Institut für Stochastik

Prof. Dr. D. Hug · Dr. F. Nestmann

Stochastische Geometrie (SS2019)

Übungsblatt 4

Aufgabe 1 (Satz 2.1.25)

- (a) Es seien η und η' zwei zufällige Maße auf X. Zeigen Sie die Äquivalenz der folgenden vier Aussagen.
 - (i) $\eta \stackrel{d}{=} \eta'$
 - (ii) $\int_{\mathbb{X}} f \, d\eta \stackrel{d}{=} \int_{\mathbb{X}} f \, d\eta'$ für alle messbaren Funktionen $f \colon \mathbb{X} \to [0, \infty]$.
 - (iii) $\mathbb{E} \exp\left(-\int_{\mathbb{X}} f \, \mathrm{d}\eta\right) = \mathbb{E} \exp\left(-\int_{\mathbb{X}} f \, \mathrm{d}\eta'\right)$ für alle messbaren Funktionen $f \colon \mathbb{X} \to [0, \infty]$.
 - (iv) $(\eta(B_1), \dots, \eta(B_m)) \stackrel{d}{=} (\eta'(B_1), \dots, \eta'(B_m))$ für alle $m \in \mathbb{N}$ und alle $B_1, \dots, B_m \in \mathcal{X}_b$.
- (b) Nun seien η und η' Punktprozesse auf \mathbb{X} . Zeigen Sie, dass in diesem Fall die folgende Aussage (v) ebenfalls zu den vier Aussagen aus Aufgabenteil (a) äquivalent ist.
 - (v) $(\eta(B_1), \ldots, \eta(B_m)) \stackrel{d}{=} (\eta'(B_1), \ldots, \eta'(B_m))$ für alle $m \in \mathbb{N}$ und alle paarweise disjunkten Mengen $B_1, \ldots, B_m \in \mathcal{X}_b$.

Lösung:

(a) Die Implikationen (i) \Rightarrow (ii) und (ii) \Rightarrow (iii) sind trivial. Wir zeigen zunächst (iii) \Rightarrow (iv). Dazu seien $m \in \mathbb{N}$ und $B_1, \ldots, B_m \in \mathcal{X}_b$. Weiter seien $t_1, \ldots, t_m \geq 0$ und

$$f:=t_1\mathbb{1}_{B_1}+\cdots t_m\mathbb{1}_{B_m}.$$

Mit (iii) erhalten wir

$$\mathbb{E} \exp \left(-\sum_{i=1}^{m} t_i \eta(B_i)\right) = \mathbb{E} \exp \left(-\sum_{i=1}^{m} t_i \eta'(B_i)\right).$$

Somit stimmen die Laplace-Transformationen der Zufallsvektoren $(\eta(B_1), \ldots, \eta(B_m))$ und $(\eta'(B_1), \ldots, \eta'(B_m))$ überein, womit die Behauptung folgt (siehe beispielsweise Theorem 5.3 in Foundations of Modern Probability (Olav Kallenberg, 2002), weitere Referenz: Skript Räumliche Stochastik, §2.2).

Abschließend zeigen wir die Implikation (iv) \Rightarrow (i). Dazu sei \mathcal{G} das System der Mengen

$$A := \{ \mu \in M(\mathbb{X}) : (\mu(B_1), \dots, \mu(B_m)) \in C \} \in \mathcal{M}(\mathbb{X})$$

mit $m \in \mathbb{N}$, $B_1, \ldots, B_m \in \mathcal{X}_b$ und $C \in \mathcal{B}(\mathbb{R}^m)$. Dann ist $\mathcal{G} \cap$ -stabil und es gilt (nach Definition) $\sigma(\mathcal{G}) = \mathcal{M}(\mathbb{X})$. Voraussetzung (iv) impliziert $\mathbb{P}(\eta \in A) = \mathbb{P}(\eta' \in A)$ für alle $A \in \mathcal{G}$ und somit folgt aus dem Eindeutigkeitssatz für Maße die Verteilungsgleichheit $\eta \stackrel{d}{=} \eta'$.

