Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich

Institut für Theoretische Informatik Peter Widmayer Sandro Montanari Tobias Pröger 24. April 2013

Datenstrukturen & Algorithmen Programmieraufgabe 9 FS 13

In dieser Aufgabe soll Kruskals Algorithmus zur Berechnung eines minimalen Spannbaums implementiert werden. Dieses Problem ist wie folgt definiert. Gegeben sei ein ungerichteter Graph G = (V, E) mit der Kostenfunktion $c : E \to \mathbb{Q}^+$, und gesucht wird eine kreisfreie zusammenhängende Teilmenge $T \subseteq E$ (d.h. ein Baum), dessen Kosten $\sum_{e \in T} c(e)$ minimal unter allen möglichen Bäumen ist. Die folgende Abbildung zeigt ein Beispiel eines Graphs sowie eines zugehörigen minimalen Spannbaums (breit gedruckte Kanten).

Eingabe Die erste Zeile der Eingabe enthält lediglich die Anzahl t der Testinstanzen. Danach folgt genau eine Zeile pro Testinstanz. Sie enthält eines Beschreibung des Graphs G=(V,E) im Format $n,m,u_1,v_1,c_1,...,u_m,v_m,c_m$. Es sind $1 \le n,m \le 10000$ mit $V=\{1,...,n\}$ und |E|=m. Für alle $i,1 \le i \le m$, definieren $u_i,v_i \in \{1,...,n\}$ die Kante $\{u_i,v_i\} \in E$ mit einem Kantengewicht von $c_i,1 \le c_i \le 1000$.

Ausgabe Für jede Testinstanz soll lediglich eine Zeile ausgegeben werden. Sie enthält die Kosten eines minimalen Spannbaums.

Beispiel

Eingabe:

1
10 15 1 2 1 2 3 2 1 4 7 2 5 2 3 6 3 3 7 5 4 5 4 5 6 3 6 7 2 4 8 1 5 9 3 6 9 4 7 10 6 8 9 5 9 10 3

Ausgabe:

21

Abgabe: Bis Mittwoch, den 8. Mai 2013.