80247	26 25 24 23 22	34 35 36 37 38	.60968 .60991 .61015 .61038 .61061	.76918 .76964 .77010 .77057 .77103	1.3001 1.2993 1.2985 1.2977 1.2970	.79264 .79247 .79229 .79211 .79193
39 40 41 42 43	.59693 .59716 .59739 .59763 .59786	.74402 .74447 .74492 .74538 .74583	1.3440 1.3432 1.3424 1.3416 1.3408	.80230 .80212 .80195 '80178 .80160	21 20 19 18 17	39 40 41 42 43	.61084 .61107 .61130 .61153 .61176	.77149 .77196 .77242 .77289 .77335	1.2962 1.2954 1.2946 1.2938 1.2931 1.2923	.79176 .79158 .79140 .79122 .79105
44 45 46 47 48	.59809 .59832 .59856 .59879 .59902	.74628 .74674 .74719 .74764 .74810	1.3400 1.3392 1.3384 1.3375 1.3367	.80143 .80125 .80108 .80091 .80073	16 15 14 13 12	44 45 46 47 48	.61199 .61222 .61245 .61268 .61291	.77382 .77428 .77475 .77521 .77568	1.2915 1.2907 1.2900 1.2892	.79087 .79069 .79051 .79033 .79016
50 51 52 53	.59926 .59949 .59972 .5999% .60019	.74855 .74900 .74946 .74991 .75037	1.3359 1.3351 1.3343 1.3335 1.3327	.80056 .80038 .80021 .80003 .79986	11 10 9 8 7	50 51 52 53	.61314 .61337 .61360 .61383 .61406	.77615 .77661 .77708 .77754 .77801	1.2884 1.2876 1.2869 1.2861 1.2853	.78998 .78980 .78962 .78944 .78926
54 55 56 57 58	.60042 .60065 .60089 .60112	.75082 .75128 .75173 .75219 .75264	1.3319 1.3311 1.3303 1.3295 1.3287	.79968 .79951 .79934 .79916 .79899	6 5 4 3 2	54 55 56 57 58	.61429 .61451 .61474 .61497 .61520	.77848 .77895 .77941 .77988 .78035	1.2846 1.2838 1.2830 1.2822 1.2815	.78908 .78891 .78873 .78855 .78837
59 60	.60158 .60182	.75310 .75355 Ctn	1.3278 1.3270	.79881 .79864 Sin	0	59 60	.61543 .61566 Cos	.78082 .78129	1.2807 1.2799 Tan	.78819 .78801
نــــــــــــــــــــــــــــــــــــــ	COS	СШ	7 477	OIII				<u> </u>	7 411	Om

53° 52°

38°

472

3**9**°

'	Sin	Tan	Ctn	Cos	1
0	.61566	.78129	1.2799	.78801	60
1	.61589	.78175	1.2792	.78783	59
2	.61612	.78222	1.2784	.78765	58
3	.61635	.78269	1.2776	.78747	57
4	.61658	.78316	1.2769	.78729	56
5 6 7 8 9	.61681 .61704 .61726 .61749 .61772	.78363 .78410 .78457 .78504 .78551	1.2761 1.2753 1.2746 1.2738 1.2731	.78711 .78694 .78676 .78658 .78640	54 53 52 51
10	.61795	.78598	1.2723	.78622	50
11	.61818	.78645	1.2715	.78604	49
12	.61841	.78692	1.2708	.78586	48
13	.61864	.78739	1.2700	.78568	47
14	.61887	.78786	1.2693	.78560	46
15	.61909	.78834	1.2685	.78532	45
16	.61932	.78881	1.2677	.78514	44
17	.61955	.78928	1.2670	.78496	43
18	.61978	.78975	1.2662	.78478	42
19	.62001	.79022	1.2655	.78460	41
20	.62024	.79070	1.2647	.78442	40
21	.62046	.79117	1.2640	.78424	39
22	.62069	.79164	1.2632	.78405	38
23	.62092	.79212	1.2624	.78387	37
24	.62115	.79259	1.2617	.78369	36
25	.62138	.79306	1.2609	.78351	35
26	.62160	.79354	1.2602	.78333	34
27	.62183	.79401	1.2594	.78315	33
28	.62206	.79449	1.2587	.78297	32
29	.62229	.79496	1.2579	.78279	31
30	.62251	.79544	1.2572	.78261	30
31	.62274	.79591	1.2564	.78243	29
32	.62297	.79639	1.2557	.78225	28
33	.62320	.79686	1.2549	.78206	27
34	.62342	.79734	1.2542	.78188	26
35	.62365	.79781	1.2534	.78170	25
36	.62388	.79829	1.2527	.78152	24
37	.62411	.79877	1.2519	.78134	23
38	.62433	.79924	1.2512	.78116	22
39	.62456	.79972	1.2504	.78098	21
40	.62479	.80020	1.2497	.78079	20
41	.62502	.80067	1.2489	.78061	19
42	.62524	.80115	1.2482	.78043	18
43	.62547	.80163	1.2475	.78025	17
44	.62570	.80211	1.2467	.78007	16
45	.62592	.80258	1.2460	.77988	15
46	.62615	.80306	1.2452	.77970	14
47	.62638	.80354	1.2445	.77952	13
48	.62660	.80402	1.2437	.77934	12
49	.62683	.80450	1.2430	.77916	11
50	.62706	.80498	1.2423	.77897	10
51	.62728	.80546	1.2415	.77879	9
52	.62751	.80594	1.2408	.77861	8
53	.62774	.80642	1.2401	.77843	7
54	.62796	.80690	1.2393	.77824	6
55	.62819	.80738	1.2386	.77806	5
56	.62842	.80786	1.2378	.77788	4
57	.62864	.80834	1.2371	.77769	3
58	.62887	.80882	1.2364	.77751	2
59	.62909	.80930	1.2356	.77733	1
60	.62932 Cos	.80978 Ctn	1.2349 Tan	.77715 Sin	,

		53			
′	Sin	Tan	Ctn	Cos	′
0	.62932	.80978	1.2349	.77715	60
1	.62955	.81027	1.2342	.77696	59
2	.62977	.81075	1.2334	.77678	58
3	.63000	.81123	1.2327	.77660	57
4	.63022	.81171	1.2320	.77641	56
6 7 8 9	.63045 .63068 .63090 .63113 .63135	.81220 .81268 .81316 .81364 .81413	1.2312 1.2305 1.2298 1.2290 1.2283	.77623 .77605 .77586 .77568 .77550	55 54 53 52 51
10	.63158	.81461	1.2276	.77531	50
11	.63180	.81510	1.2268	.77513	49
12	.63203	.81558	1.2261	.77494	48
13	.63225	.81606	1.2254	.77476	47
14	.63248	.81655	1.2247	.77458	46
15	.63271	.81703	1.2239	.77439	45
16	.63293	.81752	1.2232	.77421	44
17	.63316	.81800	1.2225	.77402	43
18	.63338	.81849	1.2218	.77384	42
19	.63361	.81898	1.2210	.77366	41
20	.63383	.81946	1.2203	.77347	40
21	.63406	.81995	1.2196	.77329	39
22	.63428	.82044	1.2189	.77310	38
23	.63451	.82092	1.2181	.77292	37
24	.63473	.82141	1.2174	.77273	36
25	.63496	.82190	1.2167	.77255	35
26	.63518	.82238	1.2160	.77236	34
27	.63540	.82287	1.2153	.77218	33
28	.63563	.82336	1.2145	.77199	32
29	.63585	.82385	1.2138	.77181	31
30	.63608	.82434	1.2131	.77162	30
31	.63630	.82483	1.2124	.77144	29
32	.63653	.82531	1.2117	.77125	28
33	.63675	.82580	1.2109	.77107	27
34	.63698	.82629	1.2102	.77088	26
36 37 38 39	.63720 .63742 .63765 .63787 .63810	.82678 .82727 .82776 .82825 .82874	1.2095 1.2088 1.2081 1.2074 1.2066	.77070 .77051 .77033 .77014 .76996	25 24 23 22 21
40 41 42 43 44	.63832 .63854 .63877 .63899 .63922	.82923 .82972 .83022 .83071 .83120	1.2059 1.2052 1.2045 1.2038 1.2031	.76977 .76959 .76940 .76921	20 19 18 17 16
45	.63944	.83169	1.2024	.76884	15
46	.63966	.83218	1.2017	.76866	14
47	.63989	.83268	1.2009	.76847	13
48	.64011	.83317	1.2002	.76828	12
49	.64033	.83366	1.1995	.76810	11
50	.64056	.83415	1.1988	.76791	10
51	.64078	.83465	1.1981	.76772	9
52	.64100	.83514	1.1974	.76754	8
53	.64123	.83564	1.1967	.76735	7
54	.64145	.83613	1.1960	.76717	6
55 56 57 58 59 60	.64167 .64190 .64212 .64234 .64256	.83662 .83712 .83761 .83811 .83860 .83910	1.1953 1.1946 1.1939 1.1932 1.1925	.76698 .76679 .76661 .76642 .76623	5 4 3 2 1
,	.042/9 Cos	Ctn	1.1918 Tan	.76604 Sin	,

51° 50°

40°

7	Sin	Tan	Ctn	Cos	,	1	,	Sin	Tan	Ctn	Cos	,
0	.64279	.83910	1.1918	.76604	60		0	.65606	.86929	1.1504	.75471	60
1	.64301	.83960	1.1910	.76586	59		ĩ	.65628	.86980	1.1497	.75452	59
2 3	.64323 .64346	.84009 .84059	1.1903 1.1896	.76567 .76548	58 57		2 3	.65650 .65672	.87031 .87082	1.1490 1.1483	.75433 .75414	58 57
4	.64368	.84108	1.1889	.76530	56		4	.65694	.87133	1.1477	.75395	56
P	.64390	.84158 .84208	1.1882	.76511 .76492	55 54		6	.65716 .65738	.87184 .87236	1.1470	.75375 .75356	55 54
7	.64412 .64435	.84258	1.1875 1.1868	.76473	53		7	.65759	.87287	1.1456	.75337	53
8	.64457 .64479	.84307 .84357	1.1861 1.1854	.76455 .76436	52 51		8	.65781 .65803	.87338 .87389	1.1450 1.1443	.75318 .75299	52 51
10	.64501	.84407	1.1847	.76417	50		10	.65825	.87441	1.1436	.75280	50
11	.64524	.84457	1.1840	.76398	49		11	.65847	.87492	1.1430	.75261	49
12 13	.64546 .64568	.84507 .84556	1.1833 1.1826	.76380 .76361	48 47		12 13	.65869 .65891	.87543 .87595	1.1423 1.1416	.75241 .75222	48 47
14	.64590	.84606	1.1819	.76342	46		14	.65913	.87646	1.1410	.75203	46
15	.64612 .64635	.84656 .84706	1.1812 1.1806	.76323 .76304	45 44		15 16	.65935	.87698 .87749	1.1403 1.1396	.75184 .75165	45 44
17	.64657	.84756	1.1799	.76286	43		17	.65978	.87801	1.1389	.75146	43
18 19	.64679 .64701	.84806 .84856	1.1792 1.1785	.76267 .76248	42 41		18 19	.66000 .66022	.87852 .87904	1.1383	.75126 .75107	42 41
20	.64723	.84906	1.1778	.76229	40		20	.66044	.87955	1.1369	.75088	40
21	.64746	.84956	1.1771	.76210	39		21	.66066	.88007	1.1363	.75069	39
22 23	.64768 .64790	.85006 .85057	1.1764 1.1757	.76192 .76173	38 37		22 23	.66088	.88059 .88110	1.1356	.75050 .75030	38 37
24	.64812	.85107	1.1750	.76154	36		24	.66131	.88162	1.1343	.75011	36
25 26	.64834 .64856	.85157 .85207	1.1743 1.1736	.76135 .76116	35 34		25 26	.66153 .66175	.88214 .88265	1.1336 1.1329	.74992 .74973	35 34
27	.64878	.85257	1.1729	.76097	33		27	.66197	.88317	1.1323	.74953	33
28 29	.64901 .64923	.85308 .85358	1.1722	.76078 .76059	32 31		28 29	.66218 .66240	.88369 .88421	1.1316 1.1310	.74934 .74915	32 31
30	.64945	.85408	1.1708	.76041	30		30	.66262	.88473	1.1303	.74896	30
31	.64967	.85458	1.1702	.76022	29		31	.66284	.88524	1.1296	.74876	29
32 33	.64989 .65011	.85509 .85559	1.1695 1.1688	.76003 .75984	28 27		32 33	.66306 .66327	.88576 .88628	1.1290 1.1283	.74857 .74838	28 27
34	.65033	.85609	1.1681	.75965	26		34	.66349	.88680	1.1276	.74818	26
36	.65055 .65077	.85660 .85710	1.1674 1.1667	.75946 .75927	25 24		35 36	.66371 .66393	.88732 .88784	1.1270 1.1263	.74799 .74780	25 24
37	.65100	.85761	1.1660	.75908	23	ŀ	37	.66414	.88836	1.1257	.74760	23
38 39	.65122 .65144	.85811 .85862	1.1653 1.1647	.75889 .75870	22 21		38 39	.66436 .66458	.88888 .88940	1.1250 1.1243	.74741 .74722	22 21
40	.65166	.85912	1.1640	.75851	20		40	.66480	.88992	1.1237	.74703	20
41 42	.65188	.85963	1.1633 1.1626	.75832 .75813	19 18	l	41 42	.66501 .66523	.89045 .89097	1.1230 1.1224	.74683 .74664	19 18
43	.65210 .65232	.86014 .86064	1.1619	.75794	17	•	43	.66545	.89149	1.1217	.74644	17
44	.65254	.86115	1.1612	.75775	16		44	.66566	.89201	1.1211	.74625	16
45 46	.65276 .65298	.86166 .86216	1.1606 1.1599	.75756 .75738	15 14	i	48 46	.66588 .66610	.89253 .89306	1.1204	.74606 .74586	15 14
47	.65320	.86267	1.1592	.75719	13		47	.66632	.89358	1.1191	.74567	13
48 49	.65342	.86318 .86368	1.1585	.75700 .75680	12 11		48 49	.66653 .66675	.89410 .89463	1.1184 1.1178	.74548 .74528	12 11
50	.65386	.86419	1.1571	.75661	10		50	.66697	.89515	1.1171	.74509	10
51 52	.65408 .65430	.86470 .86521	1.1565 1.1558	.75642 .75623	9	1	51 52	.66718 .66740	.89567 .89620	1.1165 1.1158	.74489 .74470	8
53	.65452	.86572	1.1551	.75604	7		53	.66762	.89672	1.1152	.74451	7
54	.65474	.86623	1.1544	.75585	6	l	54	.66783	.89725	1.1145	.74431	6
55 56	.65496 .65518	.86674 .86725	1.1538 1.1531	.75566 .75547	5		55 56	.66805 .66827	.89777 .89830	1.1139 1.1132	.74412 .74392	5 4
57 58	.65540	.86776	1.1524	.75528	3 2	1	57	.66848	.89883	1.1126	.74373	3
59	.65562 .65584	.86827 .86878	1.1517 1.1510	.75509 .75490	1	1	58 59	.66870 .66891	.89935 .89988	1.1113	.74353 .74334	1
.60	.65606	.86929	1.1504	.75471	0	1	60	.66913	.90040	1.1106	.74314	0
Ľ	Cos	Ctn	Tan	Sin	′	1	Ľ	Cos	Ctn	Tan	Sin	′

42°

		-74	•				
•	Sin	Tan	Ctn	Cos	,		•
Ó	.66913	.90040	1.1106	.74314	60		Ó
1 2	.66935 .66956	.90093 .90146	1.1100	.74295 .74276	59 58		1 2
3	.66978	.90199	1.1087	.74256	58 57		3 4
4	.66999	.90251	1.1080	.74237	56		
6	.67021 .67043	.90304 .90357	1.1074 1.1067	.74217 .74198	55 54		5
7	.67064	.90410	1.1061	.74178	54 53		7
8	.67086 .67107	.90463 .90516	1.1054	.74159 .74139	52 51		8
10	.67129	.90569	1.1041	.74120	50		10
11	.67151	.90621	1.1035	.74100	49		11
12 13	.67172 .67194	.90674 .90727	1.1028 1.1022	.74080 .74061	48 47		12 13
14	.67215	.90781	1.1016	.74041	46		14
15	.67237 .67258	.90834 .90887	1.1009	.74022 .74002	45	١.	15
16 17	.67280	.90940	1.1003 1.0996	.73983	44 43		16 17
18	.67301	.90993	1.0990	.73963	42		18
19 20	.67323	.91046 .91099	1.0983	.73944 .73924	41 40		19 20
21	.67366	.91153	1.0971	.73904	39		21
22 23	.67387	.91206 .91259	1.0964	.73885 .73865	38 37		22 23
24	.67409 .67430	.91313	1.0951	.73846	36		23 24
25	.67452	.91366	1.0945	.73826	35		25
26 27	.67473 .67495	.91419 .91473	1.0939	.73806 .73787	34 33		26 27
28	.67516	.91526	1.0926	.73767	32		28
29	.67538	.91580	1.0919	.73747	31		29
80 31	.67559 .67580	.91633 .91687	1.0913	.73728 .73708	30 29		30 31
32	.67602	.91740	1.0900	.73688	28		32
33 34	.67623 .67645	.91794 .91847	1.0894	.73669 .73649	27 26		33 34
35	.67666	.91901	1.0881		25		35
36	.67688	.91955	1.0875	.73629 .73610	24		36
37 38	.67709 .67730	.92008 .92062	1.0869 1.0862	.73590 .73570	23 22		37 38
39	.67752	.92116	1.0856	.73551	21		39
40	.67773	.92170	1.0850	.73531	20		40
41 42	.67795 .67816	.92224 .92277	1.0843	.73511 .73491	19 18		41 42
43	.67837	.92331	1.0831	.73472	17		43
44	.67859	.92385	1.0824	.73452	16		44
45 46	.67880 .67901	.92439 .92493	1.0818 1.0812	.73432 .73413	15 14		45 46
47	.67923	.92547	1.0805	.73393	13 12		47
48 49	.67944 .67965	.92601 .92655	1.0799 1.0793	.73373 .73353	12 11		48 49
50	.67987	.92709	1.0786	.73333	10		50
51	.68008	.92763	1.0780	.73314	9		51
52 53	.68029 .68051	.92872	1.0768	.73294 .73274 .73254	8		52 53
54	.68051 .68072	.92926	1.0761		6		54
22	68093 .68115	.92980 .93034	1.0755 1.0749	.73234 .73215	5		55
56 57	68136	.93088	1.0742	.73195	3 2		56 57
58 59	.68157 .68179	.93143 .93197	1.0736	.73175	2		58 59
80	.68200	.93252	1.0730 1.0724	.73155 .73135	Ò		60
,	Cos	Ctn	Tan	Sin	1		1
							L

		43	,		
,	Sin	Tan	Ctn	Cos	•
Ó	.68200	.93252	1.0724	.73135	60
1 2	.68221 .68242	.93306 .93360	1.0717	.73116 .73096	59 58
3	.68264	.93415	1.0705	.73076	57
4 5	.68285	.93469	1.0699	.73056	56
6	.68306 .68327	.93524	1.0692 1.0686	.73036 .73016	55 54
7	.68349	.93578 .93633	1.0680	.73016 .72996	53 52
8	.68370 .68391	.93688	1.0674	.72976 .72957	52 51
10	.68412	.93797	1.0661	.72937	50
11 12	.68434 .68455	.93852 .93906	1.0655	.72917 .72897	49 48
13	.68476	.93961	1.0649 1.0643	.72877	47
14	.68497	.94016	1.0637	.72857	46
15 16	.6851 8 .68539	.94071 .94125	1.0630 1.0624	.72837 .72817	45 44
17	.68561	.94180	1.0618	.72797	43
·18 19	.68582	.94235	1.0612	.72777 .72757	42 41
20	.68624	.94345	1.0599	.72737	40
21	.68645	.94400	1.0593	79717	39
22 23	.68666 .68688	.94455 .94510	1.0587 1.0581	.72697 .72677	38 37
24 24	.68709	.94565	1.0575	.72657	36
25	.68730	.94620	1.0569	.72637	35
26 27	.68751 .68772	.94676 .94731	1.0562 1.0556	.72617 .72597	34 33
28	.68793	.94786	1.0550	.72577	32
29	.68814	.94841	1.0544	.72557	31
30 31	.68835 .68857	.94896 .94952	1.0538 1.0532	.72537 .72517	30 29
32	.68878	.95007	1.0526	.72497	28
33 34	.68899 .68920	.95062 .95118	1.0519 1.0513	.72477 .72457	27 26
35	.68941	.95173	1.0507	.72437	25
36	.68962	.95229	1.0501	.72417	24
37 38	.68983 .69004	.95284 .95340	1.0495 1.0489	.72397 .72377	23 22
39	.69025	.95395	1.0483	.72357	21
40	.69046	.95451	1.0477	.72337	20
41 42	.69067 .69088	.95506 .95562	1.0470 1.0464	.72317 .72297	19 18
43	.69109	.95618	1.0458	.72277	17
44	.69130	.95673	1.0452	.72257	16
45 46	.69151 .69172	.95729 .95785	1.0446 1.0440	.72236 .72216	15 14
47	.69193	.95841	1.0434	.72196	13
48	.69214 .69235	.95897 .95952	1.0428 1.0422	.72176 .72156	12 11
50	.69256	.96008	1.0416	.72136	10
51	.69277	.96064	1.0410	.72116	9
52 53	.69298 .69319	.96120 .96176	1.0404 1.0398	.72095 .72075	8
54	.69340	.96232	1.0392	.72055	6
55	.69361	.96288	1.0385	.72035	5
56 57	.69382 .69403	.96344 .96400	1.0379 1.0373	.72015 .71995	4
58	.69424	.96457	1.0367	71974	3 2
59 60	.69445 .69466	.96513 .96569	1.0361 1.0355	.71954 .71934	1
~					+
'	Cos	Ctn.	Tan	Sin	1

•	Sin	Tan	Ctn	Cos	,
0	.69466	.96569	1.0355	.71934	60
1	.69487	.96625	1.0349	.71914	59
2	.69508	.96681	1.0343	.71894	58
3	.69529	.96738	1.0337	.71873	57
4	.69549	.96794	1.0331	.71853	56
5 6 7 8 9	.69570 .69591 .69612 .69633 .69654	.96850 .96907 .96963 .97020 .97076	1.0325 1.0319 1.0313 1.0307 1.0301	.71833 .71813 .71792 .71772 .71752	54 53 52 51
10	.69675	.97133	1.0295	.71732	50
11	.69696	.97189	1.0289	.71711	49
12	.69717	.97246	1.0283	.71691	48
13	.69737	.97302	1.0277	.71671	47
14	.69758	.97359	1.0271	.71650	46
15 16 17 18 19	.69779 .69800 .69821 .69842 .69862	.97416 .97472 .97529 .97586 .97643	1.0265 1.0259 1.0253 1.0247 1.0241	.71630 .71610 .71590 .71569 .71549	44 43 42 41
20	.69883	.97700	1.0235	.71529	40
21	.69904	.97756	1.0230	.71508	39
22	.69925	.97813	1.0224	.71488	38
23	.69946	.97870	1.0218	.71468	37
24	.69966	.97927	1.0212	.71447	36
25	.69987	.97984	1.0206	.71427	35
26	.70008	.98041	1.0200	.71407	34
27	.70029	.98098	1.0194	.71386	33
28	.70049	.98155	1.0188	.71366	32
29	.70070	.98213	1.0182	.71345	31
30	.70091	.98270	1.0176	.71325	30
31	.70112	.98327	1.0170	.71305	29
32	.70132	.98384	1.0164	.71284	28
33	.70153	.98441	1.0158	.71264	27
34	.70174	.98499	1.0152	.71243	26
35	.70195	.98556	1.0147	.71223	25
36	.70215	.98613	1.0141	.71203	24
37	.70236	.98671	1.0135	.71182	23
38	.70257	.98728	1.0129	.71162	22
39	.70277	.98786	1.0123	.71141	21
40	.70298	.98843	1.0117	.71121	20
41	.70319	.98901	1.0111	.71100	19
42	.70339	.98958	1.0105	.71080	18
43	.70360	.99016	1.0099	.71059	17
44	.70381	.99073	1.0094	.71039	16
45	.70401	.99131	1.0088	.71019	15
46	.70422	.99189	1.0082	.70998	14
47	.70443	.99247	1.0076	.70978	13
48	.70463	.99304	1.0070	.70957	12
49	.70484	.99362	1.0064	.70937	11
50	.70505	.99420	1.0058	.70916	10
51	.70525	.99478	1.0052	.70896	9
52	.70546	.99536	1.0047	.70875	8
53	.70567	.99594	1.0041	.70855	7
54	.70587	.99652	1.0035	.70834	6
56 57 58 59	.70608 .70628 .70649 .70670 .70690	.99710 .99768 .99826 .99884 .99942	1.0029 1.0023 1.0017 1.0012 1.0006	.70813 .70793 .70772 .70752 .70731	5 4 3 2 1
60	.70711	1.0000	1.0000	.70711	·
	Cos	Ctn	Tan	Sin	·

0° — Log Sine — 0°

0 — 5.46373 5.76476 6.94085 6.06579 6.62706 6.63982 6.66786 6.69418 6.7167 1 6.46373 6.50612 6.54291 6.67767 6.60988 6.65067 6.69418 6.719 2 6.76476 6.78695 6.96888 6.84994 6.85167 6.87870 6.89509 6.9010 3 6.94688 6.95699 7.97717 7.11694 7.12648 7.13520 7.70707 7.1197 7.11907 7.11694 7.12648 7.13520 7.27764 7.22409 7.21191 7.2190 7.2776 7.24188 7.3488 7.32106 7.32707 7.33896 7.33879 7.34464 7.35020 7.35800 7.33800 7.33414 7.39822 7.36882 7.34221 7.43221 7.43685 7.44145 7.34600 7.45231 7.46805 7.46417 7.34221 7.43685 7.44146 7.44600 7.45030 7.45231 7.46805 7.45231 7.46805 7.45231 7.46805 7.45231 7.4	, T	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	,
1	4											_
2 6.76476 6.78697 6.89618 6.82546 6.84994 6.894085 6.95689 6.95888 6.82244 6.99520 7.07067 7.03037 7.03133 7.0343 4 7.06679 7.07661 7.08698 7.09719 7.10718 7.11694 7.12648 7.13632 7.1446 5 7.16270 7.17130 7.17737 7.18800 7.16179 7.22471 7.22697 7.20409 7.21191 7.21960 7.2296 6 7.24188 7.34198 7.32106 7.32705 7.33296 7.33879 7.34464 7.35022 7.28991 9 7.41777 7.42277 7.42761 7.33221 7.35320 7.33874 7.34922 7.40524 7.4071 10 7.46373 7.46805 7.44723 7.47656 7.48076 7.48491 7.48903 7.49311 7.49721 11 7.50612 7.56905 7.51600 7.5263 7.56715 7.56406 7.62592 7.52640 7.53511 7.56763 7.5										6.36682	6.41797	60 59
3 6.94085 6.95699 6.95898 6.99224 6.99220 7.00779 7.00203 7.03193 7.043 4 7.06579 7.07661 7.08698 7.09719 7.10718 7.11694 7.12648 7.12682 7.144 5 7.16270 7.17130 7.17973 7.18800 7.19612 7.20499 7.21191 7.21960 7.227 6 7.24886 7.36622 7.3173 7.31800 7.26991 7.27664 7.28227 7.3580 7.34261 7.34261 7.3296 7.3383 7.34561 7.3600 7.34261 7.38200 7.38900 7.39314 7.39822 7.45021 7.45261 7.46271 7.46561 7.65800 7.62001 7.48901 7.49411 7.46311 7.49761 7.44561 7.46561 7.65001 7.46491 7.46561 7.65001 7.65767 7.48761 7.48761 7.48761 7.48761 7.48761 7.48761 7.48761 7.56941 7.66692 7.65324 7.65125 7.65460 7.65868 7										6.91088	6.74248 6.92612	58
8 7.16270 7.17130 7.17973 7.18800 7.19612 7.20409 7.21191 7.21960 7.22166 6 7.24188 7.24906 7.25612 7.26971 7.27664 7.28327 7.28907 7.2958 7 7.30882 7.31764 7.32206 7.33291 7.33879 7.34879 7.44600 7.40277 7.42277 7.47251 7.43221 7.43680 7.48461 7.46000 7.4600 7.4600 7.4000 7.										7.04351	7.05479	57
6 7.24188 7.24906 7.25612 7.26507 7.26991 7.27664 7.28527 7.28820 7.296 7 7.30882 7.31489 7.32106 7.32706 7.33296 7.33879 7.34464 7.36022 7.356 8 7.36682 7.37221 7.37764 7.38280 7.38800 7.39314 7.39822 7.40324 7.408 9 7.41797 7.42277 7.42781 7.43221 7.43685 7.44145 7.44600 7.46050 7.4621 10 7.46373 7.46805 7.47233 7.47656 7.48076 7.48491 7.48903 7.49311 7.4971 11 7.50612 7.50905 7.51294 7.51680 7.52063 7.52442 7.52818 7.53191 7.457 11 7.50612 7.50905 7.51294 7.51680 7.52063 7.52442 7.52818 7.53191 7.457 11 7.50612 7.56906 7.58430 7.68763 7.58758 7.50904 7.59726 7.60045 7.501 14 7.60985 7.61294 7.61601 7.61906 7.62209 7.62509 7.62808 7.63104 7.633 16 7.63982 7.64270 7.64657 7.64842 7.65125 7.65406 7.59726 7.60045 7.67324 7.67591 7.67857 7.68121 7.65863 7.65640 7.67524 7.67524 7.67524 7.67524 7.70676 7.70924 7.71170 7.714 18 7.71900 7.72140 7.72380 7.72618 7.72618 7.73090 7.73324 7.73567 7.375 19 7.74248 7.74476 7.74703 7.74928 7.76153 7.75376 7.75587 7.7357 7.75801 7.79006 7.79120 7.79140 7.72810 7.78910 7.79210 7.99210 7.9	4	7.06579	7.07651	7.08698	7.09719	7.10718	7.11694	7.12648	7.13582	7.14497	7.15392	56
7, 7.30882										7.22715	7.23458	55
8 7.36682 7.37221 7.37754 7.38280 7.38800 7.39314 7.39822 7.40324 7.4089 7.41797 7.42277 7.42277 7.43221 7.43521 7.45685 7.44146 7.44600 7.45050 7.4564 10 7.46373 7.46805 7.47233 7.47656 7.48076 7.48491 7.48903 7.49311 7.497 11 7.50512 7.50905 7.51294 7.51680 7.5203 7.52442 7.52818 7.53191 7.535 11 7.54521 7.54651 7.55009 7.55533 7.55716 7.55004 7.56401 7.54651 7.54651 7.54601 7.55009 7.5533 7.55716 7.55004 7.56401 7.56753 7.570 7.58100 7.58430 7.58730 7.58730 7.58730 7.58730 7.587430 7.58730 7.58730 7.587430 7.587430 7.587430 7.587430 7.587430 7.587430 7.587430 7.587430 7.587430 7.587430 7.587430 7.6452 7.66984 7.67055 7.67524 7.66504 7.6525 7.66406 7.65685 7.65962 7.66216 7.66784 7.67055 7.67324 7.67591 7.67857 7.67851 7.68121 7.68383 7.68644 7.68917 7.72140 7.72			7.24906	7.25612	7.26307					7.29623	7.30257 7.36135	54 53
9 7.41797 7.42277 7.42751 7.43221 7.43685 7.44145 7.44600 7.46000 7.46050 7.45451 7.46373 7.46805 7.47233 7.47656 7.48076 7.48976 7.48931 7.4971 7.56512 7.59056 7.51294 7.56809 7.55263 7.52063 7.52424 7.52818 7.53191 7.5575 7.5767 7.58100 7.58430 7.58430 7.58758 7.59836 7.5209 7.62609 7.62609 7.62609 7.62609 7.62609 7.62609 7.62608 7.61294 7.61601 7.6906 7.62209 7.62209 7.62808 7.65104 7.65675 7.67676 7.67684 7.67056 7.67324 7.67691 7.67857 7.68121 7.68383 7.68644 7.6891 7.69417 7.69672 7.6926 7.70177 7.70427 7.70676 7.7024 7.71676 7.7144 7.72380 7.74268 7.72648 7.74476 7.74476 7.74128 7.74476 7.74128 7.74476 7.74128 7.74476 7.74128 7.74203 7.74228 7.75153 7.7556 7.75589 7.75692 7.75006 7.79210 7.79144 7.79616 7.75183 7.80812			7.37221							7.40821	7.41312	52
11			7.42277		7.43221	7.43685	7.44145	7.44600		7.45495	7.45936	51
12 7.54291 7.54651 7.55009 7.55363 7.55715 7.56046 7.56746 7.56767 7.56767 7.58100 7.58430 7.58768 7.59406 7.59726 7.60208 7.63104 7.63314 7.60985 7.61294 7.61601 7.61906 7.62209 7.62609 7.62808 7.63104 7.63314 7.63382 7.66784 7.67055 7.67324 7.67691 7.67677 7.06276 7.00244 7.1714 7.7146 7.7140 7.72380 7.72618 7.72676 7.70676 7.0924 7.7147 7.7141 7.71428 7.74476 7.4703 7.74288 7.72618 7.72618 7.72618 7.73300 7.73524 7.73567 7.7513 7.75376 7.75578 7.75678 7.76672 7.76672 7.76077 7.70427 7.7145 7.7548 7.76675 7.76672 7.76077 7.70427 7.77537 7.75578 7.75578 7.75578 7.75578 7.75618 7.76692 7.80121 7.88034 7.88011 7.79006 7.79210 7.79414 7.79616 7.79818 7.80018 7.8022 7.80615 7.80812 7.81008 7.81203 7.81591 7.81763 7.81691 7.80318 7.8018 7.84764 7.84933 7.84574 7.84764 7.84933 7.84574 7.84764 7.84933 7.84574 7.84764 7.84933 7.84574 7.84764 7.84933 7.84574 7.84764 7.84933 7.84574 7.84764 7.84933 7.84574 7.84764 7.84933 7.84574 7.84764 7.84933 7.84574 7.84764 7.84933 7.84574 7.84764 7.84933 7.84574 7.84764 7.84933 7.84574 7.84764 7.84933 7.84574 7.84764 7.84933 7.84574 7.84764 7.84933 7.84574 7.84764 7.84933 7.85684 7.95690 7.98669 7										7.49715	7.50115	50
13										7.53561	7.53927	49 48
14										7.60360	7.57431 7.60674	47
16										7.63399	7.63691	46
17 7.69417 7.69672 7.69926 7.70177 7.70427 7.70467 7.70924 7.71170 7.7148 7.71900 7.72140 7.72380 7.72618 7.72854 7.73090 7.73324 7.73567 7.73591 7.74248 7.74476 7.74703 7.7428 7.74587 7.73590 7.75588 7.75819 7.7600 7.74248 7.74476 7.74703 7.7428 7.75153 7.75576 7.75588 7.75819 7.7600 7.75428 7.75576 7.75688 7.75819 7.7600 7.7910 7.7914 7.7916 7.7916 7.7916 7.7916 7.7916 7.7916 7.7916 7.7916 7.7916 7.7917 7.7142 7.7357 7.7916 7.7917	5	7.63982	7.64270	7.64557	7.64842	7.65125	7.65406	7.65685	7.65962	7.66238	7.66512	45
18										7.68903	7.69161	44
19										7.71414	7.71658 7.74019	43 42
7.78594 7.78594 7.78601 7.7906 7.79210 7.79414 7.79616 7.79818 7.80018 7.8022 7.80615 7.80812 7.81008 7.81203 7.81397 7.81591 7.81763 7.81975 7.8123 7.82545 7.82733 7.82921 7.83108 7.83294 7.83497 7.83663 7.83847 7.8402 7.84393 7.84674 7.84764 7.84933 7.85111 7.85289 7.85666 7.85842 7.85622 7.85668 7.85865 7.85866 7.85866 7.85866 7.85866 7.85866 7.85866 7.85866 7.85866 7.85866 7.85866 7.85866 7.85866 7.85866 7.89866 7.89866 7.89820 7.89866 7.89820 7.89866 7.89820 7.89866 7.99866 7.99866 7.89820 7.89888 7.90147 7.90306 7.90403 7.90620 7.9072 7.92612 7.92761 7.92910 7.93059 7.93267 7.93354 7.93501 7.93648 7.95286 7.95868										7.76039	7.76258	41
22 7.80615 7.80812 7.81008 7.81203 7.81397 7.81518 7.81763 7.81478 7.84023 7.84574 7.84574 7.84764 7.94764										7.78179	7.78387	40
23										7.80218	7.80417	39
24 7.84393 7.84674 7.84754 7.84933 7.85111 7.85289 7.85666 7.85662 7.85662 7.85662 7.85662 7.85662 7.85662 7.85662 7.85662 7.85662 7.85666 7.87366 7.87366 7.87366 7.87366 7.87366 7.87366 7.87366 7.89237 7.88363 7.88633 7.88697 7.88860 7.89023 7.89023 7.89023 7.89367 7.90305 7.90305 7.90305 7.90305 7.90305 7.90305 7.90305 7.903567 7.92009 7.92160 7.9222 7.92716 7.92707 7.93354 7.93501 7.93601 7.93670 7.92307 7.93354 7.93501 7.93687 7.9573 7.94616 7.94629 7.94802 7.94802 7.94806 7.96203 7.96478 7.9568 7.95207 7.93354 7.95408 7.95207 7.93354 7.95408 7.95207 7.95206 7.976203 7.96478 7.96678 7.95220 7.97626 7.97620 7.97620 7.97975 7.99901 8.00										7.82166	7.82356 7.84212	38 37
26 7.8870 7.88056 7.88202 7.88368 7.88563 7.88560 7.89069 7.89669 7.89669 7.89869 7.89869 7.89869 7.89869 7.90147 7.90306 7.90463 7.90620 7.907 7.907 7.90747 7.90306 7.90463 7.90620 7.90216 7.9210 7.9074 7.91857 7.92009 7.92160 7.9232 7.93564 7.93504 7.93564 7.93564 7.93564 7.93564 7.93648 7.9573 7.94516 7.94669 7.94920 7.94944 7.96887 7.97022 7.97188 7.95266 7.96203 7.96341 7.96478 7.96203 7.96877 7.95687 7.97922 7.97426 7.97660 7.99647 7.977827 7.96760 7.97660 7.97647 7.99760 7.99678 7.99776 7.99760 7.99647 7.97827 7.99796 7.99778 7.99776 7.99760 7.99647 7.98787 7.98876 7.99006 7.99778 7.99677 7.99977 7.99877 7.98876 7.99060 7.99778 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>7.85817</th> <th>7.85992</th> <th>36</th>										7.85817	7.85992	36
26 7.88707 7.88036 7.88202 7.88368 7.88563 7.88669 7.89669 7.89669 7.89869 7.89869 7.89869 7.89869 7.89869 7.90147 7.90306 7.90463 7.90620 7.907 7.907 7.9076 7.90216 7.9216 7.9216 7.9216 7.92216 7.92216 7.92216 7.92216 7.92216 7.92216 7.92216 7.92216 7.92216 7.92216 7.92216 7.92216 7.9236 7.93354 7.93564 7.93648 7.95648 7.95687 7.94567 7.96203 7.9444 7.95634 7.96478 7.96203 7.96687 7.95688 7.95688 7.95688 7.95686 7.98686 7.98667 7.96203 7.99647 7.97782 7.9792 7.97426 7.97660 7.99647 7.97782 7.9793 33 7.98223 7.99647 7.99775 7.99977 7.99977 7.998747 7.98876 7.99004 7.97827 7.9792 8.00154 8.00279 8.00406 8.005 8.0163 8.0163 <td< th=""><th>5 l</th><th>7.86166</th><th>7.86340</th><th>7.86512</th><th>7.86684</th><th>7.86856</th><th>7.87026</th><th>7.87196</th><th>7.87366</th><th>7.87534</th><th>7.87702</th><th>35</th></td<>	5 l	7.86166	7.86340	7.86512	7.86684	7.86856	7.87026	7.87196	7.87366	7.87534	7.87702	35
28 7.91088 7.91243 7.91397 7.91561 7.91704 7.91867 7.92009 7.92160 7.922 29 7.92612 7.92761 7.92910 7.93089 7.93354 7.93561 7.93648 7.937648 7.937648 7.937648 7.93564 7.95608 7.95688 7.95648 7.96787 7.95926 7.96065 7.96203 7.96478 7.9668 7.96687 7.95608 7.95688 7.95648 7.95787 7.95926 7.95608 7.95631 7.95488 7.96667 7.95608 7.95631 7.95488 7.96667 7.95608 7.95631 7.96478 7.96667 7.95608 7.95631 7.96478 7.9666 7.95608	6									7.89186	7.89347	34
29 7.92612 7.92761 7.92910 7.93509 7.93207 7.93354 7.93501 7.93648 7.9373 30 7.94084 7.94229 7.94373 7.94816 7.94659 7.94820 7.94944 7.95086 7.95203 7.95688 7.97022 7.95787 7.95926 7.96065 7.96203 7.95431 7.9427 7.97500 7.97694 7.97827 7.9792 33 7.98233 7.98235 7.98486 7.98466 7.98747 7.98876 7.99047 7.99775 7.99775 7.99776 7.99776 7.99776 8.00154 8.00279 8.00405 8.00458 8.00148 8.00154 8.00279 8.00405 8.00458 8.01472 8.01395 8.01650 8.00458 8.01458 8.01570 8.01458 8.02428 8.02601 8.02720 8.02838 8.0293 37 8.03192 8.03309 8.03426 8.03458 8.03569 8.03570 8.04678 8.04589 8.05700 8.05811 8.05921 8.04518 8.06231						7.90147	7.90305			7.90777	7.90933 7.92462	33 32
31 7.95508 7.95648 7.95678 7.95782 7.95026 7.95066 7.95230 7.95630 7.95648 7.95718 7.97222 7.97426 7.97560 7.97694 7.97827 7.97933 7.98223 7.98355 7.93486 7.99616 7.98747 7.98876 7.99006 7.99915 7.9923 7.9723 7.97920 7.99776 7.99901 8.00288 8.00154 8.00279 8.00405 8.00482 8.00154 8.00279 8.00405 8.00482 8.01517 8.01637 8.01637 8.016328 8.02482 8.02601 8.02720 8.02338 8.02339 8.03428 8.03534 8.03659 8.03677 8.03891 8.04066 8.04781 8.06578 8.05689 8.06700 8.06478 8.05689 8.06700 8.06911 8.06921 8.06371 8.07224 8.07351 8.03424 8.06578 8.06686 8.06794 8.06902 8.07010 8.07117 8.07224 8.07351 8.03424 8.06378 8.08903 8.09018 8.09918 8.09218 8.09										7.92311	7.93939	31
31 7.95608 7.95648 7.956787 7.95926 7.95065 7.95630 7.95478 7.95678 7.95267 7.95065 7.97620 7.97694 7.97795 7.99901 8.00208 8.00126 8.00166 7.987616 7.98767 7.99901 8.00202 8.002123 8.00406 8.0149 8.01272 8.01395 8.01639 8.01639 8.01293 8.04262 8.02601 8.02720 8.02838 8.0293 8.04368 8.04692 8.04695 8.04918 8.05030 8.06141 8.06261 8.06686 8.06794 8.06902 8.07010 8.07117 8.07224 8.07351 8.0744 8.06686 8.06796 8.08903 8.09906 8.0	ol	7.94084	7.94229	7.94373	7.94516	7.94659	7.94802	7.94944	7.95086	7.95227	7.95368	30
33 7.98223 7.98256 7.98486 7.98616 7.99847 7.99847 7.99847 7.99847 7.99847 7.99847 7.99847 7.99947 7.99977 7.99901 8.00154 8.00154 8.00279 8.00405 8.00465 8.00468 8.00546 8.00154 8.00279 8.00405 8.00467 8.01272 8.01395 8.01577 8.01395 8.01679 8.01272 8.02362 8.02462 8.02569 8.03775 8.03891 8.04606 8.044918 8.05521 8.04578 8.05521 8.06514 8.06528 8.05521 8.06514 8.0521 8.0524 8.0524 8.0524 8.0524 8.0524 8.0524 8.0524 8.0524 8.0524 8.0524 8.0524 8.0521 8.0630 8.05143 8.0524 40 8.06578 8.06686 8.06794 8.06902 8.07010 8.07117 8.07224 8.07331 8.074 41 8.07660 8.07660 8.07660 8.07660 8.07860 8.08906 8.08903 8.09020	i	7.95508	7.95648	7.95787	7.95926	7.96065	7.96203	7.96341	7.96478	7.96615	7.96751	29
34 7.99520 7.99647 7.99775 7.99901 8.00028 8.00164 8.00279 8.00405 8.00539 36 8.00779 8.00903 8.01026 8.01149 8.01272 8.01395 8.01617 8.01639 8.0123 37 8.03192 8.03309 8.03426 8.03543 8.03659 8.03776 8.03891 8.04006 8.0418 38 8.04578 8.04678 8.04692 8.04806 8.04918 8.05039 8.05143 8.0523 40 8.06578 8.06686 8.06794 8.06902 8.07010 8.07117 8.07224 8.0353 8.08478 41 8.07650 8.07861 8.07967 8.08072 8.08176 8.0821 8.0824 42 8.08696 8.08903 8.09006 8.0910 8.0912 8.09210 8.0921 8.09212 8.09312 8.0941 8.09214 8.0942 45 8.11693 8.11789 8.11885 8.11981 8.12077 8.12172 8.12268										7.97959	7.98092	28
85 8.00779 8.00903 8.01026 8.01149 8.01272 8.01395 8.01517 8.01639 8.0173 36 8.02002 8.02123 8.02362 8.02482 8.02601 8.02702 8.02838 8.03539 37 8.035192 8.03399 8.03426 8.036342 8.03639 8.03679 8.03679 8.03679 8.03679 8.03679 8.03679 8.04691 8.06491 8.06678 8.06679 8.06891 8.06691 8.06671 8.06679 8.06902 8.07010 8.0711 8.07224 8.07331 8.0744 8.06679 8.06902 8.07010 8.0711 8.07224 8.07331 8.0744 8.06696 8.08696 8.08690 8.09796 8.08072 8.08176 8.09318 8.09318 8.09318 8.09318 8.0920 8.09018 8.09210 8.09210 8.09210 8.09210 8.01320 8.10420 8.10420 8.10420 8.10420 8.10420 8.10420 8.10420 8.10420 8.11636 8.11402 8.11402 8.11										8.00530	7.99392 8.00654	27 26
36 8.02002 8.02123 8.02342 8.02362 8.02482 8.02501 8.02501 8.02603 8.02436 8.03369 8.03775 8.03891 8.04006 8.0413 38 8.04350 8.04464 8.04578 8.04692 8.04695 8.04918 8.05030 8.05143 8.0523 39 8.06478 8.06589 8.06700 8.05811 8.06921 8.06031 8.06141 8.06251 8.0634 40 8.06578 8.06694 8.06902 8.07010 8.0711 8.07231 8.07331 8.0744 41 8.07650 8.07861 8.07976 8.08072 8.08176 8.08281 8.0838 8.0838 8.09418 8.09920 8.09003 8.0906 8.09108 8.09210 8.09312 8.09414 8.0954 4.095 8.10220 8.10220 8.10320 8.10420 8.10420 8.10420 8.10420 8.10420 8.10420 8.10420 8.10420 8.10420 8.10420 8.10420 8.10420 8.10420 8.10420<	ء ا ۽	8.00779	8.00903	8.01026		8.01272	8.01395	8.01517	8.01639	8.01760	8.01881	25
38 8.04350 8.04464 8.04678 8.04692 8.04906 8.04918 8.05030 8.05143 8.05239 39 8.05678 8.05689 8.05700 8.05821 8.05921 8.06031 8.06141 8.05261 8.06534 40 8.06578 8.06686 8.05794 8.06902 8.0710 8.07117 8.07224 8.07331 8.074 41 8.07660 8.087861 8.07967 8.08072 8.08176 8.08281 8.08355 8.084 42 8.08696 8.08903 8.09906 8.09108 8.09210 8.09312 8.0941 8.0622 43 8.09718 8.09819 8.09900 8.10120 8.10220 8.10320 8.10420 8.10420 8.10420 8.10420 8.10420 8.11402 8.11402 8.11402 8.11402 8.11402 8.11402 8.11402 8.11402 8.11440 8.11467 8.134673 8.134573 8.134573 8.134573 8.134573 8.134576 8.144676 8.144566 8.1445	5 8	8.02002	8.02123	8.02243	8.02362		8.02601	8.02720	8.02838	8.02957	8.03074	24
39 8.05478 8.05689 8.06700 8.05811 8.05921 8.06031 8.06141 8.06251 8.063 40 8.06578 8.06686 8.06794 8.06902 8.07010 8.07117 8.07224 8.07331 8.074 41 8.07660 8.07861 8.07967 8.08072 8.081716 8.08281 8.08385 8.084 42 8.08696 8.08800 8.09903 8.09072 8.09210 8.09312 8.09414 8.095 43 8.09718 8.09819 8.09920 8.10020 8.10120 8.10320 8.10420 8.11640 8.11402 8.11402 8.11440 8.11402 8.11440 8.11402 8.11440 8.11402 8.11440 8.11402 8.11440 8.11										8.04121	8.04236	23
40 8.06678 8.06686 8.06794 8.06902 8.07010 8.07117 8.07224 8.07331 8.074 41 8.07669 8.07861 8.07967 8.08072 8.08176 8.08281 8.08365 8.08401 8.0903 8.09006 8.09108 8.09210 8.09210 8.09210 8.09210 8.09210 8.09210 8.09210 8.09210 8.09210 8.09210 8.09210 8.09210 8.09210 8.09210 8.10220 8.10220 8.10320 8.10420 8.10420 8.10420 8.10420 8.10420 8.10420 8.10420 8.11620 8.11402 8.114402 8.114402 8.114402 8.114402 8.114402 8.114402 8.114402 8.114402 8.114402 8.114402 8.114402 8.114402 8.114402 8.11										8.06360	8.05367 8.06469	22 21
41 8.07650 8.07766 8.07961 8.07967 8.08072 8.08176 8.08281 8.08385 8.0844 42 8.08696 8.08800 8.09908 8.09918 8.09210 8.09210 8.09210 8.09210 8.09210 8.09210 8.09210 8.09210 8.09210 8.09210 8.09210 8.10220 8.10220 8.10320 8.10420 8.10420 8.11620 8.11402 8.11402 8.11402 8.11402 8.11402 8.11410 8.11207 8.12172 8.12268 8.12363 8.11402 8.11410 8.11307 8.13117 8.13210 8.13303 8.1343 48 8.13467 8.13655 8.13857 8.13849 8.14041 8.1423 8.1423 8.1423 8.1423 8.1423 8.1423 8.1423 8.1423 8.1423 8.1423 8.1423 8.1634 8.16564 8.16566 8.16574 8.16549 8.16666 8.16574 8.16549 8.16666 8.16574 8.16526 8.16674 8.16549 8.16666 8.16574 8.16520<	-		8.06686	8.06794	8.06902	8.07010	8.07117	8.07224	8.07331	8.07438	8.07544	20
43 8.09718 8.09819 8.09920 8.10020 8.10120 8.10220 8.10320 8.10440 8.10420 8.10420 8.10440 8.10440 8.10440 8.10440 8.10440 8.10440 8.10440 8.10441 8.10441 8.10441 8.10441 8.10441 8.10441 8.10441 8.10441 8.10441 8.10441 8.10441 8.10441 8.10441 8.10441 8.10441 8.1				8.07861	8.07967	8.08072	8.08176	8.08281	8.08385	8.08489	8.08593	19
44 8.10717 8.10815 8.10914 8.11012 8.11100 8.11207 8.11207 8.11305 8.11402 8.11402 8.11402 8.11402 8.11402 8.11402 8.11402 8.11402 8.11402 8.11402 8.11402 8.11402 8.11402 8.11402 8.11402 8.11402 8.11450 8.12471 8.12471 8.12303 8.13117 8.13210 8.13303 8.1334 4.13412 8.14223 8.1334 4.13412 8.14223 8.13434 8.13447 8.144041 8.14122 8.14223 8.1434 8.14441 8.14566 8.146766 8.148466 8.148466 8.146766 8.148466 8.148466 8.156479 8.166478 8.16568 8.156466 8.15844 8.15832 8.15832 8.16919 8.16004 8.16004 8.16004 8.16004 8.16004 8.16004 8.16004 8.16004 8.16004 8.17803 8.17803 8.17803 8.17804 8.17804 8.17804 8.17804 8.17804 8.17804 8.17804 8.17804 8.13804										8.09516	8.09617	18
45 8.11693 8.11789 8.11886 8.11981 8.12077 8.12172 8.12268 8.12363 8.1244 46 8.12647 8.12741 8.12836 8.12929 8.13023 8.13117 8.13210 8.13303 8.1334 47 8.13673 8.13765 8.13857 8.13949 8.14041 8.14132 8.14223 8.14223 8.14243 8.14236 8.15248 8.15268 8.16666 8.14856 8.14945 8.15035 8.15124 8.1524 8.1624 8.1624 8.16614 8.16700 8.16872 8.1692 8.1624 8.1834 8.17213 8.17220 8.17333 8.17467 8.17525 8.17636 8.1762 8.16614 8.16700 8.16614 8.1672 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>8.10519 8.11499</th> <th>8.10618 8.11596</th> <th>17 16</th>										8.10519 8.11499	8.10618 8.11596	17 16
46 8.12647 8.12741 8.12836 8.12929 8.13023 8.1317 8.13201 8.13303 8.1333 8.1333 8.13333 8.13303 8.13303 8.13303 8.13303 8.13303 8.13303 8.13303 8.13303 8.13303 8.13303 8.13303 8.13303 8.13303 8.13303 8.13303 8.13414 8.14412 8.14424 8.14425 8.14223 8.14524 8.15035 8.152124 8.1524 8.1524 8.1524 8.15832 8.15919 8.16007 8.16007 8.16007 8.16007 8.16007 8.16007 8.16614 8.16700 8.16720 8.17236 8.17236 8.17236 8.17236 8.17236 8.17236 8.17230 8.17230 8.17230 8.17236 8.17230<		- 1								8.12458	8.12553	15
48 8.14495 8.14586 8.14676 8.14766 8.14856 8.14945 8.15035 8.15124 8.1524 49 8.15391 8.15479 8.15568 8.16566 8.15744 8.15322 8.15919 8.16007 8.160 50 8.16268 8.16355 8.16441 8.16528 8.16614 8.16700 8.16786 8.16872 8.169 51 8.17213 8.17298 8.17333 8.17467 8.17552 8.17606 8.17720 8.17720 8.17720 8.17806 8.18378 8.18469 8.18526 8.1862 8.1660 8.1944 8.19125 8.19206 8.19287 8.19368 8.1896 8.1944 8.19125 8.19206 8.19287 8.19368 8.1944	6 8	8.12647	8.12741	8.12836	8.12929	8.13023	8.13117	8.13210	8.13303	8.13396	8.13489	14
49 8.15391 8.15479 8.15568 8.16566 8.15744 8.15832 8.15919 8.16007 8.160 50 8.16268 8.16355 8.16441 8.16528 8.16614 8.16700 8.16786 8.16872 8.1691 51 8.17128 8.17213 8.17298 8.17383 8.17467 8.17525 8.17636 8.17720 8.1780 52 8.18911 8.18065 8.18138 8.18221 8.18387 8.18469 8.18562 8.1864 53 8.18798 8.18880 8.18962 8.19044 8.19125 8.19206 8.19226 8.19245										8.14314	8.14405	13
51 8.17128 8.17213 8.17298 8.17383 8.17467 8.17552 8.17636 8.17720 8.178 52 8.17971 8.18055 8.18138 8.18221 8.18304 8.18387 8.18469 8.18552 8.186 53 8.18798 8.18880 8.18962 8.19044 8.19125 8.19206 8.19287 8.19368 8.194										8.16094	8.15302 8.16181	12 11
51 8.17128 8.17213 8.17298 8.17383 8.17467 8.17552 8.17636 8.17720 8.178 52 8.17971 8.18055 8.18138 8.18221 8.18304 8.18387 8.18469 8.18552 8.186 53 8.18798 8.18880 8.18962 8.19044 8.19125 8.19206 8.19287 8.19368 8.194	٥l	8.16268	8.16355	8.16441	8.16528	8.16614	8.16700	8.16786	8.16872	8.16957	8.17043	10
53 8.18798 8.18880 8.18962 8.19044 8.19125 8.19206 8.19287 8.19368 8.194	i la	8.17128	8.17213	8.17298			8.17552	8.17636	8.17720	8.17804	8.17888	9
										8.18634	8.18716 8.19530	8
										8.20249	8.20328	6
55 8.20407 8.20486 8.20565 8.20643 8.20722 8.20800 8.20878 8.20956 8.210	8 8	8.20407	8.20486	8.20565				8.20878	8.20956	8.21034	8.21112	5
56 8.21189 8.21267 8.21344 8.21422 8.21499 8.21576 8.21652 8.21729 8.218	6 1	8.21189	8.21267			8.21499	8.21576	8.21652	8.21729	8.21805	8.21882	4
						8.22262		8.22413		8.22563 8.23308	8.22638 8.23382	3 2
 59 8.23456 8.23529 8.23603 8.23676 8.23749 8.23822 8.23895 8.23968 8.240								8.23895		8.24041	8.24113	í
						8.24474	8.24546	8.24618		8.24761	8.24832	ō
' .0 .1 .2 .3 .4 .5 .6 .7 .8	7	.0	.1	.2	-8	.4	.5	.6	.7	.8	.9	1

