Lineare Algebra Abschlussklausur

Name:	The Control of the Charles of the Control of the Co
Matrikelnummer:	material state of the state of
	u Düskesite diseas Dlattes annual annu Himmeire Mit Ilman Hatanakuift
Bitte beachten Sie die unten und auf de bestätigen Sie deren Kenntnisnahme.	er Rückseite dieses Blattes angegebenen Hinweise. Mit Ihrer Unterschrift

Für die Aufgaben 1 bis 5 sind keine Begründungen nötig. Für Begründungen und Ansätze gibt es keine Punkte.

Bei den Aufgaben 6 bis 10 sind sämtliche Schritte ausreichend zu begründen. Beginnen Sie die Bearbeitung unterhalb des Aufgabentexts und setzen Sie diese bei Bedarf auf der Rückseite und den Folgeseiten fort. Das Vorhandensein einer Folgeseite bedeutet nicht zwingend, dass eine solche ausgefüllt werden muß. Am Ende des Klausurbogens befinden sich weitere Blankoseiten.

Aufgabe	max. Punktzahl	erreichte Punktzahl
- 1	4	e al atta balela elegante. And kademaranana
2	4	A new manual contraction was
3	3	Manager & Marses etc. Abbut &
4	9	i propinsi na prop
5	5	
6	11	
7	13	
8	12	
9	8	
10	6	
Σ	75	
Bonus	520	
Gesamt	100	
Note	1.0	

Hinweise zur Durchführung der Klausur.

- Tragen Sie bitte auf jedes bearbeitete Blatt Ihren Namen in Blockbuchstaben sowie Ihre Matrikelnummer ein. Blätter ohne Namen können nicht korrigiert werden.
- Die Klausur besteht aus 10 Aufgaben auf 20 durchnummerierten Blättern und einem unnummerierten Deckblatt. Bitte prüfen Sie die Vollständigkeit Ihres Exemplars.
- Bitte halten Sie Ihren Studierenausweis und einen Lichtbildausweis zur Kontrolle bereit.
- Bitte schalten Sie Mobilfunkgeräte vor Beginn der Klausur aus und verstauen sie diese in Ihren Taschen.
- Die Bearbeitungszeit der Klausur ist 180 Minuten.
- Es darf nur mit einem blauen oder schwarzen Stift geschrieben werden (auf keinen Fall mit rot, grün oder Bleistift). Es darf kein Tipp-Ex benutzt werden.
- Zur Bearbeitung sind keine Hilfsmittel wie Skripte, Bücher, Notizen, Taschenrechner, etc. erlaubt.
- Die Heftklammern der Klausur dürfen nicht gelöst werden.
- Täuschungsversuche führen zum Nichtbestehen der Klausur.
- Sollte der unterhalb eines Aufgabentextes zur Verfügung stehende Platz (inklusive Rückseiten) nicht zur Bearbeitung ausreichen, verwenden Sie bitte die Blankoseiten am Ende der Klausur und machen Sie bitte einen Vermerk über die Fortsetzung der Aufgabe. Sollte das zur Verfügung gestellte Papier danach nicht ausreichen, melden Sie sich bitte per Handzeichen. Es darf kein eigenes Papier verwendet werden.
- Bei manchen Rechenaufgaben bietet es sich an, eine Probe zu machen.
- Wenn Sie während der Bearbeitungszeit auf Toilette müssen, kommen Sie bitte mit Ihrer Klausur und Ihrem Ausweis zu den Aufsichtspersonen. Es darf stets nur eine Person gleichzeitig die Toilette aufsuchen.
- Bitte reden Sie während der Klausur nicht laut. Bei Unklarheiten geben Sie bitte Handzeichen, eine Aufsichtsperson kommt dann an Ihren Platz.
- Sie dürfen die Bearbeitung Ihrer Klausur vor Ablauf der Bearbeitungszeit beenden und den Hörsaal vorzeitig verlassen mit folgenden Einschränkungen: Bleiben Sie bitte zum einen mindestens 15 Minuten. Zum anderen sollten Sie 15 Minuten vor Ablauf der Bearbeitungszeit bitte bis zum Ende bleiben, um Unruhe zu vermeiden.
- Bitte entsorgen Sie nach der Klausur den eigenen Müll.

