BASIC SCRIPTING IN DTSA-II

NICHOLAS W. M. RITCHIE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20899-8372

OVERVIEW

- Python 2.5 Syntax Scripting
 - General purpose, object oriented programming language
- Libraries
 - Access to all Java libraries
 - Access to all DTSA-II quantitative algorithms
 - Access to other algorithms not available through the DTSA-II GUI

Useful Utility Commands

Generic Python Utility Methods

dir() Displays a list of global functions, classes and variables

dir(obj) Displays a list of methods and properties of the object obj

help() Displays global help

help(obj) Displays help on the object obj

DTSA-II Specific Utility Methods

ls() Displays a list of all spectra in the Spectrum List with

aliases ('s?' where ? is an integer)

spectra() Returns a list object containing the spectra in the

Spectrum List. spectra(True) returns only the

selected spectra.

listDetectors() Displays a list of all available detectors with

aliases ('d?' where ? is an integer)

getElement() GUI to select a single element

getElements() GUI to select multiple elements

createMaterial()GUI to select or create a new Composition or Material

Spectrum Math

Assign the result to the variable "res"

Construct a spectrum that is $0.6 \cdot \text{Fe } 1 + 0.25 \cdot \text{Cr } 1 + 0.15 \cdot \text{Ni } 1$

3> res=(0.6*s6+0.25*s4+0.15*s10) 4> res.display()

Show the spectrum in the DTSA-II spectrum display

Operations: +, -, *, abs()

- You don't need to declare variables.
- Variable type is defined by what it contains.

```
available for use with the contents of the variable "res"
                                                                          Calling convention is:
3> res=(0.6*s6+0.25*s4+0.15*s10)
                                                                                var.method()
4> res.display() _
5> dir(res)
['NullSpectrum', '__add__', '__class__', '__delattr__', '__dict__', '__doc__', <u>'/_eq__'</u>, '__getat-
tribute__', '__getitem__', '__getslice__', '__gt__', '__hash__', '__initProxy__', '__init__', '__le__',
'__len__', '__lt__', '__module__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__re-
pr__', '__rmul__', '__setattr__', '__str__', '__sub__', '__supernames__', '__weakref__', '__getPyInstance',
'_getPySystemState', '_setPyInstance', '_setPySystemState', 'abs', 'applyLLT', 'autoOffset', 'back-
groundCorrect', 'beamEnergy', 'channel', 'channelCount', 'channelWidth', 'class', 'classDictInit',
'clone', 'compareTo', 'composition', 'display', 'duaneHunt', 'energies', 'energy', 'equals', 'finalize',
'firstNonZeroChannel', 'fromXML', 'getChannelCount', 'getChannelWidth', 'getClass', 'getCounts',
'getFWHMatMnKa', 'getProperties', 'getWrappeø', 'getZeroOffset', 'hashCode', 'initializeSpectru-
mIndex', 'lastNonZeroChannel', 'liveTime', 'maxChannel', 'notify', 'notifyAll', 'offset', 'partition', 'peak-
Integral', 'positiveDefinite', 'probeCurrent', 'properties', 'property', 'remap', 'rename', 'save', 'scale',
'setAsStandard', 'setEnergyScale', 'setFWHMatMnKa', 'setLiveTime', 'setProbeCurrent', 'smooth',
'subSample', 'super__toString', 'super__toXML', 'takeOffAngle', 'toDouble', 'toString', 'toXML',
'totalCounts', 'wait', 'wrapped', 'zeroOffset']
6> res.getChannelWidth()
9.924458080007994
7> help(res.smooth)
Syntax: s.smooth()
  Performs a fifth-order Savitzky-Golay filter on the spectrum s. Getting help on a method
```


Command "dir(res)" returns a list of the names of the "methods"

```
Get the string representation of "res" and call it "oldName"

12> oldName=str(res)

13> oldName

'Sum[0.6\xd7Fe 1+0.25\xd7Cr 1+0.15\xd7Ni 1]'
Give the spectrum the name "Bogus"

15> res.rename(oldName)

Set it back to the original name.
```

The method "rename" takes a single argument.