0° — Log Tan — 0°

1.	.0	.1	.2	.8	.4	.5	.6	.7	.8	.9	1.
0	_	5.46373	5.76476	5.94085	6.06579	6.16270	6.24188	6.30882	6.36682	6.41797	60
1	6.46373	6.50512	6.54291	6.57767	6.60985	6.63982	6.66785	6.69418	6.71900	6.74248	59
2 3	6.76476 6.94085	6.78595 6.95509	6.8061 <i>5</i> 6.96888	6.82545 6.98224	6.84394 6.99521	6.86167 7.00779	6.87870 7.02003	6.89509 7.03193	6.91088 7.04351	6.92612 7.05479	58 57
4	7.06579	7.07651	7.08698	7.09719	7.10718	7.11694	7.12648	7.13582	7.14497	7.15392	56
8	7.16270	7.17130	7.17973	7.18800	7.19612	7.20409	7.21191	7.21960	7.22715	7.23458	55
6	7.24188	7.24906	7.25612	7.26307	7.26991	7.27664	7.28327	7.28980	7.29624	7.30258	54
7 8	7.30882 7.36682	7.31499 7.37221	7.32106 7.37754	7.32705 7.38281	7.33296 7.38801	7.33879 7.39315	7.34454 7.39823	7.35022 7.40325	7.35582 7.40821	7.36135 7.41312	53 52
ا ق	7.41797	7.42277	7.42751	7.43221	7.43686	7.44145	7.44600	7.45050	7.45495	7.45936	51
10	7.46373	7.46805	7.47233	7.47656	7.48076	7.48492	7.48903	7.49311	7.49715	7.50115	50
11	7.50512	7.50905	7.51295	7.51681	7.52063	7.52443	7.52819	7.53191	7.53561	7.53927	49
12 13	7.54291 7.57767	7.54651 7.58100	7.55009 7.58430	7.55363 7.58758	7.55715 7.59083	7.56064 7.59406	7.56410 7.59727	7.56753 7.60045	7.57094 7.60361	7.57432 7.60674	48 47
14	7.60986	7.61295	7.61602	7.61906	7.62209	7.62510	7.62808	7.63105	7.63399	7.63692	46
15	7.63982	7.64271	7.64557	7.64842	7.65125	7.65406	7.65685	7.65963	7.66239	7.66513	45
16	7.66785	7.67056	7.67324	7.67592	7.67857	7.68121	7.68384	7.68645	7.68904	7.69162	44
17 18	7.69418	7.69673	7.69926	7.70178	7.70428	7.70677	7.70924 7.73324	7.71170	7.71415	7.71658	43 42
10	7.71900 7.74248	7.72141 7.74476	7.72380 7.74703	7.72618 7.74929	7.72855 7.75153	7.73090 7.75377	7.75599	7.73557 7.75820	7.73789 7.76040	7.74019 7.76258	42
20	7.76476	7.76693	7.76908	7.77123	7.77336	7.77549	7.77760	7.77970	7.78179	7.78388	40
21	7.78595	7.78801	7.79007	7.79211	7.79415	7.79617	7.79819	7.80019	7.80219	7.80418	39
22	7.80615	7.80812	7.81009	7.81204	7.81398	7.81591	7.81784	7.81976	7.82167	7.82357	38
23	7.82546	7.82734	7.82922	7.83109	7.83295	7.83480	7.83664	7.83848	7.84031	7.84213	37
24	7.84394	7.84575	7.84755	7.84934	7.85112	7.85290	7.85467	7.85643	7.85819	7.85993	36
25	7.86167	7.86341	7.86513	7.86685	7.86857	7.87027	7.87197	7.87367	7.87535	7.87703	35
26 27	7.87871 7.89510	7.88037 7.89670	7.88204 7.89830	7.88369 7.89990	7.88534 7.90149	7.88698 7.90307	7.88862 7.90464	7.89025 7.90622	7.89187 7.90778	7.89349 7.90934	34 33
28	7.91089	7.91244	7.91398	7.91552	7.90149	7.91858	7.92010	7.92162	7.92313	7.92463	32
29	7.92613	7.92763	7.92912	7.93060	7.93208	7.93356	7.93503	7.93649	7.93795	7.93941	31
30	7.94086	7.94230	7.94374	7.94518	7.94661	7.94804	7.94946	7.95088	7.95229	7.95370	30
31	7.95510	7.95650	7.95789	7.95928	7.96067	7.96205	7.96343	7.96480	7.96617	7.96753	29
32 33	7.96889 7.98225	7.97024 7.98357	7.97159 7.98488	7.97294 7.98618	7.97428 7.98749	7.97562 7.98878	7.97696 7.99008	7.97829 7.99137	7.97961 7.99266	7.98094 7.99394	28 27
34	7.99522	7.99649	7.99777	7.99903	8.00030	8.00156	8.00282	8.00407	8.00532	8.00657	26
35	8.00781	8.00905	8.01028	8.01152	8.01274	8.01397	8.01519	8.01641	8.01762	8.01884	25
36	8.02004	8.02125	8.02245	8.02365	8.02484	8.02604	8.02722	8.02841	8.02959	8.03077	24
37 38	8.03194	8.03312	8.03429	8.03545	8.03661	8.03777 8.04921	8.03893 8.05033	8.04008 8.05146	8.04124 8.05258	8.04238	23 22
36 39	8.04353 8.05481	8.04467 8.05592	8.04581 8.05703	8.04694 8.05814	8.04808 8.05924	8.06034	8.06144	8.06254	8.06363	8.05369 8.06472	21
40	8.06581	8.06689	8.06797	8.06905	8.07013	8.07120	8.07227	8.07334	8.07441	8.07547	20
41	8.07653	8.07759	8.07864	8.07970	8.08075	8.08180	8.08284	8.08388	8.08492	8.08596	19
42	8.08700	8.08803	8.08906	8.09009	8.09111	8.09214	8.09316	8.09418	8.09519	8.09621	18
43 44	8.09722 8.10720	8.09823 8.10819	8.09923 8.10917	8.10024 8.11015	8.10124 8.11113	8.10224 8.11211	8.10324 8.11309	8.10423 8.11406	8.10522 8.11503	8.10621 8.11600	17 16
45	8.11696	8.11793	8.11889	8.11985	8.12081	8.12176	8.12272	8.12367	8.12462	8.12556	15
46	8.12651	8.12745	8.12839	8.12933	8.13027	8.13121	8.13214	8.13307	8.13400	8.13493	14
47	8.13585	8.13677	8.13770	8.13861	8.13953	8.14045	8.14136	8.14227	8.14318	8.14409	13
48 49	8.14500 8.15395	8.14590 8.15484	8.14680 8.15572	8.14770 8.15660	8.14860 8.15748	8.14950 8.15836	8.15039 8.15924	8.15128 8.16011	8.15218 8.16099	8.15306 8.16186	12 11
50	8.16273	8.16359	8.16446	8.16533	8.16619	8.16705	8.16791	8.16877	8.16962	8.17048	10
51	8.17133	8.17218	8.17303	8.17388	8.17472	8.17557	8.17641	8.17725	8.17809	8.17893	9
52	8.17976	8.18060	8.18143	8.18226	8.18309	8.18392	8.18475	8.18557	8.18639	8.18722	8
53 54	8.18804 8.19616	8.18886 8.19696	8.18967 8.19776	8.19049 8.19856	8.19130 8.19936	8.19211 8.20016	8.19293 8.20096	8.19374 8.20175	8.19454 8.20254	8.19535 8.20334	7
55	8.20413	8.20491	8.20570	8.20649	8.20727	8.20806	8,20884	8.20962	8.21040	8.21118	5
56	8.21195	8.21273	8.21350	8.21427	8.21504	8.21581	8.21658	8.21735	8.21811	8.21888	4
57	8.21964	8.22040	8.22116	8.22192	8.22268	8.22343	8.22419	8.22494	8.22569	8.22645	3
58	8.22720	8.22794	8.22869	8.22944	8.23018	8.23092	8.23167	8.23241	8.23315	8.23388	2
59 60	8.23462 8.24192	8.23536 8.24264	8.23609 8.24337	8.23682 8.24409	8.23756 8.24481	8.23829 8.24553	8.23902 8.24624	8.23974 8.24696	8.24047 8.24767	8.24120 8.24839	10
H											
ı ′ [.0	.1	.2	.8	.4	.5	.6	.7	.8	.9	l '

1° — Log Sine — 1°

·	٥	.1	.2	-8	.4	.5	.6	.7	.8	.9	•
_	<u> </u>										-
9	8.24186		8.24330	8.24402	8.24474	8.24546 8.25258	8.24618 8.25328	8.24689 8.25399	8.24761	8.24832	60
1 2	8.24903 8.25609		8.25045 8.25749	8.25116 8.25819	8.25187 8.25889	8.25958	8.26028	8.26097	8.25469 8.26166	8.25539 8.26235	59 58
3	8.26304		8.26442	8.26511	8.26579	8.26648	8.26716	8.26784	8.26852	8.26920	57
4	8.26988	8.27056	8.27124	8.27191	8.27259	8.27326	8.27393	8.27460	8.27528	8.27595	56
8	8.27661	8.27728	8.27795	8.27861	8.27928	8.27994	8.28060	8.28127	8.28193	8.28258	55
46	8.28324	8.28390	8.28456	8.28521	8.28587	8.28652	8.28717	8.28782	8.28848	8.28912	54
7 8	8.28977 8.29621	8.29042	8.29107 8.29748	8.29171 8.29812	8.29236 8.29875	8.29300 8.29939	8.29364 8.30002	8.29429 8.30065	8.29493 8.30129	8.29557 8.30192	53 52
3	8.30255	8.29684 8.30317	8.30380	8.30443	8.30506	8.30568	8.30631	8.30693	8.30755	8.30817	51
10	8.30879	8.30941	8.31003	8.31065	8.31127	8.31188	8.31250	8.31311	8.31373	8.31434	50
ii	8.31495	8.31556	8.31618		8.31739	8.31800	8.31861	8.31921	8.31982	8.32042	49
12	8.32103		8.32223	8.32283	8.32343	8.32403	8.32463	8.32523	8.32583	8.32642	48
13	8.32702	8.32761	8.32820	8.32880	8.32939	8.32998	8.33057	8.33116	8.33175	8.33234	47
14	8.33292	8.33361	8.33410	8.33468	8.33527	8.33585	8.33643	8.33701	8.33759	8.33817	46
15	8.33875	8.33933	8.33991	8.34049	8.34106	8.34164	8.34221	8.34279	8.34336	8.34393	45
16 17	8.34450 8.35018	8.34508 8.35074	8.34565 8.35131	8.34621 8.35187	8.34678 8.35243	8.34735 8.35299	8.34792 8.35355	8.34849 8.35411	8.34905 8.35467	8.34962 8.35523	44
18	8.35578	8.35634	8.35690	8.35745	8.35800	8.35856	8.35911	8.35966	8.36021	8.36076	42
19	8.36131	8.36186	8.36241	8.36296	8.36351	8.36405	8.36460	8.36515	8.36569	8.36623	41
20	8.36678	8.36732	8.36786	8.36840	8.36894	8.36948	8.37002	8.37056	8.37110	8.37163	40
21	8.37217	8.37271	8.37324	8.37378	8.37431	8.37484	8.37538	8.37591	8.37644	8.37697	39
22	8.37750	8.37803	8.37856	8.37908	8.37961	8.38014	8.38066	8.38119	8.38171	8.38224	38
23 24	8.38276 8.38796	8.38328 8.38848	8.38381 8.38899	8.38433 8.38951	8.38485 8.39002	8.38537 8.39054	8.38589 8.39105	8.38641 8.39157	8.38693 8.39208	8.38744 8.39259	37 36
25 26	8.39310 8.39818	8.39361 8.39868	8.39412 8.39919	8.39463 8.39969	8.39514 8.40019	8.39565 8.40070	8.39616 8.40120	8.39666 8.40170	8.39717 8.40220	8.39767 8.40270	85 34
27	8.40320	8.40370	8.40420	8.40469	8.40519	8.40569	8.40618	8.40668	8.40717	8.40767	33
28	8.40816	8.40865	8.40915	8.40964	8.41013	8.41062	8.41111	8.41160	8.41209	8.41258	32
29	8.41307	8.41356	8.41404	8.41453	8.41501	8.41550	8.41598	8.41647	8.41695	8.41744	31
80	8.41792	8.41840	8.41888	8.41936	8.41984	8.42032	8.42080	8.42128	8.42176	8.42224	80
31	8.42272	8.42319	8.42367	8.42415	8.42462 8.42935	8.42510 8.42982	8.42557 8.43028	8.42604 8.43075	8.42652	8.42699	29 28
32 33	8.42746 8.43216	8.42793 8.43262	8.42840 8.43309	8.42888 8.43355	8.43402	8.43448	8.43495	8.43541	8.43122 8.43588	8.43169 8.43634	27
34	8.43680	8.43726	8.43772	8.43818	8.43864	8.43910	8.43956	8.44002	8.44048	8.44094	26
85	8.44139	8.44185	8.44231	8.44276	8.44322	8.44367	8.44413	8.44458	8.44504	8.44549	25
36	8.44594	8.44639	8.44684	8.44730	8.44775	8.44820	8.44865	8.44910	8.44954	8.44999	24
37	8.45044	8.45089	8.46133	8.45178	8.45223	8.45267	8.45312	8.45356	8.45401	8.45445	23
38 39	8.45489 8.45930	8.45534 8.45974	8.45578 8.46018	8.45622 8.46061	8.45666 8.46105	8.45710 8.46149	8.46764 8.46192	8.45798 8.46236	8.45842 8.46280	8.45886 8.46323	22 21
40	8.46366 8.46799	8.46410 8.46841	8.46453 8.46884	8.46497 8.46927	8.46540 8.46970	8.46583 8.47013	8.46626 8.47056	8.46669 8.47098	8.46712 8.47141	8.46755 8.47184	20
42	8.47226	8.47269	8.47311	8.47354	8.47396	8.47439	8.47481	8.47523	8.47565	8.47608	18
43	8.47650	8.47692	8.47734	8.47776	8.47818	8.47860	8.47902	8.47944	8.47986	8.48028	17
44	8.48069	8.48111	8.48153	8.48194	8.48236	8.48278	8.48319	8.48361	8.48402	8.48443	16
45	8.48485	8.48526	8.48567	8.48609	8.48650	8.48691	8.48732	8.48773	8.48814	8.48855	15
46 47	8.48896 8.49304	8.48937	8.48978 8.49385	8.49019 8.49426	8.49060 8.49466	8.49101 8.49506	8.49141 8.49547	8.49182 8.49587	8.49223 8.49627	8.49263 8.49668	14 13
48	8.49708	8.49345 8.49748	8.49388	8.49426	8.49466	8.49908	8.49948	8.49587	8.49627 8.50028	8.50068	13
49	8.50108	8.50148	8.50188	8.50227	8.50267	8.50307	8.50346	8.50386	8.50425	8.50465	ii
80	8.50504	8.50544	8.50583	8.50623	8.50662	8.50701	8.50741	8.50780	8.50819	8.50858	10
51	8.50897	8.50936	8.50976	8.51015	8.51054	8.51092	8.51131	8.51170	8.51209	8.51248	9
52	8.51287	8.51325	8.51364	8.51403	8.51442	8.51480	8.51519	8.51557	8.51596	8.51634	8
53 54	8.51673 8.52055	8.51711 8.52093	8.51749 8.52131	8.51788 8.52169	8.51826 8.52207	8.51864 8.52245	8.51903 8.52283	8.51941 8.52321	8.51979 8.52359	8.52017 8.52397	7
											_
55	8.52434 8.52810	8.52472 8.52848	8.52510 8.52885	8.52547 8.52922	8.52585 8.52960	8.52623 8.52997	8.52660 8.53034	8.52698 8.53071	8.52735 8.53109	8.52773 8.53146	4
57	8.53183	8.53220	8.53257	8.53294	8.53331	8.53368	8.53405	8.53442	8.53479	8.53515	3
58	8.63552	8.53589	8.53626	8.53663	8.53699	8.53736	8.53772	8.53809	8.53846	8.53882	2
69 60	8.63919 8.64282	8.53965 8.54318	8.53992 8.54354	8.54028 8.54390	8.54064 8.54426	8.54101 8.54462	8.54137 8.54498	8.54173 8.54534	8.54210 8.54570	8.54246 8.54606	1
	0.02202	0.03010	J.U1301	3.05350	0.02220	0.01102	0.02230	0.02004	0.050/0	0.02000	U
•	.0	.1	.2	.8	.4	.5	.6	.7	.8	.9	,

1° — Log Tan — 1°

0 1 2 3 4 5 6 7 8	8.24192 8.24910 8.25616 8.26312 8.26996 8.27669 8.28332 8.28986 8.29629	8.24264 8.24981 8.25686 8.26380 8.27063 8.27736	8.24337 8.25052 8.25756 8.26449 8.27131	8.24409 8.25123 8.25826	8.24481 8.25194	8.24553	8.24624	8.24696	8.24767	8.24839	60
2 3 4 8 6 7 8	8.25616 8.26312 8.26996 8.27669 8.28332 8.28986	8.25686 8.26380 8.27063	8.25756 8.26449		8.25194						
3 4 8 6 7 8	8.26312 8.26996 8.27669 8.28332 8.28986	8.26380 8.27063	8.26449	8.25826		8.25265	8.25335	8.25406	8.25476	8.25546	59
4 5 6 7 8	8.26996 8.27669 8.28332 8.28986	8.27063		0 26510	8.25896	8.25965	8.26035	8.26104	8.26173	8.26243	58
5 6 7 8	8.27669 8.28332 8.28986			8.26518 8.27199	8.26586 8.27266	8.26655 8.27334	8.26723 8.27401	8.26792 8.27468	8.26860 8.27535	8.26928	57
6 7 8	8.28332 8.28986	0.2//30	8.27803	8.27869	8.27936	8.28002	8.28068		8.28201	8.27602	56 55
7 8	8.28986	8.28398	8.28464	8.28529	8.28595	8.28660	8.28068	8.28134 8.28791	8.28856	8.28266 8.28921	
8		8.29050	8.29115	8.29180	8.29244	8.29309	8.29373	8.29437	8.29501	8.29565	54 53
		8.29693	8.29757	8.29820	8.29884	8.29947	8.30011	8.30074	8.30137	8.30200	52
9	8.30263	8.30326	8.30389	8.30452	8.30514	8.30577	8.30639	8.30702	8.30764	8.30826	51
	0.00										
10	8.30888	8.30950	8.31012	8.31074	8.31136	8.31198	8.31259	8.31321	8.31382	8.31443	80
11 12	8.31505 8.32112	8.31566 8.32173	8.31627 8.32233	8.31688 8.32293	8.31749 8.32353	8.31809 8.32413	8.31870 8.32473	8.31931 8.32533	8.31991 8.32592	8.32052 8.32652	49 48
13	8.32711	8.32771	8.32830	8.32890	8.32949	8.33008	8.33067	8.33126	8.33185	8.33244	47
14	8.33302	8.33361	8.33420	8.33478	8.33537	8.33595	8.33653	8.33712	8.33770	8.33828	46
15	8.33886	8.33944	8.34001	8.34059	8.34117	8.34174	8.34232	8.34289	8.34347	8.34404	45
16	8.34461	8.34518	8.34575	8.34632	8.34689	8.34746	8.34803	8.34859	8.34916	8.34972	44
17	8.35029	8.35085	8.35142	8.35198	8.35254	8.35310	8.35366	8.35422	8.35478	8.35534	43
18	8.35590	8.35645	8.35701	8.35756	8.35812	8.35867	8.35922	8.35978	8.36033	8.36088	42
19	8.36143	8.36198	8.36253	8.36308	8.36362	8.36417	8.36472	8.36526	8.36581	8.36635	41
20	8.36689	8.36744	8.36798	8.36852	8.36906	8.36960	8.37014	8.37068	8.37122	8.37175	40
21	8.37229	8.37283	8.37336	8.37390	8.37443	8.37497	8.37550	8.37603	8.37656	8.37709	39
22	8.37762	8.37815	8.37868	8.37921	8.37974	8.38026	8.38079	8.38132	8.38184	8.38236	38
23	8.38289	8.38341	8.38393	8.38446	8.38498	8.38550	8.38602	8.38654	8.38706	8.38757	37
24	8.38809	8.38861	8.38913	8.38964	8.39016	8.39067	8.39118	8.39170	8.39221	8.39272	36
25	8.39323	8.39374	8.39425	8.39476	8.39527	8.39578	8.39629	8.39680	8.39730	8.39781	35
26	8.39832	8.39882	8.39932	8.39983	8.40033	8.40083	8.40134	8.40184	8.40234	8,40284	34
27	8.40334	8.40384	8.40434	8.40483	8.40533	8.40583	8.40632	8.40682	8.40732	8.40781	33
28	8.40830	8.40880	8.40929	8.40978	8.41027	8.41077	8.41126	8.41175	8.41224	8.41272	32
29	8.41321	8.41370	8.41419	8.41468	8.41516	8.41565	8.41613	8.41662	8.41710	8.41758	31
80	8.41807	8.41855	8.41903	8.41951	8.41999	8,42048	8,42095	8.42143	8.42191	8,42239	80
31	8.42287	8.42335	8.42382	8.42430	8.42477	8.42525	8.42572	8.42620	8.42667	8.42715	29
32	8.42762	8.42809	8.42856	8.42903	8.42950	8.42997	8.43044	8.43091	8.43138	8.43185	28
33	8.43232	8.43278	8.43325	8.43371	8.43418	8.43464	8.43511	8.43557	8.43604	8.43650	27
34	8.43696	8.43742	8.43789	8.43835	8.43881	8.43927	8.43973	8.44019	8.44064	8.44110	26
35	8.44156	8.44202	8.44247	8.44293	8.44339	8.44384	8.44430	8.44475	8.44520	8.44566	25
36	8.44611	8.44656	8.44701	8.44747	8.44792	8.44837	8.44882	8.44927	8.44972	8.45016	24
37	8.45061	8.45106	8.45151	8.45195	8.45240	8.45285	8.45329	8.45374	8.45418	8.45463	23
38	8.45507	8.45551	8.45596	8.45640	8.45684	8.45728	8.45772	8.45816	8.45860	8.45904	22
39	8.45948	8.45992	8.46036	8.46080	8.46123	8.46167	8.46211	8.46254	8.46298	8.46341	21
						0.45500	0.45545		0.46=21		20
40	8.46385	8.46428	8.46472	8.46515	8.46558	8.46602 8.47032	8.46645 8.47075	8.46688	8.46731	8.46774 8.47203	
41 42	8.46817	8.46860	8.46903 8.47330	8.46946 8.47373	8.46989 8.4741 <i>5</i>	8.47458	8.47500	8.47117 8.47543	8.47160 8.47585	8.47627	19 18
43	8.47245 8.47669	8.47288 8.47712	8.47754	8.47796	8.47838	8.47880	8.47922	8.47964	8.48006	8.48047	17
44	8.48089	8.48131	8.48173	8.48214	8.48256	8.48298	8.48339	8.48381	8.48422	8.48464	16
45	8.48505	8.48546	8.48588	8.48629	8.48670	8.48711	8.48753	8.48794	8.48835	8.48876	15
46	8.48917	8.48958	8.48999	8.49040	8.49081	8.49121	8.49162	8.49203	8.49244	8.49284	14
47 48	8.49325 8.49729	8.49366 8.49769	8.49406 8.49810	8.49447 8.49850	8.49487 8.49890	8.49528 8.49930	8.49568 8.49970	8.49608 8.50010	8.49649 8.50050	8.49689 8.50090	13 12
49	8.49729	8.49769	8.49810	8.49880	8.49890	8.49930	8.49970	8.50408	8.50448	8.50487	11
- 1											
50	8.50527	8.50566	8.50606	8.50645	8.50684	8.50724	8.50763	8.50802	8.50842	8.50881	10
51	8.50920	8.50959	8.50998	8.51037	8.51076	8.51115	8.51154	8.51193	8.51232	8.51271	9
52 53	8.51310	8.51349	8.51387	8.51426	8.51465	8.51503	8.51542 8.51926	8.51581	8.51619 8.52003	8.51658 8.52041	8
54	8.51696 8.52079	8.51735 8.52117	8.51773 8.52155	8.51811 8.52193	8.51850 8.52231	8.51888 8.52269	8.52307	8.51964 8.52345	8.52383	8.52421	7
55	8.52459	8.52496	8.52534	8.52572	8.52610	8.52647	8.52685	8.52722	8.52760	8.52797	5
56 57	8.52835	8.52872	8.52910	8.52947	8.52985	8.53022	8.53059 8.53430	8.53096	8.53134	8.53171	4
58	8.53208 8.53578	8.53245	8.53282	8.53319	8.53356 8.53725	8.53393 8.53762	8.53798	8.53467 8.53835	8.53504 8.53872	8.53541 8.53908	3 2
59	8.53945	8.53615 8.53981	8.53651 8.54018	8.53688 8.54054	8.54091	8.54127	8.54163	8.54200	8.54236	8.54272	ไร์
60	8.54308	8.54345	8.54381	8.54417	8.54453	8.54489	8.54525	8.54561	8.54597	8.54633	ō
-											_
′	.0	.1	.2	.8	.4	.5	.6	.7	.8	.9	'

2° - Log Sine - 2°

_			Ţ	,							
Ľ	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	Ľ
0	8.54282	8.54318	8.54354	8.54390	8.54426	8.54462	8.54498	8.54534	8.54570	8.54606	60
1	8.54642			8.54750	8.54785		8.54857	8.54893	8.54928	8.54964	59
2	8.54999			8.55106	8.55142		8.55212	8.55248	8.55283	8.55319	58
3 4	8.55354 8.55705			8.55460 8.55810	8.55495 8.55845		8.55565 8.55915	8.55600 8.55950	8.55635 8.55985	8.55670 8.56019	57 56
_											
8	8.56054	8.56089		8.56158	8.56193	8.56227	8.56262	8.56296	8.56331	8.56365	55
6	8.56400 8.56743		8.56469 8.56811	8.56503 8.56846	8.56538 8.56880	8.56572 8.56914	8.56606 8.56948	8.56640 8.56982	8.56675 8.57016	8.56709 8.57050	54 53
1 8	8.57084		8.57151	8.57185	8.57219	8.57253	8.57287	8.57320	8.57354	8.57388	52
9	8.57421	8.57455		8.57522	8.57556		8.57623	8.57656	8.57690	8.57723	51
10	8.57757	8.57790	8.57823	8.57857	8.57890	8.57923	8.57956	8.57990	8.58023	8.58056	50
īĭ	8.58089	8.58122		8.58189	8.58222	8.58255	8.58288	8.58321	8.58354	8.58386	49
12	8.58419			8.58518	8.58551	8.58583	8.58616	8.58649	8.58682	8.58714	48
13	8.58747	8.58780		8.58845	8.58877	8.58910	8.58942	8.58975	8.59007	8.59040	47
14	8.59072	8.59104	8.59137	8.59169	8.59201	8.59234	8.59266	8.59298	8.59330	8.59363	46
15	8.59395	8.59427	8.59459	8.59491	8.59523	8.59555	8.59587	8.59619	8.59651	8.59683	45
16	8.59715		8.59779	8.59811	8.59843	8.59874	8.59906	8.59938	8.59970	8.60001	44
17	8.60033 8.60349		8.60096 8.60412	8.60128 8.60443	8.60160 8.60474	8.60191 8.60506	8.60223 8.60537	8.60254 8.60568	8.60286 8.60600	8.60317 8.60631	43
119	8.60662	8.60693	8.60725	8.60756	8.60787	8.60818	8.60849	8.60880	8.60911	8.60942	41
20	8.60973	8.61004	8.61035	8.61066	8.61097	8.61128	8.61159	8.61190	8.61221	8.61252	40
21	8.61282	8.61313	8.61344	8.61375	8.61405	8.61436	8.61467	8.61497	8.61528	8.61559	39
22	8.61589	8.61620	8.61650	8.61681	8.61711	8.61742	8.61772	8.61803	8.61833	8.61863	38
23	8.61894	8.61924	8.61954	8.61985	8.62015	8.62045	8.62075	8.62106	8.62136	8.62166	37
24	8.62196	8.62226	8.62256	8.62286	8.62317	8.62347	8.62377	8.62407	8.62437	8.62467	36
25	8.62497	8.62526	8.62556	8.62586	8.62616	8.62646	8.62676	8.62706	8.62735	8.62765	35
26 27	8.62795 8.63091	8.62825	8.62854	8.62884	8.62914 8.63209	8.62943 8.63238	8.62973 8.63268	8.63002 8.63297	8.63032	8.63062 8.63356	34
28	8.63385	8.63121 8.63415	8.631 <i>5</i> 0 8.63444	8.63180 8.63473	8.63503	8.63532	8.63561	8.63590	8.63327 8.63619	8.63649	33 32
29	8.63678	8.63707	8.63736	8.63765	8.63794	8.63823	8.63852	8.63881	8.63910	8.63939	31
80	8.63968	8.63997	8.64026	8.64055	8.64084	8.64112	8.64141	8.64170	8.64199	8.64228	30
31	8.64256	8.64285	8.64314	8.64342	8.64371	8.64400	8.64428	8.64457	8.64486	8.64514	29
32	8.64543	8.64571	8.64600	8.64628	8.64657	8.64685	8.64714	8.64742	8.64771	8.64799	28
33	8.64827	8.64856	8.64884	8.64912	8.64941	8.64969	8.64997	8.65026	8.65054	8.65082	27
34	8.65110	8.65138	8.65166	8.65195	8.65223	8.65251	8.65279	8.65307	8.65335	8.65363	26
35	8.65391	8.65419	8.65447	8.65475	8.65503	8.65531	8.65559	8.65587	8.65614	8.65642	25
36	8.65670	8.65698	8.65726	8.65754	8.65781	8.65809	8.65837	8.65864	8.65892	8.65920	24
37 38	8.66947 8.66223	8.65975 8.66250	8.66003 8.66278	8.66030 8.66305	8.66058 8.66333	8.66085 8.66360	8.66113 8.66388	8.66141 8.66415	8.66168 8.66442	8.66196 8.66470	23 22
39	8.66497	8.66524	8.66551	8.66579	8.66606	8.66633	8.66660	8.66687	8.66715	8.66742	21
40	8.66769	8.66796	8.66823	8.66850	8.66877	8.66904	8.66931	8.66958	8.66985	8.67012	20
41	8.67039	8.67066	8.67093	8.67120	8.67147	8.67174	8.67201	8.67228	8.67254	8.67281	19
42	8.67308	8.67335	8.67362	8.67388	8.67415	8.67442	8.67468	8.67495	8.67522	8.67548	18
43	8.67575	8.67602	8.67628	8.67655	8.67681	8.67708	8.67735	8.67761	8.67788	8.67814	17
44	8.67841	8.67867	8.67893	8.67920	8.67946	8.67973	8.67999	8.68025	8.68052	8.68078	16
45	8.68104	8.68131	8.68157	8.68183	8.68209	8.68236	8.68262	8.68288	8.68314	8.68340	15
46	8.68367	8.68393	8.68419	8.68445	8.68471	8.68497	8.68523	8.68549	8.68575	8.68601	14
47 48	8.68627 8.68886	8.68653 8.68912	8.68679 8.68938	8.6870 <i>5</i> 8.68964	8.68731 8.68989	8.68757 8.69015	8.68783 8.69041	8.68809 8.69067	8.68835 8.69092	8.68860 8.69118	13 12
49	8.69144	8.69169	8.69195	8.69221	8.69246	8.69272	8.69298	8.69323	8.69349	8.69374	11
50	8.69400	8.69425	8.69451	8.69476	8.69502	8.69527	8.69553	8.69578	8.69604	8.69629	10
51	8.69654	8.69680	8.69705	8.69730	8.69756	8.69781	8.69806	8.69832	8.69857	8.69882	9
52	8.69907	8.69933	8.69958	8.69983	8.70008	8.70033	8.70058	8.70084	8.70109	8.70134	8
53	8.70159	8.70184	8.70209	8.70234	8.70259	8.70284	8.70309	8.70334	8.70359	8.70384	7
54	8.79409	8.70434	8.70459	8.70484	8.70509	8.70534	8.70558	8.70583	8.70608	8.70633	6
55	8.70658	8.70682	8.70707	8.70732	8.70757	8.70781	8.70806	8.70831	8.70856	8.70880	5
56 57	8.70905	8.70930 8.71175	8.70954 8.71200	8.70979 8.71224	8.71003 8.71249	8.71028 8.71273	8.71053 8.71298	8.71077 8.71322	8.71102 8.71346	8.71126 8.71371	3
57 58	8.71151 8.71396	8.71176	8.71200	8.71468	8.71493	8.71273	8.71541	8.71566	8.71590	8.71571	2
59	8.71638	8.71663	8.71687	8.71711	8.71735	8.71759	8.71783	8.71808	8.71832	8.71856	1
60	8.71880	8.71904	8.71928	8.71952	8.71976	8.72000	8.72024	8.72048	8.72072	8.72096	0
7	.0	.1	.2	.8	.4	.5	.6	7	.8	.9	,

Table 3

2° — Log Tan — 2°

_											
Ŀ	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	'
	8,54308	8,54345	8.54381	8.54417	8.54453	8.54489	8.54525	8.54561	8.54597	8.54633	60
Ĭ	8.54669	8.54705	8.54741	8.54777	8.54813	8.54848	8.54884	8.54920	8.54956	8.54991	59
2	8.55027	8.55062	8.55098	8.55134	8.55169	8.55205	8.55240	8.55276	8.55311	8.55346	58
3	8.55382	8.55417	8.55452	8.55488	8.55523	8.55558	8.55593	8.55628	8.55663	8.55699	57
4	8.55734	8.55769	8.55804	8.55839	8.55874	8.55909	8.55943	8.55978	8.56013	8.56048	56
5	8.56083	8.56118	8.56152	8.56187	8.56222	8.56256	8.56291	8.56326	8.56360	8.56395	55
6	8.56429	8.56464	8.56498	8.56532	8.56567	8.56601	8.56636	8.56670	8.56704	8.56739	54
7	8.56773	8.56807	8.56841	8.56875	8.56909	8.56944	8.56978	8.57012	8.57046	8.57080	53
8 9	8.57114 8.57452	8.57148 8.57486	8.57182 8.57519	8.57215 8.57553	8.57249	8.57283	8.57317	8.57351	8.57385	8.57418	52
1 1			i	1	8.57587	8.57620	8.57654	8.57687	8.57721	8.57754	51
10	8.57788	8.57821	8.57854	8.57888	8.57921	8.57955	8.57988	8.58021	8.58054	8.58088	50
11 12	8.58121 8.58451	8.58154 8.58484	8.58187 8.58517	8.58220 8.58550	8.58253 8.58583	8.58286	8.58319	8.58352 8.58681	8.58385	8.58418	49
13	8.58779	8.58812	8.58845	8.58877	8.58910	8.58616 8.58943	8.58649 8.58975	8.59008	8.58714 8.59040	8.58747 8.59073	48 47
14	8.59105	8.59138	8.59170	8.59202	8.59235	8.59267	8.59299	8.59332	8.59364	8.59396	46
1 1											
15	8.59428 8.59749	8.59461 8.59781	8.59493 8.59813	8.59525 8.59845	8.59557 8.59877	8.59589 8.59909	8.59621 8.59941	8.59653 8.59972	8.59685	8.59717	45
16 17	8.60068	8.60099	8.60131	8.60163	8.60194	8.60226	8.60258	8.60289	8.60004 8.60321	8.60036 8.60352	44
18	8.60384	8.60415	8.60447	8.60478	8.60510	8.60541	8.60572	8.60604	8.60635	8.60666	42
19	8.60698	8.60729	8.60760	8.60792	8.60823	8.60854	8.60885	8.60916	8.60947	8.60978	41
20		8.61040	8.61071					1			
21	8.61009 8.61319	8.61350	8.61381	8.61103 8.61411	8.61133 8.61442	8.61164 8.61473	8.61195 8.61504	8.61226 8.61534	8.61257 8.61565	8.61288 8.61596	40 39
22	8.61626	8.61657	8.61687	8.61718	8.61748	8.61779	8.61809	8.61840	8.61870	8.61901	38
23	8.61931	8.61962	8.61992	8.62022	8.62053	8.62083	8.62113	8.62144	8.62174	8.62204	37
24	8.62234	8.62264	8.62295	8.62325	8.62355	8.62385	8.62415	8.62445	8.62475	8.62505	36
25	8.62535	8.62565	8.62595	8.62625	8.62655	8.62685	8.62715	8.62745	8.62774	8.62804	85
26	8.62834	8.62864	8.62894	8.62923	8.62953	8.62983	8.63012	8.63042	8.63072	8.63101	34
27	8.63131	8.63160	8.63190	8.63219	8.63249	8.63278	8.63308	8.63337	8.63367	8.63396	33
28	8.63426	8.63455	8.63484	8.63514	8.63543	8.63572	8.63602	8.63631	8.63660	8.63689	32
29	8.63718	8.63748	8.63777	8.63806	8.63835	8.63864	8.63893	8.63922	8.63951	8.63980	31
180	8.64009	8.64038	8.64067	8.64096	8.64125	8.64154	8.64183	8.64212	8.64241	8.64269	30
31	8.64298	8.64327	8.64356	8.64385	8.64413	8.64442	8.64471	8.64499	8.64528	8.64557	29
32	8.64585	8.64614	8.64642	8.64671	8.64700	8.64728	8.64757	8.64785	8.64814	8.64842	28
33	8.64870	8.64899	8.64927	8.64956	8.64984	8.65012	8.65041	8.65069	8.65097	8.65126	27
34	8.65154	8.65182	8.65210	8.65238	8.65267	8.65295	8.65323	8.65351	8.65379	8.65407	26
35	8.65435	8.65463	8.65491	8.65519	8.65547	8.65575	8.65603	8.65631	8.65659	8.65687	25
36	8.65715	8.65743	8.65771	8.65798	8.65826	8.65854	8.65882	8.65910	8.65937	8.65965	24
37	8.65993	8.66020	8.66048	8.66076	8.66103	8.66131	8.66159 8.66434	8.66186 8.66461	8.66214	8.66241	23 22
38 39	8.66269 8.66543	8.66296 8.66571	8.66324 8.66598	8.66351 8.66625	8.66379 8.66653	8.66406 8.66680	8.66707	8.66734	8.66489 8.66762	8.66516 8.66789	21
1 1											
40	8.66816	8.66843	8.66870	8.66897	8.66925	8.66952	8.66979	8.67006	8.67033	8.67060	20
41 42	8.67087	8.67114	8.67141 8.67410	8.67168 8.67437	8.67195	8.67222 8.67490	8.67249 8.67517	8.67276 8.67544	8.67303 8.67571	8.67329 8.67597	19 18
43	8.67356 8.67624	8.67383 8.67651	8.67677	8.67704	8.67464 8.67731	8.67757	8.67784	8.67810	8.67837	8.67863	17
44	8.67890	8.67916	8.67943	8.67969	8.67996	8.68022	8.68049	8.68075	8.68102	8.68128	16
45	8.68154	8.68181	8.68207	8.68233	8.68260	8.68286	8.68312	8.68339	8.68365	8.68391	15
46	8.68417	8.68443	8.68207	8.68496	8.68522	8.68548	8.68574	8.68600	8.68626	8.68652	14
47	8.68678	8.68704	8.68731	8.68757	8.68782	8.68808	8.68834	8.68860	8.68886	8.68912	13
48	8.68938	8.68964	8.68990	8.69016	8.69042	8.69067	8.69093	8.69119	8.69145	8.69171	12
49	8.69196	8.69222	8.69248	8.69273	8.69299	8.69325	8.69350	8.69376	8.69402	8.69427	11
50	8.69453	8.69479	8.69504	8.69530	8.69555	8.69581	8.69606	8.69632	8.69657	8.69683	10
51	8.69708	8.69733	8.69759	8.69784	8.69810	8.69835	8.69860	8.69886	8.69911	8.69936	9
52	8.69962	8.69987	8.70012	8.70038	8.70063	8.70088	8.70113	8.70138	8.70164	8.70189	8
53	8.70214	8.70239	8.70264	8.70289	8.70314	8.70339	8.70365	8.70390 8.70639	8.70415 8.70664		7
54	8.70465	8.70490	8.70515	8.70540	8.70565	8.70589	8.70614			8.70689	6
55	8.70714	8.70739	8.70764	8.70788	8.70813	8.70838		8.70888	8.70912		5
56	8.70962	8.70987	8.71011	8.71036	8.71061	8.71085		8.71135	8.71159	8.71184	4
57	8.71208	8.71233	8.71257	8.71282	8.71307	8.71331 8.71575	8.71356 8.71600	8.71380 8.71624	8.71405 8.71649	8.71429 8.71673	3 2
58 59	8.71453	8.71478 8.71721	8.71502 8.71746	8.71527 8.71770	8.71551 8.71794	8.71819	8.71843	8.71867	8.71891	8.71915	
60	8.71697 8.71940	8.71721	8.71988	8.72012			8.72084	8.72108			ô
1	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	1
				l			1				

0° — Common Logarithms of Trigonometric Functions — 0°

·	L Sin d	L Tan	cd L Ctn	L Cos	,	·
0 1 2 3 4	6.46 373 6.76 476 30103 6.94 085 17609 7.06 579 9691	6.46 373 6.76 476 6.94 085 7.06 579	30103 3.53 627 17609 3.23 524 12494 3.05 915 12494 2.93 421	0.00 000 0.00 000 0.00 000 0.00 000 0.00 000	60 59 58 57 56	of angles
5 6 7 8 9	7.16 270 7.24 188 7918 7.30 882 6694 7.36 682 5800 7.36 682 5115 7.41 797 4576	7.16 270 7.24 188 7.30 882 7.36 682 7.41 797	7918 2.83 730 6694 2.75 812 6890 2.63 318 5115 2.58 203 4576 2.57 607	0.00 000 0.00 000 0.00 000 0.00 000	54 53 52 51	cotangents of
10 11 12 13 14 15	7.46 373 7.50 512 4139 7.54 291 3779 7.57 767 3218 7.60 985 2997 7.63 982 2997	7.46 373 7.50 512 7.54 291 7.57 767 7.60 986 7.63 982	4139 2.53 627 3779 2.49 488 3776 2.45 709 3476 2.42 233 3219 2.39 014 2996 2.36 018	0.00 000 0.00 000 0.00 000 0.00 000 0.00 000	50 49 48 47 46 45	cosines and
16 17 18 19 20	7.66 784 2633 7.69 417 2633 7.71 900 2483 7.74 248 2348 2227	7.65 785 7.66 785 7.69 418 7.71 900 7.74 248 7.76 476	2803 2.33 215 2633 2.30 582 2482 2.28 100 2348 2.25 752 2228 2.33 524	0.00 000 0.00 000 9.99 999 9.99 999 9.99 999	44 43 42 41 40	garithms of
21 22 23 24 25	7.78 594 2119 7.80 615 2021 7.82 545 1930 7.82 545 1848 7.84 393 1773	7.78 595 7.80 615 7.82 546 7.84 394 7.86 167	2119 2.21 405 2020 2.19 385 1931 2.17 454 1848 2.15 606	9.99 999 9.99 999 9.99 999 9.99 999 9.99 999	39 38 37 36 35	3° and the logarithms
26 27 28 29 30	7.87 870 1704 7.89 509 1639 7.91 088 1579 7.92 612 1524 7.92 612 1472	7.87 871 7.89 510 7.91 089 7.92 613 7.94 086	1704 2.12 129 1639 2.10 490 1579 2.08 911 1524 2.07 387	9.99 999 9.99 999 9.99 998 9.99 998 9.99 998	34 33 32 31 30	of angles less than 3
31 32 33 34 35	7.95 508 1424 7.96 887 1379 7.98 223 1336 7.99 520 1297 1259	7.95 510 7.96 889 7.98 225 7.99 522 8.00 781	1424 2.04 490 1379 2.03 111 1336 2.01 775 1297 2.00 478	9.99 998 9.99 998 9.99 998 9.99 998 9.99 998	29 28 27 26 25	its of angles
36 37 38 39 40	8.02 002 1123 8.03 192 1190 8.03 192 1158 8.04 350 1158 8.05 478 1128 1100	8.02 004 8.03 194 8.04 353 8.05 481 8.06 581	1223 1.97 996 1190 1.96 806 1159 1.95 647 1128 1.94 519 1.072 1.93 419	9.99 998 9.99 997 9.99 997 9.99 997 9.99 997	24 23 22 21 20	and tangents
41 42 43 44 45	8.07 650 1072 8.08 696 1046 8.08 696 1022 8.09 718 999 8.10 717 976 8.11 693 954	8.07 653 8.08 700 8.09 722 8.10 720 8.11 696	1072 1.92 347 1047 1.92 347 1022 1.91 300 1022 1.90 278 998 1.89 280 976 1.88 304 955 1.88 304	9.99 997 9.99 997 9.99 997 9.99 996 9.99 996	19 18 17 16	of sines
46 47 48 49 50	8.12 647 8.13 581 8.14 495 8.15 391 8.16 268	8.12 651 8.13 585 8.14 500 8.15 395 8.16 273	934 1.87 349 934 1.86 415 915 1.85 500 878 1.84 605 860 1.83 727	9.99 996 9.99 996 9.99 996 9.99 996 9.99 995	14 13 12 11 10	See pages 44-49 for the logarithms greater than 87°.
51 52 53 54 55	8.17 128 843 8.17 971 843 8.18 798 827 8.19 610 812 797 8.20 407 782	8.17 133 8.17 976 8.18 804 8.19 616 8.20 413	843 1.82 867 843 1.82 024 828 1.81 196 812 1.80 384 797 1.79 587	9.99 995 9.99 995 9.99 995 9.99 995 9.99 994	9 8 7 6	ss 44-49 for than 87°.
56 57 58 59 60	8.21 189 769 8.21 958 769 8.22 713 755 8.23 456 743 8.24 186 730	8.21 195 8.21 964 8.22 720 8.23 462 8.24 192	762 1.78 805 769 1.78 036 756 1.77 280 742 1.76 538 730 1.75 808	9.99 994 9.99 994 9.99 994 9.99 994 9.99 993	4 3 2 1 0	See pagr
·	L Cos d	L Ctn	cd L Tan	L Sin	′	

89° — Common Logarithms of Trigonometric Functions — 89°

1° — Common Logarithms of Trigonometric Functions — 1°

1	L Sin d	L Tan	d L Ctn	L Cos	,	
0 1 2 3 4	8.24 186 8.24 903 717 8.25 609 706 8.26 304 695 8.26 304 684 8.26 988 673	8.25 616 7 8.26 312 6	1.75 808 1.75 090 1.74 384 1.73 688 1.73 004	9.99 993 9.99 993 9.99 993 9.99 993 9.99 992	60 59 58 57 56	
5 6 7 8 9	8.27 661 8.28 324 663 8.28 977 653 8.29 621 634 8.30 255 624	8.27 669 8.28 332 8.28 986 8.29 629 8.30 263 6	1.72 331 1.71 668 54 1.71 014 43 1.70 371 34 1.69 737	9.99 992 9.99 992 9.99 992 9.99 992 9.99 991	55 554 553 550 49 8 47 44 44 44 44 44 44 44 44 44 44 44 44	
10 11 12 13 14	8.30 879 8.31 495 616 8.32 103 698 8.32 702 599 8.33 292 583	8.32 112 6 8.32 711 6 8.33 302 6	1.69 112 1.68 495 607 1.67 888 699 1.67 289 691 1.66 698	9.99 991 9.99 991 9.99 990 9.99 990 9.99 990	50 49 48 47 46	
16 17 18 19	8.33 875 8.34 450 575 8.35 018 568 8.35 578 560 8.36 131 547	8.35 029 5 8.35 590 5 8.36 143 5	1.66 114 1.65 539 68 1.64 971 61 1.64 410 53 1.63 857	9.99 990 9.99 989 9.99 989 9.99 989 9.99 989	45 44 43 42 41 41 41 41 41 41 41 41 41 41 41 41 41	
20 21 22 23 24	8.36 678 8.37 217 533 8.37 750 526 8.38 276 520 8.38 796 514	8.37,762 8.38,289 8.38,809 5.	1.63 311 40 1.62 771 33 1.62 238 27 1.61 711 20 1.61 191	9.99 988 9.99 988 9.99 988 9.99 987 9.99 987	44 44 43 41 40 39 37 36 37 36 37 36	
25 26 27 28 29	8.39 310 8.39 818 508 8.40 320 496 8.40 816 491 8.41 307 485	8.40 334 4 8.40 830 4 8.41 321 4	09 1.60 677 09 1.60 168 02 1.59 666 96 1.59 170 91 1.58 679	9.99 987 9.99 986 9.99 986 9.99 986 9.99 985	35 8	
30 31 32 33 34	8.41 792 8.42 272 480 8.42 274 474 8.43 216 470 8.43 216 464 8.43 680 469	8.42 762 4 8.43 762 4 8.43 232 4 8.43 696 4	80 1.58 193 75 1.57 713 76 1.57 238 70 1.56 768 64 1.56 304 60 1.56 304	9.99 985 9.99 985 9.99 984 9.99 984 9.99 984	33 32 31 30 29 28 27 26 25 24 25 25 26 27 26 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	
36 37 38 39	8.44 139 8.44 594 455 8.45 044 445 8.45 489 441 8.45 930 436	8.45 061 4 8.45 507 4 8.45 948 4	1.55 844 55 1.55 389 50 1.54 939 46 1.54 493 41 1.54 052 37	9.99 983 9.99 983 9.99 983 9.99 982 9.99 982	25 \$\frac{2}{24}\$ \$\frac{2}{23}\$ \$\frac{2}{21}\$ \$\frac{2}{21}\$ \$\frac{2}{21}\$	
40 41 42 43 44	8.46 366 8.46 799 427 8.47 226 424 8.47 650 419 8.48 069 416	8.47 245 8.47 669 8.48 089	1.53 615 32 1.53 183 28 1.52 755 24 1.52 331 20 1.51 911	9.99 982 9.99 981 9.99 981 9.99 980	21 pure 19 19 18 ins 17 16 16 16 18	
45 46 47 48 49	8.48 485 8.48 896 8.49 304 8.49 708 404 8.49 708 400 8.50 108 396	8.48 917 8.49 325 8.49 729 8.50 130	1.51 495 1.51 083 1.50 675 1.50 271 1.49 870	9.99 980 9.99 979 9.99 979 9.99 979 9.99 978	15 Hq Hq Hq Hq Hq Hq Hq Hq Hq Hq Hq Hq Hq	
50 51 52 53 54	8.50 504 8.50 897 393 8.51 287 390 8.51 673 386 8.52 055 382 379	8.51 310 8.51 696 8.52 079	93 1.49 473 90 1.49 080 90 1.48 690 86 1.48 304 83 1.47 921	9.99 978 9.99 977 9.99 977 9.99 976	See pages 44-49 for the logarithms of greater than 87°.	
55 56 57 58 59 60	8.52 434 8.52 810 8.53 183 8.53 552 8.53 552 8.53 919 8.54 282	8.53 208 3 8.53 578 3 8.53 645 3	1.47 541 1.47 165 1.46 792 1.46 422 1.46 055 1.45 692	9.99 976 9.99 975 9.99 975 9.99 974 9.99 974 9.99 974	See paged seg	
·	L Cos d	L Ctn c	d L Tan	L Sin	<i>i</i>	

88° — Common Logarithms of Trigonometric Functions — 88°

2° — Common Logarithms of Trigonometric Functions — 2°

1	L Sin d	L Tan cd	L Ctn	L Cos	'	
0 1 2 3 4	8.54 282 8.54 642 360 8.54 999 357 8.55 354 351 8.55 705 349	8.54 308 8.54 669 8.55 027 8.55 382 8.55 734 352 352 352 349	1.45 692 1.45 331 1.44 973 1.44 618 1.44 266	9.99 974 9.99 973 9.99 973 9.99 972 9.99 972	60 59 58 57 56	of angles
5 6 7 8 9	8.56 054 8.56 400 343 8.56 743 341 8.57 084 341 8.57 421 337	8.56 083 8.56 429 8.56 773 8.57 114 8.57 452 338 338	1.43 917 1.43 571 1.43 227 1.42 886 1.42 548	9.99 971 9.99 971 9.99 970 9.99 970 9.99 969	55 54 53 52 51	cotangents of
10 11 12 13 14	8.57 757 8.58 089 8.58 419 8.58 747 8.69 072 328 325 325 323	8.57 788 8.58 121 333 8.58 451 330 8.58 779 328 8.59 105 326 323	1.42 212 1.41 879 1.41 549 1.41 221 1.40 895	9.99 969 9.99 968 9.99 968 9.99 967 9.99 967	50 49 48 47 46	cosines and
16 17 18 19	8.59 395 8.59 715 320 8.60 033 318 8.60 349 313 8.60 662 313	8.59 428 8.59 749 321 8.60 068 319 8.60 384 316 8.60 698 314	1.40 572 1.40 251 1.39 932 1.39 616 1.39 302	9.99 967 9.99 966 9.99 966 9.99 965 9.99 964	45 44 43 42 41	logarithms of
20 21 22 23 24	8.60 973 8.61 282 307 8.61 589 305 8.61 894 302 8.62 196 301	8.61 009 8.61 319 310 8.61 626 307 8.61 931 305 8.62 234 303	1.38 991 1.38 681 1.38 374 1.38 069 1.37 766	9.99 964 9.99 963 9.99 963 9.99 962 9.99 962	40 39 38 37 36	and the
25 26 27 28 29	8.62 497 8.62 795 296 8.63 091 8.63 385 293 8.63 678 290	8.62 535 8.62 834 299 8.63 131 297 8.63 426 295 8.63 718 292	1.37 465 1.37 166 1.36 869 1.36 574 1.36 282	9.99 961 9.99 960 9.99 960 9.99 959	35 34 33 32 31	less than 3°
30 31 32 33 34	8.63 968 8.64 256 287 8.64 543 284 8.64 827 283 8.65 110 281	8.64 009 8.64 298 289 8.64 585 285 8.64 870 284 8.65 154 281	1.35 991 1.35 702 1.35 415 1.35 130 1.34 846	9.99 959 9.99 958 9.99 958 9.99 957 9.99 956	30 29 28 27 26	of angles
36 37 38 39	8.65 391 8.65 670 277 8.65 947 276 8.66 223 274 8.66 497 272	8.65 435 8.65 715 280 8.65 993 278 8.66 269 274 8.66 543 273	1.34 565 1.34 285 1.34 007 1.33 731 1.33 457	9.99 956 9.99 955 9.99 955 9.99 954 9.99 954	25 24 23 22 21	and tangents
40 41 42 43 44	8.66 769 8.67 039 269 8.67 308 267 8.67 575 266 8.67 841 263	8.66 816 8.67 087 269 8.67 356 268 8.67 624 268 8.67 890 264	1.33 184 1.32 913 1.32 644 1.32 376 1.32 110	9.99 953 9.99 952 9.99 952 9.99 951 9.99 951	20 19 18 17 16	of sines
45 46 47 48 49	8.68 104 8.68 367 8.68 627 259 8.68 886 258 8.69 144 256	8.68 154 8.68 417 263 8.68 678 260 8.68 938 260 8.69 196 258 257	1.31 846 1.31 583 1.31 322 1.31 062 1.30 804	9.99 950 9.99 949 9.99 948 9.99 948 9.99 948	15 14 13 12 11	the logarithms
50 51 52 53 54	8.69 400 8.69 654 8.69 907 253 8.70 159 250 8.70 409 249	8.69 453 8.69 708 254 8.69 962 254 8.70 214 252 8.70 465 249	1.30 547 1.30 292 1.30 038 1.29 786 1.29 535	9.99 947 9.99 946 9.99 946 9.99 944 9.99 944	10 9 8 7 6	44 49 for an 87°.
56 57 58 59 60	8.70 658 8.70 905 246 8.71 151 246 8.71 395 244 8.71 638 243 8.71 880 242	8.70 714 8.70 962 248 8.71 208 246 8.71 453 245 8.71 697 244 8.71 940 243	1.29 286 1.29 038 1.28 792 1.28 547 1.28 303 1.28 060	9.99 944 9.99 943 9.99 942 9.99 942 9.99 941 9.99 940	5 4 3 2 1 0	See pages greater thi
	L Cos d	L Ctn cd	L Tan	L Sin	7	

87° — Common Logarithms of Trigonometric Functions — 87°

3° — Common Logarithms of Trigonometric Functions — 3°

′	L Sin	đ	L Tan	cđ	L Ctn	L Cos	,	Prop. Parts
0 1 2 3 4	8.72 359 8.72 597 8.72 834	240 239 238 237 235	8.71 940 8.72 181 8.72 420 8.72 659 8.72 896	241 239 239 237 236	1.28 060 1.27 819 1.27 580 1.27 341 1.27 104	9.99 940 9.99 940 9.99 939 9.99 938 9.99 938	60 59 58 57 56	240 235 1 24.0 23.5 2 48.0 47.0 3 72.0 70.5 4 96.0 94.0 5 120.0 117.5
5 6 7 8 9	8.73 069 8.73 303 8.73 535 8.73 767 8.73 997	234 232 232 232 230 229	8.73 132 8.73 366 8.73 600 8.73 832 8.74 063	234 234 232 231 229	1.26 868 1.26 634 1.26 400 1.26 168 1.25 937	9.99 937 9.99 936 9.99 936 9.99 935 9.99 934	54 53 52 51	6 144.0 141.0 7 168.0 164.5 8 192.0 188.0 9 216.0 211.5 230 225
10 11 12 13 14	8.74 454 8.74 680 8.74 906 8.75 130	228 226 226 224 223	8.74 292 8.74 521 8.74 748 8.74 974 8.75 199	229 227 226 225 224	1.25 708 1.25 479 1.25 252 1.25 026 1.24 801	9.99 934 9.99 933 9.99 932 9.99 931 9.99 951	49 48 47 46	1 23.0 22.5 2 46.0 45.0 3 69.0 67.5 4 92.0 90.0 5 115.0 112.5 6 138.0 135.0 7 161.0 157.5
16 17 18 19	8.75 575 8.75 795 8.76 015 8.76 234	222 220 220 219 217	8.75 423 8.75 645 8.75 867 8.76 087 8.76 306	222 222 220 219 219	1.24 577 1.24 355 1.24 133 1.23 913 1.23 694	9.99 930 9.99 929 9.99 929 9.99 928 9.99 927	45 44 43 42 41	8 184.0 180.0 9 207.0 202.5 220 215 1 22.0 21.5 2 44.0 43.0
20 21 22 23 24	8.76 667 8.76 883 8.77 097 8.77 310	216 216 214 213 212	8.76 525 8.76 742 8.76 958 8.77 173 8.77 387	217 216 215 214 213	1.23 475 1.23 258 1.23 042 1.22 827 1.22 613	9.99 926 9.99 926 9.99 925 9.99 924 9.99 923	39 38 37 36	3 66.0 64.5 4 88.0 86.0 5 110.0 107.5 6 132.0 129.0 7 154.0 150.5 8 176.0 172.0 9 198.0 193.5
25 26 27 28 29	8.77 733 8.77 943 8.78 152 8.78 360	211 210 209 208 208	8.77 600 8.77 811 8.78 022 8.78 232 8.78 441	211 211 210 209 208	1.22 400 1.22 189 1.21 978 1.21 768 1.21 559	9.99 923 9.99 922 9.99 921 9.99 920 9.99 920	35 34 33 32 31	210 205 1 21.0 20.5 2 42.0 41.0 3 63.0 61.5 4 84.0 82.0
30 31 32 33 34	8.78 774 8.78 979 8.79 183 8.79 386	206 205 204 203 202	8.78 649 8.78 855 8.79 061 8.79 266 8.79 470	206 206 205 204 203	1.21 351 1.21 145 1.20 939 1.20 734 1.20 530	9.99 919 9.99 918 9.99 917 9.99 916	30 29 28 27 26	5 105.0 102.5 6 126.0 123.0 7 147.0 143.5 8 168.0 164.0 9 189.0 184.5
35 36 37 38 39	8.79 789 8.79 990 8.80 189 8.80 388	201 201 199 199 197	8.79 673 8.79 875 8.80 076 8.80 277 8.80 476	202 201 201 199 198	1.20 327 1.20 125 1.19 924 1.19 723 1.19 524	9.99 915 9.99 914 9.99 913 9.99 913 9.99 912	25 24 23 22 21	1 19.5 19.2 2 39.0 38.4 3 58.5 57.6 4 78.0 76.8 5 97.5 96.0
40 41 42 43 44	8.80 782 8.80 978 8.81 173 8.81 367	197 196 195 194 193	8.80 674 8.80 872 8.81 068 8.81 264 8.81 459	198 196 196 195 194	1.19 326 1.19 128 1.18 932 1.18 736 1.18 541	9.99 911 9.99 910 9.99 909 9.99 909 9.99 908	20 19 18 17 16	6 117.0 115.2 7 136.5 134.4 8 156.0 153.6 9 175.5 172.8 188 184 1 18.8 18.4
45 46 47 48 49	8.81 752 8.81 944 8.82 134 8.82 324	192 192 190 190 189	8.81 653 8.81 846 8.82 038 8.82 230 8.82 420	193 192 192 190 190	1.18 347 1.18 154 1.17 962 1.17 770 1.17 580	9.99 907 9.99 906 9.99 905 9.99 904 9.99 904	15 14 13 12 11	2 37.6 36.8 3 56.4 55.2 4 75.2 73.6 5 94.0 92.0 6 112.8 110.4 7 131.6 128.8
50 51 52 53 54	8.82 701 8.82 888 8.83 075 8.83 261	188 187 187 186 185	8.82 610 8.82 799 8.82 987 8.83 175 8.83 361	189 188 188 186 186	1.17 390 1.17 201 1.17 013 1.16 825 1.16 639	9.99 903 9.99 902 9.99 901 9.99 900 9.99 899	10 9 8 7 6	8 150.4 147.2 9 169.2 165.6 182 180 1 18.2 18.0 2 36.4 36.0 3 54.6 54.0
55 56 57 58 59 60	8.83 630 8.83 813 8.83 996	184 183 183 181 181	8.83 547 8.83 732 8.83 916 8.84 100 8.84 282 8.84 464	185 184 184 182 182	1.16 453 1.16 268 1.16 084 1.15 900 1.15 718 1.15 536	9.99 898 9.99 898 9.99 897 9.99 896 9.99 895 9.99 894	5 4 3 2 1 0	4 72.8 72.0 5 91.0 90.0 6 109.2 108.0 7 127.4 126.0 8 145.6 144.0 9 163.8 162.0
7	L Cos	đ	L Ctn	cđ	L Tan	L Sin	•	Prop. Parts

