Übungsblatt LA 11

Computational and Data Science BSc FS2023

Analysis und Lineare Algebra 2

1. Koordinatentransformation

- a) Geben Sie $\mathbf{r} = (8, -3, 9)$ in Zylinder- und in Kugelkoordinaten an.
- b) In Kugelkoordinaten ist ein Vektor gegeben zu r = 256, $\phi = 40^{\circ}$ und $\theta = 20^{\circ}$. Geben Sie diesen Vektor in kartesischen Koordinaten an.

2. Doppelintegrale

Lösen Sie die beiden folgenden Integrale unter Verwendung von Polarkoordinaten.

a) $I = \iint_A (1+x+y)dA$, wobei der Integrationsbereich der Einheitskreis sein soll

b) $I = \iint_A (3\sqrt{x^2 + y^2} + 4) dA$, wobei der Integrationsbereich der angegebene Kreisring sein soll (Innenradius = 1, Aussenradius = 3).

3. Schwerpunkt

Bestimmen Sie den Flächenschwerpunkt S des skizzierten Kreisringausschnitts mit Innenradius $r_1 = 2$ und Aussenradius $r_2 = 6$.

4. Volumen zylinderförmiger Körper

Berechnen Sie das Volumen V des Körpers, der durch einen in der xy-Ebene gelegenen kreisförmigen Boden mit Radius r = 1 und einen Deckel mit der Fläche $z = e^{x^2 + y^2}$ gebildet wird.

5. Kartesische in Kugelkoordinaten umwandeln

Stellen Sie die folgenden räumlichen Vektorfelder in Kugelkoordinaten dar:

a)
$$\vec{F}(x, y, z) = \begin{pmatrix} x \\ -z \\ y \end{pmatrix}$$
 b) $\vec{F}(x, y, z) = \frac{1}{x^2 + y^2 + z^2} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

6. Kartesische in Zylinderkoordinaten umwandeln

Die folgenden räumlichen Vektorfelder sind in Zylinderkoordinaten darzustellen:

a)
$$\vec{F}(x, y, z) = \vec{r} = (x\vec{e}_x + y\vec{e}_y + z\vec{e}_z)$$
 b) $\vec{F}(x, y, z) = y\vec{e}_x - 2\vec{e}_y + x\vec{e}_z)$.

2