An Exposition of Cawley's "The Teichmüller space of the standard action of $SL(2, \mathbb{Z})$ on \mathbb{T}^2 is trivial"

Alp Uzman

Last Updated: 2024-05-23 14:36:57+02:00

Todo list

Presumably when $r = 1$ the statement fails, but due to which step exactly? When $r = 1$, even for M a surface, the holonomies are not differentiable necessarily, presumably. Have a look at Llave-Marco-Moriyon [they don't seem to remark anything about this.] [Pug84, p.145] has a related conjecture, in the context of Pesin Theory:	
"Conjecture(Pugh): Let $f: M \to M$ be a C^1 diffeomorphism, and let $x \in \mathrm{Hyp}(f)$ (so that x is is a Lyapunov-Perron regular point for f and neither of the Lyapunov exponents of f vanish at f . Then $S_{x,\mathrm{loc}}(f) = \bigcup_{\lambda \in \mathbb{R}_{>0}} \{y \in M, d(f^n(y), f^n(x)) = o_{n \to \infty}(e^{-\lambda n})\}$ is an injectively immersed C^1 submanifold tangent to $S_x(f)$ at f . Indeed this might be true whenever f has dimension one. Regularity is automatic on one-dimensional subspaces."; see also [BV06], this work has not much about the boons of dimension 1 however.	
Jackpot: [CCE17] and [RY80], building on [Bow75]. Also see [PPR75]. Two families of hyperbolic automorphisms of	\mathbb{T}^2 :
$egin{pmatrix} n+1 & n \ 1 & 1 \end{pmatrix}$, $n\in\mathbb{Z}_{\geq 1}$	
$egin{pmatrix} n^2+1 & n \ n & 1 \end{pmatrix}$, $n\in\mathbb{Z}_{\geq 1}$	
	. 3
What does the condition on σ_{\bullet} correspond in terms of "rank one factors"? Γ is rank one, but still large (larger than a virtually cyclic group) Context:	. 4
[Hur92, KL91, HKLZ91] for rigidity and [Caw93, dlL87, MM87a, MM87b] for flexibility [Hur92, Thm.7.22] There is a real analytic deformation of the standard action of $SL(2, \mathbb{Z})$ on \mathbb{T}^2 through volume preserving real analytic diffeomorphisms of \mathbb{T}^2 none of whose elements are topologically conjugate	
to the standard action.	. 4

[GHS08] for a similar result (local version of "topological to smooth"):	
"Her techniques however are restricted to the 2-torus due to the use of	
$C^{1+\alpha}$ -regularity of stable foliations."	
"At the heart of our argument lies the investigation of sequences of the	
form $\gamma^{-n}\delta\gamma^n$ for two hyperbolic elements γ and δ in "general position";	
"this idea goes back to [Hit03]"	4
Directions:	
[Ano69, pp.206-209,§26] There is a real analytic deformation of the cat map on \mathbb{T}^2 through volume preserving real analytic diffeomorphisms of \mathbb{T}^2 none of whose elements are Meas-conjugate to the cat map. [Wal70] feels like it's relevant to the Anosov diffeo paper of Cawley and Anosov's deformation example	4
There are a few ways to generalize Thm.1 (as well as the flexibility result	
of Cawley [Caw93]).	
Exercise: "Area-preserving-measurable to smooth" Teichmuller space of an Anosov diffeo on \mathbb{T}^2 (or any $\Gamma \leq \operatorname{SL}(2,\mathbb{Z})$ whose standard action is Anosov) is trivial (essentially a consequence of Livsic). Problem: "Measurable to smooth" Teichmuller space of the standard action of $\Gamma \leq \operatorname{SL}(2,\mathbb{Z})$ with "sufficiently many Anosovs" is small. FRH on 2024_05_22 said this is an interesting theorem. The conjugacy takes some invariant measure for the unknown action to MME for Anosovs is important. Three directions: With Jana, Pablo, Aaron.	
[AW70] may also be relevant	4
So far we have a Teichmüller set of actions; there are multiple ways to endow this set with a structure, so as to obtain a Teichmüller space. Cawley remarks in [Caw93, p.353]: "The C^{1+} Teichmüller space is identified in Theorem 1 with an incomplete vector space. A natural completion of this space was defined by Bowen, by means of a dynamically defined Banach norm on cocycles (see Appendix A) [B3]. The constructions carried out here for Hö1der cocycles can be carried out for the more general Bowen bounded cocycles, and the diffeomorphisms constructed are C^1 with derivatives in the space of Bowen bounded cocycles. Conversely, Gardiner and Sullivan have identified a natural completion of the C^{1+} Teichmüller space (in the related setting of expanding maps) [GS]. It remains an important open problem to relate these two completions."	
completions." [Bow75, Caw93] for the first part and [GS92, GS94] for the second	5
Be more specific about the reference.	J
Also, what happens in the case $r = 1$?	6

Hurder, in his review, states: "The proof of the theorem introduces a very	
nice idea, that the transversality of the eigendirections for the hyper-	
bolic elements of Γ implies that the Gibbs measures on their stable and	
unstable foliations must be preserved by a topological conjugacy. It is	
then standard technique to show that the conjugating homeomorphism	
must be $C^{1+\alpha}$."	
Presumably he is referring to Lem.3	14

1 Introduction

Here we give an exposition of the main argument in [Caw92] that proves the following statement:

{001}

Theorem 1 (¹): Let $T \leq \operatorname{SL}(2,\mathbb{Z})$ be a subgroup and $\sigma_{\bullet}: T \to \operatorname{Aut}_{\overline{\sqcup \bullet}}(\mathbb{T}^2)$ be the standard action. Suppose there are $t^1, t^2 \in T$ such that $\sigma_{t^1} = A^1, \sigma_{t^2} = A^2$ are hyperbolic automorphisms such that $S(A^1), U(A^1), S(A^2), U(A^2)$ pairwise transverse, then for any $r \in \mathbb{Z}_{\geq 1} \times]0,1]$ and for any action $\alpha_{\bullet}: T \to \operatorname{Diff}^r(\mathbb{T}^2)$, if there is a homeomorphism $\Phi \in \operatorname{Homeo}(\mathbb{T}^2)$ with $\alpha_{\bullet} = \Phi \circ \sigma_{\bullet} \circ \Phi^{-1}$ and $f^1 = \alpha_{t^1}$ and $f^2 = \alpha_{t^2}$ Anosov, then $\Phi \in \operatorname{Diff}^r(\mathbb{T}^2)$.

۷

AU: Presumably when r = 1 the statement fails, but due to which step exactly? When r = 1, even for M a surface, the holonomies are not differentiable necessarily, presumably.

