SOLUZIONI DI FONDAMENTI DI RICERCA OPERATIVA

Contents

	grammazione Lineare
1.1	Esercizio 1
	Esercizio 2
1.3	Esercizio 3
1.4	Esercizio 4
1.5	Esercizio 5
1.6	Esercizio 6
1.7	Esercizio 7
1.8	Esercizio 8
1.9	Esercizio 9
1.10	Esercizio 10

Chapter 1

Programmazione Lineare

1.1 Esercizio 1

Parametri

P porti, i = 1, 2, 3

 c_i costo per porto per ogni vettura (150, 250, 200)

 t_i costo fisso porto

S centri di smistamento, $j=1,\ldots,4$

 k_i costo di invio dal porto i al km

 a_{ij} distanza dal porto i al centro j

 r_j richiesta del centro j

 d_i capacità del porto i

Variabili

 $x_{ij} \geq 0, x_{ij} \in \mathbb{Z}$ numero di automobili dal porto ial centro j

 $y_i \in \{0,1\}$, uguali a 1 se uso il porto i

 $z_{ij} \in \{0,1\},$ uguali a 1 se il porto irifornisce il centro j

Funzione obiettivo

$$\min \left\{ \underbrace{\sum_{ij} c_i x_{ij}}_{\text{auto}} + \underbrace{\sum_{i} t_i y_i}_{\text{porto}} + \underbrace{\sum_{ij} a_{ij} k_i x_{ij}}_{\text{trasporto}} \right\}$$

$$\begin{split} \sum_i x_{ij} &\geq r_j & \forall j \in S & \text{richiesta} \\ \sum_i x_{ij} &\leq d_i y_i & \forall i \in P & \text{bigM} + \text{capacità} \\ \sum_i z_{i,3} &= 1 & \text{centro } 3 \\ x_{ij} &\leq d_i z_{ij} & \forall i \in P, \forall j \in S & \text{bigM} \\ z_{22} &\leq z_{24} & \text{logico} \end{split}$$

1.2 Esercizio 2

Parametri

A aeroporti

H hangar

 c_j, s_j, t_j operatori $\forall j \in H$

 g_1 costo squadra 1

 g_2 costo squadra2

 g_3 costo squadra 3

1c	1s	1t
3c	1s	X
3c	2s	2t

Variabili

 $x_j \geq 0, x_j \in \mathbb{Z}$ squadre tipo 1

 $y_j \geq 0, y_j \in \mathbb{Z}$ squadre tipo 2

 $z_j \geq 0, z_j \in \mathbb{Z}$ squadre tipo 3

 $\varphi \in \{0,1\},$ uguale a 1 se uso 3 squadre di tipo 2

 $w_{ij} \in \{0,1\}$, uguale a 1 se aereo i in hangar $j, \forall i \in A, \forall j \in H$

Funzione obiettivo

$$\min \sum_{j} (x_j g_1 + y_j g_2 + z_j g_3)$$

Vincoli

$$\sum_{j} w_{ij} = 1 \quad \forall i \in A$$
 assegnazione
$$x_{j} + 3y_{j} + 3z_{j} \geq \sum_{i} c_{j}w_{ij} \quad \forall j \in H$$
 operai
$$x_{j} + y_{j} + 2z_{j} \geq \sum_{i} s_{j}w_{ij} \quad \forall j \in H$$
 operai
$$\sum_{j} y_{j} - 2 \leq M\varphi$$
 (A)
$$2\varphi \leq \sum_{i} z_{j}$$
 (B)

Gli ultimi due vincoli servono per realizzare:

$$y_j \ge 3 \stackrel{\text{(A)}}{\Rightarrow} \varphi = 1 \stackrel{\text{(B)}}{\Rightarrow} z_j \ge 2$$

