Object Detection with CNNs

Overview of key concepts & algorithms

Agenda

- Context
- Terminology
- CNN Building blocks
- Common approaches
- Deep-dive: YOLO
- Prior research

Context | We want to find fish in kelp forest images

FishOASIS imaging and acoustic system deployed in kelp forest MPAs

- 1500 photos a day stored on R-Pi
- All fish counted by scientists

Incorporate on-board ML tool to automate detection and counting

- Only store photos with fish
- Only check sample of labels

Terminology | Key tasks for an object detector

Object classification

CAT

Object localisation

Object detection

CAT, DOG, DUCK

Instance segmentation

CAT, DOG, DUCK

CNN building blocks | Fully connected layers (trained)

- Stacked regression models with a non-linear activation function
- 'Train' optimal weights
- Predict class of given input
- # parameters depends on image size

CNN building blocks | Convolutional layers (trained)

- Filter applied sequentially to blocks of pixels in an image, output single value per block
- 'Train' optimal filter elements
- Extract useful/differentiating features
- # parameters doesn't depend on image size

CNN building blocks | Examples of filters

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

CNN building blocks | Hyperparameters (tuned)

Pooling

- Apply filter to "summarise" input (usually considered part of conv layer)
- Defined by type of pooling (max pooling, average pooling)

Stride

Number of steps move when scanning image with filter

Padding

- Add with extra border of 0's p elements wide
- Common types are "valid" (p=0) and "same" (input size = output size)

Convolution Neural Network (CNN)

Common approaches | Classification vs. regression

Classification-based approach

Implemented in two stages:

- First, select ROI in an image
- Second, classify ROI using CNNs

Slower as prediction runs in two stages and run predictions on every ROI, commonly used for once-off detection

Popular algorithms:

- R-CNNs (Fast, Faster, Mask)
- RetinaNet

Regression-based approach

Predict classes and bounding boxes for the whole image in one run of algorithm

Trade accuracy for large improvements in speed, commonly used for real-time object detection

Popular algorithms:

- You Only Look Once (YOLO)
- Single Shot Detector (SSD)

Deep-dive | You Only Look Once (YOLO)

What are we trying to predict?

We want to predict object class (c), prediction confidence (p_c) , and object location, which is specified by:

- b_v: x-coord of center point
- b_v: y-coord of center point
- b_h: height of bounding box
- b_w: width of bounding box

If *m* objects are detected, output is a list of *m* vectors each with length 5 + # classes

Deep-dive | You Only Look Once (YOLO)

How does YOLO do this?

Pass image through conv layers, and then generate predictions:

- Split image into cells (19 x 19)
- Predict z boxes for each cell (z = 5)
- : 19 x 19 x z output vectors

Remove empty boxes using non-max suppression:

- Drop all boxes with $p_c < 0.5$
- Sequentially select box with highest p_c and drop all overlapping boxes with IoU > 0.5

