Avaliação 05 da disciplina de Fotografia Computacional do Curso de Fotografia Computacional Total de pontos 9/10 (2)
E-mail * wnm@cin.ufpe.br
Nome Completo: * Wallace Nascimento Melo
✓ 1- Qual a função da decomposição da imagem na execução do *1/1 mapeamento local de tons?
Otimizar o processamento Operar nas cores preservando o contraste
 Operar nas cores preservando o contraste Operar com foco na intensidade (contraste) preservando as cores Apenas uma escolha arbitrária de design da operação

✓	2- Ao utilizar o filtro bilateral em operações de contraste, a execução no espaço de cor CIE-Lab é útil devido à(ao):	*1/1
\bigcirc	simplificação da fórmula do filtro, tornando-o mais eficiente	
\bigcirc	sua melhor qualidade na captura de informação de crominância	
•	sua uniformidade perceptual proposta, explorando sua capacidade de operar em diferenças perceptíveis	✓
0	seu mapeamento dos pixels mais escuros à valores mais claros	
✓	3- Considerando a aplicação do processo de quantização a uma imagem para gerar o efeito cartoon, esse processo se justifica por:	*1/1
•	Reduzir a quantidade de cores únicas da imagem, intensificando o efeito artístico	✓
0	Comprimir a imagem para reduzir o tamanho de arquivo	
\bigcirc	Alterar o contraste do resultado final	
0	Otimizar a geração dos resultados a partir da exploração do intervalo limitado de valores	
✓	4- Um modelo detector identifica na imagem regiões de interesse contendo objetos e para cada região retorna além da classe do objeto,	*1/1
0	o índice da região em uma lista de regiões identificadas	
•	a posição e dimensões (ou posição dos cantos) da região retangular dentro da imagem	✓
\bigcirc	a região em si, recortada da imagem	
0	nada mais, já que apenas o objeto serve para identificar a região	

✓	5- Para encontrar a interseção entre duas imagens no processo de stitching, é necessário catalogar pontos de interesse que potencialmente estão presentes em ambas as imagens. Qual tipo de informação é geralmente utilizada para computá-los?	*1/1
0	A cor dos pixels	
•	Descritores de características com SIFT e ORB	✓
0	As bordas contidas nas imagens obtidas a partir de um filtro como Sobel Laplace	ou
0	As extremidas das imagens (primeira e última coluna, primeira e última linha)	
×	6- Ao executar super-resolução de uma imagem, redes neurais tendem a obter melhor desempenho que interpoladores devido ao (assinale a melhor alternativa)	*0/1
0	Uso exclusivo dos valores de pixels vizinhos	
0	Uso de informações além de apenas valores dos pixels vizinhos	
0	Uso da variação no contraste local de cada pixel	
	Uso da aprendizagem de um único kernel de interpolação mais complexo que os métodos clássicos	×
Resp	posta correta	
•	Uso de informações além de apenas valores dos pixels vizinhos	

7- Aplique a pipeline de NPR (Non Photorealistic Rendering) à *1/1 imagem

https://github.com/kevinruiz182/image_processing_tools/blob/main/images/color_image_processing/bald_eagle_portrait.jpg
com as seguintes modificações:

- O "step" na função de quantização é calculado da mesma forma que na original e [x] representa a função piso;
- Os limiares menor e maior passados ao algoritmo de Canny devem ser 40 e 70, respectivamente.

Assinale abaixo, o valor mais próximo das médias, após a pipeline alterada, dos canais R, G e B nesta mesma ordem.

$$\operatorname{quantize}(l) = \left\lfloor \frac{l}{\operatorname{step}} \right\rfloor * \operatorname{step}$$

 $edges(l) = 1 - canny(l, limiar_menor, limiar_maior)$

- 0.267, 0.229, 0.191
- 0.277, 0.238, 0.201
- 0.312, 0.421, 0.089
- 0.299, 0.587, 0.114

	8- Considerando os assuntos abordados no módulo 05, assinale *1/1 abaixo a alternativa VERDADEIRA :
0	Para realizar anonimização de rostos é necessário um modelo de I.A que gere uma "bounding box" e não uma segmentação que indique a qual classe pertence o pixel, pois poderemos ver o contorno do rosto no segundo caso, mesmo que ele seja borrado.
0	Para anonimizar rostos em uma imagem usa-se 2 processos: detecção de faces e embaçamento. A detecção normalmente é feita com um modelo generativo e o embaçamento é feito usando a transformada de Fourier.
0	"Image super resolution" é o processo de aumento e aprimoramento de uma imagem, ele geralmente é feito com modelos de classificação que realizam a interpolação de pixels aumentando a resolução da imagem.
•	Quando queremos que o rosto fique "pixelado" para anonimizar as pessoas em uma imagem, reduzimos a imagem para uma quantidade menor de pixels e depois realizamos a interpolação usando o método do vizinho mais próximo, pois este método causa perdas de informação.
✓	9- No contexto de Tone Mapping e Filtros Bilaterais aplicados em *1/1 imagens, marque a alternativa VERDADEIRA:
0	Para realizar Tone Mapping, os componentes de alta frequência da imagem (a "base") são separados dos detalhes da imagem, que correspondem às componentes de baixa frequência a partir da subtração entre a intensidade e sua versão suavizada;
0	(a "base") são separados dos detalhes da imagem, que correspondem às componentes de baixa frequência a partir da subtração entre a intensidade
0	(a "base") são separados dos detalhes da imagem, que correspondem às componentes de baixa frequência a partir da subtração entre a intensidade e sua versão suavizada; Tone Mapping visa alterar a informação de crominância para cores mais

✓ 10- O modelo de calibragem de câmeras apresentado através da *1/1 biblioteca OpenCV utiliza imagens de um padrão xadrez para determinação de parâmetros intrínsecos e extrínsecos da câmera considerando o modelo adotado e as poses dessas imagens xadrez a ele submetidas. Conforme exemplo de calibragem apresentado via Google Colab, o método "cornerSubPix" em OpenCV - dentro da pipeline de calibragem - tem o propósito de:
Retornar todos os pontos da imagem do padrão xadrez após a calibragem;
Retornar patches contendo arrays de todas os blocos claros e escuros do padrão xadrez;
Retornar o conjunto de pontos das interseções (dos blocos retangulares do padrão) após detecção inicial.
Retornar o conjunto de pontos (com as distorções corrigidas) através do método findChessboardCorners.

Este formulário foi criado em Centro de Informatica - UFPE.

Google Formulários