

Pediatric Cancer: Cryoablative Palliation of Painful Musculoskeletal Metastases

Christopher A Hesh MD, C Matthew Hawkins MD, Anne E Gill MD

Department of Radiology & Imaging Sciences, Division of Interventional Radiology & Image-Guided Medicine

Disclosures

Christopher Hesh, MD: None

C Matthew Hawkins, MD: None

Anne E Gill, MD: None

Overview

- 1. Cancer Induced Bone Pain
- 2. Current Methods of Palliation
- 3. Role of Cryoablation in Palliation
- 4. CHOA Experience

Cancer induced bone pain (CIBP)

Presentation

- Background pain
- Spontaneous pain
- Movement-induced pain

Impact

- → ↑ Morbidity + Anxiety
- − ↓ Performance status
- ↓ Quality of life

Mantyh 2006

CIBP Workup

Past care

Anatomy-altering interventions

Goals of care

- Function
- Pain relief

Imaging

- CT or PET/CT
- MRI

PET/CT of patient with Ewing Sarcoma metastasis to right femur

Pain Palliation: Current Treatment Options

Systemic analgesics

- Nociceptive pain (Nonopioids -> Opioids)
- Neuropathic pain (Adjuvant)

External Beam Radiation

Anesthesia

- Intrathecal pumps
- Epidural injections
- Peripheral nerve blocks

The Sol Goldman Pancreatic Cancer Research Center

Cryoablation for pain

Mechanism of action

- Tumor necrosis + local control
- Periosteal nerve ablation

Timeline of pain relief: 1 day – 6 months

Cryoablation for pain

Cryoablation vs other thermal ablation

- Better visualization
- Less procedural pain

Complications (2-11%)

- Skin injury
- Transient nerve injury

CHOA Experience

Inclusion Criteria:

- Pediatric solid tumor histology metastatic to MSK
- January 2015 June 2019

Patients

- 7 patients
- 10 treatments
- Mean age 18 y (Range 14-26 y)

Lesions Treated

Technical Considerations

Cryoprobes

- Average number of probes placed to cover lesion: 4 (Range 3-6)
- BTG
 - IceForce (18)
 - IceRod (11) / CX (4)
 - IceEdge (3)
 - IceSphere (2)
 - IcePearl (3)

- Imaging assistance
 - Cone-beam CT (100%)
 - Ultrasound (50%)

Freeze/thaw cycle

- (9) 2 x 10 min freeze / 2 x 5 m thaw
- (1) 2 x 8 min freeze / 1 x 4 m + 1 x 3 m thaw

Case

Rhabdomyosarcoma rib metastasis

First probe placement

Ice ball on ultrasound

Palliation

Change In Analgesic Requirements

Average time from ablation to death: 4 months

Limitations

Retrospective case series

- Limited reliability of pain scales
- Poor long-term follow-up of site-specific pain

Analgesic pain regimen changes confounded by other sites of pain

Conclusion

Cryoablation is a potentially ideal option for palliation of pediatric MSK metastases.

Future

- Standardization of pain evaluation
- Identification of tumor histologies and metastatic locations most responsive

References

Anghelescu DL, Pankayatselvan V, Nguyen R et al. Bisphosphonate Use in Pediatric Oncology for Pain Management. Am J Hosp Palliat Care. 2019; 36: 138-142.

Callstrom MR, Dupuy DE, Solomon SB et al. Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial. Cancer. 2013; 119: 1033-1041.

Mantyh P. The science behind metastatic bone pain. European Journal of Cancer Supplements. 2006; 4: 4-8.

Mercadante S. Malignant bone pain: pathophysiology and treatment. Pain. 1997; 69: 1-18.

Prologo JD, Passalacqua M, Patel I, Bohnert N, Corn DJ. Image-guided cryoablation for the treatment of painful musculoskeletal metastatic disease: a single-center experience. Skeletal Radiol. 2014; 43: 1551-1559.

Urch C. The pathophysiology of cancer-induced bone pain: current understanding. Palliat Med. 2004; 18: 267-274.

Wallace AN, McWilliams SR, Connolly SE et al. Percutaneous Image-Guided Cryoablation of Musculoskeletal Metastases: Pain Palliation and Local Tumor Control. J Vasc Interv Radiol. 2016; 27: 1788-1796.

