Numerical Data Applications Solutions

Professor Bradley Warner

26 August, 2020

Exercises

Create this Rmd file for the work including headers, file creation data, and explanation of your work. Make sure your plots have a title and the axes are labeled. We are asking you to do more in this application to get ready for your Oral Board.

1. Mammals exploratory

Data were collected on 39 species of mammals distributed over 13 orders. The data is in the openintro package as mammals

a. Using help, report the units for the variable BrainWt.

?mammals

b. Using inspect how many variables are numeric?

inspect(mammals)

```
## Warning: 'data_frame()' is deprecated as of tibble 1.1.0.
## Please use 'tibble()' instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_warnings()' to see where this warning was generated.
##
  categorical variables:
       name class levels n missing
## 1 species factor
                        62 62
                                       distribution
## 1 Africanelephant (1.6%) ...
## quantitative variables:
##
                 name
                        class
                                 min
                                          Q1
                                             median
                                                           QЗ
                                                                 max
                                                                            mean
## ...1
              body_wt numeric
                               0.005
                                      0.600
                                              3.3425
                                                      48.2025 6654.0 198.789984
## ...2
             brain_wt numeric
                                      4.250 17.2500 166.0000 5712.0 283.134194
                               0.140
## ...3
         non_dreaming numeric
                               2.100
                                      6.250
                                              8.3500
                                                      11.0000
                                                                17.9
                                                                        8.672917
## ...4
                                      0.900
                                             1.8000
                                                       2.5500
             dreaming numeric
                               0.000
                                                                 6.6
                                                                        1.972000
## ...5
          total_sleep numeric
                               2.600
                                      8.050 10.4500
                                                      13.2000
                                                                19.9 10.532759
```

```
life_span numeric 2.000 6.625 15.1000 27.7500 100.0 19.877586
## ...7
            gestation numeric 12.000 35.750 79.0000 207.5000
                                                              645.0 142.353448
## ...8
                               1.000 2.000
           predation integer
                                             3.0000
                                                       4.0000
                                                                       2.870968
             exposure integer
## ...9
                               1.000 1.000
                                             2.0000
                                                       4.0000
                                                                 5.0
                                                                       2.419355
##
  ...10
               danger integer
                              1.000 1.000 2.0000
                                                       4.0000
                                                                 5.0
                                                                       2.612903
##
                 sd n missing
         899.158011 62
## ...1
                             0
## ...2
         930.278942 62
## ...3
           3.666452 48
                            14
                            12
## ...4
           1.442651 50
## ...5
           4.606760 58
                             4
  ...6
          18.206255 58
                             4
##
        146.805039 58
##
  ...7
                             4
## ...8
           1.476414 62
                             0
## ...9
           1.604792 62
                             0
## ...10
           1.441252 62
                             0
```

c. What type of variable is danger?

Categorical

d. Create a density plot of total_sleep and describe the distribution.

```
gf_dens(~total_sleep,data=mammals)
```

Warning: Removed 4 rows containing non-finite values (stat_density).

e. Create a boxplot of life_span and describe the distribution.

```
gf_boxplot(~life_span,data=mammals)
```

Warning: Removed 4 rows containing non-finite values (stat_boxplot).

f. Report the mean and median life span of a mammal.

```
mean(~life_span,data=mammals,na.rm=TRUE)
```

```
## [1] 19.87759
```

```
median(~life_span,data=mammals,na.rm=TRUE)
```

[1] 15.1

g. Calculate the summary statistics for LifeSpan broken down by Danger.

```
favstats(life_span~danger,data=mammals)
```

```
##
     danger
                     Q1 median
                                   Q3
                                                                n missing
             min
                                        max
                                                 mean
                                                            sd
## 1
                  7.700 17.60 32.500 100.0 24.20556 23.53829 18
                                                                        1
                  4.500
                        10.40 13.000
                                       50.0 12.92308 13.15948 13
                                                                        1
                          5.35 7.875
                  4.175
                                                                        2
## 3
             2.0
                                       38.6 9.43750 11.99559
## 4
          4
             2.6
                  9.775
                         22.10 27.000
                                       69.0 23.11000 18.75482 10
                                                                        0
          5 17.0 20.000
## 5
                         23.60 30.000
                                       46.0 26.95556 10.18910 9
                                                                        0
```

2. Mammals life spans

Continue using the mammals data set.

a. Create side-by-side boxplots for life_span broken down by exposure. Note: you will have to change exposure to a factor(). Report on any findings.

```
mammals %>%
gf_boxplot(life_span~factor(exposure))
```

Warning: Removed 4 rows containing non-finite values (stat_boxplot).

b. What happened to the median and third quartile in exposure group 4?

