

RESEARCH METHODOLOGY UE20CS506A

Unit-03:

Testing of hypotheses and Data Analysis

Raghu B. A

Priya B.

Santhosh Kumar V

Department of Computer Science & Engineering

RESEARCH METHODOLOGY

Topic: Basic concepts - Procedure for hypothesis testing, flow diagram for hypothesis testing

Santhosh Kumar V

Department of Computer Science & Engineering

 $\frac{\text{Ney/Ney/Ny}}{\text{1}}$

ANOVA: Analysis of Variance

*Used of hypothesis testing when >2 population/samples cases are involved

1. Population normal, population infinite, sample size may be large or small but variance of the population is known, H_a may be one-sided or two-sided:

In such a situation z-test is used for testing hypothesis of mean and the test statistic z is worked our as under:

$$z = \frac{\overline{X} - \mu_{H_0}}{\sigma_p / \sqrt{n}}$$

3. Population normal, population infinite, sample size small and variance of the population unknown, H_a may be one-sided or two-sided:

In such a situation t-test is used and the test statistic t is worked out as under:

$$t = \frac{\overline{X} - \mu_{H_0}}{\sigma_s / \sqrt{n}} \text{ with d.f.} = (n-1)$$

$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\sum (X_1 - \overline{X}_1)^2 + \sum (X_2 - \overline{X}_2)^2}{n_1 + n_2 - 2}}} \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

$$\sigma_s = \sqrt{\frac{\sum (X_1 - \overline{X}_1)^2 + \sum (X_2 - \overline{X}_2)^2}{(n-1)}} \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Year 1 Scores	Year 2 Scores	Year 3 Scores
82	71	64
93	62	73
61	85	87
74	94	91
69	78	56
70	66	78
53	71	87
$\dot{v} = 71.71$	v 75.29	$\dot{v}_{-} = 76.57$

Overall Mean:

The mean of all 21 scores taken together.

$$\bar{x} = 74.52$$

Ref: statistics 101: Anova visual

Multiple t-test (not a solution)

Multiple t-tests

Year 1 Scores	Year 2 Scores	Year 3 Scores
82	71	64
93	62	73
61	85	87
74	94	91
69	78	56
70	66	78
53	71	87
$\dot{x_1} = 71.71$	$\dot{x}_2 = 75.29$	$\dot{x_3} = 76.57$

Overall Mean:

The mean of all 21 scores taken together.

$$\bar{x} = 74.52$$

(total / overall)

between each data

$$\bar{x} = 74.52$$

\bar{x}_1	$ar{ar{x}_2}$	\bar{x}_3	SST (total / overall)
Year 1 Scores	Year 2 Scores	Year 3 Scores	sum of square
82	71	64	Find difference
93	62	73	between each data point and the
61	85	87	overall mean. 2. Square the
74	94	91	difference. 3. Add them up
69	78	56	$\Rightarrow \bar{x} = 74.52$
70	66	78	x = 74.52
53	71	87	
$\dot{x_1} = 71.71$	$x_2 = 75.29$	$\dot{x_3} = 76.57$	

Square the deviations.

 $\bar{x} = 74.52$

- 3. Add them up.
- In this case we would have 3 squared deviations.

Year 1 Scores	Year 2 Scores	Year 3 Scores
82	l 71	64
93	62	73
61	85	87
74	94	91
69	78	56
70	66	78
53	V 71	¥ 87
$x_1 = 71.71$	$x_2 = 75.29$	$\dot{x_3} = 76.57$

SSE (within / error) sum of squares

- Find difference between each data point and its column mean.
- Square each deviation.
- Add them up the squared deviations.
- In this case we would have 21 squared deviations.

SSE (within / error) sum of squares

- Find difference between each data point and its column mean.
- Square each deviation.
- Add them up the squared deviations.
- In this case we would have 21 squared deviations.

Compare 3 population means to see if they are different

 μ_1

Do all the 3 means come from the same population

Is one mean so far away, it is from a different population

Do all of these come from different population

Per Acre yeild					
Plot of	Variety of Wheat				
land	Α	В	С		
1	6	5	5		
2	7	5	4		
3	3	3	3		
4	8	7	4		

\overline{X}_1 \overline{X}_2 $\overline{X}_3,, \overline{X}_k$	$=$ $X_1 + \overline{X}_2 + \overline{X}_3 + + \overline{X}_k$
1,2,3,	No. of samples (k)

Per Acre yield				
Plot of	Variety of Wheat			
land	Α	В	С	
1	6	5	5	
2	7	5	4	
3	3	3	3	
4	8	7	4	
	6	5	4	

SS between =
$$n_1 \left(\overline{X}_1 - \overline{X} \right)^2 + n_2 \left(\overline{X}_2 - \overline{X} \right)^2 + \dots + n_k \left(\overline{X}_k - \overline{X} \right)^2$$

$$\sum (X_{ki} - \overline{X}_k)^2 \qquad MS \text{ within } = \frac{SS \text{ within}}{(n-k)}$$

MS between = $\frac{SS$ between (k-1)

SS within =
$$\sum (X_{1i} - \overline{X}_1)^2 + \sum (X_{2i} - \overline{X}_2)^2 + ... + \sum (X_{ki} - \overline{X}_k)^2$$

MS within = $\frac{SS \text{ within}}{(n - \overline{X}_1)^2} + \sum (X_{2i} - \overline{X}_2)^2 + ... + \sum (X_{ki} - \overline{X}_k)^2$

F-ratio = $\frac{MS \text{ between}}{(n - \overline{X}_1)^2} + \sum (X_{2i} - \overline{X}_2)^2 + ... + \sum (X_{ki} - \overline{X}_k)^2$

