Applied Mathematics III Unit 6 Complex Analytic Functions

Solomon Amsalu (Asst.Prof.)

Mathematics Department Wolkite University

solomon.amsalu@wku.edu.et

April 28, 2025

Table of Content

- Introduction to Complex Numbers
- Operations on Complex Numbers
- Complex Plane Representation
- Magnitude and Polar Form
- Complex Conjugates
- Complex Functions, Differential Calculus, and Analyticity
 - Limit
 - Derivatives
- The Cauchy-Riemann Equation
- Elementary Functions
 - Exponential Functions
 - Trigonometric and Hyperbolic Functions
 - Polar Form and Multi-Valuedness
 - Logarithmic Functions

Definition of Complex Numbers

A **complex number** *z* is expressed as:

$$z = x + iy$$

where:

- x is the **real part**, denoted by Re(z).
- y is the **imaginary part**, denoted by Im(z).
- i is the imaginary unit, defined by $i^2 = -1$.

Basic Operations

Let a + bi and c + di be two complex numbers. Then:

- **1 Equality**: a + bi = c + di if and only if a = c and b = d.
- Addition:

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

Multiplication:

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

① Division: If z = a + bi and w = c + di ($w \neq 0$), then:

$$\frac{1}{z} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$$

$$\frac{w}{z} = w \cdot \frac{1}{z}$$

Example

Express $\frac{3+i}{2-2i}$ in the form a+bi.

Solution:

Example

Express $\frac{3+i}{2-2i}$ in the form a+bi.

Solution: Multiply numerator and denominator by the conjugate of

$$2 - 2i$$
, which is $2 + 2i$:

$$\frac{(3+i)(2+2i)}{(2-2i)(2+2i)}$$

Expanding both terms:

$$\frac{6+6i+2i+2i^2}{4+4i-4i-4i^2}$$

Since $i^2 = -1$, simplify:

$$\frac{6+8i-2}{4+4} = \frac{4+8i}{8} = \frac{4}{8} + \frac{8i}{8} = \frac{1}{2} + i$$

Thus,
$$\frac{3+i}{2-2i} = \frac{1}{2} + i$$
.

Basic Properties

Remark

Some basic points about complex numbers:

- The real and imaginary parts of any complex number are real numbers.
- ② Any real number a can be considered as a complex number a+0i. Therefore, the set of complex numbers is an extension of the set of real numbers.
- **3** The set of complex numbers is denoted by \mathbb{C} .
- **1** If x, y and z are complex numbers, then:
 - Addition is commutative: x + y = y + x
 - Multiplication is commutative: xy = yx
 - Associative law for addition: x + (y + z) = (x + y) + z
 - Associative law for multiplication: x(yz) = (xy)z
 - Distributive law: x(y+z) = xy + xz
 - 0 is the identity element for addition: x + 0 = 0 + x = x
 - 1 is the identity element for multiplication: $x \cdot 1 = 1 \cdot x = x$

Graphical Representation

A complex number z = a + bi is represented in the Cartesian coordinate system as the point (a, b).

- The Real Axis is the horizontal axis.
- The **Imaginary Axis** is the vertical axis.

Magnitude and Argument

For a complex number z = a + bi:

• The Magnitude (Modulus):

$$|z| = \sqrt{a^2 + b^2}$$

The Argument:

$$\theta = \arctan\left(\frac{b}{a}\right)$$

The Polar Form:

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

Example

Find the polar form of z = 1 - i.

Solution:

Example

Find the polar form of z = 1 - i.

Solution: Calculate:

$$|z| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$

$$\theta = \arctan(-1) = \frac{3\pi}{4}$$

Thus:

$$z = \sqrt{2}e^{i3\pi/4}$$

Definition of Complex Conjugates

For a complex number z = a + bi, the **conjugate** of z is given by:

$$\bar{z} = a - bi$$

On the complex plane, \bar{z} is the reflection of z across the real axis.

Properties of Conjugates

Let z and w be complex numbers. Then:

- ① $\bar{z} = z$, and $\bar{z} = z$ if and only if z is real.

- Re $(z) = \frac{1}{2}(z + \bar{z})$, and Im $(z) = \frac{1}{2i}(z \bar{z})$.

Definition of Complex Functions

Definition

A function w of a complex variable z is a rule that assigns a unique value w(z) to each point z in some set D in the complex plane. If w is a complex function and z = x + iy, then we can always write

$$w(z) = u(x, y) + iv(x, y)$$

where u and v are real-valued functions of x and y such that:

$$u(x,y) = \text{Re}(f(z)), \quad v(x,y) = \text{Im}(f(z))$$

12 / 58

Solomon Amsalu Complex Analytic Functions April 28, 2025

Example

Let w be a complex function defined by:

$$w(z)=z^2$$
.