86° — Common Logarithms of Trigonometric Functions — 86°

4° — Common Logarithms of Trigonometric Functions — 4°

486

•	L Sin d	L Tan cd	L Ctn	L Cos	′	Prop. Parts
0 1 2 3 4	8.84 358 8.84 539 8.84 718 179 8.84 897 8.85 075 177	8.84 464 8.84 646 18 8.84 826 18 8.85 006 17 8.85 185	0 1.15 174 0 1.14 994 9 1 14 815	9.99 894 9.99 893 9.99 892 9.99 891 9.99 891	60 59 58 57 56	178 176 1 17.8 17.6 2 35.6 35.2 3 63.4 52.8 4 71.2 70.4
5 6 7 8 9	8.85 252 177 8.85 429 176 8.85 605 176 8.85 780 175 8.85 955 173	8.85 363 8.85 540 8.85 717 17 8.85 717 17 8.85 893 17 8.86 069 17	1.14 637 7 1.14 460 7 1.14 283 6 1.14 107 6 1 13 931	9.99 890 9.99 889 9.99 888 9.99 887 9.99 886	55 54 53 52 51	5 89.0 88.0 6 106.8 105.6 7 124.6 123.2 8 142.4 140.8 9 160.2 158.4
10 11 12 13 14	8.86 128 173 8.86 301 173 8.86 474 171 8.86 645 171 8.86 816 171	8.86 243 8.86 417 17 8.86 591 17 8.86 763 17 8.86 935 17	1.13 757 4 1.13 583 4 1.13 409 2 1.13 237 2 1.13 065	9.99 885 9.99 884 9.99 883 9.99 882 9.99 881	50 49 48 47 46	1 17.4 17.2 2 34.8 34.4 3 52.2 51.6 4 69.6 68.8 5 87.0 86.0 6 104.4 103.2
15 16 17 18 19	8.86 987 8.87 156 8.87 325 8.87 325 8.87 494 167 8.87 661 168	8.87 106 8.87 277 17 8.87 447 16 8.87 616 16 8.87 785 16	1.12 894 1 1.12 723 0 1.12 553 9 1.12 384 9 1.12 215	9.99 880 9.99 879 9.99 879 9.99 878 9.99 877	45 44 43 42 41	7 121.8 120.4 8 139.2 137.6 9 156.6 154.8 170 168 1 17.0 16.8
20 21 22 23 24	8.87 829 8.87 995 166 8.88 161 8.88 326 8.88 326 164 8.88 490	8.87 953 8.88 120 8.88 287 16 8.88 453 16 8.88 618 16	1.12 047 7 1.11 880 7 1.11 713 6 1.11 547 5 1.11 382	9.99 876 9.99 875 9.99 874 9.99 873 9.99 872	40 39 38 37 36	2 34.0 33.6 3 51.0 50.4 4 68.0 67.2 5 85.0 84.0 6 102.0 100.8 7 119.0 117.6 8 136.0 134.4
25 26 27 28 29	8.88 654 8.88 817 163 8.88 980 162 8.89 142 162 8.89 304 160	8.88 783 8.88 948 8.89 111 8.89 274 16 8.89 437 16	1.11 217 5 1.11 052 3 1.10 889 3 1.10 726 3 1.10 563	9.99 871 9.99 870 9.99 869 9.99 868 9.99 867	35 34 33 32 31	9 153.0 151.2 166 164 1 16.6 16.4 2 33.2 32.8 8 49.8 49.2
30 31 32 33 34	8.89 464 8.89 625 8.89 784 159 8.89 943 159 8.90 102 158	8.89 598 8.89 760 8.89 920 160 8.90 080 160 8.90 240 150	1.10 402 1.10 240 1.10 080 1.09 920 1.09 760	9.99 866 9.99 865 9.99 864 9.99 863 9.99 862	30 29 28 27 26	4 66.4 65.6 5 83.0 82.0 6 99.6 98.4 7 116.2 114.8 8 132.8 131.2 9 149.4 147.6
35 36 37 38 39	8.90 260 8.90 417 8.90 574 157 8.90 574 156 8.90 730 155 8.90 885	8.90 399 8.90 557 8.90 715 8.90 715 16: 8.90 872 16: 8.91 029	8 1.09 601 8 1.09 443 8 1.09 285 7 1.09 128 7 1.08 971	9.99 861 9.99 860 9.99 859 9.99 858 9.99 857	25 24 23 22 21	162 160 1 16.2 16.0 2 32.4 32.0 8 48.6 48.0 4 64.8 64.0 5 81.0 80.0
40 41 42 43 44	8.91 040 155 8.91 195 154 8.91 349 153 8.91 502 153 8.91 655 162	8.91 185 8.91 340 8.91 495 156 8.91 650 163 8.91 803	1.08 815 1.08 660 1.08 505 1.08 350	9.99 856 9.99 855 9.99 854 9.99 853 9.99 862	20 19 18 17 16	6 97.2 96.0 7 113.4 112.0 8 129.6 128.0 9 145.8 144.0
45 46 47 48 49	8.91 807 152 8.91 959 151 8.92 110 151 8.92 261 150 8.92 411 150	8.91 957 8.92 110 153 8.92 262 153 8.92 414 153 8.92 565 163	1.08 043 1.07 890 1.07 738 1.07 586	9.99 851 9.99 850 9.99 848 9.99 847 9.99 846	15 14 13 12 11	1 15.8 15.6 2 31.6 31.2 8 47.4 46.8 4 63.2 62.4 5 79.0 78.0 94.8 93.6 7 110.6 109.2
50 51 52 53 54	8.92 561 149 8.92 710 149 8.92 869 148 8.93 007 147 8.93 154 147	8.92 716 8.92 866 8.93 016 8.93 165 149 8.93 313 149	1.07 284 1.07 134 1.06 984 1.06 835	9.99 845 9.99 844 9.99 843 9.99 842 9.99 841	10 9 8 7 6	8 126.4 124.8 9 142.2 140.4 154 152 1 15.4 15.2 2 30.8 30.4
55 56 57 58 59 60	8.93 301 147 8.93 448 146 8.93 594 146 8.93 740 145 8.93 885 145 8.94 030	8.93 462 8.93 609 142 8.93 756 147 8.93 903 146 8.94 049 146 8.94 195	7 1.06 391 7 1.06 244 5 1.06 097	9.99 840 9.99 839 9.99 838 9.99 837 9.99 836 9.99 834	5 4 3 2 1	8 46.2 45.6 4 61.6 60.8 5 77.0 76.0 6 92.4 91.2 7 107.8 106.4 8 123.2 121.6 9 138.6 136.8
1	L Cos d	L Ctn cd		L Sin	•	Prop. Parts

5° — Common Logarithms of Trigonometric Functions — 5°

,	L Sin d	L Tan	cd	L Ctn	L Cos	,	Prop. Parts
<u> </u>							Prop. Parts
P	8.94 030 8.94 174		145	1.05 805 1.05 660	9.99 834 9.99 833	60 59	150 148
2	8.94 317	8.94 485	145 145	1.05 515	9.99 832	58	1 15.0 14.8 2 30.0 29.6
3 4	8.94.401 142	8 04 773	143	1.05 370 1.05 227	9.99 831 9.99 830	57 56	3 45.0 44.4
5	9 04 746	0.04.017	144				4 60.0 59.2 5 75.0 74.0
6	0 04 007 141	8 05 060	143	1.05 083 1.04 940	9.99 829 9.99 828	55 54	5 75.0 74.0 6 90.0 88.8 7 105.0 103.6
7	8.95 029	8.95 202	142 142	1.04 798	9.99 827	53	8 120.0 118.4
8	8.95 1/0 140	0.90 344	142	1.04 656 1.04 514	9.99 825 9.99 824	52 51	
10	9 05 450	9 05 627	141	1.04 373	9.99 823	50	146 144 1 14.6 14.4
11	8.95 589 139	8.95 767	140 141	1.04 233	9.99 822	49	2 29.2 28.8
12 13	8.95 728 139 8.95 867 139	8.95 908 8.96 047	139	1.04 092 1.03 953	9.99 821	48	4 58.4 57.6 I
14	9 06 00E 138	0.50 047	140	1.03 983	9.99 820 9.99 819	47 46	5 73.0 72.0 6 87.6 86,4
15	9 06 147	9 06 725	138	1.03 675	9.99 817	45	7 102.2 100.8
16	8.96 280 137	8.96 464	139 138	1.03 536	9.99 816	44	8 116.8 115.2 9 131.4 129.6
17 18	8.96 417 136 8.96 553 136	8.96 602	137	1.03 398 1.03 261	9.99 815 9.99 814	43 42	142 140
18	0.90 000 136	9 06 977	138	1.03 261	9.99 814	42	1 14.2 14.0
20	8 06 825	9 07 017	136	1.02 987	9.99 812	40	2 28.4 28.0 3 42.6 42.0
21	8.96 960 135	8.97 150	137 135	1.02 850	9.99 810	39	4 56.8 56.0
22 23	8.97 095 134	9.97.285	136	1.02 715 1.02 579	9.99 809 9.99 808	38 37	5 71.0 70.0 I
23 24	9 07 767 134	9 07 556	135	1.02 444	9.99 808	36	7 99.4 98.0
25	9 07 406	9 07 601	135	1.02 309	9.99 806	35	8 113.6 112.0 9 127.8 126.0
26	8.97 629 133	8.97 825	134 134	1.02 175	9.99 804	34	138 136
27 28	8.97 762 132	8.97 959	133	1.02 041 1.01 908	9.99 803 9.99 802	33 32	1 13.8 13.6
29	8.98 026 132	0.00 225	133 133	1.01 775	9.99 801	31	2 27.6 27.2 3 41.4 40.8
30	0.00 157	0 00 750		1.01 642	9.99 800	30	4 55.2 54.4
31	8.98 288 131	8.98 490	132 132	1.01 510	9.99 798	29	5 69.0 68.0 6 82.8 81.6
32 33	8.98 419 130	8.98 622 9.09 757	131	1.01 378 1.01 247	9.99 797 9.99 796	28 27	7 96.6 95.2 8 110.4 108.8
34	8.98 679 130 129	0.00.004	131 131	1.01 116	9.99 795	26	9 124.2 122.4
35	8.98 808 129	8.99 015	130	1.00 985	9.99 793	25	134 132
36	8.98 937 129	0.99 140	130	1.00 855	9.99 792	24	1 13.4 13.2 2 26.8 26.4
37 38	8.99 000 128		130	1.00 725 1.00 595	9.99 791 9.99 790	23 22	3 40.2 39.6
39	8.99 322 128 8.99 322 128	0.00 574	129 128	1.00 466	9.99 788	21	4 53.6 52.8 5 67.0 66.0
40	8.99 450 127	8.99 662	129	1.00 338	9.99 787	20	6 80.4 79.2
41	8.99 577 127	8.99 /91	128	1.00 209 1.00 081	9.99 786 9.99 785	19	8 107.2 105.6
42 43	8.99 704 126 8.99 830 126	9.00 046	127 128	0.99 954	9.99 785	18 17	9 120.6 118.8
44	8.99 956 126	0.00 174	128	0.99 826	9.99 782	16	130 128
45	9.00 082 125	9.00 301	126	0.99 699	9.99 781	15	1 13.0 12.8 2 26.0 25.6
46 47	9.00 207 125	9.00 427	126	0.99 573 0.99 447	9.99 780 9.99 778	14 13	3 39.0 38.4 4 52.0 51.2
48	9.00 456 125	9.00 679	126 126	0.99 321	9.99 777	12	5 65.0 64.0
49	9.00 581 123		125	0.99 195	9.99 776	11	6 78.0 76.8 7 91.0 89.6
50	9.00 704 124	9.00 930	125	0.99 070	9.99 775	10	8 104.0 102.4
51 52	9.00 828 123	9.01 055	124	0.98 945 0.98 821	9.99 773 9.99 772	8	
53	9.01 074 123	9.01 303	124 124	0.98 697	9.99 772 9.99 771	7	126 124 1 12.6 12.4
54	9.01 196 122	9.01 427	123	0.98 573	9.99 769	6	2 25.2 24.8
55	9.01 318 122		123	0.98 450	9.99 768	5	4E 50.4 49.6 I
56 57	9.01 440 121	9.01 6/3	123	0.98 327 0.98 204	9.99 767 9.99 765	4 3	5 63.0 62.0
58	9.01 682 121	9.01 918	122 122	0.98 082	9.99 764	3 2 1	7 88.2 86.8
59 60	9.01 803 120 9.01 923		122	0.97 960 0.97 838	9.99 763 9.99 761	1 0	8 100.8 99.2 9 113.4 111 6
7	L Cos d		cđ	L Tan	L Sin	,	Prop. Parts

84° — Common Logarithms of Trigonometric Functions — 84°

488 Table 3

6° — Common Logarithms of Trigonometric Functions — 6°

1	L Sin d	1	L Tan	cđ	L Ctn	L Cos	'	Prop. Parts
0 1 2 3 4	9.02 163 1: 9.02 283 1: 9.02 402 1:	20 20 20 19 18	9.02 162 9.02 283 9.02 404 9.02 525 9.02 645	121 121 121 121 120 121	0.97 838 0.97 717 0.97 596 0.97 475 0.97 355	9.99 761 9.99 760 9.99 759 9.99 757 9.99 756	60 59 58 57 56	122 120 1 12.2 12.0 2 24.4 24.0 3 36.6 36.0 4 48.8 48.0
5 6 7 8 9	9.02 520 9.02 639 11 9.02 757 1 9.02 874 1	19 18 17 18	9.02 766 9.02 885 9.03 005 9.03 124 9.03 242	119 120 119 118 119	0.97 234 0.97 115 0.96 995 0.96 876 0.96 758	9.99 755 9.99 753 9.99 752 9.99 751 9.99 749	55 54 53 52 51	5 61.0 60.0 6 73.2 72.0 7 85.4 84.0 8 97.6 96.0 9 109.8 108.0 118 116
10 11 12 13 14	9.03 109 9.03 226 1 9.03 342 1 9.03 458 1	17 16 16 16 16	9.03 361 9.03 479 9.03 597 9.03 714 9.03 832	118 118 117 118 116	0.96 639 0.96 521 0.96 403 0.96 286 0.96 168	9.99 748 9.99 747 9.99 745 9.99 744 9.99 742	50 49 48 47 46	1 11.8 11.6 2 23.6 23.2 3 35.4 34.8 4 47.2 46.4 5 59.0 58.0 6 70.8 69.6 7 82.6 81.2
16 17 18 19	9.03 805 9.03 920 9.04 034 9.04 149 1	15 15 14 15 15	9.03 948 9.04 065 9.04 181 9.04 297 9.04 413	117 116 116 116 116	0.96 052 0.95 935 0.95 819 0.95 703 0.95 587	9.99 741 9.99 740 9.99 738 9.99 737 9.99 736	44 43 42 41	8 94.4 92.8 9 106.2 104.4 114 112 1 11.4 11.2 2 22.8 22.4
20 21 22 23 24	9.04 490 1 9.04 603 1 9.04 715 1	14 14 13 12	9.04 528 9.04 643 9.04 758 9.04 873 9.04 987	115 115 115 114 114	0.95 472 0.95 357 0.96 242 0.95 127 0.95 013	9.99 734 9.99 733 9.99 731 9.99 730 9.99 728	39 38 37 36	3 34.2 33.6 4 45.6 44.8 5 57.0 56.0 6 68.4 67.2 7 79.8 78.4 8 91.2 89.6
26 27 28 29	9.05 052 1 9.05 164 1 9.05 275 1	12 12 12 11	9.05 101 9.05 214 9.05 328 9.05 441 9.05 553	113 114 113 112 113	0.94 899 0.94 786 0.94 672 0.94 559 0.94 447	9.99 727 9.99 726 9.99 724 9.99 723 9.99 721	35 34 33 32 31	9 102.6 100.8 110 109 1 11.0 10.9 2 22.0 21.8 3 33.0 32.7 4 44.0 43.6
30 31 32 33 34	9.05 497 9.05 607 9.05 717 1	11 10 10 10	9.05 666 9.05 778 9.05 890 9.06 002 9.06 113	112 112 112 111 111	0.94 334 0.94 222 0.94 110 0.93 998 0.93 887	9.99 720 9.99 718 9.99 717 9.99 716 9.99 714	30 29 28 27 26	5 55.0 54.5 6 66.0 65.4 7 77.0 76.3 8 88.0 87.2 9 99.0 98.1
36 37 38 39	9.06 155 1 9.06 264 1 9.06 372 1	.09 .09 .09 .08	9.06 224 9.06 335 9.06 445 9.06 556 9.06 666	111 110 111 110 109	0.93 776 0.93 665 0.93 555 0.93 444 0.93 334	9.99 713 9.99 711 9.99 710 9.99 708 9.99 707	25 24 23 22 21	108 107 1 10.8 10.7 2 21.6 21.4 3 32.4 32.1 4 43.2 42.8 5 54.0 53.5
40 41 42 43 44	9.06 696 1 9.06 694 1 9.06 804 1	08 07 08 07	9.06 775 9.06 885 9.06 994 9.07 103 9.07 211	110 109 109 108 109	0.93 225 0.93 115 0.93 006 0.92 897 0.92 789	9.99 705 9.99 704 9.99 702 9.99 701 9.99 699	19 18 17 16	6 64.8 64.2 7 75.6 74.9 8 86.4 85.6 9 97.2 96.3 106 105 1 10.6 10.5
45 46 47 48 49	9.07 231 1 9.07 337 1 9.07 442 1	06 07 06 05	9.07 320 9.07 428 9.07 536 9.07 643 9.07 751	108 108 107 108 107	0.92 680 0.92 572 0.92 464 0.92 357 0.92 249	9.99 698 9.99 696 9.99 695 9.99 693 9.99 692	15 14 13 12 11	2 21.2 21.0 8 31.8 31.5 4 42.4 42.0 5 53.0 52.5 6 63.6 63.0 7 74.2 73.5
50 51 52 53 54	9.07 653 9.07 758 9.07 863 9.07 968	05 05 05 05	9.07 858 9.07 964 9.08 071 9.08 177 9.08 283	106 107 106 106 106	0.92 142 0.92 036 0.91 929 0.91 823 0.91 717	9.99 690 9.99 689 9.99 687 9.99 686 9.99 684	10 9 8 7 6	9 95.4 94.5 104 103 1 10.4 10.3 2 20.8 20.6
55 56 57 58 59 60	9.08 176 9.08 280 1 9.08 383 1	04 04 03 03 03	9.08 389 9.08 495 9.08 600 9.08 705 9.08 810 9.08 914	106 105 105 106 104	0.91 611 0.91 505 0.91 400 0.91 295 0.91 190 0.91 086	9.99 683 9.99 681 9.99 680 9.99 678 9.99 677 9.99 675	5 4 3 2 1 0	8 31.2 30.9 4 41.6 41.2 5 52.0 51.5 6 62.4 61.8 7 72.8 72.1 8 83.2 82.4 9 93.6 92.7
7		đ	L Ctn	cd	L Tan	L Sin	,	Prop. Parts

7° — Common Logarithms of Trigonometric Functions — 7°

•	L Sin	d	L Tan	cđ	L Ctn	L Cos	'	Prop. Parts
0 1 2 3 4	9.08 589 9.08 692 9.08 795 9.08 897 9.08 999	103 103 102 102 102	9.08 914 9.09 019 9.09 123 9.09 227 9.09 330	105 104 104 103	0.91 086 0.90 981 0.90 877 0.90 773 0.90 670	9.99 675 9.99 674 9.99 672 9.99 670 9.99 669	60 59 58 57 56	103 102 1 103 10.2 2 206 20.4 3 30.9 30.6 4 41.2 40.8 5 51.5 51.0
5 6 7 8 9	9.09 101 9.09 202 9.09 304 9.09 405 9.09 506	101 102 101 101 100	9.09 434 9.09 537 9.09 640 9.09 742 9.09 845	104 103 103 102 103 102	0.90 566 0.90 463 0.90 360 0.90 258 0.90 155	9.99 667 9.99 666 9.99 664 9.99 663 9.99 661	55 54 53 52 51	5 51.5 51.0 6 61.8 61.2 7 72.1 71.4 8 82.4 81.6 9 92.7 91.8
10 11 12 13 14	9.09 606 9.09 707 9.09 807 9.09 907 9.10 006	101 100 100 99 100	9.09 947 9.10 049 9.10 150 9.10 252 9,10 353	102 101 102 101 101	0.90 053 0.89 951 0.89 850 0.89 748 0.89 647	9.99 659 9.99 658 9.99 656 9.99 655 9.99 653	50 49 48 47 46	1 10.1 9.9 2 20.2 19.8 3 30.3 29.7 4 40.4 39.6 5 50.5 49.5 6 60.6 59.4 7 70.7 69.3
15 16 17 18 19	9.10 106 9.10 205 9.10 304 9.10 402 9.10 501	99 99 98 99 98	9.10 454 9.10 555 9.10 656 9.10 756 9.10 856	101 101 100 100 100	0.89 546 0.89 445 0.89 344 0.89 244 0.89 144	9.99 651 9.99 650 9.99 648 9.99 647 9.99 645	44 43 42 41	8 80.8 79.2 9 90.9 89.1 98 97 1 9.8 9.7 2 19.6 19.4
20 21 22 23 24 25	9.10 599 9.10 697 9.10 795 9.10 893 9.10 990	98 98 98 97 97	9.10 956 9.11 056 9.11 155 9.11 254 9.11 353	100 99 99 99 99	0.89 044 0.88 944 0.88 845 0.88 746 0.88 647	9.99 643 9.99 642 9.99 640 9.99 638 9.99 637	39 38 37 36 35	3 29.4 29.1 4 39.2 38.8 5 49.0 48.5 6 58.8 58.2 7 68.6 67.9 8 78.4 77.6 9 88.2 87.3
26 27 28 29 30	9.11 087 9.11 184 9.11 281 9.11 377 9.11 474 9.11 570	97 97 96 97 96	9.11 452 9.11 551 9.11 649 9.11 747 9.11 845 9.11 943	99 98 98 98 98	0.88 548 0.88 449 0.88 351 0.88 253 0.88 155 0.88 057	9.99 635 9.99 633 9.99 632 9.99 630 9.99 629 9.99 627	34 33 32 31	96 95 1 9.6 9.5 2 19.2 19.0 8 28.8 28.5 4 38.4 38.0
31 32 33 34 35	9.11 666 9.11 761 9.11 857 9.11 952 9.12 047	96 95 96 95 95	9.12 040 9.12 138 9.12 235 9.12 332 9.12 428	97 98 97 97 96	0.87 960 0.87 862 0.87 765 0.87 668 0.87 572	9.99 625 9.99 624 9.99 622 9.99 620 9.99 618	29 28 27 26 25	8 48.0 47.5 6 57.6 57.0 7 67.2 66.5 8 76.8 76.0 9 86.4 85.5
36 37 38 39 40	9.12 142 9.12 236 9.12 331 9.12 425	95 94 95 94 94	9.12 426 9.12 525 9.12 621 9.12 717 9.12 813 9.12 909	97 96 96 96 96	0.87 475 0.87 379 0.87 283 0.87 187 0.87 091	9.99 617 9.99 615 9.99 613 9.99 612 9.99 610	24 23 22 21 20	1 9.4 9.3 2 18.8 18.6 3 28.2 27.9 4 37.6 37.2 5 47.0 46.5 6 56.4 55.8
41 42 43 44 45	9.12 519 9.12 612 9.12 706 9.12 799 9.12 892 9.12 985	93 94 93 93 93	9.13 004 9.13 099 9.13 194 9.13 289 9.13 384	95 95 95 95 95	0.86 996 0.86 901 0.86 806 0.86 711 0.86 616	9.99 608 9.99 607 9.99 605 9.99 603	19 18 17 16	7 65.8 65.1 8 75.2 74.4 9 84.6 83.7 92 91 1 92 9.1
46 47 48 49 50	9.13 078 9.13 171 9.13 263 9.13 355 9.13 447	93 93 92 92 92	9.13 478 9.13 573 9.13 667 9.13 761 9.13 854	94 95 94 94 93	0.86 522 0.86 427 0.86 333 0.86 239 0.86 146	9.99 600 9.99 598 9.99 596 9.99 595 9.99 593	14 13 12 11	2 18.4 18.2 3 27.6 27.3 4 36.8 36.4 5 46.0 45.5 6 55.2 54.6 7 64.4 63.7 8 73.6 72.8 9 82.8 81.9
51 52 53 54	9.13 539 9.13 630 9.13 722 9.13 813 9.13 904	92 91 92 91 91	9.13 948 9.14 041 9.14 134 9.14 227 9.14 320	94 93 93 93 93	0.86 052 0.85 959 0.85 866 0.85 773 0.85 680	9.99 591 9.99 589 9.99 588 9.99 586 9.99 584	9876 5	9 82.8 81.9 90 1 9.0 2 18.0 3 27.0 4 36.0
56 57 58 59 60	9.13 994 9.14 085 9.14 175 9.14 266 9.14 356	90 91 90 91 90	9.14 412 9.14 504 9.14 597 9.14 688 9.14 780	92 92 93 91 92	0.85 588 0.85 496 0.85 403 0.85 312 0.85 220	9.99 582 9.99 581 9.99 579 9.99 577 9.99 575	3 2 1 0	5 36.0 5 45.0 6 54.0 7 63.0 8 72.0 9 81.0
<u></u>	L Cos	đ	L Ctn	cđ	L Tan	L Sin	1	Prop. Parts

82° — Common Logarithms of Trigonometric Functions — 82°

8° — Common Logarithms of Trigonometric Functions — 8°

,	L Sin d	L Tan	cd L Ctn	L Cos	,	Prop. Parts
_		9.14 780			-	
1	9.14 356 9.14 445 90	9.14 872	92 0.85 220 91 0.85 128	9.99 575 9.99 574	60 59	92 91 1 9.2 9.1
2	9.14 535		0.85 037 0.84 946	9.99 572	58	2 18.4 18.2
3 4	9.14 624 90 9.14 714 90	0 15 145	91 004055	9.99 570 9.99 568	57 5 6	3 27.6 27.3 4 36.8 36.4
5	0.14.907	0 15 276	91 0.84 764	9.99 566	55	5 46.0 45.5 6 55.2 54.6
6	9.14 891	9.15 327	0.84 673	9.99 565	54	7 64.4 63.7
8	9.14.960 89	9.15 417	91 0.04 003	9.99 563 9.99 561	53 52	8 73.6 72.8 9 82.8 81.9
و	9.15 157 88	0 15 500	90 0.84 402 90 0.84 402	9.99 559	51	90 89
10	9.15 245 88	9.15 688	0.84 312	9.99 557	50	1 9.0 8.9
11	9.15 333 00		0.84 223 0.84 133	9.99 556 9.99 554	49 48	2 18.0 17.8 3 27.0 26.7
12 13	9.15 421 87 9.15 508 87	0 15 056	0 84 044	9.99 552	47	4 36.0 35.6 5 45.0 44.5
14	9.15 596 88		90 0.83 954	9.99 550	46	6 54.0 53.4
15	9.15 683	9.16 135	0.83 865	9.99 548	45	6 54.0 53.4 7 63.0 62.3 8 72.0 71.2
16 17	9.15 7/0 87	9.16 224	88 0.83 7/6	9.99 546 9.99 545	44	9 81.0 80.1
18	9.15 944 86	9.16 401	0.83 599	9.99 543	42	88 87
19	9.16 030 86	9.16 489	88 0.83 511	9.99 541	41	1 8.8 8.7 2 17.6 17.4
20	9.16 116 87	9.16 577 9.16 665	88 0.83 423 0.83 335	9.99 539	40 39	2 17.6 17.4 3 26.4 26.1 4 35.2 34.8
21 22	9.16 203 86 9.16 289 85	9.16 753	0.83 247	9.99 537 9.99 535	38	5 44.0 43.5
23	9.16 374	9.10 841	87 0.83 159	9.99 533	37	6 52.8 52.2 7 61.6 60.9
24	9.16 460 85		58	9.99 532	36	8 70.4 69.6 9 79.2 78.3
25 26	9.16 545 9.16 631	1 9.17 103 2	0.82 984 0.82 897	9.99 530 9.99 528	35 34	86 85
27	9.16 716	9.17 190	0.82 810	9.99 526	34 33	1 8.6 8.5
28 29	9.10 801 85	9.17.277	36 0.82 /23	9.99 524 9.99 522	32 31	2 17.2 17.0
30	0%	9.17 450	0.82 550	9.99 520	30	4 34.4 34.0
30 31	9.16 970 9.17 055 85	9.17 536	0.82 464	9.99 518	29	5 43.0 42.5
32	9.17 139 84	9.17.622	66 0.82 378 66 0.82 292	9.99 517 9.99 515	28 27	6 51.6 51.0 7 60.2 59.5 8 68.8 68.0
33 34	9.17 223 84	9.17 794 8	0 0 82 206	9.99 513	26	9 77.4 76.5
35	0 17 701	0 17 880	0 82 120	9.99 511	25	84 83
36	9.17 474	9.17 965	0.82 035	9.99 509	24	1 8.4 8.3 2 16.8 16.6
37 38	9.17 558 83	9.18 051	0.81 949	9.99 507 9.99 505	23 22	3 25.2 24.9
39	9.17 724 83	0 18 221 6	35 0.81 779	9.99 503	21	4 33.6 33.2 5 42.0 41.5
40	9.17 807	9.18 306	0.81 694	9.99 501	20	6 50.4 49.8
41 42	9.17 890 83	9.18.391 8	0.81 525	9.99 499 9.99 497	19 18	8 67.2 66.4
43	9.18 055	9.18 560	0.81 440 4 0.81 356	9.99 495	17	
44	9.18 137 83	9.10 044 8	≻2. į	9.99 494	16	82 81 1 8.2 8.1
45	9.18 220 82	9.18 728	0.81 272	9.99 492 9.99 490	15 14	2 16.4 16.2
46 47	9.18 302 81	9.10 012 8	0.81 104	9.99 488	13	8 24.6 24.3 4 32.8 32.4
48	9.18 465	9.18 979	33 0.81 021 34 0.80 937	9.99 486 9.99 484	12 11	5 41.0 40.5
49	9.18 547 . 81	9.19 003 8	33 0.00 937			7 57.4 56.7
50	9.18 628 9.18 709 81		0.80 854 0.80 771	9.99 482 9.99 480	10	8 65.6 64.8 9 73.8 72.9
52	9.18 790 81	9.19 312	0.80 688	9.99 478	8	80
53 54	9.18 6/1 81	0.10.470 8	3 0.00 003	9.99 476 9.99 474	7 6	1 8.0
55	0 10 077	0.10.561	0 90 470	9.99 472	5	8 24.0
56	9.19 113 80	9.19 643	0.80 357	9.99 470	4	4 32.0 5 40.0
57	9.19 193 80 9.19 273 80		0.80 275 0.80 193	9.99 468 9.99 466	3 2 1	6 48.0
58 59	9.19 2/3 80	9.19 889	0.80 111	9.99 464	í	8 64.0
80	9.19 433 80	9.19 971	0.80 029	9.99 462	0	9 72.0
,	L Cos d	L Ctn c	d L Tan	L Sin	7	Prop. Parts

81° — Common Logarithms of Trigonometric Functions — 81°

 9° — Common Logarithms of Trigonometric Functions — 9°

1	L Sin d	L Tan	d L Ctn	L Cos	'	Prop. Parts
0 1 2 3 4 5 6 7 8	9.19 433 9.19 513 9.19 592 9.19 672 9.19 751 9.19 830 9.19 909 9.19 988 9.20 067	9.20 134 8 9.20 216 8 9.20 297 8 9.20 378 9.20 459 8 9.20 540 8	0.80 029 0.79 947 0.79 866 12 0.79 784 13 0.79 703 14 0.79 622 15 0.79 460 16 0.79 460 17 0.79 460	9.99 462 9.99 460 9.99 458 9.99 456 9.99 454 9.99 452 9.99 450 9.99 448 9.99 446	60 59 58 57 56 55 54 53 52	82 81 1 8.2 8.1 2 16.4 16.2 3 24.6 24.3 4 32.8 32.4 5 41.0 40.5 6 49.2 48.6 7 57.4 56.7 8 65.5 64.8
9 10 11 12 13 14 15 16 17 18 19	9.20 145 78 9.20 223 79 9.20 380 78 9.20 458 78 9.20 535 78 9.20 691 78 9.20 691 77 9.20 694 77 9.20 845 77 9.20 822 77	9.20 701 8 9.20 782 8 9.20 862 8 9.20 942 8 9.21 022 8 9.21 102 8 9.21 182 9 9.21 261 7 9.21 341 8 9.21 420 7	9 0.78 580	9.99 444 9.99 442 9.99 440 9.99 438 9.99 436 9.99 434 9.99 423 9.99 429 9.99 427 9.99 425 9.99 423	51 50 49 48 47 46 45 44 43 42 41	80 79 1 8.0 79 2 16.0 15.8 3 24.0 23.7 4 32.0 31.6 5 40.0 39.5 6 48.0 47.4 7 56.0 55.3 8 64.0 63.2 9 72.0 71.1
20 21 22 23 24 25 26 27 28 29	9.20 999 77 9.21 076 77 9.21 153 76 9.21 229 76 9.21 306 77 9.21 382 76 9.21 458 76 9.21 534 76 9.21 610 75	9.21 578 9.21 657 7 9.21 736 7 9.21 814 7 9.21 893 7 9.21 971 9.22 049 7 9.22 127 7 9.22 205 7	9 0.78 422 9 0.78 343 9 0.78 264 9 0.78 186 9 0.78 107 8 0.78 029 8 0.77 951 3 0.77 795 3 0.77 795	9.99 421 9.99 419 9.99 417 9.99 415 9.99 413 9.99 409 9.99 407 9.99 404 9.99 402	40 39 38 37 36 35 34 33 32 31	78 77 1 7.8 7.7 2 15.6 15.4 3 23.4 23.1 4 31.2 30.8 5 39.0 38.5 6 46.8 46.2 7 54.6 53.9 8 62.4 61.6 9 70.2 69.3
30 31 32 33 34 85 36 37 38 39	9.21 761 9.21 836 9.21 912 76 9.21 987 75 9.22 062 75 9.22 137 9.22 211 74 9.22 286 75 9.22 361 76 9.22 361 77 9.22 361 78	9.22 363 7 9.22 438 7 9.22 516 7 9.22 57 7 9.22 670 7 9.22 747 9 9.22 824 7 9.22 901 7 9.22 977 7 9.23 054 7	7 0.77 639 3 0.77 562 3 0.77 484 7 0.77 407 7 0.77 330 7 0.77 253 7 0.77 176 9 0.77 099 5 0.77 099 7 0.77 099	9.99 400 9.99 398 9.99 396 9.99 394 9.99 392 9.99 388 9.99 388 9.99 385 9.99 381	30 29 28 27 26 25 24 23 22 21	76 75 1 7.6 7.5 2 15.2 15.0 3 22.8 22.5 4 30.4 30.0 5 38.0 37.5 6 45.6 45.0 7 53.2 52.5 8 60.8 60.0 9 68.4 67.5
40 41 42 43 44 45 46 47 48 49	9.22 509 74 9.22 583 74 9.22 657 74 9.22 731 74 9.22 805 73 9.22 878 9.22 952 73 9.23 025 73 9.23 025 73	9.23 130 9.23 206 70 9.23 283 70 9.23 359 70 9.23 435 70 9.23 510 70 9.23 586 70 9.23 737 70	0.76 870 0.76 794 7 0.76 717 2 0.76 541 0.76 565 0.76 490 0.76 339 0.76 263 0.76 263 0.76 268	9.99 379 9.99 377 9.99 375 9.99 372 9.99 370 9.99 368 9.99 364 9.99 362 9.99 359	20 19 18 17 16 15 14 13 12 11	74 78 1 7.4 7.5 2 14.8 14.6 3 22.2 21.9 4 29.6 29.2 5 37.0 36.5 6 44.4 45.8 7 51.8 51.1 8 59.2 58.4 9 66.6 65.7
50 51 52 53 54 56 57 58 59 60	9.23 244 9.23 317 9.23 397 9.23 462 9.23 535 72 9.23 607 9.23 607 9.23 607 9.23 752 9.23 752 9.23 825 72 9.23 895 72 9.23 895 72 9.23 896	9.23 887 71 9.23 962 71 9.24 037 76 9.24 112 74 9.24 261 9.24 261 9.24 484 74 9.24 484 74 9.24 458 74 9.24 558 74	0.76 113 0.76 038 0.75 963 0.75 888 0.75 814 0.75 739 0.75 665 0.75 590 0.75 516	9.99 357 9.99 355 9.99 353 9.99 361 9.99 348 9.99 344 9.99 342 9.99 340 9.99 337 9.99 335	10 9 8 7 6 5 4 3 2 1 0	72 71 1 7.2 7.1 2 14.4 14.2 3 21.6 21.5 4 28.8 28.4 5 36.0 35.5 6 43.2 42.6 7 50.4 49.7 8 57.6 56.8 9 64.8 63.9
,	L Cos d	L Ctn co	L Tan	L Sin	'	Prop. Parts

10° — Common Logarithms of Trigonometric Functions — 10°

1	L Sin d	L Tan cd	L Ctn	L Cos d	'	Prop. Parts
1 2 3 4	9.23 967 9.24 039 71 9.24 110 71 9.24 181 72 9.24 253 71	9.24 632 9.24 706 74 9.24 779 73 9.24 853 74 9.24 926 74	0.75 368 0.75 294 0.75 221 0.75 147 0.75 074	9.99 335 9.99 333 2 9.99 331 3 9.99 328 2 9.99 326 2	60 59 58 57 56	74 78 1 7.4 7.3 2 14.8 14.6 8 22.2 21.9
5 6 7 8 9	9.24 324 9.24 395 71 9.24 466 71 9.24 536 70 9.24 607 70	9.25 000 9.25 073 9.25 146 73 9.25 219 73 9.25 292 73	0.75 000 0.74 927 0.74 854 0.74 781 0.74 708	9.99 324 9.99 322 9.99 319 9.99 317 9.99 315 2	55 54 53 52 51	4 29.6 29.2 5 37.0 36.5 6 44.4 43.8 7 51.8 51.1 8 59.2 58.4 9 66.6 65.7
10 11 12 13 14	9.24 677 9.24 748 70 9.24 818 70 9.24 888 70 9.24 958 70	9.25 365 9.25 437 72 9.25 510 73 9.25 582 72 9.25 655 73	0.74 635 0.74 563 0.74 490 0.74 418 0.74 345	9.99 313 3 9.99 310 3 9.99 308 2 9.99 306 2 9.99 304 3	50 49 48 47 46	72 71 1 7.2 7.1 2 14.4 14.2 3 21.6 21.3 4 28.8 28.4
16 17 18 19	9.25 028 9.25 098 70 9.25 168 69 9.25 237 70 9.25 307 69	9.25 727 9.25 799 72 9.25 871 72 9.25 943 72 9.26 015 71	0.74 273 0.74 201 0.74 129 0.74 057 0.73 985	9.99 301 9.99 299 2 9.99 297 3 9.99 294 2 9.99 292 2	45 44 43 42 41	5 36.0 35.5 6 43.2 42.6 7 50.4 49.7 8 57.6 56.8 9 64 8 63.9
20 21 22 23 24	9.25 376 9.25 445 9.25 514 9.25 583 9.25 652 9.26 69	9.26 086 9.26 158 9.26 229 9.26 301 9.26 372 71	0.73 914 0.73 842 0.73 771 0.73 699 0.73 628	9.99 290 9.99 288 3 9.99 285 2 9.99 283 2 9.99 281 3	40 39 38 37 36	70 69 1 7.0 6.9 2 14.0 13.8 3 21.0 20.7 4 28.0 27.6
26 26 27 28 29	9.25 721 9.25 790 69 9.25 858 68 9.25 927 69 9.25 995 68	9.26 443 9.26 514 71 9.26 585 71 9.26 655 70 9.26 726 71	0.73 557 0.73 486 0.73 415 0.73 345 0.73 274	9.99 278 9.99 276 9.99 274 9.99 271 9.99 269 2	35 34 33 32 31	5 35.0 34.5 6 42.0 41.4 7 49.0 48.3 8 56.0 55.2 9 63.0 62.1
30 31 32 33 34	9.26 063 9.26 131 68 9.26 199 68 9.26 267 68 9.26 335 68	9.26 797 9.26 867 70 9.26 937 70 9.27 008 71 9.27 078 70	0.73 203 0.73 133 0.73 063 0.72 992 0.72 922	9.99 267 9.99 264 9.99 262 9.99 260 9.99 257 2	30 29 28 27 26	68 67 1 6.8 6.7 2 13.6 13.4 3 20.4 20.1 4 27.2 26.8
36 37 38 39	9.26 403 9.26 470 67 9.26 538 68 9.26 605 67 9.26 672 67	9.27 148 9.27 218 70 9.27 288 70 9.27 357 69 9.27 427 69	0.72 852 0.72 782 0.72 712 0.72 643 0.72 573	9.99 255 9.99 252 9.99 250 9.99 248 9.99 245 2	25 24 23 22 21	5 34.0 33.5 6 40.8 40.2 7 47.6 46.9 8 54.4 53.6 9 61.2 60.3
40 41 42 43 44	9.26 739 9.26 806 67 9.26 873 67 9.26 940 67 9.27 007 66	9.27 496 9.27 566 70 9.27 635 69 9.27 704 69 9.27 773 69	0.72 504 0.72 434 0.72 365 0.72 296 0.72 227	9.99 243 9.99 241 9.99 238 9.99 236 9.99 233 2	20 19 18 17 16	66 65 1 6.6 6.5 2 13.2 13.0 3 19.8 19.5 4 26.4 26.0
45 46 47 48 49	9.27 073 9.27 140 67 9.27 206 66 9.27 273 66 9.27 339 66	9.27 842 9.27 911 69 9.27 980 69 9.28 049 69 9.28 117 68	0.72 158 0.72 089 0.72 020 0.71 951 0.71 883	9.99 231 9.99 229 2 9.99 226 2 9.99 224 3 9.99 221 2	15 14 13 12 11	4 26.4 26.0 5 33.0 32.5 6 39.6 39.0 7 46.2 45.5 8 52.8 52.0 9 59.4 58.5
50 51 52 53 54	9.27 405 9.27 471 66 9.27 537 66 9.27 602 65 9.27 668 66	9.28 186 9.28 254 9.28 323 9.28 391 9.28 459 68	0.71 814 0.71 746 0.71 677 0.71 609 0.71 541	9.99 219 9.99 217 9.99 214 9.99 212 9.99 209 2	10 9 8 7 6	3 1 0.3 2 0.6 8 0.9 4 1.2
55 56 57 58 59 60	9.27 734 9.27 799 65 9.27 864 66 9.27 930 66 9.27 995 66 9.28 060	9.28 527 9.28 595 9.28 662 9.28 730 9.28 798 9.28 865	0.71 473 0.71 405 0.71 338 0.71 270 0.71 202 0.71 135	9.99 207 9.99 204 9.99 202 9.99 200 9.99 197 9.99 195	5 4 3 2 1	5 1.5 6 1.8 7 2.1 8 2.4 9 2.7
•	L Cos d	L Ctn cd	L Tan	L Sin d	7	Prop. Parts

79° — Common Logarithms of Trigonometric Functions — 79°

11° — Common Logarithms of Trigonometric Functions — 11°

,	: L Sin d	L Tan cd	L Ctn	L Cos d	,	Prop. Parts
0 1 2 3 4	9.28 060 9.28 125 9.28 190 65 9.28 254 9.28 319	9.28 865 9.28 933 9.29 000 67 9.29 067 9.29 134	0.71 135 0.71 067 0.71 000 0.70 933 0.70 866	9.99 195 9.99 192 3 9.99 190 2 9.99 187 3 9.99 185 2	60 59 58 57 56	68 67 1 6.8 6.7 2 13.6 13.4
5 6789	9.28 384 9.28 448 64 9.28 512 65 9.28 577 64	9.29 201 9.29 268 9.29 335 9.29 402 9.29 468 66	0.70 799 0.70 732 0.70 665 0.70 598 0.70 532	9.99 182 9.99 180 9.99 177 9.99 175 9.99 175 9.99 172	55 54 53 52 51	2 13.6 13.4 3 20.4 20.1 4 27.2 26.8 5 34.0 33.5 6 40.8 40.2 7 47.6 46.9 8 54.4 53.6 9 61.2 60.3
10 11 12 13 14	9.28 705 9.28 769 64 9.28 833 9.28 896 9.28 960 64	9.29 535 9.29 601 9.29 668 9.29 734 9.29 800 66	0.70 465 0.70 399 0.70 332 0.70 266 0.70 200	9.99 170 9.99 167 9.99 165 9.99 162 9.99 160 2	50 49 48 47 46	66 65 1 6.6 6.5 2 13.2 13.0 3 19.8 19.5 4 26.4 26.0
15 16 17 18 19	9.29 024 9.29 087 63 9.29 150 63 9.29 214 64 9.29 277 63	9.29 866 9.29 932 66 9.29 998 66 9.30 064 66	0.70 134 0.70 068 0.70 002 0.69 936 0.69 870	9.99 157 9.99 155 9.99 152 9.99 150 9.90 147	45 44 43 42 41	4 26.4 26.0 5 33.0 32.5 6 39.6 39.0 7 46.2 45.5 8 52.8 52.0 9 59.4 58.5
20 21 22 23 24	9.29 340 9.29 403 9.29 466 9.29 529 9.29 521 63	9.30 195 9.30 195 9.30 261 9.30 326 9.30 391 9.30 457 65	0.69 805 0.69 739 0.69 674 0.69 609 0.69 543	9.99 145 9.99 142 9.99 140 9.99 137 9.99 135 9.99 135	40 39 38 37 36	64 63 1 64 6.3 2 12.8 12.6 3 19.2 18.9
25 26 27 28 29	9.29 654 9.29 716 62 9.29 779 62 9.29 841 62 9.29 903 63	9.30 522 9.30 587 9.30 652 9.30 717 9.30 782 64	0.69 478 0.69 413 0.69 348 0.69 283 0.69 218	9.99 132 9.99 130 9.99 127 9.99 124 9.99 122 3	35 34 33 32 31	4 25.6 25.2 5 32.0 31.5 6 38.4 37.8 7 44.8 44.1 8 51.2 50.4 9 57 6 56.7
30 31 32 33 34	9.29 966 9.30 028 62 9.30 090 62 9.30 151 61 9.30 213 62	9.30 846 9.30 911 65 9.30 975 64 9.31 040 64	0.69 154 0.69 089 0.69 025 0.68 960	9.99 119 9.99 117 9.99 114 9.99 112 9.99 109 3	30 29 28 27 26	62 61 1 62 6.1 2 12.4 12.2 3 18.6 18.3 4 24.8 24.4
35 36 37 38 39	9.30 275 9.30 336 9.30 336 62 9.30 398 61 9.30 459 62	9.31 168 9.31 233 9.31 297 64 9.31 361 9.31 425 64	0.68 832 0.68 767 0.68 703 0.68 639	9.99 106 9.99 104 9.99 101 9.99 099 9.99 096	25 24 23 22 21	3 18.6 18.3 4 24 8 24.4 5 31.0 30.5 6 37.2 36.6 7 43.4 42.7 8 49.6 48.8 9 55.8 54.9
40 41 42 43 44	9.30 582 61 9.30 643 61 9.30 704 61 9.30 765 61 9.30 826 61	9.31 489 9.31 552 63 9.31 616 64 9.31 679 64 9.31 743 63	0.68 511 0.68 448 0.68 384 0.68 321	9.99 093 9.99 091 9.99 088 9.99 086 9.99 083	20 19 18 17 16	60 59 1 6.0 59 2 12.0 11 8 3 18.0 17.7 4 24 0 23.6
45 46 47 48 49	9.30 887 9.30 947 60 9.31 008 61 9.31 068 60 9.31 129 60	9.31 806 9.31 870 9.31 933 9.31 996 9.32 059 63	0.68 194 0.68 130 0.68 067 0.68 004	9.99 080 9.99 078 2 9.99 075 3 9.99 072 2 9.99 070 3	15 14 13 12 11	4 24 0 23.6 5 30.0 29.5 6 36.0 35.4 7 42.0 41.3 8 48.0 47.2 9 54.0 53.1
50 51 52 53 54	9.31 189 9.31 250 61 9.31 310 60 9.31 370 60 9.31 430 60	9.32 122 9.32 185 63 9.32 248 63 9.32 311 62 9.32 373 63	0.67 878 0.67 815 0.67 752 0.67 689	9.99 067 9.99 064 9.99 062 9.99 059 3 9.99 056 2	10 9 8 7 6	3 1 0.3 2 0.6 3 0.9 4 1.2
55 56 57 58 59 60	9.31 490 59 9.31 549 60 9.31 669 60 9.31 669 59 9.31 728 60 9.31 788	9.32 436 9.32 498 62 9.32 561 63 9.32 623 62 9.32 685 62 9.32 747	0.67 564 0.67 502 0.67 439 0.67 377	9.99 054 9.99 051 9.99 048 9.99 046 9.99 043 3 9.99 040	5 4 3 2 1 0	4 1.2 5 1.5 6 1.8 7 2.1 8 2.4 9 2.7
 	L Cos d	L Ctn cd		L Sin d	7	Prop. Parts

78° — Common Logarithms of Trigonometric Functions — 78°

12° — Common Logarithms of Trigonometric Functions — 12°

,	L Sin d	L Tan	cd L Ctn	L Cos d	′	Prop. Parts
0 1 2 3 4	9.31 788 9.31 847 59 9.31 907 60 9.31 966 59 9.32 025 59	9.32 872 9.32 872 9.32 933 9.32 995	0.67 253 63 0.67 190 62 0.67 128 61 0.67 067 62 0.67 005	9.99 040 9.99 038 2 9.99 035 3 9.99 032 2 9.99 030 3	60 59 58 57 56	63 62
5 6789	9.32 084 9.32 143 9.32 202 9.32 202 9.32 261 58 9.32 319 59	9.33 057 9.33 119 9.33 180 9.33 242	62 0.66 943 61 0.66 820 62 0.66 758 61 0.66 697	9.99 027 9.99 024 9.99 022 9.99 019 9.99 016 3	55 54 53 52 51	1 6.3 6.2 2 12.6 12.4 3 18.9 18.6 4 25.2 24.8 5 31.5 31.0 6 37.8 37.2 7 44.1 43.4
10 11 12 13 14	9.32 378 9.32 437 9.32 495 9.32 495 9.32 553 9.32 612 58	9.33 487 9.33 548 9.33 609	0.66 635 0.66 574 61 0.66 513 61 0.66 452 61 0.66 391	9.99 013 9.99 011 2 9.99 008 3 9.99 005 3 9.99 002 2	50 49 48 47 46	8 50.4 49.6 9 56.7 55.8
15 16 17 18 19	9.32 670 9.32 728 58 9.32 786 58 9.32 844 58 9.32 902 58	9.33 670 9.33 731 9.33 792 9.33 853 9.33 913	0.66 330 61 0.66 269 61 0.66 208 61 0.66 147 60 0.66 087	9.99 000 9.98 997 9.98 994 3 9.98 991 9.98 989 2	45 44 43 42 41	61 60 1 6.1 6.0 2 12.2 12.0 3 18.3 18.0 4 24.4 24.0 5 30.5 30.0
20 21 22 23 24	9.32 960 9.33 018 57 9.33 075 57 9.33 133 58 9.33 190 58	9.34 034 9.34 095 9.34 155 9.34 215	0.66 026 0.65 966 1 0.65 905 60 0.65 845 0 0.65 785	9.98 986 9.98 983 9.98 980 9.98 978 9.98 975 3	40 39 38 37 36	6 36.6 36.0 7 42.7 42.0 8 48.8 48.0 9 54.9 54.0
25 26 27 28 29	9.33 248 9.33 305 9.33 362 9.33 420 9.33 477 57	9.34 396 9.34 456 9.34 516	0.65 724 0.65 664 0.65 604 0.65 544 0.65 484	9.98 972 9.98 969 9.98 967 9.98 964 3 9.98 961 3	35 34 33 32 31	59 58 1 5.9 5.8 2 11.8 11.6 3 17.7 17.4
30 31 32 33 34	9.33 534 9.33 591 9.33 647 9.33 704 9.33 761 57	9.34 695 9.34 755 9.34 814	59 0.65 424 60 0.65 365 60 0.65 305 60 0.65 245 59 0.65 186	9.98 958 9.98 955 9.98 953 9.98 950 9.98 947 3	30 29 28 27 26	3 17.7 17.4 4 23.6 23.2 5 29.5 29.0 6 35.4 34.8 7 41.3 40.6 8 47.2 46.4 9 53.1 52.2
35 36 37 38 39	9.33 818 9.33 874 56 9.33 931 56 9.33 987 56 9.34 043 57	9.34 874 9.34 933 9.34 992 9.35 051	0.65 126 59 0.65 067 59 0.65 008 59 0.64 949 60 0.64 889	9.98 944 9.98 941 9.98 938 9.98 936 9.98 933 3	25 24 23 22 21	57 56 1 5.7 5.6
40 41 42 43 44	9.34 100 9.34 156 56 9.34 212 56 9.34 268 56 9.34 324 56	9.35 229 9.35 288 9.35 347 9.35 405	59 0.64 830 59 0.64 771 59 0.64 712 59 0.64 653 58 0.64 595	9.98 930 9.98 927 9.98 924 3 9.98 921 9.98 919 2	20 19 18 17 16	2 11.4 11.2 3 17.1 16.8 4 22.8 22.4 5 28.5 28.0 6 34.2 33.6 7 39.9 39.2 8 45.6 44.8
45 46 47 48 49	9.34 380 9.34 436 55 9.34 491 55 9.34 547 56 9.34 602 56	9.35 581 9.35 640 9.35 608	59 0.64 536 0.64 477 58 0.64 419 59 0.64 360 58 0.64 302	9.98 916 9.98 913 9.98 910 3 9.98 907 9.98 904 3	15 14 13 12 11	9 51.3 50.4 55 8
50 51 52 53 54	9.34 658 9.34 713 56 9.34 769 56 9.34 824 55 9.34 879 55	9.35 815 9.35 873 9.35 931 9.35 989	58 0.64 185 58 0.64 127 58 0.64 069 58 0.64 011	9.98 901 9.98 898 9.98 896 9.98 893 9.98 890 3	10 9 8 7 6	1 5.5 0.3 2 11.0 0.6 3 16.5 0.9 4 22.0 1.2 5 27.5 1.5 6 33.0 1.8
55 56 57 58 59 60	9.34 934 9.34 989 55 9.35 044 55 9.35 099 55 9.35 154 55 9.35 209	9.36 163 9.36 221 9.36 270	58 0.63 953 58 0.63 895 58 0.63 837 58 0.63 779 58 0.63 721 57 0.63 664	9.98 887 9.98 884 9.98 881 9.98 878 3 9.98 875 9.98 872	5 4 3 2 1	7 38.5 2.1 8 44.0 2.4 9 49.5 2.7
7	L Cos d	L Ctn	cd L Tan	L Sin d	,	Prop. Parts

77° — Common Logarithms of Trigonometric Functions — 77°

13° — Common Logarithms of Trigonometric Functions — 13°

_				onometric run		
1	L Sin d	L Tan c	d L Ctn	L Cos d		Prop. Parts
0 1 2 3 4	9.35 209 9.35 263 54 9.35 318 55 9.35 373 55 9.35 427 54	9.36 336 9.36 394 9.36 452 9.36 509 9.36 566 5	8 0.63 548 7 0.63 491 7 0.63 434	9.98 872 9.98 869 2 9.98 867 3 9.98 864 3 9.98 861 3	60 59 58 57 56	58 57 1 5.8 5.7
5 6789	9.35 481 9.35 536 55 9.35 590 54 9.35 644 54 9.35 698 54	9.36 624 9.36 681 5 9.36 738 5 9.36 795 5 9.36 852 5	7 0.63 376 7 0.63 319 7 0.63 262 7 0.63 205 7 0.63 148	9.98 858 9.98 855 9.98 852 9.98 849 9.98 846 3	55 54 53 52 51	2 11.6 11.4 3 17.4 17.1 4 23.2 22.8 5 29.0 28.5 6 34.8 34.2 7 40.6 39.9 8 46.4 45.6
10 11 12 13 14	9.35 752 9.35 806 54 9.35 860 54 9.35 914 54 9.35 968 54	9.36 909 9.36 966 5 9.37 023 5 9.37 080 5 9.37 137 5	7 0.62 977 7 0.62 920 7 0.62 863	9.98 843 9.98 840 3 9.98 837 3 9.98 834 3 9.98 831	50 49 48 47 46	9 52.2 51.3
15 16 17 18 19	9.36 022 9.36 075 9.36 129 9.36 182 9.36 182 9.36 236 54 63	9.37 193 9.37 250 5 9.37 306 5 9.37 363 5 9.37 419 5	7 0.62 807 0.62 750 6 0.62 694 7 0.62 637 6 0.62 581	9.98 828 9.98 825 9.98 822 9.98 819 9.98 816 3	45 44 43 42 41	56 55 2 11.2 11.0 3 16.8 16.5 4 22.4 22.0 5 28.0 27.5 6 33.6 33.0
20 21 22 23 24	9.36 289 9.36 342 53 9.36 395 54 9.36 449 53 9.36 502 53	9.37 476 9.37 532 5 9.37 588 5 9.37 644 5 9.37 700 5	6 0.62 468 0.62 412 6 0.62 356 6 0.62 300	9.98 813 9.98 810 9.98 807 9.98 804 9.98 801 3	40 39 38 37 36	6 33.6 33.0 7 39.2 38.5 8 44.8 44.0 9 50.4 49.5
25 26 27 28 29	9.36 555 9.36 608 52 9.36 660 53 9.36 713 53 9.36 766 53	9.37 756 9.37 812 9.37 868 9.37 924 9.37 980 5	6 0.62 132 6 0.62 076	9.98 798 9.98 795 3 9.98 792 3 9.98 789 9.98 786 3	35 34 33 32 31	54 53 1 5.4 5.3 2 10.8 10.6 3 16.2 15.9 4 21.6 21.2
30 31 32 33 34	9.36 819 9.36 871 52 9.36 924 53 9.36 976 52 9.37 028 53	9.38 035 9.38 091 9.38 147 9.38 202 9.38 257 5	6 0.61 853 5 0.61 798 5 0.61 743	9.98 783 9.98 780 9.98 777 9.98 774 9.98 771 3	29 28 27 26	5 27.0 26.5 6 32.4 31.8 7 37.8 37.1 8 43.2 42.4 9 48.6 47.7
35 36 37 38 39	9.37 081 9.37 133 52 9.37 185 52 9.37 237 52 9.37 289 52	9.38 423 5 9.38 479 5 9.38 534 5		9.98 768 9.98 765 9.98 762 3 9.98 759 9.98 756 3	25 24 23 22 21	52 51 1 5.2 5.1 2 10.4 10.2
40 41 42 43 44	9.37 341 9.37 393 52 9.37 445 52 9.37 497 52 9.37 549 51	9.38 699 5 9.38 754 5 9.38 808 5	5 0.61 301 4 0.61 246 5 0.61 192	9.98 753 9.98 750 9.98 746 9.98 743 9.98 743 9.98 740 3	19 18 17 16	2 10.4 10.2 3 15.6 15.3 4 20.8 20.4 5 26.0 25.5 6 31.2 30.6 7 36.4 35.7 8 41.6 40.8
46 47 48 49	9.37 600 9.37 652 51 9.37 703 51 9.37 755 52 9.37 806 51 52	9.39 027 5 9.39 082 5	0.61 082 0.61 028 0.60 973 0.60 918	9.98 737 9.98 734 9.98 731 9.98 728 9.98 725 3	15 14 13 12 11	9 46.8 45.9 4. 8
50 51 52 53 54	9.37 858 9.37 909 51 9.37 960 51 9.38 011 51 9.38 062 51	9.39 245 9.39 299 9.39 353 5	4 0.60 647 4 0.60 647	9.98 722 9.98 719 9.98 715 9.98 712 3 9.98 709 3	10 9 8 7 6	1 0.4 0.3 2 0.8 0.6 3 1.2 0.9 4 1.6 1.2
55 56 57 58 59 60	9.38 113 51 9.38 164 51 9.38 215 51 9.38 266 51 9.38 317 51 9.38 368	9.39 401 9.39 515 9.39 569 9.39 623	4 0.60 465	9.98 706 9.98 703 9.98 700 3 9.98 697 9.98 694 9.98 690	5 4 3 2 1 0	5 20 1.5 6 2.4 1.8 7 2.8 2.1 8 3.2 2.4 9 3.6 2.7
7	L Cos d	L Ctn c	d L Tan	L Sin d	•	Prop. Parts