Have a look at Llave-Marco-Moriyon [they don't seem to remark anything about this.] [Pug84, p.145] has a related conjecture, in the context of Pesin Theory:

"Conjecture(Pugh): Let $f: M \to M$ be a C^1 diffeomorphism, and let $x \in \operatorname{Hyp}(f)$ (so that x is is a Lyapunov-Perron regular point for f and neither of the Lyapunov exponents of f vanish at x. Then $S_{x,\text{loc}}(f) = \bigcup_{\lambda \in \mathbb{R}_{>0}} \{y \in M, |d(f^n(y), f^n(x)) = o_{n \to \infty}(e^{-\lambda n})\}$ is an injectively immersed C^1 submanifold tangent to $S_x(f)$ at x. Indeed this might be true whenever $S_x(f)$ has dimension one. Regularity is automatic on one-dimensional subspaces."; see also [BV06], this work has not much about the boons of dimension 1 however. Jackpot: [CCE17] and [RY80], building on [Bow75]. Also see [PPR75].

{002}

Remark 1: Any non-virtually-cyclic subgroup of $SL(2, \mathbb{Z})$ can be taken as T in the above theorem.

As an example, one can take

$$A^1 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, A^2 = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}.$$

¹[Caw92, p.135,Thm.1]

AU: Two families of hyperbolic automorphisms of \mathbb{T}^2 :

$$\begin{pmatrix} n+1 & n \\ 1 & 1 \end{pmatrix}$$
, $n \in \mathbb{Z}_{\geq 1}$

$$\begin{pmatrix} n^2+1 & n \\ n & 1 \end{pmatrix}$$
, $n \in \mathbb{Z}_{\geq 1}$

{003}

Corollary 1 (2): Let $\sigma_{\bullet}: SL(2,\mathbb{Z}) \to Aut_{\overline{Lie}}(\mathbb{T}^2)$ be the standard action. Then for any action $\alpha_{\bullet}: SL(2,\mathbb{Z}) \to Diff^r(\mathbb{T}^2)$ for some $r \in \mathbb{Z}_{\geq 1} \times]0,1]$, if there is a homeomorphism $\Phi \in Homeo(\mathbb{T}^2)$ with $\alpha_{\bullet} = \Phi \circ \sigma_{\bullet} \circ \Phi^{-1}$ with the property that $f^1 = \alpha_{t^1}$ and $f^2 = \alpha_{t^2}$ are Anosov and $A^1 = \sigma_{t^1}$ and $A^2 = \sigma_{t^2}$ are hyperbolic automorphisms, then $\Phi \in Diff^r(\mathbb{T}^2)$.

┙

AU: What does the condition on σ_{\bullet} correspond in terms of "rank one factors"? Γ is rank one, but still large (larger than a virtually cyclic group).

AU: Context:

[Hur92, KL91, HKLZ91] for rigidity and [Caw93, dlL87, MM87a, MM87b] for flexibility

[Hur92, Thm.7.22] There is a real analytic deformation of the standard action of $SL(2,\mathbb{Z})$ on \mathbb{T}^2 through volume preserving real analytic diffeomorphisms of \mathbb{T}^2 none of whose elements are topologically conjugate to the standard action.

AU: [GHS08] for a similar result (local version of "topological to smooth"): "Her techniques however are restricted to the 2-torus due to the use of $C^{1+\alpha}$ -regularity of stable foliations."

"At the heart of our argument lies the investigation of sequences of the form $\gamma^{-n}\delta\gamma^n$ for two hyperbolic elements γ and δ in "general position"; "this idea goes back to [Hit03]"

AU: Directions:

[Ano69, pp.206-209,§26] There is a real analytic deformation of the cat map on \mathbb{T}^2 through volume preserving real analytic diffeomorphisms of \mathbb{T}^2 none of whose elements are Meas-conjugate to the cat map.

[Wal70] feels like it's relevant to the Anosov diffeo paper of Cawley and Anosov's deformation example.

²[Caw92, p.136,Thm.2]

AU: There are a few ways to generalize Thm.1 (as well as the flexibility result of Cawley [Caw93]).

Exercise: "Area-preserving-measurable to smooth" Teichmuller space of an Anosov diffeo on \mathbb{T}^2 (or any $\Gamma \leq SL(2,\mathbb{Z})$ whose standard action is Anosov) is trivial (essentially a consequence of Livsic).

Problem: "Measurable to smooth" Teichmuller space of the standard action of $\Gamma \leq SL(2,\mathbb{Z})$ with "sufficiently many Anosovs" is small.

FRH on 2024_05_22 said this is an interesting theorem. The conjugacy takes some invariant measure for the unknown action to MME for Anosovs is important. Three directions: With Jana, Pablo, Aaron.

[AW70] may also be relevant.

Remark 2: There is a Teichmüller space interpretation of Thm. 1, inspired by [MS98]. For this we consider an Anosov action up to topological conjugacy to be a structure, and smoothly conjugate Anosov actions are considered to be the same; note that in this case a smooth conjugacy class of an Anosov action completely determines the smooth structure of the underlying manifold; see also Rem. 3 below.

More specifically let T be a discrete group, M be a closed C^{∞} manifold, and $\alpha_{\bullet}: T \curvearrowright M$ be a group action by C^1 diffeomorphisms. For $r \in \mathbb{Z}_{\geq 1} \times]0,1]$, the $C^0 \to C^r$ Anosov Teichmüller space of α is by definition a certain set of triples (Φ, N, β) modulo a certain equivalence relation.

Here one considers all triples (Φ, N, β) where

- N is a closed C^{∞} manifold,
- $\beta_{\bullet}: T \curvearrowright N$ is a group action by C^r diffeomorphisms,
- $\Phi: M \to N$ is a homeomorphism such that $\Phi \circ \alpha_{\bullet} = \beta_{\bullet} \circ \Phi$, and for any $t \in T$, α_t is Anosov iff β_t is Anosov,

and the equivalence relation is defined by

$$(\Phi^1, N^1, \beta^1) \sim (\Phi^2, N^2, \beta^2) \Leftrightarrow \Phi^2 \circ (\Phi^1)^{-1} \in \mathrm{Diff}^r(N^1; N^2).$$

The conclusion of Thm.1 is that the $C^0 \to C^r$ Anosov Teichmüller space of the standard action of Γ is a point, as once the conjugacy is smooth, it conjugates any Anosov element to an Anosov element.

AU: So far we have a Teichmüller set of actions; there are multiple ways to endow this set with a structure, so as to obtain a Teichmüller space. Cawley remarks in [Caw93, p.353]: "The C^{1+} Teichmüller space is identified in Theorem 1 with an incom- plete vector space. A natural completion of this space was defined by Bowen, by means of a dynamically defined Banach norm on cocycles (see Appendix A) [B3]. The constructions carried out here for Hö1der cocycles can be carried out for the more general Bowen bounded cocycles, and the diffeomorphisms constructed are C^1 with derivatives in the space of Bowen bounded cocycles. Conversely, Gardiner and Sullivan have identified a natural completion of the C^{1+} Teichmüller space (in the related setting of expanding maps) [GS]. It remains an important open problem to relate these two completions."

[Bow75, Caw93] for the first part and [GS92, GS94] for the second.