Find Re(w(z)) and Im(w(z)).

Solution:

Example

Let w be a complex function defined by:

$$w(z)=z^2$$
.

Find Re(w(z)) and Im(w(z)).

Solution: Since z = x + yi, then

$$w(z) = z^2 = (x + yi)^2 = (x^2 - y^2) + 2xyi$$

Hence:

$$Re(w(z)) = u(x, y) = x^2 - y^2,$$

$$Im(w(z)) = v(x, y) = 2xy$$

Definition of Limits

Let $f: \mathbb{C} \to \mathbb{C}$ be a complex-valued function. Then clearly, f maps \mathbb{R}^2 into \mathbb{R}^2 , and hence all concepts of limits and derivatives for vector functions of two variables also apply here, with notation adapted to complex numbers.

Definition

Let z_0 be an interior point in the domain of definition of a function $f: \mathbb{C} \to \mathbb{C}$. We say that the limit of f(z) as z approaches z_0 is L, and we write:

$$\lim_{z\to z_0}f(z)=L$$

if for each $\epsilon > 0$ (no matter how small), there exists a $\delta > 0$ such that:

$$|f(z) - L| < \epsilon$$
 for all z satisfying $0 < |z - z_0| < \delta$

In this definition, z=x+yi and f(z)=u(x,y)+iv(x,y). Moreover, $|z-z_0|$ represents the modulus of the complex number $z-z_0$, and the condition $|z-z_0|<\delta$ defines an open circle centered at z_0 .

Properties of Limits

Remark

Let f and g be complex functions, and let z_0 and c be complex numbers such that:

$$\lim_{z\to z_0} f(z) = L, \quad \lim_{z\to z_0} g(z) = M$$

Then, the following properties hold:

- $\lim_{z\to z_0}(f\pm g)(z)=L+M$
- $\lim_{z\to z_0} (fg)(z) = LM$
- $\lim_{z\to z_0} (f/g)(z) = L/M \quad \text{if } M\neq 0$
- $\lim_{z\to z_0}(cf)(z)=cL$

Example

Evaluate

$$\lim_{z \to 1+i} z^2$$

Solution:

Example

Evaluate

$$\lim_{z \to 1+i} z^2$$

Solution:

Let $f(z) = z^2$. Substituting z = x + yi (where x and y are real numbers), we have:

$$f(z) = (x + yi)^2 = x^2 - y^2 + 2xyi.$$

The limit as $z \to 1+i$ means $x \to 1$ and $y \to 1$. Substituting x=1 and y=1 into f(z), we calculate:

$$f(1+i) = (1)^2 - (1)^2 + 2(1)(1)i = 2i.$$

$$\lim_{z \to 1+i} z^2 = 2i.$$

Continuity of Complex Functions

Definition

A function f is said to be **continuous** at z_0 if:

$$\lim_{z\to z_0}f(z)=f(z_0)$$

A function is continuous in a set if it is continuous at each point of that set.

Example

Prove that the function $f(z) = z^2 + 1$ is continuous at $z_0 = 2 + i$.

Solution:

Example

Prove that the function $f(z) = z^2 + 1$ is continuous at $z_0 = 2 + i$.

Solution:

To check the continuity of f(z) at z_0 , we verify that:

$$\lim_{z\to z_0}f(z)=f(z_0).$$

Step 1: Compute $f(z_0)$:

$$f(2+i) = (2+i)^2 + 1.$$

Expanding $(2+i)^2$:

$$(2+i)^2 = 4+4i+i^2 = 4+4i-1 = 3+4i.$$

Thus:

$$f(2+i) = (3+4i)+1=4+4i.$$

Step 2: Compute $\lim_{z\to z_0} f(z)$:

Let z = x + yi, then $f(z) = (x + yi)^2 + 1$.

Expand:

$$f(z) = (x^2 - y^2 + 2xyi) + 1 = (x^2 - y^2 + 1) + 2xyi.$$

As $z \rightarrow z_0 = 2 + i$, substitute $x \rightarrow 2$ and $y \rightarrow 1$:

$$f(z) \to (2^2 - 1^2 + 1) + 2(2)(1)i = (4 - 1 + 1) + 4i = 4 + 4i.$$

Since:

$$\lim_{z\to z_0}f(z)=f(z_0),$$

the function $f(z) = z^2 + 1$ is continuous at $z_0 = 2 + i$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Definition of Derivatives

Definition

Let f be a complex function. The derivative of f at the point z_0 , denoted by $f'(z_0)$, is defined as:

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\triangle z \to 0} \frac{f(z_0 + \triangle z) - f(z_0)}{\triangle z}$$

if the limit exists and is a complex number.

