Variables aléatoires

Dans ce chapitre, nous améliorons notre formalisme pour décrire des événements probabilistes à l'aide des variables aléatoires et nous introduisons, l'espérance, l'un des outils les plus importants de toute la théorie des probabilités.

On se restreint à des expériences aléatoires sur un univers Ω fini.

Notions de variables aléatoires

1.1 Variable aléatoire réelle

Définition

Une variable aléatoire réelle X est une fonction définie sur Ω , à valeurs dans \mathbb{R} , de telle sorte que tout élément de Ω est associé à un unique nombre réel.

- ▶ On lance une pièce de monnaie (équilibrée ou non) 10 fois à la suite et on note X le nombre de piles. X est une variable aléatoire réelle.
- ▶ Un professeur tire au sort un élève dans une classe de 32 élèves où chaque élève dispose de son propre numéro compris entre 1 et 32.

On note X le numéro de l'élève tiré au sort : c'est une variable aléatoire réelle.

- Remarques > Pour une même expérience aléatoire, on peut définir différentes variables aléatoires. On aurait pu définir Y le nombre de faces dans le premier exemple donné précédemment. Ainsi, on aurait eu X + Y = 10.
- ▶ On peut définir des événements à partir d'une variable aléatoire X comme $\{X = a\}$ correspondant aux issues telles que X prenne la valeur a ou $\{X > a\}$ correspondant aux issues telles que X prenne des valeurs strictement supérieures à a.
- ▶ La probabilité de ces événements sera notée $\mathbb{P}(X = a)$ et $\mathbb{P}(X > a)$.

1.2 Loi de probabilité

Définition

Donner la **loi de probabilité** d'une variable aléatoire X, c'est donner la probabilités de tous les événements $\{X = a\}$ définis par X.

On la présente usuellement sous forme de tableau où x_i sont les valeurs prises par X et p_i les probabilités $\mathbb{P}(X = x_i)$.

x_i	x_1	x_2	•••	x_n
p_i	$\mathbb{P}(X=x_1)$	$\mathbb{P}(X=x_2)$	•••	$\mathbb{P}(X=x_n)$

Une station de lavage automobile a constaté que, parmi ses clients :

- ▶ 90 % lavent la carrosserie de leur voiture :
- ▶ 30 % nettoient l'intérieur de leur voiture ;
- ▶ 20 % lavent la carrosserie et nettoient l'intérieur de leur voiture.

Le coût du lavage de la carrosserie est de 5€, celui du nettoyage de l'intérieur est de 2€. On note X la variable aléatoire modélisant la dépense, en euro, d'un client de la station choisi au hasard.

x_i	2	5	7
p_i	$\mathbb{P}(X=2)$	$\mathbb{P}(X=5)$	$\mathbb{P}(X=7)$

On sait déja que $\mathbb{P}(X=7)=0.2$. De plus, il y a 10 % des clients qui nettoient l'intérieur sans laver la carrosserie, c'est-à-dire, $\mathbb{P}(X=2)=0.1$. Enfin, 70 % des clients lavent la carrosserie sans nettoyer l'intérieur donc $\mathbb{P}(X=5)=0.7$.

x_i	2	5	7
p_i	0,1	0,7	0,2

Propriété

La somme des probabilités p_i est égale à 1.

Autrement dit, $\sum_{i=0}^{n} \mathbb{P}(X = x_i) = 1$

Démonstration. Les évènements $\{X = x_i\}$ pour $1 \le i \le n$ forment une partition de l'univers.

Exemple On vérifie bien dans l'exemple de la laverie que 0.1 + 0.7 + 0.2 = 1.

Espérance, variance et écart-type

Définition | **Espérance**

L'espérance de la variable aléatoire X est le nombre réel $\mathbb{E}[X]$ défini par :

$$\mathbb{E}[X] = \sum_{i=0}^{n} \mathbb{P}(X = x_i) \times x_i = p_1 x_1 + p_2 x_2 + \dots + p_n x_n.$$

Remarque $\mathbb{E}[X]$ peut être vu comme une « **moyenne probabiliste** ». En effet, on peut définir la moyenne d'une série statistique par la formule $\overline{x} = \sum_{i=0}^{n} f_i x_i$ où les f_i sont les fréquences.

Définitions | Variance et écart-type

La variance de la variable aléatoire X est le réel positif Var(X) défini par :

$$Var(X) = \sum_{i=0}^{n} p_i (x_i - \mathbb{E}[X])^2 = p_1 (x_1 - \mathbb{E}[X])^2 + \dots + p_n (x_n - \mathbb{E}[X])^2.$$

L'écart-type de X, $\sigma(X)$ est la racine carrée de la variance de X, c'est-à-dire :

$$\sigma(X) = \sqrt{\operatorname{Var}(X)}$$

Remarque Ici, le parallèle avec les statistiques est plus évident. Les deux indicateurs variance et écart-type mesurent la **dispersion** autour de l'espérance.

Exemple Revenons à l'exemple de la laverie et calculons $\mathbb{E}[X]$, Var(X) et $\sigma(X)$ à partir de la loi de probabilité.

x_i	2	5	7
p_i	0,1	0,7	0,2

On a:

$$\mathbb{E}[X] = 0.1 \times 2 + 0.7 \times 5 + 0.2 \times 7 = 5.1.$$

Ainsi, les clients dépensent en moyenne 5€10. Enfin,

$$Var(X) = 0.1 \times (2 - 5.1)^2 + 0.7 \times (5 - 5.1)^2 + 0.2 \times (7 - 5.1)^2 = 1,69$$

et

$$\sigma(X) = \sqrt{Var(X)} = \sqrt{1,69} = 1,3.$$

On a une dispersion moyenne de 1€ autour de l'espérance.

Remarque Soient *a* et *b* deux réels. On peut définir Y=aX+b comme étant la variable aléatoire vérifiant la loi de probabilité suivante.

	y_i	$ax_1 + b$	$ax_2 + b$	•••	$ax_n + b$
$\mathbb{P}(Y)$	$y = y_i$	p_1	p_2	•••	p_n

Théorème | Linéarité de l'espérance

Soient a et b deux réels. On a :

$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$

et

$$Var(aX + b) = a^2 Var(X).$$

Exemple Une station de lavage concurrente propose une tarification à moitié prix (lavage à 2€50 et nettoyage à 1€) mais demande 2€ pour entrer dans la station. On considère que les habitudes des clients sont les mêmes que pour la station précédente.

On note Y la variable aléatoire modélisant la dépense d'un client tiré au sort dans cette deuxième station de lavage.

Ainsi, $Y = \frac{1}{2}X + 2$ de loi de probabilité suivante.

y_i	3	4,5	6,5
p_i	0,1	0,7	0,2

$$\mathbb{E}[Y] = \frac{1}{2}\mathbb{E}[X] + 2 = \frac{1}{2} \times 5,1 + 2 = 4,55$$

Les clients dépensent donc en moyenne moins dans cette deuxième station.

Enfin,
$$Var(Y) = \left(\frac{1}{2}\right)^2 Var(X) = \frac{1}{4} \times 1,69 = 0,4225 \text{ donc } \sigma(Y) = \sqrt{0,4225} = 0,65.$$

La dispersion est plus faible que pour la première station.