Let A be a $n \times n$ complex matrix whose eigenvalues have absolute value at most 1. Prove that

$$||A^n|| \le \frac{n}{\ln 2} ||A||^{n-1}.$$

(Here $||B|| = \sup ||Bx||$ for every $n \times n$ matrix B and

(Here
$$||B|| = \sup_{\|x\| \le 1} ||Bx||$$
 for every $n \times n$ matrix B and $||x|| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$ for every complex vector $x \in \mathbb{C}^n$.)