(b) Zunächst ist die Implikation (iv) \Rightarrow (v) trivial. Wir zeigen daher noch die Implikation (v) \Rightarrow (iv). Dazu seien $m \in \mathbb{N}, B_1, \ldots, B_m \in \mathcal{X}_b$ und $l_1, \ldots, l_m \in \mathbb{N}_0$. Wir zerlegen die Mengen B_i so, dass sie sich als disjunkte Vereinigungen schreiben lassen.

Es seien I_1, \ldots, I_n die Elemente der Potenzmenge von $\{1, \ldots, m\}$, wobei $n = 2^m$ gilt. Für $k \in \{1, \ldots, n\}$ sei

$$A_k := \bigcap_{i \in I_k} B_i \cap \bigcap_{i \in \{1, \dots, m\} \setminus I_k} B_i^c.$$

Für zwei Indices $k_1, k_2 \in \{1, ..., n\}$ mit $k_1 \neq k_2$ existiert ein $i \in \{1, ..., m\}$, sodass $i \in I_{k_1} \cup I_{k_2}$ und $i \notin I_{k_1} \cap I_{k_2}$ gilt. Wir nehmen oBdA $i \in I_{k_1}$ und $i \notin I_{k_2}$ an. Es folgt $A_{k_1} \subset B_i$ und $A_{k_2} \subset B_i^c$, also insbesondere $A_{k_1} \cap A_{k_2} = \emptyset$. Somit sind die Mengen $A_1, ..., A_n$ paarweise disjunkt.

Für $i \in \{1, \ldots, m\}$ sei

$$J_i := \{k \in \{1, \dots, n\} : i \in I_k\}.$$

Damit folgt direkt

$$\bigcup_{j\in J_i} A_j \subset B_i.$$

Ist $x \in B_i$, so existiert genau ein $k \in \{1, ..., n\}$ mit

$$x \in \bigcap_{l \in I_k} B_l \cap \bigcap_{l \in \{1, \dots, m\} \setminus I_k} B_l^c = A_k.$$

Dabei gilt insbesondere $i \in I_k$. Wir erhalten

$$B_i = \bigcup_{j \in J_i} A_j.$$

Mit Anwendung von (v) folgt

$$\mathbb{P}(\eta(B_1) = l_1, \dots, \eta(B_m) = l_m)
= \mathbb{P}\left(\sum_{j \in J_1} \eta(A_j) = l_1, \dots, \sum_{j \in J_m} \eta(A_j) = l_m\right)
= \mathbb{P}\left((\eta(A_1), \dots, \eta(A_n)) \in \left\{(k_1, \dots, k_n) \in \mathbb{N}_0^n : \sum_{j \in J_1} k_j = l_1, \dots, \sum_{j \in J_m} k_j = l_m\right\}\right)
= \mathbb{P}\left((\eta'(A_1), \dots, \eta'(A_n)) \in \left\{(k_1, \dots, k_n) \in \mathbb{N}_0^n : \sum_{j \in J_1} k_j = l_1, \dots, \sum_{j \in J_m} k_j = l_m\right\}\right)
= \mathbb{P}\left(\sum_{j \in J_1} \eta'(A_j) = l_1, \dots, \sum_{j \in J_m} \eta'(A_j) = l_m\right)
= \mathbb{P}(\eta'(B_1) = l_1, \dots, \eta'(B_m) = l_m),$$

was den Beweis beendet.

Aufgabe 2 (Poisson-Prozess)

Sei ξ ein homogener Poisson-Prozess in \mathbb{R}^d mit Intensität c>0. Ferner sei

$$d_{\mathcal{E}} := \inf\{\|x\| : x \in \xi\}.$$

- (a) Zeigen Sie, dass d_{ξ} eine Zufallsvariable ist und bestimmen Sie deren Verteilung.
- (b) Es sei $n \in \mathbb{N}$ und $d_n := \inf\{r \geq 0 : \xi(B(0,r)) = n\}$ der n-t kleinste Abstand eines Punktes von ξ zum Ursprung. Bestimmen Sie die Verteilung von d_n .
- (c) Es bezeichne H die Verteilungsfunktion von d_{ξ} . Zeigen Sie

$$H(r) = \lim_{\varepsilon \to 0} \mathbb{P}(\xi(B(0,r)) \ge 2 \mid \xi(B(0,\varepsilon)) = 1), \qquad r > 0.$$