SS for total variance =
$$\sum \left(X_{ij} - \overline{X}\right)^2$$

$$n = \text{total number of items in all the samples}$$

i.e., $n_1 + n_2 + ... + n_k$

$$(n-1) = (k-1) + (n-k)$$

Source of Variation	Sum of Squares (SS)	Deg of Freedom	Mean Sqaure(MS)	F- Ratio
Between	SS Between	(k-1)	MS Between = SS Between/(k-1)	MS between MS Within
Within	SS Within	(n-k)	MS Within = SS within/(n-k)	
Total	SS Total	(n -1)		

SS between =
$$n_1 \left(\overline{X}_1 - \overline{X} \right)^2 + n_2 \left(\overline{X}_2 - \overline{X} \right)^2 + \dots + n_k \left(\overline{X}_k - \overline{X} \right)^2$$

SS within =
$$\sum (X_{1i} - \overline{X}_1)^2 + \sum (X_{2i} - \overline{X}_2)^2 + ... + \sum (X_{ki} - \overline{X}_k)^2$$

SS for total variance
$$= \sum \left(X_{ij} - \overline{X}\right)^2$$

Per Acre yield						
Plot of	Variety of Wheat					
land	Α	В	С			
1	6	5	5			
2	7	5	4			
3	3	3	3			
4	8	7	4			
	6	5	4			
	land 1 2 3	Plot of land A 1 6 2 7 3 3 4 8	Plot of land A B 1 6 5 2 7 5 3 3 3 4 8 7			

n = total number of items in all the samplei.e., $n_1 + n_2 + ... + n_k$

$$\overline{Y}_1 = \frac{6+7+3+8}{4} = 6$$

$$\overline{X}_2 = \frac{5+5+3+7}{4} = 5$$

$$\overline{X}_3 = \frac{5+4+3+4}{4} = 4$$

$$\overline{\overline{X}} = \frac{\overline{X}_1 + \overline{X}_2 + \overline{X}_3}{k}$$

$$=\frac{6+5+4}{3}=5$$

$$\overline{X}_1 = \frac{6+7+3+8}{4} = 6 \qquad \overline{X} = \frac{\overline{X}_1 + \overline{X}_2 + \overline{X}_3}{X} \quad SS \text{ for total variance } = \sum \left(X_{ij} - \overline{X}\right)^2 \quad i = 1, 2, 3...$$

$$j = 1, 2, 3...$$

$$\overline{X}_2 = \frac{5+5+3+7}{4} = 5$$

$$\overline{X}_3 = \frac{5+4+3+4}{4} = 4$$

$$= \frac{6+5+4}{3} = 5$$

$$= \frac{6+5+4}{3} = 5$$

$$= \frac{(6-5)^2 + (7-5)^2 + (3-5)^2 + (8-5)^2}{3} + (7-5)^2 + (5-5)^2 + (4-5)^2 + (3-5)^2 + (4-5)^2 + (3-5)^2 + (4-5)^2$$

$$SS \text{ between} = n_1 \left(\overline{X}_1 - \overline{X}\right)^2 + n_2 \left(\overline{X}_2 - \overline{X}\right)^2 + n_3 \left(\overline{X}_3 - \overline{X}\right)^2$$

$$= 4(6-5)^2 + 4(5-5)^2 + 4(4-5)^2$$

$$= 4+0+4$$

$$= 8$$

$$SS \text{ within} = \sum \left(X_{1i} - \overline{X}_1\right)^2 + \sum \left(X_{2i} - \overline{X}_2\right)^2 + \sum \left(X_{3i} - \overline{X}_3\right)^2,$$

$$n = \sum (X_{1i} - \bar{X}_1)^2 + \sum (X_{2i} - \bar{X}_2)^2 + \sum (X_{3i} - \bar{X}_3)^2,$$

$$= \{(6-6)^2 + (7-6)^2 + (3-6)^2 + (8-6)^2\}$$

$$+ \{(5-5)^2 + (5-5)^2 + (3-5)^2 + (7-5)^2\}$$

$$+ \{(5-4)^2 + (4-4)^2 + (3-4)^2 + (4-4)^2\}$$

$$= \{0+1+9+4\} + \{0+0+4+4\} + \{1+0+1+0\}$$

$$= 14 + 8 + 2$$

$$= 24$$

			A			
	Per Acre yield					
Plot of	arie	ariety of Wheat				
land	Α	В	С			
1	6	5	5			
2	7	5	4			
3	3	3	3			
4	8	7	4			
	6	5	4			

Source of variation	SS	d.f.	MS	F-ratio	5% F-limit (from the F-table)
Between sample	8	(3-1)=2	8/2 = 4.00	4.00/2.67=1.5	F(2,9)=4.26
Within sample	24	(12-3)=9	24/9 = 2.67		
Total	32	(12-1)=11			

n = total number of items in all the samplesi.e., $n_1 + n_2 + ... + n_k$

n = total number of items in all the samplesi.e., $n_1 + n_2 + ... + n_k$

Source of variation	SS	d.f.	MS	F-ratio	5% F-limit (from the F-table)
Between sample Within sample	8 24	(3-1)=2 (12-3)=9	8/2 = 4.00 24/9 = 2.67	4.00/2.67=1.5	F(2,9)=4.26
Total	32	(12-1)=11			

Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
Α	4	24	6	4.666667		
В	4	20	5	2.666667		
С	4	16	4	0.666667		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	8	2	4	1.5	0.274016	4.256495
Within Groups	24	9	2.666667			
Total	32	11				

THANK YOU

Raghu B.A Priya B. Santhosh Kumar V.

Department of Computer Science & Engineering