favstats(life_span~factor(exposure),data=mammals)

```
##
     factor(exposure)
                       min
                              Q1 median
                                            QЗ
                                                 max
                                                         mean
                                                                    sd n missing
## 1
                       2.0
                           4.35
                                   7.25 14.550 100.0 14.55000 20.98594 24
                                                                                 3
## 2
                                 11.20 17.275
                      2.3 6.00
                                                50.0 15.39167 14.55819 12
                                                                                 1
## 3
                      7.6 19.90
                                 26.50 32.000
                                                41.0 25.40000 13.84582 4
                                                                                0
                                  27.00 27.000
## 4
                      7.0 20.20
                                                39.3 24.10000 11.78431
                                                                                0
## 5
                    5 16.3 20.00 28.00 38.600 69.0 30.53077 14.98084 13
                                                                                 0
```

c. Create overlapping density plots. What are the shorcomings of this plot?

```
gf_dens(~life_span,color=~factor(exposure),data=mammals)
```

Warning: Removed 4 rows containing non-finite values (stat_density).

d. Create a new variable exposed that is a factor with level Low if exposure is 1 or 2 and High otherwise.

```
mammals <- mammals %>%
mutate(exposed=factor(ifelse((exposure==1)|(exposure==2),"Low","High")))
```

inspect(mammals)

```
##
##
  categorical variables:
        name class levels
                           n missing
## 1 species factor
                         62 62
                                     0
  2 exposed factor
                          2 62
                                     0
##
                                       distribution
## 1 Africanelephant (1.6%) ...
## 2 Low (64.5%), High (35.5%)
##
## quantitative variables:
                                              median
##
                 name
                        class
                                  min
                                          Q1
                                                            Q3
                                                                  max
##
              body_wt numeric
                                0.005
                                       0.600
                                              3.3425
                                                       48.2025 6654.0 198.789984
   ...1
  ...2
##
             brain_wt numeric
                               0.140
                                       4.250 17.2500 166.0000 5712.0 283.134194
## ...3
        non_dreaming numeric
                               2.100
                                       6.250
                                              8.3500
                                                       11.0000
                                                                 17.9
                                                                        8.672917
                                                                  6.6
## ...4
             dreaming numeric
                                0.000
                                       0.900
                                              1.8000
                                                        2.5500
                                                                         1.972000
                                                                       10.532759
## ...5
          total_sleep numeric
                                2.600
                                       8.050 10.4500
                                                       13.2000
                                                                 19.9
## ...6
            life_span numeric
                               2.000
                                       6.625 15.1000
                                                       27.7500
                                                                100.0
                                                                       19.877586
                                                                645.0 142.353448
## ...7
            gestation numeric 12.000 35.750 79.0000 207.5000
## ...8
            predation integer
                               1.000
                                       2.000
                                              3.0000
                                                        4.0000
                                                                  5.0
                                                                         2.870968
## ...9
             exposure integer
                               1.000
                                       1.000
                                              2.0000
                                                        4.0000
                                                                  5.0
                                                                        2.419355
                               1.000 1.000 2.0000
                                                        4.0000
                                                                        2.612903
##
  ...10
               danger integer
                                                                  5.0
                 sd n missing
##
         899.158011 62
                              0
## ...1
  ...2
         930.278942 62
                              0
## ...3
                             14
           3.666452 48
## ...4
           1.442651 50
                             12
## ...5
           4.606760 58
```

```
## ...6 18.206255 58 4

## ...7 146.805039 58 4

## ...8 1.476414 62 0

## ...9 1.604792 62 0

## ...10 1.441252 62 0
```

e. Repeat part c with the new variable.

```
gf_dens(~life_span,color=~exposed,data=mammals)
```

Warning: Removed 4 rows containing non-finite values (stat_density).

3. Mammals life spans continued

a. Create a scatterplot of life span versus length of gestation.

```
mammals %>%
gf_point(life_span~gestation)
```

Warning: Removed 7 rows containing missing values (geom_point).

b. What type of an association is apparent between life span and length of gestation?

It is a weak positive association.

c. What type of an association would you expect to see if the axes of the plot were reversed, i.e. if we plotted length of gestation versus life span?

The same as this is observational data there is no reason to believe is a causal relationship just by looking at the data. Switching the axis will preserve the association.

d. Create the new scatterplot suggested in c.

```
mammals %>%
gf_point(gestation~life_span)
```

Warning: Removed 7 rows containing missing values (geom_point).

e. Are life span and length of gestation independent? Explain your reasoning.

No there is an association and it appears to be linear. If the plot looked like a "shotgun" blast, we would consider the variables to be independent. However, remember there may be confounding variables that could impact the association between these variables.