┙

2 Preliminaries

Let M be a compact C^{∞} manifold. $f \in \operatorname{Diff}^1(M)$ is called **Anosov** if there is a topological Ad_f -invariant splitting $TM = S(f) \oplus U(f)$, each summand of at least rank one, and there are numbers $C \in \mathbb{R}_{>0}$ and $\lambda \in \mathbb{R}_{>0}$ such that with respect to some C^0 fiberwise norm on M, for any $x \in M$ and for any $x \in \mathbb{Z}_{>0}$ we have:

$$\forall v^S \in S_x(f) : |T_x f^n v^S|_{f^n(x)} \le Ce^{-\lambda n} |v^S|_x,$$

$$\forall v^{U} \in U_{x}(f) : |T_{x}f^{-n}v^{U}|_{f^{-n}(x)} \le Ce^{-\lambda n}|v^{U}|_{x}.$$

The main properties we'll use of Anosov diffeomorphisms and certain objects that can be attached to them are among those listed below:

{004}

Proposition 1 (3): Let M be a compact C^{∞} manifold, $r \in \mathbb{Z}_{\geq 1} \times]0,1]$, $f \in \mathrm{Diff}^r(M)$ be Anosov. Then

AU: Be more specific about the reference. Also, what happens in the case r = 1?

- (i) $S_{\bullet}(f), U_{\bullet}(f): M \to Gr(TM)$ are Hölder continuous.
- (ii) S(f) and U(f) are uniquely integrable. More precisely, for any $x \in M$, there is a unique $\dim(S_x(f))$ dimensional C^r embedded closed ball $S_{x,loc}(f)$ such that $x \in S_{x,loc}(f)$ and $T_xS_{x,loc}(f) = S_x(f)$. Similarly there is a unique $\dim(U_x(f))$ dimensional C^r embedded closed ball $U_{x,loc}(f)$ such that $x \in U_{x,loc}(f)$ and $T_xU_{x,loc}(f) = U_x(f)$. $S_{x,loc}(f)$ is called the **local stable manifold** of f at x and $U_{x,loc}(f)$ is called the **local unstable manifold** of f at f at f and f are the local unstable manifold of f at f and f and f are the local unstable manifold of f at f and f are the local unstable manifold of f at f and f are the local unstable manifold of f at f and f are the local unstable manifold of f at f and f are the local unstable manifold of f at f and f are the local unstable manifold of f at f and f are the local unstable manifold of f at f and f are the local unstable manifold of f at f and f are the local unstable manifold of f at f and f are the local unstable manifold of f at f and f are the local unstable manifold of f at f and f are the local unstable manifold of f at f and f are the local unstable manifold of f at f and f are the local unstable manifold of f at f are the local unstable manifold of f at f and f are the local unstable manifold of f at f are the local unstable manifold of f at f are the local unstable manifold of f at f are the local unstable manifold of f at f are the local unstable manifold of f at f are the local unstable manifold of f at f are the local unstable manifold of f at f and f are the local unstable manifold of f at f and f are the local unstable manifold of f at f and f are the local unstable manifold of f at f and f are the local unstable manifold of f at f and f are the local unstable manifold of f at

³[Ano67], [Ano69]

$$\mathcal{S}_{x, ext{loc}}(f) = \bigcap_{n \in \mathbb{Z}_{\geq 0}} \left\{ y \in M \mid d_M(f^n(y), f^n(x)) \leq \varepsilon_0 \right\},$$

$$\mathcal{U}_{x,\text{loc}}(f) = \mathcal{S}_{x,\text{loc}}(f^{-1}) = \bigcap_{n \in \mathbb{Z}_{>0}} \left\{ y \in M \mid d_M(f^{-n}(y), f^{-n}(x)) \le \varepsilon_0 \right\}.$$

(iii) For any $x \in M$, $S_x(f) = \bigcup_{n \in \mathbb{Z}_{\geq 0}} \overleftarrow{f^n} \left(S_{f^n(x), \text{loc}}(f) \right)$ is the **global stable manifold** and $\mathcal{U}_x(f) = \bigcup_{n \in \mathbb{Z}_{\geq 0}} \overleftarrow{f^{-n}} \left(\mathcal{U}_{f^{-n}(x), \text{loc}}(f) \right)$ is the **global unstable manifold** of f at x. They are C^r injectively immersed discs of appropriate dimensions. Using the intrinsic distance function d_M on M induced by the chosen fiberwise norm, they are also characterized as follows:

$$\mathcal{S}_x(f) = \left\{ y \in M \ \middle| \ \lim_{n \to \infty} d_M(f^n(y), f^n(x)) = 0 \right\},$$
 $\mathcal{U}_x(f) = \mathcal{S}_x(f^{-1}) = \left\{ y \in M \ \middle| \ \lim_{n \to \infty} d_M(f^{-n}(y), f^{-n}(x)) = 0 \right\}.$

(iv) S(f) and U(f) are C^0 foliations with C^r leaves.

┙

In particular, there is an $r_0 \in \mathbb{R}_{>0}$ such that for any $x \in M$, there is a neighborhood $N \in \text{Nbhd}(x)$ and a homeomorphism

$$\phi: \left(\mathbb{R}^{\dim(S_x(f))}[0| < r_0] \times \mathbb{R}^{\dim(U_x(f))}[0| < r_0], (0,0)\right) \to (N,x)^4$$
 such that

$$\forall a \in \mathbb{R}^{\dim(S_{x}(f))}[0| < r_{0}] : \overrightarrow{\phi} \left(\{a\} \times \mathbb{R}^{\dim(U_{x}(f))}[0| < r_{0}] \right) = N \cap \mathcal{U}_{x,loc}(f),$$

$$\forall b \in \mathbb{R}^{\dim(U_x(f))}[0| < r_0]: \overrightarrow{\phi} \left(\mathbb{R}^{\dim(S_x(f))}[0| < r_0] \times \{b\}\right) = N \cap \mathcal{S}_{x,\text{loc}}(f).$$

Such a ϕ is called a **local product structure chart** associated to (the stable and unstable foliations of) f at x, and the collection of all such (U, ϕ) is called a **local product structure** associated to (the stable and unstable foliations of) f.

For A, B two arbitrary subsets, denote by $\operatorname{Hit}^f(B \leftarrow A)$ the set of all those integers n such that $\overrightarrow{f^{n'}}(A) \cap B \neq \emptyset$; any such n is an f-hitting time from A to B. $x \in M$ is an f-nonwandering point if $\forall U \in \operatorname{Nbhd}(x) : \operatorname{Hit}^f(U \leftarrow U) \cap \mathbb{Z}_{\geq 1} \neq \emptyset$. Denote by $\operatorname{NW}(f)$ the set of f-nonwandering points.

⁴For X a metric space, X[x| < r] denotes the open ball centered at x of radius r.