The limit must be unique and independent of the path along which z approaches z_0 .

20 / 58

Solomon Amsalu Complex Analytic Functions April 28, 2025

Example

Find the derivative of each of the following functions if it exists.

- **1** $f(z) = z^2$
- $f(z) = \bar{z}$

Solution:

Example

Find the derivative of each of the following functions if it exists.

- **1** $f(z) = z^2$
- $f(z) = \bar{z}$

Solution:

1. For $f(z) = z^2$:

$$f'(z) = \lim_{\triangle z \to 0} \frac{(z + \triangle z)^2 - z^2}{\triangle z} = \lim_{\triangle z \to 0} \frac{z^2 + 2z\triangle z + (\triangle z)^2 - z^2}{\triangle z}$$
$$= \lim_{\triangle z \to 0} \frac{2z\triangle z + (\triangle z)^2}{\triangle z} = \lim_{\triangle z \to 0} (2z + \triangle z) = 2z$$

Thus, f'(z) = 2z.

2. For $f(z) = \bar{z}$:

$$f'(z) = \lim_{\triangle z \to 0} \frac{\overline{z + \triangle z} - \overline{z}}{\triangle z}$$

Since $\overline{z + \triangle z} = \overline{z} + \overline{\triangle z}$, this simplifies to:

$$= \lim_{\triangle z \to 0} \frac{\bar{z} + \overline{\triangle z} - \bar{z}}{\triangle z} = \lim_{\triangle z \to 0} \frac{\overline{\triangle z}}{\triangle z}$$

For general complex numbers, this limit does not always exist uniquely, meaning $f(z) = \bar{z}$ is not differentiable.

Rules of Differentiation for Complex Functions

Let f and g be complex functions, and let c be a complex number.

- **1** Sum (Difference) Rule: $(f \pm g)'(z) = f'(z) \pm g'(z)$
- **2** Constant Multiple Rule: (cf)'(z) = cf'(z)
- **3** Product Rule: (fg)'(z) = f'(z)g(z) + f(z)g'(z)
- Quotient Rule:

$$\left(\frac{f}{g}\right)'(z) = \frac{f'(z)g(z) - f(z)g'(z)}{(g(z))^2}$$

5 Chain Rule (Complex Version): $(f \circ g)'(z) = f'(g(z))g'(z)$

Theorem

If f is a differentiable complex function at z_0 , then f is continuous at z_0 .

4□ > 4□ > 4 □ > 4 □ > 4 □ > 4 □

Example

Let
$$f(z) = \frac{1}{z}$$
. Find $f'(z)$.

Solution:

Example

Let
$$f(z) = \frac{1}{z}$$
. Find $f'(z)$.

Solution:

Using the quotient rule, which states:

$$\left(\frac{f}{g}\right)'(z) = \frac{f'(z)g(z) - f(z)g'(z)}{(g(z))^2}$$

For f(z) = 1 and g(z) = z, we compute:

$$f'(z) = \frac{0 \cdot z - 1 \cdot 1}{z^2}$$

Simplifying:

$$f'(z) = \frac{-1}{z^2}$$

Definition

Since differentiability of a complex function (along with analyticity) plays a crucial role in the study of complex variables, we ask: **When is a complex function differentiable?**

Definition

Let f be a complex function. Then:

- f is said to be analytic in a domain D if f(z) is defined and differentiable at all points in D.
- ② f is said to be analytic at a point $z_0 \in D$ if it is analytic in some neighborhood of z_0 .
- **3** f is simply called an analytic function if it is analytic in some domain (open connected subset of \mathbb{C}).

Cauchy-Riemann Equations: Theorem

Theorem: Let f(z) = u(x, y) + iv(x, y) be a complex-valued function, where z = x + yi. If f(z) is differentiable at $z = z_0$, then the real part u(x, y) and the imaginary part v(x, y) satisfy the Cauchy-Riemann equations:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Proof: Start with the definition of the derivative:

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$$

Write z = x + yi, where f(z) = u(x, y) + iv(x, y), and expand:

$$z - z_0 = (x - x_0) + i(y - y_0),$$

$$f(z) - f(z_0) = (u(x, y) - u(x_0, y_0)) + i(v(x, y) - v(x_0, y_0)).$$

Case 1: Limit Along the x-axis $(y = y_0)$ If $z \to z_0$ along the x-axis:

$$f'(z_0) = \lim_{x \to x_0} \frac{(u(x, y_0) - u(x_0, y_0)) + i(v(x, y_0) - v(x_0, y_0))}{x - x_0}$$

