

Explanation by Example

The OptaPlanner way

Daniele Zonca

Principal Software

Engineer

Tommaso Teofili

Principal Software

Engineer

Rui Vieira

Software Engineer

Business Automation

Decision

Automatically processed? (Decision Table)

F	Calculate Trip risk (number)	Image score (number)	Automatically processed? (boolean)	Description
1	>0.8	2	false	Trip risk is too high
2	-	<0.7	false	Passport image is too different
3	-	25	true	Fine to proceed

Mathematical Optimization

OptaPlanner 🥃

Next-gen Cloud-Native Business Automation

Cloud-Native Business Automation for building intelligent applications, backed by battle-tested capabilities

QUARKUS

Cloud-Native Business Automation

Knowledge as a Service

Workflow and Digital Decisioning

Mathematical Optimization

Knowledge as a Service

TrustyAl

Offer value-added services for Business Automation.

- Runtime Monitoring Service
 - dashboard for business runtime monitoring
- Tracing and Accountability Service
 - extract, collect and publish metadata for auditing and compliance
- Explanation Service
 - XAI algorithms to enrich model execution information

Runtime Ecosystem

OpenShift

TrustyAl Services

OpenShift

DevOps Monitoring

Business Monitoring

Use case: Credit card approval

"As a case worker (CW) I want to be able to **explain** to end user (EU) **why** that credit card request was rejected or accepted."

"As a case worker (CW) I want to provide information to my end user (EU) about what is needed to get it accepted."

Trusty UI (*)

Trusty UI (*)

Explainability - Goals

- Establish **trust** in automated business processes
- Transparent decision making when black box models are involved
 - More fine grained understanding of specific predictions
 - Coarse grained model behaviour understanding
- Accountability
 - Track changes in model behaviour across versions

My black box model is...

Transparent

A model is considered to be transparent if by itself the model makes a human understand how it works without any need for explaining its internal structure or algorithms

Explainable

A model is explainable if it provides an interface with humans that is both accurate with respect the decision taken and comprehensible to humans

Trustworthy

A model is considered trustworthy when humans are confident that the model will act as intended when facing a given problem

The right explanation to the right stakeholder

Case worker

- Good domain knowledge, case by case
- No technical knowledge

Compliance worker

- Good high level domain knowledge
- No technical knowledge

Data scientist

- No/limited domain knowledge
- Good technical knowledge

The right explanation to the right stakeholder

Case worker

- Needs explanations on a case by case basis to support end users
 - Local explanations

• Compliance worker

- Needs explanation from a high level perspective (regulations, business objectives, etc.)
 - Global explanations

Data scientist

- Needs explanations to understand model behavior and debug
 - Global and local explanations

Case worker

Case worker - Why

Need

 Which inputs does the model give more importance to decide whether to grant the credit card or not?

• Explanation

- Saliency explanations give feature importance scores for a single prediction
 - The value of children plays a positive role for granting the credit card
 - The value of age *plays* a **negative** role for granting the credit card

LIME

(a) Husky classified as wolf

(b) Explanation

 Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Why should I trust you?: Explaining the predictions of any classifier." Proceedings of the 22nd ACM SIGKDD, 2016

LIME (*)

- LIME tests what happens to the prediction when you provide perturbed versions of the input to the black box model
- Trains an interpretable model (e.g. a linear classifier) to separate perturbed data points by label
- The weights of the linear model (one for each feature) are used as feature importance scores

Case worker

Case worker - How

Need

 \circ What should the end user *change* to get the credit card (similar input, flipped prediction)?

Explanation

- Exemplar explanations provide explanations for single predictions by means of examples (in the input space)
 - Counterfactual explanations provide examples that
 - Have a desired prediction, according to the black box model
 - Are as close as possible to the original input
 - How should the user change its inputs in order to get a formerly rejected credit card request granted?