10	ayer	Tilters	2176	1 >	rra	(all)		0.	ınpu	L					out	Jul	-						
0	conv	32	3	X	3/	2	608	X	608	x	3	->	304	x	304	X	32	0.160	BF				
1	conv	64	3	x	3/	2	304	x	304	x	32	->	152	x	152	x	64	0.852	BF				
2	conv	64	3	x	3/	1	152	x	152	x	64	->	152	x	152	x	64	1.703	BF				
3	route	2									1/2	->	152	x	152	x	32						
4	conv	32	3	x	3/	1	152	x	152	x	32	->	152	x	152	x	32	0.426	BF				
5	conv	32	3	x	3/	1	152	x	152	x	32	->	152	x	152	x	32	0.426	BF				
6	route	5 4										->	152	x	152	x	64						
7	conv	64	1	x	1/	1	152	x	152	x	64	->	152	x	152	x	64	0.189	BF				
8	route	2 7										->	152	x	152	x	128						
9	max			2x	2/	2	152	x	152	x	128	->	76	x	76	x	128	0.003	BF				
10	conv	128	3	x	3/	1	76	x	76	x	128	->	76	x	76	x	128	1.703	BF				
11	route	10									1/2	->	76	x	76	x	64						
12	conv	64	3	x	3/	1	76	x	76	x	64	->	76	x	76	x	64	0.426	BF				
13	conv	64			3/		76	x	76	x	64	->						0.426					
14	route	13 12										->			76								
	conv	128	1	x	1/	1	76	x	76	x	128	->	76	×	76	x	128	0.189	BF				
16	route	10 15										->			76								
17	max			2x	2/	2	76	x	76	x	256	->	38	×	38	x	256	0.001	BF				
18	conv	256			3/		38	x	38	x	256	->	38	x	38	x	256	1.703	BF				
19	route	18									1/2	->	38	×	38	x	128						
20	conv	128	3	x	3/	1	38	x	38	x	128	->	38	x	38	x	128	0.426	BF				
21	conv	128	3	x	3/	1	38	x	38	x	128	->	38	x	38	x	128	0.426	BF				
22	route	21 20										->	38	x	38	x	256						
23	conv	256	1	x	1/	1	38	x	38	x	256	->	38	x	38	x	256	0.189	BF				
24	route	18 23										->	38	x	38	x	512						
25	max			2x	2/	2	38	x	38	x	512	->	19	x	19	x	512	0.001	BF				
26	conv	512	3	x	3/	1	19	x	19	х	512	->	19	x	19	x	512	1.703	BF				
27	conv	256	1	x	1/	1	19	x	19	x	512	->	19	x	19	x	256	0.095	BF				
28	conv	512	3	x	3/	1	19	x	19	x	256	->	19	x	19	x	512	0.852	BF				
29	conv	18	1	x	1/	1	19	x	19	x	512	->	19	x	19	x	18	0.007	BF				
30	yolo																						
[yold	o] para	ams: iou	loss:	c	iou	(4),	iou	n	orm:	0	.07,	obj	norm	1:	1.00	Э,	cls	norm:	1.00,	delta norm:	1.00,	scale x y	: 1.05
nms k	kind: g	greedynms	(1),	b	eta	= 0.	6000	90												_			
31	route	27										->	19	x	19	x	256						
32	conv	128	1	x	1/	1	19	x	19	x	256	->	19	x	19	x	128	0.024	BF				
33	upsamp	ole				2x	19	x	19	x	128	->	38	×	38	x	128						
		33 23										->	38	x	38	x	384						
	conv	256	3	X	3/	1	38	x	38	x	384	->						2.555	BF				
	conv	18			1/				38									0.013					
	yolo	0.000	-				20 =		1000		WHO!		and the same		1000								
	-	ams: iou	loss:	c	iou	(4).	iou	no	orm:	0	.07.	obi	norm	1:	1.00	3.	cls	norm:	1.00.	delta_norm:	1.00.	scale x v	: 1.05
	- F			-		1 13																	7 TO

layer filters size/strd(dil) input

Prior work | We're doing something new :)

- Much of existing literature applying CNNs to images of fish focus on classification
- Object detection has predominantly been used for post-processing in labs
- Open-source tools exist for this context: VIAME, FathomNet, Fish4Knowledge
- Results confirm that YOLO is faster than region proposal techniques, but requires more training data (>1000 annotations of each class)
- Most results come from coral reefs and other shallow, relatively static environments — no evidence (so far) of application in kelp forests
- Tools for on-board, real-time detection have been developed for midwater ROVs rather than passive, low-cost imaging systems

Most similar paper by Coro, published July 2021

Similarities:

- On-board object detection for underwater applications
- Built as an 'intelligent' component of passive monitoring system
- Open-source code, deployable after specifying a few parameters
- Utilizes YOLO Tiny

Differences:

- Optimised for large fish, rather than detecting all fish in an image
- Tested in relatively static environments, rather than in dynamic kelp forests
- No re-training for use in new environments, harder to update based on experience
- Training set generated by animating fish, rather than on live data
- Utilizes YOLO Tiny v3 rather than v4, as well as options for two other models