

MODELAGEM DE DADOS

TRABALHO: DIAGRAMA ENTIDADE RELACIONAL

CURSO: GESTÃO DE TECNOLOGIA DA INFORMAÇÃO

DISCIPLINA: MODELAGEM DE DADOS

UNIDADE FORMATIVA 2

ALUNO: LUIZ NUNES DE ALMEIDA JÚNIOR

Introdução

Este relatório técnico descreve o modelo Entidade-Relacionamento (ER) para o modelo que representa um o banco de dados de um sistema de aluguel de ciclomotores, denominado **db_move_rent**, que inclui entidades para pessoas (clientes), ciclomotores, locações, e trajetos realizados. O script SQL foi gerado por **MySQL Workbench** e implementa um banco de dados relacional com chaves primárias, chaves estrangeiras, índices e restrições de integridade referencial.

1. Entidades do Modelo Relacional

O modelo relacional é composto pelas seguintes entidades:

- tbl_pessoa: Armazena informações de clientes (pessoas).
- tbl_ciclomotor: Armazena dados sobre os ciclomotores disponíveis para locação.
- tbl_locacao: Registra as locações dos ciclomotores por parte dos clientes.
- tbl_trajetos: Registra informações sobre trajetos realizados em cada locação.

1.1. Entidade tbl_pessoa

A tabela **tbl_pessoa** (figura 1) armazena os dados dos clientes que podem alugar ciclomotores. Cada pessoa tem um identificador único, o **idPessoa**, que é a chave primária da tabela.

Campo	Тіро	Descrição
idPessoa	INT	Identificador único (chave primária).
cpf	VARCHAR(14)	CPF do cliente (único).
nome	VARCHAR(50)	Nome completo do cliente.
email	VARCHAR(100)	Email do cliente.
telefone	VARCHAR(14)	Telefone de contato.

Figura 1

Restrições:

- Chave primária: idPessoa.
- Índice único: cpf_UNIQUE para garantir que não existam CPFs duplicados.

1.2. Entidade tbl_ciclomotor

A tabela **tbl_ciclomotor** (figura 2) contém os dados dos ciclomotores disponíveis para locação.

Campo	Tipo	Descrição
cm_id	INT	Identificador único do ciclomotor (chave primária).
cm_nome	VARCHAR(50)	Nome ou modelo do ciclomotor.
cm_ano	INT	Ano de fabricação (padrão: 2000).
cm_cor	VARCHAR(15)	Cor do ciclomotor (opcional).

Figura 2

Restrições:

Chave primária: cm_id.

1.3. Entidade tbl_locacao

A tabela **tbl_locacao** (figura 3) registra as locações dos ciclomotores. Cada locação é associada a um cliente (na tabela tbl_pessoa) e a um ciclomotor (na tabela tbl_ciclomotor).

Campo	Tipo	Descrição
lc_id	INT	Identificador único da locação (chave primária).
lc_data_locacao	DATE	Data da locação (padrão: data atual).
lc_hora_locacao	VARCHAR(45)	Hora da locação (padrão: hora atual).
lc_local_locacao	VARCHAR(50)	Local onde ocorreu a locação.
lc_id_pessoa	INT	Chave estrangeira referenciando tbl_pessoa .
lc_id_ciclomotor	INT	Chave estrangeira referenciando tbl_ciclomotor .

Figura 3

Restrições:

- Chave primária: lc_id.
- Chave estrangeira fk_tbl_locacao_id_pessoa referenciando a coluna idPessoa da tabela tbl_pessoa.
- Chave estrangeira fk_tbl_locacao_id_ciclomotor
 referenciando a coluna cm_id da tabela tbl_ciclomotor.

• Relacionamentos:

- o Um cliente (pessoa) pode realizar várias locações.
- Um ciclomotor pode ser locado em várias locações.

2. Relacionamentos entre as Entidades

- tbl_locacao → tbl_pessoa (1:n): Um cliente pode realizar várias
 locações, mas uma locação pertence a apenas um cliente.
- tbl_locacao → tbl_ciclomotor (1:n): Um ciclomotor pode ser locado
 várias vezes, mas cada locação envolve apenas um ciclomotor.
- tbl_trajetos → tbl_locacao (1:n): Cada locação pode ter vários trajetos associados, mas um trajeto pertence a apenas uma locação.

