Modelling and Forecasting Air Quality data with missing values via multivariate time series: Application to Madrid

joint with GRASPA 2017 on Climate and Environment 24-26 July 2017 - Bergamo, Italy

INDUSTRIALES ETSII | UPM

Authors: Mario Ramírez Jaén, Carolina García Martos & Ma Jesús Sánchez Naranjo

Context

Big cities suffer from Air Quality Issues.

New regulations show up at both national and European scope.

The use of monitorization networks to measure pollution and model as well as forecasting is spreading (Lawson et al. (2011), Febrero-Bande et al. (2007), Castellano et al. (2009)).

Madrid has a network made of **24 stations**. They are the following:

Pza. del Carmen **Barajas** Méndez Álvaro Pza. de España Barrio del Pilar Castellana Escuelas Aguirre Retiro Park **Cuatro Caminos** Pza. Castilla Av. Ramon y Cajal Ensanche Vallecas Vallecas Urb. Embajada Pza. Fdez. Ladrea Arturo Soria Villaverde Alto Sanchinarro C/ Farolillo El Pardo Moratalaz Parque Juan Carlos I Casa de Campo Tres Olivos

Steps followed along this work-in-progress Project:

1. Daily data:

- Univariate modelling of daily data, for each of the series corresponding to 22 stations in the city of Madrid.
- DFM for the 22-dimensional vector of series.

2. Hourly data:

- DFM for the 24 hourly series corresponding to a single station: weekly and yearly seasonality.
- DFM for the 24·m series, where m corresponds to the seleted number of stations to be analyzed.

All the aforementioned approaches need intervention of the missing data, and then working with the "corrected series".

State-space formulation with missing data.

Brief descriptive analysis of the daily data: NO₂, 22 stations

✓ Relationship between these series

√ Several seasonalities

Number of missing data per station

Year seasonality treatment

Year deterministic seasonality =
$$a_1 + b_1 sin\left(\frac{2\pi t}{365}\right) + c_1 cos\left(\frac{2\pi t}{365}\right)$$

First approach: SARIMA : $(p,d,q)\times(bp,bd,bq)_s$ models for daily NO₂ concentrations

		Pza. de España	Barrio del Pilar	Escuelas Aguirre	Cuatro Caminos	Ramón y Cajal	Vallecas	Arturo Soria	Villaverde Alto	C/ Farolillo	Moratalaz
р	1	1	1	1	1	1	1	1	1	1	1
d	0	0	0	0	0	0	0	0	0	0	0
q	0	0	0	0	0	0	0	0	0	0	0
bp	0	0	0	0	0	0	0	0	0	0	0
bd	1	1	1	1	1	1	1	1	1	1	1
bq	1	1	1	1	1	1	1	1	1	1	1
	Casa de Campo	Barajas	Mendez Alvaro	Castellana	Retiro	Pza. Castilla	Ensanche Vallecas	Urb. Embajada	Pza. Fdez. Ladrea	Sanchinarro	El Pardo
р	1	1	1	1	1	1	1	1	1	1	1
d	0	1	0	0	0	0	0	0	0	0	1
q	2	1	0	0	2	0	0	0	0	0	1
bp	0	0	0	0	0	0	0	0	0	0	0
bd	0	1	1	1	1	1	1	1	1	1	1
bq	0	1	1	1	1	1	1	1	1	1	1

Forecasting Error

"An amount of unobserved common factors (r), clearly smaller than the amount of series (r<<m), can explain the series variability".

1	2	3	4	5	6	7	8	9	10	11
84,7%	4,1%	1,7%	1,6%	1,0%	0,9%	0,8%	0,7%	0,6%	0,5%	0,4%
12	13	14	15	16	17	18	19	20	21	22
0,4%	0,4%	0,3%	0,3%	0,3%	0,3%	0,2%	0,2%	0,2%	0,1%	0,1%

Geographical interpretation of the 2nd common factor

Regulations establishes hourly pollution limits.

Challenges

Course of dimensionalty

Double Seasonality

Solutions

Select just two stations

SCA (software)

Approaches

Parallel approach station by station

Parallel approach for all series

Parallel Approach Station by Station

¡Double Seasonality!

ARIMA
$$(1,1,1)x(1,1,1)_{24}x(1,1,1)_{168}$$

VARIABLE	 TY	/PE OF	ORIGINA	DI	FFERENC	 ING			
	VAR	RIABLE	OR CENTER	RED	_	2.4	4.50		
1 24 168 ESCUELAS RANDOM ORIGINAL (1-B) (1-B)									
PARAMETE LABEL	ER	VARIABLE NAME	NUM./ DENOM.	FACTOR	ORDER	CONS- TRAINT	VALUE	STD ERROR	T VALUE
1 CONS	ST.		CNST	1	0	NONE	0015	.0106	15
2 THET	ΓA1	ESCUELAS	MA	1	1	NONE	2859	.1180	-2.42
3 THETA	124	ESCUELAS	MA	2	24	NONE	. 8088	.0101	79.78
4 THETA	168	ESCUELAS	MA	3	168	NONE	. 6991	.0123	56.80
5 PH3		ESCUELAS	AR .	1	1	NONE	2134	.1207	-1.77
6 PHI2	24	ESCUELAS	AR .	2	24	NONE	0630	.0169	-3.73
7 PHI1	L68	ESCUELAS	AR .	3	168	NONE	2895	.0161	-18.03

Forecasts become inaccurate after 12 hours, h>12.