Thus:

$$f'(z_0) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}.$$

Case 2: Limit Along the y-axis $(x = x_0)$ If $z \to z_0$ along the y-axis:

$$f'(z_0) = \lim_{y \to y_0} \frac{(u(x_0, y) - u(x_0, y_0)) + i(v(x_0, y) - v(x_0, y_0))}{i(y - y_0)}.$$

Simplify:

$$f'(z_0) = -\frac{\partial v}{\partial y} + i\frac{\partial u}{\partial y}.$$

Equating Real and Imaginary Parts: From the two cases:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Thus, the Cauchy-Riemann equations are satisfied.

27 / 58

Test for Analyticity

If f is a complex function and z = x + yi, we can write:

$$f(z) = u(x, y) + iv(x, y)$$

where u and v are real-valued functions of x and y. For a function f defined in some domain D, if f is analytic in D (i.e., differentiable), then its partial derivatives exist, and at $z_0 = x_0 + y_0 i$, we have:

$$\frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

which leads to:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

These equations are known as the **Cauchy-Riemann equations**, and they provide a necessary condition for analyticity.

Necessary and Sufficient Conditions for Analyticity

Theorem

Let f(z) = u(x, y) + iv(x, y) be a function defined in some neighborhood of $z_0 = x_0 + iy_0$.

- **Necessary Condition**: If f is differentiable at z_0 , then the Cauchy-Riemann equations are satisfied.
- **2 Sufficient Condition**: If the Cauchy-Riemann equations hold at z_0 and u and v are continuously differentiable in some neighborhood of z_0 , then f is analytic at z_0 .

Due to the Cauchy-Riemann equations, the derivative of f(z) can be written in one of the following four equivalent forms:

$$f'(z) = u_x(x, y) + iv_x(x, y) = v_y(x, y) - iu_y(x, y)$$

$$f'(z) = u_x(x,y) - iu_y(x,y) = v_y(x,y) + iv_x(x,y)$$

Solomon Amsalu Complex Analytic Functions April 28, 2025 29 / 58

Definition of Neighborhood

The **neighborhood** of a point z_0 in the complex plane is a set of points surrounding z_0 . It is formally defined as:

$$N(z_0, r) = \{z \in \mathbb{C} \mid |z - z_0| < r\},\$$

where:

- r > 0 is the radius of the neighborhood.
- $|z z_0|$ represents the modulus (distance) between z and z_0 .

Properties:

- $N(z_0, r)$ is an **open disk** centered at z_0 with radius r. It excludes the boundary $|z z_0| = r$.
- A neighborhood is an open set, meaning it contains no boundary points.
- If a function is analytic in a neighborhood $N(z_0, r)$, it is analytic at all points within $N(z_0, r)$.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Example

Show that $f(z) = |z|^2$ is differentiable only at z = 0 and is analytic nowhere.

Example

Show that $f(z) = |z|^2$ is differentiable only at z = 0 and is analytic nowhere.

Solution:

Since $f(z) = |z|^2 = x^2 + y^2$, we compute:

$$u_x = 2x, \quad u_y = 2y$$

$$v_x = 0, \quad v_y = 0$$

For analyticity, the Cauchy-Riemann equations must hold:

$$u_x = v_y, \quad v_x = -u_y$$

which simplifies to:

$$2x = 0, \quad 0 = -2y$$

The only solution is x = 0 and y = 0, meaning f(z) is differentiable only at z = 0 and **not analytic elsewhere**.

Example

Let $f(z) = z^2 - 8z + 3$. If z = x + yi, show that f is differentiable for all z and find f'(x + yi).

Example

Let $f(z) = z^2 - 8z + 3$. If z = x + yi, show that f is differentiable for all z and find f'(x + yi).

Solution:

Expanding:

$$f(z) = (x + yi)^2 - 8(x + yi) + 3$$

= $(x^2 - y^2 - 8x + 3) + i(2xy - 8y)$

Setting $u = x^2 - y^2 - 8x + 3$ and v = 2xy - 8y, we compute derivatives:

$$u_x = 2x - 8, \quad u_y = -2y$$

 $v_x = 2y, \quad v_y = 2x - 8$

Since $u_x = v_y$ and $v_x = -u_y$, the Cauchy-Riemann equations hold everywhere. Thus, f is differentiable for all z.

$$f'(z) = 2z - 8$$

4□ ► 4□ ► 4 = ► 4 = ► 9 < 0</p>

Key Difference Between Differentiability and Analyticity:

- Differentiability is a *local property* at a point, whereas analyticity is a *global property* in a neighborhood.
- A function can be differentiable at a single point without being analytic (e.g., $f(z) = |z|^2$).
- If a function is analytic, it is automatically differentiable in the entire domain where it is analytic.

