18.821 Project 2

Yajit Jain, Deepak Narayanan, Leon Zhang

October 22, 2014

1 Terms in the sequence $s_n(312)$

We claim that the sequence of numbers $s_n(312)$ is in fact the sequence of Catalan numbers. We state this result formally as the following theorem,

Theorem 1. The total number of permutations of $\{1, 2, 3, ..., n\}$ that avoid the order 312 as a subsequence is C_n where C_n is the n^{th} Catalan number.

Before proving the theorem, we state and prove the following lemma, that will be used in our proof of the theorem.

Lemma 2. All permutations of $\{1, 2, ..., k, k+1\}$ ending in i that avoid the order 312 as a sub-sequence must be of the form,

$$\pi_1\pi_2i$$

where π_1 is a permutation of $\{1, 2, ..., (i-1)\}$ that avoids the order 312 as a subsequence and π_2 is a permutation of $\{(i+1), ..., (k+1)\}$ that avoids the order 312 as a sub-sequence.

Proof. It is clear that any subsequences of the permutation $\pi = \pi_1 \pi_2 i$ must avoid 312 if the entire permutation π is to avoid 312 as well; this implies that the permutations π_1 and π_2 must avoid 312 as well.

We proceed with a proof by contradiction.

Before proceeding, we define the sets A and B to be $\{1, 2, ..., (i-1)\}$ and $\{(i+1), (i+2), ..., (k+1)\}$ respectively. For the sake of contradiction, let us assume that there exists some permutation π of $\{1, 2, ..., k, k+1\}$ that ends with value i such that some integer x < i (that is, $x \in A$) is to the right of some integer y > i ($y \in B$). Clearly, this permutation is not of the form described above. It is also easy to see that π does not avoid the order 312 since the triple (y, x, i) satisfies the condition y > x > i and is in the order 312.

From this we conclude that only permutations of the form described above can avoid 312.

Figure 1: Generating tree of the sequence $s_n(312)$

With this lemma proven, we move on to the proof of our theorem.

Proof. The inductive hypothesis holds for our base case of {1}, since the only permutation of {1} trivially avoids 312.

Now, we need to prove the inductive case. Let us first assume that for all i from 1 to k, the number of permutations of $\{1, 2, ..., i\}$ that avoid the order 312 as a subsequence is C_i .

Now, we want to prove the inductive hypothesis for $\{1, 2, ..., k, k+1\}$ as well, that is the number of permutations of $\{1, 2, ..., k, k+1\}$ that avoid the order 312 as a subsequence is C_{k+1} .

We count the number of permutations of $\{1,2,...,k,k+1\}$ that avoid 312 by enumerating through all possible values of the last term of a valid permutation. If the last term of the permutation is i (where $i \in \{1,2,...,k,k+1\}$), then let us define the subsets A and B of the set $\{1,2,...,k+1\} \setminus \{i\}$ as the set of integers less than i and the set of integers greater than i respectively. It is clear from the definition of A and B that A and B are disjoint from each other.

Now, from the above lemma, we know that all permutations of $\{1, 2, ..., k, k + 1\}$ ending in i that avoid 312 must be of the form,

$$\pi = \pi_1 \pi_2 i$$

where π_1 is a permutation of A that avoids the order 312 as a sub-sequence and π_2 is a permutation of B that avoids the order 312 as a sub-sequence. It is clear that the above permutation contains all integers between 1 and k+1, from the definitions of the subsets A and B, which implies that $\pi_1\pi_2i$ is permutation of the set $\{1, 2, ..., k, k+1\}$.

Now, the total number of permutations π is,

$$n_{\pi_1} \cdot n_{\pi_2} = C_{i-1} \cdot C_{k-i+1}$$

since the total number of valid permuations π_1 is simply going to be C_{i-1} (total number of valid permutations of length i-1 that avoid the order 312 as a sub-sequence is C_{i-1} ; similarly $n_{\pi_2} = C_{k-1+1}$)

Now, summing over all possible values of i, we see that the total number of permutations of $\{1, 2, ..., k+1\}$ that avoid 312 is equal to,

$$\sum_{i=1}^{k+1} C_{i-1} \cdot C_{k-i+1} = \sum_{i=0}^{k} C_i \cdot C_{k-i}$$

which is in fact C_{k+1} , and we are done.