

cisco

Couche Réseau IP

Présentation des réseaux V7.0 (ITN)

Module 4: Rubriques

Qu'est-ce que je vais apprendre dans ce module?

Rubrique	Objectif du rubrique
Caractéristiques de la couche réseau	Expliquer comment la couche réseau utilise les protocoles IP pour des communications fiables.
Entête Paquet IPV4	Décrire les principales informations de l'entête IPV4 et leur rôle
PaquetIPV4:connexion	Décrire la connexion entre 2 périphériques, sur le réseau local ou sur un réseau distant
Routage des hôtes	Expliquer de quelle manière les périphériques réseau utilisent les tables de routage pour diriger les paquets.
Dépannage des hôtes	Utiliser diverses méthodes pour tracer une route entre deux périphériques

Caractéristiques de la couche réseau

Caractéristiques de l'IP

IP est conçu pour avoir de faibles frais généraux et peut être décrit comme :

- Sans connexion
- Acheminement au mieux
- Indépendant vis-à-vis des supports

Caractéristiques du protocole IP

IP – Sans connexion (8.1.4)

- Le protocole IP est un protocole connexion directe entre les deux extrémités:
- Comparable à l'envoi d'une lettre par la poste.
- Livraison sans preuve de réception, au mieux du transfert.
- Cette fonctionnalité contribue à la faible surcharge du protocole IP. Les transferts sont plus performants.

cisco

Caractéristiques de la couche réseau

Acheminement au mieux (8.1.5)

L'IP assure un acheminement « au mieux »

- Le parcours tracé est le plus rapide
 - Si le parcours est en panne, un chemin alternatif est utilisé, s'il existe!
 - DONC IP ne garantit pas la livraison du paquet, ni le délai de livraison

 IP réduit tous les mécanismes qui pourraient ralentir l'ensemble du réseau

Caractéristiques du protocole IP

cisco

Indépendance vis-à-vis des supports

- Tous les médias possibles participent à la distribution:
 - câbles en cuivre, fibres optiques, supports sans fil, satellites parfois.
- Le réseau adapte le format de la transmission en fonction du type de connecteur entre les périphériques
 - Les signaux peuvent être électriques, optiques, ondulatoires, etc (un autre module explique le changement de signaux)

8.2 Paquet IPv4

Paquet IPv4

En-tête de paquet IPv4

Pour réaliser sa fonction de transport, IPv4 a besoin de moyens de contrôle.

L' entête du protocole est ce moyen. . .

- qui garantit que le paquet est envoyé vers la meilleure destination
- que le paquet reste intègre (sans erreur) à chaque étape du transport
 - Un algorithme est mis en œuvre pour cela
- que le paquet ne tourne pas à l'infini sur le réseau
- L'entête contient 20 octets d'informations

Rôle de la couche Réseau

- Transporter le message à destination le plus rapidement possible.
 - Le message peut être une requête web, un courriel, une conference video, etc
 - Pour que le message se rende, l'émetteur (la source) construit une trame. C'est l'envelope.
 - La « Trame» peut être imaginée comme un convoi qui contient les informations de livraison et le message
 - La partie « Données » c'est le message, comme une requête web d'un PC
 - L'entête IP contient les adresses IP source et IP de destination
 - L'adresse IP « de destinaiton» est la clé utilisée pour diriger le message à travers tous les points de contacts du réseau jusqu'à une possible destination!

cisco

Paquet IPv4

En-tête de paquet IPv4 (8.2.2)

- Un en-tête de paquet IPv4 se compose des champs contenant des nombres binaires.
 Ces numéros identifient les différents paramètres du paquet IP examinés par le processus de couche 3.
- Champs importants pour nous:
- Version du protocole: chiffre 4 ou chiffre 6
- Time-to-live (durée de vie, TTL): limite la durée de vie d'un paquet – diminue d'un point à chaque routeur pendant la transmission.
- Protocole suivant: identifier le protocole de niveau suivant (souvent TCP ou UDP).
- Adresse IPv4 source : adresse source du paquet.
- Adresse IPv4 destination : adresse de destination.