Counterfactual explanations

- Usually work by **minimizing** two cost functions
 - Input cost
 - representing the distance between the original input and a new input
 - Target cost
 - representing the distance between the desired output and the output generated by querying the model with the new input
- Huge search space
 - High dimensional inputs
 - Numerical features
 - Out of distribution problems
- Hard constraints make the problem worse
 - Some things cannot be (easily) changed by the end user

Demo

Demo architecture

Training dataset

Building the predictive model

Random forest classifier

Domain search space

Fixed inputs constraint

OptaPlanner

- Open source
- Battle-tested constraint solver
- Express complex constraints

Counterfactual solution scoring

Defining constraints and domain

Constraint streaming API

```
public class ApprovalContraintsProvider implements ConstraintProvider{
      private Constraint changedAge(ConstraintFactory constraintFactory) {
        return constraintFactory
            .from(CreditCardApprovalEntity.class)
            .filter(entity -> !entity.getAge().equals(Facts.input.getAge()))
            .penalize(
                "Changed age",
                BendableBigDecimalScore.ofHard(
                    HARD_LEVELS_SIZE, SOFT_LEVELS_SIZE, 1, BigDecimal.valueOf(1)));
                                                                                                                18 - 100
                                                                                    age
 Planning variables
 @PlanningVariable(valueRangeProviderRefs = {"ageRange"})
                                                                                                                0 - 1000k
                                                                                  income
 public Integer getAge() {
  return age;
                                                                                                                 0 - 20
                                                                                 # children
 @PlanningVariable(valueRangeProviderRefs = {"incomeRange"})
 public Double getIncome()
  return income;
                                                                                employment
                                                                                                           0 - 18250 (50 years)
                                                                                   days
 @PlanningVariable(valueRangeProviderRefs = {"childrenRange"})
 public Integer getChildren() {
  return children;
                                                                                                               True / False
                                                                                   owns
                                                                                    car
 . . .
```


Searching for counterfactuals

Benchmarking

Solver	Total	Average	Standard Deviation	Problem	
				Problem_0	Problem_0
TFIRST_FIT S10 AC10	[0/-1]hard /[-8537205609.0]soft	[0/-1]hard /[-8537205609.0]soft	0.0E0/0.0E0 /0.0E0	[0/-1]hard /[-8537205609.0]soft	
TFIRST_FIT S10 AC1000	[0/0]hard /[-124233316.0]soft	[0/0]hard /[-124233316.0]soft	0.0E0/0.0E0 /0.0E0		[0/0]hard /[-124233316.0]soft
TCHEAPEST_INSERTION S10 AC10	[0/-1]hard /[-8537205609.0]soft	[0/-1]hard /[-8537205609.0]soft	0.0E0/0.0E0 /0.0E0		
TCHEAPEST_INSERTION S10 AC1000 0	[0/0]hard /[-124233316.0]soft	[0/0]hard /[-124233316.0]soft	0.0E0/0.0E0 /0.0E0		
TALLOCATE_FROM_POOL S10 AC10 6 1	[0/-1]hard /[-8537205609.0]soft	[0/-1]hard /[-8537205609.0]soft	0.0E0/0.0E0 /0.0E0		
TALLOCATE_FROM_POOL S10 AC1000 0	[0/0]hard /[-124233316.0]soft	[0/0]hard /[-124233316.0]soft	0.0E0/0.0E0 /0.0E0		
TFIRST_FIT S100 AC10	[0/-1]hard /[-8537205609.0]soft	[0/-1]hard /[-8537205609.0]soft	0.0E0/0.0E0 /0.0E0		
TFIRST_FIT S100 AC1000	[0/0]hard /[-124233316.0]soft	[0/0]hard /[-124233316.0]soft	0.0E0/0.0E0 /0.0E0		
TCHEAPEST_INSERTION S100 AC10 6 1	[0/-1]hard /[-8537205609.0]soft	[0/-1]hard /[-8537205609.0]soft	0.0E0/0.0E0 /0.0E0		

Takeaways

- **Kogito** makes **Business Automation** working well in cloud environment
- TrustyAI adds value-added services to Kogito to enable tracing, explainability and monitoring
- **Explainability** is needed to **establish trust** in automated business processes
- Counterfactual explanations provide examples to explain how to obtain the desired result
- **OptaPlanner** is a really **powerful** and **flexible** constraint solver
- OptaPlanner can be used to score a prediction
- It is possible to do **optimization** on **top of predictions** to explain/enrich them

Resources

- **Kogito** http://kogito.kie.org/
- TrustyAI introduction: https://blog.kie.org/2020/06/trusty-ai-introduction.html
- TrustyAI aspects: https://blog.kie.org/2020/06/trusty-ai-aspects.html
- **Demo code**: https://github.com/kiegroup/trusty-ai-sandbox/tree/master/counterfactual-op
- Example-Based Explanations: https://christophm.github.io/interpretable-ml-book/example-based.html

Thank you

Red Hat is the world's leading provider of enterprise open source software solutions. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.

- in linkedin.com/company/red-hat
- youtube.com/user/RedHatVideos
- facebook.com/redhatinc
- twitter.com/RedHat

