3.3V / 5V ECL 1:2 Differential Fanout Buffer

Description

The MC10/100EP11 is a differential 1:2 fanout buffer. The device is pin and functionally equivalent to the LVEL11 device. With AC performance much faster than the LVEL11 device, the EP11 is ideal for applications requiring the fastest AC performance available.

The 100 Series contains temperature compensation.

Features

- 220 ps Typical Propagation Delay
- Maximum Clock Frequency > 3 GHz Typical
- PECL Mode Operating Range: $V_{CC} = 3.0 \text{ V}$ to 5.5 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -3.0 V to -5.5 V
- Open Input Default State
- Safety Clamp on Inputs
- Q Outputs Will Default LOW with Inputs Open or at V_{EE}
- Pb-Free Packages are Available

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS*

SOIC-8 D SUFFIX CASE 751

TSSOP-8 DT SUFFIX CASE 948R

DFN8 MN SUFFIX CASE 506AA

1

= MC10 A = Assembly Location

K = MC100 L = Wafer Lot 5K = MC10 Y = Year 2Z = MC100 W = Work Week

 $\begin{array}{lll} 2Z & = MC100 & W & = Work \ Week \\ \overline{M} & = Date \ Code & \blacksquare & = Pb-Free \ Package \end{array}$

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

Table 1. PIN DESCRIPTION

PIN	FUNCTION					
D*, D **	ECL Data Inputs					
Q0, Q0 , Q1, Q1	ECL Data Outputs					
V _{CC}	Positive Supply					
V _{EE}	Negative Supply					
EP	(DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.					

- * Pins will default LOW when left open.
- ** Pins will default to high when left open.

Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

Table 2. ATTRIBUTES

Chara	cteristics	Va	lue		
Internal Input Pulldown Resis	tor	75 kΩ			
Internal Input Pullup Resistor	37.5 kΩ				
ESD Protection	> 4 kV > 200 V > 2 kV				
Moisture Sensitivity, Indefinite	Time Out of Drypack (Note 1)	Pb Pkg	Pb-Free Pkg		
	SOIC-8 TSSOP-8 DFN8	Level 1 Level 1 Level 1	Level 1 Level 3 Level 1		
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0	@ 0.125 in		
Transistor Count	73 De	evices			
Meets or exceeds JEDEC Sp					

^{1.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V _{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-6	V
V _I	PECL Mode Input Voltage NECL Mode Input Voltage	$ \begin{aligned} V_{EE} &= 0 \ V & V_I \leq V_{CC} \\ V_{CC} &= 0 \ V & V_I \geq V_{EE} \end{aligned} $		6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8 SOIC-8	190 130	°C/W
θЈС	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8 TSSOP-8	185 140	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN8 DFN8	129 84	°C/W °C/W
T _{sol}	Wave Solder Pb Pb-Free	<2 to 3 sec @ 248°C <2 to 3 sec @ 260°C		265 265	°C
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	(Note 2)	DFN8	35 to 40	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect

2. JEDEC standard multilayer board - 2S2P (2 signal, 2 power)

Table 4. 10EP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 3)

		-40°C				25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	20	29	37	20	30	39	22	31	40	mA
V _{OH}	Output HIGH Voltage (Note 4)	2165	2290	2415	2230	2355	2480	2290	2415	2540	mV
V _{OL}	Output LOW Voltage (Note 4)	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	2090		2415	2155		2480	2215		2540	mV
V _{IL}	Input LOW Voltage (Single-Ended)	1365		1690	1430		1755	1490		1815	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 5)	2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to -2.2 V.
 All loading with 50 Ω to V_{CC} 2.0 V.
 V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 5. 10EP DC CHARACTERISTICS, PECL V_{CC} = 5.0 V, V_{EE} = 0 V (Note 6)

		-40°C				25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	20	29	37	20	30	39	22	31	40	mA
V _{OH}	Output HIGH Voltage (Note 7)	3865	3990	4115	3930	4055	4180	3990	4115	4240	mV
V _{OL}	Output LOW Voltage (Note 7)	3065	3190	3315	3130	3255	3380	3190	3315	3440	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	3790		4115	3855		4180	3915		4240	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3065		3390	3130		3455	3190		3515	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 8)	2.0		5.0	2.0		5.0	2.0		5.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μА