Lösung:

(a) Für jedes $r \geq 0$ gilt

$$d_{\xi}^{-1}([r,\infty)) = \{d_{\xi} \ge r\} = \{\xi(\text{int } B(0,r)) = 0\} \in \mathcal{A}.$$

Da $\{[r,\infty):r\geq 0\}$ ein Erzeugendensystem von $\mathcal{B}([0,\infty))$ ist, ist d_{ξ} eine Zufallsvariable. Weiter gilt

$$\mathbb{P}(d_{\xi} > r) = \mathbb{P}(\xi(B(0,r)) = 0) = e^{-c\lambda^{d}(B(0,r))} = e^{-c\kappa_{d}r^{d}},$$

also

$$\mathbb{P}(d\xi \le r) = 1 - e^{-c\kappa_d r^d},$$

woraus folgt, dass d_{ξ} Weibull-verteilt ist mit den Parametern $(c\kappa_d)^{1/d}$ und d.

(b) Für $r \ge 0$ gilt

$$\mathbb{P}(d_n \le r) = \mathbb{P}(\xi(B(0,r)) \ge n) = 1 - \sum_{k=0}^{n-1} \mathbb{P}(\xi(B(0,r)) = k) = 1 - \sum_{k=0}^{n-1} e^{-c\kappa_d r^d} \frac{(c\kappa_d r^d)^k}{k!}.$$

(c) Es sei r > 0. Nach Definition des Poisson-Prozesses gilt

$$\mathbb{P}(\xi(B(0,r)) \ge 2 \mid \xi(B(0,\varepsilon)) = 1) = \frac{\mathbb{P}(\xi(B(0,r) \setminus B(0,\varepsilon)) \ge 1, \ \xi(B(0,\varepsilon)) = 1)}{\mathbb{P}(\xi(B(0,\varepsilon)) = 1)}$$

$$= \mathbb{P}(\xi(B(0,r) \setminus B(0,\varepsilon)) \ge 1)$$

$$= 1 - \mathbb{P}(\xi(B(0,r) \setminus B(0,\varepsilon)) = 0)$$

$$= 1 - e^{-c\kappa_d(r^d - \varepsilon^d)} \xrightarrow{\varepsilon \to 0} 1 - e^{-c\kappa_d r^d} = H(r).$$

Aufgabe 3 (Überlagerung von Punktprozessen)

Für $i=1,\dots,n$ seien ξ_i unabhängige Punktprozesse in \mathbb{R}^d mit Intensitätsmaßen Λ_i und Laplace-Funktionalen

 $L_i(f) := \mathbb{E}\left[\exp\left(-\int f(x)\,\xi_i(\mathrm{d}x)\right)\right], \qquad f \colon \mathbb{R}^d \to [0,\infty] \text{ messbar.}$

- (a) Stellen Sie das Intensitätsmaß Λ bzw. das Laplace-Funktional L der Überlagerung $\xi := \xi_1 + \xi_2 + \dots + \xi_n$ der n Punktprozesse als Funktion der Λ_i bzw. L_i dar.
- (b) Zeigen Sie einerseits unter Verwendung des Laplace-Funktionals und andererseits direkt, dass die Überlagerung von n unabhängigen Poisson-Prozessen ξ_1, \ldots, ξ_n mit jeweils lokal endlichen Intensitätsmaßen $\Lambda_1, \ldots, \Lambda_n$ wieder ein Poisson-Prozess ist.