76° — Common Logarithms of Trigonometric Functions — 76°

14° — Common Logarithms of Trigonometric Functions — 14°

,	L Sin d	L Tan	d L Ctn	L Cos d	,	Prop. Parts
0	9.38 368 9.38 418 51		0.60 323 0.60 269	9.98 690 9.98 687	60 59	
2	9.38 469 50	9.39 785	0.60 215	9.98 684 3	58	
3 4	9.38 519 51 9.38 570 50		0.60 162 0.60 108	9.98 681 3 9.98 678 3	57 56	54 58
5	0 38 620	0 30 045	0.60 055	0 98 675	55	1 5.4 5.3 2 10.8 10.6
6	9.38 670 60	9.39 999	0.60 001	9.98 671 🕏	54	8 16.2 15.9 4 21.6 21.2
7 8	9.38 721 50	9.40 052 5	4 0.59 948	9.98 008 3	53 52	5 27.0 26.5
9	9.38 821 50	0 40 150	53 0.59 841	9.98 662 3	51	7 37.8 37.1
10	9.38 871 50	9.40 212	0.59 788	9.98 659	50	8 43.2 42.4 9 48.6 47.7
11 12	9.38 921 50 9.38 971 50	9.40 200	3 0.59 734	9.98 650 4	49 48	
13	9.39 021 50	9.40 372	0.59 628	9.98 649 2	47	
14	9.39 071 50		0.59 575	9.98 646 3	46	52 51
15 16	9.39 121 9.39 170 49		0.59 522 0.59 469	9.98 643 9.98 640	45 44	1 5.2 5.1
17	9.39 220 50	9.40 584	0.59 416	9.98 636 🕏	43	2 10.4 10.2 3 15.6 15.3
18 19	9.39 270 49	9.40 690 5	3 0.59 304	9,96 630 3	42 41	4 20.8 20.4 5 26.0 25.5
20	0.70.760	9.40 742	0 50 259	0.08.627	40	6 31.2 30.6 7 36.4 35.7
21 22	9.39 418	9.40 795	0.59 205	9.98 623 💃	39 38	8 41.6 40.8
23	9.39 467 50 9.39 517 40	9.40 047 5	3 0.59 155	9.98 620 3 9.98 617 3	37	9 46.8 45.9
24	9.39 566 49	0 40 052 0	0.59 048	9.98 614 4	36	
25 26	9.39 615 9.39 664	9.41 005	0.58 995 0.58 943	9.98 610 3	35 34	(9)
20 27	9.39 713 49		0.58 891 0.58 891	9.98 607 3 9.98 604 3	33	50 49 1 5.0 4.9
28 29	9.39 762 49	9.41 101 5	3 0.58 839	0.09 507 4	32 31	2 10.0 9.8
	0.70.960	0.41.266	0.50 774	0.09 504	30	3 15.0 14.7 4 20.0 19.6 5 25.0 24.5
30 31	9.39 860 9.39 909 49		0.58 734 0.58 682	9.98 594 9.98 591 3	29	5 25.0 24.5 6 30.0 29.4
32 33	9.39 958 48	9.41 3/0 5	2 0.58 630	9.98 588 4	28 27	7 35.0 34.3 8 40.0 39.2
34	9.40 055 49	0 41 474 0	0.58 526	9.98 581 3	26	9 45.0 44.1
35	9.40 103 40	9.41 526	0.58 474	9.98 578	25	8
36 37	9.40 152 48	9.41 5/6 5	0.50 422	9.98 574 3	24 23	
38	9.40 249	9.41 681	0.58 319	9.98 568 3	22	48 47
39	9.40 297 49	9.41 733 5	1 0.56 207	9.98 565 4	21	1 4.8 4.7 2 9.6 9.4
40 41	9.40 346 9.40 394		0.58 216 0.58 164	9.98 561 9.98 558	20	8 14.4 14.1 4 19.2 18.8
42	9.40 442	9.41 887	0.58 113	9.98 555	18	5 24.0 23.5
43 44	9.40 490 48	9.41 939 5	1 0.58 061	9.98 551 3	17 16	7 33.6 32.9
45	0.40.596	0.42.041	0.57.050	0.09 545	15	8 38.4 37.6 9 43.2 42.3
46	9.40 634	9.42 093	0.57 907	9.98 541	14	
47 48	9.40 682 48		0.57 856 0.57 805	9.98 538 3 9.98 535 4	13 12	
49	9.40 778 48	0 42 246 0	0.57 754	9.98 531 4	11	4 8
50	9.40 825	9.42 297	0.57 703	9.98 528 3	10	1 04 03
51 52	9.40 873 48 9.40 921 47	ء 19.42 ع	0.57 652 0.57 601	9.98 525 4 9.98 521 3	8	2 0.8 0.6 3 1.2 0.9 4 1.6 1.2
53	9.40 968 48	9.42 450	0.57 550	9.98 518 3	7	4 1.6 1.2 5 2.0 1.5
54	9.41 016 47	0.40 550	0 57 449	9.98 515 4	6	6 2.4 1.8
55 56	9.41 063 48 9.41 111 47	9.42 603	0.57 448 0.57 397 0.57 347	9.98 511 3 9.98 508 3	5	8 3.2 2.4
57	9.41 158 47	9.42 653	^ 0 57 206	9.98 505 4	3 2	9 3.6 2.7
58 59	9.41 158 47 9.41 205 47 9.41 252 48 9.41 300	9.42 755	0.57 245	9.98 498	1	
60	9.41 300	9.42 805	0.57 195	9.98 494	0	
1	L Cos d	L Ctn c	d L Tan	L Sin d	`	Prop. Parts
		1				•

75° — Common Logarithms of Trigonometric Functions — 75°

15° — Common Logarithms of Trigonometric Functions — 15°

,	L Sin d	L Tan	cd	L Ctn	L Cos	d	,	Prop. Parts
0 1 2 3 4	9.41 300 9.41 347 9.41 347 9.41 394 9.41 441 9.41 488	9.42 805 9.42 856 9.42 906 9.42 957 9.43 007	50 0 51 0 50 0	.57 195 .57 144 .57 094 .57 043 .56 993	9.98 494 9.98 491 9.98 488 9.98 484 9.98 481	3 3 4 3	60 59 58 57 56	51 50
5 6789	9.41 535 9.41 582 47 9.41 628 46 9.41 675 47 9.41 772	9.43 057 9.43 108 9.43 158 9.43 208 9.43 258	51 0 50 0 50 0	.56 943 .56 892 .56 842 .56 792 .56 742	9.98 477 9.98 474 9.98 471 9.98 467 9.98 464	4 3 4 3	55 54 53 52 51	1 5.1 5.0 2 10.2 10.0 8 15.3 15.0 4 20.4 20.0 5 25.5 25.0 6 30.6 30.0 7 35.7 35.0
10 11 12 13 14	9.41 768 9.41 815 9.41 861 9.41 908 9.41 908 46	9.43 308 9.43 358 9.43 408 9.43 458 9.43 508	50 0 50 0 50 0 50 0	.56 692 .56 642 .56 592 .56 542 .56 492	9.98 460 9.98 457 9.98 453 9.98 450 9.98 447	4 3 4 3 3	50 49 48 47 46	7 35.7 35.0 8 40.8 40.0 9 45.9 45.0
15 16 17 18 19	9.42 001 9.42 047 9.42 047 46 9.42 093 47 9.42 140 46	9.43 558 9.43 607 9.43 657 9.43 707 9.43 756	49 0 50 0 50 0 49 0	.56 442 .56 393 .56 343 .56 293	9.98 443 9.98 440 9.98 436 9.98 433 9.98 429	4 3 4 3 4	45 44 43 42 41	49 48 1 4.9 4.8 2 9.8 9.6 3 14.7 14.4 4 19.6 19.2 5 24.5 24.0
20 21 22 23 24	9.42 232 9.42 278 46 9.42 324 9.42 370 9.42 46 9.42 416	9.43 806 9.43 855 9.43 905 9.43 954 9.44 004	49 0 50 0 49 0 50 0	.56 194 .56 145 .56 095 .56 046 .55 996	9.98 426 9.98 422 9.98 419 9.98 415 9.98 412	3 4 3 4 3	40 39 38 37 36	6 24.5 24.0 6 29.4 28.8 7 34.3 33.6 8 39.2 38.4 9 44.1 43.2
25 26 27 28 29	9.42 461 9.42 507 9.42 553 9.42 553 9.42 599 9.42 644	9.44 053 9.44 102 9.44 151 9.44 201 9.44 250	49 0 49 0 50 0 49 0	.55 947 .55 898 .55 849 .55 799	9.98 409 9.98 405 9.98 402 9.98 398 9.98 395	3 4 3 4 3	35 34 33 32 31	47 46 1 4.7 4.6 2 9.4 9.2 3 14.1 13.8
30 31 32 33 34	9.42 690 9.42 735 9.42 781 9.42 781 45 9.42 826 46 9.42 872	9.44 299 9.44 348 9.44 397 9.44 446 9.44 495	49 49 0 49 0 49 0	.55 701 .55 652 .55 603 .55 554 .55 505	9.98 391 9.98 388 9.98 384 9.98 381 9.98 377	4 3 4 3 4	30 29 28 27 26	4 18.8 18.4 5 23.5 23.0 6 28.2 27.6 7 32.9 32.2 8 37.6 36.8 9 42.3 41.4
35 36 37 38 39	9.42 917 9.42 962 9.43 008 9.43 008 45 9.43 008 45	9.44 544 9.44 592 9.44 641 9.44 690 9.44 738	48 0 49 0 49 0 48 0	.55 456 .55 408 .55 359 .55 310 .55 262	9.98 373 9.98 370 9.98 366 9.98 363 9.98 359	4 3 4 3 4	25 24 23 22 21	45 44 1 4.5 4.4
40 41 42 43 44	9.43 143 9.43 188 9.43 233 45 9.43 278 46 9.43 278	9.44 787 9.44 836 9.44 884 9.44 933 9.44 981	49 49 0 48 0 49 0 48	.55 213 .55 164 .55 116 .55 067 .55 019	9.98 356 9.98 352 9.98 349 9.98 345 9.98 342	3 4 3 4 3 4	20 19 18 17 16	2 9.0 8.8 3 13.5 13.2 4 18.0 17.6 5 22.5 22.0 6 27.0 26.4 7 31.5 30.8
45 46 47 48 49	9.43 367 9.43 412 9.43 457 9.43 457 9.43 502 44	9.45 029 9.45 078 9.45 126 9.45 174 9.45 222	49 0 48 0 48 0	0.54 971 0.54 922 0.54 874 0.54 826 0.54 778	9.98 338 9.98 334 9.98 331 9.98 327 9.98 324	4 3 4 3 4	15 14 13 12 11	8 36.0 35.2 9 40.5 39.6
50 51 52 53 54	9.43 591 9.43 635 9.43 680 9.43 724 9.43 769 44 9.43 769	9.45 271 9.45 319 9.45 367 9.45 415 9.45 463	48 0 48 0 48 0	0.54 729 0.54 681 0.54 633 0.54 585 0.54 537	9.98 320 9.98 317 9.98 313 9.98 309 9.98 306	3 4 4 3 4	10 9 8 7 6	4 8 1 0.4 0.3 2 0.8 0.6 3 1.2 0.9 4 1.6 1.2 5 2.0 1.5 6 2.4 1.8 7 2.8 2.1
55 56 57 58 59	9.43 813 44 9.43 857 44 9.43 901 45 9.43 946 45 9.43 990 44	9.45 511 9.45 559 9.45 606 9.45 654 9.45 702 9.45 750	48 0 47 0 48 0 48 0	0.54 489 0.54 441 0.54 394 0.54 346 0.54 298 0.54 250	9.98 302 9.98 299 9.98 295 9.98 291 9.98 288 9.98 284	3 4 4 3 4	5 4 3 2 1 0	4 1.6 1.2 5 2.0 1.5 6 2.4 1.8 7 2.8 2.1 8 3.2 2.4 9 3.6 2.7
60	9.44 034 44 L Cos d	L Ctn		L Tan	L Sin	đ	7	Prop. Parts

74° — Common Logarithms of Trigonometric Functions — 74°

16° — Common Logarithms of Trigonometric Functions — 16°

1	L Sin d	L Tan co	i L Ctn	L Cos d	1 , 1	Prop. Parts
						-10p. 1 a. 105
P	9.44 034 9.44 078 44	9.45 750	. U.D4 ZUS	9.98 284 9.98 281 0.09 277	60 59	
2 3	9.44 122 44	9.40 040 4	0.04 100	9.98 273 4	58 57	48 47
4	9.44 210 44	9.45 940 48	0.54 060	9.98 270 4	56	1 4.8 4.7
6	9.44 253 9.44 297	9.45 987 9.46 035		9.98 266 9.98 262	55 54	2 9.6 9.4 8 14.4 14.1 4 19.2 18.8
7 1	9.44 341	9.46 082	0.53 918	9.98 259	53	4 19.2 18.8 5 24.0 23.5
8 9	9.44 385 9.44 428 44	9.46 130 47 9.46 177 47	0.53 670	9.98 255 4 9.98 251 4	52 51	6 28.8 28.2 7 33.6 32.9
10	9.44 472	9.46 224	. 0.53 776	9.98 248	50	5 24.0 23.5 6 28.8 28.2 7 33.6 32.9 8 38.4 37.6 9 43.2 42.3
11 12	9.44 516 43 9.44 559 43	9.40 2/1 48	0.53 729	9.98 244 4	49 48	
13 14	9.44 602 44	9.46 366 47 9.46 413 47	0.53 634	9.98 237 4 9.98 233 4	47 46	
15	0 44 680	0.46.460	0 57 540	0.08.220	45	46 45
16 17	9.44 733 43	9.46 507	0.53 493	9.98 226 4	44 43	1 4.6 4.5 2 9.2 9.0 3 13.8 13.5
18	9.44 819 43	9.46 601	0.53 399	9.98 218 4	42	4 184 180
19 20	9.44 802 43	9.40 040 46	0.00 002	9.98 215 4	41 40	5 23.0 22.5 6 27.6 27.0 7 32.2 31.5
21	9.44 948 43	9.46 694 9.46 741 9.46 788 47	, U.53 Z59	9.98 207 4	39	8 36.8 36.0
22 23	9.44 992 43	0 46 XX5 ~'	0.53 165	9.98 200 4	38 37	9 41.4 40.5
24	9.45 077 43	9.46 881 47	0.53 119	9.98 196 4	36	
25 26	9.45 120 9.45 163 43	9.46 928 9.46 975		9.98 192 9.98 189	35 34	44 43
27 28	9.45 206 43 9.45 249 43	9.47 021	0.52.070	9.98 185 4 9.98 181 4	33 32	1 4.4 4.3
29	9.45 292 43	9.47 068 46 9.47 114 46	0 52 886	9.98 177 4	31	2 8.8 8.6 3 13.2 12.9
30	9.45 334 9.45 377 43	9.47 160	0.53.040	9.98 174 9.98 170	30 29	4 17.6 17.2 5 22.0 21.5 6 26.4 25.8
31 32	9.45 419 42	9.47 207 46 9.47 253 46 9.47 299 47	0.52 747	9.98 166	28	7 30.8 30.1
33 34	9.45 462 42 9.45 504 43	9.47 299 47 9.47 346 46	0.52 /01	9.98 162 3 9.98 159 4	27 26	8 35.2 34.4 9 39.6 38.7
35	9.45 547	9.47 392	0.52 608	9.98 155	25	
36 37	9.45 589 43	9.47 436 46	0.52 516	9.98 151 4	24 23	
38 39	9.45 674 42	9.47 530 46 9.47 576 46	0.52 470	9.98 144 ³ 9.98 140 ⁴	22 21	42 41
40	0.45.758	0.47.622	0 52 378	0 08 136	20	1 4.2 4.1 2 8.4 8.2
41 42	9.45 801 43	9.47 668 46	0.52 332	9.98 132 4 9.98 129 3	19 18	3 12.6 12.3 4 16.8 16.4 5 21.0 20.5
43	9.45 885 42	9.47 760	0.52 240	9.98 125	17	6 25.2 24.6
44 45	9.45 927 42	9.47 806 46		9.98 121 4	16	7 29.4 28.7 8 33.6 32.8 9 37.8 36.9
46	9.45 969 9.46 011 42	9.47 897	0.52 103	9.98 113 4	15 14	⊕ 37.6 30.9
47 48	9.46 053 42	9.47 943 46	0.52 057	9.98 110 4	13 12	
49	9.46 136 41	9.48 035 46	0.01 905	9.98 102 4	11	4 8
50 51	9.46 178 9.46 220	9.48 080 9.48 126		9.98 098 9.98 094	10	1 0.4 0.3
52 53	9.46 262 42 9.46 303 41	9.48 171 46 9.48 217 46	0 61 829	9.98 090 4 9.98 087 3	8 7	2 0.8 0.6 3 1.2 0.9 4 1.6 1.2
54	9.46 345 42 9.46 345 41	9.48 262 45	0.21.228	9.98 083 4	6	4 1.6 1.2 5 2.0 1.5
55	9.46 386	9.48 307	0.51 693	9.98 079	5	5 2.0 1.5 6 2.4 1.8 7 2.8 2.1 8 3.2 2.4
56 57	9.46 469 41	9.48 398 48	0.51 602	9.98 071 4	3	9 3.6 2.7
58 59	0.46 552 41	0 48 480 46	0.51 517	9.90 007	2 1	
80	9.46 594 42	9.48 534	0.51 466	9.98 060 3	0	
1	L Cos d	L Ctn cd	L Tan	L Sin d	,	Prop. Parts

73° — Common Logarithms of Trigonometric Functions — 73°

17° — Common Logarithms of Trigonometric Functions — 17°

1	L Sin d	L Tan	cd L Ctn	L Cos d	,	Prop. Parts
0 1 2 3 4	9.46 594 9.46 635 41 9.46 676 41 9.46 717 41 9.46 758	9.48 534 9.48 579 9.48 624 9.48 669 9.48 714	45 0.51 466 45 0.51 421 45 0.51 376 45 0.51 331 45 0.51 286	9.98 060 9.98 056 9.98 052 9.98 048 9.98 044	60 59 58 57 56	45 44 1 4.5 4.4 2 9.0 8.8
5 6 7 8 9	9.46 800 9.46 841 9.46 882 9.46 923 41 9.46 923 41	9.48 759 9.48 804 9.48 849 9.48 894 9.48 939	45 0.51 241 45 0.51 196 45 0.51 151 45 0.51 106 45 0.51 061	9.98 040 9.98 036 4 9.98 032 4 9.98 029 9.98 025	55 54 53 52 51	8 13.5 13.2 4 18.0 17.6 5 22.5 22.0 6 27.0 26.4 7 31.5 30.8 8 36.0 35.2 9 40.5 39.6
10 11 12 13 14	9.47 005 9.47 045 9.47 086 9.47 127 9.47 168 41 9.47 168	9.48 984 9.49 029 9.49 073 9.49 118 9.49 163	45 0.51 016 45 0.50 971 44 0.50 927 45 0.50 882 45 0.50 837	9.98 021 9.98 017 9.98 013 9.98 009 9.98 005	50 49 48 47 46	43 42 1 4.3 4.2 2 8.6 8.4 3 12.9 12.6
15 16 17 18 19	9.47 209 9.47 249 9.47 290 9.47 330 9.47 371 40	9.49 207 9.49 252 9.49 296 9.49 341 9.49 385	0.50 793 45 0.50 748 44 0.50 704 45 0.50 659 44 0.50 615	9.98 001 9.97 997 9.97 993 4 9.97 989 3 9.97 986 4	45 44 43 42 41	4 17.2 16.8 5 21.5 21.0 6 25.8 25.2 7 30.1 29.4 8 34.4 33.6 9 38.7 37.8
20 21 22 23 24	9.47 411 9.47 452 9.47 492 9.47 533 9.47 573 40	9.49 430 9.49 474 9.49 519 9.49 563 9.49 607	0.50 570 44 0.50 526 45 0.50 481 44 0.50 437 44 0.50 393	9.97 982 9.97 978 9.97 974 9.97 970 4 9.97 966 4	39 38 37 36	41 40 1 4.1 4.0 2 8.2 80 3 12.3 12.0 4 16.4 16.0
25 26 27 28 29	9.47 613 9.47 654 9.47 694 40 9.47 734 9.47 774	9.49 652 9.49 696 9.49 740 9.49 784 9.49 828	0.50 348 44 0.50 304 44 0.50 260 44 0.50 216 44 0.50 172	9.97 962 9.97 958 9.97 954 9.97 950 4 9.97 946	35 34 33 32 31	4 16.4 16.0 5 20.5 20.0 6 24.6 24.0 7 28.7 28.0 8 32.8 32.0 9 36.9 36.0
30 31 32 33 34	9.47 814 9.47 854 9.47 894 40 9.47 934 9.47 974 40	9.49 872 9.49 916 9.49 960 9.50 004 9.50 048	0.50 128 0.50 084 0.50 040 0.49 996 0.49 952	9.97 942 9.97 938 9.97 934 9.97 930 4 9.97 926	30 29 28 27 26	39 1 3.9 2 7.8 3 11.7
35 36 37 38 39	9.48 014 9.48 054 9.48 094 9.48 133 9.48 173 40	9.50 092 9.50 136 9.50 180 9.50 223 9.50 267	0.49 908 44 0.49 864 44 0.49 820 43 0.49 777 44 0.49 733	9.97 922 9.97 918 4 9.97 914 4 9.97 910 4 9.97 906 4	25 24 23 22 21	4 15.6 5 19.5 6 23.4 7 27.3 8 31.2 9 35.1
40 41 42 43 44	9.48 213 39 9.48 252 40 9.48 292 40 9.48 332 40 9.48 371 39 9.48 371 40	9.50 311 9.50 355 9.50 398 9.50 442 9.50 485	0.49 689 44 0.49 645 43 0.49 602 44 0.49 558 43 0.49 515	9.97 902 9.97 898 9.97 894 9.97 890 9.97 886 4	20 19 18 17 16	5 4 1 0.5 0.4 2 1.0 0.8 3 1.5 1.2
45 46 47 48 49	9.48 411 39 9.48 450 40 9.48 490 39 9.48 529 39 9.48 568 39	9.50 529 9.50 572 9.50 616 9.50 659 9.50 703	0.49 471 43 0.49 428 44 0.49 384 43 0.49 341 44 0.49 297	9.97 882 9.97 878 9.97 874 9.97 870 4 9.97 866 5	15 14 13 12 11	3 1.5 1.2 4 2.0 1.6 5 2.5 2.0 6 3.0 2.4 7 3.5 2.8 8 4.0 3.2 9 4.5 3.6
50 51 52 53 54	9.48 607 9.48 647 9.48 686 9.48 725 9.48 764 39	9.50 746 9.50 789 9.50 833 9.50 876 9.50 919	0.49 254 43 0.49 211 44 0.49 167 43 0.49 124 43 0.49 081	9.97 861 9.97 857 9.97 853 9.97 849 9.97 845 4	10 9 8 7 6	3 1 0.3 2 0.6 3 0.9 4 1.2 5 1.5 6 1.8
55 56 57 58 59 60	9.48 803 9.48 842 9.48 881 9.48 920 9.48 959 9.48 959 9.48 998	9.50 962 9.51 005 9.51 048 9.51 092 9.51 135 9.51 178	0.49 038 0.48 995 43 0.48 952 44 0.48 908 43 0.48 865 43 0.48 822	9.97 841 9.97 837 9.97 833 4 9.97 829 9.97 825 9.97 821	5 4 3 2 1 0	8 1.5 6 1.8 7 2.1 8 2.4 9 2.7
-	L Cos d	L Ctn	cd L Tan	L Sin d	,	Prop. Parts

72° — Common Logarithms of Trigonometric Functions — 72°

18° — Common Logarithms of Trigonometric Functions — 18°

,	L Sin d	L Tan c	d L Ctn	L Cos d	′	Prop. Parts
0 1 2 3 4	9.48 998 9.49 037 9.49 076 9.49 115 9.49 153	9.51 221 9.51 264 9.51 306	0.48 822 0.48 779 3 0.48 736 42 0.48 694 43 0.48 651	9.97 821 9.97 817 9.97 812 9.97 808 4 9.97 804	60 59 58 57 56	43 42
5 6 7 8 9	9.49 192 9.49 231 39 9.49 269 38 9.49 308 39 9.49 347 38	9.51 392 9.51 435 9.51 478 9.51 520	13 0.48 608 13 0.48 565 13 0.48 522 12 0.48 480 13 0.48 437	9.97 800 9.97 796 9.97 792 9.97 788 9.97 784 9.97 784	55 54 53 52 51	1 4.3 4.2 2 8.6 8.4 3 12.9 12.6 4 17.2 16.8 5 21.5 21.0 6 25.8 25.2 7 30.1 29.4
10 11 12 13 14	9.49 385 9.49 424 38 9.49 462 38 9.49 500 38 9.49 539 39	9.51 606 9.51 648 9.51 691 9.51 734 9.51 776	42 0.48 394 42 0.48 352 43 0.48 309 43 0.48 266 42 0.48 224	9.97 779 9.97 775 9.97 771 4 9.97 767 4 9.97 763	50 49 48 47 46	8 34.4 33.6 9 38.7 37.8
15 16 17 18 19	9.49 577 9.49 615 38 9.49 654 39 9.49 692 38 9.49 730 38	9.51 819 9.51 861 9.51 903 9.51 946 9.51 988	0.48 181 12 0.48 139 12 0.48 097 13 0.48 054 14 0.48 012	9.97 759 9.97 754 9.97 750 4 9.97 746 4 9.97 742	45 44 43 42 41	41 39 1 4.1 3.9 2 8.2 7.8 3 12.3 11.7 4 16.4 15.6 5 20.5 19.5
20 21 22 23 24	9.49 768 9.49 806 9.49 844 9.49 882 9.49 882 9.49 920 38	9.52 031 9.52 073 9.52 115 9.52 157 9.52 200	0.47 969 42 0.47 927 42 0.47 885 42 0.47 843 43 0.47 800	9.97 738 4 9.97 734 5 9.97 729 4 9.97 725 4 9.97 721 4	40 39 38 37 36	6 24.6 23.4 7 28.7 27.3 8 32.8 31.2 9 36.9 35.1
25 26 27 28 29	9.49 958 9.49 996 38 9.50 034 38 9.50 072 38 9.50 110 38	9.52 242 9.52 284 9.52 326 9.52 368 4 9.52 410	0.47 758 12 0.47 716 12 0.47 674 12 0.47 632 12 0.47 590	9.97 717 9.97 713 9.97 708 9.97 704 4 9.97 700	35 34 33 32 31	38 37] 1 3.8 3.7 2 7.6 7.4 3 11.4 11.1
30 31 32 33 34	9.50 148 37 9.50 185 38 9.50 223 38 9.50 261 38 9.50 298 37	9.52 452 9.52 494 9.52 536 9.52 578 9.52 620	0.47 548 12 0.47 506 12 0.47 464 12 0.47 422 12 0.47 380	9.97 696 9.97 691 9.97 687 9.97 683 4 9.97 679	30 29 28 27 26	4 15.2 14.8 5 19.0 18.5 6 22.8 22.2 7 26.6 25.9 8 30.4 29.6 9 34.2 33.3
35 36 37 38 39	9.50 336 9.50 374 9.50 411 9.50 449 9.50 486 37	9.52 661 9.52 703 9.52 745 9.52 787 9.52 787	0.47 339 12 0.47 297 12 0.47 255 12 0.47 213 14 0.47 171	9.97 674 9.97 670 4 9.97 666 4 9.97 662 5 9.97 657	25 24 23 22 21	36 1 3.6
40 41 42 43 44	9.50 523 38 9.50 561 37 9.50 598 37 9.50 635 38 9.50 673 38	9.52 870 9.52 912 9.52 953 9.52 995 9.53 037	0.47 130 12 0.47 088 11 0.47 047 12 0.47 005 12 0.46 963	9.97 653 9.97 649 4 9.97 645 5 9.97 640 4 9.97 636	20 19 18 17 16	2 7.2 3 10.8 4 14.4 5 18.0 6 21.6 7 25.2 8 28.8
46 46 47 48 49	9.50 710 9.50 747 37 9.50 784 37 9.50 821 37 9.50 858 38	9.53 078 9.53 120 9.53 161 9.53 202 9.53 244	0.46 922 0.46 880 1 0.46 839 1 0.46 798 1 0.46 756	9.97 632 9.97 628 9.97 623 9.97 619 9.97 615 5	15 14 13 12 11	9 32.4 8 4
50 51 52 53 54	9.50 896 9.50 933 37 9.50 970 37 9.51 007 36 9.51 043 36	9.53 285 9.53 327 9.53 368 9.53 469 9.53 450	0.46 715 0.46 673 11 0.46 632 11 0.46 591 12 0.46 550	9.97 610 9.97 606 4 9.97 602 9.97 597 9.97 593 4	10 9 8 7 6	1 0.5 0.4 2 1.0 0.8 3 1.5 1.2 4 2.0 1.6
55 56 57 58 59 60	9.51 080 9.51 117 37 9.51 154 37 9.51 191 36 9.51 227 36 9.51 264	9.53 574 9.53 615 9.53 656	0.46 508 1 0.46 467 1 0.46 426 1 0.46 385 1 0.46 344 1 0.46 303	9.97 589 9.97 584 9.97 580 4 9.97 576 9.97 571 9.97 567	5 4 3 2 1 0	6 3.5 2.4 7 3.5 2.8 8 4.0 3.2 9 4.5 3.6
1	L Cos d	L Ctn c	d L Tan	L Sin d	7	Prop. Parts

19° — Common Logarithms of Trigonometric Functions — 19°

7	L Sin d	L Tan	cd L Ctn	L Cos d	, 1	Prop. Parts
<u> </u>						Flop. Faits
1	9.51 264 9.51 301 37		0.46 303 0.46 262	9.97 567 9.97 563 4	60 59	
2 3	9.51 338 37 9.51 374 36 9.51 374 37	9 53 779 '	41 0.46 221	9.97 558 4	58	A
4	9.51 411 37	9 53 861 1	0.46 180 41 0.46 139	9.97 554 4 9.97 550 5	57 56	41 40 1 4.1 4.0
5	9.51 447	0.53.002	0.46 098	9.97 545	55	2 8.2 8.0
6 7	9.51 484 36	0.53.084	41 0.46 057 41 0.46 016	9.97 541 5	54 53	4 16.4 16.0
8	9.51 557 37	9.54 025	0.45 975	9.97 532 4	52	5 20.5 20.0 6 24.6 24.0 7 28.7 28.0
9	9.51 593 36	9.54 005	41 0.45 935	9.97 528 5	51	7 28.7 28.0 8 32.8 32.0
10 11	9.51 629 9.51 666 37		0.45 894 41 0.45 853	9.97 523 9.97 519 4	50	9 36.9 36.0
12	9.51 702 36	9.54 187	0.45 813	9.97 515 2	48	
13 14	9.51 / 36	9.54.269	41 0.45 731	9.97 510 4	47 46	
15	951811	9 54 309	0.45 691	9.97 501	45	39 37
16 17	9.51 847 36 9.51 883 36	9.54.350 1	41 0.45 650 40 0.45 610	9.97 497 ⁴ 9.97 492 ⁵	44 43	1 3.9 3.7 2 7.8 7.4
18	0.51 010 30	0 54 431 '	41 0.45 569	9.97 488 4	42	3 11.7 11.1 4 15.6 14.8
19	9.51 955 36	9.04 4/1	40 0.45 529 41	9.97 484 5	41	5 19.5 18.5 6 23.4 22.2
20 21	9.51 991 9.52 027 36		40 0.45 488 0.45 448	9.97 479 9.97 475	40	7 27.3 25.9 8 31.2 29.6 9 35.1 33.3
22	9.52 063	9.54 593	41 0.45 407	9.97 470	38	9 35.1 33.3
23 24	9.52 099 36	9.54 633	40 0.45 307	9.97 400 5	37 36	
25	0.52 171	0 54 714	41 0 45 286	9 97 457	35	
26	9.52 207	9.54 754	40 0.45 246 40 0.45 206	9.97 453 ⁴ 9.97 448 ⁵	34 33	36 35
27 28	9.52 242 36	9.54 7.74	0.45 165	9.97 444	32	1 3.6 3.5 2 7.2 7.0
29	9.52 314 36	0 54 875	40 0.45 125	9.97 439 4	31	3 10.8 10.5 4 14.4 14.0
30 31	9.52 350 9.52 385	9.54 915 9.54 955	40 0.45 085 0.45 045	9.97 435 9.97 430 5	30 29	5 18.0 17.5 6 21.6 21.0
32	9.52 421 36 9.52 421 35	9.54 995	40 0.45 005	9.97 426	28	7 252 245
33 34	9.52 450 36	9.55 035	40 0.44 925	9.97 421	27 26	8 28.8 28.0 9 32.4 31.5
35	0.52.527	0.55 115	0 44 885	9 97 412	25	
36	9.52 563 36	9.55 155	40 0.44 845 40 0.44 805	9.97 408 4 9.97 403 5	24 23	
37 38	9.52 598 36 9.52 634 36		40 0.44 805 40 0.44 765	9.97 399	22	34
39	9.52 669 36	0 55 275	40 0.44 725 40	9.97 394 4	21	1 3.4 2 6.8
40 41	9.52 705 9.52 740 35	9.55 315 9.55 355	40 0.44 685 0.44 645	9.97 390 9.97 385 5	20	3 10.2 4 13.6
42	9.52 775	9.55 395	40 0.44 605	9.97 381 4	18	K 170
43 44	9.52 811 35	9.55 454	40 0.44 526	9.97 370 4	17 16	6 20.4 7 23.8 8 27.2
45	0 52 881	0 55 514	0 44 486	9.97 367	15	8 27.2 9 30.6
46	9.52 916	9.55 554	40 0.44 446	9.97 363 4 9.97 358 5	14 13	
47 48	9.52 951 35	9.55 593 9.55 633	40 0.44 367	9.97 353 5	12	
49	9.53 021 35	9.55 673	40 0.44 327 39	9.97 349 5	11	5 4
50	9.53 056 9.53 092 36	9.55 712 9.55 752	0.44 288 0.44 248	9.97 344 9.97 340 4	10	170.5 0.4
51 52	9.53 126	9.55 791	39 0.44 209	9.97 335	8	2 1.0 0.8 3 1.5 1.2
53 54	9.53 161 35	9.55 831 9.55 870	39 0.44 130	9.97 331 5	7 6	4 2.0 1.6 5 2.5 2.0
55	0.53.231	9.55 910	0.44.000	9 97 322	5	2 1.0 0.8 3 1.5 1.2 4 2.0 1.6 5 2.5 2.0 6 3.0 2.4 7 3.5 2.8 8 4.0 3.2
56	9.53 266	9.55 949	0.44 051	9.97 317	4	7 3.5 2.8 8 4.0 3.2 9 4.5 3.6
57 58	9.55 301 35	9.55 989 9.56 028	39 0.43 972	9.97 312 4	3 2 1	2 2.5 0.0
59	9.53 370	9.56 067 9.56 107	39 0.43 933 40 0.43 893	9.97 308 ⁴ 9.97 303 ⁵ 9.97 299 ⁴	1 0	
60	9.53 405				_	
1'	L Cos d	L Ctn	cd L Tan	L Sin d	<u> </u>	Prop. Parts

20° — Common Logarithms of Trigonometric Functions — 20°

502

′	L Sin d	L Tan	cd	L Ctn	L Cos d	′	Prop. Parts
0 1 2 3 4	9.53 405 9.53 440 35 9.53 475 35 9.53 509 34 9.53 544 34	9.56 107 9.56 146 9.56 185 9.56 224 9.56 264	39 39 39 40 39	0.43 893 0.43 854 0.43 815 0.43 776 0.43 736	9.97 299 9.97 294 5 9.97 289 5 9.97 285 4 9.97 280 4	60 59 58 57 56	40 89
5 6 7 8 9	9.53 578 9.53 613 9.53 647 9.53 682 9.53 716 35	9.56 303 9.56 342 9.56 381 9.56 420 9.56 459	39 39 39 39 39	0.43 697 0.43 658 0.43 619 0.43 580 0.43 541	9.97 276 9.97 271 9.97 266 9.97 262 9.97 257 5	55 54 53 52 51	1 4.0 3.9 2 8.0 7.8 3 12.0 11.7 4 16.0 15.6 5 20.0 19.5 6 24.0 23.4 7 28.0 27.3
10 11 12 13 14	9.53 751 9.53 786 34 9.53 819 35 9.53 854 9.63 888 34	9.56 498 9.56 537 9.56 576 9.56 615 9.56 654	39 39 39 39 39	0.43 502 0.43 463 0.43 424 0.43 385 0.43 346	9.97 252 9.97 248 9.97 243 9.97 238 9.97 234 5	50 49 48 47 46	7 28.0 27.3 8 32.0 31.2 9 36.0 36.1
15 16 17 18 19	9.53 922 9.53 957 34 9.53 991 9.54 025 9.54 059 34	9.56 693 9.56 732 9.56 771 9.56 810 9.56 849	39 39 39 39 39	0.43 307 0.43 268 0.43 229 0.43 190 0.43 151	9.97 229 9.97 224 5 9.97 220 4 9.97 215 5 9.97 210 4	44 43 42 41	38 37 1 3.8 3.7 2 7.6 7.4 3 11.4 11.1 4 15.2 14.8 5 19.0 18.5
20 21 22 23 24	9.54 093 9.54 127 9.54 161 9.54 195 34 9.54 229 34	9.56 887 9.56 926 9.56 965 9.57 004 9.57 042	39 39 39 38 38	0.43 113 0.43 074 0.43 035 0.42 996 0.42 958	9.97 206 9.97 201 5 9.97 196 4 9.97 192 5 9.97 187 5	40 39 38 37 36	6 22.8 22.2 7 26.6 25.9 8 30.4 29.6 9 34.2 33.3
25 26 27 28 29	9.54 263 9.54 297 34 9.54 331 9.54 365 9.54 399 34	9.57 081 9.57 120 9.57 158 9.57 197 9.57 235	39 38 39 38 39	0.42 919 0.42 880 0.42 842 0.42 803 0.42 765	9.97 182 9.97 178 4 9.97 173 5 9.97 168 5 9.97 163 4	35 34 33 32 31	35 34 1 3.5 3.4 2 7.0 6.8 3 10.5 10.2
30 31 32 33 34	9.54 433 9.54 466 34 9.54 500 9.54 534 9.54 567 34	9.57 274 9.57 312 9.57 351 9.57 389 9.57 428	38 39 38 39 38	0.42 726 0.42 688 0.42 649 0.42 611 0.42 572	9.97 159 5 9.97 154 5 9.97 149 4 9.97 145 5 9.97 140 5	30 29 28 27 26	4 14.0 13.6 5 17.5 17.0 6 21.0 20.4 7 24.5 23.8 8 28.0 27.2 9 31.6 30.6
36 37 38 39	9.54 601 9.54 635 9.54 668 9.54 702 9.54 735 34	9.57 466 9.57 504 9.57 543 9.57 581 9.57 619	38 39 38 38 38	0.42 534 0.42 496 0.42 457 0.42 419 0.42 381	9.97 135 9.97 130 5 9.97 126 4 9.97 121 5 9.97 116 5	25 24 23 22 21	83 1 3.3 2 6.6
40 41 42 43 44	9.54 769 9.54 802 33 9.54 836 34 9.54 869 34 9.54 903 33	9.57 658 9.57 696 9.57 734 9.57 772 9.57 810	38 38 38 38 39	0.42 342 0.42 304 0.42 266 0.42 228 0.42 190	9.97 111 9.97 107 9.97 102 5 9.97 097 5 9.97 092 5	20 19 18 17 16	22 6.6 3 9.9 4 13.2 5 16.5 6 19.8 7 23.1 8 26.4
46 47 48 49	9.54 936 9.54 969 33 9.55 003 9.55 036 33 9.55 069 33	9.57 849 9.57 887 9.57 925 9.57 963 9.58 001	38 38 38 38 38	0.42 151 0.42 113 0.42 075 0.42 037 0.41 999	9.97 087 9.97 083 4 9.97 078 5 9.97 073 5 9.97 068 5	15 14 13 12 11	9 29.7 5 4
50 51 52 53 54	9.55 102 9.55 136 33 9.55 169 33 9.55 202 33 9.55 235 33	9.58 039 9.58 077 9.58 115 9.58 153 9.58 191	38 38 38 38 38	0.41 961 0.41 923 0.41 885 0.41 847 0.41 809	9.97 063 9.97 059 9.97 054 5 9.97 049 5 9.97 044 5	10 9 8 7 6	1 0.5 0.4 2 1.0 0.8 3 1.5 1.2 4 2.0 1.6
55 56 57 58 59 60	9.55 268 9.55 301 9.55 334 9.55 367 9.56 400 9.56 433	9.58 229 9.58 267 9.58 304 9.58 342 9.58 380 9.58 418	38 37 38 38 38	0.41 771 0.41 733 0.41 696 0.41 658 0.41 620 0.41 582	9.97 039 9.97 035 9.97 030 5 9.97 025 5 9.97 020 5 9.97 015	5 4 3 2 1	5 2.5 2.0 6 3.0 2.4 7 3.5 2.8 8 4.0 3.2 9 4.5 3.6
1	L Cos d	L Ctn	cd	L Tan	L Sin d	$\overrightarrow{-}$	Prop. Parts

Table 3

21° — Common Logarithms of Trigonometric Functions — 21°

,	L Sin d	L Tan cd	L Ctn	L Cos d	,	Prop. Parts
0 1 2 3	9.55 433 9.55 466 33 9.55 499 35 55 2 9.55 532 32	9.58 418 9.58 455 9.58 493 9.58 531 9.58 560	0.41 545 0.41 507 0.41 469	9.97 015 9.97 010 5 9.97 005 4 9.97 001	60 59 58 57	•
4 5 6 7	9.55 564 33 9.55 597 33 9.55 630 33 9.55 663 33	9.58 569 38 9.58 606 9.58 644 38 9.58 681 37	0.41 431 0.41 394 0.41 356 0.41 319	9.96 996 5 9.96 991 5 9.96 986 5 9.96 981 5	56 55 54 53	38 37 1 3.8 3.7 2 7.6 7.4 3 11.4 11.1 4 15.2 14.8 5 19.0 18.5
8 9 10 11 12	9.55 728 33 9.55 761 32 9.55 793 33	9.58 757 38 9.58 757 37 9.58 794 9.58 832 38	0.41 243 0.41 243 0.41 206 0.41 168	9.96 971 5 9.96 966 4 9.96 962 5	52 51 50 49 48	3 11.4 11.1 4 15.2 14.8 5 19.0 18.5 6 22.8 22.2 7 26.6 25.9 8 30.4 29.6 9 34.2 33.3
13 14 15 16	9.55 858 32 9.55 891 32 9.55 923 33 9.55 956 33	9.58 907 30 9.58 944 37 9.58 981 9.59 019 38	0.41 093 0.41 056 0.41 019 0.40 981	9.96 952 5 9.96 947 5 9.96 942 9.96 937 5	47 46 45 44	36 33 1 3.6 3.3 2 7.2 6.6
17 18 19 20 21	9.56 988 33 9.56 021 32 9.56 053 32 9.56 085	9.59 054 9.59 094 9.59 131 9.59 168 9.59 205	0.40 944 0.40 906 0.40 869 0.40 832	9.96 927 5 9.96 922 5 9.96 917 5	43 42 41 40 39	3 10.8 9.9 4 14.4 13.2 5 18.0 16.5 6 21.6 19.8 7 25.2 23.1
22 23 24 25	9.56 150 32 9.56 182 33 9.56 215 32 9.56 247 32 9.56 279 32	9.59 243 33 9.59 280 33 9.59 317 33 9.59 354 33	0.40 757 7 0.40 720 7 0.40 683 7 0.40 646	9.96 907 9.96 903 9.96 898 5 9.96 893	38 37 36 35	8 28.8 26.4 9 32.4 29.7
26 27 28 29 30	9.56 311 32 9.56 343 32 9.56 375 33	9.59 429 30 9.59 466 37 9.59 503 37	0.40 571 7 0.40 534 7 0.40 497	9.96 883 5 9.96 878 5 9.96 873 5	34 33 32 31 30	32 31 1 3.2 3.1 2 6.4 6.2 3 9.6 9.3 4 12.8 12.4
31 32 33 34	9.56 408 9.56 440 32 9.56 472 32 9.56 504 32 9.56 536 32	9.59 577 37 9.59 614 37 9.59 651 37 9.59 688 37	7 0.40 423 7 0.40 386 7 0.40 349 7 0.40 312	9.96 863 5 9.96 858 5 9.96 853 5 9.96 848 5	29 28 27 26	5 16.0 15.5 6 19.2 18.6 7 22.4 21.7 8 25.6 24.8 9 28.8 27.9
35 36 37 38 39	9.56 568 9.56 599 32 9.56 631 32 9.56 663 32 9.56 695 32	9.59 725 9.59 762 30 9.59 799 9.59 835 9.59 872	7 0.40 201 6 0.40 165 7 0.40 128	9.96 843 9.96 838 5 9.96 833 5 9.96 828 5 9.96 823 5	25 24 23 22 21	8 5 1 0.6 0.5
40 41 42 43 44	9.56 727 9.56 759 9.56 790 9.56 822 9.56 854 32	9,59 909 9,59 946 37 9,59 983 37 9,60 019 36 9,60 056 37	0.40 091 7 0.40 054 7 0.40 017 6 0.39 981 7 0.39 944	9.96 818 5 9.96 813 5 9.96 808 5 9.96 803 5 9.96 798 5	20 19 18 17 16	2 1.2 1.0 3 1.8 1.5 4 2.4 2.0 5 3.0 2.5 6 3.6 3.0 7 4.2 3.5 8 4.8 4.0
45 46 47 48 49	9.56 886 9.56 917 31 9.56 949 31 9.56 980 32 9.57 012 32	9.60 093 9.60 130 9.60 166 9.60 203 9.60 240 30	7 0.39 907 6 0.39 870 6 0.39 834 7 0.39 797 7 0.39 760	9.96 793 9.96 788 5 9.96 783 5 9.96 778 6 9.96 772 5	15 14 13 12 11	9 5.4 4.5
50 51 52 53 54	9.57 044 9.57 075 9.57 107 9.57 138 9.57 138 31	9.60 276 9.60 313 3 9.60 349 3 9.60 386 3 9.60 422 3	7 0.39 724 6 0.39 687 7 0.39 651 7 0.39 614 6 0.39 578	9.96 767 9.96 762 5 9.96 757 5 9.96 752 5 9.96 747 5	10 9 8 7 6	1 0.4 2 0.8 3 1.2 4 1.6
55 56 57 58 59	9.57 201 9.57 232 9.57 264 9.57 295 9.57 295 9.57 326	9.60 459 9.60 495 9.60 532 9.60 568 9.60 568 9.60 661	0.39 541 7 0.39 505 6 0.39 468 7 0.39 432 7 0.39 395	9.96 742 9.96 737 9.96 732 9.96 727 9.96 722 9.96 722	5 4 3 2 1	6 2.4 7 2.8 8 3.2 9 3.6
60	9.57 358 32 L Cos d	9.60 641 St.	0.39 339	9.96 717 °	,	Prop. Parts

22° — Common Logarithms of Trigonometric Functions — 22°

1	L Sin d	L Tan cd	L Ctn	L Cos d	,	Prop. Parts
0			0.39 359	9.96 717	60	
ľ	9.57 358 9.57 389 31	9.60 641 9.60 677 36	0.39 323	9 96 711 9	59	
2	9.57 420 31	9.60 714 37	0.39 286	9.96 706	58	
3 4	9.57 451 31 9.57 482 31	9.00 / 50 36	0.39 250 0.39 214	9.96 701 5	57 56	37 36
	34	37				1 3.7 3.6 2 7.4 7.2
6	9.57 514 9.57 545 31	9.60 823 9.60 859	0.39 177 0.39 141	9.96 691 9.96 686	55 54	28 11.1 10.8
7	9.57 576 31	9.60 895	0.39 105	9.96 681	53	4 14.8 14.4
8	9.0/00/ 21	9.00 931 46	0.39 069	9.900/0 2	52	5 18.5 18.0 6 22.2 21.6
9	9.57 030 31	9.60 967 37	0.39 033	9.96 670	51	7 25.9 25.2 8 29.6 28.8
10 11	9.57 669 9.57 700	9.61 004 9.61 040	0.38 996 0.38 960	9.96 665 9.96 660	50	7 25.9 25.2 8 29.6 28.8 9 33.3 32.4
12	0.57 771 31	0.61.076 30	0.38 924	0 06 655 5	48	
13	9.57 762 31	9.61 112 36	0.38 888	9.96 650 5	47	
14	9.57 793 31	9.61 148 36	0.38 852	9.96 645 5	46	
15	9.57 824 31	9.61 184 36	0.38 816	9.96 640 6	45	35 32 1 3.5 3.2
16 17	9.57 885 30	9.61 220 36	0.38 780 0.38 744	9.96 629 5	44 43	2 7.0 6.4
18	9.57 916	9.61 292	0.38 708	9.96 624	42	B 10.5 9.6
19	9.57 947 31	9.61 328 36	0.38 672	9.96 619 5	41	5 17.5 16.0
20	9.57 978 ***	9.61 364 76	0.38 636	9.96 614	40	6 21.0 19.2 7 24.5 22.4
21 22	9.58 008 21	9.01 400 36	0.38 600	9.90 000 -	39 38	8 28.0 25.6
22	9.56 039 31	9.01 430 36	0.38 564 0.38 528	9.96 603 5	38 37	9 31.5 28.8
24	9.58 101 31	9.61 508 36	0.38 492	9.96 593 5	36	
25	9.58 131 31	9.61 544 35	0.38 456	9.96 588 6	35	
26	9.58 102 70	9.01.0/9 36	0.38 421	9.96 582	34	31 30
27 28	9.58 192 31	9.61 615 36	0.38 385 0.38 349	9.96 577 5	33 32	1 3.1 3.0
29	0.50.25% 30	9.61 687 36	0.38 313	9.96 567 5	31	2 6.2 6.0 3 9.3 9.0
30	9.58 284 50	0.61.722	0.38 278	0.06.562	30	4 12.4 12.0
31	9.58 314 30	9.61 758 36	0.38 242	9.96 556	29	6 18.6 18.0
32	9.00 340 70	9.61 /94 %	0.38 206 0.38 170	9.90 001	28 27	7 21.7 21.0 8 24.8 24.0
33 34	9.58 375 30 9.58 406 31	9.61 830 35 9.61 865 36	0.38 135	9.96 546 5 9.96 541 6	26	8 24.8 24.0 9 27.9 27.0
35	0.58.436	0.61.001	0.38 099	9.96 535	25	
	9 58 467 31	9.61 936	0.38 064	9 96 530 0	24	
36 37	9.58 497 30	9.61 9/2 76	0.38 028	9.96 525 5	23	29
38 39	9.50 527 30	9.62 008 35 9.62 043 36	0.37 992 0.37 957	0.96.514 6	22 21	1 2.9
40	9.58 588	0.62.070	0.37 921	0.06.500	20	2 5.8
41	0 59 619 30	0.62 114 30	0.37 886	9 96 504 6	19	3 8.7 4 11.6
42	9.58 648 30	9.62 150 36	0.37 850	9.96 498	18	5 14.5
43 44	9.50 0/0 31	9.62 185 36	0.37 815 0.37 779	9.96 493 5	17 16	7 20.3
	30	0.60.006				8 23.2 9 26.1
45 46	9.58 739 9.58 769 30	9.62 256 9.62 292 36	0.37 744 0.37 708	9.96 483 9.96 477 6	15 14	- 201
47	9.58 799 50	9.62 327 35	0.37 673	9.96 472	13	
48	9.58 829 50	9.62 362 36	0.37 638 0.37 602	9.96 467 6 9.96 461 6	12 11	
49	9.56 659 30	- 30		9.90 401 5		8 5
50	9.58 889 9.58 919 30	9.62 433 9.62 468		9.96 456 9.96 451	10	1 0.6 0.5 2 1.2 1.0
52	9.58 949 50	9.62 504 35	0.37 496	9.96 445	8	8 1.8 1.5
53	9.58 979 50	9.02 539 35	0.37 401	9.96 440	7	4 2.4 2.0 5 3.0 2.5 6 3.6 3.0
54	9.59 009 30	9.02 574 35	0.37 426	9.90 435 6	6	2 1.2 1.0 3 1.8 1.5 4 2.4 2.0 5 3.0 2.5 6 3.6 3.0 7 4.2 3.5
88	9.59 039 30	9.62 609 36		9.96 429 5	8	8 4.8 4.0
56 57	9.59 069 29 9.59 098 70	9.02 040 35		9.96 424 5	3	9 5.4 4.5
58	9.59 128	9.62 715		9.96 413	3 2 1	
59 60	9.59 158 30 9.59 188 30	9.62 750 35 9.62 785 35	0.37 250 0.37 215	9.96 408 5 9.96 403 5		
-						
Ľ	L Cos d	L Ctn cd	. L Tan	L Sin d	′	Prop. Parts

 23° — Common Logarithms of Trigonometric Functions — 23°

′	L Sin d	L Tan	cđ	L Ctn	L Cos d	'	Prop. Parts
0 1 2 3 4	9.59 188 9.59 218 29 9.59 247 30 9.59 277 30 9.59 307 29	9.62 785 9.62 820 9.62 856 9.62 890 9.62 926	35 35 35 36 36	0.37 215 0.37 180 0.37 145 0.37 110 0.37 074	9.96 403 9.96 397 9.96 392 9.96 387 9.96 381 5	60 59 58 57 56	
5 6 7 8 9	9.59 336 30 9.59 366 30 9.59 396 29 9.59 425 30 9.59 455 29	9.62 961 9.62 996 9.63 031 9.63 066 9.63 101	35 35 35 35 35 34	0.37 039 0.37 004 0.36 969 0.36 934 0.36 899	9.96 376 9.96 370 9.96 365 9.96 360 9.96 354 5	55 54 53 52 51	36 35 1 3.6 3.5 2 7.2 7.0 3 10.8 10.5 4 14.4 14.0
10 11 12 13 14	9.59 484 9.59 514 30 9.59 543 29 9.59 573 30 9.59 602 30	9.63 135 9.63 170 9.63 205 9.63 240 9.63 275	35 35 35 35 35	0.36 865 0.36 830 0.36 795 0.36 760 0.36 725	9.96 349 9.96 343 9.96 338 9.96 333 9.96 327 5	50 49 48 47 46	5 18.0 17.5 6 21.6 21.0 7 25.2 24.5 8 28.8 28.0 9 32.4 31.5
15 16 17 18 19	9.59 632 9.59 661 9.59 690 9.59 720 9.59 749 9.59 749 29	9.63 310 9.63 345 9.63 379 9.63 414 9.63 449	35 34 35 35 35	0.36 690 0.36 655 0.36 621 0.36 586 0.36 551	9.96 322 9.96 316 6 9.96 311 6 9.96 305 5 9.96 300 6	45 44 43 42 41	34 30
20 21 22 23 24	9.59 778 9.59 808 9.59 837 9.59 866 9.59 895 29	9.63 484 9.63 519 9.63 553 9.63 588 9.63 623	35 34 35 35 34	0.36 516 0.36 481 0.36 447 0.36 412 0.36 377	9.96 294 9.96 289 5 9.96 284 6 9.96 278 5 9.96 273 6	40 39 38 37 36	1 3.4 3.0 2 6.8 6.0 3 10.2 9.0 4 13.6 12.0 5 17.0 15.0 6 20.4 18.0
25 26 27 28 29	9.59 924 9.59 954 9.59 983 9.59 983 9.60 012 9.60 041	9.63 657 9.63 692 9.63 726 9.63 761 9.63 796	35 34 35 35 34	0.36 343 0.36 308 0.36 274 0.36 239 0.36 204	9.96 267 9.96 262 5 9.96 256 6 9.96 251 5 9.96 245 5	35 34 33 32 31	7 23.8 21.0 8 27.2 24.0 9 30.6 27.0
30 31 32 33 34	9.60 070 9.60 099 9.60 128 9.60 157 9.60 186 29	9.63 830 9.63 865 9.63 899 9.63 934 9.63 968	35 34 35 34 35	0.36 170 0.36 135 0.36 101 0.36 066 0.36 032	9.96 240 9.96 234 6 9.96 229 6 9.96 223 5 9.96 218 6	30 29 28 27 26	29 28 1 2.9 2.8
35 36 37 38 39	9.60 215 9.60 244 29 9.60 273 29 9.60 302 29 9.60 331 29	9.64 003 9.64 037 9.64 072 9.64 106 9.64 140	34 35 34 34 35	0.35 997 0.35 963 0.35 928 0.35 894 0.35 860	9.96 212 9.96 207 5 9.96 201 6 9.96 196 6 9.96 190 6	25 24 23 22 21	2 5.8 5.6 3 8.7 8.4 4 11.6 11.2 5 14.5 14.0 6 17.4 16.8 7 20.3 19.6
40 41 42 43 44	9.60 359 9.60 388 9.60 417 9.60 446 9.60 474 28	9.64 175 9.64 209 9.64 243 9.64 278 9.64 312	34 34 35 34 34	0.35 825 0.35 791 0.35 757 0.35 722 0.35 688	9.96 185 9.96 179 6 9.96 174 5 9.96 168 6 9.96 162 5	20 19 18 17 16	8 23.2 22.4 9 26.1 25.2
45 46 47 48 49	9.60 503 9.60 532 9.60 561 9.60 589 9.60 589 9.60 618 29 28	9.64 346 9.64 381 9.64 415 9.64 449 9.64 483	35 34 34 34 34	0.35 654 0.35 619 0.35 585 0.35 551 0.35 517	9.96 157 9.96 151 9.96 146 9.96 140 9.96 135 6	15 14 13 12 11	6 5 1 0.6 0.5 2 1.2 1.0
50 51 52 53 54	9.60 646 9.60 675 9.60 704 9.60 704 28 9.60 732 9.60 761	9.64 517 9.64 552 9.64 586 9.64 620 9.64 654	35 34 34 34 34	0.35 483 0.35 448 0.35 414 0.35 380 0.35 346	9.96 129 9.96 123 6 9.96 118 6 9.96 112 6 9.96 107 6	10 9 8 7 6	3 1.8 1.5 4 2.4 2.0 5 3.0 2.5 6 3.6 3.0 7 4.2 3.5 8 4.8 4.0 9 5.4 4.5
55 56 57 58 59 60	9.60 789 9.60 818 9.60 846 29 9.60 875 28 9.60 903 28 9.60 931	9.64 688 9.64 722 9.64 756 9.64 790 9.64 824 9.64 858	34 34 34 34 34	0.35 312 0.35 278 0.35 244 0.35 210 0.35 176 0.35 142	9.96 101 9.96 095 9.96 090 9.96 084 9.96 079 9.96 073	5 4 3 2 1 0	0 0.1 1.0
,	L Cos d	L Ctn	cd	L Tan	L Sin d	7	Prop. Parts