Exemple d'entête IPV4

Image tirée de l'analyseur de réseau WireShark

8.4 Méthode de routage des hôtes

Méthode de routage des hôtes Diriger les paquets (8.4.1)

- Le périphérique source, exemple un PC, transmet le paquet sur son câble réseau. Le paquet peut prendre 3 parcours différents.
 - 1. Les deux périphériques sont branchés dos-à-dos, sans autre équipement intermédiaire
 - 2. Destinataire sur le même réseau que la source: le paquet rejoint la destination en passant par le commutateur
 - 3. Destinataire sur un réseau différent de la source: le paquet est envoyé au routeur
 - Le routeur, c'est le « commissionnaire ». Il a la responsabilité d'envoyer le paquet vers la destination.

Méthode de routage par un hôte

.1 1.1 1. CISCO

Décisions relatives aux transmissions (1/3) hôte lui-même (8.4.1)

- PC LUI-MÊME :
- Ping de l'adresse réseau:
- signifie que la carte est bien configurée
- Ping de l'adresse 127.0.0.1
 - Pour tester le fonctionnement de la carte réseau Éthernet
 - appelé l'interface de bouclage.

Administrateur : Invite de commandes

Envoi d'une requête 'Ping' 127.0.0.1 avec 32 octet Réponse de 127.0.0.1 : octets=32 temps<1ms TTL=128 Réponse de 127.0.0.1 : octets=32 temps<1ms TTL=128

Méthode de routage par un hôte

Décisions relatives aux transmissions: réseau local (8.4.1)

- Un hôte local :
- sur le même réseau local que l'hôte émetteur. Les 3 premiers octets sont identiques.
- Adresse PC1:192.168.10.10
- Adresse PC2:192.168.10.15
- Réseau local ici: 192.168.10.XXX
- La valeur des « XXX » est déterminée par le masque de sous-réseau (à voir plus tard.....)

Des hôtes sur un même réseau, n'ont pas besoin de routeur

```
Administrateur: Invite de commandes

C:\>ping 192.168.1.9

Envoi d'une requête 'Ping' 192.168.1.9 avec 32 octets
Réponse de 192.168.1.9 : octets=32 temps=1 ms TTL=255
```

Méthode de routage par un hôte

CISCO

Décisions relatives aux transmissions: réseau distant (8.4.2)

• Un hôte distant : il s'agit d'un hôte sur un réseau différent du réseau de l'hôte.

• Adresse PC1 : 192.168.10.10

Adresse hôte distant: 72.163.4.185

 PARCE l'adresse de destination n'est PAS sur le même réseau, PC1 envoie le paquet à sa passerelle par défaut (192.168.10.1)

```
Administrateur: Invite de commandes

C:\>ping 72.163.4.185

Envoi d'une requête 'Ping' 72.163.4.185 avec 32 octets
Réponse de 72.163.4.185 : octets=32 temps=80 ms TTL=246
Réponse de 72.163.4.185 : octets=32 temps=76 ms TTL=246
```

Méthode de routage d'un hôte

Utilisation de la passerelle par défaut (8.4.2;8.4.3)

La configuration des périphériques doit inclure la passerelle Par défaut.

Si la valeur est absente ou incorrecte, le transfert de paquet ne pourra pas quitter le réseau local.

© 2016 Cisco et/ou ses filiales. Tous droits réservés. Information

8.4 Routage et Dépannage des hôtes

Routage et dépannage d'un hôte (8.4.2)

Les commandes « ping » et «tracert» servent à tester et dépanner les transferts

La commande **ping** confirme un parcours réussi

- vérifier la configuration du poste
- Rejoindre la passerelle par défaut: ping adressePasserelle
- Rejoindre un autre périphérique du réseau local
- 4. Rejoindre un périphérique distant. Si la commande ping ne réussit pas, la commande **route** peut servir

Ne passez une étape sans la corriger

C:\>ping 172.16.1.254

La méthode de routage des hôtes

Tables de routage des hôtes

Active Routes:				
Network Destination	Netmask	Gateway	Interface	Metric
0.0.0.0	0.0.0.0	192.168.10.1	192.168.10.10	25
127.0.0.0	255.0.0.0	On-link	127.0.0.1	306
127.0.0.1	255.255.255.255	On-link	127.0.0.1	306
127.255.255.255	255.255.255.255	On-link	127.0.0.1	306
192.168.10.0	255.255.255.0	On-link	192.168.10.10	281
192.168.10.10	255.255.255.255	On-link	192.168.10.10	281
192.168.10.255	255.255.255.255	On-link	192.168.10.10	281
224.0.0.0	240.0.0.0	On-link	127.0.0.1	386
224.0.0.0	240.0.0.0	On-link	192.168.10.10	281
255.255.255.255	255.255.255.255	On-link	127.0.0.1	306
255.255.255.255	255.255.255.255	On-link	192.168.10.10	281