{005}

Proposition 2 (5): Let M be a compact C^{∞} manifold, $f \in \text{Diff}^1(M)$ be Anosov. Then the following are equivalent:

- (i) NW(f) = M.
- (ii) $\overline{\text{Per}(f)} = M$.
- (iii) f is topologically transitive⁶.
- (iv) f is topologically strong mixing⁷.
- (v) $\forall x \in M : \overline{S_x(f)} = M = \overline{U_x(f)}$.

{006}

Theorem 2 (8): Let M be a compact C^{∞} manifold, $f \in \mathrm{Diff}^1(M)$ be Anosov. Then

(Franks) If S(f) or U(f) is a line bundle and NW(f) = M, then f is $\overline{\text{Top}}$ -isomorphic to a hyperbolic Lie group automorphism of $\mathbb{T}^{\dim(M)}$.

(Newhouse) If S(f) or U(f) is a line bundle, then NW(f) = M.

• If S(f) or U(f) is a line bundle, then f is $\overline{\underline{\text{Top}}}$ -isomorphic to a hyperbolic Lie group automorphism of $\mathbb{T}^{\dim(M)}$.

{007}

Proposition 3 (9): Let $d \in \mathbb{Z}_{\geq 2}$ and $A \in \operatorname{Aut}_{\overline{\operatorname{Lie}}}(\mathbb{T}^d)$ be hyperbolic. Then for any $x \in \mathbb{T}^d$, $\overline{\mathcal{S}_x(A) \cap \mathcal{U}_x(A)} = \mathbb{T}^d$.

{800}

Corollary 2: Let M be a compact C^{∞} manifold. If $1 < \dim(M) \le 3$ and M carries an Anosov diffeomorphism, then M is homeomorphic to a torus via a homeomorphism which conjugates f to a hyperbolic Lie group automorphism. Further, $\overline{\operatorname{Per}(f)} = \operatorname{NW}(f) = M$, f is topologically strong mixing, and for any $x \in M$, $\overline{\mathcal{S}_x(f)} = \overline{\mathcal{U}_x(f)} = \overline{\mathcal{S}_x(f)} \cap \mathcal{U}_x(f) = M$.

⁵[Kat72, p.68,Thm.4.3; p.69,Rem.4.1,Exr.4.1], also see [KH95, Ch.18]

┙

⁶Recall that f is **topologically transitive** if it has a dense orbit, or alternatively for any two nonempty open subsets U, V, $\operatorname{Hit}^f(V \leftarrow U) \cap \mathbb{Z}_{\geq 1} \neq \emptyset$.

⁷Recall that f is **topologically strong mixing** if for any two nonempty open subsets U, V, $\operatorname{card}(\mathbb{Z}_{>1} \setminus \operatorname{Hit}^f(V \leftarrow U)) < \infty$.

⁸[Fra70, p.64,Thm.6.3], [New70, p.762,Thm.1.2]

⁹[LS99, pp.597-598,Ex.3.3]

Let M be a compact C^{∞} manifold, $f \in \operatorname{Diff}^1(M)$ be Anosov. Let L, R be two embedded manifolds transverse to $\mathcal{S}(f)$. A **holonomy** (or a **Poincaré transformation**¹⁰, or **projection**¹¹) $\mathcal{S}_{R \leftarrow L}^f = \mathcal{S}_{R \leftarrow L}(f) : L \rightsquigarrow R^{12}$ from L to R along $\mathcal{S}(f)$ (**stable holonomy** for short) is a local homeomorphism such that $\forall x \in \operatorname{dom}\left(\mathcal{S}_{R \leftarrow L}^f\right) : \mathcal{S}_{R \leftarrow L}^f(x) \in R \cap \mathcal{S}_x(f)$. Similarly, if L and R are embedded manifolds transverse to $\mathcal{U}(f)$, a **holonomy** $\mathcal{U}_{R \leftarrow L}^f = \mathcal{U}_{R \leftarrow L}(f) : L \rightsquigarrow R$ from L to R along $\mathcal{S}(f)$ (**unstable holonomy** for short) is a local homeomorphism such that $\forall x \in \operatorname{dom}\left(\mathcal{U}_{R \leftarrow L}^f\right) : \mathcal{U}_{R \leftarrow L}^f(x) \in R \cap \mathcal{U}_x(f)$. It's clear that stable and unstable holonomies exist and if the transverse manifolds are close enough they are unique.

Let μ be a probability measure induced by a C^{∞} Riemannian metric on M, L, R be two embedded manifolds transverse to $\mathcal{S}(f)$, $\mathcal{S}_{R\leftarrow L}^f:L\to R$ be an everywhere defined stable holonomy. Denote by μ^L and μ^R be the Radon measures on L and R induced by the induced Riemannian metrics, respectively. We say that $\mathcal{S}_{R\leftarrow L}^f$ is **absolutely continuous** if $\left(\mathcal{S}_{R\leftarrow L}^f\right)^!(\mu_R)\ll \mu_L$, or alternatively $\mu_R\ll \overline{\mathcal{S}_{R\leftarrow L}^f}(\mu_L)$. In words, absolute continuity means that zero measure sets are sent to zero measure sets. The Radon-Nikodym derivative coming from the first absolute continuity relation is called the **generalized Jacobian** of the stable holonomy from L to R:

$$J_{\bullet}^{\mathcal{S}}(f; L \leftarrow R) = \frac{d\left(\mathcal{S}_{R \leftarrow L}^{f}\right)^{!}(\mu_{R})}{\mu_{L}} : L \to \mathbb{R}_{>0}.$$

{009}

Proposition 4 (13): Let M be a compact C^{∞} manifold, $r \in \mathbb{Z}_{\geq 1} \times]0,1]$, $f \in \mathrm{Diff}^r(M)$ be an Anosov diffeomorphism, L, R be two C^r embedded discs transverse to $\mathcal{S}(f)$ close enough that there is a unique stable holonomy $\mathcal{S}^f_{R \leftarrow L} : L \to R$. Then for any probability measure μ on M induced by a C^{∞} Riemannian metric on M,

- (i) $\mathcal{S}^f_{R\leftarrow L}:L\rightarrow R$ is Hölder and absolutely continuous, and
- (ii) $J_{\bullet}^{\mathcal{S}}(f; L \leftarrow R) : L \rightarrow \mathbb{R}_{>0}$ is also Hölder continuous.

Similarly if L,R be two C^r embedded discs transverse to $\mathcal{U}(f)$ close enough that there is a unique unstable holonomy $\mathcal{U}_{R\leftarrow L}^f:L\to R$, then for any probability measure μ on M induced by a C^∞ Riemannian metric on M,

- (i) $\mathcal{U}^f_{R \leftarrow L} : L \rightarrow R$ is Hölder and absolutely continuous, and
- (ii) $J^{\mathcal{U}}_{\bullet}(f; L \leftarrow R) : L \to \mathbb{R}_{>0}$ is also Hölder continuous.

¹⁰[Mn87, p.190]

¹¹[Hir01, 802]

¹²For two sets A, B, $f:A \rightsquigarrow B$ denotes a partially defined function from A to B.