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 6. Input and output parameters vary 1:1 with V_{CC}.
- All loading with 50 Ω to V_{CC} 2.0 V.
- 8. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential

Table 6. 10EP DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}$; $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 9)

				-40°C			25°C			85°C		
Symbol	Characteristic	Mi	n	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	20)	29	37	20	30	39	22	31	40	mA
V _{OH}	Output HIGH Voltage (Note 10)	-11	35	-1010	-885	-1070	-945	-820	-1010	-885	-760	mV
V_{OL}	Output LOW Voltage (Note 10)	-19	35	-1810	-1685	-1870	-1745	-1620	-1810	-1685	-1560	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	-12	10		-885	-1145		-820	-1085		-760	mV
V_{IL}	Input LOW Voltage (Single-Ended)	-19	35		-1610	-1870		-1545	-1810		-1485	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 11)	\	EE +	- 2.0	0.0	V _{EE}	+ 2.0	0.0	V _{EE}	+ 2.0	0.0	V
I _{IH}	Input HIGH Current				150			150			150	μΑ
I _{IL}	Input LOW Current [0. 0 -1				0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 9. Input and output parameters vary 1:1 with V_{CC} .
- 10. All loading with 50 Ω to V_{CC} 2.0 V.

 11. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential

Table 7. 100EP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 12)

			-40°C			25°C		85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
I _{EE}	Negative Power Supply Current	26	35	44	26	35	44	26	35	46	mA	
V _{OH}	Output HIGH Voltage (Note 13)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV	
V _{OL}	Output LOW Voltage (Note 13)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV	
V _{IH}	Input HIGH Voltage (Single-Ended)	2075		2420	2075		2420	2075		2420	mV	
V _{IL}	Input LOW Voltage (Single-Ended)	1355		1675	1355		1675	1355		1675	mV	
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 14)	2.0		3.3	2.0		3.3	2.0		3.3	V	
I _{IH}	Input HIGH Current			150			150			150	μΑ	
I _{IL}	Input LOW Current D	0.5 -150			0.5 -150			0.5 -150			μΑ	

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 12. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.3 V to -2.2 V.
- 13. All loading with 50 Ω to V_{CC} 2.0 V.
- 14. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 8. 100EP DC CHARACTERISTICS, PECL V_{CC} = 5.0 V, V_{EE} = 0 V (Note 15)

			-40°C				25°C			85°C		
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current		26	35	44	26	35	44	26	35	46	mA
V _{OH}	Output HIGH Voltage (Note 16)		3855	3980	4105	3855	3980	4105	3855	3980	4105	mV
V _{OL}	Output LOW Voltage (Note 16)		3055	3180	3305	3055	3180	3305	3055	3180	3305	mV
V _{IH}	Input HIGH Voltage (Single-Ended)		3775		4120	3775		4120	3775		4120	mV
V_{IL}	Input LOW Voltage (Single-Ended)		3055		3375	3055		3375	3055		3375	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 17)		2.0		5.0	2.0		5.0	2.0		5.0	V
I _{IH}	Input HIGH Current				150			150			150	μΑ
I _{IL}	Input LOW Current	D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 15. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +2.0 V to -0.5 V.
- 16. All loading with 50 Ω to V_{CC} 2.0 V.
- 17. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 9. 100EP DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}$; $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 18)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	26	35	44	26	35	44	26	35	46	mA
V _{OH}	Output HIGH Voltage (Note 19)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 19)	-1945	-1820	-1695	-1945	-1820	-1695	-1945	-1820	-1695	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1225		-880	-1225		-880	-1225		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1945		-1625	-1945		-1625	-1945		-1625	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 20)	V _{EE}	+ 2.0	0.0	V _{EE}	+ 2.0	0.0	V _{EE}	+ 2.0	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 10. AC CHARACTERISTICS V_{CC} = 0 V; V_{EE} = -3.0 V to -5.5 V or V_{CC} = 3.0 V to 5.5 V; V_{EE} = 0 V (Note 21)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (Figure 2)		> 3			> 3			> 3		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential CLK to Q, $\overline{\mathbf{Q}}$	140	200	250	160	220	270	180	240	300	ps
tskew	Within Device Skew Q0, Q1 (Note 22) Device-to-Device Skew		10	15 110		15	20 110		20	25 120	ps
t _{JITTER}	Random Clock Jitter (RMS) (Figure 2)		0.2	< 1		0.2	< 1		0.2	< 1	ps
V _{INPP}	Input Voltage Swing Sensitivity (Differential Configuration)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times Q, Q (20% - 80%) @ 1.0 GHz	70	120	170	80	130	180	90	150	200	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{18.} Input and output parameters vary 1:1 with V_{CC}.