Detector alias (for referring to the detector within scripts)

Basic ZAF calculations

Create a material object

```
Calculate the ZAF correction for the material "ss309"
1> ss309=material("SS309")
                                               for the detector "d2" at "15.0" keV.
2> zaf(ss309,d2,15.0) 4
Material SS309 = [Cr(25.00 \text{ wgt}), Fe(55.00 \text{ wgt}), Ni(20.00 \text{ wgt}), \Sigma=100.00, 5 \text{ g/cc}]
Detector Bruker 5 eV/ch - FWHM[Mn Kα]=127.9 eV - Sep 1, 2009 12:00:01 AM
Algorithm XPP - Pouchou & Pichoir Simplified
MAC
          NIST-Chantler 2005
E_0
          15 keV
Take-off 40°
          Seigbahn Standard Energy
IUPAC
                                           ZAF
                                                      Z
                                                                Α
                                                                                   k-ratio
Cr K-L3
                     Pure Cr
                               5.4147
                                         1.1012
                                                    0.9997
                                                               0.9939
                                                                         1.1084
                                                                                    0.2753
          Kor1
                                                                                   0.2773
Cr K-M3
          KB1
                     Pure Cr
                               5.9467
                                         1.1090
                                                    0.9997
                                                               0.9952
                                                                         1.1147
                                         0.8777
                                                              0.8783
                                                                                   0.2194
Cr L3-M5
          L\alpha 1
                    Pure Cr
                               0.5722
                                                    0.9969
                                                                         1.0024
                                                                                   0.5454
                    Pure Fe
                                         0.9917
                                                    0.9966
Fe K-L3
          K\alpha 1
                               6.4039
                                                              0.9751
                                                                         1.0205
Fe K-M3
                                                                                   0.5491
          KB1
                    Pure Fe
                               7.0580
                                         0.9983
                                                    0.9966
                                                              0.9805
                                                                         1.0216
Fe L3-M5 Lα1
                    Pure Fe
                               0.7045
                                         0.4920
                                                    0.9968
                                                              0.4934
                                                                         1.0004
                                                                                   0.2706
Ni K-L3
          K\alpha 1
                    Pure Ni
                              7.4781
                                        0.9548
                                                 1.0083
                                                              0.9470
                                                                         1.0000
                                                                                   0.1910
Ni K-M3
          KB1
                                                                                    0.1933
                    Pure Ni
                             8.2647
                                         0.9665
                                                    1.0083
                                                              0.9586
                                                                         1.0000
Ni L3-M5 Lα1
                                         0.2656
                                                   1.0133
                                                               0.2622
                                                                                   0.0531
                    Pure Ni
                               0.8511
                                                                         0.9996
```