Example:

- The function $f(z) = z^2$ is analytic everywhere in the complex plane because it is differentiable in every neighborhood and satisfies the Cauchy-Riemann equations.
- The function $f(z) = |z|^2$ is differentiable at z = 0, but not analytic anywhere because it does not satisfy the Cauchy-Riemann equations.

Definition of Harmonic Functions

Definition

A real-valued function u(x, y) satisfies **Laplace's equation**:

$$\nabla^2 u = u_{xx} + u_{yy} = 0$$

If all first and second-order partial derivatives of u exist and are continuous, then u is called a **harmonic function**.

Theorem

If f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then u and v are harmonic in D, meaning they satisfy Laplace's equation:

$$\nabla^2 u = u_{xx} + u_{yy} = 0, \quad \nabla^2 v = v_{xx} + v_{yy} = 0$$

Since f is analytic, u and v are related by the Cauchy-Riemann equations. Such functions are called **conjugate harmonic functions**.

Example

Show that $u = x^2 - y^2 - y$ is harmonic in $\mathbb C$ and find a conjugate harmonic function v of u.

Example

Show that $u = x^2 - y^2 - y$ is harmonic in \mathbb{C} and find a conjugate harmonic function v of u.

Solution:

To check if u is harmonic, we compute its second-order partial derivatives:

$$u_x = \frac{\partial}{\partial x}(x^2 - y^2 - y) = 2x, \quad u_y = \frac{\partial}{\partial y}(x^2 - y^2 - y) = -2y - 1$$

Now, computing the second-order derivatives:

$$u_{xx} = \frac{\partial}{\partial x}(2x) = 2, \quad u_{yy} = \frac{\partial}{\partial y}(-2y - 1) = -2$$

Since:

$$\nabla^2 u = u_{xx} + u_{yy} = 2 + (-2) = 0$$

u satisfies the Laplace equation and is harmonic.

To find a conjugate harmonic function v, we use the Cauchy-Riemann equations:

$$v_x = -u_y = 2y + 1, \quad v_y = u_x = 2x$$

Integrating v_x with respect to x:

$$v = \int (2y+1)dx = (2y+1)x + C(y)$$

Differentiating with respect to y:

$$\frac{\partial}{\partial y}[(2y+1)x+C(y)]=2x$$

Setting C'(y) = 0, we conclude C(y) must be a constant, thus:

$$v=(2y+1)x$$

Therefore, v = (2y + 1)x is the conjugate harmonic function of u.

Example

Show that $u(x,y) = x^3 - 3xy^2 + 3x + 1$ is harmonic in $\mathbb C$ and find a conjugate harmonic function v of u.

Example

Show that $u(x,y) = x^3 - 3xy^2 + 3x + 1$ is harmonic in $\mathbb C$ and find a conjugate harmonic function v of u.

Solution:

First, compute the second-order partial derivatives:

$$u_x = \frac{\partial}{\partial x}(x^3 - 3xy^2 + 3x + 1) = 3x^2 - 3y^2 + 3$$
$$u_y = \frac{\partial}{\partial y}(x^3 - 3xy^2 + 3x + 1) = -6xy$$

Now, computing second-order derivatives:

$$u_{xx} = \frac{\partial}{\partial x}(3x^2 - 3y^2 + 3) = 6x$$

Solomon Amsalu

Since:

$$\nabla^2 u = u_{xx} + u_{yy} = 6x + (-6x) = 0$$

u satisfies the Laplace equation and is harmonic.

To find v, we apply the Cauchy-Riemann equations:

$$v_x = -u_y = 6xy$$
, $v_y = u_x = 3x^2 - 3y^2 + 3$

Integrating v_x with respect to x:

$$v = \int 6xy \, dx = 3x^2y + C(y)$$

Differentiating v with respect to y:

$$\frac{\partial}{\partial y}(3x^2y + C(y)) = 3x^2 - 3y^2 + 3$$

Setting $C'(y) = -3y^2 + 3$, integrating:

$$C(y) = -y^3 + 3y$$

Thus, the conjugate harmonic function is:

$$v = 3x^2y - y^3 + 3y$$

Exponential Functions

For a complex number z = x + yi, the complex exponential function e^z is defined by:

$$e^z = e^{x+yi} = e^x(\cos y + i\sin y)$$

Euler's formula states:

$$e^{yi} = \cos y + i \sin y$$

Additionally:

$$|e^{yi}| = |\cos y + i\sin y| = \sqrt{\cos^2 y + \sin^2 y} = 1$$

Thus:

$$|e^z| = |e^x e^{yi}| = e^x |e^{yi}| = e^x$$
, for all $z = x + yi$.