^{19.} All loading with 50 Ω to V_{CC} – 2.0 V.

^{20.} V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

^{21.} Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V.

^{22.} Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

Figure 2. Output Voltage Amplitude (V_{OUTPP}) RMS Jitter vs. Input Clock Frequency at Ambient Temperature

Figure 3. AC Reference Measurement

Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

AN1504/D - Metastability and the ECLinPS Family

Interfacing Between LVDS and ECL

AN1672/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes

AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS

AN1568/D

AND8090/D - AC Characteristics of ECL Devices

ORDERING INFORMATION

Device	Package	Shipping [†]
MC10EP11D	SOIC-8	98 Units / Rail
MC10EP11DG	SOIC-8 (Pb-Free)	98 Units / Rail
MC10EP11DR2	SOIC-8	2500 / Tape & Reel
MC10EP11DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC10EP11DT	TSSOP-8	100 Units / Rail
MC10EP11DTG	TSSOP-8 (Pb-Free)	100 Units / Rail
MC10EP11DTR2	TSSOP-8	2500 / Tape & Reel
MC10EP11DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
MC10EP11MNR4	DFN8	1000 / Tape & Reel
MC10EP11MNR4G	DFN8 (Pb-Free)	1000 / Tape & Reel
MC100EP11D	SOIC-8	98 Units / Rail
MC100EP11DG	SOIC-8 (Pb-Free)	98 Units / Rail
MC100EP11DR2	SOIC-8	2500 / Tape & Reel
MC100EP11DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC100EP11DT	TSSOP-8	100 Units / Rail
MC100EP11DTG	TSSOP-8 (Pb-Free)	100 Units / Rail
MC100EP11DGH	SOIC-8 (Halide-Free, Pb-Free)	98 Units / Rail
MC100EP11DR2GH	SOIC-8 (Halide-Free, Pb-Free)	2500 / Tape & Reel
MC100EP11DTR2	TSSOP-8	2500 / Tape & Reel
MC100EP11DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
MC100EP11MNR4G	DFN8 (Pb-Free)	1000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 **ISSUE AJ**

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

 6. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.
- STANDARD IS 751-07.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	7 BSC	0.05	0 BSC
Н	0.10	0.25	0.004	0.010
L	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-8 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

- Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
 PROTRUSIONS OR GATE BURRS. MOLD FLASH
 OR GATE BURRS SHALL NOT EXCEED 0.15
 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD
 FLASH OR PROTRUSION. INTERLEAD FLASH OR
 PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
 PER SIDE.

 5. TERMINAL NUMBERS ARE SHOWN FOR
 REFERENCE ONLY.

 6. DIMENSION A AND B ARE TO BE DETERMINED
 AT DATUM PLANE –W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	2.90	3.10	0.114	0.122
С	0.80	1.10	0.031	0.043
D	0.05	0.15	0.002	0.006
F	0.40	0.70	0.016	0.028
G	0.65 BSC		0.026 BSC	
K	0.25	0.40	0.010	0.016
L	4.90 BSC		0.193 BSC	
M	0°	6 °	0°	6°

PACKAGE DIMENSIONS

DFN8 CASE 506AA-01 ISSUE D

NOTES

- DIMENSIONING AND TOLERANCING PER
 ASME V14 5M 1994
- ASME Y14.5M, 1994 . 2. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION 6 APPLIES TO PLATED
 TERMINAL AND IS MEASURED BETWEEN
 0.25 AND 0.30 MM FROM TERMINAL.
 COPLANARITY APPLIES TO THE EXPOSED
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.80	1.00	
A1	0.00	0.05	
А3	0.20 REF		
b	0.20	0.30	
D	2.00 BSC		
D2	1.10	1.30	
Е	2.00 BSC		
E2	0.70	0.90	
е	0.50 BSC		
K	0.20		
	0.25	0.35	

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and was a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5773–3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative