

Jury Selection

- ➤ In a county where jury selection is supposed to be random, a civil rights group sues the county, claiming racial disparities in jury selection.
- ➤ Distribution of ethnicities of the people in the county who are eligible for jury duty (based on census results):

ethnicity	white	black	nat. amer.	asian & PI	other
% in population	80.29%	12.06%	0.79%	2.92%	3.94%

➤ Distribution of 2500 people who were selected for jury duty the previous year:

ethnicity	white	black	nat. amer.	asian & PI	other
% in population	1920	347	19	84	130

Statistical Inference

Behnam Bahrak bahrak@ut.ac.ir 2 of 29 >

Jury Selection

The court retains you as an independent expert to assess the statistical evidence that there was discrimination. You propose to formulate the issue as an hypothesis test.

 H_0 (nothing going on): People selected for jury duty are a simple random sample from the population of potential jurors. The observed counts of jurors from various race/ ethnicities follow the same ethnicity distribution in the population.

 H_A (something going on): People selected for jury duty are not a simple random sample from the population of potential jurors. The observed counts of jurors from various ethnicities do not follow the same race/ethnicity distribution in the population.

Statistical Inference

Behnam Bahrak bahrak@ut.ac.ir

Evaluating the Hypotheses

- > Quantify how different the observed counts are from the expected counts
- Large deviations from what would be expected based on sampling variation (chance) alone provide strong evidence for the alternative hypothesis
- Called a goodness of fit test since we're evaluating how well the observed data fit the expected distribution

Statistical Inference

bahrak@ut.ac.ir

< 4 of 29 >

Conditions for the Chi-square Test

- 1. *Independence:* Sampled observations must be independent.
 - > random sample/assignment
 - \succ if sampling without replacement, n < 10% of population
 - > each case only contributes to one cell in the table
- 2. *Sample size:* Each particular scenario (i.e. cell) must have at least 5 expected cases.

Statistical Inference

Behnam Bahrak

7 of 29 >

Anatomy of a Test Statistic

General form of a test statistic

 $\frac{point\ estimate-null\ value}{SE\ of\ point\ estimate}$

- 1. Identifying the difference between a point estimate and an expected value if the null hypothesis were true
- 2. Standardizing that difference using the standard error of the point estimate

Statistical Inference

Behnam Bahrak bahrak@ut.ac.ir

8 of 29

Chi-square Statistic

When dealing with counts and investigating how far the observed counts are from the expected counts, we use a new test statistic called the chi-square (χ^2) statistic.

$$\chi^2 \text{statistic: } \chi^2 = \sum_{i=1}^k \frac{(O-E)^2}{E} \quad \begin{array}{c} O \text{ :observed} \\ E \text{ :expected} \\ k \text{ :number of cells} \end{array}$$

Statistical Inference

Behnam Bahrak bahrak@ut.ac.i < 9 of 29 >

Why square?

- Positive standardized difference
- ➤ Highly unusual differences between observed and expected will appear even more unusual
- Ease of mathematical calculations

Statistical Inference

Behnam Bahrak

10 of 29

Degrees of Freedom

- \succ To determine if the calculated χ^2 statistic is considered unusually high or not we need to first describe its distribution
- ➤ Chi-square distribution has just one parameter:
 - Degrees of freedom (df): influences the shape, center, and spread

$$\chi^2$$
 degrees of freedom for a goodness of fit test:

$$df = k - 1$$

k: number of cells

Statistical Inference

Behnam Bahrak bahrak@ut.ac.ir

< 11 of 29 >

Example

ethnicity	white	black	nat. amer.	asian & PI	other	total
% in population	80.29%	12.06%	0.79%	2.92%	3.94%	100%
expected #	2007	302	20	73	98	2500
observed #	1920	347	19	84	130	2500

The observed counts of jurors from various race/ ethnicities H_0 : follow the same ethnicity distribution in the population.

