If k = 1, we have $E_1^1 = E_1$ and

$$E_{1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ -\ell_{21}^{(1)} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -\ell_{n1}^{(1)} & 0 & \cdots & 1 \end{pmatrix}.$$

We also get

$$(E_1^{-1})^{-1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \ell_{21}^{(1)} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \ell_{n1}^{(1)} & 0 & \cdots & 1 \end{pmatrix} = I + \Lambda_1.$$

Since $(E_1^{-1})^{-1} = I + \mathcal{E}_1^1$, we find that we get $\Lambda_1 = \mathcal{E}_1^1$, and the base step holds.

Since $(E_j^k)^{-1} = I + \mathcal{E}_j^k$ with

$$\mathcal{E}_{j}^{k} = \begin{pmatrix} 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & \cdots & \ell_{j+1j}^{(k)} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \ell_{nj}^{(k)} & 0 & \cdots & 0 \end{pmatrix}$$

and $\mathcal{E}_i^k \mathcal{E}_j^k = 0$ if i < j, as in part (2) for the computation involving the products of L_k 's, we get

$$(E_1^{k-1})^{-1} \cdots (E_{k-1}^{k-1})^{-1} = I + \mathcal{E}_1^{k-1} + \cdots + \mathcal{E}_{k-1}^{k-1}, \quad 2 \le k \le n.$$
 (*)

Similarly, from the fact that $\mathcal{E}_j^{k-1} P(k,i) = \mathcal{E}_j^{k-1}$ if $i \geq k+1$ and $j \leq k-1$ and since

$$(E_j^k)^{-1} = I + P_k \mathcal{E}_j^{k-1}, \quad 1 \le j \le n-2, \ j+1 \le k \le n-1,$$

we get

$$(E_1^k)^{-1} \cdots (E_{k-1}^k)^{-1} = I + P_k(\mathcal{E}_1^{k-1} + \cdots + \mathcal{E}_{k-1}^{k-1}), \quad 2 \le k \le n-1.$$
 (**)

By the induction hypothesis,

$$I + \Lambda_{k-1} = (E_1^{k-1})^{-1} \cdots (E_{k-1}^{k-1})^{-1},$$

and from (*), we get

$$\Lambda_{k-1} = \mathcal{E}_1^{k-1} + \dots + \mathcal{E}_{k-1}^{k-1}.$$

Using (**), we deduce that

$$(E_1^k)^{-1}\cdots(E_{k-1}^k)^{-1}=I+P_k\Lambda_{k-1}.$$