

Tentamen Dynamik MT1502, mars, 2018

Betyg: 0-11 = F, 12-14 = E, 15-18 = D, 19-22 = C, 23-26 = B, 27-30 = A.

1.

En boll rullar nedför med vinkelhastighet Ω . Vad är hastigheten hos punkten B, dvs finn \overline{v}_B ! Inför ett eget valfritt koordinatsystem.

Lösningsutkast Problem 1

Rullning: $\overline{v}_C = 0$; samt, Stel kropp: alla punkter rör sig i cirkel kring alla andra, tex B rör sig i cirkel kring

$$C \Rightarrow \overline{\overline{v}} = \overline{\omega} \times \overline{r}$$
 (1)

$$C\Rightarrow \boxed{\overline{v}=\overline{\omega}\times\overline{r}} \qquad (1)$$
 Här: $\overline{v}_B=\overline{\Omega}\times\overline{r}_{B/C}=(0,0,-\Omega)\times(R,R,0)=\left|\begin{array}{ccc} \hat{x} & \hat{y} & \hat{z} \\ 0 & 0 & -\Omega \\ R & R & 0 \end{array}\right|=(\Omega R,\Omega R,0) \text{ med } x,y \text{ enligt figuren.}$ 2.

En puck med massa $m_0 = 0.3$ kg kommer in med hastigheten $v_{A1} = 1$ m/s och kolliderar med en likadan stillaliggande puck B. Efter kollisionen har puck A vinkeln $\gamma = 30^{\circ}$ och puck B vinkeln $\beta = 20^{\circ}$ mot As initiala riktning, se figuren! Hur mycket rörelseenergi har försvunnit i kollisionen? - dvs finn $T_1 - T_2$! Se puckarna som partiklar, dvs försumma puckarnas rotation.

Lösningsutkast Problem 2 Stöt:

$$\int \overline{F} \, dt = \Delta(m\overline{v})$$

 $\rightarrow: v_{A1} = v_{A2} \cdot \cos(\gamma) + v_{B2} \cdot \cos(\beta)$ $\uparrow: 0 = v_{A2} \cdot \sin(\gamma) - v_{B2} \cdot \sin(\beta) \quad \Rightarrow v_{A2} = v_{B2} \cdot \sin(\beta) / \sin(\gamma) = v_{B2} \cdot \sin(20^\circ) / \sin(30^\circ) \quad (2)$ ini (1): $v_{A1} = v_{B2} \cdot \left[\sin(\beta) / \sin(\gamma) \cdot \cos(\gamma) + \cos(\beta) \right] \Rightarrow$ $v_{B2} = v_{A1}/[\sin(\beta)/\sin(\gamma) \cdot \cos(\gamma) + \cos(\beta)] = 1/[\sin(20^\circ)/\sin(30^\circ) \cdot \cos(30^\circ) + \cos(20^\circ)] = 0.652 \text{ m/s}$ (2): $v_{A2} = 0.652 \cdot \sin(20^{\circ}) / \sin(30^{\circ}) = 0.446 \text{ m/s}$ $T_1 - T_2 = m_0 v_{A1}^2 / 2 - (m_0 v_{A2}^2 / 2 + m_0 v_{B2}^2 / 2) = 0.056 \text{ J}$

3.

Genom att spänna en fjäder kan man skjuta iväg en liten kloss (som har massan m_0). Klossen sitter fast i ett horisontellt snöre som har längd L, se bilden! Den statiska friktionskoefficienten mellan underlag och kloss är μ_s , och den kinematiska är μ_k .

Hur mycket ska fjädern med fjäderkonstant k spännas för att klossen precis ska nå fram till punkt 2 och stanna där - dvs finn $\Delta x(v_2=0)$!

Lösningsutkast Problem 3

$$U^* = \Delta T + \Delta V_g + \Delta V_e$$
 (1)
$$U^* = \int \overline{F} \cdot d\overline{r} = \int -F_f \cdot ds = -F_f \cdot \Delta s = [\text{längd halvcirkel: } \pi r] = -F_f \cdot \pi L$$
 (2)
$$T = m v^2 / 2 : T_1 = T_2 = 0.$$
 (3)
$$V_g = m g h : V_{g1} = V_{g2} = 0$$
 (4)
$$V_e = k x^2 / 2 : V_{e1} = k \cdot (\Delta x)^2 / 2; V_{e2} = 0$$
 (5)
$$\overline{F} = m\overline{a} : \hat{z} \uparrow : N - m_0 g = 0$$
 (6)
$$Klossen \text{ glider så} \quad F_f = \mu_k N \quad \text{som med } (6) \Rightarrow F_f = \mu_k m_0 g$$
 (7)
$$(2), (3) \quad (4), (5) \text{ och } (7) \text{ ini } (1) \text{ ger: } -\mu_k \cdot m_0 \cdot g \cdot \pi L = 0 + 0 - k(\Delta x)^2 / 2, \text{ och således}$$

$$\Delta x = \sqrt{2 \mu_k m_0 g \cdot \pi L / k}$$

4.

Ett rör med försumbar massa har en kloss med massa m_A inuti sig som sitter fast i en fjäder. I Läge 1 så pekar röret rakt uppåt, systemet är stilla och fjäderlängden är L_1 . Röret faller och roterar friktionsfritt. I Läge 2 så pekar det rakt ned. Vinkelhastigheten är då ω_2 , fjäderlängden är L_2 , och massan råkar ha hastighet noll relativt röret (dvs den har just då ingen hastighet i radiell led). Vad är fjäderkonstanten? - dvs bestäm k!

Lösningsutkast Problem 4

Inga yttre krafter utom gravitation och fjäder: Energin bevaras.

Inga yttre krafter utom gravitation och fjader: Energin bevaras.
$$U_{1-2}^* = \Delta T + \Delta V_g + \Delta V_e \qquad (1) \qquad \text{H\"ar}: \ U_{1-2}^* = 0;$$

$$\Delta T = T_2 - T_1 = \boxed{m \, v^2/2} = m_A \, v_2^2/2 \qquad (2)$$

$$\Delta V_g = \boxed{V_g = mgh} = -m_A g (L_1 + L_2) \qquad (3)$$

$$\Delta V_e = \boxed{V_e = k \, x^2/2} = k [(L_2 - L_0)^2 - (L_1 - L_0)^2]/2 \qquad (4)$$

$$\text{L\"age 1:} \quad \overline{F} = m \, \overline{a} \qquad (5) = \text{osp\"anda l\"angden p\'a fj\"adern.}$$

Eftersom ingen radiell has tighet, så rör sig m_A just i Läge 2 i cirkel: $\overline{v} = \overline{\omega} \times \overline{r} \Rightarrow v_2 = \omega_2 L_2 \qquad (6)$ (2)-(4) ini (1): $0 = m_A v_2^2 / 2 - m_A g(L_1 + L_2) + k / 2 \cdot [L_2^2 - 2L_0L_2 + L_0^2 - L_1^2 + 2L_0L_1 - L_0^2] = (5) + (6) \ m_A \omega_2^2 L_2^2 / 2 - m_A g(L_1 + L_2) + k / 2 \cdot [L_2^2 - 2(L_1 + m_A g/k)L_2 - L_1^2 + 2(L_1 + m_A g/k)L_1] = m_A \omega_2^2 L_2^2 / 2 - m_A g(L_1 + L_2) + k / 2 \cdot [L_2^2 - 2(L_1 + m_A g/k)L_2 - L_1^2 + 2(L_1 + m_A g/k)L_1] = m_A \omega_2^2 L_2^2 / 2 + m_A g(L_1 + L_2) + k / 2 \cdot [L_2^2 - 2(L_1 + m_A g/k)L_2 - L_1^2 + 2(L_1 + m_A g/k)L_1] = m_A \omega_2^2 L_2^2 / 2 + m_A g(L_1 + L_2) + k / 2 \cdot [L_2^2 - 2L_1 L_2 - L_1^2 + 2L_1^2] = m_A \omega_2^2 L_2^2 / 2 - m_A g(L_1 + L_2) + k / 2 \cdot [L_2^2 - 2L_1 L_2 - L_1^2 + 2L_1^2] = m_A \omega_2^2 L_2^2 / 2 - m_A g(L_1 + L_2) + k / 2 \cdot [L_2^2 - 2L_1 L_2 - L_1^2 + 2L_1^2] = m_A \omega_2^2 L_2^2 / 2 - m_A g(L_1 + L_2) + k / 2 \cdot [L_2^2 - 2L_1 L_2 - L_1^2 + 2L_1^2] = m_A \omega_2^2 L_2^2 / 2 - m_A g(L_1 + L_2) + k / 2 \cdot [L_2^2 - 2L_1 L_2 - L_1^2 + 2L_1^2] = m_A \omega_2^2 L_2^2 / 2 - m_A g(L_1 + L_2) + k / 2 \cdot [L_2^2 - 2L_1 L_2 - L_1^2 + 2L_1^2] = m_A \omega_2^2 L_2^2 / 2 - m_A g(L_1 + L_2) + k / 2 \cdot [L_2^2 - 2L_1 L_2 - L_1^2 + 2L_1^2] = m_A \omega_2^2 L_2^2 / 2 - m_A g(L_1 + L_2) + k / 2 \cdot [L_2^2 - 2L_1 L_2 - L_1^2 + 2L_1^2] = m_A \omega_2^2 L_2^2 / 2 - m_A g(L_1 + L_2) + k / 2 \cdot [L_2^2 - 2L_1 L_2 - L_1^2 + 2L_1^2] = m_A \omega_2^2 L_2^2 / 2 - m_A g(L_1 + L_2) + k / 2 \cdot [L_2^2 - 2L_1 L_2 - L_1^2 + 2L_1^2] = m_A \omega_2^2 L_2^2 / 2 - m_A g(L_1 + L_2) + k / 2 \cdot [L_2^2 - 2L_1 L_2 - L_1^2 + 2L_1^2] = m_A \omega_2^2 L_2^2 / 2 - m_A g(L_1 + L_2) + k / 2 \cdot [L_2^2 - 2L_1 L_2 - L_1^2 + 2L_1^2] = m_A \omega_2^2 L_2^2 / 2 - m_A g(L_1 + L_2) + k / 2 \cdot [L_2^2 - 2L_1 L_2 - L_1^2 + 2L_1^2] = m_A L_2 (4 g - \omega_2^2 L_2) / (L_2 - L_1)^2$

En motorcykel körs nedför en backe. Den bromsar med enbart bakhjulet. Vad blir den största möjliga inbromsningen ? - dvs finns a_{max} !

Antag att den inte kan välta. Friktionskoefficienterna mellan bakhjul och underlag är givna som μ_s och μ_k .

Lösningsutkast Problem 5

$$\overline{F} = m \overline{a}_{G}$$

$$\underline{x} : -F_{f} + m_{0}g \cdot \cos(\beta) = m_{0}\ddot{x} = ma$$

$$\underline{y} : N_{A} + N_{B} - m_{0}g \cdot \sin(\beta) = m_{0}\ddot{y} = 0$$

$$\underline{G} : N_{A}b - N_{B}b - F_{f}h = I_{G} \cdot 0 = 0$$
(3)

 $F_f \leq \mu_s \, N$. Störst inbromsning när rullar på gränsen till glidning: $F_{fm} = \mu_s \, N_B$ (4)

(1):
$$a_{max} = g \cdot \cos(\beta) - F_{fm}/m_0$$
 (5)
(2) och (3): $N_A = -N_B + m_0 g \cdot \sin(\beta) = N_B + F_f h/b \Rightarrow 2N_B = m_0 g \cdot \sin(\beta) - F_f h/b$ in i (4): $F_{fm} = \mu_s N_B = \mu_2 \left[m_0 g \sin(\beta)/2 - F_{fm} h/(2b) \right] \Rightarrow F_{fm} (1 + \mu_s h/(2b)) = m_0 g \sin(\beta)/2$ in i (6): $a_{max} = g \cdot \cos(\beta) - g \sin(\beta)/(2 + \mu_s h/b)$

Två smala stänger ligger stilla på ett friktionsfritt bord och sitter ihop med en fritt vridbar länk i B. De har massorna m_0 och längderna L. Den vänstra stångens ände sitter i en fix punkt O och stången är fritt vridbar runt denna. En kraft P påverkar plötsligt systemet i punkt B, se bilden!

Vad blir den övre stångens vinkelacceleration? - dvs finn $\dot{\omega}$!

Svara med både storlek och riktning (här räcker + eller -).

Lösningsutkast Problem 6

$$\overline{F} = m\overline{a}_{G} \qquad M = I \ddot{\theta} \qquad (1)$$
Stela kroppar - cirkelrörelse:
$$\vec{a} = \dot{\overline{\omega}} \times \overline{r} + \overline{\omega} \times (\overline{\omega} \times \overline{r}) = a_{t}\hat{t} + a_{n}\hat{n} \qquad (2)$$
Relativ rörelse:
$$\ddot{\overline{r}}_{A} = \ddot{\overline{r}}_{B} + \ddot{\overline{r}}_{A/B} \qquad (3)$$

Det finns många ekvationer man kan ställa upp. Det visar sig att vi bara behöver använder några.

Precis när kraften börjar verka är alla hastigheter noll, tex $\omega_A = 0$ (4)

Precis nar kraften borjar verka ar alla hastigheter noll, tex
$$\omega_{A} = 0$$
 (4)
 $\frac{\partial BC}{\partial E}$; $x : -F_{x} = m_{0}\ddot{x}_{G2} = (3) = m_{0}(\ddot{x}_{B} + \ddot{x}_{G2/B})$ (5)
B i cirkel kring O: (2) $\Rightarrow \ddot{x}_{B} = -a_{n\,B} = -L \cdot \omega_{A}^{2} = 0$ (6) och $\ddot{x}_{G2/B} = (2) = a_{t\,G2/B} = L/2 \cdot \dot{\omega}_{B}$ (7)
 $\underline{G2} : -F_{x} \cdot L/2 = I_{G2} \cdot (-\dot{\omega}_{B}) = -m_{0}L^{2}/12 \cdot \dot{\omega}_{B} \Rightarrow -F_{x} = -m_{0}L/6 \cdot \dot{\omega}_{B}$ (8)
(5)+(6)+(7): $-F_{x} = m_{0}(0 + L/2 \cdot \dot{\omega}_{B}) = (8) = -m_{0}L/6 \cdot \dot{\omega}_{B}$
Enda lösningen till detta - att $\dot{\omega}_{B}/2 = -\dot{\omega}_{B}/6$ - är $\dot{\omega}_{B} = \dot{\omega} = 0$.

(Detta gäller precis när kraften börjar verka.)