1.3 Esercizio 3

Parametri

 $p_j, j=1,2$

 \boldsymbol{r}_j prezzo vendita

 d_i domanda

I materie prime $i \in I$

1.4. Esercizio 4

 c_i disponibilità

 g_i costo unitario materie prima

 g_{ji} materia i necessaria per j

 o_1 ore p_1 da materia prima

 o_2 ore p_2 da materia prima

oppure ottengo p_2 con

bunità di p_1 per p_2

 o_3 ore lavorazione (p_2 da p_1)

k costo fisso attivazione

O ore a disposizione

Variabili

 $x_j \geq 0, x_j \in \mathbb{Z}$ unità di prodotto j da materie prime $y \geq 0, y \in \mathbb{Z}$ unità di prodotto 2 da prodotto 1

 $z \in \{0,1\}$, uguale a 1 se attivo processo produttivo

Funzione obiettivo

$$\max \left\{ [r_1(x_1 - by) + r_2(x_2 + y)] - \left[\sum_{ij} g_i q_{ji} x_j + kz \right] \right\}$$

Vincoli

$$\begin{aligned} y & \leq Mz & \text{bigM} \\ (x_1 - by) & \geq d_1 & \text{richiesta} \\ (x_2 - y) & \geq d_2 & \text{richiesta} \\ \sum_j q_{ji} x_j & \leq c_i & \forall i \in I & \text{disponibilità} \\ o_1 x_1 + o_2 x_2 + o_3 y & \leq O & \text{disponibilità} \end{aligned}$$

1.4 Esercizio 4

Parametri

T gruppi $i \in T$

 p_i persone

J aerei $j \in J$

 c_i costo noleggio

 B_i capienza aereo

A aeroporto $k \in A$

 G_k max voli per aeroporto

 l_{jk} costo di far partire j da k

R sottoinsiemi di aeroporti vicini

 S_r con $r=1,\ldots,R$, al più un aeroporto

Variabili

 $x_{ij} \in \{0,1\}$, uguale a 1 se gruppo i ad aereo j

 $y_{jk} \in \{0,1\}$, uguale a 1 se aereo j parte da k $z_j \in \{0,1\}$, uguale a 1 se uso aereo j $w_k \in \{0,1\}$, uguale a 1 se uso aeroporto k

Funzione obiettivo

$$\min\left\{\sum_{j}c_{j}z_{j}+\sum_{jk}l_{jk}y_{jk}\right\}$$

Vincoli

$$\begin{split} &\sum_{i} x_{ij} \leq M z_{j} \quad \forall j \in J \qquad \qquad \text{bigM} \\ &\sum_{i} p_{i} x_{ij} \leq B_{j} \quad \forall j \in J \qquad \qquad \text{capacità} \\ &\sum_{j} y_{jk} \leq G_{k} w_{k} \quad \forall k \in K \qquad \qquad \text{bigM} + \text{capienza voli} \\ &\sum_{k \in S_{r}} w_{k} \leq 1 \quad \forall r = 1, \dots, R \qquad \qquad \text{no aeroporti vicini} \\ &\sum_{j} x_{ij} = 1 \quad \forall i \in I \qquad \qquad \text{assegnamento} \\ &\sum_{k} y_{jk} = z_{j} \quad \forall j \in J \qquad \qquad \text{un aereo per aeroporto, se usato} \end{split}$$

1.5 Esercizio 5

Parametri

P domande iscrizione $i \in P$

 $M \subset P, F \subset P$, uomini, donne $(M \cup F = P, M \cap F = \emptyset)$

n max persone per classe

d massimo classi ($D = 1, \ldots, d$ insieme classi)

 b_i preparazione di i

q livello minimo per classe

C coppie formate $(i, j) \in C, i \in M, j \in F$

Variabili

 $x_{ik} \in \{0, 1\}$, uguale a 1 se persona i in classe k $y_i \in \{0, 1\}$, uguale a 1 se accetto domanda

Funzione obiettivo

$$\max \sum_{i} y_i$$

$$\sum_{i \in P} x_{ik} \le n \qquad \forall k \in D$$
 capacità classe
$$\sum_{i \in M} x_{ik} = \sum_{i \in F} x_{ik} \qquad \forall k \in D$$
 uguali M/F

