Section 6.5

Today we will see least-square problems and how they are essentially just projections
Recall least-squares lines / linear regression
Have data/neasurements. Con thanh at them as aut parts. Would like a function that explains these aut parts and predicts other outputs for whetever mands we snyply.
May be there is some crazy function that perfectly describes data. But without more into we will never final it exactly.
What should we do? We should make on. model (a guess of the underlying function).
Muny ways to do this. Least-squares is

Leest squeres approach:
We will make very simple gnesses about underlying functions? Lines.
Which line should we choose?
Most likely scenario: no line will fort perfectly. So, should pich a line flot minimizes "error".
How do we measure error?.
This 13 where term "least squares" comes from.
That is set up. More in G.G. For now, return to world of matrices. Will seem very different at first.
Assume you have a fixed mxn medrix A. Then you are given some weeter $\vec{b} \in IR^m$
an autput. You want to find imports TEIR such that

	_	->
A	デ=	Ь

Try to solve system but it is inconsisted.

Do we give up and go home?

If cen'd find exact solution, would like to find approximate solution.

All the outputs that A can form form the column space, subspace of 12 m

Recall best approximation theorem". The arthogonal projection of vector anto subspace is closest we can get to that vector while in the subspace.

@ S. lu. A 3 = 5 Will carely do it like this. Too nuch worh. Shart cut: Remember: vector minus its projection is arthogonal te subspace. So 5-5 should be arthogenal to Col 1. Since arthogonal to Col A, should loe orthogonal to all columns of A. i.e a. (b-b) = 0 Dot preduct of two vectors, 200, some metrix multiplication 2 Td A [2"] [] [ai 7] b-b = 0 for all c. Se Ix m notice mx metrix Make metrix out or rows ait. This exactly metric At. - has A (6-6)=0

Know that
$$\vec{b} = A\vec{x}'$$
 for some \vec{x}' 's. So concide \vec{b} as $A\vec{x}'$.

$$AT\vec{b} - ATA\vec{x} = \vec{0}$$
 $ATA = nan moderix$

Normal Equations"

Rearrange

non matrix vector vector in 12 1

our \$\frac{7}{x}\$ that gets -s as close as possible to \$\frac{1}{b}\$ will be solution to this new materix equation $A^TA = A^T \hat{b}$.

Short stery: $A\bar{x}^2 = \bar{b}$ in consistent. To find reast squares solution multiply both sides by A^{\dagger} then solve.

Again, solution is to A # is to the least squares solution to system A is = b

Error: X still not an exact solution. AZ=B, not B. Se there is error. Least Squares Error: the distance between B' and B, i.e. length of vector (B-1) $||\vec{b} - \vec{b}|| = \sqrt{(\vec{b} - \vec{b}) \cdot (\vec{b} - \vec{b})}$ Theorem: A an man modern. That: € Air = b her unique least squerer saletren for each B in IR © Columns of A are linearly in algundant I ATA is invertible When any one of those (and ther all of then) are frue, least squeers substrain is given by $\hat{x}^2 = (A^T A)^{-1} A^T \hat{b}^2$ $A^{T}A)\overrightarrow{P} = A^{T}\overrightarrow{b}$ -7 x = (ATA) -1 ATB