Example ECCENT-1

Determine the ultimate resistance of the following 6-bott eccentrically load connection. Use the established theory and method, not the design tables in the handbook.

Bolts are 3" A325 in double shear, threads excluded from the shear plane.

A = (3 × 25.4)² × T 4

= 2.85 mm²

Ult shear force in 1 bolt:

> Ry = 0.6 x 285 mm² x 2x 825 MPa Ry = 282 kN (per bolt)

The shear force, R in a bolt as a function of its shear displacement, D, is

R=Ru(1-e-ud)

For these botts, $\mu = 0.4$ (for D in mm) and $\lambda = 0.55$ and $\Delta_{max} = 8.64$ mm

The above figure shows a trial value of ro = 80 mm chosen.

Show the complete set of calculations for Rz (2nd both down from top).

Distance From I.C .:

X = 80 mm $Y = 1.5 \times 75 \text{ mm} = 112.5 \text{ mm}$ $I_5 = \sqrt{80^2 + 112.5^2} = 138.0 \text{ mm}$ Dist, of furthest both from I.C.

[= 1802 + 187.52 = 203.9 mm

Shear displacement, bolt 2

 $\Delta_z = \frac{1380}{203.9} \times 8.64 \text{mm} = 5.848 \text{mm}$

Shear force, bolt Z

Rz = 282 (1-e-0.4×5.848)0.55

= 266.7 kN

Moment about I.C.

- 266.7 KN x 0.138 m

= 36.81 KN-m

Vertical component

$$(R_z)_y = \frac{80}{138.0} \times 266.7 \text{ kN}$$

= 154.6 kN

Show all 6 botts in tabular form:

i		7	<u>_v</u>	۵	R	Rivi (R	;
	mm	mm	mm	mm	KN	trn-m	KN
1	80	187.5	203.9	8.640	277.1	56.50	108.7
2	පිල	112.5	0 -8 E 1	5.848	266.7		154.6
3	80	37.5	88.4	3.745	245-4		222.1
4	80	-37.5	88-4	3-745	245.4	21-69	222.1
5	80	-112.5	138.0	5.848	266.7	36-81	154.6
6	80	-187.5	203.9	8.640			108.7
					2	230.00	970-8

Using moment equilibrium $ZM_{JC}=D$ $-P_{i}(L+r_{o}) + ZR_{i}r_{i} = D$ $P_{i} = ZR_{i}r_{i}$ $L+r_{o}$ $= Z30.0 \times 10^{3} \text{ kN·mm}$ (300+80) mm $P_{i} = 605.3 \text{ kN}$

Using vertical equilibrium EFy = 0 to check $(ZR_i)_y - P_0$ $970.8 - 605.3 = 365.5 \neq 0$ Equilibrium not satisfied

I. Posn of I.C. (10) is not correct I.C. must be moved to reduce E(Pi)y (ie. ro should be decreased) After many trials we find 16 = 36.4 mm = Rivi = 190.6 KN-m P. = 567 KN Ot. L S(R;) = 567 KN