Scaffolded Practice Problems for Assessment Questions 1-4

Problem 1 Scaffolding: Function Transformations

Scaffold 1.1: Basic Translations

The graph of y = |x| has its vertex at (0, 0). What is the vertex of each transformed function?

Scaffold 1.2: Identifying Transformations

Match each transformation to its effect on the graph:

Transformation	Effect
f(x - h)\$ where \$h > 0\$	A. Moves graph up
f(x) + k\$ where $k > 0$ \$	B. Moves graph down
\$f(x) - k\$ where \$k > 0\$	C. Moves graph right
f(x + h)\$ where $h > 0$ \$	D. Moves graph left
4	· · · · · · · · · · · · · · · · · · ·

Scaffold 1.3: Combined Transformations

The function f(x) = |x + 1| has vertex at -1, 0. Find the vertex after these transformations:

a) Translate 2 units right: vertex at \$(___, ___)\$

b) Then translate 3 units down: vertex at \$(____, ___)\$

What is the equation of the final transformed function? \$y = _____\$

Scaffold 1.4: Reflection and Translation

The graph of y = -|x + 2| + 3 is shown. If this graph is translated 5 units right and 6 units down, what is the equation of the new graph?

Original vertex: \$(-2, 3)\$

New vertex after translation: \$(___, ___)\$

New equation: \$y = _____\$

Problem 2 Scaffolding: Vertical Asymptotes

Scaffold 2.1: Understanding Vertical Asymptotes

A vertical asymptote occurs when the denominator of a rational function equals zero but the numerator does not.

For each function, find where the denominator equals zero:

- a) $f(x) = \frac{1}{x 3}$ has vertical asymptote at $x = _{x}$
- b) $f(x) = \frac{2}{x + 5}$ has vertical asymptote at $x = _{5}$
- c) $f(x) = \frac{x}{x 7}$ has vertical asymptote at $x = ___$

Scaffold 2.2: Logarithmic Functions Domain

The domain of $\ln(x)$ is x > 0. Find the domain of each function and identify any vertical asymptotes:

a) $f(x) = \ln(x - 2)$

Domain: \$x > ____\$

Vertical asymptote: \$x = ____\$

b) $f(x) = \ln(x + 1)$

Domain: \$x > ____\$

Vertical asymptote: \$x = ____\$

c) $f(x) = \log(x - 6)$

Domain: \$x > ___\$

Vertical asymptote: $x = ___$

Scaffold 2.3: Identifying Asymptotes in Transformed Logs

For each function, determine if there is a vertical asymptote at x = 4:

- a) $f(x) = \log(x 4)$ \square Yes \square No
- b) $f(x) = \log(x + 4)$ \square Yes \square No
- c) $f(x) = \log(x) 4$ \square Yes \square No
- d) $f(x) = 4\log(x)$ \square Yes \square No

Scaffold 2.4: Multiple Choice Practice

Which of these functions has a vertical asymptote at x = 4?

- A. $f(x) = \log_2(x) 4$
- B. $f(x) = \ln(x 4) + 1$
- C. $f(x) = 3\log(x) + 4$ \$
- D. $f(x) = \log(x + 4) 2$

Explain your reasoning:
Problem 3 Scaffolding: Work Rate Problems
Scaffold 3.1: Understanding Rates
If a faucet can fill a tank in 6 hours, what fraction of the tank does it fill in 1 hour?
Rate = \$\frac{1}{6}\$ of the tank per hour
Complete these: a) If a faucet fills a tank in 4 hours, its rate is \${}\$ of the tank per hour b) If a faucet fills a tank in 8 hours, its rate is \${}\$ of the tank per hour c) If a faucet fills a tank in \$t\$ hours, its rate is \${}\$ of the tank per hour
Scaffold 3.2: Adding Rates
When two faucets work together, their rates add up.
Example: Faucet A fills $\frac{1}{6}$ of the tank per hour, Faucet B fills $\frac{1}{3}$ of the tank per hour. Together they fill: $\frac{1}{6} + \frac{1}{3} = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$ of the tank per hour.
So together they fill the tank in 2 hours.
Practice: a) Faucet A: 4 hours alone, rate = \$\frac{\}{\}\$ per hour b) Faucet B: 12 hours alone, rate = \$\frac{\}{\}\$ per hour c) Combined rate = \$\frac{\}{\} + \frac{\}{\} = \frac{\}{\}\$ per hour d) Time to fill together = hours
Scaffold 3.3: Setting Up the Equation
If Faucet A takes \$a\$ hours and Faucet B takes \$b\$ hours to fill a tank alone, the equation for the time \$t\$ it takes them together is:
$\frac{1}{a} + \frac{1}{b} = \frac{1}{t}$
Set up (but don't solve) the equation for these scenarios: a) Faucet A: 5 hours, Faucet B: 10 hours Equation:
b) Faucet A: 6 hours, Faucet B: 9 hours Equation:

Scaffold 3.4: Solving Work Problems

Solve: $\frac{1}{8} + \frac{1}{4} = \frac{1}{t}$

Step 1: Find common denominator for left side

\$\frac{1}{8} + \frac{1}{4} = \frac{1}{8} + \frac{___}{8} = \frac{___}{8}\$

Step 2: Solve for \$t\$

 $\frac{1}{t}$

Therefore: $t = \frac{8}{_} = __$ hours

Convert to hours and minutes: ___ hours and ___ minutes

Problem 4 Scaffolding: Vertex Form and Transformations

Scaffold 4.1: Understanding Vertex Form

The vertex form of a quadratic is $f(x) = a(x - h)^2 + k$ where h(h, k) is the vertex.

Find the vertex of each function:

a)
$$f(x) = (x - 3)^2 + 5$$
 has vertex $(___, ___)$

b)
$$f(x) = (x + 2)^2 - 1$$
 has vertex $(___, ___)$

c)
$$f(x) = -2(x - 4)^2 + 7$$
 has vertex $(___, ___)$

Scaffold 4.2: Horizontal Translations

If f(x) has vertex at (2, -4), find the vertex of each transformed function:

a)
$$g(x) = f(x - 1)$$
 (shifts right 1 unit)

New vertex: \$(___, ___)\$

b)
$$h(x) = f(x + 2)$$
 (shifts left 2 units)

New vertex: \$(___, ___)\$

c)
$$f(x) = f(x - 5)$$
 (shifts right 5 units)

New vertex: \$(___, ___)\$

Scaffold 4.3: Vertical Translations

If f(x) has vertex at (2, -4), find the vertex of each transformed function:

a)
$$g(x) = f(x) + 3$$
 (shifts up 3 units)

New vertex: \$(___, ___)\$

b) h(x) = f(x) - 1 (shifts down 1 unit)

New vertex: \$(___, ___)\$

c) f(x) = f(x) - 6 (shifts down 6 units)

New vertex: \$(___, ___)\$

Scaffold 4.4: Combined Transformations

If f(x) has vertex at (1, 3), find the vertex of each transformed function:

a) g(x) = f(x - 2) + 1

Horizontal shift: ____ units ____

Vertical shift: ____ units ____

New vertex: \$(___, ___)\$

b) h(x) = f(x + 1) - 4

Horizontal shift: ____ units ____

Vertical shift: ____ units ____

New vertex: \$(___, ___)\$

c) f(x) = f(x - 3) - 2

New vertex: \$(___, ___)\$