

UNIVERSIDAD PONTIFICIA BOLIVARIANA FACULTAD DE INGENIERÍA EN TECNOLOGÍAS DE LA INFORMACIÓN Y LA COMUNICACIÓN PROGRAMA DE INGENIERÍA DE SISTEMAS E INFORMÁTICA

Curso: Teoría de la Computación

Profesor: Oscar Eduardo Sánchez García

Temática: Máquina de Mealy

 Una Máquina de Mealy es un tipo de autómata de estados finitos que genera una salida basándose en sus entradas y en su estado actual. Esto significa que en el diagrama cada transición incluirá el símbolo de entrada y el símbolo de salida. Un modelo de máquina de Mealy M: < Q, Σ, Δ, q0, δ, Γ > donde,

Q: Conjunto Finito de Estados

Σ: Conjunto de Símbolos de Entrada

Δ: Conjunto de Símbolos de Salida

q0: Estado Inicial

δ: Función de transición δ: $Qx\Sigma \rightarrow Q$

Γ: Función de salida Γ: Qx∑ -> Δ*

- 1. Una máquina expendedora distribuye dos tipos de bebida: Gaseosa y Agua Mineral. El precio por Unidad es de \$1.000, La Máquina acepta Monedas de \$200, \$500 y \$1.000, además calcula y devuelve el cambio necesario. Para comprar la bebida se deben introducir monedas, y luego oprimir el botón *G* para solicitar Gaseosa, o el botón *M* para solicitar Agua Mineral.
 - Q: { q0,q1,q2,q3,q4,q5,q6,q7,q8 }
 - Σ: { 200, 500, 1000, G, M }
 - Δ: { 200, 500, 1000, g, m } donde g=Gaseosa y m=Agua Mineral
 - δ: Q x ∑ → Q Función que indica el dinero acumulado
 - Γ: Q x ∑ → Δ* Función que Indica el dinero del cambio

Γ	\$200	\$500	\$1000	G	М
q0	3	3	ε	3	3
q1	3	3	200	3	3
q2	ω	3	200+200	3	3
q3	ω	3	500	3	3
q4	ω	3	200+200+200	3	3
q5	3	200	200+500	3	ß
q6	3	200+200	200+200+200+200	3	3
q7	3	200+200	200+200+500	3	3
q8	200	500	1000	g	m

Diseñar el diagrama de estados que represente el funcionamiento de la Máquina expendedora, debe utilizar la siguiente matríz de transiciones para modelar su comportamiento:

<i>δ: Qx</i> ∑	\$200	\$500	\$1000	G	М
q0 = 0					
q1 = 200					
q2 = 400					
q3 = 500					
q4 = 600					
q5 = 700					
q6 = 800					
q7 = 900					
q8 = 1000					