24° — Common Logarithms of Trigonometric Functions — 24°

!	L Sin d	L Tan c	d L Ctn	L Cos d	1	Prop. Parts
-	0.60.071	0.64.959	0.75.142	9.96 073	60	
Ĭ	9.60 960	9.64 892	0.35 108	9.96 067	59	•
2 3	שי ספע טסיע		4 0.35 0/4	9.90 004 6	58	i
4	9.61 016 29 9.61 045 28	0.64.004	0.35 040 0.35 006	9.96 056 9.96 050	57 56	
5	0.61.077	0.65.028	0.34.072	9.96 045	55	84 88
6	9.61 101	9.65 062	0.34 938	9.96 039	54	1 3.4 3.3
7 8	9.01 129 29	9.00 090 3	4 0.34 904	9.96 034 6	53 52	2 6.8 6.6 8 10.2 9.9
ğ	9.61 186 28 9.61 186 28	0 65 164 3	3 0.34 836	9.96 022 6	51	4 13.6 13.2
10	9.61 214 29	9.65 197	0.34 803	9.96 017	50	4 13.6 13.2 5 17.0 16.5 6 20.4 19.8 7 23.8 23.1
11 12	9.61 242 28 9.61 270 28		0.34 769 0.34 735	9.96 011 6 9.96 005 6	49 48	1 7 23.8 23.1
13	9.61 298 28	9.65 299	¹³ 0 34 701	0 06 000 0	47	8 27.2 26.4 9 30.6 29.7
14	9.61 326 28	065 777 3	3 0.34 667	9.95 994 6	46	
15	9.61 354 28	9.65 366	0.34 634	9.95 988 6	45	
16 17	9.61.382 29	9.65 400 3	4 0.34 600	9.95 982 5	44	
18	9.61 438 27	9.65 467	0.34 533	9.95 971	42	
19	9.61 400 28	9.65 501 3	4 0.34 499	9.90 900 5	41	29 28
20 21	9.61 494 28	9.65 535 3	3 0.34 465 0.34 432	9.95 960 9.95 954 6	40 39	1 2.9 2.8
22	9.61 522 28 9.61 550 28	9.65 568 3 9.65 602 3	4 0 24 208	9.95 954 6	38	2 5.8 5.6 3 8.7 8.4
23	9.61 578	9.65 636	3 0.34 364	9.95 942	37	4 11.6 11.2
24	9.61 606 28	9.65 669 3	4 0.34 331	9.96 937 6	36	6 17.4 16.8
25 26	9.61 634 9.61 662 28	9.65 703 3 9.65 736 3		9.95 931 9.95 925 6	35 34	7 20.3 19.6 8 23.2 22.4
27	9.61 689 27	9.65 770	2 0.34 230	9.95 920	33	8 23.2 22.4 9 26.1 25.2
28 29	9.01 /1/ 20	9.00 000 2		9.95 914 6	32 31	
	9.61 745 28	9.65 837		9.95 908 6		
30 31	9.61 773 9.61 800	9.65 870 9.65 904		9.95 902 9.95 897	30 29	
32	9.61 828 20	9.65 937	0.34 063	9.95 891	28	
33 34	9.01 850 27	9.00 9/1 3	0.34 029	9.95 870 6	27 26	27
35	9.61 911	0.66.079	0.77.062	0 05 877	25	1 2.7
36	9.61 939 28	9.66 071	0.33 929	9.95 868	24	2 5.4 8 8.1
37 38	9.61 966 27 9.61 994 28	9.66 104		9.95 862 6 9.95 856 6	23 22	4 10.8 5 13.5
39	9.62 021 27	9.66 171 33	0 7 7 7 8 20	9.95 850 6	21	5 13.5 6 16.2 7 18.9
40	9.62.049	9.66 204	. 0.33 796	0.05.044	20	8 21.6
41	9.62 076	9.66 238 3	* ハススフムツ !	9.95 839	19	9 24.3
42 43	9.62 104 27	9.66 304 3	0 77 606	9.95 833 6	18 17	
44	9.62 159 28	9.66 337 34	י חיד אה או	9.95 821 6	16	
45	9.62 186	9.66 371	0.33 629	9.95 815	15	
46	9.02 214 27	9.00 404 33	0.33 590	9.95 810 6	14 13	
48	9.62 268 27	9.66 470	0.33 530	9.95 798	12	6 5
49	9.02 290 27	9.66 503	4 0.33 497	9.90 /92 6	11	1 0.6 0.5 2 1.2 1.0
20	9.62 323	9.66 537	0.33 463	9.95 786	10	3 1.8 1.5 4 2.4 2.0
51 52	9.02 350 27	9.66 603	. 0.33 430 1	9.95 775 5	9	5 3.0 2.5
53	9.62 405	9.66 636	, 0.33 304	9.95 769	7	7 4.2 3.5
54	9.02 432 27	9.00 009 33	3 0.33 331	9.95 /03 6	6	8 4.8 4.0 9 5.4 4.5
55 56	9.62 459 9.62 486 27	9.66 702 9.66 735		9.95 757 9.95 751 6	5 4	
57	9.62 513 27	9.66 768 🕏	0.33 232	9.95 745	3	
58 59	9.62 541 27	9.66 801 🖫	⁷	9.96 / 39 6	3 2 1	
60	9.62 595 27	9.66 834 35 9.66 867 35		9.95 728 5	ò	
-	T. O		1 T	L Sin d	 , 	Denn Dente
'	L Cos d	L Ctn cd	i L Tan	r om g		Prop. Parts

65° — Common Logarithms of Trigonometric Functions — 65°

25° — Common Logarithms of Trigonometric Functions — 25°

,	L Sin d	L Tan	cd L Ctn	L Cos d	'	Prop. Parts
0 1 2 3 4	9.62 595 9.62 622 27 9.62 649 27 9.62 676 27 9.62 703 27	9.66 933 9.66 966	33 0.33 133 33 0.33 100 33 0.33 067 33 0.33 034 33 0.33 001	9.95 728 9.95 722 6 9.95 716 6 9.95 710 6 9.95 704 6	60 59 58 57 56	
5 6 7 8 9	9.62 730 9.62 757 27 9.62 784 9.62 811 9.62 838 27	9.67 032 9.67 065 9.67 098 9.67 131	33 0.32 968 33 0.32 935 33 0.32 902 33 0.32 869 32 0.32 837	9.95 698 6 9.95 692 6 9.95 686 6 9.95 680 6 9.95 674 6	55 54 53 52 51	83 82 1 3.3 3.2 2 6.6 6.4 8 9.9 9.6 4 13.2 12.8
10 11 12 13 14	9.62 865 27 9.62 892 26 9.62 918 26 9.62 945 27 9.62 972 27	9.67 196 9.67 229 9.67 262 9.67 295	33 0.32 804 33 0.32 771 33 0.32 738 33 0.32 705 32 0.32 673	9.95 668 9.95 663 9.95 657 6 9.95 651 9.95 645 6	50 49 48 47 46	5 16.5 16.0 6 19.8 19.2 7 23.1 22.4 8 26.4 25.6 9 29.7 28.8
15 16 17 18 19	9.62 999 9.63 026 9.63 052 9.63 079 9.63 106 27	9.67 426 9.67 458 9.67 491	33 0.32 640 33 0.32 607 32 0.32 574 32 0.32 542 33 0.32 509	9.95 639 6 9.95 633 6 9.95 627 6 9.95 621 6 9.95 615 6	45 44 43 42 41	27 26
20 21 22 23 24	9.63 133 26 9.63 159 27 9.63 186 27 9.63 213 26 9.63 239 27	9.67 556 9.67 589 9.67 622 9.67 654	32 0.32 476 33 0.32 444 33 0.32 411 33 0.32 378 32 0.32 346	9.95 609 6 9.95 603 6 9.95 597 6 9.95 591 6 9.95 585 6	39 38 37 36	1 2.7 2.6 2 5.4 5.2 3 8.1 7.8 4 10.8 10.4 5 13.5 13.0 6 16.2 15.6
25 26 27 28 29	9.63 266 9.63 292 27 9.63 319 26 9.63 345 27 9.63 372 26	9.67 687 9.67 719 9.67 752 9.67 785 9.67 817	32 0.32 313 33 0.32 248 33 0.32 248 32 0.32 215 32 0.32 183	9.95 579 9.95 573 6 9.95 567 6 9.95 561 6 9.95 555 6	34 33 32 31	7 18.9 18.2 8 21.6 20.8 9 24.3 23.4
31 32 33 34	9.63 398 9.63 425 27 9.63 451 26 9.63 478 27 9.63 504 27	9.67 850 9.67 882 9.67 915 9.67 947 9.67 980	32 0.32 150 33 0.32 118 33 0.32 085 32 0.32 053 33 0.32 020 32	9.95 549 9.95 543 6 9.95 537 6 9.95 531 6 9.95 525 6	30 29 28 27 26	7 6 1 0.7 0.6
36 37 38 39	9.63 531 9.63 557 26 9.63 583 26 9.63 610 27 9.63 636 26	9.68 012 9.68 044 9.68 077 9.68 109 9.68 142	0.31 988 0.31 956 33 0.31 923 32 0.31 891 33 0.31 858	9.95 519 9.95 513 6 9.95 507 6 9.95 500 7 9.95 494 6	25 24 23 22 21	2 1.4 1.2 3 2.1 1.8 4 2.8 2.4 5 3.5 3.0 6 4.2 3.6 7 4.9 4.2 8 5.6 4.8
40 41 42 43 44	9.63 662 9.63 689 27 9.63 715 26 9.63 741 26 9.63 767 27	9.68 174 9.68 206 9.68 239 9.68 271 9.68 303	32 0.31 826 33 0.31 794 33 0.31 761 32 0.31 729 32 0.31 697 33	9.95 488 9.95 482 9.95 476 9.95 470 9.95 464 6	20 19 18 17 16	8 5.6 4.8 9 6.3 5.4
45 46 47 48 49	9.63 794 9.63 820 26 9.63 846 26 9.63 872 26 9.63 898 26	9.68 336 9.68 368 9.68 400 9.68 432 9.68 465	32 0.31 664 32 0.31 632 32 0.31 600 32 0.31 568 33 0.31 535	9.95 458 9.95 452 9.95 446 9.95 440 9.95 434 7	15 14 13 12 11	5 1 0.5 2 1.0 8 1.5 4 2.0
50 51 52 53 54	9.63 924 9.63 950 26 9.63 976 26 9.64 002 26 9.64 028 26	9.68 497 9.68 529 9.68 561 9.68 593 9.68 626	32 0.31 503 32 0.31 471 32 0.31 439 32 0.31 407 33 0.31 374	9.95 427 9.95 421 6 9.95 415 6 9.95 409 6 9.95 403 6	10 9 8 7 6	4 2.0 5 2.5 6 3.0 7 3.5 8 4.0 9 4.5
56 57 58 59 60	9.64 054 9.64 080 26 9.64 106 26 9.64 132 26 9.64 158 26 9.64 184	9.68 658 9.68 690 9.68 722 9.68 754 9.68 786 9.68 818	32 0.31 342 32 0.31 310 32 0.31 278 32 0.31 246 32 0.31 214 32 0.31 182	9.95 397 9.95 391 9.95 384 9.95 378 9.95 372 9.95 366	5 4 3 2 1 0	
1	L Cos d	L Ctn	cd L Tan	L Sin d	,	Prop. Parts

64° — Common Logarithms of Trigonometric Functions — 64°

26° — Common Logarithms of Trigonometric Functions — 26°.

•	L Sin d	L Tan	cd	L Ctn	L Cos	đ	'	Prop. Parts
0 1 2 3 4	9.64 184 9.64 210 26 9.64 236 26 9.64 262 26 9.64 288 26	9.68 818 9.68 850 9.68 882 9.68 914 9.68 946	32 32 32 32 32 32	0.31 182 0.31 150 0.31 118 0.31 086 0.31 054	9.95 366 9.96 360 9.95 354 9.95 348 9.95 341	6 6 7 6	60 59 58 57 56	
5 6789	9.64 313 26 9.64 339 26 9.64 365 26 9.64 391 26 9.64 417 25	9.68 978 9.69 010 9.69 042 9.69 074 9.69 106	32 32 32 32 32 32 32	0.31 022 0.30 990 0.30 958 0.30 926 0.30 894	9.95 335 9.95 329 9.95 323 9.95 317 9.95 310	6 6 7 6	55 54 53 52 51	32 31 1 3.2 3.1 2 6.4 6.2 3 9.6 9.3 4 12.8 12.4
10 11 12 13 14	9.64 442 9.64 468 9.64 494 9.64 519 9.64 545 9.64 545	9.69 138 9.69 170 9.69 202 9.69 234 9.69 266	32 32 32 32 32 32 32	0.30 862 0.30 830 0.30 798 0.30 766 0.30 734	9.95 304 9.95 298 9.95 292 9.95 286 9.95 279	6 6 7 6	50 49 48 47 46	5 16.0 15.5 6 19.2 18.6 7 22.4 21.7 8 25.6 24.8 9 28.8 27.9
15 16 17 18 19	9.64 571 9.64 596 25 9.64 622 26 9.64 647 26	9.69 298 9.69 329 9.69 361 9.69 393 9.69 425	31 32 32 32 32	0.30 702 0.30 671 0.30 639 0.30 607 0.30 575	9.95 273 9.95 267 9.95 261 9.95 254 9,95 248	6 6 7 6	45 44 43 42 41	
20 21 22 23 24	9.64 698 9.64 724 9.64 724 9.64 749 9.64 775 9.64 800	9.69*457 9.69 488 9.69 520 9.69 552 9.69 584	31 32 32 32 32	0.30 543 0.30 512 0.30 480 0.30 448 0.30 416	9.95 242 9.95 236 9.95 229 9.95 223 9.95 217	6 7 6 6	40 39 38 37 36	26 25 1 2.6 2.5 2 5.2 5.0 3 7.8 7.5 4 10.4 10.0 5 13.0 12.5
25 26 27 28 29	9.64 826 9.64 851 26 9.64 877 26 9.64 902 25	9.69 615 9.69 647 9.69 679 9.69 710 9.69 742	31 32 32 31 32	0.30 385 0.30 353 0.30 321 0.30 290 0.30 258	9.95 211 9.95 204 9.95 198 9.95 192 9.95 185	6 7 6 7	35 34 33 32 31	5 13.0 12.5 6 15.6 15.0 7 18.2 17.5 8 20.8 20.0 9 23.4 22.5
30 31 32 33 34	9.64 953 9.64 978 9.65 003 9.65 029 9.65 054 25	9.69 774 9.69 805 9.69 837 9.69 868 9.69 900	32 31 32 31 32 32 32	0.30 226 0.30 195 0.30 163 0.30 132 0.30 100	9.95 179 9.95 173 9.95 167 9.95 160 9.95 154	6 6 7 6 6	30 29 28 27 26	24
35 36 37 38 39	9.65 079 9.65 104 9.65 130 9.65 155 9.65 180 25	9.69 932 9.69 963 9.69 995 9.70 026 9.70 058	31 32 31 32 31	0.30 068 0.30 037 0.30 005 0.29 974 0.29 942	9.95 148 9.95 141 9.95 135 9.95 129 9.95 122	6 7 6 7 6	25 24 23 22 21	1 2.4 2 4.8 3 7.2 4 9.6 5 12.0 6 14.4 7 16.8
40 41 42 43 44	9.65 205 9.65 230 25 9.65 255 26 9.65 281 25 9.65 306 25	9.70 089 9.70 121 9.70 152 9.70 184 9.70 215	32 31 32 31 32	0.29 911 0.29 879 0.29 848 0.29 816 0.29 785	9.95 116 9.95 110 9.95 103 9.95 097 9.95 090	67676	20 19 18 17 16	7 16.8 8 19.2 9 21.6
45 46 47 48 49	9.65 331 25 9.65 356 25 9.65 381 25 9.65 406 25 9.66 431 26	9.70 247 9.70 278 9.70 309 9.70 341 9.70 372	31 31 32 31 32	0.29 753 0.29 722 0.29 691 0.29 659 0.29 628	9.95 084 9.95 078 9.95 071 9.95 065 9.95 059	6 7 6 7	15 14 13 12 11	7 6 1 0.7 0.6 2 1.4 1.2
50 51 52 53 54	9.65 456 25 9.65 481 25 9.65 506 25 9.65 531 25 9.65 556 25	9.70 404 9.70 435 9.70 466 9.70 498 9.70 529	31 31 32 31 31	0.29 596 0.29 565 0.29 534 0.29 502 0.29 471	9.95 052 9.95 046 9.95 039 9.95 033 9.95 027	6 7 6 7	10 9 8 7 6	8 2.1 1.8 4 2.8 2.4 5 3.5 3.0 6 4.2 3.6 7 4.9 4.2 8 5.6 4.8
55 56 57 58 59 60	9.65 580 25 9.65 605 25 9.65 630 25 9.65 655 25 9.65 680 25 9.65 705	9.70 560 9.70 592 9.70 623 9.70 654 9.70 685 9.70 717	32 31 31 31 31 32	0.29 440 0.29 408 0.29 377 0.29 346 0.29 315 0.29 283	9.95 020 9.96 014 9.95 007 9.95 001 9.94 995 9.94 988	6 7 6 6 7	5 4 3 2 1	9 6.3 54
,	L Cos d	L Ctn	cd	L Tan	L Sin	d	1	Prop. Parts

27° — Common Logarithms of Trigonometric Functions — 27°

Table 3

•	L Sin d	L Tan	cd L Ctn	L Cos d	,	Prop. Parts
0 1 2 3 4	9.65 705 9.65 729 9.65 754 9.65 779 9.65 804 25 9.65 804	9.70 717 9.70 748 9.70 779 9.70 810 9.70 841	31 0.29 283 31 0.29 252 31 0.29 221 31 0.29 190 31 0.29 159	9.94 988 9.94 982 7 9.94 975 7 9.94 969 7 9.94 962 6	60 59 58 57 56	
5 6 7 8 9	9.65 828 9.65 853 9.65 878 9.65 902 9.65 927 25	9.70 873 9.70 904 9.70 935 9.70 966 9.70 997	31 0.29 127 31 0.29 096 31 0.29 065 31 0.29 034 31 0.29 003	9.94 956 7 9.94 949 6 9.94 943 7 9.94 936 6 9.94 930 7	55 54 53 52 51	32 31 1 3.2 3.1 2 6.4 6.2 3 9.6 9.3 4 12.8 12.4 5 16.0 15.5
10 11 12 13 14	9.65 952 9.65 976 25 9.66 001 9.66 025 24 9.66 050 25	9.71 028 9.71 059 9.71 090 9.71 121 9.71 153	31 0.28 972 31 0.28 941 31 0.28 910 31 0.28 879 32 0.28 847 31	9.94 923 9.94 917 6 9.94 911 7 9.94 904 6 9.94 898 7	50 49 48 47 46	5 16.0 15.5 6 19.2 18.6 7 22.4 21.7 8 25.6 24.8 9 28.8 27.9
15 16 17 18 19	9.66 075 9.66 099 24 9.66 124 25 9.66 148 24 9.66 173 24	9.71 184 9.71 215 9.71 246 9.71 277 9.71 308	31 0.28 816 31 0.28 785 31 0.28 754 31 0.28 723 31 0.28 692	9.94 891 9.94 885 7 9.94 878 7 9.94 871 6 9.94 865 7	44 43 42 41	30 25
20 21 22 23 24	9.66 197 9.66 221 24 9.66 246 25 9.66 270 25 9.66 295 24	9.71 339 9.71 370 9.71 401 9.71 431 9.71 462	31 0.28 661 31 0.28 630 30 0.28 599 30 0.28 569 31 0.28 538	9.94 858 9.94 852 7 9.94 845 9.94 839 7 9.94 832 6	39 38 37 36	1 3.0 2.5 2 6.0 5.0 8 9.0 7.5 4 12.0 10.0 5 15.0 12.5 6 18.0 15.0 7 21.0 17.5 8 24.0 20.0
25 26 27 28 29	9.66 319 9.66 343 24 9.66 368 25 9.66 392 24 9.66 416 25	9.71 493 9.71 524 9.71 555 9.71 586 9.71 617	31 0.28 507 31 0.28 476 31 0.28 445 31 0.28 414 31 0.28 383 31	9.94 826 9.94 819 9.94 813 9.94 806 7 9.94 799 6	35 34 33 32 31	7 21.0 17.5 8 24.0 20.0 9 27.0 22.5
30 31 32 33 34	9.66 441 9.66 465 24 9.66 489 24 9.66 513 24 9.66 537 25	9.71 648 9.71 679 9.71 709 9.71 740 9.71 771	31 0.28 352 30 0.28 321 30 0.28 291 31 0.28 260 31 0.28 229 31	9.94 793 7 9.94 786 6 9.94 780 7 9.94 773 6 9.94 767 7	30 29 28 27 26	24 23 1 24 23
35 36 37 38 39	9.66 562 9.66 586 9.66 610 9.66 634 9.66 658 24 24 24 24 24	9.71 802 9.71 833 9.71 863 9.71 894 9.71 925	31 0.28 198 30 0.28 167 31 0.28 137 31 0.28 106 31 0.28 075	9.94 760 9.94 753 9.94 747 9.94 740 9.94 734 7	25 24 23 22 21	2 4.8 4.6 3 7.2 6.9 4 9.6 9.2 5 12.0 11.5 6 14.4 13.8 7 16.8 16.1 8 19.2 18.4
40 41 42 43 44	9.66 682 9.66 706 24 9.66 731 25 9.66 755 24 9.66 779 24	9.71 955 9.71 986 9.72 017 9.72 048 9.72 078	31 0.28 045 31 0.28 014 31 0.27 983 31 0.27 952 30 0.27 922 31	9.94 727 9.94 720 6 9.94 714 9.94 707 9.94 700 6	20 19 18 17 16	9 21.6 20.7
45 46 47 48 49	9.66 803 9.66 827 24 9.66 851 9.66 875 24 9.66 899 23	9.72 109 9.72 140 9.72 170 9.72 201 9.72 231	31 0.27 891 30 0.27 860 31 0.27 799 30 0.27 769 31 0.27 769	9.94 694 9.94 687 9.94 680 9.94 674 9.94 667 7	15 14 13 12 11	7 6 1 0.7 0.6 2 1.4 1.2 3 2.1 1.8 4 2.8 2.4
51 52 53 54	9.66 922 9.66 946 24 9.66 970 24 9.66 994 24 9.67 018 24	9.72 262 9.72 293 9.72 323 9.72 354 9.72 384	31 0.27 738 30 0.27 707 31 0.27 677 31 0.27 646 30 0.27 616	9.94 660 9.94 654 7 9.94 647 7 9.94 640 6 9.94 634 7	10 9 8 7 6	3 2.1 1.8 4 2.8 2.4 5 3.5 3.0 6 4.2 3.6 7 4.9 4.2 8 5.6 4.8 9 6.3 5.4
55 56 57 58 59 60	9.67 042 9.67 066 24 9.67 090 23 9.67 113 23 9.67 137 24 9.67 161	9.72 415 9.72 445 9.72 476 9.72 506 9.72 537 9.72 567	30 0.27 585 31 0.27 555 30 0.27 524 30 0.27 494 31 0.27 463 30 0.27 433	9.94 627 9.94 620 9.94 614 9.94 607 9.94 600 9.94 593	5 4 3 2 1 0	
7	L Cos d	L Ctn	cd L Tan	L Sin d	1	Prop. Parts

62° — Common Logarithms of Trigonometric Functions — 62°

28° — Common Logarithms of Trigonometric Functions — 28°

,	L Sin d	L Tan	cd L Ctn	L Cos d	,	Prop. Parts
0 1 2 3 4	9.67 161 9.67 185 9.67 208 9.67 232 9.67 232 24 9.67 256 24	9.72 567 9.72 598 9.72 628 9.72 659 9.72 689	31 0.27 433 30 0.27 402 31 0.27 372 31 0.27 341 30 0.27 311	9.94 593 9.94 587 7 9.94 580 7 9.94 573 6 9.94 567 7	60 59 58 57 56	
5 6 7 8 9	9.67 280 9.67 303 23 9.67 327 24 9.67 350 23 9.67 374 24	9.72 720 9.72 750 9.72 780 9.72 811 9.72 841	30 0.27 280 30 0.27 250 30 0.27 220 31 0.27 189 30 0.27 159	9.94 560 7 9.94 553 7 9.94 546 7 9.94 540 7 9.94 533 7	55 54 53 52 51	81 30 1 3.1 3.0 2 6.2 6.0 3 9.3 9.0 4 12.4 12.0 5 15.5 15.0
10 11 12 13 14	9.67 398 9.67 421 23 9.67 445 24 9.67 468 23 9.67 492 24	9.72 872 9.72 902 9.72 932 9.72 963	0.27 128 30 0.27 098 30 0.27 068 31 0.27 037 30 0.27 007	9.94 526 9.94 519 7 9.94 513 6 9.94 506 7 9.94 499 7	50 49 48 47 46	6 18.6 18.0 7 21.7 21.0 8 24.8 24.0 9 27.9 27.0
15 16 17 18 19	9.67 515 9.67 539 24 9.67 562 23 9.67 586 24 9.67 609 23	9.73 023 9.73 054 9.73 084 9.73 114	0.26 977 31 0.26 946 30 0.26 916 30 0.26 886 30 0.26 856	9.94 492 7 9.94 485 7 9.94 479 7 9.94 472 7 9.94 465 7	45 44 43 42 41	29 24
20 21 22 23 24	9.67 633 23 9.67 656 24 9.67 680 24 9.67 703 23 9.67 726 23	9.73 175 9.73 205 9.73 235 9.73 265 9.73 295	30 0.26 825 30 0.26 795 30 0.26 765 30 0.26 735 30 0.26 705	9.94 458 7 9.94 451 6 9.94 445 7 9.94 438 7 9.94 431 7	40 39 38 37 36	1 2.9 2.4 2 5.8 4.8 3 8.7 7.2 4 11.6 9.6 5 14.5 12.0
25 26 27 28 29	9.67 750 9.67 773 23 9.67 796 23 9.67 820 24 9.67 823 23	9.73 326 9.73 356 9.73 386 9.73 416	0.26 674 30 0.26 644 30 0.26 614 30 0.26 584 30 0.26 554	9.94 424 9.94 417 7 9.94 410 6 9.94 404 7 9.94 397 7	35 34 33 32 31	7 20.3 16.8 8 23.2 19.2 9 26.1 21.6
30 31 32 33 34	9.67 866 9.67 890 23 9.67 913 23 9.67 936 23 9.67 959 23	9.73 476 9.73 507 9.73 537 9.73 567	0.26 524 31 0.26 493 30 0.26 463 30 0.26 433 30 0.26 403	9.94 390 7 9.94 383 7 9.94 376 7 9.94 369 7 9.94 362 7	30 29 28 27 26	23 22 1 2.3 2.2
35 36 37 38 39	9.67 982 9.68 006 9.68 029 9.68 052 9.68 075 23	9.73 627 9.73 657 9.73 687 9.73 717 9.73 747	0.26 373 30 0.26 343 30 0.26 313 30 0.26 283 30 0.26 253	9.94 355 9.94 349 6 9.94 342 7 9.94 335 7 9.94 328 7	25 24 23 22 21	2 4.6 4.4 3 6.9 6.6 4 9.2 8.8 5 11.5 11.0 6 13.8 13.2 7 16.1 15.4
40 41 42 43 44	9.68 098 9.68 121 23 9.68 144 23 9.68 167 23 9.68 190 23	9.73 777 9.73 807 9.73 837 9.73 867	0.26 223 30 0.26 193 30 0.26 163 30 0.26 133 30 0.26 103	9.94 321 9.94 314 7 9.94 307 7 9.94 300 7 9.94 293 7	20 19 18 17 16	8 18.4 17.6 9 20.7 19.8
45 46 47 48 49	9.68 213 24 9.68 237 23 9.68 260 23 9.68 283 23 9.68 305 22	9.73 927 9.73 957 9.73 987 9.74 017	0.26 073 30 0.26 043 30 0.26 013 30 0.25 983 30 0.25 953	9.94 286 9.94 279 7 9.94 273 6 9.94 266 7 9.94 259 7	15 14 13 12 11	7 6 1 07 0.6 2 1.4 1.2
50 51 52 53 54	9.68 328 9.68 351 23 9.68 374 23 9.68 397 23 9.68 420 23	9.74 077 9.74 107 9.74 137 9.74 166	0.25 923 30 0.25 893 30 0.25 863 29 0.25 834 30 0.25 804	9.94 252 7 9.94 245 7 9.94 238 7 9.94 231 7 9.94 224 7	10 9 8 7 6	3 2.1 1.8 4 · 2.8 2.4 5 3.5 3.0 6 4.2 3.6 7 4.9 4.2 8 5.6 4.8 9 6.3 5.4
55 56 57 58 59 60	9.68 443 9.68 466 23 9.68 489 9.68 512 9.68 534 23 9.68 557	9.74 226 9.74 256 9.74 286 9.74 316	0.25 774 30 0.25 744 30 0.25 714 30 0.25 684 29 0.25 655 30 0.25 625	9.94 217 9.94 210 7 9.94 203 7 9.94 196 7 9.94 189 7 9.94 182	5 4 3 2 1 0	
,	L Cos d		cd L Tan	L Sin d	,	Prop. Parts

Table 3

29° — Common Logarithms of Trigonometric Functions — 29°

		non Loganinm	s or inge	onometric i	Uncrio	ns — 27
`	L Sin d	L Tan cd	L Ctn	L Cos d		Prop. Parts
o	9.68 557		0.25 625	9.94 182 7	60	
1 2	0.60.607 23	9.74 400 30	0.25 595 0.25 565	9.94 1/0 7	59 58	
3	9.68 625	9.74 465	0.25 535	9.94 161 4	57	
4	9.00 040 23	9.74 494 30	0.25 506	9.94 154 7	56	
6	9.68 671 9.68 694 23	0.74 554 30 (0.25 476 0.25 446	9.94 147 9.94 140 7	55	
7	9.68 716 22	9.74 583 29 (0.25 417	9.94 133	53	
8	9.68 739 23 9.68 762 23	9./4013 1	0.25 387	9.94 126 7 9.94 119 7	52	
- 1	22	30	0.25 357	7	51	80 29 1 3.0 2.9
10 11	9.68 784 9.68 807 23	9.74 673 9.74 702 29	0.25 327 0.25 298	9.94 112 9.94 105	50 49	2 6.0 5.8
12	9.68 829 22	9.74 732 30 (0.25 268	9.94 098	48	4 12.0 11.6
13 14	9.00 052 23	9.74 702 29	0.25 238 0.25 209	9.94 090 7	47	5 15.0 14.5 6 180 17.4
15	0 68 807	0.74.821 (0.25 179	0 94 076	45	5 15.0 14.5 6 18.0 17.4 7 21.0 20.3 8 24.0 23.2
16	9.68 920 23	9.74 851 30	0.25 149	9.94 069	44	8 24.0 23.2 9 27.0 26.1
17 18	9.68 942 23	9.74 000 30	0.25 120 0.25 090	0.04.055 7	43 42	
19	9.68 987 22	0.74.030 29 (0.25 061	9.94 048 7	41	
20	9 69 010	9.74 969	0.25 031	0.04.041	40	er.
21	9.69 032 22	9.74 998 29	0.25 002	9.94 034	39	9
22 23	9.69 055 22	9.75 020 30	0.24 972 0.24 942	9.94 027 7	38 37	·
24	9.69 100 23	9.75 087 29	0.24 913	9.94 012 8	36	•
25	9.69 122	9.75 117 20	0.24 883	9.94 005 "	35	
26 27	9.09 144 23	9.75 176 30	0.24 854 0.24 824	9.93 996 7	34 33	23 22
28	9.69 189 22	9.75 205 29	0.24 795	9.93 984 7	32	1 2.3 2.2 2 4.6 4.4
29	9.09 212 22	9.75 235 29	0.24 765	9.93 977 7	31	3 6.9 6.6 4 9.2 8.8
30 31	9.69 234 9.69 256 22		0.24 736 0.24 706	9.93 970 9.93 963	30 29	5 11.5 11.0
32	0 60 270 23	0 75 323 29	0.24 677	9.93 955	28	6 13.8 13.2 7 16.1 15.4
33	9.69 301 22		0.24 647 0.24 618	9.93 948 7 9.93 941 7	27 26	7 16.1 15.4 8 18.4 17.6 9 20.7 19.8
34	9.69 323 22	29		7	25	0 2011 1310
35 36	9.69 345 9.69 368 23	9 75 441 30	0.24 589 0.24 559	9.93 934 9.93 927	24	
37	9.69 390 22	9.75 470 29	0.24 530	9.93 920 6	23	
38 39	9.69 412 22	9.75 500 29	0.24 500 0.24 471	0.93.912 7	22 21	
40	0.60.456	9 75 558	0.24 442	0 07 808	20	
41	9.69 479	9.75 588 30	0.24 412	9.93 891	19	
42 43	9.69.501 22	9.75 647 30	0.24 383 0.24 353	9.93 664 8	18 17	
44	9.69 545 22		0.24 324	9.93 869 7	16	8 7
45	9.69 567	9.75 705	0.24 295	9.93 862	15	1 0.8 0.7 2 1.6 1.4
46 47	9.69 589 22	9.75 735 30	0.24 265 0.24 236	9.93 855 8	14	8 24 2.1 4 3.2 2.8
48	9.69.611 22	9.75 793 29	0.24 207	9.93 840	1 13	1 K 40 35
49	9.69 655 22	9.75 822 29	0.24 178	9.93 833 7		7 5.6 4.9
20	9.69 677	9.75 852	0.24 148	9.93 826	10	8 6.4 5.6 9 7.2 6.3
51 52	9.69 699 22	9.75 001 29	0.24 119 0.24 090	9.93 019 8	١	1
53	9.69 743 22	9.75 939 29	0.24 061	9.93 804	7	l
54	9.09 700 22	9.75 909 29	0.24 031	9.93 /9/ 8	· · ·	l
55	9.69 787 9.69 809 22	0.76.027 29	0.24 002 0.23 973	9.93 789 9.93 782		j
57	9.69 831 22	9.76 056	0.23 944	9.93 775	3	l
58 59	9.09 000 22	9.76 000 29	0.23 914 0.23 885	9.93 700	1 1	1
60	9.69 897 22	9.76 144 29	0.23 856	9.93 753	Ö	1
 ,	L Cos d	L Ctn cd	L Tan	L Sin	, ,	Prop. Parts
	2 000					1

60° — Common Logarithms of Trigonometric Functions — 60°

30° — Common Logarithms of Trigonometric Functions — 30°

· 1	L Sin d	L Tan cd	L Ctn	L Cos d	,	Prop. Parts
⊣					-	
l ol	9.69 897 9.69 919 22	9.76 144 9.76 173	0.23 856 0.23 827	9.93 753 7 9.93 746 7	60 59	
2 3	9.69 941 22	9.76 202	0.23 798	9.93 738 🚆	58	
3 4	9.69 963 21 9.69 984 21	9.76 231 29 9.76 261 30	0.23 769 0.23 739	9.93/31 -	57	
	22	29	I	9.93 724 7	56	
8	9.70 006 9.70 028 22	9.76 290 9.76 319	0.23 710 0.23 681	9.93 717 9.93 709 8	55 54	30 29
7	9.70 050 22	9.76 348 29	0.23 652	9.93 702 7	53	1 3.0 2.9 2 6.0 5.8
8	9./00/2 21	9./0 3// 20	0.23 623	9.93 695	52	3 9.0 8.7
	9.70 093 22	9.76 406 29	0.23 594	9.93 687 7	51	4 12.0 11.6 5 15.0 14.5
10	9.70 115 9.70 137 22	9.76 435 9.76 464	0.23 565 0.23 536	9.93 680 9.93 673 7	50 49	6 18.0 17.4
12	0.70 150 22	0 76 403 29	0.23 507	0.03.665	48	7 21.0 20.3 8 24.0 23.2
13	9.70 180 21	9.76 522 29	0.23 478	9.93 658	47	9 27.0 26.1
14	9.70 202 22	9./6 551 29	0.23 449	9.93 650 7	46	
18 16	9.70 224 9.70 245 21	9.76 580 9.76 609 29	0.23 420 0.23 391	9.93 643 9.93 636 7	45 44	
17	0.70.267 22	0.76.630 30	0.23 361	9 93 628	43	
18	9.70 288 21	9.76 668 23	0.23 332	9.93 621 4	42	
19	9.70 310 22	9.70 097 28	0.23 303	9.93 614 8	41	28
20 21	9.70 332 21	9.76 725 9.76 754 29	0.23 275 0.23 246	9.93 606 7	40	1 2.8
22	9.70 353 22	9.76 783 29	0.23 246 0.23 217	9.93 599 8	39 38	2 5.6 3 8.4
23	9.70 396	9.76 812 29	0.23 188	9.93 584 7	37	4 11.2 5 14.0
24	9.70 418 22	9.76 841 29	0.23 159	9.93 5// 8	36	G 16.8
25 26	9.70 439	9.76 870 29	0.23 130	9.93 569 7	35	7 19.6 8 22.4
27	9.70 461 21 9.70 482 21	9.76 899 29 9.76 928 29	0.23 101 0.23 072	9.93 562 8 9.93 554 8	34 33	8 22.4 9 25.2
28	9.70 504 22	9.76 957	0.23 043	9.93 547	32	
29	9.70 525 21	9.76 986 29	0.23 014	9.93 539 7	31	
30	9.70 547	9.77 015 29	0.22 985	9.93 532 7	30	
31 32	9.70 508 22	9.77 073 29	0.22 956 0.22 927	9.93 525 8	29 28	
33	9.70 611 21	9.77 101 28	0.22 899	9.93 510	27	22 21
34	9.70 633 22	9.77 130 29	0.22 870	9.93 502 7	26	1 2.2 2.1
35	9.70 654	9.77 159 29	0.22 841	9.93 495	25	2 4.4 4.2 3 6.6 6.3
36 37	9.70 607 22	9.77 100 29	0.22 812 0.22 783	9.93 487 7 9.93 480 7	24 23	4 8.8 8.4
38	9.70 718 21	9.77 246 29	0.22 754	9.93 472	22	5 11.0 10.5 6 13.2 12.6
39	9.70 739 22	9.77 274 28	0.22 726	9.93 403 8	21	7 15.4 14.7 8 17.6 16.8
40	9.70 761 21	9.77 303 29	0.22 697	9.93 457	20	9 19.8 18.9
41 42	9.70 702 21	9.77 361 29	0.22 668 0.22 639	9.93 450 8	19 18	
43	9.70 824 21	9.77 390 29	0.22 610	9.93 435	17	
44	9.70 846 21	9.77 418 29	0.22 582	9.93 427	16	
45	9.70 867	9.77 447 29	0.22 553	9.93 420 8	15	
46 47	9.70 888 21	9.77 476 29	0.22 524 0.22 495	9.93 412 7	14 13	8 7
48	9.70 931 22	9.77 533 28	0.22 467	9.93 397 🙎	12	1 0.8 0.7
49	9.70 952 21	9.77 502 29	0.22 438	9.93 390 8	11	2 1.6 1.4
50	9.70 973 21	9.77 591 28	0.22 409	9.93 382 7	10	2 1.6 1.4 8 2.4 2.1 4 3.2 2.8 5 4.0 3.5 6 4.8 4.2
51 52	0.71.015 21	9.77 648 29	0.22 381 0.22 352	9.93 373 8	9	5 4.0 3.5 6 4.8 4.2
53	9.71 036	9.77 677	0.22 323 0.22 294	9.93 360 6	7	7 5.6 4.9
54	9.71 058 21	9.77 706 28		9.93 352 8	6	8 6.4 5.6 9 7.2 6.3
55	9.71 079 21	9.77 734 29	0.22 266 0.22 237	9.93 344 7	5	
56 57	9.71 100 21	9.77 763 28 9.77 791 28	0.22 237	9.93 337 8	4 3	
58	9.71 142 21	9.77 820 29	0.22 180	9.93 322	3 2 1	
59 60	9.71 163 21 9.71 184 21	9.77 849 28 9.77 877 28	0.22 151 0.22 123	9.93 314 7	0	
-	L Cos d	L Ctn cd		L Sin d	, ,	Prop. Parts
					L	

31° — Common Logarithms of Trigonometric Functions — 31°

1	L Sin d	L Tan	cd L Ctn	L Cos d	,]	Prop. Parts
0 1 2 3 4	9.71 184 9.71 205 21 9.71 226 21 9.71 247 21 9.71 268 21	9.77 877 9.77 906 9.77 935 9.77 963 9.77 992	29 0.22 123 29 0.22 094 29 0.22 065 28 0.22 037 29 0.22 008	9.93 307 9.93 299 8 9.93 291 7 9.93 284 7 9.93 276	60 59 58 57 56	
5 6 7 8 9	9.71 289 9.71 310 21 9.71 331 21 9.71 352 21	9.78 020 9.78 049 9.78 077 9.78 106 9.78 135	29 0.21 980 29 0.21 951 28 0.21 923 29 0.21 894 29 0.21 865	9.93 269 9.93 261 8 9.93 253 9.93 246 9.93 238	55 54 53 52 51	
10 11 12 13 14	9.71 393 9.71 414 21 9.71 435 21 9.71 456 21	9.78 163 9.78 192 9.78 220 9.78 249 9.78 277	28 29 0.21 837 28 0.21 808 29 0.21 780 29 0.21 751 28 0.21 723	9.93 230 7 9.93 223 8 9.93 215 8 9.93 207 8	50 49 48 47 46	29 28 1 29 28 2 5.8 5.6 3 8.7 8.4 4 11.6 11.2 5 14.5 14.0 6 17.4 16.8
15 16 17 18 19	9.71 498 9.71 519 9.71 539 9.71 539 9.71 560 9.71 581 9.71 581	9.78 306 9.78 334 9.78 363 9.78 391 9.78 419	28 0.21 694 29 0.21 666 29 0.21 637 28 0.21 609 28 0.21 581	9.93 192 9.93 184 9.93 177 9.93 169 8	45 44 43 42 41	6 17.4 16.8 7 20.3 19.6 8 23.2 22.4 9 26.1 25.2
20 21 22 23 24	9.71 602 9.71 622 20 9.71 643 21 9.71 664 21	9.78 448 9.78 476 9.78 505 9.78 533 9.78 562	28 0.21 552 28 0.21 524 29 0.21 495 28 0.21 467 29 0.21 438	9.93 154 9.93 146 9.93 138 9.93 131 9.93 131 9.93 132	40 39 38 37 36	
25 26 27 28 29	9.71 705 9.71 726 21 9.71 747 21 9.71 767 20 9.71 788 21	9.78 590 9.78 618 9.78 647 9.78 675 9.78 704	28 0.21 410 28 0.21 382 29 0.21 353 28 0.21 325 29 0.21 326	9.93 115 7 9.93 108 8 9.93 100 8 9.93 092 8	35 34 33 32 31	21 20 1 2.1 2.0 2 4.2 4.0 3 6.3 6.0
30 31 32 33 34	9.71 809 9.71 829 9.71 850 9.71 870 9.71 870 9.71 801	9.78 732 9.78 760 9.78 789 9.78 817 9.78 845	28	9.93 077 9.93 069 8 9.93 061 8 9.93 053 8	30 29 28 27 26	4 8.4 8.0 5 10 5 10.0 6 12 6 12.0 7 14.7 14.0 8 16.8 16.0 9 18.9 18.0
35 36 37 38 39	9.71 911 9.71 932 21 9.71 952 20 9.71 973 21 9.71 974 21	9.78 874 9.78 902 9.78 930 9.78 959 9.78 987	28 0.21 126 28 0.21 098 28 0.21 070 29 0.21 041 28 0.21 013	9.93 038 9.93 030 8 9.93 022 8 9.93 014 9.93 007	25 24 23 22 21	
40 41 42 43 44	9.72 014 9.72 034 9.72 055 9.72 055 9.72 075 9.72 096	9.79 015 9.79 043 9.79 072 9.79 100 9.79 128	28 0.20 985 28 0.20 957 29 0.20 928 28 0.20 900 28 0.20 972	9.92 999 8 9.92 991 8 9.92 983 8 9.92 976 7 9.92 968 8	20 19 18 17 16	s 7
45 46 47 48 49	9.72 116 9.72 137 9.72 137 9.72 157 9.72 177 9.72 178 21	9.79 156 9.79 185 9.79 213 9.79 241 9.79 269	29 0.20 844 29 0.20 815 28 0.20 787 28 0.20 759 28 0.20 759	9.92 960 9.92 952 8 9.92 944 8 9.92 936 8 9.92 936 8	15 14 13 12 11	1 08 0.7 2 1.6 1.4 3 2.4 2.1 4 3.2 2.8 5 4.0 3.5 6 4.8 4.2 7 56 4.9
50 51 52 53 54	9.72 218 9.72 238 20 9.72 259 21 9.72 279 20 9.72 299 20	9.79 297 9.79 326 9.79 354 9.79 382 9.79 410	29 0.20 703 29 0.20 674 28 0.20 646 28 0.20 618 28 0.20 590	9.92 921 9.92 913 9.92 905 8 9.92 897 8	10 9 8 7 6	7 56 4.9 8 6.4 5.6 9 7.2 6.3
55 56 57 58 59	9.72 320 9.72 340 20 9.72 360 20 9.72 381 21 9.72 381 20	9.79 438 9.79 466 9.79 495 9.79 523 9.79 551	28 0.20 562 28 0.20 534 29 0.20 505 28 0.20 477 28 0.20 449	9.92 881 9.92 874 9.92 866 9.92 858 9.92 850	5 4 3 2 1	
60	9.72 421 20 L Cos d	9.79 579 L Ctn	28 0.20 421 cd L Tan	9.92 842 ° L Sin d	,	Prop. Parts

58° — Common Logarithms of Trigonometric Functions — 58°

32° — Common Logarithms of Trigonometric Functions — 32°

1	L Sin d	L Tan cd	L Ctn	L Cos d	,	Prop. Parts
0 1 2 3 4	9.72 421 9.72 441 20 9.72 461 20 9.72 482 21 9.72 502 20	9.79 679 9.79 607 28 9.79 635 28 9.79 663 28 9.79 691 28	0.20 421 0.20 393 0.20 365 0.20 337 0.20 309	9.92 842 9.92 834 9.92 826 8 9.92 818 8 9.92 810 7	60 59 58 57 56	29 28 1 2.9 2.8
5 6 7 8 9	9.72 522 9.72 542 20 9.72 562 20 9.72 582 20 9.72 602 20	9.79 719 28 9.79 747 29 9.79 776 28 9.79 804 28 9.79 832 28	0.20 281 0.20 253 0.20 224 0.20 196 0.20 168	9.92 803 9.92 795 8 9.92 787 8 9.92 779 8 9.92 771 8	55 54 53 52 51	2 5.8 5.6 8 8.7 8.4 4 11.6 11.2 5 14.5 14.0 6 17.4 16.8 7 20.3 19.6 8 23.2 22.4
10 11 12 13 14	9.72 622 9.72 643 21 9.72 663 20 9.72 683 20 9.72 703 20	9.79 860 9.79 888 28 9.79 916 28 9.79 944 28 9.79 972 28	0.20 140 0.20 112 0.20 084 0.20 056 0.20 028	9.92 763 9.92 755 9.92 747 8 9.92 739 8 9.92 731 8	50 49 48 47 46	9 26.1 25.2
16 17 18 19	9.72 723 9.72 743 20 9.72 763 20 9.72 783 20 9.72 803 20 9.72 803 20	9.80 000 9.80 028 9.80 056 9.80 084 9.80 112 28	0.20 000 0.19 972 0.19 944 0.19 916 0.19 888	9.92 723 9.92 715 9.92 707 8 9.92 699 8 9.92 691 8	45 44 43 42 41	1 2.7 2.1 2 5.4 4.2 3 8.1 6.3 4 10.8 8.4 5 13.5 10.5 6 16.2 12.6
20 21 22 23 24	9.72 823 9.72 843 20 9.72 863 20 9.72 883 20 9.72 902 20	9.80 140 9.80 168 28 9.80 195 27 9.80 223 28 9.80 251 28	0.19 860 0.19 832 0.19 805 0.19 777 0.19 749	9.92 683 9.92 675 8 9.92 667 8 9.92 659 9.92 651 8	39 38 37 36	7 18.9 14.7 8 21.6 16.8 9 24.3 18.9
25 26 27 28 29	9.72 922 9.72 942 20 9.72 962 20 9.72 982 20 9.73 002 20	9.80 279 9.80 307 28 9.80 335 28 9.80 363 28 9.80 391 28	0.19 721 0.19 693 0.19 665 0.19 637 0.19 609	9.92 643 9.92 635 9.92 627 8 9.92 619 8 9.92 611 8	35 34 33 32 31	20 19 1 2.0 1.9 2 4.0 3.8 3 6.0 5.7 4 8.0 7.6
30 31 32 33 34	9.73 022 9.73 041 19 9.73 061 20 9.73 081 20 9.73 101 20	9.80 419 9.80 447 27 9.80 474 27 9.80 502 28 9.80 530 28	0.19 581 0.19 553 0.19 526 0.19 498 0.19 470	9.92 603 9.92 595 8 9.92 587 8 9.92 579 8 9.92 571 8	29 28 27 26	5 10.0 9.5 6 12.0 11.4 7 14.0 13.3 8 16.0 15.2 9 18.0 17.1
35 36 37 38 39	9.73 121 9.73 140 9.73 160 9.73 180 9.73 180 9.73 200 19	9.80 558 9.80 586 9.80 614 9.80 642 28 9.80 669 27 9.80 669 28	0.19 442 0.19 414 0.19 386 0.19 358 0.19 331	9.92 563 9.92 555 9.92 546 9.92 538 9.92 530 8	25 24 23 22 21	9 8 1 0.9 0.8 2 1.8 1.6
40 41 42 43 44	9.73 219 9.73 239 20 9.73 259 20 9.73 278 19 9.73 298 20	9.80 697 9.80 725 9.80 753 9.80 781 9.80 808 27 9.80 808	0.19 303 0.19 275 0.19 247 0.19 219 0.19 192	9.92 522 9.92 514 9.92 506 8 9.92 498 9.92 490 8	19 18 17 16	3 2.7 2.4 4 3.6 3.2 5 4.5 4.0 6 5.4 4.8 7 6.3 5.6 8 7.2 6.4
46 46 47 48 49	9.73 318 9.73 337 20 9.73 357 20 9.73 377 19 9.73 396 20	9.80 836 9.80 864 9.80 892 9.80 919 9.80 947 28 28	0.19 164 0.19 136 0.19 108 0.19 081 0.19 053	9.92 482 9.92 473 8 9.92 465 8 9.92 457 8 9.92 449 8	15 14 13 12 11	9 8.1 7.2 7
50 51 52 53 54	9.73 416 9.73 435 20 9.73 455 19 9.73 474 20 9.73 494 19	9.80 975 9.81 003 28 9.81 030 27 9.81 058 28 9.81 086 28 9.81 086 27	0.19 025 0.18 997 0.18 970 0.18 942 0.18 914	9.92 441 9.92 433 8 9.92 425 9.92 416 9.92 408 8	10 9 8 7 6	1 0.7 2 1.4 8 2.1 4 2.8 5 3.5 6 4.2
55 56 57 58 59 60	9.73 513 9.73 533 20 9.73 552 19 9.73 572 20 9.73 591 19 9.73 611 20	9.81 113 9.81 141 28 9.81 169 28 9.81 196 27 9.81 224 28 9.81 252 28	0.18 887 0.18 859 0.18 831 0.18 804 0.18 776 0.18 748	9.92 400 9.92 392 8 9.92 384 8 9.92 376 9.92 367 8 9.92 359	5 4 3 2 1 0	7 4.9 8 5.6 9 6.3
′	L Cos d	L Ctn cd	L Tan	L Sin d	,	Prop. Parts

33° — Common Logarithms of Trigonometric Functions — 33°

,	L Sin d	L Tan	cd	L Ctn	L Cos d	′	Prop. Parts
0 1 2 3 4	9.73 611 9.73 630 9.73 650 9.73 669 9.73 689 9.73 689	9.81 252 9.81 279 9.81 307 9.81 335 9.81 362	27 28 28 27 27	0.18 748 0.18 721 0.18 693 0.18 665 0.18 638	9.92 359 9.92 351 9.92 343 9.92 335 9.92 326 8	60 59 58 57 56	
5 6 7 8 9	9.73 708 9.73 727 9.73 747 9.73 766 19 9.73 785 19	9.81 390 9.81 418 9.81 445 9.81 473 9.81 500	28 27 28 27 28	0.18 610 0.18 582 0.18 555 0.18 527 0.18 500	9.92 318 9.92 310 9.92 302 9.92 293 9.92 285 8	55 54 53 52 51	28 [27 1 2.8 2.7 2 5.6 5.4 8 8.4 8.1 4 11.2 10.8 5 14.0 13.5 6 16.8 16.2 7 19.6 18.9
10 11 12 13 14	9.73 805 9.73 824 9.73 843 9.73 863 9.73 863 19 9.73 882	9.81 528 9.81 556 9.81 583 9.81 611 9.81 638	28 27 28 27 28	0.18 472 0.18 444 0.18 417 0.18 389 0.18 362	9.92 277 9.92 269 9.92 260 9.92 252 8 9.92 244 9	50 49 48 47 46	5 14.0 13.5 6 16.8 16.2 7 19.6 18.9 8 22.4 21.6 9 25.2 24.3
15 16 17 18 19	9.73 901 9.73 921 20 9.73 940 19 9.73 959 19 9.73 978 19	9.81 666 9.81 693 9.81 721 9.81 748 9.81 776	27 28 27 28 27	0.18 334 0.18 307 0.18 279 0.18 252 0.18 224	9.92 235 9.92 227 8 9.92 219 8 9.92 211 9 9.92 202 8	45 44 43 42 41	20 19
20 21 22 23 24	9.73 997 9.74 017 20 9.74 036 19 9.74 055 19 9.74 074 19	9.81 803 9.81 831 9.81 858 9.81 886 9.81 913	28 27 28 27 28	0.18 197 0.18 169 0.18 142 0.18 114 0.18 087	9.92 194 9.92 186 9.92 177 9.92 169 8 9.92 161 9	39 38 37 36	1 2.0 1.9 24 4.0 3.8 8 6.0 5.7 4 8.0 7.6 5 10.0 9.5 6 12.0 11.4
25 26 27 28 29	9.74 093 9.74 113 20 9.74 132 19 9.74 151 19 9.74 170 19	9.81 941 9.81 968 9.81 996 9.82 023 9.82 051	27 28 27 28 27	0.18 059 0.18 032 0.18 004 0.17 977 0.17 949	9.92 152 9.92 144 8 9.92 136 9.92 127 9.92 119 8	35 34 33 32 31	7 14.0 13.3 8 16.0 15.2 9 18.0 17.1
30 31 32 33 34	9.74 189 9.74 208 19 9.74 227 19 9.74 246 19 9.74 265 19	9.82 078 9.82 106 9.82 133 9.82 161 9.82 188	28 27 28 27 27	0.17 922 0.17 894 0.17 867 0.17 839 0.17 812	9.92 111 9 9.92 102 8 9.92 094 8 9.92 086 8 9.92 077 8	29 28 27 26	18 1 1.8
35 36 37 38 39	9.74 284 9.74 303 19 9.74 322 19 9.74 341 19 9.74 360 19	9.82 215 9.82 243 9.82 270 9.82 298 9.82 325	28 27 28 27 27	0.17 785 0.17 757 0.17 730 0.17 702 0.17 675	9.92 069 9.92 060 8 9.92 052 8 9.92 044 9.92 035 8	25 24 23 22 21	2 3.6 8 5.4 4 7.2 5 9.0 6 10.8 7 12.6 8 14.4
40 41 42 43 44	9.74 379 9.74 398 19 9.74 417 19 9.74 436 19 9.74 455 19	9.82 352 9.82 380 9.82 407 9.82 435 9.82 462	28 27 28 27 27	0.17 648 0.17 620 0.17 593 0.17 565 0.17 538	9.92 027 9.92 018 8 9.92 010 8 9.92 002 8 9.91 993 8	19 18 17 16	9 16.2
45 46 47 48 49	9.74 474 9.74 493 19 9.74 512 19 9.74 531 19 9.74 549 18	9.82 489 9.82 517 9.82 544 9.82 571 9.82 599	28 27 27 28 27	0.17 511 0.17 483 0.17 456 0.17 429 0.17 401	9.91 985 9.91 976 9.91 968 9.91 959 9.91 951 9	15 14 13 12 11	9 8 1 0.9 0.8 2 1.8 1.6 8 2.7 2.4
50 51 52 53 54	9.74 568 9.74 587 19 9.74 606 19 9.74 625 19 9.74 644 18	9.82 626 9.82 653 9.82 681 9.82 708 9.82 735	27 28 27 27 27	0.17 374 0.17 347 0.17 319 0.17 292 0.17 265	9.91 942 9.91 934 9.91 925 9.91 917 9.91 908 8	10 9 8 7 6	8 2.7 2.4 4 3.6 3.2 5 4.5 4.0 6 5.4 4.8 7 6.3 5.6 8 7.2 6.4 9 8.1 7.2
55 56 57 58 59 60	9.74 662 9.74 681 9.74 700 9.74 719 9.74 737 19 9.74 756	9.82 762 9.82 790 9.82 817 9.82 844 9.82 871 9.82 899	28 27 27 27 28	0.17 238 0.17 210 0.17 183 0.17 156 0.17 129 0.17 101	9.91 900 9.91 891 9.91 883 9.91 874 9.91 866 9.91 857	5 4 3 2 1 0	
7	L Cos d	L Ctn	cđ	L Tan	L Sin d	,	Prop. Parts

56° — Common Logarithms of Trigonometric Functions — 56°

34° — Common Logarithms of Trigonometric Functions — 34°

'	L Sin d	L Tan cd	L Ctn	L Cos d	′	Prop. Parts
0 1 2 3 4	9.74 756 19 9.74 775 19 9.74 794 18 9.74 812 19 9.74 831 19	9.82 899 9.82 926 27 9.82 953 27 9.82 980 28 9.83 008 28	0.17 101 0.17 074 0.17 047 0.17 020 0.16 992	9.91 857 9.91 849 9.91 840 9.91 832 9.91 823 8	60 59 58 57 56	
5 6 7 8 9	9.74 850 9.74 868 18 9.74 887 19 9.74 906 18 9.74 924 19	9.83 035 9.83 062 27 9.83 089 27 9.83 117 28 9.83 144 27	0.16 965 0.16 938 0.16 911 0.16 883 0.16 856	9.91 815 9.91 806 9.91 798 9.91 789 9.91 781 9.91 781	54 53 52 51	28 27 1 2.8 2.7 2 5.6 5.4 3 8.4 8.1 4 11.2 10.8 5 14.0 13.5 6 16.8 16.2
10 11 12 13 14	9.74 943 9.74 961 19 9.74 980 19 9.74 999 19 9.75 017 18	9.83 171 9.83 198 27 9.83 225 27 9.83 252 28 9.83 280 27	0.16 829 0.16 802 0.16 775 0.16 748 0.16 720	9.91 772 9.91 763 9.91 755 9.91 746 9.91 738 9	50 49 48 47 46	5 14.0 13.5 6 16.8 16.2 7 19.6 18.9 8 22.4 21.6 9 25.2 24.3
16 16 17 18 19	9.75 036 9.75 054 9.75 073 19 9.75 091 18 9.75 110 18	9.83 307 9.83 334 27 9.83 361 27 9.83 388 27 9.83 415 27	0.16 693 0.16 666 0.16 639 0.16 612 0.16 585	9.91 729 9.91 720 9.91 712 9.91 703 9.91 695 8	45 44 43 42 41	26
20 21 22 23 24	9.75 128 9.75 147 9.75 165 9.75 165 19 9.75 184 9.75 202 19	9.83 442 9.83 470 9.83 497 9.83 524 9.83 551 27	0.16 558 0.16 530 0.16 503 0.16 476 0.16 449	9.91 686 9.91 677 8 9.91 669 9 9.91 660 9 9.91 651 8	39 38 37 36	1 2.6 2 5.2 3 7.8 4 10.4 5 13.0 6 15.6
25 26 27 28 29	9.75 221 9.75 239 18 9.75 258 19 9.75 276 18 9.75 294 18	9.83 578 9.83 605 9.83 632 9.83 659 9.83 686 27	0.16 422 0.16 395 0.16 368 0.16 341 0.16 314	9.91 643 9.91 634 9.91 625 9.91 617 9.91 608 9	35 34 33 32 31	7 18.2 8 20.8 9 23.4
31 32 33 34	9.75 313 18 9.75 331 19 9.75 350 19 9.75 368 18 9.75 386 19	9.83 713 9.83 740 28 9.83 768 28 9.83 795 27 9.83 822 27	0.16 287 0.16 260 0.16 232 0.16 205 0.16 178	9.91 599 9.91 591 9.91 582 9.91 573 9.91 565 9	30 29 28 27 26	19 18 1 1.9 1.8
36 37 38 39	9.75 405 9.75 423 18 9.75 441 18 9.75 459 19 9.75 478 18	9.83 849 9.83 876 9.83 903 9.83 930 9.83 930 9.83 957 27	0.16 151 0.16 124 0.16 097 0.16 070 0.16 043	9.91 556 9.91 547 9.91 538 9.91 530 9.91 521 9	25 24 23 22 21	2 3.8 3.6 3 5.7 5.4 4 7.6 7.2 5 9.5 9.0 6 11 4 10 8
40 41 42 43 44	9.75 496 9.75 514 19 9.75 533 18 9.75 551 18 9.75 569 18	9.83 984 9.84 011 27 9.84 038 27 9.84 065 27 9.84 092 27	0.16 016 0.15 989 0.15 962 0.15 935 0.15 908	9.91 512 9.91 504 9.91 495 9.91 486 9.91 477 8	20 19 18 17 16	7 13.3 12.6 8 15.2 14.4 9 17.1 16.2
45 46 47 48 49	9.75 587 9.75 605 19 9.75 624 18 9.75 642 18 9.75 660 18	9.84 119 9.84 146 27 9.84 173 27 9.84 200 27 9.84 227 27	0.15 881 0.15 854 0.15 827 0.15 800 0.15 773	9.91 469 9.91 460 9.91 451 9.91 442 9.91 433 8	15 14 13 12 11	9 8 1 0.9 0.8 2 1.8 1.6
50 51 52 53 54	9.75 678 9.75 696 18 9.75 714 9.75 733 19 9.75 751 18	9.84 254 9.84 280 26 9.84 307 27 9.84 334 27 9.84 361 27	0.15 746 0.15 720 0.15 693 0.15 666 0.15 639	9.91 425 9.91 416 9.91 407 9.91 398 9.91 389 9	10 9 8 7 6	3 2.7 2.4 4 3.6 3.2 5 4.5 4.0 6 5.4 4.8 7 6.3 5.6 8 7.2 6.4 9 8.1 7.2
56 57 58 59 60	9.75 769 9.75 787 9.75 805 18 9.75 823 18 9.75 841 18 9.75 869	9.84 388 9.84 415 27 9.84 442 27 9.84 469 27 9.84 496 27 9.84 523 27	0.15 612 0.15 585 0.15 558 0.15 531 0.15 504 0.15 477	9.91 381 9.91 372 9.91 363 9.91 354 9.91 345 9.91 336	5 4 3 2 1 0	U OIA FIRE
,	L Cos d	L Ctn cd	L Tan	L Sin d	,	Prop. Parts

35° — Common Logarithms of Trigonometric Functions — 35°

'	L Sin d	L Tan	cd	L Ctn	L Cos	d	'	Prop. Parts
0 1 2 3 4	9.75 859 9.75 877 18 9.75 895 18 9.75 913 18 9.75 931	9.84 523 9.84 550 9.84 576 9.84 603 9.84 630	27 26 27 27 27	0.15 477 0.15 450 0.15 424 0.15 397 0.15 370	9.91 336 9.91 328 9.91 319 9.91 310 9.91 301	8 9 9	60 59 58 57 56	
5 6 7 8 9	9.75 949 9.75 967 18 9.75 985 18 9.76 003 18 9.76 021 18	9.84 657 9.84 684 9.84 711 9.84 738 9.84 764	27 27 27 26 27	0.15 343 0.15 316 0.15 289 0.15 262 0.15 236	9.91 292 9.91 283 9.91 274 9.91 266 9.91 257	9 9 8 9	54 53 52 51	27 26 1 2.7 2.6 2 5.4 5.2 3 8.1 7.8 4 10.8 10.4 5 13.5 13.0
10 11 12 13 14	9.76 039 9.76 057 18 9.76 075 18 9.76 093 18 9.76 111 18	9.84 791 9.84 818 9.84 845 9.84 872 9.84 899	27 27 27 27 26	0.15 209 0.15 182 0.15 155 0.15 128 0.15 101	9.91 248 9.91 239 9.91 230 9.91 221 9.91 212	9 9 9 9	50 49 48 47 46	5 13.5 13.0 6 16.2 15.6 7 18.9 18.2 8 21.6 20.8 9 24.3 23.4
16 16 17 18 19	9.76 129 9.76 146 17 9.76 164 18 9.76 182 18 9.76 200 18	9.84 925 9.84 952 9.84 979 9.85 006 9.85 033	27 27 27 27 26	0.15 075 0.15 048 0.15 021 0.14 994 0.14 967	9.91 203 9.91 194 9.91 185 9.91 176 9.91 167	9 9 9 9	45 44 43 42 41	18 17
20 21 22 23 24	9.76 218 9.76 236 18 9.76 253 17 9.76 271 18 9.76 289 18	9.85 059 9.85 086 9.85 113 9.85 140 9.85 166	27 27 27 26 27	0.14 941 0.14 914 0.14 887 0.14 860 0.14 834	9.91 158 9.91 149 9.91 141 9.91 132 9.91 123	9 8 9 9	39 38 37 36	1 1.8 1.7 2 3.6 3.4 8 5.4 5.1 4 7.2 6.8 5 9.0 8.5 6 10.8 10.2 7 12.6 11.9 8 14.4 13.6
25 26 27 28 29	9.76 307 9.76 324 9.76 342 18 9.76 360 18 9.76 378 17	9.85 193 9.85 220 9.85 247 9.85 273 9.85 300	27 27 26 27 27	0.14 807 0.14 780 0.14 753 0.14 727 0.14 700	9.91 114 9.91 105 9.91 096 9.91 087 9.91 078	9 9 9 9	35 34 33 32 31	6 10.8 10.2 7 12.6 11.9 8 14.4 13.6 9 16.2 15.3
30 31 32 33 34	9.76 395 9.76 413 18 9.76 431 18 9.76 448 17 9.76 466 18	9.85 327 9.85 354 9.85 380 9.85 407 9.85 434	27 26 27 27 26	0.14 673 0.14 646 0.14 620 0.14 593 0.14 566	9.91 069 9.91 060 9.91 051 9.91 042 9.91 033	9 9 9 9	29 28 27 26	10 9 1 1.0 0.9
35 36 37 38 39	9.76 484 9.76 501 18 9.76 519 18 9.76 537 18 9.76 554 17 9.76 554 18	9.85 460 9.85 487 9.85 514 9.85 540 9.85 567	27 27 26 27 27	0.14 540 0.14 513 0.14 486 0.14 460 0.14 433	9.91 023 9.91 014 9.91 005 9.90 996 9.90 987	9 9 9 9	25 24 23 22 21	2 2.0 1.8 3 3.0 2.7 4 4.0 3.6 5 5.0 4.5 6 6.0 5.4 7 7.0 6.3 8 8.0 7.2 9 9.0 8.1
40 41 42 43 44	9.76 572 9.76 590 17 9.76 607 9.76 625 18 9.76 642 18	9.85 594 9.85 620 9.85 647 9.85 674 9.85 700	26 27 27 26 27	0.14 406 0.14 380 0.14 353 0.14 326 0.14 300	9.90 978 9.90 969 9.90 960 9.90 951 9.90 942	9 9 9	19 18 17 16	8 8.0 7.2 9 9.0 8.1
45 46 47 48 49	9.76 660 9.76 677 17 9.76 695 18 9.76 712 17 9.76 730 18	9.85 727 9.85 754 9.85 780 9.85 807 9.85 834	27 26 27 27 26	0.14 273 0.14 246 0.14 220 0.14 193 0.14 166	9.90 933 9.90 924 9.90 915 9.90 906 9.90 896	9 9 9 10 9	15 14 13 12 11	8 1 0.8 2 1.6 9 2.4
50 51 52 53 54	9.76 747 9.76 765 9.76 782 17 9.76 800 18 9.76 817 18	9.85 860 9.85 887 9.85 913 9.85 940 9.85 967	27 26 27 27 27 26	0.14 140 0.14 113 0.14 087 0.14 060 0.14 033	9.90 887 9.90 878 9.90 869 9.90 860 9.90 851	9 9 9 9	10 9 8 7 6	2 1.6 3 2.4 4 3.2 5 4.0 6 4.8 7 5.6 8 6.4 9 7.2
55 56 57 58 59 60	9.76 835 9.76 852 17 9.76 870 18 9.76 887 17 9.76 904 17 9.76 922	9.85 993 9.86 020 9.86 046 9.86 073 9.86 100 9.86 126	27 26 27 27 26	0.14 007 0.13 980 0.13 954 0.13 927 0.13 900 0.13 874	9.90 842 9.90 832 9.90 823 9.90 814 9.90 805 9.90 796	10 9 9 9	5 4 3 2 1 0	
7	L Cos d	L Ctn	cd	L Tan	L Sin	đ	,	Prop. Parts

36° — Common Logarithms of Trigonometric Functions — 36°.

