

IIC2223 — Teoría de autómatas y lenguajes formales — 2' 2020

TAREA 6

Publicación: Viernes 13 de noviembre.

Entrega: Jueves 19 de noviembre hasta las 23:59 horas.

Indicaciones

• Debe entregar una solución para cada pregunta (sin importar si esta en blanco).

- Cada solución debe estar escrita en LATEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.
- Responda cada pregunta en una hoja separada y ponga su nombre en cada hoja de respuesta.
- Debe entregar una copia digital por el buzón del curso, antes de la fecha/hora de entrega.
- Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.
- La tarea es individual.

Pregunta 1

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto y $\mathcal{P}[\mathcal{G}]$ el IPDA asociado a \mathcal{G} . Demuestre que para todo $\rho = [X_1 \to \alpha_1.\beta_1] \dots [X_n \to \alpha_n.\beta_n]$ y para todo $v \in \Sigma^*$ tal que:

$$(\rho, v) \stackrel{*}{\vdash}_{\mathcal{P}[\mathcal{G}]} ([S' \to S.], \epsilon)$$

entonces $S \stackrel{*}{\underset{\rm rm}{\Rightarrow}} \alpha_n \dots \alpha_1 v$.

Pregunta 2

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto. Entregue un algoritmo tal que recibe como input una variable $X \in V$, una palabra $w \in \Sigma^*$ y k > 0 y entregue TRUE si, y solo si, $w \in \mathbf{first}_k(X)$. Su algoritmo debe tomar tiempo polinomial en el tamaño de \mathcal{G} , $w \in \mathcal{G}$, $w \in \mathcal{G}$.

Para simplificar su algoritmo, puede asumir que \mathcal{G} esta en formal normal de Chomsky. No es necesario que demuestre la correctitud de su algoritmo, pero si debe explicar detalladamente por qué funciona.

Evaluación y puntajes de la tarea

Cada item de cada pregunta se evaluará con un puntaje de:

- 0 (respuesta incorrecta),
- 3 (con errores menores),
- 4 (correcta).

Todas las preguntas tienen la misma ponderación en la nota final.