3. Restrições de Integridade Referencial

• ON DELETE CASCADE: Aplica-se quando um registro relacionado é excluído.

- Exemplo: Se um cliente (pessoa) for excluído, todas as locações
 associadas a ele serão automaticamente excluídas (chave estrangeira
 lc_id_pessoa em tbl_locacao).
- ON UPDATE CASCADE: Quando um registro relacionado é atualizado, as chaves estrangeiras que dependem desse registro também são atualizadas.

4. Resumo do Modelo ER

- Tabelas principais: tbl_pessoa (clientes), tbl_ciclomotor
 (ciclomotores), tbl_locacao (locações), tbl_trajetos (trajetos).
- Relacionamentos principais:
 - O Uma pessoa pode realizar várias locações.
 - O Um ciclomotor pode ser alugado várias vezes.
 - O Uma locação pode conter vários trajetos.

O modelo implementa um sistema relacional para gerenciar aluguéis de ciclomotores, garantindo integridade referencial e restrições para evitar dados duplicados, como no caso do CPF dos clientes.

5. Representação visual do DER do Banco de dados Move Rent

Abaixo vemos na imagem (figura 5) a representação visual, construída usando o MySQL Workbench, do diagrama entidade relacional do banco de dados da Move Rent, conforme proposto no exercício:

Figura 5

6. Scripts SQL para definição de entidades do Banco de Dados Move Rent

Abaixo, seguem os scripts SQL de criação das entidades do banco de dados Move Rent, criados a partir do DER do mesmo banco de dados, usando a ferramenta de geração de scripts do MYSQL WorkBench:

```
-- MySQL Script generated by MySQL Workbench
-- Sun Sep 15 23:13:12 2024
-- Model: New Model Version: 1.0
-- MySQL Workbench Forward Engineering

SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0;
SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0;
SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,
NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVIS[ION_BY_ZERO,NO_ENGINE_SUBSTITUTION';
```

```
-- Schema db_move_rent
-- Schema db_move_rent
-- Schema db_move_rent
-- Schema db_move_rent
-- CREATE SCHEMA IF NOT EXISTS `db_move_rent`;

USE `db_move_rent`;
-- Table `db_move_rent`.`tbl_pessoa`
-- Table `If NOT EXISTS `db_move_rent`.`tbl_pessoa` (
   `idPessoa` INT NOT NULL AUTO_INCREMENT,
   `cpf` VARCHAR(14) NOT NULL,
   `nome` VARCHAR(50) NOT NULL,
   `email` VARCHAR(14) NOT NULL,
   `telefone` VARCHAR(14) NOT NULL,
   PRIMARY KEY (`idPessoa`),
   UNIQUE INDEX `cpf_UNIQUE` (`cpf` ASC) VISIBLE)
ENGINE = InnoDB
DEFAULT CHARACTER SET = utf8mb4;
```

```
-- Table `db_move_rent`.`tbl_trajetos`

CREATE TABLE IF NOT EXISTS `db_move_rent`.`tbl_trajetos` (
    `id_trajeto` INT NOT NULL AUTO_INCREMENT,
    `tj_data_trajeto` DATE NOT NULL DEFAULT CURRENT_DATE,
    `tj_hora_trajeto` VARCHAR(45) NOT NULL DEFAULT 'CURRENT_TIME',
    `tj_local_trajeto` VARCHAR(55) NULL,
    `rijad_locacao` INT NOT NULL,
    PRIMARY KEY (`id_trajeto`),
    INDEX `fk_tbl_trajetos_id_locacao_idx` (`tj_id_locacao` ASC) VISIBLE,
    CONSTRAINT `fk_tbl_trajetos_id_locacao`
    FOREIGN KEY (`tj_id_locacao`)
    REFERENCES `db_move_rent`.`tbl_locacao` (`lc_id`)
    ON DELETE CASCADE
    ON UPDATE CASCADE
    ON UPDATE CASCADE)
ENGINE = InnoDB
DEFAULT CHARACTER SET = utf8mb4;

SET SQL_MODE=@OLD_SQL_MODE;
SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS;
SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS;
```