Индивидуальное домашнее задание №5.

Михайлов Никита Маратович, ПМИ-167. Вариант 14.

Задание 1.

Для квадратичной формы

$$Q(x_1, x_2, x_3) = x_1^2(-3b + 20) + x_2^2(9 - b) + 5x_3^2 + 2x_1x_2(12 - 2b) + 2x_1x_3(16 - 3b) + 2x_2x_3(3 - b)$$

выясните, при каких значениях параметра b она является положительно определенной, а при каких – отрицательно определенной.

Решение. Составим матрицу матрицу квадратичной формы:

$$A = \begin{pmatrix} -3b + 20 & 12 - 2b & 16 - 3b \\ 12 - 2b & 9 - b & 3 - b \\ 16 - 3b & 3 - b & 5 \end{pmatrix}$$

Воспользовавшись критерием Сильвестра рассмотрим случаи:

1. Все угловые миноры строго положительны. Составим систему, посчитав все угловые миноры:

$$\begin{cases}
-3b + 20 > 0; \\
(-3b + 20)(9 - b) - (12 - 2b)^2 > 0; \\
(-3b + 20)(9 - b)5 + (12 - 2b)(3 - b)(16 - 3b) + (16 - 3b)(12 - 2b)(3 - b) - \\
-(16 - 3b)^2(9 - b) - (3 - b)^2(-3b + 20) - 5(12 - 2b)^2 > 0;
\end{cases}$$

Преобразовав получим следующую систему:

$$\begin{cases} 3b - 20 < 0; & (1) \\ b^2 - b - 36 < 0; & (2) \\ b^2 - 10b + 24 < 0; & (3) \end{cases}$$

Из (3): $b \in (4;6)$, тогда (1) сразу становится верным. Разберемся с (2): $b^2 - 10b + 24 + 9b - 60 < 0 \Rightarrow 9b - 60 < 0$ – снова верно в силу (3).

Таким образом получили, что $Q(x_1, x_2, x_3)$ положительно определена тогда и только тогда, когда $b \in (4; 6)$.

2. Знаки всех миноров чередуются, причем минор порядка 1 со знаком минус. Тогда система из

(1)–(3) перепишется:

$$(3b - 20 > 0; \tag{4}$$

$$\begin{cases} b^2 - b - 36 < 0; \\ b^2 - 10b + 24 > 0. \end{cases}$$
 (5)

$$b^2 - 10b + 24 > 0; (6)$$

Тогда из (4): $b > \frac{20}{3}$, тогда (6) сразу выполнено $\left((-\infty;4)\cup(6;\infty)\right)$, а (5) автоматически невыполнено, так как точка $\frac{20}{3}$ лежит правее вершины параболы и значение многочлена из (5) больше нуля (значит многочлен монотонно растет для больших аргументов). Таким образом получили, что $b \in \emptyset$.

Ответ:

- 1. $Q > 0 \Leftrightarrow b \in (4; 6)$
- $2. Q < 0 \Leftrightarrow b \in \emptyset$

Задание 2.

Подпространство U евклидова пространства \mathbb{R}^4 задано уравнением $-4x_1 + 2x_2 + x_3 - x_4 = 0$

- (a) Постройте в U ортонормированный базис
- (б) Для вектора v = (2,0,1,0) найдите его проекцию на U, его ортоганальную составляющую относительно U и расстояние от него до U.

Решение а). Так как пространство задано уравнением, то чтобы найти базис в U, достаточно найти ФСР для данного уравнения. Взяв за свободные последние три переменные получим три вектора:

$$e_1 = (-1, 0, 0, 4),$$
 $e_2 = (1, 0, 4, 0),$ $e_3 = (1, 2, 0, 0)$

Теперь можно начать процесс ортогонализации. Пусть e_1, e_2, e_3 – начальный, e_1', e_2', e_3' – ортогональный, а f_1, f_2, f_3 – ортонормированный базисы в U

- 1. Положим $e'_1 = e_1$.
- 2. Тогда $e_2'=e_1'+\lambda e_2$. Составим $(e_1',e_2')=0\Leftrightarrow -1(-1+\lambda)+16=0\Rightarrow \lambda=17$. Таким образом, $e_2'=(16,0,68,4)$. Можно вынести 4 и ничего не изменится. Тогда $e_2'=(4,0,17,1)$.
- 3. Составим $e_3' = \lambda_1 e_1' + \lambda_2 e_2' + e_3$. Нам нужно: $\begin{cases} (e_3', e_2') = 0 \\ (e_3', e_1') = 0 \end{cases} \Leftrightarrow \begin{cases} (-\lambda_1 + 4\lambda_2 + 1)4 + 289\lambda_2 + 4\lambda_1 + \lambda_2 = 0 \\ -(-\lambda_1 + 4\lambda_2 + 1) + 4(4\lambda_1 + \lambda_2) = 0 \end{cases}$