 H_A : The observed counts of jurors from various ethnicities do not follow the same race/ethnicity distribution in the population.

$$\chi^2 = \frac{(1920 - 2007)^2}{2007} + \frac{(347 - 302)^2}{302} + \frac{(19 - 20)^2}{20} + \frac{(84 - 73)^2}{73} + \frac{(130 - 98)^2}{98} = 22.63$$

$$df = k - 1 = 5 - 1 = 4$$

Statistical Inference

Behnam Bahrak

13 of 29

p-value

- > P-value for a chi-square test is defined as the tail area above the calculated test statistic
- Because the test statistic is always positive, and a higher test statistic means a higher deviation from the null hypothesis

Statistical Inference

bahrak@ut.ac.ir

< 14 of 29 >

Expected number of death

> We model the number of deaths in each episode of GoT with a Poisson distribution with $\lambda = 3.22807$:

$$P(X = 0) = e^{-\lambda} \frac{\lambda^0}{0!} = 0.039634 \rightarrow \text{Expected} = 57 \times P(X = 0) = 2.2591$$

$$P(X = 1) = e^{-\lambda} \frac{\lambda^{1}}{1!} = 0.127941 \rightarrow \text{Expected} = 57 \times P(X = 1) = 7.2926$$

$$P(X = 6) = e^{-\lambda} \frac{\lambda^6}{6!} = 0.062286 \rightarrow \text{Expected} = 57 \times P(X = 6) = 3.5503$$

$$P(X \ge 7) = 1 - P(X = 0) - \dots - P(X = 6) = 0.046346$$

 \rightarrow Expected = $57 \times P(X \ge 7) = 2.6417$

Statistical Inference

17 of 29

Goodness of Fit

Number of deaths	0	1	2	3	4	5	6	≥7	total
observed	5	10	9	8	10	8	2	5	57
expected	2.259	7.293	11.77	12.67	10.22	6.6	3.55	2.64	57

The observed counts of deaths follow a Poisson distribution H_0 : with $\lambda = 3.22807$

 H_A : The observed counts of deaths **do not** follow a Poisson distribution with $\lambda = 3.22807$

$$\chi^2 = \frac{(5 - 2.259)^2}{2.259} + \frac{(10 - 7.293)^2}{7.293} + \dots + \frac{(2 - 3.55)^2}{3.55} + \frac{(5 - 2.64)^2}{2.64} = 9.792$$

$$df = k - 1 = 8 - 1 = 7$$

Statistical Inference

< 18 of 29 >

Chi-square Independence Test

- ➤ In a study, students in grades 4-6 (age 10-12) were asked whether good grades, athletic ability, or popularity was most important to them.
- ➤ A two-way table separating the students by age and by choice of most important factor is shown below. Do these data provide evidence to suggest that goals vary by age?

	Grades	Popularity	Sports	Total
10 yrs old	63	31	25	119
11 yrs old	88	55	33	176
12 yrs old	96	55	32	183
Total	247	141	90	478

Chi-square test of independence

$$\chi^2$$
 test of independence: $\chi^2 = \sum_{i=1}^k \frac{(O-E)^2}{E}$

$$df = (R-1) \times (C-1)$$

O: Observed

 $E: \mathsf{Expected}$

R: number of rows

C: number of columns

k: number of cells

 \succ The p-value is the area under the χ^2_{df} curve, above the calculated test statistic.

Statistical Inference

Behnam Bahrak

23 of 29

Conditions for the chi-square test

- 1. *Independence:* Sampled observations must be independent.
 - random sample/assignment
 - \triangleright if sampling without replacement, n < 10% of population
 - each case only contributes to one cell in the table
- 2. Sample size: Each particular scenario (i.e. cell) must have at least 5 expected cases.

Statistical Inference

bahrak@ut.ac.ir

< 24 of 29 >

Expected Counts

	Grades	rades Popularity		Total	
10 yrs old	63	31	25	119	
11 yrs old	88	55	33	176	
12 yrs old	96	55	32	183	
Total	247	141	90	478	

Expected counts in two-way tables:

$$\textit{Expected Count} = \frac{(\textit{row total}) \times (\textit{column total})}{\textit{table total}}$$

$$E_{row 1, col 1} = \frac{119 \times 247}{478} = 61$$

Statistical Inference

25 of 29

Calculating the test statistic in two-way tables

	Grades	Popularity	Sports	Total
10 yrs old	63 (61)	31 (35)	25 (23)	119
11 yrs old	88 (91)	55 (52)	33 (33)	176
12 yrs old	96 (95)	55 (54)	32 (34)	183
Total	247	141	90	478

$$\chi^2 = \frac{(63 - 61)^2}{61} + \frac{(31 - 35)^2}{35} + \dots + \frac{(32 - 34)^2}{34} = 1.3121$$

$$df = (R-1) \times (C-1) = 2 \times 2 = 4$$

bahrak@ut.ac.ir

< 26 of 29 >

Chi-square Tests

- goodness of fit: comparing the distribution of one categorical variable (with more than 2 levels) to a hypothesized distribution
- ➤ independence: evaluating the relationship between two categorical variables (at least one with more than 2 levels)

Statistical Inference

Behnam Bahrak

< 29 of 29 >