 $^{^{13}}$ [Ano69, p.27,Thm.10]; note that here the holonomy is required, and proved, to be continuous with respect to small C^0 perturbations in Emb r . One may call this "stable continuity of holonomies". Also see [Mn87, p.191,Thm.3.1].

{010}

Proposition 5 (¹⁴): Let M be a compact C^{∞} manifold, $r = (q, \theta) \in \mathbb{Z}_{\geq 1} \times]0,1]$, $f \in \operatorname{Diff}^r(M)$ be Anosov. If U(f) is a corank one subbundle of TM, then for some $s = (q, \theta') \in \mathbb{Z}_{\geq 1} \times]0, \theta]$ one has:

- (i) Any unstable holonomy between C^s embedded discs transverse to $\mathcal{U}(f)$ is C^s .
- (ii) S(f) is a C^s foliation with C^r leaves¹⁵.

Similarly if S(f) is a corank one subbundle of TM, then for some $s = (q, \theta') \in \mathbb{Z}_{\geq 1} \times [0, \theta]$ one has:

- (i) Any stable holonomy between C^s embedded discs transverse to S(f) is C^s .
- (ii) U(f) is a C^s foliation with C^r leaves.

Remark 3: If f is a C^r ($r = (q, \theta) \in \mathbb{Z}_{\geq 1} \times]0,1]$) Anosov diffeomorphism of a compact C^{∞} surface M, as both S(f) and U(f) are of rank one, the local product structure associated to f is of regularity C^s for some $s = (q, \theta') \in \mathbb{Z}_{\geq 1} \times]0,\theta]$. Therefore, the C^s manifold structure of M is determined (up to C^s diffeomorphisms) by the pair of transverse foliations S(f), U(f).

3 The Proof

{011}

{012}

Using arguments similar to those that can be found in [dlL87], once the C^1 differentiability of Ψ is guaranteed the regularity can be upgraded to C^r . Thus in what follows we focus on showing that $\Phi \in \text{Diff}^1(\mathbb{T}^2)$.

First note that by hypothesis $\mathcal{S}(A^1), \mathcal{U}(A^1), \mathcal{S}(A^2), \mathcal{U}(A^2)$ are pairwise transverse foliations of \mathbb{T}^2 . We have that $\overline{\Phi}'(\mathcal{S}(A^i)) = \mathcal{S}(f^i)$ and $\overline{\Phi}'(\mathcal{U}(A^i)) = \mathcal{U}(f^i)$. We'll need that the foliations $\mathcal{S}(f^1), \mathcal{U}(f^1), \mathcal{S}(f^2), \mathcal{U}(f^2)$ are also pairwise transverse. Since both f^1 and f^2 are Anosov, $\mathcal{S}(f^1)$ and $\mathcal{U}(f^1)$; as well as $\mathcal{S}(f^2)$ and $\mathcal{U}(f^2)$ are pairwise transverse. By replacing a diffeomorphism by its inverse it suffices to show that $\mathcal{U}(f^1)$ and $\mathcal{S}(f^2)$ are transverse. Note also that since these foliations are one dimensional foliations of a two dimensional manifold, if their tangent fields don't span the whole tangent space, they have to coincide.

Lemma 1: Let $x \in \mathbb{T}^2$ be such that $U_x(f^1) = S_x(f^2)$. Then for any $y \in \mathcal{U}_x(f^1) \cap \mathcal{S}_x(f^1) : \mathcal{U}_y(f^1) = S_y(f^2)$.

¹⁴[Mn87, p.202,Exr.3.1], [PR02, p.343,Thm.2.1], [PRF09, p.11,Thm.1.6], [PSW97, p.543,Thm.6.1]

┙

-

¹⁵More explicitly this means that S(f) admits foliation charts whose transitions are C^s diffeomorphisms that are C^r along (images of) leaves of S(f).

Proof: First note that for any $x \in \mathbb{T}^2$, there is an affine map $\psi_x : (\mathcal{U}_{x,\text{loc}}(A^1), x) \to (\mathcal{S}_{x,\text{loc}}(A^1), x)$ such that graph $(\psi_x) = \mathcal{S}_{x,\text{loc}}(A^2)$. Further, if $y \in \mathcal{U}_x(A^1) \cap \mathcal{S}_x(A^1)$, so that y is A^1 -biasymptotic to x, then we have

$$\mathcal{U}_{x,\text{loc}}(A^1) \xrightarrow{\psi_x} \mathcal{S}_{x,\text{loc}}(A^1)
\mathcal{S}_{y\leftarrow x}^{A^1} \downarrow \qquad \qquad \downarrow \mathcal{U}_{y\leftarrow x}^{A^1}
\mathcal{U}_{y,\text{loc}}(A^1) \xrightarrow{\psi_y} \mathcal{S}_{y,\text{loc}}(A^1)$$

Since $U_x(f^1) = S_x(f^2)$, $\mathcal{U}_{x,\text{loc}}(f^1)$ is tangent to $\mathcal{S}_{x,\text{loc}}(f^2)$ at x, as such there is a C^r map $\phi_x: (\mathcal{U}_{x,\text{loc}}(f^1), x) \to (\mathcal{S}_{x,\text{loc}}(f^1), x)$ such that $\operatorname{graph}(\phi_x) = \mathcal{S}_{x,\text{loc}}(f^2)$ and $\phi_x'(x) = 0$. Similarly we can find a C^r map ϕ_y such that $\operatorname{graph}(\phi_y) = \mathcal{S}_{y,\text{loc}}(f^2)$. Indeed, either $S_y(f^1) \neq S_y(f^2)$ xor $S_y(f^1) = S_y(f^2)$. In the first case there is a diffeomorphism $\phi_y: (\mathcal{U}_{y,\text{loc}}(f^1), y) \to (\mathcal{S}_{y,\text{loc}}(f^1), y)$ such that $\operatorname{graph}(\phi_y) = \mathcal{S}_{y,\text{loc}}(f^2)$ and in the second case there is a diffeomorphism $\phi_y: (\mathcal{S}_{y,\text{loc}}(f^1), y) \to (\mathcal{U}_{y,\text{loc}}(f^1), y)$ such that $\operatorname{graph}(\phi_y) = \mathcal{S}_{y,\text{loc}}(f^2)$. Since Φ conjugates σ and α , we thus have 16 :

 $^{^{16}}$ In the diagram, the two-sided arrow at the bottom summarizes the two cases.

