Chapitre IV: Diagonalisation des matrices carrées

1 Valeurs propres-vecteurs propres:

1.1 Définition:

Soit A une matrice carrée d'ordre n, V un vecteur non nul appartient à \mathbb{R}^n et λ un scalaire. On dit que V est un vecteur propre de A associé à la valeur propre λ si et seulement si: $AV = \lambda V$.

1.2 Polynôme caractéristique:

Soit A une matrice carrée d'ordre n. λ est une valeur propre de A et X un vecteur propre de A associé à λ donc on a:

$$AX = \lambda X \Leftrightarrow AX - \lambda X = 0 \Leftrightarrow (A - \lambda I)X = 0$$

Le polynôme caractéristique de A est par définition $P_A(\lambda) = det(A - \lambda I)$

Théorème:

Les valeurs propres d'une matrice carrée A d'ordre n sont les racines de polynôme caractéristique $P_A(\lambda) = 0$.

Exemple 1:

Soit la matrice A_1 suivante:

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

Déterminer les valeurs propres de A_1 .

Réponse:

• Cherchons le polynôme caractéristique de A_1

$$P_{A_1}(\lambda) = det(A_1 - \lambda I_2) = \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^2 - 1$$

• Pour déterminer les valeurs propres de *A* il suffit de résoudre:

$$P_{A_1}(\lambda) = 0$$

Exemple 2:

Soit la matrice A_2 suivante:

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

https://youtu.be/vrru5an0DRM

Remarques:

- On dit que λ est une valeur propre de multiplicité α , si λ est une racine d'ordre α de $P_A(\lambda)=0$.
- Si A est une matrice carrée d'ordre n, λ_i est une valeur propre de A de multiplicité α_i alors $n = \sum_{i=1}^p \alpha_i$ (l'ordre de la matrice est égale à la somme de multiplicité de ces valeurs propres).
- Une valeur propre de multiplicité 1 est dite valeur propre simple.
- Une valeur propre de multiplicité $\alpha > 1$ est dite valeur propre multiple.
 - Si $\alpha = 2$: Valeur propre double.
 - Si $\alpha = 3$: Valeur propre triple.

Propositions:

- Si λ est une valeur propre non nulle d'une matrice inversible A, alors $\frac{1}{\lambda}$ est une valeur propre de A^{-1} .
- Si λ est une valeur propre non nulle d'une matrice A, alors λ^p est une valeur propre de A^p .
- Les valeurs propres d'une matrice triangulaire sont les éléments de sa diagonale principale.

- La somme des valeurs propres de A = trace(A).
- Le produit des valeurs propres de A = det(A).

Exemples:

Donner les valeurs propres des matrices suivantes:

$$B = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 1 & 2 \end{pmatrix} \qquad ; \quad C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

1.3 Recherche des vecteurs propres:

1.3.1 Théorème:

A une valeur propre λ , on associe une infinité des vecteurs propres tous colinéaires entre eux.

 V_1 , V_2 sont colinéaires : $V_1 = \alpha V_2$

Exemple:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

Déterminer les vecteurs propres de *A*.

Réponse

A est une matrice triangulaire donc ses valeurs propres sont:

$$\lambda_1 = 1; \lambda_2 = 2; \lambda_3 = -1$$

 $V=egin{pmatrix} x \ y \ z \end{pmatrix} \in \mathbb{R}^3$, est un vecteur propre de A associé à $\lambda_1=1$, s'il vérifie l'égalité suivante:

$$AV = \lambda_1 V \rightarrow (A - I_3)V = 0$$

3

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & -2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$det(A - I_3)V = 0$$

$$\begin{cases} x + y = 0 \\ x - 2z = 0 \end{cases} \Leftrightarrow \begin{cases} y = -x \\ z = \frac{1}{2}x \\ x \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} x = x \\ y = -x \\ z = \frac{1}{2}x \end{cases}, x \in \mathbb{R}$$

$$V = \begin{pmatrix} x \\ -x \\ \frac{1}{2} \end{pmatrix} = x \cdot \begin{pmatrix} 1 \\ -1 \\ \frac{1}{2} \end{pmatrix} = x \cdot V_1 , x \in \mathbb{R}$$

L'ensemble des vecteurs propres de A associé à λ_1 , sont les vecteurs colinéaires à V_1 , cet ensemble s'appelle sous-espace propre de λ_1 , noté $E(\lambda_1)$ et puisque tous les vecteurs de $E(\lambda_1)$ sont colinéaires à V_1 , on dit que $E(\lambda_1)$ est engendré par V_1 et dimension de $E(\lambda_1) = 1$, on écrit $dim E(\lambda_1) = 1$.