Example

- **1** Compute $|e^{-2+4i}|$ and $|e^{3-5i}|$.
- ② If $e^z = 2i$, then find z.

Example

- **1** Compute $|e^{-2+4i}|$ and $|e^{3-5i}|$.
- 2 If $e^z = 2i$, then find z.

Solution:

1. Since $|e^z| = e^x$, we have:

$$|e^{-2+4i}| = e^{-2}, \quad |e^{3-5i}| = e^3.$$

2. Given $e^z = 2i$, we express z as x + yi:

$$e^z = e^x e^{yi} = e^x (\cos y + i \sin y) = 2i$$

Comparing real and imaginary parts:

$$e^x \cos y = 0$$
, $e^x \sin y = 2$.

Since $\cos y = 0$, valid values for y are:

$$y=rac{\pi}{2}+k\pi,\quad k\in\mathbb{Z}.$$

From $e^x \sin y = 2$, using $\sin y = \pm 1$, we get:

$$e^x = 2 \Rightarrow x = \ln 2$$
.

Thus:

$$z = \ln 2 + i \left(\frac{\pi}{2} + k\pi \right), \quad k \in \mathbb{Z}.$$

Differentiability of Exponential Functions

Remark

For a complex number z=x+yi, we have $e^z\neq 0$ for all $z\in\mathbb{C}$, since $e^x\neq 0$ for all (finite) x and $\cos y$ and $\sin y$ do not vanish simultaneously.

Let $f(z) = e^z$. Then:

$$f(z) = e^{x}(\cos y + i\sin y)$$

where:

$$u(x,y) = e^x \cos y$$
, $v(x,y) = e^x \sin y$.

These satisfy the Cauchy-Riemann equations:

$$u_x = e^x \cos y = v_y, \quad u_y = -e^x \sin y = -v_x.$$

Since u and v are continuously differentiable, e^z is differentiable for all z, and:

$$f'(z)=e^z.$$

Trigonometric and Hyperbolic Functions

From Euler's formula:

$$e^{i\theta} = \cos \theta + i \sin \theta$$
, $e^{-i\theta} = \cos \theta - i \sin \theta$.

Adding and subtracting:

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}.$$

For any complex number z:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \quad \sin z = \frac{e^{iz} - e^{-iz}}{2i}.$$

Similarly, hyperbolic functions are defined as:

$$\sinh z = \frac{e^z - e^{-z}}{2}, \quad \cosh z = \frac{e^z + e^{-z}}{2}.$$

From these definitions, it follows:

$$cos(iz) = cosh z$$
, $sin(iz) = i sinh z$.

For a complex number z show that

- i) $\sin(-z) = -\sin z$
- ii) $\cos(-z) = \cos z$
- iii) $\cos(z_1 + z_2) = \cos z_1 \cos z_2 \sin z_1 \sin z_2$
- iv) $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \sin z_2 \cos z_1$
- v) $cos(z + 2\pi) = cos z$ and $sin(z + 2\pi) = sin z$
- vi) $\cos^2 z + \sin^2 z = 1$
- vii) $\cosh^2 z \sinh^2 z = 1$.

Example

Let z = x + yi and $f(z) = \sin z$. Show that f(z) is differentiable and:

$$f'(z) = \cos x \cosh y - i \sin x \sinh y = \cos z.$$

Example

Let z = x + yi and $f(z) = \sin z$. Show that f(z) is differentiable and:

$$f'(z) = \cos x \cosh y - i \sin x \sinh y = \cos z.$$

Solution:

The complex sine function is defined as:

$$f(z) = \sin(x + yi) = \sin x \cosh y + i \cos x \sinh y.$$

From this, we identify:

$$u(x, y) = \sin x \cosh y$$
, $v(x, y) = \cos x \sinh y$.

Next, compute the partial derivatives:

$$u_x = \cos x \cosh y$$
, $u_y = \sin x \sinh y$,

$$v_x = -\sin x \sinh y$$
, $v_y = \cos x \cosh y$.

Since u, v, u_x, u_y, v_x, v_y are all continuous everywhere in \mathbb{R}^2 , and the Cauchy-Riemann equations:

$$u_x = v_y, \quad u_y = -v_x$$

are satisfied, f(z) is differentiable.