 $\Leftrightarrow \begin{cases} \lambda_1 = \frac{1}{17} \\ \lambda_2 = -\frac{2}{153} \end{cases}$ Избавимся от знаменателя, домножив на 153: Итого: $e_3' = (136, 306, -34, 34)$

Разделив на длины получим:

$$f_1 = \frac{e_1'}{|e_1'|} = \left(-\frac{1}{\sqrt{17}}, 0, 0, \frac{4}{\sqrt{17}}\right)$$
$$f_2 = \frac{e_2'}{|e_2'|} = \left(\frac{4}{\sqrt{306}}, 0, \frac{17}{\sqrt{306}}, \frac{1}{\sqrt{306}}\right)$$

$$f_3 = \frac{e_3'}{|e_3'|} = \left(\frac{136}{\sqrt{114444}}, \frac{306}{\sqrt{114444}}, -\frac{34}{\sqrt{114444}}, \frac{34}{\sqrt{114444}}\right)$$

Решение б). Дополним e_1, e_2, e_3 до базиса в \mathbb{R}^4 вектором $e_4 = (-4, 2, 1, -1)$. Этот вектор ортогонален векторам e_1, e_2, e_3 . Поэтому проекция на U вектора v параллельно e_4 будет ортогональной. Составим СЛУ:

$$\begin{pmatrix} -1 & 1 & 1 & -4 & 2 \\ 0 & 0 & 2 & 2 & 0 \\ 0 & 4 & 0 & 1 & 1 \\ 4 & 0 & 0 & -1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 & 4 & | & -2 \\ 0 & 0 & 2 & 2 & | & 0 \\ 0 & 4 & 0 & 1 & | & 1 \\ 0 & 4 & 4 & -17 & | & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 & 4 & | & -2 \\ 0 & 4 & 0 & 1 & | & 1 \\ 0 & 0 & 2 & 2 & | & 0 \\ 0 & 4 & 4 & -17 & | & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 & 4 & | & -2 \\ 0 & 4 & 0 & 1 & | & 1 \\ 0 & 4 & 0 & 1 & | & 1 \\ 0 & 0 & 1 & 1 & | & 0 \\ 0 & 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & -22 & | & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & | & -\frac{7}{88} \\ 0 & 1 & 0 & 0 & | & \frac{29}{88} \\ 0 & 0 & 1 & 0 & | & \frac{29}{88} \\ 0 & 0 & 0 & 1 & | & -\frac{7}{22} \end{pmatrix}$$

Таким образом, вектор $v' = -\frac{7}{88}e_1 + \frac{29}{88}e_2 + \frac{7}{22}e_3 = \frac{1}{88}(-7e_1 + 29e_2 + 28e_3) = \frac{1}{88} \cdot (64, 56, 116, -28) = \left(\frac{8}{11}, \frac{7}{11}, \frac{29}{22}, -\frac{7}{22}\right)$ – ортогональная проекция, а вектор $v^{\perp} = -\frac{7}{22} \cdot e_4 = \left(\frac{14}{11}, -\frac{7}{11}, -\frac{7}{22}, \frac{7}{22}\right)$ – ортогональное составляющая относительно U, а расстояние $\rho(v, U) = |v^{\perp}| = \frac{7}{22}\sqrt{4^2 + 2^2 + 1 + 1} = \frac{7}{\sqrt{22}}$.

Задание 3.

Составьте уравнения прямой в \mathbb{R}^3 , параллельной плоскости 2x+3y-2z=0, проходящей через точку (-2,3,1) и пересекающей прямую x=-3t+1,y=-4t+3,z=3t+2.