 $V = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$, est un vecteur propre de A associé à $\lambda_2 = 2$, s'il vérifie l'égalité suivante:

$$AV = \lambda_2 V \to (A - 2I_3)V = 0$$

$$\begin{pmatrix} -1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & -3 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$det(A - 2I_3)V = 0$$

$$\begin{cases} -x &= 0 \\ x &= 0 \Leftrightarrow \begin{cases} x &= 0 \\ y &\in \mathbb{R} \Leftrightarrow \\ z &= 0 \end{cases}$$

$$V = \begin{pmatrix} 0 \\ y \\ 0 \end{pmatrix} = y \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = y \cdot V_2 \quad , \quad y \in \mathbb{R}$$

Le sous-espace propre de $E(\lambda_2)$ est engendré par V_2 et $dimE(\lambda_2=2)$

$$V = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$
, est un vecteur propre de A associé à $\lambda_3 = -1$, s'il vérifie l'égalité suivante:

$$AV = \lambda_3 V \to (A + I_3)V = 0$$

$$\begin{pmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$det(A + I_3)V = 0$$

$$\begin{cases} 2x &= 0 \\ x + 3y &= 0 \Leftrightarrow \begin{cases} x &= 0 \\ y &= 0 \\ z &\in \mathbb{R} \end{cases}$$

$$\begin{pmatrix} 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \end{pmatrix}$$

$$V = egin{pmatrix} 0 \ 0 \ z \end{pmatrix} = z. egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix} = z. V_3 \quad , \quad z \in \mathbb{R}$$

Le sous-espace propre de $E(\lambda_3)$ est engendré par V_3 et $dim E(\lambda_3) = 1$.

Exemple

Soit les matrices suivantes:

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \quad ; \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad ; \quad C = \begin{pmatrix} 15 & -2 & 6 \\ 21 & -2 & 9 \\ -28 & 4 & -11 \end{pmatrix}$$

Déterminer les vecteurs propres correspondants.

2 Diagonalisation des matrices:

2.1 Définition:

A est une matrice carrée, est diagonalisable s'il existe une matrice inversible *P*, dite matrice de passage, et une matrice diagonale D. Tel que:

$$A = P.D.P^{-1}$$

2.2 Théorème:

Pour qu'une matrice carrée A soit diagonalisable, il faut et il suffit que la dimension de sousespace propre associé à λ_i égale à la multiplicité de cette valeur propre λ_i

A est diagonalisable ssi:

$$dimE(\lambda_i) = \alpha_i$$

Avec α_i : multiplicité de λ_i

Remarque:

- La matrice digonale *D* est la matrice des valeurs propres.
- La matrice de passage *P* est la matrice des vecteurs propes.

2.3 Exemple:

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

 $\lambda_1 = 1$: Valeur propre simple ($\alpha_1 = 1$).

 $\lambda_2 = 3$: Valeur propre simple ($\alpha_2 = 1$).

$$V_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 ; $dimE(\lambda_1) = 1 = \alpha_1$. $V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$; $dimE(\lambda_2) = 1 = \alpha_2$.

cl: *A* est diagonalisable, donc il existe *D*, matrice diagonale, et *P*,matrice de passage, tel que:

$$A = P.D.P^{-1}$$

$$P = \begin{bmatrix} V_1 V_2 \end{bmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad ; \quad D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$

$$P^{-1} = \frac{1}{2} \cdot \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

 $\lambda_1 = 1$: Valeur propre double ($\alpha = 2$).

 $V = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$; $dimE(\lambda) = 1 \neq \alpha = 2 \Rightarrow B$ n'est pas diagonalisable.

$$C = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

 $\lambda_1 = 1$: Valeur propre simple ($\alpha_1 = 1$).

 $\lambda_2 = 2$: Valeur propre simple ($\alpha_2 = 1$).

 $\lambda_3 = -1$: Valeur propre simple ($\alpha_3 = 1$).

$$V_1=egin{pmatrix}1\\-1\\rac{1}{2}\end{pmatrix}$$
 ; $dim E(\lambda_1)=1=lpha_1.$

$$V_2 = egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} \quad ; \quad dim E(\lambda_2) = 1 = lpha_2.$$

$$V_3 = egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix} \quad ; \quad dim E(\lambda_3) = 1 = lpha_3.$$

C est diagonalisable donc il existe une matrice D diagonale et une matrice P tel que $C = P.D.P^{-1}$ avec:

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad ; \quad P = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \end{pmatrix}$$

$$H = \begin{pmatrix} 15 & -2 & 6 \\ 21 & -2 & 9 \\ -28 & 4 & -11 \end{pmatrix}$$

 $\lambda_1 = 0$: Valeur propre simple ($\alpha_1 = 1$).

 $\lambda_2 = 1$: Valeur propre double ($\alpha_2 = 2$).

$$V_1=egin{pmatrix} -rac{1}{2} \ -rac{3}{4} \ 1 \end{pmatrix}$$
 ; $dim E(\lambda_1)=1=lpha_1.$

$$V_2 = \begin{pmatrix} 1 \\ 7 \\ 0 \end{pmatrix} ; V_3 = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} ; dim E(\lambda_2) = 2 = \alpha_2.$$

H est une matrice diagonalisable donc il existe une matrice D diagonale et une matrice P tel que $H = P.D.P^{-1}$ avec:

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad ; \quad P = \begin{pmatrix} -\frac{1}{2} & 1 & 0 \\ -\frac{3}{4} & 7 & 3 \\ 1 & 0 & 1 \end{pmatrix}$$

2.4 Application: Calcul de A^n

A est une matrice carrée diagonalisable, Calculer A^n .

$$A^2 = A.A$$
 or $A = P.D.P^{-1}$

D'où

$$A^{2} = P.D.P^{-1}.P.D.P^{-1} = P.D^{2}.P^{-1}$$

 $A^{3} = A^{2}.A = P.D^{2}.P^{-1}.P.D.P^{-1} = P.D^{3}.P^{-1}$

•

.

$$A^n = P.D^n.P^{-1}$$

$$A^{n+1} = A^n.A = P.D^n.P^{-1}.P.D.P^{-1} = P.D^{n+1}.P^{-1}$$