,	L Sin d	L Tan	d L Ctn	L Cos d	,	Prop. Parts
0 1 2 3 4	9.76 922 9.76 939 9.76 957 9.76 974 9.76 991 17	9.86 179 9.86 206	0.13 874 0.13 847 0.13 847 0.13 821 0.13 794 0.13 768	9.90 796 9.90 787 9.90 777 9.90 768 9.90 759 9	60 59 58 57 56	
5 6789	9.77 009 9.77 026 17 9.77 043 18 9.77 061 17 9.77 078 17	9.86 259 9.86 285 9.86 312 9.86 338	0.13 741 0.13 715 7 0.13 688 0.13 662 0.13 635	9.90 750 9.90 741 9.90 731 9.90 722 9.90 713 9	55 54 53 52 51	27 26 1 2.7 2.6 2 5.4 5.2 3 8.1 7.8 4 10.8 10.4 5 13.5 13.0
10 11 12 13 14	9.77 095 9.77 112 17 9.77 130 18 9.77 147 17 9.77 164 17	9.86 445 9.86 471 9.86 498	0.13 608 0.13 582 0.13 555 0.13 529 0.13 502	9.90 704 9.90 694 9.90 685 9.90 676 9.90 667	50 49 48 47 46	5 13.5 13.0 6 16.2 15.6 7 18.9 18.2 8 21.6 20.8 9 24.3 23.4
15 16 17 18 19 20	9.77 181 9.77 199 17 9.77 216 17 9.77 233 17 9.77 250 18	9.86 577 9.86 603 9.86 630 2	0.13 476 0.13 449 0.13 423 0.13 397 0.13 370	9.90 657 9.90 648 9.90 639 9.90 630 9.90 620 9	45 44 43 42 41	18 17
21 22 23 24	9.77 268 9.77 285 17 9.77 302 17 9.77 319 17 9.77 336 17	9.86 709 9.86 736 9.86 762 2	0.13 344 0.13 317 0.13 291 0.13 264 0.13 238	9.90 611 9.90 602 9.90 592 10 9.90 583 9.90 574 9	39 38 37 36 35	1 1.8 1.7 2 3.6 3.4 3 5.4 5.1 4 7.2 6.8 5 9.0 8.5 6 10.8 10.2 7 12.6 11.9
25 26 27 28 29	9.77 353 9.77 370 17 9.77 387 18 9.77 405 17 9.77 422 17	9.86 815 9.86 842 9.86 868 9.86 894 2	0.13 211 0.13 185 7 0.13 158 6 0.13 132 6 0.13 106	9.90 565 9.90 555 9.90 546 9.90 537 9.90 527 9	34 33 32 31	7 12.6 11.9 8 14.4 13.6 9 16.2 15.3
30 31 32 33 34	9.77 439 9.77 456 17 9.77 473 17 9.77 490 17 9.77 507 17	9.86 974 9.86 974 9.87 000 9.87 027 2	0.13 079 0.13 053 0.13 026 0.13 000 0.12 973	9.90 518 9.90 509 9.90 499 10 9.90 490 9.90 480 9	30 29 28 27 26	16 1 1.6
35 36 37 38 39	9.77 524 9.77 541 17 9.77 558 17 9.77 575 17 9.77 592 17	9.87 106 9.87 132 9.87 158 9.87 158	0.12 894 0.12 868 0.12 842	9.90 471 9.90 462 9.90 452 9.90 443 9.90 434 10	25 24 23 22 21	2 3.2 3 4.8 4 6.4 5 8.0 6 9.6 7 11.2 8 12.8
40 41 42 43 44	9.77 609 9.77 626 17 9.77 643 17 9.77 660 17 9.77 677 17	9.87 238 2 9.87 264 2 9.87 290 2	6 0.12 736 6 0.12 736 7 0.12 710	9.90 424 9.90 415 9.90 405 9.90 396 9.90 386 9	20 19 18 17 16	9 14.4
46 47 48 49	9.77 694 9.77 711 17 9.77 728 16 9.77 744 17 9.77 761 17	9.87 369 2 9.87 396 2 9.87 422 2	6 0.12 578	9.90 377 9.90 368 9.90 358 9.90 349 9.90 339 9	15 14 13 12 11	10 9 1 1.0 0.9 2 2.0 1.8 3 3.0 2.7
50 51 52 53 54	9.77 778 9.77 795 17 9.77 812 17 9.77 829 17 9.77 846 16	9.87 501 9.87 527 9.87 554 2	6 0.12 499 6 0.12 473 7 0.12 446	9.90 330 9.90 320 9.90 311 9.90 301 9.90 292 10	10 9 8 7 6	8 3.0 2.7 4 4.0 3.6 5 5.0 4.5 6 6.0 5.4 7 7.0 6.3 8 8.0 7.2 9 9.0 8.1
55 56 57 58 59 60	9.77 862 9.77 879 17 9.77 896 17 9.77 913 17 9.77 930 17 9.77 946 16	9.87 633 2 9.87 659 2	0.12 420 0.12 394 7 0.12 367 6 0.12 341 6 0.12 315 0.12 289	9.90 282 9.90 273 9.90 263 9.90 254 9.90 244 9.90 235	5 4 3 2 1 0	
,	L Cos d	L Ctn c	d L Tan	L Sin d	1	Prop. Parts

37° — Common Logarithms of Trigonometric Functions — 37°

•	L Sin d	L Tan	cd L Ctn	L Cos d	′	Prop. Parts
0 1 2 3 4	9.77 946 9.77 963 17 9.77 980 17 9.77 997 17 9.78 013 16	9.87 764 9.87 790 9.87 817	27 0.12 289 26 0.12 262 26 0.12 236 27 0.12 210 27 0.12 183	9.90 235 9.90 225 9.90 216 9.90 206 9.90 197	60 59 58 57 56	
5 6 7 8 9	9.78 030 9.78 047 16 9.78 063 17 9.78 080 17 9.78 097 16	9.87 843 9.87 869 9.87 895 9.87 922 9.87 948	26 0.12 157 26 0.12 131 26 0.12 105 27 0.12 078 26 0.12 052	9.90 187 9.90 178 9.90 168 9.90 159 9.90 149 10	55 54 53 52 51	27 26
10 11 12 13 14	9.78 113 9.78 130 17 9.78 147 17 9.78 163 17 9.78 180 17	9.88 027 9.88 053 9.88 079	0.12 026 26 0.12 000 27 0.11 973 26 0.11 947 26 0.11 921	9.90 139 9.90 130 9.90 120 9.90 111 9.90 101 10	49 48 47 46	1 2.7 2.6 2 5.4 5.2 3 8.1 7.8 4 10.8 10.4 5 13.5 13.0 6 16.2 15.6 7 18.9 18.2
15 16 17 18 19 20	9.78 197 9.78 213 16 9.78 230 17 9.78 246 16 9.78 263 17 9.78 280	9.88 158 9.88 184 9.88 210	26 0.11 895 27 0.11 869 26 0.11 816 26 0.11 790 26 0.11 764	9.90 091 9.90 082 9.90 072 9.90 063 9.90 053 10 9.90 043	45 44 43 42 41 40	8 21.6 20.8 9 24.3 23.4
21 22 23 24 25	9.78 296 16 9.78 313 17 9.78 329 16 9.78 329 17 9.78 346 17	9.88 262 9.88 289 9.88 315 9.88 341	26 0.11 738 27 0.11 711 26 0.11 685 26 0.11 659	9.90 034 10 9.90 024 10 9.90 014 10 9.90 005 9 9.90 005	39 38 37 36 35	
26 27 28 29	9.78 379 17 9.78 395 16 9.78 412 17 9.78 428 16 9.78 445	9.88 393 9.88 420 9.88 446 9.88 472	26 0.11 607 27 0.11 580 26 0.11 554 26 0.11 528	9.89 985 9 9.89 976 9 9.89 966 10 9.89 956 9	34 33 32 31 30	17 16 1 1.7 1.6 2 3.4 3.2 3 5.1 4.8 4 6.8 6.4
31 32 33 34 35	9.78 461 17 9.78 478 16 9.78 494 16 9.78 510 17 9.78 527	9.88 524 9.88 550 9.88 577 9.88 603	26 0.11 476 26 0.11 450 27 0.11 423 26 0.11 397	9.89 937 10 9.89 927 9 9.89 918 9 9.89 908 10 9.89 808	29 28 27 26 25	5 8.5 8.0 6 10.2 9.6 7 11.9 11.2 8 13.6 12.8 9 15.3 14.4
36 37 38 39	9.78 543 17 9.78 560 16 9.78 576 16 9.78 592 17 9.78 609	9.88 655 9.88 681 9.88 707	26 0.11 345 26 0.11 319 26 0.11 293 26 0.11 267 26 0.11 241	9.89 888 9 9.89 879 9 9.89 869 10 9.89 859 10	24 23 22 21 20	
41 42 43 44	9.78 625 16 9.78 642 17 9.78 642 16 9.78 658 16 9.78 674 17 9.78 691	9.88 786 9.88 812 9.88 838	27 0.11 241 26 0.11 188 26 0.11 162 26 0.11 136 26 0.11 110	9.89 840 9 9.89 830 10 9.89 820 10 9.89 810 9	19 18 17 16	10 9 1 1.0 0.9
46 47 48 49 50	9.78 707 16 9.78 723 16 9.78 739 16 9.78 756 17 9.78 772 16	9.88 916 9.88 942 9.88 968 9.88 994	26 0.11 084 26 0.11 058 26 0.11 032 26 0.11 006	9.89 791 10 9.89 781 10 9.89 771 10 9.89 761 9	14 13 12 11	2 2.0 1.8 3 3.0 2.7 4 4.0 3.6 5 5.0 4.5 6 6.0 5.4 7 7.0 6.3 8 8.0 7.2
51 52 53 54	9.78 788 17 9.78 805 17 9.78 821 16 9.78 837 16	9.89 046 9.89 073 9.89 099 9.89 125	26 0.10 954 27 0.10 927 26 0.10 901 26 0.10 875	9.89 742 10 9.89 732 10 9.89 722 10 9.89 712 10	9 8 7 6 5	9 9.0 8.1
56 57 58 59 60	9.78 869 16 9.78 886 16 9.78 902 16 9.78 918 16 9.78 934	9.89 177 9.89 203 9.89 229	26 0.10 823 26 0.10 797 26 0.10 771 26 0.10 745 26 0.10 719	9.89 693 10 9.89 683 10 9.89 673 10 9.89 663 10 9.89 653	4 3 2 1 0	
′	L Cos d	L Ctn	cd L Tan	L Sin d	. *	Prop. Parts

52° — Common Logarithms of Trigonometric Functions — 52°

38° — Common Logarithms of Trigonometric Functions — 38°

Cost Cost	Deen Dant-
1	Prop. Parts
2 9.78 967 16 9.89 359 26 0.10 667 9.89 633 19 58	
4 9.78 999 16 9.89 385 26 0.10 616 9.89 614 10 56 5 9.79 015 16 9.89 417 26 0.10 589 9.89 604 10 54 7 9.79 047 16 9.89 445 26 0.10 537 9.89 584 10 53 8 9.79 063 16 9.89 485 26 0.10 517 9.89 574 10 52 9 9.79 079 16 9.89 615 26 0.10 485 9.89 574 10 51 10 9.79 095 16 9.89 561 26 0.10 485 9.89 574 10 51 11 9.79 111 17 9.89 567 26 0.10 485 9.89 544 10 51 12 9.79 128 16 9.89 697 26 0.10 433 9.89 544 10 49 14 9.79 160 16 9.89 697 26 0.10 351 9.89 514 10 47 14 9.79 176 16 9.89 697 26 0.10 352 9.89 514 10 47 16 9.79 192 16 9.89 697 26 0.10 303 9.89 495 10 47 17 9.79 208 16 9.89 773 26 0.10 275 9.89 485 10 43 18 9.79 240 16 9.89 773 26 0.10 251 9.89 475 10 42 19 9.79 272 16 9.89 877 26 0.10 251 9.89 475 10 42 20 9.79 272 16 9.89 877 26 0.10 251 9.89 455 10 41 20 9.79 272 16 9.89 877 26 0.10 123 9.89 445 10 39 21 9.79 272 16 9.89 873 26 0.10 173 9.89 445 10 39 22 9.79 386 16 9.89 873 26 0.10 173 9.89 445 10 39 22 9.79 386 16 9.89 873 26 0.10 173 9.89 445 10 39 23 9.79 367 16 9.89 873 26 0.10 10 24 9.79 367 16 9.89 873 26 0.10 10 25 9.79 367 16 9.89 983 26 0.10 017 9.89 385 10 33 26 9.79 367 16 9.89 879 26 0.10 017 9.89 345 10 36 26 9.79 367 16 9.89 879 26 0.10 017 9.89 345 10 36 26 9.79 368 16 9.90 368 26 0.09 784 9.89 374 10 28 35 9.79 437 16 9.90 164 26 0.09 784 9.89 344 10 29 36 9.79 558 16 9.90 578 26 0.09 680 9.89 324 10 27 36 9.79 568 16 9.90 578 26 0.09 577 9.89 251 10 16 40 9.79 573 16 9.90 578 26 0.09 577 9.89 251 10 16 40 9.79 568 16 9.90 578 26	
5 9.79 015 16 9.89 417 26 0.10 563 9.89 594 10 56 6 9.79 031 16 9.89 437 26 0.10 563 9.89 594 10 54 7 9.79 047 16 9.89 489 26 0.10 511 9.89 574 10 52 9 9.79 079 16 9.89 615 26 0.10 411 9.89 564 10 52 10 9.79 095 16 9.89 561 26 0.10 459 9.89 564 10 51 11 9.79 111 17 9.89 567 26 0.10 459 9.89 554 10 49 12 9.79 124 16 9.89 667 26 0.10 335 9.89 534 10 49 15 9.79 176 16 9.89 671 26 0.10 355 9.89 504 10 46 16 9.79 172 16 9.89 671 26 0.10 303 9.89 504 9 45 16 9	26 25
6 9.79 031 16 9.89 437 26 0.10 563 9.89 594 10 54 9.79 047 16 9.89 463 26 0.10 537 9.89 584 10 52 0.10 537 9.89 584 10 52 0.10 537 9.89 584 10 52 0.10 537 9.89 584 10 52 0.10 537 9.89 584 10 52 0.10 537 9.89 584 10 52 0.10 537 9.89 584 10 52 0.10 537 9.89 564 10 51 10 9.79 111 9.79 111 17 9.89 567 26 0.10 433 9.89 544 10 49 12 9.79 124 16 9.89 619 26 0.10 381 9.89 534 10 48 13 9.79 140 16 9.89 645 26 0.10 381 9.89 534 10 46 14 14 9.79 160 16 9.89 645 26 0.10 381 9.89 544 10 46 14 14 9.79 170 160 16 9.89 671 26 0.10 325 9.89 514 10 46 170 170 9.79 208 16 9.89 772 26 0.10 205 9.89 485 10 43 18 9.79 224 16 9.89 773 26 0.10 225 9.89 465 10 41 19 9.79 240 16 9.89 773 26 0.10 225 9.89 465 10 41 19 9.79 240 16 9.89 773 26 0.10 225 9.89 465 10 41 19 9.79 240 16 9.89 801 22 9.79 288 16 9.89 801 22 9.79 288 16 9.89 801 22 9.79 288 16 9.89 801 22 9.79 288 16 9.89 801 22 9.79 288 16 9.89 801 22 9.79 304 16 9.89 879 26 0.10 10 25 9.89 445 10 39 22 9.79 304 16 9.89 879 26 0.10 173 9.89 445 10 39 22 9.79 304 16 9.89 879 26 0.10 173 9.89 445 10 37 24 9.79 319 16 9.89 801 26 0.10 173 9.89 445 10 37 24 9.79 319 16 9.89 935 26 0.10 043 9.89 355 10 33 22 9.79 361 16 9.89 801 26 0.10 043 9.89 355 10 33 22 9.79 361 16 9.89 935 26 0.10 043 9.89 355 10 33 28 9.79 351 16 9.89 935 26 0.10 043 9.89 355 10 33 28 9.79 351 16 9.89 935 26 0.10 043 9.89 355 10 33 28 9.79 351 16 9.89 935 26 0.10 043 9.89 355 10 33 32 9.79 463 16 9.90 060 26 0.09 981 9.89 354 10 22 33 9.79 463 16 9.90 060 26 0.09 981 9.89 354 10 26 33 9.79 526 16 9.90 242 26 0.09 982 9.89 324 10 22 34 34 9.79 478 16 9.90 162 26 0.09 886 9.89 324 10 22 34 34 9.79 478 16 9.90 060 26 0.09 980 9.89 324 10 22 34 34 9.79 478 16 9.90 060 26 0.09 680 9.89 324 10 22 34 34 9.79 478 16 9.90 060 26 0.09 680 9.89 324 10 22 34 34 9.79 478 16 9.90 060 26 0.09 680 9.89 324 10 22 34 34 9.79 686 16 9.90 260 0.09 680 9.89 324 10 22 34 34 9.79 686 16 9.90 260 0.09 680 9.89 323 10 16 44 9.79 636 16 9.90 260 0.09 680 9.89 323 10 16 9.90 370 68 9.89 323 10 16 9.90 678 26 0.09 473 9.89 135 10 13 14 14	1 2.6 2.5 2 5.2 5.0 3 7.8 7.5
1	3 7.8 7.5 4 10.4 10.0
9 9.79 079 16 9.89 515 22 0.10 485 9.89 564 10 51	5 13.0 12.5
10	6 15.6 15.0 7 18.2 17.5
112 9.79 128 16 9.89 593 26 0.10 407 9.89 534 10 48 13 9.79 144 16 9.89 619 26 0.10 355 9.89 524 10 47 47 14 9.79 160 16 9.89 645 26 0.10 355 9.89 514 10 46 16 9.89 619 26 0.10 355 9.89 514 10 46 16 9.79 192 16 9.89 671 26 0.10 355 9.89 504 9 44 16 16 9.79 192 16 9.89 697 26 0.10 303 9.89 495 10 43 18 9.79 224 16 9.89 749 26 0.10 251 9.89 475 10 42 19 9.79 240 16 9.89 775 26 0.10 251 9.89 445 10 41 19 9.79 240 16 9.89 776 26 0.10 225 9.89 465 10 41 19 9.79 240 16 9.89 879 26 0.10 251 9.89 445 10 39 222 9.79 288 16 9.89 857 26 0.10 173 9.89 445 10 39 222 9.79 288 16 9.89 857 26 0.10 173 9.89 445 10 39 222 9.79 288 16 9.89 857 26 0.10 173 9.89 445 10 39 222 9.79 381 16 9.89 905 26 0.10 10 173 9.89 445 10 38 23 9.79 304 16 9.89 879 26 0.10 121 9.89 425 10 37 24 9.79 319 16 9.89 905 26 0.10 095 9.89 415 10 36 25 9.79 351 16 9.89 905 26 0.10 095 9.89 415 10 36 25 9.79 351 16 9.89 905 26 0.10 0043 9.89 395 10 35 28 9.79 351 16 9.89 983 26 0.10 017 9.89 385 10 33 22 9.79 389 16 9.90 009 26 0.09 991 9.89 375 10 32 29 9.79 389 16 9.90 009 26 0.09 991 9.89 375 10 32 29 9.79 389 16 9.90 009 26 0.09 991 9.89 375 10 32 29 9.79 389 16 9.90 009 26 0.09 988 88 9.89 354 10 29 3.79 473 16 9.90 112 26 0.09 882 9.89 344 10 28 33 9.79 463 16 9.90 182 26 0.09 862 9.89 344 10 28 33 9.79 463 16 9.90 164 26 0.09 888 9.89 334 10 28 33 9.79 463 16 9.90 164 26 0.09 888 9.89 334 10 28 33 9.79 463 16 9.90 216 26 0.09 784 9.89 294 10 22 33 9.79 558 16 9.90 242 26 0.09 784 9.89 294 10 22 33 9.79 558 16 9.90 242 26 0.09 784 9.89 294 10 22 33 9.79 558 16 9.90 377 26 0.09 603 9.89 254 10 12 44 9.79 569 16 9.90 377 26 0.09 603 9.89 233 10 17 44 9.79 569 16 9.90 377 26 0.09 603 9.89 233 10 17 44 9.79 668 16 9.90 577 26 0.09 473 9.89 183 10 13 48 9.79 661 16 9.90 577 26 0.09 473 9.89 183 10 13 48 9.79 662 16 9.90 557 26 0.09 473 9.89 183 10 13 48 9.79 662 16 9.90 557 26 0.09 473 9.89 183 10 13 54 9.79 715 16 9.90 558 26 0.09 479 9.89 183 10 13 54 9.79 715 16 9.90 563 26 0.09 370 9.89 132 10 14 49 9.79 715 16 9.90 567 26 0.09 479 9.89 183 10 13 54 9	8 20.8 20.0 9 23.4 22.5
13	
14 9.79 160 16 9.89 645 26 0.10 355 9.89 514 10 46 18 9.79 176 16 9.89 671 26 0.10 329 9.89 504 9 44 17 9.79 208 16 9.89 723 26 0.10 277 9.89 485 10 43 18 9.79 224 16 9.89 775 26 0.10 251 9.89 465 10 41 20 9.79 226 16 9.89 877 26 0.10 199 9.89 465 10 41 20 9.79 226 16 9.89 801 26 0.10 199 9.89 455 10 40 21 9.79 272 16 9.89 801 26 0.10 173 9.89 445 10 39 22 9.79 288 16 9.89 879 26 0.10 173 9.89 445 10 39 22 9.79 319 16 9.89 879 26 0.10 173 9.89 455 10 37 24 <	
16 9.79 102 16 9.89 697 26 0.10 303 9.89 495 9 44 17 9.79 208 16 9.89 773 26 0.10 277 9.89 485 10 43 18 9.79 224 16 9.89 779 26 0.10 225 9.89 465 10 41 20 9.79 226 16 9.89 801 26 0.10 173 9.89 445 10 39 21 9.79 272 16 9.89 857 26 0.10 173 9.89 445 10 38 22 9.79 281 6 9.89 857 26 0.10 173 9.89 435 10 33 22 9.79 304 16 9.89 857 26 0.10 121 9.89 435 10 36 24 9.79 319 16 9.89 957 26 0.10 095 9.89 415 10 36 25 9.79 351 16 9.89 957 26 0.10 043 9.89 395 10 34 26 9.79 367 16 9.89 957 26 0.10 043 9.89 355 10 34 27 9.79 367 16 9.89 957 26 0.10 017 9.89 355 10 34 28 9.79 381 16 9.89 957 26	17 16
16	1 1.7 1.6
18 9.79 224 16 9.89 749 26 0.10 251 9.89 475 10 42 19 9.79 240 16 9.89 776 26 0.10 225 9.89 465 10 41 20 9.79 265 16 9.89 827 26 0.10 199 9.89 455 10 39 21 9.79 272 16 9.89 827 26 0.10 173 9.89 445 10 39 22 9.79 288 16 9.89 853 26 0.10 147 9.89 445 10 37 24 9.79 319 16 9.89 905 26 0.10 095 9.89 415 10 36 25 9.79 351 16 9.89 957 26 0.10 095 9.89 415 10 36 26 9.79 357 16 9.89 957 26 0.10 043 9.89 355 10 34 27 9.79 367 16 9.89 983 26 0.10 043 9.89 355 10 32 28 9.79 381 16 9.89 905 26 0.09 991 9.89 355 10 33 28 9.79 393 16 9.90 009 26 0.09 981 9.89 354 10 32 29 9.79 399 16 9.90 086 26 0.09 983 9.89 354 10 <t< td=""><td>2 3.4 3.2 3 5.1 4.8</td></t<>	2 3.4 3.2 3 5.1 4.8
20 9.79 260 16 9.89 801 26 0.10 123 9.89 445 10 39 222 9.79 288 16 9.89 827 26 0.10 121 9.89 445 10 38 23 9.79 304 16 9.89 879 26 0.10 121 9.89 425 10 37 24 9.79 319 16 9.89 905 26 0.10 121 9.89 425 10 37 26 0.10 95 9.89 415 10 36 26 9.79 351 16 9.89 907 26 0.10 095 9.89 415 10 36 26 9.79 351 16 9.89 907 26 0.10 095 9.89 415 10 36 26 9.79 351 16 9.89 907 26 0.10 0095 9.89 415 10 36 26 9.79 351 16 9.89 907 26 0.10 0095 9.89 405 10 35 27 9.79 367 16 9.89 907 26 0.10 017 9.89 338 10 33 32 28 9.79 383 16 9.90 009 26 0.09 991 9.89 375 10 32 29 9.79 399 16 9.90 005 26 0.09 965 9.89 364 11 31 31 30 9.79 415 16 9.90 0061 25 0.09 939 9.89 344 10 29 31 9.79 431 16 9.90 0061 25 0.09 914 9.89 344 10 29 31 9.79 431 16 9.90 112 26 0.09 888 9.89 334 10 28 33 9.79 453 16 9.90 112 26 0.09 886 9.89 314 10 26 33 9.79 478 16 9.90 112 26 0.09 836 9.89 314 10 26 35 9.79 478 16 9.90 126 26 0.09 836 9.89 314 10 26 36 9.79 558 16 9.90 242 26 0.09 752 9.89 264 10 27 37 9.79 558 16 9.90 242 26 0.09 752 9.89 244 10 23 39 9.79 558 16 9.90 242 26 0.09 752 9.89 244 10 22 39 9.79 558 16 9.90 242 26 0.09 752 9.89 244 10 22 39 9.79 558 16 9.90 242 26 0.09 766 9.89 244 10 19 9.79 573 16 9.90 346 26 0.09 654 9.89 244 10 19 9.79 565 16 9.90 346 26 0.09 654 9.89 244 10 19 9.79 565 16 9.90 347 26 0.09 659 9.89 244 10 19 9.79 565 16 9.90 347 26 0.09 659 9.89 223 10 16 44 9.79 636 16 9.90 371 26 0.09 659 9.89 223 10 16 44 9.79 636 16 9.90 371 26 0.09 659 9.89 223 10 16 44 9.79 636 16 9.90 371 26 0.09 659 9.89 223 10 16 44 9.79 636 16 9.90 371 26 0.09 659 9.89 223 10 16 44 9.79 636 16 9.90 371 26 0.09 659 9.89 223 10 16 44 9.79 636 16 9.90 371 26 0.09 659 9.89 223 10 16 44 9.79 636 16 9.90 507 26 0.09 447 9.89 162 10 11 10 9.79 751 16 9.90 553 25 0.09 447 9.89 162 10 11 11 15 9.79 746 16 9.90 567 26 0.09 447 9.89 162 10 11 11 15 9.79 746 16 9.90 567 26 0.09 447 9.89 162 10 11 11 11 11 11 11 11 11 11 11 11 11	4 6.8 6.4
21 9.79 272 16 9.89 827 26 0.10 147 9.89 445 10 38 38 39.79 304 16 9.89 853 26 0.10 147 9.89 425 10 37 24 9.79 319 16 9.89 879 26 0.10 096 9.89 415 10 36 25 37 367 16 9.89 905 26 0.10 096 9.89 415 10 36 26 9.79 351 16 9.89 905 26 0.10 096 9.89 415 10 36 26 9.79 351 16 9.89 957 26 0.10 043 9.89 395 10 33 34 27 9.79 367 16 9.89 983 26 0.10 017 9.89 385 10 33 34 27 9.79 367 16 9.89 983 26 0.10 017 9.89 385 10 33 32 9.79 415 6 9.90 009 26 0.09 991 9.89 375 11 31 31 9.79 431 16 9.90 061 25 0.09 939 9.89 354 10 33 32 9.79 447 16 9.90 1012 26 0.09 888 9.89 334 10 29 33 9.79 447 16 9.90 112 26 0.09 888 9.89 334 10 28 33 9.79 463 16 9.90 104 26 0.09 836 9.89 314 10 26 36 9.79 478 16 9.90 164 26 0.09 836 9.89 314 10 26 36 9.79 581 16 9.90 216 26 0.09 836 9.89 314 10 26 38 9.79 542 16 9.90 216 26 0.09 758 9.89 344 10 25 38 9.79 542 16 9.90 216 26 0.09 758 9.89 344 10 23 23 39 9.79 558 16 9.90 242 26 0.09 758 9.89 244 10 23 39 9.79 558 16 9.90 320 26 0.09 603 9.89 254 10 21 24 27 27 28 28 28 28 28 28	6 10.2 9.6
22 9.79 304 16 9.89 879 26 0.10 121 9.89 435 10 37 24 9.79 319 16 9.89 879 26 0.10 021 9.89 425 10 36 25 9.79 335 16 9.89 905 26 0.10 069 9.89 415 10 36 26 9.79 335 16 9.89 937 26 0.10 043 9.89 395 10 34 27 9.79 367 16 9.89 983 26 0.10 017 9.89 335 10 33 28 9.79 383 16 9.90 009 26 0.09 991 9.89 375 10 32 29 9.79 399 16 9.90 005 26 0.09 965 9.89 364 11 31 30 9.79 415 16 9.90 085 26 0.09 965 9.89 364 11 31 30 9.79 415 16 9.90 086 26 0.09 914 9.89 334 10 29 31 9.79 431 16 9.90 086 26 0.09 914 9.89 334 10 29 32 9.79 447 16 9.90 112 26 0.09 888 9.89 334 10 29 33 9.79 447 16 9.90 112 26 0.09 886 9.89 344 10 29 34 9.79 478 16 9.90 164 26 0.09 862 9.89 324 10 27 34 9.79 478 16 9.90 164 26 0.09 862 9.89 314 10 26 35 9.79 526 16 9.90 242 26 0.09 784 9.89 294 10 24 37 9.79 526 16 9.90 216 26 0.09 782 9.89 244 10 23 38 9.79 542 16 9.90 216 26 0.09 784 9.89 294 10 24 37 9.79 528 16 9.90 242 26 0.09 782 9.89 274 10 22 38 9.79 558 16 9.90 242 26 0.09 706 9.89 264 10 11 40 9.79 573 9.90 320 268 26 0.09 654 9.89 233 10 16 40 9.79 573 9.90 320 268 26 0.09 654 9.89 233 10 16 45 9.79 665 16 9.90 371 26 0.09 659 9.89 233 10 16 46 9.79 668 16 9.90 371 26 0.09 659 9.89 233 10 16 46 9.79 668 16 9.90 371 26 0.09 659 9.89 233 10 16 46 9.79 668 16 9.90 371 26 0.09 659 9.89 233 10 16 46 9.79 668 16 9.90 371 26 0.09 659 9.89 233 10 16 47 9.79 684 16 9.90 577 26 0.09 677 9.89 213 10 16 48 9.79 669 16 9.90 577 26 0.09 477 9.89 183 10 13 48 9.79 689 16 9.90 577 26 0.09 477 9.89 183 10 13 49 9.79 715 16 9.90 578 26 0.09 447 9.89 162 10 11 50 9.79 731 15 9.90 578 26 0.09 447 9.89 162 10 11 50 9.79 731 15 9.90 578 26 0.09 370 9.89 132 10 9 9.79 756 16 9.90 577 26 0.09 447 9.89 162 10 12 50 9.79 751 16 9.90 578 26 0.09 447 9.89 162 10 12 50 9.79 751 16 9.90 578 26 0.09 370 9.89 132 10 16 50 9.79 751 16 9.90 578 26 0.09 370 9.89 132 10 18 50 9.79 751 16 9.90 578 26 0.09 370 9.89 132 10 18 50 9.79 751 16 9.90 577 26 0.09 477 9.89 162 10 10 9.80 577 51 9.79 766 16 9.90 6	7 11.9 11.2 8 13.6 12.8
24 9.79 319 16 9.89 905 26 0.10 095 9.89 415 10 36 26 9.79 351 16 9.89 905 26 0.10 095 9.89 415 10 35 26 9.79 351 16 9.89 937 26 0.10 043 9.89 395 10 34 27 9.79 367 16 9.89 983 26 0.10 017 9.89 385 10 33 28 9.79 383 16 9.90 009 26 0.09 991 9.89 375 11 32 29 9.79 399 16 9.90 009 26 0.09 991 9.89 375 11 32 29 9.79 491 16 9.90 086 26 0.09 991 9.89 364 10 31 9.79 451 16 9.90 086 26 0.09 984 9.89 344 10 29 32 9.79 447 16 9.90 112 26 0.09 888 9.89 334 10 29 32 9.79 447 16 9.90 112 26 0.09 888 9.89 334 10 28 33 9.79 463 16 9.90 164 26 0.09 886 9.89 334 10 28 33 9.79 463 16 9.90 164 26 0.09 886 9.89 314 10 26 36 9.79 510 16 9.90 164 26 0.09 886 9.89 314 10 26 36 9.79 510 16 9.90 164 26 0.09 886 9.89 314 10 26 36 9.79 510 16 9.90 216 26 0.09 784 9.89 294 10 24 37 9.79 526 16 9.90 242 26 0.09 758 9.89 284 10 23 38 9.79 526 16 9.90 268 26 0.09 758 9.89 284 10 22 39 9.79 558 16 9.90 268 26 0.09 706 9.89 264 10 21 40 9.79 573 16 9.90 268 26 0.09 706 9.89 264 10 21 40 9.79 573 16 9.90 320 26 0.09 680 9.89 254 10 21 42 9.79 605 16 9.90 371 26 0.09 603 9.89 233 10 17 44 9.79 665 16 9.90 371 26 0.09 603 9.89 223 10 17 44 9.79 665 16 9.90 371 26 0.09 603 9.89 223 10 17 44 9.79 668 16 9.90 371 26 0.09 603 9.89 223 10 17 44 9.79 668 16 9.90 371 26 0.09 603 9.89 223 10 17 44 9.79 668 16 9.90 371 26 0.09 629 9.89 233 10 17 44 9.79 668 16 9.90 577 26 0.09 551 9.89 193 10 14 48 9.79 668 6 9.90 577 26 0.09 577 9.89 133 10 13 48 9.79 668 16 9.90 577 26 0.09 473 9.89 183 10 13 48 9.79 668 16 9.90 577 26 0.09 473 9.89 183 10 13 48 9.79 698 15 9.90 577 26 0.09 473 9.89 152 10 10 9.79 7715 16 9.90 578 26 0.09 473 9.89 152 10 10 9.79 7715 16 9.90 578 26 0.09 479 9.89 152 10 10 9.79 7715 16 9.90 578 26 0.09 479 9.89 152 10 10 9.79 7715 16 9.90 673 26 0.09 370 9.89 142 10 9.79 772 16 9.90 673 26 0.09 370 9.89 142 10 9.90 577 26 0.09 370 9.89 142 10 9.90 577 26 0.09 370 9.89 142 10 9.90 577 26 0.09 370 9.89 142 10 9.90 577 26 0.09 370 9.89 142 10 9.90 577 26 0.09 370 9.89 142 10 9.90 577 26 0.09 370 9.89 142 10 9.90 577 26 0.09 370 9.89 142 10	9 15.3 14.4
26 9.79 351 16 9.89 931 26 0.10 069 9.89 405 10 35 26 9.79 361 16 9.89 983 26 0.10 017 9.89 385 10 33 28 9.79 383 16 9.90 009 26 0.09 991 9.89 375 11 31 32 29 9.79 399 16 9.90 035 26 0.09 965 9.89 364 11 31 31 32 30 9.79 415 16 9.90 086 26 0.09 991 9.89 354 10 32 33 9.79 463 16 9.90 112 26 0.09 888 9.89 334 10 29 32 9.79 447 16 9.90 112 26 0.09 888 9.89 334 10 28 33 9.79 463 16 9.90 112 26 0.09 862 9.89 344 10 28 33 9.79 463 16 9.90 164 26 0.09 886 9.89 314 10 26 34 9.79 478 16 9.90 164 26 0.09 886 9.89 314 10 26 36 9.79 510 16 9.90 164 26 0.09 886 9.89 314 10 26 36 9.79 510 16 9.90 164 26 0.09 886 9.89 314 10 26 36 9.79 510 16 9.90 164 26 0.09 886 9.89 314 10 26 36 9.79 510 16 9.90 216 26 0.09 784 9.89 294 10 24 37 9.79 526 16 9.90 216 26 0.09 784 9.89 224 10 23 38 9.79 558 16 9.90 268 26 0.09 758 9.89 284 10 23 38 9.79 558 16 9.90 268 26 0.09 732 9.89 274 10 22 39 9.79 558 16 9.90 268 26 0.09 706 9.89 264 10 21 40 9.79 573 16 9.90 320 26 0.09 680 9.89 254 10 21 40 9.79 569 16 9.90 371 26 0.09 603 9.89 233 10 17 44 9.79 605 16 9.90 371 26 0.09 603 9.89 233 10 17 44 9.79 665 16 9.90 371 26 0.09 603 9.89 223 10 17 44 9.79 665 16 9.90 371 26 0.09 603 9.89 223 10 17 44 9.79 668 16 9.90 449 26 0.09 577 9.89 213 10 16 46 9.79 668 16 9.90 371 26 0.09 603 9.89 223 10 17 44 9.79 668 16 9.90 577 26 0.09 577 9.89 183 10 13 48 9.79 662 16 9.90 577 26 0.09 473 9.89 183 10 13 48 9.79 668 16 9.90 577 26 0.09 473 9.89 183 10 13 48 9.79 668 16 9.90 577 26 0.09 473 9.89 183 10 13 48 9.79 669 15 9.90 577 26 0.09 473 9.89 183 10 13 48 9.79 698 15 9.90 577 26 0.09 473 9.89 183 10 13 15 15 9.79 746 16 9.90 670 26 0.09 473 9.89 183 10 13 15 15 9.79 745 16 9.90 670 26 0.09 473 9.89 183 10 13 15 15 9.79 745 16 9.90 670 26 0.09 370 9.89 152 10 10 9.79 775 16 9.90 670 26 0.09 370 9.89 152 10 10 9.79 775 16 9.90 670 0.09 370 9.89 152 10 10 9.80 100 100 100 100 100 100 100 100 100 1	
26	
28 9.79 387 16 9.90 009 26 0.09 991 9.89 375 10 32 29 9.79 389 16 9.90 035 26 0.09 965 9.89 364 10 31 31 31 31 9.79 431 16 9.90 086 26 0.09 914 9.89 344 10 29 32 9.79 447 16 9.90 112 26 0.09 888 9.89 334 10 28 33 9.79 463 16 9.90 182 26 0.09 862 9.89 324 10 27 34 9.79 478 16 9.90 164 26 0.09 886 9.89 324 10 27 34 9.79 478 16 9.90 164 26 0.09 886 9.89 314 10 26 36 9.79 510 16 9.90 164 26 0.09 886 9.89 314 10 26 36 9.79 510 16 9.90 164 26 0.09 886 9.89 314 10 26 36 9.79 510 16 9.90 164 26 0.09 784 9.89 294 10 24 37 9.79 526 16 9.90 216 26 0.09 784 9.89 294 10 24 37 9.79 526 16 9.90 268 26 0.09 758 9.89 284 10 23 38 9.79 542 16 9.90 268 26 0.09 758 9.89 284 10 23 38 9.79 542 16 9.90 268 26 0.09 758 9.89 284 10 22 39 9.79 558 16 9.90 268 26 0.09 706 9.89 264 10 21 40 9.79 573 16 9.90 320 26 0.09 680 9.89 254 10 21 40 9.79 565 16 9.90 371 26 0.09 654 9.89 233 10 17 42 9.79 605 16 9.90 371 26 0.09 603 9.89 223 10 17 44 9.79 665 16 9.90 371 26 0.09 603 9.89 223 10 17 44 9.79 665 16 9.90 371 26 0.09 603 9.89 223 10 17 44 9.79 665 16 9.90 449 26 0.09 551 9.89 213 10 16 45 9.79 668 16 9.90 449 26 0.09 551 9.89 135 10 15 48 9.79 668 16 9.90 449 26 0.09 551 9.89 193 10 14 48 9.79 668 16 9.90 577 26 0.09 473 9.89 183 10 13 48 9.79 668 16 9.90 577 26 0.09 473 9.89 183 10 13 48 9.79 698 15 9.90 577 26 0.09 473 9.89 183 10 13 14 9.79 673 16 9.90 577 26 0.09 473 9.89 152 10 10 10 10 10 10 10 10 10 10 10 10 10	18
29 9.79 399 16 9.90 035 26 0.09 965 9.89 364 10 31 30 9.79 415 16 9.90 061 25 0.09 939 9.89 354 10 29 31 9.79 447 16 9.90 012 26 0.09 914 9.89 334 10 29 33 9.79 447 16 9.90 112 26 0.09 862 9.89 334 10 28 34 9.79 478 16 9.90 164 26 0.09 862 9.89 314 10 26 35 9.79 478 16 9.90 164 26 0.09 836 9.89 314 10 26 36 9.79 510 16 9.90 190 26 0.09 810 9.89 304 22 37 9.79 526 16 9.90 216 26 0.09 784 9.89 284 10 24 37 9.79 558 16 9.90 242 26 0.09 758 9.89 284 10 22 39 9.79 573	1 1.5 2 3.0
31	3 4.5 4 6.0
32 9.79 447 16 9.90 112 26 0.09 888 9.89 334 10 28 27 34 9.79 463 15 9.90 138 26 0.09 862 9.89 324 10 26 26 26 26 26 26 26 2	5 7.5
34 9.79 478 16 9.90 164 26 0.09 836 9.89 314 10 26 36 9.79 478 16 9.90 164 26 0.09 836 9.89 314 10 26 36 9.79 510 16 9.90 216 26 0.09 810 9.89 304 10 24 37 9.79 526 16 9.90 224 26 0.09 758 9.89 224 10 23 38 9.79 526 16 9.90 224 26 0.09 732 9.89 274 10 22 39 9.79 558 16 9.90 294 26 0.09 732 9.89 274 10 21 22 39 9.79 558 16 9.90 294 26 0.09 706 9.89 264 10 21 21 24 36 36 36 36 36 36 36 36 36 36 36 36 36	7 10.5
35 9.79 494 16 9.90 190 26 0.09 810 9.89 304 10 25 36 9.79 510 16 9.90 216 26 0.09 784 9.89 294 10 24 37 9.79 526 16 9.90 242 26 0.09 758 9.89 284 10 23 38 9.79 542 16 9.90 268 26 0.09 732 9.89 274 10 21 39 9.79 558 16 9.90 320 26 0.09 706 9.89 264 10 21 40 9.79 573 16 9.90 320 20 0.09 680 9.89 254 10 21 41 9.79 589 16 9.90 371 26 0.09 654 9.89 244 10 19 42 9.79 605 16 9.90 371 26 0.09 654 9.89 233 10 17 43 9.79 652 16 9.90 423 26 0.09 577 9.89 213 10 16 45	8 12.0 9 13.5
36	
37 9.79 542 16 9.90 268 26 0.09 732 9.89 274 10 22 39 9.79 558 16 9.90 268 26 0.09 706 9.89 264 10 21 40 9.79 573 16 9.90 320 26 0.09 680 9.89 254 10 21 41 9.79 589 16 9.90 371 26 0.09 654 9.89 244 10 19 42 9.79 605 16 9.90 371 26 0.09 629 9.89 233 10 17 43 9.79 636 16 9.90 423 26 0.09 577 9.89 213 10 16 45 9.79 652 16 9.90 442 26 0.09 577 9.89 213 10 16 45 9.79 658 16 9.90 449 26 0.09 551 9.89 233 10 16 45 9.79 668 9.90 475 26 0.09 551 9.89 193 10 18 47 9.79 668	
39 9.79 558 16 9.90 294 26 0.09 706 9.89 264 10 21 40 9.79 573 16 9.90 320 26 0.09 680 9.89 254 10 19 41 9.79 589 16 9.90 346 25 0.09 654 9.89 244 11 19 42 9.79 605 16 9.90 371 26 0.09 603 9.89 223 10 17 44 9.79 656 15 9.90 423 26 0.09 577 9.89 213 10 16 45 9.79 652 16 9.90 423 26 0.09 551 9.89 203 10 16 46 9.79 668 16 9.90 475 26 0.09 525 9.89 193 10 14 47 9.79 684 16 9.90 577 26 0.09 473 9.89 183 10 13 48 9.79 699 15 9.90 577 26 0.09 473 9.89 173 10 13 49 9.79 715 16 9.90 557 26 0.09 473 9.89 162 10 50 9.79 731 15 9.90 578 26 0.09 422 9.89 152 10 51 9.79 746 15 9.90 630 26 0.09 376 9.89 142 10 9 52 9.79 752 16 9.90 630 26 0.09 376 9.89 133 10 18 52 9.79 752 16 9.90 630 26 0.09 376 9.89 142 10 9	11 10
40	1 1.1 1.0
42 9.79 605 16 9.90 371 26 0.09 629 9.89 233 10 17 44 9.79 605 16 9.90 371 26 0.09 603 9.89 223 10 17 44 9.79 636 16 9.90 423 26 0.09 577 9.89 213 10 16 45 9.79 652 16 9.90 449 26 0.09 525 9.89 123 10 16 46 9.79 668 16 9.90 475 26 0.09 525 9.89 193 10 14 47 9.79 684 16 9.90 501 26 0.09 499 9.89 183 10 13 48 9.79 699 15 9.90 527 26 0.09 473 9.89 173 10 12 49 9.79 715 16 9.90 553 26 0.09 473 9.89 173 10 12 12 15 16 9.79 746 15 9.90 578 26 0.09 422 9.89 152 10 10 11 15 10 9.79 746 15 9.90 604 26 0.09 396 9.89 142 10 9 9 15 10 10 10 10 10 10 10 10 10 10 10 10 10	2 2.2 2.0 3 3.3 3.0 4 4.4 4.0
43	4 4.4 4.0 5 5.5 5.0
45 9.79 652 16 9.90 449 26 0.09 551 9.89 203 10 15 46 9.79 668 16 9.90 475 26 0.09 551 9.89 193 10 14 47 9.79 668 16 9.90 501 26 0.09 525 9.89 193 10 14 48 9.79 699 15 9.90 527 26 0.09 473 9.89 183 10 13 48 9.79 715 16 9.90 553 25 0.09 447 9.89 162 11 11 150 9.79 731 15 9.90 578 26 0.09 422 9.89 152 10 10 51 9.79 746 15 9.90 604 26 0.09 396 9.89 142 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	6 6.6 6.0
46 9.79 668 16 9.90 475 26 0.09 525 9.89 193 10 14 9.79 684 16 9.90 501 26 0.09 499 9.89 183 10 13 48 9.79 699 15 9.90 527 26 0.09 473 9.89 173 10 12 49 9.79 715 16 9.90 553 26 0.09 447 9.89 162 11 11 50 9.79 731 15 9.90 604 25 0.09 422 9.89 152 10 10 15 9.79 746 15 9.90 604 26 0.09 396 9.89 142 10 9 9 152 10 9.90 752 16 0.09 630 26 0.09 370 9.89 132 10 9	8 8.8 8.0
47 9.79 684 16 9.90 501 40 0.09 499 9.89 183 10 13 49 9.79 699 16 9.90 527 26 0.09 473 9.89 173 10 12 49 9.79 715 16 9.90 553 25 0.09 447 9.89 162 10 11 15	9 9.9 9.0
49 9.79 715 16 9.90 553 25 0.09 447 9.89 162 10 11 11 150 9.79 731 15 9.90 578 26 0.09 422 9.89 152 10 10 151 9.79 746 15 9.90 604 26 0.09 396 9.89 142 10 9 152 10 9.79 746 15 9.90 604 26 0.09 396 9.89 142 10 9 152 10 9	
50 9.79 731 15 9.90 578 26 0.09 422 9.89 152 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	
51 9.79 746 16 9.90 604 26 0.09 396 9.89 142 10 9 52 9 76 762 16 9.90 630 26 0.09 370 9.89 132 10 8	9
	1 0.9 2 1.8
53 9.79 778 16 9.90 656 26 0.09 344 9.89 122 10 7	8 2.7 4 3.6 5 4.5
54 9.79 793 16 9.90 682 26 0.09 318 9.89 112 10 6	8 5.4
55 9.79 809 - 9.90 708 - 0.09 292 9.89 101 5	7 6.3
1 50 1 9.79 625 1	8 7.2 9 8.1
58 9.79 856 16 9.90 785 26 0.09 215 9.89 071 10 2	
59 9.79 872 16 9.90 811 26 0.09 189 9.89 060 10 1 1 0	
' L Cos d L Ctn cd L Tan L Sin d '	Prop. Parts

51° — Common Logarithms of Trigonometric Functions — 51°

Table 3

39° — Common Logarithms of Trigonometric Functions — 39°

	L Sin d	L Tan	cđ	L Ctn	L Cos	đ	,	Prop. Parts
0		-						Floy. Fatts
1 1	9.79 887 9.79 903	9.90 837 9.90 863	40 A	09 163 09 137	9.89 050 9.89 040	10	60 59	
2	9.79 918	9.90 889	20 0.0	09 111	9.89 030	10 10	58	
3 4	9.79 954 16	9.90 914	26 0.	09 086 09 060	9.89 020 9.89 009	ii	57 56	
5	9.79 965	9.90 966	20	09 034		10		
6	9.79 981 16	9.90 992	20 A	09 008	9.88 999 9.88 989	10	55 54	
	9.79 996 16	9.91 018	26 0. 25 0.	09 982	9.88 978	11 10	53	
8 9	9.80 012 15 9.80 027 15	9.91 043	26 0.	08 957 08 931	9.88 968 9.88 958	10	52 51	26 25
10	9.80 043	9.91 095	40 0 1	08 905		10	50	1 2.6 2.5 2 5.2 5.0 3 7.8 7.5
11	9 80 058 15	9.91 121	20 n	08 879	9.88 948 9.88 937	11	49	2 5.2 5.0 3 7.8 7.5
12	9.80 074 16	9.91 147		08 853	9.88 927	10 10	48	4 10.4 10.0
13 14	9.80 105 16	9.91 172 9.91 198	26 0.	08 828 08 802	9.88 91 <i>7</i> 9.88 906	ii	47 46	6 15.6 15.0
15	9.80.120	9.91 224	26 A	08 776	9.88 896	10	45	N 20X 200
16	9.80 136	9.91 250	20 0.	08 750	9.88 886	10	44	9 23.4 22.5
17	9.80 151 15	9.91 276	25 0.	08 724	9.88 875	11 10	43	
18 19	9.80 182 16	9.91 301	26 0.	08 699 08 673	9.88 865 9.88 855	10	42 41	
20	0.80.107	9.91 353	20 A	08 647	9.88 844	11	40	
21	9.80 213	9.91 379	26 0.0	08 621	9.88 834	10	39	
22 23	9.80 228 15 9.80 244 16	9.91 404		08 596	9.88 824	10 11	38	
23 24	9.80 259 15	9.91 430 9.91 456	26 0.	08 570 08 544	9.88 813 9.88 803	10	37 36	
25	0.80.274	9.91 482	26	08 518	9.88 793	10	35	
26	9.80 290	9.91 507	26 0.	08 493	9.88 782	11	34	16 15
27	9.80 305	9.91 533	20.	08 467	9.88 772	10 11	33 32	
28 29	9.80 320 16	9.91 559	26 0.	08 441 08 415	9.88 761 9.88 751	10	32 31	1 1.6 1.5 2 3.2 3.0 3 4.8 4.5
30	0.80.751	9.91 610	20 A	08 390	9.88 741	10	30	4 6.4 6.0
31	9.80 366	9.91 636	20 0.	08 364 l	9.88 730	11 10	29	5 8.0 7.5 6 9.6 9.0
32	9.80 382 16	9.91 662	26 O.	08 338	9.88 720 9.88 709	11	28 27	6 9.6 9.0 7 11.2 10.5 8 12.8 12.0 9 14.4 13.5
33 34	0.80 412 15	9.91 688	25 O.	08 338 08 312 08 287	9.88 699	10	26	9 14.4 13.5
35	0 80 438	9.91 739	~ ۸	08 261	9.88 688	11	25	
36	9.80 443	9.91 765	20 0.	08 235	9.88 678	10 10	24	
37 38	9.80 458 15 9.80 473 16	9.91 791	25 0.	08 209 08 184	9.88 668 9.88 657	11	23 22	
39	0 80 480 10	9.91 842		08 158	9.88 647	10 11	21	
40	0 80 504	9.91 868	0	08 132	9.88 636		20	
41	9.80 519	9.91 893	20 0.	08 107	9.88 626	10 11	19	
42	9.80 534 16 9.80 550 16	9.91 919	26 0.	08 081 08 055	9.88 615 9.88 605	10	18 17	
43 44	9.80 565 15	9.91 971		08 029	9.88 594	11 10	16	11 10
45	0 80 580	9.91 996	0.	08 004	9.88 584	11	15	11 10 1 1.1 1.0
46	9.80 595	9.92 022	26 0.	07 978	9.88 573	10	14	2 2.2 2.0 3 3.3 3.0
47 48	9.80 610 15	9.92 048	25 0.	07 952 07 927	9.88 563 9.88 552	11	13 12	4 44 40
49	9.80 641 16	9.92 099	26 0. 26 0.	07 901	9.88 542	10 11	iĩ	4 4.4 4.0 5 5.5 5.0 6 6.6 6.0 7 7.7 7.0
50	0.80.656	9.92 125	25 0.	07 875	9.88 531	10	10	5 5.5 5.0 6 6.6 6.0 7 7.7 7.0 8 8.8 8.0
51	9.80 671	9.92 150	- O.	07 850 07 824	9.88 521	11	9 8	9 9.9 9.0
52 53	0 90 701 15	9.92 176	26 0.	07 824 07 798	9.88 510 9.88 499	11	7	
54	9.80 716 15	9.92 227	25 0. 26 0.	07 773	9.88 489	10 11	6	
55	9.80 731	9.92 253	₂₆ 0.	07 747	9.88 478	10	5	
56	9.80 746	9.92 279	n. 0.	07 721 07 696	9.88 468 9.88 457	11	4 3	
57 58	9.80 702 15	9.92 330	20 0.	07 670	9.88 447	10	3 2	
59	9.80 792	9.92 330 9.92 356	26 0.	07 644	9.88 436	11 11	1 1	
60	9.80 807	9.92 381	0.	07 619	9.88 425		0	
7	L Cos d	L Ctn	cđ	L Tan	L Sin	d	,	Prop. Parts

