Paper review

DE:TR: End-to-End Object Detection with Transformers

Facebook AI (ECCV 2020)

Quick View

Object Detection: Direct set prediction problem

- Predict a set of bounding boxes
- Category labels for each object of interest

이 Detection 기존 객체 탐지

- 1) 복잡하며 다양한 라이브러리 사용
- 2) 사전지식(prior knowledge) 요구
 - * 앵커 박스 구조를 이용한 관심 영역 추출
 - * 예측한 bounding box에 대한 Non-Maximum Suppression(NMS)

Ontributes 이 논문이 기여한 바

- 1) 모델의 간소화(CNN Feature 추출 **→**Transformer)
- 2) 휴리스틱한(heuristic) 부분의 제거
- 3) End-to-End 방식

DETR(Detection **TR**ansformer):

- 1) 이분 매칭 손실 함수
- 2) Transformer

Fig. 1: DETR directly predicts (in parallel) the final set of detections by combining a common CNN with a transformer architecture. During training, bipartite matching uniquely assigns predictions with ground truth boxes. Prediction with no match should yield a "no object" (\emptyset) class prediction.

Prior Knowledge

<Object Detection>2 stage detector

<Object Detection>SSD pipeline

Before non-maximum suppression

Non-Maximum Suppression

After non-maximum suppression

The DETR model

$$\hat{\sigma} = \operatorname*{arg\,min}_{\sigma \in \mathfrak{S}_N} \sum_{i}^{N} \mathcal{L}_{\mathrm{match}}(y_i, \hat{y}_{\sigma(i)}) \qquad \qquad <_{\mathrm{Matching\,cost}} \\ -\mathbb{1}_{\{c_i \neq \varnothing\}} \hat{p}_{\sigma(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\mathrm{box}}(b_i, \hat{b}_{\sigma(i)})$$

<Hungarian matching>

$$\mathcal{L}_{\text{Hungarian}}(y, \hat{y}) = \sum_{i=1}^{N} \left[-\log \hat{p}_{\hat{\sigma}(i)}(c_i) + \mathbb{1}_{\{c_i \neq \emptyset\}} \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\hat{\sigma}}(i)) \right]$$

$$\lambda_{\text{iou}} \mathcal{L}_{\text{iou}}(b_i, \hat{b}_{\sigma(i)}) + \lambda_{\text{L1}} ||b_i - \hat{b}_{\sigma(i)}||_1$$

Encoder은 multi-head self-attention과 FFN 으로 구성

Encoder의 self-attention map을 시각화해보면 개별 인스턴스를 적절히 분리하는 것을 확인할 수 있다.

Decoder는 N개의 object query(학습된 위치 임베딩)를 초기 입력으로 사용 Decoder는 각 인스턴스의 **클래스**와 **경계선**을 추출한다. (Encoder는 global attention을 통해 **인스턴스를 분리**)

Experiments

Base model: Faster R-CNN
Dataset: COCO minival
Optimizer: AdamW

Backbone: ResNet50, ResNet 101(DETR, DETR-R101) Featrure resolution을 증가시키기 위해 dilate를 적용한 DETR-DC5, DETR DC5-R101 진행

Model	GFLOPS/FPS	#params	AP	AP_{50}	AP_{75}	AP_S	AP_{M}	$\mathrm{AP_L}$
Faster RCNN-DC5	320/16	166M	39.0	60.5	42.3	21.4	43.5	52.5
Faster RCNN-FPN	180/26	42M	40.2	61.0	43.8	24.2	43.5	52.0
Faster RCNN-R101-FPN	246/20	60M	42.0	62.5	45.9	25.2	45.6	54.6
Faster RCNN-DC5+	320/16	166M	41.1	61.4	44.3	22.9	45.9	55.0
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4
Faster RCNN-R101-FPN+	246/20	60M	44.0	63.9	47.8	27.2	48.1	56.0
DETR	86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1
DETR-R101	152/20	60M	43.5	63.8	46.4	21.9	48.0	61.8
DETR-DC5-R101	253/10	60M	44.9	64.7	47.7	23.7	49.5	62.3

						<encoder></encoder>	# of layer
#layers	GFLOPS/FPS	#params	AP	AP_{50}	$\mathrm{AP_S}$	AP_{M}	$\mathrm{AP_L}$
0	76/28	33.4M	36.7	57.4	16.8	39.6	54.2
3	81/25	37.4M	40.1	60.6	18.5	43.8	58.6
6	86/23	41.3M	40.6	61.6	19.9	44.3	60.2
12	95/20	49.2M	41.6	62.1	19.8	44.9	61.9

<Encoder> positional Encoding

spatial p	pos. enc.	output pos. enc.				
encoder	decoder	decoder	AP	Δ	AP_{50}	Δ
none	none	learned at input	32.8	-7.8	55.2	-6.5
sine at input	sine at input	learned at input	39.2	-1.4	60.0	-1.6
learned at attn.	learned at attn.	learned at attn.	39.6	-1.0	60.7	-0.9
none	sine at attn.	learned at attn.	39.3	-1.3	60.3	-1.4
sine at attn.	sine at attn.	learned at attn.	40.6	-	61.6	-

class	ℓ_1	GIoU	AP	Δ	AP ₅₀	Δ	APs	AP_{M}	$ m AP_L$
✓	✓		35.8	-4.8	57.3	-4.4	13.7	39.8	57.9
✓		✓	39.9	-0.7	61.6	0	19.9	43.2	57.9
\checkmark	\checkmark	\checkmark	40.6	-	61.6	-	19.9	44.3	60.2

<Object Queries>

<Panoptic segmentation>

Model	Backbone	PQ	SQ	RQ	PQ^{th}	SQ^{th}	RQ^{th}	PQ^{st}	SQ^{st}	$\mathrm{RQ}^{\mathrm{st}}$	AP
PanopticFPN++	R50	42.4	79.3	51.6	49.2	82.4	58.8	32.3	74.8	40.6	37.7
UPSnet	R50	42.5	78.0	52.5	48.6	79.4	59.6	33.4	75.9	41.7	34.3
UPSnet-M	R50	43.0	79.1	52.8	48.9	79.7	59.7	34.1	78.2	42.3	34.3
PanopticFPN++	R101	44.1	79.5	53.3	51.0	83.2	60.6	33.6	74.0	42.1	39.7
DETR	R50	43.4	79.3	53.8	48.2	79.8	59.5	36.3	78.5	45.3	31.1
DETR-DC5	R50	44.6	79.8	55.0	49.4	80.5	60.6	37.3	78.7	46.5	31.9
DETR-R101	R101	45.1	79.9	55.5	50.5	80.9	61.7	37.0	78.5	46.0	33.0

Discussion

DE:TR Discussion

DETR

new design for object detection systems based on transformers and bipartite matching loss for direct set problem

THE END END 감사합니다