Решение. Наша прямая проходит через данную точку. Следовательно, координаты прямой удовлетворяют следующему уравнению: $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$. Так как эта прямая параллельна плоскости, то она ортогональна ее направляющему вектору, т.е. $2x_0 + 3y_0 - 2z_0 = 0$. Так как прямые пересекаются по условию, то $\begin{cases} \lambda \neq 0 \\ t \neq 0 \end{cases}$ и у прямых есть общая точка. Составим получившуюся систему уравнений:

$$\begin{cases}
-3t + 1 = -2 + \lambda x_0 \\
-4t + 3 = 3 + \lambda y_0 \\
3t + 2 = 1 + \lambda z_0 \\
2x_0 + 3y_0 - 2z_0 = 0
\end{cases} \Leftrightarrow \begin{cases}
x_0 = \frac{3-3t}{\lambda} \\
y_0 = \frac{-4t}{\lambda} \\
z_0 = \frac{3t-1}{\lambda} \\
2x_0 + 3y_0 - 2z_0 = 0 \Rightarrow 6 - 6t - 12t - 6t + 2 = 0 \Rightarrow t = \frac{1}{3}
\end{cases}$$

Тогда $\lambda \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} = \begin{pmatrix} 2 \\ -\frac{4}{3} \\ 0 \end{pmatrix}$ Получили зависимость, при которой прямые пересекаются. Положим $\lambda = \frac{1}{3}$, тогда $\begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} = \begin{pmatrix} 6 \\ -4 \\ 0 \end{pmatrix}$. Итак, прямая задается следующим образом:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 6 \\ -4 \\ 0 \end{pmatrix}$$

Задание 4.

Дан куб ABCDA'B'C'D' со стороной 4. Точка F – середина ребра BB', а точка E лежит на ребре BB', причем BE:EB'=6:3. Найдите угол и расстояние между прямыми AE и D'F.

Дано:

AB...C'D' – куб со стороной 4; B'F = FB;

BE:EB'=2:1;

Найти: $\angle(AE, D'F)$; $\rho(AE, D'F)$.

Решение. Обозначим $\angle(AE, D'F) = \varphi$. Введем координатную ось с т.A в начале координат, тогда A(0,0,0), A'(0,0,4), B(0,4,0),

 $B'(0,4,4), D(4,0,0), D'(4,0,4), F(0,4,2), E(0,4,\frac{8}{3}).$ Отложим вектора: $\overrightarrow{AE}, \overrightarrow{EF}, \overrightarrow{FD'}, \overrightarrow{PQ}$, где PQ – общий перпендикуляр к прямым AE и FD'(а его длина и есть искомое расстояние). Для начала найдем угол. Для этого найдем координаты соответствующих векторов: $\overrightarrow{AE}(0,4,\frac{8}{3}), \overrightarrow{FD'}(4,-4,2)$. Теперь по определению косинуса:

$$\cos\varphi = |\cos(\angle(\overrightarrow{AE}, \overrightarrow{FD'})| = \frac{|(\overrightarrow{AE}, \overrightarrow{FD'})|}{|\overrightarrow{AE}| \cdot |\overrightarrow{FD'}|} = \frac{\frac{32}{3}}{\frac{4\sqrt{13}}{3} \cdot 6} = \frac{4}{3\sqrt{13}}.$$

$$\varphi = \arccos\frac{4}{3\sqrt{13}}$$

Теперь найдем длину. Заметим, что $\overrightarrow{PQ} = x \cdot \overrightarrow{AE} + \overrightarrow{EF} + y \cdot \overrightarrow{FD'}$, где x, y – неизвестные скаляры. Но мы знаем про \overrightarrow{PQ} , что он ортогонален и \overrightarrow{AE} , и $\overrightarrow{FD'}$. Следовательно, составим:

$$\begin{cases} (\overrightarrow{PQ},\overrightarrow{AE}) = 0 \\ (\overrightarrow{PQ},\overrightarrow{FD'}) = 0 \end{cases} \Leftrightarrow \begin{cases} x \cdot |\overrightarrow{AE}|^2 + (\overrightarrow{EF},\overrightarrow{AE}) + y \cdot (\overrightarrow{AE},\overrightarrow{FD'}) = 0 \\ y \cdot |\overrightarrow{FD'}|^2 + (\overrightarrow{EF},\overrightarrow{FD}) + x \cdot (\overrightarrow{AE},\overrightarrow{FD'}) = 0 \end{cases}$$

Заметим, что $\overrightarrow{EF}(0,0,-\frac{2}{3})$. Подставим в нашу систему и найдем x,y:

$$\begin{cases} \frac{208}{9}x - \frac{16}{9} - \frac{32}{3}y = 0\\ 6y - \frac{4}{3} - \frac{32}{3}x = 0 \end{cases} \Rightarrow \begin{cases} x = 1\\ y = 2 \end{cases}$$

Таким образом, $\overrightarrow{PQ} = \overrightarrow{AE} + \overrightarrow{EF} + 2\overrightarrow{FD'}$ и $\overrightarrow{PQ}(8, -4, 4)$. Следовательно, $\rho(AE, D'F) = |\overrightarrow{PQ}| = 4\sqrt{6}$

4