Thus if $a \in \mathcal{U}_{x,loc}(f)$, then in the first case above we have

$$\phi_y \circ \mathcal{S}_{y \leftarrow x}^{f^1}(a) = \mathcal{U}_{y \leftarrow x}^{f^1} \circ \phi_x(a)$$

and in the second case we have

$$\mathcal{S}_{y\leftarrow x}^{f^1}(a) = \phi_y \circ \mathcal{U}_{y\leftarrow x}^{f^1} \circ \phi_x(a).$$

Differentiating these equations with respect to a and evaluating at a = x, we get in the first case

$$\phi_y'(y)\frac{d\mathcal{S}_{y\leftarrow x}^{f^1}}{dx}(x) = \frac{d\mathcal{U}_{y\leftarrow x}^{f^1}}{dx}(x)\phi_x'(x) = 0,$$

and in the second case

$$\frac{d\mathcal{S}_{y\leftarrow x}^{f^1}}{dx}(x) = \phi_y'(y) \frac{d\mathcal{U}_{y\leftarrow x}^{f^1}}{dx}(x) \phi_x'(x) = 0.$$

Note that the second equation gives a contradiction since the stable holonomies are invertible (consequently it must be the case that $S_y(f^1) \neq S_y(f^2)$), and the only way the first equation could be valid is if $\phi'_y(y) = 0$, that is, $U_y(f^1) = S_y(f^2)$, as was to be shown.

{013}

Lemma 2: $\mathcal{U}(f^1)$ and $\mathcal{S}(f^2)$ are transverse foliations.

Proof: Suppose not. Then there is an $x \in \mathbb{T}^2$ such that $U_x(f^1) = S_x(f^2)$. By the previous lemma, $U_{\bullet}(f^1)$ and $S_{\bullet}(f^2)$ coincide on $U_x(f^1) \cap S_x(f^1)$. Note that

$$\overline{\mathcal{U}_{x}(f^{1}) \cap \mathcal{S}_{x}(f^{1})} = \overline{\overline{\Phi}}(\mathcal{U}_{\Phi^{-1}(x)}(A^{1}) \cap \mathcal{S}_{\Phi^{-1}(x)}(A^{1}))$$

$$= \overline{\Phi}\left(\overline{\mathcal{U}_{\Phi^{-1}(x)}(A^{1}) \cap \mathcal{S}_{\Phi^{-1}(x)}(A^{1})}\right) \stackrel{(\dagger)}{=} \overline{\Phi}(\mathbb{T}^{2}) = \mathbb{T}^{2}.$$

┙

Here the equality with (†) is due to Prop.3.

Since $U_{\bullet}(f^{\hat{1}})$ and $S_{\bullet}(f^2)$ are continuous and coincide on a dense subset, they have to be equal. This implies that $\mathcal{U}(f^1)$ and $\mathcal{S}(f^2)$ coincide everywhere, and consequently $\mathcal{U}(A^1)$ and $\mathcal{S}(A^2)$ coincide everywhere, a contradiction.

┙

Next fix a point $x \in \mathbb{T}^2$ and let τ^{σ} be a compact embedded interval in $\mathcal{U}_x(A^1)$. Note that since $\mathcal{U}_x(A^1)$ is an injectively immersed line in \mathbb{T}^2 , it carries a natural affine structure. Consequently there is a local \mathbb{R} action $\hbar^{\sigma}: \mathbb{R} \times \tau^{\sigma} \leadsto \tau^{\sigma}$ on τ^{σ} by translations. This local action can be uniquely factored into stable and unstable holonomies based on the following caricature:

Thus we have that $\forall a \in \tau^{\sigma}$, $\exists \lambda_a, \rho_a \in \mathbb{R}$ with $\lambda_a < 0 < \rho_a$ such that $\forall t \in [\lambda_a, \rho_a]$, $\exists ! z^{\sigma}(t, a) \in \mathcal{S}_a(A^1)$:

$$\begin{split} t &\geq 0 \Rightarrow \hbar^{\sigma}_{t}(a) = \mathcal{S}^{A^{2}}_{\tau^{\sigma} \leftarrow \mathcal{U}_{z^{\sigma}(t,a)}(A^{1})} \circ \mathcal{S}^{A^{1}}_{\mathcal{U}_{z^{\sigma}(t,a)}(A^{1}) \leftarrow \tau^{\sigma}}(a) \\ t &\leq 0 \Rightarrow \hbar^{\sigma}_{t}(a) = \mathcal{S}^{A^{1}}_{\mathcal{U}_{z^{\sigma}(t,a)}(A^{1}) \leftarrow \tau^{\sigma}} \circ \mathcal{S}^{A^{2}}_{\tau^{\sigma} \leftarrow \mathcal{U}_{z^{\sigma}(t,a)}(A^{1})}(a). \end{split}$$

Let us now conjugate \hbar^{σ} using Φ . Put $\tau^{\alpha} = \overrightarrow{\Phi}(\tau^{\sigma})$, $\hbar^{\alpha}_{t}(b) = \Phi \circ \hbar^{\sigma}_{t} \circ \Phi^{-1}(b)$ and $z^{\alpha}(t,b) = \Phi(z^{\sigma}(t,\Phi^{-1}(b)))$ for all $\lambda_{\Phi^{-1}(b)} \leq t \leq \rho_{\Phi^{-1}(b)}$ and for all $b \in \tau^{\alpha}$. Note that now $\hbar^{\alpha} : \mathbb{R} \times \tau^{\alpha} \leadsto \tau^{\alpha}$ is a local action by homeomorphisms.

Lemma 3: $\hbar_t^{\alpha}(b)$ is C^r in the t variable and C^s in the b variable.

┙

Proof: We'll use the holonomy factorization of \hbar^{σ} . If $t \geq 0$, we have

$$\begin{split} &\hbar^{\alpha}_{t}(b) = \Phi \circ \hbar^{\sigma}_{t} \circ \Phi^{-1}(b) \\ &= \Phi \circ \mathcal{S}^{A^{2}}_{\tau^{\sigma} \leftarrow \mathcal{U}_{z^{\sigma}(t,\Phi^{-1}(b))}(A^{1})} \circ \Phi^{-1} \circ \Phi \circ \mathcal{S}^{A^{1}}_{\mathcal{U}_{z^{\sigma}(t,\Phi^{-1}(b))}(A^{1}) \leftarrow \tau^{\sigma}} \circ \Phi^{-1}(b) \\ &= \mathcal{S}^{f^{2}}_{\tau^{\alpha} \leftarrow \mathcal{U}_{z^{\alpha}(t,b)}(f^{1})} \circ \mathcal{S}^{f^{1}}_{\mathcal{U}_{z^{\alpha}(t,b)}(f^{1}) \leftarrow \tau^{\alpha}}(b). \end{split}$$

Similarly we have for $t \leq 0$,

$$\hbar_t^{lpha}(b) = \mathcal{S}_{\mathcal{U}_{z^{lpha}(t,b)}(f^1)\leftarrow au^{lpha}}^{f^1} \circ \mathcal{S}_{ au^{lpha}\leftarrow\mathcal{U}_{z^{lpha}(t,b)}(f^1)}^{f^2}(b).$$

The lemma follows from these formulas and Prop.5.

AU: Hurder, in his review, states: "The proof of the theorem introduces a very nice idea, that the transversality of the eigendirections for the hyperbolic elements of Γ implies that the Gibbs measures on their stable and unstable foliations must be preserved by a topological conjugacy. It is then standard technique to show that the conjugating homeomorphism must be $C^{1+\alpha}$." Presumably he is referring to Lem. 3.

