期末考试

姓名:陈 稼 霖 学号:SA21038052

成绩:

第 1 题 得分: ______. 群 G, 群元 a, b, 定义共轭为: 若 a 与 b 共轭, 则 $\exists g \in G$, s.t. $b = g^{-1}ag$. 证明: 共轭是一个等价关系.

证: 共轭满足

- (1) 反身性: $\forall a \in G$, 取 g = e, $e^{-1}ae = eae = a \Longrightarrow a 与 a 共轭.$
- (2) **对称性**: a 与 b 共轭 $\iff \exists g \in G$, s.t. $b = g^{-1}ag \iff \exists g^{-1} \in G$, s.t. $a = gbg^{-1} = (g^{-1})^{-1}bg^{-1} \iff b$ 与 a 共轭.
- (3) **传递性**: 若 a 与 b 共轭, b 与 c 共轭, 则 ∃ $g_1, g_2 \in G$, s.t. $b = g_1^{-1} a g_1, c = g_2^{-1} b g_2$. 取 $g = g_1 g_2$, 则 $c = g_2^{-1} b g_2 = g_2^{-1} (g_1^{-1} a g_1) g_2 = (g_2^{-1} g_1^{-1}) a (g_1 g_2) = (g_1 g_2)^{-1} a (g_1 g_2) = g^{-1} a g \Longrightarrow a$ 与 c 共轭. 故共轭是一个等价关系.

第 2 题 得分: _____. 向量空间中四个元素

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- (1) 证明 $I, \sigma_x, \sigma_y, \sigma_z$ 是线性无关的.
- (2) 证明对任意自伴随、迹为 1 的矩阵 A, 可以写成 $A = \frac{1}{2}(I + a\sigma_x + b\sigma_y + c\sigma_z)$ 的形式, 其中 a,b,c 为实数, $a^2 + b^2 + c^2 \le 1$. 特别地, 当 A 的秩为 1 时, $a^2 + b^2 + c^2 = 1$.

证: (1)

(2)

第 3 题 得分: ______. V 为向量空间, $\tau \in \mathcal{L}(V)$, $\mathcal{E} = \{e_1, e_2, e_3\}$ 为一组标准基, 且

$$\tau(e_1) = e_1 + e_2$$

$$\tau(e_2) = e_2 + e_3$$

$$\tau(e_3) = e_3 + e_1$$

- (1) 求标准基 \mathcal{E} 下 τ 的矩阵表示 $[\tau]_{\mathcal{E}}$.
- (2) 若另一组基在标准基下表示为 $\mathcal{B} = \{(1,0,0),(1,1,0),(1,1,1)\}$, 求 τ 在 \mathcal{B} 下的表示 $[\tau]_{\mathcal{B}}$.
- (3) 写出 τ 的极小多项式, 并写出其有理标准型. 再写出域为复时的约当标准型.

解: (1)

(2)

(3)

第 4 题 得分: _____. 映射 $f:M_1 \rightarrow M_2$

- (1) 证明 f 是连续的当且仅当闭集的原像集也是闭的.
- (2) 若 f 等距, (x_n) 是 M_1 中的柯西列, 证明 $f((x_n))$ 也是柯西列.

解:	(a)
卅午•	(a)

(b)

第 5 题 得分: ______. V 是有限维内积向量空间, $\tau \in \mathcal{L}(V)$

- (a) 若 A 是非空子集, 证明 A^{\perp} 是完备的.
- (b) 设 $\tau = \lambda_1 \rho_1 + \lambda_2 \rho_2 + \dots + \lambda_k \rho_k$, 其中 $\rho_1 + \rho_2 + \dots + \rho_k = I$ 是单位分解. 证明:

$$f(\tau) = f(\lambda_1)\rho_1 + f(\lambda_2)\rho_2 + \dots + f(\lambda_k)\rho_k.$$

- (c) 证明 V 的线性算子都是有界的.
- (d) 求酉算子的范数.
- (e) 证明 τ 是半正定的当且仅当 $\exists \sigma \in \mathcal{L}(V)$, s.t. $\tau = \sigma^* \sigma$, 并说明 σ 不是唯一的.

解: (a)

- (b)
- (c)
- (d)
- (e)

第 6 题 得分: _____. H 是希尔伯特空间, B 是其有界算子的集合, 证明

- (a) 若 $\tau \in B$, 则 $\ker \tau$ 是完备的.
- (b) 若 $\tau, \sigma \in B$, 则它们的复合 $\sigma \circ \tau$ 也是有界的.

证: (a)

(b)