Sistemas Operacionais

4º período

Professora: Michelle Hanne

Computador Contemporâneo

Terminologias

Bit – Abreviação de Binary Digit – Dígito Binário Pode ser 0 ou 1

Byte – Conjunto de oito bits

Palavra – quantidade de bytes que podem ser endereçados de um única vez aos registradores.

Hardware – Componentes físicos de um computador

Software – Programas de um computador

Qualquer computador possuí, pelo menos, os seguintes componentes:

- ✓ Processador.
- ✓ Memória (RAM e ROM).
- ✓ Periféricos (Dispositivos de E/S, dispositivos de armazenamento, e etc...)

Para a interligação dos dispositivos que compõem um computador, faz-se necessário de um meio físico de interligação.

Em um computador o meio físico de interligação dos diversos dispositivos, é composto por:

- Barramento de Endereços.
- Barramento de Dados.
- Barramento de Controle.

Barramento de Controle

São linhas de controle agrupadas, que são usadas para controlar o acesso e o uso das linhas ou barramentos de dados e controle.

Como as linhas ou barramentos de dados e de endereços são utilizados por todos os componentes do sistema (computador), é preciso haver um meio de controlar o seu uso.

Os sinais de controle transmitem informações de comando e sincronização entre os módulos do sistema:

- Escrita de memória.
- Leitura de memória.
- Escrita de E/S.
- Leitura de E/S.
- ACK de transferência.
- Solicitação de barramento (bus request).
- Concessão de barramento (bus grant).
- Requisição de interrupção (interrupt request).
- > ACK de interrupção.
- Clock.
- Reset.

(STALLINGS, 2010 - p69)

Processadores

Processador é o dispositivo eletrônico principal de um computador. Ele é usado para que sejam executados procedimentos específicos a partir de programas e sistemas criados para auxiliar o homem. Nesse contexto, existem diversos tipos de processador, cada qual com objetivos de processamento.

Funções de um processador

Um processador possui as seguintes funções:

- Executar programas armazenados na memória.
- II. Buscar instruções.
- III. Emitir sinais de controle para os demais componentes do computador para que realizem alguma tarefa.

Vamos considerar que todos os dados e instruções estejam armazenados na memória RAM, assim sendo os processadores executam os seguintes procedimentos:

- Leem o conteúdo da memória para, então, processar.
- > Escrevem o conteúdo processado na memória.

Ciclo de Instrução

- I. Busca a próxima instrução na memória, uma de cada vez, para o registrador de instrução.
- II. Atualiza o contador de programa para que ele aponte a instrução seguinte.
- III. Determina o tipo de instrução, que pode ser a soma de dois números, uma multiplicação, uma operação de entrada ou saída de dados, ou ainda uma operação de movimentação de um dado de uma célula para outra.
- IV. Busca dados, onde eles estiverem armazenados, para a UCP.
- V. Executa a instrução.
- VI. Armazena os resultados (se houver algum) no local determinado na instrução.
- VII. Reinicia o processo para executar a próxima instrução.

- ULA (unidade lógica e aritmética): é o componente que executa efetivamente uma instrução.
- Clock (relógio): é o dispositivo que gera pulsos, cujo período é chamado de ciclo de clock.
- UC (unidade de controle): é o dispositivo que emite sinais de controle informando qual tipo de operação será realizada.
- RI (registrador de instrução): armazena a instrução que será executada pela CPU.

- DI (decodificador de instrução): identifica qual operação será realizada pela CPU.
- ACC (acumulador): registrador que armazena variáveis e valores excedentes de uma operação (vai 1 numa operação de soma).
- CI (contador de instrução): sua função é armazenar o endereço da próxima instrução que será executada pela CPU.

- RDM ou MBR (registrador de dados da memória): armazena as informações lidas da memória principal ou que serão escritas na memória principal.
- REM ou MAR (registrador de endereços da memória): armazena os endereços de onde os dados serão lidos ou escritos na memória principal.

- Barramentos de dados, de endereços e de controle: o barramento de dados é usado para transferir os dados de um local para outro; o barramento de endereços é usado para transportar os endereços que serão lidos ou escritos da memória principal; o barramento de controle é usado para transferir os sinais de controle enviados da CPU para a memória principal e os demais dispositivos.

Processadores Multicore

São os processadores que possuem mais de um núcleo (core) em um mesmo encapsulamento

Cache L2
Single Core

Core Core

Cache L2

Cache L2

Core Core

Cache L2

Dual Core

Dual Core com memória cache compartilhada

Arquitetura de Havard

A Arquitetura de Harvard baseia-se em um conceito mais recente que a de Von-Neumann, possui duas memórias diferentes e independentes em termos de barramento e ligação ao processador.

Baseia-se na separação de barramentos de dados das memórias onde estão as instruções de programa e das memórias de dados, permitindo que um processador possa acessar as duas simultaneamente, obtendo um desempenho melhor do que a da Arquitetura de von Neumann.

Arquitetura de Havard

 Os microcontroladores com arquitetura Havard são também conhecidos como "microcontroladores RISC" (Computador com Conjunto Reduzido de Instruções), e os microcontroladores com uma arquitetura Von-Neumann, de "microcontroladores CISC" (Computador com um Conjunto Complexo de Instruções).

Fonte: https://www.diegomacedo.com.br/arquitetura-von-neumann-vs-harvard/

Memória

- Componente de um sistema de computação.
- Armazena informações que são manipuladas pelo sistema.
- Permite que sejam recuperadas quando necessário.
- Armazena também código executável.
- · Arquitetura de Von Neumann: tudo é armazenado em uma única memória.
- Arquitetura de Harvard: memórias separadas.
- Não é um componente único.
 - Subsistema completo.
 - Composto por vários componentes.
 - Todos interligados.
 - Formam uma hierarquia.

Gerenciamento de Memória

O que o programador deseja?

- Dispor de uma memória infinitamente Grande.
- Que a memória seja rápida e não volátil.
- Tudo isso a baixo custo.

Infelizmente ainda não temos tecnologia para isto...

O que fazer então?

Ao longo dos anos foi descoberto o conceito de hierarquia de memórias, os computadores tem :

- Alguns megabytes de memória cache muito rápida, de custo alto e volátil.
- Alguns gigabytes de memória principal, volátil e custo e velocidade médios.
- > Alguns terabytes de armazenamento secundário, em disco, não volátil e velocidade e custo baixos.
- Armazenamento removível: DVDs, dispositivos USB e etc.....

O objetivo do sistema operacional é abstrair essa hierarquia em um modelo útil e, então gerenciar a abstração.

(Tanenbaum, 2009)

Hierarquia de Memória

Existem vários tipos de repositórios diferentes.

- Registradores.
- Memória cache.
- Memória principal.
- Memória secundária.

Cada um destes tipos ainda pode ser subdividido.

- Cache de nível 1, nível 2.
- Disco rígido, fita magnética.

Repositórios variam em termos de:

- Tempo de acesso.
- Capacidade de armazenamento.
- Volatilidade dos dados.
- Preço.

Referências

OLIVEIRA, R.; CARISSIMI, A; TOSCANI, S: Sistemas Operacionais

PATTERSON, D.A., HENNESSY, J.L., Organização e Projeto de Computadores, Editora LTC, Quarta Edição, 2014.

SILBERSCHATZ, A. et al: Fundamentos de Sistemas Operacionais

TANENBAUM, Andrew S., **Organização Estruturada de Computadores**, Prentice Hall, Quinta Edição.

MONTEIRO, M. A., Introdução à Organização de Computadores, Editora LTC.