3>

ZAF AGAINST SPECIFIC STANDARDS

```
13> ss310=createMaterial()
14> zaf(ss310,d2,15.0,stds={"Fe":"SS309","Cr":"SS309","Ni":"SS309"})
Material SS310 = [Si(1.50 \text{ wgt}), Cr(25.00 \text{ wgt}), Mn(2.00 \text{ wgt}), Fe(51.00 \text{ wgt}), Ni(20.50 \text{ wgt}), \Sigma=100.00, 5
a/ccl
Detector Bruker 5 eV/ch - FWHM[Mn Kα]=127.9 eV - Sep 1, 2009 12:00:01 AM
Algorithm XPP - Pouchou & Pichoir Simplified
                                                        Defaults to pure elements.
MAC
          NIST-Chantler 2005
E0
          15 keV
                                                                  Use the specified standard
Take-off 40°
IUPAC
          Seigbahn
                    Standard Energ
                                                                Α
                                                                                   k-ratio
                                                               0.6228
Si K-L3
          K\alpha1
                     Pure Si
                                                                         1.0008
                                                                                    0.0108
          KB1
                     Pure Si
                                          0.7532
                                                               0.6535
                                                                         1.0009
                                                                                   0.0113
Si K-M3
                                                    0.9977
                                                                                   0.9913
Cr K-L3
          Kα1
                     SS309
                               5.4147
                                          0.9913
                                                               0.9997
                                                                         0.9939
                                                                                   0.9911
Cr K-M3
                     55309
                                                    0.9977
                                                               0.9998
                                                                         0.9936
          KB1
Cr L3-M5 La1
                                                                                   0.9890
                     55309
                                                    0.9980
                                                              0.9912
                                                                        0.9999
                               5.8987
Mn K-L3
          Kα1
                     Pure Mn
                                                    0.9776
                                                              0.9973
                                                                        1.0302
                                                                                   0.0201
                                                                        1.0259
Mn K-M3
                     Pure Mn
                                          0.9762
                                                    0.9776
                                                              0.9734
                                                                                   0.0195
          KB1
                                          0.4405
                                                                                   0.0088
Mn L3-M5 Lα1
                     Pure Mn
                                                    0.9764
                                                              0.4502
                                                                        1.0021
Fe K-L3
                     SS309 /
                                          0.9983
                                                    0.9976
                                                              0.9999
                                                                        1.0008
                                                                                   0.9257
          Kα1
Fe K-M3
          KB1
                     55309
                               7.0580
                                          0.9965
                                                    0.9976
                                                              0.9982
                                                                         1.0007
                                                                                   0.9240
                               0.7045
Fe L3-M5 Lα1
                     55309
                                          0.9527
                                                    0.9980
                                                             0.9546
                                                                        1.0000
                                                                                   0.8834
                     SS309 J
Ni K-L3
          K\alpha 1
                               7.4781
                                          0.9991
                                                    0.9975
                                                             1.0016
                                                                         1.0000
                                                                                   1.0241
Ni K-M3
          Kß1
                     55309
                               8.2647
                                          0.9987
                                                    0.9975
                                                              1.0013
                                                                         1.0000
                                                                                   1.0237
Ni L3-M5 La1
                     SS309
                               0.8511
                                          1.0242
                                                    0.9980
                                                              1.0262
                                                                         1.0000
                                                                                   1.0498
15>
```

Note: When quantified using a similar standard, the Z, A and F terms are all close to 1.

This is likely to produce accurate quantifications!!!

TABULATING ELEMENTAL DATA

listEdges("Pb")

listTransitions("Fe")

listData("Si")

17> listE	dges ("Pb")	
IUPAC	Siegbahn	Energy (keV)
Pb K	Pb K	88.0045
Pb L1	Pb LI	15.8608
Pb L2	Pb LII	15.2
Pb L3	Pb LIII	13.0352
Pb M1	Pb MI	3.8507
Pb M2	Pb MII	3.5542
Pb M3	Pb MIII	3.0664
Pb M4	Pb MIV	2.5856
Pb M5	Pb MV	2.484
Pb N1	Pb NI	0.8936
Pb N2	Pb NII	0.7639
Pb N3	Pb NIII	0.6445
Pb N4	Pb NIV	0.4352
Pb N5	Pb NV	0.4129
Pb N6	Pb NVI	0.1429
Pb N7	Pb NVII	0.1381
Pb 01	Pb OI	0.1473
Pb 02	Pb OII	0.1048
Pb 03	Pb OIII	0.086
Pb 04	Pb OIV	0.0218
Pb 05	Pb OV	0.0192
185		

TITORO	C	Title of the base	E	M1
IUPAC	Siegbahn	Weight	Energy (keV)	Wavelength (Å)
Fe K-L3	Kα1	1	6.4039	1.93607
Fe K-L2	Kα2	0.5118	6.3909	1.94001
Fe K-M3	Кβ1	0.11895	7.058	1.75665
Fe K-M2	КβЗ	0.0684	7.058	1.75665
Fe K-M5	Кβ5	0.0001	7.1084	1.74419
Fe L3-M5	La1	1	0.7045	17.5989
Fe L3-M4	L _α 2	0.1144	0.7045	17.5989
Fe L3-M1	L€	0.10529	0.6152	20.1535
Fe L2-M4	Lß1	0.16704	0.7175	17.28
Fe L2-M3	Lβ17	0.0001	0.6671	18.5855
Fe L2-N1	L _Y 5	0.0045	0.718	17.268
Fe L2-M1	Lη	0.0511	0.6282	19.7364
Fe L1-M3	Lß3	0.0479	0.7921	15.6526
Fe L1-M2	Lß4	0.02569	0.7921	15.6526
19>				