The derivative is given by:

$$f'(z) = u_x + iv_x = \cos x \cosh y - i \sin x \sinh y.$$

Now simplify:

$$\cos x \cosh y - i \sin x \sinh y = \cos x \cos(iy) - \sin x \sin(iy),$$

using the relations:

$$cos(iy) = cosh y$$
, $sin(iy) = i sinh y$.

This simplifies further to:

$$\cos(x+iy)=\cos z.$$

Thus:

$$f'(z) = \cos z$$
.

Example

Let
$$f(z) = z^2 e^{\cos z}$$
. Then find $f'(z)$.

Example

Let $f(z) = z^2 e^{\cos z}$. Then find f'(z).

Solution:

We start by differentiating $f(z) = z^2 e^{\cos z}$ using the product rule:

$$f'(z) = \frac{d}{dz} (z^2) \cdot e^{\cos z} + z^2 \cdot \frac{d}{dz} (e^{\cos z}).$$

The derivative of z^2 is 2z, so the first term becomes:

$$\frac{d}{dz}(z^2) \cdot e^{\cos z} = 2ze^{\cos z}.$$

For the second term, use the chain rule to differentiate $e^{\cos z}$:

$$\frac{d}{dz}\left(e^{\cos z}\right) = e^{\cos z} \cdot \frac{d}{dz}(\cos z) = -\sin z \cdot e^{\cos z}.$$

Now substitute back into the product rule:

$$f'(z) = 2ze^{\cos z} + z^2 \cdot (-\sin z \cdot e^{\cos z}) = e^{\cos z} \left(2z - z^2 \sin z\right).$$

Polar Form and Multi-Valuedness

The Polar form of a complex number z is:

$$z = re^{i\theta}$$

where r=|z| and $\theta=\arg z$. The angle θ can be determined only within an arbitrary integer multiple of 2π , thus:

$$\theta = \arg z + 2k\pi, \quad k \in \mathbb{Z}.$$

If the exponent k is rational (e.g., $\frac{m}{n}$), then $f(z) = z^k$ is n-valued (since there are exactly n nth roots of a complex number z).

Example

Let z = 1 + i, then find $z^{\frac{1}{3}}$.

Example

Let z = 1 + i, then find $z^{\frac{1}{3}}$.

Solution:

Expressing z in polar form:

$$z = \sqrt{2}e^{i\frac{\pi}{4}}$$

Taking the cube root:

$$z^{\frac{1}{3}} = \sqrt[3]{\sqrt{2}}e^{i\frac{\pi}{12} + i\frac{2k\pi}{3}}, \quad k = 0, 1, 2.$$

$$z_0 = 2^{\frac{1}{6}} e^{i\frac{\pi}{12}}, \quad z_1 = 2^{\frac{1}{6}} e^{i\frac{9\pi}{12}}, \quad z_2 = 2^{\frac{1}{6}} e^{i\frac{17\pi}{12}}.$$

Example

Let
$$z = -1 + i\sqrt{3}$$
. Find $z^{\frac{1}{4}}$.

Example

Let $z = -1 + i\sqrt{3}$. Find $z^{\frac{1}{4}}$.

Solution:

Expressing z in polar form:

To find the modulus |z|:

$$|z| = \sqrt{(-1)^2 + (\sqrt{3})^2} = \sqrt{1+3} = 2.$$

To determine the argument θ :

$$\theta = \arctan\left(\frac{\sqrt{3}}{-1}\right) = \pi - \frac{\pi}{3} = \frac{2\pi}{3}.$$

Thus:

$$z=2e^{i\frac{2\pi}{3}}$$

Now compute the fourth root:

$$z^{\frac{1}{4}} = \sqrt[4]{2}e^{i\frac{\frac{2\pi}{3}}{4} + i\frac{2k\pi}{4}}, \quad k = 0, 1, 2, 3.$$

This simplifies:

$$z^{\frac{1}{4}} = 2^{\frac{1}{4}} e^{i\frac{\pi}{6} + i\frac{k\pi}{2}}, \quad k = 0, 1, 2, 3.$$

The four distinct roots are:

$$z_0 = 2^{\frac{1}{4}} e^{i\frac{\pi}{6}}, \quad z_1 = 2^{\frac{1}{4}} e^{i\frac{2\pi}{3}},$$

$$z_2 = 2^{\frac{1}{4}} e^{i\frac{7\pi}{6}}, \quad z_3 = 2^{\frac{1}{4}} e^{i\frac{11\pi}{6}}.$$

Thus, the fourth roots of z are evenly spaced on the complex plane.

The Logarithmic Function

Let $z=re^{i\theta}$ be a nonzero complex number expressed in its polar form, where r=|z| and $\theta=\arg z$.