Mat	rikelnr.: Name:		Bla	att 1
beg Aus	euzen Sie bei jeder Frage entweder "Ja" oder "Nein" oder nichts an. Sie müssen Ihre gründen. swertung der Aufgaben 1 bis 3: Ein richtiges Kreuz ergibt 1 Punkt, ein falsches Kr ne Angabe zählt 0 Punkte. Die Gesamtpunktzahl pro Aufgabe ist mindestens 0.			
1	Ist $\{A \in \mathbb{R}^{3\times 3} \mid \text{Rang}(A) < 3\}$ ein \mathbb{R} -Untervektorraum von $\mathbb{R}^{3\times 3}$?	□ Ja	□ Nein	
	Ist $\mathbb{Q}^{2\times 2}$ isomorph zum \mathbb{Q} -Vektorraum $\{f \in \mathbb{Q}[t]_5 \mid f(0) = f(1) = 0\}$?	□ Ja	□ Nein	
	Ist $\left\{ \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 + 1 \end{pmatrix} \mid x_1, x_2 \in \mathbb{Z}_2 \right\}$ ein \mathbb{Z}_2 -Vektorraum?	□ Ja	□ Nein	
	Gibt es einen 3-dimensionalen \mathbb{Q} -Vektorraum und einen 3-dimensionalen \mathbb{Z}_5 -Vektorraum, welche isomorph sind?	□ Ja	□ Nein	
		Punkte:		/4
2	Gibt es einen surjektiven \mathbb{Q} -Vektorraumhomomorphismus $f: \mathbb{Q}^{2014} \to \mathbb{Q}^{52}$?	□ Ja	□ Nein	
	Gibt es einen \mathbb{C} -Vektorraumhomomorphismus $f: \mathbb{C}^{3\times 1} \to \mathbb{C}^{2\times 1}$ mit $f(\begin{pmatrix} 0\\1\\0 \end{pmatrix}) = \begin{pmatrix} -i\\i \end{pmatrix}, f(\begin{pmatrix} 1\\0\\1 \end{pmatrix}) = \begin{pmatrix} i\\-i \end{pmatrix}$ und $f(\begin{pmatrix} 1\\1\\1 \end{pmatrix}) = \begin{pmatrix} 0\\0 \end{pmatrix}$?	□ Ja	□ Nein	
	Gibt es einen \mathbb{Z}_3 -Vektorraumepimorphismus $f: \mathbb{Z}_3^5 \to \mathbb{Z}_3^4$ mit $\dim(\operatorname{Kern}(f)) = 2$?	□ Ja	□ Nein	
	Kann $f \circ g$ ein Monomorphismus sein, wenn f ein Homomorphismus, aber kein Monomorphismus und g ein Epimorphismus ist?	□ Ja	□ Nein	
		Punkte	:	/4
3	Es seien $m, n \in \mathbb{N}$, ein Körper K und ein $A \in K^{m \times n}$ gegeben. Sind die folgenden Aussagen stets wahr?			
	Wenn $m = n$ und $K = \mathbb{C}$ gilt, so ist A trigonalisierbar.	□ Ja	□ Nein	
	Der Rang von A und von $-A^T$ sind gleich.	□ Ja	□ Nein	
	Für $n = m$, $K = \mathbb{R}$ und A positiv definit ist $det(A) > 0$.	□ Ja	□ Nein	
		Punkte		/:

(Raum für Notizen)

Bearbeiten Sie die folgenden Rechenaufgaben und schreiben Sie die Ergebnisse in die dafür vorgesehenen Kästchen. Für Begründungen und Ansätze gibt es keine Punkte.

4 Es seien $A \in \mathbb{Z}_2^{3\times 4}$, $b \in \mathbb{Z}_2^{3\times 1}$, $C \in \mathbb{R}^{3\times 2}$, $D \in \mathbb{R}^{3\times 3}$, $E \in \mathbb{Q}^{3\times 4}$ gegeben durch

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}, \, b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \, C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}, \, D = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}, \, E = \begin{pmatrix} 2 & 0 & -4 & 2 \\ 1 & 1 & -2 & 1 \\ 1 & 1 & -2 & 1 \end{pmatrix}.$$

Berechnen Sie die folgenden Ausdrücke, sofern sie existieren; andernfalls schreiben Sie "ex. nicht" ins Antwortfeld.

		· The second of the second of
$L\ddot{o}s(A,b) =$		Basis von $SRaum(E)$:
$b^T A =$		CD =
neZ La la la Lineacoda com	adigness and Little	

toron 80 . A			
$C^{-1} =$	aparigio e Sanchi ggriff	$D^{-1} =$	
1-+(1)		det(D) =	

 $\det(A) = \begin{bmatrix} \det(D) = \begin{bmatrix} \det(D) \end{bmatrix}$ $\operatorname{Rang}(A) = \begin{bmatrix} \det(D) \end{bmatrix}$

Punkte: /9

(Raum für Notizen)

Bearbeiten Sie die folgenden Rechenaufgaben und schreiben Sie die Ergebnisse in die dafür vorgesehenen Kästchen. Für Begründungen und Ansätze gibt es keine Punkte.

5 | Eine Basis $\mathcal{B} = (v_1, v_2, v_3)$ von $\mathbb{R}^{3 \times 1}$ und eine Matrix $A \in \mathbb{R}^{3 \times 3}$ seien gegeben durch

$$\mathcal{B}=(\begin{pmatrix}-4\\2\\1\end{pmatrix},\begin{pmatrix}-3\\2\\1\end{pmatrix},\begin{pmatrix}-9\\2\\2\end{pmatrix}), \qquad A=\begin{pmatrix}1&1&2\\1&2&1\\2&1&6\end{pmatrix}.$$

Bestimmen Sie bzgl. des Skalarprodukts $s_A(x,y) = x^T A y$ eine Orthogonalbasis $C = (w_1, w_2, w_3)$, indem Sie das Gram-Schmidt-Orthogonalisierungsverfahren auf $B = (v_1, v_2, v_3)$ in der durch die Indizes angegebenen Reihenfolge anwenden.

