Midterm 1 Version 3 Solution

March 19, 2020

Question 1

a. Since $S_1 = \{ab, ba, aab, bba, baa, \dots\}$ and $S_2 = \{aaa, aab, aba, baa, abb, bab, bba\}$, $S_2 \setminus S_1 = \{aaa, aab, aba, bab\}$

Correct Solution:

Since $S_1 = \{ab, ba, aab, abb, bba, baa, \dots\}$ and $S_2 = \{aaa, aab, aba, baa, abb, bab, bba, bbb\}$, $S_2 \setminus S_1 = \{aaa, aba, bab, bbb\}$

p	q	r	$\neg r$	$p \Rightarrow q$	$(p \Rightarrow q) \Leftrightarrow \neg r$
Т	Т	Т	F	Т	F
Т	Т	F	Т	Т	Т
Т	F	Т	F	F	T
\overline{F}	Т	Т	F	Т	F
Т	F	F	Т	F	F
\overline{F}	Т	F	Т	Т	T
\overline{F}	F	Т	F	Т	F
\overline{F}	F	F	Т	Т	Т

c. Let $x = \underline{\hspace{1cm}}$, and $y \in \mathbb{N}$.

We will prove that P(x) is true and Q(x,y) or Q(x,y+1) is false.

Correct Solution:

Negation: $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, P(x) \land (\neg Q(x, y) \land \neg Q(x, y + 1))$

Let $x = \underline{\hspace{1cm}}$ and $y \in \mathbb{N}$.

We will prove that P(x) is true, and both Q(x, y) and Q(x, y+1) are false.

Question 2

- a. $\forall x \in T, Canadian(x) \land Star(x)$
- b. $\forall x \in T, Canadian(x) \Rightarrow \forall y \in T, \neg Canadian(y) \land Defeated(x, y)$
- c. $\exists x \in T, Canadian(x) \land Star(x) \Rightarrow \forall y \in T, \exists z \in T, y \neq z \land Canadian(y) \land Defeated(y, z)$
- d. $\exists x \in T, Canadian(x) \land Star(x) \land (\forall y \in T, x \neq y \land Canadian(y) \land \neg Star(y))$

Question 3

Question 4