Prova di esame dei corsi di Fondamenti di Informatica e Informatica Teorica

9 luglio 2018

Nota Bene: Non saranno corretti compiti scritti con una grafia poco leggibile.

Problema 1. Sia $L_1 \subseteq \Sigma^*$ un linguaggio decidibile e sia $L_2 \subseteq \Sigma^*$ un linguaggio accettabile ma non decidibile. Detta T_1 la macchina di Turing che decide L_1 e detta T_2 la macchina di Turing che accetta L_2 , si consideri il linguaggio $L \subseteq \Sigma^* \times \mathbb{N}$ di seguito definito

$$L = \{(x,k) : x \in \Sigma^* \land k \in \mathbb{N} \land [x \notin L_1 \lor (x \notin L_2 \land T_2(x) \text{ rigetta in } k \text{ passi })] \}.$$

Si dimostri se L è un linguaggio accettabile o decidibile.

Problema 2. Sia k un intero fissato. Si consideri il seguente problema: dato un grafo (non orientato) G = (V, E) decidere se esiste una colorazione valida per G (ossia, che non colora con lo stesso colore nodi adiacenti) con 3 colori tale che esattamente k nodi siano colorati con il primo colore, esattamente k nodi siano colorati con il secondo colore, ed i rimanenti nodi siano colorati con il terzo colore.

Dopo aver formalizzato il suddetto problema mediante la tripla $\langle I, S, \pi \rangle$, si risponda alle seguenti domande (nell'ordine che si ritiene opportuno), motivando in tutti i casi la propria risposta.

- a) Il problema è in **P**?
- b) Il problema è in **NP**?
- c) Il problema è in co**NP**?

Problema 3. Si consideri il seguente problema: dati un insieme $X = \{x_1, x_2, ... x_n\}$, una collezione $\mathscr{C} \subseteq X \times X$ di coppie di elementi di X e un intero $k \in \mathbb{N}$, decidere se esiste un sottoinsieme X' di X di cardinalità al più k tale che, per ogni $C \in \mathscr{C}$, $C \cap X' \neq \emptyset$.

Dopo aver formalizzato il suddetto problema mediante la tripla $\langle I, S\pi, \rangle$, si risponda alle seguenti domande (nell'ordine che si ritiene opportuno), motivando in tutti i casi la propria risposta.

- a) Il problema è in **P**?
- b) Il problema è in **NP**?
- c) Il problema è in co**NP**?