Punkte: /5

6 Es seien $B, C, D, E \in \mathbb{Q}^{2 \times 2}$ gegeben durch

$$B = \begin{pmatrix} 7 & -3 \\ 0 & 0 \end{pmatrix}, C = \begin{pmatrix} 49 & -21 \\ -2 & 0 \end{pmatrix}, D = \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}, E = \begin{pmatrix} -28 & 12 \\ 2 & 3 \end{pmatrix}.$$

Ferner seien $U_1, U_2, U_3 \subseteq \mathbb{Q}^{2 \times 2}$ gegeben durch

$$U_1 = \{ A \in \mathbb{Q}^{2 \times 2} \mid AB = DA^T \}, \quad .$$

$$U_2 = \operatorname{Spann}_{\mathbb{Q}}(B, B + C),$$

$$U_3 = \operatorname{Spann}_{\mathbb{Q}}(D, E).$$

- (a) Zeigen Sie, dass U_1 ein \mathbb{Q} -Untervektorraum von $\mathbb{Q}^{2\times 2}$ ist.
- (b) Bestimmen Sie eine Basis von U_1 .
- (c) Bestimmen Sie eine Basis von $U_2 \cap U_3$.

Punkte: /11

7 Es seien $A \in \mathbb{Z}_3^{3 \times 3}$ und $B = (v_1, v_2, v_3)$ in $\mathbb{Z}_3^{3 \times 1}$ gegeben durch

$$A = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & 2 \end{pmatrix}, \, \mathcal{B} = (\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}).$$

Wie in der Vorlesung bezeichne $f_A \colon \mathbb{Z}_3^{3 \times 1} \to \mathbb{Z}_3^{3 \times 1}, \ x \mapsto Ax$ die Standardinterpretation von A.

- (a) Bestimmen Sie die Darstellungsmatrix $M_{\mathcal{E}}^{\mathcal{E}}(f_A)$ von f_A zur Standardbasis $\mathcal{E}=(e_1,e_2,e_3)$ von $\mathbb{Z}_3^{3\times 1}$.
- (b) Zeigen Sie, dass $\mathcal B$ eine Basis von $\mathbb Z_3^{3\times 1}$ ist
- (c) Bestimmen Sie die Basiswechselmatrix $M_{\mathcal{E}}^{\mathcal{B}}(\mathrm{id}_{\mathbb{Z}_{3}^{3\times 1}})$.
- (d) Berechnen Sie die Inverse von $M_{\mathcal{E}}^{\mathcal{B}}(\mathrm{id}_{\mathbb{Z}_{3}^{3\times 1}})$.
- (e) Berechnen Sie die Darstellungsmatrix $M_B^B(f_A)$ von f_A zur Basis B.
- (f) Bestimmen Sie den Koordinatenvektor $I_{\mathcal{B}}(e_1) = \phi_{\mathcal{B}}^{-1}(e_1)$ von e_1 bzgl. \mathcal{B} .

8 Für $c \in \mathbb{R}$ sei $A_c \in \mathbb{R}^{4 \times 4}$ die Blockmatrix gegeben durch

$$A_c = \begin{pmatrix} -6 & 8 & 0 & 0 \\ -4 & 6 & 0 & 0 \\ -1 & 2 & c & -3 \\ 1 & -1 & 0 & 5 \end{pmatrix}.$$

- (a) Berechnen Sie das charakteristische Polynom von A_c für $c \in \mathbb{R}$ als Produkt von Linearfaktoren.
- (b) Bestimmen Sie die Eigenwerte von A_c für $c \in \mathbb{R}$.
- (c) Berechnen Sie Basen der Eigenräume von A_c für c=3 zu den beiden größten Eigenwerten von A_c
- (d) Für welche $c \in \mathbb{R}$ ist A_c invertierbar? Begründen Sie.

Punkte: /12

- 9 (a) Es seien ein Körper K, ein endlich dimensionaler K-Vektorraum V und ein K-Vektorraumendomorphismus $f \colon V \to V$ gegeben. Zeigen Sie, dass f genau dann surjektiv ist, wenn 0 kein Eigenwert von f ist.
 - (b) Es sei $A \in \mathbb{R}^{4\times 4}$ eine normale Matrix mit charakteristischem Polynom $\chi_A = X^4 3X^3 + 2X^2$ gegeben. Bestimmen Sie den Rang von A.

Punkte: /8

10 Es seien $n \in \mathbb{N}$, ein Körper K und ein $A \in K^{n \times n}$ gegeben. Weiter sei $f \in K[t]$ und λ als Eigenwert von A gegeben. Zeigen Sie, dass dann $f(\lambda)$ ein Eigenwert von f(A) ist.

Punkte: /6