

5. Aplicaciones

Historia II

Gregor Mendel

- Los caracteres se heredan de forma discreta, y se toman del padre o de la madre, dependiendo de su carácter dominante o recesivo.
- Los caracteres (genes) pueden tomar diferentes valores (alelos)

*Descubrió los cromosomas, como ciertos filamentos en los que se agregaba la cromatina del núcleo celular durante la división; poco más adelante se descubrió que cada célula tiene un número fijo y característico de cromosomas.

Descubrieron que la base molecular de los genes está en el ADN, los cromosomas están compuestos de ADN, por lo tanto los genes están en los cromosomas.

- Computación Evolutiva: 1960s, Lawrence Fogel
- Algoritmos Genéticos (GAs), John Holland libro, "Adaptation in Natural and Artificial Systems", 1975. David Goldberg "Genetic Algorithms", 1989
- John Koza, 1992: evolucionar programas para realizar ciertas tareas. Programación Genética (GP), LISP

Formas de resolver estos problemas II

Algoritmo **ascenso de colina**(*hill-climbing*):

Se evalúa la función en **uno o varios** puntos, pasando de un punto a otro en el cual el valor de la evaluación es superior

```
Escoger un valor inicial (Xi,...,Xn)
Mientras que el valor de F siga aumentando:
(Xi',...,Xn')= (Xi,...,Xn) + (Yi,...,Yn)

evaluar F(Xi',...,Xn')

si F (Xi',...,Xn')> (Xi,...,Xn) entonces
(Xi,...,Xn)= (Xi',...,Xn')

fin-si
Fin-Mientras
```

principal problema: se quedan en el pico más cercano a la solución inicial

Formas de resolver estos problemas III

Recocimiento Simulado (Simulated Annealing):

- una vez fundido el metal se va enfriando poco a poco hasta conseguir la estructura cristalina correcta
- ascenso estocástico
- evita quedarse en mínimos locales

Formas de resolver estos problemas III

Recocimiento Simulado (Simulated Annealing):

```
inicializar la Temperatura T
la solución inicial (Xi,...,Xn)
evaluar f(Xi,...,Xn).
mientras que la Temperatura sea nula o el valor de F converja
Disminuir la temperatura.
Seleccionar una nueva solución (Xi',...,Xn') en
la vecindad de la anterior (mutación)
evaluar f(Xi,...,Xn)
si f(Xi',...,Xn') > f(Xi,...,Xn) entonces
(Xi,...,Xn) = (Xi',...,Xn')
si-no

isi
(Xi,...,Xn) = (Xi',...,Xn')
fin-si
fin-si
fin mientras
```


Formas de resolver estos problemas II

Técnicas basadas en población:

en lugar de tener una solución, que se va alterando hasta obtener el óptimo, se busca el óptimo cambiando varias soluciones

- más fácil escapar de mínimos locales
- algoritmos de computación evolutiva.

Conceptos Biológicos

- Los organismos vivos consisten de células. En cada célula existe el mismo conjunto de cromosomas
- Cromosomas: cadenas de <u>ADN</u>, modelo del organismo completo
- Un cromosoma consiste de genes (bloques de ADN)

 Cada gen codifica una proteína particular (rasgo, p.e., color de ojos)
- · Alelos: Los posibles valores para un rasgo (p.e., azul, café)
- · Locus: Posición de un gen en el cromosoma

Conceptos Biológicos

- Genotipo: conjunto particular de genes en un genoma.
- Fenotipo: el genotipo es la base para el fenotipo del organismo, posterior desarrollo después del nacimiento.

Evolución Natural

- Evolución natural, como se observa en la naturaleza, proceso que genera construcciones casi óptimas (Mayr;1982)
- Evolución Natural (Karlin;1988) se puede ver como un proceso dinámico en el cual los organismos que se han adaptado de manera aproximadamente óptima proliferan en el ambiente

Evolución Natural II

Resultado de la acción de dos tendencias opuestas actuando sobre una población de una especie:

- <u>Selección Natural</u>: propensión a adaptarse a un ambiente dado a través de la preservación del más apto ("supervivencia del más fuerte"); y
- Variación Genética o Polimorfismo: propensión a producir variación para cumplir con los requerimientos del ambiente ("recombinación sexual + mutación").