50° — Common Logarithms of Trigonometric Functions — 50°

40° — Common Logarithms of Trigonometric Functions — 40°

522

1	L Sin d	L Tan cd	L Ctn	L Cos d	,	Prop. Parts
0 1 2 3	9.80 807 9.80 822 15 9.80 837 15 9.80 862 15	9.92 381 9.92 407 26 9.92 433 26 9.92 458 26	0.07 619 0.07 593 0.07 567 0.07 542	9.88 425 9.88 415 11 9.88 404 10 9.88 394 11	60 59 58 57	
4 5 6 7 8	9.80 882 9.80 882 9.80 897 15 9.80 912 15 9.80 912 15	9.92 484 26 9.92 510 9.92 535 26 9.92 561 26 9.92 587 26	0.07 516 0.07 490 0.07 465 0.07 439 0.07 413	9.88 383 11 9.88 372 10 9.88 362 10 9.88 361 11 9.88 340 11	56 55 54 53 52	_
9 10 11 12	9.80 942 15 9.80 967 15 9.80 972 16 9.80 987 16	9,92 612 26 9,92 638 9,92 663 26 9,92 689 26	0.07 388 0.07 362 0.07 337 0.07 311	9.88 330 11 9.88 319 11 9.88 308 10 9.88 298 11	51 50 49 48	26 25 1 2.6 2.5 2 5.2 5.0 3 7.8 7.5 4 10.4 10.0
13 14 15 16 17	9.81 002 15 9.81 017 15 9.81 032 15 9.81 047 14	9.92 740 26 9.92 766 9.92 792 26 9.92 792 25	0.07 285 0.07 260 0.07 234 0.07 208 0.07 183	9.88 276 11 9.88 266 11 9.88 255 11	47 46 45 44 43	4 10.4 10.0 5 13.0 12.5 6 15.6 15.0 7 18.2 17.5 8 20.8 20.0 9 23.4 22.5
18 19 20 21	9.81 076 15 9.81 091 15 9.81 106 15 9.81 121 15	9.92 843 25 9.92 868 26 9.92 894 9.92 920 26	0.07 157 0.07 132 0.07 106 0.07 080	9.88 234 10 9.88 223 11 9.88 212 11 9.88 201 11	42 41 40 39	
22 23 24 25 26	9.81 151 15 9.81 166 14 9.81 180 15	9.92 971 26 9.92 996 26 9.93 022 26	0.07 055 0.07 029 0.07 004 0.06 978 0.06 952	9.88 191 11 9.88 180 11 9.88 169 11 9.88 158 9.88 148 10	38 37 36 35 34	1g 44
27 28 29 30	9.81 210 15 9.81 225 15 9.81 240 14 9.81 254	9.93 073 26 9.93 099 26 9.93 124 26 9.93 150 25	0.06 927 0.06 901 0.06 876 0.06 850	9.88 137 11 9.88 126 11 9.88 115 11 9.88 105 11	33 32 31 30	15 14 1 1.5 1.4 2 3.0 2.8 3 4.5 4.2 4 6.0 5.6 5 7.5 7.0
31 32 33 34 85	9.81 284 15 9.81 284 15 9.81 299 15 9.81 314 14	9.93 176 9.93 201 9.93 227 9.93 252 26	0.06 825 0.06 799 0.06 773 0.06 748 0.06 722	9.88 094 11 9.88 083 11 9.88 072 11 9.88 061 10 9.88 051 11	29 28 27 26	6 9.0 8.4 7 10.5 9.8 8 12.0 11.2 9 13.5 12.6
36 37 38 39	9.81 328 9.81 343 15 9.81 358 15 9.81 372 14 9.81 387 15	9.93 278 9.93 303 26 9.93 329 26 9.93 354 26 9.93 380 26	0.06 697 0.06 671 0.06 646 0.06 620	9.88 040 11 9.88 029 11 9.88 018 11 9.88 007 11	24 23 22 21	
40 41 42 43 44	9.81 402 9.81 417 14 9.81 431 14 9.81 446 15 9.81 461 14	9,93 406 9,93 431 26 9,93 457 25 9,93 482 26 9,93 508 25	0.06 594 0.06 569 0.06 543 0.06 518 0.06 492	9.87 996 9.87 985 9.87 975 10 9.87 964 11 9.87 963 11	20 19 18 17 16	11 10
45 46 47 48 49	9.81 475 9.81 490 15 9.81 505 14 9.81 519 15 9.81 534 15	9.93 533 9.93 559 26 9.93 584 26 9.93 610 26 9.93 636 25	0.06 467 0.06 441 0.06 416 0.06 390 0.06 364	9.87 942 9.87 931 11 9.87 920 11 9.87 909 11 9.87 898 11	15 14 13 12 11	71 1.1 1.0 22 2.2 2.0 8 3.3 3.0 4 4.4 4.0 5 5.5 5.0 6 6.6 6.0 7 7.7 7.0
50 51 52 53 54	9.81 549 9.81 563 15 9.81 578 14 9.81 592 14 9.81 607 15	9.93 661 26 9.93 687 25 9.93 712 26 9.93 738 25 9.93 763 26	0.06 339 0.06 313 0.06 288 0.06 262 0.06 237	9.87 887 10 9.87 877 11 9.87 866 11 9.87 855 11 9.87 844 11	10 9 8 7 6	8 8.8 8.0 9 9.9 9.0
55 56 57 58 59	9.81 622 9.81 636 9.81 651 9.81 665 14 9.81 665 15 9.81 680	9.93 789 9.93 814 26 9.93 840 25 9.93 865 26 9.93 891 25	0.06 211 0.06 186 0.06 160 0.06 135 0.06 109	9.87 833 9.87 822 11 9.87 811 11 9.87 800 11 9.87 789	5 4 3 2 1	
60	9.81 694 L Cos d	9.93 916 25 L Ctn cd	0.06 084 L Tan	9.87 778 11 L Sin. d	, ,	Prop. Parts

41° — Common Logarithms of Trigonometric Functions — 41°

	L Sin d	L Tan cd	L Ctn	L Cos d	'	Prop. Parts
0 1 2 3 4	9.81 694 9.81 709 14 9.81 723 15 9.81 738 14 9.81 752	9.93 916 9.93 942 26 9.93 967 26 9.93 993 26 9.94 018 26	0.06 084 0.06 058 0.06 033 0.06 007 0.05 982	9.87 778 9.87 767 11 9.87 756 11 9.87 745 11 9.87 734	60 59 58 57 56	
5 6 7 8 9	9.81 767 9.81 781 9.81 796 9.81 810 9.81 825 14	9.94 044 9.94 069 26 9.94 095 26 9.94 120 26 9.94 146 25	0.05 956 0.05 931 0.05 905 0.05 880 0.05 854	9.87 723 9.87 712 11 9.87 701 11 9.87 690 11 9.87 679 11	55 54 53 52 51	26 25
10 11 12 13 14	9.81 839 9.81 854 14 9.81 868 14 9.81 882 15 9.81 897 14	9.94 171 9.94 197 26 9.94 222 25 9.94 248 26 9.94 273 26	0.05 829 0.05 803 0.05 778 0.05 752 0.05 727	9.87 668 9.87 657 11 9.87 646 11 9.87 635 11 9.87 624 11	49 48 47 46	1 2.6 2.5 2 5.2 5.0 3 7.8 7.5 4 10.4 10.0 5 13.0 12.5 6 15.6 15.0 7 18.2 17.5
15 16 17 18 19	9.81 911 9.81 926 14 9.81 940 14 9.81 955 15 9.81 969 14	9.94 299 9.94 324 25 9.94 350 26 9.94 375 26 9.94 401 25	0.05 701 0.05 676 0.05 650 0.05 625 0.05 599	9.87 613 9.87 601 12 9.87 590 11 9.87 579 11 9.87 568 11	45 44 43 42 41	8 20.8 20.0 9 23.4 22.5
20 21 22 23 24 25	9.81 983 9.81 998 14 9.82 012 14 9.82 026 15 9.82 041 14	9.94 426 9.94 452 25 9.94 477 26 9.94 503 26 9.94 528 25	0.05 574 0.05 548 0.05 523 0.05 497 0.05 472	9.87 557 9.87 546 11 9.87 535 11 9.87 524 11 9.87 513 11	40 39 38 37 36	
26 27 28 29	9.82 055 9.82 069 9.82 084 9.82 098 14 9.82 112 14	9.94 554 9.94 579 25 9.94 604 26 9.94 630 26 9.94 655 25	0.05 446 0.05 421 0.05 396 0.05 370 0.05 345	9.87 501 9.87 490 11 9.87 479 11 9.87 468 11 9.87 457 11	34 33 32 31 30	15 14 1 1.5 1.4 2 3.0 2.8 3 4.5 4.2 4 6.0 5.6
30 31 32 33 34	9.82 126 9.82 141 14 9.82 155 14 9.82 169 15 9.82 184 15 9.82 184 14	9.94 681 9.94 706 25 9.94 732 26 9.94 757 25 9.94 783 26	0.05 319 0.05 294 0.05 268 0.05 243 0.05 217	9.87 446 9.87 434 11 9.87 423 11 9.87 412 11 9.87 401 11	29 28 27 26	5 7.5 7.0 6 9.0 8.4 7 10.5 9.8 8 12.0 11.2 9 13.5 12.6
35 36 37 38 39	9.82 198 9.82 212 14 9.82 226 14 9.82 240 15 9.82 255 14	9.94 808 9.94 834 26 9.94 859 25 9.94 884 26 9.94 910 26	0.05 192 0.05 166 0.05 141 0.05 116 0.05 090	9.87 390 9.87 378 11 9.87 367 11 9.87 356 11 9.87 345 11	25 24 23 22 21	
40 41 42 43 44	9.82 269 9.82 283 14 9.82 297 14 9.82 311 15 9.82 326 14	9.94 935 9.94 961 26 9.94 986 25 9.95 012 26 9.95 037 25	0.05 039 0.05 014 0.04 988 0.04 963	9.87 334 9.87 322 11 9.87 311 11 9.87 300 11 9.87 288 12	20 19 18 17 16	12 11 1 1.2 1.1
46 47 48 49	9.82 340 9.82 354 14 9.82 368 14 9.82 382 14 9.82 396 14	9.95 062 9.95 088 26 9.95 113 25 9.95 139 26 9.95 164 25	0.04 887 0.04 861 0.04 836	9.87 277 9.87 266 11 9.87 255 12 9.87 243 12 9.87 232 11	15 14 13 12 11	1 1.2 1.1 2 2.4 2.2 3 3.6 3.3 4 4.8 4.4 5 6.0 5.5 6 7.2 6.6 7 8.4 7.7 8 9.6 8.8
50 51 52 53 54	9.82 410 9.82 424 9.82 439 15 9.82 453 14 9.82 467 14	9.95 190 9.95 215 25 9.95 240 26 9.95 266 26 9.96 291 26	0.04 765 0.04 760 0.04 734 0.04 709	9.87 221 9.87 209 11 9.87 198 11 9.87 187 12 9.87 175 11 9.87 164	10 9 8 7 6	8 9.6 8.8 9 10.8 9.9
56 57 58 59 60	9.82 481 9.82 495 14 9.82 509 14 9.82 523 14 9.82 537 14 9.82 551	9.95 317 9.95 342 25 9.95 368 26 9.95 393 25 9.95 418 25 9.95 444 26	0.04 658 0.04 632 0.04 607	9.87 164 9.87 153 11 9.87 141 12 9.87 130 11 9.87 119 11 9.87 107 12	3 2 1 0	
•	L Cos d	L Ctn cd	l L Tan	L Sin d	′	Prop. Parts

48° — Common Logarithms of Trigonometric Functions — 48°

42° — Common Logarithms of Trigonometric Functions — 42°

'	L Sin d	L Tan cd	L Ctn	L Cos d	1	Prop. Parts
0 1 2 3 4	9.82 551 9.82 565 14 9.82 579 14 9.82 593 14 9.82 607	9.95 444 9.95 469 26 9.95 495 26 9.95 520 25 9.95 545 25	0.04 556 0.04 531 0.04 505 0.04 480 0.04 455	9.87 107 9.87 096 11 9.87 085 12 9.87 073 12 9.87 062 11	60 59 58 57 56	
5 6 7 8 9	9.82 621 9.82 635 9.82 649 9.82 663 9.82 667 14 9.82 677	9.95 571 9.95 596 9.95 622 9.95 647 9.95 672 26	0.04 429 0.04 404 0.04 378 0.04 353 0.04 328	9.87 050 9.87 039 9.87 028 9.87 028 9.87 016 9.87 005 11 9.87 005	55 54 53 52 51	26 2 5
10 11 12 13 14	9.82 691 9.82 705 14 9.82 719 14 9.82 733 14 9.82 747 14	9.95 698 9.95 723 25 9.95 748 26 9.95 774 25 9.95 799 26	0.04 302 0.04 277 0.04 252 0.04 226 0.04 201	9.86 993 9.86 982 9.86 970 9.86 959 11 9.86 947 11	50 49 48 47 46	1 2.6 2.5 2 5.2 5.0 3 7.8 7.5 4 10.4 10.0 5 13.0 12.5 6 15.6 15.0
15 16 17 18 19	9.82 761 9.82 775 9.82 788 13 9.82 802 14 9.82 816 14	9.95 825 9.95 850 25 9.95 875 26 9.95 901 25 9.95 926 26	0.04 175 0.04 150 0.04 125 0.04 099 0.04 074	9.86 936 9.86 924 9.86 913 11 9.86 902 12 9.86 890 11	45 44 43 42 41	7 18.2 17.5 8 20.8 20.0 9 23.4 22.5
20 21 22 23 24	9.82 830 9.82 844 9.82 858 9.82 872 9.82 885 14 9.82 885	9.95 952 9.95 977 25 9.96 002 26 9.96 028 25 9.96 053 25	0.04 048 0.04 023 0.03 998 0.03 972 0.03 947	9.86 879 9.86 867 9.86 855 9.86 844 9.86 832 11	39 38 37 36	
25 26 27 28 29	9.82 899 9.82 913 14 9.82 927 14 9.82 941 14 9.82 955 13	9.96 078 9.96 104 25 9.96 129 26 9.96 155 25 9.96 180 25	0.03 922 0.03 896 0.03 871 0.03 845 0.03 820	9.86 821 9.86 809 11 9.86 798 12 9.86 786 11 9.86 775 12	35 34 33 32 31	14 13 1 1.4 1.3 2 2.8 2.6 3 4.2 3.9 4 5.6 5.2
30 31 32 33 34	9.82 968 9.82 982 14 9.82 996 14 9.83 010 13 9.83 023 14	9.96 205 9.96 231 26 9.96 256 25 9.96 281 26 9.96 307 25	0.03 795 0.03 769 0.03 744 0.03 719 0.03 693	9.86 763 9.86 752 9.86 740 9.86 728 12 9.86 717 11 9.86 717	29 28 27 26	4 5.6 5.2 5 7.0 6.5 6 8.4 7.8 7 9.8 9.1 8 11.2 10.4 9 12.6 11.7
35 36 37 38 39	9.83 037 9.83 051 9.83 065 9.83 078 9.83 092 14	9.96 332 9.96 357 26 9.96 383 26 9.96 408 25 9.96 433 26	0.03 668 0.03 643 0.03 617 0.03 592 0.03 567	9.86 705 9.86 694 9.86 682 9.86 670 12 9.86 659 11 9.86 659	25 24 23 22 21	
40 41 42 43 44	9.83 106 9.83 120 14 9.83 133 13 9.83 147 14 9.83 161 13	9.96 459 9.96 484 9.96 510 25 9.96 535 25 9.96 560 26	0.03 541 0.03 516 0.03 490 0.03 465 0.03 440	9.86 647 9.86 635 9.86 624 12 9.86 612 12 9.86 600 11	20 19 18 17 16	12 11 1 12 1.1
46 47 48 49	9.83 174 9.83 188 14 9.83 202 13 9.83 215 14 9.83 229 13	9.96 586 9.96 611 25 9.96 636 26 9.96 662 26 9.96 687 25	0.03 414 0.03 389 0.03 364 0.03 338 0.03 313	9.86 589 9.86 577 9.86 565 11 9.86 554 12 9.86 542 12	15 14 13 12 11	2 2.4 2.2 3 3.6 3.3 4 4.8 4.4 5 6.0 5.5 6 7.2 6.6 7 8.4 7.7
50 51 52 53 54	9.83 242 9.83 256 14 9.83 270 13 9.83 283 14 9.83 297 13	9.96 712 9.96 738 26 9.96 763 25 9.96 788 26 9.96 814 26	0.03 288 0.03 262 0.03 237 0.03 212 0.03 186	9.86 530 9.86 518 9.86 507 9.86 495 9.86 483 11	10 9 8 7 6	8 9.6 8.8 9 10.8 9.9
55 56 57 58 59 60	9.83 310 9.83 324 9.83 338 9.83 351 9.83 365 9.83 378	9.96 839 9.96 864 26 9.96 890 26 9.96 915 25 9.96 940 25 9.96 966 26	0.03 161 0.03 136 0.03 110 0.03 085 0.03 060 0.03 034	9.86 472 9.86 460 12 9.86 448 12 9.86 436 11 9.86 425 12 9.86 413	5 4 3 2 1	
`	L Cos d	L Ctn cd	L Tan	L Sin d	,	Prop. Parts

43° — Common Logarithms of Trigonometric Functions — 43°

,	L Sin d	L Tan c	d L Ctn	L Cos d	'	Prop. Parts
0 1 2 3 4	9.83 378 9.83 392 14 9.83 405 14 9.83 419 9.83 432	9.97 016 2 9.97 042 2 9.97 067 2	0.03 034 0.03 009 0.03 009 0.02 984 0.02 958 0.02 933	9.86 413 9.86 401 12 9.86 389 12 9.86 377 12 9.86 366 11	60 59 58 57 56	
5 6 7 8 9	9.83 446 9.83 459 14 9.83 473 13 9.83 486 14 9.83 500 13	9.97 092 9.97 118 2 9.97 143 2 9.97 168 2	0.02 908 0.02 882 0.02 857 0.02 832 0.02 807	9.86 354 9.86 342 9.86 330 9.86 318 9.86 306 11	55 54 53 52 51	26 25
10 11 12 13 14	9.83 513 9.83 527 9.83 540 9.83 554 9.83 554 14 9.83 667	9.97 219 9.97 244 2 9.97 269 2 9.97 295 2	25 0.02 781 25 0.02 756 26 0.02 731 26 0.02 705 25 0.02 680	9.86 295 9.86 283 12 9.86 271 12 9.86 259 12 9.86 247 12	50 49 48 47 46	1 2.6 2.5 2 5.2 5.0 8 7.8 7.5 4 10.4 10.0 5 13.0 12.5 6 15.6 15.0 7 18.2 17.5
15 16 17 18 19	9.83 581 9.83 594 9.83 608 9.83 621 9.83 634 14	9.97 371 9.97 396 9.97 421 9.97 447	0.02 655 0.02 629 0.02 604 0.02 579 0.02 553	9.86 235 9.86 223 12 9.86 211 11 9.86 200 11 9.86 188 12	45 44 43 42 41	8 20.8 20.0 9 23.4 22.5
20 21 22 23 24	9.83 648 9.83 661 9.83 674 13 9.83 688 13 9.83 701	9.97 497 9.97 523 9.97 548 9.97 573	25 0.02 528 0.02 503 26 0.02 477 25 0.02 452 26 0.02 427	9.86 176 9.86 164 12 9.86 152 12 9.86 140 12 9.86 128 12	40 39 38 37 36	
25 26 27 28 29	9.83 715 9.83 728 9.83 741 9.83 755 13 9.83 768 13	9.97 649 9.97 674 9.97 700 2	26 0.02 402 0.02 376 25 0.02 351 26 0.02 326 26 0.02 300	9.86 116 9.86 104 9.86 092 12 9.86 080 12 9.86 068 12	35 34 33 32 31	14 13 1 1.4 1.3 2 2.8 2.6 3 4.2 3.9 4 5.6 5.2
30 31 32 33 34	9.83 781 9.83 795 14 9.83 808 13 9.83 821 13 9.83 834 14	9.97 776 9.97 801 9.97 826 9.97 826	0.02 275 0.02 250 0.02 250 0.02 224 0.02 199 0.02 174	9.86 056 9.86 044 12 9.86 032 12 9.86 020 12 9.86 008 12	30 29 28 27 26	5 7.0 6.5 6 8.4 7.8 7 9.8 9.1 8 11.2 10.4 9 12.6 11.7
36 37 38 39	9.83 848 9.83 861 13 9.83 874 13 9.83 887 13 9.83 901 14	9.97 877 9.97 902 9.97 927 9.97 953	26 0.02 149 0.02 123 25 0.02 098 25 0.02 073 26 0.02 047	9.85 996 9.85 984 12 9.85 972 12 9.85 960 12 9.85 948 12	25 24 23 22 21	
41 42 43 44	9.83 914 9.83 927 13 9.83 940 13 9.83 954 14 9.83 967 13	9.98 003 9.98 029 9.98 054 9.98 079	25 0.02 022 0.01 997 26 0.01 971 25 0.01 946 25 0.01 921	9.85 936 9.85 924 9.85 912 9.85 912 9.85 900 12 9.85 888 12	19 18 17 16	12 11 1 1.2 1.1
46 47 48 49	9.83 980 9.83 993 13 9.84 006 13 9.84 020 14 9.84 033 13	9.98 155 9.98 180 9.98 206	26 0.01 896 0.01 870 25 0.01 845 25 0.01 820 26 0.01 794	9.85 876 9.85 864 13 9.85 851 9.85 839 12 9.85 839 12 9.85 839	15 14 13 12 11	2 2.4 2.2 3 3.6 3.3 4 4.8 4.4 5 6.0 5.5 6 7.2 6.6 7 8.4 7.7
50 51 52 53 54	9.84 046 9.84 059 13 9.84 072 13 9.84 085 13 9.84 098 14	9.98 256 9.98 281 9.98 307 9.98 332	25 0.01 769 26 0.01 744 26 0.01 719 26 0.01 693 25 0.01 668	9.85 815 9.85 803 12 9.85 791 12 9.85 779 13 9.85 766 12	10 9 8 7 6	8 9.6 8.8 9 10.8 9.9
56 57 58 59 60	9.84 112 9.84 125 9.84 138 9.84 131 9.84 151 9.84 164 13 9.84 177	9.98 408 9.98 433	26 0.01 643 26 0.01 617 25 0.01 592 25 0.01 567 25 0.01 542 26 0.01 516	9.85 754 9.85 742 12 9.85 730 12 9.85 718 12 9.85 706 13 9.85 693	3 2 1 0	
一	L Cos d	L Ctn	cd L Tan	L Sin d	1	Prop. Parts

46° — Common Logarithms of Trigonometric Functions — 46°

44° — Common Logarithms of Trigonometric Functions — 44°

1	L Sin d	L Tan	cd	L Ctn	L Cos	d	′	Prop. Parts
0 1 2 3 4	9.84 177 9.84 190 13 9.84 203 13 9.84 216 13 9.84 229 13	9.98 484 9.98 509 9.98 534 9.98 560 9.98 585	25 25 26 25	0.01 516 0.01 491 0.01 466 0.01 440 0.01 415	9.85 693 9.85 681 9.85 669 9.85 657 9.85 645	12 12 12 12	60 59 58 57 56	
5 6 7 8 9	9.84 242 9.84 255 14 9.84 269 13 9.84 282 13	9.98 610 9.98 635 9.98 661 9.98 686 9.98 711	25 26 25 25 25	0.01 390 0.01 365 0.01 339 0.01 314 0.01 289	9.85 632 9.85 620 9.85 608 9.85 596 9.85 583	13 12 12 12 13	55 54 53 52 51	. 26 25
10 11 12 13 14	9.84 308 9.84 321 9.84 334 9.84 347 9.84 360 13	9.98 737 9.98 762 9.98 787 9.98 812 9.98 838	25 25 25 25 26 26	0.01 263 0.01 238 0.01 213 0.01 188 0.01 162	9.85 571 9.85 559 9.85 547 9.85 534 9.85 522	12 12 12 13 12 12	50 49 48 47 46	1 2.6 2.5 2 5.2 5.0 3 7.8 7.5 4 10.4 10.0 5 13.0 12.5
15 16 17 18 19	9.84 373 9.84 385 9.84 386 13 9.84 398 13 9.84 411 13 9.84 424	9.98 863 9.98 888 9.98 913 9.98 939 9.98 964	25 25 26 26 25 25	0.01 137 0.01 112 0.01 087 0.01 061 0.01 036	9.85 510 9.85 497 9.85 485 9.85 473 9.85 460	13 12 12 13	45 44 43 42 41	6 15.6 15.0 7 18.2 17.5 8 20.8 20.0 9 23.4 22.5
20 21 22 23 24	9.84 437 9.84 450 9.84 463 9.84 476 9.84 489 13	9.98 989 9.99 015 9.99 040 9.99 065 9.99 090	26 25 25 25 25 26	0.01 011 0.00 985 0.00 960 0.00 935 0.00 910	9.85 448 9.85 436 9.85 423 9.85 411 9.85 399	12 13 12 12 12 13	40 39 38 37 36	
25 26 27 28 29	9.84 502 9.84 515 9.84 528 9.84 528 12 9.84 540 9.84 553 13	9.99 116 9.99 141 9.99 166 9.99 191 9.99 217	25 25 25 25 26 25	0.00 884 0.00 859 0.00 834 0.00 809 0.00 783	9.85 386 9.85 374 9.85 361 9.85 349 9.85 337	12 13 12 12 12	35 34 33 32 31	14 1 1.4 2 2.8 3 4.2 4 5.6
30 31 32 33 34	9.84 566 9.84 579 13 9.84 592 13 9.84 605 13 9.84 618 12	9.99 242 9.99 267 9.99 293 9.99 318 9.99 343	25 26 25 25 25	0.00 758 0.00 733 0.00 707 0.00 682 0.00 657	9.85 324 9.85 312 9.85 299 9.85 287 9.85 274	12 13 12 13	30 29 28 27 26	4 5.6 5 7.0 6 8.4 7 9.8 8 11.2 9 12.6
35 36 37 38 39	9.84 630 13 9.84 643 13 9.84 656 13 9.84 669 13 9.84 682 12	9.99 368 9.99 394 9.99 419 9.99 444 9.99 469	26 25 25 25 25 26	0.00 632 0.00 606 0.00 581 0.00 556 0.00 531	9.85 262 9.85 250 9.85 237 9.85 225 9.85 212	12 13 12 13 12	25 24 23 22 21	
40 41 42 43 44	9.84 694 9.84 707 13 9.84 720 13 9.84 733 12 9.84 745 13	9.99 495 9.99 520 9.99 545 9.99 570 9.99 596	25 25 25 26 26 25	0.00 505 0.00 480 0.00 455 0.00 430 0.00 404	9.85 200 9.85 187 9.85 175 9.85 162 9.85 150	13 12 13 12 12	20 19 18 17 16	13 12
45 46 47 48 49	9.84 758 9.84 771 9.84 784 13 9.84 786 12 9.84 809 13	9.99 621 9.99 646 9.99 672 9.99 697 9.99 722	25 26 25 25 25 25	0.00 379 0.00 354 0.00 328 0.00 303 0.00 278	9.85 137 9.85 125 9.85 112 9.85 100 9.85 087	12 13 12 13	15 14 13 12 11	1 1.3 1.2 2 2.6 2.4 8 3.9 3.6 4 5.2 4.8 5 6.5 6.0 6 7.8 7.2 7 9.1 8.4 8 10.4 9.6
50 51 52 53 54	9.84 822 9.84 835 9.84 847 9.84 860 13 9.84 873 12	9.99 747 9.99 773 9.99 798 9.99 823 9.99 848	26 25 25 25 25 26	0.00 253 0.00 227 0.00 202 0.00 177 0.00 152	9.85 074 9.85 062 9.85 049 9.85 037 9.85 024	12 13 12 13 12	10 9 8 7 6	7 9.1 8.4 8 10.4 9.6 9 11.7 10.8
55 56 57 58 59 60	9.84 885 13 9.84 898 13 9.84 911 12 9.84 923 13 9.84 936 13 9.84 949	9.99 874 9.99 899 9.99 924 9.99 949 9.99 975 0.00 000	25 25 25 26 26	0.00 126 0.00 101 0.00 076 0.00 051 0.00 025	9.85 012 9.84 999 9.84 986 9.84 974 9.84 961 9.84 949	13 13 12 13 12	5 4 3 2 1	
7	L Cos d	L Ctn	cd	0.00 000 L Tan	9.84 949 L Sin	d	,	Prop. Parts

TABLE 4
1 — Powers, Roots, Reciprocals — 50

N	N ₃	\sqrt{N}	√10 <i>N</i>	N ₃	√ N	√ ³ √10N	√ ³ √100N	1000 /N
1	1	1.00 000	3.16 228	1	1.00 000	2.15 443	4.64 159	1000.00
2	4	1.41 421	4.47 214	8	1.25 992	2.71 442	5.84 804	500.00 0
3	9	1.73 205	5.47 723	27	1.44 225	3.10 723	6.69 433	333.33 3
4	16	2.00 000	6.32 456	64	1.58 740	3.41 995	7.36 806	250.00 0
5	25	2.23 607	7.07 107	125	1.70 998	3.68 403	7.93 701	200.00 0
6	36	2.44 949	7.74 597	216	1.81 712	3.91 487	8.43 433	166.66 7
7	49	2.64 575	8.36 660	343	1.91 293	4.12 129	8.87 904	142.85 7
8	64	2.82 843	8.94 427	512	2.00 000	4.30 887	9.28 318	125.00 0
9	81	3.00 000	9.48 683	729	2.08 008	4.48 140	9.65 489	111.11 1
10	100	3.16 228	10.00 00	1 000	2.15 443	4.64 159	10.00 00	100.00 0
11	121	3.31 662	10.48 81	1 331	2.22 398	4.79 142	10.32 28	90.90 91
12	144	3.46 410	10.95 45	1 728	2.28 943	4.93 242	10.62 66	83.33 33
13	169	3.60 555	11.40 18	2 197	2.35 133	5.06 580	10.91 39	76.92 31
14	196	3.74 166	11.83 22	2 744	2.41 014	5.19 249	11.18 69	71.42 86
15	225	3.87 298	12.24 74	3 375	2.46 621	5.31 329	11.44 71	66.66 67
16	256	4.00 000	12.64 91	4 096	2.51 984	5.42 884	11.69 61	62.50 00
17	289	4.12 311	13.03 84	4 913	2.57 128	5.53 966	11.93 48	58.82 35
18	324	4.24 264	13.41 64	5 832	2.62 074	5.64 622	12.16 44	55.55 56
19	361	4.35 890	13.78 40	6 859	2.66 840	5.74 890	12.38 56	52.63 16
20	400	4.47 214	14.14 21	8 000	2.71 442	5.84 804	12.59 92	50.00 00
21	441	4.58 258	14.49 14	9 261	2.75 892	5.94 392	12.80 58	47.61 90
22	484	4.69 042	14.83 24	10 648	2.80 204	6.03 681	13.00 59	45.45 45
23	529	4.79 583	15.16 58	12 167	2.84 387	6.12 693	13.20 01	43.47 83
24	576	4.89 898	15.49 19	13 824	2.88 450	6.21 446	13.38 87	41.66 67
25	625	5.00 000	15.81 14	15 625	2.92 402	6.29 961	13.57 21	40.00 00
26	676	5.09 902	16.12 45	17 576	2.96 250	6.38 250	13.75 07	38.46 15
27	729	5.19 615	16.43 17	19 683	3.00 000	6.46 330	13.92 48	37.03 70
28	784	5.29 150	16.73 32	21 952	3.03 659	6.54 213	14.09 46	35.71 43
29	841	5.38 516	17.02 94	24 389	3.07 232 3.10 723	6.61 911	14.26 04	34.48 28
30	900	5.47 723	17.32 05	27 000	3.10 /23	6.69 433	14.42 25	33.33 33
31	961	5.56 776	17.60 68	29 791	3.14 138	6.76 790	14.58 10	32.25 81
32	1 024	5.65 685	17.88 85	32 768	3.17 480	6.83 990	14.73 61	31.25 00
33	1 089	5.74 456	18.16 59	35 937	3.20 753	6.91 042	14.88 81	30.30 30
34	1 156	5.83 095	18.43 91	39 304	3.23 961	6.97 953	15.03 69	29.41 18
35	1 225	5.91 608	18.70 83	42 875	3.27 107	7.04 730	15.18 29	28.57 14
36	1 296	6.00 000	18.97 37	46 656	3.30 193	7.11 379	15.32 62	27.77 78
37	1 369	6.08 276	19.23 54	50 653	3.33 222	7.17 905	15.46 68	27.02 70
38	1 444	6.16 441	19.49 36	54 872	3.36 198	7.24 316	15.60 49	26.31 58
39	1 521	6.24 500	19.74 84	59 319	3.39 121	7.30 614	15.74 06	25.64 10
40	1 600	6.32 456	20.00 00	64 900	3.41 995	7.36 806	15.87 40	25.00 00
41	1 681	6:40 312	20.24 85	68 921	3.44 822	7.42 896	16.00 52	24.39 02
42	1 764	6.48 074	20.49 39	74 088	3.47 603	7.48 887	16.13 43	23.80 95
43	1 849	6.55 744	20.73 64	79 507	3.50 340	7.54 784	16.26 13	23.25 58
44	1 936	6.63 325	20.97 62	85 184	3.53 035	7.60 590	16.38 64	22.72 73
45	2 025	6.70 820	21.21 32	91 125	3.55 689	7.66 309	16.50 96	22.22 22
46	2 116	6.78 233	21.44 76	97 336	3.58 305	7.71 944	16.63 10	21.73 91
47	2 209	6.85 565	21.67 95	103 823	3.60 883 3.63 424	7.77 498	16.75 07	21.27 66
48	2 304	6.92 820	21.90 89	110 592	3.65 931	7.82 974	16.86 87	20.83 33
49 50	2 401 2 500	7.00 000	22.13 59 22.36 07	117 649 125 000	3.68 403	7.93 701	16.98 50 17.09 98	20.40 82 20.00 00
-		√N	$\sqrt{10N}$	N3	$\sqrt[3]{N}$	√√10N	√√100N	1000 /N
N	N³	V N	V 10/V	14-	V 14	A TOTA	A 1001A	1000/14

50 — Powers, Roots, Reciprocals — 100

N	N²	\sqrt{N}	√10N	N³	√N	√ ³ /10N	√√100 <i>N</i>	1000 /N
\vdash						<u> </u>		
50	2 500 2 601	7.07 107 7.14 143	22.36 07 22.58 32	125 000 132 651	3.68 403 3.70 843	7.93 701 7.98 957	17.09 98 17.21 30	20.00 00 19.60 78
52	2 704	7.21 110	22.80 35	140 608	3.73 251	8.04 145	17.32 48	19.23 08
53	2 809	7.28 011	23.02 17	148 877	3.75 629	8.09 267	17.43 51	18.86 79
54	2 916	7.34 847	23.23 79	157 464	3.77 976	8.14 325	17.54 41	18.51 85
55	3 025	7.41 620	23.45 21	166 375	3.80 295	8.19 321	17.65 17	18.18 18
56	3 136	7.48 331	23.66 43	175 616	3.82 586	8.24 257	17.75 81	17.85 71
57	3 249	7.54 983	23.87 47	185 193	3.84 850	8.29 134	17.86 32	17.54 39
58	3 364	7.61 577	24.08 32	195 112	3.87 088	8.33 955	17.96 70	17.24 14
59	3 481	7.68 115	24.28 99	205 379	3.89 300	8.38 721	18.06 97	16.94 92
60	3 600	7.74 597	24.49 49	216 000	3.91 487	8.43 433	18.17 12	16.66 67
ا ۱			0.4.50.00	00.5.001	E 0 E 6 E 0	0.40.00	10.05.16	1.5 50 54
61	3 721	7.81 025	24.69 82	226 981	3.93 650	8.48 093	18.27 16	16.39 34
62 63	3 844 3 969	7.87 401 7.93 725	24.89 98 25.09 98	238 328 250 047	3.95 789 3.97 906	8.52 702 8.57 262	18.37 09 18.46 91	16.12 90 15.87 30
64	4 096	8.00 000	25.29 82	262 144	4.00 000	8.61 774	18.56 64	15.62 50
65	4 225	8.06 226	25.49 51	274 625	4.02 073	8.66 239	18.66 26	15.38 46
			_0.15 01					
66	4 356	8.12 404	25.69 05	287 496	4.04 124	8.70 659	18.75 78	15.15 15
67	4 489	8.18 535	25.88 44	300 763	4.06 155	8.75 034	18.85 20	14.92 54
68	4 624	8.24 621	26.07 68	314 432	4.08 166	8.79 366	18.94 54	14.70 59
69	4 761 4 900	8.30 662	26.26 79	328 509	4.10 157	8.83 656 8.87 904	19.03 78	14.49 28
70	4 900	8.36 660	26.45 75	343 000	4.12 129	8.87 904	19.12 93	14.28 57
71	5 041	8.42 615	26.64 58	357 911	4.14 082	8.92 112	19.22 00	14.08 45
72	5 184	8.48 528	26.83 28	373 248	4.16 017	8.96 281	19.30 98	13.88 89
73	5 329	8.54 400	27.01 85	389 017	4.17 934	9.00 411	19.39 88	13.69 86
74	5 476	8.60 233	27.20 29	405 224	4.19 834	9.04 504	19.48 70	13.51 35
75	5 625	8.66 025	27.38 61	421 875	4.21 716	9.08 560	19.57 43	13.33 33
76	5 776	8.71 780	27.56 81	438 976	4.23 582	9.12 581	19.66 10	13.15 79
77	5 929	8.77 496	27.74 89	456 533	4.25 432	9.16 566	19.74 68	12.98 70
78	6 084	8.83 176	27.92 85	474 552	4.27 266	9.20 516	19.83 19	12.82 05
79	6 241	8.88 819	28.10 69	493 039	4.29 084	9.24 434	19.91 63	12.65 82
80	· 6 400	8.94 427	28.28 43	512 000	4.30 887	9.28 318	20.00 00	12.50 00
81	6 561	9.00 000	28.46 05	531 441	4.32 675	9.32 170	20.08 30	12.34 57
82	6 724	9.05 539	28.63 56	551 368	4.34 448	9.35 990	20.16 53	12.19 51
83	6 889	9.11 043	28.80 97	571 787	4.36 207	9.39 780	20.24 69	12.04 82
84	7 056	9.16 515	28.98 28	592 704	4.37 952	9.43 539	20.32 79	11.90 48
85	7 225	9.21 954	29.15 48	614 125	4.39 683	9.47 268	20.40 83	11.76 47
86	7 396	9.27 362	29.32 58	636 056	4,41 400	9.50 969	20.48 80	11.62 79
87	7 569	9.32 738	29.49 58	658 503	4.43 105	9.54 640	20.56 71	11.49 43
88	7 744	9.38 083	29.66 48	681 472	4.44 796	9.58 284	20.64 56	11.36 36
89	7 921	9.43 398	29.83 29	704 969	4.46 475	9.61 900	20.72 35	11.23 60
90	8 100	9.48 683	30.00 00	729 000	4.48 140	9.65 489	20.80 08	11.11 11
91	8 281	9.53 939	30.16 62	753 571	4.49 794	9.69 052	20.87 76	10.98 90
92	8 464	9.59 166	30.33 15	778 688	4.51 436	9.72 589	20.95 38	10.86 96
93	8 649	9.64 365	30.49 59	804 357	4.53 065	9.76 100	21.02 94	10.75 27
94	8 836	9.69 536	30.65 94	830 584	4.54 684	9.79 586	21.10 45	10.63 83
95	9 025	9.74 679	30.82 21	857 375	4.56 290	9.83 048	21.17 91	10.52 63
96	9 216	9.79 796	30. 9 8 3 9	884 736	4.57 886	9.86 485	21.25 32	10.41 67
97	9 409	9.79 796	31.14 48	912 673	4.59 470	9.89 898	21.25 32	10.41 67
98	9 604	9.89 949	31.30 50	941 192	4.61 044	9.93 288	21.32 07	10.30 93
99	9 801	9.94 987	31.46 43	970 299	4.62 607	9.96 655	21.47 23	10.10 10
100	10 000	10.00 000	31.62 28	1 000 000	4.64 159	10.00 000	21.54 43	10.00 00
N	. N ₃	\sqrt{N}	√10N	N ₃	$\sqrt[3]{N}$	√ ³ √10N	³ √100N	1000 /N

ANSWERS TO ODD-NUMBERED PROBLEMS

BOOK I

Exercises 1, Page 4

5.
$$3\pi$$
; $1/\sqrt{2}$; $\sqrt{18}$; $\pi + 7$; $\sqrt{5}$

Exercises 2, Page 6

1.
$$-3\pi$$
; $-\sqrt{2}$; -1 ; 0; $\sqrt{3}$; 2; π ; $5\frac{1}{2}$

(b) 15.635 - 15.645, inclusive

Exercises 3, Page 7

3. 221/216	5. $\frac{13}{12}$	7 . 12
9. 5	11. $3\frac{11}{18}$	13. $-255/32$
15, 314.16	17. 12.65	19. 7.48

Exercises 4, Page 12

1.
$$x = u + v - y$$
; $y = u + v - x$; $u = x + y - v$; $v = x + y - u$

3.
$$x = n\sqrt{z/y}$$
; $y = \frac{n^2z}{x^2}$; $z = \frac{x^2y}{n^2}$

5.
$$r = \frac{1}{2} \sqrt{A/\pi}$$

7.
$$d = \frac{d_1v - d_2v}{2}$$
; $d_1 = \frac{2d}{v} + d_2$; $d_2 = d_1 - \frac{2d}{v}$

9.
$$R = E^2/P$$
; $E = \sqrt{RP}$

11.
$$L = \frac{32.2t^2}{(6.28)^2}$$

13.
$$x = (d^2 + 4 - y)^3$$
; $y = d^2 + 4 - \sqrt[3]{x}$; $d = \sqrt{y - 4 + \sqrt[3]{x}}$

15.
$$M = \frac{EI}{R}$$
; $E = \frac{MR}{I}$; $I = \frac{MR}{E}$; $R = \frac{EI}{M}$

17.
$$l = \frac{\pi^2 EI}{P}$$
; $E = \frac{Pl}{\pi^2 I}$; $I = \frac{Pl}{\pi^2 E}$

19.
$$S_t = \frac{mdS_c}{p-d}$$
; $S_c = \frac{S_t(p-d)}{md}$; $d = \frac{S_tp}{mS_c + S_t}$

21.
$$R_1 = R_t - R_2 \left(\frac{N_1}{N_2}\right)^2$$
; $R_2 = (R_t - R_1) \left(\frac{N_2}{N_1}\right)^2$; $N_1 = \sqrt{\frac{N_2(R_t - R_1)}{R_2}}$;

$$N_2 = N_1 \sqrt{\frac{R_2}{R_t - R_1}}$$

23.
$$P = \frac{AS}{l + q(1/d)^2}$$
; $s = \frac{P}{A} \left[l + q \left(\frac{1}{d} \right)^2 \right]$; $d = l \sqrt{\frac{Pq}{AS - pl}}$

25.
$$p = \frac{S}{(1+i)^n}$$
; $i = \sqrt[n]{\frac{S}{P}} - 1$

Exercises 5, Page 14

- 1. $a^2 = c^2 b^2$
- 5. $A_t/A_s = 4\sqrt{3}/9$
- 9. 15.1987 ft
- 13. 41.57 cu ft
- 17. 3280 cu ft

- 3. $16\sqrt{3}$ sq in.
- 7. 67.2 ft
- 11. 22.6 sq ft
- 15. 1.96 cu yd

Exercises 6, Page 17

- 1. $x^2 4y^2$
- 5. $x^2 16/y^2$
- 9. $x^2 2xy + y^2 z^2$
- - 3. $9x^2 49y^2$
 - 7. $a^2 b^2 2bc c^2$

Exercises 7, Page 18

- 1. (x-2)(x+2)
- 5. (5y 3x)(5x 3y)
- 9. (4x + 3y 12z)(4x + 3y + 12z)
- 3. (4b-2a)(4b+2a)
- 7. (a b c)(a + b + c)

Exercises 8, Page 18

- 1. $4x^2 12xy + 9y^2$
- 5. $a^2 ab + b^2/4$

- 3. $4s^2 20st + 25t^2$
- 7. $16t + 4st + s^2/4$

Exercises 9, Page 19

1. $(x^2+4^2)^2$

3. $(4-3x)^2$

5. $(3-2x)^2$

7. $(x/3 - u/4)^2$

9. $(x+2y)^2$

Exercises 10, Page 19

- 1. $(x^2-2x+4)(x^2+2x+4)$
- 3. $(x^2-2xy+4y^2)(x^2+2xy+4y^2)$
- 5. $(9-3x+x^2)(9+3x+x^2)$
- 7. (x-y)(x+y)(x-4y)(x+4y)
- 9. $(3t^2 3st + 5s^2)(3t^2 + 3st + 5s^2)$

Exercises 11, Page 20

- 1. $x^3 + 6x^2y + 12xy^2 + 8y^3$
- 3. $y^3 + \frac{3}{2}xy^2 + \frac{3}{4}x^2y + \frac{x^3}{6}$
- 5. $\frac{y^3}{9} + \frac{y^2x}{4} + \frac{yx^2}{4} + \frac{x^3}{27}$
- 7. $64 48x + 12x^2 x^3$
- 9. $a^3 + \frac{9}{8}a^2b + \frac{9}{27}ab^2 + \frac{97}{8}b^3$

Exercises 12, Page 20

- 1. $(2x + y)(4x^2 2xy + y^2)$
- 3. $(1-3xy)(1+3xy+9x^2y^2)$
- 5. $(a^2-2)(a^4+2a^2+4)$
- 7. $(x^2y-1)(x^4y^2+x^2y+1)$
- 9. $(x-a^2y^2)(x^2+a^2xy+a^4y^4)$

Exercises 13, Page 20

- 1. $x^2 + 4y^3 + z^2 + 4xy + 2xz + 4yz$
- 3. $x^2 + 4y^3 + 9z^2 + 4xy + 6xz + 12yz$

5.
$$16 + x^2 + y^2 - 8x + 8y - 2xy$$

7.
$$9x^2 + y^2 + 4z^2 - 6xy - 12xz + 4yz$$

Exercises 14, Page 21

1.
$$(x-5)(x+2)$$

3.
$$(x-3)(x-\sqrt{3})$$

5.
$$(x-10)(x+3)$$

7.
$$(x-a)(x+2a)$$

9.
$$(x-a)(x-b)$$

11. $(x-3)^2$

Exercises 15, Page 21

1.
$$(5x+1)(2x-3)$$

3.
$$(15x-2)(x+5)$$

5.
$$(5x+2)(3x-1)$$

7.
$$(5-x)(2+x)$$

9.
$$(3x - 5y)(x - 4y)$$

Exercises 16, Page 21

1.
$$(a-b)(a+b)(x+y)$$

3.
$$(x-1)(x+1)(x-3y)$$

5.
$$(1-x)(1+x^2)$$

Exercises 17, Page 22

1.
$$(x-4)(x-3)$$

3.
$$(x-y)(x-2y)$$

5.
$$(x+7)(x-3)$$

7.
$$(x-6)(x+2)$$

9.
$$4(y+9)(y+1)$$

13. $(3x+2)(3x-4)$

11.
$$(5y + 4)(y + 2)$$

15. $(3x + 2y)^2$

17.
$$2(3y+2)(y+3)$$

19.
$$(2x-1)(2x+1)(4x^2+3)$$

21.
$$-(c-d)^2$$

23.
$$a^2(a+1)(a-1)(a-1)$$

25.
$$(x-4y)(x+4y)(x-y)(x+y)$$

27.
$$(ax + by)(a^2x - 3y)$$

29.
$$(2x - y + 3z)(2x + y - 3z)$$

31.
$$2(4+3x)(16-12x+9x^2)$$

33.
$$(3x^2 - 5y^2 + 3xy)(3xy - 3x^2 + 5y^2)$$

35.
$$(x-2y)(x-2y-3z)$$

Exercises 18, Page 23

1.
$$x^4 + 8x^3y + 24x^2y^2 + 32xy^3 + 16y^4$$

3.
$$81a^4 + 540a^3b + 1350a^2b^2 + 1500ab^3 + 625b^4$$

5.
$$\frac{729}{64} + \frac{243}{16}x + \frac{135}{16}x^2 + \frac{5}{2}x^3 + \frac{5}{12}x^4 + \frac{x^5}{27} + \frac{x^6}{729}$$

7.
$$y^8 + 16y^7x + 112y^6x^2 + 448y^5x^3 + 1120y^4x^4 + 1792y^3x^5 + 1792y^2x^6 + 1024yx^7 + 256x^8$$

Exercises 19, Page 24

3. HCF: none LCD:
$$a(a + b)^2(x - y)(a^2 + ab + b^2)$$

5. HCF:
$$x-1$$
 LCD: $(x-1)(x+1)(x^2+1)(x^4+1)$

7. HCF:
$$x - 3$$
 LCD: $42(x - 3)^2(x + 1)(x + 3)$

Exercises 20, Page 27

1.
$$\frac{a}{6x^4}$$

3.
$$x + y$$

$$5. \ \frac{a(2x+3a)}{x(x-a)}$$

7.
$$\frac{3x^2 - 8x - 19}{(x+1)(x-1)(x+3)}$$

9.
$$\frac{3x^2 + 6xy + 3y^2 - x - 3y}{(x+y)^8}$$

11.
$$\frac{6x^2-21x-5}{(x-2)(x-3)}$$

13.
$$\frac{(a-b)^3}{a^2+b^2}$$

17.
$$\frac{x^2-y^2}{xy^2}$$

21.
$$\frac{1}{1-a}$$

$$25. \ \frac{-4}{a+x}$$

29.
$$-\frac{x^2-8x+8}{2x^2(x-2)^2}$$

15.
$$\frac{y-x}{x^3y}$$

$$19. \ \frac{a-b}{a+b}$$

23.
$$\frac{(ay-3y+a-8)(y-1)}{(2y+1)(y-4)}$$

27.
$$\frac{24(y^2-10xy+x^2)}{(y-5x)^3}$$

31.
$$\frac{4a^2x^2}{(2x-a)^3}$$

Exercises 21, Page 30

1.
$$f(0) = 5$$
; $f(1) = 9$; $f(-1) = 3$; $f(a + b) = (a + b)^2 + 3(a + b) + 5$

3.
$$F(1) = 4$$
; $F(2) = 13$; $F(a) = a^3 + 2a + 1$; $F(w - 1) = w^3 - 3w^2 + 5w - 2$

Exercises 22, Page 32

3. Center is (0, 0) and r = 5

Exercises 23, Page 35

7.
$$(\frac{32}{3}, 0)$$

9.
$$(\frac{3}{2}, 0)$$

11.
$$(\frac{1}{3}, 0)$$

Exercises 24, Page 38

1.
$$y = \frac{3}{4}x + \frac{3}{4}$$

$$3. \ y = -\frac{5}{2}x + \frac{7}{2}$$

5.
$$y = \frac{4}{3}x$$

7.
$$y = x$$

9.
$$y = -2x + 7$$

Exercises 25, Page 41

1.
$$x = 411.4$$

5.
$$x = 5$$

9.
$$x = 6$$

13.
$$x = -\frac{21}{10}$$

17.
$$x = \frac{5}{3}$$

3.
$$x = 26\frac{1}{4}$$

7.
$$x = \frac{a}{b+c}$$

11.
$$x = \frac{bcm - bc^2}{3c - b}$$

15.
$$x = \frac{a(a+1)}{a-1}$$
 $(a \neq 1)$

19.
$$x = 2$$

Exercises 26, Page 43

3. 5 hr

7. Mother: \$864

Each daughter: \$288

Each son: \$144

Exercises 27, Page 48

1.
$$w = 17\frac{1}{2}$$

9. 600 lb

18. 4

11, 5.9 in.

15. 33%

Exercises 28, Page 54

1.
$$x = 5, y = 12$$

5.
$$x = 4, y = 15$$

3.
$$x = 7, y = 3$$

3.
$$x = 7, y = 3$$

7.
$$x = -\frac{m(k+m)}{k(k-m)}$$

$$y = \frac{k(k+m)}{m(k-m)}$$

9.
$$x = 60, y = 40$$

13.
$$x = 4, y = 2, z = -3$$

17.
$$7\frac{1}{2}$$
 hr up; $4\frac{1}{2}$ hr down

1. $x = \frac{23}{20}$; $y = -\frac{5}{12}$;

11.
$$x = 2, y = -2$$

15.
$$x = \frac{26}{17}$$
, $y = \frac{117}{28}$, $z = -\frac{156}{101}$

Exercises 30, Page 57

3.
$$x = 0$$
; $y = -\frac{9}{7}$; consistent and independent

7. Consistent and dependent

9.
$$x = 5$$
; $y = 0$; consistent and independent

13. 13 in.,
$$6\frac{1}{2}$$
 in., $19\frac{1}{2}$ in., or $16\frac{1}{4}$ in., 13 in., $9\frac{3}{4}$ in.

