1

Problems from the book: 1.12, 1.13

$\mathbf{2}$

For denne oppgaven vil python-fila 'Oslotemp' i Canvas være til hjelp.

- **a)** Plott tidsrekka 'oslotemp_monthly.txt'. Zoom inn på deler av tidsrekka, f.eks de siste 10 årene.
- b) La x_t være en stokastisk prosess der t er i måneder, tenk på x_t som en modell for månedlig temperatur-data (fra Oslo). I første omgang ser vi på

$$x_t = s_t + w_t,$$

der s_t er en deterministisk funksjon av t og $w_t \sim \text{WN}(0, \sigma_w^2)$. Vi antar at s_t er periodisk med periode 12 måneder, dvs for alle t:

$$s_t = s_{t+12}$$

Et eksempel på en slik periodisk funksjon er

$$s_t = b \sin\left(\frac{2\pi t}{12} + \phi\right)$$

der b og ϕ er konstanter.

Hva er forventningsfunksjonen og auto-kovariansfunksjon (acvf) til x_t ? Hva må s_t være for at x_t skal være stasjonær?

c) (Fra månedlig til årlig) La

$$y_k = \frac{1}{12} \sum_{t=12*k}^{12(k+1)} x_t$$

for k=0,1,2,... opp til antall år. Vis at y_k er stasjonær.

- d) Hent ut temperaturen hver 12. måned, f.eks alle januartemperaturene, eller alle junitemperaturene, og kall denne tidsrekka u_k . Er u_k stasjonær?
- e) Undersøk om de statistiske egenskapene for tidsrekka u_k avhenger av hvilken måned vi velger. F.eks. om variansene er forskjellige fra måned til måned.
- f) Vi fortsetter med x_t definert i oppg b). Hvis vi lar

$$r_t = x_t - s_t, \tag{1}$$

så vil r_t være en stasjonær stokastisk prosess (gitt de antakelsene vi har gjort nå. Eventuelle trender skal vi se mer på i kap. 2). Vi kan estimere $\{s_m, m=0,1,2,\ldots,11\}$ (klimatologien) ved å ta gjennomsnitt: s_0 gjennomsnittet av $x_0, x_{12}, x_{24}, \ldots, s_1$ gjennomsnittet av $x_1, x_{13}, x_{25}, \ldots$, osv. Funksjonen climatology(x, months) gjør dette, og kan også returnere residualene (r_t i ligning (1)) om ønskelig.

Trekk fra klimatologien i de månedlige temperaturene (Oslo), og plott residualene r_t .

g) Som en forsmak på om det fins trender i signalet s_t i tillegg til sesongvariasjonenene, beregn klimatologien både for de 30 første og de 30 siste årene av tidsrekka. Hvor stor er forskjellen på disse klimatologiene, og er forskjellene lik hver måned?