The logarithm of z is defined as:

$$\log z = \ln r + i(\theta + 2k\pi), \quad k \in \mathbb{Z}.$$

Key Points:

- The logarithmic function for $z \neq 0$ is **infinitely valued** because arg z, the angle of z, can take infinitely many values due to its periodicity $\theta + 2k\pi$, where k is any integer.
- This definition is derived from expressing z as e^w , where $w = \ln r + i(\theta + 2k\pi)$ satisfies the equation $e^{i(b-\theta)} = 1 = e^{2k\pi i}$, allowing $b = \theta + 2k\pi$.

Properties:

- The real part of $\log z$ is $\ln r = \ln |z|$, corresponding to the modulus of z.
- The imaginary part is $\arg z + 2k\pi$, describing the infinitely many arguments of z.

Example

Compute log(1 + i).

Example

Compute $\log(1+i)$.

Solution:

Express z = 1 + i in polar form:

$$z=\sqrt{2}e^{i\frac{\pi}{4}}$$

Applying the logarithm definition:

$$\log(1+i) = \ln|z| + i(\arg z + 2k\pi), \quad k \in \mathbb{Z}$$

Since $|z| = \sqrt{2}$, we get:

$$\log(1+i) = \ln \sqrt{2} + i\left(\frac{\pi}{4} + 2k\pi\right)$$
$$= \frac{\ln 2}{2} + i\left(\frac{\pi}{4} + 2k\pi\right)$$

Thus, log(1+i) is infinitely valued.

Example

Compute $\log(-\sqrt{3}-i)$.

Example

Compute $\log(-\sqrt{3}-i)$.

Solution:

Express $z = -\sqrt{3} - i$ in polar form:

To find the modulus |z|:

$$|z| = \sqrt{(-\sqrt{3})^2 + (-1)^2} = \sqrt{3+1} = 2.$$

To determine the argument θ :

$$\theta = \arctan\left(\frac{-1}{-\sqrt{3}}\right)$$
.

Since both real and imaginary parts are negative, z lies in the third quadrant:

$$\theta=\pi+\arctan\left(rac{1}{\sqrt{3}}
ight)=\pi+rac{\pi}{6}=rac{7\pi}{6}.$$

Thus, z in polar form is:

$$z=2e^{i\frac{7\pi}{6}}.$$

Applying the logarithm definition:

$$\log(-\sqrt{3}-i) = \ln|z| + i(\arg z + 2k\pi), \quad k \in \mathbb{Z}.$$

Substituting |z| = 2 and $\arg z = \frac{7\pi}{6}$:

$$\log(-\sqrt{3}-i) = \ln 2 + i\left(\frac{7\pi}{6} + 2k\pi\right), \quad k \in \mathbb{Z}.$$

Thus:

$$\log(-\sqrt{3}-i) = \ln 2 + i\left(\frac{7\pi}{6} + 2k\pi\right), \quad k \in \mathbb{Z}.$$

Principal Argument

The argument arg z of a complex number z = x + yi represents the angle made by the line joining z to the origin with the positive real axis.

Principal Argument: The **Principal Argument** of z, denoted as Arg(z), is the unique value of arg z restricted to the interval:

$$-\pi < \operatorname{Arg}(z) \le \pi$$
.

For any complex number $z \neq 0$, the argument can take infinitely many values given by:

$$\arg z = \operatorname{Arg}(z) + 2k\pi, \quad k \in \mathbb{Z}.$$

The principal argument simplifies the representation of arg z by selecting the canonical angle within $(-\pi, \pi]$.

Example

Find the Principal Argument $Arg(-\sqrt{3} - i)$.

Example

Find the Principal Argument Arg $(-\sqrt{3}-i)$.

Solution:

The complex number $z = -\sqrt{3} - i$ lies in the third quadrant.

Compute arg z:

$$\theta = \arctan\left(\frac{\mathsf{Imaginary\ part}}{\mathsf{Real\ part}}\right) = \arctan\left(\frac{-1}{-\sqrt{3}}\right).$$

Since both real and imaginary parts are negative, the angle needs to be adjusted to the third quadrant:

$$heta=\pi+\arctan\left(rac{1}{\sqrt{3}}
ight)=\pi+rac{\pi}{6}=rac{7\pi}{6}.$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ り<0</p>

1 Check for the principal argument restriction:

$$-\pi < \operatorname{Arg}(-\sqrt{3} - i) \le \pi.$$

The calculated angle $\frac{7\pi}{6}$ already lies within $(-\pi, \pi]$. Hence:

$$Arg(-\sqrt{3}-i)=\frac{7\pi}{6}.$$