3. Find all positive solutions to $x^2 - 2y^2 = 1$ for which y < 250.

Let
$$(X_8, V_0)$$
 be the solution w)

SMELLEST Y-COORD (fundamental soln)

Thin

all solns have the form

 $(X_0 + Y_0 \sqrt{d})^K = X_K + Y_K \sqrt{d}$
 $X = Z : U_0 - 2y^Z = 1 \Rightarrow Z_Y Z_0 = 3$ no solus

 $X = 3 : Q_0 - 2y^Z = 1 \Rightarrow Z_Y Z_0 = 8 \Rightarrow Y_0 = 2$
 $\Rightarrow (3,2)$ Smellest solution.

 $K - 14$ smellest solu (X_K, Y_K) satisfies

 $X_K + Y_K \sqrt{2} = (3 + 2\sqrt{2})^K$
 $X_Z + Y_Z \sqrt{2} = (3 + 2\sqrt{2})^3 = (17 + 12\sqrt{2})(3 + 2\sqrt{2})$
 $X_3 + Y_3 \sqrt{2} = (3 + 2\sqrt{2})^3 = (17 + 12\sqrt{2})(3 + 2\sqrt{2})$

5. Consider a right triangle, the lengths of whose sides are integers. Prove that the area cannot be a perfect square.

Why, assume
$$gcd(a,b,c)=1$$

$$\Rightarrow \exists S, t \text{ not both odd, } (s, t) = 1$$

$$A = \frac{1}{2}bc = SE(S^2 - t^2) = SE(S - t)(s + t)$$

Write
$$S+t=P^2$$
, $S-t=2^2$ Some P_1 2

Claim: P-2, P+9 both even, one is divisible by 4. By P& q odd => P±q quen/ Consider (CSD) P=1,3 mod 4
9=1,3 mod 4 deline u = P-q, v = P+q $\in Z$ one of them is even, other is odd note that uz+ vz=5 (check) É 5 15 9 perfect square. $\Rightarrow (u_1 v_1 S) \text{ is an integer right}$ + richy uwhere $q + eq = \frac{1}{2}uv = \frac{1}{2} \frac{p^2 - q^2}{y} = \frac{1}{4} \frac{q}{2} = \frac{1}{4} \frac{q}{$ Since ore of 4,0 is even ty is a perfect square since t is a square that 5 Smaller than St(52-t2)=A get contradiction by descent.