- table de routage sur PC :
- C:/> netstat -r
- Trois sections s'afficheront :
- Interface List (liste des interfaces):
 répertorie les adresses MAC et les
 numéros d'interface attribués aux
 interfaces réseau sur l'hôte.
- C:/> route print -4
- Table de routage IPv4 : répertorie toutes les routes IPv4 connues.

Routage et dépannage d'un hôte Dépannage

La commande **tracert** de Windows (**traceroute** en Linux) liste tous les parcours intermédiaires entre la source et la destination

- 1. Vérifier la documentation de la topologie du réseau
- 2. Lancer la commande tracert adresseDestination

Tracert *URL* est une option disponible

La liste des parcours intermédiaires s'affiche

- Si la destination ne peut pas être atteinte, il faut arrêter la recherche
- 4. Le schéma de la topologie facilite le repérage du point de rupture

Options de dépannage

 L' option <u>/?</u> des commandes affiche les possibilités offertes pour faciliter le dépannage

```
C: \> ping /?
Usage: ping [-t] [-a] [-n count] [-l size] [-f] [-i TTL] [-v TOS]
            [-r count] [-s count] [[-j host-list] | [-k host-list]]
            [-w timeout] [-R] [-S srcaddr] [-4] [-6] target_name
Options:
                   Ping the specified host until stopped.
                   To see statistics and continue - type Control-Break;
                   To stop - type Control-C.
                   Resolve addresses to hostnames.
    -n count
                   Number of echo requests to send.
    -l size
                   Send buffer size.
                   Set Don't Fragment flag in packet (IPv4-only).
    -i TTL
                   Time To Live.
    -v Tos
                   Type Of Service (IPv4-only. This setting has been deprecated
                   and has no effect on the type of service field in the IP Header).
                   Record route for count hops (IPv4-only).
    -r count
    -s count
                   Timestamp for count hops (IPv4-only).
    -j host-list
                   Loose source route along host-list (IPv4-only).
                  Strict source route along host-list (IPv4-only).
                   Timeout in milliseconds to wait for each reply.
    -R
                   Use routing header to test reverse route also (IPv6-only).
    -S srcaddr
                   Source address to use.
    -4
                   Force using IPv4.
                   Force using IPv6.
```

cisco

8.6 Module pratique et questionnaire

Module Pratique et Questionnaire

Qu'est-ce que j'ai appris dans ce module?

- IP est un protocole sans connexion, l'acheminement des paquets se fait au mieux et indépendant vis-àvis des supports.
- IP ne garantie pas la livraison des paquets.
- L'en-tête de paquet IPv4 est constitué de champs contenant des informations importantes sur le paquet.
- Version; TTL; adresses IP source et IP destination, autres
- Au moment de lancer un transfert, le périphérique d'origine détermine si
 - La destination est sur le même réseau local que lui
- ou la destination est sur un réseau distant.
- Pour rejoindre un réseau distant, une passerelle par défaut doit être configurée sur le poste
- Le routeur, qui fait partie du réseau local, possède une adresse IP qui est cette passerelle par défaut. Le routeur sera utilisé comme un « commissionnaire » vers d'autres réseaux.
- Les commandes ping et tracert (ou traceroute) servent à tester et faciliter le dépannage des parcours.

Network Layer

New Terms and Commands

- Packet
- Internet Protocol Version 4 (IPv4)
- Internet Protocol Version 6 (IPv6)
- IP Header

- Best effort delivery
- Media independent
- Connectionless
- Unreliable
- Version
- Time-to-Live (TTL)

- Identification, Flags,
 Fragment Offset fields
- Network Address
- Local host
- Remote host
- Default Gateway

Network Layer

New Terms and Commands

- ping destination
- tracert destination
- IPv4 Route Table

