Задача 3.8

Да се докаже, че ⊇ е рефлексивна и транзитивна релация.

Рефлексивност

Можем за типова субституция да изберем идентитета ι . Ясно е, че тогава $\alpha \supseteq \alpha$, понеже $\alpha \iota = \alpha$.

Транзитивност

Трябва да покажем, че от $\alpha_1 \supseteq \alpha_2 \supseteq \alpha_3$ следва $\alpha_1 \supseteq \alpha_3$. Знаем, че съществуват типови субституции ξ_1 и ξ_2 , за които $\alpha_1\xi_1 = \alpha_2$ и $\alpha_2\xi_2 = \alpha_3$. Трябва да намерим такава субституция ξ , за която $\alpha_1\xi = \alpha_3$. Ще конструираме ξ , която да работи като ξ_2 след ξ_1 , тоест $\alpha\xi = (\alpha\xi_1)\xi_2$. Нека $\tau \in TV$, тогава $\xi(\tau) = (\xi_1(\tau))\xi_2$. Нека да докажем, че ξ има желаните свойства. Ще го направим с индукция по дефиницията на типовете.

Случай 1: $\alpha = \tau, \ \tau \in TV$

Следва по дефиницията на функцията.

Случай 2:
$$\alpha = \beta_1 \implies \beta_2$$

$$((\beta_1 \implies \beta_2)\xi_1)\xi_2 = ((\beta_1\xi_1) \implies (\beta_1\xi_1))\xi_2 = (\beta_1\xi_1)\xi_2 \implies (\beta_1\xi_1)\xi_2. \ \Pio \\ \Pi\Pi \ (\beta_1\xi_1)\xi_2 \implies (\beta_1\xi_1)\xi_2 = \beta_1\xi \implies \beta_2\xi = (\beta_1 \implies \beta_2)\xi.$$

Липса на антисиметричност

Нека $\alpha, \beta \in TV$, $\alpha \not\equiv \beta$. Дефинираме следната типова субституция:

$$\xi(\tau) = \begin{cases} \beta & \tau \equiv \alpha \\ \alpha & \tau \equiv \beta \\ \tau & \tau \not\equiv \alpha \land \tau \not\equiv \beta \end{cases}$$

При тази ситуация $\alpha \supseteq \beta$, защото $\alpha \xi = \xi(\alpha) = \beta$. Също е вярно, че $\beta \supseteq \alpha$, защото $\beta \xi = \xi(\beta) = \alpha$. Това показва, че \supseteq не е антисиметрична.