19> list	Data("Si")			
Abbrev	Name	Z	A	
Si	Silicon	14	28.0855	
IUPAC	Siegbahn	Energy (keV)	
Si K	Si K	1.8389	,	
Si L1	Si LI	0.1487		
Si L2	Si LII	0.0992		
Si L3	Si LIII	0.0992		
Si M1	Si MI	0.011357	2	
Si M2	Si MII	0.005083	05	
IUPAC	Siegbahn	Weight	Energy	Wavelength
			(keV)	(Å)
Si K-L3	Kα1	1	1.7397	
Si K-L2	Kα2	0.5053	1.7397	7.12676
Si K-M3	KB1	0.02779	1.829	6.7788
Si K-M2	КВЗ	0.0139	1.83382	6.76099
20>	·			

listData(..) = listEdges(...) + listTransitions(...) + extra

DISPLAYING MAC DATA

getMac(...) actually creates a spectrum-like object. Hence the call to the method "display()" plots the MAC on the spectrum window (which I've scaled to log10.)

CALCULATING MAC DATA

```
23> help(mac)
Syntax: mac(mat, xx, [alg=epg.MassAbsorptionCoefficient.Chantler2005])
   where mat is a material or element (by name, Material or Element object), xx is an element,
atomic shell or x-ray transition and alg is the tabulation to use (by default Chantler2005).
Displays the mass absorption coefficient for the specified element or x-ray transition in the
specified material.
24> mac("SS309", "Fe")
                                                   For all transitions
                                                   associated with an element.
          (cm^2/g)
```

XRT Fe K-L2 163.494 Fe K-L3 162.578 Fe K-M2 125.719 Fe K-M3 125.719 Fe K-M5 128.58 Fe L1-M2 10924.9 Fe L1-M3 10924.9 Fe L2-M1 6774.49 Fe L2-M3 5878.88 Fe L2-M4 11044.9 Fe L2-N1 11026.4 Fe L3-M1 7117.92 Fe L3-M4 5661.85 Fe L3-M5 5661.85

For a specific transition in IUPAC notation.

```
27> mac("SS309", transition("Fe L3-M5"))
          (cm^2/g)
Fe L3-M5 5661.85
```


Useful Objects

Creating various types of useful objects:

element: creates epq.Element objects atomicShell: creates epq.AtomicShell objects material: creates either epq.Composition

or epq.Material objects.

```
29> elm=element("Fe")
   comp=material("Fe203")
33> mat=material("Fe203",5.24)
```

Many of the objects manipulated from the command line are actually Java objects. Many are from one of the libraries within *epg.jar*

The fully qualified name of the Element object is: gov.nist.microanalysis.EPQLibrary.Element This is a little verbose so within the scripting the alias: epq.Element is equivalent.

Common aliases:

gov.nist.microanalysis.EPQLibrary epq gov.nist.microanalysis.Utility epu gov.nist.microanalysis.EPQTools ept gov.nist.microanalysis.EPQLibrary.Detector epd

Library documentation:

http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/JavaDoc/index.html

QUICK SIMULATION

Monte Carlo Simulation

'help(mc)' provides help on the module aliased 'mc'

Loops


```
22> help(ionizationRange)
Syntax: ionizationRange(mat,[e0=20.0],[alg=epq.ElectronRange.KanayaAndOkayama1972]) Ex:
ionizationRange(createMaterial(), 30.0)
      Tablulates the mean electron range for each element in the sample and each excitable shell.
23> ionizationRange ("Fe203", 15.0)
   Material: Fe203
Description: Fe203 = [0(0.6 \text{ atoms}), Fe(0.4 \text{ atoms})]
Beam energy: 15 keV
  Algorithm: Kanaya & Okayama 1972
Shell
           Range
          (μ m (q/cm^2))
0 K
          7,29219
0 L3
          7.31989
0 M5
          7,31991
Fe K
          5.21487
          7.27523
Fe L3
Fe M5
          7.3199
```

If you hand ionizationRange a Material (Composition + density) the output is in μm otherwise for Compositions it is in μm (g/cm³).

getEfficiency(d2) gets the effective quantum efficiency of the detector – includes window, support, dead layers, coatings, crystal geometry – as a spectrum-line object.

Notice how the SDD looses efficiency at high energies. This is due to the relative thinness of the detector (0.5 mm vs 3 mm for a conventional Si(Li). Also observe how the

