November 27, 2014 Uten navn.notebook

Op3 Binary trees BT

· LIREBT, some value x, then (L,x,R) e BT

$$(0) = 0$$

where
$$f: (C) = 0$$

$$f(C) = 0$$

$$f$$

a) J((0,3,(0,2,0))) = J((0,2,0))

$$= f(0) + f(0,3,0)$$

6) Show that of computes the number of modes in a tree which here two empty children. Proof by induction:

Base case: 1(0)=0/

other cases:

We can assume that I has this property for LiR in those cases.

(ii)
$$f(R) = f(L) + f(R)$$
, $for L \neq ()$, $R \neq ()$, because we handled that in the separate case (i).

Ex.: (given the following function

$$g:N\to N$$
 $g(0)=0$
 $g(1)=1$

(**) $g(n+2)=g(n)$, $n\geq 0$ = $g(n)=g(n-2)$, $n\geq 2$

Show that for all $n\in N$,

 $g(n)=\begin{cases} 0, & \text{if } n \text{ is even} \end{cases}$

Proof by induction:

Base cases: $g(0)=0$, $0 \text{ even} \wedge (n-1)=1$, $1 \text{ odd} \wedge (n-1)=1$

Induction: Assume that one property holds up to n , show that

 $g(n+1)=\begin{cases} 0, & \text{if } n+1 \text{ is even} \end{cases}$
 $g(n+1)=g(n-1)=\begin{cases} 0, & \text{if } n+1 \text{ even} \end{cases}$

(are distinction:

i) $n-1 \text{ even} = (n-1) \text{ is also even} = (n-1)=0 \wedge (n-1) \text{ is also even} = (n-1)=0 \wedge (n-1) \text{ if } n-1 \text{ odd} = (n-1)=0 \wedge (n-1) \text{ if } n-1 \text{ odd} = (n-1)=0 \wedge (n-1) \text{ if } n-1 \text{ odd} = (n-1)=0 \wedge (n-1) \text{ if } n-1 \text{ odd} = (n-1)=0 \wedge (n-1) \text{ if } n-1 \text{ odd} = (n-1)=0 \wedge (n-1) \text{ odd} = (n-1)=0 \wedge (n-1) \text{ odd} = (n-1)=0 \wedge (n-1) \text{ is also even} = (n-1)=0 \wedge (n-1) \text{ odd} = (n-1)=0 \wedge (n-1)=0 \wedge$

Non use this property to show that g is idempotent, i.e. g(g(n)) = g(n) for all $n \in \mathbb{N}$.