1.6. Esercizio 6 5

$$\sum_{i \in P} x_{ik} b_i \geq q \sum_{i \in P} x_{ik} \qquad \forall k \in D \qquad \qquad \text{preparazione}$$

$$y_i \leq \sum_{k \in D} x_{ik} \qquad \forall i \in P \qquad \qquad \text{bigM}$$

$$\sum_{k \in D} x_{ik} \leq 1 \qquad \forall i \in P \qquad \qquad \text{massimo 1 corso per persona}$$

$$x_{ik} = x_{jk} \qquad \forall (i,j) \in C, \forall k \in D \qquad \qquad \text{coppie}$$

1.6 Esercizio 6

Parametri

Ainsieme altiforni $i=1\dots N, i\in A$

 m_i max quintali per altiforno

P prodotti $j \in P$

 q_{1j} prodotto j da 1 quintale di materia prime con processo 1 (prodotto/quintale)

 q_{2j} prodotto j da 1 quintale di materia prime con processo 2 (prodotto/quintale)

 r_j richiesto prodotto

 c_{1i} costo lavorazione al quintale in altiforno i con processo 1 (euro/quintale)

 c_{2i} costo lavorazione al quintale in altiforno i con processo 2 (euro/quintale)

 f_i costo attivazione processo 2 in altiforno i**Variabili**

 $w_i \in \{0,1\}$, uguale a 1 se lavoro più di q

 $y_i \in \{0,1\}$, uguale a 1 se uso processo 2

 $x_{ij1} \geq 0, x_{ij1} \in \mathbb{Z}$ prodotto j con processo 1 in altiforno i

 $x_{ij2} \geq 0, x_{ij2} \in \mathbb{Z}$ prodotto j con processo 2 in altiforno i

Funzione obiettivo

$$\min \left\{ \sum_{i} y_i f_i + \sum_{ij} \left[c_{1i} \frac{x_{ij1}}{q_{1j}} + c_{2i} \frac{x_{ij2}}{q_{2j}} \right] \right\}$$

$$\sum_{j} x_{ij2} \leq My_i \quad \forall i \in A \qquad \text{bigM}$$

$$\sum_{j} \left[\frac{x_{ij1}}{q_{1j}} + \frac{x_{ij2}}{q_{2j}} \right] \leq m_i \quad \forall i \in A \qquad \text{capacità}$$

$$\sum_{i} [x_{ij1} + x_{ij2}] \geq r_j \quad \forall j \in P \qquad \text{richiesta}$$

$$\sum_{i} y_i \leq N - 1 \qquad \text{no processo 2 su tutti gli altiforni}$$

$$\sum_{i} w_i \geq 1 \qquad \text{almeno 1 usa più di } q \text{ quintali}$$

$$qw_i \leq \sum_{ij} \left[\frac{x_{ij1}}{q_{1j}} + \frac{x_{ij2}}{q_{2j}} \right] \qquad \forall i \in A \qquad \text{vincolo logico}$$

1.7 Esercizio 7

Parametri

Ccioccolatini $i \in C$

S confezioni regalo $j \in S$

 r_{ij} richieste cioccolatini i in confezione j

 g_i costo cioccolatino

 m_i max produzione

 p_i vendita cioccolatino sfuso i

 d_i vendita confezione j

 b_j costo scatola j**Variabili**

 $x_i \geq 0, x_i \in \mathbb{Z}$ numero cioccolatini i prodotti

 $y_j \geq 0, y_j \in \mathbb{Z}$ numero confezionij prodotte

 $z \in \{0,1\}$, uguale a 1 se acquisto almeno q scatole

Funzione obiettivo

$$\max \left\{ \underbrace{\sum_{j} d_{j} y_{j}}_{\text{confezioni}} + \underbrace{\sum_{i} p_{i} \left(x_{i} - \sum_{j} r_{ij} y_{j} \right)}_{\text{sfusi}} - \underbrace{\sum_{i} g_{i} x_{i}}_{\text{costo prod.}} - \underbrace{\sum_{j} b_{j} y_{j}}_{\text{costo scatole}} + \underbrace{zB}_{\text{sconto}} \right\}$$