Selección Natural

- Permite a los individuos más aptos de una población sobrevivir, mientras los más débiles mueren.
- Operador que basado en una función de adaptabilidad actúa transformando una población en otra población seleccionada

Mecanismos que introducen variación genética:

- Mutación
- · Recombinación sexual
- · Flujo de genes

Aplicaciones de AEs ...

TSP

- movimiento de un lapiz de un plotter
- taladrado de circuitos impresos
- en rutamiento real de buses escolares
- programación de vuelos en aerolineas
- camiones de carga y transporte postal
- caminos biomoleculares
- enrutar el procesamiento paralelo de una red de computadores
- criptografía
- determinar el orden de miles de exposiciones necesarias en cristalografía de rayos X

Aplicaciones de AEs ...

- Sistemas de Vida Artificial
- Comportamiento de Robots
- Aprendizaje de Máguina
- Toma de Decisiones
- Aplicaciones Financieras
- Diseño de Sistemas de Control
- Control Robusto
- Identificación de Sistemas
- Compresión de Imágenes

Tipos de Algoritmos Evolutivos

- Algoritmos Genéticos
 - optimización de problemas combinatorios
- Estrategias Evolutivas
- Programación Evolutiva
 - optimización de funciones continuas
- Programación Genética
 - problemas que requieren encontrar la solución a un problema dado en la forma de una función

Estrategias de Evolución (ES)

- Iniciado para problemas de diseño en ingeniería.
- •Normalmente, no existe distinción entre los espacios de solución y búsqueda.
- Estrategias de evolución simples:
 - Un padre y un hijo
 - La solución hijo se genera aleatoriamente mutando los parámetros del padre
- Estrategias de evolución avanzadas:
 - Pools de padres e hijos
- A diferencia de GAs y GP
 - Las ES separan los individuos padres de los individuos hijos
 - Las ES selecciona las soluciones a partir de los padres, de manera determinística

Programación Evolutiva (EP)

- Similares a ESs, pero fue desarrollada de forma independiente
- Versiones recientes de la EP se aplica a la solución de autómatas de estados finitos
- reproducción se realiza únicamente por mutación (la versión original)
- Al igual que las ES opera sobre las variables de decisión del problema directamente (genotipo = fenotipo)
- Operadores genéticos específicos del problema
- Selección por torneo:
 - Los hijos se generan hasta que la población dobla su tamaño.
 - Cada solución es evaluada, y la mitad de la población (con bajo grado de adaptación) se elimina

Algoritmos Genéticos (GA)

- Los más utilizados.
- Robustos.
- Utilizan dos espacios separados:
 - Espacio de búsqueda Solución codificada (genotipo)
 - Espacio solución Soluciones reales (fenotipo)
- Los genotipos deben ser convertidos (mapped) en fenotipos antes de evaluar la adaptación de cada solución

Programación Genética (GP)

- Forma especializada de los GA
- Espacio de búsqueda: Expresiones simbólicas
- **Espacio solución:** Programas de computador
- Manipula un tipo de solución muy específica utilizando operadores GA de mutación y recombinación modificados
- Sus primeras aplicaciones fueron para diseñar programas de computador
- En la actualidad se utilizan en áreas alternativas, por ejemplo diseño de circuitos análogos

Algoritmos Genéticos

Los Algoritmos Genéticos (AGs) son algoritmos de **búsqueda** basados en los mecanismos de la **selección natural** (supervivencia del más apto) y los principios de la **genética**.

Cromosoma

Es la representación codificada de una posible solución. Generalmente se usa la representación como cadenas de bits

También se pueden usar punto flotante, códigos alfabéticos, . . .

Implementación de Algoritmos Evolutivos

Representación

- Cadenas Binarias (Algoritmos Genéticos)
- Arreglos Reales (Estrategias Evolutivas)
- Programas (Programación Genética)

Operadores Genéticos

- Operador de Selección
- Operadores de Variación
 - Operadores de Cruce
 - Operadores de Mutación
 - = Operadores de Fratación
 - Operadores de Flujo Genético ...