Lösung:

(a) Für $A \in \mathcal{B}(\mathbb{R}^d)$ gilt

$$\mathbb{E}[\xi(A)] = \mathbb{E}[\xi_1(A)] + \ldots + \mathbb{E}[\xi_n(A)] = \sum_{i=1}^n \Lambda_i(A),$$

das heißt

$$\Lambda = \sum_{i=1}^{n} \Lambda_i.$$

Außerdem gilt für messbare $f: \mathbb{R}^d \to [0, \infty]$

$$L(f) = \mathbb{E}\left[\exp\left(-\int f \, d\xi\right)\right] = \mathbb{E}\left[\exp\left(-\left(\int f \, d\xi_1 + \dots + \int f \, d\xi_n\right)\right)\right]$$
$$= \mathbb{E}\left[\prod_{i=1}^n \exp\left(-\int f \, d\xi_i\right)\right] = \prod_{i=1}^n L_i(f),$$

wobei erst im letzten Schritt die Unabhängigkeit von ξ_1, \ldots, ξ_n einging.

(b)

1. Weg: Wegen (a) und wegen Satz 2.2.4 angewandt auf ξ_1, \ldots, ξ_n erhält man

$$L_{\xi_1 + \dots + \xi_n}(f) = \prod_{i=1}^n L_{\xi_i}(f) = \prod_{i=1}^n \exp\left(-\int (1 - e^{-f(x)}) \Lambda_i(dx)\right)$$
$$= \exp\left(-\int (1 - e^{-f(x)}) \left(\sum_{i=1}^n \Lambda_i\right) (dx)\right)$$
$$= \exp\left(-\int (1 - e^{-f(x)}) \Lambda(dx)\right),$$

für messbare $f: \mathbb{R}^d \to [0, \infty]$. Hieraus folgt mit Satz 2.2.4, dass ξ ein Poissonprozess ist.

2. Weg: Seien $B_1, \ldots, B_m \in \mathcal{B}(\mathbb{R}^d)$ paarweise disjunkt. Da ξ_1, \ldots, ξ_n unabhängige Poissonprozesse sind, folgt aufgrund der Unabhängigkeitseigenschaft für jeden einzelnen Poissonprozess, dass $\xi_1(B_1), \ldots, \xi_1(B_m), \xi_2(B_1), \ldots, \xi_2(B_m), \ldots, \xi_n(B_1), \ldots, \xi_n(B_m)$ unabhängig sind. Eine Anwendung des Blockungslemmas ergibt, dass auch $\xi(B_1) = \xi_1(B_1) + \ldots + \xi_n(B_1), \ldots, \xi(B_m) = \xi_1(B_m) + \ldots + \xi_n(B_m)$ unabhängig sind.

Außerdem gilt für jedes $B \in \mathcal{B}(\mathbb{R}^d)$ wegen des Additionsgesetzes für Poisson-Verteilungen, dass $\xi(B) = \xi_1(B) + \ldots + \xi_n(B)$ poisson-verteilt ist mit Parameter $\Lambda_1(B) + \ldots + \Lambda_m(B)$.

Aufgabe 4

Sei ξ ein Poisson-Prozess in \mathbb{R}^d mit Intensitätsmaß Θ und $A, B \in \mathcal{B}(\mathbb{R}^d)$. Zeigen Sie

$$Cov(\xi(A), \xi(B)) = \Theta(A \cap B).$$

Lösung: Für $A, B \in \mathcal{B}(\mathbb{R}^d)$ gilt

$$\begin{aligned} \operatorname{Cov}(\xi(A),\xi(B)) &= \operatorname{Cov}(\xi(A \setminus B) + \xi(A \cap B), \xi(B \setminus A) + \xi(A \cap B)) \\ &= \operatorname{Cov}(\xi(A \setminus B), \xi(B \setminus A)) + \operatorname{Cov}(\xi(A \setminus B), \xi(A \cap B)) \\ &+ \operatorname{Cov}(\xi(A \cap B), \xi(B \setminus A)) + \operatorname{Cov}(\xi(A \cap B), \xi(A \cap B)) \\ &= 0 + 0 + 0 + \operatorname{Var}(\xi(A \cap B)) \\ &= \Theta(A \cap B). \end{aligned}$$

Dabei ging insbesondere ein, dass die Zufallsvariablen $\xi(A \setminus B), \xi(A \cap B), \xi(B \setminus A)$ (paarweise) unabhängig sind und $\xi(A \cap B)$ eine Poisson-Verteilung mit Parameter $\Theta(A \cap B)$ besitzt.