

Standards Overview

History

- The development of the standard was assigned to SC17/WG8 in 1994.
- A task force was established comprising several companies.
- The 1st task was to determine what the market wanted in a contactless card.
- The task force studied various applications, that were in use at the time and projected for the foreseeable future.
- Compatibility with application layers of existing contact smart card (ISO/IEC 7816) standards was also taken into consideration for the ease of integration and deployment.
- In the end, the task force defined four parts to the standard:
 - 1. ISO/IEC14443-1 Physical characteristics
 - 2. ISO/IEC14443-2 Radio Frequency Power and Signal Interface
 - 3. ISO/IEC14443-3 Initialization and anticollision
 - 4. ISO/IEC14443-4 Transmission Protocol

History - Modes of Operation

- The task force felt that a standard must also be capable of defining a card that uses a
 microprocessor as this offers the flexibility to easily update the application through software.
- After a year of debate a consensus was reached by defining two 'modes of operation' in ISO/IEC 14443-2 (the power and signal interface). These are referred to as 'Type A' and 'Type B'.
- In 1998 a third signal interface mode was proposed by Sony (Type C) but rejected as this did not add anything new to the standard.
- All four parts of the ISO/IEC14443 standards were completed by 2001.
- In mid 2001, a number of companies proposed an amendment that would add five additional modes to ISO/IEC14443-2. (Type C > G).
 - An SC17 ballot (ISO/IEC JTC1/SC17 N2051) on 11th Jan 2001 eventually concluded to keep only the two modes A and B.

History - Modes of Operation

Annex:	NORMATIVE		INFORMATIVE				
TYPE	Α	В	С	D	Е	F	G
Advocate	Philips	П	Sony				
PCD to PICC							
Modulation	100%	10%	10%	100%	10%	100%	10%
	ASK	ASK	ASK	ASK	ASK	ASK	Ask
Bit coding	Modified Miller	NRZ	Manchester	Bit width	NRZ - L	PPM	NAZ-L
Data rate	~ 106 kbps	~ 106 kbps	~106 kbps or more	TO	115,2 ps	12,5 k /25	10 kbps
PICC to PCD Modulation	Load	Load	.\al	Load	Load	Load	Load
	ООК	BPSK	Ad V		ASK		OOK
Subcarrier	fc/16	fc/16	None	None	None	~ 21 kHz	None
Bit coding	Manchester	NRZ - L	Manchester	bit width	NRZ - L	100 us	Manchester
Data rate	~ 106 kbps	~ 106 kbps	~ 106 kbps	T1	115,2 kbps	~ 10 kbps	~ 106 kbps

Acronyms

There are a vast amount of acronyms used in the standard. These are summarized in the 'Symbols and Abbreviated Terms' section at the front of all parts 1 > 4 of the standard.

Primary acronyms are:

PICC – Proximity Integrated Circuit Card (Transponder)

PCD – Proximity Coupling Device (Reader)

Also, many of the commands referenced in Parts 3 and 4 are formatted XXXA or XXXB. This identifies them as a Type A or Type B command.

i.e. REQA - Request Type A PICC Command

REQB - Request Type B PICC Command

Standard Structure

ISO/IEC14443-1 Physical Characteristics

This part of the standard specifies the physical size of the smart card.

The card is the following size: (85.6mm x 54.0mm x .76mm) referred to as ID-1 size.

This is the size of a bank credit card.

corners are 3.18mm

NRZ

Page 8

Standard Structure

ISO/IEC1443-2 Power and Interface

The ISO/IEC14443-2 standard has two modes with the following features:

<u> (PCD > PICC)</u>	<u>Type A</u>	<u>Type B</u>	
Frequency		13.56 MHz	
Modulation		100% ASK	10%
Bit coding		Modified Miller	NRZ
Data rate		106 kb/s	106
	Frequency Modulation Bit coding	Frequency Modulation Bit coding	Frequency 13.56 MHz Modulation 100% ASK Bit coding Modified Miller

Card to Reader (PICC > PCD)

These features allow the reader to and communicate with the card over a targeted range of operation of approximately 10 cm.

2000	Bit coding	ООК
BPSK		
	Subcarrier	847kHz
847kHZ		
	Bit coding yright Texas Instruments	Manchester
	Data vata	100 Lab / a

Standard Structure ISO/IEC1443-2 Power and Interface

^{*} Inversion of data is also possible

Standard Structure

ISO/IEC14443-3 Initialization and Anticollision

- Part three of the standard enables the reader to identify the cards in the magnetic field and establish communications with a specific card. It specifies the byte format, frames and timing used during the 2 initial phases of communication.
- The initialization process includes the commands between the reader and the card that activates the card to the 'READY' state.
- This anticollision process follows to identify all PICC's in the PCD field.
 - Part 3 defines 2 anticollision processes for the 2 different modes:
 - Type A > Bit-collision detection protocol
 - Type B > Slotted ALOHA with dynamic slot adaptation.

Standard Structure

ISO/IEC14443-3 Initialization and Anticollision

Copyright Texas Instruments

Standard Structure

ISO/IEC14443-4 Transmission protocols

- Part four of the standard defines the half-duplex block transmission protocol. In particular, it defines the activation and deactivation sequences of the protocol.
- The activation sequence is concluded through the Protocol and Parameter Selection (PPS) process, upon which data can be exchanged.
- Upon completion of data exchange, the PICC can be disabled through the de-selection process.
- This standard has been developed with functionality and flexibility in mind.

Standard Structure

ISO/IEC14443-4 Transmission protocols

Note: Type A process illustrated

Communication Protocol Stack

TI's TRF7960 ASIC supports both Type A AND Type B

Reader
Software can be configured to support remainder of the standard and the application.

ISO/IEC 14443/B –2
Air Interface & Modulation

ISO/IEC 14443/B –3
Initialization & anti-collision

ISO/IEC 14443/B –4
Transmission port Layer

Application Protocol Layer

Security Layer

H/W

S/W

Mode Conclusion

Technical Aspect	ISO14443A	ISO14443B	ISO15693	General Comments (For more specific feedback, pls request further info)
Origins	~1990	~1995	~2001	Type B was derived at a much later date than Type A, so has a number of advantages.
Data Rate	106 Kbs	106 up to 847 Kbs	1.65/26.4 kbs	Type B is adaptable to application speed requirements. 14443-3 supports negotiation of higher data-rates with Type B.
Anti-Collision	Medium Binary-search-tree with inefficiencies	Excellent Slotted-ALOHA with dynamic slot adaptation by reader	Excellent Slotted deterministic concept	Type B Slotted ALOHA is the more efficient and sophisticated anti-collision mechanism compared to binary tree search.
Multi- Applications	Yes - Medium	Yes - Fast	Yes - Slow	No clock recovery required with Type B for multiapplications.
Modulation Depth	100% (NO data processing DURING off pulses)	10% (Data processing DURING off pulses)	100% and 10%	100% modulation may offer greater noise immunity for long read-range applications >0.5-1m, but no difference for small read-range applications <.1m.
Air-Interface Complexity	Low (only 100%)	Low (only 10%)	Medium (10% and 100%)	Limited differences in air-interface complexity when using fixed depths of modulation.

Type B is a more recent, advanced, flexible and efficient Mode of Operation.