Introduction to Data Science and Programming, Fall 2019

Class 23: Graph properties

Instructor: Michael Szell

Nov 20, 2019

IT UNIVERSITY OF COPENHAGEN

Today you will learn about degree-based graph properties

Assortativity

Building our own Graph python class

Nearest neighbors

What are the chances that celebrities marry each other?

What are the chances that celebrities marry each other?

Picking another American at random: 1 in 100,000,000 Picking one of the 1000 similar celebrities by chance: 1 in 100,000

What are the chances that celebrities marry each other?

Picking another American at random: 1 in 100,000,000 Picking one of the 1000 similar celebrities by chance: 1 in 100,000

They do not pick at random, but choose each other more often

In social systems, hubs tend to connect to hubs

Researchers with many collaborators tend to collaborate with each other

In social systems, hubs tend to connect to hubs

Company directors who sit on many boards tend to sit together with company directors who sit on many boards

A network is assortative when hubs tend to connect to hubs

In technological networks, hubs tend to not connect to hubs

A network is disassortative when hubs tend to not connect to hubs

A network is neutral when wiring is independent of degrees

Assortative mixing can be quantified by the correlation coefficient r between degrees at two ends of all links

	Group	Network	Type	Size n	Assortativity r
	a	Physics coauthorship	undirected	52 909	0.363
	a	Biology coauthorship	undirected	1 520 251	0.127
	b	Mathematics coauthorship	undirected	253 339	0.120
Social	c	Film actor collaborations	undirected	449 913	0.208
	d	Company directors	undirected	7 673	0.276
	e	Student relationships	undirected	573	-0.029
	f	Email address books	directed	16 881	0.092
	g	Power grid	undirected	4 941	-0.003
Technological	h	Internet	undirected	10 697	-0.189
	i	World Wide Web	directed	269 504	-0.067
	j	Software dependencies	directed	3 162	-0.016
	k	Protein interactions	undirected	2 115	-0.156
	1	Metabolic network	undirected	765	-0.240
Biological	m	Neural network	directed	307	-0.226
	n	Marine food web	directed	134	-0.263
	О	Freshwater food web	directed	92	-0.326

Feb 18 2009

Paris
Frankfurt
Amsterdam
Rome
Milan
Moscow
Dublin

Hong Kong Tokyo Narita Bangkok Singapore Beijing Manila

Sydney Brisbane Auckland Perth

Chicago

New York Los Angeles

Houston

Toronto

Vancouver

Calgary Indianapolis

La Gloria

Sao Paulo Mexico City Rio De Janeiro San Juan Bogota

Johannesburg

Cairo Cape Town

Nairobi

Often there is a non-linear relation which we cannot capture with r

The nearest neighbor degree $k_{nn,i}$ of a node i is the average degree of its neighbors

The nearest neighbor degree $k_{nn,i}$ of a node i is the average degree of its neighbors

Example:

$$k_{i} = 4$$
 $k_{1} = 4$ $k_{2} = 3$ $k_{3} = 3$ $k_{4} = 1$

$$k_{\text{nn},i} = \frac{4+3+3+1}{4} = 2.75$$

We can calculate $k_{nn}(k)$, the average degree of the neighbors of all degree-k nodes

Often $k_{nn}(k)$ has the nonlinear relation k^{μ} , where μ is called the correlation exponent

Often $k_{nn}(k)$ has the nonlinear relation k^{μ} , where μ is called the correlation exponent

If $k_{nn}(k)$ is increasing, the network is assortative. $\mu > 0$

Often $k_{nn}(k)$ has the nonlinear relation k^{μ} , where μ is called the correlation exponent

If $k_{nn}(k)$ is decreasing, the network is disassortative. $\mu < 0$

The Zachary Karate Club network shows a dispute between two instructors that led to a split into 2 groups

Sources and further materials for today's class

A.-L. Barabási. Network Science. Cambridge University Press (2016)

http://barabasi.com/networksciencebook/

Jupyter