{015}

Lemma 4: Let $T: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $(t, x) \mapsto x + t$ and $S: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a local group action by homeomorphisms. Suppose there is a homeomorphism $\Psi \in \text{Homeo}(\mathbb{R})$ such that $T_{\bullet} = \Psi \circ S_{\bullet} \circ \Psi^{-1}$. Then $\partial_2 S: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ exists and is continuous iff $\Psi \in \text{Diff}^1(\mathbb{R})$.

_

Proof: (\Leftarrow) is clear. For (\Rightarrow), first note that since S is a local group action by invertible maps and $\partial_2 S$ exists and is continuous, $\operatorname{im}(\partial_2 S) \subseteq \mathbb{R}_{>0}$ xor $\operatorname{im}(\partial_2 S) \subseteq \mathbb{R}_{<0}$; wlog let us assume the former. Further $\partial_2 S : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{>0}$ is a cocycle over S, that is,

$$\partial_2 S(t_1 + t_2, x) = \partial_2 S(t_1, S(t_2, x)) \, \partial_2 S(t_2, x).$$

Fix a $y_0 \in \mathbb{R}$ and define $\mathfrak{T} = \mathfrak{T}_{y_0} : (\mathbb{R}, y_0) \to (\mathbb{R}, 0), y \mapsto -\Psi(y) + \Psi(y_0)$. Note that \mathfrak{T} is a homeomorphism. Further, for $y \in \mathbb{R}$, $S(t,y) = y_0$ implies $\Psi(y_0) = T(t, \Psi(y)) = \Psi(y) + t$, so that $t = \mathfrak{T}(y)$ is the unique solution to the equation $S(t,y) = y_0$. Note that

$$S(\Im(y), y) = y_0 = S(\Im(S(t, y)), S(t, y)) = S(\Im(S(t, y)) + t, y),$$

whence by the uniqueness of \mathbb{T} we have $\mathbb{T} \circ S(t,y) = \mathbb{T}(y) - t$. Define $\Theta: (\mathbb{R}, y_0) \to (\mathbb{R}, 0), y \mapsto \int_{y_0}^y \partial_2 S(\mathbb{T}(x), x) \, dx$. Since the integrand is always positive and is continuous, Θ is a C^1 diffeomorphism. Further, $\Theta'(y) = \partial_2 S(\mathbb{T}(y), y)$. Put $R: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, (t, z) \mapsto \Theta \circ S_t \circ \Theta^{-1}(z)$. Then we have, putting $y = \Theta^{-1}(z)$ and $u = \partial_2 S$,

$$\begin{split} \partial_{2}R(t,z) &= R'_{t}(z) = (\Theta \circ S_{t} \circ \Theta^{-1})'(z) \\ &= \Theta'(S(t,y))S'_{t}(y)(\Theta^{-1})'(z) \\ &= \frac{\Theta'(S(t,y))S'_{t}(y)}{\Theta'(y)} \\ &= \frac{u(\mathfrak{T} \circ S(t,y),S(t,y))u(t,y)}{u(\mathfrak{T}(y),y)} \\ &= \frac{u(\mathfrak{T}(y)-t,S(t,y))u(t,y)}{u(\mathfrak{T}(y),y)} \\ &= \frac{u(\mathfrak{T}(y),y)u(-t,S(t,y))u(t,y)}{u(\mathfrak{T}(y),y)} = 1. \end{split}$$

Thus for some continuous function $\kappa: \mathbb{R} \to \mathbb{R}$, $R(t,z) = z + \kappa(t)$. By the group property $z + \kappa(t_1 + t_2) = z + \kappa(t_2) + \kappa(t_1)$, so that $\kappa: \mathbb{R} \to \mathbb{R}$ is a continuous group homomorphism; whence $\kappa(t) = kt$ for $k = \kappa'(0) \neq 0$, so that R(t,z) = z + kt. Putting $\Xi: \mathbb{R} \to \mathbb{R}$, $z \mapsto \frac{z}{k}$, we have that $\Psi \circ S_{\bullet} \circ \Psi^{-1} = T_{\bullet} = \Xi \circ R_{\bullet} \circ \Xi^{-1} = (\Xi \circ \Theta) \circ S_{\bullet} \circ (\Xi \circ \Theta)^{-1}$, thus

$$T_{\bullet} = \Psi \circ (\Xi \circ \Theta)^{-1} \circ T_{\bullet} \circ (\Xi \circ \Theta) \circ \Psi^{-1}.$$

Put $\Lambda = \Psi \circ (\Xi \circ \Theta)^{-1}$, so that $T_{\bullet} = \Lambda \circ T_{\bullet} \circ \Lambda^{-1}$. Then for any $t, x \in \mathbb{R}$, $\Lambda(x+t) = \Lambda(x) + t$, so that $\Lambda(t) = l + t$ for $l = \Lambda(0)$. Therefore

$$\Psi(y) = \Lambda \circ \Xi \circ \Theta(y) = \Lambda(0) + \Xi \circ \Theta(y) = l + \frac{1}{k} \int_{y_0}^{y} \partial_2 S(\mathfrak{T}(x), x) \, dx$$

and consequently, $\Psi \in \text{Diff}^1(\mathbb{R}).$ In fact, chasing the definitions we have the more explicit formula

$$\Psi(y) = \Psi(y_0) + \frac{1}{\partial_2 S(0, y_0) \, \partial_1 S(0, y_0)} \int_{y_0}^{y} \partial_2 S(-\Psi(x) + \Psi(y_0), x) \, dx.$$

┙

Applying the above lemma with T as the translation action on $\mathcal{U}_x(A^1)$ and with S as $\hbar^{\alpha}: \mathbb{R} \times \tau^{\alpha} \leadsto \tau^{\alpha}$, we have that $\Phi \in \operatorname{Diff}^1(\tau^{\sigma}; \tau^{\alpha})$, that is, the conjugacy Φ is C^1 along the global unstable manifolds of A^1 . An analogous argument shows that Φ is C^1 along the global stable manifolds of A^1 . Since, as mentioned in Rem.3 above, the C^1 manifold structure of \mathbb{T}^2 is determined up to C^1 diffeomorphism by the pair of stable and unstable foliations of A^1 , we have that $\Phi \in \operatorname{Diff}^1(\mathbb{T}^2)$.

