фоилип Красимиров фоилев дон: ОИТО600041 Софтуерно инпанерство, Тиурс, Тирута. Контронно 1

arcty (arccos
$$\frac{12}{13} + 2 \operatorname{arcty} 5$$
)

arcty (arccos $\frac{12}{13} + 2 \operatorname{arcty} 1$)

arccos $x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

arccos $x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

arccos $x = 2 \operatorname{arcty} \left(\frac{x}{1+x} \right)$

arccos $x = 2 \operatorname{arcty} \left(\frac{x}{1+x} \right)$

arccin $x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right) = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

arcsin $x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right) = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

arcty $\frac{x}{12} = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right) = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

arcty $\frac{x}{12} = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right) = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

arcty $\frac{x}{12} = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right) = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and arcty $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right) = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and arcty $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right) = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and arcty $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right) = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and arcty $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$

and $\frac{x}{12} = x = 2 \operatorname{arcty} \left(\frac{x}{1+\sqrt{x^2}} \right)$