21. 24 miles: 9 miles uphill

11.
$$x = \frac{8}{3}$$
; $y = -\frac{8}{3}$; consistent and independent

Exercises 32, Page 65

3.
$$x = 5$$
, $y = 1$, $z = 3$

7.
$$x = \frac{2145}{271}$$
, $y = \frac{286}{3}$, $z = -\frac{429}{25}$

1.
$$x = 7$$
, $y = 5$, $z = 4$

5.
$$x = \frac{29}{14}$$
, $y = \frac{11}{14}$, $z = \frac{87}{14}$

9.
$$r_1 = 18 \text{ ohms}$$

 $r_2 = 9 \text{ ohms}$
 $r_3 = 12 \text{ ohms}$

5. -600

9.
$$x = \frac{1}{2}$$
, or $\frac{4}{9}$

Exercises 33, Page 69

7.
$$-\frac{5}{4}$$

11.
$$x = 5$$
, $y = -3$, $z = 4$, $w = -2$

Exercises 34, Page 74

7.
$$\frac{\sqrt[4]{5}\sqrt[3]{x^2}\sqrt[6]{y^7}}{\sqrt[7]{z^2}}$$

11.
$$\frac{7}{r^4}$$

15.
$$\frac{5(x-2)}{x^3}$$

19.
$$\frac{a^6}{16b^4c^8}$$

1. $3\sqrt{2}$

17.
$$\frac{a^2+2a+3}{a^3}$$

25.
$$\frac{b^{54}}{27a}$$

29.
$$\frac{ab^2}{a^2-b^4}$$

23.
$$\frac{b^5}{\sqrt[3]{a^2}}$$

27.
$$\frac{b^2}{(b-1)^2}$$

31.
$$\sqrt[4]{a^3} + \sqrt{a} - \sqrt{ab} - b$$

33.
$$m^4 + m^{94} + m^{94}n^{94} - m^{94}n^{94} - n^{94} - n^4$$

Exercises 35, Page 78

1.
$$3\sqrt{2}$$

5.
$$\frac{2\sqrt[3]{6}}{3}$$

9.
$$2\sqrt{2}$$

13.
$$(a^2-b^2)\sqrt{a^2-b^2}$$

17.
$$-\frac{27}{7}\sqrt{7}$$

21.
$$2\sqrt{5}$$

25.
$$5 - 2\sqrt{6}$$

29.
$$\sqrt[3]{4} - 2\sqrt[3]{10} + \sqrt[3]{25}$$

33.
$$4\sqrt{5}+8$$

37.
$$\frac{a-\sqrt{a^2-x^2}}{x}$$

3.
$$\frac{\sqrt[3]{18}}{3}$$

7.
$$\frac{\sqrt{6}}{8}$$

11.
$$(x-3)\sqrt{2}$$

15.
$$\sqrt{10} > \sqrt[3]{28}, \sqrt[3]{6} > \sqrt{3}, \sqrt{19} > \sqrt[3]{65}$$

19.
$$(6-c-\frac{1}{2})\sqrt{a-b}$$

23.
$$\sqrt{10}-5$$

27. 9
$$-2\sqrt{3} + 3\sqrt{15} - 2\sqrt{5}$$

35.
$$\frac{27-7\sqrt{5}}{22}$$

39.
$$\frac{-ab}{x + \sqrt{a^2 + x^2}}$$

Exercises 36, Page 80

1.
$$5 + (2\sqrt{3} - 4\sqrt{2})i$$

3.
$$6-21\sqrt{6}+5\sqrt{3}i$$

5.
$$14 - 5\sqrt{3} - (7\sqrt{5} + 2\sqrt{15})i$$

7.
$$\frac{10\sqrt{3}}{3} - 1 - 2\sqrt{3}i$$

9.
$$\frac{a^2 - \sqrt{bc}}{a^2 + b} - \frac{a(\sqrt{b} + \sqrt{c})i}{a^2 + b}$$

Exercises 37, Page 84

3. (a)
$$V(\frac{4}{3}, -\frac{25}{3})$$
; minimum $y = -\frac{25}{3}$

(b)
$$V(\frac{4}{3}, -\frac{16}{3})$$
; minimum $y = -\frac{16}{3}$
(c) $V(\frac{3}{4}, -\frac{8}{3})$; maximum $y = -\frac{31}{8}$

(c)
$$V(\frac{3}{4}, -\frac{31}{8})$$
; maximum $y = -\frac{31}{8}$

(d)
$$V(-\frac{3}{4}, \frac{65}{8})$$
; maximum $y = \frac{65}{8}$
(e) $V(0, -3)$; minimum $y = -3$

(f)
$$V(\frac{5}{2}, -\frac{1}{2})$$
; minimum $y = -\frac{1}{2}$

5.
$$x = 15 \, \text{ft}$$

9. 1

Exercises 38, Page 88

1.
$$x = 3, 4$$

5.
$$x = \frac{9}{7}, -\frac{5}{8}$$

3.
$$x = \frac{1}{2}, \frac{1}{4}$$

7. $x = -\frac{1}{2}, -\frac{5}{2}$

9.
$$x = -\frac{5}{4}, \frac{3}{4}$$

13.
$$x = \frac{a}{2p}, \frac{2a}{p}$$

17.
$$1 \pm \sqrt{2}$$

25.
$$\frac{1 \pm \sqrt{6}}{p}$$

41.
$$-\frac{1}{4}$$
, $-\frac{2}{8}$

11.
$$x = \frac{a}{2}$$
, 2a

15.
$$x = \frac{2b}{a}, \frac{2b}{a}$$

19.
$$\frac{7 \pm \sqrt{33}}{8}$$

23.
$$\frac{5 \pm \sqrt{17}}{8}$$

27.
$$\frac{-p \pm \sqrt{p^2 - 4q}}{2}$$

31.
$$-4$$
 and -2

35.
$$\frac{17 \pm \sqrt{455}i}{12}$$

39.
$$\frac{11}{2}$$
 and $-\frac{1}{2}$

Exercises 39, Page 92

1.
$$x = 5$$

$$5. x = 3$$

9.
$$x = \frac{a^2}{a-1}$$

13.
$$x = 49$$

17.
$$x = \frac{5}{4}$$
 and $\frac{4}{5}$

21.
$$x = 1$$
 and 4

25.
$$x = \frac{1}{250}$$
 and 16

29, 256,
$$\frac{400}{3}\sqrt[3]{1200}$$

3.
$$x = 0$$
 and 4

7.
$$x = \frac{25a}{18}$$

11.
$$x = 9$$

15.
$$x = 37$$

19.
$$x = \pm \frac{3}{8}\sqrt{10}$$

23.
$$x = 3$$
 and $-\frac{5}{3}$

27.
$$x = 1$$
 and 4°

Exercises 40, Page 92

1. 37.26 acres 40.26 acres

5. 14, 5 or - 19, -37

9. Train: 40 mph; plane 120 mph

3. A: 6.26 mph; B: 4.26 mph

7. 4 ft border; 20 ft side of square

11. 44 hr Exercises 41, Page 95

5. q =

7. Real and equal: $q = \pm 6$; not real: -6 < q < 6

9. $x_1 + x_2 = \frac{1}{k}$; $x_1x_2 = -\frac{1}{k}$

Exercises 42, Page 98

1.
$$(2,5)$$
, $(-4,-1)$

5.
$$(8, 16), (-3, \frac{4}{3})$$

3.
$$(1, 2), \frac{37}{19}, \frac{36}{19}$$

7.
$$(3, 1), (-\frac{1}{15}, -\frac{41}{5})$$

9.
$$(4, -3), (\frac{144}{5}, \frac{78}{5})$$

Exercises 43, Page 100

1. (2, 4), (-2, -4),
$$(\frac{7}{5}\sqrt{10}, \frac{1}{5}\sqrt{10})$$
, $(-\frac{7}{5}\sqrt{10}, -\frac{1}{5}\sqrt{10})$

8.
$$(4, 5)$$
, $(-4, -5)$, $(3\sqrt{3}, \sqrt{3})$, $(-3\sqrt{3}, -\sqrt{3})$

5.
$$(6, 2), (-6, -2), (4i, -3i), (-4i, 3i)$$

7.
$$(2, -3), (-2, 3), (\frac{69}{3}\sqrt{23}, \frac{11}{23}\sqrt{23}), (-\frac{59}{23}\sqrt{23}, -\frac{11}{23}\sqrt{23})$$

9.
$$(5, \frac{1}{2}), (-5, -\frac{1}{2}), (\frac{3}{2}\sqrt{2}i, \frac{1}{3}\sqrt{2}i), (-\frac{3}{2}\sqrt{2}i, -\frac{1}{3}\sqrt{2}i)$$

Exercises 44, Page 102

1.
$$(9,3)$$
, $(3,9)$, $\left(-\frac{13+\sqrt{39}i}{2}, -\frac{13-\sqrt{39}i}{2}\right)$, $\left(\frac{-13-\sqrt{39}i}{2}, \frac{-13+\sqrt{39}i}{2}\right)$

3.
$$(\frac{3}{8}, \frac{3}{4}), (\frac{3}{4}, \frac{3}{8})$$

5.
$$(2, -6), (-6, 2), \left(\frac{7 + \sqrt{35}i}{2}, \frac{7 - \sqrt{35}i}{2}\right), \left(\frac{7 - \sqrt{35}i}{2}, \frac{7 + \sqrt{35}i}{2}\right)$$

7.
$$(9, -5), (-5, 9), \left(-\frac{49 + 7\sqrt{41}i}{4}, -\frac{49 - 7\sqrt{41}i}{4}\right), \left(\frac{-49 - 7\sqrt{41}i}{4}, \frac{-49 + 7\sqrt{41}i}{4}\right)$$

9. (7, -3), (-3, 7),
$$\left(\frac{9+\sqrt{65}}{2}, \frac{9-\sqrt{65}}{2}\right)$$
, $\left(\frac{9-\sqrt{65}}{2}, \frac{9+\sqrt{65}}{2}\right)$

Exercises 45, Page 104

3.
$$(9,3), (-9,-3)$$

5.
$$(2, -3), (6, -1)$$

7.
$$\left(\frac{6\sqrt{33}}{11}, \frac{2\sqrt{33}}{11}\right), \left(\frac{-6\sqrt{33}}{11}, \frac{-2\sqrt{33}}{11}\right), (-2, 2), (2, -2)$$

9.
$$(\frac{1}{3}\sqrt[3]{484}, \frac{1}{32}\sqrt[3]{484})$$

13.
$$\left(\frac{5i}{2}, \frac{-17i}{6}\right), \left(\frac{-5i}{2}, \frac{17i}{6}\right)$$

Exercises 46, Page 104

1.
$$(4, 5), (-4, -5), (-19, 5), (19, -5)$$

3.
$$(0,0)$$
, $(4,2)$, $(-4,-2)$

5.
$$\left(\sqrt{158}, \frac{67}{1+\sqrt{158}}\right)$$
, $\left(-\sqrt{158}, \frac{67}{1-\sqrt{158}}\right)$, $\left(\sqrt{158}, \frac{-\sqrt{158}-\sqrt{426}}{2}\right)$, $\left(-\sqrt{158}, \frac{\sqrt{158}+\sqrt{426}}{2}\right)$

7. (2, 1), (-2, -1),
$$\left(-\frac{2i}{\sqrt{19}}, \frac{9i}{\sqrt{19}}\right), \left(\frac{2i}{\sqrt{19}}, \frac{9i}{\sqrt{19}}\right)$$

9.
$$(-4.999, -0.1262)$$
, $(1.279, -4.834)$ approximately

11.
$$(1.300, 2.280)$$
, $(1.300, -2.280)$ approximately

13.
$$(2a, a), (-2a, a), (2\sqrt{2ai}, -2a), (-2\sqrt{2ai}, -2a)$$

15.
$$(3, -4), (4, 3)$$

Exercises 48, Page 114

1	THE	ngo

5. Hyperbola

9. Hyperbola

13. Hyperbola

3. Ellipse

7. Hyperbola

11. Ellipse

15. Hyperbola

Exercises 50, Page 118

1.
$$f(1) = 3$$
; $f(2) = 5$; $f(3) = 11$; $f(-1) = 11$; $f(0) = -1$

3.
$$f(-1) = -15$$
; $f(2) = 114$; $f(5) = 13,455$; $f(10) = 462,810$

5.
$$f(2) = 53$$
; $f(-1) = -13$; $f(3) = 231$; $f(-3) = -567$

Exercises 51, Page 120

11. (x+1)(x+2)(x-1)

$$7. -28$$

13. (x-4)(x-2)(x-3)(x-1)

Exercises 52, Page 126

1.
$$2, 3, -4$$

5. -3, 1, 2

9. $-\frac{1}{2}$, -1, $-\frac{2}{3}$

13.
$$1, \frac{3}{2}, -\frac{3}{2}$$

21. 28 ft, 21 ft

3. 1, -1, 7, 3

7. 1, 1, 1, -4

11. 2, $-\frac{1}{2}$, $\frac{1}{2}$

15.
$$-\frac{3}{2}$$
, $-\frac{3}{2}$, $\frac{1\pm\sqrt{5}}{2}$

19.
$$\frac{5}{3}$$
, $\pm \sqrt{2}$

3. -2.43

Exercises 53, Page 129

5. 0.409, -1.11, 2.20

7. 1.75, -0.331

9. 2.38

Exercises 54, Page 133

1.
$$0.27, 3.36, -1.63$$

3. 0.28, 0.69, -0.97

7. 19.34 in. or 3.36 in.

9. r = 3.59 in.; h = 5.51 in.; or r = 6.75 in., h = 1.56 in.

11. 0.32 ft

Exercises 55, Page 135

1. (a)
$$\log_2 8 = 3$$
; (b) $\log_5 25 = 2$; (c) $\log_2 \frac{1}{2} = -1$; (d) $\log_3 1 = 0$; (e) $\log_8 4 = \frac{9}{3}$

3. (a) 6; (b) 2; (c) -4; (d) -1

7. (a) 3; (b) 3; (c) 625; (d) $\frac{1}{125}$

Exercises 59, Page 139

5. 1.94929

9. 0.02284

13. 0.99564 - 3

17. 0.84510 - 1

21. 322.1

25, 5,9204

29. 9.991

3. 2.31027

7. 0.48897 - 2

11. 1.73030

15. 0.77830 - 5

19. 3.79000

23. 9570.

27. 0.00303

Exercises 60, Page 143

1.	1	.1	0	19	7
••	4		v	Zσ	•

5. 2.30203

9. 70148.

13. 60.473

3. 2.97392

7.7.12209 - 10

11. 45.503

15. 0.029182

Exercises 61, Page 145

1. 0.11203

5. 3.006

9, 1,554

13. 1.0092

17. 0.48474

21. 12.29

25, 11,23

29. 1.286×10^{10}

83, 4,578

3. 37.816

7. 15.78

11. -0.9788

15. 5.39078

19. 1.7094

23. 34.885

27. \$2,513

31. 0.608

Exercises 62, Page 147

1. -1.9554

5. -0.015218

3. -0.00002493

7. 3.2314

Exercises 63, Page 149

1, 2,7604

5. 0.1 or 3.162

9. 100 or 0.001

13. 11.923

17. 2.4012

21. 0.049

3. -3.170

7. 1.442

11. 0.1704

15. 4.5913 19. -0.18551

23. 0.042

Exercises 64, Page 150

3. 50

5. 4.3731 - 10; 9.0837 - 10; 2.3322; 8.6907 - 10; 1; 1.9149; 5.951; 2.26593

7. (a) 3.2188

(b) 5.52147

(c) 7.82406

(d) 8.61370 - 10

(e) 6.31111 - 10

(f) 1.83258

Exercises 66, Page 154

3. $a_{10} = 35$; $s_{20} = 740$

5. 112½

7. $a_n = 22 + \sqrt{2}$; $s_n = 12\sqrt{2} + 132$

9. n = 9; $s_n = 477$

11. 141

13. \$139

15. 2,300 ft

17. $s = \frac{1}{2}gt^2$

21. 16; 14

Exercises 68, Page 157

1.
$$a_1 = \frac{a_n}{r^{n-1}}$$
; $n = 1 + \frac{\log a_n - \log a}{\log r}$; $r = \left(\frac{a_n}{a_1}\right)^{1/(n-1)}$

3.
$$a_q = -\frac{1}{256}$$
; $s_q = -\frac{171}{256}$

5.
$$a_n = \frac{7}{729}$$
; $s_n = 31\frac{361}{729}$

7. \$2412.10

9. \$3306.80

11. 0.34866w; 37 strokes

13. 1.8447×10^{19}

Exercises 69, Page 160

1. 2

5. 9

9. 387

13. 1/x

3. 5

7. $\frac{4}{33}$

11. 120°

Exercises 71, Page 168

1. 15

5. 486,486,000

9. 9

3. 150

7. 144

Exercises 72, Page 170

3. 720

7. 96

5. 840 9. 126

5. 637

1. 600

5. 455

9. 120

13. 151,200 17. 6 10

9. 75,287,520

1. 1680

Exercises 73, Page 171

3. $3(27C_8) = 6.660,225$ 1. 120

7, 28

11. 52C13

Exercises 74, Page 171

3. 455

7. 1225

11. 190

15. $(|12)^2$

Exercises 75, Page 174

3. (a) $\frac{723}{92.637}$; (b) $\frac{91,914}{92,637}$

7. 7

11. (a) $\frac{1}{13}$; (b) $\frac{4}{13}$

1. 1

5. $\frac{7}{20}$

9. 1

Exercises 76, Page 175

1. (a) $\frac{1}{28,561}$; (b) $\frac{1}{27,025}$ 3. (a) $\frac{256}{625}$; (b) $\frac{16}{625}$

7. $\frac{7}{228}$ 5. 0.568; 0.185

9. 3¹6

13. $\frac{7}{80}$; $\frac{1}{80}$

Exercises 77, Page 177

3. \$0.75; \$1.50; \$3.75

5. \$4805

Exercises 78, Page 177

1. (a)
$$\frac{9}{91}$$
; (b) $\frac{4}{455}$; (c) $\frac{9}{65}$; (d) $\frac{94}{91}$; (e) $\frac{53}{85}$

7.
$$\frac{4}{17}$$
; $\frac{1}{2652}$; $\frac{1}{221}$

9. \$0.059

Exercises 79, Page 182

1.
$$\frac{2}{x-1} - \frac{9}{x-2} + \frac{7}{x-3}$$

3.
$$\frac{5}{3(x-1)^2} - \frac{5}{9(x-1)} + \frac{5}{9(x+2)}$$

5.
$$\frac{x-2}{5(x^2+1)} + \frac{29}{5(x+2)}$$

7.
$$8x + 29 + \frac{91}{x-2} - \frac{20}{x-1}$$

9.
$$\frac{3}{5(x+1)} + \frac{1}{5(3x-2)}$$

11.
$$3x + 15 + \frac{89}{x-3} - \frac{32}{x-2}$$

13.
$$\frac{3}{4x^2} + \frac{4x-3}{4(x^2+4)}$$

15.
$$\frac{35}{16(x-1)} + \frac{7}{4(x-1)^2} - \frac{35x-14}{16(x^2+x+2)}$$

17.
$$\frac{1}{w-1} + \frac{2}{(w-1)^2} + \frac{1}{(w-1)^3}$$

19.
$$\frac{2x}{(x^2+1)^2} + \frac{x}{x^2+1}$$

Exercises 81, Page 187

1.
$$x > 1$$

5.
$$x < 1$$
; $x > 3$

9.
$$-3 < x < 2, x > 7$$

9.
$$-3 < x < 2, x > 7$$

13.
$$x < \frac{3}{2}$$

17.
$$x > 1$$
: $x < 0$

3.
$$V < \frac{3}{5}$$

7.
$$-\frac{3}{2} < x < 1$$

11.
$$x \le -3, x \ge 0$$

15.
$$x < \frac{3 - \sqrt{13}}{2}$$
, $x > \frac{3 + \sqrt{13}}{2}$

19.
$$x < 0$$

Exercises 82, Page 188

1. 0.989

3.
$$n = \frac{Cr}{E - Cr}$$
; $r = \frac{nE}{C(n+1)}$; $E = \frac{Cr(n+1)}{n}$

5.
$$x^{1\frac{3}{2}} - \frac{13}{3}x^6y + \frac{96}{3}x^{1\frac{1}{2}}y^2 - \frac{986}{37}x^5y^3 + \cdots$$
; ninth term is $\frac{143}{7}x^{\frac{1}{2}}x^{\frac{1}{2}}y^3$

7.
$$\frac{2a^{11}x^{\frac{1}{2}}}{5b^{\frac{3}{2}}c^{\frac{9}{4}}}$$

11.
$$x = -\frac{3}{2}$$

13.
$$x = -6$$
; $y = 14$; $z = 5$

15. 1424 miles

17.
$$x = \frac{10 \pm \sqrt{91}}{3}$$

19. (a)
$$K = \pm \sqrt{3}$$
; (b) anything but $\pm \sqrt{3}$

21.
$$x = 0$$

23.
$$6x^{14}y^{-1} - 2x^{-14} - 3x^{-34}y$$

25.
$$x > 7$$
 and $x < -\frac{3}{2}$

27.
$$\frac{97}{9}\sqrt{3A}$$

29.
$$x = 4$$

31.
$$\left(\frac{\sqrt{2}}{2}, -\frac{5\sqrt{2}}{2}\right), \left(-\frac{\sqrt{2}}{2}, \frac{5\sqrt{2}}{2}\right), (3, 2), (-3, -2)$$

35.
$$-3$$
, -4 , $1 \pm \sqrt{2}$

37.
$$2x^4 - 11x^3 - 23x^2 + 14x = 0$$

BOOK II

Exercises 1, Page 197

1. 90°; 60°; 15°; 38°11′50″; 85°56′37″

3. 0.6698; 1.2613; 2.208; 1.5132; 2.483; 0.8269

5. 12.57 ft

7. 5.094 in.

9. 9.48 in.

Exercises 2, Page 198

1. y = 150 ft; r = 212.13 ft

3. $\frac{a}{2}$; $\frac{a\sqrt{3}}{2}$

5. 12.69 ft

Exercises 3, Page 204

1.		sin A	cos A	tan A	csc A	sec A	cot A
	(a)	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
	(b)	$\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{2}$	-1	$\sqrt{2}$	$-\sqrt{2}$	-1
	(c)	$\frac{\sqrt{3}}{2}$	1/2	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2	√ 3/8

Exercises 4, Page 206

3. 2.2802

5. x = 2.75

	$\sin A$	cos A	tan A	csc A	sec A	cot A
· 1	5 18	± ½	$\pm \frac{5}{12}$	13	±13	±12
8	- 3	1 8	$-\frac{3}{4}$	_ 5	-13 5	- 5
5	± 5 4	±-74	ş	$\pm \frac{5\sqrt{74}}{74}$	$\pm \frac{7\sqrt{74}}{74}$	7

7. (a) 5.7683; (b) 1.799

9. (a) 4.7669; (b) $\frac{169}{144}$

Exercises 10, Page 226

27.
$$\frac{\sin^7\theta - 2\sin^5\theta + 2\sin^3\theta + \sin^2\theta - 1}{\sin^2\theta (1 - \sin^2\theta)}$$

29.
$$\frac{1 + \cos A - \cos^2 A - \cos^2 A}{\cos^2 A}$$

Exercises 11, Page 233

1. 0.45865	3. 0.73010
5. 0.56666	7. 0.13710
9. 1.0844	11. 24°15′
13. 51°50′22″	15. 39°35′25″
17. 39°39′46″	19. 33°53′45″

Exercises 12, Page 233

The general solutions are obtained by adding $n \cdot 360^{\circ}$, where $n = 0, 1, 2, 3, \cdots$, to the values given.

21.
$$(\sqrt{13}, \tan^{-1}\frac{2}{3}), \theta$$
 in first quadrant; $(-\sqrt{13}, \tan^{-1}\frac{2}{3}), \theta$ in third quadrant

23. (9.30075, 98°2′22′′
$$\pm n \cdot 360^\circ$$
); (9.30075, 261°57′38′′ $\pm n \cdot 360^\circ$)

25.
$$r = \pm \sqrt{10}$$
; $\theta = \tan^{-1}(-2)$; $\theta = \frac{\pi}{4} 2n\pi$

Exercises 13, Page 236

1.
$$\sin (A + B) = -\frac{4\sqrt{5} + 5}{15}$$
 $\sin (A - B) = \frac{4\sqrt{5} - 5}{15}$
 $\cos (A + B) = \frac{2\sqrt{5} - 10}{15}$ $\cos (A - B) = \frac{-2\sqrt{5} - 10}{15}$
 $\tan (A + B) = \frac{9 + 5\sqrt{5}}{8}$ $\tan (A - B) = \frac{9 - 5\sqrt{5}}{8}$

5. $\cos B$

Exercises 14, Page 238

1.
$$\sin 2A = \frac{\sqrt{3}}{2}$$
; $\cos 2A = -\frac{1}{2}$, $\tan 2A = -\sqrt{3}$

3.
$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

5.
$$\cos 3A = 4 \cos^3 A - 3 \cos A$$

7.
$$\sin \frac{A}{2} = \sqrt{\frac{5}{6}}$$
; $\cos \frac{A}{2} = \sqrt{\frac{1}{6}}$; $\tan \frac{A}{2} = \sqrt{5}$

Exercises 16, Page 241

In each of the following answers $n = 0, 1, 2, 3, \cdots$.

1.
$$30^{\circ} \pm n \cdot 180^{\circ}$$

 $150^{\circ} \pm n \cdot 180^{\circ}$

3.
$$n \cdot 360^{\circ} \pm 45^{\circ}$$

5.
$$90^{\circ} + n \cdot 360^{\circ}$$
; $18^{\circ} + n \cdot 360^{\circ}$; $162^{\circ} + n \cdot 360^{\circ}$; $234^{\circ} + n \cdot 360^{\circ}$; $306^{\circ} + n \cdot 360^{\circ}$

7.
$$\frac{\pi}{10} \pm \frac{2n\pi}{5}$$
; $-\frac{\pi}{6} \pm 2n\pi$

9.
$$270^{\circ} \pm n \cdot 360^{\circ}$$

11.
$$\pm n \cdot 180^{\circ}$$
; $45^{\circ} \pm n \cdot 180^{\circ}$; $90^{\circ} \pm n \cdot 180^{\circ}$

13.
$$180^{\circ} \pm n \cdot 360^{\circ}$$
; $60^{\circ} \pm n \cdot 360^{\circ}$; $300^{\circ} \pm n \cdot 360^{\circ}$

15.
$$\pm n \cdot 180^{\circ}$$
; $n \cdot 180^{\circ} \pm 60^{\circ}$

17.
$$161^{\circ}33'54'' + n \cdot 180^{\circ}$$

19.
$$r = 4.3149$$
; $\theta = 22^{\circ}1'27''$; $r = -4.3149$; $\theta = 157^{\circ}58'33''$

21.
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

23.
$$x^3 + xy^2 - 2ay^2 = 0$$

25.
$$\frac{x^2}{a^2} + \frac{y^{34}}{b^{34}} = 1$$

27.
$$y^2 + 2ax = 2a^2$$

29.
$$\theta = 121^{\circ}17'10''$$

31.
$$\theta = 44^{\circ}37'24''$$

Exercises 17, Page 244

1.
$$x = \frac{1}{2}\sqrt{3}$$

$$3. \ x = \frac{\sqrt{21}}{14}$$

5.
$$x = 0$$
; $x = \pm 1$
9. $x = \frac{1}{6}$

Exercises 19, Page 247

1. 9.52421 - 10

9.52421 - 10

5. 0.38694

9. 0.32389

18. 54°12′

17. 40°37′31″

3. 0.50040

7. 9.88095 - 10

7. $x = 0, x = \pm 1$

11. 22°29′

15. 35°38'32"

19. 22°45′30″

Exercises 20, Page 249

1.
$$A = 62^{\circ}4'58''$$
; $B = 27^{\circ}55'2''$; $c = 303.29$

3.
$$A = 60^{\circ}14'41''$$
; $B = 29^{\circ}45'19''$; $a = 313.86$

5.
$$A = 70^{\circ}43'22''$$
; $b = 161.37$; $c = 488.78$

7. 7.6537 in.; area = 282.84 sq in.

9. 15.867 in.

11. 43.333 sq in.

18. 6 in.: 10.10 cu ft
12 in.: 27.94 cu ft
18 in.: 49.53 cu ft
24 in.: 73.32 cu ft
30 in.: 98.15 cu ft
60 in.: 196.3 cu ft

15. 153.96 ft

- 17. $B = 58^{\circ}0'8''$ $B' = 121^{\circ}59'52''$ $C = 80^{\circ}22'27''$ $C' = 16^{\circ}22'43''$ c' = 158.33
- **19.** $B = 53^{\circ}51'34''$; $C = 57^{\circ}40'51''$; c = 876.84
- **21.** $A = 16^{\circ}46'35''$; $C = 24^{\circ}45'33''$; b = 636.79

Exercises 21, Page 257

- 1. $A = 56^{\circ}19'$; b = 838.0; c = 786.7
- 3. $A = 47^{\circ}32'$; $C = 80^{\circ}9'$; c = 514.2
- 5. No solution

Exercises 22, Page 260

- 1. $A = 51^{\circ}29'36''$; $B = 89^{\circ}13'24''$; c = 291.28
- **3.** $A = 32^{\circ}28'17''$; $C = 57^{\circ}31'43''$; b = 65.19
- 5. 777.68 miles; 425.62 miles from other road
- 7. 135.8 miles apart
- 9. 54°44′6″

Exercises 23, Page 268

- **1.** $C = 66^{\circ}39'24''$; b = 592.74; c = 580.11
- 3. $A = 34^{\circ}32'6''$; a = 0.1426; c = 0.2510
- **5.** $A = 72^{\circ}41'24''$; $B = 52^{\circ}9'56''$; $C = 55^{\circ}8'42''$
- 7. $A = 40^{\circ}29'$: $B = 59^{\circ}6'$: c = 1113
- 9. $A = 46^{\circ}52'10''$; $C = 111^{\circ}53'25''$; c = 883.65 $A' = 133^{\circ}7'50''$; $C' = 25^{\circ}37'45''$; c' = 411.92
- **11.** $B = 23^{\circ}18'21''$; $C = 141^{\circ}8'57''$; c = 241.57 $B' = 156^{\circ}41'39''$; $C' = 7^{\circ}45'39''$; c' = 52.006
- 13. $A = 66^{\circ}22'42''$; $C = 72^{\circ}20'0''$; b = 0.69757
- 15, 263.5 miles
- 17. 385.9 rods
- 19. 10.7 in.

Exercises 24, Page 271

- **1.** $B = 46^{\circ}12'45''$; $C = 51^{\circ}29'51''$; a = 527.44; area = 79.300°
- **3.** $A = 86^{\circ}45'15''$; b = 700.67; c = 792.42; area = 277160
- **5.** $A = 29^{\circ}46'49''$; $B = 87^{\circ}57'36''$; b = 921.96; area = 186,940
- 7. 0.82042
- 9. 76.41; 179.9
- 11. $113^{\circ}1'37''$; $66^{\circ}58'23''$; area = 137.58 sq ft
- 13. One diagonal = 165.5; other = 409.2; area = 29,677
- 15. 5800.7 ft
- 17. 1584.4 ft
- 19. 538 sin $31^{\circ}27' > .237$. : BC is too short
- **21.** AB = 536.76 ft
- **23.** AB = 405.6 ft
- **25.** $\angle ABD = 139^{\circ}47'23''$; BD = 897.16 ft

```
27. 279.5 ft = horizontal distance; 6859.7 ft = height of cliff
```

Exercises 25, Page 278

1. (a)
$$2(\cos 60^{\circ} + i \sin 60^{\circ})$$

(b)
$$2(\cos 330^{\circ} + i \sin 330^{\circ})$$

(c)
$$2\sqrt{2}(\cos 225^{\circ} + i \sin 225^{\circ})$$

(d)
$$2(\cos 90^{\circ} + i \sin 90^{\circ})$$

(e)
$$3(\cos 0^{\circ} + i \sin 0^{\circ})$$

(f)
$$(\cos 270^\circ + i \sin 270^\circ)$$

(g)
$$\sqrt{34}(\cos\theta + i\sin\theta)$$
, (h) $\sqrt{}$ where $\theta = \tan^{-1}(-\frac{5}{3})$ in the 4th quadrant

(h)
$$\sqrt{2}(\cos 315^{\circ} + i \sin 315^{\circ})$$

3. (a)
$$3+i$$

(b)
$$1 - 7i$$

(c)
$$14 + 5i$$

(d)
$$-\frac{10}{17} - \frac{11}{17}i$$

Exercises 26, Page 282

1.
$$6(\cos 60^{\circ} + i \sin 60^{\circ})$$

7.
$$4 + 4\sqrt{3}i$$

9.
$$2\sqrt{2}(\cos 345^{\circ} + i \sin 345^{\circ})$$

11. (a)
$$\pm 1$$
; (b) $1, -\frac{1}{2} \pm \frac{\sqrt{3}i}{2}$; (c) $\pm 1, \pm i$

Exercises 27, Page 284

$$1.4 - i$$

3.
$$-3 - 11i$$

5.
$$-\frac{3}{10} + \frac{11}{10}i$$

7.
$$z = \frac{1 \pm \sqrt{15}i}{2}$$

11.
$$5\sqrt{13}(\cos 70^{\circ}33'39'' + i \sin 70^{\circ}33'39'')$$

15.
$$\frac{1}{5}$$
 (cos 330° + *i* sin 330°); $\frac{3}{25} - \frac{4}{25}i$; $\frac{1}{10}$ (cos 45° + *i* sin 45°)

17.
$$\sqrt{5}(\cos 15^{\circ} + i \sin 15^{\circ})$$
 and $\sqrt{5}(\cos 195^{\circ} + i \sin 195^{\circ})$; $2 + i$ and $-2 - i$; $\sqrt{10}(\cos 22^{\circ}30' - i \sin 22^{\circ}30')$ and $\sqrt{10}(\cos 157^{\circ}30' + i \sin 157^{\circ}30')$

23.
$$2(\cos 60^{\circ} + i \sin 60^{\circ})$$
; $2(\cos 180^{\circ} + i \sin 180^{\circ})$; $2(\cos 300^{\circ} + i \sin 300^{\circ})$

25.
$$\sqrt[4]{5}(\cos 47^{\circ}42'36'' + i \sin 47^{\circ}42'36'');$$
 $\sqrt[4]{5}(\cos 167^{\circ}42'36'' + i \sin 167^{\circ}42'36'');$ $\sqrt[4]{5}(\cos 287^{\circ}42'36'' + i \sin 287^{\circ}42'36'')$

27.
$$2(\cos \theta^{\circ} + i \sin \theta^{\circ})$$
; $2(\cos 72^{\circ} + i \sin 72^{\circ})$; $2(\cos 144^{\circ} + i \sin 144^{\circ})$; $2(\cos 216^{\circ} + i \sin 216^{\circ})$; $2(\cos 288^{\circ} + i \sin 288^{\circ})$.

31.
$$s_1 = \sqrt{34}(\cos 59^{\circ}2'9'' + i \sin 59^{\circ}2'9''); \quad s_2 = \sqrt{13}(\cos 303^{\circ}41'24'' + i \sin 303^{\circ}41'24''); \quad s = \sqrt{29}(\cos 21^{\circ}48'5'' + i \sin 21^{\circ}48'5'')$$

35. in series 4.571 (cos 334°3′ +
$$i$$
 sin 334°3′); in parallel 1.718 (cos 334°49′ + i sin 334°49′)

Review Exercises 28, Page 286

7. 616.6 ft

13. (a)
$$\theta = 30^{\circ}$$
; 150° ; 135° ; 315°
(b) $\theta = 48^{\circ}35'25''$; $131^{\circ}24'35''$; $194^{\circ}28'39''$; $345^{\circ}31'21''$.

15.
$$\sin (A + B) = \frac{220}{221}$$
; $\cos (A - B) = \frac{171}{221}$; $\cos 2A = \frac{119}{169}$; $\sin \frac{A}{2} = \frac{\sqrt{26}}{26}$

17. (e)
$$\frac{\cos 4\theta + 4\cos 2\theta + 3}{8}$$

19.
$$\frac{\pm 25\sqrt{3} + 48}{39}$$

25.
$$y^2 = 4x^2(1-x^2)$$

29.
$$\sqrt[3]{17}(\cos 99^{\circ}21'27'' + i \sin 99^{\circ}21'27'');$$
 $\sqrt[3]{17}(\cos 219^{\circ}21'27'' + i \sin 219^{\circ}21'27'');$ $\sqrt[3]{17}(\cos 339^{\circ}21'27'' + i \sin 219^{\circ}21'27'')$

BOOK III

Exercises 1, Page 292

3.
$$AB = 9$$
; $BC = \sqrt{130}$; $AC = \sqrt{85}$; altitude = 9; area = \$1

9.
$$6x - 4y + 13 = 0$$

Exercises 2, Page 294

3.
$$\left(-\frac{3}{8}, -5\right)$$
; $\left(-\frac{7}{8}, -4\right)$

5. (a)
$$AB = 5\sqrt{10}$$
; $BC = \sqrt{173}$; $AC = \sqrt{13}$

(b) to
$$BC = \frac{1}{2}\sqrt{353}$$
; to $AC = \frac{7}{2}\sqrt{17}$; to $AB = \frac{1}{2}\sqrt{122}$

(c)
$$\frac{1}{2}\sqrt{18}$$

(d)
$$(\frac{2}{3}, -\frac{13}{3})$$

Exercises 3, Page 295

5. 20 units

7. (b) 60; (c) 15,
$$\sqrt{89}$$

(d)
$$2\sqrt{29}$$
; (e) $\frac{30\sqrt{29}}{29}$

Exercises 4, Page 297

8. (2, 60°);
$$(\sqrt{2}, 45^\circ)$$
; $(\sqrt{74}, 234^\circ 27' 45'')$

5.
$$r = 5$$

7.
$$x^2 + y^2 - y = 0$$

9.
$$y^2 = 4(x+1)$$

Exercises 8, Page 311

3.
$$(2,4)$$
; $(50,-20)$

5.
$$(\frac{9}{2}, -6)$$

7.
$$(2, 2\sqrt{3}); (2, -2\sqrt{3})$$

15.
$$\left(\frac{\pi}{4} \pm n\pi, \frac{1}{2}\right)$$
; $\left(\frac{3\pi}{4} \pm n\pi, -\frac{1}{2}\right)$

17.
$$\left(10\sqrt{2}, \frac{\pi}{4}\right)$$

19.
$$(1,0)$$
; $(1,\pi)$

23.
$$\left(\frac{a}{2}, \frac{\pi}{6}\right)$$
; $\left(\frac{a}{2}, \frac{\pi}{3}\right)$; $\left(\frac{a}{2}, \frac{2\pi}{3}\right)$; $\left(\frac{a}{2}, \frac{5\pi}{6}\right)$; $\left(\frac{a}{2}, \frac{7\pi}{6}\right)$; $\left(\frac{a}{2}, \frac{4\pi}{3}\right)$; $\left(\frac{a}{2}, \frac{5\pi}{3}\right)$; $\left(\frac{a}{2}, \frac{11\pi}{6}\right)$

Exercises 9, Page 314

1.
$$2x - 12y - 29 = 0$$

$$3. \ x^2 + y^2 - 2x - 5y = 25$$

5.
$$y^2 - 8x - 16$$

7.
$$x^2 - 4x - 6y + 13 = 0$$

9.
$$19x^2 - 18xy + 99y^2 - 50x - 450y + 175 = 0$$

11.
$$44x^2 - 100y^2 = 275$$

13.
$$3x^2 + 4y^2 - 40x + 100 = 0$$

15.
$$r = 10 \cos \theta$$

17.
$$r^2 - 8r \cos \left(\theta - \frac{\pi}{6}\right) = 84$$

Exercises 10, Page 319

1.
$$y = -3$$

3.
$$2x + 3y - 19 = 0$$

5.
$$2x + 5y - 10 = 0$$

7.
$$\sqrt{3}x - y - 3 - 2\sqrt{3} = 0$$

9.
$$x + y - 2 = 0$$

11.
$$x + \sqrt{3}y - 5 = 0$$

15. (a)
$$2x + y - 5 = 0$$
; $x - 5y - 19 = 0$; $5x - 3y - 7 = 0$

(b)
$$9x - y - 17 = 0$$
; $3x + 7y + 9 = 0$; $3x - 4y - 13 = 0$

- (c) 26
- (d) 11

Exercises 11, Page 323

1.
$$y = \frac{3}{4}x - \frac{5}{4}$$
; y intercept = $-\frac{5}{4}$

3.
$$\frac{3}{8}x + (-\frac{1}{8})y = 2$$
; distance = 2

5. Altitudes: to
$$AB = 7$$
; to $BC = \frac{35\sqrt{58}}{58}$; to $AC = \frac{35\sqrt{53}}{53}$; area = $17\frac{1}{2}$

11.
$$3x + 2y - 23 = 0$$

13.
$$\frac{7\sqrt{194}}{194}$$

Exercises 12, Page 326

3.
$$(-\frac{7}{4}, -4)(-\frac{2}{4}, -5)$$

7. (a)
$$AB = 5$$
; $BC = 5$; $AC = \sqrt{10}$

(b)
$$y = 0$$
; $3x + 4y - 15 = 0$; $3x - y = 0$

(c) 3; 3;
$$\frac{3}{4}\sqrt{10}$$

(e)
$$x = 1$$
; $4x - 3y = 0$; $x + 3y - 6 = 0$

(g)
$$2x + y - 5 = 0$$
; $x - 2y = 0$; $x + 3y - 5 = 0$

$$(h) 7\frac{1}{2}$$

9.
$$x + 2y + 6 = 0$$

17.
$$\frac{22\sqrt{17}}{17}$$
; $\frac{22\sqrt{29}}{29}$; $\frac{11\sqrt{10}}{10}$

19.
$$2x + y \pm 5\sqrt{5} = 0$$

Exercises 13, Page 330

1.
$$x^2 + y^2 - 4x + 6y - 23 = 0$$

3.
$$x^2 + y^2 + 6x - 8y = 0$$

5.
$$x^2 + y^2 - 10y = 0$$

7.
$$11x^2 + 11y^2 - 21x - 47y + 10 = 0$$
; $r = \frac{\sqrt{2210}}{22}$; $C\left(\frac{21}{22}, \frac{47}{22}\right)$

9.
$$x^2 + y^2 - 18x + 6y + 9 = 0$$

11.
$$89x^2 + 89y^2 + 1246x - 356y - 324 = 0$$

13.
$$x^2 + y^2 = 16$$

15.
$$2x^2 + 2y^2 - 2(a+c)x - 2(b+d)y + a^2 + b^2 + c^2 + d^2 - k = 0$$

17.
$$296x^2 + 296y^2 - 1440x - 31y - 8676 = 0$$
.

19.
$$2\sqrt{73}$$

Exercises 14, Page 332

1.
$$r = 10 \cos \theta$$

3.
$$r^2 + 10r \sin \theta = 75$$

5. (a)
$$C(0,0)$$
; $r=7$

(b)
$$C(3,0)$$
; $r=3$

(c)
$$C(5, \pi/2)$$
; $r = 5$

(d)
$$C(2, \pi/4)$$
; $r=2$

(e)
$$C(\frac{1}{2}, \pi/6)$$
; $r = \frac{1}{2}$

(f)
$$C(6,0)$$
; $r=6$

(g)
$$C(\frac{5}{4}, \cos^{-1}\frac{3}{8}); r = \frac{5}{2}$$

Exercises 15, Page 339

1.
$$\frac{x^2}{16} + \frac{y^2}{12} = 1$$

$$3. \ \frac{x^2}{36} + \frac{y^2}{20} = 1$$

$$5. \ \frac{x^2}{64} + \frac{y^2}{39} = 1$$

$$7. \ \frac{x^2}{5} + \frac{y^2}{8} = 1$$

9. (a)
$$e = \frac{\sqrt{5}}{3}$$
; $F(\pm 2\sqrt{5}, 0)$; $x = \pm \frac{18\sqrt{5}}{5}$

(b)
$$e = \frac{4}{5}$$
; $F(0, \pm 4)$; $y = \pm \frac{25}{4}$

(c)
$$e = \frac{2\sqrt{5}}{5}$$
; $F(0, \pm 2\sqrt{5})$; $y = \pm \frac{5\sqrt{5}}{2}$

11. Length of side =
$$\frac{15\sqrt{34}}{17}$$

17.
$$A = \frac{50\pi\sqrt{2}}{3}$$

Exercises 16, Page 342

1.
$$\frac{(x-5)^2}{36} + \frac{(y+3)^2}{27} = 1$$

3.
$$\frac{(x-2)^2}{16} + \frac{(y-9)^2}{25} = 1$$

55.
$$\frac{4(x-3)^2}{75} + \frac{(y-4)^2}{25} = 1$$

7.
$$\frac{(x-5)^2}{25} + \frac{16y^2}{25} = 1$$
; $e = \frac{\sqrt{15}}{4}$; $F\left(5 \pm \frac{5\sqrt{15}}{4}, 0\right)$; L.R. = $\frac{5}{8}$

9.
$$C(0,1)$$
; $a=5$; $b=\sqrt{5}$; $F(\pm 2\sqrt{5},1)$; $x=\pm \frac{5}{2}\sqrt{5}$

11.
$$C(3, -1)$$
; $a = 5\sqrt{2}$; $b = 5$; $F(3 \pm 5, -1)$; $x = 3 \pm 10$

13.
$$C(0,3)$$
; $a=4\sqrt{3}$; $b=12$; $F(0,3\pm4\sqrt{6})$; $y=3\pm6\sqrt{6}$

15. (a)
$$r = \frac{6}{2 - \cos \theta}$$
; (b) $r = \frac{6}{2 - \cos \theta}$; (c) $r = \frac{6}{2 + \sin \theta}$

17.
$$r = \frac{ek}{1 - e\cos\theta}$$

Exercises 17, Page 347

1.
$$e = \frac{\sqrt{34}}{5}$$
; $F(\pm\sqrt{34}, 0)$; $\frac{x}{5} \pm \frac{y}{3} = 0$

3.
$$e = \frac{\sqrt{6}}{2}$$
; $F(\pm 2\sqrt{3}, 0)$; $\frac{x}{2\sqrt{2}} \pm \frac{y}{2} = 0$

5.
$$e = \frac{1}{2}\sqrt{6}$$
; $F(\pm 2\sqrt{3}, 0)$; $\frac{x}{\sqrt{2}} \pm y = 0$

7.
$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$

9.
$$\frac{x^2}{5} - \frac{y^2}{20} = 1$$

11.
$$\sqrt{2}$$

13.
$$\frac{x^2}{9} - \frac{y^2}{18} = 1$$

Exercises 18, Page 351

1. (a)
$$\frac{(x-2)^2}{9} - \frac{(y+3)^2}{25} = 1$$
; $C(2, -3)$; $F(2 \pm \sqrt{34}, -3)$; $x = 2 \pm \frac{9\sqrt{34}}{34}$;

$$5x - 3y = 19; \ 5x + 3y = 1$$

(b)
$$\frac{(y+6)^2}{25} - \frac{(x-1)^2}{9} = 1$$
; $C(1,-6)$; $F(1,-6\pm\sqrt{34})$; $y=-6\pm\frac{25\sqrt{34}}{34}$;

$$5x - 3y - 23 = 0; \ 5x + 3y + 13 = 0$$

(c) Two straight lines:
$$5x - 3y + 13 = 0$$
; $5x + 3y - 23 = 0$

$$(d) \frac{(x-3)^2}{\frac{51}{2}} - \frac{(y-3)^2}{102} = 1; C(3,3); F\left(3 \pm \frac{\sqrt{510}}{2}, 3\right); x = 3 \pm \frac{51}{\sqrt{510}};$$

$$2x - y - 3 = 0; \ 2x + y - 9 = 0$$

(e)
$$\frac{(x+1)^2}{\frac{13}{2}} - \frac{(y-3)^2}{\frac{13}{2}} = 1$$
; $C(-1,3)$; $F(-1 \pm \sqrt{13},3)$; $x = -1 \pm \frac{\sqrt{13}}{2}$;

$$x-y+4=0; x+y-2=0$$

$$3. 9x^2 - 3y^2 - 36x + 24y - 16 = 0$$

$$5. \ r = \frac{ek}{1 + e\cos\theta}$$

7.
$$56x^2 - 25y^2 - 168x - 224 = 0$$

9.
$$\frac{(x-1)^2}{16} - \frac{(y+2)^2}{20} = 1$$

11.
$$b^2(x-k)^2 - a^2(y-k)^2 = 0$$

Exercises 19, Page 355

5.
$$u^2 = 24x$$

7. (a)
$$V(3,0)$$
; $F(5,0)$; $x=1$

(b)
$$V(5, -2)$$
; $F(8, -2)$; $x = 2$

(c)
$$V(1,0)$$
; $F(1,\frac{3}{2})$; $2y+3=0$

9.
$$x^2 = 20y$$

11.
$$y^2 - 6y - 9x + 27 = 0$$

13.
$$y^2 - 10x + 45 = 0$$

Exercises 20, Page 361

1.
$$3x' + 7y' - 6\sqrt{2} = 0$$

3.
$$(3-5\sqrt{3})x'-(5-3\sqrt{3})y'-14=0$$

5.
$$x'^2 + y'^2 = 36$$

7.
$$x'^2 - y'^2 = 12$$
; $e = \sqrt{2}$

9.
$$e = \frac{2\sqrt{5}}{5}$$

11.
$$2y'^2 + 3\sqrt{2}x' - 3\sqrt{2}y' = 0$$

Exercises 21, Page 363

1.
$$x'^2 - y'^2 = 14$$
; $\theta = 45^\circ$

3.
$$\frac{x'^2}{2} + \frac{y'^2}{2} = 1$$
; $\theta = 45^\circ$

5.
$$x'^2 = -4y'$$
; $\theta = \tan^{-1} \frac{4}{3}$

7.
$$\left(y' + \frac{3\sqrt{13}}{13}\right)^2 = -\frac{25}{13}; \ \theta = \tan^{-1}\frac{3}{2}$$

9.
$$\frac{y''^2}{2} - \frac{x''^2}{48} = 1$$
; $\theta = \tan^{-1} \frac{4}{8}$

11.
$$\frac{x''^2}{25} + \frac{y''^2}{10} = 1$$

Exercises 22, Page 366

1.
$$(x-y+2)(2x-y+3)=0$$

5.
$$(x-y+1)(x+7)=0$$

7.
$$(x-y+2)^2=0$$

9.
$$(x-7)(2x+y)=0$$

Exercises 23, Page 372

1. (a)
$$\frac{1}{2}$$
; (b) $-\frac{3}{4}$; (c) 1; (d) -2

8. (a)
$$x - y - 1 = 0$$
; (b) $x + y - 3 = 0$

7. (a)
$$3x + 5y - 25 = 0$$
; (b) $25x - 15y - 27 = 0$

11.
$$10x \pm 9y - 48 = 0$$

13.
$$x-y-2=0$$
; $x+y+2=0$

Exercises 24, Page 374

1.
$$2x - y + 1 = 0$$

3.
$$y = 2x - 6$$

7.
$$y = \frac{-20 \pm 4\sqrt{34}}{9}x + \frac{125 \mp 16\sqrt{34}}{9}$$

9.
$$y = mx \pm 2\sqrt{-mk}$$

11.
$$y = -\frac{2}{3}x \pm \sqrt{7}$$

Exercises 26, Page 380

1.
$$10x + 3y + 1 = 0$$

3.
$$y = 20(2^x)$$

5.
$$y = -\frac{5}{8}x + \frac{5}{8}x^2$$

7. (a)
$$y = \frac{9}{3} - \frac{3}{2}x$$

(b)
$$y = -\frac{3}{2} + \frac{9}{x}$$

(d) Cannot be done

- (c) Cannot be done
- (e) Not a unique answer
- 9. $y = \sqrt[6]{10} (\sqrt[6]{0.01})^3$

Exercises 27, Page 385

1.
$$S = 72.9 + 0.727t$$

8.
$$P = 2.36 + 0.12W$$

5.
$$P = 0.75 + 0.19R$$

7.
$$T = -17.6 + 4.32I$$

Exercises 28, Page 388

1.
$$y = 3 - \frac{15}{4}x + \frac{7}{8}x^2$$

3.
$$y = \frac{2}{3} + \frac{7}{3}x + \frac{7}{3}x^2$$

5.
$$y = 1.214 - 0.672x + 0.213x^2$$

Exercises 29, Page 390

1.
$$y = \frac{34}{3} - \frac{50}{3x}$$

3.
$$y = -3 + \frac{4}{x}$$

Exercises 34, Page 409

5.
$$y = 2x - 1$$

11. (a)
$$xy = 12$$

(c)
$$y^2 = 16x - 8x^2 + x^3$$

(e)
$$y^2 = x + 1$$

(a)
$$5x = 10 + 2y$$

(b)
$$x^2 - y^2 + 4 = 0$$

(d)
$$y = 1 - 2x^2$$

(f)
$$y = 3x + 1$$

(h) $y = 2x^2$

Exercises 36, Page 418

1.
$$\sqrt{34}$$
. $\sqrt{77}$. $\sqrt{53}$

3.
$$ABC = 55^{\circ}28'37''$$
; $BCA = 41^{\circ}17'21''$; $BAC = 83^{\circ}14'6''$

5.
$$\frac{\sqrt{23}}{6}$$

7.
$$x^2 + y^3 + s^2 - 4x - 10y + 2s + 5 = 0$$

Exercises 37, Page 422

1.
$$\frac{x}{2} + \frac{2y}{3} + \frac{\sqrt{11}}{6}z = 7$$

$$5. \ \frac{x}{20} + \frac{y}{-4} + \frac{z}{2} = 1$$

9.
$$2x + 6y + 3z = 98$$

11.
$$-3x + 2y + 6z = 14$$

13.
$$2x - y + 9z = 10$$

Exercises 38, Page 424

3.
$$(5, -1, 2)$$

5.
$$4x + 3y = 13$$
, $\sqrt{11}x - 3z = 15 + \sqrt{11}$

7. (a)
$$\cos \alpha = \frac{1}{3\sqrt{10}}$$
, $\cos \beta = \frac{8}{3\sqrt{10}}$, $\cos \gamma = \frac{5}{3\sqrt{10}}$

(b)
$$\cos \alpha = \frac{2}{7\sqrt{6}}$$
, $\cos \beta = -\frac{1}{7\sqrt{6}}$, $\cos \gamma = -\frac{17}{7\sqrt{6}}$

9.
$$\theta = 21^{\circ}39'$$

Exercises 39, Page 427

1.
$$y^2 + z^2 = 6x$$
; $y^4 = 36(x^2 + z^2)$

3.
$$\frac{x^2}{9} - \frac{y^2 + z^2}{4} = 1$$
; $\frac{x^2 + z^2}{9} - \frac{y^2}{4} = 1$

Exercises 41, Page 433

1. (a)
$$r = 2$$
; (b) $r^2 + z^2 = 4$

3. (a)
$$r \sin^2 \beta = 2a \cos \beta$$
; (b) $r^2 = 2az$

Index

(The numbers refer to pages.)

Abscissa, 32	Compalen assault and		
Absolute inequalities, 183	Complex numbers		
	rectangular form of, 276		
Abstract numbers, 8	roots of, 279		
Accuracy of tables, 232	theorems on, 277		
Algebra, fundamental theorem of, 120	trigonometric form of, 276		
review of, 188	Conditional equations, 227		
Algebraic fractions, 25	Conditional inequalities, 186		
Angles, 195	Conicoid, 427		
definition of, 195	Consistent equations, 56		
of depression, 271	Constants, 29		
of elevation, 271	Coordinates, cylindrical, 431		
initial line of, 195	of point of division of line segment, 293		
magnitude of, 196	polar, 296, 306, 331		
principal, 210	rectangular, 412		
of rotation of axes, 358	relation between rectangular and		
terminal line of, 195	polar, 296		
trigonometric functions of, 202	spherical, 431		
between two lines, 417	Cosines, direction, 416		
between two planes, 420	law of, 257		
Answers, 529	Curve fitting, 375		
Arithmetical progression, 152	Curves, asymptotes of, 299		
Asymptotes, 301	from experimental data, 381		
Axes, rotation of, 358	through given points, 378		
,	graphs of, 299		
Binomial theorem, 18	intercepts of, 305		
for positive integer, 165	intersections of, 309		
special case, 22	symmetry of, 304		
special case, aa	tangent to, 366		
Cartesian system, 32	Cycloid, 406		
Circle, 106, 328	Cylindrical coordinates, 431		
	Cymunical coordinates, 401		
equation of, 107, 331	Decimal notation, of irrational number, 5		
involute of, 410	•		
parametric equations of, 406	of rational number, 4		
Combinations, 170	DeMoivre's theorem, 279		
Complex numbers, 79, 276	Denominate numbers, 8		
absolute value of, 276	Descartes's rule of signs, 123		
amplitude of, 276	Determinants, 59		
conjugate, 277	elements of, 66		
graphical representations of, 282	evaluation of second order, 60		
powers of, 279	evaluation of third order, 62		
products of, 279	minors of, 67		
quotients of, 279	of nth order, 67		

Determinants (continued)	Equations			
properties of, 65	of tangent line, 369, 373			
second order, 59	trigonometric, 240			
solution of equations by, 60	trigonometric conditional, 227			
third order, 62	Exponential equations, 147			
Dimensions, 8	Exponents, 71			
Direction cosines, 416	fractional, 72			
Distance, between line and point, 821	irrational, 73			
from plane to point, 420	laws of, 71			
between two points, 415	negative, 72			
Division, synthetic, 118	positive integral, 71			
by zero, 7	zero, 71			
Ellipse, 334	Factor, 16			
equation of, 340	highest common, 24			
properties of, 337	Factor theorem, 119			
Equations, 39	Factorial product, 22			
of circle, 107, 331	Formulas, transformation of, 10			
conditional, 39, 227	from geometry, 13			
of conicoids, 427	Fractions, 25			
curve fitting, types used in, 375	algebraic, 25			
of ellipse, 340	partial, 178			
equivalent, 39	Functions, 29			
exponential, 147	first degree, 35			
first degree, 39, 50, 319	graphical representation of, 34, 81			
graph from experimental data, 381	integral, 30			
of graph by least square formula,	integral, rational, 117			
383	inverse, 242			
graphical representation of, 55, 105,	linear, 35			
299	maximum of quadratic, 83			
of graphs through given points, 378	minimum of quadratic, 83			
homogeneous, 99	multivalued, 219			
of hyperbola, 110, 343	quadratic, 81			
identical, 17	rational, 30			
involving inverse functions, 242	rational integral, 117			
irrational, 89	single valued, 220			
linear, 36, 55, 92	trigonometric, 199			
of lines, 413	vertex of quadratic, 82			
of loci, 312				
logarithmic, 147	Geometrical progression, 155			
of normal to curve, 371	infinite, 158			
of nth degree, 122	Geometry, analytic, 291			
of parabola, 105	formulas from, 13			
parametric representation of, 406	synthetic, 291			
of a plane, 412	theorems from, 13			
polar coordinate, 306	solid analytic, 412			
quadratic, 85, 92, 340, 347	Graphical method of solving triangles, 245			
roots of, 39	Graphical representation, 29			
rotation of axes, effect of, 361	of complex numbers, 282			
second degree, 92, 361	of equations from experimental data,			
of surface, 413	381			
of surfaces of revolution, 425	of linear equations, 55			
symmetrical, 101	of polar coordinate equations, 306			

Graphical representation (continued) of quadratic equations, 105	Lines experimental data on, 381
of trigonometric functions, 213, 218	least-square formula of approximat
Graphical solution of equation systems, 115	383
Graphs, of certain equations, 299	parallel, 324
equations through given points, 378	perpendicular, 325
oquations on ough Broom points, oro	straight, 316, 422
Highest common factor, 24	Literal number symbols, 7
Horner's method, 129	Locus, equation of, 312
Hyperbola, 110, 343	Logarithmic equations, 147
equation of, 110, 343	Logarithmic paper, 392, 397
properties of, 346	Logarithmic solution of triangles, 263
proportion of, 020	Logarithms, 135
Identities, 39	characteristic of, 137
trigonometric, 222	computation by means of, 143
Inconsistent equations, 56	definition of, 135
Induction, mathematical, 162	interpolation in, 141
Inequalities, 183	laws of, 136
absolute, 184	mantissa of, 137
conditional, 186	natural, 149
Integer, positive, 2, 165	tables of, 139
Integral exponents, 71	of trigonometric functions, 246
Integral function, 30	ways of writing, 140
Integral rational function, 117	Lowest common multiple, 24
Intercepts, of a curve, 305	manufacture, manuf
of a plane, 421	Mathematical induction, 162
Interpolation, 141	Measurement, 1
Intersections, of curves, 309	Mollweide's formulas, 253
of lines, 55	Multiple, lowest common, 24
of planes, 422	indivipio, iomost common, az
of surfaces, 427	Negative numbers, 6
Inverse trigonometric functions, 218	nth roots, 280
Involute of a circle, 410	Numbers, 1
Irrational equations, 89	abstract, 8
Irrational number, 7	approximate, 5
Irrational roots, 126	complex, 79, 276
Tradonal 1000s, 120	decimal notation of, 4
Law of cosines, 257	denominate, 8
Law of sines, 251	equal, axioms of, 10
	irrational, 3
Law of tangent of half angles, 261	literal, 7
Law of tangents, 260 Least-square formula for "best" line, 383	negative, 6, 146
	prime, 16
Line segment, 291	rational, 2
coordinates of point of division, 293	real, 6
directed, 195	scientific notation of, 137
length of, 291	botonimo momento del mor
projection of, 291	Ordinate, 32
Line values of trigonometric functions, 211	Ordinato, on
Linear equations, 36, 55, 92	Parabola, 105, 352
Lines, angle between, 417	equation of, 105
directed segment of, 195	fitting to empirical data, 386
direction cosines of, 416	Parallel lines, 324
equations of, 413	Taranor mico, car

Parameter, 408	Rational integral function, 117		
elimination of, 408 Parametric representation of equations,	Rational number, 2 Real numbers, 6		
406	magnitude of, 6		
Partial fractions, 178	Rectangular coordinates, 32, 412		
Permutations, 167	relation between polar and, 296		
of n things all different, 169	Remainder theorem, 119		
of n things some alike, 169	Revolution, surfaces of, 425		
Perpendicular lines, 325	Roots, approximation of irrational, 12		
Planes, 419	of equation, 39		
angle between, 420	of integral rational equation, 121		
distance to a point, 420	nth, 280		
equations of, 412, 421	of quadratic equation, 93		
in terms of intercepts, 421	sum and product of, 95		
Polar coordinates, 296, 331	Rotation of axes, 358		
distance between two points in, 297 equations involving, 306	Rule of signs, Descartes's, 123		
relation between rectangular and, 296	Scientific notation, 137		
Polynomial, 23, 121	Semilogarithmic paper, 392		
Positive integer, 2	Significant figures, 5		
binomial theorem for, 165	Signs, Descartes's rule of, 123		
Power law, 376	Sines, law of, 251		
Prime number, 16	Spherical coordinates, 431		
Probability, 172	Straight line, 316, 422		
dependent events, 175	equation of, 36, 55, 92, 423		
exclusive events, 173	Substitution, method of, 51		
independent events, 174	Surfaces, conicoid, 427		
value of expectation, 176	equation of, 413		
Progressions, 151	intersections of, 427		
arithmetical, 152	of revolution, 425		
geometrical, 155	Symbols, algebraic, 7		
infinite geometrical, 158	Symmetry of a curve, 304		
Pythagorean theorem, 13	Synthetic division, 118		
Quadrant, 199	Tangent, to a curve, 366		
. Quadratic equations, 85, 92, 340, 347	of half angles, law of, 261		
roots of, 93	Tangents, law of, 260		
solution of, 86	Theorem, fundamental, of algebra, 119		
Quadratic functions, 81	remainder, 119		
maximum value of, 83	Theorems from geometry, 13		
minimum value of, 83	Transformation of simple formulas, 10		
vertex of, 82	Triangles, 245 area of, 269, 294		
Radian, 196	radius of inscribed circle, 270		
Radicals, 75	solution of, 245		
addition of, 76	Trigonometric conditional equations,		
multiplication of, 77	227		
rationalization of, 78	Trigonometric equations, 240		
simplification of, 75	Trigonometric functions, 199		
subtraction of, 76	of angles, 202		
Rational approximation of irrational roots,	computation of, 209		
126	graphs of, 213		
Rational function, 30	inverse, 218		

Trigonometric functions (continued)
line values of, 211
logarithms of, 246
of sum of sines or cosines, 238
Trigonometric identities, 222
Trigonometry, 195
Trinomial, 18

Variables, 29, 46 Variation, direct, 46 inverse, 46 joint, 47

Zero, division by, 7 significant, 5

