# 适用范围

## Non-parametric Hypothesis Test

#### When is it appropriate?







- Parametric tests require stronger scale than rank



#### Examples:

- Is the sample random?
- Is this sample from a population following a normal distribution?



清华大学统计学研究中心

# Sign Test

### 1.1 Sign Test - Example

Compare the effects of two soporific drugs

| Subject | Drug 1 | Drug 2 | Diff (2-1) |
|---------|--------|--------|------------|
| 1       | 1.9    | 0.7    | -1.2       |
| 2       | -1.6   | 0.8    | 2.4        |
| 3       | -0.2   | 1.1    | 1.3        |
| 4       | -1.2   | 0.1    | 1.3        |
| 5       | -0.1   | -0.1   | 0.0        |
| 6       | 3.4    | 4.4    | 1.0        |
| 7       | 3.7    | 5.5    | 1.8        |
| 8       | 8.0    | 1.6    | 0.8        |
| 9       | 0.0    | 4.6    | 4.6        |
| 10      | 2.0    | 3.4    | 1.4        |
|         |        |        |            |

- ▶ Paired Comparison (成对比较); Paired data (成对数据)
- X<sub>i</sub>, Y<sub>i</sub> represent the hours of extra sleep on drugs 1 and 2 respectively
- $\triangleright$   $X_1, \dots X_n$  independent;  $Y_1, \dots Y_n$  independent
- X<sub>i</sub>, Y<sub>i</sub> are dependent -- cannot use two sample t test
- ▶ Take the difference Diff(2-1):  $Z_i = Y_i X_i$  i.i.d.
- ▶  $H_0$ :  $\mu = 0 \leftrightarrow H_1$ :  $\mu \neq 0$  where  $\mu = E(Z_i)$

Table: Hours of extra sleep on drugs 1 and 2, differences, signs and ranks of sleep study data

# 1.2 Sign Test

- ▶ Sign test: analogue to the one sample t test 非参数版
- ▶ Used on paired data where the column of values represents differences (e.g.,  $Z_i = Y_i X_i$ )
- ▶ Sign test: also the simplest test for the median in the population
- t test不能用

#### 1.1.1 Can we use t-test?

6

- ▶ T-tests: tests for the [means] of [continuous] data
  - ▶ One sample  $H_0$ :  $\mu = \mu_0 \leftrightarrow H_1$ :  $\mu \neq \mu_0$
  - ► Two sample  $H_0$ :  $\mu_1 \mu_2 = 0 \leftrightarrow H_1$ :  $\mu_1 \mu_2 \neq 0$
- ▶ Underlying these tests is the assumption that the data arise from a normal distribution
- T-tests do not actually require normally distributed data to perform reasonably well in most circumstances
- But sometimes it goes wrong

# 1.2 Sign Test

► Create a sign for each 
$$Z_i$$
,  $i = 1, \dots, n$  
$$S_i = \begin{cases} 1 & Z_i > 0 \\ -1 & Z_i < 0 \\ 0 & Z_i = 0 \end{cases}$$

▶ H<sub>0</sub>: The mean effects of two drugs are the same, or equivalently

Under  $H_0$ , what is the properties of  $S_i$ ?



## 星号部分-计算

# 1.2 Sign Test – technical details \*

• The rejection region at level of significance  $\alpha$  takes the form

$$D = \{ \mathbf{X} = (X_1, \dots, X_n) : n_+ \ge c \text{ or } n_+ \le d \}$$

• The constants c, d can be determined by

$$\sum_{i=c}^{n_0} C_{n_0}^i 0.5^{n_0} \le \frac{\alpha}{2}, \quad d = n_0 - c$$

• Compute the P-value of the test. Let  $x_0 = \min\{n_+, n_0 - n^+\}$ 

$$p = \sum_{i=0}^{x_0} C_{n_0}^i 0.5^{n_0} + \sum_{i=n_0-x_0}^{n_0} C_{n_0}^i 0.5^{n_0}$$

(If  $n_0$  is even and  $n_+ = n_0/2$ , then define p = 1.)

• Give a level of significance  $\alpha$ , we reject  $H_0$  if  $p < \alpha$ .



### interpretation

- Drug example
  - $n_+ = 8, n_0 = 9$
  - ► (Exact) P-value (probability of observing 0,1,8,9 positives): p = 0.0195 < 0.05
  - ▶ Reject  $H_0$  at level of significance  $\alpha = 0.05$

R will help you

应用-Sign Test – test median

#### 1.3 Sign Test – test median

Sign test can be used to test about the median of a population

$$H_0: m = m_0$$

What is m?

 $H_A$ :  $m > m_0$  or  $H_A$ :  $m < m_0$  or  $H_A$ :  $m 
eq m_0$ 

What is  $m_0$ ?

If the **null hypothesis is true**, then we should expect about half of the  $x_i - m_0$  quantities obtained to be positive and half to be negative:

If instead,  $m > m_0$ , then we should expect **more** than half of the  $x_i - m_0$  quantities obtained to be positive and fewer than half to be negative:







清华大学统计学研究中心

### 1.3 Sign Test – test median



- 1. Calculate  $X_i m_0$  for  $i = 1, 2, \dots, n$ .
- 2. Define N- = the number of negative signs obtained upon calculating  $X_i-m_0$  for  $i=1,2,\ldots,n$ .
- 3. Define N+ = the number of positive signs obtained upon calculating  $X_i m_0$  for  $i = 1, 2, \dots, n$ .

