1 Statistical Measures

1.1 Mean

$$\operatorname{mean}(\mathbf{x}) = \overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

1.2 Median

$$\operatorname{median}(\mathbf{x}) = \begin{cases} x_{(N+1)/2} & \text{if } N \text{ is odd} \\ \frac{x_{N/2} + x_{N/2+1}}{2} & \text{if } N \text{ is even} \end{cases}$$

1.3 Sample Variance

$$var(\mathbf{x}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2$$

1.4 Sample Standard Deviation

$$sd(\mathbf{x}) = \sqrt{var(\mathbf{x})}$$

1.5 Sample Covariance

$$cov(\mathbf{x}, \mathbf{y}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})$$

1.6 Sample Correlation Coefficient

$$cor(\mathbf{x}, \mathbf{y}) = r_{xy} = \frac{cov(\mathbf{x}, \mathbf{y})}{sd(\mathbf{x}) sd(\mathbf{y})}$$

1.7 Location and Scale Changes to Statistical Measures

Statistical	Location Changes $\mathbf{x} + b$, $\mathbf{y} + c$	Scale Changes ax, dy
Measure		
mean	variant mean(\mathbf{x}) + b	variant $a \cdot \text{mean}(\mathbf{x})$
median	variant	variant
var	invariant $var(\mathbf{x})$	variant $a^2 \cdot \text{var}(\mathbf{x})$
sd	invariant $sd(\mathbf{x})$	variant $ a \cdot \operatorname{sd}(\mathbf{x})$
cov	invariant $cov(\mathbf{x}, \mathbf{y})$	variant
cor	invariant $cor(\mathbf{x}, \mathbf{y})$	invariant $cor(\mathbf{x}, \mathbf{y})$ if $ad >$
		0 else if $ad < 0$ then $-cor(\mathbf{x}, \mathbf{y})$