References

- [Ano67] D. V. Anosov, *Tangential fields of transversal foliations in Y-systems*, Mat. Zametki **2** (1967), 539–548, This article has appeared in English translation [Math. Notes 2 (1967), 818–823]. MR 242190 6
- [Ano69] ______, *Geodesic flows on closed Riemann manifolds with negative curvature*, Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder, American Mathematical Society, Providence, R.I., 1969. MR 0242194 2, 4, 6, 9
- [AW70] Roy L. Adler and Benjamin Weiss, *Similarity of automorphisms of the torus*, Memoirs of the American Mathematical Society, vol. No. 98, American Mathematical Society, Providence, RI, 1970. MR 257315 2, 5
- [Bow75] Rufus Bowen, *A horseshoe with positive measure*, Invent. Math. **29** (1975), no. 3, 203–204. MR 380890 **1**, **3**
- [Bow75] _____, *Some systems with unique equilibrium states*, Math. Systems Theory **8** (1974/75), no. 3, 193–202. MR 399413 **2**, **6**
- [BV06] Luis Barreira and Claudia Valls, *Existence of stable manifolds for nonuni- formly hyperbolic C*¹ *dynamics*, Discrete Contin. Dyn. Syst. **16** (2006), no. 2, 307–327. MR 2226482 1, 3
- [Caw92] Elise E. Cawley, The Teichmüller space of the standard action of $SL(2,\mathbb{Z})$ on \mathbb{T}^2 is trivial, Internat. Math. Res. Notices (1992), no. 7, 135–141. MR 1174618 3, 4
- [Caw93] _____, *The Teichmüller space of an Anosov diffeomorphism of T*², Invent. Math. **112** (1993), no. 2, 351–376. MR 1213107 **1**, **2**, **4**, **5**, **6**
- [CCE17] Eleonora Catsigeras, Marcelo Cerminara, and Heber Enrich, *Weak pseudo-physical measures and Pesin's entropy formula for Anosov C*¹ *diffeomorphisms*, Dynamical systems, ergodic theory, and probability: in memory of Kolya Chernov, Contemp. Math., vol. 698, Amer. Math. Soc., Providence, RI, 2017, pp. 69–89. MR 3716086 1, 3
- [dlL87] R. de la Llave, *Invariants for smooth conjugacy of hyperbolic dynamical systems. II*, Comm. Math. Phys. **109** (1987), no. 3, 369–378. MR 882805 **1**, **4**, **10**
- [Fra70] John Franks, *Anosov diffeomorphisms*, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 61–93. MR 0271990 8

- [GHS08] Alexander Gorodnik, Theron Hitchman, and Ralf Spatzier, *Regularity* of conjugacies of algebraic actions of Zariski-dense groups, J. Mod. Dyn. **2** (2008), no. 3, 509–540. MR 2417484 **2**, **4**
- [GS92] Frederick P. Gardiner and Dennis P. Sullivan, *Symmetric structures on a closed curve*, Amer. J. Math. **114** (1992), no. 4, 683–736. MR 1175689 **2**, 6
- [GS94] Frederick P. Gardiner and Dennis Sullivan, *Lacunary series as quadratic differentials in conformal dynamics*, The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992), Contemp. Math., vol. 169, Amer. Math. Soc., Providence, RI, 1994, pp. 307–330. MR 1292907 2, 6
- [Hir01] Koichi Hiraide, A simple proof of the Franks-Newhouse theorem on codimension-one Anosov diffeomorphisms, Ergodic Theory Dynam. Systems **21** (2001), no. 3, 801–806. MR 1836432 9
- [Hit03] Theron James Hitchman, *Rigidity theorems for large dynamical systems with hyperbolic behavior*, ProQuest LLC, Ann Arbor, MI, 2003, Thesis (Ph.D.)–University of Michigan. MR 2704807 2, 4
- [HKLZ91] Steven Hurder, Anatole Katok, Jim Lewis, and Robert J. Zimmer, Rigidity for cartan actions of higher rank lattices, U.I.C Preprint, 1991, http://homepages.math.uic.edu/~hurder/papers/37manuscript.pdf. 1, 4
- [Hur92] Steven Hurder, *Rigidity for Anosov actions of higher rank lattices*, Ann. of Math. (2) **135** (1992), no. 2, 361–410. MR 1154597 **1**, 4
- [Kat72] A. B. Katok, *Dynamical systems with hyperbolic structure*, Ninth Mathematical Summer School (Kaciveli, 1971) (Russian), AMS, 1972, Three papers on smooth dynamical systems, pp. 125–211. MR 0377991 8
- [KH95] Anatole Katok and Boris Hasselblatt, *Introduction to the modern theory of dynamical systems*, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995, With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374 8
- [KL91] A. Katok and J. Lewis, Local rigidity for certain groups of toral automorphisms, Israel J. Math. **75** (1991), no. 2-3, 203–241. MR 1164591 **1**, 4
- [LS99] Douglas Lind and Klaus Schmidt, *Homoclinic points of algebraic* **Z**^d-actions, J. Amer. Math. Soc. **12** (1999), no. 4, 953–980. MR 1678035 8
- [MM87a] J. M. Marco and R. Moriyón, *Invariants for smooth conjugacy of hyperbolic dynamical systems. I,* Comm. Math. Phys. **109** (1987), no. 4, 681–689. MR 885566 1, 4

- [MM87b] José Manuel Marco and Roberto Moriyón, *Invariants for smooth conjugacy of hyperbolic dynamical systems. III*, Comm. Math. Phys. **112** (1987), no. 2, 317–333. MR 905170 **1**, 4
- [Mn87] Ricardo Mañé, *Ergodic theory and differentiable dynamics*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987, Translated from the Portuguese by Silvio Levy. MR 889254 9, 10
- [MS98] Curtis T. McMullen and Dennis P. Sullivan, Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system, Adv. Math. 135 (1998), no. 2, 351–395. MR 1620850 5
- [New70] S. E. Newhouse, On codimension one Anosov diffeomorphisms, Amer. J. Math. **92** (1970), 761–770. MR 277004 8
- [PPR75] Jacob Palis, Charles Pugh, and R. Clark Robinson, *Nondifferentiability of invariant foliations*, Dynamical systems—Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), Lecture Notes in Math., vol. Vol. 468, Springer, Berlin-New York, 1975, pp. 234–240. MR 650664 1, 3
- [PR02] A. A. Pinto and D. A. Rand, Smoothness of holonomies for codimension 1 hyperbolic dynamics, Bull. London Math. Soc. **34** (2002), no. 3, 341–352. MR 1887706 10
- [PRF09] Alberto A. Pinto, David A. Rand, and Flávio Ferreira, *Fine structures of hyperbolic diffeomorphisms*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2009, With a preface by Jacob Palis and Enrique R. Pujals. MR 2464147 10
- [PSW97] Charles Pugh, Michael Shub, and Amie Wilkinson, *Hölder foliations*, Duke Math. J. **86** (1997), no. 3, 517–546. MR 1432307 10
- [Pug84] Charles C. Pugh, *The C*^{1+ α} hypothesis in Pesin theory, Inst. Hautes Études Sci. Publ. Math. (1984), no. 59, 143–161. MR 743817 1, 3
- [RY80] Clark Robinson and Lai Sang Young, *Nonabsolutely continuous foliations* for an Anosov diffeomorphism, Invent. Math. **61** (1980), no. 2, 159–176. MR 590160 1, 3
- [Wal70] Peter Walters, *Anosov diffeomorphisms are topologically stable*, Topology **9** (1970), 71–78. MR 254862 **2**, **4**