If the null hypothesis is true, then N- and N+ both follow a binomial distribution with parameters n and p = 1/2.

$$N-\sim b\left(n,rac{1}{2}
ight)$$
 and  $N+\sim b\left(n,rac{1}{2}
ight)$ 

Suppose Ha:  $m > m_0$ ,

we should reject the null hypothesis if n- is too small.

Or alternatively, if the P-value as defined by below is too small.

$$P = P(N - \le n -)$$



清华大学统计学研究中心

### Sign Test - Summary

- $\triangleright$  Sign test is appropriate if the population distribution ( $Z_i$ ) is symmetric under  $H_0$  or we are testing the about the median
- Similar arguments can be used to test hypothesis

$$\vdash H_0: \theta \leq 0.5 \leftrightarrow H_1: \theta > 0.5$$

▶ Drawback of sign test: it ignores magnitudes completely → it is inefficient (low power)

## Wilcoxon Signed Rank Sum Test

#### rank

#### What is rank?

- ▶ For example, raw data were 3.2, 2.4, 5, 3.8, the ranks were 2, 1, 4, 3
- ▶ In case of ties, mid-ranks are used, e.g., if the raw data were 105, 120, 120, 121, the ranks would be 1, 2.5, 2.5, 4

#### W

### 1.5 Wilcoxon Signed Rank Sum Test



| Subject | Drug 1 | Drug 2 | Diff (2-1) | Sign | Rank |
|---------|--------|--------|------------|------|------|
| 1       | 1.9    | 0.7    | -1.2       | -    | 3    |
| 2       | -1.6   | 0.8    | 2.4        | +    | 8    |
| 3       | -0.2   | 1.1    | 1.3        | +    | 4.5  |
| 4       | -1.2   | 0.1    | 1.3        | +    | 4.5  |
| 5       | -0.1   | -0.1   | 0.0        | NA   | NA   |
| 6       | 3.4    | 4.4    | 1.0        | +    | 2    |
| 7       | 3.7    | 5.5    | 1.8        | +    | 7    |
| 8       | 8.0    | 1.6    | 0.8        | +    | 1    |
| 9       | 0.0    | 4.6    | 4.6        | +    | 9    |
| 10      | 2.0    | 3.4    | 1.4        | +    | 6    |
|         |        |        |            |      |      |

Table: Hours of extra sleep on drugs 1 and 2, differences, signs and ranks of sleep study data

#### In the drug analysis

- Obtain  $S_i$ , the sign of  $Z_i = Y_i X_i$
- Discarding those in which  $Z_i = 0$  ( $S_i = 0$ )
- · Observations with zero differences are ignored
- Rank  $(R_i)$  = rank of  $|Z_i|$  (absolute value of  $Z_i$ ) after discarding  $Z_i = 0$
- Signed rank: SR = S \* Rank
- Calculate the test statistic W<sup>+</sup> (or W)

$$W^+ = \sum_{i=1}^{n_0} R_i I_{S_i > 0}$$
 (or  $W = \sum_{i=1}^{n_0} S_i R_i$ )

#### reject region

# 1.5 Wilcoxon Signed Rank Sum Test

- ▶ Under  $H_0$  (no difference),  $W^+$  could not be too small or too large
- ▶ Rejection H<sub>0</sub> if W<sup>+</sup> is too small or too large

```
> x <- c(1.9, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0)
> y <- c(0.7, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4)
> wilcox.test(y - x, correct = FALSE, exact = FALSE)
```

Wilcoxon signed rank test

data: y - x V = 42, p-value = 0.02077 alternative hypothesis: true location is not equal to 0

> wilcox.test(y, x, correct = FALSE, exact = FALSE, paired = TRUE)

### 星号部分

## 1.5 Wilcoxon Signed Rank Sum Test\*

Distribution of  $W^+$  under  $H_0$ :

$$ext{P}\left(W^{+}=i
ight)=rac{t_{n}(i)}{2^{n}},i=0,1,\cdots,n\left(n+1
ight)/2$$

 $t_n(i)$ : # of selecting ways to select a few numbers from 1,2,...,n such that the sum of selected numbers equals to i.

Symmetric property:

$$\mathrm{P}\left(W^{+} \leq d
ight) = \mathrm{P}\left(W^{+} \geq n(n+1)/2 - d
ight)$$

Mean and variance:

$$E(W^+) = n_0(n_0 + 1)/4 \quad Var(W^+) = n_0(n_0 + 1)(2n_0 + 1)/24$$

Rejection region  $D = \{W^+ \ge c \text{ or } W^+ \le d\}$  with c, d determined by type I error control

Constant c can be determined by <u>tables</u> and  $d = \frac{n_0(n_0+1)}{2} - c$ 

(Exact) P-value: let  $w^+$  be the observed value of  $W^+$ , and let  $a = \max(w^+, \frac{n_0(n_0+1)}{2} - w^+)$ 

$$p = P[W^+ \ge a \text{ or } W^+ \le \frac{n_0(n_0 + 1)}{2} - a \mid H_0]$$



清华大学统计学研究中心