Vincoli

$$x_i \geq \sum_j r_{ij} y_j \qquad \forall i \in I$$
richiesta
$$x_i \leq m_i \qquad \forall i \in I \qquad \qquad \text{capacità}$$

$$\sum_j y_j \geq Qz \qquad \qquad \text{sconto}$$

$$x_1 \geq 0.2 \cdot \sum_i x_i \qquad \qquad \text{qualità}$$

1.8 Esercizio 8

Parametri

D difensori

A attaccanti

G giocatori $i \in G$

 $r_i \in \{0,1\}$, uguale a 1 se giocatore i è attaccante

 v_i valore giocatore

B valore complessivo formazione

q giocatori non giocanti

K formazioni |K|=2

Variabili

 $z \geq 0, z \in \mathbb{Z}$ valore formazione di minimo valore

 $x_{ik} \in \{0,1\},$ uguale a 1 se giocatore i è nelle formazione k

 $y_i \in \{0,1\}$, uguale a 1 se i gioca in entrambe

1.9. Esercizio 9

Funzione obiettivo

 $\max z$

Vincoli

$$\begin{split} \sum_i r_i x_{ik} &= A \qquad \forall k \in K \\ \sum_i (1-r_i) x_{ik} &= D \qquad \forall k \in K \\ \sum_i v_i x_{ik} &\geq B \qquad \forall k \in K \qquad \qquad \text{minimo valore richiesto} \\ \left(|G| - \sum_i y_i \right) &\geq q \qquad \qquad \text{almeno } q \text{ non giocanti entrambe} \\ \left(\sum_k x_{ik} - 1 \right) &\leq M y_i \qquad \forall i \in I \qquad \qquad \text{bigM} \\ z &\leq \sum_i v_i x_{ik} \qquad \forall k \in K \qquad \qquad \text{bottleneck} \end{split}$$

1.9 Esercizio 9

Parametri

B beni $i \in B$

M magazzino $j \in M$

A luoghi distribuzione $k \in A$

 c_i costo bene i

 v_i spazio occupato da i in magazzino

 b_j capacità

 f_j costo fisso magazzino se usato

 g_{jk} costo trasporto bene da ja k

 d_{ik} richiesta beneia k

Variabili

 $y_j \in \{0,1\}$, uguale a 1 se uso j

 $z_{ijk} \geq 0, z_{ijk} \in \mathbb{Z}$ numero di benii da ja k

Funzione obiettivo

$$\min \left\{ \sum_{ijk} c_i z_{ijk} + \sum_j f_j y_j + \sum_{ijk} z_{ijk} g_{jk} \right\}$$

$$\sum_j z_{ijk} \geq d_{ik} \qquad \forall i \in I, \forall k \in K$$
richiesta
$$\sum_j v_i z_{ijk} \leq b_j y_j \qquad \forall j \in J$$
big
M e capacità

1.10 Esercizio 10

Parametri

C analisi $i \in C, i = 1, \dots, 4$

Oospedali $j \in O, j = 1, \dots, 5$

 d_{ij} tempo da i a j

 r_j richieste analisi

 b_i max analisi nel centro i

Variabili

 $x_{ij} \geq 0, x_{ij} \in \mathbb{Z}$ numero analisi al centro i per ospedale j

 $z_{2i} \in \{0,1\},$ uguale a 1 se 2 si serve da i

Funzione obiettivo

$$\min \sum_{ij} a_{ij} x_{ij}$$

$$\sum_{j} x_{1j} \leq 0.8 \cdot \left(\sum_{j} x_{2j} + x_{3j}\right) \qquad \text{qualità}$$

$$\sum_{j} x_{2j} \leq 0.6 \cdot \left(\sum_{j} x_{ij} + x_{3j}\right) \qquad \text{qualità}$$

$$\sum_{j} (x_{3j} + x_{4j}) \leq 0.5 \cdot \sum_{ij} x_{ij} \qquad \text{qualità}$$

$$\sum_{j} x_{ij} = r_{j} \quad \forall j \in J \qquad \text{richiesta}$$

$$\sum_{j} x_{ij} \leq b_{i} \quad \forall i \in I \qquad \text{capacità}$$

$$\sum_{j} x_{2i} = 1 \qquad \text{un solo centro per 2}$$

$$x_{i2} \leq b_{i} z_{2i} \quad \forall i \in I \qquad \text{bigM}$$