Forecasting error around 20% for the first 12 hours (forecasting horizon h=1,...,12).

Parallel Approach All Stations

Dynamic Factor Model (DFM)

Average forecasting error around 40%. Great amount of outliers

Example: Window 505, hour 1, Escuelas Aguirre

Horizon	1	2	3	4	5
Error	5,92%	7,3%	1,19%	57,42%	3%

(Sep-Oct 2013)

Hora 1	Hora 2	Hora 3	Hora 4	Hora 5	Hora 6	Hora 7	Hora 8	Hora 9	Hora 10	Hora 11	Hora 12
25,48%	20,14%	18,23%	19,66%	18,24%	15,36%	14,72%	15,10%	14,44%	15,20%	16,34%	18,06%
Hora 13	Hora 14	Hora 15	Hora 16	Hora 17	Hora 18	Hora 19	Hora 20	Hora 21	Hora 22	Hora 23	Hora 24
15,29%	13,65%	15,51%	15,42%	13,98%	13,39%	11,66%	12,98%	10,54%	8,86%	11,00%	13,71%

State Equation $x_t = \phi x_{t-1} + w_t$

Used Software

Observation Equation $y_t = A_t x_t + v_t$

Aim: Estimate the value of x_t from the observations

$$\boldsymbol{Y}_{s} = \{\boldsymbol{y}_{1}, \dots, \boldsymbol{y}_{s}\}$$

SS with Missing Data

Missing data do not modify the problems dimension

$$\begin{pmatrix} y_t^{(1)} \\ y_t^{(2)} \end{pmatrix} = \begin{bmatrix} A_t^{(1)} \\ A_t^{(2)} \end{bmatrix} x_t + \begin{pmatrix} v_t^{(1)} \\ v_t^{(2)} \end{pmatrix}$$

Being $y_t^{(2)}$ missing data

$$y_t = \begin{pmatrix} y_t^{(1)} \\ 0 \end{pmatrix}; \qquad A_t = \begin{bmatrix} A_t^{(1)} \\ 0 \end{bmatrix}; \qquad R_t = \begin{bmatrix} R_{11t} & 0 \\ 0 & I_{22t} \end{bmatrix}$$

Kalman Filter

$$x_t^{t-1} = \phi x_{t-1}^{t-1} + w_t$$

$$P_t^{t-1} = \phi P_{t-1}^{t-1} \phi' + Q$$

$$x_t^t = x_t^{t-1} + K_t (y_t - A_t x_t^{t-1})$$

$$P_t^t = [I - K_t A_t P_{t-1}^{t-1}] P_t^{t-1}$$

Kalman Gain: $K_t = P_t^{t-1} A_t' [A_t P_t^{t-1} A_t' + R]^{-1}$

forecasting Error: $\varepsilon_t = y_t - E(y_t|Y_{t-1}) = y_t - A_t x_t^{t-1}$ Variance-Covariance matrix: $\Sigma_t = A_t P_t^{t-1} A_t' + R$

Example with two series

Escuelas Aguirre, hour 1 & hour 2

Estimated parameters:

estimate SE
Q 30.7550812 7.5092844
R11 8.7013815 2.1849004
R22 10.1208069 1.4048085
Phi 0.8655842 0.0417215
A1 1.1483367 0.2712761
A2 0.9705196 0.2295206

~1 Similar to Bivariate
Local Level Model

Example with 24 series

Φ ~1 Similar to a Multivariate Local Level

SS with Missing Data

Example with consecutive missing data:

Flat shape, far from reality

SS with Missing Data

Example with isolated missing data:

Good fit to the real series

Daily data conclusions:

There is a dominant model for daily data series: ARIMA $(1,0,0)\times(0,1,1)$

A geographic dependence, with two clearly differentiated areas, has been identified

El Pardo & La Casa de Campo can't be forecasted with an hourly data model

Hourly data conclusions:

With an ARIMA (1,1,1) × (1,1,1)24 × (1,1,1)168 20% forecasting error can be achieved for no disaggregated data.

With disaggregated date model can only make level forecasting

Hourly data are more unstable and have more outliners tan daily date, making them more difficult to forecast.

State space conclusions:

The best value for the transition matrix in close to 1, being that the value used in a Local Level model.

With few series, observation matrix components are close of those of a Local Level.

For a big number of series n, observation matrix components have a value around 1/n.

Further Research

3D Spatio-temporal modelling

Consider more general models than just a MLL

Study relationship between pollutants and Extend the State Space formulation for the data

Forecasting with SS models

THANK YOU FOR YOUR ATTENTION

Modelling and Forecasting Air Quality data with missing values via multivariate time series: Application to Madrid

INDUSTRIALES ETSII | UPM

Authors: Mario Ramírez Jaén, Carolina García Martos & Ma Jesús Sánchez Naranjo